Utilisation de réseaux DNN avec keras

Exercice 1 : Classification de données chiffres manuscrits

- 1. Charger les données MNIST avec mnist <- dataset_mnist()
- 2. Visualiser quelques données MNIST
- 3. Réaliser un apprentissage et une validation de ces données
 - fonction d'activation du neurone est une "rectified linear unit"
 - fonction d'activation en sortie "softmax"
 - la fonction coût "cross-entropy"
 - deux couches cachées avec 256 et 128 neurones
 - un dropout de 30 %
 - une méthode d'optimisation de type rmsprop
- 4. Donner les résultats d'évaluation de l'apprentissage

Exercice 2 : Classification des données "fashion"

- 1. Charger les données "fashion" avec dataset_fashion_mnist()
- 2. Visualiser quelques données
- 3. Réaliser un apprentissage et une validation de ces données
- 4. Evaluer l'apprentissage en fonction de nombre de couches, de neurones, de la taille des lots, de deux ou trois méthodes d'optimisation.

Exercice 3 : Classification des données "fashion"

- 1. Charger les données "movie reviews avec dataset_imdb()
- 2. Utiliser une couche de représentation vectorielle des reviews layer_embedding
- 3. Construite un réseau de type LSTM pour l'apprentissage
- 4. Comparer un réseau LSTM avec un réseau classique layer_dense avec à peu près le même nombre de paramètres