Atividade 01 - Dorivedos - Alla Corcuitos 3 Mindola Eloisa Pimenta 3) g(x) = (x3-7).(2x2+3)  $g'(x) = (x^3-7)! (2x^2+3) + (2x^2+3)! (x^3-7)$  $9'(x) = 3x^2.(2x^2+3)+(4x)(x^3-7)$  $g'(x) = 6x^4 + 9x^2 + 4x^4 - 28x$ (8'(x) = 10x4 + 9x2 - 28x (4)  $f(x) = \frac{1}{\sqrt{x^2 + 2x}} = (x^2 + 2x)^{-\frac{1}{2}}$  $f'(x) = -\frac{1}{2} \cdot (2x+2) \cdot (x^2+2x) = \frac{1}{2} - (x+1) \cdot \sqrt{x^2+2x}$ (5)  $h(n) = n^{2}(3n^{4}-7n+2) = 3n^{6}-7n^{3}+2n^{2}$ h(2) = 1825-2122+4x 6) \$ f(x) = ln(x2 + x+1)  $f'(x) = \frac{1}{x^2 + x + 1}$   $(2x + 1) = \frac{2x + 1}{x^2 + x + 1}$ 7) P(x) = \( \text{Cosize(u)} = \( \text{Cosize(x)} \) \( \frac{1}{2} = \text{Cosixe(x)} \) \( \frac{1}{2} = \text{Cosixe(x)} \) 「f'(x) = - 章·(-senx)·(Cosx) fatt = Nen X. V Cのx

(3) 
$$= (8-3+33^2) \cdot (2-93) - (2-93) \cdot (8-3+33^2)$$
  
 $8'(3) = (8-3+33^2) \cdot (2-93) - (2-93) \cdot (8-3+33^2)$   
 $(2-93)^2$   
 $8'(3) = (-1+63) \cdot (2-93) - (-9) \cdot (8-3+33^2)$   
 $(2-93)^2$   
 $8'(3) = (-2+95+123+543^2) + (72-95+273^2)$   
 $(2-93)^2$   
 $(2-93)^2$   
(3)  $= (-2+3^2+123+70)$   
 $(2-93)^2$   
 $= (2-93)^2$   
 $= (2-93)^2$   
 $= (2-93)^2$   
 $= (2-93)^2$   
 $= (2-93)^2$   
 $= (2-93)^2$   
 $= (2-93)^2$ 

$$f(x) = \ln^{3} x^{-1}$$

$$f'(x) = \frac{1}{x} \cdot 3 \cdot \ln^{2} x \implies f'(x) = \frac{3 \ln^{2} x}{x}$$

$$f(x) = ln(x^{3})$$

$$f'(x) = 3x^{2}, \frac{1}{x^{3}} \Rightarrow f'(x) = \frac{3}{x}$$

$$f(t) = t^{5} + \left(\frac{t+1}{t^{2}}\right)$$

$$f'(t) = 5t^{4} + \left(\frac{t+1}{t^{2}}\right)^{1} \cdot t^{2} - \left(\frac{t^{2}}{t^{2}}\right)^{1} \cdot \left(\frac{t+1}{t^{3}}\right)$$

$$f'(t) = 5t^{4} + t^{2} - 2t(t+1)$$

$$f'(t) = 5t^{4} + t - 2(t+1) = 5t^{4} + t - 2t^{4}$$

$$f'(t) = 5t^{4} - t + t - 2(t+1) = 5t^{4} + t - 2t^{4}$$

$$f''(t) = 5t^{4} - t + t - 2(t+1) = 5t^{4} + t - 2(t+1)$$

$$f(x) = (\ln x), (\operatorname{Nen} x)$$

$$f'(x) = (\ln x)!, \operatorname{Nen} x + (\operatorname{Nen} x)!, \operatorname{In} x$$

$$f'(x) = \frac{\operatorname{Nen} x}{x} + \operatorname{In} x \cdot \operatorname{Cos} x$$

(13) 
$$72(x) = 2x + \frac{1}{2x}$$

$$D(x) = 2x + (2x)^{-1}$$

$$D(x) = 2x + (2x)^{-1}$$

$$D(x) = 2 - 2.(2x)^{-2}$$

$$D(x) = 2 - 2.(2x)^{-2}$$

$$D(x) = 2 - 2.(2x)^{-2}$$

(14) 
$$f(x) = Qm(senx)$$
  
 $f'(x) = \frac{1}{Nenx} \cdot cos X \Rightarrow \begin{cases} f'(x) = \frac{1}{18x} \end{cases}$ 

(13) 
$$p(x) = 1 + \frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^3}$$
  
 $p(x) = 1 + x + x^2 + x^3$   
 $p(x) = -x^2 - 2x^3 - 3x^4$   
 $p(x) = -x^2 - 2x^3 - 3x^4$ 

(6) 
$$f(x) = e^{3x^2} + x - 5$$
  
 $f'(x) = 6x \cdot e^{3x^2} + 1$ 

$$f'(x) = \lambda e^{2}x = \frac{1}{\lambda e^{3}x} = \lambda e^{3}x$$

$$f'(x) = -2.\lambda e^{3}x.\cos x$$

$$f'(x) = -2\cos x$$

$$\lambda e^{3}x$$

$$f(x) = x^{3} \cdot 3^{x}$$

$$f'(x) = (x^{3})^{1} \cdot 3^{x} + (3^{x})^{1} \cdot x^{3}$$

$$f'(x) = 3x^{2} \cdot 3^{x} + 3^{x} (\ln 3) \cdot x^{3}$$

$$f'(x) = 3x^{2} \cdot 3^{x} + 3^{x} \cdot x^{3} \cdot \ln 3$$

$$f'(x) = (3 + x \ln 3) \cdot 3^{x} \cdot x^{2}$$

(19) 
$$f(x) = e^{x} + e^{x}$$

$$f'(x) = \frac{1}{2}(e^{x} - e^{x})$$

(20) 
$$f(x) = 3en^3 2x = (3en 2x)^3$$

ALMANAM.

f'(x) = 3.(xm2x)2. cos2x. 2

(f'(x) = 6 Nem22x COS2X)

(f(x) = 6 Nemax. Mans 4x

$$(1) - f(x) = 6x^{3} - 5x^{2} + x + 9$$

$$\frac{df(x)}{dx} = 18x^{2} - 10x + 1$$

- 3 km3. Con2x

Attridade 01 - EDO - Circuitos 3 Phémolala Eloisa Pimenta  $a) \frac{dy}{dx} = (\cos x)^{2} \cdot (\cos 2y)^{2}$  $-\left(\frac{dy}{(\cos 2y)^2} = \left(\cos x\right)^2 dx; \int \frac{dy}{(\cos 2y)^2} = \int \sec^2 2y dy$ | sec\_2y dy = | rec\_n de = ton + c1 = to2y + c1 u=2y du=2dy=>dy= du  $\left(\cos^2 x \, dx = \left(\cos^2 x + \frac{1}{2}\right) dx = \frac{x + 2x}{4} + \frac{x}{2} + Ca$ [cos2x dx = [cosu du = 1 Neme + Cz = Nem2x + Cz  $\Delta = 2X$   $\Delta x - \Delta x = \frac{\Delta x}{2}$ Taly + C1 = Nem 2x + x + C2 > 524 T824 - 18m2x - X + K = 0 y(0) = 2 => \$4 - 18m0 - 2 + K = 0 => K = - \$4 T824 - rem 2x - x - 184 = 0

b) 
$$(xy^2-x)dx + (2x^2y+8y)dy = 0$$
  
 $y(x) = 5$ 

$$x.(y^2-1)dx + 2y(x^2+4)dy = 0$$
  
 $x(y^2-1)dx = -2y(x^2+4)dy$ 

$$\int \frac{x \, dx}{x^2 + 4} = -\int \frac{2y \, dy}{y^2 - 1}$$



$$\int \frac{x \, dx}{x^{2} + 4} = \frac{1}{2} \int \frac{du}{u} = \frac{1}{2} \int \frac{du}{u} = \frac{1}{2} \int \frac{du}{u} + C_{1} = \frac{1}{2} \int \frac{du}{x^{2} + 4} + C_{1}$$

$$u = x^{2} + 4 \rightarrow du = 2x \, dx \rightarrow \frac{1}{2} \int \frac{du}{u} = \frac{1}{2} \int \frac$$

11=42-1-0 du=24dy

LD = lm 1x2+41+C1 = -lm 1y2-1 = C2 | lm | (12+4), (52-1) = K Intx2+41 = - 8. Inty2 1 + C3 In 1x2+49+ ln(y21) =K

In (x2+49(y2-1)4) = K

pora y(1)=5 K= In 15.2421 MANMARADA K= 2m 2415

In K2+48(42-1)2/= la 2485

$$\frac{dy}{dx} = \frac{y \cos x}{1 + 2y^{2}}$$

$$\int \frac{y(1 + 2y^{2})}{y} dy = \int \cos x \, dx = \int \left(\frac{1}{y} + 2y\right) \, dy = \int \cos x \, dx$$

$$\int \frac{y(1 + 2y^{2})}{y} \, dy = \int \cos x \, dx = \int \left(\frac{1}{y} + 2y\right) \, dy = \int \cos x \, dx$$

$$\int \frac{y(3)}{2} - \lambda \sin x = K$$

$$\int \frac{y(3)}{2} - \lambda \sin x = K$$

$$\int \frac{y(3)}{2} - \lambda \sin x = \frac{1}{2} + 4 - \lambda \cos 3$$

$$\int \frac{y(3)}{2} - \lambda \cos x = \frac{1}{2} + 4 - \lambda \cos 3$$

$$\int \frac{y(3)}{2} - \lambda \cos x = \frac{1}{2} + 4 - \lambda \cos 3$$

$$\int \frac{y(3)}{2} - \lambda \cos x = \frac{1}{2} + 4 - \lambda \cos 3$$

$$\int \frac{y(3)}{2} - \lambda \cos x = \frac{1}{2} + 4 - \lambda \cos x = K$$

$$\int \frac{y(3)}{2} - \lambda \cos x = K$$

 $f) \frac{dy}{dx} = \frac{x^2}{y(1+x^3)} \Rightarrow \begin{cases} y dy = \frac{x^2}{1+x^3} dx \\ 1+x^3 \end{cases}$  $\frac{dy \cdot y(1+x^{3})}{\sqrt{2}} = \frac{1}{3} \ln |x^{3}+1| + K$ 42 - 1 m | x3+11 = K  $\frac{1}{2}(1) = 2 \Rightarrow \frac{1}{2} - \frac{1}{3} \ln 2 = K$  $\frac{\sqrt{3}}{2} - \ln^3 \sqrt{x^3 + 1} = 2 - \frac{\ln 2}{3}$  [SC-S-c] 8) TRACK tox recydx-toy recxdy=0. 4(0)=2 SES Cosx Cosy Cosy Cosx [remxdx= [remydy => cosx-cosy = K K=coso-con2=1-con2 [Conx-cony=1-cona

h) 
$$\frac{dy}{dx} - 5y = \frac{3}{2}x$$
 $u(x) = e^{-5x}dx = -5x$ 

$$\int x.e^{5x}dx = -x.e^{5x} - e^{-5x}$$

$$\int x.e^{5x}dx = -x.e^{5x} - e^{-5x}$$

$$y(x) = \frac{1}{e^{-5x}} \cdot \left[ -x.e^{5x} - e^{-5x} + K \right]$$

$$y(2) = 2$$

$$2 = \frac{1}{e^{-5x}} \cdot \left[ -2e^{-5x} - e^{-5x} + K \right]$$

$$2 = -\frac{1}{2} \cdot e^{-5x} \cdot \left[ -2e^{-5x} - e^{-5x} + K \right]$$

$$2 = -\frac{1}{2} \cdot e^{-5x} \cdot \left[ -2e^{-5x} - e^{-5x} + K \right]$$

$$2 = -\frac{1}{2} \cdot e^{-5x} \cdot \left[ -2e^{-5x} - e^{-5x} + K \right]$$

$$2 = -\frac{1}{2} \cdot e^{-5x} \cdot \left[ -2e^{-5x} - e^{-5x} + K \right]$$

$$2 = -\frac{1}{2} \cdot e^{-5x} \cdot \left[ -2e^{-5x} - e^{-5x} + K \right]$$

$$2 = -\frac{1}{2} \cdot e^{-5x} \cdot \left[ -2e^{-5x} - e^{-5x} + K \right]$$

$$2 = -\frac{1}{2} \cdot e^{-5x} \cdot \left[ -2e^{-5x} - e^{-5x} + K \right]$$

$$2 = -\frac{1}{2} \cdot e^{-5x} \cdot \left[ -2e^{-5x} - e^{-5x} + K \right]$$

$$2 = -\frac{1}{2} \cdot e^{-5x} \cdot \left[ -2e^{-5x} - e^{-5x} + K \right]$$

$$2 = -\frac{1}{2} \cdot e^{-5x} \cdot \left[ -2e^{-5x} - e^{-5x} + K \right]$$

$$2 = -\frac{1}{2} \cdot e^{-5x} \cdot \left[ -2e^{-5x} - e^{-5x} + K \right]$$

$$2 = -\frac{1}{2} \cdot e^{-5x} \cdot \left[ -2e^{-5x} - e^{-5x} + K \right]$$

$$2 = -\frac{1}{2} \cdot e^{-5x} \cdot \left[ -2e^{-5x} - e^{-5x} + K \right]$$

$$2 = -\frac{1}{2} \cdot e^{-5x} \cdot \left[ -2e^{-5x} - e^{-5x} + K \right]$$

$$2 = -\frac{1}{2} \cdot e^{-5x} \cdot \left[ -2e^{-5x} - e^{-5x} + K \right]$$

$$2 = -\frac{1}{2} \cdot e^{-5x} \cdot \left[ -2e^{-5x} - e^{-5x} + K \right]$$

$$2 = -\frac{1}{2} \cdot e^{-5x} \cdot \left[ -2e^{-5x} - e^{-5x} + K \right]$$

$$2 = -\frac{1}{2} \cdot e^{-5x} \cdot \left[ -2e^{-5x} - e^{-5x} + K \right]$$

$$2 = -\frac{1}{2} \cdot e^{-5x} \cdot \left[ -2e^{-5x} - e^{-5x} + K \right]$$

$$2 = -\frac{1}{2} \cdot e^{-5x} \cdot \left[ -2e^{-5x} - e^{-5x} + K \right]$$

$$2 = -\frac{1}{2} \cdot e^{-5x} \cdot \left[ -2e^{-5x} - e^{-5x} + K \right]$$

$$2 = -\frac{1}{2} \cdot e^{-5x} \cdot \left[ -2e^{-5x} - e^{-5x} + K \right]$$

$$2 = -\frac{1}{2} \cdot e^{-5x} \cdot \left[ -2e^{-5x} - e^{-5x} + K \right]$$

$$2 = -\frac{1}{2} \cdot e^{-5x} \cdot \left[ -2e^{-5x} - e^{-5x} + K \right]$$

$$2 = -\frac{1}{2} \cdot e^{-5x} \cdot \left[ -2e^{-5x} - e^{-5x} + K \right]$$

$$2 = -\frac{1}{2} \cdot e^{-5x} \cdot \left[ -2e^{-5x} - e^{-5x} + K \right]$$

$$2 = -\frac{1}{2} \cdot e^{-5x} \cdot \left[ -2e^{-5x} - e^{-5x} + K \right]$$

$$2 = -\frac{1}{2} \cdot e^{-5x} \cdot \left[ -2e^{-5x} - e^{-5x} + K \right]$$

$$2 = -\frac{1}{2} \cdot e^{-5x} \cdot \left[ -2e^{-5x} - e^{-5x} + K \right]$$

$$2 = -\frac{1}{2} \cdot e^{-5x} \cdot \left[ -2e^{-5x} - e^{-5x} + K \right]$$

$$2 = -\frac{1}{2} \cdot e^{-5x} \cdot \left[ -2e^{-5x} - e^{-5x} + K \right]$$

$$2 = -\frac{1}{2} \cdot e^{-5x} \cdot \left[$$

i) 
$$y' + 2y = 3x^{2}$$
  $y(0) = 0$   
 $y' + 2y = 3x^{2}$   $y(0) = 3x^{2}$   
 $y' + 2y = 3x^{2}$   $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$   
 $y' + 2y = 3x^{2}$ 

$$\frac{1}{3} = \frac{1}{3} = \frac{1$$

K)

3 dy + 7xy dx = 10x2 dx  
3 dy + 7xy dx = 10x2 dx  
3 dy + 7xy = 10x2 (÷3)  
dy + 
$$\frac{1}{3}$$
xy =  $\frac{1}{3}$ x2  $\frac{1}{3}$ x2  $\frac{1}{3}$ x3  $\frac{1}{3}$ x4  $\frac{1}{3}$ x4 =  $\frac{1}{3}$ x2  $\frac{1}{3}$ x3  $\frac{1}{3}$ x4  $\frac{1}{3}$ x4 =  $\frac{1}{3}$ x2  $\frac{1}{3}$ x3  $\frac{1}{3}$ x4  $\frac{1}{3}$ x4 =  $\frac{1}{3}$ x3  $\frac{1}{3}$ x4  $\frac{1}{3}$ x4 =  $\frac{1}{3}$ x3  $\frac{1}{3}$ x4  $\frac{1}{3}$ x4 =  $\frac{1}{3}$ x3  $\frac{1}{3}$ x4 =  $\frac{1}{3}$ x3  $\frac{1}{3}$ 

$$y(x) = \frac{1}{u(x)} \cdot \left[ \int u(x) \cdot b(x) \cdot dx + C \right]$$

$$y(x) = \frac{1}{e^{\frac{1}{2}e^{x^{2}}}} \cdot \left[ \frac{10}{3} \cdot \frac{6}{19} \cdot x^{\frac{3}{2}} e^{\frac{1}{2}e^{x^{2}}} + C \right]$$

$$y(x) = \frac{20}{19} \cdot x^{3} + \frac{C}{e^{\frac{1}{2}e^{x^{2}}}}$$

$$y(0) = 10 \rightarrow 10 = \frac{C}{1} \Rightarrow C = 10$$

$$y(x) = \frac{20}{19} \cdot x^{3} + \frac{10}{e^{\frac{1}{2}e^{x^{2}}}}$$