Доработка китайского ST-Link v2: добавляем интерфейс вывода отладочной информации SWO и ногу Reset

DIY или Сделай сам, Лайфхаки для гиков, Электроника для начинающих

Tutorial

Привет, Geektimes!

Сегодня хочу рассказать про доработку паяльником китайского ST-Link v2. В него можно допаять вывод SWO для получения отладочной информации и ногу управления Reset'ом для микроконтроллеров STM32 (та нога Reset, что уже есть — для STM8). Возможно для многих это не открытие, но пусть будет

информация для начинающих. Кому интересно, прошу под кат.

Зачем оно надо?

Используемый для отладки микроконтроллеров STM32 интерфейс SWD поддерживает передачу отладочной информации через вывод SWO в режиме реального времени, это весьма удобно. Ну а нога Reset нужна для того, чтобы можно было комфортней прошивать контроллер в случае, если интерфейс SWD отключен. Причина конечно притянута за уши, ведь для прошивки всегда можно нажать кнопку Reset ручками, но пусть будет. Например, на заре моего знакомства с STM32, мне пришла отладочная плата с Китая с залитой демо программой моргания светодиодом и отключенным SWD, я не сразу понял, как к ней подключиться.

Сама доработка

Нам понадобится скальпель, паяльник и несколько сантиметров очень тонкого провода, у меня это МГТФ *какой-то там*. На этих программаторах разъем поделен на две части: левую — для STM8 и правую — для STM32, так что существующий там Reset не подходит для STM32, будем делать свой.

Первым делом отрезаем дорожки, идущие к ненужным штырькам. На первом своем доработанном программаторе я отрезал ножки Reset и SWIM, т.к не планировал работать с STM8, но сейчас я буду использовать лишние выводы 3.3 и 5 В (они задублированы на разъеме), чтобы не портить функционал программатора, вдруг пригодится.

Провода необходимо припаять к 18 (Reset) и 31 (SWO) ногам микроконтроллера. То еще занятие, но при определенной сноровке сделать это можно. У меня провода хорошо вошли в отверстия на плате, что дало дополнительную фиксацию. Вообще, похорошему, надо сразу закрепить их клеем на микроконтроллере. Свободные концы припаиваем через небольшие резисторы (пусть будут 22 Ома) к только что отрезанным штырькам.

Можно закрыть корпус и подписать новые выводы, чтобы потом не забыть где какой.

Проверка SWO

Для использования **SWO** необходимо:

- активировать **SWD**;
- включить соответствующий вывод (для микроконтроллеров STM32F103C это PB3)

на **TRACESWO**;

- убедиться, что в среде программирования включен именно **SWO**, а не **semihosting**;
- в шапке программы подключить библиотеку #include «stdio.h»;
- в коде программы использовать printf(«Hello STM32 world!\r\n»);

Просматривать эти сообщения можно через терминал в программе STM32 ST-LINK Utility, либо прямо во время отладки в своей среде (я использую IAR).

Проверка Reset

Допустим по какой-то причине на микроконтроллере отключен SWD: либо вы забыли его включить при инициализации, либо пришла новая плата с зашитой демо-программой. Прошиться конечно можно через притягивание ножки Reset к земле (на отладочных платах обычно стоит кнопка), но это не всегда удобно. Можно ведь просто подключить контакт от программатора и шиться в автоматическом режиме.

В той же программе STM32 ST-LINK Utility выбираем «Connect under reset» и подключаемся для прошивки или очистки памяти микроконтроллера.

Либо в вашей IDE выбираем соответствующий пункт:

Это позволит прошиться и войти в отладочный режим, но как только вы дойдете до инициализации периферии, SWD отключится и связь с контроллером пропадет.

Спасибо за внимание, надеюсь кому-то это пригодится.

Теги: