DUHAHRI'S PRINTIPLE FOR HOST EON ON IR
GOAL: Find solution u = u(t, sc) to IVP
$\begin{cases} \frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + F(t, x) & \text{for } x \in \mathbb{R}, \ t > 0 \\ u(0, x) = 0 \end{cases}$
whee $F = F(t, x)$ is a given forcing function.
To solve A:
For each choice of paroneter - > 0
find W=W(t, x; T) satisfying IVP
$\begin{cases} \frac{\partial u}{\partial t} = D \frac{\partial u}{\partial u^2} \\ \frac{\partial v}{\partial t} = D \frac{\partial v}{\partial u^2} \end{cases}$
NOTE Since I.C. Le us a function of on that
depends on parameter, -t, the solution $W(t,si;\tau)$ is a function of (t,si) that
Thet

also depends on the parameter -

THM [DU HAMEZ'S PRINCIPLE]	
Suppose $W = W(t, x; \tau)$ solves (B) for each parameter $\tau > 0$.	
For each parameter ToO. Then the solution to A is given by	
1	
$u(t, x) = \int_0^x w(t-\tau, x; \tau) d\tau$	
NOTE WH-T-1-lts to solution	

NOTE $W(t-\tau, x; \tau)$ shifts the solution $W(t, x; \tau)$ forward in time by τ .

This means that the force F(t, x) that acts as an IC @ time t = 0 in \mathbb{R} is moved forward in time to $t = \tau$ in the solution \mathbb{C} .

PHTERENTIATION UNDER INTEGRAL THAT

Given Functions $\infty = a(t)$, x = b(t)and G = G(t, x) that are differentiable

Let x = b(t) $g(t) = \int G(t, x) dx$. x = a(t)

Then g'(t) = G(t, b(t))b'(t) - G(t, a(t))a'(t) $+ \int_{x=a(t)}^{x=b(t)} \frac{\partial G}{\partial t}(t, x) dx$

PROOF IDAS

I) IF G = G(x) so t - independent then

FIC + Chein Rule give $\frac{d}{dt} \left[\int_{a(t)}^{b(t)} f(x) dx \right] = G(b(t)) b'(t) - F(a(t))a(t)$

(2) IF a, bare constants

Solution of the solu

PROOF OF DUHAME SHOW (E) SOLUE (A) (1) u(0,2) = \int \outlet \u(0,2) = \int \outlet \u(0,2) = \int \outlet \u(0,2) \outlet \outle (3) By (and Diff Under Integral Tum: $\partial t = w(t-t;x_3t).1 - w(t-0,x;0)0$ + St = (w(t--, x; -1) d- $\mathbb{B}_{w(0,\tau,t)} + \int_{0}^{t} \frac{\partial^{2}}{\partial s^{2}} w(t-\tau, x;\tau) d\tau$ as W solves heat egn $= F(t, x) + \frac{3^2}{5x^2} \int_0^t w(t-\tau, x; \tau) d\tau$ by ICin (B) and Diff" Under Integral Theorem again. (Notice: Here we differentiate work or fut integrate wit -(.)

= F(50) + \frac{2^{2}}{3^{2}}

1

West We say before that solution to $\begin{cases} \frac{\partial w}{\partial t} = D \frac{\partial^2 w}{\partial x^2} \\ W(0,x) = F(x) \end{cases}$ so $w(t,x) = \int_{\mathbb{R}} S(t,x-y) F(y) dy$ where $S(t,x) = 2\sqrt{\pi t} e^{-\frac{x^2}{4\pi t}}$ so Fundamental
Sola. Only difference between D, D is that IC dépends on povanoter 7: F=F(E;T). So sol + B is $W(t_i,x_i,\tau) = \int_{\mathbb{R}} S(t,x_i-y) F(\tau,y) dy$ Frally wains convolution in tanks $u(t,x) = \int_{0}^{t} \int_{R} S(t-\tau,S(-y)) F(\tau,y) dy d\tau$ $= \int_{0}^{t} \int_{R} \frac{1}{2\sqrt{\pi D(t-\tau)}} e^{-(x-y)^{2}/4D(t-\tau)} F(\tau,y) dy d\tau$ $= \int_{0}^{t} \int_{R} \frac{1}{2\sqrt{\pi D(t-\tau)}} e^{-(x-y)^{2}/4D(t-\tau)} F(\tau,y) dy d\tau$