How to use

1. Test script brief introduction

Git Repos:

https://sqbu-github.cisco.com/huashi/OpenH264MemCheckTool

Test Script:

For more detail about scripts, please refer to 5.1.2~5.1.4

- run_ParseMemCheckLog.sh parse memory allocate/free/leak size for one test case
- run_MememAnalyseForOneYUV.sh test all cases for one YUV and output memory/FPS statistic info
- run_Main.sh

test all YUVs for all cases and output all memory/FPS statistic info

Other scripts as test tool called by above script

```
run_GetYUVList.sh
run_GetYUVPath.sh
run_ParseYUVInfo.sh
```

Test case in configuration file:

Using default setting in below cfg files which copied from openh264/testbin/

- ♣ Welsenc.cfg
- Layer2.cfg

And combine with below parameters in run_MememAnalyseForOneYUV.sh SliceMode=(0 1 2 3)
SliceNum=(1 4 4 0)
ThreadNum=(1 2 3 4)
SliceSize=(1500 600)

Test codec:

- Origin design
 Codec version info, refer to Codec_OriginDesign/Codec_Info.txt
- New design
 Codec version info, refer to Codec_NewDesign/Codec_Info.txt
- New design with reallocate step ¼ MaxSliceNumOld Codec version info, refer to Codec NewDesign Step 1-4/Codec Info.txt
- New design with reallocate step 1/3 MaxSliceNumOld Codec version info, refer to Codec_NewDesign_Step_1-3/Codec_Info.txt

Test data:

Overall data structure
TestSpace ="TestData/\${Codec}/\${Arch}"

Example:

TestData/Codec_OriginDesign/x86
TestData/Codec_OriginDesign/x64
TestData/Codec_NewDesign/x86
TestData/Codec_NewDesign/x64
TestData/Codec_NewDesign_Step_1-3/x86
TestData/Codec_NewDesign_Step_1-3/x64
TestData/Codec_NewDesign_Step_1-4/x86
TestData/Codec_NewDesign_Step_1-4/x64

- Test data file generate by encoder for one case
 TestMemLogFile="\${TestSpace}/enc_mem_check_point_\${YUVName}_\${SliceMode[\$i]}_\${SliceNum[\$i]}_\${iThrdNum}_\${iSlcSize}.txt"
- Test data file generate by run_ParseMemCheckLog.sh for one case TestAnalyseResult="\${TestSpace}/MemAnalyseResut_\${YUVName}_\${SliceMode[\$i]}_\${SliceNum[\$i]}_\${iThrdNum}_\${iSlcSize}.txt"
- Test data file for all YUVs by run_Main.sh TestReportForAllYUV="\${TestSpace}/MemReport_For_AllYUVs.csv"

Test data example:

For **new design** with **x64** encoder,

TestSpace= TestData/Codec_NewDesign/x64/

case is: slice mode = 1, slice num = 4, thread num = 3, target bit rate = 600

YUV is: Zhuling_1280x720.yuv

- memory file generated by encoder, rename and remove to:
 TestData/Codec_NewDesign/x64/enc_mem_check_point_Zhuling_1280x720.yuv
 1 4 3 600.txt
- Memory analyse result by run_ParseMemCheckLog.sh is: TestData/Codec_NewDesign/x64/MemAnalyseResut_Zhuling_1280x720.yuv_1_4 _3_600.txt
- ➡ Test report by run_MememAnalyseForOneYUV.sh for Zhuling_1280x720.yuv is: TestData/Codec_NewDesign/x64/MemReport_For_Zhuling_1280x720.yuv.csv
- Ater test all YUV by run_Main.sh; report for all YUVs is: TestData/Codec_NewDesign/x64/MemReport_For_AllYUVs.csv

2. Memory analyse for encode one case

run_ParseMemCheckLog.sh

```
#******************************
# brief: 1. parse memory allocate/free info based on memory statistic log
            ./enc_mem_check_point.txt
#
#
         2. to generate above log file,
#
             need to enable below macro in codec/common/memory align.h
             #define MEMORY CHECK 1
#
#
         3. the output may contain the summary of memory allocate/free
            statistic info during encoding process, and detail info of all
#
            buffers which have been allocated/freed during/after'
#
            encoding process
#
#
          ./run ParseMemCheckLog.sh $LogFile $OutFile $Option
 usage:
           ----LogFile: should be enc_mem_check_point.txt
#
                       or other rename log file
#
           ----OutFile: the final report file for memory statistic info
#
           ----Option:
#
                     1)MemCheck
                                 : all detail info
#
                     2)OverallCheck: summary info only
#
Example:
Analyse new design x64 encoder's memory info, with
        slice mode = 1, slice num = 4,
        thread num = 3, target bit rate = 600
LogFile="TestData/Codec NewDesign/x64/enc_mem_check_point_Zhuling_1280x720.yuv_1
_4_3_600.txt"
OutFile="TestData/Codec NewDesign/x64/MemAnalyseResut Zhuling 1280x720.y
uv 1 4 3 600.txt"
./run_ParseMemCheckLog.sh ${LogFile} ${OutFile} OverallCheck
./run ParseMemCheckLog.sh ${LogFile} ${OutFile} MemCheck
if using OverallCheck, will only output below summary info
TestData/Codec_NewDesign/x64/MemAnalyseResut_Zhuling_1280x720.yuv_1_4_3_600.txt
MemLeakStatus False: AllocatedNum--FreeNum (116--116):
AllocateSize==FreeSize==LeakSize (25615532==25615532==0)
```

If using OverallCheck, will output detail info about all buffer

allocate size, free size, allocate num, free num etc

3. memory analyse for one YUV

run_MememAnalyseForOneYUV.sh

Test case for one YUV in script(you can modify it if you want):

```
SliceMode=(0 1 2 3)
SliceNum=(1 4 4 0 )
ThreadNum=(1 2 3 4)
SliceSize=(1500 600)
```

Example:

Test yuv with new design with arch=x64 encoder,

```
$\ Step 1:
    copy encoder h264enc from Codec_NewDesign/x64/
```

```
Step 2:
   YUVName=" Zhuling_1280x720.yuv"
   YUVDir="../../YUV"
   TestSpace=" TestData/Codec_NewDesign/x64"
```

```
♣ Step 3:
```

```
./run_MememAnalyseForOneYUV.sh ${YUVName} ${YUVDir} ${TestSpace}
```

Then all test data for Zhuling_1280x720.yuv is under folder TestData/Codec_NewDesign/x64/

```
Test report file for zhuling is:
   TestData/Codec_NewDesign/x64/MemReport_For_Zhuling_1280x720.yuv.csv
```

4. Memory analyse for all YUVs

run Main.sh

Test all YUVs with all test cases using all encoder in encoder set

You can modify below test sets if you want

Example:

```
./run_Main.sh ../../YUV
```

Then all test data will be generated under all below folders:

```
TestData/Codec_OriginDesign/x86
TestData/Codec_OriginDesign/x64
TestData/Codec_NewDesign/x86
TestData/Codec_NewDesign/x64
TestData/Codec_NewDesign_Step_1-3/x86
TestData/Codec_NewDesign_Step_1-3/x64
TestData/Codec_NewDesign_Step_1-4/x86
TestData/Codec_NewDesign_Step_1-4/x64
```

5. Example for final Test Data

All test data for all test encoder all arch wit all test YUVs for all cases:

https://sqbu-github.cisco.com/huashi/OpenH264MemCheckTool/tree/master/TestData

Final Test report for all YUVs:

https://sqbu-

github.cisco.com/huashi/OpenH264MemCheckTool/blob/master/NewDesignTestData.xlsx

example for SlideShowFast_SCC_2880x1800.yuv

						Origin design		New design		Delta(%))
SICM	SIcN	PicW	PicH	ThrdN S	lcSz	AllocSize	FPS	AllocSize	FPS	deltaSiz	deltaFPS(%
3	0	2880	1800	1	1500	99424308	85.17	99171165	88.36	-0.25	3.75
3	0	2880	1800	1	600	99738905	80.77	100121689	86.73	0.38	7.38
3	0	2880	1800	2	1500	162263844	123.39	137297154	122.54	-15.39	-0.69
3	0	2880	1800	2	600	162263844	124.79	199850984	127.57	23.16	2.23
3	0	2880	1800	3	1500	170984608	151.67	149679510	160.58	-12.46	5.87
3	0	2880	1800	3	600	170984608	157.59	244683892	156.55	43.10	-0.66
3	0	2880	1800	4	1500	178796354	165.30	168923895	175.24	-5.52	6.01
3	0	2880	1800	4	600	178796354	166.49	221484277	180.50	23.88	8.41

-15.39% means that new design decrease overall allocate size;

43.10% means that new design increase overall allocate size due to reallocate modue which is not allowed in origin design

Final test summary:

New design most of time save the overall memory size, FPS is the same with origin disign