Overview:

1- Hopf invariants and Adams spectral sequences (25 mins)

Adams spectral sequences.

Pontriyagin-Thom construction

The geometry of MO

3. Arf-Kervaire invariants & Adams spectral sequences (30 mins)

Browder's formulation

Lanne's reformulations via secondary operations.

h; in Adams spectral sequences.

Definition 3.1. Let $f: \mathbb{S}^n \to \mathbb{S}^0$ be a map in the stable stem. Then the cofiber C_f is a two-cell complex with the cohomology

$$\mathrm{H}^0(C_f) = \mathbb{F}_2\{\alpha\}$$

$$H^{n+1}(C_f) = \mathbb{F}_2\{\beta\}$$

The **Hopf invariant** H(f) is a value in \mathbb{F}_2 such that $\operatorname{Sq}^{n+1}\alpha = H(f) \cdot \beta$. Equivalently, if we let $[C_f] \in \operatorname{H}_{n+1}C_f$ to be the class of the top cell, then we have

$$H(f) = \langle \operatorname{Sq}^{n+1} \alpha, [C_f] \rangle$$

Question: When the Hopf invariant is 1?

Answer: using Adams spectral sequence.

Consider & => H -> H, and the Adams tower

$$\begin{array}{c} \Sigma^{-3}\overline{H}^{\wedge 3} & \longrightarrow H \wedge \Sigma^{-3}\overline{H}^{\wedge 3} \\ \downarrow & \downarrow & \\ \Sigma^{-2}\overline{H}^{\wedge 2} & \longrightarrow H \wedge \Sigma^{-2}\overline{H}^{\wedge 2} \\ \downarrow & \downarrow & \\ \Sigma^{-1}\overline{H} & \longrightarrow H \wedge \Sigma^{-1}\overline{H} \\ \downarrow & \downarrow & \\ \mathbb{S}^{0} & \longrightarrow H \end{array}$$

$$0 \to F_1 \to \mathcal{A}_* \to \overline{\mathcal{A}}_* \to 0$$

$$\bar{E}_{i}^{s,t} \cong \pi_{t-s}(H^{s}(\Sigma^{-1}\bar{H})^{s})$$

Proposition 3.10. There exists $f \in \pi_n(\mathbb{S}^0)$ with Hopf invariant one if and only if there exists $[h] \in \mathcal{E}_1^{1,n+1}$ in the (homological) \mathbb{F}_2 -Adams spectra sequence such that $h(\operatorname{Sq}^{n+1}) = 1$ and survives to \mathcal{E}_{∞} -page.

Then by the pairing property, $\mathcal{B}^{n} \xrightarrow{\widehat{\mathcal{T}}} \mathcal{H} \wedge \Sigma^{-1}\mathcal{H} \in \widehat{\mathcal{A}}$ is the claim or

8. The geometric meaning. The key tool to understanding the geometry of the Adams spectral sequence is the Pontriyagin-Thom construction. $M^n \longrightarrow \mathbb{R}^{n+p}$, V the normal bundle M(v), V the trivialization. Thm: $\Omega_e^{fr} \subseteq \pi_e$ $\left[M^n, v, t\right]$ framed cobordism class I collapse map + - $\mathbb{S}^{n+p} \longrightarrow Th(\nu) \xrightarrow{t} \mathbb{M}_{+} \wedge \mathbb{S}^{p} \xrightarrow{c} \mathbb{S}^{p} \in \mathcal{T}_{n}$ In this case, let $[M^1, \nu, t]$ be the framed cobordism dass $\sim f: S^n \rightarrow S$ Question: What H(f) means for [M, v,t] Answer: Consider the map $B \to MO \longrightarrow \Omega^{fr} \to \Omega^{0}$ Since M' is stably parallesible >> its Stlefiel Whitney numbers vanish -> it is null-cobordant i.e. we can find N^{n+1} with normal bundle V_N s.t. $\partial N^{n+1} = M$ and } assume p >> n+1. Let $N^{n+1} \xrightarrow{\mathcal{V}_h} BO_r$ $W_{n+1}(v_N) = (v_N^{\dagger})^* W_{n+1}$ $t = \text{Striefe} \cdot \text{Whitney class}$ C_M N Claim that. H(f) = (Wnt (Vx), [N,M].

First, $MD = V\Sigma'H$, $i \neq 2^l-1$ and the Thom class $MD \xrightarrow{u} H$ is one of the summand. Then H^*MD is a free A^* -module and thus the MD-tower is equivalent to the H-Adams tower.

§. Browder's Arf-Kervaire invariants: $[M^{2n}, t]$ a framed manifold, $v: M^{2n} \longrightarrow \mathbb{R}^{2n+p}$ $\chi \in H^n(M)$ classified by $Y_{\chi}: M_{\tau} \longrightarrow \Sigma^n H$ $\mathbb{S}^{2n+p} \xrightarrow{tp_{M}} M_{+} \wedge \mathbb{S}^{p} \xrightarrow{f_{\chi} \wedge id} \mathbb{Z}^{n+p} \xrightarrow{n+p} \mathbb{Z}^{n+1} \xrightarrow{2n+p+1} H$ $\begin{cases}
S^{2n+p+1} & \text{Steennod} \\
S^{2n+p+1} & \text{S$ Claim I: There is no indeterminence in this Toda bracket i.e. $q_t(x)$ is well-defined. claim 2: $q_t: H^n(M) \longrightarrow \mathbb{F}_2$ is an \mathbb{F}_2 -quadrate form on $H^n(M)$ claim 3: $WQ(IT_2) \xrightarrow{\hat{z}} IT_2$ the Witt group of the quadratic space Linduced by Arf-invariants).

{ Symplectic bas:s, $\{e_i, f_i, \dots, e_m, f_m\} \sim \langle e_i, f_j \rangle = \{0, \text{ otherwise} \}$ $\langle e_i, e_i \rangle = \langle f_j, f_j \rangle = 0$

Arf $(q) := \sum_{i=1}^{m} q(e_i) q(f_i)$

Define: Kenaire $(M^n, t) := [H^n(M), q_t]$ Let (N. M. W) be the null-cobordism.

§ Lannes 's reformulation: Lemma: $\exists u \in H^{n}(M)$ s.t. $Arf(q_{t}) = q_{t}(u)$.

Recall: Wu class for vector bundles: Vi(3) = \$\overline{\pi}_2 \XSq^2 Uz

Let N^{2n+1} s.t. $\partial N^{2n+1} = M$ and $V_M = V_M$.

 $BO_{p}(N_{h+1}) \longrightarrow EK(n_{h+1})$ Wu orientation $M \xrightarrow{S} K(n)$ $V \longrightarrow BO_{p}(V_{n_{h+1}})$ $V \longrightarrow BO_{p}(V_{n_{h+1}})$ Then we let $U = S^{*}U_{n}$.

Let $f: S^{2n+p} \longrightarrow S^p$ be the map corresponds to

Lannes compute that the Toda bracket

 $\stackrel{\psi}{\mathbf{I}} \xrightarrow{\psi} MO(p) \xrightarrow{\sum_{i=1}^{n+1} \Theta(v_{n+1}v_{n+1-i})} \bigvee_{i=1}^{n+1} K(\mathbb{F}_2, 2n+2+p-i) \xrightarrow{\sum_{i=1}^{n+1} \operatorname{Sq}^i} K(\mathbb{F}_2, 2n+2+p)$

 S^{2n+p+1} $\Sigma^{p}u = \Sigma^{p+1}K(n)$ $\Sigma^{n}u = \Sigma^{n+1}u = \Sigma^{n+1}u$

Remark: ∑Sq. & Un+1 Un+1-iU ∈ I(A°) ⊗H*MO is a cycle the

the A. resolution of HMD

 $\nearrow \frac{MO(p)}{\downarrow_h}$ $\downarrow^h
K(\mathbb{F}_2, p) \times L$ $a_i = k^* (h^*)^{-1} (\Theta v_{n+1} v_{n+1-i})$ $\searrow \bigcap^k K(\mathbb{F}_2, p)$

 $Kervaire(M, t) = \langle \Phi \alpha, [X] \rangle$

$$\mathrm{Sq}^{n+1}(\chi\mathrm{Sq}^{n+1}) + \sum_{i=1}^n \mathrm{Sq}^i a_i = 0$$
 yields a secondary operation $\overline{\mathcal{D}}$

Claim:
$$\langle h_k h_\ell, Sq^{n+1} + \sum_{i=1}^n Sq^i \otimes_i a_i \rangle = \{1, \hat{j} \} \{2^k = 2^\ell = n+1\}$$

[Note $\langle h_k, \chi Sq^2 \rangle = \{1, \hat{j} \} \{2^k = 2^\ell = n+1\}$

The number is $\{1, \chi Sq^2 \} \{2^k \} \{2^$

$$h_{k}(S_{q}^{n+1}) \cdot h_{\ell}(XS_{q}^{n+1}) + \sum_{j=1}^{n} h_{k}(S_{q}^{n+1}) \otimes h_{\ell}(a_{i})$$

$$h_{k}(S_{q}^{2^{k}}) \cdot h_{k}(S_{q}^{2^{k}}) = 1.$$

