Afina in projektivna geometrija

Ian Kesar Andrej Matevc

23. februar 2022

Kazalo

f Uvod		3	
1	Afina geometrija		4
	1.1 Afini podprostori v vektorskem prostoru		4
	1.2 Semi-linearne preslikave		9

$\mathbf{U}\mathbf{vod}$

V tem dokumentu so zbrani zapiski s predavanj predmeta Afina in projektivna geometrija v letu 2021/22. Predavatelj v tem letu je bil izr. prof. dr. Aleš Vavpetič.

Ker tega predmeta sam nisem izbral v 2. letniku, sta se za pisanje skripte prijazno ponudila Ian in Andrej.

1 Afina geometrija

1.1 Afini podprostori v vektorskem prostoru

Definicija 1.1.1. Naj boVkončnorazsežen vektorski prostor nad obsegom $O,\,a\in V$ in $W\leq V.$ Množico

$$a + W = \{a + x \mid x \in W\}$$

imenujemo afin podprostor v V. Množica \mathcal{A} je afin prostor, če je afin podprostor v kakšnem vektorskem prostoru.

Opomba 1.1.1.1. V nadaljevanju V označuje končnorazsežen vektorski prostor nad komutativnim obsegom O.

Lema 1.1.2. Naj bo $\mathcal{A} = a + W$ afin podprostor. Tedaj je $\mathcal{A} = b + W$ za vse $b \in \mathcal{A}$.

Dokaz. Po definiciji je b=a+w za nek $w\in W$, torej je w=b-a. Za vsak $x\in W$ je

$$a + x = b + (a - b) + x = b - w + x,$$

in ker je W vektorski podprostor je $(x-w) \in W$, torej je $a+x=b+(x-w) \in b+W$. Enako pokažemo drugo smer.

Posledica 1.1.2.1. Naj bosta $\mathcal{A} = a + U$ in $\mathcal{B} = b + W$ afina podprostora v V. Če je $\mathcal{A} \subseteq \mathcal{B}$, je $U \leq W$.

Dokaz. Velja

$$a + U = \mathcal{A} \subseteq \mathcal{B} = b + W = a + W.$$

Posledica 1.1.2.2. Naj bo \mathcal{A} afin prostor v V. Če je $\mathcal{A} = a + W$ in $\mathcal{A} = a' + W'$, potem je W = W'.

Definicija 1.1.3. Razsežnost afinega prostora $\mathcal{A} = a + W$ je

$$\dim \mathcal{A} = \dim U$$
.

Definicija 1.1.4. Naj bodo $a_i \in \mathcal{A}$ in $\alpha_i \in O$ za vse $1 \leq i \leq n$, in naj bo $\sum_{i=1}^n \alpha_i = 1$. Vsoto

$$\sum_{i=1}^{n} \alpha_i a_i$$

imenujemo afina kombinacija točk a_1, \ldots, a_n .

Lema 1.1.5. Naj bo karakteristika O različna od 2. Poljubna afina kombinacija dveh elementov iz \mathcal{A} je v \mathcal{A} natanko tedaj, ko je poljubna afina kombinacija poljubno elementov iz \mathcal{A} v \mathcal{A} .

Dokaz. Lemo dokažemo z indukcijo po številu sumandov. Primera n=1 in n=2 sta trivialna.

Naj bo $n \geq 3$ in predpostavimo, da velja izrek za vse m < n. Ideja dokaza je, da pogledamo vsoto prvih n-1 členov in pametno izpostavimo tak faktor, da postane afina in na njej uporabimo izrek in zmanjšamo vsoto na afino kombinacijo dveh elementov, za katero izrek trivialno velja. Označimo $\alpha = \alpha_1 + \cdots + \alpha_{n-1}$. Sedaj ločimo dva primera:

i) Velja $\alpha \neq 0$. Sledi, da je

$$\alpha_1 a_1 + \dots + \alpha_{n-1} a_{n-1} + \alpha_n a_n = \underbrace{\alpha \cdot \overbrace{(\alpha^{-1} \cdot \alpha_1 a_1 + \dots + \alpha^{-1} \cdot \alpha_{n-1} a_{n-1})}^{\text{afina kombinacija } n - 1 \text{ elementov}}_{\text{afina kombinacija dveh elementov}}.$$

Po indukcijski predpostavki je torej afina kombinacija znova element A.

ii) Velja $\alpha = 0$. Brez škode za splošnost je $\alpha_1 + \cdots + \alpha_{n-2} \neq 0$, drugače bi bil $\alpha_{n-1} = 0$ in bi imeli kombinacijo n-1 elementov, za katero po indukcijski predpostavki izrek drži. Dokaz je isti kot zgoraj, le da vzamemo prvih n-2 elementov namesto n-1 in vsoto zmanjšamo na 3 elemente namesto 2.

Dovolj je tako pokazati trditev za n=3. Ker ima O karakteristiko različno od 2, lahko izberemo taka α_1 in α_2 , da je $\alpha_1 + \alpha_2 \neq 0$, saj drugače velja

$$\alpha_1 + \alpha_2 = \alpha_3 + \alpha_2 = \alpha_1 + \alpha_3 = 0,$$

torej velja $\alpha_1 = \alpha_2 = \alpha_3 = 1$ in zato $\alpha_1 + \alpha_2 + \alpha_3 = 1 + 1 + 1 = 1$, oziroma 1 + 1 = 0, kar je protislovje. Sedaj zaključimo kot v prejšnjem primeru.

Trditev 1.1.6. Naj bo karakteristika O različna od 2. $A \leq V$ je afin podprostor natanko tedaj, ko poljubna afina kombinacija dveh točk iz A leži v A.

Dokaz. (\Rightarrow) Predpostavimo, da je \mathcal{A} afin podprostor. Naj bo $\mathcal{A} = a+W$ in $a+w_1, a+w_2 \in \mathcal{A}$, kjer sta $w_1, w_2 \in W$, ter naj bosta $\alpha_1, \alpha_2 \in O$ taka, da velja $\alpha_1 + \alpha_2 = 1$. Potem velja

$$\alpha_{1}a_{1} + \alpha_{2}a_{2} = \alpha_{1}(a + w_{1}) + \alpha_{2}(a + w_{2})$$

$$= \alpha_{1}a + \alpha_{1}w_{1} + \alpha_{2}a + \alpha_{1}w_{2}$$

$$= \alpha_{1}a + \alpha_{2}a + \alpha_{1}w_{1} + \alpha_{1}w_{2}$$

$$= (\alpha_{1} + \alpha_{2}) a + (\alpha_{1}w_{1} + \alpha_{1}w_{2}).$$

$$= (\alpha_{1} + \alpha_{2}) a + (\alpha_{1}w_{1} + \alpha_{1}w_{2}).$$

(\Leftarrow) Sedaj predpostavimo, da poljubna afina kombinacija dveh točk iz \mathcal{A} leži v \mathcal{A} . \mathcal{A} je afin prostor natanko tedaj, ko obstajata nek $W \leq V$ in $a \in \mathcal{A}$, da je $\mathcal{A} = a + W$, oziroma ko za vsak $v \in \mathcal{A}$ velja $v - a \in W$.

Fiksiramo $a \in A$. Pokazali bomo da je množica $W = \{b - a \mid b \in A\}$ vektorski prostor. Naj bosta x in y poljubna elementa W, torej x = b - a in y = c - a za neka $b, c \in A$, in naj bosta $\alpha, \beta \in O$.

Linearna kombinacija $\alpha x + \beta y$ leži v W natanko tedaj, ko za nek $d \in \mathcal{A}$ velja

$$\alpha x + \beta y = \alpha (b - a) + \beta (c - a) = d - a,$$

oziroma

$$a + \alpha(b - a) + \beta(c - a) = (1 - \alpha - \beta)a + \alpha b + \beta c = d.$$

Ker pa velja $(1 - \alpha - \beta) + \alpha + \beta = 1$, je zgornja vsota afina kombinacija elementov a, b in c iz \mathcal{A} , torej po predpostavki njihova vsota leži v \mathcal{A} .

Posledica 1.1.6.1. \mathcal{A} je afin podprostor v V natanko tedaj, ko leži poljubna afina kombinacija elementov iz \mathcal{A} v \mathcal{A} .

Trditev 1.1.7. Če je presek \mathcal{P} kake družine afinih podprostorov neprazen, je \mathcal{P} afin podprostor.

Dokaz. Naj bo \mathcal{A}_{λ} družina afinih podprostorov. Izberemo $a \in \bigcap \mathcal{A}_{\lambda} = \mathcal{P}$. Potem za vsak λ velja $\mathcal{A}_{\lambda} = a + W_{\lambda}$ za nek vektorski prostor W_{λ} . Velja

$$\bigcap \mathcal{A}_{\lambda} = \bigcap \{a + W_{\lambda}\} = a + \bigcap W_{\lambda},$$

ker pa je $\bigcap W_{\lambda}$ vektorski prostor, je \mathcal{P} afin podprostor.

Definicija 1.1.8. Afina ogrinjača množice $X \subseteq V$ je presek vseh afinih podprostorov, ki vsebujejo X. Označimo jo z Af(X) in je afin prostor po zgornji trditvi.

Opomba 1.1.8.1. Af(X) je po definiciji najmanjši afin podprostor, ki vsebuje X.

Trditev 1.1.9. Af(X) je enaka množici vseh afinih kombinacij elementov iz X.

Dokaz. Z A označimo množico vseh afinih kombinacij elementov iz X.

Ker je Af(X) afin podprostor, leži poljubna linearna kombinacija elementov iz Af(X) v Af(X), torej velja $A \subseteq Af(X)$.

Ker je $X \subseteq \mathcal{A}$, je po zgornji opombi za $\operatorname{Af}(X) \subseteq \mathcal{A}$ dovolj pokazati, da je \mathcal{A} afin podprostor. Poljubna afina kombinacija elementov iz \mathcal{A} je afina kombinacija afinih kombinacija elementov iz X, kar je spet afina kombinacija elementov iz X, torej leži v \mathcal{A} .

Lema 1.1.10. Naj bosta $\mathcal{A} = a + W$ in $\mathcal{B} = b + U$ afina podprostora. Tedaj se \mathcal{A} in \mathcal{B} sekata natanko tedaj, ko je $b - a \in W + U$.

Dokaz. (\Leftarrow) Naj se \mathcal{A} in \mathcal{B} sekata. Potem obstajata taka $w \in W$ in $u \in U$, da za neka $a \in \mathcal{A}$ in $b \in \mathcal{B}$ velja

$$a + w = b + u,$$

iz česar sledi

$$b - a = w - u,$$

torej velja $b - a \in W + U$

(⇒) Naj bo $b-a \in W+U$. Potem obstajata taka $w \in W$ in $u \in U$, da je

$$b - a = w + u$$
;

iz česar sledi

$$b + (-u) = a + w,$$

torej se \mathcal{A} in \mathcal{B} sekata v nekem elementu.

Lema 1.1.11. Af $((a+W) \cup (b+U)) = a + W + U + \text{Lin}(\{b-a\}).$

Dokaz. Naj bo

$$T = W + U + \operatorname{Lin}(\{b - a\}),$$

T je vektorski prostor, torej je a+T=a+(b-a)+T=b+T afin podprostor.

Najprej pokažemo Af $((a+W) \cup (b+U)) \subseteq a+T$. Velja

$$a + W \subseteq a + T$$
 in $b + U \subseteq b + T = a + T$,

torej velja

$$Af((a+W) \cup (b+U)) \subseteq a+T.$$

Da dokažemo vsebovanost v drugo smer bomo pokazali, da vsak afin prostor C, ki vsebuje $(a + W) \cup (b + U)$, vsebuje tudi a + T.

Naj bo $(a+W) \cup (b+U) \subseteq \mathcal{C}$. Potem sta $a,b \in \mathcal{C}$, torej obstaja nek vektorski prostor S, da velja $a+S=b+S=\mathcal{C}$. Iz

$$a + W \subseteq a + S$$
 in $b + U \subseteq b + S$

sledi $W \leq S$ in $U \leq S$. Ker je $b \in a + S$, obstaja nek $s \in S$, da je b = a + s, torej je $b - a \in S$, iz česar sledi $\text{Lin}(\{b - a\}) \subseteq S$. Če združimo vse to, dobimo $T \subseteq S$, torej je

$$a+T \subseteq a+S=C.$$

Trditev 1.1.12. Naj bosta A = a + W in B = b + U afina podprostora. Velja

$$A \cap B = \emptyset \iff \dim \operatorname{Af}(A \cup B) = \dim(W + U) + 1$$

Dokaz. Velja

$$\mathcal{A} \cap \mathcal{B} = \emptyset \iff b - a \notin W + U,$$

kar pa je ekvivalentno

$$\dim \operatorname{Af}(\mathcal{A} \cup \mathcal{B}) = \dim(W + U + \operatorname{Lin}(\{b - a\}))$$

$$= \dim(W + U) + \dim \operatorname{Lin}(\{b - a\}) - \dim((W + U) \cap \operatorname{Lin}(\{b - a\}))$$

$$= \dim(W + U) + 1.$$

Definicija 1.1.13. Afina prostora $\mathcal{A} = a + W$ in $\mathcal{B} = b + U$ sta *vzporedna*, če je $W \leq V$ ali $V \leq W$, kar označimo z $\mathcal{A} \parallel \mathcal{B}$.

Trditev 1.1.14. Naj bosta \mathcal{A} in \mathcal{B} afina podprostora.

- a) Če se \mathcal{A} in \mathcal{B} sekata, sta vzporedna natanko tedaj, ko je ali $\mathcal{A} \subseteq \mathcal{B}$, ali pa $\mathcal{B} \subseteq \mathcal{A}$.
- b) Če se \mathcal{A} in \mathcal{B} ne sekata, sta vzporedna natanko tedaj, ko velja

$$\dim \operatorname{Af}(\mathcal{A} \cup \mathcal{B}) = \max(\dim \mathcal{A}, \dim \mathcal{B}) + 1.$$

Dokaz. a) Naj bosta $\mathcal{A} = a + W$ in $\mathcal{B} = a + U$, kjer je $a \in \mathcal{A} \cap \mathcal{B}$.

$$\mathcal{A} \parallel \mathcal{B} \iff W \leq U \vee U \leq W \iff \underbrace{a + W \subseteq a + U}_{\mathcal{A} \subseteq \mathcal{B}} \vee \underbrace{a + U \subseteq a + W}_{\mathcal{B} \subseteq \mathcal{A}}.$$

b) Naj bosta $\mathcal{A} = a + W$ in $\mathcal{B} = b + U$.

$$\mathcal{A} \parallel \mathcal{B} \iff W \leq U \vee U \leq W$$

$$\iff W + U = U \vee W + U = W$$

$$\iff \dim(W + U) = \dim U \vee \dim(W + U) = \dim W$$

$$\iff \dim(W + U) = \max(\dim U, \dim W)$$

$$\iff \dim \operatorname{Af}(\mathcal{A} \cup \mathcal{B}) = \dim(W + U) + 1 = \max(\dim U, \dim W) + 1. \quad \Box$$

Definicija 1.1.15. Množica $\{x_0, x_1, \dots, x_n\}$ je afino neodvisna, če je množica

$$\{x_1-x_0,\ldots,x_n-x_0\}$$

linearno neodvisna.

Opomba 1.1.15.1. Definicija je neodvisna od vrstnega reda elementov.

Definicija 1.1.16. Množica X je *afina baza* afinega prostora \mathcal{A} , če je afino neodvisna in velja $Af(X) = \mathcal{A}$.

Izrek 1.1.17. Naj bo A = a + W afin podprostor.

- a) $\{x_0,\ldots,x_n\}$ je afina baza za \mathcal{A} natanko tedaj, ko je $\{x_1-x_0,\ldots,x_n-x_0\}$ baza W.
- b) $\{e_1,\ldots,e_n\}$ je baza za W natanko tedaj, ko je $\{a,e_1+a,\ldots,e_n+a\}$ afina baza \mathcal{A} .

1.2 Semi-linearne preslikave

Definicija 1.2.1. Naj bosta U in V vektorska prostora nad istim obsegom O. Preslikava $A\colon U\to V$ je semi-linearna, če je

(i) aditivna: Za vse $x, y \in U$ je

$$A(x+y) = Ax + Ay.$$

(ii) semi-homogena: Obstaja nek avtomorfizem f obsega O, da je za vsak $x \in U, \alpha \in O$

$$A(\alpha x) = f(\alpha)Ax.$$

Opomba 1.2.1.1. Obsegi \mathbb{R} , \mathbb{Q} in \mathbb{F}_p nimajo netrivialnih avtomorfizmov. \mathbb{C} jih ima neskončno, ampak edini lahek netrivialen primer je konjugacija.