A well-connected C++11 Boost.Graph tutorial

Richèl Bilderbeek

December 23, 2015

Contents

1	\mathbf{Intr}	oduction	7
	1.1	Why this tutorial	7
	1.2	Code snippets	8
	1.3	Coding style	8
	1.4	Tutorial style	9
	1.5	Feedback	9
	1.6	Help	9
	1.7	Outline	9
2	Bui	lding graphs without properties 1	0
	2.1	Creating an empty (directed) graph	.3
	2.2	Creating an empty undirected graph	5
	2.3	Counting the number of vertices	6
	2.4	Counting the number of edges	7

	2.5	Adding a vertex	18
	2.6	Vertex descriptors	20
	2.7	Get the vertex iterators	20
	2.8	Get all vertex descriptors	21
	2.9	Add an edge	23
	2.10	boost::add_edge result	25
	2.11	Getting the edge iterators	25
	2.12	Edge descriptors	26
	2.13	Get all edge descriptors	27
		Creating a directed graph	28
		2.14.1 Graph	28
		2.14.2 Function to create such a graph	29
		2.14.3 Creating such a graph	29
		2.14.4 The .dot file produced	30
		2.14.5 The svg file produced	30
	2.15	Creating K_2 , a fully connected undirected graph with two vertices	31
		2.15.1 Graph	31
		2.15.2 Function to create such a graph	31
		2.15.3 Creating such a graph	32
		2.15.4 The .dot file produced	33
		2.15.5 The svg file produced	33
3	Wor	king on graphs without properties	34
	3.1	Getting the vertices' out degree	34
	3.2	Saving a graph to a .dot file	36
	3.3	Loading a directed graph from a .dot	37
	3.4	Loading an undirected graph from a .dot file	39
	ъ		
4		ding graphs with named vertices	41
	4.1	Creating an empty directed graph with named vertices	42
	4.2	Creating an empty undirected graph with named vertices	44
	4.3	Add a vertex with a name	45
	4.4	Getting the vertices' names	47
	4.5	Creating a Markov chain with named vertices	49
		4.5.1 Graph	49
		4.5.2 Function to create such a graph	50
		4.5.3 Creating such a graph	51
		4.5.4 The .dot file produced	51
		4.5.5 The svg file produced	52
	4.6	Creating K_2 with named vertices	52
		4.6.1 Graph	52
		4.6.2 Function to create such a graph	52
		4.6.3 Creating such a graph	53
		4.6.4 The dot file produced	54
		4.6.5 The .svg file produced	54

5	Wor	king on graphs with named vertices	55			
	5.1	Check if there exists a vertex with a certain name	56			
	5.2	Find a vertex by its name	57			
	5.3	Get a (named) vertex its degree, in degree and out degree	59			
	5.4	Get a vertex its name from its vertex descriptor	61			
	5.5	Set a (named) vertex its name from its vertex descriptor	63			
	5.6	Setting all vertices' names	65			
	5.7	Clear the edges of a named vertex	66			
	5.8	Remove a named vertex	68			
	5.9	Removing the edge between two named vertices	70			
	5.10	Saving an directed/undirected graph with named vertices to a				
		.dot file	72			
		5.10.1 Using boost::make_label_writer	72			
		5.10.2 Using a C++11 lambda function	73			
		5.10.3 Using a C++14 lambda function	76			
		5.10.4 Demonstration	77			
	5.11	Loading a directed graph with named vertices from a .dot	77			
	5.12	Loading an undirected graph with named vertices from a .dot	79			
_	- ·					
6		8	81			
	6.1	Creating an empty directed graph with named edges and vertices	82			
	6.2	Creating an empty undirected graph with named edges and vertices	84			
	6.3	Adding a named edge	86			
	6.4	Getting the edges' names	88			
	6.5	Creating Markov chain with named edges and vertices	90			
		6.5.1 Graph	90			
		6.5.2 Function to create such a graph	91			
		6.5.3 Creating such a graph	93			
		6.5.4 The .dot file produced	94			
	0.0	6.5.5 The svg file produced	94			
	6.6	Creating K_3 with named edges and vertices	94			
		6.6.1 Graph	94			
		6.6.2 Function to create such a graph	95			
		6.6.3 Creating such a graph	97			
		6.6.4 The .dot file produced	98			
		6.6.5 The .svg file produced	98			
7	Wor	king on graphs with named edges and vertices	99			
	7.1	Check if there exists an edge with a certain name	99			
	7.2		101			
	7.3		03			
	7.4	· , , ,	05			
	7.5	Removing the first edge with a certain name				
	7.6	Saving an undirected graph with named edges and vertices as a				
			109			

	7.7 Loading a directed graph with named edges and vertices from a	110
	dot	112
	a .dot	115
8	Building graphs with bundled vertices	118
	8.1 Creating the bundled vertex class	
	8.2 Create the empty directed graph with bundled vertices	
	8.3 Create the empty undirected graph with bundled vertices	
	8.4 Add a bundled vertex	
	8.5 Getting the bundled vertices' my_vertexes	
	8.6 Creating a two-state Markov chain with bundled vertices	
	8.6.1 Graph	
	8.6.2 Function to create such a graph	
	8.6.3 Creating such a graph	
	8.6.4 The dot file produced	
	8.6.5 The svg file produced	
	8.7 Creating K_2 with bundled vertices	
	8.7.1 Graph	
	8.7.2 Function to create such a graph	
	8.7.3 Creating such a graph	
	8.7.4 The .dot file produced	
	8.7.5 The .svg file produced	120
9	Working on graphs with bundled vertices	128
	9.1 Has a bundled vertex with a my_bundled_vertex	
	9.2 Find a bundled vertex with a certain my_bundled_vertex	
	9.3 Get a bundled vertex its 'my_bundled_vertex'	
	9.4 Set a bundled vertex its my_vertex	
	9.5 Setting all bundled vertices' my_vertex objects	
	9.6 Storing a graph with bundled vertices as a .dot	
	9.7 Loading a directed graph with bundled vertices from a .dot	
	9.8 Loading an undirected graph with bundled vertices from a .dot $$.	141
10	Building graphs with bundled edges and vertices	144
	10.1 Creating the bundled edge class	
	10.2 Create an empty directed graph with bundled edges and vertices	
	10.3 Create an empty undirected graph with bundled edges and vertice	
	10.4 Add a bundled edge	
	10.5 Getting the bundled edges my_edges	
	10.6 Creating a Markov-chain with bundled edges and vertices	
	10.6.1 Graph	152
	10.6.2 Function to create such a graph	
	10.6.3 Creating such a graph	
	10.6.4 The .dot file produced	
	10.6.5 The svg file produced	190
	4	

10.7	Creating K_3 with bundled edges and vertices	156
	10.7.1 Graph	
	10.7.2 Function to create such a graph	157
	10.7.3 Creating such a graph	158
	10.7.4 The .dot file produced	
	10.7.5 The .svg file produced $\dots \dots \dots \dots \dots \dots$.	
11 Wor	king on graphs with bundled edges and vertices	159
11.1	$Has\ a\ my_bundled_edge \ \dots\dots\dots\dots\dots\dots\dots\dots$	159
11.2	$\label{lem:find_amy_bundled_edge} Find \ a \ my_bundled_edge \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	160
11.3	$Get\ an\ edge\ its\ my_bundled_edge\ \dots\dots\dots\dots\dots\dots\dots$	162
11.4	Set an edge its my_bundled_edge	164
	Storing a graph with bundled edges and vertices as a .dot \dots Load a directed graph with bundled edges and vertices from a	166
	.dot file \hdots	167
11.7	Load an undirected graph with bundled edges and vertices from	
	a .dot file	171
12 Buil	ding graphs with custom vertices	175
	Creating the vertex class	175
	Installing the new vertex property	
	Create the empty directed graph with custom vertices	
	Create the empty undirected graph with custom vertices	
	Add a custom vertex	
	Getting the vertices' my vertexes	
	Creating a two-state Markov chain with custom vertices	
	12.7.1 Graph	
	12.7.2 Function to create such a graph	
	12.7.3 Creating such a graph	
	12.7.4 The .dot file produced	
	12.7.5 The svg file produced	
12.8	Creating K_2 with custom vertices	
	12.8.1 Graph	
	12.8.2 Function to create such a graph	
	12.8.3 Creating such a graph	
	12.8.4 The .dot file produced	
	12.8.5 The svg file produced	
13 Wor	king on graphs with custom vertices (as a custom property)	189
	Has a custom vertex with a my vertex	
	Find a custom vertex with a certain my vertex	
	Get a custom vertex its my_vertex	
	Set a custom vertex its my vertex	
	Setting all custom vertices' my_vertex objects	
	Storing a graph with custom vertices as a .dot	
	Loading a directed graph with custom vertices from a .dot	
13.7	Loading a directed graph with custom vertices from a .dot	200

	13.8	Loading an undirected graph with custom vertices from a .dot $\boldsymbol{.}$.	202
14		ding graphs with custom edges and vertices	204
		Creating the custom edge class	
		Installing the new edge property	
		Create an empty directed graph with custom edges and vertices . $$	
		Create an empty undirected graph with custom edges and vertice	
		Add a custom edge	
		Getting the custom edges my_edges	
	14.7	Creating a Markov-chain with custom edges and vertices	
		14.7.1 Graph	
		14.7.2 Function to create such a graph	
		14.7.3 Creating such a graph	
		14.7.4 The .dot file produced	218
		14.7.5 The .svg file produced	218
	14.8	Creating K_3 with custom edges and vertices	
		14.8.1 Graph	
		14.8.2 Function to create such a graph	
		14.8.3 Creating such a graph	
		14.8.4 The .dot file produced	220
		14.8.5 The .svg file produced	221
15	Wor	king on graphs with custom edges and vertices	221
		Has a my custom edge	221
		Find a my custom edge	
	15.3	Get an edge its my custom edge	225
		Set an edge its my custom edge	
		Storing a graph with custom edges and vertices as a .dot	
		Load a directed graph with custom edges and vertices from a .dot	
		file	230
	15.7	Load an undirected graph with custom edges and vertices from a	
		.dot file	234
16	Buil	ding graphs with a graph name	237
		Create an empty directed graph with a graph name property	237
		Create an empty undirected graph with a graph name property.	
		Create a directed graph with a graph name property	
		16.3.1 Graph	
		16.3.2 Function to create such a graph	
		16.3.3 Creating such a graph	
		16.3.4 The .dot file produced	
		16.3.5 The svg file produced	
	16.4	Create an undirected graph with a graph name property	
		16.4.1 Graph	
		16.4.2 Function to create such a graph	
		16.4.3 Creating such a graph	244

	16.4.4 The .dot file produced	
	16.4.5 The svg file produced	245
17	Working on graphs with a graph name	246
	17.1 Set a graph its name property	246
	17.2 Get a graph its name property	247
	17.3 Storing a graph with a graph name property as a .dot file 17.4 Loading a directed graph with a graph name property from a .dot	247
	file	248
	17.5 Loading an undirected graph with a graph name property from	
	a .dot file	250
18	Building graphs with custom graph properties	252
19	Working on graphs with custom graph properties	252
20	Other graph functions	252
	20.1 Encode a std::string to a Graphviz-friendly format	252
	20.2 Decode a std::string from a Graphviz-friendly format	253
21	Misc functions	253
	21.1 Getting a data type as a std::string	253
	21.2 Convert a .dot to .svg	
	21.3 Check if a file exists	255
22	Errors	256
	22.1 Formed reference to void	256
	22.2 No matching function for call to 'clear out edges'	
	22.3 No matching function for call to 'clear in edges'	
	22.4 Undefined reference to boost::detail::graph::read_graphviz_new.	
	22.5 Property not found: node_id	
23	Appendix	258
	23.1 List of all edge, graph and vertex properties	
	0,01	

1 Introduction

This is 'A well-connected C++11 Boost.Graph tutorial', version 1.3.

1.1 Why this tutorial

I needed this tutorial already in 2006, when I started experimenting with Boost. Graph. More specifically, I needed a tutorial that:

- Orders concepts chronologically
- Increases complexity gradually

• Shows complete pieces of code

What I had were the book [8] and the Boost.Graph website, both did not satisfy these requirements.

This tutorial is intended to take the reader to the level of understanding the book [8] and the Boost.Graph website require. It is about basic graph manipulation, not the more advanced graph algorithms. An analogy with std::vector: it teaches the std::vector member functions, but not the algorithms that work on.

1.2 Code snippets

For every concept, I will show

- the 'do' function: a function that achieves a goal, for example 'create_empty undirected graph'
- the 'demo' function: a function that demonstrates how to call the first, for example 'create_empty_undirected_graph_demo'

I enjoy to show concepts by putting those in (long-named) functions. These functions sometimes border the trivial, by, for example, only calling a single Boost.Graph function. On the other hand, these functions have more English-sounding names, resulting in demonstration code that is readable. Additionally, they explicitly mention their return type (in a simpler way), which may be considered informative.

All coding snippets are taken from compiled C++ code. All code is tested to compile cleanly under GCC at the highest warning level. The code, as well as this tutorial, can be downloaded from the GitHub at www.github.com/richelbilderbeek/BoostGraphTutorial.

1.3 Coding style

I use the coding style from the Core C++ Guidelines. At the time of this writing, the Core C++ Guidelines were still in early development, so I can only hope the conventions I then chose to follow are still Good Ideas.

Most functions are documented by three slashes '///', which allows tools like Doxygen to create documentation from it.

Due to my long function names and the limitation of ≈ 50 characters per line, sometimes the code does get to look a bit awkward. I am sorry for this.

I prefer to use the keyword auto over doubling the lines of code for using statements. Because the 'do' functions return an explicit data type, these can be used for reference (until 'decltype(auto)' gets into fashion as a return type). If you really want to know a type, you can use the 'get_type_name' function (chapter 21.1).

On the other hand, I am explicit in the namespaces of functions and classes I use, so to distinguish between types like 'std::array' and 'boost::array'. Some functions (for example, 'get') reside in the namespace of the graph to work on.

In this tutorial, this is in the global namespace. Thus, I will write 'get', instead of 'boost::get', as the latter does not compile.

1.4 Tutorial style

In the index, I did first put all my long-named functions there literally, but this resulted in a very sloppy layout. Instead, the function 'do_something' can be found as 'Do something' in the index. Functions like 'boost::do_something' and 'boost::do_something' are at named literally in the index.

1.5 Feedback

This tutorial is not intended to be perfect yet. For that, I need help and feedback from the community. All referenced feedback is welcome, as well as any constructive feedback.

I have tried hard to strictly follow the style as described above. If you find I deviated from these decisions somewhere, I would be grateful if you'd let know. Next to this, there are some sections that need to be coded or have its code improved.

1.6 Help

There are some pieces of code I could use help with:

- Issue #1: Some types are hardcoded, for example, the function 'get_vertex_names' (algorithm 4.4) returns a std::vector<std::string>, where std::string is the only supported vertex' name data type. It would be better if, instead of using std::string, deduce the type of the vertex' name data type from the graph
- Issue #12: Loading a directed graph with a name, function 'load_directed_graph_with_graph_name_fr as shown in chapters 17.4. Perhaps the function 'save_graph_with_graph_name_to_dot' (chapter 17.3) needs to rewritten as well
- Issue #16: Loading a directed graph with bundled vertices, function 'load_directed_bundled_vertices_graph_from_dot' as shown in chapters 9.7. Perhaps the function 'save_bundled_vertices_graph_to_dot' (chapter 9.6) needs to rewritten as well

I have already put the tests in place, so you/I can easily check if your solution works. If the program crashes with the message 'assertion failed: !"Fixed #", a problem has been solved.

1.7 Outline

The chapters of this tutorial are also like a well-connected graph (as shown in figure 1). To allow for quicker learners to skim chapters, or for beginners looking to find the patterns, some chapters are repetitions of each other (for example,

getting an edge its name is very similar to getting a vertex its name)¹. This tutorial is not about being short, but being complete, at the risk of being called bloated.

The distinction between the chapter is in the type of edges and vertices. They can have:

• no properties: see chapter 2

• have a name: see chapter 4

• have a bundled property: see chapter 8

• have a custom property: see chapter 12

The differences between graphs with bundled and custom prorties are shown in table 1:

	Bundled	Custom
Meaning	Edges/vertices are of your type	Edges/vertices have an
		additional custom
		$\operatorname{property}$
Interface	Directly	Via property map
Class members	Must be public	Can be private
File I/O mechanism	Via public class members	Via stream operators
File I/O success	Fails, please help!	Works, with
		${\rm encoding/decoding}$

Table 1: Difference between bundled and custom properties

A pivotal chapter is chapter 5.2, 'Finding the first vertex with a name', as this opens up the door to finding a vertex and manipulating it.

2 Building graphs without properties

Boost.Graph is about creating graphs. In this chapter we create the simplest of graphs, in which edges and nodes have no properties (e.g. having a name).

Still, there are two types of graphs that can be constructed: undirected and directed graphs. The difference between directed and undirected graphs is in the edges: in an undirected graph, an edge connects two vertices without any directionality, as displayed in figure 2. In a directed graph, an edge goes from a certain vertex, its source, to another (which may actually be the same), its target. A directed graph is shown in figure 3.

¹There was even copy-pasting involved!

Figure 1: The relations between chapters

Figure 2: Example of an undirected graph

Figure 3: Example of a directed graph

In this chapter, we will build two directed and two undirected graphs:

- An empty (directed) graph, which is the default type: see chapter 2.1
- \bullet An empty (undirected) graph: see chapter 2.2
- A two-state Markov chain, a directed graph with two vertices and four edges, chapter 2.14
- K_2 , an undirected graph with two vertices and one edge, chapter 2.15

Creating an empty graph may sound trivial, it is not, thanks to the versatility of the Boost.Graph library.

In the process of creating graphs, some basic (sometimes bordering trivial) functions are encountered:

- Counting the number of vertices: see chapter 2.3
- Counting the number of edges: see chapter 2.4
- \bullet Adding a vertex: see chapter 2.5
- Getting all vertices: see chapter 2.7

- Getting all vertex descriptors: see chapter 2.8
- Adding an edge: see chapter 2.9
- Getting all edges: see chapter 2.11
- Getting all edge descriptors: see chapter 2.13

These functions are mostly there for completion and showing which data types are used.

The chapter also introduces some important concepts:

- Vertex descriptors: see chapter 2.6
- Edge insertion result: see chapter 2.10
- Edge descriptors: see chapter 2.12

2.1 Creating an empty (directed) graph

Let's create an empty graph!

Algorithm 1 shows the function to create an empty graph.

Algorithm 1 Creating an empty (directed) graph

```
#include <boost/graph/adjacency_list.hpp>

///Create an empty directed graph
boost::adjacency_list<>
create_empty_directed_graph() noexcept
{
   return boost::adjacency_list<>>();
}
```

The code consists out of an #include and a function definition. The #include tells the compiler to read the header file 'adjacency_list.hpp'. A header file (often with a '.h' or '.hpp' extension) contains class and functions declarations and/or definitions. The header file 'adjacency_list.hpp' contains the boost::adjacency_list class definition. Without including this file, you will get compile errors like 'definition of boost::adjacency_list unknown'². The function 'create empty directed graph' has:

• a return type: The return type is 'boost::adjacency_list<>', that is a 'boost::adjacency list with all template arguments set at their defaults

²In practice, these compiler error messages will be longer, bordering the unreadable

- a noexcept specification: the function should not throw³, so it is preferred to mark it noexcept ([10] chapter 13.7).
- a function body: all the function body does is create a 'boost::adjacency_list<>'
 by calling its constructor, by using the round brackets

Algorithm 2 demonstrates the 'create_empty_directed_graph' function. Note that it includes a header file with the same name as the function⁴ first, to be able to use it. 'auto' is used, as this is preferred over explicit type declarations ([10] chapter 31.6). The keyword 'auto' lets the compiler figure out the type itself.

Algorithm 2 Demonstration of 'create empty directed graph'

```
#include "create_empty_directed_graph.h"

void create_empty_directed_graph_demo() noexcept
{
   const auto g = create_empty_directed_graph();
}
```

Congratulations, you've just created a boost::adjacency_list with its default template arguments. We do not do anything with it yet, but still, you've just created a graph, in which:

- The out edges and vertices are stored in a std::vector
- The edges have a direction
- The vertices, edges and graph have no properties
- The edges are stored in a std::list

The boost::adjacency_list is the most commonly used graph type, the other is the boost::adjacency_matrix. It stores its edges, out edges and vertices in a two different STL⁵ containers. std::vector is the container you should use by default ([10] chapter 31.6, [11] chapter 76), as it has constant time look-up and back insertion. The std::list is used for storing the edges, as it is better suited at inserting elements at any position.

I use const to store the empty graph as we do not modify it. Correct use of const is called const-correct. Prefer to be const-correct ([9] chapter 7.9.3, [10] chapter 12.7, [7] item 3, [3] chapter 3, [11] item 15, [2] FAQ 14.05, [1] item 8, [4] 9.1.6).

 $^{^3}$ if the function would throw because it cannot allocate this little piece of memory, you are already in big trouble

⁴I do not think it is important to have creative names

⁵Standard Template Library, the standard library

2.2 Creating an empty undirected graph

Let's create another empty graph! This time, we even make it undirected! Algorith 3 shows how to create an undirected graph.

Algorithm 3 Creating an empty undirected graph

```
#include <boost/graph/adjacency_list.hpp>

///Create an empty undirected graph
boost:: adjacency_list <
   boost:: vecS,
   boost:: vecS,
   boost:: undirectedS
>
create_empty_undirected_graph() noexcept
{
   return boost:: adjacency_list <
    boost:: vecS,
   boost:: vecS,
   boost:: vecS,
   boost:: undirectedS
>();
}
```

This algorith differs from the 'create_empty_directed_graph' function (algoritm 1) in that there are three template arguments that need to be specified in the creation of the boost::adjancency list:

- the first 'boost::vecS': select (that is what the 'S' means) that out edges are stored in a std::vector. This is the default way.
- the second 'boost::vecS': select that the graph vertices are stored in a std::vector. This is the default way.
- 'boost::undirectedS': select that the graph is undirected. This is all we needed to change. By default, this argument is boost::directed

Algorithm 4 demonstrates the 'create empty undirected graph' function.

Algorithm 4 Demonstration of 'create empty undirected graph'

```
#include "create_empty_undirected_graph.h"

void create_empty_undirected_graph_demo() noexcept
{
   const auto g = create_empty_undirected_graph();
}
```

Congratulations, with algorithm 4, you've just created an undirected graph in which:

- The out edges and vertices are stored in a std::vector
- The graph is undirected
- Vertices, edges and graph have no properties
- Edges are stored in a std::list

2.3 Counting the number of vertices

Let's count all zero vertices of an empty graph!

Algorithm 5 Count the number of vertices

```
#include <cassert>
#include <boost/graph/adjacency_list.hpp>

///Get the number of vertices a graph has
template <typename graph>
int get_n_vertices(const graph& g) noexcept
{
   const int n{
      static_cast<int>(boost::num_vertices(g))
   };
   assert(static_cast<unsigned long>(n)
      == boost::num_vertices(g)
   );
   return n;
}
```

The function 'get_n_vertices' takes the result of boost::num_vertices, converts it to int and checks if there was conversion error. We do so, as one should prefer using signed data types over unsigned ones in an interface ([4] chapter 9.2.2). To do so, in the function body its first stament, the unsigned long produced by boost::num_vertices get converted to an int using a static_cast. Using an unsigned integer over a (signed) integer for the sake of gaining that one more bit ([9] chapter 4.4) should be avoided. The integer 'n' is initialized using list-initialization, which is preferred over the other initialization syntaxes ([10] chapter 17.7.6).

The assert checks if the conversion back to unsigned long re-creates the original value, to check if no information has been lost. If information is lost, the program crashes. Use assert extensively ([9] chapter 24.5.18, [10] chapter 30.5, [11] chapter 68, [6] chapter 8.2, [5] hour 24, [4] chapter 2.6).

The function 'get_n_vertices' is demonstrated in algorithm 6, to measure the number of vertices of both the directed and undirected graph we are already able to create.

Algorithm 6 Demonstration of the 'get n vertices' function

```
#include <cassert>
#include "create_empty_directed_graph.h"
#include "create_empty_undirected_graph.h"
#include "get_n_vertices.h"

void get_n_vertices_demo() noexcept
{
   const auto g = create_empty_directed_graph();
   assert(get_n_vertices(g) == 0);

   const auto h = create_empty_undirected_graph();
   assert(get_n_vertices(h) == 0);
}
```

Note that the type of graph does not matter here. One can count the number of vertices of every graph, as all graphs have vertices. Boost.Graph is very good at detecting operations that are not allowed, during compile time.

2.4 Counting the number of edges

Let's count all zero edges of an empty graph!

This is very similar to the previous chapter, only it uses boost::num_edges instead:

Algorithm 7 Count the number of edges

```
#include <cassert>
#include <boost/graph/adjacency_list.hpp>

///Get the number of edges a graph has
template <typename graph>
int get_n_edges(const graph& g) noexcept
{
   const int n{
      static_cast<int>(boost::num_edges(g))
   };
   assert(static_cast<unsigned long>(n)
      == boost::num_edges(g)
   );
   return n;
}
```

This code is similar to the 'get_n_vertices' function (algorithm 5, see rationale there) except 'boost::num_edges' is used, instead of 'boost::num_vertices', which also returns an unsigned long.

The function 'get_n_edges' is demonstrated in algorithm 8, to measure the number of edges of an empty directed and undirected graph.

Algorithm 8 Demonstration of the 'get n edges' function

```
#include <cassert>
#include "create_empty_directed_graph.h"
#include "create_empty_undirected_graph.h"
#include "get_n_edges.h"

void get_n_edges_demo() noexcept
{
   const auto g = create_empty_directed_graph();
   assert(get_n_edges(g) == 0);

   const auto h = create_empty_undirected_graph();
   assert(get_n_edges(h) == 0);
}
```

2.5 Adding a vertex

Empty graphs are nice, now its time to add a vertex!

To add a vertex to a graph, the boost::add_vertex function is used as shows in algorithm 9:

Algorithm 9 Adding a vertex to a graph

```
#include <boost/graph/adjacency_list.hpp>

///Add a vertex to a graph
template <typename graph>
void add_vertex(graph& g) noexcept
{
   static_assert(!std::is_const<graph>::value, "graph_cannot_be_const");

  boost::add_vertex(g);
}
```

Note that boost::add_vertex (in the 'add_vertex' function) returns a vertex descriptor, which is ignored for now. Vertex descriptors are looked at in more details at the chapter 2.6, as we need these to add an edge. Algorithm 10 shows how to add a vertex to a directed and undirected graph.

Algorithm 10 Demonstration of the 'add_vertex' function

```
#include "add_vertex.h"
#include "create_empty_directed_graph.h"

void add_vertex_demo() noexcept
{
   auto g = create_empty_undirected_graph();
   add_vertex(g);
   assert(boost::num_vertices(g) == 1);

auto h = create_empty_directed_graph();
   add_vertex(h);
   assert(boost::num_vertices(h) == 1);
}
```

This demonstration code creates two empty graphs, adds one vertex to each and then asserts that the number of vertices in each graph is one. This works for both types of graphs, as all graphs have vertices.

2.6 Vertex descriptors

A vertex descriptor is a handle to a vertex within a graph.

Vertex descriptors can be obtained by dereferencing a vertex iterator (see chapter 2.8). To do so, we first obtain some vertex iterators in chapter 2.7).

Vertex descriptors are used to:

- add and edge between two vertices, see chapter 2.9
- obtain properties of vertex a vertex, for example the vertex its out degrees (chapter 3.1), the vertex its name (chapter 4.4), or a custom vertex property (chapter 12.6)

In this tutorial, vertex descriptors have named prefixed with 'vd_', for example 'vd_1'.

2.7 Get the vertex iterators

You cannot get the vertices. This may sound unexpected, as it must be possible to work on the vertices of a graph. Working on the vertices of a graph is done throught these steps:

- Obtain a vertex iterator pair from the graph
- Dereferencing a vertex iterator to obtain a vertex descriptor

'boost::vertices' is used to obtain a vertex iterator pair, as shown in algorithm 11. The first vertex iterator points to the first vertex (its descriptor, to be precise), the second points to beyond the last vertex (its descriptor, to be precise). In this tutorial, vertex iterator pairs have named prefixed with 'vip_', for example 'vip_1'.

Algorithm 11 Get the vertex iterators of a graph

```
#include <boost/graph/adjacency_list.hpp>

///Get the vertex iterators of a graph
template <typename graph>
std::pair <
   typename graph::vertex_iterator,
   typename graph::vertex_iterator
>
get_vertex_iterators(const graph& g) noexcept
{
   return vertices(g); //not boost::vertices
}
```

This is a somewhat trivial function, as it forwards the function call to 'boost::vertices'.

These vertex iterators can be dereferenced to obtain the vertex descriptors. Note that 'get_vertex_iterators' will not be used often in isolation: usually one obtains the vertex descriptors immediatly. Just for your reference, algorithm 12 demonstrates of the 'get_vertices' function, by showing that the vertex iterators of an empty graph point to the same location.

Algorithm 12 Demonstration of 'get_vertex_iterators'

```
#include <cassert>
#include "create_empty_directed_graph.h"
#include "create_empty_undirected_graph.h"
#include "get_vertex_iterators.h"

void get_vertex_iterators_demo() noexcept
{
   const auto g = create_empty_undirected_graph();
   const auto vip_g = get_vertex_iterators(g);
   assert(vip_g.first == vip_g.second);

const auto h = create_empty_directed_graph();
   const auto vip_h = get_vertex_iterators(h);
   assert(vip_h.first == vip_h.second);
}
```

2.8 Get all vertex descriptors

Vertex descriptors are the way to manipulate those vertices. Let's go get the all!

Vertex descriptors are obtained from dereferencing vertex iterators. Algorithm 13 shows how to obtain all vertex descriptors from a graph.

Algorithm 13 Get all vertex descriptors of a graph

```
#include <vector>
#include "boost/graph/graph_traits.hpp"
/// Collect all vertex descriptors of a graph
template <typename graph>
std::vector<
  typename boost::graph traits<graph>::vertex descriptor
get_vertex_descriptors(const graph& g) noexcept
  using boost::graph traits;
  using vd
    = typename graph traits < graph > :: vertex descriptor;
  std::vector < vd > vds;
  const auto vis = vertices(g); //not boost::vertices
  const auto j = vis.second;
  for (auto i = vis.first; i!=j; ++i) {
    vds.emplace_back(*i);
  return vds;
}
```

This is the first more complex piece of code. In the first lines, some 'using' statements allow for shorter type names⁶. The function 'vertices' (not boost::vertices!) returns a vertex iterator pair. The two iterators are extracted, of which the first iterator, 'i', points to the first vertex, and the second, 'j', points to beyond the last vertex. In the for-loop, 'i' loops from begin to end. Dereferencing it produces a vertex descriptor, which is stored in the std::vector using emplace_back. Prefer using emplace_back ([10] chapter 31.6, items 25 and 27).

Algorithm 14 demonstrates that an empty graph has no vertex descriptors:

⁶which may be necessary just to create a tutorial with code snippets that are readable

Algorithm 14 Demonstration of 'get_vertex_descriptors'

```
#include "create_empty_directed_graph.h"
#include "create_empty_undirected_graph.h"
#include "get_vertex_descriptors.h"

void get_vertex_descriptors_demo() noexcept
{
    const auto g = create_empty_undirected_graph();
    const auto vds_g = get_vertex_descriptors(g);
    assert(vds_g.empty());

const auto h = create_empty_directed_graph();
    const auto vds_h = get_vertex_descriptors(h);
    assert(vds_h.empty());
}
```

Because all graphs have vertices and thus vertex descriptors, the type of graph is unimportant for this code to compile.

2.9 Add an edge

To add an edge to a graph, two vertex descriptors are needed. A vertex descriptor is a handle to the vertex within a graph (vertex descriptors are looked at in more details in chapter 2.6). Algorithm 15 adds two vertices to a graph, and connects these two using boost::add_edge:

Algorithm 15 Adding (two vertices and) an edge to a graph

```
#include <cassert>
#include <boost/graph/adjacency list.hpp>
///Add\ an\ isolated\ edge\ to\ a\ graph\,,
///by adding two vertices first
template <typename graph>
void add edge (graph& g) noexcept
{
   static assert (!std::is const<graph>::value, "graph_
       cannot_be_const");
  const auto vd a = boost :: add vertex(g);
  const auto vd_b = boost::add_vertex(g);
  const auto aer = boost::add edge(
     \begin{array}{cccc} \mathrm{vd}_{-}\mathrm{a}\,, & // & \mathit{Source/from} \\ \mathrm{vd}_{-}\mathrm{b}\,, & // & \mathit{Target/to} \end{array}
  );
   assert (aer.second);
}
```

Algorithm 15 shows how to add an isolated edge to a graph (instead of allowing for graphs with higher connectivities). First, two vertices are created, using the function 'boost::add_vertex'. 'boost::add_vertex' returns a vertex descriptor (which I prefix with 'vd'), both of which are stored. The vertex descriptors are used to add an edge to the graph, using 'boost::add_edge'. 'boost::add_edge' returns returns a std::pair, consisting of an edge descriptor and a boolean success indicator. The success of adding the edge is checked by an assert statement. Here we assert that this insertion was successfull. Insertion can fail if an edge is already present and duplicates are not allowed.

A demonstration of add_edge is shown in algorith 16, in which an edge is added to both a directed and undirected graph, after which the number of edges and vertices is checked.

Algorithm 16 Demonstration of 'add edge'

```
#include "add_edge.h"
#include "create_empty_directed_graph.h"

#include "create_empty_undirected_graph.h"

void add_edge_demo() noexcept
{
    auto g = create_empty_undirected_graph();
    add_edge(g);
    assert(boost::num_vertices(g) == 2);
    assert(boost::num_edges(g) == 1);

auto h = create_empty_directed_graph();
    add_edge(h);
    assert(boost::num_vertices(h) == 2);
    assert(boost::num_edges(h) == 1);
}
```

The graph type is unimportant: as all graph types have vertices and edges, edges can be added without possible compile problems.

2.10 boost::add_edge result

When using the function 'boost::add_edge', a 'std::pair<edge_descriptor,bool>' is returned. It contains both the edge descriptor (see chapter 2.12) and a boolean, which indicates insertion success.

In this tutorial, boost::add_edge results have named prefixed with 'aer_', for example 'aer_1'.

2.11 Getting the edge iterators

You cannot get the edges directly. Instead, working on the edges of a graph is done throught these steps:

- Obtain an edge iterator pair from the graph
- Dereference an edge iterator to obtain an edge descriptor

'edges' (not boost::edges!) is used to obtain an edge iterator pair. The first edge iterator points to the first edge (its descriptor, to be precise), the second points to beyond the last edge (its descriptor, to be precise). In this tutorial, edge iterator pairs have named prefixed with 'eip_', for example 'eip_1'. Algoritm 17 shows how to obtain these:

Algorithm 17 Get the edge iterators of a graph

```
#include <boost/graph/adjacency_list.hpp>
///Get the edge iterators of a graph
template <typename graph>
std::pair<
   typename graph::edge_iterator,
   typename graph::edge_iterator
>
get_edge_iterators(const graph& g) noexcept
{
   return edges(g); //not boost::edges
}
```

This is a somewhat trivial function, as all it does is forward to function call to 'edges' (not boost::edges!) These edge iterators can be dereferenced to obtain the edge descriptors. Note that this function will not be used often in isolation: usually one obtains the edge descriptors immediatly.

Algorithm 18 demonstrates 'get_edge_iterators' by showing that both iterators of the edge iterator pair point to the same location, when the graph is empty.

Algorithm 18 Demonstration of 'get edge iterators'

```
#include <cassert>
#include "create_empty_directed_graph.h"
#include "create_empty_undirected_graph.h"
#include "get_edge_iterators.h"

void get_edge_iterators_demo() noexcept
{
   const auto g = create_empty_undirected_graph();
   const auto eip_g = get_edge_iterators(g);
   assert(eip_g.first == eip_g.second);

auto h = create_empty_directed_graph();
   const auto eip_h = get_edge_iterators(h);
   assert(eip_h.first == eip_h.second);
}
```

2.12 Edge descriptors

An edge descriptor is a handle to an edge within a graph. They are similar to vertex descriptors (chapter 2.6).

Edge descriptors are used to obtain the name, or other properties, of an edge In this tutorial, edge descriptors have named prefixed with 'ed_', for example 'ed_1'.

2.13 Get all edge descriptors

Obtaining all edge descriptors is similar to obtaining all vertex descriptors (algorithm 13), as shown in algorithm 19:

Algorithm 19 Get all edge descriptors of a graph

```
#include < vector >
#include "boost/graph/graph traits.hpp"
///Get all edge descriptors of a graph
template <typename graph>
std::vector <
  typename boost::graph traits<graph>::edge descriptor
> get_edge_descriptors(const graph& g) noexcept
  using boost::graph_traits;
  using ed = typename graph traits<graph>::
     edge descriptor;
  std::vector<ed> eds;
  const auto ei = edges(g); //not boost::edges
  const auto j = ei.second;
  for (auto i = ei.first; i!=j; ++i) {
    eds.emplace back(*i);
  return eds;
```

The only difference is that instead of the function 'vertices' (not boost::vertices!), 'edges' (not boost::edges!) is used.

Algorithm 20 demonstrates the 'get_edge_descriptor', by showing that empty graphs do not have any edge descriptors.

Algorithm 20 Demonstration of get edge descriptors

```
#include <cassert>
#include "create_empty_directed_graph.h"
#include "create_empty_undirected_graph.h"
#include "get_edge_descriptors.h"

void get_edge_descriptors_demo() noexcept
{
    const auto g = create_empty_directed_graph();
    const auto eds_g = get_edge_descriptors(g);
    assert(eds_g.empty());

    const auto h = create_empty_undirected_graph();
    const auto eds_h = get_edge_descriptors(h);
    assert(eds_h.empty());
}
```

2.14 Creating a directed graph

Finally, we are going to create a directed non-empty graph!

2.14.1 Graph

This directed graph is a two-state Markov chain, with two vertices and four edges, as depicted in figure 4:

Figure 4: The two-state Markov chain

Note that directed graphs can have edges that start and end in the same vertex. These are called self-loops.

2.14.2 Function to create such a graph

To create this two-state Markov chain, the following code can be used:

Algorithm 21 Creating the two-state Markov chain as depicted in figure 4

```
#include <cassert>
#include <boost/graph/adjacency list.hpp>
#include "create_empty_directed_graph.h"
///Create a two-state Markov chain
boost::adjacency list <>
create markov chain() noexcept
{
  auto g = create_empty_directed_graph();
  const auto vd a = boost::add vertex(g);
  const auto vd b = boost::add vertex(g);
  const auto aer aa = boost::add edge(vd a, vd a, g);
  assert (aer aa.second);
  const auto aer ab = boost::add edge(vd a, vd b, g);
  assert (aer ab.second);
  const auto aer ba = boost::add edge(vd b, vd a, g);
  assert (aer ba.second);
  const auto aer bb = boost::add edge(vd b, vd b, g);
  assert (aer bb.second);
  return g;
}
```

Instead of typing the complete type, we call the 'create_empty_directed_graph' function, and let auto figure out the type. The vertex descriptors (see chapter 2.6) created by two boost::add_vertex calls are stored to add an edge to the graph. Then boost::add_edge is called four times. Every time, its return type (see chapter 2.10) is checked for a successfull insertion.

Note that the graph lacks all properties: nodes do not have names, nor do edges.

2.14.3 Creating such a graph

Algorithm 22 demonstrates the 'create_markov_chain_graph' function and checks if it has the correct amount of edges and vertices:

Algorithm 22 Demonstration of the 'create markov chain'

```
#include <cassert>
#include <boost/graph/adjacency_list.hpp>
#include <iostream>

#include "create_markov_chain.h"

void create_markov_chain_demo() noexcept
{
   const auto g = create_markov_chain();
   assert(boost::num_vertices(g) == 2);
   assert(boost::num_edges(g) == 4);
}
```

2.14.4 The .dot file produced

Running a bit ahead, this graph can be converted to a .dot file using the 'save_graph_to_dot' function (algorithm 29). The .dot file created is displayed in algorithm 23:

Algorithm 23 .dot file created from the 'create_markov_chain_graph' function (algorithm 21), converted from graph to .dot file using algorithm 29

```
digraph G {
0;
1;
0->0;
0->1;
1->0;
1->1;
1->1;
```

From the .dot file one can already see that the graph is directed, because:

- The first word, 'digraph', denotes a directed graph (where 'graph' would have indicated an undirectional graph)
- The edges are written as '->' (where undirected connections would be written as '-')

2.14.5 The .svg file produced

The .svg file of this graph is shown in figure 5:

Figure 5: .svg file created from the 'create_markov_chain' function (algorithm 21) its .dot file and converted from .dot file to .svg using algorithm 232

This figure shows that the graph in directed, as the edges have arrow heads. The vertices display the node index, which is the default behavior.

2.15 Creating K_2 , a fully connected undirected graph with two vertices

Finally, we are going to create an undirected non-empty graph!

2.15.1 Graph

To create a fully connected undirected graph with two vertices (also called K_2), one needs two vertices and one (undirected) edge, as depicted in figure 6.

Figure 6: K_2 : a fully connected undirected graph with two vertices

2.15.2 Function to create such a graph

To create K_2 , the following code can be used:

Algorithm 24 Creating K_2 as depicted in figure 6

```
#include <boost/graph/adjacency_list.hpp>
#include "create_empty_undirected_graph.h"

///Create K2:
///a fully connected undirected graph with two vertices
boost:: adjacency_list <
   boost:: vecS ,
   boost:: vecS ,
   boost:: undirectedS

create_k2_graph() noexcept
{
   auto g = create_empty_undirected_graph();
   const auto vd_a = boost:: add_vertex(g);
   const auto vd_b = boost:: add_vertex(g);
   const auto aer = boost:: add_edge(vd_a, vd_b, g);
   assert(aer.second);
   return g;
}</pre>
```

This code is very similar to the 'add_edge' function (algorithm 15). Instead of typing the graph its type, we call the 'create_empty_undirected_graph' function and let auto figure it out. The vertex descriptors (see chapter 2.6) created by two boost::add_vertex calls are stored to add an edge to the graph. From boost::add_edge its return type (see chapter 2.10), it is only checked that insertion has been successfull.

Note that the graph lacks all properties: nodes do not have names, nor do edges.

2.15.3 Creating such a graph

Algorithm 25 demonstrates how to 'create_k2_graph' and checks if it has the correct amount of edges and vertices:

Algorithm 25 Demonstration of 'create k2 graph'

```
#include < cassert >
#include "create_k2_graph.h"

void create_k2_graph_demo() noexcept
{
   const auto g = create_k2_graph();
   assert(boost::num_vertices(g) == 2);
   assert(boost::num_edges(g) == 1);
}
```

2.15.4 The .dot file produced

Running a bit ahead, this graph can be converted to the .dot file as shown in algorithm 26:

Algorithm 26 .dot file created from the 'create_k2_graph' function (algorithm 24), converted from graph to .dot file using algorithm 29

```
graph G {
0;
1;
0--1;
}
```

From the .dot file one can already see that the graph is undirected, because:

- The first word, 'graph', denotes an undirected graph (where 'digraph' would have indicated a directional graph)
- The edge between 0 and 1 is written as '-' (where directed connections would be written as '->', '<-' or '<>')

2.15.5 The .svg file produced

Continuing to running a bit ahead, this .dot file can be converted to the .svg as shown in figure 7:

Figure 7: .svg file created from the 'create_k2_graph' function (algorithm 24) its .dot file, converted from .dot file to .svg using algorithm 232

Also this figure shows that the graph in undirected, otherwise the edge would have one or two arrow heads. The vertices display the node index, which is the default behavior.

3 Working on graphs without properties

Now that we can build a graph, there are some things we can do:

- Getting the vertices' out degrees: see chapter 3.1
- Saving a graph without properties to .dot file: see chapter 3.2
- \bullet Loading an undirected graph without properties from .dot file: see chapter 3.4
- ullet Loading a directed graph without properties from .dot file: see chapter 3.3

3.1 Getting the vertices' out degree

Let's measure the out degree of all vertices in a graph!

The out degree of a vertex is the number of edges that originate at it.

The number of connections is called the 'degree' of the vertex. There are three types of degrees:

- in degree: the number of incoming connections, using boost::in degree
- out degree: the number of outgoing connections, using boost::in_degree
- degree: sum of the in degree and out degree, using boost::in_degree

Algorithm 27 shows how to obtain these:

Algorithm 27 Get the vertices' out degrees

The structure of this algorithm is similar to get_vertex_descriptors (algorithm 13), except that the out degrees from the vertex descriptors are stored. The out degree of a vertex iterator is obtained from the function 'out_degree' (not boost::out_degree!).

Albeit that the K_2 graph and the two-state Markov chain are rather simple, we can use it to demonstrate 'get_vertex_out_degrees' on, as shown in algorithm 28.

```
#include <cassert>
#include "create k2 graph.h"
#include "create markov chain.h"
#include "get vertex out degrees.h"
void get vertex out degrees demo() noexcept
  const auto g = create_k2_graph();
  const std::vector<int> expected out degrees g\{1,1\};
  const std::vector<int> vertex out degrees g{
    get_vertex_out_degrees(g)
  assert (expected out degrees g
    == vertex out degrees g
  const auto h = create markov chain();
  const std:: vector \langle int \rangle expected out degrees h\{2,2\};
  const std::vector<int> vertex_out_degrees_h{
    get_vertex_out_degrees(h)
  };
  assert (expected_out_degrees_h
    == vertex out degrees h
  );
}
```

It is expected that K_2 has one out-degree for every vertex, where the two-state Markov chain is expected to have two out-degrees per vertex.

3.2 Saving a graph to a .dot file

Graph are easily saved to a file, thanks to Graphviz. Graphviz (short for Graph Visualization Software) is a package of open-source tools for drawing graphs. It uses the DOT language for describing graphs, and these are commonly stored in (plain-text) .dot files (I show .dot file of every non-empty graph created, e.g. chapters 2.14.4 and 2.15.4)

Algorithm 29 Saving a graph to a .dot file

```
#include <fstream>
#include <boost/graph/graphviz.hpp>

///Save a graph to a .dot file
template <typename graph>
void save_graph_to_dot(
   const graph& g,
   const std::string& filename
) noexcept
{
   std::ofstream f(filename);
   boost::write_graphviz(f,g);
}
```

All the code does is create an std::ofstream (an output-to-file stream) and use boost::write_graphviz to write the DOT description of our graph to that stream. Instead of 'std::ofstream', one could use std::cout (a related output stream) to display the DOT language on screen directly.

Algorithm 30 shows how to use the 'save graph to dot' function:

Algorithm 30 Demonstration of the 'save graph to dot' function

```
#include "create_k2_graph.h"
#include "create_markov_chain.h"
#include "save_graph_to_dot.h"

void save_graph_to_dot_demo() noexcept
{
   const auto g = create_k2_graph();
   save_graph_to_dot(g, "create_k2_graph.dot");

   const auto h = create_markov_chain();
   save_graph_to_dot(h, "create_markov_chain.dot");
}
```

When using the 'save_graph_to_dot' function (algorithm 29), only the structure of the graph is saved: all other properties like names are not stored. Algorithm 66 shows how to do so.

3.3 Loading a directed graph from a .dot

When loading a graph from file, one needs to specify a type of graph. In this example, an directed graph is loaded, as shown in algorithm 31:

Algorithm 31 Loading a directed graph from a .dot file

```
#include <boost/graph/adjacency list.hpp>
#include <boost/graph/graphviz.hpp>
#include "create empty directed graph.h"
#include "is_regular file.h"
///Load a directed graph from a .dot file.
///Assumes\ that\ the\ .dot\ file\ exists
boost::adjacency list <>
load directed graph from dot (
  const std::string& dot filename
{
  assert (is_regular_file (dot_filename));
  std::ifstream f(dot filename.c str());
  auto g = create empty directed graph();
  boost::dynamic_properties p(
    boost::ignore other properties
  );
  boost::read graphviz(f,g,p);
  return g;
}
```

In this algorithm, first it is checked if the file to load exists, using the 'is_regular_file' function (algorithm 233), after which an std::ifstream is opened. Then an empty directed graph is created. Next to this, a boost::dynamic_properties is created with the 'boost::ignore_other_properties' in its constructor (using a default constructor here results in the run-time error 'property not found: node_id', see chapter 22.5). From this and the empty graph, 'boost::read_graphviz' is called to build up the graph.

Algorithm 32 shows how to use the 'load_directed_graph_from_dot' function:

Algorithm 32 Demonstration of the 'load_directed_graph_from_dot' function

```
#include <cassert>
#include "create markov chain.h"
#include "load_directed_graph_from_dot.h"
#include "save_graph_to_dot.h"
void load directed graph from dot demo() noexcept
  using boost::num edges;
  using boost::num vertices;
  const auto g = create markov chain();
  const std::string filename{
    "create markov chain.dot"
  };
  save_graph_to_dot(g, filename);
  const auto h = load_directed_graph from dot(filename);
  assert(num edges(g) == num edges(h));
  assert(num \ vertices(g) == num \ vertices(h));
}
```

This demonstration shows how the Markov chain is created using the 'create_markov_chain_graph' function (algorithm 21), saved and then loaded. The loaded graph is then checked to be a two-state Markov chain.

3.4 Loading an undirected graph from a .dot file

Loading an undirected graph from a .dot file is very similar to loading a directed graph from a .dot file, as shown in chapter 3.3. Algorithm 33 show how to do so:

Algorithm 33 Loading an undirected graph from a .dot file

```
#include <boost/graph/adjacency list.hpp>
#include <boost/graph/graphviz.hpp>
#include "create empty undirected graph.h"
#include "is regular file.h"
///Load an undirected graph from a .dot file.
///Assumes the file exists
boost::adjacency list <
  boost :: vecS,
  boost :: vecS,
  boost::undirectedS
load_undirected_graph_from_dot(
  const std::string& dot filename
{
  assert (is regular file (dot filename));
  std::ifstream f(dot_filename.c_str());
  auto g = create_empty_undirected_graph();
  boost:: dynamic\_properties \ p(
    boost::ignore other properties
  );
  boost::read_graphviz(f,g,p);
  return g;
```

The only difference with loading a directed graph, is that the initial empty graph is undirected instead. Chapter 3.3 describes the rationale of this function.

Algorithm 34 shows how to use the 'load_undirected_graph_from_dot' function:

Algorithm 34 Demonstration of the 'load_undirected_graph_from_dot' function

This demonstration shows how the K_2 graph is created using the 'create_k2_graph' function (algorithm 24), saved and then loaded. The loaded graph is checked to be a K_2 graph.

4 Building graphs with named vertices

Up until now, the graphs created have had edges and vertices without any propery. In this chapter, graphs will be created, in which the vertices can have a name. This name will be of the std::string data type, but other types are possible as well. There are many more built-in properties edges and nodes can have (see chapter 23.1 for a list).

In this chapter, we will build the following graphs:

- \bullet An empty directed graph that allows for vertices with names: see chapter 4.1
- An empty undirected graph that allows for vertices with names: see chapter 4.2
- Two-state Markov chain with named vertices: see chapter 4.5
- K_2 with named vertices: see chapter 4.6

In the process, some basic (sometimes bordering trivial) functions are shown:

- Adding a named vertex: see chapter 4.3
- Getting the vertices' names: see chapter 4.4

4.1 Creating an empty directed graph with named vertices

Let's create a trivial empty directed graph, in which the vertices can have a name:

Algorithm 35 Creating an empty directed graph with named vertices

```
#include < string>
#include <boost/graph/adjacency list.hpp>
///Create an empty directed graph with named vertices
template<typename vertex name type = std::string>
boost::adjacency list <
  boost :: vecS,
  boost :: vecS,
  boost::directedS,
  boost::property<
    boost::vertex name t, vertex name type
create_empty_directed_named_vertices_graph() noexcept
  return boost::adjacency list<
    boost :: vecS,
    boost :: vecS,
    boost::directedS,
    boost::property<
      boost::vertex name t, vertex name type
 > ();
```

Instead of using a boost::adjacency_list with default template argument, we will now have to specify four template arguments, where we only set the fourth to a non-default value.

Note there is some flexibility in this function: the data type of the vertex names is set to std::string by default, but can be of any other type if desired.

This graph:

• has its out edges stored in a std::vector (due to the first boost::vecS)

- has its vertices stored in a std::vector (due to the second boost::vecS)
- is directed (due to the boost::directedS)
- The vertices have one property: they have a name, which is of data type vertex_name_type (due to the boost::property
boost::vertex_name_t, vertex_name_type>')
- Edges and graph have no properties
- Edges are stored in a std::list

The boost::adjacency_list has a new, fourth template argument 'boost::property

boost::vertex_name_t, vertex_name_type>'. This can be read as: "vertices

have the property 'boost::vertex_name_t', that is of data type vertex_name_type"'.

Or simply: "vertices have a name that is stored as a vertex_name_type", where

the vertex_name_type is std::string by default.

Algorithm 36 shows how to create such a graph:

```
Algorithm 36 Demonstration of the 'create_empty_directed_named_vertices_graph' function

#include < cassert >
```

Here, two empty graphs are created, one with the default vertex name type of std::string, and one that stores the vertex name as an integer.

4.2 Creating an empty undirected graph with named vertices

Let's create a trivial empty undirected graph, in which the vertices can have a name:

Algorithm 37 Creating an empty undirected graph with named vertices

```
#include < string>
#include <boost/graph/adjacency list.hpp>
///Create an empty undirected graph with named vertices
template<typename vertex name type = std::string>
boost::adjacency list <
  boost :: vecS,
  boost :: vecS,
  boost::undirectedS,
  boost::property<
    boost::vertex_name_t, vertex_name_type
create empty undirected named vertices graph() noexcept
  return boost::adjacency list<
    boost :: vecS,
    boost :: vecS,
    boost::undirectedS,
    boost::property<
      boost::vertex name t, vertex name type
   ();
}
```

This code is very similar to the code described in chapter 4.1, except that the directedness (the third template argument) is undirected (due to the boost::undirectedS). See chapter 4.1 for most of the explanation.

Algorithm 38 shows how to create such a graph:

```
        Algorithm
        38
        Demonstration of the 'create_empty_undirected_named_vertices_graph' function
```

Here, two empty graphs are created, one with the default vertex name type of std::string, and one that stores the vertex name as an integer.

4.3 Add a vertex with a name

Adding a vertex without a name was trivially easy (see chapter 2.5). Adding a vertex with a name takes slightly more work, as shown by algorithm 39:

Algorithm 39 Adding a vertex with a name

```
#include <boost/graph/adjacency list.hpp>
///Add a named vertex to the graph
///TODO: extract vertex name type from the graph
template <
  typename vertex name type,
  typename graph
void add named vertex (
  const vertex name type& vertex name,
  graph& g
 noexcept
{
  static _ assert (! std :: is _ const < graph > :: value , " graph _
     cannot_be_const");
  const auto vd a = boost::add vertex(g);
  auto vertex name map
    = get( //not boost::get
      boost::vertex name, g
  vertex_name_map[vd_a] = vertex name;
}
```

Instead of calling 'boost::add_vertex' with an additional argument containing the name of the vertex⁷, multiple things need to be done. When adding a new vertex to the graph, the vertex descriptor (as described in chapter 2.6) is stored. After obtaining the name map from the graph (using 'get (boost::vertex_name,g)'), the name of the vertex is set using that vertex descriptor. Note that 'get' has no 'boost::' prepending it, as it lives in the same (global) namespace the function is in. Using 'boost::get' will not compile.

Using 'add_named_vertex' is straightforward, as demonstrated by algorithm $40.\,$

 $^{^7\}mathrm{I}$ am unsure if this would have been a good interface. I am sure I expected this interface myself. I do see a problem with multiple properties and the order of initialization, but initialization could simply follow the same order as the the property list.

Algorithm 40 Demonstration of 'add named vertex'

4.4 Getting the vertices' names

When the vertices of a graph have named vertices, one can extract them as such:

Algorithm 41 Get the vertices' names

```
#include < string>
#include < vector >
\# \mathbf{include} < \mathbf{boost} / \mathbf{graph} / \mathbf{properties} . \mathbf{hpp} >
\#include <boost/graph/graph_traits.hpp>
///Get all vertex names
///TODO: return a 'vertex name type' (deduced from the
///graph type), instead of a std::string
template <typename graph>
std::vector<std::string> get vertex names(
  const graph& g
  noexcept
{
  std::vector<std::string> v;
  const auto vertex name map = get (
    boost::vertex name, g
  const auto vip = vertices(g);
  const auto j = vip.second;
  for (auto i = vip.first; i!=j; ++i) {
    v.emplace back(
       get( //not \ boost::get
         vertex name map,
    );
  return v;
}
```

This code is very similar to 'get_vertex_out_degrees' (algorithm 27), as also there we iterated through all vertices, accessing all vertex descriptors sequentially.

The names of the vertices are obtained from a boost::property_map and then put into a std::vector. Note that the std::vector has element type 'std::string', instead of extracting the type from the graph. If you know how to do so, please email me.

The order of the vertex names may be different after saving and loading.

When trying to get the vertices' names from a graph without vertices with names, you will get the error 'formed reference to void' (see chapter 22.1).

Algorithm 42 shows how to add two named vertices, and check if the added

Algorithm 42 Demonstration of 'get vertex names'

```
#include < cassert >
#include "add named vertex.h"
#include "create empty undirected named vertices graph.h"
#include "get_vertex_names.h"
void get vertex names demo() noexcept
  auto g
    = create_empty_undirected_named_vertices_graph();
  const std::string vertex_name_1{"Chip"};
  const std::string vertex name_2{"Chap"};
  add named vertex (vertex name 1, g);
  add_named_vertex(vertex_name_2, g);
  const std::vector<std::string> expected names{
    vertex name 1, vertex name 2
  const std::vector<std::string> vertex names{
    get vertex names(g)
  };
  assert (expected names == vertex names);
```

4.5 Creating a Markov chain with named vertices

Let's create a directed non-empty graph with named vertices!

4.5.1 Graph

We extend the Markov chain of chapter 2.14 by naming the vertices Sunny and Rainy, as depicted in figure 8:

Figure 8: A two-state Markov chain where the vertices have texts Sunny and Rainy

4.5.2 Function to create such a graph

To create this Markov chain, the following code can be used:

Algorithm 43 Creating a Markov chain with named vertices as depicted in figure 8

```
#include <cassert>
#include <boost/graph/adjacency_list.hpp>
#include "create empty directed named vertices graph.h"
///Create a two-state Markov chain with named vertices
boost::adjacency list <
  boost :: vecS,
  boost :: vecS,
  boost :: directedS,
  boost::property<boost::vertex name t,std::string>
create named vertices markov chain() noexcept
  auto g
    = create_empty_directed_named_vertices_graph();
  const auto vd a = boost::add vertex(g);
  const auto vd b = boost::add vertex(g);
  const auto aer aa = boost::add edge(vd a, vd a, g);
  assert (aer_aa.second);
  const auto aer ab = boost::add edge(vd a, vd b, g);
  assert (aer ab.second);
  const auto aer ba = boost::add edge(vd b, vd a, g);
  assert (aer_ba.second);
  const auto aer bb = boost::add edge(vd b, vd b, g);
  assert (aer bb.second);
  auto name_map = get( //not boost :: get
    boost::vertex name, g
  );
  name map[vd a] = "Sunny";
  name map[vd b] = "Rainy";
  return g;
```

Most of the code is a repeat of algorithm 21, 'create_markov_chain_graph'. In the end of the function body, the names are obtained as a boost::property_map and set to the desired values.

4.5.3 Creating such a graph

Also the demonstration code (algorithm 44) is very similar to the demonstration code of the 'create markov chain graph' function (algorithm 22).

Algorithm 44 Demonstrating the 'create_named_vertices_markov_chain' function

4.5.4 The .dot file produced

Because the vertices now have a name, this should be visible in the .dot file:

Algorithm 45 .dot file created from the 'create_named_vertices_markov_chain' function (algorithm 43), converted from graph to .dot file using algorithm 29

```
digraph G {
0[label=Sunny];
1[label=Rainy];
0->0;
1->0;
1->1;
1->0;
1->1;
```

As one can see, the names are stored as a label. Note that if a vertex name contains a space, the name will be surrounded by quotes, for example '0[label="Sometimes rainy"];'.

4.5.5 The .svg file produced

Now that the vertices have names, this should be reflected in the .svg:

Figure 9: .svg file created from the 'create_named_vertices_markov_chain' function (algorithm 43) its .dot file, converted from .dot file to .svg using algorithm 232

The .svg now shows the vertex names, instead of the vertex indices.

4.6 Creating K_2 with named vertices

Let's create an undirected non-empty graph with named vertices!

4.6.1 Graph

We extend K_2 of chapter 2.15 by naming the vertices A and B, as depicted in figure 10:

Figure 10: K_2 : a fully connected graph with two vertices with the text A and B

4.6.2 Function to create such a graph

To create K_2 , the following code can be used:

Algorithm 46 Creating K_2 with named vertices as depicted in figure 10

```
#include <cassert>
#include <boost/graph/adjacency_list.hpp>
#include "create_empty_undirected_named_vertices_graph.h"
///Create a K2 graph with named vertices
boost::adjacency list <
  boost::vecS,
  boost :: vecS,
  boost::undirectedS,
  boost::property<boost::vertex name t, std::string>
create_named_vertices_k2_graph() noexcept
{
  auto g
    = create empty undirected named vertices graph();
  const auto vd a = boost::add vertex(g);
  const auto vd_b = boost::add_vertex(g);
  const auto aer = boost::add_edge(vd_a, vd_b, g);
  assert (aer.second);
  auto name_map = get( //not boost::get
    boost::vertex name, g
  );
  name map[vd a] = "A";
  name map[vd b] = "B";
  return g;
```

Most of the code is a repeat of algorithm 24. In the end, the names are obtained as a boost::property map and set to the desired names.

4.6.3 Creating such a graph

Also the demonstration code (algorithm 47) is very similar to the demonstration code of the create k2 graph function (algorithm 24).

Algorithm 47 Demonstrating the 'create k2 graph' function

```
#include <cassert>
#include "create_named_vertices_k2_graph.h"
#include "get_vertex_names.h"

void create_named_vertices_k2_graph_demo() noexcept
{
    const auto g = create_named_vertices_k2_graph();
    const std::vector<std::string> expected_names{"A", "B"}
    };
    const std::vector<std::string> vertex_names =
        get_vertex_names(g);
    assert(expected_names == vertex_names);
}
```

4.6.4 The .dot file produced

Because the vertices now have a name, this should be visible in the .dot file:

 $\begin{tabular}{ll} \bf Algorithm~48~. dot~file~created~from~the~'create_named_vertices_k2'~function~(algorithm~46),~converted~from~graph~to~. dot~file~using~algorithm~66 \end{tabular}$

```
graph G {
0[label=A];
1[label=B];
0--1;
}
```

As one can see, the names are stored as a label. Note that if a vertex name contains a space, the name will be surrounded by quotes, for example '0[label="A and B"];'.

4.6.5 The .svg file produced

Now that the vertices have names, this should be reflected in the .svg:

Figure 11: .svg file created from the 'create_named_vertices_k2_graph' function (algorithm 43) its .dot file, converted from .dot file to .svg using algorithm 66

The .svg now shows the vertex names, instead of the vertex indices.

5 Working on graphs with named vertices

When vertices have names, this name gives a way to find a vertex and working with it. This chapter shows some basic operations on graphs with named vertices.

- Check if there exists a vertex with a certain name: chapter 5.1
- Find a vertex by its name: chapter 5.2
- Get a named vertex its degree, in degree and out degree: chapter: 5.3
- Get a vertex its name from its vertex descriptor: chapter 5.4
- Set a vertex its name using its vertex descriptor: chapter 5.5
- Setting all vertices' names: chapter 5.6
- Clear a named vertex its edges: chapter 5.7
- Remove a named vertex: chapter 5.8
- Removing an edge between two named vertices: chapter 5.9
- \bullet Saving an directed/undirected graph with named vertices to a .dot file: chapter 5.10
- Loading a directed graph with named vertices from a .dot file: chapter 5.11
- Loading an undirected graph with named vertices from a .dot file: chapter 5.12

Especially chapter 5.2 is important: 'find_first_vertex_by_name' shows how to obtain a vertex descriptor, which is used in later algorithms.

5.1 Check if there exists a vertex with a certain name

Before modifying our vertices, let's first determine if we can find a vertex by its name in a graph. After obtaing a name map, we obtain the vertex iterators, dereference these to obtain the vertex descriptors and then compare each vertex its name with the one desired.

Algorithm 49 Find if there is vertex with a certain name

```
\# \mathbf{include} < \mathbf{boost} / \mathbf{graph} / \mathbf{properties} . \mathbf{hpp} >
///See if a graph has a vertex
///with a certain name
///TODO: extract vertex name type from the graph
template <
  typename graph,
  {\bf typename}\ {\tt vertex\_name\_type}
bool has vertex with name (
  const vertex name type& vertex name,
  const graph& g
  noexcept
  {\bf const\ auto\ } {\rm vertex\_name\_map}
    = get( //not boost::get
       boost::vertex name,
       g
    );
  const auto vip
    = vertices (g); //not boost::vertices
  const auto j = vip.second;
  for (auto i = vip.first; i!=j; ++i) {
     if (
       get( //not \ boost::get
         vertex name map,
         * i
       ) == vertex name
    ) {
       return true;
  return false;
```

This function can be demonstrated as in algorithm 50, where a certain name cannot be found in an empty graph. After adding the desired name, it is found.

Algorithm 50 Demonstration of the 'has_vertex_with_name' function

Note that this function only finds if there is at least one vertex with that name: it does not tell how many vertices with that name exist in the graph.

5.2 Find a vertex by its name

Where STL functions work with iterators, here we obtain a vertex descriptor (see chapter 2.6) to obtain a handle to the desired vertex. Algorithm 51 shows how to obtain a vertex descriptor to the first (name) vertex found with a specific name.

Algorithm 51 Find the first vertex by its name

```
#include <cassert>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/properties.hpp>
#include "has vertex with name.h"
///Find the first vertex with a certain
///name and return its vertex descriptor.
///Assumes that there exists a vertex with
///such a name
///TODO: extract vertex name type from the graph
template <
  typename graph,
  typename vertex name type
typename boost::graph traits<graph>::vertex descriptor
find first vertex with name (
  const vertex name type& name,
  const graph& g
 noexcept
  assert (has vertex with name (name, g));
  const auto vertex name map
    = get(boost::vertex name,g);
  const auto vip
    = vertices (g); //not boost::vertices
  const auto j = vip.second;
  for (auto i = vip.first; i!=j; ++i) {
    const std::string s{
      get ( //not boost :: get
        vertex_name_map,
    if (s = name) \{ return *i; \}
  assert (!"Should_not_get_here");
  throw; // Will crash the program
```

With the vertex descriptor obtained, one can read and modify the vertex and the edges surrounding it. Algorithm 52 shows some examples of how to do so.

Algorithm 52 Demonstration of the 'find first vertex with name' function

5.3 Get a (named) vertex its degree, in degree and out degree

We already obtained all out degrees of all vertices in chapter 3.1 by just collecting all vertex descriptors. Here, we will search for a vertex with a certain name, obtain its vertex descriptor and find the number of connections it has.

With a vertex descriptor, we can read a vertex its types of degrees. Algorithm 51 shows how to find a vertex, obtain its vertex descriptor and then obtain the out degree from it.

Algorithm 53 Get the first vertex with a certain name its out degree from its vertex descriptor

```
#include <cassert>
#include <boost/graph/adjacency list.hpp>
#include "find first vertex with name.h"
#include "has vertex with name.h"
///Obtain the out degree of the first vertex
///found with a certain name.
///Assumes that there is a vertex with
///such a name in the graph.
///TODO: extract vertex name type from the graph
template <
  typename graph,
  typename vertex_name_type
int get first vertex with name out degree (
  const vertex_name_type& name,
  const graph& g) noexcept
  assert (has vertex with name (name, g));
  const auto vd
    = find first vertex with name(name, g);
  const int od {
    static\_cast < int > (
      out_degree(vd, g) //not boost::out_degree
  };
  assert (static cast<unsigned long>(od)
    == out degree (vd, g)
  );
  return od;
}
```

Algorithm 54 shows how to use this function.

Algorithm 54 Demonstration of the 'get_first_vertex_with_name_out_degree' function

```
#include <cassert>
#include "create_named_vertices_k2_graph.h"
#include "get_first_vertex_with_name_out_degree.h"

void get_first_vertex_with_name_out_degree_demo()
    noexcept
{
    const auto g = create_named_vertices_k2_graph();
    assert(
        get_first_vertex_with_name_out_degree("A", g)
        == 1
    );
    assert(
        get_first_vertex_with_name_out_degree("B", g)
        == 1
    );
}
```

5.4 Get a vertex its name from its vertex descriptor

This may seem a trivial paragraph, as chapter 4.4 describes the 'get_vertex_names' algorithm, in which we get all vertices' names. But it does not allow to first find a vertex of interest and subsequently getting only that one its name.

To obtain the name from a vertex descriptor, one needs to pull out the name map and then look up the vertex of interest (I like to compare it as such: the vertex descriptor is a last name, the name map is a phone book, the desired info a phone number).

Algorithm 55 Get a vertex its name from its vertex descriptor

```
#include < string>
\#include <boost / graph / graph \_ traits.hpp>
#include <boost/graph/properties.hpp>
///Get a vertex its name,
///when already having its vertex descriptor
///TODO: return a 'vertex_name_type' (deduced from the
///graph\ type), instead of a std::string
template <typename graph>
std::string get vertex name(
  const typename boost::graph traits<graph>::
     vertex descriptor& vd,
  const graph& g
 noexcept
  const auto vertex name map
    = \gcd(\ //not\ boost::get
      boost::vertex name,
    );
  return vertex name map[vd];
}
```

To use 'get_vertex_name', one first needs to obtain a vertex descriptor. Algorithm 56 shows a simple example:

Algorithm 56 Demonstration if the 'get vertex name' function

5.5 Set a (named) vertex its name from its vertex descriptor

If you know how to get the name from a vertex descriptor, setting it is just as easy, as shown in algorithm 57.

Algorithm 57 Set a vertex its name from its vertex descriptor

```
#include <boost/graph/graph traits.hpp>
\#include < boost/graph/properties.hpp>
///Set a vertex its name,
///when already having its vertex descriptor
///TODO: extract\ vertex\_name\_type\ from\ the\ graph
template <
  {\bf typename}\ {\rm graph}\ ,
  typename vertex name type
void set vertex name (
  const vertex_name_type& name,
  const typename boost::graph traits<graph>::
     vertex_descriptor&vd,
  graph& g
) noexcept
{
  static assert (!std::is const<graph>::value, "graph_
     cannot_be_const");
  auto vertex name map
    = get( //not boost::get
      boost::vertex name,
      g
    );
  vertex name map[vd] = name;
}
```

To use 'set_vertex_name', one first needs to obtain a vertex descriptor. Algorithm 58 shows a simple example.

Algorithm 58 Demonstration if the 'set vertex name' function

```
#include <cassert>
#include "add named vertex.h"
#include "create empty undirected named vertices graph.h"
#include "find first vertex with name.h"
#include "get_vertex_name.h"
#include "set vertex name.h"
void set vertex_name_demo() noexcept
  auto g
    = create empty undirected named vertices graph();
  const std::string old_name{"Dex"};
  add named vertex (old name, g);
  const auto vd
    = find_first_vertex_with_name(old_name,g);
  assert(get\_vertex\_name(vd,g) = old\_name);
  const std::string new name{"Diggy"};
  set_vertex_name(new_name, vd, g);
  assert(get_vertex_name(vd,g) = new_name);
```

5.6 Setting all vertices' names

When the vertices of a graph have named vertices and you want to set all their names at once:

Algorithm 59 Setting the vertices' names

```
#include < string>
#include < vector >
#include <boost/graph/graph traits.hpp>
\# \mathbf{include} < \mathbf{boost} / \mathbf{graph} / \mathbf{properties} . \mathbf{hpp} >
///Set all vertices names
//TODO: generalize 'names'
template <typename graph>
void set vertex names (
  graph&g,
  const std::vector<std::string>& names
  noexcept
{
  static_assert(!std::is_const<graph>::value,"graph_
      cannot_be_const");
  const auto vertex name map
    = get(boost::vertex name,g);
  auto ni = std::begin(names);
  const auto names end = std::end(names);
  const auto vip
    = vertices (g); //not boost::vertices
  const auto j = vip.second;
  for (auto i = vip.first; i!=j; ++i, ++ni)
    assert (ni != names end);
    put (vertex name map, *i, *ni);
}
```

This is not a very usefull function if the graph is complex. But for just creating graphs for debugging, it may come in handy.

5.7 Clear the edges of a named vertex

A vertex descriptor can be used to clear all in/out/both edges connected to a vertex. It is necessary to remove these connections before the vertex itself can be removed. There are three functions to remove the edges connected to a vertex:

- boost::clear vertex: removes all edges to and from the vertex
- boost::clear out edges: removes all outgoing edges from the vertex (in

directed graphs only, else you will get a 'error: no matching function for call to clear out edges', as described in chapter 22.2)

• boost::clear_in_edges: removes all incoming edges from the vertex (in directed graphs only, else you will get a 'error: no matching function for call to clear in edges', as described in chapter 22.3)

In the algorithm 'clear_first_vertex_with_name' the 'boost::clear_vertex' algorithm is used, as the graph used is undirectional:

Algorithm 60 Clear the first vertex with a certain name

```
#include <boost/graph/adjacency list.hpp>
#include "find first vertex with name.h"
#include "has vertex with name.h"
///Remove all edges connected to the
///first vertex with a certain name.
///Assumes that there exists a vertex
///with the searched-for name.
///TODO: extract vertex name type from the graph
template <
  typename graph,
  typename vertex name type
void clear first vertex with name (
  const vertex name type& name,
  graph& g
 noexcept
  static assert (!std::is const<graph>::value, "graph_
     cannot_be_const");
  assert (has vertex with name (name, g));
  const auto vd
    = find first vertex with name(name,g);
  boost::clear vertex(vd,g);
```

Algorithm 61 shows the clearing of the first named vertex found.

Algorithm 61 Demonstration of the 'clear first vertex with name' function

```
#include <cassert>
#include "clear_first_vertex_with_name.h"
#include "create_named_vertices_k2_graph.h"

void clear_first_vertex_with_name_demo() noexcept
{
   auto g = create_named_vertices_k2_graph();
   assert(boost::num_edges(g) == 1);
   clear_first_vertex_with_name("A",g);
   assert(boost::num_edges(g) == 0);
}
```

5.8 Remove a named vertex

A vertex descriptor can be used to remove a vertex from a graph. It is necessary to remove these connections (e.g. using clear_first_vertex_with_name', algorithm 60) before the vertex itself can be removed.

Removing a named vertex goes as follows: use the name of the vertex to get a first vertex descriptor, then call 'boost::remove_vertex', shown in algorithm 60.

Algorithm 62 Remove the first vertex with a certain name

```
#include <boost/graph/adjacency list.hpp>
#include "find_first_vertex_with_name.h"
#include "has vertex with name.h"
///The\ the\ first\ vertex\ with\ a\ certain\ name.
///Assumes\ that\ there\ exists\ a\ vertex
///with\ that\ name.
///TODO: extract\ vertex\_name\_type\ from\ the\ graph
template <
  typename graph,
  typename vertex name type
void remove_first_vertex_with_name(
  const vertex_name_type& name,
  graph& g
) noexcept
{
  static assert (!std::is const<graph>::value, "graph_
     cannot_be_const");
  assert(has\_vertex\_with\_name(name,g));
  const auto vd
    = find_first_vertex_with_name(name,g);
  assert(degree(vd,g) == 0); //not boost::degree
  boost :: remove_vertex(vd,g);
```

Algorithm 63 shows the removal of the first named vertex found.

Algorithm 63 Demonstration of the 'remove_first_vertex_with_name' function

```
#include <cassert>
#include "clear_first_vertex_with_name.h"
#include "create_named_vertices_k2_graph.h"
#include "remove_first_vertex_with_name.h"

void remove_first_vertex_with_name_demo() noexcept
{
   auto g = create_named_vertices_k2_graph();
   clear_first_vertex_with_name("A",g);
   remove_first_vertex_with_name("A",g);
   assert(boost::num_edges(g) == 0);
   assert(boost::num_vertices(g) == 1);
}
```

Again, be sure that the vertex removed does not have any connections!

5.9 Removing the edge between two named vertices

Instead of looking for an edge descriptor, one can also remove an edge from two vertex descriptors (which is: the edge between the two vertices). Removing an edge between two named vertices named edge goes as follows: use the names of the vertices to get both vertex descriptors, then call 'boost::remove_edge' on those two, as shown in algorithm 64.

Algorithm 64 Remove the first edge with a certain name

```
#include <boost/graph/adjacency list.hpp>
#include "find_first_vertex_with_name.h"
#include "has vertex with name.h"
#include "has edge between vertices.h"
///Remove the edge between the first
///two vertices with the desired names.
///Assumes there exist vertices with these names.
///TODO: extract vertex name type from the graph
template <
  typename graph,
  typename vertex name type 1,
  typename vertex name type 2
void remove edge between vertices with names (
  const vertex name type 1& name 1,
  const vertex name type 2& name 2,
  graph& g
) noexcept
  static assert (!std::is const<graph>::value, "graph_
     cannot_be_const");
  assert(has_vertex_with_name(name_1, g));
  assert(has_vertex_with_name(name_2, g));
  const auto vd 1
    = find first vertex with name(name 1, g);
  const auto vd 2
    = find_first_vertex_with_name(name_2, g);
  assert (has edge between vertices (vd 1, vd 2, g));
  boost::remove_edge(vd_1, vd_2, g);
```

Algorithm 65 shows the removal of the first named edge found.

```
        Algorithm
        65
        Demonstration
        of
        the
        'remove_edge_between_vertices_with_names' function
```

```
#include <cassert>
#include "create_named_edges_and_vertices_k3_graph.h"
#include "remove_edge_between_vertices_with_names.h"

void remove_edge_between_vertices_with_names_demo()
    noexcept
{
    auto g = create_named_edges_and_vertices_k3_graph();
    assert(boost::num_edges(g) == 3);
    remove_edge_between_vertices_with_names("top","right",g
        );
    assert(boost::num_edges(g) == 2);
}
```

5.10 Saving an directed/undirected graph with named vertices to a .dot file

If you used the 'create_named_vertices_k2_graph' function (algorithm 46) to produce a K_2 graph with named vertices, you can store these names in multiple ways:

- Using boost::make label writer
- Using a C++11 lambda function
- Using a C++14 lambda function

I show all three ways, because you may need all of them.

The created .dot file is shown at algorithm 48.

You can use all characters in the vertex without problems (for example: comma's, quotes, whitespace). This will not hold anymore for bundled and custom vertices in later chapters.

The 'save_named_vertices_graph_to_dot' functions below only save the structure of the graph and its vertex names. It ignores other edge and vertex properties.

5.10.1 Using boost::make label writer

The first implemention uses boost::make_label_writer, as shown in algorithm 66:

Algorithm 66 Saving a graph with named vertices to a .dot file

```
#include <fstream>
#include <boost/graph/graphviz.hpp>
#include <boost/graph/properties.hpp>
#include "get_vertex names.h"
///Save a graph with named vertices to a .dot file
///TODO: extract vertex name type from the graph
template <
  typename graph,
  typename vertex name type
void save_named_vertices_graph_to_dot(
  const graph& g,
  const vertex_name_type& filename
) noexcept
{
  std::ofstream f(filename);
  const auto names = get_vertex_names(g);
  boost::write graphviz(
    f,
    boost::make label writer(&names[0])
}
```

Here, the function boost::write_graphviz is called with a new, third argument. After collecting all names, these are used by boost::make_label_writer to write the names as labels.

5.10.2 Using a C++11 lambda function

An equivalent algorithm is algorithm 67:

Algorithm 67 Saving a graph with named vertices to a .dot file using a lambda expression and C++11

```
#include < string>
#include <ostream>
#include <boost/graph/graphviz.hpp>
#include <boost/graph/properties.hpp>
\#include "get vertex names.h"
///Save a graph with named vertices to a .dot file
///using a lambda and C++11
///TODO: remove the hard-coded std::string type
template <typename graph>
void save_named_vertices_graph_to_dot_using lambda cpp11(
  const graph& g,
  const std::string& filename
 noexcept
{
  using vd t = typename graph::vertex descriptor;
  std::ofstream f(filename);
  const auto name map = get (boost :: vertex name, g);
  boost::write graphviz(
    f,
    [name map](std::ostream& os, const vd t& vd) {
      const std::string s{name map[vd]};
      if (s.find(') = std::string::npos) 
        //No\ space, no quotes around string
        os << "[label=" << s << "]";
        //Has\ space, put\ quotes\ around\ string
        os << "[label=\"" << s << "\"]";
    }
  );
}
```

In this C++11 code, a lambda function is used as a third argument. A lambda function is an on-the-fly function that has these parts:

- the capture brackets '[]', to take variables within the lambda function
- the function argument parentheses '()', to put the function arguments in
- the function body '{}', where to write what it does

First we create a shorthand for the vertex descriptor type, that we'll need to use a lambda function argument (in C++14 you can use auto).

We then create a vertex name map at function scope (in C++14 this can be at lambda function scope) and pass it to the lambda function using its capture section.

The lambda function arguments need to be two: a std::ostream& (a reference to a general out-stream) and a vertex descriptor. In the function body, we get the name of the vertex the same as the 'get_vertex_name' function (algorithm 55) and stream it to the out stream.

5.10.3 Using a C++14 lambda function

Algorithm 68 Saving a graph with named vertices to a .dot file using a lambda expression and C++14

```
#include < string>
#include <ostream>
#include <boost/graph/graphviz.hpp>
#include <boost/graph/properties.hpp>
#include "get vertex names.h"
///Save a graph with named vertices to a .dot file
///using a lambda and C++14
///TODO: remove the hard-coded std::string type
template <typename graph>
void save named vertices graph to dot using lambda cpp14(
  \mathbf{const} \ \mathrm{graph} \& \ \mathrm{g} \,,
  const std::string& filename
) noexcept
{
  const auto name_map = get(boost::vertex name,g);
  std::ofstream f(filename);
  boost::write graphviz (
    f,
    g,
    [name map]
    (std::ostream& os, const auto& vd) {
      const std::string s{name_map[vd]};
      if (s.find(') = std::string::npos) 
        //No\ space, no quotes around string
        os << "[label=" << s << "]";
      else {
        //Has\ space, put\ quotes\ around\ string
        os << "[label=\"" << s << "\"]";
    }
  );
```

In this C++14 code, a lambda function is used as a third argument. A lambda function is an on-the-fly function that has these parts:

• the capture brackets '[]', to take variables within the lambda function

- the function argument parentheses '()', to put the function arguments in
- the function body '{}', where to write what it does

We create a vertex name map at lambda function scope in its capture section. The lambda function arguments need to be two: a std::ostream& (a reference to a general out-stream) and a vertex descriptor. In the function body, we get the name of the vertex the same as the 'get_vertex_name' function (algorithm 55) and stream it to the out stream.

5.10.4 Demonstration

Algorithm 69 shows how to use (one of) the 'save_named_vertices_graph_to_dot' function(s):

Algorithm 69 Demonstration of the 'save_named_vertices_graph_to_dot' function

```
#include "create_named_vertices_k2_graph.h"
#include "create_named_vertices_markov_chain.h"
#include "save_named_vertices_graph_to_dot.h"

void save_named_vertices_graph_to_dot_demo() noexcept
{
   const auto g = create_named_vertices_k2_graph();
   save_named_vertices_graph_to_dot(
      g, "create_named_vertices_k2_graph.dot"
);

const auto h = create_named_vertices_markov_chain();
   save_named_vertices_graph_to_dot(
      h, "create_named_vertices_markov_chain.dot"
);
}
```

When using the 'save_named_vertices_graph_to_dot' function (algorithm 66), only the structure of the graph and the vertex names are saved: all other properties like edge name are not stored. Algorithm 98 shows how to do so.

5.11 Loading a directed graph with named vertices from a .dot

When loading a graph from file, one needs to specify a type of graph. In this example, an directed graph with named vertices is loaded, as shown in algorithm 70:

Algorithm 70 Loading a directed graph with named vertices from a .dot file

```
#include <boost/graph/adjacency list.hpp>
#include <boost/graph/graphviz.hpp>
#include "create empty directed named vertices graph.h"
#include "is regular file.h"
///Load a directed graph with named vertices
///from\ a\ .dot\ file .
///Assumes that this file exists
boost::adjacency list <
  boost :: vecS,
  boost :: vecS,
  boost::directedS,
  boost::property<
    boost::vertex name t, std::string
>
load directed named vertices graph from dot (
  const std::string& dot filename
{
  assert (is regular file (dot filename));
  std::ifstream f(dot filename.c str());
  auto g = create_empty_directed_named_vertices_graph();
  boost::dynamic_properties p; //_do_ default construct
  p. property("node id", get(boost::vertex name, g));
  p.property("label", get(boost::vertex name, g));
  boost::read graphviz(f,g,p);
  return g;
```

In this algorithm, first it is checked if the file to load exists. Then an empty directed graph is created. Next to this, a boost::dynamic_properties is created with its default constructor, after which we direct the boost::dynamic_properties to find a 'node_id' and 'label' in the vertex name map. From this and the empty graph, 'boost::read_graphviz' is called to build up the graph.

Algorithm 71 shows how to use the 'load_directed_graph_from_dot' function:

Algorithm 71 Demonstration of the 'load_directed_named_vertices_graph_from_dot' function

```
#include "create named vertices markov chain.h"
#include "load directed named vertices graph from dot.h"
#include "save_named_vertices_graph_to_dot.h"
#include "get_vertex_names.h"
void load directed named vertices graph from dot demo()
   noexcept
  using boost::num edges;
  using boost::num_vertices;
  const auto g
    = create_named_vertices_markov chain();
  const std::string filename{
    "create named vertices markov chain.dot"
  };
  save named vertices graph to dot(g, filename);
  const auto h
    = load directed named vertices graph from dot (
      filename
    );
  assert(num edges(g) == num edges(h));
  assert(num \ vertices(g) == num \ vertices(h));
  assert (get vertex names (g) == get vertex names (h));
```

This demonstration shows how the Markov chain is created using the 'create_named_vertices_markov_chain' function (algorithm 21), saved and then loaded. The loaded graph is checked to be a directed graph similar to the Markov chain with the same vertex names (using the 'get_vertex_names' function, algorithm 41).

5.12 Loading an undirected graph with named vertices from a .dot

When loading a graph from file, one needs to specify a type of graph. In this example, an undirected graph with named vertices is loaded, as shown in algorithm 72:

Algorithm 72 Loading an undirected graph with named vertices from a .dot file

```
#include <boost/graph/adjacency list.hpp>
#include <boost/graph/graphviz.hpp>
#include "create empty undirected named vertices graph.h"
#include "is regular file.h"
///Load an undirected graph with named vertices
///from\ a . dot\ file .
///Assumes that this file exists
boost::adjacency list <
  boost :: vecS,
  boost :: vecS,
  boost::undirectedS,
  boost::property<
    boost::vertex name t, std::string
load _ undirected _ named _ vertices _ graph _ from _ dot (
  const std::string& dot filename
  assert (is regular file (dot filename));
  std::ifstream f(dot filename.c str());
  auto g = create empty undirected named vertices graph()
  boost::dynamic properties p; // do default construct
  p.property("node_id", get(boost::vertex_name, g));
  p.property("label", get(boost::vertex name, g));
  boost::read graphviz(f,g,p);
  return g;
```

The only difference with loading a directed graph, is that the initial empty graph is undirected instead. Chapter 5.11 describes the rationale of this function.

Algorithm 73 shows how to use the 'load_undirected_graph_from_dot' function:

Algorithm 73 Demonstration of the 'load_undirected_graph_from_dot' function

```
#include "create named vertices k2 graph.h"
#include "load undirected named vertices graph from dot.h
#include "save_named_vertices_graph to dot.h"
#include "get vertex names.h"
void load undirected named vertices graph from dot demo()
    noexcept
  using boost::num edges;
  using boost::num vertices;
  const auto g
    = create_named_vertices_k2_graph();
  const std::string filename{
    "create named vertices k2 graph.dot"
  save named vertices graph to dot(g, filename);
  const auto h
    = load undirected named vertices graph from dot(
      filename
    );
  assert(num edges(g) == num edges(h));
  assert (num vertices (g) == num vertices (h));
  assert(get\_vertex\_names(g) == get\_vertex\_names(h));
```

This demonstration shows how K_2 with named vertices is created using the 'create_named_vertices_k2_graph' function (algorithm 46), saved and then loaded. The loaded graph is checked to be an undirected graph similar to K_2 , with the same vertex names (using the 'get_vertex_names' function, algorithm 41).

6 Building graphs with named edges and vertices

Up until now, the graphs created have had edges and vertices without any propery. In this chapter, graphs will be created, in which edges vertices can have a name. This name will be of the std::string data type, but other types are possible as well. There are many more built-in properties edges and nodes can have (see the boost/graph/properties.hpp file for these).

In this chapter, we will build the following graphs:

- \bullet An empty directed graph that allows for edges and vertices with names: see chapter 6.1
- An empty undirected graph that allows for edges and vertices with names: see chapter 6.2
- Markov chain with named edges and vertices: see chapter 6.5
- K_3 with named edges and vertices: see chapter 6.6

In the process, some basic (sometimes bordering trivial) functions are shown:

- Adding an named edge: see chapter 6.3
- Getting the edges' names: see chapter 6.4

These functions are mostly there for completion and showing which data types are used.

6.1 Creating an empty directed graph with named edges and vertices

Let's create a trivial empty directed graph, in which the both the edges and vertices can have a name:

Algorithm 74 Creating an empty directed graph with named edges and vertices

```
#include <string>
#include <boost/graph/adjacency_list.hpp>
boost::adjacency list <
  boost :: vecS,
  boost :: vecS,
  boost::directedS,
  boost::property<boost::vertex name t, std::string>,
  boost::property<boost::edge name t, std::string>
create_empty_directed named edges and vertices graph()
   noexcept
{
  return boost::adjacency list<
    boost :: vecS,
    boost :: vecS,
    boost :: directedS,
    boost::property<
      boost::vertex_name_t, std::string
    boost::property<
      boost::edge name t, std::string
 > ();
}
```

This graph:

- has its out edges stored in a std::vector (due to the first boost::vecS)
- has its vertices stored in a std::vector (due to the second boost::vecS)
- is directed (due to the boost::directedS)
- The vertices have one property: they have a name, that is of data type std::string (due to the boost::property< boost::vertex name t,std::string>')
- The edges have one property: they have a name, that is of data type std::string (due to the boost::property< boost::edge name t,std::string>')
- The graph has no properties
- \bullet Edges are stored in a std::list

The boost::adjacency_list has a new, fifth template argument 'boost::property < boost::edge_name_t,std::string>'. This can be read as: "edges have the property 'boost::edge_name_t', that is of data type 'std::string''. Or simply: "edges have a name that is stored as a std::string".

Algorithm 75 shows how to create this graph. Note that all the earlier functions defined in this tutorial keep working as expected.

```
75
                                         if
Algorithm
                        Demonstration
                                                the
                                                         'cre-
ate empty directed named edges and vertices graph' function
#include <cassert>
#include "add named edge.h"
#include "
   create_empty_directed_named_edges_and_vertices_graph.h
#include "get edge names.h"
#include "get vertex names.h"
void
   create empty directed named edges and vertices graph demo
   () noexcept
  using strings = std::vector<std::string>;
  auto g
       create empty directed named edges and vertices graph
  add named edge("Reed", g);
  const strings expected vertex names{"",""};
  const strings vertex_names = get_vertex_names(g);
  assert (expected vertex names = vertex names);
  const strings expected edge names{"Reed"};
  const strings edge names = get edge names(g);
  assert (expected edge names = edge names);
```

6.2 Creating an empty undirected graph with named edges and vertices

Let's create a trivial empty undirected graph, in which the both the edges and vertices can have a name:

Algorithm 76 Creating an empty undirected graph with named edges and vertices

```
#include < string>
#include <boost/graph/adjacency list.hpp>
boost::adjacency list <
  boost :: vecS,
  boost :: vecS,
  boost::undirectedS,
  boost::property<boost::vertex_name_t, std::string>,
  boost::property<boost::edge name t, std::string>
create_empty_undirected_named_edges and vertices graph()
   noexcept
  return boost::adjacency list <
    boost :: vecS,
    boost :: vecS,
    boost::undirectedS,
    boost::property<
      boost::vertex name t, std::string
    boost::property<
      boost::edge name t, std::string
    ();
}
```

This graph:

- has its out edges stored in a std::vector (due to the first boost::vecS)
- has its vertices stored in a std::vector (due to the second boost::vecS)
- is undirected (due to the boost::undirectedS)
- The vertices have one property: they have a name, that is of data type std::string (due to the boost::property< boost::vertex name t,std::string>')
- The edges have one property: they have a name, that is of data type std::string (due to the boost::property< boost::edge_name_t,std::string>')
- The graph has no properties
- Edges are stored in a std::list

The boost::adjacency_list has a new, fifth template argument 'boost::property < boost::edge_name_t,std::string>'. This can be read as: "edges have the property 'boost::edge_name_t', that is of data type 'std::string''. Or simply: "edges have a name that is stored as a std::string".

Algorithm 77 shows how to create this graph. Note that all the earlier functions defined in this tutorial keep working as expected.

```
77
Algorithm
                        Demonstration
                                                the
                                                         'cre-
ate empty undirected named edges and vertices graph' function
#include <cassert>
#include "add named edge.h"
#include "
   create\_empty\_undirected\_named\_edges\_and\_vertices\_graph
#include "get edge names.h"
#include "get vertex names.h"
   create empty undirected named edges and vertices graph demo
   () noexcept
  using strings = std::vector<std::string>;
  auto g
       create empty undirected named edges and vertices graph
  add named edge("Reed", g);
  const strings expected_vertex_names{"",""};
  const strings vertex names = get vertex names(g);
  assert (expected vertex names = vertex names);
  const strings expected edge names{"Reed"};
  const strings edge names = get edge names(g);
  assert (expected edge names == edge names);
}
```

6.3 Adding a named edge

Adding an edge with a name:

Algorithm 78 Add a vertex with a name

```
#include <cassert>
#include <boost/graph/adjacency_list.hpp>
///Add an isolated named edge to the graph,
///by adding two vertices to put
///the new named edge in between.
///TODO: extract edge name type from the graph
template <
  typename graph,
  typename edge name type
void add named edge(
  const edge name type& edge name,
  graph& g
) noexcept
  static assert (!std::is const<graph>::value, "graph_
     cannot_be_const");
  const auto vd a = boost::add vertex(g);
  const auto vd b = boost::add vertex(g);
  const auto aer = boost::add edge(vd a, vd b, g);
  assert (aer.second);
  auto edge name map
    = get( //not boost::get
      boost::edge name, g
  edge name map[aer.first] = edge name;
}
```

In this code snippet, the edge descriptor (see chapter 2.12 if you need to refresh your memory) when using 'boost::add_edge' is used as a key to change the edge its name map.

The algorithm 79 shows how to add a named edge to an empty graph. When trying to add named vertices to graph without this property, you will get the error 'formed reference to void' (see chapter 22.1).

Algorithm 79 Demonstration of the 'add_named_edge' function

6.4 Getting the edges' names

When the edges of a graph have named vertices, one can extract them as such:

Algorithm 80 Get the edges' names

```
#include < string>
#include < vector >
#include <boost/graph/adjacency list.hpp>
#include <boost/graph/properties.hpp>
///Get all the vertices names
///TODO: remove the hard-coded std::string type
template <typename graph>
std::vector<std::string> get edge names(const graph& g)
   noexcept
  std::vector<std::string> v;
  const auto edge_name_map = get(boost::edge_name,g);
  const auto eip = edges(g); //not boost::edges
  const auto j = eip.second;
  for (auto i = eip.first; i!=j; ++i) {
    v.emplace_back(
      get( //not \ boost::get
        edge name map,
        * i
  return v;
}
```

The names of the edges are obtained from a boost::property_map and then put into a std::vector. The algorithm 81 shows how to apply this function.

The order of the edge names may be different after saving and loading.

Would you dare to try to get the edges' names from a graph without vertices with names, you will get the error 'formed reference to void' (see chapter 22.1).

Algorithm 81 Demonstration of the 'get edge names' function

```
#include <cassert>
#include "add named edge.h"
#include "
   create empty undirected named edges and vertices graph
   . h"
#include "get edge names.h"
void get edge names demo() noexcept
  auto g
       create\_empty\_undirected\_named\_edges\_and\_vertices\_graph
  const std::string edge_name_1{"Eugene"};
  const std::string edge name 2{"Another_Eugene"};
  add_named_edge(edge_name_1, g);
  add named edge(edge name 2, g);
  const std::vector<std::string> expected names{
    edge_name_1, edge_name_2
  const std::vector<std::string> edge names{
    get_edge_names(g)
  assert (expected_names == edge_names);
```

6.5 Creating Markov chain with named edges and vertices

6.5.1 Graph

We build this graph:

Figure 12: A two-state Markov chain where the vertices have texts Sunny and Rainy, and the edges have texts Sometimes, Often, Rarely and Mostly

6.5.2 Function to create such a graph

Here is the code:

Algorithm 82 Creating the two-state Markov chain as depicted in figure 12

```
#include < string>
#include <boost/graph/adjacency list.hpp>
#include "
   create empty directed named edges and vertices graph.h
boost::adjacency list <
  boost :: vecS,
  boost :: vecS,
  boost::directedS
  boost::property < boost::vertex name t, std::string >,
  boost::property<boost::edge name t,std::string>
create named edges and vertices markov chain () noexcept
  auto g
       create empty directed named edges and vertices graph
  const auto vd a = boost::add vertex(g);
  const auto vd b = boost::add vertex(g);
  const auto aer aa = boost::add edge(vd a, vd a, g);
  assert (aer aa.second);
  const auto aer ab = boost::add edge(vd a, vd b, g);
  assert (aer ab.second);
  const auto aer ba = boost::add edge(vd b, vd a, g);
  assert (aer ba.second);
  const auto aer bb = boost::add edge(vd b, vd b, g);
  assert (aer bb.second);
  auto vertex_name_map = get( //not boost::get
    boost::vertex name, g
  );
  vertex name map[vd a] = "Sunny";
  vertex name map[vd b] = "Rainy";
  auto edge name map = get ( //not \ boost :: get
    boost::edge name, g
  edge name map[aer aa.first] = "Sometimes";
  edge name map[aer ab.first] = "Often";
  edge name map[aer ba.first] = "Rarely";
  edge name map[aer bb.first] = "Mostly";
  return g;
}
```

6.5.3 Creating such a graph

Here is the demo:

Algorithm 83 Demo of the 'create_named_edges_and_vertices_markov_chain' function (algorithm 82)

```
#include <cassert>
#include <iostream>
#include "create_named_edges_and_vertices_markov_chain.h"
#include "get edge names.h"
#include "get vertex names.h"
void create named edges and vertices markov chain demo()
   noexcept
  using strings = std::vector<std::string>;
  const auto g
    =\ create\_named\_edges\_and\_vertices\_markov\_chain\,()\;;
  const strings expected_vertex_names{
    "Sunny", "Rainy"
  const strings vertex names {
    get vertex names(g)
  assert (expected vertex names = vertex names);
  const strings expected edge names{
    "Sometimes", "Often", "Rarely", "Mostly"
  const strings edge_names{get_edge_names(g)};
  assert (expected edge names == edge names);
}
```

6.5.4 The .dot file produced

```
Algorithm 84 .dot file created from the 'create_named_edges_and_vertices_markov_chain' function (algorithm 82), converted from graph to .dot file using algorithm 29
```

```
digraph G {
0[label=Sunny];
1[label=Rainy];
0->0 [label="Sometimes"];
0->1 [label="Often"];
1->0 [label="Rarely"];
1->1 [label="Mostly"];
}
```

6.5.5 The .svg file produced

Figure 13: .svg file created from the 'create_named_edges_and_vertices_markov_chain' function (algorithm 82) its .dot file, converted from .dot file to .svg using algorithm 232

6.6 Creating K_3 with named edges and vertices

6.6.1 Graph

We extend the graph K_2 with named vertices of chapter 4.6 by adding names to the edges, as depicted in figure 14:

Figure 14: K_3 : a fully connected graph with three named edges and vertices

6.6.2 Function to create such a graph

To create K_3 , the following code can be used:

Algorithm 85 Creating K_3 as depicted in figure 14

```
#include <boost/graph/adjacency list.hpp>
#include <string>
boost::adjacency list <
  boost :: vecS,
  boost :: vecS,
  boost::undirectedS,
  boost::property<boost::vertex name t, std::string>,
  boost::property<boost::edge name t,std::string>
create named edges and vertices k3 graph() noexcept
  auto g
       create empty undirected named edges and vertices graph
  const auto vd_a = boost::add_vertex(g);
  const auto vd b = boost::add vertex(g);
  const auto vd c = boost::add vertex(g);
  const auto aer ab = boost::add edge(vd a, vd b, g);
  assert (aer ab.second);
  const auto aer bc = boost :: add edge(vd b, vd c, g);
  assert (aer bc.second);
  const auto aer ca = boost::add edge(vd c, vd a, g);
  assert (aer ca.second);
  auto vertex name map = get(boost::vertex name,g);
  vertex_name_map[vd_a] = "top";
  vertex_name_map[vd_b] = "right";
  vertex_name_map[vd_c] = "left";
  auto edge_name_map = get(boost::edge_name,g);
  edge_name_map[aer_ab.first] = "AB";
  edge name map[aer bc.first] = "BC";
  edge name map[aer ca.first] = "CA";
  return g;
}
```

Most of the code is a repeat of algorithm 46. In the end, the edge names are obtained as a boost::property_map and set.

6.6.3 Creating such a graph

Algorithm 86 shows how to create the graph and measure its edge and vertex names.

Algorithm 86 Demonstration of the 'create_named_edges_and_vertices_k3' function

```
#include < cassert >
#include <iostream>
#include "create named edges and vertices k3 graph.h"
#include "get_edge_names.h"
#include "get vertex names.h"
void create named edges and vertices k3 graph demo()
   noexcept
  using strings = std::vector<std::string>;
  const auto g
    = create named edges and vertices k3 graph();
  const strings expected vertex names{
    "top", "right", "left"
  const strings vertex names{
    get_vertex_names(g)
  assert (expected vertex names = vertex names);
  const strings expected_edge_names{
    "AB", "BC", "CA"
  const strings edge names{get edge names(g)};
  assert (expected edge names = edge names);
}
```

6.6.4 The .dot file produced

```
Algorithm
                87
                                file
                                       created
                                                            the
                       .dot
                                                   from
                                                                    'cre-
ate_named_edges_and_vertices_k3_graph'
                                             function
                                                        (algorithm
                                                                     85),
converted from graph to .dot file using algorithm 29
graph G {
0[label=top];
1[label=right];
2[label=left];
0--1 [label="AB"];
1--2 [label="BC"];
2--0 [label="CA"];
}
```

6.6.5 The .svg file produced

7 Working on graphs with named edges and vertices

Working with named edges...

- Check if there exists an edge with a certain name: chapter 7.1
- Find a (named) edge by its name: chapter 7.2
- Get a (named) edge its name from its edge descriptor: chapter 7.3
- Set a (named) edge its name using its edge descriptor: chapter 7.4
- Remove a named edge: chapter 7.5
- Saving a graph with named edges and vertices to a .dot file: chapter 7.6
- Loading a directed graph with named edges and vertices from a .dot file: chapter 7.7
- Loading an undirected graph with named edges and vertices from a .dot file: chapter 7.8

Especially chapter 7.2 with the 'find_first_edge_by_name' algorithm shows how to obtain an edge descriptor, which is used in later algorithms.

7.1 Check if there exists an edge with a certain name

Before modifying our edges, let's first determine if we can find an edge by its name in a graph. After obtaing a name map, we obtain the edge iterators, dereference these to obtain the edge descriptors and then compare each edge its name with the one desired.

${\bf Algorithm~88}$ Find if there is an edge with a certain name

```
#include < string>
#include <boost/graph/properties.hpp>
///See if there is an edge with a certain name.
///TODO: extract edge name type from the graph
template <
  typename graph,
  typename edge_name_type
bool has edge with name (
  const edge name type& name,
  const graph& g
  noexcept
  const auto edge name map
    = get( //not boost::get
       boost::edge_name,
       g
    );
  const auto eip
    = \operatorname{edges}( // not \ boost :: edges
    g
  );
  const auto j = eip.second;
  \label{eq:formula} \textbf{for } (\textbf{auto} \ i = \text{eip.first}; \ i! = j; \ +\!\!\!+\!\! i) \ \{
     if (get(edge name map, *i) = name) {
       return true;
  return false;
```

This function can be demonstrated as in algorithm 89, where a certain name cannot be found in an empty graph. After adding the desired name, it is found.

Algorithm 89 Demonstration of the 'has edge with name' function

Note that this function only finds if there is at least one edge with that name: it does not tell how many edges with that name exist in the graph.

7.2 Find an edge by its name

Where STL functions work with iterators, here we obtain an edge descriptor (see chapter 2.12) to obtain a handle to the desired edge. Algorithm 90 shows how to obtain an edge descriptor to the first (name) edge found with a specific name.

Algorithm 90 Find the first edge by its name

```
#include <boost/graph/graph traits.hpp>
#include <boost/graph/properties.hpp>
#include "has edge with name.h"
///Find the first edge with a certain name
///and returns its edge descriptor.
///Assumes\ that\ there\ exists\ an\ edge\ with
///such a name.
///TODO: extract edge name type from the graph
template <
  typename graph,
  typename edge name type
typename boost::graph_traits<graph>::edge_descriptor
find first edge with name (
  const edge name type& name,
  const graph& g
 noexcept
{
  assert (has edge with name (name, g));
  const auto edge name map
    = get(boost::edge name,g);
  const auto eip
    = \operatorname{edges}(g); //not boost:: edges
  const auto j = eip.second;
  for (auto i = eip.first; i!=j; ++i) {
    const std::string s{
      get (edge_name_map, *i)
    if (s = name) \{ return *i; \}
  assert (!"Should_not_get_here");
  throw; // Will crash the program
}
```

With the edge descriptor obtained, one can read and modify the graph. Algorithm 91 shows some examples of how to do so.

Algorithm 91 Demonstration of the 'find first edge by name' function

7.3 Get a (named) edge its name from its edge descriptor

This may seem a trivial paragraph, as chapter 6.4 describes the 'get_edge_names' algorithm, in which we get all edges' names. But it does not allow to first find an edge of interest and subsequently getting only that one its name.

To obtain the name from an edgedescriptor, one needs to pull out the name map and then look up the edge of interest.

Algorithm 92 Get an edge its name from its edge descriptor

```
#include <string>
\#include < boost/graph/graph_traits.hpp>
#include <boost/graph/properties.hpp>
///Get an edge its name from itsedge descriptor
///TODO: remove the hard-coded std::string type
template <typename graph>
std::string get_edge_name(
  \textbf{const typename} \hspace{0.2cm} \texttt{boost} :: \texttt{graph\_traits} \negthinspace < \negthinspace \texttt{graph} \negthinspace > \negthinspace ::
       edge descriptor& ed,
  const graph& g
  noexcept
  {\bf const\ auto\ edge\_name\_map}
     = get( //not boost::get
        boost::edge name,
        g
     );
  return edge_name_map[ed];
}
```

To use 'get_edge_name', one first needs to obtain an edge descriptor. Algorithm 93 shows a simple example.

Algorithm 93 Demonstration if the 'get edge name' function

7.4 Set a (named) edge its name from its edge descriptor

If you know how to get the name from an edge descriptor, setting it is just as easy, as shown in algorithm 94.

Algorithm 94 Set an edge its name from its edge descriptor

```
#include <boost/graph/graph traits.hpp>
\#include < boost/graph/properties.hpp>
///Set and edge its name from its edge descriptor.
///TODO: extract edge name type from the graph
template <
  typename graph,
  typename edge_name_type
void set edge name (
  const edge name type& name,
  \textbf{const typename} \hspace{0.2cm} \texttt{boost} :: \texttt{graph\_traits} \negthinspace < \negthinspace \texttt{graph} \negthinspace > \negthinspace ::
       edge_descriptor& vd,
  graph& g
) noexcept
  static_assert(!std::is_const<graph>::value, "graph_
      cannot_be_const");
  auto edge name map = get(boost::edge name,g);
  edge name map[vd] = name;
}
```

To use 'set_edge_name', one first needs to obtain an edge descriptor. Algorithm 95 shows a simple example.

Algorithm 95 Demonstration if the 'set edge name' function

```
#include <cassert>
#include "add named edge.h"
#include "
   create empty undirected named edges and vertices graph
   . h"
#include "find first edge with name.h"
#include "get_edge_name.h"
#include "set edge name.h"
void set edge name demo() noexcept
  {\bf auto} \ \ {\bf g} \ =
     create empty undirected named edges and vertices graph
  const std::string old name{"Dex"};
  add named edge(old name, g);
  const auto vd = find first edge with name(old name, g);
  assert(get\_edge\_name(vd,g) = old\_name);
  const std::string new_name{"Diggy"};
  set - edge\_name(new\_name, - vd, - g);
  assert(get edge name(vd,g) = new name);
```

7.5 Removing the first edge with a certain name

An edge descriptor can be used to remove an edge from a graph.

Removing a named edge goes as follows: use the name of the edge to get a first edge descriptor, then call 'boost::remove_edge', shown in algorithm 62:

Algorithm 96 Remove the first edge with a certain name

```
#include <boost/graph/adjacency list.hpp>
#include "find_first_edge_with_name.h"
#include "has edge with name.h"
///Remove the first edge with a certain name.
///Assumes\ that\ there\ exists an edge with such a name.
///TODO: extract edge name type from the graph
template <
  typename graph,
  typename edge name type
void remove_first_edge_with_name(
  const edge name type& name,
  graph& g
) noexcept
  static_assert(!std::is_const<graph>::value, "graph_
     cannot_be_const");
  assert(has\_edge\_with\_name(name,g));
  const auto vd
    = find first edge with name(name,g);
  boost::remove_edge(vd,g);
}
```

Algorithm 97 shows the removal of the first named edge found.

Algorithm 97 Demonstration of the 'remove_first_edge_with_name' function

```
#include <cassert>
#include "create_named_edges_and_vertices_k3_graph.h"
#include "remove_first_edge_with_name.h"

void remove_first_edge_with_name_demo() noexcept
{
    auto g = create_named_edges_and_vertices_k3_graph();
    assert(boost::num_edges(g) == 3);
    assert(boost::num_vertices(g) == 3);
    remove_first_edge_with_name("AB",g);
    assert(boost::num_edges(g) == 2);
    assert(boost::num_vertices(g) == 3);
}
```

7.6 Saving an undirected graph with named edges and vertices as a .dot

If you used the create_named_edges_and_vertices_k3_graph function (algorithm 85) to produce a K_3 graph with named edges and vertices, you can store these names additionally with algorithm 98:

Algorithm 98 Saving an undirected graph with named edges and vertices to a .dot file

```
#include < string>
#include <fstream>
#include <boost/graph/graphviz.hpp>
#include <boost/graph/properties.hpp>
#include "get_edge_names.h"
#include "get vertex names.h"
///Save a graph with named vertices to a .dot file
template <typename graph>
void save named edges and vertices graph to dot (
  const graph& g,
  const std::string& filename
{
  using my edge descriptor = typename graph::
     edge descriptor;
  std::ofstream f(filename);
  const auto vertex_names = get_vertex_names(g);
  const auto edge name map = boost::get(boost::edge name,
  boost::write graphviz(
    f,
    g,
    boost::make label writer(&vertex names[0]),
    [edge name map](std::ostream& out, const
       my edge descriptor& e) {
      out << "[label=\"" << edge name map[e] << "\"]";
  );
}
```

This a C++11 implementation.

The .dot file created is displayed in algorithm 99:

```
Algorithm
                99
                       .dot
                                file
                                       created
                                                   from
                                                            the
                                                                   cre-
ate_named_edges_and_vertices_k3_graph function (algorithm 46)
graph G {
0[label=top];
1[label=right];
2[label=left];
0--1 [label="AB"];
1--2 [label="BC"];
2--0 [label="CA"];
}
```

This .dot file corresponds to figure 16:

 $\label{eq:figure 16: svg file created from the create_named_edges_and_vertices_k3_graph function (algorithm 46) and converted to .svg using the 'convert_dot_to_svg' function (algorithm 232)$

If you created a graph with edges more complex than just a name, you will still just write these to the .dot file. Chapter 13.6 shows how to write custom vertices to a .dot file.

So, the 'save_named_edges_and_vertices_graph_to_dot' function (algorithm 29) saves only the structure of the graph and its edge and vertex names.

7.7 Loading a directed graph with named edges and vertices from a .dot

When loading a graph from file, one needs to specify a type of graph. In this example, an directed graph with named edges and vertices is loaded, as shown in algorithm 100:

 ${\bf Algorithm~100}$ Loading a directed graph with named edges and vertices from a .dot file

```
#include <boost/graph/adjacency list.hpp>
#include <boost/graph/graphviz.hpp>
#include "
   create empty directed named edges and vertices graph.h
#include "is regular file.h"
///Load a directed graph with named edges and vertices
///from\ a\ .dot\ file .
///Assumes that the .dot file exists.
boost::adjacency list <
  boost :: vecS,
  boost :: vecS,
  boost::directedS,
  boost::property<
    boost::vertex name t, std::string
  >,
  boost::property<
    boost::edge name t, std::string
>
load directed named edges and vertices graph from dot (
  const std::string& dot filename
  assert (is regular file (dot filename));
  std::ifstream f(dot filename.c str());
  auto g =
     create empty directed named edges and vertices graph
  boost::dynamic_properties p; //_do_ default construct
  p.property("node id", get(boost::vertex name, g));
  p.property("label", get(boost::vertex_name, g));
  p.property("edge_id", get(boost::edge_name, g));
p.property("label", get(boost::edge_name, g));
  boost::read_graphviz(f,g,p);
  return g;
}
```

In this algorithm, first it is checked if the file to load exists. Then an empty directed graph is created. Next to this, a boost::dynamic_properties is created

with its default constructor, after which we direct the boost::dynamic_properties to find a 'node_id' and 'label' in the vertex name map, 'edge_id' and 'label to the edge name map. From this and the empty graph, 'boost::read_graphviz' is called to build up the graph.

Algorithm 101 shows how to use the 'load _ directed _ graph _ from _ dot' function:

Algorithm 101 Demonstration of the 'load_directed_named_edges_and_vertices_graph_from_dot' function

```
#include "create named edges and vertices markov chain.h"
#include "
   load directed named edges and vertices graph from dot.
   h "
#include "save named edges and vertices graph to dot.h"
#include "get vertex names.h"
void
   load directed named edges and vertices graph from dot demo
   () noexcept
  using boost::num edges;
  using boost::num vertices;
  const auto g
    = create named edges and vertices markov chain();
  const std::string filename{
    "create named edges and vertices markov chain.dot"
  save_named_edges_and_vertices_graph to dot(g, filename)
  const auto h
       load directed named edges and vertices graph from dot
      filename
     );
  assert(num edges(g) == num edges(h));
  assert (num vertices (g) == num vertices (h));
  assert(get vertex names(g) = get vertex names(h));
}
```

This demonstration shows how the Markov chain is created using the 'create_named_edges_and_vertices_markov_chain' function (algorithm 82), saved and then loaded. The loaded graph is checked to be a directed graph sim-

ilar to the Markov chain with the same edge and vertex names (using the 'get_edge_names' function , algorithm 80, and the 'get_vertex_names' function, algorithm 41).

7.8 Loading an undirected graph with named edges and vertices from a .dot

When loading a graph from file, one needs to specify a type of graph. In this example, an undirected graph with named edges and vertices is loaded, as shown in algorithm 102:

 ${\bf Algorithm~102}$ Loading an undirected graph with named edges and vertices from a .dot file

```
#include <boost/graph/adjacency list.hpp>
#include <boost/graph/graphviz.hpp>
#include "
   create empty undirected named edges and vertices graph
#include "is regular file.h"
///Load an undirected graph with named edges and vertices
///from\ a\ .dot\ file .
///Assumes that the .dot file exists.
boost::adjacency list <
  boost :: vecS,
  boost :: vecS,
  boost::undirectedS,
  boost::property<
    boost::vertex name t, std::string
  >,
  boost::property<
    boost::edge name t, std::string
>
load undirected named edges and vertices graph from dot (
  const std::string& dot filename
  assert (is regular file (dot filename));
  std::ifstream f(dot filename.c str());
  auto g =
     create empty undirected named edges and vertices graph
  boost::dynamic_properties p; //_do_ default construct
  p.property("node id", get(boost::vertex name, g));
  p.property("label", get(boost::vertex_name, g));
  p.property("edge_id", get(boost::edge_name, g));
p.property("label", get(boost::edge_name, g));
  boost::read graphviz(f,g,p);
  return g;
}
```

The only difference with loading a directed graph, is that the initial empty graph is undirected instead. Chapter 7.7 describes the rationale of this function.

Algorithm 103 shows how to use the 'load_undirected_graph_from_dot' function:

Algorithm 103 Demonstration of the 'load_undirected_named_edges_and_vertices_graph_from_dot' function

```
#include "create named edges and vertices k3 graph.h"
#include "
   load undirected named edges and vertices graph from dot
   . h"
#include "save named edges and vertices graph to dot.h"
#include "get vertex names.h"
void
   load undirected named edges and vertices graph from dot demo
   () noexcept
  using boost::num edges;
  using boost::num vertices;
  const auto g
    = create named edges and vertices k3 graph();
  const std::string filename{
    "create named edges and vertices k3 graph.dot"
  save named edges and vertices graph to dot(g, filename)
  const auto h
       load undirected named edges and vertices graph from dot
      filename
    );
  assert(num edges(g) == num edges(h));
  assert(num \ vertices(g) == num \ vertices(h));
  assert(get\_vertex\_names(g) == get\_vertex\_names(h));
```

This demonstration shows how K_3 with named edges and vertices is created using the 'create_named_edges_and_vertices_k3_graph' function (algorithm 85), saved and then loaded. The loaded graph is checked to be an undirected graph similar to K_3 , with the same edge and vertex names (using the 'get_edge_names' function, algorithm 80, and the 'get_vertex_names' function, algorithm 41).

8 Building graphs with bundled vertices

Up until now, the graphs created have had edges and vertices with the built-in name propery. In this chapter, graphs will be created, in which the vertices can have a bundled 'my_bundled_vertex' type⁸. The following graphs will be created:

- An empty directed graph that allows for bundled vertices: see chapter 105
- An empty undirected graph that allows for bundled vertices: see chapter 8.2
- A two-state Markov chain with bundled vertices: see chapter 8.6
- K_2 with bundled vertices: see chapter 8.7

In the process, some basic (sometimes bordering trivial) functions are shown:

- Create the vertex class, called 'my bundled vertex': see chapter 8.1
- Adding a 'my bundled vertex': see chapter 8.4
- Getting the vertices 'my bundled vertex'-es: see chapter 8.5

These functions are mostly there for completion and showing which data types are used.

8.1 Creating the bundled vertex class

Before creating an empty graph with bundled vertices, that bundled vertex class must be created. In this tutorial, it is called 'my_bundled_vertex'. 'my_bundled_vertex' is a class that is nonsensical, but it can be replaced by any other class type.

Here I will show the header file of 'my_bundled_vertex', as the implementation of it is not important:

⁸I do not intend to be original in naming my data types

Algorithm 104 Declaration of my_bundled_vertex

```
#include < string>
#include <iosfwd>
#include <boost/property map/dynamic property map.hpp>
///Member variabled must be public,
///for boost::dynamic properties (used by Graphviz) to
   work on.
///No need to define the stream operators for interaction
    with Graphviz.
struct my bundled vertex
  explicit my bundled vertex (
    const std::string& name = "",
    const std::string& description = "",
    const double x = 0.0,
    const double y = 0.0
  ) noexcept;
  std::string m name;
  std::string m description;
  double m x;
  double m v;
};
bool operator == (const my_bundled_vertex& lhs, const
   my_bundled_vertex& rhs) noexcept;
bool operator! = (const my bundled vertex& lhs, const
   my bundled vertex& rhs) noexcept;
```

'my bundled vertex' is a class that has multiple properties:

- It has four public member variables: the double 'm_x' ('m_' stands for member), the double 'm_y', the std::string m_name and the std::string m_description. These variables must be public
- It has a default constructor
- It is copyable
- It is comparable for equality (it has operator==), which is needed for searching

'my_bundled_vertex' does not have to have the stream operators defined for file I/O, as this goes via the public member variables.

8.2 Create the empty directed graph with bundled vertices

Algorithm 105 Creating an empty directed graph with bundled vertices

```
#include <boost/graph/adjacency_list.hpp>
#include "my_bundled_vertex.h"

boost:: adjacency_list <
   boost:: vecS,
   boost:: vecS,
   boost:: directedS,
   my_bundled_vertex
>
create_empty_directed_bundled_vertices_graph() noexcept
{
   return boost:: adjacency_list <
      boost:: vecS,
      boost:: vecS,
      boost:: vecS,
      boost:: directedS,
      my_bundled_vertex
   >();
}
```

This graph:

- has its out edges stored in a std::vector (due to the first boost::vecS)
- has its vertices stored in a std::vector (due to the second boost::vecS)
- is directed (due to the boost::directedS)
- The vertices have one property: they have a bundled type, that is of data type 'my bundled vertex'
- The edges and graph have no properties
- Edges are stored in a std::list

The boost::adjacency_list has a new, fourth template argument 'my_bundled_vertex'. This can be read as: "vertices have the bundled property 'my_bundled_vertex". Or simply: "vertices have a bundled type called my_bundled_vertex".

8.3 Create the empty undirected graph with bundled vertices

Algorithm 106 Creating an empty undirected graph with bundled vertices

```
#include <boost/graph/adjacency_list.hpp>
#include "my_bundled_vertex.h"

boost:: adjacency_list <
   boost:: vecS ,
   boost:: vecS ,
   boost:: undirectedS ,
   my_bundled_vertex
>
create_empty_undirected_bundled_vertices_graph() noexcept
{
   return boost:: adjacency_list <
      boost:: vecS ,
      boost:: vecS ,
      boost:: vecS ,
      boost:: undirectedS ,
      my_bundled_vertex
>();
}
```

This code is very similar to the code described in chapter 8.2, except that the directedness (the third template argument) is undirected (due to the boost::undirectedS).

8.4 Add a bundled vertex

Adding a bundled vertex is very similar to adding a named vertex (chapter 4.3).

Algorithm 107 Add a bundled vertex

```
#include <boost/graph/adjacency_list.hpp>
#include "my_bundled_vertex.h"

///Add a bundled vertex to a graph
template <typename graph>
void add_bundled_vertex(const my_bundled_vertex& v, graph & g) noexcept
{
   static_assert(!std::is_const<graph>::value, "graph_cannot_be_const");

   const auto vd_a = boost::add_vertex(g);
   g[vd_a] = v;
}
```

When having added a new (abstract) vertex to the graph, the vertex descriptor is used to set the 'my bundled vertex' in the graph.

8.5 Getting the bundled vertices' my vertexes⁹

When the vertices of a graph have any bundled 'my_bundled_vertex', one can extract these as such:

 $^{^9{\}rm the~name~'my_vertexes'}$ is chosen to indicate this function returns a container of my_vertex

Algorithm 108 Get the bundled vertices' my vertexes

```
#include < vector>
\#include <boost/graph/graph_traits.hpp>
#include <boost/graph/properties.hpp>
#include "my bundled vertex.h"
/// Collect all the my_bundled_vertex objects from a graph
///stored as a custom property of a vertex
//TODO: generalize to return any type
template <typename graph>
std::vector<my bundled vertex>
   get bundled vertex my vertexes (
  const graph& g
 noexcept
  std::vector<my bundled vertex> v;
  const auto vip
    = vertices (g); //not boost::vertices
  const auto j = vip.second;
  for (auto i = vip.first; i!=j; ++i) {
    v.emplace back(g[*i]);
  return v;
```

The 'my_bundled_vertex' bundled in each vertex is obtained from a vertex descriptor and then put into a std::vector.

The order of the 'my_bundled_vertex' objects may be different after saving and loading.

When trying to get the vertices' my_bundled_vertex from a graph without these, you will get the error 'formed reference to void' (see chapter 22.1).

8.6 Creating a two-state Markov chain with bundled vertices

8.6.1 Graph

Figure 17 shows the graph that will be reproduced:

Figure 17: A two-state Markov chain where the vertices have bundled properies and the edges have no properties. The vertices' properties are nonsensical

8.6.2 Function to create such a graph

Here is the code creating a two-state Markov chain with bundled vertices:

Algorithm 109 Creating the two-state Markov chain as depicted in figure 17

```
#include <cassert>
#include <boost/graph/adjacency_list.hpp>
#include "create empty directed bundled vertices graph.h"
#include "my bundled vertex.h"
///Create a two-state Markov chain with custom vertices
boost::adjacency list <
  boost :: vecS,
  boost :: vecS,
  boost :: directedS,
  my bundled vertex
create bundled vertices markov chain() noexcept
  auto g
    = create empty directed bundled vertices graph();
  const auto vd_a = boost::add_vertex(g);
  const auto vd b = boost::add vertex(g);
  const auto aer_aa = boost::add_edge(vd_a, vd_a, g);
  assert (aer aa.second);
  const auto aer ab = boost::add edge(vd a, vd b, g);
  assert (aer ab.second);
  const auto aer ba = boost::add edge(vd b, vd a, g);
  assert (aer_ba.second);
  const auto aer bb = boost::add edge(vd b, vd b, g);
  assert (aer bb.second);
  g[vd a] = my bundled vertex("Sunny",
    "Yellow_thing",1.0,2.0
  g[vd_b] = my_bundled_vertex("Rainy",
    "Grey_things", 3.0, 4.0
  );
  return g;
```

8.6.3 Creating such a graph

Here is the demo:

Algorithm 110 Demo of the 'create_bundled_vertices_markov_chain' function (algorithm 109)

8.6.4 The .dot file produced

Algorithm 111 .dot file created from the 'create_bundled_vertices_markov_chain' function (algorithm 109), converted from graph to .dot file using algorithm 124
:-(

I am unaware how to convert this graph to a .dot file in such a way it can be correctly converted back again. The problem is in the function 'load_directed_bundled_vertices_graph_from_do (chapter 9.7).

8.6.5 The .svg file produced

:-(

Figure 18: .svg file created from the 'create_bundled_vertices_markov_chain' function (algorithm 109) its .dot file, converted from .dot file to .svg using algorithm 232

No .dot file, no .svg file...

8.7 Creating K_2 with bundled vertices

8.7.1 Graph

We reproduce the K_2 with named vertices of chapter 4.6, but with our bundled vertices intead.

8.7.2 Function to create such a graph

Algorithm 112 Creating K_2 as depicted in figure 10

```
#include <boost/graph/adjacency list.hpp>
#include "create empty undirected bundled vertices graph.
   h"
#include "my bundled vertex.h"
boost::adjacency_list <
  boost :: vecS,
  boost :: vecS,
  boost :: undirected S ,
  my bundled vertex
create_bundled_vertices_k2_graph() noexcept
  auto g = create empty undirected bundled vertices graph
     ();
  const auto vd_a = boost::add_vertex(g);
  const auto vd_b = boost::add_vertex(g);
  const auto aer = boost::add_edge(vd_a, vd_b, g);
  assert (aer.second);
  g[vd a] = my bundled vertex("A", "source", 0.0, 0.0);
  g[vd b] = my bundled vertex("B", "target", 3.14, 3.14);
  return g;
```

Most of the code is a slight modification of the 'create_named_vertices_k2_graph' function (algorithm 46). In the end, (references to) the my_bundled_vertices are obtained and set with two bundled my_bundled_vertex objects.

8.7.3 Creating such a graph

Demo:

Algorithm 113 Demo of the 'create_bundled_vertices_k2_graph' function (algorithm 112)

```
#include <cassert>
#include "create_bundled_vertices_k2_graph.h"
#include "has_bundled_vertex_with_my_vertex.h"

void create_bundled_vertices_k2_graph_demo() noexcept
{
   const auto g = create_bundled_vertices_k2_graph();
   assert(boost::num_edges(g) == 1);
   assert(boost::num_vertices(g) == 2);
   assert(has_bundled_vertex_with_my_vertex(
        my_bundled_vertex("A", "source",0.0,0.0), g)
   );
   assert(has_bundled_vertex_with_my_vertex(
        my_bundled_vertex("B", "target",3.14, 3.14), g)
   );
}
```

8.7.4 The .dot file produced

Algorithm 114 .dot file created from the 'create_bundled_vertices_k2_graph' function (algorithm 112), converted from graph to .dot file using algorithm 29
:-(

8.7.5 The .svg file produced

:-(

Figure 19: .svg file created from the 'create_bundled_vertices_k2_graph' function (algorithm 112) its .dot file, converted from .dot file to .svg using algorithm 232

9 Working on graphs with bundled vertices

When using graphs with bundled vertices, their state gives a way to find a vertex and working with it. This chapter shows some basic operations on graphs with bundled vertices.

 \bullet Check if there exists a vertex with a certain 'my_bundled_vertex': chapter 9.1

- Find a vertex with a certain 'my bundled vertex': chapter 9.2
- Get a vertex its 'my_bundled_vertex' from its vertex descriptor: chapter
 9.3
- Set a vertex its 'my_bundled_vertex' using its vertex descriptor: chapter 9.4
- Setting all vertices their 'my bundled vertex'-es: chapter 9.5
- Storing an directed/undirected graph with bundled vertices as a .dot file: chapter 9.6
- Loading a directed graph with bundled vertices from a .dot file: chapter 9.7
- \bullet Loading an undirected directed graph with bundled vertices from a .dot file: chapter 9.8

9.1 Has a bundled vertex with a my bundled vertex

Before modifying our vertices, let's first determine if we can find a vertex by its bundled type ('my_bundled_vertex') in a graph. After obtain the vertex iterators, we can dereference each these to obtain the vertex descriptors and then compare each vertex its 'my bundled vertex' with the one desired.

Algorithm 115 Find if there is vertex with a certain my bundled vertex

```
#include < string>
#include <boost/graph/properties.hpp>
#include "my_bundled_vertex.h"
///See if the graph with bundled vertices
///contains a vertex with a certain my_bundled_vertex
template <typename graph>
bool has_bundled_vertex_with_my_vertex(
  {\bf const} \ {\bf my\_bundled\_vertex} \& \ {\bf v} \,,
  const graph& g
  noexcept
  const auto vip
    =  vertices (g); // not boost:: vertices
  const auto j = vip.second;
  for (auto i = vip.first; i!=j; ++i) {
    if (g[*i] = v) {
      return true;
    }
  return false;
```

This function can be demonstrated as in algorithm 116, where a certain my_bundled_vertex cannot be found in an empty graph. After adding the desired my_bundled_vertex, it is found.

Algorithm 116 Demonstration of the 'has_bundled_vertex_with_my_vertex' function

```
#include <cassert>
#include <iostream>
#include "add bundled vertex.h"
#include "create empty undirected bundled vertices graph.
   h "
#include "has bundled vertex with my vertex.h"
#include "my_bundled_vertex.h"
void has bundled vertex with my vertex demo() noexcept
  auto g = create empty undirected bundled vertices graph
     ();
  assert (! has_bundled_vertex_with_my_vertex(
     my bundled vertex("Felix"),g));
  add bundled vertex(my bundled vertex("Felix"),g);
  assert (has bundled vertex with my vertex (
     my bundled vertex("Felix"),g));
}
```

Note that this function only finds if there is at least one bundled vertex with that my_bundled_vertex: it does not tell how many bundled vertices with that my_bundled_vertex exist in the graph.

9.2 Find a bundled vertex with a certain my bundled vertex

Where STL functions work with iterators, here we obtain a vertex descriptor (see chapter 2.6) to obtain a handle to the desired vertex. Algorithm 117 shows how to obtain a vertex descriptor to the first vertex found with a specific 'my bundled vertex' value.

Algorithm 117 Find the first vertex with a certain my bundled vertex

```
#include <cassert>
#include <boost/graph/graph_traits.hpp>
\#\mathbf{include} < \mathbf{boost} / \operatorname{graph} / \operatorname{properties} . hpp>
#include "has bundled vertex with my vertex.h"
#include "my bundled vertex.h"
///Find the first bundled vertex with a certain my\_vertex
///Assumes that there exists that my vertex.
template <typename graph>
typename boost::graph_traits<graph>::vertex_descriptor
find first bundled vertex with my vertex (
  const my_bundled_vertex& v,
  const graph& g
 noexcept
  assert (has bundled vertex with my vertex (v, g));
  const auto vip
    = vertices (g); //not boost::vertices
  const auto j = vip.second;
  for (auto i = vip.first; i!=j; ++i) {
    if (g[*i] = v) \{ return *i; \}
  assert (!"Should_not_get_here");
  throw; // Will crash the program
}
```

With the vertex descriptor obtained, one can read and modify the vertex and the edges surrounding it. Algorithm 118 shows some examples of how to do so. Algorithm 118 Demonstration of the 'find_first_bundled_vertex_with_my_vertex' function

```
#include <cassert>
#include "create_bundled_vertices_k2_graph.h"
#include "find_first_bundled_vertex_with_my_vertex.h"

void find_first_bundled_vertex_with_my_vertex_demo()
    noexcept
{
    const auto g = create_bundled_vertices_k2_graph();
    const auto vd =
        find_first_bundled_vertex_with_my_vertex(
        my_bundled_vertex("A","source",0.0,0.0),
        g
    );
    assert(out_degree(vd,g) == 1); //not_boost::out_degree
    assert(in_degree(vd,g) == 1); //not_boost::in_degree
}
```

9.3 Get a bundled vertex its 'my bundled vertex'

To obtain the 'my_bundled_vertex' from a vertex descriptor is simple:

Algorithm 119 Get a bundled vertex its my vertex from its vertex descriptor

```
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/properties.hpp>
#include "my_bundled_vertex.h"

///Get the my_vertex of a custom vertex
///from its vertex descriptor
template <typename graph>
my_bundled_vertex get_bundled_vertex_my_vertex(
    const typename boost::graph_traits<graph>::
        vertex_descriptor& vd,
    const graph& g
) noexcept
{
    return g[vd];
}
```

One can just use the graph as a property map and let it be looked-up.

To use 'get_bundled_vertex_my_vertex', one first needs to obtain a vertex descriptor. Algorithm 120 shows a simple example.

Algorithm 120 Demonstration if the 'get_bundled_vertex_my_vertex' function

9.4 Set a bundled vertex its my vertex

If you know how to get the 'my_bundled_vertex' from a vertex descriptor, setting it is just as easy, as shown in algorithm 121.

Algorithm 121 Set a bundled vertex its my vertex from its vertex descriptor

```
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/properties.hpp>
#include "my_bundled_vertex.h"
///Set the my\_bundled\_vertex of a bundled vertex
///from\ its\ vertex\ descriptor
template <typename graph>
void set_bundled_vertex_my_vertex(
  const my bundled vertex& v,
  const typename boost::graph traits<graph>::
      vertex descriptor& vd,
  graph& g
  noexcept
  static\_assert (! std::is\_const < graph > :: value , " graph\_
     cannot_be_const");
  g\,[\,vd\,] \ = \ v\,;
}
```

To use 'set_bundled_vertex_my_vertex', one first needs to obtain a vertex descriptor. Algorithm 122 shows a simple example.

Algorithm 122 Demonstration if the 'set_bundled_vertex_my_vertex' function

```
#include <cassert>
#include "add_bundled_vertex.h"
#include "create_empty_undirected_bundled_vertices_graph.
#include "find_first_bundled_vertex_with_my_vertex.h"
#include "get bundled vertex my vertex.h"
#include "set bundled vertex my vertex.h"
void set bundled vertex my vertex demo() noexcept
  auto g = create empty undirected bundled vertices graph
     ();
  const my_bundled_vertex old_name{"Dex"};
  add bundled vertex (old name, g);
  {f const} auto {
m vd} =
     find first bundled vertex with my vertex (old name, g)
  assert (get bundled vertex my vertex(vd,g) = old name);
  const my bundled vertex new name{"Diggy"};
  set_bundled_vertex_my_vertex(new_name, vd, g);
  assert (get bundled vertex my vertex (vd,g) = new name);
}
```

9.5 Setting all bundled vertices' my vertex objects

When the vertices of a graph are 'my_bundled_vertex' objects, one can set these as such:

Algorithm 123 Setting the bundled vertices' 'my_bundled_vertex'-es

```
#include < string>
#include < vector >
#include <boost/graph/graph traits.hpp>
#include <boost/graph/properties.hpp>
#include "my bundled vertex.h"
///Set all bundled vertices their my_vertex objects
//TODO: generalize 'my vertexes'
template <typename graph>
void set bundled vertex my vertexes (
  graph& g,
  const std::vector<my bundled vertex>& my vertexes
 noexcept
{
  static assert (!std::is const<graph>::value, "graph_
     cannot_be_const");
  auto my vertexes begin = std::begin(my vertexes);
  const auto my vertexes end = std::end(my vertexes);
  const auto vip = vertices (g); //not boost::vertices
  const auto j = vip.second;
  for (
    auto i = vip.first;
    i!=j; ++i,
   ++my_vertexes_begin
  ) {
    assert (my vertexes begin != my vertexes end);
    g[*i] = *my_vertexes_begin;
}
```

9.6 Storing a graph with bundled vertices as a .dot

If you used the 'create_bundled_vertices_k2_graph' function (algorithm 112) to produce a K_2 graph with vertices associated with 'my_bundled_vertex' objects, you can store these with algorithm 124:

Algorithm 124 Storing a graph with bundled vertices as a .dot file

```
#include < string>
#include <fstream>
\#include <boost / graph / graphviz . hpp>
#include <boost/graph/properties.hpp>
#include "get custom vertex my vertexes.h"
///Save a graph with named vertices to a .dot file
template <typename graph>
void save bundled vertices graph to dot(const graph& g,
   const std::string& filename)
  std::ofstream f(filename);
  const auto my_vertexes = get_vertex_my_vertexes(g);
  boost::write graphviz(
    f,
    g,
    [my vertexes] (std::ostream& out, const auto& v) {
      const my_vertex m{my_vertexes[v]};
      out << "[label=\""
        << m. get name()
        << " , "
        << m. get _ description ()
        << " ,"
        << m. get_x()
        << " ,"
        << m. get y()
        << "\"]";
    }
  );
}
```

For saving to and loading for a .dot file to work without problems, there are some restrictions: any data type that is written to file, must not have comma's, quotes, nor spaces. The function 'graphviz_encode' (algorithm 229) shows how to encode std::string to a Graphviz-friendly format.

9.7 Loading a directed graph with bundled vertices from a .dot

When loading a graph from file, one needs to specify a type of graph. In this example, an directed graph with bundled vertices is loaded, as shown in algorithm 125:

Algorithm 125 Loading a directed graph with bundled vertices from a .dot file

```
#include <boost/graph/adjacency list.hpp>
#include <boost/graph/graphviz.hpp>
#include <boost/graph/graph_traits.hpp>
#include "create empty directed bundled vertices graph.h"
#include "is regular file.h"
#include "my bundled vertex.h"
#include "is read graphviz correct.h"
#include "get bundled vertex my vertexes.h"
///Load a directed graph with custom
///vertices\ from\ a\ .dot\ file .
///Assumes the file exists and that the
///custom vertices can be read by Graphviz
///TODO: the code returns an empty graph,
///instead of loading from file
boost::adjacency list <
  boost :: vecS,
  boost :: vecS,
  boost :: directedS,
  my bundled vertex
load directed bundled vertices graph from dot (
  const std::string& dot filename
  assert(is_regular_file(dot_filename));
  std::ifstream f(dot filename.c str());
  auto g = create empty directed bundled vertices graph()
  //Something\ like\ this...
  boost::dynamic properties p; // do default construct
  p.property("node_id",get(&my_bundled_vertex::m_name, g)
     );
  p.property("label",get(&my_bundled_vertex::m_name, g));
  boost::read graphviz(f,g,p);
  return g;
```

In this algorithm, first it is checked if the file to load exists. Then an empty

directed graph is created. Next to this, a boost::dynamic_properties is created with its default constructor, after which [we set up the boost::dynamic_properties properly somehow, issue #16]. From this and the empty graph, 'boost::read_graphviz' is called to build up the graph.

Algorithm 126 shows how to use the 'load _ directed _ bundled _ vertices _ graph _ from _ dot' function:

Algorithm 126 Demonstration of the 'load_directed_bundled_vertices_graph_from_dot' function

```
#include "create bundled vertices markov chain.h"
#include "load directed bundled vertices graph from dot.h
#include "save bundled vertices graph to dot.h"
#include "get bundled vertex my vertexes.h"
void load directed bundled vertices graph_from_dot_demo()
    noexcept
{
  using boost::num edges;
  using boost::num_vertices;
  const auto g
    = create bundled vertices markov chain();
  const std::string filename{
    "create bundled vertices markov chain.dot"
  };
  save bundled vertices graph to dot(g, filename);
  const auto h
    = load directed bundled vertices graph from dot(
       filename);
  if (get bundled vertex my vertexes(g) ==
     get_bundled_vertex_my_vertexes(h)) {
    assert(num edges(g) == num edges(h));
    assert(num \ vertices(g) = num \ vertices(h));
    assert (get_bundled_vertex_my_vertexes(g) ==
       get_bundled_vertex_my_vertexes(h));
    assert (!"Fixed_#16");
  else
    std::cout << __func__ << ":JTODO" << '\n';
}
```

This demonstration shows how the Markov chain is created using the 'create_bundled_vertices_markov_chain' function (algorithm 109), saved and then loaded. The loaded graph is checked to be the same as the original.

9.8 Loading an undirected graph with bundled vertices from a .dot

When loading a graph from file, one needs to specify a type of graph. In this example, an undirected graph with bundled vertices is loaded, as shown in algorithm 127:

 ${\bf Algorithm~127~Loading~an~undirected~graph~with~bundled~vertices~from~a~.dot~file}$

```
#include <boost/graph/adjacency list.hpp>
#include <boost/graph/graphviz.hpp>
#include "create empty undirected bundled vertices graph.
#include "is_regular_file.h"
#include "my bundled vertex.h"
#include "is read graphviz correct.h"
///Load an undirected graph with bundled
///vertices from a .dot file.
///Assumes\ the\ file\ exists\ and\ that\ the
///custom edges and vertices can be read by Graphviz
///TODO: this function does not work, it only
///returns an empty graph
boost::adjacency list <
  boost :: vecS,
  boost :: vecS,
  boost:: undirectedS,
  my bundled vertex
load undirected bundled vertices graph from dot (
  const std::string& dot filename
{
  assert (is regular file (dot filename));
  std::ifstream f(dot filename.c str());
  auto g = create empty undirected bundled vertices graph
      ();
  \verb|boost|: \verb|dynamic_properties|| p; //\_do\_|| \textit{default}|| \textit{construct}|
  \verb|p.property| ( \verb|"node_id", get(\&my\_bundled\_vertex::m_name, g) \\
     ); //m name must be public
  p.property("label", get(&my bundled vertex::m name, g));
  boost::read graphviz(f,g,p);
  //boost::read\_graphviz(f,g); //Also does not work
  return g;
}
```

The only difference with loading a directed graph, is that the initial empty graph is undirected instead. Chapter 9.7 describes the rationale of this function.

Algorithm 128 shows how to use the 'load_undirected_bundled_vertices_graph_from_dot' function:

Algorithm 128 Demonstration of the 'load_undirected_bundled_vertices_graph_from_dot' function

```
#include < cassert >
#include "create bundled vertices k2 graph.h"
#include "load undirected bundled vertices graph from dot
   . h"
#include "save_bundled_vertices_graph_to_dot.h"
#include "get bundled vertex my vertexes.h"
void load undirected bundled vertices graph from dot demo
   () noexcept
{
  using boost::num edges;
  using boost::num vertices;
  const auto g
    = create bundled vertices k2 graph();
  const std::string filename{
    "create_bundled_vertices_k2_graph.dot"
  };
  save bundled vertices graph to dot(g, filename);
  const auto h
    = load undirected bundled vertices graph from dot(
       filename);
  if (get bundled vertex my vertexes(g)
      == get bundled_vertex_my_vertexes(h))
    assert(num edges(g) == num edges(h));
    assert(num \ vertices(g) = num \ vertices(h));
    assert (get_bundled_vertex_my_vertexes(g)
      == get_bundled_vertex_my_vertexes(h)
    assert (!"Fixed _#16");
  }
  else
    std::cout << func << ":JTODO" << '\n';
}
```

This demonstration shows how K_2 with bundled vertices is created using the 'create_bundled_vertices_k2_graph' function (algorithm 112), saved and then loaded. The loaded graph is checked to be the same as the original.

10 Building graphs with bundled edges and vertices

Up until now, the graphs created have had only bundled vertices. In this chapter, graphs will be created, in which both the edges and vertices have a bundled 'my bundled edge' and 'my bundled edge' type¹⁰.

- \bullet An empty directed graph that allows for bundled edges and vertices: see chapter 10.2
- An empty undirected graph that allows for bundled edges and vertices: see chapter 10.3
- A two-state Markov chain with bundled edges and vertices: see chapter 10.6
- K_3 with bundled edges and vertices: see chapter 10.7

In the process, some basic (sometimes bordering trivial) functions are shown:

- Creating the 'my bundled edge' class: see chapter 10.1
- Adding a bundled 'my bundled edge': see chapter 10.4

These functions are mostly there for completion and showing which data types are used.

10.1 Creating the bundled edge class

In this example, I create a 'my_bundled_edge' class. Here I will show the header file of it, as the implementation of it is not important yet.

¹⁰I do not intend to be original in naming my data types

Algorithm 129 Declaration of my bundled edge

```
#include < string>
#include <iosfwd>
///Member variabled must be public,
///for\ boost::dynamic\ properties\ (used\ by\ Graphviz) to
   work on.
///No need to define the stream operators for interaction
    with Graphviz.
class my bundled edge
public:
  explicit my bundled edge (
    const std::string& name = "",
    const std::string& description = "",
    const double width = 1.0,
    const double height = 1.0
  ) noexcept;
  std::string m name;
  std::string m description;
  double m width;
  double m height;
};
bool operator == (const my_bundled_edge& lhs, const
   my bundled edge& rhs) noexcept;
bool operator!=(const my bundled edge& lhs, const
   my bundled edge& rhs) noexcept;
```

my_bundled_edge is a class that has multiple properties: two doubles 'm_width' ('m_' stands for member) and 'm_height', and two std::strings m_name and m_description. 'my_bundled_edge' is copyable, but cannot trivially be converted to a std::string.' 'my_bundled_edge' is comparable for equality (that is, operator== is defined).

'my_bundled_edge' does not have to have the stream operators defined for file I/O, as this goes via the public member variables.

10.2 Create an empty directed graph with bundled edges and vertices

Algorithm 130 Creating an empty directed graph with bundled edges and vertices

```
#include <boost/graph/adjacency list.hpp>
#include "my_bundled_edge.h"
#include "my bundled vertex.h"
///Create an empty directed graph with
///custom edges and vertices
boost::adjacency list <
  boost :: vecS,
  boost :: vecS,
  boost::directedS,
  my bundled vertex,
  my bundled edge
create empty directed bundled edges and vertices graph()
   noexcept
  return boost::adjacency list<
    boost :: vecS,
    boost :: vecS,
    boost::directedS,
    my_bundled_vertex,
    my bundled edge
  >();
```

This code is very similar to the code described in chapter 12.3, except that there is a new, fifth template argument:

```
boost::property<boost::edge bundled type t, my edge>
```

This can be read as: "edges have the property 'boost::edge_bundled_type_t', which is of data type 'my_bundled_edge"'. Or simply: "edges have a bundled type called my_bundled_edge".

Demo:

```
Algorithm
                131
                          Demonstration
                                                   the
                                                            'cre-
ate\_empty\_directed\_bundled\_edges\_and\_vertices\_graph' function
#include "
   create\_empty\_directed\_bundled\_edges\_and\_vertices\_graph
    . h"
void
   create_empty_directed_bundled_edges_and_vertices_graph_demo
    () noexcept
  const auto g =
      create_empty_directed_bundled_edges_and_vertices_graph
  assert(boost::num\_edges(g) == 0);
  assert(boost::num\_vertices(g) == 0);
}
```

10.3 Create an empty undirected graph with bundled edges and vertices

Algorithm 132 Creating an empty undirected graph with bundled edges and vertices

```
#include <boost/graph/adjacency list.hpp>
#include "my_bundled_edge.h"
#include "my bundled vertex.h"
///Create an empty undirected graph with
///custom edges and vertices
boost::adjacency list <
  boost :: vecS,
  boost :: vecS,
  boost::undirectedS,
  my bundled vertex,
  my bundled edge
create empty undirected bundled edges and vertices graph
   () noexcept
  return boost::adjacency list<
    boost :: vecS,
    boost :: vecS,
    boost::undirectedS,
    my_bundled_vertex,
    my\_bundled\_edge
  >();
```

This code is very similar to the code described in chapter 10.2, except that the directedness (the third template argument) is undirected (due to the boost::undirectedS). Demo:

```
Algorithm
                 133
                          Demonstration
                                             of
                                                    the
                                                              'cre-
ate\_empty\_undirected\_bundled\_edges\_and\_vertices\_graph' function
#include <cassert>
#include "
   create_empty_undirected_bundled_edges_and_vertices_graph
void
   create\_empty\_undirected\_bundled\_edges\_and\_vertices\_graph\_demo
    () noexcept
  const auto g
        create\_empty\_undirected\_bundled\_edges\_and\_vertices\_graph
  assert(boost::num\_edges(g) == 0);
  assert (boost::num vertices(g) == 0);
```

10.4 Add a bundled edge

Adding a bundled edge is very similar to adding a named edge (chapter 6.3).

Algorithm 134 Add a bundled edge

```
#include < cassert >
\#include < boost/graph/adjacency_list.hpp>
#include "my bundled edge h"
///Add a custom edge to a graph
template <typename graph>
{\bf void} \ {\rm add\_bundled\_edge} (
  const my_bundled_edge& v,
  graph& g
) noexcept
  static_assert(!std::is_const<graph>::value, "graph_
     cannot_be_const");
  const auto vd a = boost::add vertex(g);
  const auto vd b = boost::add vertex(g);
  const auto aer = boost::add_edge(vd_a, vd_b, g);
  assert (aer.second);
  g[aer.first] = v;
```

When having added a new (abstract) edge to the graph, the edge descriptor is used to set the my_edge in the graph.

Here is the demo:

Algorithm 135 Demo of 'add bundled edge'

```
#include < cassert >
#include "add bundled edge.h"
#include "
   create_empty_directed_bundled_edges_and_vertices_graph
   . h"
#include "
   create_empty_undirected_bundled_edges_and_vertices_graph
   . h"
void add bundled edge demo() noexcept
  auto g =
     create\_empty\_directed\_bundled\_edges\_and\_vertices\_graph
  add bundled edge (my bundled edge ("X"), g);
  assert(boost::num \ vertices(g) == 2);
  assert(boost::num edges(g) == 1);
  auto h =
     create_empty_undirected_bundled_edges_and_vertices_graph
  add_bundled_edge(my_bundled_edge("Y"), h);
  assert (boost::num vertices(h) == 2);
  assert(boost::num edges(h) == 1);
}
```

10.5 Getting the bundled edges my edges

When the edges of a graph are 'my_bundled_edge' objects, one can extract these all as such:

Algorithm 136 Get the edges' my_bundled_edges

```
#include < vector>
#include "my bundled edge.h"
/// Collect all the my_bundled_edge objects from a graph
//TODO: generalize to return any type
template <typename graph>
std::vector<my bundled edge> get bundled edge my edges(
  const graph& g
 noexcept
  std::vector<my_bundled_edge> v;
  const auto vip
    = \operatorname{edges}(g); //not \ boost:: edges
  const auto j = vip.second;
  for (auto i = vip.first; i!=j; ++i) {
    v.emplace back(g[*i]);
  return v;
}
```

The 'my_bundled_edge' object associated with the edges are obtained from the graph its property_map and then put into a std::vector.

Note: the order of the my_bundled_edge objects may be different after saving and loading.

When trying to get the edges' my_bundled_edge objects from a graph without bundled edges objects associated, you will get the error 'formed reference to void' (see chapter 22.1).

10.6 Creating a Markov-chain with bundled edges and vertices

10.6.1 Graph

Figure 20 shows the graph that will be reproduced:

Figure 20: A two-state Markov chain where the edges and vertices have bundled properies. The edges' and vertices' properties are nonsensical

10.6.2 Function to create such a graph

Here is the code creating a two-state Markov chain with bundled edges and vertices:

```
#include <cassert>
#include <boost/graph/adjacency_list.hpp>
#include "
   create empty directed bundled edges and vertices graph
    . h"
\#include "my bundled vertex.h"
///Create a two-state Markov chain
///with custom edges and vertices
boost::adjacency list <
  boost :: vecS,
  boost :: vecS,
  boost::directedS.
  my_bundled_vertex,
  my_bundled edge
create bundled edges and vertices markov chain () noexcept
{
  auto g
        create empty directed bundled edges and vertices graph
        ();
  const auto vd a = boost :: add vertex(g);
  const auto vd b = boost::add vertex(g);
  {f const\ auto}\ {f aer\_aa}\ =\ {f boost::add\_edge(vd\_a,\ vd\_a,\ g)}\ ;
  assert (aer aa.second);
  const auto aer_ab = boost::add_edge(vd_a, vd_b, g);
  assert (aer ab.second);
  const auto aer ba = boost::add edge(vd b, vd a, g);
  assert (aer ba.second);
  const auto aer bb = boost::add edge(vd b, vd b, g);
  assert (aer bb.second);
  g [vd a]
    = my_bundled_vertex("Sunny", "Yellow_thing", 1.0, 2.0);
  g[vd b]
    = my bundled vertex("Rainy", "Grey_things", 3.0,4.0);
  g[aer aa.first]
    = my \text{ bundled edge}("Sometimes", "20%", 1.0, 2.0);
  g | aer ab. first |
    = \ my\_bundled\_edge("Often", "80\%", 3.0, 4.0);
  g[aer ba.first]
    = my bundled edge("Rarely", "10%", 5.0, 6.0);
  g[aer bb.first]
    = \ my\_bundled\_edge\,(\,"Mostly"\,,"90\%"\,\,,7.0\,\,,8.0)\;;
  return g;
}
```

10.6.3 Creating such a graph

Here is the demo:

Algorithm 138 Demo of the 'create_bundled_edges_and_vertices_markov_chain' function (algorithm 137)

```
#include <cassert>
#include "create bundled edges and vertices markov chain.
#include "get bundled vertex my vertexes.h"
#include "my bundled vertex.h"
void create bundled edges and vertices markov chain demo
    () noexcept
  const auto g
    = create_bundled_edges_and_vertices_markov_chain();
  \mathbf{const} \ \mathtt{std} :: \mathtt{vector} {<} \mathtt{my} \underline{\ } \mathtt{bundled} \ \ \mathtt{vertex} {>}
    expected my bundled vertexes {
    my bundled vertex ("Sunny",
       "Yellow_thing", 1.0, 2.0
    ),
    my bundled vertex ("Rainy",
       "Grey_things", 3.0, 4.0
  };
  const std::vector<my bundled vertex>
     vertex my bundled vertexes {
    get bundled vertex my vertexes (g)
  assert (expected my bundled vertexes
    == vertex my bundled vertexes
}
```

10.6.4 The .dot file produced

```
Algorithm
                139
                        .dot
                                file
                                                            the
                                                                    'cre-
                                        created
                                                   from
ate_bundled_edges_and_vertices_markov_chain'
                                                   function
                                                              (algorithm
137), converted from graph to .dot file using algorithm 29
digraph G {
0[label="Sunny,Yellow thing,1,2"];
1[label="Rainy, Grey things, 3, 4"];
0->0 [label="Sometimes,20%,1,2"];
0->1 [label="Often,80%,3,4"];
1->0 [label="Rarely,10%,5,6"];
1->1 [label="Mostly,90%,7,8"];
```

10.6.5 The .svg file produced

:-(

Figure 21: .svg file created from the 'create_bundled_edges_and_vertices_markov_chain' function (algorithm 163) its .dot file, converted from .dot file to .svg using algorithm 232

10.7 Creating K_3 with bundled edges and vertices

Instead of using edges with a name, or other properties, here we use a bundled edge class called 'my_bundled_edge'.

10.7.1 Graph

We reproduce the K_3 with named edges and vertices of chapter 6.6 , but with our bundled edges and vertices intead:

[graph here]

Algorithm 140 Creating K_3 as depicted in figure 14

```
#include <boost/graph/adjacency list.hpp>
#include "
   create empty undirected bundled edges and vertices graph
    . h"
#include "my bundled edge.h"
#include "my bundled vertex.h"
///Create a K3 graph with custom edges and vertices
boost::adjacency list <
  boost :: vecS,
  boost :: vecS,
  boost::undirectedS,
  my bundled vertex,
  my bundled edge
create bundled edges and vertices k3 graph() noexcept
  auto g
        create empty undirected bundled edges and vertices graph
  const auto vd_a = boost:: add_vertex(g);
  const auto vd_b = boost::add_vertex(g);
  const auto vd c = boost :: add <math>vertex(g);
  const auto aer a = boost::add edge(vd a, vd b, g);
  {f const\ auto}\ {f aer\_b}\ =\ {f boost}:: {f add\_edge}({f vd\_b},\ {f vd\_c},\ {f g}) \; ;
  const auto aer c = boost::add edge(vd c, vd a, g);
  assert (aer a.second);
  assert (aer_b.second);
  assert (aer_c.second);
  g[vd a]
    = my bundled vertex("top", "source", 0.0, 0.0);
  g [vd_b]
    = my_bundled_vertex("right","target",3.14,0);
  g[vd c]
    = my bundled vertex("left","target",0,3.14);
  g | aer a. first |
    = my_bundled_edge("AB", "first", 0.0, 0.0);
  g[aer b.first]
    = my \text{ bundled edge}("BC", "second", 3.14, 3.14);
  g | aer c. first |
    = my\_bundled\_edge("CA","_{15}hird",3.14,3.14);
  return g;
}
```

Most of the code is a slight modification of algorithm 85. In the end, the my_edges and my_vertices are obtained as the graph its property_map and set with the 'my_bundled_edge' and 'my_bundled_vertex' objects.

10.7.3 Creating such a graph

Here is the demo:

Algorithm 141 Demo of the 'create_bundled_edges_and_vertices_k3_graph' function (algorithm 140)

10.7.4 The .dot file produced

Algorithm 142 .dot file created from the 'create_bundled_edges_and_vertices_markov_chain' function (algorithm 140), converted from graph to .dot file using algorithm 29:-(

10.7.5 The .svg file produced

:-(

11 Working on graphs with bundled edges and vertices

$11.1 \quad Has \ a \ my_bundled \quad edge$

Before modifying our edges, let's first determine if we can find an edge by its bundled type ('my_bundled_edge') in a graph. After obtaing a my_bundled_edge map, we obtain the edge iterators, dereference these to obtain the edge descriptors and then compare each edge its my_bundled_edge with the one desired.

Algorithm 143 Find if there is a bundled edge with a certain my bundled edge

```
\#include <boost/graph/properties.hpp>
#include "my bundled edge.h"
///See if there is an edge with a
/// certain my\_bundled\_edge associated with it
template <typename graph>
bool has_bundled_edge_with_my_edge(
  const my bundled edge& e,
  const graph& g
  noexcept
  const auto eip
    = \operatorname{edges}(g); //not boost:: edges
  const auto j = eip.second;
  for (auto i = eip.first; i!=j; ++i) {
    if (g[*i] = e) {
      return true;
  return false;
```

This function can be demonstrated as in algorithm 144, where a certain 'my_bundled_edge' cannot be found in an empty graph. After adding the desired my bundled edge, it is found.

Algorithm 144 Demonstration of the 'has_bundled_edge_with_my_edge' function

```
#include < cassert >
#include "add bundled edge.h"
#include "
   create_empty_undirected_bundled_edges_and_vertices_graph
   . h"
#include "has bundled edge with my edge.h"
void has bundled edge with my edge demo() noexcept
{
  auto g
       create empty undirected bundled edges and vertices graph
  assert (
    ! has bundled edge with my edge (
      my bundled edge("Edward"),g
  );
  add_bundled_edge(my_bundled_edge("Edward"),g);
  assert (
    has_bundled_edge_with_my_edge(
      my bundled edge ("Edward"), g
  );
}
```

Note that this function only finds if there is at least one edge with that my_bundled_edge: it does not tell how many edges with that my_bundled_edge exist in the graph.

11.2 Find a my bundled edge

Where STL functions work with iterators, here we obtain an edge descriptor (see chapter 2.12) to obtain a handle to the desired edge. Algorithm 145 shows how to obtain an edge descriptor to the first edge found with a specific my bundled edge value.

Algorithm 145 Find the first bundled edge with a certain my bundled edge

```
#include <cassert>
#include <boost/graph/graph_traits.hpp>
#include "has bundled edge with my edge.h"
#include "has custom edge with my edge.h"
#include "my bundled edge.h"
///Find the first edge with a certain
///my\_bundled\_edge associated with it.
///Returns the edge descriptor of that edge.
///Assumes the my bundled edge is present,
///will crash otherwise
template <typename graph>
\mathbf{typename} \hspace{0.2cm} \texttt{boost} :: \mathtt{graph\_traits} \negthinspace < \negthinspace \mathtt{graph} \negthinspace > \negthinspace :: \mathtt{edge\_descriptor}
find first bundled edge with my edge (
  const my bundled edge& e,
  const graph& g
  noexcept
  assert(has_bundled_edge_with_my_edge(e, g));
  const auto eip = edges(g); //not boost::edges
  const auto j = eip.second;
  for (auto i = eip.first; i!=j; ++i) {
    if (g[*i] = e) {
       return *i;
    }
  assert (!"Should_not_get_here");
  throw; // Will crash the program
```

With the edge descriptor obtained, one can read and modify the edge and the vertices surrounding it. Algorithm 146 shows some examples of how to do so

Algorithm 146 Demonstration of the 'find_first_bundled_edge_with_my_edge' function

11.3 Get an edge its my_bundled_edge

To obtain the my_edeg from an edge descriptor, one needs to pull out the my_bundled_edges map and then look up the my_edge of interest.

Algorithm 147 Get a vertex its my bundled vertex from its vertex descriptor

```
#include <boost/graph/graph_traits.hpp>
#include "install_edge_custom_type.h"
#include "my_custom_edge.h"

///Get the my_custom_edge from an edge discriptor
template <typename graph>
my_custom_edge get_custom_edge_my_edge(
    const typename boost::graph_traits<graph>::
        edge_descriptor&vd,
    const graph&g
) noexcept
{
    const auto my_edge_map
        = get( //not boost::get
        boost::edge_custom_type,
        g
    );
    return my_edge_map[vd];
}
```

To use 'get_bundled_edge_my_bundled_edge', one first needs to obtain an edge descriptor. Algorithm 148 shows a simple example.

Algorithm 148 Demonstration if the 'get bundled edge my edge' function

$11.4 \quad {\bf Set \ an \ edge \ its \ my_bundled_edge}$

If you know how to get the my_bundled_edge from an edge descriptor, setting it is just as easy, as shown in algorithm 149.

Algorithm 149 Set a bundled edge its my_bundled_edge from its edge descriptor

To use 'set_bundled_edge_my_edge', one first needs to obtain an edge descriptor. Algorithm 150 shows a simple example.

Algorithm 150 Demonstration if the 'set bundled edge my edge' function

```
#include <cassert>
#include "add bundled edge.h"
#include "
   create empty undirected bundled edges and vertices graph
   . h"
#include "find first bundled edge with my edge.h"
#include "get bundled edge my edge.h"
#include "set_bundled edge my edge.h"
void set bundled edge my edge demo() noexcept
  auto g
       create empty undirected bundled edges and vertices graph
  const my_bundled_edge old_edge{"Dex"};
  add bundled edge(old edge, g);
  {f const} auto {f vd}
    = find first bundled edge with my edge(old edge,g);
  assert (get bundled edge my edge (vd,g)
    = old edge
  );
  const my bundled edge new edge{"Diggy"};
  set_bundled_edge_my_edge(new_edge, vd, g);
  assert (get bundled edge my edge (vd,g)
    == new edge
  );
}
```

11.5 Storing a graph with bundled edges and vertices as a .dot

If you used the create_bundled_edges_and_vertices_k3_graph function (algorithm 140) to produce a K_3 graph with edges and vertices associated with my_bundled_edge and my_bundled_vertex objects, you can store these my_bundled_edges and my_bundled_vertex-es additionally with algorithm 151:

Algorithm 151 Storing a graph with bundled edges and vertices as a .dot file

```
#include < string>
#include <fstream>
#include <boost/graph/graphviz.hpp>
#include <boost/graph/properties.hpp>
#include "get bundled vertex my vertexes.h"
///Save a graph with named vertices to a .dot file
template <typename graph>
void save bundled edges and vertices graph to dot(const
   graph& g, const std::string& filename)
  std::ofstream f(filename);
  const auto my_vertexes = get_vertex_my_vertexes(g);
  boost::write graphviz(
    f,
    g,
    [my vertexes] (std::ostream& out, const auto& v) {
      const my_vertex m{my_vertexes[v]};
      out << "[label=\""
        << m.m_name
        << ","
        << m. m_description
        << ","
        << m.m.x
        << " ,"
        << m.m\_y
        << " \ " ] " ;
  );
}
```

Note that this algorithm uses C++14.

11.6 Load a directed graph with bundled edges and vertices from a .dot file

When loading a graph from file, one needs to specify a type of graph. In this example, an directed graph with bundled edges and vertices is loaded, as shown in algorithm 152:

Algorithm 152 Loading a directed graph with bundled edges and vertices from a .dot file

```
#include <boost/graph/adjacency list.hpp>
#include <boost/graph/graphviz.hpp>
#include "
   create empty directed bundled edges and vertices graph
   . h"
#include "is regular file.h"
#include "my bundled edge.h"
#include "my bundled vertex.h"
///Load a directed graph with custom edges and
///vertices from a .dot file.
///Assumes the file exists
boost::adjacency list <
  boost :: vecS,
  boost :: vecS,
  boost::directedS,
  my bundled vertex,
  my bundled edge
load directed bundled edges and vertices graph from dot (
  const std::string& dot filename
{
  assert (is regular file (dot filename));
  std::ifstream f(dot filename.c str());
     create empty directed bundled edges and vertices graph
  //Something like this...
  boost::dynamic_properties p; //_do_ default construct
  p.property("node_id",get(&my_bundled_vertex::m_name, g)
  p.property("label",get(&my bundled vertex::m name, g));
  p.property("edge id",get(&my bundled edge::m name, g));
  p.property("label",get(&my bundled edge::m name, g));
  boost::read_graphviz(f,g,p);
  return g;
```

In this algorithm, first it is checked if the file to load exists. Then an empty

directed graph is created. Next to this, a boost::dynamic_properties is created with its default constructor, after which we direct the boost::dynamic_properties to find a 'node_id' and 'label' in the vertex name map, 'edge_id' and 'label to the edge name map. From this and the empty graph, 'boost::read_graphviz' is called to build up the graph.

 $Algorithm\ 153\ shows\ how\ to\ use\ the\ 'load_directed_bundled_edges_and_vertices_graph_from_dot'\ function:$

Algorithm 153 Demonstration of the 'load_directed_bundled_edges_and_vertices_graph_from_dot' function

```
#include "create bundled edges and vertices markov chain.
   h"
#include "get sorted bundled vertex my vertexes.h"
#include "
   load directed bundled edges and vertices graph from dot
   . h"
#include "save bundled edges and vertices graph to dot.h"
void
   load directed bundled edges and vertices graph from dot demo
   () noexcept
  using boost::num edges;
  using boost::num vertices;
  const auto g
    = create bundled edges and vertices markov chain();
  const std::string filename{
    "create bundled edges and vertices markov chain.dot"
  save bundled edges and vertices graph to dot(g,
     filename);
  const auto h
       load directed bundled edges and vertices graph from dot
      filename
    );
  assert(num edges(g) == num edges(h));
  assert(num \ vertices(g) == num \ vertices(h));
  if (get sorted bundled vertex my vertexes(g)
   == get sorted bundled vertex my vertexes(h)
    std::cout << func << ":_fixed_#16" << std::endl;
    assert (!"Fixed_#16");
  }
  else
    std::cout << func << ":_TODO" << std::endl;
}
```

This demonstration shows how the Markov chain is created using the 'create_bundled_edges_and_vertices_markov_chain' function (algorithm 137), saved and then loaded.

11.7 Load an undirected graph with bundled edges and vertices from a .dot file

When loading a graph from file, one needs to specify a type of graph. In this example, an undirected graph with bundled edges and vertices is loaded, as shown in algorithm 154:

Algorithm 154 Loading an undirected graph with bundled edges and vertices from a .dot file

```
#include <boost/graph/adjacency list.hpp>
#include <boost/graph/graphviz.hpp>
#include "
   create empty undirected bundled edges and vertices graph
   . h"
#include "is regular file.h"
#include "my bundled edge.h"
#include "my bundled vertex.h"
///Load a undirected graph with custom edges and
///vertices from a .dot file.
///Assumes the file exists
boost::adjacency list <
  boost :: vecS,
  boost :: vecS,
  boost::undirectedS,
  my bundled vertex,
  my bundled edge
load_undirected_bundled_edges_and_vertices_graph_from_dot
  const std::string& dot filename
)
  assert(is_regular_file(dot_filename));
  std::ifstream f(dot filename.c str());
  auto g =
     create empty undirected bundled edges and vertices graph
     ();
  //Something\ like\ this \dots
  boost::dynamic_properties p; //_do_ default construct
  p.property("node id",get(&my bundled vertex::m name, g)
     );
  p.property("label", get(&my bundled vertex::m name, g));
  \verb|p.property| ( \verb|"edge_id", get(\&my\_bundled_edge::m_name, g) ) ; \\
  p.property("label",get(&my_bundled_edge::m_name, g));
  boost::read graphviz(f,g,p);
  return g;
```

The only difference with loading a directed graph, is that the initial empty graph is undirected instead. Chapter 11.6 describes the rationale of this function

Algorithm 155 shows how to use the 'load_undirected_bundled_vertices_graph_from_dot' function:

```
Algorithm 155 Demonstration of the 'load_undirected_bundled_edges_and_vertices_graph_from_dot' function
```

```
#include "create bundled edges and vertices markov chain.
   h"
#include "get sorted bundled vertex my vertexes.h"
#include "
   load undirected bundled edges and vertices graph from dot
   . h"
#include "save bundled edges and vertices graph to dot.h"
void
   load undirected bundled edges and vertices graph from dot demo
   () noexcept
  using boost::num edges;
  using boost::num vertices;
  const auto g
    = create bundled edges and vertices markov chain();
  const std::string filename{
    "create bundled edges and vertices markov chain.dot"
  save bundled edges and vertices graph to dot(g,
     filename);
  const auto h
       load undirected bundled edges and vertices graph from dot
      filename
    );
  assert(num edges(g) == num edges(h));
  assert(num \ vertices(g) == num \ vertices(h));
  if (get sorted bundled vertex my vertexes(g)
   == get sorted bundled vertex my vertexes(h)
    std::cout << func << ":_fixed_#16" << std::endl;
    assert (!"Fixed_#16");
  else
    std::cout << func << ":_TODO" << std::endl;
}
```

This demonstration shows how K_2 with bundled vertices is created using the 'create_bundled_vertices_k2_graph' function (algorithm 166), saved and then loaded. The loaded graph is checked to be a graph similar to the original.

12 Building graphs with custom vertices

Instead of using bundled properties, you can also add a new custom property. The difference is that instead of having a class as a vertex, vertices have an additional property where the 'my_custom_vertex' is stored, next to properties like vertex name, edge delay (see chapter 23.1 for all properties). The following graphs will be created:

- An empty directed graph that allows for custom vertices: see chapter 158
- An empty undirected graph that allows for custom vertices: see chapter 12.3
- A two-state Markov chain with custom vertices: see chapter 12.7
- K_2 with custom vertices: see chapter 12.8

In the process, some basic (sometimes bordering trivial) functions are shown:

- Installing a new vertex property, called 'vertex_custom_type': chapter 12.2
- Adding a custom vertex: see chapter 12.5
- Getting the custom vertices my vertex-es: see chapter 12.6

These functions are mostly there for completion and showing which data types are used.

12.1 Creating the vertex class

Before creating an empty graph with custom vertices, that custom vertex class must be created. In this tutorial, it is called 'my_custom_vertex'. 'my_custom_vertex' is a class that is nonsensical, but it can be replaced by any other class type.

Here I will show the header file of 'my_custom_vertex', as the implementation of it is not important:

Algorithm 156 Declaration of my_custom_vertex

```
#include < string>
#include <iosfwd>
///my custom vertex can have private member variables.
///Interaction with Graphviz goes via the stream
   operators
class my custom vertex
public:
  explicit my custom vertex(
    const std::string& name = "",
    const std::string& description = "",
    const double x = 0.0,
    const double y = 0.0
  ) noexcept;
  const std::string& get description() const noexcept;
  const std::string& get name() const noexcept;
  double get x() const noexcept;
  double get_y() const noexcept;
private:
  std::string m name;
  std::string m description;
  double m x;
  double m y;
};
bool operator == (const my custom vertex& lhs, const
   my custom vertex& rhs) noexcept;
bool operator!=(const my custom vertex& lhs, const
   my custom vertex& rhs) noexcept;
std::ostream& operator<<(std::ostream& os, const
   my_custom_vertex& v) noexcept;
std::istream& operator>>(std::istream& os,
   my custom vertex& v) noexcept;
```

'my custom vertex' is a class that has multiple properties:

- It has four private member variables: the double 'm_x' ('m_' stands for member), the double 'm_y', the std::string m_name and the std::string m_description. These variables are private, but there are getters supplied
- It has a default constructor
- It is copyable

- It is comparable for equality (it has operator==), which is needed for searching
- It can be streamed (it has both operator << and operator >>), which is needed for file I/O.

Special characters like comma's, quotes and whitespace cannot be streamed without problems. The function 'graphviz_encode' (algorithm 229) can convert the elements to be streamed to a Graphviz-friendly version, which can be decoded by 'graphviz' decode' (algorithm 230).

12.2 Installing the new vertex property

Before creating an empty graph with custom vertices, this type must be installed as a vertex property. Installing a new property would have been easier, if 'more C++ compilers were standards conformant' ([8] chapter 3.6). Boost.Graph uses the BOOST INSTALL PROPERTY macro to allow using a custom property:

Algorithm 157 Installing the vertex custom type property

```
#include <boost/graph/properties.hpp>
namespace boost {
   enum vertex_custom_type_t { vertex_custom_type = 314 };
   BOOST_INSTALL_PROPERTY(vertex, custom_type);
}
```

The enum value 314 must be unique.

12.3 Create the empty directed graph with custom vertices

Algorithm 158 Creating an empty directed graph with custom vertices

```
#include <boost/graph/adjacency list.hpp>
#include "install_vertex_custom_type.h"
#include "my custom vertex.h"
boost::adjacency list <
  boost :: vecS,
  boost :: vecS,
  boost::directedS,
  boost::property<
    boost:: vertex\_custom\_type\_t \;, \; my\_custom\_vertex
create empty directed_custom_vertices_graph() noexcept
  return boost::adjacency list<
    boost :: vecS,
    boost :: vecS,
    boost :: directedS,
    boost::property<
      boost::vertex custom type t, my custom vertex
  >();
}
```

This graph:

- has its out edges stored in a std::vector (due to the first boost::vecS)
- has its vertices stored in a std::vector (due to the second boost::vecS)
- is directed (due to the boost::directedS)
- The vertices have one property: they have a custom type, that is of data type my vertex (due to the boost::property< boost::vertex custom type t,my vertex>')
- The edges and graph have no properties
- Edges are stored in a std::list

The boost::adjacency_list has a new, fourth template argument 'boost::property
boost::vertex_custom_type_t,my_vertex>'. This can be read as: "vertices
have the property 'boost::vertex_custom_type_t', which is of data type 'my_vertex"'.
Or simply: "vertices have a custom type called my_vertex".

12.4 Create the empty undirected graph with custom vertices

Algorithm 159 Creating an empty undirected graph with custom vertices

```
#include <boost/graph/adjacency_list.hpp>
#include "install vertex custom type.h"
\#include "my_custom_vertex.h"
boost::adjacency list <
  boost :: vecS,
  boost :: vecS,
  boost::undirectedS,
  boost::property<
    boost::vertex custom type t, my custom vertex
create_empty_undirected_custom_vertices_graph() noexcept
  return boost::adjacency list<
    boost :: vecS,
    boost :: vecS,
    boost::undirectedS,
    boost::property<
      boost:: vertex\_custom\_type\_t \;, \; my\_custom\_vertex
  >();
```

This code is very similar to the code described in chapter 12.3, except that the directedness (the third template argument) is undirected (due to the boost::undirectedS).

12.5 Add a custom vertex

Adding a custom vertex is very similar to adding a named vertex (chapter 4.3).

Algorithm 160 Add a custom vertex

```
#include <type_traits>
#include <boost/graph/adjacency_list.hpp>
#include "install_vertex_custom_type.h"
#include "my custom vertex.h"
///Add a custom vertex to a graph
template <typename graph>
void add_custom_vertex(const my_custom_vertex& v, graph&
   g) noexcept
  static assert (!std::is const<graph>::value, "graph_
     cannot_be_const");
  const auto vd_a = boost::add_vertex(g);
  const auto my custom vertex map
    = get( //not boost::get
      boost::vertex_custom_type,
    );
  my_custom_vertex_map[vd_a] = v;
```

When having added a new (abstract) vertex to the graph, the vertex descriptor is used to set the my_vertex in the graph its my_vertex map (using 'get(boost::vertex_custom_type,g)').

Here is the demo:

Algorithm 161 Demo of 'add custom vertex'

```
#include <cassert>
#include "add custom vertex.h"
#include "create empty directed custom vertices graph.h"
#include "create empty undirected custom vertices graph.h
void add custom vertex demo() noexcept
  auto g = create_empty_directed_custom_vertices_graph();
  assert (boost:: num vertices (g) = 0);
  assert(boost::num edges(g) == 0);
  add custom vertex (my custom vertex ("X"), g);
  assert(boost::num\_vertices(g) == 1);
  assert(boost::num edges(g) == 0);
  auto h = create empty undirected custom vertices graph
     ();
  assert(boost::num \ vertices(h) == 0);
  assert(boost::num edges(h) == 0);
  add_custom_vertex(my_custom_vertex("X"), h);
  assert (boost::num vertices(h) == 1);
  assert(boost::num edges(h) == 0);
```

12.6 Getting the vertices' my vertexes¹¹

When the vertices of a graph have any associated my_vertex, one can extract these as such:

¹¹the name 'my_vertexes' is chosen to indicate this function returns a container of my_vertex

Algorithm 162 Get the vertices' my_vertexes

```
#include < vector>
\#include <boost/graph/graph_traits.hpp>
\#include <boost/graph/properties.hpp>
#include "install vertex custom type.h"
#include "my custom vertex.h"
/// Collect all the my_custom_vertex objects from a graph
///stored as a custom property of a vertex
//TODO: generalize to return any type
template <typename graph>
std::vector<my custom vertex>
   get custom vertex my vertexes (const graph& g) noexcept
  std::vector<my custom vertex> v;
  const auto my custom vertexes map
    = get( //not boost::get)
      boost::vertex custom type, g
    );
  const auto vip
    = vertices (g); //not boost::vertices
  const auto j = vip.second;
  for (auto i = vip.first; i!=j; ++i) {
    v.emplace_back(
      get ( //not boost :: get
        my custom vertexes map, *i
    );
  }
  return v;
```

The my_vertex object associated with the vertices are obtained from a boost::property_map and then put into a std::vector.

The order of the 'my_custom_vertex' objects may be different after saving and loading.

When trying to get the vertices' my_vertex from a graph without my_vertex objects associated, you will get the error 'formed reference to void' (see chapter 22.1).

12.7 Creating a two-state Markov chain with custom vertices

12.7.1 Graph

Figure 23 shows the graph that will be reproduced:

Figure 23: A two-state Markov chain where the vertices have custom properies and the edges have no properties. The vertices' properties are nonsensical

12.7.2 Function to create such a graph

Here is the code creating a two-state Markov chain with custom vertices:

Algorithm 163 Creating the two-state Markov chain as depicted in figure 23

```
#include <cassert>
#include <boost/graph/adjacency_list.hpp>
#include "create empty directed custom vertices graph.h"
#include "install vertex custom type.h"
#include "my custom vertex.h"
///Create a two-state Markov chain with custom vertices
boost::adjacency list <
  boost::vecS,
  boost :: vecS,
  boost :: directedS,
  boost::property<
    boost::vertex_custom_type_t, my_custom_vertex
create custom vertices markov chain() noexcept
{
  auto g
    = create_empty_directed_custom_vertices_graph();
  const auto vd a = boost::add vertex(g);
  const auto vd b = boost::add vertex(g);
  const auto aer aa = boost::add edge(vd a, vd a, g);
  assert (aer aa.second);
  const auto aer ab = boost::add edge(vd a, vd b, g);
  assert (aer ab.second);
  const auto aer ba = boost::add edge(vd b, vd a, g);
  assert (aer ba.second);
  const auto aer_bb = boost::add_edge(vd_b, vd_b, g);
  assert (aer bb.second);
  auto name_map = get( //not boost::get
    boost::vertex_custom_type,g
  );
  name map[vd a] = my custom vertex("Sunny",
    "Yellow_thing",1.0,2.0
  );
  name map[vd b] = my custom vertex("Rainy",
    "Grey_things", 3.0, 4.0
  );
  return g;
}
```

12.7.3 Creating such a graph

Here is the demo:

Algorithm 164 Demo of the 'create_custom_vertices_markov_chain' function (algorithm 163)

```
#include <cassert>
#include "create custom vertices markov chain.h"
#include "get_custom_vertex_my_vertexes.h"
#include "install vertex custom type.h"
#include "my custom vertex.h"
void create custom vertices markov chain demo() noexcept
  const auto g
    = create custom vertices markov chain();
  const std::vector<my_custom_vertex>
     expected my custom vertexes{
    my_custom_vertex("Sunny","Yellow_thing",1.0,2.0),
    my_custom_vertex("Rainy", "Grey_things", 3.0, 4.0)
  const std::vector<my custom vertex>
     vertex my custom vertexes {
    get_custom_vertex_my_vertexes(g)
  };
  assert (expected_my_custom_vertexes ==
     vertex my custom vertexes);
```

12.7.4 The .dot file produced

Algorithm 165 .dot file created from the 'create_custom_vertices_markov_chain' function (algorithm 163), converted from graph to .dot file using algorithm 178

```
digraph G {
O[label="Sunny,Yellow[[:SPACE:]]thing,1,1"];
1[label="Rainy,Grey[[:SPACE:]]things,3,3"];
0->0;
0->1;
1->0;
1->1;
```

This .dot file may look unexpectedly different: instead of a space, there is this '[[:SPACE:]]' thing. This is because the function 'graphviz_encode' (algorithm 229) made this conversion. In this example, I could have simply surrounded the content by quotes, and this would have worked. I chose to use 'graphviz_encode' because it works in all contexts.

12.7.5 The .svg file produced

Figure 24: .svg file created from the 'create_custom_vertices_markov_chain' function (algorithm 163) its .dot file, converted from .dot file to .svg using algorithm 232

This .svg file may look unexpectedly different: instead of a space, there is this '[[:SPACE:]]' thing. This is because the function 'graphviz_encode' (algorithm 229) made this conversion.

12.8 Creating K_2 with custom vertices

12.8.1 Graph

We reproduce the K_2 with named vertices of chapter 4.6 , but with our custom vertices intead.

12.8.2 Function to create such a graph

Algorithm 166 Creating K_2 as depicted in figure 10

```
#include <boost/graph/adjacency list.hpp>
#include "create_empty_undirected_custom_vertices_graph.h
#include "install vertex custom type.h"
#include "my_custom_vertex.h"
boost::adjacency list <
  boost :: vecS,
  boost :: vecS,
  boost :: undirected S,
  boost::property<
    boost::vertex custom type t, my custom vertex
create custom vertices k2 graph() noexcept
  auto g = create empty undirected custom vertices graph
     ();
  const auto vd a = boost :: add vertex(g);
  const auto vd b = boost::add vertex(g);
  const auto aer = boost::add_edge(vd_a, vd_b, g);
  assert (aer.second);
  auto my custom vertexes map = get ( //not \ boost :: get)
    boost::vertex custom type, g
  my_custom_vertexes_map[vd_a]
   = my_custom_vertex("A", "source", 0.0,0.0);
  my custom vertexes map[vd b]
    = my custom vertex("B","target",3.14,3.14);
  return g;
```

Most of the code is a slight modification of the 'create_named_vertices_k2_graph' function (algorithm 46). In the end, the my_vertices are obtained as a boost::property_map and set with two custom my_vertex objects.

12.8.3 Creating such a graph

Demo:

Algorithm 167 Demo of the 'create_custom_vertices_k2_graph' function (algorithm 166)

```
#include <cassert>
#include <iostream>
#include "create_custom_vertices_k2_graph.h"
#include "has_custom_vertex_with_my_vertex.h"

void create_custom_vertices_k2_graph_demo() noexcept
{
    const auto g = create_custom_vertices_k2_graph();
    assert(boost::num_edges(g) == 1);
    assert(boost::num_vertices(g) == 2);
    assert(has_custom_vertex_with_my_custom_vertex(
        my_custom_vertex("A", "source",0.0,0.0), g)
);
    assert(has_custom_vertex_with_my_custom_vertex(
        my_custom_vertex("B", "target",3.14,3.14), g)
);
}
```

12.8.4 The .dot file produced

Algorithm 168 .dot file created from the 'create_custom_vertices_k2_graph' function (algorithm 166), converted from graph to .dot file using algorithm 29 graph G {
0[label="A,source,0,0"];
1[label="B,target,3.14,3.14"];
0--1;

12.8.5 The .svg file produced

Figure 25: .svg file created from the 'create_custom_vertices_k2_graph' function (algorithm 166) its .dot file, converted from .dot file to .svg using algorithm 232

Working on graphs with custom vertices (as a custom property)

When using graphs with custom vertices, their state gives a way to find a vertex and working with it. This chapter shows some basic operations on graphs with custom vertices.

- Check if there exists a vertex with a certain 'my vertex': chapter 13.1
- Find a vertex with a certain 'my vertex': chapter 13.2
- Get a vertex its 'my vertex' from its vertex descriptor: chapter 13.3
- Set a vertex its 'my vertex' using its vertex descriptor: chapter 13.4
- Setting all vertices their 'my vertex'es: chapter 13.5
- \bullet Storing an directed/undirected graph with custom vertices as a .dot file: chapter 13.6
- Loading a directed graph with custom vertices from a .dot file: chapter 13.7
- \bullet Loading an undirected directed graph with custom vertices from a .dot file: chapter 13.8

13.1 Has a custom vertex with a my vertex

Before modifying our vertices, let's first determine if we can find a vertex by its custom type ('my vertex') in a graph. After obtaing a my vertex map, we

obtain the vertex iterators, dereference these to obtain the vertex descriptors and then compare each vertex its my_vertex with the one desired.

Algorithm 169 Find if there is vertex with a certain my vertex

```
#include < string>
\#include <boost/graph/properties.hpp>
#include "install vertex custom type.h"
#include "my custom vertex.h"
///See if the graph with custom vertices
///contains a vertex with a certain my custom vertex
template <typename graph>
bool has_custom_vertex_with_my_custom_vertex(
  const my custom vertex& v,
  const graph& g
) noexcept
  const auto my custom vertexes map
    = get(boost::vertex_custom_type, g);
  const auto vip
    = vertices(g); //not boost::vertices
  const auto j = vip.second;
  for (auto i = vip.first; i!=j; ++i) {
    if (
      get( //not \ boost::get
        my custom vertexes map,
        * i
      ) == v) {
      return true;
    }
  return false;
```

This function can be demonstrated as in algorithm 170, where a certain my_vertex cannot be found in an empty graph. After adding the desired my_vertex, it is found.

Algorithm 170 Demonstration of the 'has_custom_vertex_with_my_vertex' function

```
#include < cassert >
#include <iostream>
#include "add custom vertex.h"
#include "create empty undirected custom vertices graph.h
#include "has custom vertex with my vertex.h"
#include "install vertex custom type.h"
#include "my custom vertex.h"
void has custom vertex with my custom vertex demo()
   noexcept
  {f auto}\ {f g}={f create\_empty\_undirected\_custom\_vertices\_graph}
  assert (! has custom vertex with my custom vertex (
     my custom vertex("Felix"),g));
  add_custom_vertex(my_custom_vertex("Felix"),g);
  assert (has custom vertex with my custom vertex (
     my_custom_vertex("Felix"),g));
}
```

Note that this function only finds if there is at least one custom vertex with that my_vertex: it does not tell how many custom vertices with that my_vertex exist in the graph.

13.2 Find a custom vertex with a certain my vertex

Where STL functions work with iterators, here we obtain a vertex descriptor (see chapter 2.6) to obtain a handle to the desired vertex. Algorithm 171 shows how to obtain a vertex descriptor to the first vertex found with a specific my_vertex value.

Algorithm 171 Find the first vertex with a certain my_vertex

```
#include <cassert>
\#include <boost/graph/graph_traits.hpp>
\#include <boost/graph/properties.hpp>
#include "has custom vertex with my vertex.h"
#include "install vertex custom type.h"
#include "my custom vertex.h"
///Find the first vertex with a certain my\_custom\_vertex.
///Assumes that there exists that my custom vertex.
template <typename graph>
typename boost::graph_traits<graph>::vertex_descriptor
find first custom vertex with my vertex (
  const my_custom_vertex& v,
  const graph& g
) noexcept
  assert (has custom vertex with my custom vertex (v, g));
  const auto my custom vertexes map = get(boost::
     vertex_custom_type, g);
  const auto vip
    = vertices (g); //not boost::vertices
  const auto j = vip.second;
  for (auto i = vip.first; i!=j; ++i) {
    const auto w
      = get( //not boost::get
        my custom vertexes map,
    if (w == v) \{ return *i; \}
  assert (!"Should_not_get_here");
  throw; // Will crash the program
}
```

With the vertex descriptor obtained, one can read and modify the vertex and the edges surrounding it. Algorithm 172 shows some examples of how to do so.

Algorithm 172 Demonstration of the 'find_first_custom_vertex_with_my_vertex' function

13.3 Get a custom vertex its my vertex

To obtain the name from a vertex descriptor, one needs to pull out the $my_vertexes^{12}$ map and then look up the vertex of interest.

 $^{^{12} \}mathtt{Bad}$ English intended: my_vertexes = multiple my_vertex objects, vertices = multiple graph nodes

Algorithm 173 Get a custom vertex its my_vertex from its vertex descriptor

```
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/properties.hpp>
#include "install_vertex_custom_type.h"
#include "my custom vertex.h"
///Get the my_custom_vertex of a custom vertex
///from its vertex descriptor
\mathbf{template} \ < \! \mathbf{typename} \ \mathrm{grap} \, h \! > \!
my_custom_vertex get_custom_vertex_my_custom_vertex(
  const typename boost::graph traits<graph>::
      vertex descriptor& vd,
  const graph& g
  noexcept
  {\bf const\ auto\ my\_custom\_vertexes\_map}
    = get( //not boost :: get
      boost::vertex custom type,
    );
  return my_custom_vertexes_map[vd];
```

To use 'get_custom_vertex_my_vertex', one first needs to obtain a vertex descriptor. Algorithm 174 shows a simple example.

Algorithm 174 Demonstration if the 'get_custom_vertex_my_vertex' function

13.4 Set a custom vertex its my vertex

If you know how to get the my_vertex from a vertex descriptor, setting it is just as easy, as shown in algorithm 175.

Algorithm 175 Set a custom vertex its my vertex from its vertex descriptor

```
\# \mathbf{include} < \mathbf{boost} / \mathbf{graph} / \mathbf{graph} \_ \mathbf{traits} . hpp>
#include <boost/graph/properties.hpp>
#include "install vertex custom type.h"
#include "my custom vertex.h"
///Set the my_custom_vertex of a vertex
///from its vertex descriptor
\mathbf{template} \ < \! \mathbf{typename} \ \mathrm{grap} \, h \! > \!
void set_custom_vertex_my_custom_vertex(
  const my custom vertex& v,
  const typename boost::graph traits<graph>::
      vertex descriptor& vd,
  graph& g
  noexcept
  static assert (!std::is const<graph>::value,
    "graph_cannot_be_const"
  const auto my_custom_vertexes_map
    = get( //not boost :: get
       boost::vertex custom type, g
  my_custom_vertexes_map[vd] = v;
```

To use 'set_vertex_my_vertex', one first needs to obtain a vertex descriptor. Algorithm 176 shows a simple example.

Algorithm 176 Demonstration if the 'set_custom_vertex_my_vertex' function

```
#include <cassert>
#include "add custom vertex.h"
#include "create_empty_undirected_custom_vertices_graph.h
#include "find_first_custom_vertex_with_my_vertex.h"
#include "get custom vertex my vertex.h"
#include "set custom vertex my vertex.h"
void set custom vertex my custom vertex demo() noexcept
{
  auto g
    = create empty undirected custom vertices graph();
  const my_custom_vertex old_vertex{"Dex"};
  add custom vertex (old vertex, g);
  const auto vd
    = find first custom vertex with my vertex (old vertex,
  assert (get custom vertex my custom vertex (vd,g)
    == old vertex
  );
  const my custom vertex new vertex{"Diggy"};
  set custom vertex my custom vertex (
    new vertex, vd, g
  );
  assert (get custom vertex my custom vertex (vd,g)
    == new_vertex
}
```

13.5 Setting all custom vertices' my vertex objects

When the vertices of a graph are associated with my_vertex objects, one can set these my_vertexes as such:

Algorithm 177 Setting the custom vertices' my_vertexes

```
#include < string>
#include < vector >
#include <boost/graph/graph traits.hpp>
\#\mathbf{include} < \mathbf{boost/graph/properties} . hpp>
#include "install_vertex_custom_type.h"
#include "my_custom_vertex.h"
///Set all vertices their my custom vertex objects
//TODO: generalize 'my custom vertexes'
template <typename graph>
void set_custom_vertex_my_custom_vertexes(
  graph&g,
  const std::vector<my custom vertex>& my custom vertexes
 noexcept
  static assert (!std::is const<graph>::value, "graph_
     cannot_be_const");
  const auto my_custom_vertex_map
    = get( //not boost:: qet
      boost::vertex custom type, g
    );
  auto my custom vertexes begin = std::begin(
     my custom vertexes);
  const auto my_custom_vertexes_end = std::end(
     my custom vertexes);
  const auto vip = vertices(g); //not boost::vertices
  const auto j = vip.second;
  for (
    auto i = vip.first;
    i!=j; ++i,
   ++my custom vertexes begin
    assert (my custom vertexes begin !=
       my custom vertexes end);
    put (my custom vertex map, *i,*
       my_custom_vertexes_begin);
  }
}
```

An impressive feature is that getting the property map holding the graph its names is not a copy, but a reference. Otherwise, modifying 'my_vertexes_map' (obtained by non-reference) would only modify a copy.

13.6 Storing a graph with custom vertices as a .dot

If you used the create_custom_vertices_k2_graph function (algorithm 166) to produce a K_2 graph with vertices associated with my_vertex objects, you can store these my_vertexes additionally with algorithm 178:

Algorithm 178 Storing a graph with custom vertices as a .dot file

```
#include < string>
#include <fstream>
#include <boost/graph/graphviz.hpp>
\#include <boost/graph/properties.hpp>
#include "get vertex my vertexes.h"
///Save a graph with named vertices to a .dot file
template <typename graph>
void save_custom_vertices_graph_to_dot(const graph& g,
   const std::string& filename)
{
  std::ofstream f(filename);
  const auto my vertexes = get vertex my vertexes(g);
  boost::write_graphviz(
    f,
    [my_vertexes](std::ostream& out, const auto& v) {
      const my_vertex m{my_vertexes[v]};
      out << "[label=\""
        << m.m name
        << " , "
        << m. m description
        << " ,"
        << m.m.x
        << ","
        << m.m.y
        << "\"]";
  );
}
```

Note that this algorithm uses C++14.

The .dot file created is displayed in algorithm 179:

Algorithm 179 .dot file created from the create_custom_vertices_k2_graph function (algorithm 46)

```
graph G {
0[label="A,source,0,0"];
1[label="B,target,3.14,3.14"];
0--1;
}
```

This .dot file corresponds to figure 179:

Figure 26: .svg file created from the create_custom_vertices_k2_graph function (algorithm 166) and converted to .svg using the 'convert_dot_to_svg' function (algorithm 232)

13.7 Loading a directed graph with custom vertices from a .dot

When loading a graph from file, one needs to specify a type of graph. In this example, an directed graph with custom vertices is loaded, as shown in algorithm 180:

Algorithm 180 Loading a directed graph with custom vertices from a .dot file

```
#include <boost/graph/adjacency list.hpp>
\# \mathbf{include} < \mathbf{boost} / \operatorname{graph} / \operatorname{graphviz} . hpp>
#include "create_empty_directed_custom_vertices_graph.h"
#include "install vertex custom type.h"
#include "is regular file.h"
#include "my custom vertex.h"
#include "is read graphviz correct.h"
\# \mathbf{include} "get custom vertex my vertexes.h"
///Load a directed graph with custom
///vertices\ from\ a\ .dot\ file .
///Assumes the file exists and that the
///custom vertices can be read by Graphviz
boost::adjacency list <
  boost :: vecS,
  boost :: vecS,
  boost :: directedS,
  boost::property<
    boost::vertex custom type t, my custom vertex
load directed custom vertices graph from dot (
  const std::string& dot filename
  assert (is regular file (dot filename));
  std::ifstream f(dot filename.c str());
  auto g = create_empty_directed_custom_vertices_graph();
  boost::dynamic_properties p; //_do_ default construct
  p.property("node_id", get(boost::vertex_custom_type, g)
  p.property("label", get(boost::vertex custom type, g));
  boost::read_graphviz(f,g,p);
  return g;
}
```

In this algorithm, first it is checked if the file to load exists. Then an empty directed graph is created. Next to this, a boost::dynamic_properties is created with its default constructor, after which we direct the boost::dynamic_properties to find a 'node_id' and 'label' in the vertex name map, 'edge_id' and 'label to the edge name map. From this and the empty graph, 'boost::read_graphviz' is called to build up the graph.

Algorithm 181 shows how to use the 'load_directed_custom_vertices_graph_from_dot' function:

Algorithm 181 Demonstration of the 'load_directed_custom_vertices_graph_from_dot' function

```
#include "create custom vertices markov chain.h"
#include "load_directed_custom_vertices_graph_from_dot.h"
#include "save custom vertices graph to dot.h"
#include "get custom vertex my vertexes.h"
void load directed custom vertices graph from dot demo()
   noexcept
  using boost::num edges;
  using boost::num vertices;
  const auto g
    = create custom vertices markov chain();
  const std::string filename{
    "create custom vertices markov chain.dot"
  save custom vertices graph to dot(g, filename);
  const auto h
    = load_directed_custom_vertices_graph_from_dot(
       filename);
  assert(num\_edges(g) == num edges(h));
  assert (num vertices (g) == num vertices (h));
  assert(get\_custom\_vertex\_my\_vertexes(g) ==
     get custom vertex my vertexes(h));
}
```

This demonstration shows how the Markov chain is created using the 'create_custom_vertices_markov_chain' function (algorithm 163), saved and then loaded. The loaded graph is checked to be a directed graph similar to the Markov chain with the same vertex my_vertex instances (using the 'get_vertex_my_vertexes' function).

13.8 Loading an undirected graph with custom vertices from a .dot

When loading a graph from file, one needs to specify a type of graph. In this example, an undirected graph with custom vertices is loaded, as shown in algorithm 182:

 ${\bf Algorithm~182~Loading~an~undirected~graph~with~custom~vertices~from~a~.dot~file}$

```
#include <boost/graph/adjacency list.hpp>
#include <boost/graph/graphviz.hpp>
#include "create empty undirected custom vertices graph.h
#include "install vertex custom type.h"
#include "is regular file.h"
#include "my custom vertex.h"
#include "is read graphviz correct.h"
///Load an undirected graph with custom
///vertices\ from\ a\ .dot\ file .
///Assumes the file exists and that the
///custom edges and vertices can be read by Graphviz
boost::adjacency list <
  boost :: vecS,
  boost :: vecS,
  boost::undirectedS,
  boost::property<
    boost:: vertex\_custom\_type\_t \;, \; my\_custom\_vertex
>
load undirected custom vertices graph from dot (
  const std::string& dot filename
  assert (is regular file (dot filename));
  std::ifstream f(dot filename.c str());
  auto g = create empty undirected custom vertices graph
     ();
  boost::dynamic_properties p; //_do_ default construct
  p.property("node_id", get(boost::vertex_custom_type, g)
  p.property("label", get(boost::vertex custom type, g));
  boost::read graphviz(f,g,p);
  return g;
}
```

The only difference with loading a directed graph, is that the initial empty graph is undirected instead. Chapter 13.7 describes the rationale of this function.

Algorithm 183 shows how to use the 'load undirected custom vertices graph from dot'

 ${\bf Algorithm~183~Demonstration~of~the~'load_undirected_custom_vertices_graph_from_dot'} function$

```
#include <cassert>
#include "create custom vertices k2 graph.h"
#include "load_undirected_custom_vertices_graph_from_dot.
   h "
#include "save custom vertices graph to dot.h"
\# \mathbf{include} "get custom vertex my vertexes.h"
void load undirected custom vertices graph from dot demo
   () noexcept
  using boost::num edges;
  using boost::num vertices;
  const auto g
    = create custom vertices k2 graph();
  const std::string filename{
    "create custom vertices k2 graph.dot"
  };
  save custom vertices graph to dot(g, filename);
  const auto h
    = load undirected custom vertices graph from dot(
       filename);
  assert(num edges(g) = num edges(h));
  assert(num \ vertices(g) == num \ vertices(h));
  assert(get custom vertex my vertexes(g) =
     get custom vertex my vertexes(h));
```

This demonstration shows how K_2 with custom vertices is created using the 'create_custom_vertices_k2_graph' function (algorithm 166), saved and then loaded. The loaded graph is checked to be a graph similar to the original, with the same vertex my_vertex instances (using the 'get_vertex_my_vertexes' function).

14 Building graphs with custom edges and vertices

Up until now, the graphs created have had edges and vertices with the built-in name propery. In this chapter, graphs will be created, in which the edges and

vertices can have a custom 'my_custom_edge' and 'my_custom_edge' type 13 .

- An empty directed graph that allows for custom edges and vertices: see chapter 14.3
- \bullet An empty undirected graph that allows for custom edges and vertices: see chapter 14.4
- A two-state Markov chain with custom edges and vertices: see chapter
 14 7
- K_3 with custom edges and vertices: see chapter 14.8

In the process, some basic (sometimes bordering trivial) functions are shown:

- Creating the custom edge class: see chapter 14.1
- Installing the new edge property: see chapter 14.2
- Adding a custom edge: see chapter 14.5

These functions are mostly there for completion and showing which data types are used.

14.1 Creating the custom edge class

In this example, I create a custom edge class. Here I will show the header file of it, as the implementation of it is not important yet.

¹³I do not intend to be original in naming my data types

Algorithm 184 Declaration of my_custom_edge

```
#include < string>
#include <iosfwd>
///my custom edge can have private member variables.
///Interaction with Graphviz goes via the stream
   operators
class my custom edge
public:
  explicit my custom edge(
    const std::string& name = "",
    const std::string& description = "",
    const double width = 1.0,
    const double height = 1.0
  ) noexcept;
  const std::string& get description() const noexcept;
  const std::string& get name() const noexcept;
  double get width() const noexcept;
  double get height() const noexcept;
  private:
  std::string m name;
  std::string m description;
  double m width;
  double m height;
};
bool operator == (const my custom edge& lhs, const
   my custom edge& rhs) noexcept;
bool operator!=(const my custom edge& lhs, const
   my custom edge& rhs) noexcept;
std::ostream& operator<<(std::ostream& os, const
   my_custom_edge& v) noexcept;
std::istream& operator>>(std::istream& os, my custom edge
   & v) noexcept;
```

my_custom_edge is a class that has multiple properties: two doubles 'm_width' ('m_' stands for member) and 'm_height', and two std::strings m_name and m_description. 'my_custom_edge' is copyable, but cannot trivially be converted to a std::string.' 'my_custom_edge' is comparable for equality (that is, operator== is defined).

Special characters like comma's, quotes and whitespace cannot be streamed without problems. The function 'graphviz_encode' (algorithm 229) can convert the elements to be streamed to a Graphviz-friendly version, which can be

decoded by 'graphviz_decode' (algorithm 230).

14.2 Installing the new edge property

Installing a new property would have been easier, if 'more C++ compilers were standards conformant' ([8], chapter 3.6, footnote at page 52). Boost.Graph uses the BOOST INSTALL PROPERTY macro to allow using a custom property:

Algorithm 185 Installing the edge_custom_type property

```
#include <boost/graph/properties.hpp>
namespace boost {
   enum edge_custom_type_t { edge_custom_type = 3142 };
   BOOST_INSTALL_PROPERTY(edge,custom_type);
}
```

The enum value 3142 must be unique.

14.3 Create an empty directed graph with custom edges and vertices

Algorithm 186 Creating an empty directed graph with custom edges and vertices

```
#include <boost/graph/adjacency list.hpp>
#include "install_edge_custom_type.h"
#include "install vertex custom type.h"
#include "my custom edge.h"
#include "my_custom vertex.h"
///Create an empty directed graph with
///custom edges and vertices
boost::adjacency list <
  boost :: vecS,
  boost :: vecS,
  boost::directedS,
  boost::property<
    boost::vertex custom type t, my custom vertex
  boost::property<
    boost::edge custom type t, my custom edge
create empty directed custom edges and vertices graph()
   noexcept
{
  return boost::adjacency list<
    boost :: vecS,
    boost :: vecS,
    boost::directedS,
    boost::property<
      boost::vertex custom type t, my custom vertex
    boost::property<
      boost::edge custom type t, my custom edge
  >();
}
```

This code is very similar to the code described in chapter 12.3, except that there is a new, fifth template argument:

```
boost::property<br/>boost::edge custom type t, my edge>
```

This can be read as: "edges have the property 'boost::edge_custom_type_t', which is of data type 'my_custom_edge". Or simply: "edges have a custom type called my_custom_edge".

Demo:

```
187
Algorithm
                                                               cre-
                           Demonstration
                                                      the
ate empty directed custom edges and vertices graph' function
#include "
    create\_empty\_directed\_custom\_edges\_and\_vertices\_graph\,.
   h''
void
    create\_empty\_directed\_custom\_edges\_and\_vertices\_graph\_demo
    () noexcept
{
  \boldsymbol{const\ auto\ g}\ =
      create_empty_directed_custom_edges_and_vertices_graph
  assert(boost::num\_edges(g) == 0);
  assert(boost::num\_vertices(g) == 0);
}
```

14.4 Create an empty undirected graph with custom edges and vertices

Algorithm 188 Creating an empty undirected graph with custom edges and vertices

```
#include <boost/graph/adjacency list.hpp>
#include "install_edge_custom_type.h"
#include "install vertex custom type.h"
#include "my custom vertex.h"
#include "my custom edge.h"
///Create an empty undirected graph with
///custom edges and vertices
boost::adjacency list <
  boost :: vecS,
  boost :: vecS,
  boost::undirectedS,
  boost::property<
    boost::vertex custom type t, my custom vertex
  boost::property<
    boost::edge custom type t, my custom edge
create_empty_undirected custom edges and vertices graph()
    noexcept
{
  return boost::adjacency list <
    boost :: vecS,
    boost :: vecS,
    boost::undirectedS,
    boost::property<
      boost::vertex custom type t, my custom vertex
    boost::property<
      boost::edge custom type t, my custom edge
  >();
}
```

This code is very similar to the code described in chapter 14.3, except that the directedness (the third template argument) is undirected (due to the boost::undirectedS). Demo:

```
Algorithm
                189
                          Demonstration
                                                   the
                                                            'cre-
ate_empty_undirected_custom_edges_and_vertices_graph' function
#include <cassert>
#include "
   create_empty_undirected_custom_edges_and_vertices_graph
void
   create\_empty\_undirected\_custom\_edges\_and\_vertices\_graph\_demo
    () noexcept
  const auto g
        create\_empty\_undirected\_custom\_edges\_and\_vertices\_graph
  assert(boost::num edges(g) == 0);
  assert (boost::num vertices(g) == 0);
```

14.5 Add a custom edge

Adding a custom edge is very similar to adding a named edge (chapter 6.3).

Algorithm 190 Add a custom edge

```
#include <cassert>
#include <boost/graph/adjacency_list.hpp>
#include "install edge custom type.h"
#include "my custom edge.h"
///Add a custom edge to a graph
template <typename graph>
{\bf void}\ {\rm add\_custom\_edge}\,(
  const my custom edge& v,
  graph& g
) noexcept
   static_assert(!std::is_const<graph>::value, "graph_
       cannot_be_const");
  const auto vd a = boost::add vertex(g);
  \mathbf{const} \ \mathbf{auto} \ \mathrm{vd\_b} = \ b \, \mathrm{oost} :: \mathrm{add\_vertex} \, (\, g) \, ;
  const auto aer = boost::add_edge(vd_a, vd_b, g);
   assert (aer.second);
  const auto my edge map
     = get( //not boost::get
        boost::edge\_custom\_type\,,\ g
  my\_edge\_map \left[ \; a\,e\,r \;.\; f\,i\,r\,s\,t \; \right] \; = \; v \; ;
}
```

When having added a new (abstract) edge to the graph, the edge descriptor is used to set the my_edge in the graph its my_custom_edge map (using 'get(boost::edge_custom_type,g)').

Here is the demo:

Algorithm 191 Demo of 'add custom edge'

```
#include < cassert >
#include "add custom edge.h"
#include "
   create empty directed custom edges and vertices graph.
   h"
#include "
   create_empty_undirected_custom_edges_and_vertices_graph
   . h"
void add custom edge demo() noexcept
  auto g =
     create\_empty\_directed\_custom\_edges\_and\_vertices\_graph
  add custom edge(my custom edge("X"), g);
  assert(boost::num\_vertices(g) == 2);
  assert(boost::num edges(g) == 1);
  auto h =
     create_empty_undirected_custom_edges_and_vertices_graph
  add custom edge(my custom edge("Y"), h);
  assert (boost::num vertices(h) == 2);
  assert(boost::num edges(h) == 1);
```

14.6 Getting the custom edges my edges

When the edges of a graph have an associated 'my_custom_edge', one can extract these all as such:

Algorithm 192 Get the edges' my custom edges

```
#include < vector>
#include "install edge custom type.h"
#include "my custom edge.h"
/// Collect all the my_custom_edge objects from a graph
///stored as a custom property of a edge
//TODO: generalize to return any type
template <typename graph>
std::vector<my custom edge> get custom edge my edges(
  const graph& g
  noexcept
  std::vector < my\_custom\_edge > v;
  const auto my custom edges map
    = get( //not boost::get
      boost::edge custom type,g
    );
  const auto vip
    = \operatorname{edges}(g); //not boost:: edges
  const auto j = vip.second;
  for (auto i = vip.first; i!=j; ++i) {
    v.emplace_back(
      get( //not \ boost::get
        my custom edges map, *i
    );
  return v;
}
```

The 'my_custom_edge' object associated with the edges are obtained from a boost::property_map and then put into a std::vector.

Note: the order of the my_custom_edge objects may be different after saving and loading.

When trying to get the edges' my_custom_edge objects from a graph without custom edges objects associated, you will get the error 'formed reference to void' (see chapter 22.1).

14.7 Creating a Markov-chain with custom edges and vertices

14.7.1 Graph

Figure 27 shows the graph that will be reproduced:

Figure 27: A two-state Markov chain where the edges and vertices have custom properies. The edges' and vertices' properties are nonsensical

14.7.2 Function to create such a graph

Here is the code creating a two-state Markov chain with custom edges and vertices:

Algorithm 193 Creating the two-state Markov chain as depicted in figure 27

```
#include <cassert>
#include <boost/graph/adjacency_list.hpp>
#include "
   create empty directed custom edges and vertices graph.
   h "
#include "install vertex custom type.h"
#include "my custom vertex.h"
///Create a two-state Markov chain
///with custom edges and vertices
boost::adjacency list <
  boost :: vecS,
  boost :: vecS,
  boost :: directedS,
  boost::property<
    boost::vertex custom type t, my custom vertex
  >,
  boost::property<
    boost::edge_custom_type_t, my_custom_edge
create custom edges and vertices markov chain() noexcept
  auto g
        create empty directed custom edges and vertices graph
  const auto vd a = boost::add vertex(g);
  const auto vd b = boost::add vertex(g);
  const auto aer aa = boost::add edge(vd a, vd a, g);
  assert (aer aa.second);
  const auto aer_ab = boost::add_edge(vd_a, vd_b, g);
  assert (aer ab.second);
  const auto aer ba = boost::add edge(vd b, vd a, g);
  assert (aer ba.second);
  const auto aer_bb = boost::add_edge(vd_b, vd_b, g);
  assert (aer bb.second);
  auto my custom vertexes map = get ( //not \ boost :: get)
    boost::vertex custom type, g
  );
  my custom vertexes map[vd a]
    = \ \mbox{my\_custom\_vertex} \left( \, \mbox{"Sunny"} \, , \mbox{"Yellow\_thing"} \, , 1.0 \, , 2.0 \right) \, ;
  my custom vertexes map[vd b]
    = my custom vertex("Rainy", "Grey_things", 3.0,4.0);
  auto my edges map = get ( 21% ot boost :: get
    boost::edge_custom_type,g
  my edges map [aer aa.first]
    = my_custom_edge("Sometimes", "20%", 1.0, 2.0);
  my edges map [aer ab.first]
    = \ my\_custom\_edge("Often","80\%",3.0,4.0);
  my_edges_map[aer_ba.first]
```

14.7.3 Creating such a graph

vertex_my_custom_vertexes{

get_custom_vertex_my_vertexes(g)

assert (expected my_custom_vertexes == vertex_my_custom_vertexes

Here is the demo:

};

);

```
Algorithm 194 Demo of the 'create custom edges and vertices markov chain'
function (algorithm 193)
#include <cassert>
#include "create custom edges and vertices markov chain.h
#include "get custom vertex my vertexes.h"
#include "install vertex custom type.h"
#include "my custom vertex.h"
void create custom edges and vertices markov chain demo()
    noexcept
  const auto g
    = create custom edges and vertices markov chain();
  const std::vector<my_custom_vertex>
    expected my custom vertexes {
    my\_custom\_vertex("Sunny",
      "Yellow_thing", 1.0, 2.0
    my custom vertex ("Rainy",
      "Grey_things", 3.0, 4.0
  };
  const std::vector<my custom vertex>
```

14.7.4 The .dot file produced

```
Algorithm
               195
                               file
                        .dot
                                                  from
                                                           the
                                                                  cre-
                                       created
ate_custom_edges_and_vertices_markov_chain' function (algorithm 193),
converted from graph to .dot file using algorithm 29
digraph G {
O[label="Sunny,Yellow[[:SPACE:]]thing,1,1"];
1[label="Rainy,Grey[[:SPACE:]]things,3,3"];
0->0 [label="Sometimes,20%,1,2"];
0->1 [label="Often,80%,3,4"];
1->0 [label="Rarely,10%,5,6"];
1->1 [label="Mostly,90%,7,8"];
```

14.7.5 The .svg file produced

Figure 28: .svg file created from the 'create_custom_edges_and_vertices_markov_chain' function (algorithm 163) its .dot file, converted from .dot file to .svg using algorithm 232

14.8 Creating K_3 with custom edges and vertices

Instead of using edges with a name, or other properties, here we use a custom edge class called 'my_custom_edge'.

14.8.1 Graph

We reproduce the K_3 with named edges and vertices of chapter 6.6, but with our custom edges and vertices intead:

[graph here]

Algorithm 196 Creating K_3 as depicted in figure 14

```
#include <boost/graph/adjacency list.hpp>
#include "
   create empty undirected custom edges and vertices graph
   . h"
#include "install edge custom type.h"
#include "install vertex custom type.h"
#include "my custom edge.h"
#include "my custom vertex.h"
///Create a K3 graph with custom edges and vertices
boost::adjacency list <
  boost :: vecS,
  boost :: vecS,
  boost::undirectedS,
  boost::property<
    boost::vertex custom type t, my custom vertex
  boost::property<
    boost::edge custom type t,my custom edge
create custom edges and vertices k3 graph() noexcept
  auto g
        create empty undirected custom edges and vertices graph
        ();
  const auto vd a = boost :: add vertex(g);
  const auto vd b = boost::add vertex(g);
  const auto vd_c = boost::add_vertex(g);
  const auto aer a = boost::add edge(vd a, vd b, g);
  const auto aer b = boost::add edge(vd b, vd c, g);
  const auto aer c = boost::add edge(vd c, vd a, g);
  assert (aer_a.second);
  assert (aer b.second);
  assert (aer c.second);
  {\bf auto} \ {\bf my\_custom\_vertex\_map}
    = get( //not boost::get)
      boost::vertex custom type, g
  my custom vertex map[vd a]
    = my_custom_vertex("top","source",0.0,0.0);
  \verb|my_custom_vertex_map[vd_b]|_{219}
    = my_custom_vertex("right","target",3.14,0);
  my_custom_vertex_map[vd_c]
    = my_custom_vertex("left","target",0,3.14);
  {\bf auto} \ {\rm my\_edge\_map} \ = \ {\rm get} \left( \, {\rm boost} :: {\rm edge\_custom\_type} \, , {\rm g} \right) \, ;
  my edge map | aer a. first |
    = \ my\_custom\_edge(\,"AB"\;,"\;first\;"\;,0.0\;,0.0\,)\;;
     odro manlaar h firstl
```

Most of the code is a slight modification of algorithm 85. In the end, the my_edges and my_vertices are obtained as a boost::property_map and set with the 'my_custom_edge' and 'my_custom_vertex' objects.

14.8.3 Creating such a graph

Here is the demo:

Algorithm 197 Demo of the 'create_custom_edges_and_vertices_k3_graph' function (algorithm 196)

14.8.4 The .dot file produced

```
graph G {
0[label="top,source,0,0"];
1[label="right,target,3.14,3.14"];
2[label="left,target,0,0"];
0--1 [label="AB,first,0,0"];
1--2 [label="BC,second,3.14,3.14"];
2--0 [label="CA,third,3.14,3.14"];
}
```

14.8.5 The .svg file produced

Figure 29: .svg file created from the 'create_custom_edges_and_vertices_k3_graph' function (algorithm 163) its .dot file, converted from .dot file to .svg using algorithm 232

15 Working on graphs with custom edges and vertices

15.1 Has a my_custom_edge

Before modifying our edges, let's first determine if we can find an edge by its custom type ('my_custom_edge') in a graph. After obtaing a my_custom_edge map, we obtain the edge iterators, dereference these to obtain the edge descriptors and then compare each edge its my_custom_edge with the one desired.

Algorithm 199 Find if there is a custom edge with a certain my custom edge

```
\# \mathbf{include} < \mathbf{boost} / \mathbf{graph} / \mathbf{properties} . \mathbf{hpp} >
#include "install_edge_custom_type.h"
#include "my_custom_edge.h"
///See if there is an edge with a
/// certain my_custom_edge associated with it
template <typename graph>
bool has_custom_edge_with_my_edge(
  const my custom edge& e,
  const graph& g
  noexcept
  {\bf const\ auto\ my\_edges\_map}
    = get(boost::edge_custom_type,g);
  const auto eip
    = \operatorname{edges}(g); //not boost:: edges
  const auto j = eip.second;
  for (auto i = eip.first; i!=j; ++i) {
    if (
       get( //not \ boost::get
         my edges map,
         * i
       ) == e) {
       return true;
    }
  return false;
}
```

This function can be demonstrated as in algorithm 200, where a certain 'my_custom_edge' cannot be found in an empty graph. After adding the desired my_custom_edge, it is found.

Algorithm 200 Demonstration of the 'has_custom_edge_with_my_edge' function

```
#include <cassert>
#include "add custom edge.h"
#include "
   create_empty_undirected_custom_edges_and_vertices_graph
   . h"
#include "has_custom_edge with my edge.h"
void has_custom_edge_with_my_edge_demo() noexcept
{
  auto g
       create empty undirected custom edges and vertices graph
  assert (
    !has custom edge with my edge(
      my custom edge("Edward"),g
  );
  add custom edge(my custom edge("Edward"),g);
  assert (
    has_custom_edge_with_my_edge(
      my custom edge("Edward"),g
  );
}
```

Note that this function only finds if there is at least one edge with that my_custom_edge: it does not tell how many edges with that my_custom_edge exist in the graph.

15.2 Find a my custom edge

Where STL functions work with iterators, here we obtain an edge descriptor (see chapter 2.12) to obtain a handle to the desired edge. Algorithm 201 shows how to obtain an edge descriptor to the first edge found with a specific my custom edge value.

Algorithm 201 Find the first custom edge with a certain my custom edge

```
#include <cassert>
\#include <boost/graph/graph_traits.hpp>
#include "has custom edge with my edge.h"
#include "install edge custom type.h"
#include "my custom edge.h"
///Find the first edge with a certain
///my\_custom\_edge associated with it.
///Returns the edge descriptor of that edge.
///Assumes the my custom edge is present,
///will crash otherwise
template <typename graph>
\mathbf{typename} \hspace{0.2cm} \texttt{boost} :: \mathtt{graph\_traits} \negthinspace < \negthinspace \mathtt{graph} \negthinspace > \negthinspace :: \mathtt{edge\_descriptor}
find first custom edge with my edge (
  const my custom edge& e,
  const graph& g
) noexcept
  assert(has_custom_edge_with_my_edge(e, g));
  const auto my_edges_map = get(boost::edge_custom_type,
  const auto eip = edges(g); //not boost::edges
  const auto j = eip.second;
  for (auto i = eip.first; i!=j; ++i) {
    if (
       get ( //not boost :: get
         my_edges_map,
         * i
       = e 
       return *i;
  assert (!"Should_not_get_here");
  throw; // Will crash the program
}
```

With the edge descriptor obtained, one can read and modify the edge and the vertices surrounding it. Algorithm 202 shows some examples of how to do so.

Algorithm 202 Demonstration of the 'find_first_custom_edge_with_my_edge' function

15.3 Get an edge its my_custom_edge

To obtain the my_edeg from an edge descriptor, one needs to pull out the my_custom_edges map and then look up the my_edge of interest.

Algorithm 203 Get a vertex its my custom vertex from its vertex descriptor

```
#include <boost/graph/graph_traits.hpp>
#include "install_edge_custom_type.h"
#include "my_custom_edge.h"

///Get the my_custom_edge from an edge discriptor
template <typename graph>
my_custom_edge get_custom_edge_my_edge(
    const typename boost::graph_traits<graph>::
        edge_descriptor& vd,
    const graph& g
) noexcept
{
    const auto my_edge_map
        = get( //not boost::get
        boost::edge_custom_type,
        g
    );
    return my_edge_map[vd];
}
```

To use 'get_custom_edge_my_custom_edge', one first needs to obtain an edge descriptor. Algorithm 204 shows a simple example.

Algorithm 204 Demonstration if the 'get custom edge my edge' function

$15.4 \quad Set \ an \ edge \ its \ my_custom_edge$

If you know how to get the my_custom_edge from an edge descriptor, setting it is just as easy, as shown in algorithm 205.

Algorithm 205 Set a custom edge its my_custom_edge from its edge descriptor

```
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/properties.hpp>
#include "install_edge_custom_type.h"
#include "my_custom_edge.h"
///Set an edge its my\_edge from its
///edge descriptor
template <typename graph>
void set custom edge my edge (
  const my custom edge& name,
  const typename boost::graph traits<graph>::
     edge descriptor& vd,
  graph& g
  noexcept
  static assert (!std::is const<graph>::value, "graph_
     cannot_be_const");
  auto my edge map = get(boost::edge custom type, g);
  my_edge_map[vd] = name;
}
```

To use 'set_custom_edge_my_edge', one first needs to obtain an edge descriptor. Algorithm 206 shows a simple example.

Algorithm 206 Demonstration if the 'set custom edge my edge' function

```
#include <cassert>
#include "add custom edge.h"
#include "
   create empty undirected custom edges and vertices graph
   . h"
#include "find first custom edge with my edge.h"
#include "get custom edge my edge.h"
#include "set custom edge my edge.h"
void set custom edge my edge demo() noexcept
  auto g
       create empty undirected custom edges and vertices graph
  const my custom edge old edge{"Dex"};
  add custom edge(old edge, g);
  {f const} auto {f vd}
    = find_first_custom_edge_with_my_edge(old_edge,g);
  assert (get custom edge my edge (vd,g)
   = old edge
  );
  const my custom edge new edge{"Diggy"};
  set_custom_edge_my_edge(new_edge, vd, g);
  assert (get custom edge my edge (vd,g)
    == new edge
  );
}
```

15.5 Storing a graph with custom edges and vertices as a .dot

If you used the create_custom_edges_and_vertices_k3_graph function (algorithm 196) to produce a K_3 graph with edges and vertices associated with my_custom_edge and my_custom_vertex objects, you can store these my_custom_edges and my_custom_vertex-es additionally with algorithm 207:

Algorithm 207 Storing a graph with custom edges and vertices as a .dot file

```
#include < string>
#include <fstream>
#include <boost/graph/graphviz.hpp>
#include <boost/graph/properties.hpp>
#include "get custom vertex my vertexes.h"
///Save a graph with named vertices to a .dot file
template <typename graph>
void save custom edges and vertices graph to dot(const
   graph& g, const std::string& filename)
  std::ofstream f(filename);
  const auto my_vertexes = get_vertex_my_vertexes(g);
  boost::write graphviz(
    f,
    g,
    [my vertexes] (std::ostream& out, const auto& v) {
      const my_vertex m{my_vertexes[v]};
      out << "[label=\""
        << m.m_name
        << " ,"
        << m. m_description
        << ","
        << m.m.x
        << " ,"
        << m.m_y
        << " \ " ] " ;
  );
}
```

Note that this algorithm uses C++14.

15.6 Load a directed graph with custom edges and vertices from a .dot file

When loading a graph from file, one needs to specify a type of graph. In this example, an directed graph with custom edges and vertices is loaded, as shown in algorithm 208:

Algorithm 208 Loading a directed graph with custom edges and vertices from a .dot file

```
#include <boost/graph/adjacency list.hpp>
#include <boost/graph/graphviz.hpp>
#include "
   create empty directed custom edges and vertices graph.
   h "
//\#include "get custom vertex my vertexes.h"
#include "install_edge_custom_type.h"
#include "install vertex custom type.h"
#include "is regular file.h"
#include "my custom edge.h"
#include "my custom vertex.h"
///Load a directed graph with custom edges and
///vertices\ from\ a\ .dot\ file .
///Assumes the file exists
boost::adjacency list <
  boost :: vecS,
  boost :: vecS,
  boost::directedS,
  boost::property<
    boost::vertex custom type t, my_custom_vertex
  boost::property<
    boost::edge custom type t, my custom edge
load_directed_custom_edges_and_vertices_graph_from_dot(
  const std::string& dot filename
{
  assert (is regular file (dot filename));
  std::ifstream f(dot filename.c str());
  auto g =
     create_empty_directed custom edges and vertices graph
  boost::dynamic_properties p; //_do_ default construct
  p.property("node_id", get(boost::vertex_custom_type, g)
  p.property("label", get(boost::vertex custom type, g));
  p.property("edge_id", get(boost::edge_custom_type, g));
  p.property("label", get(boost::edge custom type, g));
  boost::read_graphviz(f,g,p);
  return g;
}
```

In this algorithm, first it is checked if the file to load exists. Then an empty directed graph is created. Next to this, a boost::dynamic_properties is created with its default constructor, after which we direct the boost::dynamic_properties to find a 'node_id' and 'label' in the vertex name map, 'edge_id' and 'label to the edge name map. From this and the empty graph, 'boost::read_graphviz' is called to build up the graph.

 $Algorithm\ 209\ shows\ how\ to\ use\ the\ 'load_directed_custom_edges_and_vertices_graph_from_dot'\ function:$

Algorithm 209 Demonstration of the 'load_directed_custom_edges_and_vertices_graph_from_dot' function

```
#include "create custom edges and vertices markov chain.h
#include "get_custom_vertex_my_vertexes.h"
#include
   load directed custom edges and vertices graph from dot
   . h "
#include "save custom edges and vertices graph to dot.h"
void
   load directed custom edges and vertices graph from dot demo
   () noexcept
  using boost::num edges;
  using boost::num vertices;
  const auto g
    = create custom edges and vertices markov chain();
  const std::string filename{
    "create custom edges and vertices markov chain.dot"
  save_custom_edges_and_vertices_graph_to_dot(g, filename
     );
  const auto h
       load directed custom edges and vertices graph from dot
      filename
    );
  assert(num edges(g) == num edges(h));
  assert(num \ vertices(g) == num \ vertices(h));
  assert (get custom vertex my vertexes (g)
    == get custom vertex my vertexes(h)
  );
}
```

This demonstration shows how the Markov chain is created using the 'create_custom_edges_and_vertices_markov_chain' function (algorithm 193), saved and then loaded.

15.7 Load an undirected graph with custom edges and vertices from a .dot file

When loading a graph from file, one needs to specify a type of graph. In this example, an undirected graph with custom edges and vertices is loaded, as shown in algorithm 210:

Algorithm 210 Loading an undirected graph with custom edges and vertices from a .dot file

```
#include <boost/graph/adjacency list.hpp>
#include <boost/graph/graphviz.hpp>
#include "
   create empty undirected custom edges and vertices graph
    . h"
#include "get custom vertex my vertexes.h"
#include "install edge custom type.h"
#include "install vertex custom type.h"
#include "is read graphviz correct.h"
#include "is regular file.h"
#include "my custom edge.h"
#include "my custom vertex.h"
///Load an undirected graph with custom edges and
///vertices from a .dot file.
///Assumes the file exists and that the
///custom edges and vertices can be read by Graphviz
boost::adjacency list <
  boost :: vecS,
  boost :: vecS,
  boost::undirectedS,
  boost::property<
    boost::vertex custom type t, my custom vertex
  >,
  boost::property<
    boost::edge\_custom\_type\_t\;,\;\;my\_custom\_edge
load undirected custom edges and vertices graph from dot (
  const std::string& dot filename
  assert (is regular file (dot filename));
  std::ifstream f(dot filename.c str());
  auto g =
     create empty undirected custom edges and vertices graph
  boost::dynamic properties p; // do default construct
  p.property("node_id", get(boost::vertex_custom_type, g)
     );
  p.property("label", get(boost::vertex_custom_type, g));
  p.property("edge_id", get(boost::edge_custom_type, g));
p.property("label", get(boost::edge_custom_type, g));
  boost::read graphviz(f,g,p);
  return g;
```

The only difference with loading a directed graph, is that the initial empty graph is undirected instead. Chapter 15.6 describes the rationale of this function.

 $Algorithm\ 211\ shows\ how\ to\ use\ the\ 'load_undirected_custom_vertices_graph_from_dot'\ function:$

Algorithm 211 Demonstration of the 'load_undirected_custom_edges_and_vertices_graph_from_dot' function

```
#include "create custom edges and vertices k3 graph.h"
#include "
   load undirected custom edges and vertices graph from dot
    . h"
#include "save custom edges and vertices graph to dot.h"
#include "get custom vertex_my_vertexes.h"
void
   load undirected custom edges and vertices graph from dot demo
    () noexcept
  using boost::num edges;
  using boost::num vertices;
  const auto g
    = create_custom_edges_and_vertices_k3_graph();
  const std::string filename{
    " <code>create_custom_edges_and_vertices_k3_graph.dot"</code>
  save\_custom\_edges\_and\_vertices\_graph\_to\_dot(g,\ filename)
  const auto h
       load undirected custom edges and vertices graph from dot
        (filename);
  assert(num\_edges(g) == num\_edges(h));
  assert (num vertices (g) == num vertices (h));
  assert (get_custom_vertex_my_vertexes(g) ==
     get custom vertex my vertexes(h));
}
```

This demonstration shows how K_2 with custom vertices is created using the 'create_custom_vertices_k2_graph' function (algorithm 166), saved and then loaded. The loaded graph is checked to be a graph similar to the original.

16 Building graphs with a graph name

16.1 Create an empty directed graph with a graph name property

Algorithm 212 shows the function to create an empty directed graph with a graph name.

Algorithm 212 Creating an empty directed graph with a graph name

```
#include <boost/graph/adjacency list.hpp>
boost::adjacency list <
  boost :: vecS,
  boost :: vecS,
  boost :: directedS,
  boost::no_property,
  boost::no property,
  boost::property<
    boost::graph name t, std::string
create_empty_directed_graph_with_graph_name() noexcept
  return boost::adjacency_list<
    boost :: vecS,
    boost :: vecS,
    boost::directedS,
    boost::no_property ,
    boost::no_property,
    boost::property<
      boost::graph name t, std::string
  >();
}
```

Algorithm 213 demonstrates the 'create_empty_directed_graph_with_graph_name' function.

16.2 Create an empty undirected graph with a graph name property

Algorithm 214 shows the function to create an empty undirected graph with a graph name.

Algorithm 214 Creating an empty undirected graph with a graph name

```
#include <boost/graph/adjacency_list.hpp>
boost:: adjacency\_list <
  boost :: vecS,
  boost :: vecS,
  boost::undirectedS,
  boost::no_property,
  boost::no_property ,
  boost::property<
    boost::graph name t, std::string
>
create_empty_undirected_graph_with_graph_name() noexcept
  return boost::adjacency list<
    boost :: vecS,
    boost :: vecS,
    boost::undirectedS,
    boost::no_property,
    boost::no_property ,
    boost::property<
      boost::graph name t, std::string
  >();
}
```

Algorithm 215 demonstrates the 'create_empty_undirected_graph_with_graph_name' function.

16.3 Create a directed graph with a graph name property

16.3.1 Graph

See figure 4.

16.3.2 Function to create such a graph

Algorithm 216 shows the function to create an empty directed graph with a graph name.

Algorithm 216 Creating a two-state Markov chain with a graph name

```
#include <cassert>
#include <boost/graph/adjacency_list.hpp>
#include "create empty directed graph with graph name.h"
#include "set graph name.h"
///Create a two-state Markov chain with a graph name
boost::adjacency list <
  boost :: vecS,
  boost :: vecS,
  boost :: directedS,
  boost::no property,
  boost::no_property ,
  boost::property<boost::graph name t, std::string>
create markov chain with graph name() noexcept
  auto g = create_empty_directed_graph_with_graph_name();
  const auto vd a = boost::add vertex(g);
  const auto vd b = boost::add vertex(g);
  const auto aer aa = boost::add edge(vd a, vd a, g);
  assert (aer aa.second);
  const auto aer ab = boost::add edge(vd a, vd b, g);
  assert (aer ab.second);
  {f const\ auto}\ {f aer\_ba} = {f boost}:: {f add\_edge}({f vd\_b},\ {f vd\_a},\ {f g}) \; ;
  assert (aer ba.second);
  const auto aer bb = boost::add edge(vd b, vd b, g);
  assert (aer bb.second);
  set graph name("Two-state_Markov_chain", g);
  return g;
}
```

16.3.3 Creating such a graph

Algorithm 217 demonstrates the 'create_markov_chain_with_graph_name' function.

Algorithm 217 Demonstration of 'create markov chain with graph name'

```
#include <cassert>
#include <boost/graph/adjacency_list.hpp>
#include <iostream>

#include "create_markov_chain_with_graph_name.h"
#include "get_graph_name.h"

void create_markov_chain_with_graph_name_demo() noexcept
{
   const auto g = create_markov_chain_with_graph_name();
   assert(boost::num_vertices(g) == 2);
   assert(boost::num_edges(g) == 4);
   assert(get_graph_name(g) == "Two-state_Markov_chain");
}
```

16.3.4 The .dot file produced

Algorithm 218 .dot file created from the 'create_markov_chain_with_graph_name' function (algorithm 216), converted from graph to .dot file using algorithm 29

```
digraph G {
name="Two-state Markov chain";
0;
1;
0->0;
1->1;
1->0;
1->1;
1->1;
}
```

16.3.5 The .svg file produced

Figure 30: .svg file created from the 'create_markov_chain_with_graph_name' function (algorithm 216) its .dot file, converted from .dot file to .svg using algorithm 232

16.4 Create an undirected graph with a graph name property

16.4.1 Graph

See figure 6.

16.4.2 Function to create such a graph

Algorithm 219 shows the function to create K2 graph with a graph name.

Algorithm 219 Creating a K2 graph with a graph name

```
#include <boost/graph/adjacency list.hpp>
#include "create_empty_undirected_graph_with_graph_name.h
///Create K2 with a graph name
boost::adjacency list <
  boost::vecS,
  boost :: vecS,
  boost::undirectedS,
  boost::no property,
  boost::no property,
  boost::property<boost::graph_name_t, std::string>
create_k2_graph_with_graph_name() noexcept
  auto g = create empty undirected graph with graph name
     ();
  const auto vd a = boost::add vertex(g);
  const auto vd_b = boost::add_vertex(g);
  {f const\ auto}\ {f aer}\ =\ {f boost}:: {f add\_edge(vd\_a,\ vd\_b,\ g)}\,;
  assert (aer.second);
  get property ( //not boost::get property
    g,boost::graph\_name
  ) = "K2";
  return g;
```

16.4.3 Creating such a graph

Algorithm 220 demonstrates the 'create_k2_graph_with_graph_name' function.

Algorithm 220 Demonstration of 'create k2 graph with graph name'

```
#include <cassert>
#include "create_k2_graph_with_graph_name.h"
#include "get_graph_name.h"

void create_k2_graph_with_graph_name_demo() noexcept
{
   const auto g = create_k2_graph_with_graph_name();
   assert(boost::num_vertices(g) == 2);
   assert(boost::num_edges(g) == 1);
   assert(get_graph_name(g) == "K2");
}
```

16.4.4 The .dot file produced

Algorithm 221 .dot file created from the 'create_k2_graph_with_graph_name' function (algorithm 219), converted from graph to .dot file using algorithm 29

```
graph G {
name="K2";
0;
1;
0--1;
}
```

16.4.5 The .svg file produced

Figure 31: .svg file created from the 'create_k2_graph_with_graph_name' function (algorithm 219) its .dot file, converted from .dot file to .svg using algorithm 232

17 Working on graphs with a graph name

17.1 Set a graph its name property

Algorithm 222 Set a graph its name

```
#include < cassert >
#include < string>
#include <boost/graph/properties.hpp>
///Set the name of a graph
template <typename graph>
void set_graph_name(
  const std::string& name,
  graph& g
 noexcept
{
  static_assert(!std::is_const<graph>::value, "graph_
     cannot_be_const");
  get_property( //not boost::get_property
    g, boost::graph name
  ) = name;
}
```

Algorithm 223 demonstrates the 'set graph name' function.

Algorithm 223 Demonstration of 'set graph name'

```
#include <cassert>
#include "create_empty_directed_graph_with_graph_name.h"
#include "get_graph_name.h"
#include "set_graph_name.h"

void set_graph_name_demo() noexcept
{
   auto g = create_empty_directed_graph_with_graph_name();
   const std::string name{"Dex"};
   set_graph_name(name, g);
   assert(get_graph_name(g) == name);
}
```

17.2 Get a graph its name property

Algorithm 224 Get a graph its name

```
#include <string>
#include <boost/graph/properties.hpp>

///Get a graph its name
template <typename graph>
std::string get_graph_name(
    const graph& g
) noexcept
{
    return
        get_property( //not boost::get_property
            g, boost::graph_name
        );
}
```

Algorithm 225 demonstrates the 'get graph name' function.

Algorithm 225 Demonstration of 'get graph name'

```
#include <cassert>
#include "create_empty_directed_graph_with_graph_name.h"
#include "get_graph_name.h"
#include "set_graph_name.h"

void get_graph_name_demo() noexcept
{
   auto g = create_empty_directed_graph_with_graph_name();
   const std::string name{"Dex"};
   set_graph_name(name, g);
   assert(get_graph_name(g) == name);
}
```

17.3 Storing a graph with a graph name property as a .dot file

I am unsure if this results in a .dot file that can produce a graph with a graph name, but this is what I came up with.

Algorithm 226 Storing a graph with a graph name as a .dot file

```
#include < string>
#include <fstream>
#include <boost/graph/graphviz.hpp>
#include <boost/graph/properties.hpp>
#include "get graph name.h"
///Save\ a\ graph\ with\ a\ graph\ name\ to\ a\ .dot\ file
template <typename graph>
void save graph with graph name to dot (
  const graph& g,
  const std::string& filename
{
  std::ofstream f(filename);
  boost::write graphviz(
    f,
    boost :: default_writer(),
    boost::default writer(),
    //Unsure if this results in a graph
    //that can be loaded correctly
    //from\ a\ .dot\ file
    [g](std::ostream \& os) {
      os << "name=\""
        << get_graph_name(g)</pre>
        << "\";\n";
  );
}
```

17.4 Loading a directed graph with a graph name property from a .dot file

This will result in a directed graph without a name [ISSUE #12]. Please email me if you know how to do this correctly.

${\bf Algorithm~227}$ Loading a directed graph with a graph name from a .dot file

```
#include <string>
#include <boost/graph/adjacency_list.hpp>
\# \mathbf{include} < \mathbf{boost} / \mathbf{graph} / \mathbf{graphviz} . hpp>
#include <boost/graph/properties.hpp>
#include "create empty directed graph with graph name.h"
#include "is read graphviz correct.h"
#include "is regular file.h"
///Load a graph with a name from file
///TODO\colon fix this, as this code is not working correct
boost::adjacency list <
  boost :: vecS,
  boost :: vecS,
  boost :: directedS,
  boost::no_property ,
  boost::no property,
  boost::property<
    boost::graph name t, std::string
load_directed_graph_with_graph_name_from_dot(
  const std::string& dot filename
{
  assert (is_regular_file (dot_filename));
  std::ifstream f(dot filename.c str());
  auto g = create empty directed graph with graph name();
  #ifdef TODO KNOW HOW TO LOAD A GRAPH IIS NAME
  boost::dynamic\_properties\ p;\ //\_do\_\ default\ construct
  {\tt p.property("name",get\_property(g,boost::graph\_name));}\\
      //AFAIK, this should work
  \#else
  boost::dynamic properties p(
    boost::ignore other properties
  );
  #endif
  boost::read_graphviz(f,g,p);
  return g;
```

Note the part that I removed using #ifdef: I read that that is a valid approach, according to the Boost.Graph documentation (see http://www.boost.

 $org/doc/libs/1_60_0/libs/graph/doc/read_graphviz.html)$, but it failed to compile.

17.5 Loading an undirected graph with a graph name property from a .dot file

This will result in an undirected graph without a name. [ISSUE #12] Please email me if you know how to do this correctly.

 ${\bf Algorithm~228~Loading~an~undirected~graph~with~a~graph~name~from~a~.dot~file}$

```
#include < string>
#include <boost/graph/adjacency list.hpp>
#include <boost/graph/graphviz.hpp>
#include <boost/graph/properties.hpp>
#include "create empty undirected graph with graph name.h
#include "is_read_graphviz_correct.h"
#include "is regular file.h"
///Load an undirected graph with a graph name from file
///TODO: fix this, as this code is not working correct
boost::adjacency list <
  boost::vecS,
  boost :: vecS,
  boost::undirectedS,
  boost::no property,
  boost::no_property,
  boost::property<
    boost::graph name t, std::string
load undirected graph with graph name from dot (
  const std::string& dot filename
{
  assert (is regular file (dot filename));
  std::ifstream f(dot filename.c str());
  auto g = create empty undirected graph with graph name
     ();
  #ifdef TODO KNOW HOW TO LOAD A GRAPH ITS NAME
  boost::dynamic_properties p; //_do_ default construct
  p. property("name", get property(g, boost::graph name));
     //AFAIK, this should work
  \#\mathbf{else}
  boost::dynamic properties p(
    boost::ignore other properties
  );
  #endif
  boost::read graphviz(f,g,p);
  return g;
}
```

Note the part that I removed using #ifdef: I read that that is a valid approach, according to the Boost.Graph documentation (see http://www.boost.org/doc/libs/1_60_0/libs/graph/doc/read_graphviz.html), but it failed to compile.

18 Building graphs with custom graph properties

I will write this chapter if and only if I can save and load a graph with a graph name (as in chapter 16). That is, if Issue #12 is fixed.

19 Working on graphs with custom graph properties

I will write this chapter if and only if I can save and load a graph with a graph name (as in chapter 16). That is, if Issue #12 is fixed.

20 Other graph functions

Some functions that did not fit in

20.1 Encode a std::string to a Graphviz-friendly format

You may want to use a label with spaces, comma's and/or quotes. Saving and loading these, will result in problem. This function replaces these special characters by a rare combination of ordinary characters.

Algorithm 229 Encode a std::string to a Graphviz-friendly format

```
#include <boost/algorithm/string/replace.hpp>

///Encodes any std::string to a format that is usable
///for Graphviz to save and load from file.

///Use 'graphviz_decode' to retrieve the original std::
    string
std::string graphviz_encode(std::string s) noexcept
{
   boost::algorithm::replace_all(s,",","[[:COMMA:]]");
   boost::algorithm::replace_all(s,",","[[:SPACE:]]");
   boost::algorithm::replace_all(s,",","[[:QUOTE:]]");
   return s;
}
```

20.2 Decode a std::string from a Graphviz-friendly format

This function undoes the 'graphviz_encode' function (algorithm 229) and thus converts a Graphviz-friendly std::string to the original human-friendly std::string.

Algorithm 230 Decode a std::string from a Graphviz-friendly format to a human-friendly format

```
#include <boost/algorithm/string/replace.hpp>

///Decode a std::string created by 'graphviz_encode'
///to convert a Graphviz-friendly std::string
///to the original human-friendly std::string
std::string graphviz_decode(std::string s) noexcept
{
   boost::algorithm::replace_all(s,"[[:COMMA:]]",",");
   boost::algorithm::replace_all(s,"[[:SPACE:]]",",");
   boost::algorithm::replace_all(s,"[[:QUOTE:]]","\"");
   return s;
}
```

21 Misc functions

These are some function I needed for creating this tutorial. Although they are not important for working with graphs, I used these heavily. These functions may be compiler-dependent, platform-dependent and/or there may be superior alternatives. I just add them for completeness.

21.1 Getting a data type as a std::string

This function will only work under GCC.

Algorithm 231 Getting a data type its name as a std::string

```
#include < c stdlib >
#include < string>
#include <typeinfo>
#include < cxxabi.h>
///Get the type of data type as a std::string
//From\ http://stackoverflow.com/questions/1055452/c-get-
   name-of-type-in-template
//Thanks to m\!-\!dudley ( http://stackoverflow.com/users
   /111327/m-dudley
template<typename T>
std::string get_type_name() noexcept
  std::string tname = typeid(T).name();
  int status = -1;
  char * const demangled name{
    abi::__cxa_demangle(
      tname.c str(), NULL, NULL, &status
    )
  if(status = 0) {
    tname = demangled name;
    std::free(demangled name);
  return tname;
```

21.2 Convert a .dot to .svg

All illustrations in this tutorial are created by converting .dot to a .svg ('Scalable Vector Graphic') file. This function assumes the program 'dot' is installed, which is part of Graphviz.

Algorithm 232 Convert a .dot file to a .svg

```
#include <cassert>
#include < string>
#include <sstream>
#include "has dot.h"
#include "is_regular_file.h"
#include "is_valid_dot_file.h"
///Convert a . dot file to a . svg file
///Assumes\ that\ (1)\ the\ program\ 'dot'
///can be called by a system call (2) the
///. dot file is valid
void convert_dot_to_svg(
  const std::string& dot_filename,
  const std::string& svg_filename
)
{
   assert (has_dot());
   assert (is_valid_dot_file(dot_filename));
  std::stringstream cmd;
  \operatorname{cmd} << \operatorname{"dot}_{\smile} - \operatorname{Tsvg}_{\smile} = << \operatorname{dot} \operatorname{filename} << \operatorname{"}_{\smile} - \operatorname{o}_{\smile} = <<
       svg\_filename;
  std::system(cmd.str().c str());
   assert(is_regular_file(svg_filename));
```

'convert_dot_to_svg' makes a system call to the prgram 'dot' to convert the .dot file to an .svg file.

21.3 Check if a file exists

Not the most smart way perhaps, but it does only use the STL.

Algorithm 233 Check if a file exists

```
#include <fstream>
///Determines if a filename is a regular file
bool is_regular_file(const std::string& filename)
    noexcept
{
    std::fstream f;
    f.open(filename.c_str(),std::ios::in);
    return f.is_open();
}
```

22 Errors

Some common errors.

22.1 Formed reference to void

This compile-time error occurs when you create a graph without a certain property, then subsequently reading that property, as in algorithm 234:

Algorithm 234 Creating the error 'formed reference to void'

```
#include "create_k2_graph.h"
#include "get_vertex_names.h"

void formed_reference_to_void() noexcept
{
    get_vertex_names(create_k2_graph());
}
```

In algorithm 234 a graph is created with vertices of no properties. Then the names of these vertices, which do not exists, are tried to be read. If you want to read the names of the vertices, supply a graph that has this property.

22.2 No matching function for call to 'clear out edges'

This compile-time error occurs when you want to clear the outward edges from a vertex in an undirected graph.

Algorithm 235 Creating the error 'no matching function for call to clear_out_edges'

```
#include "create_k2_graph.h"

void no_matching_function_for_call_to_clear_out_edges()
    noexcept
{
    auto g = create_k2_graph();
    const auto vd = *vertices(g).first; //not boost::
        vertices
    boost::clear_in_edges(vd,g);
}
```

In algorithm 235 an undirected graph is created, a vertex descriptor is obtained, then its out edges are tried to be cleared. Either use a directed graph (which has out edges), or use the 'boost::clear_vertex' function instead.

22.3 No matching function for call to 'clear in edges'

See chapter 22.2.

22.4 Undefined reference to boost::detail::graph::read graphviz new

You will have to link against the Boost.Graph and Boost.Regex libraries. In Qt Creator, this is achieved by adding these lines to your Qt Creator project file:

$$LIBS \hspace{0.1cm} + = -lboost_graph \hspace{0.1cm} - lboost_regex$$

22.5 Property not found: node id

When loading a graph from file (as in chapter 3.4) you will be using boost::read_graphviz.boost::read_graphviz needs a third argument, of type boost::dynamic_properties. When a graph does not have properties, do not use a default constructed version, but initializate with 'boost::ignore_other_properties' as a constructor argument instead. Algorithm 236 shows how to trigger this run-time error.

Algorithm 236 Creating the error 'Property not found: node_id'

```
#include <cassert>
#include <fstream>
#include "is regular file.h"
#include "create empty undirected graph.h"
#include "create k2 graph.h"
#include "save_graph_to_dot.h"
void property_not_found_node_id() noexcept
  const std::string dot filename{"
     property not found node id.dot"};
  //Create a file
    const auto g = create k2 graph();
    save graph to dot(g, dot filename);
    assert (is regular file (dot filename));
  //Try to read that file
  std::ifstream f(dot filename.c str());
  auto g = create_empty_undirected_graph();
  //Line\ below\ should\ have\ been
  // boost:: dynamic\_properties p(boost::
     ignore\_other\_properties);
  boost::dynamic properties p; //Error
  try {
    boost::read graphviz(f,g,p);
  catch (std::exception&) {
    return; //Should get here
  assert (!"Should_not_get_here");
}
```

23 Appendix

23.1 List of all edge, graph and vertex properties

The following list is obtained from the file 'boost/graph/properties.hpp'.

Edge	Graph	Vertex
edge_all	graph_all	vertex_all
edge_bundle	graph_bundle	vertex_bundle
edge_capacity	$graph_name$	vertex_centrality
edge_centrality	graph_visitor	vertex_color
edge_color		vertex_current_degree
$edge_discover_time$		vertex_degree
$edge_finished$		vertex_discover_time
edge_flow		vertex_distance
$edge_global$		vertex_distance2
$edge_index$		$vertex_finish_time$
edge_local		vertex_global
$edge_local_index$		vertex_in_degree
$edge_name$		vertex_index
$edge_owner$		$vertex_index1$
edge_residual_capacity		$vertex_index2$
$edge_reverse$		vertex_local
$_$ edge $_$ underlying		vertex_local_index
edge_update		vertex_lowpoint
edge_weight		vertex_name
edge_weight2		vertex_out_degree
		vertex_owner
		vertex_potential
		vertex_predecessor
		vertex_priority
		vertex_rank
		vertex_root
		vertex_underlying
		vertex_update

References

- [1] Eckel Bruce. Thinking in c++, volume 1. 2002.
- [2] Marshall P Cline, Greg Lomow, and Mike Girou. C++ FAQs. Pearson Education, 1998.
- [3] Jarrod Hollingworth, Bob Swart, and Jamie Allsop. C++ Builder 5 Developer's Guide with Cdrom. Sams, 2000.
- [4] John Lakos. Large-scale C++ software design, volume 10. Addison-Wesley Reading, 1996.
- [5] Jesse Liberty. Sams teach yourself C++ in 24 hours. Sams Publishing, 2001

- [6] Steve McConnell. Code complete. Pearson Education, 2004.
- [7] Scott Meyers. Effective C++: 55 specific ways to improve your programs and designs. Pearson Education, 2005.
- [8] Jeremy G Siek, Lie-Quan Lee, and Andrew Lumsdaine. Boost Graph Library: User Guide and Reference Manual, The. Pearson Education, 2001.
- [9] Bjarne Stroustrup. The C++ Programming Language (3rd edition). 1997.
- [10] Bjarne Stroustrup. The C++ Programming Language (4th edition). 2013.
- [11] Herb Sutter and Andrei Alexandrescu. C++ coding standards: 101 rules, guidelines, and best practices. Pearson Education, 2004.

Index

#include, 13 K_2 with named vertices, create, 52 K_2 , create, 31 K_3 with named edges and vertices, create, 94 'demo' function, 8 'do' function, 8 [[:SPACE:]], 186 Add a vertex, 18	boost::edges does not exist, 25–27 boost::get does not exist, 9, 46 boost::ignore_other_properties, 38, 257 boost::in_degree, 34 boost::num_edges, 17, 18 boost::num_vertices, 16 boost::out_degree, 34 boost::out_degree does not exist, 35 boost::property, 43, 83–86, 146, 178,
Add an edge, 23 Add bundled edge, 150 Add bundled vertex, 122 Add custom edge, 212	209 boost::read_graphviz, 38, 78, 114, 140, 169, 201, 232, 257 boost::remove_edge, 70, 107
Add custom vertex, 180 Add named edge, 86, 87 Add named vertex, 45, 46 Add vertex, 19	boost::remove_vertex, 68 boost::undirectedS, 15, 44, 85, 121, 148, 179, 210 boost::vecS, 15, 42, 43, 83, 85, 120, 178
add_edge, 24 aer_, 25 All edge properties, 258 All graph properties, 258	boost::vertex_custom_type, 180 boost::vertex_custom_type_t, 178 boost::vertex_name, 46 boost::vertex_name_t, 43, 83, 85
All vertex properties, 258 assert, 16, 24 auto, 14 boost::add_edge, 23, 24, 29, 32, 87	boost::vertices, 20 boost::vertices does not exist, 22, 27 boost::write_graphviz, 37, 73 BOOST_INSTALL_PROPERTY, 177,
boost::add_edge result, 25 boost::add_vertex, 19, 29, 32 boost::adjacency_list, 14, 43, 84, 86,	207 C++11, 110 C++14, 167, 199, 230
boost::adjacency_matrix, 14 boost::clear_in_edges, 67 boost::clear_out_edges, 66 boost::clear_vertex, 66	Clear first vertex with name, 67 const, 14 const-correctness, 14 Convert dot to svg, 255 Counting the number of edges, 17
boost::degree, 34 boost::directedS, 15, 43, 83, 120, 178 boost::dynamic_properties, 38, 78, 113, 114, 140, 169, 201, 232, 257	Counting the number of edges, 17 Counting the number of vertices, 16 Create K_2 , 31 Create K_2 graph, 32 Create K_2 with named vertices, 52
boost::edge_bundled_type_t, 146 boost::edge_custom_type, 212 boost::edge_custom_type_t, 209 boost::edge_name_t, 83-86	Create K_3 with named edges and vertices, 94 Create .dot from graph, 36

edges and vertices, 166 Create empty directed graph with graph Create .dot from graph with custom name, 237 edges and vertices, 229 Create empty directed named edges and Create .dot from graph with named edges vertices graph, 83 and vertices, 109 Create empty directed named vertices Create .dot from graph with named vergraph, 42 tices, 72 Create empty undirected bundled edges Create an empty directed graph, 13 and vertices graph, 148 Create an empty directed graph with Create empty undirected bundled vernamed edges and vertices, 82 tices graph, 121 Create an empty directed graph with Create empty undirected custom edges named vertices, 42 and vertices graph, 210 Create an empty graph, 15 Create empty undirected custom ver-Create an empty graph with named edges tices graph, 179 and vertices, 84 Create empty undirected graph, 15 Create an empty undirected graph with Create empty undirected graph with named vertices, 44 graph name, 239 Create bundled edges and vertices K3 Create empty undirected named edges and vertices graph, 85 graph, 157 Create bundled edges and vertices MarkovCreate empty undirected named verchain, 154 tices graph, 44 Create bundled vertices K2 graph, 127 Create K2 graph with graph name, 244 Create bundled vertices Markov chain, Create Markov chain, 29 Create Markov chain with graph name, 125 Create custom edges and vertices K3 241graph, 219 Create Markov chain with named edges Create custom edges and vertices Markov and vertices, 90 chain, 216 Create Markov chain with named ver-Create custom vertices K2 graph, 187 tices, 49 Create custom vertices Markov chain, Create named edges and vertices K3 184 graph, 96 Create directed graph, 28 Create named edges and vertices Markov Create directed graph from .dot, 37 chain, 92 Create directed graph with named edges Create named vertices K2 graph, 53 and vertices from .dot, 112 Create named vertices Markov chain, Create directed graph with named ver-50 tices from .dot, 77 Create undirected graph from .dot, 39 Create empty directed bundled edges Create undirected graph with bundled and vertices graph, 146 edges and vertices from .dot, Create empty directed bundled vertices Create undirected graph with custom graph, 120 Create empty directed custom edges and edges and vertices from .dot, vertices graph, 208

Create .dot from graph with bundled

Create empty directed graph, 13

Create undirected graph with named

vertices from .dot, 79

Create empty directed custom vertices

graph, 178

Declaration, my_bundled_edge, 145	Get bundled vertex my_vertexes, 123
Declaration, my_bundled_vertex, 119	Get custom edge my_custom_edge, 226
Declaration, my_custom_edge, 206	Get custom vertex my_vertex, 194
Declaration, my_custom_vertex, 176	Get edge descriptors, 27
decltype(auto), 8	Get edge iterators, 26
directed graph, 10	Get edge my_bundled_edges, 152
Directed graph, create, 28	Get edge my custom edges, 214
	Get edge name, 104
$\mathrm{ed}_{-},27$	Get first vertex with name out degree,
Edge descriptor, 26	60
Edge descriptors, get, 27	Get graph name, 247
Edge iterator, 25	Get n edges, 18
Edge iterator pair, 25	Get n vertices, 16
Edge properties, 258	Get type name, 254
Edge, add, 23	Get vertex descriptors, 22
edges, 25 , 27	Get vertex my vertexes, 182
Edges, counting, 17	Get vertex name, 62
eip , 25	Get vertex names, 48
Empty directed graph with named edges	
and vertices, create, 82	Get vertices, 20
Empty directed graph with named ver-	•
tices, create, 42	get_edge_names, 89
Empty directed graph, create, 13	Graph properties, 258
Empty graph with named edges and	graphviz decode, 253
vertices, create, 84	graphviz encode, 252
Empty graph, create, 15	Has bundled edge with my_bundled_edge,
Empty undirected graph with named	159
vertices, create, 44	Has bundled vertex with my_vertex, 130
Find first bundled edge with my_bundle	edHasslgustom edge with my_custom_edge,
161	222
Find first bundled vertex with my verte	xHas custom vertex with my vertex, 190
132	Has edge with name, 100
Find first custom edge with my custom	Hagevertex with name, 56
224	header file, 13
Find first custom vertex with my vertex	ζ,
192	Install edge custom type, 207
Find first edge by name, 102	Install vertex custom type, 177
Find first vertex with name, 58	Is regular file, 256
Formed reference to void, 256	link 957
,	link, 257
get, 8, 46, 180, 212	Load directed bundled edges and ver-
Get bundled edge my_bundled_edge,	tices graph from dot, 168
163	Load directed bundled vertices graph
Get bundled vertex my bundled vertex	from dot, 139 Load directed custom edges and ver-
133	Load directed custom edges and ver-
	${\rm tices\ graph\ from\ dot,\ } 231,249$

Lond directed quetom vertices graph	my gustom odgo 206	
Load directed custom vertices graph from dot, 201	my_custom_edge, 206 my_custom_edge_declaration, 206	
Load directed graph from .dot, 37	my_custom_edge.h, 206	
Load directed graph from dot, 38	my_custom_euge.n, 200 my_custom_vertex, 176	
Load directed graph with named edges	my custom vertex declaration, 176	
and vertices from .dot, 112	my_custom_vertex.h, 176	
Load directed graph with named ver-	my_edge, 146, 209	
tices from .dot, 77	my_vertex, 178	
Load directed named edges and ver-	my_vertex declaration, 119	
tices graph from dot, 113 Load directed named vertices graph from Named edge, add, 86		
dot, 78	Named edges and vertices, create empty	
*	directed graph, 82	
Load undirected bundled edges and ver-	Named edges and vertices, create empty	
tices graph from dot, 172	graph, 84	
Load undirected bundled vertices graph	Named vertex, add, 45	
from dot, 142	Named vertices, create empty directed	
Load undirected custom edges and ver-	graph, 42	
tices graph from dot, 235, 251	Named vertices, create empty undirected	
Load undirected custom vertices graph	graph, 44	
from dot, 203	No matching function for call to clear out edges,	
Load undirected graph from .dot, 39	257	
Load undirected graph from dot, 40	node id, 257	
Load undirected graph with bundled	noexcept, 14	
edges and vertices from .dot,	noexcept, 11 noexcept specification, 14	
171 Load undirected graph with custom edge		
and vertices from .dot, 234	out_degree, 35	
Load undirected graph with named ver-	Property not found: node id, 257, 258	
tices from .dot, 79	Propery not found, 257	
Load undirected named edges and ver-	<u>. </u>	
tices graph from dot, 116	read_graphviz_new, 257	
Load undirected named vertices graph	read_graphviz_new, undefined refer-	
from $dot, 80$	$\mathrm{ence},257$	
m_, 119, 145, 176, 206	Remove edge between vertices with names, 71	
macro, 177, 207	Remove first edge with name, 108	
Markov chain with named edges and	Remove first vertex with name, 69	
vertices, create, 90	,	
Markov chain with named vertices, cre-	S, 15	
ate, 49	Save bundled edges and vertices graph	
member, 119, 145, 176, 206	to dot, 167	
	0 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
my_bundled_edge, 145	Save bundled vertices graph to dot, 138	
my_bundled_edge declaration, 145	Save custom edges and vertices graph	
my_bundled_edge declaration, 145 my_bundled_edge.h, 145	Save custom edges and vertices graph to dot, 230	
my_bundled_edge declaration, 145 my_bundled_edge.h, 145 my_bundled_vertex, 119, 120	Save custom edges and vertices graph to dot, 230 Save custom vertices graph to dot, 199	
my_bundled_edge declaration, 145 my_bundled_edge.h, 145	Save custom edges and vertices graph to dot, 230	

```
Save graph to dot, 37
                                        Vertex descriptor, 20, 23
Save graph with bundled edges and ver-
                                        Vertex descriptors, get, 21
         tices as .dot, 166
                                        Vertex iterator, 20
Save graph with custom edges and ver-
                                        Vertex iterator pair, 20
         tices as .dot, 229
                                        Vertex properties, 258
Save graph with graph name to dot,
                                        Vertex, add, 18
                                        Vertex, add named, 45
Save graph with name edges and ver-
                                        vertex custom type, 175
         tices as .dot, 109
                                        vertices, 22
Save graph with named vertices as .dot,
                                        Vertices, counting, 16
                                        Vertices, set names, 65
Save named edges and vertices graph
                                       vip , 20
         to dot, 110
Save named vertices graph to dot, 73
Save named vertices graph to dot using
         lambda C++14, 76
Save named vertices graph to dot using
         lambda function C++11, 74
Set bundled edge my bundled edge,
         165
Set bundled vertex my bundled vertexes,
Set custom edge my custom edge, 228
Set custom vertex my_vertexes, 198
Set edge name, 106
Set graph name, 246
Set vertex my vertex, 135, 196
Set vertex name, 64
Set vertex names, 66
Set vertices names, 65
static cast, 16
std::cout, 37
std::ifstream, 38
std::list, 14
std::ofstream, 37
std::pair, 24
std::vector, 14
STL, 14
Undefined\ reference\ to\ read\_graphviz\_new,
         257
undirected graph, 10
unsigned long, 16
vd, 24
```

vd , 20