CLASSIFICATORE BINARIO (SUPERVISED LEARNING)

OBBIETTIVO: fornito il dataset da 16 Variabili Indipendenti, predire se il cliente sottoscriverà il nuovo contratto con la banca (previsioni di marketing).

- 1. <u>SETUP</u>: Pulizia workspace e command window, aggiunta delle cartelle 'Dataset' e 'Functions', settaggio seed di default per la ripetibilià della predizione.
- 2. **DATA IMPORT**: Importazione del dataset 'bankfull.csv' (45211x17) sottoforma di table: **myData** (dataset originale) data (dataset di copia delle variabili indipendenti per la sovrascrittura ed elaborazione).

3. PRE-PROCESING

• Missing data . Verifica della presenza di dati mancanti.

```
missing_data = ismissing(myData);
missing_data_sum = sum(sum(missing_data)) % *** NON CI SONO DATI MANCANTI ***
```

```
missing_data_sum = 0
```

• **Feature scaling** .Standardizzazione delle feature numeriche.

outlier balance sum MAD = sum(outlier balance)

• <u>Outliers</u>. Verifica della presenza di dati numerici anomali, solo numerici, tramite il metodo 'median' che identifica outliers se i valori sono maggiori di 3 volte M.A.D(Median Absolute Deviation); 'median' e non 'mean' perchè anche se quest'ultimo è più veloce, M.A.D. risulta essere più "robusto". Sostituzione dei dati anomali con il valore non anomalo più vicino ('nearest'), per non alterare troppo negativamente un errore di identificazione.

```
%M.A.D.
outlier_day = isoutlier(data.day,'median');
outlier_day_sum_MAD = sum(outlier_day) % *** NON CI SONO OUTLIER IN 'day' ***

outlier_day_sum_MAD = 0

outlier_age = isoutlier(data.age,'median');
outlier_age_sum_MAD = sum(outlier_age)

outlier_age_sum_MAD = 487

outlier_balance = isoutlier(data.balance,'median');
```

```
%SIGMA
outlier_day = isoutlier(data.day,'mean');
outlier_day_sum_MEAN = sum(outlier_day) % *** NON CI SONO OUTLIER IN 'day' ***

outlier_day_sum_MEAN = 0

outlier_age = isoutlier(data.age,'mean');
outlier_age_sum_MEAN = sum(outlier_age)

outlier_age_sum_MEAN = 381

outlier_balance = isoutlier(data.balance,'mean');
outlier_balance_sum_MEAN = sum(outlier_balance)

outlier_balance_sum_MEAN = 745
```

- <u>Categorical</u>: .Trasformazione dei dati categorici in numerici con algoritmo senza ordinamento e standardizzazione di essi per equiparare i valori. 'encodeCategorical.m' funzione di trasformazione con modifica salvataggio nameValueVariable.nameVariable per salvare tutti i categorici, anche quelli che si ripetono.
- <u>Principal Component Analysis</u>: .Ridimensionamento del dataset di partenza secondo un ordine di importanza, selezione delle prime 30 componenti che definiscono il 90% dello spazio.

```
%Trasformazione dataset from table to array
data_array = table2array(data);
%PCA
class_labels = myData(:,end);
[~, score, ~, ~, explained,~] = pca(data_array);
disp("Le prime 30 dimensioni descrivono il " + sum(explained(1:30)) + "% dello spazio");
```

Le prime 30 dimensioni descrivono il 90.0528% dello spazio

```
pcaData = array2table(score(:,1:30));
pcaData(:,end+1) = class_labels;
whos data pcaData
```

```
Name Size Bytes Class Attributes

data 45211x51 18458646 table
pcaData 45211x31 15751514 table
```

4. **DATA PARTITION**: Partizionamento del nuovo dataset in "training_set" e "test_set" con l'algoritmo del '**K-Fold**', k = 5 perchè fra i due valori più usuali (5,10) risulta essere migliore a livello di predizioni corrette (Confusion Matrix).

```
%K-fold, k = 5 -----
data_partition = cvpartition(num_observation,'kfold',5);
%Model generation, cross validation and predictions -----
%Confusion Matrix -----
cm = confusionchart(table2cell(pcaData(:,end)),predictions);
cm.Title = 'Confusion Matrix (k = 5)';
```


%K-fold, k = 10 ----data_partition = cvpartition(num_observation,'kfold',10);
%Model generation, cross validation and predictions ----%Confusion Matrix -----cm = confusionchart(table2cell(pcaData(:,end)),predictions);
cm.Title = 'Confusion Matrix (k = 10)';

5. **MODEL GENERATION**: Generazione del modello di classificazione, siccome il dataset è di grandi dimensioni viene utilizzato 'fitclinear' come funzione per la creazione del modello di classificazione (lineare).

```
%Ottimizzazione classificatore -----
fitclinear(pcaData,'Var31','OptimizeHyperparameters','auto',...
    'HyperparameterOptimizationOptions', struct('AcquisitionFunctionName',...
    'expected-improvement-plus','UseParallel',true,'CVPartition',data_partition));
```

Starting parallel pool (parpool) using the 'local' profile ... Connected to the parallel pool (number of workers: 4). Copying objective function to workers...

Done copying objective function to workers.

Iter	Active workers	Eval result	Objective 	Objective runtime	BestSoFar (observed)	BestSoFar (estim.)	Lambda 	Learner
===== 1	 4	======= Best	======================================	======================================	======================================	======================================	 0.87775	logistic
2	2	Best	0.1069	10.42	0.1069	0.10695	0.00036141	logistic
3	2	Accept	0.1069	10.097	0.1069	0.10695	1.4348e-08	logistic
4	2	Accept	0.1073	11.5	0.1069	0.10695	7.6006e-05	svm
5	4	Accept	0.1069	2.7998	0.1069	0.1069	0.00035374	logistic
6	4	Accept	0.1069	4.6354	0.1069	0.10689	4.2317e-08	logistic
7	3	Accept	0.10727	7.0381	0.1069	0.10689	0.12857	svm
8	3	Accept	0.10727	7.109	0.1069	0.10689	0.1773	svm
9	3	Best	0.10688	5.1705	0.10688	0.10689	1.062e-05	logistic
10	3	Accept	0.1073	5.6708	0.10688	0.10689	5.9285e-08	svm
11	3	Accept	0.1073	6.3946	0.10688	0.10689	2.2123e-10	svm
12	3	Accept	0.1069	4.6606	0.10688	0.10689	2.2371e-10	logistic
13	3	Accept	0.1073	5.1477	0.10688	0.10688	2.0213e-06	svm
14	3	Accept	0.1069	3.5398	0.10688	0.10688	7.6641e-05	logistic
15	4	Accept	0.1069	5.4915	0.10688	0.10688	7.8385e-07	logistic
16	4	Accept	0.11698	11.698	0.10688	0.10688	2.2093	svm
17	4	Accept	0.1069	7.7249	0.10688	0.10692	1.1974e-09	logistic

	18 19 20	4 4 2	Accept Accept Accept	0.1073 0.1073 0.1073	11.718 10.613 9.4201	0.10688 0.10688 0.10688	0.10692 0.10692 0.10689	0.0024796 2.5388e-09 1.2861e-05	SVM SVM SVM
	Iter	Active workers	Eval result	Objective 	Objective runtime	BestSoFar (observed)	BestSoFar (estim.)	Lambda 	Learner
-	21	l 2	Accept	0.1073	7.1361	0.10688	 0.10689	 l 0.022665	svm
i	22	2	Accept	0.10708	3.0994	0.10688	0.10689	0.0034207	logistic
i	23	4	Accept	0.1069	2.4769	0.10688	0.10689	1.7971e-07	logistic
j	24	4	Accept	0.10694	4.1453	0.10688	0.1069	0.0012066	logistic
ĺ	25	2	Accept	0.1073	6.3345	0.10688	0.1069	0.0016574	svm
ĺ	26	2	Accept	0.1073	7.2231	0.10688	0.1069	2.4343e-05	svm
	27	2	Accept	0.1069	3.8514	0.10688	0.1069	2.9813e-06	logistic
	28	4	Accept	0.1069	2.3524	0.10688	0.1069	4.1596e-09	logistic
	29	4	Accept	0.1069	3.8786	0.10688	0.10689	5.5406e-06	logistic
	30	3	Accept	0.1069	3.9558	0.10688	0.10689	4.9435e-10	logistic
	31	3	Accept	0.1073	5.6247	0.10688	0.10689	5.056e-05	svm


```
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 31
Total elapsed time: 104.4579 seconds
Total objective function evaluation time: 200.0292
Best observed feasible point:
    Lambda
                 Learner
    1.062e-05
                 logistic
Observed objective function value = 0.10688
Estimated objective function value = 0.10688
Function evaluation time = 5.1705
Best estimated feasible point (according to models):
      Lambda
                  Learner
                  logistic
    5.5406e-06
```

Estimated objective function value = 0.10689 Estimated function evaluation time = 4.7896

```
%classification_model = fitclinear(pcaData,'Var31','Lambda',1.062e-05,'Learner','logistic',.
```

6. <u>CROSS VALIDATION</u>: Cross validazione del modello generato, in questo caso non è possibile utilizzare la funzione 'crossval' bensì è possibile generare il modello validato.

```
classification_model =
  ClassificationPartitionedLinear
   CrossValidatedModel: 'Linear'
        ResponseName: 'Var31'
   NumObservations: 45211
        KFold: 5
        Partition: [1×1 cvpartition]
        ClassNames: {'no' 'yes'}
        ScoreTransform: 'none'
```

7. PREDICTIONS:

```
predictions = kfoldPredict(classification_model);
```

8. **CONFUSION MATRIX**:

Properties, Methods

```
cm = confusionchart(table2cell(pcaData(:,end)),predictions);
cm.Title = 'Confusion Matrix';
```



```
%Calcolo delle prestazioni -----
accuracy = 100 * sum(diag(cm.NormalizedValues)) / sum(sum(cm.NormalizedValues))
```

accuracy = 89.3123

```
sensitivity = 100 * cm.NormalizedValues(1,1) / sum(cm.NormalizedValues(1,:))
```

sensitivity = 98.6574

```
precision = 100 * cm.NormalizedValues(1,1) / sum(cm.NormalizedValues(:,1))
precision = 90.1653
```

= (2 * sensitivity * precision) / (sensitivity + precision)

```
Fmeasure = 94.2204
```

Fmeasure


```
%Feature selection for classification using neighborhood component analysis (NCA)
out = table2array(class_labels);
mdl = fscnca(data_array,out);

%Feature
VariableNames = (data.Properties.VariableNames)';
disp(VariableNames);
```

```
{'failure.poutcome'
{'other.poutcome'
{'success.poutcome'
{'unknown.poutcome'
{'apr.month'
{'aug.month'
{'dec.month'
{'feb.month'
{'jan.month'
{'jul.month'
{'jun.month'
{'mar.month'
{'may.month'
{'nov.month'
{'oct.month'
{'sep.month'
{'cellular.contact'
{'telephone.contact'
{'unknown.contact'
{'no.loan'
{'yes.loan'
{'no.housing'
{'yes.housing'
{'no.default'
{'yes.default'
{'primary.education'
{'secondary.education'}
{'tertiary.education'
{'unknown.education'
{'divorced.marital'
{'married.marital'
{'single.marital'
{'admin..job'
{'blue-collar.job'
{'entrepreneur.job'
                      }
{'housemaid.job'
                      }
{'management.job'
```

```
{'retired.job'
{'self-employed.job'
{'services.job'
{'student.job'
{'technician.job'
{'unemployed.job'
{'unknown.job'
{'age'
{'balance'
{'day'
{'duration'
{'campaign'
{'pdays'
{'previous'
```

```
%Plot
figure()
plot(mdl.FeatureWeights,'ro')
xlabel('Feature Index')
ylabel('Feature Weight')
grid on
```

