实验报告实验一

15231100 曹强港

1 原始数据集

1.1 来源

共采集了2组数据,分别为2维数据和3维数据。

- 2 维数据根据直线 $2x_1+3x_2-4=0$ 创建,数据集中包含了 200 组数据,对于任意一组数据点 (x_1,x_2) 位于直线两侧,距离直线范围为 (0,10]。数据集在记录时,添加了一维数据,成为 $(x_1,x_2,(-1|1))$,1 表示位于直线上方,-1 表示位于直线下方。数据集记录在"dataset1.csv"
- 2 维数据根据平面 $2x_1 + 3x_2 + 4x_3 5 = 0$ 创建,数据集中包含了 200 组数据,对于任意一组数据点 (x_1, x_2, x_3) 位于平面两侧,距离直线范围为 (0, 10]。数据集在记录时,添加了一维数据,成为 $(x_1, x_2, x_3, (-1|1))$,1 表示位于直线上方,-1 表示位于直线下方。数据集记录在"dataset2.csv"

2 数据预处理

为了感知机算法的简化性,将二维数据中和三维数据中位于下方的数据点 $(x_1,x_2,-1)$ 和 $(y_1,y_2,y_3,-1)$ 转换为 $(-x_1,-x_2,1)$ 和 $(-y_1,-y_2,-y_3,1)$

3 实验步骤

- 1. 初始化 weight vector $\hat{W}(0)$ 。二维数据的实验中,初始化为 (0,5,20); 三维数据的实验中,初始化为 (0,5,20,45)
- 2. 利用感知机算法进行迭代,每一次迭代中每一个错误分类的数据点均会对 \hat{W} 产生影响。每隔 10 或 100 迭代次数,记录一次当前迭代中错误分类的数据点个数。
- 3. 设置不同的学习率为 0.01,0.1,0.2,0.3,...,0.9,0.99,分别记录步骤二中的数据,并记录不同学习率下收敛时的迭代次数和得到的直线方程 $(r \hat{W})$ 。
- 4. 对二维数据集和三维数据集,都进行步骤1到步骤3的操作,记录并分析数据。

4 实验数据

4.1 数据集 1

迭代次数

学习率	迭代次数	向量 (已处理)
0.01	1645	(-2.244471848, -3.381655343, 4)
0.1	1479	(-2.251570102, -3.393645026, 4)
0.2	1541	(-2.24924311, -3.389998459, 4)
0.3	1536	(-2.24983023, -3.391170643, 4)
0.4	1550	(-2.24555108, -3.38459983, 4)
0.5	1577	(-2.250315653, -3.391966728, 4)
0.6	1558	(-2.248698272, -3.389340623, 4)
0.7	1569	(-2.247384684, -3.387281908, 4)
0.8	1562	(-2.249579796, -3.39060821, 4)
0.9	1562	(-2.249351384, -3.390192555, 4)
0.99	1550	(-2.242391559, -3.379749671, 4)

错误分类个数随迭代次数的变化

4.2 数据集 2

迭代次数

学习率	迭代次数	向量 (已处理)
0.01	7044	(1.942167763, 2.991252798, 3.919304133, -5)
0.1	6899	(1.935799178, 2.978850037, 3.905652123, -5)
0.2	7007	(1.94221003, 2.990710071, 3.919053093, -5)
0.3	203890	(1.994767722, 3.031921564, 3.999931218, -5)
0.4	201195	(1.995396729, 3.033231016, 4.001340657, -5)
0.5	201700	(1.995074649, 3.032444268, 4.000563569, -5)
0.6	200947	(1.995453479, 3.033217345, 4.00139915, -5)
0.7	40252	(2.005733815, 3.033692721, 4.016678797, -5)
0.8	6971	(1.937408701, 2.987559465, 3.911967239, -5)
0.9	44002	(2.006672689, 3.029927748, 4.016781729, -5)
0.99	203375	(1.995493868, 3.033289313, 4.001494139, -5)

错误分类个数随迭代次数的变化

5 实验分析 10

5 实验分析

5.1 现象和结论

- 1. 观察可知,当学习率逐渐由小增大时,感知机收敛时的迭代次数会随之 先减后增
- 2. 在某些较大的学习率的情况下,迭代次数会突然达到较高的数量级。此时梯度下降的值较大,很难正好达到收敛。
- 3. 支持向量的初始值对总的迭代次数有影响,特别的,当初始值为零向量时,迭代次数与学习率无关
- 4. 错误分类的个数最初会随着迭代次数的增加而减少,学习率越高时减少越明显;然后可能会出现震荡(忽高忽低),学习率越高时震荡的幅度越大,越难达到收敛
- 5. 学习率越低或者越高并不一定能取得最优解,因为损失函数只是判别是 否有数据点被分错,不关心所有分类的点是否与分类面相距较远("分得越开")