Problem komiwojażera z wykorzystaniem algorytmu symulowanego wyżarzania

Mateusz Chlebosz 151817, Jakub Aszyk 1518

16 Stycznia 2023

Algorytm Wyżarzania Symulowanego

1. Inicjalizacja

Figure 1: Initial

2. Opis Algorytmu

Symulowane wyżarzanie – jedna z technik projektowania algorytmów heurystycznych (metaheurystyka). Cechą charakterystyczną tej metody jest występowanie parametru sterującego zwanego temperaturą, który maleje w trakcie wykonywania algorytmu. Im wyższą wartość ma ten parametr, tym bardziej chaotyczne mogą być zmiany. Podejście to jest inspirowane zjawiskami obserwowanymi w metalurgii – im większa temperatura metalu, tym bardziej jest on plastyczny.

Jest to metoda iteracyjna: najpierw losowane jest pewne rozwiązanie, a następnie jest ono w kolejnych krokach modyfikowane. Jeśli w danym kroku uzyskamy rozwiązanie lepsze, wybieramy je zawsze. Istotną cechą symulowanego wyżarzania jest jednak to, że z pewnym prawdopodobieństwem może być również zaakceptowane rozwiązanie gorsze (ma to na celu umożliwienie wyjście z maksimum lokalnego).

Prawdopodobieństwo przyjęcia gorszego rozwiązania wyrażone jest wzorem e(f(X) - f(X'))/T (rozkład Boltzmanna), gdzie X jest poprzednim rozwiązaniem, X' nowym rozwiązaniem, a f funkcją oceny jakości – im wyższa wartość f(X), tym lepsze rozwiązanie. Ze wzoru można zauważyć, że

prawdopodobieństwo przyjęcia gorszego rozwiązania spada wraz ze spadkiem temperatury i wzrostem różnicy jakości obu rozwiązań.

Przez rozpoczęciem wykonywania algorytmu należy ustalić:

- Początkową wartość temperatury T.
- Sposób obniżania temperatury często stosowanym rozwiązaniem jest mnożenie aktualnej temperatury przez pewien współczynnik, zazwyczaj mieszczący się w przedziale [0, 8; 0, 99].
- Liczbę prób przeprowadzanych w ramach jednej epoki (z tą samą temperaturą).
- Sposób wyboru nowego rozwiązania w ramach pojedynczej próby. Nowe rozwiązanie powinno znajdować się w pobliżu aktualnego. Przy wyznaczeniu nowego rozwiązania można wziąć pod uwagę aktualną temperaturę im wyższa, tym bardziej nowe i aktualne rozwiązanie mogą się od siebie różnić.
- Warunek stopu może to być np. osiągnięcie określonej liczby epok lub odpowiednio mała zmiana rozwiązania w trakcie ostatnio wykonanych epok.

(Debudaj-Grabysz, Deorowicz, and Widuch 2012)

3. Pseudokod

S=instancja początkowa

Nasza implementacja w języku C++ dostępna na Githubie

4. Przykład obrazujący działanie

Najlepiej 2, 3 rysunki przedstawiające obraz instancji po najważniejszych krokach algorytmu. UWAGA! Przykład z tą samą instancją jak w pkt.1

5. Finalizacja

Simulated Annealing

Figure 2: Final Instance

Wykresy

1. Porównaj optymalizowaną wartość (wynik) Algorytmu z A. zachłannym.

Instancja	A. zachłanny	SA
Berlin52	8572.52	7544.37

(wykres pokaże czy Algorytm jest lepszy i o ile od A. zach. Instancje wygenerowane losowe, 15 punktów pomiarowych)

2. Korzystając z bibliotek instancji (benchmarków) pokaż na wykresie wartość błędu względnego Algorytmu w stosunku do wartości optymalnej.

(wykres pokaże jak dobry jest Algorytm, minimum 10 instancji, wykres słupkowy)

Instancja	Błąd względny	SA	Optimum
Berlin52	0.0	7544.37	7544.37
Bier127	0.0	121530.64	118293.5238

 ${\bf 3.}$ Zamieść odpowiednią do tematu część Tabelki z Rankingu instancje z Tabelki są w katalogu

Instancja	Wynik
Berlin52	7544.37
Bier127	121530.64
tsp250	
tsp500	92396.16
tsp1000	27571.37

Debudaj-Grabysz, Agnieszka, Sebastian Deorowicz, and Jacek Widuch. 2012. Algorytmy i Struktury Danych: Wybór Zawaansowanych Metod. Wyd. 2. Gliwice: Wydawnictwo Politechniki Śląskiej.