

MICROCOPY RESOLUTION TEST CHARI NATIONAL BUREAU OF STANDARDS-1963-A

10

MUTAGENIC SCREENING OF SIX CANDIDATE DYES FOR COLORED SMOKE MUNITIONS IN THE <u>SALMONELLA</u> REVERSION ASSAY

Final Report

Prepared by

MARY C. HENRY, Ph.D.

US ARMY MEDICAL BIOENGINEERING RESEARCH
AND DEVELOPMENT LABORATORY
Fort Detrick, Frederick, MD 21701

OCTOBER 1983

Supported by

US ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND Fort Detrick, Frederick, MD 21701

Performed by

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, TN 37830
PO 9600

and

Health Effects Research Laboratory US Environmental Protection Agency Research Triangle Park, NC 27711 PO 1810 SUN 1 4 1984

Approved for public release; distribution unlimited

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

FILE COPY

11

84 06 14 024

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

1. REPORT NUMBER	REPORT DOCUMENTATION PAGE		
		3. RECIPIENT'S CATALOG NUMBER	
	AD-A142/66		
I. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED	
MUTAGENIC SCREENING OF SIX CAN		Final Report	
FOR COLORED SMOKE MUNITIONS IN	THE	November 1980-November 198	
SALMONELLA REVERSION ASSAY		6. PERFORMING ORG. REPORT NUMBER	
7. AUTHOR(a)		8. CONTRACT OR GRANT NUMBER(*)	
MARY C. HENRY, Ph.D.		-PO -9600	
		PO 1810	
PERFORMING ORGANIZATION NAME AND ADD		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
Oak Ridge National Health E Laboratory USEPA	ffects Research	,	
Oak Ridge, TN 37830 Research	Triangle Park, NC	62777A3E762777A878	
1. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE	
US Army Medical Research and D	evelopment Command	OCTOBER 1983	
ATTN: SGRD-RMS		13. NUMBER OF PAGES	
Fort Detrick, Frederick, MD 2 4. MONITORING AGENCY NAME & ADDRESS(if di	1701	15. SECURITY CLASS. (of this report)	
US Army Medical Bioengineering			
Development Laboratory	kesearch and	UNCLASSIFIED	
ATTN: SGRD-UBG-M		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
	1701	SCHEDULE	
Fort Detrick, Frederick, MD 2 6. DISTRIBUTION STATEMENT (of this Report)	<u> </u>	<u> </u>	
17. DISTRIBUTION STATEMENT (of the abetract on	tered in Block 20, if different fro	m Report)	
	tered in Block 20, if different fro	m Report)	
8. SUPPLEMENTARY NOTES			
9. KEY WORDS (Continue on reverse elde if necese Amoplast Red PC Macrol	ery and identify by block number) ex Violet 3R		
9. KEY WORDS (Continue on reverse elde if necese Amoplast Red PC Macrol Dyes Mutage	ery and identify by block number) ex Violet 3R		
9. KEY WORDS (Continue on reverse elde if necese. Amoplast Red PC Macrol Dyes Mutage Macrolex Red 1069 0il Re	ery and identify by block number) ex Violet 3R nicity d G		
9. KEY WORDS (Continue on reverse elde if necese. Amoplast Red PC Macrol Dyes Mutage Macrolex Red 1069 0il Re	ery and identify by block number) ex Violet 3R		
9. KEY WORDS (Continue on reverse elde if necese. Amoplast Red PC Macrol Dyes Mutage Macrolex Red 1069 0il Re	ery and identify by block number) ex Violet 3R nicity d G n Violet TR ery and identify by block number) ed PC, Macrolex Red olet B, Macrolex Vio otential in the Salm ion by post-mitochor	Salmonella reversion 1069, and Oil Red G, and olet 3R, and Resiren Violet monella reversion assay with adrial liver fractions	

mutagenic responses in the bacterial assay were Macrolex Red 1069, Amoplast Red PC, Resiren Violet TR, and Macrolex Violet B. The increase in revertants

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. Abstract (continued)

was observed in those strains responsive to frameshift mutagens, TA1537, TA1538, and TA98. One dye was also active when tested with TA100 which can also detect frameshift mutagens.

Macrolex Red 1069 was active in TA1537 and TA1538 with and without activation and in TA98 only with activation.

 $\underline{\text{Amoplast Red PC}}$ was active in TA1537, TA1538, TA98, and TA100 with and without activation.

Resiren Violet TR was active in TA1537, TA1538, and TA98 only with activation.

Macrolex Violet B gave a positive response only in TA1537 without activation.

FOREWORD

The <u>Salmonella</u> reversion assays performed by Oak Ridge National Laboratory were under the direction of Drs. J. Epler and T.K. Rao; and the assays conducted at the Health Effects Research Laboratory (HERL), US Environmental Protection Agency (USEPA) were supervised by Drs. J. Lewtas, Chief, and L. Claxton of the Genetic Bioassay Branch. Statistical analyses of the data were performed by HERL, USEPA using the test model and computer software developed by this group. The preparer wishes to express special appreciation to Dr. Claxton for evaluation of the statistical analyses and guidance in interpretation of their biologic significance.

	You War	
	lon For	
NTER		
Dard a	\B	
Water :	e menterali Line de la mente	,
Janto	10 00	
		•
By		
	mittou?	
Ava1	Lability	Codes
	Avail a	
Dist	Specie	l.
111	ì	
171		
VI		
		**,0
		"A. COA
		\ s com
		INA COA,

TABLE OF CONTENTS

FOREWORD1
INTRODUCTION5
MATERIALS AND METHODS5
Organic Dyes5 Salmonella Plate Incorporation Assay6 Testing Laboratories7
RESULTS8
DISCUSSION10
REFERENCES18
DISTRIBUTION LIST60
Appendix A. In Vitro Assays with Salmonella typhimurium; Mean Plate Counts and Standard Deviations
Appendix B. Mutagenic Index41
Appendix C. Summary of Statistical Analyses, Regression Slopes53
TABLES
1. Positive Control Mutagens for the Five Tester Strains of Salmonella typhimurium, ORNL
2. Positive Control Mutagens for the Five Tester Strains of Salmonella typhimurium, USEPA
3. Mutagenicity of Macrolex Red 106914
4. Mutagenicity of Amoplast Red PC15
5. Mutagenicity of Resiren Violet TR16
6. Mutagenicity of Macrolex Violet B17
7. Specific Response Activity (ug)

INTRODUCTION

Colored smoke munitions are used by the military as marking and signaling devices. These munitions contain organic dyes in a pyrotechnic formulation. Recent investigations indicate that the dyes in current colored smoke munitions may be a health hazard to personnel manufacturing these munitions. An engineering study was performed by the US Army Chemical Research and Development Center to determine the feasibility of replacing the red dye in the M18 red smoke hand grenade and the red and violet dyes in the M18 violet grenade. Two red dyes tested showed excellent potential of being technically acceptable in the M18 red smoke grenade. Two violet dyes emerged from the feasibility testing as candidates for further study.

A literature search for toxicologic data on these dyes was performed and very little information was obtained. The present studies were conducted to evaluate the potential of these dyes for producing bacterial mutagenesis. Six dyes were tested, three red and three violet, in the Salmonella typhimurium plate incorporation test. The three red dyes were retested in the same system by a second laboratory. The Salmonella procedure detects reverse mutations that occur in histidine-requiring strains developed by Dr. Bruce Ames.³ Several different Salmonella strains are used to identify a variety of genetic mutational events. Each strain detects a specific type of mutation and incorporates other changes needed to increase its sensitivity. A mammalian metabolic activation system is added to the basic Salmonella assay to allow for some of the metabolites as well as the agent itself to be tested for mutagenicity.

MATERIALS AND METHODS

ORGANIC DYES

The red dyes tested in this study were

Oil Red G (Sudan R; Solvent Red 1; CI 12150) Macrolex Red 1069 Amoplast Red PC (Red 10618)

The chemical structures of the last two dyes are unknown since the manufacturers regard this information as "commercial discrete." The Oil Red G is 1-(2-methoxyphenylazo)-2-naphthol.

The violet dyes te ted were:

Resiren Violet TR (Disperse Violet 1; Solvent Violet II; CI 61100; 1,4-diaminoanthraquinone)

Macrolex Violet B (Solvent Violet 13; CI 60725; 1-toluidino-4-dihydroxyanthraquinone)

Macrolex Violet 3R (Solvent Violet 36)

The exact chemical structure of the latter dye is unpublished but it is an anthraquinone.

PRECEDING PAGE BLANK-NOT FILLS

The same samples of the dyes were provided to the two testing laboratories under the manufacturer's trade name without identification of the chemical structures. Chemical analyses for concentration of dye and identification of impurities were not done.

SALMONELLA PLATE INCORPORATION ASSAY

Bacterial Strains

Five histidine-requiring strains were used, three of which (TAI537, TA1538, and TA98) detect frameshift mutations. Chemicals that produce basepair substitutions are detected in TAl535. Strain TAl00 was developed from TA1535 by the addition of the R-factor plasmid. The R-plasmid causes a higher spontaneous mutation rate and can detect chemicals that normally yield frameshift mutation. These strains carry an rfa mutation which produces a deficiency in bacterial cell wall lipopolysaccharides and increases the cell's permeability to large molecules, the UVR B mutation which decreases genetic repair, the R-factor plasmid in strains TA98 and TA100 which increases their sensitivity by participating in error-prone repair. The five strains differ in the number of spontaneous revertants per plate generally found. Compounds which are known mutagens for the different strains, with and without activation, were included in each assay. The retention of phenotypic characteristics were checked on a routine basis by examining for histidine auxotrophy (lack of growth on histidine deficient medium), deep rough character (sensitivity to crystal violet on a disk), UV-repair deficiency (sensitivity to UV light), and the presence of plasmid (resistance to ampicillin on disk).

Frozen permanent cultures containing fresh nutrient broth cultures with dimethyl sulfoxide were maintained at -80°C . A working source of these cultures was maintained on master plates. All strains were initially grown in nutrient broth at 37°C for 16 hours.

Preparation of Rat Liver S-9 Mix

Male rats weighing approximately 200 g were given a single intraperitoneal injection of Aroclor 1254 (Ar) in corn oil (200 mg/mL) at a dose of 500 mg/kg of body weight or 0.1 percent phenobarbital (Pb) in drinking water 5 days before they were killed. One day prior to termination the animals were taken off food but provided water ad libitum. The livers were asceptically removed and washed in sterile cold 0.15~M~KCl. All subsequent steps were performed at 0° to 4° C with cold sterile solutions and sterile glassware. The livers were minced with scissors in 0.15 M KCl (3 mL/g wet weight liver) and homogenized with a Potter-Elvehjem homogenizer. The homogenate was centrifuged for 10 minutes at 9,000 x g, the supernatant (S-9) decanted and stored in convenient aliquots at -80° C.

The S-9 is mixed with a cofactor solution containing 8 μ mol MgCl₂, 32 μ mol KCl, 5 μ mol glucose-6-phosphate and 4 μ mol nicotinamide adenine dinucleotide in 100 μ mol of sodium phosphate buffer, pH 7.4. The amount of S-9 used in the S-9 mix was between 0.05 and 0.1 mL S-9/mL cofactor solution.

Test Procedure

For revertant selection, minimal Vogel-Bonner medium E supplemented with 1.5 percent Dico bacto agar and 2 percent glucose was used for base agar layers. The top agar (0.6 percent Difco bacto agar, 0.5 percent NaCl) at 45°C was supplemented with minimum amounts of histidine and biotin, the bacterial broth culture (1-2x10°) viable cells per mL), and the test material dissolved in DMSO (supplied sterile, spectrophotometric grade). For tests without activation, 0.5 mL of buffer was added instead of the S-9 mix to the top agar. The plates were incubat d in the dark at 37°C for 48 hours. The plates were examined for background growth and the number of colonies per plate was counted.

Statistical Analyses

Statistical tests were based upon the model by Stead et al.⁴ This model assumes revertant colony formation at any dose follows a Poisson process, while the mean number of revertants per plate is a nonlinear function of up to four parameters. The resultant system of nonlinear equations is solved using a modified Gauss-Newton iterative scheme to obtain maximum likelihood estimates of the model parameters. Significance of the key parameters was tested by fitting reduced models and using likelihood ratio tests.

The determination of definite positives was based on the criteria outlined by Claxton et al: 5

- The data must not vary significantly from a Poisson distribution (p > 0.01).
- The data must be acceptable by the test of adequacy (p > 0.01).
- The test for mutagenicity, the slope of the curve, must be significant (p (0.01).
- At least a twofold increase must have occurred over spontaneous levels at one or more doses.
- A dose-response curve with some type of "regular curve" must have been seen.
- All controls must have given expected responses.
- Histidine cross-feeding and/or contamination must not have been shown to occur.

TESTING LABORATORIES

All six dyes were tested by ORNL, whereas only the three red dyes were tested by USEPA. There were differences in the bacterial mutagenesis protocols between the two laboratories. These variations in procedure were as follows:

Oak Ridge National Laboratory

Duplicate plates were usually used for each assay. The tests on each sample were generally repeated within 2 weeks following the initial evaluation to confirm the results. Results from three or more tests were compiled in evaluating the bioactivity of the test material. The tester strains were periodically checked with known chemical mutagens. The known carcinogens and the average responses of the five tester strains are listed in Table 1. The Sprague-Dawley rat strain was used to prepare the S-9 mix with both Aroclor and phenobarbital activation. A preincubation assay was also performed for all samples; the test sample was incubated with the bacterial cells and the activation mix (when appropriate) for 2 hours at 37°C before applying to the minimal media.

Genetic Toxicology Division, USEPA

The complete protocol for bacterial mutagenesis of the Genetic Toxicology Division, USEPA is outlined in Reference 5. This group uses the Charles River CD-1 rat for preparation of the S-9 mix with Aroclor activation only. Because the level of enzymatic activity can vary with each batch of S-9, various concentrations of the S-9 were tested within the bioassay against standard concentrations of three known mutagens; benzo[a]pyrene, 2-anthramine, and 7,12-dimethylbenzanthracene. In preparation of the liver homogenates, 0.25 M sucrose was the suspending medium and the stock solution also contained sucrose.

The minimum testing requirements were:

- A minimum of five doses at half-log intervals with the highest dose being highly toxic.
- Spontaneous and positive controls done at least in duplicate and providing the expected response.
- Positive controls (in duplicate) for the microsomal activation combination used are within normal ranges.
- At least two replicates per dose.
- At least one replicate experiment done with a narrower dose range.

The control mutagens for the five tester strains and the range of spontaneous revertants/plate are given in Table 2. The selection of positive controls was made from those listed; not all listed chemicals were used in each test.

RESULTS

The mean plate counts and standard deviations for each assay are given in Appendix A. The mutagenic indexes, defined as the average plate counts divided by the average spontaneous count for the same bacterial strain, are listed in Appendix B. The regression slopes, linear and nonlinear functions

as revertants per ug test material, are given in Appendix C. Dyes restricted the preincubation assay did not show greater activity than when tested the plate incorporation assay and these data were not included in the analyses. The results from these preincubation assays are listed in the appendixes. The data from phenobarbital activation assays showed, in general, similar or lower activity than dyes incubated with Aroclor activated S-9 fractions.

The red dye, Macrolex Red 1069, was active in TA1537, TA1538, and TA98 (Table 3). Both testing laboratories reported increased revertants after Aroclor activation but only one laboratory reported positive results without S-9 activation in TA1537 and TA1538. The other laboratory used only two doses without activation, and the data could not be analyzed by the test model. This laboratory also reported positive results in TA1537, TA1538, and TA98 with phenobarbital activated microsomal fractions (Table B-2). Since the data did not give a good fit to the model, the results are not presented. Amoplast Red PC gave positive results in four tester strains, TA1537, TA1538, TA98, and TA100 (Table 4). The two testing laboratories reported similar results for the first three strains; the dye was active both with and without Aroclor activation. Only one laboratory reported activity in TA100, both with and without activation. The number of revertants per plate at similar doses per plate was markedly different between the two testing laboratories; revertant counts for TA1537 and TA1538 showed at least tenfold variations. The laboratory which reported positive results in TA100 also had the highest revertant counts in the three other strains. The inclusion of phenobarbital induced S-9 fractions gave a much lower mutagenic response in TA1537, TA1538, and TA98 than observed with Aroclor fractions (Table C-2). The red dye, Oil Red G, did not elicit an increase in revertants above the spontaneous count for each strain when tested in one laboratory. The other laboratory reported sporadic results with individual doses showing a greater than twofold increase over the spontaneous count but a dose-response relationship was not apparent (Table

The violet dye, Resiren Violet TR, was mutagenic for strains TA1537, TA1538, and TA98 with the S-9 liver fractions from both phenobarbital and Aroclor induced rats (Table 5). No increase in number of revertants per plate was apparent when the S-9 fraction was not activated. The mutagenic activity was apparent at low doses of dye per plate. Macrolex Violet B gave positive results only in TA1537 and only when nonactivated (Table 6). Macrolex Violet 3R did not give positive results under any assay conditions.

The comparisons of specific response activities for each of the mutagenic dyes across strains and activation systems are listed in Table 7. The specific response activity is the calculated dose in μg which gives a twofold increase over spontaneous revertants for a specific strain. The twofold increase was set at 50 revertants per plate for TA1537 and TA1538, 100 revertants for TA98, and 200 revertants for TA100. The doses were determined from each assay's regression slope calculated from the model curves; the slope functions were in the units revertants per μg . The higher value from the linear or nonlinear regression slope was used to more accurately represent the full range of concentration levels used in the tests.

A much greater dose of Macrolex Red 1069 was required to increase revertants per plate in TA1538 when not activated than when the activated microsomal fraction was incorporated into the test. There was little

difference in the dose required to give a doubling of spontaneous revertint number in TA1537 between tests using nonactivated and Aroclot activated fractions. Repetitive assays with this red dye in TA98 using activation showed a broad range of Joses which would produce a twofold increase in spontaneous revertants, indicating marked day to day variation in the tests. The red dye, Amoplast Red PC, was also a more potent mutagen when the activation system was included in the test. The doses calculated from repeated tests with TA98 and TA100 showed less variability in specific response activity than noted for Macrolex Red 1069. In general, lower doses of Amoplast Red PC than Macrolex Red 1069 were required to produce a twofold increase in spontaneous revertants for TA1537, TA1538, and TA98. Resiren Violet TR was not a mutagen without S-9 activation. This dye was the only one which showed significant mutagenic activity when incubated with phenobarbital induced S-9 fractions. The phenobarbital microsomal fraction show greater enhancement of Resiren Violet TR activity than the Aroclo - ctivation system in strains TA1538 and TA98 but not in strain TA1537.

DISCUSSION

The dyes which gave clearly positive mutagenic responses in the Salmonella reversion assay were Macrolex Red 1069, Amoplast Red PC, Resiren Violet TR and Macrolex Violet B. The dyes for which the assay results did not conform to the requirements for a positive response were Oil Red G and Macrolex Violet Significant increases in revertants were observed in those strains responsive to frameshift mutagens, TA1537, TA1538, and TA98. One red dye, Amoplast Red PC increased revertants in TA100 which can also detect frameshift mutagens. In general, those dyes showing a mutagenic response produced more revertants per plate when incubated with activated S-9 fractions than when the microsomal fraction had not been obtained from induced livers. The number of revertants was slightly greater in TA1538 and TA98 when Resiren Violet TR was incubated with a phenobarbital activated S-9 fraction rather than an Aroclor activated fraction. The violet dye, Macrolex Violet B however, did not give a positive response with the activated fractions, only with nonactivated fractions and in only one strain, TAI537. Additional studies are required with this dye to confirm the mutagenic activity detected in this bacterial assay. The slight increase in revertants elicited by Oil Red G was reported by only one laboratory, did not show a dose response, and was not considered a positive response. The increased number of revertants was only slightly above twofold the background number of revertants and was observed at high doses.

The specific response activities calculated from the data developed by the two laboratories did not show close numerical similarity. Even data from the same laboratory showed day to day variation in revertants per µg which was greater than would be expected. Part of this variability in numerical response may have been due to the insolubility of these dyes in aqueous media. Although DMSO was used as a suspending agent, some of the dye precipitated out during the incubation period. This would produce a variable concentration gradient across the plate, and not all bacteria would have been exposed to the same dosage level. This observation may also explain the differences between the laboratories in the strains which gave a positive response to the dye. The Salmonella reversion assay has approximately a 50 percent coefficient of variation for replicate experiments, even within the same laboratory (L. Claxton, personal communication). This level of variation

requires that individual assays be analyzed separately in the test model, and that only marked differences in numerical values between replications can be considered significant. The specific response activities should only be considered as guidelines in assessing the relative mutagenic potencies of test materials. Within the limitations of the bioassay, it appears that the dyes Amoplast Red PC and Resiren Violet TR were more potent mutagens in the Salmonella reversion test than Macrolex Red 1069 or Macrolex Violet B. The dyes tested in these studies are not as potent mutagens as the positive controls routinely used in this assay.

The frequent irregularity in the response of the strains to the dyes and the high levels of test materials required to obtain a mutagenic response suggests that the dyes are mixtures. More than one substance in the mixture may be mutagenic and contribute in a variable manner to the test materials' activity. Alternatively, the dyes may contain a mutagen which is present in low concentrations. The data from the Macrolex Red 1069 provide evidence for the presence of more than one active component since the with and without activation conditions gave different responses in different strains. If the mutagens are by-products of the dye synthesis process then different lots of the dye may give different results in mutagenic assays. These possibilities should be taken into consideration for future research on these dyes and other dyes considered for inclusion in colored smoke munitions.

TABLE 1. POSITIVE CONTROL MUTAGENS FOR THE FIVE TESTER STRAINS OF SALMONELLA TYPHIMURIUM, ORNLA

- 1

Tester Strain	DMSO	Without Activation	Mean Response	Revertants/Plate With Aroclor Activation	Mean Response	With Phenobarbital Activation	Mean Response
TA1535	15	Ethyl methane sulfonate	215				
		Sodium azide	557				
TA1537	11	8-Amino quinoline	62	Benzo[a]pyrene	171	8-Amino quinoline	428
		2-Nitrofluorene	103			2-Acetylamino- fluorene	97
TA1538	9	2-Nitrofluorene	615	Benzo[a]pyrene	76	2-Acetylamino- fluorene	1129
TA98	20	2-Nitrofluorene	586	Benzo[a]pyrene	245	8-Amino quinoline	57
						2-Acetylamino- fluorene	1367
TA100	103	Methyl methane sulfonate	504	Benzo[a]pyrene	639	8-Amino quinoline	263
		Sodium azide	748			2-Acetylamino- fluorene	1087
		2-Nitrofluorene	983				

TABLE 2. POSITIVE CONTROL MUTAGENS FOR THE FIVE TESTER STRAINS OF SALMONELLA IYPHIMURIUM, USEPA^a

Tester Strain	Range of Spontaneous Revertants/Plate	Without Activation	Mean Response	With Aroclor Activation (+ S-9)	Mean Response
TA1535	5-50	N-Methyl-N'-nitrosoguanidine Sodium azide Methyl methane sulfonate	326	2-Anthramine	307
TA1537	2-25	9-Aminoacridine	1,202	2-Anthramine	630
TA1538	5-40	2-Nitrofluorene 4-Nitro-O-phenylenediamine	269	2-Anthramine	629
TA98	15–35	2-Nitrofluorene Hycanthone methane sulfonate	226	2-Anthramine	526
TA1 00	80-270	N-Methyl-N'-nitrosoguanidine Sodium azide Methyl methane sulfonate Nitrofurantoin	493	2-Anthramine	766

a. Genetic Bioassay Branch, US Environmental Protection Agency.

TABLE 3. MUTAGENICITY OF MACROLEX RED 1069a

		Mean	Reverta	nts Pe	r Plate	for Ea	ch Strain
Activation	µg/Plate	TAI	537	TA	1538	TA	98
None	0	7		6			
	50	23		8			
	100	16		13			
	500	26		14			
	1,000	29		20			
	2,000	28		39			
	3,000	17		40			
Aroclor	0	7	(14) ^b	11	(14)	26	(32)
	50	28	(28)	20	(43)	45	(64)
	100	27	, ,	27		65	` '
	125		(42)		(64)		
	250		(57)		(105)		(142)
	500	3 0	(79)	77	(178)	142	(239)
	750		(81)		(208)		(252)
	1,000	57	(75)	133	(189)	208	(258)
	1,200			377			
	1,250		(167)		(333)		(474)
	2,000	113		302		463	
	2,500		(258)		(620)		(562)
	3,000	80				397	
	5,000		(396)		(949)	500	(865)
	7,500					(1,007)
	10,000		(398)			(1,035)

a. Only strains which had greater than twofold the number of spontaneous revertants and showed a dose response relationship are listed.

b. Data from ORNL in parentheses.

TABLE 4. MUTAGENICITY OF AMOPLAST RED PCa

		Mean Re			
Activation	μg/Plate	TA1537	TA1538	TA98	TA100
None	0	13 (16) ^b	10 (8)	20 (33)	98
	10	21	41	120	180
	30	3 0	86	231	208
	50	32	86 (28)	241 (35)	221
	100	39	164	352	264
	125		(25)		
	150			457	291
	200			436	363
	250		(35)	1,222 (37)	328
	300	44	340	616	211
	500	33	356 (59)	614 (50)	379
	750		(63)	(66)	482
	1,000		(63)	(50)	642
	1,250	(44)	(112)	(88)	
	1,500		, ,	, ,	610
	2,500	(57)	(178)	(102)	555
	3,500		, ,	, ,	410
	5,000	(55)	(251)	(130)	
Aroclor	0	16 (13)	17 (15)	27 (42)	101
	10	28	82	357	227
	3 0	70	170	1,193	3 00
	50	100 (29)	328 (52)	1,514 (77)	382
	75		(63)	(73)	
	100	168	752 (56)	2,189 (82)	591
	120	196			
	125	(55)	(81)	(113)	
	150			2,002	710
	200	172		2,411	827
	250	(54)	(139)	2,005 (171)	791
	300		1,061	3,167	849
	500	(54)	1,137 (191)	2,966 (246)	792
	750	(54)	(209)	(272)	3 03
	1,000	(59)	(239)	(332)	210
	1,250	(107)	(361)	(423)	
	1,500				157
	2,500	(116)	(445)	(632)	84
	3,500				32
	5,000	(121)	(452)	(644)	

a. Only strains which had greater than twofold the number of spontaneous revertants and showed a dose response relationship are listed.

b. Data from ORNL in parentheses.

TABLE 5. MUTAGENICITY OF RESIREN VIOLET TRa

		Mean Revertants		
Activation	μg/Plate	TA1537	TA1538	TA98
Aroclor	0	14	15	42
	2.5		50	48
	5		63	90
	12.5	41	82	135
	25	64	127	171
	50	87	166	200
	125	90	143	209
	250	79	173	210
	500	88	188	235
	750	78		
	1,000	70		
	1,250	69		171
	2,500	51	76	144
	5,000	29	31	68
Phenobarbital	0	10	8	39
	1.25		53	87
	2.5		79	155
	5		115	170
	12.5	79	156	201
	25	90	171	203
	50	100	143	213
	125	105	158	239
	250	95	164	228
	500	83	159	208
	1,250	80		138
	2,500	50	73	94
	5,000	22	45	41

a. Only strains which had greater than twofold the number of spontaneous revertants and showed a dose response relationship are listed.

TABLE 6. MUTAGENICITY OF MACROLEX VIOLET Ba

Activation	μg/Plate	Strain TA1537
None	0	12
	12.5	26
	25	33
	50	39
	125	47
	250	62
	500	49
	1,250	50
	2,500	75
	5,000	76

a. Only strains and doses which had greater than twofold the number of spontaneous revertants and showed a dose response relationship are listed.

TABLE 7. SPECIFIC RESPONSE ACTIVITY (µg)^a

		Dose Cal		Indicated Rev	
	L.	50		100	200
Compound	Activation ^b	TA1537	TA1538	TA98	TA100
Macrolex Red 1069		1,000	3,333		
	Ar	1,064	22	125 to 1,124	
Amoplast Red PC		126	31	25 to 47	223 to 615
	Ar	10	5	4 to 19	43 to 52
Resiren Violet TR	Ar	36	18	19	
	Pb	69	9	9	
Macrolex Violet B		301			

a. Specific response activity: Calculated dose needed to give approximately a twofold increase over spontaneous revertants for a specific strain. The doses were calculated from individual model curves and are either the linear or nonlinear model slope. The inclusion of ranges indicates more than one test was conducted with the strain.

b. --, No exogenous activation; Ar, S-9 from Aroclor 1254 induced rats; Pb, S-9 from phenobarbital induced rats.

REFERENCES

- Dalbey, W. November 1980. Separation and Characterization of Dyes and Mutagenesis Testing. Technical Report, PO 9600, Oak Ridge National Laboratory.
- 2. Smith, M.D. and M.N. Gerber. November 1981. Engineering Study to Determine Feasibility of Replacing Dye, Disperse Red 9. Chemical Systems Laboratory Technical Report. AD B061192L.
- 3. Ames, B.N., J. McCann, and E. Yamasaki. 1975. Methods for Detecting Carcinogens and Mutagens with the Salmonella/Mammalian Microsome Mutagenicity Test. Mutat. Res. 31:347-364.
- 4. Stead, A.G., V. Hasselblad, J.P. Creason, and L. Claxton. 1981. Modeling the Ames Test. Mutat. Res. 85:13-27.
- 5. Claxton, L.D., M. Kohan, A.C. Austin, and C. Evans. The Genetic Bioassay Branch Protocol for Bacterial Mutagenesis Including Safety and Quality Assurance Procedures. User's Manual. Health Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC.

APPENDIX A

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM; MEAN PLATE COUNTS AND STANDARD DEVIATION

Tables

A-1.	Macrolex Red 1069 In Vitro Assay with Salmonella typhimurium,
	without Activation
A-2.	Macrolex Red 1069 In Vitro Assay with Salmonella typhimurium, with S-9 Activation
A-3.	Amoplast Red PC (Red 10618) In Vitro Assay with Salmonella typhimurium,
W-7.	
	without Activation23
A-4.	Amoplast Red PC (Red 10618) In Vitro Assay with Salmonella typhimurium,
	with S-9 Activation24
A-5.	Oil Red G In Vitro Assay with Salmonella typhimurium, without
	Activation25
A-6.	Oil Red G In Vitro Assay with Salmonella typhimurium, with S-9
	Activation
A-7.	Macrolex Red 1069 In Vitro Assay with Salmonella typhimurium
	Aroclor Activation
A-8.	Macrolex Red 1069 In Vitro Assay with Salmonella typhimurium
	Phenobarbital Activation28
A-9.	Macrolex Red 1069 In Vitro Assay with Salmonella typhimurium
	Preincubation29
A-10.	Amoplast Red PC (Red 10618) In Vitro Assay with Salmonella
100	typhimurium Aroclor Activation
A_11	Amoplast Red PC (Red 10618) In Vitro Assay with Salmonella
W-11.	Amopiast Red Pt (Red 10010) III VILIO Assay with Salmonella
	typhimurium Phenobarbital Activation
A-12.	Amoplast Red PC (Red 10618) In Vitro Assay with Salmonella
	typhimurium Preincubation
A-13.	Oil Red G In Vitro Assay with Salmonella typhimurium Plate
	Incorporation Assay
A-14.	Oil Red G In Vitro Assay with Salmonella typhimurium
	Preincubation Assay
A-15.	Resiren Violet TR In Vitro Assay with Salmonella typhimurium
	Standard Plate Incorporation Assay
A-16	Resiren Violet TR In Vitro Assay with Salmonella typhimurium
W-10.	Resiren violet ik in vitro Assay with Salmonella typnimurium
	Preincubation Assay
A-1/.	Macrolex Violet B In Vitro Assay with Salmonella typhimurium
	Plate Incorporation Assay
A-18.	Macrolex Violet B In Vitro Assay with Salmonella typhimurium
	Preincubation Assay
A-19.	Macrolex Violet 3R In Vitro Assay with Salmonella typhimurium Plate
	Incorporation Assay39
A-20-	Macrolex Violet 3R In Vitro Assay with Salmonella typhimurium
200	Preincubation Assay
	rieincubacion assay

TABLE 4-1. MACROLEX RED 1069 IN VITRO ASSAY WITH SALMONELLA TYPHIMURIUM, WITHOUT ACTIVATION USEPA

Compound	Dose, µg/Plate	TA1535	TA1637		ne Revertant	s Per P		Strain		TA100	
	ру/гіліе	TW1333	TA1537	TA1538		149	<u> </u>			14100	
DMSO	250	13 ^b	7 (2)	6 (2)	95 ^c (22)	19 (3)	15 (1)	20 (1)	85 (6)	102	83 (9)
Positive ^a Control		228 (11)	l,118 (183)	211 (6)	588 (7)	188 (17)	218 (11)	211 (9)	448 (32)	611 (48	278 (36)
Red 1069	0.1					20 (6)	15 (1)		94 (4)	102 (0)	
	0.5					17 (1)	15 (4)		103 (1)	130 (4)	
	1					20 (1)	18 (1)		101 (17)	120 (27)	
	5					21 (4)	15 (4)		109 (1)	118 (11)	
	10				98 (n)	16 (0)	23 (8)		108 (11)	111 (1)	
	50)	16 (4)	23 (2)	8 (2)	101 (1)	18 (2)	30 (3)	15 (2)	108 (6)	146 (6)	80 (16)
	100	20 (5)	16 (1)	13 (1)	95 99 (6) (1)	22 (4)	11 (1)	16 (3)	109 (22)	112	78 (9)
	500	16 (2)	26 (7)	14 (4)	90 99 (1) (4)	24	19 (1)	22 (2)	82 (3)	92 (3)	88 (9)
	1,000	21 (4)	29 (5)	20 (2)	88 102 (18) (1)	23	20 (3)	35 (2)	80 (1)	R2 (3)	92 (7)
	2,000	16 (3)	28 (4)	39 (4)				42 (4)			92 (5)
	3,000	8 (2)	17 (5)	40 (8)				41 (8)			87 (18)
	5,000				111 101 (19) (3)	34	39 (1)		87 (1)	106	

a. Positive controls for strains: TAI535 and TAI00, sodium azide, lug/plate; TAI537, 9-aminoacridine, 100 ug/plate; TAI538 and TA98, 2-nitrofluorene, 3 ug/plate.
 b. Mean of two to three replicates (standard deviation), except as noted.

Solvent was acetone.

TABLE A-2. MACROLEX RED 1069 IN VITRO ASSAY WITH SALMONELLA TYPHIMURIUM, WITH S-9 ACTIVATION USEPA

Compound	Dose, μg/Plate	TA1535	TA1537	Histidir TA1538	e Revertant	s Per P TA9		Strain		TA100	
DMSO	250	9 ^b (4)	7 (2)	11 (3)	113 ^c (1)	25 (5)	26 (1)	27 (5)	88 (4)	81 (5)	75 (8)
2-Anthramine	3 ^a 0.5	293 (4)	861 (35)	479 (47)	899 (21)	448 (18)	471 (21)	277 (21)	670 (35)	807 (47)	337 (17)
Red 1069	0.1					30 (2)	27 (0)		85 (0)	114 (21)	
	0.5					24 (4)	33 (1)		96 (8)	136 (4)	
	1					25 (6)	33 (5)		101	122 (11)	
	5					33 (8)	33 (9)		108 (10)	135 (11)	
	10				119 (37)	45 (6)	33 (1)		112 (18)	138 (18)	
	50	13 (3)	28 (1)	20 (1)	120 (17)	55 (1)	41 (4)	40 (3)	101	126	73 (16)
	100	9 (4)	27 (1)	27 (4)	84 96 (21) (4)	79 (15)	54 (3)	61 (4)	9() (5)	103 (8)	81 (5)
	500	10 (5)	30 (4)	77 (14)	93 1?2 (13) (8)	132	166 (5)	130	90 (8)	104 (8)	87 (17)
	1,000	10 (2)	57 (10)	133 (15)	114 87 (7) (3)	191	214 (1)	219 (10)	83 (7)	86 (12)	92 (3)
	1,200			377 (38)							
	2,000	15 (3)	113 (13)	302 (29)				463 (32)			104 (8)
	3,000	14 (7)	80 (5)					397 (52)			104 (14)
	5,000				150 148 (69)(22)	471	528 (8)		(1)	121	

a. Doses for TAI535 and TAI538 were 3 mg/plate.
 b. Mean of two to three replicates (standard deviation), except as noted.
 c. Solvent was acetone.

TABLE A-3. AMOPLAST RED PC (RED 10618) IN VITRO ASSAY WITH SALMONELLA TYPHIMURIUM, WITHOUT ACTIVATION USEPA

	Dose				Reverta	nts Per I	late by	Strain			
Compound	µg/Plate	TA1535	TA1537	TA1538		TA98			TA100		
DMSO	250	15 ^b (2)	13 (1)	10 (4)	18 (1)	19 (3)	24 (3)	114	93 (0)	90 (1)	93 (19
Positive ^a Control		348 (13)	1,191 (125)	220 (13)	275 (1)	188 (17)	223 (9)	721 (6)	493 (60)	448 (32)	495 (60
Red 10618	10	17 (3)	21 (1)	41 (9)			120 (20)				180 (26
	30	17 (4)	30 (6)	86 (11)			231 (6)				208 (15
	50	21 (7)	32 (5)	86 (22)	203 (49)	237 (83)	284 (26)		207 (4)	239 (2)	217 (33
	100	12 (3)	39 (6)	164 (33)	346 (43)	307 (4)	402 (21)		252 (32)	302 (8)	239 (17
	150				513 (23)	400 (4)			235 (18)	347 (25)	
	200				459 (38)	413 (30)			317 (13)	408 (30)	
	250				628 (27)	1,816 (24)		398 (12)	278 (18)	307 (6)	
	300	18 (7)	44 (3)	340 (83)			616 (57)				211 (21
	500	12 (2)	33 (4)	356 (18)	669 (10)	454 (11)	719 (49)	447 (1)	361 (21)	435 (26)	274 (47
	750							482 (28)			
	1,000							642 (30)			
	1,500							610 (1)			
	2,500							555 (19)			
	3,500							410 (8)			

a. See Table A-1.b. Mean of two to three replicates (standard deviation).

TABLE A-4. AMOPLAST RED PC (RED 10618) IN VITRO ASSAY WITH SALMONELLA TYPHIMURIUM, WITH S-9 ACTIVATION USEPA

Compound	Dose µg/Plate	TA1535	TA1537	TA1538	ine Rever	TA98			TAIO	n	<u>-</u>
DMSO	250	11 ^b (5)	16 (3)	17 (3)	23 (3)	25 (5)	34 (8)	121	90 (14)	88 (4)	103
2-Anthramine	3 ⁴ 0•5	264 (57)	487 (47)	654 (120)	620 (30)	448 (18)	525 (23)	(,409 (158)	981 (122)	670 (35)	629 (77)
Red 10618	10	16 (2)	28 (1)	82 (17)			357 (8)				227
	30	15 (1)	70 (5)	170 (15)			1,193 (122)				300 (13)
	50	16 (6)	100 (14)	328 (14)	1,257 (122)	1,488 (68)	1,798 (39)		318 (47)	440 (11)	388 (23)
	100	19 (3)	168 (15)	752 (60)	2,076 (144)	2,228 (25)	2,263 (171)		504 (112)	639 (71)	630 (42)
	120		196 (16)								
	150				1,934	2,070 (118)			619 (52)	800 (23)	
	200		172 (22)		2,792 (4)	2,030			763 (115)	890 (146)	
	250				1,999 (88)	2,010 (89)		920 (87)	682 (37)	771 (50)	
	300	14 (1)		1,061 (186)			3,167 (37)				849 (43)
	500	16 (5)		1,137 (72)	3,016 (100)	2,841 (40)	3,042 (110)	541 (29)	887 (4)	871 (32)	868 (48)
	750							303 (42)			
	1,000							210 (35)			
	1,500							157 (48)			
	2,500							84 (11)			
	3,500							12 (5)			

a. Doses for TAI535 and TAI537 were 3 mg/plate.
h. Mean of two to three replicates (standard deviation).

TABLE A-5. OIL RED G IN VITRO ASSAY WITH SALMONELLA TYPHIMURIUM, WITHOUT ACTIVATION USEPA

Compound	Dose Hg/Plate	TAISIS	515	TA1537	37	111 st TA1538	538	illstidine Revertants Per Plate by Strain 538	tants P	8 8	e by St	rain		TA100	0		
Acetone	001	e (;	3.2	-£	≘Ĉ	£ (5)	18	17	24 (7)	32	22 (6)	67,0	95	121	3 = 5	38	E 8
Positive ³ Control		278 (58)	450 (83)	1,235	1,263	342 (12)	70 <u>%</u>	275	188	21k (11)	277	514 (106)	\$88 (7)	(493 (403)	448	283	586 (13)
Oil Red G	~							28 (12)	22 (4)					(12)	120		
	e.	15 (2)	18	(4)	ŝ	£ Ĉ	3 =			92 92	18 (2)					75 (15)	89 (11)
	98	32	3 2	6 E	8 (2)	= ĉ	<u>=</u> 2			(3)	₹ (Ş					63	96 (9)
	9 6	(2)	62	12 (4)	3 5	æ 🕃	33	% (-)	<u>د</u> (و)	¥ (4)	20			101	(4)	65 (4)	102
	62.5											\$3					
	100	62 (3)	21	× ÷	<u>و</u> ق	E (2)	: ŝ	33	≘ €	18 (2)	20 (2)		133	136	137 (26)	79 (13)	114 (10)
	125											6.7 (0.)					
	250											¥ Ê					
	300	17	21	(3)	12 (2)	4 <u>7</u>	3 2	17	33	<u>~</u> 3	ę. C			<u>=</u>	47 (5)	75 (3)	154 (20)
	51.81	32	£ (?	\$ 3.4	9 (2)	12	<u>د</u> 3	₹.€	23	£ 6	24 (5)	45	105 (4)	151	(2)	£ (2)	(15)
	1,000											ŧ Ē	£ §				
	1,500.1											5 = 5					
	5,600												41.				

a. See Table A-1. b. Mean of two to three replicates farmeter destation). c. Negation control was 1989, 250 ag/plate.

TABLE A-6. OIL RED G IN VITRO ASSAY WITH SALMONELLA TYPHIMIRIDM, WITH S-9 ACTIVATION INSEPA

	Dose	71.514	31.5	TA1537		TAL	Histidine Revertants Per Plate by Strain TAIS B	Ine Rev	ertants TA9	Per Pl	ate by	Strain		TA190	190		
compriming	1,8/1,140																
Acetone	001	4S1	£ Ĉ	¥ (2)	£ 🖯	≂ €	26 (5)	£ Ĉ	ຊ ປີ	ξξ (3)	35 (7)	86° (2)	£	138	<u>=</u> €	92 (12)	96 (17)
2-Anthea- mine	33 0.5	394	276 (22)	745	426 (2011	893 (19)	(83)	620	448	922 (85)	(28)	809 (37)	893 (21)	981	676	, (6)	533 (50)
ott Red G								44	32 (2)					159	204 (18)		
	2	= ê	= ê	± Ĉ	15	E (3)	61 61			25	£ S					153	145 (23)
	۶	3	<u>=</u>	* £	£	28	<u> </u>			23 (4)	3.8					128 (18)	13a (16)
	2 ()	(3)	31.	50 (1)	1 3	45	z Ĉ	?; (,)	ξ. (4)	£ (\$)	æĉ			15.1	179	(3)	131
	62.5											169					
	001	φĘ	s ŝ	19 (2)	3 5	15 (6)	" (5)	27 (2)	ž C	5.5	3)		13.	152	210	(13)	163 (28)
	125											(5)					
	250											17.0 (28.)					
	300	6 ()	e (2)	10 (4)	17 (2)	£ (9)	<u>=</u> Ĉ	¥ (5.	35	4.3	£ &			(v)	(1)	55	137
	syn	6 (2)	1 9	٠ 5	13	2.5	33	2.6	; €	-	÷ (§)	:	161 (23)	17.4	<u> </u>	<u>a</u>	13.0
	1,000											53	13.2				
	1,500											3.3					
	5,000												136				

Boses for TAISS and TAISS were 3 or plate.
 Hean of two to there replicates (stocked desirtion).
 Wegation control was DMSs, No. explite.

TABLE 4-7. MACROLEX RED 1069 IN VITRO ASSAY JITH SALMONELLA TYPHIMURIUM AROCLOR ACTIVATION ORNL

Compound	μg/Plate	Activation ^a	TA1535	Histidi TAIS	ne Rev 37	ertants TAI5	Per Pla 38	te by Strain TA98	TA100
DMSO	100	-			4 9)		H 2)	37 (19)	52 (10)
		+	10 ^b (4)		4 6)	1	4 4)	32 (17)	ЯО (10)
Positive Control		-		11	R	23		355 (149)	205
		+	91 (10)	28	9 6)	23		355 (149)	205 (117)
Red 1 hy	25	•	, , , ,	1	4 3)				
	250	-		1	2 2)	1	5 4)	34 (16)	42 (13)
	2,500			,	-,	2		40 (19)	38
	1.25	•	10 (2)			,		,,	
	2.53	•	11						
	5	•	11 (6)						
	25	•	9 (7)	23	14 (4)	29 (10)	27 (0)	55 (19)	103
	500	+	10 (2)	32 (9)	24 (5)	44 (12)	41 (6)	64 (16)	77
	125	•	(2)	49 (m)	35 (n)	70 (17)	57	(• • • •	, <i>,</i>
	250	•	10 (5)	64 (17)	50	129 (44)	82 (8)	142 (35)	99 (14)
	500	•	10 (8)	97 (28)	70 (8)	204 (75)	152	239 (109)	116
	75n	•	, ,	g) (8)	?1 (n)	223	192	252 (82)	(,,
	1,000	•		43	57 (0)	220 (55)	158	258 (42)	
	1,25)	•		196 (6:1)	137	283	382 (61)	474 (157)	
	2,500	•	11	391 (72)	214	696 (113)	544	678 445 (145) (44)	145
	5,011	•	1)	473 (114)	318 (22)	1,076	822	1,019 710 (125) (110)	118
	7,500	•	, ,	, ,	•		,	1,007	,,,,,
	(no, 01	•		194 (135)	302			1,035	

a. - = No activation.
 + = With S-9 activation.
 b. Mean of one to five replicates (standard Jeviation).

TABLE A-8. MACROLEX RED 1069 IN VITRO ASSAY WITH SALMONELLA TYPHIMURIUM PHENOBARBITAL ACTIVATION ORNL

Compound	μg/Plate	Activation ^a	Histidine TA1537	Revertants TA1538	Per Plate TA98	by Strain TA100
DMSO	100	+	11 ^b (3)	11 (1)	36 (15)	59 (6)
Positive Control		+	289 (6)	237 (23)	355 (149)	206 (118)
Red 1069	25	+	13 (4)	17 (3)	36 (11)	79 (15)
	50	+	20 (4)	19 (8)	38 (14)	67 (14)
	250	+	28 (4)	19 (2)	39 (9)	75 (18)
	500	+	26 (2)	36 (23)	50 (20)	67 (14)
	2,500	+	37 (11)	42 (17)	65 (20)	69 (6)
	5,000	+	38 (7)	78 (24)	93 (20)	61 (9)
	7,500	+		86 (37)	116 (9)	
	10,000	+		95 (8)	113 (29)	

a. - = No activation.

⁺ = With S-9 Activation

b. Mean of three to four replicates (standard deviation).

TABLE A-9. MACROLEX RED 1069 IN VITRO ASSAY WITH SALMONELLA TYPHIMURIUM PREINCUBATION ORNL

								ne Revertan	ts P	er Plate	by Stra	iin .	nenobari	25.3	
domp rund	ug/Plate	Activation	TA 1535	TA 153		Aroc 16 TA 1538		TA 98		TA 100	TA 1535	TA 1537	TA 1538	TA 98	TA 100
DMSo	100	-	5 ^b (5)	16 (9		(1	9 1)	37 (9)		150 (22)					
		+	10 (2)	12 (10		[⁵		38 (21)		162 (56)	7 (3)	6 (1)	10 (8)	33 (22)	130 (17)
Positive Courrol		-	91 (10)	213 (85		237		345 (163)		205 (117)	•				
		+	91 (10)	289 (6		237 (21		107 (15)		205 (117)	91 (10)	289 (6)	237 (23)	107 (15)	205 (117)
Red 1 59	25	-	я (4)	19		14		36 (23)		107					
	2,5%	-	5 (3)	21 (6		1- (7		47 (19)		130 (36)					
	25	•	(3)	21 (3)	26	[7 (4)	19	52 (15)		208 (63)	7 (4)	27 (19)	11	→2 (19)	166 (59)
	ñ.	+	9 (0)	16 (7)	24	18 (6)	17	33 (18)		128 (33)	5 (2)	15 (5)	10 (4)	44 (8)	147 (55)
	125	+				40		56 (7)							
	25 1	+	(1)	55 (22)	52	52 (26)	40	111 (54)		196 (75)	8 (2)	22 (7)	12 (2)	36 (21)	156 (63)
	500	-	7 (3)	56 (23)	33	92 (3)		147 (26)		163 (80)	5 (2)	11	ln (4)	26 (13)	130 (49)
	*5.7	+		57 (29		196 (5)		141 (51)							
	1,799	•		156 (23		145		199 (75)							
	1,25	•		278 7 48		321 (159		400 (230)					13 (9)		
	2.5%	•	15 (4)	329 (154)	¥76	636 (175		604 (301)		307 (105)	(५)	32 (11)	32 (5)	58 (22)	160 (50)
	3,150	•				41° (26)							26 (13)		
	5, 100	+	(5)	266 (93		780 (515		539 (198)	263	189 (65)	5 (3)	29 (9)	32 (19)	61 (12)	145 (40)
	7,500	+		253 (48									20 (3)		
	12,020	+		129 (27									23 (6)		

a. - = No activation. + = With S-9 activation. b. Mean of two to three replicates (standard deviation), except where noted.

TABLE A-10. AMOPLAST RED PC (RED 10618) IN VITRO ASSAY WITH SALMONELLA TYPHIMERIUM AROCLOR ACTIVATION ORNL

						tants Pe	r Plate				
		TA	Withou	t Activat	TA	TA	TA	With TA			TA
Compound	μg/Plate	1535	1537	1538	98	100	1535	1537	TA 1538	TA 98	100
DMSO	100	9 ^a (3)	16 (10)	8 (3)	33 (15)	64 (6)	8 (2)	13 (4)	15 (5)	42 (5)	89 (13)
Positive Control		90 (8)	213 (85)	237 (23)	355 (149)	205 (117)	91 (10)	118	237 (23)	355 (149)	205 (117)
Red 10618	12.5							18 (4)	23 (7)	59 (6)	
	25			14 (5)	42 (23)		7 (6)	22 (5)	29 (6)	56 (23)	109 (9
	50			28 (3)	35 (15)		11 (7)	29 (4)	52 (26)	77 (13)	102 (6
	75								63 (31)	73 (23)	
	100								56 (25)	32 (22)	
	125			25 (7)				55 (16)	81 (21)	113	
	250	3 (1)	19 15 (6) (8		37 (18)	19 (16)	9 (3)	54 (21)	139 (41)	171 (59)	116 (45
	500		19 (12)	59 (8)	50 (21)		14 (4)	54 (14)	191 (60)	246 (55)	133 (43
	750		20 (8)	63 (7)	66 (19)			54 (16)	209 (91)	272 (23)	
	1,000		15 (5)	63 (19)	50 (20)			59 (11)	239 (93)	332 (40)	
	1,250		44 (12)	112 (16)	88 (39)			107 (44)	361 (63)	423 (90)	
	2,500	4 (1)		7 178 7) (25)	102 (38)	8 (13)	13 (5)	116 (46)	445 (74)	632 (161)	130 (66)
	5,000		55 (8)	251 (62)	130 (64)		11 (2)	121	452 (80)	644 (281)	184 (28)
	7,500		47 (20)								
	10,000		44 (15)								

a. Mean of three to five replicates (standard deviation).

TABLE A-11. AMOPLAST RED PC (RED 10618) IN VITRO ASSAY WITH SALMONELLA TYPHIMURIUM PHENOBARBITAL ACTIVATION ORNL

				tants Per Pl		
Compound	µg/Plate	TA1535	TA1537	TA1538	TA98	TA100
DMSO	100	10 ^a (3)	10 (4)	8 (3)	39 (8)	70 (8)
Positive Control		90 (8)	118 (11)	237 (23)	355 (149)	205 (117)
Red 10618	12.5		24 (5)		51 (7)	
	25	10 (5)	28 (8)	24 (7)	63 (9)	74 (6)
	50	9 (3)	30 (5)	35 (6)	75 (5)	80 (7)
	125		35 (7)	47 (5)	83 (21)	
	250	11 (3)	42 (9)	69 (8)	100 (40)	83 (19)
	500	10 (4)	35 (5)	85 (23)	137 (33)	84 (16)
	750			93 (42)	173 (23)	
	1,000			101 (27)	173 (33)	
	1,250		85 (17)	183 (69)	240 (59)	
	2,500	9 (5)	100 (18)	253 (41)	367 (29)	94 (18)
	5,000	9 (1)	79 (28)	307 (14)	416 (88)	98 (6)

a. Mean of two to three replicates (standard deviation).

TABLE A-12. AMOPLAST RED PC (RED 10618) IN VITRO ASSAY MITH SALMOMELLA TYPHIMIRROM PREINCUBATION ORNI.

į, **l**

		N.	We though Astely 11 on	ita	GO	Hi	stidine roclor	Rever	Histidine Revertants Per Plate Aroclor Activation	r Plate	Phenobarbital Activation	rbital	Activa	tion	}
Compound	ng/Plate	TA 1535	TA 1538	× 3.	TA	TA 1535	-	TA 1538	77 88	TA 100	TA 1535	_	TA 538	TA 98	TA 100
DMSO	001	g ()	& (è)		(32)	2 (7)	£ (9)	† 	35	130	14 (5)	20 (15)		32 (5)	117
Positive Control		91 (10)	23)		175 (74)	610)	237 (23)		107	205 (117)	610)	237		107	205
Red 10618	25		15 (12)			æ Ê	27 (12)	<u>e</u> ê	37 (15)	122 (37)	3	91 (6)	• <u> </u>	17	109
	ξ9		(11)			9 (2)	27 (13)	14 (8)	32 (12)	98 (31)	17 (4)	19	12	26 (4)	96 (27)
	250	11 (2)	37 (19)	٤,	127	9 (1)	69 (15)	35 (22)	51 (12)	112 (26)	12 (2)	27 (15)	21 (3)	35 (14)	112 (49)
	900		37 (20)	2		01 (E)	70 (34)	27	51 (17)	88 (30)	19	45 (13)	£ (2)	33	86 (34)
	750		38 (26)	13			(81) 87	81	46 (15)			38 (13)	11	46 (16)	
	1,000		44 (31)	=			56 (37)	10	57 (24)			69 (30)	36	66 (23)	
	1,250		180	86			169 (73)	% %	125 (40)			60 (21)	77	80 (24)	
	2,500	14 (8)	252 (91)	237	137	15	172 (64)	94 (26)	152 (60)	157 (48)	6 (5)	108	104	134 (42)	170 (70)
	3,750		319	179			179 (66)	133	106 (24)			129	97	100	
	5,000					9 E	206 (56)	118	158	121 (29)	12 (3)	182 (44)	110	239 (238)	169 (62)
	7,500		305 ;	258			273 (88)	120				265 (40)	93 (6)		
	10,000		299 (151)	137			342 (134)	185				223 (86)	126		

TABLE 4-13. OII. RED G IN VITRO ASSAY WITH SALMONELLA TYPHIMORIUM PLATE INCORPORATION ASSAY ORNL

				ne Rever			
Compound	ng/Plate	Activation ⁴	TA 1535	TA 1537	TA 1538	TA 98	TA 100
paso	100		11 ⁵ (3)	14 (4)	, 3 (2)	37 (19)	52 (10)
		\r	10 (4)	14 (5)	(4)	32 (17)	30 (10)
		Ph	11	11 (3)	(1)	36 (15)	59 (n)
Positive Control			91 (10)	118	237 (23)	355 (149)	206 (118)
		۱r	41	(o)	237 (23)	355 (1.4)	.515 (1171
		110	41	(n) (d)	237 (23)	355 (149)	.205 (117)
O Ked a	25		1.1				
	.,		::	20 - 1+1	L1 (•)	32 (303	··
	2, -		11	1.21		31 . (9)	··
	8 g 1976				4.		
	**	\ r	10	100	1.1	. 1	110
	. •		. 5)	[6 (5)	11	(15)	113
	15.4		11	1.	11	(1+)	1.15
•	,		(+)	11 (2)	1+	- L () ()	1. (12)
	•••		10	1.	18 (5)	133	, 41
	٠,		13	: 1	(*) ja	.3	,,,, (, ,)
		205	12	(i) (3)	1 * C1 *	43	
	•		- - 1 - 33	11 2)	(2)	4.2 (H)	(21)
			(1)	(3)	4 (3)	35 (15)	(2%)
	, 11		4 (3)	11 (3)	(1) (a)	44 (8)	n8 (15)
	2,00		96 (7)	(1)	(D)	40 (10)	53 (6)
	$\mathbf{a}_{\bullet}=\mathbf{c}^{*}$		(2° (7)	(7)	11 (4)	29 (4)	64 (21)

 ^{4. -- *} No activation; Ar * Arcelor; Pb * Phenobarbital.
 5. Year of two to three replicates (standard deviation).
 c. Toxic to bacteria.

TABLE A-14. OIL RED G IN VITRO ASSAY WITH SALMONELLA TYPHIMURIUM PREINCUBATION ASSAY

Compound		Activation ^a	Histidine Revertants Per Plate by Strain				
	pg/Plate		TA 1535	TA 1537	TA 1538	TA 98	TA 100
DHSO	100		5 ^h (5)	16 (9)	11 (5)	37 (9)	150 (22)
		Ar	10 (2)	1 t (9)	15 (5)	38 (21)	162 (56)
		Pb	7 (3)	6 (1)	10 (8)	34 (23)	130 (17)
Positive Control		-	91 (10)	213 (83)	237 (23)	345 (163)	205 (116)
		Ar	91 (10)	289 (6)	237 (23)	107 (15)	205 (117)
		Ph	91 (10)	289 (6)	237 (23)	107 (15)	205 (117)
ni Red G	250		10 (6)	'	5 (0)	29 ^e	148 (6)
	2,500		7 (3)	^c	11 (0)	17 ^c	86 ⁰
	23	Ar	9 (7)	11 (5)	13 (8)	40 (24)	184 (80)
	20,		10 (2)	20 (4)	13	37 (17)	155 (78)
	250		11 (2)	13 (3)	11 (4)	35 (29)	174 (57)
	5(1-)		7 (3)	13	(3)	38 (8)	150 (43)
	2,5.00		(2)	12 (5)	16 (3)	33 (19)	170 (51)
	5,000		6 (4)	14 (6)	17 (3)	38 (8)	174 (65)
	25	Pb	6 (3)	9 (2)	8 (3)	28 (10)	127 (60)
	50		5 (1)	(2)	8 (3)	18 (6)	127 (38)
	250		12 (5)	(3)	8 (2)	27 (10)	90 (16)
	5(1)		6 (5)	(3)	6 (2)	32 (18)	96 (23)
	2,5.00		(3)	(3)	(3)	25 (6)	147 (46)
	5,000		(1)	8 (4)	10 (4)	30 (12)	107 (23)

a. -- * % perivation; Ar = Aroclor; Pb = Phenobarbital.
b. Neur of three to five replicates (standard deviation).
c. Toxic to bacteria.

TABLE A-15. RESIREN VIOLET TR IN VITRO ASSAY WITH SALMONELLA TYPHIMURIUM PLATE INCORPORATION ASSAY
ORNL

				Aroc	lor Act		ne Revert	ants Pe			aín Activat	lon
Compound	μ/Plate	Activa- tion ⁴	TA 1535	TA 1537	AT AT 153H	TA 98	TA 100	TA 1535	TA 1537	TA 1538	TA 98	TA 100
DMSO	[00]	-	9 ^b (3)	14 (4)	8 (3)	34 (14)	64 (6)					
		+	8 (2)	14 (4)	15 (5)	42 (5)	89 (13)	10 (3)	10 (4)	8 (3)	39 (8)	70 (8)
Positive Control		-	90 (8)	213 (85)	237 (23)	355 (149)	205 (117)					
		+	91 (10)	118	237 (23)	355 (149)	205 (117)	90 (8)	118 (11)	237 (23)	355 (149)	205 (117)
Violet TR	250	-	7 (4)	39 (21)	15 (10)	30 (16)	15 (9)					
	2,500	-	6 ⁰	25 (18)	16 (10)	22 (19)	4 (5)					
	1.25	+			26 (15)	51 (15)				53 (13)	87 (28)	
	2.5	+			50 (25)	48 (16)				79 (10)	155 (21)	
	,	•			63 (22)	90 (26)				115	179 (30)	
	12.5	•		41 (10)	82 (37)	135			79 (4)	156 (12)	201 (59)	
	25	+	(5)	54 (14)	127 (19)	171 (39)	32 (24)	8 (3)	90 (6)	171 (27)	203 (5 3)	76 (4)
	<i>*</i>	+	; (1)	97 (23)	156 (38)	200 (64)	72 (18)	10 (6)	(3)	143 (26)	213 (48)	81 (3)
	125	+		9(1)	143 (57)	209 (41)			105 (5)	158 (28)	239 (73)	
	25:	•	7	79 (16)	173 (52)	210 (45)	89 (21)	11 (8)	95 (5)	164 (22)	228 (62)	88 (14)
		•	(2)	बन्न (14)	188 (53)	235 (22)	19 (18)	(3)	43 (6)	159 (18)	208 (42)	75 (6)
	• 1,	•		78 (25)								
	* • * *	•		70 (23)								
	1,250	•		69 (6)		17 ((54)			80 (4)		138 (46)	
	2,300	+	5 (4)	51 (21)	76 (11)	144 (45)	45 (14)	7 (6)	50 (15)	73 (14)	94 (25)	40 (7)
	5,730.00	•	(2)	29 (17)	31 (7)	n8 (45)	5 (2)	5 (1)	22 (10)	45 (7)	41 (24)	30 (25)

 ^{- = &}quot;o setivation.; + = wich S=9 setivation.
 b. Nean of three to five replicates (standari deviation).
 c. Toxic to bacteria.

TABLE A-16. RESIREN VIOLET TR IN VITRO ASSAY WITH SALMONELLA TYPHIMURIUM PREINCUBATION ASSAY ORNL

									ite by S				
				Activation	on The		clor A					Activa TA	
Compound	μg/Plate	TA 1535	TA 1538	TA 98	TA 100	TA 1535	TA 1538	TA 98	TA 100	TA 1535	TA 1538	98	TA 100
DMSO	100	9 ⁿ (1)	9 (6)		112	12 (4)	18 (6)	35 (10)	130 (34)	14 (5)	20 (15)	32 (5)	117
Positive		91 (10)	237 (23)	355 (149)	205 (117)	91 (10)	237 (22)	107 (15)	205 (117)	91 (10)	237 (23)	107 (15)	205 (117)
	25			22 (10)		11 (1)	29 (9)	7() (18)	101 (22)	11 (5)	36 (11)	49 (8)	
	50			37 (20)		8 (2)	38 (14)	58 (14)	82 (36)	10 (3)	34 (5)	48 (12)	100 (23)
	125			47 (1)									
	250	9 (6)	22 (4)	46 (9)	117 (30)	6 (2)	50 (9)	68 (12)	105 (27)	9 (1)	31 (14)	52 (18)	80 (17)
	500			40 (2)		7 (2)	43 (4)	57 (18)	<i>11</i> (33)	8 (1)	30 (7)	34 (13)	81 (12
	750			33 (12)									
	1,000			12 (0)									
	1,250			37 (13)									
	2,500	5 (1)	เห (15)	41 (13)	48 (16)	10 (3)	32 (6)	47 (14)	75 (19)	7 (2)	17 (6)	12 (9)	46 (4)
	3,750			38 (14)									
	5,000			27 (8)		10 (3)	26 (2)	43 (21)	59 (24)	4 (2)	[7 (6)	17 (3)	76 (1)

a. Mean of two to five replicates (standard deviition).

TABLE A-17. MACROLEX VIOLET B IN VITRO ASSAY WITH SALMONELLA TYPHIMURIUM PLATE INCORPORATION ASSAY ORNL

			Risti	dine Reve	rtants Pe TA	r Place by	Strain TA
Compound	μg/Plate	Activationa	1535	1537	1538	98	100
DMSO	100	-	11 ^b (3)	12 (9)	8 (2)	37 (19)	52 (10)
		Ar	10 (4)	14 (5)	14 (4)	32 (17)	80 (10)
		РЬ	11 (7)	11 (3)	11 (1)	36 (15)	59 (6)
Positive Control		-	91 (10)	118 (11)	237 (23)	355 (149)	205 (117)
		Ar	91 (10)	289 (6)	237 (23)	355 (149)	205 (117)
		РЬ	91 (10)	289 (6)	237 (23)	355 (149)	205 (117)
iolet B	12.5	-		26 (11)			
	25	-	10 (2)	33 (13)			
	50	-		39 (17)			
	125	-		47 (8)			
	250	-	11 ^c (5)	52 (27)	10	47 (20)	48 ⁰ (8)
	500	-		49 (12)			
	1,250	-		50 (25)			
	2,500	-	10 ^c (6)	75 (22)	11 ^c (7)	41 (13)	48 ^c
	5,000	-		76 (28)			
	25	Ar	11 (6)	12 (4)	20 (3)	38 (11)	77 (17)
	50		12 (5)	13 (3)	20 (7)	43 (9)	59 (8)
	250		11 (4)	16 (4)	24 (4)	44 (15)	71 (12)
	500		10 (6)	13 (4)	27 (6)	37 (4)	76 (17)
	2,500		11 (6)	25 (3)	27 (4)	46 (18)	72 (16)
	5,000		9 (7)	24 (3)	29 (2)	45 (11)	64 (9)
	25	Pb	7 (5)	11 (2)	11 (2)	31 (12)	54 (11)
	50		10 (6)	7 (2)	10 (4)	35 (14)	62 (15)
	250		10 (7)	10 (2)	10 (4)	32 (18)	64 (9)
	500		14 (1)	10 (3)	11 (4)	31 (6)	64 (15)
	2,500		12 (5)	15 (3)	16 (3)	36 (6)	67 (13)
	5,000		9 (3)	18 (3)	13 (6)	35 (12)	58 (13)

Ar = Aroclor; Pb = Phenobarbital.
 Mean of two to three replicates (standard deviation).
 Toxic to becteria.

TABLE A-18. MACROLEX VIOLET B IN VITRO ASSAY WITH SALMONELLA TYPHIMURIUM PREINCUBATION ASSAY

						Plate by	
Compound	μg/Plate	Activation ^a	TA 1535	1537	TA 1538	98	100
DMSO	100	-	5 ^b (5)	16 (9)	11 (5)	37 (9)	150 (22)
		Ar	10 (2)	11 (9)	15 (5)	32 (18)	162 (56)
		Рь	7 (3)	6 (1)	10 (8)	34 (23)	130 (17)
Positive Control		-	9 (10)	213 (85)	237 (23)	345 (163)	205 (117)
		Ar	91 (10)	289 (6)	237 (23)	107 (15)	205 (117)
		Pb	91 (10)	289 (6)	237 (23)	107 (15)	205 (117)
Violet B	25	-		16 (1)			
	50	-		18 (5)			
	125	-		29 (14)			
	250	-	9 (4)	45 (23)	8 (4)	15 (1)	144 (21)
	5'70)	-		53 (26)			
	1,250	-		71 (37)			
	2,500	-	, (1)	57 (16)	9 (2)	19 (4)	120
	5,000	•		61 (12)			
	7,000	-		67 (36)			
	to nuo	-		99 (19)			
	25	Ar	12 (4)	11 (3)	15 (3)	45 (16)	140 (30)
	50		8 (4)	8 (2)	15	35 (12)	107 (41)
	250		(3)	7 (3)	13 (4)	47 (20)	117 (10)
	500		8 (1)	9 (4)	12 (1)	40 (17)	112 (25)
	2,500		7 (3)	18 (4)	21 (4)	38 (24)	152
	5,000		7 (2)	21 (10)	16 (3)	26 (4)	121 (54)
	25	Ph	13	q (4)	12 (5)	36 (6)	115
	50		, (2)	9 (4)	9 (5)	30 (20)	114 (21)
	250		10 (2)	10 (4)	13 (4)	29 (8)	146 (29)
	500		, f (2)	5 (1)	12 (5)	30 (11)	115
	2,500		8 (6)	16 (4)	15 (4)	35 (13)	104
	5,000		(3)	16 (3)	11 (2)	38 (20)	101

a. - * No activation; Ar * Aroclor; Pb * Phenobarbital.
 b. Mean of two to five replicates (standard deviation).

TABLE 4-19. MACROLEX VIOLET 3R IN VITRO ASSAY WITH SALMONELLA TYPHIMURIUM PLATE INCORPORATION ASSAY ORNL

						r Plate by	
Compound	µg/Plate	Activationa	TA 1535	TA 1537	TA 1538	TA 98	TA 100
טפוים	100	-	9 ^b (3)	14 (8)	8 (3)	34 (14)	64 (6)
		λr	8 (2)	13 (4)	15 (5)	42 (5)	89 (13)
		Pb	10 (3)	10 (4)	8 (3)	39 (8)	70 (8)
Positive Control		-	90 (8)	213 (85)	237 (23)	355 (149)	205 (117)
		Ar	9t (10)	119 (13)	237 (23)	107 (15)	205 (117)
		Pb	9.1 (8)	118 (11)	237 (23)	355 (149)	205 (117)
Violet 38	25 1	-	(1)	५ (6)	10 (4)	20 (7)	48 (3)
	2,500	-	(1)	18 (5)	8 (4)	22 ^e	49 (4)
	23	\r	9 (2)	्व (1)	19 (5)	48 (4)	96 (7)
	S -		4 (1)	7 (3)	23 (3)	40 (4)	88 (24)
	25 1		· [1]	5 (2)	18 (5)	44 (8)	98 (12)
	4.1		(-1)	10	16 (6)	51 (3)	91 (15)
	2,5%		1 (3)	10)	16 (5)	\. (15)	197 (32)
	5,300		• • • •	; 5)	In (3)	38 (R)	78 (19)
	25	рh	*.	(3 / 3)	(2)	28 (10)	h5 (11)
	501		10 (5)	1 (7)	[4] (4)	34 (14)	65 (18)
	250		4 (+)	9 (4)	(1)	37 (16)	68 (16)
	3/1/1		4 1)	8 (4)	q (3)	34 (9)	58 (11)
	2.5(9)		9 (4)	(3)	9 (3)	34 (15)	73 (19)
	5,011		, (2)	(3)	(3)	30 (9)	71 (19)

a. - * No activation; Ar = Aroclor; Pb = Phenobarbital.
 b. Hean of three replicates (standard deviation).
 c. Toxic to bacteria.

TABLE A-20. MACROLEX VIOLET 3R IN VITRO ASSAY WITH SALMONELLA TYPHIMURIUM PREINCUBATION ASSAY ORNL

				ne Revertants		
Compound	ug/Plate	Activationa	TA 1535	TA 1538	TA 98	TA 100
onso	100	-	9b	9 (6)	32 (10)	112 (37)
		Ar	12	18 (6)	35 (10)	130 (34)
		Pb	14 (5)	20 (15)	32 (5)	117 (17)
Positive Control		-	91 (10)	237	355 (149)	205 (117)
		Ar	91 (10)	237 (23)	107 (15)	205 (117)
		Ph	91 (10)	237 (23)	107 (15)	205 (117)
VIolet 3R	250	-	11 (6)	7 (4)	25 (R)	98 (31)
	2,500	-	13	; (3)	(1.0) 30	119 (28)
	25	\r	9 (2)	(3)	3h (3)	120 (25)
	50		7 (2)	11 (3)	29 (8)	92 (14)
	250		9 (2)	(3)	32 (7)	92 (8)
	50.7		२ (५)	17 (2)	31 (8)	47 (30)
	2,5003		3 (2)	q (4)	39 (8)	47 (30)
	5, 000		(3)	i I (5)	35 (14)	72 (13)
	25	Ph	(·))	n (3)	17 (13)	98 (37)
	5.1		(3)	(1)	20 (11)	95 (22)
	250		10 (5)	7 (4)	18 (11)	94 (17)
	500		(3)	6 (3)	16 (11)	n5 (19)
	2,500		8 (2)	101 (6)	(14)	114 (36)
	5, 101		6 (3)	10	19 ^c (15)	83 (21)

a. - * We activation; Ar * Arector; Pb * Phenobarbital.
 b. Mean of two to three replicates (standard deviation).
 c. Toxic to bacteria.

APPENDIX B

MUTAGENIC INDEX

Tables

B-1.	Macrolex Red 1069 Mutagenic	Index	.43
	_	Index	
B-3.	Amoplast Red PC (Red 10618)	Mutagenic Index	.45
B-4.	Amoplast Red PC (Red 10618)	Mutagenic Index	.46
B-6.	Oil Red G Mutagenic Index		.48
B-7.	Resinen Violet TR Mutagenic	Index	.49
B-8.	Macrolex Violet B Mutagenic	Index	.50
B-9.	Macrolex Violet 3R Mutagenio	Index	.51

Mutagenic Index: Average plate counts divided by average spontaneous count for the same bacterial strain.

Underlined values are greater than a twofold increase over spontaneous levels. Data are from standard plate incorporation assay.

TABLE B-1. MACROLEX RED 1069 MUTAGENIC INDEX USEPA

Act.	μg/Plate	TA 1535	TA 1537	TA 1538		T	A98		TA100	
None	0.1 0.5 1 5 10 50 100 500 1,000 2,000 3,000 5,000	1.2 1.5 1.2 1.6 1.2 0.6	$ \begin{array}{r} 3 \cdot 3 \\ \hline 2 \cdot 3 \\ \hline 3 \cdot 7 \\ \hline 4 \cdot 1 \\ \hline 4 \cdot 0 \\ \hline 2 \cdot 4 \\ \end{array} $	1.3 2.2 2.3 3.3 6.5 6.7	1.0 1.1 1.0 1.0 1.0	1.1 0.9 1.1 1.1 0.8 0.9 1.1 1.3 1.2	1.0 1.0 1.2 1.0 1.5 2.0 0.7 1.3 1.3	0.8 0.8 1.1 1.8 2.1 2.1	1.1 1.0 1.2 1.3 1.2 1.2 1.3 1.2 1.3 1.1 1.3 1.4 1.3 1.1 1.0 0.9 0.9 0.8 1.1 1.0	1.0 0.9 1.1 1.1
Aroclor	0.1 0.5 1 5 10 50 100 500 1,000 1,200 2,000 3,000 5,000	1.4 1.0 1.1 1.1	$ \begin{array}{r} 4.0 \\ \hline 3.9 \\ \hline 4.3 \\ \hline 8.1 \\ \hline 16.1 \\ \hline 11.4 \\ \end{array} $	1.8 2.5 7.0 12.1 34.3 27.5	1.1 1.1 0.8 1.0 0.9	1.2 1.0 1.0 1.3 1.8 2.2 3.2 5.3 7.6	1.0 1.3 1.3 1.3 1.6 2.1 6.4 8.2	1.5 2.3 4.8 8.1 17.1 14.7	1.0 1.4 1.1 1.7 1.1 1.5 1.2 1.7 1.3 1.7 1.1 1.6 1.0 1.3 1.0 1.3 0.9 1.1 1.4 1.4 1.5	1.0 1.1 1.2 1.2

PRECEDING PAGE BLANK-NOT FILMED

TABLE B-2. MACROLEX RED 1069 MUTAGENIC INDEX ORNL

Act.	μg/Plate	TA 1535	TA 1537	TA 1538	TA 98	TA 100
Aroclor	1.25 2.5 5 5 50 125 250 500 750 1,000 1,250 2,500 5,000 7,500 10,000	1.0 1.1 1.1 0.9 1.0 1.0	1.6 1.0 2.3 1.7 3.5 2.5 4.6 3.6 6.2 5.0 6.4 5.1 6.6 4.1 14.1 9.8 21.5 15.3 33.8 22.7	2.1 1.9 3.1 2.9 4.9 4.1 9.1 5.9 14.6 10.9 15.7 11.3 20.2 27.3 49.7 38.9 76.9 58.7	$ \begin{array}{r} 1.7 \\ 2.0 \\ \frac{4.4}{7.5} \\ \underline{7.5} \\ 7.9 \\ \underline{8.1} \\ 14.8 \\ \underline{21.2} \\ 31.8 \\ \underline{22.2} \\ 31.5 \\ \underline{32.3} \end{array} $	1.3 1.0 1.2 1.5
Pheno- barbita	25 1 50 250 500 2,500 5,000 7,500 10,000		0.9 1.4 2.0 1.9 2.6 2.7	$ \begin{array}{r} 2.1 \\ \hline 2.4 \\ \hline 2.4 \\ \hline 4.5 \\ \hline 5.3 \\ \hline 9.8 \\ \hline 10.8 \\ \hline 11.9 \end{array} $	1.0 1.0 1.1 1.4 1.8 2.5 3.1	1.5 1.3 1.4 1.3 1.3

TABLE B-3. AMOPLAST RED PC (RED 10618) MUTAGENIC INDEX USEPA

Act.	μg/Plate	TA 1535	TA 1537	TA 1538	TA 98	TA 100
None	10 30 50 100 150 200 250 300 500 750 1,000 1,500 2,500	1.1 1.1 1.4 0.8	1.6 2.3 2.5 3.0 3.4 2.5	4.1 8.6 8.6 16.4 34.0 35.6	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Arocl	3,500	1.5 1.4 1.5 1.7	1.8 4.4 6.3 10.5 12.3 10.8	4.8 10.0 19.3 44.2 62.4 66.9	$ \begin{array}{r} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

TABLE B-4. AMOPLAST RED PC (RED 10618) MUTAGENIC INDEX ORNL

		Withou	ut Activ	ation			Aroc1	or Activ	vation	
μg/Plate	TA 1535	TA 1537	TA 1538	TA 98	TA 100	TA 1535	TA 1537	TA 1538	TA 98	TA 100
12.5							1.4	1.5	1.4	
25 50 75			1.8 3.5	1.3		0.9 1.4	1.7 2.2	$\frac{1.9}{3.5}$ 4.2	1.3 1.8 1.7	1.2
100 125 250	0.3	1.1	3.1	1.1	0.3	1.1	4.2	$\frac{\overline{3.7}}{\overline{5.4}}$	$\begin{array}{r} 2.0 \\ 2.7 \\ \hline 4.1 \end{array}$	1.3
500 750 1,000		1.2 1.3 0.9	$\frac{\overline{7.4}}{\overline{7.9}}$	1.5 2.0 1.5		1.8	$\frac{4.2}{4.2}$	$\frac{12.7}{13.9}$ 15.9	5.9 6.5 7.9	1.5
1,250 2,500 5,000 7,500 10,000	0.4	$\frac{2.8}{3.5} \\ $	$\frac{14.0}{22.2}$ $\overline{31.4}$	$\frac{2.7}{3.1}$ $\overline{3.9}$	0.1	1.6 1.4	8.2 8.9 9.3	$\frac{24.1}{29.7}$	$\frac{10.1}{15.0}$	2.1
			Pher	nobarbii	al Act	ivation				
12.5		2.4		1.3						
25 50 125	1.0 0.9	$\frac{2.8}{3.0}$	$\frac{3.0}{4.4}$ $\phantom{00000000000000000000000000000000000$	1.6 1.9 2.1	1.1 1.1					
250 500 750	1.1 1.0	$\frac{\frac{3.5}{4.2}}{3.5}$	$\frac{8.6}{10.6}$	$\frac{2.1}{2.6}$ $\frac{3.5}{4.4}$	1.2 1.2					
1,000 1,250 2,500	0.9	8.5 10.0	$\frac{12.6}{22.9}$ $\overline{31.6}$	4.4 6.2 9.4	1.3					
5,000	0.9	7.9	38.4	10.7	1.4					

TABLE B-5. OIL RED G MUTAGENIC INDEX USEPA

	1.0	1.4
	0.08 0.09 0.99	1.5 1.3 1.5 1.5
	0.9 0.7 1.0 1.2 0.9	2.0 1.7 1.8 1.8 1.7
TA 100	6.0 6.0 8.0	1.3
	0.9 0.8 1.1 0.9 1.1 1.0	1.2 2.0 2.0 1.1 1.5 11.5
	1.2 1.0 1.2 1.4 1.5	2.0 11.7 1.6 11.4 11.7
	0.8 0.9 0.9 1.1	0.0 0.0 0.0 0.0
4 m	1.3 1.1 1.1 1.1 1.6	0.9 0.8 1.1 1.1 0.9
TA 98	0.9 0.8 0.9	1.1 1.2 1.2 1.2 1.2 1.2
	1.6 1.1 1.2 1.0 1.5	1.5 1.2 0.9 1.3
80	0.6 0.7 0.6 0.9 0.9	0.7 0.8 0.8 0.8 0.7
TA 1538	1.0 1.3 0.8 1.0	0.8 0.6 0.7 0.7 1.0
12	1.3 0.8 1.0 0.9 0.9	1.2 1.3 1.4 1.2 1.3
TA 1537	1.8 1.8 1.8	1.3 1.0 2.5 2.3 1.3 1.1
, vo	1.1 1.1 1.2 1.2 1.5	0.7 0.8 0.8 0.0 0.0
TA 1535	0.8 0.9 0.9 1.1 0.9	0.0 0.0 0.0 0.0 0.0
μg/Plate	5 10 30 50 62.5 100 125 250 300 500 1,000 1,500	5 10 30 50 62.5 100 125 250 300 500 1,000 1,500
Act. µ	None	Aroclor

TABLE B-6. OIL RED G MUTAGENIC INDEX ORNL

		Aroclo	Activ	ation		Phe	nobarbii	tal Inac	ctivat	ion
	TA	TA	TA	TA	TA	TA	TA	TA	TA	TA
μg/Plate	1535	1537	1538	98	100	1535	1537	1538	98	100
25	0.9	1.0	0.9	1.1	1.1	0.9	1.5	0.8	0.8	1.0
50	1.0	1.8	0.9	1.0	1.0	0.7	1.0	0.8	0.5	1.0
250	1.1	1.2	0.7	0.9	1.1	1.7	1.0	8.0	0.8	0.7
500	0.7	1.2	0.7	1.0	0.9	0.9	1.5	0.6	0.9	0.7
2,500	0.8	1.1	1.1	0.9	1.0	1.1	1.3	1.1	0.7	1.1
5,000	0.6	1.3	1.1	1.0	1.1	0.9	1.3	1.0	0.9	0.8
		lthout	Activa	tion						
250	2.0	_	0.5	0.8	1.0					
2,500	1.4	-	1.0	0.5	0.6					

TABLE 8-7. RESIREN VIOLET TR MUTAGENIC INDEX ORNL

Activation	μ g/Plate	TA 1535	TA 1537	TA 1538	TA 98	TA 100
Aroclor	1.25 2.5			1.7	1.2	
	5			4.2	2.1	
	12.5		2.9	5.5	$\frac{3.2}{4.1}$	
	25	1.4	4.6	8.5	4.1	0.9
	50	1.1	6.2	11.1	4.8	0.8
	125		6.4	9.5	5.0 5.0	
	250	0.9	5.6	11.5	5.0	1.0
	500 750	1.1	5.5	12.5	5.6	0.9
	1,000		6.2 6.4 5.6 6.3 5.6 5.0 4.9 3.6 2.1			
	1,250		4.9		4.1	
	2,500	0.6	3.6	5.1	3.4	0.5
	5,000	0.4	2.1	2.1	$\frac{\overline{3.4}}{1.6}$	0.1
Phenobarbital	1.25			6.6	2.2	
	2.5			9.9	4.0	
	5		7.0	14.4	4.4	
	12.5 25	0.8	$\frac{7.9}{9.0}$	19.5 21.4	5.2	
	50	1.0	10.0	$\frac{21.4}{17.9}$	5.5	1.1 1.2
	125	1.0	10.5	19.8	6.1	1 • 2
	250	1.1	9.5	20.5	5.8	1.3
	500	0.7	8.3	19.9	5.2 5.2 5.5 6.1 5.8 5.3 3.5	1.1
	1,250		8.3 8.0 5.0		3.5	
	2,500	0.7	5.0	9.1	2.4	0.6
	5,000	0.5	2.2	5.6	1.1	0.4

TABLE B-8. MACROLEX VIOLET B MUTAGENIC INDEX ORNL

Activation	μg/Plate	TA 1535	TA 1537	TA 1538	TA 98	TA 100
None	12.5		2.2			
	25	0.9	2.8			
	50		3.3			
	125		3.9			
	250	1.0	5.2	1.3	1.3	0.9
	500		4.1			
	1,250		4.2			
	2,500	0.9	6.3	1.4	1.1	0.9
	5,000		3.3 3.9 5.2 4.1 4.2 6.3 6.3			
Aroclor	25	1.1	0.9	1.4	1.2	1.0
	50	1.2	0.9	1.4	1.3	0.7
	250	1.1	1.1	1.7	1.4	0.9
	500	1.0	0.9	1.9	1.2	1.0
	2,500	1.1	1.8	1.9	1.4	0.9
	5,000	0.9	1.7	2.1	1.4	8.0
Phenobarbital	25	0.6	1.0	1.0	0.9	0.9
Inchoparatear	50	0.9	0.6	0.9	1.0	1.1
	250	0.9	0.9	0.9	0.9	1.1
	500	1.3	0.9	1.0	0.9	1.1
	2,500	1.1	1.4	1.5	1.0	1.1
	5,000	0.8	1.6	1.2	1.0	1.0

TABLE B-9. MACROLEX VIOLET 3R MUTAGENIC INDEX ORNL

Activation	μ g/Plate	TA 1535	TA 1537	TA 1538	TA 98	TA 100
Aroclor	25	1.1	0.6	1.3	1.4	1.1
	50	1.0	0.5	1.5	1.1	1.0
	250	0.9	0.4	1.2	1.3	1.0
	500	1.0	0.8	1.1	1.5	1.0
	2,500	1.1	0.7	1.1	1.5	1.2
	5,000	0.9	0.7	1.1	1.1	0.9
Phenobarbital	25	0.8	1.3	1.4	0.7	0.9
	50	1.0	1.0	1.3	0.9	0.9
	250	0.9	0.9	1.0	1.1	1.0
	500	0.8	0.8	1.1	0.9	0.8
	2,500	0.9	0.4	1.0	0.9	1.0
	5,000	0.7	0.7	1.4	0.8	1.0

APPENDIX C

SUMMARY OF STATISTICAL ANALYSES, REGRESSION SLOPES

Tables

C-1.	Macrolex Red 1069 Summary of Statistical Analyses, Regression Slopes55
	Amoplast Red PC (Red 10618) Summary of Statistical Analyses,
	Regression Slopes
C-3.	Oil Red G Summary of Statistical Analyses, Regression Slopes57
	Violet Dyes Summary of Statistical Analyses, Linear Regression
	Slopes
C-5.	Violet Dyes Summary of Statistical Analyses, Nonlinear
	Regression Slopes59

Underlined values fit the mutagenicity and Poisson parameters of the nonlinear Poisson model and are a positive mutagenic response.

PRECEDING PAGE BLANK-NOT FILLED

TABLE C-1. MACROLEX RED 1069 SUMMARY OF STATISTICAL ANALYSES, RECRESSION SLOPES

	Without Activation	tivation	Aroclor Activation	ctivation	Phenobarbit	Phenobarbital Activation
Strain	Linear	Nonlinear	Linear	Nonlinear	Linear	Monlinear
TA1535	0.005	0.023	0.002 (-0.000, 0.004) 0.154 (-1.223, 1.531)	0.001 (0.000, 0.006) 0.002 (0.000,)		
TA1537	0.025 (0.00 ⁷ , 0.044)	0.050 (0.034, 0.076)	0.047 (0.040, 0.054) 49.889 (43.021, \$6.756)	0.037 (0.034, 0.040) 153.278 (147.861, 158.895)	0.008 (0.005, 0.012)	0.014 (0.010, 0.022)
TA1536	0.015 (0.01 <mark>3, 0.</mark> 017)	0.013 (0.011, 0.016)	0.238 (0.174, 0.303) 0.216 (0.200, 0.232)	2.246 (1.84 <u>2, 2.</u> 740) 0.201 (0.20 <mark>0, 0.</mark> 201)	11.760 (8.6 <mark>74, 14</mark> .846)	11,565 (10.750, 12,440)
8647	0.105 (-0.196, 0.405) 0.003 (0.002, 0.004) 0.004 (0.003, 0.006) 0.014 (0.011, 0.016)	0.988 (0.000,) 0.003 (0.000, 111.955) 0.004 (0.006, 0.055) 0.101 (0.008, 1.202)	10.178 (2.342, 18.014) 0.089 (0.079, 0.099) 0.100 (0.090, 0.110) 0.212 (0.201, 0.224) 138.044 (121.473, 154.616)	9.858 (8.573, 11.335) 0.087 (0.073, 0.105) 0.187 (0.112, 0.312) 0.661, 0.969) 254.122 (249.816, 258.502)	10.636 (8.5 <u>90, 12</u> .683)	16,254 (10,705, 24,680)
14100	-0.003 (-0.007, 0.000) -0.003 (-0.008, 0.003) 0.016 (-0.015, 0.048)	0.004 (0.001, 0.021) 0.003 (0.001, 0.009) 0.048	0.003 (-0.000, 0.007) -0.000 (-0.007, 0.006) 0.015 (0.008, 0.021) 0.023	0.003 (0.000, 0.130) 0.009 (0.004, 0.020) 0.038 (0.001, 1.149) 0.089	0.036	0.067

PRECEDING PAGE BLANK-NOT FILLS

TABLE C-2. AMOPLAST RED PC (RED 10618) SUMMARY OF STATISTICAL ANALYSES, REGRESSION SLOPES

	Without Activation	tivation	Aroclor Activation	Activation	Phenobarbital Activation	1 Activation
Strain	Linear	Monlinear	Linear	Nonlinear	Linear	Nonlinear
TA1535	0.003 (-0.020, 0.025) ^a	(0,000, 2,161)	0.002 (-0.008, 0.012) 0.012 (0.000, 0.023)	0.012 (0.005, 0.026) 0.013 (0.005, 0.033)	0.004	0.000
TA1537	$\begin{array}{c} 0.239 \\ (0.16\overline{2}, 0.317) \\ 10.036 \\ (7.3\overline{04}, 1\overline{2}, 768) \end{array}$	0.396 (0.183, 0.856) 57.606 (47.439, 69.952)	1.502 (1.387, 1.616) 0.051 (0.036, 0.067)	5.118 (3.54 5, 7. 390) 0.061 (0.058, 0.064)	0.047 (0.037, 0.057)	0.061 (0.057, 0.066)
TA1538	1.040 (0.870, 1.210) 0.050 (0.045, 0.055)	1.591 (1.384, 1.829) 0.050 (0.049, 0.051)	$\begin{array}{c} 3.451 \\ (2.715, 4.186) \\ 0.177 \\ (0.156, 0.199) \end{array}$	$\begin{array}{c} 10.377 \\ (9.948, 10.824) \\ 0.264 \\ (0.258, 0.271) \end{array}$	(0.053, 0.068)	0.063 (0.061, 0.064)
1798	1.209 (0.779, 1.640) 5.489 (2.841, 8.137) 1.255 (1.021, 1.489) 0.038	3.972 (3.037, 5.195) 15.334 (1.913, 2.138 (1.913, 2.388) 0.052 (0.048, 0.057)	(2.65 <mark>5, 6.</mark> 939) 4.080 (2.084, 6.07) 9.231 (6.708, 11.753)	7.771 (7.556, 7.993) 5.283 (5.247, 5.319) 25.385 (25.029, 25.747) 0.168	0.079 (0.06 <mark>9, 0.</mark> 089)	0.154 (0.140, 0.168)
14100	0.456 (0.333, 0.579) 0.443 (0.280, 0.606) 0.547 (0.294, 0.801) (0.077, 0.315)	0.813 (0.749, 0.883) 0.524 (0.158, 1.735) 0.895 (0.622, 1.287) (0.308, 0.343)	0.067 (-0.810, 0.944) 1.436 (0.930, 1.941) 1.270 (0.553, 1.987) 2.274 (1.806, 2.742) 0.078 (-0.053, 0.209)	3.869 (3.155, 4.744) 4.525 (3.870, 5.291) 4.667 (4.253, 5.122) 0.102 (0.071, 0.145)	0.042 (-0.019, 0.104)	0.049 (0.017, 0.142)

TABLE C-3. OIL RED G SUMMARY OF STATISTICAL ANALYSES, REGRESSION SLOPES

	Without Activation	ivation	Aroclor	Arocior Activation	rhenobarbita	Phenobarbital Activation
Compound	Linear	Nonlinear	Linear	Nonlinear	Linear	Non1inear
TA1535	0.019 (-0.019, 0.056)* 0.037 (-0.084, 0.158) -0.000 (-0.003, 0.003)	0.133 (0.001, 21.844) 0.048 (0.002, 1.158) 0.000	-0.084 (-0.169, 0.001) -0.001 (-0.008, 0.006) 0.007 (-0.023, 0.036)	0.005 (0.000, 13.440) 0.002 0.013 (0.005, 0.033)	-0.008 (-0.037, 0.020)	00000 (00000)
TA1537	0.004 (-0.011, 0.020) -0.034 (-0.115, 0.046)	0.027 (0.004, 0.163) 0.036 (0.001, 1.059)	0.207 (0.101, 0.313) 0.036 (-0.044, 0.115) 0.001 (-0.001, 0.003)	0.245 (0.120, 0.501) 0.039 (0.000,) 0.001	-0.003 (-0.016, 0.010)	000.0
TA1538	0.011 (-0.003, 0.025) 0.007 (-0.009, 0.022)	0.007 (0.001, 0.083) 0.000	-0.098 (-0.232, 0.035) 0.008 (-0.003, 0.018) 0.002 (-0.001, 0.004)	0.011 (0.000, 0.261) 0.000 0.001	0.000 (-0.000)	0.000 (0.005)
1A98	0.004 (-0.017, 0.024) 0.005 (-0.027, 0.037) 0.005 (-0.001, 0.018)	0.018 0.000 0.017 (0.010, 0.030) 0.009 (0.001, 0.152)	0.004 (-0.050, 0.057) 0.032 (-0.023, 0.088) 0.053 (-0.091, 0.197) -0.001 (-0.010, 0.008) 0.044 (-0.025, 0.113)	0.036 (0.003, 0.477) 0.035 (0.000, 101.609) 0.164 (0.046, 0.585) 0.057 (0.000, 1057.24) 0.055 (0.042, 0.071)	-0.021 (-0.080, 0.038)	0.018 (0.008, 0.038)
TA100	0.029 (0.001, 0.056) -0.081 (-0.587, 0.424) 0.053 (0.008, 0.078) 0.336 (0.008, 0.664) -0.129 (-0.335, 0.077) -0.012	0.033 (0.008, 0.134) 0.631 (0.481, 0.826) 0.130 (0.028, 0.608) 0.513 (0.245, 1.073) 0.000	0.064 (-0.037, 0.166) 0.474 0.136, 0.812) 0.011 (-0.041, 0.063) 6.549 (0.954, 12.144) 0.041 (-0.000, 0.083) 0.625 (-0.105, 1.355) (-0.090, 0.168)	0.164 0.526 (0.405, 0.683) 0.078 (0.025, 0.240) 6.570 (1.617, 26.695) 0.045 (0.011, 0.188) 1.023 (0.688, 1.552) 0.146 (0.102, 0.208)	0.047 (-0.071, 0.166)	0.108 (0.063, 0.185)

TABLE C-4. VIOLET DYES SUMMARY OF STATISTICAL ANALYSES, LINEAR RECRESSION SLOPES

Compound	Act.	TA1535	TA1537	TA1538	TA98	TA100
Restren Violet	¥r.	-0.0101	$\frac{1.391}{(0.954, 1.828)^{8}}$	2.848 (2.27 <u>5, 3.</u> 422)	5.308 (4.160, 6.455)	0.0240
¥	Pb	0.009 (-0.019,0.036)	$(0.23\overline{3}, 0.777)$	$\frac{5.820}{(4.265, 7.374)}$	11.644 (7.132, 16.156)	0.059
Macrolex Violet B	1	-0.000 (-0.002)	$(0.10\overline{1, 0.231})$			
	ĄŁ	0.000 (-0.026, 0.026)	0.005	0.030	0.003	-0.016 (-0.096, 0.064)
	Pb	0.003	0.002 (0.001, 0.004)	0.002 (0.001, 0.003)	-0.009 (-0.078, 0.061)	0.027
Macrolex Violet	¥	0.001	-0.001 (-0.013, 0.011)	0.004	0.004	0.007
ž	Pb	0.000 (-0.002, 0.002)	-0.001 (-0.002, 0.000)	-0.004	0.005 (-0.060,0.069)	0.003

TABLE C-5. VIOLET DYES SUMMARY OF STATISTICAL ANALYSES, NONLINEAR REGRESSION SLOPES

Compound	Act.	TA1535	TA1537	TA1538	TA98	TA100
Restren Violet	 	0.0077 (0.0002, 0.312) ^a	1.185	$\frac{2.344}{(2.292, 2.397)}$	$\frac{4.271}{(4.12\overline{3}, 4.424)}$	000.0
¥	Pb	0.001	(0.682, 0.770)	(4.931, 5.175)	(10.776, 11.576)	0.038 (0.009, 0.155)
Macrolex Violet B	ı	0.000	(0.137, 0.151)			
	Ar	0.008 (0.001, 0.066)	0.019 (0.003, 0.121)	0.036 (0.022, 0.057)	0.005 (0.004, 0.006)	0.015 (0.005, 0.043)
	£	0.010 (0.003, 0.032)	0.008	0.016 (0.003, 0.106)	0.000 (0.012, 0.085)	0.032
Macrolex Violet	¥	0.000 (0.000, 52.951)	0.002 (0.001, 0.008)	0.025 (0.015, 0.043)	0.040 (0.015, 0.104)	0.096 (0.060, 0.154)
ž.	P	0.000 (0.000)	0.001	0.006 (0.001, 0.048)	0.006 (0.002, 0.019)	0.059 (0.026, 0.136)

DISTRIBUTION LIST

No. of Copies	
4	Commander US Army Medical Research and Development Command ATTN: SGRD-RMS Fort Detrick, Frederick, MD 21701
12	Defense Technical Information Center (DTIC) ATTN: DTIC-DDA Cameron Station Alexandria, VA 22314
1	Dean School of Medicine Uniformed Services University of the Health Sciences 4301 Jones Bridge Road Bethesda, MD 20014
1	Commandant Academy of Health Sciences, US Army ATTN: HSHA-DCD Fort Sam Houston, TX 78234
1	Library Technician US Army Medical Bioengineering Research and Development Laboratory ATTN: SGRD-UBZ-IL Fort Detrick, Frederick, MD 21701
25	Commander US Army Medical Bioengineering Research and Development Laboratory ATTN: SGRD-UBG-M Fort Detrick, Frederick, MD 21701

