Hands-on Activity 1.1 Introduction to Machine Learning

Name: Viktor Angelo B. Apuyan

Section: CPE31S3

Intended Learning Outcomes (ILOs):

- Demonstrate how to use different toolsets in machine learning.
- Demonstrate how to import, manipulate and analyze data using pandas and numpy.
- Demonstrate how to visualize data in graphs using matplotlib and seaborn.

Data Exploration

```
In [2]: #Importing Libararies
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
In [19]: #Importing the csv
diabetes = pd.read_csv('/content/diabetes.csv')
diabetes
```

Out[19]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Diabetes Pedigree Fu
	0	6	148	72	35	0	33.6	
	1	1	85	66	29	0	26.6	
	2	8	183	64	0	0	23.3	
	3	1	89	66	23	94	28.1	
	4	0	137	40	35	168	43.1	
	•••							
	763	10	101	76	48	180	32.9	
	764	2	122	70	27	0	36.8	
	765	5	121	72	23	112	26.2	
	766	1	126	60	0	0	30.1	
	767	1	93	70	31	0	30.4	

768 rows × 9 columns

	4									
In [20]:	diabetes.head()									
Out[20]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunc		
	0	6	148	72	35	0	33.6	C		
	1	1	85	66	29	0	26.6	C		
	2	8	183	64	0	0	23.3	C		
	3	1	89	66	23	94	28.1	C		
	4	0	137	40	35	168	43.1	2		
	4							+		
In [21]:	<pre>df = pd.DataFrame(diabetes) df</pre>									

Out[21]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Diabetes Pedigree Fu
	0	6	148	72	35	0	33.6	
	1	1	85	66	29	0	26.6	
	2	8	183	64	0	0	23.3	
	3	1	89	66	23	94	28.1	
	4	0	137	40	35	168	43.1	
	•••							
	763	10	101	76	48	180	32.9	
	764	2	122	70	27	0	36.8	
	765	5	121	72	23	112	26.2	
	766	1	126	60	0	0	30.1	
	767	1	93	70	31	0	30.4	

768 rows × 9 columns

In [22]: df.describe()

Out[22]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Dia
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	
4							

Data pre-processing

In [23]: #Finding null values
 diabetes.isnull().sum()

dtype: int64

```
In [24]: #Finding duplicate values
    diabetes = diabetes.duplicated().any()
    diabetes
```

Out[24]: False

Data Visualization

```
In [27]: plt.figure(figsize = (12,12))
          for i,col in enumerate(['Pregnancies','Glucose','BloodPressure','SkinThickness','In
              plt.subplot(3,3,i+1)
              sns.boxplot(x = col ,data = df)
                              00 0
                                          0
                                                                           0
                                                                                00
                                                                                                 0000
                 5
                        10
                               15
                                                50
                                                            150
                                                                   200
                                                                                25
                                                                                               100
                                                      100
                                                                                     50
                                                                                                   125
                                                                                          75
                   Pregnancies
                                                     Glucose
                                                                                   BloodPressure
                                   0
                                                      0
                                                                                              00000 0
               20
                    40
                        60
                                  100
                                               200
                                                     400
                                                           600
                                                                 800
                                                                                  20
                             80
                                                                                                 60
                  SkinThickness
                                                                                       ВМІ
                                                     Insulin
                       a
                                                                   0
         0.0
              0.5
                   1.0
                        1.5
                             2.0
                                   2.5
                                          20
                                                          60
                                                                  80
              DiabetesPedigreeFunction
                                                      Age
In [28]: sns.pairplot(df , hue = 'Outcome')
```

```
file:///C:/Users/apuyan/Downloads/Apuyan_Hands_on_1_1.html
```

plt.show()

In [29]: #shows a histoplot of the features of the diabetes dataset
plt.figure(figsize = (12,12))
for i,col in enumerate(['Pregnancies','Glucose','BloodPressure','SkinThickness','In
 plt.subplot(3,3,i+1)
 sns.histplot(x = col ,data = df ,kde = True)

In [30]: #shows a heatmap correlation between the features
 plt.figure(figsize=(12, 12))
 sns.heatmap(df.corr(), vmin=-1.0, center=0, cmap='RdBu_r', annot=True)
 plt.show()

