РАССТАНОВКА УДАРЕНИЙ В СЛОВАХ

АКТУАЛЬНОСТЬ

В наше время постановка ударений ва жная задача для следующих направлений:

- Автоматические аудио субтитры
- Прочие
 задачи озвучивания текста при пом ощи ИИ

ОПИСАНИЕ РЕАЛИЗОВАННОГО РЕШЕНИЯ НА ОСНОВЕ **AI**

В своем решении я рассмотрел два подхода

- Классический ML (BoW + CatBoost)
- Deep Learning RNN с собстевенной архитектурой

Все решения не содержит предобученных моделей, все реализованно с 0

ТЕХНИЧЕСКИЕ ДЕТАЛИ

Ниже представлена структура, а так же график обучения RNN

В основе которой лежит двунаправленный LSTM

Layer (type)	Output			Param #
text_vectorization_3 (Text Vectorization)				0
embedding_8 (Embedding)	(None,	None,	128)	4224
<pre>bidirectional_32 (Bidirect ional)</pre>	(None,	None,	256)	263168
<pre>bidirectional_33 (Bidirect ional)</pre>	(None,	None,	128)	164352
dropout_24 (Dropout)	(None,	None,	128)	0
<pre>bidirectional_34 (Bidirect ional)</pre>	(None,	None,	128)	98816
<pre>bidirectional_35 (Bidirect ional)</pre>	(None,	128)		98816
dropout_25 (Dropout)	(None,	128)		0
dense_24 (Dense)	(None,	64)		8256
dense_25 (Dense)	(None,	32)		2080
dropout_26 (Dropout)	(None,	32)		0
dense_26 (Dense)	(None,			528
Total params: 640240 (2.44 M Trainable params: 640240 (2. Non-trainable params: 0 (0.0	B) 44 MB)			

Визуализация решения

- На данном этапе риализовано MVP в jupiter notebook

РЕЗУЛЬТАТЫ

Так же важно отметить, что за счет разбиения слов на буквы а не слоги, размер словоря состовляет всего 33 элемента и при не самой простой архитектуре число параметров RNN всего 640 240

MODEL	ACCURACY
CatBoost	0.69
RNN	0.90

Возможные улучшения

На данном этапе модель можно и нужно обучить на большем числе эпох для преодаления барьера в 0.95 accuracy

