MATH533: Assignment 3

Kabilan Sriranjan November 20, 2017

Question 1

```
data = read.csv("http://www.math.mcgill.ca/yyang/regression/data/cigs.csv" , header=TRUE)
y = data$CO
x1 = data$TAR
x2 = data$NICOTINE
x3 = data$WEIGHT
```

We are going to compare models that use different combinations of our predictors, namely tar, nicotine, and weight.

a)

```
full_model = lm(y~x1+x2+x3)
SS_res_full = anova(full_model)[4,2]
SS_res_full
```

[1] 43.89259

Here we used the anova function to find $SS_{Res}(\beta_0, \beta_1, \beta_2, \beta_3)$

b)

```
reduced_model = lm(y~x1+x2)
SS_res_reduced = anova(reduced_model)[3,2]
SS_res_reduced
```

[1] 43.89494

Now using the anova function to find $SS_{Res}(\beta_0, \beta_1, \beta_2)$

c)

```
n = length(x1)
p = 4
r=1
F_stat = ((SS_res_reduced - SS_res_full)/r)/(SS_res_full/(n-p))
F_stat
```

[1] 0.001127825

Computing the F-statistic to compare the full model with the model without x_3

d)

```
table_1 = anova(lm(y~x3+x2+x1))
SSR3_0 = table_1[1,2]
SSR2_03 = table_1[2,2]
SSR1_032 = table_1[3,2]
decomp_1 = c(SSR3_0, SSR2_03, SSR1_032, SSR3_0+SSR2_03+SSR1_032)
decomp_1
```

[1] 116.05651 346.19988 33.00142 495.25781

We add the variables to the model in the order $x_3 >> x_2 >> x_1$ so that we can use the anova function to get the decomposition

$$\overline{SS}_R(\beta_1, \beta_2, \beta_3 | \beta_0) = \overline{SS}_R(\beta_3 | \beta_0) + \overline{SS}_R(\beta_2 | \beta_0, \beta_3) + \overline{SS}_R(\beta_1 | \beta_0, \beta_3, \beta_2)$$

e)

```
table_2 = anova(reduced_model)
SSR1_0 = table_2[1,2]
SSR2_01 = table_2[2,2]
decomp_2 = c(SSR1_0, SSR2_01, SSR1_0+SSR2_01)
decomp_2
```

[1] 494.2813099 0.9741472 495.2554571

We add the variables to the model in the order $x_1 >> x_2$ so that we can get the decomposition

$$\overline{SS}_R(\beta_1, \beta_2 | \beta_0) = \overline{SS}_R(\beta_1 | \beta_0) + \overline{SS}_R(\beta_2 | \beta_0, \beta_1)$$

f)

```
reduced_model_2 = lm(y~x1)
SS_res_red2 = anova(reduced_model_2)[2,2]
p=3
r=1
F_stat2 = ((SS_res_red2 - SS_res_reduced)/r)/(SS_res_reduced/(n-p))
F_stat2
```

[1] 0.4882394

If we consdier our full model to now only include x_1 and x_2 then the above code computes the F-statistic comparing the full model with the model that only uses x_1

\mathbf{g}

```
F_stat3 = summary(reduced_model)$fstatistic[1]
F_stat3
```

```
## value
## 124.1102
```

Here we computed the F-statistic for comparing our new full model to the mean only model. Note that this is equivalent to just finding the F-statistic of the model normally.

MATH533 Extra Question 1