El modelo canónico de robots móviles no-holonómicos

Kjartan Halvorsen

March 31, 2022

El concepto de estado

El concepto de estado

El conjunto de información sobre el pasado del sistema necesario para predicir el comportamiento del sistema en el futuro (dado todas las señales de entrada)

Modelo canónico a.k.a modelo uniciclo

De Martina Zambelli (2013) Posture regulation for unicycle-like robots with prescribed performance guarantees. KTH - Royal Institute of Technology, Sweden.

Robot tipo diferencial (differential drive)

Robot móvil - modelo uniciclo

Robot móvil - modelo uniciclo

Cinemática

$$\xi = \begin{bmatrix} \theta \\ x \\ y \end{bmatrix}, \quad u = \begin{bmatrix} \omega \\ v \end{bmatrix}$$

$$\frac{d}{dt}\xi = \begin{bmatrix} \dot{\theta} \\ \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} \omega \\ v\cos\theta \\ v\sin\theta \end{bmatrix}$$

Actividad Determine

- 1. La velocidad lineal (v_R, v_L) de cada rueda dado su velocidad angular (ω_R, ω_L)
- 2. La velocidad lineal v del centro robot dado las dos velocidades v_R y v_L
- 3. La velocidad angular ω del robot dado las dos velocidades v_R y v_L
- 4. Las relaciones invertidas. Es decir, las velocidades angulares ω_R y ω_L de los ruedos dado las velocidades v y ω .

Asumiendo simetría entre las dos ruedas y en la dirección de giro.

$$\omega_L,\,\omega_R \in [-\omega_{\it max},\omega_{\it max}]$$

Asumiendo simetría entre las dos ruedas y en la dirección de giro.

$$\omega_L,\,\omega_R \in [-\omega_{\it max},\omega_{\it max}]$$

Actividad Dibuje la región de posibles valores de la señal de entrada al modelo canónico,

$$u(t) = \begin{bmatrix} \omega(t) \\ v(t) \end{bmatrix},$$

dado los límites de la velocidad angular de las ruedas.

Implementación

Notebook en google colab (página en Canvas)

Para un robot que se mueve instantaneamente en una trayectoria círcular con radie R, la relación entre la velocidad lineal v y la velocidad angular ω es

Para un robot que se mueve instantaneamente en una trayectoria círcular con radie R, la relación entre la velocidad lineal v y la velocidad angular ω es

$$v = R\omega$$
 $\omega = \frac{1}{R}v$

Para un robot que se mueve instantaneamente en una trayectoria círcular con radie R, la relación entre la velocidad lineal v y la velocidad angular ω es

$$v = R\omega$$
 $\omega = \frac{1}{R}v$

Actividad Determine el radie de giro instantaneo R como función del ángulo de dirección ϕ .

Para un robot que se mueve instantaneamente en una trayectoria círcular con radie R, la relación entre la velocidad lineal v y la velocidad angular ω es

$$v = R\omega$$
 $\omega = \frac{1}{R}v$

Actividad Determine el radie de giro instantaneo R como función del ángulo de dirección ϕ .

Actividad Determine la velocidad angular ω como función de la velocidad v y del ángulo de dirección ϕ . Determine también la función inversa.

Para cierto robot

$$v \in [-v_{lm}, v_{um}], \quad \phi \in [-\phi_{max}, \phi_{max}]$$

Para cierto robot

$$v \in [-v_{lm}, v_{um}], \quad \phi \in [-\phi_{max}, \phi_{max}]$$

Actividad Dibuje la región de posibles valores de la señal de entrada al modelo canónico,

$$u(t) = \begin{bmatrix} \omega(t) \\ v(t) \end{bmatrix},$$

dado los límites de la velocidad $\it v$ y del ángulo de dirección $\it \phi$.

Implementación

Notebook en google colab (página en Canvas)