Machine Learning (CS 567) Lecture 8

Fall 2008

Time: T-Th 5:00pm - 6:20pm Location: GFS 118 Instructor: Sofus A. Macskassy (macskass@usc.edu)

Office: SAL 216

Office hours: by appointment

Teaching assistant: Cheol Han (cheolhan@usc.edu)

Office: SAL 229

Office hours: M 2-3pm, W 11-12

Class web page:

http://www-scf.usc.edu/~csci567/index.html

Lecture 8 Outline

Nearest Neighbor Method

The Top Five Algorithms

- Decision trees (C4.5)
- Nearest Neighbor Method
- Neural networks (backpropagation)
- Probabilistic networks (Naïve Bayes; Mixture models)
- Support Vector Machines (SVMs)

CS 567 Lecture 8 - Sofus A. Macskassy

Summary so far

Criterion	Perc	Logistic LDA	LDA	Trees
Mixed data	no	ou	no	yes
Missing values	no	no	yes	yes
Outliers	no	yes	no	yes
Monotone transformations	no	no	no	yes
Scalability	yes	yes	yes	yes
Irrelevant inputs	0 0	no	no	somewhat
Linear combinations	yes	yes	yes	no
Interpretable	yes	yes	yes	yes
Accurate	yes	yes	yes	no

The Nearest Neighbor Algorithm

- Hypothesis Space
- variable size
- deterministic
- continuous parameters
- Learning Algorithm
- direct computation
- lazy

Nearest Neighbor Algorithm

- Store all of the training examples
- example $\langle \mathbf{x}_i, y_i \rangle$ that is nearest to \mathbf{x} according to Classify a new example x by finding the training some distance metric (e.g. Euclidean distance):

$$\|\mathbf{x} - \mathbf{x}_i\| = \sqrt{\sum_j (x_j - x_{ij})^2}$$

guess the class $\hat{l} = l_i$.

gives the same answer but avoids the square Efficiency trick: squared Euclidean distance root computation

$$\|\mathbf{x} - \mathbf{x}_i\|^2 = \sum_{j} (x_j - x_{ij})^2$$

Decision Boundaries: The Voronoi Diagram

- Nearest Neighbor does not explicitly compute decision boundaries. However, the boundaries form a subset of the Voronoi diagram of the training data
 - Each line segment is equidistant between two points of opposite class. The more examples that are stored, the more complex the decision boundaries can become.

Nearest Neighbor depends critically on the distance metric

Normalize Features:

 Otherwise features with large ranges could have a disproportionate effect on the distance metric.

Remove Irrelevant Features:

Irrelevant or noisy features add random perturbations to the distance measure and hurt performance

Learn a Distance Metric:

 One approach: weight each feature by its mutual information with the class. Let $w_i = I(y \mid x_i)$. Then $d(\mathbf{x}, \mathbf{x}') = \sum_{j=1}^n w_j(x_j - x_j)^2$

Another approach: Use the Mahalanobis distance: $D_{M}(\mathbf{x},\mathbf{x}') = (\mathbf{x} - \mathbf{x}')^{T}\Sigma^{-1}(\mathbf{x} - \mathbf{x}')$

Smoothing:

Find the k nearest neighbors and have them vote. This is especially good when there is noise in the class labels.

k-NN: Irrelevant features

y-axis is irrelevant

Fall 2008

Fall 2008

CS 567 Lecture 8 - Sofus A. Macskassy

k nearest neighbors example

Smoothing from k = 1 to 20

Pick best value according to the error on the validation set

Distance-weighted nearest neighbor

• Inputs: Training data $\{(\mathbf{x}_i, y_i)\}_{i=1}^m$ distance metric don ${\mathcal X}$, weighting function

$$w: \Re \longrightarrow \Re$$

- Learning: Nothing to do!
- Prediction: On input x,
- For each *i* compute $w_i = w(d(\mathbf{x}_{ij}\mathbf{x}))$.
- Predict weighted majority or mean. For example,

$$\mathbf{y} = rac{\sum_i w_i \mathbf{y_i}}{\sum_i w_i}$$

How to weight distances?

Some weighting functions

Example: Gaussian weighting, small σ

CS 567 Lecture 8 - Sofus A. Macskassy

16

Fall 2008

Reducing the Cost of Nearest Neighbor

- Efficient Data Structures for Retrieval
- (kd-trees)
- Selectively Storing Data Points (editing)
- Pipeline of Filters

kd trees

- A kd-tree is similar to a decision tree except that we split the examples using the median value of the feature with the highest variance.
- oints corresponding to the splitting value are stored in the nternal nodes
 - We can control the depth of the tree (stop splitting)
- In this case, we will have a pool of points at the leaves, and we still need to go through all of them

Features of kd-trees

- Makes it easy to do 1-nearest neighbor
- efficiently, we can leave out some neighbors, if their influence on the prediction will be To compute weighted nearest-neighbor small
- periodically if we acquire more data, to keep But the tree needs to be restructured it balanced

Edited Nearest Neighbor

- Select a subset of the training examples that still gives good classifications
- memory and test each point to see if it can be correctly classified given the other points in memory. If so, delete it from the memory. Incremental deletion: Loop through the
- it is not correctly classified by the points already memory. Add each point to the memory only if Incremental growth. Start with an empty stored

CS 567 Lecture 8 - Sofus A. Macskassy

Decision Boundaries: The Voronoi Diagram

Filter Pipeline

- Consider several distance measures: D₁, D₂, ..., D_n where D_{i+1} is more expensive to compute than D_i
- Calibrate a threshold N_i for each filter using the training data
- Apply the nearest neighbor rule with D_i to compute the N_i nearest neighbors
- Then apply filter D_{i+1} to those neighbors and keep the N_{i+1} nearest, and so on

CS 567 Lecture 8 - Sofus A. Macskassy

The Curse of Dimensionality

- Nearest neighbor breaks down in high-dimensional spaces, because the 'neighborhood" becomes very large.
- Suppose we have 5000 points uniformly distributed in the unit hypercube and we want to apply the 5-nearest neighbor algorithm. Suppose our query point is at the origin.
- Then on the 1-dimensional line, we must go a distance of 5/5000 = 0.001 on the average to capture the 5 nearest neighbors
- In 2 dimensions, we must go $\sqrt{0.001} = 0.0316$ to get a square that contains 0.001 of the volume.
- In D dimensions, we must go $(0.001)^{1/d}$ [$(0.001)^{1/30} = 0.794$!]

The Curse of Dimensionality (2)

5000 points in unit square

Fall 2008

The Curse of Dimensionality (3)

The Curse of Dimensionality (4)

The Curse of Dimensionality (5)

With 5000 points in 10 dimensions, we must go 0.501 distance along each attribute in order to find the 5 nearest neighbors

The Curse of Noisy/Irrelevant Features

- NNbr also breaks down when the data contains irrelevant, noisy features.
- Consider a 1D problem where our query x is at the origin, our nearest neighbor is xI at 0.1, and our second nearest neighbor is xZ
- Now add a uniformly random noisy feature. What is the probability that x2' will now be closer to x than x1? Approximately 0.15.

Curse of Noise (2) Location of x1 versus x2

Fall 2008

CS 567 Lecture 8 - Sofus A. Macskassy

Nearest Neighbor Summary

Advantages

- variable-sized hypothesis space
- Jearning is extremely efficient and can be online or batch
- However, growing a good kd-tree can be expensive
- Very flexible decision boundaries

Disadvantages

- distance function must be carefully chosen
- irrelevant or correlated features must be eliminated
- typically cannot handle more than 30 features
- computational costs: memory and classification-time computation

Nearest Neighbor Evaluation

Criterion	Perc	Logistic	LDA	Trees	NNbr
Mixed data	no	no	no	yes	no
Missing values	no	00	yes	yes	somewhat
Outliers	no	yes	00	yes	yes
Monotone transformations	no	no	n	yes	ПО
Scalability	yes	yes	yes	yes	uo 0
Irrelevant inputs	no	no	00	somewhat	no
Linear combinations	yes	yes	yes	no	somewhat
Interpretable	yes	yes	yes	yes	no
Accurate	yes	yes	yes	00	OU