

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет «Информатика и системы управления» Кафедра ИУ5 «Системы обработки информации и управления»

Лабораторная работа №3 «Обработка признаков. Часть 2» по дисциплине «Методы машинного обучения»

Выполнил:

студент группы ИУ5-25М Тураев Г.В.

тураев т

Подпись и дата:

Проверил:

преподаватель каф. ИУ5 Гапанюк Ю.Е.

Подпись и дата:

Цель: изучение продвинутых способов предварительной обработки данных для дальнейшего формирования моделей.

В данной лабораторной работы продолжаем работать с датасетом (как и в ЛР2): house_sales. Импортируем нужные нам библиотеки и выведем:

Удалим колонки с высоким процентом (более 25%) пропусков:

	MSSubClass	MSZoning	LotFrontage	LotAre	a Street	LotShape	LandContour	Utilities	LotConfig	LandSlope	• • • •	Enclosed!	Porch 3Ss	snPorch	ScreenPorch	PoolArea	MiscVal	MoSold	YrSol
0	60	RL	65.0	845	0 Pave	Reg	LvI	AllPub	Inside	GtI			0	0	(0	0	2	200
1	20	RL	80.0	960	0 Pave	Reg	LvI	AllPub	FR2	GtI			0	0	(0	0	5	200
2	60	RL	68.0	1125	0 Pave	IR1	LvI	AllPub	Inside	GtI			0	0	(0	0	9	200
3	70	RL	60.0	955	0 Pave	IR1	LvI	AllPub	Comer	GtI			272	0	(0	0	2	200
4	60	RL	84.0	1426	0 Pave	IR1	LvI	AllPub	FR2	GtI			0	0	(0	0	12	200
1455	60	RL	62.0	791	7 Pave	Reg	LvI	AllPub	Inside	GtI			0	0	(0	0	8	200
1456	20	RL	85.0	1317	5 Pave	Reg	LvI	AllPub	Inside	GtI			0	0	(0	0	2	201
1457	70	RL	66.0	904	2 Pave	Reg	LvI	AllPub	Inside	GtI			0	0	(0	2500	5	201
1458	20	RL	68.0	971	7 Pave	Reg	LvI	AllPub	Inside	GtI			112	0	(0	0	4	201
1459	20	RL	75.0	000	7 Pave	Reg	1.44	AUDUL	Inside	OH			0	0	(0	0	6	200
	ws × 75 colum		75.0	993	/ rave	Reg	Lvi	AllPub	IIIside	GtI			U	O		, 0	0	0	201
1460 rov	ws × 75 colum	ns														•			
1460 rov	ws × 75 colum escribe() MSSubClass	ns LotFron	age Lo	otArea	OverallQua	l OverallO	Cond YearBo	uilt Year	RemodAdd	MasVnrArea	BsmtF		smtFinSF2		WoodDeckSF	OpenPorchS	F Enclos	edPorch	355
data.de	ws × 75 column escribe() MSSubClass	ns LotFron1	age Lo	otArea	OverallQua 1460.00000	1 OverallO	Cond YearBo	uilt Year 0000 140	RemodAdd 0.000000 1	MasVnrArea 452.000000	BsmtF 1460.0	100000 14	smtFinSF2		WoodDeckSF 1460.000000	OpenPorchS 1460.00000	F Enclos	edPorch	35si 1460.l
data.de	ws x 75 column escribe() MSSubClass 1460.000000 56.897260	ns LotFront 1201.000 70.049	age Lo	otArea 000000 328082	OverallQua 1460.00000 6.09931	1 OverallO 0 1460.000 5 5.575	Cond YearBu 0000 1460.000 5342 1971.267	uilt Year 0000 140 7808 198	RemodAdd 0.000000 1	MasVnrArea 452.000000 103.685262	BsmtF 1460.0 443.6	00000 14 39726	smtFinSF2 460.000000 46.549315	· · · · · · · · · · · · · · · · · · ·	WoodDeckSF 1460.000000 94.244521	OpenPorchS 1460.00000 46.66027	F Enclos 0 1460 4 2	edPorch 0.000000 1.954110	35si 1460.0
data.de	ws x 75 column escribe() MSSubClass 1460.000000 56.897260 42.300571	ns LotFront 1201.000 70.048	age Lo	otArea 000000 328082 264932	OverallQua 1460.00000 6.09931 1.38299	1 OverallC 0 1460.000 5 5.575 7 1.112	Cond YearBi 0000 1460.000 5342 1971.263 2799 30.200	uilt Year 0000 146 7808 198 2904 2	RemodAdd 0.000000 1 4.865753 0.645407	MasVnrArea 452.000000 103.685262 181.066207	BsmtF 1460.0 443.6 456.0	000000 14 39726 198091 1	smtFinSF2 460.000000 46.549315 161.319273	· · · · · · · · · · · · · · · · · · ·	WoodDeckSF 1460.000000 94.244521 125.338794	OpenPorchS 1460.00000 46.66027 66.25602	F Enclos 0 1460 4 2' 8 6'	edPorch 0.000000 1.954110 1.119149	35si 1460.0 3.4 29.0
data.de	ws x 75 colum escribe() MSSubClass 1460.000000 56.897260 42.300571 20.000000	S LotFront 1201.00(70.049 1 24.284 21.00(cage Lo 0000 1460.0 9958 10516.8 1752 9981.2	otArea 000000 328082 264932	0verallQua 1460.00000 6.09931 1.38299 1.00000	1 OverallO 0 1460.000 5 5.578 7 1.112 0 1.000	Cond YearBi 0000 1460.000 5342 1971.267 2799 30.202 0000 1872.000	uilt Year 0000 146 7808 198 2904 2	RemodAdd 0.000000 1 4.865753 0.645407 0.000000	MasVnrArea 452.000000 103.685262 181.066207 0.000000	BsmtF 1460.0 443.6 456.0	39726 98091 1	smtFinSF2 160.000000 46.549315 161.319273 0.000000	· · · · · · · · · · · · · · · · · · ·	WoodDeckSF 1460.000000 94.244521 125.338794 0.000000	OpenPorchS 1460.00000 46.66027 66.25602 0.00000	F Enclos 0 1460 4 2' 8 6' 0 (edPorch 0.000000 1.954110 1.119149 0.000000	35si 1460.0 3.4 29.0
data.de	ws × 75 colum escribe() MSSubClass 1460.00000 56.897260 42.300571 20.000000	5 LotFront 1201.00(0) 70.048 24.284 0) 21.00(0) 59.00(0)	1460.000 1460.000 10516.8 10516.8 10500 1300.0 1553.8	000000 000000 028082 000000 000000	0verallQua 1460.00000 6.09931 1.38299 1.00000 5.00000	1 Overall0 0 1460.000 5 5.575 7 1.112 0 1.000 0 5.000	Cond YearBi 0000 1460.000 5342 1971.26; 2799 30.202 0000 1872.000 1954.000	uilt Year 0000 146 7808 198 2904 2	RemodAdd 0.000000 1 4.865753 0.645407 0.000000 7.000000	MasVnrArea 452.000000 103.685262 181.066207 0.000000 0.000000	BsmtF 1460.0 443.6 456.0 0.0	100000 14 139726 198091 1 1000000	ssmtFinSF2 660.000000 46.549315 161.319273 0.000000 0.000000	· · · · · · · · · · · · · · · · · · ·	WoodDeckSF 1460.000000 94.244521 125.338794 0.000000 0.000000	OpenPorchS 1460.00000 46.66027 66.25602 0.00000	F Encloss 0 1460 4 2: 8 6: 0 (edPorch 0.000000 1.954110 1.119149 0.000000 0.000000	35sr 1460.0 3.4 29.5 0.0
data.de	ws x 75 colum escribe() MSSubClass 1460.000000 56.897260 42.300571 20.000000	5 LotFront 0 1201.000 0 70.048 1 24.284 0 21.000 0 59.000 0 69.000	1460.000 1460.000 1460.000 1460.000 1300.000 7553.8	otArea 000000 328082 264932 000000 500000	0verallQua 1460.00000 6.09931 1.38299 1.00000	1 overal10 0 1460.000 5 5.575 7 1.112 0 1.000 0 5.000 0 5.000	Cond YearBi 0000 1460.000 5342 1971.26: 2799 30.202 0000 1872.000 1954.000	uilt Year 0000 146 77808 198 2904 2 0000 198 0000 198	RemodAdd 0.000000	MasVnrArea 452.000000 103.685262 181.066207 0.000000	BsmtF 1460.0 443.6 456.0 0.0 0.0 383.5	39726 98091 1	smtFinSF2 160.000000 46.549315 161.319273 0.000000	· · · · · · · · · · · · · · · · · · ·	WoodDeckSF 1460.000000 94.244521 125.338794 0.000000	OpenPorchS 1460.00000 46.66027 66.25602 0.00000	F Encloss 0 1460 4 2: 8 6: 0 (0 (0 (edPorch 0.000000 1.954110 1.119149 0.000000	35si 1460.0 3.4 29.0

```
[19] def obj_col(column):
    return column[1] == 'object'

col_names = []
  for col in list(filter(obj_col, list(zip(list(data.columns), list(data.dtypes)))):
    col_names.append(col[0])
    col_names.append('SalePrice')
[20] X_ALL = data.drop(col_names, axis=1)
```

Функция для восстановления DataFrame на основе масштабированных данных:

```
[22] def arr_to_df(arr_scaled):
    res = pd.DataFrame(arr_scaled, columns=X_ALL.columns)
    return res
```

Разделим выборку на обучающую и тестовую и преобразуем массивы в DataFrame:

StandardScaler

Обучаем StandardScaler на всей выборке и масштабируем, после чего формируем DataFrame на основе массива:

```
| Second | S
```

Осуществим построение плотности распределения:

```
[32] def draw_kde(col_list, df1, df2, label1, label2):
    fig, (ax1, ax2) = plt.subplots(
        ncols=2, figsize=(12, 5))
    # первый график
    ax1.set_title(label1)
    sns.kdeplot(data=df1[col_list], ax=ax1)
    # второй график
    ax2.set_title(label2)
    sns.kdeplot(data=df2[col_list], ax=ax2)
    plt.show()
```



```
Масштабирование «Mean Normalisation»
Разделим выборку на обучающую и тестовую и преобразуем массивы в DataFrame:
                                                                                        X_train_df = arr_to_df(X_train)
X_test_df = arr_to_df(X_test)
                                                                                                 X_train_df.shape, X_test_df.shape
                                                                                                 ((1168, 36), (292, 36))
                                                                                        [36] class MeanNormalisation:
                                                                                                        def fit(self, param_df):
                                                                                                               ricter, param_ur;

self.means = X_train.mean(axis=0)

maxs = X_train.max(axis=0)

mins = X_train.min(axis=0)

self.ranges = maxs - mins
                                                                                                        def transform(self, param_df):
    param_df_scaled = (param_df - self.means) / self.ranges
    return param_df_scaled
                                                                                                        def fit_transform(self, param_df):
                                                                                                               self.fit(param_df)
return self.transform(param_df)
  [37] sc21 = MeanNormalisation()
  data_cs21_scaled = sc21.fit_transform(X_ALL)
  data_cs21_scaled.describe()
             count 1460.000000 1201.000000 1460.000000 1460.000000 1460.000000 1460.000000 1460.000000 1460.000000 1460.000000 1460.000000 1460.000000 1460.000000 1460.000000 1460.000000 1460.000000
                                                                                                                                                                                                                                                                                                                1460.00000
              std
                            0.248827
                                                0.083167
                                                                     0.046653
                                                                                        0.153666
                                                                                                              0.158971
                                                                                                                                  0.218862
                                                                                                                                                          0.344090
                                                                                                                                                                              0.113166
                                                                                                                                                                                                   0.080811
                                                                                                                                                                                                                        0.109443
                                                                                                                                                                                                                                                   0.150779
                                                                                                                                                                                                                                                                        0.170297
                                                                                                                                                                                                                                                                                              0.121126
                                                                                                                                                                                                                                                                                                                       0.11072
                            -0.216081
                                                -0.168530
                                                                     -0.043200
                                                                                          -0.570491
                                                                                                               -0.656678
                                                                                                                                    -0.722876
                                                                                                                                                           -0.589740
                                                                                                                                                                               -0.065702
                                                                                                                                                                                                    -0.080216
                                                                                                                                                                                                                        -0.030304
                                                                                                                                                                                                                                                     -0.334359
                                                                                                                                                                                                                                                                         -0.128610
                                                                                                                                                                                                                                                                                              -0.086501
                                                                                                                                                                                                                                                                                                                       -0.04122
             25%
                          -0.216081 -0.038393 -0.013970
                                                                                        -0.126046
                                                                                                             -0.085250 -0.128673
                                                                                                                                                          -0.306407 -0.065702
                                                                                                                                                                                                  -0.080216
                                                                                                                                                                                                                        -0.030304
                                                                                                                                                                                                                                                   -0.098463
                                                                                                                                                                                                                                                                        -0.128610
                                                                                                                                                                                                                                                                                              -0.086501
                                                                                                                                                                                                                                                                                                                       -0.04122
              50%
                            -0.039610
                                                -0.004146
                                                                     -0.004973
                                                                                          -0.014935
                                                                                                               -0.085250
                                                                                                                                    0.009008
                                                                                                                                                           0.143593
                                                                                                                                                                               -0.065702
                                                                                                                                                                                                    -0.012267
                                                                                                                                                                                                                        -0.030304
                                                                                                                                                                                                                                                     0.004146
                                                                                                                                                                                                                                                                         -0.128610
                                                                                                                                                                                                                                                                                              -0.040797
                                                                                                                                                                                                                                                                                                                       -0.04122
             75%
                           0.078037
                                                0.033525
                                                                     0.004951
                                                                                         0.096176
                                                                                                               0.057608
                                                                                                                                   0.204661
                                                                                                                                                          0.310260
                                                                                                                                                                               0.038048
                                                                                                                                                                                                    0.045980
                                                                                                                                                                                                                        -0.030304
                                                                                                                                                                                                                                                     0.071847
                                                                                                                                                                                                                                                                         0.099651
                                                                                                                                                                                                                                                                                              0.037814
                                                                                                                                                                                                                                                                                                                      -0.04122
              max
                            0.783919
                                                0.831470
                                                                     0.956800
                                                                                           0.429509
                                                                                                               0.486179
                                                                                                                                    0 277124
                                                                                                                                                           0.410260
                                                                                                                                                                               0.934298
                                                                                                                                                                                                    0.919784
                                                                                                                                                                                                                        0.969696
                                                                                                                                                                                                                                                     0.665641
                                                                                                                                                                                                                                                                          1.035793
                                                                                                                                                                                                                                                                                               0.913499
                                                                                                                                                                                                                                                                                                                       0.95878
[39] cs22 = MeanNormalisation()
         cs22.fit(X_train)
data cs22 scaled train = cs22.transform(X train)
         data_cs22_scaled_test = cs22.transform(X_test)
[40] data_cs22_scaled_train.describe()
                                                                         LotArea OverallQual OverallCond
          count 1.168000e+03 9.590000e+02 1.168000e+03 1.168000e+03
                                                                                                                                                                                                                                                          1.168000e+03 1.168000e+03 1.168000e+03
                         -1.672939e-
17 1.834936e-17
                                                                    -1.140640e-
18 2.718526e-17 9.125121e-18 7.224054e-16 -1.502508e-15
                                                                                                                                                                                    -2.584140e-
18 5.322987e-18
                                                                                                                                                                                                                                                                               1.330747e-17
                                                                                                                                                                                                                                                                                                                               3.89
                      2.475340e-01 8.506309e-02 4.616115e-02 1.522067e-01 1.587482e-01 2.195064e-01 3.431316e-01 1.112988e-01 8.212989e-02 1.098439e-01
                                                                                                                                                                                                                                                            1.486998e-01 1.659810e-01
                                                                                                                                                                                                                                                                                                        1.237650e-01
                                                                                           -5.704909e-
                                                                                                                                                                                                                                                              -3.343588e-
                        -2.160808e-
                                              -1.685296e-
01
                                                                    -4.319969e-
02
                                                                                                                 -5.138209e
                                                                                                                                       -7.228757e-
01
                                                                                                                                                                                    -6.570151e-
                                                                                                                                                                                                          -8.021550e-
02
                                                                                                                                                                                                                                -3.030380e-
02
                                                                                                                                                                                                                                                                                   -1.286096e
                                                                                                                                                                                                                                                                                                          -8.650078e-
02
                                                                                                                                                         -5.897403e-01
           min
                                                                                                                                                                                                                                                                                                                              -4.12
                        -2.160808e-
01
           25%
                                                                                                                                                         -2.897403e-01
                                                                                                                                                                                                                                                                                                                               -4.12
                        -3.961019e-
02
                                                                                                                                                                                    -6.570151e-
02
                                                                                           -1.493531e-
02
                                                                                                                 -8.524951e-
02
                                              -4.146014e-
                                                                     -4.865072e-
03
                                                                                                                                                                                                          -9.609550e
                                                                                                                                                                                                                                -3.030380e-
02
                                                                                                                                                                                                                                                                                   -1.286096e
                                                                                                                                                                                                                                                                                                          -3.714063e-
02
                                                                                                                                    1.625472e-02 1.435930e-01
                                                                                                                                                                                                                                                            4.146178e-03
                                                                                                                                                                                                                                -3.030380e-
02
           75%
                     7.803687e-02 3.352522e-02 5.045185e-03 9.617580e-02 5.760763e-02 2.119069e-01 3.102597e-01 4.070474e-02 4.890392e-02
                                                                                                                                                                                                                                                           7.184717e-02 9.965125e-02 3.781367e-02 -4.12
                    7.839192e-01 8.314704e-01 9.568003e-01 4.295091e-01 4.861791e-01 2.771243e-01 4.102597e-01 9.342985e-01 9.197845e-01 9.696962e-01
        8 rows x 36 columns
```


МіпМах-масштабирование

Обучаем StandardScaler на всей выборке и масштабируем, затем формируем DataFrame на основе массива:

[44	43] cs31 = MinMaxScaler() data_cs31_scaled_temp = cs31.fit_transform(X_ALL) data_cs31_scaled_temp = cs31.fit_transform(X_ALL) data_cs31_scaled_temp() data_cs31_scaled_temp()															
		MSSubClass	LotFrontage	LotArea	OverallQual	OverallCond	YearBuilt	YearRemodAdd	MasVnrArea	BsmtFinSF1	BsmtFinSF2		GarageArea	WoodDeckSF	OpenPorchSF	EnclosedPorch
	count	1460.000000	1201.000000	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000	1452.000000	1460.000000	1460.000000		1460.000000	1460.000000	1460.000000	1460.000000
	mean	0.217043	0.167979	0.043080	0.566591	0.571918	0.719332	0.581096	0.064803	0.078604	0.031580		0.333554	0.109970	0.085302	0.039772
	std	0.248827	0.083167	0.046653	0.153666	0.139100	0.218862	0.344090	0.113166	0.080811	0.109443		0.150779	0.146253	0.121126	0.110723
	min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000		0.000000	0.000000	0.000000	0.000000
	25%	0.000000	0.130137	0.029229	0.444444	0.500000	0.594203	0.283333	0.000000	0.000000	0.000000		0.235896	0.000000	0.000000	0.000000
	50%	0.176471	0.164384	0.038227	0.555556	0.500000	0.731884	0.733333	0.000000	0.067948	0.000000		0.338505	0.000000	0.045704	0.000000
	75%	0.294118	0.202055	0.048150	0.666667	0.625000	0.927536	0.900000	0.103750	0.126196	0.000000		0.406206	0.196033	0.124314	0.000000
	max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000		1.000000	1.000000	1.000000	1.000000
	8 rows	× 36 columns														

Обработка выбросов для числовых признаков

Используем новый датасет:

	a2 = pd.read_c a2.head()	:sv("./C	ar_sales.csv")											
	Manufacturer	Model	Sales_in_thousands	year_resale_value	Vehicle_type	Price_in_thousands	Engine_size	Horsepower	Wheelbase	Width	Length	Curb_weight	Fuel_capacity	Fuel_efficienc
0	Acura	Integra	16.919	16.360	Passenger	21.50	1.8	140.0	101.2	67.3	172.4	2.639	13.2	28.
1	Acura	TL	39.384	19.875	Passenger	28.40	3.2	225.0	108.1	70.3	192.9	3.517	17.2	25.
2	Acura	CL	14.114	18.225	Passenger	NaN	3.2	225.0	106.9	70.6	192.0	3.470	17.2	26.
3	Acura	RL	8.588	29.725	Passenger	42.00	3.5	210.0	114.6	71.4	196.6	3.850	18.0	22.
4	Audi	A4	20.397	22.255	Passenger	23.99	1.8	150.0	102.6	68.2	178.0	2.998	16.4	27.

data2.	describe()											
	Sales_in_thousands	year_resale_value	Price_in_thousands	Engine_size	Horsepower	Wheelbase	Width	Length	Curb_weight	Fuel_capacity	Fuel_efficiency	Power_perf_fa
count	157.000000	121.000000	155.000000	156.000000	156.000000	156.000000	156.000000	156.000000	155.000000	156.000000	154.000000	155.00
mean	52.998076	18.072975	27.390755	3.060897	185.948718	107.487179	71.150000	187.343590	3.378026	17.951923	23.844156	77.04
std	68.029422	11.453384	14.351653	1.044653	56.700321	7.641303	3.451872	13.431754	0.630502	3.887921	4.282706	25.14
min	0.110000	5.160000	9.235000	1.000000	55.000000	92.600000	62.600000	149.400000	1.895000	10.300000	15.000000	23.27
25%	14.114000	11.260000	18.017500	2.300000	149.500000	103.000000	68.400000	177.575000	2.971000	15.800000	21.000000	60.40
50%	29.450000	14.180000	22.799000	3.000000	177.500000	107.000000	70.550000	187.900000	3.342000	17.200000	24.000000	72.03
75%	67.956000	19.875000	31.947500	3.575000	215.000000	112.200000	73.425000	196.125000	3.799500	19.575000	26.000000	89.41
max	540.561000	67.550000	85.500000	8.000000	450.000000	138.700000	79.900000	224.500000	5.572000	32.000000	45.000000	188.14

```
[53] def diagnostic_plots(df, variable, title):
    fig, ax = plt.subplots(figsize=(10,7))
    # ΓИСТОГРАММА
    plt.subplot(2, 2, 1)
    df[variable].hist(bins=30)
    ## Q-Q plot
    plt.subplot(2, 2, 2)
    stats.probplot(df[variable], dist="norm", plot=plt)
    # ЯЩИК С УСАМИ
    plt.subplot(2, 2, 3)
    sns.violinplot(x=df[variable])
    # ЯЩИК С УСАМИ
    plt.subplot(2, 2, 4)
    sns.boxplot(x=df[variable])
    fig.suptitle(title)
    plt.show()
```

[54] diagnostic_plots(data2, 'Sales_in_thousands', 'Sales_in_thousands - original')

<ipython-input-53-1fe78d5d2ee2>:4: MatplotlibDeprecationWarning: Auto-removal of overlapping axes is deprecate
plt.subplot(2, 2, 1)

Sales_in_thousands - original

[55] diagnostic_plots(data2, 'Fuel_capacity', 'Fuel_capacity - original')

 $\label{thm:continuous} \mbox{$<$i$python-input-$3-1$fe78d5d2ee2>:4: MatplotlibDeprecationWarning: Auto-removal of overlapping axes is deprecated $$i$plt.subplot(2, 2, 1)$}$

Fuel_capacity - original

Произведем тип вычисления верхней и нижней границы выбросов:

```
[61] from enum import Enum
    class OutlierBoundaryType(Enum):
        SIGMA = 1
        QUANTILE = 2
        IRQ = 3
```

Функция вычисления верхней и нижней границы выбросов:

```
[65] def get_outlier_boundaries(df, col):
    lower_boundary = df[col].quantile(0.05)
    upper_boundary = df[col].quantile(0.95)
    return lower_boundary, upper_boundary
```

Удаление выбросов (number_of_reviews)

Вычисление верхней и нижней границы. Флаги для удаления выбросов. Удаление данных на основе флага.

Поле-Sales_in_thousands, метод-QUANTILE, строк-141

Замена выбросов

Вычислим верхнюю и нижнюю границы и после совершим изменение данных

Поле-Fuel_capacity, метод-QUANTILE

Обработка нестандартного признака

[69]	data2.dtypes		
	Manufacturer Model Sales_in_thousands _year_resale_value Vehicle_type Price_in_thousands Engine_size Horsepower Wheelbase Width Length Curb_weight Fuel_capacity Fuel_efficiency Latest_Launch Power_perf_factor dtype: object	object object float64 float64 object float64	

Сконвертируем дату и время в нужный формат:

3] (data	a2["Latest_Lau	nch_Dat	e"] = data2.apply(la	mbda x: pd.to_datetim	ne(x["Latest_La	aunch"], format='%m/	%d/%Y'), axis	=1)						
74] (data	a2.head(5)													
		Manufacturer	Model	Sales_in_thousands	year_resale_value	Vehicle_type	Price_in_thousands	Engine_size	Horsepower	Wheelbase	Width	Length	Curb_weight	Fuel_capacity	Fuel_efficiency
	0	Acura	Integra	16.919	16.360	Passenger	21.50	1.8	140.0	101.2	67.3	172.4	2.639	13.2	28.0
	1	Acura	TL	39.384	19.875	Passenger	28.40	3.2	225.0	108.1	70.3	192.9	3.517	17.2	25.0
	2	Acura	CL	14.114	18.225	Passenger	NaN	3.2	225.0	106.9	70.6	192.0	3.470	17.2	26.0
	3	Acura	RL	8.588	29.725	Passenger	42.00	3.5	210.0	114.6	71.4	196.6	3.850	18.0	22.0
	4	Audi	A4	20.397	22.255	Passenger	23.99	1.8	150.0	102.6	68.2	178.0	2.998	16.4	27.0

```
[75] data2.dtypes
     Manufacturer
                                       object
     Model
                                       object
     Sales_in_thousands
                                      float64
       _year_resale_value
                                      float64
     Vehicle_type
                                       object
                                      float64
     Price_in_thousands
     Engine_size
                                      float64
     Horsepower
                                      float64
     Wheelbase
                                      float64
                                      float64
     Width
     Length
                                      float64
     Curb_weight
                                      float64
     Fuel_capacity
Fuel_efficiency
                                      float64
                                      float64
     Latest_Launch
                                       object
     Power_perf_factor
                                      float64
     Latest_Launch_Date dtype: object
                              datetime64[ns]
```

```
[78] data2['Latest_Launch_Day'] = data2['Latest_Launch_Date'].dt.day
  data2['Latest_Launch_Month'] = data2['Latest_Launch_Date'].dt.month
  data2['Latest_Launch_Year'] = data2['Latest_Launch_Date'].dt.year
```

Отбор признаков

Метод фильтрации (Корреляция признаков)

Формируем DataFrame с сильными корреляциями:

```
[82] def make_corr_df(df):
    cr = data.corr()
    cr = cr.abs().unstack()
    cr = cr.sort_values(ascending=False)
    cr = cr[cr >= 0.3]
    cr = cr[cr < 1]
    cr = pd.DataFrame(cr).reset_index()
    cr.columns = ['f1', 'f2', 'corr']
    return cr</pre>
```

Обнаружение групп коррелирующих признаков:

```
[86] def corr_groups(cr):
    grouped_feature_list = []
    correlated_groups = []
    for feature in cr['f1'].unique():
        if feature not in grouped_feature_list:

        correlated_block = cr[cr['f1'] == feature]
        cur_dups = list(correlated_block['f2'].unique()) + [feature]
        grouped_feature_list = grouped_feature_list + cur_dups
        correlated_groups.append(cur_dups)
    return correlated_groups
```

Группы коррелирующих признаков:

```
[89] corr_groups(make_corr_df(data))
        cr = data.cor
[['GarageArea',
              'SalePrice'
            'OverallQual',
'GarageYrBlt',
             'YearBuilt'.
             'FullBath',
'GrLivArea',
             '1stFlrSF'
             'TotalBsmtSF',
'YearRemodAdd',
'MasVnrArea',
'TotRmsAbvGrd',
          'Fireplaces',
'GarageCars'],
['GrLivArea',
             'TotRmsAbvGrd',
'HalfBath',
'BedroomAbvGr',
             'FullBath',
'SalePrice',
             'MSSubClass'.
          '2ndFlrSF'],
['BsmtFullBath',
              'TotalBsmtSF'.
             'BsmtUnfSF',
'1stFlrSF',
'SalePrice',
          'BsmtFinSF1'],
['1stFlrSF',
'LotArea',
             'GrLivArea',
'TotalBsmtSF'
             'MSSubClass',
             'TotRmsAbvGrd'
             'SalePrice',
'GarageArea',
           'Garagearea',
'LotFrontage'],
['YearBuilt', 'EnclosedPorch'],
['YearBuilt', 'GarageYrBlt', 'OverallCond'],
['GrLivArea', 'SalePrice', 'OverallQual', 'OpenPorchSF'],
['SalePrice', 'WoodDeckSF']]
```

Метод из группы методов вложений

Загрузим новый датасет: WineQT.csv

```
[90] data3 = pd.read_csv("./WineQT.csv", sep=",")
X3_ALL = data3.drop(['quality'], axis=1)
```

Разделим выборку на обучающую и тестовую:

Используем L1-регуляризацию:

```
[92] e_lr1 = LogisticRegression(C=1000, solver='liblinear', penalty='l1', max_iter=500, random_state=1)
      e_lr1.fit(X3_train, y3_train)
      e lr1.coef
      array([[ 8.12685010e-01, 1.13666762e+01, 7.82623669e+00,
               2.73003859e-01, 2.20854445e+00, -8.14499398e-02, -6.07359291e-02, -9.71364320e+00, 1.05928330e+01,
                3.02935401e+00, -3.49793957e+00, 4.48070237e-03],
              [-1.70947991e-02, 3.42135554e+00, -1.21007833e-01,
               8.32452278e-02, 3.20689559e+00, 1.03669460e-02, -1.25693925e-02, -5.18479271e+00, 2.46658035e+00,
                9.88462824e-01, -2.04766665e-01, -4.73535890e-04]
              [-1.50633685e-01, 1.93721323e+00, 1.12321685e+00, 1.01141678e-02, 1.55206374e+00, -1.74615115e-02,
                1.48826890e-02,
                                    5.10001726e+00, -2.81228295e-02,
              -2.62509731e+00, -9.26899115e-01, 5.26799951e-05]
[ 1.90322225e-01, -1.79843954e+00, -2.04300613e+00,
                -4.72955643e-02, 2.58455381e+00, 1.21352411e-02,
               -7.83754176e-03, -2.99949432e+00, 9.79232831e-01,
                8.78802257e-01, 2.38635326e-01, 1.63131072e-04],
              [-2.89452663e-02, -3.07001091e+00, 1.47490514e+00,
                 7.64831115e-02, -1.76133253e+01, 2.58137752e-02,
               -2.04458316e-02, -3.51585085e+00, -1.28269840e+00,
                2.73049298e+00, 8.81957513e-01, -5.47347256e-04],
              [-5.95096357e-01,
                                    3.04283371e+00, 3.41733495e+00,
                -1.83182731e-01, -3.51167880e+01, -2.83696795e-02,
                -2.51328328e-02, 7.93053290e+00, -9.85694602e+00
                3.86988223e+00, 1.26366792e+00, 6.15531404e-04]])
```

Все признаки являются «хорошими»:

```
[95] from sklearn.feature_selection import SelectFromModel
     sel_e_lr1 = SelectFromModel(e_lr1)
     sel_e_lr1.fit(X3_train, y3_train)
     sel_e_lr1.get_support()
     array([ True, True])
    [98] e_lr2 = LinearSVC(C=0.01, penalty="11", max_iter=2000, dual=False)
         e_lr2.fit(X3_train, y3_train)
         e_lr2.coef_
         array([[ 0.00000000e+00, 0.0000000e+00, 0.00000000e+00,
                  0.00000000e+00.
                                   0.00000000e+00.
                                                    0.000000000e+00.
                 -4.11602178e-03, 0.00000000e+00,
                                                    0.00000000e+00,
                  0.00000000e+00, -8.74401271e-02,
                                                    2.16176256e-05],
                [-3.25898101e-02, 0.00000000e+00,
                                                    0.000000000e+00.
                  0.00000000e+00,
                                   0.00000000e+00,
                                                    0.00000000e+00,
                 -1.53916660e-03,
                                  0.00000000e+00,
                                                   0.00000000e+00.
                  0.00000000e+00, -5.09341210e-02, -7.58150287e-05],
                [ 5.37965189e-03,
                                  0.00000000e+00,
                                                   0.00000000e+00.
                  0.00000000e+00,
                                   0.00000000e+00, -1.01476556e-02,
                  9.75178467e-03, 0.00000000e+00,
                                                   2.68103208e-01,
                  0.00000000e+00, -1.38898399e-01,
                                                    6.66840304e-05],
                                  0.00000000e+00,
                [-3.23217610e-03,
                                                    0.00000000e+00.
                 -3.14436582e-03,
                                   0.00000000e+00,
                                                    8.03361220e-03.
                 -6.31235361e-03,
                                   0.00000000e+00,
                                                    0.00000000e+00.
                  0.00000000e+00,
                                   0.00000000e+00,
                                                    1.50650144e-05],
                [-3.13989903e-03,
                                   0.00000000e+00,
                                                    0.00000000e+00,
                  0.00000000e+00,
                                  0.00000000e+00,
                                                    3.11043059e-03,
                 -4.09746810e-03,
                                   0.00000000e+00, -2.53057327e-01,
                  0.00000000e+00,
                                   3.22168576e-02,
                                                   -8.18440967e-05],
                                                   0.00000000e+00,
                [-3.58416473e-02,
                                   0.00000000e+00,
                  0.00000000e+00,
                                   0.00000000e+00,
                                                    0.000000000e+00.
                                   0.00000000e+00.
                 -3.69129728e-03.
                                                    0.00000000e+00.
                  0.00000000e+00, -4.94281412e-02, -5.74216129e-05]])
```

Признаки с флагом False должны быть исключены:

Вывод: в рамках данной части лабораторной работы были решены следующие задачи:

- масштабирование признаков (не менее чем тремя способами);
- обработку выбросов для числовых признаков (по одному способу для удаления выбросов и для замены выбросов);
- обработку по крайней мере одного нестандартного признака (который не является числовым или категориальным);
- отбор признаков:
 - о один метод из группы методов фильтрации (filter methods);
 - о один метод из группы методов обертывания (wrapper methods);
 - о один метод из группы методов вложений (embedded methods).