Fakultät Mathematik

Institut für Analysis

Prof. Dr. S. Siegmund

PD Dr. A. Kalauch

Übung 08.05. bis 12.05.

Analysis II

21. Ubungsblatt: Integration mittels Substitution, partielle Integration Differenzieren ist Handwerk, Integrieren ist Kunst.

Aufgabe 21.1

Wiederholen Sie alle Standardintegrale, die Sie aus der Vorlesung kennen (siehe Beispiele im Forster).

Aufgabe 21.2

Use the substitution method to find the following indefinite integrals:

(a)
$$\int \cos^3(x) \sqrt{\sin x} \, dx,$$
 (d)

(a)
$$\int \cos^3(x) \sqrt{\sin x} \, dx,$$
 (d)
$$\int \frac{f'(x)}{f(x)} \, dx,$$

(b)
$$\int \frac{1}{x \ln x} \, dx,$$
 (e)
$$\int \frac{1}{a^2 \cos^2 x + b^2 \sin^2 x} \, dx \quad (ab \neq 0, \text{take } t = \tan x),$$

(c)
$$\int \sqrt{1 + \sqrt{x}} \cdot \sqrt{x} \, \mathrm{d}x$$

Aufgabe 21.3

Die Funktionen $f, G: [0,1] \to \mathbb{R}$ seien definiert durch

$$f(x) := \begin{cases} 0 & \text{für } x < \frac{1}{2}, \\ 1 & \text{für } x \ge \frac{1}{2}; \end{cases} \qquad G(x) := \begin{cases} 0 & \text{für } x = 0, \\ x^2 \cdot \sin \frac{1}{x^2} & \text{für } x > 0. \end{cases}$$

Beantworten Sie die folgenden Fragen (mit Begründung!):

- (a) Ist f auf [0,1] Riemann-integrierbar? Hat f auf [0,1] eine Stammfunktion?
- (b) Ist G auf [0,1] differenzierbar? Wie lautet ggf. die Ableitung g := G'?
- (c) Besitzt g auf [0,1] eine Stammfunktion? Ist g auf [0,1] Riemann-integrierbar?

Aufgabe 21.4

Ermitteln Sie folgende unbestimmte Integrale:

(a)
$$\int x^2 \cdot \sin x \, \mathrm{d}x,$$

(a)
$$\int x^2 \cdot \sin x \, dx$$
, (b) $\int e^{ax} \cdot \cos(bx) \, dx$, (c) $\int \ln(1+x^2) \, dx$,
 (d) $\int \frac{\arcsin x}{\sqrt{1-x}} \, dx$, (e) $\int e^x \cdot \sinh x \, dx$, (f) $\int \sin(\ln x) \, dx$.

(c)
$$\int \ln(1+x^2) \, \mathrm{d}x$$

(d)
$$\int \frac{\arcsin x}{\sqrt{1-x}} \, \mathrm{d}x,$$

(e)
$$\int e^x \cdot \sinh x \, \mathrm{d}x$$

(f)
$$\int \sin(\ln x) \, \mathrm{d}x.$$

Aufgabe 21.5 (H)

[10] Bestimmen Sie mittels geeigneter Integrationstechniken die Stammfunktionen F der folgenden Funktionen f.

(a)
$$f(x) = x^3 e^x$$

(b)
$$f(x) = 3e^x \sqrt{e^x + 1}$$

(c)
$$f(x) = x \ln x$$
 $(x > 0)$

(d)
$$f(x) = \frac{1}{\sqrt{x(1+\sqrt[3]{x})}}$$
 $(x > 0)$

(e)
$$f(x) = (\ln x)^3$$