4.1.	Suppose u and	v belong to a	vector space	V. Simplify ea	ach of the	following	expressions:
------	-----------------	---------------	--------------	----------------	------------	-----------	--------------

(a)
$$E_1 = 3(2u - 4v) + 5u + 7v$$
, (c) $E_3 = 2uv + 3(2u + 4v)$

(b)
$$E_2 = 3u - 6(3u - 5v) + 7u$$
, (d) $E_4 = 5u - \frac{3}{v} + 5u$

Multiply out and collect terms:

(a)
$$E_1 = 6u - 12v + 5u + 7v = 11u - 5v$$

(b)
$$E_2 = 3u - 18u + 30v + 7u = -8u + 30v$$

- (c) E_3 is not defined because the product uv of vectors is not defined.
- (d) E_4 is not defined because division by a vector is not defined.

- **4.3.** Show that (a) k(u-v) = ku kv, (b) u + u = 2u.
 - (a) Using the definition of subtraction, that u v = u + (-v), and Theorem 4.1(iv), that k(-v) = -kv, we have

$$k(u - v) = k[u + (-v)] = ku + k(-v) = ku + (-kv) = ku - kv$$

(b) Using Axiom $[M_4]$ and then Axiom $[M_2]$, we have

$$u + u = 1u + 1u = (1 + 1)u = 2u$$

4.4. Express v = (1, -2, 5) in \mathbb{R}^3 as a linear combination of the vectors

$$u_1 = (1, 1, 1),$$
 $u_2 = (1, 2, 3),$ $u_3 = (2, -1, 1)$

We seek scalars x, y, z, as yet unknown, such that $v = xu_1 + yu_2 + zu_3$. Thus, we require

$$\begin{bmatrix} 1 \\ -2 \\ 5 \end{bmatrix} = x \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + y \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + z \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$$
 or
$$\begin{aligned} x + y + 2z &= 1 \\ x + 2y - z &= -2 \\ x + 3y + z &= 5 \end{aligned}$$

(For notational convenience, we write the vectors in R³ as columns, because it is then easier to find the equivalent system of linear equations.) Reducing the system to echelon form yields the triangular system

$$x + y + 2z = 1$$
, $y - 3z = -3$, $5z = 10$

The system is consistent and has a solution. Solving by back-substitution yields the solution x = -6, y = 3, z = 2. Thus, $v = -6u_1 + 3u_2 + 2u_3$.

Alternatively, write down the augmented matrix M of the equivalent system of linear equations, where u_1 , u_2 , u_3 are the first three columns of M and v is the last column, and then reduce M to echelon form:

$$M = \begin{bmatrix} 1 & 1 & 2 & 1 \\ 1 & 2 & -1 & -2 \\ 1 & 3 & 1 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 2 & 1 \\ 0 & 1 & -3 & -3 \\ 0 & 2 & -1 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 2 & 1 \\ 0 & 1 & -3 & -3 \\ 0 & 0 & 5 & 10 \end{bmatrix}$$

The last matrix corresponds to a triangular system, which has a solution. Solving the triangular system by back-substitution yields the solution x = -6, y = 3, z = 2. Thus, $v = -6u_1 + 3u_2 + 2u_3$.

4.5. Express v = (2, -5, 3) in \mathbb{R}^3 as a linear combination of the vectors

$$u_1 = (1, -3, 2), u_2 = (2, -4, -1), u_3 = (1, -5, 7)$$

We seek scalars x, y, z, as yet unknown, such that $v = xu_1 + yu_2 + zu_3$. Thus, we require

$$\begin{bmatrix} 2 \\ -5 \\ 3 \end{bmatrix} = x \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix} + y \begin{bmatrix} 2 \\ -4 \\ -1 \end{bmatrix} + z \begin{bmatrix} 1 \\ -5 \\ 7 \end{bmatrix}$$
 or
$$\begin{aligned} x + 2y + z &= 2 \\ -3x - 4y - 5z &= -5 \\ 2x - y + 7z &= 3 \end{aligned}$$

Reducing the system to echelon form yields the system

$$x + 2y + z = 2$$
, $2y - 2z = 1$, $0 = 3$

The system is inconsistent and so has no solution. Thus, v cannot be written as a linear combination of u_1 , u_2 , u_3 .

4.6. Express the polynomial $v = t^2 + 4t - 3$ in P(t) as a linear combination of the polynomials

$$p_1 = t^2 - 2t + 5,$$
 $p_2 = 2t^2 - 3t,$ $p_3 = t + 1$

Set v as a linear combination of p_1 , p_2 , p_3 using unknowns x, y, z to obtain

$$t^2 + 4t - 3 = x(t^2 - 2t + 5) + y(2t^2 - 3t) + z(t + 1)$$
(*)

We can proceed in two ways.

Method 1. Expand the right side of (*) and express it in terms of powers of t as follows:

$$t^{2} + 4t - 3 = xt^{2} - 2xt + 5x + 2yt^{2} - 3yt + zt + z$$
$$= (x + 2y)t^{2} + (-2x - 3y + z)t + (5x + 3z)$$

Set coefficients of the same powers of t equal to each other, and reduce the system to echelon form. This yields

$$x + 2y = 1$$
 $x + 2y = 1$ $x + 2y = 1$ $x + 2y = 1$ $y + z = 6$ or $y + z = 6$ $5x + 3z = -3$ $-10y + 3z = -8$ $13z = 52$

The system is consistent and has a solution. Solving by back-substitution yields the solution x = -3, y = 2, z = 4. Thus, $v = -3p_1 + 2p_2 + 4p_2$.

Method 2. The equation (*) is an identity in t; that is, the equation holds for any value of t. Thus, we can set t equal to any numbers to obtain equations in the unknowns.

- (a) Set t = 0 in (*) to obtain the equation -3 = 5x + z.
- (b) Set t = 1 in (*) to obtain the equation 2 = 4x y + 2z.
- (c) Set t = -1 in (*) to obtain the equation -6 = 8x + 5y.

Solve the system of the three equations to again obtain the solution x = -3, y = 2, z = 4. Thus, $v = -3p_1 + 2p_2 + 4p_3$.

4.7. Express M as a linear combination of the matrices A, B, C, where

$$M = \begin{bmatrix} 4 & 7 \\ 7 & 9 \end{bmatrix}$$
, and $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 1 \\ 4 & 5 \end{bmatrix}$

Set M as a linear combination of A, B, C using unknown scalars x, y, z; that is, set M = xA + yB + zC. This yields

$$\begin{bmatrix} 4 & 7 \\ 7 & 9 \end{bmatrix} = x \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} + y \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + z \begin{bmatrix} 1 & 1 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} x+y+z & x+2y+z \\ x+3y+4z & x+4y+5z \end{bmatrix}$$

Form the equivalent system of equations by setting corresponding entries equal to each other:

$$x + y + z = 4$$
, $x + 2y + z = 7$, $x + 3y + 4z = 7$, $x + 4y + 5z = 9$

Reducing the system to echelon form yields

$$x + y + z = 4$$
, $y = 3$, $3z = -3$, $4z = -4$

The last equation drops out. Solving the system by back-substitution yields z = -1, y = 3, x = 2. Thus, M = 2A + 3B - C.

- **4.10.** Let V = P(t), the vector space of real polynomials. Determine whether or not W is a subspace of V, where
 - (a) W consists of all polynomials with integral coefficients.
 - (b) W consists of all polynomials with degree ≥ 6 and the zero polynomial.
 - (c) W consists of all polynomials with only even powers of t.
 - (a) No, because scalar multiples of polynomials in W do not always belong to W. For example,

$$f(t) = 3 + 6t + 7t^2 \in W$$
 but $\frac{1}{3}f(t) = \frac{3}{3} + 3t + \frac{7}{3}t^2 \notin W$

- (b and c) Yes. In each case, W contains the zero polynomial, and sums and scalar multiples of polynomials in W belong to W.
- **4.11.** Let V be the vector space of functions $f: \mathbf{R} \to \mathbf{R}$. Show that W is a subspace of V, where
 - (a) $W = \{f(x) : f(1) = 0\}$, all functions whose value at 1 is 0.
 - (b) $W = \{f(x) : f(3) = f(1)\}\$, all functions assigning the same value to 3 and 1.
 - (c) $W = \{f(t) : f(-x) = -f(x)\}$, all odd functions.

Let $\hat{0}$ denote the zero function, so $\hat{0}(x) = 0$ for every value of x.

(a) $\hat{0} \in W$, because $\hat{0}(1) = 0$. Suppose $f, g \in W$. Then f(1) = 0 and g(1) = 0. Also, for scalars a and b, we have

$$(af + bg)(1) = af(1) + bg(1) = a0 + b0 = 0$$

Thus, $af + bg \in W$, and hence W is a subspace.

(b) $\hat{0} \in W$, because $\hat{0}(3) = 0 = \hat{0}(1)$. Suppose $f, g \in W$. Then f(3) = f(1) and g(3) = g(1). Thus, for any scalars a and b, we have

$$(af + bg)(3) = af(3) + bg(3) = af(1) + bg(1) = (af + bg)(1)$$

Thus, $af + bg \in W$, and hence W is a subspace.

(c) $\hat{0} \in W$, because $\hat{0}(-x) = 0 = -0 = -\hat{0}(x)$. Suppose $f, g \in W$. Then f(-x) = -f(x) and g(-x) = -g(x). Also, for scalars a and b,

$$(af + bg)(-x) = af(-x) + bg(-x) = -af(x) - bg(x) = -(af + bg)(x)$$

Thus, $ab + gf \in W$, and hence W is a subspace of V.

(a)
$$u = (1, 2), v = (3, -5),$$

(c)
$$u = (1, 2, -3), v = (4, 5, -6)$$

(b)
$$u = (1, -3), v = (-2, 6),$$
 (d) $u = (2, 4, -8), v = (3, 6, -12)$

d)
$$u = (2, 4, -8), v = (3, 6, -12)$$

Two vectors u and v are linearly dependent if and only if one is a multiple of the other.

(a) No. (b) Yes; for v = -2u. (c) No. (d) Yes, for $v = \frac{3}{5}u$.

CHAPTER 4 Vector Spaces

4.18. Determine whether or not u and v are linearly dependent, where

(a)
$$u = 2t^2 + 4t - 3$$
, $v = 4t^2 + 8t - 6$,

(b)
$$u = 2t^2 - 3t + 4$$
, $v = 4t^2 - 3t + 2$,

(c)
$$u = \begin{bmatrix} 1 & 3 & -4 \\ 5 & 0 & -1 \end{bmatrix}, v = \begin{bmatrix} -4 & -12 & 16 \\ -20 & 0 & 4 \end{bmatrix},$$
 (d) $u = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \end{bmatrix}, v = \begin{bmatrix} 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix}$

(d)
$$u = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \end{bmatrix}, v = \begin{bmatrix} 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

Two vectors u and v are linearly dependent if and only if one is a multiple of the other

- (a) Yes; for v = 2u. (b) No. (c) Yes, for v = -4u. (d) No.
- **4.19.** Determine whether or not the vectors u = (1, 1, 2), v = (2, 3, 1), w = (4, 5, 5) in \mathbb{R}^3 are linearly dependent.

Method 1. Set a linear combination of u, v, w equal to the zero vector using unknowns x, y, z to obtain the equivalent homogeneous system of linear equations and then reduce the system to echelon form. This yields

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + y \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} + z \begin{bmatrix} 4 \\ 5 \\ 5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
or
$$\begin{aligned}
x + 2y + 4z &= 0 \\
x + 3y + 5z &= 0 \\
2x + y + 5z &= 0
\end{aligned}$$
or
$$\begin{aligned}
x + 2y + 4z &= 0 \\
y + z &= 0
\end{aligned}$$

The echelon system has only two nonzero equations in three unknowns; hence, it has a free variable and a nonzero solution. Thus, u, v, w are linearly dependent.

Method 2. Form the matrix A whose columns are u, v, w and reduce to echelon form:

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 1 & 3 & 5 \\ 2 & 1 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 4 \\ 0 & 1 & 1 \\ 0 & -3 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 4 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

The third column does not have a pivot; hence, the third vector w is a linear combination of the first two vectors u and v. Thus, the vectors are linearly dependent. (Observe that the matrix A is also the coefficient matrix in Method 1. In other words, this method is essentially the same as the first method.)

Method 3. Form the matrix B whose rows are u, v, w, and reduce to echelon form:

$$B = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 3 & 1 \\ 4 & 5 & 5 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 & 2 \\ 0 & 1 & -3 \\ 0 & 1 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \end{bmatrix}$$

Because the echelon matrix has only two nonzero rows, the three vectors are linearly dependent. (The three given vectors span a space of dimension 2.)

- **4.20.** Determine whether or not each of the following lists of vectors in R³ is linearly dependent:
 - (a) $u_1 = (1,2,5), u_2 = (1,3,1), u_3 = (2,5,7), u_4 = (3,1,4),$
 - (b) u = (1,2,5), v = (2,5,1), w = (1,5,2),
 - (c) u = (1, 2, 3), v = (0, 0, 0), w = (1, 5, 6).
 - (a) Yes, because any four vectors in R3 are linearly dependent.
 - (b) Use Method 2 above; that is, form the matrix A whose columns are the given vectors, and reduce the matrix to echelon form:

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 5 & 5 \\ 5 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 0 & -9 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 24 \end{bmatrix}$$

Every column has a pivot entry; hence, no vector is a linear combination of the previous vectors. Thus, the vectors are linearly independent.

(c) Because 0 = (0, 0, 0) is one of the vectors, the vectors are linearly dependent.

4.21. Show that the functions $f(t) = \sin t$, $g(t) \cos t$, h(t) = t from **R** into **R** are linearly independent.

Set a linear combination of the functions equal to the zero function 0 using unknown scalars x, y, z; that is, set xf + yg + zh = 0. Then show x = 0, y = 0, z = 0. We emphasize that xf + yg + zh = 0 means that, for every value of t, we have xf(t) + yg(t) + zh(t) = 0.

Thus, in the equation $x \sin t + y \cos t + zt = 0$:

(i) Set
$$t = 0$$
 to obtain $x(0) + y(1) + z(0) = 0$ or $y = 0$.
(ii) Set $t = \pi/2$ to obtain $x(1) + y(0) + z\pi/2 = 0$ or $x + \pi z/2 = 0$.
(iii) Set $t = \pi$ to obtain $x(0) + y(-1) + z(\pi) = 0$ or $-y + \pi z = 0$.

(ii) Set
$$t = \pi/2$$
 to obtain $x(1) + y(0) + z\pi/2 = 0$ or $x + \pi z/2 = 0$.

(iii) Set
$$t = \pi$$
 to obtain $x(0) + y(-1) + z(\pi) = 0$ or $-y + \pi z = 0$

The three equations have only the zero solution; that is, x = 0, y = 0, z = 0. Thus, f, g, h are linearly independent.

4.22. Suppose the vectors u, v, w are linearly independent. Show that the vectors u + v, u - v, u - 2v + w are also linearly independent.

Suppose
$$x(u + v) + y(u - v) + z(u - 2v + w) = 0$$
. Then

$$xu + xv + yu - yv + zu - 2zv + zw = 0$$

$$(x + y + z)u + (x - y - 2z)v + zw = 0$$

Because u, v, w are linearly independent, the coefficients in the above equation are each 0; hence,

$$x + y + z = 0$$
, $x - y - 2z = 0$, $z = 0$

The only solution to the above homogeneous system is x = 0, y = 0, z = 0. Thus, u + v, u - v, u - 2v + ware linearly independent.

4.23. Show that the vectors u = (1 + i, 2i) and w = (1, 1 + i) in \mathbb{C}^2 are linearly dependent over the complex field C but linearly independent over the real field R.

Recall that two vectors are linearly dependent (over a field K) if and only if one of them is a multiple of the other (by an element in K). Because

$$(1+i)w = (1+i)(1, 1+i) = (1+i, 2i) = u$$

u and w are linearly dependent over C. On the other hand, u and w are linearly independent over R, as no real multiple of w can equal u. Specifically, when k is real, the first component of kw = (k, k + ki) must be real, and it can never equal the first component 1 + i of u, which is complex.

Basis and Dimension

4.24. Determine whether or not each of the following form a basis of \mathbb{R}^3 :

(c)
$$(1,1,1), (1,2,3), (2,-1,1);$$

(a and b) No, because a basis of \mathbb{R}^3 must contain exactly three elements because dim $\mathbb{R}^3 = 3$.

(c) The three vectors form a basis if and only if they are linearly independent. Thus, form the matrix whose rows are the given vectors, and row reduce the matrix to echelon form:

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 2 & -1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & -3 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 5 \end{bmatrix}$$

The echelon matrix has no zero rows; hence, the three vectors are linearly independent, and so they do form a basis of \mathbb{R}^3 .

- **4.29.** Find a basis and dimension of the subspace W of \mathbb{R}^3 where
 - (a) $W = \{(a, b, c) : a + b + c = 0\},$ (b) $W = \{(a, b, c) : (a = b = c)\}$
 - (a) Note that $W \neq \mathbb{R}^3$, because, for example, $(1,2,3) \notin W$. Thus, dim W < 3. Note that $u_1 = (1,0,-1)$ and $u_2 = (0,1,-1)$ are two independent vectors in W. Thus, dim W = 2, and so u_1 and u_2 form a basis of W.
 - (b) The vector $u = (1, 1, 1) \in W$. Any vector $w \in W$ has the form w = (k, k, k). Hence, w = ku. Thus, u spans W and dim W = 1.
- **4.30.** Let W be the subspace of \mathbb{R}^4 spanned by the vectors

$$u_1 = (1, -2, 5, -3),$$
 $u_2 = (2, 3, 1, -4),$ $u_3 = (3, 8, -3, -5)$

- (a) Find a basis and dimension of W. (b) Extend the basis of W to a basis of \mathbb{R}^4 .
- (a) Apply Algorithm 4.1, the row space algorithm. Form the matrix whose rows are the given vectors, and reduce it to echelon form:

$$A = \begin{bmatrix} 1 & -2 & 5 & -3 \\ 2 & 3 & 1 & -4 \\ 3 & 8 & -3 & -5 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 5 & -3 \\ 0 & 7 & -9 & 2 \\ 0 & 14 & -18 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 5 & -3 \\ 0 & 7 & -9 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The nonzero rows (1, -2, 5, -3) and (0, 7, -9, 2) of the echelon matrix form a basis of the row space of A and hence of W. Thus, in particular, dim W = 2.

- (b) We seek four linearly independent vectors, which include the above two vectors. The four vectors (1, -2, 5, -3), (0, 7, -9, 2), (0, 0, 1, 0), and (0, 0, 0, 1) are linearly independent (because they form an echelon matrix), and so they form a basis of \mathbb{R}^4 , which is an extension of the basis of W.
- **4.31.** Let W be the subspace of \mathbb{R}^5 spanned by $u_1 = (1, 2, -1, 3, 4)$, $u_2 = (2, 4, -2, 6, 8)$, $u_3 = (1, 3, 2, 2, 6)$, $u_4 = (1, 4, 5, 1, 8)$, $u_5 = (2, 7, 3, 3, 9)$. Find a subset of the vectors that form a basis of W.

Here we use Algorithm 4.2, the casting-out algorithm. Form the matrix M whose columns (not rows) are the given vectors, and reduce it to echelon form:

The pivot positions are in columns C_1 , C_3 , C_5 . Hence, the corresponding vectors u_1 , u_3 , u_5 form a basis of W, and dim W = 3.

(a)
$$A = \begin{bmatrix} 1 & 2 & 0 & -1 \\ 2 & 6 & -3 & -3 \\ 3 & 10 & -6 & -5 \end{bmatrix}$$
, (b) $B = \begin{bmatrix} 1 & 3 & 1 & -2 & -3 \\ 1 & 4 & 3 & -1 & -4 \\ 2 & 3 & -4 & -7 & -3 \\ 3 & 8 & 1 & -7 & -8 \end{bmatrix}$.

(a) Row reduce A to echelon form:

$$A \sim \begin{bmatrix} 1 & 2 & 0 & -1 \\ 0 & 2 & -3 & -1 \\ 0 & 4 & -6 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 & -1 \\ 0 & 2 & -3 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The two nonzero rows (1,2,0,-1) and (0,2,-3,-1) of the echelon form of A form a basis for rowsp(A). In particular, rank(A) = 2.

(b) Row reduce B to echelon form:

The two nonzero rows (1,3,1,-2,-3) and (0,1,2,1,-1) of the echelon form of B form a basis for rowsp(B). In particular, rank(B) = 2.

4.42. Show that U = W, where U and W are the following subspaces of \mathbb{R}^3 :

$$U = \operatorname{span}(u_1, u_2, u_3) = \operatorname{span}(1, 1, -1), (2, 3, -1), (3, 1, -5)$$

$$W = \operatorname{span}(w_1, w_2, w_3) = \operatorname{span}(1, -1, -3), (3, -2, -8), (2, 1, -3)$$

CHAPTER 4 Vector Spaces

145

Form the matrix A whose rows are the u_i , and row reduce A to row canonical form:

$$A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 3 & -1 \\ 3 & 1 & -5 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \\ 0 & -2 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Next form the matrix B whose rows are the w_i , and row reduce B to row canonical form:

$$B = \begin{bmatrix} 1 & -1 & -3 \\ 3 & -2 & -8 \\ 2 & 1 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & -3 \\ 0 & 1 & 1 \\ 0 & 3 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Because A and B have the same row canonical form, the row spaces of A and B are equal, and so U = W.

4.50. Find the dimension and a basis of the solution space W of each homogeneous system:

$$x + 2y + 2z - s + 3t = 0$$
 $x + 2y + z - 2t = 0$ $x + y + 2z = 0$
 $x + 2y + 3z + s + t = 0$ $2x + 4y + 4z - 3t = 0$ $2x + 3y + 3z = 0$
 $3x + 6y + 8z + s + 5t = 0$ (a) $3x + 6y + 7z - 4t = 0$ $x + 3y + 5z = 0$
(b) (c)

(a) Reduce the system to echelon form:

$$x + 2y + 2z - s + 3t = 0$$
 $x + 2y + 2z - s + 3t = 0$
 $z + 2s - 2t = 0$ or $z + 2s - 2t = 0$
 $2z + 4s - 4t = 0$

The system in echelon form has two (nonzero) equations in five unknowns. Hence, the system has 5-2=3 free variables, which are y, s, t. Thus, dim W=3. We obtain a basis for W:

(1) Set
$$y = 1, s = 0, t = 0$$
 to obtain the solution $v_1 = (-2, 1, 0, 0, 0)$.

(2) Set
$$y = 0, s = 1, t = 0$$
 to obtain the solution $v_2 = (5, 0, -2, 1, 0)$.

(3) Set
$$y = 0, s = 0, t = 1$$
 to obtain the solution $v_3 = (-7, 0, 2, 0, 1)$.

The set $\{v_1, v_2, v_3\}$ is a basis of the solution space W.

(b) (Here we use the matrix format of our homogeneous system.) Reduce the coefficient matrix A to echelon form:

$$A = \begin{bmatrix} 1 & 2 & 1 & -2 \\ 2 & 4 & 4 & -3 \\ 3 & 6 & 7 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 1 & -2 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 4 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 1 & -2 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

This corresponds to the system

$$x + 2y + 2z - 2t = 0$$
$$2z + t = 0$$

The free variables are y and t, and dim W = 2.

(i) Set
$$y = 1$$
, $z = 0$ to obtain the solution $u_1 = (-2, 1, 0, 0)$.

(ii) Set
$$y = 0$$
, $z = 2$ to obtain the solution $u_2 = (6, 0, -1, 2)$.

Then $\{u_1, u_2\}$ is a basis of W.

(c) Reduce the coefficient matrix A to echelon form:

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 3 & 3 \\ 1 & 3 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & 2 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 5 \end{bmatrix}$$

This corresponds to a triangular system with no free variables. Thus, 0 is the only solution; that is, $W = \{0\}$. Hence, dim W = 0.

5.10. Suppose $F: \mathbb{R}^3 \to \mathbb{R}^2$ is defined by F(x, y, z) = (x + y + z, 2x - 3y + 4z). Show that F is linear.

We argue via matrices. Writing vectors as columns, the mapping F may be written in the form F(v) = Av, where $v = [x, y, z]^T$ and

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & -3 & 4 \end{bmatrix}$$

Then, using properties of matrices, we have

$$F(v + w) = A(v + w) = Av + Aw = F(v) + F(w)$$

and

$$F(kv) = A(kv) = k(Av) = kF(v)$$

Thus, F is linear.

- **5.11.** Show that the following mappings are not linear:
 - (a) $F: \mathbb{R}^2 \to \mathbb{R}^2$ defined by F(x, y) = (xy, x)
 - (b) $F: \mathbb{R}^2 \to \mathbb{R}^3$ defined by F(x,y) = (x+3, 2y, x+y)
 - (c) $F: \mathbb{R}^3 \to \mathbb{R}^2$ defined by F(x, y, z) = (|x|, y + z)
 - (a) Let v = (1, 2) and w = (3, 4); then v + w = (4, 6). Also,

$$F(v) = (1(2), 1) = (2, 1)$$
 and $F(w) = (3(4), 3) = (12, 3)$

Hence,

$$F(v+w) = (4(6),4) = (24,6) \neq F(v) + F(w)$$

- (b) Because $F(0,0) = (3,0,0) \neq (0,0,0)$, F cannot be linear.
- (c) Let v = (1, 2, 3) and k = -3. Then kv = (-3, -6, -9). We have

$$F(v) = (1,5)$$
 and $kF(v) = -3(1,5) = (-3,-15)$.

Thus,

$$F(kv) = F(-3, -6, -9) = (3, -15) \neq kF(v)$$

Accordingly, F is not linear.

5.12. Let V be the vector space of n-square real matrices. Let M be an arbitrary but fixed matrix in V. Let $F: V \to V$ be defined by F(A) = AM + MA, where A is any matrix in V. Show that F is linear.

For any matrices A and B in V and any scalar k, we have

$$F(A + B) = (A + B)M + M(A + B) = AM + BM + MA + MB$$

= $(AM + MA) = (BM + MB) = F(A) + F(B)$

and

$$F(kA) = (kA)M + M(kA) = k(AM) + k(MA) = k(AM + MA) = kF(A)$$

Thus, F is linear.

$$F(x,y,z,t) = (x-y+z+t, x+2z-t, x+y+3z-3t)$$

Find a basis and the dimension of (a) the image of F, (b) the kernel of F.

(a) Find the images of the usual basis of R4:

$$F(1,0,0,0) = (1,1,1),$$
 $F(0,0,1,0) = (1,2,3)$
 $F(0,1,0,0) = (-1,0,1),$ $F(0,0,0,1) = (1,-1,-3)$

By Proposition 5.4, the image vectors span $\operatorname{Im} F$. Hence, form the matrix whose rows are these image vectors, and row reduce to echelon form:

$$\begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 1 & 2 & 3 \\ 1 & -1 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & -2 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Thus, (1, 1, 1) and (0, 1, 2) form a basis for Im F; hence, dim(Im F) = 2

(b) Set F(v) = 0, where v = (x, y, z, t); that is, set

$$F(x,y,z,t) = (x-y+z+t, x+2z-t, x+y+3z-3t) = (0,0,0)$$

Set corresponding entries equal to each other to form the following homogeneous system whose solution space is Ker F:

$$x-y+z+t=0 x + 2z - t = 0 x + y + 3z - 3t = 0$$
 or $x-y+z+t=0 y + z - 2t = 0 2y + 2z - 4t = 0$ or $x-y+z+t=0 y+z-2t = 0$

The free variables are z and t. Hence, $\dim(\operatorname{Ker} F) = 2$.

- (i) Set z = -1, t = 0 to obtain the solution (2, 1, -1, 0).
- (ii) Set z = 0, t = 1 to obtain the solution (1, 2, 0, 1).

Thus, (2, 1, -1, 0) and (1, 2, 0, 1) form a basis of Ker F.

[As expected, $\dim(\operatorname{Im} F) + \dim(\operatorname{Ker} F) = 2 + 2 = 4 = \dim \mathbb{R}^4$, the domain of F.]

5.17. Let $G: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear mapping defined by

$$G(x, y, z) = (x + 2y - z, y + z, x + y - 2z)$$

Find a basis and the dimension of (a) the image of G, (b) the kernel of G.

(a) Find the images of the usual basis of R3:

$$G(1,0,0) = (1,0,1),$$
 $G(0,1,0) = (2,1,1),$ $G(0,0,1) = (-1,1,-2)$

By Proposition 5.4, the image vectors span Im G. Hence, form the matrix M whose rows are these image vectors, and row reduce to echelon form:

$$M = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ -1 & 1 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

Thus, (1,0,1) and (0,1,-1) form a basis for Im G; hence, dim(Im G) = 2.

(b) Set G(v) = 0, where v = (x, y, z); that is,

$$G(x, y, z) = (x + 2y - z, y + z, x + y - 2z) = (0, 0, 0)$$

\bigcirc 182

CHAPTER 5 Linear Mappings

Set corresponding entries equal to each other to form the following homogeneous system whose solution space is Ker G:

$$x + 2y - z = 0$$

 $y + z = 0$ or $x + 2y - z = 0$
 $x + y - 2z = 0$ or $x + 2y - z = 0$
 $-y - z = 0$ or $x + 2y - z = 0$
 $y + z = 0$

The only free variable is z; hence, dim(Ker G) = 1. Set z = 1; then y = -1 and x = 3. Thus, (3, -1, 1) forms a basis of Ker G. [As expected, dim(Im G) + dim(Ker G) = 2 + 1 = 3 = dim \mathbb{R}^3 , the domain of G.]

5.24. Determine whether or not each of the following linear maps is nonsingular. If not, find a nonzero vector v whose image is 0.

(a)
$$F: \mathbb{R}^2 \to \mathbb{R}^2$$
 defined by $F(x,y) = (x - y, x - 2y)$.

(b)
$$G: \mathbb{R}^2 \to \mathbb{R}^2$$
 defined by $G(x, y) = (2x - 4y, 3x - 6y)$.

(a) Find Ker F by setting F(v) = 0, where v = (x, y),

$$(x-y, x-2y) = (0,0)$$
 or $\begin{array}{c} x-y=0 \\ x-2y=0 \end{array}$ or $\begin{array}{c} x-y=0 \\ -y=0 \end{array}$

The only solution is x = 0, y = 0. Hence, F is nonsingular.

(b) Set G(x, y) = (0, 0) to find Ker G:

$$(2x-4y, 3x-6y) = (0,0)$$
 or $2x-4y=0$
 $3x-6y=0$ or $x-2y=0$

The system has nonzero solutions, because y is a free variable. Hence, G is singular. Let y = 1 to obtain the solution v = (2, 1), which is a nonzero vector, such that G(v) = 0.

6.1. Consider the linear mapping $F: \mathbb{R}^2 \to \mathbb{R}^2$ defined by F(x, y) = (3x + 4y, 2x - 5y) and the following bases of \mathbb{R}^2 :

$$E = \{e_1, e_2\} = \{(1, 0), (0, 1)\}$$
 and $S = \{u_1, u_2\} = \{(1, 2), (2, 3)\}$

- (a) Find the matrix A representing F relative to the basis E.
- (b) Find the matrix B representing F relative to the basis S.
- (a) Because E is the usual basis, the rows of A are simply the coefficients in the components of F(x, y); that is, using $(a, b) = ae_1 + be_2$, we have

$$F(e_1) = F(1,0) = (3,2) = 3e_1 + 2e_2$$

 $F(e_2) = F(0,1) = (4,-5) = 4e_1 - 5e_2$ and so $A = \begin{bmatrix} 3 & 4 \\ 2 & -5 \end{bmatrix}$

Note that the coefficients of the basis vectors are written as columns in the matrix representation.

206

CHAPTER 6 Linear Mappings and Matrices

(b) First find $F(u_1)$ and write it as a linear combination of the basis vectors u_1 and u_2 . We have

$$F(u_1) = F(1,2) = (11,-8) = x(1,2) + y(2,3),$$
 and so
$$x + 2y = 11$$
$$2x + 3y = -8$$

Solve the system to obtain x = -49, y = 30. Therefore,

$$F(u_1) = -49u_1 + 30u_2$$

Next find $F(u_2)$ and write it as a linear combination of the basis vectors u_1 and u_2 . We have

$$F(u_2) = F(2,3) = (18,-11) = x(1,2) + y(2,3),$$
 and so
$$x + 2y = 18$$
$$2x + 3y = -11$$

Solve for x and y to obtain x = -76, y = 47. Hence,

$$F(u_2) = -76u_1 + 47u_2$$

Write the coefficients of u_1 and u_2 as columns to obtain $B = \begin{bmatrix} -49 & -76 \\ 30 & 47 \end{bmatrix}$

(b') Alternatively, one can first find the coordinates of an arbitrary vector (a, b) in R² relative to the basis S.
We have

$$(a,b) = x(1,2) + y(2,3) = (x+2y, 2x+3y),$$
 and so
$$x + 2y = a 2x + 3y = b$$

Solve for x and y in terms of a and b to get x = -3a + 2b, y = 2a - b. Thus,

$$(a,b) = (-3a + 2b)u_1 + (2a - b)u_2$$

Then use the formula for (a,b) to find the coordinates of $F(u_1)$ and $F(u_2)$ relative to S:

$$\begin{array}{ll} F(u_1) = F(1,2) = (11,-8) & = -49u_1 + 30u_2 \\ F(u_2) = F(2,3) = (18,-11) = -76u_1 + 47u_2 \end{array} \quad \text{and so} \quad B = \begin{bmatrix} -49 & -76 \\ 30 & 47 \end{bmatrix}$$

6.2. Consider the following linear operator G on \mathbb{R}^2 and basis S:

$$G(x,y) = (2x - 7y, 4x + 3y)$$
 and $S = \{u_1, u_2\} = \{(1,3), (2,5)\}$

- (a) Find the matrix representation $[G]_S$ of G relative to S.
- (b) Verify $[G]_S[v]_S = [G(v)]_S$ for the vector v = (4, -3) in \mathbb{R}^2 .

First find the coordinates of an arbitrary vector v = (a, b) in \mathbb{R}^2 relative to the basis S. We have

$$\begin{bmatrix} a \\ b \end{bmatrix} = x \begin{bmatrix} 1 \\ 3 \end{bmatrix} + y \begin{bmatrix} 2 \\ 5 \end{bmatrix}, \quad \text{and so} \quad \begin{aligned} x + 2y &= a \\ 3x + 5y &= b \end{aligned}$$

Solve for x and y in terms of a and b to get x = -5a + 2b, y = 3a - b. Thus,

$$(a,b) = (-5a+2b)u_1 + (3a-b)u_2$$
, and so $[v] = [-5a+2b, 3a-b]^T$

(a) Using the formula for (a, b) and G(x, y) = (2x - 7y, 4x + 3y), we have

$$\begin{array}{ll} G(u_1) = G(1,3) = (-19,13) = 121u_1 - 70u_2 \\ G(u_2) = G(2,5) = (-31,23) = 201u_1 - 116u_2 \end{array} \quad \text{and so} \quad \begin{bmatrix} G \end{bmatrix}_{\mathcal{S}} = \begin{bmatrix} 121 & 201 \\ -70 & -116 \end{bmatrix}$$

(We emphasize that the coefficients of u_1 and u_2 are written as columns, not rows, in the matrix representation.)

(b) Use the formula $(a, b) = (-5a + 2b)u_1 + (3a - b)u_2$ to get

$$v = (4, -3) = -26u_1 + 15u_2$$

 $G(v) = G(4, -3) = (20, 7) = -131u_1 + 80u_2$

Then $[v]_S = [-26, 15]^T$ and $[G(v)]_S = [-131, 80]^T$

(a) Find eigenvalues of the matrix A.

To find the eigenvalues of A, we calculate the characteristic polynomial p(t) as follows.

We have

$$p(t) = \det(A - tI) = \begin{vmatrix} 1 - t & 2 \\ 4 & 3 - t \end{vmatrix}$$

= $(1 - t)(3 - t) - 8 = t^2 - 4t - 5 = (t + 1)(t - 5).$

The eigenvalues of A are roots of its characteristic polynomial p(t).

Hence the eigenvalues of A are -1 and 5.

(b) Find eigenvectors for each eigenvalue of A.

We first determine the eigenvectors of the eigenvalue -1 by solving the system $(A+I)\mathbf{x}=\mathbf{0}$. We have

$$A+I=egin{bmatrix} 2 & 2 \ 4 & 4 \end{bmatrix} \xrightarrow[hent{then } rac{1}{\pi}R_1 \end{bmatrix} egin{bmatrix} 1 & 1 \ 0 & 0 \end{bmatrix}.$$

This yields that the eigenvectors corresponding to -1 are

$$a\begin{bmatrix}1\\-1\end{bmatrix}$$

for any nonzero scalar $oldsymbol{a}.$

Next, we find the eigenvectors corresponding to the eigenvalue 5 by solving $(A-5I)\mathbf{x}=\mathbf{0}$. We have

$$A-5I=egin{bmatrix} -4 & 2 \ 4 & -2 \end{bmatrix} \xrightarrow[hent{then } rac{-1}{4}R_1 \end{bmatrix} egin{bmatrix} 1 & -1/2 \ 0 & 0 \end{bmatrix}.$$

It follows that the eigenvectors corresponding to 5 are

$$a\begin{bmatrix}1\\2\end{bmatrix}$$

for any nonzero scalar a.

(c) Diagonalize the matrix A.

From part (a) and part (b), we have seen that A has eigenvalues -1 and 5 with corresponding eigenvectors

$$\mathbf{u} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

(Here we chose the scalars a to be 1 but you could use any nonzero values for the scalars a.)

Let

$$S = [\mathbf{u} \quad \mathbf{v}] = \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix}.$$

Then the general procedure of the diagonalization yields that the matrix S is invertible and

$$S^{-1}AS=D,$$

where D is the diagonal matrix given by

$$D = \begin{bmatrix} -1 & 0 \\ 0 & 5 \end{bmatrix}.$$

(d) Diagonalize the matrix $A^3 - 5A^2 + 3A + I$.

In part (c), we obtained

$$S^{-1}AS=D,$$

where

$$S = \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix}$$
 and $D = \begin{bmatrix} -1 & 0 \\ 0 & 5 \end{bmatrix}$.

Note that we have $A = SDS^{-1}$ and

$$A^2 = AA = SDS^{-1} \cdot SDS^{-1} = SD^2S^{-1}$$

 $A^3 = A^2A = SD^2S^{-1} \cdot SDS^{-1} = SD^3S^{-1}$.

These relations gives

$$A^{3} - 5A^{2} + 3A + I = SD^{3}S^{-1} - 5SD^{2}S^{-1} + 3SDS^{-1} + I$$

= $S(D^{3} - 5D^{2} + 3D + I)S^{-1}$.

Hence we obtain

$$S^{-1}(A^{3} - 5A^{2} + 3A + I)S$$

$$= D^{3} - 5D^{2} + 3D + I$$

$$= \begin{bmatrix} (-1)^{3} & 0 \\ 0 & 5^{3} \end{bmatrix} - 5 \begin{bmatrix} (-1)^{2} & 0 \\ 0 & 5^{2} \end{bmatrix} + 3 \begin{bmatrix} -1 & 0 \\ 0 & 5 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} -8 & 0 \\ 0 & 16 \end{bmatrix}.$$

This completes the diagonalization of the matrix A^3-5A^2+3A+I .

(e) Calculate A^{100} .

In part (d), we have seen that $A = SDS^{-1}$, $A^2 = SD^2S^{-1}$, $A^3 = SD^3S^{-1}$.

Repeating the same argument (or using mathematical induction), we also have

$$A^{100} = SD^{100}S^{-1}.$$

Thus, we have

$$\begin{split} A^{100} &= SD^{100}S^{-1} \\ &= \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 5 \end{bmatrix}^{100} \frac{1}{3} \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \\ &= \frac{1}{3} \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} (-1)^{100} & 0 \\ 0 & 5^{100} \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \\ &= \frac{1}{3} \begin{bmatrix} 2 + 5^{100} & -1 + 5^{100} \\ -2 + 2 \cdot 5^{100} & 1 + 2 \cdot 5^{100} \end{bmatrix}. \end{split}$$

(f) Calculate $(A^3 - 5A^2 + 3A + I)^{100}$.

Let

$$B := A^3 - 5A^2 + 3A + I.$$

In part (d), we obtained

$$S^{-1}BS = \begin{bmatrix} -8 & 0 \\ 0 & 16 \end{bmatrix}.$$

Hence we have $B=S\begin{bmatrix} -8 & 0 \\ 0 & 16 \end{bmatrix}S^{-1}$, and

Hence we have $B=S\begin{bmatrix} -8 & 0 \\ 0 & 16 \end{bmatrix}S^{-1}$, and

$$B^{100} = S \begin{bmatrix} -8 & 0 \\ 0 & 16 \end{bmatrix}^{100} S^{-1}$$

$$= S \begin{bmatrix} (-8)^{100} & 0 \\ 0 & 16^{100} \end{bmatrix} S^{-1}$$

$$= S \begin{bmatrix} 2^{300} & 0 \\ 0 & 2^{400} \end{bmatrix} S^{-1}$$

$$= S \begin{bmatrix} w^3 & 0 \\ 0 & w^4 \end{bmatrix} S^{-1},$$

where we put $w=2^{100}$.

Hence we have

$$B^{100} = \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} w^3 & 0 \\ 0 & w^4 \end{bmatrix} \frac{1}{3} \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}$$
$$= \frac{w^3}{3} \begin{bmatrix} 2+w & -1+w \\ -2+2w & 1-2w \end{bmatrix}.$$

4.2 Vector Spaces

The following defines the notion of a vector space V where K is the field of scalars.

DEFINITION: Let V be a nonempty set with two operations:

- (i) Vector Addition: This assigns to any $u, v \in V$ a sum u + v in V.
- (ii) Scalar Multiplication: This assigns to any $u \in V$, $k \in K$ a product $ku \in V$.

Then V is called a *vector space* (over the field K) if the following axioms hold for any vectors $u, v, w \in V$:

1112

CHAPTER 4 Vector Spaces

- [A₁] (u+v)+w=u+(v+w)
- [A₂] There is a vector in V, denoted by 0 and called the zero vector, such that, for any $u \in V$,

$$u + 0 = 0 + u = u$$

[A₃] For each $u \in V$, there is a vector in V, denoted by -u, and called the *negative* of u, such that

$$u + (-u) = (-u) + u = 0.$$

- $[A_4] \quad u+v=v+u.$
- $[M_1]$ k(u+v)=ku+kv, for any scalar $k \in K$.
- $[M_2]$ (a+b)u = au + bu, for any scalars $a, b \in K$.
- [M₃] (ab)u = a(bu), for any scalars $a, b \in K$.
- $[M_4]$ 1u = u, for the unit scalar $1 \in K$.

The above axioms naturally split into two sets (as indicated by the labeling of the axioms). The first four are concerned only with the additive structure of V and can be summarized by saying V is a commutative group under addition. This means

- (a) Any sum $v_1 + v_2 + \cdots + v_m$ of vectors requires no parentheses and does not depend on the order of the summands.
- (b) The zero vector 0 is unique, and the negative -u of a vector u is unique.
- (c) (Cancellation Law) If u + w = v + w, then u = v.

Also, subtraction in V is defined by u - v = u + (-v), where -v is the unique negative of v.

On the other hand, the remaining four axioms are concerned with the "action" of the field K of scalars on the vector space V. Using these additional axioms, we prove (Problem 4.2) the following simple properties of a vector space.

THEOREM 4.1:

Let V be a vector space over a field K.

- (i) For any scalar $k \in K$ and $0 \in V$, k0 = 0.
- (ii) For $0 \in K$ and any vector $u \in V$, 0u = 0.
- (iii) If ku = 0, where $k \in K$ and $u \in V$, then k = 0 or u = 0.
- (iv) For any $k \in K$ and any $u \in V$, (-k)u = k(-u) = -ku.