CHAPITRE 3 : ÉQUILIBRES DE PRÉCIPITATION (EN MILIEU HÉTÉROGÈNE)

I- GÉNÉRALITÉS - DÉFINITIONS

1) PRODUIT DE SOLUBILITÉ Ks

Certains composés ioniques, mis en solution aqueuse, ne s'y dissolvent pas complètement, on obtient une **solution saturée** en présence du solide.

La dissolution *partielle* du composé solide A_xB_v dans l'eau fourni une solution saturée, siège de l'équilibre hétérogène :

$$A_x B_y(s) \leftarrow x A^{y+} + y B^{x-}$$
 A: cation B: anion

La loi d'action de masse s'écrit:

$$Ks = \frac{[A^{y+}]^x [B^{x-}]^y}{[A_x B_y]}$$

$$[A_x B_y] = 1$$

 $[A_x B_y] = 1$ car $A_x B_y$ est un produit solide.

$$\mathsf{Ks} = [\mathbf{A}^{y+}]^{x} [\mathbf{B}^{x-}]^{y}$$

Ks : produit de solubilité

Les concentrations exprimées en mol.L⁻¹.

$$PI = [A^{y+}]^x [B^{x-}]^y$$
 appelé produit ionique

Ks est une constante sans unité, qui ne dépend que de la temperature.

- Si PI < Ks c.-à-d. si la solution n'est pas saturée en sel solide, l'équilibre n'est pas atteint, on ne peut pas écrire la loi d'action de masse.</p>
- ❖ Si PI = Ks la solution est saturée.
- ❖ Si PI > Ks précipitation du sel solide.

2°) SOLUBILITÉ s en mol.L-1

La solubilité molaire notée s d'un solide ionique est définie comme la quantité maximale de ce solide qu'on peut dissoudre par litre de solution, elle s exprime en mol. L-1.

s : nombre de mol/L pour avoir une solution saturée.

II- RELATION ENTRE Ks et s

1°) COMPOSÉS AYANT LA MÊME VALENCE : AgCI, CaCO₃, BaSO₄

$$AB(s) \leftarrow A^{x+} + B^{x-}$$

$$s = [A^{x+}] = [B^{x-}]$$
 $Ks = [A^{x+}][B^{x-}] = s^2$ $s = \sqrt{Ks}$

Exemple : Le produit de solubilité de sulfate de strontium solide est tel que pKs= 6,55. Déterminer la solubilité de SrSO₄.

$$SrSO_4 \longrightarrow Sr^{2+} + SO_4^{2-}$$

La solubilité s : $s = [Sr^{2+}] = [SO_4^{2-}]$

Le produit de solubilité Ks : $Ks = [Sr^{2+}][SO_4^{2-}] = s^2$ $S = \sqrt{Ks}$ $\underline{s} = 5,3.10^{-4} \, \text{M}$

2°) COMPOSÉS DONT LES ÉLÉMENTS ONT UNE VALENCE DIFFÉRENTE

Exemple: Le produit de solubilité du bromure du plomb est 4.10⁻⁵. Quelle est sa solubilité ?

$$PbBr_2 \longrightarrow Pb^{2+} + 2Br^{-}$$

$$s = [Pb^{2+}] = \frac{[Br^{-}]}{2}$$

Ks =
$$[Pb^{2+}][Br^{-}]^2 = s(2s)^2 = 4 s^3$$

$$s = \sqrt[3]{\frac{Ks}{4}}$$
 $s = 2,15 \cdot 10^{-2} \text{ mol/L}$

$$s = 2,15 \cdot 10^{-2} \text{ mol/L}$$

3°) D'UNE MANIÈRE GÉNÉRALE

$$A_{x}B_{y}(s) \Longrightarrow x A^{y+} + y B^{x-}$$

$$s \qquad 0 \qquad 0$$

$$xs \qquad ys$$

$$s = \frac{[A^{y+}]}{x} = \frac{[B^{x-}]}{y} \Longrightarrow \begin{cases} [A^{y+}] = xs \\ [B^{x-}] = ys \end{cases}$$

$$Ks = [A^{y+}]^{x} [B^{x-}]^{y}$$

$$Ks = (xs)^{x} (ys)^{y} = x^{x} y^{y} s^{(x+y)}$$

$$s = \sqrt[x+y]{\frac{Ks}{x^{x}y^{y}}} = \left(\frac{Ks}{x^{x}y^{y}}\right)^{\frac{1}{x+y}}$$

III- FACTEURS INFLUENÇANT LA SOLUBILITÉ

1°) LA TEMPÉRATURE

En général la solubilité *croît* avec la température, la réaction de dissolution étant souvent endothermique. Loi de Van T'hoff :

$$\frac{dlnKs}{dT} = \frac{\Delta H_{dis}^{\circ}}{RT^2}$$

ΔH°: variation d'enthalpie standard de dissolution du composé ionique

2°) EFFET D'ION COMMUN

La solubilité d'un sel peu soluble *diminue* en présence d'une substance lorsque ces 2 corps ont un ion commun.

Exemple : Le **produit de solubilité** du chlorure d'argent vaut **1,7.10**-10. Calculer la solubilité de AgCl :

- a dans de l'eau pure.
- **b** dans un solution 10⁻³ mole de AgNO₃ dans un litre de solution

Réponse:

> dans l'eau

$$AgCI(s) \leftarrow Ag^+ + CI^-$$

$$s = [Ag^+] = [Cl^-]$$

$$Ks = [Ag^+][Cl^-] = s^2$$

$$s = \sqrt{Ks}$$
 $s = 1,3.10^{-5} M$

solution
$$AgNO_3 \rightarrow Ag^+ + NO_3^-$$

10⁻³ mol 0 0

0 10⁻³ 10⁻³

AgCl(s) \longleftrightarrow Ag⁺ + Cl⁻

s' 10⁻³ 0

10⁻³ + s' s'

$$s' = [Cl^-] \neq [Ag^+]$$

$$Ks = [Ag^+][Cl^-] = (10^{-3} + s') s'$$
 équ. du 2^{eme} degré

Essayons de négliger s' devant 10⁻³ M

On sait que s' < s = 1,3.10⁻⁵ M (Effet d'ion commun sur s)

$$\Rightarrow$$
 s' << 10⁻³ M d'où : Ks = 10⁻³. s'

et s' =
$$\frac{Ks}{10^{-3}}$$
 $s' = 1,7.10^{-7} \text{ M}$ << 10^{-3} M

3°) INFLUENCE DU PH SUR LA SOLUBILITÉ DES SELS D'ACIDES FAIBLES

Il est intéressant, pour un sel peu soluble à caractère acido-basique, de jouer sur le pH pour améliorer la solubilité.

Exemple: AgCH₃COO
$$\longrightarrow$$
 Ag⁺ + CH₃COO⁻ (base faible) (I) Ks = [Ag⁺] [CH₃COO⁻] CH₃COO⁻ + H₃O⁺ \longrightarrow CH₃COOH + H₂O (II) Ka =
$$\frac{[CH_3COO^-][H_3O^+]}{[CH_3COOH]}$$

Si on ajoute des ions H_3O^+ à la solution initiale, on favorise la formation de CH_3COO^+ (on consomme CH_3COO^-) et l'équilibre (I) se déplace dans le sens 1 \Rightarrow dissolution du précipité.

donc : AgCH₃COO est peu soluble dans l'eau mais soluble en milieu acide.

Calculons la solubilité s' en milieu acide

$$\begin{aligned} \mathbf{s'} &= [\mathsf{Ag^+}] = [\mathsf{CH_3COO^-}]_{totale} \\ \mathbf{s'} &= [\mathsf{CH_3COO^-}] + [\mathsf{CH_3COO^-}] + [\mathsf{CH_3COO^-}]_{Ka} + [\mathsf{H_3O^+}]_{Ka} \end{aligned} \qquad \mathbf{s'} = [\mathsf{CH_3COO^-}]_{(1 + \frac{[H_3O^+]}{Ka})} \\ \mathsf{Ks} &\Rightarrow \quad \mathbf{s'} = \frac{K\mathbf{s}}{[Ag^+]}_{(1 + \frac{[H_3O^+]}{Ka})} \qquad \mathbf{s'} = \frac{\mathsf{Ks}}{\mathsf{s'}}_{(1 + \frac{[H_3O^+]}{Ka})} \end{aligned} \qquad \mathbf{s'} = \sqrt{\mathsf{Ks}}_{(1 + \frac{[H_3O^+]}{Ka})} \end{aligned}$$

s' ≯ si [H₃O+] ≯ milieu de plus en plus acide

4°) INFLUENCE DES RÉACTIONS DE COMPLEXATION

Certains cations métalliques donnent lieu à des réactions de complexation, avec des donneurs d'électrons appelés Ligands. Ainsi par exemple :

$$Ag^+ + 2 NH_3 \longrightarrow [Ag(NH_3)_2]^+$$
 $Fe^{3+} + SCN^- \longleftarrow [Fe(SCN)]^{2+}$
 $Cu^{2+} + 4 NH_3 \longleftarrow [Cu(NH_3)_4]^{2+}$

Considérant l'équilibre de dissolution du chlorure d'argent:

AgCI
$$\leftarrow$$
 Ag⁺ + Cl⁻ (I)
Ag⁺ + 2 NH₃ \leftarrow [Ag(NH₃)₂]⁺ (II)

L'addition d'une solution d'ammoniaque déplace l'équilibre (II) dans le sens 1, [Ag+] diminue, donc l'équilibre (I) se déplace dans le sens 1 AgCl se dissocie pour compenser cette diminution.

⇒ La solubilité augmente

IV- LA SOLUBILITÉ DES HYDROXYDES

$$M(OH)_n$$
: $Fe(OH)_2$; $Fe(OH)_3$; $Ca(OH)_2$

$$M(OH)_n \longrightarrow M^{n+} + n OH^-$$
 Ks = $[M^{n+}][OH^-]^n$

La dissolution d'un hydroxyde dans l'eau pure fait augmenter le pH

IV- APPLICATION – UTILITÉ DE LA PRÉCIPITATION

1°) CAS GÉNÉRAL

Soit une solution contenant des ions que l'on veut extraire. Exemple si on veut extraire Ag⁺ d'une solution de AgNO₃, il suffit d'introduire des anions qui donnent avec Ag⁺ un sel peu soluble.

Exemple NaCl:

$$Ag^+ + Cl^- \longrightarrow AgCl$$

$$AgNO_3 + NaCl \longrightarrow \downarrow AgCl + NaNO_3$$

2°) CAS PARTICULIER DES HYDROXYDES

Beaucoup d'hydroxydes métalliques $M(OH)_n$ sont peu solubles : Ag(OH); $Mg(OH)_2$; $Al(OH)_3$; $Cd(OH)_2$...

A - SOLUBILITÉ DANS L'EAU

$$M(OH)_n \longrightarrow M^{n+} + nOH^{-}$$

La solubilité produit des ions OH⁻⇒ pH 🖊

B-PRÉCIPITATION

Lorsqu'un métal Mⁿ⁺ se trouve en solution, il est possible d'obtenir sa précipitation en augmentant le pH en ajoutant une base :

$$M^{n+} + n OH - \longrightarrow M(OH)_n$$
 1/Ks

$$Ks = [M^{n+}][OH^{-}]^{n}$$
 $[M^{n+}] = \frac{Ks}{[OH^{-}]^{n}} = \frac{Ks[H_{3}O^{+}]^{n}}{Ke^{n}}$

Log $[M^{n+}] = \log Ks + n \log [H_3O^+] - n \log Ke$

 $Log [M^{n+}] = -pKs - pH + n pKe$

[Mⁿ⁺] → quand pH ↗

C - PRÉCIPITATION SÉLECTIVE

Il est possible de séparer 2 cations présents dans une solution, il faut que les Ks de leurs hydroxydes M(OH)_n soient assez distincts.

Exemple: Solution de 2 sels $AlCl_3$ et $FeCl_3$, on souhaite séparer les espèces ioniques Al^{3+} et Fe^{3+} présentes dans cette solution en ajoutant la soude. Les 2 sels ont à la même concentration C = 0.1M Ks $(Al(OH)_3) = 10^{-33}$ et Ks $(Fe(OH)_3) = 10^{-38}$

Réponse:

On doit calculer le pH de début de précipitation de chacun des hydroxydes $AI(OH)_3$ et $Fe(OH)_3$.

AlCl₃
$$\longrightarrow$$
 Al³⁺ + 3 Cl⁻

NaOH \longrightarrow Na⁺ + OH⁻

Al³⁺ + 3 OH⁻ \longrightarrow \downarrow Al(OH)₃ 1/Ks

PI = [Al³⁺][OH⁻]³

- tant que PI < Ks
- Al(OH)₃ commence à précipiter pour PI = Ks

$$\Leftrightarrow$$
 [Al³⁺][OH⁻]³ = Ks

$$[OH^{-}] = 3\sqrt{\frac{Ks}{[Al^{3+}]}} = \sqrt[3]{\frac{10^{-33}}{10^{-1}}} = 2,15.10^{-11} M$$

$$pOH = 10,67$$
 \Rightarrow $pH = 3,33$

Cherchons le pH de début de précipitation de $Fe(OH)_3$:

$$FeCl_3 \longrightarrow Fe^{3+} + 3 Cl^{-}$$

NaOH
$$\longrightarrow$$
 Na⁺ + OH $\overline{}$

$$Fe^{3+} + 3 OH^{-} \longrightarrow Fe(OH)_3$$

$$PI = [Fe^{3+}][OH^{-}]^{3}$$

- tant que PI < Ks
- Fe(OH)₃ commence à précipiter pour

$$\Leftrightarrow$$
 [Fe³⁺][OH⁻]³ = Ks

$$[OH^{-}] = \sqrt[3]{\frac{Ks}{[Fe^{3+}]}} = \sqrt[3]{\frac{10^{-38}}{10^{-1}}} = 4,64. \ 10^{-13} \text{ M}$$

$$pOH = 12,33$$
 \Rightarrow $pH = 1,67$

Diagramme de prédominance des espèces dans le domaine de pH :

Avant pH = 1,67 aucune précipitation

Entre 1,67 et 3,33; Fe(OH)₃ précipite seul

Pour pH > 3,33 ; il y a les 2 hydroxydes qui précipitent

2°) Cherchons si la précipitation est sélective, calculons la concentration résiduelle de Fe³⁺ lorsque $Al(OH)_3$ commence à précipiter càd à pH = 3,33

$$[Fe^{3+}]_R = ?$$
 Ks = $[Fe^{3+}]_R [OH^-]^3$

$$[Fe^{3+}]_R = \frac{Ks}{[OH^-]^3} = \frac{Ks}{(10^{-pOH})^3} = \frac{10^{-38}}{10^{-3\times(14-3,33)}}$$

$$[Fe^{3+}]_R = 10^{-6} \text{ M} << [Fe^{3+}]_0 = 0.1 \text{ M}$$

donc Fe³⁺ est à l'état de trace quand $Al(OH)_3$ commence à précipiter

⇒ Précipitation sélective