

HEXFET® Power MOSFET

Applications

- High frequency DC-DC converters
- Plasma Display Panel

Benefits

- Low Gate-to-Drain Charge to Reduce Switching Losses
- Fully Characterized Capacitance Including Effective C_{OSS} to Simplify Design, (See App. Note AN1001)
- Fully Characterized Avalanche Voltage and Current
- Lead-Free

TIEXI ET TOWEI MOSI E						
Key Parameters						
V _{DS}	200	V				
V _{DS(Avalanche)} min.	260	V				
R _{DS(on)} max @ 10V	54	mΩ				
T」max	175	°C				

G	D	S	
Gate	Drain	Source	

Daga want number	Dookses Tyres	Standard Pack	Oudenskie Best Neusker		
Base part number	Package Type	Form	Quantity	Orderable Part Number	
IRFB38N20DPbF	TO-220	Tube	50	IRFB38N20DPbF	
IRFSL38N20DPbF	TO-262	Tube	50	IRFSL38N20DPbF	
IDEC20NOODDLE	DO Dale	Tube	50	IRFS38N20DPbF	
IRFS38N20DPbF	D2-Pak	Tape and Reel Left	800	IRFS38N20DTRLPbF	

Absolute Maximum Ratings

Symbol	Symbol Parameter		Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V ⑦	43*	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V ⑦	30*	A
I _{DM}	Pulsed Drain Current ①	180	
P _D @T _A = 25°C	Maximum Power Dissipation ⑦	3.8	W
P _D @T _C = 25°C	Maximum Power Dissipation ⊘	300*	W
	Linear Derating Factor⊘	2.0*	W/°C
V_{GS}	Gate-to-Source Voltage	± 30	V
dv/dt	Peak Diode Recovery dv/dt③	9.5	V/ns
T_J	Operating Junction and	-55 to + 175	
T_{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	
	Mounting torque, 6-32 or M3 screw®	10 lbf•in (1.1N•m)	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.47*	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface®	0.50		°0.04/
$R_{\theta JA}$	Junction-to-Ambient ®		62	°C/W
$R_{\theta JA}$	Junction-to-Ambient (PCB Mount, steady state) ⑦		40	1

^{*} $R_{\theta JC}$ (end of life) for D2Pak and TO-262 = 0.50°C/W. This is the maximum measured value after 1000 temperature cycles from -55 to 150°C and is accounted for by the physical wear out of the die attach medium.

Notes ① through ⑦ are on page 2.

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	200			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.22		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.054	Ω	V _{GS} = 10V, I _D = 26A ④
$V_{GS(th)}$	Gate Threshold Voltage	3.0		5.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
	Drain to Source Leekage Current			25		V _{DS} =200 V, V _{GS} = 0V
I _{DSS}	Drain-to-Source Leakage Current			250	μA	$V_{DS} = 160V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	- Λ	$V_{GS} = 30V$
	Gate-to-Source Reverse Leakage			-100	nA	$V_{GS} = -30V$

Dynamic @ T_J = 25°C (unless otherwise specified)

gfs	Forward Trans conductance	17			S	$V_{DS} = 50V, I_{D} = 26A$
Q_g	Total Gate Charge		60	91		I _D = 26A
Q_{gs}	Gate-to-Source Charge		17	25	nC	V _{DS} = 100V
Q_{gd}	Gate-to-Drain Charge		28	42		V _{GS} = 10V ④
$t_{d(on)}$	Turn-On Delay Time		16			V _{DD} = 100V
t _r	Rise Time		95		ns	I _D =26A
$t_{d(off)}$	Turn-Off Delay Time		29		115	$R_G = 2.5\Omega$
t _f	Fall Time		47			V _{GS} = 10V ④
C _{iss}	Input Capacitance		2900			$V_{GS} = 0V$
C_{oss}	Output Capacitance		450			V _{DS} = 25V
C_{rss}	Reverse Transfer Capacitance		73		ne	f = 1.0MHz
C_{oss}	Output Capacitance		3550		pF	$V_{GS} = 0V, V_{DS} = 1.0V f = 1.0MHz$
Coss	Output Capacitance		180		-	$V_{GS} = 0V$, $V_{DS} = 160V$ $f = 1.0MHz$
Coss eff.	Effective Output Capacitance		380			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 160V$

Avalanche Characteristics

	Parameter		Min.	Тур.	Max.	Units	
E _{AS}	Single Pulse Avalanche Energy 26				460	mJ	
I _{AR}	Avalanche Current ①				26	Α	
E _{AR}	Repetitive Avalanche Energy ①			390		mJ	
V _{DS} (Avalanche)	Repetitive Avalanche Voltage①		260			V	

Diode Characteristics

blode Characteristics							
	Parameter	Min.	Тур.	Max.	Units	Conditions	
Is	Continuous Source Current (Body Diode)			44		MOSFET symbol showing the	
I _{SM}	Pulsed Source Current (Body Diode) ①⑥			180		integral reverse p-n junction diode.	
V_{SD}	Diode Forward Voltage			1.5	V	$T_J = 25^{\circ}C, I_S = 26A, V_{GS} = 0V $ ④	
t _{rr}	Reverse Recovery Time		160	240	ns	$T_J = 25^{\circ}C$, $I_F = 26A$	
Q_{rr}	Reverse Recovery Charge		1.3	2.0	μС	di/dt = 100A/µs ④	
t _{on}	Forward Turn-On Time	Intrinsio	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- \odot starting T_J = 25°C, L = 1.3mH, R_G = 25 Ω , I_{AS} = 26A.
- $\label{eq:local_local_local_local} \ensuremath{\Im} \quad I_{SD} \leq 26 A, \ di/dt \leq 390 A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \ T_J \leq 175^{\circ} C.$
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.
- \odot C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- © This is only applied to TO-220AB package.
- When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.

2 2016-5-31

Fig. 2 Typical Output Characteristics

Fig. 3 Typical Transfer Characteristics

Fig. 4 Normalized On-Resistance vs. Temperature

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig. 7 Typical Source-to-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

2016-5-31

4

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

5 2016-5-31

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 12c. Maximum Avalanche Energy vs. Drain Current

Fig 13a. Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

Fig 14. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

TO-220AB Package Outline (Dimensions are shown in millimeters (inches))

NOTES:

- DIMENSIONING AND TOLERANCING AS PER ASME Y14.5 M- 1994. 1.-
- DIMENSIONS ARE SHOWN IN INCHES [MILLIMETERS]
- LEAD DIMENSION AND FINISH UNCONTROLLED IN L1.
 DIMENSION D, D1 & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH
 SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- DIMENSION 61, 63 & c1 APPLY TO BASE METAL ONLY.
- CONTROLLING DIMENSION: INCHES.
- THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS E,H1,D2 & E1
- DIMENSION E2 X H1 DEFINE A ZONE WHERE STAMPING AND SINGULATION IRREGULARITIES ARE ALLOWED.
- OUTLINE CONFORMS TO JEDEC TO-220, EXCEPT A2 (max.) AND D2 (min.) WHERE DIMENSIONS ARE DERIVED FROM THE ACTUAL PACKAGE OUTLINE.

SYMB	OL	MILLIM	ETERS	INC	CHES	
		MIN.	MAX.	MIN.	MAX.	NOTES
Α		3.56	4.83	.140	.190	
A1		1.14	1.40	.045	.055	
A2		2.03	2.92	.080	.115	
b		0.38	1.01	.015	.040	
b1		0.38	0.97	.015	.038	5
b2		1.14	1.78	.045	.070	
b3		1,14	1.73	.045	.068	5
С		0.36	0.61	.014	.024	
c1		0.36	0.56	.014	.022	5
D		14.22	16.51	.560	.650	4
D1		8.38	9.02	.330	.355	
D2		11.68	12.88	.460	.507	7
E		9.65	10.67	.380	.420	4,7
E1		6.86	8.89	.270	.350	7
E2		-	0.76	-	.030	8
е		2.54	BSC	.100	BSC	
e1		5.08	BSC	.200	BSC	
H1		5.84	6.86	.230	.270	7,8
L		12.70	14.73	.500	.580	
L1		3.56	4.06	.140	.160	3
ØΡ		3.54	4.08	.139	.161	
Q		2.54	3.42	.100	.135	

LEAD ASSIGNMENTS

HEXFET

1.- GATE 2.- DRAIN 3.- SOURCE

IGBTs, CoPACK

1.- GATE 2.- COLLECTOR 3.- EMITTER

DIODES

1.- ANODE 2.- CATHODE 3.- ANODE

TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF1010

LOT CODE 1789

ASSEMBLED ON WW 19,2000 IN THE ASSEMBLY LINE "C"

Note: "P" in assembly line position indicates "Lead - Free'

TO-220AB packages are not recommended for Surface Mount Application.

Notes:

- 1. For an Automotive Qualified version of this part please see http://www.infineon.com/product-info/auto/
- 2. For the most current drawing please refer to Infineon website at http://www.infineon.com/package/

D2-Pak (TO-263AB) Package Outline (Dimensions are shown in millimeters (inches))

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994

2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.

4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.

5. DIMENSION 61, 63 AND c1 APPLY TO BASE METAL ONLY.

6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.

7. CONTROLLING DIMENSION: INCH.

8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263AB.

S Y M	DIMENSIONS					
В	MILLIM	ETERS	INC	HES	0 T E S	
O L	MIN.	MAX.	MIN.	MAX.	S	
А	4.06	4.83	.160	.190		
A1	0.00	0.254	.000	.010		
b	0.51	0.99	.020	.039		
Ь1	0.51	0.89	.020	.035	5	
b2	1.14	1.78	.045	.070		
b3	1.14	1.73	.045	.068	5	
С	0.38	0.74	.015	.029		
с1	0.38	0.58	.015	.023	5	
c2	1.14	1.65	.045	.065		
D	8.38	9.65	.330	.380	3	
D1	6.86	_	.270	_	4	
E	9.65	10.67	.380	.420	3,4	
E1	6.22	_	.245	_	4	
е	2.54	BSC	.100	.100 BSC		
Н	14.61	15.88	.575	.625		
L	1.78	2.79	.070	.110		
L1	_	1.68	_	.066	4	
L2	_	1.78	_	.070		
L3	0.25	BSC	.010	BSC		

LEAD ASSIGNMENTS

DIODES

1.- ANODE (TWO DIE) / OPEN (ONE DIE)

2, 4.- CATHODE 3.- ANODE

IGBTs, CoPACK 2, 4.- COLLECTOR 3.- EMITTER

D2-Pak (TO-263AB) Part Marking Information

EXAMPLE: THIS IS AN IRF530S WITH LOT CODE 8024

ASSEMBLED ON WW 02, 2000 IN THE ASSEMBLY LINE "L"

Note: "P" in assembly line position indicates "Lead - Free"

- 1. For an Automotive Qualified version of this part please see http://www.infineon.com/product-info/auto/
- 2. For the most current drawing please refer to Infineon website at http://www.infineon.com/package/

TO-262 Package Outline (Dimensions are shown in millimeters (inches)

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

O.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.

4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.

5. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.

- 6. CONTROLLING DIMENSION: INCH.
- 7.— OUTLINE CONFORM TO JEDEC TO-262 EXCEPT A1(mox.), b(min.) AND D1(min.) WHERE DIMENSIONS DERIVED THE ACTUAL PACKAGE OUTLINE.

LEAD ASSIGNMENTS

IGBTs, CoPACK

1.- GATE 2.- COLLECTOR 3.- EMITTER

4.- COLLECTOR

<u>HEXFET</u>

1.- GATE 1.- ANODE (TWO DIE) / OPEN (ONE DIE)

2.- DRAIN 2, 4.- CATHODE 3.- SOURCE 3.- ANODE

4.- DRAIN

S Y M	DIMENSIONS				
В	MILLIM	ETERS	INC	HES	O T E S
0 L	MIN.	MAX.	MIN.	MAX.	S
Α	4.06	4.83	.160	.190	
A1	2.03	3.02	.080	.119	
b	0.51	0.99	.020	.039	
b1	0.51	0.89	.020	.035	5
b2	1.14	1.78	.045	.070	
ь3	1.14	1.73	.045	.068	5
С	0.38	0.74	.015	.029	
c1	0.38	0.58	.015	.023	5
c2	1.14	1.65	.045	.065	
D	8.38	9.65	.330	.380	3
D1	6.86	_	.270	_	4
E	9.65	10.67	.380	.420	3,4
E1	6.22	_	.245		4
е	2.54	BSC	.100 BSC		
L	13.46	14.10	.530	.555	
L1	_	1.65	_	.065	4
L2	3.56	3.71	.140	.146	

TO-262 Part Marking Information

Notes:

- 1. For an Automotive Qualified version of this part please see http://www.infineon.com/product-info/auto/
- 2. For the most current drawing please refer to Infineon website at http://www.infineon.com/package/

D2-Pak (TO-263AB) Tape & Reel Information (Dimensions are shown in millimeters (inches))

NOTES:

- COMFORMS TO EIA-418.
 CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION MEASURED @ HUB.
- INCLUDES FLANGE DISTORTION @ OUTER EDGE.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information[†]

Qualification Level	Industrial (per JEDEC JESD47F) ^{††}	
Moisture Sensitivity Level	TO-220AB	N/A
	D2-Pak	MSL1 (per JEDEC J-STD-020D) ^{††}
	TO-262	N/A
RoHS Compliant	Yes	

- † Qualification standards can be found at Infineon's web site www.infineon.com
- †† Applicable version of JEDEC standard at the time of product release.

Revision History

Date	Comments	
5/31/2016	Updated datasheet with corporate template.	
5/31/2010	Added disclaimer on last page.	

Trademarks of Infineon Technologies AG

HIVIC™, μΙΡΜ™, μΡΕC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLIR™, CoolMOS™, CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowiR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™, OptiMOS™, ORIGA™, PowIRsadge™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™

Trademarks updated November 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2016-04-19
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2016 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference ifx1

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

12 2016-5-31