

MATH 165B - Introduction to Complex Variables

Midterm Exam

Prob. #	Points	Score
1	25 points	
2	25 points	
3	25 points	
4	25 points	
Extra Credit	20 points	
Total	100 points	

Show your work

Problem 1: In each case, write the principal part of the function at its isolated singular point and determine whether that point is a pole, a removable singular point, or an essential singular point:

(a)
$$\exp\left(\frac{1}{z^2}\right)$$

$$\exp\left(\frac{1}{z^2}\right) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{1}{z^2}\right)^n = 1 + \sum_{n=1}^{\infty} \frac{1}{n!z^{2n}} \leftarrow \text{Principal part}$$

 $z_0 = 0$ is an essential singularity since the principal part has infinitely many terms.

(b)
$$\frac{z^3}{1-z}$$
 Notice that $z_1 = 1$ is a singular point, moreover,

$$z^{3} = z^{3} - 1 + 1 = (z - 1)(1 + z + z^{2}) + 1$$

$$\frac{z^{3}}{1 - z} = \frac{(z - 1)(1 + z + z^{2}) + 1}{1 - z}$$

$$\frac{z^{3}}{1 - z} = -1 - z - z^{2} + \frac{1}{1 - z} \leftarrow \text{Principal part}$$

 $z_1 = 1$ is a simple pole.

(c)
$$\frac{\sin 2z}{z}$$
 Notice that $z_2 = 0$ is a singular point, moreover,

$$\frac{\sin 2z}{z} = \frac{1}{z} \sum_{n=0}^{\infty} (-1)^n \frac{(2z)^{2n+1}}{(2n+1)!} = \frac{1}{z} \left(2z - \frac{2^3}{3!} z^3 + \frac{2^5}{5!} z^5 + \cdots \right)$$
$$= 2 - \frac{2^3}{3!} z^2 + \frac{2^5}{5!} z^4 + \cdots$$

Therefore, the principal part is zero and $z_2 = 0$ is a removable singularity.

(d) $\frac{\cos z - 1}{z^2}$ Notice that $z_3 = 0$ is a singular point, moreover,

$$\frac{\cos z - 1}{z^2} = \frac{1}{z^2} \left(1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \dots - 1 \right)$$
$$\frac{\cos z - 1}{z^2} = -1 + \frac{z^2}{4!} - \frac{z^4}{6!} + \dots$$

Therefore, the principal part is zero and $z_3 = 0$ is a removable singularity.

(e) $\frac{1}{(1-z)^3}$. Notice that $z_4=1$ is a pole of order 3 and the function is its principal part.

Problem 2: Find

(a) The residue of $f_1(z)=rac{\pi}{z-z^2}$ at z=0

z=0 is a simple pole since $f_1(z)=rac{\pi}{z(1-z)}=rac{1}{z}rac{\pi}{1-z}$, then by the Theorem in Sec 73,

$$Res_{z=0}f_1(z) = \frac{\pi}{1-0} = \pi$$

(b) The residue of $f_2(z)=z\cos\left(\frac{1}{z}\right)$ at z=0

 $f_2(z) = z\cos\left(\frac{1}{z}\right) = z\left(1 - \frac{1}{2!z^2} + \frac{1}{4!z^4} + \cdots\right) = z - \frac{1}{2!z} + \frac{1}{4!z^3} + \cdots$, therefore,

$$Res_{z=0}f_2(z) = -\frac{1}{21} = -\frac{1}{2}$$

(c) The residue of $f_3(z) = \frac{z - \sin z}{2z}$ at z = 0

 $f_3(z) = \frac{z - \sin z}{2z} = \frac{1}{2} - \frac{1}{2z} \left(z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \cdots \right) = \frac{1}{2} - \frac{1}{2} + \frac{z^2}{2 \times 3!} - \frac{z^4}{2 \times 5!} + \frac{z^6}{2 \times 7!} - \cdots = \frac{z^2}{2} + \frac{z^6}{2} +$

$$Res_{z=0}f_3(z) = 0$$

(d) A function f_4 with a simple pole at z=0 such that the residue of f_4 at z=0 is π .

$$f_4(z) = \frac{\pi}{z}$$

(e) A function f_5 with a pole of order 3 at z = 0 such that the residue of f_5 at z = 0 is 17.

$$f_5(z) = \frac{1}{z^3} + \frac{17}{z}$$

Problem 3: Consider the integral

$$\int_C \frac{2z^3 + 3}{(z+1)(z^2+4)} dz$$

taken counterclockwise around the curve C.

(a) Find the value of the integral when the curve C is the circle |z-1|=2 |z+1|=2

$$\int_{C} \frac{2z^{3} + 3}{(z+1)(z^{2} + 4)} dz = 2\pi i Res_{z=-1} \frac{2z^{3} + 3}{(z+1)(z^{2} + 4)} = 2\pi i \frac{2(-1)^{3} + 3}{((-1)^{2} + 4)} = 2\pi i \frac{1}{5}$$

(b) Find the value of the integral when the curve C is the circle |z|=4

If we denote $f(z) = \frac{2z^3+3}{(z+1)(z^2+4)}$, then f can be decompose (check) as

$$f(z) = \frac{-\frac{11}{10} - \frac{29}{20}i}{z - (-2i)} + \frac{\frac{1}{5}}{z - (-1)} + \frac{-\frac{11}{10} + \frac{29}{20}i}{z - 2i} + 2$$

This partial fraction decomposition (I use the command **Apart** in Mathematica) give us the residues. Observe that one can also use the theorem in Sec 73 to compute them. Then

$$Res_{z=-1}f(z) = \frac{1}{5}$$

$$Res_{z=-2i}f(z) = -\frac{11}{10} - \frac{29}{20}i$$

$$Res_{z=2i}f(z) = -\frac{11}{10} + \frac{29}{20}i$$

From the picture above, we see that these poles are inside the curve |z|=4, then by the Residue Theorem,

$$\int_{C} \frac{2z^{3} + 3}{(z+1)(z^{2} + 4)} dz = 2\pi i \left(Res_{z=-1} f(z) + Res_{z=-2i} f(z) + Res_{z=2i} f(z) \right)$$
$$= 2\pi i \left(\frac{1}{5} - \frac{11}{10} - \frac{29}{20} i - \frac{11}{10} + \frac{29}{20} i \right) = -4\pi i$$

4

(c) Give a curve C such that the value of the integral is 0.

Consider: $\mathbb{C} = \{z : |z-4| = 2\}$. By Cauchy's Theorem, the integral is zero.

Problem 4: Show that the image of the right half plane $Re(z) > \frac{1}{2}$, under the mapping $w = \frac{1}{z}$, is the disk |w-1| < 1.

Recall that the transformation $w = \frac{1}{z}$ maps "circles" to "circles". Then since the line $L = \{z : \text{Re}(z) = \frac{1}{2}\}$ is also a "circle", its image is a circle. To determine the image L under $w = \frac{1}{z}$, notice that the points

$$z_1 = \frac{1}{2}$$
 $w_1 = 2$
 $z_2 = \frac{1}{2} + \frac{i}{2}$ \longrightarrow $w_2 = 1 - i$
 $z_3 = \frac{1}{2} - \frac{i}{2}$ $w_3 = 1 + i$
 ∞

Then, by basic geometry, it is clear that the image of L is the circle $C = \{w : |w-1| = 1\}$. See figure below. (Note: this was not my first approach to solve this problem.)

Moreover the image of 1 is also 1, then the right half plane $\text{Re}(z) > \frac{1}{2}$, under the mapping $w = \frac{1}{z}$, is the disk |w-1| < 1.

Extra Credit Problem

Show that all four zeros of the polynomial $g(z) = z^4 - 7z - 1$ lie in the disk |z| < 2

Let $f(z) = z^4$ and h(z) = -7z - 1, g(z) = f(z) + h(z). Now on the circle |z| = 2, we notice that $|f(z)| = |z^4| = |z^4| = 2^4 = 16$ and |h(z)| = |-7z - 1| < |-7z| + 1 = 7|z| + 1 = 15

Therefore on the circle |z|=2, |f(z)|<|h(z)| and we can apply Rouché's Theorem. Then, since f(z) has four zeros counting multiplicity on |z|<2, so thus g(z).

Extra Credit STAR PROBLEM

Show that the parabola $2x = 1 - y^2$ is mapped onto the cardioid $\rho = 1 + \cos \phi$ by the reciprocal transformation $w = \frac{1}{z}$.

There are several ways of solving this problem. One way is to consider the equivalent problem that $z = \frac{1}{w}$ maps the cardioid $\rho = 1 + \cos \phi$ onto the parabola $2x = 1 - y^2$. We will present an outline of this approach. On the cardioid:

$$w = \rho e^{i\phi} = (1 + \cos\phi)e^{i\phi} \rightarrow z = \frac{1}{w} = \frac{1}{(1 + \cos\phi)e^{i\phi}} = \frac{1}{1 + \cos\phi}e^{-i\phi} = x + iy$$

Then

$$x = \frac{1}{1 + \cos\phi} \cos\phi$$
$$y = -\frac{1}{1 + \cos\phi} \sin\phi$$

It is easy to check now that $2x = 1 - y^2$.