Модель для определения национальности по именам и срамилиям

Иванова Дарья

Студент курса Машинное обучение: фундаментальные инструменты и практики

Содержание

- (1) Постановка задачи
- (2) Анализ исходных данных
- 3 Подход к решению задачи
- 4 Обучение модели
- 5 Тестирование модели
- 6 Полученные результаты

Постановка задачи

Постановка задачи

Задача:

Определить национальность по фамилии и имени

- 1. Сгенерировать* набор данных: имя, фамилия, национальная принадлежность
- 2. Провести анализ сгенерированных данных
- 3. Выбрать модель для классификации
- 4. Разделить данные на тренировочное и тестовое подмножества
- 5. Обучить модель на тренировочных данных
- 6. Рассчитать точность классификации для тестового подмножества

Набор данных:

N°	Имя	Фамилия	Национальность
0	Rhys	May	England
1	Arkhip	Bykov	Russian
2	Luke	Curl	American
3	Maya	Perry	England
4	Rudolph	Gorshkov	Russian
	•••	•••	
9999	Onni	Salo	Finnish

Анализ исходных данных

Анализ исходных данных

Набор данных содержит 10 000 строк, пропусков не обнаружено.

Всего 17 национальностей, которые распределены сбалансированно.

Облако слов

Облако слов для русских фамилий

Облако слов для американских фамилий

Токенизация слов

Для токенизации имен и фамилий будем использовать 2- и 3-граммы.

Ниже приведены наиболее часто встречающиеся в фамилиях 3-граммы для разных национальностей.

Топ-10 3-грамм по национальностям

	Russ	sian	Amei	rican	Finn	nish	Gerr	man	Frei	nch	Hisp	anic
N°	3-грамма	Частота										
1	ova	202	son	58	nen	146	man	48	eau	60	rre	28
2	rov	82	ill	28	ine	70	Sch	43	ier	40	era	23
3	kov	81	lli	20	one	36	ann	42	ard	28	ado	22
4	eva	67	Wil	19	ala	32	ler	39	ois	26	arr	19
5	yev	65	ter	18	ain	31	ber	34	lle	26	ill	19
6	nov	65	ers	18	ari	28	ger	29	our	25	err	18
7	lov	54	arr	17	ane	27	sch	25	Cha	25	ero	18
8	oro	51	ton	15	kka	24	ner	25	ill	25	ara	18
9	ono	42	ing	15	ila	24	ter	23	aul	20	rez	18
10	mov	40	Smi	14	ola	20	ste	18	Mar	19	lla	17

Подход к решению задачи

Выбор модели для обучения

Полносвязная нейронная сеть

Разбиение данных:

80% - обучающее подмножество, 20% - тестовое подмножество

Параметры модели:

Функция потерь - CrossEntropyLoss (перекрестная энтропия) Оптимизатор - Adam

Подход к решению задачи

Для определения национальности сравним два подхода: использование модели, обученной только на наборе фамилий, и использование двух моделей с объединением полученных результатов классификации

Обучение модели

Обучение модели на наборе фамилий

Число эпох для обучения — 30, коэффициент скорости обучения — 0,005

Обучение модели на наборе имен

Число эпох для обучения — 30, коэффициент скорости обучения — 0,005

Тестирование модели

Тестирование модели

Модель, обученная на наборе фамилий

Фамилия	N°	Национальность	Вероятность
	1	Russian	100%
Bezrukov	2	Japanese	0%
Deziukov	3	Hispanic	0%
	•••	•••	
	1	Russian	100%
Komarova	2	Arabic	0%
KOIIIdiOVd	3	Japanese	0%
	•••	•••	
	1	Finnish	99,99%
Hauta-aho	2	American	0,01%
Hauta-ano	3	German	0%
	•••		
	1	Chinese	99,97%
Chu	2	American	0,02%
Cilu	3	Japanese	0%
	•••	•••	•••

Модель, обученная на наборе имен

Фамилия	N°	Национальность	Вероятность
	1	Russian	100%
Nicophorus	2	French	0%
Nicephorus	3	Hispanic	0%
	•••	•••	•••
	1	Japanese	99,52%
Arina	2	Hispanic	0,31%
Ailia	3	Finnish	0,07%
	•••	•••	•••
	1	Finnish	100%
Anniina	2	Czech	0%
Allillid	3	Japanese	0%
	•••		
	1	Chinese	100%
Huan Yue	2	Hispanic	0%
riddir ru c	3	Arabic	0%
	•••		

Полученные результаты **результаты**

Полученные результаты

Модель, обученная на наборе фамилий и имен

Фамилия	Имя	Предсказанная национальность	Произведение вероятностей
Bezrukov	Nicephorus	Russian	100%
Komarova	Arina	Russian	0,03%
Hauta-aho	Anniina	Finnish	99,99%
Chu	Huan Yue	Chinese	99,97%

Рассмотренный способ определения национальности показывает лучший результат по сравнению с моделью, обученной только на наборе фамилий.

В дальнейшем планируется протестировать модель на русскоязычных данных, рассмотреть другие методы токенизации и типы моделей, позволяющие повысить точность классификации.

Спасибо за внимание

Иванова Дарья

Студент курса Машинное обучение: фундаментальные инструменты и практики