EE5630 DSP CLASSROOM MEETING

MAY 4-5, 2020

Yi-Wen Liu, Associate Professor Dept. Electrical Engineering National Tsing Hua University

OVERVIEW OF THIS UNPRECEDENTED SEMESTER

- I I Video lectures from MIT
- 14 extra videos from YWL
- 7 HWs
- 3 streaming sessions

Below are the textbook sections you should already be familiar.

- 2.7-2.9 Discrete-time Fourier transform
- 4.2-4.4; 4.6 All about sampling
- 5.1-5.6: Linear time-invariant system analysis
- 5.7 (This week!)
- 7.1-7.6 IIR and FIR Filter design

UPCOMING SCHEDULES

10	5/4-5/8	FIR types I to IV	Classroom 1		
11	5/11-5/15	Lec 11,12: Ntwk structures			HW8: Ch 6
12	5/18-5/22	Lec 13: Quantization effects	streaming 4		
13	5/25-29	YWL supp (Optimal filter design)			HW9: Optimal
14	6/1-6/5	YWL supp (Lattice structure and Levinson-Durbin)		Classroom 2	
15	6/8-6/12	Advanced topic 1: Non LTI signal processing			HW10: Lattice ladder
16	6/15-19	Advanced topic 2: from Adaptive to NN	streaming 5		
17	6/22-26		Final Exam (50%)		

SOME COMMENTS REGARDING HW6

My philosophy is to use HWs for harder and trickier questions, while keeping the exams simpler (not necessarily easier).

LET'S BEGINTHE MOCK EXAM!

To warm up, the first few questions are about the discrete-time Fourier transform.

(2019, Ist MT)

Question 1 (30 sec):

If x[n] is real for all n, then $X(\omega)$ is real for all ω .

(2019, Ist MT)

Question 2 (1 min):

If
$$y[n] = (x * x)[n]$$
, then $Y(\omega) = |X(\omega)|^2$.

Question 3 (1 min):

If
$$y[n] = x[2n]$$
, then $Y(\omega) = X(\omega/2)$.

(2019, Ist MT)

Question 4 (90 sec):

Assume that y[n] = x[n/2] when n is even and y[n] = 0 when n is odd.

Then, $Y(\omega) = X(2\omega)$.

Suppose that you are sampling a signal $x_c(t) = A e^{-\alpha t} \cos(2\pi f_0 t) u(t)$, where

- $\alpha = 600 \cdot \ln 2 / \text{sec}$,
- $f_0 = 200 \text{ Hz}$,
- A = 24.0 mV, and
- the sampling rate f_s is 1200 Hz.

Question 5: Let $x[n] = x_c(nT)$, where $T = 1/f_s$. Choose the correct expression of x[n] at $n \ge 0$.

(a)
$$x[n](mV) = 24(2^{-600n})\cos\frac{n}{6}$$

(b)
$$x[n](mV) = 24\left(\sqrt{2}^{-n}\right)\cos\frac{n}{6}$$

(c)
$$x[n](mV) = 24(\sqrt{2}^{-n})\cos\frac{\pi n}{3}$$

(d)
$$x[n](mV) = 24(2^{-600n})\cos\frac{\pi n}{3}$$

Continuing from the previous question, the correct answer should be $x[n] = 24\left(\sqrt{2}^{-n}\right)\cos\frac{\pi n}{3}u[n]$.

Question 6: Suppose that h[n] = x[n] is the impulse response of a LTI system, denote as H.

- (a) H is causal and stable.
- (b) H is non-causal but stable.
- (c) H is causal but not stable.
- (d) We cannot be sure.

Let
$$h[n] = 24\left(\sqrt{2}^{-n}\right)\cos\frac{\pi n}{3}u[n]$$
 be the impulse response of H(z).

Question 7: (T or F)

 $\exists \{a_1, a_2\}$ (constant coefficients) such that

$$h[n] + a_1h[n-1] + a_2h[n-2] = 0$$

for all $n \geq 2$.

Let
$$h[n] = 24\left(\sqrt{2}^{-n}\right)\cos\frac{\pi n}{3}u[n]$$
.
 It is true that we can find constants $\{a_1, a_2\}$, such that $h[n] + a_1h[n-1] + a_2h[n-2] = 0$ $n \ge 2$.

Question 8:

Is H(z) a minimum-phase filter?

Question 9: Let
$$h[n] = 24\left(\sqrt{2}^{-n}\right)\cos\frac{\pi n}{3}u[n]$$
.

Calculate its z-transform H(z).

(Any volunteer?)

Question 10: Let $h[n] = 24\left(\sqrt{2}^{-n}\right)\cos\frac{\pi n}{3}u[n]$.

Which one of the below shows its magnitude and phase spectrum?

(a) (b) 35 Magnitude (dB) Magnitude (dB) -10 0.2 0.4 0.6 0.8 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 8.0 0 Normalized Frequency ($\times \pi$ rad/sample) Normalized Frequency ($\times \pi$ rad/sample) 20 Phase (degrees) Phase (degrees) -40 -20 0.2 0.4 0.6 0.8 0.1 0.2 0.4 0.5 0.6 0.7 8.0 0 Normalized Frequency ($\times \pi$ rad/sample) Normalized Frequency ($\times \pi$ rad/sample)

0.9

0.9

IMTERMISSION

Assume that $H(z) = \frac{1 - 3z^{-1}}{(1 + 0.5z^{-2})^2}$, $|z| > 1/\sqrt{2}$ is an LTI system function.

Denote its all-pass minimum-phase decomposition as

$$H(z) = H_{ap}(z)H_m(z).$$

Question 11:

How many poles and zeros does the minimum-phase part $H_m(z)$ have?

- (a) 4 poles, I zero.
- (b) 2 poles, I zero.
- (c) 3 poles.
- (d) I pole, I zero.

Assume that $H(z) = \frac{1 - 3z^{-1}}{(1 + 0.5z^{-2})^2}$, $|z| > 1/\sqrt{2}$ is an LTI system function.

Denote its all-pass minimum-phase decomposition as

$$H(z) = H_{\rm ap}(z)H_m(z).$$

Question 12:

For the all-pass part $H_{ap}(z)$, which of the following statement is true?

- (a) Its group delay is positive for all ω because it is a causal system.
- (b) Its group delay is **not** always positive but monotonically increases at $\omega \in (0, \pi)$.
- (c) Its group delay is always positive and monotonically decreases at $\omega \in (0, \pi)$.
- (d) Its group delay is always positive and monotonically increases at $\omega \in (0, \pi)$.

Let us define bilinear transformation as $s = \frac{2}{T_d} \left(\frac{1-z^{-1}}{1+z^{-1}} \right)$.

If
$$G_{\mathrm{des}}(\Omega) = \frac{1}{1 + \left(\Omega/\Omega_c\right)^{16}}$$
 is the desired magnitude response of a

prototype continuous-time filter, briefly explain how to construct a rational function $H_c(s)$ such that $|H_c(j\Omega)|^2 = G_{\text{des}}(\Omega)$.

Question 13: Please draw a sketch to show where the poles of $H_c(s)$ should be located in the Laplace s-plane.

Question 13 (continued). Suppose that $\Omega_c = 100$ rad/s. Which one of the plots below shows the locations of the poles of $H_c(s)$ most accurately?

Let
$$G_{\text{des}}(\Omega) = \frac{1}{1 + (\Omega/\Omega_c)^{16}} = |H_c(j\Omega)|^2$$
, and define $H(z) = H_c\left(\frac{2}{T_d}\left(\frac{1 - z^{-1}}{1 + z^{-1}}\right)\right)$.

Question 14: If we want the cut-off frequency* to be $\pi/4$ in the digital domain, which value should we choose for the parameter T_d ? *Remark: Here, cut-off frequency means the frequency at which the gain drops by 3 dB.

(a)
$$T_d = \frac{1}{\Omega_c}$$
 (b) $T_d = 2/\Omega_c$ (c) $T_d = \frac{2}{\Omega_c} \tan \frac{\pi}{8}$ (d) $T_d = \frac{1}{\Omega_c} \tan \frac{\pi}{8}$

(a)
$$T_d = \frac{2}{\Omega_c} \tan \frac{\pi}{8}$$
 (d) $T_d = \frac{1}{\Omega_c} \tan \frac{\pi}{8}$

Question 15: On the left, we have the magnitude spectrum of a rectangular window and a Barlett (triangular) window, respectively.

How many non-zero samples does the rectangular window have?

- (a) 25
- (b) 49
- (c) 26
- (d) 51