

Chapter 2-2

Modeling Concurrent Systems

Transition system

- State: the behavior of systems at a certain moment.
 - A state of a traffic light is the color of the light.
 - A state of a sequential program is the current values of variables and program counter.
 - A state of a synchronous hardware circuit the value of input bits and registers.

Transition systems

- Transition specify the evolution from one state to another.
 - Traffic light is a switch from one color to another.
 - ◆ Transition of a sequential program is the execution of a statement.
 - A transition of a synchronous hardware circuit is the change of registers and output bits on a new set of input.

Transition system

- Action: communication mechanisms between processes.
- Atomic propositions: formalize temporal characteristics.
 - + X = 10
 - ◆ X<200
 - There is more than a liter of fluid in the tank
 - There are no customers in the shop.

Transition system(TS)

- A transition system TS is a tuple $(S, Act, \rightarrow, I, AP, L)$ where
 - -S is a set of states,
 - -Act is a set of actions,
 - $\rightarrow \subseteq S \times Act \times S$ is a transition relation,
 - $-I \subseteq S$ is a set of initial states,
 - -AP is a set of atomic propositions, and
 - $-L: S \rightarrow 2^{AP}$ is a labeling function.
- TS is called *finite* if S, Act, and AP are finite.

TS(cont)

- $s \xrightarrow{\alpha} s'$ instead of $(s, \alpha, s') \in \rightarrow$
 - ◆ a transition originating from *s* is selected *nondeterministically*.
 - The action α is performed and the transition system evolves from state s into the state s.
 - when the set of initial states consists of more than one state, the start state is selected nondeterministically.
 - ◆ Actions are for modeling communication mechanisms. Others can omit actions.

TS(cont)

- Label function $L(s) \in 2^{AP}$
 - A state s satisfies a propositional logic formula Φ if L(s) makes the formula Φ true; that is:

$$s \models \Phi \text{ iff } L(s) \models \Phi.$$

◆ AP is chosen depending on the characteristics of interest.

Satisfaction relation =

- Evaluation for AP is function μ :AP \rightarrow {0,1}.
- Eval(AP) is the set of all evaluations for AP.
- Satisfaction relation |= is a set of pair (μ, ϕ) , indicating the evaluations μ for which a formula ϕ is true.

•
$$\mu \mid = a$$
 iff $\mu(a) = 1$

$$\bullet \mu \mid = \neg \phi \quad \text{iff } \mu \mid \neq \phi$$

Application of nondeterministic

- to model the parallel execution of independent activities by interleaving
- to model the conflict situations that arise if two processes aim to access a shared resource.
- To be so important for abstraction purposes, for underspecification
- to model the interface with an unknown or unpredictable environment.

Example: Beverage Vending

- •S = { pay , select, soda, beer }
- $\bullet I = \{ pay \}$
- •Act = { insert_coin, get_soda, get_beer, τ }

Example(cont)

- After the insertion of a coin, the vending machine nondeterministically can choose to provide either beer or soda.
- AP = { paid , drink } -property under consideration
- Labeling function:

$$L(pay) = \emptyset,$$

 $L(soda) = L(beer) = \{ paid, drink \},$
 $L(select) = \{ paid \}.$

Actions and atomic propositions

- Actions are only necessary for modeling communication mechanisms
- The set of propositions AP is always chosen depending on the characteristics of interest.

Direct Successors

• Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system. For $s \in S$ and $\alpha \in Act$, the set of direct α -successors of s is defined as:

$$Post(s, \alpha) = \left\{ s' \in S \mid s \xrightarrow{\alpha} s' \right\}$$

$$Post(s) = \bigcup_{\alpha \in Act} Post(s, \alpha)$$

Direct Predecessors

• The set of α -predecessors of s is defined by:

$$Pre(s, \alpha) = \left\{ s' \in S \mid s' \xrightarrow{\alpha} s \right\}$$

$$Pre(s) = \bigcup_{\alpha \in Act} Pre(s, \alpha)$$

$$Post(C, \alpha) = \bigcup_{s \in C} Post(s, \alpha), \quad Post(C) = \bigcup_{s \in C} Post(s)$$

$$Pre(C, \alpha) = \bigcup_{s \in C} Pre(s, \alpha), \quad Pre(C) = \bigcup_{s \in C} Pre(s)$$

Terminal State of a TS

- State s in TS is called terminal iff:
 - \bullet *Post*(s) = \emptyset .
- For a sequential computer program, terminal states represents the termination of the program.
- For parallel systems, terminal states are usually considered to be undesired

Deterministic Transition System

- Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system.
 - TS is called action-deterministic if for all states s and actions α
 - $|I| \le 1$ and $|Post(s, \alpha)| \le 1$.
 - ◆ *TS* is called *AP-deterministic* if for all states *s* and $A \in 2^{AP}$

$$|I| \le 1$$
 and

$$|Post(s) \cap \{s \in S \mid L(s') = A\}| \le 1$$

Execution (also called run)

- Execution fragment
 - ◆ Let $TS = (S, Act, \rightarrow, I, AP, L)$. A finite execution fragment of TS:

$$\varrho = s_0 \alpha_1 s_1 \alpha_2 \dots \alpha_n s_n$$

such that
$$s_i \xrightarrow{\alpha_{i+1}} s_{i+1}$$
 for all $0 \le i < n$

Where n≥0 is the length of the finite execution fragment.

Infinite execution fragment

• An *infinite* execution fragment ρ of TS:

$$\rho = s_0 \alpha_1 s_1 \alpha_2 s_2 \alpha_3 \dots$$

such that
$$s_i \xrightarrow{\alpha_{i+1}} s_{i+1}$$
 for all $0 \leq i$.

Maximal and Initial Execution Fragment

- A maximal execution fragment is either a finite execution fragment that ends in a terminal state, or an infinite execution fragment.
- An execution fragment is called *initial* if it starts in an initial state.

Execution and Reachable states

- An *execution* of *TS* is an initial, maximal execution fragment.
- Let $TS = (S, Act, \rightarrow, I, AP, L)$, a state $s \in S$ is called *reachable* in TS if there exists an initial, finite execution fragment

$$s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\alpha_2} \dots \xrightarrow{\alpha_n} s_n = s_n$$

• *Reach*(*TS*) denotes the set of all reachable states in *TS*.

Sequential Hardware Circuits

$$\lambda_{v} = \neg(x \oplus r)$$

$$\delta_{r} = x \vee r$$
.

Sequential Hardware Circuits(con't)

- state space: S = Eval(x, r)----the set of evaluation of x and r
- \bullet AP={x,y,r}
- Label function

Sequential Hardware Circuits(con't)

- property: the output y is set infinitely often.
- AP'={x,y}
- r is invisible.

Sequential Hardware Circuits(con't)

- the general approach for sequential hardware circuits
 - ◆ state: Eval(x₁,...,x_n,r₁,...,r_k)
 - \bullet action:{ \mathcal{T} }
 - $AP = \{x_1,...,x_n,y_1,...,y_m,r_1,...,r_k\}$
 - ◆ transition:
 - \blacksquare $(a_1,...,a_n,c_1,...,c_k) \rightarrow (a'_1,...,a'_n,c'_1,...,c'_k)$

Data-Dependent Systems

- modeling conditional branching as a TS, the conditions of transitions could be omitted and could be replaced by nondeterminism;
 - if x%2=1 then x:=x+1; else x:=2x; if
- Result
 - very abstract transition system
 - a few relevant properties can be verified.
- New method
 - Conditional transition---program graph
 - Unfolded into a TS

Beverage Vending Machine

- counts the number of soda and beer bottles and returns inserted coins if the vending machine is empty.
- Location: start, select
- Conditional transition---- g:α

$$start \stackrel{true:coin}{\longrightarrow} select$$

$$start \stackrel{true:refill}{\longleftarrow} start$$

Beverage Vending Machine (cont)

- Conditional transition---- g:α
 - g is a Boolean condition (guard)
 - \bullet α is an action that is possible once g holds. If g does not hold, nothing to do.

$$select \stackrel{nsoda > 0 : sget}{=} start$$
 $select \stackrel{nbeer > 0 : bget}{=} start$
 $select \stackrel{nsoda = 0 \land nbeer = 0 : ret_coin}{=} start$

Beverage Vending Machine (cont)

- coin: insert coin
- ret_coin:return coin
- Other actions

Action	Effect
refill	nsoda := max; nbeer := max
sget	nsoda := nsoda - 1
bget	nbeer := nbeer - 1

• Variables: nsode, nbeer

Typed variables

- nsoda, nbeer are typed variables: Var
- The domain of x: dom(x)
- The set of evaluation: Eval(Var)
- The set of Boolean condition over Var:Cond(Var)
- Propositional symbol: $x \in D$, where
 - $\bullet x = (x_1, x_2, \dots x_n)$
 - \bullet D=D₁×D₂×...×D_n
 - Condition: propositional symbol
 - -3 < x x' < = 5 and x < = 2 * x'

effect

- The effect of the actions is formalized by means of a mapping:
 - ◆ Effect:Act x Eval(Var)→ Eval(Var)
 - How the evaluation η of variables is changed by performing an action.

Program Graph (PG)

- a digraph whose edges are labeled with conditions on these variables and actions.
- The effect of the actions is formalized by means of a mapping
 - ♦ Effect : Act \times Eval(Var) \rightarrow Eval(Var)
 - α action x := y + 5,
 - η evaluation $\eta(x) = 17$, $\eta(y) = -2$,
 - ◆ Effect(α , η)(x)= η (y) + 5 = -2 + 5 = 3
 - Effect(α , η)(y) = η (y) = -2

Program Graph (PG)

- A PG over set Var of typed variables is a tuple $(Loc, Act, Effect, -Loc_0, g_0)$
- Loc is a set of locations
- Act is a set of actions,
- $Effect : Act \times Eval(Var) \rightarrow Eval(Var)$
- $-\subseteq Loc \times Cond(Var) \times Act \times Loc$ is the conditional transition relation,
- $Loc_0 \subseteq Loc$ is a set of initial locations,
- $g_0 \in \text{Cond}(\text{Var})$ is the initial condition.

Beverage Vending Machine

- *Loc*={*start,select*}
- $Loc_0 = \{start\} \ Var = \{nsoda, nbeer\}$
- *Act* = { *bget* , *sget*, *coin*, *ret_coin*, *refill* }
- $g_0 = (nsoda = max \land nbeer = max)$
- Effect
 - Effect(coin, η) = η
 - Effect(ret_coin , η) = η
 - Effect(sget, η) = $\eta[nsoda := nsoda-1]$
 - Effect(bget, η) = η [nbeer := nbeer-1]
 - Effect(refill, η)=[nsoda:=max, nbeer := max]

Translation from PG into TS

Definition 2.15. Transition System Semantics of a Program Graph

The transition system TS(PG) of program graph

$$PG = (Loc, Act, Effect, \hookrightarrow, Loc_0, g_0)$$

over set Var of variables is the tuple $(S, Act, \longrightarrow, I, AP, L)$ where

- $S = Loc \times Eval(Var)$
- $\longrightarrow \subseteq S \times Act \times S$ is defined by the following rule (see remark below):

$$\frac{\ell \stackrel{g:\alpha}{\hookrightarrow} \ell' \quad \land \quad \eta \models g}{\langle \ell, \eta \rangle \stackrel{\alpha}{\longrightarrow} \langle \ell', Effect(\alpha, \eta) \rangle}$$

- $I = \{\langle \ell, \eta \rangle \mid \ell \in Loc_0, \eta \models g_0 \}$
- $AP = Loc \cup Cond(Var)$
- $L(\langle \ell, \eta \rangle) = \{\ell\} \cup \{g \in Cond(Var) \mid \eta \models g\}.$

Guo Jian 程序分析与验证

Parallelism and Communication

- define an operator, such that:
- $TS = TS_1 \parallel TS_2 \parallel \ldots \parallel TS_n$
- is a transition system that specifies the behavior of the parallel composition of transition systems TS_1 through TS_n .
- interleaving: the system is composed of a set of independent components.
 - ◆ example: two processes, P || Q
 - ◆ the order: PQPPQP..., or PPPQQQ, or PQPQPQ....

Concurrency and Interleaving

• Two Independent Traffic Lights----the transition systems of two traffic lights are nonintersecting (i.e., parallel) roads.

$_TrLight_1$	red $green$
$\underline{TrLight_2}$	red $green$

Two Independent Traffic Lights(cont)

where ||| denotes the interleaving operator.

Interleaving of Transition Systems

• Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP_i, L_i) i=1, 2,$ $TS_1 \mid \mid \mid TS_2$ $= (S_1 \times S_2, Act_1 \cup Act_2, \rightarrow, I_1 \times I_2, AP_1 \cup AP_2, L),$ where \rightarrow

$$\frac{s_1 \xrightarrow{\alpha}_1 s'_1}{\langle s_1, s_2 \rangle \xrightarrow{\alpha}_1 \langle s'_1, s_2 \rangle} \quad \text{and} \quad \frac{s_2 \xrightarrow{\alpha}_2 s'_2}{\langle s_1, s_2 \rangle \xrightarrow{\alpha}_1 \langle s_1, s'_2 \rangle}$$

• the labeling function is defined by $L(<s_1, s_2>) = L(s_1) \cup L(s_2)$.

concurrent execution of independent activities.

$$\underbrace{x := x + 1}_{=\alpha} ||| \underbrace{y := y - 2}_{=\beta}.$$

initially x = 0 and y = 7,

Communication via Shared variables

• Example:

$$\underbrace{x := 2 \cdot x}_{\text{action } \alpha} \quad ||| \quad \underbrace{x := x + 1}_{\text{action } \beta}$$

- Initial x=3
- TS(PG1) ||| TS(PG2)

problem

- the actions α and β access the shared variable x and therefore are competing.
- Solution: an interleaving operator will be defined on the level of program graphs
- The underlying transition system of the resulting program graph PG1 ||| PG2, i.e., TS(PG1 |||PG2) faithfully describes a parallel system whose components communicate via shared variables.

Interleaving of Program Graphs

Let $PG_i = (Loc_i, Act_i, Effect_i, \hookrightarrow_i, Loc_{0,i}, g_{0,i})$, for i=1, 2 be two program graphs over the variables Var_i . Program graph $PG_1 \mid \mid \mid PG_2$ over $Var_1 \cup Var_2$ is defined by

$$PG_1 \mid\mid\mid PG_2 = (Loc_1 \times Loc_2, Act_1 \uplus Act_2, Effect, \hookrightarrow, Loc_{0,1} \times Loc_{0,2}, g_{0,1} \land g_{0,2})$$

where \hookrightarrow is defined by the rules:

$$\frac{\ell_1 \stackrel{g:\alpha}{\hookrightarrow}_1 \ell_1'}{\langle \ell_1, \ell_2 \rangle \stackrel{g:\alpha}{\hookrightarrow} \langle \ell_1', \ell_2 \rangle} \quad \text{and} \quad \frac{\ell_2 \stackrel{g:\alpha}{\hookrightarrow}_2 \ell_2'}{\langle \ell_1, \ell_2 \rangle \stackrel{g:\alpha}{\hookrightarrow} \langle \ell_1, \ell_2' \rangle}$$

and $Effect(\alpha, \eta) = Effect_i(\alpha, \eta)$ if $\alpha \in Act_i$.

Interleaving of Program Graphs

- $Var_1 \cap Var_2 \neq \emptyset$ -----shared variables (sometimes called "global"), critical
- Var₁/Var₂ -----local variables of PG₁.
 noncritical
- Var₂/Var₁ -----local variables of PG₂.
 noncritical

example

• $x=x+1 | | | x:=2 \cdot x$

TS of example

nondeterminism in a state of this transition system

- An "internal" nondeterministic choice within program graph PG₁ or PG₂,
- The interleaving of noncritical actions of PG₁ and PG₂, or
- The resolution of a contention between critical actions of PG₁ and PG₂ (concurrency).
 - ◆ The value of the shared variables depends on the order of executing Critical actions of PG₁ and PG₂.

Atomicity

- an action α with its effect being described by the statement sequence.
- declared atomic, surrounded by brackets<...>
- $x:=x+1;y=2x+1; \text{ if } x<12 \text{ then } z:=(x-2)^{2}*y;$
 - Effect(α, η)(x)= $\eta(x)+1$
 - * Effect(α , η)(y)=2($\eta(x)+1$)+1 ($\eta(x)+1-\eta(z)$)²*2($\eta(x)+1$)+1 if $\eta(x)+1<12$
 - + Effect(α , η)(z)={ $\eta(z)$ otherwise

Mutual Exclusion with Semaphores

- share the binary semaphore y.
- y=0 indicates that the semaphore—the lock to get access to the critical section—is currently possessed by one of the processes.
- y=1, the semaphore is free.

Mutual Exclusion with Semaphores (cont)

• Consider two simplified processes P_i, i=1,2 of the form:

```
P_i loop forever

\vdots (* noncritical actions *)

request

critical section

release

\vdots (* noncritical actions *)

end loop
```

Mutual Exclusion with Semaphores(cont)

• PG₁ and PG₂.

Mutual Exclusion with Semaphores(cont)

Translation from PG into TS

Peterson's Mutual exclusion

- Shared variables b₁,b₂ and x.
- Initial b₁=b₂=false

P₁ loop forever

```
<b<sub>1</sub> := true; x := 2;> wait until (x = 1 \lor \neg b_2) do critical section od b_1 := false
```

end loop

P₂ loop forever

end loop

```
<b<sub>2</sub> := true; x := 1;> wait until (x = 2 \lor \neg b<sub>1</sub>) do critical section od b<sub>2</sub> := false
```

PG of these processes

TS of $PG_1 \mid \mid \mid PG_2$.

questions?

- if b_i :=true;x:=...in this order but in a nonatomic way, can this algorithm satisfy the mutual exclusion property?
 - » Yes
- if x:=...; b_i:=true, can this algorithm satisfy the mutual exclusion property?
 » No.

handshaking

- Interleaving: completely autonomously, no communicative
- Shared-variable: communicates by shared variable, asynchronous
- Handshaking: synchronous fashion----they are both participating in this interaction at the same time.
 - ◆ Exchanged information can: integer, complex data structure.
 - ◆ Abstract: only communication (also called synchronization) actions are considered that represent the occurrence of a handshake
- Channel: first-in, first-out buffers that may contain messages.

Handshake (cont')

- H: handshake actions is distinguished with $\tau \notin H$
- Only if both participating processes are ready to execute the same handshake action, can message passing take place.
- actions in Act/ H are independent

SOFTWARE ENGINEERING INSTITUTE 基定师記大學软件学院

Definition of handshaking

(Synchronous Message Passing)

Let
$$TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP_i, L_i)$$
, $i=1, 2$ TSs, and $H \subseteq Act_1 \cap Act_2$ with $\tau \notin H$.

 $TS_1 \mid_{\mathsf{H}} TS_2$ is defined :

$$TS_1 \mid \mid_{\mathsf{H}} TS_2 = (S_1 \times S_2, Act_1 \cup Act_2, \rightarrow, I_1 \times I_2, AP_1 \cup AP_2, L)$$

where
$$L(s_1, s_2) = L_1(s_1) \cup L_2(s_2)$$
,

→ is defined:

Definition of handshaking(cont')

(Synchronous Message Passing)

• interleaving for $\alpha \notin H$:

$$\frac{s_1 \xrightarrow{\alpha}_1 s'_1}{\langle s_1, s_2 \rangle \xrightarrow{\alpha}_{} \langle s'_1, s_2 \rangle} \qquad \frac{s_2 \xrightarrow{\alpha}_2 s'_2}{\langle s_1, s_2 \rangle \xrightarrow{\alpha}_{} \langle s_1, s'_2 \rangle}$$

• handshaking for $\alpha \in H$:

$$\frac{s_1 \xrightarrow{\alpha}_1 s'_1 \land s_2 \xrightarrow{\alpha}_2 s'_2}{\langle s_1, s_2 \rangle \xrightarrow{\alpha}_{} \langle s'_1, s'_2 \rangle}$$

$$TS_1 \mid \mid TS_2 = TS_1 \mid \mid_H TS_2 \text{ for } H = Act_1 \cap Act_2$$

Empty Set of Handshake Actions

$$+$$
 TS₁ ||_∅ TS₂ = TS₁ ||| TS₂.

- Handshaking is commutative
 - ◆ TS₁ ||_H TS₂ = TS₂ ||_H TS₁
- if $H \subseteq Act_1 \cap ... \cap Act_n$,
 - ◆ TS = TS₁ $||_H$ TS₂ $||_H$. . . $||_H$ TS_n, TS is associative

processes communicate in a pairwise

OE BY SHITTUTE

- $TS_1 || ... || TS_n$ denote the parallel
- TS_i and TS_j ($0 < i \neq j \leq n$) synchronize, $H_{i,j} = Act_i \cap Act_j$ such that $H_{i,j} \cap Act_k = \emptyset$ for $k \notin \{i, j\}$. $\tau \notin H_{i,j}$.
- for $\alpha \in Act_i \setminus (\bigcup_{\substack{0 < j \leq n \\ i \neq j}} H_{i,j})$ and $0 < i \leq n$:

$$\frac{s_i \xrightarrow{\alpha}_i s'_i}{\langle s_1, \dots, s_i, \dots, s_n \rangle \xrightarrow{\alpha}_i \langle s_1, \dots, s'_i, \dots s_n \rangle}$$

• for $\alpha \in H_{i,j}$ and $0 < i < j \leqslant n$:

$$\frac{s_i \xrightarrow{\alpha}_i s'_i \land s_j \xrightarrow{\alpha}_j s'_j}{\langle s_1, \dots, s_i, \dots, s_j, \dots, s_n \rangle \xrightarrow{\alpha}_i \langle s_1, \dots, s'_i, \dots, s'_j, \dots, s_n \rangle}$$

Example: Mutual exclusion by handshaking

Add a arbiter

$$\star TS_{Arb} = (TS_1 | || TS_2) || Arbiter$$

Example: Mutual exclusion by handshaking(cont')

 $(T_1 ||| T_2) ||$ Arbiter :

Example: booking system

- Three processes:
 - ◆ The bar code reader :BCR
 - The actual booking program :BP
 - ◆ The printer: Printer

BCR BP Printer

Example: booking system(cont')

- The complete system is given:
 - ◆ BCR || BP || Printer

Example railroad crossing

- Requirement:
 - a train is approaching closes the gates, and only opens these gates after the train crossed the road.
 - ◆ The gates are always closed when the train is crossing the road.
- Three components: Train, Gate and Controller
 - ◆ Train || Gate || Controller

Train: has the same direction

Train

Gate

Gate

Example railroad crossing(cont')

 Controller: The state changes stand for handshaking with the trains and the Gate (the Controller causes the gate to close or to open, respectively).

Controller

TS for the railroad

Channel systems

- Channels: first-in, first-out buffers that may contain messages.
- Constraint: channel systems that are closed.
- PG_i represents a processes from P₁ to P_n.
 - **◆** Transition:
 - conditional
 - communicative action's transition.
 - c!v transmit the value v along channel c,
 - c?x receive a message via channel c and assign it to variable x.

Type

- Comm = $\{c!v, c?x \mid c \in \text{Chan}, v \in \text{dom(c)}, x \in \text{Var with dom(x)} \supseteq \text{dom(c)} \}$
 - ◆ Where Chan is a finite set of channels with typical element c.

Capacity

- Channel has a (finite or infinite) capacity cap(c) $\in 2^{\text{IN}} \cup \{\infty\}$
 - \bullet cap(c)= ∞
 - ◆ cap(c)=0: handshaking (simultaneous transmission) plus the exchange of some data.
 - ◆ cap(c)>0:sending and reading of the same message take place at different moments. This is called asynchronous message passing.

Channel system (CS)

A program graph over (Var, Chan) is a tuple

$$PG = (Loc, Act, Effect, \hookrightarrow, Loc_0, g_0)$$

$$\hookrightarrow$$
 \subseteq $Loc \times (Cond(Var) \times (Act \cup Comm) \times Loc.$

A channel system CS over (*Var*, *Chan*) consists of program graphs PG_i over (*Var*_i, *Chan*)

(for $1 \le i \le n$) with $Var = \bigcup_{1 \le i \le n} Var_i$. We denote

$$CS = [PG_1 | ... | PG_n].$$

Transition of CS

- Conditional transition: $\ell \stackrel{g:\alpha}{\hookrightarrow} \ell'$
- Conditional transition with communication actions
 - $lack \qquad \ell \overset{g:c!v}{\hookrightarrow} \ell' \qquad ext{:for sending } v ext{ along } c$
 - ullet $\stackrel{\ell \overset{g:c?x}{\hookrightarrow} \ell'}{\hookrightarrow}$:for receiving a message along c
 - Handshaking :cap(c)=0
 - Asynchronous message passing: $cap(c)\neq 0$
 - Send a message to a channel iff c is not full
 - lacktriangle receiving a message from a channel iff c is not

Transition of CS(cont)

	executable if	effect
c!v	c is not "full"	Enqueue(c,v)
c?x	c is not empty	$\langle x := Front(c); Dequeue(c) \rangle;$

Example: Alternating Bit Protocol

Example: Alternating Bit Protocol (ABP) cont

- S sends the successive messages
 m₀,m₁, . . . together with control bits b₀, b₁,
 . . . over channel c to R.
 - \bullet <m₀, 0>, <m₁, 1>, <m₂, 0>, <m₃, 1>, . . .

Example: Alternating Bit Protocol

Program graph of ABP sender S.

Example: Alternating Bit Protocol

Program graph of ABP receiver R

Timer.

Example: Alternating Bit Protocol (ABP) cont

- The complete system :
 - han={ c, d, tmr_on, tmr_off, timeout }
 and Var = { x, y,m; }
 - ◆ ABP = [S | Timer | R]

TS of a channel system(cont')

- Term:
 - $\xi(c) = v_1 v_2 \dots v_k$ (where $cap(c) \ge k$), len $(\xi(c)) = k$

 - $\xi_0(c) = \varepsilon$ for any channel c. Let len(ε) = 0.
- Actions: consists of actions $\alpha \in Act_i$ of component PG_i and the distinguished symbol τ representing all communication actions in which data is exchanged.

Guo Jian 程序分析与验证

TS of a channel system

- TS(CS)
 - ◆ States of TS(CS):
 - $< l_1, \ldots, l_n, \eta, \xi >$
 - η keeps track of the current values of the variables, and
 - ξ records the current content of the various channels
 - Initial $l_i \in Loc_{0,i}$ must be initial and variable evaluation η must satisfy the initial condition $g_{0,i}$.
 - every channel is initially assumed to be empty, denoted ε.

TS of a channel system(cont')

Let $CS = [PG_1 \mid \ldots \mid PG_n]$ be a channel system over (Chan, Var) with

$$PG_i = (Loc_i, Act_i, Effect_i, \hookrightarrow_i, Loc_{0,i}, g_{0,i}), \quad \text{for } 0 < i \leq n.$$

The transition system of CS, denoted TS(CS), is the tuple $(S, Act, \rightarrow, I, AP, L)$ where:

- $S = (Loc_1 \times ... \times Loc_n) \times Eval(Var) \times Eval(Chan),$
- $\bullet \ Act = \biguplus_{0 < i \leq n} Act_i \ \uplus \ \{\tau\},\$
- \bullet \rightarrow is defined by the rules of Figure 2.20 (page 61),
- $I = \left\{ \langle \ell_1, \dots, \ell_n, \eta, \xi_0 \rangle \mid \forall 0 < i \leqslant n. (\ell_i \in Loc_{0,i} \land \eta \models g_{0,i}) \right\},$
- $AP = \biguplus_{0 < i \leq n} Loc_i \uplus Cond(Var),$
- $L(\langle \ell_1, \dots, \ell_n, \eta, \xi \rangle) = \{ \ell_1, \dots, \ell_n \} \cup \{ g \in Cond(Var) \mid \eta \models g \}.$

TS of a channel system(cont')

• interleaving for $\alpha \in Act_i$:

$$\frac{\ell_i \stackrel{g:\alpha}{\hookrightarrow} \ell'_i \quad \wedge \quad \eta \models g}{\langle \ell_1, \dots, \ell_i, \dots, \ell_n, \eta, \xi \rangle \stackrel{\alpha}{\longrightarrow} \langle \ell_1, \dots, \ell'_i, \dots, \ell_n, \eta', \xi \rangle}$$

where $\eta' = Effect(\alpha, \eta)$.

- asynchronous message passing for $c \in Chan$, cap(c) > 0:
 - receive a value along channel c and assign it to variable x:

$$\frac{\ell_i \stackrel{g:c?x}{\hookrightarrow} \ell'_i \land \eta \models g \land len(\xi(c)) = k > 0 \land \xi(c) = v_1 \dots v_k}{\langle \ell_1, \dots, \ell_i, \dots, \ell_n, \eta, \xi \rangle \xrightarrow{\tau} \langle \ell_1, \dots, \ell'_i, \dots, \ell_n, \eta', \xi' \rangle}$$

where $\eta' = \eta[x := v_1]$ and $\xi' = \xi[c := v_2 \dots v_k]$.

- transmit value $v \in dom(c)$ over channel c:

$$\underbrace{\ell_i \overset{g:c!v}{\hookrightarrow} \ell_i' \land \eta \models g \land len(\xi(c)) = k < cap(c) \land \xi(c) = v_1 \dots v_k}_{\langle \ell_1, \dots, \ell_i, \dots, \ell_n, \eta, \xi \rangle \xrightarrow{\tau} \langle \ell_1, \dots, \ell_i', \dots, \ell_n, \eta, \xi' \rangle}$$

where
$$\xi' = \xi[c := v_1 \, v_2 \dots v_k \, v]$$
.

• synchronous message passing over $c \in Chan$, cap(c) = 0:

$$\frac{\ell_i \stackrel{g_1:c?x}{\longleftrightarrow} \ell'_i \land \eta \models g_1 \land \eta \models g_2 \land \ell_j \stackrel{g_2:c!v}{\longleftrightarrow} \ell'_j \land i \neq j}{\langle \ell_1, \dots, \ell_i, \dots, \ell_j, \dots, \ell_n, \eta, \xi \rangle \stackrel{\tau}{\longrightarrow} \langle \ell_1, \dots, \ell'_i, \dots, \ell'_j, \dots, \ell_n, \eta', \xi \rangle}$$

where $\eta' = \eta[x := v]$.

NanoPromela

- the core input language for the SPIN
- support
 - communication by shared variables
 - message passing along either synchronous or buffer FIFOchannels
- the formal semantics can be provided by means of a *channel system*.
- channel system can be unfolded into transition system.
- no use action name, but specify the effect of action

syntax of nanoPromela


```
\mathsf{stmt} ::= \mathsf{skip} \mid x := \mathsf{expr} \mid c?x \mid c!\mathsf{expr} \mid \mathsf{stmt}_1 \; ; \; \mathsf{stmt}_2 \mid \mathsf{atomic}\{\mathsf{assignments}\} \mid \mathsf{if} :: g_1 \Rightarrow \mathsf{stmt}_1 \; \ldots \; :: g_n \Rightarrow \mathsf{stmt}_n \; \mathsf{fi} \mid \mathsf{do} \; :: g_1 \Rightarrow \mathsf{stmt}_1 \; \ldots \; :: g_n \Rightarrow \mathsf{stmt}_n \; \mathsf{do} \;
```

peterson's mutual exclusion algorithm

```
\mathbf{do} \ :: \ \operatorname{true} \Rightarrow \ \operatorname{skip}; \\ \operatorname{atomic}\{b_1 := \operatorname{true}; x := 2\}; \\ \operatorname{\mathbf{if}} \ :: \ (x = 1) \lor \neg b_2 \ \Rightarrow \ crit_1 := \operatorname{true} \ \mathbf{fi} \\ \operatorname{atomic}\{crit_1 := \operatorname{false}; b_1 := \operatorname{false}\} \\ \operatorname{\mathbf{od}}
```

Vending Machine

Synchronous Parallelism

Let
$$TS_i = (S_i, Act, \rightarrow_i, I_i, AP_i, L_i), i=1, 2,$$

be transition systems with the same set of actions Act.

$$Act \times Act \rightarrow Act, \quad (\alpha, \beta) \rightarrow \alpha * \beta$$

synchronous product $TS_1 \otimes TS_2$ is given by:

$$TS_1 \otimes TS_2 = (S_1 \times S_2, Act, \rightarrow, I_1 \times I_2, AP_1 \cup AP_2, L),$$

$$L(\langle s_1, s_2 \rangle) = L_1(s_1) \cup L_2(s_2).$$

example

Synchronous Product of Two Circuits

the State-Space Explosion Problem

Program Graph Representation

$$|Loc| \cdot \prod_{x \in Var} |dom(x)|.$$

Channel System

$$\prod_{i=1}^{n} \left(|Loc_{i}| \cdot \prod_{x \in Var_{i}} |dom(x)| \right) \cdot \prod_{c \in Chan} |dom(c)|^{cp(c)}.$$

summary

- TS
- PG
- parallel,concurrent
- shared variable system
- handshake
- channel system
- transition to TS