RDM TD N°1

Exercice2:

Considérons un ensemble de deux solides (1) et (2) de masses respectives m_1 et m_2 et de centre de gravité respectifs G_1 et G_2 . \bar{P}_1 et \bar{P}_2 désignent les poids de chacun des deux solides.

Le solide (1) est en liaison rotule de centre O avec le sol (0).

Le solide (2) est en liaison rotule de centre B avec le sol (0).

Le solide (1) est en liaison rotule de centre A avec le solide (2).

Vous noterez les actions mécaniques au niveau de ces trois liaisons comme suit :

$$\left\{ \tau_{0 \to 1} \right\} = \left\{ \begin{aligned} & \vec{F}_{01} = X_{01} \vec{x} + Y_{01} \vec{y} + Z_{01} \vec{z} \\ & \vec{M}_{(0 \to 1)} \left(O \right) = L_{01} \vec{x} + M_{01} \vec{y} + N_{01} \vec{z} \end{aligned} \right\}$$

$$\left\{ \tau_{1 \to 2} \right\} = \left\{ \begin{aligned} & \vec{F}_{12} = X_{12} \vec{x} + Y_{12} \vec{y} + Z_{12} \vec{z} \\ & \vec{M}_{(1 \to 2)} \left(A \right) = L_{12} \vec{x} + M_{12} \vec{y} + N_{12} \vec{z} \end{aligned} \right\}$$

$$\left\{ \tau_{0 \to 2} \right\} = \left\{ \begin{aligned} & \vec{F}_{02} = X_{02} \vec{x} + Y_{02} \vec{y} + Z_{02} \vec{z} \\ & \vec{M}_{(0 \to 2)} \left(O \right) = L_{02} \vec{x} + M_{02} \vec{y} + N_{02} \vec{z} \end{aligned} \right\}$$

La base $(\vec{x}, \vec{y}, \vec{z})$ est orthonormée directe.

$$\overrightarrow{OA} = 4L(\vec{x} + \vec{y}), \quad \overrightarrow{AB} = 4L\vec{x}, \quad \overrightarrow{OG_1} = 2L(\vec{x} + \vec{y}), \quad \overrightarrow{AG_2} = 2L\vec{x}$$

Les deux solides sont soumis à l'accélération de la pesanteur : $\vec{g} = -g\vec{v}$.

Le solide (1) est soumis à une force \vec{F}_i appliquée en C avec :

$$\vec{F}_1 = F_1(\vec{x} - \vec{y}), \quad O\vec{C} = 3L(\vec{x} + \vec{y})$$

Le solide (2) est soumis à une force \vec{F}_2 appliquée en D avec :

$$\vec{F}_2 = F_2(\vec{x} + \vec{y}), \quad A\vec{D} = L\vec{x}$$

Questions

- Les trois liaisons rotules étant supposées parfaites, donnez la forme de chaçun des torseurs d'effort {τ_{0→1}}, {τ_{0→2}}, {τ_{1→2}}. (?\(\text{c}\) comp escentes nufles)
- 2) Enumérez et caractérisez sous formes de torseur les actions exercées sur le solide (1).
- Appliquez le Principe Fondamental de la Statique au solide (1) en écrivant l'équation du moment en A et en déduire les équations scalaires.
- Enumérez et caractérisez sous formes de torseur les actions exercées sur le solide (2).
- Appliquez le Principe Fondamental de la Statique au solide (2) en écrivant l'équation du moment en A et en déduire les équations scalaires.
- A partir du système d'équations obtenues, calculer numériquement les inconnues d'efforts.

On donne les valeurs numériques :

$F_1 = 1000N$	$m_i=150kg$	g=9.8m.s ⁻²	
$F_2 = 2000N$	m ₂ =100kg	L=40cm	