Communication-Avoiding Machine Learning

Aditya Devarakonda

ASPIRE Summer Retreat

June 14th, 2017

Collaborators:

Jim Demmel (Adviser), Kimon Fountoulakis (Post-Doc), and Michael W. Mahoney (Co-adviser)

Definition

Communication is data movement.

Courtesy: Demmel

Least-Squares (Linear Regression)

features

labels

Many ways to solve.

Direct

Explicitly solve normal equation.

Implicitly through matrix factorizations.

Iterative

Krylov methods (e.g. Conjugate Gradients).

(Block) Coordinate Descent.

Least-Squares:
$$\operatorname{argmin}_{x \in \mathbb{R}^n} \frac{1}{2} \|Ax - y\|_2^2$$

Normal Equation: $x = (A^T A)^{-1} A^T y$

Regularized Least-Squares (Regression)

Binary Classification

Support Vector Machines

Ridge Regression with Block Coordinate Descent

Similar to normal equation.

Ridge Regression with Block Coordinate Descent

Block Coordinate Descent in Parallel

Block Coordinate Descent in Parallel

Block Coordinate Descent in Parallel

Larger residual contribution.

r is from this iteration

Partition G and r'.

(**G** is symmetric)

Solution to 1st sub-problem.

Inner iteration 1

 $: r_2', r_3',...$ become stale as soon as Δx_1 is computed.

Orange blocks are the updates

 \vdots $\mathbf{r_2}$, $\mathbf{r_3}$,... become stale as soon as $\Delta \mathbf{x_1}$ is computed.

Orange blocks are the updates

Subtraction terms are needed for CA and non-CA solutions to agree.

1: Input: $X \in \mathbb{R}^{d \times n}$, $y \in \mathbb{R}^n$, H > 1, $w_0 \in \mathbb{R}^d$, $b \in \mathbb{Z}_+$ s.t. b < d2: **for** $h = 1, 2, \dots, H$ **do** choose $\{i_m \in [d] | m = 1, 2, \dots, b\}$ uniformly at random without replacement $\mathbb{I}_h = [e_{i_1}, e_{i_2}, \cdots, e_{i_k}]$ 5: $\Gamma_h = \frac{1}{n} \mathbb{I}_h^T X X^T \mathbb{I}_h + \lambda \mathbb{I}_h^T \mathbb{I}_h$ 6: $\Delta w_h = \Gamma_h^{-1} \left(-\lambda \mathbb{I}_h^T w_{h-1} - \frac{1}{n} \mathbb{I}_h^T X z_{h-1} + \frac{1}{n} \mathbb{I}_h^T X y \right)$ (every iteration) 7: $w_h = w_{h-1} + \mathbb{I}_h \Delta w_h$ Algorithm 2 Communication-Avoiding Block Coordinate Descent (CA-BCD) Algo-8: $z_h = z_{h-1} + X^T \mathbb{I}_h \Delta w_h$ rithm 9: Output w_H 1: Input: $X \in \mathbb{R}^{d \times n}$, $y \in \mathbb{R}^n$, H > 1, $w_0 \in \mathbb{R}^d$, $b \in \mathbb{Z}_+$ s.t. b < d2: **for** $k = 0, 1, \dots, \frac{H}{a}$ **do** for $j = 1, 2, \dots, s$ do choose $\{i_m \in [d] | m = 1, 2, \dots, b\}$ uniformly at random without replacement $\mathbb{I}_{sk+j} = [e_{i_1}, e_{i_2}, \cdots, e_{i_b}]$ Communication (every outer iteration) $\begin{bmatrix} 6: & \text{let } Y = \begin{bmatrix} \mathbb{I}_{sk+1}, \mathbb{I}_{sk+2}, \cdots, \mathbb{I}_{sk+s} \end{bmatrix}^T X. \\ 7: & \text{compute the Gram matrix, } G = \frac{1}{n} Y Y^T + \lambda I. \end{bmatrix}$ 8: **for** $j = 1, 2, \dots, s$ **do**9: Γ_{sk+j} are the $b \times b$ diagonal blocks of G. 10: $\Delta w_{sk+j} = \Gamma_{sk+j}^{-1} \left(-\lambda \mathbb{I}_{sk+j}^T w_{sk} - \lambda \sum_{t=1}^{j-1} \left(\mathbb{I}_{sk+j}^T \mathbb{I}_{sk+t} \Delta w_{sk+t} \right) - \frac{1}{n} \mathbb{I}_{sk+j}^T X z_{sk} \right)$ 11: $w_{sk+j} = w_{sk+j-1} + \mathbb{I}_{sk+j} \Delta w_{sk+j}$ $z_{sk+j} = z_{sk+j-1} + X^T \mathbb{I}_{sk+j} \Delta w_{sk+j}$ No communication $-\frac{1}{n}\sum_{t=1}^{j-1} \left(\mathbb{I}_{sk+j}^T X X^T \mathbb{I}_{sk+t} \Delta w_{sk+t} \right) + \frac{1}{n} \mathbb{I}_{sk+j}^T X y \right)$ 17

Algorithm 1 Block Coordinate Descent (BCD) Algorithm

Speedups (Ridge Regression)

5.26x 5.61x 2 2x 2.28x 3.19x 3.62x Bad BCD s = 2 s = 4 s = 8 s = 16 s = 321K nodes of Edison

Standard Algorithm

Communication-Avoiding

Good

Not Just Ridge Regression

Applies to **proximal methods** (e.g. LASSO, Group LASSO, elastic-net).

Recall that, Inner loop = no communication.

If nonlinearity is in inner loop, then **CA possible**.

Also applies to **Support Vector Machines** (current work).

Nonlinearity is in inner loop.

CALASSOS: Scalable Proximal Methods

CA-technique

Coordinate Descent

accCD = accelerated

Strong scaling and speedups on Url dataset (2M by 3M).

CA-technique applies to accelerated methods.

CALASSOS: Scalable Proximal Methods

CA-method perform s^2 more flops.

But still get computation speedup.

Due to BLAS-3 calls instead of BLAS-1 in non-CA.

BLAS-3 = Cache-efficient computation + higher flops rate.

CA-SVM: Preliminary Results

Based on Dual Coordinate Descent for Linear SVM (Hsieh, et. al.)

SVM-L1 = Hinge loss =
$$max(0, 1 - A^{T}_{i}xy_{i})$$

 $SVM-L2 = (Hinge loss)^2$

easier so, converges quickly.

Numerically stable (unlike CA-Krylov)!

Ditto for Ridge and Proximal.

Summary and Future Work

Large speedups when latency dominates.

Provably communication-avoiding.

CA-technique applies to **non-linear optimization**.

How far can we go (e.g. Logistic regression)?

Speedups on **other platforms and frameworks**?

Example: Cloud + Spark is latency dominated.

Expect greater speedups!

Problem	MPI Speedup
Ridge Regression	Up to 6.1x
Proximal Least-Squares	Up to 5.1x
SVM	Similar expected

Questions?

Thanks to co-authors, collaborators, and sponsors!