Lecture 2. Basic Probability Rules

YULIA R. GEL

CS/SE/STAT 3341 Probability and Statistics in Computer Science and Software Engineering

January 17, 2017

Operations of set theory

Basics

It is useful to interpret (and visualize!) events via algebra of sets. First, we start from basic notations:

- The statement that a possible outcome of an experiment s is a member of S is denoted symbolically by the relation $s \in S$.
- Any event E can be regarded as a certain subset of a sample space S, i.e. $E \subset S$ for all events E.
- An event A is said to be contained in another event B if every outcome that belongs to the subset defining the event A also belongs to the subset B, i.e. $A \subset B$.
- Some events are impossible! E.g., roll of a die cannot produce a negative number. Hence, such event of observing a negative number contains no outcomes. This subset of S is called the empty set and is denoted by the symbol \emptyset . Note that $\emptyset \subset A \subset S$ for all events A.

Unions

If A and B are any two events then the union of A and B is defined to be the event containing all outcomes that belong to A alone, to B alone or to both A and B. We denote the union of A and B by $A \cup B$.

$$\bullet$$
 $A \cup B =$

- $A \cup \emptyset = A$
- \bullet $A \cup S =$

$$A \cup \emptyset = A$$

$$\bullet$$
 $A \cup A =$

For any events A and B such that $A \subset S$ and $B \subset S$, the following properties hold:

- $A \cup A = A$

The union of n events E_1, E_2, \ldots, E_n is defined to be the event that contains all outcomes which belong to at least one of the n events, and is denoted by $\bigcup_{i=1}^n E_i$.

Intersection

If A and B are any two events then the intersection of A and B is defined to be the event containing all outcomes that belong both to A and B. We denote the intersection of A and B by $A \cap B$.

$$A \cap B =$$

$$\mathbf{a} \cap \emptyset =$$

$$A \cap \emptyset = \emptyset$$

- $A \cap \emptyset = \emptyset$
- \bullet $A \cap S =$

- $A \cap \emptyset = \emptyset$
- $A \cap S = A$

$$A \cap \emptyset = \emptyset$$

$$\bullet$$
 $A \cap A =$

$$A \cap \emptyset = \emptyset$$

For any events A and B such that $A \subset S$ and $B \subset S$, the following properties hold:

- $A \cap \emptyset = \emptyset$
- $A \cap S = A$
- $A \cap A = A$

The intersection of n events E_1, E_2, \ldots, E_n is defined to be the event that contains all outcomes which belong to all of the n events, and is denoted by $\bigcap_{i=1}^n E_i$.

Complement

The complement of an event A is defined to be event that contains all outcomes in the sample space S which do not belong to A. The complement of A is denoted as A^c .

$$(A^c)^c =$$

$$(A^c)^c = A$$

$$(A^c)^c = A$$

- $(A^c)^c = A$

$$(A^c)^c = A$$

2
$$\emptyset^c = S$$

- $(A^c)^c = A$
- **2** $\emptyset^c = S$

$$(A^c)^c = A$$

Disjoint and Exhaustive Events

It is said that two events E_1 and E_2 are **disjoint** or **mutually exclusive** if E_1 and E_2 have no outcomes in common. It follows that E_1 and E_2 are disjoint if and only if $E_1 \cap E_2 = \emptyset$.

Events E_1, E_2, \ldots are called **exhaustive** if $\bigcup_i E_i = S$ and at least one E_i occurs for sure.

Example 1. E and E^c are disjoint and exhaustive. For instance, gender of a child, i.e. male and female are disjoint and exhaustive.

1
$$(A \cup B)^c =$$

$$(A \cap B)^c =$$

$$(A \cap B)^c = A^c \cup B^c$$

$$(A \cap B)^c = A^c \cup B^c$$