Devoir à la maison n° 4

À rendre le 12 octobre

I. Complexe et géométrie

Ce sont trois questions indépendantes. Dans chacune d'elles, le plan complexe est rapporté à un repère orthonormal direct $\mathcal{R} = (O; \overrightarrow{i}, \overrightarrow{j})$.

- 1) Soit ABCD un quadrilatère quelconque. On construit quatre points M, N, P, Q de façon que les triangles AMB, BNC, CPD et DQA soient rectangles isocèles directs (les angles droits étant en M, N, P, Q respectivement). Exprimer les affixes m, n, p, q des points M, N, P, Q en fonction des affixes a, b, c, d des points A, B, C, D. En déduire que les segments [MP] et [NQ] sont perpendiculaires et de même longueur. Faire un schéma.
- 2) Soient A, B, C, D quatre points distincts du plan, d'affixes a, b, c, d. On suppose que

$$a+ib=c+id$$
 et $a+c=b+d$.

Montrer que le quadrilatère ABCD est un carré (penser aux propriétés des diagonales [AC] et [BD]). Étudier la réciproque.

3) Soient a, b, c trois nombres complexes distincts, affixes des sommets A, B, C d'un triangle. Soit z un nombre complexe. On pose

$$f(z) = \frac{z-a}{b-c}$$
; $g(z) = \frac{z-b}{c-a}$; $h(z) = \frac{z-c}{a-b}$.

Montrer que, si deux des trois expressions ci-dessus sont imaginaires pures, alors la troisième l'est aussi. Interprétation géométrique?

II. Une suite complexe

Soit un réel $\theta \in]0, 2\pi[$. On définit la suite complexe $(z_n)_{n\geqslant 0}$ par son premier terme $z_0=1$ et la relation : $\forall n\in\mathbb{N}, z_{n+1}=\mathrm{e}^{\,i\theta}z_n+\frac{1}{2}\left(1-\mathrm{e}^{\,i\theta}\right)$.

- 1) Montrer que la suite $(w_n)_{n\geqslant 0}$, définie par $w_n=z_n-\frac{1}{2}$, est une suite géométrique.
- 2) En déduire directement, pour tout entier $n \ge 0$, une expression de w_n puis de z_n en fonction de n (et de θ).
- 3) Que vaut le module de z_n ?
- 4) Pour tout entier $n \ge 0$, on définit la somme $S_n(\theta) = \sum_{k=0}^n z_k$. Montrer qu'on a $S_n(\theta) = \frac{n+1}{2} + \frac{e^{i\frac{n\theta}{2}} \sin\frac{(n+1)\theta}{2}}{2\sin\frac{\theta}{n}}$.
- **5)** On pose, pour tout entier $n \ge 0$: $T_n(\theta) = \frac{S_n(\theta)}{n+1}$. Montrer que l'on a : $\lim_{n \to +\infty} \left| T_n(\theta) \frac{1}{2} \right| = 0$. On dit que la suite complexe $(T_n(\theta))_{n \ge 0}$ converge vers le nombre $\frac{1}{2}$.
- 6) Un entier n étant fixé, déterminer la limite de $T_n(\theta)$, lorsque θ tend vers zéro : autrement dit calculer $\lim_{\theta \to 0} T_n(\theta)$.
- 7) Calculer alors et comparer les deux quantités : $\lim_{n\to+\infty} \left(\lim_{\theta\to 0} T_n(\theta)\right)$ et $\lim_{\theta\to 0} \left(\lim_{n\to+\infty} T_n(\theta)\right)$. Conclusion?