Determining Methods of Integration

For the following problems, do not perform the integration. Rather, indicate the method you would use to determine the antiderivative. The following methods are available:

- Nothing: nothing needs to be done, so perform the integration.
- Algebraic manipulation: specify what must be done and simplify the integrand.
- *u*-substitution: write out the substitution.
- Integration by Parts: identify u, dv, and how many cycles need to be performed.
- Trig Combination: identify the substitution and the necessary trig identities.
- Trig Substitution: identify the substitution.
- Partial Fractions: specify the correct form of the decomposition.

$$1. \int \frac{dx}{\sqrt{12-6x-x^2}}$$

10.
$$\int \tan^4 x \sec x \, dx$$

2.
$$\int \sin^3 x \cos^2 x \, dx$$

11.
$$\int \frac{2x+1}{x(x-3)^3(2x^2+6x+25)} dx$$

3.
$$\int \sqrt{4x^2 - 1} \, dx$$

12.
$$\int \sqrt{x^2 + 4x + 13} \, dx$$

4.
$$\int x \sec^2 x \, dx$$

13.
$$\int \frac{x-3}{x^2+4x+7} dx$$

5.
$$\int \csc x \cot x \, dx$$

14.
$$\int \frac{x+1}{2x^2+4x+21} \, dx$$

6.
$$\int \frac{3}{\sqrt{(x-4)^2+9}} dx$$

15.
$$\int \frac{2x+5}{(x^2+5x+13)^3} \, dx$$

$$7. \int \frac{e^{2x}}{1 + e^{4x}} dx$$

16.
$$\int \frac{2x+1}{(x^2-6x+18)^5} \, dx$$

8.
$$\int \ln x \, dx$$

17.
$$\int \frac{1}{\sqrt{4-x^2}} dx$$

9.
$$\int x \arcsin x \, dx$$

18.
$$\int x^2 - 1 - \sqrt{x} \, dx$$

 $25. \int x^2 (\ln x)^3 \, dx$

19. $\int \arctan x \, dx$

26. $\int 5^x dx$

20.
$$\int \frac{x^3}{\sqrt{4-x^2}} \, dx$$

27. $\int \tan^4 x \sin^6 x \, dx$

21.
$$\int \frac{2x+3}{x^2+3x+6} \, dx$$

28. $\int (x^3+1)(\sqrt{x}-x^{1/3})\,dx$

22.
$$\int \csc x \, dx$$

 $29. \int \cos^2 x \sin^6 x \, dx$

23.
$$\int x \cos x \, dx$$

30. $\int e^{x/3} \sin(\pi x) \, dx$

24.
$$\int \frac{dx}{x^2 + 3x + 6}$$

31. $\int \sec x \, dx$

32.
$$\int (1+e^{-x})\sec^2(x-e^{-x}) dx$$

Answers

- 1. Complete the Square or Trig Sub.
- 2. Trig Combination: $u = \cos x$, $du = -\sin x \, dx$.
- 3. Trig Substitution: $u = 2x = \sec \theta$.
- 4. Integration by Parts: u = x, $dv = \sec^2 x \, dx$.
- 5. Nothing: $-\csc x + c$.
- 6. Trig Substitution: $u = x 4 = 3 \tan \theta$.
- 7. u-sub: $u = e^{2x}$.
- 8. Integration by Parts: $u = \ln x$, dv = 1 dx.
- 9. Integration by Parts: $u = \arcsin x$, dv = x dx.
- 10. Trig Combination and Integration by Parts: convert $\tan^4 x$ to powers of $\sec x$.
- 11. Partial Fractions: $\frac{A}{x} + \frac{B}{x-3} + \frac{C}{(x-3)^2} + \frac{D}{(x-3)^3} + \frac{Ex+F}{2x^2+6x+25}$.
- 12. Complete the Square and Trig Substitution: $(x+2)^2$ and then $u=x+2=3\tan\theta$.
- 13. Complete the Square and u-sub: u = 2 + x.
- 14. u-sub: $u = 2x^2 + 4x + 21$.
- 15. u-sub: $u = x^2 + 5x + 13$.
- 16. Complete the Square, u-sub, and Trig Substitution: $(x-3)^2 + 9$, u = x 3, $w = 3 \tan \theta$.
- 17. Trig Substitution
- 18. Algebraic Manipulation: break up into three different parts.
- 19. Integration by Parts: $u = \arctan \theta$, du = dx.
- 20. *u*-sub: $u = 4 x^2$.
- 21. u-sub: $u = x^2 + 3x + 6$.
- 22. Nothing: follow the formula $\int \csc x \, dx = \ln|\csc x \cot x| + c$.
- 23. Integration by Parts: u = x, $dv = \cos x \, dx$.
- 24. Complete the Square
- 25. Integration by Parts: $u = (\ln x)^3$, $dv = x^2 dx$.
- 26. Basic Formula: $\frac{5^x}{\ln 5} + c$.
- 27. Trig Combination: $u = \tan x$.
- 28. Algebraic Manipulation: foil the polynomials.
- 29. Trig Combination and half-angle formula
- 30. Integration by Parts (twice): $u = \sin \pi x$, $dv = e^{x/3} dx$.
- 31. Basic Formula: $\ln|\sec x + \tan x| + c$.
- 32. *u*-sub: $u = x e^{-x}$.