1 Principis bàsics

Un graf G = (V, E) es defineix com un conjunt de vèrtex (o nodes) $V = \{v_1, v_2, ..., v_n\}$ i un conjunt d'arestes $E = \{e_1, e_2, ..., e_m\}$, que uneixen dos vèrtexs v_i i v_j , tals que $v_i, v_j \in V$. És a dir: un graf està format pe un conjunt de punts i un conjunt d'arestes que uneixen alguns d'aquests punts. El nombre de vèrtexs d'un graf queda determinat pel nombre d'elements que hi ha en el grup V, per tant ens referirem a ell com a |V| (cardinal de V). Amb les arestes passa el mateix, i també utilitzarem |E| per determinar el nombre d'arestes d'un graf. Definim també que dos vèrtexs són adjacents si estàn units per una aresta, i com a conseqüència, són incidents a l'aresta.

En la figura (index de la figura) es mostra un graf simple G format per:

- $V = \{v_1, v_2, v_3, v_4, v_5, v_6\}$
- $E = \{v_1, v_2, v_1, v_4, v_1, v_5, v_2, v_5, (v_3, v_4), v_3, v_5, v_3, v_6, v_4, v_6\}$
- (adjuntar fiura del garf anterior)

Si una aresta comença i acaba en el mateix vèrtex (per exemple $e_m = \{v_i, v_i\}$) s'anomena llaç. També pot ser que hi hagi dues arestes idèntiques, és a dir, dues arestes que comencin en el vèrtex v_i i acabin en el vèrtex v_j . En qualsevol d'aquests dos casos anteriors, el graf s'anomena multigraf o pseudograf. En cas contrari, el graf serà simple i simètric. Amb el que hem vist fins ara, podem dir que $e_1 = (v_1, v_2)$ és equivalent a $e_2 = (v_2, v_1)$, però en els grafs dirigits això no es compleix. En aquest tipus de graf, les arestes només permeten viatjar en un sentit. En la següent imatge es mostren els grafs esmentats anteriorment:

(Adjuntar imatge de graf amb llaços, graf amb arestes múltiples i graf dirigit) Nota de l'autor: a partir d'ara, i si no s'indica el contrari, quan es parli de grafs, s'exclouràn els multigrafs i grafs dirigits.

El nombre d'arestes que són incidents a un vèrtex v (contant els llaços com a dues arestes) determinen el grau de v, que es representa amb g(v). La successió de graus d'un graf serà la successió que s'obté al ordenar de manera creixent els graus dels seus vèrtex. Cal dir que no és un problema gens trivial saber si una successió determinada pot ser una successió de graus d'un graf. El grau mínim d'un graf G queda determinat de la següent manera: $\delta(G) = \min\{g(v) : v \in V(G)\}$. De manera similar, el grau màxim de G, $\Delta(G) = \max\{g(v) : v \in V\}$. Si a un graf en treiem una aresta o un node, en resulta un altre (o més d'un) graf connex. D'aquesta manera, si $v \in V(G)$, G - v és el graf que s'obté al suprimir el vèrtex v i totes les seves arestes incidents. De la mateixa manera, si $e \in E(G)$, G - e és el graf que s'obté al eliminiar la aresta e.

Amb tots aquests conceptes ja podem veure el teorema d'Euler, un dels primers teoremes en teoria de grafs i un dels més importants.

Teorema 1 (Euler)

"En tot graf, la suma dels graus dels vèrtex és igual al doble del nombre d'arestes."

$$\sum_{v \in V} g(v) = 2|E|$$

Demostració: Només cal veure que cada aresta té dos extrems i que suma dos en el total dels graus. La demostració formal és més complicada, i es troba mitjançant el nombre d'arestes:

Si |E| = 0, no cal considerar el cas. Si |E| = 1, o |V| = 2 i cada vèrtex té grau 1 o la aresta és un llaç i hi ha un sol vèrtex de grau 2. En qualsevol d'aquests dos casos, el toerema es verifica. Ara suposem que el teorema està demostrat per a $|E| \le k$ i que G és un graf amb |E| = k + 1. Si e és una aresta de G i el graf H = G - e, llavors tots els vèrtexs de H tenen el mateix grau a H que a G excepte 2 que tenen un grau menys o un que té dos graus menys (només en el cas que e sigués un llaç). En tots dos casos obtenim que:

$$\sum_{v \in V(G)} g(v) = \sum_{v \in V(H)} g(v) + 2 = 2(|E| - 1) + 2 = 2|E|$$

D'aquesta demostració en treiem una altra afirmació:

"En tot graf, el nombre de vèrtex amb grau imparell, és parell."

2 Tipus de grafs

Fins ara hem vist els conceptes bèsics en teoria de grafis i algunes de les propietats que compleixen tots els grafs. No obstant, existeixen diversos tipus de grafs que tenen propietats especials:

2.1 Grafs complementaris

El graf complementari del graf G és el graf H amb els mateixos vèrtexs que G, de manera que dos vèrtexs de H seràn adjacents si i només si a G no ho són. Formalment, si G = (V, E) és un graf simple i K és el conjunt de totes les possibles combinacions de dos elements de V, llavors $H = (V, K \setminus E)$. Pel complementari de G s'escriu \bar{G} o G'. Per obtenir el graf complementari de G tan sols s'han de posar les arestes que falten per obtenir un graf complet i trure totes les que hi eren inicialment (ja que $|E(G)| + |E(\bar{G})| = |E(K_n)|$, on n = |V(G)|).

(Adjuntar imatge de grafs complementaris)

2.2 Grafs regulars

Es diu que un graf és regular de grau r quan tots els seus vèrtexs tenen grau r. Formalment, un graf és r-regular quan $\Delta = \delta = r$. Un graf 0-regular és un graf nul (veure apartat 2.3), un graf 1-regular consisteix en arestes separades entre elles i un graf 2-regular consisteix en un o més cicles separats. A partir d'aquí, els més importants tenen noms propis, com per exemple els 3-regulars, que són els cúbics; els 4-regulars, quàrtics; els 7-regulars, grafs de Witt truncats dobles; els 8-regulars, grafs de 24 cel·les... Evidentment, per un r-regular no necessàriament existeix només un graf, sinó que sovint s'en poden fer d'altres amb diferent nombre de vèrtexs. A la següent imatge es poden veure diversos exemples de grafs regulars, alguns d'ells amb el mateix ordre i diferent nombre de vèrtexs:

Per a tots els grafs r-regulars amb n vèrtexs es compleix que

$$|E| = \frac{1}{2}nr$$

on |E| és el nombre d'arestes. (Adjuntar imatge de grafs regulars)

2.3 Grafs nuls o buits

Els grafs nuls o buits són grafs sense arestes, conjunts de n vértexs. Són els complementaris dels grafs complets, i per tant la seva nomenclatura és \bar{K}_n o simplement N_n . S'anomena grafs nuls a N_0 i buits a la resta, però com que normalment no s'utilitza N_0 , convencionalment es diuen nuls a tot el conjunt dels buits. (Adjuntar imatge dels grafs buits).

2.4 Grafs complets

Un graf complet és un graf on cada vèrtex està unit a tots els altres una sola vegada. Un graf complet amb n nodes és un graf simple i (n-1)-regular i la seva nomenclatura és K_n . Els grafs complets tenen $\binom{n}{2} = \frac{n(n-1)}{2}$ arestes. El nombre de cicles que conté un graf complet queda determinat per la següent igualtat:

$$C_n = \sum_{k=3}^{n} \frac{1}{2} \binom{n}{k} (k-1)!$$

(Adjuntar imatge de grafs complets)

2.5 Cicles

Els cicles són grafs 2-regulars amb n vèrtexs i n arestes, i s'anomenen C_n . El graf lineal d'un cicle és ell mateix. (Adjuntar imatge de cicles)

2.6 Grafs bipartits

Els grafs bipartits són aquells en els quals els vèrtexs es poden separar en dos conjunts disjunts U i V (és a dir, que els dos conjunts no tinguin elements comuns) de tal manera que un vèrtex d'un conjunt no sigui mai adjacent a un altre vèrtex del seu mateix conjunt. Es pot dir també que un graf és bipartit si no conté cicles de longitud senar. Llavors, podem deduïr que tots els els grafs C_n amb n parell, són també grafs bipartits. (adjuntar imatge de grafs bipartits)

2.7 Grafs bipartits complets

Els grafs bipartits complets són grafs bipartits en esl quals cada element del conjunt U està unit a tots els elements dels del conjunt V. S'anomenen $K_{m,n}$, on m = |U| i n = |N|. En els grafs bipartits $K_{m,n} = K_{n,m}$, |V| = n + m i |E| = mn.

2.8 Grafs estrella

Un graf estrella de grau n, conté un vèrtex amb grau n-1 i els n-1 vèrtexs restants tenen grau 1. S'anomena S_n i són estrelles tots els grafs bipartits de la forma $K_{1,n-1}$ 0 $K_{n-1,1}$. El graf lineal de S_n és K_{n-1} . (Afegir imatge de graf estrella)

2.9 Graf lineal

Un graf lineal L(G) d'un graf G és un graf que representa les adjacències entre les arestes de G. Formalment, donat un graf G, el graf lineal L(G) és aquell en el qual cada vèrtex correspon a una aresta de G i dos vèrtexs són adjacents només si les arestes corresponents a G són adjacents (comparteixen un vèrtex). El graf lineal d'un graf amb n nodes, e arestes i amb vèrtexs de graus d_i té n' = e nodes i

$$e' = \frac{1}{2} \sum_{i=1}^{n} d_i^2 - e$$

arestes. (Afegir procediment de creació del graf lineal)

2.10 Rodes

Un graf roda amb n vèrtex ès un graf que conté un cicle de longitud n-1, on cada vèrtex del cicle està connectat a un alte vèrtex fora del cicle, anomenat node cenmtral. El node central té grau n-1, i la resta de nodes tenen grau 3. S'escriu W_n , i a vegades simplement s'estudia com a $C_{n-1} + K_1$. El nombre de cicles que conté un graf amb n vètrexs està determinat per $n^2 - 3n + 3$. (Afegir exemple de graf roda)

2.11 Xarxes

Els grafs xarxes bidimensionsals $G_{m,n}$ són grafs bipartits que formen una xarxa de mxn vèrtexs. Un graf xarxa té mn vèrtexs i (m-1)n + (n-1)m. Es pot greneralitzar per a xarxes de més dimensions com a $G_{m,n,o,...}$.

(afegir exemple de graf xarxa)

2.12 Arbres

Els arbres són un tipus molt important de grafs: són grafs connexos sense cicles, de manera que existeix un únic camí entre dos vèrtexs. Si a un arbre se li afegeix una aresta, es genera un cicle, i se s'en treu una, el graf deixa de ser connex. Hi ha un tipus especial d'arbres anomenats elementals o camins, que són els arbres amb |V| = 1, |V| = 2 i en general tots aquells on $\delta = 1$ i $\Delta = 2$. S'anomenen P_n , on n = |V|. També es pot pensar en grafs elementals com a $G_{n,1}$.(adjuntar exemples de grafs elementals)

Teorema 2

Un arbre amb n nodes té n-1 arestes.

Demostració: Si comprovem el cas on un arbre T té n=1 vèrtexs, veiem que no té cap aresta, per tant el teorema es compleix. Si treiem una aresta de l'arbre, en sorgiran 2 arbres més T_1 i T_2 . Per hipòtesi, T_1 tindrà $v_1=|V|(T_1)$ vèrtexs i $v_1-1=|E|(T_1)$ arestes, i T_2 tindrà $v_2=|V|(T_1)$ vèrtexs i $v_2-1=|E|(T_2)$ arestes. Deduïm llavors que el nombre de nodes de T és v_1+v_2 . Llavors el nombre d'arestes de T és $(v_1-1)+(v_2-1)+1=(v_1+v_2)-1$. Dit d'una altra manera, |E|(T)=|V|(T)-1 Com a conseqüència d'aquest teorema, en podem aarribar a un altre:

Teorema 3

En un arbre T amb $|V| \ge 2$, hi ha com a mínim dos vèrtexs de grau 1 (anomenats fulles).

Demostració: Com a conseqüència del Teorema 1 i Teorema 2 podem dir que en un arbre

$$\sum_{v \in V} g(v) = 2|E| = 2|V| - 2$$

També podem deduïr que si tots els vèrtexs tinguessin un grau $g(v_i) > 1$, llavors

$$\sum_{v \in V} g(v) \ge \sum_{v \in V} 2 = 2|V|$$

Sabem que això no és correcte, ja que estem dient que $2|V|-2 \ge 2|V|$. Amb això ja podem veure que necessitem treure com a mínim dos graus, però demostrem també que amb un sol node de grau 1 tampoc és suficient. Suposem ara que l'arbre té un sol node tal que g(v) = 1 i elsaltres tenencom a mínim grau 2. Llavors

$$2|V| - 2 = \sum_{v \in V} g(v) = 1 + \sum_{\substack{v \in V \\ \text{si } g(v) \neq 1}} g(v) \ge 1 + \sum_{\substack{v \in V \\ \text{si } g(v) \neq 1}} 2 = 1 + 2(|V| - 1) = 2|V| - 1$$

Ara estem dient que $2|V|-2 \ge 2|V|-1$, que torna a ser una contradicció. Sabem que si treiem un grau més, el teorema es complirà, i hem demostrat que el mínim nombre de vèrtexs de grau 1 és 2.

Hi ha un altre teorema que relaciona el nombre de fulles amb el grau màxim d'un arbre:

Teorema 4

El nombre de fulles d'un arbre T és més gran o igual a Δ .

Demostració: Si eliminem el node de grau Δ de l'arbre, juntament amb totes les seves arestes incidents, obtenim un conjunt de Δ grafs. Si alguns d'aquests grafs consisteixen en tan sols un node, vol dir que abans eren adjacents al node que hem eliminat, per tant, només tenien grau 1. Si, pel contrari, formen nous arbres, pel teorema 3 podem dir que hi haurà com a mínim dues fulles. Encara que hi ha la possibilitat que un dels nodes amb grau 1 sigués l'adjacent a el node que hem tret, sempre podem garantir que hi ha com a mínim una fulla. Per tant, també podem garantir que que hi haurà com a mínim Δ fulles.