Assignment: Data reconciliation

torsdag 7. oktober 2021 14:20

Process	Mass flow	Instrument
stream	kg/s	variance σ^2
F1	120.2	1.2
F2	95.2	0.5
F3	180	5.0
F4	142.8	0.8
F5	35.7	0.5
F6	80.2	0.2

· Find incidenc matrix

Destilation. F3-F4-F5 =0

Minimize
$$j(y) = (y-y)^T V^{-1}(y-y)$$

 $j(y) = (y-y)^T V^{-1}(y-y) - 2\pi^T A \cdot y$
 $N_1^T = [\lambda_1, \lambda_2, \lambda_3, \lambda_4]$
 $N_2^T = [\lambda_1, \lambda_2, \lambda_3, \lambda_4]$
 $N_1^T = [\lambda_1, \lambda_2, \lambda_3, \lambda_4]$
 $N_2^T = [\lambda_1, \lambda_2, \lambda_3, \lambda_4]$
 $N_1^T = [\lambda_1, \lambda_2, \lambda_3, \lambda_4]$
 $N_2^T = [\lambda_1, \lambda_2, \lambda_3, \lambda_4]$
 $N_1^T = [\lambda_1, \lambda_2, \lambda_3, \lambda_4]$
 $N_2^T = [\lambda_1, \lambda_2, \lambda_3, \lambda_4]$
 $N_1^T = [\lambda_1, \lambda_2, \lambda_3, \lambda_4]$
 $N_2^T = [\lambda_1, \lambda_2, \lambda_3, \lambda_4]$
 $N_1^T = [\lambda_1, \lambda_2, \lambda_3, \lambda_4]$
 $N_2^T = [\lambda_1, \lambda_2, \lambda_3, \lambda_4]$
 $N_1^T = [\lambda_1, \lambda_2, \lambda_4]$
 $N_1^T = [\lambda_1, \lambda_2, \lambda_4]$
 $N_2^T = [\lambda_1, \lambda_2,$

		R	e	. (yη	C	ĈΛ	J	h	10	いろ	1	ito	CU)	5	0	F	-3 -4	1	7°	7.7.7.8	_