# Variation across scales: Measurement fidelity under Twitter data sampling

Siqi Wu, Marian-Andrei Rizoiu, and Lexing Xie

Computational Media Lab @ANU ICWSM '20









### Twitter data is prevailing, but it may get sampled



104 (31%) out of 337 ICWSM papers use Twitter data (2015-2020)

| API              | Search                                                 | Sampled streaming                   | Filtered streaming                                      |  |
|------------------|--------------------------------------------------------|-------------------------------------|---------------------------------------------------------|--|
| Usage            | Retrieving relevant<br>tweets given a<br>query         | Streaming a sample of public tweets | Streaming<br>matched tweets<br>given a query            |  |
| Rate<br>limiting | 180 or 450 calls /<br>15 minutes                       | Roughly 1% of all public tweets     | 50 tweets /<br>1 second                                 |  |
| Affected studies | Most, since it only searches tweets of the past 7 days | All, by default roughly 1%          | USC COVID-19:<br>~5% sampling rate<br>(Chen et al. '20) |  |

RQ1. How are the tweets missing in the filtered stream? RQ2. What are the effects on common measurements?

**Contribution:** a comprehensive study of the Twitter sampling effects across different timescales and different subjects (entity, network, and cascade)

#### **Outline**

#### 1. Introduction

- 2. How are the tweets missing in the filtered stream?
  - Rate limit messages
  - Across different timescales -- hour, minute, second, and millisecond
- 3. What are the sampling effects on common measurements?
  - Across different subjects -- entity, network, and cascade
- 4. Summary

#### Twitter rate limit messages

- Filtered streaming: collecting tweets matching a set of prescribed predicates in realtime<sup>1</sup>, e.g., "COVID-19"
- In each second, no more than 50 tweets will be returned<sup>2</sup>.
- Rate limit messages indicate the cumulative number of missing tweets since the connection starts<sup>3</sup>.
- Rate limit messages are NOT accurate (Sampson et al. '15), we explain the discrepancy in Appendix C.

#### **Blocks of streamed tweets**

```
{"id_str":"1245501748485242881", ...}

{"limit":{"track":28469226,"timestamp_ms":"1585785737733"}}

{"id_str":"1245501752968908802", ...}

{"limit":{"track":28469434,"timestamp_ms":"1585785738725"}}

{"id_str":"1245501756315860992", ...}

{"id_str":"1245501756987097089", ...}

{"limit":{"track":28469643,"timestamp_ms":"1585785739742"}}

{"id_str":"1245501760568995842", ...}
```

- [1] https://developer.twitter.com/en/docs/tweets/filter-realtime/overview/statuses-filter
- [2] https://developer.twitter.com/en/docs/labs/filtered-stream/faq
- [3] https://developer.twitter.com/en/docs/tweets/filter-realtime/guides/streaming-message-types

# Constructing the complete filtered stream

- Strategy: splitting the filtering predicates into multiple subcrawlers.
- 2 datasets: Cyberbullying (sampling rate: 52.72%) and YouTube sharing (91.53%).

| Id       | Keywords           | Languages | #collected tweets | #rate limit | #est. missing tweets | sampling rate |
|----------|--------------------|-----------|-------------------|-------------|----------------------|---------------|
| 1        | should             | en        | 29,647,814        | 1,357       | 7,324                | 99.98%        |
| 2        | should             | all\en    | 801,904           | 0           | 0                    | 100.00%       |
| 3        | live               | en        | 16,526,226        | 1,273       | 25,976               | 99.84%        |
| 4        | live               | all\en    | 7,926,325         | 233         | 7,306                | 99.91%        |
| 5        | kill, fight,       | all       | 15,449,973        | 16          | 108                  | 100.00%       |
|          | poser, nerd,       |           |                   |             |                      |               |
|          | freak, pig         |           |                   |             |                      |               |
| 6        | dick, suck, gay,   | all       | 13,164,053        | 15          | 125                  | 100.00%       |
|          | loser, whore, cunt |           |                   |             |                      |               |
| 7        | pussy, fat, die,   | all       | 21,333,866        | 89          | 1,118                | 99.99%        |
|          | afraid,emo,slut    |           |                   |             |                      |               |
| 8        | bitch, wannabe,    | all       | 14,178,366        | 64          | 666                  | 100.00%       |
|          | whale, slept,      |           |                   |             |                      |               |
|          | caught             |           |                   |             |                      |               |
| complete | subcrawlers 1-8    | all       | 114,488,537       | 3,047       | 42,623               | 99.96%        |
| sample   | all 25 keywords    | all       | 60,400,257        | 1,201,315   | 54,175,503           | 52.72%        |

#### Constructing the complete filtered stream

- Strategy: splitting the filtering predicates into multiple subcrawlers.
- 2 datasets: Cyberbullying (sampling rate: 52.72%) and YouTube sharing (91.53%).
- Validation: single crawler + rate limit messages vs. (1) multiple subcrawlers / (2) Firehose stream<sup>1</sup>.



#### Temporal variation of sampling rates

• Sampling rates are uneven in different hours or in different milliseconds, but are almost the same at the timescale of minute and second.



#### **Outline**

- 1. Introduction
- 2. How are the tweets missing in the filtered stream?
  - The volume of missing tweets can be estimated by Twitter rate limit messages.
  - Tweet sampling rates vary across different timescales.
- 3. What are the sampling effects on common measurements?
  - Across different subjects -- entity, network, and cascade
- 4. Summary

### Twitter sampling as a Bernoulli process

- Assumption used in prior studies but not validated (Joseph et al. '13, Pfeffer et al. '18).
- Complete frequency  $\rightarrow$  Sample frequency: binomial distribution  $Pr(n_s) \sim Binomial(n_s, p)$ .

$$egin{aligned} &\Pr(n_s|n_c,ar
ho) = inom{n_c}{n_s}ar
ho^{n_s}(1{-}ar
ho)^{n_c-n_s} \ &\mathrm{E}(n_s) = n_car
ho \end{aligned}$$



• Sample frequency  $\rightarrow$  Complete frequency: negative binomial distribution  $Pr(n_c) \sim NegBinomial(n_s, p)$ .

$$egin{aligned} &\Pr(n_c|n_s,ar
ho) = inom{n_c-1}{n_s-1}ar
ho^{n_s}(1-ar
ho)^{n_c-n_s} \ &\mathrm{E}(n_c) = rac{n_s}{ar
ho} \end{aligned}$$



# Using Bernoulli process with a uniform rate to approximate the empirical data

- metric: D-statistic (Leskovec and Faloutsos '06).  $D(G,G')=\max_x\{|G(x)-G'(x)|\}$
- Complete frequency  $\rightarrow$  Sample frequency: binomial distribution  $Pr(n_s) \sim Binomial(n_c, p)$ .



• Sample frequency  $\rightarrow$  Complete frequency: negative binomial distribution  $Pr(n_c) \sim NegBinomial(n_s, p)$ .



# Estimating true ranking from the sample set

The ranks of most active users are distorted, but can be corrected.



#### Denser components are more likely to be preserved

Bow-tie structure to characterize the user-user retweet network (Broder et al. '00).





# Impacts on retweet cascades

• 2 prominent features: inter-arrival time, user influence (Zhao et al. '15, Mishra et al. '16).



### Impacts on retweet cascades

- 2 prominent features: inter-arrival time, user influence (Zhao et al. '15, Mishra et al. '16).
- Strong risks in research that concerns the activity history of each user (Gaffney and Matias '18).





### **Summary**



#### 1. How are the tweets missing in the filtered stream?

- The volume of missing tweets can be estimated by Twitter rate limit messages.
- Tweet sampling rates vary across different timescales.



#### 2. What are the sampling effects on common measurements?

- Bernoulli process with a uniform rate can approximate the empirical entity distribution.
- True entity ranking can be inferred based on sampled observations.
- Network structures are altered with some components more likely to be preserved.
- Sampling compromises the quality of diffusion models, since inter-arrival time is significantly longer in the sampled stream, while user influence is lower.

Variation across Scales: Measurement Fidelity under Twitter Data Sampling

Software, code and data: <a href="https://github.com/avalanchesigi/twitter-sampling">https://github.com/avalanchesigi/twitter-sampling</a>