Registration No: 2 0 5 Total Number of Pages: 02 B.Tech/ Integrated Dual Degree (B.Tech and M.Tech) RCH2A002 2nd Semester Reg/Back Examination: 2022-23 Chemistry BRANCH(S): AEIE, CIVIL, CST, CSEAI, CSEDS, CSE, CSIT, CSEAIME, ELECTRICAL & C.E, EEE, ELECTRICAL, ECE, ETC, EIE, IT, MANUTECH, MECH, METTA, MINING, PLASTIC, AE, AUTO Time: 3 Hour Max Marks: 100 Q. Code: M553 Answer Question No.1 (Part-1) which is compulsory, any eight from Part-II and any two from Part-III. The figures in the right hand margin indicate marks. Part-I Q1 Answer the following questions: (2×10) a) State Lambert Beer's law. b) Draw the phase diagram of water system. What is producer gas? Explain the term component. How many components are present in the following system? Water - wapour What is an Eutectic system? f) What is synthetic petrol g) What is cathodic protection? h) What are chromophores? What is power alcohol? What is stress corrosion? Part-II Only Focused-Short Answer Type Questions- (Answer Any Eight out of Q2 Twelve) a) Discuss the postulates of quantum mechanics. b) Discuss the effect of conjugation on chromophores. Write a short note on refining of petroleum. d) Explain triple point and eutectic point with examples. Discuss main features of the phase diagram of water system, explaining especially why the slope of solid-liquid line is negative for water.

Classify the nano materials based on the size of particles and distinguish between

Write a short note on cathodic protection.

0D, 1D and 2D nano materials.

- h) Give an account of gaseous fuels.
- What is calorific value of a fuel? How it is determined by Dulong's formula.
- j) Discuss how nanomaterials are synthesized via green synthetic routes.
- k) Discuss the principles and application of vibrational spectroscopy.

14-26/08/2023

I) How G.C.V. and N.C.V. of a fuel is calculated?

Part-III

Only Long Answer Type Questions (Answer Any Two out of Four)

- Q3 Discuss the Lambert Beer's law and its application in analyzing samples by UV- (16) Visible spectroscopy.
- Q4 What is phase rule? Discuss the phase diagram of Bi-Cd system. (16)
- Q5 What is corrosion? Discuss different types of corrosion and factors affecting (16) corrosion.
- Q6 Explain the synthesis of nanomaterial by top-down and bottom-up approaches.

 Discuss the application of nanomaterials in environmental fields and electronic devices.

 (16)

Registration No :					

B.Tech PAC1A101

1st Semester Regular Examination 2019-20 APPLIED CHEMISTRY

BRANCH: AEIE, AERO, AUTO, BIOMED, BIOTECH, CHEM, CIVIL, CSE, ECE, EEE, EIE, ELECTRICAL, ENV, ETC, FAT, IEE, IT, MANUFAC, MANUTECH, MECH, METTA, MINERAL, MINING, MME, PE, PLASTIC, PT, TEXTILE

Time : 3 Hours Max Marks : 100 Q.CODE : HB631

Answer Question No.1 (Part-1) which is compulsory, any eight from Part-II and any two from Part-III.

The figures in the right hand margin indicate marks.

Part- I

Q1		Answer the following questions :	(2 x 10)
	a)	Define the term "Ultraviolet catastrophe"	(2)
	b)	The fundamental vibrational frequency of HCl is 8.667×10 ¹³ s ⁻¹ .Calculate the force constant	(2)
	c)	IR spectra are often characterized as molecular fingerprint. Justify	(2)
	d) e)	What is the significance of the negative slope of fusion curve of ice in water system? What is EAN rule?	(2) (2)
	f)	Bolt and nut made of different material. Mention the type of corrosion.	(2)
	g)	What is Wilkinson's catalyst? Write one uses of it.	(2) (2)
	h)	Write one organometallic catalyst each for hydrogenation olefin and polymerization reaction.	
	i)	What is condensed phase rule? Give an example of a system where condensed phase rule is applied.	(2)
	j)	Mention three factors taken in consideration while selecting coal for different use. Part- II	(2)
Q2	_	Only Focused-Short Answer Type Questions- (Answer Any Eight out of Twelve)	(8 x 6)
	a)	Show that the energy of a particle in one dimensional box is $E = \frac{n2h2}{8ma2}$	(6)
	b)	What are the general steps involved in the homogeneous catalysis using organometallic.	(6)
	c)	Internuclear distance of HCl molecule (rigid type) is 129pm.Calculate its rotational	(6)
		constant in cm ⁻¹ and find the wavelength of the transition between rotational energy levels J=2 to J-3.	
	d)	Define the term phase, component and degrees of freedom with suitable examples.	(6)
	e)	Discuss the phase diagram of Bi-Cd system.	(6)
	f)	State three quantum numbers used to describe an orbital specify the permissible values of each quantum numbers	(6)
	g)	Describe how the calorific value of a solid fuel is determined by using a bomb calorimeter.	(6)
	h)	0A sample of coal has the following composition C=90%, H=4.5%, O=3%, S=0.5%, N=0.5% and ash =2.5%.Find the gross as well as net calorific value.	(6)
	i)	What is cathodic protection? Explain sacrificial anode method.	(6)
	j)	Discuss the factors affecting corrosion.	(6)
	k)	Describe knocking of petrol engine and octane number.	(6)
	I)	Explain the mechanism of differential aeration corrosion with reference to irin materials. Part-III	(6)
		Only Long Answer Type Questions (Answer Any Two out of Four)	(16×2)
Q3	a)	State and explain Beer-Lambert's law and its importance in spectroscopic methods of	(10)
	b)	structure elucidation Write the basic principles of UV-Visible spectroscopy.	(6)
	IJ	write the basic philiophes of ov-visible spectroscopy.	(0)
Q4	a)	Derive the expression for the energy and frequency a diatomic molecules by assuming the molecule behaving as simple harmonic oscillator.	(8)

	b)	Write the theory of vibrational spectroscopy.	(8)
Q5	a)	Draw and explain the phase diagram of Sulphur system. Why all four phases of Sulphur system do not co-exist at equilibrium	(8)
	b)	What is electrochemical corrosion? Describe the mechanism of electrochemical corrosion by hydrogen evolution type and oxygen absorption.	(8)
Q6	a) b)	Discuss I brief the proximity analysis of coal Describe the classification and applications of Organometallic compounds	(8) (8)

Regi	strat	tion No:								http://wv	ww.bputonline.co
Tota	l Nui	mber of Pages: 02	emester R	_				on 20)17-18		B.Tech. PAC1A101
(M	ELI Ar	ranches: AEIE, AEI ECTRICAL, ETC, F nswer Question No The fig ¹ H = 1.0078u; ² H =	RO, AUTO AT, IT, ME o.1 and 2 v ures in the	ECH, ME Time: Max M Q. CO which ar e right h	ED, BIO TTA, M 3 Hou larks: DE: Bo e com	OTEC MINE urs 100 816 pulso nargii	CH, C RAL, ory a n ind	, MIN	IING, F ny fou e mark	PE, PLAST or from the s.	rest.
Q.1	b) c) d) e) f) g)	Answer the following Write the one-dimens Find the value of \hat{A} for Define the any one power with the selection reconstruction of the following CO, H ₂ , HBr, H ₂ O Calculate the number H ₂ + O ₂ \rightarrow H ₂ O. Define red and blue Define CNG and its of Write the chemical in corrosion of iron in n	sional time- (x) when isostulate of ule for rotati (in ergs) pog g molecule r of composition shifts in UV composition ame and its	independ is d/dx and quantum onal specier photon s exhibit in the control of the	nd f(x) = mecha ctrum a for rad rotation ases ar pectra.	= 4x²y inics. nd de liation al spe	fine the soff of the sectrum of the	he ter = 4 n: of free	rm used 00nm. eedom 1	or a systen	[2 x 10] n:
Q.2	a) b) c) d) e) f) g) h) i)	Answer all the quest With an example product the salient feat Calculate the uncertain position is 1cm. Two energy levels in energy difference be How the net calorific Define EAN rule. Give Calculate the weight Why galvanized uter Write the name and Write the structure or	ve that Squatures of the ainty in velocities a rotational tween these value of a retwo examof air requisils are gerformula of a	e Schrödi city of a control l spectrur e levels? solid fuel aples whe red for controlly no a palladiu	nger ed cricket I m are s Expres is calcu ere this emplete it used	quation ball with the parates in Julated rule is comb	n. ith ma ited b oules ? s not s oustio	ass 10 by 400 c, ergs satisf on of 5	00 gm,) nm. W s and e ied? 5 gm of	hat is the V.	[2 x 10]
Q.3	a)	Which type of molec and force constant o								onal energy	[8]
	b)	Discuss five different	ligands wh	ere ETA((η) is us	sed fo	r orga	anom	etallic c	ompounds'	? [7]
0.4	a١	Discuss the phase d	iagram of a	four phas	se one	comp	onen	t evet	em		[9]

Discuss the phase diagram of a four phase one component system. โลไ [6] b) Prove that the eigenvalues of a Hermitian operator are real. **Q.5** A gas has the following composition by volume: H = 25%; $CH_4 = 5\%$; CO = 25%, [10] a) $CO_2 = 5\%$; $O_2 = 5\%$ and $N_2 = 35\%$. If 40% excess air is used for its complete combustion, find the weight and volume of air actually supplied for this process. Discuss the hydroformylation reactions which are catalysed by organometallic [5] catalysts.

The force constant of ⁷⁹Br₂ is 300 Nm⁻¹. Determine its vibrational energy (in Joules **Q.6**

[10]

- **b)** Discuss the salient features of phase diagram of a Bi-Cd system.
- **Q.7 a)** The ¹H¹⁷F (rigid type) has bond length 0.16nm. Determine its rotational constant in Joules, eV and cm⁻¹.
 - b) A cell of 10 mm path length contains ferric chloride solution of 0.002M. An electromagnetic radiation of □= 400 nm is passed through it and the absorbance is 0.60. Determine its molar absorption coefficient and transmittance.
- Q.8 a) Define electrochemical corrosion. Discuss its mechanism under various corrosive environments. [10]
 - b) The rotational constant B for ¹H³⁵Cl is 12.00 cm⁻¹. Calculate B for ²H³⁵Cl and ¹H³⁷Cl. [5]
- Q.9 a) What is cracking? Discuss the mechanism of thermal cracking. [5] b) Define the basis of use of μ notation in organometallic compounds. Give two [5]
 - c) Define Lambert-Beer law and write the equations used for this law. Discuss its [5] limitations.

Regi	strat	ion No:													
Total	Nur	nber of Pag	jes: C)2											B.Tech.
			1 st	Sen	neste	er Ba	ck E	xami	natio	on 20	17-2	018			BS1103
_		IOUL AEDO				Cł	НЕМІ	STR	Y-I				FOTDIO		
-	SKAI	NCH: AERO FASH											ASTIC	AL, I	=1C,
			·	•		Ti	me: 3	3 Ho	urs		•	•			
							COD	_	-						
	A	nswer Que Th	stion e figu					-	-		_			rest.	
0.4			Ū			·		iiid ii	iai gi		iicati	o ilia	iks.		(040)
Q1	a)	Answer the What do you						hat is	the r	naxin	num r	no of	phases th	at	(2 x 10)
	b)	can be in eq What do you											Constant)	
	c)	Calculate		•							-		(g) H+(aq)ll	
		Ag+(aq) Ag	ı(s). en: E0	\+nA(= nA	+0 8\	/								
	d)	Aqueous so	lution	of g	lucos	e has	one	phas	e. Wl	herea	s aqı	ueous	solution	of	
	e)	carbon tetra Write down	the G	ibbs's	s Helr	nholtz	z equa								
	f)	Calculate the axes at (2a,			dices	of c	rystal	plane	es wh	nich d	ut th	rough	the cryst	al	
	g) h)	What do you What is the	ı mea	n by										m	
	-	pressure?					-		·						
	i)	What is the pressure?					-		·					m	
	j)	What is the	coord	inatio	n nur	nber	of bot	h the	ions	in Cs	CI str	ucture	e?		
Q2		Draw the ph		_				•		-					(10)
		Triple points							J		•			()	
Q3	a)	What do you												nt	(5)
	b)	What is the in a 1.0M	stand	lard E	EMF	of the	Élect	roche	emica	l cell	Made	of C	d Electrod		(5)
		E0 (Cd/Cd+	2) =- (0.40v	E0((Cr+3	/cr)=-(0.74v							
Q4	a)	It was found 25 percent i	n one	hou	r .Cal	culate	e the	time	that v	vill be	take	n for	sugar to b		(5)
	b)	hydrolyzed to State Hess's												n	(5)
	,	of Ethane. Given: Heat													` '
		Heat of com	bustic	on of	Carbo	on= -	94.5K	(j/mol	-	•					

Q5	a)	The heat of reaction for $N_2+H_2\rightarrow 2NH_3$ at 270C is -91.94KJ What will be it value at 500C if molar heat capacities at constant pressure and 27 0C for N_2 and NH_3 are 28.45.28.32 and 37.07J respectively	(5)
	b)	What do you mean by Order and molecularity? Derive an expression	(5)
Q6	(a) (b)	Prove that Cp-Cv=[P+ $\{\partial U/\partial V\}_T$][$\partial V/\partial T$]p Discuss the characteristics of a good catalyst	(7) (3)
Q7	(a)	What do you mean by Fuel cell. Write down the cell reaction of H2-O2 fuel cell	(5)
	(b)	Draw the molecular orbital configuration of N2 and O2. Compare between them in reference to magnetic behavior and bond length.	(5)
Q8	a)	The standard electrode potentials of the electrodes, Ag+(aq)/Ag(s), and Fe ³⁺ (aq)/Fe ²⁺ (aq), are 0.799 V and 0.771 V at 298 K, respectively. Write down the electrode reactions and designate the cell. Calculate he equilibrium constant for the cell reaction at 298 K, and calculate ∂ G. ∂ H	(5)
	b)	For one mole of an ideal Gas T=f(P,V)show that ∂T is Perfects Differential	(5)

(5) (5)

Reg	istra	tion No :													
	BRA ELEC	mber of Pages NCH : AEIE, A TRICAL, ENV MECH, METT	1 ^s NERO, <i>I</i> ', ETC, I	AUT(FAS	O, BI HION	OME N, FA' MINEI Tin Ma	IEMIS D, BI T, IEI RAL, ne : 3 x Ma	STRY OTE(E, IT, MINI B Hou rks:	- I CH, C ITE, I NG, N irs 70	HEM.	, CIVI JFAC	IL, CS , MAI	NUTE	CH, MAI	
		Answer Qu T	estion he figu			ich is	com		ory a					rest.	
Q1	a) b) c) d) e) f) h) i)	Answer the f Calculate the velocity of 2.4 What is the si Why H ₂ ⁺ ion bond order? The Standard Cu + Zn ⁺² (aq What are Mille What is value equilibrium. Half-life period the reaction a For I mole of i What is triple State Heisent	e de-Bro ×10 ² m gnifican is more EMF o .) is 1.1 er indice of ΔG d of a fi t the sa ideal ga point of	oglie S-1. nce o stal f the OV. (es? at ed irst o ime t as T = f wate	e wa of ψ ² ? ble the Dan Calcu quilib order temper ef(P,' er?	velengenan Fiel ceulate trium? reacteratur	gth of H_2^- ior ll involute exp Whation is re.	n, tho plving quilibr at is the s 40 r hat d	the crium che rel	ooth ocean reconstantion	of the action ant between	m ha n Zn+ een ∆ ne rate	ve the Cu ²⁺ (a .H and e const	same aq.) <i>≒</i> ∆S at	(2 x 10)
Q2	a) b)	What do you M.O diagram character. Calculatethe uncertainty in	of CO uncerta	mole ainty	ecule in v	. Calo	culate ty of	eits b	oond ricket	order ball	& ex	oplain ss= (its ma).1kg)	gnetic if the	(5) (5)
Q3	a) b)	What do you of pH of a qui What do you constant of a	nhydror mean l	ne ele by oi	ectro rder	de. W of a r	√rite t	he ac	lvanta	ages o	of this	meth	od?		(5) (5)
Q4	a) b)	What is eutec What is Born- Calcium chlor	-Haber	cycle	e? D	iscus	s the	steps	s to c						(5) (5)

Q5 a) Write the construction, cell reaction, uses of lead-acid storage cellb) Discuss about Frenkel and Schotty defects.

Q6	a)	From the concept of enthalpy, internal energy and 1st law of thermodynamics	(5)
		shows that Show that $\left(\frac{\partial T}{\partial P}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{P}$	
	b)	The standard heat of formation of $CO_2(g)$ and $H_2O(I)$ are -393.5 KJ mole ⁻¹ and 285.8 KJ mole ⁻¹ , respectively and the standard heat of combustion of $C_3H_8(g)$ is -2220.2 KJ mole ⁻¹ . Find out the standard heat of formation of $C_3H_8(g)$.	(5)
Q7	a)	What do you mean by electrode potential? Derive Nernst equation for electrode potential.	(5)
	b)	Derive Gibbs-Helmholtz equation.	(5)
Q8	a) b)	Explain band theories of metallic bond. Write notes on "Collision theory"	(5) (5)

Reg	istrat	tion No:													
Tota	al Nui	mber of Pag	jes: (02											B.Tech.
			₄ st	Sen	nosta	ır Rə	ck E	vami	natio	n 20	17_2	01 2		1	5BS1103
			'	Jell	116216			IISTF)II	117-2	010			
BR	ANC	H: AERO, A		-		-		-	-	-	-		, EIE, E	LECT	ΓRICAL,
			ET	C, F	AT, I	-	-	MET 3 Hoi		IIN, N	ME,	PE			
								rks:							
								E: B							
	Ansv	ver Questio The		.1 an ures					-	_		_		n the	rest.
Q1	(-)	Answer the						ltiple	type	or da	ash fi	ill up	type		(2 x 10)
	(a) (b)	Condensed The existence						ore th	nan o	ne cr	vstalli	ine fo	rm is ca	lled	
		as								•					
	(c) (d)	Electrode re Bond order of						is							
	(e)	In exothermi	ic rea	ction	which	n has	more	ener	gy? P	roduc	t or r	eacta	nt .		
	(f)	E _a for for w	vard	reacti	on is	40kj	mol ⁻¹	and	rese	rve re	eactic	n is	60KJ ⁻¹	The	
	(g)	reaction is A cubic has			th	ree fo	old ax	es of	symn	netry					
	(h)	All the crysta	al exc	ept		are	aniso	otropi	C	•		- .			
	(i)	Two mole of is		ıl gas	expa	nd sp	ontar	nesolu	ıly in	to va	cuum	n. The	work d	one	
	(j)	Give an exa		of Ne	gative	e cata	ılyst .			ı					
Q2		Answer the	follo	wing	ques	tions	: Sho	ort an	swer	type					(2 x 10)
	(a)	Two moles of		_	•		ande	d fror	n a p	ressu	re of	20Nr	n ⁻² to 1N	lm ⁻²	
	(b)	at 300K What How the T∂S					e spo	ntane	ous c	of read	ction?	•			
	(c)	What is the	de-Br	oglie	wave										
	(d)	at 1% of the Write the de				of stah	sility f	or the	follo	wina.					
	(ω)			H	2, H2 ⁺	,H ₂ a	nd ju	stify							
	(e)	Calculate the									which	doub	les the i	rate	
	(f)	when the ter While study									erved	that	a plot o	of it	
		partial press	sure \	√S tin											
	(g)	from this obs Give the unit			nstan	t of a	seco	nd or	der re	actio	n with	n exar	nple		
	(h)	What is diff												with	
	(i)	example What are	tha N	Millar	indic	ses if	the	nland	a into	areac	te th	o cr	etal lat	tica	
	(1)	at 2a, b,2c?		VIIIICI	muic	JC3,II	uic	piarie	5 IIIU	51360	ıs iii	e cry	isiai iai	lice	
	(j)	Explain wifrom overall	,	the hiome		r o	f a	rea	ction	ca	nnot	be	predic	ted	
Q3	(a)	With the he			Phas	e rul	e, dra	aw ar	nd de	escrib	e the	pha	se diagi	ram	(10)
	(b)	of. Sulphur lodine Molec			niata	in to	atom	after	Ahea	rhina	radi	ation	of 45007	^ 0 If	(5)
	(D)	one quantur energy of lo	n of	radia	tion is	s abs	orbed	by	each	mole					(3)

Q4 Draw the molecular orbital configuration of O₂ O₂ O₂. Compare between (10)them in reference to magnetic behavior and bond length. The standard electrode potentials of the electrodes, Ag+(aq)/Ag(s), an (b) (5) Fe3+(aq)/Fe2+(aq), are 0.799 V and 0.771 V at 298 K, respectively. Write down the electrode reactions and designate the cell. Calculate the equilibrium constant for the cell reaction at 298 K Q5 What do you mean by the Lattice energy ?How do you calculate the lattice of (5) Nacl explain. What do you mean by the Lattice energy ?How do you calculate the lattice of (5) Nacl explain. How is fuel cell different from battery? What are the advantages of fuel cells (5) Q6 It was found that a cane sugar solution in water was hydrolysed to the extent (5) (a) 25 percent in one hour .Calculate the time that will be taken for sugar to be hydrolyzed to the extents of 50% Assuming that reaction is of first order (b) Derive an expression for second order reaction when two reactant are (5) Different Calculate the uncertainty in velocity for a particle with mass 7x10-18 kg, if (5) the uncertainty in position is 0.1 nm Q7 (i) (δ S/ δ P)_T =- (δ V/ δ T)_P (a) **(7)** (ii) ($\delta V/ \delta S)_P = (\delta T/ \delta P)_S$ A second order reaction, when two reactants are same, is 30% completed in (4) 500 seconds. How long will it take to go to 90% completion (c) How is fuel cell different from battery? What are the advantages of fuel cells (4) Q8 Show that fcc lattice has more effective packing than sc lattice. (5) (a) State and explain Hess's law of constant heat summation. b) (6) What information's are conveyed by ψ and ψ 2? (4) (c) Q9 What is a catalyst? Write down the characteristics of catalysts (a) (5)By the help of molecular orbital theory, show that the bond order of Nitrogen (5) (b) is three. Explain the potentiometric method to determine the emf of a cell. (5) (c)

B.Tech 15BS1103

1st Semester Back Examination 2019-20 CHEMISTRY

BRANCH: AEIE, AERO, AUTO, BIOMED, BIOTECH, CHEM, CIVIL, CSE, ECE, EEE, EIE, ELECTRICAL, ENV, ETC, FASHION, FAT, IEE, IT, ITE, MANUFAC, MANUTECH, MARINE, MECH, METTA, METTAMIN, MINERAL, MINING, MME, PE, PLASTIC, TEXTILE

Max Marks: 100 Time: 3 Hours Q.CODE: HB773

Answer Question No.1 (Part-1) which is compulsory, any EIGHT from Part-II and any TWO from Part-III.

The figures in the right hand margin indicate marks.

Part-I

Q1 Only Short Answer Type Questions (Answer All-10)

 (2×10)

- a) Calculate the kinetic energy of a moving electron which has a wavelength of 4.8pm.
- b) What are the physical significance of ψ^2 .
- c) Why H₂⁺ ion is more stable than H₂⁻ ion, though both of them have the same bond order?
- d) What is the significance of the negative slope of fusion curve of ice in water system?
- e) What is triple point of water?
- f) What do you mean by the packing efficiency of a crystal?
- g) If the rate of the reaction is equal to the rate constant, find the order of the reaction.
- h) The Standard EMF of the Daniel cell involving the cell reaction Zn+ Cu^{2+} (aq.) \Rightarrow Cu+ Zn^{+2} (aq.) is 1.10V. Calculate the equilibrium constant
- i) What is the difference between Pearlite and Ledburite?
- j) What is the significance of Gibb's free energy.

Part-II

Q2 Only Focused-Short Answer Type Questions- (Answer Any Eight out of Twelve) (6 x 8)

- a) State and explain Heisenberg's uncertainty principle.
- b) Compare the relative stability of O_2^- and N_2^+ and predict their magnetic behavior.
- c) Discuss about Frenkel and Schotty defects.
- d) Define the term phase, component and degrees of freedom with suitable examples.
- e) Discuss the phase diagram of Bi-Cd system.
- f) What do you mean by order of a reaction? Derive the expression for the rate constant of a first order reaction.
- g) 5 moles of an ideal gas expanded reversibly at a temperature of 50°C and pressure of 760 mm of Hg to 25°C and 380 mm of Hg. Calculate the change in entropy. Given $C_v = R$.
- h) If enthalpies of formation of CO2, H2O are -393.5 kJ mole⁻¹& -285.8 kJ mole⁻¹ respectively and the enthalpy of combustion of propane is 2220.2 kJmole⁻¹, calculate the enthalpy of formation of propane
- i) $C_P C_V = \left[V \left(\frac{\partial H}{\partial P}\right)_T\right] \left(\frac{\partial P}{\partial T}\right)_V$
- j) Calculate the maximum work that can be accomplished by the operation of the following cell at $25\,^{\circ}$ C. Ni(s) / Ni²⁺ (0.01M) // Cu²⁺ (0.1M)/Cu(s). Given that $E^0_{Ni}^{2+}/_{Ni}$ =-0.25V and $E^0_{Cu}/_{Cu}^{2+}$ = 0.34V.
- **k)** What is quinhydrone electrode? How can the pH of an unknown solution be found out by using this electrode.
- I) Write the construction, cell reaction and applications of Leclanche cell.

Part-III

Q3	a)	Only Long Answer Type Questions (Answer Any Two out of Four) What do you mean by bonding and antibonding molecular orbital? Discuss the M.O diagram of CO molecule. Calculate its bond order & explain its magnetic character.	(8)
	b)	Write down the Schrodinger wave equation for the wave mechanical model of an atom. Name three quantum numbers of an electron which are yielded by this equation. What is Eigen values and Eigen functions?	(8)
Q4	a)	State and explain Hess's law. The molar heat of combustion of $C_2H_2(g)$, C (graphite) and $H_2(g)$ are 310.62, 94.05 and 68.32 Kcal respectively, Calculate the heat of formation of $C_2H_2(g)$.	(8)
	b)	What do you mean by pH of a solution? Describe the method of determination of pH of a solution by glass electrode. What are the disadvantages of this method?	(8)
Q5	a)	Derive the expression for the rate constant of a second order reaction when (i) both the reactants are same and (ii) both the reactants are different.	(8)
	b)	Draw and explain the phase diagram of Sulphur system. Why all four phases of Sulphur system do not co-exist at equilibrium	(8)
Q6	a)	Discuss the method of determination of Lattice energy of Calcium Chloride by Born-Haber cycle.	(8)
	b)	Derive Gibbs-Helmholtz equation.	(8)

Registration No .										1
Total Number of Pag	es : (02	•	•	•	•	•	•	•	

Pagiatratian Na

Q1

1st Semester Regular/Back Examination 2019-20

RCH1A002

B.Tech

 (8×6)

(6)

(6)

CHEMISTRY

BRANCH: AEIE, AERO, AG, AUTO, BIOMED, BIOTECH, CHEM, CIVIL, CSE, CST, ECE, EEE, EIE, ELECTRICAL, ELECTRICAL & C.E, ELECTRONICS & C.E, ENV, ETC, FASHION, FAT, IEE, IT, ITE, MANUFAC, MANUTECH, MARINE, MECH, METTA, METTAMIN, MINERAL, MINING, MME, PE, PLASTIC, PT, TEXTILE

> Time: 3 Hours Max Marks: 100 Q.CODE: HRB633

Answer Question No.1 (Part-1) which is compulsory, any eight from Part-II and any two from Part-III.

The figures in the right hand margin indicate marks. Part- I

Answer the following questions: (2 x 10) Identify the microwave active molecules(s). Give reasons a) (2) CO, CH₃CI,H₂O,CH₃-CH₃,CI₄, CO₂, HCI, NH₃ b) Define the term "Ultraviolet catastrophe" using the energy density plot. (2) Λ_{max} for aniline shift from 230nm in neutral medium to 203nm in acidic medium. Explain (2) C) What is the significance of the negative slope of fusion curve of ice in water system? (2) d) Write two uses of Ag nano particles. (2) e) Why does part of nail inside the wood undergoes corrosion easily? (2) Write one organometallic catalyst each for hydrogenation olefin and polymerization (2) g)

- reaction. h) What is condensed phase rule? Give an example of a system where condensed phase (2) rule is applied.
- i) Mention three factors taken in consideration while selecting col for different use. (2)
- j) Why gasoline-containing TEL is used in internal combustion engine? (2)

Part- II Q2 Only Focused-Short Answer Type Questions- (Answer Any Eight out of Twelve) a)

Show that the energy of a particle in one dimensional box is $E = \frac{n2\hbar\bar{2}}{n}$ (6) The frequency of oscillation of HF is 5×10¹² Hz. Calculate the force constant and b) (6)vibrational energy in Joule and cm-1. Calculate the zero point energy of the molecule. (6)

- Internuclear distance of HCl molecule (rigid type) is 129pm.Calculate its rotational constant in cm⁻¹ and find the wavelength of the transition between rotational energy levels J=2 to J-3.
- Define the term phase, component and degrees of freedom with suitable examples. (6)Discuss the phase diagram of Bi-Cd system. (6)
- State three quantum numbers used to describe an orbital specify the permissible values of each quantum numbers
- Describe how the calorific value of a solid fuel is determined by using a bomb g) (6)calorimeter.
- 0.72g of a fuel containing 80% carbon, when burnt in a bomb calorimeter, increased the temperature of water from 227.3 °C to 29.1 °C . If the calorimeter contains 250g of water and its water equivalent is 150 grams, calculate the HCV of the fuel. Write the answer in LJ/kg.
- What is cathodic protection? Explain sacrificial anode method. (6)Discuss the factors affecting corrosion. (6)
- Explain Sol-Gel synthesis for producing nanomaterials. Explain with help of a neat k) sketch.
- I) Explain the mechanism of differential aeration corrosion with reference to irin materials. (6)

Part-III

Q3	a)	Only Long Answer Type Questions (Answer Any Two out of Four) State and explain Beer-Lambert's law. The absorbance of a 2.5 × 10 ⁻⁴ M solution taken in a 1 cm is 1.17.Calculate the molar extinction coefficient.	(16×2) (8)
	b)	Write the basic principles of UV-Visible spectroscopy.	(8)
Q4	a)	Derive the expression for the energy and frequency a diatomic molecules by assuming the molecule behaving as simple harmonic oscillator.	(8)
	b)	What do fundamental and overtone vibrations mean? HCl shows intense absorption peak at 2900 cm-1 and weak one at 8600 cm-1. Calcualte the anharmonicity constant	(8)
Q5	a)	Draw and explain the phase diagram of Sulphur system. Why all four phases of Sulphur system do not co-exist at equilibrium	(8)
	b)	What is electrochemical corrosion? Describe the mechanism of electrochemical corrosion by hydrogen evolution type and oxygen absorption.	(8)
Q6	a) b)	Discuss I brief the proximity analysis of coal Discuss the applications of nanotechnology in electronics.	(8) (8)

Reg	istra	ition No :												
Tota	al Nu	ımber of Pag	jes : 02										F	B.Tech. PAC2A102
	-	BF CIVIL, CSE, JTECH, MEC Answer	H, METT	A AEIE E, EII A, MI	PPLI, AEF E, EL INER Tir Ma: Q.0	ED CRO, ALLECT ALL, I Me : X Ma	CHENAUTO RICA MININ 3 Ho rks: E: C	MISTF NL, E NG, N urs 100 802 y and	RY DMEI NV, I MME,	D, BIO ETC, PE,	OTE(FAT, PLA:	CH, , IEE, STIC, n Par	IT, MA PT, T	ANUFAC,
	The figures in the right hand margin indicate marks. Answer all parts of a question at a place.													
				art – <i>I</i>										(040)
Q1	-\	Answer the f	•	-			•					/pe :		(2 x 10)
	a) b)	In anodic met Which of the	•						_			 tion?		
	D)	(i) H_2O	ionowing n	IOICC	iles u		CO ₂	30101	THEIO	wave	iauia	tioii:		
		(iii) CO				٠,		the a	above	!				
	c)	Which one of (i) Coal (iii) Kerosene		ings is	S NOT	(ii)	-	ral ga	•	ıry fue	el?			
	d)	The unit of G		ific va	lue (G	` ,			stem i	s				
	e)	The shifting known as:	of UV-vis	ible a		otion	peak	towa	ards s	shorte		 veleng	gth is	
		(i) Bathochr (iii) Hypsochi					• •		mic s nic sł					
	f)	Which of the (i) $(C_2H_5)_2 Z$ (iii) $Ni(CO)_4$	•			(ii)		₅) ₂ Fe	•	und?				
	g)	The expressi	on for Han	niltoni	ian op	perato	r (Ĥ)	used	in So	chrod	inger	equat	ion is	
	h)	The IUPAC n			-		-	-				_		
	i)	In the phase the equilibrium	m between				a	nd		_ :	-	·		
	j)	The number solution of su	•			•	-		t in a	ı syst	em o	f satu	ırated	
Q2		Answer the f	following	quest	ions:	Sho	rt ans	swer i	type :	•				(2 x 10)
	a)	What is the m	_	-							?			
	b)	Complete co	mbustion					•		•		al of	heat.	
	c)	Ocean-going under the oce	ean water f	or ma	any ye	ars d	oes n	ot. Ex	kplain			•		
	d)	Write any two coating.	o differenc	es be	etwee	n and	dic n	netal	coatir	ng an	d catl	nodic	metal	
	e)	State Beer-La	ambert's la	w and	d write	e the e	equat	ion.						

- **f)** Calculate the wavenumber in cm⁻¹ and m⁻¹ for the radiation, whose wavelength is 200 nm.
- g) What is EAN rule? Justify that V(CO)₆ does not obey EAN rule.
- h) What is cracking process?
- i) How does triple point differ from critical point in a phase diagram?
- j) What types of information can be obtained from azimuthal quantum number and magnetic quantum number?

Part - B (Answer any four questions)

		Part – B (Answer any four questions)	
Q3	a) b)	Discuss in detail the phase diagram of water system. The internuclear distance of HCl molecule (rigid type) is 129 pm. Calculate its rotational constant (in cm $^{-1}$) and find the wavelength of the transition between rotational energy levels, J=1 to J=2. (The atomic masses are: H = 1.008 amu and Cl = 35.5 amu)	(8) (7)
Q4	a)	Derive the time-independent Schrodinger wave equation and write its applications.	(10)
	b)	Write any five differences between dry corrosion and wet corrosion.	(5)
Q5	a)	Discuss the knocking process in petrol engine. Define octane number and how is it related to the chemical structure of the fuel?	(10)
	b)	Calculate net calorific value for a coal sample containing 82% C, 8% H, 2% S, 3% N and remaining ash. (Latent heat of steam is 587 kcal/kg)	(5)
Q6	a)	What is hydroformylation reaction? Write the steps for hydroformylation of ethylene using octacarbonyldicobalt catalyst.	(7)
	b)	A gaseous fuel has the following composition by volume: H_2 = 40%, N_2 = 22%, CO = 20%, CH_4 = 10%, CO_2 = 8%. Calculate the weight and volume of air required for the combustion of 1m³ of the fuel.	(8)
Q7	a) b)	Discuss the various factors affecting the corrosion process. Write the basis of use of eta (η) notation in organ metallic compounds? Give two examples.	(10) (5)
Q8	a) b)	What is power alcohol and Discuss its advantages and disadvantages. The percentage transmittance of 8 x 10 ⁻⁵ M solution of a compound X is 40, when measured at 510 nm in a cell of path length of 1 cm. Calculate the absorbance and the molar extinction coefficient (in M ⁻¹ .cm ⁻¹) of this solution.	(6) (5)
	c)	Calculate the ground state energy (in eV) for a particle of mass 9.1 x 10 ⁻³¹ kg, which is confined in one-dimensional box of length 10 nm.	(4)
Q9	a) b) C)	Discuss briefly the applications of UV-Visible absorption spectroscopy. State Gibbs phase rule and write its limitations. Calculate the frequency of oscillation of CO, if its force constant is 1600 Nm ⁻¹ .	(6) (5) (4)

Atomic masses are: C=12.00 amu and O = 16.00 amu)

Registration No :										
-------------------	--	--	--	--	--	--	--	--	--	--

B.Tech PAC2A102

2nd Semester Back Examination 2018-19
APPLIED CHEMISTRY

BRANCH: AEIE, AUTO, CHEM, CIVIL, CSE, ECE, EEE, ELECTRICAL, ETC, IEE, IT, MANUTECH, MECH, METTA, MINING, MME, PE, PLASTIC, TEXTILE

Time: 3 Hours Max Marks: 100 Q.CODE: F522

Answer Question No.1 (Part-1) which is compulsory, any eight from Part-II and any two from Part-III.

The figures in the right hand margin indicate marks.

Part- I

Q1 Short Answer Type Questions (Answer All-10)

 (2×10)

- a) Justify the following organic compound attained the 18e configuration of their covalent model .Fe(η^5 -C₅H₅) and Mo(η^5 -C₆H₆)
- b) What is the de-Broglie wavelength of an electron travelling at 1% of the speed of light?
- c) During corrosion evolution of hydrogen occurs in.....
- d) The structure of Grignard's reagent is
- e) Calculate the number of components and degree of freedom for $N_2(g) + O_2(g) \leftrightarrow 2NO(g)$.
- f) Calculate the uncertainty in velocity of a cricket ball (mass = 0.01 gm) if uncertainty in its position is of the order of 100 pm.
- g) What is Pilling-Bed worth rule? What is its significance?
- h) What do you mean by fuel? Discuss characteristics of good fuel.
- i) Why calgon conditioning is better than the phosphate conditioning?
- j) Suggest some chemicals reagent for removal of DO and CO₂ from water which is better and why?

Part- II

Q2 Focused-Short Answer Type Questions- (Answer Any Eight out of Twelve)

(6 x 8)

- a) Discuss various types of electronic transition.
- b) Discuss characteristics of eutectic mixture.
- c) What do you mean by operator? Discuss the commutative operator.
- d) What do you mean by Caustic embrittlement? How do you prevent caustic embrittlement?
- e) Discuss the Ziegler -Natta catalyst.
- f) What do you mean by Eigen value and Eigen value function? Prove that for operator d^2/dx^2 for $\emptyset(x) = \sin 2x$ is an eigene value problem and finds it Eigen value.
- g) A coal has following composition by weight C = 90%; O = 3.0%; S = 0.5%; N = 0.5% and Ash is 2.5%. NCV value of coal was found to be 8490.5 kcal/kg. Calculate the percentage of hydrogen and HCV of coal.
- h) Discuss preparation and use of producer gas and water gas.
- i) State any TWO laws of quantum mechanics.
- j) How can you prepare power alcohol?
- k) Calculate moment of inertia and rotational constant of HF molecule having bond distance 92pm. (atomic mass H = 1.0078u and F = 18.9984u.
- I) Discuss the one method for measurement of COD.

Part-III Long Answer Type Questions (Answer Any Two out of Four) Give a comparative account of κ , η and μ notations in organometallic compounds depending upon their modes of bonding of ligands. What do you mean by vapour pressure? Explain the vapour pressure curves in water and sulphur system with phase diagrams.

- What do you mean by corrosion? Discuss various types of corrosion with one example each along with their prevention method.
- Q6 What do you mean fuel? Discuss different type of methods carrying out for reformation (16) of petrol.

Q3

Q4

Registration No :					

B.Tech. **BS1103**

2nd Semester Back Examination 2017-18 CHEMISTRY - I

BRANCH: AEIE, AERO, AUTO, BIOMED, BIOTECH, CHEM, CIVIL, CSE, ECE, EEE, EIE, ELECTRICAL, ENV, ETC, FASHION, FAT, IEE, IT, ITE, MANUFAC, MANUTECH, MARINE, MECH, METTA, METTAMIN, MINERAL, MINING, MME, PE, PLASTIC, TEXTILE

Time: 3 Hours Max Marks: 70 Q.CODE: C801

Answer Question No.1 which is compulsory and any five from the rest.

The figures in the right hand margin indicate marks.

Answer all parts of a question at a place.

Q1 Answer the following questions:

(2 x 10)

(5)

(5)

- a) What is pseudo first order reaction? Give one example.
- **b)** Write the differences between molecularity and order of a reaction.
- **c)** The fusion curve in the phase diagram for water system has negative slope. Explain.
- d) Determine the number of phases and components in the following system: CaCO $_3$ (s) \rightarrow CaO (s) + CO $_2$ (g)
- e) Compute the standard EMF of the cell containing Zn^{2+}/Zn and Cu^{2+}/Cu electrodes. $E^{\circ}_{Zn^{2+}/Zn}$ = -0.76V and $E^{\circ}_{Cu^{2+}/Cu}$ = +0.34V
- f) What is Frenkel defect?
- g) Define heat of combustion.
- h) Define crystal lattice. How many atoms/particles present per unit cell of a BCC lattice.
- i) Distinguish between open system and close system
- j) Calculate the pH of the solution with $[OH] = 1 \times 10^{-10} M$.
- **Q2** a) Derive the expression for Gibbs-Helmholtz equation.
 - b) What is homogeneous catalysis? Discuss the mechanism of homogeneous catalysis with a suitable example. (5)
- Q3 a) State the Hess' law of constant heat summation and describe its application. (5)
 - **b)** For a cell, EMF is 0.0455 V at 298 K. Calculate ΔG, ΔH and ΔS for the cell reaction in the cell. Temperature coefficient, $(\partial E/\partial T)_p = 3.38 \times 10^{-4} \text{ V/K}$
- Q4 a) Draw the molecular orbital diagram for O₂⁺ molecule. Write down the electronic configuration, bond order and magnetic behavior of it.
 - **b)** An element *A* (atomic mass 100g/mol) of BCC structure has an edge length of 400 pm. Calculate the density of *A* and the number of unit cells present in 15 g of *A*.
- Q5 a) Describe the methods for determining the order of chemical reactions. (6)
 - b) Calculate the free energy change, when 4 moles of an ideal gas expands from a pressure of 10 atm to 1 atm at 25°C.

- **Q6** a) If dH = TdS + VdP, prove that $[\partial T/\partial P]_s = [\partial V/\partial S]_p$ (5) (5) b) Derive the integrated rate equation of a first order reaction and show that halflife period for this reaction is independent of the initial concentration of the reactant. (5) **Q7** a) Write the seven crystal systems along with lattice parameters and example. (5) b) Calculate the de Broglie wavelength for A cricket ball of mass 100 g moving with velocity of 2000 m/s An electron of mass 9.1×10^{-31} kg moving with velocity of 1.2×10^{5} m/s. Comment on the result. Q8 (5×2) Write short answer on any TWO: a) Dry cell
 - **b)** Quinhydrone electrode
 - c) lonic solids
 - d) Born-Haber cycle

(5)

Reg	istra	ition No :													
Tota	l Nu	mber of Paç	ges : 0)2	•							I			B.Tech
	Δ	Answer Que Th	EEE,	BRA EIE, No.1	ANCH ELE	CH I : CI CTRI Tin Ma Q.C ch is	EMISTERNATION OF THE PROPERTY	STRY , CIV , IT, I 3 Hou irks : E : F(npuls	IL, CS MANI Irs 70 070 Sory &	SE, E UTE(ECE, CH, M	MECH	from	the re	BS1103
Q1	a) b) c) d)	Answer the What do yo can be in eo Write down Write down Enthalpy/mo	u mea puilibriu the Gil electro ble is e	in by um at bbs's ode re extens	compone properties one properties on	oonen ooint f holtz n of q r inter	it? W for on equa uinhy nsive	e con tion a drone prope	npone nd de e elec erty. J	nt sy fine t trode ustify	stemi erm i your	(T&P nvolve answ	Const ed the er.	tant? ere in	(2 x 10) t
	e) f) g) h) i)	What do you Construct a $Zn_{(S)} + HC$ Calculate F pressure ex What do you What do you reaction.	galvar $l_{(aq)} \leftarrow$ ree er pand is u mear u mea	nic ce $ \frac{2n0}{2n0} $ nergy sothe $ \frac{1}{2n0} $ nergy $ \frac{1}{2n0} $	ll for t Cl _{2(aq)} char rmally ne Ze enzyr	he real hearth he	actior action when bar p rder r talyst	5 moressureaction?	ole of re. on? G e an	oxyç ive aı exam	gen a n exa nple o	at 300 mple. f enzy)K an	nd 5ba	
Q2	a) b)	Two second energy diffe and (b) 1000 What do you order reaction	r by 20 0°C ı mear	0.01 I n by C	kj/mol Order	.Cald	culate nolec	ratio ularity	of the	eir ra	te co	nstan	t at (a) 0 [°] C	
Q3	a) b)	Prove that (What do yo Hexagonal (u mea	n by	close	packi	ing in	solid							(5) f (5)
Q4	a) b)	What is a oxygen fuel What do you Discuss the	cell ı mear	n by t	he ca	talytic	pois	oning	?			tion c	of Hyd	drogen	- (5) (5)
Q5	a)	Derive an ex	xpress	ion fo	r 2nd	orde	r read	ction v	when	two r	eacta	nts aı	e san	ne. and	d (5)

b) Justify the paramagnetic behavior of O_2 and O_2 - With help of Molecular orbital http://www.bputonline.comagram. With help of Molecular orbital Diagram :

Q6		With the help of the Phase rule, draw and describe the phase diagram of. Sulphur system and BI-Cd System	(10)
Q7		How can you find the PH Of solution with help of the Quinhydrone Electrode . Discuss it merit and demerits?	(10)
Q8		Write short answer on any TWO :	(5 x 2)
	a)	Collision theory of reaction Rate	
	b)	Standard Hydrogen electrode.	
	c)	Theory of Heterogeneous catalyst	

Registr	ation No :													
Total Nu	umber of Pag	jes: 02									1	B.Tech. 5BS1103		
		2 nd Se	mester l	Back I	Exam	inati	on 2	017-1	18					
CHEMISTRY														
OUEN	BRANCH: AEIE, AERO, AUTO, BIOMED, BIOTECH,													
	CHEM, CIVIL, CSE, ECE, EEE, EIE, ELECTRICAL, ENV, ETC, FASHION, FAT, I TE, MANUFAC, MANUTECH, MARINE, MECH, METTA, METTAMIN, MINERAL, I													
IIE, IVIA	MUFAC, MAI		MME, PE						- IVIIIN	, IVIIINE	KAL,	wiiwiiwG,		
		•	•	ime: 3										
			Ma	ax Ma	rks :	100								
			-	.CODI										
		Part-A w									В.			
	The	e figures								ks.				
		Answe	r all par	ts ot a	a que	stion	ı at a	piac	e.					
		Pa	rt – A (A	nswer	all the	e aue	estion	าร)						
Q1	Answer the f								up ty	pe:		(2 x 10)		
a)	The coordina	tion numbe	er in a he	xagona	al clos	e-pac	cked	(hcp)	crysta	al struct	ture			
	is			(")	0									
	(i) 8, (iii) 4,			(ii) (iv)										
b)	` '	diagram (of sulfur	` ,		trans	sition	CUIVE	renr	esents	the			
ω,	equilibrium be				1, 1110	tranc	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ourve	, торг	Cocinto				
c)	A process is	said to be s	pontaneo	ous, if i	t satist	fies th	ne co	nditio	n	_				
	(i) $\Delta G > 0$,			` ,	ΔG <									
-1\	(iii) $\Delta G = 0$	- f t-			can n		-							
d)	Evaporation (exothermic/e	of wate		an e	xampı	e c	of _			react	ion.			
e)	•		•	nple of	1									
٠,	(i) Redox el		- C		Gas	electr	ode,							
	(iii) Metal-me	tal ion elec	trode	(iv)	Metal	l-inso	luble	salt e	lectro	de				
f)	The bond o	rder for C	O_2 and O_2) ₂ - (peroxi	de ic	on) a	re _	8	and				
۳۱	respectively.	hattler dafa	oto dono	ity of o	مانط									
g)	In case of Scl (i) Remains	•		•	Incre		-	(iii)	Decr	eases				
h)	The unit of ra	•		` '		,		()	Door	cuoco				
i)	The hydroger							alyst	is an	example	e of			
		atalysis. (h	-		_									
j)	Which of the	•	elationship	. ,	. ,									
	(i) $-\Delta G = -n$ (iii) $\Delta G = nFE$				–∆G Both									
	(111) ΔG = 111 L	-cell		(17)	DOUT	(1) & ((11)							
Q2	Answer the f	following o	uestions	s: Sho	rt ans	wer t	ype:					(2 x 10)		
a)	What is activa	_	-					eactio	n?			,		
b)	Write the rate	•	or the foll	owing	reaction	on:								
_ \	$mA + nB \rightarrow$	•									-00			
c)	Define unit of lattice?	cell. How	many ato	ms/pa	rticles	pres	sent	per u	ınıt ce	ell of F	-CC			
d)	Write down th	ne Gibbs H	elmholtz (eguatio	n and	defin	e the	term	s invo	lved				
(م	Explain zero			-		30111	.50		J V C					

(5)

- f) Write the electrode notation and electrode reaction for calomel electrode.
- **g)** How many phases and components are present in water-kerosene oil system?
- **h)** Calculate the pH of the solution with $[OH^{-}] = 10^{-8} \text{ M}$.
- i) Determine the wavelength associated with a cricket ball of mass 400 g moving with velocity 1.5 x 10⁵ m/s.
- j) What do you mean by state function? Give two examples.

Part – B (Answer any four questions)

- Q3 a) What is spontaneity of a reaction? Describe the criteria for spontaneity and equilibrium of chemical reactions. (10)
 - b) Differentiate between Frenkel defects and Schottky defects in solids.
- Q4 a) State the law of mass action. Discuss the factors affecting the rate of a reaction. (10)
 - **b)** For a cell, EMF is 1.018 V at 293 K. Calculate ΔG , ΔH and ΔS for the cell reaction in the cell. Temperature coefficient $(\partial E/\partial T)_p = -4 \times 10^{-5} \text{ V/K}$
- Q5 a) Derive the integrated rate equation for a second order reaction, when
 (i) 2A → Products
 (ii) A+ B → Products.
 Show that half-life period for this reaction varies inversely with the initial concentration of the reactant.
 - b) Write the half cell reactions and calculate the EMF of the following cell at 25 $^{\circ}$ C using Nernst equation. $Zn_{(s)}|Zn^{2+}(1M)||I^{-}(0.1M)|CuI_{(s)}|Cu|_{(s)}$

The Standard electrode potentials are E° (Zn^{2+}/Zn) = - 0.76V and E° ($Cul/Cu/l^{-}$) = - 0.17V

- Q6 a) Derive all the four Maxwell's thermodynamic relations. (10)
 - b) Derive concept of entropy from second law of thermodynamics. (5)
- Q7 a) Draw the molecular orbital diagram for O₂ molecule. Write down the electronic configuration, bond order and magnetic behavior of it.
 - b) Discuss the construction and cell reaction of a storage cell. (5)
- Q8 a) Explain the phase diagram for sulfur system with a neat diagram. (10)
 - **b)** A compound with FCC crystal structure has a density of 2.163 g/cm³ and molecular weight is 58.5 g/mol. Calculate the edge length of its unit cell. (5)
- Q9 a) Write short notes on any two: (5 x 2)
 - (i) Standard hydrogen electrode
 - (ii) L.C.A.O.
 - (iii) Collision theory
 - b) Calculate the change in entropy in (J/K) when an ideal gas expands from a volume of 3 L to 30 L at 27 °C. (R= 8.314 J/K-mol)

B.Tech 15BS1103

2nd Semester Back Examination 2018-19 CHEMISTRY

BRANCH: AEIE, CIVIL, CSE, ECE, EEE, ELECTRICAL, ETC, IEE, IT, MECH, MINERAL, MINING, MME, TEXTILE

Max Marks: 100 Time: 3 Hours Q.CODE: F524

Answer Question No.1 (Part-1) which is compulsory, any EIGHT from Part-II and any TWO from Part-III.

The figures in the right hand margin indicate marks.

Part- I

Q1 Only Short Answer Type Questions (Answer all -10)

(2 x 10)

- a) Write down the Gibbs's Helmholtz equation and define term involved therein.
- **b)** What do you mean by degrees of freedom? What is value above and below critical points.
- c) Enthalpy/mole is extensive or intensive property. Justify your answer.
- d) Give the number of components of the system:

$$Fe_{(S)} + H_2O_{(g)} \leftrightarrow FeO_{(S)} + H_{2(g)}$$

- e) What is the relationship between free energy and equilibrium constant of a reaction.
- f) What do you mean by the zero –order reaction? Give an example of it.
- **g)** Aqueous solution of glucose has one phase. Whereas aqueous solution of carbon tetrachloride has two phase. Explain.
- h) Distinguish between electrolytic cell and battery.
- i) What do you mean by the planes of symmetry and center of symmetry?
- j) Write down electrode reaction of quinhydrone electrode.

Part- II

Q2 (Answer Any Eight out of Twelve)

 (6×8)

- **a)** What do you mean by Order and molecularity of a reaction? Derive an expression for second order reaction when two reactants are different.
- b) What is the standard EMF of the Electrochemical cell made of Cd Electrode in a 1.0M Cd (NO₃)₂ solution and Cr electrode in 1.0M Cr(NO₃)₃ solution E^0 (Cd/Cd⁺²) =- 0.40V E^0 (Cr⁺³/Cr)= -0.74V?
- **c)** What do you mean by the catalytic poisoning? Discuss the various type of catalytic poisoning with example.
- **d)** What do you mean by the reaction rate? Discuss the effect of temperature on reaction rate(Derive the Arrhenius equation).
- e) Prove that Cp-Cv=[P+ $\{\partial U/\partial V\}_T$][$\partial V/\partial T$]p
- f) A first order reaction takes 40.5 minutes for 25% decomposition of the reactant. Calculate the rate constant of the reaction.
- g) State and explain Hess's law of constant heat summation.
- h) Write the construction, cell representation and cell reaction of standard hydrogen electrode.
- i) Prove that $E = -\partial H/nF + T\{(\partial E)/\partial T\}_P$
- j) Write down the condition for overlapping of atomic orbitals.
- **k)** Write the reactions of charging discharging in lead-storage battery.
- I) Define term phase, component and degrees of freedom with at least one example of each state.

Part-III Only Long Answer Type Questions (Answer Any Two out of Four) Q3 Write down the condition for overlapping of atomic orbital. Justify the paramagnetic (16)behavior of NO, O₂ and O² with help of molecular orbital diagram. Q4 Make a Sketches representing schematically(Name each curve)each of following: A temperature and pressure diagram for one component system involving more than (8) a) one triple point A temperature –composition phase diagram for a binary system having eutectic point. (8) b) Q5 What do you mean by order and molecularity in a chemical reaction? Derive an (16)expression for second order reaction when two reactants are different? Q6 What do you mean by the lattice energy? How can you explain lattice energy with help (8) a) of Born-Haber cycle. b) The pH of solution in cell (8) $Pt/H_2(g)/HCl(g)/Agcl(s)/Ag$ is 0.65 calculate the EMF of cell E^0 Cl/Ag,Ag = 0.2224V

Daniatration No.									-
Registration No :			1			l	l		
			1			l	l		
			1			l	l		
			1			l	l		
	1	l	1		l	l	l		
									_

B.Tech RCH2A002

2nd Semester Regular / Back Examination 2018-19

CHEMISTRY

BRANCH: AEIE, AERO, AG, AUTO, BIOMED, CIVIL, CSE, ECE, EEE, EIE, ELECTRICAL, ETC, IT, MANUTECH, MECH, METTA, METTAMIN, MINERAL, MINING, MME, PLASTIC, PT

Max Marks: 100 Time: 3 Hours Q.CODE: F525

Answer Question No.1 (Part-1) which is compulsory, any EIGHT from Part-II and any TWO from Part-III.

The figures in the right hand margin indicate marks.

Part- I

Q1 Only Short Answer Type Questions (Answer All-10)

(2 x 10)

- a) Differentiate between Eutectic temperature and Critical temperature.
- b) What do you mean by calorific value of fuel?
- c) Why fusion curve of ice has negative slope where as transition curve has positive slope?
- d) Define calorific value of fuel .
- e) What do you mean by auxochrome and chromophores?
- f) Define cetane number.
- g) What do you mean by 0D Nano material and 1D nano material?
- h) Define CNG.
- Give an example of cathodic coating and anodic coating.
- j) What is effect of conjugation on chromophores?

Part- II

Q2 Only Focused-Short Answer Type Questions- (Answer Any Eight out of Twelve) (6 x 8)

- a) State and explain Beer Lambert's law. Explain various type of electronic transition occurs in UV Spectroscopy with example
- b) Write the approximate compositions and calorific value of water gas and producer gas.
- c) Write three important applications of nanomaterials in environmental field.
- d) Write down short notes on selection rule
- e) Write down mechanism of electrochemical corrosion.
- f) Describe in detail on synthesis of power alcohol.
- g) Draw the phase diagram of Pb-Tin system and elaborate its salient features.
- h) Describe the fractional distillation of petroleum.
- i) Write short notes on proximate analysis of coal.
- j) Write down top down approach for synthesis of nanomaterials.
- k) The vibrational spectrum of HCl gas exhibits an absorption band centered 2,885cm⁻¹.Calculate the force constant of the bond of HCl molecule. (mass: H = 1.0078u, Cl = 35.4993u)
- I) A coal sample has following composition by weight C = 90%; O = 3.0%; S = 0.5%; N = 0.5% and ash = 2.5%. Net calorific value of coal was found to be 8490.5 kcal/kg .Calculate percentage of hydrogen and HCV and GCV of the coal sample.

Part-III

	Only Long Answer Type Questions (Answer Any Two out of Four)	
Q3	Derive Schrödinger equation? Write its application to particle in one dimensional box .Also prove that this a Eigen value problem	(16)
Q4	What do you mean by the eutectic point? Discuss eutectic point with help of suitable diagram? Discuss its applications.	(16)
Q5	What do you mean by cracking? Discuss the mechanism of thermal cracking and catalytic cracking.	(16)
Q6	What are factors affecting corrosion? How can it be prevented?	(16)

Registration No: Total Number of Pages: 02 B.Tech **RCH2A002** 2nd Semester Regular / Back Examination: 2021-22 CHEMISTRY BRANCH(S): AEIE, AUTO, BIOTECH, CIVIL, CSE, CSEAI, CSEAIME, CST, ECE, EEE, ELECTRICAL, ELECTRICAL & C.E, ETC, IT, MANUTECH, MECH, METTA, MINERAL, MINING, MME, PLASTIC, PT Time: 3 Hour Max Marks: 100 ١, Q.Code: J764 Answer Question No.1 (Part-1) which is compulsory, any eight from Part-II and any two from Part-III. The figures in the right hand margin indicate marks. Part-l Q1 Answer the following questions: (2×10) Write down the Schrodinger's wave equation in three dimensions. a) Why carrot is orange in colour? Explain on the basis of conjugation. b) Transition curve of rhombic sulphur has positive slope. Explain. What is an isomorphous system? Give one example. d) What are the secondary fuels of petroleum? f) What is kerosene gas? What is the chemical formula of rust? g) Define eutectic point. Give one example. h) Give one example each from one, two and three component systems. i) What is calorific value of fuel? What are the two types? Part-II Only Focused-Short Answer Type Questions- (Answer Any Eight out of Q2 Twelve) Discuss the significance of Ψ and Ψ^2 .

(6×8)

- What is reduced phase rule? Describe the phase diagram of Lead-Tin system. b)
- Write down short note on band or molecular spectra.
- What are octane number and cetane number?
- Describe the Pilling-Bedworth Rule.
- Calculate the gross and net calorific value of a coal sample having the following composition carbon = 86%, hydrogen= 8%, sulphur=1%, nitrogen=2%, ash=3%.
- g) Explain chromophore and auxochrome with suitable examples.
- h) Write down the postulates of quantum mechanics.
- Describe the transitions taking place in UV-Visible spectroscopy.
- j) Explain phase diagram of the water system.
- What is cracking? Differentiate between thermal and catalytic cracking.
- What are the different fractions of petroleum? Mention their industrial uses.

١,

Part-III

Q3	Only Long Answer Type Questions (Answer Any Two out of Four) Derive an expression for the normalized wave function for a particle in one dimensional box.	(16
Q4	State Gibb's phase rule and explain the phase diagram of sulphur system with the help of phase diagram.	(16)
Q 5	What are fossil fuels? Describe briefly the ultimate analysis of coal.	(16)
Q6	Write down short notes on waterline corrosion and galvanic corrosion. Discuss the various factors influencing the rate of corrosion.	(16)