

Mechanics of Materials II: Thin-Walled Pressure Vessels and Torsion

Dr. Wayne Whiteman Senior Academic Professional and Director of the Office of Student Services Woodruff School of Mechanical Engineering

Module 10 Learning Outcome

Develop the expression for Torsional Shearing Strain

Assumptions:

- Pure torsion
- Circular cross-section
 - Therefore cross-sections remain plane (other cross-sections warp)
- Small angles

Torsional Shear Strain at Outer Surface

$$\gamma_{MAX} = \frac{r\phi}{L}$$

Torsional Shear Strain at Outer Surface

Let's look at a small element

Rate of Twist, θ (angle of twist per unit length)

$$\theta = \frac{d\phi}{dx}$$

$$\gamma_{MAX} = \frac{r\phi}{L} = \frac{r\,d\phi}{dx} = r\theta$$

Torsional Shear Strain at Outer Surface

$$\gamma_{MAX} = \frac{r\phi}{L} = \frac{r\,d\phi}{dx} = r\theta$$

Shear Strains vary linearly with ρ

Note: So far we haven't specified any material properties:

material could be in elastic or inelastic region material could homogeneous or heterogeneous we have specified small angles: $\tan \gamma \approx \gamma = \frac{s}{r}$