

Lecture 3 Divide-and-Conquer

Algorithm Design

zhangzizhen@gmail.com

QQ group: 117282780

Definition

 A divide and conquer algorithm works by recursively breaking down a problem into two or more sub-problems of the same or related type, until these become simple enough to be solved directly. The solutions to the subproblems are then combined to give a solution to the original problem.

Merge-sort

```
procedure MERGE-SORT(A, p, r)
    if p < r
         then q \leftarrow \lfloor (p+r)/2 \rfloor
             MERGE-SORT(A, p, q)
             MERGE-SORT(A, q + 1, r)
             MERGE(A, p, q, r)
procedure MERGE(A, p, q, r)
    n_1 \leftarrow q - p + 1; \ n_2 \leftarrow r - q
    allocate arrays L[1 \dots n_1 + 1] and R[1 \dots n_2 + 1]
    for i \leftarrow 1 to n_1
         do L[i] \leftarrow A[p+i-1]
    for j \leftarrow 1 to n_2
        do R[i] \leftarrow A[q+i]
    L[n_1+1] \leftarrow \infty; R[n_2+1] \leftarrow \infty
    i \leftarrow 1; j \leftarrow 1
    for k \leftarrow p to r
         do if L[i] \leq R[j]
             then A[k] \leftarrow L[i]
                 i \leftarrow i + 1
             else A[k] \leftarrow R[i]
                 j \leftarrow j + 1
```

- Described by recursive equation
- Suppose T(n) is the running time on a problem of size n.
- $T(n) = \begin{cases} \Theta(1) & \text{if } n \leq n_c \\ aT(n/b) + D(n) + C(n) & \text{if } n > n_c \end{cases}$

where a: number of subproblems

n/b: size of each subproblem

D(n): cost of divide operation

C(n): cost of combination operation

- **Divide**: $D(n) = \Theta(1)$
- Conquer: a=2,b=2, so 2T(n/2)
- Combine: $C(n) = \Theta(n)$
- $T(n) = \int \Theta(1)$ if n=1 $2T(n/2) + \Theta(n)$ if n>1
- $T(n) = \int c$ if n=12T(n/2) + cn if n>1

- The recursive equation can be solved by recursive tree.
- T(n) = 2T(n/2) + cn
- Ig n+1 levels, cn at each level, thus
- Total cost for merge sort is: $T(n) = cn \log n + cn = \Theta(n \log n)$.
- Question: best, worst, average?

Figure 2.5 The construction of a recursion tree for the recurrence T(n) = 2T(n/2) + cn. Part (a) shows T(n), which is progressively expanded in (b)-(d) to form the recursion tree. The fully expanded tree in part (d) has $\lg n + 1$ levels (i.e., it has height $\lg n$, as indicated), and each level contributes a total cost of cn. The total cost, therefore, is $cn \lg n + cn$, which is $\Theta(n \lg n)$.

Master theorem

Theorem 4.1 (Master theorem)

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n) ,$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) has the following asymptotic bounds:

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Exercise

Use the master method to give tight asymptotic bounds for the following recurrences.

(a)
$$T(n)=2T(n/4)+1$$

(b)
$$T(n)=2T(n/4)+\sqrt{n}$$

(c)
$$T(n)=2T(n/4)+n$$

(d)
$$T(n)=2T(n/4)+n^2$$

Multiplication of Large Integers

Consider the problem of multiplying two (large) *n*-digit integers represented by arrays of their digits such as:

$$A = 12345678901357986429$$
 $B = 87654321284820912836$

The grade-school algorithm:

$$a_1 \ a_2 \dots \ a_n \ b_1 \ b_2 \dots \ b_n \ (d_{10}) \ d_{11} d_{12} \dots \ d_{1n} \ (d_{20}) \ d_{21} d_{22} \dots \ d_{2n} \ \dots \ (d_{n0}) \ d_{n1} d_{n2} \dots \ d_{nn}$$

Efficiency: $\Theta(n^2)$ single-digit multiplications

First Divide-and-Conquer Algorithm

A small example: A * B where A = 2135 and B = 4014

$$A = (21 \cdot 10^2 + 35), B = (40 \cdot 10^2 + 14)$$

So, A * B =
$$(21 \cdot 10^2 + 35) * (40 \cdot 10^2 + 14)$$

= $21 * 40 \cdot 10^4 + (21 * 14 + 35 * 40) \cdot 10^2 + 35 * 14$

In general, if $A = A_1A_2$ and $B = B_1B_2$ (where A and B are *n*-digit, A_1 , A_2 , B_1 , B_2 are n/2-digit numbers),

$$A * B = A_1 * B_1 \cdot 10^n + (A_1 * B_2 + A_2 * B_1) \cdot 10^{n/2} + A_2 * B_2$$

Recurrence for the number of one-digit multiplications M(n):

$$M(n) = 4M(n/2), M(1) = 1$$

Solution: $M(n) = n^2$

Second Divide-and-Conquer Algorithm

A * B = A_1 * B_1 · 10^n + $(A_1$ * B_2 + A_2 * B_1) · $10^{n/2}$ + A_2 * B_2 The idea is to decrease the number of multiplications from 4 to 3:

$$(A_1 + A_2) * (B_1 + B_2) = A_1 * B_1 + (A_1 * B_2 + A_2 * B_1) + A_2 * B_2$$

i.e., $(A_1 * B_2 + A_2 * B_1) = (A_1 + A_2) * (B_1 + B_2) - A_1 * B_1 - A_2 * B_2$, which requires only 3 multiplications at the expense of 3 extra add/sub.

Recurrence for the number of multiplications M(n):

$$M(n) = 3M(n/2), M(1) = 1$$

Solution: $M(n) = 3^{\log_2 n} = n^{\log_2 3} \approx n^{1.585}$

Karatsuba Multiplication Algorithm

KARATSUBA-MULTIPLY(x, y, n)

```
IF (n=1)
   RETURN x \times v.
ELSE
   m \leftarrow [n/2].
   a \leftarrow |x/2^m|; b \leftarrow x \mod 2^m.
   c \leftarrow |y/2^m|; d \leftarrow y \mod 2^m.
   e \leftarrow \text{KARATSUBA-MULTIPLY}(a, c, m).
   f \leftarrow \text{KARATSUBA-MULTIPLY}(b, d, m).
   g \leftarrow \text{KARATSUBA-MULTIPLY}(a - b, c - d, m).
   RETURN 2^{2m} e + 2^m (e + f - g) + f.
```

Example of Large-Integer Multiplication

2135 * 4014

=
$$(21*10^2 + 35)*(40*10^2 + 14)$$

= $(21*40)*10^4 + c1*10^2 + 35*14$
where c1 = $(21+35)*(40+14) - 21*40 - 35*14$, and $21*40 = (2*10 + 1)*(4*10 + 0)$
= $(2*4)*10^2 + c2*10 + 1*0$
where c2 = $(2+1)*(4+0) - 2*4 - 1*0$, etc.

 This process requires 9 digit multiplications as opposed to 16.

Matrix multiplication

- Given two n-by-n matrices A and B, compute C = AB.
- Grade-school. $\Theta(n^3)$ arithmetic operations.

$$\begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \times \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix}$$

$$\begin{bmatrix} .59 & .32 & .41 \\ .31 & .36 & .25 \\ .45 & .31 & .42 \end{bmatrix} = \begin{bmatrix} .70 & .20 & .10 \\ .30 & .60 & .10 \\ .50 & .10 & .40 \end{bmatrix} \times \begin{bmatrix} .80 & .30 & .50 \\ .10 & .40 & .10 \\ .10 & .30 & .40 \end{bmatrix}$$

Block matrix multiplication

$$C_{_{11}} \ = \ A_{11} \times B_{11} \ + \ A_{12} \times B_{21} \ = \ \begin{bmatrix} 0 & 1 \\ 4 & 5 \end{bmatrix} \times \begin{bmatrix} 16 & 17 \\ 20 & 21 \end{bmatrix} \ + \ \begin{bmatrix} 2 & 3 \\ 6 & 7 \end{bmatrix} \times \begin{bmatrix} 24 & 25 \\ 28 & 29 \end{bmatrix} \ = \ \begin{bmatrix} 152 & 158 \\ 504 & 526 \end{bmatrix}$$

Matrix multiplication

- To multiply two n-by-n matrices A and B:
 - Divide: partition A and B into 1/2n-by-1/2n blocks.
 - Conquer: multiply 8 pairs of 1/2n-by-1/2n matrices, recursively.
 - Combine: add appropriate products using 4 matrix additions.

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$\begin{bmatrix} C_{11} & = (A_{11} \times B_{11}) + (A_{12} \times B_{21}) \\ C_{12} & = (A_{11} \times B_{12}) + (A_{12} \times B_{22}) \\ C_{21} & = (A_{21} \times B_{11}) + (A_{22} \times B_{21}) \\ C_{22} & = (A_{21} \times B_{12}) + (A_{22} \times B_{22}) \end{bmatrix}$$

Running time

$$T(n) = \underbrace{8T(n/2)}_{\text{recursive calls}} + \underbrace{\Theta(n^2)}_{\text{add, form submatrices}} \Rightarrow T(n) = \Theta(n^3)$$

Strassen's method

Key idea: multiply 2-by-2 blocks with only 7 multiplications.
 (plus 11 additions and 7 subtractions)

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$C_{11} = P_5 + P_4 - P_2 + P_6$$

 $C_{12} = P_1 + P_2$
 $C_{21} = P_3 + P_4$
 $C_{22} = P_1 + P_5 - P_3 - P_7$

$$P_{1} \leftarrow A_{11} \times (B_{12} - B_{22})$$

$$P_{2} \leftarrow (A_{11} + A_{12}) \times B_{22}$$

$$P_{3} \leftarrow (A_{21} + A_{22}) \times B_{11}$$

$$P_{4} \leftarrow A_{22} \times (B_{21} - B_{11})$$

$$P_{5} \leftarrow (A_{11} + A_{22}) \times (B_{11} + B_{22})$$

$$P_{6} \leftarrow (A_{12} - A_{22}) \times (B_{21} + B_{22})$$

$$P_{7} \leftarrow (A_{11} - A_{21}) \times (B_{11} + B_{12})$$

Pf.
$$C_{12} = P_1 + P_2$$

= $A_{11} \times (B_{12} - B_{22}) + (A_{11} + A_{12}) \times B_{22}$
= $A_{11} \times B_{12} + A_{12} \times B_{22}$.

Strassen's algorithm

STRASSEN(n, A, B)

assume n is a power of 2

IF (n = 1) RETURN $A \times B$.

Partition A and B into 2-by-2 block matrices.

$$P_1 \leftarrow \text{STRASSEN}(n / 2, A_{11}, (B_{12} - B_{22})).$$

$$P_2 \leftarrow \text{STRASSEN}(n / 2, (A_{11} + A_{12}), B_{22}).$$

$$P_3 \leftarrow \text{STRASSEN}(n / 2, (A_{21} + A_{22}), B_{11}).$$

$$P_4 \leftarrow \text{STRASSEN}(n/2, A_{22}, (B_{21} - B_{11})).$$

$$P_5 \leftarrow \text{STRASSEN}(n / 2, (A_{11} + A_{22}) \times (B_{11} + B_{22})).$$

$$P_6 \leftarrow \text{STRASSEN}(n / 2, (A_{12} - A_{22}) \times (B_{21} + B_{22})).$$

$$P_7 \leftarrow \text{STRASSEN}(n / 2, (A_{11} - A_{21}) \times (B_{11} + B_{12})).$$

$$C_{11} = P_5 + P_4 - P_2 + P_6.$$

$$C_{12} = P_1 + P_2.$$

$$C_{21} = P_3 + P_4$$

$$C_{22} = P_1 + P_5 - P_3 - P_7$$

RETURN C.

keep track of indices of submatrices (don't copy matrix entries)

Analysis of Strassen's algorithm

Theorem. Strassen's algorithm requires O(n^{2.81}) arithmetic operations to multiply two n-by-n matrices.

$$T(n) = \underbrace{7T(n/2)}_{\text{recursive calls}} + \underbrace{\Theta(n^2)}_{\text{add, subtract}} \implies T(n) = \Theta(n^{\log_2 7}) = O(n^{2.81})$$

- Q. What if n is not a power of 2?
- A. Could pad matrices with zeros.

$$\begin{bmatrix} 1 & 2 & 3 & 0 \\ 4 & 5 & 6 & 0 \\ 7 & 8 & 9 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 10 & 11 & 12 & 0 \\ 13 & 14 & 15 & 0 \\ 16 & 17 & 18 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 84 & 90 & 96 & 0 \\ 201 & 216 & 231 & 0 \\ 318 & 342 & 366 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Closest Pair

- Given a set $S = \{p_1, p_2, ..., p_n\}$ of n points in the plane find the two points of S whose distance is the smallest.
- 1-d

2-d

Closest Pair - Naïve Algorithm

```
Pseudo code

for each pt i∈S

for each pt j∈S and i<>j
{

    compute distance of i, j

    if distance of i, j < min_dist

       min_dist = distance i, j
}

return min_dist
```

- Time Complexity— O(n²)
- Can we do better?

- We consider a divide-and-conquer algorithm for CLOSEST-PAIR in 1 dimension (d = 1).
- Partition S, a set of points on a line, into two sets S_1 and S_2 at some point m such that for every point $p \in S_1$ and $q \in S_2$, p < q.
- Solving CLOSEST-PAIR recursively on S_1 and S_2 separately produces $\{p_1, p_2\}$, the closest pair in S_1 , and $\{q_1, q_2\}$, the closest pair in S_2 .
- Let δ be the smallest distance found so far:

$$\delta = \min(|p_2 - p_1|, |q_2 - q_1|)$$

• The closest pair in S is either $\{p_1, p_2\}$ or $\{q_1, q_2\}$ or some $\{p_3, q_3\}$ with $p_3 \in S_1$ and $q_3 \in S_2$.

- To check for such a point $\{p_3, q_3\}$, is it necessary to test every possible pair of points in S_1 and S_2 ?
- Note that if $\{p_3, q_3\}$ is to be closer than δ (i.e., $|q_3 p_3| < \delta$), then both p_3 and q_3 must be within δ of m.
- Because δ is the distance between the closest pair in either S₁ or S₂, a semi-closed interval of length δ can contain at most 1 point.
- For the same reason, there can be at most 1 point of S_2 within δ of m
- So, the number of distance computations needed to check for a closest pair $\{p_3, q_3\}$ with $p_3 \in S_1$ and $q_3 \in S_2$ is 1, not $O(N^2)$.
- Thus a divide-and-conquer algorithm can solve 1-dimensional CLOSEST-PAIR in O(N log N) time.

Divide-and-conquer for d = 1procedure CPAIR1(S) Input: X[1:N], N points of S in one dimension. Output: δ , the distance between the two closest points. begin if (|S| = 2) then 3 $\delta = |X[2] - X[1]|$ else if (|S| = 1) then 5 $\delta = \infty$ 6 else begin 8 Construct(S_1, S_2) /* $S_1 = \{p: p \le m\}, S_2 = \{p: p > m\} */$ 9 $\delta_1 = \text{CPAIR1}(S_1)$ 10 $\delta_2 = \text{CPAIR1}(S_2)$ 11 $p = \max(S_1)$ 12 $q = \min(S_2)$ 13 $\delta = \min(\delta_1, \delta_2, q - p)$ 14 end 15 endif 16 return δ 17 end

- Divide the problem into two equal-sized sub problems
- Solve those sub problems recursively
- Merge the sub problem solutions into an overall solution

- Assume that we have solutions for sub problems S1, S2.
- How can we merge in a time-efficient way?
 - The closest pair can consist of one point from S₁ and another from S₂
 - Testing all possibilities requires: $O(n/2) \cdot O(n/2) \in O(n^2)$
 - Not good enough

- Partition two dimensional set S into subsets S_1 and S_2 by a vertical line I at the median x coordinate of S.
- Solve the problem recursively on S_1 and S_2 .
- Let $\{p1, p2\}$ be the closest pair in S_1 and $\{q1, q2\}$ in S_2 .
- Let δ_1 = distance(p1,p2) and δ_2 = distance(q1,q2)
- Let $\delta = \min(\delta_1, \delta_2)$

- In order to merge we have to determine if exists a pair of points $\{p, q\}$ where $p \in S_1, q \in S_2$ and distance $(p, q) < \delta$.
- If so, p and q must both be within δ of l.
- Let P_1 and P_2 be vertical regions of the plane of width δ on either side of I.
- If {p, q} exists, p must be within P₁ and q within P₂.
- However, every point in S_1 and S_2 may be a candidate, as long as each is within δ of I, which implies: $O(n/2) \cdot O(n/2) = O(n^2)$

Can we do better?

- For a point p in P₁, which portion of P₂ should be checked?
- We only need to check the points that are within δ of p.
- Thus we can limit the portion of P2.
- The points to consider for a point p must lie within $\delta \times 2\delta$ rectangle R.
- At most, how many points are there in rectangle R?

How many points are there in rectangle *R*?

- Since no two points can be closer than δ , there can only be at most 6 points
- Therefore, $6 \cdot O(n/2) \in O(n)$
- Thus, the time complexity is
 - *O*(*n* log *n*)

How do we know which 6 points to check?

How do we know which 6 points to check?

- Project p and all the points of S_2 within P_2 onto I.
- Only the points within δ of p in the y projection need to be considered (max of 6 points).
- After sorting the points on y coordinate we can find the points by scanning the sorted lists. Points are sorted by y coordinates.
- To <u>prevent</u> resorting in O(n log n) in each merge, two previously sorted lists are merged in O(n).

Time Complexity: O(n log n)

Thank you!

