CSED433 Computational Logic – HW 1

20220140 Taeyeon Kim

Due: Tuesday 24th September, 2024

1 Matched Parentheses

1.1 Problem 1

Theorem 1. If s lparen, s mparen.

Proof. by Rule Induction,

Case
$$\overline{\epsilon \text{ Iparen}}$$
 $Leps$ where $s=\epsilon$: s mparen

by the rule Meps

$$\operatorname{Case} \frac{s_1 \; \mathsf{Iparen}}{(s_1)s_2 \; \mathsf{Iparen}} \; \mathit{Lseq} \; \mathsf{where} \; s = (s_1)s_2 \text{:}$$

 s_1 mparen

 s_2 mparen

 (s_1) mparen

 $(s_1)s_2$ mparen

by induction hypothesis on s_1 | paren by induction hypothesis on s_2 | paren by the rule Mpar on s_1 by the rule Mseq on (s_1) and s_2

1.2 Problem 2

Lemma 1. If s tparen and s' tparen, then ss' tparen.

Proof. by Rule Induction,

Case
$$\overline{\epsilon}$$
 tparen $teps$ where $s'=\epsilon$: $teps$ $teps$ where $teps$ tep

by assumption $s = \epsilon$

$$\begin{array}{l} \operatorname{Case} \frac{s_1 \; \operatorname{tparen} \quad s_2 \; \operatorname{tparen}}{s_1(s_2) \; \operatorname{tparen}} \; \operatorname{\mathit{Tseq}} \; \operatorname{where} \; s' = s_1(s_2) \\ ss' = ss_1(s_2) \\ \text{"s tparen implies} \; ss_1 \; \operatorname{tparen"} \end{array}$$

 ss_1 tparen

 $ss_1(s_2)$ tparen

by assumption $s' = s_1(s_2)$ by induction hypothesis on s tparen by assumption s tparen by the rule Tseq on ss_1 tparen and s_2 tparen

1.3 Problem 3

Theorem 2. If s mparen, then s tparen.

Proof. by Rule Induction,

Case
$$\overline{\epsilon}$$
 mparen $Meps$ where $s = \epsilon$: s tparen

by the rule *Teps*

$$\begin{aligned} & \text{Case} \ \frac{s' \ \text{mparen}}{(s') \ \text{mparen}} \ Mpar \ \text{where} \ s = s' \text{:} \\ & s' \ \text{tparen} \\ & (s') \ \text{tparen} \end{aligned}$$

by induction hypothesis on s' mparen by the rule Tseq on ϵ tparen and s' tparen

$$\label{eq:Case} \frac{s_1 \text{ mparen}}{s_1 s_2 \text{ mparen}} \ \, \textit{Mseq} \,\, \text{where} \,\, s = s_1 s_2 \text{:} \\ s_1 \,\, \text{tparen} \\ s_2 \,\, \text{tparen}$$

by induction hypothesis on s_1 mparen by induction hypothesis on s_2 mparen by Lemma 1.

1.4 Problem 4

 s_1s_2 tparen

Theorem 3. If s lparen, then s tparen.

Lemma 2. If s tparen and s' tparen, then ss' tparen.

Proof of Lemma 2. by Rule Induction,

Case
$$\overline{\epsilon}$$
 tparen $teps$ where $s' = \epsilon$: $ss' = s\epsilon = s$ $teps$ tparen

by assumption $s = \epsilon$

$$\begin{array}{ll} \operatorname{Case} \frac{s_1 \; \operatorname{tparen} \quad s_2 \; \operatorname{tparen}}{s_1(s_2) \; \operatorname{tparen}} \; \mathit{Tseq} \; \operatorname{where} \; s' = s_1(s_2) \colon \\ ss' = ss_1(s_2) \\ \text{"s tparen implies} \; ss_1 \; \operatorname{tparen} \\ ss_1 \; \operatorname{tparen} \\ ss_1(s_2) \; \operatorname{tparen} \end{array}$$

 $\begin{array}{c} \text{by assumption } s' = s_1(s_2) \\ \text{by induction hypothesis on } s \text{ tparen} \\ \text{by assumption } s \text{ tparen} \\ \text{by the rule } \textit{Tseq on } ss_1 \text{ tparen and } s_2 \text{ tparen} \end{array}$

Proof of Theorem 3. by Rule Induction,

Case
$$\overline{\epsilon}_{\mbox{ lparen}}^{\mbox{ Leps}}$$
 where $s=\epsilon$: s tparen

by the rule *Teps*

Case
$$\frac{s_1 \text{ Iparen}}{(s_1)s_2 \text{ Iparen}}$$
 Lseq where $s = (s_1)s_2$:

 s_1 tparen

 s_2 tparen

 $\left(s_{1}
ight)$ tparen

 $(s_1)s_2$ tparen

by induction hypothesis on s_1 lparen by induction hypothesis on s_2 lparen by the rule Tseq on s_1 and ϵ by the **Lemma 2.** on (s_1) and s_2