Basic elements in sequential logic

Computer Fundamentals Escuela Politécnica Superior U.A.M

Summary of the lecture

- U3. Basic elements in sequential logic.
 - **U3.1.** Sequential Circuits.
 - U3.2. Latch. Types of latches.
 - U3.3. Flip-Flop. Types of Flip-Flops.
 - U3.4. Circuits with Flip-Flops.

Timing diagrams.

U3.5. Registers. Shift registers.

Sequential Circuits

Motivation:

There are problems that can not be solved following a combinational approach Example: Build a circuit to count the transitions of aninput signal (CLK).

 S_1 and S_0 functions can not be implemented using an standard combinational approach the same output is reached for the same input.

Solution:

We need a new type of circuit in which the "next" output is a function of the inputs and the "previous" output value.

Sequential Circuits

COMBINATIONAL

CLK CLK S S₁ 0 0 1 1 0 0 0 0

 S_0 0 1 0 1

CLK	S ₁	S ₀
0	0	0
1	0	1
0	0	0
1	0	1

Let's take into account the previous input value

SEQUENTIAL

S ₁	S ₀ CLK		S' ₁	S′ ₀
0	0	T	0	1
0	1		1	0
1	0		1	1
1	1	f	0	0

How to?:

- We need memory
- We need feedback (output signal is also an input) ... but how can we create and stable system

Unstable feedback logic element

Sequential Circuits

Formal Definition

In a sequential circuit the outputs are dependent on the inputs and on the previous state.

- √ The value of the "previous" state is stored in elements with memory capacity.
- ✓ Each bit of information about the previous state is stored in a flip-flop.

Asynchronus and Synchronous sequential logic

The change of state and output is due to an **ASYNCHRONUS** input change The change of state occurs when an event There may be a change of a special signal (clock signal) gets into of state without changes at the input the flip-flops High [□] Level **SYNCHRONOUS** (latch) Low ___ Classes Rise Edge Most common (flip-flop) Drop

Ercuela

Politêcnia Superior

Flip Flop D

Timing diagram of a D type flip-flop

Important timing parameters: t_{setup}, t_{hold} y t_{delay}

Other Flip Flops

Conversion among Flip-Flops

Example: from a flip-flop D, build a flip-flop T

Example: from a flip-flop JK, build a) a flip-flop D y b) a flip-flop T

Initialization of a Flip-Flop

Example: Flip-Flop D with reset

Example:
Flip-Flop D with clear

The synchronous initialization can be considered as part of its functionalities

Application: Loading a Flip-Flop

In the synchronous Flip-Flops, it is possible to load a '0' or a '1' by means of a special input known as "L" (Load). Similar to *enable* in the combinational circuits.

Example: from a flip-flop D, build a flip-flop T with Load Functionality

L	Dat	Т	Qn+1
1	0	X	0
1	1	X	1
0	X	0	Qn
0	X	1	/Q ⁿ

Registers

Register:

Sequential system formed by a set of flip-flops of the same type sharing a CLK signal.

Example: Register of n bits

Registers

Shift register:

✓ Output of the FF is connected to the input of the next FF

Example: Shift Register of 3 bits

Timing diagrams with Flip-Flops

Example: Complete the time diagram of the figure for each of these circuits

Shift Register with Load input

✓ Register with load input: A load signal L, allows to load synchronously in the register any desired value.

Example: Shift register (4bits) with load input.

ANNEX

Asynchronous Flip-Flop RS

a, b) Keep the state

c, d) Reset

e, f) Set

g) Prioritary registration

Eicuela

Politêcnia Superior

ANNEX Asynchronous flip-flop RS

With R=S='1', outputs are not complementary and depend on the internal design of the flip-flop.

Priority Registration

Priority Erasure

How to get that/Q* is always /Q?

ANNEX

Synchronous Flip-Flop RS

Active by level

Active by edge (edge-triggered)

Active by edge (master-slave)

