Supporting Information

Harmonised trait datasets

Discrepancies in trait definitions

The hyphen indicates a missing trait. Reproduction was captured in multiple grouping features per database. Hence, differences for reproduction have been described in the paper. Body form traits are not different between databases, except that the Vieira database contains the trait Bluff (blocky) which does not appear in the other databases. Table 1: Comparison of trait definitions between invertebrate trait databases. Only traits that are differently described across databases are listed. The definition is quoted if it enables differences to be identified, otherwise the differences are described.

New Zealand	Shredders	Predator		
Australia	• Detrivore ^a • Trait herbivore includes among others the trait shredder	Piercer & engulfer		
Vieira	Shredder	Predator		
CONUS	 "Shred decomposing vascular plant tissue" Trait herbivore includes among others insect that shred living aquatic plants 	Engulfers ("ingest prey whole or in parts") & piercers ("prey tissues and suck fluids")		
Tachet	"Eat coarse detritus, plants or animal material"	• Carvers, engulfers & swallowers • Piercers (plants & animals) are an additional trait		
Freshwater- ecology.info	"Feed from fallen leaves, plant tissues, CPOM"	"Eating from prey"		
Trait	Feeding	Feeding		

Feeding filter-feeder	Distinguishes be- tween active and passive	No distinction between active and passive	No distinction be- tween active and passive	No distinction between active and passive	No distinction be- No distinction be- No distinction be- ween active and tween active and passive passive passive	No distinction be- tween active and passive
Semivoltine	"One generation in two years"	"Life cycle lasts at least two years"	"<1 generation per year"	"< 1 generation per year"	"< 1 generation per year"	"< 1 reproductive cycle per year"
Multivoltine	" Three or more generations per year" b	"Able to complete at least two successive generations per year"	"> 1 generations per year"	"> 1 generations per year"	 1-2 generations per year bi/multivoltine up to 5 generations per year up to 10 generations per year ations per year 	"> 1 reproductive cycles per year"
Locomotion	 Passive movement like floating or drifting (trait swim- ming/scating) Active movement (trait swim- ming/diving) 	 Surface swimmers (over and under the water surface) Full water swimmers (e.g. Baetidae). 	"Adapted for "fish- like" swimming"	Swimmer	Distinguishes swimmer and skater	Swimmers (water column)

sub- suk- walk- with	"Burrowing in soft substrates or boring in hard substrates" "Sprawling or walking actively with
rawling over the ottom substrate" stinguishes temorarily and peranently attached	"Crawlin bottom bottom bottom porarily manently
	ates or bor- " hard sub- " king or walk- ctively with seudopods or meus" not distin- temporarily permanently ed

Respiration plastron & spiracle	Respiration Plastron and spira-plastron & cle (aerial) are two spiracle separate traits	Definition includes respiration using air stores of aquatic plants	Plastron and spiracle combined into one trait	Distinguishes spiracular gills, plastron, atmospheric breathers and plant breathers	Plastron and spiracle (termed aerial) occur as separate and combined traits. Contains also traits: air (plants), atmospheric, and functional spiracles	Distinguishes plastron and spiracle (termed aerial)
Body size small	ı	Multiple size	< 9 mm	< 9 mm	$< 9 \text{ mm } ^{a,c}$	Multiple size
Body size medium	ı	classifications d	9 - 16 mm	9 - 16 mm	9 - 16 mm	${\rm classifications}\ ^e$
Body size large	1		> 16 mm	> 16 mm	> 16 mm	

a Traits from Botwe et al.

b Contains also bivoltine (two generations per year), trivoltine (three generations per year) and flexible.

d Size classifications: $<=0.25\ cm,>0.25-0.5\ cm,~0.5-1\ cm,~1-2\ cm,~2-4\ cm,~4-8\ cm,>8\ cm.$ No distinction into small, medium c Contains a size trait with numeric size values. Contains also traits classifying size like Tachet and like the North American trait databases.

e Size classifications: > 0.25 - 0.5 cm, 0.5 - 1 cm, 1 - 2 cm, 2 - 4 cm, 4 - 8 cm. No distinction into small, medium and large.

Comparing aggregation methods

Comparison of family-level aggregated traits with family-level assigned traits

Figure 1: Cases (factor combination of investigated families and traits) where differences occurred between aggregated traits and expert assigned traits at family level for the North American dataset. Violin plots - mirrored density plots - show the density of the absolute trait affinity differences for the grouping features locomotion, respiration, and body size. For more details see Figure ??.

Comparison of aggregation methods with varying taxonomic hierarchies and trait variability

Figure 2: Ranges of aggregated trait affinities for the three examples of taxonomic hierarchies and simulated levels of trait variability. Shown are the results for the simulated traits T2 and T3. Boxplots depict results for 100 replicated simulations of each trait aggregation method. Trait aggregation methods are in order of least to greatest produced ranges to improve visual inspection. For more details see Figure ??.

Taxonomic hierarchy in the trait datasets used for comparisons with assigned traits at family level

Figure 3: Number of genera per family and species per genus for those families of the North American trait dataset that have been compared with assigned traits at family level. For better visual display only families with more than 15 genera are displayed.

Figure 4: Number of genera per family and species per genus for the Australian trait dataset. For better visual display only families with more than 7 genera are displayed.

Effects of harmonisation and trait aggregation on trait-environment relationships

Table 2: Mean, median and standard deviation of the affinities of traits that were responsive to the salinity gradient in the original study but not in the re-analysis using the harmonised European trait dataset.

Type	Trait	Mean	Median	SD	Responsive?
Stepw_median	Shredder	0.20	0.14	0.25	No
$Stepw_mean$	Shredder	0.18	0.12	0.22	No
$Direct_median$	Shredder	0.21	0.14	0.25	No
$Direct_mean$	Shredder	0.19	0.14	0.22	No
Weighted	Shredder	0.19	0.14	0.22	No
Harmonised; not_aggregated	Shredder	0.18	0.12	0.24	No
Original	Shredder	0.25	0.14	0.32	Yes
Stepw_median	Gills	0.30	0.27	0.32	Yes
$Stepw_mean$	Gills	0.29	0.22	0.32	Yes
$Direct_median$	Gills	0.30	0.30	0.32	Yes
$Direct_mean$	Gills	0.30	0.30	0.32	Yes
Weighted	Gills	0.30	0.30	0.32	Yes
Harmonised; not_aggregated	Gills	0.30	0.25	0.32	No
Original	Gills	0.28	0.00	0.33	Yes
Stepw_median	Short life cycle	0.64	0.75	0.39	No
Stepw_mean	Short life cycle	0.64	0.79	0.39	No
$Direct_median$	Short life cycle	0.67	0.75	0.37	Yes
$Direct_mean$	Short life cycle	0.67	0.79	0.38	Yes
Weighted	Short life cycle	0.67	0.79	0.38	Yes
Harmonised; not_aggregated	Short life cycle	0.64	0.75	0.40	Yes
Original	Short life cycle	0.64	0.75	0.40	Yes
Stepw_median	Long life cylce	0.36	0.25	0.39	No
$Stepw_mean$	Long life cylce	0.36	0.21	0.39	No
$Direct_median$	Long life cylce	0.33	0.25	0.37	Yes
$\operatorname{Direct_mean}$	Long life cylce	0.33	0.21	0.38	Yes
Weighted	Long life cylce	0.33	0.21	0.38	Yes
Harmonised; not_aggregated	Long life cylce	0.36	0.25	0.40	Yes
Original	Long life cylce	0.36	0.25	0.40	Yes

aquatic eggs

Position

Figure 5: RDA of traits constrained by electric conductivity for the tested methods and the original study. Shown are boxplots of the site scores along the conductivity axis. The rug on the right side of each plot indicates species scores of the traits on the conductivity axis. Only traits with a Mahalanobis distance greater than the 97.5% quantile of the Chi-square distribution (5.02) were labelled. For better comparability, species scores of the original analysis were multiplied by -1.