

TECNOLÓGICO NACIONAL DE MÉXICO INSTITUTO TECNOLÓGICO DE TLAXIACO

(PRACTICA 1 - CIRCUITOS ARITMETICOS Y LOGICOS)

CARRERA: INGENIERÍA EN SISTEMAS COMPUTACIONALES

ASIGNATURA:ARQUITECTURA DE COMPUTADORAS

SEMESTRE: 5BS

INTEGRANTES:

Cruz Cruz Diego 22620104 Jiménez Sánchez Irvin 22620075 Rosas García Marco Uriel 22620119

Tlaxiaco Oax. 02 de septiembre de 2024

"Educación, ciencia y tecnología, progreso día con día"®

INDICE

INTRO	DUCCIÓN	1
OBJET	TIVO	2
MATEF	RIALES	2
1. Cir	cuito Sumador	2
1.1	Implementación	2
1.2	Tabla de verdad	2
1.3	Simulación	3
2. Cir	cuito Restador	3
2.1	Implementación	3
2.2	Tabla de verdad	4
2.3	Simulación	4
3. Cir	cuito Comparador	4
3.1	Implementación	4
3.2	Tabla de verdad	5
3.3	Simulación	5
4. Cir	cuito Multiplicador	6
4.1	Implementación	6
4.2	Tabla de verdad	6
4.3	Simulación	6
CONCI	LUSIÓN	7

INTRODUCCIÓN

OBJETIVO

El alumno implementará las operaciones de suma, resta, multiplicación y comparación de 1 bit, basadas en circuitos integrados la familia TTL y/o tecnología MSI, para validar y comprobar su funcionamiento.

MATERIALES

Laptop

Software de simulación de circuitos digitales (LiveWire – Professional Edition)

1. Circuito Sumador

1.1 Implementación

Implementa el circuito sumador de 1 bit utilizando compuertas lógicas y circuitos integrados de la familia TTL/MSI.

Un sumador de 1 bit tiene dos entradas A y B, y produce dos salidas: la suma (S) y el acarreo (C).

Las ecuaciones lógicas para el sumador de 1 bit son:

S = A XOR B

C = A Y B

1.2 Tabla de verdad

Α	В	S	С
0	0	0	0
0	1	1	0

2

1	0	1	0
1	1	0	1

1.3 Simulación

2. Circuito Restador

2.1 Implementación

Implementa el circuito restador de 1 bit utilizando compuertas lógicas y circuitos integrados de la familia TTL/MSI.

Un restador de 1 bit tiene dos entradas A y B, y produce dos salidas: la diferencia (D) y el préstamo (P).

Las ecuaciones lógicas para el restador de 1 bit son:

- D = A XOR B
- P = NO A Y B

2.2 Tabla de verdad

Α	В	D	Р
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

2.3 Simulación

3. Circuito Comparador

3.1 Implementación

Implementa el circuito comparador de 1 bit utilizando compuertas lógicas y circuitos integrados de la familia TTL/MSI.

Un comparador de 1 bit tiene dos entradas A y B y produce tres salidas:

A > B, A = B, y A < B.

Las ecuaciones lógicas para el comparador de 1 bit son:

A > B: A Y NO B

• A = B: NO (A XOR B)

• A < B: NO A Y B

3.2 Tabla de verdad

Α	В	A > B	A = B	A < B
0	0	0	1	0
0	1	0	0	1
1	0	1	0	0
1	1	0	1	0

3.3 Simulación

4. Circuito Multiplicador

4.1 Implementación

Implementa el circuito multiplicador de 1 bit utilizando compuertas lógicas y circuitos integrados de la familia TTL/MSI.

Un multiplicador de 1 bit tiene dos entradas A y B y produce una salida de producto (P).

La ecuación lógica para el multiplicador de 1 bit es:

P = A Y B

4.2 Tabla de verdad

Α	В	P
0	0	0
0	1	0
1	0	0
1	1	1

4.3 Simulación

CONCLUSIÓN

En la implementación de los circuitos sumador, restador, comparador y multiplicador de 1 bit utilizando compuertas lógicas y circuitos integrados de la familia TTL/MSI, se han puesto en práctica los principios básicos de la lógica digital. Cada circuito representa una operación aritmética o lógica fundamental que es crucial en el diseño de sistemas digitales y procesadores.