Svitak od 100 zavoja površine presjeka 10 cm² rotira oko osi okomite na silnice homogenog magnetskog polja indukcije 0,8 T. Ako svitak rotira frekvencijom 10 Hz odredite amplitudu induciranog napona u svitku.

A) 5 V

- B) 10 V
- C) 20 V
- D) 25 V
- E) 0 V

U ravnini s dugim ravnim vodičem protjecanim strujom I=10 A nalazi se točka T udaljena od osi vodiča za 0.01 metar (vidi sliku). Ako u toj točki negativan naboj Q=-20 nAs ima brzinu od 10^4 m/s čiji se smjer poklapa sa smjerom struje, odredite magnetsku silu \mathbf{F} koja djeluje na naboj. (Napomena: $\mu=\mu_0$)

- A) **F**= 0
- B) **F** = 20 nN (**u smjeru** osi y)
- C) **F** = 20 nN (**suprotno smjeru** osi y)
- D) $F = 40 \text{ nN } (\mathbf{u} \text{ smjeru } \text{osi } \mathbf{y})$
- E) F = 40 nN (suprotno smjeru osi y)

Vodljivi štap duljine I = 1 m giba se u homogenom magnetskom polju indukcije B = 0.5 T konstantnom brzinom v = 6 m/s prema slici. Odredite inducirani napon U_{ab} .

- A) -4,5 V
- B) -1,5 V
- C) 0 V
- D) +1 V
- E) +3 V

Odredite napon $u_{ab}(t)$ u trenutku t=0.5 ms ako je $L_1=1$ mH, $L_2=4$ mH, k=0.5 i R=2 Ω .

A)
$$u_{ab}(t) = 8 \text{ V}$$

B)
$$u_{ab}(t) = 6 \text{ V}$$

C)
$$u_{ab}(t) = -8 \text{ V}$$

D)
$$u_{ab}(t) = -6 \text{ V}$$

LJ. ROK 13-14

Dvije zavojnice induktiviteta L_1 =4 mH i L_2 =1 mH magnetski su vezane s faktorom magnetske veze k=0,8 prema slici. Ako se jakost struje i(t) linearno smanji za Δl =2 A tijekom vremena Δt =0,1 ms, odredite koliki je pritom napon međuidukcije u_{34} .

- A) -32 V
- B) -16 V
- C) 16 V
- D) 32 V
- E) 40 V

JESENSKI. ROK 13-14

Odredite struju $i_0(t)$ u trenutku t=2 s. Zadano je prema slici: $R=5~\Omega,~L=2,5~H,~i(t)=2~A,~i_L(t)=-2t~[A].$

- A) -7 A
- B) -3 A
- C) 0 A
- D) 3 A
- E) 7 A