ADLxMLDS 2017 Fall HW3 - Game Playing

B05901189 吳祥叡

December 16, 2017

1 Basic Performance

1.1 Model Description

```
1. Policy Gradient:
  限制只使用 action 1, 2, 3 (NoOp, Up, Down)
  input 使用兩個 frame 相減
  input_image: (80, 80, 1)
  Conv2d(16, size=8, stride=4)
  Conv2d(32, size=4, stride=2)
  Flatten([32*(10**2)])
  Dense(128, activation=relu)
  Dense(action_num, activation=sigmoid)
  optimizer = RMSProp(lr=1e-4, decay=0.99)
2. DQN:
  input_images: (84, 84, 1)
  input_actions (4)
  Conv2d(32, size=8, stride=4)
  Conv2d(64, size=4, stride=2)
  Conv2d(64, size=3, stride=1)
  Flatten([64*(11**2)])
  Concat(input_actions)
  Dense(512, activation=lrelu(alpha=0.01))
  Dense(1)
  optimizer = RMSProp(lr=1e-4, decay=0.99)
  Gamma = 0.99
  main network update freq = 4 steps
  target\_network\ update\_freq = 1000\ steps
  explore_rate: 1 to 0.05 in first 1M steps
```

1.2 Learning Curves

PG 共訓練約 4000 episodes, 取 30 episode 的移動平均作圖。 DQN 共訓練約 3M episodes, 取 100 episode 的移動平均作圖。

Figure 1: Learning Curve of PG

Figure 2: Learning Curve of DQN

2 Experimenting with DQN hyperparameters

因為一開始都很習慣的直接用 relu,直到和助教一樣用了很特殊的 leaky relu 作為最後一層 hidden layer 的 activation function 才有明顯的進步。所以決定試驗另五種 activation function。分別實驗了 relu,parametric relu,lrelu(α =0.001),lrelu(α =0.01),以及最近蠻常聽到宣稱在比較深網路裡表現很好的 swish。由上圖看出 lrelu 在使用

Figure 3: 比較不同 activation function

比較大的 α 遠勝其他 activation,而 swish 也沒有傳言中那麼好用,儘管函數長得很像 relu,但在這個 case 甚至完全壞掉。推測 swish 可能比較適合用來取代 convolution layer 中的 activation。

3 Bonus

3.1 Improvements on DQN

實做了 Double DQN 和 Prioritized Replay Memory。以下簡略敘述做法和比較方法:

3.1.1 Double DQN

為了解決 Q 值的 overestimate 問題, Double DQN 將原始的 main_network update target $r_{i+1} + maxQ'(s_i, a)$ 改為: $r_{i+1} + Q(s_i, argmax(Q'(s_i, a)))$ 比較時都使用同樣的 network 和同樣的 hyperparameter。實做 double dgn 發現在後段

Figure 4: 比較原始 dqn 及 double dqn

learning curve 有比較原始 dqn 上方確實收斂比較好。實驗時發現同樣 12 分的 clipped reward 在實際用 test.py 跑出來的分數其實可以差很多, 前段在約 20000 episode 的時候實際大約只有 30 分, 而到後段可以到 60 分。

3.1.2 Proportional Prioritized Replay Memory

利用 Sum Tree 資料結構實做,達到 O(log(N)) 的 insert 以及 sample 複雜度。並且使用 Importance-Sampling Weight 平衡被 priority 影響的取樣分佈。

其中 priority 計算方式為: $TD = abs(Q_{pred} - Q_{target}) = abs(Q_{pred} - \gamma(r_i + maxQ_{i+1}))$ $p_i = min(1, TD_i)^{\alpha}$

IS Weight 計算方式為: $(p_i/min(p)))^{-\beta}$

實驗時使用兩組參數,分別為

黑色: α =0.6, β =0.4 紅色: α =0.7, β =0.5 黄色: α =0.3, β =0.3。 對照藍色曲線為 random sample 的原始方法,前兩種參數是參考原始 paper 裡面經由 grid search 所得到較好了參數。但原始 paper 為了要有通用性是比較了全部 atari 遊戲的結果。此處實驗顯示使用比較多的 priority 因素反而會使收斂速度和整體表現下降。因此我多實驗了黃色的一參數,看起來比 paper 上的參數好一些,但沒有超越原始的方法。

Figure 5: 比較原始有無 prioritized 的 memory