置换群

- 1. 置换: 非空集合 X 到自身的一一映射, 叫做 X 上的一个置换;
 - (a) 若 $X = \{a_1, ..., a_n\}$ 是有限集合,则它上面的置换 σ 通常可表示为 $\sigma = \begin{pmatrix} a_1 & ... & a_n \\ \sigma(a_1) & ... & \sigma(a_n) \end{pmatrix};$
 - (b) 置换的乘积: 置换的乘积定义为映射的复合 $(\sigma\tau)(a_i) = \sigma(\tau(a_i)), a_i \in X$;
 - (c) 置换 σ 的逆: σ 作为X到X的映射的逆映射;
- 2. 对称群与置换群: 集合 X 上所有置换构成的集合记为 S_X , 称为集合 X 上对称群, 它的每个子群均称为集合 X 上的置换群, 它关于映射复合运 算构成群;
 - (a) n 元集合上的对称群 S_n , 其阶为 $|S_n| = n!$;
- 3. 固定与移动: 设 $X = \{1, ..., n\}, i \in X$ 和 $\sigma \in S_n$. 若 $\sigma(i) = i$ 称为 σ 固定 i, 若 $\sigma(i) \neq i$ 称为 σ 移动 i;
- 4. 轮换: 设 σ 固定 X 中的 $X/\{i_1, i_2, ..., i_r\}$, 若 $\sigma(i_{r-1}) = i_r, \sigma(i_r) = i_1$, 则 称 σ 为一个长为 r 的轮换, 记为 $\sigma = (i_1 i_2 ... i_r)$;
 - (a) 对换: 长为 2 的轮换仅交换 X 中的一对元素, 通常称为对换;
 - (b) 不相交: 若 X 中的元素被一个置换 σ 移动, 必然被另一个 τ 固定, 则称两个置换不相交;
 - i. 当两个置换 σ , τ 不相交时, 必然有 $\sigma\tau = \tau\sigma$;
 - ii. 每个非恒等置换 $\sigma \in S_n$ 是长度大于 1 的不相交轮换的乘积;
 - (c) 每个置换 $\sigma \in S_n$ 都可以写成对换的乘积;
 - i. 置换分解成对换乘积的方式不唯一,但分解成对换乘积时,对 换个数的奇偶性不变;
 - A. 奇 (偶) 置换: 如果置换 $\sigma \in S_n$ 可以写成奇 (偶) 数个对换的乘积;
 - B. n 次交错群: 有所有的偶置换构成的群 $A_n := Kerf =$ {偶置换} $\triangleleft S_n, f : S_n \to \{1, -1\}$ 被称为 n 次交错群, 有 $[S_n : A_n] = 2, |A_n| = \frac{n!}{2} (n \geq 2);$

- (d) 当 $n \ge 2$ 时, $\{(12), (13), ..., (1n)\}$ 是 S_n 的一个生成元系;
- (e) 当 $n \ge 3$ 时,全体长为 3 的轮换形成 A_n 的一个生成元系;
- 5. 置换的型: 置换 $\sigma \in S_n$, 将 σ 表示成不相交的轮换之积, 如果其中长为 r 的轮换共有 λ_r 个 $(1 \le r \le n)$, 则称 σ 的型为 $1^{\lambda_1}2^{\lambda_2}...r^{\lambda_r}$;
 - (a) 对称群 S_n 中两个置换共轭的充要条件是它们有相同的型;
 - (b) 单群: 只有平凡正规子群的群, 称为单群;
 - i. 元素个数大于1的交换群是单群⇔它是素数阶(循环)群;
 - ii. $\exists n \geq 5$ 时, 交错群 A_n 是单群;