MAJORANA MAIN FPGA REGISTERS

When reading registers that were not defined they will return the value xFFFFFFF.

Description	Address	Access	Width
Board ID	0x00	R	32
Value is the board serial number that is given by	the switch	Bit Va	alue
configuration.		1	0
<pre>Bits[11: 0]: Board Id (Pins 8 down to 4 show Addressing, all other pins are set to zero)</pre>	Geographical	Val	ıe
Bits[19:12]: FIRMWARE SUBVERSION			
Bits[31:20]: FIRMWARE VERSION			

Description	Address	Access	Width
Programming Done	0x04	WR	32
mhis since the sussuamine status of the MIDI module as	£-11	Bit V	alue
This gives the programming status of the VHDL module as	TOTTOWS.	1	0
Bits[9: 0]: Programming status of the channels			
Bit 10: Programming status of the DAC module			
Bit 11: Programming status of the front bus (slave) m	odule		
Bit 12: Programming status of the master logic module			
Bit 13: Programming status of the Debug module			
Bit 14: Programming status of the FIFO module			
Bit 15: Programming status of the Self Trigger module			
Bits[19:16]: TBD			
Bit 20: FIFO 0 EF (empty flag) flag			
Bit 21: FIFO 1 EF (empty flag) flag			
Bit 22: FIFO 0 PAE (partially empty flag) flag (the	ere is less		
then 2k words in the fifo)			
Bit 23: FIFO 0 HF (half full flag)flag (there is mo.	re then 16k		
words in the fifo)			
Bit 24: FIFO 0 PAF (partially full flag) flag (there i			
30k words in the FIFO, the algorithm will stop putting			
FIFO if this flag is asserted to avoid having incor	mplete data		
packages in the FIFO)			
Bit 25: FIFO 0 FF (full flag)flag			
Bit 26: FIFO 1 FF (full flag)flag			
Bit 27: FIFO reset.		reset	Nop
Bits[31:28]: Sets the down samples module (0 no down			
for 2 points, 2 for 4 points 3 for 8 points and 4 for	-		
Warning changing this value alters the behavior of modules since the clock frequency gests divided by 2, 4			
modules since the clock frequency gests divided by 2, 4	, 0 01 10.		

- Note1: Bits 15 down to 0 are self clearing bits. After a VME command is sent to program on of these modules those bits are going to be set to one. Upon completion of the command those bits are going to be set back to zero. If an error occur this error will be reported by one of these bits staying at 1.
- Note 2: In the digitizer board there are two 18 bit FIFO working in parallel to generate a 36 bit wide FIFO (see schematics) Bits 26 downto 20 are the status bits that come from those two components and are reported here.

Description	Address	Access	Width
External Window	0x08	RW	32
External validation window length in clock cycles. Va	ow length in clock cycles. Value at reset		alue
is 0x0190 or 4us.		1	0
Bits[10: 0]: External window length		Valı	ue
Bits[31:11]: TBD			

Description	Address	Access	Width
Pileup Window	0x0C	RW	32
777		Bit Value	
Pileup window length. Value at reset 0x0400 (10us).		1	0
Bits[15: 0]: Pileup window length		Val	ue
Bits[31:16]: Base line restored delay time		Val	ue

Description	Address	Access	Width
Noise Window	0x10	RW	32
No. 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		Bit V	alue
Noise window length. Value at reset 0x0040 (640ns).		1	0
Bits[6: 0]: Noise window length		Value	
Bits[31:11]: TBD			

Description	Address	Access	Width
External trigger sliding length	0x14	RW	32
Length before we read the energy when we operate	in external	Bit Va	alue
trigger. Value at reset 0x0190 (4.0us). In TTCS mode th	his register		
is also used but the external signal is defined to be	the master	1	0
board CC_LED.			
Bits[10: 0]: External trigger sliding length		Valı	ie
Bits[31:11]: TBD			

Description	Address	Access	Width
Collection time	0x18	RW	32
Collection time maximum length (length of the flat	top in the	Bit Va	alue
trapezoid, typically set to 0x0020 or 320ns).		1	0
Value at reset 0x01C2 (4.5us)		-	, , , , , , , , , , , , , , , , , , ,
Bits[9: 0]: Collection time		Valı	ue
Bits[31:9]: TBD			

Description	Address	Access	Width
Integration time	0x1C	RW	32
Integration time length (length of one side of the trap	ezoid).	Bit V	alue
Value at reset 0x01C2 (4.5us)		1	0
Bits[9: 0]: Integration time		Val	ue
Bits[31:9]: TBD			

Description	Address	Access	Width
Hardaware status	0x20	RW	32
		Bit V	alue
		1	0
Bits[0]: DCM Front Bus Lock signal (50MHz)		Locked	
Bits[1]: DCM Front Bus Lock signal (100MHz)			
Bits[1]: DCM VME CLK Lock signal		Locked	
Bits[2]: SD Lock signal		Locked	
Bits[15: 3]: TBD		Val	ue
Bits[31:16]: TBD			

Description	Address	Access	Width
Data package user defined data	0x24	RW	32
The data written here will show up at the	data package	Bit Va	alue
header		1	0
Bits[11: 0]: User defined data		Valı	ıe
Bits[31:12]: TBD			

Description	Address	Access	Width
Collection time low resolution channel	0x28	RW	32

Collection time maximum length (length of the flat top in the	Bit Value	
trapezoid, typically set to 0x0020 or 320ns). Value at reset 0x020 (0.32us)	1 0	
Bits[9: 0]: Collection time	Value	
Bits[31:9]: TBD		

Description	Address	Access	Width
Integration time low resolution channel	0x2C	RW	32
Integration time length (length of one side of the trapezoid).		Bit Value	
Value at reset 0x0040 (.64us)		1	0
Bits[9: 0]: Integration time		Val	ue
Bits[31:9]: TBD			

Description	Address	Access	Width
External FIFO Monitor	0x30	R	32
		Bit V	/alue
Monitors the occupancy of the external FIFO using inter	nai logic.	1	0
Bits[17: 0]: FIFO occupancy		Val	Lue
Bits[19:18]: TBD			
Bits[20]: FIFO full flag			
Bits[21]: FIFO empty flag			
Bits[22]: FIFO programmable almost full flag (Har 1023)	rd coded to		
<pre>Bits[23]: FIFO programmable almost empty flag (Has 261120)</pre>	rd coded to		
Bits[31:24]: TBD			

Description	Address	Access	Width
Control/Status channel #Number	*	RW	32
This register address is the only one that is read/write.		Bit	Value
This register address is the only one that is read/write	١.	1	0
Bit 0: START/STOP. This bit must be set to one for t	he channel		
to operate. Value at reset is 0. Read/Write.			
Bit 1: Debug Mode. This bit when set to 1 puts the			
debug mode operation using internal data. Value at reset Write)	0. (Read/		
Bit 2: Pile-up drop-out enable. When this bit is set t channel drops any event that occurs in a pileup winder just notifies pileup through a flag in the event header. Value at reset 1. Read/Write.			
Bits [3]: Channel Pre-sum			
Pre-sum all ADC data coming into the channel.		Pre-sum	Normal
Value a reset: 0. Read/Write.			
Bits [4]: Trigger mode. We have the following configura	tion:	External	_
0: Internal mode		Trigger	Internal
1: <external> NOT IMPLEMENTED YET Value a reset: 0. Read/Write.</external>		<tbd></tbd>	Trigger
Bit 5: CFD Tap delay setup. If set to 0, the tap filling-up and no event can be acquired. Read-only.	deray is		
Bit 6: Tap delay 1 setup. If set to 0, the tap delay i	e filling-		
up and no event can be acquired. Read-only.	.s rrrring		
Bit 7: Tap delay 2 setup. If set to 0, the tap delay is	s filling-		
up and no event can be acquired. Read-only.	.0 11111119		
Bit 8: Tap delay 3 setup. If set to 0, the tap delay is	s filling-		1
up and no event can be acquired. Read-only.	9		
Bit 9: Tap delay 4 setup. If set to 0, the tap delay i	s filling-		
up and no event can be acquired. Read-only.	-		

Bits [11:10]: Polarity validation. Value at reset 11.		
01: only positive trigger considered		
10: only negative trigger considered		
11: both triggers considered		
00: no trigger considered (the LED still fires		
externally though, as opposed to		
START/STOP) Read/Write.		
Bit 12: Select CFD. (not implemented)		
Bit 13: Select Pole-zero		
Bit 14: Enable pole-zero data to be sent as trace	PZ output	Raw data
Bit 15: Pre-buffer Ready flag		
Bit 16: VALIDATE_TRIG; timming SM block		
Bit 17: VALIDATE; timming SM block		
Bit 18: Proc_LEDsig; timming SM block		
Bit 19: CC_LED; timming SM block		
Bits[21:20]: STATE; timming SM block		
Bit 22: Base line restorer enable.	Enabled	Disabled
Bits[31:23]: TBD		

• There is one of this registers for each channels and their address are specified by the next table

Description	Address	Access	Width
Control/Status channel 0	0x40	RW	32
Control/Status channel 1	0x44	RW	32
Control/Status channel 2	0x48	RW	32
Control/Status channel 3	0x4C	RW	32
Control/Status channel 4	0x50	RW	32
Control/Status channel 5	0x54	RW	32
Control/Status channel 6	0x58	RW	32
Control/Status channel 7	0x5C	RW	32
Control/Status channel 8	0x60	RW	32
Control/Status channel 9	0x64	RW	32
Control/Status channel central contact low resolution (CCLR)	0x68	RW	32

Description	Address	Access	Width
LED Threshold & PZ multiplier	*	RW	32
This is the Leading Edge Discriminator (LED) threshold	d. Only bits	Bit Va	alue
17 to 0 are used. This is an unsigned value and the bits are extra precision bit. (The dot is between bit 3 The value at reset is $0x1FFFF$ (full range so that no extrigger). It is internally converted to a signed value to how the sign of the current sample is. The Pole zero multiplier default value is 1536 (600h) time constant is given by $t = (2^23/PoleZeroMultipl 54.6us$. The time constant increments in steps of $(0.57/1)$	and 2). event should depending on . Pole zero .ier)*10ns =	1	0
Bits[16: 0]: LED Threshold		Valı	ue
Bits[31:20]: Pole Zero multiplier			

^{*} There is one of this registers for each channels and their address are specified by the next table.

Description	Address	Access	Width
LED Threshold 0	0x80	RW	32
LED Threshold 1	0x84	RW	32

LED Threshold 2	0x88	RW	32
LED Threshold 3	0x8C	RW	32
LED Threshold 4	0x90	RW	32
LED Threshold 5	0x94	RW	32
LED Threshold 6	0x98	RW	32
LED Threshold 7	0x9C	RW	32
LED Threshold 8	0XA0	RW	32
LED Threshold 9	0xA4	RW	32
LED Threshold central contact low resolution	0xA8	RW	32

Description	Address	Access	Width
CFD Parameters	*	RW	32
Bit 12-7: CFD delay. Value at reset is 0x3F giving	a delay of	Bit Va	alue
630ns. For the algorithm to perform correctly this del smaller then the collection time. Bit 6-5: CFD fraction. It is a value indicating what used (see table 9 for values). Value at reset is "00 fraction of 0.5. Bit 4-0: CFD threshold. It is an unsigned value of threshold. The dot is after bit 0. Value at reset (160kev).	fraction is D' giving a of the CFD	1	0
Bits[4: 0]: CFD threshold		Valu	ıe
Bits[6: 5]: CFD fraction		Valu	ıe
Bits[12: 7]: CFD delay		Valu	ıe
Bits[31:13]: TBD			

- There is one of this registers for each channels and their address are specified by the next table.

 We may need some more parameters such as an integration time for the pulse going into the CFD (DCR, 8/31/2006)

Description	Address	Access	Width
CFD Parameters 0	0xc0	RW	32
CFD Parameters 1	0xC4	RW	32
CFD Parameters 2	0xC8	RW	32
CFD Parameters 3	0xCC	RW	32
CFD Parameters 4	0xD0	RW	32
CFD Parameters 5	0xD4	RW	32
CFD Parameters 6	0xD8	RW	32
CFD Parameters 7	0xDC	RW	32
CFD Parameters 8	0xE0	RW	32
CFD Parameters 9	0xE4	RW	32
CFD Parameters central contact low resolution	0xE8	RW	32

Description	Address	Access	Width
Window Timing Register	*	RW	32
		Bit Va	alue
		1	0
Bits[3: 0]: Channel pre-sum divider value			
Enabled with pre-sum enable bit			
X"0": Divide by 1. (Default)		Val	
X"1": Divide by 2.		Vali	ie.
X"2": Divide by 4.			
X"3": Divide by 8.			
Bits[7: 4]: Channel pre-sum rate value			
Enabled with pre-sum enable bit			
X"0": Sum 2 samples. (Default)		Value	
X"1": Sum 4 samples.		Vali	ie.
X"2": Sum 8 samples.			
X"3": Sum 10 samples.			
Bits[11: 8]: Multi-rate pre-sum divider value			
Active in the baseline and flat top data windows	dows		
X"0": Divide by 1. (Default)			
X"1": Divide by 2.		Vali	ie.
X"2": Divide by 4.			
X"3": Divide by 8.			

Bits[15: 12]: Multi-rate pre-sum rate value Active in the baseline and flat top data windows X"0": Sum 2 samples. (Default) X"1": Sum 4 samples. X"2": Sum 8 samples. X"3": Sum 10 samples.	Value
Bits[26: 16]: Flat top window counter value Number of samples in the flat top window +4. Default: 256	Value
Bits[31:27]: TBD • There is one of this registers for each channels and their address are specified by the next tab	le

Description	Address	Access	Width
Window Timing Register 0	0x100	RW	32
Window Timing Register 1	0x104	RW	32
Window Timing Register 2	0x108	RW	32
Window Timing Register 3	0x10C	RW	32
Window Timing Register 4	0x110	RW	32
Window Timing Register 5	0x114	RW	32
Window Timing Register 6	0x118	RW	32
Window Timing Register 7	0x11C	RW	32
Window Timing Register 8	0x120	RW	32
Window Timing Register 9	0x124	RW	32
Window Timing Register central contact low resolution	0x128	RW	32

Description	Address	Access	Width		
Rising Edge Window Register	*	RW	32		
		Bit Value			
		1	0		
Bits[10: 0]: Post Rising Edge Window Counter Value Number of samples in the post rising edge window Default: 512	Val	ue			
<pre>Bits[22: 12]: Pre Rising Edge Window Counter Value Number of samples in the pre rising edge window Default: 512</pre>	of samples in the pre rising edge window +13.		ue		
Bits[31:23]: TBD					

[•] There is one of this registers for each channels and their address are specified by the next table.

Description	Address	Access	Width
Rising edge window 0	0x140	RW	32
Rising edge window 1	0x144	RW	32
Rising edge window 2	0x148	RW	32
Rising edge window 3	0x14C	RW	32
Rising edge window 4	0x150	RW	32
Rising edge window 5	0x154	RW	32
Rising edge window 6	0x158	RW	32
Rising edge window 7	0x15C	RW	32
Rising edge window 8	0x160	RW	32
Rising edge window 9	0x164	RW	32
Rising edge window central contact low resolution	0x168	RW	32

Description					Address		3	Access	Width		
Hit rate counter					*		R	32			
Counter th	at shows	the hi	rate	on	each	channel.	The	rate	is	Bit Value	
updated eve	ery second									1	0
										-	
Bits[31:0)]: Hit rat	te								Val	ue

There is one of this registers for each channels and their address are specified by the next table.

Description	Address	Access	Width
Hit rate counter ch 0	0x180	RW	32

Hit rate counter ch 1	0x184	RW	32
Hit rate counter ch 2	0x188	RW	32
Hit rate counter ch 3	0x18C	RW	32
Hit rate counter ch 4	0x190	RW	32
Hit rate counter ch 5	0x194	RW	32
Hit rate counter ch 6	0x198	RW	32
Hit rate counter ch 7	0x19C	RW	32
Hit rate counter ch 8	0x1A0	RW	32
Hit rate counter ch 9	0x1A4	RW	32
Hit rate counter central contact low resolution	0x1A8	RW	32

Description	Address	Access	Width	
DAC	0x400	RW	32	
Update This register defines which signal is going t	Bit V	alue		
into the dac output at every clock cycle.		1	0	
Bit [3: 0]: Mux selection: value 0 to 9 DAC output of channels 0 to 9 respectivalue A DAC outputs x7F value B DAC outputs x4A value C DAC outputs x4A value D DAC outputs x4E value D DAC outputs xEE value E DAC outputs bethis same this same register Bits[11: 4]: Data to be written by the DAC	the digitizer vely	Val	ue	
Bits[31:12]: TBD		Val	ue.	

Description	Address	Access	Width
Slave front bus status (MSB) / Control (LSB)	0x480	RW	32
This register contains several controls for the slav	Bit V	alue	
(bits 150) and status for the same module (3116) .		1	0
Bits[0]: slave front bus enable. If disabled the ignore all the commands received by the front bus. From is not affected by this control.		Enabled	Dis.
Bits[1]: Header memory validate overwrite. When spackages that are built in the pre buffer memory are validated and readout. Basically this will be a happens when the CC fires all channels are readout autothey are set to TTCS mode (see channel control status more info in trigger modes).	Value		
Bits[2]: Reset Debug counters		Value	
<pre>Bits[3]: Reset counter for Sync commands received bus slave logic.</pre>	by the Front		
<pre>Bits[4]: Reset counter for Imperative Sync commands the Front bus slave logic.</pre>	received by		
<pre>Bits[5]: Reset counter for Latch status commands red Front bus slave logic.</pre>	ceived by the		
<pre>Bits[6]: Reset counter for Header memory valid received by the Front bus slave logic.</pre>	ate commands		
Bits[7]: Reset counter for Header memory read sl. pattern) commands received by the Front bus slave logic.	ow data (hit		
<pre>Bits[8]: Reset counter for front end reset commands the Front bus slave logic.</pre>	received by		
<pre>Bits[9]: Reset counter for front end calibration in- received by the Front bus slave logic.</pre>	ject commands		
<pre>Bits[17:16]: slave board ID (00 Master board; 01,10 boards). They are set by the LSB of the G.A.</pre>	Read only		
Bits[31: 3]: TBD			

Description Ad	ddress Acc	ess Width	ı
----------------	------------	-----------	---

Latch status of stamp LSB	command central	contact (cha	nnel 9) time	0x484	RW	32
After a latch	command the	TS on channel	zero will be	latched in	Bit Va	lue
this register.					1	0
Bits[31: 0]:	TS [31:0]				Valu	ie

Description					Address	;	Access	Width		
Latch status co	ommand ce	entral	contac	t (char	nnel 9) time	0x488		RW	32
After a latch	command	the TS	on c	hannel	zero	will k	e latched	in	Bit Value	
this register.									1	0
Bits[15: 0]:	TS [47:	32]							Valı	ıe
Bits[31:16]:	TBD									

Send box18

Description	Address	Access	Width	
Central contact (channel 9) time stamp LSB	0x48C	RW	32	
This register shows the LSB of the central contact (ch.	annel 9) time	Bit Va	alue	
stamp.		1	0	
Bits[31: 0]: TS [31:0]		Value		

Description	Address	Access	Width
Central contact (channel 9) time stamp MSB	0x490	RW	32
This register shows the MSB of the central contact (ch	nannel 9) time	Bit Value	
stamp.		1	0
Bits[15: 0]: TS [47:32]		Valı	ıe .
Bits[31:16]: TBD			

Description	Address	Access	Width
Sync counter	0x494	RW	32
This counter is increased by one every time the sla	ve front bus	Bit Value	
logic received a sync command.		1	0
Bits[31: 0]: Counter		Valı	ue

Description	Address	Access	Width
Imperative Sync counter	0x498	RW	32
This counter is increased by one every time the slav	ve front bus		
logic received a imperative sync command.			0
Bits[31: 0]: Counter			

Description	Address	Access	Width
Latch status counter	0x49C	RW	32
This counter is increased by one every time the sla	ve front bus		-
logic received a latch command.			0
Bits[31: 0]: Counter			

Description	Address	Access	Width
Header memory validate counter	0x4A0	RW	32
This counter is increased by one every time the slav	ve front bus	Bit Va	alue
logic received a header memory validate command. One should be written to the digitizer FIFO.	data package	1	0
Bits[31: 0]: Counter		Valı	ıe

Description	Address	Access	Width
Header memory read slow data counter	0x4A4	RW	32
This counter is increased by one every time the sla	ve front bus		
logic received a read slow data (hit pattern) command.			0
Bits[31: 0]: Counter			

Description	Address	Access	Width

Front end reset and calibration inject counters 0x4A8	RW	32
This counter is increased by one every time the slave front bus		
logic received a front end reset (MSB) or calibration inject (LSB)		0
command.		, , , , , , , , , , , , , , , , , , ,
Bits[15: 0]: calibration inject counter		
Bits[31:16]: front end reset counter		

Description	Address	Access	Width
Slave Front Bus Send Box 10	0x4AC	RW	32
Default value xDEADF00D.		Bit V	alue
		1	0
Bits[31: 0]: TBD		Val	ue

Description	Address	Access	Width
Slave Front Bus Send Box 9	0x4B0	RW	32
Default value xDEADF00D.		Bit V	alue
		1	0
Bits[31: 0]: TBD		Val	ue

Description	Address	Access	Width
Slave Front Bus Send Box 8	0x4B4	RW	32
Default value xDEADF00D.		Bit Value	
		1	0
Bits[31: 0]: TBD		Val	ue

Description	Address	Access	Width
Slave Front Bus Send Box 7	0x4B8	RW	32
Default value xDEADF00D.		Bit Va	alue
		1	0
Bits[31: 0]: TBD		Valı	ue

Description	Address	Access	Width
Slave Front Bus Send Box 6	0x4BC	RW	32
Default value xDEADF00D.		Bit V	alue
Dolutio value iibliibi vob.		1	0
Bits[31: 0]: TBD	TBD Value		ue

Description	Address	Access	Width
Slave Front Bus Send Box 5	0x4C0	RW	32
Default value xDEADFOOD.		Bit V	alue
Delault Value XDEADFOOD.		1	0
Bits[31: 0]: TBD		Val	ue

Description	Address	Access	Width
Slave Front Bus Send Box 4	0x4C4	RW	32
Default value xDEADF00D.		Bit Value	
Delault value XDEADFOOD.		1	0
Bits[31: 0]: TBD	: TBD Value		ue

Description	Address	Access	Width
Slave Front Bus Send Box 3	0x4C8	RW 32	
D.C. 11 .1 . DENDEROOD		Bit V	alue
Default value xDEADF00D.		1	0
Bits[31: 0]: TBD		Val	ue

Description	Address	Access	Width
Slave Front Bus Send Box 2	0x4CC	RW	32

Default value xDEADF00D.	Bit Value
Delault Value XDEADF00D.	1 0
Bits[31: 0]: TBD	Value

Description	Address	Access	Width
Slave Front Bus Send Box 1	0x4D0	RW	32
Default value xDEADF00D.		Bit Value	
		1	0
Bits[31: 0]: TBD		Val	ue

Description	Address	Access	Width
Slave Front bus register 00	0x4D4	RW	32
Bits zero to nine are commands that are going to be ex	ecuted by the	Bit V	7alue
slave front bus. They self clear after the execucommand.	ition of the	1	0
Bits[0]: Sync command		Val	ue
Bits[1]: Front End Calibration Inject		Val	ue
Bits[2]: Latch Status		Val	ue
Bits[3]: Front End reset		Val	ue
Bits[4]: Imperative sync		Val	ue
Bits[5]: HM validate		Val	ue
Bits[6]: HM read slow data command			
Bits[9: 6]: TBD		Val	ue
Bits[10: 19]: FB register 1		Val	ue
Bits[20: 29]: FB register 2		Val	ue
Bits[31: 30]: TBD		Val	ue

	Description	Address	Access	Width
Slave Front bus	register 01	0x4D8	R	32
Default value xD1	E3DE00D	Bit Val		alue
Delault value XDI	EADF UUD.		1 0	
Bits[9: 0]:	Channels hit pattern		Val	ue
Bits[19:10]:	FB register 1			
Bits[29:20]:	FB register 2			
Bits[31:30]:	TBD			

	Description	Address	Access	Width
Slave Front bus r	register 02	0x4DC	R	32
D. C. 11 .1 . DE	13.DE0.0.D	Bit Value		alue
Default value xDE	SADEUUD.		1	
Bits[9: 0]: E	FB register 0		Valı	ıe .
Bits[19:10]: E	FB register 1			
Bits[29:20]: E	FB register 2			
Bits[31:30]: T	TBD .			

Description	Address	Access	Width
Slave Front bus register 03	0x4E0	R	32
Default value xDEADF00D.		Bit V	7alue
Default value xDEADFOOD.		1	0
Bits[9: 0]: FB register 0		Val	ue
Bits[19:10]: FB register 1			
Bits[29:20]: FB register 2			
Bits[31:30]: TBD			
Description	Address	Access	Width
Slave Front bus register 04	0x4E4	R	32
Default value xDEADF00D.		Bit V	alue
Delault Value XDEADFOOD.		1	0
Bits[9: 0]: FB register 0		Value	
Bits[19:10]: FB register 1			

Bits[29:20]:	FB register 2			
Bits[31:30]:	TBD			
	Description	Address	Access	Width
Slave Front bus		0x4E8	R	32
			Bit V	/alue
Default value x	DEADFOOD.		1	0
Bits[9: 0]:	FB register 0		Val	Lue
Bits[19:10]:	FB register 1			
Bits[29:20]:	FB register 2			
Bits[31:30]:	TBD			
	Description	Address	Access	Width
Slave Front bus	-	0x4EC	R	32
			Bit V	/alue
Default value x	DEADFOOD.		1	0
Bits[9: 0]:	FB register 0		Val	Lue
Bits[19:10]:	FB register 1			
Bits[29:20]:	FB register 2			
Bits[31:30]:	TBD			
	Description	Address	Access	Width
Slave Front bus		0x4F0	R	32
		0	Bit V	/alue
Default value x	:DEADF00D.		1	0
Bits[9: 0]:	FB register 0		Val	Lue
	FB register 1			
Bits[29:20]:	FB register 2			
Bits[31:30]:				

	Description	Address	Access	Width
Slave Front bus	register 08	0x4F4	R	32
Default value xDEADF00D.		Bit V	Bit Value	
			1	0
Bits[9: 0]: 1	FB register 0		Val	ue
Bits[19:10]:	FB register 1			
Bits[29:20]:	FB register 2			
Bits[31:30]: 5	ГВD			

	Description	Address	Access	Width
Slave Front bus	register 09	0x4F8	R	32
Default value xDEADF00D.		Bit V	Bit Value	
			1	0
Bits[9: 0]:	FB register 0		Valı	ıe e
Bits[19:10]:	FB register 1			
Bits[29:20]:	FB register 2			
Bits[31:30]:	TBD			

	Description	Address	Access	Width
Slave Front bus	register 10	0x4FC	R	32
Default value xDEADF00D.		Bit Va	Bit Value	
			1	0
Bits[9: 0]:	FB register 0		Valı	ue
Bits[19:10]:	FB register 1			
Bits[29:20]:	FB register 2			
Bits[31:30]:	TBD			

Description	Address	Access	Width
Master Logic Control/Status 1	0x500	RW	32
		Bit Value	

1	0

Bits[0]: Master Logic Enabled	Enabled	Disabled
Bits[1]: Start Snap Shot	Va	alue
Bits[2]: SD_Local_LE	Va	alue
Bits[3]: SD_Line_LE		alue
Bits[4]: SD_PEM(0)	Va	alue
Bits[5]: SD_PEM(1)	Va	alue
<pre>Bits[6]: FB_Debug_Command (1 data transfer only)</pre>	Va	alue
Bits[7]: FB_Debug_Command (continuous data transfer)	Va	alue
Bits[8]: Reset Serdes lost lock flag	_	os the flag reset.
Bits[9]: Snap Shot reset		
Bits[10]: Snap Shot read data select	SD_TX	SD_RX
Bits [11]: Snap Shot trigger on CC_LED event	Va	alue
Bits [12]: Enable Serdes Tx dc balance component	Va	alue
<pre>Bits [13]: Enable central contact low resolution data package readout.</pre>	Enabled	Disabled
Bits [14]: Enable master header readout.	Enabled	Disabled
Bits [15]: Enable slave header readout.	Enabled	Disabled
Bits [16]: FIFO Full	Va	alue
Bits [17]: SD_Lock	Value	
Bits [18]: HasDataFlag	Va	alue
Bits [19]: FB_Busy high level logic	Va	alue
Bits [20]: FB_Busy low level logic	Va	alue
Bits [21]: Snap Shot Busy RX	Va	alue
Bits [22]: Snap Shot Empty RX	Value	
Bits [23]: Serdes RX SM in sync with TTCL system	Va	alue
Bits [24]: Serdes lost lock flag Value		alue
Bits [25]: Snap Shot Busy TX Value		alue
Bits [26]: Snap Shot Empty TX	Va	alue
Bits[31:27]: TBD	Va	alue

Description	Address	Access	Width
Master Logic Control/Status 2	0x504	RW	32
		Bit V	alue
		1	0
Bits[15: 0]: Number of clock cycles that the CC_LE stay high. The CC_LED flag signal is TTCL through one of the serdes auxiliary	sent to the	Val	ue
Bits[16]: Overwrite time stamp comparison. When decision is made and this bit is enabled trigger decision will generate a Ecommand to all HM in the digitizers.	d then every		
Bits[17]: Reset master logic (main and front bus) debu	g counters		
<pre>Bits[18]: Reset counter for Sync commands received k bus slave logic.</pre>	by the Front		
<pre>Bits[19]: Reset counter for Imperative Sync commands the Front bus slave logic.</pre>	received by		
<pre>Bits[20]: Reset counter for Latch status commands reco Front bus slave logic.</pre>	eived by the		
Bits[21]: Reset counter for Header memory validate commands received by the Front bus slave logic.			
Bits[22]: Reset counter for Header memory read slo pattern) commands received by the Front bus slave logic.	w data (hit		
<pre>Bits[23]: Reset counter for front end reset commands the Front bus slave logic.</pre>	received by		
<pre>Bits[24]: Reset counter for front end calibration inj received by the Front bus slave logic.</pre>	ect commands		
Bits[25]: Reset counter for package error on serdes RX	module		
Bits[31: 25]: TBD		Val	ue

Description	Address	Access	Width	
DeltaT155_DeltaT255	0x508	RW	32	
Timite of the time windows for the commonless time wife		Bit Va	it Value	
Limits of the time windows for the comparison type x55.		1	0	
Bits[0: 12]: Time to be added		Valı	ue	

Bits[16: 28]: Time to be subtracted	Value
-------------------------------------	-------

Description	Address	Access	Width
DeltaT15A_DeltaT25A	0x50C	RW	32
Timite of the time windows for the commendate time use		Bit Va	
Limits of the time windows for the comparison type x5A.		1	0
Bits[0: 12]: Time to be added		Val	ue
Bits[16: 28]: Time to be subtracted		Val	ue

Description	Address	Access	Width
DeltaT1A5_DeltaT2A5	0x510	RW	32
The late of the time of the control		Bit Value	
Limits of the time windows for the comparison type xA5.		1	0
Bits[0: 12]: Time to be added		Valı	ue
Bits[16: 28]: Time to be subtracted		Valı	ıe .

Description	Address	Access	Width
SnapShot	0x514	RW	32
This register is used to read all the data captured by the snap		Bit V	alue
shot memory. This memory stores the data received by th	e SerDes.	1	0
Bits[0: 9]:		Val	ue
Bits[10: 19]:		Val	ue
Bits[20: 29]:	0: 29]: Value		ue
Bits[31: 30]: TBD		Val	ue

Description	Address	Access	Width
XTAL ID	0x518	RW	32
VIII TO A COLUMN TO THE TOTAL TO		Bit V	alue
XTAL ID used on the slow data that is sent to the TTCL.		1	0
Bits[7: 0]: XTAL ID Value		ie	
Bits[31: 8]: TBD		Valı	ue

Description	Address	Access	Width
Length of Time to Get Hit Pattern	0x51C	RW	32
If necessary to add a delay on the CC LED signal that	goes to the	Bit Va	alue
slave boards this register shows how big it is. Default	zero	1	0
Bits[15: 0]: Time		Valı	ıe
Bits[31: 16]: TBD		Valı	ıe

Description	Address	Access	Width
Front Bus Debug Register	0x520	RW	32
		Bit V	alue
Data that tell what information is to be read/written	irom the FB.	1	0
Bits[9: 0]: Write Data			
Bits[11: 10]: 00			
Bits[19: 12]: Address		Val	ue
Bits[27: 20]: TBD		Val	ue
Bit [28]: RNW		Val	ue
Bits[31: 29]: TBD		Val	ue

For example: If the boards are located as follow: Master board on slot 6, slave boards on slots 5, 4 and 3.

Write command through the front bus Write on 520h 30AAh

Write on 500h 41h

Write on 500h 01h

This will write on address 4D8h on the slave board on slot 4 through the front bus.

Read command through the front bus Write on 520h 10003000h

This will transfer the data from address 4D8h on the slave board on slot 4 through the front bus to address 558h in the master board.

Description	Address	Access	Width
Test digitizer Tx TTCL (not implemented)	0x524	RW	32
In order to test some of the functionalities of the	master logic	Bit V	alue
for debug purpose there is a module that generates t	he TTCL data		
package inside the SD block. This register configures	that module	1	0
as described below.			
Bits[31]: Test Enable		Val	ue
Bits[30:18]: TBD			
Bits[17]: Send data package (one time only, rising	edge)		
Bits[16]: Write enable (store user def data o	n the rising		
edge)			
Bits[15:11]: Address to write the package for the slo	w data		
Bits[10]: Fast Data - Central contact LED (Discrim	inator)		
Bits[9]: Fast Data - Error flag			
Bits[8]: Fast Data - Central contact pileup			
Bits[7: 0]: Slow Data			

Description	Address	Access	Width
Test digitizer Rx TTCL	0x528	RW	32
In order to test some of the functionalities of the	master logic	Bit V	alue
for debug purpose there is a module that generates the package inside the SD block. This register configures as described below.		1	0
Bits[31]: Rx Test Enable		Valı	ıe
Bits[30:29]: Data package selection			
<pre>Bits[28]: Send alternate data package (one time edge)</pre>	only, rising		
Bits[27:26]: Alternate data package selection			
Bits[25]: Enable DC balance.			
Bits[24]: TBD			
<pre>Bits[23]: Write data command (store user def rising edge)</pre>	data on the		
Bits[22:16]: Address to write the package for the Addresses valid range from zero to 99.	e slow data.		
Bits[15: 0]: Data			

Description	Address	Access	Width
Slave Front Bus Send Box 10	0x52C	RW	32
Default value xDEADF00D.		Bit V	alue
		1	0
Bits[31: 0]: TBD		Val	ue

Description	Address	Access	Width
Slave Front Bus Send Box 9	0x530	RW	32
Default value xDEADF00D.		Bit Va	alue
Default value XDEADFOOD.		1	0
Bits[31: 0]: TBD		Valı	ie

Description	Address	Access	Width
Slave Front Bus Send Box 8	0x534	RW	32
Default value xDEADF00D.		Bit Va	alue
Default Value XDEADFOOD.		1	0
Bits[31: 0]: TBD		Valı	ıe

Description	Address	Access	Width
Slave Front Bus Send Box 7	0x538	RW	32
D. C. 11 . 1 . DEADEOOD		Bit Va	alue
Default value xDEADF00D.		1	0

Bits[31: 0]: TBD		Value	
Description	Address	Access	Width
Slave Front Bus Send Box 6	0x53C	RW	32
Default value xDEADF00D.		Bit V	alue
Delault Value ADEADFOOD.		1	0
Bits[31: 0]: TBD		Val	ue

Description	Address	Access	Width
Slave Front Bus Send Box 5	0x540	₽₩	32
Default value xDEADF00D.		Bit V	alue
		1	0
Bits[31: 0]: TBD		Value	

Description	Address	Access	Width
Slave Front Bus Send Box 4	0x544	RW	32
Default value xDEADF00D.	value xDEADF00D.		alue
Bits[31: 0]: TBD		Val	ue

Description	Address	Access	Width
Slave Front Bus Send Box 3	0x548	RW	32
Default walve wheareoup		Bit V	alue
Default value xDEADF00D.		1	0
Bits[31: 0]: TBD	its[31: 0]: TBD		ue

Description	Address	Access	Width	
Slave Front Bus Send Box 2	0x54C	RW	32	
Default malus uppade00D		Bit Va	Bit Value	
Default value xDEADF00D.		1	0	
Bits[31: 0]: TBD		Valı	ue	

Description	Address	Access	Width
Slave Front Bus Send Box 1	0x550	RW	32
Default value xDEADF00D.		Bit V	alue
Delault Value XDEADFOOD.		1	0
Bits[31: 0]: TBD		Val	ue

Description	Address	Access	Width
FrontBus Registers 0	0x554	RW	32
		Bit Value	
		1	0
Bits[0]: Sync command		Val	ue
Bits[1]: Front End Calibration Inject		Val	.ue
Bits[2]: Latch Status		Val	.ue
Bits[3]: Front End reset		Val	ue
Bits[4]: Imperative sync		Val	ue
Bits[5]: HM validate (Write Data package into extern	nal FIFO)	Val	.ue
Bits[6]: Read Slow data info (hit pattern to send	it to trigger		
system)			
Bits[9: 6]: TBD		Val	.ue
Bits[10: 19]: TBD		Val	.ue
Bits[20: 29]: TBD		Val	.ue
Bits[31: 30]: TBD		Val	.ue

Description	Address	Access	Width
FrontBus Registers 1	0x558	RW	32
	-	Bit V	alue
		1	0

Bits[7:	0]: Serdes slow data HP_A	Value
Bits[15:	8]: Serdes slow data HP_B	Value
Bits[23:	16]: Serdes slow data HP C	Value
Bits[29:	24]: Serdes slow data HP D(5:0)	
Bits[31:	30]: TBD	Value

Description	Address	Access	Width
FrontBus Registers 2	0x55C	RW	32
		Bit Value	
		1	0
Bits[1: 0]: Serdes slow data HP D(7:6))		ue
Bits[9: 2]: Serdes slow data HP E	Value		ue
Bits[29: 10]: TBD		Value	
Bits[31: 30]: TBD		Value	

Description	Address	Access	Width	
FrontBus Registers 3	0x560	RW	32	
			alue	
		1	0	
Bits[0: 9]:		Val	.ue	
Bits[10: 19]:	[10: 19]:		Value	
Bits[20: 29]:		Value		
Bits[31: 30]: TBD		Value		

Description	Address	Access	Width
FrontBus Registers 4	0x564	RW	32
		Bit Value	
		1	0
Bits[0: 9]:		Val	.ue
Bits[10: 19]:		Val	.ue
Bits[20: 29]:		Value	
Bits[31: 30]: TBD		Value	

Description	Address	Access	Width
FrontBus Registers 5	0x568	RW	32
			alue
		1	0
Bits[0: 9]:		Val	ue
Bits[10: 19]:	Value		.ue
Bits[20: 29]:		Value	
Bits[31: 30]: TBD		Value	

Description	Address	Access	Width
FrontBus Registers 6	0x56C	RW	32
		Bit Value	
		1	0
Bits[0: 9]:		Val	ue
Bits[10: 19]:		Val	ue
Bits[20: 29]:		Value	
Bits[31: 30]: TBD		Val	ue

Description	Address	Access	Width
FrontBus Registers 7	0x570	RW	32
			alue
		1	0
Bits[0: 9]:		Val	ue
Bits[10: 19]:		Val	ue
Bits[20: 29]:		Value	
Bits[31: 30]: TBD Valu		ue	

Description	Address	Access	Width
FrontBus Registers 8	0x574	RW	32
			alue
			0
Bits[0: 9]:		Value	
Bits[10: 19]:		Value	
Bits[20: 29]:		Value	
Bits[31: 30]: TBD		Value	

Description	Address	Access	Width
FrontBus Registers 9	0x578	₽₩	32
			alue
		1	0
Bits[0: 9]:		Value	
Bits[10: 19]:		Value	
Bits[20: 29]:		Value	
Bits[31: 30]: TBD		Value	

Description	Address	Access	Width
FrontBus Registers 10	0x57C	RW	32
	-	Bit Value	
		1	0
Bits[0: 9]:		Value	
Bits[10: 19]:		Value	
Bits[20: 29]:		Value	
Bits[31: 30]: TBD		Val	.ue

Description	Address	Access	Width
Sync counter	0x580	RW	32
This counter is increased by one every time the	master logic	Bit Va	alue
received a sync command.	_	1	0
Bits[31: 0]: Counter		Valı	ıe .

Description	Address	Access	Width
Imperative Sync counter	0x584	RW	32
This counter is increased by one every time the	master logic		
received an imperative sync command.			0
Bits[31: 0]: Counter			

Description	Address	Access	Width
Latch status counter	0x588	RW	32
This counter is increased by one every time the	master logic		
received a latch command.			0
Bits[31: 0]: Counter			

Description	Address	Access	Width
Header memory validate counter	0x58C	RW	32
This counter is increased by one every time the master logic		Bit Value	
received a trigger decision command. One data packag written to the digitizer FIFO.	ge should be	1	0
Bits[31: 0]: Counter		Valı	ıe

Description	Address	Access	Width
Header memory read slow data counter	0x590	RW	32
This counter is increased by one every time the	master logic		
received a demand slow data (hit pattern) command.			0
Bits[31: 0]: Counter			

				ą,
Description	Address	Access	Width	ı

Front end reset and calibration inject counters	0x594	RW	32
This counter is increased by one every time the	master logic		
received a front end reset (MSB) or calibration command.	inject (LSB)		0
Bits[15: 0]: calibration inject counter			
Bits[31:16]: front end reset counter			

Description	Address	Access	Width
Sync counter 0x598		RW	32
This counter is increased by one every time the mast	er front bus	Bit Value	
issues a sync command.		1	0
Bits[31: 0]: Counter		Val	ue

Description	Address	Access	Width
Imperative Sync counter	0x59C	RW	32
This counter is increased by one every time the mast	er front bus		
issues an imperative sync command.			0
Bits[31: 0]: Counter			

Description	Address	Access	Width
Latch status counter	0x5A0	RW	32
This counter is increased by one every time the mast	er front bus		
issues a latch command.			0
Bits[31: 0]: Counter			

Description	Address	Access	Width
Header memory validate counter	0x5A4	RW	32
This counter is increased by one every time the maste	er front bus	Bit V	alue
issues a header memory validate command. One data packa written to the digitizer FIFO.	age should be	1	0
Bits[31: 0]: Counter		Valı	ue

Description	Address	Access	Width
Header memory read slow data counter	0x5A8	RW	32
This counter is increased by one every time the mast	er front bus		
issues a read slow data (hit pattern) command.			0
Bits[31: 0]: Counter			

Description	Address	Access	Width
Front end reset and calibration inject counters	0x5AC	RW	32
This counter is increased by one every time the mast	er front bus		
issues a front end reset (MSB) or calibration inject (L	SB) command.		0
Bits[15: 0]: calibration inject counter			
Bits[31:16]: front end reset counter			

Description	Address	Access	Width
Serdes data package error	0x5B0	RW	32
Every time the data package coming from the trigger	gets out of		
sync a Data package error command happens. This countermany time this event happened.	er shows how		0
Bits[15: 0]: counter			

Description	Address	Access	Width
CC_LED enable	0x5B4	RW	32
This register enable which signal(s) that will drive the CC LED		Bit Va	alue
signal that goes into the Master logic. This allows are be cc led and/or an external signal from the AUX IO to	-	1	0
Bits[0]: LED channel 0 enabled		Defau	lt O
its[1]: LED channel 1 enabled Default (lt O	
Bits[2]: LED channel 2 enabled		Defau	lt O

Bits[3]: LED channel 3 enabled	Default 0
Bits[4]: LED channel 4 enabled	Default 0
Bits[5]: LED channel 5 enabled	Default 0
Bits[6]: LED channel 6 enabled	Default 0
Bits[7]: LED channel 7 enabled	Default 0
Bits[8]: LED channel 8 enabled	Default 0
Bits[9]: LED channel 9 enabled	Default 1
Bits[10]: AUX_IO input enabled	Default 0
Bits[31:11]:	

Description	Address	Access	Width
Debug data buffer address	0x780	RW 32	
Used by debug module (see section XIII of the GRETINA	VHDL modules	Bit Value	
description document).		1	0
Bits[31: 0]:		Value	

Description	Address	Access	Width
Debug data buffer data	0x784	RW 32	
Used by debug module (see section XIII of the GRETINA	VHDL modules	Bit Value	
description document).		1	0
Bits[31: 0]:		Value	

Description	Address	Access	Width
LED Flag window	0x788	RW	32
Number of clock cycles the LED flag is kept high on the serdes fast		Bit Value	
data as well as on the RJ45 Auxiliary signals. Range varies from 1 (10ns) to 1024 (~1us).		1	0
Bits[31: 0]:		Val	ue

	Description	Address	Access	Width
AUX_IO_READ		0x800	RW	32
Data read from the Auxiliary IO			Bit V	alue
2404 1044 110	0.10 114111141 10		1	0
Bits[11: 0]:	Auxiliary IO input value	Value		ue
Bits[31:12]:	TBD	Value		ue

Description	Address	Access	Width
AUX_IO_WRITE	0x804	RW	32
Data written into the auxiliary IO			alue O
Bits[11: 0]: Auxiliary IO output value		Valı	ie 1
Bits[31:12]: TBD	Value		ue

Description	Address	Access	Width
AUX_IO_CONFIG	0x808	RW	32
Enable signals for the Applicant Tole drivers		Bit V	alue
Enable signals for the Auxiliary IO's drivers.		1	0
Bits[0]: EN AUX2A TX		-	
Bits[1]: EN_AUX2A_RX			
Bits[2]: EN AUX2B TX			
Bits[3]: EN_AUX2B_RX			
Bits[4]: EN_AUX2C_TX			
Bits[5]: EN_AUX2C_RX			
Bits[6]: EN_AUX2D_TX			
Bits[7]: EN_AUX2D_RX			
Bits[8]: EN AUX2E TX			
Bits[9]: EN_AUX2E_RX			
Bits[10]: EN_AUX2F_TX			
Bits[11]: EN AUX2F RX			

Bits[15: 12]: MUX control*	0000 -> Debug mode 0001 -> Mode 1 of operation 0010 -> Mode 2 of operation others-> Mode 3 of operation
Bits[31:12]:	
Bits[31:24]: Test mux - just a test it should go to 874h	Value

* Mode 1 of operation:

Auxiliary IO signal	Signal type (input/output)	Routed signal to the Aux_IO	
Aux IO (0)	Output	Global Trigger signal	
Aux IO (1)	Output	100MHz clock	
Aux IO (2)	Input	Global Validate/External trigger	
Aux IO (3)	Input	Sync signal NOT ('1' or 5V resets time stamp)	
Aux IO (4)	Input	Fake external CC_LED*- This signal will be feed to an OR gate with the CC_LED to allow an external signal to trigger all digitizers and trigger system.	
Aux IO (5)	Input	TBD	
Aux IO (6)	Input	TBD	
Aux IO (7)	Input	TBD	
Aux IO (8)	Input	TBD	
Aux IO (9)	Input	TBD	
Aux IO (10)	Input	TBD	

* Mode 2 of operation:

Auxiliary IO signal	Signal type (input/output)	Routed signal to the Aux IO
Aux IO (0)	Output	Trigger channel (0)
Aux IO (1)	Output	Trigger channel (1)
Aux IO (2)	Output	Trigger channel (2)
Aux IO (3)	Output	Trigger channel (3)
Aux IO (4)	Output	Trigger channel (4)
Aux IO (5)	Output	Trigger channel (5)
Aux IO (6)	Output	Trigger channel (6)
Aux IO (7)	Output	Trigger channel (7)
Aux IO (8)	Output	Trigger channel (8)
Aux IO (9)	Output	Trigger channel (9)
Aux IO (10)	Input	TBD

* Mode 3 of operation:

Auxiliary IO signal	Signal type (input/output)	Routed signal to the Aux_IO
Aux IO (0)	Input	TBD
Aux IO (1)	Input	TBD
Aux IO (2)	Input	TBD
Aux IO (3)	Input	TBD
Aux IO (4)	Input	TBD
Aux IO (5)	Input	TBD
Aux IO (6)	Input	TBD
Aux IO (7)	Input	TBD
Aux IO (8)	Input	TBD
Aux IO (9)	Input	TBD
Aux IO (10)	Input	TBD

	Description	Address	Access	Width
FB_READ		0x820	RW	32
_			Bit Va	alue
			1	0
Bits[11: 0]:	Auxiliary IO input value		Valı	ue
Bits[31:12]:	TBD		Valı	ıe .

Address	Access	Width
0x824	RW	32
	Bit V	alue
	1	0
	Val	.ue
	Val	.ue
		0x824 RW Bit V 1

Description	A	ddress	Access	Width
FB CONFIG		0x828	RW	32
			Bit V	alue
Not implemented in the present VHDL cod	e.		1	0
Bits[0]: FB CLK OUT EN			Enable	Disabl
Bits[1]: FB SD DP EN			Enable	Disabl
Bits[2]: FB DATA DIR			Transmit	Receiv
Bits[3]: FB DATA EN			Enable	Disabl
Bits[4]: FB CTRLO DIR			Transmit	Receiv
Bits[5]: FB_CTRL0_EN			Enable	Disabl
Bits[6]: FB CTRL1 DIR			Transmit	Receiv
Bits[7]: FB_CTRL1_EN			Enable	Disabl
<pre>Bits[8]: FB_DATA_TS - tri state date</pre>			Tri state	Enable
Bits[9]: FB ADDR TS - tri state addre	ss		Tri state	Enable
Bits[10]: FB_RNW_TS - tri state read	not write signal		Tri state	Enable
Bits[11]: FB_STRB_TS - tri state stro	be		Tri state	Enable
Bits[12]: FB SPARE TS - tri state spa	re signal		Tri state	Enable
Bits[13]: FB_LED_TS - tri state leadi	ng edge signal		Tri state	Enable
Bits[14]: FB_WORB_TS - tri state wire	d or signal		Tri state	Enable
			00 -> Debu	g mode
Bits[16: 15]: MUX control			01 -> Norm	al
			oper	ation
Bits[31:12]: TBD			Val	ue

Description	Address	Access	Width
SD_READ	0x840	RW	32
Data read from the Serdes.		Bit V	alue 0
Bits[17: 0]: SD input value		Val	ue
Bits[30:18]: TBD			
Bits[31]: Lock signal		Val	ue

Description	Address	Access	Width
SD_WRITE	0x844	RW	32
		Bit V	alue
Data written into the Serdes.		1	0
Bits[18: 0]: SD output value		Val	ue
Bits[31:12]: TBD		Val	ue

Description	Address	Access	Width
SD_CONFIG	0x848	RW	32
Configuration signals for the SD		Bit V	alue
x31 serdes disabled			
x22 Local loop and sync mode			
x02 Loop back mode			
Before using a loop back mode it is necessary to put t	he serdes in		
local loop and sync so the SD can lock and then move	to the Loop		
back mode.		1	0
If the DCM doesn't lock it is necessary to reset it.	For reliable		
use it is recommended to reset the ten channel module	e. The reset		
bit are set on reset and they should be cleared onl	ly after the		
source clock for the main FPGA is valid.			
Default value x1E31			
Bits[0]: SD_RPDWN			
Bits[1]: SD_LOCAL_LE			
Bits[2]: SD PEM 0			

Bits[3]: SD PEM 1	
Bits[4]: SD_TPDWN	
Bits[5]: SD_SYNC	
Bits[6]: SD_LINE_LE	
Bits[8: 7]: MUX control	00 -> Debug mode 01 -> Normal operation
<pre>Bits[9]: DCMResetCommand : resets both at the same time using a pre-defined time between the two.</pre>	1
${\tt Bits[10]:}$ DCMReset0 : when asserted keeps the DCM for the 50- >100MHZ clock under reset.	
<pre>Bits[11]: DCMReset1: when asserted keeps the DCM for the 100MHZ clock under reset.</pre>	
Bits[12]: TenChannelResetCommand : Reset the ten channel module.	
Bits[31:11]: TBD	Value

Description	Address	Access	Width
ADC_CONFIG	0x84C	RW	32
_	-	Bit Value	
		1	0
Bits[1:0]: Clock mux 00 => CLK		-	
01 => CLK90			
10 => CLK180			
11 => CLK270			
Bits[2]: TBD			
Bits[11: 3]: TBD			
Bits[31:12]: TBD		Val	Lue

Description	Address	Access	Width	
Self Trigger Enable	0x860	RW	32	
Set bit one to start the self trigger process. This bit resets		Bit V	Bit Value	
itself when the number of trigger events is completed trigger is valid on the external trigger mode only.	. This self	1	0	
Bit 1: Self trigger start		Val	ue	
Bits[31:2]: TBD		Val	ue	

Description	Address	Access	Width
Self Trigger Period 0x864		RW	32
m		Bit Value	
To get the period in time multiply this register by 10n	.S.	1	0
Bits[31:0]: Period between trigger events.		Valı	ue

Description	Address	Access	Width
Self Trigger Count	0x868	RW	32
		Bit Value	
		1	0
Bits[31:0]: Number of trigger events.		Valı	ue

Description	Address	Access	Width
Self Trigger Count	0x868	RW	32
		Bit Value	
		1	0
Bits[31:0]: Number of trigger events.		Val	ue

Description	Address	Access	Width
FIFOInterfaceSMReg	0x870	RW	32

FIFOInterfaceSMReg(31 downto 28) <= "0000";		Bit Value	
FIFOInterfaceSMReg(27 downto 19)	<= ADDRESS;		
FIFOInterfaceSMReg(18)	<= READDone;		
FIFOInterfaceSMReg(17)	<= BEINGRead;	1	0
FIFOInterfaceSMReg(16 downto 4)	<= PREBUFFER READY;		
FIFOInterfaceSMReg(3 downto 0)	<= STATE;		
Bits[31:0]: Number of trigger eve	ents.	Value	е

Description	Address	Access	Width
Test signals register	0x874	RW	32
The digitizer board has 16 test signal plus a test clock (see		Bit Value	
connector P11). This register sets which signals are output into those signals.	going to be	1	0
Bits[7:0]: Selects signal to be output into the test p	oins.		
Bits[31:12]: TBD		Val	ue

```
Selection 00
```

Testsig00(15) <= FIFO_PAF_N; Testsig00(14 downto 0) <= TenChannelDebugsig(14 downto 0);

Where

DEBUG_CHANNEL_SELECT => TenChannelDEBUG (3 DOWNTO 0), --open DEBUG_SIZE => TenChannelDEBUG (12 DOWNTO 4) --open TenChannelDEBUG(13) <= ENABLEout(0); TenChannelDEBUG(14) <= PREBUFFER_ACK(0);

Selection 01

Testsig01(15) <= LED_TRIGGERsig(9); Testsig01(14) <= CC LEDsig; Testsig01(13) <= FB_LED_OUTsig; Testsig01(12) <= HM Validatesig Testsig01(11) <= FIFO_OE_N; Testsig01(10) <= FIFO_WEN_N; <= StatusReg9sig(15);-- <= PREBUFFER READY; Testsig01(9) Testsig01(8 downto 7)<= StatusReg9sig(11 downto 10);-- <= TRIG_POLARITY; Testsig01(6 downto 5)<= StatusReg9sig(4 downto 3);-- <= TRIG_MODE;

Testsig01(4) <= StatusReg9sig(2);-- <= PILEUP;
Testsig01(3) <= StatusReg9sig(0);-- <= ENABLE;
Testsig01(2) <= PREBUFFER_ACKMSDebugsig(9);
Testsig01(1) <= PREBUFFER_READYDebugsig(9);

Testsig01(0) <= FB_SYNCsig;

Selection 02

Testsig02(9 downto 5)<= PREBUFFER_ACKMSDebugsig(9 downto 5); Testsig02(4 downto 0)<= PREBUFFER_READYDebugsig(9 downto 5);

Selection 03

 $\label{eq:control_transform} \begin{array}{lll} Testsig03(15) & <= LED_TRIGGERsig(9); \\ Testsig03(14) & <= CC_LEDsig; \\ Testsig03(13) & <= FB_LED_OUTsig; \\ Testsig03(12) & <= HM_Validatesig \\ Testsig03(11) & <= FIFO_OE_N; \\ Testsig03(10) & <= FIFO_WEN_N; \\ Testsig03(9 downto 5) <= PREBUFFER_ACKMSDebugsig(4 downto 0); \\ \end{array}$

Testsig03(4 downto 5)<= PREBUFFER_ACKMSDebugsig(4 downto 0); Testsig03(4 downto 0)<= PREBUFFER_READYDebugsig(4 downto 0);

Epics commands

Esc k brings

1 RIGHT

h left

x delete
i insert esc
return
r single character replacement