Shane Riegodedios

Dr. Antov

Intro to Algorithm Analysis

March 9th, 2017

Introduction to Algorithm Analysis

1.

2.

1.
$$n = 10$$
 27 swaps $c = 0.27$
 $n = 10^2$ 2262 swaps $c = 0.2262$
 $n = 10^3$ 214212 swaps $c = 0.214212$
 $n = 10^4$ 21440712 swaps $c = 0.21440712$
 $c_I \in 0.214$

2.
$$n = 10$$
 34 swaps $c = 3.2$
$$n = 10^2 671 swaps c = 3.35$$

$$n = 10^3 9919 swaps c = 3.31$$

$$n = 10^4 132919 swaps c = 3.32$$

$$c_H ext{ } \in 3.34$$

Insertion sort is faster.

3.

The test results show for small values, InsertionSort is faster but over 20, HeapSort is much more faster to use.