

Model repositories and standard formats for model reusability

Dagmar Waltemath

Medical Informatics Laboratory, University Medicine of Greifswald

New Trends in Bioinformatics | September 1, 2020 T05: Computational modelling of cellular processes: regulatory vs metabolic systems

Dagmar Waltemath Medical Informatics Laboratory University Medicine Greifswald

dagmarwaltemath

0000-0002-5886-5563

How this tutorial is going to work

Links on slides (get them via slideshare) Ask me now or later

Ping me later or search online ©

Anytime!

Anytime!

Disclaimer: Comic-style graphics in this presentation were done either by Anna Zhukova or by Martin Peters. Thank you very much!

Example: Whole Cell Modeling

Cell 2012 150389-401 DOI: (10.1016/j.cell.2012.05.044) Copyright © 2012 Elsevier Inc. Terms and Conditions

- First in silico Whole Cell Model
- Genome (525 genes), transcriptome, proteome and metabolome incorporated
- Describes whole life cycle of a single cell on molecular level, and
- predicts a wide range of cellular behaviors, and
- accounts for the specific function of every annotated gene product
- Based on 900+ publications
- Consists of 116 MATLAB files
- Incorporates over 1.900 experimentally observed parameters

All data and processing are available online, for download or one-stop exploration.

Cell 2012 150389-401 DOI: (10.1016/j.cell.2012.05.044) Copyright © 2012 Elsevier Inc. Terms and Conditions

Availability: Download %

Author: Covert Lab. Stanford %

antibiotics for Mycoplasmas.

More info: Docs % | Source % | License % | Tests %

parameters, and suggest new uses of existing

Reference: Karr JR et al. Cell 2012. %

https://www.wholecell.org/

Key message

If your work is available, documented and

open...

...then others can host it, share it, cite it, and advertise it!

Biology simulation studies can comprise of many data items.

What does your data look like?

Follow the FAIR guiding principles when aiming to provide reusable simulation models.

Ç:: Findable	Accessible	Interoperable	Reusable
Identifiable data itemsPersistentSearchable	 Identifiers following standard protocols Authentification Access to meta data, even if data not accessible 	 Formal, accesssible representation of data Qualified references 	LicensingProvenanceStandards compliance

Use community standards when publishing and exchanging model code.

HARMONY 2019

Standards

Events

Documents

About

Forums

Search

COMBINE

- Home
- Help
- Sign-in

Coordinating standards for modeling in biology

The 'COmputational Modeling in Blology' NEtwork (COMBINE) is an initiative to coordinate the development of the various community <u>standards and formats</u> for computational models. By doing so, it is expected that the federated projects will develop a set of interoperable and non-overlapping standards covering all aspects of modeling in biology.

Recommendations

Data formats

Semantic / Ontologies

SGN SML

Editorial Boards

Software tool support

Annual meetings

Mailing lists

Specifications

You can use standards-compliant models with many open libraries & tools.

Modeling & Simulation Software

••

Automated tool chains for data and model reuse make your life easier.

The community develops new methods and algorithms for model management.

The community develops new methods and algorithms for model management.

Statistics on model sizes & changes

And where is your data?

Different open model repositories give you access to curated models.

https://www.ebi.ac.uk/biomodels/

http://bigg.ucsd.edu/

http://www.opensourcebrain.org/

Different open model repositories give you access to curated models.

Reproducible simulation studies targeting COVID-19

In a collaboration between the University of Greifswald, the Humboldt-University Berlin, code ahoi, and the BioModels database at EMBL-EBI, we aim to rapidly disseminate simulation studies of COVID-19 models to the research community, in interoperable formats and in high quality.

List of curated models

BIOMD000000955	Giordano2020 - Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy
BIOMD000000956	Bertozzi2020 - The challenges of modeling and forecasting the spread of COVID-19
BIOMD000000957	Roda2020 - Why is it difficult to accurately predict the COVID-19 epidemic?
BIOMD000000958	Ndairou2020 - Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan
BIOMD000000960	Paiva2020 - A data-driven model to describe and forecast the dynamics of COVID-19 transmission
BIOMD000000962	Zhao2020 - Modeling the epidemic dynamics and control of COVID-19 outbreak in China

You can follow defined steps to make your models better reusable.

- 1. Decide for a repository
- 2. Check accepted formats and upload procedures
- Prepare your model (use standards, annotate, document, provide an archive containing the files to reproduce all virtual studies described in the paper)
- 4. Upload your model and (Cross fingers for positive curation results)
- 5. Receive URI for further reference

More help needed? Check out online guidelines!

10 tips for building useful SBGN maps

EDUCATION

Quick tips for creating effective and impactful biological pathways using the Systems Biology Graphical Notation

Vasundra Touré¹**, Nicolas Le Novère², Dagmar Waltemath¹, Olaf Wolkenhauer^{1,3}

- 1 Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany,
- 2 Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom, 3 Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre, Stellenbosch, South Africa
- ^{II} Current address: Department of Biology, Norwegian University of Science and Technology (NTNU),
- Trondheim, Norway
- * vasundra.toure@ntnu.no

Building fully featured COMBINE archives

F1000Research

F1000Research 2016, 5:2421 Last updated: 11 OCT 2016

DATA NOTE

A fully featured COMBINE archive of a simulation study on syncytial mitotic cycles in *Drosophila* embryos [version 1; referees: 1 approved, 2 approved with reservations]

Martin Scharm, Dagmar Waltemath

Department of Systems Biology and Bioinformatics, Institute of Computer Science, University of Rostock, Rostock, Germany

File	Format	Description
manifest.xml	Omex	Skeleton, automatically generated by WebCAT
metadata.rdf	Omex	Skeleton, automatically generated by WebCAT
README md	Markdown	Human readable information for users stumbling upon the archive
model/		
BIOMD000000144.xml	SBML L2V1	origin: www.ebi.ac.uk/biomodels-main/download?mid=BIOMD0000000144
calzone_2007.svg	SVG	origin: models.cultrif.org/workspace/cultrons_thirffry_tysors_novak_2007
calzone_2007.ai	Hustrator	origin: models cellml.org/workspace/catzone_thieffry_tyson_novak_2007
calzone_2007.png	PNG	origin: models cellmi.org/workspace/cutzone_thirffry_tysore_novak_2007
calzone_thieffry_tyson_novak_2007.cellml	CellML 1.0	origin: models cellmi.org/workspace/calzone_thieffry_tyson_novak_2007
sbgn/Calzone2007 gml	GML	SBGN compliant figure generated using SBGN-ED
sbgri/Calzone2007.graphml	GraphML.	SBGN compliant figure generated using SBGN-ED
sbgn/Calzone2007.pdf	POF	SBGN compliant figure generated using SBGN-ED
sbgn/Calzone2007.png	PNG	SBGN compliant figure generated using SBGN-ED
sbgn/Calzone2007.sbgn	SBGN-ML	SBGN-ML encoded figure generated using SBGN-ED
experiment/		
Calzone2007-default-simulation.xml	SED-ML L1V1	Simulation description generated using SED-ML Web Tools
Cabrone 2007-simulation-figure-18 xml	SED-ML L1V1	Simulation description generated using SED-ML Web Tools based on Calzone2007-default-simulation.xml
documentation/		
Calzone2007.pdf	PDF	Scientific publication "Dynamical modeling of syncytial mitotic cycles in Drosophila embryos" obtained from meb embopress.org/content/3/1/131
Calzone2007-supplementary-material.pdf	PDF	Supplementary information for the publication obtained from msb.embopross.org/content/3/1/131
result/		
Fig18-bottom-COPASLavg	SVG	Image generated by executing Calzone2007-simulation-figure-1B.xml or BIOMD000000144.xml in COPASI
Fig1B-top-COPASI.svg	SVG	Image generated by executing Calzone2007-simulation-figure-18.xml or BIOMD0000000144.xml in COPASI
Fig1B-bottom-webtools.png	PNG	Image generated by executing Calzone2007-simulation-figure-1B.xml or BIOMD000000144.xml in SED-ML Web Tools
Fig1B-top-webtools.png	PNG	Image generated by executing Calzone2007-simulation-figure-18.xml or BIOMD0000000144.xml in SED-ML Web Tools

Even more help needed?

Summary

Be recognised! Be a good scientist!

COMBINE 2020 - ONLINE FORUM

Dates: 5-9 October 2020
Location: Online (virtual) meeting Virtual & free of charge

Call for contributions open until Sep 8

- Standardise your model code.
- Make your simulation studies openly available.
- Reuse other people's work.
- Join the COMBINE community to contribute to the projects you saw on my slides (and many more).

Fig: Waltemath et al. (2020) Meeting report , JIB