南京邮电大学 2016/2017 学年第一学期

《线性代数与解析几何》期末试卷(A)答案

院(系)	班级	学号	姓名
·	· · · · · · · · · · · · · · · · · · ·		

题号	1	-1	111	四	五	六	七	八	九	总分
得分										

得 分

一.填空题(每小题 4 分, 共 20 分)

1. 设
$$A,B$$
 均为 n 阶矩阵, $|A|=2$, $|B|=-3$,则 $|2A^*B^{-1}|=\frac{2^{2n-1}}{3}$

- 2. 设 $A = \{A_1, A_2, A_3, A_4\}$, 其中列向量 A_1, A_2, A_4 线性无关, $A_3 = 2A_1 A_2 + A_4$, 则齐次线性 方程组 AX=0 的通解是 $k(2,-1,-1,1)^T, k\in R$
- 3. 设方阵 A 满足 $A^2 + 3A 2I = 0$, 其中 I 为单位矩阵,则 $(A + 2I)^{-1} = \frac{1}{4}(A + I)$
- 4. 空间曲线 $\begin{cases} x^2 + y^2 + z^2 = 4 \\ z = \sqrt{3(x^2 + y^2)} \end{cases}$ 在 xOy 平面上的投影曲线方程是 $\begin{cases} x^2 + y^2 = 1 \\ z = 0 \end{cases}$
- 二.选择题 (每小题 4分, 共 20 分)
- 1. 设A, B 为n 阶矩阵,则必有

- (A) |A+B| = |A| + |B| (B) $(A+B)^T = A^T + B^T$
- (C) $(A+B)^{-1} = A^{-1} + B^{-1}$ (D) AB = BA
- 2. 设A是n阶方阵,满足 $A^2 = I$,I为n阶单位方阵,则

- (A) $\det A = 1$ (B) A的特征值是 1 (C) R(A) = n (D) A是对称矩阵

3. 点
$$P(2,-1,1)$$
 到直线 $\frac{x-1}{2} = \frac{y+1}{-2} = \frac{z}{1}$ 的距离为 (B)

(A) 2 (B) 1 (C) 3 (D)
$$\frac{1}{3}$$

- 4. n 维向量组 $\alpha_1, \alpha_2, \dots, \alpha_k$ 线性无关的充要条件是
 - (A) 存在一组数 $c_i(i=1,2,\cdots,k)$ 使 $c_1\alpha_1+c_2\alpha_2+\cdots+c_k\alpha_k\neq 0$
 - (B) $\alpha_1, \alpha_2, \dots, \alpha_k$ 中任意两个向量线性无关
 - (C) $\alpha_1, \alpha_2, \dots, \alpha_k$ 中有一个向量不能由其余向量线性表示
 - (D) $\alpha_1, \alpha_2, \cdots, \alpha_k$ 中任何一个向量都不能由其余向量线性表示
- 5. 若二次型 $f = x_1^2 + x_2^2 + 5x_3^2 + 2ax_1x_2 2x_1x_3 + 4x_2x_3$ 正定,则 a 的取值范围是

(A)
$$(-1,1)$$
 (B) $(-\infty,0)$ (C) $(-\frac{4}{5},+\infty)$ (D) $(-\frac{4}{5},0)$

= 美元 (本题 10 分)设 $A^2 - AB = I$,其中I为单位矩阵, $A = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$,求

B. (03.1)

$$\therefore (A \mid I) = \left(\begin{array}{ccc|c} 1 & 1 & -1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & 0 & 1 \end{array} \right) \rightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & 1 & -1 & -2 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & -1 \end{array} \right)$$

四、(本题 10 分) 求向量组 $\alpha_1 = (1,-1,2,3)^T$, $\alpha_2 = (0,2,5,8)^T$, $\alpha_3 = (2,2,0,-1)^T$, $\alpha_4 = (-1,7,-1,-2)^T$ 秩和它的一个极大线性无关组,

并用极大线性无关组表示其余向量.

解
$$\begin{pmatrix} 1 & 0 & 2 & -1 \\ -1 & 2 & 2 & 7 \\ 2 & 5 & 0 & -1 \\ 3 & 8 & -1 & -2 \end{pmatrix}$$
 初等行变换
$$\begin{pmatrix} 1 & 0 & 2 & -1 \\ 0 & 2 & 4 & 6 \\ 0 & 5 & -4 & 1 \\ 0 & 8 & -7 & 1 \end{pmatrix}$$
 初等行变换
$$\begin{pmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \dots \dots 4 \ \ \%$$

向量组 $\alpha_1,\alpha_2,\alpha_3$ 是一个极大线性无关组,………2分

得 分

五、(本题 10 分) 平面 π 上过直线 L: $\begin{cases} 4x - y + 3z - 6 = 0 \\ x + 5y - z + 10 = 0 \end{cases}$, 且垂直于平面

2x - y + 5z = 5, 求平面 π 的方程.

解 设平面 π 的方程为(4x-y+3z-6)+ λ (x+5y-z+10)=0,

由题意知
$$\{4+\lambda,5\lambda-1,3-\lambda\}\cdot\{2,-1,5\}=0$$
,可得 $\lambda=3$4分

得 分

| 六、(本题 12 分) 已知方程组 $\begin{cases} x_1 + x_2 + k \ x_3 = 2 \\ x_1 + k \ x_2 + x_3 = 1 \end{cases}$,问 k 为何值时方程组有唯一 $\begin{cases} x_1 + x_2 + k \ x_3 = 2 \end{cases}$

解?无解?无穷多解?并在有无穷多解时写出通解.

(1) 当 $k \neq 1$ 且 $k \neq 2$ 时, r(A) = r(A) = 3,原方程组有唯一解......2分

(2) 当
$$k=1$$
时, $\overline{A} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 2 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$, $r(A) \neq r(\overline{A})$,原方程组无解......2 分

(3)
$$\stackrel{.}{=} k = 2 \text{ ff}, \stackrel{.}{A} \rightarrow \begin{pmatrix} 1 & 1 & 2 & 2 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 & 3 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

得 分

七、(本题 12 分) 求一个正交变换 x = Qy,将二次型

 $f(x_1,x_2,x_3) = x_1^2 + x_2^2 - 4x_1x_2 - 2x_1x_3 - 2x_2x_3$ 化成标准形,并指出

 $f(x_1, x_2, x_3) = 1$ 表示的曲面名称.

它的特征多项式 $|\lambda I-A|=(\lambda-3)(\lambda-1)(\lambda+2)$,特征值为 3, 1,—2 ………2 分

对
$$\lambda_1 = 3$$
 , 由 $(\lambda_1 I - A)x = 0$ 得 $\xi_1 = (1, -1, 0)^T$,

対
$$\lambda_2 = 1$$
 , 由 $(\lambda_2 I - A)x = 0$ 得 $\xi_2 = (1, 1, -2)^T$, $e_2 = \frac{1}{\sqrt{6}}(1, 1, -2)^T$ 2 分

対
$$\lambda_2 = -2$$
 ,由 $(\lambda_3 I - A)x = 0$ 得 $\xi_3 = (1,1,1)^T$, $e_3 = \frac{1}{\sqrt{3}}(1,1,1)^T$ … … 2 分

所以方程 $f = 3y_1^2 + y_2^2 - 2y_3^2$ 表示单叶双曲面面......1 分

得 分

八、(本题 6 分)设 B 为 $m \times n$ 实矩阵, A 为 m 阶实对称矩阵且正定矩阵,证明: B^TAB 正定的充要条件是 r(B) = n. 证明:

必要性: 设 B^TAB 正定,则 $\forall x \neq 0$, $x^T(B^TAB)x = (Bx)^TA(Bx) > 0$ 即对任意n维列向量 $x \neq 0$,有 $Bx \neq 0$,