Mathematical Methods in Physics

Workshop 8

8.1

The work done by a force \mathbf{F} along a path C is $\int_C \mathbf{F} \cdot d\mathbf{r}$. Calculate the work done by the force $\mathbf{F} = 4xy\,\mathbf{i} - 8y\,\mathbf{j} + 2\mathbf{k}$ in the displacement:

- a) Along the helix $\mathbf{r}(t) = \cos t\mathbf{i} + \sin t\mathbf{j} + 3t\mathbf{k}$ with $0 \le t \le 2\pi$.
- b) Counterclockwise around the circle $x^2 + y^2 = 4$, z = 0.
- c) Along the ellipse $x^2 + 4y^2 = 4$, z = 0 counterclockwise from A = (0, -1, 0) to B = (0, 1, 0).

[Hint: In b) and c) use polar coordinates in order to parametrise the curve.]

8.2

The curve

$$\mathbf{r}(u) = u\,\mathbf{i} + \cosh u\,\mathbf{j}$$

is called catenary.

- a) Find the unit tangent vector $\hat{\mathbf{t}} = d\mathbf{r}/ds$.
- b) Find its radius of curvature ρ , where $\mathbf{n} = \frac{\hat{\mathbf{n}}}{\rho} = \frac{d\hat{\mathbf{t}}}{ds}$.

[Hint: Use the chain rule, for instance $\hat{\mathbf{t}} = \frac{d\mathbf{r}}{du} \frac{du}{ds}$ and remember that $\cosh^2 u - \sinh^2 u = 1$.]

8.3

Calculate

$$I = \int_C (y^2 dx - x^2 dy)$$

where C is the parabolic arc $y^2 = x$ from A = (1, -1) to B = (4, 2).

8.4

Consider the vector field

$$\mathbf{a} = \left(-zx\,\mathbf{i} - zy\,\mathbf{j} + (x^2 + y^2)\,\mathbf{k}\right)r^{-3}$$

where r is the modulus of the position vector. Establish whether the field is conservative. If it is, find its potential.