CS 3800: Computer Networks Session 1: Introduction

Kalin Zaluzec

Department of Computer Science

Cal Poly Pomona

Outline of Lecture

- Course Information
- Introduction

Course Information

• Topics:

Number representation, integer arithmetic. von Neumann machine.
 Instruction set architecture. Addressing modes. Assembly programming.
 Arrays and records. Subroutines and macros. Interrupts. I/O interfacing and communication

Prerequisites:

C or better in CS 130 or CS 1300 and CS 141 or CS 1400.

- Learning outcomes (at minimum):
 - Understand the network architecture design process
 - Understand the prominent protocols at various levels in layered protocol design
 - Become familiar with recent computer network technologies

Textbook

 Computer Networking A Top-Down Approach, 8th Edition, by James F Kurose & Keith W. Ross

- Technical Requirements
 - Computer with virtualization support
 - Virtual box, VMware, etc.
 - Python

- Course will roughly cover topics as ordered in the text book
- Likely won't take all semester to get through these topics
 - Extra topics added depending on pace of the class

```
Chapter 1 Computer Networks and the Internet
```

```
Chapter 2 Application Layer
```

Chapter 3 Transport Layer

Chapter 4 The Network Layer: Data Plane

Chapter 5 The Network Layer: Control Plane

Chapter 6 The Link Layer and LANs

Chapter 7 Wireless and Mobile Networks

Chapter 8 Security in Computer Networks

- Canvas
 - Syllabus
 - Class Notes
 - Slides posted day of class
 - Assignments
 - Posted after class
 - Pay attention to due dates
 - Posting grades
 - Class emails

- Grading Policy:
 - Attendance/Participation: 10%
 - Homework/Labs: 50%
 - Exams: 40% (2 midterms, 1 final, lowest score dropped)
- Final letter grades will be based on your overall score as follows (subject to change):
 - A ≥ 90
 - 90 > B+ ≥ 86
 - 86 > B ≥ 80
 - $80 > C+ \ge 76$
 - 76 > C ≥ 70
 - 70 > D+ ≥ 66
 - 66 > D ≥ 60
 - 60 > F

Late Assignment Policy

 All assignments are expected to be submitted by the specified deadline, but they will (usually) remain open for a week after the deadline)

Honor Code

- All assignments, unless explicitly specified, are to be your own work
- Collaboration is permitted, so long as it is properly documented
- Evidence of cheating, plagiarism, or unauthorized collaboration will result in a 0 grade for quiz/assignment/exam

Asynchronous class

- Mondays
 - Mostly lectures
 - Occasional collected in-class activities (you will know ahead of time)
 - Exams
- Wednesdays
 - Asynchronous labs
 - Pre-recorded lectures

How to do Well in This Class

- Attendance
 - Try to attend every class
 - Ask questions
- Notes
 - Take notes and review notes after class
- Homework
 - Get started early
 - Contact me if you encounter problems

How to Get Help?

- Ask questions in class or after class
- Attend office hours
- Email me
 - Put "CS3800" in the subject line
 - Send it from your .cpp account
- Class Discord (preferred method)
 - https://discord.gg/avh2KB4N
 - Note: If you direct message me about something important (like missing a class or making up an assignment), include your name!

Exams

- 3 exams (lowest score dropped)
 - You can skip the final if you do well on both midterms
- To be completed during class time
- All exams open-notes

Introductions

- Tell us about yourself,
 - Name/Year/Major
 - Something interesting about yourself
 - Expectation in this class
 - Optional: Any questions for me?

Outline of Lecture

- Course Information
- Introduction

Internet of Connected Devices

Amazon Echo

Internet phones

Internet refrigerator

IP picture frame

Slingbox: remote control cable TV

Pacemaker & Monitor

Tweet-a-watt: monitor energy use

sensorized, bed mattress

AR devices

Others?

The Internet: A "Nuts and Bolts"

Billions of connected computing *devices*:

- hosts = end systems
- running *network apps* at Internet's "edge"

Communication links

- Optical fiber, copper wire, radio, satellite
- transmission rate:
 bandwidth

Packet switches:

forward packets (chunks of data)

• routers, link-layer switches

The Internet: A "Nuts and Bolts" View

- Internet: "network of networks"
 - Interconnected ISPs
- protocols are everywhere
 - control sending, receiving of messages
 - e.g., HTTP (Web), streaming video, Skype, TCP, IP, WiFi, 4/5G, Ethernet
- Internet standards
 - RFC: Request for Comments
 - IETF: Internet Engineering Task Force

The Internet: A "Services" View

- *Infrastructure* that provides services to applications:
 - Web, streaming video, multimedia teleconferencing, email, games, ecommerce, social media, interconnected appliances, ...
- provides *programming interface* to distributed applications:
 - "hooks" allowing sending/receiving apps to "connect" to, use Internet transport service
 - provides service options, analogous to postal service

What is a Protocol?

Human protocols:

- "what's the time?"
- "I have a question"
- introductions

Rules for:

- ... specific messages sent and
- ... specific actions taken when message received, or other events

Network protocols:

- computers (devices) rather than humans
- all communication activity in Internet governed by protocols

Protocols define the format, order of messages sent and received among network entities, and actions taken on message transmission, receipt

What is a Protocol?

A human protocol and a computer network protocol:

Next Session (also today):

- What *is* the Internet?
- What is a protocol?
- Network edge: hosts, access network, physical media
- Network core: packet/circuit switching, internet structure

A closer look at Internet Structure

Network edge:

- hosts: clients and servers
- servers often in data centers

A closer look at Internet Structure

Network edge:

- hosts: clients and servers
- servers often in data centers

Access networks, physical media:

• wired, wireless communication links

A closer look at Internet Structure

Network edge:

- hosts: clients and servers
- servers often in data centers

Access networks, physical media:

• wired, wireless communication links

Netwerdanceted routers

network of networks

Access Networks and Physical Media

Q: How to connect end systems to edge routers?

A: Access Networks

- Residential Access Nets
- Institutional Access Networks (school, company)
- Mobile Access Networks (WiFi, 4G/5G)

Access Network: Digital Subscriber Line (DSL)

- Use *existing* telephone line to central office DSLAM
 - Data over DSL phone line goes to Internet
 - Voice over DSL phone line goes to telephone net
- 24-52 Mbps dedicated downstream transmission rate
- 3.5-16 Mbps dedicated upstream transmission rate

Access Network: Cable-Based Access

frequency division multiplexing (FDM): different channels transmitted in different frequency bands

Access Network: Cable-Based Access

- HFC: hybrid fiber coax
 - asymmetric: up to 40 Mbps 1.2 Gbps downstream transmission rate, 30-100 Mbps upstream transmission rate
- network of cable, fiber attaches homes to ISP router
 - homes *share access network* to cable headend

Wireless Access Networks

Shared wireless access network connects end system to router

via base station aka "access point"

Wireless local area networks (WLANs)

- typically within or around building (~100 ft)
- 802.11b/g/n (WiFi): 11, 54, 450
 Mbps transmission rate

Wide-area cellular access networks

- provided by mobile, cellular network operator (10's km)
- 10's Mbps
- 4G/5G cellular networks

Access Network: Enterprise Networks

- companies, universities, etc.
- mix of wired, wireless link technologies, connecting a mix of switches and routers to create a Local Area Network (LAN)
 - Ethernet: wired access at 100Mbps, 1Gbps, 10Gbps
 - WiFi: wireless access points at 11, 54, 450 Mbps

Access Network: Home Networks

Links: Physical Media

- bit: propagates between transmitter/receiver pairs
- physical link: what liesbetween transmitter& receiver
- guided media:
 - signals propagate in solid media: copper, fiber, coax
- unguided media:
 - signals propagate freely, e.g., radio

Twisted pair (TP)

- two insulated copper wires
 - Category 5: 100 Mbps, 1 Gbps Ethernet

Links: Physical Media Coaxial cable:

- two concentric copper conductors
- bidirectional
- broadband:
 - multiple frequency channels on cable
 - 100's Mbps per channel

Fiber optic cable:

- glass fiber carrying light pulses, each pulse a bit
- high-speed operation:
 - high-speed point-to-point transmission (10's-100's Gbps)
- low error rate:
 - repeaters spaced far apart
 - immune to electromagnetic noise

Links: Physical Media

Wireless radio

- signal carried in various "bands" in electromagnetic spectrum
- no physical "wire"
- broadcast, "half-duplex" (sender to receiver)
- propagation environment effects:
 - reflection
 - obstruction by objects
 - Interference/noise

Radio link types:

- Wireless LAN (WiFi)
 - 10-100's Mbps; 10's of meters
- wide-area (e.g., 4G/5G cellular)
 - 10's Mbps (4G) over ~10 Km
- Bluetooth: cable replacement
 - short distances, limited rates
- terrestrial microwave
 - point-to-point; 45 Mbps channels
- satellite
 - up to < 100 Mbps (Starlink) downlink
 - 270 msec end-end delay (geostationary)

Next Session:

- Network edge: hosts, access network, physical media
- Network core: packet/circuit switching, internet structure
- Performance: loss, delay, throughput
- Layering, Service models
- Security

Lab 1: Virtual Box Setup & Wireshark Intro

- Due: Sunday February 2
- Assignment remains open a week after deadline
- Talk to me if you need more time

Rest of class today: Get virtual box running