AutoML: Algorithm Selection Overview and Motivation

Bernd Bischl Frank Hutter <u>Lars Kotthoff</u> Marius Lindauer Joaquin Vanschoren

Algorithm Selection

Given a problem, choose the best algorithm to solve it. [Rice. 1975]

Algorithm Selection

More formally

Let

- ullet $p(\mathcal{D})$ be a probability distribution over datasets $\mathcal{D} \in \mathbf{D}$,
- ullet P a portfolio of algorithms $\mathcal{A} \in \mathbf{P}$, and
- $c: \mathbf{P} \times \mathbf{D} \to \mathbb{R}$ be a cost metric

the per-instance algorithm selection problem is to obtain a mapping $s: \mathcal{D} \mapsto \mathcal{A}$ such that

$$\underset{s}{\operatorname{arg\,min}} \int_{\mathcal{D}} c(s(\mathcal{D}), \mathcal{D}) p(\mathcal{D}) \, d\mathcal{D}$$

Motivation: Performance Differences [Strang et al. 2018] |

Motivation: Performance Differences [Strang et al. 2018] |

AutoML: Algorithm Selection

Algorithm Selection

Bernd Bischl Frank Hutter <u>Lars Kotthoff</u> Marius Lindauer Joaquin Vanschoren

Algorithm Selection

Algorithm Portfolios

- instead of a single algorithm, use several (hopefully complementary) algorithms
- idea from Economics minimize risk by spreading it out across several securities
- same here minimize risk of algorithm performing poorly
- in practice often constructed from algorithms known to perform well
- idea similar to ensembles or boosting leverage strengths and alleviate weaknesses, but learn which algorithm to choose for a particular dataset

Algorithms

"algorithm" used in a very loose sense

- different learners
- different parameterizations of the same learner
- different ensembles, boosted learners
- different machine learning workflows/pipelines
- . . .

Evaluation of Portfolios

- single best algorithm
 - algorithm with the best performance across all datasets
 - ▶ lower bound for performance of portfolio hopefully we are better!
- virtual best algorithm
 - choose the best algorithm for each dataset
 - corresponds to oracle predictor or overhead-free parallel portfolio
 - upper bound on portfolio performance

Parallel Portfolios

Why not simply run all algorithms in parallel?

- not enough resources may be available/waste of resources
- algorithms may be parallelized themselves
- memory contention
- ...

Building an Algorithm Selection System

- most approaches rely on (meta-)machine learning
- train with representative data, i.e. performance of all algorithms in portfolio on representative datasets
- evaluate performance on separate set of datasets
- potentially large amount of prep work
- existing repositories of machine learning performances (e.g. OpenML) can help

Choosing Datasets

- we want selectors that generalize, i.e. good for more than one dataset
- split datasets into training set (which we learn a selector on) and test set (which we only evaluate performance on)
- need to balance easy/hard datasets in both sets
- may need a lot of data

Key Components of an Algorithm Selection System

- feature extraction
- performance model
- prediction-based selector

optional:

- presolver
- secondary/hierarchical models and predictors (e.g. for feature extraction time to avoid spending a long time for small performance gains)

AutoML: Algorithm Selection Features

Bernd Bischl Frank Hutter <u>Lars Kotthoff</u> Marius Lindauer Joaquin Vanschoren

Algorithm Selection

Features

- relate properties of datasets to algorithm performance
- relatively cheap to compute must be cheaper than running the algorithm to see what its performance is
- often specified by domain expert
- syntactic and information-theoretic analyze dataset
- probing run an algorithm for short time or on subset of data

Syntactic and Information-Theoretic Features

- number of binary/numeric/categorical features
- number of classes
- class entropy
- skewness of classes
- fraction of missing values
- correlation between features and target
- . . .

Probing Features (Landmarkers)

- performance of majority class/mean value predictor
- decision stump performance
- simple rule model performance
- performance of algorithm of interest on 1% of data
- . . .

ightarrow usually leads to much better results that using just syntactic and information-theoretic features

No Features

- use deep learning to process dataset or problem instance as-is
- no need for expert-designed features
- only preliminary applications so far, performance not good, no widespread adoption yet

Aside: Algorithm Features

- can characterize algorithm in addition to datasets
- allows to relate performance to specific aspects of an algorithm rather than black boxes
- for example size of code base, properties of abstract syntax tree. . .
- ongoing work

What Features Do We Need in Practice?

- trade-off between complex features and complex models
- in practice, very simple features can perform well
- \bullet often only few features of a set are needed (e.g. 5 out of ${>}100)$
- in the end, whatever works best

AutoML: Algorithm Selection

Performance Models

Bernd Bischl Frank Hutter <u>Lars Kotthoff</u> Marius Lindauer Joaquin Vanschoren

Algorithm Selection

Types of Performance Models

- models for entire portfolios
- models for individual algorithms
- models that are somewhere in between (e.g. pairs of algorithms)
- ightarrow for each of these, many different machine learning approaches are suitable

Models for Entire Portfolios

- predict the best algorithm in the portfolio (e.g. classifier to use)
- alternatively: cluster in meta-feature space and assign best algorithm to each cluster optional (but important):
 - attach a "weight" during learning (e.g. the difference between best and worst algorithm)
 to bias model towards the "important" datasets
 - special loss metric

Models for Individual Algorithms

- predict the performance for each algorithm separately
- combine the predictions to choose the best one
- for example: predict accuracy, choose algorithm with highest predicted accuracy

Hybrid Models

- for example: consider pairs of algorithms to take relations between them into account
- for each pair of algorithms, learn model that predicts which one has better performance, or predicts performance difference
- ...or collaborative filtering approaches

Types of Performance Models

Types of Predictions/Algorithm Selectors

- best algorithm (and its performance)
- ullet n best algorithms ranked
- ullet ensemble of n best algorithms

Time/Frequency of Prediction

- one-shot
 - select algorithm(s) once
 - want to process single dataset and choose the best approach
- multi-shot
 - continuously monitor dataset(s) features and/or performance
 - ▶ for example on data streams or to process sets of datasets

AutoML: Algorithm Selection Bonus: Combinatorial Problems

Bernd Bischl Frank Hutter <u>Lars Kotthoff</u> Marius Lindauer Joaquin Vanschoren

Motivation

- Algorithm Selection applied in many other domains
- success and performance improvements for combinatorial and optimization problems in Al dwarfs those in machine learning
- important application area of AI facilitating cross-disciplinary collaborations and advances

Motivation: Performance Differences [Barry et al. 2014]

Motivation: Leveraging the Differences [Xu et al. 2008]

Algorithms [Huberman et al. 1997]

- constraint solvers
- search strategies
- modeling choices
- different types of consistency

Features

- number of variables, number of clauses/constraints/...
- ratios
- order of variables/values
- connectivity clause/constraints-variable graph or variable graph
- number of nodes/propagations within time limit
- estimate of search space size
- tightness of problem/constraints
- . .

Example System – SATzilla [Xu et al. 2008]

- portfolio of 7 SAT solvers, trained on 4811 problem instances
- syntactic (33) and probing features (15)
- ridge regression to predict log runtime for each solver, choose the solver with the best predicted performance
- later version uses random forests to predict better algorithm for each pair, aggregation through simple voting scheme
- pre-solving, feature computation time prediction, hierarchical model, selection of algorithms to include in portfolio based on overall performance
- won several competitions

Benchmark library — ASlib [Bischl et al. 2015]

- https://github.com/coseal/aslib_data
- SAT, CSP, QBF, ASP, MAXSAT, OR, ML...
- includes data used frequently in the literature that you may want to evaluate your approach on
- more scenarios in the pipeline
- http://aslib.net

Tools

```
autofolio https://bitbucket.org/mlindauer/autofolio/
LLAMA https://bitbucket.org/lkotthoff/llama
SATzilla http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/
```

(Much) More Information [Kotthoff. 2014]

	Algorithm Selection Literature Summary Last update 21 November 2018						click headings to s slick stations to expe		
	citation	domain	features	predict what	predict how	predict when	portfelio	P	
- 1	anales 1860s, Lanufer 1860a	search	past performance	alour/from	hand staffed and learned sales	office and online	Amanio	,	
0	arbonel et al. 1991	planning	problem domain features, search statistics	control rules	explanation-based rule construction	anine	dynamic	1	
0	neith and DeJong 1992	planning	problem domain features, search statistics	control rules	probabilistic rule construction	onine	dynamic		
	mith and Settiff 1992	software design	features of abstract representation	algorithms and data structures	sinulated annealing	affine	Matic		
	ha 1992	machine learning	Instance features	algorithm	learned rules	office	static		
	racky 1983	machine learning	instance and algorithm features	algorithm	hand-crafted rules	office	static		
	amel et al. 1903	differential equations	pasi performance, instance features	algorithm	hand-crafted rules	offine	static		
	Seron 1960b, Mileton 1960a, Mileton 1980	CSP	runtime performance	algorithm	hand-craffed and learned rules	office	dynamic		
	anii 1986	software design	instance features	algorithms and data structures	Farre-based knowledge base	office	Matic		
	sang et al. 1995	CSP	instance features				Madic		
	TRANS 1985	software design	runtime performance	algorithms, data structures and their parameters	etatistical model	affine	Madic		
	iserawarana et al. 1995, Joshi et al. 1995	differential equations	inelance features	native performance	Dayesian belief propagation, nautal nets	offine	state		
	contract at al. 1999	CSP	search statistics	switch algorithm?	hand-craffed rules	online	Madic, Madic order		
	See and Minten 1999	SAT, QSP	probing	sustine performance	hand-craffed rules	anine	MARKE		
	akkout et al. 1990	CSP	search statistics	switch algorithm?	hand-craffed rules	anine	MARKE		
	ubernas et al. 1997	graph colouring	past performance	resource aflocation	etatistical model	office	MARKE		
	omes and Seiman 1997b, Gorses and Seiman 1997s	CSP	problem size and past performance	algorithm	estistical model	office	Made		
	ook and Marriell 1987	parallel search	probing	set of sourch strategies	decision trees, Bayesian classifier, nearest neighbour, neural net	onine	state		
	HR. 1987, Fire 1998	planning	part performance	resource afocation	statistical model, regression	office	Matic		
U	obios and Lemaitre 1995	branch and bound	probing	sustine performance	hand-eraffed rules	online	Matic		
	anew, et al. 1999	vehicle routing problem.	rundime performance	algorithm	penetic algorithms	office	static		
	one et al. 1999	planning	Instance Features	resource afocation	finear regression	office	static		
	mashima-Marin et al. 1999	scheduling	instance and search features	algorithm	penetic algorithms	office	dynamic		
	ffson et al. 2000	seftware design	Inelance Features	data structures	nearest neighbour	office	Matic		
	eck and Pox 2000	jab shap scheduling	inetance feature changes during search	algorithm scheduling policy	hand-eraffed rules	online	state		
	randi and Scares 2000	classification	past performance	tanking	distribution model	office	Matic		
	agoudakie and Lithnan 2000	order salection, sorting	inetance features	semaining cost for each sub- problem	HDP	onine	Madic		
	ilino 2000	CSP	probleg	ensident produce to teas	statistical model	office	Matic		
	Fahringer et al. 2000	classification	inelance features, probing	algorithm	0 different classifiers	office	Matic		
	skunega 2000	197	pasi performance	resource afocation	performance simulation for different allocations	effine	state		
	cerve and Brazeli 2000	machine learning	inetance features	tanking	rearest neighbour	office	Matic		
	omes and Seiman 2001	CSP, mixed integer programming	part performance	algorithm	statistical model	office	dynamic		
p	patein and Preuder 2001, Egistein et al. 2002, Egistein et al. 2008, Egistein and abouto 2011	CEP	variable characteristics	algorithm	weights, hand-crafted rules	office and online	dynamic		
	sgoudskie and Litman 2001	DPLL branching rules	instance features	semaining coef for each sub- problems	HDP	onine	static		
	areyek 2001 nevitir et al. 2001	eptimization CRP	search statistics tratance and tratance penerator	expected utility of algorithm. nucleon performance, restart	reinforcement learning Bayesian model	offine and online	Mate		

http://larskotthoff.github.io/assurvey/