Decision Trees – Titanic Data Set

Lesson 4 – Section 2

PROFESSIONAL & CONTINUING EDUCATION
UNIVERSITY of WASHINGTON

Example: Tragedy of the Titanic

Women and children first?

Feature	Data Description	Variable Type
survival	Survived (0 = no; 1 = yes)	Dependent variable
pclass	Ticket class 1 = 1st, 2 = 2nd, 3 = 3rd	Independent variable
name	Passenger's name as given	Relevance?
sex	Gender: Male or Female	Independent variable
age	Age	Independent variable
sibsp	Count of siblings and/or spouse aboard	Independent variable
parch	Count of parents or children aboard	Independent variable
ticket	Ticket number	Relevance?
fare	Passenger Fare	Independent variable
cabin	Cabin number	Relevance?
embarked	Port of departure (c = Cherbourg, q=Queenstown, s=Southhampton	Relevance?
boat	Rescue boat number	Relevance?
home	Home city of the passenger and ultimate (assumed) destination	Relevance?

First Steps... Look for Problems and Predictors

Look for Missing Values e.g., Age...

Make sure you understand column heading

IF sex='female' THEN survive=yes ELSE IF sex='male' THEN survive = no

confusion matrix

no yes<-- classified as 468 109 | no 81 233 yes

(468 + 233) / (468+109+81+233) = 79% correct (and 21% incorrect)

Not bad!!

Survival Rate by Gender and Class

Regardless of class, more women survived; However...

From this view it seems that class mattered more than gender

IF pclass='1' THEN survive=yes ELSE IF pclass='2' THEN survive=yes ELSE IF pclass='3' THEN survive=no

confusion matrix

no yes<-- classified as 372 119 no 177 223 yes

(372 + 223) / (372+119+223+177) = 67% correct (and 33% incorrect)

A little worse

