NYCU Deep Learning Lab-3 MaskGIT for Image Inpainting

學號 : 314551113

姓名:劉哲良

Content

1.	Intro	luction
2.	Imple	mentation Details
	2.1	Details of Multi-Head Self-Attention
	2.2	Details of Stage 2 Training4
	2.2.2	MVTM4
	2.3	Details of Inference for Inpainting Task5
3.	Discu	ssion6
	3.1 Th	ne Influence of Total_Iter and Sweet Spot parameters6
	3.2 Th	ne Influence of Gamma Function
4.	Exper	riment Score
	4.1	Iterative Decoding
	4.2	Best FID Score9
		Figure Content
	Fig. 1	Multi-Head Self-Attention
	Fig. 2	encode_to_z function4
	Fig. 3	gamma function4
	Fig. 4	MVTM4
	Fig. 5	Forward/Loss Transformer
	Fig. 6	Inpainting6

1. Introduction

在本次作業中,我們需要實作 MaskGIT 的核心程式碼,如 Multi-Head Self-Attention Module,模擬 Bidirectional Transformer 預測 token 的過程,以及最後的 decode 將圖片逐漸地修補完成。以下報告將會介紹模型內部實作細節,以及討論在各個參數實驗之下訓練出來的結果,結果的好壞將用 FID 分數來進行比較。

2. Implementation Details

2.1 Details of Multi-Head Self-Attention

```
class MultiHeadAttention(nn.Module):
01
02
           def __init__(self, dim=768, num_heads=16, attn_drop=0.1):
                super(MultiHeadAttention, self).__init__()
04
05
               self.num_heads = num_heads
                self.dim = dim
               self.attn_drop =attn_drop
07
08
09
               self.head_dim = dim // num_heads
10
11
               # Weight matrix of Q,K,V
               self.W_Q = nn.Linear(dim,dim)
                self.W_K = nn.Linear(dim,dim)
               self.W_V = nn.Linear(dim,dim)
14
                self.dropout = nn.Dropout(attn_drop)
18
                self.output = nn.Linear(dim,dim)
19
         def forward(self, x):
20
21
            batch_size,num_image_tokens,dim = x.shape
23
            Q = self._split_head(self.W_Q(x))
24
             K = self._split_head(self.W_K(x))
25
            V = self. split head(self.W V(x))
26
             scale = math.sqrt(self.head dim)
                                                # matrix multiplication
28
            attention scores = (Q @ K.transpose(-2,-1)) / scale
29
30
            attention prob = attention scores.softmax(dim=-1)
            attention_drop = self.dropout(attention_prob)
            # Concate
34
            attention_weight = (attention_drop @ V)
            output = attention_weight.permute(0,2,1,3).reshape(batch_size,num_image_tokens,dim)
37
38
            output =self.output(output)
 39
40
            return output
41
42
         def _split_head(self,x):
             batch_size,num_image_tokens,dim = x.shape
43
             # Input size (batch size, num image tokens, dim)
            # first divide dim into (num_head,head_dim) => (batch_size,num_image_tokens,num_head,head_dim)
            # Then transform it into (batch_size,num_head,num_image_tokens,head_dim)
            return x.view(batch_size,num_image_tokens,self.num_heads,self.head_dim).permute(0,2,1,3)
```

在這裡我們使用 Linear Layer 來計算 Query, Key, Value, 並且將計算出來的結果透過 _split_head function 做 reshape 和 permute, 轉成 multi-head 的形式 ,接下來就是正常的 attention score 計算過程。

在計算完 attention score 後,再還原成原本的 shape, 最後使用一層 Linear Layer 來 將 multi-head 的結果 concate 在一起。

Fig. 1 Multi-Head Self-Attention

2.2 Details of Stage 2 Training

2.2.1 Basic Function

使用 encode_to_z function 將 Input Data 給 VQGAN 的 Encoder 做 encode,輸出會得到對應的 codebook mapping 以及各個 token 對應的 codebook index,我們將 codebook index 做 flatten,以方便作為 Transformer 的輸入。

```
1  @torch.no_grad()
2  def encode_to_z(self, x):
3     codebook_mapping, codebook_indices, q_loss = self.vqgan.encode(x)
4
5     # Flatten codebook_indices from (batch,16,16) into (batch,256) for transfomer
6     return codebook_mapping, codebook_indices.view(codebook_mapping.shape[0], -1)
```

Fig. 2 encode_to_z function

Gamma function 為在 inpainting 過程時決定 inference 時 mask 數量的 function,根據 current step / total step 作為參數進行調整。

```
01
    def gamma func(self, mode="cosine"):
02
03
         if mode == "linear":
04
             return lambda gamma : 1-gamma
         elif mode == "cosine":
05
06
             return lambda gamma: np.cos(gamma*np.pi/2)
         elif mode == "square":
07
08
             return lambda gamma: 1 - gamma**2
09
         else:
10
             raise NotImplementedError
```

Fig. 3 gamma function

2.2.2 MVTM

Fig. 4 MVTM

MVTM 的實作方法,我們 先將 Input 做 encode 得到 codebook 的 ground truth, training 使用常態分佈取 10%~90%的 mask 比率, 並且產生對應的 mask 以訓 練 Transfomer。 得到 transformer 對於 mask 的預測結果後,對於其預測結果以及 VQGAN encoder 產出的 Ground Truth 進行 loss 的計算,我們能將 token 的預測視為 multi-class classification 的問題,因此 loss 的選擇使用 Cross Entropy,並藉由 loss 來更新 model weight。

```
def train_one_epoch(self,train_loader,epoch,args):
02
         self.model.train()
03
         total_loss = 0.0
         num_batches = len(train_loader)
         progress_bar = tqdm(train_loader, desc=f"Epoch [{epoch}|{args.epochs}]", total=num_batches)
05
06
         for step,images in enumerate(progress_bar):
07
08
             images = images.to(args.device)
09
10
             # Forward ,get logits and true tokens
11
             logits, z_indices = self.model(images) # logits: (batch_size, 256, 1024), z_indices: (batch_size, 256)
             \# logits: (batch_size * 256,1024) , z_indice : (batch_size*256,1)
14
             loss = F.cross_entropy(logits.reshape(-1, logits.size(-1)), z_indices.reshape(-1))
15
            loss.backward()
            if (step + 1) % args.accum_grad == 0 :
                self.optim.step()
18
19
                 self.optim.zero_grad()
21
             total_loss += loss.item()
             progress_bar.set_postfix({"loss": f"{total_loss / (step + 1):.4f}"})
23
24
         avg_loss = total_loss / num_batches
25
26
         self.train_losses.append(avg_loss)
         if self.scheduler_type == "ReduceLROnPlateau":
28
            self.scheduler.step(avg_loss) # Step based on training loss
29
30
             self.scheduler.step() # Step for LinearLR + CosineAnnealing
         return avg_loss
```

Fig. 5 Forward/Loss Transformer

2.3 Details of Inference for Inpainting Task

在每次 inference inpainting 時,我們對於每個 iteration,先將輸入的 tokens 產生 masked_tokens,並給 Transformer 做預測,再將預測結果作機率的轉換並得到每個 tokens 對應機率最大的 codebook index,再將 masked_tokens mask 的部分替換成預測的結果。

接下來在進行 confidence 的計算,在這裡我們將 unmask 的 token confidence 設為 INF,以避免被作為 mask 的目標。之後,找出 confidence 最小的 tokens,並將其作 mask,作為下一次 iteration 的 predict 目標,並產生新的 mask 回傳以進行下一次 iteration。

```
@torch.no_grad()
    def inpainting(self,z_indices,mask ,mask_num, ratio):
04
        # Generate masked token sequence
05
        # True : mask, False : unmask
06
        masked_indices = torch.where(mask, self.mask_token_id, z_indices)
        # Predict token probabilities using transformer
08
09
        logits = self.transformer(masked_indices) # Shape: (batch_size, seq_len, num_codebook_vectors)
10
        probs = F.softmax(logits, dim=-1) # (batch_size, seq_len, num_codebook_vectors)
12
        # find max prob of each token
14
        # (batch_size, seq_len)
15
        z_indices_predict_prob, z_indices_predict = probs.max(dim= -1)
        # mask the maked part using predicted value
17
        z_indices_predict = torch.where(mask,z_indices_predict,z_indices)
18
19
        temperature = self.choice_temperature * (1 - ratio)
        confidence = z_indices_predict_prob + temperature * gumble
        # The number of mask of next iteration
24
        num_mask = math.floor(self.gamma(ratio) * mask_num)
        # Make sure we dont modify those unmask token
        confidence[~mask] = torch.inf
        # Select those low confidence token as masked token
28
         _, idx = confidence.topk(num_mask, dim=-1, largest=False) #update indices to mask only smallest n token
29
        mask\_bc = torch.zeros(z\_indices.shape, \ dtype=torch.bool, \ device= z\_indices\_predict.device)
        mask_bc = mask_bc.scatter_(dim= 1, index= idx, value= True)
        return z_indices_predict, mask_bc
```

Fig. 6 Inpainting

3. Discussion

3.1 The Influence of Total_Iter and Sweet Spot parameters

在本次實驗中,我嘗試了不同 total_iter 和 sweet spot 參數的調整以觀察 FID 分數的變化,在 total_iter 和 sweet spot 相同的情況以及使用 cosine gamma function,在使用相同參數的 Transfomer 做預測,以下為實驗結果。

Total_Iter / Sweet Spot	FID
5	29.382404949147883
10	28.24679803225783
15	28.553048822219665
20	28.668546725285438

從實驗結果來看,以及考慮 FID 的誤差範圍,在本次作業中這些參數的設定不會 太影響 FID,因此猜測主要影響因此還是在 Transformer 的訓練上。以下在兩種不同版 本的 Transformer 下,total_iter 和 sweet spot 都為 10,gamma function 採用 cosine 的實 驗結果。

我們可以看到明顯會影響 FID 分數,這也是直覺的實驗結果,因為圖片的修補就是靠 Transformer 的預測結果而決定, loss 較低的模型, 自然就會有較好的預測結果。

	FID	
Lr = 1e-3, batch=32 (min val:1.6151)	64.0774478411227	
Lr =1e-4, batch=16 (min val:1.2472)	28.24679803225783	

3.2 The Influence of Gamma Function

以下實驗將實驗在同一個 Transformer 下,改變 gamma function 對於 FID 的影響,

由實驗結果可知,在本次作業中,Gamma Function 幾乎不影響 FID 分數。

Gamma Function	FID	
Linear	28.540681852585692	
Cosine	28.330224449801534	
Square	28.574741379456356	

Experiment Score

4.1 Iterative Decoding

4.1.1 Mask in latent domain

Gamma	Mask Scheduling
Gamma	wask beneduling

Function	
Linear	
Cosine	
Square	

4.1.2 Predicted image

4.2 Best FID Score

4.2.1Training Hyperparameters

Epoch : 200

Batch Size: 16

Accum Grad: 5

Learning rate: 1e-4

Optimizer Adam with weight

decay: 3e-5

Scheduler: LinearWarmUp and

Cosine Annealing

Inpainting Hyperparameters

Total_Iter: 10

Sweet Spot: 10

Gamma Function: Cosine

4.2.2 Screenshot

(maskgit) sw710@Mochi:/mmt/e/School/Course/Summer-DLP/Lab3/faster-pytorch-fid\$ python fid_score_gpu.py --predicted-path ../test_results/ --device cuda:0
747
100%|
100%|
100%|
15/15 [00:00<00:00, 12.91it/s]
15/15 [00:00<00:00, 21.27it/s]

4.2.3 Masked Images v.s MaskGIT Inpainting Results

Masked Image	318 b		
MaskGIT Inpainting Results		@ Ø	