Esercizi di topologia algebrica Corso di Laurea in Matematica A.A. 2010-2011 Docente: Andrea Loi

- 1. Siano X e Y due spazi omotopicamente equivalenti e sia $f: X \to Y$ un'equivalenza omotopica. Un'applicazione $g: Y \to X$ tale che $f \circ g \sim id_y$ e $g \circ f \sim id_X$ è detta un'inversa omotopica di f. Dimostrare che l'inversa omotopica di f è unica a meno di omotopia.
- 2. Dimostrare che nel nastro di Möbius N esiste una circonferenza che risulta essere un retratto forte di deformazione di N. Dedurne che N è omotopicamente equivalente al cilindro.
- 3. Dimostrare che uno spazio X è contraibile se e solo se l'identità di X è omotopa ad una funzione costante.
- 4. Dimostrare che uno spazio omotopicamente equivalente ad uno spazio connesso (risp. connesso per archi) è connesso (risp. connesso per archi).
- 5. E' vero che uno spazio omotopicamente equivalente ad uno spazio compatto è compatto?
- 6. Dimostare che un retratto di uno spazio compatto (risp. connesso, connesso per archi) è compatto (risp. connesso, connesso per archi).
- 7. Si dimostri che un retratto di uno spazio semplicemente connesso (risp. contraibile) è semplicemente connesso (risp. contraibile).
- 8. Dimostare che un retratto di uno spazio di Hausdorff è chiuso. (Suggerimento: utilizzare il fatto (dopo averlo dimostrato) che l'insieme dei punti fissi di un'applicazione continua da uno spazio di Hausdorff X in se stesso è un sottoinsieme chiuso di X).
- 9. Sia T^2 il toro e X il complementare di un suo punto. Dimostrare che X è omotopicamente equivalente alla figura " ∞ ". Dedurne che il complementare di tre punti distinti in S^2 è omotopicamente equivalente a X.
- 10. Dimostrare che la sfera S^n è un retratto forte di deformazione di $\mathbb{R}^{n+1} \setminus \{0\}$. (Suggerimento: generalizzare l'esercizio precedente).
- 11. Sia X uno spazio topologico e $f,g:X\to S^n$ due funzioni continue tali che $f(x)\neq -g(x)$, per ogni $x\in X$. Dimostrare che f è omotopa a g. (Suggerimento: pensare $S^n\subset\mathbb{R}^{n+1}\setminus\{0\}$, costruire un'omotopia in $\mathbb{R}^{n+1}\setminus\{0\}$ tra f e g e "trasportarla" su S^n usando l'esercizio precedente).

- 12. Dimostrare che $SL(n,\mathbb{R})$ (le matrici $n \times n$ con determinante uguale a 1) è un retratto forte di deformazione di $GL^+(n,\mathbb{R})$ (le matrici $n \times n$ con determinante strettamente positivo).
- 13. Sia $A \subset X$ un sottoinsieme di uno spazio topologico X. Supponiamo che A sia un retratto (forte) di deformazione di X. Sia $r: X \to A$ una qualsiasi retrazione (cioè $r \circ i = id_A$) allora r è una retrazione (forte) per deformazione di X su A (cioè $i \circ r \sim_A id_X$).
- 14. Dimostrare che il bicchiere vuoto A è un retratto forte di deformazione del bicchiere vuoto X. In termini matematici dimostrare che $A=(D^2\times\{0\})\cup S^1\times[0,1]\subset\mathbb{R}^3$ è un retratto forte di deformazione di $X=D^2\times[0,1]\subset\mathbb{R}^3$.
- 15. Sia $X = \{(x, y, z) \in \mathbb{R}^3 \mid y^2 > 4xz\}$. Dimostrare che X ha lo stesso tipo di omotopia di S^1 . (Suggerimento: potrebbe essere utile considerare l'omeomorfismo

$$(x, y, z) \mapsto (\xi = x + z, \eta = y, \zeta = x - z)$$

per dimostrare che X è omeomorfo a $Y = \{(\xi, \eta, \zeta) \in \mathbb{R}^3 \mid \eta^2 + \zeta^2 > \xi^2 \}$).

- 16. Dare un esempio di un sottoinsieme di uno spazio topologico X che sia un retratto di deformazione di X ma non un retratto forte di deformazione di X.
- 17. Dimostrare che se uno spazio ha la topologia discreta allora $\pi_1(X,x)=\{1\}$ per ogni $x\in X.$
- 18. Dimostrare che due archi $f, g: I \to X$ da x a y danno luogo allo stesso isomorfismo da $\pi_1(X,x)$ a $\pi_1(X,y)$ (cioè $u_f = u_g$) se e solo se [g*i(f)] appartiene al centro di $\pi_1(X,x)$. Dedurre che l'isomorfismo $u_f: \pi_1(X,x) \to \pi_1(X,y)$ (associato ad un arco f da x a y) è indipendente da f se e solo se $\pi_1(X,x)$ è un gruppo abeliano.
- 19. Trovare due spazi topologici X e Y e una funzione continua $\varphi: X \to Y$ tale che φ_* non sia iniettiva (risp. non sia suriettiva). Suggerimento: usare il fatto che $\pi_1(S^1, 1) \cong \mathbb{Z}$.
- 20. Dimostrare che se A è un retratto forte di deformazione di uno spazio X, allora l'inclusione $i:A\hookrightarrow X$ induce un isomorfismo $i_*:\pi_1(A,a)\to\pi_1(X,a)$ per ogni $a\in A$.
- 21. Calcolare il gruppo fondamentale dei seguenti sottospazi di \mathbb{R}^2 : $\{x \in \mathbb{R}^2 \mid ||x|| > 1\}$; $\{x \in \mathbb{R}^2 \mid ||x|| < 1\}$; $\{x \in \mathbb{R}^2 \mid ||x|| \ge 1\}$; $\{(x,y) \in \mathbb{R}^2 \mid y \ge x^2\}$; $\{(x,y) \in \mathbb{R}^2 \mid y \le x^2\}$; $S^1 \cup (\mathbb{R}_+ \times \mathbb{R})$; $\mathbb{R}^2 \setminus (\mathbb{R}_+ \times \{0\})$, dove $\mathbb{R}_+ = \{x \in \mathbb{R} \mid x \ge 0\}$.
- 22. Calcolare il gruppo fondamentale dei seguenti spazi topologici: il toro solido $D^2 \times S^1$; $S^1 \times S^n$; Il cilindro $S^1 \times I$; Il cilindro infinito $S^1 \times \mathbb{R}$; il nastro di Möbius.
- 23. Dimostrare che \mathbb{R}^2 non è omeomorfo a $\mathbb{R} \times [0, +\infty)$.

- 24. Si dimostri che uno spazio topologico non può essere contemporaneamente una 2-varietà e una n-varietà per n > 2.
- 25. Sia A un retratto di D^2 . Dimostrare che un'applicazione continua $f:A\to A$ ha un punto fisso.
- 26. Dimostrare che il gruppo $G = \langle a, b \mid a^4, b^2, aba^{-1}b^{-1} \rangle$ è isomorfo $\mathbb{Z}_2 \times \mathbb{Z}_4$.
- 27. Sia $G = \langle S \mid R \rangle$ e definiamo il gruppo

$$AG = \langle S \mid AR \rangle, \quad AR = R \cup \{xyx^{-1}y^{-1} \mid x, y \in S\}.$$

Dimostrare che AG è un gruppo abeliano (l' abelianizzazione di G) e che esiste un omomorfismo suriettivo $G \to AG$. Determinare inoltre il nucleo di tale omomorfismo.

- 28. Dimostrare che il gruppo $G = \langle a, b \mid a^4ba^{-3}b^{-1}, a^5b^2a^{-4}b^{-2} \rangle$ non è il gruppo banale.
- 29. Trovare un controesempio all'Esercizio 23.11 del libro di testo.
- 30. Calcolare il gruppo fondamentale degli spazi di identificazione della figura 25.10 e 25.11 del libro di testo.
- 31. Sia $X = U_1 \cup U_2$ uno spazio topologico connesso per archi unione di due aperti U_1 e U_2 . Dimostrare che se $U_1 \cap U_2$ è connesso per archi allora U_1 e U_2 sono connessi per archi.
- 32. Dimostrare che la "salsiccia" $S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = \sin^2(\pi z)\}$ e la "collana" $C = \{(x, y, z) \in \mathbb{R}^3 \mid \sqrt{x^2 + y^2} = \max(0, \sin(\pi z))\}$ sono semplicementi connessi.
- 33. Calcolare il gruppo fondamentale del complementare in \mathbb{R}^3 dell'unione dei 3 semiassi coordinati

$${y = z = 0, x \ge 0} \cup {z = x = 0, y \ge 0} \cup {y = x = 0, z \ge 0}.$$

34. Calcolare il gruppo fondamentale del complementare in \mathbb{R}^3 dell'unione dei 3 semiassi positivi coordinati

$$\{y = z = 0, \ x > 00\} \cup \{z = x = 0, \ y > 00\} \cup \{y = x = 0, \ z \ 00\}.$$

35. Calcolare il gruppo fondamentale del complementare in \mathbb{R}^3 di

$${z = y = 0, x \ge 1} \cup {y = 0, x^2 + z^2 = 1}.$$

36. Calcolare il gruppo fondamentale del complementare in \mathbb{R}^3 di una retta e di un cerchio distinguendo tutte le possibilità che si possono presentare.

- 37. Calcolare il gruppo fondamentale del complementare in \mathbb{R}^3 di due rette (risp. due cerchi) distinguendo tutte le possibilità che si possono presentare.
- 38. Dimostrare che per ogni intero n>0 il quoziente $\mathbb{R}^n/GL(n,\mathbb{R})$ non è di Hausdorff.
- 39. Sia G un gruppo che agisce in modo libero su uno spazio topologico di Hausdorff X e per ogni $x \in X$ esiste un aperto U contenente x tale che $gU \cap U \neq \emptyset$ per al più un numero finito di $g \in G$. Allora G agisce in modo propriamente discontinuo.
- 40. Sia $\{(x,y,z) \in \mathbb{R}^3 \mid x^2+y^2=z^2, \ z \neq 0\}$ e sia G il sottogruppo degli omeomorfismi di X generato da a(x,y,z)=(-x,-y,z) e b(x,y,z)=(x,y,-z). Dimostrare che G è isomorfo a $\mathbb{Z}_2 \times \mathbb{Z}_2$ ed agisce in modo propriamente discontinuo su X. Dire inoltre se il quoziente X/G è omeomorfo a $\mathbb{R}^2 \setminus \{(0,0)\}$.
- 41. Dimostrare che per ogni $n \geq 2$ non esiste un'applicazione continua $f: S^n \to S^1$ tale che f(-x) = -f(x). (Suggerimento: imitare la dimostrazione del Teorema di Borsuk–Ulam (n=2)).
- 42. Sia $p: \tilde{X} \to X$ un rivestimento e $q: I^2 \to Y$ una identificazione tale che $q^{-1}(y)$ è connesso per ogni $y \in Y$. Allora ogni applicazione continua $f: Y \to X$ possiede un sollevamento (Suggerimento: imitare la dimostrazione svolta a lezione del fatto che un'applicazione continua $f: S^2 \to X$ possiede un sollevamento).
- 43. Sia $p: \tilde{X} \to X$ un rivestimento con \tilde{X} connesso per archi. Trovare il gruppo fondamentale di \tilde{X} supponendo che il gruppo fondamentale di X sia isomorfo a \mathbb{Z} e che la fibra abbia cardinalità finita.
- 44. Sia $p: \tilde{X} \to X$ un rivestimento con \tilde{X} connesso per archi. Dimostrare che se $\tilde{X} = X$ e il gruppo fondamentale di X è finito allora p è un omeomorfismo. Determinare poi se l'ipotesi di finitezza su X sia effettivamente necessaria.
- 45. Determinare tutti i rivestimenti di S^1 e dedurne che due rivestimenti di S^1 dello stesso grado finito sono isomorfi.
- 46. Sia $f: S^1 \to T^2 = S^1 \times S^1$ data da $f(z) = (z^2, 1)$. Trovare un rivestimento non banale di T^2 tale che f ammetta (risp. non ammetta) un sollevamento.
- 47. Sia $n \geq 2$ un intero. Dimostrare che ogni applicazione continua $f: S^n \to S^1$ (risp. $f: \mathbb{R}P^2 \to S^1$) è omotopa ad un'applicazione costante.
- 48. Sia X il quoziente della sfera S^2 ottenuto identificando il polo nord con il polo sud. Determinare il rivestimento universale e il gruppo fondamentale di X. (Suggerimento: usare le salsiccia dell'Esercizio 32).