Zhiwen Fan

② Website ♂ Google Scholar ☑ zhiwenfan@utexas.edu ☐ (512)6657883

RESEARCH INTERESTS

Efficient 3D Modeling and Understanding, Image Restoration, Implicit Neural Representation, Panoptic Symbol Spotting & Segmentation.

PREPRINT

Preprint [link]: Zhiwen Fan, Peihao Wang, Yifan Jiang, Xinyu Gong, Dejia Xu, Zhangyang Wang, "NeRF-SOS: Any-View Self-supervised Object Segmentation on Complex Scenes"

SELECTED PUBLICATIONS

NeurIPS 2022: Zhiwen Fan*, Hanxue Liang*, Rishov Sarkar, Ziyu Jiang, Tianlong Chen, Kai Zou, Yu Cheng, Cong Hao, Zhangyang Wang, "M³ViT: Mixture-of-Experts Vision Transformer for Efficient Multi-task Learning with Model-Accelerator Co-design"

NeurIPS 2022: Dejia Xu*, Peihao Wang*, Yifan Jiang, Zhiwen Fan, Zhangyang Wang, "Signal Processing for Implicit Neural Representations"

ECCV 2022 [link]: Zhiwen Fan*, Yifan Jiang*, Peihao Wang*, Xinyu Gong, Dejia Xu, Zhangyang Wang, "Unified Implicit Neural Stylization"

ECCV 2022 [link]: Dejia Xu*, Yifan Jiang*, Peihao Wang, Zhiwen Fan, Humphrey Shi, Zhangyang Wang, "SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image"

ECCV 2022 [link]: Hanxue Liang, Hehe Fan, Zhiwen Fan, Yi Wang, Tianlong Chen, Yu Cheng, Zhangyang Wang, "Point Cloud Domain Adaptation via Masked Local 3D Structure Prediction"

ICML 2022 [link]: Peihao Wang, Zhiwen Fan, Tianlong Chen, Zhangyang Wang, "Neural Implicit Dictionary Learning via Mixture-of-Expert Training".

CVPR 2022(Oral) [link]: Zhiwen Fan, Tianlong Chen, Peihao Wang, Zhangyang Wang, "CADTransformer: Panoptic Symbol Spotting Transformer for CAD Drawings".

CVPR 2022 [link]: Tianlong Chen, Peihao Wang, Zhiwen Fan, Zhangyang Wang, "Aug-NeRF: Training Stronger Neural Radiance Fields with Triple-Level Physically-Grounded Augmentations".

3DV 2021 [link]: Rakesh Shrestha, **Zhiwen Fan**, Qingkun Su, Zuozhuo Dai, Siyu Zhu, Ping Tan, "MeshMVS: Multi-View Stereo Guided Mesh Reconstruction".

ICCV 2021 [link]: Zhiwen Fan*, Lingjie Zhu*, Honghua Li, Xiaohao Chen, Siyu Zhu, Ping Tan, "FloorPlanCAD: A Large-Scale CAD Drawing Dataset for Panoptic Symbol Spotting".

CVPR 2020(Oral) [link]: Zhiwen Fan*, Xiaodong Gu*, Siyu Zhu, Zuozhuo Dai, Feitong Tan, Ping Tan "Cascade Cost Volume for High-Resolution Multi-View Stereo and Stereo Matching".

 $\textbf{IPMI 2019} \ \underline{[link]}; \ \textbf{Zhiwen Fan*}, \ \text{Liyan Sun*}, \ \text{Xinghao Ding, Yue Huang, John Paisley "Joint CS-MRI reconstruction and segmentation with a unified deep network"}.$

ACM MM 2019 [link]: Zhiwen Fan*, Huafeng Wu*, Xueyang Fu, Yue Huang, Xinghao Ding "Residual-guide network for single image deraining".

ECCV 2018 [link]: Zhiwen Fan*, Liyan Sun*, Xinghao Ding, Yue Huang, Congbo Cai, John Paisley, "A Segmentation-aware Deep Fusion Network for Compressed Sensing MRI".

AAAI 2018 [link]: Zhiwen Fan*1, Liyan Sun*, Yue Huang, Xinghao Ding, John Paisley "Compressed Sensing MRI Using a Recursive Dilated Network".

TIP 2019 [link]: Liyan Sun, Zhiwen Fan, Xueyang Fu, Yue Huang, Xinghao Ding, John Paisley, "A deep information sharing network for multi-contrast compressed sensing MRI reconstruction", Transactions on Image Processing.

MRI 2019 [link]: Liyan Sun, Zhiwen Fan*, Xinghao Ding, Yue Huang, John Paisley, "Region-of-interest undersampled MRI reconstruction: A deep convolutional neural network approach", Magnetic resonance imaging.

MRI 2019 [link]: Liyan Sun, Zhiwen Fan, Xinghao Ding, Congbo Cai, Yue Huang, John Paisley "A divide-and-conquer approach to compressed sensing MRI", Magnetic resonance imaging.

¹A marker * denotes equal-contribution first authorship.

Implicit Neural Representations

Sep. 2021 - Present

INR editing: In our INS paper, we conduct a pilot study for training stylized implicit representations (e.g., SIREN, NeRF, SDF). We obtain faithful stylizations and can interpolate between different styles to generate new mixed style. In our INR-DSP paper, we propose a theoretically grounded signal processing framework for Implicit Neural Representations (INR), which analytically manipulates INRs on the weight space through differential operators. In our NeRF-SOS paper, we propose a collaborative loss to distill the 2D feature and the density field, for self-supervised object segmentation.

Sparse view NeRF: In our SinNeRF paper, we propose thoughtfully designed semantic and geometry regularizations to train neural radiance field using only a single view.

NeRF augmentations: In our Aug-NeRF paper, we propose to augment NeRF with worst-case perturbations in three distinct levels with physical grounds. They effectively boost NeRF in both novel view synthesis (up to 1.5dB PSNR gain) and underlying geometry reconstruction.

Efficient MVS and MTL

Jul. 2019 - Present

Efficient MVS: In our Cas-MVSNet paper, we propose a memory and run time efficient cost volume formulation which is built upon a standard feature pyramid encoding geometry and context at gradually finer scales. We obtain a 23.1% improvement on [DTU benchmark] (1st place), with 50.6% and 74.2% reduction in GPU memory and run-time. It ranks 1st within all learning-based methods on [Tanks and Temples benchmark]. Besides, we adapt GwcNet with our proposed cost volume design, and the accuracy ranking rises from 29^{th} to 17^{th} with 37.0% memory reduction on [KITTI 2015 test set]. Efficient MTL: In our M^3 -ViT paper, we propose to activate any task of interest, by integrating mixture-of-experts (MoE) layers into a ViT backbone, along with hardware-level innovations. M^3 -ViT reduce the memory by 2.4x, saving 9.23x energy, on PASCAL-Context and NYUD-v2 datasets.

CAD Drawing Perception

Oct. 2020 - Present

Project Page & Product Page

We release the first large-scale real-world dataset of over 10,000 CAD drawings with line-grained annotations. It is used for architecture, engineering and construction (AEC) industries to accelerate the efficiency of 3D modeling. A new task-panoptic symbol spotting is proposed for evaluation the quality of panoptic symbol spotting quality.

 $\underline{\text{PanCADNet:}}$ In our FLoorPlanCAD paper, we first propose a CNN-GCN method for semantic and instance symbol spotting respectively.

<u>CADTransformer</u>: In our *CADTransformer* paper, we present a Transformer-based framework by painlessly modifying existing vision transformer (ViT) to tackle the panoptic symbol spotting task.

PROFESSIONAL EXPERIENCE

Xiamen University (XMU)

Google May. 2022 - Present

Research Intern, Supervisor: Sergio Orts Escolano and Alexander Koumis

The University of Texas at Austin Aug. 2021 - Present

Research Assistant, Supervisor: Prof. Zhangyang (Atlas) Wang

Alibaba Cloud Jul. 2019 - Aug. 2021

Senior Algorithm Engineer, Supervisor: Prof. Ping Tan, Dr. Siyu Zhu

Xiamen University Aug. 2016 - Jun. 2019

Research Assistant, Supervisor: Prof. Xinghao Ding

EDUCATION

The University of Texas at Austin (UT Austin)

Advisor: Prof. Zhangyang (Atlas) Wang

Ph.D. Student, Electrical and Computer Engineering

Sep. 2016 - Jun. 2019

Aug. 2021 - Present

Master, Electronic and Communication Engineering

Advisor: Prof. Xinghao Ding

Shandong Agriculture University (SDAU)

Sep. 2012 - Jun. 2016

Bachelor, Electronic Information Science and Technology

HONORS

Fellowship & Awards	
• Qualcomm Innovation Fellowship [Qualcomm News] [UT News]	Aug. 2022
• Professional Development Award of UT Austin	Jul. 2022
• DAC University Demonstration (3rd place).	Jul. 2022
• Outstanding Graduates of Xiamen University	Jun. 2019
• The First Prize Scholarship of Xiamen University	2016-2018
• AAAI 2018 Travel Award	Jan. 2018
• Outstanding Graduates of Shandong Province	Jun. 2016
INVITED TALKS	
• Unified Implicit Neural Stylization" at Xiamen University and Kungfu.ai.	Jul. 2022

SERVICES

Journal Reviewer: TPAMI, TIP, IJCV, Neurocomputing

Conference Reviewer: NeurIPS'22, ECCV'22, ICML'22, CVPR'22, ICCV'21, AAAI'21, ICME'19