Support Vector Machine

Foundations of Data Analysis 04/14/2020

Slide credits to Andrew Moore: http://www.cs.cmu.edu/~awm/tutorials

$$f(x, w) = sign(w \cdot x)$$

- denotes +1
- ° denotes -1

$$f(x, w) = sign(w \cdot x)$$

- denotes +1
- ° denotes -1

$$f(x, w) = sign(w \cdot x)$$

- denotes +1
- ° denotes -1

$$f(x, w) = sign(w \cdot x)$$

- denotes +1
- ° denotes -1

$$f(x, w) = sign(w \cdot x)$$

- denotes +1
- ° denotes -1

$$f(x, w) = sign(w \cdot x)$$

- denotes +1
- ° denotes -1

Which is the best?

$$f(x, w) = sign(w \cdot x)$$

- denotes +1
- ° denotes -1

Define the margin of a linear classifier as the width that the boundary could be increased before hitting a datapoint.

Maximum Margin

 $f(x, w) = sign(w \cdot x)$

- denotes +1
- ° denotes -1

Maximum margin: the widest margin that maximally separates two data groups.

Support Vector Machines

Maximum margin linear classifier is the simplest kind of SVM (LinearSVM)

Specifying a line and margin

- How do we represent this mathematically?
- ...in m input dimensions?

Specifying a line and margin

Class +1 if $w \cdot x >= 1$ $-1 \qquad \text{if} \quad w \cdot x <= -1$ embarrassing if $-1 < w \cdot x < 1$ points

How to compute M?

- Let x- be any point on the minus plane
- Let x+ be the closest plus-plane-point to x-
- Claim: x⁺ = x⁻ + λ w for some value of λ. Why?

- Let x- be any point on the minus plane
- Let x+ be the closest plus-plane-point to x-
- Claim: x+ = x- + λ w for some value of λ. Why?

The line from **x**- to **x**+ is perpendicular to the planes. So to get from **x**- to **x**+ travel some distance in direction w.

What we know:

- $w \cdot x^+ = +1$
- $\mathbf{w} \cdot \mathbf{x} = -1$
- $x^+ = x^- + \lambda w$
- $|x^+ x^-| = M$

What we know:

•
$$w \cdot x^+ = +1$$

•
$$\mathbf{w} \cdot \mathbf{x}^{-} = -1$$

•
$$x^+ = x^- + \lambda w$$

•
$$|x^+ - x^-| = M$$

$$w \cdot x - + b + \lambda w \cdot w = 1$$

$$-1 + \lambda w \cdot w = 1$$

$$\Rightarrow \lambda = \frac{2}{\mathbf{W} \cdot \mathbf{W}}$$

What we know:

•
$$w \cdot x^+ = +1$$

•
$$w \cdot x^- = -1$$

•
$$x^+ = x^- + \lambda w$$

•
$$|\mathbf{x}^+ - \mathbf{x}^-| = M$$
 $\lambda = \frac{2}{\mathbf{W} \cdot \mathbf{W}}$

$$M = |x^+ - x^-| = |\lambda w| =$$

$$=\lambda \mid \mathbf{w} \mid = \lambda \sqrt{\mathbf{w}.\mathbf{w}}$$

$$= \frac{2\sqrt{\mathbf{w}.\mathbf{w}}}{\mathbf{w}.\mathbf{w}} = \frac{2}{\sqrt{\mathbf{w}.\mathbf{w}}}$$

Learning the Maximum Margin Classifier

Use optimization to search the space of W to find the widest margin that matches all the data points.

Simple 1-D Example

What would SVMs do?

Simple 1-D Example

Not a big surprise

Harder 1-D Example

What can SVM do about this?

Harder 1-D Example

- Permit non-linear
 basis functions made linear regression
- Let's permit them here too

$$\mathbf{Z}_k = (x_k, x_k^2)$$

Nonlinear SVMs: Feature Space

 General idea: the original input space can always be mapped to some higher-dimensional feature space where the training set is separable:

Nonlinear SVM Basis Functions

 $\Phi(x_k)$ = (polynomial terms of \mathbf{x}_k of degree 1 to \mathbf{q})

 $\Phi(x_k) = ($ sigmoid functions of $\mathbf{x}_k)$

 $\Phi(x_k) = ($ Gaussian radial basis functions of \mathbf{x}_k)

