3-terminal Fixed Voltage Regulators

HITACHI

Description

The HA178L00 series three-terminal fixed output voltage regulators. Can be used not only as stabilized power sources, but also as Zener diodes because of their small outline package.

Features

• Maximum output current: 150 mA (Tj= 25°C)

• Large maximum power dissipation: 800 mW

Overcurrent protection

• Temperature protection circuit

Ordering Information

Application	Standard Output Voltage Tolerance ±8%	A Version Output Voltage Tolerance ±5%
Industrial use	HA178L00P	HA178L00PA
Commercial use	HA178L00	HA178L00A
		HA178L00UA

Output Voltage and Type

HA178L00PA • HA178L00P • HA178L00A • HA178L00

Output Voltage (V)	Туре	Package			
2.5	HA178L02	TO-92M			
5	HA178L05				
5.6	HA178L56				
6	HA178L06				
8	HA178L08				
9	HA178L09				
10	HA178L10				
12	HA178L12				
15	HA178L15				

HA178L00UA

Pin Arrangement

Block Diagram

Standard Circuit

HITACHI

UPAK Product (HA178L00UA) Mark Patterns

The mark patterns shown below are used. on UPAK products, as the package is small. Note that the product code and mark pattern are different. The pattern is laser-printed.

- Notes: 1. Boxes (1) to (5) in the figures show the position of the letters or numerals, and are not actually marked on the package.
 - 2. (1) and (2) show the product-specific mark pattern. (see table 1)

Table 1

Output Voltage (V)	Product No.	Mark Pattern (2 digit)
2.5	HA178L02UA	8A
5	HA178L05UA	8B
5.6	HA178L56UA	8C
6	HA178L06UA	8D
8	HA178L08UA	8E
9	HA178L09UA	8F
10	HA178L10UA	8G
12	HA178L12UA	8H
15	HA178L15UA	8J

- 3. (3) shows the production year code (the last digit of the year).
- 4. (4) shows the production month code (see table 2).

Table 2

Production Month	1	2	3	4	5	6	7	8	9	10	11	12
Marked Code	Α	В	С	D	E	F	G	Н	J	K	L	М

5. (5) shows the production week code.

Absolute Maximum Ratings (Ta = 25°C)

Item	Symbol	Rating	Unit	Note
Input voltage	V_{IN}	35	V	
Power dissipation	P _T	800	mW	TO-92M*1
		800	mW	UPAK*2
Operating ambient temperature	Topr	-20 to +75	°C	TO-92M
		-20 to +85	°C	UPAK
Storage temperature	Tstg	-55 to +150	°C	

Note: 1. Ta \leq 25°C, If Ta >25°C, derate by 6.4 mW/°C (See figure A)

2. 15mm × 25mm × 0.7 mm alumina ceramic board, Ta ≤ 25°C (See figure B)

HA178L02 Electrical Characteristics

 $(V_{_{IN}} = 10 \ V, \, I_{_{OUT}} = 40 \ mA, \, 0^{\circ}C \quad Tj \quad 125^{\circ}C, \, C_{_{IN}} = 0.33 \quad \mu F, \, C_{_{OUT}} = 0.1 \ \mu F)$

			78L02 78L02	P	HA178L02PA HA178L02A HA178L02UA				
Item	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	Test Conditions
Output voltage	V_{OUT}	2.32	2.48	2.64	2.38	2.48	2.58	V	Tj = 25°C
Line regulation	δV_{OLINE}	_	35	125	_	35	95	mV	$Tj = 25^{\circ}C 7 V \le V_{IN} \le 20 V$
		_	30	100	_	30	75	_	$8 \text{ V} \leq \text{V}_{IN} \leq 20 \text{ V}$
Load regulation	δV_{OLOAD}	_	14	_	_	14	_	mV	$Tj = 25^{\circ}C$ 1.0 mA $\leq I_{OUT} \leq 150$ mA
		_	9.5	50	_	9.5	50	_	$1.0 \text{ mA} \le I_{\text{OUT}} \le 100 \text{ mA}$
		_	4.5	25	_	4.5	25	_	1.0 mA ≤ I _{OUT} ≤ 40 mA
Output voltage	V _{OUT}	2.28	_	2.68	2.35	_	2.61	V	$7 \text{ V} \le V_{IN} \le 20 \text{ V},$ 1.0 mA $\le I_{OUT} \le 40 \text{ mA}$
		2.28	_	2.68	2.35	_	2.61	=	$V_{IN} = 9 \text{ V}, 1.0 \text{ mA} \le I_{OUT} \le 70 \text{ mA}$
Quiescent current	IQ	_	3.0	6.0	_	3.0	6.0	mA	Tj= 25°C
Quiescent	δI_Q	_	_	1.5	_	_	1.5	mA	Tj= 25°C 8 V ≤ V _{IN} ≤ 20 V
current change		_	_	0.2	_	_	0.1	=	1.0 mA ≤ I _{OUT} ≤ 40 mA
Ripple rejection ratio	R _{REJ}	_	60	_	_	60	_	dB	f = 120 Hz, 8.0 V \leq V _{IN} $<$ 18 V, Tj = 25°C
Temperature coefficient of output voltage	$\delta V_{OUT}/\delta Tj$	_	+0.2	_	_	+0.2	_	mV/°C	I _{OUT} = 5 mA

HA178L05 Electrical Characteristics

 $(V_{_{IN}} = 10 \ V, \, I_{_{OUT}} = 40 \ mA, \, 0^{\circ}C \quad Tj \quad 125^{\circ}C, \, C_{_{IN}} = 0.33 \quad \mu F, \, C_{_{OUT}} = 0.1 \ \mu F)$

			78L05F 78L05	5	HA17	HA178L05PA HA178L05A HA178L05UA				
Item	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	Test Conditions	
Output voltage	V_{OUT}	4.68	5.0	5.32	4.8	5.0	5.2	V	Tj = 25°C	
Line regulation	δV_{oline}	_	55	200	_	55	150	mV	$Tj = 25^{\circ}C \ 7 \ V \leq V_{IN} \leq 20 \ V$	
		_	45	150	_	45	100	_	$8 \text{ V} \leq \text{V}_{IN} \leq 20 \text{ V}$	
Load regulation	δV_{OLOAD}	_	16	_	_	16	_	mV	$Tj = 25^{\circ}C \ 1.0 \ mA \le I_{OUT} \le 150 \ mA$	
		_	11	60	_	11	60	_	1.0 mA ≤ I _{OUT} ≤ 100 mA	
		_	5.0	30	_	5.0	30	=	1.0 mA ≤ I _{OUT} ≤ 40 mA	
Output voltage	V _{OUT}	4.6	_	5.4	4.75	_	5.25	V	7 V \leq V _{IN} \leq 20 V, 1.0 mA \leq I _{OUT} \leq 40 mA	
		4.6	_	5.4	4.75	_	5.25	-	$V_{IN} = 10 \text{ V}, 1.0 \text{ mA} \le I_{OUT} \le 70 \text{ mA}$	
Quiescent current	IQ	_	3.0	6.0	_	3.0	6.0	mA	Tj = 25°C	
Quiescent	δI_Q	_	_	1.5	_	_	1.5	mA	$Tj = 25^{\circ}C \ 8.0 \ V \le V_{IN} \le 20 \ V$	
current change		_	_	0.2	_	_	0.1	=	1.0 mA ≤ I _{OUT} ≤ 40 mA	
Ripple rejection ratio	R _{REJ}	_	58	_	_	58	_	dB	f = 120 Hz, 8.0 V \leq V _{IN} $<$ 18 V, Tj = 25°C	
Temperature coefficient of output voltage	$\delta V_{OUT}/\delta Tj$	_	+0.1	_	_	+0.1	_	mV/°C	I _{OUT} = 5 mA	
Dropout voltage	V_{DROP}		1.7	_	_	1.7	_	V	Tj = 25°C	

HA178L56 Electrical Characteristics

 $(V_{_{IN}}=11\ V,\,I_{_{OUT}}=40\ mA,\,0^{\circ}C\quad Tj\quad 125^{\circ}C,\,C_{_{IN}}=0.33\quad \mu F,\,C_{_{OUT}}=0.1\ \mu F)$

			'8L56F '8L56	o	HA178L56PA HA178L56A HA178L56UA				
Item	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	Test Conditions
Output voltage	V _{OUT}	5.24	5.6	5.96	5.38	5.6	5.82	V	Tj = 25°C
Line regulation	δV_{oline}	_	50	200	_	50	150	mV	$Tj = 25^{\circ}C 7.6 \text{ V} \leq V_{\text{IN}} \leq 21 \text{ V}$
		_	45	150	_	45	100	_	$8.5 \text{ V} \le \text{V}_{IN} \le 21 \text{ V}$
Load regulation	δV_{OLOAD}	_	17	_	_	17	_	mV	$Tj = 25^{\circ}C$ 1.0 mA $\leq I_{OUT} \leq 150$ mA
		_	11	60	_	11	60	_	$1.0 \text{ mA} \le I_{\text{OUT}} \le 100 \text{ mA}$
		_	5.0	30	_	5.0	30	_	$1.0 \text{ mA} \leq I_{\text{OUT}} \leq 40 \text{ mA}$
Output voltage	V _{OUT}	5.16	_	6.04	5.32	-	5.88	V	7.6 V \leq V _{IN} \leq 21 V, 1.0 mA \leq I _{OUT} \leq 40 mA
		5.16	_	6.04	5.32	_	5.88	=	$V_{IN} = 11 \text{ V}, 1.0 \text{ mA} \le I_{OUT} \le 70 \text{ mA}$
Quiescent current	IQ	_	3.0	6.0	_	3.0	6.0	mA	Tj = 25°C
Quiescent	δI_Q	_	_	1.5	_	_	1.5	mA	$Tj = 25^{\circ}C \ 8.5 \ V \le V_{IN} \le 2.0 \ V$
current change		_	_	0.2	_	_	0.1	=	$1.0 \text{ mA} \le I_{\text{OUT}} \le 40 \text{ mA}$
Ripple rejection ratio	R _{REJ}	_	58	_	_	58	_	dB	f = 120 Hz, 8.5 V \leq V _{IN} $<$ 18.5 V, Tj = 25°C
Temperature coefficient of output voltage	$\delta V_{OUT}/\delta Tj$	_	+0.1	_	_	+0.1	_	mV/°C	I _{OUT} = 5 mA
Dropout voltage	V_{DROP}	_	1.7	_	_	1.7	_	V	Tj = 25°C

HA178L06 Electrical Characteristics

 $(V_{_{IN}}=11\ V,\,I_{_{OUT}}=40\ mA,\,0^{\circ}C\quad Tj\quad 125^{\circ}C,\,C_{_{IN}}=0.33\quad \mu F,\,C_{_{OUT}}=0.1\ \mu F)$

			78L06F 78L06	•	HA17	78L061 78L06 <i>1</i> 78L061	4	_	
Item	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	Test Conditions
Output voltage	V_{OUT}	5.61	6.0	6.39	5.76	6.0	6.24	V	Tj = 25°C
Line regulation	δV_{oline}	_	50	200	_	50	150	mV	$Tj = 25^{\circ}C \ 8.1 \ V \leq V_{_{IN}} \leq 21 \ V$
		_	45	150	_	45	110		$9.0 \text{ V} \le \text{V}_{IN} \le 21 \text{ V}$
Load regulation	δV_{OLOAD}	_	17.5	_	_	17.5	_	mV	$Tj = 25^{\circ}C \ 1.0 \ mA \le I_{OUT} \le 150 \ mA$
		_	12	70	_	12	70		$1.0 \text{ mA} \le I_{\text{OUT}} \le 100 \text{ mA}$
		_	5.5	35	_	5.5	35	_	$1.0 \text{ mA} \le I_{\text{OUT}} \le 40 \text{ mA}$
Output voltage	V _{OUT}	5.52	_	6.48	5.7	_	6.3	V	8.1 V \leq V _{IN} \leq 21 V, 1.0 mA \leq I _{OUT} \leq 40 mA
		5.52	_	6.48	5.7	_	6.3	_	$V_{IN} = 11 \text{ V}, 1.0 \text{ mA} \le I_{OUT} \le 70 \text{ mA}$
Quiescent current	IQ	_	3.0	6.0	_	3.0	6.0	mA	Tj = 25°C
Quiescent	δI_Q	_	_	1.5	_	_	1.5	mA	$Tj = 25^{\circ}C \ 9.0 \ V \le V_{IN} \le 20 \ V$
current change		_	_	0.2	_	_	0.1	=	$1.0 \text{ mA} \le I_{\text{OUT}} \le 40 \text{ mA}$
Ripple rejection ratio	R _{REJ}	_	57	_	_	57	_	dB	f = 120 Hz, $9.0 \text{ V} \le \text{V}_{\text{IN}} < 19 \text{ V}, \text{Tj} = 25^{\circ}\text{C}$
Temperature coefficient of output voltage	$\delta V_{OUT}/\delta Tj$	_	+0.1	_	_	+0.1	_	mV/°C	I _{OUT} = 5 mA
Dropout voltage	V_{DROP}	_	1.7	_	_	1.7	_	V	Tj = 25°C

HA178L08 Electrical Characteristics

 $(V_{_{IN}} = 14 \ V, \, I_{_{OUT}} = 40 \ mA, \, 0^{\circ}C \quad Tj \quad 125^{\circ}C, \, C_{_{IN}} = 0.33 \quad \mu F, \, C_{_{OUT}} = 0.1 \ \mu F)$

			78L081 78L08	5	HA1	78L081 78L08 <i>1</i> 78L081	4		
Item	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	Test Conditions
Output voltage	V_{OUT}	7.48	8.0	8.52	7.7	8.0	8.3	V	Tj = 25°C
Line regulation	δV_{OLINE}	_	20	200	_	20	175	mV	$Tj = 25^{\circ}C \ 10.5 \ V \leq V_{IN} \leq 23 \ V$
		_	12	150	_	12	125		$11~V \leq V_{IN} \leq 23~V$
Load regulation	δV_{OLOAD}	_	22	_	_	22	_	mV	$Tj = 25^{\circ}C \ 1.0 \ mA \le I_{OUT} \le 150 \ mA$
		_	15	80	_	15	80		$1.0 \text{ mA} \le I_{OUT} \le 100 \text{ mA}$
		_	7.0	40	_	7.0	40	_	$1.0 \text{ mA} \le I_{\text{OUT}} \le 40 \text{ mA}$
Output voltage	V_{OUT}	7.36	-	8.64	7.6	_	8.4	V	10.5 V \leq V _{IN} \leq 23 V, 1.0 mA \leq I _{OUT} \leq 40 mA
		7.36	_	8.64	7.6	_	8.4	_	$V_{IN} = 14 \text{ V}, 1.0 \text{ mA} \le I_{OUT} \le 70 \text{ mA}$
Quiescent current	IQ	_	3.0	6.5	_	3.0	6.5	mA	Tj = 25°C
Quiescent	δI_Q	_	_	1.5	_	_	1.5	mA	$Tj = 25^{\circ}C \ 11 \ V \le V_{IN} \le 23 \ V$
current change		_	_	0.2	_	_	0.1	=	1.0 mA ≤ I _{OUT} ≤ 40 mA
Ripple rejection ratio	R _{REJ}	_	55	_	_	55	_	dB	f = 120 Hz, 12 V ≤ V _{IN} < 23 V, Tj = 25°C
Temperature coefficient of output voltage	$\delta V_{OUT}/\delta Tj$	_	-0.1	_	_	-0.1	_	mV/°C	I _{OUT} = 5 mA
Dropout voltage	V_{DROP}	_	1.7	_	_	1.7	_	V	Tj = 25°C

HA178L09 Electrical Characteristics

 $(V_{_{IN}} = 15 \ V, \, I_{_{OUT}} = 40 \ mA, \, 0^{\circ}C \quad Tj \quad 125^{\circ}C, \, C_{_{IN}} = 0.33 \quad \mu F, \, C_{_{OUT}} = 0.1 \ \mu F)$

			78L09F 78L09	•	HA17	78L09F 78L09/ 78L09	4	_	
Item	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	Test Conditions
Output voltage	V_{OUT}	8.42	9.0	9.58	8.64	9.0	9.36	V	Tj = 25°C
Line regulation	δV_{oline}	_	80	230	_	80	200	mV	$Tj = 25^{\circ}C \ 11.4 \ V \le V_{IN} \le 24 \ V$
		_	20	160	_	20	160		$12 \text{ V} \leq \text{V}_{IN} \leq 24 \text{ V}$
Load regulation	δV_{OLOAD}	_	24.5	_	_	24.5	_	mV	$Tj = 25^{\circ}C$ 1.0 mA $\leq I_{OUT} \leq 150$ mA
		_	17	90	_	17	90		$1.0 \text{ mA} \le I_{OUT} \le 100 \text{ mA}$
		_	8.0	45	_	8.0	45	_	$1.0 \text{ mA} \le I_{\text{OUT}} \le 40 \text{ mA}$
Output voltage	V_{OUT}	8.28	_	9.72	8.55	_	9.45	V	11.4 V \leq V _{IN} \leq 24 V, 1.0 mA \leq I _{OUT} \leq 40 mA
		8.28	_	9.72	8.55	_	9.45	_	$V_{IN} = 15 \text{ V}, 1.0 \text{ mA} \le I_{OUT} \le 70 \text{ mA}$
Quiescent current	IQ	_	3.1	6.5	_	3.1	6.5	mA	Tj = 25°C
Quiescent	$\delta I_{\scriptscriptstyle Q}$	_	_	1.5	_	_	1.5	mA	$Tj = 25^{\circ}C$ 12 $V \le V_{IN} \le 24 V$
current change		_	_	0.2	_	_	0.1	_	$1.0 \text{ mA} \le I_{\text{OUT}} \le 40 \text{ mA}$
Ripple rejection ratio	R_{REJ}	_	55	_	_	55	_	dB	f = 120 Hz, 12 V \leq V $<$ 24 V, Tj $=$ 25°C
Temperature coefficient of output voltage	$\delta V_{OUT}/\delta Tj$	_	-0.15	5—	_	-0.15	i —	mV/°C	I _{OUT} = 5 mA
Dropout voltage	V_{DROP}		1.7			1.7	_	V	Tj = 25°C

HA178L10 Electrical Characteristics

 $(V_{_{IN}} = 16 \ V, \, I_{_{OUT}} = 40 \ mA, \, 0^{\circ}C \quad Tj \quad 125^{\circ}C, \, C_{_{IN}} = 0.33 \quad \mu F, \, C_{_{OUT}} = 0.1 \ \mu F)$

			78L10F 78L10	o	HA178L10PA HA178L10A HA178L10UA				
Item	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	Test Conditions
Output voltage	V_{OUT}	9.35	10	10.65	9.6	10	10.4	V	Tj = 25°C
Line regulation	δV_{oline}	_	80	230	_	80	230	mV	$Tj = 25^{\circ}C \ 12.5 \ V \le V_{IN} \le 25 \ V$
		_	30	170	_	30	170	_	13 V ≤ V _{IN} ≤ 25 V
Load regulation	δV_{oload}	_	26	_	_	26	_	mV	$Tj = 25^{\circ}C$ 1.0 mA $\leq I_{OUT} \leq 150$ mA
		_	18	90	_	18	90	_	$1.0 \text{ mA} \leq I_{\text{OUT}} \leq 100 \text{ mA}$
		_	8.5	45	_	8.5	45		$1.0 \text{ mA} \leq I_{\text{OUT}} \leq 40 \text{ mA}$
Output voltage	V_{OUT}	9.2	_	10.8	9.5	_	10.5	V	12.5 V \leq V _{IN} \leq 25 V, 1.0 mA \leq I _{OUT} \leq 40 mA
		9.2	_	10.8	9.5	_	10.5	=	$V_{IN} = 16 \text{ V}, 1.0 \text{ mA} \le I_{OUT} \le 70 \text{ mA}$
Quiescent current	IQ	_	3.1	6.5	_	3.1	6.5	mA	Tj = 25°C
Quiescent current change	δI_Q	_	_	1.5	_	_	1.5	mA	$Tj = 25^{\circ}C \ 13 \ V \le V_{IN} \le 25 \ V$
		_	_	0.2	_	_	0.1	=	$1.0 \text{ mA} \le I_{\text{OUT}} \le 40 \text{ mA}$
Ripple rejection ratio	R _{REJ}	_	54	_	_	54	_	dB	f = 120 Hz, 13 V \leq V _{IN} $<$ 24 V, Tj = 25°C
Temperature coefficient of output voltage	$\delta V_{OUT}/\delta Tj$	_	-0.2	_	_	-0.2	_	mV/°C	I _{OUT} = 5 mA
Dropout voltage	V_{DROP}	_	1.7	_	_	1.7	_	V	Tj = 25°C

HA178L12 Electrical Characteristics

 $(V_{_{IN}} = 19 \ V, \, I_{_{OUT}} = 40 \ mA, \, 0^{\circ}C \quad Tj \quad 125^{\circ}C, \, C_{_{IN}} = 0.33 \quad \mu F, \, C_{_{OUT}} = 0.1 \ \mu F)$

HA178L12PA HA178L12P HA178L12A HA178L12 HA178L12UA

		HAI/OLIZ		ПАТ	OLIZ)A			
Item	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	Test Conditions
Output voltage	V_{OUT}	11.22	12	12.78	11.5	12	12.5	V	Tj = 25°C
Line regulation	δV_{OLINE}	_	120	250	_	120	250	mV	$Tj = 25^{\circ}C$ 14.5 $V \le V_{IN} \le 27 V$
		_	100	200	_	100	200	=	$16 \text{ V} \leq \text{V}_{\text{IN}} \leq 27 \text{ V}$
Load regulation	δV_{oload}	_	28.5	_	_	28.5	_	mV	$Tj = 25^{\circ}C \ 1.0 \text{ mA} \le I_{OUT} \le 150 \text{ mA}$
		_	20	100	_	20	100	_	$1.0 \text{ mA} \le I_{OUT} \le 100 \text{ mA}$
		_	10	50	_	10	50	=	$1.0 \text{ mA} \le I_{\text{OUT}} \le 40 \text{ mA}$
Output voltage	V_{OUT}	11.04	 —	12.96	11.4	_	12.6	V	14.5 V \leq V _{IN} \leq 27 V, 1.0 mA \leq I _{OUT} \leq 40 mA
		11.04	—	12.96	11.4	_	12.6	=	$V_{IN} = 19 \text{ V}, 1.0 \text{ mA} \le I_{OUT} \le 70 \text{ mA}$
Quiescent current	IQ	_	3.1	6.5	_	3.1	6.5	mA	Tj = 25°C
Quiescent	δI_Q	_	_	1.5	_	_	1.5	mA	Tj = 25°C 16 V ≤ V _{IN} ≤ 27 V
current change		_	_	0.2	_	_	0.1	-	$1.0 \text{ mA} \le I_{\text{OUT}} \le 40 \text{ mA}$
Ripple rejection ratio	R _{REJ}	_	52	-	_	52	-	dB	f = 120 Hz, 15 V \leq V _{IN} < 25 V, Tj = 25°C
Temperature coefficient of output voltage	$\delta V_{OUT}/\delta Tj$	_	-0.3	_	_	-0.3	_	mV/°C	I _{OUT} = 5 mA
Dropout voltage	V_{DROP}	_	1.7	_	_	1.7	_	V	Tj = 25°C

HA178L15 Electrical Characteristics

 $(V_{_{IN}} = 23 \ V, \, I_{_{OUT}} = 40 \ mA, \, 0^{\circ}C \quad Tj \quad 125^{\circ}C, \, C_{_{IN}} = 0.33 \quad \mu F, \, C_{_{OUT}} = 0.1 \ \mu F)$

		HA17 HA17		o	HA178L15PA HA178L15A HA178L15UA				
Item	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	Test Conditions
Output voltage	V_{OUT}	14.03	15	15.97	14.4	15	15.6	V	Tj = 25°C
Line regulation	δV_{OLINE}	_	130	300	_	130	300	mV	$Tj = 25^{\circ}C \ 17.5 \ V \le V_{IN} \le 30 \ V$
		_	110	250	_	110	250	=	$20 \text{ V} \leq \text{V}_{\text{IN}} \leq 30 \text{ V}$
Load regulation	δV_{OLOAD}	_	36	_	_	36	_	mV	$Tj = 25^{\circ}C$ 1.0 mA $\leq I_{OUT} \leq 150$ mA
		_	25	150	_	25	150	=	$1.0 \text{ mA} \le I_{\text{OUT}} \le 100 \text{ mA}$
		_	12	75	_	12	75	-	$1.0 \text{ mA} \le I_{\text{OUT}} \le 40 \text{ mA}$
Output voltage	V _{OUT}	13.8	_	16.2	14.25	i —	15.75	5 V	17.5 V \leq V _{IN} \leq 30 V, 1.0 mA \leq I _{OUT} \leq 40 mA
		13.8	_	16.2	14.25	<u> </u>	15.75	5	$V_{IN} = 23 \text{ V}, 1.0 \text{ mA} \le I_{OUT} \le 70 \text{ mA}$
Quiescent current	IQ	_	3.2	6.5	_	3.2	6.5	mA	Tj = 25°C
Quiescent	δI_Q	_	_	1.5	_	_	1.5	mA	$Tj = 25^{\circ}C \ 20 \ V \le V_{IN} \le 30 \ V$
current change		_	_	0.2	_	_	0.1	-	$1.0 \text{ mA} \le I_{\text{OUT}} \le 40 \text{ mA}$
Ripple rejection ratio	R _{REJ}	_	49	_	_	49	_	dB	f = 120 Hz, $18.5 \text{ V} \le \text{V}_{\text{IN}} < 28.5 \text{ V}, \text{Tj} = 25^{\circ}\text{C}$
Temperature coefficient of output voltage	$\delta V_{OUT}/\delta Tj$	_	-0.5	_	_	-0.5	_	mV/°C	I _{OUT} = 5 mA
Dropout voltage	V_{DROP}	_	1.7	_	_	1.7	_	V	Tj = 25°C

Characteristic Curves

Package Dimensions

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

IITACE

Hitachi. Ltd.

Semiconductor & Integrated Circuits.

Nippon Bldg., 2-6-2, Öhte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

URL NorthAmerica http:semiconductor.hitachi.com/ Europe http://www.hitachi-eu.com/hel/ecg

Asia (Singapore) Asia (Taiwan) Asia (HongKong) http://www.has.hitachi.com.sg/grp3/sicd/index.htm http://www.hitachi.com.tw/E/Product/SICD_Frame.htm http://www.hitachi.com.hk/eng/bo/grp3/index.htm

Japan http://www.hitachi.co.ip/Sicd/indx.htm

For further information write to:

Hitachi Semiconductor (America) Inc. 179 East Tasman Drive San Jose, CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic components Group Dornacher Straße 3 D-85622 Feldkirchen, Munich Germany

Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd.

Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead

Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322

Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533

Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180

Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui,

Kowloon, Hong Kong Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX

Copyright ' Hitachi, Ltd., 1998. All rights reserved. Printed in Japan.

HITACHI