

### **Description**

#### **Image**





#### Caption

1. Close-up of the material. © Granta Design 2. The proportions and regularity of brick make it fast to assemble. Brick weathers well, and the texture and color make it visually attractive. © Granta Design

#### The material

Brick is as old as Babylon (4000 BC) and as durable. It is the most ancient of all man-made building materials. The regularity and proportions of bricks makes them easy to lay in a variety of patterns, and their durability makes them an ideal material for the construction of building. Clay - the raw material from which brick are made - is available almost everywhere; finding the energy to fire them can be more of a problem. Pure clay is gray-white in color; the red color of most bricks comes from impurities of iron oxide.

### **General properties**

| Density         | 1.6e3  | - | 2.1e3 | kg/m^3 |
|-----------------|--------|---|-------|--------|
| Price           | * 0.62 | - | 1.66  | USD/kg |
| Date first used | -7500  |   |       |        |

### **Mechanical properties**

| Young's modulus                         | 15      | - | 30   | GPa       |
|-----------------------------------------|---------|---|------|-----------|
| Shear modulus                           | 6       | - | 12.5 | GPa       |
| Bulk modulus                            | * 8     | - | 17   | GPa       |
| Poisson's ratio                         | 0.2     | - | 0.25 |           |
| Yield strength (elastic limit)          | 5       | - | 14   | MPa       |
| Tensile strength                        | 5       | - | 14   | MPa       |
| Compressive strength                    | 10      | - | 70   | MPa       |
| Elongation                              | 0       |   |      | % strain  |
| Hardness - Vickers                      | 20      | - | 35   | HV        |
| Fatigue strength at 10^7 cycles         | * 6     | - | 9    | MPa       |
| Fracture toughness                      | 1       | - | 2    | MPa.m^0.5 |
| Mechanical loss coefficient (tan delta) | * 0.004 | - | 0.02 |           |
|                                         |         |   |      |           |



| Thermal | properties |
|---------|------------|
| Hichina | properties |

| Melting point                   | 927     | -    | 1.23e3 | °C         |
|---------------------------------|---------|------|--------|------------|
| Maximum service temperature     | 927     | -    | 1.23e3 | °C         |
| Minimum service temperature     | -273    |      |        | °C         |
| Thermal conductor or insulator? | Poor in | sula | itor   |            |
| Thermal conductivity            | 0.46    | -    | 0.73   | W/m.°C     |
| Specific heat capacity          | 750     | -    | 850    | J/kg.°C    |
| Thermal expansion coefficient   | 5       | -    | 8      | μstrain/°C |

# **Electrical properties**

| Electrical conductor or insulator?           | Good i | nsul | ator |             |
|----------------------------------------------|--------|------|------|-------------|
| Electrical resistivity                       | 1e14   | -    | 3e16 | µohm.cm     |
| Dielectric constant (relative permittivity)  | 7      | -    | 10   |             |
| Dissipation factor (dielectric loss tangent) | 0.001  | -    | 0.01 |             |
| Dielectric strength (dielectric breakdown)   | 9      | -    | 15   | 1000000 V/m |

# **Optical properties**

| Transparency | Opaque |
|--------------|--------|
|              |        |

# **Processability**

| Moldability   | 2 | - | 4 |
|---------------|---|---|---|
| Machinability | 1 | - | 2 |

# **Durability: water and aqueous solutions**

| Water (fresh)          | Excellent |
|------------------------|-----------|
| Water (salt)           | Excellent |
| Soils, acidic (peat)   | Excellent |
| Soils, alkaline (clay) | Excellent |
| Wine                   | Excellent |

# **Durability: acids**

| Acetic acid (10%)       | Excellent    |
|-------------------------|--------------|
| Acetic acid (glacial)   | Excellent    |
| Citric acid (10%)       | Excellent    |
| Hydrochloric acid (10%) | Excellent    |
| Hydrochloric acid (36%) | Excellent    |
| Hydrofluoric acid (40%) | Unacceptable |
| Nitric acid (10%)       | Excellent    |
| Nitric acid (70%)       | Excellent    |
| Phosphoric acid (10%)   | Excellent    |
| Phosphoric acid (85%)   | Excellent    |



| Sulfuric acid (10%) | Excellent |
|---------------------|-----------|
| Sulfuric acid (70%) | Excellent |

## **Durability: alkalis**

| Sodium hydroxide (10%) | Excellent |
|------------------------|-----------|
| Sodium hydroxide (60%) | Excellent |

## **Durability: fuels, oils and solvents**

| Amyl acetate             | Excellent |
|--------------------------|-----------|
| Benzene                  | Excellent |
| Carbon tetrachloride     | Excellent |
| Chloroform               | Excellent |
| Crude oil                | Excellent |
| Diesel oil               | Excellent |
| Lubricating oil          | Excellent |
| Paraffin oil (kerosene)  | Excellent |
| Petrol (gasoline)        | Excellent |
| Silicone fluids          | Excellent |
| Toluene                  | Excellent |
| Turpentine               | Excellent |
| Vegetable oils (general) | Excellent |
| White spirit             | Excellent |
|                          |           |

# Durability: alcohols, aldehydes, ketones

| Acetaldehyde              | Excellent |
|---------------------------|-----------|
| Acetone                   | Excellent |
| Ethyl alcohol (ethanol)   | Excellent |
| Ethylene glycol           | Excellent |
| Formaldehyde (40%)        | Excellent |
| Glycerol                  | Excellent |
| Methyl alcohol (methanol) | Excellent |

## **Durability: halogens and gases**

| Chlorine gas (dry)   | Excellent   |
|----------------------|-------------|
| Fluorine (gas)       | Limited use |
| O2 (oxygen gas)      | Excellent   |
| Sulfur dioxide (gas) | Excellent   |

# **Durability: built environments**

| Industrial atmosphere | Acceptable |
|-----------------------|------------|
| Rural atmosphere      | Excellent  |

Brick Page 4 of 5



| Marine atmosphere       | Excellent |
|-------------------------|-----------|
| UV radiation (sunlight) | Excellent |

## **Durability: flammability**

| Flammability | Non-flammable |
|--------------|---------------|
|--------------|---------------|

### **Durability: thermal environments**

| Tolerance to cryogenic temperatures | Excellent |
|-------------------------------------|-----------|
| Tolerance up to 150 C (302 F)       | Excellent |
| Tolerance up to 250 C (482 F)       | Excellent |
| Tolerance up to 450 C (842 F)       | Excellent |
| Tolerance up to 850 C (1562 F)      | Excellent |
| Tolerance above 850 C (1562 F)      | Excellent |

## Geo-economic data for principal component

| Annual world production, principal component | * 5e7 | - 5.1e7 | tonne/yr |  |
|----------------------------------------------|-------|---------|----------|--|
|----------------------------------------------|-------|---------|----------|--|

## Primary material production: energy, CO2 and water

| Embodied energy, primary production | 2.2    | - | 5     | MJ/kg          |
|-------------------------------------|--------|---|-------|----------------|
| CO2 footprint, primary production   | 0.206  | - | 0.227 | kg/kg          |
| Water usage                         | * 5.27 | - | 5.83  | l/kg           |
| Eco-indicator 95                    | 28     |   |       | millipoints/kg |
| Eco-indicator 99                    | 11     |   |       | millipoints/kg |

### **Material processing: energy**

| Grinding energy (per unit wt removed)   | * ^ 7 | 40.7   | MJ/ka     |
|-----------------------------------------|-------|--------|-----------|
| (aringing energy (ner linit wr removed) | " Y / | - 10.7 | IVI. I/KO |
|                                         |       |        |           |

### **Material processing: CO2 footprint**

| Grinding CO2 (per unit wt removed) | * 0.727 - 0.804 ka/ka |
|------------------------------------|-----------------------|

### Material recycling: energy, CO2 and recycle fraction

| Recycle                            | ×         |
|------------------------------------|-----------|
| Recycle fraction in current supply | 15 - 20 % |
| Downcycle                          | ✓         |
| Combust for energy recovery        | ×         |
| Landfill                           | ✓         |
| Biodegrade                         | ×         |
| Toxicity rating                    | Non-toxic |
| A renewable resource?              | ×         |

#### **Environmental notes**



Brick is used on a vast scale. The long firing time, extending to some days, involves a considerable consumption of energy, but otherwise the process of making brick is not a damaging one. In use, brick is inert and - particularly if glazed - resists weathering, giving an extremely long life, and they can be reused when a building is demolished.

### **Supporting information**

#### Design guidelines

Bricks and the mortar used to bond them are strong in compression but weak in tension. This largely determines the way they are used: brick structures (like those of stone) are designed in such a way that the loads are compressive everywhere, ruling out cantilevered or very slender forms. The face of brick can be molded and glazed, allowing great freedom of decoration, and the pattern and natural color variation gives a visually attractive surface. Low -fired, unglazed brick is vulnerable to water-penetration and degradation, and should be screened from direct weathering. High-fired or glazed brick is extremely durable.

#### Technical notes

Brick is fired clay: hydrous aluminum silicate, with impurities of potash, soda, lime, and oxides of iron. On heating to 900-1200C, the aluminum silicate reacts with soda to form a viscous glass - it is this that bonds the brick together. Most brick is porous; if it is to resist water it is glazed. To do this the surface of the fired brick is painted with a mixture of glass-forming fluxes and the brick is re-fired, melting the glaze, and forming a glassy surface that can be colored.

#### Typical uses

Domestic and industrial building, walls, paths and roads.

### Links

Reference
ProcessUniverse
Producers