

Nome:	X	×	×	RA:	X	X	Turma:_	X
-------	---	---	---	-----	---	---	---------	---

Três capacitores de placas planas e paralelas estão ligados como mostra a figura abaixo. Inicialmente os capacitores C_2 e C_3 estão descarregados e C_1 está carregado com carga q_0 . A chave S é então fechada.

a) Calcular a carga em cada capacitor e a diferença de potencial através dos mesmos, após o estabelecimento do equilíbrio. (1,0 ponto)

Mantendo-se a chave S fechada é inserido um material de constante dielétrica k no capacitor C_3 , preenchendo totalmente o volume entre suas placas.

- b) Nesta nova situação, calcular a carga em cada capacitor e a diferença de potencial através dos mesmos, após o restabelecimento do equilíbrio. (1,0 ponto)
- c) Calcular a variação da energia potencial elétrica $\Delta U = U_f U_i$, em C_1 , onde U_i° é a energia antes do fechamento da chave e U_f a energia após a colocação do dielétrico. (0,5 ponto)

9, >9, , 92 + 92 e 93 + 93

71+ 91+91=90. A

$$\begin{aligned}
\varphi_{1}^{1} &= C_{1} V^{1} &, \quad \varphi_{2}^{1} &= C_{2} V^{1} &= Q_{3}^{1} &= k C_{3} V
\end{aligned}$$

$$\begin{aligned}
(c_{1} + c_{2} + k c_{3}) V^{1} &= q_{0} &= c_{1} V_{0} \rightarrow V^{1} &= \frac{c_{1}}{c_{1} + c_{2} + k c_{3}} V_{0}
\end{aligned}$$

$$\begin{aligned}
\varphi_{1}^{1} &= \frac{c_{1} C_{1}}{c_{1} + c_{2} + k c_{3}} V_{0} \rightarrow V^{1} &= \frac{c_{1} C_{2}}{c_{1} + c_{2} + k c_{3}} V_{0}
\end{aligned}$$

$$\begin{aligned}
\varphi_{1}^{1} &= \frac{c_{1} C_{1}}{c_{1} + c_{2} + k c_{3}} V_{0} \rightarrow V^{1} &= \frac{c_{1} C_{2}}{c_{1} + c_{2} + k c_{3}} V_{0}
\end{aligned}$$

$$\begin{aligned}
\varphi_{1}^{1} &= \frac{c_{1} C_{1}}{c_{1} + c_{2} + k c_{3}} V_{0} \rightarrow V^{1} &= \frac{c_{1} C_{2}}{c_{1} + c_{2} + k c_{3}} V_{0}
\end{aligned}$$

$$\end{aligned}$$

$$\begin{aligned}
\varphi_{1}^{1} &= \frac{c_{1} C_{1}}{c_{1} + c_{2} + k c_{3}} V_{0} \rightarrow V^{1} &= \frac{c_{1} C_{2}}{c_{1} + c_{2} + k c_{3}} V_{0}
\end{aligned}$$

$$\end{aligned}$$

Um condutor coaxial de comprimento L, mostrado abaixo, é formado por um núcleo metálico cilíndrico de raio r_o e resistividade $\rho/3$, colocado no interior de uma casca metálica cilíndrica e maciça, de raio interno r_o , raio externo r_b e resistividade ρ . O cilindro e a casca estão eletricamente isolados devido à colocação, entre os mesmos, de um filme isolante de espessura desprezível. O condutor coaxial é então ligado a um circuito, conectando-se firmemente toda a área de suas extremidades planas com o uso de placas metálicas de resistência elétrica desprezível. A densidade de corrente que circula pelo condutor coaxial é dada por $\vec{j}=3j_0\,\hat{k}$, para $r< r_a$, e $\vec{j}=j_0\,\hat{k}$, para $r_a< r< r_b$. Calcular para o condutor coaxial:

a) A corrente total que o atravessa.	(1,0 ponto)
b) Sua resistência equivalente.	(1,0 ponto)
c) A d.d.p. entre suas extremidades.	(0.5 ponto)

No circuito abaixo, no instante t = 0 (chave S aberta) o capacitor encontra-se descarregado. Considerando que a bateria que alimenta o circuito é ideal e com força eletromotriz ε , calcule, após o fechamento da chave S:

- a) a corrente que atravessa o capacitor, imediatamente após o fechamento de S; (0.5)
- b) a corrente que passa pelo resistor R_3 imediatamente após o fechamento de S (0,5)
- c) a corrente que atravessa pela chave S e a carga no capacitor em $t \to \infty$; (0,5)
- d) a carga do capacitor e a corrente que atravessa os resistores R_1 e R_2 em função do tempo. (1,0)

- @ t=ot -> c descarre go do -> ve=0 => ic= E R+R2
- (b) i3(0+) = 0
- © E→∞ → capacitor Canegodo → ic=0. is= E R,+R2+R3 Carga no copacitor $\Rightarrow \frac{q}{c} - P_3 i_3 = 0$ $\Rightarrow q(0) = P_3 c \cdot i_3 = \frac{P_3 & C}{P_1 + P_2 + P_3}$

$$\Rightarrow \overbrace{q(0) = P_3C \cdot i_3 = \frac{P_3 \cdot EC}{P_1 + P_2 + P_3}}$$

(1)
$$\frac{i_{1} R_{1}}{R_{2}} \xrightarrow{R_{1}} \frac{1}{R_{2}} \xrightarrow{R_{2}} \frac{i_{1} = i_{2} + i_{3}}{R_{2}} \xrightarrow{R_{1}} \frac{1}{R_{2}} \frac{1}{R_{2}} \xrightarrow{R_{2}} \frac{1}{R_{2}} \frac{1}{R_{2}} \xrightarrow{R_{2}} \frac{1}{R_{2}} \frac{1}{R_{$$

$$\mathcal{E} - (R_1 + R_2)(i_2 + i_3) - \frac{9}{c} = 0$$

$$i_3 = \frac{9}{R_3 c}$$

Jogo
$$E - (R_1 + R_2)i_2 - \frac{R_1 + R_2}{R_3} \frac{q}{C} - \frac{q}{C} = 0$$

$$i_2 = dq / dt$$

$$E - (R_1 + R_2) \frac{dq}{dt} - \frac{R_1 + R_2 + R_3}{R_3 C} q = 0$$
ou

$$9(t) = \frac{R_3 E C}{R_1 + R_2 + R_3} (1 - e^{-\frac{R_1 + R_2 + R_3}{(R_1 + R_2)R_3 C} t})$$

$$l_c(t) = l_2 = \frac{dq}{dt} = \frac{\mathcal{E}}{R_1 + R_2 + R_3} = \frac{R_1 + R_2 + R_3}{(R_1 + R_2)R_3 C} t$$

$$i_1 = \frac{\varepsilon}{R_1 + R_2 + R_3}$$
 Courtainte

Um fio, transportando uma corrente I, é dobrado de modo a formar uma espira semicircular de raio R, conforme figura. O fio está no plano xy e o vetor \vec{B} é dado por $\vec{B} = B\hat{y}$.

- a) calcule a força magnética que age sobre a parte reta do fio; (0,5 ponto)
- b) calcule a força magnética que age sobre a parte curva do fio; (0,5 ponto)
- c) calcule a força magnética total sobre a espira; (0,5 ponto)
- d) calcule o vetor momento de dipolo magnético da espira. (0,5 ponto)
- e) calcule o torque magnético sobre a espira. (0,5 ponto)

$$= \int_{0}^{\pi} iRB(\omega_{3}\Theta_{3}^{2} - \xi\omega_{1}\Theta_{2}^{2}) \times \hat{y} d\Theta$$

$$= -iRB_{3}^{2} \int_{0}^{\pi} 2\omega_{1}\Theta_{2} d\Theta = -iRB_{3}^{2} \left[-\omega_{1}\Theta_{1}^{2}\right]$$

$$\vec{U} = i A \hat{N} = i \frac{\pi R^2}{2} \cdot \hat{3} \rightarrow \vec{U} = \frac{\pi R^2 L^2}{2} \cdot \hat{3}$$

$$\vec{\tau} = \frac{\pi \vec{r} B \vec{r}}{2} (-\hat{x})$$