Math 146: Homework 5

Due: Sunday, March 10, by 11:59pm Please submit your solutions as a single PDF on Canvas

Reminders:

- You are encouraged to work together on homework. If you work with other students, please indicate who you worked with on this assignment.
- The usual extension policy applies to this assignment: if you would like an extension on this homework over the weekend, simply email the professor to ask for it. No justification is required.
- 1. This problem is relatively computational, with the aim of having you probe irreducibility in degrees larger than 3.
 - a) Find all eight irreducible polynomials in $\mathbb{F}_2[x]$ with degree at most 4.
 - b) Determine which of the following polynomials are irreducible in $\mathbb{Q}[x]$:
 - (i) $x^3 7x^2 + 16x 1001$
 - (ii) $x^4 + x^3 1$
 - (iii) $x^4 + x^3 + x + 1$
 - (iv) $x^7 + 12x^5 24x + 18$
 - (v) (0 points; unfair, but not so unfair) $x^{1024} + 1$.
- **2.** Let F be a field and K an extension of F. Let $f \in F[x]$ be a non-zero polynomial. Prove that the number of roots of f in K is at most deg f.
- **3.** Let p be a prime number. Let \mathbb{F}_{p^2} be the field of order p^2 . On your last homework, you proved that there is also a field of order p^3 , which we'll denote \mathbb{F}_{p^3} . Prove that \mathbb{F}_{p^3} is not an extension of \mathbb{F}_{p^2} .
- **4.** Let p be an odd prime. Recall that we've shown there is a field of order p^2 , denoted \mathbb{F}_{p^2} . Somewhat more concretely, $\mathbb{F}_{p^2} = \mathbb{F}_p[x]/(f)$ for some monic irreducible polynomial $f \in \mathbb{F}_p[x]$ of degree 2. This problem will have you show that this field is essentially unique, in that all fields of order p^2 are isomorphic. In other words, you will show that it does not matter which irreducible polynomial f was chosen to construct \mathbb{F}_{p^2} . To this end, we'll keep in mind an arbitrary, but fixed, choice of f, and use the letter g for other polynomials.
 - a) Let $\alpha \in \mathbb{F}_{p^2}$, and consider the polynomial $g = (x \alpha)^2 \in \mathbb{F}_{p^2}[x]$. Prove that g is in fact in $\mathbb{F}_p[x]$ if and only if $\alpha \in \mathbb{F}_p$.
 - b) Prove that every $\alpha \in \mathbb{F}_{p^2}$ that is not in \mathbb{F}_p is the root of a monic irreducible polynomial of degree 2.
 - c) Prove that if $g \in \mathbb{F}_p[x]$ is monic irreducible of degree 2, then g has exactly two roots in \mathbb{F}_{p^2} . (*Hint:* How many such polynomials g are there?¹)
 - d) Finally, let $g \in \mathbb{F}_p[x]$ be any monic irreducible polynomial of degree 2. By part d), there are two roots of g in $\mathbb{F}_{p^2} = \mathbb{F}_p[x]/(f)$. Let $a_g + b_g x + (f)$ be one of these roots.²
 - (i) Prove that $b_g \neq 0$.
 - (ii) Define a homomorphism $\phi_g \colon \mathbb{F}_p[x] \to \mathbb{F}_p[x]/(f)$ by $\phi_g(x) = a_g + b_g x$ and $\phi_g(a) = a$ for all $a \in \mathbb{F}_p$. Prove that ϕ_g is a surjective homomorphism and that $\ker \phi_g = (g)$.

¹Recorded on Homework 4, if you don't remember offhand.

²If this notation is confusing, please ask.

- (iii) Conclude that $\mathbb{F}_p[x]/(g) \simeq \mathbb{F}_p[x]/(f)$. e) (0 points) Think about how this picture extends to finite fields \mathbb{F}_{p^k} for $k \geq 3$.