

CSE211 - Formal Languages and Automata Theory

U2L9_Deterministic PDA

Dr. P. Saravanan
School of Computing
SASTRA Deemed University

Outline

- Deterministic PDA's
- Definition and Example
- RL and DPDA
- Properties of CGL

- Definition of a Deterministic PDA
 - Intuitively, a PDA is deterministic if there is never a choice of moves (including ε –moves) in any situation.
 - Formally, a PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ is said to be deterministic (a DPDA) if and only if the following two conditions are met:
 - $\delta(q, a, X)$ has at most one element for any $q \in Q$, $a \in \Sigma$ or $a = \varepsilon$, and $X \in \Gamma$.
 - If $\delta(q, a, X)$ is nonempty for some $a \in \Sigma$, then $\delta(q, \varepsilon, X)$ must be empty.

Definition of a DPDA

Example

- There is no DPDA for $L_{ww^{R}}$ of Example 6.2.
- But there is a DPDA for a modified version of L_{ww^R} as follows,

$$L_{wcw^R} = \{wcw^R \mid w \in L((\mathbf{0} + \mathbf{1})^*)\}.$$

- To recognize wcw^R , just store 0's & 1's in stack until center marker c is seen. Then, match the remaining input w^R with the stack content (w).
- The PDA can so be designed to be deterministic by searching the center marker without trying matching all the time nondeterministically.

- DPDA Example
 - Example 6.16 (cont'd) A desired DPDA is as follows.
 (The difference is just the blue c.)

Regular Languages and DPDA's

 The DPDA's accepts a class of languages that is between the RL's and the CFL's, as proved in the following.

Theorem 6.17

If L is an RL, then L = L(P) for some DPDA P (accepting by final state).

Proof. Easy. Just use a DPDA to simulate a DFA as follows.

If DFA $A = (Q, \Sigma, \delta_A, q_0, F)$ accepts L, then construct DPDA $P = (Q, \Sigma, \{Z_0\}, \delta_P, q_0, Z_0, F)$ where δ_P is such that $\delta_P(q, a, Z_0) = \{(p, Z_0)\}$ for all states p and q in Q such that $\delta_A(q, a) = p$.

- Regular Languages and DPDA's
 - The language-recognizing capability of the DPDA by empty stack is rather limited.
 - Theorem 6.19
 - A language L is N(P) for some DPDA P if and only if L has the prefix property and L is L(P') for some DPDA P' (for proof, do exercise 6.4.3).
 - A language L is said to have the prefix property if there are no two different strings x and y in L such that x is a prefix of y.

- DPDA's and CFL's
 - DPDA's can be used to accept non-RL's, for example,
 Lwcw^R mentioned before.
 - It can be proved by the pumping lemma that L_{wcw^R} is not an RL (see the textbook, pp. 254~255).
 - On the other hand, DPDA's by final state cannot accept certain CFL's, for example, L_{ww}^{R} .
 - It can be proved that L_{ww}^{R} cannot be accepted by a DPDA by final state (see an informal proof in the textbook, p. 255).

- DPDA's and Ambiguous Grammars
 - Theorem 6.20

If L = N(P) (accepting by empty stack) for some DPDA P, then L has an unambiguous CFG.

Theorem 6.21

If L = L(P) for some DPDA P (accepting by final state), then L has an unambiguous CFG.

PROPERTIES OF CONTEXT-FREE LANGUAGES

Properties of CFL

- CFG's may be simplified to fit certain special forms, like
 - Chomsky Normal Form (CNF) and
 - Greiback Normal Form (GNF).
- Some, but not all, properties of RL's are also possessed by the CFL's.
- Unlike the RL, many computational problems about the CFL cannot be answered.
- That is, there are many undecidable problems about CFL's.

A Substitution Rule

$$S \rightarrow aB$$
 $A \rightarrow aaA$
 $A \rightarrow abBc$
 $B \rightarrow aA$
 $Substitute$
 $S \rightarrow aB$
 $A \rightarrow aaA$
 $A \rightarrow aaB$
 $A \rightarrow$

$$S \rightarrow aB \mid ab$$
 $A \rightarrow aaA$
 $A \rightarrow abBc \mid abbc$
 $B \rightarrow aA$

A Substitution Rule

$$S
ightarrow aB \mid ab$$
 $A
ightarrow aaA$
 $A
ightarrow abBc \mid abbc$
 $B
ightarrow aA$

Substitute
 $B
ightarrow aA$
 $S
ightarrow abBc \mid aaA$
 $A
ightarrow aaA$
 $A
ightarrow abBc \mid abbc \mid abaAc$

Equivalent grammar

In general

$$A \rightarrow xBz$$

$$B \rightarrow y_1$$

Substitute

$$B \rightarrow y_1$$

$$A \rightarrow xBz \mid xy_1z$$

Simplification of CFG

Every CFG can be transformed into an equivalent grammar in Chomsky Normal Form, after simplifying the CFG in the following ways:

- eliminating useless symbols (which do not appear in any derivation from the start symbol);
- eliminating ε-productions (of the form $A \rightarrow \varepsilon$);
- eliminating *unit productions* (of the form $A \rightarrow B$);

Summary

- Deterministic PDA's
- Definition and Example
- RL and DPDA
- Properties of CGL
- Normal forms
- Eliminating production rules

References

- John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman, Introduction to Automata Theory, Languages, and Computation, Pearson, 3rd Edition, 2011.
- Peter Linz, An Introduction to Formal Languages and Automata, Jones and Bartle Learning International, United Kingdom, 6th Edition, 2016.

Next Class:

Simplification of CFG THANK YOU