V.GetDouble()

This function works on a variable. It will return a double value in case the variable is integer or double. In all other cases the program will crash providing a relevant message.

Syntax:

```
myVar.GetDouble();
where:
```

myVar is an already initialized variable.

Example

```
# This is an example script for
# Variable functions
%Compound
 Variable double=1.0;
 Variable integer=2;
 Variable iToBool = integer.GetBool();
 Variable boolean=false;
 print(" Results for translation functions \n");
 print("Double to integer: %d (it should print 1) \n", double.GetInteger());
 print("Integer to double : %.21f (it should print 2.00)\n", integer.
→GetDouble());
print("Boolean to string : %s (it should print FALSE)\n", boolean.

GetString());
print("Integer to boolean : %s (it should print TRUE)\n", iToBool.
→GetString());
print("Double to string : %s (it should print 1.0000000000000000000e+00)\n
→", double.GetString());
 print("Integer to string : %s (it should print 2)\n", integer.GetString());
End
```

V.GetInteger()

This function works on a variable. It will return an integer value in case the variable is integer or double. In all other cases the program will crash providing a relevant message.

Syntax:

```
myVar.GetInteger();
where:
myVar is an already initialized variable.
```

Example

V.GetSize()

This function works on a variable. If the variable is a scalar it will return 1. If the variable is a 1-Dimensional array it will return the size of the array which is the same with the GetDim1(). If the variable is a 2-Dimensional array it will return the results Dim1*Dim2.

Syntax:

myVar.GetSize();

where:

myVar is an already initialized variable.

Example

```
# This is an example script for
# Variable functions
%Compound
 Variable dim1, dim2, size;
 Variable A;
 Variable B[3];
 Variable C[3][2];
 print("-----
 print(" Results for scalar \n");
 print("Dim1 : %d (it should print 1)\n", A.GetDim1());
 print("Dim2 : %d (it should print 1)\n", A.GetDim2());
 print("Size : %d (it should print 1)\n", A.GetSize());
 print("-----
           Results for 1D-Array \n");
 print("
 print("Dim1 : %d (it should print 3)\n", B.GetDim1());
 print("Dim2 : %d (it should print 1)\n", B.GetDim2());
 print("Size : %d (it should print 3)\n", B.GetSize());
 print("-----
         Results for 2D-Array \n");
 print("
 print("Dim1 : %d (it should print 3)\n", C.GetDim1());
 print("Dim2 : %d (it should print 2)\n", C.GetDim2());
 print("Size : %d (it should print 6)\n", C.GetSize());
End
```

V.GetString()

This function works on a variable. It will return a string of the value of the variable. It works for doubles, integers and booleans.

Syntax:

myVar.GetString();

where:

myVar is an already initialized variable.

Example

```
# This is an example script for
# Variable functions
%Compound
 Variable double=1.0;
 Variable integer=2;
 Variable iToBool = integer.GetBool();
 Variable boolean=false;
 print("----\n");
 print(" Results for translation functions \n");
 print("Double to integer: %d (it should print 1) \n", double.GetInteger());
 print("Integer to double : %.21f (it should print 2.00)\n", integer.
→GetDouble());
 print("Boolean to string : %s (it should print FALSE)\n", boolean.

GetString());
print("Integer to boolean : %s (it should print TRUE)\n", iToBool.
→GetString());
print("Double to string : %s (it should print 1.0000000000000000000e+00)\n
→", double.GetString());
 print("Integer to string : %s (it should print 2)\n", integer.GetString());
```

V.PrintMatrix()

This function works on variables. It will print print an array on a format with 8 columns.

Syntax: myVar.PrintMatrix([NCols=numOfColumns]);

where:

myVar is an already initialized variable.

numOfColumns is the desired number of columns for the printing. This is not obligatory and if not used then by default ORCA will print using 4 columns.

Example

Example:

```
for j from 0 to Dim2-1 Do
    x[i][j] = i+j;
EndFor;
EndFor;

x.PrintMatrix();  # This should print with 4 columns
    x.PrintMatrix(NCols=8); # This should print with 8 columns
EndRun
```

NOTE In case of scalars it will only print the header without any values.

NOTE It only works for arrays of type 'double' or type 'integer'. With all variables of other types the program will exit providing an error message.

With

The purpose of the "with" command is to add the ability to call compound while adjusting some of the variables that are already defined in the compound file. This means that if there is a variable defined in the compound file and a value is assigned to it, we can during the call change the assigned value of this variable.

One can pass numbers, string or boolean variables.

It should be noted that it is not possible to call array variables this way. Beside this restriction, the syntax of the variable assignment in the case of with is the same with the variable assignment in a normal *Compound* script.

An important note here is that in case we use the *With* command the *%Compound* block should end with an *End'* even if we call a *Compound* script file.

Syntax:

```
% compound "filename"

With

var1 = val1;

var2 = val2;

End
```

Example:

```
# This is to check all available ways of variable assignement
  in combination with the 'with' calls.
# Some necessary initial definitions
Variable x1, x2, x3, x4;
# Now the assignments
#Scalars doubles
x1 = 1.0;
#Scalars integers
x2 = 1;
#Scalars strings
x3 = "test";
#Scalars bools
x4 = True;
print( " -
print ( " ----- SUMMARY OF WITH ASSIGNMENTS ----- \n");
print( " ----- \n");
print( " The calling input:\n");
```

```
print("%Compound \"0975.cmp\"\n");
print(" with\n");
print("end\n");
print( " ---
                ----- Scalars ----- \n");
print( " x1 (1.0) : %.21f\n", x1);
print( " x2 (1) : %d\n". x2):
print( " x2 (1)
                     : %d\n", x2);
print( " x3 (\"test\") : %s\n", x3);
print( " x4 (True) : %s\n", x4.GetString());
#print(" x6 : %s\n",
                             x6);
#if (x4) then
# print(" x4
                 : TRUE \n");
#else
# print(" x4 : FALSE\n");
#endIfo
End
```

Write2File

With the *Print* command (see *Print*) one can write in the ORCA output. Nevertheless it might be that one would prefer to write to a different file. In *Compound* one can achieve this using the *write2File* command. The syntax follows closely the syntax of 'fprintf' command of the programming language C. The arguments definition and the syntax is identical with the syntax of the *Compound Print*' command with the addition that one should define a file object to send the printing.

Syntax:

Write2File(file variable, format string, [variables]);

Where:

file variable: is a predefined variable corresponding to an already open, through the OpenFile command, file.

format string and *variables* follow exactly the syntax of the *Print* command, so for more details please refere to section *Print*.

NOTE Please remember once everything is writen to the file to close the file, using the *CloseFile* command (see *CloseFile*).

Example:

```
%Compound
# -----
# This is to check all available write2String and
# write2File options
# -------
Variable xS = "test_";
Variable xI = 1;
Variable final;
Variable fp;
Variable myFilename = "0955.txt";

#Create also a file object
fp = OpenFile(myFilename, "w");
write2String(final, " ----- Test ----- \n");
write2File(fp, "%s", final);
CloseFile(fp);
```

```
print( " ----- \n");
 print( " ----- SUMMARY OF WRITE2STRING AND ----- \n");
 print( " ----- \n");
 print( " ----- \n");
 write2String(final, "%s", "constant");
 print( " Final : %s\n", final);
 write2String(final,"%s", "constant");
                                  #No space before the quotation marks
 print( " Final
                : %s\n", final);
 write2String(final,"
                  %s", "constant"); #No spaces before but more_
→afterwards
             : %s\n", final);
 print( " Final
 write2String(final, " %s", "constant"); #More spaces before and more_
→afterwards
 print( " Final
               : %s\n", final);
 write2String(final, "%s", xS);
 print( " Final : %s\n", final);
 write2String(final, "%s_%d", xS, xI);
 print( " Final : %s_%d\n", final, xI);
 write2String(final, "%s_%d", xS,2*xI+1);
 print( " Final
               : %s\n", final);
End
```

Write2String

In case one needs to construct a string using some variables, *Compound* provides the *Write2String* command. The syntax of the command is identical with the *Write2File* (see *Write2File*) command with the only exception that instead of a file we should provide the name of a variable that is already declared in the file. The syntax of the format and the variables used is identical with the *Print* command (please refer to *Print*.)

Syntax:

Write2String(variable, format string, [variables]);

where.

variable: is the name of a variable that should already be declared.

format string and variables follow exactly the syntax of the Print command, so for more details please refer to section Print.

Example:

```
print( " ----- \n");
 print( " ----- SUMMARY OF WRITE2STRING AND ----- \n");
 print( " ----- \n");
 print( " ----- \n");
 write2String(final, "%s", "constant");
 print( " Final : %s\n", final);
 write2String(final,"%s", "constant");
                                       #No space before the quotation marks
 print( " Final : %s\n", final);
write2String(final, "%s", "constant" );
                                       #More than one spaces before
                 : %s\n", final);
 print( " Final
 write2String(final,"
                     %s", "constant"); #No spaces before but more_
⇔afterwards
 print( " Final : %s\n", final);
 write2String(final, " %s", "constant"); #More spaces before and more_
⇔afterwards
 print( " Final : %s\n", final);
 write2String(final, "%s", xS);
 print( " Final : %s\n", final);
 write2String(final, "%s_%d", xS, xI);
 print( " Final : %s_%d\n", final, xI);
 write2String(final, "%s_%d", xS,2*xI+1);
 print( " Final : %s\n", final);
End
```

8.3.2 List of known Properties

The name and a sort explanation of all the known variables that can be automatically recovered, from the property file, are given in the next table

Table 8.2: Variables, known to the compound block, with short ex

=======================================	
	======================================
=======================================	
+++++++++++++++++++++++++++++++++++++++	++++++++Energies++++
AUTOCI_REF_ENERGY	AutoCI Reference Energy
AUTOCI_CORR_ENERGY	AutoCI Correlatioin Energy
AUTOCI_TOTAL_ENERGY	AutoCI Total Energy
+++++++++++++++++++++++++++++++++++++++	++++++ ENERGY Gradie
AUTOCI_NUCLEAR_GRADIENT	AutoCI Energy nuclear gradient
AUTOCI_NUCLEAR_GRADIENT_NORM	AutoCI Norm of the nuclear gradient
AUTOCI_NUCLEAR_GRADIENT_ATOM_NUMBERS	AutoCI The atomic numbers of the atoms in the gradient
+++++++++++++++++++++++++++++++++++++++	++++++++++++++++++++++++++++++++++++++
AUTOCI_DIPOLE_MAGNITUDE	AutoCI The value of the dipole moment
AUTOCI_DIPOLE_ELEC_CONTRIB	AutoCI The electronic contribution to the dipole moment
AUTOCI_DIPOLE_NUC_CONTRIB	AutoCI The nuclear contribution to the dipole moment
AUTOCI_DIPOLE_TOTAL	AutoCI The total dipole moment
SCF_ENERGY	SCF Energy
+++++++++++++++++++++++++++++++++++++++	++++++++++++++++++++++++++++++++++++++
AUTOCI_POLAR_ISOTROPIC	AutoCI The polarizability isotropic value
AUTOCI_POLAR_RAW	AutoCI The raw polarizability tensor
AUTOCI_POLAR_DIAG_TENSOR	AutoCI The polarizability diagonalized tensor
AUTOCI_POLAR_ORIENTATION	AutoCI The polarizability orientation (eigenvectors)
+++++++++++++++++++++++++++++++++++++++	++++++++++++++++++++++++++++++++++++++

	Table 6.2 - Continued from previous page
AUTOCI_QUADRUPOLE_MOMENT_ISOTROPIC	AutoCI The quadrupole moment isotropic value
AUTOCI_QUADRUPOLE_MOMENT_DIAG_TENSOR	AutoCI The quadrupole moment diagonalized tensor
AUTOCI_QUADRUPOLE_MOMENT_ELEC_CONTRIB	AutoCI The elctronic contribution to the quadrupole moment tensor
AUTOCI_QUADRUPOLE_MOMENT_NUC_CONTRIB	AutoCI The nuclear contribution to the quadrupole moment tensor
AUTOCI_QUADRUPOLE_MOMENT_TOTAL	AutoCI The total quadrupole moment
+++++++++++++++++++++++++++++++++++++++	++++++ Magnetic Properties (D Tensor
AUTOCI_D_TENSOR_EIGENVALUES	AutoCI The D Tensor eigenvalues
AUTOCI_D_TENSOR_EIGENVECTORS	AutoCI The D Tensor eigenvectors
AUTOCI_D_TENSOR_RAW	AutoCI The Raw D Tensor
AUTOCI_D_TENSOR_D	AutoCI The final D value for the D Tensor
AUTOCI_D_TENSOR_E	AutoCI The final E value for the D Tensor
AUTOCI_D_TENSOR_MULTIPLICITY	AutoCI The spin-multiplicity used for the D Tensor calculation
+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++ Magnetic Properties (G Tensor
AUTOCI_G_TENSOR_RAW	AutoCI The Raw G Tensor
AUTOCI_G_TENSOR_ELEC	AutoCI The Electronic part of the G Tensor
AUTOCI_G_TENSOR_TOT	AutoCI The Total G Tensor
AUTOCI_G_TENSOR_ISO	AutoCI The isotropic g value
AUTOCI_G_TENSOR_ORIENTATION	AutoCI The G Tensor orientation (eigenvectors)
SCF_ENERGY	SCF Energy
VDW_CORRECTION	van der Waals correction
VDW_coldcerion	vali dei viadis correction
SCF Electric properties	
age pipore was average	
SCF_DIPOLE_MAGNITUDE.	SCF dipole moment (debye)
SCF_DIPOLE_ELEC_CONTRIB	SCF Electronic contribution to dipole moment
SCF_DIPOLE_NUC_CONTRIB	SCF Nuclear contribution to dipole moment
SCF_DIPOLE_TOTAL	SCF Total dipole moment
SCF_QUADRUPOLE_ISOTROPIC	SCF isotropic quadrupole moment
SCF_QUADRUPOLE_DIAG_TENSOR	SCF quadrupole moment diagonalised tensor
SCF_QUADRUPOLE_ELEC_CONTRIB	SCF electronic contribution to the quadrupole moment
SCF_QUADRUPOLE_NUC_CONTRIB	SCF nuclear contribution to the quadrupole moment
SCF_QUADRUPOLE_TOTAL	SCF total quadrupole moment
SCF_POLAR_ISOTROPIC	SCF isotropic polarizability
SCF_POLAR_RAW	SCF polarizability raw tensor
SCF_POLAR_DIAG_TENSOR	SCF diagonaised polarizability tensor
DBOC Energy Correction	
DBOC_ENERGY	The Diagonal Born-Oppenheimer energy correction
DFT	
DFT_NUM_OF_ALPHA_EL	Number of alpha electrons
DFT_NUM_OF_BETA_EL	Number of beta electrons
DFT_NUM_OF_TOTAL_EL	Total number of electrons
DFT_TOTAL_EN	DFT Total energy
DFT_EXCHANGE_EN	DFT Exchange energy
DFT_CORR_EN	DFT Correlation Energy
DFT_XC_EN	DFT Exchange-Correlation Energy
DFT_NON_LOC_EN	DFT Non-Local correlation
DFT_EMBED_CORR	DFT Embedding correction
gCP correction	
ger concenon	
GCP_CORRECTION	gCP energy correction

Table 8.2 - continued from previous page

	rable 6.2 - Continued from previous page
MP2	
MP2_REF_ENERGY	Reference SCF Energy
MP2_CORR_ENERGY	MP2 Correlation energy
MP2_TOTAL_ENERGY	Total Energy (SCF + MP2)
MP2 Electric properties	
MP2_DIPOLE_MAGNITUDE.	MP2 dipole moment (debye)
MP2_DIPOLE_ELEC_CONTRIB	MP2 Electronic contribution to dipole moment
MP2_DIPOLE_NUC_CONTRIB	MP2 Nuclear contribution to dipole moment
MP2_DIPOLE_TOTAL	MP2 Total dipole moment
MP2_QUADRUPOLE_ISOTROPIC	MP2 isotropic quadrupole moment
MP2_QUADRUPOLE_DIAG_TENSOR	MP2 quadrupole moment diagonalised tensor
MP2_QUADRUPOLE_ELEC_CONTRIB	MP2 electronic contribution to the quadrupole moment
MP2_QUADRUPOLE_NUC_CONTRIB	MP2 nuclear contribution to the quadrupole moment
MP2_QUADRUPOLE_TOTAL	MP2 total quadrupole moment
MP2_POLAR_ISOTROPIC	MP2 isotropic polarizability
MP2_POLAR_RAW	MP2 polarizability raw tensor
MP2_POLAR_DIAG_TENSOR	MP2 diagonaised polarizability tensor
MDCI	
MDCI	
MDCI_REF_ENERGY	Reference SCF Energy
MDCI_CORR_ENERGY	Total Correlation Energy
MDCI_TOTAL_ENERGY	Total Energy (SCF + Correlation)
MDCI_ALPHA_ALPHA_CORR_ENERGY	Correlation energy from $\alpha\alpha$ electron pairs
MDCI_BETA_BETA_CORR_ENERGY	Correlation energy from $\beta\beta$ electron pairs
MDCI_ALPHA_BETA_CORR_ENERGY	Correlation energy from $\alpha\beta$ electron pairs
MDCI_DSINGLET_CORR_ENERGY	Correlation energy from singlet electron pairs (only for closed-shell)(
MDCI_DTRIPLET_CORR_ENERGY	Correlation energy from triplet electron pairs (only for closed-shell) (
MDCI_SSINGLET_CORR_ENERGY	Correlation energy from singlet electron pairs (only for closed-shell)
MDCI_STRIPLET_CORR_ENERGY	Correlation energy from triplet electron pairs (only for closed-shell) (
MDCI_TRIPLES_ENERGY	Perturbative triples correlation energy
MDCI_ALL_ELECTRONS	Total number of electrons
MDCI_CORR_ELECTRONS	Number of correlated electrons
MDCI_CORR_ALPHA_ELECTRONS	Number of correlated α electrons
MDCI_CORR_BETA_ELECTRONS	Number of correlated β electrons
	,
MDCI Electric properties	
MDCI_DIPOLE_MAGNITUDE	MDCI dipole moment (debye)
MDCI_DIPOLE_ELEC_CONTRIB	MDCI Electronic contribution to dipole moment
MDCI_DIPOLE_NUC_CONTRIB	MDCI Nuclear contribution to dipole moment
MDCI_DIPOLE_TOTAL	MDCI Total dipole moment
MDCI_QUADRUPOLE_ISOTROPIC	MDCI isotropic quadrupole moment
MDCI_QUADRUPOLE_DIAG_TENSOR	MDCI quadrupole moment diagonalised tensor
MDCI_QUADRUPOLE_ELEC_CONTRIB	MDCI electronic contribution to the quadrupole moment
MDCI_QUADRUPOLE_NUC_CONTRIB	MDCI nuclear contribution to the quadrupole moment
MDCI_QUADRUPOLE_TOTAL	MDCI total quadrupole moment
MDCI_POLAR_ISOTROPIC	MDCI isotropic polarizability
MDCI_POLAR_RAW	MDCI polarizability raw tensor
MDCI_POLAR_DIAG_TENSOR	MDCI diagonaised polarizability tensor

	Table 6.2 - Continued from previous page
CASSCF	
CASSCF_NUM_OF_MULTS	The number of CASSCF spin multiplicities
CASSCF_NUM_OF_IRREPS	The number of CASSCF irreps
CASSCF_FINAL_ENERGY	The CASSCF final energy
PT2_NUM_OF_MULTS	The CASPT2 spin multiplicities
PT2_NUM_OF_IRREPS	The number of CASPT2 irreps
PT2_FINAL_ENERGY	The CASPT2 Energy
DCDCAS_NUM_OF_MULTS	The number of DCDCAS spin multiplicities
DCDCAS_NUM_OF_IRREPS	The number of DCDCAS irreps
DCDCAS_FINAL_ENERGY	The DCDCAS Energy
CASSCF_ABS_SPECTRUM	The CASSCF Absorption spectrum
CASSCF_ABS_SPECTRUM_INFO	Information about the excitations of the CASSCF spectrum
CASSCF_ABS_SPECTRUM_NROOTS	The number of Roots
CASSCF_CD_SPECTRUM	The CASSCF CD spectrum
CASSCF_CD_SPECTRUM_INFO	Information about the excitations of the CASSCF CD spectrum
CASSCF_CD_SPECTRUM_NROOTS	The number or roots
CASSCF_CD_SPECTRUM_NROUTS CASPT2_ABS_SPECTRUM	The CASPT2 Absorption spectrum
	Information about the excitations of the CASPT2 spectrum
CASPT2_ABS_SPECTRUM_INFO	The number of roots
CASPT2_ABS_SPECTRUM_NROOTS	
CASPT2_CD_SPECTRUM_INFO	The CASPT2 CD spectrum
CASPT2_CD_SPECTRUM_INFO	Information about the excitations of the CASPT2 CD spectrum
CASPT2_CD_SPECTRUM_NROOTS	The number of roots
CAS_CUSTOM_ABS_SPECTRUM	The Custom CASSCF Absorption spectrum
CAS_CUSTOM_ABS_SPECTRUM_INFO	Information about the excitations of the custom CASSCF absorption
CAS_CUSTOM_ABS_SPECTRUM_NROOTS	The number of roots
CAS_CUSTOM_CD_SPECTRUM	The Custom CASSCF CD spectrum
CAS_CUSTOM_CD_SPECTRUM_INFO	Information about the excitations of the custom CASSCF CD spect
CAS_CUSTOM_CD_SPECTRUM_NROOTS	The number of roots
DCDCAS_ABS_SPECTRUM	The DCDCAS Absorption spectrum
DCDCAS_ABS_SPECTRUM_INFO	Information about the excitations of the DCDCAS absorption spect
DCDCAS_ABS_SPECTRUM_NROOTS	The number of roots
CASSCF_DTENSOR_EIGENVALUES	CASSCF D Tensor eigenvalues
CASSCF_DTENSOR_RAW_EIGENVECTORS	CASSCF D Tensor Raw eigenvectors
CASSCF_DTENSOR_D	D value of CASSCF ZFS
CASSCF_DTENSOR_E	E value of CASSCF ZFS
CASSCF_DTENSOR_MULTIPLICITY	Spin multiplicity
CASPT2_DTENSOR_EIGENVALUES	CASPT2 D Tensor eigenvalues
CASPT2_DTENSOR_RAW_EIGENVECTORS	CASPT2 D Tensor raw eigenvectors
CASPT2_DTENSOR_D	D value of CASPT2 ZFS
CASPT2_DTENSOR_E	E value of CASPT2 ZFS
CASPT2_DTENSOR_MULTIPLICITY	Spin multiplicity
CAS_CUSTOM_DTENSOR_EIGENVALUES	custom CASSCF D Tensor eigenvalues
CAS_CUSTOM_DTENSOR_RAW_EIGENVECTORS	custom CASSCF D Tensor Raw eigenvectors
CAS_CUSTOM_DTENSOR_D	D value of custom CASSCF ZFS
CAS_CUSTOM_DTENSOR_E	E value of custom CASSCF ZFS E value of custom CASSCF ZFS
CAS_CUSTOM_DTENSOR_MULTIPLICITY	Spin multiplicity
CIPSI	
CIPSI_SPIN_MULTIPLICITY	The CIPSI spin multiplicity
	The CIPSI spin multiplicity The CIPSI number of roots
CIPSI_NUM_OF_ROOTS CIPSI_EINAL_ENERGY	
CIPSI_FINAL_ENERGY CIPSI_ENERGIES	The CIPSI Final energy The CIPSI Energies
CIPSI_ENERGIES	The CIPSI Energies

Table 8.2 - continued from previous page

	Table 6.2 Continued from provided page
CIS	
CIS_FINAL_ENERGY	The final total energy
CIS_ESCF	The SCF Energy
CIS_E0	The Energy of the ground state
CIS_ENERGIES	The singlet energies
CIS_ENERGIESP1	The triplet energies
CIS_MODE	One of the CIS modes
CIS_NUM_OF_ROOTS	The number of roots
CIS_ROOT	State to be optimized
CIS_ABS_SPECTRUM_NROOTS	The number of roots
CIS_ABS_SPECTRUM	The CIS absorption spectrum
CIS_ABS_SPECTRUM_VELOCITY	The CIS absorption spectrum in velocity representation
CIS_ABS_SOC_SPECTRUM_NROOTS	The number or roots
CIS_ABS_SOC_SPECTRUM	The CIS absorption spectrum including SOC
CIS_CD_SPECTRUM_NROOTS	The number of roots
CIS_CD_SPECTRUM	The CIS CD spectrum
CIS_CD_SOC_SPECTRUM_NROOTS	The number of roots
CIS_CD_SOC_SPECTRUM	The CIS CD spectrum including SOC
	T
ROCIS	
-10 010	
ROCIS_STATE	ROCIS State
ROCIS_REF_ENERGY	ROCIS Reference energy
ROCIS_CORR_ENERGY	ROCIS correlation energy
ROCIS_TOTAL_ENERGY	ROCIS total energy
ROCIS_ABS_SPECTRUM_NROOTS	Number of roots
ROCIS_ABS_SPECTRUM	ROCIS Absorption spectrum
ROCIS_ABS_SOC_SPECTRUM_NROOTS	Number of roots
ROCIS_ABS_SOC_SPECTRUM	ROCIS absorption spectrum including SOC
ROCIS_CD_SPECTRUM_NROOTS	Number of roots
ROCIS_CD_SPECTRUM	ROCIS CD spectrum
ROCIS_CD_SICETRUM_NROOTS	Number of roots
ROCIS_CD_SOC_SPECTRUM ROCIS_CD_SOC_SPECTRUM	ROCIS CD spectrum including SOC
ROCIS_CD_SOC_SFECTROM	ROCIS CD spectrum including SOC
MRCI	
WINCI	
MDCL ADC CDECTDIM	The MDCI character anatomy
MRCI_ABS_SPECTRUM_INFO	The MRCI absorption spectrum Information about the absorption spectrum
MRCI_ABS_SPECTRUM_INFO	
MRCI_ABS_SPECTRUM_NROOTS	The NDCLCD maximum
MRCI_CD_SPECTRUM	The MRCI CD spectrum
MRCI_CD_SPECTRUM_INFO	Information about the MRCI CD spectrum
MRCI_CD_SPECTRUM_NROOTS	The number of roots
MRCI_DIPOLE_MOMENTS	The MRCI dipole moments
MRCI_DIPOLE_MOMENTS_INFO	Information about the MRCI dipole moments
MRCI_DTENSOR_EIGENVECTORS	The eigenvectors of the MRCI D tensor
MRCI_DTENSOR_EIGENVALUES	The eigenvalues of the MRCI D tensor
MRCI_DTENSOR_RAW_EIGENVECTORS	The raw eigenvectors of the MRCI D tensor
MRCI_DTENSOR_D	The MRCI D value for the ZFS
MRCI_DTENSOR_E	The MRCI E value for the ZFS
MRCI_DTENSOR_MULTIPLICITY	The MRCI spin multiplicity
TYPE LECK LEVOL	
EXTRAPOLATION	
EXTRAP_SCF_ENERGIES	The SCF energies with the different basis sets

EVTDAD CDC CCE	The extremeleted SCE energy
	The extrapolated SCF energy
	Γhe correlation energies with the different basis sets Γhe extrapolated correlation energy
	- -
	Γhe extrapolated total energy Γhe (T) contribution to the energy
	· ·
EXTRAP_NUM_OF_ENERGIES T	The number of energies (basis sets) used for the extrapolation
THERMOCHEMISTRY	
THERMO_TEMPERATURE T	Femperature (${}^{o}K$)
	Pressure (Atm)
	Fotal Mass of the molecule (AMU)
	Electronic degeneracy
	Electronic energy (Eh)
	Γranslational energy (Eh)
	Rotational energy (Eh)
	Vibrational energy (Eh)
	The number of vibrational frequencies
	Frequencies
	Zero point energy (Eh)
	Inner Energy (Eh)
	Enthalpy (Eh)
	Electronic Entropy)*T (Eh)
	Rotational Entropy)*T (Eh)
	Vibrational Entropy)*T (Eh)
	Translational Entropy)*T (Eh)
	Total Entropy)*T (Eh)
	Free Energy (Eh)
THERMO_FREE_ENERGI_G	rice energy (En)
EPR-NPR Spin-Spin coupling	
Zi it i zi it işim işim voqumg	
EPRNMR_SSC_NUM_OF_NUC_PAIRS	Number of nuclear pairs to calculate something
EPRNMR_SSC_NUM_OF_NUC_PAIRS_DSO	Number of nuclear pairs to calculate DSO terms
EPRNMR_SSC_NUM_OF_NUC_PAIRS_PSO N	Number of nuclear pairs to calculate PSO terms
EPRNMR_SSC_NUM_OF_NUC_PAIRS_FC	Number of nuclear pairs to calculate FC terms
	Number of nuclear pairs to calculate SD terms
	Number of nuclear pairs to calculate SD/FC terms
	Number of nuclei to calculate PSO perturbations
	Number of nuclei to calculate SD/FC perturbations
	·
SOC Energy Correction	
	The nuclear energy
	The total 2-component energy
	Γhe non-SOC total energy
SOC_ENERGY_CORRECTION T	The SOC energy correction
Solvation	
SOLVATION EDSILON	Dialactria constant
_	Dielectric constant Refractive index
_	
	Solvent probe radius
	Cavity surface
	Fotal energy including the CPCM dielectric correction Number of points for the Gaussian surface
SOLVATION IN OHAIS	Number of points for the Gaussian sufface

Table 8.2 - continued from previous page

SOLVATION_SURFACE_AREA	Surface area
General Job Information	
Ochera voo information	
JOB_INFO_MULT	Job Multiplicity
JOB_INFO_CHARGE	Job Charge
JOB_INFO_NUM_OF_ATOMS	Total number of atoms
JOB_INFO_NUM_OF_EL	Total number of electrons
JOB_INFO_NUM_OF_FC_EL	Number of frozen core electrons
JOB_INFO_NUM_OF_CORR_ELC	Number of correlated electrons
JOB_INFO_NUM_OF_BASIS_FUNCS	Number of basis functions
JOB_INFO_NUM_OF_AUXC_BASIS_FUNCS	Number of auxilliary C basis functions
JOB_INFO_NUM_OF_AUXJK_BASIS_FUNCS	Number of auxilliary J basis functions
JOB_INFO_NUM_OF_AUX_CABS_BASIS_FUNCS	Number of auxilliary JK basis functions
JOB_INFO_NUM_OF_AUX_CABS_BASIS_FUNCS	Number of auxilliary CABS basis functions
JOB_INFO_TOTAL_EN	Final energy
HESSIAN	
HESSIAN_MODES	The hessian
Math Functions	
ABS	Absolute value
COS	Cosine
SIN	Sine
TAN	Tangent
ACOS	Inverse cosine
ASIN	Inverse sine
ATAN	Inverse tangent
COSH	Hyperbolic cosine
SINH	Hyperbolic sine
TANH	Hyperbolic tangent
EXP	Exponential
LOG	Common logarithm
LN	Natural logarithm
SQRT	Square root
ROUND	Round down to nearest integer

8.4 Compound Examples

8.4.1 Introduction

A library of compound scripts exist in page https://github.com/ORCAQuantumChemistry/CompoundScripts .

8.4.2 Hello World

Introduction

This is the simplest script that nevertheless points to an important feature of *Compound*. That is the fact that *Compound* does not have to run an actual 'normal' ORCA calculation but it can also be used as a driver for various tasks, in this case to just print a message.

Filename

helloWorld.inp

SCRIPT

```
%Compound print("Hellow World!\n");
EndRun
```

8.4.3 New Job

Introduction

One of the features of ORCA that will be deprecated in the future and should not be used any more is the 'New_Job' feature. The current script is a simple example how Compound can be used to just run a series of calculations.

Filename

replaceNewJob.inp

SCRIPT

```
# This is a small script thas shows how
# 'Compound' can replace the previous
# ORCA '$New_Job' feature
%Compound
 # -----
 # First job
 New_Step
   !BP86
    *xyz 0 1
     н 0.0 0.0 0.0
     н 0.0 0.0 0.8
 Step_End
  # Second job with same goemetry
  # but different functional
 New_Step
   !B3LYP
   *xyz 0 1
     н 0.0 0.0 0.0
     н 0.0 0.0 0.8
 Step_End
EndRun
```

Comments

From the *Compound* point of view the syntax in this script is not the most efficient one. It can be rewritten in more compact, cleaner, general way. Neverteless this is meant only as an exmample of how *Compound* can replace older ORCA calculations that used the, to be deprecated, 'New_Job' feature.

8.4.4 High Accuracy

Introduction

This is a script that utilizes the scheme by N. J. DeYonker, T. R. Cundari, and A. K. Wilson published on: J. Chem. Phys. 124, 114104 (2006). The script calculates accurate total energies of molecules.

Filename

ccCA_CBS_2.cmp

SCRIPT

```
# This is a small script thas shows how
# 'Compound' can replace the previous
# ORCA '$New_Job' feature
%Compound
 # -----
 # First job
 New_Step
   !BP86
   *xyz 0 1
    н 0.0 0.0 0.0
    н 0.0 0.0 0.8
 Step_End
 # Second job with same goemetry
 # but different functional
 New_Step
   !B3LYP
   *xyz 0 1
    н 0.0 0.0 0.0
    н 0.0 0.0 0.8
 Step_End
EndRun
```

Comments

It is interesting that in this scheme the total energy is treated and there is not separation in extrapolation between HF energy and correlation energy.

8.4.5 Scan

Introduction

This is an example script for a 1-Dimensional geometry scan. It is set up for the Ne-Ne bond distance but can be modified to suit the user's specific needs.

Filename

scan_1D_1M_1P.cmp

SCRIPT

```
# Author : Dimitrios G. Liakos
# Date : May of 2024
# This is a script that will calculate and potentially
  plot ONE property(1P) along a scan in ONE dimesion (1D)
  using only ONE method (1M)
#
  It is part of a series of scripts for different
    combinations of scans for dimensions, methods,
    and properties
# Here as an example we use for:
  - dimension: the Ne-Ne bond (dist)
     - method : "HF" (method)
#
     - property : the SCF energy (propName)
# The script creates a csv file with the absolute energies
   and an additional one with the potential energies in
   kcal/mol. Both will be saved on disk.
# If 'DoPython' is set to true it will also create a python
   script that plots the generated values and then run
   it. The python script will be saved on disk and thus one
  can afterwards manipulate it.
# NOTE The boolean option plotPotential will choose between
     plotting absolute values or potential.
#
# NOTE The boolean obtion doKcal if set to true multiplies
      the potential values with the HartreeToKcal factor.
# NOTE In case the doPython is set to true the script expects
# that python3 is avaiable and also the following libraries:
#
  - pandas
   - seaborn
   - matplotlib.pyplot
           ----- Variables to change (e.g. through 'with')
Variable method = "HF";
Variable basis = "cc-pVDZ";
Variable method
                     = "HF";
                                          # The methods of the calculation
                                          # The basis set of the calculation
Variable restOfInput = "TightSCF";
                                         # Maybe something common for the simple_

→input

Variable charge
                     = 0;
                                          # Charge
                     = 1;
Variable mult
                                          # Spin multiplicity
Variable myPropName = "SCF_Energy";
                                          # The properties we want to read
Variable lowerLimit = 2.5;
                                          # Lower limit value
Variable UpperLimit = 5.0;
                                          # Upper limit value
                                                                      (continues on next page)
```

Chapter 8. Workflows and Automatization

```
Variable NSteps = 13;
                                       # Number of steps for the grid
Variable baseFilename = "myPotential";  # The basename for the created files
Variable plotPotential= true;
                                        # Plot the potential instead of absolute_
⇔values
Variable DoKcal
                    = true;
                                         # Multiply the potential values with the_
→HartreeToKcal factor
Variable removeFiles = true;
                                         # Remove *_Compound_*, *bas* files
                   - python plot relevant variables -
Variable DoPython
                    = true;
                                         # if we want python or not
Variable lw
                     = 4;
                                         # The line width in case we plot with_
→python
                    = "0";
                                        # The type of markers
Variable marker
Variable markerSize = 10;
                                         # The size of the markers in case we plot
Variable fontSize
                    = 18;
                             Rest of the variables
Variable HartreeToKcal = 627.5096080305927;
                                                             # Hartree to kcal/
→mol conversion factor
Variable stepSize = (UpperLimit-LowerLimit)/(NSteps-1); # The stepsize of_
→the grid
Variable calcValues[NSteps];
                                                             # An array to store_

→the calculated values

Variable res, dist, calcValue;
Variable myFilename, csvFilename;
Variable fPtr;
                                                             # A file to write
# Open and Write file header for the absolute values
write2String(csvFilename, "%s_absValues.csv", baseFilename);
fPtr = OpenFile(csvFilename, "w");
write2File(fptr, "distance, method, property, calcValue\n");
# Perform the calculations and update the file
for iStep from 0 to NSteps-1 Do
 dist = lowerLimit + (iStep)*stepSize;
 New_Step
   !&{method} &{basis} &{restOfInput}
   *xyz &{charge} &{mult}
    Ne 0.0 0.0 0.0
    Ne 0.0 0.0 &{dist}
   Step_end
   res = calcValue.readProperty(propertyName=myPropName);
   write2File(fPtr, "%.4lf,%20s,%20s,%20.10lf\n", dist, method,myPropName,_
calcValues[iStep]=calcValue;
EndFor
CloseFile(fPtr); # Close the file
# Evaluate and write the relative values
write2String(csvFilename, "%s_relValues.csv", baseFilename);
fPtr = OpenFile(csvFilename, "w");
write2File(fPtr, "distance, method, property, calcValue\n");
```

```
for iStep from 0 to NSteps-1 Do
 dist = lowerLimit + (iStep)*stepSize;
 if (DoKcal) then
   calcValue = (calcValues[iStep]-calcValues[NSteps-1]) *HartreeToKcal;
 else
   calcValue = calcValues[iStep]-calcValues[NSteps-1];
 EndIf
 write2File(fPtr, "%.4lf,%20s,%20s,%20.10lf\n", dist, method,myPropName,_
⇔calcValue);
EndFor
CloseFile(fPtr);
                  # Close the file
if (removeFiles) then
 sys_cmd("rm *_Compound_* *.bas*");
EndIf
# Create a python file and run it
if (DoPython) then
 if (plotPotential) then
   write2String(csvFilename, "%s_relValues.csv", baseFilename);
 else
   write2String(csvFilename, "%s_absValues.csv", baseFilename);
 endIf
 write2String(myFilename, "%s.py", baseFilename);
 fPtr = openFile(myFilename, "w");
 # Import necessary libraries
 write2File(fPtr, "import pandas as pd\n");
 write2File(fPtr, "import seaborn as sns\n");
 write2File(fPtr, "import matplotlib.pyplot as plt\n");
  # Read the csv file
 write2File(fPtr, "df = pd.read_csv('%s')\n", csvFilename);
 #Make a lineplot
 \rightarrow"property\", \n
                      lw=%d, markers=True, marker='%s', markersize=%d,__
→dashes=False)\n", lw, marker, markersize);
 write 2 File (fPtr, "plt.axhline (y=0, color='black', linestyle='-', linewidth=1) \n
 write2File(fPtr, "plt.title(\"Energy Potential\", fontsize=%d)\n", fontsize+4);
 write2File(fPtr, "plt.xlabel(\"Ne-Ne Distance\", fontsize=%d)\n", fontsize);
 write2File(fPtr, "plt.ylabel(\"Energy (kcal/mol)\", fontsize=%d)\n", fontsize);
 write2File(fPtr, "plt.xticks(fontsize=%d)\n", fontSize);
 write2File(fPtr, "plt.yticks(fontsize=%d)\n", fontSize);
 write2File(fPtr, "plt.show()\n");
 closeFile(fPtr);
 sys_cmd("python3 %s", myFilename);
EndIf
```

Comments

This script has some interesing features. It contains two variables *removeFiles* and *DoPython*. If the first of them is set to *true* then the script will use a system command to remove files that are not needed anymore after the end of the calculation. The latter, *DoPython*, if set to *true* will read the *.csv* file that is created and write a *python* file to make a plot of the results. Then it will run the python script to actually make the plot.

8.4.6 Numerical polarizabilities

Introduction

This script calculates numerically the polarizability of the molecule using single point calculations with an electric field.

Filename

numericalPolarizability.cmp

SCRIPT

```
# Authors: Dimitrios G. Liakos / Frank Neese / Zikuan Wang
# Date : May of 2024
# This is a compound script that calculates the
# dipole-dipole polarizability tensor numerically
# using the double derivative of energy.
# The idea is the following:
# 1 Perform a field free calculation
# 2 Loop over directions I=X,Y,Z
# 3 Loop over directions J=X,Y,Z
            - put a small Q-field in directions I and J
            - Solve equations to get the energy for each combination
            - Polarizability alpha(I,J) =- (E(+I,+J) - E(+I,-J) - E(-I,+J) + E(-I,-j) / E(-I,+J) + E(-I,-J) - E(-I,+J) + E(-I,-J) / E(-I,+J) / E(-I,+J)
 \hookrightarrow (4*Field^2)
 # 4 Print polarisability
                                                                   Variables
 # --- Variables to be adjusted (e.g. using 'with' -----
Variable molecule = "h2o.xyz";
Variable charge = 0;
Variable mult = 1;
Variable method = "HF";
Variable basis = " ";
Variable restOfInput = "VeryTightSCF";
Variable blocksInput = " ";
Variable E_Field = 0.0001;
Variable enPropName = "JOB_Info_Total_En";
Variable removeFiles = true;
# ----- Rest of the variables -----
Variable FField[3];
Variable Efree, EPlusPlus, EPlusMinus, EMinusPlus, EMinusMinus, a[3][3];
Variable FFieldStringPlusPlus, FFieldStringPlusMinus;
Variable FFieldStringMinusPlus, FFieldStringMinusMinus;
Variable aEigenValues, aEigenVectors;
# Calculation without field
New_Step
    !&{method} &{basis} &{restOfInput}
    &{blocksInput}
    *xyzfile &{charge} &{mult} &{molecule}
EFree.ReadProperty(propertyName=enPropName);
```

```
# Loop over the x, y, z directions
for i from 0 to 2 Do
 for j from 0 to 2 Do
   # Create the appropriate direction oriented field string
   # ----- (++) -----
   for k from 0 to 2 Do
    FField[k] = 0.0;
   EndFor
   FField[i] = FField[i] + E_Field;
   FField[j] = FField[j] + E_Field;
   write2String(FFieldStringPlusPlus, "%lf, %lf",
   FField[0], FField[1], FField[2]);
   # ----- (+-) ------
   for k from 0 to 2 Do
    FField[k] = 0.0;
   FField[i] = FField[i] + E_Field;
   FField[j] = FField[j] - E_Field;
   write2String(FFieldStringPlusMinus, " %lf, %lf",
   FField[0], FField[1], FField[2]);
   # ----- (-+) -----
   for k from 0 to 2 Do
    FField[k] = 0.0;
   EndFor
   FField[i] = FField[i] - E_Field;
   FField[j] = FField[j] + E_Field;
   write2String(FFieldStringMinusPlus, "%lf, %lf",
   FField[0], FField[1], FField[2]);
   # ------ (--)
   for k from 0 to 2 Do
    FField[k] = 0.0;
   EndFor
   FField[i] = FField[i] - E_Field;
   FField[j] = FField[j] - E_Field;
   write2String(FFieldStringMinusMinus, " %lf, %lf",
   FField[0], FField[1], FField[2]);
   # Perform the calculations.
   # The plus_plus (++) one
   ReadMOs(1);
   New_Step
    !&{method} &{basis} &{restOfInput}
      EField = &{FFieldStringPlusPlus}
    End
    &{blocksInput}
   EPlusPlus.readProperty(propertyName=enPropName);
   # The plus_minus (+-) one
   ReadMOs(1);
```