Unified Simplified Grapheme Acoustic Modeling for Medieval Latin LVCSR

Lili Szabó, Péter Mihajlik, András Balog, Tibor Fegyó

What is the problem with Latin speech recognition?

- Latin is not spoken natively
- There is no available speech database, and it is resource-heavy to create one
- Many variants/dialects exists, and we can only make guesses about the pronunciation
- The pronunciation mainly depends on
 - the **era** of the read text
- the **georaphical region** where the text originates from
- the **native language** of the speaker

Text data

Regions of origin: Kingdom of Bohemia (CZ), Kingdom of Hungary (HU), Kingdom of Poland (PL)

- In-domain data (Monasterium): medieval charters (HU), 480k/35k token/type
- Background data (Latin Library): historical texts, 1.3M/115k token/type

Spelling variants

Speech data

- CZ: 76 hours
- HU: 567 hours (G2P) or 112 hours (grapheme and USG)
- PL: 31 hours
- RO: 35 hours

Test data

- Independent medieval charters
- Region of read text: CZ, HU, PL
- Native language of test speakers: CZ, HU, PL, SK

Table 1: Perplexity/OOV rate

	Te			
Corpus	CZ	HU	PL	All
Monasterium	551	82	3130	671
Latin Library	3266	3549	2305	4303
Interpolated	924	82	2288	953

Perplexity measures on test

Unified Simplified Grapheme (USG) Model

Table 7: Simplification examples for the unified model.

Language	CZ	HU	PL	RO
Orthographic form	řekl	őz	miś	apă
USG transcription	rekl	OZ	mis	apa

Table 8: WER[%] for all the three-language USG models.

Baseline Grapheme Model

Speaker

GR

Table 5: WER[%] for Czech-Latin source-

target G2P model. Acoustic model training

Speaker CZ HU PL \(\sum_{\text{S}}\)

Latin Test Text

43.8 28.2 49.1 40.4

48.7 40.0 58.7 49.1

53.3 18.2 53.2 41.6

30.3 30.0 44.0 34.8

43.9 28.9 50.8 41.2

set: 76 hours.

CZ

HU

PL

SK

ts

AM Language CZ HU PL SK \(\sum_{\text{\colored}}\)

Czech, Hungarian, Polish and Romanian (CZ, HU, PL, RO).

53.6 73.8 62.9 45.7 59.0

33.7 28.6 47.1 29.1 **34.6**

65.0 67.6 46.4 51.1 57.5

53.6 69.1 44.7 43.8 52.8

• Only those grapheme models are retained that are part of the Latin alphabet

Table 2: Word Error Rate (WER[%]) results for monolingual grapheme-based acoustic models of

Knowledge-based grapheme-to-phoneme (G2P) mapping

Table 3: Latin digraph context-insensitive rewrite rules.

CZ e oe f kv

Table 4: Latin context-sensitive rewrite rules. V: vowel, VP: palatal vowel, ^VP: everything but a

palatal vowel, C: consonant, *: zero or any, $\hat{}$: beginning of word, $\hat{}$ and $\hat{}$: not s, t or x.

rule cVP c^VP VC*ch ^C*ch guV guC [

Digraph

ae oe ph qu

e ø f kv

gu

gv

gu

gu

tsi

training set: 567 hours.

Speaker

CZ

HU

 $\hat{s}tx$ |tiV|tiC|

Table 6: WER[%] for Hungarian-Latin

source-target G2P model. Acoustic model

Latin Test Text

CZ HU PL \

19.4 **6.4** 28.0 17.9

25.0 25.4 20.2 23.5

28.9 15.4 41.3 28.5

20.4 **9.1** 22.9 17.5

22.6 12.5 28.1 **21.1**

• All graphemes are trained

CZ

HU

RO

	Speaker				
AM Language	CZ	HU	PL	SK	\sum
CZ+HU+PL	28.2	28.2	27.7	22.4	26.6
CZ+HU+RO	23.3	21.4	23.9	19.2	21.9
CZ+PL+RO	24.6	33.1	25.6	19.8	25.8
HU+PL+RO	24.8	21.5	25.7	20.7	23.2
	1				

Table 9: WER[%] for USG model of Czech, Hungarian, Polish and Romanian (CZ+HU+PL+RO).

	<i>,</i>					
		Latin Test Text				
	Speaker	CZ	HU	PL	\sum	
•	CZ	20.4	11.8	30.7	21.0	
	HU	21.1	14.6	25.7	20.5	
	PL	23.0	10.0	33.0	22.0	
	SK	14.5	12.7	24.8	17.3	
	\sum	19.9	12.2	29.0	20.4	

Language model

- 3-gram language model
- Kneser-Ney smoothing
- Interpolating the two corpora
- SRILM [2]

Dimensions of data

Native language of test speakers: CZ, HU, PL, SK

Region of read text: CZ, HU, PL Speech data: CZ, HU, PL, RO

Model type: baseline, knowledge-based, USG

System diagram

Acoustic model

- Mel-Frequency Cepstrum + Energy features were used with Linear Discriminant Analysis (LDA) + Maximum Likelihood Linear Transformation (MLLT), with a splice context of ± 4 frames, 10 ms of frame shift.
- 9×40 dimensional spliced up feature vectors served as input to the feed-forward, 6 hidden-layer neural network with p-norm [1] activation function.
- Prior to DNN training, a Gaussian Mixture Model (GMM) pre-training was performed.
- Clustering and Regression Tree (CART) [1] was applied to obtain acrossword context dependent shared state phone (or graph) models and their time alignment.
- The number of senones (and so the size of the DNN softmax output layer) was between 7.000 and 11.000 depending on the nature of the training data.
- The size of the hidden layers was kept constantly on 2.000.
- A minibatch size of 512, an initial learning rate of 0.1, and final learning rate of 0.01 was applied in 20 epochs using the Kaldi toolkit [1].

GRA: baseline grapheme model **G2P**: grapheme-to-phoneme model **USG**: Unified Simplified Grapheme model

Figure 1: Medieval Latin Speech Recognizer

Conclusions

- Four-language USG is the best
- It is able to generalize over different speaker test sets

References

- [1] Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hannemann, M., Motlicek, P., Qian, Y., Schwarz, P., Silovsky, J., Stemmer, G., Vesely, K.: The kaldi speech recognition toolkit. In: IEEE 2011 Workshop on Automatic Speech Recognition and Understanding. IEEE Signal Processing Society (2011)
- [2] Stolcke, A.: Srilm an extensible language modeling toolkit. In: In Proceedings of the 7th International Conference on Spoken Language Processing (ICSLP). pp. 901–904 (2002)

