Whole Genome Alignment

Michael Schatz

Sept 16, 2019

Lecture 5: Computational Biomedical Research

Assignment I: Chromosome Structures Due Wed Sept II @ II:59pm

Assignment 2: De novo Assembly Due Wed Sept 18 @ 11:59pm

Part I: Recap

The Sequence of the Human Genome Venter et al. Science 291. pp 1304-1351 (2001)

Initial sequencing and analysis of the human genome International Human Genome Sequencing Consortium Nature 409, pp 860–921 (2001)

The human genome - basic stats

- 3.096 billion base pairs (haploid)
- 20,454 protein coding genes
- 226,950 coding transcripts
 (isoforms of a gene that each encode a distinct protein product)

GRCh38.p12 (Genome Reference Consortium Human Build 38), INSDC Assembly GCA 000001405.27, Dec 2013
3,609,003,417
3,096,649,726
Ensembl
Full genebuild
Jan 2014
Jul 2014
Mar 2019
97.38
GENCODE 31

Gene counts (Primary assembly)

Coding genes	20,454 (incl 660 readthrough)	
Non coding genes	23,940	
Small non coding genes	4,871	
Long non coding genes	16.848 (incl 302 readthrough)	
Misc non coding genes	2.221	
Pseudogenes	15,204 (incl 8 readthrough)	
Gene transcripts	226,950	

Genomics Arsenal in the Year 2019

The advantages of SMRT sequencing

Roberts, RJ, Carneiro, MO, Schatz, MC (2013) Genome Biology. 14:405

PacBio Single Molecule Real Time Sequencing (SMRT-sequencing)

PacBio: SMRT Sequencing

Imaging of florescent phospholinked labeled nucleotides as they are incorporated by a polymerase anchored to a Zero-Mode Waveguide (ZMW).

Time

Intensity

Market Summary > Pacific Biosciences of California NASDAQ: PACB

1 month 6 months YTD

Max

5 years

1 year

5.66 USD+0.11 (1.89%) +

5 days

Financial news, comparisons and more

Sep 3, 2:45 PM EDT - Disclaimer

1 day

20 15 10 2018 2012 2014 2016 5.53 Div yield Open 5.55 Prev close High 5.68 52-wk high 7.84 Low ... 5.53 52-wk low Mkt cap 865.02M 3.90 P/E ratio

5.66 USD +0.11 (1.89%) +

DNA sequencing giant Illumina just bought rival Pac Bio for \$1.2 billion — here's why

- Illumina just paid \$1.2 billion for Pacific Biosciences, to help it retain its dominant position in the DNA sequencing space, biotech experts say.
- Illumina, which is valued at more than \$45 billion, makes the machines that companies from 23andMe to Ancestry rely on for their sequencing.

Christina Farr | @chrissyfarr

Published 5:13 PM ET Thu, 1 Nov 2018

P/E ratio

Financial news, comparisons and more

Oxford Nanopore Technologies (ONT)

Nanopore Sequencing

Sequences DNA/RNA by measuring changes in ionic current as nucleotide strand passes through a pore

More Throughput

MinION

Quick Mobile Sequencing \$1k / instrument 5-10 GB / day

PromethION

High Throughput Desktop Sequencer \$75k / instrument >>1TB / day

Single Molecule Sequences

"Corrective Lens" for Sequencing

"Corrective Lens" for Sequencing

Consensus Accuracy and Coverage

Coverage can overcome random errors

- Dashed: error model from binomial sampling; solid: observed accuracy
- For same reason, CCS is extremely accurate when using 5+ subreads

$$CNSError = \sum_{i=\lceil c/2 \rceil}^{c} {c \choose i} (e)^{i} (1-e)^{n-i}$$

Recent Long Read Assemblies

First Telomere-to-Telomere Human Chromosome

Telomere-to-telomere assembly of a complete human X chromosome Miga et al. (2019) bioRxiv. https://doi.org/10.1101/735928

Assembly Summary

Assembly quality depends on

- 1. Coverage: low coverage is mathematically hopeless
- 2. Repeat composition: high repeat content is challenging
- 3. Read length: longer reads help resolve repeats
- 4. Error rate: errors reduce coverage, obscure true overlaps
- Assembly is a hierarchical, starting from individual reads, build high confidence contigs/unitigs, incorporate the mates to build scaffolds
 - Extensive error correction is the key to getting the best assembly possible from a given data set
- Watch out for collapsed repeats & other misassemblies
 - Globally/Locally reassemble data from scratch with better parameters & stitch the 2 assemblies together

Part 2: Whole Genome Alignment

Whole Genome Alignment with MUMmer

Slides Courtesy of Adam M. Phillippy NHGRI

Goal of WGA

 For two genomes, A and B, find a mapping from each position in A to its corresponding position in B

Not so fast...

• Genome A may have insertions, deletions, translocations, inversions, duplications or SNPs with respect to B (sometimes all of the above)

WGA visualization

How can we visualize whole genome alignments?

- With an alignment dot plot
 - $-N \times M$ matrix
 - Let i = position in genome A
 - Let j = position in genome B
 - Fill cell (i,j) if A_i shows similarity to B_i

 A perfect alignment between A and B would completely fill the positive diagonal

SV Types

- Different structural variation types / misassemblies will be apparent by their pattern of breakpoints
- Most breakpoints will be at or near repeats
- Things quickly get complicated in real genomes

http://mummer.sf.net/manual/ AlignmentTypes.pdf

Alignment of 2 strains of *Y. pestis* http://mummer.sourceforge.net/manual/

Next Steps

- I. Reflect on the magic and power of DNA ©
- 2. Check out the course webpage
- 3. Work on HW2