1- A_1 نمره) یک ژن اتوزومی سه الل A_1 , A_2 , دارد. A_1 کاملا بر A_2 بارز است و هر دو اینها کاملا بر A_3 بارز هستند. اگر در جمعیتی که در تعادل هاردی-واینبرگ است فراوانیهای فنوتیپی A_1 , A_2 , A_3 : A_3 :

$$f(A_1) = \underline{\qquad} f(A_2) = \underline{\qquad} f(A_3) = \underline{\qquad}$$

Identical by مردی (احتمال وبرو، ضریب درون آمیزی (احتمال 30) -2 اول نمره) در شجره نامه وبرو، ضریب درون آمیزی (احدد نهایی را Descent وبدن دو الل) برای یک ژن وابسته به X در فرد I چند است؟ (عدد نهایی را با سه رقم اعشار محاسبه کنید.)

5- (50 نمره) جمعیت هاپلویید بزرگی دارای فراوانی برابر از 5 الل خنثا در ژن رمزگردان یک آنزیم متابولیسمی است (فراوانی هر 0/2 الل 0/2 است). در نسل صفر، با ورود یک ترکیب شیمیایی سمی به محیط، شایستگی نسبی این اللها به 0/3، 0/3، 0/3 و 0/3 تغییر می کند. نمودار تغییر فراوانی هر یک از 5 الل را با گذر زمان تا رسیدن جمعیت به وضعیت نهایی رسم کنید. نکته: روند کیفی تغییر و تفاوت آن بین اللها مدنظر است؛ نیازی نیست مقدار تغییر بر حسب زمان از لحاظ کمّی دقیق باشد. راهنمایی: معادلههای $p_A' = p_A \frac{w_A}{\overline{w}}$ و $p_A' = p_A \frac{w_A}{\overline{w}}$ برای حالت هاپلویید و هر الل در ژنهای چنداللی هم عینا درست هستند.

1

4- (30 نمره) با مفهوم درخت همرسی در نموی (Coalescent Tree) در جمعیتهای متناهی تحت تاثیر رانش ژنی آشنا هستید. تصویر سمت چپ روند شبیهسازی شدهای را از تولیدمثل تصادفی جمعیتی با 10 الل نشان می دهد که از آن در نسل حاضر نمونهای به اندازه ی 3 الل گرفته شده است. درخت همرسی خلاصه شده ی این سه الل تا نیای مشترکشان و شکل مرتب شدهاش هم در سمت راست رسم شده است. اگر به جای تولیدمثل تصادفی انتخاب طبیعی در

جمعیت رخ دهد، شکل درخت همرسی از نظر طول نسبی شاخهها و زمان رسیدن به نیای مشترک تغییر خواهد کرد. جنس این تغییر به نوع انتخاب طبیعی بستگی دارد. در زیر، درخت همرسی جمعیتی فرضی در حالت رانش خالص (تکامل خنثا) و نیز شکلهای دگرگون شدهاش در پی انتخاب طبیعی آورده شده است. تعیین کنید که هر نوع انتخاب طبیعی به کدام دگرگونی در شکل همرسی میانجامد. (نمره سوال تنها به حالت کاملا درست تعلق می گیرد)

- انتخاب مثبت جهت دار کامل (Completed Selective Sweep)
 - انتخاب مثبت جهتدار نيمه كاره (Partial Selective Sweep)

مقدار تنوع ژن در دروز	کولی، مقایسهی	بیعی از دادههای مول	ت تاثير انتخاب ط	یی ژنهای تحد	ی از راههای شناسا	5- (60 نمره) یک
Divergend) است. اگ	ها یا واگرایی (e:	تشده میان جمعیت	ان تفاوتهای تثبی	Polyn) با میز	ختی (norphism	جمعیت یا چندری
هشهای مترادف	بیرات ناشی از ج	ابی در کار نباشد، تغب	, پیدا کند و انتخ	ئت رانش تكامل	ى پروتئين تنها تح	یک ژن رمزکننده
N) که توالی	onsynonymo	مهای نامترادف (ous	نمیدهند و جهش	سیدی را تغییر	S) که توالی آمینوا	Synonymous)
ِن تقارن را به هم میزن	انتخاب طبيعي اي	ها انباشته میشوند.	ن و میان جمعیت	وی یکسان درور	يير مىدهند با الگو	آمینواسیدی را تغ
ب طبیعی میشود؟(نمره	ی احتمالی انتخار	بپ) میگذارد و مایه:	ِد پروتئین (فنوت	رگتری بر کارکر	ش معمولا تاثير بز	الف. كدام نوع جه
					ىرە سوال)	منفی یک سوم نم
			ارد.	□ فرقی ند	🗆 نامترادف	🗆 مترادف
<i>میولانس</i> ، بررسی شده و	ِ و <i>دروزوفیلا س</i> یم	دروزوفيلا ملانوگاستر	ونهی خویشاوند، ^ر	معیتهای دو گو	، دهیدروژناز در جم	ب. توالى ژن الكل
ادف و نامترادف در	ت به تفکیک مترا	واگرا میان دو جمعید	تر و جایگاههای	يت <i>د. ملانو گا</i> س	چندریخت در جمع	شمار جایگاههای
					, شده است:	جدول زیر گزارش
	Divergent	Polymorphic				
Synonymous	17	42				

کدام تست آماری برای آزمودن این فرضیه — فرضیهی صفر — که نسبت واگرایی به چندریختی در دو گروه تغییرات مترادف و

 χ^2 تست استقلال \Box

Nonsynonymous 7

نامترادف تفاوت معناداری با هم ندارد، مناسب است؟

اسبه کنید (بازه ای که با توجه به پیوست قابل محاسبه است). آیا	دار p آزمون را محا	درجهی آزادی و مق	پ. مقدار شاخص آماری،
	رشود؟	منیدار 0/05 رد می	فرضیهی صفر در سطح مع
Test statistic (t or χ^2) Degree of from	eedom		>p-value
>			
(نمره منفى برابر نمره سوال)?Null hypothesis rejected	Yes □	No □	
	s polymorphism	e/Synonymous di a/Synonymous po	ت. نسبت olymorphism
	تا سه رقم اعشار).	ب محاسبه کنید (جدول داده شده در بخش
$\omega = $			
یو در توصیف روند تکامل ژن الکل دهدروژناز در جمعی <i>ت د.</i>	خش پ، کدام سنار	نتیجهی تست در به	ث. با توجه به مقدار ω و
	سوم نمره سوال)	ن؟(نمره منفی یک ه	<i>ملانوگاستر</i> محتملتر است
Neutral Evo	ر ضعیف) olution	لبیعی بیاثر یا بسیا _ر	□ تكامل خنثا (انتخاب ط
Nega	ative (Purifying	g) Selection گر	🗌 انتخاب منفی یا وجین
Positive S	Selection (Sele	ective Sweep)	□ انتخاب مثبت جهتدار

t Table

cum. prob	<i>t</i>	<i>t</i>	.		.	<i>t</i>		<i>t</i>	<i>t</i>	<i>t</i>	<i>t</i>
· 1	<i>t</i> .50 0.50	<i>t</i> . ₇₅ 0.25	<i>t</i> .80 0.20	<i>t</i> . ₈₅ 0.15	<i>t</i> .90 0.10	<i>t</i> .95 0.05	<i>t</i> _{.975} 0.025	<i>t</i> .99 0.01	<i>t</i> .995 0.005	<i>t</i> .999 0.001	t _{.9995} 0.0005
one-tail											
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
df	0.000	4.000	4.070	4.000	0.070	0.044	40.74	04.00	00.00	040.04	000.00
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2 3	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841 4.604	10.215 7.173	12.924
4 5	0.000	0.741 0.727	0.941 0.920	1.190 1.156	1.533 1.476	2.132 2.015	2.776 2.571	3.747 3.365	4.032	5.893	8.610 6.869
6	0.000	0.727	0.920	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.710	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.711	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.703	5.041
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	0.000	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	0.000	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.460
80	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.416
100	0.000	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.390
1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.300
Z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291
	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
					Confid	dence Le	evel				

TABLE C: Chi-Squared Distribution Values for Various Right-Tail Probabilities

df		Right-Tail Probability									
	0.250	0.100	0.050	0.025	0.010	0.005	0.001				
1	1.32	2.71	3.84	5.02	6.63	7.88	10.83				
2	2.77	4.61	5.99	7.38	9.21	10.60	13.82				
3	4.11	6.25	7.81	9.35	11.34	12.84	16.27				
4	5.39	7.78	9.49	11.14	13.28	14.86	18.47				
5	6.63	9.24	11.07	12.83	15.09	16.75	20.52				
6	7.84	10.64	12.59	14.45	16.81	18.55	22.46				
7	9.04	12.02	14.07	16.01	18.48	20.28	24.32				
8	10.22	13.36	15.51	17.53	20.09	21.96	26.12				
9	11.39	14.68	16.92	19.02	21.67	23.59	27.88				
10	12.55	15.99	18.31	20.48	23.21	25.19	29.59				
11	13.70	17.28	19.68	21.92	24.72	26.76	31.26				
12	14.85	18.55	21.03	23.34	26.22	28.30	32.91				
13	15.98	19.81	22.36	24.74	27.69	29.82	34.53				
14	17.12	21.06	23.68	26.12	29.14	31.32	36.12				
15	18.25	22.31	25.00	27.49	30.58	32.80	37.70				
16	19.37	23.54	26.30	28.85	32.00	34.27	39.25				
17	20.49	24.77	27.59	30.19	33.41	35.72	40.79				
18	21.60	25.99	28.87	31.53	34.81	37.16	42.31				
19	22.72	27.20	30.14	32.85	36.19	38.58	43.82				
20	23.83	28.41	31.41	34.17	37.57	40.00	45.32				
25	29.34	34.38	37.65	40.65	44.31	46.93	52.62				
30	34.80	40.26	43.77	46.98	50.89	53.67	59.70				
40	45.62	51.80	55.76	59.34	63.69	66.77	73.40				
50	56.33	63.17	67.50	71.42	76.15	79.49	86.66				
60	66.98	74.40	79.08	83.30	88.38	91.95	99.61				
70	77.58	85.53	90.53	95.02	100.4	104.2	112.3				
80	88.13	96.58	101.8	106.6	112.3	116.3	124.8				
90	98.65	107.6	113.1	118.1	124.1	128.3	137.2				
100	109.1	118.5	124.3	129.6	135.8	140.2	149.5				

Source: Calculated using StaTable, software from Cytel Software, Cambridge, MA.