Week 3 3.2 Discover Note

Lecture 7: Centre

1. Numerical Summaries

- Reduce all the date to 1 simple number ("statistic")
 - This loses a lot of information...
 - ...but allows easy communication and comparison.
- Major Features:
 - Maximum
 - Minimum
 - Centre (mean, median)
 - Spread (standard deviation, range, IQR)

2. Mean and Median

Mean (平均数): the average of the data.

- Mean = Sum of data/Size of data
- Commands:

```
# Calculate the mean:
mean(data$Sold)
# To focus specifically on a variable/variables:
mean(data$Sold[data$Type=="House" & data$Bedrooms=="4"])
# ↑ It means that only choose "houses" with "4" bedrooms in the data of all the property sold.
```

• Mean is the **balancing point** in the data. On a histogram:

```
# Create a histogram:
hist(data$Sold, main="Newtown Properties", xlab="Price (in 1000s)")
# Add a vertical (v) "green" (col=) line (adline) of mean:
abline(v=mean(data$Sold), col="green")
```


Median (中位数): the **middle data point**, when the data is ordered from *smallest to largest*.

- Median =
 - the unique middle point (in an *odd* sized dataset)
 - the average of the 2 middle points (in an even sized dataset)
- Commands:

```
# Order the data (ranked data):
sort(data$sold)
# Measure the length:
length(data$sold)
# Calculate the median:
median(data$sold)
# To focus specifically on a variable/variables:
median(data$sold[data$Type=="House" & data$Bedrooms=="4"])
```

• Median is the **half way point** in the data. On a histogram:

```
# Create a histogram:
hist(data$Sold)
# Add a vertical (v) "purple" (col=) line (adline) of median:
abline(v=median(data$Sold), col="purple")
```

hist(data\$Sold[data\$Type=="House" & data\$Bedrooms=="4"], main="Newtown 4 Bedrooms", xlab="Price (in 1000s)") abline(v=mean(data\$Sold[data\$Type=="House" & data\$Bedrooms=="4"]),col="green") abline(v=median(data\$Sold[data\$Type=="House" & data\$Bedrooms=="4"]),col="purple")

Newtown 4 Bedrooms

• Both on a boxplot:

```
boxplot(data$Sold, main="Newtown Properties")
abline(v=mean(data$Sold), col="green")
abline(v=median(data$Sold), col="purple")
```

```
boxplot(data$Sold[data$Type=="House" & data$Bedrooms=="4"], main = "Newtown 4B Properties")
abline(h=mean(data$Sold[data$Type=="House" & data$Bedrooms=="4"]),col="green")
abline(h=median(data$Sold[data$Type=="House" & data$Bedrooms=="4"]),col="purple")
```

Newtown 4B Properties

3. Robustness and Comparisons

Robustness (顽健性): The median is said to be **robust** and is a good summary for skewed data as it is *not affected by* **outliers**.

Comparison: The difference between the mean and the median can be an indication of the shape of the data.

Data Types	Mean Compared to Median
Symmetric	Same
Left Skewed	Smaller
Right Skewed	Larger

Lecture 8: Spread

1. Standard Deviation

- To measure the spread, we can calculate the gaps.
- Commands:

```
# Measure all the gaps:
gaps = data$Sold - mean(Data$Sold)
# To check the maximum in the gaps:
max(gaps)
```

```
gaps = data$Sold - mean(data$Sold)
gaps

## [1] 567.857143 -157.142857 -127.142857 -627.142857 -757.142857
## [6] 692.857143 -732.142857 -667.142857 -782.142857 542.857143
## [11] -32.142857 167.857143 -408.142857 -452.142857 542.857143
## [16] 197.857143 182.857143 -167.142857 -1037.142857 532.857143
## [21] -687.142857 -452.142857 -487.142857 442.857143 192.857143
## [26] -652.142857 -7.142857 145.857143 1402.857143 192.857143
## [36] -307.142857 -472.142857 -762.142857 52.857143 -98.142857
## [36] -307.142857 1742.857143 1002.857143 -637.142857
## [41] -715.142857 1742.857143 382.857143 342.857143 392.857143
## [46] 827.857143 592.857143 382.857143 342.857143 392.857143
## [51] 192.857143 -546.142857 -667.142857 -92.142857 892.857143
## [56] -595.142857
```

```
## [1] 1742.857
```

RMS(Root Mean Square) (均方根): the average of a set of numbers, regardless of the signs.

- Steps (in S-M-R order): square the numbers, then mean the result, then root the overall result:
- Commands:

max(gaps)

```
# Apply RMS to the gaps:
sqrt(mean(gaps^2))
```

SD (Standard Deviation)(标准差): measures the spread of the data.

- Difference between RMS and SD: RMS is based on **population**, while SD is based on **samples**. So, SD may need to multiply sqrt(n-1/n) to make the result on population (n).
- Commands:

```
# Calculate the standard deviation:
sd(data$sold)
# Adjusting (to make the sd equal to RMS)
sd(data$sold)*sqrt(55/56)

# Another convenient way by installing multicon package:
install.packages("multicon")
library(multcon)
popsd(data$sold) # popsd means sd on population
```

2. Standard Units (Z Score)

- Standard Units = (data point mean) / SD
- For many data sets, we find that roughly:

percentage of Data	Distance from Mean	
68%	Within 1 SD	
95%	Within 2 SDs	
99.7%	Within 3 SDs	

Standard Unit of A Data Point = how many standard deviations are below the mean.

IQR (Interquartile Range) (四分位距): Range of the middle 50% of the data.

- IQR = Q3 (3rd Quartile) Q1 (1st Quartile)
 - The median is the 50% or 2nd quartile (Q2)
- Commands:

```
# List all the quartiles of the data:
quantile(data$sold)
# Calculate the IQR:
quantile(data$sold)[4] - quantile(data$sold)[2]
```

```
quantile(data$Sold)

## 0% 25% 50% 75% 100%
## 370.00 860.75 1387.50 1782.50 3150.00

quantile(data$Sold)[4] - quantile(data$Sold)[4]
## 75%
## 921.75
```

IQR on a boxplot: The **length of the box** in the boxplot, representing the span of **50%**.

- The **lower** and **upper thresholds** are a distance of 1.5 from the quartiles:
 - LT: Q1 1.5IQR
 - UT: Q3 + 1.5IQR
- Data outside these thresholds is considered an **outlier** (Extreme reading).

```
boxplot(data$Sold)
iqr=quantile(data$Sold)[4] - quantile(data$Sold)[2]
abline(h=median(data$Sold),col="green")
abline(h=quantile(data$Sold)[2]- 1.5*iqr,col="purple")
abline(h=quantile(data$Sold)[4]+ 1.5*iqr,col="purple")
```


3. Reporting

- IQR and median are both **robust**, so they are suitable for **skewed data**.
- We report in pairs: (mean, SD) or (median, IQR)

4. Coefficient of Variation

CV (Coefficient of Variation) (变异系数): _Combines the SD and mean++ into 1 summary.

- CV = SD/Mean
- Commands:

```
m = mean(data$Sold)
sd = sd(data$Sold)
sd/m
```

Lecture 9: Data Wrangling

Data Wrangling: Whatever is needed to get the data for analysis, also known as data munging or data janitor work.

- Steps:
 - Sourcing data
 - Scarping data
 - Cleaning and tidying data
 - Reshaping data
 - Splitting data
 - Combining data
 - Summarising data