演習ミクロ経済学 Ⅰ 第1回

2017年4月12日

定義の確認

人こ 子及 マン F圧 口心
定義 1 (厳密な選好・無差別関係). X 上の選好 \succsim に対し、厳密な選好 \succ と無差別関係 \sim は以下のように定義される.
$\mathbf{x}^1 \succ \mathbf{x}^2 \iff lacksquare$
$\mathbf{x}^1 \sim \mathbf{x}^2 \iff lacksquare$
定義 2 (選好の完備性). X 上の選好 \succsim が完備性を満たす. \Longleftrightarrow \mathbf{x}^1 , $\mathbf{x}^2 \in X$ に対し, $\mathbf{x}^1 \succsim \mathbf{x}^2$ \mathbf{x}^2 が成り立つ.
定義 3 (選好の推移性). X 上の選好 \succsim が推移性を満たす. \iff $\mathbf{x}^1, \mathbf{x}^2, \mathbf{x}^3 \in X$ に対し, $\mathbf{x}^1 \succsim \mathbf{x}^2$ かつ $\mathbf{x}^2 \succsim \mathbf{x}^3$ ならば が成り立つ.
定義 4 (ユークリッド距離). $\mathbf{x}^1, \mathbf{x}^2 \in \mathbb{R}^n$ の間のユークリッド距離は以下のように定義される.
$d(\mathbf{x}^1, \mathbf{x}^2) =$
定義 5 (最大値距離). $\mathbf{x}^1, \mathbf{x}^2 \in \mathbb{R}^n$ の間の最大値距離は以下のように定義される.
$d(\mathbf{x}^1, \mathbf{x}^2) = $
1次元の場合は絶対値も一つの距離概念である。距離概念は基本的に何を使っても構わない。状況に応じて扱いやすいものを使うと良い。ただし、どの距離概念を使うかを証明の中で明記すること。
定義 6 $(\varepsilon$ -開球体). 集合 $B_{\varepsilon}(\mathbf{x}) \equiv \{\mathbf{x}' \in \mathbb{R}^n \mid \bigcap$ $\}$ を $\mathbf{x} \in S$ の ε 開球体という.

が成り立つ.

 $\varepsilon > 0$ が存在して,

定義 7 (開集合). 集合 S が開集合である.

 $\mathbf{x} \in S$ に対し

問題

問題 1. X 上の選好 \succsim が推移性を満たすとき,任意の 3 つの消費計画 $\mathbf{x}^1, \mathbf{x}^2, \mathbf{x}^3 \in X$ について, $\mathbf{x}^1 \succ \mathbf{x}^2$ かつ $\mathbf{x}^2 \succsim \mathbf{x}^3$ ならば, $\mathbf{x}^1 \succ \mathbf{x}^3$ が成立することを示しなさい.

問題 2. $X \equiv \mathbb{R}^2_+$ とする. 以下の X 上の選好が完備性と推移性を満たすかどうか答え,それを示しなさい.

- (a) $\mathbf{x}^1 \succsim \mathbf{x}^2 \iff x_1^1 x_2^1 \geqslant x_1^2 x_2^2$
- (b) $\mathbf{x}^1 \succsim \mathbf{x}^2 \iff x_1^1 x_2^1 \geqslant x_1^2 x_2^2$
- (c) $\mathbf{x}^1 \succsim \mathbf{x}^2 \iff x_1^1 \geqslant x_1^2 \text{ and } x_2^1 \geqslant x_2^2$
- (d) $\mathbf{x}^1 \succsim \mathbf{x}^2 \iff x_1^1 \geqslant x_1^2 \text{ or } x_2^1 \geqslant x_2^2$
- (e) $\mathbf{x}^1 \succsim \mathbf{x}^2 \iff \min\{x_1^1, x_2^1\} \geqslant \min\{x_1^2, x_2^2\}$
- (f) $\mathbf{x}^1 \succsim \mathbf{x}^2 \iff 2(x_1^1 + x_2^1) \geqslant x_1^2 + x_2^2$

問題 3. ユークリッド距離,最大値距離それぞれについて, \mathbb{R}^2 における $\mathbf{x}=(2,2)$ の, $\varepsilon=1$ に対する ε -開球体の形状を図示しなさい.

問題 4. 以下の集合が開集合か、閉集合か答え、根拠を示しなさい.

- (a) \mathbb{R} における集合 $S = [0,1] \cup \{2\}$
- (b) \mathbb{R} における集合 S = [0, 2)
- (c) \mathbb{R}^n における集合 \mathbb{R}^n_+