Advertencia: El examen contiene 6 ejercicios. Los alumnos que sólo se presentan al Primer Parcial harán los ejercicios 1), 2) y 3). Los que se presentan sólo al Segundo Parcial harán los ejercicios 4), 5) y 6). Los que tienen toda la asignatura harán cuatro (y sólo cuatro) ejercicios: dos a elegir de los tres primeros y dos a elegir de los tres últimos. Todos los ejercicios tienen el mismo valor.

Ejercicio 1.-

- A. Responder verdadero o falso a las siguientes cuestiones y razonar la respuesta:
 - 1.- Si el conjunto de vectores {u, v, w} es linealmente dependiente entonces u es combinación lineal de v y w.
 - 2.- El conjunto $\{1+x^2, 1+x^3, x+x^2, x-x^3\}$ es una base del espacio vectorial de los polinomios de grado menor o igual que 3 con coeficientes en \mathbb{Q} .
- B. Consideremos la siguiente matriz y los siguientes subespacios vectoriales del \mathbb{Q} -espacio vectorial \mathbb{Q}^4 :

$$A = \begin{pmatrix} 1-a & 1 & 1 & 1 \\ 1 & 1+a & 1 & 1 \\ 1 & 1 & 1-b & 1 \\ 1 & 1 & 1+b \end{pmatrix} V_a : \begin{cases} (1-a)x_1 + x_2 + x_3 + x_4 = 0, \\ x_1 + (1+a)x_2 + x_3 + x_4 = 0, \end{cases}$$
$$W_b : \begin{cases} x_1 + x_2 + (1-b)x_3 + x_4 = 0, \\ x_1 + x_2 + x_3 + (1+b)x_4 = 0. \end{cases}$$

Se pide:

- 1.- Probar que $|A| = a^2b^2$.
- 2.- Calcular, según los valores de a y b, la dimensión de los espacios V_a , W_b , $V_a \cap W_b$ y $V_a + W_b$. ¿Para qué valores de a y b es $V_a \oplus W_b = \mathbb{Q}^4$?
- 3.- Sea el vector $\mathbf{u}=(1,1,1,1)$, para b=1 calcular una base del espacio cociente \mathbb{Q}^4/W_1 y las coordenadas de $\mathbf{u}+W_1$ respecto de esta base.

Ejercicio 2.-

- A. Sea $F \colon V \to W$ un homomorfismo de k-espacios vectoriales, sea $L \subset V$ un subespacio vectorial de dimensión finita. Responder verdadero o falso a las siguientes cuestiones y razonar la respuesta:
 - 1.- Si f es sobrevectivo entonces dim $L = \dim f(L)$.
 - 2.- Si f es inyectivo entonces dim $L = \dim f(L)$.
- B. Sean V y W \mathbb{Q} -espacios vectoriales de dimensión 4 y 3 respectivamente. Sean $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ y $\mathcal{B}' = \{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ bases respectivas de V y W. Las coordenadas y ecuaciones se darán respecto de estas bases. Sea $f: V \to W$ el homomorfismo definido por las igualdades $f(\mathbf{v}_1) = \mathbf{w}_1 + \mathbf{w}_2$, $f(\mathbf{v}_2) = \mathbf{w}_1 + \mathbf{w}_3$, $f(\mathbf{v}_3) = \mathbf{w}_2 \mathbf{w}_3$ y $f(\mathbf{v}_4) = \mathbf{w}_1 + 3\mathbf{w}_2 2\mathbf{w}_3$. Se pide:
 - 1.- Calcular una base del núcleo y unas ecuaciones de la imagen de f.
 - 2.- Sea L el subespacio de V de ecuaciones L: $x_1 + x_3 + x_4 = 0$, calcular f(L).
 - 3.- Sea $L' \subset W$ el subespacio dado por $L' = \langle (1,1,1) \rangle$, calcular $f^{-1}(L')$.

Ejercicio 3.-

- A.- Dar razonadamente una condición necesaria y suficiente para que una matriz cuadrada sea diagonalizable.
- B.- Sea $f: \mathbb{R}^4 \to \mathbb{R}^4$ el endomorfismo dado, respecto de la base canónica \mathcal{B} , por la matriz

$$A = M_{\mathcal{B}}(f) = \begin{pmatrix} 1 & 0 & -2 & -2 \\ 0 & 1 & -1 & -1 \\ 0 & -2 & 4 & 5 \\ 0 & 2 & -4 & -5 \end{pmatrix}$$

Se pide:

- 1.- Probar que el endomorfismo f es diagonalizable y dar razonadamente una base de autovectores para el espacio vectorial \mathbb{R}^4 .
- 2.- Dar, si es posible, la matriz de un endomorfismo de \mathbb{R}^4 que no sea diagonalizable pero que tenga los mismos autovalores que f.

Advertencia: El examen contiene 6 ejercicios. Los alumnos que sólo se presentan al Primer Parcial harán los ejercicios 1), 2) y 3). Los que se presentan sólo al Segundo Parcial harán los ejercicios 4), 5) y 6). Los que tienen toda la asignatura harán cuatro (y sólo cuatro) ejercicios: dos a elegir de los tres primeros y dos a elegir de los tres últimos. Todos los ejercicios tienen el mismo valor.

Ejercicio 4.-

A.- Sea el endomorfismo del espacio vectorial euclídeo \mathbb{R}^4 definido por la matriz

$$A = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 3 & 2 & -1 \\ 0 & -3 & -2 & 1 \\ 0 & -2 & -2 & 2 \end{array}\right)$$

que tiene como autovalores los números $\{0,1,2\}$, el 1 con multiplicidad 2. Calcular una base del espacio vectorial formada por autovectores y decir razonadamente si existe o no una base de autovectores ortogonal.

- B.- En el espacio afín $A^4(\mathbb{R})$, consideremos las siguientes variedades lineales afines $L_1: x=3$ y $L_2: x=0=z$. Se pide:
 - 1.- Hallar una perpendicular común y los pies correspondientes.
 - 2.- Probar si la perpendicular hallada es o no única.
 - 3.- Calcular la distancia entre dichas variedades.

Ejercicio 5.-

- A. Sean $f: E \longrightarrow E$ una aplicación afín, $r = P + \langle \mathbf{v} \rangle \subseteq E$ una recta y $\pi = P + \langle \mathbf{v}, \mathbf{w} \rangle \subseteq E$ un plano. Probar que si r es una recta fija de f y w es autovector de \overrightarrow{f} asociado a un autovalor α entonces π es un plano fijo de f. Probar además que si $\alpha = 0$ entonces $f(\pi) \subseteq r$.
- B. Los siguientes apartados son independientes. Se pide:
 - 1.- Sean $\pi=\{x_1+x_2+x_3-x_4=0,\ x_1-x_2=2\}$ un plano y $r=\{x_1-x_2=2,\ x_2+x_3=5,\ x_3+2x_4=0\}$ una recta en $\mathbb{A}^4(\mathbb{R})$. Hallar la intersección $\pi\cap r$ y la suma $\pi+r$. Dar un sistema de referencia $\mathcal{R}_X=\{O;\ \mathbf{u},\mathbf{v},\mathbf{w}\}$ en $X=\pi+r$, de forma que las ecuaciones de r y π respecto de \mathcal{R}_X sean $\{x=0,y=0\}$ y $\{z=0\}$ respectivamente.
 - 2.- Sea $f: \mathbb{A}^3(\mathbb{R}) \longrightarrow \mathbb{A}^3(\mathbb{R})$ la aplicación afín tal que $f_{|\{x=y=0\}}$ es una homotecia de centro O=(0,0,0) y razón -1 y $f_{|\{z=0\}}$ es una homotecia de centro O y razón 3. Hallar la matriz de f respecto del sistema de referencia canónico \mathcal{R} y calcular todos sus subespacios fijos.

Ejercicio 6.-

- A. Se pide:
 - 1.- Dar la definición de movimiento en el espacio afín euclídeo $\mathbb{A}^n(\mathbb{R})$ y una propiedad de los movimientos.
 - 2.- Sean r y s dos rectas distintas y paralelas en el plano afín euclídeo $\mathbb{A}^2(\mathbb{R})$. Determinar todos los movimientos $f \in \mathrm{Mo}(\mathbb{A}^2(\mathbb{R}))$ tales que f(r) = r y f(s) = s, dando los posibles elementos geométricos de cada movimiento.
- B. Sea $f: \mathbb{A}^3(\mathbb{R}) \longrightarrow \mathbb{A}^3(\mathbb{R})$ la aplicación afín cuya matriz respecto del sistema de referencia métrico \mathcal{R} es:

$$M_{\mathcal{R}}(f) = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & c & 0 & -\sqrt{3}c\\ 1 & 0 & 2c & 0\\ 0 & \sqrt{3}c & 0 & c \end{pmatrix}$$

donde $c \in \mathbb{R}$. Se pide:

- 1.- Probar que f es una semejanza y dar su razón. Determinar para qué valores de c se tiene que f es un movimiento.
- 2.- Para c = -1/2 clasificar f, hallando sus elementos geométricos.
- 3.- Sea $\tau_{\mathbf{u}}: \mathbb{A}^2(\mathbb{R}) \longrightarrow \mathbb{A}^2(\mathbb{R})$ la traslación de vector $\mathbf{u} = \overline{(1, -1)}$. Descomponer $\tau_{\mathbf{u}}$ como producto de simetrías axiales.