Knapsack-OI
inco 2) Equal sum possition forse 3) Count of Subset sum in 41 Minimum Subset sum difference 51 Tagget sum 6) count of subset sum with given diff.
Knaßsack Pooblem
Fractional Of Kropeack Chropeack Krapsack Krapsack (multiple and occurrence allow
IP: $wt[1=1345]$ $val[]=1457$ $W=107$ (corpocity) 809
O O O O P ₁ P ₂ P ₃ P ₄ W ₁ W ₂ W ₃ W ₄ Wropsack (max profit

* O-I Knapsack Recursive-
Soiven heights and values of n items, but there items in a knapsack of copacity W to get the maximum total value in the knapsack.
$IP: WL[] = \begin{bmatrix} 2 & 3 & 4 & 5 \end{bmatrix}$ $Val[] = \begin{bmatrix} f & 4 & 5 & 7 \end{bmatrix}$ $W = 7$ $include$ $include$
Choice diagram- [ilent]
W1 = W W2 > W
Base condition - Think of the smallest valid input if (n==0 11 W==0) setum 0;

int knopsack (int well, int vall), int w, if (n==011 W==0) schon o; if (wt[n-f] <= W) return max(val[n-I]+ knaßsack(wt, val, W-w+[n-1], n-1), Knapsack (Wt, val, W, n-1) elif (wt[n-1]>W) setum knopsack (Wt, val, W, n-I);

Memoizationint I [N+1] [W+1] $\langle W+1 \rightarrow \rangle$ initialize all values of matrix to -1 int knapsack (int wt[], int val[], int W, intn) if (&[n][w]!=-1) return & [n][w]; if (wt[n-t] <= W) I[n][W] = max (val [n-1] + knopsack (wt, val, W-wt[n-1], n-1), knopsack (wt, val, W, n-1)); elif (wt[n-1]>W) #[n][w] = knapsack (wt, val, W, n-1);


```
Brogram-
int main ()
  int wt[]= (1,3,4,5);
  int val[]={1,4,5,7};
  int W=7, n=4;
  int &[n+1][W+1];
 for (int i=0; i<n+1; 1++)
   for (int j=0; j<W+1; j++)
        if ( l==0 | j==0)

L[i][j]=0;
for (int i=1; i<n+1; i++)

for (int j=1; j<w+1; j++) {
    if (wt[i-i]<=j)
         £[i][j] = max (val[l-1]+ &[i-1]
[j-w&[i-1]], &[i-1][j]);
     else
    $[$][j]=$[$-$][$];}
pointf ("Result: Y.d", &[N[W]);
sehim o;
```

X Chart and Problem	
* Subset sum Broblem-	STEPS
086[]: [2 3 7 8 10]	f- Problem ettent
	2- Similiarily
Sum = II	3- Code variation
T 18	/ /
Is those any subset	initaliz Code
which sum is equal to	INMOVIZ.
ff? True/False.	
£[h+1][sum+1]	
£[6][£2]	j(Sum)
0 1 2 3 4 0 T F F F F F F F	FFF
1 - 1	
9 T	
(n) 4 T	
ST	
0/p -> True/	False
\$[0][0] -> are[]: {	3
Sum: O	- lave
£[1][0] -> are[]:2	
Sum: 0	Tane
£[0][1] -> 000[]: {	37 Falso
Sum: I	Jaise
£[0][2] -) 000[]: {	3 Tralse
Sum: 2	
	7

```
Program-
  int ars [] = {2,3,7,8,10}
  int sum = II;
  int h=5;
int l[n+1][Sum+1];
 for (int i=0; i<n+1; i++)
    for (int j=0; j<Sum+1; j++)
{ if (i=0)
          £[i][j] = false;
if(j==0)
          I[I][J] = Ine;
 for (int e=1; e < n+1; e++)
     for (int f=1; f< sum+1; f++)
      [if(aso[i-1]<=j)
        +[e][j] = +[e-1][j-088[e-1]]
                         女[4-1][寸];
        #[e][j] = #[e-1][j];
pointf (" Result : ",d", &[N[Sum]);
setum o;
```

. }
n n n

* Count of Subset sum To A Given Sum-
TP: 000[] = 2,3,5,6,8,10
Count no of subset that can be from whose sum is equal to the Given Sum
50, for sum: 10 Here one 3 subsets ({218}, {5,213}, {10}) (an be from:
If the are no subset can be from whose sum equal to the given Sum then output 'o'.
$ \begin{array}{c} \pm \left[n+1\right] \left[Sum+1\right] \\ \pm \left[7\right] \left[11\right] \\ 0.1239-\cdots \right) \end{array} $
0 1 0 0 0 0
Size of if

```
int main ()
f int aso[10] = {2,3,5,6,8,10}, h=6;
  int sum=10, £[n+1][Sum+1];
  for (int l=0; l<n+1; l++)
   I for (int j=0; j<sum+1; j++)
     d if (1==0)
          £[i][i]=0;
        if(j==0)
          t[0][j]=1;
   +[2-1][f];
         else
     $[i][j] = $[i-t][j];
   bontf ("Result: Y.d", &[n][sum]);
```



```
S_1-S_2 = minimum
 =) S_2 - S_L = minimum
=) (Range-St)-St = min
        (Ronge-251) = minimum
Program-
 int find Min (int aroll, int n)
   { int sum = 0; } { For (int i=0; i<n; i++)
      Sum + = arotel;
    bal t[n+1][sum+1];
    for (int i=0; i <=n; i++)
       &[i][o]= tace;
    for (int i= 1; i <= sum; i++)
       t[0][i] = false;
    for (int i=1; e <= n; e++)
     ¿ for (int j=t; j<=sum; j++)
         2 t[i][j]=t[i-t][j];
           if (aro[i-1]<=j)
           $[i][j] = +[i-t][j-arc[i-t]];
     int diff;
    for (int j=sum/2; j=0; j--)
      { if (t[n][j]==toue)
{ diff = sum-2* j;
           pseck;
      return diff; }
boint (find Min (arr, n));
```

* Count the number of subset with a given difference 008E]: [1 1 2 3 Diff: 1 0/p:-3 1,1,2,3 S1-52 = Diff / 2 1+2 1+1+2 4-3 = I 4-3=1 4-3=1 \rightarrow sum (st) - sum (sz) = diff \rightarrow Sum(St) + Sum(S2) = Sum(Q80) - (2) $(1)+(2) \rightarrow$ => 2 sum(st) = diff+sum(airs) =) Sum(St) = diff + sum(arr) Sum (st) = 1+7 = 4

Count = ?

This problem is reduced in 'Count of subset sum with a Given sum'.
* Target Sum- arr: f f 2 3 Sum: f
we have to accign too - sign before every array elements so that sum of array 1s equal to given sum: Let say - +1-1-2+3 = 1 = sum
And then we have to count all fossible maye to do so, in the author.
(+1-1-2+3) $(-1+1-2+3)$ $(+1+1+2-3)= 1 = 1$
(+1+3) $(-1-2)$ $(+1+3)$ $(-(1+2))$
51 -52
SI-S2 = Sum) This Broblem is reduced in the brevious Broblem - (Count the no' of subset with a given diff).

with a more