Pós Graduação em Engenharia Elétrica e de Com<mark>putação</mark> Universidade Federal do Ceará – Campus Sobral

MLP e Aplicações

David Borges davidborges@protonmail.com

10 de Maio, 2019

MLP (MultiLayer Perceptron)

MLP Uma rede de alimentação direta com camadas totalmente conectadas compostas de perceptrons

Alimentação direta

Forward pass Os dados são fornecidos à rede pela camada de entrada, processados sequencialmente e unidirecionalmente pelas suas camadas ocultas até que seja atingida a camada de saída

Unidade de processamento

Neurônio O processamento realizado em cada neurônio é o produto escalar entre suas entradas e os **pesos de suas conexões**, seguido da aplicação de uma **função de ativação**, que determina sua saída

Treinamento

Otimização Busca pelo conjunto de pesos *W* que minimiza uma função de perda

Perda Estimativa do erro do modelo

Variedade Existem muitos algoritmos de otimização e funções de perda. Qual a melhor escolha?

Fonte: https://academo.org/demos/3d-surface-plotter

Treinamento

Época Uma passagem completa pelo conjunto de treinamento **Convergência** O momento em que o algoritmo de otimização estabiliza em um mínimo local ou global

Parada Quantas épocas realizar até atingir a convergência?

Fonte: https://academo.org/demos/3d-surface-plotter

Parâmetros da MLP

Parâmetros MLP possui um número elevado de parâmetros:

- Número de camadas ocultas
- Número de neurônios em cada camada
- Função de ativação
- Pesos
- Algoritmo de otimização dos pesos
- Função de perda
- Critério de parada
- Número máximo de épocas de treinamento
- Etc, etc, etc...

Como escolher? Experimentando!

Vantagens da MLP

Adaptabilidade Aprendizagem com base nos dados apresentados

Não linearidade Capacidade de aprender relações não lineares entre entrada e saída;

Generalização Capacidade de generalização

Uso geral Não impõe restrições sobre a distribuição dos dados de entrada

Disponibilidade Muito utilizada em pesquisa e na indústria, portanto existem diversas implementações disponíveis, prontas para uso

Desvantagens da MLP

Parâmetros Possui uma grande quantidade de parâmetros a definir

Recursos Treinamento e uso podem requerer alto poder de processamento e

memória, a depender da arquitetura escolhida

Datasets A depender do problema, pode ser necessário um grande conjunto

de treinamento para que a rede possa aprender

Mínimos locais O treinamento pode convergir para mínimos locais

Opacidade Seu mecanismo de funcionamento é opaco, difícil de compreender

"Uma rede neural é a segunda melhor maneira de resolver qualquer problema. A melhor maneira é realmente entender o problema." (Autor desconhecido)

Número de camadas ocultas

Que tal duas? MLP com duas camadas ocultas é capaz de traçar regiões de classificação de qualquer forma desejada

An introduction to computing with neural nets (Lippman, 1982)

Apenas uma? Teorema da aproximação universal

Approximation capabilities of multilayer feedforward networks (Hornik, 1991)

Fonte: https://pythonmachinelearning.pro/complete-guide-to-deep-neural-networks-part-1/

Número de neurônios em cada camada

Entrada Número de atributos + 1 (bias)

Ocultas Existem heurísticas e regras, mas não garantias

Saída Se o problema for de classificação: usar o número de classes; se o problema for regressão: basta um neurônio

Fonte: https://pythonmachinelearning.pro/complete-guide-to-deep-neural-networks-part-1/

Função de ativação

Ativação Determina se o neurônio é ativado ou não com base em sua entrada

Normalização A saída do neurônio é normalizada para um intervalo conhecido

Não-linearidade Torna a rede capaz de modelar relações não-lineares

Função degrau binário

Vantagens Simples, Rápida Desvantagens Apenas dois valores de saída

Fonte: https://missinglink.ai/guides/neural-network-concepts/ 7-types-neural-network-activation-functions-right/

Função linear

Vantagens Permite múltiplas saídas Desvantagens É puramente linear; possui derivada constante

Fonte: https://missinglink.ai/guides/neural-network-concepts/ 7-types-neural-network-activation-functions-right/

Função sigmoide

Vantagens Não-linear; derivada suave; saída normalizada entre 0 e 1

Desvantagens Vanishing gradients; gradientes relativamente fracos

Fonte: https://missinglink.ai/guides/neural-network-concepts/ 7-types-neural-network-activation-functions-right/

Função tangente hiperbólica

Vantagens Similar à sigmoide; saída normalizada entre -1 e 1; centralizada em zero; gradientes mais fortes

Desvantagens Vanishing gradients

Fonte: https://missinglink.ai/guides/neural-network-concepts/ 7-types-neural-network-activation-functions-right/

RELU (Rectified Linear Unit)

Vantagens Não-linear; computação eficiente; convergência rápida

Desvantagens Dying RELU problem

Fonte: https://missinglink.ai/guides/neural-network-concepts/ 7-types-neural-network-activation-functions-right/

Leaky RELU (Leaky Rectified Linear Unit)

Vantagens Evita dying RELU problem

Desvantagens Resultados inconsistentes para valores negativos

 $Fonte: https://missinglink.ai/guides/neural-network-concepts/\\ 7-types-neural-network-activation-functions-right/$

Softmax

Classificação Geralmente utilizada na camada de saída para classifição multiclasse **Probabilidade** Pode ser usada para representar a probabilidade das classes

Fonte: https://deepnotes.io/

Função de perda

Variedade Novamente, existe uma grande variedade de funções de perda, no entanto, algumas delas são mais comuns

Mean Squared Error

Regressão

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$
.

Fonte: http://cs231n.github.io/neural-networks-1/

hidden laver 2

Cross-Entropy

Classificação

$$CE = -\frac{1}{N} \sum_{i=1}^{N} y_i \cdot \log(\epsilon + \hat{y}_i)$$

hidden layer

Fonte: http://cs231n.github.io/neural-networks-1/

hidden laver 1

Fonte: https://academo.org/demos/3d-surface-plotter

Gradient Descent

Clássico Base para diversos algoritmos de otimização

Método Mover-se na direção que proporciona o declínio mais íngreme no valor da função de perda: a direção oposta ao gradiente

Problemas Mínimos locais; valor ideal da taxa de aprendizado

Fonte: https://sebastianraschka.com/faq/docs/closed-form-vs-gd.html

Vanilla Algoritmo clássico, atualização dos pesos ocorre a cada época
Stochastic Atualização dos pesos ocorre a cada nova amostra
Mini-Batch Atualização dos pesos ocorre a cada grupo de K amostras

Gradient Descent Stochastic Gradient Descent Mini-Batch Gradient Descent

Fonte: https://lovesnowbest.site/2018/02/16/Improving-Deep-Neural-Networks-Assignment-2/16/Improving-Deep-Neural-Neur

lpha o taxa de aprendizado: influencia a escala das atualizações dos pesos μo momentum: influencia a direção das atualizações dos pesos

Adagrad Atualiza α a cada iteração com base no acúmulo dos gradientes passados o decaimento de α

Adadelta Atualiza α a cada iteração com base no acúmulo de um determinado número de gradientes passados

Adam Atualiza α e μ durante o treinamento

Fonte: https://arxiv.org/pdf/1412.6980.pdf

Critério de parada

Número fixo de épocas Pode ocorrer overfitting ou underfitting

Parada antecipada Utiliza um conjunto de validação durante treinamento para avaliar quando a variação do erro começa a decrescer

Fonte: https://www.researchgate.net/figure/Early-stopping-based-on-cross-validation_fig1_3302948

Validação

Holdout

Data Splits

Training Data (80%)

Fonte: http://that data tho.com/2018/10/11/detailed-introduction-cross-validation-machine-learning/sections and the section of the control of the control

Validação

K-Fold

Fonte: http://karlrosaen.com/ml/learning-log/2016-06-20/

Validação

Leave One Out

	✓ total samples →
iteration 1/N:	
iteration 2/N:	
iteration 3/N:	
	•
iteration N/N:	

 $Fonte: \verb|https://www.researchgate.net/figure/Leave-One-Out-Cross-Validation_fig11_266617511| \\$