Advanced Computer Architecture

Evaluating Systems Fall 2016

Pejman Lotfi-Kamran

Adapted from slides originally developed by Profs. Hill, Hoe, Falsafi and Wenisch of CMU, EPFL, Michigan, Wisconsin

Fall 2016 Lec.12 - Slide 1

Commercial Server Software

Fall 2016 Lec.12 - Slide 3

Where Are We?

- ◆ This Lecture
 - Evaluation
- ◆ Next Lecture:
 - Coherence

Lec.12 - Slide 2

Commercial Server Software

- ◆ Primary market for multiprocessor systems
- ◆ Examples:
 - Database systems: Oracle, DB2, SQLServer, PostGres, MySQL
 - Business apps: SAP, BAAN, PeopleSoft
 - Data analysis: MapReduce, large scale graph processing
 - Web-servers
 - ▲ Static content
 - ▲ Dynamic content: database integration + business logic
 - ▲ Web 2.0: user-supplied content
 - Infrastructure apps: memcached, J2EE

Lec.12 - Slide 4

Why study database apps?

- ◆ They are economically important
- ◆ They share characteristics of many other apps (filesystems, web search, etc.)
- ◆ The vendors have spent a lot of time optimizing (generally, they won't have silly bottlenecks)

Fall 2016

How are they different from Sci Apps?

- ◆ Requires tuning: knowledge-intensive, difficult
- Competitive market:
 - deliberate obfuscation/ benchmark gaming
- Large instruction footprints (I\$ matters)
- Huge data footprints (TLBs matter)
- Weird access types (non-cacheable, etc.)
- ◆ Latency, not bandwidth bound
- ◆ Dynamic memory allocation, garbage collection
- More pointer-chasing, fewer arrays
- No single obvious "working set"
 - multiple working sets with varying temporal locality
- Unpredictable sharing patterns
- ◆ Data & lock contention

Lec.12 - Slide 7

Key characteristics

- ◆ Large, complex, monolithic software systems
- Designed for MP systems
 - Clusters (distributed databases)
 - Shared Memory
- Subsumes many OS functions
 - File system
 - Scheduling and multi-threading
 - Memory management
- Designed for high reliability (ACID properties)
 - Atomicity: a transaction happens or doesn't
 - Consistency: the state of the DB remains consistent
 - Isolation: transactions are independent
 - Durability: once performed, transactions are permanent

Fall 2016 Lec.12 - Slide 6

Standardized Benchmarks

Transaction Processing Council (TPC)

- ☐ Strict scaling, disclosure, auditing rules
- □ Running these for real is hard: big hardware, 20-50 engineers, months of effort
- Running them in simulations is also hard: scaling, nondeterminism

Two flavors of benchmark

- □ Online transaction processing (OLTP): TPC-C
 - Lots of small transactions
 - Lots of locking, concurrency, I/O; memory-latency bound
- Decision support system (DSS): TPC-H
 - ☐ Large, complex read-only queries
 - Often compute bound (given enough disks)
 - ☐ Highly parallel, data partitioning, parallel operators

 Lec.12 Side 8

How Efficient are Today's Servers?

- ◆ Created benchmark suite
 - Diverse set of cloud workloads
 - Quantified high-level behavior

- Used performance counters
- Identified needs of cloud apps

Modern CPUs don't match needs of cloud apps

Summary

- ◆ Accurate metrics to evaluate designs
- ◆ Don't forget the laws!
- ◆ Tools
- ◆ Wide spectrum of parallel workloads

Fall 2016 Lec.12 - Slide 22