18

Adott egy táblázat, amelynek m sora és n oszlopa van. Tekintsük az alábbit. Itt m=4 és n=4.

8	7	3	2	15
1	4	2	5	
				43
2	3	4	7	28
1	1	4	4	19
10	22	25	20	

Minden sor megfelel egy raktárnak (tehát most 4 raktár van) és minden oszlop egy boltnak (most 4 bolt van).

8	7	3	2	To 15 lái os	ovál tunl szlo
1	4	2	5	tá	bláz al fe legr jele
2	3	4	7	28 a	jele
1	1	4	4	19	

Továbbá minden sor végén látunk számokat, az oszlopok alatt, valamint a táblázat celláiban, a cellák bal felső sarkában. Megmagyarázzuk ezeknek a jelentését.

A sorok végén levő szám a raktárkészletet jelenti. Az oszlop alatti szám a bolt igényét. Feltesszük hogy ezek összege megegyezik.

8	7	3	2	15	Tehát például az első bolt igénye 18 egység valamilyen áruból, és
1	4	2	5	43	például a harmadik raktár készlete 28, ugyanebből az áruból.
2	3	4	7	28	A cellák bal felső sarkaibal levő számok azt jelentik, hogy a megfelelő
1	1	4	4	19	viszonylatban 1 egység szállítása mennyibe kerül.

18 32 35 20

A feladat: Szállítsuk el az összes árut az adott készletek és igények figyelembe vételével, minimális összköltséggel.

8 7 3	2	Az összes költség a 15 következőképpen számolandó: Ha például az
1 4 2	5	első raktárból az első boltba 43 3 egységet szállítok, az 3- szor 8 egységbe kerül. Ha
2 3 4	7	5-öt szállítok, az 5-ször 8 28 pénzegységbe kerül.
1 1 4	4	19

A feladatot kétfázisú módszerrel oldjuk meg. Első fázisban egy megengedett bázismegoldást állítunk elő.

8 15	7	3	2	15	Az egyik legegyszerűbb módszer egy megengedett bázismegoldás előállítására
1	4	2	5	43	az úgynevezett Észak- Nyugat-i módszer. A tábla É-Ny-i sarka a bal
2	3	4	7	28	felső sarok. Itt elszállítunk annyit amennyit csak lehetséges. Ez nem lehet
1	1	4	4	19	több mint 15, és nem lehet több mint 18. Akkor ezek minimuma, azaz 15
18	32	35	20		egységet szállítunk itt.

A szállított mennyiséget "nagy" piros számmal jelöljük, a cella "közepén".

Ezzel az első rakt

8 15	7	3	2
1	4	2	5
2	3	4	7
1	1	4	4
2	20	25	20

Ezzel az első raktár
készletét kimerítettük, és az
első bolt igényéből is
kielégítettünk 15-öt. Ezeket
a számokat levonjuk az
első raktár készletéből és
az első bolt igényéből, a

mellékeljük itt balra. Ezek után redukáljuk a táblázatot: az első sorral már nem kell hogy foglalkozzunk. Most a

módosult táblázatot

második sor első oszlopa lett az É-Ny-i sarok!

Az előbbi módszert ismételgetve (iterálva), megkapjuk az alábbi

megoldást.

8 15	7	3	2
1 3	32	2 8	5
2	3	4 27	⁷ 1
1	1	4	4 19

Mint látjuk, a kapott megoldás nem túl bonyolult. Mindazáltal, ha a szállítási egységköltségek nagyjából egyenlők lennének (most nem ez a helyzet), vagy "szerencsés" módon helyezkednének el, tehát éppen olcsó helyeken sikerülne szállítani (most ez sem igaz), akkor az É-Ny-i módszer is képes meglehetősen jó megoldást generálni.

Figyeljük meg, hogy pontosan 7 helyen történik szállítás, ami a sorok száma plusz oszlopok száma -1.

8 15	7	3	2
1 3	32	2 8	5
2	3	4 27	⁷ 1
1	1	4	4 19

A kapott megoldás értékét a következőképpen kapjuk: 8-szor 15, plusz 1-szer 3, stb.

A kapott érték: 458.

Vajon sok ez vagy kevés?

Egyszerű alsó korlát számolása:

8 15	7	3	2
1 3	32	2 8	5
2	3	4 27	⁷ 1
1	1	4	4 19

Könnyű úgynevezett "alsó korlátot" generálni ara vonatkozólag, hogy legalább mekkora lesz a minimális költség.

Erre egy egyszerű módszer a következő: Az első sorban a legkisebb egységköltség 2. Akkor az első sorban legalább 2-ször 15 forint lesz amit fizetni kell. A második sorban ez legalább 1-szer 43, és így tovább. Akkor a költség legalább 2x15 + 1x43 + 2x28 + 1x19= 148.

Láttuk, az összes költség, tetszőleges megengedett megoldás esetén legalább 148. Az É-Ny-i módszer által kapott megoldás értéke 458.

8 15	7	3	2
1 3	32	2 8	5
2	3	4 27	7 1
1	1	4	4 19

Az előbbinél "jobb" alsó korlátot is megpróbálhatunk meghatározni. Ehelyett inkább mutatunk egy másik módszert, amely az É-Ny-i módszernél, az esetek többségében, lényegesen hatékonyabb. Nevezzük Tábla-Minimum módszernek, röviden legyen ez a TM módszer.

A Tábla-Minimum módszer

Kezdjük újra, egy megengedett bázismegoldást állítunk megint elő.

8	7	3	2	15	Válasszunk ki egy olyan cellát, ahol a szállítási (egység)költség minimális.
1 18	4	2	5	43	Több helyen van 1-es költség, válasszuk például a második sor első celláját.
2	3	4	7	28	Szállítsunk el itt amennyit csak lehet, ez 18 egység. Utána redukáljuk a
1	1	4	4	19	táblázatot: az oszlop kiesik, a sorban a raktárkészlet 18- cal csökken.

18 32 35 20

A Tábla-Minimum módszer

Folytatva (iterálva) az előző lépést, a következő táblázatot (megengedett bázismegoldást) kapjuk:

8	7	3	² 15
1 18	4	² 25	⁵ 5
2	³ 13	4 10	7 5
1	¹ 19	4	4

Jegyezzük meg, hogy ha több cellának van ugyanakkora (és minimális) költsége, akkor ezek közül tetszőlegesen választhatunk.
A kapott megoldáshoz tartozó célfüggvényérték: 256, ami lényegesen jobb, mint amit az É-Ny-i módszerrel kaptunk, az alsó korlátunkhoz is közelebb van.

A Tábla-Minimum módszer

Jelenleg azt tudjuk, hogy az optimumérték 148 és 256 között van.

8	7		3		2	15
1 18	4		2	25	5	5
2	3	13	4	10	7	5
1	1	19	4		4	

Még azt is vegyük észre, hogy mindkét módszer (É-Ny-i módszer és TM módszer) a következő lépések ismétléséből áll:

- 1. kiválasztunk egy cellát
- 2. ott a lehető legtöbbet szállítjuk
- 3. a táblát redukáljuk

Csak az 1. lépésben különböznek. Mindkét módszer esetén az igénybe vett cellák száma 7 (sorok+oszlopok-1)

A Vogel-Korda módszer

Bemutatunk egy harmadik módszert is. Ez is az előbbi 3 lépést iterálja, itt is csak az 1. lépés más mint az előbbieknél.

8	7	3	2
1	4	2	5
2	3	4	7
1	1	4	4

Mindhárom ezek szerint mohó módszer. Ez a harmadik módszer (a Vogel-Korda) azonban egy kicsit kevésbé mohó mint az első kettő. Hogyan válasszuk ki az első cellát, ahol majd sokat szállítunk? Ehhez segédváltozókat definiálunk.

A Vogel-Korda módszer

8	7	3	2	15
1	4	2	5	43
2	3	4	7	28
1	1	4	4	19
18	32	35	20	
0	2	1	2	

Számoljuk ki soronként és oszloponként a két legkisebb szállítási költség különbségét. Ezeket a számokat zölddel adtuk meg. Például az első sorban 3-2=1, az utolsó oszlopban 4-2=2 a segédváltozó értéke.

A Vogel-Korda módszer

8	7	3	2	15	1	Most vegyünk ezek közül egy maximális számot. Ez valamelyik 2-es.
1	4	2	5	43	1	Legyen például a második oszlop alatti 2. Akkor ebből az oszlopból válasszunk minimális
2	3	4	7	28	1	költségű cellát. Ez az utolsó sorban van. Itt
1	¹ 19	4	4	19	0	fogunk maximális lehetséges mennyiséget szállítani, ami 19.
18	32	35	20			Eztán a táblázatot redukáljuk, és az előbbi lépéseket ismételiük.