Parallel Computing with GPUs

Shared Memory Part 3 - Boundary Conditions

Dr Paul Richmond http://paulrichmond.shef.ac.uk/teaching/COM4521/

This Lecture (learning objectives)

- **□** Boundary Conditions
 - ☐ Demonstrate the impact of boundary conditions for 2D gather problems
 - □ Compare and contrast different solutions to solving boundary problems

Boundary Conditions & Shared Memory Tiling

- □Consider a 2D problem where data is gathered from neighbouring cells
 - ☐ Each cell reads 8 values (gather pattern)
 - ☐ Sounds like a good candidate for shared memory
 - ☐ We can tile data into memory

Thread Block size is 8x8

- Data tiled into shared memory
- Data not tiled into shared memory

Gather pattern

Problem with our tiling approach

- □ Diagram shows number of cached reads
- ☐ Memory access pattern is good for threads at centre of the block
 - \Box 6x6x8=288 cached reads
- ☐ Memory access for threads at the boundary of the block is poor
 - □132 cached reads
 - **□92** un-cached reads

Boundary Conditions Solutions (Easy)

☐ Launch more threads	Iltilication —	DIM^2
Laurich more threads	Utilisation =	$\overline{(DIM+2)^2}$
\square Launch thread block of DIM+2 \times DIM+2		
☐Allocate one element of space per thread in S	M	
☐ Every thread loads one value		

DIM	Utilisation
8	64%
12	73%
16	79%
20	83%
24	85%
28	87%
32	89%
36	90%
40	91%
44	91%
48	92%

☐ Use more shared memory per thread	☐Use mor	e shared	memory	per thread
-------------------------------------	----------	----------	--------	------------

- □ Launch same DIM × DIM threads
- \square Allocate DIM+2 \times DIM+2 elements of space in SM
- ☐ Threads on boundary load multiple elements

□Only threads in inner DIM x DIM compute values

☐ Causes unbalanced loads

☐ Causes under utilisation

☐ All threads perform compute values

Boundary Conditions Solution (Harder)

- ☐ Use more shared memory per thread
 - □ Launch same DIM × DIM threads
 - □Allocate DIM+2 × DIM+2 elements of space in SM
 - ☐ Distribute the loading of SM evenly between threads
 - ☐ Thread position in the block must be translated to a position in SM for each load
 - □Only last warp will have imbalance of at worse one load
- □100 loads
- □512/512 cached reads

0	1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29
30	31	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	48	49
50	51	52	53	54	55	56	57	58	59
60	61	62	63	0	1	2	3	4	5
6	7	8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23	24	25
26	27	28	29	30	31	32	33	34	35

Acknowledgements and Further Reading

- ☐ Overview of Shared Memory Bank Conflicts
 - http://cuda-programming.blogspot.co.uk/2013/02/bank-conflicts-in-shared-memory-in-cuda.html
- ☐ Architecture Specific Guidance
 - □ http://acceleware.com/blog/maximizing-shared-memory-bandwidth-nvidia-kepler-gpus
 - □ https://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf

Summary

- **□**Boundary Conditions
 - ☐ Demonstrate the impact of boundary conditions for 2D gather problems
 - □ Compare and contrast different solutions to solving boundary problems

