Cross-Validation

Nipun Batra and teaching staff

July 17, 2025

IIT Gandhinagar

Our General Training Flow

Our General Training Flow

 Does not use the full dataset for training and does not test on the full dataset

Our General Training Flow

- Does not use the full dataset for training and does not test on the full dataset
- No way to optimise hyperparameters

 Over multiple iterations, use different parts of the dataset for training and testing.

- Over multiple iterations, use different parts of the dataset for training and testing.
- Typically done via different random splits of the dataset.

- Over multiple iterations, use different parts of the dataset for training and testing.
- Typically done via different random splits of the dataset.
- Challenge?

- Over multiple iterations, use different parts of the dataset for training and testing.
- Typically done via different random splits of the dataset.
- Challenge?
- May not use every data point for training or testing

- Over multiple iterations, use different parts of the dataset for training and testing.
- Typically done via different random splits of the dataset.
- Challenge?
- May not use every data point for training or testing
- May be computationally expensive

K-Fold cross-validation: Utilise full dataset for testing

K-Fold cross-validation: Utilise full dataset for testing

Each data point is used for testing exactly once.

Optimizing hyperparameters via the Validation Set

Nested Cross Validation

Divide your training set into K equal parts. Cyclically use 1 part as "validation set" and the rest for training. Here K=4

Nested Cross Validation

Average out the validation accuracy across all the folds Use the model with highest validation accuracy

Next time: Ensemble Learning

- How to combine various models?
- Why to combine multiple models?
- How can we reduce bias?
- How can we reduce variance?