1	2	3	4	5

APELLIDO Y NOMBRE:

No. de libreta:

Carrera:

ALGEBRA - FINAL (23/12/02)

- 1.— Determinar cuántas funciones **biyectivas** $f:\{1,2,3,\ldots,16\} \longrightarrow \{1,2,3,\ldots,16\}$ satisfacen que $f(a)\equiv a$ (8) para todo $a\in\{1,2,3,\ldots,16\}$
- **2.** Sea \sim la relación de equivalencia en G_8 definida por

$$z \sim w \quad \Leftrightarrow \quad z^6 = w^6$$

Hallar la clase de equivalencia de $\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$

3.— Hallar todos los $a \in {\rm I\!R}\,$ tales que (al menos) una raíz cúbica de la unidad es raíz del polinomio

$$f = X^7 - X^4 + aX^3 - 2$$

Para cada valor de a hallado, encontrar todas las raíces de f en \mathbb{C} .

- **4.** Hallar todos los $a \in \mathbb{Z}$ tales que $6a^{13} + 7a^5 + 4^{132} \equiv 28$ (105)
- **5.** Sea $(fn)_{n\in\mathbb{N}}$ la sucesión de polinomios definida por

$$f_1 = (X^2 - 1)^2$$
, $f_{n+1} = (X^2 - 1)f'_n - Xf_n$ $(n \in \mathbb{N})$

Probar que, para todo $n \in \mathbb{N}$, 1 es raíz **doble** de f_n

Se considerarán sólo las respuestas bien justificadas.