

IDAO 2022 ML bootcamp: Graph Machine Learning

Ildus Sadrtdinov Lecturer, intern researcher HSE University

MACHINE LEARNING TASKS

DATA

- Tabular
- **Images**
- **Texts**
- Audios
- Graphs

- Linear models
- **Decision trees**
- **Gradient boosting**
- **Neural networks**

EXAMPLES OF NON-TRIVIAL DATA

Source code datasets


```
1 #include <iostream>
2
3 int main(){
4     std::cout << "Hello, World!" << std::endl;
    return 0;
6 }
7</pre>
```

HOW TO PROCESS?

CLASSICAL SOLUTIONS

- Come from earlier works in particular field
- Usually heuristic

DATA-SPECIFIC ML ALGORITHMS

- Often are state-of-the-art solutions
- May be rather complicated

FEATURE EXTRACTION + CLASSICAL ML

- Relatively easy to implement
- Most likely perform great (good baselines)

DATA STRUCTURE

SEQUENCES (1D)

- **Texts**
- **Audios**
- Time series

GRID (2D)

- **Images**
- **Spectrograms**

ARBITRARY (?D)

Graphs

WHAT IS A GRAPH?

Arbitrary set of nodes (vertices)

Connections between them (edges)

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}) - \text{graph}$$

 $\mathcal{V} - \text{set of vertices}$
 $\mathcal{E} \subseteq V \times V - \text{set of edges}$

ADJACENCY MATRIX

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 0 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 4 & 0 & 1 & 0 & 0 \\ 5 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$
 – graph
 A – adjacency matrix

EXAMPLES OF GRAPHS

SOCIAL NETWORKS

KNOWLEDGE GRAPH

EXAMPLES OF GRAPHS

TRANSPORT NETWORKS

MOLECULES

GRAPH TASKS

- Link prediction
- Node recommendation

role determination

GRAPH-FOCUSED

- Graph classification
- Graph generation
- Estimating global graph properties

GRAPH MACHINE LEARNING

SUPERVISED LEARNING

Predict particular labels for graphs or nodes

REINFORCEMENT LEARNING

Interpret graph as an interaction environment

REPRESENTATION LEARNING

• Extract informative features describing graphs or nodes

GENERATIVE MODELS

Generate new graphs with specific features

REPRESENTATION LEARNING

EMBEDDING NODES

PROXIMITY MEASURE

We can define some distance function between the nodes in our graph

$$s_{\mathcal{G}}(\bigcirc, \bigcirc) = 1$$

$$s_{\mathcal{G}}\left(\bigcirc,\bigcirc\right)=2$$

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}) - \text{graph}$$

 $s_{\mathcal{G}} - \text{proximity measure}$

ENCODER-DECODER APPROACH

- Encoder map a node to some highly dimensional embedding vector
- Decoder take node embeddings and approximate the proximity between these nodes

$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$
 – graph $s_{\mathcal{G}}$ – proximity measure v_i, v_j – graph nodes z_i, z_j – node embeddings

$$ENC(\bigcirc) =$$

$$ENC(v_i) = z_i$$

DEC
$$\left(\text{ENC}(v_i), \text{ENC}(v_j) \right) =$$

$$= \text{DEC} \left(z_i, z_j \right) \approx s_{\mathcal{G}}(v_i, v_j)$$

HOW TO TRAIN?

We need a loss function, e.g. MSE:

$$\left(\operatorname{DEC}(z_i, z_j) - s_{\mathcal{G}}(v_i, v_j)\right)^2$$

 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ – graph $s_{\mathcal{G}}$ – proximity measure v_i, v_j – graph nodes z_i, z_j – node embeddings

Considering all nodes of the graph:

$$\mathcal{L} = \sum_{i,j} \left(\text{DEC}(z_i, z_j) - s_{\mathcal{G}}(v_i, v_j) \right)^2 =$$

$$= \sum_{i,j} \left(\text{DEC} \left(\text{ENC}(v_i), \text{ENC}(v_j) \right) - s_{\mathcal{G}}(v_i, v_j) \right)^2 \to \min_{\text{ENC,DEC}}$$

METHODS

Туре	Method	Decoder	Proximity measure	Loss function (ℓ)
Matrix factorization	Laplacian Eigenmaps [4] Graph Factorization [1] GraRep [9] HOPE [44]	$egin{aligned} \ \mathbf{z}_i - \mathbf{z}_j\ _2^2 \ \mathbf{z}_i^ op \mathbf{z}_j \ \mathbf{z}_i^ op \mathbf{z}_j \ \mathbf{z}_i^ op \mathbf{z}_j \end{aligned}$	general $\mathbf{A}_{i,j}$ $\mathbf{A}_{i,j}, \mathbf{A}_{i,j}^2,, \mathbf{A}_{i,j}^k$ general	$\begin{aligned} & \text{DEC}(\mathbf{z}_i, \mathbf{z}_j) \cdot s_{\mathcal{G}}(v_i, v_j) \\ & \ \text{DEC}(\mathbf{z}_i, \mathbf{z}_j) - s_{\mathcal{G}}(v_i, v_j) \ _2^2 \\ & \ \text{DEC}(\mathbf{z}_i, \mathbf{z}_j) - s_{\mathcal{G}}(v_i, v_j) \ _2^2 \\ & \ \text{DEC}(\mathbf{z}_i, \mathbf{z}_j) - s_{\mathcal{G}}(v_i, v_j) \ _2^2 \end{aligned}$
Random walk	DeepWalk [46]	$\frac{e^{\mathbf{z}_{i}^{\top}\mathbf{z}_{j}}}{\sum_{k\in\mathcal{V}}e^{\mathbf{z}_{i}^{\top}\mathbf{z}_{k}}}$	$p_{\mathcal{G}}(v_j v_i)$	$-s_{\mathcal{G}}(v_i, v_j) \log(\text{DEC}(\mathbf{z}_i, \mathbf{z}_j))$
	node2vec [27]	$\frac{e^{\mathbf{z}_{i}^{\top}\mathbf{z}_{j}}}{\sum_{k\in\mathcal{V}}e^{\mathbf{z}_{i}^{\top}\mathbf{z}_{k}}}$	$p_{\mathcal{G}}(v_j v_i)$ (biased)	$-s_{\mathcal{G}}(v_i, v_j) \log(\text{DEC}(\mathbf{z}_i, \mathbf{z}_j))$

 v_i – graph nodes z_i – node embeddings A – adjacency matrix $p_{\mathcal{G}}(v_j|v_i)$ – random walk probability

SOFTMAX OPERATOR

NODE2VEC

$$p_{\mathcal{G}}(v_j|v_i) \approx \operatorname{Softmax}(z_1^T z_i, \dots, z_n^T z_i)_j =$$

$$= \frac{e^{z_i^T z_j}}{e^{z_1^T z_i} + \dots + e^{z_n^T z_i}}$$

1. Run random walks to obtain co-occurrence statistics.

2. Optimize embeddings based on co-occurrence statistics.

NODE2VEC

NODE2VEC

- Encode structural information about the nodes (random walk statistics)
- + Relatively easy to train
- No shared parameters: individual embedding for each node
- Node metadata is not used
- No embeddings for new nodes

NEIGHBORHOOD AUTOENCODERS

$$s_i: s_{ij} = s_{\mathcal{G}}(v_i, v_j)$$

$$\mathrm{DEC}\left(\mathrm{ENC}(s_i)\right) = \mathrm{DEC}(z_i) \approx s_i$$

 $\mathcal{G} = (\mathcal{V}, \mathcal{E}) - ext{graph}$ $v_i - ext{graph nodes}$ $s_i - ext{neighborhood vectors}$ $z_i - ext{node embeddings}$

NEIGHBORHOOD AUTOENCODERS

Still no embeddings for new nodes

Combine:

Algorithm 1: Neighborhood-aggregation encoder algorithm. Adapted from [28]. **Input**: Graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$; input features $\{\mathbf{x}_v, \forall v \in \mathcal{V}\}$; depth K; weight matrices $\{\mathbf{W}^k, \forall k \in [1, K]\}$; non-linearity σ ; differentiable aggregator functions {AGGREGATE_k, $\forall k \in [1, K]$ }; neighborhood function $\mathcal{N}: v \to 2^{\mathcal{V}}$ **Output:** Vector representations \mathbf{z}_v for all $v \in \mathcal{V}$ $\mathbf{h}_{v}^{0} \leftarrow \mathbf{x}_{v}, \forall v \in \mathcal{V}$; 2 for k = 1...K do for $v \in \mathcal{V}$ do $\mathbf{h}_{\mathcal{N}(v)}^k \leftarrow \text{AGGREGATE}_k(\{\mathbf{h}_u^{k-1}, \forall u \in \mathcal{N}(v)\});$ $\mathbf{h}_v^k \leftarrow \sigma\left(\mathbf{W}^k \cdot \text{combine}(\mathbf{h}_v^{k-1}, \mathbf{h}_{\mathcal{N}(v)}^k)\right)$ end $\mathbf{h}_{v}^{k} \leftarrow \text{NORMALIZE}(\mathbf{h}_{v}^{k}), \forall v \in \mathcal{V}$ 8 end

9 $\mathbf{z}_v \leftarrow \mathbf{h}_v^K, \forall v \in \mathcal{V}$

- The parameter matrices W_k are shared for different nodes
- Node embeddings are build upon node metadata
- + It is possible to handle new nodes

FROM NODES TO GRAPHS

Aggregate node embeddings, e.g. take the mean vector:

$$z_{\mathcal{G}} = \frac{1}{|\mathcal{V}|} \sum_{i} z_{i}$$

Express graph embedding as a sequence of node embeddings:

$$z_{\mathcal{G}} = (z_1, \cdots, z_{|\mathcal{V}|})$$

More complicated techniques using Graph Neural Networks

$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$
 – graph $z_{\mathcal{G}}$ – graph embedding z_i – node embeddings

SUMMARY

- Node2Vec: embeddings preserve random walk information
- Neighborhood autoencoder: embedding is a compressed neighborhood vector
- Neighborhood aggregation: combine features iteratively over the neighborhood of each node

LITERATURE

- Deep Learning on Graphs: A Survey Ziwei Zhang, Peng Cui and Wenwu Zhu, https://arxiv.org/pdf/1812.04202.pdf
- Representation Learning on Graphs: Methods and Applications William L.
 Hamilton, Rex Ying and Jure Leskovec, https://arxiv.org/pdf/1709.05584.pdf
- node2vec: Scalable Feature Learning for Networks Aditya Grover and Jure Leskovec, https://arxiv.org/pdf/1607.00653.pdf
- Inductive Representation Learning on Large Graphs William L. Hamilton,
 Rex Ying and Jure Leskovec, https://arxiv.org/pdf/1706.02216.pdf