CSE215 Foundations of Computer Science

Instructor: Zhoulai Fu

State University of New York, Korea

This week

- Some other proof tech (cont.)
- Organizing thoughts into clear writings
- SBU exam exercises
- Mock exam will be announced as ungraded homework.
- Use it for review; midterm 1 can be different.

Some other proof tech. (cont)

Non constructive proof

Proposition There exist irrational numbers x, y for which x^y is rational.

Proposition There exist irrational numbers x, y for which x^y is rational.

Proof. Let $x = \sqrt{2}^{\sqrt{2}}$ and $y = \sqrt{2}$. We know y is irrational, but it is not clear whether x is rational or irrational. On one hand, if x is irrational, then we have an irrational number to an irrational power that is rational:

$$x^y = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}\sqrt{2}} = \sqrt{2}^2 = 2.$$

On the other hand, if x is rational, then $y^y = \sqrt{2}^{\sqrt{2}} = x$ is rational. Either way, we have a irrational number to an irrational power that is rational.

Non-analytical, geometrybased proof

Proof of the Pythagorean Theorem

Organizing thoughts into clear writings

SBU 2020 Midterm

Problem 8. [5 points]

Prove that for all integers a, if a^3 is even, then a is even.

- Proof.
 - We want to prove _____
 - We use proof by contraposition to prove the statement above.
 - That is, we want to prove _____
 - Assume _____
 - •
 - Therefore _____
- QED.

SBU 2022 Midterm

Problem 8. [5 points]

Prove that for any two integers a and b, if ab is odd, then a and b are both odd.

- Proof.
 - We want to prove _____
 - We use proof by contradiction to prove the statement above.
 - That is, we assume ______(A)
 - From this assumption, _____
 - So, we get a contradiction with (A)
- QED.

SBU 2020 Midterm

Problem 6. [5 points]

Prove that the product of any four consecutive integers is a multiple of 4.

- Proof.

 - We prove the statement by division into cases.
 - Case 1: _____. In this case, we have _____.
 - Case 2: _____. In this case, we have _____.
 - Thus, (Q) holds in either case.
- QED.

SBU 2021 Midterm

Problem 8. [5 points]

Prove by contradiction that there are no integers x and y such that $x^2 = 4y + 2$.

- Proof.
 - (formal statement of proof objectives)

• (our proof strategy, derived proof objectives, assumptions)

• (core proof)

• QED.

- Proof.
 - (formal statement of proof objectives) We want to prove: ~(\exists x,y\in Z, such that x^2 = 4 y + 2)
 - (proof strategy, derived proof objectives, assumptions) We use proof by contradiction.
 Assume
 - (A) \exists x, y\in Z, such that x^2 = 4 y + 2
 - (core proof)
 - x^2 must be even since $x^2 = 4y + 2$. Thus x must be even. Let x = 2k for some integer k.
 - Then $4 k^2 = 4 y + 2$. Thus, $2 * k^2 = 2y + 1$.
 - This is a contradiction, since 2 * k^2 is even and 2y + 1 is odd. Therefore (A) must be false.
- QED.

- The statement is false.
- To disprove it, we choose x=2, y=1/2. Then both x and y are rational, but x^y is irrational.

SBU exam problems

• Prove: Given an integer a, then a^3 + a^2 + a is even if and only if a is even.

- Suppose a is an integer.
- We first prove a^3 +a^2 +a is even -> a is even.
 - We only need to show a is odd -> a³ + a² + a is odd
 - Suppose a is odd

- We then prove a is even -> a³ + a² + a is even
 - Suppose a is even

SBU 2021 Final

Problem 6. [5 points]

Prove that if $n^2 + 8n + 20$ is odd, then n is odd for natural numbers n.

- Proof.
 - We want to prove: for all natural numbers n, n^2+8n+20 is odd -> n is odd.
 - We use proof by contradiction to prove the statement above.
 - That is, we assume there exists a natural number n such that n^2+8n+20 is odd, and n is even.
 - From "n is even", we know n^2 must be even, and 8n must be even
 - Therefore n^2+8n+20 must be even, which contradicts with the assumption above.
- QED.

SBU 2022 Midterm

Problem 6. [5 points]

Let a_1, a_2, \ldots, a_n be real numbers for $n \ge 1$. Prove that at least one of these numbers is greater or equal to the average of the numbers.

- Proof.
 - We want to prove: for any real numbers a1,...a_n, there exists an a_i where 1<=i<=n, such that a_i>= (a1+a2+...a_n)/n.
 - We use proof by contradiction to prove the statement above.
 - That is, we assume: there exists some real numbers a1,...a_n, such that for all a_i, 1<=i<=n, a_i<(a1+a2+...a_n)/n.
 - From this assumption, we know (a1+a2+...a_n) < n * (a1+a2+...a_n)/n, which is a contradiction.
- QED.

SBU 2022 Midterm

Problem 7. [5 points]

Prove or disprove the following statement. If x and y are rational, then x^y is rational.