Sesión 10: Aproximación de densidad Aplicaciones en Computación Estadística

Natalie Julian - www.nataliejulian.com

Estadística UC y Data Scientist en Zippedi Inc.

Presiones atmosféricas

El archivo presion contiene mediciones semanales de fluctuaciones de presiones atmosféricas. Se realizaron varias mediciones por semana.

Interesa estimar la densidad de la variable fluctuación, explorando distintas variantes.

Vía Histograma

Histograma

Si realizamos un histograma de la variable obtenemos lo siguiente:

```
hist(y)

summary(y)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-117.41 -22.73 13.18 13.82 54.22 127.73
```


Variantes de la función hist

Una variante muy relevante es el argumento breaks de la función hist().

Por default, se utiliza la Regla de Sturges:

```
n<-length(y)
ceiling(log(n,2))+1
[1] 9</pre>
```

#Sturges

hist(y, breaks=9) #por default

Variantes de la función hist

Si utilizamos la Regla de Freedman-Diaconis:

#Freedman-Diaconis

r<-IQR(y) 2*r/n^(1/3) [1] 26.31567

hist(y, breaks=26)

Histogram of y

Vía Kernel

Distintos kernels, distintos pesos

Ver fuente https://www.wikiwand.com/en/Kernel_(statistics)

Kernel Functions, K(u) •			$\int u^2 K(u) du *$	$\int K(u)^2 du +$	Efficiency ⁽⁴⁾ relative to the Epanechnikov kernel
Uniform ("rectangular window")	$K(u) - \frac{1}{2}$ Support $ u \le 1$	"Boxcar function"	$\frac{1}{3}$	$\frac{1}{2}$	92.9%
Triangular	K(u) (1- u) Support: $ u \leq 1$		$\frac{1}{6}$	2 3	98.6%
Epanechnikov (parabolic)	$K(u) = \frac{3}{4}(1 - u^2)$ Support: $ u \le 1$		15	3 5	100%
Quartic (biweight)	$K(u) = \frac{15}{16}(1-u^2)^2$ Support: $ u \le 1$		17	5 7	99.4%
Triweight	$K(u) = \frac{35}{32}(1-u^2)^8$ Support: $ u \le 1$		$\frac{1}{9}$	350 429	98.7%
Tricube	$K(u) = \frac{70}{81}(1 - u ^3)^3$ Support: $ u \le 1$		35 243	176 247	99.8%
Gaussian	$K(u)=rac{1}{\sqrt{2\pi}}e^{-rac{1}{2}u^2}$		1	$\frac{1}{2\sqrt{\pi}}$	95.1%

Kernel gaussiano

```
kernelg <- kdensity(y, kernel = "gaussian") #Calcula un óptimo de bandwith
summary(kernelg)
Call:
kdensity(x = y, kernel = "gaussian")
             y (200 obs.)
Data:
Bandwidth:
             17.19 ('nrd0')
             (-Inf, Inf)
Support:
Kernel:
             gaussian
Start:
             uniform
Range:
             (-117.4, 127.7)
NAs in data: FALSE
Adjustment: 1
plot(kernelg, main = "Diferencias de presión")
```

Fluctuación de presión atmosférica

Kernel gaussiano cambiando el bandwith

Histograma de Fluctuación de presión

Otros kernel

Histograma de fluctuación de presión

Librería demoKde

Fluctuación de presión

kde2d

library(MASS)

x<-presion\$x

f2hat <- kde2d(x, y)
contour(f2hat)</pre>

filled.contour(f2hat,color.palette=terrain.colors)

 $\mathbf{3}$

Introducción a regresión no parámetrica

Fluctuación de presión atmosférica por semana

Si graficamos las fluctuaciones de presión atmosférica por semana, obtenemos el siguiente gráfico:

Extensiones

Evidentemente, ajustar una recta no sería lo más adhoc:

Tampoco calcular la correlación:

cor(x,y)
[1] -0.4920225

Promedios locales

Podemos plantear la misma idea del kernel pero para este caso, considerando la variable x e y.

Idea:

- Sea h > 0 un valor constante y para cada x en el eje de las abscisas considere una vecindad en torno a x de ancho 2h, es decir, el intervalo es (x h, x + h).
- Un approach bastante simple es estimar el valor para cada x calculando el promedio de las observaciones en la vecindad en torno a x.
- **Problema de la idea anterior:** si tomo un h grande no estamos representando bien la información cerca de x (sobretodo si hay datos atípicos extremos), por lo tanto, una manera de solucionar esto es dando **pesos** a las observaciones. Estos pesos se determinan por la función K(u) (el kernel).

1/ 21

Idea visualmente

Suavizamiento gaussiano efecto del bandwith

suvnor<-stats::ksmooth(x,y, bandwidth = 17, kernel="normal")
suvnor2<-stats::ksmooth(x,y, bandwidth = 3, kernel="normal")</pre>

Suavizamiento boxcar o rectangular efecto del bandwith

```
suavbox1<-stats::ksmooth(x, y, bandwidth=17 , kernel="box")
suavbox2<-stats::ksmooth(x, y, bandwidth=3 , kernel="box")</pre>
```


Suavizamiento efecto del kernel

