

TD T1 - Modélisation d'un système thermodynamique

D.Malka – MPSI 2015-2016 – Lycée Saint-Exupéry

T1-Enceinte à deux compartiments

On place dans les deux compartiments d'une enceinte la même quantité $n=2,00\,mol$ de deux gaz identiques (fig.1). Ces deux compartiments sont séparés par une paroi mobile de section $S=200\,cm^2$. Initialement, les deux gaz ont même température $T_0=300\,K$ et même pression $P_0=10,0\,bar$, et la paroi est au milieu de l'enceinte, à l'abscisse x=0. Le gaz est supposé obéir au modèle du gaz parfait.

Figure 1 - Compartiments

- 1. Déterminer le volume initiale V_0 de gaz dans chaque enceinte.
- 2. On élève la température du gaz du compartiment de gauche jusqu'à $T_F = 350 \, K$, tout en maintenant la température T_D du compartiment de droite à T_0 . Déterminer la nouvelle l'abscisse x_{eq} d'équilibre du piston.

T2-Regel de l'eau

Observer l'expérience à l'adresse http://www.youtube.com/watch?v=XpVD2Y0d-Nk.

FIGURE 2 - Regel de l'eau

A l'aide du diagramme (P,T) de l'eau fig.3, interpréter cette expérience.

Figure 3 - Diagramme (P,T) de l'eau

T3-Modélisation d'un gaz réel

Dans cet exercice, on se propose d'analyser et de discuter des modèles alternatifs à celui du gaz parfait pour décrire un gaz.

 Modèle de Clausius Le modèle de Clausius conduit à l'équation d'état suivante :

$$P(V_m - b) = RT$$

où b est un coefficient empirique positive.

1.1 Ecrire l'équation d'état du gaz pour n mole.

- 1.2 Tracer les isothermes du gaz de Clausius dans le diagramme d'Amagat. Comment vérifier expérimentalement la validité de ce modèle et déterminer la valeur de b?
- 1.3 Quelle la dimension de b?
- 1.4 Que vaut le volume limite du gaz lorsque la pression devient très grande? En déduite le sens physique de b.
- 2. Modèle de Van der Waals La modélisation de Van der Waals fondée sur la prise en compte des interactions entre les particules, conduit à l'équation d'état suivante :

$$\left(P + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$$

où a et b sont des coefficients empiriques positifs.

- 2.1 Analyser l'effet sur la pression du terme $\frac{n^2a}{V^2}$. Quelle réalité physique traduit-il?
- 2.2 Montrer que pour $\frac{b}{V_m}$ << 1, hypothèse dont on donnera le sens, l'équation d'état du gaz de Van der Waals devient :

$$PV_m = RT\left(1 + \frac{A(T)}{V_m}\right)$$

où on donnera l'expression de A(T).

- 2.3 Pour $a=0,137 J.m^3.mol^{-2}$ et $b=3,87.10^{-5} m^3.mol^{-1}$, à l'aide d'un programme écrit en Python, a été tracé le réseau d'isothermes $PV_m=f(V_m)$ pour des températures comprises entre 300 K et 1000 K pour V_m comprise entre 0,1 L et 1 L (fig.4). Commenter
- 2.4 Montrer qu'il existe une température T_M , dite température de Mariotte, pour laquelle le modèle est identique à celui du gaz parfait dans les conditions où $\frac{b}{V_m} << 1$ et déterminer sa valeur. Ajouter l'isotherme T_M au diagramme précédent.

T4-Stockage d'eau dans un ballon d'eau chaude

On souhaite stocker une masse m d'eau dans un ballon d'eau chaude modélisé par une cuve fermée, indéformable et de volume $V_0 = 200 L$. Pour simplifier, on suppose qu'il est initialement vide. Suite à un échauffement accidentel, l'eau

Figure 4 - Réseau d'isothermes du gaz de Van der Waals

maintenue à $\theta_0 = 60^{\circ}C$ passe à la température $\theta = 500^{\circ}C$. La vapeur d'eau sèche est assimilée au gaz parfait de constante $R = 8,314 J.K^{-1}.mol^{-1}$.

- 1. Lorsqu'il est rempli, le ballon contient $m=m_1=100\,kg$ d'eau.
 - 1.1 En utilisant le diagramme de Clapeyron fourni fig.5 (en échelle logarithmique), déterminer la composition initiale du mélange liquide-gaz dans le ballon à T_0 .
 - 1.2 Sous quelle forme se trouve l'eau après l'échauffement accidentel ? Déterminer la pression P₁ correspondante et commenter.
- 2. Le ballon est maintenant presque vide et contient seulement $m=m_2=400\,g$. Reprendre les questions précédentes et déterminer la pression P_2 à l'issue de l'échauffement.
- 3. Lorsqu'on stocke un fluide, est-il préférable que le volumique massique v soit supérieur ou inférieur au volume massique critique v_c pour éviter une explosion?

Figure 5 – Diagramme de Clapeyron de l'eau