Teoría de Lenguajes Segunda parte

Teórica 6: Parsing de Cocke Younger Kasami

Verónica Becher

Segundo cuatrimestre 2020

Bibliografía para esta clase

A. V. Aho, J. D. Ullman, The Theory of Parsing, Translation, and Compiling, Vol. 1 , Parsing. Prentice Hall, 1972.

Algoritmo Cocke Younger-Kasami

Veremos ahora un algoritmo que requiere tiempo en el orden de n^3 para una entrada de longitud n. Esencialmente es un algoritmo de programación dinámica. Este algoritmo tiene interés teórico pero no tiene interés práctico porque

- Tiempo n^3
- Usa espacio n^2

y hay algoritmos más eficientes.

Forma normal de Chomsky

Definición. Una gramática libre de contexto G=(N,T,P,S) está en forma normal de Chomsky si todas sus produccionesson de la forma $A\to BC$ y $A\to a$, para $A,B,C\in N$, $a\in T$, y si $\lambda\in L(G)$ entonces $S\to\lambda$ está en P y S no aparece en la parte deracha de ninguna producción.

Algoritmo para pasar a forma Normal de Chomsky (Aho Ullman vol 1, p.151)

Input GLC G = (N, T, P, S)

Output GLC G' = (N', T, P', S') forma normal Chomsky, L(G) = L(G').

Método Poner en P'

- si $\lambda \in L(G)$ poner $S' \to \lambda$ y $S' \to S$
- todas las producciones $A \rightarrow a$ y $A \rightarrow BC$
- para cada producción $A \to X_1 X_2$ con X_1 o X_2 o ambos en T poner

$$A \rightarrow X_1' X_2'$$

para cada producción $A \to X_1 \dots X_k$ con $k > 2, X \in (N \cup T)$ poner

$$A \to X'_1 \langle X_2 \dots X_k \rangle$$
$$\langle X_2 \dots X_k \rangle \to X'_2 \langle X_3 \dots X_k \rangle$$
$$\dots$$
$$\langle X_{k-1} \dots X_k \rangle \to X'_{k-1} X_k$$

Si $X_i \in T$, X_i' es nuevo, agregar

$$X_i' \to X_i$$

Si $X_i \in N$ entonces X'_i es igual a X_i .

Para $j = 1, 2, ..., k - 1, \langle X_j ... X_k \rangle$ es nuevo no-terminal.

Observar que $|N'| \le |N| + |T| + \ell \times |P|$ donde ℓ es el máximo número de símbolos del lado derecho de las producciones de P.

El algoritmo realiza una cantidad de operaciones lineal en |P|.

Algoritmo Cocke Younger-Kasami (CYK)

Sea G=(N,T,P,S) libre de contexto en forma normal de Chomsky sin λ -producciones y $w=a_1a_2\ldots a_n$ la cadena de entrada.

El algoritmo construye una tabla triangular para \boldsymbol{w}

$$\mathcal{T} = (t_{i,j})_{1 \le i \le n, 1 \le j \le n-i+1}$$

Cada $t_{i,j}$ es un subconjunto de N.

$$A \in t_{i,j}$$
 si y solo si $A \stackrel{+}{\Rightarrow} a_i a_{i+1} \dots a_{i+j-1}$

Por lo tanto, $w \in L(G)$ si y solo si $S \in t_{1,n}$.

Si queremos una (o todas) las derivaciones de w podemos usar la tabla \mathcal{T} para construirlas.

Tabla Cocke-Younger-Kasami (CYK)

Algoritmo 1 (Table Cocke-Younger-Kasami, Algorithm 4.3 Aho Ullman vol 1)Input. $G = (N, \Sigma, P, S)$ libre de contexto en forma normal de Chomsky sin λ -producciones y una cadena de input $w = a_1 a_2 \dots a_n$ en T^+ .

Output. \mathcal{T} para w tal que $t_{i,j}$ contiene A si y solo si $A \stackrel{+}{\Rightarrow} a_i a_{i+1} \dots a_{i+j-1}$.

Método. Definir $t_{i,1} = \{A : A \to a_i \in P\}$ para i = 1, ..., n.

Si ya computamos $t_{i,j'}$, para $i = 1, \ldots, n \ y \ j' = 1, \ldots, j-1$.

Definir

$$t_{i,j} = \{A: A \rightarrow BC \in P, \text{ para alg\'un } k, 1 \leq k < j, B \in t_{i,k} \text{ } y\text{ } C \in t_{i+k,j-k}\}$$

Notar que $t_{i,k}$ y $t_{i+k,j-k}$ se computan antes que $t_{i,j}$, ya que $i \le k < j$, por lo tanto, k < j y j - k < j.

Notar que si $A \in t_{i,j}$ entonces

$$A \Rightarrow BC \stackrel{+}{\Rightarrow} a_i \dots a_{i+k-1}C \stackrel{+}{\Rightarrow} a_i \dots a_{i+k-1}a_{i+k} \dots a_{i+j-1}$$

Repetir hasta completar j = n - i + 1.

Luego hay que dar una derivación de $a_1, \ldots a_n$.

Correctitud tabla \mathcal{T} CYK

Teorema 2 (Theorem 4.6 Aho Ullman vol 1). Sea G = (N, T, P, S) GLC en forma normal Chomsky y sea tabla \mathcal{T} para cadena $a_1, \ldots a_n$. Entonces

$$A \in t_{i,j} \text{ si y solo si } A \stackrel{+}{\Rightarrow} a_i \dots a_{i+j-1}$$

Demostración. Por inducción en j.

Caso base, j=1. Por definición de $A \in t_{i,1}$ si y solo si $A \to a_i$

Caso inductivo, $j \geq 2$. Supongamos que vale para j-1. Por definción

$$t_{i,j} = \{A: A \rightarrow BC \in P, \text{ para algún } k, 1 \leq k < j, B \in t_{i,k} \text{ y } C \in t_{i+k,j-k}\}$$

Luego,

$$A \Rightarrow BC$$
 y, por HI, $B \stackrel{+}{\Rightarrow} a_i \dots a_{i+k-1}$ y $C \stackrel{+}{\Rightarrow} a_{i+k} \dots a_{i+k+j-k-1}$.

Por lo tanto, $A \in t_{i,j}$ si y solo si $A \stackrel{+}{\Rightarrow} a_i \dots a_i \dots a_{i+j-1}$

Complejidad tabla \mathcal{T}

Teorema 3 (Theorem 4.7 Aho Ullman vol 1). La construcción de la tabla \mathcal{T} para una cadena de largo n es del orden de n^3 operaciones.

Demostración. Debemos definir $\mathcal{T} = (t_{i,j})_{1 \leq i \leq n, 1 \leq j \leq n-i+1}$ Para fijar $t_{1,1}, t_{2,1}, \ldots, t_{n,1}$ hacen falta n inspecciones en P.

Fijemos j. En el paso j debemos determinar $t_{i,j}$ para $i=1,\ldots n-j+1$. Son en total n-j+1 conjntos.

Fijemos i. Para determinar $t_{i,j}$ debemos examinar $t_{i,k}$ y $t_{i+k,j-k}$ para $k=1,\ldots,j-1$ que ya fueron computados antes. Son 2(j-1) conjuntos.

fueron computados antes. Son 2(j-1) conjuntos. Usando $\sum_{j=1}^n j = n(n+1)/2$ y $\sum_{j=1}^n j^2 = n(n+1)(2n+1)/6$, tenemos

$$\sum_{j=1}^{n} (n-j+1)2(j-1) = 2\sum_{j=1}^{n} (n+2)j - n - j^{2} - 1 = n(n^{2} - 1)/3$$

Derivción a izquierda CYK

Parse a izquierda Cocke-Younger-Kasami, Algorithm 4.4, Aho Ullman vol 1

Input. Gramática GLC en forma normal de Chomsky G=(N,T,P,S) donde las producciones están numeradas $1,\ldots,p$, cadena de entrada $w=a_1\ldots a_n$, y la tabla $\mathcal T$ para w

Output. Derivación a izquierda para w, o "error".

Método. Asumiendo que $S \in t_{1,n}$, el algoritmo debe ejecuta gen(1, n, S).

Damos un procedimiento recursivo gen(i, j, A) para generar una derivación corresponte a $A \stackrel{*}{\Rightarrow} a_i \dots a_{i+j-i}$,

Paso 1. Si j=1 y la m-ésima producción en P es $A\longrightarrow a_i$ emitir el número de producción m.

Paso 2. Si j>1 y k es el mínimo tal que $1\leq k< j$ tal que para algún $B\in t_{i,k}$ y $C\in t_{i+k,j-k}$, $A\to BC\in P$, digamoses la m-ésima (podría haber varias, y elegimos solo una). Emitir el número de producción m y ejecutar gen(i,k,B) seguido de gen(i+k,j-k,C).

Ejemplo completo CYK, (Aho Ullman vol 1, p.315)

	, (/ =	,
Consideremos GLC G			La ta	bla $\mathcal T$	para a	baab
$1.S \longrightarrow AA$	5	A,S				
$2.S \longrightarrow AS$	4	A,S	A,S			
$3.S \longrightarrow b$	3	A,S	S	A,S		
$4.A \longrightarrow SA$	2	A,S	A	S	A,S	
$5.A \longrightarrow AS$	1	A	S	A	A	S
$6.A \longrightarrow a$		1	2	3	4	5

Como S está en $t_{1,5}$, abaab está en L(G). Derivación a izquierda para abaab: gen(1,5,S): para k=1 da $1.S\to AA$ porque $A\in t_{1,1}$ $A\in t_{2,4}$. Evaluar

$$qen(1,1,A)$$
: da $6.A \rightarrow a$

gen(2,4,A): da para $k=1,\,4.A\Rightarrow SA,$ ya que $S\in t_{2,1}$ y $A\in t_{3,3}$. Evaluar

- gen(2,1,S): da $3.S \rightarrow b$
- gen(3,3,A): para k=1 da $5.A \rightarrow AS$ ya que $A \in t_{3,1}$ y $S \in t_{4,2}$ Evaluar
 - o gen(3,1,A) da $6.A \rightarrow a$
 - $\circ gen(4,2,S)$ para k=1 da $2.S \to AS$ ya que $A \in t_{4,1}$ y $S \in t_{5,1}$. Evaluar
 - ightharpoonup gen(4,1,A): da $6.A \rightarrow a$
 - ightharpoonup gen(5,1,S): da $3.S \rightarrow b$

$$S \underset{L}{\Rightarrow} AA \underset{L}{\Rightarrow} aSA \underset{L}{\Rightarrow} abAS \underset{L}{\Rightarrow} abaAS \underset{L}{\Rightarrow} abaab$$

G es ambigua y abaab tiene más deuna derivación a izquierda.

Complejidad de CYK

Teorema 4 ((Teorema 4.8 Aho Ullman vol 1)). El Algoritmo CYK con input de longitud n requiere en el orden de n^2 operaciones elementales.

Demostración. Asuminos G=(N,T,P,S) en forma normal Chomsky y tabla \mathcal{T} para entrada w de longitud n. Por inducción en j, demostramos que gen(i,j,A) requiere a lo sumo c_1j^2 operaciones. Determnaremos la constante c_1 en la demostración.

Para j = 1 es trivial.

Para j=2, para $k=1,2,\ldots j-1$, revisar $t_{i,k}$ y $t_{i+k,j-k}$. Esto lleva c_2j operaciones, para una constante c_2 . Por HI

gen(i, k, B) requiere c_1k^2 y gen(i + k, j - k, B) requiere $c_1(j - k)^2$

$$c_1k^2 + c_1(j-k)^2 + c_2j = c_1(j^2 + 2k^2 - 2jk) + c_2j$$

Como $1 \le k < j$, y $j \ge 2$ tenemos $2k^2 - 2kj \le 2 - 2j \le -j$. Entonces, si tomamos c_1 igual a c_2 en HI, obtenemos que la cantidad total de operaciones en el paso j es

$$c_1(j^2 + 2k^2 - 2jk) + c_2j \le c_1j^2$$
.