

Outline

Learning Goals

Introduction

Automated Machine Learning (AutoML)

Summary

Learning Goals

Get an overview of the expanding field of AutoML

Get familiar with AutoKeras (tutorial)

Jin, H., Song, Q. and Hu, X., 2019, July. Auto-keras: An efficient neural architecture search system. In *Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining* (pp. 1946-1956).

What is Machine Learning?

- Algorithms to parse data, learn from it, and make determinations or predictions about something in the world
- Build models by training with data
- Three aspects:
 - Data -> engineer or learn features? how to set the experiment?
 - Model-> which model is best? Many times arbitrary
 - Cost function minimization -> set model parameters

AutoML

- The goal of AutoML is to enable people with limited machine learning background knowledge to use machine learning models easily
 - Automatic model selection
 - Automatic hyperparameter tuning
 - Neural architecture search (NAS)

ML Model

- AutoML finds the best model for you
- Eliminates the need of ML expertise to develop and deploy ML models

Grid-search – Tuning Hyper-Parameters

- Example: Polynomial fitting with regularization
- Hyper-parameters: Polynomial degree (θ) , regularization (λ)
- $\theta = \{\theta_1, \theta_2, \dots, \theta_M\}$
- $\lambda = \{\lambda_1, \lambda_2, \dots, \lambda_K\}$
- Necessity to train $M \times K$ models
- Computationally expensive for models that have many hyper-parameters
- Does not consider the different importance's of the hyper-parameters

Random-search – Tuning Hyper-Parameters

•
$$\theta = [\theta_{min}, \theta_{max}]$$

•
$$\lambda = [\lambda_{min}, \lambda_{max}]$$

- The number of models to be trained, N, is pre-set. The hyper-parameters are randomly chosen within the intervals
- Also computationally expensive
- Good for exploring the hyper-parameter space

Grid-search and Random-search

Neural Architecture Search (NAS)

• **Search space**: The NAS search space defines a set of operations (e.g. convolution, fully-connected, pooling) and how operations can be connected to form valid network architectures.

- **Search algorithm**: A NAS search algorithm samples a population of network architecture candidates. It receives the child model performance metrics as rewards and optimizes to generate high-performance architecture candidates.
- **Evaluation strategy**: We need to measure, estimate, or predict the performance of a large number of proposed child models in order to obtain feedback for the search algorithm to learn.
 - Many methods have been proposed to save time or computation resources.

NAS

https://towardsdatascience.com/if-youre-hyped-about-gpt-3-writing-code-you-haven-t-heard-of-nas-19c8c30fcc8a

NAS – Using Motifs (i.e., design patterns)

Discussion and Summary

- AutoML seeks to make ML accessible to non-experts
- It can be very expensive computationally
 - Data centres can consume more energies than small cities
- AutoML can use heuristics to reduce the computation burden of the search of the optimal model (weights reuse, etc.)
- Some AutoML services available:
 - Google https://cloud.google.com/automl
 - Azure https://azure.microsoft.com/en-ca/services/machine-learning/automatedml/
- Interesting idea but still at early stages

Thank you!

