Question 3:

Python is used for programming purpose.

1. From data given in AgeGroupDetails it is clear that the age group 20-29 is the most infected.

2. Assumption:

- a. New dataset is downloaded from Kaggle having data till 06 may.
- b. All the column of given data (covid_19_india) are in the type as expected but the column for ConfirmedForeignNational is in object type which should be in int type so converted in int.
- c. Column ConfirmedForeignNational has some value "-". So, deal with this situation the mean of the data for particular state is calculated and replaced.
- d. Column ConfirmedIndianNational has some value "-". So, deal with this situation data is filled by subtracting Column ConfirmedForeignNational from the column Confirmed.
- e. Observed cases is assumed to be the Confirmed column.
- f. The plot for state wise Vs per day are plotted assuming 31 Jan as first day.

Kerala

Telangana

Delhi

Rajasthan

Uttar Pradesh

Haryana

Ladakh

Tamil Nadu

Karnataka

Maharashtra

Punjab

Jammu and Kashmir

Andhra Pradesh

Uttarakhand

Odisha

Puducherry

West Bengal

Chhattisgarh

Chandigarh

Gujarat

Himachal Pradesh

Madhya Pradesh

Bihar

Manipur

Mizoram

Andaman and Nicobar Islands

Goa

Jharkhand

Tripura

Nagaland

Meghalaya

Nagaland

Jharkhand

Dadar Nagar Haveli

The plot for the cases country wise

A very random plot is obtained below because there is no pattern how many cases can be found a day.

Here if see the bar plot for individual cases it is easy to understand

Observed cases:

Cured cases:

Deaths:

3. Positive cases and intensity

Assumptions:

- a. For the positive cases in a state data StatewiseTestingDetails is taken.
- b. For the population density in the particular state data population_india_census2011 is taken.
- c. The blank data is filled with "0".
- d. Intensity is limited till two decimal point

	S	tate	cases	Density	Intensity
0	Andaman and Nicobar Isl	ands	105.0	46.0	2.28
1	Andhra Pra	desh	24431.0	303.0	80.63
2	Arunachal Pra	desh	26.0	17.0	1.53
3	A	ssam	631.0	397.0	1.59
4	В	sihar	5966.0	1102.0	5.41
5	Chandi	garh	1059.0	9252.0	0.11
6	Chhattis	garh	821.0	189.0	4.34
7	Е	elhi	56661.0	11297.0	5.02
8		Goa	159.0	394.0	0.40
9	Guj	arat	63780.0	308.0	207.08
10	Наг	yana	7319.0	573.0	12.77
11	Himachal Pra	desh	938.0	123.0	7.63
12	Jammu and Kas	hmir	11054.0	98.0	112.80
13	Jhark	hand	1432.0	414.0	3.46
14	Karna	taka	12007.0	319.0	37.64
15	Ke	rala	13995.0	859.0	16.29
16	La	dakh	277.0	2.8	98.93
17	Madhya Pra	desh	43564.0	236.0	184.59
18	Maharas	htra	165736.0	365.0	454.07
19	Megha	laya	181.0	132.0	1.37
20	Miz	oram	24.0	52.0	0.46
21	Naga	land	0.0	119.0	0.00

22	Odisha	2668.0	269.0	9.92
23	Puducherry	142.0	2598.0	0.05
24	Punjab	10817.0	550.0	19.67
25	Rajasthan	49075.0	201.0	244.15
26	Sikkim	0.0	86.0	0.00
27	Tamil Nadu	46173.0	555.0	83.19
28	Telangana	2883.0	312.0	9.24
29	Tripura	40.0	350.0	0.11
30	Uttar Pradesh	37294.0	828.0	45.04
31	Uttarakhand	1291.0	189.0	6.83
32	West Bengal	11046.0	1029.0	10.73

8. 1st March – 10 April

Flattening the curve: The term was introduced during lockdown which means increasing the time spam to get the peak of cases.

If we see on the above graph the peak is found in gray curve latter comparing with the red one, and this called flattening of curve.

This case of flattening only means increasing the time spam which can be see in below graph generated by the data from 1st march to 10 April.

Period between to sky blue line shows the case of flattening which was mainly during lockdown.

9. Lockdown Period:

The graph below is plotted for every day rate of increasing the cases for 21 days before and after lockdown and it is clear that the increasing rate is negative for lockdown period.

Increasing rate
$$=\frac{case\ found\ at\ particular\ day}{Total\ cases\ till\ that\ day}$$

