GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021)

I – Semester

Course Title: Introduction to Mining & Geology

(Course Code: 4312201)

Diploma programme in which this course is offered	Semester in which offered
Mining Engineering	First

1. RATIONALE

The Diploma holder in mining engineer will be able to define different mining operations. Mine operations include mine planning, drilling, blasting, excavation and transportation of ores. The content of this course includes basic concepts, various, rock formation their importance. Thus, this course introduces students to the mining industry. Students should therefore learn this course sincerely as a foundation course for mining industry.

2. COMPETENCY

The course should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

 Apply basic concepts of mining and geology in mine development, exploration and operations.

3. COURSE OUTCOMES (Cos)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with this competency are to be developed in the student to display the following COs:

- Describe ancient mining history and also importance of mining.
- Distinguish between open cast and underground mining processes
- Differentiate between different types of Mining methods.
- Justify need and importance of geology in mining.
- Describe different geological process while formation of different types of rocks.

4. TEACHING AND EXAMINATION SCHEME

Teach	ing Sc	heme	Total Credits	Examination Scheme				
(Ir	า Hour	s)	(L+T/2+P/2)	Theory Marks		Theory Marks Practical Marks		Total
L	Т	Р	С	CA	ESE	CA	ESE	Marks
3	0	0	3	30*	70	0	0	100

(*): Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P -Practical; C – Credit, CA - Continuous Assessment; ESE -End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

The following practical outcomes (PrOs) are the sub-components of the COs.

S. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. required
	Not Applicable-		

Note

- i. More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.
- ii. The following are some **sample** 'Process' and 'Product' related skills (more may be added/deleted depending on the course) that occur in the above listed **Practical Exercises** of this course required which are embedded in the COs and ultimately the competency.

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED – (Not Applicable)

These major equipment with broad specifications for the PrOs is a guide to procure them by the administrators to usher in uniformity of practicals in all institutions across the state.

S. No.	Equipment Name with Broad Specifications	PrO. No.
1	- Not Applicable-	

7. AFFECTIVE DOMAIN OUTCOMES

The following Affective Domain Outcomes (ADOs) are embedded in many of the above mentioned COs and PrOs. More could be added to fulfil the development of this course competency.

- a) Work as a leader/a team member.
- b) Follow ethical practices.
- Practice environmental friendly methods and processes in Mining. (Environment related)

The ADOs are best developed through the laboratory/field based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

The major underpinning theory is given below based on the UOs of *Revised Bloom's taxonomy* that are formulated for development of the COs and competency. If required, more such UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Unit Outcomes (UOs)		Topics and Sub-topics
	(4 to 6 UOs at different levels)		
Unit – I	1a. Explain History of Mining.	1.1	Ancient history & origin of mining
	1b. Describe need and importance		and its need.
Mining	of mining.	1.2	Different civilization and their
History	1c. List different approach in		approach towards mining.
	Mining industry.	1.3	Commencement of mining in India
	1d. Describe impact of Mining	1.4	Indian Mining Industry.
	Industry.	1.5	Importance of Mining-Socially and
			economically
Unit – II	2a. Explain basic terminology	2.1	Define- Mine, Mining, Ore, rock,
	used for Mining.		Mineral, Gangue, gangue mineral
Mining	2b. Describe different Opencast		Coal, Bed, Strata, Deposits-Vein
Termino-	Mining terminology.		deposit, Stratified deposit,
logy	2c. Explain important Underground		massive deposit. &outcrop
	Mining terminology.		deposits
		2.2	Open cast mining terminology-
			Overburden rock, mineral bed,
			top soil, stripping ratio, box-cut,
			bench formation, waste dump &
		2.2	mine sump,
		2.3	Underground Mining
			terminology-Approach mode-
			(incline, shaft & adit)
			Level, dip, rise, strike, pillar, roof,
			floor, goaf, face, haulage & fan ventilation.
Unit- III	3a. List different types of Mining	2 1	Types of Mining- Opencast Mining,
	3b. Differentiate between	3.1	Underground mining, Placer
Types &	different Mining methods.		mining, In-situ leaching & High wall
Stages of	3b. Describe stages of Mining.		mining.
Mining	3d. Justify the use of Mine	3.2	Stages of Mining- Prospecting,
	reclamation.		Exploration, Excavation and
			Reclamation & Rehabilitation.
		3.3	Importance of Mine reclamation.
Unit- IV	4a. Describe origin of The Earth		History of Geology-Origin of Earth.
	4b. Explain need and importance		Theories for origin of Earth-the
Importance	of Geology.		nebular hypothesis & the tidal
of Geology	4c. Justify the use of geology in		hypothesis.
	Mining Industry.	4.2	Benefits of geology in Mining
	4d. List the importance of		Industry.
	geologist in mining industry.	4.3	Role of geologist in Mining Industry.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	(4 to 6 UOs at different levels)	
Unit– V	5a. Describe geological features.	5.1 Geological features- Fold- anticline
	5b. Illustrate basic geological	& syncline, fault, joints, dyke, sills.
Geological	features.	5.2 Sedimentary rock, Igneous rock and
Terminology	5c. List different types of rock	metamorphic rock with example.
and Rocks	5d. Explain formation of different	5.3 Basis formation process of rocks.
	types of rocks.	

9. SUGGESTED SPECIFICATION TABLE FOR QUESTIONPAPER DESIGN

Unit	Unit Title Teaching		Distribution of Theory Marks					
No.		Hours	R	U	Α	Total		
			Level	Level		Marks		
I	Mining History	10	04	07	05	16		
П	Mining Terminology	09	04	06	06	16		
Ш	Types &Stages of Mining	09	04	07	04	15		
IV	Importance of Geology	06	03	04	03	10		
V	Geology Terminology	08	04	<mark>05</mark>	<mark>04</mark>	13		
	Total	42	19	29	22	70		

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy)

<u>Note</u>: This specification table provides general guidelines to assist students for their learning and to teachers to teach and question paper designers/setters to formulate test items/questions to assess the attainment of the UOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may slightly vary from above table.

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student-related *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should perform following activities in group and prepare reports of about 5 pages for each activity. They should also collect/record physical evidences for their (student's) portfolio which may be useful for their placement interviews:

- a) Prepare specification table for different types of minerals and rocks.
- b) Undertake micro-projects in teams
- c) Give seminar on any relevant topic.
- d) Prepare showcase portfolios.
- e) Prepare report on various issues related to mining activity.
- f) Publish a research paper on themes related to mining advancement.
- g) Undertake some small mini projects on various issues related mining industry.
- h) Submit a report on visit to a geological site.
- i) Prepare power point on social and economical impact due to mining
- j) Undertake micro-projects.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/sub topics.
- b) Guide student(s) in undertaking micro-projects.
- c) 'L' in section No.4 means different types of teaching methods that are to be employed by teachers to develop the outcomes.
- d) About **20% of the topics/sub-topics** which are relatively simpler or descriptive in nature is to be given to the students for **self-learning**, but to be assessed using different assessment methods.
- e) With respect to **section No.10**, teachers need to ensure to create opportunities and provisions for **co-curricular activities**.
- f) Arrange visit to nearby industries and workshops for understanding mining activity.
- g) Use video/animation films to explain various processes related to mining operation.
- h) Use different instructional strategies in classroom teaching.
- i) Write the report on properties of different rock and minerals.
- j) Display various technical brochures of recent projects/themes related to mining industry.

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project are group-based. However, in the fifth and sixth semesters, it should be preferably be individually undertaken to build up the skill and confidence in every student to become problem solver so that s/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should not exceed three.

The micro-project could be industry application based, internet-based, workshop-based, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The duration of the microproject should be about **14-16** (*fourteen to sixteen*) *student engagement hours* during the course. The students ought to submit micro-project by the end of the semester to develop the industry-oriented COs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- a) Build a Chart showing advancement in mining activity
- b) Open cast mining: Build a model of opencast mining
- c) **Underground Mining:** Build a model of underground mining.
- d) Surf different websites related to new coming technologies in mining industry.
- e) Prepare report visit to mine site and geological site.
- f) Visit to nearby mine site and study various aspects related to environment and sustainable development

13. SUGGESTED LEARNING RESOURCES

S. No.	Title of Book	Author	Publication with place, year and ISBN
1	Elements of Mining	D. J Deshmukh	Central Techno Publication
	Technology part I , II and III		Latest Edition
			ISBN -9788189904333
2	A Text book of Geology	G.B Mahapatra	CBS Publishers and Disyributors Pvt.
			Ltd.
			ISBN-9788123900131
3	Engineering & General	Parbin Singh	S.K Kataria & Sons
	geolgy		ISBN- 9788188458516
4	Surface Mining Technology	S. K Das	Sagardeep Prakashan, Kharagpur
			ISBN- 9789811635687

14. SOFTWARE/LEARNING WEBSITES

- https://en.wikipedia.org/wiki/Mining.
- http://geology.com/
- http://emg.geoscienceworld.org/content/current
- http://en.wikipedia.org/wiki/Mineral exploration
- https://nptel.ac.in/courses/123/105/123105007/

15. PO-COMPETENCY-CO MAPPING

Semester I	Introduction to Mining & Geology (Course Code: 4312201)								
		POs and PSOs							
Competency & Course Outcomes	PO 1 Basic & Discipline specific knowledge	PO 2 Problem Analysis	U .	PO 4 Engineering Tools, Experiment ation &Testing	practices for	PO 6 Project Manage- ment	PO 7 Life-long learning	PSO 1 Environ- mental planning & design	PSO 2 Execution & Mainten- ance
Competency - Adopt the sustainable practices to resolve the environment related issues									
 a. Describe ancient mining history and also importance of mining 	2	1	-	-	2	-	1	-	1
b. Illustrate basic terms used in Mining.	2	-	1	-	ī	ı	1	-	-
 c. Differentiate between different types of Mining methods. 	2	-	2	-	1	-	1	-	1

d. Explain need and importance of geology in mining	2	-	-	1	2	-	1	-	-
e. Describe different geological process and also formation of different types of rocks	2	-	2	1	1	-	1	1	1

Legend: '3' for high, '2' for medium, '1' for low and '-' for no correlation of each CO with PO/PSO.

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Person

S. No.	Name and Designation	Institute	Contact No.	Email
1	Ms .Kalyani M Jha	Lecturer, G.P Bhuj	7728806567	kalyanijha1004@gmail.c om

NITTTR Resource Persons

S. No.	Name and Designation	Institute	Contact No.	Email
1	Prof. M.C. Paliwal	NITTTR, Bhopal	9407271980	mcpaliwal@nitttrbpl.a c.in
2	Dr. A.K Jain	NITTTR, Bhopal	9425675530	akjain@nitttrbpl.ac.in