Linear Regression Analysis

- Bayesian Approach -

Tseng-Ching James Shen, PhD

Regression Model

• The parameters $W_0 W_1$, W_2 , ... W_d are random variables

$$y = W_0 + W_1 X_1 + + W_d X_d$$

 We will need to estimate the joint distribution of these parameters given by the observed dataset point, Posterior

$$p(\mathbf{W} | \mathbf{X}, \mathbf{y})$$

- It would be difficult to directly compute the posterior
- Bayesian approach is commonly used in machine learning to estimate the posterior

Bayesian Approach

We can apply the Bayer's rule to re-write the distribution as

=

- We will need to use the following to calculate the posterior
 - Likelihood
 - **≻**Prior
- There are two ways for the calculation
 - Conjugate prior-likelihood
 - ➤ Sampling Technique

Conjugate Prior-Likelihood

- If the prior and likelihood distributions are conjugate, the posterior will be of the same form as the prior
- Scenario 1

```
Prior – Beta distribution

Likelihood – Binomial distribution

=> Posterior – Beta distribution
```

Scenario 2 (*)

Prior - Gaussian distribution

Likelihood - Gaussian distribution

=> Posterior - Gaussian distribution

Scenario 2 – Gaussian Conjugate

```
    Assumptions
        ▶ Likelihood
        N(X w, )
        ▶ Prior
        N(μ₀, )
```

The posterior can be derived as (sec 3.8 in textbook)

```
p(\mathbf{W} | \mathbf{X}, \mathbf{y}) = \mathbf{N}(\mathbf{\mu}_{w}, \mathbf{y})
where
= (\mathbf{X}^{T}\mathbf{X} + \mathbf{y}^{-1})^{-1}
\mathbf{\mu}_{w} = (\mathbf{X}^{T}\mathbf{y} + \mathbf{y}^{-1}, \mathbf{\mu}_{0})
```

Sampling

- Sampling from a know distribution
- Sampling from an unknown distribution
- From observed dataset points, use a sampling technique e.g. the *Metropolis-Hastings algorithm* to derive samples of the unknown distribution
- The algorithm implements an iterative process which produces a sequence of samples **w**⁽¹⁾, **w**⁽²⁾, ..., **w**^(s)
- At i-th iteration of the iterative process, the technique does the following:
 - \triangleright Propose a new sample with a proposal density function, $N(\mathbf{w}^{(i-1)},)$
 - Use a *criteria* to decide if the proposed sample should be accepted or rejected and determine the new sample using the following rules
 - If accepted, **w**⁽ⁱ⁾ =
 - \circ If rejected, $\mathbf{w}^{(i)} = \mathbf{w}^{(i-1)}$

Accepting Criteria

- Assumption: $p(\mathbf{w}) = N(\mathbf{0},)$
- With, calculate the ratio as follows

```
r =
```

- The accepting/rejecting condition
 - >If r
 - \triangleright If r < 1, then generate a value u from a uniform distribution between 0 and 1,
 - If u then accept the proposed sample
 - If u > r, then reject the proposed sample

PyCM3

- Probabilistic programming framework for Python
- Provides API to specify the Bayesian model
- Implements various Markov Chain Monte Carlo (MCMC) sampling algorithms including Metropolis-Hastings algorithm
- Can be used to implement the Bayesian regression analysis