L'EXCLUSION MUTUELLE DANS UN ENVIRONNEMENT DISTRIBUÉ

SAIDOUNI Djamel Eddine

Université Constantine 2 - Abdelhamid Mehri Faculté des Nouvelles Technologies de l'Information et de la Communication Département d'Informatique Fondamentale et ses Applications

Laboratoire de Modélisation et d'Implémentation des Systèmes Complexes

<u>Djamel.saidouni@univ-constantine2.dz</u> <u>saidounid@hotmail.com</u>

Tel: 0559082425

ALGORITHMES A PERMISSIONS INDIVIDUELLES

ALGORITHME DE RICART ET AGRAWALA

ALGORITHME DE RICART ET AGRAWALA

Principe:

- \triangleright *n* sites. L'ensemble des sites est indexé par l'ensemble $\{1, ..., n\}$
- Les ensembles R_i de chaque site i vérifient $\forall i \neq j, i \in R_j$ $etj \in R_i$, c'est-à-dire $\forall i, R_i = \{1, ..., n\} \{i\}$
- \triangleright Chaque site *i* est doté d'une horloge H_i

Une utilisation de la SC nécessite 2 * (n - 1) messages, (n - 1) requêtes et (n - 1) permissions

La réception de toutes les permissions demandées est une **condition nécessaire et suffisante** pour l'accès à la section critique.

ALGORITHME DE RICART ET AGRAWALA (SUITE)

Principe (suite):

 \triangleright Lorsque le site *i* reçoit un message $requête(\beta, j)$ alors:

Processus P_i H_i Permission_i P_j Processus P_j P_j demandeur

- Cas 1: P_i n'est pas prioritaire, il donne sa permission $Soit P_i n'est pas demandeur$ $Soit P_i est demandeur avec (<math>\beta$, j) < (α , i)
- Cas 2: P_i est prioritaire, il diffère la donnée de sa permission $Soit P_i$ est dedans $Soit P_i$ est demandeur avec $(\alpha, i) < (\beta, j)$

ALGORITHME DE RICART ET AGRAWALA (SUITE)

Evènements:

- Evènements à l'initiative du processus
 - Demander l'accès à la section critique
 - Libérer la section critique
- Evènement subit par le processus
 - Recevoir une requête en provenance d'un processus
 - Recevoir une permission d'un autre processus

A chaque évènement on associe une procédure, d'où les procédures.

Variables locales pour un processus P_i

- $ightharpoonup R_i = \{1, ..., n\} \{i\}$
- **▶ Etat**_i: {dehors, demandeur, dedans}
- \rightarrow H_i : entier croissant init à 0
- \triangleright **Last**_i: entier croissant init à 0
- > **Priorit**é_i: Booléen
- Attendus_i: ensemble de sites init à Ø
- ightharpoonup **Diff**é**r**é**s**_i: ensemble de sites init à Ø

Remarque: L'indice *i* est rajouter aux noms des variables pour faciliter la compréhension de l'algorithme (on peut s'en passer de cet indice).

PROCÉDURES DU PROCESSUS Pi

Lors d'un appel à acquérir

```
\begin{split} Etat_i &= demandeur; \\ H_i + +; \\ Last_i &= H_i; \\ Attendus_i &= R_i; \\ \forall j \in R_i : envoyer \ requête(Last_i, i) \ \grave{a} \ j; \\ attendre(Attendus_i = \emptyset); \\ Etat_i &= dedans; \end{split}
```

PROCÉDURES DU PROCESSUS P_i (SUITE)

Lors d'un appel à libérer

```
Etat_i = dehors;

\forall j \in Différés_i : envoyer permission(i) à j;

Différés_i = \emptyset;
```

Lors de la réception de permission(j)

```
Attendus_i = Attendus_i - \{j\};
```

PROCÉDURES DU PROCESSUS P_i (SUITE)

Lors de la réception de requête(K, j)

$$H_i = Max(H_i, K)_i ;$$

$$Priorit\acute{e}_i = (Etat_i = dedans) \ ou \ ((Etat_i = demandeur) \ et \ (Last_i, i) < (K, j));$$

Si Priorité_i Alors

$$Différés_i = Différés_i \cup \{j\}$$

Sinon

envoyer permission(i) à j;

Fsi

PREUVE DE L'ALGORITHME SÛRETÉ

 $\forall t, \exists \ au \ plus \ un \ site \ en \ SC.$ On procède par l'absurde.

On suppose, pour $i \neq j$, à un instant t, P_i en SC_i et P_j en SC_j .

 $\mathbf{Donc} \begin{cases} P_i \text{ a envoyé } requête(h,i) \text{ à } P_j \text{ et a obtenu sa permission et} \\ P_j \text{ a envoyé } requête(k,j) \text{ à } P_i \text{ et a obtenu sa permission} \end{cases}$

Trois cas se distinguent selon l'état de chacun des processus lors de la réception du message requête.

PREUVE DE L'ALGORITHME SÛRETÉ

Cas 1: P_i a envoyé sa requête à P_j et celui-ci l'a reçue avant de faire la sienne.

- ➤ Dans ce cas, à la réception du message requête(h, i) par P_j , ce dernier est dans l'état dehors. Il met à jour son horloge et envoie sa permission à P_i et $H_i \ge h$.
- Lorsque P_j exécute acquérir et envoie sa requête on aura: $k = Last_j = H_j + 1$. Donc k > h.
- A la réception du message requête(k, j) par P_i , ce dernier se trouvera prioritaire et n'enverra pas sa permission. Ce qui est **absurde** avec l'hypothèse de travail.

Cas 2: Cas inverse, idem au premier par l'inversion des rôles des deux processus.

PREUVE DE L'ALGORITHME SÛRETÉ (SUITE)

Cas 3: P_i et P_j envoient leur requête respective en même temps.

- ➤ Dans ce cas, soit (h, i) < (k, j) ou (k, j) < (h, i).
- ➤ Etant donné que les deux processus sont dans l'état demandeur à la réception de la requête de l'autre processus, l'un des deux se trouvera prioritaire et n'enverra pas sa permission à l'autre processus. Ce qui est **absurde** avec l'hypothèse de travail.

On conclue que la propriété de sûreté est vérifiée

PREUVE DE L'ALGORITHME VIVACITÉ

Les estampilles des requêtes sont totalement ordonnées. Il existe donc une requête de plus petite estampille, soit (h,i). Lorsque celle-ci arrive aux sites, chacun répond favorablement et envoie sa permission au site i qui finira par accéder à sa SC. La résidence en SC étant de durée fini, à la sortie de sa SC, la requête du site i sortira du système. Le site dont la requête et de plus petite valeur obtiendra ainsi les permissions requises et accèdera à son tour à sa SC.

Par ailleurs si le site *i* deviendra demandeur, l'estampille de sa nouvelle requête est supérieur aux estampilles des requêtes aux quelles il a donné sa permission. D'où la dynamicité du site de plus petite estampille.

Conclusion: La vivacité est donc vérifiée.

PREUVE DE L'ALGORITHME BORNÉTUDE DES VARIABLES

Propriété: Dans un système à n sites, **l'écart maximal** entre deux horloges quelconques H_i et H_i est égal à n-1.

On considère le cas qui creuse l'écart au maximum entre les horloges.

L'écart au maximum entre les horloges est égal à 5.

PREUVE DE L'ALGORITHME BORNÉTUDE DES VARIABLES (SUITE)

Propriété: Dans l'algorithme de Ricart et Agrawla on peut incrémenter les horloges des sites modulo 2*n-1.

Exemple: n = 4, on travaille modulo 7.

 $\acute{e}cart > (n-1) \Rightarrow la plus petite valeur est la plus récente date$

L'ALGORITHME AVEC VARIABLES **BORNÉES**

```
Lors de la réception de requête(K, j)
H_i = Max(H_i, K);
Si (Etat_i = dedans) Alors Priorité_i = True ;
Sinon Si (Etat_i = demandeur) Alors
           Si |Last_i - K| < n et (Last_i, i) < (K, j) Alors
               Priorit\acute{e}_{i} = True
           Sinon Priorit\acute{e}_i = (Last_i > K) Finsi
Finsi;
```

Si Priorité, Alors Différés, = Différés, $\cup \{j\}$ Sinon envoyer permission(i) à j Finsi

PREUVE DE L'ALGORITHME CALCUL DE LA PRIORITÉ

Propriété: Dans l'algorithme de Ricart et Agrawala, le calcul de la priorité peut être remplacé par:

$$Priorit\acute{e}_i = (Etat_i \neq dehors) et ((Last_i, i) < (K, j))$$

Preuve: On montre que

$$(Etat_{i} = dedans) ou ((Etat_{i} = demandeur) et (Last_{i}, i) < (K, j))$$

$$\Leftrightarrow$$

$$(Etat_{i} \neq dehors) et ((Last_{i}, i) < (K, j))$$

Propriété: L'algorithme de Ricart et Agrawala a les propriétés de performance suivantes:

- ➤ Nombre de message de contrôle = 2*(n-1)
- ➤ Si T est le temps moyen d'acheminement d'un message entre deux sites, le temps moyen que la SC reste libre alors qu'il y a des processus demandeurs est égale à : 2*T
- Les variables horloges peuvent être bornées.
- L'algorithme n'est pas adaptatif dans le sens qu'un site qui n'est pas intéressé par l'accès à la SC est toujours sollicité par les sites demandeurs d'accès à la SC.