Fundamentos

Teoria dos Conjuntos

Prof. Edson Alves

Faculdade UnB Gama

Sumário

Teoria dos Conjuntos

Termos Primitivos

Os termos primitivos da Teoria dos Conjuntos são:

- 1. elemento
- 2. conjunto

Axioma

Se a é um elemento e A é um conjunto, então "a pertence a A " é uma proposição.

Representação de Conjuntos

Diagramas de Venn

Figura: Conjunto dos dias da semana

Representação de Conjuntos

Enumeração de seus elementos

1. Conjunto de constantes notáveis

$$A = \{\pi, e, 0, -1\}$$

2. Conjunto das notas musicais

$$B = \{\mathsf{d\acute{o}}, \ \mathsf{r\acute{e}}, \ \mathsf{mi}, \ \mathsf{f\acute{a}}, \ \mathsf{sol}, \ \mathsf{l\acute{a}}, \ \mathsf{si}\}$$

3. Conjunto dos números primos

$$C = \{2, 3, 5, 7, 11, 13, 17, \ldots\}$$

4. Conjuntos dos números inteiros pares

$$D = \{\ldots, -4, -2, 0, 2, 4, \ldots\}$$

5. Conjunto vazio: ∅

Representação de Conjuntos

Propriedades de seus elementos

1. Conjunto dos aprovados em Paradigmas de Programação:

$$A = \{ a \in M \mid \text{nota}(a) \ge 50 \},$$

onde M é o conjunto dos alunos matriculados na disciplina.

2. Conjunto dos anos bissextos:

$$B = \{n \in \mathbb{N} \mid (4 \text{ divide } n \ \land \neg (100 \text{ divide } n)) \veebar (400 \text{ divide } n)\}$$

3. Conjunto dos números compostos:

$$C = \{ n \in \mathbb{Z} \mid \exists d \in \mathbb{Z} \text{ tal que } 1 < d < n \text{ e } d \text{ divide } n \}$$

4. Conjunto dos divisores de n!:

$$D(n) = \{d \in \mathbb{N} \mid d \text{ divide } n!\}$$

Fundamentos

Subconjuntos

Subconjuntos

Seja A um conjunto. Um conjunto B é subconjunto de A se, para qualquer $b \in B$, $b \in A$. Notação: $B \subset A$.

Igualdade de conjuntos

Dois conjuntos A e B são iguais se, e somente se, $A \subset B$ e $B \subset A$.

Fundamentos Prof Edson Alves

Operações em conjuntos

Operações em conjuntos

Sejam A e B dois conjuntos. São conjuntos

1. a união

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

2. a interseção

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

3. a diferenca

$$A - B = \{x \mid x \in A \land \neg (x \in B)\}\$$

Fundamentos Prof Edson Alves

Referências

- 1. HALE, M. Essentials of Mathematics: Introduction to Theory, Proof, and the Professional Culture, Mathematical Association of America, 2003. (eBrary)
- 2. Wikipédia. Leap year, acesso em 01/01/2020.