AE 625 - Particles Methods for Fluid Flow Simulation SPH function and derivative approximation

Chillapalli Jyothi Durga Prasad - 140010042

21 August 2017

Contents

Solve u_t + u_x = 0 with u(x,0) = sin(πx), periodic in [1,1], find u(x,40) using 40 points for discretization.
Solve u_t + u_x = 0 with u(x,0) = 1when|x| < 1/3and0otherwise, periodic in [1,1], find u(x,40) using 40 points for discretization.
Solve u_t + u_x = 0 with u(x,0) = 1when|x| < 1/3and0otherwise, periodic in [1,1], find u(x,0.6) using 40 points for discretization.
6

4 Solve $u_t + u_x = 0$ with u(x,0) = 1when|x| < 1/3and - 1otherwise, periodic in [1,1], find u(x,0.3) using 40 points for discretization.

List of Figures

1	Q1 40 points	2
2	Q1 100 points	3
3	Q2 40 points	4
4	Q2 100 points	5
5	Q3 40 e 0.5	6
6	Q3 100 e 0.5	7
7	Q3 40 e 1.0	8
8	Q3 100 e 1.0	9
9	Q4 40 e 0.5	0
10	Q4 100 e 0.5	1
11	Q4 40 e 1.0	2
12	Q4 100 e 1.0	3

Consider Laney's problems and solve them using SPH.

The report is generated through the command " sh a 8-140010042.sh " $\,$

1 Solve $u_t + u_x = 0$ with $u(x,0) = sin(\pi x)$, periodic in [1,1], find u(x,40) using 40 points for discretization.

Results:

Figure 1: Q1 40 points

Figure 2: Q1 100 points

Solve $u_t + u_x = 0$ with u(x,0) = 1when|x| < 1/3and0otherwise, periodic in [1,1], find u(x,40) using 40 points for discretization.

Results:

Figure 3: Q2 40 points

Figure 4: Q2 100 points

3 Solve $u_t + u_x = 0$ with u(x,0) = 1when|x| < 1/3and0otherwise, periodic in [1,1], find u(x,0.6) using 40 points for discretization.

Results:

e = 0.5

Figure 5: Q3 40 e 0.5

Figure 6: Q3 100 e $0.5\,$

Figure 7: Q3 40 e 1.0

Figure 8: Q3 100 e 1.0

4 Solve $u_t + u_x = 0$ with u(x,0) = 1when|x| < 1/3and - 1otherwise, periodic in [1,1], find u(x,0.3) using 40 points for discretization.

Results:

e = 0.5

Figure 9: Q4 40 e 0.5

Figure 10: Q4 100 e 0.5

Figure 11: Q4 40 e 1.0

Figure 12: Q4 100 e 1.0

Inference: The XSPH velocity for e=1.0 is nothing weighted average of velocity in the neighbourhood of x, So particles having same position will tend to move with same velocity as opposed to the case with e=0.5 where particles retain a part of their original velocity