Shinybrms - rozszerzenie shiny do uprawiania statystyki Bayesowskiej

Marta Szuwarska

shinybrms

Wprowadzenie do statystyki Bayesowskiej

czyli co to za twór?

Obrazek 2, [2]

Obrazek 3, [3]

Kwiecień 2019

Styczeń 2021

Obrazek 4, [4]

Obrazek 5, [5]

Niech A, B \in *F będą zdarzeniami oraz* $\mathbb{P}(B) > 0$. Wtedy:

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(B \mid A)\mathbb{P}(A)}{\mathbb{P}(B)}$$

Niech θ będzie wektorem parametrów. Wtedy:

$$\mathbb{P}(\theta \mid dane) = \frac{\mathbb{P}(dane \mid \theta)\mathbb{P}(\theta)}{\mathbb{P}(dane)}$$

Niech θ będzie wektorem parametrów.

Niech θ będzie wektorem parametrów. Wtedy:

$$\mathbb{P}(\theta \mid dane) = \frac{\mathbb{P}(dane \mid \theta)\mathbb{P}(\theta)}{\mathbb{P}(dane)}$$

$$\mathbb{P}(\theta \mid dane) = \frac{\mathbb{P}(dane \mid \theta)\mathbb{P}(\theta)}{\int_{\Theta} \mathbb{P}(dane \mid \theta)\mathbb{P}(\theta)d\theta}$$

A priori i a posteriori na przykładzie

Obrazek 7, [7]

Histogram of Prior

Wykres 1, wygenerowany w R

Histogram of Posterior

Wykres 2, wygenerowany w R

Podejście Bayesowskie a klasyczne

Podejście klasyczne	Podejście Bayesowskie			
Parametry ustalone	Parametry zmienne			
Dane zmienne	Dane ustalone			

Obrazek 8, [8]

Obrazek 9, [9]

Zalety podejścia Bayesa

czyli dlaczego warto zostać bayesistą?

- Możliwość uwzględnienia wiedzy eksperckiej
- Możliwość łatwego narzucenia ograniczeń parametrów
- Możliwość wyliczenia pełnego rozkładu nawet przy mało licznym zbiorze
- Bardziej intuicyjna interpretacja wyników
- Łatwe wykluczenie parametrów zakłócających (ang. nuisance parameters)
- Rzadziej dochodzi do testowania istotności hipotezy zerowej
- Podejście bayesowskie nigdy nie jest gorsze niż klasyczne
- Można łatwo przeprowadzić diagnostykę modelu

Stosowane algorytmy

czyli gdzie tu optymalizacja?

Algorytmy MCMC

- Metropolis
- Metropolis-Hastings
- Próbnik Gibbsa
- Hamiltonian Monte Carlo
- no-U-turn sampler

NUTS

- · eksploruje rozkład w każdą stronę,
- · nie musi wracać,
- jest bardziej efektywny niż tradycyjne algorytmy,
- · automatycznie określa długość i kierunek symulowanych trajektorii.

Powody powstania pakietu shinybrms

czyli czy naprawdę potrzebujemy kolejnego pakietu do R?

Starsze pakiety

		Algorithm (for inferring the posterior)							
GUI name	Commercial	Analytic	Non-MCMC Numerical	MC	ВВ	Non-HMC	MCMC Static HMC	NUTS	Algorithm choice
WinBUGS (Lunn et al., 2000)	no	no	no	no	no	yes	no	no	no
OpenBUGS (Spiegelhalter et al., 2014)	no	no	no	no	no	yes	yes	no	no
BugsXLA (Woodward, 2011)	no	no	no	no	no	yes	yes	no	no
IBM SPSS Amos (Arbuckle, 2020)	yes	no	no	no	no	yes	yes	no	yes
TEET (Qian, 2011)	no ⁽ⁱ⁾	yes	yes	yes	no	yes	no	no	no
JASP (JASP Team, 2022)	no	yes	yes	yes	no	yes	no	yes ⁽ⁱⁱ⁾	no
BRNPM (Karabatsos, 2015, 2017)	no	no	no	no	no	yes	no	no	no
Stata (StataCorp, 2019b)	yes	no	no	no	no	yes	no	no	yes
BayES (Emvalomatis, 2020)	no	no	no	no	no	yes	no	no	no
IBM SPSS (IBM Corp., 2020)	yes	yes	yes	yes	no	no	no	no	no
BEsmarter (BEsmarter Team, 2020a,b;	no	no	no	no	yes	yes	no	no	yes ⁽ⁱⁱⁱ⁾
Ramírez-Hassan and Graciano-Londoño, 2021)					-				

Testujemy apkę na przykładzie

czyli czy opatrunek z plazmy działa?

Podsumowanie

czyli czy warto zainstalować pakiet shinybrms?

Bibliografia

- [1] https://fweber144.github.io/shinybrms/
- [2] https://wiadomosci.onet.pl/pogoda/pogoda-na-czwartek-i-piatek-rajd-burz-przez-polske-gdzie-bedzie-burza/96wld2q
- [3] https://pl.m.wikipedia.org/wiki/Plik:Window view with green trees 1.jpg
- [4] https://www.facebook.com/groups/altminiawa/permalink/2548697745424796/
- [5] https://www.facebook.com/wrsminipw/posts/pfbid0zRc2SvZk32xogEGRxHwFntv3GTwGV7RqthGrWvkWqBkAvuYHG32poXrr7kgqSZRdl
- [6] https://lublin.wyborcza.pl/lublin/7,48724,25433261.historia-enigmy-pelna-znieksztalcen-i-metnych-wspomnien-ten.html?disableRedirects=true
- [7] https://www.facebook.com/WMINIPW/photos/a.2336388699931079/2336393559930593/?paipv=0&eav=AfaOYMRNRm3bo522IIzrcO1DqSPAXL6zqrv1R69FwQMIT3_HaeLWtFRv4OvQlCP5GQg&rdr
- [8] https://en.wikipedia.org/wiki/NPC %28meme%29
- [9] https://en.wikipedia.org/wiki/Thomas Bayes
- [10] https://icdn.psgtalk.com/wp-content/uploads/2019/10/VerrattiHeatMap.jpg
- [11] https://www.pngall.com/nuts-png/download/48644
- [12] https://journal.r-project.org/articles/RJ-2022-027/
- [13] https://chat.openai.com
- [14] https://www.youtube.com/watch?v=3OJEae7Qb_o&ab_channel=rasmusab
- [15] https://campus.datacamp.com/courses/bayesian-regression-modeling-with-rstanarm/introduction-to-bayesian-linear-models?ex=8
- [16] https://www.youtube.com/watch?v=QqwCqPYbatA&ab_channel=SaltLakeCityRUsersGroup

Dziękuję za uwagę