Министерство образования и науки Российской Федерации Федеральное агентство по образованию Федеральное государственное бюджетное образовательное учреждение высшего образования «Вятский государственный университет»

Факультет автоматики и вычислительной техники
Кафедра электронных вычислительных машин
Топологии вычислительных систем
Отчет по лабораторной работе №6 дисциплины «Высокопроизводительные вычислительные комплексы»
Вариант 4

Выполнил студент группы ИВТ-41_____/Крючков И. С./

Проверил_

/Мельцов В. Ю./

1. Задание №1

Рассчитайте следующие характеристики сети с линейной топологией: размер сети, диаметр, порядок узла, число связей, ширина бисекции, симметричность.

Число узлов – 29

Расчетные формулы:

$$D = N - 1$$
; $d = 2$; $I = N - 1$; $B = 1$

Решение:

$$N = 29$$
; $D = 28$; $d = 2$; $I = 28$; $B = 1$;

Симметричность: нет

2. Задание №2

Рассчитайте следующие характеристики сети с кольцевой топологией: размер сети, диаметр, порядок узла, число связей, ширина бисекции, симметричность.

Число узлов – 47

Расчетные формулы:

$$D = \min\left[\frac{N}{2}\right]; d = 2; I = N; B = 2$$

Решение:

$$N = 47$$
; $D = 23$; $d = 2$; $I = 47$; $B = 2$

Симметричность: да

3. Задание №3

Рассчитайте следующие характеристики сети с топологией звезда: размер сети, диаметр, порядок узла, число связей, ширина бисекции, симметричность.

Расчетные формулы:

$$D = 2$$
; $d = 1$; $I = N - 1$; $B = 1$

Решение:

$$N = 11$$
; $D = 2$; $d = 2$; $I = 10$; $B = 1$

Симметричность: нет

4. Задание №4

Рассчитайте следующие характеристики сети с топологией двоичное дерево: размер сети, диаметр, порядок узла, число связей, ширина бисекции, симметричность.

Расчетные формулы:

$$D = 2(h-1); d = 3; I = N-1; B = 1$$

где h — высота дереве (количество узлов в древовидной сети), определяемая как $\max[\log_2 N]$.

Решение:

$$N = 63$$
; $D = 10$; $d = 3$; $I = 62$; $B = 1$

Симметричность: нет

5. Задание №5

Рассчитайте следующие характеристики сети с топологией двумерная решетка: размер сети, диаметр, порядок узла, число связей, ширина бисекции, симметричность.

Расчетные формулы:

$$D = 2(m-1); d = 4; I = 2N - 2m; B = m; m = \sqrt{N}$$

Решение:

$$N = 36$$
; $D = 10$; $d = 4$; $I = 60$; $B = 6$

Симметричность: нет

6. Задание №6

Рассчитайте следующие характеристики сети с тороидальной топологией: размер сети, диаметр, порядок узла, число связей, ширина бисекции, симметричность.

Расчетные формулы:

$$D = 2 \min \left[\frac{m}{2} \right]$$
; $d = 4$; $I = 2N$; $B = 2m$; $m = \sqrt{N}$

Решение:

$$N=25$$
; $D=4$; $d=4$; $I=50$; $B=10$

Симметричность: да

7. Задание №7

Рассчитайте следующие характеристики сети с витой тороидальной топологией: размер сети, диаметр, порядок узла, число связей, ширина бисекции, симметричность.

Расчетные формулы:

$$D = m - 1$$
; $d = 4$; $I = 2N$; $B = 2m$; $m = \sqrt{N}$

Решение:

$$N = 16$$
; $D = 3$; $d = 4$; $I = 32$; $B = 8$

Симметричность: да

8. Задание №8

Рассчитайте следующие характеристики сети с полносвязной топологией: размер сети, диаметр, порядок узла, число связей, ширина бисекции, симметричность.

Расчетные формулы:

$$D = 1; d = N - 1; I = \frac{N(N-1)}{2}; B = \frac{N^2}{4}$$

Решение:

$$N = 8$$
; $D = 1$; $d = 7$; $I = 28$; $B = 16$

Симметричность: да

9. Задание №9

Рассчитайте следующие характеристики сети с топологией четырехмерный гиперкуб: размер сети, диаметр, порядок узла, число связей, ширина бисекции, симметричность.

Расчетные формулы:

$$D = m; \ d = m; \ I = \frac{mN}{2}; \ N = 2^m; B = 2^{m-1}$$

m-число измерений

Решение:

$$N = 16$$
; $D = 4$; $d = 4$; $I = 32$; $B = 8$

Симметричность: да

10. Задание №10

Приведенный ниже граф используется в заданиях №10-14.

Рассчитайте время решения задачи на BC с линейной топологией, содержащей 16 процессоров.

Время передачи и обработки процесса одинаково и равно 1с.

Решение:

Временная диаграмма выполнения процессов в сети с линейной топологией представлена на рисунке 1.

В соответствии с диаграммой задача выполнится за 39 с.

Рисунок 1 — Временная диаграмма работы сети с линейной топологией 11. Задание №11

Рассчитайте время решения задачи на BC с кольцевой топологией, содержащей 16 процессоров.

Время передачи и обработки процесса одинаково и равно 1с.

Решение:

Временная диаграмма выполнения процессов в сети с кольцевой топологией представлена на рисунке 2.

В соответствии с диаграммой задача выполнится за 22 с

1	2	4	8	9	21	. 22	23	24	25	26	54	55	56	57	59	60	62	63	*	76	
	*	3	6	15	16	39	40	41	42	43	80	81	82	*	58	*	61	*	97		
-		-	,		-						-		0.2								
			*	7	17	19	20	44	45	48	50	51	53	83	84	88	92	96			
					*	40		86		.I.		*				0.5	*				
					-	18	46	86	87	*	39		52	94	~	85	_	93			
							*	47						*	95						
						*	32	71			*	67									
									*												
				*	11	. 31	69	70	*	29	66	68	*	36	*	64	*	73	•	77	
		*	5	10	12	13	14	27	28	30	33	34	35	37	38	65	72	74	75	78	—

Рисунок 2 — Временная диаграмма работы сети с кольцевой топологией 12. Задание №12

Рассчитайте время решения задачи на BC с топологией двумерная решетка, содержащей 16 процессоров.

Время передачи и обработки процесса одинаково и равно 1с.

Решение:

Временная диаграмма выполнения процессов в сети с топологией двумерная решетка представлена на рисунке 3.

В соответствии с диаграммой задача выполнится за 19 с

Рисунок 3 - Временная диаграмма работы сети с топологией двумерная решетка

13. Задание №13

Рассчитайте время решения задачи на BC с тороидальной топологией, содержащей 16 процессоров.

Время передачи и обработки процесса одинаково и равно 1с.

Решение:

Временная диаграмма выполнения процессов в сети с тороидальной топологией представлена на рисунке 4.

В соответствии с диаграммой задача выполнится за 15 с

Рисунок 3 - Временная диаграмма работы сети с тороидальной топологией

14. Задание №14

Рассчитайте время решения задачи на BC с топологией четырехмерный гиперкуб, содержащей 16 процессоров.

Время передачи и обработки процесса одинаково и равно 1с.

Решение:

Временная диаграмма выполнения процессов в сети с топологией четырехмерный гиперкуб представлена на рисунке 4.

В соответствии с диаграммой задача выполнится за 15 с

1	2	4	8	21	54	55	*	82	*	30	*	38	78	
1		*	0	21	34	33		02		30		36	78	
*		3	6	15	39	41	42	*	51	92	*	94	*	79
		*		7	17	20	44	45	52	53	85	95	*	68
	*		5	10	13	14	27	28	29	36	37	65	67	77
		*		9	23	25	26	62						
				*	16	43	*	59		*	93			
					*	18	46	86	87	*	83	*	96	
				*	11	31	69	70	*	34	*	64	*	76
					*	24	60	*	63					
							*	61						
							*	47	*	88				
						*	32	71			*	75		
				*	22	56	57							
					*	40								
					*	19				*	84	*	97	
				*	12	33	72	73	*	35	74	*	66	

Рисунок 4 - Временная диаграмма работы сети с топологией четырехмерный гиперкуб

Выводы

В ходе лабораторной работы были рассмотрены различные топологии ВС, выявлены их достоинства и недостатки на основе данных таблицы 1, в которой приведено сравнение топологий по диаметру, порядку узла, числу связей, ширине бисекции, симметричности при одинаковом количестве узлов (N=16).

Таблица 1 – Характеристики топологий ВС

Топология	N	D	d	Ι	В	Симметричность
Линейная	16	15	2	15	1	нет
Кольцевая	16	8	2	16	2	да
Дерево	16	6	3	15	1	нет
Решетка	16	6	4	24	4	нет
Тороидальная	16	4	4	32	8	да
Витой тор	16	3	4	32	8	да
Полносвязная	16	1	15	120	64	да
Звезда	16	2	15	15	1	нет
Гиперкуб	16	4	4	32	8	да

Далее в таблицах:

«+» - достоинство

«-» - недостаток

Линейная топология

+	Простота подключения новых узлов
+	Выгодно использовать в сетях с небольшим количеством узлов
+	Простота реализации
-	Необходимо использовать отказоустойчивые узлы, иначе в случае отказа
	одного узла дальнейшая передача сообщения будет невозможна.

- Малая ширина бисекции. Отказ любого не крайнего узла приведен к разделению сети на 2 части, при этом дальнейшая передача сообщений между этими частями будет невозмонжа
- Большой диаметр сети. Низкая скорость пересылки сообщения для удаленных узлов
- Подключение новых узлов снижает быстродействие сети

Кольцевая топология

- + Повышенная надежность сети по сравнению с линейной топологией при незначительном усложнении
- + Добавление дополнительных линий связи узлов (хорд) позволяет уменьшать диаметр сети, что позволяет повысить быстродействие при большом количестве узлов
- Плохая расширяемость, изменение количества узлов требует демонтажа
- Несмотря на улучшение относительно линейной топологии, надёжность всё ещё невысока и сильна зависит от отдельных узлов

Звездообразная топология

- + Эффективно использовать, когда поток информации идет от нескольких вторичных источников, например, терминалов
- + Простая конструкция конечных узлов
- Необходимость в сложном и дорогом концентраторе, который ограничивает пропускную способность, ограничивает подключение новых узлов. Отказ же концентратора, ведёт к отказу всей сети

Древовидная топология

- + Простая организация конечных узлов
- + Высокая гибкость и простота расширения

- При больших объемах пересылок между несмежными узлами топология мало эффективна
- Повышенная вероятность затора на высоких уровнях сети, из-за недостаточной пропускной способности прикорневых узлов (частично решается путём организации «толстого дерева»)

Решетчатая топология (плоская решетка)

+	Ориентация на обработку различных массивов
+	Высокая надежность
+	Большое количество реализаций, ориентированных на различные задачи
-	Большой диаметр сети по сравнению с тором
-	Малая ширина бисекции по сравнению с тором

Тороидальная топология

+	Диаметр сети приблизительно в 2 раза меньше, чем у решетчатой
+	Ширина бисекции в 2 раза больше, чем у решетчатой топологии – выше
	надежность
-	Сложность организации коммутации узлов

Топология витой тор

+	Диаметр сети меньше по сравнению с двумерной решеткой и	I								
	тороидальной топологией									
+	Высокая надежность									
-	Сложность организации коммутации узлов									

Полносвязная топология

+	Минимальный маршрут между любой парой узлов										
-	Несоразмерное увеличение стоимости и сложности реализации сети при										
	добавлении новых узлов, при этом производительность повышается										
	несущественно.										

Топология гиперкуб

+	Удобство расширяемости, поскольку при увеличении измерений
	добавляются идентичные части.
+	Адресация маршрута сообщения ведется путем анализа различия бита в
	адресе узла, хранящего сообщения и узла назначения. Количество
	пересылок равно количеству отличающихся бит в адресах текущего и
	конечного узла
-	Порядок всех узлов увеличивается при необходимости добавления
	нового измерения. В N-мерном гиперкубе узел связан с N соседями

Каждая топология имеет область применения, в которой является оптимальной, однако нет такой топологии, что покрыла бы все возможные потребности позволив полностью отказаться от других.

Наибольший диаметр сети — линейная топология, наименьший — полносвязная. При частой передаче сообщений между удаленными узлами лучше использовать полносвязную топологию, поскольку она имеет наименьший диаметр, однако её реализация экономически нецелесообразна при большом количестве узлов.

Наибольшее количество каналов у полносвязной топологии, наименьшее – у линейной, дерева и звезды. Более низкое количество каналов обеспечит сети меньшую стоимость, но худшую надёжность.

Наибольшая ширина бисекции у полносвязной топологии, наименьшая – у линейной, дерева и звезды. Сети с большей шириной бисекции надежны и

устойчивы к нагрузкам и позволяют организовать одновременную передачу без конфликтов большего числа сообщений.

Для оценки быстродействия сетей необходимо определить время выполнения задач в каждой из них. Сравнительный анализ времени выполнения задачи на 16 процессорах для различных топологий представлен в таблице 2.

Таблица 2 – Время выполнения задач в сетях с разной топологией

Топология	t, c
Линейная	39
Кольцевая	22
Двумерная решетка	19
Тор	15
Гиперкуб	15

Наилучшее время выполнения показали тороидальная топология и гиперкуб, поэтому более эффективно использовать данные топологии. Наибольшее время было затрачено на задачу, выполняемую в сети с линейной топологией, что говорит о неэффективности ее использования при данном числе процессоров.

Тор и гиперкуб показали одинаковое время выполнения задачи, поэтому возьмем другую задачу и определим время решения.

Временный диаграммы работы сети для топологий тор и гиперкуб приведены на рисунках 5 и 6 соответственно.

Рисунок 5 – Временная диаграмма работы сети с топологией тор

Рисунок 6 – Временная диаграмма работы сети с топологией гиперкуб

В результате определили время выполнения:

Top: 15 c.

Гиперкуб: 14 с.

Наименьшее время выполнения имеет гиперкуб, поэтому для достижения наибольшей эффективности сети стоит выбрать данную топологию.

Для оценки стоимости сетей нужно определить количество связей и сложность коммутации для ее узлов. Наиболее дорогостоящей сетью в соответствии с этими критериями является сеть с полносвязной топологией. Для 16 узлов она имеет 120 каналов, что в несколько раз выше, чем у остальных сетей. Порядок узлов в этой топологии 15, что говорит о необходимости использования коммутаторов для каждого узла. Самыми дешевыми топологиями являются линейная топология и кольцо. Количество каналов для 16 узлов у них минимальное, 15 и 16 соответственно. У топологии звезда и дерево так же 15 каналов, однако порядок 20 узлов у них более 2, что говорит о необходимости использования коммутаторов, в отличии от линейной и кольцевой топологии, у которых порядок узлов 2.

Для определения оптимальной сети необходимо рассчитать параметры производительности P, стоимости S и надежности N. Расчеты производятся для 16 процессоров по формулам:

$$P = \frac{1}{t}$$

 Γ де t – время выполнения задач.

$$S = N_{\rm np} S_{\rm np} + N_{\rm kh} S_{\rm kh} + N_{\rm kom} S_{\rm kom}$$

Где N_{np} и S_{np} количество и стоимость процессоров,

 $N_{\text{кн}}$ и $S_{\text{кн}}$ количество и стоимость каналов связи

 $N_{\mbox{\tiny KOM}}$ и $S_{\mbox{\tiny KOM}}$ количество и стоимость коммутаторов

Стоимость выражена в у.е.

$$S_{\pi p} = 10$$

$$S_{KH} = 1$$

Стоимость коммутатора зависит от количества портов.

Примем стоимость коммутатора $S_{\text{ком}}$ для линейной и кольцевой топологии — 2, для двумерной решетки — 5, для тора и гиперкуба — 8.

$$K_{\text{опт}} = \frac{P}{S}$$

Расчеты:

$$S_{\text{лин}} = 16 * 10 + 15 * 1 + 16 * 2 = 207$$
 $S_{\text{кольц}} = 16 * 10 + 16 * 1 + 16 * 2 = 208$
 $S_{\text{реш}} = 16 * 10 + 24 * 1 + 16 * 5 = 264$
 $S_{\text{тор}} = 16 * 10 + 32 * 1 + 16 * 8 = 320$
 $S_{\text{гку6}} = 16 * 10 + 32 * 1 + 16 * 8 = 320$

Результаты расчетов представлены в таблице 3.

Таблица 3 – Результаты расчета оптимальных сетей

Топология	D	I	t, c	P, 1/c	S	Копт * 10^4
Линейная	15	15	39	0,026	207	1,25
Кольцевая	8	16	22	0,045	208	2,16
2d-решетка	6	24	19	0,053	264	2,01
Тор	4	32	15	0,067	320	2,10
Гиперкуб	4	32	14	0,071	320	2,22

Линейная топология самая дешевая, но наименее оптимальная по коэффициенту.

Наиболее эффективными оказались топологии тор и гиперкуб. Однако при повышении числа узлов количество связей гиперкуба ($I = N \log_2 N / 2$) повышается значительно быстрее чем у тора (2N). Расчет стоимостей сетей с топологиями тор и гиперкуб при повышении числа узлов с 64 до 256 представлен в таблице 4.

Расчеты:

$$S_{\text{Top}}^{64} = 64 * 10 + 128 * 1 + 64 * 8 = 1280$$

 $S_{\text{Top}}^{256} = 256 * 10 + 512 * 1 + 256 * 8 = 5120$
 $S_{\text{rky6}}^{64} = 64 * 10 + 192 * 1 + 64 * 8 = 1344$
 $S_{\text{rky6}}^{256} = 256 * 10 + 1024 * 1 + 256 * 8 = 5632$

$$\frac{S_{\text{rky6}}^{256}}{S_{\text{top}}^{256}} = \frac{5632}{5120} = 1.1$$

Результаты расчетов представлены в таблице 4.

Таблица 4 – Результаты расчета оптимальных сетей

Топология	N	Ι	S
Тор	64	128	1280
Гиперкуб	64	192	1344
Тор	256	512	5120
Гиперкуб	256	1024	5632

Таким образом стоимость сети из 256 узлов с топологией гиперкуб в 1.1 раза больше, чем сети с тороидальной топологией

По таблице 3 можно сказать, что производительность сети увеличивается при уменьшении диаметра. Для топологии гиперкуб $D = \log_2 N$ = 8, а для тороидальной топологии $D = 2*[\sqrt{N/2}] = 16$. Отсюда можно сделать вывод, что при N = 256 производительность топологии гиперкуб в 2 раза выше.

В результате при повышении числа узлов до 256, сеть с топологией гиперкуб дорогостоящая, чем сеть с топологией тор, однако ее производительность выше. С учетом того, что производительность гиперкуба возросла больше, чем стоимость, можно говорить о том, что для 256 узлов топология гиперкуб более оптимальна.

$$K_{\text{опт}} = \frac{P_{\text{гкуб}}}{S_{\text{гкуб}}} = \frac{2P_{\text{тор}}}{1.1S_{\text{тор}}} = 1.81 * K_{\text{опт}}$$
 тор