$a_0(980)$

$$I^{G}(J^{PC}) = 1^{-}(0^{++})$$

See our minireview on scalar mesons under $f_0(500)$. (See the index for the page number.)

a₀(980) MASS

VALUE (MeV) DOCUMENT ID

980±20 OUR ESTIMATE Mass determination very model dependent

$\eta\pi$ FINAL STATE ONLY

VALUE (MeV)	EVTS	DOCUMENT ID		TECN CHG	COMMENT
• • • We do not use	the foll	owing data for aver	ages,	fits, limits, e	tc. • • •
982.5 ± 1.6 ±1.1 986 ± 4	16.9k	¹ AMBROSINO ANISOVICH	09F 09	KLOE RVUE	1.02 $e^+e^- \rightarrow \eta \pi^0 \gamma$ 0.0 $\overline{p}p$, πN
$982.3 \begin{array}{c} + & 0.6 & +3.1 \\ - & 0.7 & -4.7 \end{array}$		² UEHARA	09A	BELL	$\gamma \gamma \rightarrow \pi^0 \eta$
987.4 ± 1.0 ±3.0		^{3,4} BUGG	08A	RVUE 0	$\overline{p}p \rightarrow \pi^0\pi^0\eta$
989.1 \pm 1.0 \pm 3.0		^{4,5} BUGG	08A	RVUE 0	$\overline{p}p \rightarrow \pi^0 \pi^0 \eta$
985 \pm 4 \pm 6	318	ACHARD	02 B	L3	$^{183-209}_{e^{+}e^{-}\eta\pi^{+}\pi^{-}}$
$ \begin{array}{rr} +52 \\ -10 \end{array} $	36	⁶ ACHASOV	00F	SND	$e^+e^- ightarrow \eta \pi^0 \gamma$
$994 \begin{array}{c} +33 \\ -8 \end{array}$	36	⁷ ACHASOV	00F	SND	$e^+e^-\to~\eta\pi^0\gamma$
975 \pm 7		BARBERIS	00н		450 $pp \rightarrow p_f \eta \pi^0 p_s$
988 ± 8		BARBERIS	00н		450 <i>p p</i> →
		8 011 55		D) #15	$\Delta_f^{++} \eta \pi^- p_s$
$\sim 1055 \ \sim 1009.2$		⁸ OLLER ⁸ OLLER	99 99 _B	RVUE RVUE	$\eta \pi$, $K\overline{K}$ $\pi \pi \to \pi \pi$, $K\overline{K}$
\sim 1009.2 993.1 \pm 2.1		9 TEIGE	995	B852	$18.3 \pi^- p \rightarrow$
333.1 ± 2.1			33	2002	$\eta \pi^+ \pi^- n$
988 ± 6		⁸ ANISOVICH	98 B	RVUE	Compilation
987		TORNQVIST	96	RVUE	$\pi\pi \to \pi\pi$, $K\overline{K}$, $K\pi$, $\eta\pi$
991		JANSSEN	95	RVUE	$\eta\pi\stackrel{r}{ ightarrow}\eta\pi$, K \overline{K} , K π ,
984.45± 1.23±0.34		AMSLER	94C	CBAR	$0.0 \frac{7}{\overline{p}} p \rightarrow \omega \eta \pi^0$
982 ± 2		¹⁰ AMSLER	92	CBAR	$0.0 \overline{p} p \rightarrow \eta \eta \pi^0$
984 ± 4	1040	¹⁰ ARMSTRONG	91 B	$OMEG \pm$	$300 pp \rightarrow pp \pi^+ \pi^-$
976 ± 6		ATKINSON	84E	$OMEG\pm$	$pp\eta\pi^+\pi^ 25-55 \gamma p \rightarrow \eta\pi n$
986 ± 3	500	¹¹ EVANGELIS	81	$OMEG\pm$	$12 \pi^- p \rightarrow$
		11			$\eta \pi^+ \pi^- \pi^- \rho$
990 ± 7	145	¹¹ GURTU	79 70	HBC ±	$4.2 K^{-} p \rightarrow \Lambda \eta 2\pi$
980 ±11	47	CONFORTO	78	OSPK -	$4.5 \pi^- p \rightarrow pX^-$
978 ±16	50	CORDEN	78 77	OMEG ±	$12-15 \pi^- p \rightarrow n\eta 2\pi$
977 ± 7	70	GRASSLER	77 75	HBC –	$16 \pi^{\mp} p \rightarrow p \eta 3\pi$
989 \pm 4	70	WELLS	75	HBC –	$3.16~K^-p \rightarrow \Lambda\eta 2\pi$

972	± 10	150	DEFOIX	72	HBC \pm	$0.7 \; \overline{p} p \rightarrow 7\pi$
970	± 15	20	BARNES	69 C	HBC -	4-5 $K^-p \rightarrow \Lambda \eta 2\pi$
980	± 10		CAMPBELL	69	DBC \pm	$2.7 \pi^{+} d$
980	± 10	15	MILLER	69 B	HBC -	4.5 $K^- N \rightarrow \eta \pi \Lambda$
980	± 10	30	AMMAR	68	HBC \pm	$5.5 K^- p \rightarrow \Lambda \eta 2\pi$

 $^{^{1}\,\}text{Using}$ the model of ACHASOV 89 and ACHASOV 03B.

KK ONLY

<i>VALUE</i> (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
925 \pm 5 \pm 8	190k	$^{ m 1}$ AAIJ	16N	LHCB		$D^0 ightarrow \ \kappa_S^0 \kappa^\pm \pi^\mp$
ullet $ullet$ We do not	use the f	ollowing data for a	verag	es, fits,	limits,	etc. • • •
~ 1053		² OLLER	99 C	RVUE		$\pi\pi \to \pi\pi$, $K\overline{K}$
982 \pm 3		³ ABELE	98	CBAR		$\begin{array}{ccc} 0.0 \; \overline{p} p \to & K_L^0 K^{\pm} \pi^{\mp} \\ 0.0 \; \overline{p} p \to & K^{\pm} K_s \pi^{\mp} \end{array}$
975 ± 15		BERTIN	98 B	OBLX	\pm	$0.0 \overline{p} p \rightarrow K^{\pm} K_{S} \pi^{\mp}$
976 ± 6	316	DEBILLY	80	HBC	\pm	1.2–2 $\overline{p}p \rightarrow f_1(1285)\omega$
1016 ± 10	100		67	HBC	\pm	0.0 p p
1003.3 ± 7.0	143	⁵ ROSENFELD	65	RVUE	\pm	

 $^{^{1}}$ Using a two-channel resonance parametrization with couplings fixed to ABELE 98.

a₀(980) WIDTH

VALUE	(MeV)	EVTS	DOCUME	NT ID	TECN	CHG	COMMENT		
50	to 100 OUR ES	TIMATE	Width c	determination	very m	odel	dependent.	Peak v	vidth
in $\eta\pi$	is about 60 MeV	, but decay	width c	an be much l	arger.				

• • • We do not use the following data for averages, fits, limits, etc. • •

75.6 \pm 1.6 $^{+17.4}_{-10.0}$		¹ UEHARA	09A BELL	$\gamma \gamma \rightarrow \pi^0 \eta$
$80.2 \pm 3.8 \pm 5.4$		² BUGG	08A RVUE 0	$\overline{\rho} \rho \rightarrow \pi^0 \pi^0 \eta$
50 ± 13 \pm 4	318	ACHARD	02B L3	$^{183-209}_{e^{+}e^{-}\eta\pi^{+}\pi^{-}}$
72 ±16		BARBERIS	00н	$450 pp \rightarrow p_f \eta \pi^0 p_s$
61 ± 19		BARBERIS	00н	450 <i>pp</i> →
		2		$\it \Delta_f^{++} \eta \pi^- p_{_S}$
\sim 42		³ OLLER	99 RVUE	$\eta\pi$, K \overline{K}
~ 112		³ OLLER	99B RVUE	$\pi\pi ightarrow ~\eta\pi$, K \overline{K}

HTTP://PDG.LBL.GOV

Page 2

² From a fit with the S-wave amplitude including two interfering Breit-Wigners plus a

³ Parameterizes couplings to $\overline{K}K$, $\pi\eta$, and $\pi\eta'$.

⁴ Using AMSLER 94D and ABELE 98.

⁵ From the T-matrix pole on sheet II. ⁶ Using the model of ACHASOV 89. Supersedes ACHASOV 98B. ⁷ Using the model of JAFFE 77. Supersedes ACHASOV 98B.

⁹ Breit-Wigner fit, average between a_0^{\pm} and a_0^0 . The fit favors a slightly heavier a_0^{\pm} .

¹⁰ From a single Breit-Wigner fit.

¹¹ From $f_1(1285)$ decay.

³ T-matrix pole on sheet II, the pole on sheet III is at 1006-i49 MeV.

⁴ ASTIER 67 includes data of BARLOW 67, CONFORTO 67, ARMENTEROS 65.

⁵ Plus systematic errors.

71	± 7		TEIGE	99	B852	$18.3 \pi^{-} p \rightarrow \\ \eta \pi^{+} \pi^{-} n$
$92 \\ 65 \\ \sim 100$	±20 ±10		³ ANISOVICH ⁴ BERTIN TORNQVIST	98B 98B 96	RVUE OBLX ± RVUE	$ \begin{array}{l} \text{Compilation} \\ \text{0.0 } \overline{p} p \to K^{\pm} K_{\text{S}} \pi^{\mp} \\ \pi \pi \to \pi \pi, K \overline{K}, K \pi, \end{array} $
202			JANSSEN	95	RVUE	$ \eta \pi \\ \eta \pi \to \eta \pi, K \overline{K}, K \pi, \\ \eta \pi $
54.12 54 95	$2 \pm 0.34 \pm 0.12$ ± 10 ± 14	1040	AMSLER ⁵ AMSLER ⁵ ARMSTRONG	94C 92 91B	$\begin{array}{c} CBAR \\ CBAR \\ OMEG \pm \end{array}$	$0.0 \overline{p}p \rightarrow \omega \eta \pi^{0}$ $0.0 \overline{p}p \rightarrow \eta \eta \pi^{0}$ $300 pp \rightarrow pp \eta \pi^{+} \pi^{-}$
62	± 15	500	⁶ EVANGELIS	81	$OMEG \pm$	$ \begin{array}{c} p p \eta \pi^+ \pi^- \\ 12 \pi^- p \rightarrow \\ \eta \pi^+ \pi^- \pi^- p \end{array} $
60	± 20	145	⁶ GURTU	79	HBC ±	$4.2 \text{ K}^{-} \text{ p} \rightarrow \Lambda \eta 2\pi$
60	$+50 \\ -30$	47	CONFORTO	78	OSPK -	$4.5~\pi^-p\rightarrow~pX^-$
86.0	$+60.0 \\ -50.0$	50	CORDEN	78	$OMEG \pm$	12–15 $\pi^- p \rightarrow n \eta 2\pi$
44	± 22		GRASSLER	77	HBC –	$16 \pi^{\mp} \rho \rightarrow \rho \eta 3\pi$
80	to 300		⁷ FLATTE	76	RVUE -	$4.2 K^- p \rightarrow \Lambda \eta 2\pi$
16.0	$+25.0 \\ -16.0$	70	WELLS	75	HBC –	3.1–6 $K^- p \rightarrow \Lambda \eta 2\pi$
30	± 5	150	DEFOIX	72	HBC \pm	$0.7 \; \overline{p} p \rightarrow 7\pi$
40	± 15		CAMPBELL	69	DBC ±	$2.7 \pi^{+} d$
60	± 30	15	MILLER	69 B	HBC —	4.5 $K^- N \rightarrow \eta \pi \Lambda$
80	± 30	30	AMMAR	68	HBC \pm	$5.5 \ \text{K}^- p \rightarrow \Lambda \eta 2\pi$

 $^{^{}m 1}$ From a fit with the S-wave amplitude including two interfering Breit-Wigners plus a background term.

KK ONLY

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT	
92± 8		¹ ABELE	98	CBAR		$0.0 \; \overline{p} p \rightarrow \; K_L^0 K^{\pm} \pi^{\mp}$	
● ● We do not use the following data for averages, fits, limits, etc. ● ●							
~ 24		² OLLER	99 C	RVUE		$\pi\pi ightarrow \pi\pi$, K \overline{K}	
~ 25	100	³ ASTIER	67	HBC	\pm		
$57\!\pm\!13$	143	⁴ ROSENFELD	65	RVUE	\pm		

 $^{^{1}}$ T-matrix pole on sheet II, the pole on sheet III is at 1006-i49 MeV.

² From the T-matrix pole on sheet II, using AMSLER 94D and ABELE 98.

³T-matrix pole.

⁴ The $\eta\pi$ width.

 $^{^{5}}$ From a single Breit-Wigner fit. 6 From $f_{1}(1285)$ decay.

⁷ Using a two-channel resonance parametrization of GAY 76B data.

³ ASTIER 67 includes data of BARLOW 67, CONFORTO 67, ARMENTEROS 65.

⁴ Plus systematic errors.

a₀(980) DECAY MODES

Mode				Fract	ion (Γ _i	/Γ)
$\Gamma_1 = \eta \pi_{\underline{}}$				domi	nant	
Γ ₂				seen		
Γ_3 $ ho\pi$ Γ_4 $\gamma\gamma$				seen		
Γ_5 e^+e^-				30011		
	a _n (9	80) PA	RTIA	L WID	THS	
$\Gamma(\gamma\gamma)$	•	•				Γ ₄
VALUE (keV)		DOCU	MENT	ID	TECN	_
• • • We do not use th	e following	_		_		
0.30±0.10	, ,	¹ AMS		98	RVUE	<u> </u>
1 Using $\Gamma_{\gamma\gamma}$ B(a 0(980	$() ightarrow \eta \pi)$	=0.24 ±	0.08	keV.		
	a ₀ (9	980) Г(i)Γ(γ	γ)/Γ(to	tal)	
$\Gamma(\eta\pi) \times \Gamma(\gamma\gamma)/\Gamma_{\rm to}$	otal					$\Gamma_1\Gamma_4/\Gamma$
VALUE (keV)	<u>EVTS</u>	DOCU	MENT	ID	TECN	COMMENT
$0.21 \begin{array}{c} +0.08 \\ -0.04 \end{array}$ OUR AVE	RAGE					
$0.128 ^{+ 0.003 + 0.502}_{- 0.002 - 0.043}$		¹ UEH/	ARA	09A	BELL	$\gamma \gamma ightarrow \ \pi^{f 0} \eta$
$0.28 \pm 0.04 \pm 0.10$	44	OEST	Γ	90	JADE	$e^+e^- ightarrow e^+e^-\pi^0\eta$
$0.19 \ \pm 0.07 \ ^{+0.10}_{-0.07}$		ANTI	REASY	⁄AN 86	CBAL	$e^+e^- ightarrow e^+e^-\pi^0\eta$
$^{ m 1}$ From a fit with the background term.	S-wave a	amplitude	e inclu	ding two	o interf	ering Breit-Wigners plus a
$\Gamma(\eta\pi) \times \Gamma(e^+e^-)$	/F _{total}					Γ ₁ Γ ₅ /Γ
VALUE (eV)	CL%	DOCU	MENT	ID	TECN	COMMENT
<1.5	90	VOR	OBYE	V 88	ND	$e^+e^- ightarrow \pi^0 \eta$
	a ₀ (98	0) BRA	NCH	NG RA	TIOS	
$\Gamma(K\overline{K})/\Gamma(\eta\pi)$						Γ_2/Γ_1
<u>VALUE</u> 0.183±0.024 OUR AVE	<u>DOCU</u> RAGE F	MENT ID	ıdes sc	TECN	<u>CHG</u> or of 1.2	COMMENT
0.57 ± 0.16	1 BAR	GIOTTI	03	OBLX		<u>p</u> p
0.23 ± 0.05	² ABEI					$0.0 \overline{p} p \rightarrow K_L^0 K^{\pm} \pi^{\mp}$
$0.166 \pm 0.01 \pm 0.02$		BERIS				450 $pp \to p_f f_1(1285) p_s$
• • • We do not use th 1.20 ± 0.15						0.0 $\overline{p}p$, πN
$1.05 \pm 0.07 \pm 0.05$	5 BUG	G	08A	RVUE	0	$\overline{p}p \rightarrow \pi^0 \pi^0 \eta$
~ 0.60	OLLE	R	99 B	RVUE		$\pi\pi \to \eta\pi, K\overline{K}$
0.7 ± 0.3 0.25 ± 0.08	3 DEE/	DEN	78 72	OMEG	_	$\overline{p}p \rightarrow \pi^0 \pi^0 \eta$ $\pi \pi \rightarrow \eta \pi, K\overline{K}$ $12-15 \pi^- p \rightarrow n\eta 2\pi$ $0.7 \overline{p} \rightarrow 7\pi$
0.25 ±0.00	DEL		12	TIDC	工	$0.1 \ p \rightarrow 1\%$
HTTP://PDG.LBL.	GOV	Р	age 4		Crea	ated: 5/30/2017 17:21

 $\Gamma(\rho\pi)/\Gamma(\eta\pi)$ $\rho\pi$ forbidden. Γ_3/Γ_1

ALUE <u>CL%</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>CHG</u> <u>COMMENT</u>

• • • We do not use the following data for averages, fits, limits, etc. • • •

<0.25 70 AMMAR 70 HBC \pm 4.1,5.5 $K^- p \rightarrow \Lambda \eta 2\pi$

a₀(980) REFERENCES

AAIJ	16N	PR D93 052018	R. Aaij et al.	(LHCb Collab.)
AMBROSINO	09F	PL B681 5	F. Ambrosino <i>et al.</i>	(KLOE Collab.)
ANISOVICH	09	IJMP A24 2481	V.V. Anisovich, A.V. Sarant	
UEHARA	09A	PR D80 032001	S. Uehara <i>et al.</i>	(BELLE Collab.)
BUGG	08A	PR D78 074023	D.V. Bugg	` (LOQM)
ACHASOV	03B	PR D68 014006	N.N. Achsaov, A.V. Kiselev	(, ,
BARGIOTTI	03	EPJ C26 371	M. Bargiotti <i>et al.</i>	(OBELIX Collab.)
ACHARD	02B	PL B526 269	P. Achard <i>et al.</i>	(L3 Collab.)
ACHASOV	00F	PL B479 53	M.N. Achasov et al.	(Novosibirsk SND Collab.)
BARBERIS	00H	PL B488 225	D. Barberis <i>et al.</i>	(WA 102 Collab.)
OLLER	99	PR D60 099906 (erratun		(**** 102 00:102.)
OLLER	99B	NP A652 407 (erratum)	,	
OLLER	99C	PR D60 074023	J.A. Oller, E. Oset	
TEIGE	99	PR D59 012001	S. Teige <i>et al.</i>	(BNL E852 Collab.)
ABELE	98	PR D57 3860	A. Abele <i>et al.</i>	(Crystal Barrel Collab.)
ACHASOV	98B	PL B438 441	M.N. Achasov <i>et al.</i>	(Novosibirsk SND Collab.)
AMSLER	98 98	RMP 70 1293	C. Amsler	(NOVOSIDIISK SIND COIIAD.)
ANISOVICH	98B	SPU 41 419	V.V. Anisovich <i>et al.</i>	
ANISOVICII	900	Translated from UFN 168		
BARBERIS	98C	PL B440 225	D. Barberis <i>et al.</i>	(WA 102 Collab.)
BERTIN	98B	PL B434 180	A. Bertin <i>et al.</i>	(OBELIX Collab.)
TORNQVIST	96	PRL 76 1575	N.A. Tornqvist, M. Roos	(HELS)
JANSSEN	95	PR D52 2690	G. Janssen <i>et al.</i>	(STON, ADLD, JULI)
AMSLER	94C	PL B327 425	C. Amsler <i>et al.</i>	(Crystal Barrel Collab.)
AMSLER	94D	PL B333 277	C. Amsler et al.	(Crystal Barrel Collab.)
BUGG	94	PR D50 4412	D.V. Bugg et al.	(LOQM)
AMSLER	92	PL B291 347	C. Amsler <i>et al.</i>	(Crystal Barrel Collab.)
ARMSTRONG	91B	ZPHY C52 389	T.A. Armstrong <i>et al.</i>	(ATHU, BARI, BIRM+)
OEST	90	ZPHY C47 343	T. Oest <i>et al.</i>	(JADE Collab.)
ACHASOV	89	NP B315 465	N.N. Achasov, V.N. Ivanche	
VOROBYEV	88	SJNP 48 273	P.V. Vorobiev <i>et al.</i>	(NOVO)
VOROBILV	00	Translated from YAF 48		(11000)
ANTREASYAN	86	PR D33 1847	D. Antreasyan <i>et al.</i>	(Crystal Ball Collab.)
ATKINSON	84E	PL 138B 459	M. Atkinson <i>et al.</i>	(BONN, CERN, GLAS+)
EVANGELIS	81	NP B178 197	C. Evangelista <i>et al.</i>	(BARI, BONN, CERN+)
DEBILLY	80	NP B176 1	L. de Billy <i>et al.</i>	(CURIN, LAUS, NEUC+)
GURTU	79	NP B151 181	A. Gurtu <i>et al.</i>	(CERN, ZEEM, NIJM, OXF)
CONFORTO	78	LNC 23 419	B. Conforto <i>et al.</i>	(RHEL, TNTO, CHIC+)
CORDEN	78	NP B144 253	M.J. Corden <i>et al.</i>	(BIRM, RHEL, TELA+)
GRASSLER	77	NP B121 189	H. Grassler <i>et al.</i>	(AACH3, BERL, BONN+)
JAFFE	77	PR D15 267.281	R. Jaffe	(MIT)
FLATTE	76	PL 63B 224	S.M. Flatte	(CERN)
GAY	76B	PL 63B 220	J.B. Gay et al.	(CERN, AMST, NIJM) JP
WELLS	75 75	NP B101 333	J. Wells <i>et al.</i>	(OXF)
DEFOIX	72	NP B44 125	C. Defoix <i>et al.</i>	(CDEF, CERN)
AMMAR	70	PR D2 430		(KANS, NWES, ANL, WISC)
BARNES	69C	PRL 23 610	V.E. Barnes <i>et al.</i>	(BNL, SYRA)
CAMPBELL	69 69	PRL 23 010 PRL 22 1204	J.H. Campbell <i>et al.</i>	(BNL, 3TRA) (PURD)
MILLER	69B	PL 29B 255	D.H. Miller et al.	(PURD)
Also	ספט	PR 188 2011	W.L. Yen <i>et al.</i>	(PURD)
A13U		1 1/ 100 2011	vv.∟. ICII CL dl.	(FUND)

 $^{^1}$ Coupled channel analysis of $\pi^+\,\pi^-\,\pi^0$, $K^+\,K^-\,\pi^0$, and $K^\pm\,K^0_S\,\pi^\mp$.

 $^{^{2}\}operatorname{Using}\,\pi^{0}\pi^{0}\eta$ from AMSLER 94D.

³ From the decay of $f_1(1285)$.

⁴ This is a ratio of couplings.

⁵ A ratio of couplings, using AMSLER 94D and ABELE 98. Supersedes BUGG 94.

AMMAR	68	PRL 21 1832	R. Ammar et al.	(NWES, ANL)
ASTIER	67	PL 25B 294	A. Astier et al.	(CDEF, CERN, IRAD)
Includes d	ata of	BARLOW 67, CON	IFORTO 67, and ARMENTEROS	65.
BARLOW	67	NC 50A 701	J. Barlow <i>et al.</i>	(CERN, CDEF, IRAD, LIVP)
CONFORTO	67	NP B3 469	G. Conforto et al.	(CERN, CDEF, IPNP+)
ARMENTERO	S 65	PL 17 344	R. Armenteros et al.	(CERN, CDEF)
ROSENFELD	65	Oxford Conf. 58	A.H. Rosenfeld	(LRL)