Lethality Factors for Positive COVID-19 Testing in Mexico

Final Project for Statistical Machine Learning (2019/2020)

Andrea Cicchini, Victor Plesco and Michele Rispoli

Presentation Outline

- 1. Problem Statement
- 2. Data
- 3. Models
 - Logistic Regression
 - Bayesian Logistic Regression
 - Neural Networks
- 4. Conclusions

1. Problem Statement

1 - Problem Statement COVID-19 in Mexico - Situation

- First case reported on 13 January 2020
- Current situation (as of 05/09/2020, accordingly to [1.b])
 - 1'338'591 Total Swabs (~10'600 swabs/M. citizens, 153rd in the world
 [2]) (Italy is 39th with ~151'300 swabs/M.citizens)
 - 629'409 Confirmed Cases (47% of tested)
 - 67'326 Deceased (~10.7% mortality rate)

1 - Problem StatementCOVID-19 in Mexico - Daily Swabs

Low number of tests per thousand
 (0.28, versus a median 6.28 per thousand for a group of 50 countries with updated information up to at April 18) [4]

1 - Problem Statement COVID-19 in Mexico - Daily Confirmed Cases

Increasing of daily cases (high transmissibility rate)

source: wolrdmeters.infos[2]

1 - Problem Statement COVID-19 in Mexico - Cumulative Conf<u>irmed Cases</u>

38'310 deceased over 331'298 positive at 18/07/20

source: wolrdmeters.infos[2]

1 - Problem Statement Previous studies on lethality

- [4] Highest hazzard factors (i.e. affected deceased/affected recovered in 3 weeks): CKD, COPD, Obesity (April 2020)
- [5] "The presence of pneumonia was also recorded but was considered part of the clinical picture of Covid-19 rather than comorbidity."
- [6] Symptoms and risk factors as predictors of mortality

1 - Problem Statement Objectives

- Predictive: Estimate lethality basing on previous pathologies
- Descriptive: Investigate influence of previous pathologies on lethality

Intent: aid in identifying more susceptible subjects (prevention strategy, treatment prioritization)

2. Data

2 - Data Overview: Raw Data

- 727'549 patients
- Sobieen Setetténia de 15a jud,
- Last (downloadable) update
 18/07/20

2 - Data Overview: Missing Values

2 - Data Pre-processing

- Remove cases with NAs
- Considering only confirmed cases (i.e. exclude negatives)

 Deduce Recovered: estimate 99% decease time from symptoms detection

2 - Data Pre-processing: Decease Time

2 - Data Pre-processing: Decease Time parametrization

2 - Data Pre-processing: Decease Time Parametrization

- Maximum likelihood estimation
- Method of moments
- Maximum goodness of fit

2 - Data Pre-processing: Decease?

2 - Data <u>Final Dataset: Overview</u>

- 163'666 rows
- (EPOC, INMUSUPR) < 2%
- (ASMA, CARDIOVASCULAR, CKD) < 3%
- TABAQUISMO 7,9%

2 - Data Final Dataset: Overview

- 163'666 rows
- (EPOC, INMUSUPR) < 2%
- (ASMA, CARDIOVASCULAR, CKD) < 3%
- TABAQUISMO 7,9%

No	Variable	Stats / Values	Freqs (% of Valid)	Graph
7	HIPERTENSION	1. No	129938 (79.4%)	
1	[factor]	2. Yes	33728 (20.6%)	
8	CARDIOVASCULAR	1. No	159652 (97.5%)	
0	[factor]	2. Yes	4014 (2.5%)	
9	OBESIDAD	1. No	131046 (80.1%)	
9	[factor]	2. Yes	32620 (19.9%)	
10	RENAL_CRONICA	1. No	159980 (97.8%)	
10	[factor]	2. Yes	3686 (2.2%)	
11	TABAQUISMO	1. No	150699 (92.1%)	
11	[factor]	2. Yes	12967 (7.9%)	
12	FALLECIDO	1. No	138154 (84.4%)	
12	[factor]	2. Yes	25512 (15.6%)	

2 - Data Final Dataset: Deceased risk factors

2 - Data Contingency Analysis: Risk Factors

- Most pairs have Cr.V<0.25
- Hypertension and Diabetes slightly correlated
- Tabagism and
 Asthma correlation
 has very high
 p-value (asthmatics
 usually don't
 smoke)

2 - Data Contingency Analysis: Age

Statistically significant difference between mean ages of deceased (~61) and recovered (~43).

T-TEST

t = -254.01, df = 74205, 95% CI = [-17.55558, -17.28674] p-value < 2.2 * e-16

3.1 Models: Logistic Regression

3 - Models Logistic Regression: Introduction

- Structure
 - Input
 - <Factor> Gender = {"Female", "Male"}
 - <Numeric> Age = [0, 120]
 - <Factor> Risk Factors = {"No", "Yes"} (9/9)
 - Output
 - <Factor> Deceased = {"No", "Yes"} | CUTOFF

3 - Models Logistic Regression: Variable Selection

Stepwise Forward Selection on a 5-fold Cross Validation

```
for i = 0 to K - 1 do with K = cross-validation runs with M = model complexity with N = regressors model [j] = min(DEVIANCE [r_0, ..., r_{N-j}]); AIC, LRT; end for end for end for
```

Note: NO STOPPING CRITERION

3 - Models Logistic Regression: Variable Selection

Predictors	Deviance	Deviance (SE)	AIC	AIC (SE)	LRT	LRT (SE)	Wald Test	Wald Test (SE)
+ EDAD	92653.98	360.41	92657.98	360.41	0.0000	0.0000	0.0000	0.0000
+ DIABETES	91434.31	352.82	91440.31	352.82	0.0000	0.0000	0.0000	0.0000
+ SEXO	90407.51	358.89	90415.51	358.89	0.0000	0.0000	0.0000	0.0000
+ RENAL_CRONICA	89918.23	364.27	89928.23	364.27	0.0000	0.0000	0.0000	0.0000
+ OBESIDAD	89563.71	358.45	89575.71	358.45	0.0000	0.0000	0.0000	0.0000
+ HIPERTENSION	89432.67	352.01	89446.67	352.01	0.0000	0.0000	0.0000	0.0000
+ INMUSUPR	89378.93	341.04	89394.93	341.04	0.0000	0.0000	0.0000	0.0000
+ EPOC	89360.49	336.19	89379.69	336.88	0.0015	0.0011	0.0006	0.0004
+ ASMA	89362.62	344.73	89381.42	344.02	0.0017	0.0019	0.0018	0.0020
+ CARDIOVASCULAR	89353.34	339.73	89375.74	339.79	0.2160	0.2044	0.2233	0.2071
+ TABAQUISMO	89352.87	339.54	89376.47	339.49	0.2588	0.2118	0.2604	0.2103

$$+ (EPOC) + (EPOC) + (ASMA) + (ASMA)$$

3 - Models Logistic Regression: Train and Test Errors

- Train & Test Errors over Complexity
- CUTOFF = max(Sensitivity, Accuracy)
- A model with complexity 9
 (+ASMA) presents a strange behavior

Figure 1: Train (orange) and test (blue) errors for model complexity as average of a 5-fold Cross Validation. The cutoff value is chosen to maximize both accuracy and sensitivity. Dashed lines represent min/max values of the cross validation runs. Top-Left: Cutoff values for model complexity. Top-Left: Accuracy values for model complexity. Bottom-Right: Sensitivity values for model complexity. Top-Right: Specificity values for model complexity.

3 - Models Logistic Regression: Results

	Estimates	Standard Error	2.5~(%)	97.5~(%)
(Intercept)	-5.9283660	0.0348357	-5.9968496	-5.8602833
SEXOMale	0.5977156	0.0160538	0.5662831	0.6292166
EDAD	0.0683840	0.0005712	0.0672666	0.0695056
DIABETESYes	0.5262683	0.0178294	0.4912967	0.5611887
EPOCYes	0.1513203	0.0425994	0.0676822	0.2346836
INMUSUPRYes	0.4299422	0.0532283	0.3251884	0.5338675
HIPERTENSIONYes	0.2280410	0.0178166	0.1930922	0.2629341
OBESIDADYes	0.3490336	0.0181811	0.3133573	0.3846291
RENAL_CRONICAYes	0.8865093	0.0398067	0.8084539	0.9645048

	Accuracy	Accuracy (SE)	Sensitivity	Sensitivity (SE)	Specificity	Specificity (SE)
Train	0.7514053	0.0013720	0.7536154	0.0013112	0.7509969	0.0018114
Test	0.7515183	0.0030176	0.7528687	0.0025328	0.7512694	0.0033521

- All coefficients are positive (no protective factors)
- The most influential factors are RENAL_CRONICA, SEXOMale and DIABETES

3.2 Models: Bayesian Logistic Regression

3 - Models Bayesian Logistic Regression: Introduction

- Structure
 - Input
 - <Factor> Gender = {"Female", "Male"}
 - <Numeric> Age = [0, 120]
 - <Factor> Risk Factors = {"No", "Yes"} (6/9)
 - Best Logistic Regression Model
 - Output
 - <Factor> Deceased = {"No", "Yes"} | CUTOFF
 - Priors

3 - Models Bayesian Logistic Regression: Priors

Model 1

weakly informative

- Student t prior with 7 degrees of freedom and a scale of 2.5 [7]
- Reasonable when coefficients:
 - are close to zero but have some chance of being large
 - are as likely to be positive as they are to be negative

Model 2

informative (?)

- Let's test our data! Normal prior with mean and standard deviation defined by a bootstrap resampling on our dataset
- What to expect? If our data has to be an unbiased sample, we would expect faster convergence to the true values of the log(odds)

3 - Models Bayesian Logistic Regression: Implementation

- stan_glm via MCMC
 - o 8 chains
 - 2000 iterations
- 80/20 Train/Test Split
- CUTOFF = max(Sensitivity, Accuracy)

5.32 hours later...

3 - Models Bayesian Logistic Regression: Posteriors

3 - Models Bayesian Logistic Regression: Diagnostics

	Model 1		Model 2	
	n_eff	Rhat	n_eff	Rhat
(Intercept)	8435	1	8354	1
SEXOMale	10501	1	7772	1
EDAD	9218	1	8157	1
DIABETESYes	9178	1	7363	1
EPOCYes	11737	1	7295	1
INMUSUPRYes	10740	1	8648	1
HIPERTENSIONYes	9803	1	7962	1
OBESIDADYes	10460	1	8182	1
$RENAL_CRONICAYes$	10966	1	7589	1

	Model 1			$\operatorname{Model} 2$		
	Accuracy	Sensitivity	Specificity	Accuracy	Sensitivity	Specificity
Train	0.75252	0.751342	0.752739	0.738742	0.750659	0.736531
Test	0.752032	0.751694	0.752093	0.749496	0.737744	0.751624

- n_eff is smaller in Model 2, identifying a higher autocorrelation among samples (however high enough)
- In terms of accuracy and sensitivity Model 1 performs better than Model 2

3 - Models Comparison - Classical vs Bayesian Logistic

- Standard errors are impressively high!
- Coefficients of the two models have almost the same values

Bayesian Logistic Regression

	Estimates	Standard Error	2.5~(%)	97.5~(%)
(Intercept)	-5.9136490	0.3633826	-7.0054048	-5.5775794
SEXOMale	0.5821162	0.1625301	0.1894201	0.8325200
EDAD	0.0685065	0.0058403	0.0641918	0.0872264
DIABETESYes	0.5318281	0.1859552	0.1793758	0.9088702
EPOCYes	0.1192632	0.4639468	-0.8589502	0.9572092
INMUSUPRYes	0.4092256	0.5691893	-1.1362457	1.0961667
HIPERTENSIONYes	0.2153859	0.1926825	-0.5560629	0.2046989
OBESIDADYes	0.3309566	0.1795412	0.0962327	0.7862833
$RENAL_CRONICAYes$	0.9166825	0.4114104	0.6259236	2.2382326

Logistic Regression

	Estimates	Standard Error	2.5 (%)	97.5 (%)
(Intercept)	-5.9283660	0.0348357	-5.9968496	-5.8602833
SEXOMale	0.5977156	0.0160538	0.5662831	0.6292166
EDAD	0.0683840	0.0005712	0.0672666	0.0695056
DIABETESYes	0.5262683	0.0178294	0.4912967	0.5611887
EPOCYes	0.1513203	0.0425994	0.0676822	0.2346836
INMUSUPRYes	0.4299422	0.0532283	0.3251884	0.5338675
HIPERTENSIONYes	0.2280410	0.0178166	0.1930922	0.2629341
OBESIDADYes	0.3490336	0.0181811	0.3133573	0.3846291
RENAL_CRONICAYes	0.8865093	0.0398067	0.8084539	0.9645048

3.3 Models: Neural Networks

3 - Models Neural Networks: Architecture

- Architecture : FFNN
 - Input
 - Gender One-hot
 - Age rescaled in [0,1]
 - Risk factors {0,1} (6/9 components)
 - Output = Sigmoid
 - Hidden
 - Activation: Hyperbolic Tangent/ReLU
 - Trial and error refinement of no. layers, units

3 - Models Neural Networks: Training

Loss: Binary Cross Entropy

$$BCE(Y, \hat{Y}) = -\frac{1}{N} \sum_{n=1}^{N} y_n \log(\hat{y}_n) + (1 - y_n) \log(1 - \hat{y}_n)$$

- Optimization:
 - Adam optimizer, default parameters [3]
 - Training mini-batches (size=100)

3 - Models Neural Networks: Regularization

- Regularization: Early Stopping
 - 70/30 split of the training set
 - Patience = 40

3 - Models Neural Networks: Evaluation Metrics

- Evaluation:
 - 80/20 split of the original dataset (Test set)
 - Test Loss (BCE)
 - Binary predictions: threshold selection
 - Best accuracy and sensitivity
 - Confusion Matrix

3 - Models Neural Networks: Results

Final Models

Architecture: 9, 4, 2, 1

Activation: Tanh
Train ep: 77

Train loss: 0.3354018032550812

Test loss: 0.3394022285938263

Best thresh: 0.1849365234375

Accuracy @ t: 0.750198570293884

Sens @ t: 0.7455968688845401

Confusion Matrix
0 1
P0 [20747 1300]
P1 [6877 3810]

Architecture: 9, 4, 1

Activation: ReLU Train ep: 182

Train loss: 0.33498796820640564

Test loss: 0.3388713598251343

Best thresh: 0.2000732421875

Accuracy @ t: 0.7497708804301338

Sens @ t: 0.7475538160469667

Confusion Matrix
0 1
P0 [20723 1290]
P1 [6901 3820]

3 - Models Neural Networks: Results

Final Models, including ALL covariates

Architecture: 12, 6, 3, 1

Activation: Tanh Train ep: 107

Train loss: 0.3344671130180359
Test loss: 0.3391265571117401

Best thresh: 0.1878662109375

Accuracy @ t: 0.7504429645017413

Sens @ t: 0.7497064579256361

Confusion Matrix
0 1
P0 [20734 1279]
P1 [6890 3831]

Architecture: 12, 6, 1

Activation: ReLU Train ep: 90

Train loss: 0.33469080924987793
Test loss: 0.33924365043640137

Best thresh: 0.1932373046875

Accuracy @ t: 0.7521537239567422 Sens @ t: 0.7440313111545989

Confusion Matrix
0 1
P0 [20819 1308]
P1 [6805 3802]

3 - Models Model Comparison

Model	Logistic	Bayesian Logistic (1)	NN - ReLU	NN - Tanh
Test Accuracy	0.7515*	0.7520	0.7498	0.7502
Test Sensitivity	0.7529*	0.7517	0.7476	0.7456

^{*: 5-}fold CV estimate

Conclusions

Prediction: Best model achieves ~75% accuracy

Description: CKD and Diabetes appear to be the most influential Risk Factors ([4] used ~50'000 cases)

Next Steps

Include latest data from [1.a] (whenever available again!)

Include data from other countries

Extend by accounting for days from symptoms manifestation

 Extend for "on hospital" usage: account for symptoms and treatments

References

- 1. Official Mexican government COVID-19 Data
 - a. https://www.gob.mx/salud/documentos/datos-abiertos-152127
 - b. https://coronavirus.gob.mx/datos/
- 2. https://www.worldometers.info/coronavirus/
- 3. D. P. Kingma, J. Ba Adam: A Method for Stochastic Optimization (2015)
- 4. P. Solís, H. Carreño COVID-19 Fatality and Comorbidity Risk Factors among Diagnosed Patients in Mexico, Patricio Solís, El Colegio de México (2020)
- 5. E. Hernández-Garduño Obesity is the comorbidity more strongly associated for Covid-19 in Mexico. A case-control study (2020)
- 6. R.Du et al Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: a prospective cohort study (2020)
- 7. https://mc-stan.org/rstanarm/articles/binomial.html

Thanks for your attention!

