SIEMENS

Low-Drop Voltage Regulator

TLE 4276

Features

- Output voltage tolerance ≤ ± 4%
- Low-drop voltage
- Inhibit input
- Very low current consumption
- Short-circuit-proof
- Reverse polarity proof
- Suitable for use in automotive electronics

New type

Functional Description

The TLE 4276 is a low-drop voltage regulator in a TO220 package. The IC regulates an input voltage up to 40 V to $V_{\rm Qrated}$ = 5.0 V (V50), 8.5 V (V85), 10 V (V10) and adjustable voltage (V). The maximum output current is 400 mA. The IC can be switched off via the inhibit input, which causes the current consumption to drop below 10 μ A. The IC is short-circuit-proof and incorporates temperature protection that disables it at over-temperature.

Dimensioning Information on External Components

The input capacitor $C_{\rm l}$ is necessary for compensating line influences. Using a resistor of approx. 1 Ω in series with $C_{\rm l}$, the oscillating of input inductivity and input capacitance can be damped. The output capacitor $C_{\rm Q}$ is necessary for the stability of the regulation circuit. Stability is guaranteed at values $C_{\rm Q} \ge 22~\mu{\rm F}$ and an ESR of $\le 3~\Omega$ within the operating temperature range.

Circuit Description

The control amplifier compares a reference voltage to a voltage that is proportional to the output voltage and drives the base of the series transistor via a buffer. Saturation control as a function of the load current prevents any oversaturation of the power element. The IC also incorporates a number of internal circuits for protection against:

- Overload
- Overtemperature
- Reverse polarity

Pin Configuration

(top view)

Figure 1

Pin Definitions and Functions

Pin No.	Symbol	Function
1	I	Input; block to ground directly at the IC with a ceramic capacitor.
2	INH	Inhibit; low-active input
3	GND	Ground
4	N.C. VA	Not connected for V50, V85, V10 Voltage Adjust Input; only for adjustable output from external voltage divider.
5	Q	Output ; block to ground with a \geq 22 μ F capacitor.

Figure 2 Block Diagram

SIEMENS

Absolute Maximum Ratings

 $T_{\rm j}$ = - 40 to 150 °C

Parameter	Symbol	Limit Values		Unit	Test Condition
		min.	max.		

Voltage Regulator

Input

Voltage	V_{I}	- 42	45	V	_
Current	I_{I}	_	_	_	Internally limited

Inhibit

Voltage	V_{INH}	- 42	45	V	_

Voltage Adjust Input

Voltage	$V_{\sf VA}$	- 0.3	10	V	_

Output

Voltage	V_{Q}	- 1.0	40	V	_
Current	I_{Q}	_	1	_	Internally limited

Ground

Current	I_{GND}	_	100	mA	_

Temperature

Junction temperature	T_{j}	_	150	°C	_
Storage temperature	T_{stg}	- 50	150	°C	_

Note: Maximum ratings are absolute ratings; exceeding any one of these values may cause irreversible damage to the integrated circuit.

Operating Range

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		
Input voltage	V_{I}	$V_{\rm Q}$ + 0.5	40	V	_
Junction temperature	T_{j}	- 40	150	°C	_

Thermal Resistance

Junction ambient	R_{thja}	_	65	K/W	TO220
Junction ambient	R_{thja}	_	70	K/W	TO2521), TO263
Junction case	$R_{ m thjc}$	_	4	K/W	_

¹⁾ Soldered in, minimal footprint

Characteristics

 $V_{\rm I}$ = 13.5 V; -40 °C < $T_{\rm j}$ < 150 °C (unless otherwise specified)

Parameter	Symbol	Lir	nit Val	ues	Unit	Measuring	Measuring
		min.	typ.	max.		Condition	Circuit
Output voltage	V_{Q}	4.8	5	5.2	V	$\begin{array}{l} \text{V50-Version} \\ \text{5 mA} < I_{\text{Q}} < 400 \text{ mA} \\ \text{6 V} < V_{\text{I}} < 40 \text{ V} \end{array}$	1
Output voltage	V_{Q}	8.16	8.5	8.84	V	$ \begin{array}{l} {\sf V85\text{-}Version} \\ {\sf 5~mA} < I_{\sf Q} < {\sf 400~mA} \\ {\sf 9.5~V} < V_{\sf I} < {\sf 40~V} \\ \end{array} $	1
Output voltage	V_{Q}	9.6	10	10.4	V	$\begin{array}{l} \text{V10-Version} \\ \text{5 mA} < I_{\text{Q}} < 400 \text{ mA} \\ \text{11 V} < V_{\text{I}} < 40 \text{ V} \end{array}$	1
Output voltage tolerance	$\Delta V_{ extsf{Q}}$	-4		4	%	V-Version $V_{\rm V.A.}$ = 2.5 V	1
Output current limitation ¹⁾	I_{Q}	400	600	_	mA	_	1
Current consumption; $I_q = I_l - I_Q$	I_{q}	_	0	10	μΑ	$V_{\text{INH}} = 0 \text{ V};$ $T_{\text{j}} \leq 100 \text{ °C}$	1
Current consumption; $I_{q} = I_{l} - I_{Q}$	I_{q}	_	100	220	μΑ	$I_{\rm Q}$ = 1 mA	1

SIEMENS

Characteristics (cont'd)

 $V_{\rm I}$ = 13.5 V; $-40\,^{\circ}$ C < $T_{\rm j}$ < 150 $^{\circ}$ C (unless otherwise specified)

Parameter	Symbol	Lin	nit Val	ues	Unit	Measuring	Measuring
		min.	typ.	max.		Condition	Circuit
Current consumption;	I_{q}	_	5	10	mA	$I_{\rm Q}$ = 250 mA	1
$I_{\rm q} = I_{\rm l} - I_{\rm Q}$	I_{q}		15	25	mΑ	$I_{\rm Q}$ = 400 mA	1
Drop voltage ¹⁾	V_{DR}	_	250	500	mV	$I_{\rm Q}$ = 250 mA $V_{\rm DR}$ = $V_{\rm I}$ – $V_{\rm Q}$	1
Load regulation	ΔV_{Q}	_	5	35	mV	$I_{\rm Q}$ = 5 mA to 400 mA	1
Line regulation	ΔV_{Q}	_	10	25	mV	$\Delta V_{\rm I}$ = 12 V to 32V $I_{\rm Q}$ = 5 mA	1
Power supply ripple rejection	PSRR	_	60	_	dB	$f_{\rm r}$ = 100 Hz; $V_{\rm r}$ = 0.5 $V_{\rm SS}$	1
Temperature output voltage drift	dV_{Q} dT	_	0.5	_	_	_	mV/K

¹⁾ Measured when the output voltage $V_{\rm Q}$ has dropped 100 mV from the nominal value obtained at $V_{\rm I}$ = 13.5 V.

Inhibit

Inhibit on voltage	V_{INH}	_	2	3.5	V	<i>V</i> _Q ≥ 4.9 V	1
Inhibit off voltage	V_{INH}	0.5	1.7	_	V	$V_{\rm Q} \le 0.1 \text{ V}$	1
Input current	I_{INH}	5	10	20	μΑ	$V_{INH} = 5 \; V$	1

Figure 3
Measuring Circuit

Figure 4
Application Circuit

Typical Performance Characteristics (V50, V85 and V10):

Drop Voltage $V_{\rm DR}$ versus Output Current $I_{\rm Q}$

Current Consumption I_q versus Output Current I_Q (high load)

Max. Output Current I_{Q} versus Input Voltage V_{I}

Current Consumption I_q versus Output Current I_Q (low load)

Typical Performance Characteristics for V50:

Output Voltage $V_{\rm Q}$ versus Temperature $T_{\rm i}$

Current Consumption $I_{\rm q}$ versus Input Voltage $V_{\rm l}$

Low Voltage Behavior

High Voltage Behavior

Typical Performance Characteristics for V85:

Output Voltage $V_{\rm Q}$ versus Temperature $T_{\rm i}$

Current Consumption $I_{\rm q}$ versus Input Voltage $V_{\rm l}$

Low Voltage Behavior

High Voltage Behavior

Typical Performance Characteristics for V10:

Output Voltage $V_{\rm Q}$ versus Temperature $T_{\rm i}$

Current Consumption $I_{\rm q}$ versus Input Voltage $V_{\rm l}$

Low Voltage Behavior

High Voltage Behavior

Package Outlines

P-TO220-5-3

(Plastic Transistor Single Outline)

- 1) shear and punch direction no burrs this surface
- 2) min. length by tinning
- 3) max. 11 mm allowable by tinning

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information"

Dimensions in mm

P-TO220-5-43

(Plastic Transistor Single Outline)

- 1) Punch direction, burr max. 0.04
- 2) Dip tinning
- 3) Max. 14.5 by dip tinning press burr max. 0.05 radii not dimensioned max. 0.2

P-TO220-5-122

(Plastic Transistor Single Outline)

1) shear and punch direction no burrs this surface

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information".

SMD = Surface Mounted Device

Dimensions in mm

SIEMENS TLE 4276

P-TO252-5-1

(Plastic Transistor Single Outline)

All metal surfaces tin plated, except area of cut.

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information".

SMD = Surface Mounted Device

Dimensions in mm