

REINFORCEMENT LEARNING

Gergely Neu

Lecture 2: Dynamic Programming

WHAT IS REINFORCEMENT LEARNING?

maximize reward

- **Learning to** in a reactive environment
 - under partial feedback

WHAT IS REINFORCEMENT LEARNING?

We need to assume some "regularity" about the environment so that the agent can predict the evolution of the states

aximize reward a reactive environment der partial feedback

EVOLUTION OF THE STATES

The states generally evolve according to the probability distribution

$$x_t \sim P(\cdot | x_{t-1}, a_{t-1}, x_{t-2}, a_{t-2}, \dots, x_0, a_0)$$

Problems:

- Long-term planning is intractable: too many paths!
- Learning from experience is very hard: the agent will never get to sample from the same distribution twice!

EVOLUTION OF THE STATES

The states generally evolve according to the probability distribution

$$x_t \sim P(\cdot | x_{t-1}, a_{t-1}, x_{t-2}, a_{t-2}, \dots, x_0, a_0)$$

Problems:

- Long-term planning is intractable: too many paths!
- Learning from experience is very hard: the agent will never get to sample from the same distribution twice!

Solution: Markov assumption

Assumption:

$$x_t \sim P(\cdot \mid x_{t-1}, a_{t-1})$$

Andrey Markov (1856-1922)

Assumption:

$$x_t \sim P(\cdot \mid x_{t-1}, a_{t-1})$$

- The history preceding x_{t-1} does not influence the state x_t
- In other words: x_t is a "sufficient statistic" for predicting the future states

Andrey Markov (1856-1922)

Assumption:

$$x_t \sim P(\cdot \mid x_{t-1}, a_{t-1})$$

- The history preceding x_{t-1} does not influence the state x_t
- In other words: x_t is a "sufficient statistic" for predicting the future states
- Advantages:
 - Easier to plan long-term behavior
 - Easier to learn by experience

Andrey Markov (1856-1922)

Assumption:

$$x_t \sim P(\cdot \mid x_{t-1}, a_{t-1})$$

- The history preceding x_{t-1} does not influence the state x_t
- In other words: x_t is a "sufficient statistic" for predicting the future states
- Advantages: Dynamic programming
 - Easier to plan long-term behavior
 - Easier to learn by experience

Andrey Markov (1856-1922)

A Markov Decision Process (MDP) is characterized by

- X: a set of states
- A: a set of actions, possibly different in each state
- $P: X \times A \times X \rightarrow [0,1]$: a transition function with $P(\cdot | x, a)$ being the distribution of the next state given previous state x and action a:

$$P[x_{t+1} = x' | x_t = x, a_t = a] = P(x' | x, a)$$

• $r: X \times A \rightarrow [0,1]$: a reward function

A Markov Decision Process (MDP) is characterized by (X, A, P, r)

- *X*: a set of states
- A: a set of actions, possibly different in each state
- $P: X \times A \times X \rightarrow [0,1]$: a transition function with $P(\cdot | x, a)$ being the distribution of the next state given previous state x and action a:

$$P[x_{t+1} = x' | x_t = x, a_t = a] = P(x' | x, a)$$

• $r: X \times A \rightarrow [0,1]$: a reward function

A Markov Decision Process (MDP) is characterized by (X, A, P, r)Interaction in an MDP: in each round t = 1, 2, ...

- Agent observes state x_t and selects action a_t
- Environment moves to state $x_{t+1} \sim P(\cdot | x_t, a_t)$
- Agent receives reward r_t such that $\mathbf{E}[r_t|x_t,a_t]=r(x_t,a_t)$

A Markov Decision Process (MDP) is characterized by (X, A, P, r)Interaction in an MDP: in each round t = 1, 2, ...

- Agent observes state x_t and selects action a_t
- Environment moves to state $x_{t+1} \sim P(\cdot | x_t, a_t)$
- Agent receives reward r_t such that $\mathbf{E}[r_t|x_t,a_t]=r(x_t,a_t)$

GOAL:
maximize "total rewards"!

Episodic MDPs:

- There is a terminal state x^*
- •GOAL: maximize total reward until final round T when x^* is reached:

$$R^* = \mathbf{E}[\sum_{t=0}^T r_t]$$

Episodic MDPs:

- There is a terminal state x*
- •GOAL: maximize total reward until final round T when x^* is reached:

$$R^* = \mathbf{E}[\sum_{t=0}^T r_t]$$

Discounted MDPs:

- No terminal state
- Discount factor $\gamma \in (0,1)$
- GOAL: maximize total discounted reward (a.k.a. "return")

$$R_{\gamma} = \mathbf{E}[\sum_{t=0}^{\infty} \gamma^t r_t]$$

Episodic MDPs:

• There is a terminal state x^*

+ other notions:

- long-term average reward
- total reward up to fixed horizon
- •
- GOAL: maximize total reward until final round T when x^* is reached:

$$R^* = \mathbf{E}[\sum_{t=0}^T r_t]$$

Discounted MDPs:

- No terminal state
- Discount factor $\gamma \in (0,1)$
- GOAL: maximize total discounted reward (a.k.a. "return")

$$R_{\gamma} = \mathbf{E}[\sum_{t=0}^{\infty} \gamma^t r_t]$$

Episodic MDPs:

• There is a terminal state x^*

- + other notions:
- long-term average reward
- total reward up to fixed horizon
- •
- GOAL: maximize total reward until final round T when x^* is reached:

$$R^* = \mathbf{E}[\sum_{t=0}^T r_t]$$

Discounted MDPs:

- No terminal state
- Discount factor $\gamma \in (0,1)$
- GOAL: maximize total discounted reward (a.k.a. "return")

$$R_{\gamma} = \mathbf{E}[\sum_{t=0}^{\infty} \gamma^t r_t]$$

WHY DISCOUNT?

- "Earlier rewards matter more"
- Well-motivated in economics

WHY DISCOUNT?

- "Earlier rewards matter more"
- Well-motivated in economics
- Mathematically convenient: if $r_t \in [0, R]$, then

$$\sum_{t=0}^{\infty} \gamma^t r_t \le R \sum_{t=0}^{\infty} \gamma^t = \frac{R}{1 - \gamma}$$

WHY DISCOUNT?

- "Earlier rewards matter more"
- Well-motivated in economics
- Mathematically convenient: if $r_t \in [0, R]$, then

$$\sum_{t=0}^{\infty} \gamma^t r_t \le R \sum_{t=0}^{\infty} \gamma^t = \frac{R}{1 - \gamma}$$

- Discounted return blows up as $\gamma \to 1$ and becomes harder to optimize
- The factor $\frac{1}{1-\gamma}$ is sometimes called an "effective time horizon" as rewards after these many steps "don't matter too much"

- 1. basic definitions
- 2. value functions and optimal policies
- 3. the Bellman equations
- 4. value iteration and policy iteration

- 1. basic definitions
- 2. value functions and optimal policies
- 3. the Bellman equations
- 4. value iteration and policy iteration

Policy: mapping from histories to actions

 $\pi{:}\,x_1,a_1,x_2,a_2,\dots,x_t\mapsto a_t$

Policy: mapping from histories to actions

$$\pi$$
: x_1 , a_1 , x_2 , a_2 , ..., $x_t \mapsto a_t$

Stationary policy: mapping from states to actions (no dependence on history or *t*)

$$\pi: x \mapsto a$$

Policy: mapping from histories to actions

$$\pi$$
: x_1 , a_1 , x_2 , a_2 , ..., $x_t \mapsto a_t$

Stationary policy: mapping from states to actions (no dependence on history or *t*)

$$\pi: x \mapsto a$$

Let $\tau = (x_1, a_1, x_2, a_2, ...)$ be a trajectory generated by running π in the MDP $\tau \sim (\pi, P)$:

- $\overline{\bullet} \ a_t = \pi(x_t, a_{t-1}, x_{t-1}, ..., x_1)$
- $\overline{x_{t+1}} \sim P(\cdot | \overline{x_t, a_t})$

Policy: mapping from histories to actions

$$\pi$$
: x_1 , a_1 , x_2 , a_2 , ..., $x_t \mapsto a_t$

Stationary policy: mapping from states to actions (no dependence on history or *t*)

$$\pi: x \mapsto a$$

Let $\tau = (x_1, a_1, x_2, a_2, ...)$ be a trajectory generated by running π in the MDP $\tau \sim (\pi, P)$:

- $a_t = \pi(x_t, a_{t-1}, x_{t-1}, \dots, x_1)$
- $x_{t+1} \sim P(\cdot | x_t, a_t)$

Expectation under this distribution: $\mathbf{E}_{\pi}[\cdot]$

Optimal policy π^* : a policy that maximizes

$$\mathbf{E}_{\pi}[R_{\gamma}] = \mathbf{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} \right]$$

Optimal policy π^* : a policy that maximizes

$$\mathbf{E}_{\pi}[R_{\gamma}] = \mathbf{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} \right]$$

Theorem

There exists a deterministic optimal policy π^* such that

$$\pi^*(x_1, a_1, ..., x_t) = \pi^*(x_t)$$

Optimal policy π^* : a policy that maximizes

$$\mathbf{E}_{\pi}[R_{\gamma}] = \mathbf{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} \right]$$

Theorem

There exists a deterministic optimal policy π^* such that $\pi^*(x_1, a_1, ..., x_t) = \pi^*(x_t)$

Consequence: it's enough to study stationary policies

 $\pi: x \mapsto a$

Theorem

There exists a deterministic optimal policy π^* such that $\pi^*(x_1, a_1, ..., x_t) = \pi^*(x_t)$

Consequence: it's enough to study stationary policies

 $\pi: x \mapsto a$

Intuitive "proof": Future transitions $x_{t+1} \sim P(\cdot | x_t, a_t)$ do not depend on the previous states $x_1, x_2, ...$

Theorem

There exists a deterministic optimal policy π^* such that $\pi^*(x_1, a_1, ..., x_t) = \pi^*(x_t)$

Consequence: it's enough to study stationary policies

 $\pi: x \mapsto a$

Intuitive "proof": Future transitions $x_{t+1} \sim P(\cdot | x_t, a_t)$ do not depend on the previous states $x_1, x_2, ...$

"Markov property"

- 1. basic definitions
- 2. value functions and optimal policies
- 3. the Bellman equations
- 4. value iteration and policy iteration

VALUE FUNCTIONS

Value function: evaluates policy π starting from state x:

$$V^{\pi}(x) = \mathbf{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^t r_t \mid x_0 = x \right]$$

VALUE FUNCTIONS

Value function: evaluates policy π starting from state x:

$$V^{\pi}(x) = \mathbf{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^t r_t \, | x_0 = x \right]$$

Action-value function: evaluates policy π starting from state x and action a:

$$Q^{\pi}(x, \mathbf{a}) = \mathbf{E}_{\pi}[\sum_{t=0}^{\infty} \gamma^{t} r_{t} | x_{0} = x, \mathbf{a}_{0} = \mathbf{a}]$$

VALUE FUNCTIONS

Value function: evaluates policy π starting from state x:

$$V^{\pi}(x) = \mathbf{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^t r_t \, | x_0 = x \right]$$

Action-value function: evaluates policy π starting from state x and action a:

$$Q^{\pi}(x, \mathbf{a}) = \mathbf{E}_{\pi}[\sum_{t=0}^{\infty} \gamma^{t} r_{t} | x_{0} = x, \mathbf{a}_{0} = \mathbf{a}]$$

"Optimal policy π^* = $\underset{\pi}{\operatorname{arg max}} V^{\pi}(x_0)$ "

Theorem

There exists a policy π^* that satisfies

$$V^{\pi^*}(x) = \max_{\pi} V^{\pi}(x) \quad (\forall x)$$

Theorem

There exists a policy π^* that satisfies

$$V^{\pi^*}(x) = \max_{\pi} V^{\pi}(x) \quad (\forall x)$$

Theorem

There exists a policy π^* that satisfies

$$V^{\pi^*}(x) = \max_{\pi} V^{\pi}(x) \quad (\forall x)$$

Optimal policy: a policy π^* that satisfies the above

Theorem

There exists a policy π^* that satisfies

$$V^{\pi^*}(x) = \max_{\pi} V^{\pi}(x) \quad (\forall x)$$

Optimal policy: a policy π^* that satisfies the above

The optimal value function:

$$V^* = V^{\pi^*}$$

WHY IS THIS IMPORTANT?

 Previous result only establishes that for any initial state, there exists an optimal stationary policy

maximizing $\mathbf{E}_{\pi}[R_{\gamma}]$

Optimal policy π^* : a policy that maximizes

$$\mathbf{E}_{\pi}[R_{\gamma}] = \mathbf{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t}\right]$$

Theorem

There exists a deterministic optimal policy π^* such that $\pi^*(x_1,a_1,\ldots,x_t)=\pi^*(x_t)$

WHY IS THIS IMPORTANT?

• **Previous result** only establishes that for any initial state, there exists an optimal stationary policy

maximizing $\mathbf{E}_{\pi}[R_{\gamma}]$

Optimal policy π^* : a policy that maximizes

$$\mathbf{E}_{\pi}[R_{\gamma}] = \mathbf{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t}\right]$$

Theorem

There exists a deterministic optimal policy π^* such that $\pi^*(x_1,a_1,\ldots,x_t)=\pi^*(x_t)$

• New result states that there is a stationary policy π^* that is simultaneously optimal for all initial states x

WHY IS THIS IMPORTANT?

• **Previous result** only establishes that for any initial state, there exists an optimal stationary policy

maximizing $\mathbf{E}_{\pi}[R_{\gamma}]$

Optimal policy π^* : a policy that maximizes

$$\mathbf{E}_{\pi}[R_{\gamma}] = \mathbf{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t}\right]$$

Theorem

There exists a deterministic optimal policy π^* such that $\pi^*(x_1,a_1,\ldots,x_t)=\pi^*(x_t)$

• New result states that there is a stationary policy π^* that is simultaneously optimal for all initial states x

An optimal policy π^* does not "make compromises"

Dynamic Programming for discounted rewards

- 1. basic definitions
- 2. value functions and optimal policies
- 3. the Bellman equations
- 4. value iteration and policy iteration

Richard E. Bellman (1920-1984)

Theorem

The value function of a stationary policy π satisfies the system of equations ($\forall x \in X$)

$$V^{\pi}(x) = r(x, \pi(x)) + \gamma \sum_{y} P(y|x, \pi(x)) V^{\pi}(y)$$

Theorem

The value function of a stationary policy π satisfies the system of equations ($\forall x \in X$)

$$V^{\pi}(x) = r(x, \pi(x)) + \gamma \sum_{y} P(y|x, \pi(x)) V^{\pi}(y)$$

$$V^{\pi}(x) = \mathbf{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^t r(x_t, a_t) | x_0 = x \right]$$

Theorem

The value function of a stationary policy π satisfies the system of equations ($\forall x \in X$)

$$V^{\pi}(x) = r(x, \pi(x)) + \gamma \sum_{y} P(y|x, \pi(x)) V^{\pi}(y)$$

$$V^{\pi}(x) = \mathbf{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} r(x_{t}, a_{t}) | x_{0} = x \right]$$

= $r(x, \pi(x)) + \mathbf{E}_{\pi} \left[\sum_{t=1}^{\infty} \gamma^{t} r(x_{t}, a_{t}) | x_{0} = x \right]$

Theorem

The value function of a stationary policy π satisfies the system of equations ($\forall x \in X$)

$$V^{\pi}(x) = r(x, \pi(x)) + \gamma \sum_{y} P(y|x, \pi(x)) V^{\pi}(y)$$

$$V^{\pi}(x) = \mathbf{E}_{\pi} [\sum_{t=0}^{\infty} \gamma^{t} r(x_{t}, a_{t}) | x_{0} = x]$$

$$= r(x, \pi(x)) + \mathbf{E}_{\pi} [\sum_{t=1}^{\infty} \gamma^{t} r(x_{t}, a_{t}) | x_{0} = x]$$

$$= r(x, \pi(x)) + \gamma \sum_{v} P(y|x, \pi(x)) \mathbf{E}_{\pi} [\sum_{t=1}^{\infty} \gamma^{t-1} r(x_{t}, a_{t}) | x_{1} = y]$$

Theorem

The value function of a stationary policy π satisfies the system of equations ($\forall x \in X$)

$$V^{\pi}(x) = r(x, \pi(x)) + \gamma \sum_{y} P(y|x, \pi(x)) V^{\pi}(y)$$

$$V^{\pi}(x) = \mathbf{E}_{\pi} [\sum_{t=0}^{\infty} \gamma^{t} r(x_{t}, a_{t}) | x_{0} = x]$$

$$= r(x, \pi(x)) + \mathbf{E}_{\pi} [\sum_{t=1}^{\infty} \gamma^{t} r(x_{t}, a_{t}) | x_{0} = x]$$

$$= r(x, \pi(x)) + \gamma \sum_{y} P(y | x, \pi(x)) \mathbf{E}_{\pi} [\sum_{t=1}^{\infty} \gamma^{t-1} r(x_{t}, a_{t}) | x_{1} = y]$$

$$= r(x, \pi(x)) + \gamma \sum_{y} P(y | x, \pi(x)) V^{\pi}(y)$$

THE BELLMAN OPTIMALITY EQUATIONS

Theorem

The optimal value function satisfies the system of equations

$$V^*(x) = \max_{a} \left\{ r(x, a) + \gamma \sum_{y} P(y|x, a) V^*(y) \right\}$$

THE BELLMAN OPTIMALITY EQUATIONS

Theorem

The optimal value function satisfies the system of equations

$$V^{*}(x) = \max_{a} \left\{ r(x, a) + \gamma \sum_{y} P(y|x, a) V^{*}(y) \right\}$$

Theorem

An optimal policy π^* satisfies

$$\pi^*(x) \in \arg\max_{a} \left\{ r(x, a) + \gamma \sum_{y} P(y|x, a) \ V^*(y) \right\}$$

OPTIMAL ACTION-VALUE FUNCTIONS

Theorem

The optimal action-value function satisfies

$$Q^{*}(x,a) = r(x,a) + \gamma \sum_{y} P(y|x,a) \max_{b} Q^{*}(y,b)$$

OPTIMAL ACTION-VALUE FUNCTIONS

Theorem

The optimal action-value function satisfies

$$Q^{*}(x,a) = r(x,a) + \gamma \sum_{y} P(y|x,a) \max_{b} Q^{*}(y,b)$$

Theorem

An optimal policy π^* satisfies

$$\pi^*(x) \in \arg\max_a Q^*(x,a)$$

OPTIMAL ACTION-VALUE FUNCTIONS

Theorem

The optimal action-value function satisfies

$$Q^{*}(x,a) = r(x,a) + \gamma \sum_{y} P(y|x,a) \max_{b} Q^{*}(y,b)$$

Theorem

An optimal policy π^* satisfies $\pi^*(x) \in \arg \max_a Q^*(x, a)$

= greedy with respect to Q^*

SHORT SUMMARY SO FAR

So far, we have characterized

- The value functions of a given policy
- The optimal policy through value functions
- The optimal value functions
- The optimal policy through the optimal value functions

SHORT SUMMARY SO FAR

So far, we have characterized

- The value functions of a given policy
- The optimal policy through value functions
- The optimal value functions
- The optimal policy through the optimal value functions

BUT HOW DO WE FIND THE OPTIMAL VALUE FUNCTION??

EASY ANSWER FOR FINITE-HORIZON PROBLEMS

Bae: Come over

Dijkstra: But there are so many routes to take and

I don't know which one's the fastest

Bae: My parents aren't home

Dijkstra:

Dijkstra's algorithm

Graph search algorithm

Not to be confused with Dykstra's projection algorithm.

Dijkstra's algorithm is an algorithm for finding the shortest paths between nodes in a graph, which may represent, for example, road networks. It was conceived by computer scientist Edsger W. Dijkstra in 1956 and published three years later.[1][2]

The algorithm exists in many variants; Dijkstra's original variant found the shortest path between two nodes, [2] but a more common variant fixes a single node as the "source" node and finds shortest paths from the source to all other nodes in the graph, producing a shortest-path tree.

Edsger Dijkstra (1920-2002)

BELLMAN AND DIJKSTRA

Theorem

The optimal value function satisfies the system of equations

$$V^*(x) = \max_{a} \left\{ r(x, a) + \gamma \sum_{y} P(y|x, a) V^*(y) \right\}$$

Dijkstra:

Cost-to-go = immediate cost

+ future cost-to-go

Bellman:

Value = immediate reward + expected future value

Dynamic Programming for discounted rewards

- 1. basic definitions
- 2. value functions and optimal policies
- 3. the Bellman equations
- 4. value iteration and policy iteration

DYNAMIC PROGRAMMING

Dynamic programming

computing value functions through repeated use of the "Bellman operators"

Bellman operator T^{π} :

maps a function $f \in \mathbb{R}^X$ to another function $g = T^{\pi}f \in \mathbb{R}^X$: $g(x) = (T^{\pi}f)(x) = r(x,\pi(x)) + \gamma \sum_{y} P(y|x,\pi(x))f(y)$

Bellman operator T^{π} :

maps a function $f \in \mathbb{R}^X$ to another function $g = T^{\pi}f \in \mathbb{R}^X$: $g(x) = (T^{\pi}f)(x) = r(x,\pi(x)) + \gamma \sum_y P(y|x,\pi(x))f(y)$

r.h.s. of BE

Bellman operator T^{π} :

maps a function
$$f \in \mathbb{R}^X$$
 to another function $g = T^{\pi} f \in \mathbb{R}^X$: $g(x) = (T^{\pi} f)(x) = r(x, \pi(x)) + \gamma \sum_{y} P(y|x, \pi(x)) f(y)$

r.h.s. of BE

The Bellman Equations:

$$V^{\pi}(x) = r(x, \pi(x)) + \gamma \sum_{y} P(y|x, \pi(x)) V^{\pi}(y)$$

Bellman operator T^{π} :

maps a function $f \in \mathbb{R}^X$ to another function $g = T^{\pi} f \in \mathbb{R}^X$: $g(x) = (T^{\pi} f)(x) = r(x, \pi(x)) + \gamma \sum_{y} P(y|x, \pi(x)) f(y)$

r.h.s. of BE

The Bellman Equations:

$$V^{\pi} = T^{\pi}V^{\pi}$$

Bellman operator T^{π} :

maps a function $f \in \mathbb{R}^X$ to another function $g = T^{\pi} f \in \mathbb{R}^X$: $g(x) = (T^{\pi} f)(x) = r(x, \pi(x)) + \gamma \sum_{y} P(y|x, \pi(x)) f(y)$

r.h.s. of BE

The Bellman Equations:

$$V^{\pi} = T^{\pi}V^{\pi}$$

 V^{π} is the fixed point of T^{π}

POLICY EVALUATION USING THE BELLMAN OPERATOR

Idea: repeated application of T^{π} on any function V_0 should converge to V^{π} ...

POLICY EVALUATION USING THE BELLMAN OPERATOR

Idea: repeated application of T^{π} on any function V_0 should converge to V^{π} ...

...and it works!!

Power iteration

Input: arbitrary $V_0: X \to \mathbf{R}$ and π For $k=1,2,\ldots$, compute $V_{k+1}=T^\pi V_k$

POLICY EVALUATION USING THE BELLMAN OPERATOR

Idea: repeated application of T^{π} on any function V_0 should converge to V^{π} ...

...and it works!!

Power iteration

Input: arbitrary $V_0: X \to \mathbf{R}$ and π

For k = 1, 2, ..., compute

$$V_{k+1} = T^{\pi}V_k$$

Theorem: $\lim_{k\to\infty}V_k=V^\pi$

CONVERGENCE OF POWER ITERATION: PROOF SKETCH

• Power iteration can be written as the linear recursion $V_{k+1} = r + \gamma P^{\pi} V_k$

CONVERGENCE OF POWER ITERATION: PROOF SKETCH

• Power iteration can be written as the linear recursion $V_{k+1} = r + \gamma P^{\pi} V_k = r + \gamma P^{\pi} (r + \gamma P^{\pi} V_{k-1})$

$$V_{k+1} = r + \gamma P^{\pi} V_k = r + \gamma P^{\pi} (r + \gamma P^{\pi} V_{k-1})$$

= $r + \gamma P^{\pi} r + (\gamma P^{\pi})^2 r + \dots + (\gamma P^{\pi})^k r$

$$\begin{aligned} V_{k+1} &= r + \gamma P^{\pi} V_k = r + \gamma P^{\pi} (r + \gamma P^{\pi} V_{k-1}) \\ &= r + \gamma P^{\pi} r + (\gamma P^{\pi})^2 r + \dots + (\gamma P^{\pi})^k r \\ &= \sum_{t=0}^{k} (\gamma P^{\pi})^k r \end{aligned}$$

$$\begin{aligned} V_{k+1} &= r + \gamma P^{\pi} V_k = r + \gamma P^{\pi} (r + \gamma P^{\pi} V_{k-1}) \\ &= r + \gamma P^{\pi} r + (\gamma P^{\pi})^2 r + \dots + (\gamma P^{\pi})^k r \\ &= \sum_{k=0}^{\infty} (\gamma P^{\pi})^k r \end{aligned} \qquad \begin{aligned} &\text{Geometric sum!} \\ &\text{(von Neumann series)} \\ &= (I - \gamma P^{\pi})^{-1} \cdot (I - (\gamma P^{\pi})^k) r \end{aligned}$$

$$\begin{aligned} V_{k+1} &= r + \gamma P^{\pi} V_k = r + \gamma P^{\pi} (r + \gamma P^{\pi} V_{k-1}) \\ &= r + \gamma P^{\pi} r + (\gamma P^{\pi})^2 r + \dots + (\gamma P^{\pi})^k r \\ &= \sum_{k} (\gamma P^{\pi})^k r & \text{Geometric sum!} \\ &= (I - \gamma P^{\pi})^{-1} \cdot (I - (\gamma P^{\pi})^k) r & (\gamma P^{\pi})^k \to 0 \\ &\to (I - \gamma P^{\pi})^{-1} r & (k \to \infty) \end{aligned}$$

Power iteration can be written as the linear recursion

$$\begin{aligned} V_{k+1} &= r + \gamma P^{\pi} V_k = r + \gamma P^{\pi} (r + \gamma P^{\pi} V_{k-1}) \\ &= r + \gamma P^{\pi} r + (\gamma P^{\pi})^2 r + \dots + (\gamma P^{\pi})^k r \\ &= \sum_{k} (\gamma P^{\pi})^k r & \text{Geometric sum!} \\ &= (I - \gamma P^{\pi})^{-1} \cdot (I - (\gamma P^{\pi})^k) r & (\gamma P^{\pi})^k \to 0 \\ &\to (I - \gamma P^{\pi})^{-1} r & (k \to \infty) \end{aligned}$$

• The value function V^{π} satisfies

$$V^{\pi} = r + \gamma P^{\pi} V^{\pi} \iff V^{\pi} = (I - \gamma P^{\pi})^{-1} r$$

- State: location on the grid
- Actions: try to move in one of 8 directions or stay put
- Transition probabilities:
 - move successfully w.p. p = 0.5
 - otherwise move in neighboring direction

- State: location on the grid
- Actions: try to move in one of 8 directions or stay put
- Transition probabilities:
 - move successfully w.p. p = 0.5
 - · otherwise move in neighboring direction

$$\pi(a|x) = \frac{1}{9}$$
 for all actions $a \in \{1, 2, ..., 9\}$

$$\pi(a|x) = \frac{1}{9}$$
 for all actions $a \in \{1, 2, ..., 9\}$

$$\pi(a|x) = \frac{1}{9}$$
 for all actions $a \in \{1, 2, ..., 9\}$

$$\pi(a|x) = \frac{1}{9}$$
 for all actions $a \in \{1, 2, ..., 9\}$

$$\pi(a|x) = \frac{1}{9}$$
 for all actions $a \in \{1, 2, ..., 9\}$

"Upwards" policy:
$$\pi(up|x) = 1$$

"Upwards" policy:
$$\pi(up|x) = 1$$

"Upwards" policy:
$$\pi(up|x) = 1$$

"Upwards" policy:
$$\pi(up|x) = 1$$

Bellman optimality operator T^* :

maps a function $f \in \mathbb{R}^X$ to another function $g = T^*f \in \mathbb{R}^X$: $g(x) = (T^*f)(x) = \max_{a} \{r(x,a) + \gamma \sum_{y} P(y|x,a)f(y)\}$

Bellman optimality operator T^* :

maps a function
$$f \in \mathbb{R}^X$$
 to another function $g = T^*f \in \mathbb{R}^X$: $g(x) = (T^*f)(x) = \max_{a} \{r(x,a) + \gamma \sum_{y} P(y|x,a)f(y)\}$

r.h.s. of BOE

Bellman optimality operator T^* :

maps a function
$$f \in \mathbb{R}^X$$
 to another function $g = T^*f \in \mathbb{R}^X$: $g(x) = (T^*f)(x) = \max_{a} \{r(x,a) + \gamma \sum_{y} P(y|x,a)f(y)\}$

r.h.s. of BOE

The Bellman Optimality Equations:

$$V^{*}(x) = \max_{a} \{ r(x, a) + \gamma \sum_{y} P(y|x, a) V^{*}(y) \}$$

Bellman optimality operator T^* :

maps a function
$$f \in \mathbb{R}^X$$
 to another function $g = T^*f \in \mathbb{R}^X$: $g(x) = (T^*f)(x) = \max_{a} \{r(x,a) + \gamma \sum_{y} P(y|x,a)f(y)\}$

r.h.s. of BOE

The Bellman Optimality Equations:

$$V^* = T^*V^*$$

 V^* is the fixed point of T^*

VALUE ITERATION

Idea: repeated application of T^* on any function V_0 should converge to V^* ...

VALUE ITERATION

Idea: repeated application of T^* on any function V_0 should converge to V^* ...

...and it works!!

Value iteration

Input: arbitrary function $V_0: X \to \mathbf{R}$ For k = 1,2,..., compute

$$V_{k+1} = T^*V_k$$

VALUE ITERATION

Idea: repeated application of T^* on any function V_0 should converge to V^* ...

...and it works!!

Value iteration

Input: arbitrary function $V_0: X \to \mathbf{R}$

For k = 1, 2, ..., compute

$$V_{k+1} = T^*V_k$$

Theorem: $\lim_{k\to\infty} V_k = V^*$

Key idea: T^* is a contraction

• for any two functions V and V', we have $||T^*V - T^*V'||_{\infty} \le \gamma ||V - V'||_{\infty}$

Key idea: T^* is a contraction

• for any two functions V and V', we have

$$||T^*V - T^*V'||_{\infty} \le \gamma ||V - V'||_{\infty}$$

$$||V_{k+1} - V^*||_{\infty} = ||T^*V_k - T^*V^*||_{\infty}$$

Key idea: T^* is a contraction

• for any two functions V and V', we have

$$||T^*V - T^*V'||_{\infty} \le \gamma ||V - V'||_{\infty}$$

$$||V_{k+1} - V^*||_{\infty} = ||T^*V_k - T^*V^*||_{\infty}$$

$$\leq \gamma ||V_k - V^*||_{\infty}$$

Key idea: T^* is a contraction

• for any two functions V and V', we have

$$||T^*V - T^*V'||_{\infty} \le \gamma ||V - V'||_{\infty}$$

$$||V_{k+1} - V^*||_{\infty} = ||T^*V_k - T^*V^*||_{\infty}$$

$$\leq \gamma ||V_k - V^*||_{\infty}$$

$$\leq \gamma^2 ||V_{k-1} - V^*||_{\infty}$$

Key idea: T^* is a contraction

• for any two functions V and V', we have

$$||T^*V - T^*V'||_{\infty} \le \gamma ||V - V'||_{\infty}$$

$$||V_{k+1} - V^*||_{\infty} = ||T^*V_k - T^*V^*||_{\infty}$$

$$\leq \gamma ||V_k - V^*||_{\infty}$$

$$\leq \gamma^2 ||V_{k-1} - V^*||_{\infty}$$

$$\leq \cdots \leq \gamma^k ||V_0 - V^*||_{\infty}$$

Key idea: T^* is a contraction

• for any two functions V and V', we have

$$||T^*V - T^*V'||_{\infty} \le \gamma ||V - V'||_{\infty}$$

repeated application gives

$$||V_{k+1} - V^*||_{\infty} = ||T^*V_k - T^*V^*||_{\infty}$$

$$\leq \gamma ||V_k - V^*||_{\infty}$$

$$\leq \gamma^2 ||V_{k-1} - V^*||_{\infty}$$

$$\leq \cdots \leq \gamma^k ||V_0 - V^*||_{\infty}$$

thus

$$\lim_{k\to\infty} ||V_{k+1} - V^*||_{\infty} = 0$$

- State: location on the grid
- Actions: try to move in one of 8 directions or stay put
- Transition probabilities:
 - move successfully w.p. p = 0.5
 - · otherwise move in neighboring direction

Greedy policy with respect to *V*:

$$\pi_V(x) = \arg\max_{a} \{ r(x, a) + \gamma \sum_{y} P(y|x, a) V(x) \}$$

Recall: $\pi^* = \pi_{V^*}$

Greedy policy with respect to *V*:

$$\pi_V(x) = \arg\max_{a} \{ r(x, a) + \gamma \sum_{y} P(y|x, a) V(x) \}$$

Recall: $\pi^* = \pi_{V^*}$

Greedy policy with respect to *V*:

$$\pi_V(x) = \arg\max_{a} \{ r(x, a) + \gamma \sum_{y} P(y|x, a) V(x) \}$$

Policy Iteration

Input: arbitrary function $V_0: X \to \mathbf{R}$

For k = 0,1,..., compute

$$\pi_k = \pi_{V_k}$$
 , $V_{k+1} = V^{\pi_k}$

Recall: $\pi^* = \pi_{V^*}$

Greedy policy with respect to *V*:

$$\pi_V(x) = \arg\max_{a} \{ r(x, a) + \gamma \sum_{y} P(y|x, a) V(x) \}$$

Policy Iteration

Input: arbitrary function $V_0: X \to \mathbf{R}$

For k = 0,1,..., compute

$$\pi_k = \pi_{V_{
u}}$$
 , $V_{k+1} = V^{\pi_k}$

Theorem: $\lim_{k\to\infty} V_k = V^*$

THE CONVERGENCE OF VALUE ITERATION: PROOF SKETCH

Key idea: T^* is a contraction

• for any two functions V and V', we have

$$||T^*V - T^*V'||_{\infty} \le \gamma ||V - V'||_{\infty}$$

repeated application gives

$$||V_{k+1} - V^*||_{\infty} = ||T^*V_k - T^*V^*||_{\infty}$$

$$\leq \gamma ||V_k - V^*||_{\infty}$$

$$\leq \gamma^2 ||V_{k-1} - V^*||_{\infty}$$

$$\leq \cdots \leq \gamma^k ||V_0 - V^*||_{\infty}$$

thus

$$\lim_{k\to\infty} ||V_{k+1} - V^*||_{\infty} = 0$$

THE CONVERGENCE OF MALLE ITERATION: PROOF SKETCH

Standard Revidea: T^* is a contraction $B^*: f \mapsto (T^{\pi_f})^{\infty}$

Just replace T^* with the

• for any two functions V and V', we have

$$||T^*V - T^*V'||_{\infty} \le \gamma ||V - V'||_{\infty}$$

repeated application gives

$$\begin{aligned} \|V_{k+1} - V^*\|_{\infty} &= \|T^*V_k - T^*V^*\|_{\infty} \\ &\leq \gamma \|V_k - V^*\|_{\infty} \\ &\leq \gamma^2 \|V_{k-1} - V^*\|_{\infty} \\ &\leq \cdots \leq \gamma^k \|V_0 - V^*\|_{\infty} \end{aligned}$$

thus

$$\lim_{k\to\infty} ||V_{k+1} - V^*||_{\infty} = 0$$

EPILOGUE

from
Dynamic Programming
to
Reinforcement Learning

Policy iteration:

 V_k

Policy iteration:

Policy iteration:

Policy iteration: Approximate policy iteration:

