Lista - Aula-07

Prof. Dr. Gustavo Teodoro Laureano

Sumário

1	Companhia de Teatro	2
2	Número primo	3
3	Calculo da raiz quadrada	4
4	Somatório simples	5

1 Companhia de Teatro

Uma companhia de teatro deseja dar uma série de espetáculos. A direção calcula que o ingresso sendo vendido ao valor comum de mercado (ValorIngresso), serão vendidos 120 ingressos e que as despesas fixas serão de R\$ 200,00 mais R\$ 0,05 por cada ingresso. Diminuindo-se R\$ 0,50 o preço dos ingressos, espera-se que as vendas aumentem em 25 ingressos. Aumentando-se R\$ 0,50 o preço dos ingressos, espera-se que as vendas diminuam 30 ingressos. Para resolver este problema, a companhia de teatro deseja que você faça um programa que escreva uma lista de valores de lucros esperados em função do preço do ingresso, fazendo-se variar esse preço de A a B de R\$ 1,00 em R\$ 1,00. O programa deve apresentar na tela um resumo contendo o preço do ingresso informado, o lucro máximo calculado e a quantidade de ingressos vendidos para a obtenção desse lucro.

Entrada

O programa deve ler três números reais: ValorIngresso, correspondente ao valor de mercado dos ingressos, ValorInicial e ValorFinal correspondentes ao intervalo de valores que se deseja testar. Caso o ValorInicial informado seja maior ou igual ao ValorFinal, o programa deve encerrar após apresentar a mensagem: "INTERVALO INVALIDO."

Saída

O programa deve apresentar na tela uma linha para cada valor testado com o seguinte formato: "V: xxx.xx, N: xxx, L: xxx.xx", onde V é o valor do ingresso, N é a quantidade de ingressos vendidos e L o lucro obtido. Ao final, o programa deve apresentar um resumo contendo três linhas com o seguinte formato:

"Melhor valor final: xxx.xx"

"Lucro: xxx.xx"

"Numero de ingressos: xx"

Observações

Todos os valores reais devem ser apresentados com 2 casas decimais. Caso o intervalo de valores indicados não produza lucro positivo, os valores que devem aparecer no resumo devem assumir o valor zero.

Entrada
5
2
8

Saída		
V: 2.00, N: 270, L: 326.50		
V: 3.00, N: 220, L: 449.00		
V: 4.00, N: 170, L: 471.50		
V: 5.00, N: 120, L: 394.00		
V: 6.00, N: 60, L: 157.00		
V: 7.00, N: 0, L: -200.00		
V: 8.00, N: -60, L: -677.00		
Melhor valor final: 4.00		
Lucro: 471.50		
Numero de ingressos: 170		

Número primo 2

(+)

Faça um programa que leia um número N e informa se o número é primo ou não.

Entrada

O programa deverá ler um número inteiro N positivo.

Saída

O programa deverá apresentar a mensagem "PRIMO" caso N seja primo e "NAO PRIMO" caso contrario. Caso o valor de N não seja um número inteiro positivo, o programa deve apresentar a mensagem "Numero invalido.".

Entrada	Saída	
7	PRIMO	
Entrada	Saída	
9	NAO PRIMO	

3 Calculo da raiz quadrada

Os Babilônios utilizavam um algoritmo para aproximar uma raiz quadrada de um número qualquer, da seguinte maneira:

Dado um número n, para calcular $r=\sqrt{n}$ assume-se uma aproximação inicial $r_0=1$ e calcula-se r_i para $i=1,\ldots,\infty$ até que $r^2\approx n$. O algoritmo deve realizar a aproximação enquanto $|n-r^2|>e$. O método babilônico é dado pela seguinte equação:

$$r_k = \frac{r_{k-1} + \frac{n}{r_{k-1}}}{2} \tag{1}$$

Entrada

O programa deve ler um número real n, cuja raiz quadrada deseja-se obter, e o erro e que deverá ser considerado pelo algoritmo.

Saída

A saída deve apresentar cada iteração do algoritmo, sendo cada linha composta pelo valor aproximado da raiz quadrada de *n* com 9 casas decimais, seguido do erro, também com 9 casas decimais.

Entrada		Saída
2		r: 1.500000000, err: 0.250000000
0.00001		r: 1.416666667, err: 0.006944444
	'	r: 1.414215686, err: 0.000006007

4 Somatório simples

Faça um programa que leia um valor n, inteiro e positivo, calcule e mostre a seguinte soma:

$$S = \sum_{k=1}^{n} = \frac{1}{k} = 1 + 1/2 + 1/3 + 1/4 + \dots + 1/n$$
 (2)

Entrada

O programa deve ler um número inteiro positivo e maior que 1.

Saída

O programa deve apresentar uma linha contendo o valor final do somatório com 6 casas decimais. Caso o número lido não atenda as especificações da entrada, o programa deve apresentar a mensagem: "Numero invalido!".

Observações

Use precisão dupla para o cálculo de S.

Entrada	Saída
10	2.928968