Design of a Switched-Capacitor Amplifier

H05E4a DAMSIC Project 2025

Part II: Symmetrical OTA

Students: Ruichu ao, Zhiyong Wang

Group ID: 27

3 SYMMETRICAL OTA

3.1 TABLE OF ACHIEVED RESULTS (SO FAR)

Enter your achieved results in the below table. You can leave some fields blank if you did not simulate (or design) for the specific parameter yet.

Parameter	Unit	Achieved
Input Swing	mV_{pp}	0.5~0.6
Output Swing	mV_{pp}	1012~1065
Total Integrated Output Noise	mV_{rms}	
SNR	dB	(@ minimum Vin)
CL	pF	2.5
C _{FB}	pF	0.5
C _{IN}	pF	5
Open-Loop Gain	dB	33
Closed-Loop Gain	V/V	unstable
GBW (Sample Phase)	MHz	
Phase Margin (Sample Phase)	deg	
Dynamic Settling Error	%	(settling error at the end of the amplification phase)
Static Gain Error	%	
Power dissipation	mW	

3.2 SCHEMATIC DESIGN

1. Circuit schematic

2. Parameters of Transistor Dimensions and CMFB Block

CMFB Block Parameters					
A	CMFBEst	R			
-1	OUTCMRdEF	1kOhm			

Transistor Dimensions (W/L)							
	Pmos1	Pmos2	Nmos3	Nmos4	Nmos5	Pmos6	Pmos7
L (nm)	225	225	450	450	450	450	450
W (mm)	0.36	0.36	0.36	0.72	0.36	0.36	0.21
W/L	1600	1600	800	1600	800	800	466.7

3. Transistor parameter and Branch Current

Transistor Parameters (gm, V _{GT} =V _{GS} - V _{TH} , V _{DS})							
	Pmos1	Pmos2	Nmos3	Nmos4	Nmos5	Pmos6	Pmos7
Gm (mS)	26.7	36.9	32.7	59.3	31.4	35.9	14.8
V _{GT} (mV)	-240	-114	103	97.3	184	-237	-385
V _{DS} (mV)	-103	-483	515	302	118	-482	-198

Branch Current	lds1	lds2	lds7
I(mA)	5.19	2.59	4.55

3.3 SIMULATION RESULTS

In this subsection, insert the simulation details of your current symmetrical OTA design as requested below. Please make sure that your plots are visible, and the axis labels and values are readable.

1. Open-loop AC simulation: bode plot of OTA's gain

2. Closed-loop AC simulation: bode plot of differential loop gain in sampling phase

- Closed-loop transient simulation: 2 consecutive cycles (f = f_S), input is DC within one cycle 1st cycle: Vinp Vinn = minSwing/2; 2nd cycle: Vinp Vinn = -maxSwing/2
 Figure: a. Input waveform for differential mode (Vinp Vinn)
 - b. Output waveform for differential mode
 - c. Output waveform for common mode
 - d. Plot of the extracted settling error (% vs time) during the 2nd amplification phase

Unstable

- 4. Closed-loop transient simulation: same as previous simulation, but lower f_{S} by 1000x.
- 5. Closed-loop PNOISE simulation: total differential output noise spectrum near end of sampling phase (in V/sqrt(Hz), from 1 Hz to fs/2)