CoVaR

Written by Tobias Adrian and
Markus K. Brunnermeier
Present by Nicholas Handelman

& Huanci Li

Introduction

- Systemic risk: the risk of the entire financial system collapse
 - Cause by spread of distress
 - Spillovers
- Systemic risk measure capture the spread of the financial distress across institutions
 - ΔCoVaR captures tail dependency and negative spillovers
 - Institutional characteristics: size, leverage, and maturity mismatch
 - Conditioning variables: market volatility and fixed income spreads
 - o Forward ΔCoVaR captures the buildup of systemic risk
- Theoretical predictions: higher leverage, more maturity mismatch, larger size, and higher valuations forecast higher systemic risk contributions

Background on Systemic Risk

- Bhattacharya and Gale (1987)
 - Spillovers in the form of externalities
- Allen, Babus, and Carletti (2010)
 - Network effects can lead to spillover effects
- Brunnermeier and Sannikov (2014)
 - "Volatility paradox"
- Brunnermeier and Pedersen (2009) and Adrian and Boyarchenko (2012)
 - The margin/haircut spiral

Other Systemic Risk Measures

- Huang, Zhou, and Zhu (2010)
 - Systemic risk indicator for credit default swap (CDS)
- Acharya, Pedersen, Philippon, and Richardson (2010)
 - High frequency marginal expected shortfall similar to "Exposure-ΔCoVaR"
 - Changing the condition can address different questions
- Billio, Getmansky, Lo, and Pelizzon (2010)
 - o A systemic risk measure that relies on Granger causality
- Lehar (2005) and Gray, Merton, and Bodie (2007)
 - Uses contingent claims analysis to measure systemic risk

Study of Tail Risk and Contagion

- Engle and Manganelli (2004)
 - Develop CAViaR to capture the time varying tail behavior
- Methods to test volatility spillovers
 - Estimate multivariate GARCH processes
 - Multivariate extreme value theory

Definition of *∆CoVaR*

Recall that VaR_q^i is implicitly defined as the q% quantile, i.e.,

$$\Pr\left(X^i \leq VaR_q^i\right) = q\%,$$

■ **Definition 1** We denote by $CoVaR_q^{j|\mathbb{C}(X^i)}$ the VaR of institution j (or the financial system) conditional on some event $\mathbb{C}(X^i)$ of institution i. That is, $CoVaR_q^{j|\mathbb{C}(X^i)}$ is implicitly defined by the q%-quantile of the conditional probability distribution:

$$\Pr\left(X^{
m j}|\mathbb{C}\left(X^{i}
ight)\leq CoVaR_{q}^{j|\mathbb{C}\left(X^{i}
ight)}
ight)=q\%.$$

Definition of *∆CoVaR* cont...

We denote institution i's contribution to j by

$$\Delta CoVaR_q^{j|i} = CoVaR_q^{j|X^i = \mathrm{VaR}_q^i} - CoVaR_q^{j|X^i = \mathrm{VaR}_{50}^i},$$

and in dollar terms

$$\Delta$$
\$CoVa $R_q^{j|i}$ =\$Size $^i \cdot \Delta CoVaR_q^{j|i}$.

Definition of *∆CoVaR* **cont...**

Conditioning

- Condition on some event C that is equally likely among all institutions
- Condition on a quantile level instead of a particular return level

ΔCoVaR

 Increase in CoVaR as one change conditioning events from the median state return of institution i to the distress state

Δ\$CoVaR

- o Includes the size of the institution i
- Market equity of the institution

CoES

- \circ Co-expected shortfall $CoES_q^{j|i|}$
- $^{\circ}$ $\Delta CoES_q^{j|i}$ = $CoES_q^{j|i}$ $CoES_{50}^{j|i}$

Economics of Systemic Risk

- Time-series
 - System risk buildup when measured risk is low
 - Lead to a volatility paradox
 - Forward ΔCoVaR capture buildup systemic risk
- Cross-sectional
 - Spillover effects
 - Indirect: price effects
 - Direct: contractual links
 - The first component of systemic risk
 - Contemporaneous ΔCoVaRi captures spillover and common exposure effects
 - How much an institution contributes to systemic risk?

Tail Dependency versus Causality

- $\Delta C_0 VaR_q^{j|i}$ is a statistical tail-dependency measure
 - Does not "correctly" capture spillover effects or externalities
- Specific model to show causality
 - Two groups: institutions of type i and type i
 - Two latent independent risk factors: ΔZ^i and ΔZ^j .
 - \circ The generating process of returns for institutions of type i $-X_{t+1}^i=\Delta N_{t+1}^i/N_t^i$

$$\begin{split} -X_{t+1}^{i} &= \overline{\mu}^{i}\left(\cdot\right) + \overline{\sigma}^{ii}\left(\cdot\right) \Delta Z_{t+1}^{i} + \overline{\sigma}^{ij}\left(\cdot\right) \Delta Z_{t+1}^{j} \\ -X_{t+1}^{j} &= \overline{\mu}^{j}\left(\cdot\right) + \overline{\sigma}^{jj}\left(\cdot\right) \Delta Z_{t+1}^{j} + \overline{\sigma}^{ji}\left(\cdot\right) \Delta Z_{t+1}^{i}. \end{split}$$

- o (•) = $(M_t, L_t^i, L_t^j, N_t^i, N_t^j)$ —state of macro-economy, leverage and liquidity mismatch, net worth levels
- Geometric drift and volatility loadings are functions of these state variables

Tail Dependency versus Causality Cont...

- Cause and Effect
 - \circ Leverage increases the loading on its latent risk factor ΔZ_{t+1}^i .
 - Exposure of institution type i to ΔZ_{t+1}^{j} due to spillover, $\sigma^{ij}(\cdot)$, increase in its own leverage as well as the others leverage.
- Reduced formula equations

$$\begin{array}{lll} -X_{t+1}^{i} & = & \mu^{i}\left(\cdot\right) - \sigma^{ij}\left(\cdot\right)X_{t+1}^{j} + \sigma^{ii}\left(\cdot\right)\Delta Z_{t+1}^{i}, \\ -X_{t+1}^{j} & = & \mu^{j}\left(\cdot\right) - \sigma^{ji}\left(\cdot\right)X_{t+1}^{i} + \sigma^{jj}\left(\cdot\right)\Delta Z_{t+1}^{j}. \end{array}$$

- \circ There's a distress shock $\Delta Z^i_{t+1} < 0$ lowers $-X^i_{t+1}$ by $\sigma^{ii}_t \Delta Z^i_{t+1}$
- First rounds of spillover effects reduce $-\Delta X_{t+1}^j$ by $\sigma_t^{ji}\sigma_t^{ii}\Delta Z_{t+1}^i$.
- \circ Second rounds of spillover effects reduce $-\Delta X_{t+1}^i$ by $\sigma_t^{ij}\sigma_t^{ji}\sigma_t^{ii}\Delta Z_{t+1}^i$

Tail Dependency versus Causality Cont...

Argument will continue until a fixed point is reached

$$\bar{\sigma}_t^{ii} = \sum_{n=0}^{\infty} (\sigma_t^{ij} \sigma_t^{ji})^n \sigma_t^{ii} = \frac{\sigma_t^{ii}}{1 - \sigma_t^{ij} \sigma_t^{ji}}$$

$$\bar{\sigma}_t^{ij} = \sum_{n=0}^{\infty} (\sigma_t^{ij} \sigma_t^{ji})^n \sigma_t^{ij} \sigma_t^{jj} = \frac{\sigma_t^{ij} \sigma_t^{jj}}{1 - \sigma_t^{ij} \sigma_t^{ji}}$$

 \circ $ar{\sigma}_t^{jj}$ and $ar{\sigma}_t^{ji}$ Can be obtain by replacing i with j and vice versa

Different ΔCoVaR

- Network ΔCoVaR
 - \circ Subscripts j and i in $\Delta CoVaR_{g}^{j|i}$ refer to individual institutions
 - Tail dependency can be studied across the financial network
- Exposure ∆CoVaR
 - A measure of an individual institution's exposure to the systemic risk
 - \circ $\Delta \textit{CoVaR}^{j|system}$ Institutions j increase in value at risk when a financial crisis occurs
- Direction of conditioning
 - \circ $\Delta CoVaR_a^{j|i}$ is directional
 - $^{\circ}$ $\Delta \textit{CoVaR}_q^{system|i}$ \neq $\Delta \textit{CoVaR}_q^{i|system}$

$$\Delta \textit{CoVaR}_q^{\textit{system}|i} = \textit{CoVaR}_q^{\textit{system}|X^i = \textit{VaR}_q^i} - \textit{CoVaR}_q^{\textit{system}|X^i = \textit{VaR}_{50}^i}.$$

Properties of *∆CoVaR*

- Clone property
 - Splitting one large institution into n clones
 - \circ $\triangle CoVaR/CoVaR$ of the large institution = $\triangle CoVaR/CoVaR$ of the n clones
- Systemic as Part of a Herd
 - If one institution falls into distress then other institutions will also be in distress
 - Distress caused by a common factor
 - Connects with the clone property
 - Each clone is a systemic as part of a herd
- Endogeneity of Systemic Risk
 - Each institution's ΔCoVaR depends on other institutions risk taking
 - o Institutions lowering their leverage and liquidity mismatch would lower $\sigma^{i}(\cdot)$ and $\sigma^{i}(\cdot)$ which captures the spillover effects

ΔCoVaR Estimation

- Alternative estimation approaches
- Data overview
- Contemporaneous ΔCoVaR estimation Quantile Regression
 - Summary statistics and analysis on time varying ΔCoVaR
 - Relationship between ΔCoVaR and VaR
 - Out of sample estimates of ΔCoVaR
 - Robustness of ΔCoVaR to shorter time horizons
- Forward Δ^{\$}CoVaR overview
 - Forward Δ^{\$}CoVaR Predictors
 - Predictive power of Forward Δ*CoVaR

Alternative Estimation Approaches

- This paper uses Quantile Regression from Koenker and Basset
- Appendix provides a bivariate GARCH framework
- Multivariate GARCH
- Copulas allow for estimation of joint distribution including fat tails and heteroskedacity
- Bayesian quantile regression
- Maximum likelihood estimation with distributional assumptions (e.g. Student-T)

Data Overview

- Publicly available data for 1823 publicly traded financial institutions
- Split into four sectors: commercial banks, security broker-dealers (including investment banks), insurance companies and real estate companies
- Daily market equity data
- Quarterly balance sheet data
- Data range of 1971Q1 2013Q2 covers six recessions and several financial crises. One section extends this back to 1926
- Specific data used will be described in each section

Quantile Regression - Contemporaneous

- Weekly market equity q%-quantile loss for financial sector dependent on weekly market equity loss of institution i
- Daily market equity data is available but weekly values used

$$\begin{split} \hat{X}_q^{System|X^i} &= \hat{\alpha}_q^i + \hat{B}_q^i X^i \\ CoVaR_q^{System|X^i} &= \hat{X}_q^{System|X^i} \\ CoVaR_q^i &= CoVaR_q^{System|X^i=VaR_q^i} \\ &= \hat{\alpha}_q^i + \hat{B}_q^i VaR_q^i \\ \Delta CoVaR_q^i &= CoVaR_q^i - CoVaR_q^{System|X^i=VaR_{50}^i} \\ &= \hat{B}_q^i (VaR_q^i - VaR_{50}^i) \end{split}$$

Lagged Macro State Variables

- Denoted by M_{t-h} in the remainder of the paper with h > 1
- These are well known to capture time variation in conditional moments of asset returns, liquid and easily tractable
- Change in three month treasury yield
- Change in slope of treasury yield curve
- Short term TED spread for short term liquidity risk
- Change in spread between Moody's Baa bonds and ten year treasury
- Weekly S&P 500 return
- Weekly real estate return in excess of market financial sector index return
- Equity volatility (22 day rolling standard deviation)

Quantile Regression - Time Varying

- Estimate VaR and ΔCoVaR as a function of lagged state variables
- Quantile regression equations

$$\begin{split} X_t^i &= \alpha_q^i + \gamma_q^i M_{t-1} + \epsilon_{q,t}^i \\ X_t^{system|i} &= \alpha_q^{system|i} + \gamma_q^{system|i} M_{t-1} + B_q^{system|i} X_t^i + \epsilon_{q,t}^{system|i} \end{split}$$

Prediction equations

$$\begin{split} VaR_{q,t}^i &= \hat{\alpha}_q^i + \hat{\gamma}_q^i M_{t-1} \\ CoVaR_{q,t}^i &= \hat{\alpha}_q^{system|i} + \hat{\gamma}_q^{system|i} M_{t-1} + \hat{B}_q^{system|i} VaR_{q,t}^i \\ \Delta CoVaR_{q,t}^i &= CoVaR_{q,t}^i - CoVaR_{50,t}^i = \hat{B}_q^{system|i} (VaR_{q,t}^i - VaR_{50,t}^i) \end{split}$$

ΔCoVaR Summary Statistics - 99% Quantile

Average t-statistics for regression coefficients across all institutions

	VaR^{system}	VaR^i	$\Delta CoVaR$
Three month yield change (lag)	(1.95)	(-0.26)	(2.10)
Term spread change (lag)	(1.73)	(-0.04)	(1.72)
TED spread (lag)	(6.87)	(1.97)	(8.86)
Credit spread change (lag)	(5.08)	(-0.28)	(4.08)
Market return (lag)	(-16.98)	(-3.87)	(-18.78)
Real estate excess return (lag)	(-3.78)	(-1.86)	(-4.41)
Equity volatility (lag)	(12.81)	(7.47)	(15.81)
Market equity oss X^i			(7.38)
Pseudo- R^2	39.94%	21.23%	43.42%

ΔCoVaR vs VaR Across Institutions

ΔCoVaR vs VaR Over Time

Average VaRⁱ and ΔCoVaRⁱ over 50 largest financial institutions

In Sample vs Out of Sample ΔCoVaR

95% quantile. Out of sample estimated on expanding windows.

Robustness of \(\Delta CoVaR \) to Shorter Time Horizon

- Average 95% ΔCoVaR for four companies with data going back to 1926Q3
- 96% correlation

Lagged Institution Variables

- Denoted by Xⁱ_{t-h} in the following slides
- Leverage (market value of assets / market equity)
- Maturity mismatch (book assets / (short term debt minus short term investments minus cash))
 - The following replace maturity mismatch for bank holding companies (BHC))
 - Assets (as % of total book assets): loan-loss allowances, intangible loss allowances, intangible assets and trading assets
 - Liabilities (as % of total book assets): interest bearing core deposits, non interest bearing deposits, large time deposits and demand deposits
- Size (log market equity / log average market equity)
- Boom (# of consecutive quarters in the top 10% of market to book equity)

Forward-Δ^{\$}CoVaR

- Δ^{\$}CoVaR normalized by quarterly average market equity across firms
- Using lagged macro and institution characteristics to predict Δ^{\$}CoVaR
- Forecast horizon h = 1,4,8 quarters
- Multiple regression equation. Applied for 99% and 95% quantiles.

$$\Delta^{\$}CoVaR_{q,t}^{i} = a + cM_{t-h} + bX_{t-h}^{i} + \eta_{t}^{i}$$

Prediction equation

$$\Delta_h^{Fwd} CoVaR_{q,t}^i = \hat{a} + \hat{c}M_{t-h} + \hat{b}X_{t-h}^i$$

Forward Δ^{\$}CoVaR Statistics

- Across all firms 95% and 99% quantiles
 - Leverage, size and boom are 99% significant across all horizons and quantiles
 - Maturity mismatch is at least 90% significant in all cases
 - o All have ~25% Adjusted-R²
 - "Too Big To Fail" suggests size alone is enough but smaller firms failing en masse (i.e. systemic as part of a herd) is also a major consideration
- Bank holding companies 95%
 - Multiple regression run with maturity mismatch replaced with asset variables
 - Trading assets 99% significant across all horizons
 - Multiple regression run with maturity mismatch replaced with liability variables
 - Interest bearing deposits, non interest bearing deposits and large time deposits are all
 99% significant
 - Adjusted-R² ranges from 28% to 36%

ΔCoVaR and 2 Year Forward-ΔCoVaR

- Quarterly average of 50 largest financial institutions as of 2007Q1
- Forward-ΔCoVaR estimated in sample up to 2002Q1
- Forward-ΔCoVaR at any time is the prediction for 2 years ahead

Predictive Power of Forward-ΔCoVaR

- Use 2008Q4 2 Year Forward 95% quantile as an example
- Calculate Forward-∆CoVaR using data up to 2006Q4 for BHC
- Calculate ΔCoVaR at 2008Q4 for BHC
- Regress ΔCoVaR on Forward-ΔCoVaR

	Crisis $\Delta CoVaR$					
	2008Q4	2008Q4	2008Q4	2007Q4	2007Q1	
2Y Forward- $\Delta CoVaR$ (2006Q4)	1.206***					
1Y Forward- $\Delta CoVaR$ (2007Q4)		0.664***				
1Q Forward- $\Delta CoVaR$ (2008Q3)			1.708***			
1Y Forward- $\Delta CoVaR$ (2006Q4)				0.848***		
$1Q Forward-\Delta CoVaR (2006Q4)$					0.541***	
Constant	13.08***	18.51***	2.409***	4.505***	2.528***	
Observations	378	418	430	428	461	
R^2	36.6 %	17.8 %	78.9 %	49.6 %	55.5%	

References

- Acharya, V., L. Pedersen, T. Philippon, and M. Richardson (2010): "Measuring Systemic Risk," NYU Working Paper.
- Allen, F., A. Babus, and E. Carletti (2010): "Financial Connections and Systemic Risk," European Banking Center Discussion Paper.
- Bhattacharya, S., and D. Gale (1987): "Preference Shocks, Liquidity and Central Bank Policy," in New Approaches to Monetary
 Economics, ed. by W. A. Barnett, and K. J. Singleton. Cambridge University Press, Cambridge, UK.
- Billio, M., M. Getmansky, A. Lo, and L. Pelizzon (2010): "Measuring Systemic Risk in the Finance and Insurance Sectors," MIT Working Paper.
- Brunnermeier, M. K., and L. H. Pedersen (2009): "Market Liquidity and Funding Liquidity," Review of Financial Studies, 22, 2201–2238.
- Brunnermeier, M. K., and Y. Sannikov (2014): "A Macroeconomic Model with a Financial Sector," American Economic Review, 104(2), 379–421.
- Engle, R. F., and S. Manganelli (2004): "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business and Economic Statistics, 23(4).
- Huang, X., H. Zhou, and H. Zhu (2010): "Measuring Systemic Risk Contributions," BIS Working Paper. Lehar, A. (2005):
 "Measuring systemic risk: A risk management approach," Journal of Banking and Finance, 29(10), 2577–2603.
- Wong, A., and T. Fong (2010): "An Analysis of the Interconnectivity among the Asia-Pacific Economies," Hong Kong Monetary Authority Working Paper.