НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО Факультет Программной инженерии и компьютерных технологий Направление: Нейротехнологии и программная инженерия

Дисциплина: Вычислительная математика
Лабораторная работа № 2

"Метод Гаусса-Зейделя"

Выполнил студент Рязанов Демид Витальевич Группа Р3221

Преподаватель: Перл Ольга Вячеславовна

г. Санкт-Петербург 2024

Содержание

Эписание метода	3
5лок-схема	4
Лсходный код	6
Тримеры работы	7
Зывод	9

Описание метода

Метод Гаусса-Зейделя – итерационный алгоритм для поиска решений СЛАУ. На каждой итерации метода получается более точное приближение решения, и при достижении определенной точности алгоритм завершает свою работу. В отличии от метода простых итераций для вычисления новых значений приближения используются значения с текущей итерации.

Алгоритм:

- 1) Сначала проверяем условие применимости метода ($|a_{ii}| \ge \Sigma_{i \ne k}|a_{ik}| (i,k=1,2,...,n)$) функция **isDDM** (DDM diagonal dominance matrix)
- 2) Определяем начальное приближение $\vec{x}^{(0)}$ (его можно брать произвольно, в нашем случае берем нули) и **max_difference = epsilon + 1**, чтобы начать итерационный процесс
- 3) Для x_i высчитываем **residuals** разницу между $x_i^{(k)}$ и $x_i^{(k+1)}$: $residuals_i = \frac{\sum_{j=0}^{n-1} (x_j * matrix_{i,j}) matrix_{i,n}}{matrix_{i,i}}$, где **matrix** расширенная матрица СЛАУ.

С помощью **residuals** сразу меняем значение x_i и обновляем **max_difference**. Выполняем так для каждого x_i , i=0,...,n-1

4) Выполняем пункт 3, пока **max_difference** > **epslion**, ответом будет массив значений **x**

Блок-схема

Функция isDDM

Исходный код

```
class Result:
   isMethodApplicable = True
   errorMessage = "The system has no diagonal dominance for this method. Method of the Gauss-Seidel is not applicable.
   def solveByGaussSeidel(n, matrix, epsilon):
               Result.isMethodApplicable = False
               return []
           max_difference = epsilon + 1
               max_difference = 0
               for i in range(n):
                   iteration_sum = 0
                   max_difference = max(max_difference, abs(residuals[i]))
           return x_values
           Result.isMethodApplicable = False
   def isDDM(n, matrix):
       for i in range(n):
           sum_of_abs_row_elements = 0
           if sum_of_abs_row_elements >= 2 * abs(matrix[i][i]):
```

Примеры работы

Пример 1

Ввод	Вывод
3	1.037880831316406
8 4 2 10	0.3457776268257813
3515	0.15779127597023443
3 -2 10 4	
0.001	

Пример 2

Ввод	Вывод
3	The system has no diagonal dominance for this method. Method of the Gauss-Seidel is not applicable.
1223	
1213	
2351	
0.0001	

Пример 3

Ввод	Вывод
3	The system has no diagonal dominance for this method. Method of the Gauss-Seidel is not applicable.
4313	
3522	
2 5 7 10	
0.001	

Пример 4

Ввод	Вывод
4	0.45010051321475497
10 1 1 2 3	0.26677116196181583
2 23 12 0 2	-0.4196909347614741
5 4 15 3 -5	-0.674076979904923
3 3 2 42 -27	
0.0001	

Пример 5

Ввод	Вывод
2	2.88888888888889
3 1 9	0.3333333333333333
0 12 4	
0.00001	

Вывод

Точность работы алгоритма зависит от **epsilon**, это хорошо ведь его можно настраивать по мере необходимости.

Метод Гаусса-Зейделя отличается от метода простых итераций тем, что для вычисления значений текущей итерации используются уже полученные на этой итерации значения. Из-за этого скорость сходимости метода может быть быстрее, но при этом его сложнее параллелизовать. Также у этого метода условие сходимости строже, чем у метода простых итераций.

Алгоритм применим только для СЛАУ, матрицы которых имеют диагональное преобладание.

Сложность алгоритма $O(k*n^2)$, где k — количество итераций метода