Stacked-DRGs / ZigZag Security parameters

irene@protocol.ai

Recap for Stacked DRGs (no tapering)

With the following parameters

- conditions: any δ and ϵ such that $\epsilon \leq 0.24$ and $\delta < \epsilon/2$
- number of layers: $\max\left\{\frac{0.68-\epsilon+\delta}{0.12-\delta},\,\log_2\left(\frac{1}{3(\epsilon-2\delta)}\right)+\frac{0.12}{0.12-\delta}+1\right\}+1$
- number of offline challenges: $\frac{-\lambda}{\log_2(1-\delta)}$
- number of online challenges: $\frac{-\lambda}{\log_2(2-\epsilon-2\delta)-1}$

we get a PoS with

- space gap: $\epsilon + 2\delta$,
- time: $\beta n 1$,
- soundness: $2^{-\lambda}$.

Recap for ZigZag (no tapering)

With the following parameters

- conditions: any δ and ϵ such that $\epsilon + \delta \leq 0.24$ and $\delta < \epsilon/3$ and
- number of layers: $2\log_2\left(\frac{1}{3(\epsilon-2\delta)}\right) + 2\frac{0.8-\epsilon+\delta}{0.12-2\delta} + 2$
- number of offline challenges: $\frac{-\lambda}{\log_2(1-\delta)}$
- number of online challenges: $\frac{-\lambda}{\log_2(2-\epsilon-3\delta)-1}$

we get a PoS with

- space gap: $\epsilon + 3\delta$,
- time: $\beta n 1$,
- soundness: $2^{-\lambda}$.

Notation and definitions

- 1. Chung's construction for a bipartite graph with two layers (each with n nodes) and degree d:
 - Repeat d times the following: sample a random permutation $f: \{1, \ldots, n\} \to \{1, \ldots, n\}$, for $i = 1, \ldots, n$, add an edge from node i in the top layer to node f(i) in the layer below.
- 2. Length of a path in a graph = number of edges contained on the path.
- 3. A directed acyclic graph (DAG) with n nodes is a $(n, 0.80, \beta)$ **DRG** if any set of 0.8n nodes contains a path of length $\geq \beta n$ (β is a constant < 0.8). Notice, for efficiency we also require small in-degree $(e.g., d = O(\log n))$. in-degree = maximum number of incoming edges in a node
- 4. Definition of **Stacked DRGs graph**: $\mathcal{G}_{\ell,n}$ is a graph with ℓ layers where each layer V_i is a $(n, 0.80, \beta)$ DRG and we add edges in each pair of layers (V_i, V_{i+1}) following the randomized Chung's construction for regular bipartite graphs with degree 8 (edges from layer i to layer i+1).

Notice: The number of nodes n has to be large enough in order to give negligible probability of failure for Chung's construction and the DRG construction.

5. Definition of **ZigZag graph**: $\mathcal{Z}_{\ell,n}$ is a graph with ℓ layers where each layer V_{2i+1} is a $(n, 0.80, \beta)$ DRG with edges from lower index nodes to higher index nodes and each layer V_{2i} is a $(n, 0.80, \beta)$ DRG with edges from higher index nodes to lower index nodes (i = 1, 2, ...).

(To construct V_{2i} just take V_{2i+1} and reverse the nodes and the direction of the edges).

Moreover, for each each pair of layers (V_i, V_{i+1}) add edges following Chung's construction for degree 8 and then project these edges on layer V_{i+1} . Change the direction of these edges following this rule: if i+1 is even then any edge in V_{i+1} has direction from higher to lower indices, if i+1 is odd then any edge in V_{i+1} has direction from lower to higher indices.

6. Let $\mathcal{G}_{\ell,n}[\epsilon,\delta]$ indicate the Stacked DRG graph \mathcal{G}_{ℓ} with the following pebble configuration: $(1-\epsilon)$ black pebbles overall and δ red pebbles in each layer. We say that $\mathcal{Z}_{\ell,n}[\epsilon,\delta]$ is (t,μ) -hard if t rounds (parallel moves) are required to pebble a fraction μ of nodes in the last layer.

item Let $\mathcal{Z}_{\ell}[\epsilon, \delta]$ indicate the ZigZag graph \mathcal{Z}_{ℓ} with the following pebble configuration: $(1-\epsilon)$ black pebbles overall and δ red pebbles in each layer. We say that $\mathcal{Z}_{\ell}[\epsilon, \delta]$ is (t, μ) -hard if t rounds of moves that only use "forward steps" are required to pebble a fraction μ of nodes in the last layer.

Question: In our implementation we have d = 5, is this

secure?

Question: Is $n = 2^{30}$ enough?

Proof overview (Stacked DRGs, no tapering)

• Claim 6 says that $\mathcal{G}_{\ell}[\epsilon, \delta]$ with

$$\ell = \max \left\{ \frac{0.68 - \epsilon + \delta}{0.12 - \delta}, \log_2 \left(\frac{1}{3(\epsilon - 2\delta)} \right) + \frac{0.12}{0.12 - \delta} + 1 \right\}$$
 (1)

$$\delta < \epsilon/2 \tag{2}$$

is $(\beta n - 1, 1)$ hard.

• Then using Claim 4 and we can say that $\mathcal{G}_{\ell+1}[\epsilon+2\delta,\delta]$ with

$$\epsilon \le 0.24 \tag{3}$$

is $(\beta n - 1, 1 - \frac{\epsilon + 2\delta}{2})$ hard.

• Finally, use Claim 2. Assume that we ask for c independent random challenges in the offline phase (in each layer we open the same c nodes) and k independent random challenges in the online phase (last layer only). Using the Stacked DRGs graph with $\ell+1$ layers with conditions (1), (2), (3) and with

$$c = \frac{-\lambda}{\log_2(1-\delta)}\tag{4}$$

$$k = \frac{-\lambda}{\log_2(2 - \epsilon - 2\delta) - 1} \tag{5}$$

gives a PoS with space gap: $\epsilon + 2\delta$, time: $\beta n - 1$ and soundness: $2^{-\lambda}$.

Proof overview (ZigZag, no tapering)

• Claim 11 says that $\mathcal{Z}_{\ell}[\epsilon, \delta]$ with

$$\ell = 2\log_2\left(\frac{1}{3(\epsilon - 2\delta)}\right) + 2\frac{0.8 - \epsilon + \delta}{0.12 - 2\delta} \tag{6}$$

$$\delta < \min\{0.06, \epsilon/3\} \tag{7}$$

is $(\beta n - 1, 1)$ hard.

• Then using Claim 9 and we can say that $\mathcal{Z}_{\ell+2}[\epsilon+3\delta,\delta]$ with

$$\epsilon + \delta \le 0.24 \tag{8}$$

is $(\beta n - 1, 1 - \frac{\epsilon + 3\delta}{2})$ hard.

• Finally, use Claim 2. Assume that we ask for c independent random challenges in the offline phase (in each layer we open the same c nodes) and k independent random challenges in the online phase (last layer only).

Using the ZigZag graph with $\ell+2$ layers with conditions (6), (7), (8) and with

$$c = \frac{-\lambda}{\log_2(1-\delta)} \tag{9}$$

$$k = \frac{-\lambda}{\log_2(2 - \epsilon - 3\delta) - 1} \tag{10}$$

gives a PoS with space gap: $\epsilon + 3\delta$, time: $\beta n - 1$ and soundness: $2^{-\lambda}$.

PoS Definition

Public parameters: a graph with ℓ layers and n nodes in each layer $(i.e., \mathcal{Z}_{\ell}[\epsilon, \delta])$ or $\mathcal{G}_{\ell}[\epsilon, \delta]$) that is (t, μ) -hard

Input: data blocks D_1, \ldots, D_n with $D_i \in \{0, 1\}^m$ Initialization:

• The prover computes the labels $e_1^{(i)}, \dots, e_n^{(i)}$ for $i=1,\dots,\ell$

Claim 2 (a)

If $\mathcal{G}_{\ell}[\epsilon, \delta]$ is (t, μ) -hard, then $\mathcal{G}_{\ell}[\epsilon, \delta]$ is $(t^*, 1 - \epsilon/2)$ -hard with $t^* = \min(\beta n - 1, t + 1)$.

Claim 2 (b)

If $\mathcal{G}_{\ell-1}[\epsilon-2\delta,\delta]$ is (t,1)-hard and $0<\epsilon-2\delta\leq 0.24$, then $\mathcal{G}_{\ell}[\epsilon,\delta]$ is $(t^*,1-\epsilon/2)$ -hard with $t^*=\min(\beta n-1,t+1)$.

Correct Claim 4

If $\mathcal{G}_{\ell-1}[\epsilon-2\delta,\delta]$ is (t,1)-hard and $0<\epsilon-2\delta\leq 0.24$, then $\mathcal{G}_{\ell}[\epsilon,\delta]$ is $(t^*,1-\epsilon/2)$ -hard with $t^*=\min(\beta n-1,t+1)$.

Alternative Claim 4

If $\delta < \epsilon/2$ and $\mathcal{G}_{\ell-1}[\epsilon/2 - \delta, \delta]$ is (t, 1)-hard, then $\mathcal{G}_{\ell}[\epsilon, \delta]$ is $(t^*, 1 - \epsilon/2)$ -hard with $t^* = \min(\beta n - 1, t + 1)$.

Proof. Let S be a subset of nodes from the last layer in $\mathcal{G}_{\ell}[\epsilon, \delta]$ with size $(1 - \epsilon/2)n$, we need to show that t^* rounds are required to pebble S. Let X be the subset of S of unpebbled nodes, it is enough to show that X requires t^* rounds to be pebbled. Let $|X| = \alpha^* n$ and notice that $\alpha^* \geq \alpha_{\ell} - \epsilon/2 \geq \epsilon/2 - \delta > 0$.

Now, consider two cases:

- 1. If $\alpha^* \geq 0.8$, then $\beta n 1$ rounds are required to pebble X (this is because V_{ℓ} is a $(n, 0.8, \beta)$ DRG, so X contains a path of length βn).
- 2. If $\epsilon/2 \delta < \alpha^* < 0.8$, then we have that the nodes in X are connected to β^* nodes in layer $\ell 1$ with $\beta^* > 1.17\alpha^*$ (because of the table in Figure 2.2 in ePrint 2018/702).

ToDo: Check this!

Among these nodes, at least $\alpha' \geq \beta^* - \rho_{\ell-1} - \delta$ are unpebbled. From this,

$$\alpha' \ge \beta^* - \rho_{\ell-1} - \delta = \beta^* + (\gamma_{\ell-1} - \gamma + \rho_{\ell}) - \delta$$

And therefore

$$\alpha' - \gamma_{\ell-1} \ge \beta^* - \gamma + (1 - \alpha_{\ell} - \delta) - \delta$$

$$\ge \beta^* - \gamma + (1 - \alpha^* - \epsilon/2) - 2\delta$$

$$> (1.17 - 1)\alpha^* + \epsilon/2 - 2\delta$$

$$> 0.17(\epsilon/2 - \delta) + \epsilon/2 - 2\delta = 1.17(\epsilon/2 - \delta) - \delta$$

$$> (\epsilon/2 - \delta) - \delta$$
(11)

The last inequality is because $\delta < \epsilon/2$ implies $1.17(\epsilon/2 - \delta) > \epsilon/2 - \delta$. Now, consider the graph $\mathcal{G}_{\ell-1}[\epsilon',\delta]$ with $\epsilon' = \epsilon/2 - \delta$ and the following constrain in its pebble configuration: the number of black pebbles from layer 1 to layer $\ell-2$ is $\gamma_{\ell-1}n$ (the same number as in $\mathcal{G}_{\ell}[\epsilon,\delta]$). Then, (11) says that we can apply Claim 3 from ePrint 2018/702, and therefore the fact that $\mathcal{G}_{\ell-1}[\epsilon',\delta]$ is (t,1)-hard implies that at least t rounds are required to pebble the unpebbled nodes among the β^*n dependency of X. Finally, X needs t+1 rounds to be pebbled in in $\mathcal{G}_{\ell}[\epsilon,\delta]$.

Correct Claim 9

Now we want to prove that: If $\mathcal{Z}_{\ell-2}[\epsilon - 3\delta, \delta]$ is (t, 1)-hard and $\epsilon - 2\delta \leq 0.24$, then $\mathcal{Z}_{\ell}[\epsilon, \delta]$ is $(t^*, 1 - \epsilon/2)$ -hard with $t^* = \min(\beta n - 1, t + 2)$.

Proof. Let S be a subset of nodes from the last layer in $\mathcal{Z}_{\ell}[\epsilon, \delta]$ with size $(1 - \epsilon/2)n$, we need to show that t^* rounds are required to pebble S (assuming we have $(1 - \epsilon)n$ black pebbles overall and δ red pebbles in each layer).

Let X be the subset of S of unpebbled nodes, it is enough to show that X requires t^* rounds to be pebbled starting from the same configuration of pebbles stated before. Notice that $|X| \geq (\alpha_{\ell} - \epsilon/2)n$, and if $(\alpha_{\ell} - \epsilon/2)n > 0.8$ then $\beta n - 1$ rounds are required to pebble X because the last layer is a DRG.

Define $\alpha^* = (\alpha_{\ell} - \epsilon/2) - \rho_{i-1} - \rho_{i-2}$ ($\alpha_{\ell} n$ defined as the number of unpebbled nodes that in the last layer of $\mathcal{Z}_{\ell}[\epsilon, \delta]$, $\rho_{j} n$ defined as the number of black pebbles in layer j in $\mathcal{Z}_{\ell}[\epsilon, \delta]$), define Z as the set of forward dependencies of X in layer V_{i-2} , and $\alpha' = |Z|/n$. Because of Lemma 6 we split the proof in two cases:

1. $\alpha^* \leq 1/3$: in this case we have that $\alpha' \geq 2\alpha^* - 2\delta$. This implies that

$$\alpha' - \gamma_{\ell-2} \ge \epsilon - 4\delta \tag{12}$$

 $(\gamma_{\ell-2}n$ defined as the number of black pebbles from layer 1 to layer $\ell-3$ in $\mathcal{Z}_{\ell}[\epsilon,\delta]$).

Now, consider the graph $\mathcal{Z}_{\ell-2}[\epsilon-3\delta,\delta]$ with the following specific constrain in its pebble configuration: the number of black pebbles from layer 1 to layer $\ell-3$ is $\gamma_{\ell-2}n$ (the same number as in $\mathcal{Z}_{\ell}[\epsilon,\delta]$). Then, (12) says that we can apply Claim 3, and therefore the fact that $\mathcal{Z}_{\ell-2}[\epsilon-3\delta,\delta]$ is (t,1)-hard implies that Z needs at least t rounds in order to be pebbled in $\mathcal{Z}_{\ell-2}[\epsilon-3\delta,\delta]$ (note that this implies that Z needs at least t round in $\mathcal{Z}_{\ell}[\epsilon,\delta]$ too). Therefore, X needs t+2 rounds to be pebbled in in $\mathcal{Z}_{\ell}[\epsilon,\delta]$.

2. $\alpha^* > 1/3$: in this case we have that $\alpha' \ge 0.12 + \alpha_{\ell} - \epsilon/2 - 2\delta - \rho_{\ell-1} - \rho_{\ell-2}$. This implies that

$$\alpha' - \gamma_{\ell-2} \ge 0.12 - 3\delta + \epsilon/2 \tag{13}$$

If $\epsilon-2\delta \leq 0.24$, then $0.12-3\delta+\epsilon/2 \geq \epsilon-4\delta$ and we can conclude as before.