

Ashima Garg

Course: GATE
Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK PACKAGES

TOPICWISE: DIGITAL LOGIC-2 (GATE - 2019) - REPORTS

OVERALL ANALYSIS COMPARISON REPORT SOLUTION REPORT

ALL(17)

CORRECT(5)

INCORRECT(4)

SKIPPED(8)

Q. 1

The race around condition occurs in a level trigger J-K flip-flop when

Solution Video | Have any Doubt ?

Α

Both the inputs are 0

В

Both the inputs are 1

Your answer is Correct

Solution:

(b)

In J-K flip-flop

J	K	Output
1	0	Set
0	1	Reset
0	0	Hold
1	1	Race around

C

J = 1 and K = 0

J = 0 and K = 1

QUESTION ANALYTICS

Q. 2

The circuit shown in figure below is:

FAQ Solution Video Have any Doubt?

Α

a MOD-2 counter

В

a MOD-3 counter

Your answer is Correct

Solution:

(b)

The truth table for the circuit is obtained below:

Presen	t state	FF i	Next state		
Q_A	Q_{B}	T_A $(Q_A + Q_B)$	T_B $(\overline{Q}_A + Q_B)$	Q_A^+	Q_B^+

Ashima Garg

Course: GATE
Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK PACKAGES So, the counter counts the sequence of 3 states as

Hence, the circuit is of a MOD-3 counter.

C

Generate sequence 00, 10, 01, 00

D

Generate sequence 00, 10, 00, 10, 00

QUESTION ANALYTICS

Q. 3

If Booth's Algorithm for multiplication is used then which of the following represents multiplier –29 in recorded form?

Solution Video | Have any Doubt ?

A

В

С

Correct Option

Solution:

(c)

2's complement representation of -29 is 11100011.

1	0	-1
1	1	0
0	1	+1
0	0	0
0	0	0
1	0	-1
1	1	0
1	1	0

Recorded pair is: 00 - 100 + 10 - 1.

D

00 - 100 + 10 + 1

QUESTION ANALYTICS

Q. 4

The representation of the value of 20 bit signed integer in 2's complement form is $P = (A72E5)_{16}$. Which of the following represents $16 \times P$ in 1's complement representation?

FAQ Solution Video See your Answers

(72E4F)₂₀

Correct Option

Solution:

(a)

 $P = (A72E5)_{20}$ = 1010 0111 0010 1110 0101

Ashima Garg

Course: GATE
Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK PACKAGES -1 0111 0010 1110 0100 1111

 $= (72E4F)_{20}$

В

 $(72E50)_{20}$

С

 $(72E4E)_{20}$

D

None of the above

Your answer is Wrong

QUESTION ANALYTICS

Q. 5

Amazon announce a new flip flop named Set-Reset-Toggle due to shortage elements to the electronics and computer industries. The device symbol and function table for this flip flop are shown below:

S	R	T	Function
Χ	Х	1	Toggle
1	1	0	Set
0	0	0	Reset
0	0	0	Hold
1	1	0	Hold

Which of the following is the characteristic equation?

FAQ Solution Video Have any Doubt?

Δ

 $Q^{+}=TQ'+T'[Q(S\oplus R)+SR']$

В

 $Q^+=(T \oplus Q) + S+R'Q$

С

 $Q^{+} = T'Q + T[Q'(S + R) + SR']$

D

 $Q^{+} = TQ' + T'[Q(S + R') + SR']$

Correct Option

Solution:

(d)

S	R	T	Q	Q [†]
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Ashima Garg

Course: GATE Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK **PACKAGES**

QUESTION ANALYTICS

Q. 6

The minimum value of propagation delay in each Flip-Flop when a 10-bit ripple counter skip a count which is clocked at 10 MHz is _____ nsec.

Solution Video Have any Doubt?

10

Correct Option

Solution:

10

We know that for a stage change to ripple through n stages i.e. $T_C = n \times t_{pd}$.

$$f_c = \frac{1}{T_C}$$

$$f_c = \frac{1}{n \times t_{pd}}$$

So,

$$t_{pd} = \frac{1}{n \times f_c}$$

$$t_{pd}(\text{min}) = \frac{1}{10 \times 10 \times 10^6 \,\text{Hz}}$$

= 0.01 × 10⁻⁶ sec
= 10 × 10⁻⁹ sec
= 10 nsec

Your Answer is 1000

QUESTION ANALYTICS

Q. 7

Consider the counter circuit shown in the figure below:

The present state $(Q_2\,Q_1Q_0)$ of the counter before applying the clock pulse was (101). If the input clock frequency to the circuit is 100 kHz, then the output frequency of the circuit will be _____ kHz.

Solution Video | Have any Doubt ? |

50

Correct Option

Solution: 50

> Clock 0 1

Hence, the sequence repeats itself after 2 clock pulses. Thus it is a divide by two counter.

Ashima Garg

Course: GATE
Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK PACKAGES **QUESTION ANALYTICS**

Q. 8

A synchronous counter is designed using J-K FF, X-Y FF and D-FF as shown below. X-Y FF truth table is

X	Y	Q_{n+1}
0	0	1
0	1	\overline{Q}_n
1	0	0
1	1	Q_n

If the initial content of the counter is 001 at Q_2 , Q_1 , Q_0 , after the number of clock pulses counter is back to the same state is _____.

Solution Video | Have any Doubt? | | | | |

4

Correct Option

Solution:

4

				<u>F1</u>	<u> 12</u>	<u>F1</u>	<u>FF0</u>	
CLK	Q_2	Q_1	Q_0	$J = \overline{Q}_0$	K=1	$X = Q_2$	$Y = Q_0$	$D = Q_1$
	0	0	1	0	1	0	1	0
1	0	1	0	1	1	0	0	1
2	1	1	1	0	1	1	1	1
3	0	1	1	0	1	0	1	1
4	0	0	1					

: Counter is back to the initial state after 4 clock pulses.

Your Answer is 3

QUESTION ANALYTICS

Q. 9

The difference between 201 and next larger double precision number is 2^P , if IEEE double precision format is used then the value of P is $___$.

FAQ Solution Video Have any Doubt?

-45

Correct Option

Solution:

-45

Format of IEEE double Precision:

Sign	Exponant	Mantissa
1 bit	11 bits	52 bits

Ashima Garg

Course: GATE
Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK PACKAGES = 2^{-45} Comparing with 2^P will gives P = -45.

QUESTION ANALYTICS

Q. 10

Consider the circuit given below with initial state $Q_2Q_1Q_0 = 000$.

Which one of the following is the correct state sequence of the circuit?

FAQ Solution Video Have any Doubt?

0, 6, 3, 4, 1, 7, 2, 5, 0

В

0, 3, 6, 1, 4, 7, 2, 5, 0

Your answer is Correct

Solution:

(b)

J=K=1	$J = K = Q_0$	$J = K = Q_0 + Q_1$	
Q_0	Q_1	Q_2	
0	0	0	= 0
1	1	0	= 3
0	1	1	= 6
1	0	0	= 1
0	0	1	= 4
1	1	1	= 7
0	1	0	= 2
1	0	1	= 5
0	0	0	= 0

So, sequence must be 0, 3, 6, 1, 4, 7, 2, 5, 0.

(

0, 3, 6, 4, 1, 7, 2, 5, 0

D

0, 6, 3, 1, 4, 7, 2, 5, 0

QUESTION ANALYTICS

Q. 11

Consider 8-bit left shift register and D flip-flop shown in figure below is synchronized with same clock. The D flip-flop is initially cleared.

Which of the following represents the behaviour of above circuit?

Solution Video | Have any Doubt ?

Α

Binary to 2's complement converter

Ashima Garg

Course: GATE Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK **PACKAGES**

Binary to Excess-3 code converter

Binary to Gray code converter

Your answer is **Correct**

Solution:

(d)

Output of ExOR Gate = $b_i \oplus b_{i+1}$

Initially Q = 0 assume

So,

After 1 clock, $Z = b_7 \oplus b_0$

After 2 clock, $Z = b_7 \oplus b_6$

After 3 clock, $Z = b_6 \oplus b_5$

After 4 clock, $Z = b_5 \oplus b_4$

After 5 clock, $Z = b_4 \oplus b_3$

After 6 clock, $Z = b_3 \oplus b_2$ After 7 clock, $Z = b_2 \oplus b_1$

After 8 clock, $Z = b_1 \oplus b_0$

Which is same as Binary to gray code converter.

QUESTION ANALYTICS

Q. 12

Consider the circuit shown in the figure below:

The value of output $Q_0Q_1Q_2$ and the value of output Y after the 5th clock pulse is (Assume that initially all the flip-flop are in reset state)

FAQ Solution Video Have any Doubt?

Α Output = 001 and Y = 1

Output = 101 and Y = 0

Correct Option

Solution:

.:.

The given circuit represents a 3-bit counter. So the count can be represented as

C1k	Q_2	Q_1	Q_0
Initially	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1

⇒5th clock pulse

 $Y \ = \ Q_2 \oplus Q_1 \oplus Q_0$ $= 1 \oplus 0 \oplus 1 = 0$

Ashima Garg

Course: GATE
Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

0

ASK AN EXPERT

(4)

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK PACKAGES Output = 010 and Y = 1

QUESTION ANALYTICS

Q. 13

Consider the counter circuit shown in the figure below:

The counter is designed such that it counts the states then which of the

following statements about this counter is true?

FAQ Solution Video Have any Doubt?

Α

The counter enters into a lockout state if the counter starts from $(5)_{10}$

В

The counter enters into a lockout state if the counter starts from $(2)_{10}$

С

The counter enters into a lockout state if the counter starts from $(3)_{10}$

 \Box

The counter do not enters into a lockout state

Correct Option

Solution:

(d)

Test for Lockout

Present State		Present Input				Nest State					
Q_2	Q_1	Q ₀	J_2	K_2	J_1	K_1	J _o	K_0	Q_2	Q_1	Q ₀
0	0	0	1	0	1	1	0	1	1	1	0
0	0	1	1	1	1	1	0	1	1	1	0
0	1	0	1	0	1	1	1	1	1	0	1
1	0	1	1	1	1	0	0	0	0	1	1

Hence, the counter does not enter into lockout state.

QUESTION ANALYTICS

Q. 14

Consider Register R shown below:

Ashima Garg

Course: GATE Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK **PACKAGES**

Α

Χ

Correct Option

Solution:

After 1st clock tick:

$$x_0^+ = x_0$$

$$x_1^+ = x_0 \oplus x_1$$

$$x_2^+ = (x_0 + x_1) \oplus x_2$$

$$x_3^+ = (x_0 + x_1 + x_2) \oplus x_3$$

After 2nd clock tick:

$$(x_0^+)^+ = x_0^+ = x_0$$

$$(x_1^+)^+ \ = \ x_0^+ \oplus x_1^+ = x_0 \oplus x_0 \oplus x_1 = 0 \oplus x_1 = x_1$$

$$(x_2^+)^+ = (x_0^+ + x_1^+) \oplus x_2^+ = (x_0 + (x_0 \oplus x_1)) \oplus (x_0 + x_1) \oplus x_2$$

$$= x_0 \oplus x_0 \oplus x_1 \oplus x_0 \oplus x_1 \oplus x_0 x_1 \oplus x_0 \oplus x_1 \oplus x_0 x_1 \oplus x_2$$

$$= x_0^+ \oplus x_0^+ \oplus x_1^+ \oplus x_0^+ \oplus x_0^+ \oplus x_1^+ \oplus x_0^+ \oplus x_0^$$

$$(x_3^+)^+ = (x_0^+ + x_1^+ + x_2^+) \oplus x_3^+$$

= x_3 only

So, after 2 clock tick Register R contain X only.

В

X + 1

C X + 2

D

X – 1

QUESTION ANALYTICS

Q. 15

Consider a binary counter is being pulsed by a 256 kHz clock signal. If the output frequency from the last flip-flop is 8 kHz, then the mod value of counter is _

Solution Video Have any Doubt?

32

Correct Option

Solution:

We know that, for Mod-N counter $f_o = \frac{f_i}{N}$

 f_o = Output frequency = 8 kHz f_i = Input frequency = 256 kHz

$$Mod N = \frac{f_i}{f_0}$$

$$=\frac{256 \text{ kHz}}{8 \text{ kHz}} = 32$$

QUESTION ANALYTICS

Ashima Garg

Course: GATE
Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK PACKAGES

-116

Correct Option

Solution:

-116

Exponent = $1000\ 0101 = 133$

Biased exponent = Actual exponent + Bias Actual exponent = Biased exponent - Bias

= 133 - 127 = 6

Number = 1.1101×2^6 = -1110100= $(-116)_{10}$

Your Answer is 26

QUESTION ANALYTICS

Q. 17

Consider the circuit shown in the figure below:

Then the value of $(Q_2 Q_1 Q_0)$ after the first clock pulse is equal to _____. (Assume all the outputs to be '0' initially)

Solution Video Have any Doubt?

100

Your answer is Correct100

Solution:

100

At first cycle, the inputs of flip-flop are

 $J_2K_2 = 1 \text{ 0 (Set)}$ $J_1K_1 = 0 \text{ 1 (Reset)}$

 $J_0K_0 = 0.1$ (Reset)

 $Q_2 = 1$ $Q_1 = 0$

 $Q_0 = 0$

Output $(Q_2Q_1Q_0) = (100)_2$

QUESTION ANALYTICS