Othmane Marfoq<sup>1, 2</sup>

Giovanni Neglia<sup>1</sup>

Richard Vidal<sup>2</sup>

Laetitia Kameni<sup>2</sup>

<sup>1</sup>Inria, Université Côte d'Azur and <sup>2</sup>Accenture Labs





**Accenture** Labs











#### Limitations:

- 1. communication cost
- 2. privacy concerns



#### Solution:

- keep clients' data on device
- only exchange model's parameters



#### Solution:

- keep clients' data on device
- only exchange model's parameters



#### Solution:

- keep clients' data on device
- only exchange model's parameters











# Federated Learning for Data Streams Capacity=1 Capacity=2 Collect data Capacity=1 Capacity=1 Synchronize clients Cap.=3 Cap.=3 Cap.=4 Cap.=4











#### Federated Learning for Data Streams Capacity=1 Collect data ♥ 60\*' 60\*' Collect data Capacity=2 Collect data Collect data Collect data Collect data Capacity=1 Collect data Capacity=1 Collect data HOSPITAL Cap.=3 Collect data HOSPITAL Cap.=3 HOSPITAL Collect data Cap.=4 HOSPITAL Cap.=4



























#### Federated Learning for Data Streams Capacity=1 Collect data 60" Collect data Capacity=2 Collect data Collect data Collect data ₩ 60°' Collect data Collect data Collect data Capacity=1 lect data Capacity=1 What importance to give to historical samples in comparison to fresh ones? HOSPITAL Cap.=3 Collect data Collect data Cap.=3 Collect data Cap.=4 Cap.=4

What importance to give to historical samples in comparison to fresh ones?



# "Historical" strategy



# "Uniform" strategy



#### Reminder: error decomposition in ML

"True Error" = "Optimization Error" + "Generalization Error" + "Approximation Error"

"Optimization Error" is large when gradients are noisy

"Generalization Error" is large when few samples are available

"Approximation Error" only depends on the hypothesis space (model architecture)

#### "Historic"

- small variance
- small efficient number of samples
- low optimization error
- high generalization error

#### "Uniform"

- large variance
- large efficient number of samples
- high optimization error
- low generalization error



#### Is there a better compromise than these two extreme strategies?

The answer is "usually YES"



#### Practical Algorithm

- 1. estimate the constants on historical data
- 2. optimize the upper-bound
- 3. run federated averaging with the resulting weights

#### **Experimental Results**

### Scenario with large number of historical samples (50%)





CIFAR-10

CIFAR-100

#### **Experimental Results**

#### Scenario with a few historical samples (5%)





CIFAR-10

CIFAR-100

#### Conclusion

1. Formalize the problem of federated learning for data streams

2. Theoretical analysis reveals a new generalization-optimization tradeoff

3. Practical algorithm to decide the relative importance samples

# Questions