Ch 7: Stable populations

Part I:

- ► Introduction
- ► Stable age distribution using the Leslie matrix

Stable population model

- Generalization of stationary population model
- ► Applications:
 - To examine long-term implications of maintaining a current set of fertility and mortality rates (what if ...?)
 - Estimate the implications of changes in mortality and fertility on the population age structure, growth rates, death rates and birth rates
 - Estimation of demographic parameters in populations that can be assumed to be stable or stationary

Stationary versus stable populations

Stationary population:

- Age-specific death rates are constant over time
- Closed to migration (net migration rates are zero at all ages)
- The flow of births is constant (the same # of births is added per unit of time)

Stable Population:

- Age-specific death rates are constant over time
- Closed to migration (net migration rates are zero at all ages)
- 3. Births are growing at a constant annualized growth rate: $B(t) = B(0) \cdot e^{rt}$

Stationary versus stable populations: implications

Stationary population:

- 1. Growth rate = 0
- 2. Constant CBR and CDR
- 3. Population in each age interval is the same from year to year.
- 4. Unchanging number of people in each age group

Stable Population:

- 1. Constant growth rate *r*
- 2. Constant CBR and CDR
- Population in each age interval is growing at the same rate, the rate at which births are growing.
- Unchanging proportion of the total population in each age group.

A simple example of a stable population

Imagine a population with the following mortality regime:

Exact Age	l _x	$p(x) = I_x/I_0$
0	1000	1.0
1	600	.60
2	400	.40
3	200	.20
4	50	.05
5	0	.00

In addition, we assume that from t_0 onwards, the annual # of births is growing at a constant rate r. For simplicity, assume all births are on Jan 1st, then # people at the start of each year t_0, t_1, \ldots :

Age	t ₀	t_1	t_2	t ₃	t ₄	t ₅	t_6
0	1000	1000 ⋅ e ^r	$1000 \cdot e^{2r}$	$1000 \cdot e^{3r}$	$1000 \cdot e^{4r}$	$1000 \cdot e^{5r}$	1000 ⋅ e ^{6r}
1		600	600 ⋅ e ^r	600 ⋅ e ^{2r}	600 ⋅ e ^{3r}	600 ⋅ e ^{4r}	$600 \cdot e^{5r}$
2			400	400 ⋅ e ^r	400 ⋅ e ^{2r}	400 ⋅ e ^{3r}	$400 \cdot e^{4r}$
3				200	200 ⋅ e ^r	200 ⋅ e ^{2r}	$200 \cdot e^{3r}$
4					50	50 ⋅ e ^r	50 ⋅ e ^{2r}
5						0	0

Simple example

Age	t ₀	t_1	t ₂	t ₃	t ₄	t ₅	t ₆
0	1000	1000 ⋅ e ^r	$1000 \cdot e^{2r}$	1000 ⋅ e ^{3r}	$1000 \cdot e^{4r}$	$1000 \cdot e^{5r}$	1000 ⋅ e ^{6r}
1		600	600 ⋅ e ^r	600 ⋅ e ^{2r}	600 ⋅ e ^{3r}	600 ⋅ e ^{4r}	600 ⋅ e ^{5r}
2			400	400 ⋅ e ^r	400 ⋅ e ^{2r}	400 ⋅ e ^{3r}	400 ⋅ e ^{4r}
3				200	200 ⋅ e ^r	200 ⋅ e ^{2r}	200 ⋅ e ^{3r}
4					50	50 ⋅ e ^r	50 ⋅ e ^{2r}
5						0	0

After t_5 the population is stable, refer to t_5 as t = 0, then for t > 0:

- ▶ Births in year t: $B(t) = B(0) \cdot e^{rt}$
- ▶ The population is growing at rate *r* too:

$$N(t) = \sum_{a} N(a, t) = \sum_{a} N(a, t - 1) \cdot e^{r} = e^{r} \cdot N(t - 1),$$

thus $N(t) = N(0) \cdot e^{rt}$ and CBR is constant.

▶ The population in year t consists of people from different cohorts, with # people in age group [a, a+1):

$$N(a,t) = B(t-a) \cdot p(a) = B(0) \cdot e^{r(t-a)} \cdot p(a)$$

the # people who were born a years ago and survived until age a.

Simple example

Age	t ₀	t_1	t ₂	t ₃	t ₄	t ₅	t ₆
0	1000	1000 ⋅ e ^r	$1000 \cdot e^{2r}$	$1000 \cdot e^{3r}$	1000 ⋅ e ^{4r}	$1000 \cdot e^{5r}$	1000 ⋅ e ^{6r}
1		600	600 ⋅ e ^r	600 ⋅ e ^{2r}	600 ⋅ e ^{3r}	600 ⋅ e ^{4r}	$600 \cdot e^{5r}$
2			400	400 ⋅ e ^r	400 ⋅ e ^{2r}	$400 \cdot e^{3r}$	$400 \cdot e^{4r}$
3				200	200 ⋅ e ^r	$200 \cdot e^{2r}$	$200 \cdot e^{3r}$
4					50	50 ⋅ e ^r	50 ⋅ e ^{2r}
5						0	0

After t_5 the population is stable, refer to t_5 as t=0, then for t>0:

- ▶ Births in year t: $B(t) = B(0) \cdot e^{rt}$
- ▶ Total population $N(t) = N(0) \cdot e^{rt}$.
- # people in age group [a, a + 1): $N(a, t) = B(0) \cdot e^{r(t-a)} \cdot p(a)$
- ▶ The relative age distribution is constant:

$$c(a,t) = \frac{N(a,t)}{N(t)} = \frac{B(0) \cdot e^{r(t-a)} \cdot p(a)}{N(0) \cdot e^{rt}}$$
$$= \frac{B(0)}{N(0)} \cdot e^{-ra} \cdot p(a) = c(a)$$

Lotka's (1939) renewal equation

- ► From the example we've seen that a stable population will emerge if three conditions prevail for long enough:
 - 1. Growth rate in the annual # of births is constant
 - 2. Constant age-specific mortality rates
 - 3. Zero migration at all ages (or net migration needs to be constant over time at all ages)
- Alfred Lotka demonstrated that (1) can be replaced by constant ASFRs
- ► Implications:
 - Populations with unchanging vital rates would eventually become stable
 - Any set of vital rates has an implied stable population that would eventually be produced by those rates
- ▶ Lotka showed it with algebra, but we already knew that too!

Really?

Tutorial 6: When keeping ASFRs and survival ratios constant, we found that the age structure of women in Singapore becomes constant.

Explanation with the Leslie matrix

► Recall the CC-projection with the Leslie matrix **L** for projection period *n*:

$$\mathbf{W}(t+n) = \mathbf{L} \cdot \mathbf{W}(t),$$

 $\mathbf{W}(t+P \cdot n) = \mathbf{L}^P \cdot \mathbf{W}(t)$

For longgg term projections, we get:

$$\lim_{P! \to 1} \mathbf{L}^P \cdot \mathbf{W}(t) \propto \mathbf{V},$$

with V the eigenvector corresponding to the largest eigenvalue λ of L, such that $L \cdot V = \lambda \cdot V$.

- ▶ This means that in long term projections, indeed the age structure has become constant, with $\mathbf{W}^{S}(t) \propto \mathbf{V}$ for all t.
- Moreover $\lambda = N^S(t+n)/N^S(t)$ (with $N^S(t)$ the total # females at time t for the stable population):

$$\mathbf{W}^S(t+n) = \mathbf{L} \cdot \mathbf{W}^S(t) = \lambda \cdot \mathbf{W}^S(t) = N^S(t+n)/N^S(t) \cdot \mathbf{W}^S(t).$$

Singapore females

Goal: Find age distribution and N(t + n)/N(t) for stable population (if mortality and fertility rates would remain constant)

Steps:

- ► Construct Leslie matrix
- Find largest eigenvalue λ
 and eigenvector V
- Age distribution = $\mathbf{V}/\sum_{a=1}^{A} V_i$
- $N(t + n)/N(t) = \lambda = 0.919$

Example: Population in the US 1991 (Box 7.2)

Goal: Find age distribution and N(t + n)/N(t) for stable population (if mortality and fertility rates would remain constant)

Steps:

- Construct Leslie matrix
- Find largest eigenvalue λ
 and eigenvector V
- Age distribution = $\mathbf{V}/\sum_{a=1}^{A} V_i$
- $N(t + n)/N(t) = \lambda = 0.999$

Note: next week we'll discuss an alternative way to calculate these outcomes