

Seja muito bem-vindo!

Gostaríamos de convidá-lo a embarcar conosco em uma jornada maravilhosa, na qual você terá a oportunidade de aprender o que há de mais avançado em Inteligência Artificial.

O futuro é agora!

Data Science Academy

Tecnologia e formação profissional para ampliar sua empregabilidade de forma ilimitada e online!

Data Science Academy

Introdução à Inteligência Artificial Deep Learning Frameworks

Programação Paralela em GPUs

Deep Learning I

Deep Learning II

Visão Computacional e Reconhecimento de Imagens

Processamento de Linguagem Natural e Reconhecimento de Voz

Análise em Grafos para Big Data

Sistemas Cognitivos

Projeto
Assistente Virtual

Os cursos da Formação IA serão sequenciais

- 1- Introdução à Inteligência Artificial
- 2- Deep Learning Frameworks
- 3- Programação Paralela em GPUs
- 4- Deep Learning I
- 5- Deep Learning II
- 6- Visão Computacional e Reconhecimento de Imagem
- 7- Processamento de Linguagem Natural e Reconhecimento de Voz
- 8- Análise em Grafos para Big Data
- 9- Sistemas Cognitivos

Python Fundamentos para Análise de Dados

Machine Learning

Super Computador DSA

Serão 2 supercomputadores baseados em HPC (High Performance Computing) com a seguinte configuração cada um:

- Processador: Intel Core i7-6950X 10-Core
- Clock Speed: 3.0 Ghz
- Memória: 128 GB de RAM
- Disco: 1 TB SSD e 6 TB HDD
 - GPU: Titan X 12GB GDDR5
 - Sistema Operacional: Ubuntu Linux 16.10

Deep Learning Frameworks

Este é o segundo dos 9 cursos da Formação Inteligência Artificial. Este é um curso inteiramente prático, no qual você terá a chance de aprender a trabalhar com os principais frameworks de Deep Learning disponíveis atualmente.

Deep Learning Frameworks

2 Theano

3 Keras

4 Caffe

5 Torch

6 Microsoft CNTK

7 Deeplearning4j

8 Outros: Lasagne, Chainer, Leaf, maxDNN, Mxnet

Deep Learning Frameworks

2 Theano

3 Keras

4 Caffe

5 Torch

6 Microsoft CNTK

7 Deeplearning4j

8 Outros: Lasagne, Chainer, Leaf, maxDNN, Mxnet

O que esperar deste curso?

Material de Aprendizagem

Aulas em Vídeo

Exposição teórica sobre o conteúdo.

Pesquisa Adicional

Pesquisa sobre temas relacionados. Bibliografia, referências e links úteis ao final de cada capítulo.

Leitura

Leitura complementar e e-books.

Quizzes e Exercícios

Quizzes e exercícios para testar seu conhecimento.

Avaliação

Acesse o Curso do Smartphone ou Tablet com nossas Apps para iOS e Android

Bibliografia

Usaremos a documentação oficial de cada framework

DEEP LEARNING APPROACH

Train:

Deploy:

Dog 🎺

Convolutional Neural Networks (CNNs)

- Não tem que descobrir previamente quais são os melhores atributos.
- Usa a mesma abordagem de rede neural para muitos problemas diferentes.
- Tolerância a falhas.
- Escalável.

Data Science Academy

Por que Deep Learning é a Tecnologia Mais Avançada em IA?

E o que você precisa para começar a construir suas aplicações de IA com Deep Learning?

1

Selecione Seu Framework

NVIDIA® DIGITS™

DEEP LEARNING FRAMEWORKS

NVIDIA DEEP LEARNING SDK

2

Escolha um GPU

Ambiente de Desenvolvimento

Aplicativos Embarcados

Ambiente de Produção

3

Desenvolva sua soluções

O Que é um Framework?

Um framework é uma abstração que une códigos comuns entre vários projetos de software provendo uma funcionalidade genérica.

O Que é um Framework?

A utilização de um framework torna-se útil no momento em que você constrói ou utiliza certo componente mais de uma vez.

API, Biblioteca e Framework são a mesma coisa?

API

A API é a documentação que determina como um programador pode realizar uma tarefa através de uma biblioteca.

A API é um conjunto de regras para realizar uma tarefa.

Biblioteca

A biblioteca normalmente é uma implementação real das regras de uma API.

Você chama uma biblioteca. É uma ferramenta. Você usa o que precisa.

Framework

Um framework normalmente é um conjunto de bibliotecas para conseguir executar uma operação maior.

Frameworks podem ser entendidos como plataformas de desenvolvimento.

Toolkits e SDK's

Existem ainda os toolkits que podem ser confundidos com frameworks mas funcionam de forma mais livre.

SDK's podem assumir a forma de toolkits ou de frameworks e fornecem tudo o que precisa para programar em cima de uma plataforma.

O primeiro passo para escolher um framework para seu projeto de IA, é reconhecer a diferença entre API, Biblioteca e Framework.

Redes neurais profundas tem muitas camadas, o que afeta os requisitos de computação: à medida que o tamanho de uma camada e número de camadas aumenta, o mesmo acontece com essas exigências

Frameworks de Deep Learning Listados no Site da Nvidia
Caffe
Microsoft CNTK
Tensorflow
Theano
Torch
Mxnet
Chainer
Keras

Frameworks de Deep Learning Abordados Neste Curso
Tensorflow
Theano
Caffe
Microsoft CNTK
Torch
Keras
Deeplearning4j
Outros: Lasagne, Leaf, Mxnet, Chainer

Principais Frameworks para Deep Learning

Framework	Plataforma	Escrito em	Interface em	Suporte ao CUDA	Suporte ao OpenCL	Suporte a RNN's	Suporte a CNN's	Processamento Paralelo
Tensorlow	Linux, MacOSx e Windows	C++ e Python	Python, C, C++	Sim	Em desenvolvimento	Sim	Sim	Sim
Theano	Diversas Plataformas	Python	Python	Sim	Em desenvolvimento	Sim	Sim	Sim
Caffe	Linux, MacOSx e Windows	C++	Python e Matlab	Sim	Em desenvolvimento	Sim	Sim	Parcial
Torch	Linux, MacOSx, Windows, Android, iOS	C, Lua	Lua, C, C++, PyTorch	Sim	Em desenvolvimento	Sim	Sim	Sim
Keras	Linux, MacOSx e Windows	Python	Python	Sim	Em desenvolvimento	Sim	Sim	Sim
CNTK	Windows, Linux, MacOSx (via docker)	C++	Python, C++ (.NET em breve)	Sim	Não	Sim	Sim	Sim
Deeplearning4j	Linux, MacOSx, Windows e Android	C, C++	Java, Scala, Clojure, Python (Keras)	Sim	Em desenvolvimento	Sim	Sim	Sim
MXNet	Linux, MacOSx, Windows, Android, iOS e Amazon AWS	C++	Python, C++, R, Matlab, Scala, Julia, Go, Perl e Java Script	Sim	Em desenvolvimento	Sim	Sim	Sim

Deep Learning

Big Data

Poder Computacional de GPUs

- Identificação de veículos, pedestres e pontos de referência para assistência ao condutor
- Reconhecimento de imagem
- Reconhecimento de voz e tradução
- Processamento de linguagem natural

ACCELERATE EVERY FRAMEWORK

BIG SUR	TENSORFLOW	WATSON	CNTK
facebook.	Google	IBM	Microsoft
	STAR	r-ups	
CHAINER	START DL4J	T-UPS KERAS	OPENDEEP

NVIDIA GPU PLATFORM

*U. Washington, CMU, Starford, TuSimple, NYU, Microsoft, U. Alberta, MIT, NYU Shangkai

Compute Unified Device Architecture

Todos os cálculos podem ser divididos entre os 3584 núcleos de uma GPU Nvidia Titan X

GTX TITAN Xp - 3840 Cuda Cores

GTX TITAN X - 3584 Cuda Cores

GTX 1080 Ti – 3584 Cuda Cores

GTX 1080 – 2560 Cuda Cores

NVIDIA CUDA Deep Neural Network library (cuDNN)

cuDNN Accelerated Frameworks

NVIDIA CUDA Deep Neural Network library (cuDNN)

NVIDIA CUDA Deep Neural Network library (cuDNN)

Características principais da cuDNN:

- Caminhos para frente e para trás para muitos tipos de camadas comuns, como pooling, LRN, LCN e normalização de lote, ReLU, Sigmoid, softmax e Tanh.
- Rotinas de convolução para frente e para trás, incluindo correlação cruzada, projetadas para redes neurais convolucionais.
- Suporte a Redes Neurais Recorrentes (RNN), RNNs Persistentes e LSTMs.
- Funções de transformação de tensores.
- A API baseada em contexto permite multithreading de forma mais fácil.
- CuDNN é suportado em sistemas Windows, Linux e MacOS com as GPUs Pascal (Titan X), Kepler, Maxwell, Tegra K1 ou Tegra X1.

Obrigado

