

⇔ Equivalent Sets

1 Why

We want to talk about the size of a set.

2 Definition

Two sets are *equivalent* if there exists a bijection between them.

Proposition 1. Set equivalence in the sense defined above is an equivalence relation in the power set of a set.

Proposition 2. Every proper subset of a natural number is equivalent to some smaller natural number.

Proof. TODO induction

TODO: smaller defined?

Proposition 3. A set can be equivalent to a proper subset of itself.

Halmos' example here is not a bijection, though...

Proposition 4. If n is a natural number, then n is not equivalent of a proper subset of itself.

Proposition 5. A set can be equivalent to at most one natural number.

Proposition 6. The set of natural numbers is infinite.

Proposition 7. A finite set is never equivalent to a proper subset of itself.

Proposition 8. Every subset of a finite set is finite.

Proposition 9. Every subset of a natural number is equivalent to a natural number.

