Business-IT Alignment Dynamics: A Chaotic Systems Approach

Alessandro Aquilini

May 4, 2025

Abstract

Lorem Ipsum

Contents

1	Intr	Introduction 2					
2	Use	r Requ	irements	2			
	2.1		Audience	2			
	2.2	Getting	g Started	2			
			Installation	2			
			Running the Notebook	2			
3	Mod	Model Description					
	3.1	Core E	- quation	2			
	3.2	Compo	onent Functions	3			
	3.3	Parame	eter Definitions	3			
	3.4	Interpr	retation	3			
	3.5	Parame	eter Analysis	3			
		3.5.1	Environmental Pressure Function	3			
		3.5.2	IT Department Efficacy	4			
		3.5.3	Organizational Adaptability	4			
4	Imp	Implementation 5					
	4.1	Techno	ological Stack	5			
	4.2	Key lin	nes of code	5			
		4.2.1	Simulating the equation	5			
		4.2.2	Long term behavior	6			
		4.2.3	Phase Portrait Analysis	6			
		4.2.4	Bifurcation Analysis	6			
	4.3	Numer	ical Considerations	7			
5	Res	${ m ults}$		7			
	5.1	Interac	tive Tools	7			
		5.1.1	Time Evolution Simulation	7			
		5.1.2	Phase Portrait Analysis	7			
		5.1.3	Bifurcation Diagram	7			
	5.2	Examp	les	9			
\mathbf{A}	App	endix:	Complete Python Code	9			

1 Introduction

2 User Requirements

2.1 Target Audience

This interactive notebook is designed for anyone interested in Business-IT alignment dynamics. It also serves as template for modeling other complex dynamics using discrete time equations in the form: $x_{t+1} = x_t + \Delta(t, *args)$. The user just needs to apply a few minor customization to the code.

2.2 Getting Started

2.2.1 Installation

1. Clone the repository:

```
git clone https://github.com/Kinshale/pii.git cd pii
```

2. Install required packages:

```
pip install numpy matplotlib ipywidgets
```

2.2.2 Running the Notebook

Choose your preferred environment:

- Local Jupyter: Launch Jupyter Notebook and open pii.ipynb
- VS Code: Open the notebook with Jupyter extension
- Google Colab:
 - 1. Visit https://colab.research.google.com
 - 2. Select "GitHub" tab and paste the notebook URL
 - 3. Or open the cloned one

For optimal experience:

- Start with default parameters to observe baseline behavior
- Modify one parameter at a time to understand its effect
- Use the bifurcation tool to identify chaotic parameter regions

3 Model Description

3.1 Core Equation

The alignment dynamics are governed by:

$$x_{t+1} = x_t + A(x_t) - B(x_t)C(x_t)$$
(1)

Where:

- x_t : Percentage of dissatisfied users (misalignment proxy)
- $A(x_t)$: Environmental pressure effect
- $B(x_t)$: IT department efficacy
- $C(x_t)$: Organizational adaptability

3.2 Component Functions

$$A(x_t) = d(1 - x_t) \tag{2}$$

$$B(x_t) = \frac{ax_t(1 - x_t)^g}{1 + ahx_t} \tag{3}$$

$$C(x_t) = \frac{1}{1+z^s}$$
 where $z = \frac{r(1-x_t)}{x_t(1-r)}$ (4)

3.3 Parameter Definitions

Table 1: Model Parameters and Ranges

Parameter	Description	Range	Default
$\overline{x_0}$	Initial misalignment	[0.01, 0.99]	0.3
d	Environmental dynamicity	[0.01, 5]	0.5
a	IT department efficacy	[0.1, 10]	2
h	IT system rigidity	[0.1, 5]	1
g	IT investment propensity	[0.1, 5]	1
r	Action threshold	[0.01, 0.99]	0.3
s	Organizational flexibility	[1, 10]	3

3.4 Interpretation

Let's take a deeper look at our equation:

$$x_{t+1} = x_t + \underbrace{A(x_t)}_{\text{Environmental Pressure}} - \underbrace{B(x_t)C(x_t)}_{\text{Recovery Mechanism}}$$
(5)

 x_t - Alignment Measures the percentage of dissatisfied users at time t:

- $0 \rightarrow \text{Complete satisfaction (perfect alignment)}$
- $1 \rightarrow \text{Utter dissatisfaction (total misalignment)}$

 $A(x_t)$ – **Environmental Pressure:** Increases misalignment due to external factors, representing how competitive environments and technological changes increase dissatisfaction.

 $B(x_t) \cdot C(x_t)$ – **Recovery Mechanism:** Reduces misalignment through:

- $B(x_t)$: IT department's effectiveness.
- $C(x_t)$: Organization's adaptability.

3.5 Parameter Analysis

Full interactive simulation available at: https://www.desmos.com/calculator/n55bwehjlp

3.5.1 Environmental Pressure Function

$$A(x_t) = d(1 - x_t) \tag{6}$$

Forms a line passing through (1,0) with slope -d.

- d (dynamicity): Fast changing industries (e.g., a tech startup) have a competition/innovation that rapidly renders old IT systems obsolete.
- $1-x_t$: As misalignment grows, environmental pressure has less "room" to worsen things.

Figure 1: Environmental pressure function for varying d values

3.5.2 IT Department Efficacy

$$B(x_t) = \frac{ax_t(1 - x_t)^g}{1 + ahx_t} \tag{7}$$

This looks like a function that peaks at some x_a and then tapers off.

- a (IT efficacy): an higher a can more effectively reduce misalignment.
- x (current misalignment): the more misalignment exists, the more opportunity/pressure there is for IT to act.
- $(1-x_t)^g$ (Diminishing Returns): as satisfaction improves, the IT department's impact diminishes.
 - I haven't understood g.
- $1 + ahx_t$ (Saturation): even if IT is highly capable (a \gg 1), inflexible systems (h \gg 1) limit its efficacy.

Figure 2: IT efficacy function showing the effect of parameters a, h, and g

3.5.3 Organizational Adaptability

$$C(x_t) = \frac{1}{1+z^s}$$
 where $z = \frac{r(1-x_t)}{x_t(1-r)}$ (8)

This is a sigmoid function in disguise. Sigmoids are exploited for modeling "threshold behaviors".

• r (activation threshold): below r, the organization resists to change $(C(x) \to 0)$. But when misalignment crosses a certain threshold adaptability kicks in.

• s (flexibility): higher s make the sigmoid steeper (sharper transition from resistance to adaptation).

Figure 3: Organizational adaptability function demonstrating threshold behavior

4 Implementation

4.1 Technological Stack

- Python 3.10.12 (managed via Conda)
- Jupyter Notebook for interactive exploration, with markdown explanations attached
- Core dependencies (Python Libraries)
 - NumPy for numerical computations
 - Matplotlib for visualization graphs
 - ipywidgets for parameter sliders

4.2 Key lines of code

4.2.1 Simulating the equation

The equation is hardcoded:

```
def A(x, d):
    return d * (1 - x)

def B(x, a, h, g):
    return (a * x * (1 - x) ** g) / (1 + a * h * x)

def C(x, r, s):
    if x == 0:  # Avoid division by zero
        return 0
    z = (r * (1 - x)) / (x * (1 - r))
    return 1 / (1 + z ** s)

def delta(x, d, a, h, g, r, s):
    return A(x, d) - B(x, a, h, g) * C(x, r, s)

def simulate(x0, d, a, h, g, r, s, steps=100):
    x = np.zeros(steps)
    x[0] = x0
```

```
for t in range(steps - 1):
    x[t + 1] = np.clip(x[t] + delta(x[t], d, a, h, g, r, s), 0, 1)
```

4.2.2 Long term behavior

Here is the key logic behing classifing the equation.

```
x = simulate(x0, d, a, h, g, r, s, steps)

last_values = x[-10:]

if np.std(last_values) < 0.001:  # Stable state
final_val = np.mean(last_values)
if final_val < 0.1:
    return x, "ALIGNED"

elif final_val > 0.9:
    return x, "MISALIGNED"

else:
    return x, "PARTIAL_ALIGNMENT"

else:  # Dynamic state
if len(np.unique(np.round(last_values, 2))) > 3:
    return x, "CHAOTIC"

else:
    return x, "OSCILLATING"
```

4.2.3 Phase Portrait Analysis

The phase space visualization algorithm:

```
def phase_portrait(d, a, h, g, r, s, n_points=200):
    x = np.linspace(0, 1, n_points)
    dx = np.array([delta(xi, d, a, h, g, r, s) for xi in x])

# Arrow placement logic
    arrow_indices = np.linspace(0, len(x)-1, 20, dtype=int)
    norm = Normalize(vmin=0, vmax=np.max(np.abs(dx)))

for xi, dxi in zip(x[arrow_indices], dx[arrow_indices]):
    if dxi > 0: # Right arrow
        plt.arrow(xi, 0, 0.02, 0, ...)
    elif dxi < 0: # Left arrow
        plt.arrow(xi, 0, -0.02, 0, ...)

plt.plot(x, dx, 'k-') # Main curve
    plt.axhline(0, color='black', linestyle=':') # Zero line</pre>
```

4.2.4 Bifurcation Analysis

The chaotic regime detection algorithm:

```
def bifurcation_analysis(param, p_min, p_max, fixed_params, n_points=500):
    param_values = np.linspace(p_min, p_max, n_points)
    n_transient = 200 # Skip initial transient
    n_{samples} = 100
                       # Points to plot per parameter
    for p in param_values:
        params = fixed_params.copy()
        params[param] = p
        x = 0.3 # Initial value
        # Burn-in phase
        for _ in range(n_transient):
            x = np.clip(x + delta(x, **params), 0, 1)
        # Sample stable points
        x_vals = []
        for _ in range(n_samples):
            x = np.clip(x + delta(x, **params), 0, 1)
            x_vals.append(x)
        plt.plot([p]*n_samples, x_vals, 'k.', markersize=0.5)
```

4.3 Numerical Considerations

- State clipping ensures $x_t \in [0,1]$ remains meaningful
- All floating-point operations use NumPy's float64 precision
- The bifurcation analysis skips 200 transient iterations to focus on long-term behavior
- Phase portrait arrows are normalized to avoid cluttering

5 Results

5.1 Interactive Tools

The notebook provides three powerful ways to explore alignment dynamics.

5.1.1 Time Evolution Simulation

The time evolution simulation displays how alignment changes over successive iterations. You can tweak the initial condition (x_0) , the number of iterations and all the parameters of the equation through the sliders. The diagram will update in real-time.

5.1.2 Phase Portrait Analysis

The phase portait examines the system's underlying dynamics through multiple visual cues. Arrow directions indicate whether misalignment tends to increase or decrease at each state point, while a color gradient represents the rate of change intensity.

Note: Stable equilibrium points occur where the curve crosses zero with a negative slope - these represent self-correcting alignment levels.

5.1.3 Bifurcation Diagram

Users can select any parameter for the x-axis via a dropdown menu and focus on specific ranges of interest. Adjust the sliders, and you may get the chacteristic period-doubling bifurcations and the emergance of chaotic behaviour.

Figure 4: Time evolution showing chaotic behaviour (d = 0.5, a = 6, h = 0.4, g = 2, r = 0.25, s = 5)

Figure 5: Phase portrait (d = 0.5, a = 2, h = 1, g = 0.5, r = 0.3, s = 3)

Pro tip: Set h (IT rigidity) to a low value for observing beatiful patterns.

References

References

- [1] Strogatz, S. H. (2018). Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. CRC Press.
- [2] Luftman, J. (2003). Assessing IT/business alignment. Information Systems Management, 20(4), 9-15.
- [3] Hunter, J. D. (2007). *Matplotlib: A 2D graphics environment*. Computing in science & engineering, 9(3), 90-95.

Figure 6: Shouldn't this be exposed at Louvre? $(d=0.5,\,a=7,\,h=0.3,\,r=0.3,\,s=5.1)$

5.2 Examples

A Appendix: Complete Python Code

The full implementation is available at: https://github.com/Kinshale/pii