Image Acquisition and Digitization

Image Acquisition and Digitization

Q: How can we create a digital image?

Energy Source

Q: What type of energy sources

would we use to create an image?

Electromagnetic Spectrum

What is the source of each image?

Visible light

Infared Band

• wavelength 10^{-6} - 10^{-4} m

Circuit Functional Test

Washington D.C. area

Hurricane images

Microwave Band

• ความยาวคลื่น 10⁻⁴-10⁻² m

Radar image of mountains

Radio Band

Magnetic Resonance Image (MRI)

Ultrasonic image

Ultraviolet Band

wavelength (/ m)

10⁻¹² 10⁻¹⁰ 10⁻⁸ 10⁻⁶ 10⁻⁴ 10⁻² 1 10² 10⁴

gamma x-rays rays

UV IR microwaves FM radio

- wavelength 10⁻⁸-10⁻⁷ m
- Fluorescence microscope image

Normal corn cell

Infected corn cell

X-ray

• wavelength 10^{-10} m

Chest X-ray

Head cross-section

Circuit board

Gamma Ray

• wavelength 10⁻¹² m

Bone scan

Reactor valve

รูปแบบการรับส่งสัญญาณของตัวส่งสัญญาณ (Transmitter) และ ตัวรับ (Receiver: Sensor)

- คลื่นที่นำมาใช้สร้างภาพที่ความถี่ต่างกัน
 - มีรูปแบบการส่งสัญญาณและรับสัญญาณต่างกันอย่างไร
 - Reflection
 - Through object

wavelength (/ m)

10⁻¹² 10⁻¹⁰ 10⁻⁸ 10⁻⁶ 10⁻⁴ 10⁻² 1 10² 10⁴

gamma x-rays UV IR microwaves FM radio rays

3

Q&A

•Q1: ภาพถ่าย X-Ray ใช้ตัวรับสัญญาณ (Sensor) ในรูปแบบใด

- Q2: ภาพถ่ายดาวเทียม (Satellite Image) ใช้ตัวรับสัญญาณแบบใด
 - Spatial Resolution (image size)
 - Spectral Resolution (No. Freq Bands)
 - Temporal Resolution (Scanning Period)
 - Radiometry Resolution (Bit depth: Bit per pixel)
 - Geometric resolution (pixel size: meter X meter)
 - https://en.wikipedia.org/wiki/Satellite_imagery &
 http://landsat.gsfc.nasa.gov/pdf_archive/How2make.pdf

Satellite Sensor Bands (Wavelength)

Producing...more than just a pretty picture!

Q: รูปแบบโครงสร้างและองค์ประกอบของ

อุปกรณ์รับภาพได้รับอิทธิพลมาจากไหน?

Image Capturing Device

Cornea กระจกตา ทำหน้าที่คล้าย lens เพื่อหักเหแสง

Human Eye Vision

Iris ม่านตา ทำหน้าที่ปรับปริมาณแสง

Retina จอตา ทำหน้าที่เป็นเซลรับแสง

Image Acquisition and Digitization

Image Sensing

Sensor

Types of array sensor

CCD vs CMOS

Overlap Layout

CCD Sensor

- CCD (Charge Coupled Device)
 - Sensor ที่ทำงานโดยส่วนที่เป็น Sensor แต่ละพิกเซล จะทำหน้าที่<mark>รับแสง</mark>และ เปลี่ยนค่าแสงเป็นสัญญาณอนาล็อก ส่งเข้าสู่วงจรเปลี่ยนค่าอนาล็อกเป็นสัญญาณ ดิจิตอลอีกที
 - ความเร็วในการตอบสนองค่อนข้างช้า / High Power Consumption
 - คุณภาพของภาพที่ได้: ในขนาดที่เท่ากัน **ส่วนรับแสงของ CCD จะมีขนาดที่ใหญ่ กว่า** เนื่องจากไม่ต้องเสียพื้นที่ไปให้วงจรอื่นๆเหมือน CMOS
 - สามารถควบคุมสัญญาณรบกวนได้ดีกว่า

CCD Sensor

- CMOS (Complementary Metal Oxide Semiconductor)
 - แต่ละพิกเซลจะมีวงจรย่อยๆเปลี่ยนค่าแสงที่เข้ามาเป็นสัญญาณดิจิตอลในทันที ไม่ ต้องส่งออกไปแปลงเหมือน CCD

• การใช้พลังงาน

- ข้อนี้ CMOS เหนือกว่าเนื่องจากสามารถรวมวงจรต่างๆไว้ในตัวได้เลย ต่างจาก CCD ที่ต้องมีวงจรแปลงค่าเพิ่มขึ้นมา
- Low Power Consumption

CMOS Sensor

Future of Camera Sensor

CCD

CMOS

- Back-side illuminated CMOS
 - BSI-CMOS or BI-CMOS

Cross-section photo of a pixel

DIP: Dot-per-Inch

- Real world mapping (Scanning and Printing)
 - Ex. 100DPI -> 100 dots / inch -> 1 dot / 0.01 inch
- Image Resolution
 - Ex. Image capture area 4 x 6 inch with 100DPI scan
 - What is the size of scanning resolution?
 - What should be the min DPI?

LO: Learning Objective

- Energy source for image generation
- Image capturing structure between Tx and Rx
 - Reflecting object
 - Passing through object
- Image Capturing device (Sensors)
 - CCD / CMOS / BSI-CMOS
- Image Keywords
 - Spectral (frequency), Temporal (scanning: dot-per-inch),
 - Spatial Resolution (pixels), Bit depth (bits/pixel),
 - Geometric Resolution (m^2 per pixels)