Introduction to Software Engineering

Felix Leitl

3. März 2024

Inhaltsverzeichnis

Software processes	4
Software specification	4
Requirements election and analysis	4
Requirements specification	4
Requirements validation	4
Software design and implementation	4
Architectural design	4
Database design	4
Interface design	4
Component selection and design	5
Software verification and validation	5
Component testing	5
System testing	5
Customer testing	5
Software evolution	5
Change anticipation	5
Change tolerance	5
Software development life circle	6
Life cycle phases	6
Software Process Models	6
Wasserfallmodell	7
Improved Waterfall model	8
V-Modell	9
Wiederverwendungsansatz	11
Agiles Modell	12
Change Management	12
Prototyp	12
Schrittweise Veröffentlichung	13

Agile software development	13
Agile manifesto	14
Rational Unified Process (RUP)	14
Vier Phasen	14
Disziplinen	15
Kanban	16
Practices	16
Extreme programming	17
Core values	17
Vier Aktivitäten	17
Planning	17
Design	18
Implementation	19
Testing	19
Timeline overview	19
Scrum	19
Principles	19
5 Scrum values	20
Timeline overview	20
Roles	20
Processes	20
	21
Responsibilities	21
Product Backlog	21
Sprint Backlog	21
Dynamic Systems Development Method	21
	22
Principles	22
Crystal	
Colros	22
Hardnesses	22
Crystal family	23
Principles	23
Required practices (Crystal Clear)	23
Roles (Crystal Clear)	23
Agility and large systems	24
Requirements engineering	24
Requirements	24
Definition	24
User requirements	25
System requirements	25
Functional requirements	$\frac{25}{25}$
Non-functional requirements	$\frac{25}{25}$
Key qualities of requirements	26
Requirements Engineering Process	27
	28
Requirements Elicitation	28

Data gathering	28
Collaborative	28
Cognitive	28
Contextual	28
Creativity	28
Requirements Specification	28
Modeling techniques	28
Agile Requirements Specification	31
User stories	31
Acceptance criteria for User Stories	31
User Storie vs. Use Cases	31
Technical Stories	31
Requirements Validation	31
Validation Checks	31
Requirements validation techniques	31
Iterative testing	32
Requirements Evolution	32
Bug vs. Defect	32
Innovation vs. Tuning	32
Requirements management	32
Steps of requirements change management	32
System modeling	33
Architectural design	33
Design patterns	33
Implementation	33
Software testing	33
Software evolution	33
Software project management	33
Software engineering in machine learning	33

Software processes

Software specification

Requirements election and analysis

- Beobachtung des existierenden Systems
- Absprache mit Nutzern und Entwicklern
- Anforderungsanalyse
- Entwicklung von Modellen und Prototypen

Requirements specification

- Anforderungen formulieren und dokumentieren
- Nuteranforderungen (abstrakt)
- Systemanforderungen (detailliert)

Requirements validation

- Umsetzbarkeit
- Konsistenz
- Vollständigkeit
- Fehlerkorrektur

Software design and implementation

Architectural design

- Systemstruktur
- Hauptsächliche Strukturen und Beziehungen
- Vertrieb

Database design

- Datenstrukturen
- Darstellung in Datenbanken

Interface design

- $\bullet \ \ {\rm Eindeutige\ Interface\hbox{-}Spezifikationen}$
- Kommunikation zwischen Komponenten, ohne Kenntnis der Implementation

Component selection and design

- Suche nach wiederverwendbaren Komponenten
- Definiere Veränderungen bei wiederverwendeten Komponenten
- Entwerfe neue Komponenten

Software verification and validation

Component testing

- Komponenten durch Entwickler testen
- Individuelle Tests, ohne andere Komponenten

System testing

- Komplettes System ist getestet
- Fehler von unvorhergesehenen Verwendungen und Interfaces sind behoben
- Beweise, dass das System die Anforderungen erfüllt

Customer testing

- Letzte Hürde vor Veröffentlichung
- System ist von Nutzer mit echten Daten verwendet worden
- Anforderungsprobleme müssen behoben werden

Software evolution

Es gibt zwei Wege mit Veränderung umzugehen:

Change anticipation

- Mögliche Veränderungen vorhersehen
- Neustart minimieren
- z.B. erst Prototyp erstellen, dann dass ganze Produkt

Change tolerance

- Design berücksichtigt Veränderungen am System
- Normalerweise durch schrittweise Entwicklung
- Eine kleiner Schritt ist genug um eine Veränderung anzunehmen

Software development life circle

Life cycle phases

- 1. Initialisierung, Konzept entwickeln, vorläufige Planung, Anforderungsanalyse (\rightarrow Spezifikation)
- 2. Design: High-level & Low-level Design
- 3. Implementation
- 4. Validierung & Verifikation
- 5. Vertrieb: Veröffentlichung der Anwendung
- 6. Erhaltung (\rightarrow Evolution)
- 7. Beginne von vorne
- 8. Bis Absetzung: Planen der Entfernung der Software (aufräumen & archivieren)

Software Process Models

Ein Prozess-Modell ist eine abstrakte Repräsentation der Aktivitäten während des Softwareentwicklungsprozesses um:

- Abläufe zu definieren
- die Ablaufordnung zu spezifizieren
- Phasen zu determinieren: Abläufe, Ziele, Rollen und Methoden

Die Nutzung von Prozess-Modellen führt zu:

- einer Richtlinie für die Systementwicklung
- einer einheitlichen Ansicht gegenüber logischer und temporärer Planung
- besserer Planung
- Unabhängigkeit von einzelnen Personen
- möglichen Zertifikaten
- früherer Erkennung von Fehlern durch Tests

Wasserfallmodell

Tabelle 1: Waterfall model

Requirementsanalyses & specification: Projektmanagement beginnt, Probleme und Spezifikationen werden zusammengestellt, Anforderungen definiert und dokumentiert

System & softwaredesign: Entwürfe, Modelle und die Softwarearchitektur werden entwickelt

Development & testing: Software entwickeln und durch Unit-Tests verifizieren

integration & **systemtests**: Software Komponenten kombinieren und das Gesamtsystem testen

Release & maintenance: System installieren, Fehler korrigieren, Software an Altern hindern, neue Anforderungen bearbeiten

Pros:

- Linearer Prozess
- Intuitiv
- Einfach verständlich
- Top-Down
- Planbar
- Nicht-Unterbrechbar

Cons:

- Feste Phasen
- Frühe Festlegung
- Keine Wiederholung
- Kein Einbeziehen neuer Anforderungen
- Oft unpraktisch

Verwendung:

- Anforderungen sind einfach zu definieren und ändern sich nicht
- Projekt, Budget und Prozess sind vorhersagbar
- Strikter Prozess ist notwendig

Improved Waterfall model

Tabelle 2: Iterative Waterfall model

Tabelle 3: Incremental Waterfall model

Pros:

- Linearer Prozess
- Intuitiv
- Einfach zu Verstehen
- Top-Down
- Planbar
- Nicht-Unterbrechbar
- Wiederholbar

Verwendung:

• Anforderungen sind einfach definiert

- Gefixte Phasen
- Frühe Festlegung, aber neue Anforderungen können integriert werden
- Veränderte Anforderungen können zu hohen Kosten führen
- Struktur tendiert abzubauen

- Nur kleine Änderungen können erscheinen und sind im Budget mit eingerechnet
- Projekt, Budget und Prozess sind vorhersagbar
- Strikter, aber leicht flexibler Prozess ist notwendig

V-Modell

Tabelle 4: V-model

Tabelle 5: V-model XT

Jedes Produkt geht durch vordefinierte Zustände

Pros:

- Bei großen und komplexen Systemen anwendbar
- detaillierte Spezifikationen, Rollendefinitionen und Ergebnisstrukturen
- Qualitätsorietiert

Verwendung:

- Softwareentwicklung in Behörden
- Sicherheitsrelevante Projekte

- Großer Overhead bei kleinen Projekten
- Testphase begint relativ spät
- Strikte Phasen
- Teilnehmer müssen geschult sein, um Modell zu folgen

${\bf Wieder verwendung sans atz}$

Tabelle 6: Reuse-oriented approach

Pros:

- Reduziert Kosten und Risiken
- Schnellere Verteilung

Verwendung:

- Webanwendungen
- Collection of objects or packages
- Konfigurierbare stand-alone Softwaresysteme

- Kompromisse in den Anforderungen
- System könnte echte Nutzerbedürfnisse nicht erfüllen
- Kein oder limitierte Kontrolle über Systemevolution

Agiles Modell

Tabelle 7: Agile model

Pros:

- Begrenzter bürokratischer Aufwand
- Flexible Rollen
- so wenig Dokumentation wie nötig
- besseres Kosten/Nutzen Verhältnis
- Bessere Code-Qualität

Verwendung:

- $\bullet\,$ Große, komplexe sowie kleine Systeme
- Projekte die Prototypen erfordern

Change Management

Prototyp

Tabelle 8: Prototyping

- Ganzes Team muss den Regeln folgen
- Projektergebnis nicht vorhersehbar

Pros:

- Kunde gibt Priorität der Anwendung vor
- Software kann sofort verwendet werden
- Kunde erlangt Erfahrung mit dem System
- Kunde kann Anforderungen für spätere Schritte abgeben
- Veränderungen sind einfach umzusetzen
- Die wichtigsten Systemteile werden am häufigsten gestet

Cons:

- Softwarebasis kann ohne detaillierte Anforderungen nicht identifiziert werden
- Kann mit organisatorischen Strukturen in Konflikt geraten (z.B. Verträge)
- Unbrauchbar um existierende Systeme zu ersetzen

Schrittweise Veröffentlichung

Tabelle 9: Incremental delivery

Agile software development

Tabelle 10: diff. between plan-driven and agile

Pland-driven:

Agile manifesto

- 1. Individuen und Interaktionen über Prozessen und Werkzeugen
- 2. Funktionierende Software über akribischer Dokumentation
- 3. Zusammenarbeit mit dem Kunden über Vertragsverhandlungen
- 4. Auf Veränderungen eingehen über Plan folgen

Tabelle 11: Generic model

Rational Unified Process (RUP)

Vier Phasen

- Inception: Beginn des Projekts, Business-Modell, grundsächliche Anforderungen und Bedingungen werden definiert
- Elaboration: Anforderungen spezifizieren, Architektur, Design und Iterationen
- Construction: Komponenten werden entwickelt und getestet
- Transition: Erschaffung von "artifacts" und Konfiguration, Veröffentlichung

Jede Phase kann mehrfach Wiederholt werden, wird von einem Meilenstein abgeschlossen, liefert "artifacts", welche Ergebnisse früher spezifizierter Aktivitäten sind und wird Wiederholt, wenn die "artifacts" nicht ausgeliefert werden oder die Standards nicht erreichen

Disziplinen

Engineering Workflow

- Business modeling:
 - Allgemeines Verständnis aller "stakeholders" der Software
 - z.B. Komponenten-Diagramme, Use-Case-Diagramme, Klassen-Diagramme
- Requirements: Detaillierte Spezifikation des initialen Use-Case und Buisnessmodelle
- Analysis & Design:
 - Architektur des Systems wird aus Anforderungen erarbeitet
 - Architektur-, Design- und Testdokumente
 - Klassen- und Zusammenhangsdiagramme
- Implementation: Definiert, wie Komponenten implementiert, getestet und integriert werden
- Test:
 - Beginnt früh im Projekt
 - Erhöht Verständnis des Systems
 - Wird ausgeführt, sobald Komponenten, Subsysteme und System verfügbar ist
- Deployment: Finalisieren und veröffentlichen des Produkts

Supporting Workflow

- Configuration & change management:
 - Organisiert Konfigurations- und Versionsmanagement
 - Versionsmanagement der Dokumentation
- Project management:
 - Planung und Koordination des Projekts
 - Steuert Resourcen, Qualität und Quantität
 - Entscheidet, ob zusätzliche Wiederholungen notwendig sind
- Environment: Definiert verfügbare Resourcen für die Entwicklungsteams

Pros:

- Definiert Produkt, Rollen und Aktivitäten
- Für Großprojekte geeignet
- Umfangreiche Nutzung der UML, um echte Szenarien zu mo-

dellieren Cons:

- Komplex
- Nicht flexibel
- Große Anzahl an Dokumenten

Kanban

Kanban verwendet eine visuelles, pull-basiertes System, um den Flow zu optimieren

Practices

- Workflow definieren und visualisieren
- Aktiv Pakete im Workflow managen
- Workflow verbessern

Tabelle 12: Kanban board

Damit Kanban funktioniert muss ein einheitliches Verständnis des Workflows existieren (\mathbf{D} efinition \mathbf{o} f Workflow)

- "Work items" definieren individuelle Einheiten, welche durch den Workflow wandern
- Definieren, wann "work items" beginnen und enden
- Definieren, durch welche Zustände "work items" gehen
- Definieren, wie "Work In Progress" kontrolliert wird

- Explizite Richtlinien für die "Wanderung" durch die Zustände
- Ein "Service Level Expectation": Erwartete Durchlaufzeit, jedes Itmes

Der Mindestsatz der Durchlaufmetriken besteht aus:

- WIP: Anzahl der Items, die begonnen, aber nicht abgeschlossen wurden
- Throughput: Anzahl der abgeschlossenen Items pro Zeiteinheit
- Work Item Age: Deltazeit seit Bearbeitungsbeginn
- Cycle Time: Deltazeit zwischen Bearbeitungsbeginn und Abschluss

Extreme programming

Core values

- Kommunikation
- Einfachheit (Simplicity)
- Feedback
- Mut (Rewrites und ehrliche Kundenkommunikation)
- Respekt

Vier Aktivitäten

- Planning
- Design
- Implementation
- Testing

Planning

- User Stories:
 - Kurz beschreiben, was passieren soll
 - $-\,$ Wird für Risikoanalysen, Aufwandsschätzung und Wiederholungsplanung verwendet
 - Von Firmenseite entwickelt, mit Hilfe der Entwickler

• Planning Game:

- Endet in einem Veröffentlichungsplan
- 4 Variablen: Umfang, Resourcen, Zeit und Qualität

- User stories werden beauftragt, um ein Projektplan zu erstellen, der jeden zufrieden stimmt
- -Ein Veröffentlichungsplan besteht aus 80 \pm 20 user stories

• Iteration Planning:

- Iterationen werden mit dem Kunden geplant
- User stories werden ausgewählt
- Implementierungsaufgaben und Testfälle werden den User stories entnommen
- Small releases: Schnelleres Feedback der Kunden, jedoch keine unnötigen Veröffentlichungen
- Stand Up Meeting : Kurzes Meeting, um Status, Probleme und Lösungen zu besprechen
- Measuring project progress
- Move People Around
- Fix XP when it breaks

Design

- **Simplicity**: Finales Design erst kurz vor Ende und Implementation nur wenn nötig
- Spike solutions: Aus Prototypen für Implementation Schlüsse ziehen
- Refactoring: Computer Aided Software Engineering
- CRC cards:
 - Class, Responsibility and Collaboration
 - Beschreibe eine Klasse mit maximal 4 Sätzen
 - Ein Satz Klassen pro Wiederholung
 - Die Verbindung der Klassen bildet ein UML-Diagramm

	Class Name Superclass	Back:	Operations
Front:	Responsibility	Dack.	Attributes
	Collaboration		

Implementation

- Customer availability
- Coding guidelines
- Test first: Schreibe die unit tests am Anfang jeder Wiederholung
- Pair Programming: Driver/Pilot und Observer
- Continuos Code Integration
- Collective Code Ownership: Jeder kann alles verändern
- Optimize last
- No Overtime

Testing

- Unit tests: Vor jeder Iteration, ersetzt Dokumentation
- Acceptance tests: Das ganze System gegen Spezifikationen testen

Timeline overview

Tabelle 13: Timeline overview: XP

Scrum

Principles

- Transparency
- Inspection
- Adaption: Prozess muss angepasst werden um gute Ergebnisse zu erzeugen

5 Scrum values

- Commitment
- Focus
- Openness
- Respect
- Courage

Timeline overview

Tabelle 14: Scrum

Roles

- Product Owner
- Stakeholder: Customers, user
- Development Team
- Scrum Master

Processes

- Sprint: Zeitfenster, um ein Increment zu entwickeln (max. 1 Monat)
- Sprint Planning: Anforderungen für nächsten Sprint planen
- Daily Scrum: 15 min, um Entwicklung des Tages zu planen
- Sprint Review: Increment validieren und Backlog anpassen
- Sprint Retrospektiv: Verbesserungen für den nächsten Sprint

Responsibilities

- Product Owner:
 - Produktziel formulieren und kommunizieren
 - Eindeutige Produkt-Backlogs erschaffen
 - Produkt-Backlog-Einträge ordnen
 - Sicherstellen, dass der Produkt-Backlog transparent und verständlich ist
- Development Team:
 - Sprint-Backlog erzeugen
 - Einhaltung der "Done"-Definition
 - Tägliche Anpassungen, um Sprintziel zu erreichen
- Scrum Master:
 - Techniken bereitstellen

Product Backlog

- eine geordnete Liste aller Produktanforderungen
- Die Einzige Quelle für Anfrageänderungen
- Niemals Vollständig
- Eine Mischung aus Features, Funktionalität, Veränderungen und Fehlern

Sprint Backlog

- Eine Prognose, der Funktionalitäten des nächsten Icrements
- Eine Echtzeitvisualisierung, der Arbeit, des Entwicklungsteams
- Detaillierter Fortschritt des Sprints
- Wird Ausschließlich vom Entwicklungsteam bearbeitet

Dynamic Systems Development Method

Building Blocks

- Philosophy
- Eight Principles
- Four P's: Process, People, Products, Practices
- Common sense and pramatism

Principles

- 1. Focus on the business need
- 2. Deliver on time
- 3. Collaborate
- 4. Never compromise quality
- 5. Build incremental from firm foundations
- 6. Develop iteratively
- 7. Communicate constantly and clearly
- 8. Demonstrate control

Crystal

Crystal Clear ist nicht verwendbar, bei fail-safe und life-critical Systemen

Colros

Tabelle 15: Crystal colors

Crystal Clear	1 to 6 members
Crystal Yellow	Up to 20 members
Crystal Orange	Up to 40 members
Crystal Red	Up to 100 members
Crystal Maroon	Up to 200 members
Crystal Blue	Up to 500 members
Crystal Violet	Up to 1000 members

Hardnesses

$\overline{\mathbf{C}}$	Loss of comfort	Nutzbarkeit ist reduziert, aber Funktionalität noch gegeben
D	Loss of discretionary	Nichtkritische Finanzierungen sind verloren
Е	Loss of essential money	Kritische Finanzierungen sind verloren
L	Loss of Life	Menschen sind gestorben

Crystal family

Tabelle 16: Crystal family

Team size

Principles

- Regular delivery
- Reflective improvement: Vorherige Entwicklungsphase reflektieren
- Osmotic and condescended communication
 - Osmotic: Kommunikation in kleinen Teams
 - Condensed: Kommunikation in großen Teams durch Bildung kleiner
- Personal security: Ehrlich ohne Angst, Fehler eingestehen
- Choose priorities: Management wählt und kommuniziert
- Easy communication with user
- Good engineering environment: Autotests, regelmäßige Integration

Required practices (Crystal Clear)

- Osmotic communication, ideally the team works in one room
- Increment cycles of less than four months
- User is involved in Project
- Project assignment is defined with high-level system design
- Responsibilities need to be clearly defined

Roles (Crystal Clear)

Most important roles:

Less important roles

• Customer

• Coordinator

• Experienced user

• Field expert

• Senior architect

- Tester
- Designer / Developer
- Author

Agility and large systems

Tabelle 17: Large scale Problems

Principle	Practice
Customer involvement	Dependent on the customer, who often can not be involved full time
Embrace change	Each stakeholder has different, often conflicting priorities
Incremental delivery	Business and marketing side plans long-term
Maintain simplicity	Pressure due to deadlines
People, not process	Members may not have fitting personalities

Um agile Modelle bei Großprojekten anzuwenden werden diese meist in plandriven Ansätze integriert.

??

Requirements engineering

Requirements

Definition

- 1. Ein nötiger Zustand oder eine nötige Fähigkeit, eines Nutzers, um Probleme zu lösen oder ein Ziel zu erreichen
- 2. Ein nötiger Zustand oder eine nötige Fähigkeit, die von einem System erreicht, bzw. erlangt werden müssen, um einen Vertrag, Standart, eine Spezifikation oder Formalie zu erfüllen
- 3. Eine dokumentierte Repräsentation des Zustands oder der Fähigkeit wie (1) oder (2)

User requirements

- Aussagen in natürlicher Sprache und Diagramme von Anwendungen, die das System voraussichtlich bekommen soll und die Vorlagen nach welchen das System sich verhalten zu hat
- Beschreibt oft das externe Verhalten des Systems, wie input und output
- Kann auch convenience features, welche das handling der Software erleichtern, beschreiben

Informell: Was soll passieren

System requirements

- Eine detaillierterer Beschreibung der Systemfunktionalität und der Verwendungsbeschränkung
- Nutzeranforderungen können zu mehreren Systemanforderungen erweitert werden, indem mehr Informationen über den Service und die Funktionalität des Systems bereitgestellt werden

Informell: Wie soll es passieren

Functional requirements

- Funktionalität des Systems, die implementiert werden sollen
- Services die das System bereitstellen sollte
- Wie es in bestimmten Situationen reagieren sollte
- In manchen Fällen auch, was es nicht tun sollte

Non-functional requirements

- Alle Anforderungen, die nicht direkt als Funktion implementiert werden
- Einschränkungen der Systemservices, wie Zeitbeschränkungen
- Einschränkungen, die die Entwicklung betreffen
- Einschränkungen, die von Standards vorgeschrieben werden

Classification:

- product
 - Usability requirements
 - Security requirements
 - Dependability requirements

- Efficiency requirements
- ullet Organisational requirements
 - Operational requirements
 - Environmental requirements
 - Development requirements
- ullet External requirements
 - Regulatory requirements
 - Ethical requirements
 - Legislative requirements

Key qualities of requirements

- Measurability
- Completeness
- Correctness
- Consistency
- Unambiguity
- Pertinence
- Feasibility
- Traceability
- Comprehensibility
- Modifiability

Requirements Engineering Process

Tabelle 18: Main activities

1. Requirements 2. Requirements specification elicitation Select modeling technique Scoping the problem Discover needs Construct model Write down specification Explore other specifications (Q 3. Requirements 4. Requirements evolution Validation & Verification Adequacy of requirements? Manage requirement changes Specification meets need of stakeholders? Reuse requirements Application meets requirements?

Tabelle 19: Main Activities & Documents

Requirements Elicitation

Problem: Kommunikation zwischen Kunden uns Entwicklern ist kompliziert, durch die nicht überschneidenden Expertisen

Data gathering

- Background study
- Interviews
- Questionnaire

Collaborative

- Brainstorming
- Joint application development (JAD) workshops
- Rapid application development (RAD) workshops

Cognitive

- Repertory grids
- Card sorting

Contextual

- Observation
- Protocol analysis

Creativity

- Creativity workshops
- ContraVision

Requirements Specification

Modeling techniques

- Natural language specification
 - Easy Approach to Requirements Syntax (EARS) (while, when, where, if then: shall)
 - MoSCoW (Must, Should, Could & Won't)
- Structural modeling (what)

- Problem Frames
- Class diagrams
- -Entity-Relationship (ER) diagrams
- Behavioural modeling (how)
 - Use cases: semi-formal
 - (Finite) state machines: formal
 - Petri nets: formal
- Goal modeling (why & who)
 - KOAS
 - i*

Tabelle 20: Problem diagram

Tabelle 21: ER-diagram

Notation:

- Entity: rectangle; is an object or component of data
- Attribute: ellipse; describes property of entity
- Relationship: diamond; describes relationship among entities; can be 1-to-1, 1-to-many, or many-to-many relationships ("cardinality" → more about that in the next lecture unit "System modeling")

Attributes are categorized into:

- Key attribute: ellipse with text underlined; uniquely identifies entity from entity set, e.g. student ID
- Composite attribute: is a combination of other attributes, e.g. address
- Multivalued attribute: double ellipse; can hold multiple values, e.g. a person can have more than one phone number
- Derived attribute: dashed ellipse; value is dynamic and is derived from other attribute, e.g. age derived from date of birth

Tabelle 22: Use case diagram

Use cases are modeled using a graphical model and structured text (UML Use Case Diagram):

- Actors (e.g. humans or other systems): Stick figures
- · Class of interaction: Named ellipses
- Association: Line links between actors and interactions (optionally with arrowheads to show the initiator of the action)

Agile Requirements Specification

User stories

As <user role>, **I want** <functionality/system behaviour>, **so that** <technical value for the user/customer or economic benefit>

Acceptance criteria for User Stories

- SMART: Specific, Measurable, Achievable, Relevant, Time-boxed
- Given-When-Then scheme

User Storie vs. Use Cases

Allgemeiner Verwendungszweck von User Stories und Use Cases:

- Systemfunktionalität durch Nutzerperspektive modellieren
- Überblick über das System

Unterschiede:

• Ein Use Case deckt mehrere User Stories oder ein Epic ab

Technical Stories

- Decken technische oder nichtfunktionale Aspekte ab
- Optional, könnte auch in der Definition von Done definiert werden
- Haben eine niedriger Priorität als User Stories, da der Kunde nicht direkt dafür zahlt

Requirements Validation

Validation Checks

- Validity checks: Erfüllen die Anforderungen die needs der user
- Consistency checks: Keine Konflikte zwischen Anforderungen
- Completeness checks
- Realism checks
- Verifiability

Requirements validation techniques

- Requirements reviews
- Prototyping
- Test-case generation

Iterative testing

Wird verwendet um bei stetig wachsenden Projekten Fehler früh zu erkennen und zu beheben

Requirements Evolution

Bug vs. Defect

Ein Bug erfüllt die dokumentierten Anforderungen nicht und erfordert Korrektur. Ein Defekt erfüllt die dokumentierten Anforderungen, allerdings nicht die tatsächlich benötigten und erfordert Korrektur der Anforderungen und des Systems

Innovation vs. Tuning

Bei Innovation werden neue Systemeigenschaften eingeführt, beim Tuning wird nur unter der Oberfläche modifiziert

Requirements management

Anforderungsmanagement erfordert Anforderungsanalysen und weiteren Nutzen der Anforderungen. Bei agilen Modellen einfacher umzusetzen, da nicht so formell und inkrementell

Reduction of Increase of quality project costs of requirements, and runtime products and processes Simplify the Good monitoring of complex Increase the requirements projects during customer satisfaction management all phases Improves the Spares the nerves communication within of the project and between participants the teams

Tabelle 23: Requirements management

Steps of requirements change management

- 1. Anforderungsproblem identifizieren oder Änderungsvorschlag
- 2. Problemanalyse: Überprüfen, ob Änderungsvorschlag valide ist
- 3. Analyse und Kosten anpassen
- 4. Implementation anpassen

System modeling

Architectural design

Design patterns

Implementation

Software testing

Software evolution

Software project management

Software engineering in machine learning