

DIGITAL NATURALS

Why

We want to associate the natural numbers with bit strings for use on digital computers.¹

Definition

A digital natural is a bit string. The set of d-bit digital natural numbers is the set of length-d bit strings $\{0,1\}^d$. For example, the set of 8-bit digital naturals is the set $\{0,1\}^8$.

Correspondence with $N \cup \{0\}$

We associate $x \in \{0,1\}^d$ corresponds to the number $\sum_{i=1}^d x_i 2^i$. For example, the bit string $(0,0,0) \in \{0,1\}^3$ corresponds to the natural number $0 \in \omega$. Likewise, (1,0,0) corresponds to $1 \in \mathbf{N}$, (0,1,0) corresponds to 2, (1,1,0) corresponds to 3, etc.

Call the function so defined the digital natural decoder, and denote it by $f: \{0,1\}^d \to \mathbf{N} \cup \{0\}$. In other words f((0,0,0)) = 0, f((0,1,0)) = 2, etc. Call the set $f(\{0,1\}^d)$ the set of naturals representable by length-d bit strings.

Specifically, if, for $n \in \mathbb{N} \cup \{0,1\}$, there exists $x \in \{0,1\}^d$ so that f(x) = n, we say that x is representable in d bits.

Correspondence between d and k > d bit naturals

Let $x \in \{0,1\}^d$ and $y \in \{0,1\}^k$ with k > d. Although $\{0,1\}^d \not\subset \{0,1\}^k$, $f(\{0,1\}^d) \subset f(\{0,1\}^k)$. We can identify $x \in \{0,1\}^d$ with $x' \in \{0,1\}^k$ where $x' = (x_1, \ldots, x_d, 0, \ldots, 0)$ so that f(x) = f(x'). Clearly then, if x is representable in d bits, it is representable in k > d bits.

¹Future editions will expand.

Addition

We want to define addition \oplus : $\{0,1\}^d \times \{0,1\}^d \to \{0,1\}^d$ so that $f(x \oplus x') = f(x) + f(x')$. In general, we are stuck, because x + x' may not be representable in d bits. Suppose, however and for the time being, that it is.²

²Future editions will complete.

