Name :	
Roll No.:	•••••
Invigilator's Signature :	-
CS/B.Tech (EIE)/SEM-3	
2010-11	
DIGITAL INTEGRATED	CIRCUITS
Time Allotted : 3 Hours	Full Marks : 70
The figures in the margin indic	ate full marks.
Candidates are required to give their ans as far as practic	
GROUP - A	
(Multiple Choice Type Q	juestions)
1. Choose the correct alternatives	for any ten of the
following:	$10\times1=10$
i) ASCII code is	
a) 4 bit code	
b) 6 bit code	
c) 7 bit code	
d) 8 bit code.	
	IOD manuscription of the
ii) The minimum of bits in the E	SCD representation of the
decimal number 25 is	
a) 5	4
c) 3	6. 7
3002	[Turn ove

iii)	Exc	ess-3 code repres	entation of	decimal 59 is	
	a)	01100010	b)	00111110	
	c)	10001100	d)	none of these.	
iv)	Hex	adecimal equival	ent of (26.2	5) ₁₀ is	**
	a)	A6.4	b)	1A.4	
	c)	FA.4	d)	none of these.	
v)	The	number of 1's	in the bina	ry representation	of the
	dec	imal number 11	is		
	a)	5	b)	4	
	c)	3	d)	none of these.	· · · · ·
vi)	Wit	h the same num	ber of flip-	flops where the J	lohnson
	cou	ınter has <i>N</i> state	s and the r	ing counter has M	M states
	are				
	a)	N > M	b)	N = M	
	c)	N < M	d)	none of these.	
vii)	The	e minimum num	ber of NOR	gates required to	design
	one	e XOR gate is			
	a)	5	b)	4	
	c)	7	d)	none of these.	
viii) A d	lecoder with enal	ole input ca	n be used as	
	a)	encoder	b)	parity generato	r
	c)	multiplexer	d)	demultiplexer.	
002	× .		2		

ix)	The logic family that gives	s fastest switching is		
	a) CMOS			
* - 2* 4*	b) ECL			
	c) Schottky TTL			
	d) Low power Schottky	TTL.		
x)	A 64:1 MUX consists of			
	a) 54 no. of 2:1 MUX			
	b) 63 no. of 2:1 MUX			
	c) 45 no. of 2:1 MUX			
	d) 36 no. of 2:1 MUX.			
xi)	How many RAM chips of size (256k*1bit) are required			
	to build 1M byte memory	7?		
	a) 24	b) 10		
	c) 32	d) 8.		
xii)	Which one is the fastest	logic in logic families ?		
	a) RTL	b) TTL		
	c) ECL	d) none of these.		
xiii)) Binary division 10010.10)11 ÷ 11.01 yields		
	a) 110.11	b) 100.11		
	c) 101.10	d) 101.11		
3002	3	[Turn over		

xiv) The value of 2^5 in octal system is

a) 40

b) 20

c) 400

d) 200.

xv) Excess-3 code is also known as

- a) weighted code
- b) self complementing code
- c) algebraic code
- d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. a) Design half-adder circuit using NAND gate only.
 - b) Design full adder circuit using half-adder and OR gate only.
- 3. Draw the output waveform of J-K flip-flop for input sequence

J = 1011010 and K = 0110110, if

- a) the flip-flop is positive edge-triggered
- b) the flip-flop is negative edge-triggered.

3002

1

- 4. Explain BCD addition with proper diagram and proper example.
- 5. a) Design 8:1 MUX using 4:1 MUX and 2:1 MUX.
 - b) What is priority encoder?
- 6. Prove that:

a)
$$A + \overline{AB} + \overline{ABC}D + \overline{ABC}D = A + B + C + D$$

b) $AB + \overline{AC} + A\overline{B}C(AB + C) = 1$

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

7. a) Simplify the following Boolean function using Quine - McCluskey method:

$$Y(A, B, C, D) = \Sigma m(1, 2, 3, 5, 9, 12, 14, 15) + d(4, 8, 11)$$

- b) Draw the logic circuit of S-R flip-flop using D flip-flop.
- c) What are the advantages of D flip-flop over S-R flip-flop? 8+5+2

3002

5

[Turn over

- 8. a) Using the K-map method, simplify the following Boolean function and obtain
 - i) SOP &
 - ii) POS expressions for

$$Y = \Sigma m (0, 2, 3, 6, 7) + \Sigma d (8, 10, 11, 15)$$

- b) Design a Mod-5 synchronous counter using J-K flip-flop.
- c) What do you mean by Race-around condition ? 6 + 7 + 2
- 9. a) Implement a full-subtractor circuit using PLA having three inputs and two outputs.
 - b) Design 8:1 Multiplexer using NAND gates only.
 - c) Implement the following function using 3-to-8 line decoder:

$$Y(A, B, C) = \Sigma m(4, 5, 6, 7)$$
 6+6+3

- 10. a) Design a Gray code to binary converter using suitable logic gates.
 - b) Explain addition and subtraction for 1's complement using 4-bit parallel adder.

3002

- c) What are the differences between a latch and a flip-flop?
- d) What are the differences between Edge-triggered and level-triggered flip-flop? 7 + 4 + 2 + 2
- 11. Answer any three of the following:

 3×5

- a) Even parity checker and generator
- b) Successive approximation register type ADC
- c) PAL
- d) BCD to Excess-3 converter
- e) R-2R ladder type D/A converter
- f) Universal gate.

3002