## 4.1.2. Метод золотого сечения

Технология метода золотого сечения применяется для нахождения корней нелинейных уравнений интервальным способом.

Метод основан на делении локализованного отрезка [a,b], на три неравные части, т.е. внутри рассматриваемого интервала появляются две новые точки  $x_1, x_2$ . Для определения координат этих точек применяется правило золотого сечения.

Правило золотого сечения: отношение всего отрезка к большей его части равно отношению большей части отрезка к меньшей. На рис. 12 представлена графическая иллюстрация правила золотого сечения. Математически данное правило можно представить в виде следующих выражений:

$$\frac{b-a}{b-x_1} = \frac{b-x_1}{x_1-a} = \Phi, \quad \frac{b-a}{x_2-a} = \frac{x_2-a}{b-x_2} = \Phi,$$

где  $\Phi$  — число  $\Phi$ идия, имеющее точное значение в виде математического выражения:

$$\Phi = \frac{1+\sqrt{5}}{2},$$

или приближенное числовое значение 1,618.



Рис. 12 – Визуализация правила золотого сечения

Используя данное правило на рассматриваемом интервале [a, b] определяются две точки  $x_1, x_2$ .

$$x_1 = b - \frac{b-a}{\Phi}$$
,  $x_2 = a + \frac{b-a}{\Phi}$ .   
Как видно из рис. 12 и полученных выражений точки  $x_1, x_2$ 

являются симметричными относительно как границ, так и середины отрезка [a, b]:

ются симметричными относительно как границ, так и сереготрезка 
$$[a, b]$$
:
$$a - x_1 = x_2 - b$$

 $a-x_1=x_2-b,$ 

 $a-x_2=x_1-b.$ 

Следовательно, зная одну точку ( $x_1$  или  $x_2$ ) золотого сечения, вторую можно найти, используя одно из выражений:

 $x_1 = a + b - x_2,$ 

$$x_2 = a + b - x_1$$
. Во вновь найденных точках  $x_1$  и  $x_2$  вычисляются значения функции  $f(x_1)$  и  $f(x_2)$ . Затем проводится сравнение знаков функций на границах интервала и внутренних точках, в резуль-

тате определяется новый интервал, на котором содержится иско-

мый корень функции (рис. 13).



Рис. 13 – Первое приближение метода золотого сечения

В процессе сравнения возможна реализация одного из трех случаев:

- 1) если  $f(a) \cdot f(x_1) < 0$ , то в качестве нового отрезка будет выбран интервал  $[a, x_1]$  (рис. 13),
- 2) если  $f(x_1) \cdot f(x_2) < 0$ , то в качестве следующего интервала выбирается отрезок  $[x_1, x_2]$  (рис. 14),
- 3) если  $f(x_2) \cdot f(b) < 0$ , то новым отрезком становится интервал  $[x_2, b]$ .

Определенный таким образом новый интервал  $[a_1, b_1]$ , заключающий в себе решение нелинейного уравнения, заново делится на неравные части согласно правилу золотого сечения, как показано на рис. 14.

Стоит отметить, что в методе золотого сечения, как и в методе половинного деления для выбора нового отрезка нужно знать только знаки функции, а не её значение.

В отличие от метода половинного деления метод золотого сечения сходится быстрее, поскольку на каждом итерационном шаге отрезок уменьшается не в два, а в три раза.



Рис. 14 – Второе приближение метода золотого сечения