

离散制造业边缘计算 解决方案白皮书

(征求意见稿)

中国信息通信研究院 工业互联网产业联盟 2019年9月

版权声明

本白皮书版权属于中国信息通信研究院和工业互联网产业联盟,并受法律保护。转载、摘编或利用其它方式使用本白皮书文字或者观点的,应注明"来源:中国信息通信研究院和工业互联网产业联盟"。违反上述声明者,编者将追究其相关法律责任。

致 谢

本白皮书由中国信息通信研究院(以下简称"中国信通院")、工业互联网产业联盟、边缘计算产业联盟、华为技术有限公司、中国科学院沈阳自动化研究所、广州中国科学院沈阳自动化研究所分所、树根互联技术有限公司、和利时科技集团有限公司、机械工业仪器仪表综合技术经济研究所、阿里巴巴网络技术有限公司、北京亚控科技发展有限公司、华中科技大学、中国联合网络通信有限公司网络技术研究院、北京邮电大学等联合撰写发布,特此感谢!

白皮书编制团队: 时晓光、王哲、罗松、肖金超、胡晓晶、陈冰、 王永辉、李天辉、刘学东、武兆宝、张硕、吕华章、刘秋妍、卢铁林、 程晓磊、郎平、刘金娣、薛俊礼。 数字化浪潮正席卷传统离散制造业,逐步优化了生产车间的工艺条件和生产流程,在这个过程中,边缘计算快速兴起并体现出特有优势。边缘计算是在靠近物或数据源头的网络边缘侧,构建融合网络、计算、存储、应用核心能力的分布式开放体系,就近提供智能化服务,满足离散制造业在敏捷联接、实时业务、数据优化、应用智能、安全与隐私保护等方面的关键需求,其为离散制造业的数字化、网络化、智能化转型提供了强大助力。

同时,针对离散制造业的转型升级需求,其边缘计算解决方案在不断发展成熟,相关生态构建和产业布局也正在全球加速展开。在此关键时期,中国信息通信研究院联合工业互联网产业联盟共同发布《离散制造业边缘计算解决方案白皮书》(征求意见稿),把握离散制造业目前发展面临的挑战及边缘计算当前的应用现状,研判边缘计算为工业现场带来的真正价值,提出离散制造业边缘计算实施架构及技术体系,探索边缘计算解决方案实践,最后结合当前现状给出了离散制造业边缘计算技术和产业化发展建议。

目 录

一、离散制	造业发展面临的挑战及边缘计算的应用价值]
(-)	离散制造业迎来新的发展机遇1
(二)	离散制造业转型发展对边缘计算能力的需求分析.2
1.	制约离散制造业转型发展的关键因素 2
2.	边缘计算带来的工业现场价值4
(三)	离散制造业边缘计算应用基本情况 8
1.	边缘控制器层8
2.	边缘网关层10
3.	边缘云层10
二、离散制	造业边缘计算实施架构及技术体系11
(-)	离散制造业边缘计算实施架构11
(二)	离散制造业边缘计算关键技术12
1.	边缘智能12
2.	异构计算13
3.	互联互通技术14
4.	微服务14
5.	计算迁移15
三、离散制	造业边缘计算解决方案实践15
(-)	汽车生产制造领域边缘计算解决方案实践16
1.	面临问题和挑战16
2.	边缘计算解决方案实践18

3. 实践效果19	
(二) 电子制造领域边缘计算解决方案实践 20	
1. 面临问题和挑战20	
2. 边缘计算解决方案实践 21	
3. 实践效果23	
(三)工程机械领域边缘计算解决方案实践24	
1. 面临问题和挑战24	
2. 边缘计算解决方案实践 25	
3. 实践效果26	
(四)船舶制造领域边缘计算解决方案实践26	
1. 面临问题和挑战 26	
2. 边缘计算解决方案实践 29	
3. 实践效果31	
(五)定制家具领域边缘计算解决方案实践31	
1. 面临问题和挑战 31	
2. 边缘计算解决方案实践 32	
3. 实践效果33	
四、离散制造业边缘计算发展趋势及建议34	
(一) 离散制造业边缘计算未来展望34	
(二)离散制造业边缘计算技术和产业化发展建议 35	
1. 产业化发展建议 35	
2. 技术及标准发展建议 36	

图表目录

图 1	边缘计算通用架构	. 9
图 2	离散制造业边缘计算实施参考架构	12
图 3	智能产线终端架构	19
图 4	电子生产数字化车间解决方案架构	22
图 5	智能生产系统架构	26
图 6	船舶舾装件制造行业个性化定制和自组织生产系统框架	30
图 7	定制家具生产系统解决方案架构	33

一、离散制造业发展面临的挑战及边缘计算的应用价值

(一) 离散制造业迎来新的发展机遇

在全球已经掀起的新一轮工业转型浪潮中,数字化是基础,网络化是支撑,智能化是目标,在此背景下,离散制造业转型面临巨大发展机遇。当前,在产品规划、设计、制造、运营等生产过程中,离散制造业产品、生产装备、工艺流程等已经逐步实现了数字化和网络化,且智能传感和人工智能等技术不断发展成熟,因此,离散制造业的全面转型已经具备了基础条件。而边缘计算作为工业互联网工厂内网的关键技术以及连接工厂内外网的有效手段,是推动离散制造业转型发展的重要使能技术。

离散制造业与流程制造业相比,生产环节更加分散,生产设备更加多样,更容易通过软件改造工艺流程,而流程制造业因为其本身自动化水平已经很高,生产环节较为成熟封闭,且主要由硬件决定生产流程和产能,因此针对离散制造业的边缘计算解决方案率先在工业互联网应用中落地实施,边缘计算的功能和特点能够在实施过程中更易实现和展示,本白皮书也重点从离散制造业入手,进行边缘计算解决方案的分析。

随着新的发展模式不断成熟,对高质量发展的需求不断增加,未来离散制造业生产方式将朝着智能化方向提升,个性化定制、网络化协同、智能化生产、服务化延伸成为引领制造业高端化的重要模式。而工业互联网边缘计算的兴起将推动离散制造业沿着数字化、网络化、

智能化阶段不断跃升。

(二) 离散制造业转型发展对边缘计算能力的需求分析

1. 制约离散制造业转型发展的关键因素

随着新一代信息技术的进步和相关政策的支持,我国离散型制造业正积极的向数字化、网络化、智能化方向转型,但是制约离散制造业转型的因素仍有很多,例如多数离散制造企业没有统一的数据标准;特殊工艺规划等方面不易进行数字化积累;现有数据资源的可利用率不高,降低了数字化的实用价值;缺少统一规划和认证,工业现场存在众多"信息孤岛",数据开放度低;工业现场网络协议多样异构,互联互通困难等,这些因素都为离散制造业转型发展造成阻碍。目前中国离散制造业自动化技术方面的发展现状及挑战如下:

单机设备自动化软件的结构化和柔性化不足,缺少开放式接口,设备间缺少统一的互联互通标准。因为离散制造业涉及的行业众多,发展不均衡,整个离散制造业目前还未普遍实现基于订单的柔性自动化生产。总体上,随着数控机床、工业机器人以及可编程逻辑控制器(Programmable Logic Controller, PLC)的广泛应用,各个行业的单机自动化水平都有了较大提升,但离散制造业整体还处于以单机自动化为主和刚性自动化产线为主的状况,柔性自动化产线较少,真正实现基于订单的柔性自动化产线更少,OT系统和IT系统难以实现互联互通。

数据采集困难,缺少完整的数据集成应用架构。目前离散制造业

普遍存在低端产能过剩、高端产能不足的情况。提高高端产能首先需要从装备入手提高生产品质。一方面,行业知识还需要长期积累来转化为设备工艺软件的进步;另一方面,数据驱动的应用还需进一步加强来促进工艺参数的优化、生产调度的优化、生产设备的实时监控诊断、预测性维护等。行业内大部分设备和产线传感器数量不足,一些关键的物理量尚缺乏有效的传感测量手段,一些自动化装备获取的状态数据没有通过开放式接口提供给第三方,且原有的自动化系统和架构都不能提供良好的支撑。

装备和产线自动化软件系统薄弱,软件升级维护困难。在目前的发展阶段,各个离散制造行业的自动化软件水平极不均衡,在装备中还存在大量"黑盒子",即缺少关键工艺控制能力,大量采用第三方的专用控制器,既难以实现工艺算法和软件的自主迭代升级,也影响了装备软件的统一架构设计。很多装备的人机交互软件、逻辑控制、运动控制等分布在多个PLC,专用控制器,触摸屏,甚至嵌入到底层的伺服驱动器等硬件中,相互之间连接和控制方式不尽相同,导致装备缺乏整体的软件架构设计。同时,软件与硬件耦合严重,设备的软件含量低,结构化设计不足,硬件设备和设备功能的更换升级都会造成大量的低效软件升级工作,距离"软件定义机器"的目标还比较远。

生产线设备的功能安全和信息安全形势严峻。原有的大量自动化设备主要运行在刚性、封闭的自动化系统中,缺少内置的功能安全和信息安全机制,要适应柔性自动化生产,设备功能动态重构,与 IT 系统互联互通等要求,必须要有功能安全和信息安全的保障。

工厂运营人员劳动强度大,效率低。相对于流程行业,离散制造业的设备产线操作人员、品质检测人员、生产管理人员、设备维护人员工作内容更为繁琐,更容易出现疲劳状况。对于生产规划人员来说,离散制造涉及的不确定性因素较多,制定按需生产、有弹性的生产计划比较困难。一些关键零件加工环节、装配环节不能完全依赖于自动化,需要有经验的工人完成,目前尚缺乏有效的人机协作机制来减轻操作工人的劳动强度。基于机器视觉等手段的在线检测装置正获得广泛的应用,但在很多工厂,质量检测仍是一个劳动力密集环节。

原有标准和解决方案不适应转型发展。原有的工厂自动化和信息 化架构的参考模型主要是 ISA-95 的金字塔模型,该模型定义了工业 现场设备及系统的接口和数据交换标准。目前,一方面在实际中该标 准并没有得到很好的实现,广泛采用的是主流厂家以数据库为中心的 方案;另一方面,该标准也需要进一步完善,适应离散制造业数字化 转型的需求。

2. 边缘计算带来的工业现场价值

随着离散制造业的发展,对高质量发展的需求不断增加,对业务时延、隐私和安全等指标的要求也进一步升级,整体作业呈现精细化,柔性化和智能化的发展趋势,这就不仅需要云计算的整体运筹,也需要边缘计算的本地实时决策职能。

边缘计算是在靠近物或数据源头的网络边缘侧,构建融合网络、 计算、存储、应用核心能力的分布式开放体系,形成新的生态模式, 就近提供边缘智能服务,满足离散制造业在敏捷联接、实时业务、数据优化、应用智能、安全与隐私保护等方面的关键需求,从 OT 与 IT 跨界协作、推动信息流动和集成、实现知识的模型化以及开展端到端的产业各环节协作推动离散制造业的发展。

边缘计算提供了设备之间互联互通机制、OT 系统和 IT 系统互联互通机制,以及部署于工业现场的实时数据采集、汇聚、存储、分析机制,可以快速便捷地实现 OT 与 IT 的整合。边缘计算平台及支撑技术有利于解决离散制造业当前和未来所面临的如下问题:

边缘计算能有效解决离散制造系统的连接性问题。离散制造领域行业众多,行业碎片化导致设备连接协议众多,造成设备互联困难。边缘计算平台具有完善的连接配置和管理能力,收集系统间实时通信需求和服务质量要求,运行优化调度算法,转化为对时间敏感网络(Time Sensitive Networking, TSN)交换机和 5G 网络的配置,支持多种实时数据流传输。在保证信息安全的基础上,不仅可以把支持传统接口和协议的设备接入边缘计算平台,而且通过引入数据抽象层,使得不能直接互联互通的设备基于边缘计算平台实现互联互通,边缘计算平台的低延迟性能可以保证设备间的实时横向通信。

边缘计算为离散制造业提供边缘侧的建模工具及智能工具。不同类型的离散制造工厂,都需要不断提高自动化和数字化程度,提升制造质量和效率,不断丰富以数据为中心的各种应用。边缘计算作为物联网架构的中间层,提供了现场级的实时计算、存储和通信机制。容器化的边缘计算核心组件和应用程序部署机制、标准化的设备数据采

集机制,逐步完善的边缘应用程序生态、基于边云协同的人工智能模型训练和部署机制,将为离散制造领域专家提供大量平台化、模块化的灵活易用工具,不断提升工厂的精益制造能力。

边缘计算平台为离散制造业提供决策和效率优化能力。当前大量离散制造系统受限于数据的不完备性,整体设备效率等指标数据计算比较粗放,难以用于效率优化。边缘计算平台基于设备信息模型实现语义级别的制造系统横向通信和纵向通信,基于实时数据流处理机制汇聚和分析大量现场实时数据,实现基于模型的生产线多数据源信息融合,为离散制造系统的决策提供强大的数据支持。边缘计算可以有效支持:物料的标识和可追溯性;设备和产线的实时状态监控;现场操作指导和操作优化;自适应的生产调度和工序的优化;上下料和车间物流环节的优化。

边缘计算为离散制造系统的数字孪生系统提供支撑。数字孪生系统是数字制造系统的核心,包括产品数字孪生,生产过程数字孪生,性能数字孪生。数字孪生系统发挥作用依赖于深入的领域知识和丰富的实际数据。边缘计算平台基于设备管理壳模型来对实时数据进行清洗和预处理,来保证数据的完整性和有效性,为模型和数据的融合提供基础支撑。

边缘计算具有丰富的抽象和粘合能力,针对老工厂升级和新工厂建设的不同需求,能够提供具有一致性的设计解决方案。目前大量老工厂都面临数字化转型问题,边缘计算由于具有丰富的连接性和灵活的部署能力,可以提供多种轻量级的解决方案,在不对自动化装备进

行大规模升级的情况下,通过增加边缘网关和必要的边缘数据采集终端等,可以有效提高制造工厂的数字化水平,加强数据在制造系统各个环节间的流动,实现各种基于数据的智能应用。

边缘计算平台可以实现离散制造系统实时工业软件开发的软硬件解耦。智能工厂的运行依赖于智能装备和智能流程,需要大量的实时软件支持。目前很多装备实时应用软件过度依赖于具体的控制系统硬件,难以迁移到不同的系统。基于边缘计算平台的微服务架构,可以将大量实时规划、优化排版、设备监控、故障诊断和分析、自动导引运输车(Automated Guided Vehicle,AGV)调度等功能封装在边缘应用程序上,实现了软件与硬件平台的解耦,降低了开发难度,提高了软件质量,通过边缘计算平台可进行边缘应用程序的灵活部署,实现了领域知识的分享。

边缘计算平台可以进一步促进离散制造系统的 IT/OT 融合。边缘计算平台既连接 OT 系统,又连接 IT 系统,既具有低延迟、高可靠的现场实时数据采集和处理能力,又有丰富的 IT 工具和接口,是当前实现离散制造系统的 IT/OT 融合的有效手段。边缘计算平台通过提供整体的数据发布/订阅机制,根据离散制造柔性生产的需求,可以实现从数据源到多个数据订阅端的实时通信,解决传统结构信息流动不畅的问题。边缘计算平台提供了现场侧丰富的计算和存储能力,可以利用边缘计算数据处理组件和边缘 APP,把各种工艺算法进行灵活部署,实现边缘和云的协同。

(三) 离散制造业边缘计算应用基本情况

目前,边缘计算在离散制造业中的物理实现形式主要以边缘控制器、边缘网关以及边缘云为主,如图1所示,企业将根据自身需求部署其中一层或者多层架构。其中,边缘控制器、边缘网关以及边缘云基于云原生的边云协同架构,采用轻量级容器管理、虚拟化等技术构建统一的现场异构数据集成平台,负责从各现场设备采集数据,实现边缘侧人员、设备、物料、环境、业务管理等数据的统一接入、本地集中存储、边缘分析处理等。

1. 边缘控制器层

边缘控制器是工业互联网边缘侧连接各种现场设备,进行工业协议的转换和适配,统一接入到边缘计算网络中,并将设备能力以服务的形式进行封装,实现物理上和逻辑上生产设备之间通信连接。边缘控制器硬件架构设计采用分布式异构计算平台,一般采用异构计算体系结构,支持全分布式控制以及多种控制器的协作运行和无缝集成,也是目前各种实时嵌入式硬件平台实现的主流实现方案;在满足硬件实时需求前提下,利用多物理内核结合虚拟化技术的支持,实现在同一硬件平台上运行实时与非实时任务或操作系统,并满足系统多样化与可移植性的需求,提高整体平台体系的安全性、可靠性、灵活性以及资源的利用效率;应用时空隔离的多任务和多线程调度机制与改造优化调度算法相结合的方式,实现任务调度机制。

图 1 边缘计算通用架构

针对需要采用多控制器协同控制的智能工厂复杂任务,边缘控制器采用协同控制策略和控制一致性协议,结合无边界网络化的动态仿真技术,提高现场干扰环境中网络信息交换时智能控制系统的鲁棒性和实时性,实现多控制器在动态环境下的自适应协同控制。同时,采用软件定义的网络化智能控制系统技术,提高了控制系统的灵活性,对边缘侧生产设备和产线,可快速满足小批量多品种柔性制造的控制工艺重构要求。

2. 边缘网关层

边缘网关是指具备边缘计算、过程控制、运动控制、机器视觉、现场数据采集、工业协议解析能力的边缘计算装置。边缘网关能适应工业现场复杂恶劣环境,满足国内主流控制器、工业机器人、智能传感器等工业设备的接入和数据解析的需求,支持边缘端数据运算及通过互联网推送数据到工业互联网平台。

边缘网关可将现场各种工业设备、装置采用、应用系统的标准或私有通信协议转化成标准 OPC UA 等通讯协议,使得上位系统及工业互联网平台可采用统一的协议和信息模型与不同设备和系统互相通信,方便系统集成,实现远程监控、故障诊断、配置下载、远程管理等功能。

3. 边缘云层

边缘云是边缘侧单个或者多个分布式协同的服务器,通过本地部署的应用实现特定功能,提供弹性扩展的网络、计算、存储能力,满足可靠性、实时性、安全性等需求,是实现 IT 技术与 OT 技术深度融合的重要纽带。

一方面,将在云端基于机器学习离线训练好的模型部署到边缘云,并通过定期更新模型算法来同步边缘智能,可以使得紧急类故障能够在本地及时报警,同时可以对一些相关参数指标进行实时修正。另一方面,根据模型中输出与特征之间权重关系,优化终端上传数据的过滤规则,以此减少流量成本和云端存储成本。

二、离散制造业边缘计算实施架构及技术体系

(一) 离散制造业边缘计算实施架构

如图 2 所示,整个离散制造业边缘计算实施架构包括现场设备层、边缘计算平台层以及支持边云协同的云平台层,边缘计算平台负责从各现场设备采集数据,实现边缘侧人员、设备、物料、环境、业务管理等数据的统一接入、本地集中存储、边缘分析处理等,并通过对现场设备的物联集成(如:生产设备、物流设备、检测设备)采集设备运行参数,将数据传送至云平台,同时实时接收云平台下发的控制指令,最终反馈至相应设备,从而实现对现场设备的数字化管理,对离散制造业的生产过程控制、工艺优化具有重要意义。

此外,随着边缘计算在离散制造业中的应用不断广泛,云计算与边缘计算的协同效应也在快速增强,边云协同成为离散制造业数字化改造的主要使能器。一方面,边缘计算在工厂内部发挥重要作用。边缘侧数据分散,本地应用系统多,需要大量的计算、存储资源。边缘计算平台可以实现业务数据本地处理及生产现场的实时控制反馈,同时,边缘计算平台通过东西向联接进行数据和知识的交换,支持计算、存储资源的横向弹性扩展,能够完成本地的实时决策和实时优化操作。另一方面,边缘计算平台将与工厂外的云平台协同联动,边缘侧聚焦实时、小数据的处理,而云平台侧聚焦长周期、大数据的处理。边缘计算平台通过南北向链接与更上层的工业云平台实现数据交换和应用管理协同,实现边缘侧基础设施资源的统一管理、调度和运维,支

굸 供应链协同 平台互操作管理 制诰协同 平 业务编排 数据服务 模型服务 应用开发 台 边云协同 离散制造执行过程边缘管控 离散制造生产计划管理 离散制造仓储运输与物流管理 离散制造 预算管理 数据预处理 数据分析 边缘智能 数据分析 业边缘计 自动化立体库 AGV管理 智能商务分析 质量管理 设备接入 结构管理 数据缓存 算平台 最优拣选路径计算 仓库进出库管理 异构计算 设备管理 协议转换 PLC控制 运动控制 运营智能 设计数据 MES CAX 离散制造 生产计划运 生产数据 离散制 SCADA 现场监控 加工与生产线 营管理系统 仓储数据 产品数据 造业边 生产数据 及仓储管 现场监控 PLC 理系统 缘设备 运营数据 产品交付 及系统 运输系统 ERP 执行设备 传感器 SCM CRM 机器人 机床

撑边缘侧应用的灵活部署和升级。

图 2 离散制造业边缘计算实施参考架构

仓储

交货

(二) 离散制造业边缘计算关键技术

采购

离散制造业边缘计算平台需要解决海量数据管理与处理、多源数据集成、各类设备接入、数据建模分析、资源规划分配、应用创新与集成等一系列问题,边缘计算的核心关键技术能够支撑这些需求,一些典型关键技术在业界被广泛应用并受到高度关注,其中一方面边缘智能、异构计算、互联互通等技术进一步提升边缘侧面向离散制造业的数据管理和分析能力;另一方面微服务与计算迁移等技术不断提升平台资源利用效率,进一步提升边缘计算平台服务能力。

1. 边缘智能

计划

边缘智能是赋能离散制造业实现数字化转型的关键技术,提供了

边缘侧的建模能力、数据汇聚和分析能力。边缘智能从延迟、内存占用量和能效等方面,进行边缘计算节点上智能推理加速和多节点智能训练算法的联动,完成轻量级、低延时、高效的人工智能计算框架,边缘设备需要执行越来越多的智能任务,例如在刀具监测过程中,通过对机床主轴负载数据进行采集与分析,实现边缘侧刀具在加工过程中的实时状态监测和寿命预测管理以及数据信息可视化;此外,针对信息安全、数据不出网等要求,边缘节点需要完成数据安全预处理,边缘一云数据中心协同才能开展完整的智能模型训练,以上操作配合计算机视觉、自然语言处理等智能算法模型库和强化学习、离线分析、迁移学习等工具组建,形成完整的边缘智能功能栈。

边缘节点应用对计算和流量宽带处理存在较强依赖,计算方面,应用需要智能算法框架完成人机交互、编解码/加解密等算法框架进行信息预处理、离散制造等建模算法构建专业领域信息框架;流量方面,边缘节点需要数据源带宽低收敛比、低时延响应的物理资源环境,以满足数据传输和交互需求。

2. 异构计算

工业互联网应用的普及带来了信息量爆炸式增长,特别在离散制造业,海量的传感器数据、文本/超文本、声音数据、影像数据、视频序列等对边缘计算能力都提出了更高的要求,边缘设备既要处理结构化数据,同时也要处理非结构化的数据。因此,离散行业业务与数据的多样性驱动计算的多样性是必然趋势。针对上述需求,业界提出

了将不同类型指令集和不同体系架构的计算单元协同起来的异构计算架构,以充分发挥各种计算单元的优势,实现性能、成本、功耗、可移植性等方面的均衡。在离散行业通过异构计算对各种类型数据进行内容分析和融合处理,从海量数据中挖掘隐藏信息和有效数据,提高离散制造过程中各种装备状态监测的准确性。

3. 互联互通技术

OPC UA Over TSN 为传感器层、控制器层到自动化软件层提供一套统一且标准的网络与通讯体系,打破自动化金字塔的传统结构,并有效解决用户与集成商在系统集成时所遇到的困境。TSN 技术和 OPC UA 相结合,可以满足离散制造业应用的各种传输需求,支持边缘侧工业设备的联网接入,实现边缘侧的互联互通,赋予离散制造业生产制造系统高度灵活性,工厂车间网络架构可以快速调整优化,有效提升网络化协同制造与管理水平。

例如,在离散制造业工厂数据采集、传输与生产运营中,都会需要对现场的机器状态、生产能耗、生产质量等相关参数进行采集,TSN+OPC UA 在整体上使得工厂各个环节的横向与纵向数据实现了透明交互,并且配置效率更高,程序与应用模块化更强,为工厂边缘计算平台提供了有力支撑。

4. 微服务

微服务是一种开发应用软件的方法,围绕特定业务功能构建一套 小型独立可部署的服务。传统的 IT 行业软件大多都是各种独立系统 的堆砌,存在扩展性差,可靠性不高,维护成本高,无法直接在边缘侧执行等问题,而微服务有效地解决了上述问题。通过微服务,特定功能被放入单独的服务中,允许这些服务在服务器之间分发与复制。每种应用程序都在其自己的进程中运行,并与轻量级机制进行通信,占用资源少,可以在边缘侧灵活部署。同时,这些服务的集中化管理程度大大降低,它们可以用不同的编程语言编写,并使用不同的数据存储技术,也符合边缘计算资源灵活异构的特点。

5. 计算迁移

计算迁移是将计算密集型应用任务迁移至资源较充足的设备中执行,从而实现资源合理规划利用,提升计算效率。由于网络带宽等资源限制,离散制造业生产现场面临海量边缘设备的数据传输、处理及计算分析需求无法满足的挑战。针对上述问题,边缘侧计算迁移首先将海量边缘设备采集或产生的数据进行部分或全部计算的预处理操作,对无用的数据进行过滤,降低传输的带宽;其次,计算迁移根据需求及设备当前算力等基本情况,进行动态的任务划分,合理分配边缘设备及云中心计算资源,防止计算任务迁移到处于系统任务过载状态的设备,影响计算效率。计算迁移通过在能耗、边缘设备计算延时和传输数据量等指标之间寻找最优的平衡,不断优化资源利用率,提升离散制造业生产效率。

三、离散制造业边缘计算解决方案实践

离散制造的产品往往由多个零件经过一系列并不连续的工序的

加工最终装配而成,例如飞机制造、船舶制造等。其中,由于离散制造过程中每道工序中涉及的工艺参数不一,而统合这些参数需要花费大量的人力和时间。同时,离散制造对于流程管控要求较高,在企业内部一般将同一工序的设备按照空间和行政管理划分建成一些生产组织(例如部门、工段或小组),这将势必会出现各个小组之间的数据互通性和共享性间歇或断续的现象。同时,离散制造业产品设计、处理需求和定货数量方面变动较多,呈现少量多样化特征。离散制造业具有以上特征,也决定了边缘计算需要针对不同产品、产线具有不同的特征性部署,主要分为少品种大批量离散制造业与多品种小批量离散制造业两大类别。其中少品种大批量离散制造业以汽车生产制造领域和电子制造领域为典型代表;多品种小批量离散制造业以工程机械领域,船舶制造领域和定制家具领域为典型代表。

(一) 汽车生产制造领域边缘计算解决方案实践

1. 面临问题和挑战

汽车作为现代重要交通工具,其对于产品质量要求十分严格。按照汽车生产全生命周期来进行阶段划分,其对质量的要求主要体现在如下两个阶段: 1)设计研发阶段,汽车制造业平均超过 70%以上的综合质量成本来自设计问题,例如零件安装的定位设计不合理等问题; 2)生产制造阶段,该过程主要来自于边缘的现场制造端,与中心端有实际的隔离,为保证产品质量,需要对事前的人员、工装、物料等进行合规校验、对事中的工艺路线、数量进行实时防错管控,对事后

的产品资料形成电子档案供多维度查询追溯。

因为汽车生产制造属于大批量离散制造,对于效率同样有较高的 要求,例如生产效率、人均产值、设备稼动率、成品周转率、进/出 货延误率等。而目前汽车生产制造效率主要受到以下几个方面的影响:

- 1)各产线生产完工计数靠人工统计,生产任务由人工布置,效率低下;
- 2) 产线生产发生停线或其他影响生产故障等问题时, 人工记录 停线时长、停线原因;
- 3) 产线各设备孤立,没有联网,设备、生产相关人员无法随时监控设备的运行状态;

围绕上述质量与效率的业务需求,在软件支撑层面,中心端与边缘端都是必不可少的,例如,某国内知名汽车公司其车间网络与信息中心网络由7层路由节点构成,即产线侧采集数据需要经过7个交换机才能到达中心,中心侧发出的控制指令也需要通过同样的路径长度才能到达产线侧,这种方案显然无法满足秒级的时延要求。为保证车间现场对生产效率与产品质量的管控要求,必须要借助边缘计算即时的数据处理能力,将数据传输节点由7层降为1层,才可以快速响应来自产线侧的物料防错与盘点,工艺路径与参数防错,硬件与机械防错等请求,从而快速给出判断指导生产执行;此外,边缘计算的优势还在于其可以大大缓解中心侧的计算压力,单就汽车制造企业而言,一台整车约由2万多个零部件组装而成,结合批量式生产制造,如果所有这些数据与逻辑处理请求都上传到中心端计算,则会造成中心负

载压力繁重,资源损耗巨大等问题。综上,边缘计算是汽车制造企业 提升效率与质量的有力支撑。

2. 边缘计算解决方案实践

智能产线终端系统作为汽车生产制造信息化平台的关键系统,是实现边缘计算的重要载体,其功能类似于实施架构中的边缘网关,分别处理各产线的生产数据、异常停线、班组绩效等信息,并将数据汇总传输至制造执行系统(Manufacturing Execution System, MES),极大的减轻了中心侧的计算负荷,提高了数据信息处理效率。其中,智能产线终端系统主要实现以下各功能:

- 1)接收来自管理系统下达的生产计划:
- 2) 通过采集设备计件信号或扫码枪条码信息等实现生产实时完工统计:
- 3)通过记录实际生产时长以及产量计算生产效率,实现生产绩效考核:
- 4) 通过异常按灯功能自动统计停线时长,停线原因等信息,为 实现产线运行效率计算以及异常停线分析提供全面的数据信息;
 - 5) 记录生产人员信息, 为考核提供依据;
 - 6) 建立产品与工艺对应关系,实现工艺防错;
 - 7) 完工标签打印,实现物流扫码确认入库。

图 3 智能产线终端架构

3. 实践效果

智能产线终端系统实现了现场可监控、可追溯、可共享的目标,并实现了以下几个方面的效率提升:

- 1) 实现任务自动下发和生产过程全记录,监控每小时生产情况, 灵活调整生产任务,并自动统计生产数据供进行指标分析,提高生产 效率;
- 2) 打通管理层和车间设备层的数据通道,采集设备全面生产数据,利用数据分析不断优化产线工艺,提高生产效率,减少故障率等,全面提高生产车间的整体执行效率;
- 3)为企业构建生产信息化平台,扩大系统规模,分布式部署,集中式监控打下基石,提供有力的边缘数据支持和服务保障。

(二) 电子制造领域边缘计算解决方案实践

1. 面临问题和挑战

电子产品技术更新快,制造过程复杂,制造工艺和检验标准不完全一样的产品会在同一个工厂并行生产。电子制造行业注重生产设备的运转效率,对生产过程质量要求高,以满足客户对质量、交货期的严苛要求。同时,由于传统的电子行业的工厂在生产现场数据采集和数据分析利用方面存在着欠缺,在生产营运方面存在着许多不足,问题分析及成因主要表现在如下几个方面:

- 1)生产线自动化程度不高,存在大量的人工插件、手工焊接、 离线自动光学检测等,成为了产线效率提升和生产质量改进的瓶颈;
- 2) 由于生产前端实时数据采集机制的欠缺,生产管理信息的传递大量依赖纸质文件、电子表格等传统方式,业务信息传递不畅通, 无法做到信息流跟踪,生产实绩等数据实时透明共享;
- 3)数字化编码不完善,包括设备编码、原材料批次和包装编码、 工装夹具等生产资源编码、产品部件编码等都不能完全满足数字化管 理的要求,存在编码分类不完整、编码缺失等典型问题;
- 4)设备管理和维护流程不健全,未有效建立维护等级评价机制, 缺乏完整的设备台账和设备状态监控机制,大部分设备没有联网和互 通,设备运行状态、设备参数、设备异常报警信息没有自动化采集和 集中存储,设备生产效率指标无法准确统计和计算;
 - 5) 由于缺少生产动态数据采集并与计划数据整合分析, 使得生

产计划协同方面存在的欠缺,同时,边缘层数字化基础薄弱,生产过程管控能力不能满足未来数字化生产要求;

6) 由于缺少仓储物流前端的实时感知和数据采集,仓储物流管理方面存在的问题。

针对上述问题,边缘计算将原本完全由工业云实现的服务能力加以分解,切割成颗粒度更小的服务,分散到中心节点和多个边缘节点去处理,并通过工业互联网实现服务的协同。由于边缘节点更接近于工业现场设备或数据源,可以减少传输延迟,加快处理速度,满足低时延的数据处理的要求,提高服务的确定性,提供具备高速响应性的高可靠服务,能够更好地支撑工业应用场景的实时控制与应用服务。

2. 边缘计算解决方案实践

电子生产数字化车间以电子生产所要求的工艺和设备为基础,以信息技术、自动化、测控技术等为手段,用数据连接车间不同单元,对生产运行过程进行管理、诊断和优化。解决方案集边缘计算、工业互联网、工业机器人、工业视觉、二维码、AGV 小车等先进技术于一体,基于边缘云平台作为整个数字化车间建设和运行的核心支撑系统。

针对电子制造行业中小企业面临的共性问题,该解决方案的目标是打通生产计划、电子生产车间制造、仓储管理、质量管理、设备管理、工艺管理等相关业务模块的数据流和信息流,实现数字化车间。具体的建设目标包括:

1) 基于边缘控制器和智能设备设计和建设自动化柔性生产线,

包括智能立体库、自动化生产线、智能电子看板、柔性装配测试线和AGV 自动化物流仓储系统等,以减少人工作业,提高生产效率,保证产品生产质量。这些自动化生产设备包括自动插件机、激光刻码设备、视觉识别设备、光学检测机、检测机、机器人、AGV等。

图 4 电子生产数字化车间解决方案架构

- 2) 基于边缘网关和边缘云平台搭建车间数据集成平台,面向生产过程环节,采用采集、检测、识别、控制、计算、存储、通信等技术,基于 OPC UA 工业标准,支持异构数据集成,构建一个全互联的数字化虚拟工厂,实现电子生产车间的生产过程和设备运行相关数据的采集、存储和分析,并为信息化集成和数字化管理提供数据支撑;
 - 3) 基于边缘云平台开发和提供各种车间生产制造执行应用,包

括生产过程管理、设备管理、质量管理、能源管控、物料管理等工业 APP:

- 4)基于边缘云平台开发和提供各种仓储管理应用,实现原材料 批次、产品的全方位追溯,主要功能包括:实现储位的精确管理,货 架、存位的定置定位管理;实现货物精准管理,在出库环节使用了整 体调度,所以保证了库存商品的新老更替,较老的批号优先发货;加 强库房可管理性,任务执行、工单任务状态、任务优先级、库内各环 节管等;
- 5)构建边缘云平台与工业云平台的协同框架,实现云边协同的生产计划协同及生产过程优化管理,实现与企业资源管理系统(Enterprise Resource Planning, ERP)、产品数据管理系统、办公系统等信息化系统之间的数据信息实时交互。

3. 实践效果

基于边缘计算的电子制造行业解决方案能显著提高生产效率,提升产品质量,实现产品、质量、物料和生产过程的全面追溯和可视化,节省人工成本 30%以上,产品一次通过率提升到 99.5%以上,年产能提升 2 倍以上。

自动化生产线可实现生产节拍的自适应平衡调整,自动识别和测试产品,实现生产一次的自动筛选与报警,生产作业自动化率达85%以上,实现生产过程100%可追溯性。

自动数采率可显著提高到 90%以上,实现数据一次采集或录入,

各处使用,实现生产报工、订单完工率等信息从生产现场秒级同步到上层 ERP 等信息系统,基本上可实现实时数据交互。

(三) 工程机械领域边缘计算解决方案实践

1. 面临问题和挑战

工程机械设备如混凝土机械、挖掘机械、起重机械、筑路机械、桩工机械、港口机械、石油装备、煤炭设备等,其生产制造是典型的离散制造过程,多品种小批量的生产模式是常态,并常伴有专业定制、个性化需求。其中,机械设备的典型生产流程包括:材料保管和运输、铸造、锻造、冲压、焊接、热处理、表面处理、喷漆、装配、调试、检验等环节。这种制造模式下,不同生产单元之间分散且独立,而且原材料复杂,周期地域差异很大,需要调度大量的人力物力才能完成整个生产过程。为了提升生产效率,AGV、机械臂、数控机床、PLC等设备逐渐被大量使用,使得其生产过程迫切地需要边缘控制器、边缘网关、边缘云等先进技术来连接人、物料、机器来满足生产现场高度协同的需求。工程机械设备制造过程面临的挑战主要体现在以下几个方面:

- 1) 机械设备多品种、小批量、定制化的生产非常频繁,制造流程涉及不同生产单元之间分散且独立,并常伴有大量人工操作,极大地影响了生产效率;
- 2) 传统机械设备在销售交付用户后便从此"失联", 生产厂家无法了解设备的运行状况、用户的使用状况, 同时, 由于机械设备的使

用场景在地理位置上非常分散,售后人员到达现场前对故障类型一无 所知,也无法对维护所需的备件提前调配,售后维护的成本一直居高 难下;

3) 工程机械设备复杂度高,生成过程效率、能耗及质量控制、 后市场运行数据追踪处理反馈等,都涉及大量的数据采集、分析、实 时反馈应用,而目前工厂数据处理能力无法满足相关需求。

工程机械生产要实现高度柔性,不仅生产现场需要高度协同,还需要利用 IT 技术建立起与下游供应链的自动化信息交互模式。通过边缘计算的数据边云协同适配性灵活,更易于提供包括原材料(长周期、多地域等)、生产制造(质量、能耗等)、生产环境监测(绿色环保等)、后市场跟踪(维护、服务等)、商业信息反馈(销量、生命周期等)等在内的全面数据综合分析,为企业生效率、经济效益、库存优化、商业规划等方面的提升提供改良数据依据。

2. 边缘计算解决方案实践

国内某机械装备行业龙头企业借助信息化时代的优势,通过智能生产系统,实现高度柔性生产。参照离散制造业边缘计算通用架构,企业根据现场需求,综合应用部署了边缘控制器、边缘网关、边缘云的三层架构体系,在生产车间导入自动化制造模式,优化运行系统,提升设备生产制造能力。AGV、机械手臂、数控机床、PLC 以及智能电表、电机振动监控等设备大量使用,并借助于边缘网关、边缘云,实现了本地实时可靠的联动和边云数据协同等能力,很好的应对了离

散制造业多品种、高效率、高质量、低成本方面的压力与挑战。

图 5 智能生产系统架构

3. 实践效果

在实施生产现场的智能化改造之前,该机械设备生产厂家的车间内2条泵车线有800多工人,现在只需要200余人,生产效率大大提升。智能化升级后的工厂,在四个维度上提升了其市场竞争力:

- 1) 产能规模:单个工厂 20 个工位、30 余种型号混装,单个工厂支撑 100 亿产值;
- 2) 生产效率:流水化装配 5 分钟下线一台挖掘机,人均产值提高 24%,制造成本解决约 1 亿元;
- 3)提升品质:减少生产误操作40%,不良品率下降14%,质检电子化率100%;
 - 4) 库存效率: 易损件、备件呆滞库存降低 40%。

(四) 船舶制造领域边缘计算解决方案实践

1. 面临问题和挑战

现代造船是以统筹优化理论为指导,利用成组技术原理,以中间产品为导向,按区域组织生产,壳(船体)、舾(舾装)、涂(涂装)作业在空间上分道,时间上有序,实现设计、生产、管理一体化,均衡、连续地总装造船。其中,舾装作业是现代造船模式中的重要组成部分,具有产品种类多,数量大的特点,同时每一种舾装件针对不同的船型、船东使用及实船安装布置等各方面因素的要求,需要具有不同的型式、规格及尺寸等,是典型的多品种小批量的离散型生产模式。

此外, 舾装件生产具有行业特殊性, 例如插单现象, 多以修改单 形式存在于舾装件加工作业中,在车间生产流程已然成为生产中的一 个环节而非突发状况。其特殊性在于: 订单方面, 在舾装件生产过程 中可以将托盘清单视作为订单,而托盘的生产完全取决于船舶的生产 计划,相较于其它离散制造,在舾装件的生产节奏上有更多可调控的 空间;生产设备方面,舾装件生产过程中所涉及的数控设备不多,除 了数控切割机以外的设备都是由人工操作,在生产调度上具备更强的 灵活性。此外, 舾装件生产的另一个特点是"以销定产", 即舾装件 制造企业必须在接到订单之后根据甲方(船厂)提供的图纸才可以启 动舾装件的制造,而无法像汽车行业那样靠预测市场先生产汽车的模 式。舾装件制造类似于为客户提供定制化服务,个性化需求高,设计 变更频繁,不同船舶建造的要求可能完全不相同,并且通常情况下不 同船舶的舾装件制造从图纸到原材料、到制造过程等都是相互独立的, 因此, 舾装件生产的产品种类多样, 有效生产环节难以重用, 需要解 决以下问题:

- 1) 设计与生产协同,船舶舾装件的设计和生产阶段任务非常复杂,无论是船厂的自制还是外委生产,一旦发生设计更改,必然会涉及到订货信息、托盘数据、生产实际状态等大量信息的频繁交互,任何一个设计和制造环节发生偏差都会产生一系列材料、设备、场地、人员、质量等方面的问题,进而影响生产进度;
- 2) 制造资源协同,目前舾装件生产计划和车间生产严重脱节, 计划制定完成后,舾装件加工车间进行生产时一旦出现插单现象等状况,难以实现生产异常的实时响应和动态调度,一方面难以确保制造资源能够按时按量按需到位,保证生产顺利进行;另一方面难以高效地利用制造资源,从而实现制造资源的优化配置,降低生产成本,从而导致决策不及时、计划不可用、管控效率低等问题;
- 3) 生产与管理协同,在实际生产中,舾装件的生产计划往往需要频繁调整,由于时常出现缺料、修改单、零散增补等情况,实际生产无法完全按照计划进行,这就要求车间管理员以及计划编制人员能够及时接收现场生产反馈的数据,充分了解现场的生产状态和进度,并基于这些信息,对接下来的生产调度进行更为合理的安排和调整;

但是,目前在舾装件加工领域所运用的信息采集手段主要还是传统的手工 Excel 表格输入,数据采集的速度慢,输入量较大,而且容易出现信息记录缺失、错误等情况,在舾装件加工作业相关流程中,部门间的联系多采用电话以及微信进行,以及通过录入到 Excel 表格中并作为附件通过办公系统发送,对于接收到表格的相关人员而言,这部分信息相对于实际情况来说依旧属于滞后的,通过相对滞后的表

格就更难以把握实际情况,无法实现生产管理、作业计划管理精细化以及资源配置的优化,进而影响的生产进度。

在舾装件的整个过程中,上料吊机、数控切割机、物流小车、焊接机器人、打磨机器人、喷涂机器人及车间内的视频监控等产生大量生产过程数据和监控数据,面临海量连接需求和异构网络互联需求,传统的 MES 系统难以满足。而通过边缘计算网关和云平台,可将通过不同网络传输的机器和设备的相关生产数据在边缘网关上进行汇聚采集,并在网关上进行工业数据的实时分析、处理和本地回流,大大降低传输时延,以此提高机器设备协同能力,实现彻底的生产自动化。同时,设备状态将以更低的时延上报至边缘云,经过边缘云的分析处理后可对设备故障进行有效预警,降低了生产安全隐患。

2. 边缘计算解决方案实践

针对上述船舶制造领域面临的问题和挑战,基于边缘计算工程应 用模板,形成面向船舶舾装件制造行业个性化定制和自组织生产系统 解决方案,方案的系统框架如图 6 所示,整体解决方案从下到上包括 现场设备层、边缘计算层和工业云三个层次。

- 1) 现场设备层,主要是构成舾装件生产线常见的数控切割机、 分拣机器人、自动焊接机器人、打磨机器人、AGV 等制造相关设备。
- 2)边缘计算层,包括三个层次,最下的边缘计算网关连接各种现场设备,进行工业协议的转换和适配,统一接入到边缘计算网络中,并将设备能力以服务的形式进行封装,实现物理上和逻辑上生产设备

之间通信连接;边缘计算网络由工业无线接入网和工业有线骨干网构成,提供实时、可靠、安全的通信能力;在此之上,是边缘计算数据平台,其功能类似于通用架构中的边缘云,根据产线的工艺和工序模型,通过服务组合对现场设备进行动态管理和组合,实现生产设备业务上的协同化操作,并与MES等云端系统对接。

图 6 船舶舾装件制造行业个性化定制和自组织生产系统框架

3) 工业云,主要运行 MES、ERP 等信息系统。在整个体系中, 云端负责舾装件订单和整体的排产等工作,边缘侧主要进行现场生产 设备的对接和协同调度,能够根据个性化的订单需求动态调整、重组 生产设备的工艺工序,最终达到支撑快速部署、设备替换和计划调整等业务的快速开发和上线,实现生产设备之间,生产设备与被制品以及生产设备与云管理平台的协同化。

3. 实践效果

本解决方案把车间内的工业机器人智能控制器功能集中部署在生产车间的边缘节点,根据舾装制造企业订单和生产场景的变化,采用边缘局部优化和云端全局优化相结合的方式,通过资源-资源、任务-资源的双向实时自主通信、交互和决策,实现多智能体分布式的、自主、协同解决(或提前避免)车间生产异常,自动灵活地调配资源,进而形成一套个性化的智能生产制造的系统,从而最大化提高舾装制造车间生产效率、优化制造资源配置、保证产品质量、降低生产成本和能耗。基于该生产线能够实现以下的场景:

- 1) 不同托盘中可成组共线生产的舾装件可全自动单件生产,并自动实现按托盘管理和配送;
 - 2) 生产系统根据订单变化动态调整结构;
 - 3) 基于预测性维护的生产系统动态调整和快速维修服务。

(五) 定制家具领域边缘计算解决方案实践

1. 面临问题和挑战

随着国内居民生活水平的提高,定制家具市场需求不断发生变化,已经从传统的消费者选择发展到现在的消费者参与设计、企业定制生

产的消费方式,定制化趋势正在重塑整个行业的营销和生产模式。在工厂端的实际生产制造上,定制家具的生产物料端种类多且变化快,工序独立且工艺项多,是属于用户直连制造(Customer-to-Manufacturer,C2M)中非常典型的离散制造行业应用。目前,整个生产过程没有数字化赋能导致各环节孤立,造成生产效率低、订单差错率高,且工艺品控和订单流转强依赖于工人的经验值及工厂的人员管理水平,主要面临以下几个方面挑战:

- 1) 物料管理: 木板原材料、五金配件和成品仓的管理都是基于 人工手动输入的方式同步到 ERP 系统中, 出错概率高, 需要不定期进 行物料盘点;
- 2) 生产前端链路:目前在门店、设计端打通从订单的设计文件 到用于拼单、审单和拆单优化的生产管理软件,并最终生成设备需要 的生产文件,但工厂内部整个生产过程未实现数字化;
- 3)生产链路:开料、封边、打孔、质检和包装各环节完全独立运作,各节点由于缺少数字化过程,无法实现工序调度、订单实时跟踪和排产优化:
- 4)以橱柜的生产为例,原材料和五金配件种类繁多,各模块的 生产工序也相对独立,导致数据信息碎片化严重,各生产功能环节呈 现孤岛状态。

2. 边缘计算解决方案实践

定制家具边缘计算解决方案根据生产工厂的实际情况,把MES中

对于实时性没有要求的中心化能力部署在云端,去掉在工厂端独立部署的边缘服务器,同时把 MES 中对于实时性及可靠性要求高的功能,通过多台端侧设备形成的分布式边缘网络系统来实现。参照离散制造业边缘计算通用架构,在边缘网络中的多台端设备通过广播式的通信交互方式,系统默认开料环节使用的工控机(Industrial Personal Computer, IPC)作为中心化节点,主要考虑开料是板材生产的第一环节且大部分生产工艺集中在开料环节,而 IPC 设备作为中心化节点具有过程管理和调度优势。如果工厂无开料端 IPC 设备或者默认开料环节的 IPC 出现异常,系统依据预设的算法推选临时中心化节点承担数据路由和任务调度功能。

图 7 定制家具生产系统解决方案架构

3. 实践效果

在定制家具工厂端提出"工作站"概念,工作站作为功能执行单元,

以人、机、料、法、环为组成元素,构建基于生产要素的物理模型, 完成每个功能单元的数字化建模,解决工厂数据碎片化采集和生产环 节孤岛问题,保证工厂的数据采集和完整生产链路打通。同时,考虑 定制家具行业的实际环境,将中心化边缘服务器进行拆解,把 MES 中 非实时部分放入云端设备中,MES 中实时性要求高的功能项拆解到本 地端侧系列设备组中,利用中心节点工作站 + 各子接入节点工作站 的运算、存储、传输能力,完成边缘 MES 中有实时性要求的功能和服 务,去掉了高成本、难维护的中心化边缘服务器,使得整个边缘网络 在保证系统能力完整的前提下,降低了部署、使用和维护成本。

通过本地设备端形成的自组织、去中心化的边缘网络系统,中心节点工作站负责动态生产和实时监测机制,同时将重要数据和生产信息同步到各子接入节点工作站,加上中心化节点的异常处理机制,保证整个生产链路和生产网络的稳定性。

四、离散制造业边缘计算发展趋势及建议

(一)离散制造业边缘计算未来展望

近年来,全球产业链积极推进边缘计算技术和应用的发展,促进建成统一开放的平台,支持不同方案及产品的集成融合,加快推进网络化标准化工作,这一趋势在离散制造业转型中体现得尤其明显。尽管边缘计算在离散制造业落地实施过程中上取得了一些进展,但在推进过程中也面临着一些问题。例如,边缘计算在离散制造业中涉及从产线层边缘控制器协同,到工厂层内外网络架构融通,再到企业层工

业云部署等多个方面的解决方案尚未完善,同时边缘计算也对传统离散制造业的运营模式带来了挑战,这些都需要各界共同努力去解决。

随着边缘计算的不断发展,其与离散制造业在产业链上下游的协同合作将变得更为紧密,使得未来将会有一大批面向离散制造业的商用边缘计算解决方案落地,从而推进离散制造业开启转型新航道。

(二) 离散制造业边缘计算技术和产业化发展建议

目前,中国的离散制造业边缘计算应用还处于起步阶段,特别是中小型企业,对于如何在实践中应用边缘计算还处在探索期。结合最新的技术、标准与政策进展,为了帮助离散制造业应用边缘计算建立更为良好的产业发展环境,我们总结出如下引导性建议。

1. 产业化发展建议

- 1)增进行业协会、联盟等组织与企业的统一协同部署。离散制造业规模庞大且形态较为分散,产业发展离不开行业协会、联盟等组织的引导和支持。行业协会和联盟可通过组织行业趋势讲座,专家认知分享,以及创客空间等新运营形式,聚焦头部重点企业,引导当地产业集群提升地区竞争力,促进产业间协同,为不断成熟的整个产业生态提供服务支持。同时,在中小企业探索应用过程中,企业应发挥边缘计算技术优势,建立信息获取的快速通道,及时获知行业动向,通过行业协会、联盟等渠道连通地方政府云平台,整合利用优势资源,更专注于自身发展。
 - 2) 加强工业边缘计算的人才队伍培养。既需要培养边缘计算核

心架构和相关组件的开发人员,也需要发展研究和实施离散制造业边缘计算解决方案的应用技术人员。多学科间交叉培养与多领域互相渗透成为该方向的显著特征。

- 3) 加快推进技术与产品研发进度。通过国家专项产业基金和社会资本等多渠道投资加大支持和引导,着力促进技术研发,设备生产,网络应用等产业链上下游企业的协同,不断推进离散制造业边缘计算解决方案的发展和成熟。
- 4) 加大应用示范推进力度。目前边缘计算领域研究已经取得了初步成果,应用推广已逐步开展,产业界应以典型应用为切入点,探索针对离散制造业的边缘计算典型商业模式,挖掘新机会和新应用点,以示范应用带动整个产业生态的不断完善。

2. 技术及标准发展建议

- 1) 持续提升边缘计算关键技术研究水平。研究通过嵌入式计算资源实现智能化的决策控制机制; 研究系统安全性技术,包括物理安全和信息安全; 研究支持异构资源池,为边缘节点提供异构计算能力,从而构建统一的技术架构,推进水平解耦和平台化,加快实现 IT 技术与 OT 技术的异构融合。
- 2)建立完善的标准体系。国内外产业界相关企业和研究单位,需加强沟通交流深化合作,凝聚共识,统筹标准,推动形成标准的可商用离散制造业边缘计算解决方案,将相关研究成果回溯技术标准组织,促进行业技术标准的融合发展。

3)以边缘计算为切入点推动自动化硬件和软件的发展。重点研究从边缘设备到工业云的一体化工业互联网架构,并扩展到实时操作系统等底层工业级软件组件的研发,结合自动化设备和软件新一轮转型升级的进展情况,推动相关基础部件的发展和自动化软件生态的建设。

中国信息通信研究院

地址: 北京市海淀区花园北路 52 号

邮政编码: 100191

联系电话: 010-62304839

传真: 010-62304980

网址: www.caict.ac.cn

工业互联网产业联盟

地址: 北京市海淀区花园北路 52 号

邮政编码: 100191

联系电话: 010-62305887

传真: 010-62304980

网址: www.aii-alliance.org

