SCHOLAE UROPAGA

EUROPEAN BACCALAUREATE 2016

CHEMISTRY

DATE: 7 June 2016

DURATION OF EXAMINATION:

3 hours (180 minutes)

PERMITTED EQUIPMENT:

Calculator: TI-Nspire in 'Press-to-Test' mode

INSTRUCTIONS:

- Answer <u>both</u> A questions and <u>both</u> B questions.
- Use a separate answer sheet for each of the four main questions.

1/11 EN

		Question A1	
		Page 1/2	Marks
a)	ʻmad	e Yussupov, the nephew of Tsar Nicholas II, attempted to poison the monk' Gregory Rasputin. He added the highly toxic cyanide ions, aq), as potassium cyanide, KCN(s), to some cakes.	
	poiso	utin is reputed to have eaten several of these cakes, laced with the n. It is thought he survived because Yussupov stored the potassium de in damp conditions.	
		spheric carbon dioxide, $CO_2(g)$, can react with water from the damp cording to the following equation:	
	Equa	tion 1: CO_2 (g) + $H_2O(I)$ \Longrightarrow H_2CO_3 (aq)	
	cyanic	carbonic acid, $H_2CO_3(aq)$, can then react further with the potassium de to form hydrogen cyanide, $HCN(g)$, and potassium gencarbonate, $KHCO_3(aq)$:	
	Equa	tion 2: $H_2CO_3(aq) + KCN(aq) \rightarrow KHCO_3(aq) + HCN(g)$	
		hydrogen cyanide gas evolves from the reaction mixture leaving the ess potassium hydrogencarbonate behind.	
	When	hydrogen cyanide dissolves in water it acts as a weak acid.	
	i.	Write the equation for the reaction of hydrogen cyanide with water.	1 mark
	ii.	Identify the two conjugate acid-base pairs involved in question a)i.	2 marks
	iii.	Write the expression for the acid ionisation constant, $K_{\rm a}$, for hydrogen cyanide.	1 mark
	iv.	Calculate the pH of a $5.00 \times 10^{-1} dm^3$ aqueous solution containing $1.35 g$ of hydrogen cyanide.	3 marks
	V.	With reference to equation 2 above, deduce whether the pK_a of carbonic acid is higher or lower than that of hydrogen cyanide. Justify your answer.	2 marks
	Giver	atomic molar masses in g mol ⁻¹ : H: 1.01 ; C: 12.0 ; N: 14.0 ; pK_a (HCN(aq)) = 9.31 at the experimental conditions.	

	Question A1		
		Page 2/2	Marks
b)	conce	of x 10 ⁻² dm³ sample of a hydrogen cyanide solution, HCN(aq), of entration 1.00 mol dm ⁻³ , was titrated using a 1.00 mol dm ⁻³ solution assium hydroxide, KOH(aq).	
	i.	Write the equation for the reaction of this titration.	2 marks
	ii.	Calculate the pH of the potassium hydroxide solution used in the titration.	2 marks
	iii.	Show by calculation, that the pH of the solution after the addition of $1.00 \times 10^{-2} \text{dm}^3$ of the potassium hydroxide solution, corresponds to the p K_a of hydrogen cyanide, p K_a (HCN(aq)) = 9.31.	4 marks
	<u>Giver</u>	<u>n:</u> p K_w = 14.00 at the experimental conditions.	
c)		r solutions resist changes in pH upon the addition of small quantities d or alkali.	
	i.	Describe two methods to prepare a buffer solution using a weak acid HY(aq) (calculations are not required).	2 marks
	ii.	Give two equations to show how a buffer solution (HY(aq)/Y¯(aq)) resists changes in pH upon the addition of acid or base.	2 marks
d)	The h	ydrogencarbonate ion, HCO ₃ ⁻ (aq), is amphoteric.	
	i.	Show its amphoteric behavior in water using two equations.	2 marks
	ii.	Give the two conjugate acid/base pairs involving the hydrogencarbonate ion.	2 marks

		Question A2	
		Page 1/3	Marks
	and s	ical bleach is a basic solution of sodium hypochlorite, NaClO(aq), sodium chloride, NaCl(aq). It is mainly used for its disinfectant or hing properties.	
a)	sodiu	th can be produced by passing chlorine gas, $Cl_2(g)$, through a dilute m hydroxide solution, NaOH(aq). The process is described by the ring unbalanced equation 1 :	
		Equation 1: $Cl_2(g) + OH^-(aq) \rightarrow Cl^-(aq) + ClO^-(aq) + H_2O(l)$	
	differe equa	chlorine reacts with hot concentrated sodium hydroxide solution, a ent reaction takes place, which is described in the unbalanced tion 2 . One of the products formed, sodium chlorate, NaClO ₃ , was in the past as weed killer.	
		Equation 2: Cl₂(g) + OH⁻(aq) → Cl⁻(aq) + ClO₃⁻(aq) + H₂O(l)	
	i.	Determine the oxidation number of chlorine in Cl_2 , Cl^- , ClO^- , and ClO_3^- .	2 marks
	ii.	Identify, using the oxidation numbers, the redox couples involved in equation 1 .	2 marks
	iii.	Balance equation 1.	1 mark
	iv.	Balance equation 2.	2 marks

Question A2 Page 2/3 Marks b) Chlorine is produced by the electrolysis of a sodium chloride solution, NaCl(aq). Electrode A Electrode **B** sodium chloride solution The equation for the overall reaction is: $2 H_2O(I) + 2 CI^-(aq) \rightarrow H_2(g) + CI_2(g) + 2 OH^-(aq)$ i. Give the half-equation for oxidation and specify at which electrode 2 marks (A or B) it takes place. ii. Is the formation of hydrogen, $H_2(q)$, and chlorine, $Cl_2(q)$, expected 3 marks according to the standard redox potentials? Explain your answer. Calculate the time required for the production of 1.00 x 10⁴ dm³ of 3 marks iii. chlorine, $Cl_2(g)$, if the current is 1.50 x 10^4 A. **Given:** Standard redox potentials: Redox couple E₀ / V $Cl_2(g) / Cl^-(aq)$ +1.36 +1.23 $O_2(g) / H_2O(I)$ $H_2O(I) / H_2(g)$ -0.83Na⁺(aq) / Na(s) -2.71 Molar volume of chlorine gas: $V_{\rm m}$ = 24.5 dm³ mol⁻¹ under the experimental conditions. 1 Faraday = $9.65 \times 10^4 \text{ C mol}^{-1}$

	Question A2		
		Page 3/3	Marks
c)	A lab-technician checked the label on a commercial bottle of bleach: 14° ChI (14 chlorometric degrees). The chlorometric degree represents the volume (in dm³) of chlorine, Cl ₂ (g), that is released under standard conditions by 1.00 dm³ of bleach in a reaction with an acid, according to the equation:		
		$CIO^-(aq) + CI^-(aq) + 2H^+(aq) \rightarrow CI_2(g) + H_2O(I)$	
		sed the following method to determine the concentration of the hlorite ions, CIO ⁻ (aq), in the bleach:	
	•	He made a tenfold dilution (1:10) of the concentrated commercial bleach solution.	
	•	He took a sample of 10.0 cm^3 of the diluted bleach solution and added an excess of acidified potassium iodide solution, KI(aq). After stirring, he titrated the iodine produced, I ₂ (aq), with a $1.00 \times 10^{-1} \text{ mol dm}^{-3}$ sodium thiosulfate solution, Na ₂ S ₂ O ₃ (aq). Shortly before the end of titration he added some starch solution.	
		end-point of the titration occurred when 10.6 cm ³ of the sodium lfate solution had been added to the sample.	
	i.	Using the relevant couples given below, write the equation for the reaction between the hypochlorite ion, CIO (aq), and the iodide ion, I (aq), under acidic conditions.	2 marks
	ii.	Using the relevant couples given below, write the equation for the reaction between the thiosulfate ion, $S_2O_3^{2-}$ (aq), and iodine, I_2 (aq).	2 marks
	iii.	Describe how the end-point is observed experimentally in the titration with thiosulfate ion, $S_2O_3^{\ 2}$ –(aq).	1 mark
	iv.	Determine the concentration of the hypochlorite ions, CIO¯(aq), in the diluted bleach solution.	3 marks
	٧.	Deduce the chlorometric degree of the concentrated commercial bleach solution.	2 marks
	<u>Given</u>	Redox couples:	
		CIO ⁻ (aq) / CI ⁻ (aq)	
		I ₂ (aq) / I ⁻ (aq)	
		$S_4O_6^{2-}(aq) / S_2O_3^{2-}(aq)$	
	Molar condi	volume of chlorine gas: $V_{\rm m}$ = 22.4 dm ³ mol ⁻¹ under standard tions .	

UPPGIFT B1 ONSDAG VECKA 19

		Question B1	
		Page 1/2	Marks
a)	A prii	mary alcohol X has the following composition, by mass: C:59.9%; H:13.5%; O:26.6%	
	i.	Confirm, by calculation from the mass percentages, that the empirical formula of compound ${\bf X}$ is ${\rm C_3H_8O}$.	2 marks
	The r	molar molecular mass of alcohol X is 60.1 g mol ⁻¹ .	
	ii.	Determine the molecular formula of X .	1 mark
	iii.	Give the structural formula and the systematic (IUPAC) name for alcohol ${\bf X}.$	2 marks
	Give	n: Molar atomic mass (in g mol ⁻¹): C: 12.0; H: 1.01; O: 16.0	
b)	dichr	ation of alcohol X using limited amounts of acidified potassium omate (VI) solution, $K_2Cr_2O_7$ (aq), produces organic compound Y and nium(III) ions, Cr^{3+} (aq).	
	i.	Give the separate half-equations and the overall equation for the reaction between alcohol ${\bf X}$ and acidified potassium dichromate(VI) solution.	3 marks
	ii.	Give the systematic (IUPAC) name for compound Y .	1 mark
		er oxidation of compound Y using Fehling's solution produces the nic compound Z .	
	iii.	Give one observation that can be made, when compound ${\bf Y}$ reacts with Fehling's solution.	1 mark
	iv.	Give the structural formula and the systematic (IUPAC) name for Z .	2 marks

	Question B1		
		Page 2/2	Marks
c)	Consi	der the following compounds:	
	A.	propanoic acid	
	В.	2,2-dimethylpropanoic acid	
	C.	2-fluoropropanoic acid	
	i.	Give the structural formulas for the two compounds B and C .	2 marks
	ii.	Arrange A , B and C in order of increasing acid strength. Justify your response by comparing their structures.	3 marks
d)		ocaine (ethyl-4-aminobenzoate) is the principle active ingredient in all anaesthetic medicinal products.	
		H_2N O CH_3	
		Benzocaine	
	4-amii	e laboratory benzocaine is synthesised in the reaction between nobenzoic acid and ethanol. Some concentrated sulfuric acid, 4(I), is added to the reaction mixture.	
	i.	Give the overall equation for this reaction using structural formulas.	2 marks
	ii.	State the type of reaction taking place.	1 mark
		2.60 g of 4-aminobenzoic acid reacts with 1.15 g of ethanol, 1.81 g zocaine is obtained.	
	iii.	Show, by calculation, that the limiting reactant is 4-aminobenzoic acid i.e. that the ethanol is in excess.	2 marks
	iv.	Calculate the percentage yield in this synthesis.	2 marks
	v.	Explain the role of the concentrated sulfuric acid.	1 mark
		en: Molar molecular mass (in g mol ⁻¹): minobenzoic acid: 137; Ethanol: 46.0; Benzocaine: 165	

	Question B2		
		Page 1/3	Marks
a)		es have a wide range of applications including the manufacture of ers and dyes. They show basic properties.	
	i.	Draw the structural formula of ethylamine, C ₂ H ₇ N.	1 mark
	ii.	Explain why ethylamine can act as a base.	1 mark
	iii.	Write the equation for the reaction of ethylamine with water using structural formulas.	2 marks
	iv.	Explain, why ethylamine has a high solubility in water.	2 marks
	$(pK_b =$	benzene (phenylamine), $C_6H_5NH_{2,}$ is an aromatic amine 9.37), which is significantly less basic than ethylamine 3.30).	
	V.	Explain why aminobenzene has a relatively high p K_b and why ethylamine has a relatively low p K_b .	2 marks
b)		acids are the building blocks of proteins. There are approximately urally-occurring amino acids, two of which are shown below:	
	gl	ycine H H O N C C valine Valine H OH H ₃ C CH ₃	
	i.	By reference to its structure, explain why valine can show optical isomerism.	2 marks
	The is	oelectric point of glycine is 5.97 in aqueous solution.	
	ii.	Draw the structural formula of the predominant species of glycine present at the following pH values. A. pH = 2.00; B. pH = 5.97; C. pH = 12.00	3 marks
	iii.	Explain why glycine at a pH of 5.97, will not move towards the anode nor the cathode when placed in a uniform electric field.	1 mark
	Glycir	e and valine can form dimers with different structures.	
	iv.	State how many different dipeptides can be formed in a mixture of glycine and valine.	1 mark
	V.	Give the structural formulas of two of these dipeptides.	2 marks

	Question B2	
	Page 2/3	Marks
c)	Compound ${\bf P}$, the structure of which is shown below, is used as a starting material for the synthesis of another organic compound ${\bf S}$, also shown below.	
	HO—NH ₂ compound P	
	First step in the synthesis: NaNO ₂ + HCI	
	intermediate compound Q	
	Second step in the synthesis: NaOH + compound R	
	HO Compound S	
	 i. Copy the structural formula of compound P. Circle and name two functional groups. 	2 marks

10/11

:

Question B2 Page 3/3 Marks ii. Identify compounds ${\bf Q}$ and ${\bf R}$ from the following three molecules ${\bf 1}$, 2 marks 2 and 3: 1. 2. HO HO H₂N-3. НО The final compound formed, **S**, is coloured. 3 marks iii. Explain this property by referring to the chemical structure of **S**. iv. Give the general name for the class of compounds to which S 1 mark belongs.