Homework 25 - MATH 791

Will Thomas

Problem 1:

Consider $\alpha := 1 + \sqrt{2} + \sqrt{3} + \sqrt{6} \in \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Find a polynomial $p(x) \in \mathbb{Q}[x]$ such that $p(\alpha) = 0$. Determine if the polynomial you found is the minimal polynomial for α over \mathbb{Q} . Solution:

Admitted

Problem 2:

Prove that for any field L containing \mathbb{Z}_p and $a, b \in L$, then $(a+b)^p = a^p + b^p$. Solution:

Admitted

Problem 3:

Let x, y be indeterminates over the field \mathbb{Z}_2 . Set $F := \mathbb{Z}_2(x^2, y^2)$ and $K := \mathbb{Z}_2(x, y)$. Set $E := \mathbb{Z}(x, y^2)$. Prove that [E : F] = 2 and [K : E] = 2. Conclude that [K : F] = 4.

Solution:

Admitted

Problem 4:

In the notation of problem 3, prove that $\alpha^2 \in F$, for all $\alpha \in K$.

Solution:

Admitted

Problem 5:

Use the previous two problems to show that for $F \subseteq K$ as in problem 3, there does **not** exist $\alpha \in K$ such that $K = F(\alpha)$. Conclude that there are infinitely many intermediate field $F \subsetneq E \subsetneq K$.

Solution:

Admitted