Proyecto ADA

Cesar Madera¹, Enrique Sobrados², Johan Tanta³

 ${\rm ^{1-3}Ciencia~de~la~Computaci\'on}$ Universidad de Ingeniería y Tecnología, Barranco ${\rm \{^{1}cesar.madera,^{2}enrique.sobrados,^{3}johan.tanta\}@utec.edu.pe}$

Junio 16, 2020

Índice

1.	Algoritmo Voraz	3
	1.1. Election voraz	3
	1.2. Pseudocódigo	3
	1.3. Tiempo de ejecucion	5
	1.4. Demostración	5
2.	$\mathbf{Opt}(i,j)$	5
	2.1. Solución óptima	5
	2.2. Planteamiento de la Recurrencia	6
3.	Algoritmo Recursivo	6
	3.1. Pseudocódigo	6
	3.2. Tiempo de Ejecución	7
4.	Algoritmo Memoizado	8
	4.1. Pseudocódigo	8
	4.2. Tiempo de ejecución	9
5.	Algoritmo Dinámico	10
	5.1. Pseudocódigo	10
	5.2. Tiempo de Ejecución	12
6.	Algoritmo Dinamico Mejorado	12
	6.1. Pseudocódigo	12
	6.2. Tiempo de Ejecución	13
7.	Algoritmos de Transformaciones de Matrices	13
	7.1. Pseudocódigo	13
	7.2. Tiempo de Ejecucion	

8.	Procesamiento de imagenes		
	8.1. Escala de Grises	15	
9.	Animación de Imagenes	15	
	9.1. Terminos importantes	15	
	9.2. Pseudocodigo	16	
10	Repositorio	17	
11.Bibliography			

1. Algoritmo Voraz

1.1. Election voraz

Sea i, j punteros en los vectores de los bloques A y B respectivamente que empiezan desde el inicio. **Eleccion Voraz**:

- Empezar a realizar un subconjunto con índice i, un i-división con la condición: $B_j > B_{j+1}$
- Al no cumplir la anterior condición, empezar a realizar un subconjunto con índice j, un j-agrupamiento con la condición: $A_i < A_{i+1}$

1.2. Pseudocódigo

Algorithm 1 Devuelve el Peso

```
1: procedure Weight(matchings)
       suma\_total = 0
 2:
       tempa = A[matchings[1].first].longitud
3:
4:
       tempb = B[matchings[1].second].longitud
       t_a = matchings[0].first
 5:
       t_b = \text{matchings}[0].\text{second}
6:
       for i = 2 to size(matchings) do
 7:
          if matchings[i].first == t_a then
8:
9:
              tempb += B[matchings[i].second].longitud
          else if matchings[i].second == t_b then
10:
              tempa += A[matchings[i].first].longitud
11:
          else
12:
              suma\_total += tempa/tempb
13:
              t_a = matchings[i].first
14:
              t_b = \text{matchings}[i].second
15:
              tempa = A[matchings[i].first].longitud
16:
              tempb = B[matchings[i].second].longitud
17:
       suma\_total += tempa/tempb
18:
       return suma_total
19:
```

Algorithm 2 Devuelve un Match entre A y B

```
1: procedure Greedy_MIN(A, B)
2:
       i = 1
3:
       j = 1
       cont_B = 0
4:
       cont_A = 0
5:
       while i < size(A) -1 and j < size(B) -1 do
6:
           if B[j + 1].longitud < B[j].longitud then
7:
               \mathbf{if} \ \mathrm{cont\_B} \ \mathbf{then}
8:
                  j++
9:
                  i++
10:
                  cont_B = 0
11:
12:
               else
                  matchings.push(i,j)
13:
                  j++
14:
                  cont_A++
15:
           else if A[i].longitud < A[i+1].longitud then
16:
               matchings.push(i,\!j)
17:
               if cont_A then
18:
                  i++
19:
                  j++
20:
                  {\rm cont} \_A = 0
21:
                  cont_B = 0
22:
               else
23:
                  i++
24:
                  cont_B = 0
25:
           else
26:
               matchings.push(i, j));
27:
28:
              i++
              j++
29:
              cont_B = 0
30:
       if i == size(A) - 1 then
31:
32:
           while j < size(B) do
               matchings.push(i, j)
33:
34:
              j++
35:
       else
           \mathbf{while} \ i < size(A) \ \mathbf{do}
36:
               matchings.push(i, j)
37:
38:
       return matchings, Weight(matchings)
39:
```

1.3. Tiempo de ejecucion

El tiempo de ejecución para este algoritmo en el peor de los casos es: La linea 6 se ejecuta m+n-1 veces sin contar las constantes y en la linea 31 se ejecutaa ese 1 faltante. La funcion Weight tiene un tiempo de ejecucion de max $\{m,n\}$ ya que va a iterar en el maximo número de tuplas de matchings el cual es max $\{m,n\}$. Por lo tanto el tiempo de ejecucion del algoritmo: $T(m,n) = m+n+max\{m,n\}$

1.4. Demostración

Demostrar: $T(m,n) = O(max\{m,n\})$

$$\begin{array}{rcl} m+n & \leq & 2 \times \max\{m,n\} \\ m+n+\max\{m,n\} & \leq & 2 \times \max\{m,n\} + \max\{m,n\} \\ m+n+\max\{m,n\} & \leq & 3 \times \max\{m,n\}, C_1 = 3 \\ T(m,n) & = & O(\max\{m,n\}) \end{array}$$

2. Opt(i, j)

2.1. Solución óptima

Sea X la solución óptima del problema. Asimismo, sea P y Q subconjuntos.

■ Donde P y el índice j, es un j - agrupamiento definido:

$$P = (k, j), (k + 1, j), \dots, (i - 1, j), (i, j)$$
 $2 \le k \le i$

■ Donde Q y el índice i, es una i - division definida:

$$Q = (i, l), (i, l+1), \dots, (i, j-1), (i, j) \qquad 2 \le l \le j$$

X debe incluir una solución óptima entre los subconjuntos P y Q, debido a ello se observan los siguientes escenarios:

- Si $P \in X$: Luego X debe incluir una solución óptima del subproblema que está dado por los bloques de $A = \{A_1, A_2, \dots, A_{k-1}\}$ y de $B = \{B_1, B_2, \dots, B_{j-1}\}$.
- Si $Q \in X$: Luego X debe incluir una solución óptima del subproblema que está dado por los bloques de $A = \{A_1, A_2, \dots, A_{i-1}\}$ y de $B = \{B_1, B_2, \dots, B_{l-1}\}$.

2.2. Planteamiento de la Recurrencia

Para calcular el peso asociado a una agrupación es calculada por:

$$W_A(r,s,j) = \frac{A_r + A_{r+1} + \dots + A_s}{B_j}$$

Para calcular el peso asociado a una división es calculada por:

$$W_D(i, m, n) = \frac{A_i}{B_m + B_{m+1} + \dots + B_n}$$

Asimismo, para cada (i, j) se define:

$$M_A(i,j) = min_{k=i}^2 (W_A(k,i,j) + Opt(k-1,j-1))$$

 $M_D(i,j) = min_{l=i}^2 (W_D(i,l,j) + Opt(i-1,l-1))$

Se plantea la siguiente recurrencia

$$Opt(i,j) = \begin{cases} W_A(1,i,1) & \text{j} == 1 \\ W_D(1,1,j) & \text{i} == 1 \\ min(M_A(i,j),M_D(i,j)) & \text{Caso contrario} \end{cases}$$

3. Algoritmo Recursivo

3.1. Pseudocódigo

Se definen las siguientes funciones:

Algorithm 3 Devuelve las tuplas y el peso de un i-division

- 1: **procedure** MATCHDIVISION(i, m, n)
- 2: Tuplas MatchD
- 3: for p = m to n do
- 4: MatchD.push(i , p) return MatchD

Algorithm 4 Devuelve las tuplas y el peso de un j-agrupamiento

- 1: **procedure** MATCHGROUP(r, s, j)
- 2: Tuplas MatchG
- 3: $\mathbf{for} \ \mathbf{p} = \mathbf{r} \ \mathbf{to} \ \mathbf{s} \ \mathbf{do}$
- 4: $\operatorname{MatchG.push}(p, j)$ **return** MatchG

Luego se define la función Opt(i,j):

Algorithm 5 Devuelve el min matching

```
1: procedure OPT(i, j)
       if i == 1 then
 2:
3:
          return MatchDivision(i, 0, j)
       else if j == 1 then
 4:
          return MatchGroup(0, i, j)
5:
 6:
       else
7:
          Tuplas min_resultk.weight = \infty
8:
          Tuplas min_resultl.weight = \infty
          for k = i down to 2 do
9:
             Match = MATCHGROUP(k, i, j)
10:
             SubProblem = Opt(k-1, j-1)
11:
             result = SubProblem + Match
12:
             if min_resultk.weight > result.weight then
13:
14:
                 \min_{\text{resultk}} = \text{result}
          for l = j down to 2 do
15:
             Match = MATCHDIVISION(i, l, j)
16:
             SubProblem = Opt(i-1, l-1)
17:
             result = SubProblem + Match
18:
             if min_resultl.weight > result.weight then
19:
20:
                 min_resultl = result
          return min( min_resultl, min_resultk )
21:
```

3.2. Tiempo de Ejecución

Al analizar el tiempo de ejecución del Algorithm 5, se obtiene lo siguiente:

$$Opt(i,j) = \begin{cases} c & \text{i } == 1 \lor \text{j} == 1 \\ T(i,j) = \sum_{k=i}^{2} T(k-1,j-1) + \sum_{k=j}^{2} T(i-1,k-1) & \text{Caso contrario} \end{cases}$$

Probaremos por induccion que $T(i,j)=\Omega(2^{\max(i,j)}),$ con $c=\frac{1}{2}:$

 \blacksquare Como caso base, donde i = 1, j = 1 y $c_1 = 1$, se ejecuta la línea 2 y 3.

$$T(i,j) \geq c_1 2^{max(1,1)}$$

$$T(i,j) \geq 2^1$$

■ Paso inductivo:

$$\Omega(2^{\max(i,j)}) = T(i,j) \hspace{1cm} 1 \leq i \leq m-1 \hspace{1cm} \wedge \hspace{1cm} 1 \leq j \leq n-1$$

Se sabe que:

$$\begin{split} T(m,n) &=& \sum_{k=m}^2 T(k-1,n-1) + \sum_{k=n}^2 T(m-1,k-1) \\ T(m,n) &=& \sum_{k=m}^2 T(k-1,n-1) + \sum_{k=n}^2 T(m-1,k-1) \geq \sum_{k=m}^2 T(k-1,n-1) \\ T(m,n) &\geq& \sum_{k=m}^2 T(k-1,n-1) \\ T(m,n) &\geq& T(m-1,n-1) \\ T(m,n) &\geq& 2^{\max(m-1,n-1)} \\ T(m,n) &\geq& 2^{\max(m,n)-1} \\ T(m,n) &\geq& \frac{1}{2} 2^{\max(m,n)} \end{split}$$

Se concluye que $T(m,n) = \Omega(2^{\max(m,n)})$

$$T(m,n) \ \geq \ \frac{1}{2} 2^{\max(m,n)} \qquad \ \ \mathrm{m} \geq 1 \, \wedge \, \mathrm{n} \geq 1$$

4. Algoritmo Memoizado

4.1. Pseudocódigo

Se reutiliza las funciones MatchGroup y MatchDivision definidos en la anterior sección. Antes de implementar el algoritmo, se inicializa toda la matriz en cero.

Algorithm 6 Devuelve el min matching utilizando una matriz como apoyo

```
1: procedure OPT(i, j)
       if Matrix[i][j] != 0 then
 2:
 3:
           return Matrix[i][j]
       if i == 1 then
 4:
           Matrix[i][j] = MatchDivision(i, 0, j)
5:
           return Matrix[i][j]
 6:
       else if j == 1 then
7:
           Matrix[i][j] = MatchGroup(0, i, j)
 8:
9:
           return Matrix[i][j]
10:
       else
          Tuplas min_resultk.weight = \infty
11:
          Tuplas min_resultl.weight = \infty
12:
          for k = i down to 2 do
13:
              Match = MATCHGROUP(k, i, j)
14:
             SubProblem = Opt(k-1, j-1)
15:
              result = SubProblem + Match
16:
             if min_resultk.weight > result.weight then
17:
                 min_resultk = result
18:
          for l = j down to 2 do
19:
              Match = MATCHDIVISION(i, l, j)
20:
             SubProblem = Opt(i-1, l-1)
21:
              result = SubProblem + Match
22:
              if min_resultl.weight > result.weight then
23:
                 min_resultl = result
24:
          Matrix[i][j] = min(min_resultl, min_resultk)
25:
          return Matrix[i][j]
26:
27:
```

4.2. Tiempo de ejecución

El tiempo de ejecucion de este algoritmo está dado por:

$$T(i,j) = (\# \text{SubProblemas}) * (\text{Tiempo por SubProblema})$$
 (1)

Se esta tomando en consideracion que las funciones MatchDivision y Match-Group se ejecutan en tiempo constante, por lo que solo se necesita contabilizar el numero de subproblemas existentes¹. Se replantea la ecuación (1):

$$T(i,j) = (\# \text{SubProblemas}) * c$$
 (2)

Asimismo, debido a las llamadas recursivas de los subproblemas T(k-1,j-1) y T(i-1,l-1) en las lineas 15 y 21 del algoritmo memoizado la cantidad de subproblemas que se resuelven son:

(# SubProblemas) =
$$(i-1)*(j-1) + \underbrace{1}_{\text{Problema original: } T(i,j)}$$

Entonces, para T(m, n) se obtiene:

$$T(m,n) = (m-1)*(n-1)+1$$

 $m*n \ge (m-1)*(n-1)+1 = T(m,n)$
 $m*n \ge T(m,n)$

Por lo que se demuestra que T(m,n) = O(mn)

5. Algoritmo Dinámico

5.1. Pseudocódigo

En primer lugar, se define la función OPT _Result(i,j).

Algorithm 7 Devuelve el min matching utilizando una matriz como apoyo

```
1: procedure OPT_RESULT(i, j)
2:
       if i == 1 then
          Matrix[i][j] = GetMatchDivision(i, 1, j)
3:
       else if j == 1 then
4:
          Matrix[i][j] = GetMatchGroup(1, i, j)
5:
6:
       else
7:
          min_resultk = math.inf
8:
          min_resultl = math.inf
          indexMinGroup = 1
9:
          indexMinDivision = 1
10:
          for k = i down to 1 do
11:
12:
              Match = GetMatchGroup(k, i, j)
              SubProblem = Matrix[k-1][j-1]
13:
              result = SubProblem + Match
14:
              if \min_{\text{resultk}} > \text{result } then
15:
                  min_resultk = result
16:
                  indexMinGroup = k
17:
18:
          for l = j down to 1 do
               Match = GetMatchDivision(i, l, j)
19:
              SubProblem = Matrix[i-1][l-1]
20:
              result = SubProblem + Match
21:
              if min_resultl > result then
22:
                  min_resultl = result
23:
                  indexMinDivision = 1
24:
          if \min_{\text{resultl}} > \min_{\text{resultk}} then
25:
              Matrix[i][j] = min\_resultk
26:
              minSubProblem[i, j] = (indexMinGroup-1, j-1)
27:
          else
28:
              Matrix[i][j] = min_resultl
29:
              minSubProblem[i,\,j]\,=\,(i\text{--}1,\,indexMinDivision-1)
30:
```

Finalmente, se diseña el algoritmo de programacion dinámica.

Algorithm 8 Devuelve min matchings usando DP

```
1: procedure DYNAMICPROGRAMMING(x, y)

2: for i = 1 to x do

3: for j = 1 to y do

4: OPT_Result(i, j)

5: OPT_Result(x, y)

6: return Matrix[x][y]
```

5.2. Tiempo de Ejecución

Para demostrar la complejidad del algoritmo, se observa lo siguiente:

■ En la función $OPT_RESULT(m, n)$, se observan dos bucles independientes:

$$T(m,n) = m+n$$

$$T(m,n) \leq max\{m,n\}$$

$$O(max\{m,n\}) = T(m,n)$$

■ En la función DynamicProgramming(x, y), se observan dos bucles anidados llamando a la función OPT_RESULT(m, n), por lo que:

```
\begin{array}{rcl} T(m,n) & = & (m-1)(n-1)O(\max\{m,n\}) \\ T(m,n) & \leq & (m)(n)O(\max\{m,n\}) \\ T(m,n) & \leq & \max\{m,n\}^2O(\max\{m,n\}) \\ T(m,n) & \leq & \max\{m,n\}^3 \\ O(\max\{m,n\}^3) & = & T(m,n) \end{array}
```

Por lo tanto el tiempo de ejecución del algoritmo de programación dinámica es $O(\max\{m,n\}^3)$

6. Algoritmo Dinamico Mejorado

6.1. Pseudocódigo

Se implementa la siguiente función para calcular el u

```
Algorithm 9 Inicializar la constante u

1: procedure InicializarU

2: u = sumaBloquesA[len(A)-1]/sumaBloquesB[len(B)-1]
```

Las listas sumaBloquesA y sumaBloquesB obtienes las sumas acumuladas de los pesos de los bloques de A y B.

Luego, se realizan los siguientes cambios en las funciones de GetMatchDivision(i, m, n) y GetMatchGroup(r, s, j). Estas funciones devuelven los pesos de los matchs.

Algorithm 10 Obtener el peso de un match de división

```
1: procedure GetMatchDivision(i, m, n)
2: if m == n then
3: return abs(A[i].longitud/B[m].longitud - u)
4: if m == 0 then
5: return abs(A[i].longitud/sumaBloquesB[n] - u)
6: suma = sumaBloquesB[n] - sumaBloquesB[m-1]
7: return abs(A[i].longitud/suma - u)
```

Algorithm 11 Obtener el peso de un match de agrupacion

```
1: procedure GetMatchGroup(r, s, j)

2: if r == s then

3: return abs(A[r].longitud/B[j].longitud - u)

4: if r == 0 then

5: return abs(sumaBloquesA[s]/B[j].longitud - u)

6: suma = sumaBloquesA[s] - sumaBloquesA[r-1]

7: return abs(suma/B[j].longitud - u)
```

Se realizan esos cambios para el correcto funcionamiento del algoritmo de programación dinámica mejorada.

6.2. Tiempo de Ejecución

Como los cambios realizados no influyen en la notación de O-grande, el tiempo de ejecución es el mismo que el algoritmo de programación dinámica.

$$O(\max\{m,n\}^3) = T(m,n)$$

7. Algoritmos de Transformaciones de Matrices

Para la transformación de matrices se desarrollo un algoritmo general para los tres métodos de transformación de matrices (Greedy , Dinamica, Dinamica-Mejorada). Dentro de este algoritmo se encuentra la función MIN_MATCHING representa los algoritmos anteriormente mencionados, que podran ser greedy, dinamica y dinamica mejorada.

7.1. Pseudocódigo

Algorithm 12 Devuelve un conjunto de matches

```
1: procedure Transformacion_MIN(matrixA, matrixB, GetSubmtachings
   = False
2:
      if GetSubmatching then
         for i = 1 to size(matrix A) do
3:
             result = MIN\_MATCHING(matrixA[i], matrixB[i], GetSubmat-
4:
   ching)
             MatrixMatchings.insert(result)
5:
      else
6:
7:
         sumatoria = 0.0
         for i = 1 to size(matrix A) do
8:
             restult = Greedy.MIN\_MATCHING(matrixA[i],matrixB[i])
9:
10:
             sumatoria = sumatoria + result
             MatrixMatchings.insert(matchings)
11:
         return sumatoria
12:
```

7.2. Tiempo de Ejecucion

A cada algoritmo descrito anteriormente se debe agregar el número de filas

■ Transformacion Greedy, dos matrices A y B de ceros y unos de tamaño p x q.

$$O(pq) = Tr(m,n)$$

■ Transformacion Programcion Dinamica, dos matrices A y B de ceros y unos de tamaño p x q.

$$O(pq^3) = Tr(m,n)$$

■ Transformacion Programcion Dinamica Mejorada, dos matrices A y B de ceros y unos de tamaño p x q.

$$O(pq^3) = Tr(m,n)$$

8. Procesamiento de imagenes

Para esta sección del proyecto que fue realizado en python, se utilizó la libreria Pillow, para facilitar la manipulación de imagenes.

8.1. Escala de Grises

Para convertir la matriz de pixeles RGB a Escala de grises, se han implementado 4 funciones, LUM_601 , LUM_709 , LUM_240 y LUM_imput . Este ultimo permite setear los factores de conversion a los que el usuario le pasa. Todas las anteriores funciones llaman a la siguiente subrutina convert:

```
def convert(image, R, G, B):
    ConvertedMatrix01 = []

for y in range(height):
    array01 = []
    for x in range(width):

        RGB = image.getpixel((x,y))
        Gris = int(RGB[0]*R + RGB[1]*G + RGB[2]*B)
        if(Gris > 122):
            array01.append(1)
        else:
            array01.append(0)
        ConvertedMatrix01.append(array01)
    return ConvertedMatrix01
```

El umbral utilizado para generar los arregl
so de bloques ha sido 122. El cual si el Valor de gris es menor que es
e valor se agregará como 1, caso contrario, será 0.

9. Animación de Imagenes

9.1. Terminos importantes

Para la animacion de imagenes, estamos identificando 3 conjuntos de pixeles:

- Submatchings: relacion entre un bloque a varios (division o agrupacion)
- Antimatchings: Todos los bloques de 0's a los lados de los Submatchings, los cuales no son afectados por estos mismos
- pixeles Libres: Todos los pixeles que no sean afectados por los dos anteriores (podria ser que existan en el medio de dos bloques divididos o que el matching este justo al final, por lo que los bloques superiores o inferiores deberian desaparecer o aparecer en la transformacion.

9.2. Pseudocodigo

Pasando con el algoritmo:

Algorithm 13 Genera una lista de K imagenes intermedias

```
1: procedure GENERARIMAGENESINTERMEDIAS(MatrixMatchings,img1,img2,directorio):
      MEGA\_MATRIX = []
2:
3:
      for i = NUM\_IMG+1 down to 1: do
         listaVacia =[]
4:
         Mega_Matrix.append(listaVacia)
5:
      for i in range(len(MatrixMatchings) ) do
6:
         row11 = GetRow(img1,i)
7:
         row12 = GetRow(img2,i)
8:
9:
         matchings = MatrixMatchings[i]
         antimatchigs = us.GetAntiMatching(matchings)
10:
         for submatching in matchings: do
11:
             submatching.getProporcionalidad()
12:
         for submatching in antimatchings: do
13:
             submatching.getProporcionalidad()
14:
                           us.generarMatrizPorlinea(matchings,
         matrix
                                                                  antimat-
15:
   chings,row11,row12
         for j in range(len(MEGA_MATRIX)): do
16:
             MEGA\_MATRIX[j].append(matrix[j])
17:
         for i in range(NUM_IMG+1): do
18:
19:
             pil.ArmarImagen(img2,MEGA_MATRIX,i,directorio)
```

La funcion us. generar
Matriz Por
Linea, recibe los matchings y antimatchings, y las filas, para poder ejecutar la logica de la animacion y devuelve una matriz de
 $\rm NUM_IMG+1$ * ancho de la imagen.

Por otra parte, la función Armar Imagen recibe todas las matrices anteriormente generadas y distribuye los pixeles para poder generar las N

10. Repositorio

Enlace al repositorio git: https://github.com/cesar214567/ProyectoADA

11. Bibliography

1. Demaine, Erik. (2011). Lecture 19: Dynamic Programming I: Fibonacci, Shortest Paths. Dynamic Programing. United States. MIT