Python的matplotlib.pyplot画图的方法 总结

库的使用:

import matplotlib.pyplot as plt
import numpy as np

基本方法:

• 文本显示函数

plt.xlabel(text,fontproperties,size) # text为内容(str)给x 轴命名 plt.ylabel(text,fontproperties,size) # text为内容(str)给y 轴命名 plt.title(text,fontproperties,size) # text为内容(str)给图 命名 plt.text(x,y,text,fontproperties) # x,y为图中坐标,text为添加 文本 在图中任意位置添加文本

• 中文显示:

pyplot的中文显示:第一种方法 pyplot并不默认支持中文显示,需要rcParams修改字体实现

mourt matplotlib.poplet as pit
sport matplotlib
stapport matplotlib
stapport matplotlib
stapport matplotlib
stapport matplotlib
stapport matplotlib
stapport matplotlib
sport matplotlib
stapport matplotli

rcParams的属性

歴性 说明
'font.family' 用于显示字体的名字
'font.style' 字体风格、正常'normal'班 斜体'italic'
'font.size' 字体大小、整数字号或者'large'、'x-small'

中文字体的种类

rcParams['font.family']

中文字体	说明		
'SimHei'	中文黑体		
'Kaiti'	中文楷体		
'LiSu'	中文隶书		
'FangSong'	中文仿宋		
'YouYuan'	中文幼園		
'STSong'	华文宋体		

实例

• 第二种方法: 直接改变文本显示函数中的参数

• 第三种方法:

```
from matplotlib.font_manager import FontProperties

font =
FontProperties(fname=r"c:\windows\fonts\simsun.ttc", ,size
=14)# 设置字体为14号简宋
'''后面使用文本显示函数时,将参数fontproperties=font,并且不再设置size'''
```

• 简单分区:

```
# 第一种方法
plt.subplot(x,y,current) # 划分为x行y列,序号从1开始到x*y,
current指的是当前在哪个区域
# 第二种方法
fig,ax = plt.subplots(x,y) # 划分为x行y列
'''plt.subplots() 函数见名知意,就是画多个图的意思。这个函数返回的
是一个元组(tuple)。这个元组中包含了一个figure对象和axes对象集合。
因此,当我们按上面fig, ax = plt.subplots()这样的用法时,我们相当
于把返回的 tuple 进行解压 (unpack) 成 fig 和 ax 两个变量。ax 变量
中保存着所有子图的可操作 axe 对象.
摘自: https://www.jianshu.com/p/2da30e247900
# 例子1
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(0, 100)
#划分子图
fig,axes=plt.subplots(2,2)
ax1=axes[0,0]
ax2=axes[0,1]
ax3=axes[1,0]
ax4=axes[1,1]
#作图1
ax1.plot(x, x)
#作图2
ax2.plot(x, -x)
#作图3
ax3.plot(x, x ** 2)
ax3.grid(color='r', linestyle='--', linewidth=1,alpha=0.3)
#作图4
ax4.plot(x, np.log(x))
plt.show()
```



```
# 例子2
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
matplotlib.rcParams['font.family'] = 'YouYuan'
AMean = [75, 77, 85]
BMean = [72, 88, 87]
CMean = [70, 85, 88]
ind = np.arange(0,3,1) # 分成3组
width = 0.25
                  # 每个柱子的宽度
fig, ax = plt.subplots()
                          #创建一个子图
#绘制第一个柱状图A
rects1 = ax.bar(ind, AMean,
width,hatch='/',edgecolor='black',color='white',label='A')
#绘制第二个柱状图B
rects2 = ax.bar(ind + width, BMean, width,
hatch='*',edgecolor='black',color='white',label='B')
#绘制第三个柱状图C
rects3 = ax.bar(ind+2*width
,CMean,width,hatch='.',edgecolor='black',color='white',lab
e1='C')
ax.set_xticks(ind+width)
ax.set_xticklabels(('第一次', '第二次', '第三次'))
plt.ylabel('成绩')
plt.legend(bbox_to_anchor=(0.14,0.78))
```


1.折线图、曲线图

```
plt.plot(x,y,format_string,**kwargs)
'''
x:x轴数据,列表形式或一维数组
y:y轴数据,列表形式或一维数组
format_string:控制曲线格式的字符串 eg:'ro-','r'是红色,'o'是圆点,'-'是实线
**kwargs:第二组(x,y,f_s)【用来绘制多条线】或者其他参数
'''
```

```
import matplotlib.pyplot as plt
import numpy as np
a = np.arange(10)
plt.plot(a, a*1.5, a, a*2.5, a, a*3.5, a, a*4.5)
plt.show()
```

· format_string: 控制曲线的格式字符串,可选由颜色字符、风格字符和标记字符组成

颜色字符	说明	颜色字符	说明
'b'	蓝色	/ m'	洋红色 magenta
'g'	绿色	'y'	黄色
'r'	红色	'k'	黑色
'c' 💮	青绿色 cyan	'w'	白色
'#008000'	RGB某颜色	'0.8'	灰度值字符串

· format_string: 控制曲线的格式字符串,可选由颜色字符、风格字符和标记字符组成

风格字符	说明
121	实线
1221	破折线
1-11	点划线
1:1	虚线
11 1 1	无线条

· format_string: 控制曲线的格式字符串,可选

标记字符	说明	标记字符	说明	标记字符	说明
1.1	点标记	'1'	下花三角标记	'h'	竖六边形标记
51	像素标记(极小点)	'2'	上花三角标记	'H'	横六边形标记
'o'	实心圈标记	'3'	左花三角标记	1+1	十字标记
'v'	倒三角标记	'4'	右花三角标记	'x'	×标记
'^'	上三角标记	's'	实心方形标记	'D'	菱形标记
'>'	右三角标记	'p'	实心五角标记	'd'	瘦菱形标记
'<'	左三角标记	"*"	星形标记	.11.	垂直线标记

color : 控制颜色, color='green'

linestyle : 线条风格, linestyle='dashed'

marker : 标记风格, marker='o'

markerfacecolor: 标记颜色, markerfacecolor='blue'

markersize : 标记尺寸, markersize=20

例子1

import matplotlib.pyplot as plt

font = 'STXINGKAI'

```
x = [1,2,3,4,5,6]
y1,y2 = [78,69,80,75,69,89],[80,68,72,81,70,77]
plt.subplot(2,1,1)
plt.plot(x, y1, 'ro-',linewidth=2.5)
plt.ylabel(u'分数', fontproperties=font,size = 14)
plt.title(u'二年级各班语文平均成绩变化趋势图',
fontproperties=font, size = 14)
plt.axis([0.5,6.5,0,100])
plt.subplot(2,1,2)
plt.plot(x, y2, 'bo-',linewidth=2.5)
plt.ylabel(u'分数', fontproperties=font,size = 14)
plt.title(u'三年级各班语文平均成绩变化趋势图',
fontproperties=font,size =14)
plt.axis([0.5,6.5,0,100])
```



```
# 例子2
import matplotlib.pyplot as plt # 引用matplotlib.pyplot库
import numpy as np # 引用numpy库
# 设置中文字体为简宋10号字
from matplotlib.font_manager import FontProperties
pic_font =
FontProperties(fname=r"c:\windows\fonts\simsun.ttc",
size=10)

# 会员A、B、C、D每天的伤害数值
memberA = [1127968,1193973,1330385,1211292,1365868]
memberB = [950600,967387,1102495,992571,1132938]
memberC = [797236,872468,922418,896010,950669]
```

```
memberD = [405868,540142,682967,774129,789672]
x = np.arange(1.0,6.0,1.0) # x轴从1.0到5.0的5个值的数组
# 分别画出四个会员每天伤害变化的折线图
a = plt.plot(x,memberA,'r*--',linewidth=2,label='会员A')
b = plt.plot(x,memberB,'b*--',linewidth=2,label='会员B')
c = plt.plot(x,memberC,'g*--',linewidth=2,label='会员C')
d = plt.plot(x,memberD,'k*--',linewidth=2,label='会员D')
# 设置x、y轴名称和图题
plt.xlabel('天数',fontproperties ='YouYuan')
plt.ylabel('伤害',fontproperties ='YouYuan')
plt.title('会员们的伤害变化',fontproperties ='YouYuan',size = 20)
plt.legend(prop =pic_font) # 设置图例及其中文字体
```


2. 饼图

autopct 控制饼图内百分比设置,可以使用format字符串或者format function,'%1.1f'指小数点前后位数(没有会用空格补齐),不写则不标注 pctdistance 类似于labeldistance,指定autopct的位置刻度 radius 控制饼图半径

```
# 例子
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.font_manager import FontProperties
[55,63,80,75,69,89,92,91,50,84,86,77,95,81,92,74,60,88,64,
71]
BEST, GOOD, PASS, FAIL = 0,0,0,0
for score in data:
   if score < 60:
       FAIL = FAIL + 1
   elif score < 80:
       PASS = PASS + 1
    elif score < 90:
       GOOD = GOOD + 1
   else:
       BEST = BEST + 1
sizes = BEST,GOOD,PASS,FAIL
labels =[u'优', u'良', u'中',u'差']
#设置各个子块的填充颜色
colors = ['blue', 'orange', 'lime', 'lightgray']
#突出显示第二项,即得分为良的学生所占的比例
explode = (0.1, 0, 0, 0)
pie = plt.pie(sizes, explode=explode, labels=labels,
colors=colors,
autopct='%1.1f%%', shadow=True, startangle=-90)
#设置中文
for font in pie[1]:
font.set_fontproperties(FontProperties(fname=r"c:\windows
\fonts\simsun.ttc"))
plt.show()
1.1.1
或者直接使用第一种设置中文的方法,则上面的for... 可以删去
1.1.1
```


3.柱形图

垂直的(水平的调节参数orientation,或者直接用plt.barh()):

```
plt.bar(x, height, width=0.8, bottom=None, hold=None,
**kwargs)
111
x --设置柱状图的在x轴的位置
height --设置柱状图的高度(即y的值)
width --设置柱状图的宽度, 默认为 0.8
bottom --设置柱状图底部的 y 轴坐标,默认值为 None
**kwargs:
color --指定柱状图的填充显示颜色,默认值为 None (蓝色)
edgecolor --指定柱状图的边缘显示颜色,默认值为 None
linewidth --指定柱状图的边缘线宽,默认值是 None
hatch --填充方式: 1.每一种hatch字符代表填充的形状,其中'*'代表五角
星, '.'代表以点填充, 'o'代表圆形填充; 2. 重复使用字符, 实现的是类似
加密,使得填充字符间距更小,当bar_width比较小时看起来效果好,注意并
不是越密越好,过密会失去字符特征,应该在尝试中选择效果最好的为准。(摘
自: https://www.jianshu.com/p/e8033e25e1aa)
tick_label --指定刻度显示,默认值为 None
xerr --指定柱状图的 x 轴的误差显示。默认值为 None
yerr --指定柱状图的 y 轴的误差显示。默认值为 None
align --设置柱状图的对齐方式,如果是 left,当柱状图的显示为垂直方向
时代 表左边对齐, 当柱状图的显示为水平方向时代表下边对齐
orientation --设置柱状图的朝向, vertical 或 horizontal, 默认值
为 vertical
log --指定坐标轴的尺度为 log 方式
```

- # 例子1
- # 并列柱状图

```
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei']#设置字体以便支持中
文
import numpy as np
x=np.arange(5)#柱状图在横坐标上的位置
#列出你要显示的数据,数据的列表长度与x长度相同
y1=[1,3,5,4,2]
y2=[2,5,3,1,6]
bar_width=0.3#设置柱状图的宽度
tick_label=['上海','武汉','南京','天津','南宁']
#绘制并列柱状图
plt.bar(x,y1,bar_width,color='salmon',label='类别A')
plt.bar(x+bar_width,y2,bar_width,color='orchid',label='类
别B')
plt.legend()#显示图例,即label
plt.xticks(x+bar_width/2,tick_label)#显示x坐标轴的标签,即
tick_label,调整位置,使其落在两个直方图中间位置
plt.show()
```


例子2 import matplotlib.pyplot as plt #导入matplotlib.pyplot模块,别名取为plt import numpy as np #导入numpy库,别名起为np #为了在生成的图像中显示中文,需要设置字体属性 from matplotlib.font_manager import FontProperties #设置字体对象,本例选择的是简宋字体,字号是14

```
pic_font =
FontProperties(fname=r"c:\windows\fonts\simsun.ttc",
size=14)
data = [(75,6),(72,5),(70,3),(77,8),(88,10),(85,6),
(85,7),(87,9),(88,8)
chineseMean ,chineseStd = [],[]
mathMean,mathStd = [],[]
englishMean,englishStd = [],[]
for i in range(0,len(data),3):
   chineseMean.append(data[i]
[0]), chineseStd.append(data[i][1])
   mathMean.append(data[i+1][0]),mathStd.append(data[i+1]
[1])
   englishMean.append(data[i+2]
[0]),englishStd.append(data[i+2][1])
N = 3
plt.rcParams['font.sans-serif'] = ['SimHei']
ind = np.arange(N) # the x locations for the groups
width = 0.25 # the width of the bars
#设置语文、数学、英语的柱状图填充形式
pattern1,pattern2,pattern3 ="/","*","."
#这里处理原始数据,将原始数据分为三组,篇幅所限,从略,请查看源码
fig, ax = plt.subplots() #创建一个子图
#绘制语文成绩柱状图
rects1 = ax.bar(ind, chineseMean,
width, hatch=pattern1, edgecolor='black', color='white',
yerr=chineseStd)
#绘制数学成绩柱状图
rects2 = ax.bar(ind + width, mathMean, width,
hatch=pattern2,edgecolor='black',color='white',
yerr=mathStd)
#绘制英语成绩柱状图
rects3=ax.bar(ind+2*width,englishMean,width,hatch=pattern3
,edgecolor='black',color='white', yerr=englishStd)
#设置语文、数学、英语成绩的图例,位置为图表的左上角
ax.legend((rects1[0], rects2[0], rects3[0]), (u'语文', u'数
学',u'英语'), prop={'family':'SimHei','size':8},loc='upper
left',bbox_to_anchor=(0.04, 0.99))
#ax.legend((rects1[0], rects2[0], rects3[0]), (u'语文', u'数
学',u'英语'), prop={'family':'SimHei','size':14},loc='upper
center', bbox_to_anchor=(0.12,1.0),ncol=3)
#定义标注柱形图高度的函数
def autolabel(rects):
```

```
for rect in rects:
     height = rect.get_height()
                                    #获得柱形的高度
     ax.text(rect.get_x() + rect.get_width()/2.,
1.05*height,'%d' % int(height),ha='center', va='bottom')
#添加文本
#调用autolabel函数,在柱状图上标注高度
autolabel(rects1)
autolabel(rects2)
autolabel(rects3)
ax.set_ylabel('分数')
plt.title(u'二年级语文、数学和英语成绩')
# 设置x轴标签
ax.set_xticks(ind+width)
ax.set_xticklabels(('二年级一班','二年级二班','二年级三班')
)
plt.show()
```

二年级语文、数学和英语成绩

