Let random variable W have mean $\mu_W = 11$ and standard deviation $\sigma_W = 2$. Let random variable X represent the **sum** of n = 169 instances of W.

- (a) Determine the expected value of X. $\mu_X = ?$
- (b) Determine the standard deviation of X. $\sigma_x = ?$
- (c) Using normal approximation, determine P(X < 1884.74).
- (d) Using normal approximation, determine P(X > 1878.76).
- (e) Using normal approximation, determine $P(|X \mu_x| < 11.96)$.
- (f) Using normal approximation, determine $P(|X \mu_x| > 4.42)$.

2. Problem

Let random variable W have mean $\mu_W = 22$ and standard deviation $\sigma_W = 3$. Let random variable X represent the **sum** of n = 81 instances of W.

- (a) Determine the expected value of X. $\mu_X = ?$
- (b) Determine the standard deviation of X. $\sigma_X = ?$
- (c) Using normal approximation, determine P(X < 1773.63).
- (d) Using normal approximation, determine P(X > 1762.02).
- (e) Using normal approximation, determine $P(|X \mu_x| < 29.43)$.
- (f) Using normal approximation, determine $P(|X \mu_x| > 33.21)$.

Let random variable W have mean $\mu_W = 39$ and standard deviation $\sigma_W = 9$. Let random variable X represent the **average** of n = 196 instances of W.

- (a) Determine the expected value of X. $\mu_X = ?$
- (b) Determine the standard deviation of X. $\sigma_X = ?$
- (c) Using normal approximation, determine P(X < 38.93).
- (d) Using normal approximation, determine P(X > 39.35).
- (e) Using normal approximation, determine $P(|X \mu_x| < 0.2636)$.
- (f) Using normal approximation, determine $P(|X \mu_x| > 0.18)$.

4. Problem

Let random variable W have mean $\mu_W = 45$ and standard deviation $\sigma_W = 14$. Let random variable X represent the **average** of n = 100 instances of W.

- (a) Determine the expected value of X. $\mu_X = ?$
- (b) Determine the standard deviation of X. $\sigma_X = ?$
- (c) Using normal approximation, determine P(X < 46.3).
- (d) Using normal approximation, determine P(X > 45.71).
- (e) Using normal approximation, determine $P(|X \mu_x| < 2.282)$.
- (f) Using normal approximation, determine $P(|X \mu_x| > 1.246)$.

Let random variable W have mean $\mu_W = 11$ and standard deviation $\sigma_W = 2$. Let random variable X represent the **sum** of n = 225 instances of W.

- (a) Determine the expected value of X. $\mu_X = ?$
- (b) Determine the standard deviation of X. $\sigma_X = ?$
- (c) Using normal approximation, determine P(X < 2452.8).
- (d) Using normal approximation, determine P(X > 2521.8).
- (e) Using normal approximation, determine $P(|X \mu_x| < 20.4)$.
- (f) Using normal approximation, determine $P(|X \mu_x| > 27)$.

6. Problem

Let random variable W have mean $\mu_W = 58$ and standard deviation $\sigma_W = 19$. Let random variable X represent the **average** of n = 225 instances of W.

- (a) Determine the expected value of X. $\mu_X = ?$
- (b) Determine the standard deviation of X. $\sigma_X = ?$
- (c) Using normal approximation, determine P(X < 59.79).
- (d) Using normal approximation, determine P(X > 58.09).
- (e) Using normal approximation, determine $P(|X \mu_x| < 0.5573)$.
- (f) Using normal approximation, determine $P(|X \mu_x| > 0.722)$.

Let random variable W have mean $\mu_W = 9$ and standard deviation $\sigma_W = 2$. Let random variable X represent the **average** of n = 36 instances of W.

- (a) Determine the expected value of X. $\mu_X = ?$
- (b) Determine the standard deviation of X. $\sigma_X = ?$
- (c) Using normal approximation, determine P(X < 8.56).
- (d) Using normal approximation, determine P(X > 9.07).
- (e) Using normal approximation, determine $P(|X \mu_x| < 0.2467)$.
- (f) Using normal approximation, determine $P(|X \mu_x| > 0.2167)$.

8. Problem

Let random variable W have mean $\mu_W = 57$ and standard deviation $\sigma_W = 17$. Let random variable X represent the **sum** of n = 169 instances of W.

- (a) Determine the expected value of X. $\mu_X = ?$
- (b) Determine the standard deviation of X. $\sigma_X = ?$
- (c) Using normal approximation, determine P(X < 9535.76).
- (d) Using normal approximation, determine P(X > 9593.22).
- (e) Using normal approximation, determine $P(|X \mu_x| < 112.71)$.
- (f) Using normal approximation, determine $P(|X \mu_x| > 316.03)$.

Let random variable W have mean $\mu_W = 57$ and standard deviation $\sigma_W = 13$. Let random variable X represent the **average** of n = 49 instances of W.

- (a) Determine the expected value of X. $\mu_X = ?$
- (b) Determine the standard deviation of X. $\sigma_X = ?$
- (c) Using normal approximation, determine P(X < 55.83).
- (d) Using normal approximation, determine P(X > 56.05).
- (e) Using normal approximation, determine $P(|X \mu_x| < 1.0214)$.
- (f) Using normal approximation, determine $P(|X \mu_x| > 0.7243)$.

10. Problem

Let random variable W have mean $\mu_W = 40$ and standard deviation $\sigma_W = 2$. Let random variable X represent the **sum** of n = 81 instances of W.

- (a) Determine the expected value of X. $\mu_X = ?$
- (b) Determine the standard deviation of X. $\sigma_X = ?$
- (c) Using normal approximation, determine P(X < 3245.04).
- (d) Using normal approximation, determine P(X > 3236.4).
- (e) Using normal approximation, determine $P(|X \mu_x| < 13.86)$.
- (f) Using normal approximation, determine $P(|X \mu_x| > 12.96)$.

Let random variable W have mean $\mu_W = 59$ and standard deviation $\sigma_W = 17$. Let random variable X represent the **average** of n = 64 instances of W.

- (a) Determine the expected value of X. $\mu_X = ?$
- (b) Determine the standard deviation of X. $\sigma_X = ?$
- (c) Using normal approximation, determine P(X < 56.2).
- (d) Using normal approximation, determine P(X > 58.72).
- (e) Using normal approximation, determine $P(|X \mu_x| < 0.17)$.
- (f) Using normal approximation, determine $P(|X \mu_x| > 0.9775)$.

12. Problem

Let random variable W have mean $\mu_W = 27$ and standard deviation $\sigma_W = 5$. Let random variable X represent the **sum** of n = 144 instances of W.

- (a) Determine the expected value of X. $\mu_X = ?$
- (b) Determine the standard deviation of X. $\sigma_X = ?$
- (c) Using normal approximation, determine P(X < 3886.2).
- (d) Using normal approximation, determine P(X > 3895.2).
- (e) Using normal approximation, determine $P(|X \mu_x| < 54)$.
- (f) Using normal approximation, determine $P(|X \mu_x| > 95.4)$.

- 1. (a) 1859
 - (b) 26
 - (c) 0.8389
 - (d) 0.2236
 - (e) 0.3545
 - (f) 0.865
- 2. (a) 1782
 - (b) 27
 - (c) 0.3783
 - (d) 0.7704
 - (e) 0.7243
 - (f) 0.2187
- 3. (a) 39
 - (b) 0.6429
 - (c) 0.4562
 - (d) 0.5438
 - (e) 0.3182
 - (f) 0.7795
- 4. (a) 45
 - (b) 1.4
 - (c) 0.8238
 - (d) 0.1762
 - (e) 0.8969
 - (f) 0.3735

- 5. (a) 2475
 - (b) 30
 - (c) 0.2296
 - (d) 0.0594
 - (e) 0.5035
 - (f) 0.3681
- 6. (a) 58
 - (b) 1.2667
 - (c) 0.9207
 - (d) 0.0793
 - (e) 0.3401
 - (f) 0.5687
- 7. (a) 9
 - (b) 0.3333
 - (c) 0.0951
 - (d) 0.9049
 - (e) 0.5407
 - (f) 0.5157
- 8. (a) 9633
 - - (b) 221
 - (c) 0.33
 - (d) 0.5714
 - (e) 0.3899
 - (f) 0.1527

- 9. (a) 57
 - (b) 1.8571
 - (c) 0.2643
 - (d) 0.7357
 - (e) 0.4177
 - (f) 0.6965
- 10. (a) 3240
 - (b) 18
 - (c) 0.6103
 - (d) 0.5793
 - (e) 0.5587
 - (f) 0.4715
- 11. (a) 59
 - (b) 2.125
 - (c) 0.0934
 - (d) 0.9066
 - (e) 0.0638
 - (f) 0.6455
- 12. (a) 3888
 - (b) 60
 - (c) 0.488
 - (d) 0.4522
 - (e) 0.6319
 - (f) 0.1118