

Aula-01

1 INTRODUÇÃO HISTÓRICA DE TECNOLOGIAS COMPUTACIONAIS

Prof. Dr. Emerson Carlos Pedrino Departamento de Computação UFSCar

Introdução

Evolução da Computação

Ábaco (Pó)

- Inventado há mais de 5500 anos na Mesopotâmia.
- Instrumento para cálculos.
- Primeira máquina de calcular.
- Pode ser mais rápido que uma calculadora eletrônica em algumas operações aritméticas (multiplicação de até 5 algarismos). Neste caso, a velocidade de cálculo é determinada pela habilidade humana em apertar os dígitos do teclado.

Ábaco Chinês (Suan-Pan)

Contas inferiores valem 1

Obs.: colunas em potência de 10

Exemplo – representação do número 87654321 no ábaco chinês (Suan-Pan)

Exemplo – adição no ábaco japonês (Soroban): 27+12

Exercício*

- Como calcular 32+42 no Soroban?
- Para casa: 548 637?*
- Obs.: Praticar no programa Sorocalc:
 - http://www.sorobanbrasil.com.br/sorocalc

*Pesquisar (obs.: apresentar e entregar na próxima aula)

- Subtração, Multiplicação e Divisão.
- Verificar as regras existentes para cada operação.

Descoberta do Zero: Como indicar a ausência de um valor no sistema posicional de numeração? Por exemplo, em 3_1, qual símbolo indicaria a ausência da dezena?

Os hindus inventaram o zero escrito, permitindo que eles efetuassem a aritmética decimal no papel. Aqui começa a chamada era do papel e lápis.

A matemática hindu foi difundida pelos árabes, ao Ocidente. Em 830, um persa, conhecido por Al-Khwarismi, escreveu um livro sobre álgebra.

Zero (O nada que gera tudo)

- Era utilizado para fazer cálculos, mas na realidade ainda não tinha sido inventado.
- Usado para diferenciar 52 de 502, de 5002, etc.
- Considerado subversivo na idade média.
- Influenciou sorrateiramente a filosofia.

John Napier

(1550-1617) inventou a "Tábua de Napier", que era similar a uma tabela de multiplicações. A tábua reduzia multiplicações e divisões a adições e subtrações. Usando esse princípio, em 1620 foram criadas as réguas de cálculo, usadas até 1970, antes das calculadoras de bolso.

Régua de cálculo

Exemplo: multiplicação de 4138x567

Exemplo: régua de cálculo

- http://www.syssrc.com/html/museum/html/sims/ javaslide/index.html
- http://nsg.upor.net/slide/sryae.htm
- Exemplo de uso das escalas C e D para multiplicação e divisão, respectivamente.

Exercícios*

 Entregar e Apresentar na próxima aula: Exemplos de cálculos de funções matemáticas diversas usando a régua de cálculo. Dica: utilize os simuladores indicados.

Máquinas de calcular

Wilhelm Schickard (1592-1635) construiu uma máquina, que fazia multiplicação e divisão, mas foi perdida durante a Guerra dos Trinta Anos, sem que seu inventor pudesse defender sua primazia.

<u>Blaise Pascal</u> (1623-1662), filósofo e matemático francês, é conhecido como o inventor da primeira calculadora que fazia somas e subtrações.

Animação: http://therese.eveilleau.pagespersoorange.fr/pages/truc_mat/textes/pascaline.htm

Pascalina (calculadora de Pascal)

O filósofo e matemático alemão <u>Gottfried Wilhelm</u> <u>Leibniz</u> (1646-1716) aprimorou o projeto de Pascal, para realizar multiplicações e divisões por somas e subtrações sucessivas.

Isaac Newton

(1643-1727) com sua Teoria Gravitacional coroou a era do papel e lápis. A sua teoria despertou grandes desafios matemáticos.

Com o tempo, um grande número de cientistas começou a pensar em fazer estes cálculos através de alguma máquina...

Em 1801, na França, durante a Revolução Industrial, Joseph Marie Jacquard, mecânico francês, (1752-1834) inventou um tear mecânico controlado por cartões perfurados, capaz de produzir tecidos com desenhos bonitos e intrincados. Em sete anos, já havia 11 mil teares desse tipo operando na França.

Exemplo: Tear de Jacquard

Operação: passo 1

Passo 2

Passo 3

Passo 4

Exemplo de Tear de Jacquard

O matemático inglês <u>Charles Babbage</u> (1792-1871) é conhecido como o "Pai do Computador". Prof. em Cambridge.

1822 - Charles Babbage inicia o projeto e construção do "Difference Engine". Máquina de diferenças (único algoritmo) para cálculo de tabelas navais (aproximava logaritmos e funções trigonométricas por polinômios). Só somava e subtraia. Saída: resultados perfurados numa chapa de cobre.

1834-35 - Babbage muda a sua meta para o projeto do "Analytical Engine" (Grandes gastos)

- Idéia muito próxima da concepção de um computador atual. Máquina mecânica. Inacabado.
- Componentes: armazenagem (memória), moinho (unidade de cálculo), entrada (cartões perfurados) e saída (cartões perfurados).
- Armazenagem: 1000 palavras de 50 algarismos decimais.
- Moinho: somava, subtraia, multiplicava e dividia.
- De uso geral, diferente da diferencial.
- Instruções de desvio condicional.
- Dificuldade: era necessário o uso de peças mecânicas de alto grau de precisão, não possível para a época.

Ada Augusta (1815-1852), Lady Lovelace, filha do poeta Lord Byron, tornou-se a primeira *programadora*, escrevendo séries de instruções para o engenho analítico de Babbage.

Ada inventou os conceitos:

- a) subrotina: uma seqüência de instruções que pode ser usada várias vezes em diferentes contextos;
- b) laços (*loops*) de modo que a seqüência pudesse ter sua execução repetida; e
- c) desvio condicional: a leitora de cartões desviaria para outro cartão "se" alguma condição fosse satisfeita.

O matemático inglês <u>George Boole</u> (1815-1864) publicou em 1854 os princípios da lógica booleana, onde as variáveis assumem apenas valores 0 e 1 (verdadeiro e falso).

A dificuldade de se implementar um dígito decimal (um número inteiro entre 0 e 9) em componentes elétricos determinaram o uso da base 2 em computadores. A lógica booleana foi usada na implementação dos circuitos elétricos internos a partir do século XX.

Por volta de 1890, <u>Herman Hollerith</u> (1860-1929), foi responsável por uma grande mudança na maneira de se processar os dados dos censos da época.

Os dados do censo de 1880, manualmente processados, levaram 7 anos e meio para serem compilados. Os do censo de 1890 foram processados em 2 anos e meio, com a ajuda de uma máquina baseada em cartões perfurados criada por Hollerith.

Mais tarde, Hollerith foi um dos fundadores da IBM.

Computadores eletromecânicos

O primeiro computador eletromecânico, o chamado Z-1, usava relês e foi construído pelo alemão Konrad Zuse (1910-1995) em 1936.

Zuze tentou vendê-lo ao governo para uso militar, mas foi subestimado pelos nazistas, que não se interessaram pela máquina.

Relés eletromecânicos

A Marinha americana, em conjunto com a Universidade de Harvard e a IBM, construiu em 1944 o Mark I. Em um certo sentido, essa máquina era a realização do projeto de Babbage. Entrada e Saída: fita de papel perfurada. Instruções de 6 segundos e 72 palavras de 23 algarismos decimais.

Mark I ocupava 120 m³, tinha milhares de relês e fazia um barulho infernal.

Uma multiplicação de números de 10 dígitos levava 3 segundos para ser efetuada.

Observações

 Até aqui (Geração zero: computadores mecânicos).

Computador eletrônico (a válvulas eletrônicas – Geração 1)

Em segredo, o exército americano também desenvolvia seu computador. Esse usava apenas válvulas eletrônicas e tinha por objetivo calcular as trajetórias de mísseis com maior precisão.

Funcionamento

Os engenheiros <u>John Presper Eckert</u> (1919-1995) e <u>John Mauchly</u> (1907-1980) projetaram o ENIAC: *Eletronic Numeric Integrator And Calculator*, com 18.000 válvulas. Decimal.

O ENIAC conseguia fazer 500 multiplicações por segundo. Entrada: chaves, entre outras. Saída: luzes. Cálculos balísticos. Poder inferior ao de uma calculadora atual de bolso. Acabou não sendo utilizado para seu propósito original.

ENIAC é revelado na Universidade de Pennsylvania em 14 de fevereiro de 1946 e inicia-se a era da computação moderna.

Von Neumann

O matemático húngaro <u>John von Neumann</u> (1903-1957) formalizou o projeto lógico de um computador.

von Neumann sugeriu que as instruções fossem armazenadas na memória do computador.

Até então elas eram lidas de cartões perfurados e executadas, uma a uma.

Armazená-las na memória, para então executá-las, tornaria o computador mais rápido, já que, no momento da execução, as instruções seriam obtidas com rapidez eletrônica.

A maioria dos computadores de hoje em dia segue ainda o modelo proposto por von Neumann.

Geração de computadores

- As três primeiras gerações de computadores refletiram principalmente a evolução dos componentes básicos do computador (hardware):
 - Na primeira geração (1945-1959) usavam-se válvulas eletrônicas, quilômetros de fios, eram lentos, enormes e esquentavam muito.
 - Na segunda geração (1959-1964) substituiram-se as válvulas eletrônicas por transistores e os fios de ligação por circuitos impressos. Isso tornou os computadores mais rápidos, menores e de custo mais baixo.
 - Na terceira geração de computadores (1964-1970) foram usados os circuitos integrados, proporcionando maior compactação, redução dos custos e velocidade de processamento. Tem início a utilização de avançados sistemas operacionais.
 - As gerações posteriores, de 1970 até hoje, caracterizam-se pelo aperfeiçoamento tecnológico, com maior grau de miniaturização, densidade de componentes, confiabilidade e velocidade maior.

Invenção do transistor

Em 23 de dezembro de 1947 (Bell Labs), John Bardeen, Walter Brattain, e William Shockley, desenvolveram o primeiro transistor;

Usando semicondutores, os transistores puderam substituir as válvulas, sendo menores, mais rápidos e mais duradouros, além de não esquentarem tanto nem consumirem tanta energia.

ores III

Diversos encapsulamentos de transistores

Funcionamento

Desenvolvimento dos Primeiros Circuitos Integrados

- Nos anos 60, sob a influência do programa espacial americano, o desenvolvimento da microeletrônica levou a construção de circuitos transistorizados integrados em uma única pastilha de silício (chip) de dimensões reduzidas.
- Dezenas de milhares de transistores são integrados em um chip de alguns milímetros quadrados, dando origem aos circuitos integrados.
- 1971 O time de Hoff, Mazor e Faggin desenvolve o microprocessador 4004 da Intel.

Microprocessador 4004

2300 transistores

Microprocessadores da década de 1970

Microproces- sadores	4004	8008	8080	8086	8088
Ano	1971	1972	1974	1978	1979
Clock	108KHz	108KHz	2MHz	5-10MHz	5-8MHz
Barramento	4 bits	8 bits	8 bits	16 bits	8 bits
Número de transistores	2.300	3.500	6.000	29.000	29.000
Tecnologia	10 microns		6 microns	3 microns	3 microns
Endereça- mento de memória	640 bytes	16 Kilobytes	64 Kilobytes	1 Megabyte	1 Megabyte
Memória Virtual	-	_	-	_	-

Obs.: microns = medida de tamanho dos transistores do *chip*.

8008 (primeiro microprocessador de 8 bits) ano 1972

Microfotografia

3500 transistores

10 microns

8080 (microprocessador de 8 bits) 1974

6000 transistores

6 microns

8086 – microprocessador de 16 bits (1978)

29000 transistores

3 microns

Processadores da década de 1980

Microprocessad ores/ Características	80286	80386DX	80386SX	80486DX
Ano	1982	1985	1988	1989
Clock	6-12.5 MHz	16-33 MHz	16-33 MHz	25-50MHz
Barramento	16 bits	32 bits	16 bits	32 bits
Número de transistores	134.000	275.000	275.000	1.200.000
Tecnologia	1.5 microns	1 micron	1 micron	0.8 -1 micron
Endereçamento de memória	16 Megabytes	4 Gigabytes	4 Gigabytes	4 Gigabytes
Memória Virtual	1 Gigabyte	64 Terabytes	64 Terabytes	64 Terabytes
cache	-	-	-	8Kbytes

80286 (1982)

134000 transistores

1.5 microns

80386 (1985)

275000 transistores

1 micron

80486DX (1989)

1.200.000 transistores

0.8 - 1 micron

Processadores da década de 1990

Micropro- cessadores	80486SX	Pentium	Pentium Pro	Pentium II	Pentium III
Ano	1991	1993	1995	1997	1999
Clock	16-33 MHz	60-166 MHz	150-200 MHz	200-300MHz	400-1000MHz
Barramento	32 bits	32 bits	64 bits	64 bits	64 bits
Número de transistores	1.185.000	3.100.000	5.500.000	7.500.000	9.500.000
Tecnologia	1 micron	0,8 micron	0.6 micron	-	-
Ender. de memória	4 Gigabytes	4 Gigabytes	64 Gigabytes	64 Gigabytes	64 Gigabytes
Memória Virtual	64 Gigabytes	64 Terabytes	64 Terabytes	64 Terabytes	64 Terabytes
cache	8Kbytes	Instrução 8K Dado - 8K	Instrução 8K Dado – 8 K L 2 – 256 K	Instrução 16K Dado- 16 K L 2 – 512 K	Instrução 16K Dado–16 K L2 – 512 K

Pentium (1993)

3.100.000 transistores

0.8 micron

Pentium II (1995)

7.500.000 transistores

0.6 micron

Pentium III (1999)

21.000.000 transistores

0.18 micron

Pentium IV

35.000.000 transistores 0.18 micron

Moore's Law Continues

Transistors doubling every 2 years toward the billion-transistor microprocessor

System on Chip

Aplicações dedicadas, embarcadas ou embutidas, onde o custo, desempenho, consumo de energia são críticos.

Uso intensivo de processamento de sinais digitais – DSP

Mistura de diversos componentes

Combinação de módulos programáveis e dedicados

Software tem papel fundamental

Tarefa*

 Estudar e criar um resumo referente à seção 1.7 do livro texto: "Perspectiva histórica e leitura adicional" como forma de complementar o conteúdo visto em classe. Tópicos abordados: 1. Primeiros computadores eletrônicos (Eniac, etc.); 2. Desenvolvimentos comerciais (UNIVAC I, IBM System/360, Cray-1, Apple IIc Plus, Xerox Alto); 3. Computação embutida; 4. Evolução tecnológica.