Algoritmos y Estructura de Datos 2

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Exorcismo Extremo TP1

Integrante	LU	Correo electrónico
Rosinov, Gaston Einan	37/18	grosinov@gmail.com
Schuster, Martin Ariel	208/18	m.a.schuster98@gmail.com
Panichelli, Manuel	72/18	panicmanu@gmail.com

Reservado para la cátedra

Instancia	Docente	Nota
Primera entrega		
Segunda entrega		

Índice

1.	TAD JUEGO	3
2.	TAD HABITACION	6
3.	TAD ACCION	7
4.	TAD DIRECCION	9
K	EVTENSIONES V RENOMPRES	10

1. TAD JUEGO

TAD JUEGO

géneros juego

exporta observadores, generadores, puntaje

usa Habitacion

igualdad observacional

$$(\forall j, j': \text{juego}) \ \left(j =_{\text{obs}} j' \Longleftrightarrow \begin{pmatrix} (n = 0? =_{\text{obs}} m = 0?) \land_{\text{L}} \\ (\neg (n = 0?) \Rightarrow_{\text{L}} (\text{pred}(n) =_{\text{obs}} \text{pred}(m))) \end{pmatrix} \right)$$

igualdad observacional

$$(\forall j,j': \text{juego}) \left(j =_{\text{obs}} j' \iff \begin{pmatrix} (\text{accionesPJs}(j) =_{\text{obs}} \text{accionesPJs}(j')) \land \\ (\text{accionesFan}(j) =_{\text{obs}} \text{accionesFan}(j')) \land \\ (\text{localizarJugadores}(j) =_{\text{obs}} \text{localizarJugadores}(j')) \land \\ (\text{hab}(j) =_{\text{obs}} \text{hab}(j')) \land \\ ((\forall p: pj) \text{ (vivePJ?}(j, p) =_{\text{obs}} \text{ vivePJ?}(j', p))) \land \\ ((\forall f: \text{fantasma}) \text{ ((viveFan?}(j, p) =_{\text{obs}} \text{ viveFan?}(j', p)))} \end{pmatrix} \right)$$

observadores básicos

accionesPJs : juego \longrightarrow dicc(pj, secu(accion)) accionesFan : juego \longrightarrow dicc(pj, secu(accion))

hab : juego \longrightarrow hab

vivePJ? : juego $j \times pj p$ \longrightarrow bool $\{p \in \text{jugadores(j)}\}$ viveFan? : juego $j \times \text{fantasma} f$ \longrightarrow bool $\{f \in \text{fantasmas(j)}\}$

ubicacionInicialFan : juego $j \times \text{fantasma } f \longrightarrow \text{ubicacion} \{f \in \text{fantasmas}(f)\}$

localizar Jugadores : juego \longrightarrow dicc(pj, ubicacion)

generadores

iniciar : conj(pj) $pjs \times secu(accion)$ $as \times ubicacion$ $u \longrightarrow juego$ {esConexa?(h) \land

 \times hab h $\neg \emptyset?$ (as) $\land \neg \emptyset?$ (pis) $\land \neg \emptyset$?

 $\neg \emptyset?(pjs) \land \\
esValida?(h, pos(u))\}$

prox Paso : juego $j \times pj p \times accion a \longrightarrow juego$ { $p \in jugadores(j) \land_L$

> vivePJ?(j, p) \land \neg termino?(j) \land \neg esMirar(a)}

otras operaciones

 $\text{jugadores} \qquad : \text{juego} \qquad \longrightarrow \text{conj(pj)}$

fantasmas : juego \longrightarrow conj(fantasma)

nombreSiguienteFan : juego \longrightarrow fantasma

puntaje: juego \longrightarrow natronda: juego \longrightarrow natpaso: juego \longrightarrow natcantAcciones: juego \times conj(pj) \longrightarrow nat

terminaRonda : juego $j \times pj p \times accion \longrightarrow bool \{ p \in jugadores(j) \}$

fantasmaEspecial : juego \longrightarrow fantasma

```
termino?
                              : juego
                                                                                                 \rightarrow bool
  estanVivos
                                                                                                   bool
                              : juego \times conj(pj) pjs
                                                                                                                      \{pjs \subseteq jugadores(j)\}
  ubicacionInicialPJ
                                                                                                    ubicacion
                                                                                                                        \{p \in jugadores(j)\}
                              : juego j \times pj p
  ubicacionPJ
                              : juego j \times pj p
                                                                                                    ubicacion
                                                                                                                        \{p \in jugadores(j)\}
  ubicacionFan
                              : juego j \times fantamsa f
                                                                                                   ubicacion
                                                                                                                         \{f \in fantasmas(j)\}\
  deducirUbicacion
                              : juego j \times ubicacion u \times acciones
                                                                                                    ubicacion
                                                                                                             \{esValida?(hab(j), pos(u))\}
  moriraFantasma
                              : juego j \times pj p \times accion \times fantasma f
                                                                                               \longrightarrow bool
                                                                                                                       \{p \in jugadores(j) \land \}
                                                                                                                       f \in fantasmas(j) \land_L
                                                                                                                       viveFan?(j, f) \land
                                                                                                                       vivePJ?(j, p)
  moriraPJ
                              : juego j \times \text{conj}(\text{fantasma}) fs \times \text{pj } p \times \text{accion} \longrightarrow \text{bool}
                                                                                                                      \{p \in \text{jugadores}(j) \land \}
                                                                                                                      fs \subseteq fantasmas(j) \wedge_L
                                                                                                                      vivePJ?(j, p)
  moriraPJPorFan
                              : juego j \times \text{fantasma } f \times \text{pj } p \times \text{accion}
                                                                                                 \rightarrow bool
                                                                                                                       \{p \in jugadores(j) \land \}
                                                                                                                       f \in fantasmas(j) \land_L
                                                                                                                       vivePJ?(j, p) \land
                                                                                                                       viveFan?(j, f)
                              : juego j \times \text{fantasma } f
                                                                                                                      \{f \in fantasmas(j) \land_L \}
  accionFan
                                                                                                    accion
                                                                                                                      viveFan?(j, f)
  inicializarAcciones
                                                                                                \rightarrow dicc(pj, secu(accion))
                              : conj(pj)
  agregarFantasma
                              : juego j \times \text{ubicacion } u \times \text{dicc}(\text{fantasma} \times \text{se-} \longrightarrow \text{dicc}(\text{fantasma}, \text{secu}(\text{accion}))
                                 cu(accion) \times fantasma \times secu(accion)
                                                                                                             \{esValida?(hab(j), pos(u))\}
  generarAccionesFan : juego j \times ubicacion u \times secu(accion)
                                                                                                 → secu(accion)
                                                                                                             \{esValida?(hab(j), pos(u))\}
                 \forall p: pj,
axiomas
                 \forall pjs: conj(pj),
                 \forall f: fantasma,
                 \forall fs: \text{conj}(\text{fantasma}),
                 \forall j: juego,
                 \forall h: hab,
                 \forall u, uInicialPJ: ubicacion,
                 \forall a: accion,
                 \forall as: secu(accion)
  accionesPJs(iniciar(pjs, as, u, h))
                                                          ≡ inicializarAcciones(pjs)
  accionesPJs(proxPaso(j, p, a))
                                                          \equiv if \neg terminaRonda(j, p, a)
                                                              then definir(p, obtener(p, accionesPJs(j)) \circ a, accionesPJs(j))
                                                              \mathbf{else} \ \mathrm{inicializarAcciones}(\mathrm{jugadores}(\mathrm{j}))
  accionesFan(iniciar(pjs, as, u, h))
                                                          \equiv definir(nombreSiguienteFan(j), as, vacio)
                                                          \equiv if \neg terminaRonda(j, p, a)
  accionesFan(proxPaso(j, p, a))
                                                              then accionesFan(j)
                                                              else agregarFantasma(j, ubicacionInicialPJ(j, p), accionesFan(j),
                                                              nombre
Siguiente
Fan(j), obtener(p, acciones<br/>PJs(j)) \circ a )
                                                              fi
  hab(iniciar(pjs, as, u, h))
                                                          \equiv h
  hab(proxPaso(j, p, a))
                                                          \equiv hab(j)
  vivePJ?(iniciar(pjs, as, u, h), p')
                                                          ≡ true
```

```
vivePJ?(proxPaso(j, p, a), p')
                                                ≡ terminaRonda?(j, p, a) ∨
                                                    if p = p'
                                                    then \neg \text{moriraPJ}(j, \text{fantasmas}(j), p, a)
                                                    else vivePJ?(j, p') \wedge_L \neg moriraPJ(j, fantasmas(j), p, a)
viveFan?(iniciar(pjs, as, u, h), f)
                                                    true
viveFan?(proxPaso(j, p, a), f)
                                                ≡ terminaRonda?(j, p, a) ∨
                                                    (viveFan?(j, f) \land_L \neg moriraFantasma(j, p, a, f))
ubicacionInicialFan(iniciar(pjs, as, u, h))
ubicacionInicialFan(proxPaso(j, p, a))
                                                \equiv if f \in fantasmas(j)
                                                    then ubicacionInicialFan(j, f)
                                                    else ubicacionInicialPJ(j, p)
jugadores(j)
                                                 \equiv claves(accionesPJs(j))
fantasmas(j)
                                                 \equiv claves(accionesFan(j))
nombreSiguienteFan(j)
                                                   \#(\text{claves}(\text{accionesFan}(j))) + 1
puntaje(j)
                                                 \equiv \text{ronda}(j) - 1
ronda(j)
                                                   \#(fantasmas(j))
                                                 \equiv \text{cantAcciones}(j, jugadores(j))
paso(j)
                                                \equiv if \emptyset?(pjs)
cantAcciones(j, pjs)
                                                    then 0
                                                    else long(obtener(dameUno(pjs), accionesPJs(j))) +
                                                    cantAcciones(j, sinUno(pjs))
termino?(j)
                                                 \equiv \neg \operatorname{estanVivos}(j, \operatorname{jugadores}(j))
                                                \equiv if \emptyset?(pjs)
estanVivos(j, pjs)
                                                    then true
                                                    else vivePJ?(j, dameUno(pjs)) \wedge
                                                    estanVivos(j, sinUno(pjs))
fantasmaEspecial(j)
                                                \equiv \#(\text{claves}(\text{accionesFan}(j)))
ubicacionInicialPJ(j, p)
                                                \equiv obtener(p, localizarJugadores(j))
ubicacionPJ(j, p)
                                                \equiv deducirUbicacion(j, ubicacionInicialPJ(j, p),
                                                    obtener(p, accionesPJs(j)))
                                                \equiv deducirUbicacion(j, ubicacionInicialFan(j, f),
ubicacionFan(j, f)
                                                    obtener(f, accionesFan(j)))
                                                \equiv if vacia?(as)
deducirUbicacion(j, u, as)
                                                    then u
                                                    else deducirUbicacion(j, ubicacionLuegoDe(prim(as), hab(j), u),
                                                    fin(as)
                                                    fi
agregarFantasma(j, uInicialPJ,
                                                   definir(f, generarAccionesFantasma(j, uInicialPJ, as),
accionesFantasmas, f, as)
                                                    accionesFantasmas)
generarAccionesFan(j, uInicialPJ, as)
                                                    & (nada • nada • nada • nada • nada)
                                                    & invertir(hab(j), uInicialPJ, as)
                                                \equiv if \emptyset?(pjs)
inicializarAcciones(pjs)
                                                    then vacio
                                                    else definir(dameUno(pjs), <>,
                                                    inicializarAcciones(sinUno(pjs)))
                                                    fi
```

```
terminaRonda(j, p, a)
                                               \equiv moriraFantasma(j, p, a, fantasmaEspecial(j))
moriraFantasma(j, p, a, f)
                                                 pos(ubicacionFan(j, f)) \in
                                                  posicionesAfectadasPor(a, hab(j), ubicacionPJ(j, p))
                                               \equiv if \emptyset?(fs)
moriraPJ(j, fs, p, a)
                                                  then false
                                                  else (viveFan?(j, dameUno(fs)) \wedge_{L}
                                                  moriraPJPorFan(j, dameUno(fs), p, a)) ∨<sub>L</sub>
                                                  moriraPJ(j, sinUno(fs), p, a)
                                                  fi
moriraPJPorFan(j, f, p, a)
                                                  \neg moriraFantasma(j, p, a, f) \land
                                                  (pos(ubicacionLuegoDe(a,\,hab(j),\,ubicacionPJ(j,\,p))) \in
                                                  posicionesAfectadasPor(accionFan(j, f), hab(j),
                                                  ubicacionFan(j, f))
accionFan(j, f)
                                               \equiv obtener(accionesFan(j), f)[paso(j) % obtener(accionesFan(j), f)]
```

Fin TAD

2. TAD HABITACION

TAD HABITACION

géneros hab

exporta hab, observadores, generadores, esConexa?

usa POSICION, BOOL, NAT

igualdad observacional

$$(\forall h, h': \text{hab}) \ \left(h =_{\text{obs}} h' \Longleftrightarrow \begin{pmatrix} (\forall p: \text{posicion})(\text{esValida?}(p, h) =_{\text{obs}} \text{esValida?}(p, h') \land_{\text{L}} \\ (\text{esValida?}(p, h) \Rightarrow_{\text{L}} \\ (\text{estaOcupada?}(p, h) =_{\text{obs}} \text{estaOcupada?}(p, h')))) \end{pmatrix} \right)$$

observadores básicos

generadores

nueva : nat $n \longrightarrow hab$ $\{n>1\}$

ocupar : hab $h \times \text{posicion } p$ \longrightarrow hab

 $\{esValida?(h, p) \land_{L} \neg estaOcupada?(h, p)\}$

otras operaciones

esConexa? : hab \longrightarrow bool tamano : hab \longrightarrow nat

posiciones : hab \longrightarrow conj(posicion)

posiciones Libres : hab $h \times \text{conj}(\text{posicion})$ $ps \longrightarrow \text{conj}(\text{posicion})$ {ps $\subseteq \text{posiciones}(h)$ } verificar Alcance : hab $h \times \text{conj}(\text{posicion})$ $ps \longrightarrow \text{bool}$ {ps $\subseteq \text{posiciones}(h)$ }

verificarAlcancePos: hab $h \times \text{conj}(\text{posicion}) ps \times \text{posicion} p \longrightarrow \text{bool}$

 $\{ps \subseteq posiciones(h) \land p \in posiciones(h)\}$

axiomas $\forall h$: hab $\forall ps$: conj(posicion) $\forall p$: posicion $\forall n, k, tam$: nat esValida?(nueva(n),p) $\equiv 0 \leq \Pi_1(p) < n \land 0 \leq \Pi_2(p) < n$

```
esValida?(ocupar(h,p'),p)
                                   \equiv p = p' \vee_L \text{esValida?(h, p)}
estaOcupada?(nueva(n),p)
                                   \equiv false
estaOcupada?(ocupar(h,p'),p)
                                  \equiv p = p' \vee estaOcupada?(h, p)
tamano(nueva(n))
                                   \equiv n
tamano(ocupar(h, p))
                                   \equiv tamano(h)
esConexa?(h)
                                     verificarAlcance(h, posicionesLibres(posiciones(h)))
posicionesLibres(h, ps)
                                   \equiv if \emptyset?(ps)
                                      then \emptyset
                                      else
                                      (if estaOcupada?(h, dameUno(ps)) then Ø else {dameUno(ps)} fi)
                                      \cup posicionesLibres(h, sinUno(ps))
                                      fi
                                   \equiv if \emptyset?(ps)
verificarAlcance(h, ps)
                                      then true
                                      else
                                      verificarAlancePos(h, ps, dameUno(ps)) \(\times\) verificarAlcance(h, p)
                                      fi
verificarAlcancePos(h, ps, p)
                                   \equiv if \emptyset?(ps)
                                      then true
                                      else
                                      esAlcanzable(h, p, dameUno(ps)) \(\times\) verificarAlcancePos(h, p, sinUno(ps))
posiciones(h)
                                      darPosiciones(h, tamano(h) - 1, tamano(h) - 1, tamano(h) - 1)
darPosiciones(h, n, k, tam)
                                   \equiv if n=0? \land k=0?
                                      then Ø
                                      else if k = 0?
                                      then Ag((n,k), darPosiciones(h, n - 1, tam, tam))
                                      else Ag((n,k), darPosiciones(h, n, k - 1, tam))
                                      fi
```

Fin TAD

3. TAD ACCION

TAD ACCION

géneros accion

exporta observadores, generadores, genero, otras operaciones

igualdad observacional

$$(\forall a, a' : accion) \left(a =_{obs} a' \iff \begin{pmatrix} esNada(a) =_{obs} esNada(a') \land \\ esDisparar(a) =_{obs} esDisparar(a') \land \\ esMover(a) =_{obs} esMover(a') \land \\ esMirar(a) =_{obs} esMirar(a') \land \\ ((esMover(a) \lor esMirar(a)) \Rightarrow_{L} direccion(a) =_{obs} direccion(a')) \end{pmatrix} \right)$$

secu(accion)

observadores básicos

esMover : accion \longrightarrow bool esMirar : accion \longrightarrow bool

```
esDisparar
                                                                                 \longrightarrow bool
                                : accion
  esNada
                                                                                   → bool
                                : accion
  direction
                                                                                  \rightarrow direction
                                                                                                      \{esMirar(a) \lor esMover(a)\}
                                : accion a
generadores
  mover
                                : direction
                                                                                     accion
  mirar
                                : direction
                                                                                     accion
  disparar
                                                                                     accion
  nada
                                                                                  \rightarrow accion
otras operaciones
  ubicacionLuegoDe
                                : accion a \times \text{hab } h \times \text{ubicacion } u
                                                                                                           \{esValida?(h, pos(u))\}
                                                                                \longrightarrow conj(pos)
  posiciones
Afectadas
Por : accion a \times \text{hab } h \times \text{ubicacion } u
                                                                                \longrightarrow conj(pos)
                                                                                                           \{esValida?(h, pos(u))\}
                                : accion
                                                                                  \rightarrow accion
  invertir
                                : hab h \times \text{ubicacion } u \times \text{secu(accion)} \longrightarrow \text{secu(accion)}
                                                                                                           \{esValida?(h, pos(u))\}
                \forall n, m: \text{nat}, \forall u: \text{ubicacion}, \forall a: \text{habitacion}
axiomas
  posicionesAfectadasPor(mover(d), h, u)
  posicionesAfectadasPor(mirar(d), h, u)
  posicionesAfectadasPor(nada, h, u)
                                                    \equiv \emptyset
                                                    \equiv if esValida?(h, proxPosEnDir(dir(u), pos(u)) \wedge_L
  posiciones Afectadas Por (disparar, h, u)
                                                        ¬estaOcupada?(h, proxPosEnDir(dir(u), pos(u)))
                                                        then
                                                        Ag(proxPosEnDir(dir(u), pos(u)),posicionesAfectadasPor(disparar,h,
                                                        \langle proxPosEnDir(dir(u), pos(u)), dir(u) \rangle))
                                                        else Ø
                                                        fi
  invertir(h, u, as)
                                                    \equiv if vacia?(as)
                                                        then <>
                                                        else
                                                        invertir(h, ubicacionLuegoDe(prim(as), h, u),
                                                                                                                       fin(as)
                                                        \neg(\text{prim(as)}, h, u)
                                                    \equiv if pos(ubicacionLuegoDe(mover(d), h, u)) = pos(u)
  \neg(mover(d), h, u)
                                                        then mirar(opuesta(d))
                                                        else mover(opuesta(d))
  \neg(mirar(d), h, u)
                                                    \equiv mirar(opuesta(d))
  ¬(disparar, h, u)

≡ disparar

  \neg(nada, h, u)
                                                    \equiv nada
  ubicacionLuegoDe(nada, h, u)
                                                    = u
  ubicacionLuegoDe(disparar, h, u)
                                                    = 11
  ubicacionLuegoDe(mirar(d), h, u)
                                                    \equiv \langle pos(u), d \rangle
  ubicacionLuegoDe(mover(d), h, u)
                                                    \equiv \langle (\mathbf{if} \text{ esValida?}(h, proxPosEnDir(d, pos(u))) \wedge_L \rangle
                                                        ¬estaOcupada?(h, proxPosEnDir(d, pos(u)))
                                                        then proxPosEnDir(d, pos(u))
                                                        else pos(u)
                                                        \mathbf{fi}), \mathbf{d}
  esMirar(mirar(d))
                                                    ≡ true
  esMirar(mover(d))
                                                    \equiv false
```

esMirar(disparar) \equiv false esMirar(nada) \equiv false esMover(mirar(d)) \equiv false esMover(mover(d)) ≡ true esMover(disparar) \equiv false esMover(nada) \equiv false esDisparar(mirar(d)) \equiv false esDisparar(mover(d)) \equiv false esDisparar(disparar) \equiv true esDisparar(nada) \equiv false esNada(mirar(d)) \equiv false esNada(mover(d)) \equiv false esNada(disparar) \equiv false esNada(nada) ≡ true direction(mirar(d)) $\equiv d$ direction(mover(d)) $\equiv d$

Fin TAD

4. TAD DIRECCION

TAD DIRECCION

géneros direccion

exporta observadores, generadores, otras operaciones

igualdad observacional

$$(\forall d, d': \text{direccion}) \left(d =_{\text{obs}} d' \iff \begin{pmatrix} \text{esArriba}(\mathbf{d}) =_{\text{obs}} \text{esArriba}(\mathbf{d}') \land \\ \text{esAbajo}(\mathbf{d}) =_{\text{obs}} \text{esAbajo}(\mathbf{d}') \land \\ \text{esIzquierda}(\mathbf{d}) =_{\text{obs}} \text{esIzquierda}(\mathbf{d}') \land \\ \text{esDerecha}(\mathbf{d}) =_{\text{obs}} \text{esDerecha}(\mathbf{d}') \end{pmatrix} \right)$$

observadores básicos

 $\begin{array}{lll} \operatorname{esArriba} & : \operatorname{direccion} & \longrightarrow \operatorname{bool} \\ \operatorname{esAbajo} & : \operatorname{direccion} & \longrightarrow \operatorname{bool} \\ \operatorname{esIzquierda} & : \operatorname{direccion} & \longrightarrow \operatorname{bool} \\ \operatorname{esDerecha} & : \operatorname{direccion} & \longrightarrow \operatorname{bool} \end{array}$

generadores

arriba : \longrightarrow direccion abajo : \longrightarrow direccion izquierda : \longrightarrow direccion derecha : \longrightarrow direccion

otras operaciones

opuesta : direccion \longrightarrow direccion

```
proxPosEnDir : direccion \times posicion \longrightarrow posicion
axiomas
  opuesta(arriba)
                                       \equiv abajo
  opuesta(abajo)
                                       \equiv arriba
  opuesta(izquierda)
                                       \equiv derecha
  opuesta(derecha)
                                       \equiv izquierda
  proxPosEnDir(arriba, p)
                                       \equiv \langle \Pi_1(p), \Pi_2(p) + 1 \rangle
                                       \equiv \langle \Pi_1(p), \Pi_2(p) - 1 \rangle
  proxPosEnDir(abajo, p)
  proxPosEnDir(izquierda, p) \equiv \langle \Pi_1(p) - 1, \Pi_2(p) \rangle
  proxPosEnDir(derecha, p)
                                       \equiv \; \langle \Pi_1(p) \, + \, 1, \, \Pi_2(p) \rangle
  esArriba(arriba)
                                       ≡ true
  esArriba(abajo)
                                       \equiv false
  esArriba(izquierda)
                                       \equiv false
  esArriba(derecha)
                                       \equiv false
  esAbajo(arriba)
                                       \equiv false
  esAbajo(abajo)
                                       \equiv true
  esAbajo(izquierda)
                                          false
  esAbajo(derecha)
                                       \equiv false
  esIzquierda(arriba)
                                       \equiv false
  esIzquierda(abajo)
                                       \equiv false
  esIzquierda(izquierda)
                                       \equiv true
  esIzquierda(derecha)
                                       \equiv false
  esDerecha(arriba)
                                          false
  esDerecha(abajo)
                                       \equiv false
  esDerecha(izquierda)
                                       \equiv false
  esDerecha(derecha)
                                       \equiv true
```

Fin TAD

5. EXTENSIONES Y RENOMBRES

TAD FANTASMA ES NAT

TAD PJ ES NAT

TAD POSICION ES TUPLA(NAT, NAT)

TAD NAT extiende NAT

otras operaciones

```
\bullet\% \bullet : nat \times nat \longrightarrow nat
```

axiomas $\forall n, m$: nat

 $n \% m \equiv \mathbf{if} \ n < m \ \mathbf{then} \ n \ \mathbf{else} \ (n - m) \ \% \ m \ \mathbf{fi}$

Fin TAD

TAD UBICACION extiende TUPLA (POSICION, DIRECCION)

otras operaciones

```
\operatorname{pos}: \operatorname{ubicacion} \longrightarrow \operatorname{posicion} \operatorname{dir}: \operatorname{ubicacion} \longrightarrow \operatorname{direccion} \operatorname{axiomas} \quad \forall \ u : \operatorname{ubicacion} \operatorname{pos}(u) \equiv \Pi_1(u) \operatorname{dir}(u) \equiv \Pi_2(u)
```

Fin TAD

TAD SECUENCIA extiende SECUENCIA

otras operaciones

Fin TAD