34. 微破壊・非破壊試験によるコンクリート構造物の強度測定要領

目 次

1.	はじめ	olz	34 - 1
2.		9囲・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
3.	施行者	☆の実施事項・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34 - 1
3	3. 1	試験法の選定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34 - 1
3	3. 2	事前準備・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34 - 1
	(1)	設計諸元の事前確認・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34 - 1
	(2)	施工計画書への記載・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34 - 1
	(3)	検量線の作成(非破壊試験の場合のみ)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34 - 1
3	3. 3	非破壊試験の実施及び判定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34 - 2
3	3. 4	測定に関する資料の提出等・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34 - 2
4.	監督職	は員の実施事項・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34 - 6
4	1. 1	採用する試験法の承諾・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34 - 6
4	1. 2	施工計画書における記載事項の把握・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34 - 6
4	1. 3	測定の立会及び報告書の確認・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34 - 6
5.	検査職	t員の実施事項·····	34 - 6
6.	測定方	ī法· · · · · · · · · · · · · · · · · · ·	34 - 7
6	5. 1	試験法について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34 - 7
	(1)	対象構造物に適用する試験法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34 - 7
	(2)	試験法の採用条件等・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34 - 8
	(3)	各試験法の留意点・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34 - 9
6	5. 2	測定者·····	34 - 10
6	5. 3	測定回数· · · · · · · · · · · · · · · · · · ·	34 - 10
6	5. 4	測定位置	34 - 11
	(1)	測定位置の選定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34 - 11
	(2)	測定位置決定及び測定に際しての留意点 · · · · · · · · · · · · · · · · · · ·	34 - 11
	(3)	測定箇所の配置例・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34 - 12
6	5. 5	判定基準・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34 - 14
6	6. 6	測定における測線の縮減について・・・・・・・・・・・・・・・・・・	34 - 15
	(1)	測線数の縮減条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34 - 15
	(2)	測定笛前の配置例・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3/1 — 17

微破壊・非破壊試験による コンクリート構造物の強度測定要領

1. はじめに

本要領は、微破壊・非破壊試験によるコンクリート構造物の強度測定を行うにあたり、施工者の施工管理(品質管理)及び発注者の監督・検査における実施内容を 定めたものである。

2. 適用範囲

橋長 30m以上の橋梁上部工及び下部工を対象とする。ただし、工場製作のプレキャスト製品は対象外とする。

なお、本要領によりコンクリート構造物の強度を測定する場合は、「土木コンクリート構造物の品質確保について」(国官技第61号、平成13年3月27日)に基づいて行うテストハンマーによる強度測定調査を省略することができるものとする。

3. 施工者の実施事項

3.1 試験法の選定

「6.1(1)対象構造物に適用する試験法」に従い、対象構造物の対象部位に適用する試験法を選定する。

3.2 事前準備

(1) 設計諸元の事前確認

施工者は、測定を開始する前に、測定位置の設計図及び既存資料より、測定対象のコンクリート構造物の設計諸元(コンクリートに関する資料、構造物の形状、配筋状態など)を事前に確認する。

(2) 施工計画書への記載

施工者は、事前調査結果に基づき測定方法や測定位置等について、施工計画書に記載し、監督職員へ提出するものとする。

(3) 検量線の作成(非破壊試験の場合のみ)

超音波法及び衝撃弾性波法による非破壊試験については、圧縮強度推定において検量線(キャリブレーション)が必要であることから、円柱供試体を作製し、強度と推定指標の定量的な関係を求める。

検量線は、「微破壊・非破壊試験によるコンクリート構造物の強度測定要領(解 説)」に示す材齢において円柱供試体を用いた圧縮強度試験を実施することにより、 作成すること。

なお検量線は、「微破壊・非破壊試験によるコンクリート構造物の強度測定要領 (解説)」に示す方法において円柱供試体を用いた圧縮強度試験を実施することに より、作成すること。

3.3 非破壊試験の実施及び判定

施工者は、「6. 測定方法」に従い、コンクリート強度の測定を実施し、その適 否について判定を行うものとする。

3.4 測定に関する資料の提出等

施工者は、本測定の実施に関する資料を整備、保管し、監督職員からの請求が あった場合は、遅滞なく提示するとともに検査時に提出しなければならない。

測定結果については、表1及び表2に示す内容を網羅した測定結果報告書を作成 し、提出するものとする。

表1 測定結果報告書に記載すべき事項(微破壊試験の場合)

No.	報告内容	記載すべき事項
1	構造物名称	工事名、測定対象構造物の概要など
2	試験年月日	コンクリート打設日、試験実施日(試験材齢)
3	測定位置の概要 (測定位置図)	試験体採取位置図
4	測定者名**	測定者名、講習会受講証明に係る書類
5	使用コンクリート	コンクリート示方配合、配合強度
6	測定結果	圧縮強度試験結果、
		コア供試体の外観・破壊状況(小径コアの場合)
7	判定結果	合否判定

※外部供試体において、講習会受講者より指導を受けた者が測定した場合、指導を受けた 「証明書」保有者の氏名を併記するとともに、指導者の「証明書」のコピーを添付する。

表2 測定結果報告書に記載すべき事項(非破壊試験の場合)

No.	報告内容	記載すべき事項
1	構造物名称	工事名、測定対象構造物の概要など
2	測定年月日	コンクリート打設日、試験実施日(試験材齢)
3	測定位置の概要 (測定位置図)	試験箇所位置図
4	測定者名	測定者名、講習会受講証明に係る書類
5	測定機器に係る資料	超音波装置の型式、製造番号、
		測定機器の校正記録
6	使用コンクリート	コンクリート示方配合、配合強度
7	検量線に係る資料	圧縮強度試験実施材齢、圧縮強度試験結果、
		検量線の関数式
8	測定結果	音速に関する試験結果 (探触子間隔、伝搬時間、
		音速値など)、
		強度推定結果(測定材齢時の圧縮強度)、
		基準材齢(28 日)補正強度、
		構造体コンクリート強度(強度判定値)
9	判定結果	合否判定

微破壊・非破壊試験の流れを図1及び図2に示す。

図1 微破壊試験の流れ

図2 非破壊試験の流れ

4. 監督職員の実施事項

4.1 採用する試験法の承諾

監督職員は、施工者から提出された採用する試験法に関する書類を確認し、測定を実施する前に承諾するものとする。

4.2 施工計画書における記載事項の把握

監督職員は、施工者から提出された施工計画書により、微破壊・非破壊試験による品質管理計画の概要を把握する。概要の把握は、主に次の事項の確認によって行うものとする。

- 1) 対象構造物
- 2) 試験法
- 3) 測定位置

4.3 測定の立会及び報告書の確認

監督職員は、施工者が行う非破壊試験に対し、1工事につき1回以上立会するとともに、任意の位置を選定(1箇所以上)し、施工者に非破壊試験を実施させ、測定結果報告書を確認するものとする。なお、本測定の実施に関する資料は、必要に応じて施工中に提示を求めることができる。

5. 検査職員の実施事項

検査職員は、完成検査時に対象となる全ての測定結果報告書を確認する。なお、 中間技術検査においても、対象となる全ての測定結果報告書を確認するものとする。

6. 測定方法

6.1 試験法について

(1) 対象構造物に適用する試験法

1) フーチング部

完成後不可視部分となるフーチング部は、構造物の側面に設けた供試体 (以下、「外部供試体」という)による試験を標準とする。なお、埋戻し等 の工程に支障がない場合には、「外部供試体」に替えて、「小径コア」によ る試験あるいは非破壊試験を実施しても良い。

2) 柱部・張出し部、桁部

完成後可視部分である、下部工柱部・張出し部及び上部工桁部は、非破壊試験である超音波を用いた試験方法(以下、「超音波法」という)及び衝撃弾性波を用いた試験方法(以下、「衝撃弾性波法」という)のいずれかの方法で実施することを標準とする。

なお、非破壊試験による強度推定値が「6.5 合否判定基準」を満たさない場合には、「小径コア」による試験を実施する。

表3 対象構造物の測定部位に適用する強度試験法

対象構造物	測定部位	標準とする試験法
橋梁上部工	桁部	非破壊試験(超音波法又は、衝撃弾性波法) ※非破壊試験において判定基準を満たしていない 場合には、小径コアによる試験を実施
橋梁下部工	柱部・張出し部	非破壊試験(超音波法又は、衝撃弾性波法) ※非破壊試験において判定基準を満たしていない 場合には、小径コアによる試験を実施
	フーチング部	外部供試体による試験 ※工程等に支障がない場合には、小径コアによる 試験あるいは非破壊試験を実施してもよい

(2) 試験法の採用条件等

強度測定に用いる各試験法は、表4に示す条件を満たすものとする。 なお、採用する試験法については、事前にその試験方法に関する技術資料を添付 して監督職員の承諾を得るものとする。

表4 試験法の採用条件等

	試験法	試験法の条件
微	外部供試体	・外部型枠の作成・設置・強度測定・強度補正方法について確立している方法を用 いること
破壊	小径コア	・ φ 50mm 以下とし通常用いられている φ 100mm コアに対する強度補正方法が確立していること・ 寸法効果が確認されている試験法であること
非破	超音波法	・コンクリート構造物の音速測定方法、強度推定方法が確立されていること ・φ100mm コア強度に対して、±15%程度の精度を有していること
壊	衝撃 弾性波法	・コンクリート構造物の弾性波速度測定方法、強度推定方法が確立されていること ・φ100mm コア強度に対して、±15%程度の精度を有していること

(3) 各試験法の留意点

「微破壊試験」と「非破壊試験」による測定における留意点を表5に示す。

表5 各種強度試験法の留意点

	試験法	補修の 要否	試験可能 時期	試験実施 必要条件	使用コンクリート の条件	備考
微破	外部供試体	不要 (美観等の 問題により 必要な場合 もあり)	脱型直後 から可能 (注1)	必要水平幅として 外部型枠寸法 +100mm 以上	スランプ≧8cm (注3) 粗骨材最大寸法 ≦40mm	外部型枠を設置す る必要があるため 事前に発注者との 協議が必要
壊	小径コア	必要	強度 10N/mm ² 以上 より可能 (注2)	部材厚さとしてコ ア直径の2倍以上	圧縮強度≤70N/mm² 粗骨材最大寸法 ≤40mm	鉄筋探査により鉄 筋がない位置を選 定
非	超音波法	7.40	脱型直後	必要幅として 1000mm 以上(探触 子設置間隔)	the results	コンクリートの種 類ごとに事前に円 柱供試体を用いた
破壊	衝撃 弾性波法	不要	から可能 (注1)	必要幅として 450mm 以上 (探触 子・ハンマー間隔)	· 特になし	検量線の作成(圧 縮強度推定用)が 必要

- 注1) 測定精度を向上するため、可能な限りコンクリート材齢28 日に近い時期に試験を 実施することが望ましいが、現場の工程に支障の及ばないよう材齢によらず、同日 中に複数箇所の試験を行うことができる。
- 注2) コンクリートの配合によるが、目安として打設日から1週間以降。
- 注3) スランプ8cm は購入時に指定する値であり、測定値は許容の下限値である5.5cm 以上のコンクリートを使用。

6.2 測定者

本測定の実施に際しては、各試験に固有の検査技術ならびにその評価法について十分な知識を有することが必要である。このため、施工者は、測定者の有する技術・資格などを証明する資料を添付し、事前に監督職員の承諾を得るものとする。

6.3 測定回数

原則として打設回(以下、「打設ロット」という)ごとに測定を行うものとする。 1打設ロット当たりの測定数を表6に示す。

表6 1打設ロット当たりの測定数

	試験法	1 打設ロット当たりの測定数	
		・1打設ロットの測定に用いる外部供試体は1体とする。	
	外部供試体	ただし、 1 構造部位 *1 が 1 打設ロットで施工される場合には、	
微破壊		1 構造部位あたり 2 供試体とする。	
壊		・1打設ロットの測定に用いる小径コアは2本とする。	
	小径コア	ただし、 1 構造部位 *1 が 1 打設ロットで施工される場合には、	
		1 構造部位あたり 4 本とする。	
非	超音波法	・原則として1打設ロット当たり、3測線とする*2。	
非破壊	衝撃		
	弾性波法		

*1: ここで、構造部位とは以下のことをいう。

橋梁下部工: フーチング部、脚部(柱・壁部)、張出部

橋梁上部工: 1径間当たりの上部構造物

*2: 打設時期、配合など)同一条件での打設が複数回にわたる場合に、一定の条件を満たした場合は、2打設目以降の打設ロットについては、1打設ロット当たりの測定測線数を3測線から1測線に縮減してよいものとする。(測線数の縮減に係る詳細は、別途、「6.6測定における測線の縮減について」を参照のこと。)

6.4 測定位置

(1) 測定位置の選定

測定位置は、図3、図4、図5 を参考として可能な限り対象構造物の異なる 側面において打設高さの中間付近を選定する。

なお、試験回数や測定位置について、対象構造物の形状や構造により上記により難い場合には、発注者と協議の上、変更してもよい。

(2) 測定位置決定及び測定に際しての留意点

各測定方法において測定位置を決定する際には、表7の留意事項に配慮し決 定するものとする。

表7 測定位置決定及び測定に際しての留意点

	試験法	留意点
微破	外部供試体	型枠取付け位置は、打設計画から高さの中間層の中央付近とし、仮設物との干渉が生じないよう留意する。
壊	小径コア	鉄筋位置を避けて採取することが必要であるため、配筋状態を把握する。
非破	超音波法	鉄筋の影響を受けないよう、右図に示すように 鉄筋に対して斜めに測定する。 (柱断面)
壊	衝撃 弾性波法	図鉄筋に対する測線設定例

(3) 測定箇所の配置例

図3 橋梁上部工の測定位置 (例)

図4 橋梁下部工の測定位置 (例)

図5 微破壊・非破壊試験の測定箇所配置図 (例)

表8 微破壊・非破壊試験の測定箇所数(例)

	構造部位		試験法	コンクリート 配合	打設ロット数	供試体数 又は測線数 (箇所)
上	A1∼P1			36-8-25H	2	3
部						3 ※
工.	P1∼A2			36-8-25H	2	3
	11 112			30 0 2011	2	3 💥
	張出部	P1		30-8-25BB	1	3
						3
		A1	非破壊試験		2	3 ※
		(注1)	(注1)			3
下	mate 15 days					3 **
	壁•柱部	P1		27-8-25BB	5	3 ※
						3 ※
部						3 **
		A2			1	3
		Λ.1			0	(1) <2>
エ		A1			2	(1) <2>
	フーチング		須炒 て中4末 ⇒ + 医◆	04 0 4000		(1) <2>
	部(注2)	P1	微破壊試験	24-8-40BB	3	(1) <2>
						(1) <2>
		A2			1	(2) <4>

- 注1) 非破壊試験を実施する場合、測線数については、縮減できる場合がある(※)。詳細は、「6.6 測定における測線の縮減について」を参照のこと。
- 注2) フーチング部における微破壊試験による測定の供試体数について
 - ()内は、外部供試体による試験の場合、<>内は、小径コアによる試験の場合の供試体数を示す。

6.5 判定基準

測定により得られたコンクリート構造物の強度の適否判定は、以下の表9及び表10に示す判定基準により行う。

表9 試験回数と判定基準 (微破壊試験の場合)

試験法	判定基準
外部供試体	供試体の平均強度値*₁≧設計基準強度 (SL)
	かつ、個々の強度値≧設計基準強度の 85% (0.85SL)
	※1:1構造部位あたり2供試体以上の平均とする。
小径コア	コアの強度平均値*2≧設計基準強度 (SL)
	かつ、個々の強度値≧設計基準強度の 85% (0.85SL)
	※2:1構造部位あたり4本以上の平均とする。

表10 試験回数と判定基準(非破壊試験の場合)

1打設ロットあたりの測線数	判定基準
3 測線の場合	強度平均値≥設計基準強度(SL)
	かつ、個々の強度推定値≥設計基準強度の 85% (0.85SL)
1 測線の場合(注1)	強度値≥設計基準強度(SL)

注1) 打設時期、配合など) 同一条件での打設が複数回にわたる場合に、一定の条件を満たした場合は、2 打設目以降の打設ロットについては、1 打設ロット当たりの測定測線数を3 測線から1 測線に縮減してよいものとする。(測線数の縮減に係る詳細は、別途、「6.6 測定における測線の縮減について」を参照のこと。)

6.6 測定における測線の縮減について

打設時期、配合など同一条件での打設が複数回にわたる場合に、以下の条件を満たした場合は、2打設目以降の打設ロットについては、1打設ロット当たりの測定測線数を3測線から1測線に縮減してよいものとする。

(1) 測線数の縮減条件

1) 同一打設条件の定義

複数の打設ロットにおいて、表11に示す事項のいずれにも該当する場合、 打設条件は同一と見なしてよい。

表11 打設条件が同一と見なす必要条件

項目	必要条件				
打設時期	時期が近いこと(概ね連続する3ヶ月程度、かつ、養生方法が同一)				
コンクリート配合	同じであること				
断面形状	断面形状がほぼ同じであること				
1回の打設量	打込み高さがほぼ同じであること				

2) 測線数を縮減する場合における強度判定について

- 「1) 同一打設条件の定義」により同一条件と見なされる打設ロットにおいて、測線数を縮減する場合は、以下の手順により強度判定を行うものとする。 (図6 参照)
 - a) いずれか1つの打設ロット 通常の手順と同様、3測線の計測を行い、強度判定を行う。
 - b) a) 以降(2打設目以降)の打設ロット

1 測線の計測を行い、強度推定値が設計基準強度以上であることを確認する。

ただし、1 測線の強度推定値が設計基準強度を下回る場合は、通常の 手順と同様、3 測線の計測を行い、強度判定を行うものとする。

図6 測定数を縮減する場合における強度判定

(2) 測定箇所の配置例

図7 微破壊・非破壊試験の測定箇所配置図 (例)

表12 微破壊・非破壊試験の測定箇所数(例)

構造部位				コンクリート 配合	コンクリート打設			供試体数
			試験法		打設 ロット数		打設ロット	又は測線数 (箇所)
上 部 工	A1∼P1		36-8-25H 36-8-25H	36-8-25H	2		打設ロット1	3
							2	1 ^{※1} あるいは3
	P1∼A2			2		打設ロット1	3	
				30 0 20H			2	1*1あるいは3
	張出部	P1	非破壊試験	30-8-25BB		1	打設ロット1	3
	壁・柱部	A1		27-8-25BB	2		打設ロット1	3
							2	1 ^{※1} あるいは 3
下		P1			5		打設ロット1	3
							2	1 ^{※1} あるいは3
						_5	打設ロット3	3
							4	1 ^{※1} あるいは3
部							5	1 ^{※1} あるいは3
		A2			1		打設ロット1	3
工	フーチング 部	A1	微破壊試験	24-8-40BB	2		打設ロット1	(1) <2>
							2	(1) <2>
					3		打設ロット1	(1) <2>
							2	(1) <2>
							3	(1) <2>
		A2			1		打設ロット1	(2) <4>

※1 強度推定値が設計基準強度以上であることが確認できた場合は、1打設ロット当たりの測定測定数を1測線としてよい。ただし、1測線の強度推定値が設計基準強度を下回る場合は、3測線の測定を行うものとする。

注) フーチング部における微破壊試験による測定の供試体数について

()内は、外部供試体による試験の場合、<>内は、小径コアによる試験の場合の供試体数を示す。