PCI

ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

			' '
(51) Classification internationale des brevets 5 : C12N 15/12, C07K 15/00		(11) Numéro de publication internationale:	WO 93/00430
C12P 21/08, C12Q 1/68 C12N 1/21, G01N 33/53, 33/574 C12P 19/34	A1	(43) Date de publication internationale:	7 janvier 1993 (07.01.93)

(21) Numéro de la demande internationale: PCT/FR92/00589

(22) Date de dépôt international: 25 juin 1992 (25.06.92)

(30) Données relatives à la priorité: 91/07807 25 juin 1991 (25.06.91) FR

(71) Déposant (pour tous les Etats désignés sauf US): CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (SNRS) [FR/FR]; 15, quai Anatole-France, F-75700 Paris (FR).

(72) Inventeurs; et
(75) Inventeurs/Déposants (US seulement): PERBAL, Bernard [FR/FR]; 1, boulevard Beethoven, F-78280 Guyancourt (FR). MARTINERIE, Cécile [FR/FR]; 153, chemin de la Hunière, F-91120 Palaiseau (FR).

(74) Mandataires: PEAUCELLE, Chantal etc.; Cabinet Armengaud Ainė, 3, avenue Bugeaud, F-75116 Paris (FR).

(81) Etats désignés: CA, JP, US, brevet européen (AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LU, MC, NL, SE).

Publiée

Avec rapport de recherche internationale. Avant l'expiration du délai prévu pour la modification des revendications, sera republiée si de telles modifications sont reçues.

(54) Title: NUCLEOTIDE SEQUENCES HYBRIDIZABLE WITH THE NOV GENE OF CHICKENS

(54) Titre: SEQUENCES DE NUCLEOTIDES CAPABLES DE S'HYBRIDER AVEC LE GENE NOV DE POULE

(57) Abstract

Nucleotide sequences containing a concatenation of nucleotides which are hybridizable in stringent conditions (50 % formamide, 5XSC) with one or more sequences of the *nov* gene of chickens, wherein the cDNA of said gene comprises the nucleotide concatenation shown in the accompanying figure. These sequences may be used as probes for detecting complementary sequences to evaluate the development and/or differentiation of tumors.

(57) Abrégé

Les séquences de nucléotides de l'invention sont caractérisées en ce qu'elles renferment un enchaînement de nucléotides capable de s'hybrider, dans des conditions stringentes (50 % de formamide, 5XSC) avec une ou plusieurs séquences du gène nov de poule dont l'ADNc comporte l'enchaînement de nucléotides représenté sur la figure. Ces séquences sont utilisables comme sondes de détection de

5' logic ocusa brass sile santali line (Consumeration) consumeration (Consumeration)

séquences complémentaires pour l'évaluation du développement et/ou de la différentiation de tumeurs.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les États parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

A *P*	Autriche	FI	Finlande	MI.	Mali
АΤ		FR	France	MN	Mongolic
AU	Australie		Gabon	MR	Mauritanic
88	Barbade	GA		MW	Malawi
BE	Belgique	GB	Royaume-Uni		Pays-Bas
BF	Burkina Faso	GN	Guinée ·	NL	-
RG	Bulgarie	GR	Grece	NO	Norvēge
BJ	Bénio	HU	Hongric	PL	Pologne
BR	Brésil	1E	Irlande	RO	Roumanie
		iT	Italie	RU	Fédération de Russie
CA	Canada			SD	Soudan
CF	République Centralicaine	JP	Japon	SE	Suède
CC	Congo	KP	République populaire démocratique	-	-
CH	Suisse		de Corée	SN	Sénégal
CI	Côte d'Ivoire	KR	République de Coréc	รบ	Union soviétique
CM	Cameroun	LI	Liechtenstein	TD	Tehad
-		LK	Sri Lanka	TG	Togo
C2.	Tchécoslovaquic			US	Etats-Unis d'Amérique
DE	Allemagne	เม	Luxembourg	-	
DK	Danemark	MC	Monaco		
FC	Penaone	MG	Madagascar		

SEQUENCES DE NUCLEOTIDES, CAPABLE DE S'HYBRIDER AVEC LE GENE NOV DE POULE

L'invention a pour objet des séquences de nucléotides et les séquences d'acides aminés correspondantes. Elle concerne également l'obtention de ces séquences et leurs applications.

Il est admis depuis de nombreuses années que le néphroblastome induit par le virus auxiliaire myéloblastose aviaire (MAV) constitue un modèle animal de la tumeur de Wilms chez l'enfant. Bien que ces deux types de tumeurs aient des éthiologies différentes, aucun virus n'ayant été associé jusqu'à présent au développement du néphroblastome humain, on conçoit que l'étude, au niveau moléculaire des néphroblastomes viro-induits, permettre de caractériser des paramètres difficilement accessibles dans le système humain.

Les études des inventeurs concernant de tels néphroblastomes aviaires induits par le MAV leur ont permis de caractériser chez la poule un gène embryonnaire appelé gène nov dont l'expression s'avère stimulée à des niveaux variables dans les tumeurs, mais qui est éteint dans les cellules de rein adulte normal.

En développant leurs travaux dans ce domaine, les inventeurs ont élaboré des outils leur permettant d'étudier l'expression de gènes homologues dans les tumeurs humaines et dans certains types cellulaires.

Ainsi, en clonant les séquences désoxyribonucléiques et un ADN complémentaire correspondant au gène nov des cellules normales de poule, les inventeurs ont établi la séquence nucléotidique partielle des ADN et la séquence nucléotidique complète de l'ADNc. Des sondes moléculaires spécifiques ont été établies sur la base de cette séquence et utilisées pour détecter la présence et l'expression de gènes homologues dans divers types cellulaires humains.

L'invention a donc pour but de fournir de nouvelles séquences de nucléotides d'un gène impliqué notamment dans les cellules tumorales.

Elle a également pour but de fournir des moyens pour l'isolement de ces séquences.

L'invention vise en outre les protéines codées correspondantes et les anticorps polyclonaux et monoclonaux dirigés contre ces protéines.

L'invention vise de plus l'utilisation de ces séquences, protéines et anticorps dans des applications biologiques, en particulier dans des tests de détection.

Les séquences de nucléotides de l'invention sont caractérisées en ce qu'elles renferment un enchaînement de nucléotides capable de s'hybrider, dans des conditions stringentes (50 % de formamide 5 XSCC), avec une ou plusieurs séquences du gène nov de poule dont l'ADNC présente l'enchaînement de nucléotides (I), plus spécialement avec l'enchaînement (II).

Les enchaînements des séquences de nucléotides et de protéines auxquels il est fait référence dans la description et les revendications sont donnés en fin de description.

La séquence nucléotidique entière du clone d'ADNC nov de poule est formée de 1975 pb et comprend au moins 5 exons. Cette séquence comprend un cadre ouvert de lecture de 1,0 kb, codant pour une protéine potentielle de 32300 Da, allant du nucléotide 24 au nucléotide 1076. Ce cadre ouvert de lecture est suivi de 899 pb de séquences 3' non codantes qui contiennent deux signaux de motifs potentiels

1

de polyadénylation AATAAA en position 1914 et 1932. Ce gène nox de poule est surexprimé dans des néphroblastomes aviaires induits par MAV étudiés par les inventeurs.

Les expériences d'hybridation réalisées dans des conditions stringentes définies ci-dessus montrent que, de manière inattendue, des séquences homologues du gène noy de poule existent dans le génome humain.

Les séquences homologues isolées, chez l'homme ou l'animal, sont utilisables pour le criblage de banques réalisées à partir d'ARN-m, et permettent d'isoler des ADNC et ainsi d'identifier les autres exons des gènes de la même famille. Ces exons et les gènes qui les renferment, ainsi que les protéines codées correspondantes font également partie de l'invention.

indiqué ci-dessus On que les expériences d'hybridation étaient réalisées dans des conditions stringentes, permet d'isoler ce qui des séquences présentant de fortes homologies avec celles des sondes.

Ces expériences peuvent être également réalisées dans des conditions non stringentes, en réduisant quantité de formamide, de sel et/ou le temps de lavage, comme décrit dans "A practical guide to molecular cloning", second edition, B. Perbal, John Wiley and Sons, New York, 1988. isolées Les séguences présenteront alors une homologie moins forte que précédemment avec les séquences sondes et conduiront à l'identification d'exons présentant moins de séquences communes.

Des séquences de nucléotides de l'invention sont plus particulièrement caractérisées en ce qu'elles comprennent ou qu'elles sont formées par un enchaînement de nucléotides capables de s'hybrider, dans les conditions stringentes évoquées ci-dessus, avec au moins une partie du

deuxième exon du gène <u>nov</u> de poule qui comprend la séquence nucléotidique (III).

Les lettres indiquées dans ces enchaînements présentent les significations conventionnelles figurant dans l'ouvrage de Perbal cité plus haut.

L'invention vise en particulier les séquences nucléotidiques comportant l'information génétique pour coder pour une protéine ayant une homologie d'environ 70 % avec le fragment de protéine, correspondant au deuxième exon du gène nov de poule, répondant à la séquence (IV).

capables nucléotides de Les séquences l'enchaînement (III) ci-dessus s'hybrider avec également caractérisées en ce qu'elles comprennent au moins partie d'un fragment PstI d'environ 600 qu'obtenu à partir d'un sous-clone plasmidique, dérivé d'un clone recombinant isolé d'une banque d'ADN de placenta humain. La carte de restriction enzymatique du ainsi que celle du sous-clone plasmidique recombinant, dérivé renfermant la séquence nucléotidique en question, sont représentées sur la figure 2A.

De telles séquences sont caractérisées en ce qu'elles codent pour l'enchaînement d'acides aminés (V).

On notera la présence, dans ces séquences d'acides aminés rencontrées chez l'homme, d'une séquence consensus de liaison aux facteurs de croissance du type insuline (IGF). Cette séquence apparaît donc conservée chez l'homme.

Les différentes séquences évoquées ci-dessus comportent plus particulièrement au moins une partie de l'enchaînement nucléotidique (VI) suivant, correspondant au fragment Pst I mentionné plus haut, plus spécialement de l'enchaînement (VII).

L'enchaînement (VII) comporte 225 nucléotides avec 70 % d'homologie environ avec l'exon 2 du gène <u>nov</u> de poule.

D'autres séquences nucléotidiques de l'invention sont caractérisées en ce qu'elles sont formées par ou qu'elles comprennent un enchaînement de nucléotides capables de s'hybrider, dans les conditions stringentes évoquées ci-dessus, avec au moins une partie du troisième exon du gène nov de poule, qui comprend la séquence nucléotidique (VIII).

Des séquences du type défini ci-dessus comportent l'information génétique pour coder pour une protéine ayant une homologie d'au moins 73 % environ avec le fragment de protéine potentiel du troisième exon du gène noy de poule répondant à la séquence (IX).

Ces séquences sont également caractérisées en ce qu'elles comprennent au moins une partie d'un fragment PstI d'environ 800 pb et d'un fragment PstI de 2 kb, tels qu'obtenus à partir d'un sous-clone plasmidique dérivé d'un clone recombinant isolé d'une banque d'ADN de placenta humain. La carte de restriction enzymatique du clone recombinant ainsi que du sous-clone plasmidique dérivé renfermant la séquence nucléotidique en question est représentée sur la figure 2A.

Il s'agit en particulier de séquences comportant l'information génétique pour coder pour une protéine ayant la séquence (X) d'acides aminés. On observera que cette séquence d'acides aminés peut être mise en évidence chez l'homme.

Ces séquences d'acides aminés comportent plus particulièrement au moins une partie de l'enchaînement nucléotidique (XI), plus particulièrement de l'enchaînement (XII).

D'autres séquences de nucléotides de l'invention sont caractérisées en ce qu'elles comprennent ou qu'elles sont formées par un enchaînement de nucléotides capables de s'hybrider, dans les conditions stringentes évoquées cidessus, avec au moins une partie du quatrième exon du gène nov de poule, qui comprend la séquence nucléotidique (XIII).

L'invention vise les séquences de nucléotides comportant l'information génétique pour coder pour une protéine ayant une homologie d'environ 85 % avec le fragment de protéine correspondant au quatrième exon du gène nov de poule répondant à la séquence (XIV).

De telles séquences, capables de s'hybrider avec au moins une partie de l'enchaînement (XIII) ci-dessus, sont également caractérisées en ce qu'elles comprennent au moins une partie d'un fragment HincII d'environ 400 pb, tel qu'obtenu selon les méthodes évoquées ci-dessus pour les autres fragments de restriction (voir figure 2B).

Selon un autre aspect, ces séquences sont également caractérisées en ce qu'elles codent pour l'enchaînement d'acides aminés (XV).

Les séquences évoquées ci-dessus en rapport avec le quatrième exon du gène nov de poule comportent plus particulièrement au moins une partie de l'enchaînement nucléotidique (XVI), correspondant au fragment HincII mentionné plus haut, plus particulièrement de l'enchaînement XVII.

D'autres séquences de nucléotides encore, sont caractérisées en ce qu'elles comprennent ou qu'elles sont formées par un enchaînement de nucléotides capables de s'hybrider avec au moins une partie du premier exon du gène <u>nov</u> de poule qui comprend la séquence nucléotidique XVIII.

Selon au autre aspect, de telles séquences sont caractérisées en ce qu'elles comportent l'information génétique pour coder pour une protéine ayant une homologie d'environ 30 % avec le fragment de protéine correspondant au premier exon du gène noy de poule répondant à la séquence (XIX).

De telles séquences sont également caractérisées en ce qu'elles codent pour l'enchaînement d'acides aminés (XX).

Les séquences définies ci-dessus en rapport avec le premier exon du gène <u>nov</u> de poule comportent plus particulièrement au moins une partie de l'enchaînement nucléotidique (XXI).

D'autres séquences nucléotidiques de l'invention sont caractérisées en ce qu'elles sont formées par, ou qu'elles comprennent, un enchaînement de nucléotides capables de s'hybrider, dans les conditions stringentes évoquées ci-dessus, avec au moins une partie des troisième et quatrième exons du gène nov de poule qui comprennent la séquence nucléotidique (XXII).

De telles séquences sont encore caractérisées en ce qu'elles codent pour un fragment de protéine répondant à l'enchaînement (XXIII) suivant d'acides aminés.

Ces séquences sont également caractérisées en ce qu'elles comprennent au moins une partie d'un fragment PstI d'environ 700 pb tel qu'obtenu selon le protocole évoqué plus haut (voir figure 2B).

Des séquences du type de celles du fragment PstI de 700 pb ci-dessus sont plus particulièrement

caractérisées en ce qu'elles sont formées par ou qu'elles comprennent un enchaînement de nucléotides capable de s'hybrider dans les conditions stringentes définies cidessus, avec au moins une partie du troisième exon du gène noy de poule qui comprend la séquence (XXIV).

D'autres séquences de nucléotides de l'invention comportent l'information génétique pour coder pour une protéine ayant une homologie d'au moins 60 % environ avec le fragment de protéine potentiel du troisième exon du gène nov de poule, ce fragment répondant à la séquence (XXV).

Il s'agit en particulier de séquences comportant l'information génétique pour coder pour une protéine ayant la séquence (XXVI) d'acides aminés.

On observera que cette séquence peut être mise en évidence chez l'homme. Ces séquences comportent plus particulièrement au moins une partie de l'enchaînement nucléotidique (XXVII), plus particulièrement de l'enchaînement (XXVIII).

D'autres séquences de nucléotides de l'invention sont caractérisées en ce qu'elles comprennent ou qu'elles sont formées par un enchaînement de nucléotides capables de s'hybrider, dans les conditions stringentes évoquées cidessus, avec au moins une partie du quatrième exon du gène nov de poule, qui comprend la séquence nucléotidique (XXIX).

L'invention vise les séquences de nucléotides comportant l'information génétique pour coder pour une protéine ayant une homologie d'environ 80 % avec le fragment de protéine correspondant au quatrième exon du gène nov de poule, ce fragment répondant à la séquence (XXX).

Il s'agit en particulier de séquences comportant l'information génétique pour coder pour une protéine ayant la séquence (XXXI).

Ces séquences sont formées par ou comprennent plus particulièrement l'enchaînement nucléotidique (XXXII).

Selon un autre aspect, l'invention vise une séquence recombinante comprenant l'une des séquences définies ci-dessus, le cas échéant associée à un promoteur capable de contrôler la transcription de la séquence et une séquence d'ADN codant pour les signaux de terminaison de la transcription.

L'invention vise également les séquences promotrices des gènes comportant les séquences nucléotidiques définies ci-dessus.

Elle vise en particulier au moins une partie de la séquence promotrice du gène nov humain dont les exons deux, trois et quatre sont donnés sur la figure 2A. Cette séquence promotrice qui correspond à l'enchaînement est localisée dans un fragment PsTI-Hind III de 2,2 kb et comprend les 283 nucléotides en amont au début du premier exon.

La séquence promotrice du gène nov humain est caractérisée en ce qu'elle comporte plusieurs séquences consensus de différents facteurs de transcription tels que NF1 (TGGCCTTCTGCCAATC), AP1 (TGACTAA) et Sp1 (GCCACTCCCC).

Elle comprend également une séquence de vingt répétitions de motifs TG qui peut constituer une séquence de polymorphisme, conférant un intérêt à cette séquence comme marqueur de polymorphisme.

L'invention vise également la séquence promotrice du gène CTGF identifiée dans le fragment EcoRI - PstI de 700 pb environ, qui correspond à l'enchaînement (XXXIV).

Cette séquence est caractérisée en ce qu'elle comporte des sites de fixation des facteurs de transcription tels que SRF (CCTAAAAAGG), AP1 (TGAATCA), Sp1 (CCCGCCC), un site potentiel de fixation à la protéine Wt1 (CGCCCCGGC) et un site NF kappa B (GAGAGCCCC). Elle comporte également une TATA base (TATAAAA).

La séquence promotrice du gène nov de poule répondant à l'enchaînement $\left(\begin{array}{c} XXXY \end{array}\right)$ fait également partie de l'invention.

Cette séquence est contenue dans un fragment Smal-XhoI d'environ 1 kb qui comporte des séquences consensus de différents facteurs de transcription ainsi qu'une TATA base. Elle est caractérisée en particules en ce qu'elle comprend les sites suivants de fixation du facteur Sp1 : GGGGGCGGGG, CCCCCGCCTC, Ap2 : CCGCAGGC, GGCGGGGC, GGGTCCC.

Elle comprend également un site de fixation du facteur NF kappa E2 (GGCAGGTGG) et du facteur NFKB (GGGAGTTTC).

Il est entendu que les bases des séquences de dans nucléotides considérées peuvent être différent de celui trouvé dans les gènes et/ou que ces le cas échéant, substituées. bases peuvent être, dans le cadre entrent correspondantes l'invention, dès lors qu'un fragment de ces séquences utilisé comme sonde donne une réponse caractéristique et non équivoque quant à la capacité de reconnaître présence de gènes codant pour des protéines telles que définies ci-dessus exprimées dans les cellules tumorales.

.

L'invention vise également en tant que nouveaux produits les ARN correspondant aux différentes séquences définies ci-dessus et les séquences complémentaires des différents enchaînements nucléotidiques définis.

L'invention se rapporte également aux vecteurs recombinants de clonage et d'expression capables de transformer une cellule hôte appropriée, comportant au moins une partie d'une séquence de nucléotides telle que définie ci-dessus sous le contrôle d'éléments de régulation permettant son expression.

Les souches de microorganismes transformées ou transfectées entrent également dans cadre de le l'invention. Ces souches comportent l'une des séquences de nucléotides définies ci-dessus ou encore un vecteur recombinant tel que défini précédemment.

Elle vise également les séquences d'acides aminés correspondant, selon le code génétique universel, aux séquences de nucléotides définies plus haut, et les protéines exprimées par les gènes comportant ces séquences.

Les séquences d'acides aminés homologues à celles codées par l'exon 2, qui contiennent le site de liaison aux facteurs de croissance IGF présentent un intérêt particulier, étant donné que le gène IGFII, qui se trouve chez l'homme sur le chromosome llp15, est surexprimé dans certaines tumeurs de Wilms et pourrait donc être impliqué dans cette pathologie.

Dès lors que le motif consensus des protéines se liant à l'IGF joue une rôle important dans le développement des néphroblastomes en conjonction avec la dérégulation de l'expression d'IGFII, on mesure l'intérêt de la détection d'une expression anormale des protéines de l'invention qui renferment un tel motif.

Les protéines de l'invention sont également caractérisées en ce qu'elles sont telles qu'obtenues par transformation de cellules hôtes au moyen d'un vecteur recombinant comme défini ci-dessus, mise en culture, dans un milieu approprié, des cellules hôtes transformées ou transfectées et récupération de la protéine à partir de ces cellules ou directement à partir du milieu de culture.

La production de ces protéines par un tel procédé fait également partie de l'invention.

Les protéines de l'invention et leurs fragments, qui peuvent être également obtenus par synthèse chimique, présentent avantageusement un degré de pureté élevé et sont utilisés pour former, selon les techniques classiques, des anticorps polyclonaux.

De tels anticorps polyclonaux, ainsi que les anticorps monoclonaux capables de reconnaître spécifiquement un épitope des protéines ci-dessus, ou d'un fragment de ces protéines, sont également visés par l'invention.

L'invention vise en outre les applications biologiques des séquences de nucléotides, des protéines correspondantes et des anticorps monoclonaux ou polyclonaux.

Ces applications comprennent l'élaboration, à partir de fragments intragéniques purifiés, ou d'ARN correspondants, de sondes moléculaires pour rechercher la présence éventuelle de séquences de nucléotides apparentées au gène nov dans divers types cellulaires.

L'élaboration de ces sondes comprend, notamment, la dénaturation des séquences double-brin pour obtenir une séquence monobrin.

Les essais effectués pour détecter la présence de séquences complémentaires dans diverses tumeurs et tissus humains ont mis en évidence la grande spécificité de ces fragments intragéniques.

L'utilisation de ces sondes a ainsi permis de montrer que le gène renfermant les séquences nucléotidiques définies ci-dessus est exprimé dans plusieurss types de cellules humaines, y compris certaines tumeurs du rein.

L'invention vise donc des sondes de détection caractérisées en ce qu'elles comprennent au moins une partie d'une séquence de nucléotides définie ci-dessus.

Toute sonde ne se distinguant de la précédente, au niveau de sa séquence de nucléotides, que par des substitutions ou altérations de nucléotides n'entraînant pas de modification de ses propriétés d'hybridation avec le gène humain apparenté au gène noy de poule comme défini plus haut entre dans le cadre de l'invention.

Le fragment d'ADN utilisé comme sonde comporte un nombre de nucléotides suffisant pour obtenir la spécificité requise et la formation d'un hybride stable.

Il est possible d'utiliser des fragments atteignant plusieurs kb, des résultats de haute spécificité étant cependant également obtenus avec des fragments plus cours d'environ 25 à 40 nucléotides.

Des sondes appropriées pour ce type de détection sont avantageusement marquées par un élément radio-actif ou tout autre groupe permettant sa reconnaissance à l'état hybridé avec la préparation renfermant les nucléotides à étudier.

Selon les techniques classiques, ces sondes sont mises en contact avec l'échantillon biologique à tester ou

leurs acides nucléiques, dans des conditions autorisant l'hybridation éventuelle de la séquence de nucléotides de la sonde avec une séquence complémentaire, éventuellement contenue dans le produit étudié.

On peut, par exemple, avoir recours à la méthode d'hybridation sur taches ou à la méthode d'hybridation sur réplique, selon la technique de Southern. Dans la première méthode, selon la technique classique, on dépose une quantité aliquote d'ADN dénaturé sur des membranes de nitrocellulose. La deuxième méthode comprend la séparation électrophorétique en gel d'agarose des fragments d'ADNs engendrés après traitement de l'ADN par des enzymes de restriction, le transfert après dénaturation alcaline sur des membranes appropriées et leur hybridation avec la sonde dans les conditions usuelles.

Ces sondes constituent des marqueurs tumoraux en permettant la détection précoce de l'expression du gène renfermant lesdites séquences nucléotidiques, qui normalement n'est pas ou peu exprimé dans les tissus normaux correspondants. L'invention fournit ainsi des moyens permettant d'évaluer le développement et/ou la différentiation tumorale.

La détection pour l'identification spécifique des ADN peut être également réalisée par des techniques d'amplification de l'ADN (PCR) telles que décrites dans les brevets US 4683202 et 4683195 au nom de Cetus Corportation.

Dans ces techniques, on utilise deux amorces d'environ une quinzaine de nucléotides comprises dans l'une nucléotides définies ci-dessus de des séquences 200 à 250 nucléotides. L'une des distantes d'environ capable de se lier à une séquence séquences est nucléotides de l'un des brins du fragment d'ADN à amplifier et située au niveau de l'une des extrémités de ce fragment, par exemple à l'extrémité 5'. L'autre séquence est capable

de se lier à une séquence de nucléotides du deuxième brin du fragment d'ADN à amplifier, et se trouve située au niveau de l'extrémité de ce fragment opposée à celle mentionnée plus haut (à l'extrémité 3', lorsque la première se trouver à l'extrémité 5').

L'invention vise également un procédé de détection in vitro de la présence dans un échantillon biologique de séquences complémentaires de celles définies ci-dessus. Ce procédé est caractérisé en ce qu'il comprend les étapes suivantes :

- la mise en contact de l'échantillon biologique à étudier avec une sonde nucléotidique telle que définie plus haut dans des conditions permettant la production d'un complexe d'hybridation formé entre la sonde et la séquence de nucléotides recherchée,

- la détection du complexe d'hybridation.

Le cas échéant, on procède à une amplification préalable de la quantité de séquences de nucléotides susceptibles d'être contenues dans l'échantillon, à l'aide d'amorces, telles que décrites ci-dessus, susceptibles respectivement de se lier, d'une part à l'extrémité 5' d'un brin de ladite séquence de nucléotides et d'autre part, à l'extrémité 3' de l'autre brin de ladite séquence de nucléotides.

L'utilisation d'un tel procédé représente augmentation sensibilité đе et un gain de temps considérable par rapport aux techniques classiques nécessitent souvent une technologie ne pouvant être mise en oeuvre que dans des services spécialisés. Il permet de plus une détection rapide et de grande spécificité des ADN et des différentes espèces d'ARNm de transcription. Ce procédé constitue d'un un moyen de détection remaniement

chromosomique au niveau des gènes qui codent pour les ARN noy ou CTGF sans avoir recours à des cultures cellulaires.

Pour la mise en oeuvre d'une telle méthode de dépistage <u>in vitro</u>, basée sur l'utilisation de sondes nucléotidiques, on a recours avantageusement à des nécessaires ou kits comprenant :

- une quantité déterminée d'une sonde nucléotidique selon l'invention,
- un milieu approprié à la formation d'une réaction d'hybridation entre la séquence à détecter et la sonde et, avantageusement,
- des réactifs permettant la détection des complexes d'hybridation formés entre la séquence de nucléotides et la sonde lors de la réaction d'hybridation.
- une quantité déterminée d'un anticorps polyclonal ou monoclonal selon l'invention,
- un milieu approprié à la formation d'une réaction immunologique entre au moins une partie des produits exprimés et l'anticorps et, avantageusement,
- des réactifs permettant la détection des complexes immunologiques formés lors de la réaction immunologique.

La présence dans les proteines de l'invention d'une séquence de liaison aux facteurs de croissance du type insuline (IGF) est avantageusement mise à profit selon l'invention pour le dosage des protéines. A cet effet, on met en contact les protéines de l'échantillon biologique à étudier avec un IGF comportant un groupe marqué, par exemple un groupe radioactif ou sonde froide et on effectue le dosage de la quantité de produit fixé.

On rapporte ci-après à titre d'exemples non limitatifs le clonage et le séquençage du gène <u>nov</u> de poule, et de séquences de nucléotides répondant aux définitions données plus haut. Dans ces exemples, il est fait référence aux figures 1 et 2,

- la figure 1 représentant la séquence d'ADNc du gène nov de poule et celle de la protéine potentielle codée
- les figures 2 A et 2 B les cartes de restriction de fragments d'ADN de l'invention

Procédés de clonage moléculaire et séquençage rapportés dans les exemples :

purification des acides nucléiques : utilisation de dichlorométhane comme décrit dans V. Maloisel et al., Met. Mol. Cell. Biol. 1, 245-247, 1990.

Southern et Northern blots, et autres procédés de clonage : effectués selon les protocoles standards publiés par B. Perbal dans "A practical guide to molecular cloning, second edition, B. Perbal John Wiley and Sons, New York, 1988

purification des fragments d'ADN BamHI-HindIII de 7 kb et SacI de 6,6 kb : méthode Geneclean (Bio 101).

Sondes radioactives : préparées par nick translation en présence d' α dCTP 32 P.

Séquençage des nucléotides : selon la méthode de terminaison de chaîne au didéoxy en présence d' α dATP 35S, de T7 polymérase ou de Séquenase (USB).

Exemple 1:

Isolement de l'ADNC du gène nov de poule

25 ng d'ADNc correspondant à de l'ARN poly A de fibroblastes d'embryons de poule de 13 jours sont ligaturés avec 1 µg de bras lambda gt10 pour préparer une banque d'ADNc de fibroblastes normaux de poule en utilisant le kit d'Amersham.

Après criblage avec une sonde cellulaire dérivée d'une tumeur, on purifie 7 clones, l'insert le plus long (1,9 kb) est purifié selon la méthode de Geneclean (BIO 101) et sous-cloné au site KpnI de Bluescript KS+ (Stratagène) pour générer le clone pC1K.

Séquençage nucléotidique :

Le séquençage est réalisé par la méthode de terminaison de chaînes didéoxy-nucléotide en présence $d^{\dagger}a$ 35s dATP et de polymérase T7 (Pharmacia) ou de Séquenase dans les conditions décrites par les fabricants.

Des matrices sont obtenues à partir des clones recombinants M13mp18 et M13mp19. Les amorces de séquençage proviennent de Biolabs, New England. Les compressions GC sont résolues en utilisant la déoxy-inosine (USB).

Caractérisation du gène cellulaire nov :

On effectue une analyse par Northern Blot d'ARN isolés de reins normaux, de fibroblastes d'embryons de poule (FEP) et de néphroblastomes en utilisant les sondes cellulaires dérivées d'une tumeur. La sonde HX1024 permet de détecter dans les FEP normaux une espèce d'ARNm de 2,2 kb dont l'expression est altérée dans tous les autres néphroblastomes. Le criblage d'une banque d'ADNc de FEP permet d'isoler un clone d'ADNc de 1,9 kb représentant l'ARNm de 2,2 kb exprimé dans les FEP normaux.

On a représenté sur la figure 1 la séquence entière nucléotidique de 1975 pb du clone d'ADNc de ce nouveau gène, surexprimé dans les néphroblastomes étudiés, appelé gène nov. Ce gène apparaît constitué de 5 exons. Un cadre ouvert de lecture de 1,0 kb codant pour une protéine potentielle de 32300 Da a été identifié du nucléotide 24 au nucléotide 1076. Ce cadre ouvert de lecture est suivi de 899 pb de séquences 3' non codantes qui contiennent deux motifs potentiels de signaux de polyadénylation (AATAAA) aux positions 1914 et 1932.

On a également indiqué sur cette figure les acides aminés potentiellement codés. Le polypeptide nov potentiel contient un noyau hydrophobe caractéristique d'un signal peptidique à son extrémité amino (avec 6 leucines). Cette protéine nov étant dépourvue d'autres régions hydrophobes présentes dans les protéines trans-membranaires, il vraisemblable qu'elle est sécrétée. La protéine nov également le motif consensus GCGCCXXC protéines liant les facteurs de croissance du type insuline (IGF) et un total de 39 résidus cystéine ne formant pas de cluster.

Exemple 2 : Isolement dans des cellules humaines de séquences de nucléotides apparentées au gène nov de poule.

On effectue un Southern blot de fragments d'ADN humain digéré par EcoRI avec le clone d'ADNC du gène nov de poule pClK. On opère dans les conditions stringentes rapportées par B. Perbal (voir référence ci-dessus).

On constate que quatre fragments EcoRI s'hybrident avec des séquences du gène <u>nov</u> de poule. Ces fragments comportent respectivement 15, 12, 8 et 5,6 kb.

Exemple 3 : Isolement de séquences de nucléotides apparentées au gène nox de poule.

A partir d'une banque d'ADN de placenta humain, on isole à l'aide de la sonde pClK radiomarquée deux groupes de clones lambda gtll recombinants.

La carte de restriction partielle de lambda Hu92 (qui correspond à trois clones se chevauchant) et de lambda Hu93 (qui correspond à deux clones se chevauchant) et celles des sous-clones plasmidiques pBH7 et p56 sont représentées sur les figures 2A et 2B.

Les séquences de nucléotides humaines homologues à celles du gène nov de poule sont localisées dans un fragment d'ADN de 7,0 kb BamHI-HindIII du clone Hu92 et celles appartenant au gène CTGF dans un fragment d'ADN de 6,6 kb SacI du clone Hu93.

Sur ces cartes, les enzymes de restriction sont désignées comme suit : B = BglII, P = PstI, K = KpnI, H = HindIII, S = SacI, E = EcoRI, X = Xba, B = BamHI et Hc = Hine II. Les blocs noirs représentent les régions exoniques humaines.

Le sous-clonage de ces fragments dans les vecteurs pUC18 et pUC19, appelés respectivement clones pBH7 et pS6 permet de localiser plus précisément les séquences homologues du gène nox de poule et les séquences du gène du CTGF. Les premières sont localisées d'une part dans un fragment d'ADN PstI de 600 pb (E2), d'autre part dans un fragment PstI de 800 pb (E3), et dans un fragment HincII de 400 pb (E4). La sonde pBH7 correspond au fragment HindIII-BamHI.

La localisation des premier, deuxième, troisième, quatrième et cinquième exons humains au GTGF sont indiquées sur la figure 2B (désignations respectives El, E2, E3, E4, et E5).

L'utilisation des fragments PstI d'ADN purifiés comme sondes dans des expériences d'hybridation Southern avec les fragments EcoRI de l'exemple 2 conduit à la seule détection du fragment EcoRI d'ADN de 12 kb avec PBO6 et du fragment EcoRI de 15 kb avec PSPO7 démontrant que les séquences de PBPO6 et PSPO7 correspondent à un sous-ensemble des exons noy de l'ADNC de poule.

Exemple 4 : Détection d'ARN du génome humain apparentés au gène noy de poule.

On rapporte dans le tableau suivant les résultats d'expériences d'hybridation Northern avec différents tissus et lignées cellulaires en utilisant comme sondes les enchaînements de formule VIII, XV et XVI ci-dessus homologues respectivement des exons E2, du gène nov de poule et E3 et E4 du gène CTGF (ces codes étant utilisés dans le tableau pour les désigner).

TISSUS ET LIGNEES CELLULAIRES		so	NDES
	E2	E3-E4	kb de
	(nov)	(CTGF)	l'ARNm
••			
Moelle osseuse	+	+	(2,)
thymus (foetal)	+	-	(2,5) (⁷ ,4) (2,5)
Foie (foetal)	-	-	(2,5)
HEL .	-	+	(2,5)
			1
Cerveau (foetal)	+	-	(2,5)
	-	+	(7,4)
No contract of the second of t	+	+	(2,5)
Neuroblastome 1	· +	+	(2,5)
Neuroblastome 162	T		(7,4)
	-	+	(7,4)
Rein (foetal)	+	+	(2,5)
Nephroblastome Bou	nt	+	(2,5)
	•		
Tissu mammaire	nt	+	(2,5)
Tumeur mammaire gg	nt	+	(2,5)
Tumeur mammaire sc	nt	+	(2,5)
	+	+	(3,5)
*	-	+	(7,4)
·		,	
SK-BR3	-	+	(2,5)
	+	+	(3,5)
	_	4-	(7,4)

•			
poumon (foetal)	+	+	(2,5)
coeur (foetal)	.	+	(2,5)
lignée 293	+	+	(2,5)
	•		-
MCF7	_	+	(7,4)
•			
Carcinome embry test. 8	nt	+	(2,7)
	-	+	(7,4)
Teratocarcinome test. 10	nt	+	(2,7)
	-	+	(7,4)
Teratocarcinome test. 11	nt	+	(2,7)
	-	+	(7,4)
• •			
Adenocarcinome U377	nt	+	(2,7)
	-	+	(7,4)
		•	
HL60	nt	+	(7,4)

nt = non testé

Les résultats obtenus montrent que le gène humain homologue du gène nox de poule et le gène CTGF appartenant à la même famille sont exprimés selon les tissus ou lignées sous la forme de différentes espèces d'ARN détectés soit par les deux sondes, soit par une seule d'entre elles.

L'espèce d'ARNm de 7,4 kb exprimée par certains tissus et lignées n'apparaît reconnue que par la sonde PSP07.

Ces résultats indiquent que la régulation des gènes chez l'homme dépendrait de la spécificité tissulaire.

ENCHAINEMENT I

GCGCCCCTAGACCCCCCGGACT ATG GAG ACG GGC GGC CAG GGG CTG CCC GTC CTG CTG CTC CTC CTC CT	95
AGC GGG CGG GAG GCG GGG CGC GGG CGC GGG CGC TGC CCC GCG GAG CCG CGG CGC CGC GCC GCG GGA GTG CCC GCC GTG CTG	
GGC CTC	
ATT TAC	
CTG CTC CCC GGC CCC GAC TGC CCC TTC CCG CGG ANG ATC GAA GTC CCC GGA GAG TGC TGC GAG TGG GTG TGC GAC CCC AGG GAT GAA	
GTG CTC CTG GGA GGC TIT GCT ATG GCT GCA TAC AGA CAG GCC ACA CTI GGG ATA GAC GTG TCT GAT TCA AGT GCC AAT 1GT ATI GAA	
CAG ACA ACA GAA IGG AGT GCT IGT ICC AAA AGC IGT GGA ATG GGC ITT ICT ACC CGT GTT ACC AAC AGA AAT CAG CAG IGT GAG ATG GTG	
AAG CAG ACA CGA CIT TGC ATG ATG AGA CCT TGT GAA AAC GAA GAG CCA TCT GAT AAG AAA GGA AAA TGT ATC CAA ACA AAG AAA TCC	
ATG AAA GCT GTT CGT TTT GAA TAC AAG AAC TGC AGC AGT GTG CAG ACT TAC AAA CCT CGT TAC TGT GGC CTC TGC AAT GAT GGG CGA TGC	
TGT ACC CCA CAC ANG ACC ANA ACG ATT CAA GIT GAG TTC CGC TGT CCT CAG GGC AAA TTC CTA AAA AAG CCA ATG ATG ATG ATC AAT ACC	
ATGI	
GITINGGIGGCCCNANGGIAIGINGTITGTACNANACITGACCCACAATCAGIGANTGIANITIGCAIAIGIAANATATCIGAGACTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	1206 1325 1444 1563 1682 1801 1920

185

TGC GGC GGC TGC CCC GCG GNG CCG CGC TGC GCC CCG GGN GTG CCC GCC GTG CTG

ENCHAINEMENT II

275	365	455	545	635	125	
GAC GCC TGC CGC TGC CTG GTG TGC GCC CGG CAG CGC GGC GAG TGC TCC CCT CTG CTG CCC TGC GAC GAG AGC GGC GGC CTC TAC 27	TGC GAC GGC GCC CAG GAC GGC GGC GGC GGC ATC TGC ATG GTG CTG GAA GGG GAC AAC TGC GTG TTC GAT GGG ATG ATT TAC CGC	ANC GOG CAG ACG ITC, CAG CCC AGC IGC AAG IGC ACC IGC CGG GAC GGG CAG AIC GGG IGC CIG CCC CGC IGC AAC CIG GGC CIG	CTG CTC CCC GGC CCC CAC TGC CCC TTC CCG CGG AAG ATC GAA GTC CCC GGA GAG TGC TGC GAG AAG TGG GTG TGC GAC CCC AGG GAT GAA SA	GTG CTC CTG GGA GGC TTT GCT ATG GCT GCA TAC AGA CAG GAG GCC ACA CTT GGG ATA GAC GTG TCT GAT TCA AGT GCC AAT TET ATT GAA 63	CAG ACA ACA GAA TGG AGT GCT TGT TGC AAA AGG TGT GGA ATG GGC TTT TCT ACG CGT GTT ACG AAG AAT CAG CAG TGT GAG ATG GTG 12	ANG CAG ACA CGA CII IGC AIG AIG AGA CCI IGI GAA AAC GAA GAG CCA ICI GAI AAG AAA GGA AAA AAA IGI AIC CAA ACA AAG
	-		<u> </u>	~	-	

FEUILLE DE REMPLACEMENT

ENCHAINEMENT III

101 111 151 AGGTGAGGGG GCGTGCCCC GGCCCTGCGG CGGGCGCTGC CCCGCGGAGCC.	161 171 181 191 201 211 CGCCGCGCTG CGCCCGGGA GTGCCCGCCG TGCTGGACGG CTGCGGCTGC TGCCTGGTGT	221 241 251 271 271 271 CCCCCGGCA GCGCGCGAG AGCTGCTCCC CTCTGCTGCC CTGCGACGAG AGCGGCGGCC
141	201	261
CGGGCGCTGC	CTGCGGCTGC	CTGCGACGAG
131	191	251
GGCCCTGCGG (TGCTGGACGG	CTCTGCTGCC
121	181	241
GCGTGCCCCC	GTGCCCGCCG	AGCTGCTCCC
111	171	231
GCGGGAGGCG	CGCCCCGGGA	GCGCGGCGAG
101	161	221
AGGTGAGCGG	CGCCGCGCTG	GCGCCCGGCA

ENCHAINEMENT IV

83	VSGNEARCER FUGGRCPAEP PRCAPGVPAV LDGCGCCLVC ARQRGESCSP LLPCDESGGL
73	ARQRGESCSP
. 63	LDGCGCCLVC
53	PRCAPGVPAV
43	PUGGRCPAEP
33	VOONERACER

YCDRGPEDGG GAGICM

291 301 301 321 TCTACTGCGA CCGCGCCCC GAGGACGCCG GCGCCCCGG CATCTGCATG

	O	ᆟ	កា	×	۲
	æ	_	G	니	I C I
	ပ	A	æ	ပ	н
	ρı	ra Ca	Ø	ဟ	១
	ပမ္	۷ دا	R 16	s 21	H
	0 C	G 831	A 87	E 92.	Ø
	о, С	Δ	Ö	Ω	z
	Δι	Æ	J V	ပ	တ
>	в с Р 1	ပ	ы	വ	Д
1ENT	1 R	L 9	c 5.1	э Эе	Ω
ENCHAINEMENT V	0	P T 816	C 861	106	Ø
ENCH	- €-1	а а	တ	Q	လ
	Æ	E	, O	တ	α
	Æ	a.	ပ	s c	
	V A A T Q 756 771	P 801	D 846	S 891	C D R S A D P S N Q T G

ENCH.	A T M	CMC	NT	N T
ENLH	AIN	P. M P.	N	VΙ

705 CTCGCCTGCC 765 CCTGCGACGC 825 TGTCTGGTGT 885 AGCAGTGGCC	695 TTCTCCTTGT 755 GGGCCGGTGC 815 CTGCTCATGC 875 ATGCGACGAG	685 GCTGAGTGGT 745 CCCAGTGCCC 805 ATCTGGAGGC 925 ACCAGACTGG	675 TTCTGTCCCA 735 CGCTGCCCTC 676 855 AGCTGCTCAG 855 AGCTCCTCAG 915 CTTCTCCTGC	665 TCACTGCGTC 725 TGCGACTCAG 785 CGCCCCCGGG 845 GCGTGGCGAG TCGCAGCGCG	655 GTCACCGGGC 715 TTCAGGTCGC 775 CGCCGACCTG 835 GTGCCCGCCA 895 TCTACTGTGA CTCCCTCTGC
765 CCTGCGACGC					715 TTCAGGTCGC
705 CTCGCCTGCC	695 TTCTCCTTGT				655 GTCACCGGGC
645	635	625	615	605	595
CCCCCATITG	GCCTTGGTGG	TACTTTGCCC	CCCCCAAAGT	CCTTAAGATG	AGTGGCAÇAC
585	575	565	555	545	535
TGGGACAGTA	CTCCATCTCC	CTTCCTGCTT	TTTGCCTGAC	AAGCAGTGCC	TGTCTCGCGA
525	515	505	495	475	475
CACGAGCTTT	GTGTGCAGAG	AGCATGCAGA	GGAAAGCCTG	CGTTTGGTAA AAGCGAGAGG	CGTTTGGTAA
465	455	445	435	425	415
AAGAAAGTCT	ATCTACAGCG	AGCAGTGCCA	GGGGAAGGCG	ACCGGACCAG	ATCGGCAAGC
405	375 385 395	385		365	355
GCTGGGCGTG	CGCGTCCCAG GAGCGCGCTA TAAAACCTGT	GAGCGCGCTA		CCGGCTTGTG	CTGCAGCCAA

ENCHAINEMENT VII

.770	830	890	
GACGCCGCCG	GGTGTGTGCC	TGGCCTCTAC	
760	820	880	GCACGG
GGTGCCCTGC	CATGCTGTCT	ACGAGAGCAG	
750	810	870	930
TGCCCGGGCC	GACGGCTGCT	GAGCCATGCG	ACTGGCATCT
740	800	860	910 920
CCCTCCCCAG	CGCGGTGCTG	CTCAGATCTG	ACCC CAGCAACCAG
720 730 740 750 760 760 770 750 760 770 8TCGCTGCGA CTCAGCGCTG CCCTCCCCAG TGCCCGGGCC GGTGCCCTGC GACGCCGCCG	780 830 830 830 830 820 830 ACCTGCGCCC CCGGGGTGCG CGCGGTGCTG GACGGCTGCT CATGCTGTCT GGTGTGTGCC	840 850 860 870 880 CGCCAGCGTG GCCCATGCG ACGAGAGCAG TGGCCTCTAC	900 910 920 930 1GTGATCGCA GCGCGGACCC CAGCAACCAG ACTGGCATCT GCACGG
720	780	840	900
GTCGCTGCGA	ACCTGCGCCC	CGCCAGCGTG	TGTGATCGCA

ENCHAINEMENT VIII

381	441	501	561
GGAGACGTTC	CCTGCCCCGC	GATCGAAGTC	CCTGGGAGGC
371	431	491	551
ACCGCAACGG	AGATCGGGTG	TCCCGCGGAA	ATGAAGTGCT
GTGCTGGAAG GGGACAACTG CGTGTTCGAT GGGATGATTT ACCGCAACGG GGAGACGTTC	391 401 411 421 431 441 CAGCCCAGCT GCAAGTACCA GTGCACCTGC CGGGACGGGC AGATCGGGTG CCTGCCCCGC	451 461 471 481 491 501 TGCAACCTGG GCCTGCTGCT CCCGGGCCCC GACTGCCCTT TCCCGCGGAA GATCGAAGTC	511 521 531 541 551 561 CCCGGAGAGT GCTGCGAGGAGGC
CGTGTTCGAT	411	471	531
	GTGCACCTGC	CCCCGGCCCC	GTGGGTGTGC
GGGACAACTG	401	461	521
	GCAAGTACCA	GCCTGCTGCT	GCTGCGAGAA
GTGCTGGAAG	391	451	511
	CAGCCCAGCT	TGCAACCTGG	CCCGGAGAGT

571 TITGCTATGG CT

ENCHAINEMENT IX

159	DCPFPRKIEV
149	CNLGLLL
139	RDGQIGCLE
129	QPSCKYQCTC
119	GMIYRNGETF QPSCKYQCTC
109	VLEGUNCVF'D

169 PGECCEKWVC DPRDEVLLGG FAMA

ENCHAINEMENT X

	رت) 0	4	J) כן	ر	CTC	2 5	>	CT.C	ָ בַּרָבָּ	>	(ָ פֿרָ	리		
	TAC.) ; ; ;	→	ر ا) } }	-	GAT		2				ָטַ אַנ <u>ָ</u>				
	ATC.	-	1	TGC) ;)	CTG) -	3	GTT.	; >	>	TAC	; c	3		
	GTC) C		_	C	ĸ	AAA	×	4	A D	_ _	4		
9	999	<u></u>) [AAA TTC	Έ	9	TGT	ر) <u>-</u>	AGA	~	و ۲	GGC	יי)		
146	GAT	ם	ו	AAA	×	236	၁၅၁	2	28	CCA AGA 7	_	32	TGT	ر)	ڻ ن	,
	TTC	Ē	!	TGC	<u>ပ</u>	+	သည	Д	Į.	GCT	Ø	•	ATC	-	i		A
	GTG	>		AGC	S		GTG	>		CCA	Д		TGG	3		CTT	П
				CCA	Д		TGT	ပ		$_{ m TGC}$	ပ		AAG	X		ACC	E
131	GAT AAC	Z	91	CAG	0	21	S ATT GGC I	හ	99	AAC	Z	1	GAA			CTT	ы
H	GAT	Ω	<u>.</u>	TTT	لعا	2,	ATT	H	26	CCT	Д	31	TGT	ပ		299	9
				AAA	ᄶ		CAG	Ø		GAG			TGC	ပ		GGA	G
							999						_			CTG	ī
							GAT		•							TCA	လ
116	909	¥	161	AGT	လ	206	AGA	~	251	CTA	ᆸ	296	CCT	႖	341	GAT	Ω

ENCHAINEMENT XI

		, AA	450 TGGATTTGAA	440 TGCAATCTCT	430 ATGAAGAATT
420	400	400	380	380	370
AAATACAAAC	GGCTGGTCAT AGTAGAGGGT	GGCTGGTCAT	GAGAAACTCA ATATACCTAG	GAGAAACTCA	CCTTGCAGGT
360	350	340	330	310 320 330 340	310
GAGGCCTTAC	GATTCACTGG	AGATGAGGAG	TCTGTGGCCC	AGAGTGCTGT GAAAAGTGGA TCTGTGGCCC AGATGAGGAG	AGAGTGCTGT
300	290	280	270	250 250 CTGGATGTG CTACTGCCTG AGCCTAACTG	250
AGGTGCCTGG	AGAAAAGTIG	CCCAGCTCCA	AGCCTAACTG		GCTGGATGTG
240	230	220	210	200	190
CCCGCTGTCA	GGCTGTGTGC	TGGGCAGATT	CCTGCAGAGA	TTCCAGTGCA	AAGCTGCAAA
180	160	160	150	140	130
AATTTCAGCC	CATCTACCGC AGTGGAGAGA AATTTCAGCC	CATCTACCGC	TCGATGGGGT	AACTGTGTGT	AGAGGGAGAT
120	100	100	90	80	70
TTCTAGCGGT	TTCACTTTGC TTCCCCAATA	TTCACTTTGC	CTCTTTGCTT	TTTCCTCTTC	TGTTCTTGTT
60	20 30 40 50	40	30	20	10
CACTGTATTG	GGGTTTTGGA ACATGCCCTC CAAATCTTAC ATAGCTTCTT	CAAATCTTAC	ACATGCCCTC	GGGTTTTGGA	AAAAGGACTT

ENCHAINEMENT XII

		•		
125 GCGGTAGAGG GAGATAACTG TGTGTTCGAT GGGGTCATCT ACCGCAGTGG AGAGAAATTT	185 195 205 215 235 235 CAGCCAAGCT GCAATTCCA GTGCACCTGC AGAGATGGGC AGATTGGCTG TGTGCCCCGC	295 AGTTGAGGTG	355 ACTGGGAGGC	
165	225	285	345	
ACCGCAGTGG	AGATTGGCTG	CTCCAAGAAA	AGGAGGATTC	
155	215	275	335	
GGGTCATCT	AGAGATGGGC	AACTGCCCAG	GCCCAGATG	
145	205	265	325	
TGTGTTCGAT	GTGCACCTGC	GCCTGAGCCT	GTGGATCTGT	
135	195	245 265 275 295	315	CAG
GAGATAACTG	GCAAATTCCA	TGTCAGCTGG ATGTGCTACT GCCTGAGCCT AACTGCCCAG CTCCAAGAAA AGTTGAGGTG	GCTGTGAAAA	
125	185	245	305 315 325 335 345 355	365
GCGGTAGAGG	CAGCCAAGCT	TGTCAGCTGG	CCTGGAGAGT GCTGTGAAAA GTGGATCTGT GGCCCAGATG AGGAGGATTC ACTGGGAGGC	CTTACCCTTG CAG

ENCHAINEMENT XIII

583 603 613 623 633 633 623 633 623 631	643 653 663 673 683 693 673 683 693 693	753 CATGATGAGA	
623	683	743	
ATTCAAGTGC	GAATGGGCTT	CACGACTTTG	
613	673	733	
GACGTGTCTG	AAAAGCTGTG	GTGAAGCAGA	
603	663	723	
ACTTGGGATA	TGCTTGTTCC	GTGTGAGATG	
593	653	713	
AGGAGGCCAC	CAGAATGGAG	GAAATCAGCA	
583 GCATACAGAC	643 GAACAGACAA	703 733 743 753 GTTACCAACA GAAATCAGCA GTGTGAGATG GTGAAGCAGA CACGACTTTG CATGATGAGA	C / C

CCTTGTGAAA ACGAAGAGCC ATCTGATAA

ENCHAINEMENT XIV

193 203 213 243 243 AYRQEATLGI DVSDSSANCI EQTTEWSACS KSCGMGFSTR VTNRNQQCEM VKQTRLCMMR

253 PCENEEPSDK

ENCHAINEMENT XV

104				11	م				13	4				
GCT	TAC	AGG	CCA	GAA	GAA GCC	ACC	CTA	GGA	GTA GAA	GAA	GIC		GAC	TCA
K	×	æ	д	E	Ø	₽	H	ව	>	ᄄ	>	လ	Ω	S
149				16	54				17	စ်				
AGT	$^{\mathrm{TC}}$	AAC	${ m TGC}$	ATT	GAA	CAG	ACC	ACA	GAG	\mathtt{TGG}		GCA	$_{ m IGC}$	TCC
တ	>	Z	ပ	Н	臼	Ø	E	[-	ы	Z	⊱		ပ	တ
194				7(6(22	7				
AAG	ည	TGT	GGT	ATG	999	TIC	\mathtt{TCC}	ACC	990	GIC		AAT	AGG	AAC
×	ഗ	ပ	ဗ	Σ	ဗ	[파	လ	EH	ĸ	>	₽	z	æ	z
239				25	54				26	99				
CGT	CAA	\mathtt{TGT}	GAG	ATG	CTG	AAA		ACT	໑໑ຉ	CIC	\mathtt{TGC}	ATG	\mathtt{GTG}	990
~	α	ပ	ы С	Σ	ᆸ	×	Ø	H	ĸ	Ц		Σ	>	æ
284				2	66									
CCC	TGT	GAA	CAA	GAG		GAG	CAG	CCA	ACA	GAT	AAG			
ρ.	Ö		0	ᄄ	д			а	H	Ω	×		٠	

ENCHAINEMENT XVI

60	120	180	240	300	360	420
TTCCAATCCT	GGCCAGAAGC	CCACAGAGTG	ATAGGAACCG	AACAAGAGCC	AGGTAATGGC	CGGAGAGAGC
10 20 30 40 50 ATCAGAGTCG AATGAGCCC AGTTTCTAAT AATGGCTGAA AAGGACCACT TTCCAATCCT	70 80 90 120 CACATTGATC CTAATATGGC TGTCTTATT TATACATCCC ATAGCTTACA GGCCAGAAGC	150 160 170 CTGACTCAAG TGTCAACTGC ATTGAACAGA	210 220 230 240 GTGGTATGGG GTTCTCCACC CGGGTCACCA ATAGGAACCG	290 CGGCCCTGTG AACAAGAGCC	350 CCCATCCTGA AGGTAATGGC	370 380 390 400 410 420 CTTGTGTCT TGGAGCCTGG GCTTCAGAAA GTCACTGTTG CACTCTGTGA CGGAGAGAGC
40	100	160	220	250 260 270 280	340	400
AATGGCTGAA	TATACATCCC	TGTCAACTGC	GTTCTCCACC	TCAATGTGAG ATGCTGAAAC AGACTCGGCT CTGCATGGTG	GAGGAAACCT	GTCACTGTTG
30	90	150	210	270	330	390
AGTTTCTAAT	TGTCTTTATT	CTGACTCAAG	GTGGTATGGG	AGACTCGGCT	TAGGAGCCTG	GCTTCAGAAA
20	80	130	200	260	310	380
AATGAGACCC	CTAATATGGC	CACCCTAGGA GTAGAAGTCT	TCCAAGAGCT	ATGCTGAAAC	AGAGCAGCCA ACAGATAAGG	TGGAGCCTGG
10	70	130	190	250	310	370
ATCAGAGTCG	CACATTGATC	CACCCTAGGA	GACAGCATGC	TCAATGTGAG	AGAGCAGCCA	CTTGTGTCCT

430 AGCTATAGCG GGGAG

ENCHAINEMENT XVII

ENCHAINEMENT XVIII

TATGGAGACG GGCGGGGGG AGGGGCTGCC CGTCCTGCTG CTGCTCCTGC TCCTCCTCCG

GCCGTGCGA

ENCHAINEMENT XIX

10 METGGGGGLP VLLLLLLLR PCE

ENCHAINEMENT XX

285

ATG GCA ACC CCG GGG TTC GTT CCA CTT CCC CAC CCA GCC GAT CTC

M A T P G F V P L P H P A D L

330

345

CCC CCT CCT CCC TGC ACT GCA GCC AAC CGG CTT

P P P C T A A N R L

ENCHAINEMENT XXI

294 334 344 344 344 344 ATGGCAACCC CGGGGTTCGT TCCACTTCCC CACCCAGCCG ATCTCCCCCC TCCTCCCTGC

ACTGCAGCCA ACCGGCTT

ENCHAINEMENT XXII

	365	455		ე 4 ჯ	635	725 6	
	TAC CGC	GGC CTG	Ē	1	T GAA		
	ATT TA	CTG GG	VC CV		TCT ATT	TGT GAG ATG	
; (AIC A	S CI	200		AAT TG	T GA	
	ج و و	TGC AAC	GAC CC		رد کر در	CAG TG	
E C	9	SGC T	3 25		ig ig	AG CI	
TIC		ပည	STG T		rca A	AAT CAG	
GTG	110	ר רונף כככ כפכ	AG AAG TGG GTG TGC C		LAT .	AAC AGA AAT CAG CAG	
AAC TGC	Ę	2	AAG	Ę	7.	AAC	
MC	j J	3	GAG	CT.	5	ACC	
GAC :	A.T.C.)	TGC	S	<u> </u>	GTT	
G CTG GAA GGG	G CAG AT		. Igc	G ATA GAC GTC		C CGT GTT ACC	
C GN	'S 555 S	į	5	r GGG		ICT ACC	(
TG CT	G GAC G	ç	' ARE BRO TEC TEC GAG	A CTT GGG	Ē	<u>.</u>	CAS CON TOTAL 23 3.5
	TGC CGG	ر		GCC ACA C	Ē	1 11 2	ر
	CC T	AA	5	CAG GC	ני		3
	CAG TIGC ACC	ANG ATC GAA	' '		TGT GGA ATG GGG	7	3
	CAG	AAG 7	Š	AGA CAG	rgr g	מאט	
	TAC	555	(6	ָ בַּ	VGC .	TGT	
	AAG	၁၁၁	į	5	AAA	CCT	
	TGC	TIC	TUS	·	TCC	AGA	
Š	25	222 :	GCT ATG	!	TGT	ATG	
(י י י	C TGC (r ccr	ATG /	
ָרָרָ רָ הַרָּרָ	2	C GAC T	C TTT		G AGT	T TGC	
ACG TT		ეეე ეეე	CGA GGC		GAA TGG	A CTT	
976		ნ ეე	CTG G	į	ACA G	ACA CGA	
5 555	Ç		CTC C		ACS A	CAG AC	
AAC (ر	ה ה	GTG		2	AAG C	
						-	

ENCHAINEMENT XXIII

Q	I	P	T	R	I	P	D	A	L	D	V	, R	V	P
48					63					78				
Ω	С	L	T	s	Α	s	P	T	P	L	F	P	Ş	S
93				1	80				1	23				
s	P	Α	K	D	G	Α	P	С	I	F	G	G	T	V
138				, 1	53				1	68				
Y	R	s	G	E	S	F	Q	S	s	С	K	Y	Q	С
183				1	98				2.	13				
T	С	L	D	G	A	v	G	С	М	P	L	С	s	M
228				2	43				2	58				
D	V	R	L	P	s	P	D	С	P	F	P	R	R	V
273				2	88				30	23				
к	L	P	G	ĸ	C	С	E	E	W	V	С	D	E	P
318				33	33				34	4 6	•			
ĸ	D	Q	T	V	L	G	P	А	S	R	v	s	R	V
363				37	78				39	93				
F	L	*	V	R	v	V	I	L	s	Q	G	G	s	Ď
408				42	23				43	88				
И	С	Α	D	R	T	G	E	I	P	Y	p	G	V	D
453				46	58				48	33				
Н	G	V	С	v	L	С	s	R	s	L	P	T	G	R
498				51	.3				52	28				
н	V	W	P	R	P	И	Y	D	*	s	Q	L.	q	G
543				55	8				57	'3				
P	D	T	E	W	s	Α	С	s	ĸ	T	С	G	М	G
588				60	3									
Ÿ	S	т	R	V	T	N	D	N	Α					

ENCHAINEMENT XXIV

CTGCGTGTTCGA	rgggat(GATTTACCG	CAACGGGGAG	ACGTTCCAGC	CCAGCTGCAA	CTGCGTGTTCGATGGGATGATTTACCGCAACGGGGAGACGTTCCAGCCCAGCTGCAAGTACCAGTGCACC
350		360	370	380	390	400
190	. 002	210	220	230	240	250
TGCCGGGACGGG	SAGATC	GGGTGCCTG	CCCGCTGCA	ACCTGGGCCT	GCTGCTCCCC	TGCCGGGACGGGCAGATCGGGTGCCTGCCCCCGCTGCAACCTGGGCCTGCTGCTCCCCGGCCCCGACTGCC
420		430	440	450	460	470
CCTTCCCGCGGAAGATCGAAG-TCCCCGGAGAGTGCTGCGAGAAGTGGGTGTGCGAC	AGATCG	AAG-TCCCC	SGAGAGTGCT	GCGAGAAGTG	GGTGTGCGAC	
490		200	510	520	230	

ENCHAINEMENT XXV

ENCHAINEMENT XXVI

2	20	09	02	ć		
DGAPCIFGGT	VYRSGESFO	はで見つくれないない		20	90	100
PR	X		DGAVGCMPLCS	MDVRLPSPDC	PFPRRVKLP(SKCCEEWVCD

ENCHAINEMENT XXVII

															1
5	_		*												CC
	3.	3 mc	CCN	3 C'0		18					33				
		AIC	CCA	ACI	CGC		. (()	GAC	GCI	CTG	GAT	GTG	AGA	GTG	CCC
	48	mcc	C.T.C			63					78				
		TGC	CTG	ACC			TCC	CCC	ACC	CCT	CTC	TTC	CCT	TCC	TCT
10	93	663			_	08					123				
		CCA	GCC	AAA			GCT	CCC	TGC	ATC	TTC	GGT	GGT	ACG	GTG
	138	~~~			_	53					168				
		CGC	AGC	GGA	GAG	TCC	TTC	CAG	AGC	AGC	TGC	AAG	TAC	CAC	TGC
	183				_	98					213				
1 =		TGC	CTG	GAC	GGG	GCG	GTG	GGC	TGC	ATG	CCC	CTG	TGC	AGC	ATG
15	228				_	43					258		•		
	GAC	GTT	CGT	CTG	CCC	AGC	CCT	GAC	TGC	CCC	TTC	CCG	AGG	AGG	GTC
	273					88					303				
	AAG	CTG	CCC	GGG	AAA	TGC	TGC	GAG	GAG	TGG	GTG	TGT	GAC	GAG	CCC
	318				33	33				;	348				
	AAG	GAC	CAA	ACC	GTC	CTT	GGG	CCT	GCC	TCG	CGG	GTG	AGT	CGA	GTC
	363				37	78				3	393				•
20	TTC	CTC	TAA	GTC	AGG	GTC	GTG	ATT	CTC	TCC	CAG	GGA	GGG	AGT	CCT
	408				42	23				4	138				
	AAC	TGT	GCC	GAC	CGA	ACG	GGG	GAA	ATA	CCT	TAT	CCA	GGC	GTT	TTA
	453				46	8				4	83				
	CAT	GGT	GTT	TGT	GTG	CTC	TGC	TCT	CGC	AGC	TTA	CCG	ACT	GGA	AGA
25	498				51						28				
	CAC	GTT	TGG	ccc	AGA	CCC	AAC	TAT	GAT	TAG	AGC	CAA	CTG	CCT	GGT
	54 3	-			55						73				
	CCA	GAC	ACA	GAG	TGG	AGC	GCC	TGT	TCC	_		TGT	GGG	ATG	GGC
	588				60										
	ATC	TCC	ACC	CGG		_	AAT	GAC	AAC	GCC	TC				

ENCHAINEMENT XXVIII

	,		
. C	720	CACCGGGGTTA	
240	047	SATGGGCATCT	
230		GACCTGTGG	
220		CCI'GI'I'CCAA	
210		9794991949	
700	40~4045405	5	
000	TGCCTGGTCCAG		כשכ

CCAA

ENCHAINEMENT XXIX

GCTTTGCTATGGCTGCATACAGACAGGCCACACTTGGGATAGACGTGTCT--GATTCAAGTGCCAAT

TGTATTGAACAGACAACAGAATGGAGTGCTTGTTCCAAAAGCTGTGGAATGGGCTTTTTCTACCCGTGTTA

CCAA

TEMSACSKSCGMGFSTRVTNRN 210

ENCHAINEMENT XXX *

ENCHAINEMENT XXXI

TEWSACSKTCGMGISTRVTNDN

ENCHAINEMENT XXXII

CTGCTCTCGCAGCTTACCGACTGGAAGACACGTTTGGCCCAGACCCAACTATGATT-A-GAGCCAAC

;;

ENCHAINEMENT XXXIII : fragment 1

540	530	TCACCACTCC CACCCCACTC TTTCCAAGAA GAGCTAGCCC AATCTCCATG 530 550 550 550 570 580 590 CTCCTTGTTC TATCTGAGTC TATTCATGCT TGGAACACTT GGCCGATGCT	510	500	490
TTGCCAATTT	AATCTCCATG		TTTCCAAGAA	CACCCCACTC	ACCACTCC
600	590		570	560	550
CTTTGCCTCC	GGCCGATGCT		TATTCATGCT	TATCTGAGTC	CCTTGTTC
480	470	430 440 450 460 470 480 1TTACACTTG CAGTGACTTC TTGACATGTT AATCCTTGTC TTAAAGTTAC ATTTTCCCTG	450	440	430
ATTTTCCCTG	TTAAAGTTAC		TTGACATGTT	CAGTGACTTC	CTTG
420	410	370 380 390 400 410 420	390	380	370
GAATAGCAAT	AATCAAAACT	TTTCGCAAAA ACTAGTTCAA GTTTGGTTTC CATCTTGC AATCAAAACT GAATAGCAAT	GTTTGGTTTC	ACTAGTTCAA	3AAAA
360	350	330 340 350 360 CTATGTGAAA CATCACAGCA TCCTTCCAGT AAAGTCCTCT	330	310	310
AAAGTCCTCT	TCCTTCCAGT		CTATGTGAAA	GTACCATTCC TGTGCTGTCA	TTCC
300	280 290 300	280	270	250 260	250
AGGACTCCCT	CTAGAICCCA ATIGCCICIG AGGACICCCI	CTAGATCCCA	ccrccrcrcr	GTGGAAGTAA TCCTGTTGGC	GTAA
240	230	210 220 230	210	190 200	190
TTTCCCTTAT	AAGGATCATT	TCATAAAGTA AGAAGATTGG AAGGATCATT	TCATAAAGTA	TTCCTTCTGT GGTGATAAGG	CTGT
180	170	160	150	130	130
GACAGGGACA	GGGCCTAAGA	TTTTAAAGTT GGGCCTAAGA	TTCCTGGAAC	GGTGAACCCA TCCAATTTAA	.ccca
120	110	100	90	70 80 90	70
ATTAGTCCAG	GTCCCCATTG	CACCTTCCTT	CCCCATACTT	ACCATGAGGT TCTAACTAAT CCCCATACTT	AGGT
60	50	10 20 30 40 50 60 60 CCTTTCTTC CCAAGAGAAC TGCTCTTTCT CTCCATTCCA	30	20	10
CTĊCATTCCA	TGCTCTTTCT		TCCTTTCTTC	TAAGGAACAG	TTTT

ENCHAINEMENT XXXIII : fragment 1 (suite)

0 &	0	Ť	30 1T	840 ATT	900 GTT	
660 TCTACCAAGA	720	CTGTATTT	780 TAGGCCAAAT	8' AACTTTTAI	9(GACATTTG:	
650 TANAATGCTG	710	GCTCAGGAAT	770 780 GAGGCATCAT TAGGCCAAAT	830 CTTTTTCTTA	890 ATGIGICAIG	GAGGTACC
620 630 640 650 660 TGCTTCTAGT TGCTCCATTT CAAAGTACAT TAAAATGCTG TCTACCAAGA	100	GCCACCACCA GAGAATCCTA CTGAGTGGGT CAAGACTGGG GCTCAGGAAT CTGTATTTT	730 740 750 760 AACAAAATAC ATGCTGGTTG ATTCGATCTG CAGCCAGATG	790 830 840 GGCTTACAAA ACCTATCAGT TTTTTTT TTTGTTTTAT CTTTTTCTTA AACTTTTATT	850 860 870 880 890 900 TCAAGTTCAG GGGAAATGTG CAGGTTTGTT TACACAGGAA ATGTGTCATG GACATTTGTT	940 GCCTGGTACC
630 TGCTCCATIT	069	CTGAGTGGGT	750 ATTCGATCTG	810 TTTTTTGTTT	870 CAGGTTTGTT	930
620 TGCTTCTAGT	089	GAGAATCCTA	740 ATGCTGGTTG	800 ACCTATCAGT	860 GGGAAATGTG	910 920 930 940 940 SAGGTATTAA GCCTGGTACC GAGGTACC
610 CCATTAGCAG	670	GCCACCACCA	730 NACAAAATAC	790 GGCTTACAAA	850 TCAAGTTCAG	910

ENCHAINEMENT XXXIII : fragment 2

					-					
60	120	180	230	300	360	420	480	540	600	660
AAGCCTATCA	ATCTCTAGTT	AGAGGCTTGG	TAGAAGGGGC TTGAGGTGAC	GCCTTTGATT	CTCTAGAATT	CAAAGCAACT	AGTGTGGGGG	GCTCCCTTTT	TGCCCGGTGA	CTCATITCIT
10 20 30 40 50 60 CATTAGTTAT TTTCCCGAT CTTCTCCCTG CTCCCACCCT CCACCCTCCA AAGCCTATCA	90 TCCTACTCAA GAGTGCAAAT GAACTGTTTC ATCTCTAGTT	170 CAGAACTATT		290 270 280 290 CAGAGGCAGA CCTGGCCCCT TCCGCAAGCT	350 TCTTTTAAA	410 TGTTTTTTC CAAAGCAACT		530 CAGTAAAACT		650 CAGITICITC
40	100	140 150 160	220	280	340	400	430 440 450 460 470 ATCCTCAAAA GAGCTGGGCA TAGTTCTCCT AGGGGCAGCA CCAGTGTTGA	510	550 560 570 580 590	640
CTCCCACCCT	GAGTGCAAAT	ACTACTCAGT CTCATTTACC TCAAAGAAAG	GAGAATTATC	CCTGGCCCCT	GCCATTTGTT	AAGTGTTTTT		AAACAATGIC ACCITIGGAG	TCCCATGAGA GATGACAAGC ATGCCCCAGC AATCATTTCT TGAAAGCGGA	CAAGTTAAGC
30		150	210	270	330	390	450	510	570	630
CTTCTCCCTG		CTCATTTACC	AGGCTGCCGA	CAGAGGCAGA	TGAGGTAGAG	TTTCCTTAAA	TAGTTCTCCT	AAACAATGTC	ATGCCCCAGC	AAGGGTCAGC
20	70	140	200	260	310 320 330	380	440	500	560	610 620 630
TTTTCCCGAT	ATTTGAAGAG TAGGTAAATG	ACTACTCAGT	TAGTGGTTTC	GCGGGTGTTG	TCCTTCATGC TGGGGACAGA TGAGGTAGAG	CCTGTATAAT	GAGCTGGGCA	TAAATCCTTC	GATGACAAGC	GAGAAGGATT TGATTTGCTG AAGGGTCAGC
10	70	130	190	250	310	370	430	490 500	550	610
CATTAGTTAT	ATTTGAAGAG	AAGTTTGAGT	AAGTGTGTCA	CTCATCATCT	TCCTTCATGC	ACATCACAGG	ATCCTCAAAA	GAAACTGTTC TAAATCCTTC	TCCCATGAGA	GAGAAGGATT

720	780	840	900	960	1020	1080	1140	CCCCTGCAG
TAGAAAACTG	AGCAGGTGCT	TTTATGTGTG	AACAAACCTG	AATTTTGCCA	ATTCCCTTCC	TTTCTCTCCT	TAAACGGTGA	
710	770	830	890	950	1010	1070	1130	1190
TGAACCCACT	GGTCTGCTAC	IGATGTTTTC	TTTTATTTCT	GAGTCAAAAG	TTTTTTCTAG	CTTTCTCCTC	ATGAGTGCCC	TTCTGCCAAT
700	760	820	880	940	1000	1060	1120	1180
GTGGTTGAAC	TCTCACATIT	TTTTATTTA	TGTGTTTTAC	AGAAGGATTA	CATATCGATT	ACACTTTTCT	AACACATTCA	ACCCCIGGCC
690	750	810	870	930	990	1050	1110	1170
GGTGGTGATG	AGGTGTGCCG	GATTTCTTTG	rererere	GAGTGAAGCT	CACCTCCTGA	CAACACACAC	CCTCCCTCTC	TCATGACTAA
680	740	800	860	920	980	1040	1100	1160
AGGTTTTGAT	CTGGACTCTC	CTTCTGCCAA	TGTGTGTG	GTTTAAGACT	AGCATTCCCC	CCCCTCCCCC	GCTTCTCTCC	rgrgcrrccc
670	730	790	850	910	970	1030	1090	1150
CCCTGGCTGG	TCAAAGGITT	TCAAGGCTTT	TGTGTGTGTG	TGACCTTGGG	TTTGGCCAAT	CCCTGCCACT	TTCCTCCCTT	CAAACITIGCA

ENCHAINEMENT XXXIII : fragment 2 (suite)

ENCHAINEMENT XXXIII : fragment 3

60 CAGGGTGGAG	120 CTTCCAGGAG	180 TCGGAACTCC	240 CACGCAGGCC	
10 20 30 40 50 60 CTGCAGGCAT CCCGTAAGGA CCCCACGCTT GCAGCCCTGG TTGGAACGGT CAGGGTGGAG	70 80 90 100 110 120 GAGGATGGTG GTGTCTTCGT CCTGGGAGAA GGCGAAGCAA CTTCCAGGAG	130 140 150 160 170 180 GAAACGGGCG TTTCCTTCCC ACGCGCTCGA GCGAGCCCTG GGTCCTGGCC TCGGAACTCC	190 200 210 220 230 240 ACCCAGCCC TCCCCACCCT CTGGGAAAAG CCAGTCGCCA CACACAGGCA CACGCAGGCC	Ç
40	100	160	220	280
GCAGCCCTGG	CCTGGGAGAA	GCGAGCCCTG	CCAGTCGCCA	
30	90	150	210	270
CCCCACGCTT	GTGTCTTCGT	ACGCGCTCGA	CTGGGAAAAG	GAGCAGCACC
20	80	140	200	CCGGCGCCGC GCCCTAAGGA GAGCAGCACC CACAGCAAAAAAAAAA
CCCGTAAGGA	GGGAGTGGTG	TTTCCTTCCC	TCCCCACCCT	
10	70	130	190	250
CTGCAGGCAT	GAGGATGGTG	Gaaacgggg	ACCCAGCCCC	

ENCHAINEMENT XXXIV

		•	•					
60 AAAAAGGATG	120 TAATTGCCAG	180 AAAAAATTCT	240 GCGAGCTGGA	300 TCAATCCGGT	360 TTGİGTAGAC	420 GGCCGCCCGC	450 450 480 criccerea Gagagacae ccasteceae recacete	
	70 80 90 100 TATGTCAGTG GACAGAACAG GGCAAACTTA TTCGAAAAAG AAATAAGAAA	160 GTGCGAAGAG GATAGGGAAA AAAAATTCT	230 TTTTTTTCT	290 GGGGTCAGGA	340 350 AATGCGAGGA ATGTCCCTGT	370 380 390 400 410 TCCATICAGE TCATIGGEGA GEGECECEC CEGGAGEGIA TAAAAGEETE	470 CCAGTGCGAC	
40 TCTTCAGCTA	100 TTCGAAAAAG	160 GTGCGAAGAG	220 TTTCCTTTTT	280 TGAGTGTCAA	340 AATGCGAGGA	400 CCGGAGCGTA	460 GAGGAGACAG	CCCGA
30 40 50 GCTGTTTGCC TCTTCAGCTA CCTACTTCCT	90 GGCAAACTTA	150 ATCAGGAGTG	210 CGCTTTTTTT	270 GGAGGAATGC	320 GAGGCAGGAA GGTGGGGAGG	3933933939 068		510 GGCCGAGAGC
	80 GACAGAACAG	130 140 150 TGTGTTTATA AATGATATGA ATCAGGAGTG	200 GGAAATACTG	260 TTTTTCAGAC		380 TCATTGGCGA	430 CCCNAACTCA CACAACAACT	490 500 AGCTCGACGG CAGCCGCCC
10 20 CGAATTTTT AGGAATTCCT	70 TATGTCAGTG	130 TGTGTTTATA	190 ATTTGGTGCT	250 GTGTGCCAGC	310 GTGAGTTGAT	370 TCCATTCAGC	430 CCCAAACTCA	490 AGCTCGACGG

ENCHAINEMENT XXXV

60	120	180	240	290 300	350 360	420
ATGGAGTGTG	GAAGCAGCTG	TCTTTAAAAA	ATCAGTGATA	CAGTTTGGAT ATCAGGAACA	CTGCCCAGCG AGGTGGAATC	TGGTTTAGTG
50	100	170	230		350	400 410
CATCGAGGCC	CTGGAGCACA TGTTTTATTG	ACATTATTGC	GCTCCCAGGT		CIGCCCAGCG	AGATGTGGCA CTGAGGGATG
10 20 30 40 50 60 GTCGAGTGCT GTGTTCAGTT TTGGGCCCCT CACTACAAGA CATCGAGGCC ATGGAGTGTG	100	130 140 150 160 170 180	220	250 260 270 280	340	400
	CTGGAGCACA	AGGAAGTTGG GATTGTTCAG TCCGGAGAGG CTCAGGGAAA ACATTATTGC TCTTTAAAAA	GTCGGCCTCT	GGATGAGAGG GAACTGTCTT AAATTATGCC AGGGGAGTTT	CTGCCACAGT	AGATGTGGCA
30	90	150	210	270	330	380 390
TTGGGCCCCT	GGTGAGGAGT	TCCGGAGAGG	TGAGGTGGAG	AAATTATGCC	TGGTGAGGTA	GAGATGTTCA GGAAACGTGT
20	70	140	190 200 210	260	310 320 330	380
GTGTTCAGTT	TCCAGAGAAG GGCACGAGGT	GATTGTTCAG	TCCCTGGAAG GAGGTTGTGG TGAGGTGGAG	GAACTGTCTT	ATTTTTTTC TCCAAAAAAT TGGTGAGGTA	GAGATGTTCA
10	70	130	190	250	310	370
GTCGAGTGCT	TCCAGAGAAG	AGGAAGTTGG	TCCCTGGAAG	GGATGAGAGG	ATTTTTTTC	ACCATCCCTG

ENCHAINEMENT XXXV (suite)

470 480 TAGCGATCTT TCCAGTCATA	540 CCGCAGGCIT	600 GCCGGGCAGG	660	720	GTCCCTACCG	780 GGCGGGTCAG	
470 TAGCGATCTT	530 CGGAGCAGAC	590 GCCGGGCACC	650 GGCTCCAGCT	710	ອອອອອອອອອອ	770 CGAGCGGCGC	·
460 TAGATTAGCT	520 CCGGCCCCAG	580 CGCGGGCAGG	630 640 650 660 660 CGGAGCGTAG GGCCCTGCCC GGCTCCAGCT CCCCGCCTCC	700	AGGGGGGCG	760 CCGCCAGAGC	
450 ATGGTTGGAC	510 TCCTAAGGCG	570 CGCGTCGGGA	630 CGGAGCGTAG	069	GGGCGTGAGG	750 AATGGCTTTG	
430 440 450 460 AGAATGGTAG GGATGGGTTG ATGGTTGGAC TAGATTAGCT	500 510 520 530 540 6ATCCTACGA TCCTAAGGCG CCGGCCCCAG CGGAGCAGAC CCGCAGGCTT	550 560 570 580 590 600 500 580 590 600 600 600	620 CAACGGGGAG	089	GICCCGCGCI GCCGGIGGCG GGGCGIGAGG AGGGGGGGG GGGGGGGGGG	730 740 750 760 770 GCCTCTATAT AAGCGGCCGC AATGGCTTTG CCGCCAGAGC CGAGCGGCGC	L
430 AGAATGGTAG	490 ACGATCCTGT	550 CAGCCCCGGA	610 TGGCGGAGCA	0.29	GTCCCGCGCT	730 GCCTCTATAT	790 ACGGCCGGGA CT

• • •

REVENDICATIONS

- 1/ Séquences de nucléotides, caractérisées en ce qu'elles renferment un enchaînement de nucléotides capable de s'hybrider, dans des conditions stringentes (50 % de formamide, 5XSCC) avec une ou plusieurs séquences du gène nov de poule dont l'ADNc présente l'enchaînement de nucléotides (I) et plus spécialement avec l'enchaînement (II).
- 2/ Séquences de nucléotides selon la revendication
 1, caractérisées en ce qu'elles sont formées par, ou
 qu'elles comprennent, un enchaînement de nucléotides
 15 capable de s'hybrider, dans les conditions stringentes de
 la revendication 1, avec au moins une partie du deuxième
 exon du gène noy de poule qui comprend la séquence
 nucléotidique (III).
- 3/ Séquences de nucléotides selon la revendication 2, caractérisées en ce qu'elles comportent l'information génétique pour coder pour une protéine renfermant une séquence ayant une homologie d'au moins 70 % avec le fragment de protéine correspondant au deuxième exon du gène noy de poule, ce fragment présentant la séquence d'acides aminés (IV).
- Séquences de nucléotides selon 4/ l'une revendications précédentes, caractérisées en ce qu'elles 30 comprennent au moins une partie d'un fragment d'environ 600 pb tel qu'obtenu à partir d'un sous-clone plasmidique dérivé d'un clone recombinant isolé d'une banque d'ADN de placenta humain, la carte de restriction enzymatique du clone recombinant ainsi que du sous-clone 35 plasmidique dérivé renfermant la séquence nucléotidique étant représentée sur la figure 2A.

5/ Séquences de nucléotides selon l'une des revendications l à 4, caractérisées en ce qu'elles comportent l'information génétique pour coder pour une séquence d'acides aminés présentant l'enchaînement V.

5

10

15

Séquences de nucléotides selon l'une à revendications 1 5, caractérisées en ce qu'elles comportent au moins une partie du l'enchaînement nucléotidique (VI), plus spécialement de l'enchaînement (VII).

7/ Séquences de nucléotides selon la revendication l, caractérisées en ce qu'elles sont capables de s'hybrider, dans les conditions stringentes définies dans la revendication l, avec au moins une partie du troisième exon du gène nov de poule qui comprend la séquence nucléotidique (VIII).

8/ Séquences de nucléotides selon la revendication 7, caractérisées en ce qu'elles comportent l'information génétique pour coder pour une protéine ayant une homologie d'au moins 70 % environ avec le fragment de protéine potentiel correspondant au troisième exon du gène nov de

poule répondant à la séquence (IX).

25

30

9/ Séquences de nucléotides selon la revendication 7 ou 8, caractérisées en ce qu'elles comprennent au moins une partie d'un fragment PstI d'environ 700 pb, qu'obtenu à partir d'un sous clone plasmidique dérivé d'un clone recombinant isolé d'une banque d'ADN de placenta humain. la carte de restriction enzymatique du clone recombinant ainsi que celle du sous-clone plasmidique dérivé renfermant la séquence nucléotidique en question étant représentées sur la figure 2A.

35

10/ Séquences de nucléotides selon l'une des revendications 7 à 9, caractérisées en ce qu'elles

20

comportent l'information génétique pour coder pour une protéine ayant la séquence (X) en acides aminés.

- Séquences de nucléotides selon l'une revendications 7 à caractérisées 10, en ce qu'elles au moins une partie de l'enchaînement nucléotidique (XI), plus particulièrement, l'enchaînement nucléotidique (XII).
- 12/ Séquences de nucléotides selon la revendication 1, caractérisées en ce qu'elles sont formées par, ou qu'elles comprennent, un enchaînement capable de s'hybrider, dans les conditions stringentes données dans la revendication 1, avec au moins une partie du quatrième exon du gène nov de poule, qui comprend l'enchaînement (XIII).
 - 13/ Séquences nucléotides de selon la revendication 12, caractérisées en ce qu'elles sont capables de coder pour le fragment de protéine ayant une homologie d'au moins 86 % avec le fragment de protéine potentiel correspondant au quatrième exon du gène nov de poule répondant à l'enchaînement (XIV) en acides aminés.
- Séguences 14/ đе nucléotides selon la 25 revendication 12 ou 13, caractérisées en ce qu'elles comportent l'information génétique pour coder pour protéine ayant la séquence (XV) en acides aminés.
- 15/ Séquences de nucléotides selon l'une des 30 revendications 12 à 14, caractérisées en ce qu'elles sont formées par ou qu'elles comprennent l'enchaînement nucléotidique (XVI).
- 16/ Séquences de nucléotides selon la 35 revendication 1, caractérisées en ce qu'elles sont capables de s'hybrider, dans les conditions stringentes définies dans la revendication 1, avec au moins une partie du

10

15

20

25

premier exon du gène nov de poule qui comprend la séquence nucléotidique (XVIII).

- 17/ Séquences de nucléotides selon la revendication 11, caractérisées en ce qu'elles comportent l'information génétique pour coder pour une protéine ayant une homologie d'au moins 30 % environ avec le fragment de protéine potentiel correspondant au premier exon du gène nov de poule, ce fragment présentant l'enchaînement (XIX) en acides aminés.
 - 18/ Séquences de nucléotides selon l'une des revendications 16 ou 17, caractérisées en ce qu'elles comportent l'information génétique pour coder pour une protéine ayant la séquence (XX) en acides aminés.
 - 19/ Séquences de nucléotides selon l'une des revendications 16 à 18, caractérisées en ce qu'elles comportent au moins une partie de l'enchaînement nucléotidique (XXI).
 - 20/ Séquences de nucléotides selon la revendication 1, caractérisées en ce qu'elles sont capables de s'hybrider, dans les conditions stringentes définies dans la revendication 1, avec au moins une partie des troisième et quatrième exons du gène noy de poule qui comprennent la séquence nucléotidique (XXII).
- 21/ Séquences de nucléotides selon la 30 revendication 20, caractérisées en ce qu'elles comportent l'information génétique pour coder pour une protéine ayant la séquence (XXIII) en acides aminés.
- 22/ Séquences de nucléotides selon l'une des revendications 20 à 21, caractérisées en ce qu'elles sont formées par ou qu'elles comprennent un enchaînement capable de s'hybrider dans les conditions stringentes définies dans la revendication 1, avec au moins une partie du troisième

٠",

5

10

15

20

25

30

35

exon du gène <u>nov</u> de poule qui comprend la séquence nucléotidique (XXII).

- 23/ Séquences de nucléotides selon l'une des revendications 20 à 22, caractérisées en ce qu'elles comportent l'information génétique pour coder pour une protéine ayant une homologie d'au moins 60 % environ avec le fragment de protéine potentiel correspondant au troisième exon du gène nov de poule répondant à la séquence (XXIII) en acides aminés.
- 24/ Séquences de nucléotides selon l'une des revendications 20 à 22, caractérisées en ce qu'elles comportent l'information génétique pour coder pour une protéine ayant la séquence (XXIV) en acides aminés.
- 25/ Séquences de nucléotides selon l'une des revendications 20 à 24, caractérisées en ce qu'elles comportent au moins une partie de l'enchaînement nucléotidique (XXV), plus particulièrement, l'enchaînement nucléotidique (XXVI).
- 26/ Séquences de nucléotides selon l'une des revendications 20 à 25, caractérisées en ce qu'elles sont formées par ou qu'elles comprennent un enchaînement capable de s'hybrider dans les conditions stringentes données dans la revendication l avec au moins une partie du quatrième exon du gène nox de poule, qui comprend l'enchaînement de nucléotides (XXVII).
- 27/ Séguences de nucléotides selon la revendication 14. caractérisées en ce qu'elles sont capables de coder pour le fragment de protéine ayant une homologie d'au moins 86 % avec le fragment de protéine potentiel correspondant au quatrième exon du gène nov de poule répondant à l'enchaînement (XXVIII) en acides aminés.

28/ Séquences de nucléotides selon la revendication 26 ou 27, caractérisées en ce qu'elles comportent l'information génétique pour coder pour une protéine ayant la séquence (XXIX) en acides aminés.

5

29/ Séquences de nucléotides selon l'une des revendications 26 à 28, caractérisées en ce qu'elles sont formées par ou qu'elles comprennent l'enchaînement nucléotidique (XXX).

10

30/ Les ARN et séquences complémentaires des séquences selon l'une quelconque des revendications 1 à 29.

31/ Vecteurs recombinants de clonage et d'expression, capables de tranformer une cellule hôte appropriée, comportant au moins une partie d'une séquence de nucléotides selon l'une quelconque des revendications l à 30 sous le contrôle d'éléments de régulation permettant son expression dans la cellule hôte.

20

25

32/ Souches de microorganismes transformées ou transfectées, caractérisées en ce qu'elles comportent une séquence de nucléotides selon l'une quelconque des revendications 1 à 30 ou encore un vecteur recombinant selon la revendication .

33/ Les protéines correspondant aux séquences nucléotidiques selon l'une quelconque des revendications l à 30.

30

34/ Les anticorps polyclonaux et monoclonaux caractérisés en ce qu'ils reconnaissent spécifiquement une protéine selon la revendication 33, ou un fragment d'une telle protéine.

35

35/ Sonde de détection, caractérisée en ce qu'elle comprend tout ou partie des séquences de nucléotides selon l'une des revendications 1 à 30.

- 36/ Procédé de dépistage <u>in vitro</u> de la présence éventuelle dans un échantillon biologique de séquences de nucléotides complémentaires de celles selon l'une quelconque des revendications 1 à 30, caractérisé en ce qu'il comprend les étapes suivantes :
- la mise en contact de l'échantillon biologique avec une sonde nucléotidique selon la revendication 35 dans
 des conditions permettant la production d'un complexe d'hybridation formé entre ladite sonde et ladite séquence de nucléotides,
 - la détection du complexe d'hybridation, et

20

5

- le cas échéant l'amplification, avant l'étape de mise en contact, des séquences de nucléotides selon l'une quelconque des revendications 1 à 30 susceptibles d'être contenues dans l'échantillon. à l'aide d'amorces susceptibles respectivement de se lier, d'une part à l'extrémité 5' d'un brin de ladite séquence de nucléotides et, d'autre part, à l'extrémité 3' de l'autre brin de ladite séquence de nucléotides,

25

37/ Kit pour la mise en oeuvre d'une méthode de dépistage <u>in vitro</u> de la présence éventuelle dans un échantillon biologique de séquences complémentaires des séquences selon l'une quelconque des revendications 1 à 18 caractérisé en ce qu'il comprend :

30

- une quantité déterminée d'une sonde nucléotidique selon la revendication 35,
- un milieu approprié à la formation d'une
 35 réaction d'hybridation entre la séquence à détecter, et la sonde, et, avantageusement,

- des réactifs permettant la détection des complexes d'hybridation formés entre la séquence de nucléotides et la sonde lors de la réaction d'hybridation.
- 38/ Procédé de dépistage <u>in vitro</u> de la présence dans un échantillon biologique des protéines selon la revendication 33, caractérisé en ce qu'il comprend :
- la mise en contact de l'échantillon avec un 10 anticorps selon la revendication 34, dans des conditions permettant la production d'un complexe immunologique formé entre tout ou partie des protéines et cet anticorps, et
 - la détection du complexe immunologique.

39/ Kit pour la mise en oeuvre d'une méthode de dépistage <u>in vitro</u> de la présence éventuelle de protéines selon la revendication 21 dans un échantillon biologique, caractérisé en ce qu'il comprend :

20

- une quantité déterminée d'un anticorps selon la revendication 33,
- avantageusement un milieu approprié à la
 formation d'une réaction immunologique entre au moins une partie d'une protéine et l'anticorps et, avantageusement,
- des réactifs permettant la détection des complexes immunologiques formés entre au moins une partie
 de la protéine recherchée et l'anticorps lors de la réaction immunologique.
- / Procédé de détection dans un échantillon biologique de protéines selon la revendication 33, ou de leurs fragments, caractérisé par la mise en contact des protéines de l'échantillon, ou de leurs fragments, avec un IGF portant un groupe marqueur et le dosage de la quantité de produit fixé.

41/ Utilisation en tant qu'amorces dans des techniques d'amplification d'ADN, de type PCR, de deux amplimères d'environ 15 nucléotides, compris dans l'une des séquences selon l'une quelconque des revendications 1 à 18, et distantes de 200 à 250 nucléotides environ, l'une des séquences étant capable de se lier à l'extrémité 5' d'un brin de la séquence à amplifier et la deuxième séquence à l'extrémité 3' de l'autre brin.

-	-	
	۳ ت	
	3	
-	7	

			10							
		95	185	275	365	455	545	635	725	815
en H		GAGIGTG E V Å	CTG L	I AC M	၂ ပ္တဲ့ 🚾 (CIG II	GAA	GAA E	GTG V	TCC
		GAG	GIG V	4 S 4	I AG	၊ ႘ၟ ၒ	GAT	ATT I	ATG	AAA *
	¥ Z	ို့မွ	။ ပ္ပိ 🗸	(ပို့ ၂)	ATT	CTO	AGG # 1			AAG 7
	nov mRNA	ეე გ	ညည	ပ္ပဲ ဖ ၊	ATG M	AAC	ပ္ပ ရ ၊		i O	ACA 1
	ОП	99 ~	GTG \	။ ဗွို က။	ဗ္ဗ. ဗ္ဗ၊	ု ဗွို့စြ၊		-	CAG	CRA O
T. VA.V.		5	V 25	e Gara	GAT	ပ္ပ	ဋ္ဌိတ္ပ။	_	CAG (ATC (
ATTAGG		CIC	၁၃ 🛶	i gail	TIC	ပ္ပ 🛶 (
E		SE J	၁၁၁	၊ ဂ္ဂို့ပြား	GIG 1 <	CIG L	13 13 × 11		AGA	AAA K
		CTC L	ပ္ခဲ့တ	။ ပ္ပည္ကူ	ဋ္ဌိတ္ပြ	၊ ဠိတ္တ၊	AAG	ICI	Z z II	
		CTG CTC	2 8	CIG	AAC	ဗ္ဗ ဗ ။	GAG II E	GTG V	ACC III	ggy c
Gacto Carrie		E 2	၅၁	CIG L	GAC	ATC	ဗ္ဂ်တ္။	GAC	GTT 11 > 11	
<u></u>		CTC 1	ည် မျ	က်သူ	ខ្លួ ច រេ	Cyc	န္ပ်ံ <u>ြ</u> ။	ATA I	ព្រង្គ	AAGI
S S		CIG	GAG	၂၀	GAA B B I	ဗ္ဗိ ဗ 🕫	GAG	၁၉ ၁	N H II	
		STC >	00 × 11	ြဋ္ဌိတ္က။	CTG L	S = 11	ရှိ ဝါ၊	CIT	ICT S	
) P	ည္သ			990 8	ပ္ပဲ ကျ	ACA T	TIL	CCA
2		8-	ပ္မွတ္မ	_		ပ္မွတ္။	GIC I <	သွ 🔻	ပ္ပိ ဖ ျ	
2		99	ပ္ပ 🕬။					GAG	ATG H	GAĄ E
cared heere		CAG	ပ္တိ ဇာ။			ပ္ရွိတြ။		S O	ဗ္ဗိ ဇ ။	AAC N
		999	ပ္ပ်ဲ ဝ ·	S 011	ပ္ကြင္းမွ	9 0 11	AAG 1 ×	AGA R	ភ្លិ	GAA
		ပ္ပ	ဂ္ဂ်တြ။			Z × II	ပ္ပိ 🕿 ။	TAC X	NGC 1	මුවූ
		ပ္ပ	S P				ပ္ပိ မျ ၊		N R A	CCT
		ACG		- ¹ [] []		ဦုံ ဖြ				AGA R
acake erang		GAG		515) လ ။	ပ္ပ 🏎 ။			AIG
9		ATG H	ဂ္ဂ် _{ကြ။}				ဂ္မံြ။		။ နှ ပြီ	ATG M
ğ		GACT	9 200	ဋ္ဌည္မ ျ		S 0 1	ဗ္ဗ 🗚 🗎			ပ္ဆိတ္
		9993	9 V	5 O 11			ပ္ပဲ မျ၊	ပ္တဲ့ ဗ	7GG 3 3 4 11	CIT
in		ACGG	GAG (င္တိုင္း (နိုင်ငံ န
		GCGCCGGTAGACGCCCGGGACT	000 ×	S O .		ဗို အ။				ACA T
		9929	999 3	ဗ္ဗိမြ ျ	-	-				CAC O
		ည	AGC S	Sou S	30"	S Z	1 1	9 >	980	X X

FIGURE 1 (suite)

905	995	1087	1206 1325 1444 1563 1682 1801 1920

FIGURE 2

FEUILLE DE REMPLACEMENT

INTERNATIONAL SEARCH REPORT

International application No.
PCT/FR 92/00589

A. CL. Int.Cl	· · · · · · · · · · · · · · · · · · ·		L2Q1/68
According	C12N1/21; G01N33/2 to International Patent Classification (IPC) or to be	53; G01N33/574; CI	L2P19/34
	LDS SEARCHED		
Minimum d	locumentation searched (classification system followed	by classification symbols)	
Int.Cl	5: С07К		
Documenta	tion searched other than minimum documentation to th	e extent that such documents are included in	the fields searched
Electronic d	ata base consulted during the international search (nam	ne of data base and, where practicable, searc	th terms used)
C. DOCU	MENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where	appropriate, of the relevant passages	Relevant to claim No.
P,X	COMPTES RENDUS DE L'ACADEMIE vol. T313, No. III, September FRANCE pages 345 - 351 C. MARTINERIE ET BERNARD PERE 'Expression of a gene encodin potential IGF binding protein tissues' see the whole document	BAL g a novel	1-41
о,х	Proceedings of the 82nd Annual the American Association for Research Vol. 32 see page 312, abstract No. 18 & 82nd Annual Meeting of the May 15-18, 1991, Houston, TX, "Expression of an embryonic nephroblastomas" B. Perbal et	Cancer 57 AAC USA gene (nov) in	1-41
Further	documents are listed in the continuation of Box C	See patent family annex.	
Special c A" documen to be of p E" earlier do Cited to especial re O" documen means " documen documen	rategories of cited documents: It defining the general state of the art which is not considered particular relevance ocument but published on or after the international filing date to which may throw doubts on priority claim(s) or which is establish the publication date of another citation or othe eason (as specified) It referring to an oral disclosure, use, exhibition or other to build the published prior to the international filing date but later that ty date claimed	"T" later document published after the int date and not in conflict with the application the principle or theory underlying the principle or theory underlying the considered novel or cannot be consister when the document is taken alour "Y" document of particular relevance: the considered to involve an inventive combined with one or more other such	lication but cited to understand e invention e claimed invention cannot be idered to involve an inventive ne e claimed invention cannot be step when the document is a documents, such combination the art
ate of the ac	ctual completion of the international search	Date of mailing of the international sea	
	ber 1992 (16.10.92)	2 November 1992 (02.11.9	•
_	iling address of the ISA/ n Patent Office	Authorized officer	
csimile No.		Telephone No.	
m PCT/ISA	/210 (second sheet) (July 1992)	i i	

INTERNATIONAL SEARCH REPORT

International application No.

**. *

PCT/FR 92/00589

Category*	Citation of document, with indication, where appropriate, of the relevan	nt passages	Relevant to claim No
ategory*		hononDon	
P,X	MOLECULAR AND CELLULAR BIOLOGY vol. 12, No. 1, January 1992, WASHINGTON, D.C., USA pages 10 - 21 V. JOLIOT ET AL. 'Proviral rearrangements and overexpression of a new cellular gene (Nov) in myeloblastosis-associated virus type 1 induced nephroblastomas' see the whole document	•	1-41
			*
		i.	
	·		

RAPPORT DE RECHERCHE INTERNATIONALE

PCT/FR 92/00589

41. } Demande Internationale No I. CLASSEMENT DE L'INVENTION (si plusieurs symboles de classification sont applicables, les indiquer tous) 7 Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB 5 C12N15/12; CO7K15/00; CIB C12P21/08; C1201/68 G01N33/53; G01N33/574; C12P19/34 C12N1/21; II. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE Documentation minimale consultée⁸ Système de classification Symboles de classification CIB 5 C07K Documentation consultée autre que la documentation minimale dans la mesure où de tels documents font partie des domaines sur lesqueis la recherche a porté III. DOCUMENTS CONSIDERES COMME PERTINENTS 10 Identification des documents cités, avec indication, si nécessaire,12 No. des revendications Catégorie ° des passages pertinents 13 visées 14 COMPTES RENDUS DE L'ACADÉMIE DES SCIENCES P,X 1-41 vol. T313, no. III, Septembre 1991, PARIS, FRANCE pages 345 - 351 C. MARTINERIE ET BERNARD PERBAL 'Expression of a gene encoding a novel potential IGF binding protein in human tissues' voir le document en entier 0, X Proceedings of the 82nd Annual Meeting of 1-41 the American Association for Cancer Research Vol 32 voir page 312, Abrégé No. 1857 & 82nd Annual Meeting of the AAC May 15-18, 1991, Houston, TX, USA " Expression of an embryonic gene (nov) in nephroblastomas" B. Perbal et al. "T" document ultérieur publié postérieurement à la date de dépôt international ou à la date de priorité et n'appartenenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'Invention ° Catégories spéciales de documents cités:11 "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent "E" document antérieur, mais publié à la date de dépôt interna-"X" document particulièrement pertinent; l'invention revendi-quée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive tional ou après cette date "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) "Y" document particulièrement pertinent; l'invention reven-diquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combi-"O" document se référant à une divulgation oraie, à un usage, à une exposition ou tous autres moyens naison étant évidente pour une personne du métier. P document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée "&" document qui fait partie de la même famille de brevets IV. CERTIFICATION Date d'expédition du présent rapport de recherche internationale Date à laquelle la recherche internationale a été effectivement achevée ¥2, 11, 92 16 OCTOBRE 1992 Signature du fonctionnaire autorisé Administration chargée de la recherche internationale VAN PUTTEN A.J. OFFICE EUROPEEN DES BREVETS

Formulatre PCT/ISA/210 (describes feetile) (Jenvier 1985)

5

III. DOCUMENTS CONSIDERES COMME PERTINENTS 14 (SUITE DES RENSEIGNEMENTS INDIQUES SUR LA PROPRIE DEUXIEME FEUILLE)						
Catégorie °	Identification des documents cités, ¹⁶ avec indication, si nécessaire des passages pertinents ¹⁷	No. des revendications visées 18				
P, X	MOLECULAR AND CELLULAR BIOLOGY vol. 12, no. 1, Janvier 1992, WASHINGTON, D.C., USA pages 10 - 21 V. JOLIOT ET AL. 'Proviral rearrangements and overexpression of a new cellular gene (Nov) in myeloblastosis-associated virus type 1 induced nephroblastomas' voir le document en entier	1-41				