## **Exercise Sheet 5**

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel, Gregor Behnke, Thorsten Engesser, Rolf-David Bergdoll, Leonardo Mieschendahl, Johannes Herrmann

Knowledge Representation and Reasoning

26th November 2021

# Exercise 5.1 – Inheritance networks with negation



Exercise 5.1 (Inheritance networks with negation, 1+1)

Simple inheritance networks can be extended by allowing negated concepts, i.e., concept terms of the form **not** C, where C is an atomic concept. The logical semantics is **not**  $C \mapsto \neg C(x)$ . For example:

Student is anot Professor  $\mapsto \forall x. \texttt{Student}(x) \to \neg \texttt{Professor}(x)$ .

- Exercise 5.1
- Exercise 5.3

- (a) Show that a simple inheritance network with negation  $\Theta$  can be inconsistent, i.e.  $\Theta \models \bot$ .
- (b) Show that the simple inheritance networks without negation from the lecture cannot be inconsistent.

#### Exercise 5.1 (a)

Show that inheritance networks with negation can be inconsistent



Exercise 5.1

Exercise 5.

Consider the inheritance network

C isa not C not C isa C

which has the logical interpretation

$$\forall x. (C(x) \to \neg C(x)) \land (\neg C(x) \to C(x))$$
  
$$\models \forall x. \neg C(x) \land C(x)$$
  
$$\models \bot$$

→ Inheritance networks with negation can be inconsistent.

- Without negations, each **isa** formula corresponds to a logical formula  $\forall x.C(x) \rightarrow D(x)$ .
- Such a formula can easily be satisfied by an interpretation  $\mathcal{I}$ , which assigns no variables in the domain to C, i.e.  $C^{\mathcal{I}} = \emptyset$ .
- Therefore, for an arbitrary inheritance network (without negation), the interpretation  $\mathcal{I}$ , with  $C^{\mathcal{I}} = \emptyset$  for all concepts C, is a model.

 $\sim$  Inheritance networks without negation always have a model and are thereby always consistent.

### Exercise 5.3 – Description Logics



Exercise 5.3 (Description Logics, 1+1+1)

Consider the following pairs of TBoxes  $\mathcal{T}$  and concept inclusions  $C \subseteq D$ . For which of the pairs does  $\mathcal{T} \models C \sqsubseteq D$  hold? Explain your answers and provide a counterexample in case the concept inclusion does not hold.

(a) 
$$\mathcal{T} = \{A \sqsubseteq B\}$$

$$\forall r.A \sqsubseteq \exists r.B$$

(b) 
$$\mathcal{T} = \{ A \doteq B \cap \exists r.B \}$$
  $\exists (r \circ r).B \sqsubseteq A \sqcup \exists r.A$ 

$$\exists (r \circ r).B \sqsubseteq A \sqcup \exists r..$$

(c) 
$$\mathcal{T} = \{A \doteq \forall (r \sqcap s).B\}$$
  $\exists r. \neg B \sqcap \neg \exists s \sqsubseteq A$ 

$$\exists r. \neg B \sqcap \neg \exists s \sqsubseteq A$$

#### Exercise 5.3 (a)

Does  $\mathcal{T} = \{A \sqsubseteq B\}$  imply  $\forall r.A \sqsubseteq \exists r.B$ ?



$$\mathcal{D} = \{d_1\}$$

$$A^{\mathcal{I}} = \emptyset$$

$$B^{\mathcal{I}} = \emptyset$$

$$r^{\mathcal{I}} = \emptyset$$

- $\mathcal{I} \models \{A \sqsubseteq B\}$  since both  $A^{\mathcal{I}}$  and  $B^{\mathcal{I}}$  are empty.
- $\blacksquare$   $(\forall r.A)^{\mathcal{I}} = \{d_1\}$  while  $(\exists r.B)^{\mathcal{I}} = \emptyset$ .
- Therefore,  $(\forall r.A)^{\mathcal{I}} \nsubseteq (\exists r.B)^{\mathcal{I}}$  which contradicts  $\forall r.A \sqsubseteq \exists r.B$ .

- T = {Drummer 

  Musician}

  The TBox states that every drummer is a musician.

  The TBox states that every drummer is a musician.

  The TBox states that every drummer is a musician.

  The TBox states that every drummer is a musician.

  The TBox states that every drummer is a musician.

  The TBox states that every drummer is a musician.

  The TBox states that every drummer is a musician.

  The TBox states that every drummer is a musician.

  The TBox states that every drummer is a musician.

  The TBox states that every drummer is a musician.

  The TBox states that every drummer is a musician.

  The TBox states that every drummer is a musician.

  The TBox states that every drummer is a musician.

  The TBox states that every drummer is a musician.

  The TBox states that every drummer is a musician.

  The TBox states that every drummer is a musician.

  The TBox states that every drummer is a musician.

  The TBox states the third that every drummer is a musician.

  The TBox states the third that every drummer is a musician.

  The TBox states the third that every drummer is a musician.

  The TBox states the third that every drummer is a musician.

  The TBox states the third that every drummer is a musician.

  The TBox states the third that every drummer is a musician.

  The TBox states the third that every drummer is a musician in the third that every drummer is a musician in the third that every drummer is a musician in the third that every drummer is a musician in the third that every drummer is a musician in the third that every drummer is a musician in the third that every drummer is a musician in the third that every drummer is a musician in the third that every drummer is a musician in the third that every drummer is a musician in the third that every drummer is a musician in the third that every drummer is a musician in the third that every drummer is a musician in the third that every drummer is a musician in the third that every drummer is a musician in the third that every drummer is a musician in the third that every drummer
- ∀has-child.Drummer 

  ∃has-child.Musician

  This concept inclusion states, that if all your children are drummers, you have a child, which is a musician.
- This is not the case if you do not have any children: It technically holds true, that all of your children are drummers (and also that all your children are musicians), but you do not actually have a child which is a musician.

Exercise 5.

#### Exercise 5.3 (b)

Does  $\mathcal{T} = \{A \doteq B \sqcap \exists r.B\} \text{ imply } \exists (r \circ r).B \sqsubseteq A \sqcup \exists r.A ?$ 



We show, that  $\exists r.B \sqsubseteq A$  is not implied by  $\mathcal{T}$ . Counterexample:

$$A^{\mathcal{I}} = \emptyset$$

$$B^{\mathcal{I}} = \{d_3\}$$

$$r^{\mathcal{I}} = \{\langle d_1, d_2 \rangle, \langle d_2, d_3 \rangle\}$$

 $\mathcal{D} = \{d_1, d_2, d_3\}$ 

- $\mathcal{I} \models \{A \doteq B \sqcap \exists r.B\}$  since both  $A^{\mathcal{I}}$  and  $(B \sqcap \exists r.B)^{\mathcal{I}}$  are empty.
- While  $(A \sqcup r.A)^{\mathcal{I}} = \emptyset$  is also empty, we get  $(\exists (r \circ r).B)^{\mathcal{I}} = \{d_1\}$ , since we have  $\mathcal{I} \models r(d_1, d_2), \mathcal{I} \models r(d_2, d_3)$  and  $\mathcal{I} \models B(d_3)$ .
- Therefore,  $(\exists (r \circ r).B)^{\mathcal{I}} \nsubseteq (A \sqcup \exists r.A)^{\mathcal{I}}$  which contradicts  $\exists (r \circ r).B \sqsubseteq A \sqcup \exists r.A$ .

Exercise 5.1

- T = {Mother-of-a-daughter = Female □ ∃has-child.Female}
   The TBox states that a mother of a daughter is a woman who has a child, which is also a woman.
- ∃(has-child∘has-child).Female ⊑
  Mother-of-a-daughter □ ∃has-child.Mother-of-a-daughter
  This concept inclusion states that everyone who has a granddaughter is a mother of a daughter or the parent of a mother of a daughter.
- This does not necessarily hold true for the father's father of the granddaughter in question: Assuming that this grandfather has no daughters he is neither the mother of a daughter nor the parent of a mother of a daughter.



Exercise 5.1

#### We show, that $\exists r. \neg B \sqcap \neg \exists s \sqsubseteq A$ is implied by $\mathcal{T}$ :

- ¬∃s states that concept in question cannot have any s-successors, which already guarantees subsumption by A: If there are no s-successors the intersection of r- and s-successors is empty, too. Thus, any ∀-quantification over this set, including A ≐ ∀(r □ s).B, is inherently satisfied. ~> ¬∃s ⊑ A
- Since intersection can only remove objects from a set,  $\exists r.\neg B$  does not really matter. We already established  $\neg \exists s \sqsubseteq A$ , therefore  $C \sqcap \neg \exists s \sqsubseteq A$  holds for any arbitrary concept C.

 $\Rightarrow \exists r. \neg B \sqcap \neg \exists s \sqsubseteq A$ 

- T = {Good-teacher = ∀(teaches □listened-to-by).Grade-A-student}
   The TBox states that you are a good teacher, if all the students you teach and that also listen to you get very good grades.
- ∃teaches.¬Grade-A-student□¬∃listened-to-by ⊑ Good-teacher
  This concept inclusion states, that if you teach a student who does not get good grades but also nobody listens to you, you are still a good teacher.
- This does indeed follow from the given TBox, since this definition of a good teacher only requires students who actually listen to you to get good grades. By this (admittedly flawed) definition, anyone who is not listened to by anybody is actually a good teacher, regardless of how they teach.

Note: This is just an example, not a proof of the statement!

Exercise 5.