

MSML610: Advanced Machine Learning

Linear Algebra

Instructor: GP Saggese, PhD - gsaggese@umd.edu

References:

Linear algebra

• Linear algebra

- Vector and vector spaces
- Affine spaces
- Vectors and matrices
- Linear functions
- Connections between Machine Learning and Linear Algebra

Vector and vector spaces

- Linear algebra
 - Vector and vector spaces
 - Affine spaces
 - Vectors and matrices
 - Linear functions
 - Connections between Machine Learning and Linear Algebra

Field: definition

A field $\mathbb{F} = (X, +, *)$ is a set X with two binary operations + and *, satisfying the following 6 axioms:

1. Closed with respect to + and *:

$$a, b \in X \implies a + b \in X$$

 $a, b \in X \implies a * b \in X$

2. Commutativity of + and *:

$$a + b = b + a$$

 $a * b = b * a$

3. Associativity of + and *:

$$a + (b + c) = (a + b) + c = a + b + c$$

 $a * (b * c) = (a * b) * c = a * b * c$

4. Distributivity of multiplication over addition:

$$a*(b+c) = a*b+a*c$$

5. Existence of + and * identity elements, 0 and 1:

$$a + 0 = a$$
 4/60

Field: examples

- Examples
 - The set of \mathbb{R} , \mathbb{C} , $\mathsf{GF}(2)$
 - The set of rational numbers \mathbb{Q} , i.e., numbers that can be written as fraction $\frac{a}{b}$ with $a,b\in\mathbb{Z}$ and $b\neq 0$
- Non-examples
 - The set of positive integers $\mathbb{N}=1,2,3,\ldots$ is not a field
 - The set of integers $\mathbb{Z}=\ldots$, -2, -1, 0, 1, 2, \ldots \$ is not a field

Vector space: definition

- A "vector space $\mathcal V$ over a field $\mathbb F$ " is a triple $(\mathcal V,\mathbb F,+,\cdot)$ where:
 - ullet $\mathcal V$ is a set of vectors
 - ullet Is a field of scalars
 - + is a sum operation between vectors
 - · is a scalar multiplication
- A vector space needs to satisfy the following 2 properties:
 - 1. Closed with respect to to scalar multiplication: if $\underline{x} \in \mathcal{V}$, then $\alpha \cdot \underline{x} \in \mathcal{V}$
 - 2. Closed with respect to to vector addition: if $\underline{x},\underline{y}\in\mathcal{V}$, then $\underline{x}+\underline{y}\in\mathcal{V}$

Linear combination of vectors

The vector

$$\alpha_1 \underline{\mathbf{v}}_1 + \alpha_2 \underline{\mathbf{v}}_2 + \dots + \alpha_n \underline{\mathbf{v}}_n$$

is a linear combination of vectors $\underline{\mathbf{v}}_1,...,\underline{\mathbf{v}}_n$ with coefficients $\alpha_1,...,\alpha_n$

• A linear combination can be written in matrix form:

$$\underline{\underline{\boldsymbol{V}}} \cdot \underline{\boldsymbol{\alpha}} \text{ or } \underline{\boldsymbol{\alpha}}^T \cdot \underline{\underline{\boldsymbol{V}}}^T$$

where
$$\underline{\underline{\boldsymbol{V}}} = (\underline{\boldsymbol{v}}_1|...|\underline{\boldsymbol{v}}_n)$$

Span of vectors

 The span of n m-dimensional vectors is the set of all linear combinations of the n vectors:

$$\mathsf{Span}(\underline{\boldsymbol{v}}_1,...,\underline{\boldsymbol{v}}_n) = \{\underline{\underline{\boldsymbol{V}}} \cdot \underline{\alpha} \text{ with } \underline{\alpha} \in \mathbb{F}^n\} = \{\underline{\boldsymbol{v}} \in \mathbb{F}^m : \underline{\boldsymbol{v}} = \sum_{i=1}^n \alpha_i \underline{\boldsymbol{v}}_i\}$$

• E.g., the span of vectors is a vector space

Null space of a matrix

• Null space of the columns of a matrix **A** is defined as the set:

$$\mathsf{Null}(\underline{\boldsymbol{A}}) = \{\underline{\boldsymbol{v}} : \underline{\boldsymbol{A}} \cdot \underline{\boldsymbol{v}} = \underline{\boldsymbol{0}}\}$$

- In words, all the vectors that are coefficients of linear combinations of columns of <u>A</u> yielding the zero vector
- Null space is a vector space

Homogeneous linear system associated with null space

• From the definition of matrix-vector multiplication the vector $\underline{\boldsymbol{v}}$ is in Null($\underline{\boldsymbol{A}}$) \iff $\underline{\boldsymbol{v}}$ is a solution of the homogeneous linear system involving the columns of $\underline{\boldsymbol{A}}$:

$$\underline{\boldsymbol{a}}_{1}^{T} \cdot \underline{\boldsymbol{v}} = 0$$

$$\underline{\boldsymbol{a}}_{2}^{T} \cdot \underline{\boldsymbol{v}} = 0$$
...
$$\underline{\boldsymbol{a}}_{m}^{T} \cdot \underline{\boldsymbol{v}} = 0$$

• Note that the notation is a bit confusing since we mean the transpose of the columns \underline{a}_i of \underline{A} and not the rows of \underline{A}

Dot product on a vector space: definition

Given a field of scalars
 \mathbb{F} and a vector space V over \mathbb{F}, an inner product is
 a mapping:

$$\langle\cdot,\cdot\rangle:\mathcal{V}\times\mathcal{V}\to\mathbb{F}$$

that satisfies the 3 axioms:

1. Conjugate symmetry (almost commutativity):

$$\langle \underline{\pmb{x}},\underline{\pmb{y}}\rangle=\overline{\langle \underline{\pmb{y}},\underline{\pmb{x}}\rangle}$$

2. Linearity in the first argument:

$$\langle a\underline{x},\underline{y}\rangle = a\langle \underline{x},\underline{y}\rangle$$

 $\langle \underline{x}+y,\underline{z}\rangle = \langle \underline{x},\underline{z}\rangle + \langle y,\underline{z}\rangle$

3. Positive definitiveness:

$$\langle \underline{x}, \underline{x} \rangle \ge 0$$

 $\langle \underline{x}, \underline{x} \rangle = 0 \implies \underline{x} = \underline{0}$

Vector inner product

- Aka "dot product", "scalar product"
- Given $\underline{x}, \underline{y} \in \mathbb{F}^n$ (i.e., same number of components and also same "label" for each element), the inner product of \underline{x} and \underline{y} is defined as:

$$\langle \underline{\boldsymbol{x}}, \underline{\boldsymbol{y}} \rangle = \underline{\boldsymbol{x}}^T \cdot \underline{\boldsymbol{y}} = \sum_{i=1}^n x_i y_i \in \mathbb{F}$$

• $\underline{\boldsymbol{x}}^T \cdot \boldsymbol{y}$ is read "x dotted y" or "x transposed y"

Affine spaces

- Linear algebra
 - Vector and vector spaces
 - Affine spaces
 - Vectors and matrices
 - Linear functions
 - Connections between Machine Learning and Linear Algebra

Affine space: definition

• If $\underline{\boldsymbol{c}}$ is a vector and $\mathcal V$ is a vector space then

$$A = \underline{c} + V = \{\underline{c} + \underline{v} : \underline{v} \in V\}$$

is called an affine space

- An affine space is a vector space translated by a point represented by a vector
 - E.g., a plane or a line that do not contain the origin

Affine space: example of plane passing through 3 points

- Given 3 not collinear vectors: $\underline{\boldsymbol{u}}_1$, $\underline{\boldsymbol{u}}_2$, and $\underline{\boldsymbol{u}}_3$, the plane containing the endpoints of the 3 vectors can be represented as $\mathcal{A} = \underline{\boldsymbol{u}}_1 + \mathcal{V}$ where $\mathcal{V} = \mathsf{Span}(\underline{\boldsymbol{u}}_2 \underline{\boldsymbol{u}}_1, \underline{\boldsymbol{u}}_3 \underline{\boldsymbol{u}}_1)$
- **Note**: the span of the 3 vectors has dimension 3, but an affine space with dimension 2

Affine combination: definition

 An affine combination is a linear combination of vectors where the sum of the (positive or negative) coefficients is 1:

$$\alpha_1 \underline{\boldsymbol{u}}_1 + \ldots + \alpha_n \underline{\boldsymbol{u}}_n$$
 where $\sum_i \alpha_i = 1$

• In matrix form: $\underline{\underline{U}} \cdot \underline{\alpha}$ where $\underline{\mathbf{1}}^T \underline{\alpha} = 1$

Affine hull of vectors

• Given vectors $\underline{\boldsymbol{u}}_1,...,\underline{\boldsymbol{u}}_n$, the set of all affine combinations is the affine hull:

$$\mathcal{A} = \{ \underline{\boldsymbol{v}} = \sum_{i}^{n} \alpha_{i} \underline{\boldsymbol{u}}_{i} : \sum_{i} \alpha_{i} = 1 \} = \{ \underline{\boldsymbol{v}} = \underline{\underline{\boldsymbol{U}}}\underline{\boldsymbol{\alpha}} : \underline{\boldsymbol{1}}^{T}\underline{\boldsymbol{\alpha}} = 1 \}$$

• The affine hull includes each point because if $\underline{\alpha}$ has a single 1 in position i and all others 0, we get \underline{u}_i

Affine hull of vectors is an affine space

• We can write the affine hull of $\underline{\boldsymbol{u}}_1,...,\underline{\boldsymbol{u}}_n$ as an affine space:

$$\underline{\boldsymbol{u}}_i + \mathsf{Span}(\underline{\boldsymbol{u}}_1 - \underline{\boldsymbol{u}}_i, ..., \underline{\boldsymbol{u}}_n - \underline{\boldsymbol{u}}_i)$$

- Thus an affine space is an affine hull and vice versa
- This is the dual of "the span of vectors is a vector space"

The solution set of non-homogeneous linear system is empty or affine space

Consider the solution of a system of non-homogeneous linear equations

$$\{\underline{\mathbf{x}}:\underline{\mathbf{a}}_1^T\underline{\mathbf{x}}=\beta_1,...,\underline{\mathbf{a}}_m^T\underline{\mathbf{x}}=\beta_m\}$$
 or in matrix form $\underline{\mathbf{A}}\cdot\underline{\mathbf{x}}=\mathbf{\beta}$

- The solution set is either empty or an affine space
- There are two cases: either the non-homogeneous system has solution, or not
- Consider the case where the system of equations has no solutions (e.g., it is contradictory, e.g., x = 1, x = 2), then the solution set is empty
- Consider the case where there is a solution
- Each linear system $\underline{\underline{Ax}} = \underline{\beta}$ has an associated homogeneous linear system $\underline{\underline{Ax}} = \underline{0}$
- If $\underline{\boldsymbol{u}}_1$ is a solution of the non-homogeneous system (i.e., $\underline{\underline{\boldsymbol{A}}}\underline{\boldsymbol{u}}_1 = \underline{\boldsymbol{\beta}}$), then any other solution $\underline{\boldsymbol{u}}_2$ is a solution (i.e., $\underline{\underline{\boldsymbol{A}}}\underline{\boldsymbol{u}}_2 = \underline{\boldsymbol{\beta}}$) \iff $\underline{\underline{\boldsymbol{u}}}_2 \underline{\boldsymbol{u}}_1$ is in the vector space which is the solution of the homogeneous linear system (i.e., $\underline{\boldsymbol{A}}(\underline{\boldsymbol{u}}_1 \underline{\boldsymbol{u}}_2) = \underline{\boldsymbol{0}}$)

Vector space vs affine space: summary

- Linear combination vs affine combination
- Span of vectors vs affine hull of vectors
 - Span (affine hull) is the set of all linear (affine) combinations
- Vector space vs affine space

Vectors and matrices

- Linear algebra
 - Vector and vector spaces
 - Affine spaces
 - Vectors and matrices
 - Linear functions
 - Connections between Machine Learning and Linear Algebra

Matrices and Matrix Operations

- A matrix $\underline{\mathbf{A}} \in \mathbb{F}^{m \times n}$ is a two dimensional array with dimensions $m \times n$ of elements from a field \mathbb{F}
- Matrix notation

 - $\underline{\underline{A}} \in \mathbb{R}^{m \times n}$ has m rows and n columns \overline{A}_{ij} is the element on i-th row and j-th column

$$\underline{\underline{\boldsymbol{A}}} = \begin{pmatrix} A_{1,1} & \dots & A_{1,n} \\ \dots & A_{i,j} & \dots \\ A_{m,1} & \dots & A_{m,n} \end{pmatrix}$$

- The convention is first rows and then columns (i.e., y-x instead of the more usual x-y) for both elements and dimensions of a matrix
- Notation for rows and columns in a matrix
 - j-th column is \underline{a}_i or $\underline{a}_{:,i}$ (using numpy notation)
 - *i*-th row is \underline{a}_i^T or \underline{a}_i .
 - Fixing a coordinate (e.g., row) one gets the orthogonal indices (e.g., column)

Linear functions

- Linear algebra
 - Vector and vector spaces
 - Affine spaces
 - Vectors and matrices
 - Linear functions
 - Connections between Machine Learning and Linear Algebra

Linear functions over vector spaces: definition

- ullet Consider two vector spaces ${\mathcal V}$ and ${\mathcal W}$ over the same field ${\mathbb F}$
- A linear function $f: \mathcal{V} \to \mathcal{W}$ satisfies two properties:
 - 1. $f(\alpha \underline{\mathbf{v}}) = \alpha f(\underline{\mathbf{v}})$
 - 2. $f(\underline{u} + \underline{v}) = f(\underline{u}) + f(\underline{v})$
- Linear functions "push linear combination through":

$$f(\alpha_1\underline{\mathbf{v}}_1 + \dots + \alpha_n\underline{\mathbf{v}}_n) = \alpha_1 f(\underline{\mathbf{v}}_1) + \dots + \alpha_n f(\underline{\mathbf{v}}_n)$$

This is equivalent to the 2 properties of linear functions

From matrix to linear function

• Given a matrix $\underline{\mathbf{A}} \in \mathbb{F}^{n \times m}$ we can define the function:

$$f(\underline{x}) = \underline{A} \cdot \underline{x}$$

- The function f() maps m-vectors into n-vectors
 - The domain is \mathbb{F}^m for the matrix-vector product to be defined
 - The co-domain is \mathbb{F}^n
 - MEM: the inputs are from the top and the outputs from the side
- $f(\underline{x})$ is a linear function because of the properties of matrix-vector product

From linear function to matrix

- Consider a linear function $f: \mathbb{F}^m \to \mathbb{F}^n$
- We want to find a matrix $\underline{\boldsymbol{A}}$ such that $f(\underline{\boldsymbol{x}}) = \underline{\boldsymbol{A}} \cdot \underline{\boldsymbol{x}}$
- Solution
- We know that $\underline{\underline{A}} \in \mathbb{F}^{n \times m}$ from matrix-vector product definition, but what are the elements of \underline{A} ?
- Note that if we compute $\underline{\underline{A}} \cdot \underline{e_i}$, where $e_i = (0, ..., 0, 1, ...0)$ is the *i*-th standard generator, we obtain \underline{a}_i (i.e., the *i*-th column of $\underline{\underline{A}}$)
- Thus $\underline{\underline{A}}$ is the matrix with columns equal to the standard generators transformed by f()

Linear functions: examples and non-examples

- The identity function corresponds to the identity matrix
- A diagonal matrix corresponds to a transformation scaling each coordinate independently
- Rotation and scaling are linear transformations
- Translation is not a linear function, since it does not satisfy either of the two linearity properties

A linear function maps zero vector to zero vector

• It can be proved that a linear function $f: \mathcal{V} \to \mathcal{W}$ maps the zero vector of \mathcal{V} to the zero vector of \mathcal{W}

Kernel of a function

• The kernel of a (linear) function f is the set of vectors that are transformed by f into the $\underline{\mathbf{0}}$ vector

$$Ker(f) = \{\underline{\boldsymbol{v}} : f(\underline{\boldsymbol{v}}) = \underline{\boldsymbol{0}}\}$$

Kernel of a linear function and null space of matrix

• If f is written in terms of a matrix as $f(\underline{x}) = \underline{\underline{A}} \cdot \underline{x}$ then:

$$\mathsf{Ker}(f) = \mathsf{Null}(\underline{\underline{\boldsymbol{A}}})$$

• The kernel of a linear function is the null space of the columns of the associated matrix $\underline{\underline{\textbf{A}}}$

Domain

- Consider a function $f: \mathcal{V} \to \mathcal{W}$
- ullet ${\cal V}$ "domain": the set of all values where the function is defined

Image of domain

- Consider a function $f: \mathcal{V} \to \mathcal{W}$
- $f(\mathcal{V})$ "image of domain": the set of all values that the function can assume

Codomain

- \mathcal{W} "co-domain": the set where the function assumes its value (e.g., \mathbb{R}^2)
- Note that often it is not easy to describe $f(\mathcal{V})$ in a compact way so we use $\mathcal{W}\supseteq f(\mathcal{V})$

One-to-one function: definition

- Aka injective
- Consider a function $f: \mathcal{V} \to \mathcal{W}$
- A function is one-to-one \iff two different elements $v_1 \neq v_2 \in \mathcal{V}$ have different images $f(v_1) \neq f(v_2)$
- Equivalent definition using contrapositive
 - One-to-one function \iff two elements v_1 and v_2 have the same image $f(v_1) = f(v_2)$, then they are equal $v_1 = v_2$
- Equivalent definition in terms of set cardinality
 - One-to-one function \iff $|f(\mathcal{V})| = |\mathcal{V}|$, i.e., the image of the domain has the same number of elements as the domain

Onto function

- Aka surjective
- Consider a function $f: \mathcal{V} \to \mathcal{W}$
- A function is onto \iff for any element of its co-domain $w \in \mathcal{W}$, there exists an element of the domain $v \in \mathcal{V}$ that is transformed into it, i.e., f(v) = w
- Equivalent definition in terms of set cardinality
 - Onto function $\iff f(\mathcal{V}) = \mathcal{W}$, i.e., the image of the domain is equal to the co-domain
 - Note that any function can be made surjective by restricting $\mathcal W$ to $f(\mathcal V)$

Invertible function

- A function $f: \mathcal{V} \to \mathcal{W}$ is invertible \iff it is both one-to-one (injective) and onto (surjective)
- Equivalently: $\forall w \in W \exists ! v \in V : f(v) = w$
- Equivalent definition in terms of set cardinality
 - Invertible function \iff $|\mathcal{V}| = |\mathcal{W}|$, i.e., the co-domain and the domain have the same number of elements

Inverse of a function

• The inverse of f is $f^{-1}: \mathcal{W} \to \mathcal{V}$ and $f \circ f^{-1}$ is the identity function

One-to-one lemma for linear functions

- A linear function is one-to-one \iff its kernel is the trivial vector space, i.e., $Ker(f) = \{ \underline{\mathbf{0}} \}$
- Equivalently the associated matrix $\underline{\mathbf{A}}$ has $\text{Null}(\underline{\mathbf{A}}) = \{\underline{\mathbf{0}}\}$

Matrix-matrix multiplication and linear function composition

- We have seen that there is a correspondence between linear functions and matrices
- What does composition of linear functions correspond to?
- Consider two matrices $\underline{\underline{A}}$ and $\underline{\underline{B}}$ and the two associated functions: $f(\underline{y}) = \underline{\underline{A}} \cdot \underline{y}$ and $g(\underline{x}) = \underline{\underline{B}} \cdot \underline{x}$
- The composed function is $h(\underline{x}) = (f \circ g)(\underline{x}) = f(g(\underline{x}))$
- It can be shown that: $h(\underline{x}) = \underline{\underline{A}} \cdot \underline{\underline{B}} \cdot \underline{x}$

Matrix inverse

- Using the definition of inverse functions, two square matrices $\underline{\underline{A}}$ and $\underline{\underline{B}}$ are inverses $\iff \underline{\underline{A}} \cdot \underline{\underline{B}} = \underline{\underline{I}}$
- We indicate the (unique) inverse of $\underline{\boldsymbol{A}}$ with $\underline{\boldsymbol{A}}^{-1}$

Invertible matrix and solution of matrix-vector equation

- Given an invertible (square) matrix $\underline{\underline{A}}$, then $f(\underline{x}) = \underline{\underline{A}} \cdot \underline{x}$ is an invertible function, i.e., f() is one-to-one and onto
- Thus the matrix-vector equation $\underline{\underline{A}} \cdot \underline{x} = \underline{b}$ has one and only one solution \underline{x} for any \underline{b} , i.e., $\underline{A}^{-1}\underline{b}$

Invertibility of matrix-matrix product

• If $\underline{\pmb{A}}$ and $\underline{\pmb{B}}$ are invertible and can be multiplied, then $\underline{\pmb{A}}\cdot\underline{\pmb{B}}$ is invertible

Systems of Linear Equations

- Represented as Ax = b
- Solutions using Gaussian elimination
- Conditions for existence and uniqueness

Rank of a Matrix

- Number of linearly independent rows or columns
- Rank-nullity theorem: rank(A) + nullity(A) = n
- Implications for solution spaces

Inverse of a Matrix

- Matrix A is invertible if $AA^{-1} = I$
- Not all matrices are invertible (singular matrices)
- Importance for solving linear systems and optimization

Determinants

- Scalar value summarizing matrix properties
- Zero determinant implies matrix is singular
- Used in volume interpretation and invertibility

Orthogonality and Orthonormal Bases

- Two vectors are orthogonal if $x^Ty = 0$
- Orthonormal set: orthogonal unit vectors
- Used in projections, decomposition, and optimization

Projections and Least Squares

- Projection of b onto column space of A: $\hat{b} = A(A^TA)^{-1}A^Tb$
- Basis for linear regression
- Solves inconsistent systems approximately

Eigenvalues and Eigenvectors

- For $Ax = \lambda x$, x is an eigenvector and λ an eigenvalue
- Capture invariant directions of transformations
- Used in PCA, spectral clustering, and stability analysis

Diagonalization

- Expressing matrix as $A = PDP^{-1}$ where D is diagonal
- Simplifies powers and exponentials of matrices
- Requires linearly independent eigenvectors

Symmetric Matrices

- $A = A^T$
- All eigenvalues are real
- Basis of many ML methods (e.g., covariance matrices, kernels)

Positive Definite and Semidefinite Matrices

- $x^T A x > 0$ for all $x \neq 0$: positive definite
- Ensures convexity in optimization
- Common in loss functions and kernels

Singular Value Decomposition (SVD)

- Factorization: $A = U \Sigma V^T$
- Generalizes eigen-decomposition to all matrices
- Used in PCA, matrix compression, and pseudoinverse

Principal Component Analysis (PCA)

- Dimensionality reduction via eigen-decomposition of covariance matrix
- Projects data onto directions of maximum variance
- Computed using SVD in practice

Matrix Norms

- Measures of matrix size: Frobenius, spectral, etc.
- Important for measuring errors and convergence
- Used in regularization and optimization

Vector Norms

- L^p norms (e.g., L^1 , L^2)
- Measure magnitude of vectors
- Used in loss functions and sparsity enforcement

Trace of a Matrix

- Sum of diagonal entries: Tr(A)
- Invariant under cyclic permutations: Tr(ABC) = Tr(CAB)
- Appears in matrix derivatives and expectation identities

Kronecker and Hadamard Products

- Kronecker: tensor product of matrices
- Hadamard: element-wise multiplication
- Important in multi-dimensional ML models and tensor operations

Matrix Calculus

- Derivatives of scalar functions w.r.t. vectors/matrices
- Gradient and Hessian computation
- Crucial for backpropagation and optimization algorithms

Connections between Machine Learning and Linear Algebra

- Linear algebra
 - Vector and vector spaces
 - Affine spaces
 - Vectors and matrices
 - Linear functions
 - Connections between Machine Learning and Linear Algebra