Abstract

 ${\rm B.A.}$ Davey and H.A. Priestley: "Introduction to Lattices and Order", Cambridge UP, 2nd edition.

1 Chapter 1 "Ordered Sets"

1.1 Exercises from the text

Assertion 1.27.1. $\downarrow Q$ is the smallest down-set containing Q.

Proof. Assume Q' is a down-set with $Q \subseteq Q' \subset \downarrow Q$. Then $\exists z \in \downarrow Q$ s.t. $z \notin Q'$, and $\exists x \in Q$ s.t. $z \leq x$. Contradiction with assumption that Q' is a down-set.

Assertion 1.27.2. Q is a down-set if and only if $Q = \downarrow Q$.

Proof. Definition of $\downarrow Q$ is logically equivalent to def. of down-set (?). \Box

Lemma 1.30. Let P be an ordered set and $x, y \in P$. Then the following are equivalent:

- 1. $x \leq y$
- 2. $\downarrow x \subseteq \downarrow y$
- 3. $(\forall Q \in \mathcal{O}(P))y \in Q \Longrightarrow x \in Q$

Proof. $(1 \Leftrightarrow 2)$: Assume $x \leq y$ and let $x' \in \downarrow x$. Then $x' \leq x$, and by transitivity of \leq , $x' \leq y$. Then $x' \in \downarrow y$.

 $(1 \Leftrightarrow 3)$: Assume $x \leq y$ and let $Q \in \mathcal{O}(P)$ s.t. $y \in Q$. Since $\downarrow y$ is the smallest down-set containing $y, \downarrow y \subseteq Q$. $x \in \downarrow x$, and by the above $\downarrow x \subseteq \downarrow y \subseteq Q$, so $x \in Q$.

Assertion 1.31. Q is a down-set of P if and only if $P \setminus Q$ is an up-set of P

Proof. (\Rightarrow) Let Q down-set of P and let $Q' = P \setminus Q$. Let $x \in Q', y \in P$ and $x \leq y$. Either $y \in Q$ or $y \in Q'$. Assume $y \in Q$. Then, by Def. of down-set, $x \in Q$, which contradicts the assumption that $x \in Q'$. So $y \in Q'$ and Q' is a down-set. (\Leftarrow) Analogous

Assertion 1.36 (1). Let $\varphi: P \to Q$ and $\psi: Q \to R$ be order-preserving maps. Then the composite map $\psi \circ \varphi$, given by $(\psi \circ \varphi)(x) = \psi(\varphi(x))$ for $x \in P$, is order-preserving. More generally the composite of a finite number of order-preserving maps is order-preserving.

Proof. Let $x, y \in P$ s.t. $x \leq y$.

$$x \le y \Rightarrow \varphi(x) \le \varphi(y) \qquad \{\varphi \text{ is order-preserving }\}$$

$$\Rightarrow \psi(\varphi(x)) \le \psi(\varphi(y)) \qquad \{\psi \text{ is order-preserving }\}$$

Assertion 1.36 (2). Let $\psi: P \hookrightarrow Q$ and let $\psi(P)$ (defined to be $\{\psi(x) \mid x \in P\}$) be the image of ψ . Then $\psi(P) \cong P$. This justifies the use of the term embedding.

Proof. Let $x, y \in P$ s.t. $x \leq y$.

$$x \le y \Leftrightarrow \psi(x) \le \psi(y)$$