OPTIMASI PARAMETER BOBOT BACKPROPAGATION NEURAL NETWORK PADA PREDIKSI HARGA SAHAM DENGAN ALGORITMA GENETIKA

Disusun oleh:

Alfriska Deviane Puspita

123170108

PROGRAM STUDI INFORMATIKA
JURUSAN TEKNIK INFORMATIKA
FAKULTAS TEKNIK INDUSTRI
UNIVERSITAS PEMBANGUNAN NASIONAL "VETERAN"
YOGYAKARTA
2021

DAFTAR ISI

DAFTAR ISI	ii
BAB I PENDAHULUAN	1
1.1 Latar Belakang Masalah	1
1.2 Rumusan Masalah	2
1.3 Batasan Masalah	3
1.4 Tujuan Penelitian	3
1.5 Manfaat Penelitian	3
1.6 Tahapan Penelitian	3
1.7 Metodologi Pengembangan Sistem	4
1.8 Sistematika Penulisan	4
BAB II TINJAUAN LITERATUR	6
2.1 Saham	6
2.2 Prediksi	6
2.3 Neural Network	6
2.4 Normalisasi Data	7
2.5 Algoritma Backpropagation	7
2.6 Algoritma Genetika	11
2.7 MSE	12
2.8 Denormalisasi Data	13
2.9 Studi Pustaka	13
2.10 Kerangka Pemikiran	17
BAB III METODOLOGI PENELITIAN DAN PENGEMBANGAN SISTEM	19
3.1 Metodologi Penelitian	19
3.2 Metodologi Pengembangan Sistem	20
3.3 Studi Pustaka	21
3.4 Pengumpulan Data	21
3.5 Analisis Kebutuhan	21
3.5.1 Analisis Kebutuhan Data	21
3.5.2 Analisis Perangkat Keras dan Lunak	22

3.6 Data Preprocessing233.7 Eksperimen dan Pengujian Metode253.7.1 Backpropagation253.7.2 Backpropagation dan Algoritma Genetika303.7.3 Pengujian34DAFTAR PUSTAKA37	3.5.3 Analisis Model	22
3.7.1 Backpropagation	3.6 Data Preprocessing	23
3.7.2 Backpropagation dan Algoritma Genetika 30 3.7.3 Pengujian 34	3.7 Eksperimen dan Pengujian Metode	25
3.7.3 Pengujian	3.7.1 Backpropagation	25
3.7.3 Pengujian	3.7.2 Backpropagation dan Algoritma Genetika	30
DAFTAR PUSTAKA37		
	o v	

BAB I PENDAHULUAN

1.1 Latar Belakang Masalah

Saham merupakan surat bukti kepemilikan suatu perusahaan yang diperdagangkan. Perdagangan saham ini didasarkan pada kebutuhan suatu perusahaan dalam meningkatkan modal bisnis. Berkaitan dengan perdagangan saham para investor memerlukan analisis dalam melakukan transaksi jual beli saham. Tentunya analisis yang dilakukan bertujuan agar investor mendapatkan keuntungan (Santoso & Hansun, 2019).

Analisis yang dilakukan para investor dalam melakukan transaksi jual beli saham akan dipengaruhi oleh beberapa faktor, salah satunya adalah harga saham. Harga saham akan terus berubah sesuai dengan situasi dan kondisi suatu perusahaan maupun faktor eksternal yang akan mempengaruhi perubahan harga saham tersebut.

Perubahan harga saham dapat diprediksi dengan beberapa model algoritma seperti pada penelitian yang dilakukan oleh (Maulana & Kumalasari, 2019) yang membandingkan beberapa model algoritma. Model algoritma tersebut antara lain *neural network*, *linear regression*, *support vector machine*, *gaussian process*, dan *polynomial regression*. Hasil dari penelitian ini menyimpulkan bahwa prediksi harga saham GGRM dengan mengggunakan *Neural Network* memiliki akurasi prediksi RMSE paling kecil dibandingkan dengan model algoritma lainnya. Terdapat juga penelitian lain yang mengkomparasikan model *support vector machine* dan *neural network* dalam memprediksi harga saham yang dilakukan oleh (Kusumodestoni & Sarwido, 2017). Penelitian tersebut membuktikan bahwa model *neural network* memiliki akurasi prediksi yang lebih tinggi dibandingkan dengan model *support vector machine*.

Neural network merupakan jaringan syaraf tiruan yang menggunakan metode pembelajaran terbimbing (supervised learning) (Kusumodestoni & Sarwido, 2017). Cara kerja algoritma ini seperti jaringan syaraf biologis pada manusia. Elemen masukan akan dihubungkan dengan elemen pemroses oleh suatu aturan dan bobot. Algoritma ini sering digunakan di bidang ekonomi terutama yang berhubungan dengen prediksi data. Salah satu metode pembelajaran yang dapat digunakan adalah backpropagation.

Backpropagation merupakan model jaringan syaraf tiruan dengan layer jamak, metode ini melatih jaringan untuk mengenal pola yang digunakan selama pembelajaran serta kamampuan dalam memberikan respon yang benar terhadap pola masukan serupa dengan pola yang digunakan dalam pembelajaran (Suhendra & Wardoyo, 2015). Metode ini sangat cocok digunakan untuk memprediksi suatu kejadian di masa yang akan datang dengan menggunakan data masa lalu / data historis. Dengan demikian metode ini cocok digunakan untuk prediksi harga saham karena harga saham dipengaruhi oleh data-data yang sudah ada sebelumnya yakni harga saham masa lalu (Abdillah, 2011) dalam (Santoso & Hansun, 2019).

Terdapat beberapa penelitian yang pernah menggunakan metode *backpropagation neural network* untuk memprediksi suatu kejadian di masa depan. Penelitian yang dilakukan oleh

(Novita, 2016) meneliti tentang prediksi harga saham pada Bank terbesar di Indonesia dengan menggunkan metode backpropagation neural network. Pengunaan metode backpropagation karena metode ini sangat sesuai untuk data time series yang bersifat non linear. Data yang digunakan dalam penelitian ini adalah data harga saham harian selama tahun 2013. Hasil dari penelitian ini adalah untuk prediksi harga penutupan bank BCA yang terbaik menggunakan fungsi PPT dengan neuron [10 5 1], epoch 100 dan slearning rate 0.4 sehingga menghasilkan RMSE terkecil 0.0626 dan MAE sebesar 0.0456, sedangkan untuk prediksi harga penutupan bank BRI yang terbaik menggunakan fungsi PPT dengan neuron [10 5 1], epoch 100 dan learning rate 0.4 sehingga menghasilkan RMSE terkecil yaitu 0.084 dan MAE sebesar 0.0487. Penelitian (Nikentari et al., 2018) meneliti tentang optimasi jaringan syaraf tiruan backpropagation dengan particle swarm optimization untuk prediksi pasang surut air laut. Dalam penelitian ini particle swarm optimization digunakan untuk mendapatkan bobot jaringan yang ideal dengan mengoptimasi nilai minimum error pada jaringan. Pengujian ini menghasilkan akurasi prediksi sebesar 91.56 % dengan menggunakan 90 swarm, learning rate 0,9 dan iterasi sebanyak 20 kali. Penelitian oleh (Putri & Wibisono, 2019) yang meneliti prediksi tentang kurs valuta asing dengan neural network backpropagation. Penelitian ini menghasilkan konvergensi dengan epoch tercepat 67 dengan learning rate 0.9, satu hidden layer, dan target error yang digunakan adalah 0.0001.

Metode *backpropagation* memiliki kelebihan pada generalisasi dan ekstrasi dari suatu pola data tertentu. Meskipun demikian *backpropagation neural network* memiliki kelemahan dalam kecepatan kovergensi karena permasalahan lokal minimum (Suhendra & Wardoyo, 2015). Kelemahan tersebut dapat diatasi dengan menentukan kombinasi parameter arsitektur, bobot awal, dan bobot bias yang baik.

Berdasarkan penelitian terdahulu dan kelemahan yang ada pada metode *backpropagation*, penelitian ini akan memodifikasi parameter bobot dan bias awal agar mendapatkan kombinasi parameter yang baik. Pemodifikasian ini akan dilakukan dengan menggunakan algoritma genetika. Algoritma genetika memiliki kemampuan dalam menemukan optimum global yang berdampak pada kestabilan hasil prediksi (Warsito, 2012) dalam (Suhendra & Wardoyo, 2015). Menurut hasil penelitian yang dilakukan oleh (Arsi & Prayogi, 2020) mengenai optimasi *neural network* dengan algoritma genetika pada nilai tukar rupiah membuktikan bahwa nilai RMSE yang dihasilkan dapat mengalami penurunan. Dengan demikian algoritma genetika dapat digunakan sebagai algoritma optimasi sehingga penelitian ini akan mendapatkan kemampuan belajar yang baik.

1.2 Rumusan Masalah

- a. Seberapa besar keakuratan metode *backpropagation neural network* untuk menentukan prediksi harga saham?
- b. Seberapa besar peningkatan akurasi prediksi saham dengan penerapan algoritma genetika untuk optimasi parameter pada metode *backpropagation neural network*?

1.3 Batasan Masalah

- a. Data saham BBCA yang digunakan didapatkan dari *yahoo finance* pada tahun 2017 hingga Maret 2021.
- b. Variabel yang digunakan sebagai input adalah open, low, high, dan volume.
- c. Variabel yang digunakan sebagai target adalah close.
- d. Prediksi dilakukan dalam skala harian

1.4 Tujuan Penelitian

- a. Memprediksi harga saham dengan menggunakan backpropagation neural network.
- b. Mengatasi masalah pada *backpropagation neural network* dengan mencari kombinasi terbaik pada arsitektur, bobot awal, dan bias.
- c. Menerapkan algoritma genetika untuk mengoptimasi parameter pada metode *backpropagation neural network* sehingga dapat menghasilkan akurasi yang lebih baik.

1.5 Manfaat Penelitian

- a. Mengetahui bahwa optimalisasi parameter yang dilakukan pada metode backpropagation neural network dapat mempengaruhi hasil prediksi.
- b. Mengetahui tingkat akurasi prediksi harga saham dengan menggunakan metode *backpropagation neural network*.
- c. Mengetahui peningkatan akurasi prediksi saham dengan penerapan algoritma genetika untuk optimasi parameter pada metode *backpropagation neural network*.

1.6 Tahapan Penelitian

Tahapan penelitian yang akan dilakukan berdasarkan (Sugiyono, 2013):

- a. Rumusan Masalah
 - Menemukan masalah sebagai indikasi dari penelitian.
- b. Studi Literatur
 - Studi literatur dilakukan dengan mencari informasi dan data dari penelitian terdahulu yang berkaitann dengan penelitian yang akan dilakukan. Dengan adanya penelitian terdahulu ini dapat mendukung dalam menyelesaikan masalah dalam penelitian ini.
- c. Perumusan Hipotesis
 - Perumusan hipotesisi disusun berdasarkan dukungan teori pada studi literatur
- d. Pengumpulan Data
 - Data yang digunakan dalam penelitian ini bersumber dari yahoo finance.
- e. Analisis dan Pengujian
 - Pada tahap ini dilakukan analisis kebutuhan, analisis data, analisis model kemudian dilanjutkan data *preprocessing* serta eksperimen dan pengujian metode.
 - 1. Analisis Kebutuhan
 - Tahap ini merupakan tahap untuk menganalisis kebutuhan yang akan digunakan seperti analisis data, model, kebutuhan perangkat lunak dan perangkat keras.
 - 2. Data *Preprocessing*

Pengolahan data awal yang dilakukan untuk mempermudah proses komputasi pada penelitian.

3. Eksperimen dan Pengujian Metode

Tahap ini adalah penyelesaian masalah dengan menggunakan metode *backpropagation* dan algoritma genetika.

f. Kesimpulan dan Saran

Tahap terakhir dalam penelitian ini adalah menyimpulkan hasil penelitian dan memmberikan saran kepada penelitian selanjutnya.

1.7 Metodologi Pengembangan Sistem

Tahapan pengembangan sistem:

- a. Komunikasi
- b. Membangun prototype
- c. Evaluasi prototype
- d. Pengkodean
- e. Pengujian dan evaluasi sistem
- f. Penggunaan sistem

1.8 Sistematika Penulisan

Dalam penelitian yang akan dilakukan ini sistematika penulisan yang akan disusun pada saat penulisan laporan sebagai berikut:

Bab I Pendahuluan

Pada bagian ini membahas tentang latar belakang masalah, rumusan masalah, batasan masalah, tujuan penelitian, manfaat penelitian, tahapan penelitian, dan sistematika penelitian.

Bab II Tinjauan Literatur

Tinjauan literatur membahas tentang teori, konsep, model, sistem dari pustaka ilmiah yang berkaitan dengan masalah yang akan diselesaikan pada penelitian ini.

Bab III Metodologi Penelitian

Metodologi penelitian berisi tentang cara sistematik yang digunakan untuk menyelesaikan masalah yang diangkat pada penelitian ini. Dalam bagian ini terdapat beberapa hal yang dijelaskan antara lain pengumpulan data, pengolahan data, eksperimen dan pengujian.

Bab IV Hasil dan Pembahasan

Bab ini berisi tentang laporan hasil penelitian disertai dengan data yang mendukung hasil penelitian. Data disajikan dalam bentuk teks, tabel serta gambar. Selain itu terdapat penjelasan mengenai hasil yang diperoleh sehingga pembaca dapat memahami maksud dari hasil yang diperoleh.

Bab V Penutup

Pada bagian ini berisi tentang kesimpulan dari hasil penelitian yang dilakukan dan saran yang diberikan penulis untuk penelitian selanjutnya.

BAB II TINJAUAN LITERATUR

2.1 Saham

Saham merupakan surat bukti penyertaan modal seseorang atau keolompok terhadap suatu perusahaan atau persero. Suatu perusahaan menerbitkan saham untuk pendanaan perusahaan. Saham adalah salah satu instrumen perusahan yang popular dan banyak diminati. Terdapat dua keuntungan yang akan didapatkan saat memiliki atau membeli saham antara lain *dividen* yang merupakan pembagian keuntungan yang diberikan suatu perusahaan dan *capital gain* yang merupakan selisih antara harga beli dan harga jual. Saham juga memiliki dua risiko antara lain *capital loss* yang merupakan kondisi dimana investor menjual harga lebih rendah daripada harga beli dan likuidasi yang merupakan kebangkrutan suatu perusahaan yang dinyatakan oleh pengadilan (Jeferson & Sudjatmoko, 2013).

2.2 Prediksi

Prediksi adalah suatu proses memperkirakan sesuatu yang mungkin terjadi di masa depan berdasarkan informasi masa lalu yang dimiliki. Dalam memprediksi sesuatu tidak harus memberikan jawaban yang pasti terjadi di masa yang akan datang, tetapi berusaha untuk mencari jawaban yang akurat yang nantinya mungkin akan terjadi (Zyen & Kusumodestoni, 2016).

2.3 Neural Network

Neural network merupakan suatu metode yang memiliki cara kerja seperti neuron dalam otak manusia. Secara sederhana neural network akan menerima input kemudian input tersebut akan diproses agar dapat menghasilkan suatu output yang diinginkan. Hal ini sama dengan cara kerja neuron pada otak manusia, menerima rangsangan, diproses, dan akan menghasilkan suatu keluaran(Windarto et al., 2018).

Berdasarkan arsitekturnya model neural network dibagi menjadi tiga antara lain:

- a. *Single Layer Network* merupakan sekumpulan masukan yang dihubungkan langsung dengan sekumpulan keluaran. Model yang termasuk dalam kategori ini antara lain: ADALINE, *hopfild, perceptron, LVQ*. Dan lain-lain.
- b. *Multiple Layer Network* merupakan jaringan yang memiliki layer tersembunyi (*hidden layer*) diantara input layer dan output layer. Model yang termasuk dalam kategori ini antara lain: MADALINE, *back propagation*.
- c. Reccurent Network merupakan jaringan yang mirip dengan jaringan single layer network dan multiple layer network. Terdapat sinyal keluaran pada unit masukan (feedback loop). Sinyal yang datang mengalir ke dua arah yaitu maju dan mundur. Model ang termasuk dalam kategori ini antara lain: Hopfield network, Jordan network, Elmal network.

Neural network memiliki beberapa lapisan yaitu lapisan masukan (input layer), lapisan tersembunyi (hidden layer), dan lapisan keluaran (ouput layer). Lapisan masukan digunakan untuk menerima masukan dari suatu data yang digunakan. Lapisan tersembunyi digunakan

untuk penyesuaian bobot. Sedangkan lapisan keluran digunakan untuk merepresentasikan prediksi dari data tersebut.

Neural network memiliki beberapa karakteristik yang unik dalam kemampuan untuk belajar dan mengeneralisasi. *Neural network* ini mampu menyelesaikan permasalahan yang kurang baik atau tidak dapat diselesaikan dengan sistem linear, seperti peramalan dengan model data *time series* (Windarto, 2017).

2.4 Normalisasi Data

Normalisasi data adalah suatu proses untuk menentukan nilai agar nilai tersebut berada pada *range* tertentu. Tujuan dari normalisasi data ini adalah untuk mendapatkan data dengan skala yang lebih kecil dari data yang sebenarnya dengan kata lain mewakili data asli tanpa menghilangkan karakteristik. Rumus metode normalisasi data minimum-maximum dalam (Cynthia & Ismanto, 2017) sebagai berikut:

$$\mathbf{x}' = \left(\frac{\mathbf{x} - \min(\mathbf{x})}{\max(\mathbf{x}) - \min(\mathbf{x})}\right) \tag{2.1}$$

Keterangan:

x' = Nilai data setelah dinormalisasi
 x = Nilai data sebelum dinormalisasi

min(x) = Nilai minimum dari data max(x) = Nilai maksimum dari data

2.5 Algoritma Backpropagation

Backpropagation merupakan salah satu teknik pembelajaran terbimbing (*supervised learning*) yang paling banyak digunakan(Windarto et al., 2018). Hal tersebut membuat algoritma ini dapat digunakan unruk meyelesaikan masalah-masalah yang rumit, misalnya untuk mengatasi masalah pengenalan pola yang kompleks(Cynthia & Ismanto, 2017).

Backpropagation dapat dikatakan sebagai algoritma multilayer karena dalam algoritma ini terdapat tiga layer yakni input layer, hidden layer, dan output layer. Pada input layer proses yang terjadi adalah penerimaan sinyal input ke hidden layer. Sinyal yang diterima pada hidden layer akan diproses dan menhasilkan output. Proses yang terjadi merupakan proses komputasi yang menghitung value input, bobot, dan bias dengan menggunakan fungsi aktivasi. Fungsi aktivasi merupakan suatu fungsi yang terdapat dalam metode neural network yang berfungsi untuk mengaktifkan neuron. Salah satu fungsi aktivasi adalah fungsi sigmoid biner yang digunakan untuk jaringan syaraf tiruan yang dilatih dengan menggunakan metode backpropagation (Umaidah, 2018). Fungsi sigmoid biner memiliki nilai pada range 0 sampai 1. Fungsi sigmoid biner dirumuskan sebagai berikut:

$$f(x) = \frac{1}{1 + e^{-x}}$$
(2.2)

Keterangan:

f(x) = Fungsi aktivasi sigmoid biner

e^{-x} = Eksponensial pangkat minus data ke-x

e = Bilangan eural yaitu 2,71838

Pelatihan backpropagation neural network dalam (Cynthia & Ismanto, 2017):

Langkah 0: inisialisasi semua bobot dan bias dengan bilangan acak

Langkah 1 : jika kondisi perhentian belum terpenuhi, maka lakukan langkah 2 hingga 9

Langkah 2: untuk setiap pasang data pelatihan, lakukan langkah 3 hingga 8

Tahapan Feedforward:

Langkah 3 : untuk setiap neuron masukan $(x_i, i=1,2,3,...,n)$ menerima sinyal masukan xi dan menyebar keseluruh neuron kepada lapisan tersembunyi (*hidden layer*).

Langkah 4 : untuk setiap neuron pada *hidden layer* (z_j, j=1,2,..,p) dihitung nilai masukan dengan nilai bobot dengan rumus sebagai berikut

$$z_{in_{j}} = v_{0j} + \sum_{n=1}^{n} (x_{i} \cdot v_{ij})...$$
 (2.3)

Keterangan:

 v_{0j} = bias input layer ke hidden layer

 $x_i = sinyal input$

 v_{ij} = bobot input layer ke hidden layer

z_in_i = sinyal masuk pada *hidden layer*

Hasil dari perhitungan tersebut akan dimasukan ke dalam fungsi aktivasi (z_j) dengan menggunakan rumus (2.2) kemudian sinyal dikirimkan ke semua neuron pada lapisan keluaran.

Langkah 5 : untuk setiap lapisan keluaran $(y_k,k=1,2,...,m)$ dihitung nilai masukan dengan nilai bobot dengan persamaan :

$$y_{in_k} = w_{0k} + \sum_{n=1}^{n} (z_j \cdot w_{jk})$$
 (2.4)

Keterangan:

 w_{0k} = bias hidden layer ke output layer

 w_{ik} = bobot hidden layer ke output layer

z_i = hasil dari perhitungan dengan fungsi aktivasi pada *hidden layer*

y_in_k = sinyal masuk pada *output*

Hasil tersebut dihitung dengan menggunakan fungsi aktivasi:

$$y_k = f(y_i n_k) = \frac{1}{1 + e^{y_i i n_k}}$$
 (2.5)

Tahap backpropagation:

Langkah 6 : untuk setiap lapisan keluaran $(y_k,k=1,2,...,m)$ menerima pola target yang sesuai dengan pola masukan yang kemudian dihitung informasi kesalahan dengan rumus:

$$\delta_k = (t_k - y_k) f(y_i n_k)$$
(2.6)

Keterangan:

 δ_k = faktor koreksi *output layer*

 $t_k = target$

 $y_k = output$ pelatihan

Menghitung koreksi nilai bobot yang akan digunakan untuk memperharui nilai w_{jk}

$$\Delta w_{jk} = \alpha \delta_k z_j$$
....(2.7)

Keterangan:

 Δw_{ik} = delta perubahan bobot *output layer*

 $\alpha = learning rate$

 δ_k = faktor koreksi *output layer*

z_i = fungsi aktivasi pada *hidden layer*

Hitung koreksi nilai bias yang akan digunakan untuk memperbaruhi nilai w_{0k} dengan rumus

$$\Delta w_{0k} = \alpha \delta_k$$
 (2.8)

Keterangan:

 Δw_{0k} = delta perubahan bias *output layer*

Langkah 7: untuk setiap neuron *hidden layer* (z_j, j=1,2,..,p) menjumahkan bobot setiap neuron yang dikalikan dengan kesalahan informasinya.

$$\delta_{\text{in } j} = \sum_{i=1}^{n} \delta_{k} w_{jk}.$$
 (2.9)

Keterangan:

 $\delta_{in j}$ = faktor koreksi *hidden layer*

 δ_k = faktor koreksi *output layer*

 w_{ik} = bobot *hidden layer* ke *output layer*

Mengalikan nilai turunan dari fungsi aktivasi untuk menghitung kesalahan dengan rumus:

$$\delta_{j} = \delta_{\text{in } j} \ f'(z_{-\text{in } i}) \dots (2.10)$$

Keterangan:

 δ_i = faktor koreksi *hidden* unit

z_in j = sinyal masuk pada *hidden layer*

Hitung koreksi nilai bobot untuk memperbaharui v_{0j} dengan rumus:

$$\Delta v_{ij} = \alpha \delta_i x_i$$
....(2.11)

Keterangan:

 Δv_{ij} = koreksi bias *hidden layer*

 δ_i = faktor koreksi *hidden* unit

 $\alpha = learning \ rate$

 $x_i = sinyal input$

Hitung nilai koreksi bias yag akan digunakan untuk memperbaharui nilai \mathbf{v}_{0j} dengan rumus

$$\Delta v_{0j} = \alpha \delta_j$$
.....(2.12)

Langkah 8: setiap nilai keluaran (y_k,k=1,2,..,m) memperbaiki bobot (j=1,2,..,p)

$$w_{jk}(new) = w_{jk}(old) + \Delta w_{jk}.$$
 (2.13)

Keterangan:

 $w_{jk}(new)$ = bobot baru hidden layer ke output layer

 $w_{jk}(old) = bobot lama hidden layer ke output layer$

Setiap neuron tersembunyi memperbaiki bobotnya (z_j, j=1,2,..,p.) dengan menjumlahkan nilai bobot lama dengan nilai delta bobot.

$$v_{ii}(new) = v_{ii}(old) + \Delta v_{ii}$$
....(2.14)

Langkah 9: menguji kondisi berhenti, jika nilai kesalahan yang dihasilkan lebih kecil dari nilai kesalahan referensi

2.6 Algoritma Genetika

Algoritma genetika adalah suatu teknik pencarian dan teknik optimasi yang memiliki cara kerja seperti proses evolusi dan perubahan struktur genetika pada makhluk hidup. Proses evolusi yang menjadi perinsip dalam cara kerja algoritma genetika ini adalah seleksi alam. Dalam seleksi alam setiap individu akan bersaing untuk bertahan hidup dan bereproduksi. Individu yang tidak memiliki kebugaran yang baik akan mati dan punah, sedangkan individu yang memiliki kebugaran yang baik akan bertahan dan melakukan reproduksi melalui penyilangan (crossover)dan mutasi. Proses seleksi dan reproduksi akan berlangsung berulang kali hingga mendapatkan individu yang memiliki kebugaran (*fit*) yang paling baik (Arkeman et al., 2012).

Algoritma genetika dapat digunakan pada permasalahan optimasi (Gorunescu et al., 2012). Contoh dari permasalahan tersebut adalah untuk mendapatkan suatu nilai solusi optimasi terhadap permasalahan yang memiliki banyak kemungkinan solusi. Solusi yang didapatkan dari algoritma genetika disebut dengan *chromosome*, sedangkan kumpulan dari *chromosome* disebut dengan populasi. *Chromosome* terbentuk dari komponen penyusun yang disebut dengan gen. Gen dapat berupa bilangan numerik, biner, simbol maupun karakter tergantung dengan permasalah yang akan diselesaikan

Chromosome yang berevolusi secara berkelanjutan disebut dengan generasi. Setiap generasi *chromosome* akan dievaluasi menggunakan ukuran yang disebut dengan *fitness*. *Fitness* bernilai tinggi pada *chromosome* akan memiliki peluang lebih besar untuk diproses pada generasi selanjutnya.

Dalam satu generasi *chromosome* akan melakukan *crossover* atau perkawinan yang akan menghasilkan *chromosome* baru yang disebut dengan *offspring*. Jumlah *chromosome* yang akan melakukan *crossover* bergantung dengan *crossover rate*. Gen dalam *chromosome* akan melakukan mutasi berdasarkan *fitness*. Setelah melakukan beberapa generasi maka akan menghasilkan nilai gen yang kovergen dengan nilai tertentu. Nilai tersebut akan menjadi solusi terbaik pada permasalahan yang akan diselesaikan.

Proses algoritma genetika diawali dengan menciptakan individu secara acak yang memiliki *chromosome* tertentu. Individu-indnividu yang ada akan melakukan proses reproduksi agar mendapatkan keturunan (*offspring*).Setelah itu dilakukan proses evaluasi untuk menghitung kebugaran(*fitness*). Semakin besar nilai *fitness* maka *chromosome* juga kan semakin baik. Kemudian proses seleksi untuk memilih individu yang dapat bertahan hidup pada generasi selanjutnya (Mahmudy, 2016).

Tahapan algoritma genetika:

- a. Inisialisasi populasi awal dengan membangkitkan individu secara acak sesuai dengan jumlah populasi yang telah ditentukan (*popsize*).
- b. Proses reproduksi untuk menghasilkan keturunan atau individu baru (*offspring*). Dalam proses reroduksi terdapat dua cara yaitu *crossover* dan mutasi. Sebelum melakukan reproduksi perlu dilakukan penentuan *crossover rate* dan *mutation rate*.

$$C_1 = P_1 + a(P_2 - P_1)$$
(2.16)

Keterangan:

P₁ = kromosom induk pertama P₂ = kromosom induk kedua

 α = nilai alpha yang sudah ditentukan

Proses mutasi dilakukan dengan memilih salah satu induk secara acak. Metode yang dapat digunakan dalam proses mutasi salah satunya adalah *random mutation*. Metode ini berkerja dengan menambah atau mengurangi nilai dari satu gen terpilih dengan bilangan acak yang kecil, dengan persamaan

$$x'_i=x_i+r(\max_i-\min_i)$$
(2.17)

Keterangan:

x_i = gen yang terpilih untuk mutasi

r = nilai *random*

max_i = nilai maksimum dari individu yang terpilih min_i = nilai minimum dari individu yang terpilih

- c. Proses evaluasi yang berguna untuk mehitung nilai *fitness* dari masing-masing individu.
- d. Seleksi bertujuan untuk memilih individu yang bertahan ke generasi selanjutnya. Salah satu metode seleksi yang dapat digunakan adalah *elitism selection*. Metode ini digunakan untuk mengurutkan individu yang memiliki nilai finess tertinggi hingga terendah.

2.7 MSE

MSE (*Mean Square Error*) merupakan proses validasi yang akan menghasilkan nilai keakuratan prediksi. Nilai akurasi dapat dihitung dengan rumus sebagai berikut (Hakim, 2018):

$$MSE = \sum_{i=1}^{n} \frac{(y_i \cdot y_n)^2}{N}$$
 (2.18)

Keterangan:

y_i = nilai aktual data y_n = nilai hasil prediksi

N = jumlah data yang diujikan

2.8 Denormalisasi Data

Denormalisasi merupakan proses menegmbalikan data ke nilai asalnya, dengan rumus dalam (Cynthia & Ismanto, 2017) sebagai berikut:

$$x_i = y_n(x_{max} - x_{min}) + x_{min}$$
 (2.19)

Keterangan:

 $y_n = nilai hasil prediksi$

 x_{max} = nilai maksimum pada data x_{min} = nilai minimum pada data

2.9 Studi Pustaka

Prediksi harga saham dapat dilakukan dengan menggunakan metode *backpropagation neural network*. Metode ini sangat cocok digunakan untuk memprediksi suatu kejadian di masa yang akan datang. Beberapa permasalahan tentang prediksi pernah diselesaikan dengan menggunakan *backpropagation neural network*. Berikut terdapat beberapa penelitian terdahulu yang berkaitan dengan topik penelitian yang akan dilakukan.

Penelitian pertama yang menjadi referensi penelitian ini dilakukan oleh (Santoso & Hansun, 2019) dengan judul **Prediksi IHSG dengan Backpropagation Neural Network**. Penelitian ini menggunakan data IHSG dari tanggal 25 Januari 2013 sampai dengan 24 Januari 2014 secara harian. Data tersebut dibagi dengan rasio 7: 3, dimana 164 data pertama digunakan sebagai data training dan sisanya sebagai data testing. Dalam penelitian ini, uji coba dilakukan dengan tiga *learning rate* berbeda (0,3;0,5;0,7) dan *eporch* 100 hingga 3000 dengan kelipatan 100. Berdasarkan hasil pengujian tersebut nilai akurasi terbaik diperolah dengan menggunakan *learning rate* 0,3 dan *eporch* 3000 dengan nilai MSE sebesar 320,49865083640924.

Penelitian kedua dilakukan oleh (Hakim, 2018) yang berjudul **Prediksi Harga Jual Suku Cadang Impor Mesin Rokok dengan Jaringan Syaraf Tiruan**. Data yag digunakan merupakan data harga granitur setiap bulannya di tahun 2017 dan 2018. Penelitian ini dilakukan dengan menggunakan algoritma *backpropagation* dengan 24 input, 10 *hidden layer*, *learning*

rate 0,1. Nilai MSE yang dihasilkan pada data *training* sebesar 0,00099001 dan pada data *testing* sebesar 0,19113.

Penelitian ketiga dilakukan oleh (Cynthia & Ismanto, 2017) yang berjudul **Jaringan Syaraf Tiruan Algoritma Backpropagation dalam Memprediksi Ketersediaan Komoditi Pangan Provinsi Riau**. Data yang digunakan pada penelitian ini diambil dari data tahun 2006 hingga 2013. Data pada tahun 2003 hingga 2012 digunakan sebagai data input , sedangkan data tahun 2013 digunakan sebagai data target. Berdasarkan hasil penelitian yang dilakukan penelitian ini mendapatkan nilai akurasi tertinggi (99,99%) dengan arsitektur 7-14-1 dengan nilai *error* RMSE sebesar 0,0033438208.

Penelitian keempat dilakukan oleh Irvan Muzakkir, Abdul Syukur, dan Ika Novita Dewi pada tahun 2018 yang berjudul **Optimasi Jaringan Syaraf Tiruan** *Backpropagation* **Dengan** *Particle Swarm Optimization* **Untuk Prediksi Pasang Surut Air Laut**. Dalam penelitian ini particle swarm optimization digunakan untuk mendapatkan bobot jaringan yang ideal dengan mengoptimasi nilai minimum *error* pada jaringan. Pengujian ini menghasilkan akurasi prediksi sebesar 91.56 % dengan menggunakan 90 swarm, learning rate 0,9 dan iterasi sebanyak 20 kali.

Penelitian kelima dilakukan oleh (Arsi & Prayogi, 2020) dengan judul **Optimasi Prediksi Nilai Tukar Rupiah Terhadap Dolar Meggunakan Neural Network Berbasiskan Algoritma Genetika**. Penelitian ini menggunakan data *time series* nilai tukar rupiah pada dolar periode 1 Januari 2013 hingga 30 Agustus 2018 dengan jumlah data 1470. Kombinasi parameter terbaik yang dihasilkan yakni arsitektur 10-3-1, *learning rate* 0,01, *eproch* 300 membutikan adanya penurunan nilai RMSE sebesar 0,02.

Tabel 2.1 State of The Art

Model	Masalah Penelitian	Metode	Hasil
(Maulana &	Perbandingan Algoritma	Neural Network,	prediksi harga saham dengan
Kumalasari, 2019)	Data Mining	Linear Regression,	neural network memperoleh
		Support Vector	nilai RMSE paling kecil
		Machine, Gaussian	sebesar 612.474
		Process, dan	
		Polynomial Regression	
(Suhendra & Wardoyo,	Penentuan Arsitektur	backpropagation dan	algoritma genetika dapat
2015)	Jaringan Syaraf Tiruan	algoritma genetika	memberikan solusi dalam
			pembelajaran
			backpropagation.
(Kusumodestoni &	Komparasi model svm	Support vector	Model neural network
Sarwido, 2017)	dan <i>neural nertwork</i>	machines dan neural	memperoleh nilai akurasi
		network	yang lebih tingi dari model
			svm.
Novita (2016)	Membandingkan harga	backpropagation	prediksi harga penutupan
	saham BCA dan BRI	neural network	bank BCA yang terbaik
			menggunakan fungsi PPT
		dengan neuron [10 5	
			epoch 100 dan learning rate

Tabel 2.2 Lanjutan State of The Art

Ma 3-1		njutan <i>State of The Ai</i>	
Model	Masalah Penelitian	Metode	Hasil
			0.4 sehingga menghasilkan RMSE terkecil 0.0626 dan MAE sebesar 0.0456, sedangkan untuk prediksi harga penutupan bank BRI yang terbaik menggunakan fungsi PPT dengan neuron [10 5 1], epoch 100 dan learning rate 0.4 sehingga menghasilkan RMSE terkecil yaitu 0.084 dan MAE sebesar 0.0487
(Putri & Wibisono, 2019)	Memprediksi Kurs Valuta Asing	backpropagation neural network	Backpropagation menghasilkan konvergensi dengan epoch tercepat 67 dengan learning rate 0.9, satu hidden layer, dan target error yang digunakan adalah 0.0001
(Pujianto et al., 2018)	Prediksi penerimaan beasiswa menggunakan backpropagation	backpropagation	nilai akurasi sebesar 90% dan nilai error terkecil sebesar 0,000101 pada epoch ke 329 dengan jumlah 3000 data dengan pembagian data training 2.250 dan 750 data testing serta konfigurasi learning rate sebesar 0,2 dan momentum 0,2
(Santoso & Hansun, 2019)	Prediksi IHSG	backpropagation neural network	Terdapat 3 learning rate yang diuji, dari ketiga learning rate tersebut yang memiliki hasil terbaik adalah learning rate 03 dengan epoch sejumlah 3000 dengan MSE testing sebesar 320,49865083640924
(Hakim, 2018)	Prediksi Harga Jual Suku Cadang impor mesin rokok	Backpropagation	Dengan 24 inputan, 10 hidden layer, learning rate 0,1 dan 1 output, diperoleh hasil yang cukup baik dengan nilai error atau MSE yang pada proses training sebesar 0,00099001 dan MSE pada

Tabel 2.3 Lanjutan State of The Art

Model	Masalah Penelitian	Metode	Hasil
			proses testing sebesar
			0,19113
(Cynthia & Ismanto,	Memprediksi	Backpropagation	RMSE paling kecil adalah
2017)	Ketersediaan Komoditi		arsitektur 7-14-1 dengan
	Pangan Provinsi Riau		nilai <i>error</i> RMSE
			0,0033438208, persentase
			akurasi sebesar 99,99 % dan
			performa 0,2185.
(Nikentari et al., 2018)	Optimasi Jaringan Syaraf	Backpropagation dan	Akurasi prediksi yang di
	Tiruan	Particle Swarm	hasilkan sebesar 91.56 %
		Optimization	dengan menggunakan 90
			swarm, <i>learning rate</i> 0,9 dan
			iterasi sebanyak 20 kali
(Azam et al., 2018)	Prediksi harga emas	Feed forward neural	Algoritma genetika dapat
	dengan FFNN dan GA	network dan algoritma	digunakan untuk mencari
		genetika	bobot terbaik pada model
			feed forward neural network
(Azise et al., 2019)	Menyeleksi fitur	Backpropagtion dan	Akurasi yang hasilkan
	backpropagation dengan	algoritma genetika	dengan menggunakan
	algoritma genetika		backpropagation dan
			algoritma genetika lebih
			tinggi dibandingkan dengan
			yang tidak menggunakan
			algoritma genetika.
(Sugiyarto et al., 2019)	Optimasi	Backpropagation dan	Setelah mengoptimasi
	backpropagation	algorita genetika	dengan algoritma genetika
			nilai MAPE lebih rendah.
(Arsi & Prayogi, 2020)	Optimasi Prediksi Nilai	Neural Network	Neural Network berbasis
	Tukar Rupiah terhadap	Berbasiskan Algoritma	algoritma Genetika, terbukti
	Dolar	Genetika	mampu meningkatkan hasil
			akurasi prediksi yaitu dari
			0,010 +/- 0,001 menjadi
			0,008 +/- 0,001, terjadi
			penurunan nilai RMSE
			sebesar 0,002.

Penelitian terdahulu yang menjadi referensi dalam penelitian ini memiliki persamaan dalam memprediksi kejadian yang akan datang dengan menggunakan data *time series*. Sebagian besar penelitian terdahulu menggunakan metode *backpropagation* sebagai algoritma untuk memprediksi kejadian yang akan datang.

Berikut merupakan perbandingan penelitian terdahulu dengan penelitian yang akan dilakukan:

- a. Pada penelitian (Hakim, 2018), (Nikentari et al., 2018), (Cynthia & Ismanto, 2017), (Arsi & Prayogi, 2020) objek yang digunakan berbeda dengan penelitian yang akan dilakukan. Penelitian yang akan dilakukan menggunakan objek harga saham.
- b. Penelitian (Santoso & Hansun, 2019), (Cynthia & Ismanto, 2017), dan (Hakim, 2018) tidak menggunakan algoritma optimasi.
- c. Penelitian (Nikentari et al., 2018) menggunakan algoritma PSO sebagai algoritma optimasi sedangkan penelitian ini menggunakan algoritma genetika.

2.10 Kerangka Pemikiran

Kerangka pemikiran yang tergambar pada **Gambar 2.1** menjelaskan bahwa pada prediksi harga saham metode yang digunakan adalah algoritma genetika dan *neural network backpropagation*.

Gambar 2.1 Kerangka pemikiran

Algoritma genetika digunakan untuk mengoptimasi parameter yang akan digunakan pada *neural network*. Sedangkan *neural network* menggunakan algoritma *backpropagation* digunakan untuk memprediksi harga saham berdasarkan data historis saham pada suatu perusahaan.

Algoritma genetika akan dipengaruhi oleh beberapa indikator antara lain nilai *fitness*, *crossover rate*, dan *mutation rate*. Nilai *finess* digunakan untuk meyeleksi *chromosome* yang tetap dipertahankan untuk proses pada generasi selanjutnya. Setelah itu akan dilakukan *crossover*. *Crossover rate* akan mempengaruhi jumlah *chromosome* yang akan melakukan

crossover. Setelah dilakukan crossover, chromosome akan melakukan mutasi dengan dipengaruhi oleh mutation rate.

Neural network backpropagation memiliki tiga lapisan yaitu input layer, hidden layer, dan output layer. Input layer digunakan untuk menerima input dari data saham yang digunakan. Hidden layer digunakan untuk menyesuaikan bobot yang digunakan. Sedangkan Output layer digunakan untuk menampilkan hasil prediksi harga saham.

Hasil dari proses algoritma genetika akan menjadi parameter pada proses dengan *neural network backpropagation*. Setelah mendapatkan hasil akhir pada metode *neural network backpropagation*, maka hasil tersebut akan divalidasi dengan menggunakan MSE. MSE ini akan menentukan nilai akurasi pada prediksi harga saham yang dilakukan.

BAB III METODOLOGI PENELITIAN DAN PENGEMBANGAN SISTEM

3.1 Metodologi Penelitian

Metodologi penelitian yang digunakan pada penelitian ini adalah penelitian kuantitaif. Penelitian kuantitatif merupakan penelitian yang menggunakan data berupa angka dan analisis. Jenis penelitian yang dilakuakan adalah penelitian non-implementatif. Penelitian non-implementatif ini berfokus pada analisis terhadap fenomena yang diangkat sebagai permasalahan. Analisis dilakukan untuk menjelaskan hubungan antar komponen yang digunakan. Berikut merupakan tahapan penelitian yang digambarkan pada Gambar 3.1.

Gambar 3.1 Tahapan Penelitian

3.2 Metodologi Pengembangan Sistem

Metodologi pengembangan sistem yang digunakan pada penelitian ini adalah *prototyping* berdasarkan (Pressman, 2010). Prototype adalah proses pengembangan sistem yang memberikan pendekatan yang baik dan lebih umum digunakan. Metode penelitian ini tepat digunakan pada penelitian yang membutuhkan waktu yang tidak panjang. Tahapan pengembangan sistem digambarkan pada Gambar 3.2

Gambar 3.2 Metodologi Pengembangan Sistem

Langkah-langkah dalam metode *prototyping* sebagai berikut:

1. Komunikasi

Tahap awal dilakukan dengan mengidentifikasi kebutuhan sistem.

2. Membangun *prototype*

Tahap ini dilakukan perancangan sistem sementara

3. Evaluasi prototype

Tahapan ini dilakukan agar dapat mengetahui apakah sistem sudah sesuai dengan yang diharapkan atau belum

4. Pengkodean

Pada tahap ini perancangan sistem diubah menjadi menjadi bentuk kode pemrograman

5. Pengujian dan evaluasi sistem

Pengujian dan evaluasi sistem dilakukan untuk mengetahui apakah sistem sudah berjalan sesuai dengan yang diinginkan

6. Penggunaan sistem

Tahap ini merupakan tahap akhir dimana sistem sudah dapat digunakan.

3.3 Studi Pustaka

Studi pustaka dilakukan untuk menggali informasi mengenai permasalahan serta metode yang akan digunakan pada penelitian ini. Informasi tersebut berasal dari berbagai referensi jurnal serta buku yang dapat digunakan sebagai acuan dalam melaksanakan penelitian. Dengan adanya informasi ini dapat diketahui kelebihan serta kekurangan metode yang digunakan untuk memprediksi saham dengan data historis.

3.4 Pengumpulan Data

Penelitian ini menggunakan data historis harga saham harian PT. Bank Cental Asia, Tbk. (BBCA). Data yang digunakan bersifat sekunder, yakni data yang diperolah dari sumber yang sudah ada. Sumber data yang digunakan pada penelitian ini berasal dari *yahoo finance*.

Open High Low Close Adj Close No Volume 34500 34700 33950 33950 33950 1. 13782600 34100 34225 33875 34125 34125 11672000 2. 34125 34175 33625 33625 14373800 3. 33625 33700 33850 33400 33525 33525 15737600 4. 5. 33525 34050 33225 33550 33550 34726300

Tabel 3.1 Contoh Data Harga Harian Saham

3.5 Analisis Kebutuhan

Tahapan ini bertujuan untuk mempermudah dalam menganalisis masalah yang digunakan dalam pengerjaan penelitian. Tahapan ini dibagi menjadi beberapa bagian yaitu:

3.5.1 Analisis Kebutuhan Data

Analisis kebutuhan data dilakukan untuk membagi data dan variabel masukan yang akan digunakan dalam penelitian yang akan dilakukan. Kebutuhan data yang dilakukan yaitu:

1. Pembagaian data

Tahapan ini dilakukan untuk membagi data menjadi data latih dan data uji sebagai berikut:

- a. Data latih merupakan data yang digunakan pada tahap pelatihan.
- b. Data uji merupakan data yang digunakan pada tahap pengujian.

2. Variabel masukan

Variabel masukan digunakan untuk menganalisis variabel apa saja yang akan digunakan pada sistem yang akan dibuat. Variabel tersebut nantinya digunakan sebagai data masukan yang akan diproses dalam perhitungan *backpropagation* dan algoritma genetika. Jumlah variabel yang digunakan adalah empat, dapat dilihat pada Tabel 3.2.

Tabel 3.2 Variabel Masukan

Variabel	Keterangan	
X1	Harga pembukan saham harian	
X2	Harga tertinggi saham pada satu hari	

X3 Harga terendah saham pada satu hari	
X4	Jumlah saham yang terjual pada satu hari

3.5.2 Analisis Perangkat Keras dan Lunak

Perangkat keras yang dibutuhkan untuk pembuatan sistem pada penelitian ini dapat dilihat pada Tabel 3.3.

No.	Perangkat Keras dan Lunak Keterangan		
1.	Processor type	Intel Core i3 5005U Processor	
2.	RAM 10GB DDR3L		
3.	Storage	SSD 500GB dan HD 500GB	
4.	Graphic NVIDIAGeForce GT930 2GB VRAM		
5.	Perangkat input dan output	Keyboard, mouse, dan monitor	
6.	Koneksi internet	Wifi dan kuota internet	
7.	Operating system	Windows 10 64 bit	

3.5.3 Analisis Model

Analisis model yang dilakukan pada penelitian ini adalah analisis *backpropagation* neural network dan algoritma genetika. Arsitektur *backpropagation* yang digunakan pada penelitian ini adalah 4-2-1. Nilai 4 sebagai jumlah *input* layer, nilai 2 sebagai neuron pada hidden layer, dan nilai 1 sebagai jumlah output layer. Bentuk arsitektur dapat dilihat pada Gambar 3.2

Gambar 3.3 Arsitektur Backpropagation

Dalam penelitian ini, prediksi harga saham akan dilakukan dengan menggunakan backpropagation dan algoritma genetika. Penelitian ini akan menggunakan backpropagation untuk pelatihan data. Setelah menggunakan metode backpropagation,

penelitian ini akan mencoba mengoptimasi parameter yang digunakan pada metode *backpropagation* dengan menggunakan algoritma genetika. *Flowchart* penelitian ini dapat dilihat pada Gambar 3.3

Gambar 3.4 Flowchart Backpropagation-GA

3.6 Data Preprocessing

Data yang digunakan adalah data historis harga saham harian BBCA pada tahun 2017 hingga tahun 2021. Parameter yang digunakan dalam peneilitian ini berjumlah lima seperti pada Tabel 3.4

Tabel 3.4 Contoh Data Harga Harian Saham

No	Open	High	Low	Volume	Close
1.	34500	34700	33950	13782600	33950
2.	34100	34225	33875	11672000	34125
3.	34125	34175	33625	14373800	33625

4.	33700	33850	33400	15737600	33525
5.	33525	34050	33225	34726300	33550

Normalisasi data dilakukan untuk mendapatkan data dengan ukuran yang lebih kecil dengan mengubah nilai menjadi *range* 0 hingga 1. Tahapan normalisasi dapat dilihat pada Gambar 3.4.

Gambar 3.5 Flowchart Normalisasi Data

Perhitungan normalisasi data menggunakan persamaan (2.1)

$$x_{11} = \frac{34500 - 33525}{34500 - 33525} = 1$$

$$x_{21} = \frac{34700 - 33225}{34500 - 33225} = 0.589744$$

Tabel 3.5 Normalisasi Parameter

No	Open	High	Low	Volume	Close
1	1	1	1	0.091549	0.708333
2	0.589744	0.441176	0.896552	0	1
3	0.615385	0.382353	0.551724	0.117193	0.166667
4	0.179487	0	0.241379	0.176349	0
5	0	0.235294	0	1	0.041667

Pembagian data dilakukan dengan membagi data menjadi data *training* dan data *testing*. Data yang digunakan berjumlah 1012 data yang terdiri dari lima parameter dengan pembagian empat unit sebagai masukan dan satu unit sebagai keluaran atau target. Unit masukan terdiri dari

harga pembukaan, harga tertingi, harga terendah, dan jumlah saham yang terjual dalam satu hari. Unit keluaran berupa harga saham penutup pada satu hari.

Tabel 3.6 Pembagian Parameter

No	X1	X2	X3	X4	Target
1	1	1	1	0.091549	0.708333
2	0.589744	0.441176	0.896552	0	1
3	0.615385	0.382353	0.551724	0.117193	0.166667
4	0.179487	0	0.241379	0.176349	0
5	0	0.235294	0	1	0.041667

3.7 Eksperimen dan Pengujian Metode

Pada eksperimen dan pengujian metode, prediksi harga saham dilakukan dengan menggunakan *backpropagation* dan algoritma genetika. Dalam pengujian metode, penelitian ini akan mengujikan beberapa skenario.

3.7.1 Backpropagation

Backpropagaton digunakan untuk melakukan pelatihan pada data *training*, alur pelatihan demga menggunakan *backpropagation* digambarkan pada Gambar 3.5.

Gambar 3.6 Flowchart Pelatihan Backpropagation

Langkah awal pelatihan dengan menggunakan *backpropagation* adalah menginisialisasi semua bobot dan bias awal yang ada pada arsitektur jaringan syaraf tiruan. Inisialisasi bobot dan bias ini dilakukan dengan membangkitkan bilangan secara *random* sesuai dengan arsitektur

jaringan syaraf tiruan yang dibuat. Insisialisasi seluruh bobot dan bias dapat dilihat pada Tabel 3.7

Tabel 3.7 Inisialisasi Bobot dan Bias

Bobot dan Bias	Nilai
V_{01}	0.134364
V_{02}	0.449491
V_{11}	0.847434
V_{12}	0.651593
V_{21}	0.763775
V_{22}	0.788723
V_{31}	0.255069
V_{32}	0.09386
V_{41}	0.495435
V_{42}	0.028347
\mathbf{W}_{01}	0.835765
W_{11}	0.432767
W_{12}	0.76228

Pada pelatihan ini terdapat dua tahapan yaitu *feedward* dan *backward*. Tahap *feedward* (Gambar 3.6) dimulai dengan menghitung sinyal masukan dengan menjumlahkan semua masukan bobot serta bias. Perhitungan dilakukan dengan menggunakan persamaan (2.3)

Gambar 3.7 Proses Feed-forward

 Z_{in_11} =0.134364+(1*0.847434+1*0.763775+1*0.255069+0.091549*0.495435) =2.045998213

Lakukan penjumlahan hingga Z_{in_15} , hasil keseluruhan pada data pertama dapat dilihat pada tabel 3.7

Tabel 3.8 Sinyal Input ke Hidden Layer

Zin_11	Z _{in_12}
2.045998213	1.986262159

Hasil dari penjumlahan bobot akan digunakan sebagai sinyal keluaran pada *hidden layer* dengan dihitung menggunakan fungsi aktivasi pada persamaan 2.2

$$f(z_{\text{in}_{-11}}) = \frac{1}{1 + e^{-2.045998213}} = 0.885543$$

Tabel 3.9 Nilai Fungsi Aktivasi pada Hidden Layer

$f(Z_{in_11})$	$f(Z_{in_{-12}})$
0.885543	0.879347

Setelah sinyal keluaran dari *hidden layer* didapat, sinyal keluaran ini akan disebarkan ke lapisan *output*. Perhitungan pada *output layer* menggunakan pada persamaan 2.4

$$Y_{in_}1 = 0.835765 + (0.885543*0.432767 + 0.879347*0.76228$$

=1.889308

Hasil perhitungan di atas dihitung dengan menggunakan fungsi aktivasi pada *output layer* dengan persamaan 2.11

$$y_k = f(y_{in_1}) = \frac{1}{1 + e^{-1.889308}} = 0.868677$$

Setelah tahap *feedward* selesai, tahap selanjutnya adalah tahap *backward* yang dimulai dengan menghitung nilai *error* pada setiap unit keluaran dengan menggunakan persamaan (2.6) Proses *backward* dapat dilihat pada Gambar 3.7

Gambar 3.8 Proses Backward

$$\delta = (0.708333 - 0.868677) f'(\frac{1}{1 + e^{-1.55504}})$$

$$\delta = (0.708333 - 0.868677) y_k (1 - y_k)$$

$$\delta = (0.708333 - 0.868677) 0.868677 (1 - 0.868677)$$

$$= -0.01829$$

Niliai *error* yang didapatkan digunakan urntuk menghitung perbaikan bobot antara *hidden layer* dengan *output layer* menggunakan *learning rate* 0.9 dengan persamaan (2.7) Δw_{11} =0.9.(-0.01829).0.581949=-0.014578199

$$\Delta w_{12}$$
=0.9.(-0.01829).0.6132=-0.0014476205

Menghitung perbaikan bias dengan $\it learning\ rate\ 0.9$ dengan persamaan (2.8) Δw_{0k} =0.9.(-0.01829)=-0.016462447

Menghitung faktor δ pada hidden layer berdasarkan error pada hidden layer dengan menggunakan persamaan (2.9)

$$\delta_{in}_{j}$$
=-0.01829*0.432767=-0.00729

Tabel 3.10 Sinyal Input dari Output Layer

$\delta_{\text{in }1}$	$\delta_{\text{in 2}}$
-0.00729	-0.01394

Selanjutnya menghitung $\it error$ pada $\it hidden~layer$ dengan persamaan (2.10) δ_i =-0.00729*0.885543*(1-0.885543)=-0.0008

Tabel 3.11 Nilai Error pada Hidden Layer

δ_1	δ_2
-0.0008	-0.00148

Faktor *error* yang sudah dihitung digunakan untuk menghitung perbaikan bobot antara *input layer* dengan *hidden layer* dengan persamaan (2.11)

$$\Delta v_{11}$$
=0.9*(-0.0008)*1=-0.000722107

Menghitung perbaikan bias dengan persamaan (2.12) Δv_{01} =0.9*(-0.0008)=-0.000722107

Tahap terakhir adalah memperbaharui semua bobot dengan melakukan penjumlahan bobot lama dengaan delta bobot, dengan persamaan (2.13) dan (2.14) Proses permbaharuan bobot dapat dilihat pada Gambar 3.8

Gambar 3.9 Proses Update Bobot dan Bias

 w_{11} (new)=0.432767067905053+(-0.014578199)=0.418188869

 v_{11} (new)=0.847433736937232+(-0.000722107=0.84671163

Tabel 3.12 Bobot dan Bias Baru

Bobot	Nilai
V_{01}	0.133642137
V_{02}	0.44815967
V_{11}	0.84671163
V_{12}	0.650261578
V_{21}	0.763052512
V_{22}	0.787391956
V_{31}	0.254346918
V_{32}	0.092528192
V_{41}	0.495368979
V_{42}	0.028225589
W_{01}	0.819302657
\mathbf{W}_{11}	0.418188869
W_{12}	0.747803877

3.7.2 Backpropagation dan Algoritma Genetika

Langkah awal yang dilakukan adalah menginisialisasi populasi awal sebagai pembangkit individu awal. Setiap individu mempresentasikan bobot serta bias yang sesuai dengan arsitektur *backpropagation* pada **Gambar 3.1**. Tahapan optimasi digambarkan pada Gambar 3.8

Gambar 3.10 Proses Optimasi

Panjang kromosom untuk setiap individu adalah 13, dengan x1 hingga x9 merupakan bobot dan bias pada *hidden layer* dan x10-x13 merupakan bobot dan bias pada *output layer*. Representasi kromosom digambarkan pada Gambar 3.9.

Gambar 3.11 Representasi Kromosom

Membangkitkan populasi awal dengan menggunakan bilangan acak, dalam perhitungan manual ini jumlah populasi yang digunakan adalah 3 seperti pada Tabel 3.13

Kromosom **X1** X2**X3 X4 X5 X6 X7 X8 X9** X10 X11 X12 X13 0.76 0.78 P 0.13 0.44 0.84 0.65 0.25 0.09 0.49 0.02 0.83 0.43 0.76 44 95 74 38 39 54 83 58 28 23 16 87 51 0.95 0.73 0.94 0.66 0.05 0.30 0.83 0.15 0.43 0.08 0.60 0.60 0.58 49 78 97 66 81 59 55 68 12 84 07 P 0.23 0.06 0.54 0.01 0.37 0.83 0.60 0.25 0.62 0.23 0.99 0.47 0.83 3 55 39 94 57 43 8 42 32 75 56 03 65

Tabel 3.13 Populasi Awal

Setelah mendapatkan populasi langkah selanjutnya adalah proses reproduksi yaitu crossover dan mutasi. Pada tahap ini, crossover rate yang menyatakan rasio offspring dan nilai alpha harus ditentukan Metode yang digunakan pada penelitian ini adalah extended intermediate crossover yang mengacu pada persamaan (2.16). Berikut merupakan nilai alpha beserta perhitungannya.

Tabel 3.14 Nilai Alpha

í	a1	a2	a3	a4	a5	a6	a7	a8	a9	a10	a11	a12	a13
(0.23	0.401	0.103	0.91	0.396	0.800	0.15	0.765	0.066	0.221	0.536	0.276	0.172
(5	6	2	8	1	5	5	2	5	9	7	7	7

Nilai cr yang digunakan adalah 0.5, sehingga *offspring* yang digunakan berjumlah 2 dengan menggunkan persamaan (2.15). Dengan begitu jumlah *crossover* yang akan dilakukan adalah 2 kali.

C1:
$$x_1=0.1344+0.236*(0.956-0.1344)=0.956034$$

 $x_2=0.4495+0.4016*(0.736-0.4495=0.73597$

Tabel 3.15 Hasil Perhitungan Crossover

		Kromosom											
	X1	X2	X3	X4	X5	X6	X7	X8	X9	X10	X11	X12	X13
C	0.95	0.73	0.94	0.66	0.05	0.30	0.08	0.60	0.83	0.60	0.58	0.15	0.43
1	6034	597	7827	973	6551	8136	4872	5944	5499	6802	1204	8383	067
C	0.23	0.06	0.54	0.01	0.36	0.83	0.60	0.25	0.62	0.23	0.99	0.47	0.83
2	7965	5529	4229	3168	9955	7469	392	9354	572	4331	5645	0264	6461

Proses selanjutnya adalah mutasi dengan memilih satu induk acak dari populasi (*random mutation*) yaitu P3. Nilai mr yang digunakan adalah sebesar 0.2 sehingga nilai *offspring* yang dihasilkan adalah 1. Nilai r yang digunakan dipilih secara acak yaitu 0.056

M1: $x_1 = 0.238 + 0.056(0.9956 - 0.0132) = 0.292983$

Tabel 3.16 Hasil Perhitungan Mutasi

		Kromosom											
	X1	X2	X3	X4	X5	X6	X7	X8	X9	X10	X11	X12	X13
M	0.2929	0.06	0.54	0.01	0.3	0.83	0.60	0.25	0.62	0.23	0.99	0.47	0.83
1	83	55	42	32	7	75	39	94	57	43	56	03	65

Setelah mendapatkan keturunan langkah selanjutnya adalah melakukan proses evaluasi untuk menghitung nilai *fitness* menggunakan nilai MSE yang didapat dari proses *feedforward*.

Menghitung nilai *fitness* ini menggunakan contoh bobot dan bias pada populasi 2 (P2)

Tabel 3.17 Contoh Bias dan Bobot

	V_{01}	V_{02}	V_{11}	V_{12}	V_{21}	V_{22}	V_{31}	V_{32}	V_{41}	V_{42}	\mathbf{W}_{01}	\mathbf{W}_{11}	\mathbf{W}_{12}
P	0.95	0.73	0.94	0.66	0.05	0.30	0.08	0.60	0.83	0.60	0.58	0.15	0.43
2	6	6	78	97	66	81	49	59	55	68	12	84	07

 Z_{in_11} =0.956+(1*0.9478+1*0.0566+1*0.0849+0.09154*0.8355) =2.121774209

Lakukan penjumlahan hingga Z_{in_15} , hasil keseluruhan pada data pertama dapat dilihat pada Tabel 3.7

Tabel 3.18 Sinval Input ke Hidden Laver

$Z_{in_{11}}$	$Z_{in_{12}}$
2.121774209	2.37533106

Hasil dari penjumlahan bobot akan digunakan sebagai sinyal keluaran pada *hidden layer* dengan dihitung menggunakan fungsi aktivasi pada persamaan 2.2

$$f(z_{\text{in}_11}) = \frac{1}{1 + e^{-2.121774209}} = 0.893002$$

Tabel 3.19 Nilai Fungsi Aktivasi pada Hidden Layer

$f(Z_{in_11})$	$f(Z_{in_{-12}})$
0.893002	0.914927

Setelah sinyal keluaraan dari *hidden layer* didapat, sinyal keluaran ini akan disebarkan ke lapisan *output*. Perhitungan pada *output layer* menggunakan persamaan 2.4

$$Y_{in_1} = 0.5812 + (0.893002*0.1584 + 0.914927*0.4307$$

=1.116671

Hasil perhitungan diatas dihitung dengan menggunakan fungsi aktivasi pada *output layer* dengan persamaan 2.11

$$y_k = f(y_{in_1}) = \frac{1}{1 + e^{-1.116671}} = 1.116671$$

Proses ini diulang sebanyak data latih yang digunakan yaitu lima. Kemudian setelah nilai y didapatkan proses selanjutnya adalah menghitung MSE

$$\begin{split} MSE &= (0.708333 - 0.753371)^2 + (1 - 0.749069)^2 + (0.166667 - 0.745333)^2 + (0 - 0.724409)^2 + (0.041667 - 0.737108)^2 \\ &= 0.281651 \end{split}$$

fitness=
$$\frac{1}{0.281651}$$
=3.550491

Tabel 3.20 Nilai Fitness

	Kromosom										Fitne			
	X1	X2	X3	X4	X5	X6	X7	X8	X9	X10	X11	X12	X13	SS
P	0.13	0.44	0.84	0.65	0.76	0.78	0.25	0.09	0.49	0.02	0.83	0.43	0.76	2.679
1	44	95	74	16	38	87	51	39	54	83	58	28	23	077
P	0.95	0.73	0.94	0.66	0.05	0.30	0.08	0.60	0.83	0.60	0.58	0.15	0.43	3.550
2	6	6	78	97	66	81	49	59	55	68	12	84	07	491

Tabel 3.21 Lanjutan Nilai Fitness

					K	romoso	m						Fitne	l
X1	X2	X3	X4	X5	X6	X7	X8	X9	X10	X11	X12	X13	SS	l

P	0.23	0.06	0.54	0.01	0.37	0.83	0.60	0.25	0.62	0.23	0.99	0.47	0.83	2.528
3	8	55	42	32		75	39	94	57	43	56	03	65	8948
														8
C	0.95	0.73	0.94	0.66	0.05	0.30	0.08	0.60	0.83	0.60	0.58	0.15	0.43	2.925
1	603	597	782	973	655	813	487	594	549	680	120	838	067	247
	4		7		1	6	2	4	9	2	4	3		
C	0.23	0.06	0.54	0.01	0.36	0.83	0.60	0.25	0.62	0.23	0.99	0.47	0.83	3.156
2	796	552	422	316	995	746	392	935	572	433	564	026	646	38
	5	9	9	8	5	9		4		1	5	4	1	
M	0.29	0.06	0.54	0.01	0.37	0.83	0.60	0.25	0.62	0.23	0.99	0.47	0.83	2.525
1	298	55	42	32		75	39	94	57	43	56	03	65	19
	3													

Selanjutnya, setelah mendapatkan semua nilai *fitness* dari seluruh individu, MSE atau *fitness* akan diseleksi. Langkah ini dilakukan untuk mendapatkan individu terbaik dengan melihat nilai *fitness*. Metode seleksi yang digunakan adalah *elitism selection* dengan memilih individu terbaik sejumlah *posize* yang digunakan yaitu 3.

Tabel 3.22 Generasi Baru

		Kromosom										Fitness		
	X1	X2	X3	X4	X5	X6	X7	X8	X9	X10	X11	X12	X13	
P	0.134	0.44	0.84	0.65	0.76	0.78	0.25	0.09	0.49	0.02	0.83	0.43	0.76	2.6790
1	4	95	74	16	38	87	51	39	54	83	58	28	23	77
P	0.238	0.06	0.54	0.01	0.37	0.83	0.60	0.25	0.62	0.23	0.99	0.47	0.83	2.5288
3		55	42	32		75	39	94	57	43	56	03	65	9488
M	0.292	0.06	0.54	0.01	0.37	0.83	0.60	0.25	0.62	0.23	0.99	0.47	0.83	2.5251
1	983	55	42	32		75	39	94	57	43	56	03	65	9

Setelah melakukan optimasi dengan menggunakan algoritma genetika, bobot dan bias optimal diperoleh dan dilajutkan dengan pelatihan menggunakan *backpropagation* seperti perhitungan pada sub sub bab 3.5.1.

3.7.3 Pengujian

Tahap pengujian dilakukan dengan menggunakan beberapa skenario untuk menemukan parameter yang optimal. Pengujian ini dilakukan dengan lima skenario yang terdiri dari tiga skenario untuk menguji parameter algoritma genetika dan dua skenario untuk menguji parameter *backpropagation*.

Skenario pertama akan menguji pengaruh ukuran populasi terhadap nilai *fitness*. Ukuran populasi akan diuji dengan kelipatan 10 hingga 10 kali percobaan ditunjukan pada Tabel 3.23

Tabel 3.23 Pengujian Ukuran Populasi

2 3 1	
Nilai Fitness pada Percobaan ke-i	

Jumlah	1	2	3	4	5	Rata-Rata
Populasi						Fitness
10						
20						
30						
40						
50						
60						
70						
80						
90						
100						

Seknario kedua menguji pengaruh *cr* dan *mr* terhadap nilai *fitness* yang ditunjukan pada Tabel 3.24.

Tabel 3.24 Pengujian Cr dan Mr

Cr	Mr		Nilai <i>Fitne</i>	ess pada Perc	obaan ke-i		Rata-Rata
		1	2	3	4	5	Fitness
0	1						
0.1	0.9						
0.2	0.8						
0.3	0.7						
0.4	0.6						
0.5	0.5						
0.6	0.4						
0.7	0.3						
0.8	0.2						
0.9	0.1						
1	0						

Skenario ketiga akan menguji pengaruh jumlah generasi terhadap nilai *fitness* yang ditunjukan pada tabel 3.25. Jumlah generasi yang akan dicoba adalah kelipatan 50 yang akan dilakukan dengan 10 kali percobaan

Tabel 3.25 Pengujian Jumlah Generasi

Jumlah		Nilai Fitness pada Percobaan ke-i									
Generasi	1	1 2 3 4 5									
50											
100											
150											
200											

Tabel 3.26 Lanjutan Pengujian Jumlah Generasi

Jumlah		Nilai Fitness pada Percobaan ke-i								
Generasi	1	2	5	Fitness						
250										

300			
350			
400			
450			
500			

Seknario keempat dilakukan dengan menguji pembagian data latih dan data uji serta jumlah *hidden layer* yang digunakan yang ditunjukan pada Tabel 3.27

Tabel 3.27 Pengujian Pembagian Data dan jumlah Neuron pada Hidden Layer

Data Latih	Data Uji		MSE pada jumlah Neuron di Hidden Layer							
		2	4	6	8	10				
90%	10%									
80%	20%									
70%	30%									
60%	40%									

Skenario kelima menguji jumlah *epoch* dan nilai *learning rate* pada algoritma *backpropagation* terhadap nilai MSE yang ditunjukan pada Tabel 3.28

Tabel 3.28 Pengujian Pengaruh Epoch dan Learning Rate

epoch	MSE								
	a=0.1	a=0.2	a=0.3	a=0.4	a=0.5	a=0.6	a=0.7	a=0.8	a=0.9
500									
1000									
1500									
2000									
2500									

DAFTAR PUSTAKA

- Arkeman, Y., Seminar, K. B., & Gundawan, H. (2012). Algoritma Genetika Teori dan Aplikasinya untuk Bisnis dan industri. PT Penerbit IPB Press.
- Arsi, P., & Prayogi, J. (2020). Optimasi Prediksi NilaiTukar Rupiah Terhadap Dolar Menggunakan Neural Network Berbasiskan Algoritma Genetika. *Jurnal Informatika*, 7(1), 8–14. https://doi.org/10.31311/ji.v7i1.6793
- Azam, D. F., Ratnawati, D. E., & Adikara, P. P. (2018). Prediksi Harga Emas Batang Menggunakan Feed Forward Neural Network Dengan Algoritme Genetika. *Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya*, 2(8), 2317–2322.
- Azise, N., Andono, P. N., & Pramunendar, R. A. (2019). Prediksi Pendapatan Penjualan Obat Menggunakan Metode Backpropagation Neural Network dengan Algoritma Genetika Sebagai Seleksi Fitur. *Jurnal Cyberku*, *15*, 142–154. http://research.pps.dinus.ac.id/index.php/Cyberku/article/view/91
- Cynthia, E. P., & Ismanto, E. (2017). JARINGAN SYARAF TIRUAN ALGORITMA BACKPROPAGATION DALAM MEMPREDIKSI KETERSEDIAAN KOMODITI PANGAN PROVINSI RIAU. *Jurnal Teknologi Dan Sistem Informasi Univrab*, 2(2), 196–209.
- Gorunescu, F., Belciug, S., Gorunescu, M., & Badea, R. (2012). Intelligent decision-making for liver fibrosis stadialization based on tandem feature selection and evolutionary-driven neural network. *Expert Systems with Applications*, *39*(17), 12824–12832. https://doi.org/10.1016/j.eswa.2012.05.011
- Hakim, M. M. (2018). Prediksi Harga Jual Suku Cadang Impor Mesin Rokok dengan Jaringan Syaraf Tiruan. *Jurnal SIMETRIS*, 9(1), 67–76.
- Jeferson, J., & Sudjatmoko, N. (2013). Shopping Saham Modal Sejuta! Elex Media Komputindo.
- Kusumodestoni, R. H., & Sarwido, S. (2017). Komparasi Model Support Vector Machines (Svm) Dan Neural Network Untuk Mengetahui Tingkat Akurasi Prediksi Tertinggi Harga Saham. *Jurnal Informatika Upgris*, 3(1). https://doi.org/10.26877/jiu.v3i1.1536
- Mahmudy, W. F. (2016). *Dasar-Dasar Algoritma Evolusi* (Issue January 2015). Program Teknologi Informasi dan Ilmu Komputer (PTIIK) Universitas Brawijaya.
- Maulana, R., & Kumalasari, D. (2019). Analisis Dan Perbandingan Algoritma Data Mining Dalam Prediksi Harga Saham Ggrm. *Jurnal Informatika Kaputama (JIK)*, *3*(1), 22–28. https://finance.yahoo.com/quote/GGRM.J
- Nikentari, N., Kurniawan, H., Ritha, N., Kurniawan, D., Maritim, U., & Ali, R. (2018). Particle Swarm Optimization Untuk Prediksi Pasang Surut Air Optimization of Backpropagation Artificial Neural Network With Particle Swarm Optimization To Predict Tide Level.

- Jurnal Teknologi Informasi Dan Ilmu Komputer, 5(5), 605–612. https://doi.org/10.25126/jtiik2018551055
- Novita, A. (2016). Prediksi Pergerakan Harga Saham Pada Bank Terbesar Di Indonesia Dengan Metode Backpropagation Neural Network. *Jutisi*, *05*(01), 965–972.
- Pressman, R. S. (2010). Software Quality Engineering: A Practitioner's Approach. In *Software Quality Engineering: A Practitioner's Approach* (Vol. 9781118592). McGraw-Hill. https://doi.org/10.1002/9781118830208
- Pujianto, A., Kusrini, K., & Sunyoto, A. (2018). Perancangan Sistem Pendukung Keputusan Untuk Prediksi Penerima Beasiswa Menggunakan Metode Neural Network Backpropagation. *Jurnal Teknologi Informasi Dan Ilmu Komputer*, *5*(2), 157. https://doi.org/10.25126/jtiik.201852631
- Putri, M. A., & Wibisono, I. S. (2019). Implementasi Neural Network Backpropagation untuk Memprediksi Kurs Valuta Asing. *Prodi Teknik Informatika UNW*, *II*(1), 20–25.
- Santoso, A., & Hansun, S. (2019). Prediksi IHSG dengan Backpropagation Neural Network. Jurnal Rekayasa Sistem Dan Teknoogi Informasi, 3(2), 313–318.
- Sugiyarto, A. W., Urwatul Wutsqa, D., Hendiyani, N., & Rasjava, A. R. II. (2019). Optimization of genetic algorithms on backpropagation neural network to predict national rice production levels. *Proceedings of ICAITI 2019 2nd International Conference on Applied Information Technology and Innovation: Exploring the Future Technology of Applied Information Technology and Innovation,* 77–81. https://doi.org/10.1109/ICAITI48442.2019.8982118
- Sugiyono. (2013). Metode Penelitian Kuantitatif, Kualitatif, dan R&D (19th ed.). Alfabeta CV.
- Suhendra, C. D., & Wardoyo, R. (2015). Penentuan Arsitektur Jaringan Syaraf Tiruan Backpropagation (Bobot Awal dan Bias Awal) Menggunakan Algoritma Genetika. *IJCCS* (*Indonesian Journal of Computing and Cybernetics Systems*), 9(1), 77. https://doi.org/10.22146/jjccs.6642
- Umaidah, Y. (2018). PENERAPAN ALGORITMA ARTIFICIAL NEURAL NETWORK DALAM PREDIKSI HARGA SAHAM LQ45 PT . BANK RAKYAT. *JURNAL GERBANG*, 8(1), 57–64.
- Windarto, A. P. (2017). Implementasi JST Dalam Menentukan Kelayakan Nasabah Pinjaman KUR Pada Bank Mandiri Mikro Serbelawan Dengan Metode Backpropogation. *J-SAKTI (Jurnal Sains Komputer Dan Informatika)*, *I*(1), 12. https://doi.org/10.30645/j-sakti.v1i1.25
- Windarto, A. P., Lubis, M. R., & Solikhun, S. (2018). Model Arsitektur Neural Network Dengan Backpropogation Pada Prediksi Total Laba Rugi Komprehensif Bank Umum Konvensional. *Klik Kumpulan Jurnal Ilmu Komputer*, *5*(2), 147. https://doi.org/10.20527/klik.v5i2.148
- Zyen, A. K., & Kusumodestoni, R. H. (2016). Pengembangan Model Prediksi Harga Saham Berbasis Neural Network. *Jurnal DISPROTEK*, 7(1), 74–83.