

On two families of binary quadratic bent functions*

J. Rifà¹, V. A. Zinoviev²

November 26, 2012

Abstract

We construct two families of binary quadratic bent functions in a combinatorial way. They are self-dual and anti-self-dual quadratic bent functions, respectively, which are not of the Maiorana-McFarland type.

Keywords Bent function, combinatorics, quadratic function, self-dual bent function.

Mathematics Subject Classification (2000) 94C30; 94C10

1 Introduction

Let \mathbb{F}_q be the Galois field of order $q = 2^m$. We use the standard notation $[n, k, d]$ for a binary linear code C of length n , dimension k and minimum (Hamming) distance d . Denote by $\text{wt}(\mathbf{x})$ the Hamming weight of a vector \mathbf{x} from \mathbb{F}_2^n . For $\mathbf{x}, \mathbf{y} \in \mathbb{F}_2^n$ denote by $\mathbf{x} \cdot \mathbf{y}$ the usual inner product over \mathbb{F}_2 . Denote by $\bar{\mathbf{x}}$ the complementary vector of \mathbf{x} (obtained by swapping 0 and 1).

*This work has been partially supported by the Spanish MICINN under Grants MTM2009-08435, by the Catalan AGAUR under Grant 2009SGR1224 and also by the Russian fund of fundamental researches 12-01-00905.

¹J. Rifà is with the Department of Information and Communications Engineering, Universitat Autònoma de Barcelona, 08193-Bellaterra, Spain. (email: josep.rifa@uab.cat)

²V. A. Zinoviev is with the Institute for Problems of Information Transmission, Russian Academy of Sciences, Bol'shoi Karetnyi per. 19, GSP-4, Moscow, 127994, Russia (e-mail: zinov@iitp.ru).

Let $m \geq 2$ be an integer and $j \in \{0, 1, 2, 3\}$. Denote by $S(j)_m$ the following sum:

$$S(j)_m = \sum_{k=0, \dots, m: k \equiv j \pmod{4}} \binom{m}{k}. \quad (1)$$

Denote by $S(i_1, i_2)_m$ the value $S(i_1, i_2)_m = S(i_1)_m + S(i_2)_m$, for any two different i_1 and i_2 from $\{0, 1, 2, 3\}$. The next proposition was used in [2] and gives all the values $S(j)_m$ and, hence, the values of all the sums $S(i_1, i_2)_m$, which we will use later.

Proposition 1.1 [2] *For any $m \geq 2$ denote $B_m = 2^{s-1}$, where $s = \lfloor \frac{m}{2} \rfloor$. Then, the values of $S(j)_m$ depending on $m \equiv 0, 1, 2, 3, 4, 5, 6, 7 \pmod{8}$ are, respectively:*

$$\begin{array}{llllllll} S(0)_m & = & B_m^2 + B_m & \left| \begin{array}{c} 2B_m^2 + B_m \\ 2B_m^2 - B_m \end{array} \right. & B_m^2 & \left| \begin{array}{c} 2B_m^2 - B_m \\ 2B_m^2 + B_m \end{array} \right. & B_m^2 - B_m & \left| \begin{array}{c} 2B_m^2 - B_m \\ 2B_m^2 + B_m \end{array} \right. \\ S(1)_m & = & B_m^2 & \left| \begin{array}{c} 2B_m^2 + B_m \\ 2B_m^2 - B_m \end{array} \right. & B_m^2 + B_m & \left| \begin{array}{c} B_m^2 \\ 2B_m^2 + B_m \end{array} \right. & B_m^2 - B_m & \left| \begin{array}{c} B_m^2 \\ 2B_m^2 - B_m \end{array} \right. \\ S(2)_m & = & B_m^2 - B_m & \left| \begin{array}{c} 2B_m^2 - B_m \\ 2B_m^2 + B_m \end{array} \right. & B_m^2 & \left| \begin{array}{c} 2B_m^2 + B_m \\ 2B_m^2 - B_m \end{array} \right. & B_m^2 + B_m & \left| \begin{array}{c} B_m^2 \\ 2B_m^2 - B_m \end{array} \right. \\ S(3)_m & = & B_m^2 & \left| \begin{array}{c} 2B_m^2 - B_m \\ 2B_m^2 + B_m \end{array} \right. & B_m^2 - B_m & \left| \begin{array}{c} B_m^2 \\ 2B_m^2 - B_m \end{array} \right. & B_m^2 + B_m & \left| \begin{array}{c} B_m^2 \\ 2B_m^2 + B_m \end{array} \right. \end{array}$$

A boolean function f in m variables is any map from \mathbb{F}_2^m to \mathbb{F}_2 . The weight of a boolean function f denoted by $\text{wt}(f)$ is the Hamming weight of the binary vector of the values of f , i.e., the number of $\mathbf{x} \in \mathbb{F}_2^m$ such that $f(\mathbf{x}) = 1$. For any boolean function f we define its Walsh-Hadamard transform F , such that

$$F(\mathbf{a}) = \sum_{\mathbf{x} \in \mathbb{F}_2^m} (-1)^{f(\mathbf{x})+\mathbf{a} \cdot \mathbf{x}}, \quad \forall \mathbf{a} \in \mathbb{F}_2^m. \quad (2)$$

For even m , a boolean function f over \mathbb{F}_2^m is *bent* if its Walsh-Hadamard transform is $F(\mathbf{y}) = \pm 2^{m/2}$, for all $\mathbf{y} \in \mathbb{F}_2^m$.

Two boolean functions f, g are *affine equivalent* if there exists a linear map $A \in GL(m, \mathbb{F}_2)$, $\mathbf{b}, \mathbf{c} \in \mathbb{F}_2^m$ and $\epsilon \in \mathbb{F}_2$ such that $g(\mathbf{x}) = f(A(\mathbf{x}) + \mathbf{b}) + \mathbf{c} \cdot \mathbf{x} + \epsilon$, where $\mathbf{c} \cdot \mathbf{x}$ is the inner product of \mathbf{c} and \mathbf{x} .

It is well known that the Walsh-Hadamard transform F of a bent function f defines a new bent function \tilde{f} , such that $F(\mathbf{y}) = 2^{m/2}(-1)^{\tilde{f}(\mathbf{y})}$. The function \tilde{f} is called the *dual* of f and it is fulfilled that $\tilde{\tilde{f}} = f$. We take the following definitions from [3].

Definition 1.2 [3] *A bent function f is called *self-dual*, if it is equal to its dual. It is called *anti-self-dual*, if it is equal to the complement of its dual.*

In this quoted paper [3], all self-dual bent functions in $m \leq 6$ variables and all quadratic such functions in $m \leq 8$ variables are characterized, up to a restricted form of affine equivalence. Later, Hou [5] classified all self-dual and anti-self-dual quadratic bent functions under the action of the orthogonal group $O(m, \mathbb{F}_2)$.

A general class of bent functions is the *Maiorana-McFarland* class, that is, functions of the form

$$\mathbf{x} \cdot \varphi(\mathbf{y}) + g(\mathbf{y}), \quad (3)$$

where \mathbf{x}, \mathbf{y} are binary vectors of length $m/2$, φ is any permutation in $\mathbb{F}_2^{m/2}$, and g is an arbitrary boolean function.

One of the open questions concerning self-dual bent and anti-self-dual bent functions is the following one, quoted in [3]: *are there quadratic self-dual (anti-self-dual) bent functions which are not of Maiorana-McFarland type?*

In the present paper we give infinite families of self-dual and anti-self-dual quadratic bent functions which are not of the Maiorana-McFarland type. Since our class of bent functions includes not only self-dual and anti-self-dual quadratic bent functions we think that our class of bent functions is interesting itself and also from the point of view of secondary constructions [3]. The material is organized as follows. In Section 1 we introduce the topic and give notations and preliminary results. Section 2 contains the new constructions of quadratic bent functions and the main results of the paper.

2 A combinatorial construction of new bent functions

Throughout this section we assume that m is even.

Denote by H_m the parity check matrix of the binary

Hamming code of length $n = 2^m - 1$ and by H_m^* denote the matrix obtained from H_m by adding one zero column.

For a given even $m \geq 4$ and any $i_1, i_2 \in \{0, 1, 2, 3\}$, where $i_1 \neq i_2$, denote by $\mathbf{v}_{i_1, i_2} = (v_0, v_i, \dots, v_{n-1})$ the binary vector whose j -th position v_j is a function of the value of weight of

the column \mathbf{h}_j in H_m^* :

$$v_j = \begin{cases} 1, & \text{if } \text{wt}(\mathbf{h}_j) \equiv i_1 \text{ or } i_2 \pmod{4} \\ 0, & \text{otherwise.} \end{cases}$$

The next result is part of a proposition in [2] and proved there.

Proposition 2.1 [2] *Let m be even and let \mathcal{H}_m^* be an extended Hamming code of length 2^m . Then, the values of weights of vectors in the coset $\mathbf{v}_{i_1, i_2} + (\mathcal{H}_m^*)^\perp$ are $2^{m-1} \pm 2^{\frac{m}{2}-1}$, if and only if $i_1 - i_2 \equiv 1 \pmod{2}$.*

For a given even $m \geq 4$ and any $i_1, i_2 \in \{0, 1, 2, 3\}$, where $i_1 \neq i_2$, define the boolean function f_{i_1, i_2} over \mathbb{F}_2^m as:

$$f_{i_1, i_2}(\mathbf{x}) = \begin{cases} 1, & \text{if } \text{wt}(\mathbf{x}) \equiv i_1 \text{ or } i_2 \pmod{4} \\ 0, & \text{otherwise.} \end{cases}$$

Now we state one of the main results of the present paper.

Theorem 2.2 *For any even m , $m \geq 4$ the function f_{i_1, i_2} is a bent function if and only if $i_1 - i_2 \equiv 1 \pmod{2}$. In these cases, when f_{i_1, i_2} is a bent function it is a quadratic bent function.*

Proof. From Proposition 2.1 the function f_{i_1, i_2} is bent if and only if $i_1 - i_2 \equiv 1 \pmod{2}$. Now, we show that all these bent functions are quadratic. Specifically,

$$\begin{aligned} f_{2,3}(x_1, x_2, \dots, x_m) &\equiv \sum_{1 \leq i < j \leq m} x_i x_j \pmod{2} \\ f_{1,2}(x_1, x_2, \dots, x_m) &\equiv \sum_{1 \leq i \leq m} x_i + \sum_{1 \leq i < j \leq m} x_i x_j \pmod{2} \\ f_{0,1}(x_1, x_2, \dots, x_m) &\equiv 1 + f_{2,3}(x_1, x_2, \dots, x_m) \pmod{2} \\ f_{0,3}(x_1, x_2, \dots, x_m) &\equiv 1 + f_{1,2}(x_1, x_2, \dots, x_m) \pmod{2} \end{aligned}$$

To prove the first equality is equivalent to prove that $\binom{w}{2} \equiv 1 \pmod{2}$ if and only if $w \equiv \{2, 3\} \pmod{4}$, where w is an integer number, $0 \leq w \leq m$. Hence, it is enough to prove that for $w \in \{0, 1, 2, 3\}$, we have $\binom{w}{2} \equiv 1 \pmod{2}$ if and only if $w \in \{2, 3\}$, which is clear.

The second equality is reduced to prove that for $w \in \{0, 1, 2, 3\}$, we have $w + \binom{w}{2} \equiv 1 \pmod{2}$ if and only if $w \in \{1, 2\}$, which is also clear.

The last two equalities come from the two first.

Following [4, Ch. 15, §2], we can write a quadratic boolean function as $f(\mathbf{x}) = \mathbf{x}Q\mathbf{x}^T + L\mathbf{x} + \epsilon$ and, for the above functions we have:

$$\begin{aligned} f_{2,3}(\mathbf{x}) &= \mathbf{x}Q\mathbf{x}^T, \\ f_{1,2}(\mathbf{x}) &= \mathbf{x}Q\mathbf{x}^T + L\mathbf{x}^T, \\ f_{0,1}(\mathbf{x}) &= \mathbf{x}Q\mathbf{x}^T + \epsilon, \\ f_{0,3}(\mathbf{x}) &= \mathbf{x}Q\mathbf{x}^T + L\mathbf{x}^T + \epsilon, \end{aligned} \tag{4}$$

where Q is the all ones upper triangular binary $m \times m$ matrix with zeroes in the diagonal, L is the all ones binary vector of length m and $\epsilon = 1$. \square

Proposition 2.3 *Bent function $f_{0,1}$ is complementary (hence, affine equivalent) to $f_{2,3}$, as well as $f_{0,3}$ is complementary (affine equivalent) to $f_{1,2}$. Bent functions $f_{0,1}$ and $f_{0,3}$ are affine equivalent to each other, if and only if m is a multiple of 4.*

Proof. The fact that $f_{0,1}$ is complementary to $f_{2,3}$, as well as $f_{0,3}$ is complementary to $f_{1,2}$, comes from the definition of these functions.

Consider the functions $f_{0,1}, f_{0,3}$ and define the map $\varphi : \mathbb{F}_2^m \rightarrow \mathbb{F}_2^m$, which swaps zeroes and ones of binary vectors \mathbf{x} of length m , so $\varphi(\mathbf{x}) = \mathbf{x} + \mathbf{u} = \bar{\mathbf{x}}$, where \mathbf{u} is the all ones vector in \mathbb{F}_2^m . Then, $f_{0,1}(\mathbf{x}) = f_{0,3}(\bar{\mathbf{x}})$ if and only if m is a multiple of 4. Indeed, let $\text{wt}_4(\mathbf{x})$ be the weight of \mathbf{x} modulo 4. We have $f_{0,1}(\mathbf{x}) = 1$ if and only if $\text{wt}_4(\mathbf{x}) \in \{0, 1\}$ and $f_{0,3}(\bar{\mathbf{x}}) = 1$ if and only if $\text{wt}_4(\mathbf{x}) \in \{m_4, (m-3)_4\}$, where $m_4, (m-3)_4$ stands for the value, modulo 4, of m and $m-3$, respectively. Now is clear that $\{0, 1\} = \{m_4, (m-3)_4\}$ if and only if m is a multiple of 4. \square

We have to notice that the function $f_{0,1}$ and its complementary $f_{2,3}$ has been constructed in [6] in terms of abelian difference sets, known also as Menon difference sets (see [1]). Since

functions $f_{0,1}$ and $f_{0,3}$ are not equivalent to each other when m is not a multiple of 4, it might be interesting their study from the point of view of difference sets.

Theorem 2.4

For $m \equiv 0, 4 \pmod{8}$, the functions f_{i_1, i_2} are neither self-dual functions nor anti-self-dual.

For $m \equiv 2 \pmod{8}$, $f_{2,3}$ and $f_{0,1}$ are self-dual. The function $f_{0,3}$ is anti-self-dual (with $f_{1,2}$).

For $m \equiv 6 \pmod{8}$, $f_{1,2}$ and $f_{0,3}$ are self-dual. The function $f_{2,3}$ is anti-self-dual (with $f_{0,1}$).

Proof. It is known [3, Th. 4.1] that if f is a self-dual bent or anti-self-dual bent quadratic boolean function then the symplectic matrix $Q + Q^T$ associated to f (4) is an involution, hence $(Q + Q^T)^2 = I$ (I is the identity matrix of order m). Later, Hou [5, Th. 2.1], extended this property to a necessary and sufficient condition in the sense that f is self-dual or anti-self-dual if and only if $(Q + Q^T)^2 = I$, and $(Q + Q^T)Q(Q + Q^T) + Q^T$ is an alternating matrix (so, a matrix of the form $A + A^T$, where A is a square matrix over \mathbb{F}_2).

In all cases of our functions f_{i_1, i_2} the symplectic matrix $Q + Q^T$ coincides with $J + I$, where J is the $m \times m$ matrix with ones in all the entries and Q is the all ones upper triangular binary $m \times m$ matrix with zeroes in the diagonal (4).

Hence, $(Q + Q^T)^2 = (J + I)^2 = J^2 + I = I$ (the last equality is true since m is even).

For the second condition we have

$$\begin{aligned} & (Q + Q^T)Q(Q + Q^T) + Q^T \\ &= (J + I)Q(J + I) + Q^T \\ &= JQJ + JQ + QJ + Q + Q^T \\ &= \binom{m}{2}J + JQ + QJ + Q + Q^T. \end{aligned}$$

Taking into account that m is even we see that $\binom{m}{2}J$ is the zero matrix if and only if $m \equiv 0 \pmod{4}$. In all other cases $\binom{m}{2}J = J$. We also have $JQ + QJ = (a_{ij})$, where $a_{ij} = 1$ when $i + j$ is even and $a_{ij} = 0$ when $i + j$ is odd. Therefore, $JQ + QJ = A + A^T + I$, for some A .

Finally,

$$\begin{aligned}
& (Q + Q^T)Q(Q + Q^T) + Q^T \\
= & \binom{m}{2}J + A + A^T + I + Q + Q^T \\
= & \binom{m}{2}J + (A + Q) + (A + Q)^T + I,
\end{aligned}$$

which is an alternating matrix if and only if $m \not\equiv 0 \pmod{4}$ and so, we conclude that f_{i_1, i_2} is a self-dual or anti-self-dual quadratic bent function if and only if $m \not\equiv 0 \pmod{4}$.

Now that we know in what cases f_{i_1, i_2} is a self-dual or anti-self-dual quadratic bent function we can check the self-duality or anti-self-duality condition, for each pair (i_1, i_2) . It is not necessary to check that the dual bent function \tilde{f}_{i_1, i_2} coincides with f_{i_1, i_2} or with the complement \bar{f}_{i_1, i_2} , it is enough to check if the first coordinate in f_{i_1, i_2} coincides with the first coordinate in \tilde{f}_{i_1, i_2} to decide about self-duality or anti-self-duality.

Let us begin by computing

$$F_{i_1, i_2}(\mathbf{0}) = \sum_{\mathbf{x} \in \mathbb{F}_2^m} (-1)^{f_{i_1, i_2}(\mathbf{x}) + \mathbf{0} \cdot \mathbf{x}} = \sum_{\mathbf{x} \in \mathbb{F}_2^m} (-1)^{f_{i_1, i_2}(\mathbf{x})} = 2^m - 2\text{wt}(f_{i_1, i_2})$$

and note that $\text{wt}(f_{i_1, i_2})$ depends on the value of the pair (i_1, i_2) .

Using Proposition 1.1 we have the following values for $\text{wt}(f_{i_1, i_2}) = S(i_1)_m + S(i_2)_m$, where $B_m = 2^{(m-2)/2}$:

$\text{wt}(f_{i_1, i_2})$	$m \equiv 2 \pmod{8}$	$m \equiv 6 \pmod{8}$
$(i_1, i_2) = (0, 1)$	$2B_m^2 + B_m$	$2B_m^2 - B_m$
$(i_1, i_2) = (2, 3)$	$2B_m^2 - B_m$	$2B_m^2 + B_m$
$(i_1, i_2) = (0, 3)$	$2B_m^2 - B_m$	$2B_m^2 + B_m$
$(i_1, i_2) = (1, 2)$	$2B_m^2 + B_m$	$2B_m^2 - B_m$

With the above results we can compute $F_{i_1, i_2}(\mathbf{0})$, which is always $\pm 2^{m/2}$, and also $\tilde{f}_{i_1, i_2}(\mathbf{0})$, which is in $\{0, 1\}$ depending on the value of $F_{i_1, i_2}(\mathbf{0})$.

Now we put in the following tables the values of $\tilde{f}_{i_1, i_2}(\mathbf{0})$ and $f_{i_1, i_2}(\mathbf{0})$. When these values coincide we conclude that f_{i_1, i_2} is self-dual, otherwise f_{i_1, i_2} is anti-self-dual.

$\tilde{f}_{i_1,i_2}(\mathbf{0})$	$m \equiv 2 \pmod{8}$	$m \equiv 6 \pmod{8}$	$f_{i_1,i_2}(\mathbf{0})$	$m \equiv 2 \pmod{8}$	$m \equiv 6 \pmod{8}$
$(i_1, i_2) = (0, 1)$	1	0	$(i_1, i_2) = (0, 1)$	1	1
$(i_1, i_2) = (2, 3)$	0	1	$(i_1, i_2) = (2, 3)$	0	0
$(i_1, i_2) = (0, 3)$	0	1	$(i_1, i_2) = (0, 3)$	1	1
$(i_1, i_2) = (1, 2)$	1	0	$(i_1, i_2) = (1, 2)$	0	0

□

Theorem 2.5 For any even $m \geq 4$ the bent functions f_{i_1,i_2} , where $i_1 - i_2 \equiv 1 \pmod{2}$ are not of the Maiorana-McFarland type.

Proof. Let us prove the statement by using contradiction. Assume that f_{i_1,i_2} is of Maiorana-McFarland type. This means that a binary variable vector \mathbf{z} , of length m , can be divided into two subvectors \mathbf{x} and \mathbf{y} of the same length $m/2$ such that

$$f_{i_1,i_2}(\mathbf{z}) = \mathbf{x} \cdot \varphi(\mathbf{y}) + g(\mathbf{y}),$$

where φ is a permutation of $\mathbb{F}_2^{m/2}$ and $g(\mathbf{y})$ is some boolean function. Note that \mathbf{x} and \mathbf{y} run over all the $2^{m/2} \cdot 2^{m/2}$ possible values. Consider the set of values of $f_{i_1,i_2}(\mathbf{z})$ when \mathbf{x} runs over all the values in $\mathbb{F}_2^{m/2}$ and \mathbf{y} is fixed to be $\mathbf{y} = \mathbf{y}_0$, such that $\varphi(\mathbf{y}_0)$ is the zero vector. In this case $\mathbf{x} \cdot \varphi(\mathbf{y}_0) = 0$ and $f_{i_1,i_2}(\mathbf{z}) = g(\mathbf{y}_0)$ is a constant. Since \mathbf{x} is running over $\mathbb{F}_2^{m/2}$ its weight takes $m/2 + 1 > 2$ different consecutive values. Hence, it takes more than 2 different values of weight modulo 4 and, for all these values, the function $f_{i_1,i_2}(\mathbf{z})$ is constant. This contradicts the definition of the function f_{i_1,i_2} . □

References

- [1] T. Beth, D. Junickel, H. Lenz, *Design Theory*. Manheim, Germany: Wiessenschaftverlag, 1985; Cambridge, U.K.: Cambridge Univ. Press, 1986.

- [2] Joaquim Borges, Josep Rifà, Victor Zinoviev, “New families of completely regular codes and their corresponding distance regular coset graphs”. *Des. Codes Cryptogr.* To appear, DOI: 10.1007/s10623-012-9713-3.
- [3] Claude Carlet, Lars Eirik Danielsen, Matthew G. Parker, and Patrick Sole, “Self-dual bent functions.” *Int. J. Inform. and Coding Theory*, vol. 1, 384-399, 2010.
- [4] F. J. MacWilliams and N. J. A. Sloane, *The Theory of Error-Correcting Codes*, North-Holland Publishing Company, 1977.
- [5] Xiang-Dong Hou, “Classification of self dual quadratic bent functions.” *Des. Codes Cryptogr.* vol. 63, 183-198, 2012.
- [6] P. K. Menon, “On difference sets whose parameters satisfy a certain relation.” *Proc. Amer. Math. Soc.* vol. 13, 739-745, 1962.