

Data Mining

Lab - 2

Step 1. Import the necessary libraries

In [1]: import pandas as pd

Step 2. Import the dataset from this address.

Step 3. Assign it to a variable called users and use the 'user_id' as index

```
In [65]: api = "https://raw.githubusercontent.com/justmarkham/DAT8/master/data/u.user"
    users = pd.read_csv(api,sep="|", index_col="user_id")
    users
```

\cap	657	
Out	000	

	age	gender	occupation	zip_code
user_id				
1	24	М	technician	85711
2	53	F	other	94043
3	23	М	writer	32067
4	24	М	technician	43537
5	33	F	other	15213
•••	•••			
939	26	F	student	33319
940	32	М	administrator	02215
941	20	М	student	97229
942	48	F	librarian	78209
943	22	М	student	77841

943 rows × 4 columns

Step 4. See the first 25 entries

In [12]: users.head(25)

Out[12]:		age	gender	occupation	zip_code
	user_id				
	1	24	М	technician	85711
	2	53	F	other	94043
	3	23	М	writer	32067
	4	24	М	technician	43537
	5	33	F	other	15213
	6	42	М	executive	98101
	7	57	М	administrator	91344
	8	36	М	administrator	05201
	9	29	М	student	01002
	10	53	М	lawyer	90703
	11	39	F	other	30329
	12	28	F	other	06405
	13	47	М	educator	29206
	14	45	М	scientist	55106
	15	49	F	educator	97301
	16	21	М	entertainment	10309
	17	30	М	programmer	06355
	18	35	F	other	37212
	19	40	М	librarian	02138
	20	42	F	homemaker	95660
	21	26	М	writer	30068
	22	25	М	writer	40206
	23	30	F	artist	48197
	24	21	F	artist	94533
	25	39	М	engineer	55107

Step 5. See the last 10 entries

Out[13]:		age	gender	occupation	zip_code
	user_id				
	934	61	М	engineer	22902
	935	42	М	doctor	66221
	936	24	М	other	32789
	937	48	М	educator	98072
	938	38	F	technician	55038
	939	26	F	student	33319
	940	32	М	administrator	02215
	941	20	М	student	97229
	942	48	F	librarian	78209
	943	22	М	student	77841

Step 6. What is the number of observations in the dataset?

```
In [63]: users.shape[0]
Out[63]: 943
```

Step 7. What is the number of columns in the dataset?

```
In [15]: users.shape[1]
Out[15]: 4
```

Step 8. Print the name of all the columns.

```
In [16]: users.columns
Out[16]: Index(['age', 'gender', 'occupation', 'zip_code'], dtype='object')
```

Step 9. How is the dataset indexed?

Step 10. What is the data type of each column?

```
In [20]: users.dtypes
Out[20]: age
                       int64
         gender
                      object
         occupation
                      object
         zip_code
                      object
         dtype: object
         Step 11. Print only the occupation column
In [21]: users["occupation"]
Out[21]: user_id
                  technician
         2
                       other
                      writer
                  technician
                       other
         939
                     student
               administrator
         940
         941
                     student
         942
                   librarian
         943
                     student
         Name: occupation, Length: 943, dtype: object
         Step 12. How many different occupations are in this dataset?
In [22]: users["occupation"].value_counts().count()
Out[22]: 21
         Step 13. What is the most frequent occupation?
In [69]: users["occupation"].value_counts().idxmax()
         # users["occupation"].value_counts().head(1)
Out[69]: 'student'
```

Step 14. Summarize the DataFrame.

```
In [25]: users.describe()
```

Out[25]:		age
	count	943.000000
	mean	34.051962
	std	12.192740
	min	7.000000
	25%	25.000000
	50%	31.000000
	75%	43.000000
	max	73.000000

Step 15. Summarize all the columns

	•				
In [27]:	users.describe(include="all")				
out[27]:		age	gender	occupation	zip_code
	count	943.000000	943	943	943
	unique	NaN	2	21	795
	top	NaN	М	student	55414
	freq	NaN	670	196	9
	mean	34.051962	NaN	NaN	NaN
	std	12.192740	NaN	NaN	NaN
	min	7.000000	NaN	NaN	NaN
	25%	25.000000	NaN	NaN	NaN
	50%	31.000000	NaN	NaN	NaN
	75%	43.000000	NaN	NaN	NaN
	max	73.000000	NaN	NaN	NaN

Step 16. Summarize only the occupation column

```
In [28]: users['occupation'].describe()

Out[28]: count    943
    unique    21
    top    student
    freq    196
    Name: occupation, dtype: object
```

Step 17. What is the mean age of users?

```
In [71]: int(users['age'].mean())
Out[71]: 34
```

Step 18. What is the age with least occurrence?