SSD1803

Advance Information

 $100 \ x \ 34 \ STN$ LCD Segment / Common Mono Driver with Controller

This document contains information on a new product. Specifications and information herein are subject to change without notice.

Appendix: IC Revision history of SSD1803 Specification

Version	Change Items	Effective Date
0.10	1 st Release	04-Mar-09
0.20	Die mark: B3GA2 Revised Pads Coordinate on P.10, 11 (2um movement) Revised Pin description of EXT pin to "pull-low internally" on P.13	09-Jul-09
1.0	Die mark: B3GA2+ Revised Power Supply VDD and VCI range	06-Oct-09
2.0	P.65-66 Added Application Example for 2 line and 4-line mode	10-Feb-10

 Solomon Systech
 Feb 2010
 P 2/79
 Rev 2.0
 SSD1803

CONTENTS

1	GENE	ERAL DESCRIPTION	7
2	FEAT	URES	7
3	ORDE	ERING INFORMATION	
4	BLOC	CK DIAGRAM	8
5		AD FLOOR PLAN	
6		DESCRIPTIONS	
7		CTIONAL BLOCK DESCRIPTIONS	
		OGRAMMABLE DUTY CYCLES	
		STEM INTERFACE	
		ISY FLAG (BF)	
		SPLAY DATA RAM (DDRAM)	
		MING GENERATION CIRCUIT	
		DDRESS COUNTER (AC)	
		JRSOR/BLINK CONTROL CIRCUIT	
		D Driver Circuit	
		GROM (CHARACTER GENERATOR ROM)	
		GRAM (CHARACTER GENERATOR RAM)	
		GRAM (SEGMENT ICON RAM)	
		FERFACE WITH MPU	
8	COM	MAND TABLE	28
9	COM	MAND DESCRIPTIONS	33
	9.1 Co	OMMAND SET 1 (IE = "HIGH")	33
	9.1.1	Display Clear	
	9.1.2	Return Home (RE = 0)	
	9.1.3	Power Down Mode set (RE = 1)	33
	9.1.4	Entry Mode Set	
	9.1.5	Display ON/OFF Control (RE = 0)	
	9.1.6	Extended Function Set (RE = 1)	35
	9.1.7	Cursor or Display Shift / Bias Ratio Select (RE = 0)	
	9.1.8	Shift/Scroll Enable ($RE = 1$)	
	9.1.9	Function Set	
	9.1.10 9.1.11	Set CGRAM Address ($RE = 0$) Set SEGRAM Address ($RE = 1$)	
	9.1.11	Set DDRAM Address ($RE = 1$)	
	9.1.13	Set Scroll Quantity ($RE = 1$)	
	9.1.14	Read Busy Flag & Address	
	9.1.15	Write Data to RAM	
	9.1.16	Read Data from RAM	
	9.2 Co	OMMAND SET 2 (IE = "LOW")	41
	9.2.1	Display Clear	
	9.2.2	Return Home	
	9.2.3	Entry Mode Set	
	9.2.4	Display ON/OFF Control ($RE = 0$)	
	9.2.5	Extended Function Set (RE = 1)	
	9.2.6		
		Cursor or Display Shift / Bias Ratio Select (RE = 0)	
	9.2.7 9.2.8		43

	2.9 Set CGRAM Address (RE = 0)	
	2.10 Set SEGRAM Address (RE = 1)	
	$2.11 Set DDRAM \ Address \ (RE = 0)$	
	2.12 Set Scroll Quantity (RE = 1) 2.13 Read Busy Flag & Address	
	2.13 Read Busy Flag & Address	
	2.15 Read Data from RAM	
10	INITIALIZING	48
10.1	Initializing by Internal Reset Circuit	48
10.2	INITIALIZING BY HARDWARE RESET INPUT	
10.3	INITIALIZING BY INSTRUCTION	49
11	FRAME FREQUENCY	53
12	POWER SUPPLY FOR DRIVING LCD PANEL	54
13	MAXIMUM RATINGS	5.6
	WIAAIWIUWI KATIINGS	JU
4	DC CHARACTERISTICS	57
15	AC CHARACTERISTICS	58
16	APPLICATION EXAMPLES	61
16.1	LCD Panel: 40 Character x 1-line Format (5-dot Font, 1/17 Duty)	61
16.2	LCD PANEL: 40 CHARACTER X 2-LINE FORMAT (5-DOT FONT, 1/33 DUTY)	61
16.3	LCD Panel: 20 Character x 4-line Format (5-dot Font, 1/33 Duty)	
16.4	LCD PANEL: 16 CHARACTER X 4-LINE FORMAT (6-DOT FONT, 1/33 DUTY)	
16.5	APPLICATION CIRCUIT (1-LINE MODE)	
16.6 16.7	APPLICATION CIRCUIT (2-LINE MODE)	
	•	
17	EXAMPLE OF INSTRUCTION AND DISPLAY CORRESPONDENCE	67
18	PACKAGE INFORMATION	76
18.1	DIE TRAY DIMENSIONS	76
APPE	NDIX I SSD1803M1 CGROM CHARACTER CODE	77
A DDE	NDIX II SSD1803M2 CGROM CHARACTER CODE	79
71 I I	A WIA II DOWIUSINIA CUNCINI CIIANACIEN CUVE	····· / O

TABLES

Table 3-1 Ordering Information	
TABLE 5-1 SSD1803 DIE PAD COORDINATES (PAD CENTER)	10
TABLE 6-1: POWER SUPPLY PIN DESCRIPTION	
TABLE 6-2: LCD DRIVER SUPPLY PIN DESCRIPTION	12
TABLE 6-3: SYSTEM CONTROL PIN DESCRIPTION	13
Table 6-4: MCU Interface Pin Description	13
TABLE 6-5: LCD DRIVER OUTPUT PIN DESCRIPTION	14
TABLE 7-1 RELATIONSHIP BETWEEN CHARACTER CODE (DDRAM) AND CHARACTER PATTERN (CGRAM)	21
TABLE 7-2 RELATIONSHIP BETWEEN SEGRAM ADDRESS AND DISPLAY PATTERN	22
Table 8-1 Instruction Set 1 (IE = "HIGH")	29
Table 8-2 Instruction Set 2 (IE = "Low")	31
TABLE 9-1 SHIFT PATTERNS ACCORDING TO S/C AND R/L BITS	35
TABLE 9-2 RELATIONSHIP BETWEEN DS AND COM SIGNAL	36
TABLE 9-3 SCROLL QUANTITY ACCORDING TO HDS BITS	38
TABLE 9-4 SHIFT PATTERNS ACCORDING TO S/C AND R/L BITS	43
TABLE 9-5 SCROLL QUANTITY ACCORDING TO HDS BITS	45
TABLE 12-1 DUTY RATIO AND POWER SUPPLY FOR LCD DRIVING	55
Table 13-1 Maximum Ratings (Voltage Referenced to V_{SS})	56
Table 14-1 DC Characteristics	
Table 15-1 AC Characteristics	58
Table 15-2 Reset Timing	60

SSD1803 Rev 2.0 P 5/79 Feb 2010 **Solomon Systech**

FIGURES

FIGURE 4-1 BLOCK DIAGRAM	8
FIGURE 5-1 SSD1803 DIE PAD FLOOR PLAN (DIE FACE UP)	9
FIGURE 7-1 DDRAM ADDRESS	16
FIGURE 7-2 1-LINE X 40CH. DISPLAY (5-DOT FONT WIDTH)	16
FIGURE 7-3 2-LINE X 40CH. DISPLAY (5-DOT FONT WIDTH)	17
FIGURE 7-4 4-LINE X 20CH. DISPLAY (5-DOT FONT WIDTH)	18
FIGURE 7-5 1-LINE X 32CH. DISPLAY (6-DOT FONT WIDTH)	18
FIGURE 7-6 2-LINE X 32CH. DISPLAY (6-DOT FONT WIDTH)	19
FIGURE 7-7 4-LINE X 16CH. DISPLAY (6-DOT FONT WIDTH)	19
FIGURE 7-8 RELATIONSHIP BETWEEN SEGRAM AND SEGMENT DISPLAY	23
FIGURE 7-9 EXAMPLE OF 8-BIT BUS MODE TIMING SEQUENCE	25
FIGURE 7-10 Example of 4-bit Bus Mode Timing Sequence	25
FIGURE 7-11 TIMING DIAGRAM OF SERIAL DATA TRANSFER	27
FIGURE 7-12 TIMING DIAGRAM OF CONTINUOUS DATA TRANSFER	
FIGURE 9-1 6-DOT FONT WIDTH CGROM/CGRAM	
FIGURE 9-2 READ BUSY FLAG & ADDRESS/PART ID	39
FIGURE 9-3: DISPLAY DATA READ WITH THE INSERTION OF DUMMY READ	40
FIGURE 9-4 6-DOT FONT WIDTH CGROM/CGRAM	
FIGURE 9-5 READ BUSY FLAG & ADDRESS/PART ID	46
FIGURE 9-6: DISPLAY DATA READ WITH THE INSERTION OF DUMMY READ	
FIGURE 15-1 WRITE MODE TIMING DIAGRAM	59
FIGURE 15-2 READ MODE TIMING DIAGRAM	59
FIGURE 15-3 SERIAL INTERFACE MODE TIMING DIAGRAM	59
FIGURE 15-4 RESET TIMING DIAGRAM	60

 Solomon Systech
 Feb 2010
 P 6/79
 Rev 2.0
 SSD1803

1 GENERAL DESCRIPTION

SSD1803 is a single-chip CMOS LCD driver with controller for liquid crystal dot-matrix character display system. It consists of 134 high voltage driving output pins for driving 100 Segments, 34 Commons. It can display 1, 2 or 4 lines with 5x8 or 6x8 dots format.

SSD1803 displays character directly from its internal 9,600 bits (240 characters x 5 x 8 dots) Character Generator ROM (CGROM). All the character codes are stored in the 640 bits (80 characters) Data Display RAM (DDRAM). User defined character can be loaded via 512 bits (8 characters) Character Generator RAM (CGRAM). In addition, there is a 128 bits Icon RAM for Icon display. Data/ Commands are sent from general MCU through software selectable 4/8-bit Parallel Interface or Serial Peripheral Interface.

SSD1803 embeds a DC-DC Converter and oscillator which reduce the number of external components. With the special design on minimizing power consumption and die size, SSD1803 is suitable for portable battery-driven applications requiring a long operation period and a compact size.

2 FEATURES

• Power supply: $VCI = 2.4V \sim VDD$ $VDD = 2.7V \sim 3.45V$

• LCD driving output voltage (VLCD = V5-VSS): 3.0 to 10.0V (Internal power supply mode) 3.0 to 13.0V (External power supply mode)

- Low current power down mode
- On Chip 2x/3x DC-DC Converter/External Power Supply
- Internal or External voltage divider
- Programmable bias ratio when internal divider is used: 1/4, 1/5, 1/6, 1/7
- Internal Oscillator with an external resistor
- Programming duty cycle: 1/17, 1/33
- 1, 2 or 4 lines with 5x8 or 6x8 dots format display
- 8/4-bit Parallel Interface and Serial Peripheral Interface
- Bi-direction shift function
- All character reverse display
- Display shift per line
- Automatic power on reset
- On-Chip Memories
 - o Character Generator ROM (CGROM): 9600 bits (240 characters x 5 x 8 dot)
 - o Character Generator RAM (CGRAM): 64 x 8 bits (8 characters)
 - o Display Data RAM (DDRAM): 80 x 8 bits (80 characters max.)
 - o Segment Icon RAM (SEGRAM): 16 x 8 bits (96 icons max.)
- Available in Bare Die

3 ORDERING INFORMATION

Table 3-1 Ordering Information

Ordering Part Number	Package Form	Reference on CGROM Character Code
SSD1803M1V	Bare Die	Appendix I
SSD1803M2V	Bare Die	Appendix II

4 BLOCK DIAGRAM

Figure 4-1 Block Diagram

 Solomon Systech
 Feb 2010
 P 8/79
 Rev 2.0
 SSD1803

5 DIE PAD FLOOR PLAN

Figure 5-1 SSD1803 Die Pad Floor Plan (Die Face Up)

* Note: Die size is subject to change upon design completion*

Die Size (after sawing)	5184±50μm x 3731±50μm		
Die Thickness	300±25μm		

SSD1803 | Rev 2.0 | P 9/79 | Feb 2010 | **Solomon Systech**

Table 5-1 SSD1803 Die Pad Coordinates (Pad center)

* Note: Pad Coordinates listed below is subjected to change upon design completion*

Dod #					Signal						V mas
Pad #	Signal SEC69	X-pos -2401	Y-pos	Pad #	Signal VDD	X-pos	Y-pos	Pad #	Signal	X-pos 619	Y-pos
1	SEG68	-2401 -2291	-1750 -1750	51	VDD	2510 2510	-1532 -1422	101 102	SEG2 SEG3		1751
2	SEG69			52	EXT					524	1751
3	SEG70	-2181	-1750	53	NC OSC2	2510	-1312	103	SEG4	429	1751
4	SEG71	-2071	-1750	54	OSC2	2510	-1202	104	SEG5	334	1751
5	SEG72	-1961	-1750	55	OSC1	2510	-1092	105	SEG6	239	1751
6	SEG73	-1851	-1750	56	RESET	2510	-997	106	SEG7	144	1751
7	SEG74	-1756	-1750	57	IM	2510	-902	107	SEG8	49	1751
8	SEG75	-1661	-1750	58	IE	2510	-807	108	SEG9	-46	1751
9	SEG76	-1566	-1750	59	VSS1	2510	-712	109	SEG10	-141	1751
10	SEG77	-1471	-1750	60	RS/CS	2510	-617	110	SEG11	-236	1751
11	SEG78	-1376	-1750	61	RW/SID	2510	-522	111	SEG12	-331	1751
12	SEG79	-1281	-1750	62	E/SCLK	2510	-427	112	SEG13	-426	1751
13	SEG80	-1186	-1750	63	DB0/SDO	2510	-332	113	SEG14	-521	1751
14	SEG81	-1091	-1750	64	DB1	2510	-237	114	SEG15	-616	1751
15	SEG82	-996	-1750	65	DB2	2510	-142	115	SEG16	-711	1751
16	SEG83	-901	-1750	66	DB3	2510	-47	116	SEG17	-806	1751
17	SEG84	-806	-1750	67	DB4	2510	48	117	SEG18	-901	1751
18	SEG85	-711	-1750	68	DB5	2510	143	118	SEG19	-996	1751
19	SEG86	-616	-1750	69	DB6	2510	238	119	SEG20	-1091	1751
20	SEG87	-521	-1750	70	DB7	2510	333	120	SEG21	-1186	1751
21	SEG88	-426	-1750	71	VCI	2510	428	121	SEG22	-1281	1751
22	SEG89	-331	-1750	72	C2	2510	523	122	SEG23	-1376	1751
23	SEG90	-236	-1750	73	C1	2510	618	123	SEG24	-1471	1751
24	SEG91	-141	-1750	74	VSS2	2510	713	124	SEG25	-1566	1751
25	SEG92	-46	-1750	75	V5OUT2	2510	808	125	SEG26	-1661	1751
26	SEG93	49	-1750	76	V5OUT3	2510	903	126	SEG27	-1756	1751
27	SEG94	144	-1750	77	V5	2510	998	127	SEG28	-1851	1751
28	SEG95	239	-1750	78	V4	2510	1093	128	SEG29	-1961	1751
29	SEG96	334	-1750	79	V3	2510	1203	129	SEG30	-2071	1751
30	SEG97	429	-1750	80	V2	2510	1313	130	SEG31	-2181	1751
31	SEG98	524	-1750	81	V1	2510	1423	131	SEG32	-2291	1751
32	SEG99	619	-1750	82	VSS2	2510	1533	132	SEG33	-2401	1751
33	SEG100	714	-1750	83	COM24	2404	1751	133	SEG34	-2514	1643
34	COM9	809	-1750	84	COM23	2294	1751	134	SEG35	-2514	1533
35	COM10	904	-1750	85	COM22	2184	1751	135	SEG36	-2514	1423
36	COM11	999	-1750	86	COM21	2074	1751	136	SEG37	-2514	1313
37	COM12	1094	-1750	87	COM20	1964	1751	137	SEG38	-2514	1203
38	COM13	1189	-1750	88	COM19	1854	1751	138	SEG39	-2514	1093
39	COM14	1284	-1750	89	COM18	1759	1751	139	SEG40	-2514	998
40	COM15	1379	-1750	90	COM17	1664	1751	140	SEG41	-2514	903
41	COM16	1474	-1750	91	COM8	1569	1751	141	SEG41	-2514	808
42	COM16	1569	-1750	92	COM7	1474	1751	141	SEG42 SEG43	-2514	713
43	COM26	1664	-1750	93	COM6	1379	1751	143	SEG44	-2514	618
43	COM27	1759	-1750	93	COM5	1284	1751	143	SEG45	-2514	523
45	COM27	1854	-1750	95	COM3	1189	1751	144	SEG45 SEG46		428
45	COM29			96	COM4 COM3				SEG40 SEG47	-2514	
46	COM29	1964 2074	-1750 -1750	96	COM3	1094 999	1751 1751	146 147	SEG47 SEG48	-2514 -2514	333 238
48	COM31	2184	-1750	98	COM1	904	1751	148	SEG49	-2514	143
49	COM32	2294	-1750	99	COM0	809	1751	149	SEG50	-2514	48
50	COM33	2404	-1750	100	SEG1	714	1751	150	SEG51	-2514	-47

 Solomon Systech
 Feb 2010
 P 10/79
 Rev 2.0
 SSD1803

Pad #	Signal	X-pos	Y-pos
151	SEG52	-2514	-142
152	SEG53	-2514	-237
153	SEG54	-2514	-332
154	SEG55	-2514	-427
155	SEG56	-2514	-522
156	SEG57	-2514	-617
157	SEG58	-2514	-712
158	SEG59	-2514	-807
159	SEG60	-2514	-902
160	SEG61	-2514	-997
161	SEG62	-2514	-1092
162	SEG63	-2514	-1202
163	SEG64	-2514	-1312
164	SEG65	-2514	-1422
165	SEG66	-2514	-1532
166	SEG67	-2514	-1642

Pad Size

Pad #	X [um]	Y[um]	Pad pitch [um] (Min)
1-5, 46-54, 79-87, 128-137, 162-166	105	110	110
6-45, 55-78, 88-127, 138-161	90	110	95

SSD1803 Rev 2.0 P 11/79 Feb 2010 **Solomon Systech**

6 PIN DESCRIPTIONS

Key:

I = Input

O =Output

IO = Bi-directional (input/output)

P = Power pin

GND = System VSS

Table 6-1: Power Supply Pin Description

Pin Name	Type	Connect To	When Not in Use	Description
VCI	P	Power Supply for Analog Circuits	-	Input voltage to the voltage converter to generate LCD drive voltage
VDD	P	Power Supply for Logic Blocks	-	Power supply for logic circuit (VDD should rise within 10ms)
VSS1	GND	Ground of Power Supply	-	System ground pin of the IC for digital part
VSS2	GND	Ground of Power Supply	-	System ground pin of the IC for analog part

Table 6-2: LCD Driver Supply Pin Description

Pin Name	Type	Connect To	When Not in Use Description	
V1 –V5	Ю	LCD Power Supply	Open	Bias voltage level for LCD driving
C1, C2	I	External Capacitor	-	Connect to external capacitor when voltage converter is used
V5OUT2	О	x2 Converter Output	Open	Output of the x2 voltage converter
V5OUT3	О	x3 Converter Output	Open	Output of the x3 voltage converter

 Solomon Systech
 Feb 2010
 P 12/79
 Rev 2.0
 SSD1803

Table 6-3: System Control Pin Description

Pin Name	Type	Connect To	When Not in Use	Description					
OSC1	I	Oscillator	-	When internal oscillator is used, connect external Rf resistor between OSC1 and OSC2. If external clock is used, connect it to OSC1					
OSC2	О			if external clock is used, connect it to obe i					
IE	I	Instruction Set Select	-	When IE="High", instruction set 1 is selected. When IE = "Low", instruction set 2 is used.					
IM	I	Interface Mode Select	-	Select the interface mode. When IM="High": 4-bit/8-bit bus mode When IM="Low": serial mode					
EXT	Ю	External Voltage Divider Select (VDD or Open)	-	Select external or internal voltage divider This pin is pull-low internally EXT="H": select external voltage divider EXT=Open: select internal voltage divider					

Table 6-4: MCU Interface Pin Description

Pin Name	Type	Connect To	When Not in Use	Description
RS/CS	Ι	Register Select / Chip Select	-	When in bus mode, used as register select. When RS/CS="High", data register is selected. When RS/CS="Low", instruction register is selected. When in serial mode, used as chip select. When RS/CS="High", not selected. When RS/CS="Low", selected.
RW/SID	I	Read/Write / Serial Input Data	-	When in bus mode, used as read/write select. When RW/SID="high", read operation. When RW/SID="Low", write operation. When in serial mode, used as serial data input pin.
E/SCLK	Ι	RW Enable / Serial Clock	-	When in bus mode, used as read/write enable signal. When in serial mode, used as serial clock input pin.
RESET	I	Reset Pin	-	System reset pin
DB0/SOD	Ю	Data Bus 0 / Serial Output Data	-	When in 8-bit bus mode, used as lowest bidirection data bit. During in 4-bit bus mode, open this pin. When in serial mode, used as serial data output pin. If not is read operation, open this pin.
DB1 - DB3	Ю	Data Bus 1-7	-	When in 8-bit bus mode, used as low order bidirectional data bus. When in 4-bit bus mode or serial mode, open these pins.
DB4 – DB7	Ю		-	When in 8-bot bus mode, used as high order bidirectional data bus. In case of 4-bit bus mode, used as both high and low order. DB7 used for busy flag output. During serial mode, open these pins.

SSD1803 Rev 2.0 P 13/79 Feb 2010 **Solomon Systech**

Table 6-5: LCD Driver Output Pin Description

Pin Name	Type	Connect To	When Not in Use	Description
SEG1 - SEG100	О	Segment Output	Open	Segment signal output for LCD drive
COM0 - COM33	О	O Common Output	Open	Common signal output for LCD drive

 Solomon Systech
 Feb 2010
 P 14/79
 Rev 2.0
 SSD1803

7 FUNCTIONAL BLOCK DESCRIPTIONS

7.1 Programmable Duty Cycles

5-dot Font Width

Display Line	Duty Ratio	Single-chip	Operation
Numbers	Duty Kano	Displayable Characters	Possible Icons
1	1/17	1 line of 40 characters	80
2	1/33	2 lines of 40 characters	80
4	1/33	4 line of 20 characters	80

6-dot Font Width

Display Line	Duty Ratio	Single-chip	Operation
Numbers	Duty Kano	Displayable Characters	Possible Icons
1	1/17	1 line of 32 characters	96
2	1/33	2 lines of 32 characters	96
4	1/33	4 line of 16 characters	96

7.2 System Interface

This chip has all three kinds interface type with MPU: serial, 4-bit bus and 8-bit bus. Serial and bus (4-bit/8-bit) is selected by IM input, and 4-bit bus and 8-bit bus is selected by DL bit in the instruction register. During read or write operation, two 8-bit registers are used. One is data register (DR), the other is instruction register (IR). The data register (DR) is used as temporary data storage place for being written into or read from DDRAM/CGRAM/SEGRAM, target RAM is selected by RAM address setting instruction. Each internal operation, reading from or writing into RAM, is done automatically. So to speak, after MPU reads DR data, the data in the next DDRAM/CGRAM/SEGRAM address is transferred into DR automatically. Also after MPU writes data to DR, the data in DR is transferred into DDRAM/CGRAM/SEGRAM automatically. The Instruction register (IR) is used only to store instruction code transferred from MPU. MPU cannot use it to read instruction data. To select register, use RS/CS input pin in 4-bit/8-bit bus mode (IM = "High") or RS bit in serial mode (IM = "Low").

RS	R/W	Operation
0	0	Instruction write operation (MPU writes Instruction code into IR)
0	1	Read busy flag (DB7) and address counter (DB0 - DB6)
1	0	Data write operation (MPU writes data into DR)
1	1	Data read operation (MPU reads data from DR)/ Part ID

7.3 Busy Flag (BF)

When BF = "High", it indicates that the internal operation is being processed. So during this time the next instruction cannot be accepted. BF can be read, when RS = Low and R/W = High (Read Instruction Operation), through DB7. Before executing the next instruction, be sure that BF is not high.

7.4 Display Data Ram (DDRAM)

DDRAM stores display data of maximum 80 x 8 bits (80 characters). DDRAM address is set in the address counter (AC) as a hexadecimal number. (refer to Figure 7-1.)

Figure 7-1 DDRAM Address

Display of 5-Dot Font Width Character 5-dot 1-line Display

In case of 1-line display with 5-dot font, the address range of DDRAM is 00H-4FH. (refer to Figure 7-2)

Figure 7-2 1-line x 40ch. Display (5-dot Font Width)

Solomon Systech Feb 2010 P 16/79 Rev 2.0 SSD1803

5-dot 2-line Display

In case of 2-line display with 5-dot font, the address range of DDRAM is 00H-27H, 40H-67H (refer to Figure 7-3).

10 11 12 13 14 15 16 COM₁ 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 COM8 COM17 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 COM24 31 32 21 22 23 24 25 26 27 28 29 37 38 39 30 33 34 35 36 40 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 COM9

14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 COM9 65 66 67 COM32 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F 60 61 62 63 64 DDRAM Address 9 10 11 12 13 14 15 16 17 18 COM1 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 COM8 COM17 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 COM9 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 00 COM16 COM16 55 56 57 58 59 5A 5B 5C 5D 5E 5F 60 61 62 63 64 65 66 67 40 COM25 (After Shift Left) 9 10 11 12 13 14 15 16 17 18 19 20 27 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 COM8 COM17 67 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 COM24 26 27 28 29 30 31 32 33 35 24 25 36 38 СОМ9 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 COMB

53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F 60 61 62 63 64 65 66 COM25

(After Shift Right)

Figure 7-3 2-line x 40ch. Display (5-dot Font Width)

5-dot 4-line Display

In case of 4-line display with 5-dot font, the address range of DDARM is 00H-13H, 20H-33H, 40H-53H, 60H-73H (refer to Figure 7-4).

Figure 7-4 4-line x 20ch. Display (5-dot Font Width)

DISPLAY OF 6-DOT FONT WIDTH CHARACTER

When this device is used in 6-dot font width mode, SEG97, SEG98, SEG99 and SEG100 must be opened.

6-dot 1-line Display

In case of 1-line display with 6-dot font, the address range of DDRAM is 00H-4FH (refer to Figure 7-5).

COM1 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 COM9 SEG1

COM8 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F COM9 COM16

COM8 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F COM9 COM16

COM8 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 COM9 COM16

COM8 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 COM9 COM16

COM8 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 COM9 COM16

COM8 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 COM9 COM16

COM8 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 COM9 COM16

COM8 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E COM9 COM16

Figure 7-5 1-line x 32ch. Display (6-dot Font Width)

Solomon Systech Feb 2010 | P 18/79 | Rev 2.0 | SSD1803

6-dot 2-line Display

In case of 2-line display with 6-dot font, the address range of DDRAM is 00H-27H, 40H-67H (refer to Figure 7-6).

Display position 26 16 28 19 COM1 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F COM16 COM25 COM25 COM26 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 $\frac{\text{COM1}}{\text{COM8}} \ \ \, 01 \ \ \, 02 \ \ \, 03 \ \ \, 04 \ \ \, 05 \ \ \, 06 \ \ \, 07 \ \ \, 08 \ \ \, 09 \ \ \, 0A \ \ \, 0B \ \ \, 0C \ \ \, 0D \ \ \, 0E \ \ \, 0F \ \ \, 10 \ \ \, 111 \ \ \, 12 \ \ \, 13 \ \ \, 14 \ \ \, 15 \ \ \, 16 \ \ \, 17 \ \ \, 18 \ \ \, 19 \ \ \, 1A \ \ \, 1B \ \ \, 1C \ \ \, 1D \ \ \, 1E \ \ \, 1F \ \ \, 20 \ \ \, \frac{\text{COM9}}{\text{COM16}}$ COM17 COM24 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F 60 COM35 10 11 12 13 14 15 16 17 18 19 20 21 22 26 COM1 27 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E COM9 COM9 COM15 27 00 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E COM9 COM15 COM1 COM17 COM24 67 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E COM32

Figure 7-6 2-line x 32ch. Display (6-dot Font Width)

6-dot 4-line Display

In case of 4-line display with 6-dot font, the address range of DDARM is 00H-13H, 20H-33H, 40H-53H, 60H-73H (refer to Figure 7-7).

Display position 9 10 12 13 14 15 16 ◀ COM1 COM8 00 01 02 03 04 05 06 07 80 09 0Α 0B 0C 0D 0E 0F **DDRAM Address** 21 22 23 24 25 28 29 2A 2B 2C 2D 2E 2F 20 26 27 COM₁₆ COM17 44 49 4A 4D 42 43 45 46 47 48 4B 4C 4E 4F COM24 COM25 61 62 63 65 68 69 6B 6C 6D 6F 60 64 66 67 6A 6E COM32 SEG1 SFG96 3 4 5 6 7 8 9 10 11 12 13 14 15 16 COM1 COM8 02 03 04 05 06 07 80 09 0A 0B 0C 0D 0E 0F 10 01 COM9 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 COM₁₆ COM17 42 44 45 47 48 49 4A 4B 4D 4F 50 COM24 COM25 69 62 63 64 65 66 67 68 6A 6B 6C 6D 6E 6F 70 COM32 (After Shift Left) 10 5 6 8 9 13 15 16 3 11 12 14 0C 13 00 01 02 03 04 05 06 07 80 09 0A 0B 0D 0E COM9 20 2D 33 21 22 23 24 25 26 27 28 29 2A 2B 2C 2E COM17 40 48 4C 41 42 43 44 45 46 47 49 4A 4B 4D 4E COM25 68 69 COM32 (After Shift Right)

Figure 7-7 4-line x 16ch. Display (6-dot Font Width)

SSD1803 Rev 2.0 P 19/79 Feb 2010 **Solomon Systech**

7.5 Timing Generation Circuit

Timing generation circuit generates clock signals for the internal operations.

7.6 Address Counter (AC)

Address Counter (AC) stores DDRAM/CGRAM/SEGRAM address, transferred from IR. After writing into (reading from) DDRAM/CGRAM/SEGRAM, AC is automatically increased (decreased) by 1. When RS = "Low" and R/W = "High", AC can be read through DB0-DB6.

7.7 Cursor/Blink Control Circuit

It controls cursor/blink ON/OFF and black/white inversion at cursor position.

7.8 LCD Driver Circuit

LCD Driver circuit has 34 common and 100 segment signals for LCD driving. Data from SEGRAM/CGRAM/CGROM is transferred to 100-bit segment latch serially, and then it is stored to 100-bit shift latch. When each com is selected by 34-bit common register, segment data also output through segment driver from 100-bit segment latch. In case of 1-line display mode, COM0-COM17 have 1/17 duty, and in 2-line or 4-line mode, COM0-COM33 have 1/33 duty ratio.

7.9 CGROM (Character Generator ROM)

CGROM has 5 x 8 dots 240 Character Pattern.

7.10 CGRAM (Character Generator RAM)

CGRAM has up to 5 x 8 dots 8 characters. By writing font data to CGRAM, user defined character can be used (refer to Table 7-1).

Solomon Systech Feb 2010 P 20/79 Rev 2.0 SSD1803

Table 7-1 Relationship between Character Code (DDRAM) and Character Pattern (CGRAM)

5x8 dots Character Pattern

ern	Patter			ata	/I Daa	RAN	CC				ess	Addı	RAM	CGI		1)	Data	RAM	(DD	Code	cter (Chara	(
ber	Numbe	P0	P1	P2	P3	P4	P5	P6	P7	A0	Α1	A2	А3	A4	A5	D0	D1	D2	D3	D4	D5	D6	D7
ern1	Patterr	0	1	1	1	0	Х	B0	B1	0	0	0	0	0	0	0	0	0	Х	0	0	0	0
		1	0	0	0	1				1	0	0											
		1	0	0	0	1				0	1	0											
		1	1	1	1	1				1	1	0											
		1	0	0	0	1				0	0	1											
		1	0	0	0	1				1	0	1											
		1	0	0	0	1				0	1	1											
		0	0	0	0	0				1	1	1											
											•			•									
ern8	Patterr	1	0	0	0	1	Х	В0	B1	0	0	0	1	1	1	1	1	1	x	0	0	0	0
		1	0	0	0	1				1	0	0											
		1	0	0	0	1				0	1	0											
		1	1	1	1	1				1	1	0											
		1	0	0	0	1				0	0	1											
		1	0	0	0	1				1	0	1											
		1	0	0	0	1				0	1	1											
		0	0	0	0	0				1	1	1											

6 x 8 Dots Character Pattern

Pattern		CGRAM Daata								Character Code (DDRAM Data) CGRAM Address													
Number	DO	D4				P5	DC	P7	۸.0		_	_		۸.	,			_					
	P0	P1	P2	P3	P4	_	P6		A0	A1		A3	A4		D0		D2	D3	D4	D5	D6	D7	
Pattern1	0	1	1	1	0	0	B0	B1	0	0	0	0	0	0	0	0	0	Х	0	0	0	0	
	1	0	0	0	1	0			1	0	0												
	1	0	0	0	1	0			0	1	0												
	1	1	1	1	1	0			1	1	0												
	1	0	0	0	1	0			0	0	1												
	1	0	0	0	1	0			1	0	1												
	1	0	0	0	1	0			0	1	1												
	0	0	0	0	0	0			1	1	1												
Pattern8	1	0	0	0	1	0	B0	B1	0	0	0	1	1	1	1	1	1	Х	0	0	0	0	
	1	0	0	0	1	0			1	0	0												
	1	0	0	0	1	0			0	1	0												
	1	1	1	1	1	0			1	1	0												
	1	0	0	0	1	0			0	0	1												
	1	0	0	0	1	0			1	0	1												
	1	0	0	0	1	0			0	1	1												
	0	0	0	0	0	0			1	1	1												

^{1.} When BE (Blink Enable bit) = "High", blink is controlled by B1 and B0 bit.

In case of 5-dot font width, when B1 = "1", enabled dots of P0-P4 will blink, and when B1 = "0" and B0 = "1", enabled dots in P4 will blink, when B1 = "0" and B0 = "0", blink will not happen.

In case of 6-dot font width, when B1 = "1", enabled dots of P0-P5 will blink, and when B1 = "0" and B0 = "1", enabled dots of P5 will blink, when B1 = "0" and B0 = "0", blink will not happen.

2 "X": Don't care

SSD1803 Rev 2.0 P 21/79 Feb 2010 **Solomon Systech**

7.11 SEGRAM (Segment Icon RAM)

SEGRAM has segment control data and segment pattern data. During 1-line display mode, COM0 (COM17) makes the data of SEGRAM enable to display icons. When used in 2/4-line display mode COM0 (COM33) does that. Its higher 2-bit are blinking control data, and lower 6-bits are pattern data (refer to Table 7-2 and Figure 7-8).

Table 7-2 Relationship between SEGRAM Address and Display Pattern

CT	EGRAN	T A ddu	0.00						S	EGRA	M Data	Displa	y Patter	n					
SI	GKAN	1 Addr	ess			5	-dot Fo	nt Widt	th					6-	dot Fo	nt Widt	th		
A3	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	B1	B0	X	S1	S2	S3	S4	S5	B1	В0	S1	S2	S3	S4	S5	S6
0	0	0	1	B1	B0	X	S6	S7	S8	S9	S10	B1	В0	S7	S8	S9	S10	S11	S12
0	0	1	0	B1	В0	X	S11	S12	S13	S14	S15	B1	В0	S13	S14	S15	S16	S17	S18
0	0	1	1	B1	B0	X	S16	S17	S18	S19	S20	B1	В0	S19	S20	S21	S22	S23	S24
0	1	0	0	B1	B0	X	S21	S22	S23	S24	S25	B1	В0	S25	S26	S27	S28	S29	S30
0	1	0	1	B1	B0	X	S26	S27	S28	S29	S30	B1	В0	S31	S32	S33	S34	S35	S36
0	1	1	0	B1	B0	X	S31	S32	S33	S34	S35	B1	В0	S37	S38	S39	S40	S41	S42
0	1	1	1	B1	В0	X	S36	S37	S38	S39	S40	B1	В0	S43	S44	S45	S46	S47	S48
1	0	0	0	B1	В0	X	S41	S42	S43	S44	S45	B1	В0	S49	S50	S51	S52	S53	S54
1	0	0	1	B1	B0	X	S46	S47	S48	S49	S50	B1	В0	S55	S56	S57	S58	S59	S60
1	0	1	0	B1	В0	X	S51	S52	S53	S54	S55	B1	В0	S61	S62	S63	S64	S65	S66
1	0	1	1	B1	В0	X	S56	S57	S58	S59	S60	B1	В0	S67	S68	S69	S70	S71	S72
1	1	0	0	B1	В0	X	S61	S62	S62	S64	S65	B1	В0	S73	S74	S75	S76	S77	S78
1	1	0	1	B1	В0	X	S66	S67	S68	S69	S70	B1	В0	S79	S80	S81	S82	S83	S84
1	1	1	0	B1	В0	X	S71	S72	S73	S74	S75	B1	В0	S85	S86	S87	S88	S89	S90
1	1	1	1	B1	В0	X	S76	S77	S78	S79	S80	B1	В0	S91	S92	S93	S94	S95	S96

^{1.} B1, B0: Blinking control bit

Control Bit	Blinkii	ng Port
BE B1 B0	5-dot font width	6-dot font width
0 X X	No blink	No blink
1 0 0	No blink	No blink
1 0 1	D4	D5
1 1 X	D4 - D0	D5 - D0

^{1.} S1-S80 : Icon pattern ON/OFF in 5-dot font width S1-S96 : Icon pattern ON/OFF in 6-dot font width

 Solomon Systech
 Feb 2010 | P 22/79 | Rev 2.0 | SSD1803

^{2. &}quot;X": Don't care.

Figure 7-8 Relationship between SEGRAM and Segment Display

SSD1803 Rev 2.0 P 23/79 Feb 2010 **Solomon Systech**

7.12 Interface with MPU

SSD1803 can transfer data in bus mode (4-bit or 8-bit) or serial mode with MPU. So you can use any type 4 or 8-bit MPU.

In case of 4-bit bus mode, data transfer is performed by two times to transfer 1 byte data.

- · When interfacing data length is 4-bit, only 4 ports, from DB4 DB7, are used as data bus.
- At first higher 4-bit (in case of 8-bit bus mode, the contents of DB4 DB7) are transferred, and then lower 4-bit (in case of 8-bit bus mode, the contents of DB0 DB3) are transferred. So transfer is performed by two times. Busy flag outputs "High" after the second transfer are ended.
- · When interfacing data length is 8-bit, transfer is performed at a time through 8 ports, from DB0 -DB7.
- If IM is set to "Low", serial transfer mode is set.

Solomon Systech Feb 2010 P 24/79 Rev 2.0 SSD1803

INTERFACE WITH MPU IN BUS MODE

Interface with 8-bit MPU

If 8-bit MPU is used, SSD1803 can connect directly with that. In this case, port E, RS, R/W and DB0 - DB7 need to interface each other. Example of timing sequence is shown below.

Figure 7-9 Example of 8-bit Bus Mode Timing Sequence

Interface with 4-bit MPU

If 4-bit MPU is used, SSD1803 can connect directly with this. In this case, port E, RS, R/W and DB4 - DB7 need to interface each other. The transfer is performed by two times. Example of timing sequence is shown below.

Figure 7-10 Example of 4-bit Bus Mode Timing Sequence

INTERFACE WITH MPU IN SERIAL MODE

When IM port input is "Low", serial interface mode is started. At this time, all three ports, SCLK (synchronizing transfer clock), SID (serial input data), and SOD (serial output data), are used. If you want to use SSD1803 with other chips, chip select port (CS) can be used. By setting CS to "Low", SSD1803 can receive SCLK input. If CS is set to "High", SSD1803 reset the internal transfer counter.

Before transfer real data, start byte has to be transferred. It is composed of succeeding 5 "High" bits, read write control bit (R/W), register selection bit (RS) and end bit that indicates the end of start byte. Whenever succeeding 5 "High" bits are detected by SSD1803, it makes serial transfer counter reset and ready to receive next information

The next input data are register selection bit that determine which register will be used, and read write control bit that determine the direction of data. Then end bit is transferred, which must have "Low" value to show the end of start byte. (Refer to Figure 7-11 and Figure 7-12)

Write Operation (R/W = 0)

After start byte is transferred from MPU to SSD1803, 8-bit data is transferred which is divided into 2 bytes, each byte has 4 bit's real data and 4 bit's partition token data. For example, if real data is "10110001" (D0 - D7), then serially transferred data becomes "1011 0000 0001 0000" where 2nd and 4th 4 bits must be "0000" for safe transfer. To transfer several bytes continuously without changing RS bit and RW bit, start byte transfer is needed only at first starting time. Namely, after first start byte is transferred, real data can be transferred succeeding.

Read Operation (R/W = 1)

After start byte is transferred to SSD1803, MPU can receive 8-bit data through the SOD port at a time from the LSB. Wait time is needed to insert between start byte and data reading, because internal reading from RAM requires some delay. Continuous data reading is possible like serial write operation. It also needs only one start byte, only if you insert some delay between reading operations of each byte. During the reading operation, SSD1803 observes succeeding 5 "High" from MPU. If it is detected, SSD1803 restarts serial operation at once and ready to receive RS bit. So in continuous reading operation, SID port must be "Low".

Solomon Systech Feb 2010 P 26/79 Rev 2.0 SSD1803

Figure 7-11 Timing Diagram of Serial Data Transfer

Figure 7-12 Timing Diagram of Continuous Data Transfer

SSD1803 | Rev 2.0 | P 27/79 | Feb 2010 | **Solomon Systech**

8 COMMAND TABLE

To overcome the speed difference between internal clock of SSD1803 and MPU clock, SSD1803 performs internal operation by storing control information to IR or DR. The internal operation is determined according to the signal from MPU, composed of read/write and data bus. (refer to Table 8-1 and Table 8-2) Instruction can be divided largely four kinds,

- · SSD1803 function set instructions (set display methods, set data length, etc.)
- · Address set instructions to internal RAM
- · Data transfer instructions with internal RAM
- Others

The address of internal RAM is automatically increased or decreased by 1.

When IE = "High", SSD1803 is operated according to instruction set 1 (Table 8-1) and when IE = "Low", SSD1803 is operated according to instruction set 2 (Table 8-2).

NOTE: During internal operation, busy flag (DB7) is read high. Busy flag check must precede the next instruction. When an MPU program with Busy Flag (DB7) checking is made, 1/2 fosc (is necessary) for executing the next instruction by the falling edge of the "E" signal after the Busy Flag (DB7) goes to "Low".

Solomon Systech Feb 2010 | P 28/79 | Rev 2.0 | SSD1803

Table 8-1 Instruction Set 1 (IE = "HIGH")

						Instructi	on Code						Execution
Instruction	RE	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	Time (fosc = 270kHz)
Clear display	X	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM. and set DDRAM address to "00H" from AC	1.53ms
Return home	0	0	0	0	0	0	0	0	0	1	X	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.53ms
Power down mode	1	0	0	0	0	0	0	0	0	1	PD	Set power down mode bit. PD = "1": power down mode set, PD = "0": power down mode disable	39us
Entry mode set	0	0	0	0	0	0	0	0	1	I/D	S	Assign cursor moving direction. I/D = "1": increment, I/D = "0": decrement. S = "1": make display shift of the enabled lines by the DS4 DS1 bits in the shift enable instruction. S = "0": display shift disable	39us
	1	0	0	0	0	0	0	0	1	1	B/D	Segment bi-direction function. BID = "0": Seg1 -> Seg100, BID = "1": Seg100 -> Seg1.	
Display On/Off control	0	0	0	0	0	0	0	1	D	С	В	Set display/cursor/blink on/off D = "1": display on, D = "0": display off, C = "1": cursor on, C = "0": cursor off, B = "1": blink on, B = "0": blink off.	39us
Extended function set	1	0	0	0	0	0	0	1	FW	B/W	NW	Assign font width, black/white inverting of cursor, and 4-line display mode control bit. FW = "1": 6-dot font width, FW = "0": 5-dot font width, B/W = "1": black/white inverting of cursor enable, B/W = "0": black/white inverting of cursor disable NW = "1": 4-line display mode, NW = "0": 1-line or 2-line display mode	39us
Cursor or display shift / Bias ratio select	0	0	0	0	0	0	1	S/C	R/L	BS1	BS0	Cursor or display shift. S/C = "1": display shift, S/C = "0": cursor shift, R/L = "1": shift to right, R/L = "0": shift to left. BS1:BS0 = "00": 1/4 bias (POR at display line=1) BS1:BS0 = "01": 1/5 bias BS1:BS0 = "10": 1/6 bias (POR at display line=2 or 4) BS1:BS0 = "11": 1/7 bias *Note: BS1 and BS0 are only activated in internal divider option	39us
Shift enable	1	0	0	0	0	0	1	DS4	DS3	DS2	DS1	(when DH = "1") Determine the line for display shift. DS1 = "1/0": 1st line display shift enable/disable DS2 = "1/0": 2nd line display shift enable/disable DS3 = "1/0": 3rd line display shift enable/disable DS4 = "1/0": 4th line display shift enable/disable.	39us

SSD1803 Rev 2.0 P 29/79 Feb 2010 **Solomon Systech**

												(when DH = "0")	
Scroll enable	1	0	0	0	0	0	1	HS4	HS3	HS2	HS1	Determine the line for horizontal smooth scroll. HS1 = "1/0": 1st line dot scroll enable/disable HS2 = "1/0": 2nd line dot scroll enable/disable HS3 = "1/0": 3rd line dot scroll enable/disable HS4 = "1/0": 4th line dot scroll enable/disable.	39us
Function set	0	0	0	0	0	1	DL	N	RE (0)	DH	REV	Set interface data length DL = "1": 8-bit, DL = "0": 4-bit Numbers of display line when NW = "0", N = "1": 2-line, N = "0": 1-line Extension register, RE("0") Shift/scroll enable DH = "1": display shift enable DH = "0": dot scroll enable. Reverse bit REV = "1": reverse display, REV = "0": normal display.	39us
	1	0	0	0	0	1	DL	N	RE (1)	BE	0	Set DL, N, RE("1") CGRAM/SEGRAM blink enable BE = " 1/0": CGRAM/SEGRAM blink enable/disable	
set CGRAM address	0	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter.	39us
set SEGRAM address	1	0	0	0	1	X	X	AC3	AC2	AC1	AC0	Set SEGRAM address in address counter.	39us
set DDRAM address	0	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter.	39us
set scroll quantity	1	0	0	1	X	SQ5	SQ4	SQ3	SQ2	SQ1	SQ0	Set the quantity of horizontal dot scroll.	39us
Read busy flag and address/ part ID	х	0	1	BF	AC6 / ID6	AC5	AC4 / ID4	AC3 / ID3	AC2	AC1 / ID1	AC0 / ID0	Can be known whether during internal operation or not by reading BF. The contents of address counter or the part ID can also be read. When it is read the first time, the address counter can be read. When it is read the second time, the part ID can be read. * In the Serial Interface, data can only be read in Continuous Read Operation, details please refer to Fig.7-12. BF = "1": busy state BF = "0": ready state Write data into internal RAM	Ous
write data	X	1	0	D7	D6	D5	D4	D3	D2	D1	D0	(DDRAM / CGRAM / SEGRAM).	43us
read data	X	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM / CGRAM / SEGRAM).	43us

NOTES:

1. When an MPU program with busy flag (DB7) checking is made, 1/2 fosc (is necessary) for executing the next instruction by the "E" signal after the busy flag (DB7) goes to "Low"

2. "X": Don't care

 Solomon Systech
 Feb 2010 | P 30/79 | Rev 2.0 | SSD1803

Table 8-2 Instruction Set 2 (IE = "Low")

		Instruction Code				Execution							
Instruction	RE	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	Time (fosc = 270kHz)
Clear display	X	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM. and set DDRAM address to "00H" from AC.	1.53ms
Return home	X	0	0	0	0	0	0	0	0	1	X	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.53ms
Entry mode set	Х	0	0	0	0	0	0	0	1	I/D	S	Assign cursor moving direction. I/D = "1": increment, I/D = "0": decrement. S = "1": make entire display shift of all lines during DDRAM write. S = "0": display shift disable	39us
Display On/Off control	0	0	0	0	0	0	0	1	D	С	В	Set display/cursor/blink on/off D = "1": display on, D = "0": display off, C = "1": cursor on, C = "0": cursor off, B = "1": blink on, B = "0": blink off.	39us
Extended function set	1	0	0	0	0	0	0	1	FW	B/W	NW	Assign font width, black/white inverting of cursor, and 4-line display mode control bit. FW = "1": 6-dot font width, FW = "0": 5-dot font width, B/W = "1": black/white inverting of cursor enable, B/W = "0": black/white inverting of cursor disable NW = "1": 4-line display mode, NW = "0": 1-line or 2-line display mode	39us
Cursor or display shift / Bias ratio select	0	0	0	0	0	0	1	S/C	R/L	BS1	BS0	Cursor or display shift. S/C = "1": display shift, S/C = "0": cursor shift, R/L = "1": shift to right, R/L = "0": shift to left. BS1:BS0 = "00": 1/4 bias (POR at display line=1) BS1:BS0 = "01": 1/5 bias BS1:BS0 = "10": 1/6 bias (POR at display line=2 or 4) BS1:BS0 = "11": 1/7 bias *Note: BS1 and BS0 are only activated in internal divider option	39us
Scroll enable	1	0	0	0	0	0	1	HS4	HS3	HS2	HS1	Determine the line for horizontal smooth scroll. HS1 = "1/0": 1st line dot scroll enable/disable HS2 = "1/0": 2nd line dot scroll enable/disable HS3 = "1/0": 3rd line dot scroll enable/disable HS4 = "1/0": 4th line dot scroll enable/disable.	39us

SSD1803 Rev 2.0 P 31/79 Feb 2010 **Solomon Systech**

Function set	0	0	0	0	0	1	DL	N	RE (0)	X	X	Set interface data length DL = "1": 8-bit DL = "0": 4-bit, numbers of display line when NW = "0", N = "1": 2-line N = "0": 1-line extension register, RE("0")	39us
	1	0	0	0	0	1	DL	N	RE (1)	BE	0	Set DL, N, RE("1") and CGRAM/SEGRAM blink enable (BE) BE = "1/0": CGRAM/SEGRAM blink enable/disable	
set CGRAM address	0	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter.	39us
set SEGRAM address	1	0	0	0	1	X	X	AC3	AC2	AC1	AC0	Set SEGRAM address in address counter.	39us
set DDRAM address	0	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter.	39us
set scroll quantity	1	0	0	1	X	SQ5	SQ4	SQ3	SQ2	SQ1	SQ0	Set the quantity of horizontal dot scroll.	39us
Read busy flag and address/ part ID	х	0	1	BF	AC6	AC5	AC4 / ID4	AC3 / ID3	AC2	AC1 / ID1	AC0 / ID0	Can be known whether during internal operation or not by reading BF. The contents of address counter or the part ID can also be read. When it is read the first time, the address counter can be read. When it is read the second time, the part ID can be read. * In the Serial Interface, data can only be read in Continuous Read Operation, details please refer to Fig.7-12. BF = "1": busy state BF = "0": ready state	0us
write data	X	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM / CGRAM / SEGRAM).	43us
read data	X	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM / CGRAM / SEGRAM).	43us

Feb 2010 | P 32/79 | Rev 2.0 | **SSD1803 Solomon Systech**

When an MPU program with Busy Flag (DB7) checking is made, 1/2 fosc (is necessary) for executing the next instruction by the falling edge of the "E" signal after the Busy Flag (DB7) goes to "Low".
 "X": Don't care.

9 COMMAND DESCRIPTIONS

9.1 Command Set 1 (IE = "HIGH")

9.1.1 Display Clear

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	0	1

Clear all the display data by writing "20H" (space code) to all DDRAM address, and set DDRAM address to "00H" into AC (address counter). Return cursor to the original status, namely, bring the cursor to the left edge on first line of the display. Make entry mode increment (I/D = "1").

9.1.2 Return Home (RE = 0)

_	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Ī	0	0	0	0	0	0	0	0	1	X

Return Home is cursor return home instruction. Set DDRAM address to "00H" into the address counter. Return cursor to its original site and return display to its original status, if shifted. Contents of DDRAM do not change.

9.1.3 Power Down Mode set (RE = 1)

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	0	0	0	0	0	0	0	1	PD

Power down mode enable bit set instruction. When PD = "High", it makes SSD1803 suppress current consumption except the current needed for data storage by executing next three functions.

- · Make the output value of all the COM/SEG ports VSS
- · Disable voltage converter to remove the current through the divide resistor of power supply. You can use this instruction as power sleep mode.
- · When PD = "Low", power down mode becomes disabled.

SSD1803 | Rev 2.0 | P 33/79 | Feb 2010 | **Solomon Systech**

9.1.4 Entry Mode Set

RE = 0

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	1	I/D	S

Set the moving direction of cursor and display.

I/D: Increment/decrement of DDRAM address (cursor or blink)

When I/D = "High", cursor/blink moves to right and DDRAM address is increased by 1.

When I/D = "Low", cursor/blink moves to left and DDRAM address is decreased by 1.

- CGRAM/SEGRAM operates the same as DDRAM, when read from or write to CGRAM/SEGRAM.

When S = "High", after DDRAM write, the display of enabled line by DS1 - DS4 bits in the shift enable instruction is shifted to the right (I/D = "0") or to the left (I/D = "1"). But it will seem as if the cursor does not move. When S = "Low", or DDRAM read, or CGRAM/SEGRAM read/write operation, shift of display like this function is not performed.

RE = 1

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	1	1	BID

Set the data shift direction of segment in the application set.

BID: Data shift direction of segment

When BID = "Low", segment data shift direction is set to normal order from SEG1 to SEG100.

When BID = "High", segment data shift direction is set to reverse from SEG100 to SEG1.

By using this instruction, you can raise the efficiency of application board area.

- The BID setting instruction is recommended to be set at the same time level of function set instruction.
- DB1 bit must be set to "1".

9.1.5 Display ON/OFF Control (RE = 0)

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	1	D	С	В

Control display/cursor/blink ON/OFF 1 bit register.

D: Display ON/OFF control bit

When D = "High", entire display is turned on.

When D = "Low", display is turned off, but display data is remained in DDRAM.

C: Cursor ON/OFF control bit

When C = "High", cursor is turned on.

When C = "Low", cursor is disappeared in current display, but I/D register remains its data.

B: Cursor Blink ON/OFF control bit

When B = "High", cursor blink is on, that performs alternate between all the high data and display character at the cursor position. If fosc has 270kHz frequency, blinking has 370 ms interval.

When B = "Low", blink is off.

Solomon Systech Feb 2010 | P 34/79 | Rev 2.0 | SSD1803

9.1.6 Extended Function Set (RE = 1)

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	1	FW	B/W	NW

FW: Font Width control

When FW = "High", display character font width is assigned to 6-dot and execution time becomes 6/5 times than that of 5-dot font width.

The user font, specified in CGRAM, is displayed into 6-dot font width, bit-5 to bit-0, including the leftmost space bit of CGRAM.(refer to Figure 9-1)

When FW = "Low", 5-dot font width is set.

B/W: Black/White Inversion enable bit

When B/W = "High", black/white inversion at the cursor position is set. In this case C/B bit of display ON/OFF control instruction becomes don't care condition. If fosc has frequency of 270kHz, inversion has 370 ms intervals.

NW: 4 Line mode enable bit

When NW = "High", 4 line display mode is set. In this case N bit of function set instruction becomes don't care condition.

Figure 9-1 6-dot Font Width CGROM/CGRAM

9.1.7 Cursor or Display Shift / Bias Ratio Select (RE = 0)

_	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	0	0	0	0	0	1	S/C	R/L	BS1	BS0

Shift right/left cursor position or display, without writing or reading of display data, this instruction is use to corrector search display data (refer to Table 9-1). During 2-line mode display, cursor moves to the 2nd line after 40th digit of 1st line. When 4-line mode, cursor moves to the next line, only after every 20th digit of the current line. Note that display shift is performed simultaneously in all the line enabled by DS1-DS4 in the shift enable instruction. When displayed data is shifted repeatedly, each line shifted individually. When display shift is performed, the contents of address counter are not changed. During low power consumption mode, display shift may not be performed normally.

Table 9-1 Shift patterns According to S/C and R/L Bits

S/C	R/L	Operation
0	0	Shift cursor to the left, address counter is decreased by 1.
0	1	Shift cursor to the right, address counter is increased by 1
1	0	Shift all the display to the left, cursor moves according to the display.
1	1	Shift all the display to the right, cursor moves according to the display.

 BS1, BS0: When internal voltage divider is used (EXT =Open), set the Bias Ratio according to following table:

BS1:BS0	Bias Ratio
00	1/4
01	1/5
10	1/6
11	1/7

9.1.8 Shift/Scroll Enable (RE = 1)

DH = 0

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	1	HS4	HS3	HS2	HS1

HS: Horizontal scroll per line enable

This instruction makes valid dot shift by a display line unit. HS1, HS2, HS3 and HS4 indicate each line to be dot scrolled, and each scroll is performed individually in each line.

If you want to scroll the line in 1-line display mode or the 1st line in 2-line display mode, set HS1 and HS2 to "High".

If the 2nd line scroll is needed in 2-line mode, set HS3 and HS4 to "High". (refer to Table 9-2)

DH = 1

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	1	DS4	DS3	DS2	DS1

DS: Display shift per line enable this instruction selects shifting line to be shifted according to each line mode in display shift right/left instruction. DS1, DS2, DS3 and DS4 indicate each line to be shifted, and each shift is performed individually in each line.

If you set DS1 and DS2 to "High" (enable) in 2 line mode, only the 1st line is shifted and the 2nd line is not shifted. When only DS1 = "High", only the half of the 1st line is shifted. If all the DS bits (DS1 to DS4) are set to "Low" (disable), no display is shifted.

Table 9-2 Relationship between DS and COM signal

Enable Bit	Enabled Common Signals During Shift	Description
HS1/DS1	COM1 - COM8	
HS2/DS2	COM9 - COM16	The part of display line that corresponds to enabled common signal can
HS3/DS3	COM17 - COM24	be shifted.
HS4/DS4	COM25 – COM32	

Solomon Systech Feb 2010 | P 36/79 | Rev 2.0 | SSD1803

9.1.9 Function Set

RE = 0

 RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	1	DL	N	RE(0)	DH	REV

DL: Interface data length control bit

When DL = "High", it means 8-bit bus mode with MPU.

When DL = "Low", it means 4-bit bus mode with MPU. So to speak, DL is a signal to select 8-bit or 4-bit bus mode

When 4-bit bus mode, it needs to transfer 4-bit data by two times.

N: Display line number control bit

It is variable only when NW bit of extended function set instruction is low.

When N = "Low", it means 1-line display mode.

When N = "High", 2-line display mode is set.

When NW = "High", N bit is invalid, it means 4-line mode independent of N bit.

RE: Extended function registers enable bit

At this instruction, RE must be "Low".

DH: Display shift enable selection bit.

When DH = "High", display shift per line becomes enable.

When DH = "Low", smooth dot scroll becomes enable.

This bit can be accessed only when IE pin input is "High".

REV: Reverse enable bit

When REV = "High", all the display data are reversed. Namely, all the white dots become black and black dots become white.

When REV = "Low", the display mode set normal display.

RE = 1

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	1	DL	N	RE(1)	BE	0

DL: Interface data length control bit

When DL = "High", it means 8-bit bus mode with MPU.

When DL = "Low", it means 4-bit bus mode with MPU.

So to speak, DL is a signal to select 8-bit or 4-bit bus mode.

When 4-bit bus mode, it needs to transfer 4-bit data by two times.

N: Display line number control bit

It is variable only when NW bit of extended function set instruction is Low.

When N = "Low", it means 1-line display mode.

When N = "High", 2-line display mode is set.

When NW = "High", N bit is invalid, it means 4-line mode independent of N bit.

RE: Extended function registers enable bit

When RE = "High", extended function set registers, SEGRAM address set registers, BID bit, HS/DS bits of shift/scroll enable instruction and BE bits of function set register can be accessed.

BE: CGRAM/SEGRAM data blink enable bit

If BE is "High", It makes user font of CGRAM and segment of SEGRAM blink. The quantity of blink is assigned the highest 2 bit of CGRAM/SEGRAM.

SSD1803 | Rev 2.0 | P 37/79 | Feb 2010 | **Solomon Systech**

9.1.10 Set CGRAM Address (RE = 0)

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0

Set CGRAM address to AC. This instruction makes CGRAM data available from MPU.

9.1.11 Set SEGRAM Address (RE = 1)

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	X	X	AC3	AC2	AC1	AC0

Set SEGRAM address to AC. This instruction makes SEGRAM data available from MPU.

9.1.12 Set DDRAM Address (RE = 0)

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	

Set DDRAM address to AC. This instruction makes DDRAM data available from MPU. When 1-line display mode (N = 0, NW = 0), DDRAM address is from "00H" to "4FH". In 2-line display mode (N = 1, NW = 0), DDRAM address in the 1st line is from "00H" - "27H", and DDRAM address in the 2nd line is from "40H" - "67H". In 4-line display mode (NW = 1), DDRAM address is from "00H" - "13H" in the 1st line, from "20H" to "33H" in the 2nd line, from "40H" - "53H" in the 3rd line and from "60H" - "73H" in the 4th line.

9.1.13 Set Scroll Quantity (RE = 1)

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	X	SQ5	SQ4	SQ3	SQ2	SQ1	SQ0

As set SQ5 to SQ0, horizontal scroll quantity can be controlled in dot units (Refer to Table 9-3). In this case SSD1803 can show hidden areas of DDRAM by executing smooth scroll from 1 to 48 dots.

Table 9-3 Scroll Quantity According to HDS Bits

SQ5	SQ4	SQ3	SQ2	SQ1	SQ0	Function
0	0	0	0	0	0	No shift
0	0	0	0	0	1	Shift left by 1-dot
0	0	0	0	1	0	Shift left by 2-dot
0	0	0	0	1	1	Shift left by 3-dot
:	:	:	:	:	:	:
1	0	1	1	1	1	Shift left by 47-dot
1	1	X	X	X	X	Shift left by 48-dot

Solomon Systech Feb 2010 | P 38/79 | Rev 2.0 | SSD1803

9.1.14 Read Busy Flag & Address

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
0	1	BF	AC6/ID6	AC5/ID5	AC4/ID4	AC3/ID3	AC2/ID2	AC1/ID1	AC0/ID0	ĺ

This instruction shows whether SSD1803 is in internal operation or not. If the resultant BF is High, it means the internal operation is in progress and you have to wait until BF to be Low, and then the next instruction can be performed. In this instruction you can read also the value of address counter or the part ID. When the first time the instruction is run, you can read the address counter. When the instruction is run the second time, you can read the part ID (refer to Figure 9-2).

RS R/W DB7 Busy Data Data Busy Busy DB6~DB0 ID6~ID0 AC6~AC0 Address Counter is Read second time Part ID is read Read again Address Counter is

Figure 9-2 Read Busy Flag & Address/Part ID

Part Number	Part ID
SSD1803M1V	1111111
SSD1803M2V	1111110

9.1.15 Write Data to RAM

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	0	D7	D6	D5	D4	D3	D2	D1	D0

Write binary 8-bit data to DDRAM/CGRAM/SEGRAM. The selection of RAM from DDRAM, CGRAM, or SEGRAM, is set by the previous address set instruction: DDRAM address set, CGRAM address set, SEGRAN address set. RAM set instruction can also determine the AC direction to RAM. After write operation, the address is automatically increased/decreased by 1, according to the entry mode.

SSD1803 | Rev 2.0 | P 39/79 | Feb 2010 | **Solomon Systech**

9.1.16 Read Data from RAM

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	1	D7	D6	D5	D4	D3	D2	D1	D0

Read binary 8-bit data from DDRAM/CGRAM/SEGRAM. The selection of RAM is set by the previous address set instruction. If address set instruction of RAM is not performed before this instruction, the data that read first is invalid, because the direction of AC is not determined. If you read RAM data several times without RAM address set instruction before read operation, you can get correct RAM data from the second, but the first data would be incorrect, because there is no time margin to transfer RAM data. In case of DDRAM read operation, cursor shift instruction plays the same role as DDRAM address set instruction: it also transfer RAM data to output data register. After read operation address counter is automatically increased/decreased by 1 according to the entry mode. After CGRAM/SEGRAM read operation, display shift may not be executed correctly. In case of RAM write operation, after this AC is increased/decreased by 1 like read operation. In this time, AC indicates the next address position, but you can read only the previous data by read instruction.

In order to match the operating frequency of the GDDRAM with that of the MCU, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in Figure 9-3.

Figure 9-3: Display Data Read with the insertion of dummy read

*Remark: "n" - current DDRAM address contain, "n+1" - DDRAM address+1 contain

Solomon Systech Feb 2010 | P 40/79 | Rev 2.0 | SSD1803

9.2 Command Set 2 (IE = "LOW")

9.2.1 Display Clear

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
0	0	0	0	0	0	0	0	0	1	1

Clear all the display data by writing "20H" (space code) to all DDRAM address, and set DDRAM address to "00H" into AC (address counter). Return cursor to the original status, namely, bring the cursor to the left edge on first line of the display. And entry mode is set to increment mode (I/D = "1").

9.2.2 Return Home

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	1	X

Return Home is cursor return home instruction. Set DDRAM address to "00H" into the address counter. Return cursor to its original site and return display to its original status, if shifted. Contents of DDRAM does not change.

9.2.3 Entry Mode Set

_	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Ī	0	0	0	0	0	0	0	1	I/D	S

Set the moving direction of cursor and display.

I/D: Increment/decrement of DDRAM address (cursor or blink)

When I/D = "High", cursor/blink moves to right and DDRAM address is increased by 1.

When I/D = "Low", cursor/blink moves to left and DDRAM address is decreased by 1.

- CGRAM/SEGRAM operates the same as DDRAM, when read from or write to CGRAM/SEGRAM.

When S = "High", after DDRAM write, the entire display of all lines is shifted to the right (I/D = "0") or to the left (I/D = "1"). But it will seem as if the cursor does not move. When S = "Low", or DDRAM read, CGRAM/SEGRAM read/write operation, shift of entire display is not performed.

SSD1803 | Rev 2.0 | P 41/79 | Feb 2010 | **Solomon Systech**

9.2.4 Display ON/OFF Control (RE = 0)

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	1	D	C	В

Control display/cursor/blink ON/OFF 1 bit register.

D: Display ON/OFF control bit

When D = "High", entire display is turned on.

When D = "Low", display is turned off, but display data is remained in DDRAM.

C: Cursor ON/OFF control bit

When C = "High", cursor is turned on.

When C = "Low", cursor is disappeared in current display, but I/D register remains its data.

B: Cursor Blink ON/OFF control bit

When B = "High", cursor blink is on, that performs alternate between all the high data and display character at the cursor position. If fosc has 270kHz frequency, blinking has 370 ms interval. When B = "Low", blink is off.

9.2.5 Extended Function Set (RE = 1)

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	1	FW	B/W	NW

FW: Font width control

When FW = "High", display character font width is assigned to 6-dot and execution time becomes 6/5 times than that of 5-dot font width.

The user font, specified in CGRAM, is displayed into 6-dot font width, bit-5 to bit-0, including the leftmost pace bit of CGRAM.(Refer to Figure 9-4)

When FW = "Low", 5-dot font width is set.

B/W: Black/White Inversion enable bit

When B/W = "High", black/white inversion at the cursor position is set. In this case C/B bit of display ON/OFF control instruction becomes don't care condition. If fosc has frequency of 270kHz, inversion has 370 ms intervals.

NW: 4 Line mode enable bit

When NW = "High", 4 line display mode is set. In this case N bit of function set instruction become don't care condition.

Figure 9-4 6-dot Font Width CGROM/CGRAM

Solomon Systech Feb 2010 | P 42/79 | Rev 2.0 | SSD1803

9.2.6 Cursor or Display Shift / Bias Ratio Select (RE = 0)

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	1	S/C	R/L	BS1	BS0

Without writing or reading of display data, shift right/left cursor position or display. This instruction is used to correct or search display data.(Refer to Table 9-4) during 2-line mode display, cursor moves to the 2nd line after 40th digit of 1st line. When 4-line mode, cursor moves to the next line, only after every 20th digit of the current line. Note that display shift is performed simultaneously in all the line. When displayed data is shifted repeatedly, each line shifted individually. When display shift is performed, the contents of address counter are not changed.

Table 9-4 Shift Patterns According to S/C and R/L Bits

S/C	R/L	Operation
0	0	Shift cursor to the left, address counter is decreased by 1.
0	1	Shift cursor to the right, address counter is increased by 1
1	0	Shift all the display to the left, cursor moves according to the display.
1	1	Shift all the display to the right, cursor moves according to the display.

BS1, BS0: When internal voltage divider is used (EXT = Open), set the Bias Ratio according to following table:

BS1:BS0	Bias Ratio
00	1/4
01	1/5
10	1/6
11	1/7

9.2.7 Scroll Enable (RE = 1)

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	1	HS4	HS3	HS2	HS1

HS: Horizontal scroll per line enable

This instruction makes valid dot shift by a display line unit. HS1, HS2, HS3 and HS4 indicate each line to be dot scrolled, and each scroll is performed individually in each line.

If you want to scroll the line in 1-line display mode or the 1st line in 2-line display mode, set HS1 and HS2 to "High". If the 2nd line scroll is needed in 2-line mode, set HS3 and HS4 to "High". (refer to Table 9-3)

9.2.8 Function Set

RE = 0

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	1	DL	N	RE(0)	X	X

DL: Interface data length control bit

When DL = "High", it means 8-bit bus mode with MPU.

When DL = "Low", it means 4-bit bus mode with MPU. So to speak, DL is a signal to select 8-bit or 4-bit bus mode.

When 4-bit bus mode, it needs to transfer 4-bit data by two times.

N: Display line number control bit

It is variable only when NW bit of extended function set instruction is Low.

When N = "Low", it means 1-line display mode.

When N = "High", 2-line display mode is set.

When NW = "High", N bit is invalid, it means 4-line mode independent of N bit.

RE: Extended function registers enable bit

At this instruction, RE must be "Low".

RE = 1

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	1	DL	N	RE(1)	BE	0

DL: Interface data length control bit

When DL = "High", it means 8-bit bus mode with MPU.

When DL = "Low", it means 4-bit bus mode with MPU. So to speak, DL is a signal to select 8-bit or 4-bit bus mode.

When 4-bit bus mode, it needs to transfer 8-bit data by bus cycle.

N: Display line number control bit

It is variable only when NW bit of extended function set instruction is Low.

When N = "Low", it means 1-line display mode.

When N = "High", 2-line display mode is set.

When NW = "High", N bit is invalid, it means 4-line mode independent of N bit.

RE: Extended function registers enable bit

When RE = "High", extended function set registers, SEGRAM address set registers, HS bits of scroll enable instruction and BE bits of function set register can be accessed.

BE: CGRAM/SEGRAM data blink enable bit

If BE is "High", It makes user font of CGRAM and segment of SEGRAM blink. The quantity of blink is assigned the highest 2 bit of CGRAM/SEGRAM.

Solomon Systech Feb 2010 | P 44/79 | Rev 2.0 | SSD1803

9.2.9 Set CGRAM Address (RE = 0)

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0

Set CGRAM address to AC. This instruction makes CGRAM data available from MPU.

9.2.10 Set SEGRAM Address (RE =1)

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	X	X	AC3	AC2	AC1	AC0

Set SEGRAM address to AC. This instruction makes SEGRAM data available from MPU.

9.2.11 Set DDRAM Address (RE = 0)

_	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0

Set DDRAM address to AC.

This instruction makes DDRAM data available from MPU. When 1-line display mode (N=0, NW=0), DDRAM address is from "00H" to "4FH". In 2-line display mode (N=1, NW=0), DDRAM address in the 1st line is from "00H" to "27H", and DDRAM address in the 2nd line is from "40H" to "67H". In 4-line display mode (NW=1), DDRAM address is from "00H" to "13H" in the 1st line, from "20H" to "33H" in the 2nd line, from "40H" to "53H" in the 3rd line and from "60H" to "73H" in the 4th line.

9.2.12 Set Scroll Quantity (RE = 1)

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	X	SQ5	SQ4	SQ3	SQ2	SQ1	SQ0

As set SQ5 to SQ0, horizontal scroll quantity can be controlled in dot units (refer to Table 9-5). In this case SSD1803 execute dot smooth scroll from 1 to 48 dots.

Table 9-5 Scroll Quantity According to HDS Bits

SQ5	SQ4	SQ3	SQ2	SQ1	SQ0	Function
0	0	0	0	0	0	No shift
0	0	0	0	0	1	Shift left by 1-dot
0	0	0	0	1	0	Shift left by 2-dot
0	0	0	0	1	1	Shift left by 3-dot
:	:	:	:	:	:	:
1	0	1	1	1	1	Shift left by 47-dot
1	1	X	X	X	X	Shift left by 48-dot

9.2.13 Read Busy Flag & Address

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
0	1	BF	AC6/ID6	AC5/ID5	AC4/ID4	AC3/ID3	AC2/ID2	AC1/ID1	AC0/ID0	ĺ

This instruction shows whether SSD1803 is in internal operation or not. If the resultant BF is High, it means the internal operation is in progress and you have to wait until BF to be low, and then the next instruction can be performed. In this instruction you can read also the value of address counter or the part ID. When the first time the instruction is run, you can read the address counter. When the instruction is run the second time, you can read the part ID (refer to Figure 9-5).

Figure 9-5 Read Busy Flag & Address/Part ID

Part Number	Part ID
SSD1803M1V	1111111
SSD1803M2V	1111110

9.2.14 Write Data to RAM

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	0	D7	D6	D5	D4	D3	D2	D1	D0

Write binary 8-bit data to DDRAM/CGRAM/SEGRAM. The selection of RAM from DDRAM, CGRAM, or SEGRAM, is set by the previous address set instruction: DDRAM address set, CGRAM address set, SEGRAM address set. RAM set instruction can also determine the AC direction to RAM. After write operation, the address is automatically increased/decreased by 1, according to the entry mode.

Solomon Systech Feb 2010 | P 46/79 | Rev 2.0 | SSD1803

9.2.15 Read Data from RAM

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	1	D7	D6	D5	D4	D3	D2	D1	D0

Read binary 8-bit data from DDRAM/CGRAM/SEGRAM. The selection of RAM is set by the previous address set instruction. If address set instruction of RAM is not performed before this instruction, the data that read first is invalid, because the direction of AC is not determined. If you read RAM data several times without RAM address set instruction before read operation, you can get correct RAM data from the second, but the first data would be incorrect, because there is no time margin to transfer RAM data. In case of DDRAM read operation, cursor shift instruction plays the same role as DDRAM address set instruction: it also transfer RAM data to output data register. After read operation address counter is automatically increased/decreased by 1 according to the entry mode. After CGRAM/SEGRAM read operation, display shift may not be executed correctly.

In case of RAM write operation, after this AC is increased/decreased by 1 like read operation. In this time, AC indicates the next address position, but you can read only the previous data by read instruction.

In order to match the operating frequency of the GDDRAM with that of the MCU, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in Figure 9-6.

Figure 9-6: Display Data Read with the insertion of dummy read

*Remark: "n" - current DDRAM address contain, "n+1" - DDRAM address+1 contain

10 INITIALIZING

10.1 Initializing by Internal Reset Circuit

When the power is turned on, SSD1803 is initialized automatically by power on reset circuit. During the initialization, the following instructions are executed, and BF(Busy Flag) is kept "High" (busy state) to the end of initialization.

Display Clear instruction

Write "20H" to all DDRAM

Set Functions instruction

DL = 1: 8-bit bus mode

N = 1: 2-line display mode

RE = 0: Extension register disable

BE = 0: CGRAM/SEGRAM blink OFF

DH = 0: Horizontal scroll enable

REV = 0: Normal display (Not reversed display)

Control Display ON/OFF instruction

D = 0: Display OFF

C = 0: Cursor OFF

B = 0: Blink OFF

Set Entry Mode instruction

I/D = 1: Increment by 1

S = 0: No entire display shift

BID = 0: Normal direction segment port

Set Extension Function instruction

FW = 0: 5-dot font width character display

B/W = 0: Normal cursor (8th line)

NW = 0: Not 4-line display mode, 2-line mode is set because of N("1")

Enable Shift instruction

HS = 0000: Scroll per line disable

DS = 0000: Shift per line disable

Set scroll Quantity instruction

SQ = 000000: Not scroll

10.2 Initializing by Hardware Reset Input

When RESET pin = "Low", SSD1803 can be initialized like the case of power on reset. During the power on reset operation, this pin is ignored.

Solomon Systech Feb 2010 | P 48/79 | Rev 2.0 | SSD1803

10.3 Initializing by Instruction

8-BIT INTERFACE MODE

 SSD1803
 Rev 2.0
 P 49/79
 Feb 2010
 Solomon Systech

<u> </u>	0	Display off
ם	1	Display on
C	0	Cursor off
ر	1	Cursor on
В	0	Blink off
Δ	1	Blink on

I/D	0	Decrement Mode
טוו	1	Increment mode
S	0	Entire shift off
3	1	Entire shift on

Solomon Systech Feb 2010 | P 50/79 | Rev 2.0 | **SSD1803**

4-BIT INTERFACE MODE

SSD1803 | Rev 2.0 | P 51/79 | Feb 2010 | **Solomon Systech**

D	0	Display off
ט	1	Display on
С	0	Cursor off
C	1	Cursor on
В	0	Blink off
Ь	1	Blink on

I/D	0	Decrement Mode
טוו	1	Increment mode
S	0	Entire shift off
3	1	Entire shift on

Solomon Systech Feb 2010 | P 52/79 | Rev 2.0 | **SSD1803**

11 FRAME FREQUENCY

1/17 Duty Cycle

Item	Display F	ont Width
Item	5-Dot Font Width	6-Dot Font Width
1-line selection period	200 clocks	240 clocks
Frame frequency	79.4Hz	66.2Hz

fosc = 270kHz (1 clock = 3.7us)

1/33 Duty Cycle

Item	Display Font Width					
Hem	5-Dot Font Width	6-Dot Font Width				
1-line selection period	100 clocks	120 clocks				
Frame frequency	81.8Hz	68.2Hz				

fosc = 270kHz (1 clock = 3.7us)

SSD1803 Rev 2.0 P 53/79 Feb 2010 **Solomon Systech**

12 POWER SUPPLY FOR DRIVING LCD PANEL

When an External Power Supply is used

When an Internal Booster is used

(a) Internal 2X booster

Solomon Systech Feb 2010 | P 54/79 | Rev 2.0 | **SSD1803**

(b) Internal 3X booster

Note:

- Boosted output voltage should not exceed the maximum value (13V) of the LCD driving voltage.
- The value of resistance, according to the number of lines, duty ratio and the bias, is shown below. (refer to Table 11-1)

Table 12-1 Duty Ratio and Power Supply for LCD Driving

Item	Data				
Number of lines	1	2 or 4			
Duty ratio	1/17	1/33			
Bias	1/5	1/6.7			

SSD1803 | Rev 2.0 | P 55/79 | Feb 2010 | **Solomon Systech**

13 MAXIMUM RATINGS

Table 13-1 Maximum Ratings (Voltage Referenced to V_{SS})

Symbol	Parameter	Value	Unit
$V_{ m DD}$		2.7 to 3.45	V
V_{LCD}	Power Supply Voltage	10.0(Internal Power Supply Mode) 13.0 (External Power Supply Mode)	V
V_{IN}	Input Voltage	-0.3 to $V_{\rm DD} + 0.3$	V
T_A	Operating Temperature	-40 to 85	°C
T_{STG}	Storage Temperature	-55 to 125	°C

Voltage greater than above may damage to the circuit $(V5 \ge V4 \ge V3 \ge V2 \ge V1 \ge VSS)$

Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. Reliability of operation is enhanced if unused input is connected to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open. This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.

Solomon Systech Feb 2010 | P 56/79 | Rev 2.0 | SSD1803

14 DC CHARACTERISTICS

Table 14-1 DC Characteristics

 $(V_{DD} = 2.7 \text{ to } 3.45 \text{V}, \text{ Ta} = -40 \text{ to } 85 \,^{\circ}\text{C})$

Symbol	Parameter	Test Condition		Min	Тур	Max	Unit
$V_{ m DD}$	Operating Voltage		-	2.7	-	3.45	V
I_{DD}	Supply Current		tion or external V, $f_{OSC} = 270 \text{kHz}$)	-	0.15	0.3	mA
$V_{\rm IH1}$	Input Voltage 1 (except OSC1)			$0.7V_{DD}$	-	V_{DD}	V
$V_{\rm IL1}$	input voltage i (except obe i)			-0.3	-	$0.2V_{DD}$	•
V_{IH2}	Input Voltage 2 (OSC1)		$0.7V_{\mathrm{DD}}$		V_{DD}	V	
$V_{\rm IL2}$	input voltage 2 (OSC1)			-	-	$0.2V_{DD}$	
V_{OH1}	Output Voltage 1 (DB0-DB7)		-0.1mA	$0.75V_{DD}$	-	-	V
V_{OL1}		$I_{OL} = 0$	0.1mA	-	-	$0.2V_{\mathrm{DD}}$	V
V_{OH2}	Output Voltage 2	$I_{O} = -$	-40μΑ	$0.8V_{\mathrm{DD}}$	-	-	V
V_{OL2}	(except DB0-DB7)	$I_{O} = i$	40μΑ	-	=	$0.2V_{\mathrm{DD}}$	V
Vd_{COM}	Voltage Drop	I - ±	0.1mA	-	=	1	V
Vd_{SEG}	Voltage Diop	10 - 7	U.TIIIA	-	=	1	V
I_{LKG}	Input Leakage Current	$V_{IN} = 0$	V - $V_{ m DD}$	-1	-	1	μΑ
$ m I_{IL}$	Low Input Current	$V_{IN} = 0V, V_{DD}$	= 3V (pull up)	-10	-50	-120	μΑ
f_{OSC}	Internal Clock (external Rf)	$Rf = 75k\Omega \pm 2\%$	$V_0 (V_{DD} = 3.0V)$	240	270	300	kHz
f_{EC}				125	270	410	kHz
duty	External Clock		-	45	50	55	%
tr, tf				-	-	0.2	μs
V_{OUT2}	Voltage Converter Out2 (Vci=3.45V)		$C, C = 1\mu F,$.25mA,	5.8	6.5	-	V
V_{OUT3}	Voltage Converter Out3 (Vci=2.7V)		270kHz	7.0	7.8	-	V
VCI	Voltage Converter Input		=	2.4	-	VDD	V
V	LCD Driving Voltage	V5 - V _{SS}	1/4 - 1/7 bias	3.0	-	10.0	V
V_{LCD}	LCD Driving voltage	vs-vss	External power supply mode	3.0	-	13.0	V

SSD1803 Rev 2.0 P 57/79 Feb 2010 **Solomon Systech**

15 AC CHARACTERISTICS

Table 15-1 AC Characteristics

 $(V_{DD} = 2.7 \text{ to } 3.45 \text{V}, \text{ Ta} = -40 \text{ to } 85 \,^{\circ}\text{C})$

Mode	Symbol	Parameter	Min	Тур	Max	Unit
	t_{c}	E cycle time	500	-	-	
	t_r, t_f	E rise/fall time	-	-	20	
(1) Write Mode	$t_{ m w}$	E pulse width (high, low)	230	-	-	
(refer to Figure 15-1)	t_{su1}	R/W and RS setup time	40	-	-	ns
	t_{h1}	R/W and RS hold time	10	-	-	
	t_{su2}	Data setup time	60	-	-	
	t _{h2}	Data hold time	10	-	-	
	t _c	E cycle time	500	-	-	
	t_r, t_f	E rise/fall time	220	-	20	
(2) Read Mode	$t_{\rm w}$	E pulse width (high, low)	230	-	-	
(refer to Figure 15-2)	t_{su}	R/W and RS setup time R/W and RS hold time	40 10	-	-	ns
	t _h		10	-	160	
	t _D	Data output delay time Data hold time	5	-	100	
	$t_{ m DH}$	Serial clock cycle time	0.5	_	20	μs
	$t_{\rm r}, t_{\rm f}$	Serial clock cycle time Serial clock rise/fall time	- 0.5		50	μδ
	$t_{\rm w}$	Serial clock width (high, low)	200	_	-	
	$t_{\rm su1}$	Chip select setup time	60	_	_	
(3) Serial Interface Mode	$t_{\rm h1}$	Chip select hold time	20	_	_	
(refer to Figure 15-3)	$t_{\rm su2}$	Serial input data setup time	100	_	_	ns
	$t_{\rm h2}$	Serial input data hold time	100	-	-	
	t_{D}	Serial output data delay time	-	-	160	
	t_{DH}	Serial output data hold time	5	-	-	
	t _c	E cycle time	1000	-	-	
	t_r, t_f	E rise/fall time	-	-	25	
(4) Write Mede	t_{w}	E pulse width (high, low)	450	-	-	
(4) Write Mode (refer to Figure 15-1)	t_{su1}	R/W and RS setup time	60	-	-	ns
(Telef to Figure 13-1)	t_{h1}	R/W and RS hold time	20	-	-	
	t_{su2}	Data setup time	195	-	-	
	t _{h2}	Data hold time	10	-	-	
	t_{c}	E cycle time	1000	-	-	
	t_r, t_f	E rise/fall time	-	-	25	
(5) Read Mode	$t_{ m w}$	E pulse width (high, low)	450	-	-	
(refer to Figure 15-2)	t_{su}	R/W and RS setup time	60	-	-	ns
(t_h	R/W and RS hold time	20	-	-	
	$t_{\rm D}$	Data output delay time	-	-	360	
	$t_{ m DH}$	Data hold time	5	-	-	
	t _c	Serial clock cycle time	1	-	20	μs
	t_r, t_f	Serial clock rise/fall time	-	-	50	
	$t_{\rm w}$	Serial clock width (high, low)	400	-	-	
6) Serial Interface Mode	t_{su1}	Chip select setup time	60	-	-	
(refer to Figure 15-3)	t_{h1}	Chip select hold time	20	-	-	ns
	t_{su2}	Serial input data setup time	200	-	-	
	t _{h2}	Serial input data hold time	200	-	260	
	t _D	Serial output data delay time	5	-	360	
	$t_{ m DH}$	Serial output data hold time) 3	-	-	

 Solomon Systech
 Feb 2010
 P 58/79
 Rev 2.0
 SSD1803

Figure 15-1 Write Mode Timing Diagram

Figure 15-2 Read Mode Timing Diagram

Figure 15-3 Serial Interface Mode Timing Diagram

SSD1803 Rev 2.0 P 59/79 Feb 2010 **Solomon Systech**

Table 15-2 Reset Timing

 $(V_{DD} = 2.7 \text{ to } 3.45 \text{V}, \text{ Ta} = -40 \text{ to } 85 \,^{\circ}\text{C})$

Item	Symbol	Min	Тур	Max	Unit
Reset Low level (refer to figure 15-4)	$t_{ m RES}$	10	-	-	ms

Figure 15-4 Reset Timing Diagram

 Solomon Systech
 Feb 2010
 P 60/79
 Rev 2.0
 SSD1803

16 APPLICATION EXAMPLES

16.1 LCD Panel: 40 Character x 1-line Format (5-dot Font, 1/17 Duty)

16.2 LCD Panel: 40 Character x 2-line Format (5-dot Font, 1/33 Duty)

SSD1803 Rev 2.0 P 61/79 Feb 2010 **Solomon Systech**

16.3 LCD Panel: 20 Character x 4-line Format (5-dot Font, 1/33 Duty)

 Solomon Systech
 Feb 2010 | P 62/79 | Rev 2.0 | SSD1803

16.4 LCD Panel: 16 Character x 4-line Format (6-dot Font, 1/33 Duty)

SSD1803 Rev 2.0 P 63/79 Feb 2010 **Solomon Systech**

16.5 Application Circuit (1-line mode)

This is an application for 1-line, external 3X booster with external divider $\frac{1}{4}$ bias option. Where

VCI = VDD = 3V

R1 = 75kohm

R2 = 47k ohm

 $R3\sim6 = 20$ kohm

C1~5 = 1uF

*Remark: The substrate of the die is connected to GND

 Solomon Systech
 Feb 2010
 P 64/79
 Rev 2.0
 SSD1803

16.6 Application Circuit (2-line mode)

SSD1803 Rev 2.0 P 65/79 Feb 2010 **Solomon Systech**

16.7 Application Circuit (4-line mode)

 Solomon Systech
 Feb 2010 | P 66/79 | Rev 2.0 | SSD1803

17 EXAMPLE OF INSTRUCTION AND DISPLAY CORRESPONDENCE

IE = "LOW"

	r Supply			•						LCD DI	· · · · · · · · · · · · · · · · · · ·
RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		
Func	ion Set:	8-hit 1-	line RF	(0)							
RS	R/W	DB7	DB6		DB4	DB3	DB2	DB1	DB0		
0	0	0	0	1	1	1	0	Х	Х		
							•				
	ay ON/O									,	
RS	R/W	DB7	DB6		DB4	DB3	DB2	DB1	DB0		
0	0	0	0	0	0	1	1	1	0	<u>-</u>	
C	Mada C	.4. 1									
. Entry RS	Mode Se	DB7		DB5	DB4	DB3	DB2	DB1	DB0		
I/O	13/VV	וטטו	000	003	DD4	_	DDZ		טטט		
0	0	0	0	0	Λ	Ο	1 1	1	Ο	_	
0	0	0	0	0	0	0	1	1	0	_	
	0 Data to				0	0	1	1	0		
	1 -		1: Write		0 DB4	DB3	DB2	DB1	DB0	_	
. Write	Data to	DDRAM	1: Write	s				·		_ S_	
. Write	Data to	DDRAM DB7	1: Write	S DB5	DB4	DB3	DB2	DB1	DB0	_ S_	
. Write	Data to R/W 0	DDRAM DB7 0 DDRAM	1: Write DB6 1 1: Write	S DB5 0	DB4	DB3 0	DB2 0	DB1	DB0		
. Write RS 1 . Write	Data to R/W 0 Data to R/W	DDRAM DB7 0 DDRAM DB7	1: Write DB6 1 1: Write DB6	S DB5 0 DB5	DB4 1	DB3 0 DB3	DB2 0	DB1	DB0 1		
. Write	Data to R/W 0	DDRAM DB7 0 DDRAM	1: Write DB6 1 1: Write	S DB5 0	DB4	DB3 0	DB2 0	DB1	DB0	S	
. Write RS 1 . Write RS 1	Data to R/W 0 Data to R/W 0	DDRAM DB7 0 DDRAM DB7 0	1: Write DB6 1 1: Write DB6 1	S DB5 0 DB5	DB4 1	DB3 0 DB3	DB2 0	DB1	DB0 1		
. Write RS 1 . Write RS 1	Data to R/W 0 Data to R/W 0 Data to	DDRAM DB7 O DDRAM DB7 O	1: Write DB6 1 1: Write DB6 1 AM: L	S DB5 0 O DB5 0	DB4 1 DB4 0	DB3 0 DB3 1	DB2 0 DB2 1	DB1 1 DB1 1	DB0 1 DB0 1		
. Write RS 1 . Write RS 1 . Write RS RS	Data to Data	DDRAM DB7 0 DDRAM DB7 0 to DDRA DB7	1: Write DB6 1 1: Write DB6 1 AM: L DB6	S DB5 0 DB5 0	DB4 1 DB4 0	DB3 0 DB3 1	DB2 0 DB2 1	DB1 1 DB1 1 DB1	DB0 1 DB0 1		
. Write RS 1 . Write RS 1	Data to R/W 0 Data to R/W 0 Data to	DDRAM DB7 O DDRAM DB7 O	1: Write DB6 1 1: Write DB6 1 AM: L	S DB5 0 O DB5 0	DB4 1 DB4 0	DB3 0 DB3 1	DB2 0 DB2 1	DB1 1 DB1 1	DB0 1 DB0 1	SO_	
. Write RS 1 . Write RS 1 . Write RS 1	Data to Data	DDRAM DB7 0 DDRAM DB7 0 to DDRA DB7 0	1: Write DB6 1 1: Write DB6 1 AM: L DB6 1	S DB5 0 DB5 0	DB4 1 DB4 0	DB3 0 DB3 1	DB2 0 DB2 1	DB1 1 DB1 1 DB1	DB0 1 DB0 1	SO_	
. Write RS 1 . Write RS 1 . Write RS 1	Data to 0 R/W 0 Data to 0 R/W 0 Data to 0 R/W 0	DDRAM DB7 0 DDRAM DB7 0 to DDRA DB7 0	1: Write DB6 1 1: Write DB6 1 AM: L DB6 1	S DB5 0 DB5 0	DB4 1 DB4 0	DB3 0 DB3 1	DB2 0 DB2 1	DB1 1 DB1 1 DB1	DB0 1 DB0 1	SO_	

SSD1803 Rev 2.0 P 67/79 Feb 2010 **Solomon Systech**

	Data to to			DDC	DB4	DDC	DDC	DD4	DDC
RS	R/W	DB7	DB6	DB5		DB3	DB2	DB1	DB0
1	0	0	1	0	0	1	1	0	1
Vrite [Data to t	o DDRA	M: O						
RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	0	0	1	0	0	1	1	1	1
Write [Data to t	o DDRA	M: N						
RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	0	0	1	0	0	1	1	1	0
RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	1	0	1	Х	Х
0		0				0 DB3	1 DB2	X DB1	X DB0
0 Entry N	0 Mode Se	0 et: Entire	Displa	y Shift E	nable				
0 Entry N RS 0	0 //ode Se	0 et: Entire DB7 0	Display	y Shift E DB5	nable DB4	DB3	DB2	DB1	DB0
0 Entry M RS 0	O Mode Se R/W 0	0 et: Entire DB7 0 DDRAM	Displa DB6 0	y Shift E DB5 0	DB4	DB3 0	DB2	DB1	DB0 1
0 Entry M RS 0 Write E RS 1	O Mode Se R/W 0 Data to E R/W	0 DB7 0 DDRAM DB7 0	Displa DB6 0 Write S DB6	y Shift E DB5 0 S DB5	DB4 0	DB3 0 DB3	DB2 1 DB2	DB1 1 DB1	DB0 1
0 Entry M RS 0 Write E RS 1	0 Mode See R/W 0 Data to E R/W 0	0 DB7 0 DDRAM DB7 0	Displa DB6 0 Write S DB6	y Shift E DB5 0 S DB5	DB4 0	DB3 0 DB3	DB2 1 DB2	DB1 1 DB1	DB0 1 DB0
0 Entry N RS 0 Write E RS 1	O Mode See R/W O Data to E R/W O Data to E	0 et: Entire DB7 0 DDRAM DB7 0 DDRAM DB7 0	DB6 Write S DB6 1 Write S	y Shift E DB5 0 DB5 0	DB4 0	DB3 0 DB3 0	DB2 1 DB2 0	DB1 1 DB1 1	DB0 1 DB0 1
O Entry M RS O Write E RS 1 Write E RS	O Mode Se R/W 0 Data to E R/W 0 Data to E R/W	ot: Entired DB7 0 DDRAM DB7 0 DDRAM DB7 0	DB6 DB6 DB6 DB6 DB6 DB6 1 Write S DB6 1	y Shift E DB5 0 S DB5 0 O DB5	DB4 DB4 DB4	DB3 0 DB3 0	DB2 1 DB2 0	DB1 1 DB1 1 DB1	DB0 1 DB0 1
O Entry M RS O Write E RS 1 Write E RS	O Mode Se R/W 0 Data to E R/W 0 Data to E R/W 0	ot: Entired DB7 0 DDRAM DB7 0 DDRAM DB7 0	DB6 DB6 DB6 DB6 DB6 DB6 1 Write S DB6 1	y Shift E DB5 0 S DB5 0 O DB5	DB4 DB4 DB4	DB3 0 DB3 0	DB2 1 DB2 0	DB1 1 DB1 1 DB1	DB0 1 DB0 1

 Solomon Systech
 Feb 2010
 P 68/79
 Rev 2.0
 SSD1803

RS R/W DB7 DB6 DB5 DB4 DB3 1 0 0 1 0 1 0 Write Data to DDRAM: Write E RS R/W DB7 DB6 DB5 DB4 DB3 1 0 0 1 0 0 0	1 (DB1 DB0 0 0	MON SYST_
RS R/W DB7 DB6 DB5 DB4 DB3	I DB2 I DI	_	1
RS R/W DB7 DB6 DB5 DB4 DB3	DB2 D		
	DB2 D		
1 0 0 1 0 0	7 2 2 2	B1 DB0	ON SYSTE
	1 (0 1	ON STATE_
Write Data to DDRAM: Write C	11-		1
RS R/W DB7 DB6 DB5 DB4 DB3		DB1 DB0	N SYSTEC_
1 0 0 1 0 0 0	0	1 1	
Write Data to DDRAM: Write K			
RS R/W DB7 DB6 DB5 DB4 DB3	B DB2 DI	B1 DB0	1
1 0 0 1 0 0 1		1 1	SYSTECK_
			ı
Cursor or Display Shift: Cursor shift left			
RS R/W DB7 DB6 DB5 DB4 DB3	B DB2 DI	B1 DB0] [OVOTEON
0 0 0 0 0 1 0	0 2	Х Х	SYSTEC <u>K</u>
		<u> </u>]
Write Data to DDRAM: Write H			, ———
Write Data to DDRAM: Write H RS R/W DB7 DB6 DB5 DB4 DB3	B DB2 DI	DB1 DB0	SYSTECH
		DB1 DB0 0 0	SYSTECH_
RS R/W DB7 DB6 DB5 DB4 DB3 1 0 0 1 0 0 1			SYSTECH_
RS R/W DB7 DB6 DB5 DB4 DB3 1 0 0 1 0 0 1 Return Home	0 (0 0	SYSTECH_
RS R/W DB7 DB6 DB5 DB4 DB3 1 0 0 1 0 0 1	0 (SYSTECH_ SOLOMON SYSTECH

SSD1803 Rev 2.0 P 69/79 Feb 2010 **Solomon Systech**

IE = "HIGH"

R/W

0

DB7

0

DB6

DB5

0

DB4

DB3

0

DB2

0

DB1

DB0

	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Ĺ										
2. F	unctic	n Set: 8	3-bit, RI	E(1)						
Γ	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
r	0	0	0	0	1	1	1	1	0	0
-										
. г	_vtond	ad Fun	otion Co	et: 5-fon	+ 4 lina					
). <u> </u>	zxienu	eu run	JUOIT SE							
							DD0	DB2		
	RS	R/W	DB7	DB6	DB5	DB4	DB3	DBZ	DB1	DB0
	RS 0	R/W 0	0 0	0 0	0 0	0 0	1 1	0	0	1 1
E 1. F	0		0							
] 1. F	0 -unctio	0 on set: F	0 RE(0)	0	0	0	1	0	0	1
] 1. F	0 Function	0 on set: F R/W	0 RE(0) DB7	0 DB6	0 DB5	0 DB4	DB3	0 DB2	0 DB1	1 DB0
1. F	0 -unctio	0 on set: F	0 RE(0)	0	0	0	1	0	0	1
	0 Function RS 0	0 on set: F R/W 0	0 RE(0) DB7 0	0 DB6 0	0 DB5 1	0 DB4 1	DB3	0 DB2	0 DB1	1 DB0
	0 Function RS 0	0 on set: F R/W 0	0 RE(0) DB7 0	0 DB6	0 DB5 1	0 DB4 1	DB3	0 DB2	0 DB1	1 DB0
	0 Function RS 0	0 on set: F R/W 0	0 RE(0) DB7 0	0 DB6 0	0 DB5 1	0 DB4 1	DB3	0 DB2	0 DB1	1 DB0

 Solomon Systech
 Feb 2010
 P 70/79
 Rev 2.0
 SSD1803

7	\A/rita	Data to	מחח	A N / -	\\/rito	\cap
1.	vvrite	Data tt	אטטו	AIVI.	vvrite	U

ı	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	1	0	0	1	0	0	1	1	1	1

SO_

12. Write Data to DDRAM: Write N

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	0	0	1	0	0	1	1	1	0

13. Set DDRAM Address 20H

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	0	0	0	0	0

14. Write Data to DDRAM: Write S

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	0	0	1	0	1	0	0	1	1

SOLOMON S_

20. Write Data to DDRAM: Write H

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	0	0	1	0	0	1	0	0	0

SOLOMON SYSTECH_

21. Set DDRAM Address 40H

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	0	0	0	0	0	0

SOLOMON SYSTECH -

 SSD1803
 Rev 2.0
 P 71/79
 Feb 2010
 Solomon Systech

22. Write Data to DDRAM: Write L

ĺ	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
ĺ	1	0	0	1	0	0	1	1	0	0

SOLOMON SYSTECH L

31. Write Data to DDRAM: Write R

	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
ſ	1	0	0	1	0	1	0	0	1	0

SOLOMON SYSTECH LCD DRIVER_

32. Set DDRAM Address 60H

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	1	0	0	0	0	0

SOLOMON SYSTECH LCD DRIVER

44. Write Data to DDRAM: Write R

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	0	0	1	0	1	0	0	1	0

SOLOMON SYSTECH LCD DRIVER & CONTROLLER_

45. Function Set: RE(0), DH(1)

I	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	0	0	0	0	1	1	1	0	1	0

SOLOMON SYSTECH LCD DRIVER & CONTROLLER_

46. Function Set: RE(1)

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	1	1	1	1	0	0

SOLOMON SYSTECH LCD DRIVER & CONTROLLER_

 Solomon Systech
 Feb 2010 | P 72/79 | Rev 2.0 | SSD1803

47. Shift/Scroll Enable: DS4(1), DS3/2/1(0)

ſ	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
ſ	0	0	0	0	0	1	1	0	0	0

48. Function Set: RE(0)

	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
ſ	0	0	0	0	1	1	1	0	1	0

49. Cursor or Display Shift: Display shift to left

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	1	1	0	Χ	Χ

50. Cursor or Display Shift: Display shift to left

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	1	1	0	Χ	Х

51. Cursor or Display Shift: Display shift to left

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	1	1	0	Χ	Χ

52. Cursor or Display Shift: Display shift to left

I	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
I	0	0	0	0	0	1	1	0	Χ	Χ

SOLOMON SYSTECH LCD DRIVER & CONTROLLER_

SOLOMON SYSTECH LCD DRIVER & CONTROLLER_

SOLOMON SYSTECH LCD DRIVER CONTROLLER_

SOLOMON SYSTECH LCD DRIVER CONTROLLER_

SOLOMON SYSTECH LCD DRIVER ONTROLLER_

SOLOMON SYSTECH LCD DRIVER NTROLLER_

SSD1803 Rev 2.0 P 73/79 Feb 2010 **Solomon Systech**

53. Return Home

I	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	0	0	0	0	0	0	0	0	1	Х

LCD DRIVER & CONTROLLER

<u>S</u>OLOMON

SYSTECH

54. Function Set: RE(0), REV(1)

ĺ	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
ĺ	0	0	0	0	1	1	1	0	1	1

SOLOMON
SYSTECH
LCD DRIVER
& CONTROLLER

55. Cursor or Display Shift: Display shift to right

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	1	1	1	Х	Х

SOLOMON
SYSTECH
LCD DRIVER
& CONTROLLER

56. Cursor or Display Shift: Display shift to right

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	1	1	1	Х	Х

SOLOMON
SYSTECH
LCD DRIVER
& CONTROLLER

57. Return Home

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	1	Х

SOLOMON SYSTECH LCD DRIVER & CONTROLLER

58. Function Set: RE(0), REV(0)

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	1	1	1	0	0	0

<u>S</u>OLOMON SYSTECH LCD DRIVER & CONTROLLER

Solomon Systech Feb 2010 | P 74/79 | Rev 2.0 | **SSD1803**

F0	F	0-4-	DE	(A \
SS.	Function	oei.	r = 1	

ĺ	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
ĺ	0	0	0	0	1	1	1	1	0	0

SOLOMON
SYSTECH
LCD DRIVER
& CONTROLLER

60. Entry Mode Set: BID(1)

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	1	1	1

SOLOMON
SYSTECH
LCD DRIVER
& CONTROLLER

61. Write Data to DDRAM: Write B

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	0	0	1	0	0	0	0	1	0

B<u>O</u>LOMON SYSTECH LCD DRIVER & CONTROLLER

62. Write Data to DDRAM: Write I

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	0	0	1	0	0	1	0	0	1

BILOMON SYSTECH LCD DRIVER & CONTROLLER

63. Write Data to DDRAM: Write D

I	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	1	0	0	1	0	0	0	1	0	0

BID<u>O</u>MON SYSTECH LCD DRIVER & CONTROLLER

64. Clear Display

ı										
	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	0	0	0	0	0	0	0	0	0	1

-

SSD1803 Rev 2.0 P 75/79 Feb 2010 **Solomon Systech**

18 PACKAGE INFORMATION

18.1 DIE TRAY DIMENSIONS

Solomon Systech Feb 2010 | P 76/79 | Rev 2.0 | **SSD1803**

APPENDIX I SSD1803M1 CGROM CHARACTER CODE

	#		#				·			.ii.	Ŧ				
10	11	12	13	14	15	16	17	18	19	1A	18	10	1D	1E	1F
		**	#	111			-			#	+				
20	21	22	23	24	25	26	27	28	29	2A	2B	20	2 D	2E	2F
	1			4						#	ä		===		
30	31	32	33	34	35	36	37	38	39	3A	3B	3.0	3 D	3E	3F
Ì															
40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F
						w									
50	51	52	53	54	55	56	57	58	59	5A	5B	5C	5D	5E	5F
	æ								1				m		
60	61	62	63	64	65	66	67	68	69	6A	6B	6C	6 D	6E	6F
	9									Ξ				L.	
70	71	72	73	74	75	76	77	78	79	7A	7B	70	70	7E	7.
	ı			•			7								
80	81	82	83	84	85	86	87	88	89	8A	8B	80	8D	8E	8F
90			#	#	T				•••						***
	91	92	93	94	95	96	97	98	99	9A	9B	90	9D	9E	9F
	<u> </u>						i							Ħ	
A.0	Al	A2	A3	A4	A5	A.6	A.7	A8	A9	AA	AB	AC	AD	AE	AF
		#	I			Ш	Ψ								Ë
B0	Bl	B2	B3	B4	B5	B6	B7	B8	B9	BA	BB	BC	BD	BE	BF
	-	600									-	I	1		
CO		62	C3	- 4	C5	C.6	C7	C.8	C9	CA.	CB	CC	CD	CE	CF
						700				714	-	III		**	
D0	101	ID2	D3	D4	105	D 6	107	D8	109	DA	DB	DC	DD	DE	DF
			İ					i					٥	Ш	
160	E	E2	E3	E4	E5	E6	E	E8	E9	EA	EB	EC			EF
-	Ë						E7					-			
F0	H	F2	F3	F4	F5	F6	17	F8	F9	FA	FB	FC	FD	FE	FF

 SSD1803
 Rev 2.0
 P 77/79
 Feb 2010
 Solomon Systech

APPENDIX II SSD1803M2 CGROM CHARACTER CODE

ii:	#	#	#	£			17								
10	11	12	13	14	15	16	17	18	19	1A	18	10	1D	1E	1F
	1	**					-			#	+				
20	21	22	23	24	25	26	27	28	29	2A	2B	20	2D	2E	2F
	1			4						H	:		==		
30	31	32	33	34	35	36	37	38	39	3A	3B	3€	3D	3E	3F
												<u></u>	×		
40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F
				I		Ų									
50	51	52	53	54	55	56	57	58	59	5A	5B	5C	5D	5E	5F
									1			L	m		
60	61	62	63	64	65	66	67	68	69	6A	6B	6C	6D	6E	6F
	•														
70	71	72	73	74	75	76	77	78	79	7A	7B	70	7D	7E	71
				Щ		#		i i							
80	81	82	83	84	85	86	87	88	89	8A	8B	86	8D	8E	8E
		1													
90	91	92	93	94	95	96	97	98	99	9A	9B	90	9D	9E	9F
	Ĥ,			Ö					1	Ι					
A0	Al	A2	A3	A4	A5	A.6	A	A8	A9	AA	AB	AC	AD	AE	AF
		=			T				Ξ						
B0	Bl	B2	B3	B4	B5	B 6	B7	B8	B9	BA	BB	BC	BD	BE	BF
	Ä				Ė			Ë		Ë	Ë	Ì	Ĭ	Ï	
CO	Cl	C2	C3	C4	C5	C6	C7	C8	C9	CA	CB	cc	CD	CE	CF
														ŀ	
100	Di	ID2	D3	D4	D5	D 6	107	108	109	DA	DB	DC	DD	DE	DF
		_						-					i	î	I
E0	E	E2	E3	E4	E5	E6	107	E8	E9	EA	EB	EC	ED	EE	EF
	m		-											ŀ	
F0	FI	F2	E3	F4	F5	F6	F7	F8	F9	FA	FB	FC	FD	FE	FF

 Solomon Systech
 Feb 2010
 P 78/79
 Rev 2.0
 SSD1803

Solomon Systech reserves the right to make changes without notice to any products herein. Solomon Systech makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any, and all, liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typical" must be validated for each customer application by the customer's technical experts. Solomon Systech does not convey any license under its patent rights nor the rights of others. Solomon Systech products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Solomon Systech product could create a situation where personal injury or death may occur. Should Buyer purchase or use Solomon Systech products for any such unintended or unauthorized application, Buyer shall indemnify and hold Solomon Systech and its offices, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Solomon Systech was negligent regarding the design or manufacture of the part.

The product(s) listed in this datasheet comply with Directive 2002/95/EC of the European Parliament and of the council of 27 January 2004 on the restriction of the use of certain hazardous substances in electrical and electronic equipment and People's Republic of China Electronic Industry Standard SJ/T 11363-2006 "Requirements for concentration limits for certain hazardous substances in electronic information products (电子信息产品中有毒有害物质的限量要求)". Hazardous Substances test report is available upon request.

http://www.solomon-systech.com

SSD1803 | Rev 2.0 | P 79/79 | Feb 2010 | **Solomon Systech**