Hash Tables: Designing Hash Function

Division Method (or Remainder Method) Steps

- 1. We pick a collection of items.
- 2. Our hash function h, will take one item at a time and divide it by the number of slots.
- 3. The remainder from the division will be the hash value and will determine the slot number.

Hash Function h(item) = item % m (m = number of slots)

Item	Hash Value (slot number)
26	
35	
27	
17	
42	
70	
57	
45	
86	
4	

Once Hash values are calculated, let's put them in our hash table.

Index	Item	Collision Resolution with Linear Probing
0		
1		
2		
3		
4		
5		

6	
7	
8	
9	
10	

This hash table has several slots where multiple items are assigned.

Let's use **linear probing** to find new slots for these items. Use the other column of the table above to do it.

Exercises

Problem 1

In a hash table of size 13 which index positions would the following key pairs map to?

A. 1, 10

Answer

B. 13, 0

Answer

C. 1, 0

Answer

D. 2, 3

Answer

Problem 2

Suppose you are given the following set of keys to insert into a hash table that holds exactly 11 values:

113, 117, 97, 100, 114, 108, 116, 105, 99.

Which of the following best demonstrates the contents of the hash table after all the keys have been inserted using **open addressing with linear probing**?

Problem 3

Insert the keys 17, 3, 9, 39, 5, 6, 28, and 22 into a hash table of size 11 given using the hash function $h(x) = x \mod 11$. Use the Chaining method.