Assignment 2 Text Classification Report

KNN: value of n	1	3	5
Hamming	36.5%	31.7272727272%	31.04545454545%
Euclidean	55.2727272727%	50.5909090909%	50.090909090909%
Cosine Distance	81.18181818%	81.7727272727%	83%
with TF-IDF			

Smoothing factor	Naïve Bayes Accuracy	
0.1	91.954545454545%	
0.2	92%	
0.25	92.1818181818	
0.3	92.1363636363636%	
0.35	92.0454545454545%	
0.4	91.95454545454545%	
0.45	91.727272727272%	
0.5	91.63636363636363%	
0.55	91.59090909090909%	
0.6	91.31818181818	

Here, the best performance of validation set in KNN algorithm is Cosine distance with TF-IDF with accuracy of 83%

For Naïve Bayes Algorithm, the best performance is by the smoothing factor 0.25 with accuracy 92.18181818%.

Iteration	Naïve Bayes, smoothing	KNN, n = 5, cosine
	factor = 0.25 (%)	distance with TF-IDF(%)
1	92.727272727272	87.272727272727
2	95.454545454545	86.363636363636
3	92.727272727272	81.818181818183
4	89.09090909091	82.727272727273
5	96.363636363636	85.454545454545
6	90.90909090909	88.181818181819
7	94.545454545455	85.454545454545
8	95.454545454545	88.181818181819
9	91.818181818183	80.0
10	90.90909090909	83.636363636363
11	93.636363636364	83.636363636363
12	96.363636363636	84.545454545455
13	89.09090909091	78.181818181819
14	89.09090909091	80.90909090909
15	93.636363636364	78.181818181819
16	88.181818181819	79.09090909091
17	90.0	79.09090909091
18	91.818181818183	81.818181818183
19	90.0	75.454545454545
20	87.272727272727	78.181818181819
21	84.545454545455	79.09090909091
22	96.363636363636	83.636363636363
23	93.636363636364	85.454545454545
24	93.636363636364	79.09090909091
25	90.0	82.727272727273
26	88.181818181819	83.636363636363
27	92.727272727272	82.727272727273
28	88.181818181819	76.363636363637
29	88.181818181819	84.545454545455
30	93.636363636364	78.181818181819
31	91.818181818183	82.727272727273
32	91.818181818183	81.818181818183
33	93.63636363636364	84.545454545455
34	93.63636363636364	80.90909090909

35	90.90909090909	80.90909090909
36	90.0	79.09090909091
37	90.0	80.0
38	90.90909090909	75.454545454545
39	92.727272727272	86.363636363636
40	95.454545454545	89.09090909091
41	90.90909090909	78.181818181819
42	96.363636363636	89.09090909091
43	87.272727272727	75.454545454545
44	92.727272727272	80.90909090909
45	93.636363636364	80.0
46	93.636363636364	87.272727272727
47	91.818181818183	84.545454545455
48	90.0	78.181818181819
49	89.09090909091	83.636363636363
50	92.727272727272	81.818181818183
Average	91.745454545456	82.072727272726

The t-statistic value I get is (using ttest_rel, first parameter was knn, second was NB)

statistic=-22.02971880524802, pvalue=4.503554545628819e-27

for significance value of 0.005, 0.01, 0.05, pvalue is significantly lower. So, we can say that two algorithms do not perform same on the same dataset, one performs much better than other. As statistic value is negative, so algorithm in 2nd parameter performs much better than the first one. So Naïve Bayes works better than KNN algorithm.