Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (национальный исследовательский университет)»

Лабораторная работа № 3.6.1

по курсу общей физики
на тему:
«Спектральный анализ электрических сигналов»

Работу выполнил: Баринов Леонид (группа Б02-827)

1 Аннотация

В работе будет проведено изучение спектрального состава периодических электрических сигналов.

2 Теоретические сведения

Сколь угодно сложный электрический сигнал U(t) может быть разложен на более простые сигналы. В радиотехнике широко используется разложение входного сигнала U(t) на совокупность гармонических сигналов различных частот ω . Функция $F(\omega)$, описывающая зависимость амплитуд отдельных гармоник от частоты, называется амплитудной спектральной характеристикой сигнала U(t). Представление сложного периодического сигнала в виде суммы дискретных гармонических сигналов в математике называется разложением в ряд Фурье (или прямым преобразованием Фурье). Зная спектральный состав $F(\omega)$ периодической последовательности некоторого импульса U(t), мы можем осуществить обратное преобразование Фурье: сложив отдельные гармоники с различными амплитудами и фазами, получить необходимую последовательность импульсов. Степень совпадения полученного сигнала с U(t) определяется количеством синтезированных гармоник: чем их больше, тем лучше совпадение. Однако, если в развертке спектра нет острых уступов, даже небольшое количество гармоник обеспечивает достаточно точное совпадение теоретической и наблюдаемой картин спектра.

Введем формальное определение понятия «спектр». Для этого рассмотрим функцию вида:

$$f(t) = \sum_{n=1}^{N} A_n \cos(\omega_n t - \alpha_n), \qquad (1)$$

где A_n , ω_n , α_n - постоянные величины. Спектром функции f(t) называется набор (ω_i, A_i) . Данное определение применимо и в случае $N \to \infty$.

Рассмотрим подробнее два вида входных сигналов: периодический и непериодический.

Фурье-спектр периодических сигналов

Пусть заданная функция f(t) периодически повторяется с частотой $\Omega_1 = \frac{2\pi}{T}$. Её разложение в ряд Фурье имеет вид

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\Omega_1 t) + b_n \sin(n\Omega_1 t) \right]$$

$$f(t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cos(n\Omega_1 t - \psi_n)$$
 (2)

Здесь $a_0/2 = A_0/2$ — среднее значение функции f(t); a_n и b_n — амплитуды косинусных и синусных членов разложения, которые определяются соотношениями

$$a_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \cos(n\Omega_1 t) dt$$

$$b_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \sin(n\Omega_1 t) dt$$
(3)

Точка начала интегрирования выбрается произвольно.

Если сигнал чётен относительно t=0, в тригонометрической записи остаются только косинусные члены. Для нечётной относительно t=0 функции, наоборот, в нуль обращаются коэффициенты a_n , и ряд состоит только из синусных членов.

Амплитуда A_n и фаза ψ_n n-й гармоники естественным образом выражаются через a_n и b_n :

$$A_n = \sqrt{a_n^2 + b_n^2}; \quad \psi_n = \operatorname{arctg} \frac{b_n}{a_n}.$$
 (4)

Как мы видим, спектр любой периодической функции состоит из набора гармонических колебаний с дискретными частотами и некой постоянной составляющей, которую можно рассматривать как колебание с нулевой частотой.

Приведем основные факты о периодических сигналах, исследуемых в данной работе.

Исследование спектра периодической последовательности прямоугольных импульсов

Периодическая последовательность прямоугольных импульсов с амплитудой V(t), длительностью τ , частотой повторения f=1/T, где T — период повторения импульсов.

Рис. 1. Периодическая последовательность прямоугольных импульсов

Рис. 2. Спектр периодической последовательности прямоугольных импульсов

На рис. 2 изображен случай, когда T кратно τ . Назовем шириной спектра $\Delta\omega$ (или $\Delta\nu=\Delta\omega/2\pi$) расстояние от главного максимума ($\omega=0$) до первого нуля

огибающей, возникающего при $n=2\pi/\tau\Omega_1$. При этом

$$\Delta\omega\tau \approx 2\pi$$
 или $\Delta\nu\Delta t \approx 1$ (5)

Полученной соотношение взаимной связи интервалов $\Delta \nu$ и Δt является частным случаем соотношения неопределенности в квантовой механике.

$$\langle V \rangle = \frac{a_0}{2} = V_0 \frac{\tau}{T}$$

$$\hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-ix\omega} dx$$

$$a_n = 2V_0 \frac{\tau}{T} \frac{\sin(n\Omega_1 \tau/2)}{n\Omega_1 \tau/2} \sim \frac{\sin x}{x}$$
(6)

Исследование спектра периодической последовательности цугов гармонических колебаний

Периодическая последовательность цугов гармонического колебания $V(t) = V_0 \cos(\omega_0 t)$ с длительностью цуга τ и периодом повторения T.

Рис. 3. Периодическая последовательность цугов

Рис. 4. Спектр периодической последовательности цугов

$$A_n = V_0 \frac{\tau}{T} \left(\frac{\sin\left[(\omega_0 - n\Omega_1) \frac{\tau}{2} \right]}{(\omega_0 - n\Omega_1) \frac{\tau}{2}} + \frac{\sin\left[(\omega_0 + n\Omega_1) \frac{\tau}{2} \right]}{(\omega_0 + n\Omega_1) \frac{\tau}{2}} \right)$$
(7)

Исследование спектра гармонических сигналов, модулированных по амплитуде

Рассмотрим колебания высокой частоты, амплитуда которых медленно меняется по гармоническому закону с частотой $\Omega\left(\Omega \ll \omega_0\right)$: $f(t) = A_0[1 + m\cos(\Omega t)]\cos(\omega t)$.

Коэффициент m называют глубиной модуляции. При m<1 амплитуда колебаний меняется от минимальной $A_{\min}=A_0(1-m)$ до максимальной $A_{\max}=A_0(1+m)$. Глубина модуляции может быть представлена в виде

$$m = \frac{A_{\text{max}} - A_{\text{min}}}{A_{\text{max}} + A_{\text{min}}} \tag{8}$$

4 Оборудование

Рис. 6. Спектр синусоидальных колебаний, модулированных по амплитуде

Простыми тригонометрическим преобразованием уравнения выше можно найти спектр амплитудно-модулированных колебаний:

$$f(t) = A_0 \cos(\omega_0 t) + A_0 m \cos(\Omega t) \cos(\omega_0 t) =$$

$$= A_0 \cos(\omega_0 t) + \frac{A_0 m}{2} \cos(\omega_0 + \Omega) t + \frac{A_0 m}{2} \cos(\omega_0 - \Omega) t$$
(9)

3 Оборудование

В работе используются: персональный компьютер; USB-осциллограф АКИП-4107; функциональный генератор WaveStation 2012; соединительные кабели.

Экспериментальная установка

Рис. 7. Схема установки для исследования спектра периодических электрических сигналов различной формы

Функциональный генератор WaveStation 2012 позволяет сформировать два различных электрических сигнала, которые выводятся на два независимых канала – «СН1» и «СН2». Сигнал с канала «СН1» подается на вход «А», а сигнал с канала «СН2» — на вход «В» USB-осциллографа. Затем эти сигналы подаются на вход компьютера через USB-соединение. При работе USB- осциллографа в режиме осциллографа, на экране компьютера можно наблюдать каждый из сигналов в отдельности, а также их произведение. В режиме спектроанализатора можно наблюдать спектры этих сигналов.

4 Результаты измерений и обработка результатов

Исследование спектра периодической последовательности прямоугольных импульсов

Установим параметры:

Ampl, B	Offset, B	Freq $(f_{\text{повт}})$, к Γ ц	PulWidth (τ) , мкс
1	0,5	1	100

Ampl — разность максимального и минимального значений сигнала, Offset - смещение сигнала, Freq - частота повторения импульсов, PulWidth — длительность импульса.

При увеличении τ вдвое при неизменной частоте $f_{\text{повт}}=1$ к Γ ц $\Delta \nu$ уменьшилось в два раза, $\delta \nu$ не изменилось. При увеличении $f_{\text{повт}}$ вдвое при неизменном $\tau=100$ мкс $\Delta \nu$ не изменилось, а $\delta \nu$ увеличилось вдвое. (рис. 2)

Проведем измерения зависимости ширины спектра $\Delta \nu$ от длительности импульса τ .

τ ,	MKC	40	60	80	100	120	140	160	180	200
$\Delta \nu$, кГц	25	17,5	12,5	10	8,5	7	6	5,5	5

Таблица 1. Зависимость ширины спектра $\Delta \nu$ от длительности импульса au

По данным в таблице 1 построим график $\Delta \nu(1/\tau)$

Рис. 8. График зависимости ширины спектра $\Delta \nu$ от величины, обратной к длительности импульса $1/\tau$

Измерим частоты и амплитуды спектральных составляющих сигнала и запишем результаты в таблицу. М гармоники численно совпадает с ν , измеренной в к Γ ц

ν , к Γ ц	1	2	3	4	5	6	7	8	9	10
U_a, B	0,137	0,130	0,118	0,103	0,086	0,067	0,048	0,030	0,014	0,001
ν , к Γ ц	11	12	13	14	15	16	17	18	19	20
U_a, B	-0,011	-0,020	-0,027	-0,030	-0,030	-0,026	-0,022	-0,015	-0,007	-0,001
ν , к Γ ц	21	22	23	24	25	26	27	28	29	30
U_a, B	0,006	0,011	0,015	0,016	0,016	0,015	0,012	0,009	0,005	0,001
ν , к Γ ц	31	32	33	34	35	36	37	38	39	40
U_a, B	-0,004	-0,008	-0,011	-0,012	-0,013	-0,012	-0,010	-0,007	-0,004	0,000

Таблица 2. Частоты и амплитуды спектральных составляющих сигнала при $f_{\text{повт}}=1\ \text{к}\Gamma \text{ц},\ \tau=50\ \text{мкc}$

ν , к Γ ц	1	2	3	4	5	6	7	8	9	10
U_a, B	0,069	0,068	0,066	0,063	0,060	0,057	0,052	0,048	0,043	0,038
ν , к Γ ц	11	12	13	14	15	16	17	18	19	20
U_a, B	0,033	0,029	0,024	0,019	0,016	0,012	0,009	0,006	0,004	0,001
ν , к Γ ц	21	22	23	24	25	26	27	28	29	30
U_a, B	-0,003	-0,006	-0,008	-0,010	-0,011	-0,012	-0,013	-0,013	-0,014	-0,014
ν , к Γ ц	31	32	33	34	35	36	37	38	39	40
U_a, B	-0,014	-0,013	-0,012	-0,011	-0,010	-0,008	-0,006	-0,004	-0,003	-0,001

Таблица 3. Частоты и амплитуды спектральных составляющих сигнала при $f_{\text{повт}} = 1 \ \text{к} \Gamma \text{ц}, \ \tau = 100 \ \text{мкc}$

Рис. 9. Спектр периодической последовательности прямоугольных импульсов

Исследование спектра периодической последовательности цугов гармонических колебаний

Выставим параметры генератора

	Сигнал	Ampl, B	Offset, B	Freq $(f_{\text{повт}})$, к Γ ц	PulWidth (τ) , MKC
CH1	Pulse	1	0,5	1	100
CH2	Sine	2	0	25	

При увеличении длительности импульса τ вдвое $\Delta\omega$ уменьшается в 2 раза, ω_0 и $\delta\omega$ не изменяются (рис. 4).

Установим длительность импульса $\tau=100$ мкс. При увеличении частоты ν_0 на «СН2» ($\nu_0=10,\ 25,\ 40$ кГц) значения ω_0 равны соответственно 10, 25, 40 кГц; $\Delta\omega$ и $\delta\omega$ не изменяются и равны 10 кГц, 1 кГц

Установим частоту несущей $\nu_0=30$ к Γ ц. Длительность импульса $\tau=100$ мкс. Снимем зависимость расстояния $\delta\omega$ между соседними спектральными компонентами от разных частот повторения импульсов $f_{\text{повт}}$

$f_{\text{повт}}, \ \kappa \Gamma$ ц	0,52	1,02	2,03	4,02	5,01
$\delta\omega$, к Γ ц	0,51	1,01	2,01	4,04	5,02

Таблица 4. Зависимость расстояния $\delta\omega$ от разных частот повторения импульсов

Рис. 10. Зависимость расстояния $\delta\omega$ от разных частот повторения импульсов

Установим $\tau=100$ мкс и $f_{\text{повт}}=1$ к Γ ц. Снимем амплитудно-частотную характеристику. Тоже самое проделаем для импульса с $\tau=100$ мкс и $f_{\text{повт}}=2$ к Γ ц.

ν , к Γ ц	1	2	3	4	5	6	7	8	9	10
U_a , мВ	0,160	0,280	0,382	0,458	0,486	0,468	0,412	0,324	0,210	0,038
ν , к Γ ц	11	12	13	14	15	16	17	18	19	20
U_a , мВ	-0,109	-0,252	-0,377	-0,469	-0,531	-0,532	-0,484	-0,384	-0,231	0,112
ν , к Γ ц	21	22	23	24	25	26	27	28	29	30
U_a , мВ	0,431	0,911	1,385	1,825	2,209	2,353	2,688	2,934	3,112	14,330
ν , к Γ ц	31	32	33	34	35	36	37	38	39	40
U_a , мВ	3,069	2,846	2,549	2,197	1,825	1,414	1,015	0,653	0,350	0,114

Таблица 5. Амплитудно-частотная характеристика спектра цугов при $\tau=100$ мкс и $f_{\text{повт}}=1$ к Γ ц

ν , к Γ ц	2	4	6	8	10	12	14	16	18	20
U_a , мВ	0,543	0,856	0,721	0,527	0,038	-0,773	-1,203	-1,307	-0,97	0,030
ν , к Γ ц	22	24	26	28	30	39	3/1	36	38	40
· , 111 14			20	20	30	32	94	50	30	40

Таблица 6. Амплитудно-частотная характеристика спектра цугов при $\tau=100$ мкс и $f_{\text{повт}}=2$ к Γ ц

Рис. 11. Амплитудно-частотная характеристика спектра цугов при $\tau=100$ мкс и $f_{\text{повт}}=1,2$ к Γ ц

Исследование спектра гармонических сигналов, модулированных по амплитуде

Выставим параметры на генераторе:

	Сигнал	Ampl, B	Offset, B	Freq $(f_{\text{повт}})$, к Γ ц
CH1	Sine	0,2	1	1
CH2	Sine	1	0	25

Меняя двойную амплитуду сигнала канала «СН1» от 0,2 до 2 В измеряем максимальную A_{max} и минимальную A_{min} амплитуды сигналов модулированного колебания и амплитуды спектральных компонент.

Ampl, B	A_{max} , B	A_{min}, B	$A_{\text{осн}}, B$	$A_{\text{бок}}, \ B$	A_{60K}/A_{0CH}	m
0,2	0,547	0,439	0,322	0,016	0,05	0,11
0,4	0,600	0,399	0,320	0,032	0,10	0,20
0,6	0,643	0,340	0,320	0,048	0,15	0,31
0,8	0,678	0,311	0,324	0,056	0,17	0,37
1,0	0,749	0,250	0,330	0,081	0,25	0,50
1,2	0,769	0,202	0,333	0,095	0,28	0,58
1,6	0,888	0,092	0,320	0,129	0,40	0,81
2,0	0,989	0,010	0,318	0,164	0,52	0,98

Таблица 7. Максимальная амплитуда A_{max} , минимальная амплитуда A_{min} , амплитуды спектральных компонент $A_{\rm och}$, $A_{\rm fok}$ и глубина модуляции m

По полученным данным построим график зависимости отношения $A_{\text{бок}}/A_{\text{осн}}$ от глубины модуляции m

Рис. 12. График зависимости отношения $A_{\text{бок}}/A_{\text{осн}}$ от глубины модуляции m

При 100% глубине модуляции ($A_{min}=0$) при увеличении частоты модуляции $f_{\text{мод}}$ в 2 раза ширина спектра уменьшается в два раза.

5 Обсуждение результатов и выводы

Было проведено исследование спектра периодической последовательности прямоугольных импульсов (рис. 9) и периодической последовательности цугов гармонических колебаний (рис. 11). Уравнение огибающей совпало с теоретическими расчетами (рис. 2, формула (6); рис. 4, формула (7)).

Исследованы зависимости амплитудно-частотных характеристик этих спектров от частоты повторения импульсов $f_{\text{повт}}$ и их длительности τ . (рис. 8; рис. 10). Было проверено выполнение соотношения неопределенности (5).

$$k_1 = 1,01 \pm 0,01$$
 (из графика на рис. 8) $k_2 = 1,00 \pm 0,01$ (из графика на рис. 10)

С хорошей точностью соотношение выполняется.

По рис. 9 и рис. 11 можно провести сравнение спектра периодической последовательности прямоугольных импульсов и спектра периодической последовательности цугов гармонических колебаний при одинаковых $f_{\text{повт}}$ и τ . Спектры отличаются сдвигом на несущую частоту.

Исследованы спектры амплитудно-модулированных гармонических сигналов в зависимости от частоты модуляции. Был построен график зависимости отношения $A_{\text{бок}}/A_{\text{осн}}$ от глубины модуляции m (рис. 12). Коэффициент угла наклона графика:

$$k_3 = 0,50 \pm 0,01$$
 (из графика на рис. 12)

Полученное значение совпадает с теоретическим (рис. 6, формула (9)).