总框架

一、计算

(2) 双数计算
$$\left\{ \begin{array}{c} \textcircled{6}+\\\\\\\times \left\{ \begin{array}{c} \textcircled{7}AB\\ @kA\\ @A^k \end{array} \right. \right.$$

二、 应用

- (1) 方程组 = ⑤⑦
- (2) 向量 = 方程组+①
- (3) 特征值类 = 向量+248

扫码免费观看网课

高等数学+线性代数

20闻彬考研必过答疑群

向量的计算

一、向量的基本计算

序	计算	
号	类型	
1	A	
2	A^{-1}	
3	A^*	
4	A^{T}	
5	R(A)	
6	A + B	
7	kA	
8	AB	
9	A^k	

(1) 向量的加减

$$\alpha + \beta = \begin{bmatrix} a_1 \pm b_1 \\ a_2 \pm b_2 \\ a_3 \pm b_3 \end{bmatrix}$$
$$\alpha^T \pm \beta^T = [a_1 \pm b_1, \quad a_2 \pm b_2, \quad a_3 \pm b_3]$$

(2) 向量的数乘

$$k\alpha = k \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} ka_1 \\ ka_2 \\ ka_3 \end{bmatrix}$$

 $k\alpha = k[a_1, a_2, a_3] = [ka_1, ka_2, ka_3]$

(3) 向量的乘法

内积
$$\alpha^T \beta = \begin{bmatrix} a_1, & a_2, & a_3 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

$$(2)(\beta, \alpha) = \beta^T \alpha$$

例和
$$\alpha \beta^T = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \begin{bmatrix} b_1 & b_2 & b_3 \end{bmatrix} = \begin{bmatrix} a_1b_1 & a_1b_2 & a_1b_3 \\ a_2b_1 & a_2b_2 & a_2b_3 \\ a_3b_1 & a_3b_2 & a_3b_3 \end{bmatrix}$$

小结 向量的乘法有2种:内积和外积。两者的计算结果完全不同,简称 "内外有别"。

二、乘法的向量形式

(1) 矩阵的表达形式

- (2) 乘法 *A*×*B*
 - ①×2型

$$A(\beta_1, \beta_2, \beta_3) = (A\beta_1, A\beta_2, A\beta_3)$$

②×3型

$$(\alpha_{1}, \alpha_{2}, \alpha_{3}) \begin{bmatrix} k_{1} & k_{4} & k_{7} \\ k_{2} & k_{5} & k_{8} \\ k_{3} & k_{6} & k_{9} \end{bmatrix}$$

$$= (k_{1}\alpha_{1} + k_{2}\alpha_{2} + k_{3}\alpha_{3}, k_{4}\alpha_{1} + k_{5}\alpha_{2} + k_{6}\alpha_{3}, k_{7}\alpha_{1} + k_{8}\alpha_{2} + k_{9}\alpha_{3})$$

- (3) 乘法 Ax
 - ②×3型

$$(\alpha_1, \alpha_2, \alpha_3)$$
 $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3$

三、乘法的向量形式(扩展)

(1) 矩阵的表达形式

(2) 乘法 Ax

②×3型

乘法:
$$(\alpha_1, \alpha_2, \alpha_3)$$
 $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3$

因式分解:
$$x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 = (\alpha_1, \alpha_2, \alpha_3) \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

(3) 乘法 *A*×*B*

(2)×(3)型

$$(k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3, \quad k_4\alpha_1 + k_5\alpha_2 + k_6\alpha_3, \quad k_7\alpha_1 + k_8\alpha_2 + k_9\alpha_3)$$
 因式分解:
$$= (\alpha_1, \quad \alpha_2, \quad \alpha_3) \begin{bmatrix} k_1 & k_4 & k_7 \\ k_2 & k_5 & k_8 \\ k_3 & k_6 & k_9 \end{bmatrix}$$

①×2型

乘法:
$$A(\beta_1, \beta_2, \beta_3) = (A\beta_1, A\beta_2, A\beta_3)$$

因式分解:
$$(A\beta_1, A\beta_2, A\beta_3) = A(\beta_1, \beta_2, \beta_3)$$

3 (2017) 设 α 是n 维单位列向量。E 为 χ 阶单位矩阵,则 (A)

- $(A)E \alpha \alpha^T$ 不可逆 $(B)E + \alpha \alpha^T$ 不可逆 $(C)E + 2\alpha \alpha^T$ 不可逆 $(D)E 2\alpha \alpha^T$ 不可逆

$$\lambda = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\frac{1}{4} = \begin{bmatrix} \frac{1}{2} & \frac{2}{3} \\ \frac{-2}{3} & \frac{1}{6} & \frac{9}{9} \end{bmatrix}, & \frac{1}{12} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{3} & \frac{1}{6} & \frac{9}{9} \end{bmatrix} = \sqrt{3} \quad | \frac{1}{12} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}$$

更多干货 请关注微博 @考研数学闻彬 (2017) 设 3 阶矩阵 $A = (\alpha_1, \alpha_2, \alpha_3)$ 有 3 个不同的特征值,且 $\alpha_3 = \alpha_1 + 2\alpha_2$ 。

(I) 证明 r(A) = 2

 (Π) 若 $\beta = \alpha_1 + \alpha_2 + \alpha_3$,求方程组 $Ax = \beta$ 的通解。

$$4A: (I) \beta = \alpha_1 \cdot 1 + \alpha_3 \cdot 1 + \alpha_3 \cdot 1$$

$$= (\alpha_1, \alpha_2, \alpha_3) \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \beta$$

$$\Rightarrow n = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\cdot$$
: $d_3 = d_1 + 2d_2$

$$\therefore \quad \alpha_1 + 2\alpha_2 - \alpha_3 = 0$$

$$\left|\begin{array}{c} (\alpha_1, \alpha_2, \alpha_3) \\ -1 \end{array}\right| = 0$$

$$A\begin{bmatrix}1\\2\\-1\end{bmatrix}=0$$

$$r(A) = 2$$

(2016) 设矩阵
$$A = \begin{pmatrix} 0 & -1 & 1 \\ 2 & -3 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
.
$$\begin{bmatrix} -2 + 2 & | -2^{9} & | 2^{-2} \\ | -2 + 2^{100} & | -2^{100} & | 2^{-2} \\ | -2 + 2^{100} & | -2^{100} & | 2^{-2} \\ | -2 + 2^{100} & | -2^{100} & | 2^{-2} \\ | -2 + 2^{100} & | -2^{100} & | 2^{-2} \\ | -2 + 2^{100} & | -2^{100} & | 2^{-2} \\ | -2 + 2^{100} & | -2^{100} & | 2^{-2} \\ | -2 + 2^{100} & | -2^{100} & | 2^{-2} \\ | -2 + 2^{100} & | -2^{100} & | 2^{-2} \\ | -2 + 2^{100} & | -2^{100} & | 2^{-2} \\ | -2 + 2^{100} & | -2^{100} & | 2^{-2} \\ | -2 + 2^{100} & | -2^{100} & | 2^{-2} \\ | -2 + 2^{100} & | -2^{100} & | 2^{-2} \\ | -2 + 2^{100} & | -2^{100} & | 2^{-2} \\ | -2 + 2^{100} & | -2^{100} & | 2^{-2} \\ | -2 + 2^{100} & | -2^{100} & | -2^{100} & | 2^{-2} \\ | -2 + 2^{100} & | -2^{100} & | -2^{100} & | -2^{100} \\ | -2 + 2^{100} & | -2^{100} & | -2^{100} & | -2^{100} \\ | -2 + 2^{100} & | -2^{100} & | -2^{100} & | -2^{100} \\ | -2 + 2^{100} & | -2^{100} & | -2^{100} & | -2^{100} \\ | -2 + 2^{100} & | -2^{100} & | -2^{100} & | -2^{100} \\ | -2 + 2^{100} & | -2^{100} & | -2^{100} & | -2^{100} \\ | -2 + 2^{100} & | -2^{100} & | -2^{100} & | -2^{100} \\ | -2 + 2^{100} & | -2^{100} & | -2^{100} & | -2^{100} \\ | -2 + 2^{100} & | -2^{100} & | -2^{100} & | -2^{100} \\ | -2 + 2^{100} & | -2^{100} & | -2^{100} & | -2^{100} \\ | -2 + 2^{100} & | -2^{100} & | -2^{100} & | -2^{100} \\ | -2 + 2^{100} & | -2^{100} & | -2^{100} & | -2^{100} \\ | -2 + 2^{100} & | -2^{100} & | -2^{100} & | -2^{100} \\ | -2 + 2^{100} & | -2^{100} & | -2^{100} & | -2^{100} \\ | -2 + 2^{100} & | -2^{100} & | -2^{100} & | -2^{100} \\ | -2 + 2^{100} & | -2^{100} & | -2^{100} & | -2^{100} \\ | -2 + 2^{100} & | -2^{100} & | -2^{100} & | -2^{100} \\ | -2 + 2^{100} & | -2^{100} & | -2^{100} & | -2^{100} \\ | -2 + 2^{100} & | -2^{100} & | -2^{100} & | -2^{100} & | -2^{100} & | -2^{100} \\ | -2 + 2^{100} & | -2^{100} & | -2^{100} & | -2^{100} & | -2^{100} & | -2^{100} & | -2^{100} & | -2^{100} & | -2^{100} & | -2^{100} & | -2^{100} & | -2^{10} & | -2^{10} & | -2^{10} & | -2^{10} & | -2^{10} & | -2^{10} & | -2^{10} & |$$

$$A^{2}: (I) \qquad B^{3} = B \cdot B^{2} = B \cdot BA = BA = BA \cdot A = BA^{2}$$

$$B^{4} = B \cdot B^{3} = B \cdot BA^{2} = BA^{2} = BA \cdot A^{2} = BA^{3}$$

$$= ((-2+2^{99}) \times_1 + (-2+2^{100}) \times_2, (-2^{99}) \times_1 + (1-2^{100}) \times_2,$$

$$(2-2^{98}) \times_1 + (2-2^{99}) \times_2)$$

$$\beta_{1} = (-2 + 2^{99}) \, \, \, \, \, \lambda_{1} + (-2 + 2^{100}) \, \, \, \, \lambda_{2}$$

$$\beta_{2} = (1 - 2^{99}) \, \, \, \, \lambda_{1} + (1 - 2^{109}) \, \, \, \, \lambda_{2}$$

$$\beta_{3} = (2 - 2^{98}) \, \, \, \, \lambda_{1} + (2 - 2^{99}) \, \, \, \lambda_{2}$$

向量的线性表示

一、定义

线性表示 1 给定向量组 $A:\alpha_1$, α_2 ,…, α_n 和向量 β ,如果存在一组数 λ_1 , λ_2 ,…, λ_n , 使

$$eta = \lambda_1 lpha_1 + \lambda_2 lpha_2 + \dots + \lambda_n lpha_n$$
即 $eta = A \gamma$

这时<u>称向量</u> β <u>能由向量组</u>A<u>线性表示。</u> 向量 β 能由向量组 A 线性表示 \Leftrightarrow 方程组 $Ax = \beta$ 有解

线性表示 2 设有两个向量组 $A:\alpha_1$, α_2 ,..., α_n ,及 $B:\beta_1$, β_2 ,..., β_m , 若 B 组中的 每个向量都能由向量组 A 线性表示,即

$$\beta_{1} = A \gamma_{1}$$

$$\beta_{2} = A \gamma_{2}$$

$$\vdots$$

$$\beta_{m} = A \gamma_{m}$$

$$\exists \beta B = A C$$

则称向量组B能由向量组A线性表示。

向量组B能由向量组A线性表示 \Leftrightarrow 矩阵方程AC = B有解

向量组等价 若向量组 A 与向量组 B 能相互线性表示,则称这两个<u>向量组等价</u>. 向量组 A 与向量组 B 等价 \Leftrightarrow 矩阵方程 AC = B 和 BD = A 均有解

二、定理

定理 1 向量 $\boldsymbol{\beta}$ 能由向量组 $A: \boldsymbol{\alpha}_1, \ \boldsymbol{\alpha}_2, \cdots, \ \boldsymbol{\alpha}_n$ 线性表示的充分必要条件是矩阵 $A = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_n)$ 的秩等于矩阵 $B = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_n, \boldsymbol{\beta})$ 的秩.

定理 2 向量组 $B: \beta_1$, β_2 ,…, β_m 能 由 向量组 $A: \alpha_1$, α_2 ,…, α_n 线性表示的 充分必要条件是矩阵 $A = (\alpha_1, \alpha_2, \dots, \alpha_n)$ 的秩等于 矩阵 $(A, B) = (\alpha_1, \alpha_2, \dots, \alpha_n, \beta_1, \beta_2, \dots, \beta_m)$ 的秩,即 R(A) = R(A, B).

定理 3 向量组 $A:\alpha_1$, α_2 ,…, α_n 与向量组 $B:\beta_1$, β_2 ,…, β_m 等价的充分必要条件 是 R(A)=R(B)=R(A,B). 其中 A 和 B 是向量组 A 和 B 所构成的矩阵.

定理 4 设向量组 $B: \beta_1$, β_2 ,…, β_m 能由向量组 $A: \alpha_1$, α_2 ,…, α_n 线性表示,则 $R(B) \leq R(A)$. 其中 A 和 B 是向量组 A 和 B 所构成的矩阵.

三、待定系数法

求"函数关系式"的一般步骤:

- (1) 设y = kx
- (2) 根据已知条件,求k
- (3) 将 k 回代到(1)式,完成

求"线性表示1"的一般步骤:

- (1) 设倍数表达式为: $Ax = \beta$
- (2) 根据已知条件,求x
- (3) 将 x 回代到(1) 式,完成

求"线性表示2"的一般步骤:

- (1) 设倍数表达式为: AC = B
- (2) 根据已知条件, 求C
- (3) 将 C 回代到 (1) 式,完成

某正比例函数经过点(2,3),求此正比例函数的表达式。

462 :

- (1) 读y=kx
 - (2) (2,3) -: 3 = 2k

$$(3) \quad y = \frac{3}{2}x$$

扫码免费观看网课

高等数学+线性代数

20闻彬考研必过答疑群

要点
$$\begin{bmatrix} 1 \\ 1 \\ 2 \\ 2 \end{bmatrix}$$
 $\alpha_{2} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ $\alpha_{3} = \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$ $\beta = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$ 将向量 β 曲向量组 $\alpha_{1}, \alpha_{2}, \alpha_{3}$ 改性表示。
$$\begin{array}{c} A = \begin{bmatrix} A \\ A \end{bmatrix} \\ A = \begin{bmatrix} A \\ A \end{bmatrix} \\$$

$$\Delta$$
 (2011) 设向量组 $\alpha_1 = (1,0,1)^T$, $\alpha_2 = (0,1,1)^T$, $\alpha_3 = (1,3,5)^T$,不能由向量组 $\beta_1 = (1,1,1)^T$,

 $\beta_2 = (1,2,3)^T$, $\beta_3 = (3,4,a)^T$ 线性表示.

- (I) 求 a 的值;
- (II) 将 $oldsymbol{eta}_1$, $oldsymbol{eta}_2$, $oldsymbol{eta}_3$ 由 $oldsymbol{lpha}_1$, $oldsymbol{lpha}_2$, $oldsymbol{lpha}_3$ 线性表示.

- 公东野车路 BC=A无舒
- 2. a-5=0
- : a=5

(2013)设*A*, *B*, *C*均为*n*阶矩阵, 若 *AB* = *C*, 且 *B* 可逆,则

- (A) 矩阵 C 的行向量组与矩阵 A 的行向量组等价
- (B) 矩阵 C 的列向量组与矩阵 A 的列向量组等价
- (C) 矩阵 C 的行向量组与矩阵 B 的行向量组等价
- (D) 矩阵 C 的列向量组与矩阵 B 的列向量组等价

分析: (AB=C) ⇒ C可由A供给意识 ⇒ A和C格价 (A)=(C)E) ⇒ A可由C格性意识

线性无关

一、定义

线性相关 给定向量组 $A: \alpha_1, \alpha_2, \cdots, \alpha_m$,如果存在不全为零的数 k_1, k_2, \cdots, k_m ,使 $k_1\alpha_1 + k_2\alpha_2 + \cdots + k_m\alpha_m = 0$,则称向量组 A 线性相关.

线性无关 否则称向量组 A 线性无关.

小结 线性相关就是倍数相关,线性无关就是倍数无关.

二、性质与判定

1. 线性无关与线性相关的性质

假设 $\alpha_1, \alpha_2, \alpha_3$ 均为3维列向量,且 $A = (\alpha_1, \alpha_2, \alpha_3)$

- (1) 如果 $\alpha_1, \alpha_2, \alpha_3$ 线性相关,则|A|=0;
- (2) 如果 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,则 $A \neq 0$.

2. 线性无关与线性相关的判定

假设 $\alpha_1,\alpha_2,\alpha_3$ 均为3维列向量,且 $A=(\alpha_1,\alpha_2,\alpha_3)$

- (1) 如果A=0,则 $\alpha_1,\alpha_2,\alpha_3$ 线性相关;
- (2) 如果 $A \neq 0$, 则 $\alpha_1, \alpha_2, \alpha_3$ 线性无关.

3. 说明

- (1) 此判定定理可以推广到 n 维
- (2) 使用条件: $\alpha_1, \alpha_2, \alpha_3$ 均已知且 A 为方阵

扫码免费观看网课

高等数学+线性代数

20闻彬考研必过答疑群

三、几何意义

1. 线性相关

假设 $\alpha_1,\alpha_2,\alpha_3$ 均为3维列向量

- (1) α₁,α₂ 线性相关⇔共线
- (2) $\alpha_1, \alpha_2, \alpha_3$ 线性相关⇔共面

2. 线性无关

假设 $\alpha_1,\alpha_2,\alpha_3$ 均为3维列向量

- (1) α_1, α_2 线性无关 \Leftrightarrow 不共线
- (2) $\alpha_1, \alpha_2, \alpha_3$ 线性无关⇔不共面

3. 线性表示

- $(1) \quad \alpha_3 = k_1 \alpha_1 + k_2 \alpha_2$
- (2) 假设 ξ 为3维列向量,那么某齐次线性方程组的通解: $k\xi$ (k 为任意常数) 代表—条直线
- (3) 假设 ξ_1,ξ_2 均为 3 维列向量,那么某齐次线性方程组的通解: $k_1\xi_1+k_2\xi_2$ ($k_1,\ k_2$ 为任意常数) 代表一个平面

四、特殊向量

$$0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

- (1) 0 向量与任何 2 个向量 α_1, α_2 所构成的向量组均线性相关
- (2) 单位向量 e_1, e_2, e_3 线性无关
- (3) 任何一个 3 维列向量,都可以由 e_1, e_2, e_3 线性表示,且其系数即为这个 3 维向量的分量

(2012) 设
$$\alpha_1 = \begin{pmatrix} 0 \\ 0 \\ c_1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ c_2 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ -1 \\ c_3 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} -1 \\ 1 \\ c_4 \end{pmatrix}$ 其中 c_1, c_2, c_3, c_4 为任意常数,则下列向量组线性相关的是(

- $(A) \alpha_1, \alpha_2, \alpha_3 \qquad (B) \alpha_1, \alpha_2, \alpha_4 \qquad (C) \alpha_1, \alpha_3, \alpha_4 \qquad (D) \alpha_2, \alpha_3, \alpha_4$

$$|x_1, x_2, x_4| = |0| |-| | = 0$$

こ、メリ、メン、メリイ文相

更多干货 请关注微博 @考研数学闻彬

(2009年) 设
$$\mathbf{A} = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & 1 \\ 0 & -4 & -2 \end{pmatrix}, \, \boldsymbol{\xi}_1 = \begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix}$$

(1) 求满足 $\mathbf{A}\xi_2 = \xi_1$, $\mathbf{A}^2\xi_3 = \xi_1$ 的所有向量 ξ_2 , ξ_3 .

(2) 对(1)中的任意向量 ξ_2 , ξ_3 证明 ξ_1 , ξ_2 , ξ_3 线性无关.

- (B) 充分非必要条件
- (C) 充分必要条件

(2011) 设
$$A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$$
 是 4 阶矩 PP 、 A 为 A 的 件 随 矩 阵 、 若 $(1,0,1,0)^T$ 是 方程组 $Ax = 0$ 的 A 不 $Ax = 0$ 的 基础解系 可为 (D) (Ax $Ax = 0$ で $Ax = 0$ の $Ax = 0$ で $Ax =$

独立向量

一、定义

独立向量 若向量组 $A: a_1, a_2, \cdots, a_m$ 线性无关,也就是说,它们是互相独立的,那么我们把这些向量叫做独立向量。

导出向量 若向量组 $A: a_1, a_2, \cdots, a_m$ 线性相关,且其中一共有r个向量为独立向量,那么剩余的其他向量,一定可以由这些独立向量线性表示,这些"其他向量"叫做导出向量。

向量组的秩 上面的 r 叫做向量组的秩,它代表一个向量组中,独立向量的个数。

二、定理与推论

定理 矩阵的秩等于它的列向量组的秩,也等于它的行向量组的秩。

推论 求向量组的秩,就是求矩阵的秩。

三、"矩阵的秩"的求法(回顾)

1. 定义法

如果r阶子式是矩阵A的最高阶非零子式,那么数r称为矩阵A的秩,记作R(A)。

2. 公式法

(1) 独立公式

矩阵的秩等于矩阵的行(或列)向量中,独立向量的个数,即 $R(A) = n_{20}$ 。

(2) 阶梯公式

将矩阵转化为"行阶梯形矩阵",矩阵的秩即等于阶梯线的行数,即 $R(A) = n_{\text{ft}}$

小结: 求秩的公式有2个,独立公式和阶梯公式,简称"秩独梯"。

扫码免费观看网课

高等数学+线性代数

20闻彬考研必过答疑群

A是一个m行n列的矩阵,证明:

- (1) $R(A) \le n$
- $(2) R(A) \leq m$

元: (1) 強 A=(人, 人, 人, へ, へ) "其中独立何是的了数《九

$$\begin{array}{c}
\begin{pmatrix} 2 \\ 7 \\ 7 \\ 8 \end{pmatrix} A = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_m \end{bmatrix}$$

つ. 其中独立向量的了数 5 M こ、 R(A) 5 M

矩阵 A, B 的行数相同, 证明:

 $(1) R(A,B) \ge R(A)$

- (2) $R(A,B) \ge R(B)$
- (3) $R(A,B) \le R(A) + R(B) \checkmark$

(2) 同型可记 R(A,B) R(B)

(3) 设马中有各个副向是为独立向专

[] B = (B, B2... Bg, Bg+1... B

R(B) = 9,

2 A = (d1, d2 --- dm)

B=(β,,β, --- βn)

(A,B) = (d,, d2 -- dm, B,B2 -- Bn)

U)设A中前行到向量为独立向量。

而其他利泉如何量的为导出向量

(x = (x , x 2 - - x p , x p+1 - - x m R(A) = \$

R(A,B)=R(V1, X2--Xp, B1, B2--Bn) =

-. R(A,B) > R(A)

: R(A,B) = R(X,x) ---

R(X1, x2 -- dp, B1, B2-- 8)

57+92

 $R(A,B) \leq R(A) + R(B)$

(C)(D) r(A,B) & r(A) U r(A,B) & r(B) U r(A,B) & r(A)+r(B)

更多干货请关注微博。多一个多种,

