

数字图像处理课程简介

涂卫平

武汉大学计算机学院

2018年秋季学期

课程基本信息

课程名称: 数字图像处理/Digital Image Processing(DIP)

学时/学分: 36/2

先修课程: 高数, 概率, 线代, 数字信号处理, 程序设计语言

授课专业: 软件工程

开课单位: 计算机学院

课程目标

- 了解数字图像处理的基本概念和原理
- 了解图像处理技术的特点、应用范围和现状
- 掌握图像处理的基本原理和技术,熟悉图像处理的基本运算
- 掌握图像增强、图像压缩、彩色图像处理等相关方法

教材及参考书

教材:

数字图像处理(第三版),主编:冈萨雷斯等著,阮秋琦等译,电子工业出版社, 2017.05

参考书:

- 1. 数字图像处理(MATLAB版),冈萨雷斯,电子工业出版社
- 2. 图像工程 (第2版). 章毓晋 编著. 清华大学出版社

第一章 数字图像处理概述

涂卫平

武汉大学计算机学院

2018年秋季学期

人类通过眼、耳、鼻、舌、身 接受信息,感知世界。

约有75%的信息是通过视觉系统获取的。

伦琴因发现X射线获得首届诺贝尔物理学奖 (1901年)

NMR (Nuclear Magnetic Resonance) 核磁共振

Bloch和Purcell因发现NMR现象获得1952年诺贝尔物理学奖

CT (Computed Tomography) 电子计算机断层扫描

Hounsfield和Cormack因发明CT 获得1979年诺贝尔生理学或医学奖

MRI (Magnetic Resonance Imaging) 磁共振成像

发明MRI中Fourier重建方法的 Ernst获得1991年诺贝尔化学奖

MRI (Magnetic Resonance Imaging) 磁共振成像

Lauterbur和Mansfield因发明MRI方 法获得2003年诺贝尔生理学或医学奖

主要内容 Main Content

什么是数字图像处理

数字图像处理的起源

数字图像处理的应用

数字图像处理系统

什么是图像

- 》 "图"是物体投射或反射光的分布, "像"是人的视觉系统接收"图"之后在大脑中形成的印象或反映
- 》 图像是对客观存在的物体的一种相似性的生动模仿或描述,是物体的一种不完全、不精确、但在某种意义上是<mark>适当</mark>的表示

什么是数字图像

- ▶ 数字图像就是能够在

 → 数字图像就是能够在

 → 算机上显示和处理的图像
- 计算机只认识离散数字,所以一幅图像在用计算机处理前必须转化为数字形式,即数字图像

什么是数字图像处理

数字图像处理是利用计算机对图像进行分析、加工等处理,使其满足各种目的

图像处理: 像素级

对图像进行各种加工以改善图像的视觉效果并为自动识别打基础,或对图像进行压缩编码

数字图像 处理的三 个层次 图像分析:目标级

对图像中感兴趣的目标进行 提取和分割,以获得目标的 客观信息(特点或性质), 从而建立对图像的描述

图像理解: 符号级

研究图像中各目标的性质和 它们之间的相互联系,并得 出对图像内容含义的理解以 及对原来客观场景的解释

图像处理:强调图像之间进行的变换;是一个从图像到

图像的过程

图像分析: 以观察者为中心研究客观世界; 是一个从图

像到数据的过程

图像分析: 以客观世界为中心, 借助知识、经验来推理、

认识客观世界,属于高层操作(符号运算)

数字图像处理的实质

- ➤ 研究如何对一副连续图像采样、量化以产生包含全部或所需信息的数字图像
- 如何对数字图像做各种变换以方便处理
- > 如何滤除图像中的无用噪声
- > 如何压缩图像数据以便存储和传输
- 如何从图像中提取所需信息,从而形成对图像所含信息的理解与识别

数字图像处理的内容 (一)

▶图像变换

- 改变图像的空间或频谱分布, 获取或突出感兴趣信息
- 空域变换: 放大、缩小、旋转……
- 空域-频域变换: 傅里叶变换、离散余弦变换、小波变换……

▶图像编码

- 减少描述图像的数据量,节省图像传输和处理时间,降低存储容量
- 熵编码、预测编码、变换编码、分形编码……

HISTORY PHYSICS HISTORY LAW LONGING PALENCY COMMISSION PALENCY COMMISS

什么是数字图像处理

数字图像处理的内容 (二)

- > 图像增强和恢复
 - 提高图像质量(去除噪声、提高图像清晰度)
 - 灰度修正、平滑、几何校正、图像锐化、频域增强、维纳滤波 ……
- > 图像分割
 - 提取出感兴趣的对象,为进一步的理解和识别做准备
 - 灰度阈值分割、基于纹理的分割、区域生长法……
- > 图像的理解和识别
 - 从图像中提取抽象化的特定信息
 - 统计模式分类和句法模式分类

数字图像处理的历史发展

- >二十世纪二十年代:图像编码传输
- ▶ 五十年代: 开始利用计算机处理图像
- 六十年代: 阿波罗登月计划实施过程中发挥巨大作用,初步形成数字图像处理与分析学科
- ▶ 八十年代: 普及到各行各业, 天文学、地球科学、生物学、国防、工业……
- > 九十年代:多媒体
- ▶二十一世纪: ……

数字图像处理的特点

- ▶ 图像中的信息量大: "一幅图像胜过10000个单词"
- > 图像处理数据量大:
 - 512×512=256KB (B=Byte)
 - 1024×1024=1MB
 -
- > 处理过程重复性运算量大
- > 处理技术综合性强

主要内容 Main Content

什么是数字图像处理

数字图像处理的起源

数字图像处理的应用

数字图像处理系统

数字图像处理的起源

上世纪20年代,纽约一伦敦海底电缆传输数字化的新闻图片,传递时间从一个多星期减少到3个小时

1921年电报打印机采用 特殊字符打印复原

1922年两次穿越大西洋, 使用穿孔纸带得到图像

1929年从伦敦到纽约15级色调通过 电缆传递照片,从早期5个灰度到15 灰度。

数字图像处理的起源

数字图像处理的历史与数字计算机的发展密切相关,它必须依靠数字计算机及数据存储、显示和传输等相关技术的发展

五十年代中期在太空计划的推动下开始 这项技术的研究。重要标志是1964年美 国喷气推进实验室(JPL)正式使用数 字计算机对"徘徊者7号"太空船送回 的四千多张月球照片进行了处理。

> 美国航天器传送的第一 张月球照片,1964年7月 31日在光线影响月球表 面17分钟摄取的图像。

数字图像处理的起源

· 进行太空应用的同时,数字图像处理技术在20世纪60年代末和 70年代初开始用于医学图像、地球遥感监测和天文学等领域

主要内容 Main Content

什么是数字图像处理

数字图像处理的起源

数字图像处理的应用

数字图像处理系统

电磁波谱

伽马射线成像: 主要用途包括医学和天文观测

- 在医学中,将放射性同位素注射到人体内,当其衰变时会放射出伽马射线;再利用伽马射线 检测仪收集到的放射线来产生图像
- 在天文观测中,则是利用被成像物体的自然辐射得到图像

X射线成像:X射线是最早用于成像的电磁辐射源之一。主要用于医学和工业及天文学

X射线是肉眼看不见的一种射线,但可使某些化合物产生荧光或使照相底片感光;它具有穿透物质的本领,但对不同物质它的穿透本领不同;有破坏细胞作用,人体不同组织对于X射线的敏感度不同,受损害程度也不同。当X线透过人体不同组织结构时,由于人体组织有密度和厚度的差别,X线被吸收的程度不同,所以到达荧屏或胶片上的X线量即有差异。这样,在荧屏或X线片上就形成明暗或黑白对比不同的影像。

X光片

血管照影图片(血管照相术)

头部**CAT**切片图像 (计算机轴向断层)

天鹅座星环

电路板

紫外波段成像: 应用领域多种多样

- 平板印刷技术
- 工业检测
- ・显微镜方法
- 激光
- 生物图像
- 天文观测

荧光显微图像 普通玉米

荧光显微图像 被"真菌"感染的玉米

天鹅星座环

荧光物质被紫外光照射时,会发出可见光线。荧光显微术即应用这一原理。 荧光显微镜以紫外光线为光源,观察的标本多用荧光色素染色,由于紫外线的照射,激发标本内的荧光物质,而呈现荧光映像。

可见光及红外波段成像:光显微镜

(a) 紫杉酚 放大250倍

(b) 胆固醇 放大40倍

(c) 微处理器 放大60倍

(d) 镍氧化物薄片 (e) 音频CD的表面 放大600倍 放大1750倍

(f) 有机超导 放大450倍

涉及的范围从药物到材料特性的检测

可见光及红外波段成像: 遥感多光谱成像

美国华盛顿区域的卫星遥感图像

TABLE 1.1 Thematic bands in NASA's LANDSAT satellite.

Band No.	Name	Wavelength (μm)	Characteristics and Uses
1	Visible blue	0.45-0.52	Maximum water penetration
2	Visible green	0.52-0.60	Good for measuring plant vigor
3	Visible red	0.63-0.69	Vegetation discrimination
4	Near infrared	0.76-0.90	Biomass and shoreline mapping
5	Middle infrared	1.55-1.75	Moisture content of soil and vegetation
6	Thermal infrared	10.4–12.5	Soil moisture; thermal mapping
7	Middle infrared	2.08-2.35	Mineral mapping

左图为上表中的每个波段显示了一幅图像,包括 建筑物、道路、植被和穿过城市的主要河流等特 征。

人口中心地区的图像常被用来评估人口增长和变迁方式、污染及其它有害环境的因素。

可见光及红外波段成像:

天气观测与预报

海洋大气管理局的卫星用可见光及红外光传感器获得的飓风图像

可见光及红外波段成像:工业检测

产品的自动视觉检测

a b

c d

- a) 检测CD-ROM驱动器控制板上缺失的部件
- b) 寻找缺失的药丸
- c)寻找未装满到要求液位的瓶子
- d) 检测塑料部件内的气泡

可见光及红外波段成像: 识别与鉴伪

指纹识别

这里颜色深 假公章颜色很均匀

伪钞识别

车牌识别

发票鉴伪

可见光及红外波段成像: 影视、娱乐、广告、通讯、公众服务等

无线电波成像: 雷达

在雷达图像中,看到的是反射到雷达天线的微波能量

航天器拍摄的 西藏东南山 区雷达图像

数字图像处理的应用

微波波段成像: 医学和天文学

无线电波用于磁共振成像 (MRI)

无线电波段的蟹状脉冲星

数字图像处理的应用

超声波段成像: 医学

超声波图像产生的步骤:

- 1. 超声波系统向身体传输高频(1~5MHz)声脉冲
- 2. 声波传入体内并碰撞组织间的边缘,声波的一部分返回到探头,一部分继续传播直到另一边界并被反射回。
- 3. 反射波被探头收集起来并传给计算机
- 4. 计算机根据声波在组织中的传播速度和每个回波返回 的时间计算从探头到组织或者器官边界的距离
- 5. 系统在屏幕上显示回波的距离和亮度形成的二维图像

主要内容 Main Content

什么是数字图像处理

数字图像处理的起源

数字图像处理的应用

数字图像处理系统

数字图像处理所需的设备

图像数字化设备

输入图像

图像传感器 电视摄像机 扫描仪 数码照相机 遥感图像获取设备

图像处理计算机

计算机 图像输入卡 (采集卡) 显示卡 图像存贮装置

打印机 绘图仪

图像输出设备

输入及数字化设备

- •摄像机
- •鼓式扫描器
- •平台式光密度计
- •视频卡
- •扫描仪
- •数码相机
- •DV

显示及记录设备

- •图像显示器
- •图像拷贝机
- •绘图仪
- •激光打印机
- •喷墨打印机

一个典型的图像采集系统

图像采集

获取数字图像的设备即采集装置,也就是图像输入装置,包括下面部件:

光敏感器件、扫描系统和模/数转换装置

- 基于CCD光电耦器件的输入 基于光电倍增管的输入设备 设备
 - 摄像机、数字摄像机
 - 数字相机
 - 平板扫描仪

图像显示

图像显示的主要形式:

• 软拷贝形式:

显示器等装置上面显示的图像

• 硬拷贝形式:

照片或透明胶片、印刷机、打印机、复印机等得到的印件

图像存储模块

- 主要考虑: 存取速度、存取方式、存储容量、存储寿命
- 处理和分析过程中使用的快速存储器: 计算机内存、帧缓存
- 用于比较快地重新调用的在线或联机存储器: 磁盘、磁光盘 (MO)
- 不经常使用的数据库(档案库)存储器:磁带、光盘
- 一般存储系统: 常用硬盘、软盘、U盘、活动硬盘、光盘、磁带等
- 海量存储备份系统: 采用磁盘阵列、磁带库、光盘塔等存储设备

各种学习资源

相关的重要国内学术期刊

- > 计算机学报
- ▶ 电子学报
- ▶ 通信学报
- ▶ 自动化学报
- > 中国图形图像学报
- > 计算机辅助设计与图形学学报
- **>**

相关的重要国际学术会议

- ➤ IEEE International Conference on Image Processing (ICIP)
- > IEEE International Conference on Multimedia and Expo (ICME)
- ➤ International Conference on Pattern Recognition (ICPR)
- ACM International Conference on Image and Video Retrieval (CIVR)
- Visual Communication and Image Processing (VCIP)
- **>** ...

相关的重要国际学术期刊

- ➤ IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)
- ➤ IEEE Transactions on Image Processing (IP)
- IEEE Transactions on Circuits and Systems for Video Technology (CSVT)
- International Journal of Computer Vision (IJCV)
- Pattern Recognition (PR)
- Image and Vision Computing (IVC)
- **>** ...

国际知名图像处理团队主页

- Visual Attention Home Page
 - ✓ Itti 教授实验室, http://ilab.usc.edu/bu
 - ✓ 有演示、源码、论文、显著度应用项目等资料供下载
- USC-SIPI WWW Home Page
 - ✓ Signal and Image Processing Institute of the University of Southern California, http://sipi.usc.edu/
- Fraunhofer-Institute for Telecommunications, Heinrich-Hertz-Institut.
 - ✓ Wiegnand 教授实验室, http://www.hhi.fraunhofer.de/
- > TREC Video Retrieval Evaluation Home Page
 - √ http://www-nlpir.nist.gov/projects/trecvid/

学习工具-MATLAB Image Processing Toolbox

- Spatial image transformations
- Morphological operations
- Neighborhood and block operations
- Linear filtering and filter design
- > Transforms
- Image analysis and enhancement
- Image registration
- Deblurring
- Region of interest operations

学习资源-OpenCV

- ➢ OpenCV是Intel开发的开源计算机视觉库。主要由函数和少量C++类构成, 实现了图像处理和计算机视觉方面的很多通用算法
- http://www.sourceforge.net/projects/opencvlibrary
 - 图像数据的操作(分配、释放、复制、设置和转换)
 - 图像是视频的输入输出I/O (文件与摄像头的输入、图像和视频文件输出)
 - 矩阵和向量的操作以及线性代数的算法程序(矩阵积、解方程、特征值以及奇异值等)
 - 各种动态数据结构 (列表、队列、集合、树、图等)
 - 基本的数字图像处理(滤波、边缘检测、角点检测、采样与差值、色彩转换、形态操作、直方图、图像金字塔等)
 - · 结构分析(连接部件、轮廓处理、距离变换、各自距计算、模板匹配、Hough变换、多边形逼近、直 线拟合、椭圆拟合、Delaunay 三角划分等)
 - 摄像头定标(发现与跟踪定标模式、定标、基本矩阵估计、齐次矩阵估计、立体对应)
 - 运动分析 (光流、运动分割、跟踪)
 - 目标识别 (特征法、隐马尔可夫模型: HMM)
 - 基本的GUI (图像与视频显示、键盘和鼠标事件处理、滚动条)
 - 图像标注(线、二次曲线、多边形、画文字)

截汉上党 Wuhan University

谢谢!

2018.9.5.

