Дискретная математика 1 семестр ПИ, Лекция, 10/02/21

Собрано 8 октября 2021 г. в 21:22

Содержание

Перестановки 1.1. Лексикографический порядок перестановок	1 1
Числа Стирлинга	2
2.1. Числа Стирлинга	2

1.1. Лексикографический порядок перестановок

Def. 1.1.1. Пусть есть две перестановки $X = \{x_1, x_2, ..., x_n\}, Y = \{y_1, y_2, ..., y_n\}$. Тогда

$$X < Y \Leftrightarrow \exists k : x_i = y_i \ \forall i = 1, ..., k \land x_{k+1} < y_{k+1}$$

Алгоритм 1.1.2 (Поиск следующей перестановки). Найдем наибольший убывающий суффикс. Пусть $k: a_{k+1} > a_{k+2} > ... > a_n$. Тогда выберем из этого суффикса $a_i: a_i > a_k$ и a_i минимально. После этого отсортируем получившийся суффикс. Получим перестановку:

$$< a_1, a_2, ..., a_i, sort[a_k, a_k + 1, ..., a_n] >$$

Она и будет лексикографический следующей.

2.1. Числа Стирлинга

Def. 2.1.1. Пусть $A = \{a_1, ..., a_n\}$. Рассмотрим разбиение этого множества мощности k, $m.e.\ X = \{X_1, ..., X_k\}$:

$$\forall i, j \to X_i \supset A, X_i \cap X_j = \varnothing, \bigcup_i X_i = A$$

Тогда числами Стирлинга – количество таких разбиений.

1.
$$k = 2 \Rightarrow S(n,2) = \frac{\sum_{i=1}^{n-1} C_n^i}{2} = \frac{2^{n-2}}{2} = 2^{n-1} - 1$$

- 2. Общий случай.
 - Если $\{a_n\}$ элемент разбиения, то таких разбиений S(n-1,k-1)
 - $\exists i: a_n \in X_i, |X_i| > 1$. Тогда нужно найти количество разбиений $A \setminus \{a_n\}$ на k множеств, а потом вставить a_n в одно из этих множеств. Количество способов:

$$S(n-1,k) \cdot k$$

Тогда рекуррентная формула:

$$S(n,k) = S(n-1,k-1) + S(n-1,k) \cdot k$$

Базовые значения:

$$S(n,0) = 0 S(0,0) = 0$$

$$S(k,n) = 0, k > n S(n,2) = 2^{n-1} - 1$$

$$S(n,n-1) = C_n^2$$

2.2. Числа Белла

Def. 2.2.1. Числа Белла – количество разбиений множества.

$$B(n) = \sum_{i=1}^{n} S(n, i)$$

Теорема 2.2.2 (Формула чисел Белла). Рассмотрим произвольное разбиение множества A. $\exists i: a_{n+1} \in X_i, |X_i| = j$.

 $|A \setminus X_i| = n+1-j$. Тогда количество способов выбрать X_i равно $C_n^{j-1} = C_n^{n+1-j}$ Количество разбиений $A \setminus X_i$, в свою очередь, равно B(n+1-j). Тогда

$$B(n+1) = \sum_{j=1}^{n+1} C_n^{n+1-j} \cdot B(n+1-j) = \sum_{k=0}^{n} C_n^k B(k)$$

Теорема 2.2.3 (Формула чисел Стирлинга).

$$S(n,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{j} \cdot C_{k}^{j} (k-j)^{n}$$

Доказательство. База.

$$S(0,k) = 0 = \frac{1}{k!} \sum_{j=0}^{k} (-1)^j \cdot C_k^j (k-j)^0 = \frac{1}{k!} \sum_{j=0}^{k} C_k^j \cdot (-1)^j = \frac{1}{k!} \cdot (1-1)^k$$

ИП. ТООО

Доказательство. Альтернативное доказательство.

Пусть $L = \{ \rho \subseteq A \times \{1, ..., k\} | \rho$ – сюръекция $\}$. Заметим, это множество равномощно множеству упорядоченных разбиений мощности k.

 $\{a_1,...,a_n\} \to \{1,...,k\}$. Элементы разбиения имеют следующий вид: $X_i = \{a_k | \rho(a_k) = i\}$. Т.к. отображение сюръективно, то X_i непусты.

$$S(n,k) = \frac{|L|}{k!}$$

Чтобы посчитать мощность L, из общего количества отображения вычтем количество несюръективных отображений. Пусть $P_i = \{ \rho \subset A \times \{1,...,n\} | \forall a \in A \to \rho(a) \neq i \}$. Тогда количество несюръективных отображений равно:

$$|\bigcup_{i=1}^{k} P_i| = \sum_{j=1}^{k} (-1)^{j+1} \sum_{1 \le i_1 \le i_2 \le i_3 \le \dots \le i_j \le k} |P_{i_1} \cap P_{i_2} \cap \dots \cap P_{i_j}|$$

 $|P_{i_1} \cap P_{i_2} \cap ... P_{i_j}|$ – количество отображений из A в $\{1,...,k\} \setminus \{i_1,...,i_j\}$

$$|P_{i_1} \cap \dots \cap P_{i_j}| = (k-j)^n$$

$$\sum_{i_1 \leqslant i_2 \leqslant \dots \leqslant i_j} |P_{i_1} \cap P_{i_2} \cap \dots \cap P_{i_j}| = C_k^j (k-j)^n$$

Тогда

$$|L| = k^n - \sum_{j=1}^k (-1)^{j+1} C_k^j (k-j)^n = k^n + \sum_{j=1}^k (-1)^j C_k^j (k-j)^n = \sum_{j=0}^k (-1)^j C_k^j (k-j)^n$$

Тогда искомая формула чисел Стирлинга:

$$S(n,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{j} C_{k}^{j} (k-j)^{n}$$