n: Nota:

MA 327 Álgebra Linear

Primeiro Semestre de 2006

Terceira Prova

Nome:	$\mathbf{RA}:$

$Quest\~oes$	Pontos
Questão 1	
Questão 2	
Questão 3	
Questão 4	
Questão 5	
$T \ o \ t \ a \ l$	

Boa Prova!

Questão 1. (2.0 Pontos)

Seja U um subespaço de $\mathcal{P}_3(\mathbb{R})$ tendo como base $\beta = \{x - x^2 + x^3, 1 + x + x^2\}$. Considere a transformação linear $T: U \longrightarrow \mathcal{P}_2(\mathbb{R})$ dada por: T(p(x)) = p'(x) + (x+1)p(0).

Considere que $[T]_{\gamma}^{\beta} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 1 & 2 \end{bmatrix}$, onde γ é uma base para $\mathcal{P}_2(\mathbb{R})$. Pede–se:

- (a) Determine $[p(x)]_{\beta}$ sabendo que $[T(p(x))]_{\gamma} = \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix}$.
- **(b)** Se $\gamma = \{ x 1, p_1(x), p_2(x) \}$, determine o polinômio $q(x) = p_1(x) p_2(x)$.

Questão 2. (2.0 Pontos)

Considere o espaço vetorial real $C_0^1([0,1])$, isto é,

$$\mathcal{C}^1_0([0,1]) \ = \ \{ \ f \ \in \ \mathcal{C}^1([0,1]) \ / \ f(1) \ = \ 0 \ \} \, .$$

Verifique se cada uma das aplicações

(a)
$$\langle f, g \rangle = \int_0^1 f'(x)g(x)dx$$
 (b) $\langle f, g \rangle = \int_0^1 f'(x)g'(x)dx$

define um produto interno no espaço vetorial $C_0^1([0,1])$. Justifique sua resposta.

Questão 3. (2.0 Pontos)

Sejam V um espaço vetorial real munido do produto interno $\langle \cdot, \cdot \rangle$ e $\| \cdot \|_2$ a norma Euclidiana. Pede–se:

- (a) Mostre que se θ é o ângulo entre os elementos $u, v \in V$, não nulos, então $\|u + v\|_2^2 = \|u\|_2^2 + \|v\|_2^2 + 2\|u\|_2\|v\|_2\cos(\theta).$
- (b) Mostre que se $\beta = \{q_1, \dots, q_n\}$ é um conjunto ortonormal em V, então β é um conjunto linearmente independente em V.

Questão 4. (2.0 Pontos)

Considere o espaço vetorial real $\mathcal{P}_2(\mathbb{R})$ com o produto interno

$$\langle p, q \rangle = \int_{-1}^{1} x^2 p(x) q(x) dx$$
 ; $\forall p, q \in \mathcal{P}_2(\mathbb{R})$.

Determine uma base para o complemento ortogonal do subespaço S = [1 + x] em $\mathcal{P}_2(\mathbb{R})$ com relação ao produto interno $\langle \cdot, \cdot \rangle$ definido acima.

Questão 5. (2.0 Pontos)

Considere o espaço vetorial real $\mathcal{P}_2(\mathbb{R})$ com o produto interno

$$\langle p, q \rangle = \int_0^1 p(x)q(x)dx$$
 ; $\forall p, q \in \mathcal{P}_2(\mathbb{R})$.

Determine a melhor aproximação do polinômio $q(x) = 1 - x^2$ no subespaço $\mathcal{P}_1(\mathbb{R})$.

Questão 1. (2.0 Pontos)

Chamando $[p(x)]_{\beta} = \begin{bmatrix} a \\ b \end{bmatrix}$.

Sabemos que $[T(p(x))]_{\gamma} = [T]_{\gamma}^{\beta} [p(x)]_{\beta}$. Assim, obtemos o seguinte sistema linear

$$\begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix} \quad \iff \quad \begin{cases} a + b = 1 \\ 2a + b = 3 \\ a + 2b = 0 \end{cases} \quad \iff \quad \begin{cases} a + b = 1 \\ -b = 1 \end{cases}$$

que tem uma única solução a=2 e b=-1. Logo, $[p(x)]_{\beta}=\begin{bmatrix}2\\-1\end{bmatrix}$.

Chamando $\beta = \{q_1(x), q_2\}$, onde

$$q_1(x) = x - x^2 + x^3$$
 e $q_2(x) = 1 + x + x^2$.

Conhecemos a matriz $[T]^{\beta}_{\gamma}$, onde $\gamma = \{x-1, p_1(x), p_2(x)\}$. Assim, temos que

$$T(q_1(x)) = (x-1) + 2p_1(x) + p_2(x)$$

$$T(q_2(x)) = (x-1) + p_1(x) + 2p_2(x)$$

$$(1)$$

Tomando T(p(x)) = p'(x) + (x + 1)p(0), vamos calcular

$$T(q_1(x)) = 1 - 2x + 3x^2$$

 $T(q_2(x)) = 1 + 2x + (x + 1) = 3x + 2$ (2)

Substituindo (2) em (1), obtemos um sistema linear nas incógnitas $p_1(x)$ e $p_2(x)$

$$\begin{cases} 2p_1(x) + p_2(x) = 3x^2 - 3x + 2 \\ p_1(x) + 2p_2(x) = 2x + 3 \end{cases}$$

Fazendo a primeira equação menos a segunda equação, obtemos

$$p_1(x) - p_2(x) = 3x^2 - 5x - 1,$$

o que completa a resolução da questão.

Questão 2. (2.0 Pontos)

(a) Note que a aplicação $\langle \cdot, \cdot \rangle$ definida por:

$$\langle f, g \rangle = \int_0^1 f'(x)g(x)dx$$
 ; $\forall f, g \in \mathcal{C}_0^1([0,1])$

não satisfaz a propriedade de **simetria**. De fato,

$$\langle f, g \rangle = \int_0^1 f'(x)g(x)dx \neq \int_0^1 g'(x)f(x)dx = \langle g, f \rangle.$$

Por exemplo, tomando as funções f(x) = 1 - x e $g(x) = 1 - x^2$, temos que

$$\langle f, g \rangle = \int_0^1 (x^2 - 1) dx = -\frac{2}{3}$$
 e $\langle g, f \rangle = \int_0^1 (2x^2 - 2x) dx = -\frac{1}{3}$

Portanto, $\langle f, g \rangle \neq \langle g, f \rangle$.

Além disso, podemos verificar facilmente que a aplicação $\langle \cdot, \cdot \rangle$ não satisfaz a propriedade de **positividade**. De fato,

$$\langle f, f \rangle = \int_0^1 f'(x)f(x)dx = \frac{1}{2} \int_0^1 (f^2(x))'dx$$

= $\frac{1}{2} (f^2(1) - f^2(0)) = -\frac{1}{2} f^2(0) \le 0$,

onde f(1) = 0.

Logo, a aplicação $\langle \cdot, \cdot \rangle$ não define um produto interno no espaço vetorial $\mathcal{C}_0^1([0,1])$.

(b) Podemos verificar facilmente que a aplicação $\langle \cdot, \cdot \rangle$ definida por:

$$\langle f, g \rangle = \int_0^1 f'(x)g'(x)dx$$
 ; $\forall f, g \in \mathcal{C}_0^1([0,1])$

satisfaz as propriedades de simetria, homogeneidade e distributividade. De fato,

$$\langle f, g \rangle = \int_0^1 f'(x)g'(x)dx = \int_0^1 g'(x)f'(x)dx = \langle g, f \rangle \; ; \; \forall f, g \in \mathcal{C}_0^1([0,1]).$$

$$\langle \lambda f, g \rangle = \int_0^1 (\lambda f)'(x)g'(x)dx = \int_0^1 \lambda f'(x)g'(x)dx = \lambda \int_0^1 f'(x)g'(x)dx = \lambda \langle f, g \rangle$$

para todas funções $f, g \in \mathcal{C}^1_0([0,1])$ e $\lambda \in \mathbb{R}$.

$$\langle f + g, h \rangle = \int_0^1 (f + g)'(x)h'(x)dx = \int_0^1 f'(x)h'(x)dx + \int_0^1 g'(x)h'(x)dx$$
$$= \langle f, h \rangle + \langle g, h \rangle \quad ; \quad \forall f, g \in \mathcal{C}_0^1([0, 1]).$$

Vamos mostrar que a aplicação $\langle \cdot, \cdot \rangle$ satisfaz a propriedade de **positividade**. De fato,

$$\langle f, f \rangle = \int_0^1 (f'(x))^2 dx \ge 0,$$

pois o integrando é uma função contínua positiva.

Agora, supomos que

$$\langle f, f \rangle = \int_0^1 (f'(x))^2 dx = 0.$$

Como f' é uma função contínua, temos que f'(x)=0 para todo $x\in[0,1]$. Logo, f é uma função constante em [0,1], entretanto, f(1)=0. Assim, a única função constante no espaço $\mathcal{C}^1_0([0,1])$ é a função identicamente nula ($f\equiv 0$), isto é, f(x)=0 para todo $x\in[0,1]$.

Portanto, a aplicação $\langle \cdot, \cdot \rangle$ define um produto interno no espaço vetorial $\mathcal{C}_0^1([0,1])$.

Questão 3. (2.0 Pontos)

(a) Considerando que V é um espaço vetorial real, temos que

$$||u+v||_2^2 = \langle u+v, u+v \rangle = \langle u, u \rangle + 2\langle u, v \rangle + \langle v, v \rangle.$$

Agora utilizando o fato que θ é o ângulo entre os elementos u e v, não nulos, temos que

$$\cos(\theta) = \frac{\langle u, v \rangle}{\|u\|_2 \|v\|_2} \Longrightarrow \langle u, v \rangle = \|u\|_2 \|v\|_2 \cos(\theta).$$

Portanto, obtemos a relação

$$||u + v||_2^2 = ||u||_2^2 + ||v||_2^2 + 2||u||_2||v||_2\cos(\theta)$$

que é denominada Lei do Paralelogramo.

(b) Tomando a combinação linear nula dos elementos do conjunto β

$$c_1q_1 + \cdots + c_iq_i + \cdots + c_nq_n = 0_V,$$

e fazendo o produto interno de ambos os membros com um elemento $q_j \in \beta$ temos que

$$c_1\langle q_1, q_j \rangle + \cdots + c_i\langle q_i, q_j \rangle + \cdots + c_n\langle q_n, q_j \rangle = 0.$$

Usando o fato que β é um conjunto ortonormal, isto é,

$$\begin{cases} \langle q_i, q_j \rangle &= 0 & \text{para} & i \neq j \\ \langle q_i, q_j \rangle &= 1 & \text{para} & i = j \end{cases}$$

obtemos

$$c_j = 0$$
 para $j = 1, \dots, n$.

Portanto, mostramos que β é um conjunto linearmente independente em V.

Questão 4. (2.0 Pontos)

Chamando p(x) = 1 + x, temos que o subespaço $S = [p(x)] \subset \mathcal{P}_2(\mathbb{R})$.

O subespaço S^{\perp} é definido por:

$$S^{\perp} = \{ q \in \mathcal{P}_2(\mathbb{R}) / \langle r, q \rangle = 0 ; \forall r \in S \}.$$

Tomando um elemento genérico $q(x)=a+bx+cx^2\in S^\perp$, sabemos que $\langle \, p\,,\,q\,\rangle=0$. Assim, temos que

$$\langle p, q \rangle = \int_{-1}^{1} x^{2} (1+x)(a+bx+cx^{2}) dx$$

$$= \int_{-1}^{1} (x^{2}+x^{3})(a+bx+cx^{2}) dx$$

$$= \int_{-1}^{1} (ax^{2}+bx^{3}+cx^{4}+ax^{3}+bx^{4}+cx^{5}) dx = 0$$

$$= \int_{-1}^{1} (ax^{2}+cx^{4}+bx^{4}) dx = 0$$

Calculando a integral, resulta a seguinte equação

$$\frac{2}{3}a + \frac{2}{5}c + \frac{2}{5}b = 0$$

Resolvendo a equação acima para a incógnita c, temos que

$$c = -\frac{5}{3}a - b.$$

Portanto, todo elemento $q(x) \in S^{\perp}$ é escrito como:

$$q(x) = a + bx + \left(-\frac{5}{3}a - b\right)x^{2}$$

$$= \left(1 - \frac{5}{3}x^{2}\right)a + (x - x^{2})b \quad \text{para} \quad a, b \in \mathbb{R}.$$

Desse modo, uma base para o subespaço S^{\perp} é formada pelos elementos

$$q_1(x) = 1 - \frac{5}{3}x^2$$
 e $q_2(x) = x - x^2$,

completando a resolução da questão.

Questão 5. (2.0 Pontos)

A melhor aproximação do elemento $q(x) = 1 - x^2$ no subespaço $\mathcal{P}_1(\mathbb{R}) \subset \mathcal{P}_2(\mathbb{R})$ é dada pela projeção ortogonal do elemento q(x) sobre o subespaço $\mathcal{P}_1(\mathbb{R})$.

Inicialmente, vamos obter uma base ortogonal $\beta^* = \{q_1(x), q_2(x)\}$ para o subespaço $\mathcal{P}_1(\mathbb{R})$ a partir da base canônica $\beta = \{p_1(x) = 1, p_2(x) = x\}$, através do **Processo de Ortogonalização de Gram-Schmidt**.

Desse modo, escolhemos $q_1(x) = p_1(x) = 1$. Agora, vamos construir o elemento $q_2(x)$ da seguinte forma:

$$q_2(x) = p_2(x) - \alpha_{12} q_1(x)$$

ortogonal ao subespaço gerado pelo elemento $q_1(x)$. Assim, temos que

$$\alpha_{12} = \frac{\langle p_2, q_1 \rangle}{\langle p_2, q_1 \rangle} = \frac{1}{2}.$$

Logo, o elemento $q_2(x) = x - \frac{1}{2}$, completando a base ortogonal $\beta^* = \{q_1(x), q_2(x)\}$.

Finalmente, vamos determinar a projeção ortogonal, $\tilde{q}(x)$, do elemento $q(x) = 1 - x^2$ no subespaço $\mathcal{P}_1(\mathbb{R})$ que é dada por:

$$\tilde{q}(x) = \frac{\langle q, q_1 \rangle}{\langle q_1, q_1 \rangle} q_1(x) + \frac{\langle q, q_2 \rangle}{\langle q_2, q_2 \rangle} q_2(x)$$

onde

$$\langle q_1, q_1 \rangle = \int_0^1 dx = 1$$
 e $\langle q_2, q_2 \rangle = \int_0^1 \left(x - \frac{1}{2} \right)^2 dx = \frac{1}{12}$
 $\langle q, q_1 \rangle = \int_0^1 (1 - x^2) dx = \frac{2}{3}$
 $\langle q, q_2 \rangle = \int_0^1 (1 - x^2) \left(x - \frac{1}{2} \right) dx = -\frac{1}{12}$

Portanto, temos que

$$\tilde{q}(x) = \frac{2}{3} - \left(x - \frac{1}{2}\right) = \frac{7}{6} - x,$$

o que completa a resolução da questão.