Operations Research 1

Prof. Dr. Marco Lübbecke marco.luebbecke@rwth-aachen.de

WS $2015/16 \cdot 2$. Vorlesung

Zuordnungsproblem (Minimum Cost Matchings)

n Arbeitende, m Maschinen c_{ij} Kosten $i \rightarrow j$ M 7/M

$$G = (V_1 E) \times_{M} \in 30_{1} M$$

$$2 \quad C_{1M} \qquad \Box M$$

$$2 \quad C_{2M} \qquad \Box M$$

$$M \quad O \quad C_{NM} \qquad \times_{M} + \times_{M} + \dots = 1 \quad j = 1$$

$$\times_{12} + \times_{22} + \dots = 1 \quad j = 2$$

$$\times_{1M} + \times_{2M} + \dots = 1 \quad j = 2$$

finde kostenminimale Zuordnung so, dass jede Maschine bedient wird

min
$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} \cdot x_{ij}$$

$$\sum_{i=1}^{m} x_{ij} \leq 1 \quad \text{if } c_{ij} \times j$$

$$\sum_{i=1}^{m} x_{ij} \leq 1 \quad \text{if } c_{ij} \times j$$

$$\sum_{i=1}^{n} x_{ij} \leq 1 \quad \text{if } c_{ij} \times j$$

$$\sum_{i=1}^{n} x_{ij} \leq 1 \quad \text{if } c_{ij} \times j$$

$$\sum_{i=1}^{n} x_{ij} \leq 1 \quad \text{if } c_{ij} \times j$$

$$\sum_{i=1}^{n} x_{ij} \leq 1 \quad \text{if } c_{ij} \times j$$

$$\sum_{i=1}^{n} x_{ij} \leq 1 \quad \text{if } c_{ij} \times j$$

$$\sum_{i=1}^{n} x_{ij} \leq 1 \quad \text{if } c_{ij} \times j$$

$$\sum_{i=1}^{n} x_{ij} \leq 1 \quad \text{if } c_{ij} \times j$$

$$\sum_{i=1}^{n} x_{ij} \leq 1 \quad \text{if } c_{ij} \times j$$

$$\sum_{i=1}^{n} x_{ij} \leq 1 \quad \text{if } c_{ij} \times j$$

Modellieren: Wahl zwischen Alternativen

$$\sum_{i=1}^n x_i=1$$
 mit $x_i\in\{0,1\},\ i=1,\ldots,n$ hat die Funktion: Auswahl genau einer Alternative (aus n)

ebenso:

höchstens eine Alternative darf gewählt werden, " ≤ 1 " mindestens eine Alternative muss gewählt werden, " ≥ 1 "

Transportproblem

Annahme:

$$\sum_{i=1}^{N} a_i = \sum_{j=1}^{M} b_j$$

n Angebote $a_i,\ m$ Bedarfe b_j c_{ij} Stückkosten $i \to j$

finde kostenminimalen Transport so, dass Bedarfe gedeckt sind, und Angebote ausreichen

etwas allgemeiner. . .

Kapazitäten u

Angebot

Spezialfall: kürzeste Wege

"wie eben"

Rucksackproblem (Knapsack)

n Gegenstände der Größe a_i , p_i Profit, b Rucksackkapazität

finde profitmaximale Auswahl so, dass Kapazität eingehalten wird

$$\max \sum_{i=1}^{N} p_i \cdot x_i$$

$$\sum_{i=1}^{N} a_i \cdot x_i \leq b$$

$$x_i \in \{0, n\} \quad \text{für Gegenstand i}$$

- immer notwendig, um Kapazitäten zu modellieren
- lacktriangle zum Weiterdenken: wie sieht Optimallösung aus für $x\in[0,1]$?

Rucksackproblem: Alternatives Modell

Bin Packing Problem

n Gegenstände der Größe a_i , n Bins der Kapazität b

packe *alle* Gegenstände in minimal wenige Bins so, dass Kapazitäten eingehalten

$$\frac{n}{\sum_{j=1}^{n} x_{ij}} = 1 \quad \text{i=} 1_{i=1}^{n}$$

$$\sum_{j=1}^{n} a_{i}(x_{ij}) \leq b \quad \text{j=} 1_{i=1}^{n}$$

