```
from google.colab import files
files.upload()
```

Choose Files com_Train.csv

• **com_Train.csv**(application/vnd.ms-excel) - 15175356 bytes, last modified: 11/6/2020 - 100% done

Saving com_Train.csv to com_Train.csv

{'com_Train.csv': b'InvoiceNo,StockCode,Description,Quantity,InvoiceDate,UnitPrice,Cu

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

df=pd.read_csv('com_Train.csv')

df.head()

₽		InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	(
	0	6141	1583	144	3	2011-05-06 16:54:00	3.75	14056.0	
	1	6349	1300	3682	6	2011-05-11 07:35:00	1.95	13098.0	
	2	16783	2178	1939	4	2011-11-20 13:20:00	5.95	15044.0	
	2	40074	0445	2002	A	2011-11-22	0.00	45505 O	

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 284780 entries, 0 to 284779

Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	InvoiceNo	284780 non-null	int64
1	StockCode	284780 non-null	int64
2	Description	284780 non-null	int64
3	Quantity	284780 non-null	int64
4	InvoiceDate	284780 non-null	object
5	UnitPrice	284780 non-null	float64
6	CustomerID	284780 non-null	float64
7	Country	284780 non-null	int64

dtypes: float64(2), int64(5), object(1)

memory usage: 17.4+ MB

df.isna().sum()

InvoiceNo 0 StockCode 0 Description 0

```
Quantity 0
InvoiceDate 0
UnitPrice 0
CustomerID 0
Country 0
dtype: int64
```

```
df['Quantity']=df['Quantity'].abs()

df["InvoiceDate"] = pd.to_datetime(df["InvoiceDate"])

df["month"] = df['InvoiceDate'].dt.month

df.head()
```

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	(
0	6141	1583	144	3	2011-05-06 16:54:00	3.75	14056.0	
1	6349	1300	3682	6	2011-05-11 07:35:00	1.95	13098.0	
2	16783	2178	1939	4	2011-11-20 13:20:00	5.95	15044.0	
•	40074	0445	0000	A	2011-11-22	0.00	45505.0	

df.drop(['InvoiceDate'], axis=1, inplace=True)
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 284780 entries, 0 to 284779
Data columns (total 8 columns):

	())	, .	
#	Column	Non-Null Count	Dtype
0	InvoiceNo	284780 non-null	int64
1	StockCode	284780 non-null	int64
2	Description	284780 non-null	int64
3	Quantity	284780 non-null	int64
4	UnitPrice	284780 non-null	float64
5	CustomerID	284780 non-null	float64
6	Country	284780 non-null	int64
7	month	284780 non-null	int64

memory usage: 17.4 MB

dtypes: float64(2), int64(6)

df.corr()

	InvoiceNo	StockCode	Description	Quantity	UnitPrice	CustomerID	Coı
InvoiceNo	1.000000	0.086809	0.024804	0.002176	0.007927	-0.007463	0.00
StockCode	0.086809	1.000000	-0.013230	0.002186	0.020073	0.002887	0.00
Description	0.024804	-0.013230	1.000000	0.000794	-0.000424	-0.005227	-0.0
Quantity	0.002176	0.002186	0.000794	1.000000	-0.001011	-0.004811	-0.00
UnitDrica	0 007027	0 000073	U UUU434	O 001011	1 000000	U UU\U33	0 0(

plt.figure(figsize=(12,8))

sns.heatmap(df.corr(), annot=True)

plt.show()


```
new_df=df[['InvoiceNo','StockCode','Description','Quantity','month','CustomerID','Country'
from statsmodels.stats.outliers_influence import variance_inflation_factor

def calc_vif(x):
    # Calculating VIF
    vif = pd.DataFrame()
    vif["variables"] = x.columns
    vif["VIF"] = [variance_inflation_factor(x.values, i) for i in range(x.shape[1])]
    return(vif)
```

x = new_ar
calc_vif(x)

	variables	VIF
0	InvoiceNo	7.240477
1	StockCode	4.375989
2	Description	4.280011
3	Quantity	1.002136
4	month	10.155034
5	CustomerID	36.449234
6	Country	28.367738

```
plt.figure(figsize=(14, 14))
sns.pairplot(df, diag_kind='kde');
```



```
for cols in df:
    print(cols)
    width_mean = df[cols].mean()
    width_median = df[cols].median()
    plt.figure(figsize=(7,7))
    sns.distplot(df[cols])
    plt.axvline(width_mean, color="green")
    plt.axvline(width_median, color="yellow")
    plt.show()
    print('-'*100)
```

InvoiceNo
/usr/local/lib/python3.6/dist-packages/seaborn/distributions.py:2551: FutureWarning:
 warnings.warn(msg, FutureWarning)

StockCode /usr/local/lib/python3.6/dist-packages/seaborn/distributions.py:2551: FutureWarning:

Description

/usr/local/lib/python3.6/dist-packages/seaborn/distributions.py:2551: FutureWarning:

0.0000

1000

Quantity
/usr/local/lib/python3.6/dist-packages/seaborn/distributions.py:2551: FutureWarning:
warnings.warn(msg, FutureWarning)

3000

4000

2000

Description

UnitPrice
/usr/local/lib/python3.6/dist-packages/seaborn/distributions.py:2551: FutureWarning:
 warnings.warn(msg, FutureWarning)

0.0012 -

CustomerID
/usr/local/lib/python3.6/dist-packages/seaborn/distributions.py:2551: FutureWarning:
 warnings.warn(msg, FutureWarning)

Country
/usr/local/lib/python3.6/dist-packages/seaborn/distributions.py:2551: FutureWarning:
 warnings.warn(msg, FutureWarning)

/usr/local/lib/python3.6/dist-packages/seaborn/distributions.py:2551: FutureWarning: warnings.warn(msg, FutureWarning)

for col in df:

plt.figure(figsize=(7,7))

 $\verb|sns.scatterplot(data=df,x=col,y="UnitPrice")| \verb|#always| keep| the target on y axis|$

plt.show()

for i in df.

sns.boxplot(data=df, x=i)
plt.show()


```
from scipy.stats import skew
for col in df:
    try:
        plt.figure()
        print(col, " : ", skew(df[col]))
        sns.distplot(df[col])
        plt.show()
    except:
        pass
    print("------")
```

InvoiceNo : -0.0797039233996088

/usr/local/lib/python3.6/dist-packages/seaborn/distributions.py:2551: FutureWarning: warnings.warn(msg, FutureWarning)

StockCode : 0.27124606831967124

/usr/local/lib/python3.6/dist-packages/seaborn/distributions.py:2551: FutureWarning:
 warnings.warn(msg, FutureWarning)

Description : -0.13396626863814126

/usr/local/lib/python3.6/dist-packages/seaborn/distributions.py:2551: FutureWarning:
 warnings.warn(msg, FutureWarning)

Quantity : 257.2867157391663

/usr/local/lib/python3.6/dist-packages/seaborn/distributions.py:2551: FutureWarning:

warnings.warn(msg, FutureWarning)

UnitPrice : 438.3381995247711

/usr/local/lib/python3.6/dist-packages/seaborn/distributions.py:2551: FutureWarning: warnings.warn(msg, FutureWarning)

CustomerID : 0.029524261227648025

/usr/local/lib/python3.6/dist-packages/seaborn/distributions.py:2551: FutureWarning:
 warnings.warn(msg, FutureWarning)

df.describe()

	InvoiceNo	StockCode	Description	Quantity	UnitPrice	С
count	284780.000000	284780.000000	284780.000000	284780.000000	284780.000000	2847
mean	9955.394083	1573.386807	2023.955573	13.645885	3.451216	152
std	5551.519138	843.604991	1089.812078	295.041223	78.399541	17
min	0.000000	0.000000	0.000000	1.000000	0.000000	123
25%	5069.000000	939.000000	1141.000000	2.000000	1.250000	139
50%	10310 000000	1521 በበበበበበ	1987 በበበበበበ	5 000000	1 950000	151

df['Quantity'] = np.where(df['Quantity'] > 70000, 10000, df['Quantity'])

```
SingleLog_y = np.log1p(df['Quantity'])
sns.distplot(SingleLog_y, color ="r")
print("Skew after 1st Log Transformation: %f" % SingleLog_y.skew())
```

/usr/local/lib/python3.6/dist-packages/seaborn/distributions.py:2551: FutureWarning: warnings.warn(msg, FutureWarning)

Skew after 1st Log Transformation: 0.835271

[-0.59702575, -1.07442275, 1.4755271, -0.14248423, 0.32269957,

```
-0.76495649],
         [0.69613607, 0.00309766, 0.97727518, 0.57843148, 0.32269957,
           0.69883848],
         [\ 0.19573162,\ 1.2204942\ ,\ -0.79642822,\ -0.17525312,\ 0.32269957,
           0.11332049]])
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from sklearn.metrics import r2_score
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=None)
x_train.shape
    (227824, 6)
import tensorflow as tf
model=tf.keras.Sequential([tf.keras.layers.Dense(6,input_shape=(6,)),
                     tf.keras.layers.Dense(25,activation='relu'),
                     tf.keras.layers.Dense(20,activation='relu'),
                     tf.keras.layers.Dense(15,activation='relu'),
                     tf.keras.layers.Dense(10,activation='relu'),
                     tf.keras.layers.Dense(5,activation='relu'),
                     tf.keras.layers.Dense(1)
                     ])
model.compile(optimizer='adam',loss='mse')
trained_model=model.fit(x_train,y_train,epochs=50,batch_size=100)
    באחרוו בד/ אם
    Epoch 22/50
    Epoch 23/50
   Epoch 24/50
    2279/2279 [=============== ] - 3s 1ms/step - loss: 7203.7271
    Epoch 25/50
    2279/2279 [============= ] - 3s 1ms/step - loss: 7242.3989
    Epoch 26/50
    2279/2279 [============= ] - 3s 1ms/step - loss: 7222.1357
    Epoch 27/50
    2279/2279 [=============== ] - 3s 1ms/step - loss: 7195.7476
    Epoch 28/50
    2279/2279 [============= ] - 3s 1ms/step - loss: 7156.5571
    Epoch 29/50
    2279/2279 [============= ] - 3s 1ms/step - loss: 7260.7222
    Epoch 30/50
    Epoch 31/50
    2279/2279 [============= ] - 3s 1ms/step - loss: 7295.9556
```

```
Epoch 32/50
2279/2279 [============== ] - 3s 1ms/step - loss: 7241.8936
Epoch 33/50
2279/2279 [============ ] - 3s 1ms/step - loss: 7181.2466
Epoch 34/50
2279/2279 [============= ] - 3s 1ms/step - loss: 7205.6118
Epoch 35/50
2279/2279 [=============== ] - 3s 1ms/step - loss: 7123.0771
Epoch 36/50
2279/2279 [============ ] - 3s 1ms/step - loss: 7172.2979
Epoch 37/50
Epoch 38/50
Epoch 39/50
2279/2279 [============ ] - 3s 1ms/step - loss: 7249.2979
Epoch 40/50
2279/2279 [============ ] - 3s 1ms/step - loss: 7100.7598
Epoch 41/50
2279/2279 [============== ] - 3s 1ms/step - loss: 7284.3667
Epoch 42/50
2279/2279 [============== ] - 3s 1ms/step - loss: 7207.7344
Epoch 43/50
2279/2279 [============ ] - 3s 1ms/step - loss: 7163.2085
Epoch 44/50
Epoch 45/50
2279/2279 [=============== ] - 3s 1ms/step - loss: 7196.5767
Epoch 46/50
2279/2279 [============= ] - 3s 1ms/step - loss: 7204.5015
Epoch 47/50
Epoch 48/50
2279/2279 [============== ] - 3s 1ms/step - loss: 7240.1035
Epoch 49/50
Epoch 50/50
```

plt.plot(trained_model.history['loss'])
plt.show()

y_pred=model.predict(x_test)