C 09 B 29/09

DEUTSCHES PATENTAMT

(21) Aktenzeichen: P 34 33 957.4 (22) Anmeldetag: 15. 9. 84 (43) Offenlegungstag: 27. 3. 86 C 09 B 29/36 D 06 P 1/04

Behördenskenhig

(71) Anmelder:

BASF AG, 6700 Ludwigshafen, DE

② Erfinder:

Hagen, Helmut, Dr., 6710 Frankenthal, DE; Hansen, Günter, Dr., 6700 Ludwigshafen, DE; Ziegler, Hans, Dr., 6704 Mutterstadt, DE

(54) Benzthiazolazofarbstoffe

Die Erfindung betrifft Verbindungen der allgemeinen Formel I

in der X Chlor oder Brom und K der Rest einer Kupplungskomponente sind. Die erfindungsgemäßen Verbindungen eignen sich insbesondere zum Färben von synthetischen Polyestern.

<u>Patentansprüche</u>

1. Verbindungen der allgemeinen Formel I

$$CH_3 = N-K$$

in der

- 10 X Chlor oder Brom und
 - K der Rest einer Kupplungskomponente sind.
 - 2. Verbindungen gemäß Anspruch 1 der Formel Ia

15

20

- in der
- R4 Wasserstoff, Chlor, Methyl, Methoxy oder Ethoxy,
- R^5 Wasserstoff, Chlor, Methyl, C_1 bis C_4 -Alkanoylamino, C_1 bis C_4 -Alkyl-sulfonylamino oder Benzoylamino und
- R² und

25

- R^3 unabhängig voneinander gegebenenfalls substituiertes C_1 bis C_4 -Alkyl, Allyl, Cyclohexyl, Benzyl oder Phenyläthyl sind und
- X die angegebene Bedeutung hat.

- 3. Verwendung der Verbindungen gemäß Anspruch 1 zum Färben textiler Fasern.
- 35 465/84 Bg 14.09.1984

Benzthiazolazofarbstoffe

Die Erfindung betrifft Verbindungen der allgemeinen Formel I

in der

10 X Chlor oder Brom und

K der Rest einer Kupplungskomponente sind.

Die Kupplungskomponenten K entsprechen z.B. den allgemeinen Formeln

15 NH_2 NH_2 NH_3 NH_4 NH_5 NH_5

25 wobei

R¹ Wasserstoff, Alkyl, Aralkyl oder Aryl,

R² Wasserstoff oder R³,

R³ gegebenenfalls substituiertes Alkyl, Cycloalkyl, Alkenyl, Aralkyl oder Aryl,

30 R4,

35

R⁵ Wasserstoff, Alkyl, Alkoxy, Phenoxy, Halogen, Alkylsulfonylamino, Dialkylaminosulfonylamino oder Acylamino,

R6 Cyan, Carbamoyl, Nitro oder Carbalkoxy und

R7 gegebenenfalls substituiertes Phenyl, Thienyl, Alkyl oder Aralkyl sind.

20

25

30

Einzelne Reste R¹ sind neben den bereits genannten beispielsweise Methyl, Ethyl, Propyl, Butyl, Benzyl, Phenethyl, Phenyl, o-, m-, p-Tolyl oder o-, m-, p-Chlorphenyl.

O5 Reste R³ sind neben den bereits genannten z.B.: C₁- bis C₆-Alkylgruppen, die durch Chlor, Brom, Hydroxy, C₁- bis C₆-Alkoxy, Phenoxy, Cyan, Carboxy, C₁- bis C₆-Alkanoyloxy, Benzoyloxy, o-, m-, p-Methylbenzoyloxy, o-, m-, p-Chlorbenzoyloxy, C₁- bis C₆-Alkoxyalkanoyloxy, Phenoxyalkanoyloxy, C₁- bis C₆-Alkoxyarbonyloxy, Benzyloxy- carbonyloxy, Phenethyloxycarbonyloxy, Phenoxyethoxycarbonyloxy, C₁- bis C₆-Alkylaminocarbonyloxy, Cyclohexylaminocarbonyloxy, Phenylaminocarbonyloxy, C₁- bis C₆-Alkoxycarbonyl, C₁- bis C₆-Alkoxyalkoxycarbonyl, Phenoxy-carbonyl, Benzyloxycarbonyl, Phenoxy-C₁- bis C₆-Alkoxy oder Phenethyloxy-carbonyl substituiert sein können sowie Phenyl, Benzyl, Phenethyl oder Cyclohexyl.

Einzelne Reste R3 sind z.B.: Methyl, Ethyl, Propyl, Butyl, Pentyl, Hexyl, Allyl, Methallyl, 2-Chlorethyl, 2-Bromethyl, 2-Cyanethyl, 2-Hydroxyethyl, 2-Phenyl-2-hydroxyethyl, 2,3-Dihydroxypropyl, 2-Hydroxypropyl, 2-Hydroxybutyl, 2-Hydroxy-3-phenoxypropyl, 2-Hydroxy-3-methoxypropyl, 2-Hydroxy-3butoxypropyl, 3-Hydroxypropyl, 2-Methoxyethyl, 2-Ethoxyethyl, 2-Propoxyethyl, 2-Butoxyethyl, 2-Phenoxyethyl, 2-Phenoxypropyl, 2-Acetoxyethyl, 2-Propionyloxyethyl, 2-Butyryloxyethyl, 2-Isobutyryloxyethyl, 2-Methoxymethylcarbonyloxyethyl, 2-Ethoxymethylcarbonyloxyethyl, 2-Phenoxymethylcarbonyloxyethyl, 2-Methoxycarbonyloxyethyl, 2-Ethoxycarbonyloxyethyl, 2-Propoxycarbonyloxyethyl, 2-Butoxycarbonyloxyethyl, 2-Phenyloxycarbonyloxyethyl, 2-Benzyloxycarbonyloxyethyl, 2-Methoxyethoxycarbonyloxyethyl,, 2-Ethoxyethoxycarbonyloxyethyl, 2-Propoxyethoxycarbonyloxyethyl, 2-Butoxyethoxycarbonyloxyethyl, 2-Methylaminocarbonyloxyethyl, 2-Ethylaminocarbonyloxyethyl, 2-Propylaminocarbonyloxyethyl, 2-Butylaminocarbonyloxyethyl, 2-Methoxycarbonylethyl, 2-Ethoxycarbonylethyl, 2-Propoxycarbonyl ethyl, 2-Butoxycarbonylethyl, 2-Phenoxycarbonylethyl, 2-Benzoyloxycarbonylethyl, 2-G-Phenylethoxycarbonylethyl, 2-Methoxycthoxycarbonylethyl, 2-Ethoxyethoxycarbonylethyl, 2-Propoxyethoxycarbonylethyl, 2-Butoxyethoxycarbonylethyl, 2-Phenoxyethoxycarbonylethyl oder 2-Benzoylethyl.

Als Reste R⁴ und R⁵ kommen beispielsweise Wasserstoff, Methyl, Ethyl, Propyl, Brom, Chlor, Methoxy, Ethoxy, Phenoxy, Benzyloxy, C₁- bis C₆-Alkanoylamino, Benzoylamino, sowie C₁- bis C₄-Alkylsulfonylamino oder -Dialkylaminosulfonylamino in Betracht.

05

10

Reste R⁶ sind neben den bereits genannten z.B.: Aminocarbonyl, Methylaminocarbonyl, Dimethylaminocarbonyl, Ethylaminocarbonyl, Diethylaminocarbonyl, Methoxycarbonyl, n- und i-Propoxycarbonyl, n-, i- und sek.-Butoxycarbonyl, Methoxyethoxycarbonyl, Ethoxyethoxycarbonyl, n- und i-Propoxyethoxycarbonyl oder n-, i- und sek.-Butoxyethoxycarbonyl.

Reste R⁷ sind beispielsweise durch C₁- bis C₁₀-Alkyl, C₁- bis C₁₀-Alkoxy, Phenoxy, Benzyloxy, Phenyl, Chlor, Brom, Nitro, C₁- bis C₄-Alkoxycarbonyl, C₁- bis C₄-Mono- oder Dialkylamino, C₁- bis C₄-Alkoxy-ethoxy, C₁- bis C₄-Alkyl- oder Phenylmercapto, C₁- bis C₅-Alkanoylamino, wie Acetylamino, Propionylamino, Butyrylamino oder Valerylamino, ein- oder mehrfach substituiertes Phenyl, C₁- bis C₄-Alkyl, C₁- bis C₄-Alkoxycarbonylmethyl, Cyanmethyl oder Benzyl.

20 Zur Herstellung der Verbindungen der Formel I kann man eine Diazoniumverbindung des Amins der Formel II

25

mit Kupplungskomponenten der Formel

H-K

30

35

in an sich bekannter Weise umsetzen.

Einzelheiten der Umsetzungen können den Beispielen entnommen werden, in denen sich Angaben über Teile und Prozente, sofern nicht anders vermerkt, auf das Gewicht beziehen. Die Verbindungen der Formel I sind gelb bis blau und eignen sich insbesondere als Dispersionsfarbstoffe für synthetische und halbsynthetische Fasern, z.B. Celluloseester, Polyamide und insbesondere Polyester. Man erhält brillante Färbungen mit guten Echtheiten, von denen die Thermofixierund Naßechtheiten hervorzuheben sind.

Von besonderer Bedeutung sind Verbindungen der Formel Ia

in der

05

15

20

25

30

R4 Wasserstoff, Chlor, Methyl, Methoxy oder Ethoxy,

R⁵ Wasserstoff, Chlor, Methyl, C₁- bis C₄-Alkanoylamino, C₁- bis C₄-Alkyl-sulfonylamino oder Benzoylamino und

R² und

R³ unabhängig voneinander gegebenenfalls substituiertes C₁- bis C₄-Alkyl, Allyl, Cyclohexyl, Benzyl oder Phenyläthyl sind und

X die angegebene Bedeutung hat.

Vorzugsweise ist R^4 Wasserstoff oder Methoxy, R^5 Wasserstoff, Methyl oder Acetylamino und R^2 und R^3 sind unabhängig voneinander gegebenenfalls substituiertes C_1 - bis C_4 -Alkyl oder Allyl.

Beispiel 1

20 Teile 2-Amino-4-methyl-5-chlorbenzthiazol wurden in einem Gemisch von 140 Teilen Eisessig/Propionsäure (17:3) gelöst und bei 0 bis 5 °C im Verlauf einer Stunde mit 32 Teilen Nitrosylschwefelsäure (11,5 % N₂O₃) versetzt. Nach vierstündigem Rühren bei 0 bis 5 °C wurde die Mischung zu einer Lösung aus 22,4 Teilen N-Cyanethyl-N-butylanilin, 50 Teilen 30 %iger Salzsäure, 500 Teilen Wasser, 500 Teilen Eis und 1,2 Teilen eines Fettalkoholethoxylats zugegeben. Nach Beendigung der Kupplung wurde die erhaltene Farbstoffsuspension auf 40 °C erwärmt, filtriert, der Filterkuchen mit Wasser neutral gewaschen und bei 60 °C im Vakuum getrocknet. Man erhielt 38 Teile des Farbstoffs der Formel

0.2.0050/37338

3433957

$$C1 \longrightarrow S C-N = N \longrightarrow N \xrightarrow{C_2H_4CN} C_4H_9(n)$$

05 der Polyestergewebe in echten Scharlachtönen färbt.

Beispiel 2

Verwendet man anstelle von 20 Teilen 2-Amino-4-methyl-5-chlor-benzthiazol 25 Teile 2-Amino-4-methyl-5-brom-benzthiazol und verfährt wie in Beispiel 1 beschrieben, so erhält man 41 Teile des Farbstoffs der Formel

$$Br = N - N - N - C_2H_4CN - C_4H_9(n) ,$$

der Polyester ebenfalls in brillanten Scharlachtönen färbt.

Analog wurden auch die in der folgenden Tabelle durch Diazotierungs- und Kupplungskomponenten gekennzeichneten Farbstoffe erhalten.

25

20

10

15

30

D-N = N-K

!	Bsp. Nr.	D	к	Färbung auf Polyester
05	3	C1 S C-	-\(\sigma_1/C_2H_4CN\) \(\sigma_2H_4CN\)	scharlach
10	4		C2H4CN C2H40CCH3	rot
	5	a	CH ₃ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	scharlach
15	6	I	CH ₃ —NHC ₂ H ₄ CN CH ₃	rot
20	7	11	NHCOCH ₃	violett
	8	11	0CH ₃ /C ₂ H ₅ NHCOCH ₃	blauviolett
25	9	ll ll	NHSO ₂ CH ₃	rotviolett
30	10		N 'C2H5	rot
	11	Br CH3		rot
35	12	II	O 	rot

D-N = N-K

	Bsp. Nr.	D	К	Färbung auf Polyester
05	13	Br CH3	N C2H4C00CH3	rot
	14	11	-√-N \C2H5 C2H4OCCH3 	rot
10	15	11	-C2H5	blaustichig rot
15	16	Ħ	- C2H5 0 C2H4OCOCH3	rot
	17	11		rot
20	18	H	~ 0 	blaustichig rot
25	19		-V-NHC2H4CN NHSO2CH3	rot
	20	l l	NHS02CH3	blaustichig rot
30	21	11	CH3 ——NHC2H4CN NHSO2CH3	blaustichig rot
35	22	ł	CH3 0 NHC2H4COC2H4-	blaustichig rot

-8-9

D-N = N-K

	Bsp. Nr.	D	К	Färbung auf Polyester
05	23	BT C-	— ~ ~~	rot
10	24	ll l	——NHC2H4OH	blaustichig rot
	25	l)	OCH ₃ NH-C ₂ H ₄ CN	rot
15	26	II	NH ₂	rot
20	27	11	CH3 CH3OH4C2-N-N-C2H4OCH3 H H	rot
25	28	C1 CH ₃ C-	——NHCH2COOCH3 CH3	scharlach
	29	11	NHC2H4C00CH3	blaustichig rot
30	30	11	HO NN N	gelb

D-N = N-K

	Bsp. Nr.	D	K	Färbung auf Polyester
05	31	C1 CH ₃ C-	H ₂ N N N CH ₂	orange
10	32	li .	N-CH ₃	orange
15	33	0	H ₂ N N N	orange
			H	
20	34	. 11	H ₂ N N N	orange
25	35	11	NH	orange
30				
30	36	II	S N C2H5	marineblau

D-N = N-K

	Bsp. Nr.	D	κ	Färbung auf Polyester
05	37	C1 S C-	N /CH2-CH=CH2	violett
		ĊH₃	C ₂ H ₄ -CO ₂ C ₂ H ₅	
10	38	Ü	H ₃ C N C ₂ H ₅ C ₃ H ₇ (n)	blauviolett
15	39	ll	H ₃ CO (n) (C ₄ H ₉ (n) (C ₄ H ₉ (n) (n)	violett
	40	l l	H ₃ CO	marineblau
,	41	11	N /CH2-CH=CH2 \C2H40C0CH3	rotviolett
25	42	11	H ₃ CO N /C ₂ H ₄ CN C ₂ H ₄ CN	violett
30	43	ll	N /C2H5 C2H5	rotviolett