Politechnika Lubelska

Laboratorium sieci rozproszonych

Nazwa Ćwiczenia: Konfiguracja protokołu IPv6

- 4. Weryfikacja poprawności konfiguracji.
 - a. Na komputerach PC1 oraz PC2 wykonaj polecenie ipconfig /all

```
C:\Users\student>ipconfig /all
Konfiguracja IP systemu Windows
 Karta Ethernet LAN:
Karta Ethernet Internet:
 Karta tunelowa isatap.pollub.pl:
```

b. Na konsoli routera R1 wykonaj polecenie show ip dhcp binding . Pozwala ono na stwierdzenie obecnie istniejących powiązań interfejs klienta - adres IP (dzierżaw adresów).

```
R1(config)#ip dhcp pool R1G0
R1(dhcp-config)#network 192.168.10.0 255.255.255.0
R1(dhcp-config)#dns-server 192.168.11.5
R1(dhcp-config)#default-router 192.168.10.1
R1(dhcp-config)#exit
R1(config)#ip dhcp pool R1G1
R1(dhcp-config)#metwork 192.168.11.0 255.255.255.0
R1(dhcp-config)#dns-server 192.168.11.5
R1(dhcp-config)#default-router 192.168.11.1
R1(dhcp-config)#exit
R1(config)#exit
R1#
Mar 2 17:14:34.483: %SYS-5-CONFIG_I: Configured from console by console
R1#show ip dhep binding
Bindings from all pools not associated with VRF:
                                                                     Type
                                             Lease expiration
                    Client-ID/
IP address
                    Hardware address/
                    User name
                                                                      Autonatic
                                             Mar 03 2015 05:09 PM
                    0100.2618.8ba4.cd
192.168.10.11
                                             Mar 03 2015 05:12 PM
                                                                      Autonat ic
                    0100.2618.8ba4.48
192.168.11.11
R1#
```

c. Na konsoli routera wykonaj polecenie show ip dhep pool

```
Lease expiration
                     Hardware address/
                     User name
0100.2618.8ba4.cd
192.168.10.11
                                               Mar 03 2015 05:09 PM
Mar 03 2015 05:12 PM
                                                                         Automatic
192.168.11.11
                     0100.2618.8ba4.48
                                                                         Automatic
R1#show ip dhcp pool
Pool R1GO:
Utilization mark (high/lou)
                                  : 100 / 0
Subnet size (first/next)
                                     0 / 0
                                  : 254
: 1
Total addresses
Leased addresses
Pending event
                                   : none
1 subnet is currently in the pool:
Current index
192.168.10.12
                        IP address range
                                                              Leased addresses
                        192.168.10.1
                                          - 192.168.10.254
Pool R1G1:
Utilization mark (high/lou)
                                   : 100 / 0
                                   :0/0
Subnet size (first/next)
                                  : 254
: 1
Total addresses
Leased addresses
Pending event
                                   : none
1 subnet is currently in the pool:
                                                               Leased addresses
Current index
                        IP address range
                                          - 192.168.11.254
                        192.168.11.1
192.168.11.12
```

e. Aby sprawdzić, czy komunikaty są odbierane lub wysyłane przez router, należy użyć polecenia show ip dhcp server statistics

R1#show ip dhop ser Memory usage Address pools Database agents Automatic bindings Manual bindings Expired bindings Malformed messages Secure arp entries	66255 2 0 2 0
Message BOOTREQUEST DHCPD ISCOVER DHCPREQUEST DHCPDECL INE DHCPRELEASE DHCP INFORM	Received 0 10 5 0 3 6
Message BOOTREPLY DHCPOFFER DHCPACK DHCPNAK R1#	Sent 0 6 11 0

CZĘŚĆ II

2. Ręczna konfiguracja adresów IPv6 na routerze.

c. Należy wydać polecenie show ipv6 interface g0/0 (zamiast g0/0 proszę wpisać właściwa nazwę wykorzystanych interfejsów routera).

Adres FF02::1 to odnosi się do wszystkich węzłów z zakresu lokalnego , pozostałe to adresy wykrywania węzłów sąsiadów.

```
Router#show ipv6 interface FastEthernet0/0
FastEthernet0/0 is up, line protocol is up
  IPv6 is enabled, link-local address is FE80::2D0:FFFF:FE35:AD01
  No Virtual link-local address(es):
  Global unicast address(es):
    2001:DB8:ACAD:A::1, subnet is 2001:DB8:ACAD:A::/64
  Joined group address(es):
    FF02::1
    FF02::1:FF00:1
    FF02::1:FF35:AD01
   MTU is 1500 bytes
   ICMP error messages limited to one every 100 milliseconds
   ICMP redirects are enabled
    ICMP unreachables are sent
    ND DAD is enabled, number of DAD attempts: 1
    ND reachable time is 30000 milliseconds
  Router#
```

d. W celu uzyskania zgodności pomiędzy adresem typu link-local a adresem można ręcznie przypisać do każdego z interfejsów Ethernet routera R1 adres link-local. Należy wykonać polecenia jak niżej:

```
R1# config t Enter configuration commands, one per line. End with CNTL/Z. R1(config)# interface g0/0
R1(config-if)# ipv6 address fe80::1 link-local
R1(config-if)# interface g0/1
R1(config-if)# ipv6 address fe80::1 link-local
R1(config-if)# end R1#
```

Wyjaśnij dlaczego można obu interfejsom przypisać ten sam adres typu link-local tj. FE80::1.

Dzieje się tak, ponieważ adres link-local jest wykorzystywany do utworzenia pojedynczego połączenia. Takie same adresy na różnych interfejsach nie będą powodować konfliktu.

e. Wydaj ponownie polecenie show ipv6 interface dla każdego z interfejsów Ethernet routera R1.

```
Router#show ipv6 int
FastEthernet0/0 is up, line protocol is up
  IPv6 is enabled, link-local address is FE80::1
  No Virtual link-local address(es):
  Global unicast address(es)
    2001:DB8:ACAD:A::1, subnet is 2001:DB8:ACAD:A::/64
  Joined group address(es):
    FF02::1
     FF02::1:FF00:1
   MTU is 1500 bytes
   ICMP error messages limited to one every 100 milliseconds
   ICMP redirects are enabled
   ICMP unreachables are sent
   ND DAD is enabled, number of DAD attempts: 1
   ND reachable time is 30000 milliseconds
  FastEthernet0/1 is up, line protocol is up
   IPv6 is enabled, link-local address is FE80::1
   No Virtual link-local address(es):
    Global unicast address(es):
     2001:DB8:ACAD:1::1, subnet is 2001:DB8:ACAD:1::/64
    Joined group address(es):
      FF02::1
      FF02::1:FF00:1
    MTU is 1500 bytes
     ICMP error messages limited to one every 100 milliseconds
     ICMP redirects are enabled
     ICMP unreachables are sent
     ND DAD is enabled, number of DAD attempts: 1
     ND reachable time is 30000 milliseconds
   Router#
                                                                  Сору
```

Czy przypisanie do grup multicastowych uległo zmianie w stosunku do punktu e. Jeśli tak to proszę podać co się zmieniło i powód tej zmiany (na przykładzie wybranego interfejsu).

Zniknęła grupa FF02::1:FF35::AD01 a link-local adres zmienił się na taki jaki wpisaliśmy.

3. Konfiguracja routingu statycznego IPv6 na routerze

c. Wydaj ponownie polecenie show ipv6 interface dla każdego z interfejsów Ethernet routera R1. Czy przypisanie do grup multicastowych uległo zmianie w stosunku do punktu 2e. Jeśli tak to proszę podać co się zmieniło i powód tej zmiany (na przykładzie wybranego interfejsu).

```
Router(config) #interface FastEthernet0/0
Router (config-if) #
Router (config-if) #exit
Router (config) #interface FastEthernet0/1
Router(config-if)#
Router (config-if) #exit
 Router (config) #interface FastEthernet0/0
 Router (config-if) #
 Router(config-if) #exit
 Router (config) #interface FastEthernet 0/1
  Router (config-if) #end
  %SYS-5-CONFIG_I: Configured from console by console
   Router#show ipv6 interface brief
           FE80::2D0:FFFF:FE35:AD01
            2001:DB8:ACAD:A::1
    FastEthernet0/1
                                                              [up/up]
           FE80::2D0:FFFF:FE35:AD02
             2001:DB8:ACAD:1::1
                                                              [administratively down/down]
    [administratively down/down]
Router#show ipv6 interface FastEthernet0/0
FastEthernet0/0 is up, line protocol is up
IPv6 is enabled, link-local address is FE80::2D0:FFFF:FE35:AD01
No Virtual link-local address(es):
Global unicast address(es):
2001:DB8:ACAD:A::1, subnet is 2001:DB8:ACAD:A::/64
Joined group address(es):
FF02::1
FF02::1:FF35:AD01
MTU is 1500 bytes
ICMP error messages limited to one every 100 milliseconds
ICMP redirects are enabled
ICMP unreachables are sent
ND DAD is enabled, number of DAD attempts: 1
ND reachable time is 30000 milliseconds
Router#conf t
Enter configuration commands, one per line. End with CNTL/2.
Router(config-if)#int f0/0
Router(config-if)#int f0/1
Router(config-if)#int f0/1
Router(config-if)#int f0/1
Router(config-if)#int f0/1
Router(config-if)#int f0/1
Router(config-if)#ind Router#
%SYS-5-CONFIG_I: Configured from console by console
     Router#show ipv6 interface FastEthernet0/0
          $SYS-5-CONFIG_I: Configured from console by console
                                                                                                                                   Copy ]
```

Po uruchomieniu routingu IPv6 do obu interfejsów został dodany adres wszystkich routerów z łącza lokalnego.

d. Jeżeli w poprzednim punkcie potwierdziło się, że router R1 należy do grupy multicastowej all-router multicast group to można na komputerach PC-A i PC-B odświeżyć konfigurację interfejsów sieciowych.

Wyjaśnij dlaczego PC-A i PC-B przypisane zostały: Global Routing Prefix oraz Subnet ID takie same jak skonfigurowano je na R1?

Ponieważ hosty oraz router należą do tej samej sieci.

4. Konfiguracja adresu statycznego IPv6 na PC.

b. Za pomocą polecenia ipconfig należy sprawdzić konfigurację interfejsów sieciowych na obu komputerach PC

```
Command Prompt
  Packet Tracer PC Command Line 1.0 PC>ipconfig
  FastEthernetO Connection: (default port)
    Link-local IPv6 Address..... FE80::20B:BEFF:FE4C:E313
    Autoconfiguration IP Address...: 169.254.227.19
    Subnet Mask..... 255.255.0.0
    Default Gateway..... 0.0.0.0
  PC>
PC>ipconfig
FastEthernetO Connection: (default port)
  Link-local IPv6 Address..... FE80::2D0:D3FF:FE98:6B46
  Autoconfiguration IP Address....: 169.254.107.70
  Subnet Mask..... 255.255.0.0
  PC>
```

c. Wykorzystaj komend ping do sprawdzenia łączności pomiędzy hostami: PC-A i PC-B.

PC-B

```
Config
Physical
                Desktop
                             Programming
                                           Attributes
 Command Prompt
 Packet Tracer PC Command Line 1.0
 C:\>ping 2001:db8:acad:1::3
 Pinging 2001:db8:acad:1::3 with 32 bytes of data:
 Reply from 2001:DB8:ACAD:1::3: bytes=32 time=1ms TTL=127
 Reply from 2001:DB8:ACAD:1::3: bytes=32 time<lms TTL=127
 Reply from 2001:DB8:ACAD:1::3: bytes=32 time=1ms TTL=127
 Ping statistics for 2001:DB8:ACAD:1::3:
 Packets: Sent = 3, Received = 3, Lost = 0 (0% loss), Approximate round trip times in milli-seconds:
     Minimum = Oms, Maximum = lms, Average = Oms
 Control-C
  ^C
 C:\>ping 2001:db8:acad:a::1
 Pinging 2001:db8:acad:a::1 with 32 bytes of data:
 Reply from 2001:DB8:ACAD:A::1: bytes=32 time<lms TTL=255 Reply from 2001:DB8:ACAD:A::1: bytes=32 time<lms TTL=255
 Reply from 2001:DB8:ACAD:A::1: bytes=32 time<1ms TTL=255
 Ping statistics for 2001:DB8:ACAD:A::1:
      Packets: Sent = 3, Received = 3, Lost = 0 (0% loss),
 Approximate round trip times in milli-seconds:
      Minimum = Oms, Maximum = Oms, Average = Oms
```

5.1 DHCP pozwala na przypisywanie konkretnego adresu IPv4 na podstawie adresu MAC. Jak skonfigurować taki przypadek na serwerze DHCP uruchomionym na routerze Cisco?

Router(config)# ip dhcp pool name Router(dhcp-config)# host address [mask | /prefix-length] Router(dhcp-config)# client-identifier unique-identifier