

Tarallucci, Vino e Machine Learning Introduzione agli speech di L. Massaron

Machine Learning e Probabilità

Fabio Mardero fabio.mardero@gmail.com github.com/fmardero

21 marzo 2019

Indice

Il Machine Learning Apprendimento Compito

Accenni di Inferenza Statistica Approccio frequentista Approccio bayesiano

Il Machine Learning

Il Machine Learning

Il machine learning è un gruppo di modelli matematici in grado di "apprendere" dai dati allo scopo di eseguire, nel modo migliore possibile, un dato compito.

Caratterizzazione di un modello di ML

Un modello di machine learning è quindi caratterizzano da

- un apprendimento
- un compito

Il Machine Learning Apprendimento

In termini matematici, un modello apprende quando modifica la sua struttura, o i suoi parametri, per ridurre gli errori delle sue previsioni.

Può essere paragonato ad un agente collocato in un dato ambiente (*environment*). È esattamente ciò che accade per un algoritmo di ML messo in produzione.

L'algoritmo può interagire con l'ambiente o "subirlo".

Il Machine Learning

L'ambiente e/o l'interazione con esso produce un fenomeno i cui effetti misurabili sono raccolti come dati.

I dati possono essere

- strutturati, organizzati in database detti dataset,
- non strutturati, conservati senza alcuno schema,
- semi-strutturati.

Ogni informazione con carattere diverso è detta variabile.

Metodi di apprendimento

L'apprendimento di un modello di machine learning può avvenire in tre diversi modi:

- ▶ per rinforzo (reinforcement learning),
- ▶ in maniera supervisionata (*supervised learning*),
- ▶ in maniera non supervisionata (*unsupervised learning*).

Il Machine Learning Reinforcement Learning

Italiano

L'agente interagisce con l'environment e ogni sua azione modifica l'ambiente stesso.

Matematichese

Il modello interagisce con il sistema e ogni sua previsione modifica lo stato dello stesso.

Il Machine Learning Reinforcement Learning

Nel tempo, non necessariamente ad ogni interazione con l'ambiente, l'agente riceve un *feedback* sul suo comportamento. Egli modifica quindi le sue future azioni, sulla base delle precedenti, tentando di massimizzare quelle che hanno portato a risultati positivi e minimizzando quelle risultate negative. L'apprendimento dipende quindi da un sistema di *rewards* e *punishments*.

Il Machine Learning Supervised Learning

Il modello subisce l'ambiente. Nel caso dell'apprendimento supervisionato il modello mira a predire il comportamento di una o più <u>variabili osservate</u> rispetto alle altre.

Indicata con \hat{y} la previsione e con y il valore osservato, il modello apprende a minimizzare l'errore tra \hat{y} e y. L'apprendimento è, informalmente, "supervisionato" dai valori di y.

Il Machine Learning Unsupervised Learning

Il modello subisce l'ambiente ma non è allenato per fornire una previsione.

L'apprendimento non supervisionato prevede che l'algoritmo ricerchi strutture informative (*pattern*) tra i dati.

Compito Diversi tipi

Il compito definisce su cosa il modello è allenato e con quali intenzioni. L'oggetto di analisi sono dati strutturati o semi-strutturati.

Si riconoscono due casi:

- si individuano delle variabili più importanti, dette variabili target/risposta, rispetto alle altre, chiamate variabili esplicative/covariate/features,
- 2. tutte le variabili sono intese come significative (o potenzialmente tali).

Dato un insieme di dati, spetta all'osservatore decidere come intende interpretarli e se assegnare particolare importanza a qualcuna delle variabili disponibili.

Caso 1

Compiti di regressione o classificazione.

Mirando a fornire una previsione accurata delle variabili target, il modello spiega il fenomeno che genera y.

Caso 2

Compiti legati all'estrazione di informazione dai dati e ad una loro rappresentazione, ad esempio il clustering.

Ad esempio si individuano somiglianze tra informazioni presenti nel dataset.

Il modello di machine learning, a discapito del compito, fornisce un'interpretazione del fenomeno che genera i dati. Cambia la finalità esplicativa.

Accenni di Inferenza Statistica

L'inferenza statistica mira a descrivere processi/esperimenti non deterministici tramite l'osservazione di un campione.

L'inferenza, anche storicamente, può essere descritta secondo l'approccio

- frequentista
- bayesiano

Approccio frequentista

Data una variabile aleatoria X, sia $H = \{X = x\}$ evento di interesse/di "successo".

La probabilità che si verifichi H è pari a

$$\lim_{n\to+\infty}\frac{n_H}{n}=p(H)$$

con n in numero di prove/esperimenti e n_H il numero dei casi di successo.

La probabilità che si verifichi un dato evento è interpretata come la frequenza di successo.

Approccio frequentista

Ogni variabile aleatoria può essere

▶ discreta con funzione/legge di probabilità

$$P(\{X=x\})=p_x$$

continua con distribuzione di probabilità

$$P(\{a < X < b\}) = \int_a^b f(x) dx$$

con f funzione di densità di probabilità tale che

$$f(a) = \lim_{h \to 0} \frac{P(X > a) - P(X > a + h)}{h}$$

Distribuzione condizionata di A dato B

$$P(\{X \in A\} | \{X \in B\}) = P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Distribuzione congiunta di A e B

$$P({X \in A} \cap {X \in B}) = P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$$

I due eventi si dicono indipendenti se

$$P({X \in A}|{X \in B}) = P(A|B) = P(A)$$

 $P({X \in B}|{X \in A}) = P(B|A) = P(B)$

allora

$$P({X \in A} \cap {X \in B}) = P(A \cap B) = P(A) P(B)$$

Approccio bayesiano

Data una variabile aleatoria X, sia $H = \{X = x\}$ evento di successo. L'**osservatore**, prima degli esperimenti, possiede un grado di fiducia in merito al verificarsi di H che è descritto da una *probabilità a priori* P(H). Ad ogni prova E, osservando i risultati, l'osservatore aggiorna la sua opinione in merito alla probabilità di verificarsi dell'evento. Si parla dunque di *probabilità a posteriori* P(H|E) che è appunto "condizionata" dalle evidenze pratiche.

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)}$$

Con P(E|H) è indicata la probabilità che si verifichi l'evento osservato secondo le ipotesi a priori dell'osservatore.

La probabilità che si verifichi un dato evento è interpretata come il livello di fiducia che l'osservatore ne associa a riguardo.

Grazie dell'attenzione!