Some Theory of Outer Measures

Jacob White University of Nebraska Omaha

In geometric measure theory, we like to work with outer measures so much that we just call them measures.

Definition 1. A set function $\mu: \{A: A \subset X\} \to [0,\infty] = \{t: 0 \le t \le \infty\}$ is called a(n) (outer) measure if

- (1) $\mu(\emptyset) = 0$
- (2) $\mu(A) \leq \mu(B)$ whenever $A \subset B \subset X$, and

(3)
$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) \leq \sum_{i=1}^{\infty} \mu(A_i) \text{ whenever } A_1, A_2, \dots \subset X.$$

Any countably additive non-negative set function on a σ algebra \mathcal{A} of subsets of X produces a measure. Consider the following:

Proposition 1. Let ν be a countably additive non-negative set function on a σ -algebra \mathcal{A} of subsets of X. Then,

$$\nu^*(A) = \inf\{\nu(B) : A \subset B \in \mathcal{A}\}\tag{1}$$

defines a measure over X.

Proof. Since $\emptyset \in \mathcal{A}$, $\nu^*(\emptyset) = \nu(\emptyset)$. Now, by the finite additivity of ν (which follows from its countable additivity), we have

$$\nu(\emptyset) = \nu(\emptyset \cup \emptyset) = 2\nu(\emptyset) \implies \nu^*(\emptyset) = \nu(\emptyset) = 0.$$

Now suppose that $A \subset B \in \mathcal{A}$, since

$$\{\nu(C): B \subset C \in \mathcal{A}\} \subseteq \{\nu(C): A \subset C \in \mathcal{A}\}$$

it follows that1

$$\nu^*(A) = \inf\{\nu(C) : A \subset C \in A\} < \inf\{\nu(C) : B \subset C \in A\} = \nu^*(B).$$

To show the countable subadditivity of ν^* , for a sequence $\{A_i\}_{i\in\mathbb{N}}\in\mathcal{P}(X)$ and for another sequence $\{B_{i,j}\}_{j\in\mathbb{N}}\in\mathcal{P}(X)$ such that $A_i\subset\bigcup_{i=j}^nB_{i,j}$ for all $i\in\mathbb{N}$, let $\epsilon>0$ such that

$$\nu^*(A_i) + \frac{\epsilon}{2^i} \ge$$

¹By the property of infimum where $A \subseteq B \subseteq \mathbb{R}$ implies $\inf B \leq \inf A$