Database Systems: Design, Implementation, and Management

Tenth Edition

Chapter 6
Normalization of Database Tables

Objectives

- In this chapter, students will learn:
 - What normalization is and what role it plays in the database design process
 - About the normal forms 1NF, 2NF, 3NF, BCNF, and 4NF
 - How normal forms can be transformed from lower normal forms to higher normal forms
 - That normalization and ER modeling are used concurrently to produce a good database design
 - That some situations require denormalization to generate information efficiently

Database Systems, 10th Edition

Database Tables and Normalization

- Normalization
 - Process for evaluating and correcting table structures to minimize data redundancies
 - Reduces data anomalies
 - Series of stages called normal forms:
 - First normal form (1NF)
 - · Second normal form (2NF)
 - Third normal form (3NF)

Database Systems, 10th Edition

-			

Database Tables and Normalization (cont'd.)

- · Normalization (continued)
 - 2NF is better than 1NF; 3NF is better than 2NF
 - For most business database design purposes,
 3NF is as high as needed in normalization
 - Highest level of normalization is not always most desirable
- · Denormalization produces a lower normal form
 - Increased performance but greater data redundancy

Database Systems, 10th Edition

4

The Need for Normalization

- Example: company that manages building projects
 - Charges its clients by billing hours spent on each contract
 - Hourly billing rate is dependent on employee's position
 - Periodically, report is generated that contains information such as displayed in Table 6.1

Database Systems, 10th Edition

5

The same of							
	SAME		PARTITED NAME		CHARGO:	HOUSE	TOTAL
15 Esergren	103 101 105 106 102	June E. Arbeugh John G. Nesss Alice K. Johnson * William Smithfield David H. Serior	Elec, Engineer Database Designer Database Designer Programmer Systems Analyst	\$ 84.30 \$105.00 \$105.00 \$ 35.75 \$ 96.75	23.8 19.4 33.7 12.6 23.8	\$ 2,011.10 \$ 2,037.00 \$ 3,748.50 \$ 450.45 \$ 2,302.65	
				Subtotal			510,549.70
18 Amber Wave	114 118 104 112	Ameliae Jones James J. Frontstav Anne K. Kamocas * Oarlene M. Smithson	Applications Designer General Support Systems Artalyst DSS Analyst	\$ 48.10 \$ 18.36 \$ 96.75 \$ 45.95	24.6 45.3 32.4 44.0	\$ 1,183,26 \$ 831,71 \$ 3,134,70 \$ 2,021,80	
				Subtotal	-		5 7,171,47
22 Rolling Tide 105 104 113 111 106	104 113 111	Alice K. Johnson Anne K. Ramoras Delbert K. Joeobrood * Geoff B. Wahash William Smithlield	Database Designer Systems Analyst Applications Designer Clerical Support Programmer	\$103.00 \$ 96.73 \$ 48.10 \$ 36.87 \$ 33.75	64.7 48.4 23.6 22.0 12.8	\$ 6,791.50 \$ 4,662.70 \$ 1,135.16 \$ 391.14 \$ 457.60	
		-		Subtotal			\$13,660.10
	107 113 101 114 108 118 112	Maria D. Aloruro Trovis B. Bawargi John G. News * Annelloe Jones Ralph B. Washington James I. Frommer Darlene M. Smithson	Programmer Systems Analyst Database Designer Applications Designer Systems Analyst General Support DSS Analyst Subtotal	\$ 35.75 \$ 96.75 \$105.00 \$ 48.10 \$ 96.75 \$ 18.36 \$ 45.95	24.6 45.8 56.3 33.1 23.6 30.5 41.4	\$ 879.45 \$ 4,431.15 \$ 5,911.50 \$ 1,592.11 \$ 2,283.30 \$ 529.98 \$ 1,902.33 \$17,559.82	
				Total			\$41,941,09

Database Systems, 10th Edition

The Need for Normalization (cont'd.)

- Structure of data set in Figure 6.1 does not handle data very well
- Table structure appears to work; report is generated with ease
- Report may yield different results depending on what data anomaly has occurred
- Relational database environment is suited to help designer avoid data integrity problems

Database Systems, 10th Edition

7

The Normalization Process

- Each table represents a single subject
- No data item will be unnecessarily stored in more than one table
- All nonprime attributes in a table are dependent on the primary key
- Each table is void of insertion, update, and deletion anomalies

Database Systems, 10th Edition

8

TABLE Normal Forms				
NORMAL FORM	CHARACTERISTIC	SECTION		
First normal form (1NF)	Table format, no repeating groups, and PK identified	6.3.1		
Second normal form (2NF)	1NF and no partial dependencies	6.3.2		
Third normal form (3NF)	2NF and no transitive dependencies	6.3.3		
Boyce-Codd normal form (BCNF)	Every determinant is a candidate key (special case of 3NF)	6.6.1		
Fourth normal form (4NF)	3NF and no independent multivalued dependencies	6.6.2		

Database Systems, 10th Edition

٦	,		
4	ï		

The Normalization Process (cont'd.)

- Objective of normalization is to ensure that all tables are in at least 3NF
- Higher forms are not likely to be encountered in business environment
- · Normalization works one relation at a time
- Progressively breaks table into new set of relations based on identified dependencies

Database Systems, 10th Edition

10

The Normalization Process (cont'd.)

- Partial dependency
 - Exists when there is a functional dependence in which the determinant is only part of the primary key
- Transitive dependency
 - Exists when there are functional dependencies such that X \to Y, Y \to Z, and X is the primary key

Database Systems, 10th Edition

Conversion to First Normal Form

- · Repeating group
 - Group of multiple entries of same type can exist for any single key attribute occurrence
- · Relational table must not contain repeating groups
- · Normalizing table structure will reduce data redundancies
- · Normalization is three-step procedure

Database Systems, 10th Edition

13

Conversion to First Normal Form (cont'd.)

- Step 1: Eliminate the Repeating Groups
 - Eliminate nulls: each repeating group attribute contains an appropriate data value
- Step 2: Identify the Primary Key
 - Must uniquely identify attribute value
 - New key must be composed
- Step 3: Identify All Dependencies
 - Dependencies are depicted with a diagram

Database Systems, 10th Edition

14

Database Systems, 10th Edition

Conversion to First Normal Form (cont'd.)

- · Dependency diagram:
 - Depicts all dependencies found within given table structure
 - Helpful in getting bird's-eye view of all relationships among table's attributes
 - Makes it less likely that you will overlook an important dependency

Database Systems, 10th Edition

16

Conversion to First Normal Form (cont'd.)

- First normal form describes tabular format:
 - All key attributes are defined
 - No repeating groups in the table
 - All attributes are dependent on primary key
- All relational tables satisfy 1NF requirements
- Some tables contain partial dependencies
 - Dependencies are based on part of the primary key
 - Should be used with caution

Database Systems, 10th Edition

Conversion to Second Normal Form

- · Step 1: Make New Tables to Eliminate Partial Dependencies
 - Write each key component on separate line, then write original (composite) key on last line
 - Each component will become key in new table
- Step 2: Reassign Corresponding Dependent Attributes
 - Determine attributes that are dependent on other attributes
 - At this point, most anomalies have been eliminated

Conversion to Second Normal Form (cont'd.)

- Table is in second normal form (2NF) when:
 - It is in 1NF and
 - It includes no partial dependencies:
 - No attribute is dependent on only portion of primary key

Database Systems, 10th Edition

Conversion to Third Normal Form

- Step 1: Make New Tables to Eliminate Transitive Dependencies
 - For every transitive dependency, write its determinant as PK for new table
 - Determinant: any attribute whose value determines other values within a row

Database Systems, 10th Edition

22

Conversion to Third Normal Form (cont'd.)

- Step 2: Reassign Corresponding Dependent Attributes
 - Identify attributes dependent on each determinant identified in Step 1
 - · Identify dependency
 - Name table to reflect its contents and function

Database Systems, 10th Edition

23

Conversion to Third Normal Form (cont'd.)

- A table is in third normal form (3NF) when both of the following are true:
 - It is in 2NF
 - It contains no transitive dependencies

Database Systems, 10th Edition

25

Improving the Design

- Table structures should be cleaned up to eliminate initial partial and transitive dependencies
- Normalization cannot, by itself, be relied on to make good designs
- Valuable because it helps eliminate data redundancies

Database Systems, 10th Edition

26

Improving the Design (cont'd.)

- Issues to address, in order, to produce a good normalized set of tables:
 - Evaluate PK Assignments
 - Evaluate Naming Conventions
 - Refine Attribute Atomicity
 - Identify New Attributes

Database Systems, 10th Edition

Improving the Design (cont'd.)

- Identify New Relationships
- Refine Primary Keys as Required for Data Granularity
- Maintain Historical Accuracy
- Evaluate Using Derived Attributes

Database Systems, 10th Edition

Surrogate Key Considerations

- When primary key is considered to be unsuitable, designers use surrogate keys
- Data entries in Table 6.4 are inappropriate because they duplicate existing records
 - No violation of entity or referential integrity

Duplicate Entries in the JOB Table			
ION CODE	JOB DISCRIPTION	JOB CHG HOUR	
511	Programmer	\$35.75	
512	Programmer	\$35.75	

Database Systems, 10th Edition

31

Higher-Level Normal Forms

- Tables in 3NF perform suitably in business transactional databases
- Higher-order normal forms are useful on occasion
- Two special cases of 3NF:
 - Boyce-Codd normal form (BCNF)
 - Fourth normal form (4NF)

Database Systems, 10th Edition

32

The Boyce-Codd Normal Form

- Every determinant in table is a candidate key
 - Has same characteristics as primary key, but for some reason, not chosen to be primary key
- When table contains only one candidate key, the 3NF and the BCNF are equivalent
- BCNF can be violated only when table contains more than one candidate key

Database Systems, 10th Edition

The Boyce-Codd Normal Form (cont'd.)

- Most designers consider the BCNF as a special case of 3NF
- Table is in 3NF when it is in 2NF and there are no transitive dependencies
- · Table can be in 3NF and fail to meet BCNF
 - No partial dependencies, nor does it contain transitive dependencies
 - A nonkey attribute is the determinant of a key attribute

Database Systems, 10th Edition

Fourth Normal Form (4NF)

- Table is in fourth normal form (4NF) when both of the following are true:
 - It is in 3NF
 - No multiple sets of multivalued dependencies
- 4NF is largely academic if tables conform to following two rules:
 - All attributes dependent on primary key, independent of each other
 - No row contains two or more multivalued facts about an entity

Database Systems, 10th Edition

Normalization and Database Design

- Normalization should be part of the design process
- Make sure that proposed entities meet required normal form before table structures are created
- Many real-world databases have been improperly designed or burdened with anomalies
- You may be asked to redesign and modify existing databases

Database Systems, 10th Edition

41

Normalization and Database Design (cont'd.)

- ER diagram
 - Identify relevant entities, their attributes, and their relationships
 - Identify additional entities and attributes
- · Normalization procedures
 - Focus on characteristics of specific entities
 - Micro view of entities within ER diagram
- Difficult to separate normalization process from ER modeling process

Database Systems, 10th Edition

Denormalization

- Creation of normalized relations is important database design goal
- Processing requirements should also be a goal
- If tables are decomposed to conform to normalization requirements:
 - Number of database tables expands

Database Systems, 10th Edition

Denormalization (cont'd.)

- Joining the larger number of tables reduces system speed
- Conflicts are often resolved through compromises that may include denormalization
- · Defects of unnormalized tables:
 - Data updates are less efficient because tables are larger
 - Indexing is more cumbersome
 - No simple strategies for creating virtual tables known as views

Database Systems, 10th Edition

49

Data-Modeling Checklist

- Data modeling translates specific real-world environment into data model
 - Represents real-world data, users, processes, interactions
- Data-modeling checklist helps ensure that datamodeling tasks are successfully performed
- · Based on concepts and tools learned in Part II

Database Systems, 10th Edition

50

Summary

- · Normalization minimizes data redundancies
- First three normal forms (1NF, 2NF, and 3NF) are most commonly encountered
- · Table is in 1NF when:
 - All key attributes are defined
 - All remaining attributes are dependent on primary key

Database Systems, 10th Edition

52

Summary (cont'd.)

- Table is in 2NF when it is in 1NF and contains no partial dependencies
- Table is in 3NF when it is in 2NF and contains no transitive dependencies
- Table that is not in 3NF may be split into new tables until all of the tables meet 3NF requirements
- Normalization is important part—but only part of the design process

Database Systems, 10th Edition

53

Summary (cont'd.)

- Table in 3NF may contain multivalued dependencies
 - Numerous null values or redundant data
- · Convert 3NF table to 4NF by:
 - Splitting table to remove multivalued dependencies
- Tables are sometimes denormalized to yield less I/O, which increases processing speed

Database Systems, 10th Edition

\circ
~