INTRODUCTION TO MACHINE LEARNING

INTRODUCTION TO THE COURSE

Self Introduction

- Sai Chandra Kosaraju
- Research interests:
 - Bioinformatics, Machine Learning, Data Mining, and Big Data Analytics
- Projects I am interested in:
 - Biomedical projects
 - Computer Vision projects
 - Developing Python package

Course Information

Course Description

Explores various machine learning algorithms for regression, classification, clustering, and ensemble learning, including application of machine learning techniques to solve challenging problems in various fields.

Topics

- Data representation and visualization
- Supervised Learning
 - K-Nearest Neighbor (KNN)
 - Linear Models
 - Logistic Regression
 - Neural Networks
 - Convolutional Neural Networks
 - Support Vector Machine (SVM) and Kernels
 - Linear Discriminant Analysis (LDA)

Topics

- Unsupervised Learning
 - Principal Component Analysis
 - K-means Clustering
- Ensemble Learning

Choice of Language

- There are many programming languages such as C/C++, JAVA.
- However, high-level script languages such as R,
 MATLAB, Python are highly recommended.
- □ Why?
 - Better for file I/O of textual data
 - Better to do matrix manipulation
 - Fast Prototyping
- □ We will use **Python** for this course.

Reference

 Deep Learning, Vol. 1: From Basics to Practice by Andrew Glassner, 2018

Reference

- Deep Learning, Ian Goodfellow, Yoshua Bengio and Aaron Courville, MIT press, 2016
 - Webpage: http://www.deeplearningbook.org

Reference

Pattern Recognition and Machine Learning,
 Christopher M. Bishop, 6-edition, Springer-Verlag
 New York, 2006

Before beginning the course

 Let's discuss about the origins of Computer Science and philosophy

Philosophy

- Definition of the word
 - "The study of the fundamental nature of knowledge, reality, and existence, especially when considered as an academic discipline." Oxford Dictionary
- Literally means "love of wisdom" or "friend of wisdom"
- Logic
 - □ logically describe world (around 500 BC)
- Ancient Graeco-Roman philosophy
 - Socrates, Plato, Aristotle, and etc...

Philosophers

- □ Aristotle
- Gottfried Wilhelm Leibniz
- □ George Boole
- Bertrand Russell
- Alan Turing

Aristotle (384 – 322 BC)

- So many different roles
 - Physics, Biology, Music, Linguistics, Zoology, Economy,
 Politics
- How to understand the different world?
 - LOGIC

Gottfried Wilhelm Leibniz

- □ German philosopher (1646-1716)
- Known as one of the founding fathers of calculus
- Wanted to prove all phenomena using binary logic
 - Convert world to binary logic

George Boole

- English mathematician, philosopher, and logician (1815-1864)
- Author of "The Laws of Thought"
- Inventor of Boolean Logic

Note that Boolean logic can be used to implement binary arithmetic

Bertrand Russell

- British philosopher, logician, mathematician,
 historian, writer, social critic and political activist
- Wanted to make perfect mathematics from perfect logic
- Author of "Principia Mathematica", published in 1910, 1912, and 1913.

Total of 1994 pages!!

Principia Mathematica

```
*54·43. \vdash :: \alpha, \beta \in 1 . \supset : \alpha \cap \beta = \Lambda . \equiv . \alpha \cup \beta \in 2

Dem.

\vdash .*54·26 . \supset \vdash :: \alpha = \iota'x . \beta = \iota'y . \supset : \alpha \cup \beta \in 2 . \equiv .x \neq y.

[*51·231] \equiv .\iota'x \cap \iota'y = \Lambda.

[*13·12] \equiv .\alpha \cap \beta = \Lambda (1)

\vdash .(1) . *11·11·35 . \supset

\vdash :. (\exists x, y) . \alpha = \iota'x . \beta = \iota'y . \supset : \alpha \cup \beta \in 2 . \equiv .\alpha \cap \beta = \Lambda (2)

\vdash .(2) . *11·54 . *52·1 . \supset \vdash . Prop
```

From this proposition it will follow, when arithmetical addition has been defined, that 1+1=2.

***54.43**: "From this proposition it will follow, when arithmetical addition has been defined, that 1+1=2." — Volume I, 1st edition, page 379

Alan Turing (1912-1954)

- Automatize logic.
 - □ If everything can be explained by logic, we may implement the logic automatically not manually.
 - Introduced Turing test:
 https://www.csee.umbc.edu/courses/471/papers/turing.pdf
- Turing Machine
 - A model of a general purpose computer

Summary

See http://www.datesandevents.org/events-timelines/07-computer-history-timeline.htm