

 CAR CHARACTERISICS

 Torque:
 600 Nm at 0 RPM
 Power:
 460 HP/343 kW at 8600 RPM

BATTERY PERFORMANCE			
16 modules wired in series containing 6 groups of 74 cells wired parallel	Cell Nominal Voltage	e: 3.6 V	
Nominal battery voltage = modules \cdot groups \cdot group voltage	⇒	$V = 16 \cdot 6 \cdot 3.6 = 346 V$	

BRUSHED DC MOTOR				
Electromotive Force:	$E(t) = K_E \cdot \omega(t)$			
Voltage (Time domain):	$V(t) = I(t) \cdot R + L \frac{dI(t)}{dt} + E(t)$	$(t) \qquad \Rightarrow \qquad V(t) = I(t) \cdot R$	$+ L\frac{dI(t)}{dt} + K_E \cdot \omega(t)$	
Voltage (Laplace domain):	$V(s) = I(s) \cdot R + s \cdot L \cdot I(s) + K_E \cdot \omega(s)$			
Motor Torque:	$T(t) = K_T \cdot I(t), T(s) = K_T \cdot I(s) \qquad \Rightarrow \qquad T(s) = K_T \cdot \frac{V(s) - K_E \cdot \omega(s)}{s \cdot L + R}$			
From Data Sheet:	$R = 5.3 \cdot 10^{-3} Ohm$	$L = 493 \cdot 10^{-9} Henrys$	$K_E = 0.12 \ Vs/rad$	$K_T = 0.25 \ Nm/Amp$

TRACTIO		
Wheel diameter:	2L = 48 cm	
Gear ratio:	$G_r = 9.73$	
Overall Efficiency:	$\eta = 0.70$	
Resultant Force:	$F_T = rac{T}{L} \cdot G_r \cdot \eta$	

AERODYNAMIC DRAG			
Drag Coefficient:	$C_D = 0.24$	Frontal Area:	$A=2.34~m^2$
Density at the sea level:	$\rho = 1.225 \ kg/m^3$	Drag force:	$F_D = 0.5 \cdot \rho \cdot v^2 \cdot A \cdot C_D$

ROLLING RESISTANCE					
Car mass:	$m = 2100 \ kg$	Rolling Resistance Coefficient:	$C_r = 0.02$	Rolling Force:	$F_R = C_r \cdot m \cdot g$

