ZADANIE 1: Wygeneruj trajektorię procesu ruchu Browna $\{B_t\}_{t\in[0,T]}$ stosując następującą aproksymację:

$$B_{t_{i+1}} = B_{t_i} + X_i,$$

gdzie $0=t_0 < t_1 < \cdots < t_n=T$ i X_i są niezależnymi od siebie zmiennymi losowymi o rozkładach $N(0,t_{i+1}-t_i)$.

Ponadto

- wykonaj N powtórzeń symulacji $(N \in \{10, 100, 1000\}),$
- sprawdź, że $E(B_t) = 0$, $Var(B_t) = t$, $Cov(B_t, B_s) = t \wedge s$ itp.

ZADANIE 2: Wygeneruj trajektorię procesu $Y_t = \int_0^t \sin(s) dB_s$ stosując następującą aproksymację:

$$Y_{t_{i+1}} = Y_{t_i} + \sin(t_i)X_i,$$

gdzie $0=t_0 < t_1 < \cdots < t_n=t$ i X_i są niezależnymi od siebie zmiennymi losowymi o rozkładach $N(0,t_{i+1}-t_i)$.

Ponadto

- sprawdź, że $E(Y_t) = 0$, $Var(Y_t) = \int_0^t \sin^2(s) \, ds = t/2 + \sin(2t)/4$,
- zweryfikuj (np. przez histogram), czy $Y_t \sim N(0, t/2 + \sin(2t)/4)$.

ZADANIE 3: Wygeneruj trajektorię procesu $Z_t = \int_0^t B_s \ dB_s$ stosując następującą aproksymację:

$$Z_{t_{i+1}} = Z_{t_i} + B_{t_i}(B_{t_{i+1}} - B_{t_i}),$$

gdzie $0 = t_0 < t_1 < \cdots < t_n = t$ i B_t jest procesem ruchu Browna wygenerowanym w zadaniu 1.

Ponadto

- sprawdź, że $E(Z_t) = 0$, $Var(Z_t) = t^2/2$,
- zweryfikuj (np. przez histogram), czy Z_t ma rozkład normalny.