Examen Parcial I de Sistemas Telemáticos para Medios Audiovisuales Dispositivos de Interconexión, OSPF y BGP

GSyC, Universidad Rey Juan Carlos 14 de junio de 2018

DISPOSITIVOS DE INTERCONEXIÓN

ATENCIÓN:

- Si ya has usado NetGUI con otro diagrama de red, cierra NetGUI y ejecuta clean-netgui.sh antes de volver a lanzar NetGUI.
- En NetGUI, en el menú "Archivo" elige la opción "Abrir" y carga el nombre de archivo /opt/stma1/disp.
- Se cargará el escenario mostrado en la figura 1.
- NO ARRANQUES POR AHORA NINGUNA MÁQUINA. Es importante que las arranques en el orden indicado.
- Si en algún momento quieres volver a tener el escenario en su estado inicial, cierra NetGUI, ejecuta clean-netgui.sh y ejecuta después /opt/stma1/disp/reset-lab.

En la figura 1 se muestra el escenario que has cargado en NetGUI. Ten en cuenta que:

- Las máquinas s1, s2, s3, s4 y s5 están configuradas como switches.
- Las máquinas r1, r2 están configuradas como routers.

Arranca todas la máquinas de la figura.

1.	Supongamos que todos los switches tienen en sus tablas de direcciones aprendidas todas las direcciones Ethernet de las
	máquinas y routers del escenario, y además, las cachés de ARP de todas las máquinas y routers están vacías. Indica qué
	mensajes serán capturados en pc30 cuando pc10 ejecuta un ping dirigido a pc40:

- (A) Ninguno
- **(B)** 1.
- (C) 2.
- (D) 4.
- 2. Supongamos que la interfaz r1(eth0) ha dejado de funcionar. Para que pc40 pueda comunicarse con pc10 y viceversa, se decide configurar utilizando IP aliasing la dirección 11.0.0.1 en r2(eth0). Indica cuál de las siguientes afirmaciones es correcta:
 - (A) Es necesario, además, cambiar la tabla de encaminamiento de r2.
 - (B) Es necesario, además, cambiar la tabla de encaminamiento de pc10.
 - (C) Es necesario, además, cambiar la tabla de encaminamiento de pc40.
 - (D) No es necesario hacer ningún cambio más.

- 3. Supongamos que se rompe el cable que une s1 y s2.
 - Indica cuál de las siguientes afirmaciones es correcta para que pc10 siga manteniendo la comunicación bidireccional con pc30:
 - (A) Es necesario:
 - Configurar proxy ARP en r1-eth0 para que responda por la dirección 11.0.0.30
 - Configurar proxy ARP en r1-eth1 para que responda por la dirección 11.0.0.10
 - Modificar la tabla de encaminamiento de r1.
 - (B) Es necesario:
 - Configurar proxy ARP en r1-eth1 para que responda por la dirección 11.0.0.30
 - Configurar proxy ARP en r1-eth0 para que responda por la dirección 11.0.0.10
 - Modificar la tabla de encaminamiento de r1.
 - (C) Es necesario únicamente:
 - Configurar proxy ARP en r1-eth0 para que responda por la dirección 11.0.0.30
 - Configurar proxy ARP en r1-eth1 para que responda por la dirección 11.0.0.10
 - (D) Es necesario únicamente:
 - Configurar proxy ARP en r1-eth1 para que responda por la dirección 11.0.0.30
 - Configurar proxy ARP en r1-eth0 para que responda por la dirección 11.0.0.10
- 4. En un instante dado, la tabla de direcciones aprendidas de \$1 tiene las siguientes 3 entradas de direcciones no locales:

s1:~# brctl showmacs s1

port	no	mac addr	is local?	ageing timer
3		00:07:e9:00:01:00	no	12.51
2		00:07:e9:00:02:01	no	23.24
1		00:07:e9:00:10:00	no	19.45

En ese momento, s1 recibe por su interfaz eth1 la siguiente trama:

Dir. Ethernet Destino	Dir. Ethernet Origen	Protocolo	IP por la que se pregunta
ff:ff:ff:ff:ff	00:07:e9:00:02:01	ARP	13.0.0.1

Indica cuál de las siguientes afirmaciones es correcta:

- (A) s1 copia la trama únicamente por eth0 y por eth2
- (B) s1 copia la trama únicamente por eth1
- (C) s1 no copia la trama por ninguna interfaz
- (D) s1 copia la trama por eth0, por eth1 y por eth2
- 5. Partiendo de la configuración inicial del escenario, se ha eliminado el comportamiento por defecto de los switches y se desea configurar las siguientes VLANs:
 - VLAN100 para las direcciones IP de la subred 11.0.0.0/24
 - VLAN200 para las direcciones IP de la subred 12.0.0.0/24
 - VLAN300 para las direcciones IP de la subred 13.0.0.0/24

Indica cuál de las siguientes afirmaciones es correcta.

- (A) Es necesario configurar tres switches software en s1, uno por cada VLAN.
- (B) Es necesario configurar tres switches software en \$3, uno por cada VLAN.
- (C) Es necesario configurar tres switches software en s4, uno por cada VLAN.
- (D) Es necesario configurar tres switches software en \$5, uno por cada VLAN.

ENCAMINAMIENTO: OSPF

ATENCIÓN:

- Si ya has usado NetGUI con otro diagrama de red, cierra NetGUI y ejecuta clean-netgui.sh antes de volver a lanzar NetGUI.
- En NetGUI, en el menú "Archivo" elige la opción "Abrir" y escribe como nombre de archivo /opt/stma1/ospf
- Se cargará el escenario mostrado en la figura 2.
- NO ARRANQUES NINGUNA MÁQUINA. Es importante que las arranques en el orden indicado.
- Si en algún momento quieres volver a tener el escenario en su estado inicial, cierra NetGUI, ejecuta clean-netgui.sh y ejecuta después /opt/stma1/ospf/reset-lab

Los routers de la figura 2 tiene configurado OSPF como protocolo de encaminamiento interior. Se han definido 3 áreas OSPF:

- Área 0: r1, y r3.
- Área 1: r3, r4, r5 y r6.
- Área 2: r1, r2 y r7.

Arranca todos los routers de la figura de forma que todos arranquen dentro de un intervalo de 40 segundos.

Espera unos segundos para que los *routers* se hayan intercambiado la información de encaminamiento usando OSPF y hayan configurado sus tablas de encaminamiento.

6. Partiendo de la situación inicial (todos los routers están arrancados a la vez y ya han configurado sus tablas de encaminamiento), se ha capturado un mensaje LS Update del que solo se muestran algunos campos:

LS Type: summary-LSA Link State ID: 13.14.0.0

. . .

Netmask: 255.255.0.0

Metric: 20

Indica cuál de las siguientes afirmaciones es correcta:

- (A) El mensaje se ha capturado en el área 0.
- (B) El mensaje se ha capturado en el área 1.
- (C) El mensaje se ha podido capturar tanto en el área 0 como en el área 1.
- (D) El resto de afirmaciones son falsas.

7. Partiendo de la situación inicial (todos los *routers* están arrancados a la vez y ya han configurado sus tablas de encaminamiento), se apaga el router r5.

Transcurrido aproximadamente un minuto, se vuelve a encender r5.

Trascurrido otro minuto, indica cuál de las siguientes afirmaciones es correcta comparando la situación actual (tras apagar y volver a encender r5) con respecto a la situación inicial del escenario (NOTA: No tengas en cuenta los campos LS Age ni LS Seq Number):

- (A) No cambia la información de ningún Router-LSA del área 1.
 - No cambia el contenido de ningún HELLO enviados a las redes del área 1.
- (B) No cambia la información de ningún Router-LSA del área 1.
 - Cambia información en el contenido de los HELLO enviados a las redes 13.6.0.0/16 y 13.11.0.0/16.
- (C) Cambia la información del Router-LSA de r5.
 - Cambia información en el contenido de los HELLO enviados a las redes 13.6.0.0/16 y 13.11.0.0/16.
- (D) Cambia la información de los Router-LSA de r3, r4 y r5
 - Cambia información en el contenido de los HELLO enviados a las redes 13.6.0.0/16 y 13.11.0.0/16.
- 8. Partiendo de la situación inicial (todos los *routers* están arrancados y ya han configurado sus tablas de encaminamiento), indica cuál de las siguientes afirmaciones es correcta:
 - (A) r1 no puede estar seguro de si existe o no la red 13.10.0.0/16.
 - (B) r1 sabe que existe la red 13.7.0.0/16 y que es una red transit.
 - (C) r1 sabe que existe la red 13.5.0.0/16 y que es una red stub.
 - (D) El resto de afirmaciones son falsas.
- 9. En vez de arrancar todos los *routers* como se describe en la situación inicial del escenario, se sabe que se han arrancado todos los routers **excepto uno de ellos**, que arrancó un minuto después que todos lo demás.

Mientras arrancaba este último *router*, se ha realizado en el escenario la captura del fichero /opt/stma1/ospf.cap. Analizando dicha captura, indica cuál es el *router* que ha arrancado tarde:

- (A) r1
- (B) r3
- (C) r6
- (D) r5
- 10. Partiendo de la situación inicial (todos los *routers* están arrancados a la vez y ya han configurado sus tablas de encaminamiento), indica cuál es el número total de mensajes Network-LSA diferentes que hay almacenados en todas las bases de datos de mensajes LSA de r3:
 - (A) 6 mensajes Network-LSA diferentes.
 - (B) 5 mensajes Network-LSA differentes.
 - (C) 9 mensajes Network-LSA differentes.
 - (**D**) 1 mensajes *Network-LSA* differente.

ENCAMINAMIENTO: BGP

ATENCIÓN:

- Si ya has usado NetGUI con otro diagrama de red, cierra NetGUI y ejecuta clean-netgui.sh antes de volver a lanzar NetGUI.
- En NetGUI, en el menú "Archivo" elige la opción "Abrir" y escribe como nombre de archivo /opt/stma1/bgp
- Se cargará el escenario mostrado en la figura 3.
- Si en algún momento quieres volver a tener el escenario en su estado inicial, cierra NetGUI, ejecuta clean-netgui.sh y ejecuta después /opt/stma1/bgp/reset-lab

Los sistemas autónomos AS10, AS20, AS30, AS40, AS50, AS60, AS70 y AS780 están utilizando BGP como protocolo de encaminamiento exterior para intercambiar sus tablas de encaminamiento. Se han definido entre ellos las siguientes relaciones entre sistemas autónomos:

- AS10 y AS30 mantienen una relación de tránsito donde AS10 es el proveedor y AS30 es el cliente.
- AS10 y AS40 mantienen una relación de tránsito donde AS10 es el proveedor y AS40 es el cliente.
- AS10 y AS20 mantienen una relación de tránsito donde AS10 es el proveedor y AS20 es el cliente.
- AS20 y AS60 mantienen una relación de tránsito donde AS20 es el proveedor y AS60 es el cliente.
- AS20 y AS70 mantienen una relación de tránsito donde AS20 es el proveedor y AS70 es el cliente.
- AS30 y AS50 mantienen una relación de tránsito donde AS30 es el proveedor y AS50 es el cliente.
- AS30 y AS80 mantienen una relación de tránsito donde AS30 es el proveedor y AS80 es el cliente.
- AS40 y AS60 mantienen una relación de tránsito donde AS40 es el proveedor y AS60 es el cliente.
- AS50 y AS80 mantienen una relación de tránsito donde AS50 es el proveedor y AS80 es el cliente.
- AS60 y AS50 mantienen una relación de tránsito donde AS60 es el proveedor y AS50 es el cliente.
- AS60 y AS70 mantienen una relación de tránsito donde AS60 es el proveedor y AS70 es el cliente.
- AS40 y AS20 mantienen una relación entre iguales.
- AS30 y AS40 mantienen una relación entre iguales.
- AS50 y AS70 mantienen una relación entre iguales.

Arranca todos los routers de la figura.

- 11. Un router que no aparece en la figura recibe el siguiente anuncio que se encuentra en la captura /opt/stma1/bgp.cap. Indica todas las subredes /24 que se están anunciando de forma agregada en el mensaje BGP.
 - (A) El mensaje BGP no contiene rutas anunciadas, contiene las rutas eliminadas: 20.0.0.0/22 y 20.0.4.0/23
 - **(B)** 20.0.0.0/24 y 20.0.4.0/24
 - (C) 20.0.0/24, 20.0.1.0/24, 20.0.4.0/24 y 20.0.5.0/24
 - (D) 20.0.0.0/24, 20.0.1.0/24, 20.0.2.0/24, 20.0.3.0/24, 20.0.4.0/24 y 20.0.5.0/24

12. Partiendo de la configuración inicial del escenario, y teniendo en cuenta las relaciones definidas previamente entre los sistemas autónomos de la figura, observa el siguiente mensaje UPDATE (sólo se muestran algunos campos):

Indica cuál de las siguientes afirmaciones es correcta:

- (A) Ningún router de la figura puede haber recibido este anuncio.
- (B) Los routers as10-r1, as80-r1 y as40-r1 pueden haber recibido ese anuncio.
- (C) Únicamente los routers as10-r1 y as80-r1 pueden haber recibido ese anuncio.
- (D) Únicamente el router as10-r1 puede haber recibido ese anuncio.
- 13. Partiendo de la configuración inicial del escenario ¿qué crees que ocurriría si se añadiera configuración sobre el atributo LOCAL_PREF=600 hacia el vecino 100.21.0.70 en el fichero bgpd.conf de as20-r1?
 - (A) Ninguna de las rutas preferidas hacia redes internas de ASs en as20-r1 se verían modificadas.
 - (B) Alguna/s ruta/s preferida/s hacia redes internas de ASs en as20-r1 se verían modificadas.
 - (C) Alguna/s ruta/s preferida/s hacia redes internas de ASs en as70-r1 se verían modificadas.
 - (D) No sería posible en ningún caso configurar ese valor de LOCAL_PREF en as20-r1 porque no sería acorde con las relaciones definidas entre los ASs de la figura.
- 14. Partiendo de la configuración inicial del escenario, y teniendo en cuenta las relaciones definidas previamente entre los sistemas autónomos de la figura, indica por qué as10-r1 elige como ruta preferida para llegar a las subredes de AS70 al vecino as20-r1:
 - (A) Porque es el camino con AS_PATH más corto.
 - (B) Porque el atributo LOCAL_PREF con ese vecino es mayor.
 - (C) Porque sólo recibe ese anuncio.
 - (D) Porque aunque sus routers vecinos le anuncian las subredes de AS70 por varios caminos, todos llegan en igual de condiciones y elige el primero que recibe que es el de as20-r1, debido a que es el que atraviesa un menor número de routers.
- 15. Partiendo de la configuración inicial del escenario, y teniendo en cuenta las relaciones definidas previamente entre los sistemas autónomos de la figura, indica qué anuncios enviaría as70-r1 de eliminación de rutas si se apaga el router as50-r1.
 - (A) No enviaría ningún anuncio de eliminación de rutas.
 - (B) Enviaría anuncios de eliminación de rutas con las subredes 15.0.0.0/23 a as60-r1 y as20-r1.
 - (C) Enviaría anuncios de eliminación de rutas con las subredes 15.0.0.0/23 únicamente a as60-r1.
 - (D) Enviaría anuncios de eliminación de rutas con las subredes 15.0.0.0/23 únicamente a as20-r1.

Figura 1: Dispositivos de Interconexión

Figura 2: Encaminamiento OSPF ${8\atop 8}$

Figura 3: Encaminamiento BGP $_9^{\rm P}$