ZESTAW ZADAŃ I

Zadanie 1

(a) Zapisz wektory \vec{a} , \vec{b} , \vec{c} , \vec{d} , \vec{e} , \vec{f} w postaci $\alpha \vec{i} + \beta \vec{j}$ dla pewnych $\alpha, \beta \in \mathbb{R}$,

(b) Zapisz wektor \vec{c} w postaci $\alpha \vec{f} + \beta \vec{b}$ dla pewnych $\alpha, \beta \in \mathbb{R}$; sprawdź poprawność obliczeń.

Zadanie 2 Dane są wektory $\vec{u} = 2\vec{j} + \vec{k} + 2\vec{i}$, $\vec{v} = 2\vec{k} - 2\vec{i} + \vec{j}$ i $\vec{w} = 3\vec{j} - 4\vec{i}$:

- (a) oblicz $\vec{u} \circ \vec{v}$, $(\vec{u} 2\vec{v}) \circ (3\vec{v} + 2\vec{w})$,
- **(b)** oblicz $\vec{u} \times \vec{v}$, $(\vec{u} 2\vec{v}) \times (3\vec{v} + 2\vec{w})$,
- (c) wyznacz kąt pomiędzy wektorami \vec{u} i \vec{v} , pole równoległoboku rozpiętego na tych wektorach oraz objętość czworościanu rozpiętego na wektorach \vec{u} , \vec{v} i \vec{w} .

Zadanie 3

- (a) Wyznacz kosinusy kątów wewnętrznych w trójkącie ABC oraz jego pole, jeśli A(2, -3, 3), B(1, -1, 1), C(4, -1, 2). Określ czy trójkąt jest ostrokątny, prostokątny, czy też rozwartokątny
- (b) Dany jest równoległobok ABCD "rozpięty" na wektorach $\vec{a} = \vec{k} + 2\vec{i} 2\vec{j}$ i $\vec{b} = [1, -1, 2]$ zaczepionych w punkcie A(4,3,-1). Wyznacz pozostałe wierzchołki równoległoboku oraz punkt przecięcia przekątnych, jeśli $\overrightarrow{AB} = \vec{a}$, $\overrightarrow{AD} = \vec{b}$, jego pole oraz kosinusy kątów wewnętrznych przy wierzchołkach A i B (który z tych kątów jest kątem rozwartym?)
- (c) dane są trzy wektory $\vec{a} = 4\vec{j} 4\vec{i} + 2\vec{k}$, $\vec{b} = -2\vec{i} + 2\vec{j}$, $\vec{c} = 4\vec{i} + 3\vec{k} + 2\vec{j}$ zaczepione w punkcie A(1, -2, 3). Wyznacz wierzchołki czworościanu ABCS, jeśli $\overrightarrow{AB} = \vec{a}$, $\overrightarrow{AC} = \vec{b}$, $\overrightarrow{AS} = \vec{c}$, jego objętość oraz długość wysokości opuszczonej na ścianę ABC,
- (d) sprawdzić czy punkty $A(2,-3,1),\,B(3,-1,4),\,C(-1,-1,3),\,D(7,-1,5)$ leżą na jednej płaszczyźnie