Übungen zur Algebraischen Zahlentheorie I

Wintersemester 2021/22

Universität Heidelberg Mathematisches Institut Prof. A. Schmidt Dr. K. Hübner

Blatt 13

Abgabetermin: Freitag, 11.2.2022, 09:30 Uhr

Aufgabe 1 (6 Punkte). Für $\alpha \in \mathbb{C}$ betrachten wir die Exponentialbewertung v_{α} auf $\mathbb{C}(T)$, die folgendermaßen definiert ist: Jedes Element $f \in \mathbb{C}(T) \setminus \{0\}$ hat die Form $f = (X - \alpha)^n g(X)/h(X)$ mit $g, h \in \mathbb{C}[T]$, so dass $g(\alpha)$ und $h(\alpha)$ nicht Null sind. Dann ist $v_{\alpha}(f) = n$. Bestimmen Sie die Vervollständigung von $\mathbb{C}(X)$ bezüglich v_{α} .

Aufgabe 2 (6 Punkte). Es sei L|K eine endliche Galoiserweiterung und v eine Bewertung auf L. Die Zerlegungsgruppe von v ist durch $Z_v(L|K) = \{\sigma \in \operatorname{Gal}(L|K) \mid v \circ \sigma = v\}$ definiert. Zeigen Sie: ist L|K eine endliche Erweiterung von Zahlkörpern und $v = v_{\mathfrak{P}}$ für ein Primideal \mathfrak{P} in \mathcal{O}_L , so gilt $Z_v(L|K) = Z_{\mathfrak{P}}(L|K)$.

Aufgabe 3 (6 Punkte). (Krasners Lemma). Es sei (K, v) ein vollständig bewerteter Körper, L|K eine endliche Galoiserweiterung und w die eindeutige Fortsetzung von v auf L. Für $x \in L$ seien $x = x_1, x_2, \ldots, x_n$ die Galoiskonjugierten über K.

Zeigen Sie: gilt für ein $y \in L$, dass $|y - x|_w < |y - x_i|_w$, i = 2, ..., n, so gilt $x \in K(y)$. Hinweis. Nutzen Sie Korollar 8.68 der Vorlesung.

Aufgabe 4 (6 Punkte). (Stetigkeit der Wurzeln). Es sei (K, v) ein vollständig bewerteter Körper, $\overline{K}|K$ ein algebraischer Abschluss und \overline{v} die eindeutige Fortsetzung von v auf \overline{K} . Für normierte Polynome $f, g \in K[X]$ gleichen Grades, $f = X^n + a_{n-1}X^{n-1} + \cdots + a_0$, $g = X^n + b_{n-1}X^{n-1} + \cdots + b_0$ setzen wir $|f - g|_v := \max_i (|a_i - b_i|_v)$.

Es sei f separabel mit Nullstellen $\alpha_1, \ldots, \alpha_n \in K$. Zeigen Sie: Zu $\varepsilon > 0$ existiert $\delta > 0$, so dass jedes g mit $|f - g|_v < \delta$ Nullstellen $\beta_1, \ldots, \beta_n \in \overline{K}$ hat, für die nach Umnummerierung gilt: $|\alpha_i - \beta_i|_w < \varepsilon$.

Zusatzaufgabe 5 (6 Punkte). Es sei (K, v) ein vollständig bewerteter Körper und $f \in K[X]$ ein normiertes separables und irreduzibles Polynom. Zeigen Sie für jedes normierte Polynom $g \in K[X]$, deg $g = \deg f$, das (im Sinne von Aufgabe 4) hinreichend nahe an f liegt:

- (a) g ist separabel.
- (b) q ist irreduzibel.

Hinweis. Nutzen Sie die Ergebnisse der Aufgaben 3 und 4.