Day 3: Conditional Expectations and Stopping Times

Dain Kim

December 2nd

Today's Reading

[B] Chapter 1.2. Conditional Expectations, Chapter 1.4. Stopping Times

Conditional Probability and Independency

For an event B with P(B) > 0, the *conditional probability* of A given B is

$$\mathbf{P}(A|B) = \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)}.$$

Since $\mathbf{P}(\Omega|B) = 1$, the conditional probability $\mathbf{P}(\cdot|B)$ is also a probability measure on the σ -algebra \mathcal{F} .

The event A is *independent* of the event B with P(B) > 0 if

$$P(A|B) = P(A)$$
.

Equivalently,

$$\mathbf{P}(A \cap B) = \mathbf{P}(A)\mathbf{P}(B).$$

Conditional Expectation

Let X be a random variable. The *conditional expectation* of X given an event B is

$$\mathbf{E}\{X|B\} = \int_{\Omega} X(\omega)\mathbf{P}(d\omega|B) = \frac{\mathbf{E}\{X\mathbb{1}_{B}\}}{\mathbf{P}(B)}.$$

Exercise. $\mathbf{E}\{\mathbb{1}_A|B\} = \mathbf{P}(A|B)$.

The *conditional expectation* $\mathbf{E}\{X|Q\}$ of X given a σ -algebra Q generated by disjoint sets B_k , $k=1,\ldots,m$, is for $\omega \in B_k$,

$$\mathbf{E}\{X|\mathcal{Q}\} = \mathbf{E}\{X|B_k\} = \frac{\mathbf{E}\{X\mathbbm{1}_{B_k}\}}{\mathbf{P}(B_k)}.$$

Exercise

Exercise. ([B] Exercise 2.1) Let $\Omega = \{\omega : \omega \in [-1/2, 1/2], \mathcal{F} = \mathcal{B}([-1/2, 1/2]), \mathbf{P}(d\omega) = d\omega$. Let $X(\omega) = \omega^2$. Prove that

$$\begin{split} \mathbf{P}(A|\sigma(X)) &= \frac{1}{2}\mathbb{1}_A(\omega) + \frac{1}{2}\mathbb{1}_A(-\omega), \\ \mathbf{E}(Y|\sigma(X)) &= \frac{1}{2}Y(\omega) + \frac{1}{2}Y(-\omega). \end{split}$$

Properties of Conditional Expectations

1) Linearity.

$$\mathbf{E}\{aX + bY|Q\} = \alpha \mathbf{E}\{X|Q\} + \beta \mathbf{E}\{Y|Q\}$$
 a.s

2) If X does not depend on Q, then

$$\mathbf{E}\{X|\mathcal{Q}\} = \mathbf{E}x$$
 a.s.

3) If Y is Q-measurable, then

$$\mathbf{E}\{XY|\mathcal{Q}\} = Y\mathbf{E}\{X|\mathcal{Q}\}$$
 a.s.

4) For $Q \subset \mathcal{M}$,

$$\mathbf{E}\{X|Q\} = \mathbf{E}\{\mathbf{E}\{X|\mathcal{M}\}|Q\}$$
 a.s.

4') For $A \in \mathcal{M}$,

$$\mathbf{E}\{X|A\} = \mathbf{E}\{\mathbf{E}\{X|\mathcal{M}\}|A\}.$$

Properties of Conditional Expectations

5) If $X \leq Y$ a.s., then

$$\mathbf{E}\{X|Q\} \le \mathbf{E}\{|X||Q\}$$
 a.s.

- 6) $E\{X|Q\} \le E\{|X||Q\}$ a.s.
- 7) If $\mathbf{E}(\sup_{n\in\mathbb{N}}|X_n|)<\infty$ and $X_n\to X$ a.s., then

$$\mathbf{E}\{X_n|\mathcal{Q}\} \to \mathbf{E}\{X|\mathcal{Q}\}$$
 a.s.

7') If $\{X_n\}_{n\in\mathbb{N}}$ is a uniformly integrable family of random variables and $X_n \to X$ in probability, then $\mathbf{E}\{X_n|\mathcal{Q}\}\to \mathbf{E}\{X|\mathcal{Q}\}$ in mean.

Filtrations

A family of σ -algebras $\{\mathcal{F}\}_{t\in\Sigma}$ on (Ω,\mathcal{F}) is called a *filtration* if

$$\mathcal{F}_s \subseteq \mathcal{F}_t \subseteq \mathcal{F}$$

for every $s, t \in \Sigma$ with s < t.

For $\Sigma = [0, T]$, a filtration is *right continuous* if for every $t \in [0, T)$,

$$\mathcal{F}_t = \mathcal{F}_{t+} := \bigcap_{\epsilon > 0} \mathcal{F}_{t+\epsilon}.$$

The collection $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}, \mathbf{P})$ is called a *filtered probability space*.

Filtered Probability Space and usual conditions

A filtered probability space $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}, \mathbf{P})$ is said to satisfy the *usual conditions* if

- 1) \mathcal{F} is **P**-complete, ¹
- 2) \mathcal{F}_0 contains all **P**-null sets of \mathcal{F} ,
- 3) $\{\mathcal{F}_t\}$ is right continuous.

A process X(t), $t \in \Sigma$, defined on a filtered probability space is *adapted* to the filtration $\{\mathcal{F}_t\}$ if for every $t \in \Sigma$ the r.v. X(t) is \mathcal{F}_t -measurable.

A process X(t), $t \in [0, T]$, defined on a filtered probability space is *progressively measurable* if for every $t \in [0, T]$ the mapping $(s, \omega) \mapsto X(s, \omega)$ from $[0, t] \times \Omega$ to \mathbb{R} is $\mathcal{B}([0, t]) \times \mathcal{F}_t$ -measurable.

Proposition

An adapted process with right or left continuous paths is progressively measurable.

Dain Kim

¹If there is a set A with $A_1 \subseteq A \subseteq A_2$ and $\mathbf{P}(A_1) = \mathbf{P}(A_2)$, then $A \in \mathcal{F}$.

Stopping Times

A *stopping time* with respect to a filtration $\{\mathcal{F}_t, t \in \Sigma \subseteq [0, \infty)\}$ is a mapping $\tau \colon \Omega \to \Sigma \cup \{\infty\}$ such that $\{\tau \le t\} \in \mathcal{F}_t$ for every $t \in \Sigma$.

Examples.

- 1) The first hitting time of a level $z: H_z = \min\{s: X(s) = z\}$.
- 1') $H_{a,b} = \min\{s : X(s) \notin (a,b)\}.$
- 2) The moment inverse of integral functional

$$\nu(t) = \min\{s: \int_0^s g(X(v))dv = t\},$$

where g is a nonnegative measurable function.

3) The inverse range time

$$\theta_{\nu} = \min\{t : \sup_{0 \le s \le t} X(s) - \inf_{0 \le s \le t} X(s) \ge \nu\}.$$

Properties of stopping times

- 1) If τ is a stopping time, then $\{\tau < t\} \in \mathcal{F}_t$ and $\{\tau = t\} \in \mathcal{F}_t$.
- 2) If t_0 is a nonnegative constant, then $\tau = t_0$ is a stopping time.
- 3) If τ is a stopping time, then $\tau + t_0$ is a stopping time for a nonnegative constant t_0 .
- 4) If σ and τ are stopping times, then $\sigma \vee \tau = \max\{\sigma, \tau\}$ and $\sigma \wedge \tau = \min\{\sigma, \tau\}$ are stopping times.
- 5) If $\tau_n, n \in \mathbb{N}$, are stopping times, then inf τ_n , sup τ_n , lim inf τ_n , and lim sup τ_n are stopping times.