Report No.: NTC1504132F-1 FCC ID: 2AEDV-TS1213

FCC PART 15 SUBPART C MEASURMENT AND TEST REPORT

For

TwinStar International Inc.

12/F Taiwanese Trade Association Building, 2nd Ring Road, ChangAn Town, Dongguan, Guandong, China

E.U.T.: 2.1 Sound System

Model Name: TS-1213

Brand Name: TWIN STAR

FCC ID: 2AEDV-TS1213

Report Number: NTC1504132F-1

Test Date(s): April 29, 2015 to May 19, 2015

Report Date(s): May 19, 2015

Prepared by

Dongguan Nore Testing Center Co., Ltd.

Building D, Gaosheng Science and Technology Park, Hongtu Road, Nancheng District, Dongguan City, Guangdong, China

Tel: +86-769-22022444

Fax: +86-769-22022799

Prepared By

Approved & Authorize

Rose Hu / Engineer

Sunm Lv / Q.A. Director

Note: This test report is for the customer shown above and their specific product only. It may not be duplicated or used in part without prior written consent from Dongguan Nore Testing Center Co., Ltd.The test results referenced from this report are relevant only to the sample tested.

Signer

Table of Contents

1. GENERAL INFORMATIC	JN	4
1.1 PRODUCT DESCRIPTION F	FOR EQUIPMENT UNDER TEST	2
1.2 RELATED SUBMITTAL(S) /	GRANT (S)	4
	NS	
	TION	
	LTS	
2. SYSTEM TEST CONFIG	URATION	
2.1 EUT CONFIGURATION		7
	DDES	
3. CONDUCTED EMISSION	NS TEST	8
3.1 TEST SET-UP (BLOCK DI	AGRAM OF CONFIGURATION)	8
3.3 MEASUREMENT RESULTS		8
4. MAX. CONDUCTED OUT	TPUT POWER	11
4.1 MEASUREMENT PROCEDU	JRE	11
4.2 TEST SET-UP (BLOCK DI	AGRAM OF CONFIGURATION)	11
4.3 MEASUREMENT RESULTS		12
5. 6DB & 20DB BANDWIDT	гн	14
5.1 MEASUREMENT PROCEDU	JRE	14
	AGRAM OF CONFIGURATION)	
•	, , , , , , , , , , , , , , , , , , ,	
6. POWER SPECTRAL DE	NSITY	18
6 1 MEASUREMENT PROCEDU	JRE	18
	AGRAM OF CONFIGURATION)	
•		
	DUCTED SPURIOUS EMISSIONS	
	SUREMENT PROCEDURE	
	AGRAM OF CONFIGURATION)	
7 3 MEASUREMENT DESIGNE		21

8. RADIATED SPURIOUS EMISSIONS AND RESTRICTED BANDS	26
8.1 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	26
8.2 MEASUREMENT PROCEDURE	
8.3 LIMIT	28
8.4 MEASUREMENT RESULTS	29
9. ANTENNA APPLICATION	31
9.1 Antenna requirement	31
9.2 MEASUREMENT RESULTS	31
10. TEST EQUIPMENT LIST	32

Report No.: NTC1504132F-1 FCC ID: 2AEDV-TS1213

1. GENERAL INFORMATION

1.1 Product Description for Equipment under Test

This device is a BT speaker, it's powered by DC 15V come from Adapter. For more details features, please refer to User's Manual.

Manufacturer : Zhongshan Senjia Electrical Appliances Co., Ltd.

Address : No.35, Wenming Road, Nanqu, Zhongshan,

Guangdong, China

Factory : Zhongshan Senjia Electrical Appliances Co., Ltd.

Address : No.35, Wenming Road, Nanqu, Zhongshan,

Guangdong, China

Power Supply : DC 15V Come from Adpater

Adapter M/N: WT1504000

Input: AC100-240V 50/60Hz 1.6A

Output: DC 15V 4.0A

Test voltage : AC 120V 60Hz

Model name : TS-1213
Hardware version : RE V00
Software version : 001
Serial number : N/A

For BT function

BT Version:

BLE(V4.0) and backward compatible 3.0HS, 2.1+EDR version. We prepare version BLE(V4.0) and 2.1+EDR for RF test.

BT2.1+EDR BLE(V4.0) Item 2402-2480MHz 2402-2480MHz Frequency GFSK, π/4-DQPSK, 8DPSK Modulation GFSK Number of Channel 79 40 1MHz 2MHz Channel space Antenna Type PCB antenna PCB antenna Antenna Gain 0 dBi (declared by 0 dBi (declared by

manufacturer)

manufacturer)

Report No.: NTC1504132F-1 FCC ID: 2AEDV-TS1213

1.2 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: **2AEDV-TS1213** filing to comply with Section 15.247 of the FCC Part 15(2014), Subpart C Rule.

1.3 Test Methodology

AC mains line-conducted, antenna port conducted and radiated emission measurements were performed according to the procedures in ANSI C63.4-2009, ANSI C63.10: 2009 and KDB558074 (v03r02). Radiated emission measurement was performed in semi-anechoic chamber and conducted emission measurement was performed in shield room. For radiated emission measurement, preliminary scans were performed in the semi-anechoic chamber only to determine the worst case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters. All other measurements were made in accordance with the procedures in 47 CFR part 2.

1.4 Equipment Modifications

Not available for this EUT intended for grant.

1.5 Support Device

None

Report No.: NTC1504132F-1 FCC ID: 2AEDV-TS1213

1.6 Test Facility and Location

Listed by FCC, August 02, 2011 The Certificate Registration Number is 665078. Listed by Industry Canada, July 01, 2011 The Certificate Registration Number is 46405-9743.

Dongguan NTC Co., Ltd.

(Full Name: Dongguan Nore Testing Center Co., Ltd.)

Building D, Gaosheng Science and Technology Park, Hongtu Road, Nancheng District, Dongguan City, Guangdong, China (Full Name: Building D, Gaosheng Science & Technology Park, Zhouxi Longxi Road, Nancheng District, Dongguan, Guangdong, China.

1.7 Summary of Test Results

FCC Rules	Description Of Test	Result
§15.207 (a)	AC Power Conducted Emission	Compliance
§15.247(b)(3)	Max. Conducted Output Power	Compliance
§15.247(a)(2)	6dB &20dB Bandwidth	Compliance
§15.247(e)	Power Spectral Density	Compliance
§15.247(d)	Band Edge and Conducted Spurious Emissions	Compliance
§15.247(d),§15.209, §15.205	Radiated Spurious Emissions and Restricted Bands	Compliance
§15.203	Antenna Requirement	Compliance

Report No.: NTC1504132F-1 FCC ID: 2AEDV-TS1213

2. System Test Configuration

EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

2.2 Special Accessories

Not available for this EUT intended for grant.

2.3 Description of test modes

The EUT has been tested under continuous operating condition (The duty cycle >98%). Test program used to control the EUT staying in continuous transmitting mode. The Lowest, middle and highest channel were chosen for testing, and modulation type GFSK was tested, but only the worst case data is shown in this report.

2.4 EUT Exercise

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements.

Report No.: NTC1504132F-1 FCC ID: 2AEDV-TS1213

3. Conducted Emissions Test

3.1 Test SET-UP (Block Diagram of Configuration)

3.2 Test Condition

Test Requirement: FCC Part 15.207

Frequency Range: 150KHz ~ 30MHz

Detector: RBW 9KHz, VBW 30KHz

Operation Mode: BT Mode

3.3 Measurement Results

Please refer to following plots.

Report No.: NTC1504132F-1 FCC ID: 2AEDV-TS1213

Site: Conduction

Dongguan NTC Co., Ltd. Tel: +86-769-22022444 Fax: +86-769-22022799

gCenter Web: Http://www.ntc-c.com

Report No.: TS-1213

FCC PART 15_Class B_QP Test Standard:

Test item: Conducted Emission Phase: L1

26(C) / 60 % Applicant: TwinStar Temp.()/Hum.(%): 2.1 SUOND SYSTEM Power Rating: AC 120V/60Hz Product:

Model No.: TS-1213 Test Engineer: Jess

Test Mode: BT Mode

Remark:

No.	Frequency (MHz)	Factor (dBuV)	Reading (dBuV)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.4941	10.80	21.50	32.30	56.10	-23.80	QP	Р	
2	0.4941	10.80	15.40	26.20	46.10	-19.90	AVG	Р	
3	0.9820	10.80	24.30	35.10	56.00	-20.90	QP	Р	
4	0.9820	10.80	23.00	33.80	46.00	-12.20	AVG	Р	
5	1.9660	10.80	20.70	31.50	56.00	-24.50	QP	Р	
6	1.9660	10.80	19.80	30.60	46.00	-15.40	AVG	Р	
7	3.9340	10.80	14.50	25.30	56.00	-30.70	QP	Р	
8	3.9340	10.80	9.40	20.20	46.00	-25.80	AVG	Р	
9	10.3258	10.80	16.30	27.10	60.00	-32.90	QP	Р	
10	10.3258	10.80	12.00	22.80	50.00	-27.20	AVG	Ρ	
11	15.2419	10.80	15.70	26.50	60.00	-33.50	QP	Р	
12	15.2419	10.80	22.60	33.40	50.00	-16.60	AVG	Р	

Report No.: NTC1504132F-1 FCC ID: 2AEDV-TS1213

Dongguan NTC Co., Ltd. Tel: +86-769-22022444 Fax: +86-769-22022799

Web: Http://www.ntc-c.com

Test Time: 2015-4-30 10:15:21

Jess

Report No.:

Test Standard: FCC PART 15_Class B_QP

Test item: **Conducted Emission**

Applicant: 26(C) / 60 % TwinStar Temp.()/Hum.(%): Product: 2.1 SUOND SYSTEM Power Rating: AC 120V/60Hz Test Engineer: Model No.: TS-1213

Test Mode: BT Mode

Remark:

No.	Frequency (MHz)	Factor (dBuV)	Reading (dBuV)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.4900	10.80	22.20	33.00	56.17	-23.17	QP	Р	
2	0.4900	10.80	15.90	26.70	46.17	-19.47	AVG	Р	
3	0.9820	10.80	24.80	35.60	56.00	-20.40	QP	Р	
4	0.9820	10.80	23.80	34.60	46.00	-11.40	AVG	Ρ	
5	1.9660	10.80	21.70	32.50	56.00	-23.50	QP	Р	
6	1.9660	10.80	20.60	31.40	46.00	-14.60	AVG	Р	
7	3.9340	10.80	12.00	22.80	56.00	-33.20	QP	Р	
8	3.9340	10.80	8.40	19.20	46.00	-26.80	AVG	Р	
9	10.3258	10.80	14.30	25.10	60.00	-34.90	QP	Р	
10	10.3258	10.80	10.10	20.90	50.00	-29.10	AVG	Р	
11	15.2419	10.80	25.80	36.60	60.00	-23.40	QP	Р	
12	15.2419	10.80	22.10	32.90	50.00	-17.10	AVG	Ρ	

Note: Level=Reading+Factor. Margin=Limit-Level.

Report No.: NTC1504132F-1 FCC ID: 2AEDV-TS1213

4. Max. Conducted Output Power

4.1 Measurement Procedure

Maximum Conducted Output power at Antenna Terminals, FCC Rules 15.247(b)(3):

§15.247 permits the maximum conducted (average) output power to be measured as an alternative to the maximum peak conducted output power for demonstrating compliance to the limit. When this option is exercised, the measured power is to be referenced to the OBW rather than the DTS bandwidth (see ANSIC63.10-2009 for measurement guidance).

When using a spectrum analyzer to EMI receiver to perform these measurements, it shall be capable of utilizing a number of measurement points in each sweep that is greater than or equal to twice the span/RBW to set a bin-to-bin spacing of ≤RBW/2 so that narrowband signals are not lost between frequency bins.

Method AVGSA-1(trace averaging with the EUT transmitting at full power throughout each sweep)

- 1. Set span to at least 1.5 times the OBW.
- 2. Set RBW=1-5% of the OBW, not to exceed 1MHz.
- 3. Set VBW≥3 x RBW.
- 4. Number of points in sweep ≥ 2 x span/ RBW. (This gives bin-to-bin spacing ≤ RBW/2, so that narrowband signals are not lost between frequency bins.)
- 5. Sweep time= auto.
- 6. Detector=RMS(i.e., power averaging), if available. Otherwise, use sample detector mode.
- 7. If transmit duty cycle<98%, use a sweep trigger with the level set to enable triggering only on full power pulses. The transmitter shall operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously(i.e., with no off intervals) or at duty cycle ≥98%, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".
- 8. Trace average at least 100 traces in power averaging (i.e., RMS) mode.
- 9. Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels(in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

4.2 Test SET-UP (Block Diagram of Configuration)

Dongguan Nore Testing Center Co., Ltd. Report No.: NTC1504132F-1

FCC ID: 2AEDV-TS1213

4.3 Measurement Results

Please refer to following table and plots.

Modulation: **GFSK**

Temperature: **24** ℃ Humidity: 50 %

Test By: May 19, 2015 Test Date: Sance

Test Result: **PASS**

Frequency MHz	Data Rate Mbps	AV Output Power dBm	Limit dBm
Low Channel: 2402	1	2.95	30
Middle Channel: 2442	1	4.53	30
High Channel: 2480	1	5.89	30

Report No.: NTC1504132F-1 FCC ID: 2AEDV-TS1213

Maximum Average Conducted Output Power Low Channel

Bandwidth 1.0913 MHz

Middle Channel

Bandwidth 1.0817 MHz Power 4.53 dBm

Tx Channel Bandwidth 1.0817 MHz 5.89 dBm Power

Report No.: NTC1504132F-1 FCC ID: 2AEDV-TS1213

5. 6dB & 20dB Bandwidth

5.1 Measurement Procedure

DTS 6dB &20dB Channel Bandwidth, FCC Rule 15.247(a)(2):

The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer was set as below according to FCC KDB558074(v03r02):

- 1. For 6dB bandwidth, Set the RBW = 100KHz. For 20dB bandwidth, Set the RBW=1-5% of the OBW, not to exceed 1MHz.
- 2. Set the VBW \geq 3 x RBW
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB& 20dB relative to the maximum level measured in the fundamental emission.

5.2 Test SET-UP (Block Diagram of Configuration)

FUT	Spectrum Analyzer
201	opeotram Analyzer

5.3 Measurement Results

Please refer to following table and plots.

Modulation: GFSK

Temperature : 24 $^{\circ}$ C Humidity : 50 $^{\circ}$

Test By: Sance Test Date : May 07, 2015 and May 19, 2015

Test Result: PASS

Frequency MHz	Data Rate Mbps	6dB Bandwidth KHz	20dB Bandwidth KHz	Limit
Low Channel: 2402	1	735.6	1091	>500KHz
Middle Channel: 2442	1	735.6	1082	>500KHz
High Channel: 2480	1	730.8	1082	>500KHz

Dongguan Nore Testing Center Co., Ltd. Report No.: NTC1504132F-1

FCC ID: 2AEDV-TS1213

Date: 7.MAY.2015 17:37:28

6dB bandwidth Middle Channel

Date: 7.MAY.2015 17:38:48

Report No.: NTC1504132F-1 FCC ID: 2AEDV-TS1213

Date: 7.MAY.2015 17:40:25

20dB bandwidth Low Channel

Date: 19.MAY.2015 22:24:13

Report No.: NTC1504132F-1 FCC ID: 2AEDV-TS1213

20dB bandwidth Middle Channel

Date: 19.MAY.2015 22:24:43

20dB bandwidth High Channel

Date: 19.MAY.2015 22:25:06

Report No.: NTC1504132F-1 FCC ID: 2AEDV-TS1213

6. Power Spectral Density

6.1 Measurement Procedure

DTS 6dB Channel Bandwidth, FCC Rule 15.247(a)(2):

The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer was set as below according to FCC KDB558074(v03r02):

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: 3 kHz≤RBW≤100KHz
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.2 Test SET-UP (Block Diagram of Configuration)

6.3 Measurement Results

Please refer to following table and plots.

Modulation: GFSK

Temperature : 24 $^{\circ}$ C Humidity : 50 $^{\circ}$

Test By: Sance Test Date: May 07, 2015

Test Result: PASS

Frequency MHz	Data Rate Mbps	PSD dBm/3kHz	Limit dBm/3kHz
Low Channel: 2402	1	-18.89	8
Middle Channel: 2442	1	-17.16	8
High Channel: 2480	1	-16.19	8

Dongguan Nore Testing Center Co., Ltd. Report No.: NTC1504132F-1

FCC ID: 2AEDV-TS1213

Date: 9.MAY.2015 11:28:44

Middle Channel

Date: 9.MAY.2015 11:29:08

Dongguan Nore Testing Center Co., Ltd. Report No.: NTC1504132F-1

FCC ID: 2AEDV-TS1213

High Channel

Date: 9.MAY.2015 11:29:35

Report No.: NTC1504132F-1 FCC ID: 2AEDV-TS1213

7. Band Edge and Conducted Spurious Emissions

7.1 Requirement and Measurement Procedure

In any 100KHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100KHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer was set according to FCC KDB558074(v03r02) clause 11.3.

A Quasi-peak measurement was then made for that frequency point for below 1GHz test. PK and AV for above 1GHz emission test.

For 30MHz to 1GHz:

Sept the spectrum analyzer as: RBW=120kHz, VBW=300kHz, Detector=Quasi-Peak

For Above 1GHz:

Set the spectrum analyzer as: RBW=1MHz, VBW=3MHz, Detector=Peak. Set the spectrum analyzer as: RBW=1MHz, VBW=10Hz, Detector=Peak.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

Frequency Band (MHz)	Level	Resolution Bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 1000	Peak	1 MHz	3 MHz
ADOVE 1000	Average	1 MHz	10 Hz

7.2 Test SET-UP (Block Diagram of Configuration)

7.3 Measurement Results

The test plots and table showed all spurious emission and up to the tenth harmonic was measured and they were found to be at least 20dB below the highest level of the desired power in the passband. Please refer to below plots.

Dongguan Nore Testing Center Co., Ltd. Report No.: NTC1504132F-1

FCC ID: 2AEDV-TS1213

Hopping-on mode

Freq.	Ant.Pol. (H/V)		ding dBuV)	Factor (dB/m)	Emission (dBt		Limi (dBu	t 3m V/m)	Maı (d	rgin B)
(IVITIZ)	(l l / v)	PK	AV	(ub/III)	PK	AV	PK	AV	PK	AV
2399.990	Н	47.15	39.47	8.09	55.24	47.56	74.00	54.00	-18.76	-6.44
2399.990	V	56.44	39.16	8.09	64.53	47.25	74.00	54.00	-9.47	-6.75
2483.660	Н	44.78	38.89	8.36	53.14	47.25	74.00	54.00	-20.86	-6.75
2483.660	V	60.89	38.18	8.36	69.25	46.54	74.00	54.00	-4.75	-7.46

Note:

(1) All Readings are Peak Value and AV.(2) Emission Level= Reading Level+Probe Factor +Cable Loss

(3) Measurement uncertainty: ±3.7dB

Report No.: NTC1504132F-1 FCC ID: 2AEDV-TS1213

Band Edge Low Channel

Date: 7.MAY.2015 17:46:57

#RBW 100 ktz Delta 2 [T1] *YBW 300 kHz -43.67 dB Ref 20 dBm Att 45 dB SWT 5 ms 7.548076923 MHz 20 Marker 1 [T1] 5.81 dBm 2.47999 385 GHz -0 D1 -14.19 dBm -10 D1 -14.19 dBm -20 D1 -14.19 dBm -20 Span 10 MHz Center 2.4835 GHz 1 MHz/ Span 10 MHz

Date: 7.MAY.2015 17:47:44

Report No.: NTC1504132F-1 FCC ID: 2AEDV-TS1213

Conducted Spurious Emissions Low Channel

Date: 7.MAY.2015 17:56:55

Note: Sweep points=30001pts Middle Channel

Date: 7.MAY.2015 17:57:42

Note: Sweep points=30001pts

Dongguan Nore Testing Center Co., Ltd. Report No.: NTC1504132F-1

FCC ID: 2AEDV-TS1213

High Channel

Date: 7.MAY.2015 17:58:34

Note: Sweep points=30001pts

Report No.: NTC1504132F-1 FCC ID: 2AEDV-TS1213

8. Radiated Spurious Emissions and Restricted Bands

8.1 Test SET-UP (Block Diagram of Configuration)

8.1.1 Radiated Emission Test Set-Up, Frequency Below 30MHz

Report No.: NTC1504132F-1 FCC ID: 2AEDV-TS1213

8.1.2 Radiated Emission Test Set-Up, Frequency above 1GHz

8.2 Measurement Procedure

Preliminary measurement (Above 1GHz)

The frequency range will be divided into different sub ranges depending on the frequency range of the used horn antenna. The spectrum analyser set to MAX Hold mode and a resolution bandwidth of 100 kHz. The measurement will be performed in horizontal and vertical polarisation of the measuring antenna, the antenna close to the EUT and while moving the antenna over all sides of the EUT. With the spectrum analyser in CLEAR / WRITE mode the cone of the emission should be found and than the measuring distance will be set to 3 m with the receiving antenna moving in this cone of emission. At this position the final measurement will be carried out.

Final measurement (Above 1GHz)

The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The EMI Receiver set to peak and average mode and a resolution bandwidth of 1 MHz. The measurement will be performed in horizontal and vertical polarisation of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 ° to 360 ° in order to have the antenna inside the cone of radiation.)

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi- anechoic chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to peak detect function and specified bandwidth with maximum hold mode.

Report No.: NTC1504132F-1 FCC ID: 2AEDV-TS1213

e. A Quasi-peak measurement was then made for that frequency point for below 1GHz test. PK and AV for above 1GHz emission test.

For 30MHz to 1GHz:

Sept the spectrum analyzer as: RBW=120kHz, VBW=300kHz, Detector=Quasi-Peak

For Above 1GHz:

Set the spectrum analyzer as: RBW=1MHz, VBW=3MHz, Detector=Peak. Set the spectrum analyzer as: RBW=1MHz, VBW=10Hz, Detector=Peak.

During the radiated emission test, the spectrum analyzer was set with the following

configurations:

Frequency Band (MHz)	Level	Resolution Bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 1000	Peak	1 MHz	3 MHz
Above 1000	Average	1 MHz	10 Hz

8.3 Limit

Frequency range	Distance Meters	Field Strengths Limit (15.209)
MHz		μV/m
0.009 ~ 0.490	300	2400/F(kHz)
0.490 ~ 1.705	30	24000/F(kHz)
1.705 ~ 30	30	30
30 ~ 88	3	100
88 ~ 216	3	150
216 ~ 960	3	200
Above 960	3	500

Remark : (1) Emission level (dB) μ V = 20 log Emission level μ V/m

- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.
- (4) The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower.
- (5) §15.247(d) specifies that emissions which fall in the restricted bands, as defined in §15.205 comply with radiated emission limits specified in §15.209.

Report No.: NTC1504132F-1 FCC ID: 2AEDV-TS1213

8.4 Measurement Results

Operation Mode: TX(The worst case Low channel)

Frequency Range: 9KHz~1GHz Temperature: 22 °C Test Result: PASS Humidity: 54 % Measured Distance: 3m Test By: Sance

Test Date: April 30, 2015

Freq.	Ant.Pol.	Factor	Reading	Emission	Limit	Margin	Note
				Level	3m		
(MHz)	H/V	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	
30.9700	V	-15.83	43.93	28.10	40.00	-11.90	QP
44.5500	V	-13.87	44.67	30.80	40.00	-9.20	QP
125.0600	V	-17.62	43.72	26.10	43.50	-17.40	QP
110.5100	Н	-12.26	51.16	38.90	43.50	-4.60	QP
146.4000	Н	-15.58	51.98	36.40	43.50	-7.10	QP
183.2600	Н	-13.94	50.84	36.90	43.50	-6.60	QP
201.6900	Н	-13.40	50.50	37.10	43.50	-6.40	QP
279.2900	Н	-10.99	48.29	37.30	46.00	-8.70	QP

Other emissions are lower than 10dB below the allowable limit.

Note: (1) Emission Level= Reading Level + Factor

- (2) Factor= Antenna Gain + Cable Loss Amplifier Gain
- (3) Measurement uncertainty: ±3.4dB
- (4) Loop antenna used for the emission below 30MHz.
- (5) Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 10dB below the permissible limits.

Report No.: NTC1504132F-1 FCC ID: 2AEDV-TS1213

Modulation: GFSK

Frequency Range: 1-25GHz Test Date: May 15, 2015

Test Result: PASS Temperature : 24 $^{\circ}$ C Measured Distance: 3m Humidity : 50 $^{\circ}$

Test By: Sance

Freq. Ant.Pol. (H/V)	Reading Level(dBuV)		Factor	Emission Level (dBuV)		Limit 3m (dBuV/m)		Margin (dB)		
	PK	AV	(dB/m)	PK	AV	PK	AV	PK	AV	
			Oper	ation Mo	de: TX M	lode (Lo	w)			
4804	V	37.93	24.50	14.63	52.56	39.13	74.00	54.00	-21.44	-14.87
7206	V	38.88	25.34	20.68	59.56	46.02	74.00	54.00	-14.44	-7.98
4804	Н	39.73	23.42	14.63	54.36	38.05	74.00	54.00	-19.64	-15.95
7206	Н	42.16	23.41	20.68	62.84	44.09	74.00	54.00	-11.16	-9.91
			Ope	ration Mo	ode: TX N	ode (Mi	d)			
4884	V	39.28	24.30	14.98	54.26	39.28	74.00	54.00	-19.74	-14.72
7326	V	40.07	25.54	20.93	61.00	46.47	74.00	54.00	-13.00	-7.53
4884	Н	37.41	23.52	14.98	52.39	38.50	74.00	54.00	-21.61	-15.50
7326	Н	37.55	24.71	20.93	58.48	45.64	74.00	54.00	-15.52	-8.36
Operation Mode: TX Mode (High)										
4960	V	37.08	24.86	15.30	52.38	40.16	74.00	54.00	-21.62	-13.84
7440	V	39.86	25.42	21.16	61.02	46.58	74.00	54.00	-12.98	-7.42
4960	Н	40.94	24.40	15.30	56.24	39.70	74.00	54.00	-17.76	-14.30
7440	Н	40.96	24.23	21.16	62.12	45.39	74.00	54.00	-11.88	-8.61

Other harmonics emissions are lower than 10dB below the allowable limit.

Note: (1) All Readings are Peak Value and AV.

- (2) Emission Level= Reading Level + Factor
- (3) Factor= Antenna Gain + Cable Loss Amplifier Gain
- (4) Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 10dB below the permissible limits.
- (5) Measurement uncertainty: ±3.7dB.
- (6) Horn antenna used for the emission over 1000MHz.

Report No.: NTC1504132F-1 FCC ID: 2AEDV-TS1213

9. Antenna Application

9.1 Antenna requirement

According to of FCC part 15C section 15.203 and 15.240:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Systems operating in the 2400-2483.5MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

9.2 Measurement Results

The antenna is integrated on the main PCB and no consideration of replacement, and the best case gain of the antenna is 0dBi. So, the antenna is consider meet the requirement.

Dongguan Nore Testing Center Co., Ltd. Report No.: NTC1504132F-1 FCC ID: 2AEDV-TS1213

10. Test Equipment List

Description	Manufacturer	Model Number	Serial Number	Characteristics	Calibration Date	Calibration Due Date
Test Receiver	Rohde & Schwarz	ESCI7	100837	9KHz~7GHz	Nov. 24, 2014	Nov. 23, 2015
Antenna	Schwarzbeck	VULB9162	9162-010	30MHz~7GHz	Nov. 27, 2014	Nov. 26, 2015
Positioning Controller	UC	UC 3000	N/A	0~360°, 1-4m	N/A	N/A
Color Monitor	SUNSPO	SP-140A	N/A	N/A	N/A	N/A
Single Phase Power Line Filter	SAEMC	PF201A-32	110210	32A	N/A	N/A
3 Phase Power Line Filter	SAEMC	PF401A-200	110318	200A	N/A	N/A
DC Power Filter	SAEMC	PF301A-200	110245	200A	N/A	N/A
Cable	Huber+Suhner	CBL2-NN-1M	22390001	9KHz~7GHz	Nov. 08, 2014	Nov. 07, 2015
Cable	Huber+Suhner	CIL02	N/A	9KHz~7GHz	Nov. 08, 2014	Nov. 07, 2015
RF Cable	Huber+Suhner	SF-104	MY16559/4	9KHz~25GHz	Mar. 07, 2015	Mar. 06, 2016
Power Amplifier	HP	HP 8447D	1145A00203	100KHz~1.3GHz	Nov. 08, 2014	Nov. 07, 2015
Horn Antenna	Schwarzbeck	BBHA9170	9170-372	15GHz~26.5GHz	Oct.24, 2014	Oct.23, 2015
Horn Antenna	Com-Power	AH-118	071078	1GHz~18GHz	Nov. 06, 2014	Nov. 05, 2015
Loop antenna	Daze	ZA30900A	0708	9KHz~30MHz	Oct.11, 2014	Oct.10, 2015
Spectrum Analyzer	Rohde & Schwarz	FSU26	200409/026	20Hz~26.5GHz	Sep. 02, 2014	Sep. 01, 2015
Pre-Amplifier	Agilent	8449B	3008A02964	1GHz~26.5GHz	Nov. 04, 2014	Nov. 03, 2015
L.I.S.N.	Rohde & Schwarz	ENV 216	101317	9KHz~30MHz	Nov. 08, 2014	Nov. 07, 2015
Temporary antenna connector	TESCOM	SS402	N/A	1G-18GHz	N/A	N/A