Auto-regressive & Teacher Forcing

Ki Hyun Kim

nlp.with.deep.learning@gmail.com

Applications

Туре	Architecture	Applications
Many to One	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Text Classification
One to Many		NLG, Machine Translation
Many to Many	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	POS Tagging, MRC

Two Approaches

- ① Non-autoregressive (Non-generative)
 - 현재 상태가 앞/뒤 상태를 통해 정해지는 경우
 - e.g. Part of Speech (POS) Tagging, Text Classification
 - Bidirectional RNN 사용 권장
- ① Autoregressive (Generative)
 - 현재 상태가 과거 상태에 의존하여 정해지는 경우
 - e.g. Natural Language Generation, Machine Translation
 - <u>One-to-Many case 해당</u>
 - <u>Bidirectional RNN 사용 불가!!!!</u>

Auto-regressive

Inference

$$\hat{x}_t = rgmax \log P(x_t | \hat{x}_{< t}; heta) \ \ x_t \in \mathcal{X}$$

- Auto-regressive:
 - 과거 자신의 상태를 참조하여 현재 자신의 상태를 업데이트.

$$egin{aligned} \hat{x}_{t=1} &= rgmax \log P(x_{t=1}|x_0; heta) ext{ where } x_0 = < ext{BOS}>. \ \hat{x}_{t=2} &= rgmax \log P(x_{t=2}|x_0,\hat{x}_1; heta) \ \hat{x}_{t=3} &= rgmax \log P(x_{t=3}|x_0,\hat{x}_1,\hat{x}_2; heta) \ &\dots \ \hat{x}_t &= rgmax \log P(x_t|x_0,\hat{x}_{< t}; heta) \end{aligned}$$

Teacher-Forcing

• MLE의 수식상, 정답 x_{t-1} 을 RNN의 입력으로 넣어줘야 함

$$egin{aligned} \mathcal{D} &= \{x^i\}_{i=1}^N \ \hat{ heta} &= rgmax \sum_{ heta \in \Theta}^N \log P(x^i; heta) \ &= rgmax \sum_{ heta \in \Theta}^N \sum_{i=1}^n \log P(x^i_j | x^i_{< j}; heta), \ & ext{where } x^i = x^i_{1:n} = \{x^i_1, \cdots, x^i_n\}. \end{aligned}$$

Auto-regressive and Teacher Forcing

• Inference Mode

Teacher Forcing

Training Mode

고통의 시작: NLG is Auto-regressive Task

- Auto-regressive task에서는 보통 이전 time-step의 모델을 출력을 다음 time-step의 입력으로 넣어 줌
 - 이전 time-step의 출력에 따라 현재 모델의 state가 바뀌게 될 것
- 하지만 적절한 학습을 위해서는 학습 시에는 이전 time-step의 출력 값이 아닌, 실제 정답을 넣어 줌
- 따라서 학습과 추론을 위한 방법이 다르게 되어 여러가지 문제가 발생
 - 학습을 위한 코드와 추론을 위한 코드를 따로 짜야 함
 - 학습과 추론 방법의 <u>괴리(discrepancy)가 발생</u>하여 성능이 저하될 수 있음