Teoria do Risco Aula 17

Danilo Machado Pires danilo.pires@unifal-mg.edu.br

https://atuaria.github.io/portalhalley

Modelos de risco Coletivo

O processo de Poisson para frequência de Sinistros

- \succ Um processo estocástico é uma família de variáveis aleatórias **indexadas** por elementos t pertencentes a determinado intervalo (temporal ou espacial).
- Intuitivamente, se uma variável aleatória é um número real que varia aleatoriamente, um processo estocástico é uma função que varia aleatoriamente.

Processo estocástico

Seja γ um conjunto qualquer de indexação então um processo será definido por $\{X_t, t \in \gamma\}$. Assim dados $\gamma = \{L, D, Le, De\}$, $\{X_t, t \in \gamma\} = \{X_L, X_D, X_{Le}, X_{De}\}$.

 \triangleright N_t pode ser o número de atendimentos em um hospital no intervalo [0,t] $(t\in[0,24])$, ou o número de acidentes no intervalo [0,S] $(s\in[0,km])$ ou N_t pode ser um modelo para o número de impactos de asteroides maiores que certo tamanho desde uma certa data de referência e etc...

Processo de Contagem

Um processo estocástico $\{N_t, t \geq 0\}$ pode ser entendido como um processo de contagem se N_t representa o número de eventos que ocorreram num intervalo de tempo (0,t] e se , para todo $t,s\geq 0$:

- $> N_0 = 0$
- $> N_t \in \mathbb{N}$
- $\gt N_t \leq N_{t+s}$
- Para s < t, $N_t N_s$ representa o número de eventos que ocorreram no intervalo de tempo (s,t].

Processo de Contagem-axiomas

1) Um processo de contagem tem incrementos independentes se os números de eventos durante intervalos disjuntos de tempo são independentes.

 N_t (número de eventos ocorridos em t) é independente de $(N_{t+s}-N_t)$ (número de eventos ocorridos no intervalo (t,t+s]).

2) A probabilidade de que ocorra algum evento no intervalo [0,t] está entre $\mathbb O$ e 1 nunca assumindo esses valores pois implicaria em certeza absoluta da não ocorrência do evento $P(N_t>0)=0$ ou certeza absoluta da ocorrência do evento $P(N_t>0)=1$. Assim:

$$\forall$$
, $t > 0$, $0 < P(N_t > 0) < 1$;

Processo de Contagem-axiomas

3)A probabilidade de que ocorra mais de um evento em um intervalo s, decresce rapidamente em relação a probabilidade de ocorrer somente um evento nesse mesmo intervalo a medida que s diminui. Tal que:

$$\forall, t > 0$$
 $\lim_{s \to 0} \frac{P(N_{t+s} - N_t > 1)}{P(N_{t+s} - N_t = 1)} = 0;$

4) $\{N_t, t \geq 0\}$ tem incrementos estacionários se a distribuição do número de eventos não depender do intervalo observado, isto é, o número de eventos no intervalo (t, t+s], tem a mesma distribuição que o número de eventos no intervalo (0,t].

$$N_{t_2+s}-N_{t_1+s}$$
 tem a mesma distribuição que $N_{t_2}-N_{t_1}$

- Em uma carteira de seguro de veículos ou residencial, a quantidade de sinistros que serão observados é um número aleatório.
- Diversas são as variáveis que podem impactar no número de ocorrências podendo dificultar a estimação exata desse valor.
- ➤ Uma alternativa largamente apresentada na literatura é a proposição de que o processo de Poisson pode modelar o processo de registro de sinistros.

- > O processo estocástico de Poisson é um processo de contagem de eventos aleatórios pontuais.
- Também conhecido como processo de "saltos", é um processo onde o próximo evento não depende do histórico acumulado de eventos aleatórios e sim somente de sua última posição atingida.
 - Processo de Markov

 \succ É dito que um processo de contagem $\{N_t, t \geq 0\}$ é um processo de Poisson homogêneo de intensidade λ , se as seguintes hipóteses estiverem satisfeitas:

a)
$$N_0 = 0$$

b) O processo tem incrementos estacionários e independentes:

c) Se
$$\forall t, P(N_{t,t+s} = 1) = \lambda s + o(s)$$

$$\Rightarrow \lim_{s \to 0} \frac{o(s)}{s} = 0$$

d) Se
$$\forall t, P(N_{t,t+s} > 1) = o(s)$$

$$\Rightarrow \lim_{s \to 0} \frac{o(s)}{s} = 0$$

Da condição c) está relacionada a probabilidade de ocorrer um evento no intervalo s decrescer em relação a s a uma taxa constante λ .

$$P(N_{t,t+s} = 1) = \lambda s + o(s)$$

$$\lim_{s \to 0} \frac{P(N_{t,t+s} = 1)}{s} = \lim_{s \to 0} \frac{\lambda s}{s} + \lim_{s \to 0} \frac{o(s)}{s}$$

$$\lim_{S \to 0} \frac{P(N_{t,t+S} = 1)}{S} = \lambda$$

Da condição d) estabelece que será nula a probabilidade de ocorrer mais de um evento em um intervalo de tempo s infinitesimal:

$$P(N_{t,t+s} > 1) = o(s)$$

$$\lim_{s \to 0} \frac{P(N_{t,t+s} > 1)}{s} = \lim_{s \to 0} \frac{o(s)}{s} = 0$$

A medida que \mathbf{s} se aproxima de $\mathbf{0}$, a probabilidade de ocorrer mais que um evento nesse intervalo decresce rapidamente tendendo a $\mathbf{0}$.

 \succ Em consequência dessas hipóteses, $\{N_t, t>0\}$ é um processo de Poisson com média λt , para todo t>0

$$P(N_t = n) = \frac{e^{-\lambda t} (\lambda t)^n}{n!}, \qquad n = 0,1,2,...$$

$$E(N_t) = \lambda t = var(N_t), \qquad M_{N_t}(r) = e^{\lambda t(e^r - 1)}$$

Por conveniência, seja t um valor no tempo após o tempo \mathbb{O} , então o intervalo (0,t] tem amplitude t, e o intervalo (t,t+s] tem amplitude s.

 $P(N_s = n) = P(\mathbf{n} \text{ ocorr} \hat{\mathbf{e}} n \text{ cias em um intervalo de tempo de tamanho } \mathbf{s}).$

-
$$P(N_{t+s} = 0) = P(\mathbf{0} \text{ ocorrências no intervalo de tempo } (0, t+s])$$

$$P(N_{t+s} = 0) = P(0 \text{ ocorrências no intervalo de tempo } (0,t] \text{ e } 0 \text{ ocorrências no intervalo } (t,t+s])$$

$$[0,t+s]$$

$$[t,t+s]$$

Considerando que o processo tem incrementos estacionários e independentes temos que:

$$P(N_{t+s} = 0) = P(N_t = 0)P(N_s = 0)$$

$$P(N_{t+s} = 0) = P(N_t = 0)\{1 - [P(N_s = 1) + P(N_s > 1)]\}$$

Adicionalmente ao se considerara as hipóteses (c) e (d), tem-se:

$$P(N_{t+s} = 0) = P(N_t = 0)\{1 - [\lambda s + o(s) + o(s)]\}\$$

Logo:

$$P(N_{t+s} = 0) = P(N_t = 0) - \lambda s P(N_t = 0) - P(N_t = 0)[o(s) + o(s)]$$

$$P(N_{t+s} = 0) - P(N_t = 0) = -\lambda s P(N_t = 0) - P(N_t = 0)[o(s) + o(s)]$$

$$P(N_{t+s} = 0) - P(N_t = 0) = -\lambda s P(N_t = 0) - P(N_t = 0)[o(s) + o(s)]$$

Ao se dividir por s, ambos os lados da equação, chegamos a:

$$\frac{P(N_{t+s}=0) - P(N_t=0)}{S} = -\lambda P(N_t=0) - P(N_t=0) \frac{[o(s) + o(s)]}{S}$$

Quando $s \to 0$

$$\frac{dP(N_t=0)}{dt}=-\lambda P(N_t=0)$$

Trata-se de uma equação diferencial ordinária de primeira ordem.

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \frac{df(x)}{dx}$$

$$\frac{dP(N_t = 0)}{P(N_t = 0)} = -\lambda dt$$

$$\int (P(N_t = 0))^{-1} dP(N_t = 0) = \int -\lambda dt$$

$$ln P(N_t = 0) = -\lambda t$$

Logo

$$P(N_t = 0) = e^{-\lambda t}$$

$$P(N_{t+s} = 1) = P(N_t = 1)P(N_s = 0) + P(N_t = 0)P(N_s = 1)$$

$$P(N_{t+s} = 1) = P(N_t = 1)[1 - P(N_s = 1) - P(N_s > 1)] + P(N_t = 0)P(N_s = 1)$$

$$P(N_{t+s} = 1) = P(N_t = 1)[1 - P(N_s = 1) - P(N_s > 1)] + P(N_t = 0)P(N_s = 1)$$

$$P(N_{t+s} = 1) = P(N_t = 1)[1 - \lambda s - o(s) - o(s)] + P(N_t = 0)[\lambda s + o(s)]$$

$$P(N_{t+s} = 1) = P(N_t = 1) - P(N_t = 1)\lambda s - P(N_t = 1)[o(s) + o(s)] + P(N_t = 0)\lambda s + P(N_t = 0)o(s)$$

$$P(N_{t+s} = 1) - P(N_t = 1) = -P(N_t = 1)\lambda s - P(N_t = 1)[o(s) + o(s)] + P(N_t = 0)\lambda s + P(N_t = 0)o(s)$$

Dividindo ambos os lados por s tem-se:

$$\frac{P(N_{t+s}=1) - P(N_t=1)}{S} = -P(N_t=1)\lambda - \frac{P(N_t=1)[o(s) + o(s)]}{S} + P(N_t=0)\lambda + \frac{P(N_t=0)o(s)}{S}$$

Para $s \to 0$

$$\frac{dP(N_t = 1)}{dt} = -P(N_t = 1)\lambda + P(N_t = 0)\lambda$$

$$\frac{dP(N_t = 1)}{dt} = -P(N_t = 1)\lambda + P(N_t = 0)\lambda$$

Como $P(N_t=0)=e^{-\lambda t}$, temos a seguinte equação diferencial linear, de 1º ordem com coeficientes constantes:

$$\frac{dP(N_t = 1)}{dt} = -P(N_t = 1)\lambda + \lambda e^{-\lambda t}$$
$$\frac{dP(N_t = 1)}{dt} + P(N_t = 1)\lambda = \lambda e^{-\lambda t}$$

Fator de integração $e^{\lambda t}$

$$\frac{e^{\lambda t}}{dt} \frac{dP(N_t = 1)}{dt} + \frac{e^{\lambda t}}{dt} P(N_t = 1) \lambda = \frac{e^{\lambda t}}{2} \lambda e^{-\lambda t}$$

$$\frac{d[P(N_t = 1)e^{\lambda t}]}{dt} = e^{\lambda t} \lambda e^{-\lambda t}$$

$$\frac{d[P(N_t = 1)e^{\lambda t}]}{dt} = e^{\lambda t} \lambda e^{-\lambda t}$$

$$\int d\left[\frac{P(N_t=1)e^{\lambda t}}{}\right] = \int \lambda dt$$

$$P(N_t = 1)e^{\lambda t} = \lambda t$$

$$P(N_t = 1) = \lambda t \ e^{-\lambda t}$$

$$\frac{dP(N_t = 0)}{dt} = -P(N_t = 0)\lambda \qquad \rightarrow P(N_t = 0) = \frac{(\lambda t)^0 e^{-\lambda t}}{0!}$$

$$\frac{dP(N_t = 1)}{dt} = -P(N_t = 1)\lambda + P(N_t = 0)\lambda \rightarrow P(N_t = 1) = \frac{(\lambda t)^1 e^{-\lambda t}}{1!}$$

De forma similar para se encontrar n ocorrências no intervalo de tempo t basta resolver a equação diferencial:

$$\frac{dP(N_t = n)}{dt} = -P(N_t = n)\lambda + P(N_t = n - 1)\lambda \rightarrow P(N_t = n) = \frac{(\lambda t)^n e^{-\lambda t}}{n!}$$

$$P(N_t = n) = \frac{(\lambda t)^n e^{-\lambda t}}{n!}$$

 \succ Em consequência dessas hipóteses, $\{N_t, t>0\}$ é um processo de Poisson Homogêneo com média λt , para todo t>0

$$P(N_t = n) = \frac{e^{-\lambda t} (\lambda t)^n}{n!}, \qquad n = 0,1,2,...$$

 \succ Processo não Homogêneo, λ varia no tempo, e não estacionário.

> Exemplo 1

Suponha que a média do número de chamadas telefônicas que uma central telefônica recebe é de 30 chamadas por hora.

a) Qual a probabilidade que não tenha nenhuma chamada em um período de 3 minutos?

b) Qual a probabilidade que ocorra mais que 5 chamadas em um intervalo de 5 minutos?

$$\lambda = \frac{30}{60} = 0.5/m$$

a)

$$P(N_3 = 0) = \frac{e^{-0.5 \times 3} (0.5 \times 3)^0}{0!} = 0.223$$

b)

$$P(N_5 > 5) = 1 - \sum_{n=0}^{5} \frac{e^{-0.5 \times 5} (0.5 \times 5)^n}{n!} = 0.42$$

