PROBLEMAS TEMAS 4-9

Ejercicio 1. Clasificador NBC de un patrón X = (Refund = No, Marital Status = MARRIED, Income = 120 K)

TID	REFUND	MARITAL STATUS	TAXABLE INCOME	EVADE
1	YES	SINGLE	125 K	NO
2	NO	MARRIED	100 K	NO
3	NO	SINGLE	70 K	NO
4	YES	MARRIED	120 K	NO
5	NO	DIVORCED	95 K	YES
6	NO	MARRIED	60 K	NO
7	YES	DIVORCED	220 K	NO
8	NO	SINGLE	85 K	YES
9	NO	MARRIED	75 K	NO
10	NO	SINGLE	90 K	YES

	EVADE			
REFUND	YES	NO	P(X/YES)	P(X/NO)
YES	0	3	0/3	3/7
NO	3	4	3/3	4/7
MARITAL STATUS	YES	NO	P(X/YES)	P(X/NO)
SINGLE	2	2	2/3	2/7
MARRIED	0	4	0/3	4/7
DIVORCED	1	1	1/3	1/7

EVADE	Media _{i,j}	Varianza _{i,j}
YES	90	16.67
NO	110	2550

Dado que P(YES/(NO,MARRIED,120K)) + P(NO/(NO,MARRIED,120K)), podemos normalizar haciendo:

$$P(YES/(NO,MARRIED,120K)) = \frac{P(YES/(NO,MARRIED,120K))}{P(YES/(NO,MARRIED,120K) + (NO/(NO,MARRIED,120K)))}$$

$$P(NO/(NO,MARRIED,120K)) = 1 - P(YES/(NO,MARRIED,120K))$$

Calculamos las probabilidades sin normalizar:

$$P(\mathit{YES/(NO}\,,\mathit{MARRIED}\,,\!120\,K)) = \frac{P(\mathit{YES}) * P(\mathit{NO/YES}) * P(\mathit{MARRIED/YES}) * P(120\,K/\mathit{YES})}{P(\mathit{NO}\,,\mathit{MARRIED}\,,\!120\,K)}$$

$$P(\textit{NOI}(\textit{NO}, \textit{MARRIED}, 120\,\textit{K})) = \frac{P(\textit{NO}) * P(\textit{NO}/\textit{NO}) * P(\textit{MARRIED}/\textit{NO}) * P(120\,\textit{K}/\textit{NO})}{P(\textit{NO}, \textit{MARRIED}, 120\,\textit{K})}$$

Como tenemos en ambas expresiones la P(NO,MARRIED,120K), podemos ignorar dicha probabilidad.

$$P(YES/(NO, MARRIED, 120K)) = P(YES) * P(NO/YES) * P(120K/YES) = 0$$

$$P(NO/(NO, MARRIED, 120 K)) = P(NO) * P(NO/NO) * P(MARRIED/NO) * P(120 K/NO) = 1.7707 * 10^{-3}$$

Calculamos las probabilidades normalizadas (se aplica una fórmula de normalización):

$$P(YES/(NO,MARRIED,120K)) = 0$$

P(NO/(NO,MARRIED,120K)) = 1