기계의 결함진단을 위한 자료해석 기술지침

2012. 6.

한국산업안전보건공단

안전보건기술지침의 개요

ㅇ 작성자 : 한국산업안전보건공단 김 건 남

ㅇ 개정자 : 안전연구실

o 제·개정경과

- 2001년 5월 기계안전분야 기준제정위원회 심의

- 2001년 6월 총괄기준제정위원회 심의

- 2012년 4월 기계안전분야 제정위원회 심의(개정)

ㅇ 관련규격 및 자료

- ISO/DIS 13379

Data interpretation and diagnostics techniques which use information and data related to the condition of a machine

- 관련 법규·규칙·고시 등
 - 산업안전보건기준에관한규칙 제2편 제1장 제1절 제91조(고장난 기계의 정비 등)
- ㅇ 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈 페이지 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2012년 6 월 20 일

제 정 자 : 한국산업안전보건공단 이사장

기계의 결함진단을 위한 자료해석 기술지침

1. 목 적

이 지침은 산업안전보건기준에관한 규칙(이하 "안전보건규칙"이라 한다) 제2편 제1장 제1절 제91조(고장난 기계의 정비 등)의 규정에 따라 기계류의 상태감시를 통하여 측정된 자료와 정보를 해석하고 기계결함을 진단함으로써 기계고장을 예방하고 정비할 수 있도록 필요한 지침을 정하는데 그 목적이 있다.

2. 적용범위

이 지침은 화학공장을 비롯한 각종 제조공장에서 사용되는 가스터빈, 압축기, 펌프, 발전기, 전동기, 송풍기, 배풍기 등의 기계에 적용한다.

3. 용어의 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
 - (가) "경고(Alarm)"라 함은 선택된 이상상태 또는 이상상태의 조합이 발생되어 수정조치가 요구될 때 운전자에게 경보를 줄 수 있도록 고안된 신호나 의사전달을 말한다.
 - (나) "이상상태(Anomaly)"라 함은 기계의 비정상적인 상태나 거동을 말한다.
 - (다) "특징설명인자(Descriptor)"라 함은 사람이 관찰하거나 직접 측정된 것 또는 공정자료로부터 도출된 값으로, 증상을 설명하는데 사용되는 값을 말한다.
 - (라) "고장(Failure)"이라 함은 기계의 주기능 또는 여러 가지 기능이 더 이상 작동되지 못하는 것을 말한다.

KOSHA GUIDE

M - 131 - 2012

- (마) "결함(Fault)"이라 함은 부품이나 조립품의 상태가 열화되거나 비정상 거동을 보이는 것을 말한다.
- (바) "증상(Symptom)"이라 함은 사람의 관측이나 측정에 의하여 감지되는 비정상 상태를 말한다.
- (2) 그 밖에 이 지침에서 사용하는 용어의 정의는 이 지침에 특별한 규정이 있는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙, 안전보건규칙 및 고용노동부 고시에서 정하는 바에 의한다.

4. 진단 요구사항

4.1 진단의 역할

- (1) 진단은 운전과 보수유지에 관한 의사결정시 기본적인 역할을 한다.
- (2) 효과적인 보수유지를 위해서는 기계에서 발생될 수 있는 결함의 가능성에 따라 진단을 실시하여야 한다.
- (3) 기계의 상태감시 시스템 및 진단시스템을 구축하기 위하여 예비조사를 수행한다.

4.2 진단에 필요한 조사

- (1) 상태감시 및 진단 사이클은 <그림 1>과 같다.
- (2) 설계단계는 특별한 기계를 위하여 필요한 상태감시 및 진단자료를 준비하기 위한 예비조사 단계이다.
- (3) 사용단계는 시운전이 끝난 기계에서 수행하는 상태감시 및 진단활동 단계이다.

<그림 1> 상태감시 및 진단사이클

- (4) 예비조사 절차는 아래단계에 따라 수행한다.
 - (가) 전체공정에서 기대되는 기계의 가동성, 보수유지상태, 치명도를 분석
 - (나) 주요부품과 기능의 목록을 작성
 - (다) 부품의 결함원인과 고장모드를 해석
 - (라) 안전성, 가동성, 보수비용, 제품 품질 등의 중요도와 발생빈도를 고려한 치명도를 표시
 - (마) 진단에 의하여 발견될 수 있는 결함을 결정
 - (바) 결함을 가장 잘 관찰할 수 있는 운전조건을 찾아내고 결정
 - (사) 기계의 상태를 알수 있는 증상을 표시하고 진단에 활용
 - (아) 여러 증상들을 평가하는데 사용되는 특징설명인자를 목록화
 - (자) 특징설명인자들이 도출되거나 계산될 수 있는 필요한 측정기구와 변환 기들을 선정

4.3 진단요구사항 보고서

- (1) 예비조사 결과를 종합하여 진단요구사항 보고서를 작성한다.
- (2) 보고서에는 아래사항들을 포함시킨다.
 - (가) 기계를 적당히 분할한 부품
 - (나) 부품에 관련된 결함들의 목록
 - (다) 각 결함에서 관찰할 수 있는 증상
 - (라) 사용되어질 상태감시 특징설명인자
 - (마) 특징설명인자의 계산을 위하여 사용될 매개변수와 측정방법
 - (바) 진단시스템의 성능에 대한 내용
- (3) 상태감시에 의하여 모든 중요한 결함들이 다 나타나는 것은 아니며 나타 나지 않는 결함들은 진단할 수 없으므로 보고서에 결함으로 나타나는 것 과 나타나지 않는 것을 명확히 구분한다.

5. 진단을 위하여 사용되는 요소

5.1 상태감시 자료

5.1.1 측정치

- (1) 상태감시를 위하여 사용되는 모든 측정치들이 진단에 활용된다.
- (2) 기계의 상태감시와 진단을 위하여 사용되어지는 측정대상의 예를 <표 1>에서 보여준다.

<표 1> 진단에 사용되는 측정대상의 예

성능	기계적	전기적	윤활유분석, 제품품질 및 기타
동력소비량	팽창	전류	윤활유 분석
효율	위치	전압	마멸입자 분석
온도	액위	저항	제품치수
열방산	진동변위	인덕턴스	제품의 물리적 성질
압력	진동속도	정전용량	제품의 화학적 성질
유량	진동가속도	자기장	색채
	소음	절연저항	외관현상
	초음파	부분방전	냄새
			기타 비파괴검사

5.1.2. 특징설명인자

- (1) 특징 설명인자는 증상과 이상상태를 나타내는데 사용되며, 일반적으로 상태감시 시스템으로부터 얻어지나 운전변수들도 특징 설명인자로 사용될 수 있다.
- (2) 특징설명인자는 상태감시 시스템으로부터의 직접측정치 또는 측정치의 자료 처리 후에 얻어진다.
- (3) 특징설명인자는 결함을 설명할 수 있는 자료를 제공해 주기 때문에 진단을 위해서는 가공되지 않은 측정치보다 더 선호된다.
- (4) 특징설명인자를 많이 선택할수록 많은 증상을 알아 낼 수 있으며 결함을 추론할 때 결함가설의 수를 줄여줌으로써 진단을 용이하게 할 수 있다.
 - 주) 특징설명인자의 예 : 진동의 주파수 분석, 윤활유 산성도, 부품의 손상 정도, 열탐상의 온도구배 등

KOSHA GUIDE

M - 131 - 2012

5.1.3 증상

- (1) 증상이 감지되면 하나 혹은 그 이상의 결함이 발생되었을 가능성이 있다.
- (2) 증상은 시간, 변화, 특징설명인자, 위치, 환경 등으로 표시한다.
- (3) 시간은 특징설명인자의 진전되는 기간 또는 속도를 표시한다. 예) 1시간, 천천히 등
- (4) 변화는 진전의 형태와 크기를 표시한다. 예) 있음, 없음, 증가, 감소, 안정도 등
- (5) 특징설명인자는 크기를 표시한다. 예) 온도, 압력, 진동변위 등
- (6) 위치는 증상을 관찰 할 수 있는 기계에서의 위치를 표시한다. 예) 베어링 1번의 수직방향 등
- (7) 환경은 증상이 나타날 수 있는 운전조건을 표시한다. 예) 정지시, 시동 1시간 후, 정상가동시 등

5.1.4 결함

- (1) 결함은 기계의 고장을 유발시킨다. 부품의 하나 또는 여러개가 결함상태가 되었을 때 고장이 발생된다.
- (2) 결함은 기계, 부품, 고장모드, 심각도로 표시한다.
- (3) 기계는 결함이 발생된 기계의 명칭 또는 관리번호로 표시한다.
- (4) 부품은 결함이 발생한 기계부품의 명칭 또는 부품번호로 표시한다.
- (5) 고장모드는 기계부품의 열화유형을 표시한다.
- (6) 심각도는 열화 또는 고장모드의 크기를 <표 2>의 예와 같이 분류하여 표시한다.

<표 2> 심각도 표시의 예

심각도	열화 또는 고장상태		
1	정상상태		
2	경미한 열화, 초기고장		
3	중간열화		
4	진전되었으나 안정된 상태의 열화		
5	진전되고 발산되는 열화		
6	거의 파괴적인 고장		

5.2 기계 데이터 및 이력

5.2.1 기계 데이터

- (1) 진단을 위해서는 기계의 특정 데이터에 대한 지식이 필요하다.
- (2) 특징설명인자의 측정 또는 계산에 관련된 기계데이터와 기계의 배치에 관련된 데이터 등이 수집되어야 한다.

5.2.2 기계이력

- (1) 결함발생은 운전뿐만 아니라 유지보수에도 관련이 있다.
- (2) 결함은 개방검사기간 또는 특정한 상황일 때 찾아내기 쉽다.
- (3) 기계에 발생된 결함이력, 운전이력, 유지보수이력을 기록하여 진단에 참고 하여야 한다.

6. 진단 수행방법

6.1 진단절차

- (1) 진단은 일반적으로 이상상태의 검출에 의해 시작된다.
- (2) 이상상태의 검출은 기계의 현재 특징설명인자와 경험, 제작사 사양, 시운 전으로부터 선택되거나 통계자료로부터 선택된 기준값을 비교함으로써 이루어진다.
- (3) 기계진단에 사용할 수 있는 진단법으로는 결함 증상진단법과 인과관계 진단법 등이 있다.

6.2 결함 · 증상 진단법

- (1) 결함과 증상은 서로 연관되는 관계가 있으므로 이를 이용하여 진단한다.
- (2) 독자적인 상황들을 개별적으로 분석하여 결과를 얻는다.
- (3) 진단작업의 단계는 <그림 2>에 따른다.

<그림 2> 결함·증상 진단법

M - 131 - 2012

6.2.1 검출된 이상상태의 평가

- (1) 진단의 첫단계는 이상상태의 평가이다.
- (2) 이상상태의 평가는 이상상태의 확인과 결함가설을 표시하는데 사용되는 몇 개의 전체적인 증상들의 평가로 이루어진다.
- (3) 이상상태는 아래의 방법으로 확인한다.
 - (가) 특징설명인자로부터 확인
 - (나) 경고값에는 도달되지 않았으나 데이터의 비정상적인 변화로부터 확인
 - (다) 소음, 냄새, 온도, 습도, 누설 등 기계의 변화를 사람이 감지
 - (라) 일반적으로는 경보가 울리는 것에 의하여 데이터를 확인
- (4) 여러 증상들을 거시적으로 평가하는 전체적인 증상의 평가로 결함가설의 생성이 가능하다.

6.2.2 결함가설의 작성

하나의 전체적인 증상이 평가되면 전체적인 증상과 결함의 관계에 따라 결함 가설의 목록을 작성한다.

6.2.3 결함가설의 확정

- (1) 요구되는 증상과 적합하지 않은 가설들을 제거하는 평가작업을 한다.
- (2) 결함가설의 목록에서 아래사항을 고려하여 축소하거나 재배열할 수 있는 항목들을 찾아낸다.
 - (가) 과거의 데이터, 같은 형식의 기계, 같은 운전조건들로부터 얻어진 결함 이 발생될 확률
 - (나) 결함의 심각도

KOSHA GUIDE

M - 131 - 2012

- (3) 결함에 필요한 증상들을 확인하여 모든 증상들이 확인되면 그 결함가설은 확정된다.
- (4) 하나 또는 그 이상의 필요한 증상이 확인되지 않으면 그 결함가설은 제거한다.
- (5) 최종진단 단계에서 특별한 결함을 추정할 때에는 필요한 증상이 확인되지 않지만 결함 발생시 필요한 증상은 아니지만 나타날 수 있는 증상인 보강증상이 하나 혹은 그 이상 확인되면 그 결함은 제거하지 않는다.

6.2.4 진단의 종합과 판단

- (1) 진단절차의 마지막 단계로 실현된 진단을 요약한다.
- (2) 진단보고서에 평가되고 확인된 아래와 같은 결함요소들을 기재한다.
 - (가) 진단을 시작하게 한 이상상태
 - (나) 확인된 전체적인 증상
 - (다) 확인되지 않는 증상으로 제거된 결함
 - (라) 확인된 결함과 그들의 예상확률
- (3) 보고서에 종합적인 상태를 판단할 수 있는 아래의 다른 요소들을 기술한다. 이런 요소들은 확인된 가설에 가중치를 부여하는데 사용할 수 있다.
 - (가) 기계이력
 - (나) 발생한 유사사례
 - (다) 결함의 확률과 치명도
- (4) 결론으로 결함을 표기하고 수정운전이나 보수작업을 제안한다. 또는 보수 작업이 필요하나 운전을 고려하여 언제까지 연기할 수 있다는 것을 권고한다.

6.3 인과관계 진단법

- (1) 인과관계 진단법은 결함·증상진단법보다 깊이 있는 진단을 수행할 때 사용한다.
- (2) <그림 3>과 같은 인과트리(Causal tree)구조를 사용하여 원인의 인과관계를 연결하고 분석한다.
- (3) 주요결함에 대한 초기사건의 근본원인을 찾아낸다.
- (4) 주요결함에서 결과로 발생되는 결함들을 연결한다.
- (5) 각 결함들은 인지된 관계에 의하여 증상과 연결된다.
- (6) 원인과 결과 사이에는 시간적인 지연이 발생될 수 있으므로 각 결함과 증상이 시스템적으로 연결되지 않을 수 있다.
- (7) 원인에 대한 결과의 가능성은 확률로 나타낸다.

<그림 3> 인과트리 구조