

MetaCost

MetaCost is a procedure to make a cost insensitive algorithm, cost sensitive

- It can be applied to any algorithm
 - Whether it returns probabilities or classes.

Conditional Risk

The Bayes optimal prediction for an observation is the class that minimises the conditional risk:

$$R(i|x) = \sum_{j=1}^{M} P(j|x) \cdot C(i,j),$$

Prediction boundaries

The role of a classifier is to find the boundaries that separate the classes.

Prediction boundaries – cost sensitive

Cost of misclassification of the minority class is higher.

$$R(i|x) = \sum_{j=1}^{M} P(j|x) \cdot C(i, j),$$

Prediction boundaries – cost sensitive

Cost of misclassification of the minority class is higher.

Thus, the region where we should predict 1, or the minority class expands

$$R(i|x) = \sum_{j=1}^{M} P(j|x) \cdot C(i, j),$$

Prediction boundaries – cost sensitive

Cost of misclassification of the minority class is higher.

Thus, the region where we should predict 1, or the minority class expands

$$R(i|x) = \sum_{j=1}^{M} P(j|x) \cdot C(i, j),$$

MetaCost

MetaCost - Relabeling

Re-labels the target to the class that minimises the conditional risk

Pseudo code

Inputs:

- S is the training set,
- L is a classification learning algorithm,
- C is a cost matrix,
- m is the number of resamples to generate,
- n is the number of examples in each resample,
- p is *True* iff L produces class probabilities,
- q is *True* iff all resamples are to be used for each example.

Procedure MetaCost (S, L, C, m, n, p, q)

For
$$i = 1$$
 to m

Let S_i be a resample of S with n examples.

Let M_i = Model produced by applying L to S_i .

For each example x in S

For each class j

Let
$$P(j|x) = \frac{1}{\sum_{i} 1} \sum_{i} P(j|x, M_i)$$

Where

If p then $P(j|x, M_i)$ is produced by M_i

Else $P(j|x, M_i) = 1$ for the class predicted by M_i for x, and 0 for all others.

If q then i ranges over all M_i

Else i ranges over all M_i such that $x \notin S_i$.

Let
$$x$$
's class = $\underset{j}{\operatorname{argmin}}_{i} \sum_{j} P(j|x)C(i,j)$.

THANK YOU

www.trainindata.com