Representations of numbers in different bases

There are only 10 kinds of people. Those who understand binary and those that don't.

Binary Digits → Bits

Base 2 numbers

Decimal Numbers

- Base 10
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- What happens when we get to 10?
 → add a digit
- 10, 11, ... 20, 21, ... 30, ... 40, ... 99

 → add another digit to get 100
- Notice that each <u>digit</u> represents a power of 10

Decimal Numbers

- How can 2531 be represented in terms of powers of 10?
- \rightarrow 2*10³ + 5*10² + 3*10¹ + 1*10⁰

Converting Decimal to Binary

- How will this work with base 2?
- Digits will be either 0 or 1
- How do we represent 2 in terms of base 2?
- $1*2^1 + 0*2^0 \rightarrow 10$ is 2 in binary
- What about 6?
- $1*2^2 + 1*2^1 + 0*2^0 \rightarrow 110$

Converting Decimal to Binary

- What about 2531?
- 1. Find closest power of 2 \rightarrow 2¹¹
- 2. $2531 2^{11} \rightarrow 483$
- 3. Repeat 1 and 2
- $1*2^{11} + 0*2^{10} + 0*2^9 + 1*2^8 + 1*2^7 + 1*2^6 + 1*2^5 + 1*2^4 + 1*2^3 + 0*2^2 + 1*2^1 + 1*20$ \rightarrow 100111111011

Binary Numbers

- What's the largest number you can count up to using 2 hands?
- 10 fingers → 2¹⁰ possible numbers
- 0 to 1023
- Denoted in Java with prefix "0b"
- 2531 → 0b100111111011

Converting Binary to Decimal

- What is 0b110101 in decimal?
- $1*2^5 + 1*2^4 + 0*2^3 + 1*2^2 + 0*2^1 + 1*2^0$
- \rightarrow 32 + 16 + 0 + 4 + 0 + 1
- =53

Byte

- 8 bits
- Historically, a byte was the number of bits used to encode a single character of text
- 0 through 255
- Two hexadecimal digits

Storing Numbers in Java

- Java uses 4 bytes for int (32 bits)
- int stores integers from -2³¹ to 2³¹-1
- double has 8 bytes, float has 4 bytes
- float = single-precision, double = double-precision
- Uses scientific notation
- → sign*mantissa*2^{exponent}
- double has 11 bits for exponent, 52 bits for mantissa
- Floating point numbers converted into decimal →leads to round-off error

Nibble

- 4 bits
- Half of a byte (nibble is a small bite)
- 0 through 15
- One hexadecimal digit

Hexadecimal → base 16

 $\begin{array}{c} \text{Hexa-} \rightarrow 6 \\ \text{Dec-} \rightarrow \textbf{10} \end{array}$

6+**1**0 → **1**6

Hexadecimal

- Each digit represents a power of 16
- How can we represent 16 different numbers using only one digit?
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9...
- A, B, C, D, E, F
- 0 to F
- Denoted in Java with prefix "0x"

Convert Hexadecimal to Decimal

- What is 0x2C4 in decimal?
- $2*16^2 + C*16^1 + 4*16^0$
- 2*256 + 12*16 + 4*1
- =708

Convert Decimal to Hexadecimal

- What is 500 in hexadecimal?
- 1. Find closest multiple of power of $16 \rightarrow 1*16^2$
- 2. $500 1*16^2 \rightarrow 244$
- 3. Repeat 1 and 2
- 1*16² + F*16¹ + 4*16⁰

Picture Element → Pict El → Pixel

Hex code

- 24 bits per pixel → 8 bits per R, G, B
- $2^8 \rightarrow 256$ possible shades each of R, G, B
- 4 bits (nibble) \rightarrow 2⁴ \rightarrow 16
- Hexadecimal is base 16
- 4 bits → one hexadecimal digit
- 8 bits → two hexadecimal digits
- 24 bits → six hexadecimal digits

Hex code

- · Web color codes
 - $-000000 \rightarrow black$
 - FFFFFF \rightarrow white
 - $-FF0000 \rightarrow red$
 - $-00FF00 \rightarrow green$
 - $-0000FF \rightarrow blue$
 - FFFF00 → yellow

Octal → base 8

Octal

- Why do computer scientists mistake Halloween for Christmas?
- Oct 31 → Dec 25
- $3*8^1 + 1*8^0 \rightarrow 2*10^1 + 5*10^0$
- Octal digits go from 0 to 7

Convert Octal to Hex

- What is 0x19 in octal?
- $0x19 \rightarrow 1*16^1 + 9*16^0 \rightarrow 25$
- Dec 25 → Oct 31