Análisis espectral de cianinas: aproximación mediante pozos de potencial

Renato Cardelli, Elisa Puebla, Martín Ariel Zárate Lipovetzky Departamento de Física, Universidad Nacional de La Plata (1900)

Resumen

En este trabajo se estudian las propiedades espectrales de cianinas mediante una aproximación de pozo de potencial infinito y comparación con datos experimentales.

I. Introducción

Un Quantum Dot (QD) es un sólido semiconductor a escala nanométrica cuyas propiedades electrónicas dependen de su tamaño y forma. En este trabajo consideramos el caso de pozos de potencial esféricos.

$$E_g(R) = E_b + \frac{\hbar^2 \pi^2}{2R^2} \left(\frac{1}{m_e} + \frac{1}{m_h} \right) - \frac{1.8 e^2}{\kappa R}$$
(1)

II. Resultados

Los resultados muestran un buen acuerdo entre el modelo de pozo infinito y los radios obtenidos mediante SAXS y espectroscopía.

Muestra	$R_{ m SAXS}$ [nm]	$R_{ m Abs} \ [m nm]$
1	3.6	2.5
2	4.5	2.8
3	3.0	2.3

Cuadro 1: Radios obtenidos por ambas técnicas.

III. Conclusión

El análisis muestra que las propiedades ópticas de los QD dependen fuertemente de su tamaño, verificando la teoría de confinamiento cuántico.