AD-751 658

A COMPUTER MODEL FOR RAPID SOLUTIONS AND VISUAL CRT DISPLAY OF RADIATION PATTERNS FOR ARBITRARILY ORIENTABLE YAGI-UDA ARRAYS OPERATING OVER LOSSY GROUND OR IN SHIP-OCEAN ENVIRONMENTS

Edward Elvis Kennedy

Naval Postgraduate School Monterey, California

June 1972

DISTRIBUTED BY:

National Technical Information Service U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springfield Va. 22151

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

A COMPUTER MODEL FOR RAPID SOLUTIONS AND VISUAL CRT DISPLAY OF RADIATION PATTERNS FOR ARBITRARILY ORIENTABLE YAGI-UDA ARRAYS OPERATING OVER LOSSY GROUND OR IN SHIP-OCEAN ENVIRONMENTS

by

Edward Elvis Kennedy

Thesis Advisor:

R.W. Adler

June 1972

Reproduced by NATIONAL TECHNICAL INFORMATION SERVICE 1) S Or partner it of Committee Surreign 14 VA 27151

Approved for public release; distribution unlimited.

129

A Computer Model for Rapid Solutions and Visual
CRT Display of Radiation Patterns
for Arbitrarily Orientable
Yagi-Uda Arrays Operating
Over Lossy Ground or
in Ship-Ocean
Environments

by

Edward Elvis Kennedy
Lieutenant Commander, United States Navy
B.E.E., Auburn University, 1961
M.B.A., Arizona State University, 1968

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 1972

Approved by:

Approved by:

Thesis Advisor

Chairman, Department of Electrical Engineering

Academic Dear

DD FORM . 1473

S/N 0101-807-6811

128-

Security Classification

4-31408

- Security Classification

4

14	KEY WORDS			LIN	LINK A		LINKB		LINK C	
			-	ROLE	WT	ROLE	wT	ROLE	WT	
			٠.							
	Antenna			.						
	Arrays									
	Impedance									
	Gain									
	Optimization									
	Computer									
								}		
				,	٠					
	•									
			j							
								ł		
					-	1		1		
							1			
							ĺ			
							ļ		l	
			1				}			
							1	ĺ		
						ł				
							ļ			
								ļ		
								į		
						ĺ			Į	
									ı	
									ĺ	
		-11								

DD FORM 1473 (BACK)

.129

Security Classification

A-3140+

ABSTRACT

An arbitrarily orientable Yagi-Uda array antenna was modeled, and a computer simulation run to obtain the input impedance, gain pattern and front-to-back ratio of various arrays. The model made provisions for the antenna to be operated over either a lossy ground plane or aboard a ship in seas of specified state. Quick solution turn-around, with CRT display, enabled relatively rapid optimization of numerous arrays.

Theory, resultant optimal designs and performances, photographs, and program listing are included.

TABLE OF CONTENTS

I.	INT	RODUCTION	10
	A.	BACKGROUND OF THE STUDY	10
	в.	STATEMENT OF THE PROBLEM	11
	c.	OBJECTIVES	11
	D.	SCOPE AND LIMITATIONS	12
II.	THE	ORY OF THE MODEL	14
	A.	ARRAY IMPEDANCE AND ELEMENT CURRENT	14
	В,	THE FAR FIELD	21
	c.	SHIP-OCEAN MODEL	29
	D.	GAIN	31
III.	REST	ULTS OF ARRAY PERFORMANCE	32
	A.	RESULTS OVERVIEW	32
	В.	THE TWO ELEMENT ARRAY	32
	c.	THE MULTI-ELEMENT VERTICAL AND HORIZONTAL ARRAYS	36
	D,	SELECTED INTERESTING PATTERNS	43
	E.	SUMMARY	53
IV.	RECO	OMMENDATIONS	55
APPENI	OIX A	A: DESCRIPTION OF PROGRAM OPERATING PROCEDURES	56
COMPU	rer i	PROGRAM	64
BIBLIC	OGRAI	PHY	126
INITI	AL D	ISTRIBUTION LIST	127
FORM I	ו מכ	473	128

LIST OF TABLES

I.	OPTIMAL 2-ELEMENT HORIZONTAL ARRAY AT VARIOUS ELEMENT SPACINGS USING THE PARASITE AS A REFLECTOR AND AS A DIRECTOR	33
	PARAMETERS OF OPTIMAL 30 MHZ HORIZONTAL AND VERTICAL ARRAYS WITH REFLECTOR	37
III.	RESULTS OF OPTIMAL 30 MHZ HORIZONTAL AND VERTICAL ARRAYS WITH REFLECTOR AND OPTIMAL HORIZONTAL ARRAY ORIENTED VERTICALLY	38
IV.	THIRTY MHZ ARRAYS DESIGNED AS SHOWN IN TABLE II BUT WITH REFLECTORS REMOVED	42
v.	PARAMETERS OF OPTIMAL 30 MHZ ARRAY WITHOUT REFLECTOR	44
VT.	RESULTS OF OPTIMAL ARRAYS WITHOUT REFLECTOR	44

LIST OF DRAWINGS FND PICTURES*

I.	α degrees above the ground	15
2.	The geometry of an arbitrarily oriented element in free space and its image	19
3.	Yagi-Uda array with horizontal elements and a tilted axis, as viewed from a distant point	22
4.	The tilted Yagi-Uda receiving horizontally polarized waves via direct and reflected paths	27
5.	Orientation of the Yagi-Uda aboard ship	30
6.	Comparison of gain vs element spacing for optimal 2-element horizontal array	35
7.	Optimal 30 MHZ 3-element horizontal array	45
8.	Optimal 30 MHZ 4-element horizontal array	45
9.	Optimal 30 MHZ 5-element horizontal array	45
10.	Ten MHZ 3-element vertical array radiating over three types of terrain	46
11.	150 MHZ 3-element horizontal array	46
12.	Ten MHZ 3-element vertical arrays and horizontal arrays at different height over land -	47
13.	Ten MHZ 3-element horizontal array aboard ship in rough seas	48
14.	Thirty MHZ 3-element horizontal array aboard ship in rough seas	48
15.	150 MHZ 3-element horizontal array aboard ship in rough seas	49
16.	Ten MHZ 3-element horizontal array at various tilt angles of array axis	_. 50

^{*}Pictures are consecutive beginning with figure 7.

17.	Ten MHZ 3-element horizontal array operating over land at 30 MHZ	51
18.	Thirty MHZ 3-element horizontal array operating over land above and below the frequency for which array was designed	51
19.	Ten MHZ 5-element horizontal array over land	52
20.	Ten MHZ 3-element horizontal array over land	52
21.	Photograph of graphic display showing parameter input/output	58

•

 θ

0°

TABLE OF SYMBOLS

<u>Text</u>	Computer	Description
α	VTbH	Array axis (boresight) elevation angle; Input; Variable during ship dynamics: see equation (39).
α _t .	ALTEM	A constant; Input.
β	K	Wave number.
С	CEE	Reflection factor; see equation (7)
$\mathtt{d_i}$	D	Adjacent element separation; Input.
Δ	DELTA	Observation elevation angle (90-0); Input.
Δ *	DLPRI	Element elevation angle $(90-\theta')$; Input.
$\mathbf{E}_{oldsymbol{\phi}\mathbf{T}}$	EPHI	Electric field; see equation (35).
$\mathbf{E}_{oldsymbol{ heta_T}}$	ETHET	Electric field; see equation (37).
ε	EPSLN	Dielectric constant of earth; Input.
f _{MH}	F	Frequency MHz; Input.
G	G	Gain; see equation (44). $G_{\dot{\mathbf{p}}}$ is peak.
Ý	VAR	Sinusoidal angle, 0°-360°. See equation (40c).
h	н	Height of antenna above earth plane; Input; a variable during ship dynamics; see equation (41).
h _t	HTEMP	A constant value of height; Input.
h _i	HDBL	Separation between actual and image elements; see equation (33).
ı	CUR	Actual element current. See equations (1), (2).
² i	TH	Element half-length.

) | ~ , °

L	LH	Element length.
Lp	LP	Primary element length. See equations (12).
L _s	LS	Secondary element length. See equations (12).
N	NE	Number of array elements.
λ	LMDA	Wavelength.
Ω	kos1	Angle between array boresight and observation line; See equation (28).
ф	PHI, M	Observation angle; See figure 3; Input; M varies from 0 to 90 degrees. ϕ_p occurs at peak gain.
φ *	PHIPR	Element angle; See figure 5; Input.
Ф ₋	PSI .	Angle between element and observation line; See equation (18).
R _h	RH	Horizontal reflection coefficient; See equation (8a).
$R_{\mathbf{v}}$	RV	Vertical reflection coefficient; See equation (8b).
R _h '	RHPRI	Horizontal reflection coefficient used with impedance; See equation (8a), taking $\theta=0$.
R _V '	RVPRI	Vertical reflection coefficient used with impedance; See equation (8b), taking $\theta=0^{\circ}$.
σ	SIGMA	Conductivity of earth; Input.
s_z '	SZ	See equation (lla) and figure 2.
s _y '	SY	See equation (11b) and figure 2.
θ	THET, KAY	Observation angle; See figure 3; Input; KAY varies from 0 to 360 degrees. θ_p occurs at peak gain.
θt	THTEM	A constant value of θ ; Inout.

ক্র ভ

θ •	THEPR	Element angle; See figures 2,5; Input.
Yi	WYE	Separation between antenna reflector and the i th element; See figure 1.
Yo	У0	Y coordinate of secondary antenna origin; See equation (10b).
^z o	20	Z coordinate of secondary antenna origin; See equation (10a).
Z	Z	Impedance value.
[z]	ZZPAK	<pre>Impedance matrix; see equations (3) and (6).</pre>

I. INTRODUCTION

A. BACKGROUND OF THE STUDY

The most concise equation that describes the radiated electric field of an antenna assumes that the antenna operates either in free space or over a perfectly conducting ground plane. Equations in this category are simple ones that have been typically used in text books, and voluminous experimental data have been obtained through their use. Emphasis has been upon simplification of equations so that problems could be solved manually with a minimum of rigor. Equations such as these are admittedly inaccurate because they omit the component of radiation produced by ground reflection or if not omitted the ground surface is considered to be a perfect reflector. 1

In reality the simplest antenna operates over a lossy ground and established at least a direct and a ground reflected wave. When simple free space equations are modified for two path propagation over a lossy ground plane and

The ground wave is composed of a space component and a surface component. A particularly important point may be made that for the horizontally polarized wave in the VHF/UHF range the strength of the space wave greatly exceeds that of the surface wave so as to render the surface wave negligible. This then allows an accurate field strength to be calculated using equations which assume only a two-path propagation model—the direct wave and the lossy ground—reflected wave. Henry R. Reed and Carl M. Russell, UHF Propagation, (New York: John Wiley & Sons, Inc., 1953), p. 174.

solutions are obtained by computer with a Cathode Ray Tube (CRT) display of the gain patterns, interesting results accrue.

B. STATEMENT OF THE PROBLEM

The initial problem is to obtain and verify the equations required to describe the electric field of a multi-element linear array, particularly of the Yagi-Uda type. A recent work which provided graphic computer solutions to single element antennas is the basis of this study, and as such this study is a follow-on.² Therefore effort centers around adapting the existing program to meet the requirements of both antenna types.

C. OBJECTIVES

The objective of this study is to provide a near realtime computer graphic solution of the gain pattern of an arbitrarily oriented Yagi-Uda array which is centered above two types of planes (with specified ϵ & σ):

- 1. the lossy ground plane, and
- 2. the lossy ocean plane which rolls and pitches the antenna as specified by the sea state.

Examples of gain patterns and other output parameters are illustrated.

²R. W. Adler and C. B. Robbins, "The Solution and Graphic Display of Gain and Patterns for Wire and Linear Antennas in the Presence of Lossy Ground", Electrical Engineering Department, Naval Postgrasuate School, to be published.

D. SCOPE AND LIMITATIONS

The following assumptions have been made for the study of the Yagi-Uda array:

- 1. Propagation is confined to two paths.
- 2. The ship-ocean model does not make any provision to augment the number of wave paths that turbulent seas might produce.
- 3. The current on the elements is distributed sinusoi-dally, e.g. the elements are thin $(d < \lambda/100)$.
- 4. The elements may be spaced arbitrarily with arbitrary lengths. Thickness can be changed. Assignment of the element lengths is constrained by the fact that if elements are one wavelength then the solutions become indeterminant.

For purposes of testing the resulting equations, various array designs were attempted. The dimensions of the array were varied using the method of iterative search to uncover optimal horizontal and vertical designs of arrays with and without a reflector.

Optimality is determined by three criteria:

- 1. Input Impedance (Z_{in})

 Where it was possible to do so, the array was designed to have a reasonably high resistance, e.g. $\geq 20\Omega$ and a reasonably low reactance, e.g. $\leq 10\Omega$.
- 2. Front to Back Ratio (FBR):
 Within a satisfactory impedance range, the FBR is

maximized.³ This expression differs in some cases from the expression for FBR that is typically used.

3. Power Cain (G):

Finally, within the maximum FBR the gain is $maximized.^4$

Photographs are shown of the linear and logarithmic results that are obtained from a variety of Yagi-Uda designs placed at different heights above ground and ocean environments.

Preliminary tests were made which showed that gain varied with change in element thickness, however for the results obtained throughout this study the element thickness to element length ratio remained fixed at 1/200.

Detailed operating procedures are found in Appendix A.

$$FBR = \frac{G(\theta,\phi)_{max}, 0 \le \phi \le 180}{G(\theta,\phi)_{max}, 180 \le \phi \le 360}$$

This differs completely in some cases from the expression that is typically used:

$$FBR = \frac{G(\theta, 90)}{G(\theta, 270)} \cdot$$

³For purposes of the study the following expression for FBR is used

⁴The power gain used is measured with respect to an isotropic source.

II. THEORY OF THE MODEL

A. ARRAY IMPEDANCE AND ELEMENT CURRENT

The radiation problem requires the solution of the individual element currents, which will become the basis for calculating the gain of the array. The assumptions are that the driven element is excited by one volt, and that the antenna is thin and therefore the element currents are sinusoidal. The equations for the current column matrix and for $I_{\rm max}$ i are

$$[I] = [\hat{Z}] [\hat{V}]$$
 (1)

$$I_{\text{max } i} = \frac{I_{i}}{\sin \beta \ell_{i}}$$
 (2)

 $[\hat{\mathbf{Z}}]$ is the combination of the free space impedance and image impedance which is found by

$$[\hat{z}] = [z] + c[z'] \tag{3}$$

[Z] and [Z'] are NxN dimensional—[Z'] being the mutual impedance matrix relating the actual and image elements as indicated in figure 1. It should be noted that the matrices are complex. Complex inversion presents no particular problem except that the $[\hat{Z}]$ matrix must be arrayed according to the basic arithmetic operations that follow:

Figure I. Side view of a 3 element Yagi-Uda array tilted \propto degrees above the ground.

$$([R] + j[X]) \cdot ([I_R] + j[I_I]) = [\hat{V}]$$
 (4)

which can be written as two equations

$$[R][I_R] - [X][I_I] = [\hat{V}]_{Re}$$

$$[X][I_R] + [R][I_I] = [\hat{V}]_{Im}$$
(5)

which can be solved according to equation (1), where equation (3) now appears as:

$$\begin{bmatrix} \hat{\mathbf{z}} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} \mathbf{R} \end{bmatrix} & \begin{bmatrix} -\mathbf{x} \end{bmatrix} \\ \begin{bmatrix} \mathbf{x} \end{bmatrix} & \begin{bmatrix} \mathbf{R} \end{bmatrix} \end{bmatrix}$$
 (6)

[2] is a 2Nx2N matrix. An array of maximum size (5 elements) requires inversion time on the SDS-9300 computer of 5 seconds--roughly one-eighth the total solution time needed for the complete aximuth and elevation patterns.

The reflection factor C in equation (3) is a function of the angle which the antenna element makes with the ground. C is written as 5

$$C = e^{-j\Delta'}(R_h'\cos \Delta' + jR_v'\sin \Delta'). \tag{7}$$

The reflection coefficients R_h ' and R_v ' are the values obtained when $\theta=0^{\circ}$ is substituted into equation (8). Theta

⁵M. T. Ma and L. C. Walters, <u>Power Gains for Antennas</u> over Lossy <u>Plane Ground</u>, ESSA Technical Report. ERL 104-ITS 74 (U. S. Government Printing Office, Washington, D.C., 1969).

is equal to zero because the coupling which takes place between the free-space and the image element (thereby producing a mutual impedance Z') occurs with the image directly beneath the actual element. Equations (3) and (7) show that the horizontally polarized field ($\Delta'=0^{\circ}$) and the vertically polarized field (4'=90°) give weight to the value of [2'] by the values $C=R_h$ ' and $C=R_v$ ' respectively. Since the solution to equation (3) is actually independent of θ and ϕ , one solution for this equation satisfies the gain expression at any position of observation.

The values of R_h and R_v , which are also used in the gain equation, are a function of the observation angle θ as follows:6

$$R_{h} = \frac{\cos \theta - \frac{\beta_{2}}{\beta} A}{\cos \theta + \frac{\beta_{2}}{\beta} A}$$

$$(8a)$$

$$R_{V} = \frac{\cos \theta - \frac{\beta}{\beta_{2}} A}{\cos \theta + \frac{\beta}{\beta_{2}} A}$$
 (8b)

where

$$A = \left[1 - \left(\frac{\beta}{\beta_2} \sin \theta\right)^2\right]^{\frac{1}{2}} \tag{9a}$$

$$\beta_2 = \beta \left[\varepsilon_r - j \frac{\sigma}{\omega \varepsilon_O} \right]^{\frac{1}{2}}$$
 (9b)

$$\beta_{2} = \beta \left[\varepsilon_{r} - j \frac{\sigma}{\omega \varepsilon_{0}} \right]^{\frac{1}{2}}$$

$$\beta_{2} = \beta \left[\varepsilon_{r} - j \frac{1.8 \sigma}{f_{MH}} \right]^{\frac{1}{2}}$$
(9b)

⁶ Ibid.

The matrix [Z'] is identical to equation (6) except that it is written in terms of [R'] and [X']. The geometric orientation of the antenna elements are central to the solution for the mutual impedance matrix [Z']. Figure 2 shows an arbitrarily oriented single element and its corresponding image in the ground plane. Although the true coordinates of the antenna are in the xyz coordinate system, the equation for solving for the impedance fixes the primary element along a vertical axis—here it is shown to be z''. The secondary element becomes the image element and is separated from the primary element by the distances Z_O and Y_O . The linkage between the two coordinate systems xyz and z'y'z' is θ '. The equations for Z_O and Y_O are observed to be

$$Z_O = -2h \cos \theta' = -2h \sin \Delta'$$
 (10a)

$$Y_0 = 2h \sin \theta' = 2h \cos \Delta'$$
 (10b)

$$S_{z'} = S \cos 2\theta' = S \cos 2\Delta'$$
 (11a)

$$S_{v'} = -S \sin 2\theta' = -S \sin 2\Delta'$$
 (11b)

The solution of self impedance is performed by assuming that $Z_0=0$ and $Y_0=2$ r, where the radius r is assumed equal to $\ell_1/200$. (This makes $\ell_1/d=100$, which for $\ell_1=\lambda/4$ satisfies the thin antenna specifications of $d \leq \lambda/100$). The mutual impedances of the free-space array, where the elements are all parallel, are solved using $Z_0=0$ and $Y_0=y_1$, the separation between the two elements in question. Under dynamic ship motion, which affects θ ' and h, the antenna height above the earth plane, the mutual impedance

Figure 2. The geometry of an arbitrarily oriented element in free space and its image (used for solution of mutual impedances Z¹)

matrix [Z'] will be affected according to equations (10) and (11), but the self and mutual impedances of the [Z] matrix will not be affected since it represents the free-space array impedance.

Impedances are solved according to the following: 7

$$R = -30 \int_{-L_{S}/2}^{L_{S}/2} \left\{ \frac{\sin(2\pi r_{1})}{r_{1}} \left(z_{0} + s_{z} + \frac{L_{p}}{2\lambda} \right) + \frac{\sin(2\pi r_{2})}{r_{2}} \left(z_{0} + s_{z} + \frac{L_{p}}{2\lambda} \right) - \frac{L_{S}/2}{r_{2}} \left(z_{0} + s_{z} + \frac{L_{p}}{2\lambda} \right) \right\} + \frac{\sin(2\pi r_{2})}{r_{2}} \cos(\pi L_{p}) \cos(\pi L_{p}) \cos(\pi L_{p}) - \frac{\sin(2\pi r_{2})}{r_{1}} - \frac{\sin(2\pi r_{2})}{r_{2}} \cdot s_{z} + \frac{\sin(2\pi r_{2})}{r_{2}} \cdot s_{z}$$

$$\left\{ \frac{\sin(2\pi L_{S} - |s|)}{s} \right\} ds$$

$$X = -30 \int_{-L_{S}/2}^{L_{S}/2} \left\{ \frac{\cos(2\pi r_{1})}{r_{1}} \left(z_{0} + s_{z} + \frac{L_{p}}{2\lambda} \right) + \frac{\cos(2\pi r_{2})}{r_{2}} \cos(\pi L_{p}) \right\}$$

$$\left\{ \frac{\cos(2\pi r_{2})}{r_{2}} \left(z_{0} + s_{z} - \frac{L_{p}}{2\lambda} \right) - \frac{2\cos(2\pi r_{1})}{r} \cos(\pi L_{p}) \right\}$$

$$\left\{ \frac{s_{y}}{(r_{0} + s_{y})^{2}} + \left[\frac{2\cos(2\pi r_{1})}{r} \cos(\pi L_{p}) + \frac{\cos(2\pi r_{2})}{r} \right] \right\} ds$$

$$\left\{ -\cos(2\pi r_{1}) - \frac{\cos(2\pi r_{2})}{r_{2}} \right\} ds$$

$$\left\{ (12b) \right\}$$

⁷H. C. Baker, and A. H. Lagrone; "Digital Computation of the Mutual Impedance Between Thin Dipoles;" IRE Transactions on Antennas and Propagation; March, 1962; AP-10, No. 2; pps 172-178.

$$\rho^2 = (Y_0 + S_y')^2 \tag{13a}$$

$$r = [\rho^2 + (z_0 + s_z')^2]^{\frac{1}{2}}$$
 (13b)

$$r_1 = \left[\rho^2 + \left(z_0 + s_z' + \frac{L_p}{2}\right)^2\right]^{\frac{1}{2}}$$
 (13c)

$$r_2 = \left[\rho^2 + (z_0 + s_z' - \frac{Lp}{2})^2\right]^{\frac{1}{2}}$$
 (13d)

Where the distances r, r₁, and r₂, are the respective distances in figure 2 from the bottom, center and top of the primary antenna to the differential, ds, on the secondary antenna.

B. THE FAR FIELD

To solve for the electric field, a point of observation is chosen, and each element in the array is viewed. Each element contributes to the total field according to its vector phase and amplitude, its separation from some reference element, the tilt angle of the array, and the bearing to the point of observation. Figure 3 shows the geometry of a 2 element horizontal Yagi-Uda tilted a degrees.

The equation of the field produced by one element located at the origin is first developed. Then, the presence of other elements in the array is taken into account.

The equation at the point P for an element at the origin is

$$I_{i} = I_{0i} \sin[\beta(\ell_{i} \pm \chi)] e^{j\omega(t-\frac{S}{C})}$$
(14)

Current flowing in the incremental length dx produces a field, and there will be a phase associated with it

Figure 3. Yagi-Uda array with horizontal elements and a tilted axis, as viewed from a distant point P. $(\phi^1=0, \theta^1=90)$

with respect to point P as the differential length moves from $-\frac{L_S}{2}$ to $+\frac{L_S}{2}$. The delay is χ cos ψ , which is found by the dot product of \widehat{OX} and \widehat{OR} , as follows:

$$OA = \overrightarrow{OX} \cdot \overrightarrow{OR}$$

where

$$\hat{OX} = \chi [\hat{i} \sin \theta' \cos \phi' + \hat{j} \sin \theta' \sin \phi' + \hat{k} \cos \theta']$$
 (15a)

$$\widehat{OR} = [\widehat{\mathbf{i}} \sin \theta \cos \phi + \widehat{\mathbf{j}} \sin \theta \sin \phi + \widehat{\mathbf{k}} \cos \theta]$$
 (15b)

so that

$$OA = \chi \left[\sin \theta \sin \theta' \cos (\phi - \phi') + \cos \theta \cos \theta' \right], \quad (16)$$

or

$$OA = \chi \cos \psi \tag{17}$$

where

$$\cos \psi = \sin^{\circ} \theta \sin \theta' \cos (\phi - \phi') + \cos \theta \cos \theta'$$
 (18)

It is now clear that $s = r - \chi \cos \psi$ and

$$I_{i} = I_{o_{i}} \sin[\beta(\ell_{i}^{\pm \chi})] e^{j\omega[t - (\frac{r - \chi \cos \psi}{c})]}$$
(19)

where

Although there is a phase difference between r and s, at points taken far from the origin their magnitudes are approximately equal.

Observe that by translating the xyz origin as well as the off-axis element to the point B located along the

observation vector $\hat{\mathbf{r}}$, the magnitude of the new observation vector relative to the new origin is $\hat{\mathbf{BR}}$, which differs in length from the old observation vector $\hat{\mathbf{OR}}$. The amount of change equals that which affects the observation vector $\hat{\mathbf{s}}$. Furthermore the angle by definition remains unchanged. Therefore, the expression $\mathbf{r} - \mathbf{s} = \chi \cos \psi$ holds for every radiating element in the array, not just for the element at the origin. From this it can be concluded that the integral equation for the field is identical for each element in the array.

Following the method used by Kraus:⁸

$$E_{\phi_{\mathbf{i}}} = \frac{\frac{1}{2} 60 \pi \sin \phi}{s \lambda} \qquad \int_{\ell_{\mathbf{i}}}^{\ell_{\mathbf{i}}} \mathbf{I}_{\mathbf{i}} dx \qquad (21)$$

Substituting for I and letting $\beta = \frac{2\pi}{\lambda} = \frac{\omega}{c}$, we see that:

$$E_{\phi_{\mathbf{i}}} = \frac{j \ 30 \ \beta}{r} \sin \phi I_{O_{\mathbf{i}}} e^{j\omega(t-\frac{r}{C})} \int_{-\ell_{\mathbf{i}}}^{\ell_{\mathbf{j}}} \sin(\beta \ell_{\mathbf{i}}^{\pm\beta\chi}) e^{j\beta\chi\cos\psi} dx. (22)$$

When this expression is integrated the result is:

$$E_{\phi_{\hat{\mathbf{i}}}} = \frac{j \ 60 \ \sin \phi \ I_{O_{\hat{\mathbf{i}}}} e^{j\omega (t - \frac{r}{C})}}{r \ \sin^2 \psi} \qquad [\cos(\beta \ell_{\hat{\mathbf{i}}} \cos \psi) - \cos(\beta \ell_{\hat{\mathbf{i}}})] \ . (23)$$

⁸J.D. Kraus; Antennas; (New York: McGraw-Hill Co. 1950), pp. 135-141.

For an array of elements the field is the superposition of the fields of each element taken separately. E_{φ} is then the sum of E_{φ} ; given by

$$E_{\phi} = \frac{e^{-j\beta r} 60 \sin \phi}{r \sin^2 \psi} \sum_{i=1}^{N} I_{o_i} \left[\cos(\beta \ell_i \cos \psi) - \cos(\beta \ell_i)\right]. \quad (24)$$

It is recognized that the time term, $e^{-j\omega t}$ has been dropped and that β has been substituted for ω/c .

The array factor, or the phase delay \overrightarrow{OB} introduced by the separation between elements, is next taken into account. From figure 3, using the reflector as reference, the separation between elements as viewed from point P is $\overrightarrow{OB} = \overrightarrow{OY} \cdot \overrightarrow{OR}$, where

$$\hat{OY} = \hat{j}y_i \cos \alpha + \hat{k}y_i \sin \alpha$$
 (25)

and
$$\hat{OR} = \hat{i} \sin \theta \cos \phi + \hat{j} \sin \theta \sin \phi + \hat{k} \cos \theta$$
 (26)

gives OB =
$$y_i(\cos\alpha \sin \theta \sin \phi + \sin\alpha \cos \theta)$$
 .(27)

If
$$\cos \Omega = \cos \alpha \sin \theta \sin \phi + \sin \alpha \cos \theta$$
 (28)

then OB =
$$y_i \cos \Omega$$
 (29)

represents the phase lead of the ith element.

Having found the slant separation between elements to be expressed by equation (29), the current for any element in the array may be written as

$$I_{o_i} = I_{Max i} e^{j\beta y_i \cos \alpha}$$
 (30)

The phasor sum of currents in the array becomes

$$I_{o} = \sum_{i=1}^{N} I_{\text{max } i} e^{j\beta y_{i}\cos \Omega}$$
 (31)

Upon substitution of equation (31) into equation (24) the result is

$$E_{\phi_{i}} = \frac{j \ 60 \ e^{-j\beta r} \sin \phi}{r \ \sin^{2} \psi} \qquad \sum_{i=1}^{N} I_{\text{max } i} \ e^{j\beta y_{i} \cos \Omega}$$

$$[\cos(\beta \ell_{i} \cdot \cos \psi) - \cos(\beta \ell_{i})](32)$$

where $I_{max i}$ is found from equation (2).

Equation (32) represents the free space radiation of the horizontally polarized Yagi-Uda. The equation does not consider the ground reflections. Figure 4 shows the direct and ground reflected waves, and the geometry shows the difference between their path lengths. The element separation, written as:

$$2h_{i} = 2(h + y_{i} \sin \alpha)$$
 (33)

is a function of the path difference vector \overrightarrow{AB} , since $\overrightarrow{AB} = 2h_i \cos \theta$.

Thus

16 "

$$E_{\phi T} = E_{\phi} + R_{h} E_{\phi} e^{-j2\beta h_{i} \cos \theta}. \qquad (34)$$

And finally, equations (32) and (34) are combined to produce the final space wave in the phi direction:

$$E_{\theta T} = \frac{j 60 e^{-j\beta T} \sin \phi}{r \sin^{2} \psi}$$

$$\sum_{i=1}^{N} I_{\text{max}_{i}} [1 + R_{h} e^{-j2\beta h_{i}\cos \theta}].$$

$$e^{j\beta Y_{i}\cos \Omega} [\cos(\beta \ell_{i}\cos \psi) - \cos(\beta \ell_{i})]. (35)$$

Figure 4. The tilted Yagi-Uda receiving horizontally polarized waves via direct and reflected paths.

(The array is tilted to present less confusion in distinguishing angles)

Observe that when $\cos\Omega=\sin\theta$ sin ϕ and h_i =h equation (35) agrees with Ma and Walters equation for the horizontal Yagi-Uda. The equation for the θ component of the horizontal Yagi-Uda, E_{θ} , is not derived with the same rigor since it represents the cross polarized radiation, which exists only off-axis and is of minor interest. The equation is:

$$E_{\theta_{T}} = \frac{j \ 60 \ e^{-j\beta r} \cos \theta \cos \phi}{r \ \sin^{2} \psi}$$

$$\sum_{i=1}^{N} I_{\max_{i}} \left[1 - R_{v} e^{-j2\beta h_{i} \cos \theta}\right]$$

$$e^{j\beta y_{i} \cos \Omega} \left[\cos(\beta \ell_{i} \cos \psi) - \cos(\beta \ell_{i})\right]. \tag{36}$$

The equation for the vertical dipole is well known. 10 If $R_{_{\mbox{V}}}$ is used insteady of $R_{_{\mbox{h}}}$ then equations (31) and (34) may be applied to the standard free space equation to arrive at the general solution for the vertical array:

$$E_{\theta T} = \frac{j 60 e^{-j\beta r}}{r \sin \theta} \sum_{i=1}^{N} I_{\text{max}_{i}} [1 + R_{v} e^{-j2\beta h_{i}\cos \theta}]$$

$$e^{j\beta y_{i}\cos \Omega} [\cos(\beta \ell_{i}\cos \psi) - \cos(\beta \ell_{i})] \qquad (37)$$

Specifically, $\cos \psi = \sin \theta \sin \phi$ and $\cos \Omega = \cos \theta$ since $\alpha = \theta = 0$ for the vertical Yagi-Uda.

O,c

⁹M.T. Ma and L.C. Walters, op.cit. p. 41.

¹⁰ Kraus, loc.cit.

C. THE SHIP-OCEAN MODEL

Figure 5 shows the effects of the dynamic ship model upon the Yagi-Uda. Changes in the sinusoidal waves, considering that a roll of eight degrees per sea-state is produced and a bow pitch of three degrees per sea-state is produced (representative of a light cruiser), will affect the angles θ , and α as follows:

$$\theta' = \theta_t' - (\Delta_1 \cos \phi' + \Delta_2 \sin \phi') \tag{38}$$

$$\alpha = \alpha_{t} - \Delta_{1} \sin \phi' + \Delta_{2} \cos \phi' \qquad (39)$$

where

$$\Delta_1 = \text{(wave) sin (course)}$$
(40a)

$$\Delta_2 = \text{(wave).3 cos (course)}$$
 (40b)

and where

wave =
$$8(\text{sea state}) \sin (\gamma)$$
 . (40c)

The effective height of the array will change according to

$$h = h_t \cos \Delta_1 \cos \Delta_2 \tag{41}$$

It should be noticed that the parameter ϕ ' until now has been somewhat extraneous for the solution to antennas over land, since variation of the observation angle ϕ ' and the angle ϕ accomplish the same thing. However the angle ϕ ' now is significant in specifying the antenna orientation with respect to the ship heading, which then determines the aspect that the wave presents to the antenna.

Figure 5. Orientation of the Yagi-Uda aboard a ship. Angles Δ_1 and Δ_Z represent roll and bow pitch respectively.

D. GAIN

The gain of an antenna is equal to the ratio of the power intensity to the power density, and is expressed as follows:

$$G = \frac{4\pi W_{r}}{W_{in}} \tag{42}$$

where $W_r = r^2 (\hat{E} \times \hat{H}^*)$ watts/solid angle

or $W_r = \frac{r^2}{120^{\pi}} |E|^2$ (43a)

and $W_{in} = |I_b|^2 R_{in}$ watts . (43b)

The final expression for gain appears as

$$G = \frac{r^2 |E_{\theta_T}|^2 + |E_{\phi_T}|^2}{30 |I_b|^2 R_{in}} . \qquad (44)$$

The equation for gain becomes independent of r when the equations (35) and (36) are substituted into the equation above.

III. RESULTS OF ARRAY PERFORMANCE

A. RESULTS OVERVIEW

Basically, four types of arrays were examined for optimization: horizontal and vertical with and without reflectors. Experiments were conducted to determine the design of arrays that afford optimal performance as defined in the Scope and Limitations section of the study. Starting with the two element array, the parasitic element functioning both as a director and as a reflector, the element spacings and lengths were varied to obtain optimization. The arrays were lengthened by adding one element at a time, up to a total of five elements, each time solving for an optimal design. Numerous iterations were required, and the time required to optimize an array varied from ten minutes for a two element array to slightly over three hours for a five element array. (The vertical array was more difficult than the horizontal, and the array without reflector was more difficult than that with reflector.) Not all of the multi-element arrays were optimized according to the rigid criteria chosen for this study. Specifically, the vertical designs having four and five elements were arrived at by relaxation of the impedance threshold criterion thereby producing a suboptimal design.

B. THE TWO ELEMENT ARRAY

Referring to Table I for the horizontal two-element array with a director, maximum FBR is maintained when, for

TABLE I

OPTIMAL 2-ELEMENT HORIZONTAL ARRAY AT VARIOUS ELEMENT SPACINGS USING THE PARASITE AS A REFLECTOR AND AS A DIRECTOR

(Gain and Front-to-Back ratio in db) (Spacing and length in λ)

	ď ₂	.012	.100	.150	.200	.251	.295
D I R	^G p	10.3	10.6	10.1	9.5	8.7	7 . 8
ECHO	FBR _P	13.3	11.9	6.7	3.7	1.9	0.8
R	L _{di}	.492	.460	.449	.438	.424	.390
REF	G _p	10.5	10.9	10.7	10.5	10.1	9.9
LECT	FBR _p	10.9	13.6	13.6	13.3	12.5	11.9
O R	$\mathtt{L_{r_i}}$.501	.501	.501	.501	.506	.501

 f_{MH} =146. h=lm. In both cases the length of the driven element is $\lambda/2$. (L_d and L_r are director and reflector lengths respectively.) (The subscript p denotes peak, e.g. the length of the parasitic element was varied until the peak FBR was first obtained, then within that value, the gain peak was found by making finer adjustments to length.)

increasing element spacing, there is a corresponding decrease in director length. Apparently, best performance occurs when spacing is .01 λ (.021m) because this is where the maximum FBR appears. However, no mention has been made about the affect upon impedance of varying the element spacing.

In general it was found that the resistance and inductive reactance decreased together (from 70 to 40 ohms and from 40 to 10 ohms respectively) as elements were placed closer together. When the spacing closed to $.05\lambda$, the currents in the elements evidently became very large, and the value of resistance became less than one ohm (too low for convenient matching). Thus the FBR and G are insufficient criteria of optimality since impedance can fall (in some cases may rise) to unreasonable values. Optimality in the case of the director array in Table I actually occurs at $.1\lambda$ (.205m) spacing.

When the parasitic element is used as a reflector it is not necessary to change the reflector element length as the spacing between elements is changed in search for the maximum FBR. The maximum FBR occurs at .5 λ (1.03m) for all spacings except at .25 λ (.515m); that is the maximum FBR occurred when both element lengths were the same.

The gain curves shown in figure 6 differ from other published experimental and theoretical data (and there are fairly wide variations in these results too), inasmuch as the value of the peak gain is somewhat higher than that typically recorded. This is because published data typically

Figure 6. Comparison of gain vs element spacing for optimal 2— element horizontal arrays. These curves represent data in table 1, where the array is a reflector— driven element combination in one case and a director—driven element combination in the other case.

does not reflect a lossy ground plane (two-path propagation is ignored). Also, the gain of the reflector array exceeds that of the director array, which generally disagrees with other findings. Again, the explanation for these differences is tracable to the assumption that a lossy ground wave is being propagated along with the direct wave. 11

C. THE MULTI-ELEMENT VERTICAL AND HORIZONTAL ARRAYS

Tables II and III list the optimal and suboptimal design parameters for the f_{mh} =30 arrays. Notice that the four and five element vertical arrays have relatively wide reflector spacings—these are suboptimal designs. By comparison with the optimal design that was found for the four element vertical array (where $R_{\rm in} \geq 20 \Omega$) the FBR is 16.4 db whereas the suboptimal design ($R_{\rm in} < 20 \Omega$) produced a FBR of 22.4 db — quite a drop. The two designs differed completely. 12 Furthermore they responded to slight parameter variations differently.

The four element vertical array was fine-tuned for maximum FBR only to discover that the impedance was unacceptable; all subsequent fine adjustments, introduced for purposes of raising the resistance to a value above 20Ω ,

¹¹C. R. Fry, The Yagi-Uda Aerial--A Short Design Review and Bibliography, (Valcartier, Quebec: Canadian Armament Research and Development Establishment, May 1966), p. 23.

 $^{^{12}\}mathrm{The}$ optimal design, as compared with the suboptimal design shown in Table II, was L_i=.49,.47,.45,.43; d_i=.22,.19,.15 (L and d in λ).

TABLE II

رْچ ف

0.10

PARAMETERS OF OPTIMAL 30 MHZ HORIZONTAL AND VERTICAL ARRAYS WITH REFLECTOR.

_					
	5-Element .	.51 .48 .40 .42 .43	.15 .06 .05 .06	* .50 .49 .47 .42 .30	* .41 .09 .3 .25
(spacing and Lengths in λ)	4-Element	.51 .475 .41 .42	.16 .10 .10	* .50 .49 .47 .49	* .36 .09 .28
(spacing	3-Element	.51 .50 .46	.25 .08	.49 .47 .45	.20 .20
	2-Element	.51 .47	.11	.51 .47	ri ri
	•	J.	d _i !	L i	d;
		HOH	> E1 C	ĸ EH	

h=30m, $\varepsilon=5$, $\sigma=10^{-3}$, $\phi=90$. (horiz $\theta=85^{\circ}$ & vert $\theta=86^{\circ}$)

* THESE DESIGNS ARE ACTUALLY SUBOPTIMAL

TABLE III

() () ()

Â,

RESULTS OF OPTIMAL 30 MHZ HORIZONTAL AND VERTICAL ARRAYS WITH REFLECTOR AND OPTIMAL HORIZONTAL ARRAY ORIENTED VERTICALLY

(Specifications and parameters are same as in Table II) (Gain and Front-to-Back Ratio in db) (R and X in ohms)

caused a drastic reduction in FBR--below 16 db. Thus, this particular design was abandoned; another completely different design provided an acceptable impedance with a peak fine-tuned FBR value of 16.4 db (compare parameters in footnote #12 with the comparable parameters in Table II).

Except for the two larger vertical arrays (four and five elements), all changes that were made for the purpose of increasing $R_{\rm in}$ or reducing $X_{\rm in}$ inevitably improved the FBR figure and in none of these cases did the manipulation of parameters for purposes of adhering to the impedance criterion result in obtaining a lower FBR or G value. Because such manipulation did, however, cause a drop in the FBR for the two vertical arrays they are considered anomalous.

The optimal horizontal and vertical arrays have tapered elements in the region next to the driven element, but the last few end-directors of the four and five element horizontal array show a slight inverse taper. Writers, however, generally agree that elements and spacings that are gradually tapered towards the end of an array will usually give best results.

It is obvious that the optimum parameter measurements obtained for the reflector-driver combination (two-element array) do not necessarily ensure optimization of successive experiments involving the addition of another director. A

 $^{^{13}{}m The}$ optimal arrays include all horizontal plus the two and three element vertical arrays.

design readjustment of all parameters is required each time the array length is changed (e.g. each time an element is added or removed). A corollary to this for arrays with more than two elements is that the FBR will decrease with the addition of a director whose length and spacing are identical to those of the preceding director. This was observed in testing the uniform array 14 at $f_{\rm MH}$ =10 where the FBR dropped from 14.6 db as a four element array to 10 db as a five element array.

With regard to director spacings, perhaps it is more than just coincidental that the designs which produced optimization of the longer horizontal arrays resulted in equispaced director elements. Nothing could be obtained to substantiate whether other analysts would agree.

From Table III, comparison between the horizontal three and four element arrays as well as comparison between the four and five element arrays shows that the FBR improvement is greater than the G improvement as array lengths increase. An added advantage, besides increasing FBR and G, is that the greater the number of elements used in the optimal array the greater the tendency for automatic reactance cancellation. While the reactive components of the two and three element arrays are small they did not become so as a coincidence of optimization; manipulation of parameters was necessary to obtain reactance decreases in conjunction with

¹⁴ Design: L_i =.533,.500,.434,.434,.434 and d_i =.233,.100,.100, @ h=3 (L, d and h are in λ).

the need to increase resistance (and, as inferred earlier, these manipulations in the case of the two and three element arrays produced slight decreases in FBR and G^{15}).

Comparison between the optimal horizontal array and its vertical counterpart indicates that the horizontal array consistently out-performs the vertical array in FBR, but matches it in G. Furthermore, when the optimally designed horizontal array is operated in the vertical position and vice versa a degradation in performance results. An improvement of almost 16 db in FBR and 1.5 db in G can be obtained when the array is optimized in the position for which it is intended to be operated.

07

Table IV gives the results of operating the optimal array without its reflector; it is interesting to observe the importance that the reflector has in determining the overall array performance. Practically no directivity was obtained without a reflector even with a four element (three director) array. The unusually large G that results for the three and four element vertical arrays are anomalies

 $^{^{15} \}rm Fishender$ reiterates the popular belief that a convenient method of altering the input impedance without affecting FBR or G is by varying the spacing between the reflector and the driven element from $\lambda/8$ to $\lambda/4$. Such attempts in this study did however noticably affect the FBR and G (particularly in the case of the vertical four and five element arrays, which were particularly troublesome). R. M. Fishenden and E. R. Wiblin, "Design of Yagi Aerials", Proceedings IEE, 96, Pt. 3, (Jan 1949), p. 6.

TABLE IV

THIRTY ARRAYS DESIGNED AS SHOWN IN TABLE II
BUT WITH REFLECTORS REMOVED

0 0 0

Ŋ

	Horiz @ Horiz Orientation				ert 0 rienta	_			
	N	1	2	3	4	1	2	3	4
G		7.8	11.5	5.0	7.9	7.8	4.8	15.5	15.6
FBR		0	0	1.7	1.8	0	0	2.8	2.9
R _{in}		60.6	29.4	4.1	33.0	60.6	34.2	18.1	16.1
x _{in}	•	-12.3	-0.1	-15.3	-9.0	-12.3	-9.7	-6.4	-4.2

and cannot be explained (undoubtedly it is connected with the fact that these two arrays are actually suboptimally designed to begin with.)

Such poor performance is not without remedy, however, as the results show in Tables V and VI. Arrays without reflectors may also be optimized with considerable improvement in performance. Unlike the arrays with reflectors, the optimal design of arrays without reflectors gives identical optimal results regardless of whether the array is operated in the horizontal or vertical position. Inasmuch as the reactance is much greater than 10Ω , these arrays do not represent optimal designs according to the purposes of this study, yet none better could be found.

D. SELECTED INTERESTING PATTERNS

)ໍ⊚ໍ

Numerous photographs were taken of the following antenna patterns (in a few cases comparisons between the linear and the log gain plots are shown):

- a three element array operating over dry land, fresh water and sea water,
- 2. a three element array at different heights over land,
- several three element arrays operating on a ship underway in heavy seas,
- 4. a three element array with its axis tilted at various angles from the horizon and
- 5. some resulting patterns when an array is operated off-frequency.

TABLE V PARAMETERS OF OPTIMAL 30 MHz ARRAYS WITHOUT REFLECTOR (Horizontal & Vertical Optimal Arrays Identical) (L and d in λ)

		2-Element	3-Element	4-Element
H& OV RE IR	L	.49 .48	.51 .475 .475	.52 .44 .45 .43
21	ZT d .05		.08 .10	.13 .13 .13

TABLE VI
RESULTS OF OPTIMAL ARRAYS WITHOUT REFLECTOR

(Specifications and parameters same as in Table V)
(G and FBR in db, R and X in ohms)

	N 2	3	4
G	19.7	13.6	10.1
FBR	0	14.9	26.2
R	4.8	76.6	73.9
Х	6.2	57.4	74.5

Figure 7 Optimal 30 MHz 3-element horizontal array: linear plot (a) and log plot (b).16

 $G_{\Xi} = 12.6 \text{ db}$ $FBR_{p} = 22.0 \text{ db}$ $R_{in} = 31.6 \text{ s}$ $X_{in} = .1 \text{ s}$

Figure 8 Optimal 30 MHz 4-element horizontal array: linear plot (a) and log plot (b).

 $G_p = 13.3 \text{ db}$ $FBR_p = 23.9 \text{ db}$ $R_{in} = 36.1 \text{ s.} X_{in} = -2.3 \text{ s.}$

Figure 9 Optimal 30 MHz 5-element horizontal array: linear plots (a) & (b), and log plot (c). 16

 $^{^{16}}parameters$ that are not shown in Table II but which are common to all the 30 MHz arrays are: $h_t{=}3$, $\epsilon{=}5$. $\sigma{=}10^{-3}$ $\phi_p{=}90$. $\theta_p{=}25$, however figure 9 (c) differs in observation, with $\phi{=}20$. and $\theta{=}60$.

Figure 10. Ten MH three element vertical array radiating over three types of terrain. 17

 $[\]begin{array}{c} 17_{\text{Li}}\text{=.506,.500,.450; d}_{\text{i}}\text{=.233,.133; h}_{\text{t}}\text{=2.; f}_{\text{MH}}\text{=10.; }\epsilon\text{=10.,} \\ \sigma\text{=}10^{-3}, \ \phi_{\text{p}}\text{=90., \theta}_{\text{p}}\text{=84.(land); }\epsilon\text{=80., }\sigma\text{=2., }\phi_{\text{p}}\text{=90., \theta}_{\text{p}}\text{=76.(H2O);} \\ \epsilon\text{=80., }\sigma\text{=}10^{-2}, \ \phi_{\text{p}}\text{=90., \theta}_{\text{p}}\text{=75.(sea). (L, d and h}_{\text{t}} \ \text{are in }\lambda\text{)} \end{array}$

 $^{^{18}\}text{L}_{1}$ =.510,.490,.460; d_{1} =.250,.08; h_{t} =15; ε =5.; σ =10⁻³; ϕ_{p} =90.; θ_{p} =89. (L, d and h_{t} are in λ)

Figure 12. Ten MHz 3-element vertical arrays (a) & (b) and horizontal arrays (c) & (d) at different height over land. 19 (G and FBR in db)

 $^{^{19} \}text{See}$ figure 16 for parameters. (h_t is in λ .)

Figure 13. Ten MH three element horizontal array aboard ship in rough seas. Sea state = 7 and relative direction of waves = 40. Gain varies. 20

11

o_{bj}

Figure 14. Thirty MH three element horizontal array aboard ship in rough seas. Sea state = 6 and relative direction of waves = 60. Gain varies.²¹

 $^{^{20}\}text{L}_{i}$ =.506,.500,.450; d_{i} =.233,.133; ϵ =80.; σ =5.; ϕ =90.; θ =80.; h_{t} =2. (L, d and h_{t} are in λ) $^{21}\text{L}_{i}$ =.51,.50,.46; d_{i} =.25,.08; ϵ =80.; σ =5.; ϕ =90.; θ =85.; h_{t} =3. (L, d and h_{t} are in λ)

Figure 15. 150 MHz 3-element horizontal array aboard ship in rough seas. Sea state = 6, and relative direction of waves = 40. Gain varies. 22

oʻ

ò >

 $^{^{22}}$ Other parameters include L_i=.51,.50,.46; d_i=.25,.08; $_{\epsilon}=80.,~\sigma=5.,~\phi=90.,~\theta=89.,~h=15.$

Figure 16. Ten MHz 3-element horizontal array at various tilt angles of array axis (bore sight). 23

 $^{^{23}\}text{Various}$ antenna parameters are: L_i=.506, 500,.450; d_i=.233,.133; ϵ =10., σ =10⁻³, ϕ =90., θ =76. for (a)-(d), h_t=1.

Figure 17. Ten MHz 3-element horizontal array operating over land at $f_{\rm MH}$ =30. (For antenna specifications see the ship-ocean model figure 14.)

Figure 18. Thirty MHz 3-element horizontal array operating over land, above and below frequency for which array was designed. (For specifications, see the ship-ocean model figure 14.)

Figure 19. Ten MHz 5-element horizontal array over land. Comparison of linear (inter) plot with log plot. $G_p=14.6~\mathrm{db}$, $FBR_p=6.5~\mathrm{db}$.

Figure 20. Ten MHz 3-element horizontal array over land. Comparison of linear (inter) plot with log plot. Gp=12.2 db, FBR =17.7 db. 25

²⁴Various parameters include: L_i =.534.500,.466,.466,.466,.466; d_i =.25,.167,.167,.167; σ =10., σ =10⁻²; ϕ =90.; θ =77.; h=1.

 $^{^{25}\}text{Parameters}$ for this array are: L_i=.550,.500,.433; d_i=.233,.133; all other parameters are the same as in footnote 24.

E. SUMMARY

٥.

There is a somewhat higher gain and an increasingly higher front-to-back ratio as the element spacing widens in the case of the optimal two element horizontal array possessing a reflecting parasite as compared to the optimal array with a director parasite.

The vertical multi-element array will produce a high front-to-back ratio--with values in the neighborhood of those of the horizontal array; however, if resistance is to be maintained above 200 it appears that the resulting optimal vertical array will not provide as high a front-to-back ratio as the optimal horizontal array. The optimal design of a multi-element horizontal array provides both a maximum front-to-back ratio and a near resonant input impedance, whereas the best design of a multi-element vertical array represents a compromise between these factors, e.g. a trade-off sacrifice exists.

The optimal design arrived at for a horizontal array becomes a suboptimal design when operated vertically, and vice versa.

Upon adding or eliminating directors from an array which has been designed for optimal performance—with the stipulation that parameters of all directors be kept uniform, the performance of the array will no longer be optimal.

Operation of the horizontal array over sea water environment provides a higher gain with respect to operation over land, but over fresh water provides a lower gain than over land.

Gain is considerably higher in the case of the vertical array and slightly higher with the horizontal array when they are radiating from a height of 2λ as compared with 1λ .

Gain varies considerably when the platform upon which an antenna operates is in heavy seas.

.The gain of a horizontal array aimed vertically into the sky is lower than when it operates with no tilt angle whatsoever

IV. RECOMMENDATIONS

At the beginning of this study the existing program which had been written for eight different single element antennas permitted the compilation of, at maximum, only three different antennas—the computer memory was exceeded when more options were added. Now the revised program allows all nine antennas to be compiled, with the eight unused antenna subroutines residing externally on drum. This permits consideration of further expanding the main program capabilities inasmuch as the effective computer memory has more capacity.

In regard to expanding the program's capability for solving array problems, it is recommended that the graphic input portion of the program be extended to allow for more element length and space parameters. This would permit study of long arrays (arrays having a cumulative spacing that total more than one wavelength).

It is recommended that an optimization routine be added to the main program which would encompass one or more of the following criteria: gain, front-to-back ratio, resonance of the driven element (\mathbf{Z}_{22}) , thickness of the element, and impedance (or standing wave ratio). For this purpose, a more powerful computer--which gives faster solution time--might be preferable.

APPENDIX A

DESCRIPTION OF PROGRAM OPERATING PROCEDURES

The program for the system of antennas as originally written has been changed to accommodate the Yagi-Uda. Accordingly, the program was rewritten in part to obtain more effective use of limited information storage in the computer. Redundancies between antenna programs have been reduced, the shipboard simulator and the gain pattern routine was rewritten to accommodate the Yagi-Uda and to save storage, and the graphic text segment was changed to satisfy the need for additional parameter inputs and outputs. The program remains functional for all antennas listed below. Figure 21 shows how the parameters and the output appear to the operator at the CRT graphics display console.

1

45 - 48

(Ale)

To operate the program, first ready the Graphics device to be used by following simple lab instructions for setting up "Gated." The program may be quickly loaded into the computer by mounting the program "Dump" tape on tape unit #1 and loading a few cards--BOOT, AJOB, AAGT, AASSIGN X1=MT1A, and ARERUN. Next, press the usual operating buttons on the 9300 console--IDLE, RESET, CLEAR FLAGS, RUN, and CARDS. The cards and tape are then read by the computer and within five seconds the computer console will print a request for the graphics device number that the user desires to interface with the computer. The user then responds by typing at the IDEV=1* and a carriage return. If a mistake is made in typing

start over again. If the message was successfully typed but for some reason the text did not appear on the graphics device, the quick load procedure may be used by pressing the following computer buttons: IDLE, RESET, STEP, RUN; then retype the message IDEV=1*. The graphics device should now contain the program text, providing all equipment is functional.

(F

Each non-zero parameter entry must consist of a field-length of fewer than four numbers, plus a decimal, e.g. parameters should not exceed four characters of information. Upon completing a parameter entry, press the graphics TTY carriage-return and the blinking-light pointer will sequence to the location of the next parameter input. If a parameter is zero it need not be typed; press the carriage-return and go to the next entry location. ²⁵ Correction to a typing mistake may be made only on the four-character field string of the parameter where the light-pointer is located. If the error is identified after sequencing to the next location the program may either be executed as is if no serious program error will result, of if the error can cause abort within the SDS-9300, either use the fast-restart²⁶ procedure or reload

²⁵In addition to the need for a decimal to be entered with all data, a blanked-out space (one that has been skipped) is the same as a zero.

²⁶This procedure is similar to the initial start-up: type the "Reset Gated" messages at the graphics teletype, and at the SDS-9300 press IDLE, RESET, STEP RUN and in response to the console message listed by the SDS-9300 type IDEV=1* (device #1).

the core "dump" tape again. 27 Either procedure takes less than 30 seconds whereas problem solution-time can take longer.

Figure 21. Photograph of graphic display showing parameter input/output.

 $^{^{27}}$ This procedure is identical to the initial set-up, in that the program dump tape is read into the computer. Press the button number "32" at the computer console, and type $^{\Delta}$ RERUN at the console. This causes the dump tape to rewind and be read in again. Once again the computer should request Idev, and the user should respond by typing IDEV=1*.

Observe the parameters shown in the photograph. The following is a description of these parameters to assist the user in specifying his antenna.

ANTN: Antenna

- 1. Tilted Dipole
- 2. Vertical Whip
- 3. Vertical Whip with Ground Screen
- 4. Inverted L
- 5. Sloping Long-wire
- 6. Sloping Vee
- 7. Horizontal Rhombic
- 8. Vertical Half-rhombic
- 9. Yagi-Uda

ELE LENG: Element length (meters)

If a single element antenna (ANTN 1 through ANTN 8) has been specified, the first available parameter space should be used for the element length and the other four spaces to the right left blank. If a Yagi-Uda (ANTN 9) has been chosen, the following order must be observed:

ELE LENG

The user may choose to design the array without a reflector, in which case the first location at the left must be left blank. Any number of directors up to three may be selected,

however any blanked directors must be contiguous from the right. That is, skipping a director space then entering data into the next space, will result in the problem being misinterpreted: the first zero director marks the end of the array and determines the number of elements present.

HGT/WDTH: Height and width (meters)

A single element antenna requires only that the height be specified; the last four spaces may be left blank, since they will be ignored. If the Yagi-Uda is chosen, select the parameters according to the following format:

HGT/WDTH

:

υ

· (0)

Height Spacings

The first spacing is for the distance between the reflector and driven elements. Subsequent spacings are for the distance between respective directors.

PHIP: ϕ ' Antenna parameter. Normally ϕ '=0 will be used except under dynamic ship simulation, where the angle will specify the array axis relative to the ship's head. See figure 5.

THEP: θ ' Antenna parameter. θ '=0° for a vertical YAGI-UDA and θ '=90 for horizontal.

FREQ: Frequency (MHz)

EPSL: Dielectric constant of earth

SGMA: Conductivity of earth (mho/m)

Typical values are:

Sea Water	Fresh Water	· Wet Earth	Dry Earth
80	80	5-30	2-5
3-5	10^{-2} , 10^{-3}	$10^{-1} - 10^{-3}$	10^{-4} , 10^{-5}

SMUL: Multiplier

- 1. Multiplies o by .1
- 2. Multiplies o by .001

For numbers < 3 this parameter may be used as a multiplier of the diameter of the array elements. The element diameter is used in determining the element spacing for computation of self impedance. When SMUL > 3 the expression used for spacing is

$$\frac{d}{\sqrt{2}}$$
 or $\frac{\sqrt{2} \hat{\imath}_{i}}{200}$, since $r = \frac{\hat{\imath}_{i}}{200}$.

(see the computer program instruction that precedes #1925)

PHI: \$ Observation parameter.

THET: 0 Observation parameter.

Generally the observer wishes to position himself at the point of maximum gain, and take the azimuth and elevation sections there. The first solution of the problem will show where this point is located by listing the respective angles under PK: "Peak". The user may then enter these values for PHI and THET, and solve the problem again.

LOG: Log pattern

If left blank linear patterns will result. If "1." is entered, a previously entered pattern via light pen will be erased. If "2." is entered, a log pattern will result.

ISTH: Store the horizontal pattern

ISTV: Store the vertical pattern

Leave blank except to store the pattern about to be calculated for purposes of future comparison with another pattern by means of "double-exposure". Enter "l." to store.

IRCL: Recall a stored pattern

Left blank until patterns have been stored by a previous problem solution using ISTH/ISTV. When comparison is desired with the solution of the problem being entered, enter "1". Ensure that if recall is desired ISTH and ISTV are left blank, otherwise comparison will be made of the solution with itself.

ALPH: Array-axis angle

The tilt angle (or the angle of elevation with the ground) of the Yagi-Uda array axis. This is the slope angle with the ground for the two sloping antennas (ANTN 5 and 6) as well as for the vertical half-rhombic (ANTN 8), and the minor angle between elements of the horizontal rhombic (ANTN 7).

ISEA: Sea state

For the tilted dipole, vertical whip, sloping long-wire, and Yagi-Uda. Left blank unless iterative solutions under dynamic sea conditions are desired. The program is written for a sinusoidally varying sea with solutions produced at thirty degree intervals. The peak amplitude of roll is 8 degrees per sea state, and the peak pitch is 3 degrees per sea state.

ICRS: Course of the seas

Enter the direction of the seas relative to the ship's heading.

GAIN: Gain at the observation points specified by ϕ , θ .

The peak gain, identified under "PK" is also given. The ϕ and θ which locate the peak gain are listed adjacent to the values specified for the problem (discussed above under PHI and THET).

FTBR: Front-to-back ratio

The ratio of the peak forward-azimuth to peak reverseazimuth gains. (This is not a comparison between the 90 and 270 degree gain values). See footnote 3.

COMPUTER PROGRAM

1

90

COMMON / IMP/ A, ADA, ALPH, ALTEM, ANTN, B, C, CEE, CH, CV, CURDRI, CUMDIS, COSDL, COSDP, D, DELTA, DLPRI, DPHIP, G, GV, GH, H, HTEMP, I, J, ISOL, K, KAY, KOS DIMENSIAN LH(5), D(4), ITDIR(53), LABL(24), LNL(15), LND(28), IP(26)
DIMENSIAN VALTS(10), CRNT(10), IPAR(31), CUR(10), WYE(5), ZZPAC(10,10), PK, 4HTHET, 4HLOG , 4HISTH, 4HI DATA LNL/7,9,11,13,15,17,19,21,23,25,27,29,31,33,35/ DATA LND/2,4,4,4,4,4,4,6,6,6,5,6,6,8,10,12,14,16,18,20,22,24,26,28, 2, L, LH, LMDA, LHP, LHS, M, NE, NN, PAR, PHI, PHIPR, PI, RIN, RV, RH, RGRAL, 3RVPRI, RHPRI,SIGHH,SIGHV,SINSQ,SINDL,SINDP,S1,S2,S3,S4,T,THETA, DIMENSION IGDIR(6), PATRN(362), VPAT(92), X1(50), Y1(50), X2(90), 1 Y2(90), X3(360), Y3(360), IMD(362), Z(5,5), ISAVV(92), ISAVH(362), LABL/4HANTN,4HELE ,4HLENG,4HHGT/,4HWDTH,4HPHIP,4HTHEP, DIMENSION 3V(90),GM(360),FAC1(180),FAC2(180) EQUIVALENCE (GH(1),FAC1(1)),(GH(181),FAC2(1)),(VOLTS,CRNT) PATTERNS Reproduced from 4THEPR, VOLTS, VOLDRI, WIRE, WOSG, WYE, KGRAL, YO, Z, ZO, ZZPAK REAL <, L, L, L"DA, LH, LHP, LHS, KCOS, NORM, KLTP, NORMR, VORMF REAL KOS PK, 4HFTBR, ANNHHNA C6"PLEX ADA, CEE, CURDRI, RV, RH, RVPRI, RHPRI, Z 2STV, 4HIRCL, 4HALPH, 4HISEA, 4HICRS, 4HGAIN, 4H SOLUTION OF DATA VSLTS/0.,1.,0.,C.,O.,O.,O.,O.,O.,O. 4HFREQ,4HEPSL,4HSGMA,4HSMJL,4HPHI,4H DATA(IPAR(I),I=1,28)/28*7777773, COMPLEX AJICZIADA11ADAZIFIFAIY RAY TUBE INTEGER VPAT, PATRN, PAR, ANTN DIMENSION X (360) / Y (360) DATA NULL/777777778/ 130,32,34,36,38,40/ 11TRY(50), IM(50) 1. (ZZPAC, ZZPAK) 122PAK(100) DATA

PARAYETER FURMAT PROCESSOR

C

BUTPUT (101) TYPE IDEV

```
TEXTR(IDEV, IPAR(I), 1, LND(I), IP(I), 1, 3, IER)
                                                                                                                                                                                                                                                                                                                          TEXTS (IDEVALABL(1+5),1,1LNL(I),1,1,1,3,1ER)
                                                                                                                                                                                                                                                                                                                                                                                                       TEXT8 (IDEV, LASL (1+6), 1, LNL (1), 1, 1, 1, 3, 1ER)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  PARAMETER AND SPTIGNS CAMMAND INPUT PROCESSOR
                                                                                                                                                                                                                                                                                                                                                            TEXT8 (IDEV, LABL (12), Z, LNL (7), 1, 1, 3, IER)
I=8, 15
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               CALL TEXTI(IDEV, IPAR(I), 1, LUD(I), IP(I), IER
                                                                                                                                                                                                                                                                                                                                                                                                                                           TEXTP (IDEV, LABL (P2), 2, 37, 1, 1, 3, 1ER)
                                                                                                                                                                                                                                                                                                                                                                                                                                                              CALL TEXTO (IDEV/LABL(24),1,39,1,1,3,1ER) IF(IER.NE.C)OUTPUT(101)IER, TBLK',1
                                                                                                                                                                                                                                                                 TEXT8 (IDEV, LABL(2), 2,3,1,1,3,1ER)
TEXT8 (IDEV, LABL(4), 2,5,1,1,3,1ER)
                                                                                                                                                                                                                                                   TEXT8 ( IDEV, LABL (1), 1, 1, 1, 1, 3, 1ER)
                                                                                                                                                                                                                                                                                                                                                                                                                        IF (IER.NE.0)3UTPUT(101)|ER.TBLKIJI
                                                                                                                                                                                                                                                                                                                                              IF(IER.NE.0)@UTPUT(101)IFR,'TBLK',I
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            IF(1ER*hE*0)@UTPUT(101)]FR, TBLK', I
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    F(IER+VE+C)@UTPUT(101)]ER, IPARI, I
                                    IF(IER.NE.0)BUTPUT(101)IER, OTINIT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              IF (46) (ITDIR(I+20),8).E3.0) 69 T8
                  CALL DIINIT(IDEV,ITDIR,53,IER)
                                                                                                                I=1,50
)=Y1(I)=0.0
                                                                                                                                                                       0 * C = ( I ) Z \ =
                                                                                                                                                                                                            0.0=(1)EX=(1)EX
                                                                                                                                                                                         I=1,360
                                                                                                                                                     I=1,90
                                                                          1=1,50
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      D9 10 I=1,26
                                                                                                                                                                                                                                                                                                                                                                                   I=8,1
                                                                                                                                                                                                                                                                                                            1=116
INPUT(101)
                                                        CENTINUE
                                                                                                                                                                                                                              GOVIIVOD
                                                                                            0=(I)~I
                                                                                                                                                                                                                                                CALL
                                                                         2 60
                                                                                                                                                                                                                                                                                                                        CALL
                                                                                                                                                                                                                                                                                                                                                               CALL
                                                                                                                                                                                                                                                                                                                                                                                                    CALL
                                                                                                                                                                                                                                                                   CALL
                                                                                                                                                                                                                                                                                                                                                                                                                                          CALL
                                                                                                                                                                                                                                                                                                                                                                                   0.9
                                                                                                                                                                       X2(I
                                                                                                                                                                                                                                                                                       CALL
                                                                                                                                                                                                                                                                                                        or
C
                                                                                                                ရ
(၁
                                                                                                                                                     60
                                                                                                                                                                                        DB
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     10
```

\$ P

30

c

હે

¢

ò

ø

8 (A)

00

Q)

ഗ വ

```
CALL TEXT0 (IDEV, IPAR (28), 1, 38,6,1,3,1ER)
CALL TEXT0 (IDEV, IPAR (29), 1, 40,11,13,1ER)
CALL TEXT0 (IDEV, IPAR (29), 1, 40,11,13,1ER)
CECDE (4, 15, IPAR (1)) ANTY
DECODE (4, 12, IPAR (2)) LH (4)
DECODE (4, 12, IPAR (3)) D(2)
DECODE (4, 12, IPAR (4)) D(2)
DECODE (4, 12, IPAR (1)) D(2)
DECODE (4, 12, IPAR (1)) D(2)
DECODE (4, 12, IPAR (1)) D(3)
DECODE (4, 12, IPAR (1)) D(3)
DECODE (4, 12, IPAR (12)) ITEM
THEPRE ITEM
THEPRE ITEM
DECODE (4, 13, IPAR (14)) F
DECODE (4, 13, IPAR (14)) SYUL
DECODE (4, 13, IPAR (18)) MAY
DECODE (4, 15, IPAR (20)) PAR
DECODE (4, 15, IPAR (20)) PAR
DECODE (4, 15, IPAR (20)) ISTRH
DECODE (4, 15, IPAR (20)) IST
```

```
14F13•3,/,sPHIPR=$,F5•1,/,sTHEPR=$,F5•1,/,sF=$,F7•3,/,$EPSLN=$,
2F4•1,/,fSIGMA=$,F9•5,/,$~(PHI)=$,F5•1,/,$KAY(THET)=$,F5•1,/,$PAR=$
                                                                                                                                                                                                                                                                                                                      45 ISEA = 5, 12, /, SICRS = $, 12, /, ST (MULT FOR DIAM-LENGTH) = $, F7.3, /,/
                                                                                                                                                                                                                                                                                               3, I?,/, & ISTRH=$, I2,/, & ISTRV=$, I2,/, $ IRCAL=$, I2,/, $ ALPH=$, F5.1,/
                                                                                                                                                                                                                          FERMAT (1H1, SANTN=S, 12, /, SLH(I)=S, 5F10.2, /, SHES, F5.1, /, SD(I)=S,
                                                                                                                                                                              WRITE(6,16 ) ANTN, (LH(I), I=1,5), H, (D(I), I=2,5), PHIPR, THEPR, F, EPSLV, SIGMA, MKAY, PAR, ISTRH, ISTRV, IRCAL, ALPH, ISEA, ICRS, T
                                                                                                                                                                                                                                                                                                                                                                                                                                                             IF (LH(2).EG.O.O) GB TB 19
IF (LH(1).EG.O.O) GB TB 18
IF((LH(3).EG.O.O).AND.(LH(4).EG.O.O).AND.(LH(5).EG.O.O)) NE=2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    IF ((LH(2).NE.0.0).AND.(LH(3).NE.0.0).AND.(LH(4).NE.0.0).AND.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         IF ((LH(3).EQ.0.0).AND.(LH(4).E3.0.0).AND.(LH(5).EQ.0.0)) NE=1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ((L-(2).NE.6.0).AND.(LH(3).NE.0.0).AND.(LH(4).NE.0.0).AND.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       IF((L-4(4).FG.0.0).AND.(LH(5).E3.0.)) NE=3, GB TB
IF((L-4(5).FG.0.0.0)) NE=4; GB TB 20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Ð
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         69
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     IF ((L4(4).EG.0.0).AND.(L4(5).EG.0.)) NE=21
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             IF ((L4(5).FG.0.0)) NF=31 69 T8 20
                                                               F(SYJL.FG.(2.))SIGMA=SIGMA*.1
F(SYJL.FG.(2.))SIGMA=SIGMA*.01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1 (LH(5).NE.0.0)) NE=5; G9 T8 20
                                                                                                             F (ANTN.LT.9)68 T8 155
                                                                                                                                                           F (SYUL.GT.2.) T=SYUL
                                                                                                                                                                                                                                                                                                                                                                               ტ
—
                                                                                                                                                                                                                                                                                                                                                                   IF (ANTN. NF.9) GB
                                                                                                                                                                                                                                                                                                                                                                                                                    LH(I)=LH(I)/2
884AT (F4.2)
                       BRMAT (F4.3)
                                                                                                                                                                                                       1EPSLN, SIGMA,
                                            FBRMAT(14)
                                                                                                                                                                                                                                                                                                                                                                                                                                            ピング エトスのひ
                                                                                                                                         7=1.
                                                                                                                                                                               155
                                                                                                                                                                                                                                                                                                                                                                                                                                         17
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         18
```

8 0

```
ZERB LENGTHED ELEMENT. START
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                CALL UNPACK(ITRY(I),X1(I),Y1(I),IMD(I))
                                                                                                                                                                                                                                                                                                                                                                                                                                      F(IER*NE*0) BUTPUT(101) IER, 'GBLK1
F(M9)(IGDIR(1),8)*E0*0)59 T9 23
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           F(IER.NE.O)@UTPUT(101)IER,'IGBLK'
                   'ILLEGAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ENV5R9NMENTAL CONSTANTS PRICESSOR
PHIPR=PHIPR*(3.14159265/180)
THEPR=THEPR*(3.14159265/180)
                                                                       CALL DGINIT (IDFV, IGDIR, ISIZE, IER)
                                                                                                                                                                                                                                                                                                                                                                                               TRY(I)=IPACK(X1(I),Y1(I),IMD(I)
                                                                                                                                                                                                                                                                                                                                                                                                                 CALL GRAPHR(IDEV,ITRY,50,1,IER)
                                                                                                            PATTERN MANUAL ENTRY PROCESSOR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ALPH=(3.14159265/130)*ALPH
ALPCM=(3.14159265/2.0)-ALPH
(LH(5).NE.0.0)) NE=4; GB
                 (NE.EG.O) BUTPUT(101)
                                                                                                                                                                                                                                                                                                                      TRY(9)=IPACK(.11-.5/1
                                                                                                                                                                                                                                                              PACK(0, -. 5,0
                                                                                                                                                                                                                           157(4)=1PACK(--11-05)
                                                                                                                                                                                                                                             TPY(5)=|PAC<(.11.511
                                                                                                                                                                                                                                                                                                                                         TRY(10)=IPACK(0,0,0)
                                                                                                                                                                                                                                                                                 TRY(7)=!PACK(0,--4,1
                                                                                                                                                                                        TKY(2)=IPACK(0,.6,0
                                                                                                                                                                                                        TRY (3)=1PACK (0, 4,1
                                                                                                                                                                    TRY(1)=IHEAD(0,10)
                                 18VER'; G0 T0 6
IF(PAR.EG.1) G9 T0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           CALL GRAPHI(IDEV)I
                                                                                         F(PA3.EQ.1)38
                                                                                                                                                                                                                                                                                                      TRY(8)=1PACK(
                                                                                                                              1=1,50
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                1=1,50
                                                                                                                                                   =1~(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  (1)G_{m}I = (1)_{m}I
                                                                                                                                                                                                                                                              TRY(6)=1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              09 24
                                                                                                                                                                                                                                                                                                                                                                                 ---
                                                        80
                                                                                                                                                                                                                                                                                                                                                                                                                                                       23
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  3 U
                                                                                                                                                   2
                                                                                                                                                                                                                                                                                                                                                                                                22
                                                                                                               C
```

```
C-----GAIN LEBP. BEYEND THIS POINT ANTENNA BRIENTATION PARAMETERS C----AND THE POSERVATION ANGLE PARAMETERS WILL CHANGE.
                                                                                                                                                                                                                                           C2=X*(U%PLX(EPSLN,*1.8E04*SIGMA/F))**0*5
                                                               ADA1=CYPLX(0•,1•26E=06*A0MEG)
ADA2=CYPLX(SIGMA,A9MEG*EPSLN*8•854E=12)
DLPRI=(3.14159265/2.0)-THEPR
F=r*1.0E 06
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               BRANCH3
BRANCH4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   BRANCHS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 BRANCHS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   NOUT RESISTANCE PROCESSOR
F (ANTN-EQ-1) CALL BRANCH1
                                                                                                                                               WRITE(6,25 ) TEMP1, TEMP2
                                                IF(ANTN. NE. 3) GB TB 26
                                                                                                                                                                                                                                                                                                                                                                                                                     IF(ISEA.ST.0)GB TB 80
                                                                                                                                                             F924AT('ADA=',2F12+1)
                                A64EG=2*3•14159265*F
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  CALL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 CALL
                                                                                             ADA=(ADA1/ADA2)**.5
                                                                                                                                                                                                                                                                                                        KILCRI = (X = CV) / (X + CV)
                                                                                                                                                                                                                                                                                                                      RVPRI=(C2-K)/(C2+K)
                                                                                                                                                                                                            K=6.2831R530/LMDA
                                                                                                                              TEMPS=AIMAG(ADA)
                                                                                                                TEMP1=REAL (ADA)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  (A-CB-ZTZA)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 (AVIN.EG.4)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 (ANTN-E0.5)
                                                                                                                                                                                             LMDA=3.0E08/F
                                                                                                                                                                                                                           F=F*1.0E-06
                                                                                                                                                                                                                                                                        THTEM=THEPR
                                                                                                                                                                                                                                                                                         AL TEY=ALPH
                                                                                                                                                                                                                                                                                                                                                       DP41P40.0
                                                                                                                                                                             COVIIVOR
                                                                                                                                                                                                                                                                                                                                                                                                                                     国コスエトスのロ
                                                                                                                                                                                                                                                         HE dwill
                                                                                                                                                                                                                                                                                                                                                                                                                                                    0=7-81
                                                                                                                                                                                                                                                                                                                                         0=I I
                                                                                                                                                              ເດ
(ບ (ບ
                                                                                                                                                                                                                                                                                                                                                                                                                                    27
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      U
```

PATTE MAY C

\$ 0 0

```
KBS=C9S(THETA)*C9S(THEPR)+SIN(THETA)*SIN(THEPR)*C9S(PHI=PHIPR)
                                                                                          FORMAT (#RIN=#,F12.1)
PBSERVATION ANGLE CONSTANTS PROCESSOR
 BRANCH6
BRANCH7
                        BRANCH8
                                  BRANCH9
                                                                                                                                                                                                                                               DELTA=3.14159264/2. THETA
                                                                                                                                                                                                                                    THE TA= [ * (3.14159265/180)
                                                                                                                                                                                                                                                           PHI=J*(3.14159265/180)
                                                          9
                                                                                                                              3
2
2
3
3
3
                                                        IF (1SEA.GT.0)GB TB
                                                                                                                              19
                                                                     WRITE (6,30 )RIN
                                                                                                                                                                                                                                                                                 SI'SG=1-(K9S**2)
                                                                                                                03 34 N=1,2
IF(N•E4.1) G9 T
IF(N•E6.2) G9 T
09 34 I=1,90
(AVTN.EG.6)
(AVTN.EG.7)
(AVTN.EG.8)
(AVTN.EG.8)
                                                                                                                                                                                       J=1,360
                                                                                                                                                                            50 TP 33
DB 34 J=1
                                             田つフィトとのひ
                                                                                                                                                                                                            69 TB 33
                                                                                                                                                                                                                         CONTINCE
                                                                                CONTINCE
                                                                                                                                                                                                   1=<AY
                                                                                                                                                              <u>ا،</u>
ک
                                             ŝ
                                                                                88
08
0
                                                                                                                                                                                       35
                                                                                                                                                                                                                         8
                                                                                                                                                    31
```

-

Q

KC^RS=C8S(THETA) RV=(KC3S+(K/C2)*FIFA)/(KC8S+(K/C2)*FIFA) RH=(KC^RS+(C2/K)*FIFA)/(KC8S+(C2/K)*FIFA)

CV=CA3S(RV) CH=CA3S(RH)

IF(SINSG*LT*WOSG)SINSD=WOSG FIFA=(1-('K/C2)*SIN(THETA))**2)**0*5

WOSG#(3.14159265/180)**2

TEF=-SIY(DLPRI) CEE=(RHPRI*COS(DLPRI)+AJ*RVPRI*SIN(DLPRI))*CMPLX(ONE,TWO) IF (AVTN.EQ.1) CALL BRANCH1A 10 69 ((ANTW. NE.9). 9R. ((ANTW. EQ.9). AND. (1. GT. 180))) F((I.LE.90).AND.(GVER.LT.3V(I)))GVER=3V(I);IV=I (GABR-LT-3H(I))GHBR=GH(I);IH=I VERMALIZE AND MAX GAIN PROCESSOR NORM=NERMF=N9RMR=GVER=GH9R=0.0 BRANCH8A BRANCH9A S2=SIV(SIGHH-2*K*H*CBS(THETA) S3=CBS(SIGHV-2*K*H*CBS(THETA) S4=SIV(SIGHV-2*K*H*CBS(THETA) SIVDL=SIV(PELTA) HI=AIMAG(RH) SIGHH=ATAN2(HIJHR) S1=CeS(SIGHH-Z*K*H*COS(THETA) S2=SIV(SIGHH-Z*K*H*COS(THETA) BRANCHZA BRANCH3A BRANCHEA BRANCH7A BRANCH44 BRANCHEA GRAFFANAX1 (VGRAF, FAC1 (I)) F (GVEK + GT + GHOR) NORY = GVER F (GH9R . GT . GVER) NBRM=GHBR CALL CALL CALL CALL CALL CALL SIGHV=ATAN2(VI>VR) COSDL=Ces(DELTA) SINDPESINIDLPRI CBSDP=CBS(DLPRI NC=C98(DLPRI) ANTH-EG-4 ANTA ED. SI (AVTN.ED.8) CANTA FRO . ANTN. EG. 3 ANTN.ES.6 ANTN-ED-7 9 35]=1,360 AJ=CMPLX(0)1) HR=REAL (RH) BONITABL

®

ខ្ល

₩ U

```
KRITE(6,37 ) GAIN,GYAX,GVER,IV,GHƏR,IH
F9RYAT(1HO,$GAIN=$,F6,Z,$DB$,/,$GYAX=$,F6,2,$DB$,10X,$MAX GAIN VER-
1T=$,F6,2,$DB$,2x,$THETA=$,I2,10X,$MAX GAIN H8R=$,F6,2,$DB$,2X,$PHI
                                                                                                                               GVER=10*AL0G10(GVER/RIN)
GAIN=10*AL0G10(GWBR/RIN)
GAIN=10*AL0G10(GV(KAY)/RIN)
GAIN=10*AL0G10(GV(KAY)/RIN)
ENCODE(4,12,1PAR(27))GAIN
ENCODE(4,12,1PAR(29))F9R
CALL TEXTO(10EV,1PAR(27),1,38,1,1,3,1ER)
CALL TEXTO(10EV,1PAR(28),1,38,6,1,3,1ER)
CALL TEXTO(10EV,1PAR(28),1,40,1,1,3,1ER)
IF(1ER,NE,D)0UTPUT(101)1ER,'GAIN'
IF (PAR,FG,2) GO TO 62
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       CALL TEXT8(10EV, 1PAR(30), 1, 20,6,1,3,1ER)
CALL TEXT8(10EV, 1PAR(31),1,22,6,1,3,1ER)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   IF (AVIN.EG. 9) WRITE (6,38 ) FBR FBSMAI ($F/B RATIB=$,F5.1,$DB$)
NGRMR=AMAX1 (NGRMR, FAC2(1))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               PATTERN DISPLAY PROCESSOR
D8 40 I=1,360
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ENGODE(4,11,1PAR(30))IH
FNCODE(4,11,1PAR(31))IV
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       X(I)=3m(I)*SIA(bHI)
Y(I)=0m(I)*CeS(bHI)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             PHI=1*(3.14159265/180)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 GH(1)=0H(1)/(N6R*2.)
                                                                                                                   GMAX=10*ALBG10(GMAX)
                                                                     FBR=10*AL8G10(FBR)
                                               FB5-1000MF/NBPMR
                                                                                           GMAX=VCRW/RIV
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Certicoe
                         CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                  CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           2=$1[2]
                          33
                                                                                                                                                                                                                                                                                                                                                                                                  36
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           8
0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  40
                                                                                                                                                                                                                                                                                                                                                                                                                                               37
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           80
```

∞^¢;

ø

Ŷ

۲,

```
PHI
                                                                                                                                                                                                                                                                                                                                                                                                                                  IF(ISEA.GT.0)GB TB 85
CALL GRAPHR(IDEV,VPAT,92,3,IER)
IF(IF?.\E.0) BJTPUT(101)IER,'GBLK2'
IF('4))(IG)IR(3),8).EG.0)GB T9 49
                                                                                                                                                                                                                        TATTERN AT REQUESTED
                                                                                                                                CALL GRAPHR(IDEV,PATRN,362,2,1ER)
IF(IER.NE.O)BUTPUT(101)IER, GBLK!
IF(M90(IGDIR(2),8).EQ.O)GB TB 43
CBNTINUE
                                                                                      PATRN(1)=1PACK(X(0), Y(0), 14D(0))
                                                                                                                                                                                                                                                                                                                                                                                                      VPAT(I)=IPACK(X(U),Y(U),IMD(U))
                                                                                                                                                                                                                                                                                                 •
•
                                                                                                                                                                                                                                                    THE TA= I * (3 • 14159265/180)
                                                                                                                                                                                           S
C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             54
                                                                                                                    ∞
                                                                                                                                                                                                                                                                                                Y(I)=3V(I)*C9S(THETA)
                                                                                                                                                                                                                                                                                  X(I)=OV(I)*SIN(THETA)
                                                                                                                                                                                                                                                                   GV(I)=GV(I)/(NPRF*20.
                                                                                                                                                                                           IF(ISTKH.EQ.1) G9 T9
                                          PATRV(1) = 1 HEAD(0, 10)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F(1STAV*EQ*1)G9 T8
                                                                                                                                                                                                                                                                                                                                                           VFAT(1)=IHEAD(0,10)
DP 48 1=2,91
                                                                                                                   IF (ISEA . 6T . 0) G9 T8
             09 41 1=2,360
                                                                                                                                                                                                          CONTINUE
DISPLAY VER
DO 46 I=1,90
                                                        08 42 1=2,361
                                                                                                    PATRN(362)=0
                                                                                                                                                                                                                                                                                                                            D9 47 I=2,90
                                                                                                                                                                                                                                                                                                                                                                                                                     VPAT (92)=0
IMD (1)=0
                                                                                                                                                                                                                                                                                                               ₩D(1)=0
                                                                                                                                                                                                                                                                                                                                            MO(1)=1
                              I=(I)CWI
                                                                        J=1-1
                                                                                                                                                                                                                                                                                                                                                                                          J= I = J
                                                                                                                                                                                                          4 57
C 55
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 φ
0 0
                               4
                                                                                       ţ,
                                                                                                                                                                t t 3
                                                                                                                                                                                                                                                                                                 46
                                                                                                                                                                                                                                                                                                                                            47
                                                                                                                                                                                                                                                                                                                                                                                                       48
```

Ø

٥

¢,

.9

à) o

```
D9 53 I=1,360
CALL UNPACK(PATR:(I+1),X3(I),Y3(I),IMD(I))
                                                                                                                                                                                                                   CALL UNPACK(VPAT(I+1), X2(I), Y2(I), IMD(I))
G0 T0 51
                                                                                                                                                                                                                                                                                                                                                                  |SAVH(1)=|PACK(X3(J), Y3(J), IMD(J))
|SAVH(362)=0
                                                                                                                                                                                                                                                                                                                                                                                                   CALL GRAPHR(IDEV, ISAVH, 362, 4, IER)
IF(IER.NE.0) @UTPUT(101) IER, 'GBLK4'
IF(YB)(ISDIR(4), 8).E0.0) G9 T8 59
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |SAVV(1) = IPACK(XP(J), YP(J), IMD(J)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       CALL GRAPHR(IDEV, ISAVV,92,5,1ER)
IF(IFR.NF.C)@UTPUT(101)IER, 1GBLK5)
                                                                                                 IF(IFR.NE.O)BUTPUT(101)IER,'GBLK2
                                                                                                                                                                 CALL GRAPHI(IDEV,VPAT,3,IER)
IF(IER.NE.0)BUTPUT(101)IER, GBLK3
DB 55 I=1,90
                                                                                                                                                                                                                                                    DISPLAY SAVED PATTERNS PROCESSOR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       F(MeD(IGDIR(5),8),E0.0)68 T8 61
                                                                                CALL SKAPHI (IDEV, PATRY, 2, IER)
CONTINUE
IF(IRCAL, EQ.1)G0 T0 56
IF(ISEA GT 0)G0 T0 80
G9 T0 6
                                                                 PATTERN SAVE PROCESSOR
                                                                                                                                                                                                                                                                                    ISAVH(1)=IMEAD(0,10)
08 57 I=2,360
                                                                                                                                                                                                                                                                                                                                                                                                                                                    [SAVV(1)=IMEAD(0,10)
                                                                                                                                                                                                                                                                                                                                   I=2,361
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1=2,91
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       SAVV (92)=0
                                                                                                                                                                                                                                                                    142(1)=0
                                                                                                                                                   GB TB 45
                                                                                                                                                                                                                                                                                                                     IMD(1)=1
                                                                                                                                                                                                                                                                                                  56 57
                                                                                                                                                                                                                                                                                                                                     08 58
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       09 60
                                                                                                                                                                                                                                                                                                                                                     J=1-1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1=1=1
                                                                                                                                                                                                                                                     2
2
5
                                                                                                                                                                                                                                                                                                                     57
                                                                                                                                                                                                                                                                                                                                                                     S
S
                                                                                                                                                                                                                                                                                                                                                                                                                                     59
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        80
 5
                                                                 53
                                                                                                                                                                   រូវ
                                                                                                                                                                                                                   വ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         61
```

```
H=HTEMP*C0S(DLT1)*C9S(DLT2)
IF(ANT\*E0*9) 69 T0 86
                                                                                                                                                                                                                                                                 WAVE=(ISEA*8*SIN(VAR))*D2R
                                          TE~P=GV(I)/N9RM
IF(TE~P•LT•BLIM)TEMP=BLIM
                                                                                                                              IF(TEMP-LT.BLIM)TEMP=BLIM
GH(I)=ALGG10(TEMP)+3.
                                                                                                                                                                                                                                                                                             DLT1=AAVE*SIN(VAR1)
DLT2=AAVE*C8S(VAR1)*0.3
IF(ANTN.EG.5)G8 T8 81
                                                                     GV(I)=AL6310(TEMP)+3.
C6\TIVUE
                                                                                                                                                                                                                                                                                                                                                                                                                AA=2*L*SIN(DLT1/2•)
                                                                                                                                                                                                                                                                                                                                                                                                                             PB=2*L*SIN(DLT?/2•)
Les GAIN PROCESSOR
                                                                                                                                                                                                                                                                                                                                                                   THEPR=THTEM=DLT1
PLPRI=PI/2.-THEPR
GB TB 82
                                                                                                                                                                                                                                                   VAR=(P1/18.0)*I1
                                                                                                                 TEMP=GH(I)/NSRM
                                                                                                    De 64 I=1,360
                            D9 63 I=1,90
                                                                                                                                                                                                                      PI=3.14159265
                                                                                                                                                                                                                                                                              VAR1=ICRS*DER
                                                                                                                                                                                                                                    D2R=PI/180.0
                                                                                                                                                                                       69 T8 36
11=11+3
              3LIM= . CO1
                                                                                                                                                             CONTINCE
                                                                                                                                                                           N92%=3.
 C
62
                                                                                                                                                                                                        80
                                                                                                                                                             64
                                                                                                                                                                                                                                                                                                                                                                                                                81
```

ø

DD=S34T(L**2=(CC/2•)**2

CC+888+8+81(AA**8+88+88)

```
KRITE(C,83) WAVE,H,ALPH,THEPR,II
FBRYAT(1H0,&WAVE=$,F7,3,$H=$,F7,3,$BMEG
                                                                                                                                                                   IF((DLT1.LT.00.0).AND.(DLT2.LT.00.0))DPHIP=(PI-DPHIP)
IF((DLT1.GT.00.0).AND.(DLT2.LT.00.0))DPHIP=FI-DPHIP
                     IF ((SIND3.GT.=WOSG).AND.(SIND3.LT.O.O))SIND3=-WOSG
SINA=SIN(OLT1)/SIND3
SINA=ABS(SINA)
IF ((SIND3.LT.WOSQ).AND.(SIND3.GE.O.O))SIND3=WOSQ
                                                                                                                    DPHIP=ATAN?(SINA, CASA)
IF((DLT1.LT.O.O).AND.(DLT2.GE.O.O))DPHIP="DPHIP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      THEPR=THTEM+(DLT1*C9S(PHIPR)+DLT2*SIN(PHIPR))
ALPH=ALTEM+DLT2*C0S(PHIPR)-DLT1*SIN(PHIPR)
DLPKI=PI/2*-THEPR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   IF(IER.VE.O)BUTPUT(101)IER, VPATI
GB TR 50
                                                                                                                                                                                                                                                                                                                                                                                       CALL GRAPH0(IDEV,PATRN,362,2,IER)
IF(IEX.NE.0)0UTPUT(101)IER,'HPAT'
                                                                                                                                                                                                                                                                                                                                                                                                                                                                GRAPHO (IDEV, VPAT, 92, 3, IER)
                                                                                                CBSA=SGRT(1.0=SINA**R)
                                                                                                                                                                                                                                                                      Q
                                                                                                                                                                                                                                        DLPRI=F1/2.-THFPR
IF(II.EG.39)30 T0
                                                                                                                                                                                                                   THEPR=THTEM+DLT3
                                                                                                                                                                                                                                                                                                                                         (A==,F7.3)
                                                                                                                                                                                                                                                                                                                                                                                                                                         G9 T8 44
                                                                                                                                                                                                                                                                                                                                                                GB TB 27
                                                                                                                                                                                                                                                                                                                                                                                                                                                                CALL
                                                                                                                                                                                                                                                                                                              83
                                                                                                                                                                                                                                                                   გ
8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                82
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         86
                                                                                                                                                                                                                                                                                                                                                                                         48
```

COMMON ZIMP/ AJADAJALPHJALTEMJANTNJBJCJCESJCHJCVJCURDRIJCUMDISJ 1CPSDLJCOSDPJDJDELTAJDLPRIJDPHIPJGJGVJGHJHJHTEMPJIJJJSOLJKJKAYJKOS 2JLJLHJLMDAJLHPJLHSJMJNJNEJNNJPARJPHIJPHIPRJPIJRINJRVJRHJRGRALJ CG~PLEX ADA,CEF,CURDRI,RV,RH,RVPRI,RHPRI,Z DIMENSION CRNT(10),CUR(10),D(4),FAC1(180),FAC2(180),GV(90),GH(360) 1,LH(5),VOLTS(10),WYE(5),Z(5,5),Z2PAC(10,10),Z2PAK(100) EQJIVALENCF (GH(1),FAC1(1)),(GH(181),FAC2(1)),(VOLTS,CRNT), 3RVPRI, RHPRI, SIGHH, SIGHV, SINSO, SINDL, SINDP, SI, SZ, S3, S4, T, THETA, 4THEPR, V8LTS, V8LDRI, WIRE, WOSO, WYE, XGRAL, YO, Z, ZO, ZZPAK RIN=REAL (2(1,1))+REAL (2(2,1)*CEE) REAL KIKBSILILHILHPILHSILYJA IF(I.EG.2) CUMDIS=2*H;IS9L=0 CALL ZINT --ARBITRARILY TILTED DIPOLE Z(I)1)=CMPLX(RGRAL)XGRAL) SUBRBUTINE BRANCH1 INTEGER ANTN, PAR D9 1110 I=1,2 1 (22PAC, 22PAK) CUMDIS=.00001 1100 LHS=LHP=L/2 RETURY ISOL=1 1110

, °

100

8

Š

COMMON /IMP/ A, ADA, ALPH, ALTEM, ANTN, B, C, CEE, CH, CV, CURDRI, CUMDIS, ICOSDL, COSDP, D, DELTA, DLPRI, DPHIP, G, GV, GH, H, HTEMP, I, J, ISOL, K, KAY, KOSP, L, LH, LMDA, LHP, LHS, M, N, N, PAR, PHI, PHIPR, PI, RIN, RV, RH, RGRAL, COMPLEX ADA,CEE,CURDRI,RV,RH,RVPRI,RHPRI,Z DIMENSION CRYT(10),CUR(10),D(4),FAC1(180),FAC2(180),GV(90),GH(360) 1,LH(5),VOLTS(10),WYE(5),Z(5,5),ZZPAC(10,10),ZZPAK(100) EQUIVALENCE (GH(1),FAC1(1)),(GH(181),FAC2(1)),(VOLTS,CRNT) 3RVPRI,RHPRI,SIGHH,SIGHV,SIVSQ,SINDL,SINDP,SI,S2,S3,S4,T,THETA, 4THEPR,V9LTS,V8LDRI,4IRE,WOSQ,WYE,XGRAL,YO,Z,Z0,ZZPAK GI=(C9S(O.5*<*L*(SINDL*SINDP+C6SDL*C6SDP*SINPI))-C9S(0.5*K*L)
OI=(C9S(0.5*K*L*(C8SDL*C6SDP*SINDL*SINDP))-C9S(0.5*K*L) ETHII=(C8SDP*SinPI*SIUCL*SINDP*C8SDL)*GI*(C8SDP*SIUPI*SINDL* ETHIZ= (CRSDP*SINPI*SIVDL+SINDP*CBSDL)*DI*CV*S4 FCTR=1.0.(-SINDP*SINDL+CASDL*CASDP*SINPI)**2 IF(FCTR.LT.WOSG)ETHT2=EPHI2=0.0 G=120.*(FTHT1**2+ETHT2**2+EPHI1**2+EPHI2**2) FCT=1.0-(SINDL*SINDP+C0SDL*C0SDP*SINPI)**2 EPH11=C880P*C88P1*(G1+D1*CH*S1) IF (FCT.LT.30SQ)ETHT1=EPHI1=0.0 REAL KIKBSILILHILHPILHSILYJA INTEGER ANTNIPAR FPHI2=C@SDP*C@SPI*DI*CH*S2 SINDP*C0SDL)*DI*CV*S3 SIMPI=SIN(PHI-PHIPR) COSPI=COS(PHI-PHIPR) 6v(1)=6 6h(J)=6 1, (22PAC, 22PAK) (T・UU・7) L1 I NINATIT

COMMON TIMP A ADA, ALPH, ALTEM, ANTN, B, C, CEE, CH, CV, CURDRI, CUMDIS, 10850L, COSDP, D, DELTA, DLPRI, DPHIP, G, GV, GH, H, HTEMP, I, J, ISOL, K, KAY, KOS P, L, LH, LMDA, LHP, LHS, M, NE, NN, PAR, PHI, PHIPR, PI, RIN, RV, RH, RGRAL, SRVPRI, FHPRI, SIGHH, SIGHV, SINSQ, SINDP, SI, SP, S3, S4, T, THETA, 4THFPR, VOLIS, VOLIS INTEGER ANTN, PAR COMPLEX ADA, CEE, CURDRI, RV, RH, RVPRI, RHPRI, Z COMPLEX ADA, CEE, CURDRI, RV, RV, RVPRI, RHPRI, Z COMPLEX ADA, CEE, CURDRI, RV, RV, RVPRI, RHPRI, Z CONTENCE (CH(1), WYE(R), Z(5,5), ZZPAC(10,10), ZZPAK(100) EQUIVALENCE (GH(1), FAC1(1)), (GH(181), FAC2(1)), (VBLTS, CRNT) RGRAL=-30 ** (RGRAL+ * 5*RESIST (LHS/LMDA)) *DS XGFAL=-30.*(XGRAL+.5*REACT(LHS/LMDA))*DS IF (ISEL.EG.1) DLPRI=SVDLP C----REGUIRED FOR DIPOLE AND YAGI UDA SUBROJINE ZINT REAL KIKASILILHILHPILHSILMDA YO=CJ~CIS*COS(DLPRI)/LMDA 20=-CJMDIS*SIN(DLPRI)/LMDA IF (ISEL.EG.0) G8 T8 1940 S=S+JS RGRAL=KGRAL+RESIST(S) RGRAL = 5 * RESIST(S) DS=LHS/(50 * LMDA) XGRAL=.5«REACT(S). DP 1960 N=2,100 D9 1950 N=2,100 S=-LHS/LMDA S=-LHS/L~DA SVOLP=DLPRI PLPRI=0. 80+8=8 1950 1960 1940

×\$^

FUNCTION RESIST(S)

COMMON ZIMP/ ANADANALTEM, ANTN, B. C., CEE, CH, CV, CURDRI, CUMDIS,
COMMON ZIMP/ ANADANALTEM, ANTN, B. C., CEE, CH, CV, CURDRI, CUMDIS,
1COSOL, COSOP, D. DOELTA, DLPRI, DPHIP, G. GV, GH, H, HTEMP, I. J. ISBL, K. KAY, KBS
2, L, LH, LYDA, LHP, LHS, M, VI, NE, NN, PAR, PHI, PHIPR, PI, RIN, RV, RH, RGRAL,
3RVPRI, R. APRI, SIGHV, SINSQ, SINDL, SINDP, SI, SZ, S3, S4, T, THETA,
4THEPR, VPLTS, VOLDRI, WIRE, WOSQ, WYE, XGRAL, YO, Z, ZO, ZZPAK
REAL K, COSOLL, LH, LHP, LHS, LMDA INTEGER / N. PAR COMPLEX ... TEE.CURDRIARV. RH. RVPRIARHPRIAZ DIMENSISM LRNT(10). CUR(10). D(4). FACI(180). FACE(180). GV(90). GH(360) 1. LH(5). VRLTS(10). WYE(5). Z(5.5). ZZPAC(10.10). ZZPAK(100) CA1=CA+C.5*LP/LMDA
CA2=CA-C.5*LP/LMDA
R=SCRT(RPXP+CA**2)
R1=SCRT(RBX2+CA1**2)
R2=SCRT(RBX2+CA1**2)
R2=SCRT(RBX2+CA1**2)
R2=SCRT(RBX2+CA1**2)
R2=SCRT(RBX2+CA1**2)
R2=SCRT(RBX2+CA1**2)
R2=SCRT(RBX2+CA2**2)
SR2=SIN(2*P1*R1)/R1
SR2=SIN(2*P1*RP)/R2
FACR=P*SR*CBS(P1*LP/LMDA)
RESIST=((SR1*CA1+SR2*CA2*FACR*CA)*SY)/TERM+(FACR*SR1*SR2)**S1N(2*F1*(0*5*LS/L**)A=ABS(S))/S ESCIVALENCE (GH(1), FAC1(1)), (GH(181), FAC2(1)), (VBLTS, CRNT) IF (AVIN.LT.9) LS=LP=L IF (AVIN.GE.9) LP=2*LHP;LS=2*LHS SZ=S*CPS(2*DLPRI) SY==S*SIN(2*DLPRI) R8 42= (Y0+SY) * * 2 CA=Z0+SZ TERM=YO+SY て アトスダートー

0

200

1 0 °C

```
COMMON /IMP/ AJADAJALPHJALTEMJANTNJBJCJCEEJCHJCVJCURDRIJCUMDISJ
1COSOLJCOSOPJOJOELTAJDLPRIJOPHIPJGJGVJGHJHJHTEMPJIJJJSGBLJKJKAYJKOS
2JLJLHJLMDAJLHPJLHSJHJNJNEJYNJPARJPHIJPHIPRJPIJRINJRVJRHJRGRALJ
3RVPRIJRHPRIJSIGHHJSIGHVJSINSOJSINDLJSINDPJSIJSZJSJS4JTJTHETAJ
4THEPRJVGLTSJVGLDRIJWIREJWOSOJWYEJXGRALJYOJZJZOJZZPAK
                                                                                                                                                                                                       COMPLEX ADA, CEE, CURDRI, RV, RH, RVPRI, RHPRI, Z
COMPLEX ADA, CEE, CURDRI, RV, RH, RVPRI, RHPRI, Z
CIMENSION CRNT(10), CUR(10), D(4), FAC1(180), FAC2(180), GV(90), GH(360)
1, LH(5), VPLTS(10), WYE(5), Z(5,5), Z2PAC(10,10), ZZPAK(100)
EQUIVALENCE (GH(1), FAC1(1)), (GH(181), FAC2(1)), (VOLTS, CRNT)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              REACT = (((CR1*CA1+CA2*CR2*FACX*CA)*SY)/RBW2+(FACX*CR1*CR2)*SZ)*
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      SI'((2*D1*(0.5*LS/LMDA-ABS(S)))/S
                                                                                                                                                                                                                                                                                                                                                                               IF (AVIN.GF.9) LP*2*LHP;LS=2*LHS
--REGUIRED FOR DIPOLE AND YAGI UDA FUNCTION REACT(S)
                                                                                                                                                                              REAL KIKBSILIHILHPILHSILMDA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             FACX=2*CR*CBS(PI*LP/LMDA)
                                                                                                                                                                                                                                                                                                                                                             IF (ANTN-LT.9) LS=LP=L
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       R=SGRT(RAWP+CA**2)
R1=SGRT(R842+CA1**2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            RZ=SGRT (RB.:2+CA2**2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        CR2=C93(2*P1*R2)/RZ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               CR1=C9S(2*PI*R1)/R1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   CAR=CA-0.5*LP/LYDA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             C41=C4+0.5*LP/LMDA
                                                                                                                                                                                                                                                                                                                                                                                                            SZ=S*CfS(2*DLPKI)
SY==S*SIN(2*DLPRI)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       CR=CSS(2*P1*3)/R
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           CA=ZO+SZ
                                                                                                                                                                                                                                                                                                                                          1, (ZZPAC, ZZPAK)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      TERM=YC+SY
```

o o

J.

الث

. پ

INTEGER ANTN, PAR COMPLEX ADA, CEE, CURDRI, RV, RH, RVPRI, RHPRI, Z COMPLEX ADA, CEE, CURDRI, RV, RH, RVPRI, RHPRI, Z DIMENSION CRNT(10), AYE(5), Z(5,5), ZZPAC(10,10), ZZPAK(100) 1, LH(5), VPLTS(10), AYE(5), Z(5,5), ZZPAC(10,10), ZZPAK(100) EQUIVALENCE (GH(1), FAC1(1)), (GH(181), FAC2(1)), (VOLTS, CRNT) 1, (ZZPAC, ZZPAK) CALL KOSINUS((4*K*L), CC) CINZ=ALO3(4*K*L)+577-CC CETTON / IMP/ AJADAJALPHJALTEMJANTNJBJCJCEEJCHJCV.CURDRIJCUMDISJ 1COSDLJCOSDPJDJDELTAJDLPRIJDPHIPJGJGVJGHJHJHTEMPJIJJJISOLJKJKAYJKOS 2JLJLHJLMDAJLHPJLHSJMJNJNEJNNJPARJPHIJPHIPRJPIJRINJRVJRHJRGRALJ 3RVPRIJRHPRIJSIGHHJSIGHVJSINSOJSINDLJSINDPJSIJSZJSJS4JTJTHETAJ 4THFPRJVOLTSJVOLDRIJJIREJWOSGJWYEJXGRALJYOJZJZOJZZPAK REAL KJKOSJLJLHJLHPJLHSJLJA SIN1=1.57078633+SC FIN=15.*((2.+2*CBS(2*K*L))*CIN1=CBS(2*K*L)*CIN2=2*SIN(2*K*L)*SIN1. CALL CALL CALL CON1=AL9G(2*CIN1=AL9G(2*CALL SINUS((4*CALL SINUS((4*CALL SINUS((2*CALL SINUS((2* SURRBUTINE BRANCHE MANAPALE SIN(D*K*L)*SIND RETURN END C----VERTICAL 1200

プレスター・・・・・・

. . .

0

1

Ø,

8,

1C8SDL, COSDP, D, DELTA, DLPRI, DPHIP, G, GV, GH, H, HTEMP, I, J, ISBL, K, KAY, KBS 2, L, LH, LMDA, LHP, LHS, M, N, N, NE, NN, PAR, PHI, PHIPR, PI, RIN, RV, RH, RGRAL, CGMPLEX ADALCEELCURDRILRVLRHLRVPRILRHPRILZ DIMENSIBN CRVT(10).CUR(10).D(1).FAC1(180).FAC2(180).GV(90).GH(360) /IMP/ A, ADA, ALPH, ALTEM, ANTN, B, C, CEE, CH, CV, CURDRI, CUMDIS, SLOPING LNG WIRE 3PVPRI, KHPRI, SIGHH, SIGHV, SINSQ, SINDL, SINDP, S1, S2, S3, S4, T, THETA, EQUIVALENCF (GH(1), FAC1(1)), (GH(181), FAC2(1)), (VBLTS, CRNT) 1, LH(5), VPLTS(10), WYE(5), Z(5,5), ZZPAC(10,10), ZZPAK(100) 4 THFPR, VOLTS, VOLDRI, WIRE, WOSQ, WYE, XGRAL, YO, Z, ZO, ZZPAK V MONO WITH SCN, INVERTED L G=(30.0/C0SDL**2)*((A*(1.+CV*S3)+B*CV*S4)**2+ C=81v(X*L*SIvDL)-SIvDL*SIv(X*L) REAL KIKBSILILMILHPILMSILMDA 1(8*(1.ECV*S3)+A*CV*S4)**2) A=ChS(K*L*SINDL)+CBS(K*L) BRANCHZA GV(1)=G 0+(C)+9 CHITTERS FOR V MONOS INTEGER ANTNEPAR 1. (72PAC, 22PAK) S3=CBS(SIGHA) CAMBISINIS=+S SUBRBUTINE (ひ・5日・2) 日 212411 アのシンのリ 200

```
C----ANTW 2
C----RORD FOR V MOND, V MOND WITH SCN, INVERTED L, SLOPING LNG WIRE SUBROJINE SINUS(X,SC)
IF(X+OE-10+0)G0 T0 10
DX=X/100
GRAL=0+5
XA=0+0
C5 100 I=2,100
XA=XA+DX
                                                                                                                              0 GRAL=GRAL+SINC(XA)

GRAL=(GRAL+SINC(X)/2•)*DX

SC=-3•14159265/2•+GRAL

G9 T9 20

C SC=-C9S(X)/X

0 C9NTINUE

RETURN

END
                                                                                                                                  100
                                                                                                                                                                                           5
5
5
8
```

```
C-----ANTN 2
C-----RGRD FOR V MOND, V MOND WITH SCN, INVERTED L, SLOPING LNG WIRE SUBREUTINE KOSINUS(X,CC)
IF (X,GE,10.0) GO TO 10
IF (X,GE,10.0) GO T
```

C-----ANTN 2
C----ROAD FOR V MONO, V MONO WITH SCN, INVERTED L, SLOPING LNG WIRE FUNCTION SINC(X)
SINC=SIN(X)/X
RETURN
RETURN
END

0

* G

1

\$ \$

. . .

COMMON /IMP/ AJADAJALPHJALTEMJANTNJBJCJCEEJCHJCVJCURDRIJCUMDISJ 1COSDLJCOSDPJDJDELTAJDLPRIJDPHIPJGJGVJGHJHJHTEMPJIJJJSOLJKJKAYJKOS COMPLEX ADAJCEE, CURDRI, RV, RH, RVPRI, RHPRI, Z COMPLEX ARSP, ARSP, ARSW, ARSW2, DLTZI, DLTZZ DIMENSION CRNT(10), CUR(10), D(4), FACI(180), FACE(180), GV(90), GH(360) 1, LH(5), VOLTS(10), WYE(5), Z(5,5), ZZPAC(10,10), ZZPAK(100) 3RVPRI, RHPRI, SIGHH, SIGHV, SINSO, SINDL, SINDP, SI, SZ, S3, S4, T, THETA, 1CEXP(AtGN2)*AKEX(+2*K*(RO+L))+D*CBS(K*L)**D*AKEX(+P*K*H)+14*CBS(K*L)*AKEX(+K*K*H)+14*CBS(K*L)*AKEX(+K*(R1+L))+ DLT21=(ADA/4*3.14159265*C1)*(CEXP(ARGP2)*AKEX(~2*K*(RO+L))+ EQUIVALENCE (GH(1), FAC1(1)), (GH(181), FAC2(1)), (VBLTS, CRNT) 4THEPR, VALTS, VALDRI, WIRE, WOSQ, WYE, XGRAL, YO, Z, ZO, ZZPAK 4*C3S(K*L)*CEXP(ARGP)*AKEX(-K*(R1+L))) WITH GROUND SCREEN REAL KYKBS/L/LH/LHP/LHS/LMDA ARCPG=CNPLX(0.0.0.8K*L) F834AT('DLTZ1=',F12.6) 1F(C1.LT.WOS3)C1=WOSQ ARGM#CKPLX(0.01-K*L) RO=(1**2+L**2)**0.5 R1=H+20 ARGP=CMPLX(0.0×K*L) DL T 28 = 26RAL (DUM) /2 SUPRBUTINE BRANCH3 MONOPOLE INTEGER ANTRIPAR C1=SI2(X*L)**D DX=(H-.01)/100 1, (72PAC, 22PAK) WIRE-01 00--00 1000

```
CALL KASINUS((2*K*L),CC)

CIN1=ALGG(2*K*L)+.577-CC

CIN1=ALGG(2*K*L),SC)

SIN2=1.57078633+SC

CALL SINUS((2*K*L),SC)

SIN1=1.57078633+SC

RIN=15.*((2*+2*C9S(2*K*L))*CIN1-C9S(2*K*L)*CIN2-2*SIN(2*K*L)*SIN1
D6 1310 II=2,100
DU%=DU%+DX
O DLTZE=CLTZ2+ZGRAL(DUM)
DLTZE=(DLTZ2+ZGRAL(H)/2.)*DX
CLTZE=-DLTZ2
NRITE(6,1312)DLTZ2
REGMAT('DLTZE=',F12.6)
CALL KFSINUS((4*K*L),CC)
CINZ=ALEG(4*K*L)+.577-CC
                                                                                                                                                                                                                                                                                                                           RIV=RIV/C1
RIV=RIN+REAL(DLTZ1+DLTZ2)
RETJRN
END
                                                                                                                                                                                                                                                                                                           1+01v(v*X*L)*01v0
                                        1310
                                                                                                                 1312
```

```
COMMON /IMP/ A, ADA, ALPH, ALTEM, ANTN, B, C, CEE, CH, CV, CURDRI, CUMDIS, 1 COSDL, COSDP, D, DELTA, DLPRI, DPHIP, G, GV, GH, H, HTEMP, I, J, ISOL, K, KAY, KOS
                                                                                                                                                                                                                                                                                                                         DIVENSION CRNT(10), CUR(10), D(4), FACI(180), FACE(180), GV(90), GH(360)

1, LH(5), VOLTS(10), WYE(5), Z(5,5), ZZPAC(10,10), ZZPAK(100)

EQUIVALENCE (GH(1), FACI(1)), (GH(181), FACE(1)), (VOLTS, CRNT)
                                                                                           2, L, LH, LMDA, LHP, LHS, M, N, NE, NN, PAR, PHI, PHIPR, PI, RIN, RV, RH, RGRAL,
                                                                                                                            3RVPRI,RHPRI,SIGHH,SIGHV,SINSQ,SINDL,SINDP,S1,S2,S3,S4,T,THETA,
                                                                                                                                                             4THEPRIVOLTSIVOLDRIIMIREIMOSOIMYEIXGRALIYOIZIZOIZZPAK
REAL KIKSSILILHILHPILHSILMOA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        CRAL=1.0-(ADA*SIV(THETA)*GRAL)/120.*3.14159265*C1*C3
                                                                                                                                                                                                                                                               COMPLEX ADA, CEF, CURDRI, RV, RH, RVPRI, RHPRI, Z
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             !F((C1.LT.MCSQ).AND.(C1.GE.0.0))C1=WOSQ
!F((C1.GT.-WOSQ).AND.(C1.LT.0.0))C1=WOSQ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        F((C3.GT.*WOS3).AND.(C3.LT.0.0))C3=-WOSQ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F((C3.LT.WOSQ).AND.(C3.GE.O.O))C3=WOSQ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                310
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           B=SIN(K*L*SINDL)-SINDL*SIN(K*L)
                                                                                                                                                                                                                                                                                                                                                                                                                                                              IF ((N.EG.2).AND.(J.GT.1))GB TB
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         GRAL = (GRAL + PTGRL (XB) /2) *DX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             A=CBS(X*L*SINDL)=CBS(X*L)
  BRANCH3A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            GRAL=GRAL+PIGRL(XX)
                                                                                                                                                                                                                                INTEGER ANTN, PAR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            GRAL = PIGRL (XX)/2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            DB 315 IA=2,100
                                                                                                                                                                                                                                                                                                                                                                                                                             1, (72PAC, 22PAK)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             S3=CB3(SIGHV)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              (AHDIS) % IS= +S
                                                                                                                                                                                                                                                                                                COMPLEX GRAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                (1*X) > I S = I C
SURRBUTINE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          CX=X9/100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               XX=XX+CX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             メルルス*エ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           0"XX
                                                                                                                                                                                                                                                                                                                                                                                                                                                              300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            312
```

P

SRFAC=(CABS(GRAL))**2

310 C04TINUE
G=(30.0/C0SDL**2)*((A*(1.+CV*S3)+B*CV*S4)**2+
1(3*(1.-CV*S3)+A*CV*S4)**2)*SRFAC/C1**2
IF(N.EG.1) GV(I)=G
IF(N.EG.2) GH(J)=G
RETURN
ENJ

و ا هن ا د د

\$

Ŷ

ره مه

÷

```
C....REGUIRED FOR VERT MONOPOLE WITH GND SCREEN FUNCTION AKEX(X)
CHMPLCX AKEX
XX=ABS(X)
CALL KESINUS(XX,CC)
CALL SINUS(XX,CC)
IF(X-LT.0.0)AKEX=CMPLX(CC,-SC)
IF(X-SE.0.0)AKEX=CMPLX(CC,SC)
RETURN
END
```

ø

ŏ

```
SURROUTINE SINUS(X,SC)

IF (X,GE-10.0) GB TB 10

DX=X/100

GRAL=0.5

XA=XA+DX

CDA 100 I=2,100
                                                                                                 GRAL=GRAL+SINC(XA)
GRAL=(GRAL+SINC(X)/2.)*DX
SC=-3.14159265/2.+GRAL
                                                                                                                                    SC=+CBS(X)/X
CGNTINUE
RETURA
END
                                                                                                                                      20
                                                                                                  100
```

n

```
C----RORD FOR V MBNB, V MBNB WITH SCN, INVERTED L, SLOPING LNG WIRE SUSRBUTINE KESINUS(X,CC)
IF(X,SE,10.0)GB TB 10
                                                                                                                                GRAL=GRAL+(1.0-CBS(XA))/XA
GRAL=(GRAL+(1.0-CBS(X))/2*X)*DX
CC=AL9G(1.781072*X)-GRAL
GB TB 20
                                                                                           XA=0.0
CB 100 I=2,100
                                                                                                                                                                                               CC=SIN(X)/X
CPNTINUE
                                                              DX=X/1C0
GRAL=0•0
                                                                                                                         XA=XA+CX
                                                                                                                                                                                                 20
20
30
                                                                                                                                      100
```

•

C-----ANTN 3
C----RGRD FOR V MOND, V MOND WITH SCN, INVERTED L, SLOPING LNG WIRE FUNCTION SINC(X)
SINC=SIN(X)/X
RETURN
END

E 15

٥

```
C9MMG4 / IMP/ A, ADA, ALPH, ALTEM, ANTN, B, C, CEE, CH, CV, CURDRI, CUMDIS, 10850L, C8SDP, D, D, DELTA, DLPRI, DPHIP, G, GV, GH, H, HTEMP, I, J, ISBL, K, KAY, K8S
                                                                                                                                                                                                                                                                                                                                                                                                  DIMENSIBN CRNT(10),CUR(10),D(4),FAC1(180),FAC2(180),GV(90),GH(360)
1,LH(5),VBLTS(10),WYE(5),Z(5,5),ZZPAC(10,10),ZZPAK(100)
EQUIVALENCE (GH(1),FAC1(1)),(GH(181),FAC2(1)),(VBLTS,CRNT)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   P1=1+15/(2*(8*S)**2)=(225**7*9)/(24*(8*S)**4)+(225**49*81*143)/
                                                                                                                                           2, L, LH, LYDA, LHP, LHS, M, V, NE, NN, PAR, PHI, PHIPR, PI, RIN, RV, RH, RGRAL,
3RVPRI, RHPRI, SIGHH, SIGHV, SI NSO, SINDL, SINDP, SI, SZ, SZ, S4, T, THETA,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  AJ1=S/2-S**3/16+S**5/384-S**7/(128*144)+S**9/(512*24*120)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                G1=3/(8*S)=315/(6*(8*S)**3)+(9*35*35*99)/(120*(8*S)**6)
AJ1=(2*/(PI*S))**0*5*(P1*C0S(S=3*PI/4)*Q1*SIN(S=3*PI/4))
                                                                                                                                                                                                         4THEPR, VBLTS, VBLDRI, WIRE, WOSQ, WYE, XGRAL, YO, Z, ZO, ZZPAK
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  PTSRL=(CEXP(ARG1)+CEXP(ARG2)+C9S(K+L1)+AJ1
                                                                                                                                                                                                                                                                                                           COMPLEX ADAJCEE, CURDRIJRV, RH, RVPRIJRHPRIJZ
                    FOR VERT MONOPOLE WITH GND SCREEN
                                                                                                                                                                                                                                                REAL KIKBSILILHILHPILHSILMDA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     25=(XX**Z*X+C**X)=2Z
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ARG1=CMPLX(0.01-ZZ)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ARBB=CMPLX(0.01-XX)
                                                       FUNCTION PIGRE(XX)
                                                                                                                                                                                                                                                                                                                                                                               COMPLEX ARG1, ARG2
                                                                                                                                                                                                                                                                                   INTEGER ANTN, PAR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              F(S.LE.1)38 T8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1(720*(8*8)**6)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 (7ZPAC,ZZPAK)
                                                                                                                                                                                                                                                                                                                                                  CAMPLEX PTGRL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 TUSGD*XX=S
                          C----REGUIRED
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           CeutivoE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             CONTINCE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             S
---0
```

. 🔅

J

COMMON JIMP, AJADAJALPHJALTEMJANTNJBJCZCEEZCHJCVZURDRIJCUMDISZ 1008DLJCOSDPJDJDELTAJDLPRIJDPHIPJGJGVJGHJHJHTEMPJIJJISOLJKJKAYJKOS DIMENSIBN CRNT(10), CUR(10), D(4), FAC1(180), FAC2(180), GV(90), GH(360)

1, LH(5), V9LTS(10), WYE(5), Z(5,5), ZZPAC(10,10), ZZPAK(100)

EQUIVALENCE (GH(1), FAC1(1)), (GH(181), FAC2(1)), (V8LTS, CRNT) 2. L. LH, LMDA, LHP, LHS, M, N. NE, NN, PAR, PHI, PHIPR, PI, RIN, RV, RH, RGRAL, 3RVPRI, KHPRI, SIGHH, SIGHV, SINSQ, SINDL, SINDP, S1, S2, S3, S4, T, THETA, ZGRAL=(ADA*ADAE/(ADA+ADAE))*((CEXP(ARG1)+CEXP(ARG2)*C8S(K*L))/ XX=(240.*3.14159265**2*XA/(NN*LMDA))*ALBG(XA/(NN*WIRE)) 4THEPR, VOLTS, VOLDRI, WIRE, WOSG, WYE, XGRAL, YO, 7, ZO, ZZPAK MONOPOLE WITH GND SCREEN CG"PLEX ADA, CEE, CURDRI, RV, RWPRI, RHPRI, Z AR31=CMPLX(0.0.*K*(XA**2+L**2)**0.5) REAL KIKESILILHILHPILHSILYDA BMPLEX ADAE, ARG1, ARG2, ZGRAL AR32=C~PLX(0.01-K*XA) 1(2*3.14159265*C1*XA)) IF(C1.L1.0.01)C1=.01 ADAE=CYPLX(0.0,XX) FUNCTION ZGRAL(XA) C----REQUIRED FOR VERT INTEGER ANTN, PAR C1=S1v(x*L)**P (ZZPAC, ZZPA<)

° 3

ĬI ,

C

1CRSDL, CRSDP, D. DELTA, DLPRI, DPHIP, G, GV, GH, H, HTEMP, I, J, ISBL, K, KAY, KBS 2, L, LH, LMDA, LHP, LHS, M, N, NE, NN, PAR, PHI, PHIPR, PI, RIN, RV, RH, RGRAL, CGMPLEX ADA,CEE,CURDRI,RV,RH,RVPRI,RHPRI,Z DI WENSIGN CRNT(10),CUR(10),D(4),FAC1(180),FAC2(180),GV(90),GH(360) 1,LH(5),VGLTS(10),WYE(5),Z(5,5),ZZPAC(10,10),ZZPAK(100) ECUIVALENCE (GH(1),FAC1(1)),(GH(181),FAC2(1)),(VBLTS,CRNT) RIN=60.*(1.41+ALBG(2*L/LMDA)+SINC(2*K*L))+30.*(=0.5*CBS(2*K*H))* (ALBG(2*K*H)+1.270+CI2)+(1.6+CBS(2*K*H))*(ALBG(E*K*H)+0.57*CI1)* SIN(2*K*H)*(0.5*SI2=SI1)) /IMP/ A/ADA/ALTH/ALTEM/ANTN/B/C/CEE/CH/CV/CURDRI/CUMDIS/ 3RVPRI, RHPRI, SIGHH, SIGHV, SI NSQ, SINDL, SINDP, S1, S2, S3, S4, T, THETA, 4 THFPR, VOLTS, VOLDRI, WIRE, WOSG, WYE, XGRAL, YO, Z, ZO, ZZPAK REAL KIKBSILILHILHPILHSILMDA CALL Kesinus((2*K*H),CC) CALL KOSINUS((4*K*H),CC) CALL SINUS((P*K*H),SC) CALL SINUS ((+*K*H),SC) **BRANCH** INTEGER ANTN, PAR 1. (ZZPAC, ZZPAK) SUSKBUTINE C----INVERTED てのどんのひ SIS=*SC C11=CC C12=CC S11=+S

```
1C8SDL, C8SDP, D, DELTA, DLPRI, DPHIP, G, GV, GH, H, HTEMP, I, J, 1S9L, K, KAY, K8S
                                                                                                                                                                                                                                                                                                                                      DIMENSION CRNT(10),CUR(10),D(4),FAC1(180),FAC2(180),GV(90),GH(360)

1,LH(5),VOLTS(10),WYE(5),Z(5,F),ZZPAC(10,10),ZZPAK(100)

FQUIVALENCE (GH(1),FAC1(1)),(GH(131),FAC2(1)),(VOLTS,CRNT)

1,(ZZPAC,ZZPAC)
                          /IMP/ A, ADA, ALPH, ALTEM, ANTN, B, C, CEE, CH, CV, CURDRI, CUMDIS,
                                                                                                   2, L, LH, LMDA, LHP, LHS, M, N, NE, NN, PAR, PHI, PHIPR, PI, RIN, RV, RH, RGRAL, 3RVPRI, RHPRI, SIGHH, SIGHV, SINSO, SINDL, SINDP, SI, S2, S3, S4, T, THETA,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        A=C9S(X*L)*C8S(X*H*SICDL)=SINDL*SIN(K*L)*SIN(K*H*SINDL)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 B=SI\O| *81\(\x*| ) *C9S(\x*H*SIND| ) +C9S(\x*| ) *SIN(\x*H*SIND| )
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 GR=C8S(K*L*C8SDL*SIV(PHI))~C8S(K*L)
ETHET=((SIV(PHI)*SIVDL*(GR*(1.0-CV*S3)+GI*CV*S4)/DENM1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   EPHI=(C88(PHI)/DENM1)**2*((GR*(1*0+CH*S1)-GI*CH*S2)**2
                                                                                                                                                                                    4THFPR, VOLTS, VBLDRI, WIRE, WOSQ, WYE, XGRAL, YG, Z, ZO, ZZPAK
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        -(A*(1.0+CV*C8S(SIGHV))+B*CV*SIN(SIGHV))/C8SDL)**2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   -(3*(1.0-CV*C8S(SIGHV))+A*CV*SIN(SIGHV))/C8SDL)**2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               +((SIV(PHI)*SIVDL*(GI*(1.0.CV*S3)-GR*CV*S4)/DEVM1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               GI=SIV(K*L*C8SDL*SIV(PHI))=C8SDL*C8S(PHI)*SIN(K'L)
                                                                                                                                                                                                                                                                                                        CBYPLEX ADA,CEE,CURDRI,RV,RH,RVPRI,RHPTI,Z
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    DE7%1=1.0-C6SDL**2*SIV(PHI)**2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1+(G1*(1•0+CH*S1)+GR*CH*S2)**2)
                                                                                                                                                                                                                             REAL KIKBSILILHILHPILHSILMDA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      S1=C0S(SIGHH~2*K*H*SI4DL)
S2=SIV(SIGHH~2*K*H*SI4DL)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ((1+H)*X)NIS* TCN IS-
BRANCH4A
                                                                                                                                                                                                                                                                    INTEGER ANTN, PAR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1-C08(K*(H+L))
SUBRBUTINE
                                      アの気がのひ
```

```
C-----ANTN 4
C----RORD FOR V MOND WITH SCN, INVERTED L, SLOPING LNG WIRE SUBRBUTINE SINUS(X,SC)
IF(X,GE,10.0)G0 T0 10
DX=X/100
GRAL=0.5
XA=0.0
                                                                                              D6 100 I=2,100
XA=XA+DX
O GRAL=GRAL+SINC(XA)
GRAL=(GRAL+SINC(X)/2.)*DX
SC=-3.14159265/2.+GRAL
G0 T0 Z0
O SC=-C9S(X)/X
O CONTINUE
RETURN
END
                                                                                                                                                                                 20
                                                                                                                            100
```

ر<u>ي</u> (پ

\$ C

?.

, **3**

} ;

```
SUBRBUTINE KBSINUS(X,CC)
IF(X,GE,10.0)GB 78 10
DX=X/100
                                                                                                         O GRAL=GRAL+(1.0-CBS(XA))/XA
GRAL=(GRAL+(1.0-CBS(X))/2*X)*DX
CC=ALBG(1.781072*X)-GRAL
GB TB 20
O CC=SIN(X)/X
O CBVTINUE
RETURN
END
                                                                  GRAL=3.0
XA=0.0
De 100 1=2,100
                                                                                                 XA=XA+UX
                                                                                                            100
                                                                                                                                                     202
```

Ø

C-----ANTN 4
C----RORD FOR V MOND, V MOND WITH SCN, INVERTED L, SLOPING LNG WIRE FUNCTION SINC(X)
SINC=SIN(X)/X
RETURA
FETURA
FNO

Ø.4 on

N.

1CBSDL, CBSDP, D, DELTA, DLPRI, DPHIP, G, GV, GH, H, HTEMP, I, J, ISBL, K, KAY, KBS DIMENSION CRNT(10), CUR(10), D(4), FAC1(180), FAC2(180), GV(90), GH(360) 1, LH(5), VOLTS(10), WYE(5), Z(5,5), ZZPAC(10,10), ZZPAK(100) /IMP/ A, ADA, ALPH, ALTEM, ANTN, B, C, CEE, CH, GV, CURDRI, CUMDIS, 2,L,LH,LMDA,LHP,LHS,Y,N,NE,NN,PAR,PHI,PHIPR,PI,RIN,RV,RH,RGRAL, 3RVPRI,RHPRI,SIGHH,SIGHV,SINSO,SINDL,SINDP,SI,S2,S3,S4,T,THETA, 4THEPR,VBLTS,VBLDRI,WIRE,WOSQ,WYE,XGRAL,YO,Z,ZO,ZZPAK RIV=30.0*(0.5*(AL0G(K*L)+0.577=CI2)+.693+C8S(K*L)*(C8S(K*L)*1(AL0G(K*L)+.577-2*C11+CI2)-\$IN(K*L)*(S12-2.*S11))) EGUIVALENCE (GH(1), FAC1(1)), (GH(181), FAC2(1)), (VOLTS, CRNT) REAL KIKBSILILHILHPILHSILMDA INTEGER ANTNIPAR COMPLEX ADAICEELCURDRIIRVIRHIRNPRIIZ CALL KESINUS((2*K*L),CC) CI1=CC CALL KPSINUS((4*K*L),CC) CALL SINUS (4*K*L) SC) CALL SINUS((2*K*L),SC) SUBRBUTINE BRANCHS C----SLOPING LONG WIRE 1, (ZZPAC, ZZPAK) SIS=-SC S11=-SC COMMON CIS=CC 1500

COSDL, COSDP, D, DELTA, DLPRI, DPHIP, G, GV, GH, H, HTEMP, I, J, ISOL, K, KAY, KOS DIMENSION CRNT(10), CUR(10), D(4), FAC1(180), FAC2(180), GV(90), GH(360) /IMP/ A, ADA, ALPH, ALTEM, ANTN, B, C, CEE, CH, CV, CURGRI, CUMDIS, + TONIS*IdSOD*COSDD*CONIS*IdSOTO)*CONIS*IdSOTO)*CIONIS*IdSOD*COSDD*CONIS*IdSOTO ETHT2=SIG*(COSDP*COSPI*SINDL+SINDP*COSDL)+CV*(COSDP*COSPI*SINDL+ Z.L.LH.LMDA.LHP.LHS.M.N.NE.NN.PAR.PHI.PHIPR.PI.RIN.RV.RH.RGRAL. 3RVPRI, RHPRI.SIGHH.SIGHV.SINSG.SINDL.SINDP.SI.SZ.S3.S4.T.THETA. CI3P=(C8S(K*L*(C8SDL*C8SDP*C8SPI*SINDL*SINDP))*C8S(K*L))/FC12 CI3=(C0S(K*L*(SINDL*SINDP+C0SDL*C0SDP*C0SPI))~C0S(K*L))/FCT1 SI3=(SIN(K*L*(SINDL*SINDP+C0SDL*C0SDP*C0SPI))-FPH11==C9SDP*SINP1*(C1G+CH*(C1GP*C8S(S1GHH)=SIGP*SIN(S1GHH)) EPH12==C9SDP*SINP1*(S1G+CH*(C1GP*S1N(S1GHH)+S1GP*C8S(S1GHH)) EQUIVALENCE (GH(1), FAC1(1)), (GH(181), FAC2(1)), (VBLTS, CRNT) 1, LH(5), VBLTS(10), WYE(5), Z(5,5), ZZPAC(10,10), ZZPAK(100) 4THEPR, VOLTS, VOLDRI, WIRE, WOSQ, WYE, XGRAL, YO, Z, ZO, ZZPAK SIGP=(SIN(K*L*(C0SDL*C0SOP*C0SPI-SINDL*SINDP))+ I(SINDL*SINDP+C8SDL*C8SDP*C9SPI)*SIN(K*L))/FCT1 |SIVDP*C@SDL)*(CIGP*C@S(SIG4V)*SIGP*SIN(SIGHV)) SINDP*CPSDL)*(CIGP*SIV(SIGHV)+SIGP*C9S(SIGHV)) G=30•0*(EP411**2+EPH12**2+ETHT1**2+ETHT2**2) FCT1=1.0-(SIVDL*SINDP+C0SDL*C0SDP*C0SPI)**? FCT2=1.0-(C0SDL*C0SDP*C0SPI-SINDL*SINDP)**? IF(FCT1.LT.WOSQ)ETHT1=FTHT2=FPH11=EPH1?=0.0 COMPLEX ADA,CEE, CURDRI, RV, RH, RVPRI, RHPRI, Z IF ((FC11.LT.WOSG).AND.(FCT2.LT.WOSG))G=.1 REAL KIKBSILILMILHPILHSILMDA INTEGER ANTINIPAR FCT1=1.C. (SIVD) 1, (ZZPAC, ZZPA<) CBSPI=CBS(PHI) (IHd)∨IS=Id>IS PHI = PHI = OPHIP SUBRBUT INE COMMOU 500

```
C-----RORD FUR V MANA, V MANA WITH SCN, INVERTED L, SLAPING LNG WIRE SUBRAUTINE SINUS(X,SC)
IF(X,GE,10,0)G8 T8 10
                                                   DX=X/100

GRAL=0.5

XA=0.0

D9 100 I=2/100

XA=XA+DX

0 GRAL=SRAL+SINC(XA)

GRAL=GRAL+SINC(X)/2.)*DX

SC=-3.14159265/2.+GRAL

G9 T8 20
                                                                                                                                                                             SC=+C9S(X)/X
C9vTIVUE
RETURA
E4D
                                                                                                                                                                                202
                                                                                                                          100
```

```
MOND WITH SCN, INVERTED LA SLOPING LNG WIRE
                                                                                                                GRAL=GRAL+(1.0-CBS(XA))/XA
GRAL=(GRAL+(1.0-CBS(X))/2*X)
CC=ALBG(1.781072*X)-GRAL
GB TB 20
                                                                        XA=0.0
DB 100 I=2.100
XA=XA+CX
                                            DX=X/100
GRAL=0.0
                                                                                                                                                                         200
```

1CBSDL, CBSDP, D, DELTA, DLPRI, JPHIP, G, GV, GH, H, HTEMP, I, J, 1SBL, K, KAY, KBS DIMENSION CRNT(10), CUR(10), D(4), FAC1(180), FAC2(180), GV(90), GH(360) 1, LH(5), VOLTS(10), WYE(5), Z(5,5), ZZPAC(10,10), ZZPAK(100) /IMP/ A, ADA, ALPH, ALTEM, ANTN, B, C, CEE, CH, CV, CURDRI, CUMDIS, 2, L, LH, LMDA, LHP, LHS, M, N, NE, NN, PAR, PHI, PHIPR, PI, RIN, RV, RH, RGRAL, 3RVPRI, RHPRI, SIGHH, SIGHV, SINSG, SINDL, SINDP, S1, S2, S3, S4, T, THETA, FOUIVALENCE (GH(1), FAC1(1)), (GH(181), FAC2(1)), (VOLTS, CRNT) 4 THEPR, VOLTS, VOLDRI, WIRE, WOSQ, WYE, XGRAL, YO, Z, ZO, ZZPAK REAL KAKASALALHALHPALHSALMOA INTEGER ANTNAPAR COMPLEX ADAACEEACURDRIARVARHARVPRIARIAZ BRANCH6 10(ZZPAC, ZZPAK) SUBROUTINE ----ANTN C----ANTN R17=1.0 797760 RETURN END 1600

ە م.

1COSDL, COSDP, D, DELTA, DLPRI, DPHIP, G, GV, GH, H, HTEMP, I, J, ISOL, K, KAY, KOS 2, L, LH, LMDA, LHP, LHS, Y, N, NE, NN, PAR, PHI, PHIPR, PI, RIN, RV, RH, RGRAL, 3RVPRI, RHPRI, SIGHH, SIGHV, SINSQ, SINDL, SINDP, SI, SP, S3, S4, T, THETA, 4THEPR, VOLTS, VOLDRI, WIRE, WOSQ, WYE, XGRAL, YO, Z, ZO, ZZPAK COMPLEX ADA/CEE/CURDRI/RV/RH/RVPRI/RHPRI/Z Dimension crnt(10)/cur(10)/d(4)/FAC1(180)/FAC2(180)/GV(90)/GH(360) /IMP/ A, ADA, ALPH, ALTEM, ANTN, B, C, CEE, CH, CV, CURDRI, CUMDIS, 1, LH(5), VBLTS(10), WYE(5), Z(5,5), ZZPAC(10,10), ZZPAK(100) FQUIVALENCE (GH(1), FAC1(1)), (GH(181), FAC2(1)), (VBLTS, CRNT) 1, (ZZPAC, ZZPAK) ADJ=C9S(ALPH)*C6SDP PPP=SIN(ALPH) REAL KIKESILILHILHPILHSILMDA REAL KASIIKESZIKESZIKESAIKESSIKESEIKES KRBB==BINDL*SINDH+CBBOL*CBBDH+CBBW Kest==SINDL *SINDP+CessL *CesDP*CesP KUSG=COSDL*SINDP+SINDL*COSDP*COSP KOS7==COSDL*SINDP+SINDL*COSDP*COSM KOSS==CPSDL*SINDP+SINDL*COSDP*COSP KASS=C0S0L*S1NDP+S1NDL*C0SDP*C0SM KBBP=SINDL *SINDP+C0SDL *CBSDP*C9SP 10710*X*X*X*HH010)710=00 JONIO#H*X*&=Anglo)660=8 CBSM=CBS(PHI*ALPH) KBS1=SINDL*SINDP+CBSDL 81=C98(818HH-8*K*I* ALPH=ATAN2(OPP,ADU) CASP=COS (PH1+ALPH) UB=K*[* (1 • O = K@SB) UP=K*L*(1.0+KBSP INTEGER ANTINEPAR U1 = X * L * (1 • O = X @ S1 U4 = K * L * (1 • O = K B SUBRBUTINE COMMON / 2 ト 2 く - -

ξ

¢

ø

3

+CABS(RH)*((SIN(PHI+ALPH)*(CBSU4-1•)/U4-SIN(PHI+ALPH)*(CBSU3-1•)
/U3)*S1-(SIN(PHI-ALPH)*SINU3/U3-SIN(PHI+ALPH)*SINU4/U4)*S2)
Y=SIN(PHI-ALPH)*SINU1/U1-SIN(PHI+ALPH)*SINU2/U2+CABS(RH)*(SIN(PHI-ALPH)*SINU3/U3-SIN(PHI+ALPH)*SINU4/U4)*SIN(PHI+ALPH)*
(CBSU4-1•)/U4-SIN(PHI-ALPH)*(CBSU3-1•)/U3)*S2) A=(X3S7+(CPSJ1-1.)/U1-KBS8+(CBSU2-1.)/U2)+CABS(RV)+(KBS6+(CPSJ2-1.)+S3+S1\U3+S4)/U3)
(C9SJ4-1.)*S3+S1\U0+S4)/U4)-KBSS+(CBSJ3-1.)+S3+S1\U3+S4)/U3)
P=(KPSR*G1\U0)/U2/U2-KBS7*S1\U01/U1)+CABS(RV)+(KBSS+(S1\U0)*S3-(CBS)
)*S4)/U3+KPS6+(CBSU4-1.)*S6+S1\U0)*S1\U0) 010-05* (A**P+B**P+C98DP**P+C GV (1) #G CBSU1=CBS(U1) CBSU2=CBS(U2) CBSU3=CBS(U3) 08504 = 085 (04) 81701 = 817 (01) 81702 = 817 (02) 81702 = 817 (02) 81704 = 817 (02) € 8.00 日 (, ,) 丘 RETURY

()

÷

¢

REAL KIKUSILILHILHPILHSILMDA
INTEGER ANTNIPAR
COMPLEX ADAICEE, CURDRIIRVIRHIRARIIZ
COMPLEX ADAICEE, CURDRIIRVIRHIRARIIZ
DIMENSION CRAT(10), CUR(10), D(4), FACI(180), FACE(180), GV(90), GH(360)
1, LH(5), VOLTS(10), WYE(5), Z(5,5), Z2PAC(10,10), Z2PAK(100)
EQUIVALENCE (GH(1), FACI(1)), (GH(181), FACE(1)), (VOLTS, CRNT) 2, L, LH, LYDA, LWP, LHS, M, NE, NN, PAR, FHI, PHIPR, PI, RIN, RV, RF, BR/CKI, RHPRI, SIGHH, SIGHV, SI VSQ, SINDL, SIVDP, SI, SE, SE, SE, 4, THFPR, VOLIS, VOLOPI, WIRE, WOSQ, WYE, XGRAL, YO, Z, ZO, ZZPAK 1 COSDL, COSDP, D, DELTA, DLPRI, DPHIP, G, GV, GH, H, HI /IMP/ AJADAJA RHOMBIC BRANCH7 1 . (2 2 P A C , 2 2 P AK 1700 RIVE1.0 COMMON

Þ

1

Ħ

برية

Ç

```
COMMON /IMP/ A, ADA, ALPH, ALTEM, ANTN, B, C, CEE, CH, CV, CURDRI, CUMDIS, 10050L, COSDP, D, DELTA, DLPRI, DPHIP, G, GV, GH, HTEMP, I, J, ISOL, K, KAY, KUS
                                                                                                                                                                                                                                                             COMPLEX ADA,CEE,CURDRI,RV,RH,RVPRI,RHPRI,Z
DI~ENSION CRNT(10),CUR(10),D(4),FAC1(1R0),FAC2(1R0),GV(90),GH(360)
1,LH(5),VOLTS(10),WYE(5),Z(5,5),ZZPAC(10,10),ZZPAK(100)
FOUIVALENCF (GH(1),FAC1(1)),(GH(181),FAC2(1)),(VOLTS,CRNT)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   (((C8SPI=SINAC+C8SDL)**2)*((CABS(RH))**2+1.0+2.0*(CABS(RH))*S1)+
                                                                                                     2, L, LH, LMDA, LHP, LHS, M, V, NE, NN, PAR, PHI, PHIPR, PI, RIN, RV, RH, RGRAL, 3RVPRI, RHPRI, SIGHY, SIVSQ, SINDL, SIVDP, SI, SP, SB, S4, T, THETA, 4THEPR, VOLTS, VOLDRI, WIRF, MOSQ, WYE, XGRAL, YO, Z, ZO, ZZPAK
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               (SIND[**2)*(SIND[**2)*((CA3S(RV))**2+1.0*2.0*(CABS(RV))*S3)
IF(L.En.1) GV(1)=G
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    GBP-16x((CPSAC+SIN(K*O-54L*U1)*SIN(K*O-54L*U2)/(U1+U2))++2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                           COSACECTOS (ALPCA)
COSTECTOS (PLT)
SILCOS (SIGNH-R*K*H*SINDL)
SIECTOS (SIGNY-R*K*H*SINDL)
SIECTOS (SIGNY-R*K*H*SINDL)
Uleito-O-COSTL* (SINAC*COSTI+COSAC*SINDI
UZEIto-O-COSTL* (SINAC*COSTI+COSAC*SINDI
                                                                                                                                                                                                            REAL KIKASILILHILHPILHSILMDA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            0x(7)x0
                                                                                                                                                                                                                                                 INTEGER ANTINIPAR
                                                                                                                                                                                                                                                                                                                                                                                                                                         SINAC#SIN(ALPCM)
                                                                                                                                                                                                                                                                                                                                                                                                           1, (22PAC, 22PAK)
                          SUBRBUTINE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              (a)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                           700
---
```

:

'n

- =

ž 2

0

C----VERTICAL HALF RHOMBIC
SUBRAUTINE BRANCH8
COMMON 'IMP/ A, ADA, ALPH, ALTEM, ANTN, B, C, CEE, CH, CV, CURDRI, CUMDIS,
100xDL, COSDP, D, DELTA, DLPRI, DPHIP, G, GV, G4, H, HTEMP, I, J, ISOL, K, KAY, KOS
1100xDL, COSDP, D, DELTA, DLPRI, DPHIP, G, GV, G4, H, HTEMP, I, J, ISOL, K, KAY, KOS
2, L, LH, LMDA, LHP, LHS, M, NE, NN, PAR, PHI, PAIPR, PI, RIN, RV, RH, RGRAL,
3RVPRI, RHPRI, SIGHH, SIGHV, SIVSO, SINDL, SIVDP, SI, SZ, S3, S4, T, THETA,
4THEPR, VOLTS, VOLDRI, WIRE, WOSQ, WYE, KGRAL, YO, Z, ZO, ZZPAK
REAL K, KOS, L, LH, LHP, LHS, LMSA INTEGER ANTN, PAR COMPLEX ADA, CEE, CURDRI, RV, RH, RVPRI, RHPRI, Z DIMENSION CRNT(10), CUR(10), D(4), FAC1(1R0), FAC2(180), GV(90), GH(360) 1, LH(5), VALTS(10), WYE(5), Z(5,5), Z2PAC(10,10), ZZPAK(100) FQUIVALENCE (GH(1), FAC1(1)), (GH(181), FAC2(1)), (VOLTS, CRNT) RIV#1.0 RETURL FND Z-Z-----U

و د

```
COMMON /IMP/ A, ADA, ALPH, ALTEM, ANTN, B, C, CEE, CH, CV, CURDRI, CUMDIS, 1C9SDL, COSDP, D, DSELTA, DLPRI, DPHIP, G, GV, GH, H, HTEMP, I, J, ISOL, K, KAY, KOS P, L, LH, LMDA, LHP, LHS, M, N, NE, NN, PAR, PHI, PHIPR, PI, RIN, RV, RH, RGRAL, 3RVPRI, RHPRI, SIGHH, SIGHV, SINSC, SINDL, SINDP, SI, S2, S3, S4, T, THETA,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   DI~ENSIBN CRNT(10),CUR(10),D(4),FAC1(1R0),FACR(180),GV(90),GH(360)
1,LH(5),V9LTS(10),WYE(5),Z(5,5),ZZPAC(10,10),ZZPAK(100)
EQUIVALENCE (GH(1),FAC1(1)),(GH(181),FACR(1)),(VBLTS,CRNT)
1,(ZZPAC,ZZPAK)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              R3=(1.0=CE1)*C8S(2*K*L*SINAC*SINDL)**(1.0=CE1)*SIN(2*K*L*SINAC
                                                                                                                                                                                                                                                                                                                                                                                                        4THEPR, VOLTS, VOLDRI, WIRE, WOSG, WYE, XGRAL, YO, Z, ZO, ZZPAK
REAL K, KAS, L, LH, LHP, LHS, LMOA
INTEGER ANTN, PAR
COMPLEX ADA, CEE, CURDRI, RV, RK, RVPRI, RHPRI, Z
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                SINAC=SIN(ALPCM)
FACK1=1.0-CUSDL*COSAC*COSPI~SINDL*SINAC
FACK2=1.0-COSDL*COSAC*COSPI+SINDL*SINAC
UU1=COS(SISHH-2*K*H*SINDL)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              R2=(CE1*(1.0=CE2)+S1*S2)/FACK2
A12=(CE1*S?+S1*(1.0+CE2))/FACK2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           UUZ=SIM(SIGHH+2*K*H*SIND
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   UU3=C96(SIGHV-2*K*H*SINDL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           TONIS*H*X*Z*AHDIS) VIS= 7NN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         F1=(A13*CE1-R3*S1)/FACK1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      2=(R3*CE1+A13*S1)/FACK1
     BRANCH8A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              S1 = S1 \( (\chieve\) (\chieve\) \\  (\chieve\) \( (\chieve\) (\chieve\) \( (\chieve\) (\chieve\) \( (\chieve\) (\chieve\) \( (\chieve\) (\chieve\) \\  (\chieve\) \( (\chieve\) (\chieve\) \( (\chieve\) (\chieve\) \\  (\chieve\) \( (\chieve\) (\chieve\) \( (\chieve\) (\chieve\) \\  (\chieve\) \\  (\chieve\) \\  (\chieve\) \( (\chieve\) (\chieve\) \\  (\chieve\) \( (\chieve\) (\chieve\) \\  (\chieve\) \\  (\chieve\) \( (\chieve\) (\chieve\) \\  (\chieve\) \\  (\chieve\) \\  (\chieve\) \( (\chieve\) (\chieve\) \\  (\chieve\) \\  (\chieve\) \\  (\chieve\) \( (\chieve\) \\  
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   = (1 • 0 • CE 2 ) / FACK2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   COSAC=COS(ALPCM)
SUBRBUTINE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        800
```

F48S2/FACK2

RB=R1+R2+CABS(RV)*((F2+F3)*UU3*(F1+F4)*UU4)

B1=A11+A12-CABS(RV)*((F2+F3)*UU4+(F1+F4)*UU4)

RC=R2*R1+CABS(RV)*((F2+F3)*UU4+(F1+F4)*UU4)

CC=A12-A11+CABS(RV)*((F2+F3)*UU4+(F1+F4)*UU3)

RA=R1+R2+CABS(RA)*((F2+F3)*UU1+(F1+F4)*UU3)

A1=A11+A12+CABS(RA)*((F2+F3)*UU1+(F1+F4)*UU3)

A1=A11+A12+CABS(RA

DIMENSION CRNT(10), CUR(10), D(4), FAC1(180), FAC2(180), GV(90), GH(360)
1, LH(5), VALTS(10), WYE(5), Z(5,5), ZZPAC(10,10), ZZPAK(100)
EQUIVALENCE (GH(1), FAC1(1)), (GH(181), FAC2(1)), (VOLTS, CRNT) 2) L. J. L. H. L. MOA, L. HP. L. HS, M. V. NE, NN, PAR, PHI, PHIPR, PI, RIN, RV, RH, RGRAL, SAVPRIJAHPRIJSIGHH, SIGHV, SINSO, SINDL, SINDP, SIJSZJSZJS4, TJTHETA, 4THEPRJV6LTSJV8LDRIJWIRE, WOSQJWYE, XGRAL, YO, ZJZO, ZZPAK 1Cespl.cosdp.d.delta.dlpri.dphip.g.gv.gu.h.htemp.i /IMP/ A, ADA, ALPH, ALTEM, ANTN, B, C, CEE COMPLEX ADA, CEE, CURDRI, RV, RH, RVPRI, RHPRI, Z COMPLEX CURIABVERIABHORIZIVIEU/EK CU"DIS=(SGRT(2.)/200.*[H(IA))*T C----IMP F9R MUTUAL BF ISBLATED YAGI ISBLATED YAGI REAL KIKBSILILHILHPILHSILMDA INTEGER ANTNIPAR Z(1)1)=CMPLX(RGRAL)XGRAL) IA=I+1 7(1)J)=(MD[X (0.10.) COVII VUE CUR(I)=CMPLX(0.,0.) F(LH(1) »EQ.0.0) -IMP FOR SELF OF 1, (ZZPAC, ZZPAK) DO 1930 I=1,NE LHS=LHP=LH(IA) CALL ZINT C0 1920 I=1,5 D0 1910 J=1,5 PI=3.14159265 SUBRBUTIVE **はつて11200** 20220 S3L=1 159L=1 V # I 1900 1910 1920 1925 1930 7

```
-IMP FOR MUTUAL OF ISOL/IMAGE OF YAGI
                                                                             IF(LH(1) . EQ . O . O I A # I + 1 1 MA A # MA + 1
                                                                                                                                                                                                                                                                                                                                 MAAEMA
IF(LH(1).EG.O.O) IAEI+1;MAAEMA+1
                                                                                                                                                                                                                                                                                                                                                                                               DLEG=DLEG+D(MAA)
DLFG2=DLEG**2
IF(I.EC.1)WYE(MA)=DLEG
HD3L=2.*(H+WYE(I)*SIN(ALPH))
HD3L2=r0BL**2
                                                                                                                                                        LMS=LM(MAA)
CALL ZINT
Z(I,MA)=CMPLX(RGRAL,XGRAL)
Z(MA,I)=Z(I,MA)
CONTINUE
                                                                                                                                 CUMDIS=CUMDIS+D(MAA)
                                                                                                                                                                                                                                      ISAL=0
WYE(1)=0.
D0 1932 I=1,NE-1
IE=NE-1
DLEG=0.
DG 1931 I=1,NE=1
IE=NE=I
                                                                                           DB 1931 J=1,1E
                                                                                                                                                                                                                                                                                                                                                           De 1932 J=1, IE
                                                                                                                                             LHP=LH(1A)
                                                                                                                                                                                                                                                                                                                                                                                      MAA=MAA+1
                           CUMD15=0.
                                                                                                                    MAA=MA41
                                                                                                                                                                                                                                                                                                                                                                         MA=MA+1
                                                                                                         MA=MA+1
                                                                 MAA=4A
                                                     I = Y I
                                       MAsI
                                                                                                                                                                                                                                                                                                        FA=I
                                                                                                                                                                                                                                                                                                                      IA=I
                                                                                                                                                                                                             1931
```

Ŷ.

```
SOLUTION OF MATRIX FOR CURRENT VECTOR
CUMDIS=SORT(HDBL2+DLEG2-2•*HDBL*DLEG*C9S(PI/2•+ALPH))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             COLUMN-STACKED VECTOR MATRIX
                                                                                                                  IMP FOR MUTUAL OF ISOL/IMAGE OF YAGI (2ND PART)
DO 1933 I=1.NE
                                                                  Z(I,MA)=Z(I,MA)+CEE*CMPLX(RGRAL,XGRAL,)
Z(MA,I)=Z(I,MA)
                                                                                                                                                                                                                                    Z(I)I)=Z(I)I)+CEE*CMPLX(RGRAL)XGRAL)
CONTINUE
                                                                                                                                                                                                                                                                   WRITE (6,1934) Z(2,2)
FORMAT(#SELF OF DRIVER: Z#$,2F12.1)
PACK MATRIX INCIDENT TO SOLUTION OF
                                                                                                                                                 CUMDIS=2.*(H+WYE(I)*SIN(ALPH))
                                                                                                                                                                                                                                                                                                                                                                                       CB 1941 J=NE+1,2×NE
ZZPAC(I,J)=REAL(Z (I=NE,J=NE))
                                                                                                                                                                                                                                                                                                                                                                                                                                                           ((JN-7*I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ZZPAC(J)1)=AIMAG(Z (J-NE,I))
                                                                                                                                                                                                                                                                                                                                                      ZZPAC(I,J)=REAL(Z (I,J))
                                                                                                                                                                                    F(LH(1),EQ.0.0) IA=1+1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ZPAK(LQ)=ZZPAC(JQ,IQ)
                                                                                                                                                                                                                                                                                                                                                                                                                                                        ZZPAC(I,J)=-A[MAG(Z
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          PLACE MATRIX INTE A
                                                                                                                                                                                                                                                                                                                                                                        | = NE+1>2*NE
                                                                                                                                                                                                                                                                                                                                                                                                                                           J=NE+1.2*NE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           10=1,0*NE
J0=1,2*NE
                                                                                                                                                                                                    LHS=LHP=LH(IA)
CALL ZINT
                                                                                                                                                                                                                                                                                                                       DB 1940 I=1,NE
DB 1940 J=1,NE
                                                                                                                                                                                                                                                                                                                                                                                                                         1=1.VE
                                  LHS=LH(MAA)
                LHP=LH(IA)
                                                  CALL ZINT
                                                                                                  CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           09 1943
09 1943
                                                                                                                                                                                                                                                                                                                                                                        1941
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0=07
                                                                                                                                                                      A= 1
                                                                                                                                                                                                                                                                                                                                                                        60
                                                                                                 1932
                                                                                                                  - U
                                                                                                                                                                                                                                                     1933
                                                                                                                                                                                                                                                                                   1934
                                                                                                                                                                                                                                                                                                                                                       1940
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1945
                                                                                                                                                                                                                                                                                                                                                                                                         1941
```

ô

Ð

٥

Ā.,

110

Œ

```
SOL HAS NO MEANING$
                                                                                                                                                                                                                                                                                                                 F((LH(1).NE.C.).AND.(I.EG.1)) CURDRI=CUR(1)/1000.
F((LH(1).NE.C.).AND.(I.EG.2)) CURDRI=CUR(2)/1000.
                                                                                                                                                                                                                                                                                                                                                                                                  BET=(130•/PI)*ATAN2(AIMAG(CUR(I)), REAL(CUR(I)))
IF (LH(1).EQ.0.0) VALTS(1)=VALDRI;VALTS(2)=0.0
                                                                                                                                                                                                              FLEM=LH(IA)/LMDA
IF((ELEM•GT••991)•AND•(ELEM•LT•1•009))ELEM=•99
IF((ELEM•GT••491)•AND•(ELEM•LT••509))ELEM=•49
                                                                           SIMO KS=1 .CURRENT
                                                                                                                                                                                                                                                                                          CUR(1) = (CMPLX(CRNT(1), CRNT(1+NE)))*1000.
                          CALL SIMO (ZZPAK, VOLTS, 2*NE,KS)
IF (KS.EQ.1) WRITE (6,1950)
FORMAT(1HO, $FROM SUBROUTINE SIM
                                                                                                         CURRENT MAXIMUM (COMPLEX)
                                                                                                                                                                                 IF (LH(1).EQ.0.0) IA=I+1
                                                                                                                                                                                                                                                                                                                                                                     CUP(I)=CUR(I)/SIN(P.*P]
                                                                                                                                                                                                                                                                                                                                                                                                                      CURMAS=CABS(CUR(I))
                                                                                                                                                                                                                                                                                                                                                                                                                                                  CURMAG=CABS(CUR(I))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ZIN=VBLDRI/CURDR
                                                                                                                                                                 ] A= ]
                                                                              1950
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1963
                                                                                                                                                                                                                                                                                                                                                                                                                                                    1960
```

وارج

200

1COSDL, COSDP, D. DELTA, DLPRI, DPHIP, G, GV, GH, H, HTEMP, I, J, ISOL, K, KAY, KOS 2, L, LH, LMDA, LHP, LHS, M, V, NE, NN, PAR, PHI, PHIPR, PI, RIN, RV, RH, RGRAL, a DIMENSIBN CRNT(10), CUR(10), D(4), FAC1(180), FAC2(180), GV(90), GH(360) 5 /IMP/ A, ADA, ALPH, ALTEM, ANTN, B, C, CEE, CH, CV, CURDRI, CUMDI 3RVPRI, RHPRI, SIGHH, SIGHV, SINSQ, SINDL, SINDP, SI, S2, S3, S4, T, THETA, F(THTEM-LT..01)ETHET=60.*CABS(ABVER/SIN(THETA));EPHI=0.1GB 1, LM(5), V9LTS(10), WYE(5), 7(5,5), ZZPAC(10,10), ZZPAK(100) EGJIVALENCE (GH(1), FAC1(1)), (GH(181), FAC2(1)), (V9LTS, CRNT) KOS1=COS(THETA)*SIN(ALPH)+SIN(THETA)*SIN(PHI)*COS(ALPH) 4THEPR, VOLTS, VOLDRI, WIRE, WOSO, WYE, XGRAL, YO, Z, ZO, ZZPAK Te 905 2=SIV(+2*K*(H+WYE(IA)*SIN(ALPH))*C0S(THETA)) (1=CMPLX(C9S(WK),SIN(WK)) (1=C9S(-0**(H+WYE(IA)*SIN(ALPH))*C0S(THETA) COMPLEX ADAJCEE, CURDRIJRVJRH, RVPRIJRHPRIJZ IF(THTEM.LT..01)REV#1.+RV*EKIREH#0.1GB ABVER=ABVER+(CUR(IA)/1000.)*EJ*FCT*REV AB498=AB49R+(CUR(IA)/1000.)*EJ*FCT*REH COMPLEX ABVER, ABHOR, EJ, EK, REV, REH, ZIN FCT=C9S(X*LH(1A)*K9S)+C9S(X*LH(1A)) ETHET=60.*CA3S(CTP/SIVSG*A3VER) EPHI =60.*CA3S(SP /SINSG*A3H8R) REAL KIKESILILHILHPILHSILMDA INTESER ANTHIPAR A3VE?=ABHB?=CMPLX(0•,0•) CTP=C9S(THETA)*C0S(PHI) *K=K**YE(14)*KBS1 K=CMPLX(S1,S2) D9 910 IA=1,NE 1, (ZZPAC, ZZPAK) REV=1 • = RV * EK REH=1 . +RH*F (IHd) \ IS=dS SUBRBUTINE COVITABLE 900 905 910

Œ.

G*(ETHET**2+EPHI**2)/(30*CABS(CURDRI)**2) C---912 915 920

° 00

Ô

COMPLEX ADALCEF, CURDRILRV, RH, RVPRILLRHPRILZ DIMENSION CRVT(10), CUR(10), D(4), FAC1(180), FAC2(180), GV(90), GH/360) 1, LH(5), VOLTS(10), WYE(5), Z(5,5), ZZPAC(10,10), ZZPAK(100) FQUIVALENCF (GH(1), FAC1(1)), (GH(181), FAC2(1)), (VOLTS, CRNT 1, (72PAC, 72PAK) 1COSDL, COSDP, D, DELTA, DLPRI, DPHIP, G, GV, GH, H, HTEMP, I, J, ISOL, K, KAY, KOS 2, L, LH, LMDA, LHP, LHS, Y, N, NE, VN, PAR, PHI, PHIPR, PI, RIN, RV, RH, RGRAL, 3RVPRI, RHPRI, SIGHH, SIGHV, SIVSO, SINDL, SIVDP, SI, S2, S3, S4, T, THETA, 4THEPR, VPLTS, VOLDRI, WIRE, WOSG, WYE, XGRAL, YO, Z, ZO, ZZPAK A A A DA A A L PHA A L TEM ANTN B , C , CEE , CH , CV , CURDR I , CUMD I RGRAL=-30.*(RGRAL+.5*RESIST(LHS/LMDA))*DS XGRAL=-30.*(XGRAL+.5*REACT(LHS/LMDA))*DS IF (138L.£0.1) DLPRI=SVDLP -- REGUIRED FOR DIPOLE AND YASI UDA REAL KIKASILILHILHPILHSILMDA YO=CUMDIS*CBS(DLPRI)/LMDA ZO=-CUMDIS*SIN(DLPRI)/LMDA 38 T8 1940 PGRAL = AGRAL + RESIST(S) XGRAL = XGRAL + REACT (S) RGWAL= . 5 * RFSIST(S) XGRAL = . 5 * REACT(S). 00 1960 N=P.100 DS=LHS/(50 * * LMDA) INTEGER ANTHAPAR C9 1950 N=2,100 SUBRBUTINE ZINT /dWI/ IF (189L.EG.0) S=-LHS/LMDA S=+LHS/LMDA SVJLPanlpRI OLPRI=C. SC+5#8 SC+8=8 1950 1960 1940

ø

Q

FACE (180), GV (90), GH (360) RESISTal((SK1*CA)+SRZ*CAR*FACR*CA)*SY)/TERM+(FACR*SR1*SR2)*S2)* SIN(2*PI*(O*5*LS/LM)A*ABS(S)))/S FIME NSIBN CHNT (10), CUR (10), D(4), FACI (1RO), FACE (180), GV (30), LLH (5), VOLTS (10), WYE (5), Z (5, 5), ZZPAC (10, 10), ZZPAK (100) EDJIVALENCE (GH(1), FACI (1)), (GH(181), FACE (1)), (VALTS, CRNT) CAMBOL LIMP A ADA, ALPH, ALTEM, ANTN, B, C, CEE CASDL, COSDP, D, DELTA, DLPRI, OPHIP, G, GV, GH, H, MT INTEGER ANTN, PAR COMPLEX ADA, CEE, CURDRI, RV, RH, RVPRI, RHPR (AV17.1T.9) LS#LP#L (AV17.1T.9) LS#LP#L (AV17.3E.9) LP#R*LHD1LS#R+LHS AND YAR! UDA AEAL KIKASILILHILHPILHSILMDA SR1=SIL(2*P1*P)/R SR1=SIL(2*P1*R1)/R1 SRP=SIN(2*P1*RP)/R2 FACR=P=SR*CES(P1*LP/ FOR DIPOLE RESORT (ROWR+CA ** 2) R1 ESGRT (ROWR+C^1 +* 2) R2 ESGRT (ROWR+CA2** 2) CA1=CA+0.5*LP/LMDA RESIST(S) こんどっこく 10・5・10・7にどびん しとは、この本の、フェッキのエットの SZ = S + C P S (S + D L P R I RAMES# (YO+SY) ** B (0.30.NTVA) 1 (22PAC, 22PA< **下入440十四人** FUNCT I ON CA=20+82 RETURA END

ç

FINENSIBN CRNT(10), CUR(10), D(4), FACI(180), FACE(180), GV(90), GH(360)

1, LH(S), VALTS(10), NYE(S), Z(H, P), ZZPAC(10, 10), ZZPAK(100)

FOUR SHOOL (GH(1), FACI(1)), (GH(181), FACR(1)), (VALTB, CRNT) 1 CROOL, CROOP, D. DELTA, DLFRI, SPHIP, G. GV, GW, H, HTEMP, I.J. IGOL, K, KAY, KOS /IMP/ A, ADA, ALPH, ALTEM, ANTN, B, C, CRE, CH, CV, CURDRI, CUMDIG, REACTE ((CC1 *C^1 +CAB*CRP*FACX *CA) *SY)/ROWD+1FACX*CR1*CR2) *SZ)* PALALHALMDAALHPALHSAMANANETANAPARAPHIAPHIPRAPIAPINARVIRHARGRALA SRYDAL, WHERITGIAMM, GIGHV, SINGL, SINDL, SINDP, SI, SP, SB, SW, T, THETA, 4THEPRIVELTSIVHLORIIMIREIMOSSIWYEIXGRALIYOIZIZOIZIPAK COMPLEX ADALCEFLOUNDRIFRY, RUPRILRAPRILZ 91.(7**1*(0.8*L3/LMDA#ABB(B)))/8 (ANTN-GE-9) LPHP*LHPJLG*2*LHG FOR DIPOLE AND YAGI UDA REAL KIKASILILIVILHPILHGILMOA (VOWIZGI*IG)SEU**D*G#XUVU (ANTV-LT-9) LOWLPRL R1#534T(R842+CA1*#2) R2#534T(R842+CA2*#2) CRESCON (SAPIARS) ZRP CRIBCOS (S*PI*K1)/R1 CA1#CA+O.5*LP/LMDA CAPHCA. 0.5*LP/LMDA (にまませい十八字の女) 上なつびまな (18日)ロギロ)ファミギのエキ人の (Ibd"0*8)5.,0*5#25 REACT (S) RX CB (2 * F | * K) / K INTEGER ANTINIPAR 요##(\8+0\) # 경기 바보 17(22670732674) 大い十〇人 早 下 む 日 上 75+0Z=43 CHITTER BOULDED 20110706 クツロト 3k V-NV-----U

3

G

```
LEGG TEAL TOLERANCE (GINAULAR MATRIX) 38,387,40
                                                                                                                                                       DA 30 ITULN COEFFICIENT IN COLUMN SEARCH FOR MAXIMUN COEFFICIENT IN COLUMN
                                                                                                                                                                                                                                                                                                                                                                                                      DIVIDE EQUATION BY LEADING COEFFICIENT A(11) A(11) A(12)
                                                                                                                                                                                Umit+1
F(ARS(BIGA)*ABS(A(1J))) 20/30/30
                                                                                                                                                                                                                                                                                           INTERCHANGE ROKE IT NECTOODARY
C----REDUIRED FOR YAGI
SUBROUTINE SIMO(A,B,N,KG)
DIMENSION A(1),B(1)
C FORWARD SOLUTION
                                                                                                                                                                                                                                           TEST FOR PIVOT
                                                                                                                                                                                                                                                       F ( ABS (BIGA) + TOL)
                                                                                                                                                                                                                                                                                                                                                                                A(11)#A(12)
A(12)#5AVE
                                                                                                                                                                                                        (CI) V#VCIB
                                                                                                                      近つフィースのひ
                                                           70L = 0.C
KS = 0
                                                                                                                                                                                                                                                                                                                                            1101142
                                                                                                                                                                                                                                                                                                                                                        12×11+1
                                                                                                                                                                                                                                                                              スピーしょう
                                                                                                         ですつ言とつ
                                                                                  20 60
00 60
                                                                                                                                                                                                                                                                   X Se 1
                                                                                                                                                                                                                                                                                                                                                                                                                   င္သ
                                                                                                                                                                                                        ဝွ
                                                                                                                                                                                                                                ဝဗ
                                                                                                                                                                                                                                                                   ខ្ល
                                                                                                                                                                                                                                                                                                       9
                                                                                                                                                                     U
                                                                                                                                                                                                                                                                                                                                                                                                        U
```

```
SAVEES (1MAX)

SG (1MAX) = BC (1MAX)

SG (1MA
```

BIBLIOGRAPHY

1

- 1. Adler, R. W. and C. B. Robbins. "The Solution and Graphic Display of Gain and Patterns for Wire and Linear Antennas in the Presence of Lossy Ground," (unpublished paper, Electrical Engineering Department, Naval Postgraduate School, to be published).
- 2. Baker, H. C. and A. H. Lagrone. "Digital Computation of the Mutual Impedance Between Thin Dipoles," IRE Transactions on Antennas and Propagation, AP-13, No. 2, 1962, March.
- Fishenden, R. M. and E. R. Wiblin, "Design of Yagi Aerials," Proceedings IEE, 96. Pt. 3, 1949, January.
- 4. Fry, C. R., The Yagi-Uda Aeria: -A Short Design Review and Bibliography. Quebec: Canadian Armadent Research and Development Establishment, 1966.
- 5. Jordan, Edward C. and Keith G. Balmain. Electromagnetic Waves and Radiating Systems. Englewood Cliffs: Prentice-Hall, Inc. 1968.
- 6. King, Ronold W.P., Richard B. Mock, and Sheldon S. Sanders. Arrays of Cylindrical Dipoles. Cambridge: The University Press, 1968.
- 7. King, Ronold W.P., The Theory of Linear Antennas. Cambridge: Harvard University Press, 1956.
- 8. Kraus, J. D. Antennas. New York: McGraw-Hill Book Co., Inc., 1950.
- Reed, Henry R. and Carl M. Russell. UHF Propagation. New York: John Wiley & Sons, Inc., 1953.