An Introductory Lecture to Mathematical Modeling

郭方健

richardkwo@gmail.com
http://richardkwo.net

Yingcai Experimental School, 09'

March 21, 2013

My personal experience

□ Experience with contests:
□ 2011 Summer: training in school
□ 2011 CUMCM (China Undergraduate Mathematical Contest in Modeling) (国赛): 2nd prize in Sichuan Province
□ 2012 MCM/ICM (Mathematical/ Interdisciplinary Contest in Modeling) (美国赛): Outstanding Winner for ICM
□ What I learned
□ Do not prepare for the MM Contest, do prepare for scientific research instead!
□ Many less important points that I will talk later...:)

What is a mathematical model?

) Kay	y, some quotes from <i>Wikipedia</i> :
	A mathematical model is a description of a system using mathematical concepts and language.
	The process of developing a mathematical model is termed mathematical modeling.
	A model may help to explain a system and to study the effects of different components, and to make predictions about behavior.
	Mathematical models are used in
	 the natural sciences (such as physics, biology, earth science, meteorology) engineering disciplines (e.g. computer science, artificial intelligence) the social sciences (such as economics, psychology, sociology and political science)

What is a mathematical model?

In my humble words...

A small note

A mathematical model roughly means the **theory** (i.e. **formalism**) for a problem.

Examples:

- The interaction and motion of physical entities Newtonian mechanics
- ☐ Signals and systems What you have learned: LTI systems, response functions, ...

What is a mathematical model?

To summarize:

Mapping real world entities/mechanisms/phenomenon to <i>mathematical abstractions</i> .
(e.g. interaction $ o F(t)$ in Newton's theory)
Constructing and <i>developing</i> the model with mathematical theories .
 □ Reasoning in pure math: Definitions → Theorems → More theorems □ Discovery by other means, especially simulation: computer simulation of math models
Solving real-world problems within the <i>theoretical framework</i> that you developed.
(proposing a solution that proves to work based on your theory)

An illustrative example

Too abstract? Let's see an example.

- \square Mapping: $m, P, v, \mu, \Delta t, \cdots$
 - Theory: Newtonian mechanics
- Solution: A minimum input power so that the boxes will not collide into each other?
 - Strong math: I can analytically solve it!
 - □ Weaker math: I do not know, but I can run a simulation to see how big P should be.

What makes a good mathematical model?

question: What makes a <i>good</i> mathematical model?
ere I summarize some essential principles in my opinion.
 □ Reasonable: reasonable mapping between the real and the math □ Formal: formal way of developing theories:
☐ Mathematically sound/rigorous.
 New insight (Do not just restate the question in math without any new <i>insight</i>)
☐ Generalizable: working on a general <i>framework</i> rather than too
specific
Can I solve the problem if the occasion changes?
☐ What else can I do/learn with this model?
☐ Simplicity: choose the simplest one that can solve your problem!
□ Occam's razor
☐ Do not be obsessed with fancy stuff.
☐ "Simple enough, but no simpler" — Einstein
☐ Verifiability: how do you know your model is not wrong?
☐ Does your solution solve your problem?
☐ Compliant with <i>data</i> .
Other supportive theories/conclusions.

Common pitfalls

You a	are probably doing it wrong if you have any of these feelings:
	Our model is not a "math model" at all! — You did not find the right math tool to address the problem. — You did not well define the stuff mathematically (dirty mapping).
-	Our model and solution are unrelated! Or: we only have an algorithm. Can we call it a model? — Your math model must explain <i>why</i> you propose the solution and why your solution works.
	We built our model but still cannot solve the problem! — Model too complex or you do not know how to solve.
	We have one model for Question 1 and another for Question 2! — Model too specific, not generalizable.
	We have a perfect model, so what?! — Do you understand/clarify the problem that you want to solve?

Common pitfalls

- Our model can explain everything!
 - Then can anything prove it wrong? If not, it is still **not verifiable**!
- ☐ Our model is just a linear combination of several answers!
 - This is the easiest but dirtiest way of *model selection*.

What model should I use?

Consider

- ☐ What real-world problem do we have?
- ☐ What do we have in our theoretical arsenal?
- □ Does the model capture the most important **mechanism** of the problem? (white/black boxes)
- ☐ Can use the model to **solve** the problem?

Then, I will briefly several categories that may be useful for your future modeling tasks.

Differential/Difference Equations

This category is often called as **Dynamical Systems**.

- Continuous time
 - Ordinary differential equations (ODE).
 - e.g. Newtonian mechanics

Solution: analytical, numerical

- ☐ Partial differential equations (PDE).
 - e.g. heat, fluid, electrodynamics, etc.

Solution: Only several simplest can be analytically solved.

And you may need to know some numerical solvers (c.f. MATLAB's PDE toolbox).

☐ **Discrete time**: usually recursively defined relations.

e.g. Fibonacci numbers $F_n = F_{n-1} + F_{n-2}, F_0 = 1, F_1 = 1.$

Solution: usually easier to solve with *characteristic equations*, *transforms*, etc. Also easy for simulation.

Differential/Difference Equations

Concerns with dynamical systems

- Initial conditions
- Stability

Probabilistic models

Probabilistic models are something I want to **stress** here.

They are **definitely overlooked** in our undergraduate training compared to their role in modern science and engineering.

A small note

Probabilistic models are common in problems with **abundant data**, **classification**, **prediction**, etc.

Probabilistic models

Something you may want to learn afterwards:		
☐ Stochastic processes:		
 Markov Chains, Hidden Markov Model (HMM) e.g. application in disease/information spreading Poisson process, branching process e.g. queueing, population growth 		
☐ Machine/Statistical learning & Pattern recognition		
 Supervised learning (logistic regression, neural networks, etc.) e.g. hand-writing recognition and other common classification tasks e.g. ICM 2012: identifying criminals in a social network Unsupervised learning e.g. clustering, dimensionality reduction 		
Concerns with <i>probabilistic models</i> :		
 □ Parameter estimation from data (training/learning) □ MLE or MAP? (frequencist or Bayesian) □ Optimization 		
e.g. gradient descent and other optimization methods (ref. optimization books and MATLAB's opt toolbox)		

Programming/Planning

his is also called <i>optimization</i> and itoperational research. ome math you may want to learn:
☐ Linear programming, integer programming and their solvers
☐ Basic non-linear programming
☐ Optimization methods
☐ With gradient and even Hessian
☐ Gradient-free methods (ref. MATLAB)
 General heuristic searching algorithms (if too hard to solve) e.g. simulated annealing, genetic algorithms
oncerns with <i>Programming/Planning</i> :
☐ How to formulate your decision variables?
☐ How to define the target/reward function?
☐ Solver available or we have to do with a heuristic search? Then how large is your search space?

Programming and software usage

Of co	urse, there are <i>many other</i> interesting mathematical
heori	es/methods that are useful for modeling. Anyway, I must pause
nere.	
_et m	e talk a little about softwares.
	C/C++: generally, we do not use it for taking contests .
Е	But they are powerful when you care for performance.
□ Λ	MATLAB: we use a lot .
S	Strength: Linear algebra, numerical simulation
\Box F	Python: I use a lot.
S	Strength: Scientific computation/simulation (NumPy, SciPy),
	network analysis ($NetworkX$), plotting ($MatPlotLib$).
□ Λ	Mathematica: I sometimes use for an analytical solution.
S	Strength: It is without rival for solving something analytically.
\Box F	R: I love to use it more often for dealing with data. Strength :
	Doing statistics smoothly with data , beautiful plotting.
	.aTeX: Our team loves to use it for professional typesetting.
S	Strength: Document produced with publishable quality and
а	cademic flavor.

Thank you

Thanks a lot, any question?

- ☐ Reach me via richardkwo@gmail.com
- ☐ Feel free to download the slides from my personal website http://richardkwo.net
- ☐ You can also find our solution summary and outstanding winner paper for ICM 2012 on my website. :)