



## Аксентьев Александр Евгеньевич

Метод замороженного спина для поиска электрического дипольного момента дейтрона в накопительном кольце

Специальность 01.04.20— «Физика пучков заряженных частиц и ускорительная техника»

Автореферат диссертации на соискание учёной степени кандидата физико-математических наук

Работа выполнена в Forschungszentrum Jülich GmbH

Научный руководитель: доктор физ.-мат. наук, профессор

Сеничев Юрий Валерьевич

кандидат физ.-.мат. наук, доцент

Полозов Сергей Маркович

Официальные оппоненты: Фамилия Имя Отчество,

доктор физико-математических наук, професcop.

He очень длинное название для места работы, старший научный сотрудник

Фамилия Имя Отчество,

кандидат физико-математических наук, Основное место работы с длинным длинным длинным длинным названием,

старший научный сотрудник

Ведущая организация: Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования с длинным длинным

длинным длинным названием

Защита состоится DD mmmmmmm YYYY г. в XX часов на заседании диссертационного совета Д123.456.78 при Название учреждения по адресу: Адрес.

С диссертацией можно ознакомиться в библиотеке Название библиотеки.

Отзывы на автореферат в двух экземплярах, заверенные печатью учреждения, просьба направлять по адресу: Адрес, ученому секретарю диссертационного совета Д123.456.78.

Автореферат разослан DD mmmmmmmm YYYY года. Телефон для справок: +7 (0000) 00-00-00.

Ученый секретарь диссертационного совета Д 123.456.78, д-р физ.-мат. наук

Фамилия Имя Отчество

| 1        |  |
|----------|--|
| -        |  |
| 73       |  |
| ~~       |  |
| ~~       |  |
| 7.0      |  |
| I        |  |
| ~~       |  |
|          |  |
| ಷ        |  |
| ъ        |  |
| ര        |  |
| 0        |  |
| •        |  |
| K.       |  |
| - 10     |  |
| ė        |  |
| ~        |  |
| ര        |  |
| 7        |  |
| Ξ,       |  |
| ~        |  |
| ~        |  |
| Z        |  |
|          |  |
|          |  |
| $\sigma$ |  |
|          |  |
| -        |  |
| 14       |  |
| 6        |  |
| 00       |  |
| 6        |  |
| - 23     |  |
| تاج      |  |
| جن       |  |
| ŏ        |  |
| - 20     |  |
| Ø        |  |
| 2        |  |
| ~3       |  |
|          |  |

Метод замороженного спина для поиска электрического дипольного момента дейтрона в накопительном кольце

Автореф. дис. на соискание ученой степени канд. физ.-мат. наук

Подписано в печать \_\_\_\_\_. Заказ № \_\_\_\_\_ Формат 60×90/16. Усл. печ. л. 1. Тираж 100 экз. Типография \_\_\_\_\_

- 12. JEDI Collaboration. URL: http://collaborations.fz-juelich.de/ikp/jedi/about/introduction.shtml.
- Morse, W. M. rf Wien filter in an electric dipole moment storage ring: The "partially frozen spin" effect / W. M. Morse, Y. F. Orlov, Y. K. Semertzidis // Phys. Rev. ST Accel. Beams. 2013. Hox6. T. 16, Bbm. 11. C. 114001. URL: https://link.aps.org/doi/10.1103/PhysRevSTAB.16.114001.
- Spin tune mapping as a 11el tool to probe the spin dynamics in storage rings / A. Saleev, N. N. Nikolaev, F. Rathmann [n др.] // Phys. Rev. Accel. Beams. 2017. Июль. Т. 20, вып. 7. С. 072801. URL: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.20.072801.
- 15. Electromagnetic Simulation and Design of a 11el Waveguide RF Wien Filter for Electric Dipole Moment Measurements of Protons and Deuterons / J. Slim [n др.] // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2016. 21 abr. T. 828. C. 116—124. URL: http://www.sciencedirect.com/science/article/pii/S0168900216303710 (дата обр. 18.04.2019).
- Slim, J. First commissioning results of the waveguide RF Wien filter / J. Slim, for the JEDI Collaboration // Hyperfine Interactions. — 2019. — Янв. — Т. 240, № 1. — С. 7. — URL: https://doi.org/10.1007/s10751-018-1547-6.

## Общая характеристика работы

**Актуальность темы.** Данное диссертационное исследование является частью проекта, посвящённого поиску ЭДМ элементарных частиц.

Одной из основных проблем современной физики является барионная асимметрия вселенной, т.е. преобладание числа частиц над числом античастиц в наблюдаемой вселенной. На текущий момент нет никаких свидетсльств существования первичной антиматерии в нашей галактике; количество наблюдаемой антиматерии согласуется с её производством во вторичных процессах. Также не наблюдается фонового гамма-излучения от нуклон-антинуклонных взаимодействий, которое можно было бы ожидать, если бы вещество и антивещество во вселенной были бы разделены на кластеры галактик. [1]

В своей статье 1967 года, академик АН СССР А.Д. Сахаров сформулировал три необходимых условия, которым должен был удовлетворять процесс бариогенеза, чтобы материя и антиматерия в первичной вселенной производились с разными скоростями. Побудительным мотивом формулировки стало открытие космического фонового излучения и нарушение СР четности в системе нейтральных К-мезонов. [2] Три необходимых условия Сахарова таковы:

- несохранение барионного числа;
- нарушение зарядовой симметрии С- и СР-симметрии;
- взаимодействие вне теплового равновесия.

Если они существуют, перманентные ЭДМ частиц нарушают Р- и Т-симметрии, а значит, по теореме СРТ — и СР-симметрию. Стандартная Модель (СМ) элементарных частиц позволяет учесть СР-нарушение посредством матрицы Кабиббо-Кабаяши-Масакавы, однако значения ЭДМ, предсказываемые ей для, например, нейтрона, лежат в диапазоне от  $10^{-33}$  до  $10^{-30}$  е.см. [3] К примеру, теория SUSY (суперсимметрия) предсказывает наличие ЭДМ гораздо большей величины (на уровне  $10^{-29}$  —  $10^{-24}$  е.см.). Таким образом, ЭДМ элементарных частиц являются чувствительным индикатором физики за гранью СМ.

Поиск ЭДМ частиц был начат более 50-ти лет назад. Первый эксперимент по измерению ЭДМ нейтрона был проведён др. Н.Ф. Рэмзи (dr. N.F. Ramsey) в конце 1950-х годов. По результатам эксперимента, верхняя граница ЭДМ нейтрона была ограничена величиной  $5 \cdot 10^{-20} \ e.cm$ . [4] С тех пор было проведено множество более точных экспериментов, и на данный момент, верхняя граница на ЭДМ нейтрона находится на уровне  $2.9 \cdot 10^{-26} \ e.cm$ . [5; 6]

Большинство экспериментов проводятся на зарядово-неитральных частицах, таких как нейтрон или атомы. ЭДМ заряженных частиц, таких как протон или дейтрон, можно измерить в накопительном кольце,

на основе прецессии поляризации пучка в электрическом поле в системе центра масс пучка.

Идея использования накопительного кольца для детектирования 920М заряженный частиц появилась в процессе разработки g-2 эксперимента [7] в Брукхейвенской Национальной Лаборатории (ВNL, США). По результатам экспериментов в BNL, верхняя граница на мюонный 92М была установлена на уровне  $10^{-19}$   $e\cdot$ см. [8] В 1990-х годах, дискуссия препмущественно велась вокруг мюонного эксперимента [9], однако также рассматривался и дейтрон, у которого похожее отношение аномального магнитного момента к массе.

В 2004 году, коллаборацией srEDM (Storage Ring EDM Collaboration) [10] в BNL был предложен эксперимент 970 по детектированию ЭДМ дейтрона на уровне  $10^{-27}$  е-см в накопительном кольце. Начиная с 2005 года, на циклотроне AGOR KVI-центра передовых радиационных технологий (KVI-Center for Advanced Radiation Technology) в университете Гронингена была проведена серия тестов по технико-экономическому обоснованию эксперимента.

В 2008 году начались тесты на накопительном кольце COSY в Исследовательском центре "Юлих" (FZJ, Германия). Впоследствии, эти тесты развились в программу по изучению динамики пучка для разработки технологий, требуемых для эксперимента по поиску ЭДМ. В этом же году было сделано второе предложение [11] эксперимента по поиску ЭДМ дейтрона, в этот раз, на уровне  $10^{-29}$  е-см через один год сбора статистики.

В то же время было решено, что эксперимент по детектированию ЭДМ протона обладает некоторыми достоинствами, в техническом отношении. Среди таковых возможность одновременной инжекции противоположно-циркулирующих пучков, что позволяет оптимизировать сокращение систематических эффектов, в которых не нарушается временная симметрия. Тем не менее, на СОЅУ была продолжена работа над экспериментом с дейтроном, ввиду того, что результаты, полученные для дейтрона, распространяются и на протон.

В 2011 году была сформирована коллаборация JEDI (Jülich Elecric Dipoe moment Investigations). [12] Целью коллаборации является не только разработка ключевых технологий для srEDM, но также и проведение предварительного эксперимента прямого наблюдения ЭДМ дейтрона.

В 2018 году, JEDI-коллаборация выполнила первое измерение дейтронного ЭДМ на COSY. Поскольку в кольце с незамороженным спином ЭДМ генерирует мало-амплитудные осцилляции вертикакльной компоненты поляризации пучка (при импульсе дейтронов 970 МэВ/с, как на COSY, амплитуда колебаний ожидается на уровне  $3 \cdot 10^{-10}$  при величине ЭДМ  $d=10^{-24}~e$ -см), используется резонансный способ измерения [13; 14], с использованием специально-созданного для COSY ВЧ Вин-фильтра. [15; 16]

### Список литературы

- 1. Trodden, M. Electroweak baryogenesis / M. Trodden // Rev. Mod. Phys. 1999. Окт. Т. 71, вып. 5. С. 1463—1500. URL: https://link.aps.org/doi/10.1103/RevModPhys.71.1463.
- 2. Evidence for the  $2\pi$  Decay of the  $K_2^0$  Meson / J. H. Christenson [ $\mu$  др.] // Phys. Rev. Lett. 1964. Июль. Т. 13, вып. 4. С. 138—140. URL: https://link.aps.org/doi/10.1103/PhysRevLett.13.138.
- 3. Harris, P. G. The Neutron EDM Experiment / P. G. Harris //arXiv:0709.3100 [hep-ex]. 2007. 19 ceht. arXiv: 0709.3100. URL: http://arxiv.org/abs/0709.3100 (дата обр. 16.04.2019).
- 4. Smith, J. H. Experimental Limit to the Electric Dipole Moment of the Neutron / J. H. Smith, E. M. Purcell, N. F. Ramsey // Phys. Rev. 1957. Окт. Т. 108, вып. 1. С. 120—122. URL: https://link.aps.org/doi/10.1103/PhysRev.108.120.
- 5. Improved Experimental Limit on the Electric Dipole Moment of the Neutron / С. A. Baker [и др.] // Phys. Rev. Lett. 2006. Сент. Т. 97, вып. 13. С. 131801. URL: https://link.aps.org/doi/10. 1103/PhysRevLett.97.131801.
- 6. Baker et al. Reply: / C. A. Baker [и др.] // Phys. Rev. Lett. 2007. Anp. Т. 98, вып. 14. С. 149102. URL: https://link.aps.org/doi/10.1103/PhysRevLett.98.149102.
- 7. Precise Measurement of the Positive Muon Anomalous Magnetic Moment / H. N. Brown, G. Bunce, R. M. Carey [и др.] // Phys. Rev. Lett. 2001. Март. Т. 86, вып. 11. С. 2227—2231. URL: https://link.aps.org/doi/10.1103/PhysRevLett.86.2227.
- 8. Improved limit on the muon electric dipole moment / G. W. Bennett, B. Bousquet, H. N. Brown [и др.] // Phys. Rev. D. 2009. Сент. Т. 80, вып. 5. С. 052008. URL: https://link.aps.org/doi/10.1103/PhysRevD.80.052008.
- 9. New Method of Measuring Electric Dipole Moments in Storage Rings / F. J. M. Farley, K. Jungmann, J. P. Miller [μ др.] // Phys. Rev. Lett. 2004. Июль. Т. 93, вып. 5. С. 052001. URL: https://link.aps.org/doi/10.1103/PhysRevLett.93.052001.
- [0. srEDM Collaboration. URL: https://www.bnl.gov/edm/.
- 11. AGS Proposal: Search for a permanent electric dipole moment of the deuteron nucleus at the 10<sup>-29</sup> e· cm level.Tex. orч. / D. Anastassopoulos, V. Anastassopoulos, D. Babusci [μ др.]; BNL. —2008. URL: https://www.bnl.gov/edm/files/pdf/deuteron\_proposal\_080423\_final.pdf (дата обр. 25.11.2016).

В основное тело работы не вошло статистическое моделирование эксперимента; для него отведено приложение А.

# Публикации автора по теме диссертации

- . Aksentev, A. E. Statistical precision in charged particle EDM search in storage rings / A. E. Aksentev, Y. V. Senichev // Journal of Physics: Conference Series. 2017. Дек. Т. 941. С. 012083. URL: http://stacks.iop.org/1742-6596/941/i=1/a=012083.
- 2. Aksentyev, A. Model of Statistical Errors in the Search for the Deuteron EDM in the Storage Ring / A. Aksentyev, Y. Senichev // (8th Int. Particle Accelerator Conf. (IPAC'17), Copenhagen, Denmark, 14-19 May, 2017). JACOW, Geneva, Switzerland, 05/2017. P. 2258—2260. URL: http://accelconf.web.cern.ch/AccelConf/ipac2017/doi/JACOW-IPAC2017-TUPVA079.html (visited on 06/21/2017).
- 3. Аксентьев, А. Статистическая точность при поиске ЭДМ заряженных частиц в накопительных кольцах / А. Аксентьев, Ю. Сеничев // (III Международная конференция "Лазерные, плазменные исследования и технологии"). Москва, Россия, 2017.
- Аксентьее, А. Моделирование спин-орбитальной динамики пучка в накопительном кольце / А. Аксентьев // (IV Международная конференция "Лазерные, плазменные исследования и технологии"). — Москва, Россия, 2018.
- Аксентьев, А. Декогеренция спина в структуре с замороженным спином, её подавление и эффект на ЭДМ статистику в методе Frequency Domain / А. Аксентьев, Ю. Сеничев // (V Международная конференция "Лазерные, плазменные исследования и технологии"). Москва, Poccия, 2019.
- 6. Aksentev, A. Simulation of the Guide Field Flipping Procedure for the Frequency Domain Method / A. Aksentev, Y. Senichev // Hardon Accelerators. Melbourne, Australia, 2019.
- 7. Aksentev, A. Spin Motion Perturbation Effect on the EDM Statistic in the Frequency Domain Method / A. Aksentev, Y. Senichev // Hadron Accelerators. Melbourne, Australia, 2019.
- 8. Aksentev, A. Spin decoherence in the Frequency Domain Method for the search of a particle EDM / A. Aksentev, Y. Senichev // Hadron Accelerators. Melbourne, Australia, 2019.

<u>Целью</u> данной работы является численное моделирование метода поиска электрического дипольного момента дейтрона в накопительном кольце с замороженным спином.

Для достижения поставленной цели необходимо было решить следующие задачи:

- Исследовать явление декогеренции спина пучка в окрестности нулевой спиновой частоты, а также секступольный метод её полавления
- . Исследовать влияние возмущений спиновой динамики на ЭДМ-ста-
- 3. Исследовать влияние неточности установки E+B спин-ротаторов на систематическую ошибку ЭДМ-статистики.
- Промоделировать процесс калибровки спин-тюна пучка при смене полярности ведущего поля.

#### Научная новизна:

- 1. Промоделирована процедура калибровки спин-тюна пучка при смене направления его движения.
- Исследована систематическая ошибка эксперимента по поиску ЭДМ в накопительном кольце, связанная с бетатронными колебаниями.
- 3. Систематизированы общие проблемы методов поиска ЭДМ в накопительном кольце.
  - 4. Классифицированы методы типа замороженного спина детектирования ЭДМ частицы в накопительном кольце.

**Практическая значимость.** Результаты исследования вошли в Yellow Report под названием "Feasibility Study for an EDM Storage Ring," подготавливаемый для CERN коллаборацией СРЕDM, в которую входит коллаборация JEDI.

Методология и методы исследования. Основными методами исследования являются математическое и компьютерное моделирование, и численный эксперимент.

# Основные положения, выносимые на защиту:

- Подтверждена теория механизма секступольного подавления декогеренции.
- 2. Подтверждено утверждение о равенстве спин-тюнов частиц с одинаковыми эффективными Лоренц-факторами; найдена интерпретация эффективного Лоренц-фактора как меры продольного эмиттанса частицы.
- 3. Показано, что калибровка ведущего магнитного поля ускорителя посредством наблюдения частоты прецессии поляризации пучка в горизонтальной плоскости потенциально работающая методика.

- 4. Доказано, что возмущения спиновой динамики пучка, вызванные бетатронными колебаниями пренебрежимо малый систематический эффект, поддающийся контролю в методологии частотной области.
- 5. Доказано, что эффективная длительность цикла измерения поляризации находится в диапазоне от двух до трёх постоянных времени жизни поляризации.
- 6. Показана принципиальная возможность получения верхнего предела оценки ЭДМ на уровне  $10^{-29}$   $e\cdot$ см за полное время измерений длительностью один год.
- 7. Доказано, что угловая скорость паразитного МДМ вращения линейно зависит от среднего угла наклона спин-ротаторов, и не зависит от конкретной реализации распределения наклонов.
- 8. Доказано, что точность установки оптических элементов ускорителя не позволяет измерять ЭДМ частицы методами пространственной области.

Достоверность полученных результатов обеспечивается согласованием аналитических вычислений с результатами численных экспериментов. Результаты компьютерных симуляций находятся в соответствии с результатами, полученными другими авторами.

Апробация работы. Основные результаты работы докладывались на:

- IIX международной концеренции по ускорителям заряженных частиц IPAC'17, Копенгаген, Дания.
- X международной конференции по ускорителям заряженных частиц IPAC'19, Мельбурн, Австралия.
- конференциях коллаборации JEDI, Юлих, Германия, 2017–2019.
- III международной конференции "Лазерные, плазменные исследования и технологии," (LaPlas) Москва, Россия.
- IV междунарожной конференции LaPlas, Москва, Россия.
- V международной конференции LaPlas, Москва, Россия
- студенческих семинарах Института Ядерных Исследований, Исследовательский Центр "Юлих," Германия.

Личный вклад. Автор принимал активное участие в коллаборации JEDI, а также подготовке Yellow Report для CERN.

Публикации. Основные результаты по теме диссертации изложены в 8 печатных изданиях, 1 из которых изданы в журналах, рекомендованных ВАК, 7—в тезисах докладов.

### Содержание работы

Во введении обосновывается актуальность исследований, проводимых в рамках данной диссертационной работы, приводится обзор научной

литературы по изучаемой проблеме, формулируется цель, ставятся задачи работы, излагается научная новизна и практическая значимость представляемой работы. Содержание следующих глав такого:

#### Первая глава

- 1. Вводит понятие замороженного спина.
- 2. Проводит классификацию метдов поиска ЭДМ в накопительном кольце с замороженным спином.
- 3. Проводит классификацию проблем, общих для всех методов поиска ЭДМ в накопительном кольце.
- 4. Описывает метод измерения ЭДМ в накопительном кольце с замороженным спином, разрешающий описанные проблемы.
- Описывает магнитооптические структуры накопительных колец, которые можно использовать для детектирования ЭДМ предлагаемым методом.

Во второй главе содержится подробное рассмотрение проблем, обозначенных в первой главе, и методов из решения; описаны результаты моделирования.

В третьей главе описаны результаты экспериментов, проводимых на ускорителе COSY (находящемся на территории Исследовательского центра "Юлих", Германия).

В <u>заключении</u> приведены основные результаты работы, которые заключаются в следующем:

- Были изучены эффекты спиновой динамики, составляющие систематические ошибки эксперимента по поиску электрического дипольного момента частицы методом замороженного спина в накопительном кольце, как то:
- возмущения спиновой динамики вызванные бетатронным движением частицы;
- декогеренция спинов частиц пучка;
- МДМ прецессия спина, вызванная неидеальностями ускорителя.
- . Для каждого из эффектов, было описано средство борьбы, и проведено численное моделирование, подтверждающее его эффективность.
- 3. Были сформулированы:
- понятия методов пространственной и временной областей;
- понятие двумерно-замороженного спина;
- необходимые условия успешного измерения ЭДМ в накопительном кольце;
- метод Frequency Domain, удовлетворяющий всем сформулированным условиям.
- 4. Описаны структуры накопительных колец с непрерывно- и квази- замороженным спином.