

Programa de Pós-graduação em Sistemas de Informação

SIN5007 - Reconhecimento de Padrões (2023) **Atividade 2**: One-Hot Encode, normalização e PCA

> MSc. Leonardo Cunha dos Santos Gabriel Francisco dos Santos Silva

> > São Paulo / 2023

Agenda

- Conjunto de dados
- One-hot encode
- StandardScaler
- PCA

Conjunto de dados

Versão depara

RangeIndex: 19158 entries, 0 to 19157							
Data	columns (total 17 columns):						
		Non-Null Count	Dtype				
	NO_REGIAO	19158 non-null	object				
	NO_UF	19158 non-null	object				
	IN_CAPITAL_DEPARA	19158 non-null	object				
	NO_CURSO_DEPARA	19158 non-null	object				
	TP_GRAU_ACADEMICO_DEPARA	19155 non-null	object				
	IN_GRATUITO_DEPARA	19158 non-null	object				
	TP_MODALIDADE_ENSINO_DEPARA	19158 non-null	object				
	TP_NIVEL_ACADEMICO_DEPARA	19158 non-null	object				
	·						

	TP_DIMENSAO_DEPARA	19158	non-null	object			
	TP_ORGANIZACAO_ACADEMICA_DEPARA	19158	non-null	object			
	TP_CATEGORIA_ADMINISTRATIVA_DEPARA	19158	non-null	object			
11	TP_REDE_DEPARA	19158	non-null	object			
12	QT_VG_TOTAL	19158	non-null	int64			
13	QT_INSCRITO_TOTAL	19158	non-null	int64			
	QT_ING	19158	non-null	int64			
	QT_MAT	19158	non-null	int64			
	QT_CONC	19158	non-null	int64			
dtypes: int64(5), object(12)							
memory usage: 2.5+ MB							

One-hot encode

Utilização do pacote Pandas: get_dummies


```
categories = ['NO_REGIAO', 'NO_UF', 'IN_CAPITAL_DEPARA', 'NO_CURSO_DEPARA',
              'TP_CATEGORIA_ADMINISTRATIVA_DEPARA']
encoded_data = pd.get_dummies(df[categories], prefix=categories, prefix_sep='_')
encoded data = encoded data.apply(lambda x: x.astype(bool).astype(int))
<u>|encoded_data = encod</u>ed_data.merge(df[['QT_VG_TOTAL','QT_INSCRITO_TOTAL','QT_ING',
```

One-hot encode

Result set

	NO_REGIAO_Centro-Oeste	NO_REGIAO_Nor	deste	QT_CONC	TP_REDE_DEPARA
					Pública
					Pública
2					Pública
3					Pública
4					Privada
19153					Privada
19154					Privada
19155					Privada
19156					Privada
19157					Privada

StandardScaler


```
print(f' Normalização de variáveis '.center( _width: 80 , _fillchar: '#'))
scaler = StandardScaler()
normalized data = scaler.fit transform(encoded data[columns])
normalized_data = pd.DataFrame(normalized_data, columns=columns)
print(normalized_data)
```

StandardScaler

Result set

######	#############	####### Normalizaçã	ăo de variá	áveis #####	*#########	############
	QT_VG_TOTAL	QT_INSCRITO_TOTAL	QT_ING	QT_MAT	QT_CONC	
	0.724341	3.745327	-0.269880	-0.287079	-0.20961	
1	-0.056820	-0.077259	-0.269880	-0.287079	-0.20961	
2	-0.056820	-0.077259	-0.269880	-0.287079	-0.20961	
3	-0.056820	-0.077259	-0.269880	-0.287079	-0.20961	
	12.420536	12.534500	-0.269880	-0.287079	-0.20961	
19153	-0.056820	-0.077259	-0.243467	-0.272439	-0.20961	
19154	-0.056820	-0.077259	-0.164229	-0.169958	-0.20961	
19155	-0.056820	-0.077259	-0.111404	-0.228518	-0.11534	
19156	-0.056820	-0.077259	-0.243467	-0.272439	-0.20961	
19157	-0.056820	-0.077259	-0.243467	-0.272439	-0.20961	

Dimensões do conjunto de dados

Após a padronização

- Variáveis qualitativas (binárias): 74
- Variáveis quantitativas (padronizadas): 5
- Alvo: TP_REDE_DEPARA
- Instâncias: 19158

PCA

Principal Component Analysis


```
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
data_X = normalized_data_vf.drop('TP_REDE_DEPARA', axis=1)
pca = PCA()
pca.fit(data_X)
explained_variance_ratio = pca.explained_variance_ratio_
```

PCA

Principal Component Analysis

PCA

Principal Component Analysis


```
Número de Componentes Principais para 95% de Variância: 22
PC2
                              PC3
                                           PC20
                                                     PC21
                                                              PC22
      0.190351
                3.345125 -0.140522
                                   ... -1.051111 -1.318289 -0.026662
     -0.271789
                0.161091 -0.924383
                                   ... -1.180369 -1.477429 -0.046666
                0.141671
                                   ... -1.032111 -1.547045 -0.003615
     -0.309983
                         0.358834
     -0.309983
                0.141671
                         0.358834
                                   ... -1.032111 -1.547045 -0.003615
      1.720391
               17.651678 -0.612151
                                   ... -0.292294 -0.570287 -0.030889
19153 -0.535000
               -0.050070
                         0.392255
                                       -0.039530 -0.041791
                                                          0.950386
19154 -0.439304
                         0.916337
               -0.069639
                                       0.018221 -0.060235
                                                          0.949860
19155 -0.392884
               -0.077730
                         0.929753
                                   ... -0.017430 -0.033971
                                                          0.951916
19156 -0.447089
               -0.046038
                         0.713141
                                       0.101151
                                                0.011569
                                                          0.959502
19157 -0.535000
               -0.050070
                         0.392255
                                   ... -0.039530 -0.041791
                                                          0.950386
```

Obrigado!

Thanks! / ¡Gracias!

Leonardo Cunha dos Santos

lattes.cnpq.br/5620610314140397 leonardo.cunha.santos@usp.br

Gabriel Francisco dos Santos Silva gabfssilva@gmail.com