

ESCUELA DE INGENIERÍA DE FUENLABRADA

GRADO EN INGENIERIA EN SISTEMAS AUDIOVISUALES Y MULTIMEDIA

TRABAJO FIN DE GRADO

EVOLUCIÓN DE PROYECTOS FOSS EN GITHUB

Autor: Paula Sepúlveda Membrilla

Tutor: Dr. Gregorio Robles Martínez

Curso académico 2023/2024

Trabajo Fin de Grado

Evolución de proyectos FOSS en GitHub

Autor: Paula Sepúlveda Membrilla

Tutor: Dr. Gregorio Robles Martínez

de

La defensa del presente Proyecto Fin de Carrera se realizó el día

de 202X, siendo calificada por el siguiente tribunal:

Presidente:

Secretario:

Vocal:

y habiendo obtenido la siguiente calificación:

Calificación:

Fuenlabrada, a de de 202X

Dedicado a mi familia / mi abuelo / mi abuela

Agradecimientos

Aquí vienen los agradecimientos... Aunque está bien acordarse de la pareja, no hay que olvidarse de dar las gracias a tu madre, que aunque a veces no lo parezca disfrutará tanto de tus logros como tú... Además, la pareja quizás no sea para siempre, pero tu madre sí.

Resumen

Aquí viene un resumen del proyecto. Ha de constar de tres o cuatro párrafos, donde se presente de manera clara y concisa de qué va el proyecto. Han de quedar respondidas las siguientes preguntas:

- ¿De qué va este proyecto? ¿Cuál es su objetivo principal?
- ¿Cómo se ha realizado? ¿Qué tecnologías están involucradas?
- ¿En qué contexto se ha realizado el proyecto? ¿Es un proyecto dentro de un marco general?

Lo mejor es escribir el resumen al final.

VI RESUMEN

Summary

Here comes a translation of the "Resumen" into English. Please, double check it for correct grammar and spelling. As it is the translation of the "Resumen", which is supposed to be written at the end, this as well should be filled out just before submitting.

VIII SUMMARY

Índice general

1.	Intro	oducción	1
	1.1.	Motivación	1
	1.2.	Definición del problema	2
	1.3.	Objetivos e hipótesis	2
	1.4.	Estructura de la memoria	3
2.	Obje	etivos	5
	2.1.	Objetivo general	5
	2.2.	Objetivos específicos	6
	2.3.	Planificación temporal	7
3.	Esta	do del arte	11
	3.1.	Tecnologías y herramientas	11
		3.1.1. Python	11
		3.1.2. GitHub	12
		3.1.3. MySQL	12
		3.1.4. LaTeX	12
	3.2. Librerías		
		3.2.1. Pyodbc	13
		3.2.2. Subprocess	13
		3.2.3. Matplotlib	14
		3.2.4. Pandas	14
		3.2.5. Chardet	15
		3.2.6. Pygments	15

X ÍNDICE GENERAL

4.	Dise	ño e im	plementación	17
	4.1. Arquitectura general			17
	4.2.	2. Fases del proyecto		
		4.2.1.	Recopilación de datos	18
		4.2.2.	Almacenamiento y procesado de datos	18
		4.2.3.	Extracción de datos	18
		4.2.4.	Implementación de métricas y análisis	18
		4.2.5.	Representación gráfica de resultados	19
5.	Resu	ıltados		21
6.	Con	clusione	es	23
	6.1.	Consec	cución de objetivos	23
	6.2.	Aplica	ción de lo aprendido	23
	6.3.	Leccio	nes aprendidas	23
	6.4.	Trabajo	os futuros	24
A	Man	mal de i	เรเเลาร์ด	25

Índice de figuras

2.1.	Diagrama de Gantt	7
4.1.	Diagrama arquitectura general	17
4.2.	Diagrama de funcionamiento	18

Capítulo 1

Introducción

En este capítulo se presenta la motivación que ha impulsado esta investigación, proporcionando el contexto y las razones fundamentales para llevarla a cabo. A continuación, se define claramente el problema a resolver, especificando su alcance y relevancia, así como los objetivos que se desean alcanzar y las hipótesis planteadas al inicio del estudio.

Finalmente, se describe una visión general de cómo está organizado el documento y qué secciones lo componen.

1.1. Motivación

La inspiración que me ha llevado a realizar este proyecto proviene de mi profesor y tutor, Gregorio Robles, quién me ha motivado a adentrarme en el mundo del software libre (OSS, del inglés *Open Source Software*).

El término software libre hace referencia al código diseñado de manera descentralizada y colaborativa, siendo accesible para todo el público. Esto permite que cualquiera pueda utilizarlo, examinarlo, modificarlo y redistribuirlo como considere conveniente.

La elección de código abierto nos aporta beneficios tales como un bajo coste, gran flexibilidad para modificar el código fuente, así como un buen soporte proporcionado por parte de la comunidad. Sin embargo, no existe una clara distinción entre el proceso de desarrollo y el de mantenimiento, lo cual resulta interesante para la Ingeniería de Software al estudiar y explicar el funcionamiento de las interacciones que se llevan a cabo abiertamente.

Por lo tanto, la principal motivación de esta investigación es analizar el comportamiento de

los proyectos de código abierto, los cuales se desarrollan en una comunidad de usuarios que se comunican a través de distintas herramientas, teniendo como factor común Internet, lo que permite guardar el registro de las actividades realizadas a lo largo del tiempo.

Además, este proyecto me ha brindado la oportunidad de adquirir conocimientos sobre minería de datos y desarrollar habilidades para realizar un correcto análisis de los datos obtenidos.

1.2. Definición del problema

El software libre permite a los desarrolladores realizar un completo análisis cuantitativo del código y de todos los parámetros involucrados en su producción, debido a que están disponibles públicamente. Al contar con datos de acceso público del desarrollo de software, permite llevar a cabo estudios estadísticos para estudiar la evolución del software.

En todo este proceso, tiene gran importancia la utilización de un sistema de control de versiones, donde se permita rastrear los cambios realizados en el pasado. De esta manera, podemos obtener un análisis de la estructura histórica del código en base a sus distintas contribuciones, así como harían los arqueólogos estudiando una ciudad en base a sus distintas construcciones. Para software libre esto tiene vital importancia, ya que debido a la falta de diseño, el mantenimiento del código es una actividad relevante para evitar posible código obsoleto de desarrolladores que ya no participan en el proyecto.

Aunque la Ingeniería de Software es una disciplina que se ha consolidado a través de los años, actualmente existen muy pocos análisis empíricos sobre la arqueología del software. La falta de estudios junto con el atractivo hacia el desarrollo comunitario del software libre, así como la importancia para la Ingeniería de Software de modelar con datos empíricos, nos impulsa a llevar a cabo este proyecto.

1.3. Objetivos e hipótesis

Nuestra hipótesis es que, mediante un estudio empírico de las prácticas de desarrollo de software, la aplicación de minería de datos al proyecto, el análisis de su evolución a lo largo del tiempo y la correlación de datos, se pueden determinar y aplicar métricas que demuestren que la longevidad y el mantenimiento del código son heterogéneos y varían entre los diferentes

componentes de varios proyectos.

Por lo que, el objetivo del proyecto consiste en estudiar la evolución y propiedades de varios proyectos de software libre a través del estudio empírico, y en aplicar un análisis estadístico de su código fuente. Se estudia el comportamiento de los proyectos FOSS¹ más relevantes en GitHub, se identifican las fuentes de datos que ofrecen de manera pública y se presenta una metodología para el análisis de los datos extraidos, que nos aportan datos interesantes a la investigación basados en la cantidad de colaboradores o en los lenguajes de programación más utilizados. De esta manera, podemos conocer mejor el fenómeno del software libre, el proceso de creación de software y cómo se puede aplicar en cualquier otro entorno de desarrollo, se describe la mecánica de desarrollo de los movimientos de software libre.

Tenemos el objetivo de comprender el desarrollo de proyectos de software libre, así como la posibilidad de renovar la mecánica llevada a cabo mediante la aplicación de los resultados obtenidos en esta investigación.

1.4. Estructura de la memoria

A continuación, describimos la estructura de la memoria, exponiendo el contenido de cada uno de los capítulos, proporcionando así una guía organizada del trabajo de fin de grado para una mejor lectura y comprension de este.

■ Capítulo 1: Introducción

En este capítulo se describe la motivación que me ha llevado a realizar la investigación, así como el contexto, la definición del problema y las distintas hipótesis que se han desarrollado. Además, se ha ofrecido una breve descripción de la estructura del proyecto.

■ Capítulo 2: Objetivos

En este capítulo se describe el objetivo principal de la investigación, así como los objetivos específicos necesarios que van a guiar nuestro proyecto. Incluye una planificacion temporal de los objetivos mencionados.

Capítulo 3: Estado del arte

En este capítulo se proporciona información detallada sobre el diseño, las características

¹Free/Open Source Software

y los usos de cada una de las tecnologías y herramientas utilizadas en el proyecto.

■ Capítulo ??: Diseño e implementación

En este capítulo se detallan las fases que se han llevado a cabo para realizar el análisis de estudio. Se describe la arquitectura general del proyecto, la mecánica de obtención y almacenamiento de los datos, y su posterior análisis empírico.

Capítulo 5: Resultados

En este capítulo se describen los resultados obtenidos tras analizar los datos recopilados en el análisis, y se realiza una justificación de dichos resultados.

■ Capítulo 6: Conclusiones

En este capítulo se explican las conclusiones a las que se ha llegado, con su correspondiente justificación. Además, se mencionan los conocimientos adquiridos durante la duración de todo el grado universitario que se han aplicado en este proyecto, y los relacionados con el aprendizaje adquirido durante la realización de este estudio. Por último, se mencionan posibles mejoras que se pueden aplicar en el futuro.

Capítulo 2

Objetivos

En este capítulo, se definen los objetivos que guiarán la realización de este Trabajo de Fin de Grado (TFG). Establecer objetivos claros y bien definidos es fundamental para asegurar una dirección precisa y coherente a lo largo del desarrollo del proyecto.

Estos objetivos se dividen en dos categorías principales: el objetivo general, que representa la meta global del trabajo, y los objetivos específicos, que son metas más concretas y detalladas necesarias para alcanzar el objetivo general.

Además, se presenta una planificación temporal que muestra la organización de las tareas a lo largo del período de ejecución del proyecto, garantizando un avance ordenado y sistemático.

2.1. Objetivo general

El objetivo general del proyecto es investigar en profundidad la evolución y las características de proyectos de software libre alojados en la plataforma de GitHub mediante un estudio empírico detallado y la aplicación estadística de su código fuente. A través de este enfoque, se pretende obtener una comprensión íntegra de cómo el proyecto ha cambiado y se ha desarrollado a lo largo del tiempo, identificando patrones, tendencias y características del código que puedan influir en su calidad, mantenibilidad y eficiencia.

Esta investigación no solo implica un análisis histórico, sino que también incluye la aplicacion de diversas métricas para evaluar distintos aspectos del código fuente. Al combinar métodos empíricos con análisis estadísticos robustos, este proyecto busca proporcionar una visión detallada y objetiva del comportamiento evolutivo del software.

Los resultados obtenidos nos ofrecen conclusiones y recomendaciones para la mejora continua del desarrollo del software libre, contribuyendo al conocimiento en el campo de Ingeniería de Software que puede aplicarse en la toma de decisiones en proyectos futuros.

2.2. Objetivos específicos

Para lograr el objetivo general detallado en el proyecto se han establecido los siguientes objetivos específicos:

Definición del problema y objetivos

Consiste en buscar y evaluar información sobre el contexto de trabajo, realizando una estimación de los costes de desarrollo software. Se piensa como desarrollar la programación de manera eficiente, y a su vez se realiza una selección de distintos repositorios de GitHub que resultan de especial interés para nuestra investigación.

Programación

En esta fase del proyecto se desarrollan los scripts necesarios para extraer, almacenar y analizar los datos con el fin de conseguir los objetivos de esta investigación.

Recopilación de datos

En esta etapa se recopilan y almacenan los datos más relevantes para el posterior estudio del comportamiento de los repositorios seleccionados. También es importante realizar un preprocesado de los datos, lo que implica una normalización o estandarización de variables, así como una limpieza y transformación de datos según sea necesario.

Análisis estadístico

Tras la recopilación de los datos, se ajustan y configuran las métricas correspondientes para obtener distintas estadísticas sobre la evolución de los repositorios a lo largo del tiempo.

Evaluación e interpretación de los resultados

Una vez que se ha realizado un análisis estadístico, se realiza un análisis empírico y se representan de manera gráfica los resultados obtenidos. Seguidamente, se interpretan los resultados obtenidos y se derivan conclusiones.

Figura 2.1: Diagrama de Gantt

Documentación

En esta etapa se elaboran la documentación y los informes necesarios para la correcta entrega del Trabajo de Fin de Grado (TFG).

2.3. Planificación temporal

El desarrollo de este proyecto abarca un período de siete meses, desde enero de 2024 hasta julio de 2024, con la realización de un trabajo diario que se lleva a cabo de manera constante. En la figura 2.1 se observa el tiempo empleado en las diferentes fases del proyecto, donde se puede observar que varias tareas se han solapado en algunos casos debido al avance en paralelo de distintas actividades.

Enero

En este mes comienzo el desarrollo de esta investigación, cuando mi tutor Gregorio Robles me sugirió la idea del proyecto. Comienzan las reuniones donde se definen los objetivos correspondientes, y empiezo a documentarme para obtener los conocimientos necesarios para la realización del proyecto.

Recopilo información acerca de los proyectos de código abierto y posibles repositorios de especial interés que son alojados en la plataforma de GitHub. A su vez, estudio la información que se puede obtener de las líneas de código mediante el comando *git blame*, y que análisis nos puede resultar de interés para estudiar la evolución de estos repositorios a lo largo de los años.

Febrero

Durante este mes sigo realizando la tarea de investigación, pero además trabajo en paralelo con la tarea de programación. Comienzo a desarrollar el código de programación basado en el comando *git blame*, mediante el cual obtengo información interesante acerca de los cambios realizados en un archivo específico línea por línea. El comando *git blame* nos proporciona información del autor de la línea de código, así como de la fecha del commit, del estado de esa línea y obviamente podemos ver también su contenido.

Marzo

En este mes me centro exclusivamente en la programación del código, desarrollando los scripts *init.py* y *git-blameall.py*. Estos scripts analizan un repositorio y un archivo respectivamente, con el objetivo de analizar línea a línea cada uno de los archivos de un repositorio, y guardan los datos recogidos en un archivo JSON.

Al principio, se trabaja en realizar el análisis para un único archivo y finalmente se logra conseguir analizar un repositorio concreto. Además, se estudia la opción de tener que analizar las distintas versiones de un archivo o unicamente la versión final, quedandonos con la segunda opción al ser mucho más eficiente y conseguir obtener los datos que nos interesan.

Abril

Este mes tiene una gran carga de trabajo, al realizar en paralelo tres actividades distintas. Por una parte, sigo avanzando con la programación, mejorando los scripts *init.py* y *git-blameall.py* de manera que los datos pasan de guardarse en un archivo JSON a guardarse en tres bases de datos relacionadas entre sí: *repositories*, *files* y *code* respectivamente. Esto requiere de un estudio previo para obtener los conocimientos necesarios sobre la utilización de *MySQL* y el concepto de bases de datos relacionales. El hecho de almacenar los datos en bases de datos relacionales nos permite un posterior análisis de los datos de

manera mucho más eficiente.

Mayo

Durante estas semanas la carga de trabajo sigue siendo muy alta, desarrollando cuatro actividades de manera paralela. Termino de desarrollar los archivos de programación, incluido entre ellos el script *graphics.py* que tiene como finalidad poder obtener una representación gráfica de las métricas estudiadas. A su vez, termino de definir los índices y las métricas que se incluyen en este proyecto, para obtener estadísticas interesantes acerca de la evolución de cambios, número de autores o posible código obsoleto en un repositorio. Seguidamente, se recopilan los últimos datos de los repositorios elegidos para su análisis, todos ellos alojados en la plataforma de GitHub.

Junio

En esta etapa se elaboran las gráficas definitivas, y mientras tanto se empieza a escribir la memoria de nuestro proyecto.

Julio

En este último mes se termina de escribir la memoria y se realizan las correcciones oportunas por el tutor para poder realizar una correcta entrega del Trabajo de Fin de Grado (TFG).

Capítulo 3

Estado del arte

En este capítulo, se presentan las herramientas y librerías usadas en el Trabajo Fin de Grado. Esta exposicion nos da una visión de las tecnologías empleadas en el proyecto.

3.1. Tecnologías y herramientas

3.1.1. Python

Python¹ es un lenguaje de programación de alto nivel desarrollado por Guido Van Rossum a principios de 1989 en los Países Bajos. Se trata de un lenguaje ejecutado directamente por un intérprete, que no requiere de una compilación previa, lo que facilita la detección y el manejo de errores. Es un lenguaje con una sintaxis clara y sencilla, por lo que resulta bastante atractivo para los desarrolladores por su fácil lectura, escritura y comprensión. Además, Python se trata de un lenguaje multiplataforma, esto quiere decir que el mismo código puede utilizarse en distintos sistemas operativos al ser un lenguaje de código abierto, lo que proporciona bastante versatilidad a los desarrolladores.

Incluye una gran cantidad de bibliotecas que proporcionan códigos para la visualización de datos con distintos gráficos, la creación de matrices o el procesamiento de imágenes. Esto permite su amplia utilización en ámbitos muy distintos como las aplicaciones web, el desarrollo de software, la ciencia de datos o el machine learning (ML).

Ha experimentado un crecimiento significativo a lo largo de los años, pasando por distintas

¹https://www.python.org/

versiones, convirtiendose en uno de los lenguajes más populares y utilizados en la actualidad.

3.1.2. **GitHub**

GitHub² es una plataforma de alojamiento de repositorios de código fuente que utiliza *Git* como sistema de control de versiones. Permite almacenar código y archivos en un servicio de la nube, de manera que los desarrolladores puedan colaborar en proyectos compartidos manteniendo un seguimiento de la evolución del proyecto.

Linus Torvalds, un programador finlandés con gran importancia dentro del software libre, creó en 2005 su propio sistema de control de versiones llamado *Git* para ser utilizado en proyectos comerciales y de software libre. Posteriormente, en 2008, varios desarrolladores fundaron la plataforma GitHub, ofreciendo una interfaz fácil de utilizar que ha contribuido a la popularización de *Git*.

Es un sistema de control de versiones eficiente, fiable y compatible que se ha convertido en el estándar por excelencia para el desarrollo de software.

3.1.3. MySQL

MySQL³ es un sistema de gestión de bases de datos considerado como uno de los más populares junto a Oracle y Microsoft SQL Server, sobre todo para entornos de desarrollo web. Puede utilizarse en diferentes sistemas operativos con múltiples motores de almacenamiento para adaptarse a las necesidades de cada entorno. Sus puntos fuertes son la rapidez y la seguridad, ya que utiliza un sistema de contraseñas que permite la verificación basada en host.

Uno de sus grandes beneficios es que cuenta con una gran comunidad con la que intercambiar dudas y conocimientos. Además, es escalable y fácil de aprender por lo que se convierte en una de las bases de datos más utilizadas en la actualidad.

3.1.4. LaTeX

LaTex⁴ es un sistema de composicion de textos o documentos formado por una colección de macros *Tex*. Fue desarrollado por Leslie Lamport en 1984, y en la actualidad se utiliza para

²https://github.com/

³https://mysql.com

⁴https://es.overleaf.com/

3.2. LIBRERÍAS

la generación de artículos y libros científicos que incluyen, entre otros elementos, expresiones matemáticas. Se utiliza para la composicion de tesis y libros técnicos, dado que la calidad tipográfica de los documentos realizados en LaTex se considera adecuadas a las necesidades de una editorial científica de primera línea, muchas de las cuales ya lo emplean.

Text es una mezcla entre procesador de textos y lenguaje de programación utilizado fundamentalmente para escribir documentos de contenido científico y de gran calidad de impresión. Fue desarrollado por Donald E. Knuth en 1978, y actualmente hay implementaciones para todo tipo de ordenadores. Es un sistema de tipografía muy popular en el entorno académico, especialmente entre las comunidades de matemáticos, físicos e informáticos.

3.2. Librerías

3.2.1. Pyodbc

*Pyodbc*⁵ es una biblioteca de Python que nos sirve para tener la integración de la comunicación con bases de datos de una manera sencilla. En el proyecto se ha utilizado para conectar nuestros scripts de Python con la base de datos alojada en MySQL.

Su funcionamiento consiste en conectarse a una base de datos mediante el comando *connect()*, que nos devolverá una conexión. Una vez que tengamos la conexión, se crea un cursor mediante la función *cursor()*, con el cual podemos ejecutar *querys()* para trabajar con los datos obtenidos. Una vez que hayamos realizados las consultas oportunas, no hay que olvidarse de cerrar la conexión con la base de datos.

3.2.2. Subprocess

La biblioteca *subprocess*⁶ permite ejecutar nuevos programas o comandos que se encuentran dentro de un script de Python a la vez que ejecutamos dicho script, es decir, ejecuta procesos en segundo plano. Una de las capacidades más útiles consiste en que permite al usuario controlar las entradas, salidas e incluso los errores que genera el proceso hijo desde dentro del código Python. Este modulo facilita la automatización de tareas y la integración de otros programas

⁵https://pypi.org/project/pyodbc/

⁶https://docs.python.org/es/3/library/subprocess.html

con el código de Python.

3.2.3. Matplotlib

*Matplotlib*⁷ es una librería muy completa de código abierto que se utiliza para crear visualizaciones estáticas, animadas e interactivas con Python. Ha sido desarrollada por John Hunter en 2002, con el objetivo inicial de visualizar las señales eléctricas del cerebro de personas epilépticas. Tras el fallecimiento de John Hunter, *matplotlib* se ha ido mejorando a lo largo del tiempo por numerosos contribuidores de la comunidad de software libre.

Se trata de una herramienta muy completa, que permite generar visualizaciones de datos muy detalladas. Es posible crear trazados, histogramas, diagramas de barra y cualquier tipo de gráfica para visualizar análisis estadísticos.

El módulo *Pyplot*⁸ propone varias funciones sencillas para añadir elementos tales como líneas, imágenes o textos a los ejes de un gráfico. Su interfaz es muy intuitiva, lo que permite a los usuarios diseñar gráficos completamente personalizables con facilidad.

3.2.4. Pandas

Pandas es una librería de Python especializada en el manejo y análisis de estructuras de datos. Define nuevas estructuras de datos basadas en los arrays de la librería NumPy pero con nuevas funcionalidades, nos permite leer y escribir fácilmente ficheros en bases de datos SQL y nos permite acceder a los datos mediante índices o nombres para filas y columnas. Nos permite trabajar con tres estructuras de datos diferentes: estructura de una dimensión denominadas series, estructura de dos dimensiones o tablas denominadas DataFrame y estructura de tres dimensiones o cubos llamado panel.

El nombre «*Pandas*» es en realidad una contracción del término «*Panel Data*» para series de datos que incluyen observaciones a lo largo de varios periodos de tiempo. Se creó como herramienta de alto nivel para el análisis en Python, y tiene la finalidad de evolucionar hasta convertirse en la biblioteca de manipulación de datos de código abierto más potente y flexible.

⁷https://matplotlib.org/

 $^{^8}$ https://matplotlib.org/stable/tutorials/introductory/pyplot.html

3.2. LIBRERÍAS

3.2.5. Chardet

Chardet consiste en una adaptación para Python del detector de codificación de caracteres universal C++ de Mozilla. La detección de la codificación de caracteres es en realidad una detección del lenguaje con dificultades, esto es especialmente útil cuando se trabaja con archivos de origen desconocido o múltiples fuentes que pueden tener diferentes codificaciones.

La forma más sencilla de utilizar esta librería es mediante la funcion detect(). Esta función toma un argumento de datos binarios y devuelve un diccionario que contiene la codificación de caracteres detectada junto con el nivel de confianza de la detección. En el caso de utilizar esta librería con archivos que contienen una gran cantidad de texto, lo recomendable es leer solo una parte del archivo y que se detenga tan pronto como tenga la confianza suficiente para determinar su codificación. Esta biblioteca es útil en situaciones donde se reciben archivos históricos de múltiples fuentes con codificaciones no uniformes, como es el caso de nuestro proyecto.

3.2.6. Pygments

Pygments consiste en una librería de resaltado de sintaxis escrita en Python. Es una herramienta poderosa y flexible para resaltar la sintaxis de código fuente en múltiples lenguajes de programación y formatos de salida, permite una personalización significativa para adaptarse a diferentes necesidades y preferencias.

De entre todas las funciones y herramientas que nos ofrece esta biblioteca, en nuestro proyecto se han utilizado la función *get_lexer_for_filename* y la clase *class pygment.lexer.name* con la finalidad de adivinar el nombre del lexer, basado en el nombre y en el contenido del archivo. El *lexer*, o también denominado *analizador léxico* o *tokenizer*, es un componente que convierte una secuencia de caracteres en una secuencia de tokens, que se corresponden con unidades léxicas que representan estructuras significativas en el lenguaje de programación. Nos permite identificar y clasificar las diferentes partes del código fuente para poder aplicar resaltado de sintaxis adecuado o para poder identificar el lenguaje de programación.

Capítulo 4

Diseño e implementación

A continuación, se proporciona una visión detallada del desarrollo de este proyecto, destacando los aspectos tanto técnicos como metodológicos que lo forman. Se describen en detalle las fases del proyecto, así como las métricas escogidas con su debida justificación.

Exponer el diseño e implementación de nuestro proyecto permite a los lectores entender cómo se ha desarrollado la investigación, además de proporcionarles la capacidad de contribuir o ampliar el proyecto.

4.1. Arquitectura general

En la figura 4.1 se puede observar la arquitectura general del proyecto, que se compone de varias etapas interconectadas que permiten llevar a cabo la ejecución eficiente del mismo.

En la figura 4.2 se presenta un diagrama de funcionamiento que nos permite comprender el desarrollo de la programación.

Este diagrama consta del programa principal *init.py*, que se ejecuta mediante el comando *python3 init.py repo-url name_urlclone*, cuya función principal es la de analizar un repositorio. Este script extrae los valores de la URL correspondiente, verifica que se utilice el protocolo correc-

Figura 4.1: Diagrama arquitectura general

Figura 4.2: Diagrama de funcionamiento

to, y obtiene acceso al repositorio para clonarlo en nuestro directorio. Posteriormente, el script obtiene una lista con todos los archivos y subdirectorios del repositorio, y va recorriendo uno a uno todos los archivos para obtener su número de *commits* y su ruta.

Durante este proceso, se ejecuta el script *git_blameall.py* con la finalidad de analizar línea a línea el código de cada archivo, recopilando diversos datos que se almacenan en varias tablas de la base de datos.

Finalmente, se ejecuta el script *graphics.py* con el objetivo de generar distintas gráficas que muestran los resultados de los análisis estadísticos y la aplicación de las métricas estudiadas previamente.

4.2. Fases del proyecto

4.2.1. Recopilación de datos

elección de repositorios, tabla con datos-repos, etc

4.2.2. Almacenamiento y procesado de datos

diagrama de entidad-relación BBDD procesado: quitar comentarios, .zip archivos, lineas en blanco, etc número de palabras, comentario o no, etc

4.2.3. Extracción de datos

queries, etc

4.2.4. Implementación de métricas y análisis

métricas una a una, subseccion?

19

4.2.5. Representación gráfica de resultados

como he hecho las gráficas, etc * mostrarlas y explicarlas en el apartado de resultados, aqui no *

Capítulo 5

Resultados

En este capítulo se incluyen los resultados de tu trabajo fin de grado.

Si es una herramienta de análisis lo que has realizado, aquí puedes poner ejemplos de haberla utilizado para que se vea su utilidad.

Capítulo 6

Conclusiones

6.1. Consecución de objetivos

Esta sección es la sección espejo de las dos primeras del capítulo de objetivos, donde se planteaba el objetivo general y se elaboraban los específicos. Es aquí donde hay que debatir qué se ha conseguido y qué no. Cuando algo no se ha conseguido, se ha de justificar, en términos de qué problemas se han encontrado y qué medidas se han tomado para mitigar esos problemas. Y si has llegado hasta aquí, siempre es bueno pasarle el corrector ortográfico, que las erratas quedan fatal en la memoria final. Para eso, en Linux tenemos aspell, que se ejecuta de la siguiente manera desde la línea de *shell*:

```
aspell --lang=es_ES -c memoria.tex
```

6.2. Aplicación de lo aprendido

Aquí viene lo que has aprendido durante el Grado/Máster y que has aplicado en el TFG/TFM. Una buena idea es poner las asignaturas más relacionadas y comentar en un párrafo los conocimientos y habilidades puestos en práctica.

6.3. Lecciones aprendidas

Aquí viene lo que has aprendido en el Trabajo Fin de Grado/Máster.

6.4. Trabajos futuros

Ningún proyecto ni software se termina, así que aquí vienen ideas y funcionalidades que estaría bien tener implementadas en el futuro.

Es un apartado que sirve para dar ideas de cara a futuros TFGs/TFMs.

Apéndice A

Manual de usuario

Esto es un apéndice. Si has creado una aplicación, siempre viene bien tener un manual de usuario. Pues ponlo aquí.