Surname	Other na	ames			
Edexcel GCE	Centre Number	Candidate Number			
Chemistry Advanced Unit 5: General Principles of Chemistry II - Transition Metals and Organic Nitrogen Chemistry (including synoptic assessment)					
Metals and Org	ganic Nitrogen Ćhei				
Metals and Org	ganic Nitrogen Ćhei optic assessment)	Paper Reference			
Metals and Ord (including synd	ganic Nitrogen Chei optic assessment) Afternoon	mistry			

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 90.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

P 3 9 3 0 9 A 0 1 2 0

Turn over ▶

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box \boxtimes . If you change your mind, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

1	The acid used in a standard hydrogen electrode to provide a 1 mol dm ⁻³ solution of
	hydrogen ions is

- **A** ethanoic acid.
- **■ B** phosphoric(V) acid.
- C sulfuric acid.
- **D** hydrochloric acid.

(Total for Question 1 = 1 mark)

- 2 To measure the standard electrode potential for the $Ag^{+}(aq)|Ag(s)$ electrode, the most suitable chemical for the solution in a salt bridge to connect the two half cells is
 - **A** potassium chloride.
 - **B** potassium iodide.
 - C potassium nitrate.
 - **D** potassium sulfate.

(Total for Question 2 = 1 mark)

- 3 For any reversible reaction, $\ln K$ is proportional to
 - \triangle A both $\triangle S_{\text{total}}$ and E_{cell} .
 - \boxtimes **B** ΔS_{total} but not E_{cell} .
 - \square **C** E_{cell} but not ΔS_{total} .
 - \square **D** neither E_{cell} nor ΔS_{total} .

(Total for Question 3 = 1 mark)

- 4 This question is about a titration to determine the iron content of a tablet. The iron(II) ions in the tablet are oxidized to iron(III) ions by acidified manganate(VII) ions which are reduced to manganese(II) ions.
 - (a) The mole ratio of iron(II) to manganate(VII) ions in the reaction is

(1)

	Fe ²⁺	MnO ₄ ⁻
⊠ A	1	5
⊠ B	2	5
⊠ C	5	2
⊠ D	5	1

(b) A 0.200 g tablet is dissolved to make exactly 100 cm 3 of solution. 10 cm 3 of this solution is found to contain 5.38×10^{-5} mol of iron(II) ions.

The percentage by mass of iron $(A_r = 55.8)$ in the tablet is

(1)

$$\triangle$$
 A $\frac{5.38 \times 10^{-5} \times 55.8}{0.200} \times \frac{100}{10} \times 100\%$

$$\square$$
 B $\frac{5.38 \times 10^{-5}}{55.8 \times 0.200} \times \frac{100}{10} \times 100\%$

$$\square$$
 C $\frac{5.38 \times 10^{-5} \times 55.8}{0.200} \times \frac{10}{100} \times 100\%$

$$\square$$
 D $\frac{5.38 \times 10^{-5} \times 0.200}{55.8} \times \frac{10}{100} \times 100\%$

(Total for Question 4 = 2 marks)

Use this space for any rough working. Anything you write in this space will gain no credit.

5 Some fuel cells are used to produce energy from the combination of hydrogen and oxygen. The half-equations for a hydrogen-oxygen fuel cell in alkaline solution are

$$2H_2O(1) + 2e^- \implies H_2(g) + 2OH^-(aq)$$
 $E^{\oplus} = -0.83 \text{ V}$

$$\frac{1}{2}O_2(g) + H_2O(1) + 2e^- \Rightarrow 2OH^-(aq)$$
 $E^{\oplus} = +0.40 \text{ V}$

(a) The equation for the cell reaction is

(1)

- \square **A** $3H_2O(1) + \frac{1}{2}O_2(g) \rightarrow H_2(g) + 4OH^-(aq)$
- \blacksquare **B** H₂(g) + 4OH⁻(aq) → 3H₂O(1) + ½O₂(g)
- $\begin{tabular}{lll} \hline \square & C & $H_2(g)$ + $\frac{1}{2}O_2(g)$ \rightarrow $H_2O(l)$ \\ \hline \end{tabular}$
- \square **D** $H_2O(1) \rightarrow H_2(g) + \frac{1}{2}O_2(g)$
- (b) From the data above, E_{cell} for the reaction in the hydrogen-oxygen fuel cell is

(1)

- \blacksquare **B** +0.43 V
- \square C -1.23 V
- **D** +1.23 V
- (c) An advantage of operating a hydrogen fuel cell over a conventional jet engine for powering an aeroplane is

(1)

- A it is 100% efficient.
- **B** it does not produce greenhouse gas emissions.
- C it does not produce emissions which damage the ozone layer.
- **D** hydrogen is easier to transport.

(Total for Question 5 = 3 marks)

6 Benzocaine is used as a local anaesthetic.

Separate samples of a solution of benzocaine are added to 2,4-dinitrophenylhydrazine, hot aqueous sodium hydroxide, and dilute hydrochloric acid.

Which chemicals react with benzocaine?

- **A** All three
- **B** Only sodium hydroxide and hydrochloric acid
- C Only hydrochloric acid
- **D** Only sodium hydroxide

(Total for Question 6 = 1 mark)

7 In the first commonly used breathalyser, acidified potassium dichromate(VI) was used which was reduced to chromium(III) by alcohol.

The colour change seen when alcohol was present in a motorist's breath is from

- A orange to green.
- **B** orange to yellow.
- C yellow to green.
- **D** yellow to orange.

(Total for Question 7 = 1 mark)

- **8** For which of the following are both tests acceptable evidence for a driver to be successfully prosecuted for excess alcohol in the blood in many countries?
 - ☑ A A dichromate(VI) breath analyser and a blood test.
 - **B** A dichromate(VI) breath analyser and a fuel cell breath analyser.
 - C A dichromate(VI) breath analyser and an infrared breath analyser.
 - **D** An infrared breath analyser and a blood test.

(Total for Question 8 = 1 mark)

9 The structural formula of caffeine, $C_8H_{10}O_2N_4$, is shown below.

(a) How many main peaks would you expect in the proton nuclear magnetic resonance spectrum of caffeine?

(1)

- \boxtimes **A** 1
- \mathbf{B} **B** 2
- **C** 3
- **D** 4
- (b) At which of the following wavenumbers is an absorption peak **not** present in the infrared spectrum of caffeine?

(1)

- A 3600 cm⁻¹
- **■ B** 2925 cm⁻¹
- \square **C** 1690 cm⁻¹
- \square **D** 1660 cm⁻¹
- (c) The parent ion peak of caffeine in the mass spectrum of caffeine would be at m/e ratio

(1)

- **△ A** 101
- **■ B** 102
- **C** 193
- **D** 194

	rmolecular forces between caffeine molecules would include	(1)
$\boxtimes \mathbf{A}$	London forces only.	
\boxtimes B	London forces and hydrogen bonds.	
区 C	London forces and permanent dipole forces.	
\boxtimes D	London forces, permanent dipole forces, and hydrogen bonds.	
	(Total for Question 9 = 4 m	narks)
	principal advantage of combinatorial chemistry over traditional methods for eloping pharmaceuticals is that	(1)
$\boxtimes \mathbf{A}$	very small amounts of compounds are used.	(1)
\boxtimes B	many more compounds can be made in a given time.	
	compounds formed are more powerful drugs.	
\boxtimes D	compounds formed have fewer side effects.	
	efinement of combinatorial chemistry involves initially attaching compounds aly to polymer beads. The type of attachment is most likely to be by	(1)
$\boxtimes \mathbf{A}$	metallic bonds.	(-)
\boxtimes B	covalent bonds.	
	London forces.	
- D	permanent dipole forces.	
\bowtie D		

- 11 Four reactions involving the transition elements copper and chromium are given below.
 - 1 $Cu^{2+}(aq) + 2OH^{-}(aq) \rightarrow Cu(OH)_{2}(s)$
 - 2 $[Cu(H_2O)_4(OH)_2](s) + 4NH_3(aq) \rightarrow [Cu(H_2O)_2(NH_3)_4]^{2+}(aq) + 2OH^{-}(aq) + 2H_2O(1)$
 - 3 $[Cr(H_2O)_3(OH)_3](s) + 3OH^-(aq) \rightarrow [Cr(OH)_6]^{3-}(aq) + 3H_2O(1)$
 - 4 $[Cr(H_2O)_3(OH)_3](s) + 3H^+(aq) \rightarrow [Cr(H_2O)_6]^{3+}(aq)$
 - (a) Which reaction produces a dark blue solution?

(1)

- **⋈** A 1
- **⋈** B 2
- **■** D 4
- (b) Which two reactions show the amphoteric behaviour of a metal hydroxide?

(1)

- **A** 1 and 2
- B 2 and 3

- (c) Predict, without calculation, which reaction has the most negative value for ΔS_{system} .

(1)

- \boxtimes A 1
- **⋈** B 2
- **C** 3
- \square D 4

(Total for Question 11 = 3 marks)

TOTAL FOR SECTION A = 20 MARKS

SECTION B

Answer ALL the questions. Write your answers in the spaces provided.

- 12 This question is about benzene and its compounds.
 - (a) A Kekulé structure of benzene suggests the molecule consists of alternate double and single carbon to carbon bonds.

The standard enthalpy change of hydrogenation of a carbon to carbon double bond is $-120 \text{ kJ} \text{ mol}^{-1}$.

(i) Calculate the standard enthalpy change of hydrogenation of benzene for the Kekulé structure.

(1)

*(ii) The actual standard enthalpy change of hydrogenation of benzene is -208 kJ mol⁻¹.

Use this information and your answer to (i), to calculate the difference in stability of benzene and the Kekulé structure.

What does this tell us about the bonding in benzene?

Explain how this influences the type of chemical reactions that benzene undergoes.

(4)

(b) The flow chart shows some typical reactions of benzene.

(i) Identify the two chemicals needed to make nitrobenzene from	benzene.
---	----------

(2)

(ii) Classify the type of reagent required in all three reactions.

(1)

(iii) Show, with appropriate diagrams, the mechanism for the reaction of benzene with bromine, in the presence of iron(III) bromide, to form bromobenzene. Include the formation of the ion attacking the benzene molecule.

(4)

(iv) Give the structural formula and the name for compound A.	(2)
(c) (i) Explain why phenol, C ₆ H ₅ OH, and methoxybenzene, C ₆ H ₅ OCH ₃ , are much more reactive than benzene with bromine.	(3)
(ii) Write the equation for the reaction between phenol and bromine water. State symbols are not required.	(2)
(d) Diphenylmethane, $(C_6H_5)_2CH_2$, is often added to soap to create the pleasant smell of geraniums. It can be made from benzene and one other reagent, using a suitable catalyst. Identify the other starting material and the catalyst by name or formula.	(2)
(Total for Question 12 = 21 ma	ırks)

This qu	nestion is about 1,2-diaminoethane, H ₂ NCH ₂ CH ₂ NH ₂ .	
	te an equation for the reaction between 1,2-diaminoethane and excess dilute	
hyd	rochloric acid.	(2)
	en an aqueous solution of nickel(II) ions is added to 1,2-diaminoethane, a applex ion forms.	
3H2	$NCH_2CH_2NH_2 + Ni(H_2O)_6^{2+} \rightarrow Ni(H_2NCH_2CH_2NH_2)_3^{2+} + 6H_2O$	
(i)	Suggest the colour of this complex.	
(1)	~ 500 co. m. voices of this voimple.	(1)
(ii)	Without using the data booklet, suggest why the complex formed is more stable	
	than $Ni(H_2O)_6^{2+}$ by considering the appropriate entropy change.	(2)
		(2)
(iii)	This complex can exist as two structures, which are non-superimposable mirror images.	
	Suggest the physical property that would enable you to distinguish between	
	these two structures.	(1)

(c) 1,2-diaminoethane reacts with butane-1,2-dioyl dichloride, ClOCCI form a polymer.	H ₂ CH ₂ COCl, to
(i) Draw a displayed formula for this polymer showing one repeat	t unit. (2)
(ii) Give, and explain, the name for this type of polymerization rea	(2)
*(iii) State and explain the intermolecular forces between two of the chains.	ese polymer (5)
(Total for Ques	stion 13 = 15 marks)

14 An organic compound X contains carbon, hydrogen, oxygen and nitrogen.

0.132 g of **X** is burned completely in oxygen to produce 0.072 g of water, 0.176 g of carbon dioxide and 24.0 cm^3 of nitrogen.

[Molar volume of nitrogen under the conditions of the experiment = $24\,000 \text{ cm}^3 \text{ mol}^{-1}$]

(a) Calculate the empirical formula of compound X.

(5)

(b) The molar mass of X is 132 g mol⁻¹. Deduce the molecular formula for X. Show how you arrived at your answer.

(1)

(c) When \mathbf{X} is refluxed with concentrated hydrochloric acid for several hours, cooled and neutralized, there is only one organic product, \mathbf{Y} , which has the molecular formula $C_2H_5O_2N$.	
One mole of Y will react with either one mole of hydrochloric acid or one mole of sodium hydroxide solution.	
When Y is sprayed with a solution of ninhydrin and heated, a purple colour is observed.	
(i) Use all the information above to deduce the functional groups present in Y and to classify the type of compound it is. Justify your answer.	d (3)
(ii) Deduce the displayed formula for Y and give its name.	(2)
Name of Y	
(iii) Hence give the structural formula for X .	(1)
(Total for Question 14 = 12 m	arks)
TOTAL FOR SECTION B = 48 MA	ARKS

SECTION C

Answer ALL the questions. Write your answers in the spaces provided.

15

Some unusual oxidation states

You will probably have seen manganese in its common oxidation states during your study of chemistry. Manganese(II) sulfate occurs as very pale pink crystals in the hydrated form. Manganese(IV) oxide is a black powder which is often used as a catalyst. Potassium manganate(VII) occurs as very dark purple crystals and forms a purple aqueous solution, which is a powerful oxidizing agent.

You are less likely to have seen compounds containing the other oxidation states of manganese, which are manganese(VI), manganese(V), manganese(III) and manganese(I). However, compounds containing each of these four oxidation states can be prepared.

Manganese(VI)

Manganese(VI), in MnO₄²⁻, can be prepared in a reverse disproportionation reaction, by reacting manganate(VII) ions with manganese(IV) oxide in alkali.

Equation 1

$$2MnO_4^-(aq) + MnO_2(s) + 4OH^-(aq) \rightarrow 3MnO_4^{2-}(aq) + 2H_2O(1) E_{cell}^{\oplus} = -0.03V$$

The reaction is not thermodynamically favourable under standard conditions. However, the E_{cell} value can be made positive by increasing the concentration of hydroxide ions so that green manganate(VI) ions form.

Manganese(V)

Manganese(V) can be formed by adding a little potassium manganate(VII) to very concentrated (12 mol dm⁻³) aqueous sodium hydroxide. The solution slowly becomes blue as manganate(V) ions, MnO₃⁻(aq), form. The ionic half-equations are:

Equation 2

$$MnO_4^-(aq) + H_2O(l) + 2e^- \rightarrow MnO_3^-(aq) + 2OH^-(aq)$$

Equation 3

$$4OH^{-}(aq) \rightarrow 2H_2O(1) + O_2(g) + 4e^{-}$$

Manganese(III)

A deep red solution containing manganese(III) ions is formed by the oxidation of manganese(II) hydroxide by potassium manganate(VII) in acid solution. The ionic equation for the reaction is:

Equation 4

$$MnO_4^-(aq) + 4Mn(OH)_2(s) + 16H^+(aq) \rightarrow 5Mn^{3+}(aq) + 12H_2O(1)$$

Manganese(I)

Manganese(I) ions are not stable in aqueous solution, but do form stable complex ions. They can be made by reducing hexacyanomanganate(II) ions, $Mn(CN)_6^{4-}$, to hexacyanomanganate(I) ions, $Mn(CN)_6^{5-}$.

(a) (i)	Give the formula of manganese(IV) oxide.	(1)
(ii)	How do catalysts speed up reactions?	(2)
(iii)	Explain how transition metal ions can act as homogeneous catalysts.	(2)
	Suggest why the preparation of manganate(VI) ions, MnO ₄ ²⁻ , in equation 1 , may be described as a reverse disproportionation reaction by considering the relevant oxidation states.	
	may be described as a reverse disproportionation reaction by considering the relevant oxidation states.	

((ii)	The two	half-equa	ations which	h are con	ibined to	form eq	nuation 1	are
1	.11)	, The two	man eque	ttions wine.	ii aic coii	ionica to	TOTTII CC	luumon 1	uic

$$MnO_4^-(aq) + e^- \rightleftharpoons MnO_4^{2-}(aq)$$

$$E^{\oplus} = +0.56 \text{ V}$$

$$MnO_4^{2-}(aq) + 2H_2O(1) + 2e^- \implies MnO_2(s) + 4OH^-(aq)$$

$$E^{\oplus} = +0.59 \text{ V}$$

Explain, by reference to these half-equations, why increasing the concentration of hydroxide ions alters the electrode potential to make the preparation of manganate(VI) ions more likely.

(3)

- (c) Use equations 2 and 3 to answer the following questions.
 - (i) Identify the gas formed in the preparation of manganate(V) ions.

(1)

(ii) By appropriately combining these two equations, write the ionic equation for the formation of manganate(V) ions from manganate(VII) ions.

(2)

(iii) Identify the main hazard and state how you would minimize the associated risk in this preparation of manganate(V) ions.

(2)

	(2)					
(i) Draw a dot and cross diagram to show the electron arrangement in t ion, CN ⁻ .	the cyanide (2)					
(ii) Explain how the cyanide ion acts as a ligand.	(2)					
(iii) Suggest the name of the shape of the hexacyanomanganate(I) ion.	(1)					
(Total for Question 15 = 22 marks)						

+	S
200	5
8	E
Ц	ĭ
t	5
(Ų
Tablo	5
۴	<u>_</u>
۷.	۷
1001	ממוכ
	Ĕ
Dor	ב
4	ט
H	-

	_	1			b51	_					7				
0 (8)	4.0 He helium 2	20.2 Ne neon 10	39.9 Ar argon 18	83.8	Krypton 36	131.3	Xenon	24	[222]	Radon 86		_			
7	(17)	19.0 F fluorine	35.5 Cl chlorine 17	6.62	Br bromine 35	126.9	– jodine	53	[210]	At astatine 85	een repo	1	L 3	lutetium 71	[257] Lr lawrencium 103
9	(16)	16.0 O oxygen 8	32.1 S sulfur 16	79.0	Se selenium 34	127.6	Te	52	[506]	Po polonium 84	116 have t	į	7	ytterbium 70	[254] No nobelium 102
2	(15)	14.0 N nitrogen 7	31.0 P	74.9	As arsenic 33	121.8	Sb	51	209.0	Bi bismuth	tomic numbers 112-116 hav	9	Tm T	thulium 69	[256] Md mendelevium 101
4	(14)	12.0 C carbon 6	Si silicon	72.6	Ge germanium 32	118.7	S ∄	20	207.2	Pb tead	Elements with atomic numbers 112-116 have been reported but not fully authenticated	!	16/ Er	erbium 68	[253] Fm fermium 100
m	(13)	10.8 B boron 5	27.0 Al aluminium 13	2.69	Ga gallium 31	114.8	nd indium	49	204.4	thallium		,	165 2	holmium 67	[254] Es einsteinium 99
			(12)	65.4	Zinc 30	112.4	Cadmium	48	200.6	Hg mercury 80	Elem	5	163 Q	dysprosium 66	Cf Es Caltfornium einsteinium 98 99
			(11)	63.5	Cu copper 29	107.9	Agsilver	47	197.0	Au gold 79	Rg roentgenium		ور 1	terbium 65	Bk berketium 97
(10)					Ni nickel 28	106.4	Pd	46	195.1	Pt platinum 78	l		ેલ છ	gadolinium 64	[247] Cm curium 96
(6)					Co cobalt 27	102.9	Rhodium	45	192.2	iridium	ium -		152 Eu	europium 63	[243] Am americium 95
	1.0 H hydrogen	(8)	55.8	Fe iron 26	101.1	Ru	44	190.2	Os osmium 76	_ E		Sm Sm	samarium 62	Pu Pu plutonium 94	
			54.9	Mn manganese 25	[86]	Tc	43	186.2	Re rhenium 75	_ A		[14/] Pm	praseodymium neodymium promethium 59 60 61	Np Np neptunium 93	
	mass bol umber	(9)	52.0	Cr chromium 24	95.9	Mo Tc	42	183.8	W tungsten 74	Sg seaborgium		4 N	neodymium 60	۴	
	Key	Key relative atomic mass atomic symbol name atomic (proton) number	(5)	50.9	V vanadium 23	92.9	Nobium	41	180.9	Ta tantalum 73	_ =		141 Pr	ргазеодутіцт 59	[231] Pa protactinium 91
		relati ato	<i>(</i> 4)	47.9	Ti titanium 22	91.2	Zirconium	40	178.5	Hf hafnium 72	[261] Rf rutherfordium		C 40	cerium 58	232 Th thorium 90
		<u>. </u>	(3)	45.0	Sc scandium 21	88.9	vttrium ≺		138.9	La* lanthanum 57	_ <u> </u>	ľ	SS		
7	(2)	9.0 Be beryllium 4	24.3 Mg magnesium 12	40.1	Ca calcium 20	97.6	Sr	38	137.3	Ba barium	[226] Ra radium 88		* Lanthanide series	* Actinide series	
-	(1)	6.9 Li lithium 3	23.0 Na sodium 11	39.1	K potassium 19	85.5	B	37	132.9	Cs caesium 55	[223] Fr francium 87		* Lanth	* Actini	
				_		_		_	_						