## Variedades Complejas (tarea 2)

## Eduardo León (梁遠光)

## Setiembre 2020

**Ejercicio 1.** Muestre que  $\mathbb{C}^n$  no tiene subvariedades compactas de dimensión positiva. (En particular, no existe un análogo complejo del teorema de encaje de Whitney.)

Solución. Sea  $X\subset\mathbb{C}^n$  una subvariedad compacta y conexa. Sea  $z:\mathbb{C}^n\to\mathbb{C}$  una función coordenada. Por compacidad, |z| se maximiza en algún punto de X. Tomemos una carta de X centrada en dicho punto de referencia, con coordenadas en una bola  $B\subset\mathbb{C}^d$ , y denotemos por  $f:B\to\mathbb{C}$  la representación de  $z\mid X$  en esta carta.

Tomemos una recta compleja  $L \subset \mathbb{C}^d$  que pasa por el punto de referencia. Entonces  $B_L = B \cap L$  es una bola unidimensional en  $L \cong \mathbb{C}$  y la restricción  $f_L = f \mid B_L$  es una función holomorfa de una variable cuyo módulo  $|f_L|$  alcanza un valor máximo. Por el principio del módulo máximo,  $f_L$  debe ser constante. Puesto que todas las rectas L pasan por un punto común, f es constante.

Sea  $Y \subset X$  la intersección de X con el hiperplano z = b, donde  $b \in \mathbb{C}$  es el valor constante de f. Por el argumento anterior, Y es un subconjunto abierto de X. Por definición de topología relativa, Y es también un subconjunto cerrado de X. Puesto que X es conexo e Y es no vacío, tenemos Y = X, es decir, X está contenida en el hiperplano z = b. Repitiendo este argumento usando las demás n - 1 coordenadas de  $\mathbb{C}^n$ , demostramos que X es un punto.

**Ejercicio 2.** (Teorema de la función implícita) Considere el espacio  $\mathbb{C}^m$  con coordenadas  $z=(z^1,\ldots,z^m)$  y el espacio  $\mathbb{C}^n$  con coordenadas  $w=(w^1,\ldots,w^n)$ . Sea  $f:U\to\mathbb{C}^n$  una aplicación holomorfa definida en un subconjunto abierto  $U\subset\mathbb{C}^m\times\mathbb{C}^n$ . Suponga que  $(z_0,w_0)\in U$  es un punto en el cual

$$\det \frac{\partial f}{\partial w} \neq 0$$

Demuestre que existen un abierto encajado  $Z \times W \subset U$  y una aplicación holomorfa  $g: Z \to W$  tales que  $f(z, w) = f(z_0, w_0)$  si y sólo si g(z) = w.

Solución. Asumiremos como cierta la versión real<sup>1</sup> del teorema. Reinterpretemos  $df: \mathbb{C}^m \times \mathbb{C}^n \to \mathbb{C}^n$  como una transformación  $\mathbb{R}$ -lineal  $df_{\mathbb{R}}: \mathbb{R}^{2m} \times \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ . La manera obvia de hacer esto es reinterpretar cada entrada compleja z = a + ib del jacobiano como la matriz

$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

Tras complejificar los espacios vectoriales  $\mathbb{R}^{2m} \otimes \mathbb{C} = \mathbb{C}^{2m}$  y  $\mathbb{R}^{2n} \otimes \mathbb{C} = \mathbb{C}^{2n}$ , podemos diagonalizar simultáneamente todas las matrices  $2 \times 2$  arriba mencionadas. El resultado es

$$\begin{bmatrix} z & 0 \\ 0 & \bar{z} \end{bmatrix}$$

Reordenando las filas y columnas y denotando  $f_z = \partial f/\partial z$ ,  $f_w = \partial f/\partial w$  por claridad notacional (pero recordando que son matrices), las entradas del jacobiano real complejificado y diagonalizado son

$$df_{\mathbb{R}} \otimes 1 = \begin{bmatrix} f_z & f_w \end{bmatrix} \otimes 1 = \begin{bmatrix} f_z & 0 & f_w & 0 \\ 0 & \overline{f_z} & 0 & \overline{f_w} \end{bmatrix}$$

<sup>&</sup>lt;sup>1</sup>Esto es hacer trampa, porque es en la versión real del teorema donde está toda la dificultad.

Entonces  $df_{\mathbb{R}} \otimes 1$  es una matriz de rango total. Por ende,  $df_{\mathbb{R}}$  es una matriz de rango total. Usando la versión real del teorema de la función implícita, existe una aplicación  $g: Z \to W$  con todas las propiedades requeridas excepto una: g es meramente de clase  $C^{\infty}$ , no necesariamente holomorofa.

Puesto que f es una función holomorfa, tenemos

$$\frac{\partial}{\partial \bar{z}} \left[ f(z,g(z)) \right] = \frac{\partial f}{\partial \bar{z}} (z,g(z)) + \frac{\partial f}{\partial w} \cdot \frac{\partial g}{\partial \bar{z}} + \frac{\partial f}{\partial \bar{w}} \cdot \frac{\partial g}{\partial \bar{z}} = \frac{\partial f}{\partial w} \cdot \frac{\partial g}{\partial \bar{z}} = 0$$

Pero, como  $\partial f/\partial w$  es una matriz invertible, esto implica que  $\partial g/\partial \bar{z} = 0$ . Es decir, g es holomorfa.

**Ejercicio 3.** En el espacio proyectivo  $\mathbb{CP}^n$ , un polinomio homogéneo  $F(z_0,\ldots,z_n)$  no define una función, pues su valor en el punto  $[a_0:\cdots:a_n]$  no siempre está bien definido. Sin embargo, el conjunto de ceros en  $\mathbb{CP}^n$  de un polinomio homogéneo  $F(z_0,\ldots,z_n)$  sí está bien definido, ya que

$$F(z_0, \dots, z_n) = 0 \iff F(tz_0, \dots, tz_n) = t^k F(z_0, \dots, z_n)$$

para todo  $t \in \mathbb{C}^*$ . El conjunto de ceros de una cantidad finita de polinomios homogéneos en  $\mathbb{CP}^n$  se denomina una variedad proyectiva compleja. Una variedad definida por un único polinomio homogéneo de grado k se denomina una hipersuperficie de grado k. Muestre que la hipersuperficie Z(F) definida por  $F(z_0, z_1, z_2) = 0$  es una variedad compleja suave (manifold) si las derivadas parciales  $\partial F/\partial z_i$  no se anulan simultáneamente en ningún punto de Z(F).

Solución. Sea  $p \in \mathbb{C}^3$  un punto distinto del origen. Supongamos que el polinomio homogéneo  $F(z_0, z_1, z_2)$  se anula en p, pero alguna de las derivadas parciales  $\partial F/\partial z_i$  no se anula en p. Sea  $U \subset \mathbb{CP}^2$  una vecindad afín del punto  $[p] \in \mathbb{CP}^2$  y sea H la parte de Z(F) contenida en U. Finalmente, sean  $\tilde{U}, \tilde{H}$  las preimágenes de U, H bajo la proyección canónica  $\pi : \mathbb{C}^3 \setminus \{0\} \to \mathbb{CP}^2$ .

Utilizando esta información, construiremos un diagrama conmutativo de la forma



cuyas filas y columnas son todas exactas:

- El cuadrado superior izquierdo conmuta porque la incrustación  $\tilde{\iota}: \tilde{H} \to \tilde{U}$  es  $\mathbb{C}^*$ -equivariante, así que respeta los campos tangentes a las órbitas generados por la acción del álgebra de Lie  $T_1\mathbb{C}^*$ .
- El cuadrado superior derecho conmuta porque  $\ker \pi_p = T_1 \mathbb{C}^*$  está incluido en  $\ker dF_p = T_p \tilde{H}$ . Esto último se debe a que F es constante sobre la órbita [p].
- ullet El cuadrado inferior izquierdo conmuta porque  $\tilde{\iota}$  induce una incrustación  $\iota: H \to U$ .
- El cuadrado inferior derecho conmuta por una razón un tanto elaborada. Recordemos que existe un biholomorfismo  $\mathbb{C}^*$ -equivariante entre  $\tilde{U}$  y el producto cartesiano  $\mathbb{C}^* \times U$ , donde  $\mathbb{C}^*$  actúa de manera trivial sobre el segundo factor U. Este biholomorfismo induce una manera canónica de expresar todo vector tangente en  $T_p\tilde{U}$  como suma de un vector tangente en  $T_{[p]}U$  y un vector tangente a la órbita, ahora identificada con el factor  $\mathbb{C}^*$ . Pero F es constante sobre la órbita, así que  $dF_p$  se anula sobre la parte tangente a ella, así que  $dF_p$  está determinado por cómo actúa sobre  $T_{[p]}U$ .

- Las dos primeras columnas son exactas porque la proyección canónica  $\pi: \tilde{U} \to U$  es una sumersión cuyas fibras son precisamente las órbitas de la acción de  $\mathbb{C}^*$ .
- La tercera columna es exacta porque, si utilizamos la representación local de  $\tilde{U}$  que lo identifica con  $\mathbb{C}^* \times U$ , entonces la representación local de id :  $T_0\mathbb{C} \to T_0\mathbb{C}$  es el morfismo identidad.
- La primera fila es exacta porque id :  $T_1\mathbb{C}^* \to T_1\mathbb{C}^*$  es el morfismo identidad.
- La segunda fila es exacta porque el diferencial  $dF_p: T_p\tilde{U}_0 \to T_0\mathbb{C}$  es sobreyectivo (por hipótesis, todo  $p \in \tilde{H}$  es un punto regular de F) y su núcleo es, por definición,  $T_pH = \ker dF_p$ .
- Entonces, por el lema de los nueve, la tercera fila es exacta. Pero esto implica que Z = Z(F) tiene un espacio tangente unidimensional bien definido en [p], ya que

$$\dim_{\mathbb{C}} T_{[p]}Z = \dim_{\mathbb{C}} T_{[p]}H = \dim_{\mathbb{C}} T_{[p]}U - \dim_{\mathbb{C}} T_0\mathbb{C} = 2 - 1 = 1$$

Entonces p no es un punto singular de Z(F). Generalizando, si las derivadas parciales  $\partial F/\partial z_i$  no se anulan simultáneamente para ningún punto  $[p] \in Z$ , entonces Z es una variedad compleja suave.

**Ejercicio 4.** Sea V un espacio vectorial complejo de dimensión  $n \in \mathbb{N}$ . Como una generalización del espacio proyectivo  $\mathbb{P}(V)$ , identificado de manera natural con el conjunto de rectas en V que pasan por el origen, uno define el grassmanniano  $Gr_k(V)$  como el espacio de k-planos en V que pasan por el origen. Esto es,

$$\operatorname{Gr}_k(V) = \{W \subset V : \dim W = k\}$$

En particular,  $Gr_1(V) = \mathbb{P}(V)$  y  $Gr_{n-1} V = \mathbb{P}(V^*)$ .

Para mostrar que  $Gr_k(V)$  es una variedad compleja, se puede asumir que  $V = \mathbb{C}^n$ . Todo  $W \in Gr_k(V)$  es generado por las filas de una matriz  $k \times n$  de rango k. Denote por  $M_{k,n}$  el conjunto de tales matrices y observe que  $M_{k,n}$  es un subconjunto abierto del espacio de todas las matrices  $k \times n$ . Este último es una variedad compleja canónicamente isomorfa a  $\mathbb{C}^{k \times n}$ . Esto induce una sobreyección natural  $\pi: M_{k,n} \to Gr_k(V)$ , que es el cociente por la acción natural de  $GL(k,\mathbb{C})$  sobre  $M_{k,n}$ .

Fije un orden  $\{B_1, \ldots, B_m\}$  para los menores  $k \times k$  de una matriz  $k \times n$  y defina  $U_i$  como el subconjunto abierto de  $\operatorname{Gr}_k(V)$  en el cual det  $B_i \neq 0$ . Si  $\pi(A) = \pi(A')$ , entonces  $\det(B_i) \neq 0$  si y sólo si  $\det(B_i') \neq 0$ , así que los abiertos  $U_i$  están bien definidos. Puesto que A es de rango total, se tiene  $\det(B_i) \neq 0$  para algún i, así que  $U_1, \ldots, U_m$  forman una cobertura abierta de  $\operatorname{Gr}_k(V)$ . Tras permutar las columnas de  $A \in \pi^{-1}(U_i)$ , uno puede escribir A como  $A = (B_i, C_i)$ , donde  $C_i$  es una matriz de orden  $k \times (n-k)$ . Entonces la aplicación  $\varphi_i : U_i \to \mathbb{C}^{k \times (n-k)}$  dada por  $\varphi \circ \pi(A) = B_i^{-1}C_i$  está bien definida.

- a) Verifique que  $\{(U_i, \varphi_i)\}$  es un atlas holomorfo sobre  $Gr_k(V)$ .
- b) Demuestre que todo  $\sigma \in GL(V)$  induce un biholomorfismo  $\sigma : Gr_k(V) \to Gr_k(V)$ .
- c) Determine la dimensión de las variedades grassmannianas.

Solución.

- a) Ya sabemos que  $U_1, \ldots, U_m$  cubren  $\operatorname{Gr}_k(V)$  y las cartas  $\varphi_i : U \to \mathbb{C}^{k \times (n-k)}$  están bien definidas. Sólo nos falta demostrar que cada función de transición  $\tau_{ij} = \varphi_j \circ \varphi_i^{-1}$  es holomorfa.

  Tomemos un punto  $W \in U_i \cap U_j$ , representado por  $K_i = \varphi(W)$  en las coordenadas de  $U_i$ . Permutemos las columnas de  $(I, K_i)$  para obtener una matriz de la forma  $(B_i, C_i)$ . Puesto que  $W \in U_i$  la matriz
  - las columnas de  $(I, K_i)$  para obtener una matriz de la forma  $(B_j, C_j)$ . Puesto que  $W \in U_j$ , la matriz  $B_j$  es invertible, así que  $(I, B_j^{-1}C_j)$  es un punto bien definido y está en la órbita de  $(B_j, C_j)$ . Entonces  $K_j = B_j^{-1}C_j$  es la representación de W en las coordenadas de  $U_j$ . Por construcción, las entradas de  $K_j$  son funciones racionales de las entradas de  $K_j$ , así que  $\tau_{ij}$  es holomorfa.
- b) Sea  $\sigma: V \to V$  un isomorfismo lineal y sea  $S \in GL(n,\mathbb{C})$  la matriz que representa a  $\sigma$ . El efecto de aplicar  $\sigma$  a las filas de  $A \in M_{k,n}$  es que A se multiplica a la derecha por  $S^t$ . Puesto que S es invertible,  $\sigma(A) = AS^t$  es de rango total, así que  $\sigma(A) \in M_{k,n}$ . Por ende,  $\sigma$  se interpreta de manera natural como una aplicación holomorfa  $\sigma: M_{k,n} \to M_{k,n}$ .

Por otro lado, el efecto de la acción de  $\mathrm{GL}(k,\mathbb{C})$  es que cada  $A \in M_{k,n}$  se multiplica a la izquierda por el elemento actuante  $P \in \mathrm{GL}(k,\mathbb{C})$ . La multiplicación de matrices es asociativa, i.e.,  $PAS^t$  es una expresión bien definida, independientemente de si primero multiplicamos PA o  $AS^t$ . Esto implica que  $\sigma$  es  $\mathrm{GL}(k,\mathbb{C})$ -equivariante, i.e.,  $\sigma$  se interpreta de manera natural como una aplicación continua bien definida  $\tilde{\sigma}: \mathrm{Gr}_k(V) \to \mathrm{Gr}_k(V)$ . Sólo falta demostrar que  $\tilde{\sigma}$  es holomorfa.

Consideremos representación local de  $\tilde{\sigma}$  en un punto  $W \in U_i$  cuya imagen es  $\tilde{\sigma}(W) \in U_j$ . Para hallar  $K_i = \varphi_i \circ \tilde{\sigma}(W)$  a partir de  $K_i = \varphi_i(W)$ , utilizamos el siguiente procedimiento:

- Obtener el representante  $A \in M_{k,n}$  cuya permutación de columnas es  $(I, K_i)$ .
- Aplicar  $\sigma$  a fin de obtener  $\sigma(A) = AS^t$  como representante de  $\tilde{\sigma}(W)$ .
- Permutar las columnas de  $AS^t$  para obtener una matriz extendida  $(B_j, C_j)$ .
- Calcular  $K_j = B_j^{-1} C_j$ .

Evidentemente,  $K_j$  es una función racional de  $K_i$ , así que  $\tilde{\sigma}$  es una aplicación holomorfa. Finalmente, por supuesto, el automorfismo lineal inverso  $\sigma^{-1}: V \to V$  induce la aplicación holomorfa inversa  $\tilde{\sigma}^{-1}: \operatorname{Gr}_k(V) \to \operatorname{Gr}_k(V)$ , así que  $\tilde{\sigma}$  es un biholomorfismo.

c) El enunciado nos da una cobertura de  $Gr_k(V)$  por abiertos biholomorfos a  $\mathbb{C}^{k \times (n-k)}$ . Por lo tanto, la dimensión compleja de  $Gr_k(V)$  no puede ser otra cosa que  $k \times (n-k)$ .

**Ejercicio 5.** (Variedades de Hopf) Sea  $G \subset \mathbb{C}^*$  el subgrupo cíclico generado por algún punto 0 < |z| < 1. Considere la acción multiplicativa de G sobre el espacio vectorial agujereado  $M = \mathbb{C}^n - \{0\}$ . El espacio de órbitas X = M/G de esta acción se denomina una variedad de Hopf.

- a) Muestre que la acción de G sobre M es libre y propiamente discontinua, y el cociente X = M/G es difeomorfo a  $S^1 \times S^{2n-1}$ .
- b) Para n=1, exhiba un isomorfismo  $\varphi:\mathbb{C}/\Gamma\to X$ , donde  $\Gamma\subset\mathbb{C}$  es un retículo.
- c) Para n > 1, verifique que X no admite estructuras simplécticas, mucho menos de Kähler, y por tanto X no es una variedad proyectiva.

Sugerencia. Utilice la fórmula de Künneth para calcular  $H^2_{dR}(X)$ .

- d) Muestre que toda variedad de Hopf admite una fibración por curvas elípticas. Sugerencia. Extienda la fibración de Hopf:  $S^1 \hookrightarrow S^{2n-1} \twoheadrightarrow \mathbb{CP}^{n-1}$ .
- e) Sea  $G \subset (\mathbb{C}^*)^n$  el subgrupo cíclico generado por un punto con coordenadas  $0 < |z_i| < 1$ . Considere la acción multiplicativa de G sobre cada coordenada de M. Los espacios cociente X = M/G de este tipo son una generalización de las variedades de Hopf. Muestre que, pese a los cambios en la construcción, X sigue siendo difeomorfo a  $S^1 \times S^{2n-1}$ .

Solución.

a) Recordemos que el espacio proyectivo  $\mathbb{CP}^{n-1}$  se construye cocientando M por la acción de  $\mathbb{C}^*$  vía la multiplicación en cada componente. Para estudiar la topología cociente, es conveniente factorizar el grupo actuante como  $\mathbb{C}^* = \mathbb{R}^+ \times S^1$ . Existe un difeomorfismo  $\mathbb{R}^+$ -equivariante  $\varphi: M \to \mathbb{R}^+ \times S^{2n-1}$ , donde  $\mathbb{R}^+$  actúa multiplicativamente sobre el primer factor y trivialmente sobre el segundo factor del producto cartesiano  $\mathbb{R}^+ \times S^{2n-1}$ .

Si ejecutamos la factorización  $\mathbb{C}^* = \mathbb{R}^+ \times S^1$  con cuidado, entonces podemos conseguir que G sea un subgrupo del factor  $\mathbb{R}^+$ . Con ello, la acción de G sobre  $\mathbb{R}^+ \times S^{2n-1}$  hereda las cualidades de la acción de  $\mathbb{R}^+$ , i.e., es multiplicativa en el primer factor y trivial en el segundo. Entonces,

$$\frac{M}{G} \cong \frac{\mathbb{R}^+ \times S^{2n-1}}{G} \cong \frac{\mathbb{R}^+}{G} \times S^{2n-1} \cong S^1 \times S^{2n-1}$$

La acción de G sobre  $\mathbb{R}^+$  es libre y propiamente discontinua, pues  $\mathbb{R}^+$  es un grupo Hausdorff y G es un subgrupo discreto de  $\mathbb{R}^+$ . (Los detalles se darán en la solución del ejercicio 6.a.) Esto implica que la acción de G sobre  $M \cong \mathbb{R}^+ \times S^{2n-1}$  también es libre y propiamente discontinua.

Ahora describiremos explícitamente la factorización cuidadosa de  $\mathbb{C}^*$  antes mencionada. Consideremos el recubrimiento universal exp :  $\mathbb{C} \to \mathbb{C}^*$ . Como homomorfismo de grupos, su núcleo es  $K = 2\pi i \mathbb{Z}$  y está contenido en el eje imaginario, que denotaremos  $M \subset \mathbb{C}$ . Tomemos una recta  $L \subset \mathbb{C}$  cuya imagen  $\exp(L)$  pasa por el generador de G. Observemos que L, M son oblicuas, porque  $\exp(M)$  es el círculo unitario, que por hipótesis no contiene al generador de G. Entonces,

$$\mathbb{C}^{\star} \cong \frac{\mathbb{C}}{K} = \frac{L \times M}{K} = L \times \frac{M}{K} \cong \mathbb{R}^{+} \times S^{1}$$

Como comentario final, observemos que, si  $b \in \mathbb{R}$ , entonces  $\exp(L)$  es el eje real positivo  $\mathbb{R}^+$ , mientras que, si  $b \notin \mathbb{R}$ , entonces  $\exp(L)$  es una espiral logarítmica que emana del origen removido en  $\mathbb{C}^*$ .

- b) Para n=1, tenemos  $M=\mathbb{C}^*$ . Componiendo la proyección canónica  $\pi:\mathbb{C}^*\to X$  con el recubrimiento universal exp:  $\mathbb{C}\to\mathbb{C}^*$ , obtenemos otro recubrimiento universal  $\tilde{\varphi}:\mathbb{C}\to X$  cuyo núcleo es el retículo  $\Gamma=G\oplus K$ . Entonces  $\tilde{\varphi}$  induce un isomorfismo  $\varphi:\mathbb{C}/\Gamma\to X$ .
- c) Puesto que  $X = S^1 \times S^{2n-1}$  es un producto de espacios compactos, tenemos

$$H_{dR}^{\bullet}(X) = H_{dR}^{\bullet}(S^1) \otimes H_{dR}^{\bullet}(S^{2n-1})$$

En particular, en dimensión 2, tenemos

$$H^2_{dR}(X) = \bigoplus_{i+j=2} H^i_{dR}(S^0) \otimes H^j_{dR}(S^{2n-1})$$

Supongamos que n > 1 y analicemos cada sumando por separado:

- $\bullet$  Para i=0, el factor  $H^2_{dR}(S^{2n-1})$  es trivial, porque j=2 no es la dimensión de  $S^{2n-1}$ .
- Para i=1, el factor  $H^1_{dR}(S^{2n-1})$  es trivial, porque j=1 no es la dimensión de  $S^{2n-1}$ .
- Para i=2, el factor  $H^2_{dR}(S^1)$  es trivial, porque i=2 excede la dimensión de  $S^1$ .

Entonces  $H_{dR}^2(X)$  es trivial. Saquemos conclusiones:

■ Supongamos por el absurdo  $\omega \in \Omega^2(X)$  es una forma simpléctica sobre X. Puesto que  $H^2_{dR}(X)$  es trivial,  $\omega$  es exacta. Esto implica que  $\omega^n$  es exacta, i.e., existe  $\alpha \in \Omega^{2n-1}_{dR}(X)$  tal que  $\omega = d\alpha$ . Entonces, por el teorema de Stokes,

$$\int_{M} \omega^{n} = \int_{M} d\alpha = \int_{\partial M} \alpha = 0$$

Pero esto contradice el hecho de que  $\omega$ , por ser una forma simpléctica, es no degenerada. Por lo tanto, X no admite ninguna estructura simpléctica.

- Supongamos por el absurdo que existe un encaje holomorfo  $X \subset \mathbb{CP}^m$ . Entonces el pullback de la forma de Fubini-Study induce una estructura de Kähler sobre X. Dicha estructura de Kähler contiene una estructura simpléctica como parte de su definición. Pero en el ítem anterior hemos demostrado que X no admite estructuras simplécticas. Por lo tanto, X no puede ser encajada de manera holomorfa en  $\mathbb{CP}^m$  para ningún  $m \in \mathbb{N}$ .
- d) Puesto que  $\mathbb{C}^*$  es un grupo abeliano, G es un subgrupo normal de  $\mathbb{C}^*$ , así que el espacio proyectivo  $\mathbb{CP}^{n-1}$  se puede construir a partir de M en dos etapas, primero cocientando M por la acción de G y sólo entonces concientando X por la acción del toro complejo  $\mathbb{C}^*/G \cong \mathbb{C}/\Gamma$ . Entones las fibras de la proyeción canónica  $\pi: X \to \mathbb{CP}^{n-1}$  son copias de  $\mathbb{C}/\Gamma$  encajadas de manera holomorfa en X.

e) El argumento es similar al caso original. Consideremos el recubrimiento universal exp :  $\mathbb{C}^n \to (\mathbb{C}^*)^n$ , cuyo núcleo  $K = \ker \exp$  es un retículo en el n-plano real  $M \subset \mathbb{C}^n$  generado por los ejes imaginarios en cada copia de  $\mathbb{C}$ . Tomemos una recta  $L \subset \mathbb{C}^n$  tal que  $L' = \exp(L)$  pasa por el generador de G. Por construcción,  $L \cap M = 0$ , así que  $L \cap K = 0$ . Entonces L' es isomorfo a  $\mathbb{R}^+$ .

Ahora consideremos la acción de  $(\mathbb{C}^*)^n$  sobre M en la cual cada copia de  $\mathbb{C}^*$  actúa únicamente sobre la coordenada correspondiente de M. Restrinjamos el grupo actuante a L'. Cada L'-órbita interseca a la esfera unitaria  $S^{2n-1} \subset M$  en un único punto. Entonces existe una única función bien definida  $f: M \to L'$  con la propiedad de que  $\|\lambda \cdot z\| = 1$  si y sólo si  $\lambda = f(z)$ .

Sea  $\lambda_k$  la k-ésima coordenada de  $(\mathbb{C}^*)^n$ . Observemos que  $r_k = |\lambda_k|$  es un parámetro regular para las L'-órbitas contenidas en el abierto  $z_k \neq 0$  de M. Diferenciando  $g(\lambda) = |\lambda \cdot z|^2$ , tenemos

$$\frac{\partial g}{\partial r_k} = 2r_k \, |z_k|^2 > 0$$

Entonces las L'-órbitas son transversas a  $S^{2n-1}$ . Por el teorema de la función implícita<sup>2</sup>, existe una vecindad de  $z_0$  en la cual (una función con la propiedad que define a) f es diferenciable. Como  $z_0$  es arbitrario, f es globalmente diferenciable.

Finalmente, sea  $\varphi: M \to L' \times S^{2n-1}$  el difeomorfismo  $\varphi(z) = (f(z)^{-1}, f(z) \cdot z)$ . Este difeomorfismo es L'-equivariante si consideramos que L' actúa de manera multiplicativa sobre sí mismo y de manera trivial sobre  $S^{2n-1}$ . Puesto que G es un subgrupo de L', tenemos

$$\frac{M}{G} \cong \frac{L' \times S^{2n-1}}{G} \cong \frac{L'}{G} \times S^{2n-1} \cong S^1 \times S^{2n-1}$$

**Ejercicio 6.** (Variedad de Iwasawa) Dado un anillo (conmutativo, con unidad) R, el grupo de Heisenberg  $H_3(R)$  está conformado por las matrices  $3 \times 3$  de la forma

$$A(x,y,z) = \begin{bmatrix} 1 & z_1 & z_2 \\ 0 & 1 & z_3 \\ 0 & 0 & 1 \end{bmatrix}$$

Considere la acción izquierda sobre  $G = H_3(\mathbb{C})$  del subgrupo  $H = H_3(\mathbb{Z}[i])$ .

- a) Muestre la acción de H sobre G es propiamente discontinua y, por ende, el cociente X = G/H es una variedad compleja de dimensión 3.
- b) Considere el toro complejo  $Y = \mathbb{C}/\mathbb{Z}[i]$ . Muestre que X es el espacio total de una fibración de  $Y^2$  por curvas isomorfas a Y.

Solución.

a) Incluso sin utilizar la estructura diferenciable, dados un grupo topológico Hausdorff G y un subgrupo discreto  $H \subset G$ , es automático que H es un subgrupo cerrado de G y la acción izquierda de H sobre G es propiamente discontinua. En el ejercicio anterior, usamos este hecho sin demostración, para no sobrecargar aún más la respuesta dada. Ahora daremos la demostración detallada.

Puesto que  $H \subset G$  es discreto, podemos tomar una vecindad  $U \subset G$  de la identidad que no contiene otros puntos de H. Por continuidad de la multiplicación, podemos tomar vecindades  $U_1, U_2 \subset G$  de la identidad tales que  $U_1 \cdot U_2 \subset U$ . Entonces  $V = U_1 \cap U_2 \cap U_1^{-1} \cap U_2^{-1}$  es una vecindad de la identidad que satisface tanto  $V^{-1} = V$  como  $V^2 \subset U$ .

Tomemos dos elementos  $h_1, h_2 \in H$ . Si existiese algún  $g \in G$  tal que la traslación gV pasa por ambos, entonces  $h_1^{-1}h_2 \in U \cap H$ , lo cual sólo es posible si  $h_1 = h_2$ . Así pues, toda traslación de V visita a lo más un punto de H. Entonces podemos pensar en H como la familia localmente finita de sus propios puntos. Puesto que G es Hausdorff, sus puntos son cerrados y, por ende, H es cerrado.

 $<sup>^2\</sup>mathrm{Descubrir}$ este paso me tomó más tiempo del que me gustaría admitir.

Tomemos ahora un elemento  $g \notin H$ . Como H es cerrado en G, podemos asumir que U es disjunto de la clase lateral Hg. Dados  $h \in H$ ,  $v \in V$  arbitrarios, tenemos

$$hg \notin U \implies hg \notin V \implies hgv \notin V^2 \implies hgv \notin V$$

Entonces V es disjunto de HgV. En general, para separar dos clases laterales arbitrarias, aplicamos una traslación que mueva una de las clases a H. Un representante de la otra clase fungirá de g en el procedimiento antes descrito.

Finalmente, en nuestro caso particular, G es un grupo de Lie complejo y H es un subgrupo discreto de G. Por lo tanto, X = G/H es una variedad compleja de la misma dimensión de G, que es 3.

b) Identifiquemos  $R \subset H_3(R)$  con el subgrupo con coordenada  $z_2$  e identifiquemos  $R^2 \subset H_3(R)$  con el subgrupo con coordenadas  $z_1, z_3$ . Entonces  $H_3(R)$  es algebraicamente un producto semidirecto de la forma  $R \rtimes R^2$ . En otras palabras, tenemos una sucesión exacta partida

$$0 \longrightarrow R \longrightarrow H_3(R) \xrightarrow{\swarrow} R^2 \longrightarrow 0$$

La construcción de este diagrama es funtorial con respecto al anillo R. Por ende, la inclusión de los enteros gaussianos  $\mathbb{Z}[i]$  en los números complejos  $\mathbb{C}$  induce el diagrama conmutativo



Todas las filas y todas las columnas son exactas. Sin embargo, la columna central no se extiende más allá de G, porque H no es un subgrupo normal de G y, por lo tanto, X no es un grupo.

Componiendo la proyección de G sobre  $\mathbb{C}^2$  (horizontal) con la proyección de  $\mathbb{C}^2$  sobre  $Y^2$  (vertical), obtenemos un homomorfismo sobreyectivo de grupos de Lie  $\tilde{\pi}:G\to Y^2$  cuyo núcleo contiene a H, porque el camino  $H\to G\to \mathbb{C}^2\to Y^2$  es equivalente al camino  $H\to \mathbb{Z}[i]^2\to \mathbb{C}^2\to Y^2$  y este último envía  $\mathbb{Z}[i]$  a cero. Entonces existe una aplicación holomorfa sobreyectiva  $\pi:X\to Y^2$  que completa el siguiente diagrama conmutativo:

$$\begin{array}{c}
G \\
\downarrow \qquad \tilde{\pi} \\
X \xrightarrow{\pi} Y^2
\end{array}$$

Las fibras de  $\pi$  son isomorfas al cociente K/H, donde  $K = \ker \tilde{\pi} = \mathbb{C} \rtimes \mathbb{Z}[i]^2$  es el grupo de matrices de la forma  $A(z_1, z_2, z_3)$ , con entradas  $z_2 \in \mathbb{C}$ ,  $z_1, z_3 \in \mathbb{Z}[i]$ . Como  $N = \mathbb{Z}[i]$  es el factor normal de H en el producto semidirecto  $H = N \rtimes N^2$ , tenemos

$$\frac{K}{H} \cong \frac{K/N}{H/N} \cong \frac{Y \times N^2}{N^2} \cong Y \times \frac{N^2}{N^2} \cong Y$$

La acción de  $N^2$  no afecta al factor  $Y = \mathbb{C}/N$ , que es la coordenada  $z_2$  módulo una traslación.

**Ejercicio 7.** Sea  $\rho \in \mathbb{C}^*$  una raíz quinta de la unidad. Considere la acción de  $G = \langle \rho \rangle$  sobre  $\mathbb{CP}^3$  por

$$\rho \cdot [z_0 : z_1 : z_2 : z_3] = [z_0 : \rho z_1 : \rho^2 z_0 : \rho^3 z_3]$$

Sea  $Y \subset \mathbb{CP}^3$  el conjunto de ceros del polinomio  $f = z_0^5 + z_1^5 + z_2^5 + z_3^5$ . La superficie de Godeaux se define como el espacio de órbitas Y/G de la acción de G restricta a Y.

- a) Describa los puntos fijos de la acción de G sobre  $\mathbb{CP}^3$ .
- b) Muestre que Y es una superficie G-invariante y no contiene puntos fijos de la acción.

Solución.

a) La acción de G puede verse como un automorfismo lineal  $\rho:\mathbb{C}^4\to\mathbb{C}^4$  que rota cada eje coordenado por un ángulo diferente. La única manera una recta compleja  $L\subset\mathbb{C}^4$  sea G-invariante es que L sea uno de los ejes coordenados. Por lo tanto, los puntos fijos de la acción de G son

$$[1:0:0:0],$$
  $[0:1:0:0],$   $[0:0:1:0],$ 

b) La superficie Y es G-invariante porque la rotación de cada  $z_i$  por una raíz quinta de la unidad tiene efecto nulo sobre su quinta potencia  $z_i^5$ . Además, por simple inspección, f no se anula en ninguno de los puntos arriba listados.