Momentum

Momentum measures how hard it is to stop something moving.

Ne	wton originally called momentum motion .
mc	pmentum (in kg m/s) $=$ (in kg) $ imes$ (in m/s).
1	Fill in the blanks with words to complete the equation.
	$momentum = \boxed{} \times \boxed{}$
2	Calculate the momentum of a $30~\mathrm{kg}$ child running at $2~\mathrm{m/s}$ using an equation.
	$momentum (kg m/s) = mass (kg) \times velocity (m/s)$
	= 30 ×
3	Calculate the momentum of a $0.4~\mathrm{kg}$ football kicked at $20~\mathrm{m/s}$.
	$momentum (kg m/s) = mass (kg) \times velocity (m/s)$
	= 0.4 ×
4	Calculate the momentum of a $500~\mathrm{kg}$ shark swimming at $9~\mathrm{m/s}$.
Mc	omentum is also the strength of needed to stop the object in
5	Calculate the momentum of (a) a 0.12 kg apple falling at 3.0 m/s,
	(b) a 3.1 kg rabbit running at 3.0 m/s,
	(c) a 3.1 kg cat running at 6.0 m/s.
6	Look at your answers to question 5 and complete these sentences. Use the words mass, velocity, harder, easier, higher and lower.
	(a) The apple is to stop than the rabbit because it has a
	(b) The rabbit is to stop than the cat because it has a
7	How much force would it take to stop a $3.1~\mathrm{kg}$ cat running at $6.0~\mathrm{m/s}$ in one second?

8	For each pair, work out which one is harder to stop in terms of force.
	(a) A $150~\mathrm{kg}$ lion running at $14~\mathrm{m/s}$ or a $110~\mathrm{kg}$ warthog at $20~\mathrm{m/s}$.
	(b) A 800 kg race car at 100 m/s or a 12000 kg bus at 13 m/s .
9	A school trolley requires a 4.5 N force to stop it in one second.
	(a) Write down the momentum of the trolley when it was moving.
	(b) The mass is 1.5 kg. Work out the velocity of the trolley using an equation. momentum (kg m/s) $=$ mass (kg) \times velocity (m/s) $=$ 1.5 \times
	(c) Complete the word equation: velocity $=$ \div .
10	A falling brick has 30 kg m/s of momentum just before it is stopped. (a) If the mass is 3.0 kg, how fast is it going?
	(b) How much resultant force is needed to stop it in one second?
	(c) The force pushing the brick (to stop it in $1\mathrm{s}$) is larger than your answer to (b). Why?
11	A package moving across a space station requires a 3 N force to stop it in one second.
	(a) Write down the momentum of the package when it was moving.
	(b) The velocity was 1.5 m/s. Work out the mass of the package using an equation. momentum $(kg m/s) = mass (kg) \times velocity (m/s) = 1.5$
	(c) Complete the word equation: mass = \div
12	Write momentum equations using symbols.

p is the momentum, m is the mass and v is the velocity. (a) p= (b) v= (c) m=

A $100~{\rm kg}$ rider and cycle at $12~{\rm m/s}$ has = kg m/s of momentum. Stopping it in $1~{\rm s}$ requires a N force.		
Stopping it in 2 s requires a 1200 = N force.		
Stopping it in 3 s requires a $1200_{\underline{}} = \underline{}$ N force.		
13 A 40 kg person in a 20 kg wheelchair is going at 2.4 m/s. (a) Calculate the total momentum.		
(b) How much force would the brakes need to stop in 9 s?		
(c) How much force would the brakes need to stop in 3 s?		
14 A 150 kg go-kart needs to accelerate from rest to 25 m/s in 5.0 s.		
(a) Calculate the momentum it will have at 25 m/s.		
(b) Calculate the force needed from the engine to accelerate it to 25m/s in 5.0s . Assume that there are no resisting forces.		
A force of 100 N can make an object's momentum 100 kg m/s or each		
A go-kart starts at rest. A $200\mathrm{N}$ force accelerates it for $7.0\mathrm{s}$.		
Its momentum will now be $\underline{\hspace{1cm}} = \underline{\hspace{1cm}} kg m/s.$		
15 A model rocket motor provides an 8 N force for 0.3 s to a 0.080 kg rocket. (a) How much momentum will the engine give the rocket?		
(b) How fast will the rocket be moving after the engine has finished? Assume that there are no other forces.		
A $100~{\rm kg}$ motorcycle and rider at $15~{\rm m/s}$ has a momentum of = kg m/s.		
A braking force of 250 N will stop it in 1500 = _ s.		
16 How much time does it take to stop a 250000 kg train at 120 m/s with a 750000 N braking force?		