Omitted Variable Bias and Bad Controls

Chungsang Tom Lam¹

¹Department of Economics Clemson University

February 6, 2020

Recall the Partitioned Regression

Consider the true model:

$$y = X_1 \beta_1 + X_2 \beta_2 + \epsilon \tag{1}$$

Recall:

pure effect of X1

$$\hat{\beta}_1 = (X_1'X_1)^{-1}X_1'y - (X_1'X_1)^{-1}(X_1'X_2)\hat{\beta}_2$$

$$\hat{\beta}_2 = (X_2'X_2)^{-1}X_2'y - (X_2'X_2)^{-1}(X_2'X_1)\hat{\beta}_1$$

Define:

$$\tilde{\beta}_1 = (X_1' X_1)^{-1} X_1' y
\tilde{\beta}_2 = (X_2' X_2)^{-1} X_2' y$$

Omitted Variable Bias

- $\hat{\beta}_1$ and $\hat{\beta}_2$ are the estimates for regressing y on X_1 and X_2 in one regression.
- $\tilde{\beta}_1$ and $\tilde{\beta}_2$ are the estimates for regressing y on X_1 only and regressing y on X_2 only.
- We already know $\hat{\beta}_1$ and $\hat{\beta}_2$ are unbiased and consistent under the OLS assumptions. For $\tilde{\beta}_1$ and $\tilde{\beta}_2$ to be an unbiased and consistent estimator of β_1 and β_2 , we consider the expectation and probability limit of the terms $(X_1'X_1)^{-1}(X_1'X_2)\hat{\beta}_2$ and $(X_2'X_2)^{-1}(X_2'X_1)\hat{\beta}_1$.

Omitted Variable Bias

- When X_1 and X_2 are uncorrelated ${\bf OR}\ \beta_2=0$, $\tilde{\beta}_1$ is an unbiased and consistent estimator of β_1
- When X_1 and X_2 are uncorrelated ${\bf OR}\ \beta_1=0$, $\tilde{\beta}_2$ is an unbiased and consistent estimator of β_2
- We can also determine the sign of the bias of $\tilde{\beta}_1$ if we have an idea of how X_1 and X_2 are correlated and the sign of β_2 . $\hat{\beta}_1=(X_1'X_1)^{-1}X_1'y-(X_1'X_1)^{-1}(X_1'X_2)\hat{\beta}_2$ $\tilde{\beta}_1=(X_1'X_1)^{-1}X_1'y$ $\tilde{\beta}_2$ if X1 and X2 positive correlated: $(X_1'X_1)^{-1}(X_1'X_2)>0$ then, if $\beta_2>0$, $(X_1X_1)^{-1}(X_1X_2)>0$, $\hat{\beta}_1=\hat{\beta}_1-$ a positive number,,, if we use $\hat{\beta}_1$ to estimate β_1 , β_1 is overesitimated positively correlated X_1,X_2 negatively correlated X_1,X_2

 $\begin{array}{ll} \text{positive } \beta_2 & \beta_1 \text{ ov} \\ \text{negative } \beta_2 & \beta_1 \text{ underestimated} \end{array}$

egatively correlated X_1 ,. eta_1 underestimated eta_1 overestimated

Bad Controls

- So if omitted variable bias is so bad, we should just add everything we have into the regression?
- What exactly is $(X_1'X_1)^{-1}(X_1'X_2)\hat{\beta}_2$?
- The above proof only tell us that if X_2 is omitted, (under certain conditions), $\hat{\beta}_1$ is not an unbiased and consistent estimator of β_1 . It does not tell us whether β_1 is the parameter we want to estimate.
- If X_1 can indirectly affect y via affecting X_2 , we need to consider if we want to take into account this indirect effect or not.
- Including X_2 in the regression essentially taking the indirect effect away from the estimation (aka controlling for X_2), we may NOT want to do that.

Bad Controls

