Minimum Spanning Trees

Minimum Spanning Tree Problem

• Input : G(V, E)

$$c: E \to \mathbb{N}$$

• Output : $T \subseteq E$ such that G(V, T) is connected and $\sum_{e \in T} c(e)$ is minimised.

Minimum Spanning Tree Problem

• Input : G(V, E)

$$c: E \to \mathbb{N}$$

• Output : $T \subseteq E$ such that G(V, T) is connected and $\sum_{e \in T} c(e)$ is minimised.

Can be solved using greedy strategy

Kruskal's Algorithm

• Insert edges in order of increasing cost so that no cycles are formed.

Prim's Algorithm

- Start with a root node s and try to greedily grow a tree from s outward.
- At each step, add the node that can be attached as cheaply as possible to the partial tree we already have.

Kruskal's Algorithm

$$A = \emptyset$$

Add each vertex v to a separate component of A - O(n)

Sort the edges of E by weight $-m \log m'$

For each edge (u,v) in order

if u and v are not in the same component - o(m) + mus

$$A = A \cup \{u, v\}$$

Kruskal's Algorithm

Implementation and Running Time:

- sort the edges
- checking whether two elements are in the same component and merge (O(log n) time using Union Find data structure)

$$O(n + m \log m + m \log n) = m \log n + n$$

Prim's Algorithm

```
For each u \in V
      key[u] = \infty
      \pi[u] = NIL
key[r] = 0
Q = V
while Q \neq \emptyset
      u = ExtractMin(Q), Add(u, \pi(u))
      For each v \in Adj[u]
             if v \in Q and w(u,v) < key[v]
                 \pi[v] = u
                 key[v] = w(u,v)
```

Paim 2s Kruskal's Algorithm

Implementation and Running Time:

- Find the minimum element from Q (n times)
- Update the value of key (m times)

Prim's Kruskal's Algorithm

Implementation and Running Time : Using binary heap

- Find the minimum element from Q (n times) n log n
- Update the value of key (m times) m log n
 - 0((m+n) log n)

Rruskal's Algorithm

Implementation and Running Time : Using Fibonacci heap

- Find the minimum element from Q (n times) n log n
- Update the value of key (m times) m
 - O(m+n log n) Fib haps $O((m+n)\log n) Binary haps$

Proof of correctness

- some edges are always safe to be added to a MST

Proof of correctness

Cut Property

- Assume all edge costs are distinct
- Let $S \subset V, S \neq \emptyset$

Every MST contains the edge e

(S, VIS)
Let e=(u,v) be the mud min edge across the cut.
Let T be a sp-tree that does not contain e

Optimality of Prim's. It is enough to drow sub. edge solded safeby algo is Lit (u,v) be an edge addel. u E alredy computed partial Solution, S. (UN) in the min-cut edge across (S, V\S). > (un) is safe.

Optimelity of Kouskel's. (UIV) - edje addedthat me S: vution from u in the partial sot. Laws of Sols).