Lista de exercícios EST 106 (P3)

- 1- Seja X uma variável aleatória com distribuição N(5;0,25). Determine as seguintes probabilidades:
- a) P[5 < X < 5,7]
- b) P[4,8 < X < 5,1]
- c) P[X > 5,3]
- d) P[X < 4,55]
- e) P[5,75 < X < 6,67]
- 2- O peso médio de 500 estudantes é igual a 51,7kg e desvio-padrão 5,7kg. Supondo que os pesos se distribuam normalmente, determine quantos estudantes pesam:
- a) Entre 53 e 58 kg
- b) Mais do que 50 kg
- c) Menos do que 49 kg
- 3- Walter participa de um movimento de preservação da natureza e deseja saber quanto tempo certo tipo de peixe sobrevive em uma dada condição de toxicidade da água. Após uma série de experiências, Walter afirma que a vida média desse tipo de peixe é de 80 dias após ter sido colocado nessa qualidade de água, com desvio padrão de 10 dias. A distribuição do número de dias de sobrevivência é normal.
- a) Determine a probabilidade de um peixe sobreviver pelo menos 100 dias após ter sido colocado nesse ambiente;
- b) Dentre 20000 peixes, quantos Walter espera que sobreviva pelo menos 90 dias após ter sido colocado nesse tipo de água tóxica;
- 4- Seja uma variável aleatória contínua X = carga de ruptura de um tecido de algodão, em libras. Uma amostra desse tecido é considerada sem defeitos se X > 162 libras. Supõe-se que X tenha distribuição N(167; 9). Considere ainda a variável aleatória L = lucro esperada por amostra, definida como:
 - R\$123,00, se a amostra é sem defeito;
 - Menos R\$187,00, se $160 \le X \le 162$;
 - Menos R\$500,00, se X < 160;

Qual é o lucro esperado por amostra?

- 5- A probabilidade de um garoto qualquer que joga futebol se tornar um atleta profissional é 0,001. Determine a probabilidade de que, dentre 20000 garotos que jogam futebol:
- a) Pelo menos 30 se tornem profissionais;
- b) Exatamente 0,1% dos garotos que jogam futebol se tornem profissionais;
- 6- Em um trecho de uma rodovia, o radar registra em média 7 infrações diárias por excesso de velocidade. O chefe de polícia acredita que este número pode ter aumentado. Como teste, o radar foi mantido por 10 dias consecutivos, e em média obteve-se 8 infrações diárias com desvio- padrão de 2,11. Verifique, utilizando α = 5%, se houve aumento no número de infrações.
- 7- O INMETRO está investigando se a quantidade de *Paracetamol* num rótulo do medicamento (750mg). Numa amostra de 20 comprimidos, a média encontrada foi de 738mg com um desvio-

padrão de 11,85mg. Teste a hipótese de que a quantidade média de *Paracetamol* é igual ao valor nominal informado pelo fabricante. Use α = 5%.

- 8- Sabe-se que o consumo mensal per capita de um determinado produto tem distribuição normal, com desvio-padrão 2 kg. A diretoria de uma firma que fabrica esse produto resolveu que tiraria o produto da linha de produção se a média de consumo fosse menor que 8 kg. Caso contrário, continuaria a fabricá-lo. Foi realizada uma pesquisa de mercado, tomando-se uma amostra de 25 indivíduos, e verificou-se que a soma dos valores coletados foi de 180kg.
- a) Utilizando um nível de significância de 5%, e com base na amostra colhida, determine a decisão a ser tomada pela diretoria.
- b) Utilizando um nível de 1%, a decisão seria a mesma?
- 9- Em um estudo comparativo do tempo médio de adaptação, uma amostra aleatória de 28 homens e 34 mulheres de um complexo industrial, obteve os seguintes resultados:

	Mulheres	Homens		
Média	3,7 anos	3,2 anos		
Desvio-padrão	0,9 anos	0,8 anos		

Determinar se há diferença entre o tempo de adaptação entre homens e mulheres ($\alpha = 5\%$).

- 10- A tensão de ruptura dos cabos produzidos por um fabricante apresenta a média de 1800 kg e desvio-padrão de 100 kg. Mediante nova técnica no processo de fabricação, proclamou-se que essa tensão pode ter aumentado. Para testar essa declaração, ensaiou-se uma amostra de 50 cabos, tendo-se determinado a tensão média de ruptura de 1850 kg. Pode-se confirmar que a declaração ao nível de significância de 0,05.
- 11- Uma pesquisa feita junto a 320 famílias de 5 filhos cada revelou a distribuição apresentada abaixo. Tais resultados são consistentes com a hipótese de igual probabilidade de nascimento para ambos os sexos? Usar α = 5%.

Nº de meninos	Nº de meninas	Nº de famílias			
5	0	18			
4	1	56			
3	2	110			
2	3	88			
1	4	40			
0	5	8			
		TOTAL: 320			

12- A mesa telefônica do *Brascanal* de televisão recebe lances para lotes em leilão. Edu, o promotor do evento, deseja verificar se as informações são uniformemente distribuídas entre as garotas da mesa. O produtor do programa escolheu aleatoriamente um determinado programa e observou o número de chamadas que cada garota da mesa recebeu. Você diria que Edu tem razão, e as chamadas são uniformemente distribuídas, ao nível de *α* = 10%?

Recepcionista	1	2	3	4	5	6	7	8	9	10
Nº de chamadas	6	9	8	6	7	7	6	5	8	8

13- Uma pesquisa foi desenvolvida com o intuito de avaliar a opinião sobre a qualidade do atendimento médico em clínicas especializadas e não especializadas. Um total de 350 pessoas foi entrevistado quanto à opinião do atendimento (bom, regular e ruim) nos dois tipos de clínica, e os resultados se encontram na tabela de frequência abaixo. Você diria que a opinião depende do tipo de clínica na qual o paciente foi atendido? Use $\alpha=0.025$.

	Opin	iião			
Clínica	Bom	Regular	Ruim	Total	
Espec.	73	37	40	150	
Não espec.	94	61	45	200	
Total	167	98	85	350	

- 14- Em uma fábrica, colhida uma amostra de 30 peças para avaliação, obtiveram-se as seguintes informações sobre o diâmetro das peças: \overline{X} =13,13 e s²=2,05. Construir um intervalo de confiança para a média sendo α = 5%.
- 15- Os dados a seguir correspondem ao diâmetro, em mm, de 30 esferas de rolamento produzidas por uma máquina.

Construa um intervalo de confiança, a 95%, para a média da população de todas as possíveis esferas produzidas pela máquina.

- 16- Sendo X uma população tal que $X \sim N(\mu, \sigma^2)$ em que μ e σ^2 são desconhecidos. Uma amostra de tamanho 15 forneceu os valores $\sum x_i = 8,7$ e $\sum x_i^2 = 27,3$. Determinar o intervalo de confiança de 95% para σ^2 .
- 17- A assistente social Nádia deseja predizer o peso de crianças, de 10 a 12 anos, em função da idade. Toma uma amostra de 8 crianças dentro dessa faixa etária e obtém

os resultados na tabela abaixo. Nádia supõe que as variáveis X e Y estão relacionadas de acordo com o modelo $Y_i = \alpha + \beta X_i + e_i$ e que são válidas as pressuposições usuais sobre o erro e_i . Determine:

Idade	10	10	11	11	11	12	12	12
Peso	29	30	31	32	32	33	33	34

- a) A equação de regressão linear simples de Y em X;
- b) A estimativa do peso de uma criança de 11 anos de idade;
- c) O coeficiente de determinação da regressão. Interprete o resultado.
- 18- Dez estudantes foram submetidos ao teste A e após 4 meses, ao teste B. Obtiveram-se os seguintes resultados:

 \bar{x} = 72,9; \bar{y} = 71,2; s_x = 15,4593; s_y = 15, 936 e r = 0,70. Admitindo-se que as variáveis X= nota do teste A e Y= nota do teste B estão relacionadas de acordo com o modelo Y_i = α + βX_i + e_i , determine:

- a) A equação de regressão linear simples de Y em X;
- b) O coeficiente de determinação da regressão. Interprete o resultado.
- 19- Na tabela abaixo são representados os dados correspondentes ao número X de meses de serviço como vendedor, e o número Y de clientes que adquirem o produto da indústria *Eu sou a tal*. Supõe-se que as variáveis X e Y estão relacionadas de acordo com o modelo Y_i= α + βX_i + e_i. Determine:
 - a) A equação de regressão linear para Y;
 - b) O coeficiente de determinação da regressão. Interprete;
 - c) Interprete as estimativas de β_0 e de β_1 .