ISYE 6740, Summer 2023, Homework 3

100 points + 10 bonus points

Prof. Yao Xie

1. Conceptual questions. [10 points]

For the EM algorithm for GMM, please show how to use the Bayes rule to drive τ_k^i in a closed-form expression.

2. Optimization. [20 points]

Consider a simplified logistic regression problem. Given m training samples (x^i, y^i) , $i = 1, \ldots, m$. The data $x^i \in \mathbb{R}$, and $y^i \in \{0, 1\}$. To fit a logistic regression model for classification, we solve the following optimization problem, where $\theta \in \mathbb{R}$ is a parameter we aim to find:

$$\max_{\theta} \ell(\theta),\tag{1}$$

where the log-likelhood function

$$\ell(\theta) = \sum_{i=1}^{m} \left\{ -\log(1 + \exp\{-\theta^{T} x^{i}\}) + (y^{i} - 1)\theta^{T} x^{i} \right\}.$$

- 1. (5 points) Show step-by-step mathematical derivation for the gradient of the cost function $\ell(\theta)$ in (1).
- 2. (5 points) Write a pseudo-code for performing **gradient descent** to find the optimizer θ^* . This is essentially what the training procedure does.
- 3. (5 points) Write the pseudo-code for performing the **stochastic gradient descent** algorithm to solve the training of logistic regression problem (1). Please explain the difference between gradient descent and stochastic gradient descent for training logistic regression.
- 4. (5 points) We will show that the training problem in basic logistic regression problem is concave. Derive the Hessian matrix of $\ell(\theta)$ and based on this, show the training problem (1) is concave. Explain why the problem can be solved efficiently and gradient descent will achieve a unique global optimizer, as we discussed in class.

3. Implementing EM for MNIST dataset. [40 points]

Implement the EM algorithm for fitting a Gaussian mixture model for the MNIST handwritten digits dataset. For this question, we reduce the dataset to be only two cases, of digits "2" and "6" only. Thus, you will fit GMM with C=2. Use the data file data.mat or data.dat. True label of the data are also provided in label.mat and label.dat.

The matrix images is of size 784-by-1990, i.e., there are 1990 images in total, and each column of the matrix corresponds to one image of size 28-by-28 pixels (the image is vectorized; the original image can be recovered by mapping the vector into a matrix).

First use PCA to reduce the dimensionality of the data before applying to EM. We will put all "6" and "2" digits together, to project the original data into 4-dimensional vectors.

Now implement EM algorithm for the projected data (with 4-dimensions).

- (a) (5 points) Write down detailed expression of the E-step and M-step in the EM algorithm (hint: when computing τ_k^i , you can drop the $(2\pi)^{n/2}$ factor from the numerator and denominator expression, since it will be canceled out; this can help avoid some numerical issues in computation).
- (b) (20 points) Implement EM algorithm yourself. Use the following initialization
 - initialization for mean: random Gaussian vector with zero mean
 - initialization for covariance: generate two Gaussian random matrix of size n-by-n: S_1 and S_2 , and initialize the covariance matrix for the two components are $\Sigma_1 = S_1 S_1^T + I_n$, and $\Sigma_2 = S_2 S_2^T + I_n$, where I_n is an identity matrix of size n-by-n.

Plot the log-likelihood function versus the number of iterations to show your algorithm is converging.

- (c) (10 points) Report, the fitted GMM model when EM has terminated in your algorithms as follows. Report the weights for each component, and the mean of each component, by mapping them back to the original space and reformat the vector to make them into 28-by-28 matrices and show images. Ideally, you should be able to see these means corresponds to some kind of "average" images. You can report the two 4-by-4 covariance matrices by visualizing their intensities (e.g., using a gray scaled image or heat map).
- (d) (5 points) Use the τ_k^i to infer the labels of the images, and compare with the true labels. Report the mis-classification rate for digits "2" and "6" respectively. Perform K-means clustering with K=2 (you may call a package or use the code from your previous homework). Find out the mis-classification rate for digits "2" and "6" respectively, and compare with GMM. Which one achieves the better performance?

4. Naive Bayes for spam filtering. [30 points]

In this problem, we will use the Naive Bayes algorithm to fit a spam filter by hand. This will enhance your understanding to Bayes classifier and build intuition. This question does not involve any programming but only derivation and hand calculation.

Spam filters are used in all email services to classify received emails as "Spam" or "Not Spam". A simple approach involves maintaining a vocabulary of words that commonly occur in "Spam" emails and classifying an email as "Spam" if the number of words from the dictionary that are present in the email is over a certain threshold. We are given the vocabulary consists of 15 words

 $V = \{\text{secret, offer, low, price, valued, customer, today, dollar, million, sports, is, for, play, healthy, pizza}\}.$

We will use V_i to represent the *i*th word in V. As our training dataset, we are also given 3 example spam messages,

- million dollar offer for today
- secret offer today
- secret is secret

and 4 example non-spam messages

- low price for valued customer
- play secret sports today
- sports is healthy
- low price pizza

Recall that the Naive Bayes classifier assumes the probability of an input depends on its input feature. The feature for each sample is defined as $x^{(i)} = [x_1^{(i)}, x_2^{(i)}, \dots, x_d^{(i)}]^T$, $i = 1, \dots, m$ and the class of the *i*th sample is $y^{(i)}$. In our case the length of the input vector is d = 15, which is equal to the number of words in the vocabulary V. Each entry $x_j^{(i)}$ is equal to the number of times word V_j occurs in the *i*-th message.

- 1. (5 points) Calculate class prior $\mathbb{P}(y=0)$ and $\mathbb{P}(y=1)$ from the training data, where y=0 corresponds to spam messages, and y=1 corresponds to non-spam messages. Note that these class prior essentially corresponds to the frequency of each class in the training sample. Write down the feature vectors for each spam and non-spam messages.
- 2. (15 points) In the Naive Bayes model, assuming the keywords are independent of each other (this is a simplification), the likelihood of a sentence with its feature vector x given a class c is given by

$$\mathbb{P}(x|y=c) = \prod_{k=1}^{d} \theta_{c,k}^{x_k}, \quad c = \{0, 1\}$$

where $0 \le \theta_{c,k} \le 1$ is the probability of word k appearing in class c, which satisfies

$$\sum_{k=1}^{d} \theta_{c,k} = 1, \quad c = \{0, 1\}.$$

Given this, the complete log-likelihood function for our training data is given by

$$\ell(\theta_{0,1}, \dots, \theta_{0,d}, \theta_{1,1}, \dots, \theta_{1,d}) = \sum_{i=1}^{m} \sum_{k=1}^{d} x_k^{(i)} \log \theta_{y^{(i)},k}$$

(In this example, m = 7.) Calculate the maximum likelihood estimates of $\theta_{0,1}$, $\theta_{0,7}$, $\theta_{1,1}$, $\theta_{1,15}$ by maximizing the log-likelihood function above.

(Hint: We are solving a constrained maximization problem and you will need to introduce Lagrangian multipliers and consider the Lagrangian function.)

3. (10 points) Given a test message "today is secret", using the Naive Bayes classier that you have trained in Part (a)-(b), to calculate the posterior and decide whether it is spam or not spam.

5. De-bias review system using EM. [Bonus, 10 points]

In this question, we will develop an algorithm to remove individual reviewer's bias from their score. Consider the following problem. There are P papers submitted to a machine learning conference. Each of R reviewers reads each paper, and gives it a score indicating how good he/she thought that paper was. We let $x^{(pr)}$ denote the score that reviewer r gave to paper p. A high score means the reviewer liked the paper, and represents a recommendation from that reviewer that it be accepted for the conference. A low score means the reviewer did not like the paper.

We imagine that each paper has some "intrinsic" true value that we denote by μ_p , where a large value means it's a good paper. Each reviewer is trying to estimate, based on reading the paper, what μ_p is; the score reported $x^{(pr)}$ is then reviewer r's guess of μ_p .

However, some reviewers are just generally inclined to think all papers are good and tend to give all papers high scores; other reviewers may be particularly nasty and tend to give low scores to everything. (Similarly, different reviewers may have different amounts of variance in the way they review papers, making some reviewers more consistent/reliable than others.) We let ν_r denote the "bias" of reviewer r. A reviewer with bias ν_r is one whose scores generally tend to be ν_r higher than they should be.

All sorts of different random factors influence the reviewing process, and hence we will use a model that incorporates several sources of noise. Specifically, we assume that reviewers's scores are generated by a random process given as follows:

$$y^{(pr)} \sim \mathcal{N}(\mu_p, \sigma_p^2)$$

 $z^{(pr)} \sim \mathcal{N}(\nu_r, \tau_r^2)$

$$x^{(pr)}|y^{(pr)}, z^{(pr)} \sim \mathcal{N}(y^{(pr)} + z^{(pr)}, \sigma^2).$$

The variables $y^{(pr)}$ and $z^{(pr)}$ are independent; the variables (x,y,z) for different paper-reviewer pairs are also jointly independent. Also, we only ever observe the $x^{(pr)}$ s; thus, the $y^{(pr)}$ s and $z^{(pr)}$ s are all latent random variables.

We would like to estimate the parameters μ_p , σ_p^2 , ν_r , τ_r^2 . If we obtain good estimates of the papers "intrinsic values" μ_p , these can then be used to make acceptance/rejection decisions for the conference.

We will estimate the parameters by maximizing the marginal likelihood of the data $\{x^{(pr)}; p = 1, \ldots, P, r = 1, \ldots, R\}$. This problem has latent variables $y^{(pr)}$ s and $z^{(pr)}$ s, and the maximum likelihood problem cannot be solved in closed form. So, we will use EM.

Your task is to derive the EM update equations. For simplicity, you need to treat only $\{\mu_p, \sigma_p^2; p = 1..., P\}$ and $\{\nu_r, \tau_r^2; r = 1...R\}$ as parameters, i.e. treat σ^2 (the conditional variance of $x^{(pr)}$ given $y^{(pr)}$ and $z^{(pr)}$) as a fixed, known constant.

1. Derive the E-step (5 points)

- (a) The joint distribution $p(y^{(pr)}, z^{(pr)}, x^{(pr)})$ has the form of a multivariate Gaussian density. Find its associated mean vector and covariance matrix in terms of the parameters μ_p , σ_p^2 , ν_r , τ_r^2 and σ^2 . [Hint: Recognize that $x^{(pr)}$ can be written as $x^{(pr)} = y^{(pr)} + z^{(pr)} + \epsilon^{(pr)}$, where $\epsilon^{(pr)} \sim \mathcal{N}(0, \sigma^2)$ is independent Gaussian noise.
- (b) Derive an expression for $Q_{pr}(\theta'|\theta) = \mathbb{E}[\log p(y^{(pr)}, z^{(pr)}, x^{(pr)})|x^{(pr)}, \theta]$ using the conditional distribution $p(y^{(pr)}, z^{(pr)}|x^{(pr)})$ (E-step) (Hint, you may use the rules for conditioning on subsets of jointly Gaussian random variables.)
- 2. (5 points) Derive the M-step to update the parameters μ_p , σ_p^2 , ν_r , and τ_r^2 . [Hint: It may help to express an approximation to the likelihood in terms of an expectation with respect to $(y^{(pr)}, z^{(pr)})$ drawn from a distribution with density $Q_{pr}(y^{(pr)}, z^{(pr)})$.]

Remark: John Platt (whose SMO algorithm you've seen) implemented a method quite similar to this one to estimate the papers' true scores. (There, the problem was a bit more complicated because not all reviewers reviewed every paper, but the essential ideas are the same.) Because the model tried to estimate and correct for reviewers' biases, its estimates of the paper's value were significantly more useful for making accept/reject decisions than the reviewers' raw scores for a paper.