CLAS-ANALYSIS 2016

Dalitz Plot Analysis of $\eta' \to \eta \ \pi^+ \ \pi^-$ from g12

1. Introduction

In this note we will explain the analysis details to obtain the Dalitz plot parameters of the decay of $\eta' \to \eta \; \pi^+ \; \pi^-$ meson. The final state particles proton, π^+ and π^- information from PART BOS bank are identified with the particle identification codes compiled in the "clas6-trunk" under the package CLASEVENT . We selected a data sample with all those events which has only one proton, π^+ and π^- in their final state and no matter how many neutral particles.

We started the analysis with well calibrated data as ".root" files with all events arranged as per the Run number, Event number and PID along with all other informations recorded by the experiment. The calibrated data is then corrected and further processed following the steps of "g12 procedures working version.pdf" and properly tuned Kinematic Fitter available at G12 Wikki [1]. We have divided our analysis into the following subsequent sections.

- Event Selection: The Section 2 will cover analysis cut involved to tap the events of interest.
- Simulation: The Section 3 will explain our analysis model and will produce a cross check to the whole analysis
- Result: The Section 4 will report the final results of the measurement with a study of systematics.

The complete reaction under study is " $\gamma p \to \eta'(\to \eta \pi^+ \pi^-) p$ " and we do not detect η meson. This is a missing mass analysis using a fixed target g12 experiment, which has an energy of the photon beam ranging from 1.142 GeV to 5.425 GeV. However the threshold production of η' meson is 1.455 GeV and hence we analysed the data from the threshold to our maximum available energy.

2. Event Selection

We are interested in the photo-production of η' meson and its decay to η , π^+ and π^- mesons. The improvement in the identification of the particles, selection of an event and several cuts in the analysis to tap the events of interest is reported subsequent subsections.

2.1. Run List

Table 1. List of runs included in the analysis

| G12 Run List |
|--------------|--------------|--------------|--------------|--------------|
| 56605 | 56653 | 56654 | 56655 | 56656 |
| 56660 | 56661 | 56665 | 56666 | 56667 |
| 56668 | 56669 | 56670 | 56673 | 56674 |
| 56688 | 56689 | 56690 | 56691 | 56692 |
| 56693 | 56694 | 56695 | 56696 | 56700 |
| 56701 | 56702 | 56703 | 56704 | 56705 |
| 56706 | 56707 | 56708 | 56710 | 56711 |
| 56712 | 56713 | 56714 | 56715 | 56716 |
| 56717 | 56718 | 56719 | 56720 | 56721 |
| 56722 | 56723 | 56724 | 56726 | 56727 |
| 56728 | 56729 | 56730 | 56731 | 56732 |
| 56733 | 56734 | 56735 | 56736 | 56737 |
| 56738 | 56739 | 56740 | 56741 | 56742 |
| 56743 | 56744 | 56748 | 56749 | 56750 |
| 56751 | 56752 | 56753 | 56754 | 56755 |
| 56756 | 56757 | 56758 | 56759 | 56760 |
| 56761 | 56762 | 56763 | 56764 | 56765 |
| 56766 | 56767 | 56768 | 56770 | 56771 |
| 56772 | 56774 | 56775 | 56776 | 56777 |
| 56778 | 56780 | 56781 | 56782 | 56783 |

56784	56787	56788	56791	56792	
56793	56794	56798	56799	56800	
56801	56802	56805	56806	56807	
56808	56809	56810	56811	56812	
56813	56814	56815	56821	56822	
56823	56824	56825	56826	56827	
56831	56832	56833	56834	56838	
56839	56841	56842	56843	56844	
56845	56849	56853	56854	56855	
56856	56857	56858	56859	56860	
56861	56862	56864	56865	56866	
56870	56874	56875	56877	56879	
56897	56898	56899	56900	56901	
56902	56903	56904	56905	56907	
56908	56914	56915	56916	56917	
56918	56919	56921	56922	56923	
56924	56925	56926	56927	56928	
56929	56930	56932	56935	56936	
56937	56938	56939	56940	56948	
56949	56950	56951	56952	56953	
56954	56955	56956	56958	56960	
56961	56962	56963	56964	56965	
56966	56967	56968	56969	56970	
56971	56972	56973	56974	56975	
56977	56978	56979	56980	56992	
56993	56994	56996	56997	56998	
56999	57000	57001	57002	57003	
57004	57005	57006	57008	57009	
57010	57011	57012	57013	57014	
57015	57016	57017	57021	57022	

57023 57025 57026 57027 57030 57031 57032 57062 57063 57064 57065 57066 57067 57068 57069 57071 57072 57073 57075 57076 57077 57078 57079 57080 57095 57096 57097 57100 57101 57102 57103 57106 57107 57108 57114 57115 57116 57117 57118 57119 57120 57121 57122 57123 57124 57125 57126 57127 57128 57130 57131 57132 57133 57134 57135 57136 57137 57138 57139 57140 57141 57142 57143 57144 57145 57146 57147 57148 57149 57150 57151 57152 57159 57160 57161 57162					
57065 57066 57067 57068 57069 57071 57072 57073 57075 57076 57077 57078 57079 57080 57095 57096 57097 57100 57101 57102 57103 57106 57107 57108 57114 57115 57116 57117 57118 57119 57120 57121 57122 57123 57124 57125 57126 57127 57128 57130 57131 57132 57133 57134 57135 57136 57137 57138 57139 57140 57141 57142 57143 57144 57145 57146 57147 57148 57149 57150 57151 57152 57159 57160 57161 57162 57163 57164 57165 57166 57167 57168 57170 57171 57172 57178	57023	57025	57026	57027	57030
57071 57072 57073 57075 57076 57077 57078 57079 57080 57095 57096 57097 57100 57101 57102 57103 57106 57107 57108 57114 57115 57116 57117 57118 57119 57120 57121 57122 57123 57124 57125 57126 57127 57128 57130 57131 57132 57133 57134 57135 57136 57137 57138 57139 57140 57141 57142 57143 57144 57145 57146 57147 57148 57149 57150 57151 57152 57159 57160 57161 57162 57163 57164 57165 57166 57167 57168 57170 57171 57172 57178 57179 57180 57181 57182 57191	57031	57032	57062	57063	57064
57077 57078 57079 57080 57095 57096 57097 57100 57101 57102 57103 57106 57107 57108 57114 57115 57116 57117 57118 57119 57120 57121 57122 57123 57124 57125 57126 57127 57128 57130 57131 57132 57133 57134 57135 57136 57137 57138 57139 57140 57141 57142 57143 57144 57145 57146 57147 57148 57149 57150 57151 57152 57159 57160 57161 57162 57163 57164 57165 57166 57167 57168 57170 57171 57172 57173 57144 57155 57165 57166 57167 57168 57170 57171 57172 57173	57065	57066	57067	57068	57069
57096 57097 57100 57101 57102 57103 57106 57107 57108 57114 57115 57116 57117 57118 57119 57120 57121 57122 57123 57124 57125 57126 57127 57128 57130 57131 57132 57133 57134 57135 57136 57137 57138 57139 57140 57141 57142 57143 57144 57145 57146 57147 57148 57149 57150 57151 57152 57159 57160 57161 57162 57163 57164 57165 57166 57167 57168 57170 57171 57172 57173 57144 57175 57176 57177 57178 57179 57180 57181 57182 57183 57184 57185 57189 57190 57191	57071	57072	57073	57075	57076
57103 57106 57107 57108 57114 57115 57116 57117 57118 57119 57120 57121 57122 57123 57124 57125 57126 57127 57128 57130 57131 57132 57133 57134 57135 57136 57137 57138 57139 57140 57141 57142 57143 57144 57145 57146 57147 57148 57149 57150 57151 57152 57159 57160 57161 57162 57163 57164 57165 57166 57167 57168 57170 57171 57172 57173 57174 57175 57176 57177 57178 57179 57180 57181 57182 57183 57184 57185 57189 57190 57191 57192 57193 57194 57195 57196	57077	57078	57079	57080	57095
57115 57116 57117 57118 57119 57120 57121 57122 57123 57124 57125 57126 57127 57128 57130 57131 57132 57133 57134 57135 57136 57137 57138 57139 57140 57141 57142 57143 57144 57145 57146 57147 57148 57149 57150 57151 57152 57159 57160 57161 57162 57163 57164 57165 57166 57167 57168 57170 57171 57172 57173 57174 57175 57176 57177 57178 57179 57180 57181 57182 57183 57184 57185 57189 57190 57191 57192 57193 57194 57195 57196 57197 57198 57199 57200 57201	57096	57097	57100	57101	57102
57120 57121 57122 57123 57124 57125 57126 57127 57128 57130 57131 57132 57133 57134 57135 57136 57137 57138 57139 57140 57141 57142 57143 57144 57145 57146 57147 57148 57149 57150 57151 57152 57159 57160 57161 57162 57163 57164 57165 57166 57167 57168 57170 57171 57172 57173 57174 57155 57166 57177 57178 57179 57180 57181 57182 57183 57184 57185 57189 57190 57191 57192 57193 57194 57195 57196 57197 57198 57199 57200 57201 57202 57203 57204 57205 57211	57103	57106	57107	57108	57114
57125 57126 57127 57128 57130 57131 57132 57133 57134 57135 57136 57137 57138 57139 57140 57141 57142 57143 57144 57145 57146 57147 57148 57149 57150 57151 57152 57159 57160 57161 57162 57163 57164 57165 57166 57167 57168 57170 57171 57172 57173 57174 57175 57176 57177 57178 57179 57180 57181 57182 57183 57184 57185 57189 57190 57191 57192 57193 57194 57195 57196 57197 57198 57199 57200 57201 57202 57203 57204 57205 57216 57217 57218 57219 57220 57216	57115	57116	57117	57118	57119
57131 57132 57133 57134 57135 57136 57137 57138 57139 57140 57141 57142 57143 57144 57145 57146 57147 57148 57149 57150 57151 57152 57159 57160 57161 57162 57163 57164 57165 57166 57167 57168 57170 57171 57172 57173 57174 57175 57176 57177 57178 57179 57180 57181 57182 57183 57184 57185 57189 57190 57191 57192 57193 57194 57195 57196 57197 57198 57199 57200 57201 57202 57203 57204 57205 57206 57207 57208 57209 57210 57211 57212 57213 57214 57215 57226	57120	57121	57122	57123	57124
57136 57137 57138 57139 57140 57141 57142 57143 57144 57145 57146 57147 57148 57149 57150 57151 57152 57159 57160 57161 57162 57163 57164 57165 57166 57167 57168 57170 57171 57172 57173 57174 57175 57176 57177 57178 57179 57180 57181 57182 57183 57184 57185 57189 57190 57191 57192 57193 57194 57195 57196 57197 57198 57199 57200 57201 57202 57203 57204 57205 57206 57207 57208 57209 57210 57211 57212 57213 57214 57215 57221 57222 57223 57224 57225 57226	57125	57126	57127	57128	57130
57141 57142 57143 57144 57145 57146 57147 57148 57149 57150 57151 57152 57159 57160 57161 57162 57163 57164 57165 57166 57167 57168 57170 57171 57172 57173 57174 57175 57176 57177 57178 57179 57180 57181 57182 57183 57184 57185 57189 57190 57191 57192 57193 57194 57195 57196 57197 57198 57199 57200 57201 57202 57203 57204 57205 57206 57207 57208 57209 57210 57211 57212 57213 57214 57215 57216 57217 57218 57219 57220 57221 57222 57223 57224 57225 57226	57131	57132	57133	57134	57135
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57136	57137	57138	57139	57140
57151 57152 57159 57160 57161 57162 57163 57164 57165 57166 57167 57168 57170 57171 57172 57173 57174 57175 57176 57177 57178 57179 57180 57181 57182 57183 57184 57185 57189 57190 57191 57192 57193 57194 57195 57196 57197 57198 57199 57200 57201 57202 57203 57204 57205 57206 57207 57208 57209 57210 57211 57212 57213 57214 57215 57216 57217 57218 57219 57220 57221 57222 57223 57224 57225 57226 57227 57228 57229 57233 57234 57235 57236 57249 57250	57141	57142	57143	57144	57145
57162 57163 57164 57165 57166 57167 57168 57170 57171 57172 57173 57174 57175 57176 57177 57178 57179 57180 57181 57182 57183 57184 57185 57189 57190 57191 57192 57193 57194 57195 57196 57197 57198 57199 57200 57201 57202 57203 57204 57205 57206 57207 57208 57209 57210 57211 57212 57213 57214 57215 57216 57217 57218 57219 57220 57221 57222 57223 57224 57225 57226 57227 57228 57229 57233 57234 57235 57236 57249 57250	57146	57147	57148	57149	57150
57167 57168 57170 57171 57172 57173 57174 57175 57176 57177 57178 57179 57180 57181 57182 57183 57184 57185 57189 57190 57191 57192 57193 57194 57195 57196 57197 57198 57199 57200 57201 57202 57203 57204 57205 57206 57207 57208 57209 57210 57211 57212 57213 57214 57215 57216 57217 57218 57219 57220 57221 57222 57223 57224 57225 57226 57227 57228 57229 57233 57234 57235 57236 57249 57250	57151	57152	57159	57160	57161
57173 57174 57175 57176 57177 57178 57179 57180 57181 57182 57183 57184 57185 57189 57190 57191 57192 57193 57194 57195 57196 57197 57198 57199 57200 57201 57202 57203 57204 57205 57206 57207 57208 57209 57210 57211 57212 57213 57214 57215 57216 57217 57218 57219 57220 57221 57222 57223 57224 57225 57226 57227 57228 57229 57233 57234 57235 57236 57249 57250	57162	57163	57164	57165	57166
57178 57179 57180 57181 57182 57183 57184 57185 57189 57190 57191 57192 57193 57194 57195 57196 57197 57198 57199 57200 57201 57202 57203 57204 57205 57206 57207 57208 57209 57210 57211 57212 57213 57214 57215 57216 57217 57218 57219 57220 57221 57222 57223 57224 57225 57226 57227 57228 57229 57233 57234 57235 57236 57249 57250	57167	57168	57170	57171	57172
57183 57184 57185 57189 57190 57191 57192 57193 57194 57195 57196 57197 57198 57199 57200 57201 57202 57203 57204 57205 57206 57207 57208 57209 57210 57211 57212 57213 57214 57215 57216 57217 57218 57219 57220 57221 57222 57223 57224 57225 57226 57227 57228 57229 57233 57234 57235 57236 57249 57250	57173	57174	57175	57176	57177
57191 57192 57193 57194 57195 57196 57197 57198 57199 57200 57201 57202 57203 57204 57205 57206 57207 57208 57209 57210 57211 57212 57213 57214 57215 57216 57217 57218 57219 57220 57221 57222 57223 57224 57225 57226 57227 57228 57229 57233 57234 57235 57236 57249 57250	57178	57179	57180	57181	57182
57196 57197 57198 57199 57200 57201 57202 57203 57204 57205 57206 57207 57208 57209 57210 57211 57212 57213 57214 57215 57216 57217 57218 57219 57220 57221 57222 57223 57224 57225 57226 57227 57228 57229 57233 57234 57235 57236 57249 57250	57183	57184	57185	57189	57190
57201 57202 57203 57204 57205 57206 57207 57208 57209 57210 57211 57212 57213 57214 57215 57216 57217 57218 57219 57220 57221 57222 57223 57224 57225 57226 57227 57228 57229 57233 57234 57235 57236 57249 57250	57191	57192	57193	57194	57195
57206 57207 57208 57209 57210 57211 57212 57213 57214 57215 57216 57217 57218 57219 57220 57221 57222 57223 57224 57225 57226 57227 57228 57229 57233 57234 57235 57236 57249 57250	57196	57197	57198	57199	57200
57211 57212 57213 57214 57215 57216 57217 57218 57219 57220 57221 57222 57223 57224 57225 57226 57227 57228 57229 57233 57234 57235 57236 57249 57250	57201	57202	57203	57204	57205
57216 57217 57218 57219 57220 57221 57222 57223 57224 57225 57226 57227 57228 57229 57233 57234 57235 57236 57249 57250	57206	57207	57208	57209	57210
57221 57222 57223 57224 57225 57226 57227 57228 57229 57233 57234 57235 57236 57249 57250	57211	57212	57213	57214	57215
57226 57227 57228 57229 57233 57234 57235 57236 57249 57250	57216	57217	57218	57219	57220
57234 57235 57236 57249 57250	57221	57222	57223	57224	57225
	57226	57227	57228	57229	57233
57251 57252 57253 57255 57256	57234	57235	57236	57249	57250
	57251	57252	57253	57255	57256

57257	57258	57260	57261	57262
57263	57264	57265	57266	57267
57268	57270	57271	57272	57274
57275	57276	57277	57278	57279
57280	57281	57282	57283	57284
57285	57286	57287	57288	57290
57291	57293	57294	57295	57296
57297	57298	57299	57300	57301
57302	57303	57304	57305	57306
57307	57308	57309	57310	57311
57317	57308	57309	57310	57311

2.2. Selection of the Beam Photon

In an event we found that multiple bremsstrahlung photons were recorded as the incident beam. The multiple beam photon arises from 2.004 beam bunching spacing of the electrons in the storage ring. These electrons gives the bremsstrahlung photons in the radiator and creates multiple hits in the trigger and thereby satisfying trigger logic to record them. In this analysis we selected all the photons which falls within the timing window of $|\text{Tagger Time} - \text{StartTime}| \leq 1.002 \text{ ns}$, and consider each of them as an individual event.

2.3. Vetex Cut

In the g12 experiment the target was positioned -90 cm from the CLAS center. The target cell was 40 cm long and 2 cm in radius in the form of a cylinder filled with unpolarised liquid hydrogen. We used this target information and imposed it to all event vertexes. We required all events production vertex tracks to originate in the target region via the condition that $\sqrt{v_x^2 + v_y^2} \le 2$ cm and -110 $\ge v_z \le$ -70 cm.

FIGURE 1. [tpho + tprop -scvt] distribution from the simulation and data for proton, π^+ and π^- .

2.4. Timing Cuts on proton, π^+ and π^-

As a post PID improvement of the detected final state particles π^+ , π^- and proton, we introduced a vertex timing (t_{vert}) cut of particles in the analysis. The t_{vert} , vertex time is the instant of time the particle left the target. One can calculate it through the information of the TOF detectors as,

$$t_{vert}(TOF) = t_{TOF} - \frac{l_{TOF}}{c\beta}$$

where t_{TOF} and l_{TOF} are the measured time and length of particle in TOF sub detector. Here c is the velocity of light in vacuum and β is the Lorentz factor of the particle calculated by knowing the velocity(v) of particle as $\beta = \frac{v}{c}$. The same vertex timing (t_{vert}) information can also be calculated from the RF-corrected time instant of the photon (t_{photon}) crossing the target center measure by the tagger added with the t_{prop} , which is the propagation time from the center of the target to the track vertex. Given by,

$$t_{vert}(Tagger) = t_{photon} + t_{prop}.$$

The difference of the $t_{vert}(TOF)$ from $t_{vert}(Tagger)$ is shown in Fig. 2, and we make a cut of \pm 1.0 ns around 0 ns for all the final state particles in both simulation and data.

3. G12 Corrections

The G12 Corrections were derived from the exclusive π^+ , π^- and proton reaction. We used the following corrections in the analysis [1]:

- Beam Energy Correction: Is a correction to the incident beam photon energy and dependent on the Run number of the event. This correction is only applicable data and not to the simulated events.
- Removal of bad TOF paddle: This correction takes the Sector number and Paddle number as input. We used the correction to remove only those paddles that shows a significant drift on the resolutions of particle.
- Geometric Fiducial Cut: This cut removes the dead part of the detector from the $\theta \phi$ map of the particle. We used it with the "nominal" option.

FIGURE 2. $[t_{vert}(TOF) - t_{vert}(Tagger)]$ distribution from the simulation and data for proton(Upper), π^+ (Middle) and π^- (Lower).

3.1. Kinematic Fitting

Kinematic fitter is a useful tool often used to get rid of unwanted background from signal channels and helps to improve the signal to background ratio. Any measurement with a tool comes with an error, and it can be represented as a vector $\vec{\eta}$. We can also define the measurement as

$$\vec{\eta} = \vec{y}. + \vec{\epsilon}.$$

Where the \vec{y} and $\vec{\epsilon}$ denotes the actual value of the measurement without error and $\vec{\epsilon}$ is the

error associated with the measurement. The kinematic information of a physics channel along with the constrains imposed allows the fitter to calculate the probability and χ^2 of each event using Lagrange multipliers to perform a least-squares fit. The CLAS g12 Kinematic fitter takes the "TBER (Track Based Error)" matrix, vertex of information and lorentzvector of all particles as input, and returns Pull probabilities and χ^2 for each events. The Pull probabilities when fitted with Guassian, its mean and σ decides the quality of the covariance matrix and kinematic fit. In the ideal case of gaussian fitted to the Pulls of the particles should have zero mean and σ of one, which ensures that the fitter correctly calculates covariance matrix error.

FIGURE 3. The Pull distributions for a (4-C) kinematic fit to γ p $\rightarrow \pi^+$ π^- p from g12 data with run 56655 after a 1% Pull probability cut.

The CLAS g12 Kinematic fitter is tuned for 4C constrained reaction,

$$\gamma p \to \pi^+ \pi^- p$$
.

FIGURE 4. The Pull distributions for a (4-C) kinematic fit to γ p $\to \pi^+$ π^- p from g12 simulation after a 1% Pull probability cut.

The tuning were done for π^+ π^- and p individually. To check the quality of covariance matrix we have shown the tuned pulls of the particles π^+ , π^- and p from the reaction hypothesis for the data with run 56655 and simulation after a 1% pull probability cut. The mean and sigma from of the particles are listed in the Table. 2.

3.1.1. Fit to the Analysis. We use the tuned Kinematic fitter for the 4C constrained fit described above to the reaction hypothesis for our channel

$$\gamma p \to (\eta)_{Missing} \pi^+ \pi^- p.$$

We required the $M_x(p\pi^+\pi^-)$ has to be an η meson. Our reaction hypothesis has the same set of final state particles as for the tuned channel, hence we can comfortably use it without tuning it for our reaction hypothesis again. The Pull probability for the channel

(A)			

	μ	σ
Proton p-pull	0.187	0.846
Proton λ -pull	-0.029	0.928
Proton ϕ -pull	-0.016	1.092
π^+ p-pull	0.081	0.957
$\pi^+ \lambda$ -pull	0.035	0.954
$\pi^- \phi$ -pull	-0.077	1.033
π^- p-pull	0.089	0.969
$\pi^- \lambda$ -pull	0.006	0.975
$\pi^- \phi$ -pull	-0.068	1.062
γ E-pull	-0.159	1.069

	μ	σ
Proton p-pull	0.267	1.146
Proton λ -pull	0.024	0.938
Proton ϕ -pull	-0.000	0.985
π^+ p-pull	0.203	1.064
$\pi^+ \lambda$ -pull	0.016	0.943
$\pi^+ \phi$ -pull	-0.060	0.983
π^- p-pull	0.187	1.098
$\pi^- \lambda$ -pull	0.007	0.959
$\pi^- \phi$ -pull	-0.123	0.990
γ E-pull	-0.312	1.092

(B)

TABLE 2. The table shows the Gaussian mean (μ) and width (σ) for the pull distributions from a 4C kinematic fit of γ p $\to \pi^+$ π^- to events from (A) data run 56655 and (B) from simulation after a 1% Pull probability cut.

of our interest is shown in Fig. 5 and the dotted line at 0.01 shows the 1% Pull probability cut to reject events.

3.2. Simulation

Pluto, an event generator is used for this analysis. Pluto uses ROOT based programmes very commonly used in Hadron Physics experiments to generate hadronic production and decay. It gives user the freedom to include physics models with simple C++ based codes and to obtain outputs in any desired format. Our simulated events are modelled with bremsstrahlung photon, differential cross-section of η' and Dalitz plot parameters of $\eta' \to \eta \pi^+ \pi^-$ decay. We took the output of the PLUTO program in standared CLAS "gamp" file and processed it with CLAS simulation suit:

FIGURE 5. The Pull probability for a (1-C) kinematic fit to γ p \rightarrow ($\eta_{Missing}$) π^+ π^- p from data run 56655.

- The gamp files are first converted into the format of PART bank containing the event.
- GSIM: Geant3-based simulation in CLAS simulates the decay tracks of particles through the simulation and finally the digitized informations is sorted in the simulated "raw" banks.
- GPP: GSIM post-processor smears detector signal more accurately to reflect the actual resolution and to simulate the experimental conditions.
- a1c: It is used for reconstruction of simulated data and is the same program used during data reconstruction.

The simulated events are then passed through same conditions of Section. 2.3, Section. 2.4, Section. 3 and Section. 3.1. The number of the events rejected in both the simulation and data after the cuts is shown in a Table. 3.

The events are generated with the differential cross sections of η' from the g11 measurement [2] within a $|\cos\theta_{center-of-mass}|$ of $\eta'| \leq 0.85$. The earlier measurement of CLAS g11 has reported the differential cross sections in $|\cos\theta_{center-of-mass}|$ of $\eta'| \leq 0.85$

Cuts	g12 Run 56655	Simulation
Generated		10001500
Reconstructed	42947	855447
Vertex Cut	20092	505405
Timing Cut	11390	451470
Multiple E_{γ}	14986	
Fiducial Cuts	10541	276432
$ \operatorname{Prob}((\eta)\pi^{+}\pi^{-}\mathrm{p})>0.01 $	1901	259136

TABLE 3. The table shows the cut flow of the analysis from g12 data run 56655 and simulated events.

window as the yield drops near to the beam pipe and hence this region is removed from the analysis. The generated events also has the input Dalitz plot parameters from BESIII measurement [3]. A comparison of the kinematic variables of the center-of-mass energy (\sqrt{s}) and momentum (P), θ and ϕ for π^+ π^- and p is shown in the Figure. 6, 7, 8 & 9 from the simulated events and the g12 data.

FIGURE 6. Comparison of incident photon beam in center of mass energy (\sqrt{s}) with simulated (blue) events and g12 data (black) when generating Monte-Carlo with the differential cross-sections and Dalitz plot parameters.

FIGURE 7. Comparison of π^+ momentum (top), π^+ θ (middle) and π^+ ϕ (bottom) with simulated (blue) events and g12 data (black) when generating Monte-Carlo with the differential cross-sections and Dalitz plot parameters.

FIGURE 8. Comparison of π^- momentum (top), $\pi^ \theta$ (middle) and $\pi^ \phi$ (bottom) with simulated (blue) events and g12 data (black) when generating Monte-Carlo with the differential cross-sections and Dalitz plot parameters.

FIGURE 9. Comparison of proton momentum (top), proton θ (middle) and proton ϕ (bottom) with simulated (blue) events and g12 data (black) when generating Monte-Carlo with the differential cross-sections and Dalitz plot parameters.

4. Dalitz plot of $\eta' \to \eta \ \pi^+ \ \pi^-$

The three body decay of a meson has two degrees of freedom. So we can define a scatter plot with two Dalitz plot variables X and Y for $\eta' \to \eta \pi^+ \pi^-$ decay, which is defined as follows:

(1)
$$X = \frac{\sqrt{3}(T_{\pi^+} - T_{\pi^-})}{Q}$$

$$Y = \frac{(m_{\eta} + 2m_{\pi})}{m_{\pi}} \cdot \frac{T_{\eta}}{Q} - 1.$$

Where T_{η} , $T_{\pi^{+}}$ and $T_{\pi^{-}}$ are the kinetic energy of a given particles η , π^{+} and π^{-} respectively in the rest frame of η' and $Q = T_{\pi^{+}} + T_{\pi^{-}} + T_{\eta}$. The m_{η} and m_{π} are the mass of η and π mesons respectively.

One can also define the boundary of the $\eta' \to \eta \ \pi^+ \ \pi^-$ decay from the fact that the addition three momenta of particles \vec{P}_{η} , \vec{P}_{π^+} and \vec{P}_{π^-} for η , π^+ and π^- respectively is 0 in the rest frame of η' .

$$\vec{P}_{\eta} + \vec{P}_{\pi+} + \vec{P}_{\pi-} = 0.$$

Squaring and equating the side gives us the boundary Equation. 3 of the $\eta' \to \eta \pi^+ \pi^-$ decay.

$$|P_{\eta}^{2} - P_{\pi+}^{2} - P_{\pi-}^{2}| \le 2\vec{P}_{\pi+} \cdot \vec{P}_{\pi-}$$

4.1. Fit to the Dalitz Plot

Once we the $\eta' \to \eta \pi^+ \pi^-$ events filled in each bin of Dalitz plot. We fit the Dalitz plot with the general parametrzation function in Equation. 4. The square of the decay amplitude,

(4)
$$M^{2} = A(1 + aY + bY^{2} + cX + dX^{2}).$$

Where a, b, c, and d are the Dalitz plot parameters of the decay and A is the normalization constant.

The fitting is performed using the least square fitting procedure and MINUIT available in ROOT, which minimises the χ^2 using Equation. 5 in each bin of the Dalitz plot.

(5)
$$\chi^2 = \sum_{n=1}^{Nbins} \left(\frac{N_n - \sum_{m=1}^{Nbins} \epsilon_{n,m} N_{theory,m}}{\sigma_n} \right)^2$$

Where,

- The N_n is number of $\eta' \to \eta \pi^+ \pi^-$ events in the n^{th} Dalitz plot bin.
- $\epsilon_{n,m}$ is acceptance with smearing matrix, ie. it gives acceptance of m^{th} bin when events are generated in the n^{th} bin only.
- $N_{theory,m} = \int_{Boundary} A(1 + aY + bY^2 + cX + dX^2) dX dY$.
- σ_n is the error associated with n^{th} DP bin.

REFERENCES

- [1] Z. Akbar et al. g12 Analysis Procedures, Statistics and Systematics. Technical report, CLAS Technical Note, 2016.
- [2] M. Williams et al. [CLAS Collaboration], Phys. Rev. C 80, 045213 (2009)
- [3] M. Ablikim et al. [BESIII Collaboration], Phys. Rev. D 83, 012003 (2011)