ASSIGNMENT ONE

ABSTRACT. Induction and Pigeonhole Principle. Deadline - June 1, 2024

1. Induction

Question 1.1. (Easy) Given n points, v_1, \ldots, v_n and n numbers d_1, \ldots, d_n such that $\sum_{i=1}^n d_i = 2n-2, d_i \geq 1$. Prove that the number of trees on the set $\{v_1, \ldots, v_n\}$ in which v_i has degree d_i is $\frac{(n-2)!}{(d_1-1)!\ldots(d_n-1)!}$.

Question 1.2. (Hard) A connected graph is 2-edge-connected if it remains connected whenever fewer than 2 edges are removed. A circuit is path that begins and ends at the same vertex. A circuit that doesn't repeat vertices is called a cycle. We say that an edge is well fitted with the circuit C if it lies on C or has no point in common with G. An independent set of edges is a set of edges of which no two have a vertex in common. Let e_1, \ldots, e_k be independent edges of a 2-edge-connected graph G. Show that there is a circuit C into which all edges e_1, \ldots, e_k are well fitted.

2. PIGEONHOLE PRINCIPLE

Question 2.1. (Easy) Let G=(V,E) be a graph, and $(C_v)_{v\in V}$ be a sequence of sets. We can look at each set C_v as a color set for the vertex v. Given such a list of color sets, we consider only colorings c such that $c(v)\in C_v$ for all $v\in V$, and call them list colorings of G. A coloring is legal if no two adjacent vertices receive the same color. The chromatic number $\chi(G)$ of graphs is the smallest number of colors we need in order to color the vertices of G in such a way that no two adjacent vertices receive the same color. The list chromatic number $\chi_l(G)$ is the smallest number k such that for any list of color sets C_v with $|C_v|=k$ for all $v\in V$, there always exists a legal list coloring of G. Of course, $\chi_l(G)\leq |V|$. Show that $\chi(G)\leq \chi_l(G)\leq \Delta(G)+1$.

Question 2.2. (Hard) A graph G = (V, E) in which each vertex is connected to every other vertex is called a *complete* graph. Consider a complete graph G on $\lfloor \frac{3k+1}{2} \rfloor$ vertices. If we 2-color the edges of G, then prove that there is a monochromatic path of length k.