

Ω

Onuecina dan

Freatisch grondwater

De eerste case betreft de situatie van een freatische watervoerende laag op een ondoorlatende basis.

Figuur 4.5: Freatisch grondwater

In de niet-stationaire toestand wordt voor deze situatie vaak de formule van Theis-Jacob-Edelman toegepast:

$$\Delta h_w = \frac{Q_o}{4\pi \cdot k \cdot H} \cdot W(u) \quad (Formule \ 4.8)$$

met:

$$u = \frac{\mu \cdot r^2}{4k \cdot H \cdot t} \quad (Formule \ 4.8a)$$

In de stationaire toestand wordt voor deze situatie vaak de formule van Thiem toegepast:

$$\Delta h_w = \frac{Q_o}{2\pi \cdot k \cdot H} \cdot \ln \frac{R}{r} \quad (Formule \ 4.9)$$

waarin:

Δh_w	=	verlaging op afstand r	[m]
Q_o	=	onttrekkingsdebiet	[m³/dag]
k	=	gemiddelde horizontale	[m/dag]
		doorlaatfactor	

H	=	doorstroomde dikte van	[m]
		het pakket	
W(u)	=	logaritmische integraal	[-]
μ	=	freatische bergingscoëfficiënt	[-]
r	=	afstand tot aan de bemaling	[m]
t	=	tijd	[dagen]
R	=	reikwijdte	[m]
ob	=	(in figuur) ondoorlatende basis	[-]
gws	=	(in figuur) grondwaterstand	[m]

De W(u) is in [21] weergegeven in tabellen, maar zitten ook als standaardfunctie in Microsoft Excel. Een rekenvoorbeeld voor de berekening van het debiet en de verlagingen is voor deze case uitgewerkt in Appendix 2.