$$F(A,B,C,D) = \left(\overline{\left(\overline{A + \overline{A} \cdot (\overline{B \cdot \overline{C}})}\right) + B \cdot C}\right) \cdot \overline{C \cdot D}$$

7.1.14. Obtener los mismos puntos del apartado anterior para la siguiente función lógica:

$$F(A,B,C) = (\overline{\overline{A} \cdot B} + \overline{A} \cdot C + B \cdot A + B \cdot C) + (\overline{A} + \overline{B})$$

7.1.15. Del circuito siguiente obtener:

- 1) La ecuación de la salida en suma de productos
- 2) La tabla de verdad del circuito
- 3) Hacer el mapa de Karnaugh
- 4) Obtener a partir del mapa de Karnaugh la ecuación simplificada en suma de productos (SOP) y productos de sumas (POS)
- 5) Dibujar el esquema en puertas de las ecuaciones en suma de productos y producto de sumas simplificadas

7.1.16. Obtener los mismos puntos del apartado anterior para el siguiente circuito:

7.2. Soluciones

7.2.1. Utilizando las leyes de De Morgan, obtener una expresión en forma de sumas de productos para las siguientes funciones:

a)
$$F = \overline{(x+y)\overline{(x\cdot\overline{y}+z)}} = \overline{(x+y)} + \overline{(x\overline{y}+z)} = \overline{x}\cdot\overline{y} + x\cdot\overline{y} + z = \overline{y} + z$$

b)
$$F = \overline{(\overline{x} \cdot \overline{y} + x \cdot z) \cdot (\overline{x} + \overline{y} \cdot \overline{z})} = (\overline{x} \cdot \overline{y} + x \cdot z) + (\overline{x} + \overline{y} \cdot \overline{z}) = \overline{x} \cdot \overline{y} + \overline{x} + x \cdot \overline{z} + \overline{y} \cdot \overline{z} = \overline{x} + x \cdot \overline{z} + \overline{y} \cdot \overline{z}$$

Hasta aquí es suficiente, aunque todavía se puede simplificar más:

$$= \overline{x} + x \cdot z + 1 \cdot \overline{y} \cdot z = \overline{x} + x \cdot z + (x + \overline{x}) \cdot \overline{y} \cdot z = \overline{x} + x \cdot z + x \cdot \overline{y} \cdot z + \overline{x} \cdot \overline{y} \cdot z = \overline{x} + x \cdot z + x \cdot \overline{y} \cdot z = \overline{x} + x \cdot \overline{y} \cdot z = \overline{x$$

$$= (\overline{x} + \overline{x} \cdot \overline{y} \cdot z) + (x \cdot \overline{z} + x \cdot \overline{y} \cdot z) = \overline{x}(1 + \overline{y} \cdot z) + x \cdot z \cdot (1 + \overline{y}) = \overline{x} \cdot 1 + x \cdot z \cdot 1 = \overline{x} + x \cdot z = \overline{x} + z$$

El último paso aplicando el teorema de absorción: $\overline{x} + x \cdot z = \overline{x} + z$. Demostración:

$$\overline{x} + x \cdot z = \overline{x} + \overline{x} + x \cdot z = \overline{x} + \overline{x} \cdot 1 + x \cdot z = \overline{x} + \overline{x} \cdot (\overline{z} + z) + x \cdot z = \overline{x} + (\overline{x} \cdot \overline{z} + \overline{x} \cdot z) + x \cdot z = \overline{x} + (\overline{x} \cdot \overline{z} + \overline{x} \cdot z) + x \cdot z = \overline{x} + (\overline{x} \cdot \overline{z} + \overline{x} \cdot z) + x \cdot z = \overline{x} + (\overline{x} \cdot \overline{z} + \overline{x} \cdot z) + x \cdot z = \overline{x} + (\overline{x} \cdot \overline{z} + \overline{x} \cdot z) + x \cdot z = \overline{x} + (\overline{x} \cdot \overline{z} + \overline{x} \cdot z) + x \cdot z = \overline{x} + (\overline{x} \cdot \overline{z} + \overline{x} \cdot z) + x \cdot z = \overline{x} + (\overline{x} \cdot \overline{z} + \overline{x} \cdot z) + x \cdot z = \overline{x} + (\overline{x} \cdot \overline{z} + \overline{x} \cdot z) + x \cdot z = \overline{x} + (\overline{x} \cdot \overline{z} + \overline{x} \cdot z) + x \cdot z = \overline{x} + (\overline{x} \cdot \overline{z} + \overline{x} \cdot z) + x \cdot z = \overline{x} + (\overline{x} \cdot \overline{z} + \overline{x} \cdot z) + x \cdot z = \overline{x} + (\overline{x} \cdot \overline{z} + \overline{x} \cdot z) + x \cdot z = \overline{x} + (\overline{x} \cdot \overline{z} + \overline{x} \cdot z) + x \cdot z = \overline{x} + (\overline{x} \cdot \overline{z} + \overline{x} \cdot z) + x \cdot z = \overline{x} + (\overline{x} \cdot \overline{z} + \overline{x} \cdot z) + x \cdot z = \overline{x} + (\overline{x} \cdot \overline{z} + \overline{x} \cdot z) + x \cdot z = \overline{x} + (\overline{x} \cdot \overline{z} + \overline{x} \cdot z) + x \cdot z = \overline{x} + (\overline{x} \cdot \overline{z} + \overline{x} \cdot z) + x \cdot z = \overline{x} + (\overline{x} \cdot \overline{z} + \overline{x} \cdot z) + x \cdot z = \overline{x} + (\overline{x} \cdot \overline{z} + \overline{x} \cdot z) + x \cdot z = \overline{x} + (\overline{x} \cdot \overline{z} + \overline{x} \cdot z) + x \cdot z = \overline{x} + (\overline{x} \cdot \overline{z} + \overline{x} \cdot z) + x \cdot z = \overline{x} + (\overline{x} \cdot \overline{z} + \overline{x} \cdot z) + x \cdot z = \overline{x} + (\overline{x} \cdot \overline{z} + \overline{x} \cdot z) + x \cdot z = \overline{x} + (\overline{x} \cdot \overline{z} + \overline{x} \cdot z) + x \cdot z = \overline{x} + \overline{x} \cdot z + \overline{x} \cdot z = \overline{x} + \overline{x} \cdot z + \overline{x} \cdot z = \overline{x} + \overline{x} \cdot z + \overline{x} \cdot z = \overline{x} + \overline{x} \cdot z + \overline{x} \cdot z = \overline{x} + \overline{x} \cdot z + \overline{x} \cdot z = \overline{x} + \overline{x} \cdot z + \overline{x} \cdot z = \overline{x} + \overline{x} \cdot z + \overline{x} \cdot z = \overline{x} + \overline{x} \cdot z + \overline{x} \cdot z = \overline{x} + \overline{x} \cdot z + \overline{x} \cdot z = \overline{x} + \overline{x} \cdot z + \overline{x} \cdot z = \overline{x} + \overline{x} \cdot z + \overline{x} \cdot z = \overline{x} + \overline{x} \cdot z + \overline{x} \cdot z = \overline{x} + \overline{x} \cdot z + \overline{x} \cdot z = \overline{x} + \overline{x} \cdot z + \overline{x} \cdot z = \overline{x} + \overline{x} \cdot z + \overline{x} \cdot z = \overline{x} + \overline{x} \cdot z + \overline{x} \cdot z = \overline{x} + \overline{x} \cdot z = \overline{x} + \overline{x} \cdot z + \overline{x} \cdot z = \overline{x} + \overline{x} \cdot z + \overline{x} \cdot z = \overline{x} + \overline{x} \cdot z + \overline{x} \cdot z = \overline{x} + \overline{x} \cdot z + \overline{x} \cdot z = \overline{x} + \overline{x} \cdot z + \overline{x} \cdot z = \overline{x} + \overline{x} \cdot z + \overline{x} \cdot z = \overline{x} + \overline{x} \cdot z + \overline{x} \cdot z = \overline{x} + \overline{x} \cdot z + \overline{x} \cdot z = \overline{x} + \overline{x} \cdot z + \overline{x} \cdot z = \overline{x} + \overline{x} \cdot z + \overline{x} \cdot z = \overline{x} + \overline{x} \cdot z + \overline{x} \cdot z = \overline{x} + \overline{x} \cdot z + \overline{x} \cdot z = \overline{x} + \overline{x} \cdot z + \overline{x} +$$

$$= (\overline{x} + \overline{x} \cdot \overline{z}) + (\overline{x} \cdot \overline{z} + x \cdot \overline{z}) = \overline{x}(1 + \overline{z}) + z \cdot (\overline{x} + x) = \overline{x} \cdot 1 + z \cdot 1 = \overline{x} + z$$

7.2.2. Aplicando las leyes de De Morgan, obtener el complemento de las siguientes funciones

a)
$$f = (x + \overline{y})(yz + x\overline{y})$$

$$\overline{f} = (x + \overline{y})(yz + x\overline{y}) = (x + \overline{y}) + (yz + x\overline{y}) = \overline{x} \cdot y + yz \cdot x\overline{y} = \overline{x} \cdot y + (\overline{y} + \overline{z}) \cdot (\overline{x} + y) = \overline{x} \cdot y + (\overline{x} \cdot \overline{y} + y \cdot \overline{y} + \overline{x} \cdot \overline{z} + y \cdot \overline{z}) = (\overline{x} \cdot y + \overline{x} \cdot \overline{y}) + 0 + \overline{x} \cdot \overline{z} + y \cdot \overline{z} = \overline{x} + \overline{x} \cdot \overline{z} + y \cdot \overline{z} = \overline{x} + y \cdot \overline{z}$$

b)
$$g = \overline{y}(x+z) + y(\overline{xz} + x\overline{z})$$

 $\overline{g} = \overline{y}(x+z) + y(\overline{xz} + x\overline{z}) = \overline{y}(x+z) \cdot \overline{y}(\overline{xz} + x\overline{z}) = (\overline{y} + (x+z)) \cdot (\overline{y} + (\overline{xz} + x\overline{z})) =$

$$= (y + \overline{x} \cdot \overline{z}) \cdot (\overline{y} + (\overline{xz} \cdot x\overline{z})) = (y + \overline{x} \cdot \overline{z}) \cdot (\overline{y} + (x + \overline{z}) \cdot (\overline{x} + z)) =$$

$$= (y + \overline{x} \cdot \overline{z}) \cdot (\overline{y} + x \cdot \overline{x} + x \cdot z + \overline{x} \cdot \overline{z} + z \cdot \overline{z})) = (y + \overline{x} \cdot \overline{z}) \cdot (\overline{y} + 0 + x \cdot z + \overline{x} \cdot \overline{z} + 0) =$$

$$= (y + \overline{x} \cdot \overline{z}) \cdot (\overline{y} + x \cdot z + \overline{x} \cdot \overline{z}) = y \cdot \overline{y} + x \cdot y \cdot \overline{z} + \overline{x} \cdot \overline{y} \cdot \overline{z} + x \cdot \overline{x} \cdot \overline{z} \cdot \overline{z} + \overline{x} \cdot \overline{x} \cdot \overline{z} \cdot \overline{z} =$$

$$= 0 + x \cdot y \cdot z + (\overline{x} \cdot y \cdot \overline{z} + \overline{x} \cdot \overline{y} \cdot \overline{z}) + 0 + \overline{x} \cdot \overline{z} = x \cdot y \cdot z + (\overline{x} \cdot \overline{z}) + \overline{x} \cdot \overline{z} = x \cdot y \cdot z + \overline{x} \cdot \overline{z}$$

c)
$$h = x\overline{y}(\overline{x} + z)(yz + x\overline{y})$$

$$\overline{h} = x \cdot \overline{y}(\overline{x} + z)(yz + x \cdot \overline{y}) = \overline{x} + y + (\overline{x} + z) + (yz + x \cdot \overline{y}) = \overline{x} + y + x \cdot \overline{z} + yz \cdot x\overline{y} =$$

$$= \overline{x} + y + x \cdot \overline{z} + (\overline{y} + \overline{z}) \cdot (\overline{x} + y) = \overline{x} + y + x \cdot \overline{z} + (\overline{x} \cdot \overline{y} + y \cdot \overline{y} + \overline{x} \cdot \overline{z} + y \cdot \overline{z}) =$$

$$= \overline{x} + y + x \cdot \overline{z} + \overline{x} \cdot \overline{y} + \overline{x} \cdot \overline{z} + y \cdot \overline{z} = (\overline{x} + \overline{x} \cdot \overline{y} + \overline{x} \cdot \overline{z}) + (y + y \cdot \overline{z}) + x \cdot \overline{z} = \overline{x} + y + x\overline{z}$$

7.2.3. Verificar, mediante manipulaciones algebraicas adecuadas, las siguientes igualdades, justificando cada uno de los pasos haciendo referencia a un postulado o a un teorema

a)
$$(x + \overline{y} + xy)(x + \overline{y})\overline{x}y = 0$$

b) $(x + \overline{y} + x\overline{y})(xy + \overline{x}z + yz) = xy + \overline{x} \cdot \overline{y}z$
 $(x + \overline{y} + xy) \cdot (x + \overline{y}) \cdot \overline{x}y$

teorema de de desorción $(x + xy) \cdot (x + \overline{y}) \cdot \overline{x}y$

teorema de idempotencia $(x + \overline{y}) \cdot (x + \overline{y}) \cdot \overline{x}y$
 $(x + \overline{y}) \cdot (x + \overline{y}) \cdot \overline{x}y = x\overline{x}y + \overline{x}y\overline{y} = 0$

teorema de identidad $(x + \overline{y}) \cdot \overline{x}y = x\overline{x}y + \overline{x}y\overline{y} = 0$

teorema de identidad $(x + \overline{y}) \cdot \overline{x}y = x\overline{x}y + \overline{x}y\overline{y} = 0$

teorema de identidad $(x + \overline{y}) \cdot \overline{x}y = x\overline{y}y + \overline{x}y\overline{y} = 0$

teorema de identidad $(x + \overline{y}) \cdot \overline{x}y = x\overline{y}y + \overline{x}y\overline{y} = 0$

teorema de identidad $(x + \overline{y}) \cdot \overline{x}y = x\overline{y}y + \overline{x}y\overline{y} = 0$

teorema de identidad $(x + \overline{y}) \cdot \overline{x}y + \overline{x}y\overline{y} = 0$

teorema de identidad $(x + \overline{y}) \cdot \overline{x}y + \overline{x}y\overline{y} = 0$

teorema de identidad $(x + \overline{y}) \cdot \overline{x}y + \overline{x}y\overline{y} = 0$

teorema de identidad $(x + \overline{y}) \cdot \overline{x}y + \overline{x}y\overline{y} = 0$

teorema de identidad $(x + \overline{y}) \cdot \overline{x}y + \overline{x}y\overline{y} = 0$

teorema de identidad $(x + \overline{y}) \cdot \overline{x}y + \overline{x}y\overline{y} = 0$

teorema de identidad $(x + \overline{y}) \cdot \overline{x}y + \overline{x}y\overline{y} = 0$

teorema de identidad $(x + \overline{y}) \cdot \overline{x}y + \overline{x}y\overline{y} = 0$

teorema de identidad $(x + \overline{y}) \cdot \overline{x}y + \overline{x}y\overline{y} = 0$

teorema de identidad $(x + \overline{y}) \cdot \overline{x}y + \overline{x}y\overline{y} = 0$

teorema de identidad $(x + \overline{y}) \cdot \overline{x}y + \overline{x}y\overline{y} = 0$

teorema de identidad $(x + \overline{y}) \cdot \overline{x}y + \overline{x}y\overline{y} = 0$

teorema de identidad $(x + \overline{y}) \cdot \overline{x}y + \overline{x}y\overline{y} = 0$

teorema de identidad $(x + \overline{y}) \cdot \overline{x}y + \overline{x}y\overline{y} = 0$

7.2.4. Simplificar la siguiente función lógica por métodos algebraicos

$$f(A,B,C,D) = \overline{A \cdot (\overline{B} + C) + \overline{B} \cdot \overline{D} + A \cdot (\overline{C} + \overline{D}) \cdot \overline{B} \cdot (\overline{C} + B) \cdot A} =$$

$$= \overline{A \cdot (\overline{B} + C) \cdot \overline{B} \cdot \overline{D} \cdot A \cdot (\overline{C} + \overline{D}) \cdot \overline{B} \cdot ((\overline{C} + B) + \overline{A})} =$$

$$= (\overline{A} + (\overline{B} + C))(B + D) \cdot (\overline{A} + (\overline{C} + \overline{D}) + B)(\overline{C} \cdot \overline{B} + \overline{A}) =$$

$$= (\overline{A} + B \cdot \overline{C}) \cdot (B + D) \cdot (\overline{A} + B + C \cdot D) \cdot (\overline{B} \cdot \overline{C} + \overline{A}) =$$

$$= (\overline{A} + B) \cdot (\overline{A} + \overline{C}) \cdot (B + D) \cdot (\overline{A} + B + C) \cdot (\overline{A} + B + D) \cdot (\overline{A} + \overline{B}) \cdot (\overline{A} + \overline{C}) =$$

$$= |(\overline{A} + B) \cdot (\overline{A} + B + C) \cdot (\overline{A} + B + D)| |(\overline{A} + \overline{C}) \cdot (\overline{A} + \overline{C})| |(\overline{A} + \overline{B}) \cdot (B + D) =$$

$$\begin{split} &= \left\lfloor \overline{A} + B \right\rfloor \left\lfloor \overline{A} + \overline{C} \right\rfloor (\overline{A} + \overline{B}) \cdot (B + D) = \\ &= \left\lfloor (\overline{A} + B) \cdot (\overline{A} + \overline{B}) \right\rfloor (\overline{A} + \overline{C}) \cdot (B + D) = \\ &= \left\lceil \overline{A} \right\rceil \cdot (\overline{A} + \overline{C}) \cdot (B + D) = \overline{A} \cdot (B + D) = \overline{A} \cdot B + \overline{A} \cdot D \end{split}$$

7.2.5. Simplificar por Karnaugh la función cuya expresión en términos canónicos es:

$$f(x, y, z) = \sum_{3} m(3,5,6)$$

 $f(X,Y,Z)=X\overline{Y}Z+\overline{X}YZ+XY\overline{Z}$

7.2.6. Utilizando los mapas de Karnaugh, simplificar las siguientes funciones de conmutación, obtenerlas en función de suma de productos o producto de sumas

a) $f(w,x,y,z) = \sum m(5,6,9,10)$

tabla de verdad

La Z no interviene en la función

Comprobación de igualdad (no es necesaria):

d) $f(w,x,y,z) = \sum m(3,6,7,11,12,14,15)$

tabla de verdad

7.2.7. Demostrar que las tres funciones elementales AND, OR y NOT pueden realizarse mediante las funciones NAND y NOR

Puerta NOT (inversor) hecha con puertas NAND

Puerta NOT (inversor) hecha con puertas NOR

Puerta AND hecha con puertas NAND

Puerta AND hecha con puertas NOR

Puerta OR hecha con puertas NAND

Puerta OR hecha con puertas NOR

7.2.8. Comprobar las siguientes relaciones relativas a la función EXOR:

	ху	z=x⊕y	w=x⊕z				
	0 0	0	0				
	0 1	1	1				
	1 0 1 1	1 0	0 1				
	<u> </u>		<u> </u>				
	_	y = w					
z	$= x \oplus$	$y = \overline{x}y + x$	y				
w	$w=x\oplus z=\overline{x}z+x\overline{z}=\overline{x}(\overline{x}y+x\overline{y})+x(\overline{\overline{x}y}+x\overline{y})$						
=	$= \overline{x}\overline{x}y + x\overline{x}\overline{y} + x(\overline{x}y \cdot x\overline{y}) = \overline{x}y + x(x + \overline{y}) \cdot (\overline{x} + y)$						
=	<i>xy+x</i> ($x\bar{x}+xy+\bar{x}\bar{y}$	$(\bar{y} + y\bar{y}) = \bar{x}y$	$(x, x, y, x, \overline{x}, \overline{y}) = x = 0$			
=	$= \bar{x}y + xy = (\bar{x} + x)y = y$						
Р	or tan	to					
	X D		Z	w W			
Е	s equi	valente a:		w			
	Y D			— —			

7.2.9. Obtener la tabla de verdad que corresponde a las siguientes funciones de conmutación expresadas algebraicamente:

7.2.10. Para cada una de las funciones dadas a continuación, dibujar un circuito con puertas AND, OR Y NOT que la sintetice:

a)
$$F = \overline{xyz} + \overline{y(xz} + z)$$

b)
$$G = (x + y + z)(x + yz)$$

c)
$$H = (xy + xz)(x + yz)$$

7.2.11. Para cada circuito obtener un circuito equivalente con el mínimo número de puertas lógicas:

a)

b)

analizando la tabla de verdad vemos que W=Y

Х	Y	z=x⊕y	w=x⊕z				
0	0	0	0				
0	1	1	1				
1	0	1	0				
1	1	0	1				

Por tanto no se necesita ninguna puerta lógica

También se puede analizar de otra manera:

7.2.12. Obtener la función de conmutación sintetizada por el circuito de la figura:

Por tanto la función de conmutación es: $F = (\overline{yz} \cdot u + \overline{uv}) \cdot \overline{xy}$

7.2.13. Para la siguiente función lógica obtener:

- 1) Obtener mediante operaciones lógicas las formas canónicas en 1ª Forma Normal (1FN) y 2ª Forma Normal (2FN)
- 2) Elaborar la tabla de verdad del circuito
- 3) Hacer el mapa de Karnaugh
- 4) Obtener a partir del mapa de Karnaugh la ecuación simplificada en suma de productos (SOP) y productos de sumas (POS)
- 5) Dibujar las representaciones en puertas lógicas del circuito correspondiente a la 1FN, 2FN, y las correspondientes de SOP y POS obtenidas del mapa de Karnaugh

$$F(A,B,C,D) = \left(\overline{\left(\overline{A + \overline{A} \cdot (\overline{B \cdot \overline{C}})}\right) + B \cdot C}\right) \cdot \overline{C \cdot D} =$$

1) Obtención de la 1FN y 2FN

$$F(A,B,C,D) = \left(\overline{\left(\overline{A + \overline{A} \cdot (\overline{B \cdot \overline{C}})}\right) + B \cdot C}\right) \cdot \overline{C \cdot D} = \left(\!\!\left(A + \overline{A} \cdot (\overline{B \cdot \overline{C}})\right)\!\!\right) \overline{B \cdot C}\right) \overline{C \cdot D} = \left(\!\!\left(A + \overline{A} \cdot (\overline{B \cdot \overline{C}})\right)\!\!\right) \overline{B \cdot C}\right) \overline{C \cdot D} = \left(\!\!\left(A + \overline{A} \cdot (\overline{B \cdot \overline{C}})\right)\!\!\right) \overline{B \cdot C}\right) \overline{C \cdot D} = \left(\!\!\left(A + \overline{A} \cdot (\overline{B \cdot \overline{C}})\right)\!\!\right) \overline{B \cdot C}\right) \overline{C \cdot D} = \left(\!\!\left(A + \overline{A} \cdot (\overline{B \cdot \overline{C}})\right) \overline{B \cdot C}\right) \overline{C \cdot D} = \left(\!\!\left(A + \overline{A} \cdot (\overline{B \cdot \overline{C}})\right) \overline{B \cdot C}\right) \overline{C \cdot D} = \left(\!\!\left(A + \overline{A} \cdot (\overline{B \cdot \overline{C}})\right) \overline{C \cdot D}\right) \overline{C \cdot D} = \left(\!\!\left(A + \overline{A} \cdot (\overline{B \cdot \overline{C}})\right) \overline{C \cdot D}\right) \overline{C \cdot D} = \left(\!\!\left(A + \overline{A} \cdot (\overline{B \cdot \overline{C}})\right) \overline{C \cdot D}\right) \overline{C \cdot D} = \left(\!\!\left(A + \overline{A} \cdot (\overline{B \cdot \overline{C}}\right)\right) \overline{C \cdot D}\right) \overline{C \cdot D} = \left(\!\!\left(A + \overline{A} \cdot (\overline{B \cdot \overline{C}}\right)\right) \overline{C \cdot D}\right) \overline{C \cdot D} = \left(\!\!\left(A + \overline{A} \cdot (\overline{B \cdot \overline{C}}\right)\right) \overline{C \cdot D}\right) \overline{C \cdot D} = \left(\!\!\left(A + \overline{A} \cdot (\overline{B \cdot \overline{C}}\right)\right) \overline{C \cdot D}\right) \overline{C \cdot D}$$

$$(A + \overline{A} \cdot (\overline{B} + C))(\overline{B} + \overline{C}) \cdot (\overline{C} + \overline{D}) = (A + \overline{A} \cdot \overline{B} + \overline{A} \cdot C) \cdot (\overline{B} + \overline{C}) \cdot (\overline{C} + \overline{D}) = (A + \overline{A} \cdot \overline{B} + \overline{A} \cdot C) \cdot (\overline{B} + \overline{C}) \cdot (\overline{C} + \overline{D}) = (A + \overline{A} \cdot \overline{B} + \overline{A} \cdot C) \cdot (\overline{B} + \overline{C}) \cdot (\overline{C} + \overline{D}) = (A + \overline{A} \cdot \overline{B} + \overline{A} \cdot C) \cdot (\overline{B} + \overline{C}) \cdot (\overline{C} + \overline{D}) = (A + \overline{A} \cdot \overline{B} + \overline{A} \cdot C) \cdot (\overline{B} + \overline{C}) \cdot (\overline{C} + \overline{D}) = (A + \overline{A} \cdot \overline{B} + \overline{A} \cdot C) \cdot (\overline{B} + \overline{C}) \cdot (\overline{C} + \overline{D}) = (A + \overline{A} \cdot \overline{B} + \overline{A} \cdot C) \cdot (\overline{B} + \overline{C}) \cdot (\overline{C} + \overline{D}) = (A + \overline{A} \cdot \overline{B} + \overline{A} \cdot C) \cdot (\overline{B} + \overline{C}) \cdot (\overline{C} + \overline{D}) = (A + \overline{A} \cdot \overline{B} + \overline{A} \cdot C) \cdot (\overline{B} + \overline{C}) \cdot (\overline{C} + \overline{D}) = (A + \overline{A} \cdot \overline{B} + \overline{A} \cdot C) \cdot (\overline{B} + \overline{C}) \cdot (\overline{C} + \overline{D}) = (A + \overline{A} \cdot \overline{B} + \overline{A} \cdot C) \cdot (\overline{B} + \overline{C}) \cdot (\overline{C} + \overline{D}) = (A + \overline{A} \cdot \overline{B} + \overline{A} \cdot C) \cdot (\overline{B} + \overline{C}) \cdot (\overline{C} + \overline{D}) = (A + \overline{A} \cdot \overline{B} + \overline{A} \cdot C) \cdot (\overline{B} + \overline{C}) \cdot (\overline{C} + \overline{D}) = (A + \overline{A} \cdot \overline{B} + \overline{A} \cdot C) \cdot (\overline{B} + \overline{C}) \cdot (\overline{C} + \overline{D}) = (A + \overline{A} \cdot \overline{B} + \overline{A} \cdot C) \cdot (\overline{B} + \overline{C}) \cdot (\overline{C} + \overline{D}) = (A + \overline{A} \cdot \overline{B} + \overline{A} \cdot C) \cdot (\overline{B} + \overline{C}) \cdot (\overline{C} + \overline{D}) = (A + \overline{A} \cdot \overline{B} + \overline{A} \cdot C) \cdot (\overline{B} + \overline{C}) \cdot (\overline{C} + \overline{D}) = (A + \overline{A} \cdot \overline{B} + \overline{A} \cdot C) \cdot (\overline{B} + \overline{C}) \cdot (\overline{C} + \overline{D}) = (A + \overline{A} \cdot \overline{B} + \overline{A} \cdot C) \cdot (\overline{B} + \overline{C}) \cdot (\overline{C} + \overline{D}) = (A + \overline{A} \cdot \overline{B} + \overline{A} \cdot C) \cdot (\overline{B} + \overline{C}) \cdot (\overline{C} + \overline{D}) = (A + \overline{A} \cdot \overline{B} + \overline{A} \cdot C) \cdot (\overline{B} + \overline{C}) \cdot (\overline{C} + \overline{D}) = (A + \overline{A} \cdot \overline{B} + \overline{A} \cdot C) \cdot (\overline{B} + \overline{C}) \cdot (\overline{C} + \overline{D}) = (A + \overline{A} \cdot \overline{B} + \overline{A} \cdot C) \cdot (\overline{B} + \overline{C}) \cdot (\overline{C} + \overline{D}) = (A + \overline{A} \cdot \overline{B} + \overline{A} \cdot \overline{C}) \cdot (\overline{C} + \overline{D}) = (A + \overline{A} \cdot \overline{C}) \cdot (\overline{C} + \overline{C}) \cdot (\overline{C} + \overline{C}) \cdot (\overline{C} + \overline{C}) \cdot (\overline{C} + \overline{C}) = (A + \overline{C}) \cdot (\overline{C} + \overline$$

Por el teorema de absorción $A + \overline{A} \cdot \overline{B} = A + \overline{B}$

$$=(A+\overline{B}+C)\cdot(\overline{B}+\overline{C})\cdot(\overline{C}+\overline{D})$$

Tenemos la ecuación en Producto de Sumas (POS), ahora para cada producto vemos qué variable falta, y le añadimos el producto de dicha variable por su complemento (que es igual a 0) para obtener la 2FN:

Quitando los repetidos obtenemos la 2FN:

$$(A+B+\overline{C}+\overline{D})\cdot(A+\overline{B}+C+D)\cdot(A+\overline{B}+C+\overline{D})\cdot(A+\overline{B}+\overline{C}+D)\cdot(A+\overline{B}+\overline{C}+\overline{D})\cdot(A+\overline{B}+\overline{C}+\overline{D})\cdot(A+\overline{B}+\overline{C}+\overline{D})\cdot(A+\overline{B}+\overline{C}+\overline{D})\cdot(A+\overline{B}+\overline{C}+\overline{D})$$

Para obtener la 1FN multiplicamos el producto de sumas:

$$(A + \overline{B} + C) \cdot (\overline{B} + \overline{C}) \cdot (\overline{C} + \overline{D}) = (A \cdot \overline{B} + A \cdot \overline{C} + \overline{B} \cdot \overline{B} + \overline{B} \cdot \overline{C} + C \cdot \overline{B} + C \cdot \overline{C}) \cdot (\overline{C} + \overline{D}) =$$

$$= (A \cdot \overline{B} + A \cdot \overline{C} + \overline{B}) \cdot (\overline{C} + \overline{D}) = A \cdot \overline{B} \cdot \overline{C} + A \cdot \overline{B} \cdot \overline{D} + A \cdot \overline{C} \cdot \overline{C} + A \cdot \overline{C} \cdot \overline{D} + \overline{B} \cdot \overline{C} + \overline{B} \cdot \overline{D} =$$

$$= A \cdot \overline{B} \cdot \overline{C} + A \cdot \overline{B} \cdot \overline{D} + A \cdot \overline{C} + A \cdot \overline{C} \cdot \overline{D} + \overline{B} \cdot \overline{C} + \overline{B} \cdot \overline{D} = (A \cdot \overline{B} \cdot \overline{C} + \overline{B} \cdot \overline{C}) + (A \cdot \overline{B} \cdot \overline{D} + \overline{B} \cdot \overline{D}) + (A \cdot \overline{C} + A \cdot \overline{C} \cdot \overline{D}) =$$

$$=(\overline{B}\cdot\overline{C})+(\overline{B}\cdot\overline{D})+(A\cdot\overline{C})=\overline{B}\cdot\overline{C}+\overline{B}\cdot\overline{D}+A\cdot\overline{C}$$

Ya tenemos la ecuación en Suma de Productos (SOP), ahora para cada suma, vemos qué variable le falta y le multiplicamos la suma de dicha variable por su complemento (que da 1), obteniendo así la 1FN:

$$\overline{B} \cdot \overline{C} + \overline{B} \cdot \overline{D} + A \cdot \overline{C} = (A + \overline{A}) \cdot \overline{B} \cdot \overline{C} \cdot (D + \overline{D}) + (A + \overline{A}) \cdot \overline{B} \cdot (C + \overline{C}) \cdot \overline{D} + A \cdot (B + \overline{B}) \cdot \overline{C} \cdot (D + \overline{D}) =$$

$$= A \cdot \overline{B} \cdot \overline{C} \cdot D + A \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} + \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot D + \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} + A \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} + \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}$$

$$+ A \cdot B \cdot \overline{C} \cdot D + A \cdot B \cdot \overline{C} \cdot \overline{D} + A \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} + \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}$$

Quitando los repetidos obtenemos la 1FN:

$$=\overline{A}\cdot\overline{B}\cdot\overline{C}\cdot\overline{D}+\overline{A}\cdot\overline{B}\cdot\overline{C}\cdot D+\overline{A}\cdot\overline{B}\cdot C\cdot\overline{D}+A\cdot\overline{B}\cdot\overline{C}\cdot\overline{D}+A\cdot\overline{B}\cdot\overline{C}\cdot D+A\cdot\overline{B}\cdot C\cdot\overline{D}+A\cdot\overline{B}\cdot\overline{C}\cdot\overline{D}+A\cdot\overline{B}\cdot\overline{C}\cdot\overline{D}$$

2) Elaboración de la tabla de verdad

La tabla de verdad la obtenemos directamente de la 1FN ó 2FN. Si tomamos la 1FN, cada uno de los minitérminos aporta un '1' a la tabla de verdad. Las posiciones que no se hayan rellenado irán con '0'.

Si tomamos la 2FN, cada uno de los maxitérminos aporta un '0' a la tabla de verdad. Se debe recordar, que en la tabla de verdad a partir de maxitérminos se ponen los literales complementados. En el resto de posiciones se ponen '1'.

El resultado debe ser el mismo haciéndolo por la 1FN y la 2FN. Y por tanto, la suma del número de mintérminos y maxitérminos debe ser igual al número de posibilidades: 2^N (siendo N el número de variables). Para mostrarlo, en la figura se muestra la obtención de la tabla de verdad por la 1FN y la 2FN (no hace falta hacer dos tablas de verdad).

3) Mapa de Karnaugh

4) Ecuaciones:

En suma de productos $f = A \cdot \overline{C} + \overline{B} \cdot \overline{C} + \overline{B} \cdot \overline{D}$ En producto de sumas $f = (A + \overline{B}) \cdot (\overline{B} + \overline{C}) \cdot (\overline{C} + \overline{D})$

5) Esquemas en puertas lógicas:

Se ve que las formas normales son mucho más complejas que las SOP y POS obtenidas por Karnaugh

7.2.14. Para la siguiente función lógica obtener:

- 1) Obtener mediante operaciones lógicas las formas canónicas en 1ª Forma Normal (1FN) y 2ª Forma Normal (2FN)
- 2) Elaborar la tabla de verdad del circuito
- 3) Hacer el mapa de Karnaugh
- 4) Obtener a partir del mapa de Karnaugh la ecuación simplificada en suma de productos (SOP) y productos de sumas (POS)
- 5) Dibujar las representaciones en puertas lógicas del circuito correspondiente a la 1FN, 2FN, y las correspondientes de SOP y POS obtenidas del mapa de Karnaugh

a)
$$F(A,B,C) = (\overline{\overline{A} \cdot B + \overline{A} \cdot C + B \cdot A + B \cdot C}) + (\overline{A + \overline{B}})$$

1) Obtención de la 1FN y 2FN

$$F = \left((\overline{A} \cdot \overline{B}) \cdot (\overline{A} \cdot \overline{C}) \cdot (\overline{A} \cdot \overline{B}) \cdot (\overline{B} \cdot \overline{C}) \right) + \overline{A} \cdot B = (A + \overline{B}) \cdot (A + \overline{C}) \cdot (\overline{A} + \overline{B}) \cdot (\overline{B} + \overline{C}) + \overline{A} \cdot B = \left((A + \overline{B}) \cdot (\overline{A} + \overline{B}) \right) (A + \overline{C}) \cdot (\overline{B} + \overline{C}) + \overline{A} \cdot B = \overline{C}$$

Como
$$(A + \overline{B}) \cdot (\overline{A} + \overline{B}) = (A \cdot \overline{A}) + \overline{B} = 0 + \overline{B} = \overline{B}$$
 entonces:

$$= \overline{B} \cdot (A + \overline{C}) \cdot (\overline{B} + \overline{C}) + \overline{A} \cdot B$$

Para ponerla en SOP:

$$\overline{B} \cdot (A + \overline{C}) \cdot (\overline{B} + \overline{C}) + \overline{A} \cdot B = \overline{B} \cdot (A \cdot \overline{B} + A \cdot \overline{C} + \overline{B} \cdot \overline{C} + \overline{C}) + \overline{A} \cdot B = A \cdot \overline{B} + A \cdot \overline{B} \cdot \overline{C} + \overline{B} \cdot \overline{C} + \overline{A} \cdot B$$

$$= A \cdot \overline{B} + \overline{B} \cdot \overline{C} + \overline{A} \cdot B$$

Obtenemos la 1FN:

$$A \cdot \overline{B} \cdot (C + \overline{C}) + (A + \overline{A}) \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot B \cdot (C + \overline{C}) =$$

$$= A \cdot \overline{B} \cdot C + A \cdot \overline{B} \cdot \overline{C} + A \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot B \cdot \overline{C}$$

$$\mathbf{1FN:} \ A \cdot \overline{B} \cdot C + A \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot B \cdot C + \overline{A} \cdot B \cdot \overline{C} + \overline{A} \cdot B \cdot \overline{C}$$

Para la 2FN obtenemos la ecuación en POS:

$$(\overline{B} \cdot (A + \overline{C}) \cdot (\overline{B} + \overline{C})) + \overline{A} \cdot B = ((\overline{B} \cdot (A + \overline{C}) \cdot (\overline{B} + \overline{C})) + \overline{A}) ((\overline{B} \cdot (A + \overline{C}) \cdot (\overline{B} + \overline{C})) + B) = ((\overline{A} + \overline{B}) \cdot (A + \overline{A} + \overline{C}) \cdot (\overline{A} + \overline{B} + \overline{C})) ((B + \overline{B}) \cdot (A + B + \overline{C}) \cdot (B + \overline{B} + \overline{C})) = ((\overline{A} + \overline{B}) \cdot (A + \overline{A} + \overline{C}) \cdot (\overline{A} + \overline{B} + \overline{C})) = ((\overline{A} + \overline{B}) \cdot (A + \overline{A} + \overline{C}) \cdot (\overline{A} + \overline{B} + \overline{C})) = ((\overline{A} + \overline{B}) \cdot (A + \overline{A} + \overline{C}) \cdot (\overline{A} + \overline{B} + \overline{C})) = ((\overline{A} + \overline{B}) \cdot (A + \overline{A} + \overline{C}) \cdot (\overline{A} + \overline{B} + \overline{C})) = ((\overline{A} + \overline{B}) \cdot (A + \overline{A} + \overline{C}) \cdot (\overline{A} + \overline{B} + \overline{C})) = ((\overline{A} + \overline{B}) \cdot (A + \overline{A} + \overline{C}) \cdot (\overline{A} + \overline{B} + \overline{C})) = ((\overline{A} + \overline{B}) \cdot (A + \overline{A} + \overline{C}) \cdot (\overline{A} + \overline{B} + \overline{C})) = ((\overline{A} + \overline{B}) \cdot (A + \overline{A} + \overline{C}) \cdot (\overline{A} + \overline{B} + \overline{C})) = ((\overline{A} + \overline{C}) \cdot (\overline{A} + \overline{B} + \overline{C})) = ((\overline{A} + \overline{C}) \cdot (\overline{A} + \overline{B} + \overline{C})) = ((\overline{A} + \overline{C}) \cdot (\overline{A} + \overline{C}) \cdot (\overline{A} + \overline{C}) \cdot (\overline{A} + \overline{C})) = ((\overline{A} + \overline{C}) \cdot (\overline{A} + \overline{C}) \cdot (\overline{A} + \overline{C})) = ((\overline{A} + \overline{C}) \cdot (\overline{A} + \overline{C}) \cdot (\overline{A} + \overline{C})) = ((\overline{A} + \overline{C}) \cdot (\overline{A} + \overline{C}) \cdot (\overline{A} + \overline{C})) = ((\overline{A} + \overline{C}) \cdot (\overline{A} + \overline{C}) \cdot (\overline{A} + \overline{C})) = ((\overline{A} + \overline{C}) \cdot (\overline{A} + \overline{C})) = ((\overline{A} + \overline{C}) \cdot (\overline{A} + \overline{C})) = (\overline{A} + \overline{C}) \cdot (\overline{A} + \overline{C}) = (\overline{A} + \overline{C$$

$$= \left((\overline{A} + \overline{B}) \cdot (1 + \overline{C}) \cdot (\overline{A} + \overline{B} + \overline{C}) \right) \left(1 \cdot (A + B + \overline{C}) \cdot (1 + \overline{C}) \right) = (\overline{A} + \overline{B}) \cdot (\overline{A} + \overline{B} + \overline{C}) \cdot (A + B + \overline{C}) = (\overline{A} + \overline{B}) \cdot (A + B + \overline{C})$$

Obtenemos la 2FN:

$$= (\overline{A} + \overline{B} + (C \cdot \overline{C})) \cdot (A + B + \overline{C}) = (\overline{A} + \overline{B} + C) \cdot (\overline{A} + \overline{B} + \overline{C}) \cdot (A + B + \overline{C})$$

$$\mathbf{2FN:} \ (\overline{A} + \overline{B} + \overline{C}) \cdot (\overline{A} + \overline{B} + C) \cdot (A + B + \overline{C})$$

2) Elaboración de la tabla de verdad

3) Mapa de Karnaugh

4) Ecuaciones

En suma de productos $f = \overline{A} \cdot B + A \cdot \overline{B} + \overline{B} \cdot \overline{C}$ En producto de sumas $f = (\overline{A} + \overline{B}) \cdot (A + B + \overline{C})$

5) Esquemas en puertas lógicas:

7.2.15. Del circuito siguiente obtener:

- 1) La ecuación de la salida en suma de productos
- 2) La tabla de verdad del circuito
- 3) Hacer el mapa de Karnaugh
- 4) Obtener a partir del mapa de Karnaugh la ecuación simplificada en suma de productos (SOP) y productos de sumas (POS)
- 5) Dibujar el esquema en puertas de las ecuaciones en suma de productos y producto de sumas simplificadas

1) Ecuación de la salida en suma de productos

Identificamos la ecuación de cada señal en el esquema:

Y obtenemos la ecuación en SOP:

$$X=((\overline{A}\cdot E)\cdot (\overline{B}\cdot F))\oplus (\overline{A}\cdot E)$$

$$(\overline{A}\cdot E+\overline{B}\cdot F)\oplus (A+\overline{E})=$$

$$(\overline{A}\cdot E+\overline{B}\cdot F)\cdot (\overline{A+\overline{E}})+(\overline{A}\cdot E+\overline{B}\cdot F)\cdot (A+\overline{E})=$$

$$(\overline{A}\cdot E+\overline{B}\cdot F)\cdot \overline{A}\cdot E+(\overline{A}\cdot E)\cdot (\overline{B}\cdot F)\cdot (A+\overline{E})=$$

$$\overline{A}\cdot E+(A+\overline{E})\cdot (B+\overline{F})\cdot (A+\overline{E})=$$

$$\overline{A}\cdot E+(A+\overline{E})\cdot (B+\overline{F})=$$

$$\overline{A}\cdot E+(A+\overline{E})\cdot (B+\overline{F})=$$

$$\overline{A}\cdot E+(A+\overline{E})\cdot (B+\overline{F})=$$

$$X = \overline{A} \cdot E + A \cdot B + A \cdot \overline{F} + B \cdot \overline{E} + \overline{E} \cdot \overline{F}$$

2) Tabla de verdad

Una de las maneras de elaborar la tabla de verdad es ir evaluando los valores a las salidas de cada una de las puertas.

				$A+\overline{E}$	B+F	R∙S	P⊕R
Α	В	Е	F	R	S	P	Х
0	0	0	0	1	1	0	1
0	0	0	1	1	0	1	0
0	0	1	0	0	1	1	1
0	0	1	1	0	0	1	1
0	1	0	0	1	1	0	1
0	1	0	1	1	1	0	1
0	1	1	0	0	1	1	1
0	1	1	1	0	1	1	1
1	0	0	0	1	1	0	1
1	0	0	1	1	0	1	0
1	0	1	0	1	1	0	1
1	0	1	1	1	0	1	0
1	1	0	0	1	1	0	1
1	1	0	1	1	1	0	1
1	1	1	0	1	1	0	1
1	1	1	1	1	1	0	1

3) Mapa de Karnaugh

4) Ecuaciones en SOP y POS

5) Esquema de la ecuaciones en SOP y POS simplificadas

7.2.16. Del circuito siguiente obtener:

- 1) La ecuación de la salida en suma de productos
- 2) La tabla de verdad del circuito
- 3) Hacer el mapa de Karnaugh
- 4) Obtener a partir del mapa de Karnaugh la ecuación simplificada en suma de productos (SOP) y productos de sumas (POS)
- 5) Dibujar el esquema en puertas de las ecuaciones en suma de productos y producto de sumas simplificadas

1) Ecuación de la salida en suma de productos

$$Z = A \cdot \overline{B} + \overline{A} \cdot B + B \cdot C$$

2) Tabla de verdad minimizadas

3 y 4) Mapa de Karnaugh y ecuaciones

5) Esquema en puertas de la ecuaciones en SOP y POS simplificadas:

