第一章 普通微积分

1.1 微分

1.1.1 实函数的导数

定义 1.1.1. 极限

$$f'\left(x\right) = \frac{f\left(t \to x\right) - f\left(x\right)}{\left(t \to x\right) - x}$$

若存在则谓 f(x) 的导数。

定理 1.1.1. 函数在可微点连续。

定理 1.1.2. 若 f 和 g 都在 x 处可微,则此处

- 1. (f+g)' = f' + g';
- 2. (fg)' = f'g + fg';
- 3. $(f/g)' = (f'g fg') / (g^2)$.

定理 1.1.3. 若 f 连续且在 x 处可微, g 在 f(x) 处可微, 则

$$(g \circ f)'(x) = g'(f(x)) f'(x).$$

例 1.1.1. $f(x) = x \sin 1/x || 0$, 则 f 在 x = 0 处不可微。

例 1.1.2. $f(x) = x^2 \sin 1/x || 0$ 在任意点可微且 f'(0) = 0,则 f 处处可微但 f' 不连续。

1.1.2 中值定理

定义 1.1.2. 若存在 $\delta > 0$ 满足 $d(p,q) < \delta \Rightarrow f(q) \leq f(p)$ 则谓之局部极大值。类似定义极小值。

定理 1.1.4. f(x) 若取得局部极大(小)值而 f'(x) 存在,则 f'(x) = 0。

定理 1.1.5. [a,b] 上连续的 f 和 g 在 (a,b) 上可微则存在 x 满足

$$[f(b) - f(a)] g'(x) = [g(b) - g(a)] f'(x).$$

证明. 两侧做差并发现原函数在两段点水平。

取
$$g(x) = x$$
,有

定理 1.1.6. [a,b] 上连续的 f 可微则存在 x 满足

$$f(b) - f(a) = (b - a) f'(x)$$
.

定理 1.1.7. 在 (a,b) 内可微的 f 若恒有 $f'(x) \ge 0$ 则 f 单调递增,类似有常数和递减。

1.1.3 导数的连续性

定理 1.1.8. 设 f 在 [a,b] 可微,又设 $f'(a) < \lambda < f'(b)$,则存在 $f'(x) = \lambda$ 。证明. 构造 $g(x) = f(x) - \lambda x$ 并注意其取得最小值即可。

推论 1.1.1. 若 f 在 [a,b] 上可微,则 f' 不能有第一类间断。

1.1.4 L'Hospital 法则

定理 1.1.9. 若 f 和 g 在 (a,b) (a 和 b 可取无穷) 内可微且 $g'(x) \neq 0$,若 $f(x \rightarrow a) \rightarrow 0$ 以及 $g(x \rightarrow a) \rightarrow 0$ 或 $g(x \rightarrow a) \rightarrow \pm \infty$ 则

$$\frac{f'\left(x\rightarrow a\right)}{g'\left(x\rightarrow a\right)}\rightarrow A\Rightarrow\frac{f\left(x\rightarrow a\right)}{g\left(x\rightarrow a\right)}\rightarrow A.$$

上述 a 替换为 b 仍然成立。

证明. 对任意 q > A, 当 x, y, t 足够接近 a 时, 有 $f'(t)/g'(t) < q^-$, 故

$$\frac{f\left(x\right) - f\left(y\right)}{g\left(x\right) - g\left(y\right)} = \frac{f'\left(t\right)}{g'\left(t\right)} < q^{-}.$$

对双零的情形单方面让 $y\to 0$ 即可,当 $g(x\to a)\to a$ 时令 x,y 再次足够接近 a 则两边通分有

$$\frac{f\left(x\right)}{q\left(x\right)} < q^{-} - q^{-}\frac{g\left(y\right)}{q\left(x\right)} + \frac{f\left(y\right)}{f\left(x\right)}.$$

1.1.5 高阶导数

定义 1.1.3. 若 f 在一个区间上有导数 f', f' 可微则谓二阶导数 f'', 类似定义高阶者。

1.1.6 Taylor 定理

定理 1.1.10. 若 f 为闭区间上实函数, $f^{(n-1)}$ 连续且 $f^{(n)}$ 存在, 令

$$P(t) = \sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!} (t - \alpha)^{k}.$$

则对于给定的 β , 存在 $[\alpha, \beta]$ 间一点 x 满足

$$f(\beta) = P(\beta) + \frac{f^{(n)}(x)}{n!} (\beta - \alpha)^{n}.$$

证明. 定义 $g(t) = f(t) - P(t) - M(t - \alpha)^n$, 注意 $g^{(0)} = \cdots = g^{(n-1)}(\alpha) = 0$ 。选取 M 满足 $g(\beta) = 0$,故存在 $g'(\beta_1^-) = 0$,存在 $g''(\beta_2^-) = 0$ 等。 \square

1.1.7 向量值函数的微分

前开加减乘除法则将 f 设定为向量值函数后仍然有效,然而 L'Hospital 法则不再有效。

例 1.1.3. 定义 $f\left(x\right)=x$ 与 $g\left(x\right)=x+x^{2}e^{i/x^{2}}$,则显然 $f\left(x\right)/g\left(x\right)\to 1$ 。 然而, $g'=1+\left(2x-2i/x\right)e^{i/x^{2}}$, $\left|f'\left(x\to 0\right)/g'\left(x\to 0\right)\right|=0$ 。

类似于中值定理,有

定理 1.1.11. 设连续的 f 在 (a,b) 内可微并将 [a,b] 映入 \mathbb{R}^k ,则必有 $x \in (a,b)$ 满足 $|\mathbf{f}(b) - \mathbf{f}(a)| \le (b-a) |\mathbf{f}'(x)|$ 。

证明. 不妨设 a=0, b=1, $\mathbf{f}(a)=\mathbf{0}$ 。 $\diamondsuit \varphi(t)=\mathbf{f}(t)\cdot(1)$ 后中值定理

$$\mathbf{f}(1)^2 = \mathbf{f}'(x) \cdot \mathbf{f}(1) \le |\mathbf{f}'(x)| |\mathbf{f}(1)|.$$

1.2 Riemann-Stieltjes 积分

1.2.1 积分的定义和存在性

定义 1.2.1. [a,b] 的分法谓其间一列非减点集。在每个区间 $[x_{i-1},x_i]$ 内定义 $M_i = \sup f, \ m_i = \inf f, \ 又定义$

$$U(P, f) = \sum M_i \Delta x_i,$$

$$L(P, f) = \sum m_i \Delta x_i.$$

定义上积分与下积分为

$$\overline{\int_{a}^{b}} f \, dx = \inf U (P, f),$$
$$\int_{a}^{b} f \, dx = \sup L (P, f).$$

如果上下积分相等,则谓之 Riemann 可积。

易见有界函数的上下积分均存在。

定义 1.2.2. 设 α 是 [a,b] 上的单调递增函数,在前开定义中将 Δx_i 替换为 $\Delta \alpha_i$ 则可得 Riemann-Stieltjes 积分。

定理 1.2.1. 对于 P 的加细 P^* 有

$$L(P, f, \alpha) \le L(P^*, f, \alpha) \le U(P^*, f, \alpha) \le U(P, f, \alpha)$$
.

定理 1.2.2. $\int \leq \overline{\int}$.

定理 1.2.3. [a,b] 上的 f 可积当且仅当对于任意 ϵ 都存在分法满足

$$U(P, f, \alpha) - L(P, f, \alpha) < \epsilon. \tag{1.1}$$

证明. 注意若条件满足,则意味着 $\left|\overline{\int}-\int
ight|<\epsilon$ 。

定理 1.2.4. 如果(1.1)成立,则加细后仍然成立。

定理 1.2.5. 如果(1.1)成立,在 $[x_{i-1},x_i]$ 之间选取 s_i 和 t_i ,则

$$\sum |f(s_i) - f(t_i)| \Delta \alpha_i < \epsilon.$$

定理 1.2.6. 在前开题设下, 若 f 可积, 则

$$\left| \sum f(t_i) \, \Delta \alpha_i - \int_a^b f \, \mathrm{d}\alpha \right| < \epsilon.$$

定理 1.2.7. 闭区间上连续函数对任意 α 可积。

定理 1.2.8. 闭区间上单调函数对单调连续的 α 可积。

证明. 选取分割 P_n 满足 $\Delta \alpha_i = \Delta \alpha/n$,从而 $U - L = \Delta \alpha_i \Delta f$ 。

定理 1.2.9. 若 f 在 [a,b] 上有界且只有有限间断点, α 在 f 的每个间断点上连续,则 f 可积。

证明. 选取小区间包含 f 的诸间断点且其内 α 连续,这些区间内因 α 连续而上下差任意小,剩余区间内由于 f 连续而上下差任意小。

定理 1.2.10. [a,b] 上的 f 可积而 ϕ 在其像上连续,则 $\phi \circ f$ 可积。

证明. 若 $\Delta s < \delta \Rightarrow \Delta \phi < \epsilon$, 选取 P 使 $U(f) - L(f) < \delta^2$, 将区间分两类, $\Delta f < \delta$ 及相反, 后者的区间满足 $\sum \Delta \alpha_i < \delta$ 。总的 $\sum \Delta \phi \circ f$ 为小量。 \Box

1.2.2 积分及其性质

定理 1.2.11. 对于积分, 下列性质成立:

- 1. 闭区间可积函数构成线性空间, 积分是线性算子;
- 2. $f_1 \leq f_2 \Rightarrow \int f_1 \leq \int f_2$;
- 3. 若 [a,b] 上 f 可积,则 [a,c] 与 [c,b] 上可积且 $\int_a^c + \int_c^b = \int_a^b$;
- 4. 若 f 可积且 $|f| \leq M$, 则 $|\int f| \leq M [\alpha(b) \alpha(a)];$
- 5. 积分与可积性对 α 为线性。

定理 1.2.12. 若 f 和 g 皆可积则 fg 可积。

定理 1.2.13. 若 f 可积则 |f| 可积且 $|\int f| \leq \int |f|$ 。

定义 1.2.3. 单位阶跃函数定义为 $I(x) = \chi_{(0,+\infty)}$ 。

定义 1.2.4. 若 f 在 [a,b] 上有界且 $\alpha(x) = I(x-s) = \chi_{(s,+\infty)}$,则

$$\int^{b} f \, \mathrm{d}\alpha = f(s) \,.$$

定理 1.2.14. 设 $\{c_n > 0\}$ 且 $\sum c_n$ 收敛, $\{s_n\}$ 两两不同,

$$\alpha(x) = \sum c_n I(x - s_n).$$

若 f 在 [a,b] 上连续,则

$$\int_{a}^{b} f \, \mathrm{d}\alpha = \sum c_{n} f(s_{n}).$$

证明. 选取足够大的 N 满足 $\sum c_n - \sum^N c_n < \epsilon$ 后将 α 拆分即可。

定理 1.2.15. 若闭区间上 α 单调递增且 α' 可积, f 有界, 则 f 可积当且 仅当 $f\alpha'$ 可积, 且

$$\int f \, \mathrm{d}\alpha = \int f \alpha'.$$

证明. 设 $U(P,\alpha')-L(P,\alpha')<\epsilon$ 而f上界为M,根据中值定理与定理1.2.5,

$$\sum f_i \Delta \alpha_i = \sum f_i \alpha'(s_i) \Delta x, \quad \sum f_i |\alpha'(s_i) - \alpha'(t_i)| \Delta x \leq M \epsilon.$$

$$\left| \sum f(s_i) \Delta \alpha_i - \sum f(s_i) \alpha'(s_i) \Delta x_i \right| \le M\epsilon.$$

因此, $|[L|U](f,\alpha)-[L|U](f,\alpha')| \leq M\epsilon$,任意加细后仍然成立。

定理 1.2.16. 设有严格递增的满射 $\varphi: [A,B] \to [a,b]$, f 在 [a,b] 上对 α 可积,定义 $\beta = \alpha \circ \varphi$ 而 $g = f \circ \varphi$, 则 g 对 β 可积且

$$\int_{A}^{B} g \, \mathrm{d}\beta = \int_{a}^{b} f \, \mathrm{d}\alpha.$$

证明. 注意 φ 只是一个坐标变换,把分法映射到分法即可。 \square

取 $\alpha(x) = x$, 就有

$$\int_{a}^{b} f(x) dx = \int_{A}^{B} f(\varphi(y)) \varphi'(y) dy.$$

1.2.3 积分与微分

定理 1.2.17. 设 f 可积且

$$F\left(x\right) = \int_{a}^{x} f\left(x\right) \, \mathrm{d}x,$$

则 F 在 [a,b] 上一致连续且若 f 在 x_0 处连续则 F 可微且 $F'(x_0) = f(x_0)$ 。

证明. 做差,将 F 的差和积分相互转换。

定理 1.2.18. 若 [a,b] 上 f 可积且 F'=f, 则

$$\int_{a}^{b} f \, \mathrm{d}x = F(b) - F(a) \,.$$

证明. 在某分割内选取有代表性的 t_i 后对下式调用定理1.2.6。

$$\sum f(t_i) \Delta x_i = F(b) - F(a). \qquad \Box$$

1.2.4 向量值函数的积分

定义 1.2.5. 定义区间上的向量值函数的积分以诸分量的积分为分量。

定理 1.2.19 (平行于定理1.2.18). 若可积的 f 和 F 将 [a,b] 映入 R^k , 且 F'=f 则

$$\int_{a}^{b} \boldsymbol{f} = \boldsymbol{F}(b) - \boldsymbol{F}(a).$$

定理 1.2.20. 若 f 如上且 f 对 α 可积,则 |f| 可积且

$$\left|\int_a^b oldsymbol{f}
ight| \leq \int_a^b |oldsymbol{f}|.$$

证明. 可积性由连续函数复合可知,由 Schwarz 不等式,有

$$\left| \int oldsymbol{f}
ight|^2 = \sum \int \left(\int f_i
ight) \cdot f_i \le \int \left| \int oldsymbol{f}
ight| |oldsymbol{f}|.$$

1.2.5 可求长曲线

定义 1.2.6. 将闭区间映入 \mathbb{R}^k 内的映射谓曲线,双射谓弧,区间端点处取值相等谓闭曲线。

定义 1.2.7. 对闭区间的分法 P 定义

$$\Lambda(P,\gamma) = \sum |\gamma(x_i) - \gamma(x_{i-1})|.$$

定义 $\Lambda(\gamma) = \sup \Lambda(P, \gamma)$ 。其值有限则谓曲线可求长。

定理 1.2.21. γ' 连续则曲线可求长且

$$\Lambda\left(\gamma\right) = \int_{a}^{b} \left|\gamma'\left(t\right)\right| \mathrm{d}t.$$

证明. 对 γ' 调用积分的三角不等式定理1.2.20的

$$\Lambda(\gamma) \leq \int |\gamma'|.$$

反向的不等式注意小区间上的下列不等式加和即可

$$\int |\gamma'| \le |\gamma'(x_i)| \Delta x_i + \epsilon \Delta x_i$$

$$\le \left| \int \gamma' \right| + \left| \int [\gamma'(x_i) - \gamma'] \right| + \epsilon \Delta x_i.$$