```
def summands(n):
       if n == 1:
2
3
            return [[1]]
       A = []
4
       for a in summands(n-1):
5
6
            b = a.copy()
            a[-1] += 1
7
8
            A.append(a)
9
           b.append(1)
10
           A.append(b)
11
       return A
                # [[3], [2, 1], [1, 2], [1, 1, 1]]
  summands (3)
```

Ví dụ 9.4. Thuật toán sắp xếp nổi bọt:

```
def BubbleSort(x):
                                     \# X = [X_0, X_1, \dots, X_{n-1}]
                                       # độ dài của x
       n = len(x)
2
3
      for i in range(n-1):
                                       # duyệt từ đầu, x_0, tới gần
      cuối, x_{n-2}.
           for j in range (n-1,i,-1): # duyệt từ cuối, x_{n-1} về kế
      sau x_i, tức x_{i+1}
                 if x[j] < x[j-1]:
5
                      x[j-1], x[j] = x[j], x[j-1] # đổi chỗ
6
                                                  # trả về kết quả cho
       return x
      hàm
  BubbleSort([7, 9, 2, 5, 8])
                                              # kết quả [2, 5, 7, 8,
```

Đặt a_n là số phép so sánh, cũng là số chu trình tối giản của thuật toán khi sắp xếp dãy n phần tử. Lập hệ thức đệ quy và giải a_n .

Giải. Thuật toán gồm hai giai đoạn:

- 1) Ứng với i=0, kiểm tra n-1 phép so sánh $x_j < x_{j-1}$, với $j=\overline{n-1}$, và thực hiện phép đổi chỗ nếu cần. Sau bước này, $x_0 \le x_j$, $\forall i>0$.
- 2) Thực hiện thuật toán nổi bọt cho dãy n-1 phần tử $x_1, x_2, ..., x_{n-1}$, mà số phép so sánh là a_{n-1} , theo định nghĩa.

Như vậy,
$$a_n = (n-1) + a_{n-1}$$
, và $a_1 = 0$. Do đó $a_n = \frac{n(n-1)}{2}$.

Nguyễn Đức Thịnh

[Drafting \Rightarrow Do not Print]

thinhnd@huce.edu.vn

rsolve(
$$-a(n) + (n-1)+a(n-1)$$
 , $a(n)$, $\{a(1): 0\}$).simplify ()

Ta mô tả chi tiết thuật toán với dãy x = (7, 9, 2, 5, 8) bởi hình sau

<i>i</i> = 0	<i>x</i> ₀	7	7	7	7 $j = 1$	2
	<i>x</i> ₁	9	9	9 j = 2	$2^{\int_{0}^{1}}$	7
	<i>x</i> ₂	2	2 $_{j} = 3$	2	9	9
	<i>X</i> ₃	${5 \atop 8} j = 4$	${2 \atop 5} j = 3$	5	5	5
	<i>x</i> ₄	${8}^{j} = 4$	8	8	8	8
	Bốn phép so sánh và hai phép đổi chỗ					
<i>i</i> = 1	<i>x</i> ₀	2	2	2	2	
	<i>x</i> ₁	7	7	$7_{j} = 2$	5	
	<i>x</i> ₂	9	97: 3	5	7	
	<i>X</i> ₃	5 $i = 4$	j = 3	9	9	
	<i>x</i> ₄	8) = 4	8	8	8	
	Ba phép so sánh và hai phép đổi chỗ					
<i>i</i> = 2	<i>x</i> ₀	2	2	2		
	<i>x</i> ₁	5	5	5		
	<i>x</i> ₂	7	7_{i-3}	7		
	<i>x</i> ₃	9 ₁	iggle j = 3	8		
	<i>x</i> ₄	8 / 7 - 4	9	9		
	Hai phép so sánh và một phép đổi chỗ					
<i>i</i> = 3	<i>x</i> ₀	2				
	<i>x</i> ₁	5				
	<i>x</i> ₂	7				
	<i>X</i> ₃	${8 \choose 9} j = 4$				
	<i>X</i> ₄	9 ¹				
	Một phép so sánh và không có phép đổi chỗ					

Ví dụ 9.5. Đặt a_n là số hoán vị của n vật, đánh số từ 1 tới n. Lập hệ thức đệ quy và giải a_n .

Giải. Từ mỗi hoán vị của n-1 vật $1,2,\ldots,n-1$, ta tạo ra hoán vị của n vật bằng cách xếp vật thứ n vào trước, sau, hoặc chèn vào giữa hoán vị của n-1 vật này. Như vậy, có n vị trí để xếp vật thứ n. Mặt khác, theo định nghĩa, số hoán vị của n-1 vật là a_{n-1} , nên theo quy tắc nhân $a_n = na_{n-1}$, $\forall n \geq 2$. Với $a_1 = 1$, ta tìm được $a_n = n!$.

Chẳng hạn, cách sinh hoán vị của {1,2} từ {1}: