Zenoh-flow/Pylot 移植工作初步开发计划

1、开发内容

通过对 pylot 框架进行分析,以**最小化**原则,利用 zenoh-flow 框架,完成**至少** 15 个 pylot operator 的开发任务。

模块名称	Operators	备注
初始化模块	CarlaOperator	由于需要与 carla 进行
	CarlaCameraDriverOperator	实时交互,这些
	CarlaLidarDriverOperator	operators 开发有一定困
	CarlaIMUDriverOperator	难
	CarlaGNSSDriverOperator	
定位模块	LocalizationOperator	可先通过 pylot 生成输
		入、输出数据进行开发
感知模块	DetectionOperator	可先通过 pylot 生成输
	TrafficLightDetOperator	入、输出数据进行开发
	LaneDetectionOperator	
	ObstacleTrackerOperator	
	ObstacleLocationFinderOperator	
预测模块	LinearPredictorOperator	可先通过 pylot 生成输
		入、输出数据进行开发
规划模块	BehaviorPlanningOperator	可先通过 pylot 生成输
	PlanningOperator	入、输出数据进行开发
控制模块	PIDControlOperator	可先通过 pylot 生成输
		入、输出数据进行开发

2、开发原则

- (1) 基于原始 pylot 框架进行开发,边开发、边测试;
- (2)以 zenoh-flow 中的 source-operator-sink 形成一个 pylot operator 的开发、测试单元;
- (3) 利用 pickle 对 message 对象进行序列化及反序列化(相比 protobuf, 具有开发复杂性低, 传输性能高的优势)。

3、开发计划

- 1) 测试数据生成阶段(3.7-3.27)
- (1) Pylot 环境搭建;
- (2) zenoh-flow 环境搭建;
- (3) 测试数据生成。

2) 单元开发测试阶段(3.28-4.30)

完成 15 个 operators 的开发测试,以一个 operator 单元的开发、测试工作量为例:

- (1)operator.py,对pylot operator代码进行修改,生成zenoh-flow operator:
 - a. 删除基于 erdos 框架的相关代码;
 - b. 增加 zenoh-flow 框架代码;
 - c. flags 相关代码改为由 zenoh-flow configuration 进行配置;

- d. message 对象相关代码修改;
- (2) source.py: 基于输入数据,构建 message 对象;
- (3) sink.py:接受 operator 的处理结果,进行正确性验证;
- (4) pipeline.yml,对 source、operator、sink的属性及数据流图进行定义: a. 注意路径设置;
 - b. 命名问题;
 - c. Configuration 参数配置。
- 3) 集成开发测试阶段(5.1-5.15)

完成 15 个 operators 的整体集成开发、测试。

目前,已完成 DetectionOperator、TrafficLightDetOperator 的开发及测试,后续可参照这两个样例进行开发。