1. A study found that mongolism in babies is associated with hepatitis A I injection of the mother during pregnancy. Suppose a study of 2000 randomly selected mothers to be yielded the following table after the births of their babies.

Hepatitis A.	Baby			
	Mongoloid	Non- Mongoloid	Total	
+	26	34	60	
-	4	1936	1940	
Total	30	1970	2000	

Perform a chi square test for independence with $\alpha=0.05$

Solution

- \Rightarrow setting up the 2 hypothesis
- $\Rightarrow H_0$ There is no association between mongolism in babies and hepatitis A injection of mothers during pregnancy
- $\Rightarrow H_a$ There is association between mongolism in babies and hepatitis A injection of mothers during pregnancy

Hepatitis	Baby		
Α	Mongoloid	Non- Mongoloid	Total
+	26, EX1=0.9	34, EX2=59.1	60
-	4, EX3=29.1	1936, EX4=1910.9	1940
Total	30	1970	2000

$$\Rightarrow EX- > \text{Expected frequency}$$

$$\Rightarrow EX_1 = \frac{30 \times 60}{2000} = 0.9$$

$$\Rightarrow EX_2 = \frac{1970 \times 60}{2000} = 59.1$$

$$\Rightarrow EX_3 = \frac{30 \times 1940}{2000} = 29.1$$

$$\Rightarrow EX_4 = \frac{1970 \times 1940}{2000} = 1910.9$$

$$\Rightarrow X_{cal}^2 = \sum \frac{(O-E)^2}{E}$$

$$\Rightarrow \frac{(26-0.9)^2}{0.9} + \frac{(34-59.1)^2}{59.1} + \frac{(4-29.1)^2}{29.1} + \frac{(1936-1910.9)^2}{1910.9}$$

$$\Rightarrow 700.1 + 10.66 + 21.65 + 0.33 = 732.6507$$

$$\Rightarrow X_{tab}^2 = ?, \text{with }, \alpha = 0.05$$

$$\Rightarrow \text{ degree of freedom } = (2-1) \times (2-1) = 1$$

$$\Rightarrow \text{ from the table }, X_{tab}^2 = 3.841$$

 \Rightarrow Note $X_{cal}^2 > X_{tab}^2$, so we reject H_o and accept H_a that there is association between mongolism in babies and hepatitis A injection of mothers during pregnancy

1. The following data shows the age and price data of 6 randomly selected cars between 1 and 6 years old (calculated in thousands of dollars)

Age of car(x)	6	2	5	4	5	1	
Price of car(y)	290	384	315	355	328	425	

a. Determine the equation of the least squares line

Solution

Age(X)	Price(Y)	X^2	XY	Y^2
6	290	36	1740	84100
2	384	4	768	147456
5	315	25	1575	99225
4	355	16	1420	126025
5	328	25	1640	107584
1	425	1	425	180625
Totals/ 23	2097	107	7568	745015

$$\Rightarrow y = ax + b$$

$$\Rightarrow a = \frac{6(7568) - (23)(2097)}{6(107) - (23)^2} = -24.98$$

$$\Rightarrow b = \frac{2097 - (-24.98)(23)}{6} = 445.27$$

$$\Rightarrow y = -24.98x + 445.27$$

b. Use the result obtained in part (a) to predict the price of a 3 year old car

[2]

Solution

$$\Rightarrow$$
 price of a 3 year old car,
$$\Rightarrow x=3$$

$$\Rightarrow y=-24.98x+445.27$$

$$\Rightarrow y=-24.98(3)+445.27=370.33$$

c. Calculate the correlation coefficient and use it to explain what type of relationship exists between the variables

Solution

 \Rightarrow correlation coefficient,

$$\Rightarrow r = \frac{6(7568) - (23)(2097)}{\sqrt{6(107) - (23)^2}\sqrt{6(745015) - (2097)^2}}$$
$$\Rightarrow \frac{-2823}{10.63 \times 269.59} = -0.9851$$

- \Rightarrow There is a very strong negative correlation which implies that high price value goes with a low age value and low price value goes with a high age value
 - d. Calculate the coefficient of determination and explain its significance

[3]

Solution

 \Rightarrow coefficient of determination , r^2

$$\Rightarrow r^2 = (r)^2 = (-0.9851)^2 = 0.9704$$

$$\Rightarrow$$
 as a % we have, = 97.04%

⇒ this implies that 97.04% points follows a straight line relationship