Chapter 1: Numerical Series September 20, 2023

Contents

1	Voc	cabulary	
2	General approach Convergence and Divergence		
	2.1	Definition	
		2.1.1 Example: the geometric series	
	2.2	Propositions	
	2.3	Sum and Remainder of a convergent series	
		2.3.1 Example	
	2.4	Convergence necessary condition	
		2.4.1 Proposition	
		2.4.2 Example	
	2.5	Positive Term Series (P.T.S.)	
		2.5.1 Definition	
		2.5.2 Propositions	
3	Rie	emann's series	
	3.1	Definition	
	3.2	Theorem (Riemann)	
		3.2.1 Example	

1 Vocabulary

In this chapter, we will use CVG for Convergence and DVG for Divergence. We will also use GT for General Term.

2 General approach Convergence and Divergence

2.1 Definition

Let $(U_n)_{n\in\mathbb{N}}$ a sequence of real numbers, we call series of general term U_k and denote $\sum U_k$ the sequence of partial sums $(S_n)_{n\in\mathbb{N}}$ where for any integer $n\in\mathbb{N}$, $S_n=\sum_{k=0}^n U_k$. We say $\sum U_k$ is convergent if and only if $(S_n)_{n\in\mathbb{N}}$ is convergent.

2.1.1 Example: the geometric series

Let $\mathbf{q} \in \mathbb{R}^*$ and let us consider the series $\sum \mathbf{q}^{\mathbf{k}}$. We have:

$$\forall n \in \mathbb{N}, S_n = \sum_{k=0}^n q^k = \begin{vmatrix} \frac{1-q^{n+1}}{1-q} & \text{if } q \neq 1 \implies \\ (n+1) & \text{if } q = 1 \implies \sum U_k: \text{ DVG} \end{vmatrix}$$
if $q < 1, \sum_{k=0}^{+\infty} q^k = \frac{1}{1-q} \sum U_k: \text{ CVG}$
if $q > 1 \text{ or } q < -1, \sum U_k: \text{ DVG}$

2.2 Propositions

Let $\sum \mathbf{U_k}$ and $\sum \mathbf{V_k}$ two series of general terms and $\lambda \in \mathbb{R}$. We have:

- \bullet If [$\sum \mathbf{U_k}$ CVG and $\sum \mathbf{V_k}$ CVG], then $\sum (\mathbf{U_k} + \mathbf{V_k})$ CVG
- If $[\sum \mathbf{U_k} \text{ CVG}]$, then $\sum \lambda \mathbf{U_k} \text{ CVG}$
- If $[\sum \mathbf{U_k} \text{ CVG and } \sum \mathbf{V_k} \text{ DVG}]$, then $\sum (\mathbf{U_k} + \mathbf{V_k}) \text{ DVG}$
- \triangle $\sum \mathbf{U_k}$ DVG and $\sum \mathbf{V_k}$ DVG does not imply $\sum (\mathbf{U_k} + \mathbf{V_k})$ DVG

2.3 Sum and Remainder of a convergent series

Let $\sum U_k$ a <u>convergent series</u>. We call sum of the series $\sum U_k$ the following real number: $\sum_{k=0}^{+\infty} U_k = \lim_{n \to +\infty} S_n$ where $S_n = \sum_{k=0}^n U_k$. And we call remainder of the series $\sum U_k$ sequence (\mathbf{R}_n) defined as follows:

$$\forall n \in \mathbb{N}, R_n = \sum_{k=n+1}^{+\infty}$$

2.3.1 Example

$$\sum \mathbf{q^k} \text{ CVG} \Leftrightarrow -1 < q < 1 : \mathbf{S} = \lim_{\mathbf{n} \to +\infty} \mathbf{S_n} = \frac{1}{1-\mathbf{q}}$$

Mathematics 3 Riemann's series

2.4 Convergence necessary condition

2.4.1 Proposition

Let $\sum (\mathbf{U_k})_{\mathbf{k} \in \mathbb{N}}$ a sequence. We have:

$$\sum U_k \text{ CVG} \quad \stackrel{\Longrightarrow}{\rightleftharpoons} \quad \left(U_k \xrightarrow[k \to +\infty]{} 0 \right)$$

2.4.2 Example

- Harmonic series: $\sum \frac{1}{n}$, $(\frac{1}{n}) \xrightarrow[n \to +\infty]{} 0$ but $\sum \frac{1}{n}$ DVG
- $\sum \frac{\mathbf{e^n}}{\mathbf{n^{2023}}}, \frac{e^n}{n^{2023}} \xrightarrow[n \to +\infty]{} +\infty \implies \sum \frac{e^n}{n^{2023}} \text{ DVG}$

2.5 Positive Term Series (P.T.S.)

2.5.1 Definition

Let $\sum \mathbf{U_k}$ a series. We say $\sum \mathbf{U_k}$ is a P.T.S., if and only if $\forall k \in \mathbb{N}, \mathbf{U_k} \geq \mathbf{0}$. We say $\sum \mathbf{U_k}$ is a P.T.S. from $\mathbf{p} \in \mathbb{N}$ onwards, if and only if $\forall k \in \mathbb{N}, k \geq \mathbf{p} \implies \mathbf{U_k} \geq \mathbf{0}$.

2.5.2 Propositions

• Let $\sum U_k$ a P.T.S. and $(S_n)_{n\in\mathbb{N}}$ the associated partial sum sequence. Then:

$$\sum U_k \text{ CVG } \Leftrightarrow (S_n)_{n \in \mathbb{N}} \text{ is upper-bounded}$$

- Let $\sum U_k$ and $\sum V_k$ two series such that: $\forall k \in \mathbb{N}, 0 \le U_k \le V_k$. Then:
 - 1. If $\sum \mathbf{V_k}$ CVG, then $\sum \mathbf{U_k}$ CVG
 - 2. If $\sum \mathbf{U_k}$ DVG, then $\sum \mathbf{V_k}$ DVG

2.5.2.1 Example

What's the nature of $\sum \frac{1}{|\mathbf{n} \cdot \sin(\mathbf{n})|}$?

$$\begin{array}{l} \forall n \in \mathbb{N}^{\star}, 0 < |\mathrm{sin}(n)| \leq 1 \implies 0 < \frac{1}{n} \leq \frac{1}{|n \cdot \mathrm{sin}(n)|} \\ \sum \frac{1}{\mathbf{n}} \; (\mathrm{Harmonic}) \; \mathrm{DVG} \implies \sum \frac{1}{|\mathbf{n} \cdot \mathrm{sin}(\mathbf{n})|} \; \mathrm{DVG} \end{array}$$

3 Riemann's series

3.1 Definition

We call Riemann's series any series of General Terms (GT) $\sum \frac{1}{n^{\alpha}}$ where $\alpha \in \mathbb{R}$.

Mathematics 3 Riemann's series

3.2 Theorem (Riemann)

Let $\alpha \in \mathbb{R}$. Then:

$$\sum \frac{1}{n^{\alpha}} \text{ CVG } \iff \alpha > 1$$

3.2.1 Example

- $\sum \frac{1}{\sqrt{2}} = \sum \frac{1}{2^{\frac{1}{2}}} \implies \text{DVG}$
- $\sum \frac{1+\cos(n)}{n^4}$: $\forall n \in \mathbb{N}^*, 0 \le 1 + \cos(n) \le 2 \implies 0 \le \frac{1+\cos(n)}{n^4} \le \frac{2}{n^4}$ And $\sum \frac{2}{n^4}$ of same nature as $\sum \frac{1}{n^4}$ (Riemann's series) CVG $\implies \sum \frac{1+\cos(n)}{n^4}$ CVG