МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №2 по дисциплине «Организация систем и ЭВМ» Тема «Изучение режимов адресации и формирования исполнительного адреса»

Студент гр. 1303	Мусатов Д.Е.
Преподаватель	Ефремов М.А.

Санкт-Петербург

2022

Цель работы.

Целью лабораторной работы №2 является изучения режимов адресации. Задание.

Лабораторная работа 2 предназначена для изучения режимов адресации, используя готовую программу lr2c.asm на Ассемблере, которая в автоматическом режиме выполняться не должна, так как не имеет самостоятельного функционального назначения, а только тестирует режимы адресации. Поэтому ее выполнение должно производиться под управлением отладчика в пошаговом режиме.

Выполнение работы.

- 1. Получить у преподавателя вариант набора значений исходных данных (массивов) vec1, vec2 и matr из файла lr2.dat, приведенного в каталоге Задания и занести свои данные вместо значений, указанных в приведенной ниже программе.
- 2. Протранслировать программу с созданием файла диагностических сообщений; объяснить обнаруженные ошибки и закомментировать соответствующие операторы в тексте программы.

LR2C.ASM(41): error A2052: Improper operand type mov mem3, [bx]

Машинные команды не могут манипулировать одновременно двумя операндами, находящимися в оперативной памяти, то есть в команде только 1 операнд может указывать на ячейку памяти, другой операнд должен быть либо регистром, либо непосредственным значением.

LR2C.ASM(48): warning A4031: Operand types must match mov cx, vec2[di]
Разные типы операндов, cx – слово, a vec2[di] – размерность 1 байт LR2C.ASM(52): warning A4031: Operand types must match mov cx, matr[bx][di]

Разные типы операндов, сх – слово, а matr[bx][di] – размерность 1 байт LR2C.ASM(53): error A2055: Illegal register value mov ax, matr[bx*4][di]

В непосредственной адресации с базированием и индексированием для вычисления исполнительного адреса берется сумма базового и индексного регистра, к которым добавляется непосредственно фигурирующее в команде смещение. Там не фигурирует умножение.

LR2C.ASM(72): error A2046: Multiple base registers mov ax, matr[bp+bx]

В косвенной адресации с индексированием исполнительный адрес берется в виде суммы адресов, находящихся в базовом и индексном регистрах, а в данной строке оба регистра базовые.

LR2C.ASM(73): error A2047: Multiple index registers mov ax, matr[bp+di+si]

В непосредственной адресации с базированием и индексированием берется сумма базового и индексного регистра, к которым добавляется непосредственно фигурирующее в команде смещение, а в данной строке фигурируют 2 индексных регистра и 1 базовый.

LR2C.ASM(80): error A2006: Phase error between passes

Main ENDP

Ошибка говорит о том, что в функции Маіп допущены ошибки.

```
C:\>MASM.EXE LR2C.ASM
Microsoft (R) Macro Assembler Version 5.10
Copyright (C) Microsoft Corp 1981, 1988. All rights reserved.

Object filename [LR2C.OBJ]:
Source listing [NUL.LST]:
Cross-reference [NUL.CRF]:
LR2C.ASM(41): error A2052: Improper operand type
LR2C.ASM(48): warning A4031: Operand types must match
LR2C.ASM(52): warning A4031: Operand types must match
LR2C.ASM(52): error A2055: Illegal register value
LR2C.ASM(72): error A2065: Multiple base registers
LR2C.ASM(73): error A2047: Multiple index registers
LR2C.ASM(80): error A2006: Phase error between passes

49894 + 459416 Bytes symbol space free

2 Warning Errors
5 Severe Errors
```

Рис. 1 – Трансляция программы с созданием файла диагностических сообщений

3. Снова протранслировать программу и скомпоновать загрузочный модуль.

```
C:\>MASM.EXE LR2C.ASM
Microsoft (R) Macro Assembler Version 5.10
Copyright (C) Microsoft Corp 1981, 1988. All rights reserved.

Object filename [LR2C.OBJ]:
Source listing [NUL.LST]:
Cross-reference [NUL.CRF]:

49894 + 459416 Bytes symbol space free

O Warning Errors
O Severe Errors
```

Рис. 2 – Трансляция программы после исправления ошибок

4. Выполнить программу в пошаговом режиме под управлением отладчика с фиксацией содержимого используемых регистров и ячеек памяти до и после выполнения команды.

Таблица 1 – Протокол пошагового исполнения lr2c.exe

Адрес	Символический	16-ричный	Содержимое регистров и ячеек памяти	
команды	код команды	код команды	До выполнения	После выполнения
0000	PUSH DS	1E	(IP) = 0000 (SP) = 0018 STACK(+0)=0000	(IP) = 0001 (SP) = 0016 STACK(+0)=119C
0001	SUB AX, AX	2BC0	(IP) = 0001 (AX) = 0000	(IP) = 0003 (AX) = 0000
0003	PUSH AX	50	(IP) = 0003 (SP) = 0016 (AX) = 0000 STACK(+0)=119C STACK(+2)=0000	(IP) = 0004 (SP) = 0014 (AX) = 0000 STACK(+0)=0000 STACK(+2)=119C
0004	MOV AX, 1A07	B8071A	(IP) = 0004 (AX) = 0000	(IP) = 0007 (AX) = 11AE
0007	MOV DS, AX	8ED8	(IP) = 0007 (DS) = 119C	(IP) = 0009 (DS) = 11AE
0009	MOV AX, 01F4	B8F401	(IP) = 0009 (AX) = 11AE STACK(+0)=0000 STACK(+2)=19F5	(IP) = 000C (AX) = 01F4 STACK(+0)=0000 STACK(+2)=19F5
000C	MOV CX, AX	8BC8	(IP) = 000C (CX) = 00B0	(IP) = 000E (CX) = 01F4
000E	MOV BL, 24	B324	(IP) = 000E (BX) = 0000	(IP) = 0010 (BX) = 0024
0010	MOV BH, CE	B7CE	(IP) = 0010 (BX) = 0024	(IP) = 0012 (BX) = CE24
0012	MOV [0002], FFCE	C7060200CE FF	(IP) = 0012	(IP) = 0018
0018	MOV BX, 0006	BB0600	(IP) = 0018 (BX) = CE24	(IP) = 001B (BX) = 0006
001B	MOV [0000], AX	A30000	(IP) = 001B	(IP) = 001E
001E	MOV AL, [BX]	8A07	(IP) = 001E (AX) = 01F4	(IP) = 0020 (AX) = 0115
0020	MOV AL, [BX+03]	8A4703	(IP) = 0020 (AX) = 0115	(IP) = 0023 (AX) = 0118
0023	MOV CX, [BX+03]	8A4703	(IP) = 0023 (CX) = 01F4	(IP) = 0026 (CX) = 1C18
0026	MOV DI, 0002	BF0200	(EA) = 0114 (IP) = 0026 (DI) = 0000	(EA) = 1C18 (IP) = 0029 (DI) = 0002
00029	MOV AL, [000E+DI]	8A850E00	(IP) = 0000 $(AX) = 0118$	(B1) = 0002 (IP) = 002D (AX) = 01D8
002D	MOV BX, 0003	BB0300	(IP) = 002D (BX) = 0006	(IP) = 0030 (BX) = 0003

0030	MOV AL,	8A811600	(IP) = 0030	(IP) = 0034
	[0016+BX+DI]		(AX) = 01D8	(AX) = 0108
0034	MOV AX, 1A07	B8071A	(IP) = 0034	(IP) = 0037
			(AX) = 0108	(AX) = 11AE
0037	MOV ES, AX	8EC0	(IP) = 0037	(IP) = 0039
0020	MONATA EG EDMI	260005	(ES) = 119C	(ES) = 11AE
0039	MOV AX, ES:[BX]	268B07	(IP) = 0039	(IP) = 003C
0020	MOVAY 0000	D00000	(AX) = 11AE	(AX) = 00FF
003C	MOV AX, 0000	B80000	(IP) = 003C	(IP) = 003F
003F	MOV ES, AX	8EC0	(AX) = 00FF (IP) = 003F	(AX) = 0000 (IP) = 0041
ООЗГ	MOV ES, AA	8ECU	(ES) = 11AE	(ES) = 0041 (ES) = 0000
0041	PUSH DS	1E	(IP) = 0041	(ES) = 0000 (IP) = 0042
0071			(SP) = 0014	(SP) = 0012
			STACK(+0)=0000	STACK(+0)=11AE
			STACK(+2)=119C	STACK(+2)=0000
			STACK(+4)=0000	STACK(+4)=119C
0042	POP ES	07	(IP) = 0042	(IP) = 0043
			(SP) = 0012	(SP) = 0014
			(ES) = 0000	(ES) = 11AE
			STACK(+0)=11AE	STACK(+0)=0000
			STACK(+2)=0000	STACK(+2)=119C
			STACK(+4)=119C	STACK(+4)=0000
0043	MOV CX, ES:[BX-	268B4FFF	(IP) = 0043	(IP) = 0047
	01]		(CX) = 1C18	(CX) = FFCE
	UIJ			
0047	XCHG AX, CX	91	(IP) = 0047	(IP) = 0048
			(AX) = 0000	(AX) = FFCE
			(CX) = FFCE	(CX) = 0000
0048	MOV DI, 0002	BF0200	(IP) = 0048	(IP) = 004B
004B	MOV ES:[BX+DI],	268901	(IP) = 004B	(IP) = 004E
	AV			
	AX			
004E	MOV BP, SP	8BEC	(IP) = 004E	(IP) = 0050
			(BP) = 0000	(BP) = 0014
0050	PUSH [0000]	FF360000	(IP) = 0050	(IP) = 0054
			(SP) = 0014	(SP) = 0012
			STACK(+0)=0000	STACK(+0)=01F4
			STACK(+2)=119C	STACK(+2)=0000
			STACK(+4)=0000	STACK(+4)=119C
0054	PUSH [0002]	FF360200	(IP) = 0.054	(IP) = 0058
			(SP) = 0012	(SP) = 0010
			STACK(+0)=01F4	STACK(+0)=FFCE
			STACK(+2)=0000	STACK(+2)=01F4
			STACK(+4)=119C	STACK(+4)=0000
0050	MOV DR CR	ODEC	STACK(+6)=0000	STACK(+6)=119C
0058	MOV BP, SP	8BEC	(IP) = 0058	(IP) = 005A
			(BP) = 0014	(BP) = 0010

005A	MOV DX, [BP+02]	8B5602	(IP) = 005A	(IP) = 005D
			(DX) = 0000	(DX) = 01F4
005D	RET Far 0002	CA0200	(IP) = 005D	(IP) = FFCE
			(SP) = 0010	(SP) = 0016
			(CS) = 11B1	(CS) = 01F4
			STACK(+0)=FFCE	STACK(+0)=119C
			STACK(+2)=01F4	STACK(+2)=0000
			STACK(+4)=0000	STACK(+4)=0000
			STACK(+6)=119C	STACK(+6)=0000

Вывод.

В ходе выполнения лабораторной работы были получены основные навыки работы с режимами адресации на языке программирования Ассемблер.

ПРИЛОЖЕНИЕ А

Тексты исходных файлов программ lr2.asm.

```
EOL EQU '$'
ind EQU 2
n1 EQU 500
n2 EQU -50
; Стек программы
AStack SEGMENT STACK
DW 12 DUP(?)
AStack ENDS
; Данные программы
DATA SEGMENT
; Директивы описания данных
mem1 DW 0
mem2 DW 0
mem3 DW 0
vec1 DB 21,22,23,24,28,27,26,25
vec2 DB 40,50,-40,-50,20,30,-20,-30
matr DB 5,6,-8,-7,7,8,-6,-5,1,2,-4,-3,3,4,-2,-1
DATA ENDS
; Код программы
CODE SEGMENT
ASSUME CS:CODE, DS:DATA, SS:AStack
; Головная процедура
Main PROC FAR
push DS
 sub AX, AX
 push AX
mov AX, DATA
mov DS, AX
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
; Регистровая адресация
mov ax, n1
 mov cx, ax
 mov bl, EOL
 mov bh, n2
```

```
; Прямая адресация
mov mem2, n2
mov bx, OFFSET vec1
mov mem1, ax
; Косвенная адресация
mov al, [bx]
; mov mem3, [bx]
; Базированная адресация
mov al, [bx]+3
mov cx, 3[bx]
; Индексная адресация
mov di, ind
mov al, vec2[di]
; mov cx, vec2[di]
; Адресация с базированием и индексированием
mov bx,3
mov al, matr[bx][di]
; mov cx, matr[bx][di]
; mov ax,matr[bx*4][di]
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
; Переопределение сегмента
; ----- вариант 1
mov ax, SEG vec2
mov es, ax
mov ax, es:[bx]
mov ax, 0
; ----- вариант 2
mov es, ax
push ds
pop es
mov cx, es: [bx-1]
xchg cx,ax
; ----- вариант 3
mov di, ind
mov es:[bx+di],ax
; ----- вариант 4
```

```
mov bp,sp
; mov ax,matr[bp+bx]
; mov ax,matr[bp+di+si]
; Использование сегмента стека
push mem1
push mem2
mov bp,sp
mov dx,[bp]+2
ret 2
Main ENDP
CODE ENDS
END Main
```