

3SM102E4T03B-GD MEMS Microphone

Product Description

The 3SM102E4T03B-GD is a monolithic MEMS top performing miniature analog microphone based on CMOS foundry process. By integrating an acoustic transducer and an analog amplifier circuit into a single chip, it eliminates the inter-die wire bonds, resulting in a smaller and more reliable package. Being monolithic in form, the tiny 3SM102E4T03B-GD is ideal in many compact portable consumer electronic devices such as cellular phone, headset and other space limited applications that require high performance.

Features

- High performance single chip CMOS MEMS microphone
- High stability no risk of membrane aging
- Suitable for automatic pick-and-place handler and SMT process.
- Analog microphone with a footprint of only 4.32mm²
- Miniature dimension 2.40mm x 1.80mm x 1.10mm
- Low current consumption 120uA
- RoHS/Green Compliant

Applications

- Compact thin-profile cellular phones
- Compact headsets
- Space limited portable consumer electronic devices
- Multi-microphone devices, Microphone array
 - Noise cancellation, Noise reduction
 - Echo cancellation
 - Beam forming

Table of Contents

Product Description	P.1
Features	P.1
Applications	P.1
Table of Contents	P.2
Functional Block Diagram	P.3
Acoustical and Electrical Characteristics	P.3
Temperature Range	P.4
Reliability Qualifications	P.4
Reflow Profile	P.5
Pin Definition and Function	P.6
Frequency Response	P.7
PCB Land Pattern Layout	P.8
Application Circuit	P.9
Handling Instructions	P.10
Dimensions	P.11
Revision History	P.11

Functional Block Diagram

Acoustical and Electrical Characteristics

Table 1 Typical test conditions are TA = 23 °C, VDD = 2.1 V and R.H. = 50 % measured in a pressure chamber test setup. All voltages refer to GND node

Parameters	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Acoustic						
Sensitivity	S	-45	-42	-39	dBV/Pa	1kHz, 94dB SPL
Signal to Noise Ratio	S/N		59		dBA	A-weighted
Equivalent Noise Level	ENL		35		dBA	A-weighted
Total Harmonic Distortion	THD		0.2		%	94dB SPL
Electrical				•	<u> </u>	
Supply Voltage	Vdd	1.2		3.6	V	
Current Consumption	Isb		120		μΑ	
Power Supply Rejection	PSR		-86		dB	217Hz, 100 mV peak to peak square wave superimposed on Vcc 2.1V
Power Supply Rejection Ratio	PSRR		58		dB	217Hz, 200 mV peak to peak sine wave superimposed on Vcc 2.1V
Output Impedance	Zout			200	Ω	
Output DC Offset			0.93	•	V	
Polarity	Increasing output voltage		Increasing sound pressure			

Temperature Range

Table 2

Storage Temperature	T_{STG}	-40°C ~ 100°C
Operating Temperature Range	T_{A}	-40°C ~ 85°C

Reliability Qualifications

Table 3

Test Item	Description
High Temperature Storage	Storage at 105°C for 1,000 hours
	IEC 60068-2-2 Test Ba
Low Temperature Storage	Storage at -40°C for 1,000 hours
	IEC 60068-2-1 Test Aa
High Temperature Operation Bias	Under Bias at 105°C for , 1,000 hours
	IEC 60068-2-2 Test Ba
Low Temperature Operation Bias	Under Bias at -40°C for , 1,000 hours
	IEC 60068-2-1 Test Aa
Temperature Humidity Bias	Under Bias at 85°C/85%RH for 1,000
	hours
	JESD22-A101-B
Thermal Shock	Thermal Shock 100 cycles from
	-40°C ~125°C, 100 cycles
	IEC 60068-2-14
Reflow	5 reflow cycles with peak 260°℃
	J-STD-020D
Vibration	4 cycles lasting 12 minutes from 20 to
	2,000Hz in X, Y and Z with peak
	acceleration of 20G
	MIL 883E, Method 2007.2, A
Shock	3 pulses 10,000G in X,Y and Z
	IEC 60068-2-27, Test Ea
ESD	HBM: 3KV, MM:300V, CDM:500V
	JESD22-A114(HBM); JESD22-A115(MM)

Table 4 Rec	mmended Reflow	Profile Limits

<u>25 C</u>	
Profile Feature Time 25°C to peak	Pb-free Time
Preheat	
Minimum temperature (Tsmin)	150 ℃
Maximum temperature (Tsmax)	200 ℃
Time (ts)	60~180sec
Average Ramp up rate (Tsmax to Tp)	3°C/sec
Melting area	
Melting temperature (TL)	217℃
Time maintained above melting (t)	60~150sec
Peak Temperature (TP)	260℃
Time within 5° C of actual peak temperature	20~40sec
Ramp down rate	6°C/sec maximum
Time 25°C to peak temperature	8 minute maximum

Pin Definition and Function

Table 5

Pin #	Symbol	Function
1	OUTPUT	Analog signal output
2	GND	Ground
3	GND	Ground
4	VDD	Power supply

Frequency Response

Typical frequency response normalized to 1KHz (Measured)

PCB Land Pattern Layout

Recommended Land Pattern

Application Circuit

Typical Application:

2-Wire Microphone Circuit application:

Handling Instructions

The MEMS microphone can be handled using standard pick-and-place and chip-shooting equipment. Care should be taken to avoid damage to the MEMS microphone structure as follows:

- · Do not apply vacuum nozzle over the acoustic port (AP) of the microphone to avoid damage to the device.
- Do not blow air directly into acoustic port. If air gun cleaning is required, the minimum distance is 10cm and the maximum air blow pressure is 30psi.
- · Brushing the board with/without solvents may damage the device.
- · Do not use excessive force to place the microphone on the PCB.
- · In case of manual handling, it should be handled with plastic tweezers to avoid damage to the device.
- Do not open and remove MEMS Microphone from packaging until devices are ready to be mounted.
- · Suggest PCB depanding be done with depanding cutter/router, or manually de-pandle PCB with care and without any contact of MEMS Microphone.

Dimensions

Unit: mm

Table 6(Top View)

Item	Dimension	Tolerance
Length (L)	2.40 mm	±0.10 mm
Width (W)	1.80 mm	±0.10 mm
Height (H)	1.10 mm	±0.10 mm

Revision History

Revision	Date	Description
1.0	2017/05/09	Formal release