Box Num. 33 Problem Set 34 April 23, 2018

1. (a) The binding energy is given by

$$BE = a_{\text{vol}}A - a_{\text{surf}}A^{2/3} - a_{\text{coul}}\frac{Z^2}{A^{1/3}} - a_{\text{sym}}\frac{(N-Z)^2}{A} + \epsilon \frac{a_{\text{pair}}}{A^{1/2}}$$

Assuming A is odd,  $\epsilon = 0$ , so the simplified binding energy is

$$BE = a_{\text{vol}}A - a_{\text{surf}}A^{2/3} - a_{\text{coul}}\frac{Z^2}{A^{1/3}} - a_{\text{sym}}\frac{(N-Z)^2}{A}$$

and the semiempirical mass is

$$m_{\text{nuc}} = Zm_p + Nm_n - \frac{a_{\text{vol}}A - a_{\text{surf}}A^{2/3} - a_{\text{coul}}\frac{Z^2}{A^{1/3}} - a_{\text{sym}}\frac{(N-Z)^2}{A}}{c^2}$$

(b) If we take the derivative of the SEMF wrt. Z, we get that

$$\frac{dm_{\text{nuc}}}{dZ} = m_p - m_n + \frac{-4Aa_{\text{sym}} + 2A^{2/3}a_{\text{coul}Z} + 8a_{\text{sym}}Z}{Ac^2},$$

which has a zero at

$$Z = \frac{A(4a_{\text{sym}} + c^2 m_n - c^2 m_p)}{2(A^{2/3}a_{\text{coul}} + 4a_{\text{sym}})} = \frac{A}{2} \frac{1 + \alpha}{1 + \beta A^{2/3}},$$

with  $\alpha$  and  $\beta$  defined as in the problem.

(c) For A=37, the most stable Z is  $Z=17.25\approx 17$ . In reality, the most stable isotope with A=37 is  $^{37}$ Cl, with Z=17 as expected.

For A=115,  $Z=49.32\approx 49$ . The most stable isotope for A=115 is <sup>115</sup>Sn, with Z=50. This is close to the predicted value.

For A = 185,  $Z = 75.11 \approx 75$ . The most stable isotope here is <sup>185</sup>Re, with Z = 75, right as expected.



3. (a) In all of these cases, there is an even number of neutrons, so they do not contribute to  $j_{tot}$ . For  $^{39}_{19}$  K  $_{20}$ , there is a lone nucleon in the  $1d_{3/2}$  state, so it has a total spin of 3/2. For  $^{40}_{20}$ Ca $_{20}$ , the even number of protons means there is no net spin. For  $^{41}_{21}$ Sc $_{20}$ , there is again an unpaired nucleon in the  $1d_{3/2}$  state, for a total spin of 3/2.

- (b) See attached page.
- (c)  $^{12}$ C has a  $j_{tot}$  of 1/2, since there is a single unpaired neutron in the  $1p_{1/2}$  state, and no unpaired protons.
- (d)  $^{13}$ N has an even number of neutrons, so they do not contribute to  $j_{tot}$ . In the ground state, there is a single unpaired proton in the  $1p_{1/2}$  state, for a total spin of 1/2. When excited, this unpaired proton moves to the  $1d_{5/2}$  level, for a total spin of 5/2.
- 4. (a) See attached page.
  - (b) Process ii. takes in heat, and process iv. expels it. Processes i and iii do not change the heat of the system.
  - (c) Let  $P_1$  be the pressure at points b and c, and let  $P_2$  be the pressure at a and d. If we are given the difference in pressure,  $\Delta P$ , and the distance between a and d, the volume at b and c can be found. We have that

$$P_1 V_b^{\gamma} = P_2 V_a^{\gamma} \implies V_b = V_a \left(\frac{P_2}{P_1}\right)^{1/\gamma}$$

$$P_1 V_c^{\gamma} = P_2 V_d^{\gamma} \implies V_c = V_d \left(\frac{P_2}{P_1}\right)^{1/\gamma}$$

Then the total work of the cycle is

$$W = \oint P dV = \int_{V_a}^{V_b} P_2 \left(\frac{V_a}{V}\right)^{\gamma} dV + \int_{V_b}^{V_c} P_1 dV + \int_{V_c}^{V_d} P_1 \left(\frac{V_d}{V}\right)^{\gamma} dV + \int_{V_d}^{V_a} P_2 dV$$