

SEQUENCE LISTING

<110> Taisho Pharmaceutical Co., Ltd.
IKEDA, Akiko
SHINONAGA, Hideki
FUJIMOTO, Natsuko
KASAI, Yoko

<120> HAIR GROWTH TONIC

<130> Q84294

<150> PCT/JP03/04884
<151> 2003-04-17

<150> JP 2002-115529
<151> 2002-04-17

<160> . 61

<170> PatentIn version 3.3

<210> 1
<211> 365
<212> PRT
<213> HOMO SAPIENS

<400> 1

Met Ala Gly Ser Ala Met Ser Ser Lys Phe Phe Leu Val Ala Leu Ala
1 5 10 15

Ile Phe Phe Ser Phe Ala Gln Val Val Ile Glu Ala Asn Ser Trp Trp
20 25 30

Ser Leu Gly Met Asn Asn Pro Val Gln Met Ser Glu Val Tyr Ile Ile
35 40 45

Gly Ala Gln Pro Leu Cys Ser Gln Leu Ala Gly Leu Ser Gln Gly Gln
50 55 60

Lys Lys Leu Cys His Leu Tyr Gln Asp His Met Gln Tyr Ile Gly Glu
65 70 75 80

Gly Ala Lys Thr Gly Ile Lys Glu Cys Gln Tyr Gln Phe Arg His Arg
85 90 95

Arg Trp Asn Cys Ser Thr Val Asp Asn Thr Ser Val Phe Gly Arg Val
100 105 110

Met Gln Ile Gly Ser Arg Glu Thr Ala Phe Thr Tyr Ala Val Ser Ala
115 120 125

Ala Gly Val Val Asn Ala Met Ser Arg Ala Cys Arg Glu Gly Glu Leu
130 135 140

Ser Thr Cys Gly Cys Ser Arg Ala Ala Arg Pro Lys Asp Leu Pro Arg
145 150 155 160

Asp Trp Leu Trp Gly Gly Cys Gly Asp Asn Ile Asp Tyr Gly Tyr Arg
165 170 175

Phe Ala Lys Glu Phe Val Asp Ala Arg Glu Arg Glu Arg Ile His Ala
180 185 190

Lys Gly Ser Tyr Glu Ser Ala Arg Ile Leu Met Asn Leu His Asn Asn
195 200 205

Glu Ala Gly Arg Arg Thr Val Tyr Asn Leu Ala Asp Val Ala Cys Lys
210 215 220

Cys His Gly Val Ser Gly Ser Cys Ser Leu Lys Thr Cys Trp Leu Gln
225 230 235 240

Leu Ala Asp Phe Arg Lys Val Gly Asp Ala Leu Lys Glu Lys Tyr Asp
245 250 255

Ser Ala Ala Ala Met Arg Leu Asn Ser Arg Gly Lys Leu Val Gln Val
260 265 270

Asn Ser Arg Phe Asn Ser Pro Thr Thr Gln Asp Leu Val Tyr Ile Asp
275 280 285

Pro Ser Pro Asp Tyr Cys Val Arg Asn Glu Ser Thr Gly Ser Leu Gly
290 295 300

Thr Gln Gly Arg Leu Cys Asn Lys Thr Ser Glu Gly Met Asp Gly Cys
305 310 315 320

Glu Leu Met Cys Cys Gly Arg Gly Tyr Asp Gln Phe Lys Thr Val Gln
325 330 335

Thr Glu Arg Cys His Cys Lys Phe His Trp Cys Cys Tyr Val Lys Cys
340 345 350

Lys Lys Cys Thr Glu Ile Val Asp Gln Phe Val Cys Lys
355 360 365

<210> 2
 <211> 4428
 <212> DNA
 <213> HOMO SAPIENS

<400> 2						
ttaaggaaat	ccgggctgct	tttccccatc	tggaagtggc	tttccccaca	tcggctcgta	60
aactgattat	gaaacatacg	atgttaattc	ggagctgcatt	ttcccagctg	ggcactctcg	120
cgcgctggtc	cccggggcct	cgccccccac	cccctgccct	tccctccgc	gtcctgcccc	180
catcctccac	cccccgct	ggccaccccg	cctcctggc	agcctctggc	ggcagcgcgc	240
tccactcgcc	tcccgtgctc	ctctcgccca	tggaattaat	tctggctcca	cttgttgctc	300
ggcccaggtt	ggggagagga	cgagggtgg	ccgcagcggg	ttcctgagtg	aattaccag	360
gagggactga	gcacagcacc	aactagagag	gggtcagggg	gtgcgggact	cgagcggca	420
ggaaggaggc	agcgcctggc	accagggttt	tgactcaaca	gaattgagac	acgtttgtaa	480
tcgctggcgt	gcccccgca	caggatccca	gcgaaaatca	gatttcctgg	tgaggttgcg	540
tgggtggatt	aatttgaaa	aagaaactgc	ctatatcttgc	ccatcaaaaa	actcacggag	600
gagaagcgcga	gtcaatcaac	agtaaactta	agagacccccc	gatgctcccc	tggtttaact	660
tgtatgcttgc	aaaatttatct	gagagggaaat	aaacatcttt	tccttcttcc	ctctccagaa	720
gtccatttggaa	atattaagcc	caggagttgc	tttggggatg	gctggaaatg	aatgtcttc	780
caagttcttc	ctagtggcatt	tttctccttc	gcccgagggttgc	taatttgaagc		840
caattcttgg	tggtcgttag	gtatgaataa	ccctgttcag	atgtcagaag	tatattattat	900
aggagcacag	cctctctgca	gccaaactggc	aggactttct	caaggacaga	agaaaactgtg	960
ccacttgtat	caggaccaca	tgcagtacat	cgaggaaaggc	gcgaagacag	gcatcaaaga	1020
atgccagtag	caattccgac	atcgacggtg	gaactgcagc	actgtggata	acacctctgt	1080
ttttggcagg	gtgatgcaga	taggcagccg	cgagacggcc	ttcacatacg	ccgtgagcgc	1140
agcaggggtg	gtgaacgcca	tgagccgggc	gtgcccgcag	ggcgagctgt	ccacctgcgg	1200
ctgcagccgc	gccgcgcgc	ccaaggaccc	gccgcgggac	tggctctggg	gcggctgcgg	1260
cgacaacatc	gactatggct	accgcttgc	caaggagttc	gtggacgccc	gcgagcggga	1320
gcgcacccac	gccaaaggct	cctacgagag	tgctcgcatc	ctcatgaacc	tgcacaacaa	1380
cgaggccggc	cgcaggacgg	tgtacaacct	ggctgatgtg	gcctgcaagt	gccatggggt	1440
gtccggctca	tgttagcctga	agacatgctg	gctgcagctg	gcagacttcc	gcaagggtggg	1500
tgtatgccctg	aaggagaagt	acgacagcgc	ggcgccatg	cggtcaaca	gccggggcaa	1560
gttggtagacag	gtcaacagcc	gcttcaactc	gcccaccaca	caagacctgg	tctacatcga	1620

ccccagccct gactactgcg tgcgcaatga gagcaccggc tcgctggca cgcaaggccg 1680
cctgtgcaac aagacgtcg aggcatgga tggctgcgag ctcatgtgct gcggccgtgg 1740
gtacgaccag ttcaagaccg tgcagacgga ggcgtgccac tgcaagttcc actggtgctg 1800
ctacgtcaag tgcaagaagt gcacggagat cgtggaccag tttgtgtgca agtagtgggt 1860
gccacccagc actcagcccc gctcccagga cccgcttatt tatagaaagt acagtgattc 1920
tggttttgg ttttagaaa tatttttat tttcccaa gaattgcaac cggaaccatt 1980
tttttcctg ttaccatcta agaactctgt ggtttattat taatattata attattattt 2040
gcaataatg ggggtggaa ccacgaaaaa tatttattt gtggatctt gaaaaggtaa 2100
tacaagactt ctttggata gtatagaatg aaggggaaa taacacatac cctaacttag 2160
ctgtgtggga catggtacac atccagaagg taaagaaata cattttctt ttctcaaata 2220
tgccatcata tgggatgggt aggttccagt tgaaagaggg tggtagaaat ctattcacaa 2280
ttcagcttct atgaccaaaa ttagttgtaa attctcttgt gcaagataaa aggtcttggg 2340
aaaacaaaaac aaaacaaaaac aaacctccct tccccagcag ggctgctagc ttgcttctg 2400
catttcaaa atgataattt acaatggaag gacaagaatg tcataattctc aaggaaaaaa 2460
ggtatatcac atgtctcatt ctccctcaaatttccatttgc cagacagacc gtcatattct 2520
aatagctcat gaaatttggg cagcagggag gaaagtcccc agaaattaaa aaatttaaaa 2580
ctcttatgtc aagatgttga tttgaagctg ttataagaat tgggattcca gatttgtaaa 2640
aagacccca atgattctgg acactagatt tttgtttgg ggaggttggc ttgaacataa 2700
atgaaatatc ctgtattttc ttagggatac ttggtagta aattataata gtagaaataa 2760
tacatgaatc ccattcacag gtttctcagc ccaagcaaca aggttaattgc gtgccattca 2820
gcactgcacc agagcagaca acctatttga ggaaaaacag tgaaatccac cttccctttc 2880
acactgaGCC ctctctgtt cctccgtgtt gtgtatgtat gctggccacg tttccaaacg 2940
gcagctccac tgggtccct ttgggtttag gacagggaaat gaaacattag gagctctgct 3000
tgaaaaacag ttcactactt agggattttt gttcctaaa acttttattt tgaggagcag 3060
tagtttctta tgtttaatg acagaacttgc gctaattggaa ttcacagagg tggcagcg 3120
tatcactgtt atgatcctgt gtttagatta tccactcatg cttctcctat tgtactgcag 3180
gtgtacctta aaactgttcc cagtgtactt gaacagttgc atttataagg gggaaatgt 3240
ggtttaatgg tgcctgatct ctcattttttt acatataat atatatacat 3300
atatataat ataaatataa atatatctca ttgcagccag tgattttagat ttacagctta 3360
ctctggggtt atctctctgt ctagagcatt gttgtccctc actgcagtc agttgggatt 3420

attccaaaag	tttttgagt	ctttagcttg	ggctgtggcc	ccgctgtat	cataccctga	3480
gcacgacgaa	gcaaccctcg	ttctgaggaa	gaagctttag	ttctgactca	ctgaaatg	3540
tgttgggtt	aagatatctt	ttttctttt	ctgcctcacc	ccttgc	caacccat	3600
ttctgttcac	tttgtggaga	ggcattact	tgttcg	ttttagat	agacatggac	3660
attcaaaact	cagaagcatc	agcaatgtt	ctctttctt	agttcattct	gcagaatgg	3720
aacccatgcc	tattagaaat	gacagtactt	attaattgag	tccctaagga	atattcagcc	3780
cactacatag	atagctttt	ttttttttt	tttttttaa	taaggacacc	tcttccaaa	3840
caggccatca	aatatgttct	tatctcagac	ttacg	ttttagat	ggaaagatac	3900
acatctttc	ataccccccc	ttaggaggtt	gggc	ttttagat	atcacctcag	3960
ctcttaattt	attgcataat	gatatccaca	tcagcca	actgtt	ccaactgtgg	4020
ataatgatat	tcacatcccc	tcagttgcag	tgaattgt	gtggctt	aatttattgc	4080
aaagcactaa	ttagttaaa	atgtcactt	tttgg	ttttagat	ttgaaagcaa	4140
tactttttt	atttgctaaa	tcagattgtt	cctttt	gactcatgtt	tatgaagaga	4200
gtttagttt	acaatcc	ctttaaaag	aaactattt	atgtaaaata	ttctacatgt	4260
cattcagata	ttatgtat	ctttagcct	ttattctgt	ctttatgt	acatatttct	4320
gtcttcgt	atttgat	ttcactgg	ttaaaaacaa	acatcgaaag	gcttattcca	4380
aatggaaagat	agaatataaa	ataaaacgtt	acttgtaaaa	aaaaaaaa		4428

<210> 3
 <211> 2460
 <212> DNA
 <213> HOMO SAPIENS

<400>	3	cgtggcacgc	gcgaaagatt	ctcagtgtcc	ttacagagtc	atctccctg	agccccggaa	60
		gtgttggaaa	acatttagcc	ccttcttgg	gaaactcagt	ttctgatcag	aattttgtt	120
		ttaccctggg	gttgacagtc	tcgcccagg	tctcattca	tactgtctt	tcggatctga	180
		tcctcttgg	aaacaggcgg	ggatgttta	ccctacagag	ccgatgtatg	tgtgagttcg	240
		ctgtgagttc	tttgagtgtc	tcaaacttgt	ggggc	ctcggttgca	ctgggattga	300
		agagggaaaga	ggcccaaggt	gtttccgggc	aagccgggg	gttaagtgg	gatgcgactc	360
		gtgaggctct	ccttccgat	cccccttgg	gacaccctct	gcctacctct	accctggagc	420
		cagggagacc	caagtcttgg	tgaccggatg	ggcccgctct	cagttggcct	gggtcttgg	480
		aactggtgga	ctctccctgg	ggc	ttcggagtgg	gttcggttt	tgtggcttcg	540

gctctaacaa agagatccgc tgtaatccgc cgaatctgtt atcaatttct ctgctgcttg 600
agccccgccc cacgcgcccc gcccggcg aagcttggaa agtgcacgca gccagcacca 660
atctggcccg ctgactcgga aacatgtcgc agcgtgtgt tctatggacg cgtgtgagtg 720
tgtaaatgtg cacgagtgtg aatgtgtatg atgtgtgtgc acgcggcatc ggctgccctt 780
ggggagagtt gactttgcag cctgggctgc gcgagaagca gactttgcag cccactccct 840
cccctggagg aaatttgaca ctagggcg gggtggggag atagccggag ctttctctct 900
cctagctggg gaaacccca gatttcattc tccaggatgc gccccccagc tttgcagcgt 960
cttggggaca actggcctgg tttggagcc ctgcttagca ggctgtggg accacataag 1020
cattcctctt tggagaagcc csgaagcgtc caggccaaag gggcggttc acggaagaaa 1080
aaccttgac gcccctgagc gcatagctt accaggctg cctaggtccc gcctttgcc 1140
cttttacggc acagttcca agccaggctc ttccaccgc cttaaagagg ctacactttc 1200
tttttttc tgtgaaaggg gctccttcag gggctatggg cgatgcagtg cgccagggtt 1260
agacttacgt gtaagggat tttaaaacc cgctcctccc acccgacccc gccacctact 1320
cgctccgccc ccgcctacag gtggagaagt caccagtggg gaggaacggc agcggaaagct 1380
tccaaggcca actcctaccc ctgaaatttct tcaggaaggg aaccttcgcc gctggggggc 1440
tctttggcct ggaatcgatg cgcccagctg cggctcgaa gccagcgcct ctggcccccgt 1500
ctggactcat ctgcaaggc tctggcctcg cccgcaccc ccaccttcg ggactgaccg 1560
aaccaagtct gagttggct ggagaggcta gactggaggc agggtggcag agttccaacg 1620
acaggctcgc agtgcgcga atggcaaagt gggccacaac cccagatcag gaccagaga 1680
aactggagtc tctctctgg cctccatct ctcctccc tggcaactac caggttgtgg 1740
ggtggaggg agagtaaaa atcaagaatt tggagaaag ctgtggggag ggcagggaaag 1800
ggatccttct ccccgaaa gcgagacca gactcccttc tttcctctag ggtccatcc 1860
cttctctcag tccgtgaaag aggccacagg cgacgcggc gagggtggca ctctttcca 1920
gttcccttgg ttggagacc cgacctctct ctcattatc ccctaggccc cccatctcct 1980
tctcccctcc ctatctggc tgaagaacgt cttaaaggaa atccggctg ctctccccca 2040
tctggaaagtg gctttccccca catcggtcg taaactgatt atgaaacata cgatgttaat 2100
tcggagctgc atttccca gttggactct cgcgcgtgg tccccggggc ctgcgggggg 2160
acccctgccc ctccctccc gcgtcctgcc cccatccctcc accccccggc ctggccaccc 2220
cgccctccttgc agccctctg gggcagcgc gtcactcg ctcctggc tcctctcgcc 2280
catggattt attctggctc cacttggc tggcccagg ttggtgagag gacggagggt 2340

ccccacagcg gttcctgag tgaattaccc aggagggact gagcacagca ccaactagag 2400
ggggccagg ggtgcggga ctcgagcgag caggaaggag gcagcgcctg gcaccaggc 2460

<210> 4
<211> 585
<212> PRT
<213> HOMO SAPIENS

<400> 4

Met Ala Arg Pro Asp Pro Ser Ala Pro Pro Ser Leu Leu Leu Leu Leu
1 5 10 15

Leu Ala Gln Leu Val Gly Arg Ala Ala Ala Ala Ser Lys Ala Pro Val
20 25 30

Cys Gln Glu Ile Thr Val Pro Met Cys Arg Gly Ile Gly Tyr Asn Leu
35 40 45

Thr His Met Pro Asn Gln Phe Asn His Asp Thr Gln Asp Glu Ala Gly
50 55 60

Leu Glu Val His Gln Phe Trp Pro Leu Val Glu Ile Gln Cys Ser Pro
65 70 75 80

Asp Leu Arg Phe Phe Leu Cys Thr Met Tyr Thr Pro Ile Cys Leu Pro
85 90 95

Asp Tyr His Lys Pro Leu Pro Pro Cys Arg Ser Val Cys Glu Arg Ala
100 105 110

Lys Ala Gly Cys Ser Pro Leu Met Arg Gln Tyr Gly Phe Ala Trp Pro
115 120 125

Glu Arg Met Ser Cys Asp Arg Leu Pro Val Leu Gly Arg Asp Ala Glu
130 135 140

Val Leu Cys Met Asp Tyr Asn Arg Ser Glu Ala Thr Thr Ala Pro Pro
145 150 155 160

Arg Pro Phe Pro Ala Lys Pro Thr Leu Pro Gly Pro Pro Gly Ala Pro
165 170 175

Ala Ser Gly Gly Glu Cys Pro Ala Gly Gly Pro Phe Val Cys Lys Cys
180 185 190

Arg Glu Pro Phe Val Pro Ile Leu Lys Glu Ser His Pro Leu Tyr Asn
195 200 205

Lys Val Arg Thr Gly Gln Val Pro Asn Cys Ala Val Pro Cys Tyr Gln
210 215 220

Pro Ser Phe Ser Ala Asp Glu Arg Thr Phe Ala Thr Phe Trp Ile Gly
225 230 235 240

Leu Trp Ser Val Leu Cys Phe Ile Ser Thr Ser Thr Thr Val Ala Thr
245 250 255

Phe Leu Ile Asp Met Asp Thr Phe Arg Tyr Pro Glu Arg Pro Ile Ile
260 265 270

Phe Leu Ser Ala Cys Tyr Leu Cys Val Ser Leu Gly Phe Leu Val Arg
275 280 285

Leu Val Val Gly His Ala Ser Val Ala Cys Ser Arg Glu His Asn His
290 295 300

Ile His Tyr Glu Thr Thr Gly Pro Ala Leu Cys Thr Ile Val Phe Leu
305 310 315 320

Leu Val Tyr Phe Phe Gly Met Ala Ser Ser Ile Trp Trp Val Ile Leu
325 330 335

Ser Leu Thr Trp Phe Leu Ala Ala Ala Met Lys Trp Gly Asn Glu Ala
340 345 350

Ile Ala Gly Tyr Gly Gln Tyr Phe His Leu Ala Ala Trp Leu Ile Pro
355 360 365

Ser Val Lys Ser Ile Thr Ala Leu Ala Leu Ser Ser Val Asp Gly Asp
370 375 380

Pro Val Ala Gly Ile Cys Tyr Val Gly Asn Gln Asn Leu Asn Ser Leu
385 390 395 400

Arg Arg Phe Val Leu Gly Pro Leu Val Leu Tyr Leu Leu Val Gly Thr
405 410 415

Leu Phe Leu Leu Ala Gly Phe Val Ser Leu Phe Arg Ile Arg Ser Val
420 425 430

Ile Lys Gln Gly Gly Thr Lys Thr Asp Lys Leu Glu Lys Leu Met Ile
435 440 445

Arg Ile Gly Ile Phe Thr Leu Leu Tyr Thr Val Pro Ala Ser Ile Val
450 455 460

Val Ala Cys Tyr Leu Tyr Glu Gln His Tyr Arg Glu Ser Trp Glu Ala
465 470 475 480

Ala Leu Thr Cys Ala Cys Pro Gly His Asp Thr Gly Gln Pro Arg Ala
485 490 495

Lys Pro Glu Tyr Trp Val Leu Met Leu Lys Tyr Phe Met Cys Leu Val
500 505 510

Val Gly Ile Thr Ser Gly Val Trp Ile Trp Ser Gly Lys Thr Val Glu
515 520 525

Ser Trp Arg Arg Phe Thr Ser Arg Cys Cys Cys Arg Pro Arg Arg Gly
530 535 540

His Lys Ser Gly Gly Ala Met Ala Ala Gly Asp Tyr Pro Glu Ala Ser
545 550 555 560

Ala Ala Leu Thr Gly Arg Thr Gly Pro Pro Gly Pro Ala Ala Thr Tyr
565 570 575

His Lys Gln Val Ser Leu Ser His Val
580 585

<210> 5

<211> 2334

<212> DNA

<213> HOMO SAPIENS

<400> 5

acccaggggac ggaggaccca ggctggcttg gggactgtct gctcttctcg gcgggagccg 60

tggagagtcc tttccctgga atccgagccc taaccgtctc tccccagccc tatccggcga 120

ggagcggagc gctgccagcg gaggcagcgc cttcccgaag cagtttatct ttggacggtt 180

ttctttaaag gaaaaacgaa ccaacaggtt gccagccccg gcccacaca cgagacgccc 240

gagggagaag ccccgccccg gattcctctg cctgtgtgcg tccctcgccg gctgctggag 300

gcgagggggag ggagggggcg atggctcggc ctgaccatc cgcgccccc tcgctgtgc 360

tgctgctcct ggcgcagctg gtggccccc cggcccccgc gtccaaggcc ccggtgtgcc 420

aggaaatcac ggtgccatg tgccgcggca tcggctacaa cctgacgcac atgcccacc	480
agttcaacca cgacacgcag gacgaggcgg gcctggaggt gcaccagttc tggccgctgg	540
tggagatcca atgctcgccg gacctgcgtc tcttcctatg cactatgtac acgcccata	600
gtctgcccga ctaccacaag ccgctgccgc cctgccgtc ggtgtgcgag cgcgccaagg	660
ccggctgctc gccgctgatg cgccagtacg gcttcgcctg gccccagcgc atgagctgcg	720
accgcctccc ggtgctggc cgcgacgcgg aggtcctctg catggattac aaccgcagcg	780
aggccaccac ggccgcggcc aggcctttcc cagccaagcc cacccttcca ggcccgccag	840
gggcgcggc ctcggggggc gaatgcggcc ctggggggcc gttcgtgtgc aagtgtcg	900
agcccttcgt gcccattctg aaggagtcac acccgctcta caacaaggtg cggacggcc	960
aggtgcccaa ctgcgcggta ccctgctacc agccgtcctt cagtgccac gagcgcacgt	1020
tcgccacctt ctggataggc ctgtggtcgg tgctgtgctt catctccacg tccaccacag	1080
tggccacctt cctcatcgac atggacacgt tccgctatcc tgagcgcggcc atcatcttcc	1140
tgtcagcctg ctacctgtgc gtgtcgctgg gcttcctggc gcgtctggc gtggccatg	1200
ccagcgtggc ctgcagccgc gagcacaacc acatccacta cgagaccacg ggccctgcac	1260
tgtgcaccat cgtcttcctc ctggtctact tcttcggcat ggccagctcc atctggtgg	1320
tcatcctgtc gtcacactgg ttccctggccg ccgcgtatgaa gtggggcaac gaggccatcg	1380
cgggctacgg ccagtttc cacctggctg cgtggctcat ccccaagcgtc aagtccatca	1440
cggcactggc gctgagctcc gtggacgggg acccagtggc cggcatctgc tacgtggca	1500
accagaacct gaactcgctg cggcgcttcg tgctggccc gctggtgctc tacctgctgg	1560
tgggcacgct cttcctgctg gcgggcttcg tgctgctctt ccgcattccgc agcgtcatca	1620
agcagggcgg caccaagacg gacaagctgg agaagctcat gatccgcata ggcattttca	1680
cgctgctcta cacggcccccc gccagcattt tggtggcctg ctacctgtac gagcagca	1740
accgcgagag ctgggaggcg gcgctcaccc gcgcctgcgg gggccacgac accggccagc	1800
cgcgcccaa gcccggatc tgggtgctca tgctcaagta cttcatgtgc ctggtggtgg	1860
gcatcacgtc gggcgctgg atctggtcgg gcaagacggt ggagtcgtgg cggcgttca	1920
ccagccgctg ctgctgccgc ccgcggcgcc gccacaagag cggggccgccc atggccgcag	1980
gggactaccc cgagggcgagc gccgcgtca caggcaggac cggggccggcgg ggcccccgg	2040
ccacctacca caagcaggtg tccctgtcgc acgtgttaga ggctgccgccc gagggactcg	2100
gccggagagc tgaggggagg gggcggttt gtttggtagt tttgccaagg tcacttccgt	2160
ttaccttcat ggtgctgttg cccctccccg cggcgacttg gagagaggga agagggcg	2220

tttcgaggaa gaacctgtcc caggtcttct ccaaggggcc cagtcacgt gtattctatt 2280
ttgcgtttct tacctgcctt ctttatggga accctcttt taatttataat gtat 2334

<210> 6
<211> 570
<212> PRT
<213> RATTUS SP.

<400> 6

Met Arg Ala Arg Ser Ala Leu Pro Arg Ser Ala Leu Pro Arg Leu Leu
1 5 10 15

Leu Pro Leu Leu Leu Leu Pro Ala Ala Gly Pro Ala Gln Phe His Gly
20 25 30

Glu Lys Gly Ile Ser Ile Pro Asp His Gly Phe Cys Gln Pro Ile Ser
35 40 45

Ile Pro Leu Cys Thr Asp Ile Ala Tyr Asn Gln Thr Ile Met Pro Asn
50 55 60

Leu Leu Gly His Thr Asn Gln Glu Asp Ala Gly Leu Glu Val His Gln
65 70 75 80

Phe Tyr Pro Leu Val Lys Val Gln Cys Ser Pro Glu Leu Arg Phe Phe
85 90 95

Leu Cys Ser Met Tyr Ala Pro Val Cys Thr Val Leu Glu Gln Ala Ile
100 105 110

Pro Pro Cys Arg Ser Ile Cys Glu Arg Ala Arg Gln Gly Cys Glu Ala
115 120 125

Leu Met Asn Lys Phe Gly Phe Gln Trp Pro Glu Arg Leu Arg Cys Glu
130 135 140

His Phe Pro Arg His Gly Ala Glu Gln Ile Cys Val Gly Gln Asn His
145 150 155 160

Ser Glu Asp Gly Thr Pro Ala Leu Leu Thr Thr Ala Pro Pro Ser Gly
165 170 175

Leu Gln Pro Gly Ala Gly Gly Thr Pro Gly Gly Pro Gly Gly Gly Gly
180 185 190

Ala Pro Pro Arg Tyr Ala Thr Leu Glu His Pro Phe His Cys Pro Arg
195 200 205

Val Leu Lys Val Pro Ser Tyr Leu Ser Tyr Lys Phe Leu Gly Glu Arg
210 215 220

Asp Cys Ala Ala Pro Cys Glu Pro Ala Arg Pro Asp Gly Ser Met Phe
225 230 235 240

Phe Ser His His His Thr Arg Phe Ala Arg Leu Trp Ile Leu Thr Trp
245 250 255

Ser Val Leu Cys Cys Ala Ser Thr Phe Phe Thr Val Thr Thr Ser Leu
260 265 270

Val Ala Met Gln Arg Phe Arg Tyr Pro Glu Arg Pro Ile Ile Phe Leu
275 280 285

Ser Gly Cys Tyr Thr Met Val Ser Val Ala Tyr Ile Ala Gly Phe Val
290 295 300

Leu Gln Glu Arg Val Val Cys Asn Glu Arg Phe Ser Glu Asp Gly Tyr
305 310 315 320

Arg Thr Val Gly Gln Gly Thr Lys Lys Glu Gly Cys Thr Ile Leu Phe
325 330 335

Met Met Leu Tyr Phe Phe Ser Met Ala Ser Ser Ile Trp Trp Val Ile
340 345 350

Leu Ser Leu Thr Trp Phe Leu Ala Ala Gly Met Lys Trp Gly His Ala
355 360 365

Ala Ile Glu Ala Asn Ser Gln Tyr Phe His Leu Ala Ala Trp Ala Val
370 375 380

Pro Ala Val Lys Thr Ile Thr Ile Leu Ala Met Gly Gln Ile Asp Gly
385 390 395 400

Asp Leu Leu Ser Gly Val Cys Phe Val Gly Leu Asn Arg Leu Asp Pro
405 410 415

Leu Arg Gly Phe Val Leu Ala Pro Leu Phe Val Tyr Leu Phe Ile Gly
420 425 430

Thr Ser Phe Leu Leu Ala Gly Phe Val Ser Leu Phe Arg Ile Arg Thr
435 440 445

Ile Met Lys His Asp Gly Thr Lys Thr Glu Pro Leu Glu Arg Leu Met
450 455 460

Val Arg Ile Gly Val Phe Ser Val Leu Tyr Thr Val Pro Ala Thr Ile
465 470 475 480

Val Ile Ala Cys Tyr Phe Tyr Glu Gln Ala Phe Arg Glu His Trp Glu
485 490 495

Arg Ser Trp Val Ser Gln His Cys Lys Ser Leu Ala Ile Pro Cys Pro
500 505 510

Ala His Tyr Thr Pro Arg Thr Ser Pro Asp Phe Thr Val Tyr Met Ile
515 520 525

Lys Tyr Leu Met Thr Leu Ile Val Gly Ile Thr Ser Gly Phe Trp Ile
530 535 540

Trp Ser Gly Lys Thr Leu His Ser Trp Arg Lys Phe Tyr Thr Arg Leu
545 550 555 560

Thr Asn Ser Arg His Gly Glu Thr Thr Val
565 570

<210> 7
<211> 1912
<212> DNA
<213> RATTUS SP.

<400> 7
agggaaaggc gcgcggctc tgggttgggg gcggggctg gggggcgccc aggagccgag 60
tggggggcgg cggccagcat gcggggccgc agcgcctgc cccgcagcgc cctgccccgc 120
ctgctgctgc cactgctgct gctgccggct gccggccgg ctcagttcca cggggagaag 180
ggcatctcca tcccggacca cggcttctgc cagccatct ccattccgct gtgcacggac 240
atcgccctaca accagaccat catgccaaac cttcttggc acacgaacca agaggacgcg 300
ggcctggagg tgcatcaatt ctacccgctg gtgaagggtgc agtgctcgcc cgagctgcgc 360
ttcttcctgt gctccatgta cgctccggtg tgcacggtgc tggagcaggc catcccgccg 420
tgccgctcca tctgcgaacg cgcgccaa ggctgcgagg cgctcatgaa caagttcggc 480
ttccagtggc ccgagcgcct ccgctgcgag cattccgc gtcacggcgc ggagcagatc 540

tgctgggcc	agaaccactc	cgaggacgga	actcctgcgc	tactcaccac	cgcgccaccg	600
tctggctgc	agcctggcgc	tggtggcacc	ccggggcggcc	ctggcggtgg	tggcgcgccc	660
ccgcgcgtacg	ccactctgga	gcacccttc	cactgtcccc	gcgtcctcaa	ggtgcgtcc	720
tatctcagct	ataagttct	gggtgagcgc	gattgtgccg	cgcgcgtcc	gcctgcacgg	780
cccgacggct	ccatgttctt	ctcgaccac	cacactcggtt	ttgcccgtct	ctggatcctc	840
acatggtcgg	tgctgtgctg	cgcttctact	ttcttcacgg	tcaccacctc	tttagtggcc	900
atgcagcgat	tccgctaccc	agagcggccc	atcatcttcc	tgtccgggtt	ctacaccatg	960
gtgtcagtgg	cctacattgc	gggcttcgtg	ctccaggagc	gcgtgggtgtg	caacgagcgc	1020
ttctctgagg	acggttatcg	cacggtgggg	cagggcacta	agaaagaagg	ctgtactata	1080
ctcttcatga	tgctctactt	cttcagtatg	gccagctcca	tctgggtgggt	gattctgtcc	1140
ctcacctggt	tcctggcagc	cggtatgaag	tggggccacg	cggccatcga	ggccaattcg	1200
cagtacttcc	acctggccgc	ctgggcggtg	ccggccgtca	aaaccatcac	catcctggcc	1260
atggccaga	tcgacggcga	cctgctgagc	ggcgtgtgct	tcgtgggcct	caacaggctg	1320
gaccggctgc	gaggcttcgt	gctggcgccg	ctcttcgtgt	acctgttcat	cggcacatcc	1380
ttcctgctgg	cgggcttcgt	gtcaactcttc	cgcattccgca	ccatcatgaa	gcacgacggc	1440
accaagacgg	agccgctgga	gaggctcatg	gtgcgtatcg	gcgtttctc	cgtgtctac	1500
accgtaccgg	ccaccatcgt	catgcctgc	tacttctatg	agcaggcctt	ccgcgagcac	1560
tgggagcgct	cgtggtaag	ccagcactgc	aagagcctag	ccatcccctg	ccggcccac	1620
tacacgcccc	gcacgtcgcc	cgacttcaca	gtctacatga	tcaaataacct	catgacgctc	1680
atcgtggca	tcacgtcggt	ttctggatc	tggtccggca	agacgctgca	ctcggtggagg	1740
aagttctaca	cgcgtctcac	caacagccgg	catggagaga	ccaccgtgtg	aagcggtctc	1800
gctgctggc	ccccccctct	cccaggtccg	gactgcaacc	gtgcctcct	tcactcggtt	1860
gggggggtgca	ccctacggac	tcctatttttta	tttttttaaaa	taaagaacag	tg	1912

<210> 8
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 8
aatgtcttcc aagttcttcc tagtggc

27

<210> 9

<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 9
gatgtcgaa ttgatactgg ca 22

<210> 10
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 10
accacagtcc atgccatcac 20

<210> 11
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 11
tccaccaccc tggcgtgtta 20

<210> 12
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> probe

<400> 12
gtcctggag cggggctttt ttctcttgaa aagaaagt 38

<210> 13
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> probe

<400> 13
agagttctta gatggtaaca ggaaattttt ctcttgaaa gaaagt 46

<210> 14

```

<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> probe

<400> 14
tatccccc ttcattctat actatcttt tctcttgaa agaaaagt 47

<210> 15
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> probe

<400> 15
catagaagct gaattgtgaa tagattttt ttctcttgaa aagaaaagt 48

<210> 16
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> probe

<400> 16
gccctgctgg ggaagggttt ttctcttgaa aagaaaagt 38

<210> 17
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> probe

<400> 17
cctccctgct gcccaaattt tttctcttgaa gaaagaaaagt 40

<210> 18
<211> 44
<212> DNA
<213> Artificial Sequence

<220>
<223> probe

<400> 18
atcccaattc ttataacagc ttcttttct cttggaaaga aagt 44

<210> 19

```

```

<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> probe

<400> 19
cttggcgtt gggctgagaa actttttctc ttggaaagaa agt 43

<210> 20
<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> probe

<400> 20
ggctcagtgt gaagaggaag gttttttctc ttggaaagaa agt 43

<210> 21
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> probe

<400> 21
ccagtggagc tgccgttgtt ttttctcttg gaaagaaaagt 40

<210> 22
<211> 49
<212> DNA
<213> Artificial Sequence

<220>
<223> probe

<400> 22
cactgtactt tctataaata agcggtttt aggcatagga cccgtgtct 49

<210> 23
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> probe

<400> 23
tttctaaaaaa ccaaaaacca gaattttta ggcataggac ccgtgtct 48

<210> 24

```

<211> 43	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> probe	
<400> 24	
aaaaatggtt ccggttgcat ttttaggcat aggaccgcgtg tct	43
<210> 25	
<211> 57	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> probe	
<400> 25	
caaataataa ttataatatt aataataaac cacttttag gcataggacc cggtgtct	57
<210> 26	
<211> 51	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> probe	
<400> 26	
agatccacaa aataaatatt ttgcgtgtt ttaggcatacg gaccgcgtgc t	51
<210> 27	
<211> 50	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> probe	
<400> 27	
ccacacagct aagtttaggt atgtttttt taggcatacg acccgtgtct	50
<210> 28	
<211> 49	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> probe	
<400> 28	
ttacacctctg gatgtgtacc atgtttttt aggcatacg acccgtgtct	49
<210> 29	

<211> 47	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> probe	
<400> 29	
aacctaccca tcccatatga tggtttttag gcataaggacc cgtgtct	47
<210> 30	
<211> 45	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> probe	
<400> 30	
ctaccaccct ctttcaactg gtttttaggc ataggacccg tgtct	45
<210> 31	
<211> 50	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> probe	
<400> 31	
ccagagaatt tacaactcat ttgggtttt taggcatagg acccgtgtct	50
<210> 32	
<211> 46	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> probe	
<400> 32	
tcccaagacc ttatcttg catttttagg cataggaccc gtgtct	46
<210> 33	
<211> 49	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> probe	
<400> 33	
aggtttgttt tgttttgttt tgttttttt agccatagga cccgtgtct	49
<210> 34	

```

<211> 51
<212> DNA
<213> Artificial Sequence

<220>
<223> probe

<400> 34
gtccttccat tgtaaattat cattttgttt ttaggcata gacccgtgtc t      51

<210> 35
<211> 49
<212> DNA
<213> Artificial Sequence

<220>
<223> probe

<400> 35
tttccttga gaatatgaca ttctttttt aggcatagga cccgtgtct      49

<210> 36
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> probe

<400> 36
ggagaatgag acatgtgata taccttttt taggcataagg acccgtgtct      50

<210> 37
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> probe

<400> 37
tctgtctgca aatggaatat ttgattttt ggcataaggac ccgtgtct      48

<210> 38
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> probe

<400> 38
tcatgagcta ttagaatatg acggttttt ggcataaggac ccgtgtct      48

<210> 39

```

<211> 48		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> probe		
<400> 39		
aatttttaa tttctgggga cttttttta ggcataggac ccgtgtct		48
<210> 40		
<211> 52		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> probe		
<400> 40		
aaatcaacat cttgacataa gagtttatt ttaggcata ggaccggcgt ct		52
<210> 41		
<211> 46		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> probe		
<400> 41		
ggggctttt tacaaatctg gatTTTtagg cataggaccc gtgtct		46
<210> 42		
<211> 51		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> probe		
<400> 42		
agaaaataca ggatattca ttatgttt ttaggcata gaccgggttc t		51
<210> 43		
<211> 56		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> probe		
<400> 43		
tactattata atttactaac caagtatccc tatTTTtagg cataggaccc gtgtct		56
<210> 44		

<211> 51
<212> DNA
<213> Artificial Sequence

<220>
<223> probe

<400> 44
ctgtgaatgg gattcatgta ttatttcttt ttaggcata gaccgcgtgtc t 51

<210> 45
<211> 44
<212> DNA
<213> Artificial Sequence

<220>
<223> probe

<400> 45
gctgaatggc acgcaattac ttttaggca taggaccgt gtct 44

<210> 46
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> probe

<400> 46
aggtgtctg ctctggtgca gtttttagg cataggacc cgtgtct 46

<210> 47
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> probe

<400> 47
cacaacacgg aggaatcaga gagtttttag gcataaggacc cgtgtct 47

<210> 48
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> probe

<400> 48
gaaacgtggc cagcatcaca ttttttaggc ataggaccgt tgtct 45

<210> 49

```

<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> probe

<400> 49
tgtcctacaa ccaaagggga cttttaggc ataggacccg tgtct 45

<210> 50
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> probe

<400> 50
gagctcctaa tgtttcattt ctttttagg cataggaccc gtgtct 46

<210> 51
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> probe

<400> 51
agttttagga aacaaaaatc ctttttagg cataggaccc gtgtct 46

<210> 52
<211> 49
<212> DNA
<213> Artificial Sequence

<220>
<223> probe

<400> 52
gaaaactact gtcctcaaa ataaattttt aggcatagga cccgtgtct 49

<210> 53
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> probe

<400> 53
attcttgggg aaaaataaaa aata 24

<210> 54

```

```

<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> probe

<400> 54
gttcccaccc ccattattgc                                20

<210> 55
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> probe

<400> 55
caaaaagaat cttgtattac cttttcaa                                28

<210> 56
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> probe

<400> 56
catatttgag aaaaagaaaaa tgtatttct                                29

<210> 57
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> probe

<400> 57
aaaatgcaga aagcaagcta gca                                23

<210> 58
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> probe

<400> 58
caaaaaaatct agtgtccaga atcattg                                27

<210> 59

```

<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> probe

<400> 59
tcaagccaac ctccccaaa 19

<210> 60
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> probe

<400> 60
ggatttcact gttttcctc aaat 24

<210> 61
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> probe

<400> 61
taagtagtga actgtttcc aagca 25