딥러닝 시작하기 (CNN 입문)

목차

- ▶ 01 기본 이해
- ▶ 02 CNN의 등장 배경
- ▶ 03 CNN 활용 분야
- ▶ 04 합성곱 계층(Convolutional Layer)
- ▶ 05 Pooling Layer(풀링 연산)
- ▶ 06 합성곱 연산층과 완전연결층(FCL)의 차이
- ▶ 07 합성곱 신경망 요약
- ▶ 08 사전 훈련 네트워크
- ▶ 09 과대 적합을 줄이는 방법

01 기본 이해

- ▶ CNN이란 무엇일까요?
- Convolutional Neural Network의 약자
- 딥러닝 모델의 한 종류 이미지 인식, 물체 탐지, 음성 인식 등의 작업에 활용된다.
- CNN은 합성곱 층, 풀링 층, 완전 연결 층으로 이루어져 있다.
- CNN의 핵심 아이디어는 입력 데이터에서 지역적 연관성(local connectivity)와 공간 계층 구조(spatial hierarchy)를 잘 포착하는 것이다.

01 기본 이해

- ▶ CNN이란 무엇일까요?
 - ▶ CNN은 입력 데이터에 대해 필터(filter)연산을 수행하여 특징을 추출한다. 이 과정에서 합성곱(convolution)연산이 사용된다.
 - ▶ 추출된 특징 맵(feature map)은 다음 층으로 전달되어 더 높은 수준의 특징을 학습하게 된다.
 - ▶ CNN은 이미지나 음성 인식 외에도 **자연어 처리, 신호 처리 등의 다양한 분야에서 활용**되고 있음.
 - ▶ 이미지를 인식하기 위한 패턴을 찾는데 특히 유용
 - => 이미지의 공간 정보를 유지한 상태로 학습이 가능한 모델(CNN)

01 기본 이해

- LeCun에 의해 처음 소개됨
 - (1) https://dl.acm.org/doi/10.1162/neco.1989.1.4.541

01 기본 이해 CNN

▶ 장점

- 이미지의 공간 정보 유지
- 필터를 공유 파라미터로 사용하여, 일반 인공 신경망과 비교하여 <mark>학습</mark> 파라미터가 작다.

01 기본 이해 - 용어

▶ 채널, Channel

- 이미지 픽셀 하나하나는 실수, 컬러 사진은 천연색을 표현하기 위해 각 픽셀을 RGB 3개의 실수로 표현한 3차원 데이터. 컬러 이미지는 3개의 채널로 구성.

▶ 필터(Filter)

- 필터는 이미지의 특징을 찾아내기 위한 공용 파라미터. Filter를 Kernel이라고도 한다.
- CNN에서 학습의 대상은 필터 파라미터가 된다.

01 기본 이해 - 용어

- ▶ 스트라이드, stride
- 필터를 적용하는 간격의 크기 stride라 함.

- ▶ 특징맵(feature map, activation map)
- 필터를 적용해서 얻어진 결과를 말함.

02 CNN의 등장 배경 - FCL의 한계

- ▶ Fully Connected Layer 만으로 구성된 **인공 신경망의 입력 데이터는 1차원 형태**로 한정.
- ▶ 3차원 사진 데이터를 1차원으로 평면화 시켜야 한다. 이때 공간 정보 손실 발생.
 - 한 장의 사진은 3차원 데이터, 배치 모드 사용되는 여러장 사진은 4차원 데이터
- ▶ Fully Connected Layer **파라미터 수가 많음.**

▶ Classification

(A) 분류는 주어진 이미지가 어떤 클래스에 속하는지를 결정하는 작업.

▶ Localization

(A) 이미지 내에서 특정 객체의 위치를 식별하는 작업. CNN은 객체의 경계 상자를 예측하여 이미지의 객체 위치를 표시.

▶ Object Detection

- (A) 이미지 내에서 여러 객체를 동시에 탐지. 각 객체의 클래스와 위치를 식별하는 작업.
 - (예) 자율주행차에서 보행자, 신호등, 도로 표지판 등을 탐지

▶ Object segmentation

(A) 이미지의 각 픽셀을 특정 클래스에 할당하는 작업으로 객체의 경계를 정확하게 식별. (예) 의료 이미지에서 종양의 경계를 식별, 자율 주행차에서 도로와 보행자를 구분하는 작업

▶ 생성 Al

(A) 생성 AI는 새로운 데이터를 생성하는 모델을 의미. CNN은 이미지 생성 및 변환 작업에 중요한 역할. (예) 스타일 전이, 이미지 복원, 새로운 이미지 생성 GAN 모델

▶ 어느 분야에 사용되는가? Object Detection

80개의 공통 객체를 탐지할 수 있는 YOLOv3 모델. 딥 뉴럴 네트워크로 감지된 물체

▶ 어느 분야에 사용되는가? Segmentation

▶ CNN이 활용되는 모델

- Inception(GoogleNet): 2014년 구글에서 개발된 모델. 여러 크기의 필터를 동시 적용하여 다양한 스케일의 특징을 추출.
- VGGNet : 깊은 네트워크 구조를 가진 모델로, 3x3 필터를 사용하여 더 깊은 층을 쌓아 특징을 추출.
 VGG16, VGG19 (2014년)
- ResNet(Residual Network) : 2015년 MS 개발. 잔차 학습 개념을 도입하여 매우 깊은 네트워크를 효과적으로 학습할 수 있게 만듬. 이미지 분류(ResNeXt)
- DenseNet(Dense Convolutional Network): 2017년

▶ CNN이 활용되는 모델

- YOLO(You Only Look Once): 실시간 물체 탐지를 위한 단일 신경망 모델. 많이 사용됨(2016년)
- Mask R-CNN : 물체 탐지 뿐만 아닌 인스턴스 분할(instance segmentation)도 수행(2017년)
- EfficientNet : EfficientNet은 모델 크기와 성능 간의 균형을 최적화하기 위해 "Compound Scaling" 방법을 사용합니다. 이 방법은 네트워크의 깊이, 너비, 해상도를 동시에 조정하여 효율성을 극대화. 2019년도
- Vision Transformers (ViT) : 이미지 처리에 Transformer 아키텍처를 적용한 모델로, 2020년에 발표
- 이미지 생성 AI인 GAN에도 동일하게 CNN이 사용될 경우도 많다.

- ▶ 합성곱 연산은 핵심적인 2개의 파라미터로 정의
 - (1) 입력으로부터 하나의 합성곱 연산을 할 필터: 3x3, 5x5
 - (2) 합성곱으로 계산할 **필터의 수**

▶ 합성곱 연산은 필터의 수만큼 특성 맵을 만들어냅니다.

04 합성곱 계층(Convolutional Layer) - 특징맵 생성과정

- ▶ 원도우가 이미지 위를 이동하며 특징 맵을 만들어 낸다.
- ▶ 컨볼루션 층에서는 필터와 이미지 합성곱으로 특징맵을 만든다.
- ▶ 플링 층에서는 정해진 조건을 만족하는 값을 생성해 낸다.

04 합성곱 계층(Convolutional Layer) - Conv연산

- ▶ 컨볼루션 계층
- ▶ 필터는 채널 수 만큼의 깊이를 갖는다.
- ▶ 각 채널의 가중치는 채널마다 다르다.

http://taewan.kim/post/cnn/ 그림 참조

- ▶ 특성맵 이미지의 크기를 유지하기 위해 고안된 방법
- ▶ Convolution Filter를 통과하면 Input 이미지가 작아진다. 단, Padding을 이용하여 그대로 유지가 가능하다.
- ▶ Edge쪽 픽셀 정보를 잘 이용하기 위한 방법
 - (1) 컨볼루션 레이어를 적용할 때, 이미지 주변의 픽셀이 많이 사용되지 않아, 손실되는 경향이 있다.

▶ 컨볼루션 레이어를 적용할 때, 이미지 주변의 픽셀이 많이 사용되지 않아, 손실되는 경향이 있다.

▶ 컨볼루션 레이어를 적용할 때, 이미지 주변의 픽셀이 많이 사용되지 않아, 손실되는 경향이 있다.

- ▶ 일반적으로 3 x 3의 필터는 zero pad 1
- ▶ 일반적으로 5 x 5의 필터는 zero pad 2
- ▶ 일반적으로 7 x 7의 필터는 zero pad 3
- ▶ Padding 지정
 - (1) Valid Padding: padding을 하지 않음.
 - (2) Same Padding: output image가 input image와 크기가 동일

04 합성곱 계층(Convolutional Layer) – 스트라이드(stride)

필터 가중치는 공유

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

20 24 40 44 2 x 2

FCL

파라미터

필터

1 0 1 1 8 19 12 14 18 20 22 24 28 30 32 34 38 40 42 44

38 40 42 44

풀링

20 2440 44

1 0 0 0 8 19 12 14 18 20 22 24 28 30 32 34 38 40 42 44 20 2440 44

04 합성곱 계층(Convolutional Layer) – 스트라이드(stride)

▶ 이것들이 반복적으로 이루어져 하나의 필터가 하나의 특성맵을 만들어냅니다.

▶ 이때 원도우가 슬라이딩하는 이동의 크기를 **스트라이 드**라고 합니다.

▶ 스트라이드는 기본적으로 1입니다. 만약 2를 사용하면 특성 맵의 높이와 너비가 2의 배수로 **다운샘플링 된 것을 의미**합니다.

05 풀링(Pooling) 계층 - Pooling 연산

입력 특성 맵에서 원도우에서 조건에 맞는 하나의 값을 추출한다.

(1) 최대 풀링 연산(Max Pooling)

해당 원도우에서 가장 최대의 값을 추출한다. 2x2라면 해당 영역안에서 가장 높은 값을 취한다.

(2) 평균 풀링 연산(Average Pooling)

해당 원도우에서 평균값을 추출한다.

(3) 최소 플링 연산(Min Pooling)

해당 원도우에서 가장 최소의 값을 추출한다. 2x2라면 해당 영역안에서 가장 낮은 값을 취한다.

05 풀링(Pooling) 계층

▶ 컴퓨터 비전, 이미지 인식 분야에서는 주로 Max-Pooling을 사용한다.

06 합성곱 연산층과 완전연결층(FCL)의 차이

▶ 완전 연결층(FCL)과 합성곱층 사이의 차이는 다음과 같습니다.

- (1) 완전 연결층의 Dense 층은 입력 특성 공간에 있는 모든 픽셀에 대한 패턴학습
- (2) 합성곱층은 지역 패턴을 학습.

07 합성곱 신경망(Convolutional Neural Network, CNN) 요약

Pooling filter 2x2 이용

08 사전 훈련된 네트워크 - 알아보기

- (1) 작은 이미지 데이터 셋에서 딥러닝을 적용하는 일반적이고 매우 효과적인 방법.
- (2) 사전 훈련된 네트워크(pretrained network)는 일반적으로 대규모 이미지 분류 문제를 위해 대량의 데이터셋에서 미리 훈련되어 저장된 네트워크
- (3) 1400만개의 레이블된 이미지와 1000개의 클래스로 이루어진 데이터셋(ImageNet)

08 사전 훈련된 네트워크 - 종류

- (1) VGG
- (2) ResNet
- (3) Inception-ResNet
- (4) Xception

08 사전 훈련된 네트워크 - 사용하는 두가지 방법

(1) 특성 추출(feature extraction)

사전에 학습된 네트워크의 표현을 사용하여 새로운 샘플에서 흥미로운 특성을 뽑아낸다. 즉, 합성곱 기반층은 사전 훈련 네트워크 가중치를 이용하고 분류기 부분을 훈련 시킨다.

(2) 미세 조정(fine tuning)

미세 조정은 특성 추출에 사용했던 동결 모델의 상위 층 몇 개를 동결에서 해제하고 모델에 새로 추가한 층과 함께 훈련하는 것.

09 과대 적합을 줄이는 방법 – 데이터 증식

- (1) 컴퓨터 비전에서 과대 적합을 줄이기 위한 강력한 방법.
- (2) 데이터 증식은 기존 훈련 샘플로부터 더 많은 훈련 데이터를 생성하는 방법입니다.
- (3) 그럴듯한 이미지를 생성하도록 여러가지 랜덤 변환(각도, 좌우변환 등)을 적용하여 샘플을 늘린다.
- (4) ImageDataGenerator 등의 클래스를 활용.