IDEATION PHASE

LITERATURE SURVEY

DATE	24 SEPTEMBER 2022		
TEAM ID	PNT2022TMID41426		
PROJECT NAME	AI Based localization of skin disease with		
	Erythema		

Literature Survey:

S.no	TITLE&AUTHORS	YEAR	TECHNIQUE	PROPOSED SYSTEM
1.	Deep Learning Skin	2019	Deep	The goal is to make a simple model that
	Lesion Classification		learning	can go from an image (taken with a
	& K Scott Mader			smartphone) to a prediction of how
				likely different skin-conditions are
				based on a picture of your skin.
2.	Multiclass Skin		EW-FCM	It explains how the
	Lesion Classification	2022	segmentation	EW and the first-
	Using a Novel		technique	order cumulative
	Lightweight Deep			moment were
	Learning Framework			combined to form
	for Smart Healthcare			the new EW-FCM
	& Long Hoang, Suk-			segmentation
	Hwan lee, Eung-joo-			technique and
	lee,Ki-ryong kwon			maintain their good
				characteristics
				in introduces the
				wide-ShuffleNet for
				skin lesion
				classification.

3.	Intelligent	2021	Machine	It observes
	System for skin		Learning	that most of
	disease			the cases
	prediction using			remain
	Machine Learning			unnoticed
	& Ahmed A.			because of the
	Elngar et al			lack of better
				medical
				infrastructure
				and facilities.
				Hence it is
				devoted to
				solve this
				challenge.
4.	Skin Disease	2019	Image	It approach to
	Detection &		Processing	detect the skin
	Prem J.Patil,		Technique	disease based
	J.Buchkule			on image
				processing .It
				helps to
				proper
				diagnosis of
				affected skin
				portion.

REFERENCES:

- 1. Rey-Barroso, L.; Peña-Gutiérrez, S.; Yáñez, C.; Burgos-Fernández, F.J.; Vilaseca, M.; Royo, S. Optical technologies for the improvement of skin cancer diagnosis: A review. *Sensors* **2021**, *21*, 252. [Google Scholar] [CrossRef]
- 2. Hosny, K.M.; Kassem, M.A.; Foaud, M.M. Classification of skin lesions using transfer learning and augmentation with Alex-net. *PLoS*

- ONE **2019**, 14, e0217293. [Google Scholar] [CrossRef] [PubMed][Green Version]
- 3. Zicari, R.V.; Ahmed, S.; Amann, J.; Braun, S.A.; Brodersen, J.; Bruneault, F.; Wurth, R. Co-Design of a trustworthy AI System in healthcare: Deep learning based skin lesion classifier. *Front. Hum. Dyn.* **2021**, *3*, 40. [Google Scholar] [CrossRef]
- 4. Mishra, N.; Celebi, M. An overview of melanoma detection in dermoscopy images using image processing and machine learning. *arXiv* **2016**, arXiv:1601.07843. [Google Scholar]
- 5. World Health Organization. Radiation: Ultraviolet (UV) Radiation and Skin Cancer. Available online: <a href="https://www.who.int/news-room/questions-and-answers/item/radiation-ultraviolet-(uv)-radiation-and-skin-cancer#:~:text=Currently%2C%20between%202%20and%203,skin %20cancer%20in%20their%20lifetime (accessed on 19 October 2021).
- 6. Jerant, A.F.; Johnson, J.T.; Sheridan, C.D.; Caffrey, T.J. Early detection and treatment of skin cancer. *Am. Fam. Physician* **2000**, *62*, 357–368. [Google Scholar]
- 7. Trufant, J.; Jones, E. Skin cancer for primary care. In *Common Dermatologic Conditions in Primary Care*; John, J.R., Edward, F.R., Jr., Eds.; Springer: Cham, Switzerland, 2019; pp. 171–208. [Google Scholar]