

AND

	В	F
0	0	0
1	0	0
0	1	0
1	1	1
		9

Inputs		Output
Α	В	F
0	0	0
1	0	1
0	1	1
1	1	1

Inputs		Output
A	В	F
0	0	1
1	0	0
0	1	0
1	1	0

	A	В	F
<i>></i> ~	0	0	1
<i>/</i>	1	0	0
OR	0	1	0
	1	1	0

	Inputs		Output
j	Α	В	F
	0	0	0
	0	1	1
2	1	0	1
	1	1	0

EXCLUSIVE NOR

Inputs		Output
Α	В	F
0	0	1
0	1	0
1	0	0
1	1	1

IC – Introdução a Computação

EXCLUSIVE OR

Operações com binários

Soma de Binários

Soma de Produtos

As vezes precisamos a partir da tabela verdade montar uma expressão boleana e consequentemente o seu circuito lógico.

- Também conhecido como OU entre E
- Representa todas as situações em que a função é igual a 1
- Cada produto irá representar uma ou diversas situações nas quais a função é iguala 1

Operações com binários

Soma de Produtos

Observe a tabela verdade abaixo:

Para fazer a Soma de produtos, basta seguir a seguinte regra:

- Se a entrada for 0, ela é negada.
- Se a entrada for 1, ela é mantida inalterada.

Operações com binários

Soma de Produtos

O nosso circuito:

S= A'BC' + A'BC + AB'C + ABC'

Operações com binários

Soma de Produtos

Vamos praticar, Monte as equações e os circuitos das tabelas abaixo:

Tabela 01

Α	В	С	S
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Tabela 02

Α	В	С	S
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Tabela 03

Α	В	С	S
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Operações com binários

Soma de Produtos

Vamos praticar, monte a tabela verdade dos circuitos abaixo e suas expressões booleanas:

Α	В	C	S
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Operações com binários

Soma de Binários

Para os binários faremos do mesmo jeito que fazemos no decimal, seguindo a regra abaixo:

Entradas		Saídas		
Α	В	Soma	(Vai 1)	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	(10)	1	

Carry: é um bit que é transferido para a próxima porta ou casa binária à esquerda.

Não é Dez é 1 e 0, ou seja 2 bits

Meio Somador – Half adder

O circuito meio somador é definido como o circuito que soma duas entradas e também que possui o carry, ou também conhecido como vai um.

Entr	adas	Saídas						
•	Б	0 (0)	0 (0)		Α	В	S	С
А	В	Soma (S)	Carry (C)		0	0	0	0
0	0	0	0		0	1	1	0
0	1	1	0	·	1	0	1	0
1	0	1	0		1	1	0	1
1	1	(0) 10	1					

Expressões

Soma = (A.B') + (A'.B)

Vai um = (A.B)

Meio Somador – Half adder

E (AND) A B AND O O O O 1 O O

Analisando a tabela da soma:

A B S								
0 0 0								
0 1 1								
1 0 1								
1 1 0								
Um circuito . Uı								
aqui								

Meio Somador – Half adder

Mas tem como ficar mais simples o circuito.

Esse arranjo do circuito, pode ser substituído por uma porta lógica.

Essa porta se chama Exclusivo OU (XOR | EXOR)

Essa porta apresentada possui apenas duas entradas, mas podemos ter versões com três ou quatro entradas.

Sua saída é "1", quando as entradas são distintas.

Sua expressão algébrica é:

$$X = A + B$$

Meio Somador – Half adder

Olhando novamente a tabela, percebemos que as saídas S, são exatamente iguais a saída da tabela verdade da porta XOR

Sor	ma		_		XO	R	
Α	В	A	С		Α	В	s
0	0	0	0		0	0	0
0	1	1	0		0	1	1
1	0	1	0		1	0	1
1	1	0	1		1	1	0
Y							

Nosso meio somador fica desse jeito!!

Para fins didáticos, é comum fazer a representação do meio-somador como um bloco contendo apenas entrada e saídas

Meio Subtrator - Half Subtractor

Iremos seguir os mesmos passos da construção do nosso circuito meio somador. Vamos começar com a nossa tabela verdade.

O valor emprestado chamamos de borrow (empréstimo)

Isolamos cada lado das saídas..

Α	В	S	В
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

Saida S = A'B + AB

Saida
$$S = A \oplus B$$

Saida B = A'B

Meio Subtrator - Half Subtractor

Juntando os dois circuitos que descobrimos obtemos o circuito do Meio Subtrador.

Para fins didáticos, é comum fazer a representação do meio subtrator como um bloco contendo apenas entrada e saídas

Dúvidas?

ATÉ A PRÓXIMA AULA!

