

Jonathan Balaban DAT2

LEARNING OBJECTIVES

Understand uses and differences of databases

▶ Access databases from Pandas

▶ Optional: Navigate Postgres

- ▶ Databases are the standard solution for data storage.
 - They're far more robust than text and CSV files.
- They come in many flavors, but we'll explore the most common: *relational databases*.

- ▶ Databases are computer systems that manage the storage and querying of datasets.
- They provide a way to organize the data on disk (i.e. hard drive) and efficient methods to retrieve information. Databases allow a user to create rules that ensure proper data management and verification.
- ▶ Typically, retrieval is performed using a query language, a mini programming language with a few basic operators for data transformation.
- ▶ The most common query language is SQL (Structured Query Language).

- ▶ A *relational database* is based on links between data entities or concepts.
- ▶ Typically, a relational databases is organized into *tables*.
- ▶ Each table should correspond to one entity or concept. Each table is similar to a single CSV file or Pandas dataframe.
- ▶ For example, consider an application like Twitter.
 - Our two main entities are Users and Tweets.
 - ▶ For each of these, we would have a separate table.

- A table is made up of rows and columns, similar to a Pandas dataframe or Excel spreadsheet.
- ▶ Each table has a specific *schema*, a set of rules for what goes in the table. These specify which columns are contained in the table and what *type* of data is in each column (e.g. text, integers, decimals, etc).

Users Table Schema			
user_id	char		
user_sign_up_date	date		
user_follower_count	int		

- ▶ This means you can't add text data to an integer column in that database.
- The additional *type* information make this constraint stronger than the header of a CSV file.
- ▶ For this reason and many others, databases allow for stronger consistency of the data and are often a better solution for data storage.

- ▶ Each table typically has a *primary* key column. This column has a unique value per row and serves as the identifier for the row.
- A table can have many *foreign keys* as well. A *foreign key* is a column that contains values to link the table to the other tables.
- ▶ These keys that link the table together define the relational database.

- ▶ For example, the tweets table may have as columns:
 - ▶tweet_id the primary key tweet identifier
 - ▶tweet_text
 - •user_id a foreign key to the users table

Users Table Schema		Tweets Table Schema	
user_id	char	tweet_id	int
user_sign_up_date	date	tweet_text	char
user_follower_count	int	user_id	int

- MySQL and Postgres are popular variants of relational databases and are widely used. Both are open-source and available for free.
- ▶ Alternatively, many companies use proprietary software such as Oracle or Microsoft SQL Server databases.
- ▶ While these databases offer many of the same features and use the same SQL language, the latter two offer some maintenance features and support that large companies find useful.

- Once we start organizing our data into tables, we start to separate it into normalized and denormalized setups.
- Normalized structures have a single table per entity and use many foreign keys or link tables to connect the entities.
- ▶ Denormalized structures have fewer tables that combine different entities.

▶ With our Twitter example, a *normalized* structure would place users and tweets in different tables.

Users Table Schema		Tweets Table Schema	
user_id	char	tweet_id	int
user_sign_up_date	date	tweet_text	char
user_follower_count	int	user_id	int

▶ A *denormalized* structure would put them both in one table.

Twitter Table Schema			
tweet_id	int		
tweet_text	char		
user_id	int		
user_sign_up_date	date		
user_follower_count	int		

Denormalized structures:

- ▶ Duplicates a lot of information
- Makes data easy to access since it's all in one table

Normalized structures:

- Save storage space by separating information
- Requires joining of table to access information about two different entities, a slow operation

ALTERNATIVE DATABASES

- ▶ While relational databases are the most popular and broadly used, specific applications may require different data organization.
- ▶ You don't need to know every variety, but it's good to know some overall themes.

KEY-VALUE STORES

- ▶ Key-Value databases are nothing more than very large and very fast hashmaps or dictionaries.
- ▶ These are useful for storing key based data, e.g. a count of things per user or customer, a last visit per customer.
- ▶ Every entry in these databases has two values, a key and a value. We can retrieve any value based upon its key.

KEY-VALUE STORES

- This is exactly like a python dictionary, but it can be larger than your memory (i.e. RAM). So these systems use smart caching algorithms to ensure frequently or recently accessed items are quickly accessible.
- ▶ Popular key-value stores include *Cassandra* and *MemcacheDB* (pronounced mem-cash-dee-bee).

- "NoSQL" databases are those that don't rely on a traditional relational table setup.
 - ▶ More flexible in their data organization.
- ▶ Typically they actually **do** have SQL querying abilities but model their data differently.

▶ Relational Structure

user_id	user_name	user_hobby_1	user_hobby_2	user_age
13123	robby_g	guitar	cars	25
18423	jt1235	football		31

► NoSQL Data Structure

```
"user_id": 13123,

"user_name": "robby_g",

"user_hobbies": ["guitar",

"cars"],

"user_age": 25
```

```
{
    "user_id": 19423,
        "user_name": "jt1235",
        "user_hobbies": ["football"],
        "user_age": 31
}
```

- They may organize data on an entity level, but often have denormalized and nested data setups.
- ▶ This nested data layout is often similar to that in JSON documents.
- ▶ Popular databases include *MongoDB* and *CouchDB*.

Relational data model

Highly-structured table organization with rigidly-defined data formats and record structure.

Document data model

Collection of complex documents with arbitrary, nested data formats and varying "record" format.

The following is an example of the storage document for a tweet. "created_at": "Mon Sep 24 03:35:21 +0000 2012", "id_str": "250075927172759552", "entities": { "hashtags": ["text": "freebandnames", "indices": [20, 34 "user_mentions": [

ACTIVITY: KNOWLEDGE CHECK

ANSWER THE FOLLOWING QUESTIONS

In the following examples, which might be the best storage or database solution?

- 1. An application where a user can create a profile
- 2. An online store
- 3. Storing the last visit date of a user

ACTIVITY: KNOWLEDGE CHECK

ANSWER THE FOLLOWING QUESTIONS

Consider a dataset from Uber with the following fields:

- User ID
- User Name
- Driver ID
- Drive Name
- Ride ID
- Ride Time

- Pickup Latitude
- Pickup Longitude
- Pickup Location Entity
- Dropoff Longitude
- Dropoff Latitude

- Dropoff Location Entity
- Miles
- Travel Time
- Fare
- CC Number

In a group, discuss how you would design a relational database to support this data? List the tables you would create, the fields they would contain, and how they would link to other tables.

- ▶ While databases provide many analytical capabilities, often it's useful to pull the data back into Python for more flexible programming.
- Large, fixed operations would be more efficient in a database, but Pandas allows for interactive processing.
- ▶ What if you just want to aggregate login or sales data to present a report or dashboard?

▶ However, if we want to investigate the login or sales data further and ask more interactive questions, then using Python would come in very handy.

```
import pandas as pd
from pandas.io import sql
```

▶ Pandas can be used to connect to most relational databases.

- In this demonstration, we will create and connect to a SQLite database. SQLite creates portable relational databases saved in a single file.
- These databases are stored in a very efficient manner and allow fast querying, making them ideal for databases that are small, or need to be moved across machines.
- Additionally, SQLite databases can be created with the setup of MySQL or Postgres databases.

▶ We can create a SQLite databases as follows.

```
import sqlite3
conn = sqlite3.connect('dat-test.db')
```

This creates a file, dat-test.db, which will act as a relational/SQL database.

WRITING DATA INTO A DATABASE

- Data in Pandas can be loaded into a relational database. For the most part, Pandas can use the databases column information to infer the schema for the table it creates.
- Let's return to the Rossmann sales data and load it into our database.

```
import pandas as pd

data = pd.read_csv('../../lesson-15/assets/dataset/rossmann.csv',
    low_memory=False)
    data.head()
```

WRITING DATA INTO A DATABASE

- ▶ Data is moved to the database with the to_sql command, similar to the to_csv command.
- ▶to_sql takes several arguments.
 - ▶name the table name to create
 - ▶con a connection to a database
 - ▶index whether to input the index column
 - ▶schema if we want to write a custom schema for the new table
 - >if_exists what to do if the table already exists. We can overwrite it, add to it, or fail

WRITING DATA INTO A DATABASE

▶ The following code loads the Rossmann sales data to our database.

READING FROM A DATABASE

- If we already have data in the database, we can use Pandas to query our database.
- ▶ Querying is done through the read_sql command in the sql module.

```
import pandas as pd
from pandas.io import sql

sql.read_sql('select * from rossmann_sales limit 10', con=conn)
```

▶ This runs the query and returns a dataframe.

SQL SYNTAX: SELECT, WHERE, GROUP BY, JOIN

SQL OPERATORS: SELECT

- ▶ Every query should start with SELECT. SELECT is followed by the names of the columns in the output.
- SELECT is always paired with FROM, which identifies the table to retrieve data from.

```
SELECT <columns>
FROM ;
```

▶ SELECT * denotes returning *all* of the columns.

ACTIVITY: KNOWLEDGE CHECK

ANSWER THE FOLLOWING QUESTIONS

1. Write a query for the Rossmann Sales data that returns Store, Date, and Customers.

SQL OPERATORS: WHERE

▶ WHERE is used to filter a table using a specific criteria. The WHERE clause follows the FROM clause.

```
SELECT <columns>
FROM 
WHERE <condition>;
```

▶ The condition is some filter applied to the rows, where rows that match the condition will be output.

SQL OPERATORS: WHERE

▶ Rossmann Stores example:

```
SELECT Store, Sales
FROM rossmann_sales
WHERE Store = 1;

SELECT Store, Sales
FROM rossmann_sales
WHERE Store = 1 and Open = 1;
```

ACTIVITY: KNOWLEDGE CHECK

ANSWER THE FOLLOWING QUESTIONS

1. Write a query for the Rossmann Sales data that returns Store, Date, and Customers for stores that were open and running a promotion.

SQL OPERATORS: GROUP BY

GROUP BY allows us to aggregate over any field in the table by applying the concept of 'Split Apply Combine'

We identify a key with which we want to segment the rows. Then we roll up or compute some statistics over all of the rows that match that key

SQL OPERATORS: GROUP BY

- ▶ GROUP BY *must* be paired with an aggregate function, the statistic we want to compute in the rows, in the SELECT statement.
- ▶ COUNT(*) denotes counting up all of the rows. Other aggregate functions commonly available are AVG (average), MAX, MIN, and SUM.
- If we want to aggregate over the entire table, without results specific to any key, we use an aggregate function in the SELECT clause and leave out the GROUP BY clause.

SQL OPERATORS: GROUP BY

▶ Rossmann Stores example:

```
SELECT Store, SUM(Sales), AVG(Customers)
FROM rossmann_sales
GROUP BY Store
WHERE Open = 1;
```

ACTIVITY: KNOWLEDGE CHECK

ANSWER THE FOLLOWING QUESTIONS

1. Write a query that returns the total sales on the promotion and non-promotion days.

SQL OPERATORS: ORDER BY

▶ ORDER BY is used to sort the results of a query.

```
SELECT <columns>
FROM 
WHERE <condition>
ORDER BY <columns>
```

You can order by multiple columns in ascending (ASC) or descending (DESC) order.

SQL OPERATORS: ORDER BY

▶ Rossmann Stores example:

```
SELECT Store, SUM(Sales) as total_sales, AVG(Customers)
FROM rossmann_sales
GROUP BY Store
WHERE Open = 1;
ORDER BY total_sales desc;
```

SQL OPERATORS: JOIN

▶ JOIN allows us to access data across many tables. We specify how a row in one table links to another.

```
SELECT a.Store, a.Sales, s.CompetitionDistance
FROM rossmann_sales a
JOIN rossmann_stores s
ON a.Store = s.Store
```

▶ Here, ON denotes an *inner* join.

SQL OPERATORS: JOIN

- ▶ By default, most joins are an *Inner Join*, which means only when there is a match in both tables does a row appear in the results.
- If we want to keep the rows of one table even if there is no matching counterpart, we can perform an Outer Join.
- Outer joins can be LEFT, RIGHT, or FULL, meaning keep all of the left rows, all the right rows, or all the rows, respectively.

\mathbf{B}

SQL JOINS

SELECT <select list> FROM TableA A INNER JOIN TableB B ON A.Key = B.Key

SELECT <select list> FROM TableA A RIGHT JOIN TableB B ON A.Key = B.Key

SELECT <select_list> FROM TableA A RIGHT JOIN TableB B ON A.Key = B.KeyWHERE A.Key IS NULL

SELECT <select_list> FROM TableA A LEFT JOIN TableB B ON A.Key = B.KeyWHERE B.Key IS NULL SELECT <select list>

FROM TableA A

ON A.Key = B.Key

B FULL OUTER JOIN TableB B

SELECT <select list> FROM TableA A FULL OUTER JOIN TableB B ON A.Key = B.KeyWHERE A.Key IS NULL OR B.Key IS NULL

INDEPENDENT PRACTICE

PANDAS AND SQL

ACTIVITY: PANDAS AND SQL

DIRECTIONS (40 minutes)

- 1. Load the Walmart sales and store features data.
- 2. Create a table for each of those datasets.
- 3. Select the store, date and fuel price on days it was over 90 degrees.
- 4. Select the store, date and weekly sales and temperature.
- 5. What were average sales on holiday vs. non-holiday sales?
- 6. What were average sales on holiday vs. non-holiday sales when the temperature was below 32 degrees?

ACTIVITY: EXTRA SQL PRACTICE

DIRECTIONS

There are many options for extra SQL practice.

- **1. PG-Exercises:** The website pgexercises.com is a very good site for Postgres exercises. Go to <u>pgexercises.com/</u> <u>gettingstarted.html</u> to get started:
 - a. Simple SQL Queries
 - b. Aggregation
 - c. Joins and Subqueries

ACTIVITY: EXTRA SQL PRACTICE

DIRECTIONS

EXERCISE

There are many options for extra SQL practice.

- **2. Wagon:** This requires signing up for the Wagon service and downloading their application. It gives access to some sample databases.
 - a. Display all tracks on which Jimmy Page was the composer.
 - b. Who were the top five composers by number of tracks?
 - c. Who were the top five composers by length of tracks?
 - d. Select all of the albums from Led Zeppelin.
 - e. Count the number of albums per artist, and display the top 10.
 - f. Display the track name and album name from all Led Zeppelin albums.
 - g. Compute how many songs and how long (in minutes) each Led Zeppelin album was.

INSTALLING POSTGRES

POSTGRES INSTALL

- ▶ There will be multiple ways to run the final exercise:
 - ▶ Using Postgres Exercises
 - Setting up local Postgres
 - Install Postgres. If brew is installed, this should be as simple as brew install postgres
 - ▶ Use Wagon
 - Create an account at https://www.wagonhq.com/ and download the software.

INSTALLING POSTGRES

- ▶On a Mac, brew install postgres
- ▶ brew will provide a few commands to make sure postgres runs on startup.
- ▶ If this is done, you can use the Postgres command line tool.

POSTGRES SHELL

```
➤ Starting Postgres: psql

➤ Listing tables: \dt

➤ Creating a table

CREATE TABLE example(
    id int,
    name varchar(140),
    value float

> ...
```

POSTGRES SHELL

▶ Inserting a row

```
INSERT INTO example VALUES(1, 'general assembly', 3.14);
```

▶ Querying the table

```
SELECT *
FROM example;
```

CONCLUSION

- ▶ While this was a brief introduction, databases are often at the core of any data analysis. Most analysis starts with retrieving data from a database.
- ▶ SQL is a key language that any data scientist should understand.
 - SELECT: Used in every query to define the resulting columns
 - ▶WHERE: Filters rows based on a given condition
 - ▶GROUP BY: Groups rows for aggregation
 - ▶JOIN: Combines two tables based upon a given condition

CONCLUSION

- ▶ Pandas can be used to access data from databases as well. The result of the queries will end up in a Pandas dataframe.
- There is much more to learn about query optimization if one dives further!

BEFORE NEXT CLASS

Prep Final Presentation

LESSON

Q&A

LESSON

EXIT TICKET

DON'T FORGET TO FILL OUT YOUR EXIT TICKET