Algorytmy Optymalizacji Dyskretnej

Laboratorium

Lista 2

Kinga Majcher 272354

Listopad 2024

1 Zadanie 1

1.1 Treść zadania

Przedsiębiorstwo lotnicze musi podjąć decyzję o zakupie paliwa do samolotów odrzutowych, mając do wyboru trzech dostawców. Samoloty tankują paliwo regularnie na czterech lotniskach, które obsługują.

Firmy paliwowe poinformowały, że mogą dostarczyć następujące ilości paliwa w nadchodzącym miesiącu: Firma 1 – 275 000 galonów, Firma 2 – 550 000 galonów i Firma 3 – 660 000 galonów. Niezbędne ilości paliwa na poszczególnych lotniskach są odpowiednio równe: na lotnisku 1 – 110 000 galonów, na lotnisku 2 – 220 000 galonów, na lotnisku 3 – 330 000 galonów i na lotnisku 4 – 440 000 galonów. Koszt jednego galonu paliwa w \$ (z uwzględnieniem kosztów transportu) dostarczonego przez poszczególnych dostawców na każde z lotnisk przedstawia poniższa tabela.

	Firma 1	Firma 2	Firma 3
Lotnisko 1	10	7	8
Lotnisko 2	10	11	14
Lotnisko 3	9	12	4
Lotnisko 4	11	13	9

Wyznacz plan zakupu i dostaw paliwa na lotniska, który minimalizuje koszty. Następnie na jego podstawie odpowiedz na poniższe pytania.

- (a) Jaki jest minimalny łączny koszt dostaw wymaganych ilości paliwa na wszystkie lotniska?
- (b) Czy wszystkie firmy dostarczają paliwo?

(c) Czy możliwości dostaw paliwa przez firmy są wyczerpane?

1.2 Opis modelu

- n liczba firm paliwowych (dostawców)
- m liczba lotnisk (odbiorców)
- ullet d $_j$ zapotrzebowanie na paliwo na lotnisku j
- s_i maksymalna ilość paliwa dostępna od dostawcy i
- c_{ij} koszt dostarczenia galonu paliwa od dostawcy ina lotnisko jw\$

1.3 Zmienne decyzyjne

Definiujemy zmienną decyzyjną x_{ij} , która reprezentuje ilość paliwa dostarczoną przez firmę i na lotnisko j.

1.4 Ograniczenia

ullet Dostarczona ilość paliwa przez firmę i na lotnisko j musi być nieujemna:

$$\forall_{i,j} \ x_{ij} \geq 0$$

• Zapotrzebowanie lotnisk na paliwo musi być zaspokojone:

$$\forall_j \ \sum_{i=1}^m x_{ij} = d_j$$

• Każdy dostawca ma ograniczoną ilość paliwa, którą może dostarczyć:

$$\forall_i \sum_{j=1}^n \le s_i$$

1.5 Funkcja celu

Chcemy zminimalizować koszt zakupu i dostarczenia paliwa. Funkcja celu:

$$\min \sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} x_{ij}$$

gdzie c_{ij} to koszt dostarczenia galonu paliwa przez dostawcę i na lotnisko j, a x_{ij} to ilość paliwa dostarczona przez dostawcę i na lotnisko j.

1.6 Dane

i	Firma 1	Firma 2	Firma 3
s_i	275 000	550 000	660 000

Tabela 1: Maksymalna ilość paliwa dostępna od firmy i

j	Lotnisko 1	Lotnisko 2	Lotnisko 3	Lotnisko 4
d_j	110 000	220 000	330 000	440 000

Tabela 2: Zapotrzebowanie na paliwo na lotnisku j

c_{ij}	Firma 1	Firma 2	Firma 3
Lotnisko 1	10	7	8
Lotnisko 2	10	11	14
Lotnisko 3	9	12	4
Lotnisko 4	11	13	9

Tabela 3: Koszt dostarczenia galonu paliwa od dostawcy i na lotnisko j

1.7 Rozwiązanie

Znalezione optymalne rozwiązanie:

x_{ij}	Firma 1	Firma 2	Firma 3
Lotnisko 1	0	110 000	0
Lotnisko 2	165 000	55 000	0
Lotnisko 3	0	0	330 000
Lotnisko 4	110 000	0	330 000

Tabela 4: Optymalna liczba galonów paliwa dostarczana przez dostawcę i na lotnisko j

(a) Jaki jest minimalny łączny koszt dostaw wymaganych ilości paliwa na wszystkie lotniska?

Minimalny łączny koszt dostaw wymaganych ilości paliwa na wszystkie lotniska wynosi 8 525 000 \$.

(b) Czy wszystkie firmy dostarczają paliwo?

Tak, wszystkie firmy dostarczają paliwo, każda z nich na dwa lotniska.

(c) Czy możliwości dostaw paliwa przez firmy są wyczerpane? Możliwości dostaw paliwa przez firmy są wyczerpane dla Firmy 1 oraz Firmy 3.

2 Zadanie 2

2.1 Treść zadania

Zakład może produkować cztery różne wyroby $P_i, i \in \{1, 2, 3, 4\}$, w różnych kombinacjach. Każdy z wyrobów wymaga pewnego czasu obróbki na każdej z trzech maszyn. Czasy te są podane w poniższej tabeli (w minutach na kilogram wyrobu). Każda z maszyn jest dostępna przez 60 godzin w tygodniu. Produkty P_1, P_2, P_3 i P_4 mogą byą sprzedane po cenie, odpowiednio, 9, 7, 6 i 5 \$ za kilogram. Koszty zmienne (koszty pracy maszyn) wynoszą, odpowiednio, 2 \$ za godzinę dla maszyn M_1 i M_2 oraz 3 \$ za godzinę dla maszyny M_3 . Koszty materiałowe wynoszą 4 \$ na każdy kilogram wyrobu P_1 i 1 \$ na każdy kilogram wyrobu P_2, P_3 i P_4 . W tabeli podany jest także maksymalny tygodniowy popyt na każdy z wyrobów (w kilogramach).

Produkt	Maszyna		na	Maksymalny popyt
	M_1	M_2	M_3	${f tygodniowy}$
P_1	5	10	6	400
P_2	3	6	4	100
P_3	4	5	3	150
P_4	4	2	1	500

Wyznacz optymalny tygodniowy plan produkcji poszczególnych wyrobów i oblicz zysk z ich sprzedaży.

2.2 Opis modelu

- ullet m liczba wyrobów, które może produkować zakład
- \bullet n liczba maszyn
- $\bullet \ p_i$ cena po jakiej może być sprzedany kilogram wyrobu P_i w \$
- m_i wartość kosztów materiałowych na kilogram wyrobu P_i w \$
- d_i maksymalny popyt na wyrób P_i (w kilogramach)
- a_i tygodniowy dostępny czas pracy dla maszyny M_i w godzinach
- $\bullet \ c_j$ wartość kosztów zmiennych dla maszyny M_j za godzinę w \$
- \bullet t_{ij} czas obróbki wyrobu P_i na maszynie M_j (w minutach na kilogram wyrobu)

2.3 Zmienne decyzyjne

Definiujemy zmienną decyzyjną x_i , która reprezentuje liczbę kilogramów produktu P_i , która należy wyprodukować.

2.4 Ograniczenia

• Wyprodukowana ilość wyrobu P_i musi być nieujemna:

$$\forall_i \ x_i \geq 0$$

• Każda z maszyn M_j ma ograniczony tygodniowy czas pracy $a_j\colon$

$$\forall_j \sum_{i=1}^n t_{ij} \cdot x_i \le a_j$$

ullet Na każdy z produktów P_i jest ograniczony popyt:

$$\forall_i \ x_i < d_i$$

2.5 Funkcja celu

Chcemy zmaksymalizować zysk, czyli różnicę między przychodem ze sprzedaży produktów, a kosztami ich wyprodukowania. Funkcja celu:

$$\max \left(\sum_{i=1}^{m} (p_i - m_i) x_i - \sum_{j=1}^{n} c_j \cdot \sum_{i=1}^{m} t_{ij} \cdot x_i \right)$$

2.6 Dane

Wyrób	Cena za kg (w \$)	Wartość kosztów materiałowych (w \$)	Popyt tygodniowy (w kg)
i	p_i	m_i	d_i
P_1	9	4	400
P_2	7	1	100
P_3	6	1	150
P_4	5	1	500

Tabela 5: Dane dotyczące wyrobów P_i

t_{ij}	Maszyna 1	Maszyna 2	Maszyna 3
P_1	5	10	6
P_2	3	6	4
P_3	4	5	3
P_4	4	2	1

Tabela 6: Czas obróbki wyrobu P_i na każdej z maszyn ${\cal M}_j$ (w minutach)

Maszyna	Dostępność w tygodniu (w godzinach)	Koszt pracy (w \$ na h)
i	a_j	c_j
M_1	60	2
M_2	60	2
M_3	60	3

Tabela 7: Dane dotyczące maszyn M_j

2.7 Rozwiązanie

Znalezione optymalne rozwiązanie:

	Wyrób 1	Wyrób 2	Wyrób 3	Wyrób 4
x_i	125	100	150	500

Tabela 8: Optymalna liczba kilogramów wyrobu P_i , którą należy wyprodukować dla osiągnięcia największego zysku

Maksymalny zysk wynosi 3632.50 \$.

3 Zadanie 3

3.1 Treść zadania

W trybie normalnej produkcji pewna firma wytwarza maksymalnie 100 jednostek towaru w każdym z K następujących po sobie okresów, gdzie koszt produkcji jednej jednostki towaru w okresie $j \in \{1,\ldots,K\}$ wynosi c_j \$. Firma może również uruchomić produkcję ponadwymiarową w wielkości do a_j dodatkowych jednostek towaru w okresie j przy koszcie jednostkowym o_j \$. Zapotrzebowanie na towar w okresie j wynosi d_j jednostek. Dane dla K=4 kolejnych okresów przedstawia poniższa tabela.

j	c_j	a_j	o_j	d_{j}
1	6 000	60	8 000	130
2	4 000	65	6 000	80
3	8 000	70	10 000	125
4	9 000	60	11 000	195

Ponadto firma może przechować w magazynie do 70 jednostek towaru z jednego okresu na kolejny po koszcie 1 500 \$ za każdą magazynowaną jednostkę przez jeden okres. Początkowo w magazynie znajduje się 15 jednostek towaru.

Wyznacz plan produkcji i magazynowania wytwarzanego towaru, który spełnia zapotrzebowania w każdym okresie i minimalizuje łączny koszt. Następnie na jego podstawie odpowiedz na poniższe pytania.

- (a) Jaki jest minimalny łączny koszt produkcji i magazynowania towaru?
- (b) W których okresach firma musi zaplanować produkcję ponadwymiarową?
- (c) W których okresach możliwości magazynowania towaru są wyczerpane?

3.2 Opis modelu

- K: liczba okresów
- c_i : koszt produkcji w trybie podstawowym w okresie i w \$
- o_i : koszt produkcji w trybie dodatkowym w okresie j w \$
- k: koszt magazynowania towaru przez jeden okres w \$
- b_i : maksymalna produkcja w trybie podstawowym w okresie j
- a_i : maksymalna produkcja w trybie dodatkowym w okresie j
- d_i : zapotrzebowanie w okresie j
- s_0 : początkowy stan magazynu
- S: maksymalna pojemność magazynu

3.3 Zmienne decyzyjne

Definiujemy następujące zmienne decyzyjne:

- x_i : liczba jednostek wyprodukowanych w okresie j w trybie podstawowym
- y_i : liczba jednostek wyprodukowanych w okresie j w trybie dodatkowym
- s_j : liczba jednostek towaru przechowywanych w magazynie na koniec okresu j

3.4 Ograniczenia

• Liczba jednostek wyprodukowanych w okresie j w trybie podstawowym musi być nieujemna:

$$\forall_i \ x_i \geq 0$$

ullet Liczba jednostek wyprodukowanych w okresie j w trybie dodatkowym musi być nieujemna:

$$\forall_j \ y_j \ge 0$$

Liczba jednostek towaru przechowywanych w magazynie na koniec okresu
j musi być nieujemna:

$$\forall_i \ s_i \geq 0$$

• Liczba jednostek wyprodukowanych w okresie j musi być nie większa niż maksymalna możliwa produkcja w trybie podstawowym:

$$\forall_i \ x_i \leq b_i$$

ullet Liczba jednostek wyprodukowanych w okresie j musi być nie większa niż maksymalna możliwa produkcja w trybie dodatkowym:

$$\forall_j \ y_j \leq a_j$$

• Liczba jednostek przechowywanych w magazynie na koniec okresu musi być nie większa niż jego pojemność:

$$\forall_j \ s_j \leq S$$

• Do magazynu na okres j + 1 można oddać tylko tyle jednostek ile zostało po całkowitym zaspokojeniu zapotrzebowania w okresie j:

$$\forall_i \ s_{i+1} = x_i + y_i + s_i - d_i$$

• Nie ma sensu magazynowania jakichkolwiek jednostek na koniec ostatniego okresu, gdyż jest to płatne:

$$s_{K+1} = 0$$

 W pierwszym okresie stan magazynu jest taki jak stan początkowy, bo do magazynu można odkładać dopiero na końcu okresu:

$$s_1 = s_0$$

3.5 Funkcja celu

Chcemy zminimalizować łączne koszty produkcji i magazynowania jednostek:

$$\min \sum_{j=1}^{K} (c_j x_j + o_j y_j + k s_j)$$

3.6 Dane

	maksymalna produkcja podstawowa	koszt produkcji podstawowej	maksymalna produkcja dodatkowa	koszt produkcji dodatkowej	zapotrzebo- wanie
j	c_j	b_j	a_j	o_j	d_{j}
1	100	6 000	60	8 000	130
2	100	4 000	65	6 000	80
3	100	8 000	70	10 000	125
4	100	9 000	60	11 000	195

S=70 - pojemność magazynu

 $s_0=15$ - stan magazynu na początku pierwszego okresu

k=1500 - koszt magazynowania jednostki towaru przez jeden okres

3.7 Rozwiązanie

Znalezione optymalne rozwiązanie:

Okres	Wyprodukowane jednostki w trybie podstawowym	Wyprodukowane jednostki w trybie dodatkowym	Stan magazynu na początku okresu
1	100	15	15
2	100	50	0
3	100	0	70
4	100	50	45

Tabela 9: Optymalne wielkości produkcji i stany magazynu

- (a) Jaki jest minimalny łączny koszt produkcji i magazynowania towaru? Minimalny łączny koszt produkcji i magazynowania towaru wynosi 3 865 000 \$.
- (b) W których okresach firma musi zaplanować produkcję ponadwymiarową? Firma musi zaplanować produkcję ponadwymiarową w okresach 1, 2 oraz 4.
- (c) W których okresach możliwości magazynowania towaru są wyczerpane? Możliwości magazynowania towaru są wyczerpane w okresie 3.

4 Zadanie 4

4.1 Treść zadania

Dana jest sieć połączeń między miastami reprezentowana za pomocą skierowanego grafu G=(N,A), gdzie N jest zbiorem miast (wierzchołków), a A jest zbiorem połączeń między miastami (łuków). Dla każdego połączenia z miasta i do miasta $j,(i,j) \in A$, dane są koszt przejazdu c_{ij} oraz czas przejazdu t_{ij} . Dane są również dwa miasta $i^{\circ}, j^{\circ} \in N$.

Celem jest znalezienie połączenia (ścieżki) od miasta i° do miasta j° , którego całkowity koszt jest najmniejszy i całkowity czas przejazdu nie przekracza z góry zadanego czasu T.

- (a) Rozwiąż poniższy egzemplarz problemu (wygenerowany we współpracy z Microsoft Copilot :)). $N=1,\ldots,10, i^\circ=1, j^\circ=10, T=15. \text{ Kolejne krawędzie podane są w postaci } (i,j,c_{ij},t_{ij}): \\ (1,2,3,4),(1,3,4,9),(1,4,7,10),(1,5,8,12),(2,3,2,3),(3,4,4,6),(3,5,2,2),\\ (3,10,6,11),(4,5,1,1),(4,7,3,5),(5,6,5,6),(5,7,3,3),(5,10,5,8),(6,1,5,8),\\ (6,7,2,2),(6,10,7,11),(7,3,4,6),(7,8,3,5),(7,9,1,1),(8,9,1,2),(9,10,2,2).$
- (b) Zaproponuj własny egzemplarz problemu i rozwiąż go. Graf ma mieć co najmniej $n \geq 10$ wierzchołków, najtańsza ścieżka spełniająca ograniczenia na czas przejazdu ma mieć ≥ 3 krawędzie i mieć większy koszt niż najtańsza ścieżka w wersji bez ograniczeń (ta ma mieć ≥ 2 krawędzie).
- (c) Czy ograniczenie na całkowitoliczbowość zmiennych decyzyjnych jest potrzebne? Jeśli nie, to uzasadnij dlaczego. Jeśli tak, to zaproponuj kontrprzykład, w którym po usunięciu ograniczeń na całkowitoliczbowość (tj. mamy przypadek, w którym model jest modelem programowania liniowego) zmienne decyzyjne w rozwiązaniu optymalnym nie mają wartości całkowitych.
- (d) Czy po usunięciu ograniczenia na czasy przejazdu w modelu bez ograniczeń na całkowitoliczbowość zmiennych decyzyjnych i rozwiązaniu problemu otrzymane połączenie zawsze jest akceptowalnym rozwiązaniem? Uzasadnij odpowiedź.

4.2 Opis modelu

- N: zbiór miast
- A: zbiór połączeń między miastami
- c_{ij} : koszt przejazdu między miastami i i j
- t_{ij} : czas przejazdu między miastami i i j

 \bullet T: maksymalny dopuszczalny czas przejazdu

• *i*°: miasto początkowe

• j° : miasto końcowe

4.3 Zmienne decyzyjne

Definiujemy zmienną decyzyjną x_{ij} , która przyjmuje wartość 1, jeśli krawędź (i,j,c_{ij},t_{ij}) należy do optymalnej ścieżki, a 0 w przeciwnym przypadku.

4.4 Ograniczenia

• Jeśli nie istnieje połączenie między i i j, to wartość x_{ij} jest ustalona i wynosi 0:

$$\forall_{(i,j)\notin A} \ x_{ij} = 0$$

 \bullet Z miasta początkowego i° wychodzi dokładnie jedno połączenie, ścieżka zaczyna się w nim i nie ma rozgałęzień:

$$\sum_{j:(i^{\circ},j)\in A}x_{i^{\circ}j}=1$$

$$\sum_{j:(j,i^\circ)\in A} x_{ji^\circ} = 0$$

ullet Do miasta docelowego j° dochodzi dokładnie jedno połączenie, ścieżka kończy się w nim i nie ma rozgałęzień:

$$\sum_{i:(i,j^{\circ})\in A} x_{ij^{\circ}} = 1$$

$$\sum_{j:(j^{\circ},i)\in A} x_{j^{\circ}i} = 0$$

• Każde miasto poza i° i j° ma tyle samo połączeń wchodzących co wychodzących:

$$\forall_{k \in N \setminus \{i^{\circ}, j^{\circ}\}} \sum_{j:(k,j) \in A} x_{kj} = \sum_{i:(i,k) \in A} x_{ik}$$

 \bullet Całkowity czas przejazdu nie może być większy niż T:

$$\sum_{(i,j)\in A} t_{ij} x_{ij} \le T$$

4.5 Funkcja celu

Chcemy zminimalizować całkowity koszt przejazdu:

$$\min \sum_{(i,j)\in A} c_{ij} x_{ij}$$

4.6 Dane

	i	1	1	1	1	2	3	3	3	4	4	5	5	5	6	6	6	7	7	7	8	9
(a)	j	2	3	4	5	3	4	5	10	5	7	6	7	10	1	7	10	3	8	9	9	10
(a)	c_{ij}	3	4	7	8	2	4	2	6	1	3	5	3	5	5	2	7	4	3	1	1	2
	t_{ij}	4	9	10	12	3	6	2	11	1	5	6	3	8	8	2	11	6	5	1	2	2

$$N = \{1, 2, \dots, 10\}$$
$$i^{\circ} = 1$$
$$j^{\circ} = 10$$
$$T = 15$$

(b)
$$\begin{vmatrix} i & 1 & 1 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 5 & 6 & 7 & 7 & 8 & 9 \\ j & 2 & 3 & 4 & 7 & 5 & 6 & 5 & 6 & 6 & 7 & 8 & 9 & 9 & 10 & 10 & 10 \\ \hline c_{ij} & 3 & 5 & 8 & 2 & 2 & 4 & 3 & 4 & 1 & 2 & 3 & 6 & 7 & 1 & 5 & 2 \\ \hline t_{ij} & 4 & 6 & 7 & 10 & 3 & 6 & 2 & 4 & 2 & 5 & 3 & 5 & 3 & 10 & 6 & 3 \\ \end{vmatrix}$$

$$N = \{1, 2, \dots, 10\}$$
$$i^{\circ} = 1$$
$$j^{\circ} = 10$$
$$T = 18$$

4.7 Rozwiązanie

(a) Wykorzystane krawędzie:

i	j	c_{ij}	t_{ij}
1	2	3	4
2	3	2	3
3	5	2	2
5	7	1	1
7	9	1	1
9	10	2	2

$$Czas = 15$$

$$Koszt = 13$$

(b) Wykorzystane krawędzie:

• Wykorzystane krawędzie w modelu z ograniczeniem na czas przejazdu:

i	j	c_{ij}	t_{ij}
1	7	2	10
7	9	7	3
9	10	2	3

$$Czas = 16$$

$$Koszt = 11$$

• Wykorzystane krawędzie w modelu bez ograniczenia na czas przejazdu:

i	j	c_{ij}	t_{ij}		
1	7	2	10		
7	10	1	10		

$$Czas = 20$$

$$Koszt = 3$$

• Wykorzystane krawędzie w modelu bez ograniczenia całkowitoliczbowość (z ograniczeniem na czas przejzadu):

i	j	c_{ij}	t_{ij}	x_{ij}
1	7	2	10	1.0
7	9	7	3	0.5
7	10	1	10	0.5
9	10	2	3	0.5

$$Czas = 18$$

$$Koszt = 7$$

(c) Czy ograniczenie na całkowitoliczbowość zmiennych decyzyjnych jest potrzebne? Jeśli nie, to uzasadnij dlaczego. Jeśli tak, to zaproponuj kontrprzykład, w którym po usunięciu ograniczeń na całkowitoliczbowość (tj. mamy przypadek, w którym model jest modelem programowania liniowego) zmienne decyzyjne w rozwiązaniu optymalnym nie mają wartości całkowitych.

Tak, ograniczenie na całkowitoliczbowość jest potrzebne. Weźmy model z tego zadania i dane:

i	1	2	1
j	2	3	3
c_{ij}	10	7	1
t_{ij}	2	4	12

$$N = \{1, 2, 3\}$$

$$i^{\circ} = 1$$

$$j^{\circ} = 3$$

$$T = 10$$

Wówczas dla zmiennej \boldsymbol{x}_{ij} z ograniczeniem na całkowitoliczbowość, model znalazł rozwiązanie:

$$x_{12} = 1$$

$$x_{13} = 0$$

$$x_{23} = 1$$

$$Koszt = 17$$

Dla zmiennej \boldsymbol{x}_{ij} bez ograniczenia na całkowitoliczbowość, model znalazł rozwiązanie:

$$x_{12} = \frac{1}{2}$$

$$x_{12} = \frac{1}{3}$$
$$x_{13} = \frac{2}{3}$$

$$x_{23} = \frac{1}{3}$$

$$\text{Koszt} = 6\frac{1}{3}$$

Jak widać, znaleziona ścieżka faktycznie ma mniejszy koszt, ale nie może być zaakceptowana, gdyż posiada ona rozgałęzienia, co nie ma sensu w kontekście tego problemu.

(d) Czy po usunięciu ograniczenia na czasy przejazdu w modelu bez ograniczeń na całkowitoliczbowość zmiennych decyzyjnych i rozwiązaniu problemu otrzymane połączenie zawsze jest akceptowalnym rozwiązaniem? Uzasadnij odpowiedź.

Po usunięciu ograniczeń na całkowitoliczbowość zmiennych decyzyjnych i czas przejazdu, problem można sprowadzić do znalezienia wszystkich ścieżek z wierzchołka i° do j° i wybraniu tej o najmniejszej sumie wag. Rozgałęzianie tych ścieżek nie ma sensu. Weźmy dowolne dwa wierzchołki i,j i weźmy dla uproszczenia dwie jedyne ścieżki między nimi (dowód można uogólnić na dowolną ilość ścieżek), o sumarycznej wadze krawędzi odpowiednio a i b. Skoro są to jedyne ścieżki między tymi wierzchołkami to $x_a + x_b = 1$. Bez utraty ogólności załóżmy, że $a \geq b$. Dla a $x_a = f$, gdzie $f \in (0,1]$, więc dla b $x_b = (1-f)$. Wówczas $x_a \cdot a + x_b \cdot b = f \cdot a + (1-f) \cdot b = f \cdot a + b - f \cdot b = b + f \cdot (a-b)$. Wiemy, że $a \geq b$, więc wartość takiej rozgałęzionej ścieżki zawsze będzie większa bądź równa wartości ścieżki o najmniejszej wadze. Nie ma więc sensu rozgałęziać ścieżek w kwestii tego problemu. Jeśli nie ma ograniczenia maksymalnego czasu to model będzie zwracał sensowne rozwiązania nawet dla zmiennej decyzyjnej która nie ma ograniczenia całkowitoliczbowości.

5 Zadanie 5

5.1 Treść zadania

Policja w małym miasteczku ma w swoim zasięgu trzy dzielnice oznaczone jako p_1, p_2 i p_3 . Każda dzielnica ma przypisaną pewną liczbę radiowozów. Policja pracuje w systemie trzyzmianowym. W tabelach 10 i 11 podane są minimalne i maksymalne liczby radiowozów dla każdej zmiany.

	zmiana 1	zmiana 2	zmiana 3
p_1	2	4	3
p_2	3	6	5
$\overline{p_3}$	5	7	6

Tabela 10: Minimalne liczby radiowozów dla każdej zmiany i dzielnicy

	zmiana 1	zmiana 2	zmiana 3
p_1	3	7	5
p_2	5	7	10
p_3	8	12	10

Tabela 11: Maksymalne liczby radiowozów dla każdej zmiany i dzielnicy

Aktualne przepisy wymuszają, że dla zmiany 1, 2 i 3 powinno być dostępnych, odpowiednio, co najmniej 10, 20 i 18 radiowozów. Ponadto dzielnice p_1, p_2 i p_3 powinny mieć przypisane, odpowiednio, co najmniej 10, 14 i 13 radiowozów. Policja chce wyznaczyć przydział radiowozów spełniający powyższe wymagania i minimalizujący ich całkowitą liczbę.

5.2 Opis modelu

- n: liczba zmian
- m: liczba dzielnic
- $rMIN_{ij}$: minimalna liczba radiowozów dla *i*-tej dzielnicy i *j*-tej zmiany
- $rMAX_{ij}$: maksymalna liczba radiowozów dla i-tej dzielnicy i j-tej zmiany
- d_i : minimalna liczba radiowozów dla i-tej dzielnicy
- z_j : minimalna liczba radiowozów dla j-tej zmiany

5.3 Zmienne decyzyjne

Definiujemy zmienną decyzyjną x_{ij} , która reprezentuje liczbę radiowozów przydzielonych do i-tej dzielnicy na j-tą zmianę.

5.4 Ograniczenia

ullet Liczba radiowozów przydzielonych do i-tej dzielnicy na j-tą zmianę musi być nieujemna:

$$\forall_{i,j} \ x_{ij} \ge 0$$

• Dla każdej j-tej zmiany musi być dostępne więcej radiowozów niż minimalna liczba radiowozów dla tej zmiany:

$$\sum_{i=1}^{m} x_{ij} \ge z_j$$

• Dla każdej *i*-tej dzielnicy musi być dostępne więcej radiowozów niż minimalna liczba radiowozów dla tej dzielnicy:

$$\sum_{j=1}^{n} x_{ij} \ge d_i$$

• Dla każdej *i*-tej dzielnicy i *j*-tej zmiany dostępna liczba radiowozów nie może być mniejsza niż wymagana minimalna liczba i większa niż wymagana maksymalna liczba:

$$\forall_{i,j} \ rMIN_{ij} \le x_{ij} \le rMAX_{ij}$$

5.5 Funkcja celu

Chcemy zminimalizować całkowitą liczbę potrzebnych radiowozów:

$$\min \sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij}$$

5.6 Dane

$rMIN_{ij}$	1	2	3
1	2	4	3
2	3	6	5
3	5	7	6

$rMAX_{ij}$	1	2	3
1	3	7	5
2	5	7	10
3	8	12	10

	1	2	3	
d_i	10	14	13	

$$n = 3$$

 $m = 3$

5.7 Rozwiązanie

x_{ij}	1	2	3
1	2	5	5
2	3	7	5
3	5	8	8

Tabela 12: Optymalne liczby radiowozów dla dzielnic i oraz zmian j

Minimalna liczba radiowozów to 48.

6 Zadanie 6

6.1 Treść zadania

Firma przeładunkowa składuje na swoim terenie kontenery z cennym ładunkiem. Teren podzielony jest na $m \times n$ kwadratów. Kontenery składowane są w wybranych kwadratach. Jeden kwadrat może być zajmowany przez co najwyżej jeden kontener. Firma musi rozmieścić kamery, żeby monitorować kontenery. Każda kamera może obserwować k kwadratów na lewo, k kwadratów na prawo, k kwadratów w górę i k kwadratów w dół. Kamera nie może być umieszczona w kwadracie zajmowanym przez kontener.

Zaplanuj rozmieszczenie kamer w kwadratach tak, aby każdy kontener był monitorowany przez co najmniej jedną kamerę oraz liczba użytych kamer była jak najmniejsza.

Rozwiąż własny egzemplarz powyższego problemu z parametrami $m,n\geq 5$. Podaj rozwiązania dla co najmniej dwóch różnych wartości parametru k.

6.2 Opis modelu

- C_{ij} macierz $m \times n$ reprezentująca pozycje kontenerów. Jeśli w kwadracie (i,j) znajduje się kontener to $C_{ij}=1$, w przeciwnym przypadku $c_{ij}=0$.
- ullet m: liczba wierszy terenu
- n: liczba kolumn terenu
- k: zasięg obserwacji kamery w każdą stronę

6.3 Zmienne decyzyjne

Definiujemy zmienną decyzyjną x_{ij} , która przyjmuje wartość 1, jeśli w kwadracie (i, j) znajduje się kamera, w przeciwnym przypadku przyjmuje wartość 0.

6.4 Ograniczenia

• Kamery mogą być umieszczane jedynie w pustych kwadratach:

$$\forall_{(i,j):C_{ij}=1} \ x_{ij}=0$$

• Każdy kwadrat z kontenerem musi być monitorowany przez co najmniej jedną kamerę w jej zasięgu:

$$\forall_{(i,j):C_{ij}=1} \sum_{a=\max(1,i-k)}^{\min(i+k,m)} x_{aj} + \sum_{b=\max(1,j-k)}^{\min(j+k,n)} x_{ib} \ge 1$$

6.5 Funkcja celu

Chcemy zminimalizować liczbę kamer:

$$\min \sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij}$$

6.6 Dane

(a) k = 2

0	0	1	0	0	0	0
0	0	0	0	0	0	1
1	0	0	0	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	0
0	0	1	0	0	0	1
1	0	0	0	0	0	0

Tabela 13: Rozmieszczenie kontenerów w terenie

(b) k = 4

0	0	1	0	0	0	0
0	0	0	0	0	0	1
1	0	0	0	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	0
0	0	1	0	0	0	1
1	0	0	0	0	0	0

Tabela 14: Rozmieszczenie kontenerów w terenie

6.7 Rozwiązanie

(a) k = 2

Minimalna liczba kamer: 5

0	0	1	0	0	0	0
0	0	0	0	0	0	1
1	0	K	0	1	0	K
1	0	0	0	0	0	1
1	K	0	1	0	0	0
K	0	1	0	K	0	1
1	0	0	0	0	0	0

Tabela 15: Rozmieszczenie kontenerów i kamer w terenie, kontenery oznaczono cyfrą 1, a kamery literą K

(b) k = 4 Minimalna liczba kamer: 3

0	0	1	0	0	0	0
0	0	0	0	0	0	1
1	0	0	0	1	0	K
1	0	0	0	0	0	1
1	0	K	1	0	0	0
K	0	1	0	0	0	1
1	0	0	0	0	0	0

Tabela 16: Rozmieszczenie kontenerów i kamer w terenie, kontenery oznaczono cyfrą 1, a kamery literą K