Question 3.1 (5pts) Solve the following recurrence equations by the master Theorem or any method that we discussed in class

- 1. $T(n) = 32T(n/4) + n^2\sqrt{n}$
- 2. $T(n) = 3T(n/9) + n^4 \lg n$
- 3. $T(n) = 8T(n/4) + n\sqrt{n}$
- 4. $T(n) = T(n-1) + \lg n$
- 5. T(n) = 2T(n/2 1)

Master Theorem: Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence:

$$T(n) = \begin{cases} aT(n/b) + f(n) & \text{if } n > 1, \\ \Theta(1) & \text{if } n = 1. \end{cases}$$

Then T(n) has the following asymptotic bounds:

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le kf(n)$ for some constant k < 1 and sufficiently large n, then $T(n) = \Theta(f(n))$.

Answer

1. $T(n) = 32T(n/4) + n^2\sqrt{n}$

given a common form of this recurrence

$$T(n) = aT(n/b) + f(n)$$

so, we obtain

$$a = 32$$
 $b = 4$ $f(n) = n^2 \sqrt{n} = n^{5/2} = O(n^{5/2})$

also we have

$$\log_b a = \log_4 32 = \log_{2^2} 2^5 = 5/2 \lg 2 = 5/2$$

it's case 2 of master theorem where if $f(n) = n^{5/2} = \Theta(n^{\log_b a}) = O(n^{5/2})$

then the complexity is easier to obtain i.e by second case master theorem

$$T(n) = O(n^{5/2} \lg n)$$

2.

$$T(n) = 3T(n/9) + n^4 \lg n$$

given a common form of this recurrence

$$T(n) = aT(n/b) + f(n)$$

so, we obtain

$$a = 3$$
 $b = 9$ $f(n) = n^4 \lg n$

also we have

$$\log_b a = \log_9 3 = 1/2$$

it seems we need to use the third case of master theorem since $n^{1/2}$ is smaller than $n^4 \lg n$

$$f(n) = n^4 \lg n = \Omega(n^{1/2+\epsilon})$$
 choose $\epsilon = 3$

but we need to check the regularity condition, so the third case master theorem can be applied.

$$af(n/b) = 3f(n/9) = 3\left(\frac{n}{9}\right)^4 \lg\left(\frac{n}{9}\right) \le \frac{3}{9^4}n^4 \lg n = \frac{3}{9^4} \lg n$$

we get $c = 3/9^4$ then the third case master theorem can be applied, it implies

$$T(n) = \Theta(n^4 \lg n)$$

3. $T(n) = 8T(n/4) + n\sqrt{n}$ given a common form of this recurrence

$$T(n) = aT(n/b) + f(n)$$

so, we obtain

$$a = 8$$
 $b = 4$ $f(n) = n^{3/2}$

also we have $\log_4 8 = 3/2$, which $n^{3/2}$ same as $f(n) = n^{3/2}$ then we use second case of master theorem

$$T(n) = \Theta(n^{3/2} \lg n)$$

4. $T(n) = T(n-1) + \lg n$

$$T(n) = T(n-1) + \lg n$$

$$= [T(n-2) + \lg(n-1)] + \lg n$$

$$= [T(n-3) + \lg(n-2)] + \lg(n(n-1))$$

$$= \vdots$$

$$= [T(3) + \lg(4)] + \lg(n!/4!)$$

$$= [T(2) + \lg(3)] + \lg(n!/3!)$$

$$= [T(1) + \lg(2)] + \lg(n!/2!)$$

$$= T(1) + \lg n!$$

$$= 1 + \lg n! = O(\lg n!)$$

$$< 1 + \lg n^n = O(n \lg n)$$

which there is a fact that $O(\lg n!) = O(n \lg n)$

5. T(n) = 2T(n/2 - 1) let n = m + c

$$T(n) = 2T(n/2 - 1)$$

$$T(m+c) = 2T\left(\frac{m+c}{2} - 1\right)$$

$$T(m+c) = 2T(m/2 + c/2 - 1)$$

find c such that

$$c = c/2 - 1 \rightarrow c/2 = -1 \rightarrow c = -2$$

and let

$$S(m) = T(m-2) = 2T(m/2-2)$$

also

$$S(m/2) = T(m/2 - 2)$$

we obtain

$$S(m) = 2S(m/2)$$

then by master theorem

$$a = 2 \qquad b = 2 \qquad f(n) = 0$$

also we have

$$\log_b a = \log_2 2 = 1$$

then it seems necessary to use the first master theorem case.

$$f(m) = 0 = O(m^{1-\epsilon}) \qquad , \epsilon = 0.5$$

then we get the complexity of $S(m) = \Theta(m) \to T(n) = S(n+2) = \Theta(n+2) = \Theta(n)$