Multimedia Systems Lecture 4

LECTURER

MOUHSEN IBRAHIM

Contents

- ► imwrite Function
- ► Imadjust : gamma
- Thresholding
- Edge Detection

imwrite Function

Write image to graphics file

Syntax

- imwrite(A,filename,fmt) writes the image A to the file specified by filename in the format specified by fmt
- imwrite(X,map,filename,fmt) writes the indexed image in X and its associated colormap map to filename in the format specified by fmt
- imwrite(...,filename) writes the image to filename
- imwrite(...,Param1,Val1,Param2,Val2...) specifies parameters that control various characteristics of the output file. For example, if you are writing a JPEG file, you can specify the quality of the output image

Example

- A=imread('greens.jpg');
- imwrite(A,'new_greens.jpg','Quality',25)
- ► We choose the value of quality between 0 100
- Compare between the two images in size.

Imadjust : gamma

Syntax

J = imadjust(I,[low_in high_in],[low_out high_out],gamma)

Example:

- C=imread('circuit.tif');
- imshow(C)
- C_new=imadjust(C,[0 0.9],[],0.5);
- imshow(C_new)

Thresholding

- To convert an image from grays scale to brinary was a executor find a threshold ((T), where a blue sibigger that hat the reshold be are inchided amedrateisestatekblack
- Steps::
 - Convert the immage to a gray socal beinnounce if it its ison of a ray as a bailing age.
 - image The thitial value of the T is calculated by
 - The initial value of the T is calculated by $T = \lim_{L \to \infty} (L(z)) + \max_{L(z)} (L(z))$
 - Depending on T value there are 2 sets of pixels
 - Depending on Twolue f(x) = 0 There is f(x) = 0. The important f(x) = 0 There is f(x) = 0.
 - Calculate a new value of the threshold where
 - ► Calculate a 2new value to the threshold where
 - We repeat this operation until the difference between the last
 - calculated thresholds is smaller than 0.2
 We repeat this operation until the difference between the last calculated thresholds is smaller than 0.2

Thresholding

- ► The next step is to give each pixel whose value is bigger than the threshold the value 1 (white) and the rest the value 0 (black)
- ► We can use the matlab function *graythresh to calculate the T* as it is shown in the following example.
 - gray_orginal=imread('cameraman.tif');
 - imshow(gray_orginal)
 - thresh=graythresh(gray_orginal);
 - binary=im2bw(gray_orginal,thresh);
 - imshow(binary)

Edge Detection

- Edge detection is an image processing technique for finding the boundaries of objects within images
- It works by detecting discontinuities in brightness
- Common edge detection algorithms include Sobel, Canny, Prewitt, Robert
- ► Edge detection is used for image segmentation and data extraction in areas such as image processing, computer vision, and machine vision.
- In an image, an edge is a curve that follows a path of rapid change in image intensity. Edges are often associated with the boundaries of objects in a scene. Edge detection is used to identify the edges in an image.
- ► To find edges, you can use the edge function. This function looks for places in the image where the intensity changes rapidly, using one of these two criteria:
 - Places where the first derivative of the intensity is larger in magnitude than some threshold
 - ▶ Places where the second derivative of the intensity has a zero crossing

Edge Detection

```
I=imread('testpat1.tif');
IEr = edge(I,'roberts');
▶ IEp = edge(I,'prewitt');
► IEs = edge(I,'sobel');
▶ IEc = edge(I,'canny');
subplot(2,3,1), imshow(I); title('Original image');
subplot(2,3,2), imshow(IEr); title('modified image using Roberts filter');
subplot(2,3,3), imshow(IEp); title('modified image using prewitt filter');
subplot(2,3,4), imshow(IEs); title('modified image using sobol filter');
 subplot(2,3,5), imshow(IEc); title('modified image using canny filter');
```

THE END GOOD LUCK