Università degli Studi di Verona	
DIPARTIMENTO DI INFORMATICA	
Analisi di Sistemi informatici	
Riassunto dei principali argomenti	
Autore: Davide Bianchi	

Indice

1	Intr	roduzione	2
2	Prel	liminari matematici	2
	2.1	Ordini parziali	2
	2.2	Reticoli	2
	2.3	Teoremi di punto fisso	2
3	Inte	erpretazione astratta	2
	3.1	Introduzione	2
	3.2	Connessione di Galois	3
	3.3	Famiglie di Moore	4

1 Introduzione

Argomenti contenuti:

- Interpretazione astratta
- · Analisi statica
- Analisi dinamica

2 Preliminari matematici

- 2.1 Ordini parziali
- 2.2 Reticoli
- 2.3 Teoremi di punto fisso

3 Interpretazione astratta

3.1 Introduzione

Lo scopo è quello di trovare un'approssimazione di una semantica $\langle P \rangle$ di $\llbracket P \rrbracket$ tale per cui valgano:

- correttezza: $\llbracket P \rrbracket \subseteq \langle P \rangle$;
- decidibilità: $\langle P \rangle \subseteq Q$ è decidibile (Q è un insieme di semantiche che soddisfa la proprietà di interesse).

Se entrambe le proprietà sono soddisfatte, allora vale che

$$(\langle P \rangle \subseteq Q) \Rightarrow (\llbracket P \rrbracket \subseteq Q)$$

La semantica è data da una coppia $\langle D,f\rangle$ dove D è una coppia $\langle D,\leq_D$ rappresentante un dominio semantico e $f:D\to D$ è una funzione di trasferimento con una soluzione a punto fisso.

Dato un oggetto concreto, definiamo:

- un oggetto astratto come una rappresentazione matematica sovra-approssimata del corrispondente concreto;
- un **dominio astratto** come un insieme di oggetti astratti con delle operazioni astratte, che approssimano quelle concrete;
- una funzione di **astrazione** α che mappa oggetti concreti in oggetti astratti;
- una funzione di **concretizzazione** γ che mappa oggetti astratti in oggetti concreti.

La caratteristica peculiare delle astrazioni è che solo alcune proprietà vengono osservate con esattezza, le altre vengono solo approssimate. In sostanza, dato un dominio astratto A, gli elementi di A sono osservati con esattezza, gli altri sono approssimati o l'informazione è persa del tutto.

Proprietà. L'insieme delle proprietà $\mathcal{P}(\Sigma)$ di oggetti in Σ è l'insieme di elementi che gode di quella proprietà. Questo insieme di proprietà costituisce un reticolo completo

$$\langle \mathcal{P}(\Sigma), \subseteq, \emptyset, \cup, \cap, \neg \rangle$$

dove:

- ⊆ è l'implicazione logica;
- Σ è true;
- \cup è la disgiunzione (oggetti che godono di P o di Q appartengono a $P \cup Q$);
- \cap è la congiunzione (oggetti che godono di P e di Q appartengono a $P \cap Q$);
- \neg è la negazione (oggetti che non godono di P stanno in $\Sigma \setminus P$).

Direzione dell'astrazione. Quando si approssima una proprietà concreta $P \in \mathcal{P}(\Sigma)$ usando una proprietà astratta \overline{P} , deve essere stabilito un criterio per definire quando \overline{P} è un'approssimazione di P.

Si distinguono quindi i seguenti casi:

- approssimazione da sopra: $P \subseteq \overline{P}$;
- approssimazione da sotto: $P \supseteq \overline{P}$.

Dato un oggetto o, si vuole quindi sapere se $o \in P$:

$$P\supseteq \overline{P}: \begin{cases} \text{"Si"} & o\in \overline{P} \\ \text{"Non lo so"} & o\notin \overline{P} \end{cases} \qquad P\subseteq \overline{P}: \begin{cases} \text{"No"} & o\notin \overline{P} \\ \text{"Non lo so"} & o\in \overline{P} \end{cases}$$

Migliore approssimazione. Definiamo come *migliore approssimazione* di una proprietà P in A il glb delle over-approximation di P in A, ossia:

$$\overline{P} = \bigcap \{ \overline{P'} \in A | P \subseteq \overline{P'} \} \in A$$

3.2 Connessione di Galois

Imponiamo il vincolo che α e γ siano monotone, allora concludiamo che:

- $\gamma \circ \alpha : C \to C$ è estensiva: $\gamma(\alpha(c)) \geq c$;
- $\alpha \circ \gamma : A \to A$ è riduttiva: $\alpha(\gamma(a)) \leq a$.

Le definizioni qui sopra dicono rispettivamente che:

- α perde informazione, e γ non la può recuperare;
- γ non perde informazione.

Definizione 3.2.1 (Connessione di Galois). Dati due poset $\langle A, \leq_A \rangle$ e $\langle C, \leq_C \rangle$, e due funzioni monotone $\alpha: C \to A$ e $\gamma: A \to C$, diciamo che $\langle C, \alpha, \gamma, A \rangle$ è una connessione di Galois se:

- $\forall c \in \mathcal{C} : c \leq_C \gamma(\alpha(c))$
- $\forall a \in \mathcal{A} : \alpha(\gamma(a)) \leq_A a$

Se inoltre vale che $\forall a \in \mathcal{A} : \alpha(\gamma(a)) = a$, allora $\langle C, \alpha, \gamma, A \rangle$ è un'inserzione di Galois.

Una connessione e un'inserzione di Galois sono rappresentate rispettivamente come

$$C \xrightarrow{\gamma} A \qquad C \xrightarrow{\gamma} A$$

La funzione α è detta aggiunta sinistra, mentre la funzione γ è detta aggiunta destra.

Definizione 3.2.2. Data una connessione di Galois $C \stackrel{\gamma}{\longleftarrow} A$, sono equivalenti:

- $C \stackrel{\gamma}{\longleftarrow} A$;
- α è suriettiva;
- γ è iniettiva.

Inoltre, dati due domini astratti, non esistono due coppie (α, γ) che formino una connessione di Galois; quindi la connessione di Galois tra due domini è **unica**, e le funzioni sono identificabili attraverso:

$$\alpha(c) = \bigwedge \{ a \in A | c \le_C \gamma(a) \}$$
$$\gamma(a) = \bigvee \{ c \in C | \alpha(c) \le_A a \}$$

3.3 Famiglie di Moore

Definizione 3.3.1 (Famiglia di Moore). Sia L un reticolo completo. $X\subseteq L$ è una famiglia di Moore di L se

$$X = \mathcal{M}(X) = \left\{ \bigwedge S \mid S \subseteq X \right\}$$

dove

$$\bigwedge \emptyset = \top \in \mathcal{M}(X)$$

Da questa definizione segue che, ipotizzando che ogni proprietà concreta abbia una migliore astrazione $\overline{P} \in A$, implica che il dominio A è una famiglia di Moore.