

Отчет по Лабораторной работе №6 по курсу "вычислительная математика"

Вариант №3

Выполнил: Студент группы р320820 Дробыш Дмитрий Александрович

> Преподаватель: Машина Екатерина Алексеевна

Санкт-Петербург, 2023

ЛАБОРАТОРНАЯ РАБОТА №6.

«ЧИСЛЕННОЕ РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ»

Цель лабораторной работы: решить задачу Коши для обыкновенных дифференциальных уравнений численными методами.

№ варианта задания лабораторной работы определяется как номер в списке группы согласно ИСУ.

1. Порядок выполнения работы

- 2. В программе численные методы решения обыкновенных дифференциальных уравнений (ОДУ) должен быть реализован в виде отдельного класса /метода/функции;
- 3. Пользователь выбирает ОДУ вида y' = f(x, y) (не менее трех уравнений), из тех, которые предлагает программа;
- 4. Предусмотреть ввод исходных данных с клавиатуры: начальные условия $y_0 = y(x_0)$, интервал дифференцирования $[x_0, x_n]$, шаг h, точность ε ;
- 5. Для исследования использовать одношаговые методы и многошаговые методы (см. табл.1);
- 6. Составить таблицу приближенных значений интеграла дифференциального уравнения, удовлетворяющего начальным условиям, для всех методов, реализуемых в программе;
- 7. Для оценки точности одношаговых методов использовать правило Рунге: $R = \frac{y^h y^{h/2}}{2^p 1} \le \varepsilon;$
- 8. Для оценки точности многошаговых методов использовать точное решение задачи: $\varepsilon = \max_{0 \le i \le n} |y_{i\text{точн}} y_i|$;
- 9. Построить графики точного решения и полученного приближенного решения (разными цветами);
- 10. Программа должна быть протестирована при различных наборах данных, в том числе и некорректных.
- 11. Проанализировать результаты работы программы.

2. Требования и содержание отчета

Отчет должен содержать следующие разделы:

- Титульный лист,
- Цель работы,
- Описание алгоритма решения задачи,
- Рабочие формулы используемых методов,

- Листинг программы (по крайней мере, коды используемых методов),
- Скриншоты результатов выполнения программы при различных исходных данных (не менее трех),
- Графики точного решения и полученного приближенного решения,
- Выводы.

3. Варианты задания

Одношаговые методы:

- 1. Метод Эйлера,
- 2. Усовершенствованный метод Эйлера,
- 3. Метод Рунге-Кутта 4- го порядка.

Многошаговые методы:

- 4. Адамса,
- 5. Милна.

Таблица 1. Варианты задания для программной реализации задачи

), C		3.0	<u> </u>
No	Метод	$N_{\underline{0}}$	Метод
варианта		варианта	
1	1, 3, 4	21	1, 3, 4
2	1, 3, 4 2, 3, 5	22	1, 2, 5
3	2, 3, 5 1, 3, 5 1, 2, 4 2, 3, 4 1, 3, 5 1, 2, 4 2, 3, 4 1, 2, 5	23	2, 3, 4 1, 3, 4
4	1, 2, 4	24	1, 3, 4
5	2, 3, 4	25	1, 3, 4 1, 3, 5 2, 2, 4 1, 3, 4 1, 3, 5 2, 3, 5
6	1, 3, 5	26	2, 2, 4
7	1, 2, 4	27	1, 3, 4
8	2, 3, 4	28	1, 3, 5
9	1, 2, 5	29	2, 3, 5
10	1, 3, 5	30	1, 2, 4
11	2, 3, 4	31	1, 2, 4 1, 3, 4
12	1, 3, 4	32	1 2 5
13	1, 2, 5	33	2, 3, 4
14	2, 3, 5	34	1, 3, 4
15	1, 3, 4	35	1, 3, 5
16	1, 3, 5	36	2, 3, 4
17	1, 3, 5 2, 3, 4 1, 3, 4 1, 2, 5 2, 3, 5 1, 3, 4 1, 3, 5 1, 2, 4	37	2, 3, 4 1, 3, 4 1, 3, 5 2, 3, 4 1, 3, 5
18	1, 3, 4	38	1, 2, 4
19	1, 3, 4 2, 3, 5	39	2, 3, 4 2, 3, 5
20	2, 3, 5	40	2, 3, 5

4. Контрольные вопросы

- 1. Сформулируйте задачу Коши для дифференциального уравнения 1 порядка.
- 2. Что является решением для дифференциального уравнения 1 порядка?
 - 3. В чем заключается суть метода конечных разностей?
 - 4. Что такое разностная аппроксимация?
 - 5. Геометрический смысл задачи Коши?
 - 6. Что такое интегральная кривая?
- 7. Какое из условий теоремы существования и единственности решения задачи Коши для ОДУ является условием существования и какое условием единственности?
- 8. Что должно быть задано для решения ОДУ приближенными методами?
 - 9. Какой порядок точности имеет метод Эйлера? Рунге-Кутта?
- 10. Перечислите основные одношаговые методы для численного решения ОДУ?
- 11. Перечислите основные многошаговые методы для численного решения ОДУ?
 - 12. В чем заключается суть методов прогноза и коррекции?
- 13. Когда в методах прогноза и коррекции можно переходить на следующий этап вычислений?
 - 14. Что такое правило Рунге и как оно используется в данной задаче?
 - 15. Чтобы «запустить» метод Адамса, что необходимо вычислить?

Формула:

$$y_{i+1} = y_i + hf(x_i, y_i)$$

Листинг:

```
def euler(f, x0, y0, h, xn):
    X = []
    Y = []
    X.append(x0)
    Y.append(y0)
    while x0 < xn:
        y0 = y0 + h * f(x0, y0)
        x0 += h
        X.append(x0)
    Y.append(y0)
    return X, Y</pre>
```


Рис.1 Блок-схема метода Эйлера

Runge_Kutta:

 $k_1 = h \cdot f(x_i, y_i)$

 $k_4 = h \cdot f(x_i + h, y_i + k_3)$

Широко распространен метод Рунге-Кутта четвертого порядка, часто без уточнений называемый просто методом Рунге – Кутты.

$$y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4),$$

$$k_1 = h \cdot f(x_i, y_i)$$

$$k_2 = h \cdot f(x_i + \frac{h}{2}, y_i + \frac{k_1}{2})$$

$$k_3 = h \cdot f(x_i + \frac{h}{2}, y_i + \frac{k_2}{2})$$
(13)

```
def fourth_order_runge_kutta(f, x0, y0, h, xn):
        while x0 < xn:
           k2 = h*f(x0+h/2, y0+k1/2)
           y0 = y0 + 1/6 * (k1 + 2 * k2 + 2 * k3 + k4)
```


Milna:

Вычислительные формулы:

а) этап прогноза:

$$y_i^{\text{прогн}} = y_{i-4} + \frac{4h}{3}(2f_{i-3} - f_{i-2} + 2f_{i-1})$$

б) этап коррекции:

$$y_i^{\text{корр}} = y_{i-2} + \frac{h}{3}(f_{i-2} + 4f_{i-1} + f_i^{\text{прогн}})$$

$$f_i^{\text{прогн}} = f(x_i, y_i^{\text{прогн}})$$

Для начала счета требуется задать решения в трех первых точках, которые можно получить одношаговыми методами (например, методом Рунге-Кутта).

```
def milna(f, x, y, h, xn, eps):
    xnn = x + h*4
    X, Y = fourth_order_runge_kutta(f, x, y, h, xnn)
    F = []
    for i in range(4):
        F.append(f(X[i], Y[i]))

# Prediction part:

while X[-1] < xn:
        X.append(X[-1] + h)
        Y.append(Y[-4] + 4*h/3 * (2 * F[-3] - F[-2] + 2 * F[-1]))
    Fi = f(X[-1], Y[-1])
    y_correct = Y[-2] + h/3 * (F[-2] + 4*F[-1] - Fi)

# Correction part:
    while abs(y_correct-Y[-1]) >= eps:
        Y[-1] = y_correct
    Fi = f(X[-1], y_correct)
    y_correct = Y[-2] + h/3 * (F[-2] + 4*F[-1] - Fi)

Y[-1] = y_correct
    Fi = f(X[-1], y_correct)
    y_correct = Y[-2] + h/3 * (F[-2] + 4*F[-1] - Fi)
    Y[-1] = Fi
    return X, Y
```


Рис. 3. Блок-схема метода предиктор-корректор

Вывод: В ходе лабораторной работы я попробовал различные методы решения ОДУ при помощи вычислительных методов на языке программирования Python3. Должен отметить, что выявил для себя наиболее оптимальным метод Милна.НО. Во-первых, сами методы имеют слишком большую погрешность, во-вторых, из-за разных порядков функций могут

быть проблемы с графиками, в-третьих, сами методы решения ОДУ на компьютере имеют слишком большую погрешность и не учитывают коэффициент С. Таким образом, лабораторная имеет смысл лишь с точки зрения математики, но для компьютера это слишком слабо.