PROGRAMIRANJE I

P-02: Reprezentacija podataka u računaru

P-02: Reprezentacija podataka

Sadržaj predavanja

- osnovne informacione jedinice
- reprezentacija cjelobrojnih podataka
- reprezentacija znakovnih podataka
- reprezentacija brojeva u fiksnom zarezu
- reprezentacija brojeva u pokretnom zarezu

Podaci

Multimedija

```
SVE ONO ŠTO MOŽE DA SE MEMORIŠE, OBRAĐUJE I PRIKAZUJE POMOĆU
             DIGITALNOG RAČUNARA
Vrste podataka:
    Numerički podaci (brojevi)
         cijeli brojevi, realni brojevi, racionalni brojevi ...
    Znakovni podaci
         alfabet (slova), znakovi interpunkcije ...
    Logički podaci
         ISTINA, LAŽ
    Audio
    Slika
         vektorska / rasterska / kombinovana
```

PODATAK = eng. **DATA**, lat. **DATUM** (jed.) **DATA** (mn.)

ONO ŠTO JE DATO, ONO ŠTO JESTE, ONO ŠTO POSTOJI

SVEUKUPNOST KOJU KORISTIMO DA BI OPISIVALI STVARI, POJAVE...

Osnovne informacione jedinice

Osnovne informacione jedinice

bit (b) nosilac najmanje količine informacije nosilac elementarne (binarne) informacije veće jedinice:

1

SI prefiksi

kilobit - kb = 10^3 b = 1000 bita megabit - Mb = 10^6 b = 1000 kb gigabit - Gb = 10^9 b = 1000 Mb

binarni prefiksi

 Kibibit - Kib
 $= 2^{10}$ b = 1024 bita

 Mebibit - Mib
 $= 2^{20}$ b = 1024 Kib

 Gibibit - Gib
 $= 2^{30}$ b = 1024 Mib

. . .

bajt (B)

1 B = 8 b veće jedinice:

. . .

7 6 5 4 3 2 1 0

SI prefiksi

kilobajt - kB = 10^3 B = 1000 bajtova megabajt - MB = 10^6 B = 1000 kB gigabajt - GB = 10^9 B = 1000 MB terabajt - TB = 10^{12} B = 1000 GB

binarni prefiksi

Kibibajt - KiB = 2^{10} B = 1024 bajta Mebibajt - MiB = 2^{20} B = 1024 KiB Gibibajt - GiB = 2^{30} B = 1024 MiB Tebibajt - TiB = 2^{40} B = 1024 GiB

•

Reprezentacija cijelih brojeva

Cjelobrojni podaci (INTEGER)

Neoznačeni (unsigned integer)

prirodni brojevi + nula

Označeni (signed integer)

cijeli brojevi (pozitivni + negativni + nula)

U računaru se koriste sljedeći formati

bajt

(byte) - B

riječ

(word) - W=2B=16b

dvostruka riječ

(doubleword) - D=4B=32b

četvorostruka riječ

(quadword) - Q = 8B = 64b

osmostruka riječ

(double quadword) =16B=128b

Reprezentacija cijelih brojeva

Neoznačeni cjelobrojni podaci (unsigned integer)

cijeli brojevi bez predznaka (pozitivni + nula)

niz od 8, 16, 32 ili 64 bita

$$b_{n-1}$$
 b_{n-2} OOO b_1 b_0

vrijednost

$$V = \sum_{i=0}^{n-1} b_i \cdot 2^i$$

Primjer:

Reprezentacija cijelih brojeva

Opseg vrijednosti neoznačenih cjelobrojnih podataka

	byte									
	7	6	5	4	3	2	1	0		
minimalna vrijednost	0	0	0	0	0	0	0	0		
•	V _{min} =0									
	7	6	5	4	3	2	1	0		
maksimalna vrijednost	1	1	1	1	1	1	1	1		
-	V	= 2	55	= 2	256	- 1	=	2 8		

$$0 \le V \le 2^n\text{-}1$$

form	nat	opseg vrijednosti						
byte	(B = 8b)	0-28-1	0 – 255					
word	(W = 16b)	0-216-1	0 – 65535					
doubleword*	(D = 32b)	0 - 2 ³² -1	0 - 4294967295					
quadword	(Q = 64b)	0 - 2 ⁶⁴ -1	0 – ???					

Reprezentacija cijelih brojeva

Primjer: **Predstaviti broj 19 kao neoznačeni** cjelobrojni podatak tipa: a) byte, b) word.

word

Reprezentacija u memoriji

Memorija je bajt-adresibilna

Bajt je najmanja veličina podatka koji se u memoriju upisuje ili iz nje čita

LE – Little Endian

LSB se smješta na najnižu adresu

BE - Big Endian

MSB se smješta na najnižu adresu

Reprezentacija cijelih brojeva

Označeni cjelobrojni podaci (signed integer)

cijeli brojevi sa predznakom (pozitivni + nula + negativni)

niz od 8, 16, 32 ili 64 bita

vrijednost

Primjer:

bajt

 7
 6
 5
 4
 3
 2
 1
 0
 7
 6
 5
 4
 3
 2
 1
 0

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 1

$$2^0 - 2^7 = 1$$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$
 $2^7 = 1$ <

Reprezentacija cijelih brojeva

Opseg vrijednosti označenih cjelobrojnih podataka

$$-2^{n-1} \le V \le 2^{n-1} - 1$$

forn	nat	opseg vrijednosti						
byte	(B=8b)	-2 ⁷ 2 ⁷ -1 -128 127						
word	(W = 16b)	-2 ¹⁵ 2 ¹⁵ -1	-32768 32767					
doubleword	(D = 32b)	-2 ³¹ 2 ³¹ -1	-2147483648 2147483647					
quadword	(Q = 64b)	-2 ⁶³ 2 ⁶³ -1	???					

Reprezentacija cijelih brojeva

Predstavljanje negativnih cijelih brojeva

Osnovna ideja

$$x + (-x) = 0$$

Ako ima bit prenosa, može da se zanemari

$$x + (-x) = (1 \ 0..0)_2^{n+1} = (1..1)_2^n + 1$$

$$x + (-x) = (1 \ 0..0)_2^{n+1} = (1..1)_2^n + 1$$

$$(-x) = (1..1)_2^n - x + 1$$

$$(-x) = x + 1$$

Tehnika komplementiranja za predstavljanje negativnih brojeva

1. Nepotpuno komplementiranje / prvi komplement /

2. Potpuno komplementiranje / drugi komplement /

Reprezentacija cijelih brojeva

Primjer: Predstaviti broj -19 kao označeni cjelobrojni podatak.

Primjer: Predstaviti broj -1 kao označeni cjelobrojni podatak.

7 6	5	4	3	2	1	0		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0 0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
1 1	1	1	1	1	1	0	1. k	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
0 0	0	0	0	0	0	1	+1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
1 1	1	1	1	1	1	1	-1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Reprezentacija znakova

Reprezentacija znakova (karaktera)

Računar raspolaže odgovarajućim skupom znakova:

- upravljački znakovi npr. za upravljanje štampačem i sl.
- slova, cifre, znakovi interpunkcije, grafički simboli

Znakovi se kodiraju neoznačenim cjelobrojnim vrijednostima

ako bi se koristio jedan bit moguće kodirati samo 2 znaka (npr. A i B)

> 1 0 A B

ako bi se koristilla dva bita moguće kodirati 4 znaka

Koriste se 6, 7, 8 i 16-bitni kodovi

• 6-bitni kodovi

2⁶ = 64 znaka (npr. 26 slova, 10 cifara i 28 drugih)

• 7-bitni kodovi

2⁷ = 128 znakova najpoznatiji ASCII

(American Standard Code for Inf. Interchange)

• 8-bitni kodovi

2⁸ = 256 znakova EBCDIC, prošireni ASCII

16-bitni kodovi

2¹⁶ = 65536 znakova UNICODE (Windows)

Reprezentacija znakova

ASCII kod

Brojevi u fiksnom zarezu

Reprezentacija brojeva u fiksnom zarezu

Brojevi u fiksnom zarezu imaju najširu primjenu u administraciji

Primjenjuje se cjelobrojna aritmetika, pri čemu se u vidu ima položaj decimalne tačke

Najčešće se primjenjuje BCD kodiranje (Binary Coded Decimal)

Binarno kodirane decimalne cifre

DEC	0	1	2	3	4	5	6	7	8	9
BCD	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001

`5"

Nepakovani BCD podaci

Jedna BCD cifra smješta se u jedan bajt

Pakovani BCD podaci

Dvije BCD cifre smještaju se (pakuju) u jedan bajt

Brojevi u pokretnom zarezu

Reprezentacija brojeva u pokretnom zarezu

Brojevi u pokretnom zarezu služe za predstavljanje realnih brojeva

Često se koriste sinonimi pokretni (plivajući) zarez (tačka)

Opšti oblik broja u pokretnom zarezu (floating point - FP)

Primjer:

- 125.34 = - 12.534
$$\cdot$$
 10¹ = - 1.2534 \cdot 10² = - 0.12534 \cdot 10³
- 125.34 = (-1)¹ \cdot 0.12534 \cdot 10³

Različiti proizvođači – različiti formati !!!

IEEE 754 FP standard

```
Najpoznatiji standard (IEEE 754-1985, IEEE 754-2008 = ISO/IEC/IEEE 60559:2011)
Najšire primjenjivan u praksi (Intel, Motorola, ...)
```

Postoji nekoliko formata FP podataka:

```
obična preciznost (single precision) – 32 bita (IEEE 754-2008: binary32)

S E F

dvostruka preciznost (double precision) – 64 bita (IEEE 754-2008: binary64)

1 11 52

S E F

proširena preciznost (extended precision) – 80 bita
```

```
S E F
```

```
četvorostruka preciznost (quadruple precision) – 128 bita (IEEE 754-2008: binary128)
```

S E F

Br

Brojevi u pokretnom zarezu

FP podaci u običnoj preciznosti

0 0 0 0 0 0 0 0	za predstavljanje nule i malih vrijednosti
0 0 0 0 0 0 0 1	modifikovani eksponent (ME): 1 254
000 000	stvarni eksponent (SE): $SE = ME - 127$
1 1 1 1 1 1 0 254	-126 +127
1 1 1 1 1 1 1 255	za predstavljanje beskonačnosti

Primjer: Prikazati broj 19.25 kao FP podatak u običnoj preciznosti.

Najmanja vrijednost normalizovanog FP podatka

2⁻¹²⁶ i -2⁻¹²⁶ su nuli najbliže vrijednosti koje mogu da se prikažu

FP podaci u dvostrukoj preciznosti

nula	S 0	0
beskonačnost	S 111 1	0
nije broj (NaN)	S 111 1	≠ 0