

Ordinary geometry Three "axes" x, y, and zAll at right angles "Cartesian" axes (from René Descartes) Lines or directions at right angles are also called orthogonal


```
Right-handed axes
  Using your right hand
    Thumb
     Index ("first") finger y
     Middle finger
No matter how you now
 rotate your whole hand
  the axes remain right-
   handed
```


If you use your left hand

Thumb xIndex ("first") finger yMiddle finger zgive left-handed axes

No rotation of this entire set of left-handed axes will ever make it right-handed

We use right hand axes unless otherwise stated

For some point *P* in space

The corresponding

"projections" onto the

coordinate axes give

Cartesian coordinates

 x_P , y_P , and z_P , relative to the origin of the axes Sometimes written (x_P, y_P, z_P)

A vector is something with a magnitude such as a length and a direction Usually written in "bold" font e.g., G Sometimes \underline{G} or GAnd shown as an "arrow" With "length" and direction

A vector could be
the distance
and
direction
you need to walk to get
from A to B

A vector could be
A force
how hard you are
pushing
and
what direction you are

pushing

A vector could be

A velocity

how fast you are going

(speed)

e.g., the number on

your car speedometer

and

what direction you are going in e.g., on a compass

An ordinary number which has no direction is called a "scalar" Distance how hard you push speed are all scalars Scalars are in ordinary fonts Usually italic in printing

r F v

A vector has "components" along three orthogonal axes $G_{x'}$ $G_{v'}$ and G_z

We can also define vectors of unit length along each axis

i – unit vector along x

 \mathbf{j} – unit vector along \mathbf{y}

 \mathbf{k} – unit vector along z

G_{y} G_{y} **j** G_{x} **i** G_{x} G_z **k** G_z

Coordinate axes and vectors

Then we can write

 G_{x} i

G_{v} G_{ν} **j** G_{χ} i G_{x} $G_{z}\mathbf{k}$ G_z

Coordinate axes and vectors

Then we can write

$$G = G_x i + G_y j + G_z k$$

making the final vector up
by adding its vector
components

Adding vectors


```
To add vectors

graphically

connect them head to tail in any
order
```

Adding vectors

G + S G_{z}^{k} G_{y}^{k} G_{x}^{i} S_{x}^{i}

To add vectors

algebraically

add them component by

component

$$\mathbf{G} + \mathbf{S} = G_x \mathbf{i} + G_y \mathbf{j} + G_z \mathbf{k}$$

$$+ S_x \mathbf{i} + S_y \mathbf{j} + S_z \mathbf{k}$$

$$= (G_x + S_x) \mathbf{i} + (G_y + S_y) \mathbf{j} + (G_z + S_z) \mathbf{k}$$

Multiplying vectors

Two kinds of multiplications or "products" for geometrical vectors

Dot product

 $\mathbf{a} \cdot \mathbf{b}$

Gives a scalar result

Cross product

 $\mathbf{a} \times \mathbf{b}$

Gives a vector result

angle θ

Vector dot product

One formula for the dot product is $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta \equiv ab \cos \theta$

Here the "modulus" sign "| |" means we take the length of the vector

$$|\mathbf{a}| = a$$

Note that

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$$

Also

$$\mathbf{a} \cdot \mathbf{a} = a^2$$

So
$$a = \sqrt{\mathbf{a} \cdot \mathbf{a}}$$

Vector dot product

One formula for the dot product is $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta \equiv ab \cos \theta$

We can think of $|\mathbf{a}| |\mathbf{b}| \cos \theta$ as

The projection of vector **b** onto the direction of vector **a**

Multiplied by the length of a

or

The projection of vector **a** onto the direction of vector **b**Multiplied by the length of **b**

a $\pi/2$ b

Vector dot product

One formula for the dot product is $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta \equiv ab \cos \theta$

Note that

for two vectors at right angles

$$\theta = \pi / 2 \equiv 90^{\circ}$$

and

$$\cos(\pi/2) = 0$$

SO

the dot product is zero

Vector dot product

The unit vectors along the coordinate directions are all orthogonal (at right angles)

So all their dots products with one another are zero

$$\mathbf{i} \cdot \mathbf{j} = 0 \quad \mathbf{i} \cdot \mathbf{k} = 0 \quad \mathbf{j} \cdot \mathbf{k} = 0$$

$$\mathbf{j} \cdot \mathbf{i} = 0 \quad \mathbf{k} \cdot \mathbf{i} = 0 \quad \mathbf{k} \cdot \mathbf{j} = 0$$

Also, since these are unit length vectors, by definition

$$\mathbf{i} \cdot \mathbf{i} = 1$$
 $\mathbf{j} \cdot \mathbf{j} = 1$ $\mathbf{k} \cdot \mathbf{k} = 1$

Vector dot product

$$\mathbf{i} \cdot \mathbf{j} = 0 \quad \mathbf{i} \cdot \mathbf{k} = 0 \quad \mathbf{j} \cdot \mathbf{k} = 0$$

$$\mathbf{j} \cdot \mathbf{i} = 0 \quad \mathbf{k} \cdot \mathbf{i} = 0 \quad \mathbf{k} \cdot \mathbf{j} = 0$$

Forming the dot product algebraically

$$\mathbf{a} \cdot \mathbf{b} = (a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k}) \cdot (b_x \mathbf{i} + b_y \mathbf{j} + b_z \mathbf{k})$$
gives

$$\mathbf{a} \cdot \mathbf{b} = a_x b_x + a_y b_y + a_z b_z$$

which is an equivalent formula for the dot product

i

Vector dot product

The components of a vector can be found by

taking the dot product

with the unit vectors along the coordinate directions

For example

$$\mathbf{G} \cdot \mathbf{i} = \left(G_x \mathbf{i} + G_y \mathbf{j} + G_z \mathbf{k} \right) \cdot \mathbf{i} = G_x$$

Vector cross product

For two vectors

$$\mathbf{a} = a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k}$$

$$\mathbf{b} = b_{x}\mathbf{i} + b_{y}\mathbf{j} + b_{z}\mathbf{k}$$

the vector cross product is

$$\mathbf{a} \times \mathbf{b} = \mathbf{n} |\mathbf{a}| |\mathbf{b}| \sin \theta \equiv \mathbf{n} a \mathbf{b} \sin \theta$$

n is a unit vector with a direction given by the

right hand screw rule

a×b gives vector naway from you

a × b gives vector n
towards you

Right hand screw rule

Imagine you have a corkscrew
With an ordinary right-handed
thread
with its handle lined up along
vector a

Now rotate the handle so it lines up with vector **b**

The direction, in or out, that the corkscrew moved is the direction of the vector **n**

Vector cross product

Note that

$$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$$

If we have to turn clockwise to go from a to b

So the corkscrew goes "in"

So **n** points "inwards"

Then we have to turn anti-clockwise to go from **b** to **a**

So the corkscrew goes "out"
So **n** point "outwards"

Vector cross product

An equivalent algebraic formula for the vector cross product is

$$\mathbf{a} \times \mathbf{b} = (a_y b_z - a_z b_y) \mathbf{i} + (a_z b_x - a_x b_z) \mathbf{j} + (a_x b_y - a_y b_x) \mathbf{k}$$
A short-hand way of writing this is

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

which is the same as the determinant notation used with matrix algebra

