A Book of Abstract Algebra (2nd Edition)

Chapter 23, Problem 1EA

Bookmark

Show all steps: ON

Problem

For each of the following congruences, find m such that the congruence has a unique solution modulo m.

If there is no solution, write "none."

- (a) $60x \equiv 12 \pmod{24}$
- (b) $42x \equiv 24 \pmod{30}$
- (c) $49x \equiv 30 \pmod{25}$
- (*d*) $39x \equiv 14 \pmod{52}$
- (e) $147x \equiv 47 \pmod{98}$
- (f) $39x \equiv 26 \pmod{52}$

Step-by-step solution

Step 1 of 8
Here, objective is to find m , where the given congruence has a unique solution modulo m .
Comment
Step 2 of 8

Consider the congruent equation $ax = b \pmod{n}$, has solutions if and only if $\gcd(a, n)$ is divisible by b. If $\gcd(a, n) = 1$, then the congruence has unique solution

Comment

Step 3 of 8

(a)

Consider the congruence $60x = 12 \pmod{24}$

$$a = 60, b = 12, n = 24$$

$$gcd(60, 24) = 6$$

gcd(a, n) is divisible by b. Since, the congruence has solutions.

$$60x = 12 \pmod{24}$$

$$60x = 12 + 24q$$

$$5x = 1 + 2q$$

$$5x = 1 \pmod{2}$$

$$a = 5, b = 1, n = 2$$

$$gcd(5,2) = 1$$

Hence, the value of m for which the congruence equation has a unique solution = 2

Comment

Step 4 of 8

(b)

Consider the congruence $42x = 24 \pmod{30}$

$$a = 42, b = 24, n = 30$$

$$gcd(42,30) = 6$$

gcd(a, n) is divisible by b. Since, the congruence has solutions.

$$42x = 24 \pmod{30}$$

$$42x = 24 + 30q$$

$$7x = 4 + 5q$$

$$7x = 4 \pmod{5}$$

$$a = 7, b = 4, m = 5$$

$$gcd(7,5) = 1$$

Hence, the value of m for which the congruence equation has a unique solution = 5

Comment

(c)

Consider the congruence $49x = 30 \pmod{25}$

$$a = 49, b = 30, n = 25$$

$$gcd(49, 25) = 1$$

Hence, the value of m for which the congruence equation has a unique solution = 25

Comment

Step 6 of 8

(d)

Consider the congruence $39x = 14 \pmod{52}$

$$a = 39, b = 14, n = 52$$

$$gcd(39,52) = 13$$

gcd(a, n) is not divisible by b

Hence, the congruence has no solutions.

Comment

Step 7 of 8

(e)

Consider the congruence $147x = 47 \pmod{98}$

$$a = 147, b = 47, n = 98$$

$$gcd(147, 98) = 49$$

gcd(a, n) is not divisible by b

Hence, the congruence has no solutions.

Comments (1)

Step 8 of 8

(f)

Consider the congruence $39x = 26 \pmod{52}$

$$a = 39, b = 26, n = 52$$

$$gcd(39,52) = 13$$

gcd(a, n) is divisible by b. Since, the congruence has solutions.

 $39x = 26 \pmod{52}$ 3x = 2 + 4q $3x = 2 \pmod{4}$ a = 3, b = 2, m = 4 $\gcd(3, 4) = 1$

Hence, the value of m for which the congruence equation has a unique solution = 4

Comment