Licence 3^e année parcours Mathématiques 2018-2019 M67, Géométrie élémentaire

TD1: GÉOMÉTRIE PLANE

Le plan euclidien

Le plan cartésien \mathbb{R}^2 est noté \mathcal{P} . Il est muni de la distance euclidienne

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

pour tous $A = (x_A, y_A), B = (x_B, y_B)$ dans \mathcal{P} .

Exercice 1 (Projeté orthogonal)

Soient A un point et \mathcal{D} une droite du plan.

- a) Montrer qu'il existe une unique droite perpendiculaire 1 à \mathcal{D} passant par A. On appelle projeté orthogonal de A sur \mathcal{D} le point d'intersection de \mathcal{D} et sa perpendiculaire passant par A.
- b) Exprimer les coordonnées du projeté H en fonction de celles de A et d'une équation de \mathcal{D} .
- c) Montrer que $AH \leq AM$ pour tout $M \in \mathcal{D}$, avec égalité si et seulement si M = H.
- d) Étudier l'intersection d'une droite \mathcal{D} et d'un cercle $\mathcal{C}(A, r)$.
- e) Montrer que quand $\mathcal{D} \cap \mathcal{C}(A, r) = \{H\}$ (resp. $\{M, N\}$), alors le projeté orthogonal de A sur \mathcal{D} est H (resp. le milieu de [M, N]).

Exercice 2 (Inégalité triangulaire)

Soient A, B, C trois points du plan.

- a) Donner une paramétrisatoin de droite (AC).
- b) Montrer que si $A \in (BC)$, alors $AB + BC \ge AC$ avec égalité si et seulement si $A \in [BC]$.
- c) Pour $A \neq C$, en considérant le projeté orthogonal de B sur (AC), montrer que

$$AC \leqslant AB + BC$$
.

avec égalité si et seulement si $B \in [AC]$. Et si A = C?

- d) Retrouver cette inégalité (et le cas d'égalité) en rappelant que $AB^2 = \overrightarrow{AB} \cdot \overrightarrow{AB}$.
- e) Étudier l'intersection des deux cercles $\mathcal{C}(A_1, r_1)$ et $\mathcal{C}(A_2, r_2)$.
- f) Sous quelle condition sur les réels a, b, c existe-t-il un triangle dont les côtés ont pour longueurs a, b et c? Comment se simplifie cette condition si $a \le b$? et si $a \le b \le c$?

^{1.} Deux droites sont perpendiculaires si elles se coupent en formant un angle droit, ou encore si tout vecteur directeur de l'une est orthogonal à tout vecteur directeur de l'autre.