Course material at:

https://github.com/lyeskhalil/mlbootcamp2022

Introduction to Machine Learning

Monday, Lecture 1
DSI-CARTE ML Bootcamp

Based on material from Polo Chau, Tom Mitchell, Roni Rosenfeld, Martial Hebert, Hal Daumé III, David Sontag

A bit about myself...

ekhalil.com

Joined UofT MIE starting July 2020.

• IVADO Postdoc at Polytechnique Montreal
Canada Excellence Chair in Data Science for Real-Time Decision-Making

• PhD in Computational Science & Engineering, 2019

- Research Interests
 - Machine Learning for Discrete Optimization and Operations Research
 - Principled Optimization Methods for ML
 - Healthcare, City planning, Supply chain applicartions

Teaching Assistants

Rahul Patel

Alex Olson

- 2nd year Industrial Engineering PhD student
- Research in Machine Learning for Mathematical Optimization

- CARTE Research Associate
- UofT MASc MIE graduate
- Broad experience in machine learning, consulting with faculty on applied data science research

Teaching Assistants

Jacob Mosseri

- 2nd year Industrial Engineering MASc student
- Research in Machine Learning and Operations Research for Orthopaedic Surgery Scheduling

Artificial Intelligence

Getting computers to behave intelligently:

- Perform non-trivial tasks as well as humans do
- Perform tasks that even humans struggle with

Many sub-goals:

- Perception
- Reasoning
- Control
- Planning

My poker face: AI wins multiplayer game for first time

Pluribus wins 12-day session of Texas hold'em against some of the world's best human players

Speech Recognition Perception + Reasoning

https://medium.com/@joelgarciajr84/creating-an-application-that-uses-speech-recognition-76117a396b7d

Autonomous Driving

Perception + Reasoning Control + Planning

Game Playing

Reasoning + Planning

https://www.digitaltrends.com/computing/texas-holdem-libratus-ai-defeats-humans/

Knowledge-Based Al

Write programs that simulate how people solve the problem

Fundamental limitations:

- Will never get better than a person
- Requires deep domain knowledge
- We don't know how we do some things (e.g., riding a bicycle)

Knowledge representation via logic

```
Knowledge base : Set of formulae \{f_1, f_2,..., f_n\}
M(KB) = All possible models for f_1 \land f_2 \land ... \land f_n
```

Formulae = "known facts"

Models = all possible "worlds" where
all these facts hold
(Adding more facts to KB can only
shrink set of possible worlds.)

Example: Variables: R, S, C ("Rainy", "Sunny," "Cloudy")

```
KB: R \lor S \lor C; ("It is either Rainy or Sunny or Cloudy.")

R \to C \land \neg S; ("If it is Rainy then it is Cloudy and not Sunny.")

C \longleftrightarrow \neg S ("If it is Cloudy then it is not Sunny, and vice versa")
```

Based on slide by Arora and Hazan at Princeton

Data-Based AI = Machine Learning

Write programs that learn the task from examples

- ✓ No need to know how we do it as humans
- ✓ Performance should improve with more examples
- X May need many examples!
- X May not understand how the program works!

Machine Learning:

Study of algorithms that

- improve their <u>performance</u> P
- at some task
- with <u>experience</u> E

well-defined learning task: <P,T,E>

The Machine Learning Process

Experience

 Examples of the form (input, correct output)

Task

Mapping from input to output

Performance

 "Loss function" that measures error w.r.t. desired outcome

Machine Learning:

Study of algorithms that

- improve their <u>performance</u> P
- at some task T
- with <u>experience</u> E

well-defined learning task: <P,T,E>

Tom Mitchell, CMU 10-601 slides

Choices in ML Problem Formulation

Experience

 Examples of the form (input, correct output)

Task

Mapping from input to output

Performance

 "Loss function" that measures error w.r.t. desired outcome

Loan Applications

 What historical examples do I have? What is a correct output?

Predict probability of default?
 Loan decision? Credit score?

 Do I care more about minimizing False Positives? False negatives?

The main algorithms (models) Focus on Deep Neural Networks

This course

Evaluation Optimization

Tabular Image Sequence

Machine Learning:

Study of algorithms that

- improve their performance P
- at some task T
- with <u>experience</u> E

well-defined learning task: <P,T,E>

Classification Regression Clustering

How will I rate "Chopin's 5th Symphony"?

Songs	Like?
Some nights	• •
Skyfall	
Comfortably numb	0 0
We are young	
•••	
•••	
Chopin's 5th	???

Classification: Three Elements

How will I rate "Chopin's 5th Symphony"?

- **1.** Data: $S = \{(x_i, y_i)\}_{i=1,...,n}$
 - x_i: data example with d attributes
 - y_i: label of example (what you care about)
- 2. Classification **model**: a function $f_{(a,b,c,...)}$
 - Maps from X to Y
 - (a,b,c,...) are the **parameters**
- **3. Loss** function: L(y, f(x))
 - Penalizes the model's mistakes

Songs	Like?
Some nights	• •
Skyfall	• •
Comfortably numb	0 0
We are young	• •
•••	
•••	
Chopin's 5th	???

Polo Chau, Georgia Tech CSE 6242

Terminology Explanation

data example = data instance attribute = feature = dimension label = target attribute

Data
$$S = \{(x_i, y_i)\}_{i=1,...,n}$$

- o x_i : data example with d attributes $x_i = (x_{i1}, ..., x_{id})$
- y_i: label of example

Song name	Artist	Length	Like?
Some nights	Fun	4:23	 ••
Skyfall	Adele	4:00	 ·
Comf. numb	Pink Fl.	6:13	 0 0
We are young	Fun	3:50	 0.0
Chopin's 5th	Chopin	5:32	 ??

Polo Chau Georgia Tech CSE 6242

What is a "model"?

A useful approximation of the world

Typically, there are many reasonable models for the same data

Training a model = finding appropriate values for (a,b,c,...)

- An optimization problem
- "appropriate" = minimizes the Loss function
- We will focus on a common training algorithm later on

Classification Loss Function

How unhappy you would be if your model f(.) predict label y' on input x when y is the correct output

•
$$L_{0-1}(y, f(x)) = 1$$
 if: $y \neq f(x)$
0 otherwise

• 0-1 loss function: intuitive but hard to optimize = train

• In practice, we use approximations of the 0-1 loss

Why should this work at all?

The main theoretical basis of ML:

With a sufficient amount of "similar" data

+

an expressive model class:

Minimizing the loss function on the training data yields a highly accurate model on unseen test data, with high probability

- **1.** Data: $S = \{(x_i, y_i)\}_{i=1,...,n}$
 - x_i: data example with d attributes
 - y_i: label of example (what you care about)
- 2. Classification **model**: a function $f_{(a,b,c,...)}$
 - Maps from X to Y
 - (a,b,c,...) are the **parameters**
- 3. Loss function: L(y, f(x))
 - Penalizes the model's mistakes

Decision Trees: To play tennis or not to?

 Data: attributes describing the weather; (sunny? humidity level, ...)

• Target: 1 if it's good to Play, 0 otherwise

• Model: $f_T(x)$

 Model parameters: T, the tree structure (and size)

Training (fitting) a Decision Tree

How to choose the attribute/value to split on at each level of the tree?

- Two classes (red circles/green crosses)
- Two attributes: X₁ and X₂
- 11 points in training data
- Idea

 Construct a decision tree such that the leaf nodes predict correctly the class for all the training examples

Training (fitting) a Decision Tree

How to choose the attribute/value to split on at each level of the tree?

$$x_i = (x_{i1}, \dots, x_{id}); y_i = \{1, \dots, m\}$$

Choosing the split point

Split types for a selected attribute i:

- 1. Categorical attribute (e.g. "genre") $x_{1i} = Rock, x_{2i} = Classical, x_{3i} = Pop$
- 2. Ordinal attribute (e.g., "achievement") x_{1i} =Platinum, x_{2i} =Gold, x_{3i} =Silver
- 3. Continuous attribute (e.g., song duration) $x_{1i} = 235, x_{2i} = 543, x_{3i} = 378$

Split on achievement

Split on duration

Training (=fitting) a Decision Tree

- 1. Find the best attribute to split on
- 2. Find the **best split** on the chosen attribute
- 3. Repeat 1 & 2 until **stopping criterion** is met

Common stopping criteria:

- Node contains very few data points
- Node is pure: most training data in node have same label

Final words on Decision Trees

Advantages

- Simple interpretation
- Fast predictions
- Handles mixed-type attributes

Caveats

- May be too simple for complex data
- Hard to figure out the right depth, stopping criterion, especially at the node level

Logistic Regression (LR)

Decision Trees predict discrete outcomes

LR predicts probabilities of outcomes

- Probabilities give a notion of certainty
- Model can still be used as a classifier

Probability of getting cervical cancer, p(x): p(age=42, #pregnancies=3, smoking=True, ...)

Logistic Regression: Assumptions

Probability of getting cervical cancer, p(x): p(age=42, #pregnancies=3, smoking=True, ...)

LR Parameters: $\beta_0, \beta_1, ..., \beta_d$

$$\log \frac{p(x)}{1 - p(x)} = \beta_0 + \beta_1 x_1 + \dots + \beta_d x_d$$

$$\Rightarrow p(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \dots + \beta_d x_d)}}$$
 This is the model!

Logistic Regression: Training

$$p(x; \beta) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \dots + \beta_d x_d)}}$$

Data:
$$S = \{(x_i, y_i)\}_{i=1,...,n}$$

Data: $S = \{(x_i, y_i)\}_{i=1,...,n}$ $\begin{cases} x_i : \text{ example with d attributes (age, \#pregnancies, ...)} \\ y_i : \text{ cervical cancer diagnosis (0 or 1)} \end{cases}$

Maximum Likelihood Estimation (MLE)

Likelihood of observing the data for a given $\boldsymbol{\beta}$:

$$\prod_{i=1}^n p(x_i; \boldsymbol{\beta})^{y_i} \times (1 - p(x_i; \boldsymbol{\beta}))^{1 - y_i}$$

MLE seeks parameters β that maximize the likelihood

The optimal parameters, β^* , can be found by optimization

Logistic Regression: Properties

$$p(x; \beta) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \dots + \beta_d x_d)}}$$

Data:
$$S = \{(x_i, y_i)\}_{i=1,...,n}$$
 $\begin{cases} x_i : \text{ example with d attributes (age, #pregnancies, ...)} \\ y_i : \text{ cervical cancer diagnosis (0 or 1)} \end{cases}$

- 1- Find **B*** by Maximum Likelihood Estimation
- 2- For a new example x', compute $p(x'; \beta^*)$ and threshold at 0.5

Note that LR is a linear model!

Can you guess why?

Final words on Logistic Regression

Advantages

- Simple interpretation
- Fast training (convex optimization)
- Fast predictions
- Handles mixed-type attributes

Caveats

A low-capacity, linear model

https://christophm.github.io/interpretable-ml-book/logistic.html

Support Vector Machines (SVM)

A Course in Machine Learning by Hal Daumé III

SVM: The Maximum-Margin Principle

Vapnik (1990) derived the SVM as an "optimal" classifier

Intuitively, robust to outliers

Support vectors: subset of data closest to classifier

Great empirical success in the 90s – early 2000s

David Sontag, NYU ML class

What about non-linearly separable data?

SVM for non-linearly separable data

SVM can do this "lifting" at a relatively small additional cost in computation

Final words on SVMs

Advantages

- Strong theoretical basis
- Easy to train linear SVMs
- Typically a strong baseline

Caveats

- Non-linear SVM slow to train
- Hard to specify a good kernel in advance

Recap

- ML vs Knowledge-Based Al
- The ML mindset
- Classification: definition and assumptions
- Classifiers:
 - Decision Trees
 - Logisitic Regression
 - Support Vector Machines

