FR/FY/11:

/F 1/ | | | : .

گروه اَموزشی : امتحان درس : (-) نیمسال (اول/) - ۱۳ نام مدرس: نام و نام خانوادگی : شماره دانشجویی : تاریخ : / / وقت : دقیقه

:

•

یه مبدا مختصات را بیابید. $\begin{cases} z=x^{\mathsf{Y}}+y^{\mathsf{Y}} \\ x+y+{\mathsf{Y}}z={\mathsf{Y}} \end{cases}$ به مبدا مختصات را بیابید. -

ىيد. انتگرال دوگانه $\int_{y}^{y} \int_{y}^{y} x^{x} e^{xy} dx dy$ انتگرال دوگانه -

- اگر S قسمتی از سطح خارجی استوانه $x^{\rm T}+y^{\rm T}={\rm T}a^{\rm T}$ باشد که درون مخروط اگر $\int\int\limits_S x\,d\sigma$ ورا دارد ، مقدار انتگرال $x=\sqrt{y^{\rm T}+{\rm T}z^{\rm T}}$
 - حجم محدود به رویههای $z=x^{\mathsf{T}}+y^{\mathsf{T}}$ و $z=x^{\mathsf{T}}+y^{\mathsf{T}}$ را بدست آورید.
 - : مقدار زیر را محاسبه کنید ، r=x+y+z و $\vec{k}=(\cdot,\cdot,\cdot)$ $curl(\vec{k}\times grad(\frac{\cdot}{r}))+grad(\vec{k}\cdot grad(\frac{\cdot}{r}))$
- ناحیه $\vec{F}=\frac{1}{x^{\mathsf{Y}}+y^{\mathsf{Y}}+z^{\mathsf{Y}}}$ و سطح آن را S مینامیم. درستی قضیه دیورژانس V این V یا بررسی کنید.

قاصله نقطه (x,y,z) از مبدا مختصات برابر است با $\sqrt{x^{^{^{\prime}}}+y^{^{^{\prime}}}+z^{^{^{\prime}}}}$ و برای مینیمم شدن این مقدار کافی است تابع - فاصله نقطه $f(x,y,z)=x^{^{\prime}}+y^{^{\prime}}+z^{^{\prime}}$ مینیمم شود.

روش اول (روش ضرایب لاگرانژ) : تابع $g(x,y,z,\lambda,\mu)=x^{^{\mathrm{\scriptscriptstyle Y}}}+y^{^{\mathrm{\scriptscriptstyle Y}}}+z^{^{\mathrm{\scriptscriptstyle Y}}}+\lambda(x^{^{\mathrm{\scriptscriptstyle Y}}}+y^{^{\mathrm{\scriptscriptstyle Y}}}-z)+\mu(x+y+^{\mathrm{\scriptscriptstyle Y}}z-t)$ را در نظر می $g(x,y,z,\lambda,\mu)=x^{^{\mathrm{\scriptscriptstyle Y}}}+y^{^{\mathrm{\scriptscriptstyle Y}}}+z^{^{\mathrm{\scriptscriptstyle Y}}}+\lambda(x^{^{\mathrm{\scriptscriptstyle Y}}}+y^{^{\mathrm{\scriptscriptstyle Y}}}-z)+\mu(x+y+^{\mathrm{\scriptscriptstyle Y}}z-t)$ را در نظر می $g(x,y,z,\lambda,\mu)=x^{^{\mathrm{\scriptscriptstyle Y}}}+y^{^{\mathrm{\scriptscriptstyle Y}}}+z^{^{\mathrm{\scriptscriptstyle Y}}}+\lambda(x^{^{\mathrm{\scriptscriptstyle Y}}}+y^{^{\mathrm{\scriptscriptstyle Y}}}-z)+\mu(x+y+^{\mathrm{\scriptscriptstyle Y}}z-t)$ را در نظر می $g(x,y,z,\lambda,\mu)=x^{^{\mathrm{\scriptscriptstyle Y}}}+y^{^{\mathrm{\scriptscriptstyle Y}}}+z^{^{\mathrm{\scriptscriptstyle Y}}}+\lambda(x^{^{\mathrm{\scriptscriptstyle Y}}}+y^{^{\mathrm{\scriptscriptstyle Y}}}-z)+\mu(x+y+^{\mathrm{\scriptscriptstyle Y}}z-t)$ را در نظر می

 $g_x = \Upsilon x + \Upsilon \lambda x + \mu = \cdot, g_y = \Upsilon y + \Upsilon \lambda y + \mu = \cdot, g_z = \Upsilon z - \lambda + \Upsilon \mu = \cdot, x^{\Upsilon} + y^{\Upsilon} - z = \cdot, x + y + \Upsilon z - \Upsilon = \cdot$

در (۴) در (۳) داریم $z = -\frac{1}{2}$ در (۳) داریم (۳) داریم (۳) داریم (۳) داریم (۳) در اگراه طبق (۳) در اگراه طبق (۳) در اگرام (۳) در اگراه طبق (۳) در اگراه طبق (۳) در اگراه طبق (۳) در اگرام (۳) در اگراه طبق (۳) در اگراه طبق (۳) در اگراه طبق (۳) در اگرام (۳) در اگراه طبق (۳) در اگراه (۳) در

x + y تناقض است پس ۱ $eq \lambda \neq 1$ و باید x = y . از معادلات (4) و (6) داریم $z = 7x^{\dagger}$ و $z = 7x^{\dagger}$ و در نتیجه

یند. $B = (\frac{7}{\pi}, \frac{7}{\pi}, \frac{\Lambda}{\alpha})$ و نقاط A = (-1, -1, 1) و نقاط $x = \frac{-1 \pm \sqrt{1 + 17}}{2} = \frac{-1 \pm \Delta}{2}$

اکنون داریم $g(x,y,\lambda) = x^{\mathsf{T}} + y^{\mathsf{T}} + (x^{\mathsf{T}} + y^{\mathsf{T}})^{\mathsf{T}} + \lambda (x + y + y^{\mathsf{T}}) - x^{\mathsf{T}}$ یعنی f(B) = 1000 یعنی $g(x,y,\lambda) = x^{\mathsf{T}} + y^{\mathsf{T}} + (x^{\mathsf{T}} + y^{\mathsf{T}})^{\mathsf{T}} + \lambda (x + y + y^{\mathsf{T}}) - x^{\mathsf{T}}$ یعنی $g(x,y,\lambda) = x^{\mathsf{T}} + y^{\mathsf{T}} + (x^{\mathsf{T}} + y^{\mathsf{T}})^{\mathsf{T}} + \lambda (x + y + y^{\mathsf{T}}) - x^{\mathsf{T}}$ دوش دوم : می توان متغیر z را حذف کرد.

و با تعداد مجهولات کمتر از روش ضرایب لاگرانژ استفاده کرد.

$$\int_{0}^{1} \int_{y}^{1} x^{\tau} e^{xy} dx dy = \int_{0}^{1} \left(\frac{x^{\tau}}{y} e^{xy} - \frac{y^{\tau}}{y^{\tau}} e^{xy} + \frac{y^{\tau}}{y^{\tau}} e^{xy} \right) \Big|_{x=y}^{1} dy \\
= \int_{0}^{1} \left[\left(\frac{1}{y} - \frac{y^{\tau}}{y^{\tau}} + \frac{y^{\tau}}{y^{\tau}} \right) e^{y} - \left(y - \frac{y^{\tau}}{y} + \frac{y^{\tau}}{y^{\tau}} \right) e^{y^{\tau}} \right] dy \\
= \int_{0}^{1} \left[\left(\frac{1}{y} - \frac{y^{\tau}}{y^{\tau}} + \frac{y^{\tau}}{y^{\tau}} \right) e^{y} - \left(y - \frac{y^{\tau}}{y} + \frac{y^{\tau}}{y^{\tau}} \right) e^{y^{\tau}} \right] dy \\
= \int_{0}^{1} \left[\left(\frac{1}{y} - \frac{y^{\tau}}{y^{\tau}} \right) e^{y} - \left(y - \frac{y^{\tau}}{y^{\tau}} \right) e^{y} + \frac{y^{\tau}}{y^{\tau}} \right] dy \\
= \int_{0}^{1} \left[\left(\frac{y^{\tau}}{y} - \frac{y^{\tau}}{y^{\tau}} \right) e^{y} + \frac{y^{\tau}}{y^{\tau}} \right] e^{y} dy \\
= \int_{0}^{1} \left[\left(\frac{y^{\tau}}{y} - \frac{y^{\tau}}{y^{\tau}} \right) e^{y} + \frac{y^{\tau}}{y^{\tau}} \right] e^{y} dy \\
= \int_{0}^{1} \left[\left(\frac{y^{\tau}}{y} - \frac{y^{\tau}}{y^{\tau}} \right) e^{y} + \frac{y^{\tau}}{y^{\tau}} \right] e^{y} dy \\
= \int_{0}^{1} \left[\left(\frac{y^{\tau}}{y} - \frac{y^{\tau}}{y^{\tau}} \right) e^{y} + \frac{y^{\tau}}{y^{\tau}} \right] e^{y} dy \\
= \int_{0}^{1} \left[\left(\frac{y^{\tau}}{y} - \frac{y^{\tau}}{y^{\tau}} \right) e^{y} + \frac{y^{\tau}}{y^{\tau}} \right] e^{y} dy \\
= \int_{0}^{1} \left[\left(\frac{y^{\tau}}{y} - \frac{y^{\tau}}{y^{\tau}} \right) e^{y} + \frac{y^{\tau}}{y^{\tau}} \right] e^{y} dy \\
= \int_{0}^{1} \left[\left(\frac{y^{\tau}}{y} - \frac{y^{\tau}}{y^{\tau}} \right) e^{y} + \frac{y^{\tau}}{y^{\tau}} \right] e^{y} dy \\
= \int_{0}^{1} \left[\left(\frac{y^{\tau}}{y} - \frac{y^{\tau}}{y^{\tau}} \right) e^{y} + \frac{y^{\tau}}{y^{\tau}} \right] e^{y} dy \\
= \int_{0}^{1} \left[\left(\frac{y^{\tau}}{y} - \frac{y^{\tau}}{y} \right) e^{y} + \frac{y^{\tau}}{y^{\tau}} \right] e^{y} dy \\
= \int_{0}^{1} \left[\left(\frac{y^{\tau}}{y} - \frac{y^{\tau}}{y} \right) e^{y} + \frac{y^{\tau}}{y^{\tau}} \right] e^{y} dy \\
= \int_{0}^{1} \left[\left(\frac{y^{\tau}}{y} - \frac{y^{\tau}}{y} \right) e^{y} + \frac{y^{\tau}}{y^{\tau}} \right] e^{y} dy \\
= \int_{0}^{1} \left[\left(\frac{y^{\tau}}{y} - \frac{y^{\tau}}{y} \right) e^{y} dy \\
= \int_{0}^{1} \left[\left(\frac{y^{\tau}}{y} - \frac{y^{\tau}}{y} \right) e^{y} dy \\
= \int_{0}^{1} \left[\left(\frac{y^{\tau}}{y} - \frac{y^{\tau}}{y} \right) e^{y} dy \\
= \int_{0}^{1} \left[\left(\frac{y^{\tau}}{y} - \frac{y^{\tau}}{y} \right) e^{y} dy \\
= \int_{0}^{1} \left[\left(\frac{y^{\tau}}{y} - \frac{y^{\tau}}{y} \right) e^{y} dy \\
= \int_{0}^{1} \left[\left(\frac{y^{\tau}}{y} - \frac{y^{\tau}}{y} \right) e^{y} dy \\
= \int_{0}^{1} \left[\left(\frac{y^{\tau}}{y} - \frac{y^{\tau}}{y} \right) e^{y} dy \\
= \int_{0}^{1} \left[\left(\frac{y^{\tau}}{y} - \frac{y^{\tau}}{y} \right) e^{y} dy \\
= \int_{0}^{1} \left[\left(\frac{y^{\tau}}{y} - \frac{y^{\tau}}{y} \right) e^{y} dy \\
= \int_{0}^{1} \left[\left(\frac{y^{\tau}}{y} - \frac{y$$

 $\int_{0}^{1} \int_{y}^{1} x^{y} e^{xy} dx dy = \int_{0}^{1} \int_{0}^{x} x^{y} e^{xy} dy dx = \int_{0}^{1} x e^{xy} |x|^{x} dx$ $= \int_{0}^{1} (xe^{x^{y}} - x) dx = \int_{0}^{1} e^{x^{y}} - \int_{0}^{1} x |x|^{y} = \int_{0}^{1} (xe^{x^{y}} - x) dx = \int_{0}^{1} (xe^{x^{y}} - x)$

 $\int_{C_1} F \cdot dr = \int_{C_1} (\mathbf{f} x + y) dx + (x + \mathbf{f} y) dy = \int_{C_1} \mathbf{A} x dx = \mathbf{f}$ روش اول : پاره خطها را به ترتیب $C_{\mathbf{r}}$ و $C_{\mathbf{r}}$ می نامیم.

 $\int_{C_{\tau}} F \cdot dr = \int_{C_{\tau}} (\mathbf{f} x + y) dx + (x + \mathbf{f} y) dy = \int_{\mathbf{f}}^{\mathbf{f}} (\mathbf{f} x - \mathbf{f}) dx = \mathbf{V} \quad \int_{C_{\tau}} F \cdot dr = \int_{C_{\tau}} (\mathbf{f} x + y) dx + (x + \mathbf{f} y) dy = \int_{\mathbf{f}}^{\mathbf{f}} (\mathbf{f} x + \mathbf{f}) dx = \mathbf{V}$

 $\int_{C} F \cdot dr = \int_{C_{1}} F \cdot dr + \int_{C_{1}} F \cdot dr + \int_{C_{2}} F \cdot dr = \text{* + \vee + \vee = \wedge}$

روش دوم : چون F = (P,Q) = (4x + y, x + 7y) و طبق قضیه گرین انتگرال مستقل از مسیر است و می توانیم به

جای مسیر C از پاره خط مستقیم C' که نقاط ابتدایی و انتهایی را به هم وصل می کند استفاده کنیم.

$$\int_{C} F \cdot dr = \int_{C'} (fx + y) dx + (x + fy) dy = \int_{C'}^{f} fx dx = f(x + fy) dy$$

ووش سوم : تابع $F = grad\ f$ و جود دارد بطوریکه $f(x,y) = \mathsf{T} x^\mathsf{T} + xy + y^\mathsf{T}$ و بعنی $\int_C F \cdot dr = \int_C grad\ f \cdot dr = f(\mathsf{T}, \bullet) - f(\bullet, \bullet) = \mathsf{T} \lambda$

یک تصویر سطح S تصویر سطح S تصویر سطح S تصویر می کنیم. با حذف S در معادلات دو رویه داریم S یعنی تصویر سطح S تصویر سطح S عبارت است از S التراز الذار الذ

می نامیم. $\dfrac{x}{\sqrt{\chi}}d\sigma=dydz$. اکنون می توانیم انتگرال را حل کنیم.

 $\iint\limits_{S} x\,d\sigma = \iint\limits_{D} \sqrt{\mathbf{Y}}\,a\,dydz = \sqrt{\mathbf{Y}}\,a\iint\limits_{D}\,dydz = \sqrt{\mathbf{Y}}\,aS_{D} = \sqrt{\mathbf{Y}}\,\pi\,a^{\mathbf{Y}}$

 $V = \int_{y=-\sqrt{\tau}}^{\sqrt{\tau}} \int_{x=-\sqrt{\tau-\tau}y^{\tau}}^{\sqrt{\tau-\tau}y^{\tau}} \int_{z=x^{\tau}+y^{\tau}}^{\tau-y^{\tau}} dz dx dy = \int_{y=-\sqrt{\tau}}^{\sqrt{\tau}} \int_{x=-\sqrt{\tau-\tau}y^{\tau}}^{\sqrt{\tau-\tau}y^{\tau}} (\mathbf{f} - x^{\tau} - \mathbf{f} y^{\tau}) dx dy \qquad (وش اول (حل در دستگاه د کارتی) + (\mathbf{f} - x^{\tau} - \mathbf{f} y^{\tau}) dx dy = (\mathbf{f} - x^{\tau}) dx dy = (\mathbf{$

 $grad(\frac{1}{r}) = grad(\frac{1}{x+y+z}) = \frac{1}{(x+y+z)^{\tau}}(-1,-1,-1)$ $\vec{k} \times grad(\frac{1}{r}) = \frac{1}{(x+y+z)^{\tau}}(1,-1,\cdot) \qquad \vec{k} \cdot grad(\frac{1}{r}) = \frac{-1}{(x+y+z)^{\tau}}$ $curl(\vec{k} \times grad(\frac{1}{r})) = \frac{\tau}{(x+y+z)^{\tau}}(-1,-1,\tau) \qquad grad(\vec{k} \cdot grad(\frac{1}{r})) = \frac{\tau}{(x+y+z)^{\tau}}(1,1,\tau)$ $curl(\vec{k} \times grad(\frac{1}{r})) + grad(\vec{k} \cdot grad(\frac{1}{r})) = \frac{\tau}{(x+y+z)^{\tau}}(\cdot,\cdot,\tau)$

سطح ناحیه $S_{\gamma}: x^{\gamma} + y^{\gamma} + z^{\gamma} = \gamma$ و $S_{\gamma}: x^{\gamma} + y^{\gamma} + z^{\gamma} = \gamma$ است که بردارهای یکه $S_{\gamma}: x^{\gamma} + y^{\gamma} + z^{\gamma} = \gamma$ و $S_{\gamma}: x^{\gamma} + y^{\gamma} + z^{\gamma} = \gamma$ و $S_{\gamma}: x^{\gamma} + y^{\gamma} + z^{\gamma} = \gamma$ اکنون داریم $S_{\gamma}: x^{\gamma} + y^{\gamma} + z^{\gamma} = \gamma$ و $S_{\gamma}:$