

- Bug algorithms do not plan the path
- In order to plan, it is necessary to know the environment
- The environment also includes the robot, which has a body
- The configuration space simplifies the planning process by treating the robot as a point

Configuration of an object: set of parameters that define its position.

Configuration space: set of all configurations.

Non circular objects:

Non circular objects + rotation

Conservative approach:

Solution in the configuration space

Orientation in the configuration space

Orientation in the configuration space

- A potential function is used to move the robot from high potential (starting point) to low potential (goal)
- The potential function is build using:

$$U(q) = U_{\text{att}}(q) + U_{\text{rep}}(q)$$

- U_{att} is the "attractive" potential --- move to the goal
- U_{rep} is the "repulsive" potential --- avoid obstacles
- Similar than behaviour-based robotics, but having the knowledge of the world and, therefore, assuring the finding of the path

Attractive potential

$$U_{\mathrm{att}}(q) = \left\{ \begin{array}{ll} \frac{1}{2} \zeta d^2(q,q_{\mathrm{goal}}), & d(q,q_{\mathrm{goal}}) \leq d^*_{\mathrm{goal}}, \\ \\ d^*_{\mathrm{goal}} \zeta d(q,q_{\mathrm{goal}}) - \frac{1}{2} \zeta (d^*_{\mathrm{goal}})^2, & d(q,q_{\mathrm{goal}}) > d^*_{\mathrm{goal}}. \end{array} \right.$$

$$\nabla U_{\text{att}}(q) = \begin{cases} \zeta(q - q_{\text{goal}}), & d(q, q_{\text{goal}}) \leq d_{\text{goal}}^*, \\ \\ \frac{d_{\text{goal}}^* \zeta(q - q_{\text{goal}})}{d(q, q_{\text{goal}})}, & d(q, q_{\text{goal}}) > d_{\text{goal}}^*, \end{cases}$$

Quadratic near the goal and conic farther away

The gradient is used to know the direction to follow

Repulsive potential

$$U_{\text{rep}}(q) = \begin{cases} \frac{1}{2} \eta (\frac{1}{D(q)} - \frac{1}{Q^*})^2, & D(q) \leq Q^*, \\ 0, & D(q) > Q^*, \end{cases}$$

whose gradient is

$$\nabla U_{\text{rep}}(q) = \begin{cases} \eta \left(\frac{1}{Q^*} - \frac{1}{D(q)} \right) \frac{1}{D^2(q)} \nabla D(q), & D(q) \leq Q^*, \\ 0, & D(q) > Q^*, \end{cases}$$

• Total potential functions

- Finding the minimum:
 - The gradient of the total potential function indicates the way to the goal:

$$\dot{c}(t) = -\nabla U(c(t)).$$

 since the total potential function depends on the number, position and shape of the obstacles, there can be local minimums!!

- Solutions:
 - to operate mathematically the functions to eliminate local minimums → navigation functions
 - to divide the space into a grid → brushfire algorithm and wavefront planner

• Brushfire algorithm:

- To compute the gradient of the repulsive functions
- Define a grid on the space
- Choose 4 or 8 point connectivity

4

8

- Obstacles start with a 1; free space zero
- Until all cells >0; assign to all connected cells the minimum nonzero value plus 1
- The result is a map where each cell holds the minimum distance to an obstacle
- The gradient of distance is easily found by taking differences with all neighbouring cells

Brushfire algorithm:

2D finite environment, 20x14 cells

Brushfire algorithm:

with 4-point connectivity, 1st iteration

Brushfire algorithm:

with 4-point connectivity, 2nd iteration

Brushfire algorithm:

with 4-point connectivity, 5th iteration

Brushfire algorithm:

with 8-point connectivity, 4th iteration

- Wavefront planner:
 - Planner based on the brushfire algorithm
 - The algorithm starts from the goal position (labelled with a 2)
 - The "1" cells are not considered
 - The result is the distance to the goal (-2)
 - Gradient descent indicates the direction to go
 - Drawbacks
 - The planner has to search the entire space
 - Does not scale well in higher dimensions or big spaces!!
 Computationally intractable. In 3D,
 - 4-point connectivity → 6-point connectivity
 - 8-point connectivity → 26-point connectivity

Wavefront planner:

with 4-point connectivity, 1st iteration

Wavefront planner:

with 4-point connectivity, 10th iteration

• Wavefront planner:

with 4-point connectivity, 27th iteration

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	29	28	27	26	25	1	1	22	21	20	19	18	17	1	1	4	3	4	1
1	28	27	26	25	24	1	1	21	20	19	18	17	16	1	1	3	2	3	1
1	27	26	25	24	23	22	21	20	19	18	17	16	15	1	1	4	3	4	1
1	26	25	24	23	22	21	20	19	18	17	16	15	14	1	1	5	4	5	1
1	25	24	23	22	21	20	19	18	17	16	15	14	13	1	1	6	5	6	1
1	26	25	24	1	1	1	1	1	16	15	14	13	12	1	1	7	6	7	1
1	27	26	25	1	1	1	1	1	15	14	13	12	11	10	9	8	7	8	1
1	28	27	26	25	24	23	1	1	16	15	14	13	12	11	10	9	8	9	1
1	27	26	25	24	23	22	1	1	17	16	15	14	13	12	11	10	9	10	1
1	26	25	24	23	22	21	20	19	18	17	16	15	14	1	12	11	10	11	1
1	27	26	25	24	23	22	21	20	19	18	17	16	1	1	13	12	11	12	1
1	28	27	26	25	24	23	22	21	20	19	18	1	1	1	14	13	12	13	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Wavefront planner:

with 4-point connectivity, one shortest trajectory

From starting point, gradient descent indicates direction to goal.

Wavefront planner:

with 8-point connectivity, 20th iteration

• Wavefront planner:

with 8-point connectivity, one shortest trajectory

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	21	20	19	18	18	1	1	14	14	14	14	14	14	1	1	3	3	3	1
1	21	20	19	18	17	1	1	14	13	13	13	13	13	1	1	3	2	3	1
1	21	20	19	18	17	16	15	14	13	12	12	12	12	1	1	3	3	3	1
1	21	20	19	18	17	16	15	14	13	12	11	11	11	1	1	4	4	4	1
1	21	20	19	18	17	16	15	14	13	12	11	10	10	1	1	5	5	5	1
1	21	20	19	1	1	1	1	1	13	12	11	10	9	1	1	6	6	6	1
1	21	20	19	1	1	1	1	1	13	12	11	10	9	8	7	7	7	7	1
1	21	20	19	18	17	17	1	1	13	12	11	10	9	8	8	8	8	8	1
1	21	20	19	18	17	16	1	1	13	12	11	10	9	9	9	9	9	9	1
1	21	20	19	18	17	16	15	14	13	12	11	10	10	1	10	10	10	10	1
1	21	20	19	18	17	16	15	14	13	12	11	11	1	1	11	11	11	11	1
1	21	20	19	18	17	16	15	14	13	12	12	1	1	1	12	12	12	12	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

From starting point, gradient descent indicates direction to goal.