Радиофизический факультет

Отчет по лабораторной работе N=13

Маятник Обербека

Выполнил студент 410 группы Сарафанов Φ . Γ .

Содержание

В	Введение						
1.	Обо	рудов	ание	2			
2.	Вывод формул						
	2.1.	ения динамики	3				
		2.1.1.	Движение груза вниз	4			
		2.1.2.	Движение груза вверх	4			
	2.2.	Движе	ение маятника	5			
		2.2.1.	Рывок и потеря энергии	5			
		2.2.2.	Движение в отсутствие потерь энергии	6			
		2.2.3.	Движение при моменте сил трения, пропорциональном угловой скорости .	7			
	2.3.	Работа	а и энергия в системе маятник-груз	8			
		2.3.1.	Потери кинетической энергии маятника при прохождении грузом нижней				
			точки	8			
		2.3.2.	Работа сил трения	9			
	2.4.	Расчет	г зависимости момента инерции грузов	10			
3.	Pac	чет по	грешностей	11			
4.	Экспериментальные данные						
	4.1.	Компь	ьютерная обработка данных	12			
	4.2.	Экспе	риментальное определение момента инерции	13			
		4.2.1.	Маятник без дополнительных грузов	13			
		4.2.2.	Маятник с грузами около шкива	14			
		4.2.3.	Маятник с грузами в центре спиц	15			
		4.2.4.	Маятник с грузами на концах спиц	16			
		4.2.5.	Зависимость момента инерции по удалению грузов от центра	17			
	4.3.	Враща	ательная динамика блока	18			
		4.3.1.	Зависимость угла поворота блока от времени	18			
		4.3.2.	Зависимость угловой скорости блока от времени	19			
За	клю	чение		20			

Введение

1. Оборудование

Рис. 1: Эскиз установки

Для проведения опытов использовались: установка, состоящая из крестовины – 4 спиц, закрепленных резьбовым соединением на втулке под углом 90° друг у другу, втулки (ось втулки закреплена на стене), шкива на втулке; 4 груза с зажимным винтом (табл. 1), один подвесной

груз.

Таблица 1: Вес грузов

ГРУЗ	m_1 , г	m_2 , г	m_3 , г	т, г
1 груз	152.25	152.27	152.24	152.25
2 груз	152.47	152.45	152.45	152.45
3 груз	152.28	152.27	152.28	152.28
4 груз	152.06	152.06	152.07	152.06

2. Вывод формул

2.1. Уравнения динамики

Запишем второй закон Ньютона для груза:

$$m\vec{a} = m\vec{g} + \vec{T} \tag{1}$$

Так как нить невесомая, то T' = T.

В проекции на x:

$$ma_x = mg - T_x \tag{2}$$

Запишем уравнение моментов маятника в проекции на ось z (ось от нас – в стену):

$$I\varepsilon_z = \sum_i M_{z(i)} = M_z^T + M_z^R \tag{3}$$

Рассмотрим задачу в рамках одного периода колебаний (при следующем колебании физическая картина симметрична относительно отражения оси z)

Примем момент силы трения в оси шкива постоянным: $M_z^R = -M_0$

2.1.1. Движение груза вниз

При движении нити справа (примем раскручивание: падение груза вниз) момент силы натяжения нити по определению $M_z^T = T_x \cdot r$

Так как нить нерастяжимая и движется без проскальзывания, то тангенциальное ускорение точек на шкиве и линейное груза будут равны, отсюда

$$a_x = \varepsilon_z \cdot r,\tag{4}$$

где r – радиус шкива ($r = 17.5 \pm 0.05$ мм).

Разрешим систему (2), (3) относительно ε_z :

$$I\varepsilon_z = M_z^T + M_z^R = T_x \cdot r - M_0 \quad \Rightarrow \quad T_x = \frac{I\varepsilon + M_0}{r}$$
 (5)

Пользуясь (4), перепишем (2):

$$m \cdot \varepsilon_z r = mg - T_x = mg - \frac{I\varepsilon + M_0}{r} = \frac{mgr}{r} - \varepsilon \frac{I}{r} - \frac{M_0}{r}$$
 (6)

$$\varepsilon_z(mr + \frac{I}{r}) = \frac{mgr - M_0}{r} \tag{7}$$

$$\varepsilon_z = \frac{mgr - M_0}{mr^2 + I} \tag{8}$$

2.1.2. Движение груза вверх

При движении нити слева (накручивание: подъем груза вверх) момент силы натяжения нити по определению $M_z^T = -T_x \cdot r$

$$a_r = -\varepsilon_z \cdot r,\tag{9}$$

Разрешим систему (2), (3) относительно ε_z :

$$I\varepsilon_z = M_z^T + M_z^R = -T_x \cdot r - M_0 \quad \Rightarrow \quad T_x = -\frac{I\varepsilon + M_0}{r}$$
 (10)

Пользуясь (9), перепишем (2):

$$m \cdot (-\varepsilon_z r) = mg - T_x = mg + \frac{I\varepsilon + M_0}{r} = \frac{mgr}{r} + \varepsilon \frac{I}{r} + \frac{M_0}{r}$$
 (11)

$$\varepsilon_z(-mr - \frac{I}{r}) = \frac{mgr + M_0}{r} \tag{12}$$

$$\varepsilon_z = -\frac{mgr + M_0}{mr^2 + I} \tag{13}$$

2.2. Движение маятника

По определению,

$$\varepsilon_z = \frac{\mathrm{d}\omega_z}{\mathrm{d}t} \tag{14}$$

$$\omega_z = \frac{\mathrm{d}\phi}{\mathrm{d}t} \tag{15}$$

Полагая начальные условия $\phi(t=0) = 0, \vec{\omega}(t=0) = 0,$

$$\omega_z(t) = \frac{mgr - M_0}{mr^2 + I} \cdot t \tag{16}$$

$$\phi(t) = \frac{mgr - M_0}{mr^2 + I} \cdot \frac{t^2}{2} \tag{17}$$

Обозначим время достижения грузом наинизшей точки t_1 . Тогда

$$\omega_1 = \omega_z(t_1), \quad \phi_1 = \phi(t_1) \tag{18}$$

2.2.1. Рывок и потеря энергии

При достижении нижней точки происходит рывок.

Если бы нить была идеальная, то полная механическая энергия груза бы не поменялась. В реальности часть энергии уходят на создание упругих волн в нити.

Таким образом, после рывка модуль скорости груза (а значит, и угловой скорости шкива) уменьшится (относительно скорости при движении вниз на этой же высоте).

Значит, npu движении вверх начальным условием будет не $\omega_z(t_1)=\omega_1$, а новое значение $\omega_z(t_1)=\omega_0$.

Угол, как непрерывная функция времени, своего значения не поменяет.

Тогда

$$\omega_z(t) = \omega_0 - \frac{mgr + M_0}{mr^2 + I} \cdot (t - t_1) \tag{19}$$

$$\phi(t) = \phi_1 + \omega_0(t - t_1) - \frac{mgr - M_0}{mr^2 + I} \cdot \frac{(t - t_1)^2}{2}$$
(20)

Разрешая систему (26,27,18) относительно неизвестных величин, получаем

$$I = \frac{mgr \left[t_2 - t_1\right]^2}{\phi_2 - \phi_1 \left[1 - \left(t_2/t_1 - 1\right)^2\right]} - mr^2$$
(21)

$$M_0 = mgr \frac{\phi_2 - \phi_1 \left[1 + (t_2/t_1 - 1)^2 \right]}{\phi_2 - \phi_1 \left[1 - (t_2/t_1 - 1)^2 \right]}$$
(22)

$$\omega_0 = 2\frac{\phi_2 - \phi_1}{t_2 - t_1}, \qquad \omega_1 = 2\frac{\phi_1}{t_1}$$
 (23)

2.2.2. Движение в отсутствие потерь энергии

Следствием отсутствия потерь энергии будет два факта:

- 1) Скорость не изменится после рывка, значит, $\omega_1 = \omega_2$.
- 2) Трения в оси не будет, значит, $M_0 = 0$.

Тогда при движении вниз будет:

$$\omega_z(t) = \frac{mgr}{mr^2 + I} \cdot t \tag{24}$$

$$\phi(t) = \frac{mgr}{mr^2 + I} \cdot \frac{t^2}{2} \tag{25}$$

Начальные условия при движении $вверx - \omega_1, \phi_1$:

$$\omega_z(t) = \omega_1 - \frac{mgr}{mr^2 + I} \cdot (t - t_1) = \frac{mgr}{mr^2 + I} \cdot (2t_1 - t)$$
(26)

$$\phi(t) = \phi_1 + \omega_1(t - t_1) - \frac{mgr}{mr^2 + I} \cdot \frac{(t - t_1)^2}{2} =$$

$$= \frac{mgr}{mr^2 + I} \frac{t_1^2}{2} + \frac{mgr}{mr^2 + I} (t_1t - t_1^2) - \frac{mgr}{mr^2 + I} \cdot \frac{(t - t_1)^2}{2} =$$

$$= \frac{mgr}{mr^2 + I} \left[\frac{t_1^2}{2} - t_1^2 + t_1t - \frac{t^2}{2} + t_1t - \frac{t_1^2}{2} \right] =$$

$$= \frac{mgr}{mr^2 + I} \left[2t_1t - \frac{(2t_1^2 + t^2)}{2} \right]$$
(27)

Легко убедиться, что подстановкой $t=t_1$ в уравнения для движения вверх получаются уравнения движения вниз, что соответствует допущению о отсутствии влияния рывка на скорость в нижней точке.

2.2.3. Движение при моменте сил трения, пропорциональном угловой скорости

Рассмотрим движение груза только вниз - т.е. размотку нити. Тогда можем воспользоваться ранее выведенной формулой (8):

$$\varepsilon(t) = \frac{mgr - M_0}{mr^2 + I}$$

Примем момент сил трения пропорциональным угловой скорости:

$$M_0 = k \cdot \omega_z \tag{28}$$

По определению

$$\varepsilon(t) = \frac{d\omega_z}{dt} \tag{29}$$

Тогда

$$\frac{d\omega_z}{dt} = \frac{mgr - k \cdot \omega_z}{mr^2 + I} \tag{30}$$

Произведем разделение переменных:

$$\frac{d\omega_z}{mgr - k \cdot \omega_z} = \frac{dt}{mr^2 + I} \tag{31}$$

Занесем функцию скорости под дифференциал:

$$-\frac{1}{k}\frac{d(mgr - k \cdot \omega_z)}{mgr - k \cdot \omega_z} = \frac{dt}{mr^2 + I}$$
(32)

Интегрируем:

$$-\frac{1}{k} \int_0^{\omega(t)} \frac{d(mgr - k \cdot \omega_z)}{mgr - k \cdot \omega_z} = \int_0^t \frac{dt}{mr^2 + I}$$
(33)

$$-\frac{1}{k}[\ln(mgr - k \cdot \omega_z) - \ln(mgr - k \cdot 0)] = \frac{t}{mr^2 + I}$$
(34)

$$-\frac{1}{k}\ln\frac{mgr - k \cdot \omega_z}{mgr} = \frac{t}{mr^2 + I}$$
(35)

$$\ln \frac{mgr - k \cdot \omega_z}{mgr} = \frac{-kt}{mr^2 + I} \tag{36}$$

Потенцируем:

$$\frac{mgr - k \cdot \omega_z}{mgr} = e^{\frac{-kt}{mr^2 + I}} \tag{37}$$

$$mgr - k \cdot \omega_z = mgr \cdot e^{\frac{-kt}{mr^2 + I}} \tag{38}$$

$$k \cdot \omega_z = mgr(1 - e^{\frac{-kt}{mr^2 + I}}) \tag{39}$$

$$\omega_z = \frac{mgr}{k} \left(1 - e^{\frac{-kt}{mr^2 + I}}\right) \tag{40}$$

Угловая скорость блока асимптотически возрастает. Максимальная скорость, к которой стремится ω_z , легко найдется:

$$\omega_z^{max} = \lim_{t \to +\infty} \frac{mgr}{k} \left(1 - e^{\frac{-kt}{mr^2 + I}}\right) = \frac{mgr}{k} \tag{41}$$

2.3. Работа и энергия в системе маятник-груз

2.3.1. Потери кинетической энергии маятника при прохождении грузом нижней точки

Запишем полную кинетическую энергию системы маятник-груз:

$$W^{\text{полн}} = \frac{mv_{\text{груза}}^2}{2} + \frac{I\omega_{\text{маятника}}^2}{2} \tag{42}$$

При прохождении грузом нижней точки необходимо рассмотреть два бесконечно близких момента времени.

В момент времени непосредственно до рывка груз достигает нижней точки. Угловая скорость маятника в этот момент времени найдется по формуле (16), а скорость груза – нулевая.

Тогда

$$W_{\text{до}}^{\text{полн}} = \frac{I\omega_1^2}{2} \tag{43}$$

В момент времени *непосредственно после рывка* высота груза не поменяется, скорость останется нулевой, изменится угловая скорость и примет значение ω_0 , которое мы можем найти экспериментально, и тогда

$$W_{\text{полн}}^{\text{полн}} = \frac{I\omega_0^2}{2} \tag{44}$$

Таким образом, убыль кинетической энергии $-\Delta W$ составит

$$-\Delta W = -(W_{\text{после}}^{\text{полн}} - W_{\text{до}}^{\text{полн}}) = \frac{I}{2}(\omega_1^2 - \omega_0^2)$$
 (45)

Как видно, изменение кинетической энергии произошло только у самого маятника.

Теперь можем найти, какую часть энергии маятник потерял при прохождении грузом нижней точки:

$$\eta = \frac{-\Delta W}{W_{\text{IIO,IH}}^{\text{IIO,IH}}} \times 100\% = \frac{\omega_1^2 - \omega_0^2}{\omega_1^2} \times 100\%$$
 (46)

2.3.2. Работа сил трения

Запишем полную механическую энергию системы маятник-груз:

$$W^{\text{Mex}} = \frac{mv_{\text{груза}}^2}{2} + \frac{I\omega_{\text{маятника}}^2}{2} + mgh_{\text{груза}}$$
(47)

Выберем ноль потенциальной энергии на 0 оси x (ось вниз, 0 – точка пуска)

Рассмотрим случай, когда маятник совершает один период колебаний. Тогда полная механическая энергия в момент пуска будет составлять

$$W_{\text{\tiny HAH}}^{\text{\tiny MEX}} = 0, \tag{48}$$

так как начальные условия - $\omega(t=0) = 0, h(t=0) = 0.$

В некий момент времени t_2 груз достигает верхней точки, и его полная механическая энергия составляет

$$W_{\text{koh}}^{\text{mex}} = -mgh', \tag{49}$$

Тогда изменение полной механической энергии

$$W_{\text{\tiny HAY}}^{\text{\tiny MEX}} - W_{\text{\tiny KOH}}^{\text{\tiny MEX}} = mgh', \tag{50}$$

Сила трения – не единственная диссипативная сила в маятнике Обербека. При рывке в нижней точке часть энергии идет на создание упругих волн в нити, на деформацию подвеса, на создание поперечных колебаний груза.

Эту часть энергии мы нашли ранее: $\frac{I}{2}(\omega_1^2 - \omega_0^2)$.

Тогда можем выразить:

$$A_{\rm Tp} = W_{\rm {\tiny Haq}}^{\rm {\tiny Mex}} - W_{\rm {\tiny KoH}}^{\rm {\tiny Mex}} - \frac{I}{2}(\omega_1^2 - \omega_0^2) = mgh' - \frac{I}{2}(\omega_1^2 - \omega_0^2)$$
 (51)

где h' – расстояние от начала отсчета в верхней точке.

2.4. Расчет зависимости момента инерции грузов

Найдем зависимость момента инерции грузов на крестовине маятника в зависимости от их положения относительно оси вращения.

Рис. 3: Расстояние r_1 от оси вращения до центра масс груза

Примем известным момент инерции сплошного однородного цилиндра длины l, радиуса r_2 и массы m относительно оси, перпендикулярной оси цилиндра и проходящей через центр масс (далее – q-ось), параллельной оси вращения блока:

$$I_{\mathbf{q}}^{\mathbf{q}} = f(l, r_2, m) = \frac{1}{4}m \cdot r_2^2 + \frac{1}{12}m \cdot l^2$$
(52)

По теореме Гюйгенса-Штейнера можем найти момент инерции груза относительно оси z:

$$I_{\rm rp}^z = I_{\rm q}^{\rm q}(l, r_2, m_2) + m_2 \cdot {r_1}^2 = \tag{53}$$

$$= \frac{1}{4}m_2 \cdot r_2^2 + \frac{1}{12}m_2 \cdot l^2 + m_2 \cdot r_1^2 \tag{54}$$

И для всех четырех грузов момент будет составлять:

$$I_{4\text{rp}}^z = m_2 \cdot r_2^2 + \frac{1}{3}m_2 \cdot l^2 + 4m_2 \cdot r_1^2$$
 (55)

3. Расчет погрешностей

4. Экспериментальные данные

4.1. Компьютерная обработка данных

Было проведено 4 серии опытов, в каждой по три опыта.

Для снятия зависимости положения груза от времени была задействована видеосъемка.

Полученные видеофрагменты были обработаны программным пакетом **ffmpeg** для стабилизации изображения.

Далее с помощью ПО **Tracker** (is a free video analysis and modeling tool built on the Open Source Physics) в полуавтоматическом режиме была распознана на каждом кадре точка, служащая ориентиром для начала оси (в качестве такой точки была использована шляпка черного самореза над линейкой установки, т.к. высокая контрастность дает хороший % распознования).

Привязав к каждому кадру ось x, в полуавтоматическом режиме распознавалось положение груза на каждом кадре. Сформированный вывод сохранен в простейшем табличном формате \mathbf{csv} (comma-separated values).

На основе экспериментальных данных в таблицы добавлены расчетные значения погрешностей и косвенных величин (работа с массивами данных производилась на математическом пакете **NumPy**, язык **Python**).

C помощью пакета $\mathbf{PgfPlots}$ на $\mathbf{L\!PTEX}$ построены графики, соответствующие каждой серии опытов.

4.2. Экспериментальное определение момента инерции

4.2.1. Маятник без дополнительных грузов

Рис. 4: Без грузов

$$I_1 = 54201 \pm 2761 \text{ g/cm}^2$$
 (56)

$$I_2 = 52789 \pm 2112 \text{ g/cm}^2$$
 (57)

$$I_3 = 53366 \pm 2292 \text{ g/cm}^2 \eta = 11.64\%$$
 (58)

$$A_{\rm TP} = -2209594 \text{ erg}$$
 (59)

4.2.2. Маятник с грузами около шкива

Рис. 5: Грузы зафиксированы у начала спиц

$$I_1 = 68548 \pm 2704 \text{ g/cm}^2$$
 (60)

$$I_2 = 63092 \pm 2469 \text{ g/cm}^2$$
 (61)

$$I_3 = 62712 \pm 2386 \text{ g/cm}^2$$
 (62)

$$\eta = 17.33\%$$
(63)

$$A_{\rm rp} = -3391955 \text{ erg}$$
 (64)

Расчетный момент инерции грузов

$$I = 280 \cdot (1.5)^2 + 1/3 \cdot 280 \cdot (2.5)^2 + 4 \cdot 280 \cdot (2.81)^2 = 10056 \text{ g/cm}^2$$
(65)

4.2.3. Маятник с грузами в центре спиц

Рис. 6: Грузы зафиксированы в центре спиц

$$I_1 = 152823 \pm 5195 \text{ g/cm}^2$$
 (66)

$$I_2 = 154595 \pm 5223 \text{ g/cm}^2$$
 (67)

$$I_3 = 153261 \pm 5291 \text{ g/cm}^2$$
 (68)

$$\eta = 15.63\%$$
(69)

$$A_{\rm rp} = -3433231 \text{ erg}$$
 (70)

Расчетный момент инерции грузов

$$I = 280 \cdot (1.5)^2 + 1/3 \cdot 280 \cdot (2.5)^2 + 4 \cdot 280 \cdot (9.75)^2 = 107683 \text{ g/cm}^2$$
(71)

4.2.4. Маятник с грузами на концах спиц

Рис. 7: Грузы зафиксированы на концах спиц

$$I_1 = 337206 \pm 11102 \text{ g/cm}^2$$
 (72)

$$I_2 = 346030 \pm 11667 \text{ g/cm}^2$$
 (73)

$$I_3 = 331027 \pm 11421 \text{ g/cm}^2$$
 (74)

$$\eta = 15.29\%$$
(75)

$$A_{\rm rp} = -3474774 \text{ erg}$$
 (76)

Расчетный момент инерции грузов

$$I = 280 \cdot (1.5)^2 + 1/3 \cdot 280 \cdot (2.5)^2 + 4 \cdot 280 \cdot (17.5)^2 = 301213 \text{ g/cm}^2$$
(77)

4.2.5. Зависимость момента инерции по удалению грузов от центра

Рис. 8: Зависимость I(r), экспериментальная

Полученные экспериментально моменты инерции маятника, за вычетом начального момента инерции (без грузов), очень хорошо совпадают с расчетными значениями моментов инерции:

$$63092 - 10056 \approx 52789 \text{ g/cm}^2 \tag{78}$$

$$153261 - 107683 \approx 52789 \text{ g/cm}^2 \tag{79}$$

$$353261 - 301213 \approx 52789 \text{ g/cm}^2$$
 (80)

4.3. Вращательная динамика блока

4.3.1. Зависимость угла поворота блока от времени

Рис. 9: Зависимость угла поворота блока от времени

Зависимость угла поворота блока от времени снята для маятника без грузов.

Точка разворота произошла в момент времени $t=4.995~{\rm c}$, груз прошел путь $S=150~{\rm cm}$ Точка максимального подъема произошла в момент времени $t=8.692~{\rm c}$, груз прошел путь $S=187~{\rm cm}$

4.3.2. Зависимость угловой скорости блока от времени

Рис. 10: Зависимость угловой скорости блока от времени

Зависимость угловой скорости блока от времени снята для маятника без грузов.

В точке разворота груза маятником достигается максимальная угловая скорость $\omega_{max}=25.2~{
m c}^{-1}.$

Заключение