

آزمایشگاه کنترل خطی

آزمایش چهارم: کنترل سرعت

ور در این آزمایش میخواهیم تابع تبدیل ولتاژ ورودی آرمیچر به سرعت موتور $P(s) = \frac{1.3}{0.15s+1}$ را در محیط نرمافزار MATLAB شبیه سازی نموده و اثر جبران کننده های تناسبی، تناسبی –انتگرال گیر و پسفاز را در تنظیم سرعت موتور مشاهده کنیم. بدین منظور در ابتدا به معرفی اجمالی از این کنترل کننده ها می پردازیم و در ادامه به شبیه سازی و مقایسه این کنترل کننده ها در نرمافزار MATLAB خواهیم پرداخت.

بخش ۱- مفاهیم نظری کنترل کننده PID

سیستم حلقه بسته شکل زیر با فیدبک واحد را در نظر بگیرید. در کنترلکننده PID ، خروجی کنترلکننده، که ورودی پلنت میباشد، در حوزه زمان با استفاده از خطای فیدبک به صورت زیر محاسبه میشود:

$$u(t) = K_{p}e(t) + K_{i} \int_{0}^{t} e(\tau) d\tau + K_{d} \frac{de(t)}{dt}$$
(1)

شكل (١): سيستم حلقه بسته فيدبك واحد

ابتدا با بررسی شکل (۱) ، عملکرد کنترل کننده PID را بر روی سیستم حلقه بسته بررسی می کنیم. در شکل بالا e خطای ردیابی، تفاوت خروجی مطلوب r و خروجی واقعی v را نشان می دهد. در کنترل کننده e خطا به عنوان ورودی به کنترل کننده اعمال و کنترل کننده مشتق و انتگرال آن را نسبت به زمان محاسبه می کند. v ورودی پلنت v از مجموع حاصلضرب بهره تناسبی v در سیگنال خطا، حاصلضرب بهره انتگرالی v در انتگرال خطای ردیابی و حاصلضرب بهره مشتق گیر v در مشتق سیگنال خطا محاسبه می شود.

۱-۱- تاثیرگذاری پارامترهای سهگانه کنترلکننده PID

جدول زیر تاثیر تغییر پارامتر های کنترلر PID بر روی برخی از پارامتر های خروجی را نشان میدهد.

جدول را کامل کنید و برای هر مورد دلیل خود را ذکر کنید:

جدول (۱): نحوه اثر گذاری پارامترهای کنترل کننده PID

خطای حالت دائم	زمان نشست	فراجهش	زمان خيز	پاسخ سیستم حلقه بسته
	تغییرات کوچک			Кр
	افزایش			Ki
بدون تغيير			تغییرات کوچک	Kd

تابع تبدیل کنترل کننده PID با لاپلاس گرفتن از رابطه (۱) به صورت زیر محاسبه می شود:

$$\frac{U\left(s\right)}{E\left(s\right)} = K_{p} + K_{i} \frac{1}{s} + K_{d} s \tag{7}$$

می توان رابطه (۲) را به صورت زیر نیز نوشت:

$$\frac{U\left(s\right)}{E\left(s\right)} = K_{p} \left(1 + \frac{1}{T_{i}} \frac{1}{s} + T_{d}s\right) \tag{7}$$

در رابطه (۳)، $\frac{K_p}{T_i} = K_d$ و مشتقگیر و مشتقگیر و مشتقگیر و مشتقگیر و مشتقگیر و مشتقگیر میباشد. با توجه به رابطه (۳)، قسمت مشتقگیر کنترل کننده PID در حالت ایده آل علی نیست و پیاده سازی آن با استفاده از آپ-امپ موجب تقویت نویز می شود. با اضافه کردن فیلتر پایین گذر با قطب دور به قسمت مشتقگیر کنترل کننده PID، می توان رابطه (۳) را به صورت زیر نوشت:

$$G_{c}(s) = \frac{U(s)}{E(s)} = K_{p} \left(1 + \frac{1}{T_{i}} \frac{1}{s} + \frac{T_{d}s}{1 + \frac{T_{d}s}{\beta}} \right)$$

$$(4)$$

که در آن $1 << \beta$ میباشد.

بخش ۲: تحلیل رفتار سیستم حلقه بسته در حضور کنترل کننده های متفاوت

- ا. در شکل (۱) از کنترل کننده تناسبی با بهره K = 4.7 استفاده کنید و شکل موجهای ورودی، خروجی، خطا و کنترلی سیستم را رسم کنید. با توجه به شکل موجهای ترسیم شده در MATLAB، خطای حالت دائم، زمان نشست خروجی را اندازه گیری کنید.
- را در حلقه قرار داده و خروجی آنرا به تابع $G_c(s) = \frac{s+4.7}{s+1}$ را در حلقه قرار داده و خروجی آنرا به تابع تبدیل موتور اعمال کنید. شکل موج سیگنالهای ورودی، خروجی، خطا و کنترلی سیستم را رسم کنید. با توجه به شکل موجهای ترسیم شده در MATLAB، خطای حالت دائم، درصد فراجهش خروجی و زمان نشست آنرا اندازه گیری کنید. بهره کنترل کننده و محل صفر و قطب این کنترل کننده چگونه در خطای حالت دائم پاسخ پله سیستم اثر می گذارد؟ لطفا توضیح دهید.
- ۳. در شکل (۱) از کنترل کننده تناسبی انتگرالی $G_c(s)=1+\frac{4.7}{s}$ برای کنترل سرعت موتور استفاده کنید. شکل موج سیگنالهای ورودی، خروجی، خطا و کنترلی سیستم را رسم کنید. با توجه به شکل موجهای ترسیم شده در MATLAB، خطای حالت دائم و مقدار بالازدگی در پاسخ پله سیستم (اگر بالازدگی وجود دارد) و زمان نشست پاسخ پله سیستم را اندازه گیری کنید.
- ۴. در هر یک از سه حالت بندهای ۱ تا ۳ محل قطبهای تابع تبدیل سیستم حلقه بسته را بدست آورید.
 چه نتیجهای می گیرید؟ لطفا توضیح دهید.
- نتگرالگیر و تناسبی و تناسبی انتگرالگیر و 0 . با توجه به نتایج قسمتهای ۱ تا ۴ تفاوت عملکرد سه کنترلکننده تناسبی و تناسبی انتگرالگیر و پس فاز در تنظیم سرعت موتور را توضیح دهید.

موفق باشيد.