MATH-F410 – REP. DES GROUPES & APP. A LA PHYS.

Séances d'exercices 2023-2024

Séance 6 : rappels sur SU(2) et sur l'exponentielle d'une matrice

- 1. On dénote une rotation infinitésimale par $R = 1 + \epsilon J$.
 - (a) Montrer que la matrice J est antisymétrique, c-à-d $J=-J^T.$
 - (b) On dénote par R_1 , R_2 et R_3 les rotations autour des axes \vec{x} , \vec{y} et \vec{z} . Montrer que pour les rotations infinitésimales correspondantes J_1 , J_2 , J_3 on a

$$[J_i, J_j] = \epsilon_{ijk} J^k.$$

(c) On définit les éléments de base de la forme bilinéaire symétrique comme

$$g_{ij} = -\frac{1}{2}Tr(J_iJ_k)$$

Montrer qu'il s'agit d'une forme invariante. Comme su(2) est simple, elle est inversible. On dénote son inverse par g^{ij} .

(d) Montrer que l'élément de Casimir $\vec{J}^2 = g^{ij} J_i \cdot J_j$ commute avec l'algèbre,

$$[\vec{J}^2, J_i] = 0.$$

Remarque : Comme on considère des algèbres matricielles, on peut définir l'algèbre enveloppante avec le produit matriciel \cdot qui contient notamment \vec{J}^2 . **Remarque** : Dans une représentation T de SU(2), $T(\vec{J}^2)$ est l'opérateur de Casimir et par le lemme de Schur il doit être multiple de l'identité.

(e) On considère dorénavant des générateurs hermitiens, c-à-d on considère $J_i \rightarrow iJ_i \Rightarrow J_i^\dagger = J_i$ et $[J_i, J_j] = i\,\epsilon_{ijk}J^k$. On dénote aussi

$$J^{\pm} = \frac{1}{\sqrt{2}} \left(J_1 \pm i J_2 \right).$$

Montrer que

$$[J_3, J^{\pm}] = \pm J^{\pm}, \qquad [J^+, J^-] = J_3, \qquad (J^+)^{\dagger} = J^-.$$

- (f) Montrer que si $|m\rangle$ est un vecteur propre de J_3 , c-à-d $J_3|m\rangle = m|m\rangle$, alors $J_{\pm}|m\rangle$ est un vecteur propre de J_3 avec valeur propre $(m \pm 1)$.
- 2. On considère des représentations finies de SU(2). Comme J_3 est hermitien, il est diagonalisable. Soit j sa plus grande valeur propre et soient $|j,\alpha\rangle$ les vecteurs propres correspondants, $\alpha = 1, \ldots, k$.

(a) Montrer que la valeur propre minimum de J_3 est -j et que k=1 pour une représentation irréductible.

Remarque: Les valeurs propres de J_3 sont appelés poids de la représentation. Le vecteur propre correspondant à la valeur maximum j de la représentation D_j est appelé vecteur de plus haut poids.

Indice: Soit construire la représentation en agissant avec J^- et calculer les normalisations. Soit utiliser $J^-J^+=\frac{1}{2}\left(\vec{J}^2-J_3^2-J_3\right)$ (après démonstration!).

- (b) Montrer que $j = \frac{n}{2}$ où $n \in \mathbb{N}$.
- (c) Calculer les éléments de matrice

$$\langle j, m' | \vec{J}^2 | j, m \rangle$$
, $\langle j, m' | J_3 | j, m \rangle$,
 $\langle j, m' | J^+ | j, m \rangle$, $\langle j, m' | J^- | j, m \rangle$,

où on dénote par j le poids maximum et par m les valeurs propres de J_3 .

- 3. On considère l'opérateur $\vec{J} = \vec{\mathcal{J}}_1 \otimes I + I \otimes \vec{\mathcal{J}}_2$ dans la représentation de l'algèbre associée à la représentation $D_{j_1} \times D_{j_2}$ du groupe SU(2).
 - (a) Montrer que $[J_i, J_j] = i \epsilon_{ijk} J^k$.
 - (b) Montrer que $[\vec{J}^2, \vec{\mathcal{J}}_1^2 \otimes I] = 0$, mais $[\vec{J}^2, \mathcal{J}_{z1} \otimes I] \neq 0$. On peut donc considerer soit une base de vecteurs propres de $\vec{\mathcal{J}}_1^2, \vec{\mathcal{J}}_2^2, \mathcal{J}_{z1}, \mathcal{J}_{z2}$ soit une base de vecteurs propres de $\vec{\mathcal{J}}^2, \vec{\mathcal{J}}_1^2, \vec{\mathcal{J}}_2^2, J_z$. La matrice de changement de base est

$$|j_1, j_2; J, M\rangle = \sum_{m_1, m_2} |j_1, j_2; m_1, m_2\rangle \langle j_1, j_2; m_1, m_2 | j_1, j_2; J, M\rangle$$

et les éléments de matrice $\langle j_1, j_2; m_1, m_2 | j_1, j_2; J, M \rangle$ sont appellés coefficients de Clebsch-Gordan de SU(2).

Remarque: D'habitude on va omettre j_1, j_2 dans le ket et la convention de phase habituelle est $\langle j_1, j_2; m_1, m_2 | J, M = J \rangle$ réel ≥ 0 . On peut obtenir que $\langle j_1, j_2; m_1, m_2 | J, M \rangle \neq 0$ ssi $M = m_1 + m_2$ et $|j_1 - j_2| \leq J \leq j_1 + j_2$.

- 4. Si A est une matrice $n \times n$ complexe on définit $\exp A \equiv e^A = \sum_{n=0}^{\infty} \frac{1}{n!} A^n$. Démontrer les énoncés suivants :
 - (a) $e^X e^Y = e^{X+Y} \text{ si } [X, Y] = 0;$
 - (b) e^X admet un inverse;
 - (c) $(e^X)^{\dagger} = e^{X^{\dagger}}$;
 - (d) $\frac{d}{dt}(e^{tX}) = Xe^{tX}$;
 - (e) $\det e^X = e^{\operatorname{tr}(X)}$.