Importing Necessary Liabraries

In [20]:

```
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import normalize
from matplotlib import pyplot as plt
from sklearn.cluster import KMeans
import scipy.cluster.hierarchy as sch
from sklearn.cluster import AgglomerativeClustering
import seaborn as sns
from sklearn.cluster import DBSCAN
```

Importing Dataset

In [13]:

```
airlines_data=pd.read_excel("EastWestAirlines.xlsx",sep=' ')
airlines_data
      IU#
             Datance Qual_times cc1_times cc2_times cc3_times bonus_times bonus_trans
   0
          1
               28143
                                                      1
                                                                 1
                                                                             174
                                                                                            1
          2
               19244
    1
                               0
                                                      1
                                                                            215
                                                                                            2
                                           1
                                                                 1
    2
          3
               41354
                               0
                                           1
                                                                 1
                                                                           4123
                                                      1
                                                                                            4
    3
          4
               14776
                               0
                                                                            500
                                           1
                                                      1
                                                                 1
                                                                                            1
               97752
          5
    4
                               0
                                          4
                                                      1
                                                                 1
                                                                          43300
                                                                                           26
3994 4017
                               0
                                                                            8525
               18476
                                           1
                                                      1
                                                                 1
                                                                                            4
3995 4018
               64385
                               0
                                           1
                                                                            981
                                                                                            5
                                                      1
                                                                 1
3996 4019
               73597
                               0
                                          3
                                                      1
                                                                 1
                                                                          25447
                                                                                            8
3997 4020
               54899
                               0
                                                      1
                                                                 1
                                                                            500
                                           1
                                                                                            1
3998 4021
                3016
                               0
                                                                               0
                                                                                            0
                                                      1
```

Initial analysis

```
In [14]:
```

```
airlines_data.shape
```

Out[14]:

(3999, 12)

In [15]:

```
airlines_data.isna().sum()
Out[15]:
```

ID# 0 Balance 0 Qual_miles 0 cc1_miles 0 cc2_miles 0 cc3_miles 0 Bonus_miles 0 Bonus_trans 0 Flight_miles_12mo 0 Flight_trans_12 0 Days_since_enroll 0 Award? 0 dtype: int64

In [16]:

airlines_data.dtypes

Out[16]:

ID# int64 Balance int64 Qual_miles int64 cc1_miles int64 cc2_miles int64 cc3_miles int64 Bonus_miles int64 Bonus_trans int64 Flight_miles_12mo int64 Flight_trans_12 int64 Days_since_enroll int64 Award? int64

dtype: object

In [17]:

airlines1=airlines_data.drop(['ID#'],axis=1)

In [18]:

airlines1.head(10)

Out[18]:

	Balance	Qual_miles	cc1_miles	cc2_miles	cc3_miles	Bonus_miles	Bonus_trans	Flight_mi
0	28143	0	1	1	1	174	1	
1	19244	0	1	1	1	215	2	
2	41354	0	1	1	1	4123	4	
3	14776	0	1	1	1	500	1	
4	97752	0	4	1	1	43300	26	
5	16420	0	1	1	1	0	0	
6	84914	0	3	1	1	27482	25	
7	20856	0	1	1	1	5250	4	
8	443003	0	3	2	1	1753	43	
9	104860	0	3	1	1	28426	28	

In [22]:

Normalization function

airlines1_norm=pd.DataFrame(normalize(airlines1),columns=airlines1.columns) airlines1_norm

Out[22]:

	Balance	Qual_miles	cc1_miles	cc2_miles	cc3_miles	Bonus_miles	Bonus_trans	Flight
0	0.970414	0.0	0.000034	0.000034	0.000034	0.006000	0.000034	
1	0.940209	0.0	0.000049	0.000049	0.000049	0.010504	0.000098	
2	0.981113	0.0	0.000024	0.000024	0.000024	0.097817	0.000095	
3	0.904428	0.0	0.000061	0.000061	0.000061	0.030605	0.000061	
4	0.912226	0.0	0.000037	0.000009	0.000009	0.404078	0.000243	
3994	0.905810	0.0	0.000049	0.000049	0.000049	0.417949	0.000196	
3995	0.999649	0.0	0.000016	0.000016	0.000016	0.015231	0.000078	
3996	0.944948	0.0	0.000039	0.000013	0.000013	0.326726	0.000103	
3997	0.999592	0.0	0.000018	0.000018	0.000018	0.009104	0.000018	
3998	0.907271	0.0	0.000301	0.000301	0.000301	0.000000	0.000000	
3999 r	ows × 11 o	columns						

In [8]:

How to find optimum number of cluster #The K-means algorithm aims to choose centroids that minimise the inertia, or within-cluste

KMeans Clustering

In [23]:

```
wcss=[]
for i in range(1,11):
    kmeans=KMeans( n_clusters=i,random_state=0)
    kmeans.fit(airlines1_norm)
    wcss.append(kmeans.inertia_)
    print(wcss)

plt.plot(range(1,11),wcss)
plt.title('Elbow Method')
plt.xlabel('Number of Clusters')
plt.ylabel('Wcss')
plt.show()
[484.8511291307252]
[484.8511291307252, 267.597266143907]
```

```
[484.8511291307252, 267.597266143907, 173.27025625511413]
[484.8511291307252, 267.597266143907, 173.27025625511413]
[484.8511291307252, 267.597266143907, 173.27025625511413, 116.3248160068040
6]
[484.8511291307252, 267.597266143907, 173.27025625511413, 116.3248160068040
6, 90.8239863037296]
[484.8511291307252, 267.597266143907, 173.27025625511413, 116.3248160068040
6, 90.8239863037296, 70.47242586480178]
[484.8511291307252, 267.597266143907, 173.27025625511413, 116.3248160068040
6, 90.8239863037296, 70.47242586480178, 60.072738651170795]
[484.8511291307252, 267.597266143907, 173.27025625511413, 116.3248160068040
6, 90.8239863037296, 70.47242586480178, 60.072738651170795, 51.9351665081741
2]
[484.8511291307252, 267.597266143907, 173.27025625511413, 116.3248160068040
6, 90.8239863037296, 70.47242586480178, 60.072738651170795, 51.9351665081741
2]
[484.8511291307252, 267.597266143907, 173.27025625511413, 116.3248160068040
6, 90.8239863037296, 70.47242586480178, 60.072738651170795, 51.9351665081741
2, 47.17112710270718]
[484.8511291307252, 267.597266143907, 173.27025625511413, 116.3248160068040
```

6, 90.8239863037296, 70.47242586480178, 60.072738651170795, 51.9351665081741

2, 47.17112710270718, 42.8711953420418]

Building K=3

In [38]:

```
#Build Cluster algorithm
# Cluster algorithm using K=3
clusters3=KMeans(3,random_state=12).fit(airlines1_norm)
clusters3
```

Out[38]:

In [39]:

```
clusters3.labels_
```

Out[39]:

array([1, 1, 1, ..., 1, 1, 1])

In [40]:

```
# Assign clusters to the data set
airlines3=airlines1.copy()
airlines3['clusters3']=clusters3.labels_
airlines3
```

Out[40]:

	Balance	Qual_miles	cc1_miles	cc2_miles	cc3_miles	Bonus_miles	Bonus_trans	Flight
0	28143	0	1	1	1	174	1	
1	19244	0	1	1	1	215	2	
2	41354	0	1	1	1	4123	4	
3	14776	0	1	1	1	500	1	
4	97752	0	4	1	1	43300	26	
3994	18476	0	1	1	1	8525	4	
3995	64385	0	1	1	1	981	5	
3996	73597	0	3	1	1	25447	8	
3997	54899	0	1	1	1	500	1	
3998	3016	0	1	1	1	0	0	

3999 rows × 12 columns

In [41]:

```
clusters3.cluster_centers_
```

Out[41]:

```
array([[6.30508213e-01, 9.15231468e-04, 2.08191153e-04, 2.07409255e-04, 2.07409255e-04, 1.22266715e-01, 4.68663039e-04, 6.69160773e-03, 2.24693038e-05, 6.85884357e-01, 2.55697749e-05], [9.72915814e-01, 3.32753701e-03, 4.32515674e-05, 3.56632121e-05, 3.54159133e-05, 1.33941084e-01, 2.11254052e-04, 6.76322602e-03, 2.11717605e-05, 9.85574060e-02, 5.46966912e-06], [7.02585534e-01, 2.28699642e-03, 7.65752681e-05, 3.73696106e-05, 3.65177677e-05, 6.40527156e-01, 4.48000121e-04, 1.23850237e-02, 4.00021547e-05, 1.06746997e-01, 2.03293904e-05]])
```

In [42]:

```
# Group data by Clusters (K=3)
airlines3.groupby('clusters3').agg(['mean']).reset_index()
```

Out[42]:

	clusters3	Balance	Qual_miles	cc1_miles	cc2_miles	cc3_miles	Bonus_miles	Bonus_
		mean	mean	mean	mean	mean	mean	mean
0	0	5131.617886	8.150407	1.008130	1.000000	1.000000	869.394309	2.90
1	1	86696.132743	164.510551	1.798162	1.011232	1.001702	12337.173928	10.58
2	2	47062.690798	111.628221	3.319018	1.030675	1.053988	39388.652761	17.89
4								•

In [43]:

```
# Plot Clusters
plt.figure(figsize=(12, 6))
plt.scatter(airlines3['clusters3'],airlines3['Balance'], c=clusters3.labels_)
```

Out[43]:

<matplotlib.collections.PathCollection at 0x20eaee455c8>

Build clusters K=5

In [32]:

```
# Cluster algorithm using K=5
clusters5=KMeans(5,random_state=12).fit(airlines1_norm)
clusters5
```

Out[32]:

In [33]:

```
clusters5.labels_
```

Out[33]:

array([0, 2, 0, ..., 4, 0, 2])

In [34]:

```
# Assign clusters to the data set
airlines5=airlines1.copy()
airlines5['clusters5']=clusters5.labels_
airlines5
```

Out[34]:

	Balance	Qual_miles	cc1_miles	cc2_miles	cc3_miles	Bonus_miles	Bonus_trans	Flight_mile
0	28143	0	1	1	1	174	1	
1	19244	0	1	1	1	215	2	
2	41354	0	1	1	1	4123	4	
3	14776	0	1	1	1	500	1	
4	97752	0	4	1	1	43300	26	
94	18476	0	1	1	1	8525	4	
95	64385	0	1	1	1	981	5	
96	73597	0	3	1	1	25447	8	
97	54899	0	1	1	1	500	1	
98	3016	0	1	1	1	0	0	

19 rows × 12 columns

In [35]:

```
# Compute the centroids for K=5 clusters with 11 variables clusters5.cluster_centers_
```

Out[35]:

```
array([[9.87347192e-01, 3.41837203e-03, 3.52620775e-05, 3.03479065e-05, 3.02349363e-05, 9.15517711e-02, 1.54818686e-04, 6.61324432e-03, 2.08325733e-05, 7.54676163e-02, 3.99111816e-06], [5.14097044e-01, 2.46403313e-03, 9.56772813e-05, 5.01782621e-05, 4.88674224e-05, 8.02764990e-01, 5.20805294e-04, 1.79689628e-02, 6.06455235e-05, 1.36723853e-01, 3.06681430e-05], [8.92936852e-01, 4.46454511e-03, 1.23968035e-04, 1.23783403e-04, 1.23783403e-04, 7.58365867e-02, 2.93996886e-04, 6.32105922e-03, 2.08016784e-05, 4.07924096e-01, 1.35510886e-05], [4.14644791e-01, 1.30104261e-18, 2.28611980e-04, 2.27627266e-04, 2.27627266e-04, 1.50766683e-01, 5.97513433e-04, 7.35401490e-03, 2.84888383e-05, 8.48268382e-01, 3.91049405e-05], [8.90527678e-01, 1.91114047e-03, 5.81321812e-05, 3.02250715e-05, 2.95023684e-05, 4.23591789e-01, 4.07332101e-04, 7.83191039e-03, 2.30605390e-05, 8.30790414e-02, 1.00466076e-05]])
```

In [36]:

```
# Group data by Clusters (K=5)
airlines5.groupby('clusters5').agg(['mean']).reset_index()
```

Out[36]:

	clusters5	Balance	Qual_miles	cc1_miles	cc2_miles	cc3_miles	Bonus_miles	Bonus_
		mean	mean	mean	mean	mean	mean	mean
0	0	97077.624478	187.605934	1.610570	1.009272	1.001854	9664.546129	9.72
1	1	27462.797721	116.148148	3.245014	1.034188	1.071225	41806.162393	17.57
2	2	11756.307494	55.263566	1.005168	1.000000	1.000000	980.863049	3.44
3	3	2415.576577	0.000000	1.009009	1.000000	1.000000	850.189189	3.00
4	4	70974.834844	110.264854	3.144008	1.026183	1.020141	32797.468278	17.7 ⁻
4								•

In [37]:

```
# Plot Clusters
plt.figure(figsize=(10, 7))
plt.scatter(airlines5['clusters5'],airlines5['Balance'], c=clusters5.labels_)
```

Out[37]:

<matplotlib.collections.PathCollection at 0x20eaebacf48>

Hierarchial Clustering

In [47]:

```
airlines_data=pd.read_excel('EastWestAirlines.xlsx')
airlines_data
```

Out[47]:

	ID#	Palance	Qual miles	and miles	aa? milaa	aa2 milaa	Bonus_miles	Popus tro		
	IU#	Dalance	Qual_miles	cc1_miles	CC2_miles	ccs_miles	Bonus_miles	Bonus_tra		
0	1	28143	0	1	1	1	174			
1	2	19244	0	1	1	1	215			
2	3	41354	0	1	1	1	4123			
3	4	14776	0	1	1	1	500			
4	5	97752	0	4	1	1	43300			
3994	4017	18476	0	1	1	1	8525			
3995	4018	64385	0	1	1	1	981			
3996	4019	73597	0	3	1	1	25447			
3997	4020	54899	0	1	1	1	500			
3998	4021	3016	0	1	1	1	0			
3000 *	3999 rows × 12 columns									
39991	UWS ^	12 COIUIII	115					_		
4								>		

In [48]:

```
airline1=airlines1
```

In [49]:

```
airline1.head()
```

Out[49]:

	Balance	Qual_miles	cc1_miles	cc2_miles	cc3_miles	Bonus_miles	Bonus_trans	Flight_mi
0	28143	0	1	1	1	174	1	
1	19244	0	1	1	1	215	2	
2	41354	0	1	1	1	4123	4	
3	14776	0	1	1	1	500	1	
4	97752	0	4	1	1	43300	26	
4								•

In [50]:

```
# Normalization function
def norm_func(i):
    x = (i-i.min())/(i.max()-i.min())
    return (x)
```

In [51]:

```
# Normalized data frame (considering the numerical part of data)
airline1_norm = norm_func(airline1)
airline1_norm
```

Out[51]:

	Balance	Qual_miles	cc1_miles	cc2_miles	cc3_miles	Bonus_miles	Bonus_trans	Fligh
0	0.016508	0.0	0.00	0.0	0.0	0.000660	0.011628	
1	0.011288	0.0	0.00	0.0	0.0	0.000815	0.023256	
2	0.024257	0.0	0.00	0.0	0.0	0.015636	0.046512	
3	0.008667	0.0	0.00	0.0	0.0	0.001896	0.011628	
4	0.057338	0.0	0.75	0.0	0.0	0.164211	0.302326	
3994	0.010837	0.0	0.00	0.0	0.0	0.032330	0.046512	
3995	0.037766	0.0	0.00	0.0	0.0	0.003720	0.058140	
3996	0.043169	0.0	0.50	0.0	0.0	0.096505	0.093023	
3997	0.032202	0.0	0.00	0.0	0.0	0.001896	0.011628	
3998	0.001769	0.0	0.00	0.0	0.0	0.000000	0.000000	

3999 rows × 11 columns

localhost:8888/notebooks/Downloads/ExcelR DS assignments/Clustering assignments/Airlines_clustering.ipynb

In [55]:

```
# Create Dendrograms
plt.figure(figsize=(10, 7))
dendograms=sch.dendrogram(sch.linkage(airline1_norm,'complete'))
```


In [56]:

```
# Create Clusters (y)
hclusters=AgglomerativeClustering(n_clusters=5,affinity='euclidean',linkage='ward')
hclusters
```

Out[56]:

```
AgglomerativeClustering(affinity='euclidean', compute_full_tree='auto', connectivity=None, distance_threshold=None, linkage='ward', memory=None, n_clusters=5, pooling_func='deprecated')
```

In [57]:

```
y=pd.DataFrame(hclusters.fit_predict(airline1_norm),columns=['clusters'])
y['clusters'].value_counts()
```

Out[57]:

```
1 1011
0 946
2 808
4 699
3 535
```

Name: clusters, dtype: int64

In [58]:

```
# Adding clusters to dataset
airline1['clusters']=hclusters.labels_
airline1
```

Out[58]:

	Balance	Qual_miles	cc1_miles	cc2_miles	cc3_miles	Bonus_miles	Bonus_trans	Flight_mi
0	28143	0	1	1	1	174	1	
1	19244	0	1	1	1	215	2	
2	41354	0	1	1	1	4123	4	
3	14776	0	1	1	1	500	1	
4	97752	0	4	1	1	43300	26	
994	18476	0	1	1	1	8525	4	
995	64385	0	1	1	1	981	5	
996	73597	0	3	1	1	25447	8	
997	54899	0	1	1	1	500	1	
998	3016	0	1	1	1	0	0	

199 rows × 12 columns

1

In [59]:

```
airline1.groupby('clusters').agg(['mean']).reset_index()
```

Out[59]:

	clusters	Balance	Qual_miles	cc1_miles	cc2_miles	cc3_miles	Bonus_miles	Bonus_
		mean	mean	mean	mean	mean	mean	mean
0	0	79848.233615	285.097252	1.699789	1.024313	1.000000	12079.774841	12.1
1	1	43313.653808	21.506429	1.000000	1.033630	1.000989	2562.614243	5.4
2	2	106221.111386	161.262376	3.198020	1.001238	1.025990	26458.257426	16.3
3	3	127475.028037	160.801869	4.362617	1.000000	1.050467	58656.919626	22.2
4	4	30013.416309	98.054363	1.000000	1.000000	1.000000	2552.569385	6.1
4								•

In [60]:

```
#Plot Clusters
plt.figure(figsize=(10, 7))
plt.scatter(airline1['clusters'],airline1['Balance'], c=hclusters.labels_)
```

Out[60]:

<matplotlib.collections.PathCollection at 0x20eae6d59c8>

DBSCAN Clustering

In [64]:

```
airlines1.head()
```

Out[64]:

	Balance	Qual_miles	cc1_miles	cc2_miles	cc3_miles	Bonus_miles	Bonus_trans	Flight_mi
0	28143	0	1	1	1	174	1	_
1	19244	0	1	1	1	215	2	
2	41354	0	1	1	1	4123	4	
3	14776	0	1	1	1	500	1	
4	97752	0	4	1	1	43300	26	

→

In [63]:

```
del airlines1['clusters']
```

In [65]:

Normalize heterogenous numerical data using standard scalar fit transform to dataset
airlines_norm=StandardScaler().fit_transform(airlines1)
airlines_norm

Out[65]:

```
array([[-4.51140783e-01, -1.86298687e-01, -7.69578406e-01, ..., -3.62167870e-01, 1.39545434e+00, -7.66919299e-01], [-5.39456874e-01, -1.86298687e-01, -7.69578406e-01, ..., -3.62167870e-01, 1.37995704e+00, -7.66919299e-01], [-3.20031232e-01, -1.86298687e-01, -7.69578406e-01, ..., -3.62167870e-01, 1.41192021e+00, -7.66919299e-01], ..., [-4.29480975e-05, -1.86298687e-01, 6.83121167e-01, ..., -3.62167870e-01, -1.31560393e+00, 1.30391816e+00], [-1.85606976e-01, -1.86298687e-01, -7.69578406e-01, ..., -9.85033311e-02, -1.31608822e+00, -7.66919299e-01], [-7.00507951e-01, -1.86298687e-01, -7.69578406e-01, ..., -3.62167870e-01, -1.31754109e+00, -7.66919299e-01]])
```

In [71]:

```
# DBSCAN Clustering
dbscan=DBSCAN(eps=1,min_samples=3)
dbscan.fit(airlines_norm)
```

Out[71]:

```
DBSCAN(algorithm='auto', eps=1, leaf_size=30, metric='euclidean', metric params=None, min samples=3, n jobs=None, p=None)
```

In [72]:

dbscan.labels_

Out[72]:

array([0, 0, 0, ..., 1, 0, 0], dtype=int64)

In [73]:

Adding clusters to dataset
airlines1['clusters']=dbscan.labels_
airlines1

Out[73]:

	Balance	Qual_miles	cc1_miles	cc2_miles	cc3_miles	Bonus_miles	Bonus_trans	Flight_mi
0	28143	0	1	1	1	174	1	
1	19244	0	1	1	1	215	2	
2	41354	0	1	1	1	4123	4	
3	14776	0	1	1	1	500	1	
4	97752	0	4	1	1	43300	26	
994	18476	0	1	1	1	8525	4	
995	64385	0	1	1	1	981	5	
996	73597	0	3	1	1	25447	8	
997	54899	0	1	1	1	500	1	
998	3016	0	1	1	1	0	0	

199 rows × 12 columns

localhost:8888/notebooks/Downloads/ExcelR DS assignments/Clustering assignments/Airlines_clustering.ipynb

In [74]:

```
airlines1.groupby('clusters').agg(['mean']).reset_index()
```

Out[74]:

	clusters Balance		Qual_miles	cc1_miles	cc2_miles	cc3_miles	Bonus_miles	Bonu
		mean	mean	mean	mean	mean	mean	mear
0	-1	186537.458661	999.370079	2.777559	1.061024	1.096457	41827.370079	22
1	0	54311.522669	5.073139	1.663388	1.000000	1.000000	9127.850727	8
2	1	63282.187330	9.723982	2.589140	1.000000	1.000000	22949.240724	12
3	2	34806.538462	0.000000	1.000000	2.000000	1.000000	8389.769231	12
4	3	60932.000000	1794.500000	3.750000	1.000000	1.000000	39889.750000	16
5	4	80078.000000	0.000000	3.000000	1.000000	1.000000	15252.333333	19
6	5	66728.666667	0.000000	2.666667	1.000000	1.000000	30841.333333	28
7	6	36413.428571	0.000000	1.000000	3.000000	1.000000	14341.142857	13
8	7	164883.400000	1471.600000	1.000000	1.000000	1.000000	8472.800000	5
9	8	56459.000000	2486.333333	2.333333	1.000000	1.000000	12619.000000	11
10	9	27820.200000	2403.300000	1.100000	1.000000	1.000000	2659.400000	5
4								•

In [75]:

```
# Plot Clusters
plt.figure(figsize=(10, 7))
plt.scatter(airlines1['clusters'], airlines1['Balance'], c=dbscan.labels_)
```

Out[75]:

<matplotlib.collections.PathCollection at 0x20eb3c6b7c8>

>>>>>>The End!!