Лабораторная работа 5

Юдин Герман Станиславович, НФИмд-02-23

РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук

ПРЕЗЕНТАЦИЯ ПО ЛАБОРАТОРНОЙ РАБОТЕ №5

дисциплина: Математические основы защиты информации

и информационной безопасности

Преподователь: Кулябов Дмитрий Сергеевич

Студент: Юдин Герман Станиславович

Группа: НФИмд-02-23

МОСКВА 2023 г.

Прагматика выполнения лабораторной работы

Прагматика выполнения лабораторной работы

Требуется реализовать:

- 1. Алгоритм, реализующий тест Ферма
- 2. Алгоритм вычисления символа Якоби
- 3. Алгоритм, реализующий тест Соловэя-Штрассена
- 4. Алгоритм, реализующий тест Миллера-Рабина.

Цель работы

Освоить на практике алгоритмы проверки чисел на простоту.

Выполнение лабораторной работы

1. Алгоритм, реализующий тест Ферма

1. Алгоритм, реализующий тест Ферма

Алгоритм основан на малой теореме Ферма, которая утверждает, что если n - простое число, то для любого целого числа a, не являющегося кратным n, выполняется a^(n-1) = 1 (mod n). Алгоритм выбирает случайные значения а и проверяет условие. Если оно не выполняется для какого-либо a, то n считается составным. Если оно выполняется для всех выбранных a, то n вероятно является простым.

```
def is prime fermat(n, k=5):
        return False
    if n <= 3:
        return True
    for in range(k):
        a = random.randint(2, n - 2)
        if pow(a, n - 1, n) != 1:
```

2. Символ Якоби

2. Символ Якоби

Символ Якоби обобщает символ Лежандра и используется для определения вычетов в кольце вычетов по модулю n. Для нечетного простого числа n и целого числа a, символ Якоби Jacobi(a, n) равен 1, если а является квадратичным вычетом по модулю n, -1, если а является квадратичным невычетом, и 0, если а кратно n. Символ Якоби используется в различных алгоритмах для проверки простоты и для решения квадратичных уравнений по модулю.

```
def jacobi_symbol(a, n):
    if n % 2 == 0 or n <= 0:
        raise ValueError("n должно быть нечетным и положительным")
    a = a % n
    t = 1

while a != 0:
    while a % 2 == 0:
    a /= 2
    r = n % 8
    if r == 3 or r == 5:
        t = -t
```

3. Тест Соловея-Штрассена

3. Тест Соловея-Штрассена

Этот алгоритм использует символ Якоби и проверяет, является ли число простым. Алгоритм выбирает случайное целое число а и проверяет два условия: 1) а не делится на n, и 2) символ Якоби Jacobi(a, n) равен результату вычисления с использованием символа Лежандра. Если оба условия выполняются для всех выбранных a, то n вероятно является простым числом.

```
def is prime solovay strassen(n, k=5):
    if n <= 1:
        return False
    if n <= 3:
        return True
    def legendre(a, p):
        return pow(a, (p - 1) // 2, p)
    for in range(k):
```

4. Тест Миллера-Рабина

4. Тест Миллера-Рабина

Этот алгоритм также использует вероятностный метод для проверки простоты числа. Алгоритм выбирает случайное целое число а и разлагает n-1 на $2^s * d$, где s – четное, и d нечетное. Затем алгоритм проверяет условия Миллера-Рабина: 1) $a^d = 1 \pmod n$, и 2) для всех i от 0 до s-1, $a^{(2}i * d) = -1 \pmod n$ или $a^{(2}i * d) = 1 \pmod n$. Если оба условия выполняются для всех выбранных a, то n вероятно является простым числом.

```
def is_prime_miller_rabin(n, k=5):
    if n <= 1:
        return False
    if n <= 3:
        return True

def miller_rabin_test(a, s, d, n):
        x = pow(a, d, n)
        if x == 1 or x == n - 1:
            return True

        for _ in range(s - 1):
            x = (x * x) % n
            if x == n - 1:
            return True</pre>
```

Результат работы программы

Результат работы программы

```
• тест Ферма:
23 вероятно простое
Символ Якоби (6/13) = -1
тест соловэя-Штрассена:
23 вероятно простое
тест Миллера-Рабина:
23 вероятно простое
```

Figure 5: output

Выводы

В результате выполнения работы я освоил на практике применение алгоритмов проверки чисел на простоту.