Contamination-Mitigating Epoxy Coatings for Aircraft Leading Edges

Christopher J. Wohl¹, Michelle H. Shanahan², Alexandra J. Bosh³, Joseph G. Smith Jr.¹, Ronald K. Penner⁴, John W. Connell¹, Emilie J. Siochi¹

¹NASA Langley Research Center, Hampton, VA 23681
 ²National Institute of Aerospace, Hampton, VA 23666
 ³NIFS Intern, NASA Langley Research Center, Hampton, VA 23681
 ⁴Science and Technology Corporation, Hampton, VA 23666

39th Annual Meeting of the Adhesion Society

February 21-25, 2016

Leading Edge Surface Contaminants

Langley Research Center

Insect Residues

In-Flight Icing

Mitigation Strategies

Langley Research Center

Insect Residues

In-Flight Icing

Coleman, W.S. "Boundary Layer and Flow Control", ed. G.V. Lachman, Pergamon Press, 1961, pp. 682-747. Rudolf, P. K. C. "High-lift Systems on Commercial Subsonic Airliners," NASA Conference Report, 1996, CR-4746. Landsberg, B. "Aircraft Icing," Air Safety Foundation, AOPA Safety Advisor, Weather Number 1, 2002.

Mitigation Strategies

Langley Research Center

Insect Residues

In-Flight Icing

Bragg, M.G. and Maresh, J.L. AIAA Paper no. 84-2170, 1984.

Commonality of Insects and Ice

Langley Research Center

Accretion of insect residues or ice impacts airflow

- Both occur in-flight and are a product of the environment
- Both change airflow properties adversely

Insect residue and ice accretion can be mitigated

- Active mitigation strategies consume energy and increase vehicle weight
- Passive mitigation strategies are:
 - Insects → tolerance
 - Ice → avoidance

Differences Between Insects and Ice

Langley Research Center

Accretion of insect residues or ice impacts airflow

- Insect residue accretion will increase drag on future aircraft
- Ice accretion is a current safety issue
- Insect residue accretion occurs during take-off and landing
- Ice accretion can occur in a variety of flight profile locations

Insect residue and ice accretion can be mitigated

- Insect residue accretion is intermittent
- Ice accretion is continuous under icing flight conditions
- Roughness mitigates insect residue accretion
- Roughness worsens ice adhesion

Contaminant Mitigation Compromise

Langley Research Center

Can we generate a single coating formulation that would exhibit adhesion mitigation of both insect residues and in-flight icing?

These epoxy coatings were generated to evaluate this question

Epoxy Coating Compositions

Langley Research Center

Coating Description

Coating	Туре	Filler(s), Loading (wt%)	Filler Diameter (nm)	Roughness (Ra, μm)
IAMC-3	Urethane	None	1	8.8 ± 4.0
IAMC-4	Research Epoxy	None	1	4.8 ± 1.6
IAMC-5	Ероху	MoS ₂ (1.25%) SiO ₂ (3.75%)	2,000 7	62.2 ± 19.5
IAMC-5A	Ероху	None	1	9.6 ± 2.0
IAMC-5B	Ероху	SiO ₂ (10%)	7/10	395.5 ± 60.1

^{*}FAE was incorporated in all formulations at 1 wt%

Environmentally Responsible Aviation

Langley Research Center

Screen commercial and experimental materials using contact angle goniometry

Flight test candidate coatings downselected from wind tunnel tests

Downselect promising coatings for wind tunnel testing

Langley Research Center

◆ April 29 – May 10, 2015 in Shreveport, LA

Langley Research Center

April 29 – May 10, 2015 in Shreveport, LA

Langley Research Center

Test panels installed on leading edge slats

Langley Research Center

Test panels installed on leading edge slats

Residue Counts

5A

control

Langley Research Center

Approach to Data Analysis

Insect Residue Count for Flight Test 6

250 200 150 100 50

control

Surface

5B

control

control

% Reduction Relative to Local Control Surfaces

Cooting		Rank Tally for all Flights			
Coating	# 1	#2	#3	#4	
IAMC 3	0	0	1	4	
IAMC 4	1	0	1	2	
IAMC 5	4	3	2	0	
IAMC 5A	0	3	4	2	
IAMC 5B	5	2	1	1	

Performance Rank (PR)

$$PR = \frac{\sum n*Rank}{\# of Flights}$$

n= number of instances at a particular rank

Insect Residue Properties

Langley Research Center

Approach to Data Analysis

Coating Performance-Insects

Langley Research Center

Rank	Insect Residue Study	Ice Adhesion Study
1	IAMC-5	
2	IAMC-5B	
3	IAMC-4	
4	IAMC-5A	
5	IAMC-3	

NARI Icing Project

*NARI: NASA Aeronautics Research Institute

Langley Research Center

Seedling study to investigate fundamentals of ice adhesion at a molecular level experimentally and computationally

Smith Jr., J. G. et al. "Hydrogen Bonding Surface for Ice Mitigation" NASA Technical Memorandum, 2014, 218291.

Adverse Environment Rotor Test Stand

Langley Research Center

Pennsylvania State University Testing performed under simulated icing conditions

- FAR Part 25/29 Appendix C icing envelope
 - Super-cooled water injected into test chamber
 - Tests conducted at -8 to -16 °C
 - Icing cloud density (liquid water content, LWC) of 1.9 g/cm³
 - Water droplet mean volumetric diameter of 20 μm

Ice accumulation and subsequent shedding enabled determination of ice adhesion shear strength (IASS)

AERTS Results

Langley Research Center

Ice Adhesion Shear Strength

Adhesion Reduction Factor

IASS of Coated Al Surface

Coating Performance-Ice Adhesion

Langley Research Center

Rank	Insect Residue Study	Ice Adhesion Study (-12 °C)
1	IAMC-5	IAMC-5A
2	IAMC-5B	IAMC-5
3	IAMC-4	IAMC-4
4	IAMC-5A	IAMC-3
5	IAMC-3	IAMC-5B

Can We Do Better?

Langley Research Center

Durotaxis: a form of cell migration in which cells are guided by rigidity gradients.

Surfaces with Durotaxis-like Phenomena

Langley Research Center

Droplet motion in the absence of active locomotion on low modulus PDMS-coated stress-gradient surface.

Can this be translated to insect impact events?

Style, Robert W., et. al, *PNAS*, 2013, 110(13), 12541.

Substructure Topographical Modification Nasa

Laser Ablation

On NASA

Langley Research Center

Fluorosilane Treatment

Epoxy Coating (44 μm)

Thin Epoxy Coating (7 μm)

	Roughness (Ra, μm)			
Pulse Energy (μJ)	Laser Ablated (LA)	LA + Fluorosilane	LA + Epoxy	LA + Thinned Epoxy
0	0.19	0.26	0.85	
20	1.16	1.00	0.26	0.23
50	2.07	2.02	0.25	0.37
70	2.87	2.80	0.38	0.36
87	2.86	2.77	0.34	0.31

Fruit Fly Impact Experiments

Langley Research Center

Pneumatic Insect Delivery Device

High Speed Photography

Epoxy/2 Fillers

	Insect Rank	Ice Rank
IAMC-5A	4	1

Fruit Fly Impact Experiments

Langley Research Center

Summary and Conclusions

Langley Research Center

An example of "one size does not fit all"

- Coatings exhibited desired behavior during flight testing
- These same coatings exhibited mixed performance regarding ice adhesion testing
- Coating features have different effects on insect residues and ice

The idea of sub-surface topographical modification opens up a new research arena

 Initial results suggest that, for insect residue adhesion, the forces are strong enough at impact for translation through epoxy layer

It will be important to balance contaminant adhesion coating and aeronautics requirements

Acknowledgements

Langley Research Center

EcoD

- NASA LaRC: Keith Harris, Jim Fay, Mike Alexander, Paul Bagby
- Boeing EcoD Team

NARI Ice Team:

- Pennsylvania State University: Jose Palacios and Taylor Knuth
- NASA GRC: Richard "Eric" Kreeger
- North Dakota School of Mines and Technology: Kevin Hadley and Nick McDougall

Durotaxis discussion

Yale: Eric Dufresne and Kate Jensen

