Advanced Computer Architecture

Storage

Fall 2016

Pejman Lotfi-Kamran

Adapted from slides originally developed by Profs. Hill, Hoe, Falsafi and Wenisch of CMU, EPFL, Michigan, Wisconsin

Fall 2016 Lec.22 - Slide 1

I/O Introduction: Storage Devices & RAID

Jason Hill

Fall 2016 Lec.22 - Slide 3

Where Are We?

- ◆ This Lecture
- Storage
- ◆ Next Lecture:
 - Scaling

Lec.22 - Slide 2

Motivation: Who Cares About I/O?

- ◆ CPU Performance: 60% per year
- ◆ I/O system performance limited by mechanical delays (disk I/O)
 - < 10% per year (IO per sec)
- Amdahl's Law: system speed-up limited by the slowest part!

10% IO & 10x CPU => 5x Performance (lose 50%) 10% IO & 100x CPU => 10x Performance (lose 90%)

◆ I/O bottleneck:

Diminishing fraction of time in CPU Diminishing value of faster CPUs

Fall 2016

Big Picture: Who cares about CPUs?

- ♦ Why still important to keep CPUs busy vs. IO devices ("CPU time"), as CPUs not costly?
 - Moore's Law leads to both large, fast CPUs but also to very small, cheap CPUs
 - 2001 Hypothesis: 600 MHz PC is fast enough for Office Tools?
 - PC slowdown since fast enough unless games, new apps?
- People care more about storing information and communicating information than calculating
 - "Information Technology" vs. "Computer Science"
 - 1960s and 1980s: Computing Revolution
 - 1990s and 2000s: Information Age

Fall 2016 Lec.22 - Slide 5

- ◆ Driven by the prevailing computing paradigm
 - 1950s: migration from batch to on-line processing
 - 1990s: migration to ubiquitous computing
 - ▲ computers in phones, books, cars, video cameras, ...
 - ▲ nationwide fiber optical network with wireless tails
- ◆ Effects on storage industry:

Storage Technology Drivers

- Embedded storage
 - ▲ smaller, cheaper, more reliable, lower power
- Data utilities
 - ▲ high capacity, hierarchically managed storage

I/O Systems interrupts Processor Cache Memory - I/O Bus I/O I/O Controller Controller Controller Memory Graphics Disk Network Fall 2016 Lec.22 - Slide 6

Outline

- ◆ Disk Basics
- Disk History
- ◆ Disk options in 2000
- ◆ Disk fallacies and performance
- ◆ FLASH
- ◆ Tapes
- ◆ RAID

Fall 2016

Lec.22 - Slide 7

Lec.22 - Slide 8

Fall 2016

Arm Head Sector Track Actuator Platter Several platters, with data recorded magnetically on both surfaces (usually) Bits recorded in tracks, which in turn divided into sectors (e.g., 512 Bytes)

- <u>Actuator</u> moves <u>head</u> (end of <u>arm</u>,1/surface) over track ("<u>seek"</u>), select <u>surface</u>, wait for <u>sector</u> rotate under <u>head</u>, then read or write
 - "Cylinder": all tracks under heads

Fall 2016

Lec.22 - Slide 9

Disk Device Performance Outer Inner Sector Head Arm Controller Track Track Spindle Platter Actuator Disk Latency = Seek Time + Rotation Time + Transfer Time + Controller Overhead • Seek Time? depends no. tracks move arm, seek speed of disk • Rotation Time? depends on speed disk rotates, how far sector is from head • Transfer Time? depends on data rate (bandwidth) of disk (bit density), size of request Fall 2016

Photo of Disk Head, Arm, Actuator Arm Head Platters (12) Fall 2016

Disk Device Performance

- Average distance sector from head?
- ◆ 1/2 time of a rotation
 - 10000 Revolutions Per Minute ⇒ 166.67 Rev/sec
 - 1 revolution = 1/166.67 sec \Rightarrow 6.00 milliseconds
 - 1/2 rotation (revolution) \Rightarrow 3.00 ms
- ◆ Average no. tracks move arm?
 - Sum all possible seek distances from all possible tracks / # possible
 - ▲ Assumes average seek distance is random
 - Disk industry standard benchmark

16

Data Rate: Inner vs. Outer Tracks

- ◆ To keep things simple, originally kept same number of sectors per track
 - Since outer track longer, lower bits per inch
- ◆ Competition ⇒ decided to keep BPI the same for all tracks ("constant bit density")
 - ⇒ More capacity per disk
 - ⇒ More of sectors per track towards edge
 - ⇒ Since disk spins at constant speed, outer tracks have faster data rate
- Bandwidth outer track 1.7X inner track!
 - Inner track highest density, outer track lowest, so not really constant
 - 2.1X length of track outer / inner, 1.7X bits outer / inner

Devices: Magnetic Disks

- ◆ Purpose:
 - Long-term, nonvolatile storage
 - Large, inexpensive, slow level in
- Characteristics:

- Capacity
 - Terabytes

Disk Performance Model /Trends

- Capacity
 - + 100%/year (2X / 1.0 yr)
- ◆ Transfer rate (BW)
 - + 40%/year (2X / 2.0 yrs)
- ◆ Rotation + Seek time
 - 8%/ year (1/2 in 10 yrs)
- Capacity/\$
 - > 100%/year (2X / 1.0 yr)

Fewer chips + areal density

Lec.22 - Slide 15

Lec.22 - Slide 13

Track

Sector

Historical Perspective

- ◆ 1956 IBM Ramac early 1970s Winchester
 - Developed for mainframe computers, proprietary interfaces
 - Steady shrink in form factor: 27 in. to 14 in
- Form factor and capacity drives market, more than performance
- ◆ 1970s: Mainframes ⇒ 14 inch diameter disks
- ◆ 1980s: Minicomputers, Servers ⇒ 8",5 1/4" diameter
- ◆ PCs, workstations Late 1980s/Early 1990s:
 - Mass market disk drives become a reality
 industry standards: SCSI, IPI, IDE
 - Pizzabox PCs ⇒ 3.5 inch diameter disks
 - Laptops, notebooks ⇒ 2.5 inch disks
 - Palmtops didn't use disks, so 1.8 inch diameter disks didn't make it
- 2000s:
 - 1 inch for cameras, cell phones?

Fall 2016

Lec.22 - Slide 17

Disk History

Data density Mbit/sq. in.

Capacity of Unit Shown Megabytes

1973: 1. 7 Mbit/sq. in 140 MBvtes 1979: 7. 7 Mbit/sq. in 2,300 MBytes

source: New York Times

II 2016

Lec.22 - Slide 18

Disk History

1989: 63 Mbit/sq. in 60,000 MBytes 1997: 1450 Mbit/sq. in 2300 MBytes 1997: 3090 Mbit/sq. in 8100 MBytes

source: New York Times

Fall 2016

Lec.22 - Slide 19

1 inch disk drive!

- 2000 IBM MicroDrive:
- 1.7" x 1.4" x 0.2"
- -1 GB, 3600 RPM, 5 MB/s, 15 ms seek
- Digital camera, PalmPC?
- 9 GB, 50 MB/s!
 - Assuming it finds a niche in a successful product
 - Assuming past trends continue

Fall 2016

Disk Characteristics in 2000				
Disk diameter (inches)	Seagate Cheetah ST173404LC Ultra160 SCSI 3.5	IBM Travelstar 32GH DJSA - 232 ATA-4 2.5	IBM 1GB Microdrive DSCM-11000 1.0	
Formatted data capacity (GB)	73.4	32.0	1.0	
Cylinders	14,100	21,664	7,167	
Disks	12	4	1	
Recording Surfaces (Heads)	24	8	2	
Bytes per sector	512 to 4096	512	512	
Avg Sectors per track (512 byte)	~ 424	~ 360	~ 140	
Max. areal density(Gbit/sq.in.)	6.0	14.0	15.2	
	\$828	\$447	\$435	

Fallacy: Use Data Sheet Transfer Rate

- Manufacturers quote the speed off the data rate off the surface of the disk
- Sectors contain an error detection and correction field (can be 20% of sector size) plus sector number as well as data
- ◆ There are gaps between sectors on track
- ◆ Rule of Thumb: disks deliver about 3/4 of internal media rate (1.3X slower) for data
- For example, Barracuda 180X quotes 64 to 35 MB/sec internal media rate

 \Rightarrow 47 to 26 MB/sec external data rate (74%)

Lec.22 - Slide 23

Fallacy: Use Data Sheet "Average Seek" Time

- Manufacturers needed standard for fair comparison ("benchmark")
 - Calculate seeks from all tracks, divide by # of seeks => "average"
- ◆ Real average would be based on how data laid out on disk, where seek in real applications, then measure performance
 - Usually, tend to seek to tracks nearby, not to random track
- ◆ Rule of Thumb: observed average seek time ~
 1/4 to 1/3 of quoted seek time (i.e., 3X-4X faster)
 - Barracuda 180 X avg. seek: 7.4 ms ⇒ 2.5 ms

Fall 2016

Lec.22 - Slide 2

Disk Performance Example

Calculate time to read 64 KB for UltraStar 72 again, this time using 1/3 quoted seek time, 3/4 of internal outer track bandwidth; (12.7 ms before)

Disk latency = average seek time + average rotational delay + transfer time + controller overhead

```
= (<u>0.33</u> * 7.4 ms) + 0.5 * 1/(7200 RPM)
+ 64 KB / (<u>0.75</u> * 65 MB/s) + 0.1 ms
```

= 2.5 ms + 0.5 / (7200 RPM/(60000 ms/M))

+ 64 KB / (47 KB/ms) + 0.1 ms

= $\frac{2.5}{1.4}$ + 4.2 + $\frac{1.4}{1.4}$ + 0.1 ms = $\frac{8.2}{1.4}$ ms (64% of 12.7)

Fall 2016

Future Disk Size and Performance

- ◆ Improvements in capacity (60%/yr) and bandwidth (40%/yr)
- ◆ Slow improvement in seek, rotation (8%/yr)
- ◆ Time to read whole disk

Year	Sequentially	Randomly (1 sector/seek)
1990	4 minutes	6 hours
2000	12 minutes	1 week(!)

- ◆ 3.5" form factor make sense in 5 yrs?
 - What is capacity, bandwidth, seek time, RPM?
 - Assume today 80 GB, 30 MB/sec, 6 ms, 10000 RPM

Fall 2016 Lec.22 - Slide 25

Use Arrays of Small Disks? Katz and Patterson asked in 1987: Can smaller disks be used to close gap in performance between disks and CPUs? Conventional: 4 disk designs Jian High End Disk Array: disk design 3.5" Low End Disk Array: 1 Low End Disk Array: 1 Low End Disk Array: 1 Di

What about FLASH

- ◆ Compact Flash Cards
 - Intel Strata Flash
 - ▲16 Mb in 1 square cm. (.6 mm thick)
 - 100,000 write/erase cycles.
 - Standby current = 100uA, write = 45mA
 - Compact Flash 256MB~=\$120 512MB~=\$542
 - Transfer @ 3.5MB/s
- ◆ IBM Microdrive 1G~370
 - Standby current = 20mA, write = 250mA
 - Efficiency advertised in watts/MB
- VS. Disks
 - Nearly instant standby wake-up time
 - Random access to data stored
 - Tolerant to shock and vibration (1000G of operating shock)

Fall 2016

Lec.22 - Slide 2

Redundant Arrays of (Inexpensive) Disks

- ◆ Files are "striped" across multiple disks
- Redundancy yields high data availability
 - Availability: service still provided to user, even if some parts failed
- Disks will still fail
- Contents reconstructed from data redundantly stored in the array
 - ⇒ Capacity penalty to store redundant info
 - ⇒ Bandwidth penalty to update redundant info

Fall 2016

Redundant Arrays of Inexpensive Disks RAID 1: Disk Mirroring/Shadowing

- Each disk is fully duplicated onto its "mirror"
 Very high availability can be achieved
- Bandwidth sacrifice on write:
 Logical write = two physical writes
 - · Reads may be optimized
- · Most expensive solution: 100% capacity overhead

Fall 2016 Lec.22 - Slide 29

Redundant Array of Inexpensive Disks RAID 2 & 3: Parity Disk 10010011 11001101 10010011 logical record 0 Striped physical n records 0 P contains sum of 0 other disks per stripe mod 2 ("parity") If disk fails, subtract 0 P from sum of other 1 disks to find missing information Fall 2016 Lec.22 - Slide 30

RAID 2 & RAID 3

RAID 2 (bit-level) RAID 3 (byte-level) striping

- Sum computed across recovery group to protect against hard disk failures, stored in P disk
- Logically, a single high capacity, high transfer rate disk: good for large transfers
- Wider arrays reduce capacity costs, but decreases availability
- ◆ 33% capacity cost for parity in this configuration

Lec.22

Inspiration for RAID 4

- RAID 3 relies on parity disk to discover errors on Read
- ◆ But every sector has an error detection field
- Rely on error detection field to catch errors on read, not on the parity disk
- Allows independent reads to different disks simultaneously
- ◆ Uses block-level striping (dedicated parity disk)

Berkeley History: RAID-I

- ◆RAID-I (1989)
 - Consisted of a Sun 4/280 workstation with 128 MB of DRAM, four dual-string SCSI controllers, 28 5.25-inch SCSI disks and specialized disk striping software
- ◆Today RAID is \$19 billion dollar industry, 80% nonPC disks sold in RAIDs

Fall 2016

Summary: RAID Techniques: Goal was performance, popularity due to reliability of storage

- Disk Mirroring, Shadowing (RAID 1)
 Each disk is fully duplicated onto its "shadow"
 Logical write = two physical writes
 100% capacity overhead
- Parity Data Bandwidth Array (RAID 3)
 Parity computed horizontally
 Logically a single high data bw disk
- High I/O Rate Parity Array (RAID 5)
 Interleaved parity blocks
 Independent reads and writes

Logical write = 2 reads + 2 writes

Summary Storage

- Disks:
 - Extraodinary advance in capacity/drive, \$/GB
 - Currently 17 Gbit/sq. in.; can continue past 100 Gbit/sq. in.?
 - Bandwidth, seek time not keeping up: 3.5 inch form factor makes sense? 2.5 inch form factor in near future? 1.0 inch form factor in long term?
- Tapes
 - No investment, must be backwards compatible
 - Are they already dead?
 - What is a tapeless backup system?

The following slides are from Shimin Chen of Intel.

Fall 2016 Lec.22 - Slide 39

Fall 2016

Introduction

- ◆ Gordon: a flash-based system architecture for massively parallel, data-centric computing.
 - Solid-state disks
 - Low-power processors
 - Data-centric programming paradigms
- ◆ Can deliver:

Fall 2016

- Up to 2.5X the computation per energy of a conventional cluster based system
- Increasing performance by up to 1.5X

Fall 2016 Lec.22 - Slide 41

Outline

- ◆ Gordon's system architecture
- ◆ Gordon's storage system
- ◆ Configuring Gordon
- Discussion
- Summary

Fall 2016 Lec.22 - Slide 42

Gordon's System Architecture

(a) Gordon node

Lec.22 - Slide 43

(b) 16 nodes in an enclosure

Prototype Photo:

ASPLOS' 09 paper uses simulation

http://www-cse.ucsd.edu/users/swanson/projects/gordon.html

Gordon node

- Configuration:
 - 256GB of flash storage
 - A flash storage controller (w/ 512MB dedicated DRAM)
 - 2GB ECC DDR2 SDRAM
 - 1.9Ghz Intel Atom processor
 - Running a minimal linux installation
- ◆ Power: no more than 19w
 - Compared to 81w of a server
- ◆ 900MB/s read and write bandwidth to 256GB disk

Fall 2016

Programming

- ◆ From the SW and users' perspectives, a Gordon system appears to be a conventional computing cluster
- ◆ Benchmarks: Hadoop

Fall 2016 Lec. 22 - Slide 47

Enclosures

- Within an enclosure, 16 nodes plug into a backplane that provides 1Gb Ethernet-style network
- ◆ A rack holds 16 enclosures (16x16=256 nodes)
 - 64 TB of storage
 - 230 GB/s of aggregate IO bandwidth

Fall 2016

Lec.22 - Slide 45

Lec.22 - Slide 46

Outline

- ◆ Gordon's system architecture
- ◆ Gordon's storage system
- ◆ Configuring Gordon
- Discussion
- Summary

Fall 2016

Bypassing and Write Combining

- ◆ Read bypassing: merging read requests to the same page
- ◆ Write combining: merging write requests to the same page

Fall 2016 Lec.22 - Slide 52

Summary

- ◆ Use flash memory + low-power processor (Atom)
- ◆ Support data intensive computing: such as Map-Reduce operations
- ◆ The design choice is attractive because of higher power/performance efficiency

Fall 2016 Lec.22 - Slide 53