Chris Agia

cagia@cs.stanford.edu
www.chrisagia.com
github.com/agiachris
linkedin.com/agiachris

EDUCATION

Stanford University

2021 - Present

Doctor of Philosophy in Computer Science

Advisors: Jeannette Bohg, Marco Pavone

University of Toronto

2016 - 2019, 2020 - 2021

Bachelor of Applied Science in Engineering Science, Robotics

Advisor: Prof. Florian Shkurti. Graduation with Honours, Dean's Honour List 2018 – 2021

RESEARCH EXPERIENCES

NASA Jet Propulsion Laboratory, California Institute of Technology

Pasadena, CA, USA 2023-06 – Present

Visiting Researcher advised by Dr. Issa Nesnas and Dr. Saptarshi Bandyopadhyay Topics: autonomy for deep space exploration; Section 347: mobility and robotic systems

Autonomous Systems Lab, Stanford University

Stanford, CA, USA

Graduate Researcher advised by Prof. Marco Pavone and Dr. Edward Schmerling

2022-03 - Present

Topics: (focus) foundation models and safety for robotics [Paper]; (involved) neural network uncertainty quantification, out-of-distribution detection, deep offline reinforcement learning

Interactive Perception and Robot Learning Lab, Stanford University

Stanford, CA, USA

Graduate Researcher advised by Prof. Jeannette Bohg

2022-01 - Present

Topics: (focus) long-horizon robot planning with learned skills [Paper, Project page, Code], task and motion planning with large language models [Paper, Project page]; (involved) deep reinforcement learning, optimization

Stanford Vision and Learning Lab, Stanford University

Stanford, CA, USA

Graduate Researcher advised by Prof. Jiajun Wu

Topics: neuro-symbolic propositional logic models for AI task planning

2021-09 - 2022-02

Robot Vision and Learning Lab, Vector Institute & University of Toronto

Undergraduate Researcher advised by Prof. Florian Shkurti

Toronto, Canada 2020-05 - 2021-05

Topics: learning to plan in symbolic 3D scene graphs with graph neural networks [Paper, Project page, Code]

Mobile Robotics Lab, MILA & McGill University

Montreal, QC, Canada

Research Intern co-supervised by Prof. Gregory Dudek and Prof. David Meger

2020 - 01 - 2020 - 05

Topics: depth prediction for visual SLAM [Paper], visual representation learning for self-driving control [Paper]

Noah's Ark Lab, Huawei Research Canada

Markham, ON, Canada

Deep Learning Research Intern, perception and localization with Dr. Bingbing Liu

2019-05 - 2020-05

Topics: 3D semantic understanding for scene reconstruction [Paper], road estimation and SLAM [Paper]

Autonomous Systems and Biomech. Lab, University of Toronto

Toronto, ON, Canada

Research Intern supervised by Prof. Goldie Nejat

2018 - 05 - 2018 - 08

Topics: sim2real transfer of deep reinforcement learning based autonomous navigation policies [Paper]

Industry Experiences

Mixed Reality and Robotics, Microsoft

Redmond, WA, USA

Software Engineering Intern on the Scene Understanding and Data Teams (HoloLens)

2021 - 05 - 2021 - 08

Topics: bridging multi-agent reinforcement learning scenarios into mixed reality environments

Cloud, Google

San Francisco, CA, USA

Software Engineering Intern building ABI simulators with the Istio Networking Team

2020-05 - 2020-08

Clear Ventures Deeptech Fellowship Awarded to promising PhD candidates and post-docs that aspire to build deep tech companies	2023
Stanford School of Engineering Fellowship, Computer Science Awarded to outstanding students pursuing doctoral degrees in computer science and engineering	2021
Ontario Engineering Competition Awarded first prize at Toronto's district and Ontario's provincial programming competitions	2019
NSERC Undergraduate Student Research Award Awarded to undergraduate science and engineering students on the basis of research aptitude	2018
President's Scholarship Program Awarded to top engineering candidates pursuing studies at the University of Toronto	2016
Dudications	

PUBLICATIONS

Refereed Conference Papers

- [1] C. Agia, S. Bandyopadhyay, G. C. Vila, I. Aenishanslin, S. Ardito, Lorraine. Fesq, M. Pavone, and I. A. D. Nesnas, "Modeling trades for the design of deep space autonomous spacecraft and simulators," *IEEE Conference on Aerospace (AeroConf)*, 2023, Accepted.
- [2] C. Agia, T. Migimatsu, J. Wu, and J. Bohg, "Stap: Sequencing task-agnostic policies," in 2023 IEEE International Conference on Robotics and Automation (ICRA), 2023, pp. 7951–7958. DOI: 10.1109/ ICRA48891.2023.10160220.
- [3] C. Agia, K. M. Jatavallabhula, M. Khodeir, O. Miksik, V. Vineet, M. Mukadam, L. Paull, and F. Shkurti, "Taskography: Evaluating robot task planning over large 3d scene graphs," in *Proceedings of the 5th Conference on Robot Learning (CoRL)*, ser. Proceedings of Machine Learning Research, vol. 164, PMLR, 2022, pp. 46–58.
- [4] R. Cheng, C. Agia, F. Shkurti, D. Meger, and G. Dudek, "Latent attention augmentation for robust autonomous driving policies," in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021, pp. 130–136. DOI: 10.1109/IROS51168.2021.9636449.
- [5] R. Cheng, C. Agia, Y. Ren, X. Li, and L. Bingbing, "S3cnet: A sparse semantic scene completion network for lidar point clouds," in *Proceedings of the 2020 Conference on Robot Learning (CoRL)*, ser. Proceedings of Machine Learning Research, vol. 155, PMLR, 2021, pp. 2148–2161.
- [6] R. Cheng, C. Agia, D. Meger, and G. Dudek, "Depth prediction for monocular direct visual odometry," in 2020 17th Conference on Computer and Robot Vision (CRV), IEEE Computer Society, 2020, pp. 70–77.

Refereed Journal Papers

- [1] K. Lin, C. Agia, T. Migimatsu, M. Pavone, and J. Bohg, "Text2motion: From natural language instructions to feasible plans," *Autonomous Robots, Special Issue: Large Language Models in Robotics*, 2023. DOI: 10.1007/s10514-023-10131-7.
- [2] A. Elhafsi, R. Sinha, C. Agia, E. Schmerling, I. A. D Nesnas, and M. Pavone, "Semantic anomaly detection with large language models," *Autonomous Robots, Special Issue: Large Language Models in Robotics*, 2023. DOI: 10.1007/s10514-023-10132-6.
- [3] Y. Ren, B. Liu, R. Cheng, and C. Agia, "Lightweight semantic-aided localization with spinning lidar sensor," *IEEE Transactions on Intelligent Vehicles*, vol. 8, no. 1, pp. 605–615, 2021. DOI: 10.1109/TIV.2021.3099022.
- [4] H. Hu, K. Zhang, A. H. Tan, M. Ruan, C. Agia, and G. Nejat, "A sim-to-real pipeline for deep reinforcement learning for autonomous robot navigation in cluttered rough terrain," *IEEE Robotics and Automation Letters*, vol. 6, no. 4, pp. 6569–6576, 2021. DOI: 10.1109/LRA.2021.3093551.

Refereed Workshop Papers

- [1] A. Elhafsi, R. Sinha, C. Agia, E. Schmerling, I. A. D Nesnas, and M. Pavone, "Semantic anomaly detection with large language models," in *Robotics: Science and Systems Workshops (RSS)*, 2023. [Online]. Available: https://sites.google.com/view/rss2023-safe-autonomy/accepted-papers?authuser=0.
- [2] K. Lin, C. Agia, T. Migimatsu, M. Pavone, and J. Bohg, "Text2motion: From natural language instructions to feasible plans," in *International Conference on Robotics and Automation Workshops (ICRA)*, 2023. [Online]. Available: https://openreview.net/pdf?id=M1yTyG5P7C1.

Thesis Papers

[1] C. Agia and F. Shkurti, "Contextual graph representations for task-driven 3d perception and planning," Undergraduate Dissertation, University of Toronto, Toronto, ON, 2021. [Online]. Available: https://drive.google.com/file/d/1LjTdgwuiJa-gIiVbbqj9vh-qoEZgqkb_/view?usp=sharing.

INVITED TALKS

Robot Vision and Learning Lab, UofT. Task and motion planning with skills and language models	2023-07
Facebook AI Research. Taskography: Evaluating robot task planning over large 3d scene graphs	2021-07
Microsoft Research. Robot task planning in structured world models	2021-07
Embodied AI Lab, MILA. Contextual graph representations for task-driven 3d planning	2021-06

PATENTS

- Agia, C.G., Cheng, R., Ren, Y., Liu, B. (2022). Systems and Methods for Generating a Road Surface Semantic Segmentation Map from a Sequence of Point Clouds (U.S. Application No. 17/676,131). U.S. Patent and Trademark Office.
- Cheng, R., Agia, C.G., Ren, Y., Liu, B. (2022). Methods and Systems for Semantic Scene Completion for Sparse 3D Data (U.S. Application No. 17/492,261). U.S. Patent and Trademark Office.

COMMUNITY SERVICE AND LEADERSHIP

Robotics Team Advisor, Mission San Jose High School

2023-09 - Present

Coaching the Mission San Jose robotics team as they prepare to compete in the FIRST Tech Challenge 2024

Stanford AI Salon, Stanford University

2021-10 - Present

Organizer of Stanford's AI Salon, a platform facilitating open-ended discussion between graduate students, industry, and academic leaders on contemporary ML & AI topics and their societal implications

Stanford CS Mentorship Program, Stanford University

2021-10 - Present

Advising students from underrepresented and minority groups to lead fruitful careers in computer science research

Frosh Scholars Mentorship Program, Stanford University

2021 - 10 - 2022 - 07

Mentoring first generation college students towards balanced progress in academics, career and well-being

Pro Bono Research Mentoring

2021-01 - Present

Guided three driven undergraduate research students through to applications at top graduate engineering schools

NSight Student Mentorship Program, University of Toronto

2018-09 - 2019-05

Provided academic, social and personal support to first and second year Engineering Science students

Professional Service and Teaching

Reviewer for RSS, CoRL, ICRA, IROS, RA-L, AeroConf, ISER

Teaching assistant for Stanford AA174A: Principles of Robot Autonomy 1

SKILLS

 $Languages: \ (\textit{Proficient}) \ Python, \ C/C\#/C++, \ MATLAB, \ Rust, \ \LaTeX , \ Bash-(\textit{Working}) \ Java, \ Assembly \ Languages \ Assembly \ A$

Tools: Git, Linux/Unix, Unity, Docker, Wasmtime (WebAssembly), Kubernetes

Libraries: PyTorch, TensorFlow, ROS, NumPy, ml-agents, PCL, OpenCV, SciPy, scikit-learn, Pandas, Jupyter