Time: 15 minutes. Max marks: 10 Name: Roll No.:

Instructions:

- Do not plagiarize. Do not assist your classmates in plagiarism.
- Show your full solution for the questions to get full credit.
- Attempt all questions that you can.
- A statement is true if it is always true. MCQs may have multiple correct answers.
- In the unlikely case a question is not clear, discuss it with an invigilator. Please ensure that you clearly include any assumptions you make, even after clarification from the invigilator.
- 1. $(5 \times 1 = 5 \text{ points})$ Answer True or False and provide the justification.
 - (a) If **T** and **R** are the 3D translation and rotation transformations (i.e., the 4×4 matrix) for the world-to-camera transformation (extrinsic parameters), we can obtain the extrinsic matrix $\mathbf{T}_{ext} = \mathbf{R} \cdot \mathbf{T} = \mathbf{T} \cdot \mathbf{R}$ by multiplying **R** and **T** in any order.

Solution: False. Matrix multiplication is in general not commutative, and the translation & rotation transformations do not form a special case, unlike say scaling and rotation, or two consecutive rotations.

- (b) Parallel lines intersect at *points at infinity*, which have finite values in homogeneous coordinates. **Solution**: True. [x, y, 0] is the finite valued homogeneous coordinates of points at infinity.
- (c) The homogeneous coordinates represent points in a projective plane as an equivalence class (i.e., a set whose elements are mapped to the same entity) of vectors. If true, justify by writing the set of equivalent vectors, else justify why these are not a set of vectors.

Solution: True. Each point is a scaled version of the canonical homogeneous coordinates, which in-turn is obtained by appending a '1' to the corresponding cartesian coordinates of the points.

(d) Lines are represented in homogeneous coordinates using the equation of an *arbitrary* plane passing through the said line.

Solution: False. The plane passing through the line should also be passing through the origin.

(e) If θ is the angle of rotation in a 3D rotation, the trace of the 3D rotation matrix would be $1+2\cos\theta$.

Solution: True. Using the Rodriguez's formula, if you add the traces (trace is a linear operator) of the constituent matrices, i.e., \mathbf{I} , \mathbf{N} , and \mathbf{N}^2 , where \mathbf{I} is the identity matrix and \mathbf{N} is the skew-symmetric matrix for the axis vector $\hat{\mathbf{n}}$. Rodriguez's formula is:

$$\mathbf{R} = \mathbf{I} + \sin \theta \mathbf{N} + (1 - \cos \theta) \mathbf{N}^2$$

$$\mathbf{N} = \begin{bmatrix} 0 & -n_3 & n_2 \\ n_3 & 0 & -n_1 \\ -n_2 & n_1 & 0 \end{bmatrix}$$

$$\mathbf{N}^2 = \begin{bmatrix} 0 & -n_3 & n_2 \\ n_3 & 0 & -n_1 \\ -n_2 & n_1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -n_3 & n_2 \\ n_3 & 0 & -n_1 \\ -n_2 & n_1 & 0 \end{bmatrix} = \begin{bmatrix} -n_3^2 - n_2^2 \\ -n_3^2 - n_1^2 \\ -n_1^2 - n_2^2 \end{bmatrix}$$

$$Tr(\mathbf{I}) = 3$$

$$Tr(\mathbf{N}) = 0$$

$$Tr(\mathbf{N}^2) = -n_3^2 - n_2^2 - n_3^2 - n_1^2 - n_1^2 - n_2^2$$

$$Tr(\mathbf{R}) = Tr(\mathbf{I}) + Tr(\mathbf{N}) \sin \theta + Tr(\mathbf{N}^2)(1 - \cos \theta)$$

$$= 3 + 0 + (1 - \cos \theta)(n_3^2 + n_2^2 + n_1^2)(-2)$$

$$= 3 - 2 + 2 \cos \theta \qquad = 1 + 2 \cos \theta$$

pipeline have?

(B) 3

(A) 1

(E) None of the above

since $ \widehat{\mathbf{n}} = (n_1^2 + n_2^2 + n_3^2) = 1.$	
Partial credit for a reasonable justification instead of a rigorous proof as to why $(1+2\cos\theta)$ would	ł
be the trace of any rotation matrix.	

2. $(5 \times 1 = 5 \text{ points})$ Check **all** the correct answers. {Rubric: If any incorrect answer is checked, no credit is awarded}.

Solution: (D) The extrinsic matrix has 6 dof - 3 for 3D rotation and 3 for 3D translation. (b) If the camera and the world coordinate systems are identical, what would be the dof of the extrinsic

(C) 4

(a) How many degrees of freedom (dof) does the extrinsic parameter matrix in the image formation

(D) 6

	parameter matrix	?			
	(A) 1	(B) 3	(C) 4	(D) 6	(E) None of the above
	\	will be zero as the vinate systems are i		nsformation will be	e identity when the world
(c)	If the camera sense matrix?	sor has pixels as p	erfect squares, wha	at would be the do	f of the intrinsic camera
	(A) 1	(B) 3	(C) 4	(D) 6	(E) None of the above
		ne for focal length a			and the skew parameter
(d)	have?		·		rotation representation
	(A) 1	(B) 3	(C) 4	(D) 6	(E) None of the above
	the state of the s		of, of which two are known, i.e., the ang		n axis of rotation. Once
(e)	_		sponding to the rot the determinant of		Which of the following is
	(A) 1	(B) 3	(C) $\cos \theta$	(D) $\sin \theta$	$(E) \det \mathbf{R}$
	Solution: (A,E)	- Rotation matric	ces always have an	eigenvalue equal	to 1. Also for rotation
	matrices, $\det \mathbf{R} =$	= 1 which also tur	ns out to be equal	to the eigenvalue.	$\{Rubric: Credit to be$
		or both (A,E) are n	narked. No credit is	f only (E) is marked	d. No credit if (C,D) are
	marked.}				