Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática MA4802 Ecuaciones en Derivadas Parciales 20 de Noviembre de 2024

Auxiliar 12

Profesores: Rayssa Cajú y Claudio Muñoz **Auxiliares** Benjamin Bórquez, Vicente Salinas y Jessica Trespalacios

P1. Una función $u \in H_0^2(U)$ es una solución débil del problema de valores de frontera para la ecuación biarmónica

$$\begin{cases} \Delta^2 u = f & en \quad U \\ u = \frac{\partial u}{\partial \nu} = 0 \quad \partial U \end{cases} \tag{1}$$

siempre que

$$\int_{U} \Delta u \Delta v dx = \int_{U} f v dx$$

para todo $v \in H_0^2(U)$. Dado $f \in L^2(U)$, pruebe que existe una única solución débil de (1).

- **P2.** (Caracterizáción de $W^{1,\infty}$). Sea U un conjunto abierto y acotado, con ∂U de clase C^1 . Entonces $u:U\longrightarrow \mathbb{R}$ es Lipschitz continua si y sólo si $u\in W^{1,\infty}$.
- **P3.** (Caracterizáción de H^{-1}).
 - a) Asuma $f \in H^{-1}$. Entonces existen funciones $f^0, f^1, ..., f^n \in L^2(U)$ tal que

$$\langle f, v \rangle = \int_{U} f^{0}v + \sum_{i=1}^{n} f^{i}v_{x_{i}}dx \quad v \in H_{0}^{1}$$

$$(2)$$

b) Además,

$$||f||_{H^{-1}(U)} = \inf \left\{ \left(\int_{U} \sum_{i=0}^{n} |f^{i}|^{2} dx \right)^{1/2} : f \text{ satisface } (2) \text{ para } f^{0}, f^{1}, ..., f^{n} \in L^{2}(U) \right\}.$$

c) En particular, tenemos

$$(v,u)_{L^2(U)} = \langle v,u \rangle$$

para todo $u \in H_0^1(U), v \in L^2(U) \subset H^{-1}(U).$