10 класс

Задача 1. Сферическая горка

Над горизонтальной поверхностью выступает сферическая горка, профиль которой представляет собой четверть окружности радиуса R. В верхнюю точку горки положили небольшую шайбу массой m и сообщили ей горизонтальную начальную скорость v_0 (рис. 6). Коэффициент трения между горкой и шайбой зависит от угла α по закону $\mu = \operatorname{tg} \alpha$.

Рис. 6

- 1. Через какое время au тело достигнет горизонтальной поверхности при спуске без отрыва от горки?
- 2. Чему равна работа $A_{\rm TP}$ силы трения к этому моменту?
- 3. При каких величинах v_0 шайба не оторвётся от поверхности горки?

Задача 2. Гранулы

В трубе сечения S течёт взвесь — жидкость, переносящая с собой мелкие сжимаемые гранулы (рис. 7). На участке с давлением p объём отдельной гранулы V, а на участке с пониженным давлением $p-\Delta p$ объём гранулы $V+\Delta V$. Число гранул, проходящих за единицу времени через любое сечение трубы, равно ν . Найди-

Рис. 7

те массу взвеси μ , проходящую через трубу за единицу времени при стационарном течении, если трения со стенками трубы нет, а скорость жидкости и гранул по всему сечению одинакова. Изменением плотности жидкости пренебречь.

Задача 3. Вода и лёд

Как известно, при атмосферном давлении вода начинает замерзать, а лёд таять при температуре $t_0=0\,^{\circ}\mathrm{C}$. При давлениях, больших атмосферного, вода может находиться в жидкой фазе и при более низких температурах. Увеличение давления на 133 атм понижает температуру плавления льда на 1 $^{\circ}\mathrm{C}$. В начальном состоянии вода массой $m_0=1$ кг и очень малое количество льда находятся в равновесии в адиабатической оболочке под давлением $p_1=200$ атм. В адиабатическом процессе давление медленно уменьшают до атмосферного $p_0=1$ атм.

- 1. Найдите изменение массы льда Δm_{π} .
- 2. Найдите изменение объёма системы вода + лёд.
- 3. Какую работу совершает система против внешнего давления при его уменьшении от p_1 до p_0 ?

Удельная теплоёмкость воды $c_{\rm B}=4.2~\rm Дж/r$, льда $c_{\rm \pi}=2.1~\rm Дж/r$. Удельная теплота плавления льда $q=336~\rm Дж/r$. Плотности воды и льда при атмосферном давлении: $\rho_{\rm B}=1~\rm r/cm^3$, $\rho_{\rm \pi}=0.9~\rm r/cm^3$.

Сжимаемость воды $G=-\frac{1}{V}\frac{\Delta V}{\Delta P}=5\cdot 10^{-10}~\Pi {\rm a}^{-1},$ сжимаемость льда меньше сжимаемости воды.

Задача 4. Диодная цепочка

Электрическая цепь (рис. 8) состоит из 2016 звеньев, состоящих из одинаковых диодов и резисторов. Вольтамперная характеристика диода приведена на рис. 9, напряжение $U_d=1$ В. Сопротивление каждого резистора R=1 Ом. На вход схемы подаётся постоянное напряжение U_0 .

- 1. Определите силы токов через диоды и через резисторы при входном напряжении $U_0=4.4~{\rm B}.$
- 2. Постройте вольтамперную характеристику схемы (зависимость тока I_0 от U_0) в диапазоне от 0 В до 3 В.
- 3. Определите входное напряжение U_0 , при котором ток через цепь равен $I_0=14~{\rm A.}$

Задача 5. Déjà vu

В электрической цепи (рис. 10) все элементы можно считать идеальными. Вначале конденсатор ёмкостью C не заряжен. Ключ K замыкают, а затем, когда скорость изменения энергии в конденсаторе достигает максимума — размыкают.

1. Найдите мощность N, которую развил источник постоянного напряжения к моменту размыкания ключа.

2. Пусть сопротивления резисторов равны

 $R_1=R_2=R$. В этом случае скорость рис. 10 изменения энергии в конденсаторе достигает максимума через время $t_0=CR\ln\sqrt{2}$ (это время можно найти, решая соответствующее дифференциальное уравнение, которое вам решать не нужно). Определите количество теплоты Q, которое выделится в цепи при замкнутом клю-

чеK.