

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	Информатика и системы управления (ИУ)
КАФЕДРА	Программное обеспечение ЭВМ и информационные технологии (ИУ7)

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3 «ОБРАБОТКА РАЗРЕЖЕННЫХ МАТРИЦ»

Студент, группа

Буланый К., ИУ7-36Б

Описание условия задачи

Разреженная (содержащая много нулей) матрица хранится в форме 3-х объектов:

- вектор А содержит значения ненулевых элементов;
- вектор IA содержит номера строк для элементов вектора A;
- связный список **JA**, в элементе **Nk** которого находится номер компонент в **A** и **IA**, с которых начинается описание столбца **Nk** матрицы **A**.
- 1. Смоделировать операцию сложения двух матриц, хранящихся в этой форме, с получением результата в той же форме.
- 2. Произвести операцию сложения, применяя стандартный алгоритм работы с матрицами.
- 3. Сравнить время выполнения операций и объем памяти при использовании этих 2-х алгоритмов при различном проценте заполнения матриц.

Техническое задание

Входные данные:

- 1. **Целое число, представляющее собой номер команды:** целое число в диапазоне от **0** до **6**.
- 2. Данные, зависящие от команды:
 - количество строк/столбцов матрицы, количество элементов матрицы, элементы матрицы в формате **"строка столбец значение"**;
 - количество строк/столбцов матрицы, процент ненулевых элементов матрицы.

Выходные данные:

- 1. Исходные и результирующая матрицы в стандартном виде или разреженном столбцовом виде.
- 2. Время сложения матриц.

Функция программы:

- 1. Ввести матрицы вручную.
- 2. Сгенерировать матрицы случайно (по проценту заполненности).
- 3. Сложить матрицы, используя стандартный способ хранения.
- 4. Сложить матрицы, используя разреженный столбцовый вид хранения.
- 5. Вывести исходные и результирующую матрицы в стандартном виде.
- 6. Вывести исходные и результирующую матрицы в разреженном столбцовом виде.

Обращение к программе: запускается из терминала.

Аварийные ситуации:

- 1. Некорректный ввод номера команды. На входе: число, большее чем 6 или меньшее, чем 0. На выходе: сообщение «Invalid command.»
- 2. Некорректный ввод количества строк или столбцов матрицы. На входе: неположительное целое число или буква. На выходе: сообщение «Invalid value.»
- 3. Некорректный ввод индекса столбца строки ИЛИ матрицы. Ha входе: буква. число выходящее 3a границы ИЛИ На выходе: сообщение «Invalid value.»
- 4. Некорректный ввод элемента матрицы. На входе: число, выходящее за границы условия, или буква. На выходе: сообщение «Invalid value.»

Структуры данных

За стандартное хранение матрицы отвечает именованная структура **matrix_t**, описанная как:

```
typedef struct
{
    type_t **matrix;
    int rows;
    int columns;
} matrix_t;
```

Поля структуры:

- *type_t* **matrix массив указателей на строки матрицы (type_t int);
- *int* rows количество строк матрицы;
- *int* columns количество столбцов матрицы.

За хранение матрицы в разреженном столбцовом виде отвечает именованная структура **sparse_t**, описанная как:

```
typedef struct
{
   type_t *elems;
   int *row_entry;
```

```
int *col_entry;
int elems_amount;
int cols_amount;
} matrix_t;
```

Поля структуры:

- *type_t* *elems массив элементов матрицы, заполняемый проходом по столбцам;
- *int* *row_entry массив, каждый элемент которого равен номеру строки соответствующего элемента из **elems**;
- *int* *col_entry массив, каждый элемент которого указывает на индекс элемента из **elems**, с которого начинается описание столбца;
- *int* elems_amount количество элементов матрицы;
- *int* cols_amount количество столбцов матрицы.

Алгоритм

- 1. Пользователь вводит номер команды из меню.
- 2. Пока пользователь не введет 0 (выход из программы), ему будет предложено выполнять действия с матрицами.
- 3. При вводе (или генерации) матрицы, матрица сразу хранится двумя способами хранения (стандартном и разреженном столбцовом).
- 4. В случае выбора стандартного сложения, матрицы складываются в стандартном виде.
- выбора случае разреженного столбцового сложения, непосредственно над разреженными матрицами. Сравнивается каждый столбец, при этом каждый из них сначала рассматривается как массив построчных вхождений. Если в массивах нет одинаковых вхождений, то в итоговую матрицу элементы записываются по порядку, в порядке возрастания по двум массивам. Если же одинаковые вхождения есть, TO соответствующие элементы складываются, после все элементы вновь записываются в порядке возрастания индексов вхождения.

Тесты

	Тест	Пользовательский ввод	Результат
1	Некорректный ввод комманды	30	Invalid command.
2	Некорректный ввод	0	Invalid value.

	количества строк		
3	Некорректный ввод количества строк	M	Invalid value.
4	Некорректный воод количества столбцов	-3	Invalid value.
5	Некорректный ввод количества столбцов	P	Invalid value.
6	Некорректный ввод индекса строки	При матрице 2x2: 4	Invalid value.
7	Некорректный ввод индекса строки	S	Invalid value.
8	Некорректный ввод индекса столбца	При матрице 2x2: 5	Invalid value.
9	Некорректный ввод индекса столбца	K	Invalid value.
10	Некорректный ввод элемента матрицы	Q	Invalid value.
11	Некорректный ввод элемента матрицы	3.14	Invalid value.

Оценка эффективности

Время сложения:

5% заполнения

Размеры	Разреженная матрица	Обычная матрица
10x10	1060	11900
100x100	33800	1549820
200x200	119080	6947080

10% заполнения

Размеры	Разреженная матрица	Обычная матрица
10x10	1160	8860

100x100	66920	579780
200x200	227680	1590860

20% заполнения

Размеры	Разреженная матрица	Обычная матрица
10x10	1540	7620
100x100	310940	388600
200x200	437380	3946040

30% заполнения

Размеры	Разреженная матрица	Обычная матрица
10x10	7200	20120
100x100	432400	1293560
200x200	648280	1544520

40% заполнения

Размеры	Разреженная матрица	Обычная матрица
10x10	11300	5820
100x100	11847640	388600
200x200	46828840	1608580

50% заполнения

Размеры	Разреженная матрица	Обычная матрица
10x10	25680	8020
100x100	6765340	1816860
200x200	52933140	1568680

100% заполнения

Размеры	Разреженная матрица	Обычная матрица
10x10	40380	6180
100x100	31208440	1293960
200x200	221170380	1763540

Объём занимаемой памяти (в байтах):

5% заполнения

Размеры Разреженная матрица	Обычная матрица
-----------------------------	-----------------

10x10	112	496
100x100	4432	40816
200x200	16832	161616

10% заполнения

Размеры	Разреженная матрица	Обычная матрица
10x10	152	496
100x100	8832	40816
200x200	32832	161616

20% заполнения

Размеры	Разреженная матрица	Обычная матрица
10x10	232	496
100x100	16432	40816
200x200	66456	161616

30% заполнения

Размеры	Разреженная матрица	Обычная матрица
10x10	312	496
100x100	24432	40816
200x200	98336	161616

40% заполнения

Размеры	Разреженная матрица	Обычная матрица
10x10	392	496
100x100	32432	40816
200x200	130664	161616

45% заполнения

Размеры	Разреженная матрица	Обычная матрица
10x10	432	496
100x100	37360	40816
200x200	146304	161616

50% заполнения

Размеры	Разреженная матрица	Обычная матрица
10x10	472	496
100x100	43328	40816

	1.00 = 0.1	4.04.04.0
200x200	167)501	161616
	102304	101010

Контрольные вопросы

1. Что такое разреженная матрица, какие способы хранения вы знаете?

Разреженная матрица — это матрица, содержащая большое количество нулей. Способы хранения: связная схема хранения, строчный формат, столбцовый формат, линейный связный список, кольцевой связный список, двунаправленные стеки и очереди.

2. Каким образом и сколько памяти выделяется под хранение разреженной и обычной матрицы?

Под обычную матрицу выделяет I * J ячеек памяти, где I - строки, а J - столбцы. Для разреженной матрицы — зависит от способа. В случае разреженного столбцового формата, требуется 2 * K + J + 1 ячеек памяти, где K - количество ненулевых элементов.

3. Каков принцип обработки разреженной матрицы?

Алгоритмы обработки разреженных матриц предусматривают действие только с ненулевыми элементами, количество операций будет пропорционально количеству ненулевых элементов.

4. В каком случае для матриц эффективнее применять стандартные алгоритмы обработки матриц? От чего это зависит?

Стандартные алгоритмы обработки матриц эффективнее применять при большом количестве ненулевых элементов (от 40%). Если не важна память, занимаемая матрицами, но важно время, то в случае сложения лучше так же воспользоваться стандартными алгоритмами сложения матриц.

Вывод

Использование разреженных матриц выгодно при малом количестве ненулевых элементов, до ~40 % заполненности. Хранение в разреженном столбцовоом формате почти всегда менее выгодно по памяти, так как структура нагружена различных параметров матрицы. Кроме того, полями для хранения дольше обрабатываются разреженные матрицы гораздо при заполненности, так как требуется много времени для составления матрицы.