

나 일론마스크

IT기업 부실예측모형을 통한 증권 Portfolio 구성

CONTENTS

/

01	프로젝트 개요
----	---------

02 데이터 확보

O3 데이터 전처리

O4 모델 및 성능비교

05 백테스팅 및 포트폴리오 구성

O6 기대점 및 한계점

프로젝트 주제

기업 부실 예측 모형을 통한 투자 전략 개발 77

기대 산출물 기업 부실 예측 IT 기업 부실 예측 모형 개발 포트폴리오 종목 선정 투자전략 개발

팀원 및 역할 담당

홍영민 조장

- 프로젝트 계획 수립
- 모델링(RF, GAUSIAN 外)

윤지혜 조원

- Logit 모델링 및 보조
- 보고자료 제작

이정민 조원

- SVM 모델링 및 보조
- 보고자료 제작

임상훈 조원

- ANN 모델링 및 보조
- 변수검정 (T-검정 등)

프로젝트 수행절차

- 부도기업 정의 - TS2000 활용

데이터 수집

 $(11/22 \sim 11/24)$

모형 구현

모델링

 $(12/13 \sim 12/14)$

 $(11/15 \sim 11/19)$

- 선행 연구 학습
- 주제선정

데이터 전처리

 $(11/25 \sim 12/10)$

- 결측치 처리
- 이상치 처리

포트폴리오 구성

 $(12/15 \sim 12/21)$

- 포트폴리오 구성
- 퀀트 투자 전략

사전조사

사전 논문 학습을 통해 변수, 모델을 선정하는데 있어 프로젝트 진행에 참고

Machine learning models and bankruptcy prediction(Flavio et al.2017)

- 변수 선정(성장성,수익성 범주 고려)
- 머신러닝 모형 참고

재무비율을 이용한 부도예측에 대한 연구(박종원,안성만)

- 산업별 분류 필요성
- 성능 평가 기준 참고

IT분야를 왜 선정하였는지?

변동성

E 이데일리

2주 전

시사위크 2021.01.25.

"영원한 것은 없다"... '잘나가던' IT기업들이 몰락한 까닭

매순간 변화하는 소비자와 경제 트렌드를 읽지 못하고 과거의 영광에 취해 몰락해 버린 IT기업들의 사례는 '휴대폰 시장'에서 쉽게 찾아볼 수 있다. '노키아'와 '블랙...

머니투데이 | 6일 전 | 네이버뉴스

FOMC 하루 앞 증시 변동성↑..."IT·성장주 조정 우려 과도"

증권가는 국내 증시도 이날 변동성 확대 국면에 진입할 것으로 전망했다. 14일(현 지시간) 뉴욕증시에서... 그러면서 "국내 대형 성장 및 IT주들은 미국과 같은 쏠림...

[오늘의 투자전략] "FOMC 임박 국내증시 **변동성**↑, 중국 ... 이투데이 6일 전 [SEN투자전략]증시, 美 FOMC 경계감 속 **변동성** 확대...... 서울경제TV 6일 전

성장성

1	(Apple AAPL		\$2.78	4 T	\$169.75 -0.81%	
2		MSFT	32.401	\$519.91	-1.20%	~ ~~ N	■ USA
3	G	Alphabet (Google)	\$1.884 T	\$2,848	-0.28%	mm	■ ÚSA
4	a	Amazon	\$1.694 T	\$3,342	-1.73%	man	■ USA
5	A	Meta (Facebook) □	\$905.32 B	\$325.45	-2.50%	m	■ USA
6	T	Tesla TSLA	\$903.77 B	\$899.94	-3.50%	home	■ USA
7	@	NVIDIA NVDA	\$690.75 8	\$277.19	-0.29%	www.	■ USA
8	B	Berkshire Hathaway	\$648.91 B	\$437,445	-1.32%	~~~	■ USA
9	1	UnitedHealth	\$455.60 B	\$483.73	-0.70%	~~~	■ USA
0	JPM	JPMorgan Chase	\$454.93 B	\$153.94	-1.80%	V.	■ ÚSA

데이터 선정

데이터베이스

한국 상장회사 협의회의 TS2000 활용

기간

2010.01.01 ~ 2020.12.31

대상

코스닥 / 코스피 상장기업

전체회사 640(개)

* IT 분야는 한국 소프트웨어 정책 연구소의 분류에 따름

|⊤분야 선정 기준

한국표준산업분류(KSIC)

- 제조업
 - 전자부품, 컴퓨터, 영상, 음향 및 통신장비 제조업 (IT 하드웨어 산업)
- 출판, 영상, 방송통신 및 정보서비스업
 - 출판업
 - 소프트웨어개발 및 공급업
 - 컴퓨터 프로그래밍, 시스템 통합 및 관리업
 - 컴퓨터프로그래밍, 시스템 통합 및 관리업
 - 정보서비스업
 - 자료처리,호스팅,포털 및 기타 인터넷 정보매개서비스업
 - 기타 정보 서비스업

부도정의기준

- ✔ 상장폐지 공시 사유 중 '재무적 위험성' 관련 사유가 있을 경우,
 - : '자본전액잠식', '감사의견부적정', '최종부도발생', '최근 5사업연도 연속 영업 손실 발생' 등 (43개 회사 해당)

*참고논문: 빅데이터와 인공지능 기법을 이용한 기업 부도예측 연구 (최정원, 오세경, 장재원)

✓ 자본잠식상태가 3년간 지속될 경우, (46개 회사 해당)

*참고논문: 기업도산예측을 위한 귀납적 학습지원 인공신경망 접근방법

총 60개의 회사를 부도로 분류 (중복회사 존재/부도데이터:80)

(Flavio et al,2017 논문 변수 참고)

_		■ (Flavio et al.2017 논문 변수 참고)	_	
	X1	(유동자산 - 유동부채) / 총자산 = 운전자본비율		유동성
	X2	이익잉여금 / 총자산 = 이익잉여금구성비율		안정성
	Х3	영업이익 / 총자산= 총자산영업이익률		수익성
	X4	시가총액 / 부채 총계 = 자본부채비율(레버리지비율)		안정성
	X5	매출액 / 총자산 = 총자산회전율		활동성
			-	
	ОМ	이자 및 세전 이익 (EBIT) / 매출액 = EBIT이익률	•	수익성
	OM GA	이자 및 세전 이익 (EBIT) / 매출액 = EBIT이익률 당기말 총자산 - 전기말 총자산 / 전기말 총자산 = 총자산증가율	7	수익성
				수익성
	GA	당기말 총자산 - 전기말 총자산 / 전기말 총자산 = 총자산증가율		수익성
	GA GS	당기말 총자산 - 전기말 총자산 / 전기말 총자산 = 총자산증가율 t기 매출액- t-1기 매출액 / t-1기 매출액 = 매출액증가율		

CPB t 기 PBR − t−1기 PBR =PBR 변화량 (PBR[주가순자산비율] = 주가 / 주당순자산)

데이터 전처리 과정

결측치 처리

단순 탈락 또는 계산을 통해 결측값 처리

중복 데이터 제거

8개의 중복된 기업데이터 삭제

그외

-결산 월이 12월이 아닌 경우 - 1년 이하 기업일 경우

결측치 처리 방법

기준에 따른 단순 탈락 또는 계산을 통한 값 대체로 결측값 처리

변수 별 박스플롯 극단치 확인

	x1	x2	х3	x4	x5	om	Ga	Gs	Ge	Croe	Cpb
총극단치수	21	146	242	253	87	359	267	205	27	부도기업 (극단치의 비	
부도기업(개)	15	29	31	3	10	40	22	12	2	46	36
비율(%)	19%	36%	39%	4%	13%	50%	28%	15%	26%	58%	45%

부도기업의 극단치 비율이 높아 제거시 변별력 감소 우려하여 제거하지 않기로 결정

변수 유의성 검정(등분산성 검정)

```
x1 LeveneResult(statistic=59.548123398555894, pvalue=1.6211627209 x2 LeveneResult(statistic=175.17137718132412, pvalue=6.8937957399 x3 LeveneResult(statistic=317.48049297653256, pvalue=1.5634131093 x4 LeveneResult(statistic=6.114454911399377, pvalue=0.01346402946 x5 LeveneResult(statistic=9.160151522862428, pvalue=0.00249478412 om LeveneResult(statistic=255.27406938316417, pvalue=3.5510118813 ga LeveneResult(statistic=8.644754249328594, pvalue=0.0033055275 gs LeveneResult(statistic=4.644212059431207, pvalue=0.03123909216 ge LeveneResult(statistic=1.3299824412718, pvalue=0.2489017411268
```

x5, ga, gs, ge 등분산성 만족 (조건: p-value>0.01)

변수 유의성 검정(T-검정)

• T-검정의 조건: 독립성, 정규성, 등분산성 만족

```
Variable x1: The t-statistic and p-value assuming equal variances is 15.7
Variable x1: The t-statistic and p-value not assuming equal variances is
Variable x2: The t-statistic and p-value assuming equal variances is 21.6
Variable x2: The t-statistic and p-value not assuming equal variances is
Variable x3: The t-statistic and p-value assuming equal variances is 21.6
Variable x3: The t-statistic and p-value not assuming equal variances is
Variable x4: The t-statistic and p-value assuming equal variances is 3.02
Variable x4: The t-statistic and p-value not assuming equal variances is
Variable x5: The t-statistic and p-value assuming equal variances is -0.5
Variable x5: The t-statistic and p-value not assuming equal variances is
Variable om: The t-statistic and p-value assuming equal variances is 18.5
Variable om: The t-statistic and p-value not assuming equal variances is
Variable ga: The t-statistic and p-value assuming equal variances is 6.19
Variable ga: The t-statistic and p-value not assuming equal variances is
Variable gs: The t-statistic and p-value assuming equal variances is 1.99
Variable gs : The t-statistic and p-value not assuming equal variances
```

등분산성 만족 여부에 따른 T값 도출

x5, croe, cpb 제외한 변수들의 유의성 확인 완료

최종변수

총 8개 변수 사용

X3 X4	영업이익 / 총자산= 총자산영업이익률 					
ОМ	이자 및 세전 이익 (EBIT) / 매출액 = EBIT이익률					
Ga	당기말 총자산 - 전기말 총자산 / 전기말 총자산 = 총자산증가율					
Gs	t기 매출액- t-1기 매출액 / t-1기 매출액 = 매출액증가율					
Ge	t 기 종업원수 - t−1기 종업원수 / t−1기 종업원수 = 종업원수 증가율					

모텔 선정(종합)

모델성능평가(기존)

	accuracy	Recall (파산기업)	f1-score	ROC_AUC
SVM	0.98	0.00	0.00	0.5
Logistic	0.98	0.31	0.36	0.65
ANN	0.97	0.31	0.33	0.65
Gausian	0.94	0.69	0.35	0.82
Random Forest	0.98	0.31	0.44	0.65

모델성능평가(오버샘플링 적용/SMOTE)

	accuracy	Recall (파산기업)	f1-score	ROC_AUC
SVM	0.83	1.0	0.20	0.91
Logistic	0.84	1.0	0.21	0.92
ANN	0.93	0.62	0.27	0.77
Gausian	0.90	0.69	0.24	0.79
Random Forest	0.94	0.62	0.30	0.78

모델성능평가(언더샘플링 적용/완전무작위)

	accuracy	Recall (파산기업)	f1-score	ROC_AUC
SVM	0.83	0.92	0.19	0.87
Logistic	0.83	1.0	0.21	0.92
ANN	0.72	1.0	0.14	0.87
Gausian	0.90	0.77	0.24	0.83
Random Forest	0.73	1.0	0.14	0.86

모텔성능비교

	오버샘플링						(건더샘플링	
	accuracy	Recall (파산기업)	f1-score	roc_auc			accuracy	Recall (파산기업)	f1-score
SVM	0.83	1.0	0.20	0.91		SVM	0.83	0.92	0.19
Logistic	0.84	1.0	0.21	0.92		Logistic	0.83	1.0	0.21
ANN	0.93	0.62	0.27	0.77		ANN	0.72	1.0	0.14
Gausian	0.90	0.69	0.24	0.79	(Gausian	0.90	0.77	0.24
RF	0.94	0.62	0.30	0.78		RF	0.73	1.0	0.14

roc_auc

0.87

0.92

0.87

0.83

0.86

Roc_Auc Curve

• Logistic Regression 모델의 AUC 값이 가장 유의미한 결과를 나타냄

아이퍼 파라미터

ANN: Dense = 3, activation = relu, optimizer = adam, loss= binary crossentropy

SVM: var_smoothing = 1.0

Random Forest: bootstraping / max_depth = 10 / max features = sqrt / min split = 10 / min smaples leaf = 2

SVM : c = 2.710 / gamma = 0.187

Logistic : c = 0.592 / solver = lbfgs

랜덤서치로 최상의 roc 값을 구하기 위해 피팅한 최적의 값

포트폴리오 구성 방향성

투자 전략을 통한 그룹별 최적 포트폴리오 작성

Score 를 바탕으로 3개의 그룹화 및 백테스팅

기업 부도 예측 예측 확률 계산(Elon Score)

백테스팅 기준

기간

2010/01/01 ~ 2020/12/31

투자 유니버스

- 기간 내 IT 산업군에 포함된 코스피 & 코스닥 상장 기업 대상
- 코스피 200 IT지수를 벤치마크로 비교

포트폴리오 구성 기준

산출된 부도 predicted probability를 기준으로, 3개의 등급으로 분류하여 접근

* 기준은 단발성 예시로, 추후 포트폴리오 방향에 따라 리밸런싱 가능

백테스팅 기준(1)

포트폴리오 구성 기준:

Logistic regression에서 산출된 부도 predicted probability를 활용

해당 함수로, Safe, Risk의 확률을 계산

Safe - 값이 높을 수록 안전한 기업 Risk - 값이 높을 수록 부도확률이 높은 값

백테스팅 기준(2)

```
# 위험율 계산 완료 및 포트폴리오 기준 선정

def labeling(df,target):
    mean_rate = df.risk.mean()
    low_rate = df.risk.quantile(0.4)
    high_rate = df.risk.quantile(0.7)
    print(low_rate, high_rate,mean_rate)
    codes = df[(df.risk >= low_rate) & (df.risk <= high_rate) ].code.unique()
    another_codes = df[df.risk >= high_rate].code.unique()
# 라벨링
```

```
세 그룹,
상위 33% (가장 위험) = portfolio [2]
중간 33% (보통) = portfolio [1]
하위 33% (안전) = portfolio [0]
```

=〉 세 분류로 나누어서 접근

백테스팅 결과

CAGR(Compound annual Growth Rate):

연복리수익률

라벨링

[O] = 하위 33%

MDD(Maximum Draw Down) : 최대손실가능 수익률

Sharpe ratio : 해당펀드수익률-10년

미국국채)/(해당펀드수익률의 표준편차)

		CAGR(%)	MDD(%)	Sharpe
()그룹	6.57%	71%	0.31
1그룹		14.42%	73%	0.37
2그룹		-14.68%	88%	0.04
KO	SPI200 IT	13.79%	37%	0.65

백테스팅 결과를 통한 투자 전략 수립

1. Buy & Hold 적용

여러 종목으로 구성된 포트폴리오/ETF 를 충분히 저평가되었을 때 매수 OR 주기적 매입 (적립식투자 방법)

2. 이동 평균선 거래 적용(5일, 20일)

일정기간 동안의 주가를 산술 평균한 값인 주가이동평균을 차례로 연결해 만든 선

Buy & Hold

	그룹	CAGR	MDD	Sharpe
1년 단위	O그룹	13.46	33.55	0.76
거래	1그룹	14.01	32.07	0.70
3년 단위	O그룹	13.82	49.07	0.70
거래	1그룹	12.81	45.02	0.66
5년 단위 거래	O그룹	7.08	30.74	0.45
	1그룹	8.32	30.76	0.51

단순 이평선 거래

	그룹	CAGR	MDD	Sharpe
1년 다인 거래	O그룹	28.74	6.29	2.82
1년 단위 거래	1그룹	26.68	7.90	2.77
3년 단위 거래	O그룹	26.77	6.29	2.79
3단 단위 기대	1그룹	26.54	58.74	2.90

투자 결과

결과적으로, O그룹과 1그룹 모두 5-20 이평선을 활용한 투자 전략이 가장 좋은 수익률과 sharpe값을 보여줌

BUT,

- 이 수치가 좀 신빙성 있는지에 대해 추후 보완 필요
- O그룹과 1그룹간에 투자 결과 차이에 있어서 유의미한 차이가 보이지 않았다.

기대효과

- · IT분야의 기업 부도 위험 예측 가능
- · 실제 투자에 INDICATER 활용 가능
- · 추후, IT 뿐만이 아닌 다른 분야로의 확장성 기대

한계점

- · 자체적으로 새로운 변수 생성 X
- · 특정 분야에 대한 접근 시도로 데이터 수 부족
- · 수익률과 SHARPE 계산 값의 신빙성 부족 (계산 오류 가능성 높음)

Q & A Thank you