#### **Talks**

- ► Evolution 2014: basic comparison between NA and European mammal survival
- ► GSA 2014: current fully Bayesian model of brachiopod survival
  - lots of positive feedback, ideas

#### Travel and grants

- ► AMNH: tooth measures for all notoungulate specimens identified to species level
- ▶ DDIG: applied; travel to Argentina; collaboration with Rick Madden



#### North American survival

- species duration as measure of survival
- traits
  - organismal: diet, locomotor categories
  - species: body size, bioprovince occupancy
- origination cohort
- phylogeny primarily based on taxonomy

- duration defined as number of 2My bins from FAD to LAD, inclusive
- fully Bayesian hierarchical model
- censoring approach
  - if still extant, right censored
  - if not extant and duration of only 1 bin, left censored

### Model diagram



 $\begin{aligned} y_i &\sim \text{Weibull}(\sigma, \alpha) \\ \eta_{j[i]} &\sim \text{Normal}(0, \sigma_c) \\ \sigma_c &\sim \text{half-Cauchy}(2.5) \\ h_i &\sim \text{MultiNormal}(0, \Sigma) \\ \Sigma &= \sigma_p^2 \mathbf{V}_{phy} \\ \sigma_p &\sim \text{half-Cauchy}(2.5) \\ \beta &\sim \text{Normal}(0, 10) \\ \alpha &\sim \text{half-Cauchy}(2.5) \end{aligned}$ 

# Censoring



## Modeling censored observations

#### Definition

$$S(t|\alpha,\sigma) = \exp\left(-\left(\frac{t}{\sigma}\right)^{\alpha}\right)$$

Right censored evaluated at S(t), left at 1 - S(t).

Equivalent to ccdf and cdf respectively.

## Modeling censored observations

#### Likelihood

$$L \propto \prod_{i \in C} \text{Weibull}(y_i | \alpha, \sigma) \prod_{j \in R} S(y_j | \alpha, \sigma) \prod_{k \in L} (1 - S(y_k | \alpha, \sigma))$$

# Posterior predictive checks: S(t)



## Posterior predictive checks: deviance residuals



## Posterior predictive checks: point checks



## Pairwise differences of $\beta$ , dietary category



## Pairwise differences of $\beta$ , locomotor category



#### Other traits



### Cohort effect



## Variance partion coefficient



- Because GLMM, VPC approximated via simulation modified from Goldstein et al.
  '02 Understanding Statistics
- phylogenetic heritability, sensu Lynch '91 Am. Nat., is a special case of VPC.

### Hazard curvature



### Meaning

#### Results

- model generally fits; no systematic biases in residuals
- comparable probabilistic statements of trait, temporal, and historical effects
  - individual level is major source of variance
  - phylogenetic, cohort effect similar
- weak decreasing cohort survival risk over Cenozoic
- ► h(t) not constant over t, increases slowly

#### Interpretation

- non-zero temporal and historical effects, but very small
  - older lineages out-competed by younger (Wagner and Estabrook '14 PNAS)
- increasing extinction with group age (Quental and Marshall '13 Science)
- background extinction; no single mode of extinction
- relative effect of universality of covariate, levels of selection(?)

| A model of biological, spatial, and phylomammal co-occurrence | ogenic effects on | Cenozoic |
|---------------------------------------------------------------|-------------------|----------|
|                                                               |                   |          |

# Biogeographic network



# Species adjacency



### Autoregressive model

Adjacency is also a symmetric n by n matrix, A, with ones on the off-diagonals if the species co-occur.

CAR prior. Estimate spatial correlation (p) and hierarchical variance variance (sigmasq) as a multivariate normal effect with mean vector all 0 and covariance matrix = sigmasq \* (I - p \* A)

## Erdos-Renyi graph G(n, p)



## Overdispersion model

#### **Negative Binomial**

NegBinom
$$(y|\alpha,\beta) = {y+\alpha-1 \choose \alpha-1} \left(\frac{\beta}{\beta+1}\right)^2 \left(\frac{1}{\beta+1}\right)^y$$
 reparameterized

NegBinom
$$(y|\mu,\phi) = {y+\phi-1 \choose y} \left(\frac{\mu}{\mu+\phi}\right)^y \left(\frac{\phi}{\mu+\phi}\right)^{\phi}$$

### Model diagram



 $\begin{aligned} y_i &\sim \text{NegBinom} \left( \mu, \phi \right) \\ \phi &\sim \text{half-Cauchy} \left( 2.5 \right) \\ s_i &\sim \text{MultiNormal} \left( 0, \Sigma_s \right) \\ \Sigma_s &= \sigma_s^2 \left( \textbf{\textit{D}} - p * \textbf{\textit{A}} \right) \\ \sigma_s &\sim \text{half-Cauchy} \left( 2.5 \right) \\ p &\sim \text{Uniform} \left( 0, 1 \right) \\ h_i &\sim \text{MultiNormal} \left( 0, \Sigma_p \right) \\ \Sigma_p &= \sigma_p^2 \mathbf{\textit{V}}_{phy} \\ \sigma_p^2 &\sim \text{half-Cauchy} \left( 2.5 \right) \\ \beta &\sim \text{Normal} \left( 0, 10 \right) \end{aligned}$ 

# Analysis framework

