CFG conversions

Recitation 10/30/15

PDA to CFG

The PDA P and CFG G

$$P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{accept}\})$$

First, make sure:

- P has one accept state
- P accepts by empty stack
- Each transition is either push or pop, not both at once

Intuition: G will have variables generating exactly the inputs that cause P to have the net effect of popping a stack symbol X while going from state p to state q.

- For each pair of states p and q in P, G will have a variable Apq that generates all strings x that can take P from p with an empty stack to q with an empty stack
 - P's first move on x has to be push (why?)
 - P's last move on x has to be pop (why?)
- The start variable is Agggaccept

Two cases processing a string x

Last symbol popped is first symbol pushed...

 $Apq \rightarrow aArsb$

a is the first input read

b is the input read at the last move

r is the state after p

s is the state before q

...Or not

 \rightarrow at some earlier point, the first symbol was popped, so the stack emptied

 $Apq \rightarrow AprArq$

where r is the state when the stack becomes empty

Rules

A. Add a rule $S \rightarrow [q_0Z_0f]$ for the start state, q_0 , and each final state, f.

B. For each (p,ϵ) in $\delta(qa,A)$ add a rule $[qAp] \rightarrow a$

C. For each transition, in the PDA, that pushes a single character, such as $\delta(q,u,A) = (r,B)$ add rules of the form [qAp] $\rightarrow u[rBp]$ for all states p

D. For each state in the PDA that pushes two (or more) characters, such as $\delta(q, u,A) = (r,BC)$ add rules of the form $[qAp] \rightarrow u[rBt][tCp]$ for all possible combinations of states p and t in the machine

Hopcroft & Ullman exercise 6.3.3

Convert the PDA P = $\{(p,q),(0,1),(X,Z),\delta,q,Z\}$ to a CFG if δ is given by:

- 1. $\delta(q,1,Z) = \{(q,XZ)\}$
- 2. $\delta(q,1,X)=\{(q,XX)\}$
- 3. $\delta(q,0,X)=\{(p,X)\}$
- 4. $\delta(q,\epsilon,X)=\{(q,\epsilon)\}$
- 5. $\delta(p,1,X)=\{(p,\epsilon)\}$
- 6. $\delta(p,0,Z)=\{(q,Z)\}$

Add a rule $S \rightarrow [q_0 Z_0 f]$ for the start state, q_0 , and each final state, f.

S is the start symbol

- 1. $S \rightarrow [qZq]$
- 2. $S \rightarrow [qZp]$

For each (p,ε) in $\delta(qa,A)$ add a rule $[qAp] \rightarrow a$

The following production comes from rule 4, $\delta(q,\epsilon,X)=\{(q,\epsilon)\}$

1. $[qXq] \rightarrow \epsilon$

The following production comes from rule 5, $\delta(p,1,X)=\{(p,\epsilon)\}$

1. $[pXp] \rightarrow 1$

For each transition, in the PDA, that pushes a single character, such as $\delta(q,u,A) = (r,B)$ add rules of the form $[qAp] \rightarrow u[rBp]$ for all states p

The following productions come from rule 3, $\delta(q,0,X)=\{(p,X)\}$

The following two productions come from rule 6, $\delta(p,0,Z)=\{(q,Z)\}$

- 1. $[qXq] \rightarrow 0[pXq]$
- 2. $[qXp] \rightarrow 0[pXp]$

- 1. $[pZq] \rightarrow 0[qZq]$
- 2. $[pZp] \rightarrow 0[qZp]$

For each state in the PDA that pushes two (or more) characters, such as $\delta(q,u,A) = (r,BC)$ add rules of the form $[qAp] \rightarrow u[rBt][tCp]$ for all possible combinations of states p and t in the machine

The following four productions come from rule 1, $\delta(q,1,Z) = \{(q,XZ)\}$

- 1. [qZq] -> 1[qXq][qZq]
- 2. [qZq] -> 1[qXp][pZq]
- 3. [qZp] -> 1[qXq][qZp]
- 4. [qZp] -> 1[qXp][pZp]

The following four productions come from rule 2, $\delta(q,1,X)=\{(q,XX)\}$

- 1. [qXq] -> 1[qXq][qXq]
- 2. [qXq] -> 1[qXp][pXq]
- 3. [qXp] -> 1[qXq][qXp]
- 4. [qXp] -> 1[qXp][pXp]

CNF to GNF

Review

Chomsky Normal Form

Rules of the forms

A→BC

A→a

where $a \in T$ and A, B, $C \in V$

B,C may not be start variable

Greibach Normal Form

Rules of the form

A→aα

where $\alpha \in V^*$

Construction

- 1. Modify the rules in R so that if $A_i \rightarrow A_j \gamma \in R$ then j > i
- 2. Starting with A₁ and proceeding to A_m this is done as follows:
 - (a) Assume that productions have been modified so that for $1 \le i \le k$, $Ai \rightarrow Aj\gamma \in R$ only if j > i;
- (b) If $Ak \rightarrow Aj\gamma$ is a production with j < k, generate a new set of productions substituting for the Aj the RHS of each Aj production;
 - (c) Repeating (b) at most k-1 times we obtain rules of the form $Ak \rightarrow Ap\gamma$, $p \ge k$;
 - (d) Replace rules Ak→Akγ by removing left-recursive rules.

Left recursion

A CFG containing rules of the form $A \rightarrow A\alpha | \beta$ is called left-recursive in A.

The language generated by such rules is of the form $A^* \Rightarrow \beta \alpha^n$. If we replace the rules $A \rightarrow A\alpha | \beta$ with

$$A \rightarrow \beta B | \beta, B \rightarrow \alpha B | \alpha$$

where B is a new variable, then the language generated by A is the same while no left-recursive A-rules are used in the derivation

Example

Example

Convert the CFG G= ({A₁, A₂, A₃},{a, b}, R, A₁) where R=

 $A_1 \rightarrow A_2 A_3$

 $A_2 \rightarrow A_3 A_1 | b$

 $A_3 \rightarrow A_1 A_2 | a$

into Greibach normal form.

1. Modify the rules in R so that if Ai→Ajγ∈R then j >

Only A₃ rules violate the condition—only A₃ rules need to be changed—

 $A_3 \rightarrow A_1 A_2 | a$

 $A_3 \rightarrow A_2 A_3 A_2 | a$

 $A_3 \rightarrow A_2 A_3 A_2 | a$ $A_2 \text{ has two possibilities}$ $A_3 \rightarrow A_3 A_1 A_3 A_2 | b A_3 A_2 | a$

Original rules:

 $A_1 \rightarrow A_2 A_3$

 $A_2 \rightarrow A_3 A_1$

 $A_2 \rightarrow b$

 $A_3 \rightarrow A_1 A_2$

 $A_3 \rightarrow a$

(d) Replace rules $A_k \rightarrow A_k \gamma$ by removing L-recursive rules.

 $A_3 \rightarrow A_3 A_1 A_3 A_2 | bA_3 A_2 | a$

 $A_1 \rightarrow A_2 A_3$

replace with:

 $A_2 \rightarrow A_3 A_1 | b$

 $A_3 \rightarrow bA_3A_2B_3|bA_3A_2$

 $A_3 \rightarrow A_3 A_1 A_3 A_2 |bA_3 A_2|a$

A3→**a**B3|**a**

 $B_3 \rightarrow A_1A_3A_2B_3 A_1A_3A_2$

All A₃ rules are done!

replace the rules $A \rightarrow A\alpha |\beta|$ with

 $A \rightarrow \beta B | \beta, B \rightarrow \alpha B | \alpha$

Make A₂ rules start with terminal

 $A_2 \rightarrow A_3 A_1 \mid b$ $A_1 \rightarrow A_2 A_3$

 $A_2 \rightarrow bA_3A_2B_3A_1|bA_3A_2A_1|aB_3A_1|aA_1|b$ $A_2 \rightarrow A_3A_1|b$

A₃→bA₃A₂B₃|bA₃A₂|aB₃|a

 $B_3 \rightarrow A_1A_3A_2B_3|A_1A_3A_2$

Make A₁ rules start with terminal

 $A_1 \rightarrow A_2 A_3$

 $A_2 \rightarrow bA_3A_2B_3A_1|bA_3A_2A_1|aB_3A_1|aA_1|b$

 $A_3 \rightarrow bA_3A_2B_3|bA_3A_2|aB_3|a$

 $B_3 \rightarrow A_1A_3A_2B_3|A_1A_3A_2$

 $A_1 \rightarrow A_2 A_3$

 $A_1 \rightarrow bA_3A_2B_3A_1A_3|bA_3A_2A_1A_3|aB_3A_1A_3|aA_1A_3|bA_3$

Make B₃ start with terminal

 $A_1 \rightarrow bA_3A_2B_3A_1A_3|bA_3A_2A_1A_3|aB_3A_1A_3|aA_1A_3|bA_3$

 $A_2 \rightarrow bA_3A_2B_3A_1|bA_3A_2A_1|aB_3A_1|aA_1|b$

 $A_3 \rightarrow bA_3A_2B_3|bA_3A_2|aB_3|a$

 $B_3 \rightarrow A_1A_3A_2B_3|A_1A_3A_2$

 $B_3 \rightarrow A_1A_3A_2B_3$

 $B_3 \rightarrow A_1 A_3 A_2$

Done!

 $A_3 \rightarrow bA_3A_2B_3|bA_3A_2|aB_3|a$

 $A_2 \rightarrow bA_3A_2B_3A_1|bA_3A_2A_1|aB_3A_1|aA_1|b$

 $A_1 \rightarrow bA_3A_2B_3A_1A_3|bA_3A_2A_1A_3|aB_3A_1A_3|aA_1A_3|bA_3$

B3—bA3A2B3A1A3A3A2B3|bA3A2A1A3A3A2B3|aB3A1A3A3A2B3|aA1A3A3A2B3|bA3A3A2B3|bA3A3B3|bA3A3B3|bA3A3B3|bA3A3B3|bA3A3B3|bA3A3B3|bA3A3