DSP Review

DSP Overview

DSP could be classified into two parts:

——Signal Analysis and Digital Filter

DSP Overview

Chapter 8: Infinite Impulse Response Filters

Analog Filter design
Design Low-pass IIR Digital Filter
Impulse Invariance IIR Filter Design Method
Bilinear Transform IIR Filter Design Method

Chapter 7: Design of FIR Digital Filter

Properties of FIR Filters FIR filter design based on Windows

Chapter 6: Filter Structures

Block Structure

Mason and Transpose Theorem

IIR and FIR Structures

Chapter 8

- 8.1 An Introduction to Infinite Impulse Response Filters
- 8.2 The Laplace Transform
- 8.3 Analog Low-Pass Filters
- 8.4 Impulse Invariance IIR Filter Design Method
- 8.5 Bilinear Transform IIR Filter Design Method
- 8.6 Low-Pass IIR Filter Design
- 8.7 Other Types IIR Filter Design

8.3 Analog Filter design

Contents:

Filter Specifications

Butterworth Approximation

Chebyshev Approximation

Cauer Approximation

Comparison of above Analog Filters

(1) Butterworth Approximation

Magnitude Frequency Character:

$$\left| H(j\Omega) \right|^2 = \frac{1}{1 + \left(\frac{\Omega}{\Omega_c}\right)^{2N}}$$

N is a positive integer, the order of Filter. Ω_c is the cut-off frequency.

Features:

- Maximally Flat Magnitude
- 3dB Cutoff Frequency

Summary for Calculation Method

- (1) Requirements
- (2) Calculate N
- (3) Calculate Ω_c
- (4) Find H(s)

Useful Formula

N=1:
$$H(s) = \frac{\Omega_c}{s + \Omega_c}$$

N=2:
$$H(s) = \frac{\left(\Omega_c\right)^2}{s^2 + \sqrt{2}\Omega_c s + \Omega_c^2}$$

N=3:
$$H(s) = \frac{(\Omega_c)^3}{s^3 + 2\Omega_c s^2 + 2\Omega_c^2 s + \Omega_c^3}$$

8.6 Low-Pass IIR Filter Design

Procedures of Designing IIR DF with AF design:

- Required Targets for DF
- Transfer Function for Analogy Filter H_a(S)
- Filter transition (s plane -> z plane) to obtain Transfer Function for digital filter H(z)
- Digital frequency transition, to obtain other digital filters according to the digital LP filter

Two Methods for $H_a(s)$ to H(z):

- Impulse Response Invariance method IRI
- Bilinear Transformation method BLT

Design IIR LP DF with BLT Method

Steps:

- 1) Given ω_s , ω_p , α_p and α_s of DF.
- 2) According to:

$$\Omega = \frac{2}{T} tg \frac{\omega}{2}$$

to calculate pre-warped critical frequency: Ω_s , Ω_p

- 3) According to Ω_p , Ω_s , α_p and α_s , design the prototype of LP AF and get $H_a(s)$
- 4) Using BLT, we can get the Transfer Function of DF.

$$H(z) = H_a(s)|_{s = \frac{2}{T} \cdot \frac{1-z^{-1}}{1+z^{-1}}}$$

Chapter 7

- 7.1 An Introduction to Finite Impulse Response Filters (FIR)
- 7.2 Properties of FIR Filters
- 7.3 Low-Pass FIR Filter Design
- 7.4 Examples to Design other Types Linear Phase FIR Filter

FIR Filter

Characteristic of FIR DF:

- Always Stable: Poles at origin point
- Zeros of Linear Phase FIR: z_i , z_i^* , $\frac{1}{z_i}$, $\frac{1}{z_i^*}$
- Linear Phase DF

Phase Delay & Group Delay:

- Both are constant
 - Even Symmetry:
- Only Group Delay
 - Odd Symmetry:

$$\begin{cases} \theta_0 = 0 \text{ and } \tau = \frac{N-1}{2} \\ h(n) = h(N-1-n) \end{cases}$$

$$\begin{cases} \theta_0 = \pm \frac{\pi}{2} \text{ with } \tau = \frac{N-1}{2} \\ h(n) = -h(N-1-n) \end{cases}$$

$$Z_i$$
 $\theta(\omega)$

 $H(z) = \sum h(r)z^{-r}$

$$\tau_g(\omega) = -\frac{d\theta(\omega)}{d\omega}$$

+ Order N: odd or even

The Phenomenon of Gibbs

Summary:

The phenomenon of Gibbs results in the convolution of windowed frequency function and $H_d(e^{j\omega})$.

- (1) Transition band: the band between positive and negative acromion.
- (2) The width of transition band is the mainlobe width of windows spectrum. For rectangular $w_R(e^{j\omega})$, the width is $4\pi/N$.

The width of transition band is decided by the selected windows.

For one certain type of windows, increasing N can make transition band more steep.

Summary of Windows

<u>Window</u> <u>Functions</u>	Transition band- width		<u>Minimum</u> stopband/dB
Rectangular	4π/N 1.8π/N	-13	21
Hanning	8π/N 6.2π/N	-32	44
Hamming	8π/N 6.6π/N	-43	53
Blackman	12π/N 11π/N	-58	74

FIR Design with Windows

Steps:

Performance requirements -> $H_d(e^{j\omega})$

- (1) Expand $H_d(e^{j\omega})$ to Fourier Series, get $h_d(n)$;
- (2) Truncate $h_d(n)$ to N=2M+1 (windows);
- (3) Shift the truncated $h_d(n)$ right with M points, get h(n);
- (4) Multiply h(n) by the choosing windows function;
- (5) Realize h(n) or H(z) by hardware or software.

Chapter 6

- **6.1 Block Structure**
- **6.2 Mason and Transpose Theorem**
- **6.3 Example of Filter Structures**

Contents

Filters:

Described by H(z) or h(n)

Described by diagram (*Mason's Rule*)

Filter Structure:

•FIR Filter:

Direct Form, Cascade Form

•IIR Filter:

Direct Form, Canonical, Cascade, Parallel Form

Transpose Theorem:

Every structure has two realizations at least.

Mason's Rule

Mason's Rule:

If g_i denotes the route gain from the <u>Source Node</u> to <u>Destination Node</u>, and Δ_i is the <u>cofactor</u> of g_i , then, the Transfer Function <u>H</u> from the source to destination is:

$$H = \frac{1}{\Delta} \sum_{i} g_{i} \Delta_{i}$$

Mason's Rule provides a step by step method to obtain the Transfer Function from a block diagram or signal flow graph.

<u>Derived by Samuel Jefferson Mason.</u>

Equivalent Structures

Target: various realization of a given Transfer Function.

Equivalent Structure: the same *Transfer Function*.

Transpose Theorem:

(Proved at section 4.72 of A. V. Oppenheim's Book)

- Reverse the direction of all paths;
- Maintain the path gain;
- Exchange the positions of input and output.

The Transfer Function is the same to original one, when there are only one input and one output.