Depression Detection

Week 8

Name: Sinchana Kumbale

University: Manipal Institute of Technology

Internship Period: Jan – July 2024

Undergraduate 4th year

Duration of the presentation: ~10 minutes

Agenda

- 1. Balancing Classes for Anxiety Detection Code
- 2. Subset Creation Based on Emotion Relevance
 - 1. Methodology and Results
 - 2. Comparison with the prior topic-based consolidation
- 3. Insights from paper Acoustic and Landmark Event-Based Features
- 4. Literature Organization Mind Map
- 5. Tentative plan for next week

Balancing Classes for Anxiety Detection Code

Table 1: The results of running methodology [1] locally on DAIC-WOZ (macro avg metric / micro avg metric/upsampled)

Method	Precision	Recall	F1	AUC-ROC
Raw Text	0.59 / 1.0 / 0.67	0.51 / 0.14 / 0.48	0.60 / 0.25 / 0.56	0.65
Pre-processed Text	0.66 / 0.50 / 0.60	0.57 / 0.21 / 0.54	0.56 / 0.30 / 0.57	0.64
Emotional Text	0.68 / 1.0 / 0.62	0.61 / 0.21 / 0.58	0.60 / 0.35 / 0.60	0.68

^[1] Detecting anxiety from short clips of free form speech (Agarwal et al, 2023) | Paper | Code

Subset Creation Based on Emotion Relevance

Fig 1: Methodology to create a subset containing only emotional responses of each participant

Table 2: Results of running Yuxin's code locally

	Precision	Recall	F1	Accuracy
Transcripts	0.63	0.67	0.65	0.66
Question based	0.62	0.64	0.63	0.62
Emotion Based	0.83	0.58	0.68	0.73

Output file

Subset Creation Based on Emotion Relevance

Table 3: Comparing Question based consolidation and emotional consolidation

Method	Pros	Cons
Question (Topic) based consolidation	 Condensing a large transcript to only relevant and informative details 	 Requires some level of manual selection Potentially missing out important information of a participant
Emotional responses only	 Condenses transcripts by removing all neutral sentences Can be easily applied to other datasets with no changes 	Might miss out on context that could influence the emotional responses

Insights from paper

TABLE I
DESCRIPTION OF THE SIX LANDMARKS INVESTIGATED

Landmark	andmark Description		
g	sustained vibration of vocal folds starts (+) or ends (-).		
р	sustained periodicity begins (+) or ends (-)		
S	releases (+) or closures (-) of a nasal		
f	frication onset (+) or offset (-)		
V	voiced frication onset (+) or offset (-)		
b	onset (+) or offset (-) of existence of turbulent noise during obstruent regions		

Fig 2: Method followed by [2]

[2] Natural Language Processing
Methods for Acoustic and Landmark
Event-Based Features in Speech-Based
Depression Detection (Huang et al,
2020) | Paper

Insights from paper

	S-	S		127	
		F1(D)	F1(H)	Acc.	Conf. Mat.
	AVEC 2016 (A) [47]	0.41	0.58	51.4%	$\begin{bmatrix} 12 & 16 \\ 1 & 6 \end{bmatrix}$
	AVEC 2016 (A+V) [47]	0.58	0.86	77.1%	$\begin{bmatrix} 22 & 6 \\ 2 & 5 \end{bmatrix}$
DAIC-WOZ	DepAudioNet (A) [54]	0.52	0.70	65.7%	$\begin{bmatrix} 15 & 13 \\ 0 & 7 \end{bmatrix}$
	Audio + Gender [55]	0.59	0.87	:: <u>=</u>	=
	AW	0.636	0.833	77.1%	$\begin{bmatrix} 20 & 8 \\ 0 & 7 \end{bmatrix}$
	LW	0.462	0.682	60.0%	$\begin{bmatrix} 15 & 13 \\ 1 & 6 \end{bmatrix}$
	HW	0.609	0.809	74.3%	$\begin{bmatrix} 19 & 9 \\ 0 & 7 \end{bmatrix}$
	HE	0.609	0.809	74.3%	$\begin{bmatrix} 19 & 9 \\ 0 & 7 \end{bmatrix}$
	LD-AW	0.667	0.857	80.0%	$\begin{bmatrix} 21 & 7 \\ 0 & 7 \end{bmatrix}$
	LD-AW Fusion	0.667	0.885	82.9%	$\begin{bmatrix} 23 & 5 \\ 1 & 6 \end{bmatrix}$

Table 4: Results obtained by [2]

- Hybrid Words (HW) Considering a heterogenous combination of acoustic and landmark words
- Hybrid Embeddings (HE) Combining BoAW, BoLW
- Landmark Dependent Acoustic Words (LD -AW) - Acoustic words are only considered within the onset and offset of a landmark

Literature Organization – Mind Map

- I worked to organize the literature I had read into a sort of mind map from just a linear note-based form
- Could not take a clear picture to add into the ppt, so have embedded the link

Link: https://mm.tt/app/map/3191361121?t=PWbjmax07a

Tentative Plan

Plan for next week

- 1. Experimenting with data augmentation in line with work by [3]
- 2. Refining the literature map structure by adding more fine-grained details
- 3. Exploring and trying to build the architecture framework for my model

Relevant Links

- 1. Overall project plan and timeline: Link
- 2. Analysis and notes from relevant papers: Link
- 3. GitHub documenting everyone's presentations and codes: Link

[3] Context-aware Deep Learning for Multi-modal Depression Detection (Lam et al, 2019) | Paper | Code

End

