$S = \iiint \left(\mathcal{A}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + f^{\alpha\beta} \ \tau \left(\Delta + \mathcal{K} \right)_{\alpha\beta} + \frac{1}{6} t \underbrace{1}_{1} \left(2 \ \mathcal{A}^{\alpha_{i}}_{\alpha} \ \mathcal{A}^{\theta}_{i \theta} - 4 \ \mathcal{A}^{\theta}_{\alpha \theta} \ \partial_{i} f^{\alpha_{i}} + 4 \ \mathcal{A}^{\theta}_{i \theta} \ \partial^{i} f^{\alpha}_{\alpha} - 2 \ \partial_{i} f^{\theta}_{\theta} \ \partial^{i} f^{\alpha}_{\alpha} - 2 \ \partial_{i} f^{\alpha_{i}} \ \partial_{\theta} f^{\alpha_{i}} + 4 \ \partial^{i} f^{\alpha}_{\alpha} \partial_{\theta} f^{\beta_{i}} - 6 \ \partial_{\alpha} f_{i \theta} \partial^{i} f^{\alpha_{i}} - 3 \ \partial_{\alpha} f_{\theta_{i}} \partial^{\theta} f^{\alpha_{i}} + 3 \ \partial_{i} f_{\alpha \theta} \partial^{\theta} f^{\alpha_{i}} + 3 \ \partial_{\theta} f_{\alpha_{i}} \partial^{\theta} f^{\alpha_{i}} + 3 \ \partial_{\theta} f_{i \alpha} \partial^{\theta} f^{\alpha_{i}} + 6 \ \mathcal{A}_{\alpha\theta_{i}} \left(\mathcal{A}^{\alpha_{i}\theta} + 2 \ \partial^{\theta} f^{\alpha_{i}} \right) \right) + r \underbrace{1}_{5} \left(\partial_{i} \mathcal{A}^{\kappa}_{\theta} \partial^{\alpha} \mathcal{A}^{\alpha_{i}}_{\alpha} - \partial_{\theta} \mathcal{A}^{\kappa}_{\kappa} \partial^{\theta} \mathcal{A}^{\alpha_{i}}_{\alpha} - \left(\partial_{\alpha} \mathcal{A}^{\alpha_{i}\theta} - 2 \ \partial^{\theta} \mathcal{A}^{\alpha_{i}}_{\alpha} \right) \left(\partial_{\kappa} \mathcal{A}^{\kappa}_{i \theta} - \partial_{\kappa} \mathcal{A}^{\kappa}_{\theta_{i}} \right) \right) \right] t + r \underbrace{1}_{5} \left(\partial_{i} \mathcal{A}^{\kappa}_{\theta} \partial^{\alpha_{i}}_{\alpha} - \partial_{\theta} \mathcal{A}^{\kappa}_{\kappa} \partial^{\theta} \mathcal{A}^{\alpha_{i}}_{\alpha} - \left(\partial_{\alpha} \mathcal{A}^{\alpha_{i}\theta} - 2 \ \partial^{\theta} \mathcal{A}^{\alpha_{i}}_{\alpha} \right) \left(\partial_{\kappa} \mathcal{A}^{\kappa}_{i \theta} - \partial_{\kappa} \mathcal{A}^{\kappa}_{\theta_{i}} \right) \right) \right] t + r \underbrace{1}_{5} \left(\partial_{i} \mathcal{A}^{\kappa}_{\theta} \partial^{\alpha_{i}}_{\alpha} - \partial_{\theta} \mathcal{A}^{\kappa}_{\kappa} \partial^{\theta} \mathcal{A}^{\alpha_{i}}_{\alpha} - \left(\partial_{\alpha} \mathcal{A}^{\alpha_{i}\theta} - 2 \ \partial^{\theta} \mathcal{A}^{\alpha_{i}}_{\alpha} \right) \left(\partial_{\kappa} \mathcal{A}^{\kappa}_{i \theta} - \partial_{\kappa} \mathcal{A}^{\kappa}_{\theta_{i}} \right) \right) \right] t + r \underbrace{1}_{5} \left(\partial_{i} \mathcal{A}^{\kappa}_{\theta} \partial^{\alpha_{i}}_{\alpha} - \partial_{\theta} \mathcal{A}^{\kappa}_{\kappa} \partial^{\theta} \mathcal{A}^{\alpha_{i}}_{\alpha} - \left(\partial_{\alpha} \mathcal{A}^{\alpha_{i}\theta} - 2 \ \partial^{\theta} \mathcal{A}^{\alpha_{i}}_{\alpha} \right) \left(\partial_{\kappa} \mathcal{A}^{\kappa}_{i \theta} - \partial_{\kappa} \mathcal{A}^{\kappa}_{\theta_{i}} \right) \right) \right] t + r \underbrace{1}_{5} \left(\partial_{i} \mathcal{A}^{\kappa}_{\theta} \partial^{\alpha_{i}}_{\alpha} - \partial_{\theta} \mathcal{A}^{\kappa}_{\kappa} \partial^{\theta} \mathcal{A}^{\alpha_{i}}_{\alpha} - \left(\partial_{\alpha} \mathcal{A}^{\alpha_{i}\theta} - 2 \ \partial^{\theta} \mathcal{A}^{\alpha_{i}}_{\alpha} \right) \left(\partial_{\kappa} \mathcal{A}^{\kappa}_{\theta} - \partial_{\kappa} \mathcal{A}^{\kappa}_{\theta} \right) \right) \right] t + r \underbrace{1}_{6} \left(\partial_{i} \mathcal{A}^{\alpha_{i}\theta} - \partial_{i} \mathcal{A}^{\alpha_{i}\theta} - 2 \ \partial^{\alpha_{i}\theta} - 2 \ \partial^{\alpha_{i}\theta} - 2 \ \partial^{\alpha_{i}\theta} - 2 \ \partial^{\alpha_{i}\theta} \right) \right) \left(\partial_{\kappa} \mathcal{A}^{\kappa}_{\theta} - \partial_{\kappa} \mathcal{A}^{\kappa}_{\theta} \right) \right) \left(\partial_{\kappa} \mathcal{A}^{\kappa}_{\theta} - 2 \ \partial^{\alpha_{i}\theta} - 2 \ \partial^{\alpha_{i}$

Wave operator $0^{\circ}\mathcal{A}^{\parallel} 0^{\circ}f^{\parallel} 0^{\circ}f^{\perp} 0^{\circ}\mathcal{A}^{\parallel}$

PSALTer results panel

0+ || 0+ || 0+ || 0- ||

Source constraints

Spin-parity form	Covariant form	Multiplicities
⁰⁺ _• σ == 0	$\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta} = 0$	1
^{Θ+} τ == Θ	$\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha}_{\alpha}$	1
⁰⁺ _• τ [⊥] == 0	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta+\mathcal{K}\right)^{\alpha\beta} == 0$	1
$2 i k \frac{1}{\cdot} \sigma^{\perp}^{\alpha} + \frac{1}{\cdot} \tau^{\perp}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3
1- ₁ == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha}$	3
$i k \cdot 1^+ \sigma^{\perp} \alpha^{\beta} + \cdot 1^+ \tau^{\parallel} \alpha^{\beta} = 0$	$\partial_{\chi}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2 \partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2 \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = 0$	3
	$\partial_{\chi}\partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}_{\tau} \left(\Delta + \mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}_{\tau} \left(\Delta + \mathcal{K}\right)^{\beta\alpha} + 2 \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	
$-2 i k \frac{2^+ \sigma^{\alpha\beta}}{2^+ \sigma^{\alpha\beta}} + \frac{2^+ \tau^{\alpha\beta}}{2^+ \tau^{\alpha\beta}} = 0$	$-i\left(4\ \partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\delta}+2\ \partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi}_{\chi}-3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\chi}-3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}_{\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\chi}-3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\partial_{\chi}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\partial_{\chi}\partial^{\alpha}\partial_{\chi}\partial^{\alpha}\partial_{\chi}\partial$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\chi \alpha} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\beta \alpha} + 4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta}_{\ \delta} = - i i i i i i i i i $	
	$6 \ i \ k^X \ \partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\delta\beta\epsilon} - 6 \ i \ k^X \ \partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\delta\alpha\epsilon} + 6 \ i \ k^X \ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\sigma^{\alpha\beta\delta} + 6 \ i \ k^X \ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\sigma^{\beta\alpha\delta} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi^{T}} (\Delta + \mathcal{K})^{\chi\delta} - 2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta}_{\tau} (\Delta + \mathcal{K})^{\chi}_{\chi} - 4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta}_{\delta} = 0$	

17

Massive spectrum

Total expected gauge generators:

(No particles)

Massless spectrum

$\frac{1}{7} \frac{1}{2p^2} \frac{4r_1p^4}{5}$

Pole residue:	r. 5	 t. 1	$-\frac{3}{t_1^2}$	> 0
Polarisations:	2			

Unitarity conditions

 $r_{5} < 0 \&\& (t_{1} < 0 || t_{1} > 0)$