INE5452 - Tópicos Especiais em Algoritmos II Quarto simulado - Questões extra-URI

Entrega: até 28 de outubro de 2020 (até 23:55h via Moodle)

Este Exercício-Programa (EP) é individual. Todos devem entregar as seguintes tarefas (além daquelas disponíveis via sistema externo URI):

• Escrever soluções para problemas de otimização que exigem estratégia gulosa ou programação dinâmica (não é necessário implementação).

1 O que <u>deve</u> ser entregue?

O EP pode ser entregue até dia 28 de outubro de 2020 (até 23:55h via Moodle). Cada aluno (aluna) deverá entregar um arquivo (formato PDF) com as soluções para cada problema definido em seguida.

2 Definição dos problemas

2.1 Minimização do máximo da soma de pares (CRIS - IME - USP) - 2 pontos

A entrada é uma sequência de números x_1, x_2, \ldots, x_n onde n é par. Projete um algoritmo que particione a entrada em n/2 pares da seguinte maneira. Para cada par, computamos a soma de seus números. Denote por $s_1, s_2, \ldots, s_{n/2}$ as n/2 somas. O algoritmo deve encontrar uma partição que minimize o máximo das somas e deve ser tão eficiente quanto possível. Explique porque ele funciona e analise o seu tempo de execução.

2.2 Menor conjunto de intervalos fechados (CRIS - IME - USP) - 2 pontos

Descreva um algoritmo eficiente que, dado um conjunto $\{x_1, x_2, \ldots, x_n\}$ de pontos na reta real, determine o menor conjunto de intevalos fechados de comprimento um (1) que contém todos os pontos dados. Justifique informalmente o seu algoritmo e analise a sua complexidade.

2.3 O problema do escalonamento de intervalos com pesos - 3 pontos (1, 2)

Dados n requisições $R = \{1, ..., n\}$ com peso v_i , e tempos início e fim definidos s_i e f_i para cada $i \in R$.

- 1. Faça um algoritmo que recebe R e devolve o valor de um subconjunto compatível de peso máximo de R.
- 2. Faça um algoritmo onde é dado (somente) o valor de um subconjunto compatível de peso máximo e devolve um subconjunto compatível com tal valor.

2.4 O problema da mochila (com repetição e sem repetição) - 6 pontos (1, 2, 1, 2)

Dada uma mochila com capacidade W, e um conjunto de itens $I = \{1, ..., n\}$ com peso p_i e valor v_i para $i \in I$.

- 1. Faça um algoritmo que recebe I e devolve o valor de uma mochila máxima contendo itens de I (é permitido repetir itens).
- 2. Faça um algoritmo onde é dado (somente) o valor de uma $mochila\ m\'axima$ contendo itens de i (é permitido repetir itens) e devolve os itens e a quantidade de cada item que devem ser colocados na mochila.
- 3. Faça um algoritmo que recebe I e devolve o valor de uma mochila máxima contendo itens de I ($\mathbf{n}\tilde{\mathbf{a}}\mathbf{o}$ é permitido repetir itens).
- 4. Faça um algoritmo onde é dado (somente) o valor de uma *mochila máxima* contendo itens de *i* (**não** é permitido repetir itens) e devolve os itens e a quantidade de cada item que devem ser colocados na mochila.

Observações importantes:

- 1. **IMPORTANTE:** O simulado extra-URI possui **13 pontos**. A soma dos pontos dos simulados URI e extra-URI será no máximo **10 pontos**.
- 2. Submissões das soluções atrasadas **não** serão aceitas.
- 3. Escreva o seu algoritmo de maneira a destacar a sua formatação.
- 4. A entrega deverá ser feita no Moodle.
- 5. Estes exercícios devem ser feitos individualmente. Não copie as soluções de outro aluno (aluna), não copie as soluções de outra pessoa, não empreste suas soluções para outro aluno (aluna), e tome cuidado para que não copiem suas soluções sem a sua permissão. Todos as soluções envolvidas em cópias terão notas iguais a ZERO.

Bom trabalho!