

DDS Manual

File update records

Time	Renewal person	Version identification number	Compile, modify content

Contents

Module overview
3
Parameter definition
Interface definition
How it works
1.1 Functional Features
Simulation Timing

- 4.1 Block diagram of the module
- 4.2 Cordic Principle

Module overview

Functional characteristics

- 1) Support I, Q output
- 2) Support data bit width up to 16bit
- 3) Support frequency word, phase word dynamic configuration
- 1.1⁴⁾ SFDR>99dBs @16bit
 - 5) Operating frequency not less than 600MHz
 - 6) Phase accumulator 32-bit wide

Parameter definition

Table 1 Parameter definitions 1

Parameter names	Default	Instructions
OUT_WIDTH	16	Data bit width, up to 16 bits supported
OUT_REGISTER_EN	1	Data output as register enable
FREQ_WORD_INIITIAL	32' h6D3A06	Frequency word Default
		How to calculate: cfg_freq_word = fout*(2^32)/fclk
		Where freq_word: frequency word
		fout: desired output frequency
		fclk: Clock frequency
PHASE_WORD_INIITIAL	0	Phase word default
		Method of calculation: phase_word = phase*(2^32)/(2π)
		Where phase_word: phase word
		phase: The expected output phase
K	16' h4DBA	Calibrate factor default
		Recommended values: Data bit width =16bit, K=16'h4DBA
		Data bit width =14bit,K=14'h136E
		Data bit width =12bit,K=12'h4DB

Interface definition

Table 2 Interface signal definitions 2

Signal name	Direc	Clock	Description
	tions	Domain	
clk	Input		Master Clock
			All signals are sampled on the rising edge of this
			signal
rst_n	Enter	clk	Reset signal
			Active level: low;
cfg_vld	Enter	clk	Dynamically update frequency word and phase word
			configuration enable.
			Note: After dynamic configuration of frequency word
			and phase word, the actual frequency changes after
			fixed delay.
			The fixed delay is: OUT_WIDTH + OUT_REGISTER_EN + 1
			Active level: High;
cfg_freq_word[31:0]	Enter	clk	Frequency word configuration input

-			T
			<pre>Calculation method: cfg_freq_word = fout*(2^32)/fclk Where cfg_freq_word: frequency word</pre>
			fout: desired output frequency
			fclk: Clock frequency
cfg_phase_word[31:0]	Type	clk	Phase word configuration input
			<pre>Method of calculation: cfg_phase_word = phase*(2^32)/(2 π) Where cfg_phase_word: phase word fout: expected output phase</pre>
sig_vld_o	Outpu	clk	Sine-cosine signal output enabled
31g_V1u_0	t	CIK	After reset, wait for a fixed period to indicate
	l t		
			that the sine-cosine signal output is valid
			有效电平: 高
$sin_o[x:0]$	expor	clk	Sinusoidal output
	tatio		
	n		
$\cos_0[x:0]$	Outpu	clk	Cosine output
	t		

How it works

Block diagram

In each clock cycle, add the value in the phase accumulator to the frequency control word to get the current phase value. The cordic algorithm calculates the sine and cosine data from the phase values. Appst by changing the frequency control word, the frequency of the output signal can be changed.

Figure1 cordic based DDS signal generator

Cordic Principle

CORDIC 算法通过一系列特定小角度的旋转逐步逼近目标角度,达到计算目标角度正余弦值的目的。如图 3.1 所示,在二维直角坐标系中给定向量 $\alpha=(x_1,y_1)$,经过逆时针旋转角度 θ 后得到向量 $\beta=(x_2,y_2)$,可以推导出该旋转过程满足下式:

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$$
 (3-1)

4.2

图 3.1 向量坐标旋转图

对上式提取因式 $\cos\theta$ 后,可以得到:

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \cos \theta \begin{bmatrix} 1 & -\tan \theta \\ \tan \theta & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$$
 (3-2)

把 θ 分成 N 个小角度的组合,即 $\theta = \sum_{n=0}^{N-1} b_n \theta_n$,即将上述旋转过程转变成 N 个小角度的迭代旋转,式(3-2)可以变为:

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = K \begin{bmatrix} 1 & -b_{N-1} \tan \theta_{N-1} \\ b_{N-1} \tan \theta_{N-1} & 1 \end{bmatrix} \cdots \begin{bmatrix} 1 & -b_1 \tan \theta_1 \\ b_1 \tan \theta_1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -b_0 \tan \theta_0 \\ b_0 \tan \theta_0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} (3-3)$$

其中 $K=\prod_{n=0}^{N-1}\cos\theta_n$ 为模长校正因子, b_n 表示旋转方向。

对小角度 θ_n 作式(3-4)所示约束,表 3.1 列出了前 5 个角度的值及其正切值。

$$\theta_n = \arctan 2^{-n} \tag{3-4}$$

表 3.1 前 n 次旋转子角度及其正切

n	θ,	$\tan \theta_n = 2^{-n}$
0	45.00000000	1
1	26.555051177	0.5
2	14.036243467	0.25
3	7.125016348	0.125
4	3.576334374	0.0625

结合式(3-3)和式(3-4)可以得到:

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = K \begin{bmatrix} 1 & -b_{N-1} 2^{-N-1} \\ b_{N-1} 2^{-N-1} & 1 \end{bmatrix} \cdots \begin{bmatrix} 1 & -b_1 2^{-1} \\ b_1 2^{-1} & 1 \end{bmatrix} \begin{bmatrix} 1 & -b_0 \\ b_0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$$
(3-5)

即将式(3-3)中的正切运算通过移位运算来实现。通过对模长校正因子 K 的分析可以得到,当迭代旋转的次数足够多时, $K \approx 1.64676024187$,因此可以看作固定值。

由于每次旋转的方向都与上次旋转后剩余角度的大小有关,因此需要增加一个角度累加器用来判断下一次旋转的方向。设变量 z_n 为第n次旋转后的剩余角度大小,则有:

$$z_n = z_{n-1} + b_{n-1}\theta_{n-1} \quad n=1,2\cdots$$
 (3-6)

其中 $z_0 = \theta$,当 $z_n > 0$ 时, $b_n = 1$,即下次旋转为逆时针旋转;反之, $b_n = -1$,下次旋转方向为顺时针。

综上所述,当输入向量 α 为单位向量时,通过简单的移位、加法运算就可以得到旋转角度 θ 对应的正余弦值。

Simulation Timing

Figure 2 2Simulation waveform