

EE141-Spring 2010 Digital Integrated Circuits

Lecture 15
Pass-Transistor Logic
Layout of Complex Logic

EECS141 Lecture #15

Administrativia

- □ Hw 6 posted.
- □ Project phase 1 underway. Mail your group composition (list of names) to ee141@cory.eecs.berkeley.edu
- □ No lecture on Fr
 - Make-up on Tu March 16 at 3:30pm

EECS141 Lecture #15 2

Class Material

- □ Last lecture
 - Optimizing complex logic
 - Pass transistor logic
- □ Today's lecture
 - Pass transistor logic continued
 - CMOS Layout
 - Pseudo-NMOS
- □ Reading (Ch 6)

EECS141 Lecture #15

Pass-Transistor Logic

EECS141 Lecture #13

NMOS Only Logic: Level Restoring Transistor

- Advantage: Full Swing
- Restorer adds capacitance, takes away pull down current at X
- Ratio problem

EECS141 Lecture #13

Restorer Sizing

- Upper limit on restorer size
- Pass-transistor pull-down can have several transistors in stack

EECS141 Lecture #13 8

Cell Design

- □ Standard Cells
 - General purpose logic
 - Used to synthesize RTL/HDL
 - Same height, varying width
- □ Datapath Cells
 - For regular, structured designs (arithmetic)
 - Includes some wiring in the cell

EECS141 Lecture #13 18

Ratioed Logic

Goal: build gates faster/smaller than static complementary CMOS

EECS141 Lecture #13 33

Ratioed Logic LE

- □ Rising and falling delays aren't the same
 - Calculate LE for the two edges separately

□ For tpLH:

•
$$C_{gate} = WC_G$$
 $C_{inv} = (3/2)WC_G$

EECS141 Lecture #13 34

Ratioed Logic LE (pull-down edge)

- \Box What is LE for t_{pHL} ?
- \square Switch model would predict $R_{eff} = R_n || R_p$
 - Would that give the right answer for LE?

EECS141 Lecture #13 35

Response on Falling Edge

$$\frac{v_o(t)}{V_{DD}} = \frac{Rn}{Rn + Rp} + \left(1 - \frac{Rn}{Rn + Rp}\right)e^{-t/n}$$

- □ Time constant is smaller, but it takes more time to complete 50% V_{DD} transient (arguably)
 - Rp actually takes some current away from discharging C

EECS141 Lecture #13

36

Ratioed Logic Pull-down Delay

- ☐ Think in terms of the current driving C_{load}
- □ When you have a conflict between currents
 - Available current is the difference between the two
 - In pseudo-nMOS case:

$$R_{drive} = \frac{1}{1/Rn^{-1}/Rp} \longrightarrow R_{drive} = \frac{Rn}{1 - \left(\frac{Rn}{Rp}\right)}$$

(Works because Rp >> Rn for good noise margin)

EECS141 Lecture #13 37

Ratioed Logic LE (pull-down edge)

- □ For t_{pHL} (assuming $R_{sqp} = 2R_{sqn}$):
 - $R_{gate} = R_n/(1-Rn/Rp) = 2Rn$ $R_{inv} = R_n$ $C_{gate} = WC_G$ $C_{inv} = 3WC_G$

$$R_{inv} = R_n$$

■ C_{aate} = WC_G

$$C_{inv} = 3WC_{G}$$

- LE_{HL} =
- □ LE is lower than an inverter!
 - But have static power dissipation...

EECS141 38 Lecture #13

DCVSL Example1: AND EECS141 Lecture #13 42

