Approaches to Machine Translation: Rule-based, Statistical and Hybrid

Alignment - IBM Model 2 and HMM (III)

Lluís Formiga

July 11, 2014

A picture is worth a million equations

Outline

- Noisy Channel Model
- Lexical translation
- Word Alignment
- Expectation Maximization (EM) Algorithm
- IBM Models 1--5
 - IBM Model 1: lexical translation
 - ► IBM Model 2: alignment model
 - IBM Model 3: fertility
 - IBM Model 4: relative alignment model
 - IBM Model 5: deficiency
- HMM Models: dependent alignment model
- Problems of Word Alignment
- Quality of Word Alignment

IBM Model 2

Absolute Alignment Model

Also we can collect advanced statistics:

Basic statistics:

IBM Model 1 captures p(f|e)

Translations of mesa	p(f e)
table	0.3771
round	0.1476
panel	0.1344
round-table	0.0452
petitioners	0.0282
bureau	0.0229
officers	0.0190
Committee	0.0169
Round	0.0153
roundtable	0.0124

IBM Model 2 captures $q(j|i, l_f, l_e)$

	j	i	I _f	le	$q(j i,l_e,l_f)$
	1	1 2	5 5	7	0.27
	1	2	5	7	0.14
	:	:	5	7	0.07
	5	: 7	5 5	7 7	1e-14
	1 1	1 2	5 5	8	0.32
	1	2	5	8	0.18
		:	8	6	0.13
	5	: 8	8 5	8	1e-19
	:		:	:	:
	1 1	1 2	6	8	0.30
	1	2	6	8	0.12
	: 6	8	6	8	0.17
	6	8	6	8	1e-10

IBM Model 2

Definition

- Modeling alignment with an alignment probability distribution
- Translating source word at position j to translated word at position i:
 q(i|j, l_e, l_f)
- Source position conditioned on target and lengths
- Putting everything together:

$$p(e, a|f) = \epsilon \prod_{i=1}^{l_f} t(e_i|f_j) \cdot q(i|j, l_e, l_f)$$

EM training of this model works the same way as IBM Model 1

Generative Model

What is Statistical Machine Translation?

- Series of chained decisions
- Happening with certain probability
- Probability of the product
 - The translation can be produced by different ways
 - We sum up the probabilities of all the ways

e.g: IBM Models 1 and 2

$$\begin{split} P(e|f) &= \sum_a P(e,a|f) = p(f,a|e) \cdot p(e) \\ &= \sum_a \frac{\epsilon}{(I_e+1)^{I_f}} \prod_{i=1}^{I_f} t(f_j|e_{a(j)}) \cdot \left[(j|a(j),I_e,I_f] \cdot p(e) \right] \end{split}$$

IBM Model 2

```
Require: set of sentence pairs (e_s, f_s)
Ensure: translation prob. t(f|e) for all
    foreign words f and end words e
Ensure: alignment prob. q(j|i, l_e, l_f) for all
    foreign positions j and end positions i
    given lengths le and lf
1: {initialize t(f|e) and q(j|i, l_e, l_f)
    uniformly or from other training }
2: repeat
3:
        \forall_{e_i \in e} \forall_{f_i \in f} : count(e_i | f_j) = 0
4:
        \forall_{f_i \in f} : total(f_i) = 0
5:
        {compute normalization }
6:
7:
        for all sentence pairs (e<sub>s</sub>,f<sub>s</sub>) do
            for all words f_i \in f_s do
8:
               total_s(f_i) = 0
9:
               for all words e_i \in e_s do
10:
                    total_e^a(j) += t(f_i|e_i) \cdot q(j|i, l_e, l_f)
11:
                end for
12:
             end for
```

Partially Observed Data

```
13:
                 {collect counts }
14:
                 for all words f_i \in f_s do
15:
                      for all words e_i \in e_s do
              count(f_j, e_i) += \frac{t(f_j|e_i) \cdot q(j|i, l_e, l_f)}{total_e^a(f_i)}
16:
17:
                  total(e_i) += \frac{t(f_j|e_i) \cdot q(j|i,l_e,l_f)}{total_e^a(f_i)}
              count(j, i, l_e, l_f) += \frac{t(f_j|e_i) \cdot q(j|i, l_e, l_f)}{total 2 \cdot f}
18:
                 total(i, l<sub>e</sub>, l<sub>f</sub>) +=\frac{t(f_j|e_i)\cdot q(j|i,l_e,l_f)}{total^a(f_i)}
19:
20:
                      end for
21:
                 end for
22:
            end for
23:
            {estimate probabilities }
24:
            for all words f_i \in f do
25:
                 for all words e_i \in e do
                      t(f_j|e_i) = \frac{count(f_j,e_i)}{total(e_i)}
26:
                      q(j|i, l_e, l_f) = \frac{count(j, i, l_e, l_f)}{total(i, l_e, l_f)}
27:
28:
                 end for
29:
            end for
```

30: until convergence

Why are these algorithms so simple?

- Each word and alignment link are generated separately;
 there are no dependencies between alignment links at all
- The cost of easy inference here is an overly simplistic model

Some drawbacks of word based alignments

- All reorderings have the same probability
- Alignments are independent
- No notion of multiword alignments
- Alignments are asymmetric
- No morphology
- No syntax

Some drawbacks of word based alignments

- All /re ordierings/have/the/same/p/dob/ability/ MODEL 2
- Alignments are independent
- No notion of multiword alignments
- Alignments are asymmetric
- No morphology
- No syntax

Vogel, Ney, & Tillmann ('96)

Motivation

- Strong localization effect in aligning the words in parallel texts $(\forall \text{ language pairs} \in \text{Indoeuropean})$
- Words not distributed arbitrarily over the sentence positions forming clusters.
- Alignments mostly preserve local neighborhood
- Most cases with stronger restriction:
- the difference in the position index is smaller than 3.

HMM Model

Model 2 used the absolute positions of words

$$p(a|e,m) = \prod_{i=1}^m q(a_i = j|i, I_f, I_e)$$

A better idea: relative positioning using position differences

$$p(a|e,m) = \prod_{i=1}^m q(a_i|a_{i-1})$$

A local shift probability

Main idea:

Formally:

$$p(e, a|f) = \epsilon \prod_{j=1}^{l_f} t(f_j|e_{a(j)}) p_a(a(j)|a(j-1), l_e)$$

Alignment model is parametrized with a simple global table

- Alignment links are no longer conditionally independent!
- Inference (and EM) now require something more complicated (dynamic programming)

Shift	Prob	
distance		
-3	0.03	
-2	0.05	
-1	0.12	
0	0.2	
1	0.3	
2	0.09	
3	0.08	

Dynamic Programming

Some drawbacks of word based alignments

- All/rept/defings/have/the/same/probability MODEL 2
- Alighiments/are/independent HMM MODEL
- No notion of multiword alignments
- Alignments are asymmetric
- No morphology
- No syntax

Next session

- Noisy Channel Model
- Lexical translation
- Word Alignment
- Expectation Maximization (EM) Algorithm
- IBM Models 1--5
 - IBM Model 1: lexical translation
 - IBM Model 2: alignment model
 - ► IBM Model 3: fertility
 - ► IBM Model 4: relative alignment model
 - ► IBM Model 5: deficiency
- HMM Models: dependent alignment model
- Problems of Word Alignment
- ► Quality of Word Alignment

