線形写像の次元定理

V,W を実数 ${f R}$ 上のベクトル空間, $T:V\to W$ を線形写像とする. $n=\dim V$ が有限ならば,

$$\dim V = \dim \operatorname{Ker}(T) + \dim \operatorname{Im}(T) \tag{1}$$

が成り立つ.

証明. $\underline{\operatorname{Im}(T),\operatorname{Ker}(T)}$ が有限次元であること: $\{v_i\}_{i=1,\dots,n}$ を V の基底とすれば, $\operatorname{Im}(T)$ は $\{T(v_i)\}_{i=1,\dots,n}$ で生成されるので, $\dim \operatorname{Im}(T)$ は有限である.一方, $\operatorname{Ker}(T)$ は V の部分空間なので, $\dim \operatorname{Ker}(T) \leq \dim V$ が成り立ち,次元は有限である.

そこで、改めて $\{v_i\}_{i=1,...,m}$ を $\operatorname{Ker}(T)$ の基底とし、 $\{w_j\}_{j=1,...,r}$ を $\operatorname{Im}(T)$ の基底とする。像の定義より、 w_j に対して $T(v_{m+j})=w_j$ を満たす V の元 v_{m+j} が存在する。このとき、 $\{v_1,\ldots,v_m,v_{m+1},\ldots,v_{m+r}\}$ が V の基底となっていることを示せば、(1) が成り立つことが証明される。

(i) $\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_{m+r}\}$ の線形独立性:

$$c_1 \mathbf{v}_1 + \cdots + c_{m+r} \mathbf{v}_{m+r} = \mathbf{0}_V \tag{2}$$

とおく. (2) の両辺を T で写像すると

$$c_1T(\boldsymbol{v}_1) + \cdots + c_{m+r}T(\boldsymbol{v}_{m+r}) = \mathbf{0}_W$$

となり、 $T(\boldsymbol{v}_i)=\boldsymbol{0}_V~(i=1,\ldots,m)$ および $T(\boldsymbol{v}_{m+j})=\boldsymbol{w}_j~(j=1,\ldots,r)$ を代入することによって、

$$c_{m+1}\boldsymbol{w}_1 + \cdots + c_{m+r}\boldsymbol{w}_r = \mathbf{0}_W$$

を得る. $\{w_j\}$ の線形独立性から, $c_{m+1}=\cdots=c_{m+r}=0$ を得る. これらを (2) に代入することにより

$$c_1 \boldsymbol{v}_1 + \cdots c_m \boldsymbol{v}_m = \boldsymbol{0}_V$$

を得る。 $\{v_i\}_{i=1,...,m}$ の線形独立性から $c_1=\cdots=c_m=0$ を得る。以上のことから,(2) を仮定すれば $c_1=\cdots=c_{m+r}=0$ が成り立つので, $\{v_1,\ldots,v_{m+r}\}$ は線形独立であることがわかる。

(ii) $\{v_1,\ldots,v_{m+r}\}$ は V を生成する : x を V の勝手な元とする。T(x) は $\mathrm{Im}(T)$ の元なので

$$T(\boldsymbol{x}) = a_1 \boldsymbol{w}_1 + \dots + a_r \boldsymbol{w}_r$$

線形代数 2 (担当:佐藤 弘康) — 補足その1

2009 年度前期

と表すことができる. いま, $\boldsymbol{y} = a_1 \boldsymbol{v}_{m+1} + \cdots + a_r \boldsymbol{v}_{m+r}$ とおくと

$$T(\boldsymbol{x} - \boldsymbol{y}) = T(\boldsymbol{x}) - T(\boldsymbol{y}) = \mathbf{0}_W$$

となり、 $x-y \in \text{Ker}(T)$ であることがわかる. したがって、

$$\boldsymbol{x} - \boldsymbol{y} = b_1 \boldsymbol{v}_1 + \dots + b_m \boldsymbol{v}_m$$

と表すことができる. ゆえに

$$\boldsymbol{x} = b_1 \boldsymbol{v}_1 + \dots + b_m \boldsymbol{v}_m + a_1 \boldsymbol{v}_{m+1} + \dots + a_r \boldsymbol{v}_{m+r}$$

となり、任意の $oldsymbol{x} \in V$ が $\{oldsymbol{v}_1, \dots, oldsymbol{v}_{m+r}\}$ の線形結合で書けることが示された。

以上のことから、 $\{v_1,\ldots,v_{m+r}\}$ は V の基底となり、

$$\dim V = m + r = \dim \operatorname{Ker}(T) + \dim \operatorname{Im}(T)$$

が成り立つ.