Polynomial Regression and Overfitting

TM Quest

Overview

What Will we Learn in This Module?

- Polynomial Features
 - Manually creating polynomially features
 - Using Scikit-Learn's built in PolynomialFeatures class
 - Bias terms and interaction terms
 - Placing polynomial features into a pipeline
- Overfitting
 - What is overfitting?
 - How to check for overfitting?

Polynomial Regression

What is Polynomial Features?

Creating New Features

We can create new features from old ones and use them in a machine learning model.

Given features X_1 and X_2 we can form polynomials out of them:

- The square feature X_1^2 is every observation of the feature X_1 multiplied by itself.
- The cross-term $X_1 \cdot X_2$ is the product of every observation in X_1 with every observation in X_2 .
- We can make infinitely many polynomial features such as $X_1^{17} \cdot X_2^{31}$.

Example Data

Old Features			New Features			
	X_1	X_2	X_1^2	X_1X_2	X_2^2	
	1	4	1	4	16	
	2	6	4	12	36	
	7	9	49	63	81	
	4	2	16	8	4	
	8	9	64	72	81	
	4	1	16	4	1	
	9	0	81	0	0	
	4	3	16	12	9	

Polynomial Regression

Polynomial Regression

Polynomial regression is linear regression where we have made polynomial features.

Instead of approximating the data with a line, we approximate the data with a polynomial curve.

Example

- Feature *X* representing age.
- Target Y representing wage.

Linear Regression: Find the best straight line aX + b that fits Y.

2nd Order Polynomial Regression: Find the best polynomial $aX^2 + bX + c$ that fits Y.

Straight Line vs. Quadratic Polynomial

Mean Absolute Error

Mean Absolute Error Code

```
import math
# Mean Squared Error
sum((y_pred - y_test) ** 2) / len(y_pred)
# Root Mean Squared Error
math.sqrt(sum((y_pred - y_test) ** 2) / len(y_pred))
# Mean Absolute Error
sum(math.abs(y_pred - y_test)) / len(y_pred)
```

Overfitting & Underfitting

What is Underfitting?

Underfitting

Underfitting is when a model is not complex enough to accurately represent the data.

What is Overfitting?

Overfitting

Overfitting is when a model is so complex that it learns the structure of the training set too well.

