Kılınç, Ömer e2448603@ceng.metu.edu.tr

April 2, 2024

Answer 1

$$x(t) = \begin{cases} 1 & -3 \le t \le 7 \\ 0 & otherwise \end{cases}$$

$$h(t) = \begin{cases} 1 & 1 \le t \le 15 \\ 0 & otherwise \end{cases}$$

Three ranges of t values, integrated seperately:

$$-3 \le \tau \le 7$$
$$t - 15 \le \tau \le t - 1$$

(I) partially overlap: $-2 \le t \le 8$

$$-3 \le \tau \le t - 1$$

$$\int_{-2}^{t-1} d\tau = t + 2$$

(II) fully overlap: $8 \le t \le 12$

$$-3 \le \tau \le 7$$
$$\int_{-3}^{7} d\tau = 10$$

(III) partially overlap: $12 \le t \le 22$

$$t - 15 \le \tau \le 7$$

$$\int_{t-15}^{7} d\tau = 22 - t$$

Figure 1: t vs. $x(\frac{1}{2}t - 2)$.

Kılınç, Ömer e2448603@ceng.metu.edu.tr

April 2, 2024

Answer 2

a)

$$x[n] = \delta[n] + 2\delta[n-2] - 3\delta[n-4]$$

 $h[n] = 2\delta[n+2] + \delta[n-2]$

By the distributive property of convolution

$$x[n] * h[n] = \delta[n] * h[n] + 2\delta[n-2] * h[n] - 3\delta[n-4] * h[n]$$

$$\delta[n] * h[n] = 2\delta[n+2] + \delta[n-2]$$

$$\delta[n-2] * h[n] = 2\delta[n] + \delta[n-4]$$

$$\delta[n-4] * h[n] = 2\delta[n-2] + \delta[n-6]$$

$$x[n] * h[n] = 2\delta[n+2] + 4\delta[n] - 5\delta[n-2] + 2\delta[n-4] - 3\delta[n-6]$$

$$y_1[n] = 2\delta[n+2] + 4\delta[n] - 5\delta[n-2] + 2\delta[n-4] - 3\delta[n-6]$$

$$y_2[n] = x[n+2] * h[n]$$

b)

$$y[n] = x[n] * h[n] => x[n+k] * h[n] = y[n+k]$$

$$y_2[n] = x[n+2] * h[n] = y_1[n+2]$$

$$y_2[n] = 2\delta[n+4] + 4\delta[n+2] - 5\delta[n] + 2\delta[n-2] - 3\delta[n-4]$$

c)

$$x[n+2] = \delta[n+2] + 2\delta[n] - 3\delta[n-2]$$
$$h[n-2] = 2\delta[n] + \delta[n-4]$$

Same amount of shifts to opposite sides for two functions defined on impulse functions:

$$y_3[n] = y_1[n] = 2\delta[n+2] + 4\delta[n] - 5\delta[n-2] + 2\delta[n-4] - 3\delta[n-6]$$

Kılınç, Ömer e2448603@ceng.metu.edu.tr

April 2, 2024

Answer 3

$$y[n] = \frac{1}{5}x[n-1] + x[n]$$

 $\mathbf{a})$

$$y[n] = \frac{1}{5}x[n-1] + x[n]$$

By feeding the system with unit impulse signal $x[n] = \delta[n]$

$$h[n] = \frac{1}{5}\delta[n-1] + \delta[n]$$

b)

Convoluting h[n] with
$$x[n] = \delta[n-2]$$

$$\delta[n-2]*h[n] = \frac{1}{5}\delta[n-3] + \delta[n-2]$$

Resulting in a time shift of impulse response.

Output
$$\mathbf{y}[\mathbf{n}]$$
: $y[n] = \frac{1}{5}\delta[n-3] + \delta[n-2]$

c)

 \mathbf{d}

$$h[n] \neq K\delta[n]$$

System has memory.

e)

Kılınç, Ömer e2448603@ceng.metu.edu.tr

April 2, 2024

Answer 5

$$y[n] = \frac{1}{5}y[n-1] + 2x[n-2]$$

a)

Feeding the system y[n] with unit impulse signal:

$$y[n] \to h[n]$$
 for $x[n] \to \delta[n]$

$$h[n] = \frac{1}{5}h[n-1] + 2\delta[n-2]$$

System is initially at rest: h[0] = 0

By using the recursive method, we can obtain the impulse response.

$$h[0] = 0$$

$$h[1] = \frac{1}{5}h[0] + 2\delta[-1] = 0$$

$$h[2] = \frac{1}{5}h[1] + 2\delta[0] = 2$$

$$h[3] = \frac{1}{5}h[2] + 2\delta[1] = (\frac{1}{5})(2)$$

$$h[4] = \frac{1}{5}h[3] + 2\delta[2] = (\frac{1}{5})^2(2)$$

$$h[5] = \frac{1}{5}h[4] + 2\delta[3] = (\frac{1}{5})^3(2)$$
...
$$h[n] = (\frac{1}{5})^{n-2}(2)$$
for $n > 1$

$$h[n] = (\frac{1}{5})^{n-2}(2)\mu[n-2]$$

b)

