Efficient Classification of Pulsars

Syd Rothman

January 22, 2020

Target audience

Proposal to a lab planning to complete large data collection in the coming year on the best model for eliminating noise from pulsar candidate datasets.

Current practices:

- Survey-specific models
- Manual inspection

2019

Challenges

Pulsar candidate data volume is rising significantly. Most of these candidates are noise.

Lab Implications:

- More time spent identifying valid candidates than examining them
- Limits potential for real-time classification

Solution

Focus on creating models effective at identifying noise in big data that can be applied as a initial candidate filter.

Lab Applications:

- Survey-specific models can then be applied to the refined data set
- Manual inspection time and telescope time can then be reallocated

Methods

This project used a combination of undersampling and SMOTE to address a large data class imbalance. Train_test_split and kfold validation were both used to ensure model integrity.

Model Performance

Logistic Regression, Support Vector Machine, Naive Bayes, KNN, Linear SVC, Gradient Descent, Models Used Decision Tree, Random Forest Looping function through kfolds that accepts a Mechanics model and a scoring metric as arguments Metrics Used Recall score, precision score, accuracy score, fl score, GridSearch to refine parameter tuning Next Steps Run comparisons of data resampled differently

Top Performing Model

Random Forest

Highest mean accuracy score over resampled and validated data at 95.3

Client Implications:

- Highest mean score over kfold validation in 3 of 4 metrics
- Low recall and precision scores, and by extension low f1 score, are likely due to data resampling

Thank You