班级: 计信管 02 (专)

教师: 吴清太

《概率统计》试卷(A)

姓名学号成绩
一、填空题(每题3分)
1、设 A、B、C 为三个随机事件,则"三个事件中至少有一个不发生"可表示为。
2、设 A、B 为两个随机事件,且 P(A)=0.6, p(B)=0.7,则在条件下 p(AB)取到最大值,在条件下 p(AB)取到最小值
3、从 5 双不同的鞋子中任取 4 只,则这 4 只鞋子中至少有两只配成一双的概率为,这 4 只鞋子中任何两只都配不成一双的概率为。
4、设 $P(A) = \frac{1}{4}$, $P(B \mid A) = \frac{1}{3}$, $P(A \mid B) = \frac{1}{2}$, 则 $P(B) = \frac{1}{2}$, $P(A \cup B) = \frac{1}{2}$.
5 、三人独立地去破译一份密码,已知各人能译出的概率分别为 $\frac{1}{5}$, $\frac{1}{3}$, $\frac{1}{4}$,则三人
中至少有一人能将此密码译出的概率。 6、将3只球随机地放入4个杯子中去,以X表示杯子中球的最大个数,则随机 变量X的分布律为。
7、随机变量 X 的分布函数为 $F(x) = \begin{cases} 0, x < 1 \\ \ln x, 1 \le x < e, \text{ 则 P} \{0 \le X \le 3\} = \text{ 其密度函数} \\ 1, x \ge 1 \end{cases}$
为 f (x)=
8、随机变量 X 在 (0,5) 上服从均匀分布 U (0,5),则方程4t²+4Xt+X+2=0
有实根的概率为。 9、设长方形的宽(单位:米)X 服从取间(0,2)上的均匀分布,且已知长方形的 周长为 20 米,则长方形的面积的数学期望为=。
10、设 X_1, X_2, X_3, X_4 是来自均值为 θ 的指数分布总体的样本。其中 θ 未知,设有估计量
$T_1 = \frac{1}{6}(X_1 + X_2) + \frac{1}{3}(X_3 + X_4), T_2 = \frac{1}{5}(X_1 + 2X_2 + 3X_3 + 4X_4),$
$T_3 = \frac{1}{4}(X_1 + X_2 + X_3 + X_4)$

二、计算题(70分)

1、将两信息分别编码为"1"和"0"传递出去,由于受随机干扰,在传出信号"0"时,接收到信号"0"的概率为0.98,收到信号"1"的概率为0.02,在传出信号"1"时,接收到信号"1"的概率为0.99,收到信号"0"的概率为0.01,信号"0"和"1"传送的频繁程度为2:1,(1)求一般情况下接收到的信号为"0"的概率;(2)已知接收到的信号为"0",求原发信号为"0"的概率。

2、某种型号的器件的寿命 X(单位: 小时) 具有概率密度为

$$f(x) = \begin{cases} \frac{1000}{x^2}, x > 1000\\ 0, \quad \text{其他} \end{cases}$$

现有一大批这种器件(设各器件损坏与否相互独立),任取 5 只,求其中至少有 2 只寿命大于 1500 小时的概率。

4、盒子中装有3只黑球、2只红球、2只白球,在其中任取4只,以 X表示取到黑球的只数,以 Y表示取到红球的只数。求 X, Y 的联合分布以及(X, Y) 的边缘分布。

5、一工厂生产某种设备的寿命 X(单位:年)服从指数分布,概率密度为

$$f(x) = \begin{cases} \frac{1}{4}e^{-\frac{x}{4}}, & x > 0\\ 0, & x \le 0 \end{cases}$$

工厂规定,出售的设备若在售出一年之内损坏可予以调换。若工厂售出一台设备赢利 100 元,调换一台设备厂方需花费 300 元。试求厂方出售一台设备净利润的期望值。

6、随机地取某种炮弹 9 发做试验,得炮口速度的样本标准差是 s=11(m/s).设炮口速度服从正态分布,求这种炮弹的炮口速度的标准 差 σ 的置信度为 0.95 的置信区间。 $(\chi_{0.975}^2(8)=2.180,\chi_{0.025}^2(8)=17.535)$

7、设总体 X 有概率密度为

$$f(x;\theta) = \begin{cases} \theta c^{\theta} x^{-(\theta+1)}, x > c \\ 0, & \sharp \Xi \end{cases} (\theta > 0)$$

 X_1,\ldots,X_n 为来自总体 X 的样本,试求未知参数 θ 的矩估计量和极大似然估计量。