Review Week 10: Cyclic codes (worked example of classification). Golay codes. Classification of perfect codes

2022-11-28

Reminder: online test worth 10% of the final mark

The coursework test will open tomorrow 29-Nov at 11^{am}. Please practise doing the Mock Test.

Working with cyclic codes in \mathbb{F}_a^n

- Cyclic codes in $\mathbb{F}_q^n \leftrightarrow$ monic polynomial factors of x^n-1 in $\mathbb{F}_q[x]$
- The first step is to factorise \mathbf{x}^n-1 into irreducible monic factors

If $n \le 3$ and q is a small prime, this can always be done manually

over
$$F_2$$
 $(x^{h}-1)=(x-1)(x^{h+1}+x^{h+2}+...+x+1)$

compare with $q^{n}-1=q^{h-1}+q^{h-2}+...+q+1$
 $x^3-1=(x-1)(x^2+x+1)$
 x^2+x+1
 $x^$

• If n>3, this may require algorithms beyond the scope of this course

Worked example: F⁷₂

Given that $x^3 + x + 1$ is an irreducible factor of $x^7 - 1$ in $\mathbb{F}_2[x]$, write down all cyclic codes in \mathbb{F}_2^7 .

Possible g(x) (generator polynomials): 8 possibilities.

$$g(x) = 1$$
 deg $g = 0$ dim $C = h - deg g = 7$
 $C \subseteq \mathbb{F}_{2}^{7}$ trivial code
 $G = \mathbb{I}_{7}$, $d = 1$,
 $(3exo rows) H = [$

$$g(x) = x + 1$$

$$dim C = 6$$

$$d = 2$$

$$E_7 = C = \{(x_1, ..., x_7) : x_1 + x_2 + ... + x_7 = 0\}$$

$$h(x) = \frac{x^{n-1}}{g(x)} = \frac{x^{7} + 1}{x + 1} = x^{6} + x^{5} + x^{9} + x^{3} + x^{2} + x^{4} +$$

$$g(x) = \chi^{3} + \chi + 1$$

$$dim C = 7 - 3 = 4$$

$$dim C = 3$$

$$h(x) = \frac{\chi^{3} + 1}{\chi^{3} + 1} = (\chi + 1)(\chi^{3} + \chi^{2} + 1) = \chi^{4} + \chi^{2} + \chi + 1$$

$$\chi^{4} + \chi^{2} + \chi + 1$$

$$\chi^{5} + \chi^{5} +$$

$$g = \chi^{3} + \chi^{2} + 1$$
 another Hamming code Ham(32)
 $d = 3$ dim = 4 perfect.
 $g(X) = (x+1)(x^{3} + x + 1) = \frac{\chi^{4} + \chi^{3} + \chi^{2} + 1}{2}$
 $G = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$
This is $C = Ham(3,2)^{\perp} = \sum (3,2)$
 $d = 4 = 2^{3-1}$
 $g(X) = (x+1)(X^{3} + \chi^{2} + 1) = \chi^{6} + \chi^{5} + \chi^{4} + \chi^{3} + \chi^{2} + \chi + 1$
 $G = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$
 $C = Rep(7, F_{2})$
The Sth possibility is $g(X) = \chi^{7} - 1$
 $C = Rep(7, F_{2})$
The Convention: $C = \{00000000\} = hull \}$

d(c) is undefined