0.1 级数证明

例题 0.1 设 $f \in \mathbb{R}[x]$ 是只有正实根的多项式, 求 $\frac{f'(x)}{f(x)}$ 在 x = 0 幂级数展开和收敛域.

证明 设 $f(x) = a(x-x_1)^{k_1}(x-x_2)^{k_2}\cdots(x-x_n)^{k_n}$, 其中 $a \neq 0$, 并且

$$0 < x_1 < x_2 < \cdots < x_n, k_i \in \mathbb{N}.$$

从而

$$\frac{f'(x)}{f(x)} = \left[\ln f(x)\right]' = \left[\ln a + k_1 \ln(x - x_1) + k_2 \ln(x - x_2) + \dots + k_n \ln(x - x_n)\right]'$$

$$= \frac{k_1}{x - x_1} + \frac{k_2}{x - x_2} + \dots + \frac{k_n}{x - x_n} = \sum_{j=1}^n \frac{k_j}{x - x_j}$$

$$= -\frac{k_j}{x_j} \sum_{j=1}^n \frac{1}{1 - \frac{x}{x_j}} = -\sum_{j=1}^n \frac{k_j}{x_j} \sum_{m=0}^\infty \left(\frac{x}{x_j}\right)^m$$

$$= -\sum_{m=0}^\infty \sum_{j=1}^n \frac{k_j}{x_j^{m+1}} x^m.$$

显然收敛半径就是 x_1 ,注意到

$$\lim_{m \to +\infty} \sum_{i=1}^{n} \frac{k_{j}}{x_{i}^{m+1}} x_{1}^{m} = \frac{k_{1}}{x_{1}} \neq 0,$$

故收敛域为 (-x1, x1).

例题 0.2 设 $e^{a_n}=a_n+e^{b_n}, a_n>0,$ 若 $\sum_{n=1}^{\infty}a_n$ 收敛, 证明: $\sum_{n=1}^{\infty}b_n$ 收敛.

证明 显然 $e^{b_n}=e^{a_n}-a_n\geqslant 1$, 故 $b_n\geqslant 0$, 并且由 $\sum_{n=1}^\infty a_n$ 收敛知 $a_n\rightarrow 0$. 于是

$$b_n = \ln(e^{a_n} - a_n) = \ln e^{a_n} + \ln(1 - a_n e^{-a_n})$$

= $a_n + O(a_n e^{-a_n}), n \to \infty$.

注意到 $O(a_ne^{-a_n}) \leqslant a_n$, 故 $\sum_{n=1}^{\infty} O(a_ne^{-a_n})$ 也收敛, 因此 $\sum_{n=1}^{\infty} b_n$ 收敛.

例题 0.3 设 $\{a_n\}$ 是递减正数列且 $\sum_{n=1}^{\infty} a_n = +\infty$, 证明

$$\lim_{n \to \infty} \frac{a_2 + a_4 + \dots + a_{2n}}{a_1 + a_3 + \dots + a_{2n-1}} = 1.$$

证明 由条件可知对 $\forall n \in \mathbb{N}$, 都有

$$a_2 + a_4 + \cdots + a_{2n} \leq a_1 + a_3 + \cdots + a_{2n-1}$$

故 A ≤ 1. 注意到

$$\frac{a_2 + a_4 + \dots + a_{2n}}{a_1 + a_3 + \dots + a_{2n-1}} \geqslant \frac{a_3 + a_5 + \dots + a_{2n+1}}{a_1 + a_3 + \dots + a_{2n-1}} = 1 - \frac{a_1 - a_{2n+1}}{a_1 + a_3 + \dots + a_{2n-1}}$$
$$\geqslant 1 - \frac{a_1}{\frac{a_2 + a_4 + \dots + a_{2n}}{2} + \frac{a_1 + a_3 + \dots + a_{2n-1}}{2}} = 1 - \frac{2a_1}{\sum_{i=1}^{n} a_i} \to 1, n \to \infty.$$

故 $A \ge 1$. 因此 A = 1.

命题 0.1

设
$$a_n$$
 递减到 0 , 证明: $\sum_{n=1}^{\infty} n(a_n - a_{n+1})$ 收敛的充要条件是 $\sum_{n=1}^{\infty} a_n$ 收敛, 并且 $\sum_{n=1}^{\infty} n(a_n - a_{n+1}) = \sum_{n=1}^{\infty} a_n$.

笔记 (1)式可由 Abel 变换直接得到,也可以采用下述证明一样的强行凑裂项的思路.
证明 注意到

 $\sum_{k=1}^{n} k (a_k - a_{k+1}) = \sum_{k=1}^{n} [k a_k - (k+1) a_{k+1}] + \sum_{k=1}^{n} [(k+1) a_{k+1} - k a_{k+1}]$

$$= a_1 - (n+1) a_{n+1} + \sum_{k=1}^{n} a_{k+1} = \sum_{k=1}^{n+1} a_k - (n+1) a_{n+1}.$$
 (1)

充分性: 若 $\sum_{n=1}^{\infty} a_n$ 收敛, 则由命题??可知 $\lim_{n\to\infty} na_n = 0$. 再由(1)式可得

$$\sum_{k=1}^{\infty} k (a_k - a_{k+1}) = \sum_{k=1}^{\infty} a_k < +\infty.$$

必要性: 若 $\sum_{n=1}^{\infty} n(a_n - a_{n+1})$ 收敛,则由 $\{a_n\}$ 的单调性知,对 $\forall m \in \mathbb{N}$, 当 $n \geqslant m$ 时,有

$$\sum_{k=1}^{n} a_k = \sum_{k=1}^{m} a_k + \sum_{k=m+1}^{n} a_k \geqslant \sum_{k=1}^{m} a_k + (n-m) a_n.$$

又由(1)式和 $\sum_{n=1}^{\infty} n(a_n - a_{n+1})$ 收敛知, 存在 A > 0, 使得

$$\sum_{k=1}^{n-1} k (a_k - a_{k+1}) = \sum_{k=1}^{n} a_k - na_n \le A, \forall n \in \mathbb{N}.$$

故

$$A \geqslant \sum_{k=1}^{n} a_{k} - na_{n} \geqslant \sum_{k=1}^{m} a_{k} + (n-m) a_{n} - na_{n} = \sum_{k=1}^{m} a_{k} - ma_{n}.$$

令 $n \to +\infty$ 得 $\sum_{k=1}^{m} a_k \leqslant A$. 再由 m 的任意性可知 $\sum_{k=1}^{\infty} a_k$ 收敛. 此时由命题??可知 $\lim_{n \to \infty} na_n = 0$, 再由(1)式可知

$$\sum_{k=1}^{\infty} k (a_k - a_{k+1}) = \sum_{k=1}^{\infty} a_k.$$

例题 0.4 设 a_n 递减到 0, 且 $\sum_{n=1}^{\infty} a_n$ 发散, 证明

$$\int_{1}^{\infty} \frac{\ln f(x)}{x^2} dx$$

发散, 这里 $f(x) = \sum_{n=1}^{\infty} a_n^n x^n$.

证明 由 $\lim_{n\to\infty} a_n$ 可知 $\lim_{n\to\infty} \sqrt[n]{a_n^n} = \lim_{n\to\infty} a_n = 0$, 故 f(x) 的收敛域为 \mathbb{R} . 显然 f>0, x>0, 且 f 在 $(0,+\infty)$ 上递增. 待定 $\{b_n\}$ 满足: $b_n\nearrow +\infty$. 从而

$$\int_{b_{n}}^{b_{n+1}} \frac{\ln f(x)}{x^{2}} dx \geqslant \int_{b_{n}}^{b_{n+1}} \frac{\ln f(b_{n})}{x^{2}} dx = \ln f(b_{n}) \left(\frac{1}{b_{n}} - \frac{1}{b_{n+1}}\right)$$

$$\geqslant \ln \left(a_{n}^{n} b_{n}^{n}\right) \left(\frac{1}{b_{n}} - \frac{1}{b_{n+1}}\right) = n \ln (a_{n} b_{n}) \left(\frac{1}{b_{n}} - \frac{1}{b_{n+1}}\right).$$

取 $b_n = \frac{C}{a_n}, C > \max\{1, a_1\}, 则$

$$\int_{b_n}^{b_{n+1}} \frac{\ln f(x)}{x^2} dx \ge n \ln (a_n b_n) \left(\frac{1}{b_n} - \frac{1}{b_{n+1}} \right) = \frac{\ln C}{C} n (a_n - a_{n+1}).$$

由命题 0.1可知 $\sum_{n=1}^{\infty} n(a_n - a_{n+1})$ 发散. 故

$$\int_{1}^{+\infty} \frac{\ln f(x)}{x^2} \mathrm{d}x \geqslant \sum_{n=1}^{\infty} \int_{b_n}^{b_{n+1}} \frac{\ln f(x)}{x^2} \mathrm{d}x \geqslant \frac{\ln C}{C} \sum_{n=1}^{\infty} n \left(a_n - a_{n+1}\right) = +\infty.$$

例题 0.5 证明:

1.

$$\sum_{n=1}^{\infty} \frac{1}{(n+1)\sqrt[n]{n}} \leqslant p, \forall p \in (1, +\infty).$$

2.

$$\sum_{n=1}^{\infty} \frac{1}{(n+1)\sqrt[n]{n}} \geqslant p, \forall p \in (0,1).$$

拿 笔记 注意强行凑裂项和熟悉 Bernoulli 不等式.

1.

$$\frac{1}{(n+1)} \sqrt[q]{n} \leqslant p\left(\frac{1}{\sqrt[q]{n}} - \frac{1}{\sqrt[q]{n+1}}\right)
\iff \sqrt[q]{n} \left(\frac{1}{\sqrt[q]{n}} - \frac{1}{\sqrt[q]{n+1}}\right) = 1 - \sqrt[p]{1 - \frac{1}{n+1}} \geqslant \frac{1}{p(n+1)}
\iff \sqrt[p]{1 - \frac{1}{n+1}} \leqslant 1 - \frac{1}{p(n+1)}.$$
(2)

下证
$$\sqrt[p]{1 - \frac{1}{n+1}} \le 1 - \frac{1}{p(n+1)}$$
. $\diamondsuit f(x) \triangleq \sqrt[p]{1-x} - \frac{x}{p}$, 则
$$f'(x) = -\frac{1}{p}(1-x)^{\frac{1}{p}-1} + \frac{1}{p} = \frac{1}{p}\left[1 - (1-x)^{\frac{1}{p}-1}\right] < 0.$$

故

$$f(x) \le f(0) = 1 \iff \sqrt[p]{1-x} \le 1 - \frac{x}{p}.$$

令
$$x = \frac{1}{n+1}$$
 得 $\sqrt[p]{1 - \frac{1}{n+1}} \le 1 - \frac{1}{p(n+1)}$, 从而(2)式成立. 故

$$\sum_{n=1}^{\infty}\frac{1}{(n+1)\sqrt[n]{n}}\leqslant \sum_{n=1}^{\infty}p\left(\frac{1}{\sqrt[n]{n}}-\frac{1}{\sqrt[n]{n+1}}\right)=p.$$

2.

$$\frac{1}{(n+1)\sqrt[q]{n}} \geqslant p\left(\frac{1}{\sqrt[q]{n}} - \frac{1}{\sqrt[q]{n+1}}\right) \\
\iff \sqrt[q]{n}\left(\frac{1}{\sqrt[q]{n}} - \frac{1}{\sqrt[q]{n+1}}\right) = 1 - \sqrt[q]{1 - \frac{1}{n+1}} \leqslant \frac{1}{p(n+1)} \\
\iff \sqrt[q]{1 - \frac{1}{n+1}} \geqslant 1 - \frac{1}{p(n+1)}.$$
(3)

下证
$$\sqrt[p]{1 - \frac{1}{n+1}} \ge 1 - \frac{1}{p(n+1)}$$
. $\diamondsuit f(x) \triangleq \sqrt[q]{1-x} - \frac{x}{p}$, 则
$$f'(x) = -\frac{1}{p}(1-x)^{\frac{1}{p}-1} + \frac{1}{p} = \frac{1}{p}\left[1 - (1-x)^{\frac{1}{p}-1}\right] > 0.$$

故

$$f(x) \geqslant f(0) = 1 \iff \sqrt[q]{1-x} \geqslant 1 - \frac{x}{p}.$$
 得 $\sqrt[q]{1-\frac{1}{1-x}} \geqslant 1 - \frac{1}{1-x}$,从而(3)式成立. 故

$$\Rightarrow x = \frac{1}{n+1}$$
 得 $\sqrt[p]{1 - \frac{1}{n+1}} \ge 1 - \frac{1}{p(n+1)}$, 从而(3)式成立. 故

$$\sum_{n=1}^{\infty}\frac{1}{(n+1)\sqrt[n]{n}}\geqslant\sum_{n=1}^{\infty}p\left(\frac{1}{\sqrt[n]{n}}-\frac{1}{\sqrt[n]{n+1}}\right)=p.$$

例题 0.6 对 $t \in \mathbb{R}$, 证明:

$$\sum_{n=1}^{\infty} \frac{t^{n-1}}{n^n} = \int_0^1 \frac{1}{x^{tx}} dx.$$

证明

$$\int_{0}^{1} \frac{1}{x^{tx}} dx = \int_{0}^{1} e^{-tx \ln x} dx = \int_{0}^{1} \sum_{n=0}^{\infty} \frac{(-tx \ln x)^{n}}{n!} dx$$

$$= \sum_{n=0}^{\infty} \int_{0}^{1} \frac{(-tx \ln x)^{n}}{n!} dx = \sum_{n=0}^{\infty} \frac{(-t)^{n}}{n!} \int_{0}^{1} x^{n} \ln^{n} x dx$$

$$= \sum_{n=0}^{\infty} \sum_{n=0}^{\infty} \frac{t^{n}}{n!} \int_{0}^{+\infty} e^{-(n+1)y} y^{n} dy = \sum_{n=0}^{\infty} \frac{t^{n}}{n!} \frac{t^{n}}{(n+1)^{n+1}} \int_{0}^{+\infty} e^{-y} y^{n} dy$$

$$= \sum_{n=0}^{\infty} \frac{t^{n} \Gamma(n+1)}{n!} (n+1)^{n+1} = \sum_{n=0}^{\infty} \frac{t^{n}}{(n+1)^{n+1}} = \sum_{n=0}^{\infty} \frac{t^{n}}{n^{n}}.$$

1. 设正项级数 $\sum_{n=0}^{\infty} a_n$ 收敛, $a_n > 0$, 则存在 A_n 使得 $a_n = o(A_n)$ 和 $\sum_{n=0}^{\infty} A_n$ 收敛.

2. 设正项级数 $\sum_{n=0}^{\infty} a_n$ 发散, $a_n > 0$, 则存在 A_n 使得 $A_n = o(a_n)$ 和 $\sum_{n=0}^{\infty} A_n$ 发散.

证明

笔记 这个命题说明: 没有收敛最慢的级数, 也没有发散最慢的级数.

1. 令

$$A_n \triangleq \sqrt{\sum_{k=n}^{\infty} a_k} - \sqrt{\sum_{k=n+1}^{\infty} a_k},$$

则

$$\sum_{n=1}^{\infty} A_n = \sqrt{\sum_{k=1}^{\infty} a_k} < +\infty.$$

$$\lim_{n\to\infty} \frac{a_n}{A_n} = \lim_{n\to\infty} \frac{a_n}{\sqrt{\sum\limits_{k=n}^{\infty} a_k} - \sqrt{\sum\limits_{k=n+1}^{\infty} a_k}} = \lim_{n\to\infty} \frac{a_n \left(\sqrt{\sum\limits_{k=n}^{\infty} a_k} + \sqrt{\sum\limits_{k=n+1}^{\infty} a_k}\right)}{a_n} = 0.$$

故 $a_n = o(A_n), n \to \infty$

2. 令

$$A_1 = 1$$
, $A_n \triangleq \sqrt{\sum_{k=1}^n a_k} - \sqrt{\sum_{k=1}^{n-1} a_k}$, $n = 2, 3, \dots$

则

$$\sum_{n=2}^{\infty} A_n = \lim_{n \to \infty} \left(\sqrt{\sum_{k=1}^n a_k} - \sqrt{a_1} \right) = +\infty.$$

$$\lim_{n \to \infty} \frac{A_n}{a_n} = \lim_{n \to \infty} \frac{\sqrt{\sum_{k=1}^n a_k} - \sqrt{\sum_{k=1}^{n-1} a_k}}{a_n} = \lim_{n \to \infty} \frac{a_n}{a_n \left(\sqrt{\sum_{k=1}^n a_k} + \sqrt{\sum_{k=1}^{n-1} a_k} \right)} = 0.$$

例题 0.7 设正项级数 $\sum_{n=1}^{\infty} \frac{1}{p_n} < \infty$, 证明

$$\sum_{n=1}^{\infty} \frac{n^2 p_n}{(p_1 + p_2 + \dots + p_n)^2} < \infty.$$

注 本题的想法就是把 $\sum_{n=1}^{\infty} \frac{n^2 p_n}{(p_1 + p_2 + \dots + p_n)^2}$ 放大为阶更小的量, 从而其收敛.

证明 记 $S_0 = 0, S_n = \sum_{k=1}^{n} p_k$, 则对 $N \ge 2$, 有

$$\sum_{n=2}^{N} \frac{n^2 p_n}{(p_1 + p_2 + \dots + p_n)^2} = \sum_{n=2}^{N} \frac{n^2 p_n}{S_n^2} = \sum_{n=2}^{N} \frac{n^2 (S_n - S_{n-1})}{S_n^2}$$

$$= \sum_{n=2}^{N} n^2 \int_{S_{n-1}}^{S_n} \frac{1}{S_n^2} dx \leqslant \sum_{n=2}^{N} n^2 \int_{S_{n-1}}^{S_n} \frac{1}{x^2} dx = \sum_{n=2}^{N} n^2 \left(\frac{1}{S_{n-1}} - \frac{1}{S_n}\right)$$

$$= \sum_{n=2}^{N} \left[\frac{n^2}{S_{n-1}} - \frac{(n+1)^2}{S_n} \right] + \sum_{n=2}^{N} \frac{(n+1)^2 - n^2}{S_n}$$

$$= \frac{4}{S_1} - \frac{(N+1)^2}{S_N} + \sum_{n=2}^{N} \frac{2n+1}{S_n}$$

$$\leqslant \frac{4}{S_1} + 3 \sum_{n=2}^{N} \frac{n}{S_n} = \frac{4}{S_1} + 3 \sum_{n=2}^{N} \left(\frac{n\sqrt{p_n}}{S_n} \cdot \frac{1}{\sqrt{p_n}} \right)$$

$$Cauchy \neq \pm \frac{4}{S_1} + 3\sqrt{\sum_{n=2}^{N} \frac{n^2 p_n}{S_n^2}} \cdot \sum_{n=2}^{N} \frac{1}{p_n}$$

$$\leqslant \frac{4}{S_1} + C\sqrt{\sum_{n=2}^{N} \frac{n^2 p_n}{S_n^2}}.$$

从而

$$\sqrt{\sum_{n=2}^{N} \frac{n^2 p_n}{S_n^2}} \leqslant \frac{4}{S_1} \frac{1}{\sqrt{\sum_{n=2}^{N} \frac{n^2 p_n}{S_n^2}}} + C.$$

若
$$\sum_{n=2}^{\infty} \frac{n^2 p_n}{S_n^2}$$
 发散,则对上式令 $N \to +\infty$ 得 $+\infty \leqslant C$ 矛盾! 故 $\sum_{n=2}^{\infty} \frac{n^2 p_n}{S_n^2} < +\infty$.

例题 0.8

1. 设 $\{a_n\}_{n=1}^{\infty}, \{b_n\}_{n=1}^{\infty} \subset (0, +\infty)$ 且

$$\lim_{n\to\infty} \frac{b_n}{n} = 0, \lim_{n\to\infty} b_n \left(\frac{a_n}{a_{n+1}} - 1 \right) > 0.$$

证明级数 $\sum_{n=1}^{\infty} a_n$ 收敛.

2. 设 $\alpha \in (0,1), \{a_n\}_{n=1}^{\infty} \subset (0,+\infty)$ 且满足

$$\underline{\lim_{n\to\infty}} n^{\alpha} \left(\frac{a_n}{a_{n+1}} - 1 \right) = \lambda \in (0, +\infty).$$

证明: $\lim_{n\to\infty} n^k a_n = 0$.

注 由
$$\lim_{k \to \infty} \frac{o\left(\frac{1}{k^2}\right)}{\frac{1}{k^2}} = 0, \sum_{k=1}^{\infty} \frac{1}{k^2}$$
 收敛可知 $\sum_{k=1}^{\infty} o\left(\frac{1}{k^2}\right)$ 收敛, 故 $\sum_{k=1}^{n} o\left(\frac{1}{k^2}\right) = O(1), \forall n \in \mathbb{N}.$

证明

1. 由条件可知, 存在 $c > 0, N \in \mathbb{N}$, 使得对 $\forall n \ge N$ 有

$$b_n \leqslant \frac{c}{2}n$$
, $b_n \left(\frac{a_n}{a_{n+1}} - 1\right) > c > 0$.

不妨设 N=1,则

$$\frac{a_n}{a_{n+1}} > 1 + \frac{c}{b_n} \Longrightarrow a_1 > a_{n+1} \prod_{k=1}^n \left(1 + \frac{c}{b_k} \right).$$

于是

$$\begin{split} a_{n+1} &< a_1 \prod_{k=1}^n \frac{1}{1 + \frac{c}{b_k}} = a_1 e^{-\sum_{k=1}^n \ln\left(1 + \frac{c}{b_k}\right)} \\ &\leqslant a_1 e^{-\sum_{k=1}^n \ln\left(1 + \frac{2}{k}\right)} = a_1 e^{-\sum_{k=1}^n \left[\frac{2}{k} + o\left(\frac{1}{k^2}\right)\right]} \\ &= a_1 e^{-2\sum_{k=1}^n \frac{1}{k} + O(1)} = a_1 e^{-2[\ln n + O(1)] + O(1)} \\ &= a_1 e^{-2\ln n + O(1)} \sim \frac{C}{n^2}, n \to \infty. \end{split}$$

故
$$\sum_{n=1}^{\infty} a_n$$
 收敛.

n=1 2. 由条件可知, 当 n 充分大时, 有

$$n^{\alpha} \left(\frac{a_n}{a_{n+1}} - 1 \right) > 0 \Rightarrow \frac{a_n}{a_{n+1}} > 1.$$

从而不妨设 $\{a_n\}$ 递减. 再根据条件可知, 存在 $N \in \mathbb{N}$, 使得

$$n^{\alpha} \left(\frac{a_n}{a_{n+1}} - 1 \right) > \frac{\lambda}{2}, \forall n \geqslant N.$$

故

$$\frac{a_n}{a_{n+1}} > 1 + \frac{\lambda}{2n^{\alpha}}, \forall n \geq N.$$

于是对 $\forall n \geq N$, 有

$$\begin{split} a_{n+1} < a_N \prod_{k=N}^n \frac{1}{1+\frac{\lambda}{2k^\alpha}} &= a_N e^{-\sum_{k=N}^n \ln\left(1+\frac{\lambda}{2k^\alpha}\right)} \\ &= a_N e^{-\sum_{k=N}^n \left[\frac{\lambda}{2k^\alpha} + O\left(\frac{1}{k^{2\alpha}}\right)\right]} & \xrightarrow{\text{\tiny eps} ??} a_N e^{-\left[\frac{\lambda n^{1-\alpha}}{2(1-\alpha)} + O(n^{1-\alpha}) + O(n^{1-2\alpha})\right]} \end{split}$$

$$= a_N e^{-\left[\frac{\lambda n^{1-\alpha}}{2(1-\alpha)} + O(n^{1-\alpha})\right]} \leqslant a_N e^{-Cn^{1-\alpha}}, n \to \infty.$$

注意到
$$\sum_{n=1}^{\infty} e^{-Cn^{1-\alpha}} < +\infty$$
, 故 $\sum_{n=1}^{\infty} a_n$ 收敛.

命题 0.3

证明:

- 1. 实级数 $\sum_{n=1}^{\infty} u_n$ 收敛等价于存在分解 $u_n = a_n b_n, n \in \mathbb{N}$ 使得 $\{a_n\}$ 单调趋于 0 且 $\sum b_n$ 部分和有界.
- 2. 实级数 $\sum_{n=1}^{\infty} u_n$ 收敛等价于存在分解 $u_n = a_n b_n, n \in \mathbb{N}$ 使得 $\{a_n\}$ 单调有界且 $\sum b_n$ 部分和收敛.

Ŷ 笔记 这个命题说明:A-D 判别法是级数收敛的"充要条件". 积分版本见命题??.

证明 充分性就是由级数收敛的 A-D 判别法. 下证必要性.

1. 设 $\sum_{n=1}^{\infty} u_n$ 收敛, 由 Cauchy 收敛准则, 对 $\forall i \in \mathbb{N}$, 存在 $n_i \in \mathbb{N}$, 使得

$$\left|\sum_{n=k}^{k+p} u_n\right| \leqslant \frac{1}{i^3}, \forall k \geqslant n_i, p \in \mathbb{N}.$$

定义

$$a_0 = 1, \quad a_n \triangleq \begin{cases} 1, 1 \leqslant n \leqslant n_1 \\ \frac{1}{i}, n_i < n \leqslant n_{i+1} \end{cases}, i = 1, 2, \dots, b_n = \frac{u_n}{a_n}.$$

显然 $a_n \setminus 0$. 当 $1 \leq n \leq n_1$ 时, 我们有

$$\left|\sum_{k=1}^n b_k\right| = \left|\sum_{k=1}^n u_k\right| \leqslant \sum_{k=1}^{n_1} |u_k|.$$

当 $n > n_1$ 时,存在 $k \in \mathbb{N}$,使得 $n_k < n \leq n_{k+1}$,于是

$$\left| \sum_{j=1}^{n} b_{j} \right| = \left| \sum_{j=1}^{n_{1}} u_{j} + \sum_{i=1}^{k-1} \sum_{j=n_{i}+1}^{n_{i+1}} i u_{j} + k \sum_{j=n_{k}+1}^{n} u_{j} \right| \leq \sum_{j=1}^{n_{1}} \left| u_{j} \right| + \sum_{i=1}^{k-1} i \left| \sum_{j=n_{i}+1}^{n_{i+1}} u_{j} \right| + k \left| \sum_{j=n_{k}+1}^{n} u_{j} \right|$$

$$\leq \sum_{j=1}^{n_{1}} \left| u_{j} \right| + \sum_{j=1}^{k-1} \frac{i}{i^{3}} + \frac{k}{k^{3}} \leq \sum_{j=1}^{n_{1}} \left| u_{j} \right| + \sum_{j=1}^{\infty} \frac{1}{i^{2}} = \sum_{j=1}^{n_{1}} \left| u_{j} \right| + \frac{\pi^{2}}{6}.$$

2. 设 $\sum_{n=1}^{\infty} u_n$ 收敛, 由第 1 问可知, 存在 $\{\alpha_n\}$, $\{\beta_n\}$ 使得 $u_n = \alpha_n \beta_n$, 并且 $\{\alpha_n\}$ 单调递减趋于 $0, \sum \beta_n$ 部分和有界. 令

$$a_n \triangleq \sqrt{\alpha_n}, \quad b_n \triangleq \beta_n \sqrt{\alpha_n} = \beta_n a_n, \quad n = 1, 2, \cdots$$

显然 $a_n \searrow 0$, 进而 $\{a_n\}$ 单调有界. 又 $\sum \beta_n$ 部分和有界, 故由 Dirichlet 判别法知, $\sum b_n$ 部分和收敛.

例题 0.9 设实级数 $\sum_{n=1}^{\infty} a_n = s$ 条件收敛, $\sum_{n=1}^{\infty} a_{f(n)} = t \neq s$ 是一个重排. 证明: 对任何 $N \in \mathbb{N}$, 存在 $n \in \mathbb{N}$ 使得 |n-f(n)| > N.

证明 若 $\exists N \in \mathbb{N}$, 使得 $\forall n \in \mathbb{N}$, 有 $|n - f(n)| \leq N$, 那么对 $\forall m > N$, 就有

$$\sum_{k=1}^{m+N} a_{f(k)} - \sum_{k=1}^{m} a_k$$
中一定不包含 $a_1, a_2, \dots, a_m, a_{f(1)}, a_{f(2)}, \dots, a_{f(m-N)}$.

并且
$$\sum_{k=1}^{m+N} a_{f(k)} - \sum_{k=1}^{m} a_k$$
至多含有 $m+N+m-(2m-N)=2N$ 项.

故对 $\forall \varepsilon > 0$, 存在 $N_1 \in \mathbb{N}$, 使得当 $n > N_1$ 时, 有 $|a_n| \leq \varepsilon$. 于是对 $\forall m > N_1$, 就有

$$\left| \sum_{k=1}^{m+N} a_{f(k)} - \sum_{k=1}^{m} a_k \right| \leqslant 2N\varepsilon.$$

令 $m \to +\infty$ 得 $|s-t| \le 2N\varepsilon$. 由 ε 的任意性知 s=t, 矛盾!

例题 0.10

- 1. 设 f 满足: 对任何绝对收敛级数 $\sum_{n=1}^{\infty} a_n$, 都有 $\sum_{n=1}^{\infty} f(a_n)$ 绝对收敛, 证明 $f(x) = O(x), x \to 0$.
- 2. 设 f 满足: 对任何收敛级数 $\sum_{n=1}^{\infty} a_n$,都有 $\sum_{n=1}^{\infty} f(a_n)$ 收敛,证明存在 $k \in \mathbb{R}$ 使得在 0 的某个邻域内有 f(x) = kx.

证明

1. 反证, 若 $\frac{f(x)}{x}$ 在 x = 0 邻域内无界, 则 $\exists x_n \to 0$, 使得

$$\left| \frac{f(x_n)}{x_n} \right| > n, \ n = 1, 2, \cdots$$
 (4)

取 $\{x_n\}$ 的子列 $\{x_{n_k}\}$, 使得

$$\left|x_{n_k}\right| < \frac{1}{k^2}, k = 1, 2, \cdots.$$

从而对 $\forall k \in \mathbb{N}$, 都有

$$\frac{2}{k^{2}\left|x_{n_{k}}\right|}-\frac{1}{k^{2}\left|x_{n_{k}}\right|}=\frac{1}{k^{2}\left|x_{n_{k}}\right|}>1,$$

于是存在正整数 m_k , 使得

$$\frac{1}{k^2 \left| x_{n_k} \right|} < m_k < \frac{2}{k^2 \left| x_{n_k} \right|}. \tag{5}$$

令

$$a_n \triangleq x_{n_k}, \quad m_{k-1} < n \leqslant m_k.$$

则由(5)式可得

$$\sum_{k=1}^{\infty} |a_k| = \sum_{k=1}^{\infty} m_k |x_{n_k}| < \sum_{k=1}^{\infty} \frac{2}{k^2} < +\infty.$$

由条件可知

$$\sum_{k=1}^{\infty} |f(a_n)| = \sum_{k=1}^{\infty} m_k |f(x_{n_k})| < +\infty.$$

$$(6)$$

又由(4)(5)式可得

$$\sum_{k=1}^{\infty} |f(a_n)| = \sum_{k=1}^{\infty} m_k |f(x_{n_k})| \geqslant \sum_{k=1}^{\infty} m_k n_k |x_{n_k}|$$
$$\geqslant \sum_{k=1}^{\infty} k m_k |x_{n_k}| \geqslant \sum_{k=1}^{\infty} \frac{1}{k} = +\infty.$$

这与(6)式矛盾!

2. 目标证明 f 在 x = 0 邻域满足 Cauchy 方程. 考虑 g(x,y) = f(x+y) + f(-x) + f(-y). 如果对任何 0 的开邻域 U 都有 g 在 $U \times U$ 上不恒为 0, 那么存在 $(x_n, y_n) \to (0, 0)$ 使得 $g(x_n, y_n) \neq 0$. 考虑

$$\underbrace{(x_1+y_1)-x_1-y_1,(x_1+y_1)-x_1-y_1,\cdots,(x_1+y_1)-x_1-y_1}_{m_1} + \underbrace{(x_2+y_2)-x_2-y_2,(x_2+y_2)-x_2-y_2,\cdots,(x_2+y_2)-x_2-y_2}_{m_2} + \underbrace{}$$

:

上述级数的部分和只可能出现 $x_n+y_n,y_n,0$, 而当 $n\to +\infty$ 时它们都趋于 0, 因此上述级数收敛. 由题目条件, 我们有

$$\underbrace{(f(x_1) + f(y_1)) + f(-x_1) + f(-y_1), \cdots, (f(x_1) + f(y_1)) + f(-x_1) + f(-y_1)}_{m_1} + \underbrace{(f(x_2) + f(y_2)) + f(-x_2) + f(-y_2), \cdots, (f(x_2) + f(y_2)) + f(-x_2) + f(-y_2)}_{m_2} + \underbrace{(f(x_2) + f(y_2)) + f(-x_2) + f(-y_2), \cdots, (f(x_2) + f(y_2)) + f(-x_2) + f(-y_2)}_{m_2} + \underbrace{(f(x_2) + f(y_2)) + f(-x_2) + f(-y_2), \cdots, (f(x_2) + f(y_2)) + f(-x_2) + f(-y_2)}_{m_2} + \underbrace{(f(x_2) + f(y_2)) + f(-x_2) + f(-y_2), \cdots, (f(x_2) + f(y_2)) + f(-x_2) + f(-y_2)}_{m_2} + \underbrace{(f(x_2) + f(y_2)) + f(-x_2) + f(-y_2), \cdots, (f(x_2) + f(y_2)) + f(-x_2) + f(-y_2)}_{m_2} + \underbrace{(f(x_2) + f(y_2)) + f(-x_2) + f(-y_2), \cdots, (f(x_2) + f(y_2)) + f(-x_2) + f(-y_2)}_{m_2} + \underbrace{(f(x_2) + f(y_2)) + f(-x_2) + f(-y_2), \cdots, (f(x_2) + f(y_2)) + f(-x_2) + f(-y_2)}_{m_2} + \underbrace{(f(x_2) + f(y_2)) + f(-x_2) + f(-y_2), \cdots, (f(x_2) + f(y_2)) + f(-x_2) + f(-y_2)}_{m_2} + \underbrace{(f(x_2) + f(y_2)) + f(-x_2) + f(-y_2), \cdots, (f(x_2) + f(y_2)) + f(-x_2) + f(-y_2), \cdots, (f(x_2) + f(y_2)) + f(-x_2) + f(-y_2), \cdots, (f(x_2) + f(y_2)) + f(-x_2) + f(-x_2)$$

收敛. 由收敛级数加括号也收敛, 我们知道对任何一组 $\{m_n\}_{n=1}^{\infty}\subset\mathbb{N}$ 都有 $\sum_{n=1}^{\infty}m_ng(x_n,y_n)$ 收敛. 这显然不可能! 因此我们证明了 f(x+y)+f(-x)+f(-y) 在某个 $U\times U$ 上恒为 0, 这里 U 是一个开区间. 现在由

$$f(0) + f(0) + f(0) = 0 \Rightarrow f(0) = 0$$

知

$$f(x-x)+f(x)+f(-x)=0 \Rightarrow f$$
是奇函数,

 $\mathbb{F} f(x+y) = f(x) + f(y).$

再证明 f 在 x = 0 连续. 设 $x_n \rightarrow 0$, 我们考虑收敛级数 $x_1 - x_1 + x_2 - x_2 + \cdots$, 故级数

$$f(x_1) - f(x_1) + f(x_2) - f(x_2) + \cdots$$

收敛. 考虑上述级数部分和可得 $\lim_{n\to\infty}f(x_n)=0$, 从而 f 在 x=0 连续. 现在由定理??知存在 $k\in\mathbb{R}$ 使得在 0 的某个邻域内有 f(x)=kx.

例题 **0.11** 给定 $\{a_n\}_{n=0}^{\infty} \subset \mathbb{R}$, 设

 $f(x) = \sum_{n=0}^{\infty} a_n x^n, \quad x \in (-1, 1).$

若

$$\lim_{n\to\infty}\sum_{k=0}^n a_k = +\infty(-\infty),$$

证明

$$\lim_{x \to 1^{-}} f(x) = +\infty(-\infty),$$

并指出

$$\lim_{n \to \infty} \left| \sum_{k=0}^{n} a_k \right| = +\infty \Rightarrow \lim_{x \to 1^{-}} |f(x)| = +\infty.$$

幹 笔记 熟记命题??.

证明 记
$$S_n = \sum_{k=0}^n a_k$$
, 不妨设

$$\lim_{n\to\infty} S_n = +\infty.$$

于是对任意 C > 0, 存在 $N \in \mathbb{N}$, 使得对任意 n > N, 成立 $S_n \geq C$. 注意到

$$\frac{\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (1 - x) \frac{f(x)}{1 - x} \xrightarrow{\frac{\text{distign}}{\text{distign}}} \frac{\lim_{x \to 1^{-}} (1 - x) \left[\sum_{n=0}^{\infty} S_{n} x^{n} \right]$$

$$= \lim_{x \to 1^{-}} (1 - x) \left[\sum_{n=0}^{N} S_{n} x^{n} + \sum_{n=N+1}^{\infty} S_{n} x^{n} \right]$$

$$\geqslant \lim_{x \to 1^{-}} (1 - x) \left[\sum_{n=0}^{N} S_{n} x^{n} + C \sum_{n=N+1}^{\infty} x^{n} \right]$$

$$= C \lim_{x \to 1^{-}} (1 - x) \frac{x^{N+1}}{1 - x} = C,$$

由 C 任意性, 我们证明了

$$\lim_{x \to 1^{-}} f(x) = +\infty.$$

对于反例,考虑下面的函数即可

$$f(x) = \frac{x-1}{(1+x)^2} = \sum_{n=0}^{\infty} (-1)^{n+1} (2n+1)x^n.$$

命题 0.4

1. 设 $\lambda_1, \lambda_2, \cdots, \lambda_n$ 是两两不同的实数, C_1, C_2, \cdots, C_n 为复数.证明:

$$\lim_{x \to +\infty} \sum_{j=1}^{n} C_j e^{\lambda_j x} = 0 \Leftrightarrow C_j = 0, j = 1, 2, \cdots, n.$$

2. 设 $m \geq 2, \lambda_1, \lambda_2, \cdots, \lambda_m \in \mathbb{R}, C_1, C_2, \cdots, C_m \in \mathbb{C}$. 若

$$\lambda_i - \lambda_k \neq 2\ell\pi, \forall 1 \leq i < k \leq m, \ell \in \mathbb{Z},$$

证明:

$$\lim_{n\to\infty}\sum_{j=1}^m C_j e^{ni\lambda_j}=0 \Leftrightarrow C_j=0, j=1,2,\cdots,m.$$

Y

笔记 想法即类比傅立叶系数,做积分使得系数暴露出来.离散版本可以类似连续版本证明,连续的处理方式核心是乘上某个 $e^{-i\lambda x}$ 均值形式的积分取极限,从而离散的时候应该是乘上某个 $e^{-i\lambda y}$ 均值的取和.

证明

1. 充分性显然, 只需证明必要性. 考虑 $f(x) ext{ } ext{ }$

$$\begin{split} &\int_{T}^{2T} e^{-i\lambda_k x} f(x) \, \mathrm{d}x = \int_{T}^{2T} e^{-i\lambda_k x} \left(\sum_{j=1}^{n} C_j e^{i\lambda_j x} \right) \, \mathrm{d}x \\ &= \sum_{j=1}^{n} C_j \int_{T}^{2T} e^{i(\lambda_j - \lambda_k) x} \, \mathrm{d}x = TC_k + \sum_{j \neq k} C_j \frac{e^{i(\lambda_j - \lambda_k) 2T} - e^{i(\lambda_j - \lambda_k) T}}{\lambda_j - \lambda_k}, \end{split}$$

从而

$$|C_k| = \frac{\left| \int_T^{2T} e^{-i\lambda_k x} f(x) \, \mathrm{d}x - \sum_{j \neq k} C_j \frac{e^{i(\lambda_j - \lambda_k)^{2T}} - e^{i(\lambda_j - \lambda_k)T}}{\lambda_j - \lambda_k} \right|}{T}$$

$$\leq \frac{\int_T^{2T} |f(x)| \, \mathrm{d}x + \sum_{j \neq k} |C_j| \frac{2}{|\lambda_j - \lambda_k|}}{T} = \frac{|f(\theta_T)|T + \sum_{j \neq k} |C_j| \frac{2}{|\lambda_j - \lambda_k|}}{T}.$$

这里最后一个等号来自积分中值定理且 $\theta_T \in (T, 2T)$. 现在由 $\lim_{x \to +\infty} f(x) = 0$ 可知

$$\lim_{T\to+\infty}C_k=0, k=1,2,\cdots,n,$$

这就证明了 $C_i = 0, j = 1, 2, \dots, n$, 必要性得证

2. 充分性显然, 只需证明必要性. 对 $k=1,2,\cdots,m$, 我们有

$$\lim_{n\to\infty}\left(C_k+\sum_{j\neq k}C_je^{in(\lambda_j-\lambda_k)}\right)=\lim_{n\to\infty}\left(e^{-in\lambda_k}\sum_{j=1}^mC_je^{in\lambda_j}\right)=0.$$

现在由 Stolz 定理我们有

$$\begin{split} C_k &= -\lim_{n \to \infty} \sum_{j \neq k} C_j e^{in(\lambda_j - \lambda_k)} = -\lim_{n \to \infty} \frac{\sum_{\ell = 0}^n \sum_{j \neq k} C_j e^{i\ell(\lambda_j - \lambda_k)}}{n+1} \\ &= -\lim_{n \to \infty} \frac{\sum_{j \neq k} \sum_{\ell = 0}^n C_j e^{i\ell(\lambda_j - \lambda_k)}}{n+1} = -\lim_{n \to \infty} \frac{\sum_{j \neq k} C_j \frac{1 - e^{i(n+1)(\lambda_j - \lambda_k)}}{1 - e^{i(\lambda_j - \lambda_k)}}}{n+1}. \end{split}$$

结合

$$0 \leq \lim_{n \to \infty} \frac{\left| \sum\limits_{j \neq k} C_j \frac{1 - e^{i(n+1)(\lambda_j - \lambda_k)}}{1 - e^{i(\lambda_j - \lambda_k)}} \right|}{n+1} \leq \lim_{n \to \infty} \frac{\sum\limits_{j \neq k} |C_j| \frac{2}{|1 - e^{i(\lambda_j - \lambda_k)}|}}{n+1} = 0,$$

我们知道 $C_i = 0, j = 1, 2, \dots, n$, 这就证明了必要性!

例题 **0.12** 设 $\{\alpha_i\}_{i=1}^m \subset \mathbb{R}$ 满足

 $\lim_{n\to\infty}\prod_{i=1}^m\sin(n\alpha_i)=0.$

证明: 必有一个 $i \in \{1, 2, \dots, m\}$ 使得 $\frac{\alpha_i}{\pi} \in \mathbb{Z}$.

💡 筆记 本题是命题 0.4的一个应用

证明 由 Euler 公式得

$$\lim_{n\to\infty}\prod_{j=1}^m\frac{e^{in\alpha_j}-e^{-in\alpha_j}}{2i}=0\Rightarrow\lim_{n\to\infty}\prod_{j=1}^m(e^{in\alpha_j}-e^{-in\alpha_j})=0.$$

打开括号得

$$\lim_{n \to \infty} \sum_{\varepsilon_i \in \{-1,1\}} (-1)^{|\{i \in \{1,2,\cdots,m\}: \varepsilon_i = -1\}|} e^{in(\varepsilon_1 \alpha_1 + \varepsilon_2 \alpha_2 + \cdots + \varepsilon_m \alpha_m)} = 0.$$
 (7)

注意到若有

$$\varepsilon_1 \alpha_1 + \varepsilon_2 \alpha_2 + \dots + \varepsilon_m \alpha_m = \varepsilon_1 \alpha_1 + \varepsilon_2 \alpha_2 + \dots + \varepsilon_m \alpha_m + 2\ell \pi, \ell \in \mathbb{Z}, \tag{8}$$

则

$$e^{in(\varepsilon_1\alpha_1+\varepsilon_2\alpha_2+\cdots+\varepsilon_m\alpha_m)}=e^{in(\varepsilon_1\prime\alpha_1+\varepsilon_2\prime\alpha_2+\cdots+\varepsilon_m\prime\alpha_m)}$$

因此将(7)式中满足(8)式的项合并,得到新的和式的任意两项中的 $\varepsilon_1\alpha_1+\varepsilon_2\alpha_2+\cdots+\varepsilon_m\alpha_m$ 的差值都不等于 $2\ell\pi,\ell\in\mathbb{Z}$.于是由命题0.4知

$$\sum_{\varepsilon_i \in \{-1,1\}} (-1)^{|\{i \in \{1,2,\cdots,m\}: \varepsilon_i = -1\}|} e^{in(\varepsilon_1 \alpha_1 + \varepsilon_2 \alpha_2 + \cdots + \varepsilon_m \alpha_m)}$$

恒为 0. 否则, 上式每项系数 $(-1)^{|\{i\in\{1,2,\cdots,m\}:\varepsilon_i=-1\}|}=0$ 矛盾! 故现在就有 $\prod_{j=1}^m(e^{in\alpha_j}-e^{-in\alpha_j})=0$, $\forall n\in\mathbb{N}$, 取 n=1, 则必存在一个 $j\in\{1,2,\cdots,m\}$, 使得

$$e^{i\alpha_j} - e^{-i\alpha_j} = 0 \Longrightarrow e^{2i\alpha_j} = 0 \Longrightarrow 2\alpha_j = 2k\pi, k \in \mathbb{Z} \Longrightarrow \frac{\alpha_j}{\pi} = k \in \mathbb{Z}.$$