Formulario

En este formulario: $a,b,c\ \mathrm{y}\ d\in\mathbb{R}$ y son constantes

Dominio y rango de funciones

Función independiente: f(x) = c

$$D_{f(x)}=\mathbb{R}$$

$$R_{f(x)} = c$$

Función lineal: f(x) = ax + c

$$D_{f(x)} = \mathbb{R}$$

$$R_{f(x)} = \mathbb{R}$$

Función cuadrática: $ax^2 + bx + c$

$$R_{f(x)} = \mathbb{R}$$

Si
$$a \leq 0$$
, $R_{f(x)} = (-\infty, V_y]$

Si
$$a \geq 0, \; R_{f(x)} = [V_y, \infty)$$

$$V(x,y) = V\left(rac{-b}{2a},\left(rac{-b}{2a}
ight)
ight)$$

Función racional (tipo 1): $\frac{c}{ax+c}$

$$D_{f(x)}=\mathbb{R}-\{x|x
ightarrow ax+c=0\}$$

$$ax + c \neq 0 \rightarrow x \neq \frac{-c}{a}$$

$$D_{f(x)} \neq \mathbb{R} - \{-\frac{c}{a}\}$$

$$R_{f(x)} = \mathbb{R} - \{0\}$$

Función racional (tipo 2): $\frac{ax^n + c}{bx^n + d}$

$$D_{f(x)}=\mathbb{R}-\{bx^n+d=0\}$$

$$bx^n+d
eq 0 o x^n
eq rac{-d}{b} o$$
 despejar x segun el valor de n

$$R_{f(x)} = \frac{ax^n}{bx^n} = \frac{a}{b}$$

Función racional (tipo 3): $\frac{ax^n + c}{bx^m + d}$

$$D_{f(x)} = \mathbb{R} - \{x|x o ext{denominador} = 0\}$$

$$bx^m+d
eq 0
ightarrow x^m
eq rac{-d}{b}
ightarrow ext{ despejar } x ext{ segun el valor de } n$$

$$R_{f(x)} = rac{ax^n}{bx^m}$$

si
$$n < m
ightarrow R_{f(x)} = rac{ax^n}{bx^m} = rac{a}{bx^{m-n}}$$

Si
$$n>m o R_{f(x)}=rac{ax^n}{hx^m}=rac{ax^{n-m}}{h}$$

Función radical (lineal): $\sqrt{ax+c}$

$$D_{f(x)}=\mathbb{R}-\{x|x
ightarrow ax+c<0\}$$

$$\begin{array}{l} \text{Si } a<0 \rightarrow ax+c \geq 0 \rightarrow x \leq \frac{-c}{a} \\ \\ \text{Si } a>0 \rightarrow ax+c \geq 0 \rightarrow x \geq \frac{-c}{a} \end{array} \\ R_{f(x)}=[0,\infty) \\ \\ \text{Función radical (cuadrática): } \sqrt{ax^2-c} \\ D_{f(x)}=\mathbb{R}-\{x|x\rightarrow ax^2-c<0\} \\ \\ \text{Si } a>0 \rightarrow ax^2-c \geq 0 \rightarrow x^2 \geq \frac{c}{a} \rightarrow |x| \geq \sqrt{\frac{c}{a}} \rightarrow x \leq -\sqrt{\frac{c}{a}} \text{ o } x \geq \sqrt{\frac{c}{a}} \\ R_{f(x)}=[\sqrt{c},\infty) \end{array}$$

Operaciones con funciones

Operación	Representación
Suma	h(x)=f(x)+g(x)
Resta	h(x)=f(x)-g(x)
Multiplicación	$h(x) = f(x) \cdot g(x)$
División	$h(x) = rac{f(x)}{g(x)}$
Composición	$h(x) = f \circ g = f(g(x))$

Función inversa

Inyectiva: $f(x_1)=f(x_2)$ Sobreyectiva: $Cod_{f(x)}=R_{f(x)}$ Biyectiva: Inyectiva y sobreyectiva

Función inversa (f^{-1}) $f(x) = y \ f^{-1}(x) = x$

Cómo obtener la inversa de una función

Pasos	f(x) = x + c
Representar $f(x)$ como y	y = x + c
Despejar en términos de \boldsymbol{x}	y-c=x
Intercambiar la posición de las igualdades (opcional)	x = y - c
Cambiar x por $f^{-1}(x)$ y y por x	$f^{-1}(x) = x - c$

Inversas de funciones trigonometricas

$\sin o rcsen$	$\cos o rccos$	an o rctan
$\sec \to \mathrm{arcsec}$	$\csc \to \arccos$	$\cot o \operatorname{arccot}$

Límites

Propiedades de los límites

$$egin{aligned} \lim_{x o a}f(x)+g(x)&=\lim_{x o a}f(x)+\lim_{x o a}g(x)\ \lim_{x o a}f(x)-g(x)&=\lim_{x o a}f(x)-\lim_{x o a}g(x)\ \lim_{x o a}f(x)\cdot g(x)&=\lim_{x o a}f(x)\cdot \lim_{x o a}g(x)\ \lim_{x o a}f(x)/g(x)&=\lim_{x o a}f(x)/\lim_{x o a}g(x)\ \lim_{x o a}cf(x)&=c\lim_{x o a}f(x)\end{aligned}$$

Algunos límites

$$\lim_{x o a}\sqrt[n]{f(x)}=\sqrt[n]{\lim_{x o a}f(x)}$$

 $\lim_{x o a}f(x)=f(a)$, cuando f es una función trigonométrica ($\sin,\cos, an...$)

Límites laterales

Si
$$\lim_{x\to a^+}f(x)=L$$
 y $\lim_{x\to a^-}f(x)=L$, entonces $\lim_{x\to a}f(x)=L$ Si $\lim_{x\to a^+}f(x)=L$ y $\lim_{x\to a^-}f(x)=M$, entonces $\lim_{x\to a}f(x)=N$ o existe

Límites infinitos

Límite infinito: $\lim_{x \to a} f(x) = \infty$ Límite al infinito: $\lim_{x \to \infty} = L$

Reglas de los infinitos

$\infty * \infty = \infty$	$\infty + \infty = \infty$	$\infty*(-\infty)=-\infty$
$c*\infty=\infty; ext{ si } c>0$	$c*\infty = -\infty$; si $c < 0$	$\infty + c = \infty$
$\infty - \infty$ No concluyente	∞/∞ No concluyente	$0*\infty=\infty$ No concluyente
$1/\infty=0$	$0/\infty=0$	$\infty/0=_{-}^{+}\infty$ es necesario un análisis

Propiedades de los límites infinitos

donde $P_n(x) = \text{polinomio de grado } x$

Límites	Condiciones
$\lim_{x o\infty}x^n=\infty$	-
$\lim_{x o -\infty} x^n = \infty$	cuando $x^n>0$
$\lim_{x o -\infty} x^n = -\infty$	cuando $x^n < 0$
$\lim_{x o -\infty}rac{e^x}{x^n}=\infty$	-
$\lim_{x o -\infty}rac{x^n}{e^x}=0$	-
$\lim_{x o\infty}c^x=\infty$	cuando $c>1$

Límites	Condiciones
$\lim_{x o\infty}c^x=0$	cuando $c < 1$
$\lim_{x o -\infty} c^x = 0$	cuando $c>1$
$\lim_{x o -\infty} c^x = \infty$	cuando $c < 1$
$\lim_{x o\infty}P_n(x)=\infty$	-
$\lim_{x o -\infty} P_n(x) = \infty$	si n es par
$\lim_{x o -\infty} P_n(x) = -\infty$	si n es non

Teorema de compresión (sandwich)

Sean
$$g(x) \leq f(x) \leq h(x)$$
 y $\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L$, entonces $= \lim_{x \to a} f(x) = L$

Variantes

Si
$$f(x)\geq g(x)$$
 y $\lim_{x o a}g(x)=\infty$, entonces $\lim_{x o a}f(x)=\infty$
Si $f(x)\leq g(x)$ y $\lim_{x o a}g(x)=-\infty$, entonces $\lim_{x o a}f(x)=-\infty$

Límites trigonométricos

ullet $\lim_{x o\infty}f(x)$ no existe si f e cualquier función trigonométrica. De igual manera con $-\infty$

Ejemplos:

- $\lim_{x \to \infty} \frac{x}{2x+1} \sin(x)$
- $\lim_{x \to \infty} \frac{\sin(x)}{x}$

Derivadas

Propiedades de las Derivadas

donde
$$f = f(x)$$
 y $g = g(x)$

Caso	Fórmula
$(f\pm g)'$	$f'\pm g'$
(cf)'	cf'(x)
$(f\cdot g)'$	$f' \cdot g + f \cdot g'$
$f\cdot g'$	$(f\cdot g)'-f'\cdot g$
$\left(\frac{f}{g}\right)'$	$\frac{f'\cdot g - g'\cdot f}{g^2}$
$(f\circ g)'$	$f'(g)\cdot g'$
$\ln\left(x ight)'$	$\frac{x'}{x}$

Algunas derivadas

Función	Derivada
f(x)=c	f'(x)=0
$f(x)=x^n$	$f^{\prime}(x)=nx^{n-1}$
$f(x)=e^x$	$f'(x)=e^x$
$f(x) = \sin(x)$	$f'(x) = \cos(x)$
$f(x) = \cos(x)$	$f'(x) = -\sin(x)$

Regla de la cadena

$$z(x) = f(g(x))$$

$$f(x) = \sin(e^x) = \cos(e^x) \cdot e^x$$

$$\sin^2 x + \cos^2 x = 1$$

$$\frac{1}{\cos x} = \sec x$$

Continuidad de funciones

Una función f(x) es **continua** en x=a si $\lim_{x o a}f(x)=f(a)$

Si es continua en todo su dominio entonces la función es continua. Si una función no es ocntinua en un punto a se dice que f es dicontinua en a

Las siguientes funciones son continuas

- Polinomios
- Funciones racionales (siempre que no exista división entre 0)
- Raíces
- Funciones trigoométricas y sus inversas.
- Exponenciales y logaritmos

Se tiene $\lim_{x o a}f(g(x))=f\left(\lim_{x o a}g(x)
ight)$ siempre que f sea continua en $\lim_{x o a}g(x)$

La composición de funciones continuas es continua

Puntos críticos

Pasos primer método	$f(x)=2x^2-4x-1$
Derivar	$f^{\prime}(x)=4x-4$
Igualar a 0 y resolver	4x-4=0 ightarrow x=1
Remplazar en $f(x)$	$f(1) = 2(1)^2 - 4(1) - 1 = -3$
Igualar $f'(x)$ a 0 y resolver	f'(x)=4x-4=0 o x=1
Evaluar $f'(x)$ del lado izquierdo	$f'(0) = 4(0) - 4 = -4 \leftarrow Decreciente$
Evaluar $f'(x)$ del lado derecho	$f'(2) = 4(2) - 4 = 4 \leftarrow Creciente$
-	Como primero disminuye y después aumenta $(1,-3)$ es un mínimo

Pasos segundo método	$f(x) = 2x^2 - 4x - 1$
Derivar	f'(x)=4x-4
Igualar a 0 y resolver	4x-4=0 ightarrow x=1
Remplazar en $f(x)$	$f(1) = 2(1)^2 - 4(1) - 1 = -3$
Sacar la segunda derivada	f''(x)=4
Evaluar $f''(x)$ en el valor encontrado de x	f''(1)=4
Si $f''(x)>0$, entonces su punto crítico es un mínimo	Sí aplica, por lo que $(1,-3)$ es un mínimo
Si $f''(x) < 0$, entonces su punto crítico es un máximo	No aplica
Si $f''(x)=0$, entonces no es ninguno de los dos. "Es un punto silla"	No aplica

Funciones explicitas e implicitas

Una **función implicita** es aquella que f(x), o en dado caso y, no está despejada, es decir:

$$x + 2y = 1$$

En cambio, una **función explicita** es aquella que f(x) o y si está despejada

$$y=2x$$

En forma explicita es: y = y(x)

$$y(x) = x^2$$

$$y(x) = e^x + \ln x$$

Derivadas de funciones implicitas

Encontrar y' / Encontrar $\frac{dy}{dx}$	$5x^2 + 3 = 2y^3 + 5$
Derivar la ecuación y, como se está derivando respecto a y , cuando saquemos la derivada de un término con y , se le agrega y' multiplicando	$10x=6y^2y'$
Despejar y'	$\frac{10x}{6y^2} = y'$