Untitled

Felix E. Rivera-Mariani, PhD February 25, 2016

Summary

##

The purpose of this project is to determine how well 6 participants perform a particular activity based on accelometers data on belt, forearm, arm, and dumbell. This will be accomplished in this report by a random forest classifier algorithm.

The Caret package for subsetting the data, prepare a training subset, and cross validate the model.

```
library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
library(randomForest)
## randomForest 4.6-12
## Type rfNews() to see new features/changes/bug fixes.
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
##
##
       margin
# Global training data downloaded training data
download.file("https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv", "./prjt-pml-train
data.training <- read.csv("./prjt-pml-training.csv")</pre>
na <- apply(data.training, 2, function(x) sum(x %in% c(NA, "")))</pre>
                                                           raw_timestamp_part_1
##
                           X
                                             user_name
##
                           0
##
       raw_timestamp_part_2
                                       cvtd_timestamp
                                                                      new_window
##
##
                                            roll_belt
                                                                      pitch_belt
                 num_window
##
                           0
##
                    yaw_belt
                                     total_accel_belt
                                                             kurtosis roll belt
##
                                                                           19216
##
        kurtosis_picth_belt
                                    kurtosis_yaw_belt
                                                             skewness_roll_belt
```

19216

19216

19216

##	skewness_roll_belt.1	skewness_yaw_belt	max_roll_belt
## ##	19216 max_picth_belt	19216 max_yaw_belt	19216 min_roll_belt
##	max_pictn_beit 19216	max_yaw_bert 19216	19216
##	min_pitch_belt	min_yaw_belt	amplitude_roll_belt
##	19216	19216	19216
##	amplitude_pitch_belt	amplitude_yaw_belt	var_total_accel_belt
##	19216	19216	19216
##	avg_roll_belt	stddev_roll_belt	var_roll_belt
##	19216	19216	19216
##	avg_pitch_belt	stddev_pitch_belt	var_pitch_belt
## ##	19216	19216	19216
##	avg_yaw_belt 19216	stddev_yaw_belt 19216	var_yaw_belt 19216
##	gyros_belt_x	gyros_belt_y	gyros_belt_z
##	0	0	0
##	accel_belt_x	accel_belt_y	accel_belt_z
##	0	0	0
##	${\tt magnet_belt_x}$	magnet_belt_y	magnet_belt_z
##	0	0	0
##	roll_arm	pitch_arm	yaw_arm
## ##	0	0 var_accel_arm	0 avg_roll_arm
##	total_accel_arm 0	var_accer_arm 19216	avg_rorr_arm 19216
##	stddev_roll_arm	var_roll_arm	avg_pitch_arm
##	19216	19216	19216
##	${\tt stddev_pitch_arm}$	<pre>var_pitch_arm</pre>	avg_yaw_arm
##	19216	19216	19216
##	${\tt stddev_yaw_arm}$	var_yaw_arm	gyros_arm_x
##	19216	19216	0
##	gyros_arm_y O	gyros_arm_z O	accel_arm_x
## ##	accel_arm_y	accel_arm_z	0 magnet_arm_x
##	accer_arm_y	accer_arm_z	magnet_arm_x
##	magnet_arm_y	magnet_arm_z	kurtosis_roll_arm
##	0	0	19216
##	kurtosis_picth_arm	kurtosis_yaw_arm	skewness_roll_arm
##	19216	19216	19216
##	skewness_pitch_arm	skewness_yaw_arm	max_roll_arm
##	19216	19216	19216
## ##	max_picth_arm 19216	max_yaw_arm 19216	min_roll_arm 19216
##	min_pitch_arm	min_yaw_arm	amplitude_roll_arm
##	19216	19216	19216
##	amplitude_pitch_arm	amplitude_yaw_arm	roll_dumbbell
##	19216	19216	0
##	<pre>pitch_dumbbell</pre>	yaw_dumbbell	kurtosis_roll_dumbbell
##	0	0	19216
##	kurtosis_picth_dumbbell	kurtosis_yaw_dumbbell	skewness_roll_dumbbell
## ##	19216	19216	19216
##	skewness_pitch_dumbbell 19216	skewness_yaw_dumbbell 19216	max_roll_dumbbell 19216
##	max_picth_dumbbell	max_yaw_dumbbell	min_roll_dumbbell
##	19216	19216	19216

```
##
         min_pitch_dumbbell
                                      min_yaw_dumbbell
                                                         amplitude_roll_dumbbell
##
                       19216
                                                  19216
                                                                             19216
                                amplitude_yaw_dumbbell
                                                             total accel dumbbell
##
   amplitude_pitch_dumbbell
##
                       19216
                                                  19216
                                                                                 0
##
         var_accel_dumbbell
                                     avg_roll_dumbbell
                                                             stddev roll dumbbell
##
                       19216
                                                  19216
                                                                             19216
##
          var roll dumbbell
                                    avg_pitch_dumbbell
                                                            stddev_pitch_dumbbell
##
                       19216
                                                  19216
                                                                             19216
                                      avg_yaw_dumbbell
##
         var_pitch_dumbbell
                                                              stddev_yaw_dumbbell
##
                       19216
                                                  19216
                                                                             19216
##
           var_yaw_dumbbell
                                      gyros_dumbbell_x
                                                                 gyros_dumbbell_y
##
                       19216
           gyros_dumbbell_z
##
                                      accel_dumbbell_x
                                                                 accel_dumbbell_y
                            0
                                                      0
##
                                                                                 0
##
           accel_dumbbell_z
                                     magnet_dumbbell_x
                                                                magnet_dumbbell_y
##
##
          magnet_dumbbell_z
                                          roll_forearm
                                                                    pitch_forearm
##
##
                                 kurtosis_roll_forearm
                                                           kurtosis_picth_forearm
                 yaw_forearm
##
                                                  19216
##
       kurtosis_yaw_forearm
                                 skewness_roll_forearm
                                                           skewness_pitch_forearm
##
##
       skewness_yaw_forearm
                                      max_roll_forearm
                                                                max_picth_forearm
                       19216
                                                  19216
                                                                             19216
##
##
            max_yaw_forearm
                                      min_roll_forearm
                                                                min_pitch_forearm
##
                       19216
                                                  19216
                                                                             19216
##
                                amplitude_roll_forearm
                                                         amplitude_pitch_forearm
            min_yaw_forearm
##
                       19216
                                                  19216
                                                                             19216
##
      amplitude_yaw_forearm
                                   total_accel_forearm
                                                                var_accel_forearm
##
                       19216
                                                      0
                                                                             19216
##
           avg_roll_forearm
                                   stddev_roll_forearm
                                                                 var_roll_forearm
##
                       19216
                                                  19216
                                                                             19216
          avg_pitch_forearm
##
                                  stddev_pitch_forearm
                                                                var_pitch_forearm
##
                       19216
                                                  19216
                                                                             19216
##
            avg_yaw_forearm
                                    stddev_yaw_forearm
                                                                  var_yaw_forearm
##
                       19216
                                                  19216
                                                                             19216
##
            gyros_forearm_x
                                       gyros_forearm_y
                                                                  gyros_forearm_z
##
                            0
                                                      0
                                                                                 0
##
                                       accel_forearm_y
            accel forearm x
                                                                  accel_forearm_z
##
                            0
                                                      0
##
           magnet_forearm_x
                                      magnet_forearm_y
                                                                 magnet_forearm_z
##
                            0
                                                      0
                                                                                 0
##
                      classe
##
                            0
```

At this point, there are 152 variables because 8 "house keeping" variables were removed. Nevertheless, there seems that some of the variables may contain a few data points (i.e. data sparsness). These will be removed to avoid affecting the predictive value of the model.

```
index <- which(na == 0)
data.training <- data.training[,index]
data.training <- data.training[,8:60]</pre>
```

The random forest algorithm will be used because of the following:

- 1) Can handle large number of inputs
- 2) Provide a cross-validation component

pred <- predict(model, data.training)</pre>

3) Can handle variables both categorial and unscalled

model <- randomForest(classe~., data = data.training)</pre>

- 4) Can be used to estimate variable importance
- 5) Provides a probability output

A portion of the training subset (10%) will be used to determine the variables of importance.

```
confusionMatrix(data.training$classe, pred)
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                  Α
                       В
                            C
                                 D
                                       Ε
            A 5580
                                       0
##
                       0
                            0
                                  0
##
            В
                  0 3797
                            0
                                  0
                                       0
##
            С
                  0
                       0 3422
                                  0
                                       0
                       0
                            0 3216
                                       0
##
            D
                  0
##
            Ε
                  0
                       0
                            0
                                  0 3607
##
## Overall Statistics
##
##
                   Accuracy: 1
##
                     95% CI: (0.9998, 1)
       No Information Rate: 0.2844
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                      Kappa: 1
    Mcnemar's Test P-Value : NA
##
##
## Statistics by Class:
##
##
                         Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                           1.0000
                                     1.0000
                                              1.0000
                                                        1.0000
                                                                 1.0000
                           1.0000
                                    1.0000
                                              1.0000
                                                        1.0000
                                                                 1.0000
## Specificity
## Pos Pred Value
                           1.0000
                                    1.0000
                                              1.0000
                                                        1.0000
                                                                 1.0000
## Neg Pred Value
                           1.0000
                                    1.0000
                                              1.0000
                                                        1.0000
                                                                 1.0000
## Prevalence
                           0.2844
                                    0.1935
                                              0.1744
                                                        0.1639
                                                                 0.1838
## Detection Rate
                           0.2844
                                    0.1935
                                              0.1744
                                                        0.1639
                                                                 0.1838
## Detection Prevalence
                           0.2844
                                     0.1935
                                              0.1744
                                                        0.1639
                                                                 0.1838
## Balanced Accuracy
                           1.0000
                                     1.0000
                                              1.0000
                                                        1.0000
                                                                 1.0000
# Apply model to a different data subset
download.file("https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv", "./prjt-pml-testi
data.testing <- read.csv("./prjt-pml-testing.csv")</pre>
data.testing <- data.testing[,index]</pre>
data.testing<- data.testing[,8:59]</pre>
data.testing$classe <- factor(nrow(data.testing))</pre>
```

```
levels(data.testing$classe) <- levels(data.testing$classe)
Test2 <- rbind(data.training[1,], data.testing)
Test2 <- Test2[2:21,]</pre>
```

```
TestModel <- predict(model, Test2)
TestModel</pre>
```