MAP 583 - Feuille d'exercices 1

7 janvier 2014

Exercice 1 (opérateur de multiplication et observable position). Soit $f \in L^2_{loc}(\mathbb{R}^d, \mathbb{R})$. On considère l'opérateur "de multiplication par f", noté également f comme il est d'usage, et défini par

$$D(f) = \left\{ u \in L^2(\mathbb{R}^d, \mathbb{C}) \mid fu \in L^2(\mathbb{R}^d, \mathbb{C}) \right\} \quad \text{et} \quad \forall u \in D(f), \ (fu)(x) = f(x)u(x).$$

- **1a.** Vérifier que l'opérateur f est auto-adjoint sur $L^2(\mathbb{R}^d, \mathbb{C})$.
- **1b.** A quelle condition condition sur la fonction f, cet opérateur est-il borné?
- 1c. Caractériser le spectre ponctuel et le spectre continu de l'opérateur f.
- 1d. Déduire des questions 1a et 1c la nature du spectre de l'opérateur position x_i .
- **1e.** On suppose maintenant que $f \in C^0(\mathbb{R}^d, \mathbb{C})$. Montrer que l'opérateur \widetilde{f} défini par $D(\widetilde{f}) = C_c^{\infty}(\mathbb{R}^d)$ et $\forall u \in D(\widetilde{f})$, $\widetilde{f}u = fu$ est essentiellement auto-adjoint et que sa fermeture est l'opérateur f.

Exercice 2 (opérateurs unitairement équivalents et observable impulsion).

Soit \mathcal{H}_1 et \mathcal{H}_2 deux espaces de Hilbert, T_1 un opérateur sur \mathcal{H}_1 de domaine $D(T_1)$, et T_2 un opérateur sur \mathcal{H}_2 de domaine $D(T_2)$. On dit que les opérateurs T_1 et T_2 sont unitairement équivalents s'il existe une isométrie bijective $\mathcal{U}: \mathcal{H}_1 \to \mathcal{H}_2$ telle que

$$D(T_2) = \mathcal{U}(D(T_1))$$
 et $\forall u \in D(T_2), T_2 u = \mathcal{U}T_1\mathcal{U}^*u.$ (1)

2a. Démontrer le résultat suivant.

Lemme. Soit T_1 et T_2 deux opérateurs unitairement équivalents. Alors

- 1. si T_1 est auto-adjoint, T_2 l'est également;
- 2. $\sigma_{p}(T_{2}) = \sigma_{p}(T_{1})$ et $\sigma_{c}(T_{2}) = \sigma_{c}(T_{1})$.
- **2b.** On note \mathcal{F} la transformation de Fourier (avec la convention de normalisation que \mathcal{F} est une isométrie bijective de $L^2(\mathbb{R}^d,\mathbb{C})$). Montrer que les opérateurs de position x_j ("multiplication par x_j ") et d'impulsion $p_j = -i\partial_{x_j}$ (en unités atomiques) sont unitairement équivalents.
- **2c.** Déduire des résultats de l'exercice 1 et des questions 2a et 2b les propriétés spectrales de l'opérateur p_j .

Exercice 3 (critère fondamental d'auto-adjonction et observable d'énergie cinétique). On rappelle le critère fondamental d'auto-adjonction :

Théorème. Soit \mathcal{H} un espace de Hilbert et T un opérateur linéaire sur \mathcal{H} de domaine dense et symétrique. Les trois assertions suivantes sont équivalentes :

- 1. T est auto-adjoint;
- 2. $\operatorname{Ran}(T+i) = \operatorname{Ran}(T-i) = \mathcal{H};$
- 3. $\forall \lambda \in \mathbb{C} \setminus \mathbb{R}$, $\operatorname{Ran}(T + \lambda) = \operatorname{Ran}(T + \overline{\lambda}) = \mathcal{H}$;
- 3a. Montrer, en utilisant les propriétés de la transformée de Fourier, que

$$H^2(\mathbb{R}^d,\mathbb{C}) = \left\{ u \in L^2(\mathbb{R}^d,\mathbb{C}) \mid \Delta u \in L^2(\mathbb{R}^d,\mathbb{C}) \right\}.$$

3b. Montrer, à l'aide du critère fondamental d'auto-adjonction, que l'opérateur d'énergie cinétique sur $L^2(\mathbb{R}^d, \mathbb{C})$ défini par

$$D(T) = H^2(\mathbb{R}^d, \mathbb{C}), \text{ et } \forall u \in D(T), Tu = -\frac{1}{2}\Delta u$$

est auto-adjoint.

3c. Utiliser la méthode introduite dans l'exercice 2 pour exhiber les propriétés spectrales de l'opérateur d'énergie cinétique.

Exercice 4 (extension de Friedrichs et oscillateur harmonique).

Soit \mathcal{H} un espace de Hilbert (réel pour simplifier), \mathcal{C} un sous-espace dense de \mathcal{H} et a_0 une forme bilinéaire symétrique sur \mathcal{C} telle que

$$\forall u \in \mathcal{C}, \quad a_0(u, u) \ge ||u||_{\mathcal{H}}^2. \tag{2}$$

On muni $\mathcal C$ de la norme définie par $\|v\|_{\mathcal C}=a(v,v)^{1/2}$ on et note

$$V = \left\{ v \in \mathcal{H} \mid \exists (v_n)_{n \in \mathbb{N}} \in \mathcal{C}^{\mathbb{N}} \text{ de Cauchy pour } \| \cdot \|_{\mathcal{C}} \text{ et t.q. } \lim_{n \to \infty} \|v_n - v\|_{\mathcal{H}} = 0 \right\}.$$

On peut alors montrer que pour tout $v \in V$, et toute suite $(v_n)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}}$ vérifiant les conditions ci-dessus, la suite de réels positifs $(a(v_n, v_n))_{n \in \mathbb{N}}$ admet une limite dans \mathbb{R}_+ , et que cette limite est indépendante du choix de la suite $(v_n)_{n \in \mathbb{N}}$. En notant a(v, v) cette limite, on a

$$\forall u \in V, \quad a(v, v) \ge ||v||_{\mathcal{H}}^2,$$

et on obtient par polarisation une forme bilinéaire a sur V:

$$\forall (u, v) \in V \times V, \quad a(u, v) = \frac{1}{4} (a(u + v, u + v) - a(u - v, u - v)).$$

On peut montrer que cette forme bilinéaire définit un produit scalaire sur V, et que V, muni de ce produit scalaire est un espace de Hilbert. On note $\|\cdot\|_V$ la norme associée.

4a. Vérifier que $\mathcal{C} \subset V \subset \mathcal{H}$. Caractériser V et a pour $\mathcal{H} = L^2(\Omega)$, $\mathcal{C} = C_c^{\infty}(\Omega)$ et $a_0(u,v) = \int_{\Omega} \nabla u \cdot \nabla v + \int_{\Omega} uv$, Ω désignant un ouvert de \mathbb{R}^d .

4b. Soit

$$D(A) = \{u \in V \mid v \mapsto a(u, v) \text{ est continue sur } V \text{ muni de la norme } \| \cdot \|_{\mathcal{H}} \}.$$

Montrer que pour tout $u \in D(A)$, il existe un unique vecteur de \mathcal{H} , noté w_u tel que

$$\forall v \in V, \ a(u,v) = \langle w_u | v \rangle_{\mathcal{H}}.$$

Vérifier que l'application $u \mapsto w_u$ est linéaire, et qu'on peut ainsi définir un opérateur linéaire A sur \mathcal{H} de domaine D(A) par

$$\forall u \in D(A), Au = w_u.$$

Montrer que A est surjectif, et en déduire que D(A) est dense dans \mathcal{H} .

- **4c.** Montrer que l'opérateur A est symétrique, puis qu'il est auto-adjoint.
- **4d.** Expliciter l'opérateur A pour $\mathcal{H} = L^2(\Omega)$, $\mathcal{C} = C_c^{\infty}(\Omega)$ et $a_0(u,v) = \int_{\Omega} \nabla u \cdot \nabla v + \int_{\Omega} uv$, Ω désignant un ouvert de \mathbb{R}^d . Même question pour Ω un ouvert régulier de \mathbb{R}^d et $\mathcal{C} = C_c^{\infty}(\overline{\Omega})$.
- **4e.** On suppose maintenant que la forme bilinéaire a_0 ne vérifie plus nécessairement l'hypothèse (2), mais seulement l'hypothèse plus faible

$$\exists C \in \mathbb{R} \text{ t.q. } \forall u \in \mathcal{C}, \quad a_0(u, u) \geq C \|u\|_{\mathcal{H}}^2.$$

On dit alors que a_0 est bornée inférieurement. Par le procédé ci-dessus, on peut alors associer à la forme bilinéaire

$$\widetilde{a}_0(u,v) = a_0(u,v) + (1-C)\langle u,v\rangle_{\mathcal{H}},$$

un opérateur auto-adjoint \widetilde{A} et considérer l'opérateur $A=\widetilde{A}-(1-C)$. On vérifie facilement que l'opérateur A ainsi obtenu est auto-adjoint et ne dépend pas du choix de la constante C.

Cet opérateur est appelé l'extension de Friedrichs de la forme bilinéaire a_0 , et l'espace V le domaine de forme de l'opérateur A. La forme bilinéaire a, ou plutôt la forme quadratique $V \in v \mapsto a(v,v)$, est souvent appelée la forme quadratique associée à A.

Appliquer le procédé ci-dessus au cas où $\mathcal{H}=L^2(\mathbb{R}^d)$ et $\mathcal{C}=\mathcal{S}(\mathbb{R}^d)$ et

$$a_0(u,v) = \frac{1}{2} \int_{\mathbb{R}^d} \nabla u \cdot \nabla v + \frac{1}{2} \int_{\mathbb{R}^d} |x|^2 u(x) v(x) dx.$$

Exercice 5 (théorème de Kato-Rellich et Hamiltonien de l'atome d'Hydrogène).

- **5a.** On note T l'opérateur d'énergie cinétique dans $L^2(\mathbb{R}^3)$. Soit $V \in L^2(\mathbb{R}^3) + L^{\infty}(\mathbb{R}^3)$. Montrer que l'opérateur de multiplication par V est un opérateur T-borné de borne relative égale à 0.
- **5b.** Déduire du théorème de Kato-Rellich que l'Hamiltonien de l'atome d'Hydrogène est un opérateur auto-adjoint sur $L^2(\mathbb{R}^3)$ de domaine $H^2(\mathbb{R}^3)$.

3