Rewriting Minimisations for Efficient Ontology-Based Query Answering

Tassos Venetis, Giorgos Stoilos, and Vasilis Vassalos

Athens University of Economics and Business Department of Informatics, Athens, Greece.

Lemma 1. Let \mathcal{T} be a OWL 2 DL-TBox, let \mathcal{Q} be a CQ, let \mathcal{R} be a UCQ rewriting for \mathcal{Q}, \mathcal{T} , let and be a query answering system complete for some fragment \mathcal{L} of OWL 2 DL, and let $\mathcal{R}_{\mathcal{L}}^{\mathcal{T}}$ be as defined in Definition ??. Then, for every \mathcal{A} we have $\text{cert}(\mathcal{Q}, \mathcal{T} \cup \mathcal{A}) = \text{cert}(\mathcal{R}_{\mathcal{L}}^{\mathcal{T}}, \mathcal{A}_s)$, where \mathcal{A}_s is the saturation computed by and for $\mathcal{T} \cup \mathcal{A}$.

Proof. First, we show the following property for \mathcal{L} -derived queries:

(♠): for every $Q_1 \in \mathcal{R}$ either $Q_1 \in \mathcal{R}_{\mathcal{L}}^{\mathcal{T}}$ or some other $Q_2 \in \mathcal{R}_{\mathcal{L}}^{\mathcal{T}}$ exists such that Q_1 is \mathcal{L} -derived by Q_1 .

Proof of Property (\spadesuit): The minimal subsets \mathcal{T}' used in the derived relation can be used to construct a directed acyclic graph $G = \langle V, E \rangle$ of the queries in \mathcal{R} : more precisely, for \mathcal{Q}_1 and \mathcal{Q}_2 we have $\langle \mathcal{Q}_1, \mathcal{Q}_2 \rangle \in E$ iff \mathcal{Q}_1 derives \mathcal{Q}_2 with minimal subset \mathcal{T}_1 and there is no \mathcal{Q}' such that \mathcal{Q}' derives \mathcal{Q}_2 with subset $\mathcal{T}' \subseteq \mathcal{T}_1$. It follows that G is a directed acyclic graph with one top element \mathcal{Q} for which its minimal set is $\mathcal{T}' = \emptyset$. Let i denote the distance of a query from the root. We can show the property using induction over the distance i:

- By Definition ??, Q is in $\mathcal{R}_{\mathcal{L}}^{\mathcal{T}}$ hence Property (\blacklozenge) holds for Q (the root element).
- Assume Property (\blacklozenge) holds for all queries up to a level i and consider some query \mathcal{Q}_{i+1} . Consider all parents of \mathcal{Q}_{i+1} in G—that is, all queries $\mathcal{Q}^1, \ldots, \mathcal{Q}^\ell$ that (minimally) derive \mathcal{Q}_{i+1} . If at least one of them, call it \mathcal{Q}^k , \mathcal{L} -derives \mathcal{Q}_{i+1} then we are done; by Property (\blacklozenge) if $\mathcal{Q}^k \in \mathcal{R}^{\mathcal{T}}_{\mathcal{L}}$ then \mathcal{Q}_{i+1} is \mathcal{L} -derived by \mathcal{Q}^k and $\mathcal{Q}^k \in \mathcal{R}^{\mathcal{T}}_{\mathcal{L}}$ or, in a different case, some other $\mathcal{Q}'' \in \mathcal{R}^{\mathcal{T}}_{\mathcal{L}}$ exists that \mathcal{L} -derives \mathcal{Q}^k and hence also \mathcal{L} -derives \mathcal{Q}_{i+1} . Assume in contrast that $no \mathcal{Q}^j$ \mathcal{L} -derives \mathcal{Q}_{i+1} . Then, since the TBoxes \mathcal{T}^j used in the construction of G were minimal, any other \mathcal{T}' for which some \mathcal{Q}' derives \mathcal{Q}_{i+1} must contain \mathcal{T}^j . Since \mathcal{T}^j is not an \mathcal{L} -TBox \mathcal{T}' cannot be an \mathcal{L} -TBox; hence, no query in \mathcal{R} \mathcal{L} -derives \mathcal{Q}_{i+1} and we must have $\mathcal{Q}_{i+1} \in \mathcal{R}^{\mathcal{T}}_{\mathcal{L}}$.

Now we show the claim.

Consider some arbitrary but fixed fragment \mathcal{L} of OWL 2 DL and some ABox-saturation system ans complete for \mathcal{L} . Consider now some arbitrary tuple of individuals \vec{a} s.t. $\vec{a} \in \operatorname{cert}(\mathcal{Q}, \mathcal{T} \cup \mathcal{A})$. Since \mathcal{R} is a UCQ rewriting for \mathcal{Q}, \mathcal{T} some $\mathcal{Q}' \in \mathcal{R}$ must exist such that $\vec{a} \in \operatorname{cert}(\mathcal{Q}', \mathcal{A})$. If $\mathcal{Q}' \in \mathcal{R}^{\mathcal{T}}_{\mathcal{L}}$, then for \mathcal{A}_s the saturation computed by ans for $\mathcal{T} \cup \mathcal{A}$ we have $\mathcal{A}_s \supseteq \mathcal{A}$ hence by monotonicity of DLs $\vec{a} \in \operatorname{cert}(\mathcal{Q}', \mathcal{A}_s) \subseteq \operatorname{ans}(\mathcal{R}^{\mathcal{T}}_{\mathcal{L}}, \mathcal{T} \cup \mathcal{A})$. Otherwise, assume that $\mathcal{Q}' \notin \mathcal{R}^{\mathcal{T}}_{\mathcal{L}}$.

By Property (\spadesuit) some $\mathcal{Q}'' \in \mathcal{R}^{\mathcal{T}}_{\mathcal{L}}$ must exist that \mathcal{L} -derives \mathcal{Q}' . This means that some \mathcal{T}' exists such that \mathcal{Q}' is in the UCQ rewriting of $\mathcal{Q}'', \mathcal{T}'$. By definition of a UCQ rewriting (soundness property) we have that $\vec{a} \in \operatorname{cert}(\mathcal{Q}', \mathcal{A})$ implies $\vec{a} \in \operatorname{cert}(\mathcal{Q}'', \mathcal{T}' \cup \mathcal{A})$. Moreover, since \mathcal{Q}'' \mathcal{L} -derives \mathcal{Q}' , \mathcal{T}' is an \mathcal{L} -TBox. Consequently, $\mathcal{T}' \subseteq \mathcal{T}|_{\mathcal{L}}$ hence $\operatorname{cert}(\mathcal{Q}'', \mathcal{T}' \cup \mathcal{A}) = \operatorname{ans}(\mathcal{Q}'', \mathcal{T}' \cup \mathcal{A}) = \operatorname{ans}(\mathcal{Q}'', \mathcal{T} \cup \mathcal{A})$ and $\mathcal{Q}'' \in \mathcal{R}^{\mathcal{T}}_{\mathcal{L}}$.