Practice session III (Homework)

Thermodynamics

- 1. The heats of solution of one mole of KCl in 200 moles of H_2O under one atmospheric pressure are $\Delta H = 4339$ cal at 21°C and $\Delta H = 4260$ cal at 23°C. Calculate ΔH value at 25°C. (Hint: Kirchhoff's equation)
- 2. The molar enthalpies of combustion of isobutane and n-butane are $-2871 \text{ kJ} \cdot \text{mol}^{-1}$ and $-2878 \text{ kJ}.\text{mol}^{-1}$, respectively at 298K and 1 atm. Calculate $\Delta_r H$ for the conversion of one mole of n-butane to one mole of isobutane.
- 3. n mole of ideal gas undergoes isothermal free expansion from volume V_1 to V_2 at temperature T. Calculate the (a) $\Delta_{sys}S$, (b) $\Delta_{surr}S$, (c) $\Delta_{total}S$. Comment on the result.
- 4. The Joule Thompson coefficient of a van der Waal's gas is given by the expression, $\mu_{JT} = -\frac{1}{C_p} \left(\frac{\partial H}{\partial P}\right)_T = -\frac{1}{C_p} \left(\frac{2a}{RT} b\right)$

Calculate ΔH for the isothermal expansion of one mole of CO₂ from 100 atm to 1 atm at 200K. Given, a = 3.59 atm.lit².mol⁻² and b = 0.043 lit.mol⁻¹

5. Show that, the difference in $(C_p - C_v)$ value for a non-ideal gas differs from that of a perfect gas by the expression: $(\frac{\partial V}{\partial T})_P$ $(\frac{\partial U}{\partial V})_T$