ORGANISASI & ARSITEKTUR KOMPUTER

SEMESTER 2

PERTEMUAN KE-3

Dosen: Drs. Ino Suryana, M.Kom

EVOLUSI DAN KINERJA KOMPUTER

TIK:

Mahasiswa mengetahui sejarah perkembangan computer dan cara menentukan/menghitung kinerja computer.

Better, Faster, Cheaper?

Latar Belakang - ENIAC

- Electronic Numerical Integrator And Computer
- Eckert and Mauchly
- University of Pennsylvania
- ► Tabel lintasan peluru
- Mulai dibuat 1943
- Selesai 1946
 - Sangat terlambat untuk digunakan dalam PD-II
- Digunakan sampai 1955

ENIAC

- Desimal (bukan biner)
- ► Memiliki 20 akumulator untuk 10 digit
- Diprogram manual dengan switch (sakelar)
- ▶ 18.000 tabung vakum
- ▶ Berat 30 ton
- Luas 15,000 square feet
- Konsumsi daya 140 kW

Tabung Vakum

s1 TI-2 / Unpad / 3 sks
Replacing a bad tube meant checking among ENIAC's 19,000 possibilities.

Von Neumann/Turing

- ► Konsep → Penyimpanan program komputer
- ▶ Memori → Menyimpan data dan program
- ► ALU → operasi data biner
- ► Unit Kontrol → Menginterpretasikan instruks dan mengeksekusi
- Perangkat I/O dikendalikan oleh Unit Kontrol
- Princeton Institute for Advanced Studies
 - **IAS**
- Selesai 1952

Mesin Von Neumann

Struktur Mesin Von Neumann (IAS Computer) - buku hal 20-23/43_pdf

AS-Computer of Institute for Advanced Studies

- ► Kapasitas memori: 1000 x 40 bit words
 - Menggunakan sistem bilangan Biner
 - ⇒ Panjang instruksi 20 bit (1 word = 2 instruksi)
- Register-register dalam CPU
 - ⇒ MBR (Memory Buffer Register)
 - ⇒ MAR (Memory Address Register)
 - ⇒ IR (Instruction Register)
 - ⇒ IBR (Instruction Buffer Register)
 - ⇒ PC (Program Counter)
 - ⇒ AC (Accumulator)
 - ⇒ MQ (Multiplier Quotient)

Struktur IAS (lihat ke buku h_21)

Komputer Komersial

- ▶ 1947 Eckert-Mauchly Computer Corporation
 - ⇒ UNIVAC I (Universal Automatic Computer)
 - Untuk kalkulasi sensus 1950 oleh US Bureau of Census
- Menjadi divisi dari Sperry-Rand Corporation
- ► UNIVAC II dipasarkan akhir th. 1950-an
 - Lebih cepat
 - Kapasitas memori

s1 TI-2 / Unpad / 3 sks

IBM

- Pabrik peralatan Punched-card
- ▶ 1953 IBM-701
 - Komputer pertama IBM (stored program computer)
 - Untuk keperluan aplikasi Scientific
- ▶ 1955 IBM- 702
 - Untuk applikasi bisnis
- Merupakan awal dari seri 700/7000 yang membuat IBM menjadi pabrik komputer

Transistor

- Menggantikan vacuum tubes
- Lebih kecil
- Lebih murah
- Disipasi panas sedikit
- Merupakan komponen Solid State
- Dibuat dari Silicon (Sand)
- Ditemukan pada th 1947 di laboratorium Bell
- Oleh William Shockley dkk.

Komputer Berbasis Prosesor

- Mesin generasi II
- NCR & RCA menghasilkan small transistor machines
- ► IBM 7000
- ▶ DEC 1957
 - ► Membuat PDP-1

Mikro Elektronik_BAHAS

- Secara harafiah berarti "electronika kecil" - hal 28 Fig 2.6
- Sebuah komputer dibuat dari gerbang logika (gate), sel memori dan interkoneksi
- Sejumlah gate dikemas dalam satu keping semikonduktor
- silicon wafer hal30Fig2.7

Generasi Komputer

- Vacuum tube 1946-1957
- ▶ Transistor 1958-1964
- ► Small scale integration 1965
 - Sampai dengan 100 komponen dalam 1 IC (chip)
- Medium scale integration sampai 1971
 - ⇒ 100-3.000 komponen dalam 1 IC
- ► Large scale integration 1971-1977
 - ⇒ 3.000 100.000 komponen dalam 1 IC
- Very large scale integration 1978 -1991
 - ⇒ 100.000 100.000,000 komponen dalam 1 IC
- Ultra large scale integration 1991 -
 - ⇒ Lebih dari 100.000.000 komponen dalam 1/10

Hukum Moore

- Gordon Moore cofounder of Intel
- Meningkatkan kerapatan komponen dalam chip
- Jumlah transistors/chip meningkat 2 x lipat per tahun
- Sejak 1970 pengembangan agak lambat
 - ⇒ Jumlah transistors 2 x lipat setiap 18 bulan
- Harga suatu chip tetap/hampir tidak berubah
- Kerapatan tinggi berarti jalur pendek, menghasilkan kinerja yang meningkat
- Ukuran semakin kecil, flexibilitas meningkat
- Daya listrik lebih hemat, panas menurun
- Sambungan sedikit berarti semakin handal / reliable

d/3 sks

19

Pertumbuhan Jumlah Transistor Dalam CPU/1-chip (h-31)

s1 TI-2 / Unpad / 3 sks

20

IBM Seri 360

- **1964**
- Mengganti (& tdk kompatibel dengan) seri 7000
- Pelopor munculnya "family" komputer
 - ► Sama atau identik → Instruksinya
 - ► Sama atau identik → O/S
 - Bertambahnya kecepatan
 - Bertambahnya jumlah port I/O
 - Bertambahnya ukuran memori
 - Harga meningkat
- Multiplexed switch structure

DEC - PDP 8

- **1964**
- Minikomputer pertama
- ► Tidak mengharuskan ruangan ber AC
- Ukuran kecil
- Harga \$16.000
 - ⇒ \$100k+ for IBM 360
- Embedded applications & OEM
- ▶ Struktur → BUS

DEC - PDP 8 → Struktur BUS

Figure 2.9 PDP-8 Bus Structure

Memori Semikonduktor

- **1970**
- Ukuran kecil (sebesar 1 sel core memory)
- Dapat menyimpan 256 bits
- Non-destructive read
- Lebih cepat dari core memory
- Kapasitas meningkat 2 x lipat setiap tahun

Intel

- ► Tahun 1971 → 4004
 - Mikroprosesor pertama
 - Semua komponen CPU dalam 1 IC (chip)
 - ⇒ 4 bit
- ► Tahun 1972 → 8008
 - ⇒ 8 bit
 - Untuk aplikasi yang spesifik
- ► Tahun 1974 → 8080
 - ⇒ Generasi pertama dari intel → "general purpose microprocessor"
- ► Tahun 1978 → 8086, 80286
- ► Tahun 1985 → 80386
- ► Tahun 1989 → 80486

Perancangnan Meningkatkan Kecepatan

- Bab 2 (2.1)
 - Pipelining
 - Branch prediction
 - Data flow analysis
 - Speculative execution
 - On board cache
 - On board L1 & L2 cache

KeSeimbangan Kinerja

- Kecepatan prosesor meningkat
- Kapasitas memori meningkat
- ▶ Perkembangan kecepatan memori lebih lambat (tertinggal) dibanding kecepatan prosesor → perlu keseimbangan kecepatan proses antara prosesor dengan Memori.

Perbandingan Kinerja Logic/prosesor dan Memori

Figure 2.10 Logic and Memory Performance Gap [BORK03]

Solusi

- Meningkatkan jumlah bit per akses
- Mengubah interface DRAM
 - Cache
- Mengurangi frekuensicy akses memory
 - Cache yg lebih kompleks dan cache on chip
- Meningkatkan bandwidth interkoneksi
 - Bus kecepatan tinggi High speed buses
 - Hierarchy of buses

Perangkat I/O

- Perangkat untuk kebutuhan I/O
- Besar data throughput yang dibutuhkan
- Dapat dihandle oleh prosesor
- ▶ Permasalahan → Perpindahan data
- Solusi:
 - Caching
 - Buffering
 - ► Higher-speed interconnection buses
 - More elaborate bus structures
 - Multiple-processor configurations

Perbandingan Laju Data Perangkat I/O

Perbandingan Laju Data Perangkat I/O

Figure 2.1 Typical I/O Device Data Rates

Kunci → Keseimbangan

- ► Komponen prosesor
- Memori
- Perangkat I/O
- Struktur koneksi

- Meningkatkan kecepatan prosesor
 - Ukuran gerbang logika (IC) yang lebih kecil
 - Lebih banyak gate, dikemas lebih rapat, menambah clock rate
 - Waktu propagasi untuk sinyal berkurang
- Menambah ukuran dan kecepatan cache
 - Diperuntuk bagi prosesor
 - Waktu akses cache turun secara signifikan
- Perubahan organisasi dan arsitektur prosesor
 - Meningkatkan kecepatan eksekusi
 - ▶ Parallel

Perkembangan Mikroprosesor Intel

Bertambahnya kapasitas cache

- Biasanya dua atau tiga kali cache antara prosesor dan memori utama
- Bertambahnya kepadatan IC (Chip)
 - Lebih besar cache memori dalam chip
 - ► Lebih cepat akses cache
- ▶ Pentium mengalokasikan 10% untuk cache
- ► Pentium 4 mengalokasikan sekitar 50%

Evolusi x86 - 1 (hal 27)

- **8080**
 - ⇒ Generasi pertama → general purpose microprocessor
 - 8 bit data
 - Digunakan pertama kali sbg komputer personal (PC) Altair
- ▶ 8086 5MHz 29,000 transistors
 - Lebih canggih
 - ⇒ 16 bit
 - Cache instruksi
 - ⇒ 8088 (8 bit external bus) → Digunakan pertama kali oleh IBM PC
- **80286**
 - 16 Mbyte memori beralamat
 - Sampai 1Mb
- **80386**
 - ⇒ 32 bit
 - Mendukung "multitasking"
- **80486**
 - Lebih canggih
 - Dibangun dalam maths co-processor

Evolusi x86 - 2

- Pentium
 - Superscalar
 - Beberapa instruksi di eksekusi secara pararel
- Pentium Pro
 - Meningkatkan organisasi superscalar
 - Aggressive register renaming
 - Prediksi percabangan
 - Analisis aliran data
 - Spekulasi eksekusi
- Pentium II
 - MMX technology
 - graphics, video & pengolahan audio
- Pentium III
 - Penambahan instruksi untuk grafik 3D

Evolusi x86 - 3

- Pentium 4
 - Penambahan perangkat multimedia
- Core
 - Pertama kali x86 dengan dual core
- Core 2
 - Arsitektur 64 bit
- Core 2 Quad 3GHz 820 juta transistor
 - 4 prosesor dalam 1 chip
- ► Arsitektur x86 → embedded systems
- Organisasi dan teknologi berubah secara drastis
- ► Arsitektur kumpulan instruksi → kompatibel dengan sebelumnya
- ~1 instruksi bertambah setiap bulan
- Tersedia 500 instruksi
- Lihat web intel untuk lebih lengkapnya

Embedded System → ARM Acorn RISC Machine (hal 29)

- ARM pengembangan dari desain RISC
- Digunakan terutama di embedded systems (hal 29)
 - Digunakan dalam produk
 - Bukan general purpose computer
 - Mempunyai fungsi khusus
 - Contoh: Anti-lock rem di mobil

Kebutuhan Embedded System

- Berbeda ukuran (hal 46)
 - Berbeda kendala, optimisasi, dapat digunakan kembali
- Kebutuhan yang berbeda
 - ► Keamanan, kehandalan, real-time, fleksible
 - Ketahanan (jangka hidup)
 - ► Kondisi lingkungan
 - Beban statis atau dinamis
 - Kecepatan lambat ke cepat
 - Perhitungan
 - Kejadian acak atau dinamis berkelanjutan

Contoh Organisasi Embedded System (Gambar 1.14 hal 30)

Figure 2.13 Possible Organization of an Embedded System

Evolusi ARM (hal 49)

- ▶ Dirancang oleh ARM Inc., Cambridge, Inggris
- Lisensi untuk manufaktur
- Kecepatan tinggi, tidak pernah mati, konsumsi daya rendah
- PDAs, PS, ponsel
 - ► Contoh: iPod, iPhone (Apple's)
- Acorn memproduksi ARM1 & ARM2 tahun 1985 dan ARM3 tahun 1989
- Acorn, VLSI dan Apple Computer perusahaan partner, dikenal sebagai ARM Ltd.
- Acorn RISC Machine menjadi Advanced RISC Machine dan menyempurnakan ARM3 menjadi ARM6. (lihat Tabel 2.8 hal 49)

Ada 3 Kategori Sistem ARM

- Embedded real time
- Platform aplikasi
 - Linux, Palm OS, Symbian OS, Windows mobile
- Secure applications
 - Smart card, SIM card, dan terminal pembayaran

Penilaian Kinerja Kecepatan Clock

- Parameter Kunci
 - Kinerja, biaya, ukuran, keamanan, kehandalan, konsumsi daya
- Sistem kecepatan clock
 - Dalam Hz atau kelipatanya
 - Clock rate/clock speed, clock cycle/clock tick, cycle time, clock time=1/Clock rate.
- Sinyal dalam CPU membutuhkan waktu untuk perubahan ke 1 atau 0
- Sinyal dapat berubah dengan kecepatan yang berbeda
- Dibutuhkan sinkronisasi untuk pengoperasiannya
- Eksekusi instruksi dalam diskrit
 - Decode, load dan menyimpan, aritmatika atau logika
 - Biasanya memerlukan beberapa siklus clock per instruksi

Sistem Clock

Instruction Execution Rate

- Millions of instructions per second (MIPS)
- Millions of floating point instructions per second (MFLOPS)
- Sangat bergantung pada instruksi, kompiler, implementasi prosesor, cache dan hirarki memori

Laju Eksekusi Instruksi - hal 51

- Processor dengan clock rate (frekuensi) f, maka cycle time (clock time = ct) = 1/f.
- Setiap instruksi yang dieksekusi membutuhkan waktu, disebut clock cycle. Ukuranya CPI (cycle per instruction)

```
CPI = (pers 2.1 hal 51)
```

Total waktu yang dibutuhkan prosesor untuk mengeksekusi program:

```
T = Ic * CPI * ct - hal 51
```

 Ukuran lain performance computer, yaitu MIPS (millions of instruction per second)

MIPS = Ic /
$$(T*10^6) = f / (CPI * 10^6)$$

- Contoh Hal 52.
- SOAL-nya: No: 2.10 hal 62; No: 2.11

Benchmarks

- Program dirancang untuk menguji kinerja
- Ditulis dengan bahasa tingkat tinggi
 - Portable
- Merepresentasikan jenis pekerjaannya
 - Systems, numerical, commercial
- Mudah diukur
- Luas penggunannya
- Misal: System Performance Evaluation Corporation (SPEC)
 - CPU2006 untuk perhitungan yang pasti
 - ⇒ 17 program floating point dalam C, C++, Fortran
 - ⇒ 12 program integer dalam C, C++
 - ⇒ 3 juta baris kode
 - Kecepatan
 - Single task dan throughput

SPEC Rate Metric

- Mengukur throughput atau laju mesin dalam melakukan tugas
- Mencopy dalam jumlah banyak pada standar berjalan bersama
 - Biasanya, sama dengan jumlah prosesor
- Rasio dihitung sebagai berikut:
 - Tref_i: referensi waktu eksekusi untuk standar i
 - N: jumlah copy yang berjalan bersama
 - ⇒ Tsuti: waktu dari awal eksekusi program pada semua N prosesor sampai selesainya semua copy program
 - ⇒ Rata-rata geometri dihitung $r_i = \frac{N \times Tref_i}{Tsut_i}$

Hukum Amdahl

- Gene Amdahl [AMDA67]
- Potensi peningkatan kecepatan program dengan menggunakan beberapa prosesor
- Menyimpulkan bahwa:
 - Kode perlu parallelizable
 - Kecepatan meningkat, memberikan hasil yang menurun untuk procesor lebih banyak
- Tergantung apa yang dikerjakan
 - Server dapat memelihara beberapa koneksi pada multiple prosesor
 - Database dapat dibagi dalam tugas-tugas pararel

Formula Hukum Amdahl

- For program running on single processor
 - Fraction f: bagian/fraksi dari operasi komputasi yang dapat dikerjakan secara pararel
 - T adalah waktu eksekusi total untuk program dalam prosesor tunggal
 - N adalah jumlah prosesor yang sepenuhnya memanfaatkan bagian dari kode pararel

$$Speedup = \frac{\text{time to execute program on a single processors}}{\text{time to execute program on } N \text{ parallel processors}} = \frac{T(1-f) + Tf}{T(1-f) + \frac{Tf}{N}} = \frac{1}{(1-f) + \frac{f}{N}}$$

- Kesimpulan
 - o f small, parallel processors mempunyai efek yang kecil
 - o N ->∞, kecepatan dibatasi oleh 1/(1-f)
 - Berkurangnya manfaat ketika menggunakan banyak prosesor

Sumber Internet

- http://www.intel.com/
 - Search for the Intel Museum
- http://www.ibm.com
- http://www.dec.com
- Charles Babbage Institute
- PowerPC
- Intel Developer Home

DAFTAR PUSTAKA

- William Stallings, Computer Organization and Architecture, 10th edition, Prentice Hall, 2016
- http://williamstallings.com/ComputerOrganization/index.html