CLAIMS

WHAT IS CLAIMED IS:

1

. 2

1	1. A glow discharge emission spectroscope analysis apparatus having a	
2	glow discharge chamber with an anode comprising:	
3	a holding member for mounting a sample to be analyzed in operative	
4	contact with the glow discharge chamber;	
5	an inert gas is positioned in contact with a surface of the sample under	
6	a pressure condition to enable a sputtering in the glow discharge chamber;	
. 7	a power source of one of a high frequency voltage and a DC voltage is	
8	provided to the glow discharge chamber; and	
9	means for mounting the sample at the same potential of a negative side	
10	of the power source so that the sample performs as a cathode to the anode of	
11	the glow discharge chamber and a glow discharge is emitted from the	
12	sputtering effect of the plasma on the sample; and	
13	means for analyzing the emission from the glow discharge.	
,		
1	2. A glow discharge emission spectroscopic analysis apparatus according	
2	to Claim 1 wherein the inert gas is one of argon, neon, helium and a mixture thereof.	
1	3. A glow discharge emission spectroscopic analysis apparatus according	
2	to Claim 1 wherein means for maintaining the sample at the same potential as that of a	
3	negative side of said high-frequency voltage or DC voltage is a metallic flat member.	

A glow discharge emission spectroscopic analysis apparatus according

to Claim 1 wherein the flat member is tightly attached to the surface of the sample.

3	5. In a glow discharge spectrometer for generating a glow discharge by		
4	arranging a sample to face an anode of a glow discharge tube provided in a Faraday		
5	cage with inert gas adjacent a surface of the sample under low pressure condition and		
6	high frequency voltage or DC voltage applied between the sample and the anode, for		
7	analyzing the glow discharge generated, the glow discharge spectrometer		
8.	improvement comprising:		
9	a first and second conductor member movably mounted to receive a		
10	sample therebetween;		
11	a force assembly for pressing the sample to seal against the glow		
12	discharge tube; and		
13	an electrical connector for providing a common electrical potential to		
14	the first and second conductors so that the sample acts as a cathode at a		
15	uniform potential.		
1	6. The invention of Claim 5, wherein one conductor member has an		
2	aperture to accommodate a portion of the sample that is to be analyzed.		
_	aporture to accommodate a portion of the sample that is to 05 analyzed.		
1	7. The invention of Claim 5, wherein the force member is a cylinder rod.		
1	8. The invention of Claim 5, wherein the force member is a pair of		
2	cylinder rods.		
1	9. The invention of Claim 5, wherein the electrical connector is a wiper		
2	member.		
-	monitor.		
1	10. The invention of Claim 5, wherein one of the conductor members is		
2	resiliently mounted to permit adjustable movement between the conductor member		
3	and the sample when the sample is mounted between the first and second conductor		
4	members.		
1	11. The invention of Claim 5 further including means for applying a		
2	pressurizing force to a surface of the sample opposite the anode for sealing the sample		
3	to the glow discharge tube.		

1	12.	A method of analyzing a semiconductor wafer, comprising the steps of	
2		positioning a semiconductor wafer between a first and second	
3	conduc	tor member, the first conductor has an aperture to expose a surface of	
4	the was	fer and the second conductor has a corresponding section to the opposite	
5	apertur	e for exerting a sealing force;	
6		closing the first and second conductor to secure the semiconductor	
7	wafer;		
8		positioning the exposed surface of the semiconductor wafer to an	
9	openin	g in a glow discharge chamber;	
10		applying a force to seal the semiconductor wafer to the glow discharge	
11	chamber;		
12		providing a sputtering gas to the glow discharge chamber;	
13	•	applying an electrical potential to the semiconductor wafer through the	
14	first and second conductors to create a uniform negative potential of sufficient		
15	magnitude to cause a plasma of the sputtering gas to erode the semiconductor		
16	wafer;	and	
<u>t</u> 7		analyzing the glow discharge emission of light to determine the	
18	elemen	ats in the semiconductor wafer.	
1	13.	The method of Claim 12 further including resiliently mounting at least	
2	one of the first and second conductor members so that the semiconductor wafer is		
3	resiliently mov	unted upon closing of the first and second conductor member.	
1	14.	The method of Claim 12 further including applying a negative high	
2	frequency vol	age	
1	15.	The method of Claim 12 further closing the first and second conductors	
2	with air pressu	ure.	

1	16. An apparatus for determining the elements in a semiconductor wafer,
2	comprising:
3	a first conductor member having a central aperture and of a size larger
4	than the wafer;
5	a second conductor member of a size larger than the wafer;
6	means for opening and closing the first and second conductor members
7	to mount the wafer therebetween;
8	a glow discharge chamber apparatus having an opening adjacent the
9	central aperture of the first conductor member and an anode within the
10	chamber;
11	means for exerting a force on the wafer to seal the wafer to the glow
12	discharge chamber apparatus opening when the wafer is mounted between the
13	first and second conductors;
14	means for providing a sputtering gas to the glow discharge chamber
15	apparatus;
16	means for providing an electrical charge between the first and second
17	conductor s to uniformly charge the wafer as a cathode to the anode whereby a
18	glow discharge emission is created as the wafer is sputtered; and
19	means for providing a spectroscopic analysis of the light from the glow
20	discharge emission to determine the elements in the wafer.