1. Ejercicio 1

1.1. Maquina de Moore

Figura 1: Diagrama Bloque

	Next State						
Present State	S-1 T-1	S=0 I=0	S=0 $I=1$		B1	B2	Aux
		5=01=0	Aux	~Aux	וטו		Aux
$y_{2}y_{1}$	Y_2Y_1	Y_2Y_1	Y_2Y_1	Y_2Y_1			
A = 00	00	01	10	11	0	0	Aux(t-1)
B = 01	00*	01	10	11	1	1	Aux(t-1)
C = 10	00	01	10	10	1	0	0
D = 11	00	01	11	11	0	1	1

Figura 2: Tabla de Estados

	y2 y1						
S I Aux	00	01	11	10			
000	0	0	0	0			
001	0	0	0	0			
011	1	1	1	1			
010	1	1	1	1			
110	0	0	0	0			
111	0	0	0	0			
101	X	X	X	X			
100	х	Х	х	х			

Figura 3: Mapa Karnaugh Y_2

$$Y_2 = \overline{S}I$$

1

	y2 y1							
S I Aux	00	01	11	10				
000	1	1	1	1				
001	1	1	1	1				
011	0	0	1	0				
010	1	1	1	0				
110	0	0	0	0				
111	0	0	0	0				
101	X	X	Х	X				
100	X	х	Х	X				

Figura 4: Mapa Karnaugh Y_1

$$Y_1 = \bar{I} + \bar{S}y_2y_1 + \bar{AuxSy_2I}$$

	У	1
y2	0	1
0	0	1
1	1	0

Figura 5: Mapa Karnaugh B_1

$$B_1 = y_1 \oplus y_2$$

	У	1
y2	0	1
0	0	1
1	0	1

Figura 6: Mapa Karnaugh B_2

$$B_2 = y_1$$

Se puede ver por la tabla de la figura 2 como Aux puede ser representado por un Enable-Latch-SR donde las entradas al latch vienen dadas $Set = y_1$ y $Reset = \bar{y_1}$ mientras que nuestra señal de $Enable = y_2$. Teniendo en cuenta esto nuestro Aux permanece en el valor anterior a no ser que $y_2 = 1$ donde de tener a $y_1 = 1$, Aux = 1, y caso contrario Aux = 0.

Teniendo en cuenta el analisis se implementó el siguiente circuito:

Figura 7: Circuito Implementado Moore

1.2. Maquina de Mealy

Figura 8: Diagrama Bloque

Present State		Next State			Out										
	S=1 I=1	s=0 I=0	S=0 I=1	S=1 I=1 S=0 I=0 S=0 I=1		S=0									
у	Y	Y	Y	В1	B2		В1	B2			Au	x=1		Au	x=0
	Y	Y	Y	Ві	B2	Aux	ВІ	B2	Aux	В1	B2	Aux	В1	B2	Aux
A = 0	0	0	1	0	0	Aux(t-1)	1	1	Aux(t-1)	0	0	Aux(t-1)	0	0	Aux(t-1)
B = 1	0	0	1	0	0	$Aux(\bar{t}-1)$	1	1	$Aux(\bar{t}-1)$	1	0	Aux(t-1)	0	1	Aux(t-1)

Figura 9: Tabla de Estados

	Y	/
SI	0	1
00	0	0
01	1	1
11	0	0
10	Х	X

Figura 10: Mapa Karnaugh Y

$$Y=\bar{S}I$$

		y Aux						
SI	00	01	11	10				
00	1	1	1	1				
01	0	0	1	0				
11	0	0	0	0				
10	X	Х	Х	X				

Figura 11: Mapa Karnaugh B_1

$$B_1 = \bar{I} + yAux\bar{S}$$

	y Aux						
SI	00	01	11	10			
00	1	1	1	1			
01	0	0	0	1			
11	0	0	0	0			
10	X	Х	Х	X			

Figura 12: Mapa Karnaugh B_2

$$B_2 = \bar{I} + y \bar{Aux}\bar{S}$$

Dado que nuestro valor de Aux definido por nuestra tabla logica demuestra ser un latch del valor anterior en todo caso menos en dos particulares en los que y=1 && S=1; I=1 o y=1 &&S=0; I=0 en el cual el valor de Aux es el negado del valor anterior almacenado. Teniendo esto en cuenta nos queda $Aux=ySI+y\bar{S}\bar{I}$.

Figura 13: Circuito Implementado Mealy

SE PUEDE HABLAR DE COMO SE GANO AGILIDAD ENEL CASO DE PASAR DE 01 a 11 o

2. Ejercicio 2

2.1. Maquina de Moore

Figura 14: Diagrama Bloques

Present Stage	Next	Out	
21221221	w=0	W=1	\mathbf{z}
$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	
000	000	001	0
001	000	010	0
010	011	010	0
011	000	100	0
100	100	100	1

Figura 15: Tabla de Estados

	y2 y1						
w y3	00	01	11	10			
00	0	0	0	1			
01	0	X	X	X			
11	0	X	X	X			
10	1	0	0	0			

Figura 16: Mapa Karnaugh Y_1

	y2 y1						
w y3	00	01	11	10			
00	0	0	0	1			
01	0	X	X	Х			
11	0	X	X	Х			
10	0	1	0	1			

Figura 17: Mapa Karnaugh Y_2

$$Y_1 = \bar{w}y_2\bar{y_1} + w\bar{y_3}\bar{y_2}\bar{y_1} = \overline{y_1}(\bar{w}y_2 + w\bar{y_3}\bar{y_2})$$

$$Y_2 = w\bar{y_2}y_1 + y_2\bar{y_1}$$

$$Y_3 = y_3 + y_2 y_1 w$$

$$Z = y_3$$

		y2	y1	
w y3	00	01	11	10
00	0	0	0	0
01	1	Х	Х	X
11	1	Х	X	X
10	0	0	1	0

Figura 18: Mapa Karnaugh Y_3

+

		y2	y1	
у3	00	01	11	10
0	0	0	0	0
1	1	Х	Х	X

Figura 19: Mapa Karnaugh ${\cal Z}$

Figura 20: Circuito Implementado Moore

2.2. Maquina de Mealy

Figura 21: Diagrama Bloques

Present State	Next State		Out	
21-21	w=0	w=1	w=0	$\mathbf{w} = 1$
y_2y_1	Y_2Y_1	Y_2Y_1	Z	Z
00	00	01	Z(t-1)	Z(t-1)
01	00	10	Z(t-1)	Z(t-1)
10	11	10	Z(t-1)	Z(t-1)
11	00	00	Z(t-1)	1

Figura 22: Tabla de Estados

	٧	V
y2 y1	0	1
00	0	1
01	0	0
11	0	0
10	1	0

Figura 23: Mapa Karnaugh Y_1

$$Y_1 = w\bar{y}_2\bar{y}_1 + \bar{w}y_2\bar{y}_1 = \bar{y}_1(w\bar{y}_2 + \bar{w}y_2) = \bar{y}_1(y_2 \oplus w)$$

	٧	V
y2 y1	0	1
00	0	0
01	0	1
11	0	0
10	1	1

Figura 24: Mapa Karnaugh Y_2

$$Y_2 = wy_1\bar{y_2} + y_2\bar{y_1}$$

Se implemento un flip flop de manera tal que el valor de la salida permaneciera en 1 una vez reconocida la secuencia 1101. Para esto se utilizo un latch SR en el cual se seteara a Z=1 para la condicion en la se introduce un 1 luego de haberse introducido una secuencia 110. La logica a implementar para el set (se puede tambien observar en la tabla de la figura 22) queda definida entonces como $S = y_2y_1w$. Es de notar que se pierde la respuesta instantanea al cambio en la entrada generalmente característico de las maquinas de Mealy, pero se busco esta implementación de manera tal de que se pudeira mantener el valor de la salida en 1 hasta resetar manualmente, ya que se lo considero lo exigido.

Figura 25: Implementación de Mealy

3. Ejercicio 3

3.1. Maquina de Moore

PresentState	Next	State	Out
21-21-	$\mathbf{w} = 0$	w=1	Z
y_2y_1	Y_2Y_1	Y_2Y_1	
00	00	01	0
01	00	10	1
10	00	10	0

Figura 26: Tabla Logica de Moore

		у2	y 1	
W	00	01	11	10
0	0	0	X	0
1	1	0	X	0

Figura 27: Mapa Karnaugh Y_1

$$Y_1 = w\bar{y_2}\bar{y_1}$$

		y2	y 1	
W	00	01	11	10
0	0	0	X	0
1	0	1	X	1

Figura 28: Mapa Karnaugh ${\cal Y}_2$

$$Y_2 = wy_2 + wy_1$$

	У	2
y1	0	1
0	0	0
1	X	1

Figura 29: Mapa Karnaugh ${\cal Z}$

$$Z = y_1$$

Figura 30: Circuito a Implementar Maquina de Moore

3.2. Maquina de Mealy

Figura 31: Diagrama de Mealy

Present State	Next	State	О	ut
	$\mathbf{w} = 0$	w=1	7	Z
y	W =0	w-1	$\mathbf{w} = 0$	$\mathbf{w} = 1$
	Y	Y	••=0	**=1
0	0	1	0	1
1	0	1	0	0

Figura 32: Tabla Lógica

Figura 33: Mapa Karnaugh ${\cal Y}$

Y = w

	Y	/
W	0	1
0	0	0
1	1	0

Figura 34: Mapa Karnaugh ${\cal Z}$

 $Z=w\bar{y}$

Figura 35: Circuito a Implementar Maquina de Mealy