

Multimedia: JPEG

Jonas Treumer / Ben Lorenz

JFIF – JPEG File Interchange Format

- 1992 vorgestellt als ISO/IEC 10918-1 bzw CCITT T.81
- JPEG-Norm → verschiedene Komprimierungsmethoden für Bilder
- JFIF speichert Bilddaten, Dekomprimierungsinformationen sowie Zusatzdaten
- JFIF unterstützt nicht die gesamten Möglichkeiten von JPEG

JPEG Kompression/Dekompression

JPEG Kompression/Dekompression

YCbCr-Farbmodell

- Y = Helligkeitsachse aus CIE-Normvalenzsystem
- Cb, Cr = Chrominance "Buntheit"
- Cb = blue yellow
- Cr = red green

YCbCr-Chroma-Subsampling

- Datenreduktion
- Chrominanz ggü. Luminanz mit geringerer Abtastrate
- Geringer optischer Qualitätsverlust

4:4:4

LUMA (Y)

JPEG Kompression/Dekompression

- Je 8x8 Block im Bild
 - Linearkombination aus 8x8 2D-Cosinusbasisfunktionen

Helligkeitswerte des 8x8 Blocks

5	176	193	168	168	170	167	165
3	170	193	100	100	170	107	103
6	176	158	172	162	177	168	151
5	167	172	232	158	61	145	214
33	179	169	174	5	5	135	178
8	104	180	178	172	197	188	169
63	5	102	101	160	142	133	139
51	47	63	5	180	191	165	5
49	53	43	5	184	170	168	74

Normalisierte Helligkeitswerte

-122	49	66	41	41	43	40	38
-121	49	31	45	35	50	41	24
-122	40	45	105	31	-66	18	87
-94	52	42	47	-122	-122	8	51
-119	-23	53	51	45	70	61	42
-64	-122	-25	-26	33	15	6	12
-76	-80	-64	-122	53	64	38	-122
-78	-74	-84	-122	57	43	41	-53

Koeffizienten berechnen (lineare Algebra)

$$X = U * A * U^T$$

$U = \frac{1}{2}$	$\cos \frac{3\pi}{16}$ $\cos \frac{4\pi}{16}$ $\cos \frac{5\pi}{16}$	$\cos \frac{6\pi}{16}$ $\cos \frac{9\pi}{16}$ $\cos \frac{12\pi}{16}$ $\cos \frac{15\pi}{16}$	$\cos \frac{10\pi}{16}$ $\cos \frac{15\pi}{16}$ $\cos \frac{20\pi}{16}$ $\cos \frac{25\pi}{16}$	$ \cos \frac{14\pi}{16} $ $ \cos \frac{21\pi}{16} $ $ \cos \frac{28\pi}{16} $ $ \cos \frac{35\pi}{16} $	$\cos \frac{18\pi}{16}$ $\cos \frac{27\pi}{16}$ $\cos \frac{36\pi}{16}$ $\cos \frac{45\pi}{16}$	$\cos \frac{44\pi}{16}$ $\cos \frac{55\pi}{16}$	$ \cos \frac{26\pi}{16} $ $ \cos \frac{39\pi}{16} $ $ \cos \frac{52\pi}{16} $ $ \cos \frac{65\pi}{16} $	$\begin{array}{c} \frac{\sqrt{2}}{2} \\ \cos \frac{15\pi}{16} \\ \cos \frac{30\pi}{16} \\ \cos \frac{45\pi}{16} \\ \cos \frac{45\pi}{16} \\ \cos \frac{75\pi}{16} \end{array}$
	$\cos \frac{5\pi}{16}$	$\cos \frac{15\pi}{16}$	$\cos \frac{25\pi}{16}$	$\cos \frac{35\pi}{16}$	$\cos \frac{45\pi}{16}$	$\cos \frac{16}{16}$ $\cos \frac{55\pi}{16}$ $\cos \frac{66\pi}{16}$	$\cos \frac{65\pi}{16}$	$ \begin{array}{c c} \cos \frac{3\pi}{16} \\ \cos \frac{75\pi}{16} \\ \cos \frac{90\pi}{16} \end{array} $
	$\cos \frac{16}{7\pi}$	$\cos \frac{16}{21\pi}$	$\cos \frac{16}{35\pi}$			$\cos \frac{16}{77\pi}$	$\cos \frac{16}{91\pi}$	$\cos\frac{16}{16}$

-122	49	66	41	41	43	40	38
-121	49	31	45	35	50	41	24
-122	40	45	105	31	-66	18	87
-94	52	42	47	-122	-122	8	51
-119	-23	53	51	45	70	61	42
-64	-122	-25	-26	33	15	6	12
-76	-80	-64	-122	53	64	38	-122
-78	-74	-84	-122	57	43	41	-53

$X_{p,q} = \alpha_p \alpha_q$	$\frac{7}{}$	$\pi(2m+1)p$		$\pi(2n+1)q$
	$\sum_{m=0}^{\infty} \sum_{n=0}^{\infty}$	16	* COS	16

-122	49	66	41	41	43	40	38
-121	49	31	45	35	50	41	24
-122	40	45	105	31	-66	18	87
-94	52	42	47	-122	-122	8	51
-119	-23	53	51	45	70	61	42
-64	-122	-25	-26	33	15	6	12
-76	-80	-64	-122	53	64	38	-122
-78	-74	-84	-122	57	43	41	-53

-27.500	-213.468	-149.608	-95.281	-103.750	-46.946	-58.717	27.226
168.229	51.611	-21.544	-239.520	-8.238	-24.495	-52.657	-96.621
-27.198	-31.236	-32.278	173.389	-51.141	-56.942	4.002	49.143
30.184	-43.070	-50.473	67.134	-14.115	11.139	71.010	18.039
19.500	8.460	33.589	-53.113	-36.750	2.918	-5.795	-18.387
-70.593	66.878	47.441	-32.614	-8.195	18.132	-22.994	6.631
12.078	-19.127	6.252	-55.157	85.586	-0.603	8.028	11.212
71.152	-38.373	-75.924	29.294	-16.451	-23.436	-4.213	15.624

DCT II - Koeffizienten

- X_{0.0}: Gleichspannungs- bzw. DC-Koeffizient, "Grundfarbe"
- X_{p,q}: Wechselspannungsanteile bzw. AC-Koeffizienten

	-27.500	-213.468	-149.608	-95.281	-103.750	-46.946	-58.717	27.226
	168.229	51.611	-21.544	-239.520	-8.238	-24.495	-52.657	-96.621
	-27.198	-31.236	-32.278	173.389	-51.141	-56.942	4.002	49.143
	30.184	-43.070	-50.473	67.134	-14.115	11.139	71.010	18.039
	19.500	8.460	33.589	-53.113	-36.750	2.918	-5.795	-18.387
	-70.593	66.878	47.441	-32.614	-8.195	18.132	-22.994	6.631
	12.078	-19.127	6.252	-55.157	85.586	-0.603	8.028	11.212
ı	71.152	-38.373	-75.924	29.294	-16.451	-23.436	-4.213	15.624

DCT II - Koeffizienten

JPEG Kompression/Dekompression

JPEG Kompression – Quantisierung

- Hohe Frequenzen entfernen (Irrelevanzreduktion)
- Jpeg 50% Quality Quantisierungsmatrix

JPEG Kompression – Quantisierung

$$B_{p,q} = round(\frac{X_{p,q}}{Q_{p,q}})$$

$$Q = \begin{bmatrix} 16 & 11 & 10 & 16 & 24 & 40 & 51 & 61 \\ 12 & 12 & 14 & 19 & 26 & 58 & 60 & 55 \\ 14 & 13 & 16 & 24 & 40 & 57 & 69 & 56 \\ 14 & 17 & 22 & 29 & 51 & 87 & 80 & 62 \\ 18 & 22 & 37 & 56 & 68 & 109 & 103 & 77 \\ 24 & 35 & 55 & 64 & 81 & 104 & 113 & 92 \\ 49 & 64 & 78 & 87 & 103 & 121 & 120 & 101 \\ 72 & 92 & 95 & 98 & 112 & 100 & 103 & 99 \end{bmatrix}$$

JPEG Kompression – Quantisierung

$$B_{p,q} = round(\frac{X_{p,q}}{Q_{p,q}})$$

-2	-19	-15	-6	-4	-1	-1	0
14	4	-2	-13	0	0	-1	-2
-2	-2	-2	7	-1	-1	0	1
2	-3	-2	2	0	0	1	0
1	0	1	-1	-1	0	0	0
-3	2	1	-1	0	0	0	0
0	0	0	-1	1	0	0	0
1	0	-1	0	0	0	0	0

JPEG Qualitätsparameter

- Qualitätsparameter bzw. Regelung des Kompressionsgrades?
 - Unterschiedliche Quantisierungsmatrizen oder
 - q_{JPEG} als Parameter Wertebereich 1 ≤ q_{JPEG} ≤ 99
 - Ergibt α als Faktor für Quantisierungsmatrix

$$a = \frac{50}{q_{JPEG}}$$
 für $1 \pm q_{JPEG} \pm 50$

$$a = 2 - \frac{2q_{JPEG}}{100}$$
 für $50 \pm q_{JPEG} \pm 99$

JPEG Kompression/Dekompression

JPEG Kompression – ZigZag & Zero Suppression

-2	-19	-15	-6	-4	-1	-1	0
14	4	-2	-13	0	0	-1	-2
-2	-2	-2	7	-1	-1	0	1
2	-3	-2	2	0	0	1	0
1	0	1	-1	-1	0	0	0
-3	2	1	-1	0	0	0	0
0	0	0	-1	1	0	0	0
1	0	-1	0	0	0	0	0

JPEG Kompression – ZigZag & Zero Suppression

-2	-19	-15	-6	-4	-1	-1	0
14	4	-2	-13	0	0	-1	-2
-2	-2	-2	7	-1	-1	0	1
2	-3	-2	2	0	0	1	0
1	0	1	-1	-1	0	0	0
-3	2	1	-1	0	0	0	0
0	0	0	-1	1	0	0	0
1	0	-1	0	0	0	0	0

-2 -19 14 -2 ... 0 0 0 0 0 0 0 0 0 +Lauflängenkodierung

JPEG Kompression

- RGB zu YCbCr (verlustbehaftet)
- YCbCr Color Subsampling (verlustbehaftet)
- 8x8 Blöcke und DCT II (theoretisch verlustfrei, Verlust durch Rundungsfehler)
- Quantisierung (verlustbehaftet)
- ZigZag + Zero-Suppression (verlustfrei)
- Huffmann-Kodierung (verlustfrei)

JPEG Modi

- Bisher: nur baseline sequential JPEG
 - Top to bottom Anordnung
 - Gesamtes Bild kann nur nach Abschluss der Übertragung ganz betrachtet werden
- Lösung: Progressive JPEG
 - Verteilung in mehrere Scans mit wachsendem Detailgrad

Sequential JPEG

Progressive JPEG

TU Bergakademie Freiberg | Institut für Informatik | Jonas Treumer/Ben Lorenz | Multimedia

JPEG – Artefakte/Probleme

- 8x8 Blöcke sichtbar
- Bei starker Kompression

JPEG - Artefakte/Probleme

- Überschwingen an scharfen Übergängen
- Ursache: fehlende Hochfrequenzanteile

PNG

JPEG

$\frac{\text{DCT II}}{X = U * A * U^T}$ Geeignete Faktoren vor U -> U orthogona

$$X = U * A * U^T$$

Geeignete Faktoren vor U -> U orthogona

$$U^T = U^{-1}$$

$$U*U^{-1}=I$$

$$U^{-1} * U = I$$

$$U*U^T=I$$

$$U^T*U=I$$

<u>DCT I</u>

$$X = U * A * U^T$$

Geeignete Faktoren vor U -> U orthogona

$$U^T = U^{-1}$$

$$U*U^{-1}=I$$

$$U^{-1} * U = I$$

$$U*U^T=I$$

$$U^T*U=I$$

IDCT Herleitung

$$X = U * A * U^T$$

<u>DCT</u>

$$X = U * A * U^T$$

Geeignete Faktoren vor U -> U orthogona

$$U^T = U^{-1}$$

$$U*U^{-1}=I$$

$$U^{-1} * U = I$$

$$U*U^T=I$$

$$U^T*U=I$$

IDCT Herleitung

$$X = U * A * U^T$$

$$U^T * X * U = U^T * U * A * U^T * U$$

$$U^T * X * U = (U^T * U) * A * (U^T * U)$$

$$U^T * X * U = I * A * I$$

$$U^T * X * U = A$$

DCT II
$$X_{p,q} = \alpha_p \alpha_q \sum_{m=0}^{7} \sum_{n=0}^{7} A_{m,n} * \cos \frac{\pi (2m+1)p}{16} * \cos \frac{\pi (2n+1)q}{16}$$

IDCT (DCT III)
$$A_{m,n} = \sum_{p=0}^{7} \sum_{q=0}^{7} \alpha_p \alpha_q X_{p,q} * \cos \frac{\pi (2m+1)p}{16} * \cos \frac{\pi (2n+1)q}{16}$$

$$\alpha_{p} = \begin{cases} \frac{1}{2\sqrt{2}}, p = 0\\ \frac{1}{2}, 1 \le p \le 7 \end{cases} \qquad \alpha_{q} = \begin{cases} \frac{1}{2\sqrt{2}}, q = 0\\ \frac{1}{2}, 1 \le q \le 7 \end{cases}$$

When you understand

