Text Classification

[DAT640] Information Retrieval and Text Mining

Krisztian Balog

University of Stavanger

2024

Table of contents

- 1. Text classification
- 2. Text classification evaluation

Text classification

Text classification

- Classification is the problem of assigning objects to one of several predefined categories
 - One of the fundamental problems in machine learning, where it is performed the basis of a training dataset (instances whose category membership is known)
- In text classification (or text categorization) the objects are text documents
- Binary classification (two classes, 0/1 or -/+)
 - o E.g., deciding whether an email is spam or not
- Multiclass classification (n classes)
 - o E.g., Categorizing news stories into topics (finance, weather, politics, sports, etc.)

General approach

Formally

• Given a training sample (X,y), where X is a set of documents with corresponding labels y, from a set Y of possible labels, the task is to learn a function $f(\cdot)$ that can predict the class y'=f(x) for an unseen document x.

Families of approaches

- Feature-based approaches ("traditional" machine learning)
- Neural approaches ("deep learning")

Features for text classification

- Use words as features (bag-of-words)
 - Words will be referred to as terms
- Values can be, e.g., binary (term presence/absence), integers (term counts), or reals (weighted term importance)
- Documents are represented by their term vector
- **Document-term matrix** is huge, but most of the values are zeros; stored as a sparse matrix

	$ t_1 $	t_2	t_3	 t_m
d_1	1	0	2	0
$egin{array}{c} d_1 \ d_2 \ d_3 \end{array}$	0	1	0	2
d_3	0	0	1	0
d_n	0	1	0	0

Document-term matrix

Additional features for text classification

- Descriptive statistics (avg. sentence length, length of various document fields, like title, abstract, body,...)
- Document source
- Document quality indicators (e.g., readability level)
- Presence of images/attachments/JavaScript/...
- Publication date
- Language
- ...

Text classification evaluation

Evaluation

- Measuring the performance of a classifier
 - \circ Comparing the predicted label y^\prime against the true label y for each document in some set dataset
- Based on the number of records (documents) correctly and incorrectly predicted by the model
- Counts are tabulated in a table called the confusion matrix
- Compute various **performance measures** based on this matrix

Text classification evaluation

Evaluating binary classification

Evaluating multiclass classification

Model development

Confusion matrix

		Predicted class			
		negative positive			
Actual	negative	true negatives (TN)	false positives (FP)		
class	positive	false negatives (FN)	true positives (TP)		

- False positives = Type I error ("raising a false alarm")
- False negatives = Type II error ("failing to raise an alarm")

Type I vs. Type II errors¹

 $^{{}^1} Source: \ https://www.analyticsindiamag.com/understanding-type-i-and-type-ii-errors/$

ld	Actual	Predicted
1	+	-
2	+	+
	-	-
4 5	+	+
5	+	-
6	+	+
7	-	-
8	-	+
9	+	-
10	+	-

ld	Actual	Predicted
1	+	-
2	+	+
1 2 3 4 5 6	-	-
4	+	+
5	+	-
6	+	+
7	-	-
8 9	-	+
9	+	-
10	+	-

ld	Actual	Predicted
1	+	-
2	+	+
3	-	-
4	+	+
5	+	-
2 3 4 5 6	+	+
7	-	-
8	-	+
9	+	-
10	+	-

ld	Actual	Predicted
1	+	-
2	+	+
3	-	-
4 5	+	+
	+	-
6	+	+
7	-	-
8	-	+
9	+	-
10	+	-

predicted - + - 2 1 + 4 3

Evaluation measures

- Summarizing performance in a single number
- Accuracy
 Fraction of correctly classified items out of all items

$$ACC = \frac{TP + TN}{TP + TN + FP + FN}$$

Error rate
 Fraction of incorrectly classified items out of all items

predicted

		-	+
nal	-	TN	FP
actua	+	FN	TP

Evaluation measures (2)

Precision

Fraction of items correctly identified as positive out of the total items identified as positive

$$P = \frac{TP}{TP + FP}$$

 Recall (also called Sensitivity or True Positive Rate)
 Fraction of items correctly identified as positive out of the total actual positives

R _	TI	D
1ı —	\overline{TP} +	\overline{FN}

Evaluation measures (3)

• F1-score

The harmonic mean of precision and recall

$$F1 = \frac{2 \cdot P \cdot R}{P + R}$$

Evaluation measures (4)

 False Positive Rate (Type I Error)
 Fraction of items wrongly identified as positive out of the total actual negatives

$$FPR = \frac{FP}{FP + TN}$$

 False Negative Rate (Type II Error)
 Fraction of items wrongly identified as negative out of the total actual positives

FNR =	FN
r rvrt —	$\overline{FN + TP}$

$$ACC = \frac{TP + TN}{TP + TN + FP + FN} = \frac{5}{10} = 0.5$$

$$P = \frac{TP}{TP + FP} = \frac{3}{4} = 0.75$$

$$R = \frac{TP}{TP + FN} = \frac{3}{7} = 0.429$$

$$F1 = \frac{2 \cdot P \cdot R}{P + R} = \frac{2 \cdot \frac{3}{4} \cdot \frac{3}{7}}{\frac{3}{4} + \frac{3}{7}} = 0.545$$

Text classification evaluation

- Evaluating binary classification
- Evaluating multiclass classification

Model development

Multiclass classification

 Imagine that you need to automatically sort news stories according to their topical categories

comp.graphics	rec.autos	sci.crypt
comp.os.ms-windows.misc	rec.motorcycles	sci.electronics
comp.sys.ibm.pc.hardware	rec.sport.baseball	sci.med
comp.sys.mac.hardware	rec.sport.hockey	sci.space
comp.windows.x		
misc.forsale	talk.politics.misc	talk.religion.misc
	talk.politics.guns	alt.atheism
	talk.politics.mideast	soc.religion.christian

Table: Categories in the 20-Newsgroups dataset

Multiclass classification

- · Many classification algorithms are originally designed for binary classification
- Two main strategies for applying binary classification approaches to the multiclass case
 - One-against-rest
 - One-against-one
- Both apply a voting scheme to combine predictions
 - A tie-breaking procedure is needed (not detailed here)

One-against-rest

- Assume there are k possible target classes (y_1, \ldots, y_k)
- Train a classifier for each target class y_i $(i \in [1..k])$
 - \circ Instances that belong to y_i are positive examples
 - All other instances y_i , $j \neq i$ are negative examples
- Combining predictions
 - If an instance is classified positive, the positive class gets a vote
 - If an instance is classified negative, all classes except for the positive class receive a vote

- 4 classes (y_1, y_2, y_3, y_4)
- Classifying a given test instance (dots indicate the votes cast):

y_1	+	•	y_1	-	•	y_1	-	•	y_1	-	•
y_2	-		y_2	+		y_2	-	•	y_2	-	•
y_3	-		y_3	-	•	y_3	+		y_3	-	•
y_4	-		y_4	-	•	y_4	-	•	y_4	+	
Pred.	+		Pred.	-		Pred.	-		Pred.	-	

• Sum votes received: $(y_1, \bullet \bullet \bullet \bullet)$, $(y_2, \bullet \bullet)$, $(y_3, \bullet \bullet)$, $(y_4, \bullet \bullet)$

One-against-one

- Assume there are k possible target classes (y_1, \ldots, y_k)
- Construct a binary classifier for each pair of classes (y_i, y_j)
 - $\circ \frac{k \cdot (k-1)}{2}$ binary classifiers in total
- Combining predictions
 - The predicted class receives a vote in each pairwise comparison

- 4 classes (y_1, y_2, y_3, y_4)
- Classifying a given test instance (dots indicate the votes cast):

y_1	+	•	y_1	+	•	y_1	+	
y_2	-		y_3	-		y_4	-	•
Pred.	+		Pred.	+		Pred.	-	
					'			,
y_2	+	•	y_2	+		y_3	+	•
y_3	-		y_4	-	•	y_4	-	
Pred.	+		Pred.	_		Pred.	+	

• Sum votes received: $(y_1, \bullet \bullet)$, (y_2, \bullet) , (y_3, \bullet) , $(y_4, \bullet \bullet)$

Evaluating multiclass classification

Accuracy can still be computed as

$$ACC = \frac{\text{\#correctly classified instances}}{\text{\#total number of instances}}$$

- For other metrics
 - View it as a set of k binary classification problems (k is the number of classes)
 - Create confusion matrix for each class by evaluating "one against the rest"
 - Average over all classes

Confusion matrix

	1
–	2
Actu	3
ĕ	٠.

	Predicted				
	1	2	3		k
1	24	0	2		0
2	0	10	1		1
3	1	0	9		0
k	2	0	1		30

Binary confusion matrices, one-against-rest

		Predicted				
		1	2	3		k
	1	24	0	2		0
ē	2	0	10	1		1
чстиа	3	1	0	9		0
Ĭ						
	k	2	0	1		30
				_		

For the sake of this illustration, we assume that the cells which are not shown are all zeros.

		Predicted		
		1	$\neg 1$	
;;	1	TP=24	FN=3	
ĕ	$\neg 1$	FP=2	TN=52	

		Predicted		
		2	$\neg 2$	
بب	2	TP=10	FN=2	
ĕ	¬2	FP=0	TN=69	

. . .

Averaging over classes

- Averaging can be performed on the instance level or on the class level
- Micro-averaging aggregates the results of individual instances across all classes
 - All instances are treated equal
- Macro-averaging computes the measure independently for each class and then take the average
 - o All classes are treated equal

Micro-averaging

Precision

$$P_{\mu} = \frac{\sum_{i=1}^{k} TP_{i}}{\sum_{i=1}^{k} (TP_{i} + FP_{i})}$$

Recall

$$R_{\mu} = \frac{\sum_{i=1}^{k} TP_{i}}{\sum_{i=1}^{k} (TP_{i} + FN_{i})}$$

• F1-score

$$F1_{\mu} = \frac{2 \cdot P_{\mu} \cdot R_{\mu}}{P_{\mu} + R_{\mu}}$$

 $\begin{array}{c|c} & \text{predicted} \\ \hline i & \neg i \\ \hline i & TP_i & FN_i \\ \hline -i & FP_i & TN_i \end{array}$

Macro-averaging

Precision

$$P_M = \frac{\sum_{i=1}^k \frac{TP_i}{TP_i + FP_i}}{k}$$

Recall

$$R_M = \frac{\sum_{i=1}^k \frac{TP_i}{TP_i + FN_i}}{k}$$

• F1-score

$$F1_M = \frac{\sum_{i=1}^k \frac{2 \cdot P_i \cdot R_i}{P_i + R_i}}{k}$$

 \circ where P_i and R_i are Precision and Recall, respectively, for class i

Text classification evaluation

Evaluating binary classification

Evaluating multiclass classification

Model development

Using a validation set

- Idea: hold out part of the training data for testing into a validation set
- Single train/validation split
 - $\circ~$ Split the training data into X% training split and 100-X% validation split (an 80/20 split is common)

Using a validation set²

k-fold cross-validation

- Partition the training data randomly into k folds
- \circ Use k-1 folds for training and test on the kth fold; repeat k times (each fold is used for testing exactly once)
- \circ k is typically 5 or 10
- Extreme: k is the number of data points, to maximize the number of training material available (called "leave-one-out" evaluation)

²Image source:

Summary

- Problem of text classification (binary and multiclass variants)
- Feature-bases text classifiers (bag-of-words representation, document-term matrix)
- Evaluation (confusion matrix, binary/multiclass)
- Evaluation measures (accuracy, precision, recall, F1, micro- and macro-averaging)
- Training/test splits, cross-validation

Reading

- Text Data Management and Analysis (Zhai&Massung)
 - Chapter 15 (Sections 15.1–15.4, 15.5.2, 15.6)