Differential Gene Expression Analysis

DECRyPT Workshop

From RNAseq reads to read-counts

The output of a RNAseq reads mapper

One file per sample. If 3 replicates: 3 files per condition.

Making sense of read-counts

Differential gene expression analysis:

Statistics to look for over- or under-expressed genes in the test condition (in comparison to the control condition)

Which genes are differentially expressed in presence/absence of treatment?

R packages dedicated to DGE analysis:

- DESeq2
- edgeR
- Limma

What do the DEG-dedicated packages do?

- Correct the read counts for the different sequencing depths between samples
- (Filter out noise)
- Statistical testing for differential expression

Method	Normalization	Read counts distribution	Differential Expression Test
edgeR	TMM	Negative Binomial distribution	Exact test
DESeq	DESeq sizeFactors	Negative Binomial distribution	Exact test
Limma	TMM	Voom transformation of counts	Empirical Bayes method

Results comparison

Example of a DESeq output file

Adjusted P-values reveal the genes that are differentially expressed

About Log2FoldChanges...

- Calculated on the read counts
- Biased for genes with low read counts
- Lan only be interpreted after a correction!
 Multiple LFC-shrinkage algorithms have been developed.

What's the function of over-expressed genes?

- Linking DEGs to gene annotation
- **Functional enrichment**

Gene ontology

- Hierarchical functional annotation
- Three independant categories:
 - Biological process
 - Molecular function
 - Cellular components

GO enrichment:

What are the GO terms that are significantly enriched?

enriched= more present than what we would expect by chance

GO enrichment analysis

- Dedicated websites (for model organisms): PANTHER, DAVID...
- R packages (topGO)
 - need to provide a GO-based gene annotation as an input:

```
gene1 G0:0001478, G0:000784; G0:040411
gene2 G0:0007482, G0:000994; G0:040971
```