SBML Model Report

Model name: "hodgkin-huxley squid-axon 1952"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 3 format. This model was created by the following three authors: Maria Schilstra¹, Catherine Lloyd² and Lukas Endler³ at March 31st 2005 at 1:09 p.m. and last time modified at February second 2011 at eleven o' clock in the afternoon. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	0
events	0	constraints	0
reactions	0	function definitions	0
global parameters	27	unit definitions	2
rules	18	initial assignments	0

Model Notes

This is an implementation of the Hodgkin-Huxley model of the electrical behavior of the squid axon membrane from:

¹SBML Team - Science and Technology Research Institute - University of Hertfordshire, m.j.1.schilstra@herts.ac.uk

²University of Auckland, c.lloyd@auckland.ac.nz

³EMBL-EBI, lukas@ebi.ac.uk

A quantitative description of membrane current and its application to conduction and excitation in nerve.

A. L. Hodgkin and A. F. Huxley. (1952) <u>Journal of Physiology</u> 119(4): pp 500-544; pmID: 12991237.

Abstract:

This article concludes a series of papers concerned with the flow of electric current through the surface membrane of a giant nerve fibre (Hodgkin,Huxley & Katz, 1952; Hodgkin & Huxley, 1952 a-c). Its general object is to discuss the results of the preceding papers (Part I), to put them into mathematical form (Part II) and to show that they will account for conduction and excitation in quantitative terms (Part III).

This SBML model uses the same formalism as the one described in the paper, contrary to modern versions:

- * V describes the the membrane depolarisation relative to the resting potential of the membrane
- * opposing to modern practice, depolarization is $\underline{negative}$, not $\underline{positive}$, so the sign of V is different
- * inward transmembrane currents are considered positive (inward current positive), contrary to modern use

The changeable parameters are the equilibrium potentials($\underline{E_R}$, $\underline{E_K}$, $\underline{E_L}$, $\underline{E_Na}$), the membrane depolarization (\underline{V}) and the initial sodium and potassium channel activation and inactivation coefficients ($\underline{m,h,n}$). The initial values of $\underline{m,h,n}$ for the model were calculated for $\underline{V}=0$ using the equations from the article: $\underline{n}_{t=0}=\underline{n}_{V=0}/(\underline{n}_{V=0}+\underline{n}_{V=0})$ and equivalent expressions for h and m .

For single excitations apply a negative membrane depolarization (V < 0). To achieve oscillatory behavior either change the resting potential to a more positive value or apply a constant negative ionic current (I < 0).

Two assignments for parameters in the model, alpha_n and alpha_m, are not defined at V=-10 resp. -25 mV. We did not change this to keep the formulas similar to the original publication and as most integrators seem not to have any problem with it. The limits at V=-10 and -25 mV are 0.1 for alpha_n resp. 1 for alpha_m.

We thank Mark W. Johnson for finding a bug in the model and his helpful comments.

This model originates from BioModels Database: A Database of Annotated Published Models. It is copyright (c) 2005-2009 The BioModels Team.

For more information see the terms of use.

To cite BioModels Database, please use Le Novre N., Bornstein B., Broicher A., Courtot M., Donizelli M., Dharuri H., Li L., Sauro H., Schilstra M., Shapiro B., Snoep J.L., Hucka M. (2006) BioModels Database: A Free, Centralized Database of Curated, Published, Quantitative Kinetic Models of Biochemical and Cellular Systems Nucleic Acids Res., 34: D689-D691.

2 Unit Definitions

This is an overview of six unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit time

Name millisecond

Definition ms

2.2 Unit mV

Name mV

Definition mV

2.3 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.4 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.5 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m^2

2.6 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
unit_compartment	unit_compartment		3	1	litre	Ø	

3.1 Compartment unit_compartment

This is a three dimensional compartment with a constant size of one litre.

Name unit_compartment

4 Parameters

This model contains 27 global parameters.

Table 3: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
V	V	0000259	0.000	mV	
$V_{\mathtt{neg}}$	V_neg	0000259	0.000	mV	
E	Е	0000259	0.000	mV	
I	I		0.000		\mathbf{Z}
i_Na	i_Na		0.000		
$\mathtt{i}_{-}\!\mathrm{K}$	i_K		0.000		
\mathtt{i}_L	iL		0.000		
m	m		0.053		
h	h		0.596		
n	n		0.318		
E_R	$E_{-}R$	0000259	-75.000	mV	
Cm	Cm	0000258	1.000		
${\sf g_Na}$	g_Na	0000257	120.000		\square
g_K	$g_{-}K$	0000257	36.000		
g_L	g_L	0000257	0.300		
E_Na	E_Na	0000259	-190.000	mV	
E_K	$E_{-}K$	0000259	-63.000	mV	
$E_{-}L$	$E_{-}L$	0000259	-85.613	mV	
$V_{-}Na$	V_Na	0000259	-115.000	mV	
V_K	V_K	0000259	12.000	mV	
V_L	VL	0000259	-10.613	mV	
${\tt alpha_m}$	alpha_m		0.000		
beta_m	beta_m		0.000		
alpha_h	auxiliary alpha_h		0.000		
beta_h	beta_h		0.000		
${\tt alpha_n}$	alpha_n		0.000		
beta_n	beta_n		0.000		\Box

5 Rules

This is an overview of 18 rules.

5.1 Rule V_neg

Rule V_neg is an assignment rule for parameter V_neg:

$$V_n = V$$
 (1)

Derived unit mV

Notes $V_neg = -V$

5.2 Rule E

Rule E is an assignment rule for parameter E:

$$E = V + E_R$$
 (2)

Derived unit mV

Notes $E = V + E_R$

5.3 Rule V_L

Rule V_L is an assignment rule for parameter V_L:

$$V_{\perp}L = E_{\perp}L - E_{\perp}R \tag{3}$$

Derived unit mV

Notes $V_L = E_L - E_R$

5.4 Rule beta_n

Rule beta_n is an assignment rule for parameter beta_n:

$$beta_n = 0.125 \cdot exp\left(\frac{V}{80}\right) \tag{4}$$

Notes beta_n = $0.125 * \exp[V / 80.0]$

5.5 Rule alpha_h

Rule alpha_h is an assignment rule for parameter alpha_h:

$$alpha_h = 0.07 \cdot exp\left(\frac{V}{20}\right) \tag{5}$$

Notes alpha_h = $0.07 * \exp[V / 20.0]$

5.6 Rule V_Na

Rule V_Na is an assignment rule for parameter V_Na:

$$V_{Na} = E_{Na} - E_{R}$$
 (6)

Derived unit mV

Notes $V_Na = E_Na - E_R$

5.7 Rule V_K

Rule V_K is an assignment rule for parameter V_K:

$$V_{-}K = E_{-}K - E_{-}R \tag{7}$$

Derived unit mV

Notes $V_K = E_K - E_R$

5.8 Rule i_K

Rule i_K is an assignment rule for parameter i_K:

$$i_{-}K = g_{-}K \cdot n^4 \cdot (V - V_{-}K) \tag{8}$$

Notes $i_K = g_K * n^4.0 * (V - V_K)$

5.9 Rule i_Na

Rule i_Na is an assignment rule for parameter i_Na:

$$i_N a = g_N a \cdot m^3 \cdot h \cdot (V - V_N a) \tag{9}$$

Notes $i_Na = g_Na * m^3.0 * h * (V - V_Na)$

5.10 Rule i⊥

Rule i L is an assignment rule for parameter i L:

$$iL = gL \cdot (V - VL) \tag{10}$$

Notes $i \perp L = g \perp L * (V - V \perp L)$

5.11 Rule beta_m

Rule beta_m is an assignment rule for parameter beta_m:

$$beta_{-}m = 4 \cdot exp\left(\frac{V}{18}\right) \tag{11}$$

Notes beta_m = $4.0 * \exp[V / 18.0]$

5.12 Rule alpha_n

Rule alpha_n is an assignment rule for parameter alpha_n:

alpha_n =
$$\frac{0.01 \cdot (V + 10)}{\exp\left(\frac{V + 10}{10}\right) - 1}$$
 (12)

Notes alpha_n = 0.01 * (V + 10.0)/(exp[0.1 * (V + 10.0)] - 1.0)

5.13 Rule alpha m

Rule alpha_m is an assignment rule for parameter alpha_m:

alpha_m =
$$\frac{0.1 \cdot (V + 25)}{\exp\left(\frac{V + 25}{10}\right) - 1}$$
 (13)

Notes alpha_m = 0.1 * (V + 25.0)/(exp[0.1 * (V + 25.0)] - 1.0)

5.14 Rule beta_h

Rule beta_h is an assignment rule for parameter beta_h:

beta_h =
$$\frac{1}{\exp(\frac{V+30}{10}) + 1}$$
 (14)

Notes beta_h = $1.0 / (\exp[0.1 * (V + 30.0)] + 1.0)$

5.15 Rule V

Rule V is a rate rule for parameter V:

$$\frac{\mathrm{d}}{\mathrm{d}t}V = \frac{I - (i_Na + i_K + i_L)}{\mathrm{Cm}}$$
 (15)

Notes $dV/dt = (I - (i_Na + i_K + i_L))/Cm$

5.16 Rule m

Rule m is a rate rule for parameter m:

$$\frac{d}{dt}m = alpha_m \cdot (1 - m) - beta_m \cdot m$$
 (16)

Notes $dm/dt = alpha_m * (1.0 - m) - beta_m * m$

5.17 Rule h

Rule h is a rate rule for parameter h:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{h} = \mathrm{alpha}_{-}\mathbf{h} \cdot (1 - \mathbf{h}) - \mathrm{beta}_{-}\mathbf{h} \cdot \mathbf{h} \tag{17}$$

Notes $dh/dt = alpha_h * (1.0 - h) - beta_h * h$

5.18 Rule n

Rule n is a rate rule for parameter n:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{n} = \mathrm{alpha}_{-}\mathbf{n} \cdot (1 - \mathbf{n}) - \mathrm{beta}_{-}\mathbf{n} \cdot \mathbf{n} \tag{18}$$

Notes $dn/dt = alpha_n * (1.0 - n) - beta_n * n$

A Glossary of Systems Biology Ontology Terms

SBO:0000257 conductance: Measure of how easily electricity flows along a certain path through an electrical element. The SI derived unit of conductance is the Siemens

SBO:0000258 capacitance: Measure of the amount of electric charge stored (or separated) for a given electric potential. The unit of capacitance id the Farad

SBO:0000259 voltage: Difference of electrical potential between two points of an electrical network, expressed in volts

SML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany