Mean and Variance of Exponential Family models (2/3) Given a model with location parameter & and scale parameter & with log likelihood function $l(\theta, \emptyset, y)$ and having density or mass function $l(y; \theta, \emptyset) = exp\left(\frac{y\theta - b(\theta)}{a(\emptyset)} + C(y, \theta)\right)$ wher a(.), b(.) and c(.) are specific functions. We can prove that $(y, \theta, \phi) = 0$, indeed: $\frac{\partial l}{\partial \theta} = \frac{\partial \ln l(y, \theta, \phi)}{\partial \theta}$ $= \frac{\partial \ln l(y, \theta, \phi)}{\partial \theta} + c(y, \phi) / d\theta$ $=\frac{4}{a(\phi)}-\frac{b'(\phi)}{a(\phi)}$ since $\mathbb{E}[y]=b'(\phi)$ $\int_{0}^{\infty} \left[\frac{\partial \theta}{\partial \phi} \right] = \frac{b'(\phi)}{a(\phi)} - \frac{b'(\phi)}{a(\phi)}$

The expectation with respect to the variable of interest y of the log likelihood function (derivative of the likelihood function with respect to the location parameter 0,150 for all exp. family models

•		