In the first case, the point $(3, \theta, 4 - \theta, 0, 2 - \theta)$ is a feasible solution iff $0 \le \theta \le 2$, and the new value of the objective function is $3 + \theta$. In the second case, the point $(3 - \theta, 0, 4 - \theta, \theta, 2)$ is a feasible solution iff $0 \le \theta \le 3$, and the new value of the objective function is $3 - \theta$. To increase the objective function, we must choose the first case and we pick $\theta = 2$. Then we get the feasible solution $u_2 = (3, 2, 2, 0, 0)$, which corresponds to the basis (A^1, A^2, A^3) , and thus is a basic feasible solution. The new value of the objective function is 5.

Next we express A^4 and A^5 in terms of the basis (A^1, A^2, A^3) . Again this is easy to do since we just swapped A^5 and A^2 (a pivoting step), and we get

$$A^5 = A^2 - A^3$$
$$A^4 = A^1 + A^3.$$

We repeat the process with $u_2 = (3, 2, 2, 0, 0)$ and the basis (A^1, A^2, A^3) . We have

$$b = 3A^{1} + 2A^{2} + 2A^{3} - \theta A^{4} + \theta A^{4}$$

= $3A^{1} + 2A^{2} + 2A^{3} - \theta (A^{1} + A^{3}) + \theta A^{4}$
= $(3 - \theta)A^{1} + 2A^{2} + (2 - \theta)A^{3} + \theta A^{4}$,

and

$$b = 3A^{1} + 2A^{2} + 2A^{3} - \theta A^{5} + \theta A^{5}$$

= $3A^{1} + 2A^{2} + 2A^{3} - \theta (A^{2} - A^{3}) + \theta A^{5}$
= $3A^{1} + (2 - \theta)A^{2} + (2 + \theta)A^{3} + \theta A^{5}$.

In the first case, the point $(3 - \theta, 2, 2 - \theta, \theta, 0)$ is a feasible solution iff $0 \le \theta \le 2$, and the value of the objective function is $5 - \theta$. In the second case, the point $(3, 2 - \theta, 2 + \theta, 0, \theta)$ is a feasible solution iff $0 \le \theta \le 2$, and the value of the objective function is also $5 - \theta$. Since we must have $\theta \ge 0$ to have a feasible solution, there is no way to increase the objective function. In this situation, it turns out that we have reached an optimal solution, in our case $u_2 = (3, 2, 2, 0, 0)$, with the maximum of the objective function equal to 5.

We could also have applied the simplex algorithm to the vertex $u_0 = (0, 0, 1, 3, 2)$ and to the vector $(0, \theta, 1 - \theta, 3, 2 - \theta, 1)$, which is a feasible solution iff $0 \le \theta \le 1$, with new value of the objective function θ . By picking $\theta = 1$, we obtain the feasible solution (0, 1, 0, 3, 1), corresponding to the basis (A^2, A^4, A^5) , which is indeed a vertex. The new value of the objective function is 1. Then we express A^1 and A^3 in terms the basis (A^2, A^4, A^5) obtaining

$$A^{1} = A^{4} - A^{3}$$
$$A^{3} = A^{2} - A^{5},$$

and repeat the process with (0, 1, 0, 3, 1) and the basis (A^2, A^4, A^5) . After three more steps we will reach the optimal solution $u_2 = (3, 2, 2, 0, 0)$.