WHAT IS CLAIMED IS:

- 1. A heat-sensitive recording material having a support and a heat-sensitive recording layer, which contains a diazonium salt compound and a coupler compound that reacts with the diazonium salt to develop a color, wherein the recording material contains an oxonol dye.
- A heat-sensitive recording material according to claim
 wherein the oxonol dye is represented by the following
 formula (1):

$$R^{3}$$
 G G CH (CH=CH) G G R^{4}
N O HO N
 R^{1} R^{2} (1)

wherein in formula (1), R¹, R², R³ and R⁴ represent independently an alkyl group, an aryl group, a substituted aryl group or a COOR group (wherein R represents a hydrogen atom, an alkyl group or an aryl group); and n represents 0, 1 or 2.

3. A heat-sensitive recording material according to claim 2, wherein R^1 and R^2 in formula (1) are a substituted aryl group having a substituent with a dissociable proton or a salt thereof.

- 4. A heat-sensitive recording material according to claim
 1, wherein the diazonium salt compound is contained in
 microcapsules.
- A heat-sensitive recording material according to claim
 wherein the diazonium salt compound is contained in
 microcapsules.
- A heat-sensitive recording material according to claim
 wherein the diazonium salt compound is contained in
 microcapsules.
- 7. A heat-sensitive recording material according to claim
 1, wherein the diazonium salt compound is represented by the following formula (2):

$$R^{5}$$
 N
 N^{-1}
 N^{-1}

wherein in formula (2), R⁵ and R⁶ represent independently a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aryl group, provided that R⁵ and R⁶ may be the same or different as long as they are not both hydrogen atoms at the same time; R⁷ represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or

unsubstituted aryl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a substituted or unsubstituted alkylthio group, a substituted or unsubstituted arylthio group, a halogen atom, or a substituted amino group; X represents an acid anion; and n represents an integer of 1 to 4.

8. A heat-sensitive recording material according to claim
7, wherein the oxonol dye is represented by the following
formula (1):

wherein in the above formula (1), R^1 , R^2 , R^3 and R^4 represent independently an alkyl group, an aryl group, a substituted aryl group or a COOR group (wherein R represents a hydrogen atom, an alkyl group or an aryl group); and n represents 0, 1 or 2.

- 9. A heat-sensitive recording material according to claim 8, wherein R^1 and R^2 in formula (1) are a substituted aryl group having a substituent with a dissociable proton or a salt thereof.
- 10. A heat-sensitive recording material according to claim 7, wherein the diazonium salt compound is contained in

microcapsules.

- 11. A heat-sensitive recording material according to claim 1, wherein the oxonol dye is contained in a layer containing the diazonium salt compound.
- 12. A heat-sensitive recording material according to claim 2, wherein the oxonol dye is contained in a layer containing the diazonium salt compound.
- 13. A heat-sensitive recording material according to claim 3, wherein the oxonol dye is contained in a layer containing the diazonium salt compound.
- 14. A heat-sensitive recording material according to claim 4, wherein the oxonol dye is contained in a layer containing the diazonium salt compound.
- 15. A heat-sensitive recording material according to claim 7, wherein the oxonol dye is contained in a layer containing the diazonium salt compound.
- 16. A heat-sensitive recording material according to claim 1, wherein the amount of the oxonol dye is 1 \times 10⁻⁶ to 1 \times 10⁻³ g/m².
- 17. A heat-sensitive recording material according to claim 2, wherein the amount of the oxonol dye is 1 \times 10⁻⁶ to 1 \times 10⁻³ g/m².
- 18. A heat-sensitive recording material according to claim 3, wherein the amount of the oxonol dye is 1 \times 10⁻⁶ to 1 \times 10⁻³ g/m².

- 19. A heat-sensitive recording material according to claim 4, wherein the amount of the oxonol dye is 1 \times 10⁻⁶ to 1 \times 10⁻³ g/m².
- 20. A heat-sensitive recording material according to claim 7, wherein the amount of the oxonol dye is 1 \times 10⁻⁶ to 1 \times 10⁻³ g/m².