Divide-and-Conquer sequential Monte Carlo with applications to high dimensional filtering

Francesca R. Crucinio 11 May 2023

CSML Reading Group, Lancaster

Outline

- 1 Sequential Monte Carlo (SMC)
- 2 Divide-and-Conquer SMC (DaC-SMC)
- 3 High Dimensional Filtering

Sequential Monte Carlo (SMC)

Sequential Monte Carlo (SMC) methods approximate sequences of targets $\{\pi_t\}_{t\geq 1}$ of the form

$$\pi_t(x_{1:t}) \propto \pi_{t-1}(x_{1:t-1}) M_t(x_{t-1}, x_t) G_t(x_t),$$

where M_t are Markov kernels and G_t are non-negative weight functions (Chopin and Papaspiliopoulos, 2020).

Can be used

- as an alternative to MCMC (Del Moral et al., 2006)
- for rare event simulation (Cérou et al., 2012)
- for ABC (Sisson et al., 2007)
- for filtering

State Space Models (SSM)

A state space model $(X_t, Y_t)_{t \geq 1} \subset \mathbb{R}^{d \times p}$ with

- transition density for the *latent* process $f_t(x_{t-1}, x_t)$
- lacktriangle likelihood for the *observation* process $g_t(x_t,y_t)$

Consider

$$p(x_{1:t}|y_{1:t}) \propto \prod_{k=1}^{t} f_k(x_{k-1}, x_k) g_k(x_k, y_k)$$

= $p(x_{1:t-1}, y_{1:t-1}) f_t(x_{t-1}, x_t) g_t(x_t, y_t).$

Sequential Monte Carlo (SMC)

- Aim: Approximate $\pi_t(x_t)$ using a set of N weighted particles $\{X_t^i, W_t^i\}_{i=1}^N$
- **■** Ingredients:
 - 1. a Markov kernel to sample $X_t^i \sim M_t(\tilde{X}_{t-1}^i, \cdot)$
 - 2. a positive weight function to compute the weights $W_t^i \propto G_t(X_t^i)$
 - 3. a resampling scheme to obtain $\{\tilde{X}_t^i, 1/N\}_{i=1}^N$ from $\{X_t^i, W_t^i\}_{i=1}^N$

Example: the bootstrap particle filter corresponds to $\pi_t(x_t) = p(x_t|y_{1:t})$, $M_t = f_t$ and $G_t = g(y_t|\cdot)$.

Sequential Monte Carlo (SMC)

Outline

- 1 Sequential Monte Carlo (SMC)
- 2 Divide-and-Conquer SMC (DaC-SMC)
- 3 High Dimensional Filtering

Divide-and-Conquer SMC (DaC-SMC)

An extension of standard SMC in which the sequence of target distributions $\{\pi_u\}_{u\in\mathbb{T}}$ evolves on a tree \mathbb{T} rather than on a line (Lindsten et al., 2017).

For simplicity we will also consider the unnormalised targets $\{\gamma_u\}_{u\in\mathbb{T}}$, s.t. $\pi_u=\gamma_u/Z_u$.

Divide-and-Conquer SMC (DaC-SMC)

- easier to distribute/parallelise (Corneflos et al., 2022; Ding and Gandy, 2018)
- some models more naturally adapted to a tree structure than a 'linear" one: e.g. graphical models (Lindsten et al., 2017; Paige and Wood, 2016; Jewell, 2015)

 distributed inference (Chan et al., 2021; Manderson and Goudie, 2021)

Divide-and-Conquer SMC (DaC-SMC)

At each node u we have a set of N weighted particles $\{X_u^i, W_u^i\}_{i=1}^N$ approximating π_u .

To evolve use standard SMC ingredients

- lacktriangle transition/mutation: $X_u^i \sim M_u((X_{\ell(u)}^i, X_{r(u)}), \cdot)$
- lacksquare reweighting: $W_u^i \propto G_u(X_u^i)$
- resampling

with the addition of a **merging** step when two branches of the tree merge.

The Merge Step

■ Aim: Given two populations of weighted particles on the left and the right child, $\{X_{\ell(u)}^i, W_{\ell(u)}^i\}_{i=1}^N$ and $\{X_{r(u)}^i, W_{r(u)}^i\}_{i=1}^N$, approximating $\gamma_{\ell(u)}$ and $\gamma_{r(u)}$ build an approximation of γ_u

The Merge Step

- Aim: Given two populations of weighted particles on the left and the right child, $\{X_{\ell(u)}^i, W_{\ell(u)}^i\}_{i=1}^N$ and $\{X_{r(u)}^i, W_{r(u)}^i\}_{i=1}^N$, approximating $\gamma_{\ell(u)}$ and $\gamma_{r(u)}$ build an approximation of γ_u
- Ingredients:
 - ▶ the (weighted) product form estimator (Kuntz et al., 2022)

$$\gamma_{\ell(u)}^{N} \times \gamma_{r(u)}^{N} = \frac{1}{N^{2}} \sum_{i_{1}=1}^{N} \sum_{i_{2}=1}^{N} W_{\ell(u)}^{i_{1}} W_{r(u)}^{i_{2}} \delta_{(X_{\ell(u)}^{i_{1}}, X_{r(u)}^{i_{2}})}$$

► N² mixture (importance) weights

$$m_u^{(i_1,i_2)} := W_{\ell(u)}^{i_1} W_{r(u)}^{i_2} \frac{\gamma_u(x_{\ell(u)}^{i_1}, x_{r(u)}^{i_2})}{\gamma_{\ell(u)}(x_{\ell(u)}^{i_1}) \gamma_{r(u)}(x_{r(u)}^{i_2})}$$

▶ a resampling scheme to obtain $\{\tilde{X}_{u}^{i}, 1/N\}_{i=1}^{N}$ from $\{(X_{\ell(u)}^{i_{1}}, X_{r(u)}^{i_{2}}), m_{u}^{(i_{2},i_{2})}\}_{i_{1},i_{2}=1}^{N}$

Cheaper Alternatives

- lightweight mixture resampling (Lindsten et al., 2017)
- lazy resampling schemes (Corneflos et al., 2022)
- strategies borrowed from the literature on incomplete U-statistics (Kuntz et al., 2021)

Lightweight Mixture Resampling (Lindsten et al., 2017)

- ▶ Fix $\theta \ll N$.
- ▶ Sample $\{X_{\ell(u)}^{i_1}\}_{i=1}^{\theta}$ from $\gamma_{\ell(u)}$ and $\{X_{r(u)}^{i_2}\}_{i=1}^{\theta}$ from $\gamma_{r(u)}$.
- lacksquare Build the heta pairs $(X_{\ell(u)}^{i_1}, X_{r(u)}^{i_2})$ and compute their weights $m_u^{(i_1,i_2)}$.

Adaptive Lightweight Mixture Resampling

A strategy based on the effective sample size $(\sum_n m_u^n)^2 / \sum_n (m_u^n)^2$.

- ► Set a target ESS, ESS*.
- ▶ For i = 1, ..., N build $(X_{\ell(u)}^i, X_{r(u)}^i)$ and compute their weights $m_u^{(i,i)}$.
- ► While ESS < ESS*:
 - Draw one permutation of N, $\pi(N)$, build $(X_{\ell(u)}^i, X_{r(u)}^{\pi(i)})$ and compute their weights $m_u^{(i,\pi(i))}$.
 - Update ESS.

Adaptive Lightweight Mixture Resampling

Figure 1: Distribution of the number of permutations selected for a simple linear Gaussian model with d=32, $N=10^3$, and 10 time steps; the panels correspond to the levels of the tree from the level above the leaves (level 1) to the root (level 5).

Theoretical Properties (Kuntz et al., 2021)

strong law of large numbers

$$\frac{1}{N} \sum_{i=1}^{N} \varphi(\tilde{X}_{u}^{i}) \stackrel{\text{a.s.}}{\to} \int \varphi(x) \pi_{u}(x) dx$$

central limit theorem

$$\sqrt{N}\left(\frac{1}{N}\sum_{i=1}^{N}\varphi(\tilde{X}_{u}^{i})-\int\varphi(x)\pi_{u}(x)\mathrm{d}x\right)\overset{d}{\to}\mathcal{N}(0,\sigma_{u}^{2}(\varphi))$$

unbiasedness of normalising constant estimates

And other: \mathbb{L}^p errors, bias estimates, optimal intermediate targets, optimal proposals, . . .

Outline

- 1 Sequential Monte Carlo (SMC)
- 2 Divide-and-Conquer SMC (DaC-SMC)
- 3 High Dimensional Filtering
 - Main Ideas
 - Experiments

State Space Models (SSM)

A state space model $(X_t, Y_t)_{t \geq 1} \subset \mathbb{R}^{d \times p}$ with

- transition density for the *latent* process $f_t(x_{t-1}, x_t)$
- likelihood for the *observation* process $g_t(x_t, y_t)$

We are interested in

$$p(x_{1:t}|y_{1:t}) \propto \prod_{k=1}^{t} f_k(x_{k-1}, x_k) g_k(x_k, y_k)$$

= $p(x_{1:t-1}, y_{1:t-1}) f_t(x_{t-1}, x_t) g_t(x_t, y_t).$

Spatial SSM

1 Sequential Monte Carlo (SMC)

2 Divide-and-Conquer SMC (DaC-SMC)

- 3 High Dimensional Filtering
 - Main Ideas
 - Experiments

Divide and Conquer SMC for Filtering

Figure 2: Space decomposition for d = 8.

Choice of Distributions

Fix t. We need $\{\gamma_{t,u}\}_{u\in\mathbb{T}}$.

Constraints:

- for $u \neq \mathfrak{R}$, $\gamma_{t,u}$ only depends on a subset of $x_t(1:d)$
- we can compute

$$\frac{\gamma_{t,u}\big(x_{t,\ell(u)},x_{t,r(u)}\big)}{\gamma_{t,\ell(u)}\big(x_{t,\ell(u)}\big)\gamma_{t,r(u)}\big(x_{t,r(u)}\big)}$$

Choice of Distributions

Recall

$$p(x_t|y_{1:t}) \propto g_t(x_t, y_t) \int f_t(x_{t-1}, x_t) p(x_{t-1}|y_{1:t-1}) dx_{t-1}.$$

Use auxiliary functions $f_{t,u}, g_{t,u}$ such that $f_{t,\mathfrak{R}} = f_t, g_{t,\mathfrak{R}} = g_t$ and for $u \in \mathbb{T} \setminus \mathfrak{R}$, $f_{t,u}$ and $g_{t,u}$ serve as proxies for marginals of f_t, g_t

$$\gamma_{t,u}(x_{t,u}) = g_{t,u}(x_{t,u}, (y_t(i))_{i \in u}) \int f_{t,u}(x_{t-1}, x_{t,u}) \gamma_{t-1,\Re}(x_{t-1}) dx_{t-1}$$

Choice of Distributions

Recall

$$p(x_t|y_{1:t}) \propto g_t(x_t, y_t) \int f_t(x_{t-1}, x_t) p(x_{t-1}|y_{1:t-1}) dx_{t-1}.$$

Use auxiliary functions $f_{t,u}, g_{t,u}$ such that $f_{t,\mathfrak{R}} = f_t, g_{t,\mathfrak{R}} = g_t$ and for $u \in \mathbb{T} \setminus \mathfrak{R}$, $f_{t,u}$ and $g_{t,u}$ serve as proxies for marginals of f_t, g_t

$$\gamma_{t,u}(x_{t,u}) = g_{t,u}(x_{t,u}, (y_t(i))_{i \in u}) \int f_{t,u}(x_{t-1}, x_{t,u}) \gamma_{t-1, \mathfrak{R}}(x_{t-1}) dx_{t-1}$$

The integral above is intractable, so we define approximate targets as in marginal particle filters (Klaas et al., 2005)

$$\gamma_{t,u}(x_{t,u}) = g_{t,u}(x_{t,u}, (y_t(i))_{i \in u}) W_{t-1}^i \sum_{i=1}^N f_{t,u}(X_{t-1,\mathfrak{R}}^i, x_{t,u})$$

Divide and Conquer SMC for Filtering

At time t:

- start with $\{X_{t-1,\mathfrak{R}}^i, W_{t-1}^i\}_{i=1}^N$ approximating $p(x_{t-1}|y_{1:t-1})$ at the leaf level
- define targets

$$\gamma_{t,u}(x_{t,u}) = g_{t,u}(x_{t,u}, (y_t(i))_{i \in u}) W_{t-1}^i \sum_{i=1}^N f_{t,u}(X_{t-1,\mathfrak{R}}^i, x_{t,u})$$

■ use DaC to move up the space from the leaves to the root, i.e. from d particle populations approximating 1-dimensional to one d-dimensional population $\{X_{t,\mathfrak{R}}^i, W_t^i\}_{i=1}^N$ which approximates $p(x_t|y_{1:t})$

Pros and Cons

Pros

- No need for analytical form of $p(x_t(i) | x_t(1:i-1))$
- No need for factorised likelihoods
- Easy to parallelise and distribute

Cons

- \blacksquare Polynomial cost in N (can be mitigated via GPUs)
- Needs specification of $\gamma_{t,u}$

1 Sequential Monte Carlo (SMC)

2 Divide-and-Conquer SMC (DaC-SMC)

- 3 High Dimensional Filtering
 - Main Ideas
 - Experiments

Linear Gaussian Model

$$f_1(x_1) = \mathcal{N}(x_1; m_1, \Sigma_1)$$

$$f_t(x_{t-1}, x_t) = \mathcal{N}(x_t; Ax_{t-1}, \Sigma)$$

$$g_t(x_t, y_t) = \mathcal{N}(y_t; x_t, \sigma_y^2 Id_d),$$

with $\Sigma \in \mathbb{R}^{d \times d}$ a tridiagonal matrix.

We compare the RMSE

$$RMSE(x_t(i)) := \frac{\mathbb{E}\left[\left(\bar{x}_t(i) - \mu_{t,i}\right)^2\right]}{\sigma_{t,i}^2}$$

Linear Gaussian Model - RMSE

Spatial Model

The components of X_t are indexed by the vertices $v \in V$ of a lattice, where $V = \{1, \dots, d\}^2$, and

$$X_t(v) = X_{t-1}(v) + U_t(v), \qquad U_t(v) \sim \mathcal{N}(0, \sigma_x^2)$$

and

$$g_t(x_t, y_t) \propto \left[1 + \nu^{-1} \sum_{v \in V} \left((y_t(v) - x_t(v)) \sum_{j: D(v, j) \leq r_y} \tau^{D(v, j)} (y_t(j) - x_t(j)) \right) \right]^{-(\nu + d^2)/2}.$$

Multivariate Stochastic Volatility Model

$$X_1 \sim \mathcal{N}_d(0, \Sigma_0),$$

 $Y_t = C_t^{1/2} V_t,$
 $X_{t+1} = \Phi X_t + U_t,$

with C_t a diagonal matrix with entries

$$C_t = \operatorname{diag}(\exp(X_t(1)), \exp(X_t(2)), \dots, \exp(X_t(d))),$$

 Φ a diagonal matrix with diagonal entries ϕ_i ,

$$\begin{pmatrix} V_t \\ U_t \end{pmatrix} \sim \mathcal{N}_{2d}(0, \Sigma) \qquad \text{with } \Sigma = \begin{pmatrix} \Sigma_{VV} & \Sigma_{VU} \\ \Sigma_{VU} & \Sigma_{UU} \end{pmatrix},$$

and Σ_0 has entries given by

$$(\Sigma_0)_{ij} = (\Sigma_{UU})_{ij}/(1 - \phi_i \phi_j),$$

Opportunities and Related Ideas

- Theoretical guarantees should follow from those of standard DaC-SMC (Kuntz et al., 2021) and marginal particle filters (Crucinio and Johansen, 2023)
- smoothing, parameter estimation
- Other applications: Parallel (in time) Smoothing (Corneflos et al., 2022; Ding and Gandy, 2018), Divide and Conquer Fusion (Chan et al., 2021), inference for graphical models and phylogenetic trees (Jewell, 2015; Paige and Wood, 2016; Lindsten et al., 2017)

Thank you!

Bibliography i

- Frédéric Cérou, Pierre Del Moral, Teddy Furon, and Arnaud Guyader. Sequential monte carlo for rare event estimation. Statistics and computing, 22(3):795–808, 2012.
- R. Chan, M. Pollock, A. M. Johansen, and G. O. Roberts. Divide-and-conquer Monte Carlo fusion. arXiv preprint arXiv:2110.07265, 2021.
- N Chopin and O Papaspiliopoulos. An Introduction to Sequential Monte Carlo. Springer, Cham, 2020. doi: 10.1007/978-3-030-47845-2.
- A. Corneflos, N. Chopin, and S. Särkkä. De-Sequentialized Monte Carlo: a parallel-in-time particle smoother. Journal of Machine Learning Research, 23(283):1–39, 2022.
- F. R. Crucinio and A. M. Johansen. Properties of marginal sequential Monte Carlo methods. arXiv preprint arXiv:2303.03498, 2023.
- Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. Sequential Monte Carlo samplers. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(3):411–436, 2006.
- D. Ding and A. Gandy. Tree-based particle smoothing algorithms in a hidden markov model. arXiv preprint arXiv:1808.08400, 2018.
- S. W. Jewell. Divide and conquer sequential Monte Carlo for phylogenetics. Master thesis, University of British Columbia, 2015.
- Mike Klaas, Nando De Freitas, and Arnaud Doucet. Toward practical N^2 Monte Carlo: The marginal particle filter. In Proceedings of the 21st Conference in Uncertainty in Artificial Intelligence, pages 308–315, 2005.
- J. Kuntz, F. R. Crucinio, and A. M. Johansen. The divide-and-conquer sequential Monte Carlo algorithm: theoretical properties and limit theorems. arXiv preprint arXiv:2110.15782, 2021.
- Juan Kuntz, Francesca R Crucinio, and Adam M Johansen. Product-form estimators: exploiting independence to scale up Monte Carlo. Statistics and Computing, 32(1):1–22, 2022.
- Fredrik Lindsten, Adam M Johansen, Christian A Næsseth, Bonnie Kirkpatrick, Thomas B Schön, John A D Aston, and Alexandre Bouchard-Côté. Divide-and-Conquer with sequential Monte Carlo. *Journal of Computational and Graphical Statistics*, 26(2):445–458, 2017.
- Andrew A Manderson and Robert JB Goudie. Combining chains of bayesian models with markov melding. arXiv preprint arXiv:2111.11566, 2021.
- B. Paige and F. Wood. Inference networks for sequential monte carlo in graphical models. In 33rd Int Conf Mach Learn, volume 48, pages 3040–3049, 2016.
- S. A. Sisson, Y. Fan, and M. M. Tanaka. Sequential Monte Carlo without likelihoods. 104(4):1760-1765, February 2007.