Lecture 2 Programming PLC

Apply Logic Instructions

Learning Outcome

- Implement digital logic operation
- Implement common instructions found in ladder logic such as
 - Timer
 - Counter
 - Set/reset
 - Edge detection
- Apply timing diagrams to solve logic and sequencing problems
- Translate task description into Sequential Function Chart (SFC)

S7-1500 Digital Input & Digital Output Terminals

How would you program to light up the connected LED whenever push button is pressed?

First – Identify I/O Types and I/O Address

How would you program to light up the connected LED whenever push button is pressed?

2nd prefix

1st prefix

1		1	8	
I Q M			Input Output Memory	
	None or X B W D L		Boolean Byte Single word Double word Long word	: 1 bit : 8 bit : 16 bit : 32 bit : 64 bit

Ladder Logic Diagram

- Similar to hardwired relay control with 3 basic sections:
 - Signal
 - Decision
 - Action
- Every instruction is examined
- If TRUE, continuity/power flow of the rung is maintained
- When all input instructions are TRUE, the output would be set to 1 (ON)

Boolean Instructions

PLC Normally Open Contact ———

- Contact is closed (ON) when the assigned bit = 1
- Start
- Stop

Start

Stop

PLC Normally Closed Contact

- Contact is closed (ON) when the assigned bit = o
- Start

Stop

- Output Coil
- PLC instruction writes value of an output bit depending on the power flow and is updated every scan cycle
- Coils shall be assigned to unique address (no duplicate address)

%l0.0 "SW1"	%l0.1 "SW2" I	AND Logic	%Q0.0 "AND_LOGIC"

SW1	SW ₂	AND_LOGIC
0	0	0
0	1	0
1	0	0
1	1	1

SW1	SW ₂	OR_LOGIC
0	0	0
0	1	1
1	0	1
1	1	1

Tag Name	Address
SW1	%10.0
SW2	%10.1
AND_LOGIC	%Q0.0
OR_LOGIC	%Q0.1
EXOR_LOGIC	%Q0.2
EXNOR_LOGIC	%Q0.3

Tag Name	Address
SW1	%10.0
SW2	%10.1
AND_LOGIC	%Q0.0
OR_LOGIC	%Q0.1
EXOR_LOGIC	%Q0.2
EXNOR_LOGIC	%Q0.3

SW1	SW ₂	EXOR_LOGIC
0	0	0
0	1	1
1	0	1
1	1	0

SW1	SW2	EXNOR_LOGIC
0	0	1
0	1	0
1	0	0
1	1	1

Click the Quiz button to edit this object

	vould we use %M to assign PLC I/ the correct answer option:	O address?		
O Whe	en we declare instance for Timer/Cour	nter		
O Who	en we are doing logic operation withou	ut connecting to physi	cal input or output	
O Who	en we are connecting to physical outp	ut		
O Who	en we are connecting to physical input	1		