

Markscheme

May 2022

Chemistry

Standard level

Paper 2

© International Baccalaureate Organization 2022

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organisation du Baccalauréat International 2022

Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de l'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organización del Bachillerato Internacional, 2022

Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros —lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales—, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

Subject Details: Chemistry standard level Paper 2 Markscheme

Candidates are required to answer **ALL** questions. Maximum total = **[50 marks]**.

- **1.** Each row in the "Question" column relates to the smallest subpart of the question.
- 2. The maximum mark for each question subpart is indicated in the "Total" column.
- **3.** Each marking point in the "Answers" column is shown by means of a tick (\checkmark) at the end of the marking point.
- **4.** A question subpart may have more marking points than the total allows. This will be indicated by "**max**" written after the mark in the "Total" column. The related rubric, if necessary, will be outlined in the "Notes" column.
- **5.** An alternative word is indicated in the "Answers" column by a slash (*I*). Either word can be accepted.
- **6.** An alternative answer is indicated in the "Answers" column by "**OR**". Either answer can be accepted.
- 7. An alternative markscheme is indicated in the "Answers" column under heading **ALTERNATIVE 1** *etc*. Either alternative can be accepted.
- **8.** Words inside chevrons **« »** in the "Answers" column are not necessary to gain the mark.
- **9.** Words that are <u>underlined</u> are essential for the mark.
- **10.** The order of marking points does not have to be as in the "Answers" column, unless stated otherwise in the "Notes" column.
- 11. If the candidate's answer has the same "meaning" or can be clearly interpreted as being of equivalent significance, detail and validity as that in the "Answers" column then award the mark. Where this point is considered to be particularly relevant in a question it is emphasized by **OWTTE** (or words to that effect) in the "Notes" column.
- 12. Remember that many candidates are writing in a second language. Effective communication is more important than grammatical accuracy.
- 13. Occasionally, a part of a question may require an answer that is required for subsequent marking points. If an error is made in the first marking point then it should be penalized. However, if the incorrect answer is used correctly in subsequent marking points then **follow through** marks should be awarded. When marking, indicate this by adding **ECF** (error carried forward) on the script.
- **14.** Do **not** penalize candidates for errors in units or significant figures, **unless** it is specifically referred to in the "Notes" column.
- 15. If a question specifically asks for the name of a substance, do not award a mark for a correct formula unless directed otherwise in the "Notes" column. Similarly, if the formula is specifically asked for, do not award a mark for a correct name unless directed otherwise in the "Notes" column.
- **16.** If a question asks for an equation for a reaction, a balanced symbol equation is usually expected, do not award a mark for a word equation or an unbalanced equation unless directed otherwise in the "Notes" column.
- 17. Ignore missing or incorrect state symbols in an equation unless directed otherwise in the "Notes" column.

C	uesti	on	Answers	Notes	Total
1.	а	i	$2 \operatorname{Mg(s)} + \operatorname{O}_2(g) \longrightarrow 2 \operatorname{MgO(s)} \checkmark$	Do not accept equilibrium arrows. Ignore state symbols	1
1.	а	ii	s✓	Do not allow group 2	1
1.	а	iii	aluminium/Al ✓		1
1.	b	i	$\langle \langle \frac{53.726 \mathrm{g} - 47.372 \mathrm{g}}{24.31 \mathrm{g} \mathrm{mol}^{-1}} = \frac{6.354 \mathrm{g}}{24.31 \mathrm{g} \mathrm{mol}^{-1}} \rangle \rangle = 0.2614 $		1
1.	b	ii	mass of product $= 56.941 \text{ g} - 47.372 \text{ g} = 9.569 \text{ g} $ \checkmark $((100 \text{ x} \frac{2 \text{ x} 0.001 \text{ g}}{9.569 \text{ g}} = 0.0209)) = 0.02 \text{ g})$	Award [2] for correct final answer Accept 0.021%	2
1.	b	iii	$\langle \langle 0.2614 \text{ mol x } (24.31 \text{ g mol}^{-1} + 16.00 \text{ g mol}^{-1}) = 0.2614 \text{ mol x } 40.31 \text{ g mol}^{-1} \rangle \rangle = 10.536 \text{ «g» } \checkmark$ $\langle \langle 100 \text{ x } \frac{9.569 \text{ g}}{10.536 \text{g}} = 90.822 \rangle \rangle = 91 \text{ «%» } \checkmark$	Award «0.2614 mol x 40.31 g mol ⁻¹ » Accept alternative methods to arrive at the correct answer. Accept final answers in the range 91-92% [2] for correct final answer.	2

Question		on	Answers	Notes	Total
1.	С	i	yes AND «each Mg combines with ²/₃ N, so» mass increase would be 14x²/₃ which is less than expected increase of 16x OR 3 mol Mg would form 101g of Mg₃N₂ but would form 3 x MgO = 121 g of MgO OR 0.2614 mol forms 10.536 g of MgO, but would form 8.796 g of Mg₃N₂ ✓	Accept Yes AND "the mass of N/N ₂ that combines with each g/mole of Mg is lower than that of O/O ₂ " Accept YES AND "molar mass of nitrogen less than of oxygen".	1
1.	С	ii	incomplete reaction OR Mg was partially oxidised already OR impurity present that evaporated/did not react ✓	Accept "crucible weighed before fully cooled". Accept answers relating to a higher atomic mass impurity consuming less O/O ₂ . Accept "non-stoichiometric compounds formed". Do not accept "human error", "wrongly calibrated balance" or other non-chemical reasons. If answer to (b)(iii) is >100%, accept appropriate reasons, such as product absorbed moisture before being weighed.	1

(continued...)

Q	uesti	on	Answers	Notes	Total
1.	d	i	«1» $Mg_3N_2(s)$ + 6 $H_2O(I)$ → 3 $Mg(OH)_2(s)$ + 2 $NH_3(aq)$ ✓		1
1.	d	ii	Mg ₃ N ₂ : -3 AND NH ₃ : -3 ✓	Do not accept 3 or 3-	1
1.	d	iii	Acid-base: yes AND N³- accepts H⁺/donates electron pair«s» OR yes AND H₂O loses H⁺ «to form OH⁻»/accepts electron pair«s» ✓ Redox: no AND no oxidation states change ✓	Accept "yes AND proton transfer takes place" Accept reference to the oxidation state of specific elements not changing. Accept "not redox as no electrons gained/lost". Award [1 max] for Acid—base: yes AND Redox: no without correct reasons, if no other mark has been awarded	2
1.	е	i	Protons: 7 AND Neutrons: 7 AND Electrons: 10 ✓		1
1.	е	ii	<u>isotope</u> «s» ✓		1
1.	е	iii	nitride <i>AND</i> smaller nuclear charge/number of protons/atomic number ✓		1

C	Question	Answers	Notes	Total
1.	f	Any two of: subatomic particles «discovered» OR particles smaller/with masses less than atoms «discovered» OR «existence of» isotopes «same number of protons, different number of neutrons» charged particles obtained from «neutral» atoms OR atoms can gain or lose electrons « and become charged» ✓ atom «discovered» to have structure ✓ fission OR atoms can be split ✓	Accept atoms can undergo fusion «to produce heavier atoms» Accept specific examples of particles. Award [2] for "atom shown to have a nucleus with electrons around it" as both M1 and M3.	2

Q	uestion		Answers		Notes	Total
1.	g	Substance	Bond type	How the valence electrons produce these bonds	Award [1] for all bonding types correct. Award [1] for each correct description. Apply ECF for M2 only once.	
		Magnesium	metallic AND	delocalized «throughout lattice attracted to		
				cations» Accept reference to "sea"/flux of electrons «attracted to cations»		4
		Oxygen	covalent AND	shared «between atoms» ✓		
		Magnesium oxide	ionic ✓	transferred «from magnesium to oxygen» OR lost by magnesium AND gained by oxygen ✓		

Q	uesti	on	Answers	Notes	Total
2.	а		2p	Accept all 2p electrons pointing downwards. Accept half arrows instead of full arrows.	
			2s		1
			1s		
2.	b		H xx H x N x H xx	Accept lines or dots or crosses for electrons, or a mixture of these	1
2.	С	i	$K_{c} = \frac{[NH_{3}]^{2}}{[N_{2}][H_{2}]^{3}} \checkmark$		1
2.	С	ii	shifts to the side with fewer moles «of gas» OR shifts to right as there is a reduction in volume✓ «value of » K _c unchanged ✓	Accept "K _c only affected by changes in temperature".	2

Q	uesti	on	Answers	Notes	Total
2.	С	iii	same/unaffected/unchanged ✓		1
2.	d	i	bonds broken: N≡N + 3(H-H) / «1 mol×»945 «kJ mol ⁻¹ » + 3«mol»×436 «kJ mol ⁻¹ » / 945 «kJ» + 1308 «kJ» / 2253 «kJ» √ bonds formed: 6(N-H) / 6«mol»×391 «kJ mol ⁻¹ » / 2346 «kJ» √ ΔH = «2253 kJ - 2346 kJ = » -93 «kJ» √	Award [2 max] for (+)93 «kJ»	3
2.	d	ii	-92.4 «kJ» √		1
2.	d	iii	«N-H» bond enthalpy is an average «and may not be the precise value in NH₃» ✓	Accept it relies on average values not specific to NH ₃	1
2.	е	i	<u>conjugate</u> «acid and base» ✓		1
2.	е	ii	amount of ammonia $\langle \langle = \frac{P.V}{R.T} = \frac{100.0 \ kPa \times 900.0 \ dm^3}{8.31 \ J \ K^{-1} mol^{-1} \times 300.0 \ K} \rangle \rangle = 36.1 \ \text{"mol"} \ \checkmark$ concentration $\langle \langle = \frac{n}{V} = \frac{36.1}{2.00} \rangle \rangle = 18.1 \ \text{"mol dm}^{-3} \ \text{"} \ \checkmark$	Award [2] for correct final answer.	2
2.	е	iii	$[OH^{-}] \langle \langle = \frac{K_w}{[H^{+}]} = \frac{10^{-14}}{10^{-9.3}} = 10^{-4.7} \rangle \rangle = 2.0 \times 10^{-5} \langle \langle \text{mol dm}^{-3} \rangle \rangle \checkmark$		1

C	Questio	n Answers	Notes	Total
3.	а	$Mg^{2+} + 2 e^{-} \rightarrow Mg \checkmark$	Do not penalize missing charge on electron. Accept equation with equilibrium arrows.	1
3.	b	Alternative 1 put Mg in Zn²+(aq) ✓ Zn/«black» layer forms «on surface of Mg» ✓ Alternative 2 place both metals in acid ✓ bubbles evolve more rapidly from Mg OR Mg dissolves faster ✓ Alternative 3 construct a cell with Mg and Zn electrodes ✓ bulb lights up OR shows (+) voltage OR size/mass of Mg(s) decreases < <over time="">> OR size/mass of Zn increases <<over time="">></over></over>	Accept "electrons flow from Mg to Zn". Accept Mg is negative electrode/anode OR Zn is positive electrode/cathode	2
			Accept other correct methods.	

Que	stion		Answers	Notes	Total
3.	С	i	propanone ✓	Accept 2-propanone and propan-2-one.	1
3.	С	ii	hydrogen bonds ✓		1
3.	d	i	H_C=CCCH3		1
3.	d	ii	CH ₃ H	Do not penalize missing brackets or n. Do not award mark if continuation bonds are not shown.	1
3.	е		no change «in colour/appearance/solution» ✓		1

Q	uestic	on	Answers	Notes	Total
3.	f	i	«nucleophilic» substitution OR SN2 ✓	Accept "hydrolysis". Accept SN1	1
3.	f	ii	energy/E ≥ activation energy/E _a ✓ correct orientation «of reacting particles» OR correct geometry «of reacting particles» ✓		2
3.	f	iii	decreases/less polar <i>AND</i> electronegativity «of the halogen» decreases ✓	Accept "decreases" AND a correct comparison of the electronegativity of two halogens. Accept "decreases" AND "attraction for valence electrons decreases".	1