Formuleblad Statistiek (2024-2025)

Statistiek deel 1

Steekproefgemiddelde (gegeven een steekproef met n uitkomsten x_1, x_2, \ldots, x_n)

$$\overline{x} = \frac{\sum_{i} x_i}{n} = \frac{x_1 + x_2 + \ldots + x_n}{n}$$

Steekproefvariantie:

$$s^{2} = \frac{\sum_{i} (x_{i} - \overline{x})^{2}}{n - 1} = \frac{(x_{1} - \overline{x})^{2} + (x_{2} - \overline{x})^{2} + \dots + (x_{n} - \overline{x})^{2}}{n - 1}$$
 (optie 1)

Rekenregels kansrekening:

$$P(A \text{ of } B) = P(A) + P(B) - P(A \text{ en } B) \qquad \text{(optelregel)}$$

$$P(B) = 1 - P(\text{niet } B) \qquad \text{(complementregel)}$$

$$P(A \mid B) = \frac{P(A \text{ en } B)}{P(B)} \qquad \text{(conditionele kansen)}$$

Discrete en continue kansverdelingen:

	Discrete kansvariabelen	Continue kansvariabelen
Uitkomstenruimte:	Eindig / aftelbaar oneindig	Overaftelbaar oneindig
Toepassingen:	Tellen / categoriseren	Meten
Kansbegrip:	$\begin{tabular}{ll} & \text{Kansfunctie } p(k) = P(X=k) \\ \end{tabular}$	\mid Kansdichtheidsfunctie $f(x)$
CDF:	$\mid F(k) = P(X \le k) = \sum_{\ell:\ell \le k} p(\ell)$	$F(x) = P(X \le x) = \int_{-\infty}^{x} f(y) dy$
Verwachtingswaarde:	$ E[X] = \sum_{k} k \cdot P(X = k) $	$ E[X] = \int x \cdot f(x) \ dx$
Variantie:	$\big \operatorname{Var}(X) = \sum_k (k \! - \! E[X])^2 \! \cdot \! P(X = k)$	$ \operatorname{Var}(X) = \int (x - E[X])^2 \cdot f(x) \ dx$
Standaardafwijking:	$ \mid \sigma(X) = \sqrt{\operatorname{Var}(X)} $	$\sigma(X) = \sqrt{\operatorname{Var}(X)}$

Speciale kansverdelingen:

- $X \sim \text{Binomiaal}(n, p)$: tellen van aantal successen bij onafhankelijke kansexperimenten met twee uitkomsten (Bernoulli-experimenten): succes / mislukking.
 - n: aantal Bernoulli-experimenten
 - p: succeskans per experiment
- $X \sim \text{Poisson}(\lambda \cdot t)$: tellen van aantal "gebeurtenissen" in een "interval" van tijd / ruimte.
 - λ : gemiddeld aantal gebeurtenissen per eenheid van tijd / ruimte.
 - t: aantal eenheden van tijd / ruimte van het interval → Voorbeeld: als "dag" de tijdseenheid is, dan bestaat "week" uit t = 7 tijdseenheden.
- $T \sim \text{Exponentieel}(\lambda)$: meten van de tijd / ruimte tot de volgende gebeurtenis.
 - λ : gemiddeld aantal gebeurtenissen per eenheid van tijd / ruimte.

Verwachtingswaarde en variantie van veelgebruikte kansverdelingen:

Verdeling	Kans(dichtheids)functie	CDF	E(X)	$\operatorname{Var}(X)$			
Discreet							
Uniform(a,b)	$p(k) = \frac{1}{b-a+1} \\ (k = a, a+1, \dots, b)$	$F(k) = \begin{cases} 0 & x < a \\ \frac{k-a+1}{b-a+1} & a \le k < b \\ 1 & k \ge b \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a+1)^2-1}{12}$			
Binomiaal (n, p)	$p(k) = \binom{n}{k} p^k (1-p)^{n-k}$	$F(k) = \sum_{i=0}^{k} {n \choose i} p^{i} (1-p)^{n-i}$	np	np(1-p)			
Poisson(λ)	$p(k) = e^{-\lambda} \cdot \frac{\lambda^k}{k!}$	$F(k) = \sum_{i=0}^{k} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}$	λ	λ			
Continuous							
Uniform (a,b)	$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \text{elders.} \end{cases}$	$F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x < b \\ 1, & x \ge b \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$			
Exponentieel(λ)	$f(x) = \lambda e^{-\lambda x}, x \ge 0$	$F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0\\ 0, & x < 0 \end{cases}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$			

Veelgebruikte functies op de grafische rekenmachine

Type vraag	TI-84 Plus	Casio			
Continue kansverdeling (willekeurig)					
$P(a \le X \le b)$	$\int_{a}^{b} f(x) dx$	$\int_a^b f(x) dx$			
$X \sim \mathbf{Binomiaal}(n, p)$					
$P(X = k)$ $P(X \le k)$					
$X \sim N(\mu, \sigma)$					
$P(a \le X \le b)$ Grenswaarde g zodat $P(X \le g) = p$?					
$X \sim \mathbf{Poisson}(\lambda)$					
$P(X = k)$ $P(X \le k)$					

z-score:

$$z = \frac{x - \mu}{\sigma}$$

Centrale limietstelling: Gegeven n kansvariabelen X_1, X_2, \ldots, X_n die onderling onafhankelijk zijn en dezelfde kansverdeling hebben met een verwachtingswaarde μ en standaardafwijking σ , dan geldt (bij benadering) dat

- de som $\sum X = X_1 + X_2 + \ldots + X_n$ normaal verdeeld is met $E[\sum X] = n \cdot \mu$ en $\sigma(\overline{X}) = \sqrt{n} \cdot \sigma$.
- het gemiddelde $\overline{X} = \frac{X_1 + X_2 + \ldots + X_n}{n}$ normaal verdeeld is met $E[\overline{X}] = \mu$ en $\sigma(\overline{X}) = \frac{\sigma}{\sqrt{n}}$.

Statistiek deel 2:

Betrouwbaarheidsintervallen voor het gemiddelde μ

Geval 1: σ bekend

 $100 \cdot (1 - \alpha)\%$ -betrouwbaarheidsinterval (BI) voor μ :

$$z_{\alpha/2} = \text{InvNorm}(\text{opp} = 1 - \alpha/2; \mu = 0; \sigma = 1)$$
$$[\overline{x} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}; \overline{x} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}]$$

Minimale steekproefomvang voor $100 \cdot (1 - \alpha)\%$ -BI als μ maximaal $\pm a$ mag afwijken:

$$n \ge \left(\frac{z_{\alpha/2} \cdot \sigma}{a}\right)^2$$

Geval 2: σ NIET bekend

 $100 \cdot (1-\alpha)\%$ -betrouwbaarheidsinterval (BI) voor μ :

$$t = \text{InvT}(\text{opp} = 1 - \alpha/2; \text{df} = n - 1)$$
$$[\overline{x} - t \cdot \frac{s}{\sqrt{n}}; \overline{x} + t \cdot \frac{s}{\sqrt{n}}]$$

Minimale steekproefomvang voor $100 \cdot (1 - \alpha)\%$ -BI als μ maximaal $\pm a$ mag afwijken:

GR tabel (voor verschillende
$$n$$
): $\frac{s}{\sqrt{n}} \cdot \operatorname{tcdf}(\operatorname{opp} = 1 - \alpha/2; \operatorname{df} = n - 1) \le a$

NB: zodra $n \geq 30$, vallen de normale en de t-verdeling nagenoeg samen. Je mag dan de schatting s gebruiken als σ , zelfs als σ zelf niet bekend is.

Betrouwbaarheidsintervallen voor de binomiale succeskans p

Betrouwbaarheidsinterval voor p (Clopper-Pearson): Gegeven n Bernoulli-experimenten, waarvan k successen.

- 1. Bereken de succeskans p_1 zodat geldt $P(X \le k) = \operatorname{binomcdf}(n; p; k) = \alpha/2$
- 2. Bereken de succeskans p_2 zodat geldt $P(X \ge k) = 1 \text{binompdf}(n; p; k 1) = \alpha/2$
- 3. De berekende waarden voor p_1 en p_2 zijn de grenzen van het Clopper-Pearson interval.

Hypothesetoetsen

Stappenplan hypothesetoetsen

- 1. Definieer de nulhypothese H_0 en de alternatieve hypothese H_1 .
- 2. Bepaal het significantieniveau α (kans op Type-I fout, onterecht H_0 verwerpen)
- 3. Verzamel data voor de toetsingsgrootheid
- 4. Bereken de toetsingsgrootheid
- 5. Geef een conclusie (met behulp van het kritieke gebied / *p*-waarde) en vertaal deze terug naar de originele probleemcontext.

Drie typen hypothesetoetsen: linkszijdig, tweezijdig, rechtszijdig

 H_0 : $\mu \ge 0$ vs. H_1 : $\mu < 0$ (linkszijdige hypothesetoets)

 H_0 : $\mu = 0$ vs. H_1 : $\mu \neq 0$ (tweezijdige hypothesetoets)

 H_0 : $\mu \le 0$ vs. H_1 : $\mu > 0$ (rechtszijdige hypothesetoets)

NB: voor elke kansverdeling (normaal, t, χ^2 , F) kun je het kritieke gebied berekenen door met de GR solver een vergelijking met α (links- of rechtszijdig) of twee vergelijkingen met $\alpha/2$ (tweezijdig) op te lossen. De p-waarde (overschrijdingskans) bepaal je met de CDF-functie van de desbetreffende kansverdeling.

Soorten toetsen

Soort toets	Toetsingsgrootheid	Kansverdeling (onder H_0)			
Toetsen voor het gemiddelde $\mu \le \mu_0$ of $\mu = \mu_0$ of $\mu \ge \mu_0$					
z -toets (σ bekend)	\overline{X}	$N(\mu_0; \frac{\sigma}{\sqrt{n}})$			
t -toets (σ onbekend)	$T = \frac{\overline{X} - \mu_0}{\frac{s}{\sqrt{n}}}$	$N(\mu_0; \frac{\sigma}{\sqrt{n}})$ $t(df = n - 1)$			
Chikwadraattoetsen (χ^2)					
Onafhankelijkheid	$X^2 = \sum_{i,j} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$	$\chi^2(df = (\#rijen-1) \cdot (\#kolommen-1))$			
Aanpassing (goodness-of-fit)	$X^2 = \sum_i \frac{(O_i - E_i)^2}{E_i}$	$\chi^2(\mathrm{df}=(\#\mathrm{categorie\ddot{e}n}\text{-}1))$			

Verschiltoetsen (op basis van twee populaties A en B)

$$F\text{-toets: }\sigma_A^2 = \sigma_B^2 \qquad \qquad F = \frac{S_1^2}{S_2^2} \qquad \qquad F(df1, df2)$$

$$z\text{-toets} \qquad \qquad V = \overline{X_A} - \overline{X_B} \qquad \qquad N\left(\mu_A - \mu_B; \sqrt{\frac{\sigma_A^2}{n} + \frac{\sigma_B^2}{m}}\right)$$

$$t\text{-toets }(\sigma_A^2 = \sigma_B^2) \qquad \qquad T = \frac{(\overline{x_A} - \overline{X_B}) - (\mu_A - \mu_B)}{\sqrt{\frac{S_P^2}{n} + \frac{S_P^2}{m}}} \qquad \qquad t(df = n + m - 2)$$

$$t\text{-toets }(\sigma_A^2 \neq \sigma_B^2) \qquad \qquad T = \frac{(\overline{X_A} - \overline{X_B}) - (\mu_A - \mu_B)}{\sqrt{\frac{S_A^2}{n} + \frac{S_B^2}{m}}} \qquad \qquad t(df = \min(n - 1; m - 1))$$

Beslisboom verschiltoetsen

Correlatie en regressie

Correlatiecoëfficiënt van Pearson:

$$r = \frac{\overline{xy} - \overline{x} \cdot \overline{y}}{\sqrt{(\overline{x^2} - \overline{x}^2) \cdot (\overline{y^2} - \overline{y}^2)}}$$

Correlatiecoëfficiënt van Spearman:

$$r_s = 1 - \frac{6\sum_i d_i^2}{n^3 - n}$$

Coëfficiënten van de lineaire regressielijn $Y = a + b \cdot X$:

$$b = \frac{\overline{xy} - \overline{x} \cdot \overline{y}}{\overline{x^2} - (\overline{x})^2}$$
$$a = \overline{y} - b \cdot \overline{x}$$

Schatting van de variantie van de storingsterm ε :

$$s_{\varepsilon} = \frac{\sum e_i^2}{n-2} = \frac{\sum (y_i - (a+b \cdot x_i))^2}{n-2} = \sqrt{\frac{n}{n-2} \cdot (\overline{y^2} - a \cdot \overline{y} - b \cdot \overline{xy})}$$

 $100 \cdot (1 - \alpha)$ %-betrouwbaarheidsinterval voor de gemiddelde Y bij gegeven $X = x_0$:

$$t = \text{InvT}(\text{opp} = 1 - \alpha/2; \text{df} = n - 2)$$

$$s_{\mu} = s_{\varepsilon} \cdot \sqrt{\frac{1}{n} \cdot \left(1 + \frac{(x_0 - \overline{x})^2}{\overline{x^2} - \overline{x}^2}\right)}$$

$$[a+b\cdot x_0-t\cdot s_\mu;a+b\cdot x_0+t\cdot s_\mu]$$

 $100 \cdot (1 - \alpha)\%$ -betrouwbaarheidsinterval voor Y bij gegeven $X = x_0$:

$$t = \text{InvT}(\text{opp} = 1 - \alpha/2; \text{df} = n - 2)$$

$$s_f = s_{\varepsilon} \cdot \sqrt{1 + \frac{1}{n} \cdot \left(1 + \frac{(x_0 - \overline{x})^2}{\overline{x^2} - \overline{x}^2}\right)}$$

$$[a+b\cdot x_0-t\cdot s_f;a+b\cdot x_0+t\cdot s_f]$$