

Traitement de données – statistiques

Marie-Camille CAUMON
Ingénieur de recherche
GeoRessources - UMR 7359
Entrée 3B - bureau A508
+33 3 72 74 55 37
marie-camille.caumon@univ-lorraine.fr
http://georessources.univ-lorraine.fr/

S7-4 Traitement des données en Géosciences

Traitement de données – statistiques

- 1 CM 3h
- 2 TP 4h en salle info
- 1 CM 3h
- 2 TP 4h en salle info
- 1 CC (TP 3)
- 1 contrôle terminal

Objectifs et méthodes

- → Utiliser de la manière la plus pratique possible un tableur (type EXCEL)
- → Traitements statistiques de base
- → Utilisation de fonctions spécifiques aux statistiques
- → Analyses statistiques et factorielles sur études de cas

Traiter une population statistique de manière rigoureuse Savoir interpréter les représentations graphiques issues du traitement statistique

Fonctions statistiques
Tests statistiques
Représentations

Prérequis

- Bases de l'utilisation d'un tableur (type EXCEL)
- Notions de variable, effectif, paramètres de position et dispersion
- Représentations graphiques : histogrammes
- Régression linéaire simple
 - → Révisions rapides en CM
 - → Exercices corrigés disponibles sur Arche
 - → Utilisation des outils avancés d'Excel
 - → Utilisation de R (R, RStudio, packages Rmcdr, FactoMineR, cluster, lattice)

Plan du cours – partie l

- 1. Vocabulaire
- 2. Variables ou caractères
 - 1. Vocabulaire
 - 2. Notion de distribution
- 3. Grandeurs statistiques usuelles
 - 1. Paramètres de position
 - 2. Paramètres de dispersion
- 4. Représentations graphiques
- 5. Lois de distribution usuelles
- 6. Statistiques bivariées
 - 1. Représentation graphique
 - 2. Covariance
 - 3. Régression linéaire

1. Vocabulaire

Unité statistique

Population

Échantillon

Taille de l'échantillon =

Taille de la population =

Taux de sondage =

Unité statistique

Population

Échantillon

Taille de l'échantillon = 16

Taille de la population = 100

Taux de sondage = 16 %

Vocabulaire:

- Unité statistique
 - = individu
 - = élément
- Population
 - = ensemble statistique
- Échantillon
- Taille de la population ou de l'échantillon
- Taux de sondage

Notations:

· individu ou obcorvations

• taille de l'échantillon

• taux de sondage

variables

• Individu ou observations	7	1
• population	\rightarrow	P
• échantillon	\rightarrow	E
• taille de la population	\rightarrow	N

n

 \rightarrow

 \rightarrow

n/N

X, *Y*, *Z*, ...

Plan du cours – partie l

- Vocabulaire
- 2. Variables ou caractères
 - 1. Vocabulaire
 - 2. Notion de distribution
- 3. Grandeurs statistiques usuelles
 - 1. Paramètres de position
 - 2. Paramètres de dispersion
- 4. Représentations graphiques
- 5. Lois de distribution usuelles
- 6. Statistiques bivariées
 - 1. Représentation graphique
 - 2. Covariance
 - 3. Régression linéaire

Types de variable : qualitative nominale/ordinale quantitative discrète/continue

- 1. Teneur en nitrate d'une eau minérale
- 2. Potabilité d'une eau
- 3. Nombre d'animaux dans un élevage
- 4. Coordonnées GPS d'une population (échantillons)
- 5. Porosité d'un réservoir
- 6. Occurrences d'un minéral dans une section polie
- 7. La saison à laquelle le prélèvement d'échantillons est effectué
- 8. Niveau de confort sonore d'une population à proximité d'une éolienne
- 9. Notes / 20 des étudiants d'une promo de M1 à un contrôle
- 10.La moyenne générale des étudiants d'une promo en fin de M1

Quantitative		Catégo	orielle
continue discrète		nominale	ordinale

variable = caractéristique étudiée pour une population donnée. Elle peut être soit quantitative, soit catégorielle (qualitative).

Types de variable : qualitative nominale/ordinale quantitative discrète/continue

variable quantitative est représentée par une valeur discrète ou continue

- discrète = la variable ne pourra prendre que certaines valeurs (dénombrement)
- continue = un ensemble de valeurs (mesure)
 - 1. Teneur en nitrate d'une eau minérale
 - 2. Potabilité d'une eau
 - 3. Nombre d'animaux dans un élevage
 - 4. Coordonnées GPS d'une population (échantillons)
 - 5. Porosité d'un réservoir
 - 6. Occurrences d'un minéral dans une section polie
 - 7. La saison à laquelle le prélèvement d'échantillons est effectué
 - 8. Niveau de confort sonore d'une population à proximité d'une éolienne
 - 9. Notes / 20 des étudiants d'une promo de M1 à un contrôle
 - 10.La moyenne générale des étudiants d'une promo en fin de M1

Quantitative		Catég	orielle
continue	continue discrète		ordinale
1-5-10	3-6-9	2-7	4-8

2. Variables ou caractères : notion de distribution

N° échantillon	Variable X
1	1
2	4
3	10
4	7
5	2
6	2
7	7
8	12
9	5
10	15

le regroupement des individus dans une même classe est nécessaire pour représenter des variables quantitatives continues = DISCRETISATION permet d'améliorer la lisibilité des résultats.

fréquence cumulée croissante : le nombre d'individus pour lesquels la valeur de la variable est inférieur ou égale à Xi (valeur prise dans la variable)

fréquence relative = fi/N X 100 pourcentage de la fréquence absolue

Fréquence cumulée décroissante : nombre d'individus pour lesquelles la valeur de la variable Xi (valeur prise dans la variable)

Plan du cours – partie l

- 1. Vocabulaire
- 2. Variables ou caractères
 - 1. Vocabulaire
 - 2. Notion de distribution
- 3. Grandeurs statistiques usuelles
 - 1. Paramètres de position
 - 2. Paramètres de dispersion
- 4. Représentations graphiques
- 5. Lois de distribution usuelles
- 6. Statistiques bivariées
 - 1. Représentation graphique
 - 2. Covariance
 - 3. Régression linéaire

paramètre que l'on va calculer pour connaître les caractéristiques de la population (moyenne, médiane, écart-type)

paramètre de position : permet de placer un résultat par rapport à l'ensemble des données

- moyenne arithmétique -> centre de gravité de la population (non robuste)
- moyenne géométrique

paramètre de dispersion : permet de mesurer la variabilité (fluctuations) des données

médiane = centre de gravité de la distribution (robuste)

mode = valeur le plus souvent observée dans une distribution

Le mode d'une distribution de variables quantitatives continues peut-il être déterminé ?

C25 = Q1 C75=Q3

Formules EXCEL pour les paramètres de position

Paramètre	Formule	Arguments
Moyenne	= MOYENNE (matrice)	Tableau de données
Médiane	= MEDIANE (matrice)	Tableau de données
Mode	= MODE (matrice)	Tableau de données
Centile	= CENTILE.INCLURE (matrice;k)	Tableau de données;nb <u>quelconque</u> entre 0 et 1
Décile	= DECILE.INCLURE (matrice;k)	Tableau de données;nb <u>entier</u> entre 1 et 10
Quartile	= QUARTILE.INCLURE (matrice;k)	Tableau de données;nb <u>entier</u> entre 1 et 4

Fonctions R pour les paramètres de position

Paramètre	Fonction	Arguments
Moyenne	= mean(x)	Tableau de données
Médiane	= median(x)	Tableau de données
Mode	= mode(x)	Tableau de données
Quantile	= quantile(x, probs)	Tableau de données, nb quelconque entre 0 et 1

étendue (plage) = max - min (non robuste)

distance interquartile : I = |Q3 - Q1| (robuste)

coefficient de variation : cv = écart-type/moyenne -> comparer les données moyennes/unités différentes

- très sensible quand la moyenne est petite
 difficile à interpréter si on ne connait pas la loi de dispersion

variance : la moyenne des carrés des écarts à la moyenne

la différence entre la moyenne des carrés et la carré de la moyenne

écart - type : racine² de la variace, même unité que la variable

Moyenne	0.6
Médiane	0.4
Mode	0.3
Écart-type	0.8
Variance de l'échantillon	0.6
Plage	
Minimum	0.
Maximum	4.
Nombre d'échantillons	5
Q1	0.2
Q3	0.6
distance interquartile	0.3
coefficient de variation	1.2

Formules EXCEL pour les paramètres de dispersion

Paramètre	Formule	Arguments
Étendue	=MAX(matrice)-MIN(matrice)	Tableau de données
Variance	=VAR.S(matrice)	Tableau de données
Écart-type	=ECARTYPE.STANDARD(matrice)	Tableau de données

Fonctions R pour les paramètres de dispersion

Paramètre	Fonction	Arguments
Étendue	= max(x)-min(x)	Tableau de données
Variance	= var(x)	Tableau de données
Écart-type	= sd(x)	Tableau de données

Formules à mémoriser

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Médiane = $Q_2 = C_{50}$

 $I_O = |Q_3 - Q_1|$

Moyenne arithmétique

Intervalle inter-quartile

$$\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 \qquad \sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} x_i^2 - \bar{x}^2$$

 $CV = \frac{\sigma}{\bar{x}}$

Variance

Coefficient de variation

Plan du cours – partie l

- 1. Vocabulaire
- 2. Variables ou caractères
 - 1. Vocabulaire
 - 2. Notion de distribution
- 3. Grandeurs statistiques usuelles
 - 1. Paramètres de position
 - 2. Paramètres de dispersion
- 4. Représentations graphiques
- 5. Lois de distribution usuelles
- 6. Statistiques bivariées
 - 1. Représentation graphique
 - 2. Covariance
 - 3. Régression linéaire

Diagramme en secteur ou circulaire

- 1. dans un premier temps présenter les données dans un tableau synthétique
- 2. définir le nombre de classes (choix arbitraire) N>30 nk >= 5 (nombre d'individus par classe ~10-15 classes -> perte d'information négligeable
- 3. calculer les effectifs pour chaque classe
- 4. choisir une représentation graphique

Popcorn,
sucreries,
boissons

Ticket d'entrée

26

Ti/	ppm
-----	-----

1.15	0.73	0.44	0.14	1.78
1.87	0.54	0.36	0.14	0.3
1.84	0.52	0.26	0.34	1.56
0.47	0.45	0.23	0.36	0.26
0.34	0.46	0.23	0.3	0.61
2.78	0.4	0.13	0.1	0.45
3.04	0.36	0.12	0.12	0.7
0.16	0.34	0.12	0.61	0.59
0.42	0.32	0.11	0.6	0.4
0.45	0.5	0.63	0.46	4.1

Borne sup. des classes	Fréquence	
0.5	33	
1	9	
1.5	1	
2	4	
2.5	0	
3	1	
3.5	1	
4	0	
4.5	1	

Borne sup. des classes	Fréquence
1	42
2	5
3	1
4	1
ou plus	1

Borne sup. des classes	Fréquence
0.25	11
0.5	22
0.75	9
1	0
1.25	1
1.5	0
1.75	1
2	3
2.25	0
2.5	0
2.75	0
3	1
3.25	1
3.5	0
3.75	0
4	0
4.25	1

Histogramme

diagrammes en barres

diagrammes circulaires → secteurs

Angle du secteur : $\alpha_i = f_i^{\text{relative}} \times 360$

Boîtes à moustaches « boxplot »

1. boîte des écarts-types

2.1 boîte de dispersion

2.2 boîte de dispersion

Figure 2 | LA-ICP-MS determination of U concentration in fluid inclusions. **a**, LA-ICP-MS signal for selected elements in a 1.0×10^{-3} mol I⁻¹ U fluid inclusion (sample RBL1Qz, Rabbit Lake deposit). U is absent from quartz (Qz) and is entirely fluid-inclusion hosted as no U signal is observed during quartz ablation before opening of the fluid inclusion (FI). a.u., arbitrary units. **b**, Box-and-whisker plots showing the distribution of U concentration in fluid inclusions among the studied deposits. Lower whiskers, bottoms of boxes, central lines, tops of boxes and upper whiskers represent 10th, 25th, 50th, 75th and 90th percentiles respectively; symbols represent outliers. McArthur River data have been published previously⁷. n, number of fluid inclusions analysed.

(Richard et al., 2012)

Plan du cours – partie l

- 1. Vocabulaire
- 2. Variables ou caractères
 - 1. Vocabulaire
 - 2. Notion de distribution
- 3. Grandeurs statistiques usuelles
 - 1. Paramètres de position
 - 2. Paramètres de dispersion
- 4. Représentations graphiques
- 5. Lois de distribution usuelles
- 6. Statistiques bivariées
 - 1. Représentation graphique
 - 2. Covariance
 - 3. Régression linéaire

distribution : fonction qui associe une fréquence d'apparition à une classe de valeurs distribution de fréquence relatives : se base sur les observations loi de distribution de probabilité : permet d'approximer la distribution de fréquence pour un modèle mathématique modélisation mathématique des données : prédit la probabilité d'un évènement ou calculer la moyenne et variance de façon appropriée

Loi de distribution de probabilité

loi uniforme vaut 1 entre a et b et 0 partout ailleurs

Loi uniforme

Loi normale ou gaussienne

Loi normale centrée réduite

Loi de Poisson de paramètre λ

- Représenter graphiquement les données expérimentales
 Choisir une loi de distribution correspondante
 Calcul des effectifs théoriques correspondant à cette loi
 Comparer les distributions de fréquence et de probabilité -> test statistique

Représentation graphique (1) et première interprétation visuelle (2)

classes	centre des classes	Fréquence	
5	4.75	2	
5.5	5.25	1	
6	5.75	0	
6.5	6.25	4	
7	6.75	7	
7.5	7.25	8	
8	7.75	16	
8.5	8.25	27	
9	8.75	28	
9.5	9.25	41	
10	9.75	46	
10.5	10.25	53	
11	10.75	57	
11.5	11.25	60	
12	11.75	55	
12.5	12.25	71	
13	12.75	57	
13.5	13.25	51	
14	13.75	54	
14.5	14.25	42	
15	14.75	32	
15.5	15.25	30	
16	15.75	16	
16.5	16.25	16	
17	16.75	8	
17.5	17.25	11	
18	17.75	3	
18.5	18.25	3	
ou plus	18.75	1	
•			

$$\mu = 11,93$$

Mediane = 11,94
 $\sigma = 2,45$

Max pour
$$x = 12,5$$

classes	centre des classes	Fréquence	Zc
5	4.75	2	-2.93
5.5	5.25	1	-2.73
6	5.75	0	-2.52
6.5	6.25	4	-2.32
7	6.75	7	-2.11
7.5	7.25	8	-1.91
8	7.75	16	-1.71
8.5	8.25	27	-1.50
9	8.75	28	-1.30
9.5	9.25	41	-1.09
10	9.75	46	-0.89
10.5	10.25	53	-0.68
11	10.75	57	-0.48
11.5	11.25	60	-0.28
12	11.75	55	-0.07
12.5	12.25	71	0.13
13	12.75	57	0.34
13.5	13.25	51	0.54
14	13.75	54	0.74
14.5	14.25	42	0.95
15	14.75	32	1.15
15.5	15.25	30	1.36
16	15.75	16	1.56
16.5	16.25	16	1.77
17	16.75	8	1.97
17.5	17.25	11	2.17
18	17.75	3	2.38
18.5	18.25	3	2.58
ou plus	18.75	1	2.79

Calcul des effectifs théoriques (3)

$$Z_c = \frac{X_c - \mu}{\sigma}$$

Pour
$$X_C = 4,75$$
:

$$Z_c = \frac{4,75 - 11,93}{2,45} = -2,93$$

	 	_ ,	_ 1		
classes	centre des classes		Zc	loi normale	effectif théorique
5	4.75		-2.93	0.005430363	1
5.5	5.25		-2.73	0.009678327	2
6	5.75		-2.52	0.016544541	3
6.5	6.25		-2.32	0.027126399	4
7	6.75		-2.11	0.042659187	7
7.5	7.25		-1.91	0.06434518	11
8	7.75	16	-1.71	0.093089881	15
8.5	8.25	27	-1.50	0.129173058	21
9	8.75	28	-1.30	0.171919213	28
9.5	9.25	41	-1.09	0.219462285	36
10	9.75	46	-0.89	0.268706634	44
10.5	10.25	53	-0.68	0.315558505	52
11	10.75	57	-0.48	0.355438445	58
11.5	11.25	60	-0.28	0.384000615	63
12	11.75	55	-0.07	0.397907796	65
12.5	12.25	71	0.13	0.395472223	65
13	12.75	57	0.34	0.376992345	62
13.5	13.25	51	0.54	0.344692702	56
14	13.75	54	0.74	0.302283647	50
14.5	14.25	42	0.95	0.254261279	42
15	14.75	32	1.15	0.205129826	34
15.5	15.25	30	1.36	0.158730507	26
16	15.75	16	1.56	0.11780806	19
16.5	16.25	16	1.77	0.083863429	14
17	16.75	8	1.97	0.05726025	9
17.5	17.25	11	2.17	0.037498756	6
18	17.75	3	2.38	0.023553937	4
18.5	18.25	3	2.58	0.014190351	2
ou plus	18.75	1	2.79	0.008199848	1
			total	4.880977591	800

Calcul des effectifs théoriques (3)

Loi théorique = LOI.NORMALE.STANDARD.N(Z_C;FAUX)

- Z_C calculé avec X_C <u>centre</u> des classes
- Non cumulative
- Normalisée à σ/taille intervalle classe

Comparer les distributions observée et théorique (4)

Conclusion?

Comparer les distributions observée et théorique (4)

Conclusion ? Test du χ^2

On teste l'hypothèse : « la variable suit une loi de distribution normale de moyenne μ et d'écart-type σ ».

Conditions de validité des tests statistiques !

permet de calculer la distance D² entre la distribution de fréquence et la distribution de probabilité, cette distance est comparée à un seuil au-delà duquel on va rejeter l'hypothèse faite sur la distribution en prenant un risque alpha de se tromper (5%).

classes	centre des classes	Fréquence	Zc	loi normale	effectif théorique
5	4.75	2	-2.93	0.005430363	
5.5	5.25	1	-2.73	0.009678327	2
6	5.75	0	-2.52	0.016544541	3
6.5	6.25	4	-2.32	0.027126399	4
7	6.75	7	-2.11	0.042659187	7
7.5	7.25	8	-1.91	0.06434518	11
8	7.75	16	-1.71	0.093089881	15
8.5	8.25	27	-1.50	0.129173058	21
9	8.75	28	-1.30	0.171919213	28
9.5	9.25	41	-1.09	0.219462285	36
10	9.75	46	-0.89	0.268706634	44
10.5	10.25	53	-0.68	0.315558505	52
11	10.75	57	-0.48	0.355438445	58
11.5	11.25	60	-0.28	0.384000615	63
12	11.75	55	-0.07	0.397907796	65
12.5	12.25	71	0.13	0.395472223	65
13	12.75	57	0.34	0.376992345	62
13.5	13.25	51	0.54	0.344692702	56
14	13.75	54	0.74	0.302283647	50
14.5	14.25	42	0.95	0.254261279	42
15	14.75	32	1.15	0.205129826	34
15.5	15.25	30	1.36	0.158730507	26
16	15.75	16	1.56	0.11780806	19
16.5	16.25	16	1.77	0.083863429	14
17	16.75	8	1.97	0.05726025	9
17.5	17.25	11	2.17	0.037498756	6
18	17.75	3	2.38	0.023553937	4
18.5	18.25	3	2.58	0.014190351	2
ou plus	18.75	1	2.79	0.008199848	1
			total	4.880977591	800

Effectifs < 5!

Regroupement de classes :

- Changement des bornes
- Classes plus larges

Min = 4,675Max = 18,793

Max = 18,793 Étendue = 14,118 9 classes

Intervalle: 1,6

Min: 4,5

Max: 18,8

classe	centre des classes	effectif observé	Zc	Loi normale	effectifs théoriques
6.3	5.5	5	-2.625	0.013	6.67
7.9	7.1	30	-1.972	0.057	29.95
9.5	8.7	99	-1.318	0.167	87.76
11.1	10.3	167	-0.664	0.320	167.75
12.7	11.9	200	-0.011	0.399	209.16
14.3	13.5	161	0.643	0.324	170.13
15.9	15.1	94	1.296	0.172	90.27
17.5	16.7	37	1.950	0.060	31.25
19.1	18.3	7	2.604	0.013	7.06

Effectifs > 5!

1

1

Somme = 800

Somme = 1,53 = σ /intervalle

Somme = 800

centre des classes	effectif observé	Zc	Loi normale	effectifs théoriques	D ²
5.5	5	-2.625	0.013	6.67	0.42
7.1	30	-1.972	0.057	29.95	0.00
8.7	99	-1.318	0.167	87.76	1.44
10.3	167	-0.664	0.320	167.75	0.00
11.9	200	-0.011	0.399	209.16	0.40
13.5	161	0.643	0.324	170.13	0.49
15.1	94	1.296	0.172	90.27	0.15
16.7	37	1.950	0.060	31.25	1.06
18.3	7	2.604	0.013	7.06	0.00
	classes 5.5 7.1 8.7 10.3 11.9 13.5 15.1 16.7	classes observé 5.5 5 7.1 30 8.7 99 10.3 167 11.9 200 13.5 161 15.1 94 16.7 37	classes observé Zc 5.5 5 -2.625 7.1 30 -1.972 8.7 99 -1.318 10.3 167 -0.664 11.9 200 -0.011 13.5 161 0.643 15.1 94 1.296 16.7 37 1.950	classes observé Zc Loi normale 5.5 5 -2.625 0.013 7.1 30 -1.972 0.057 8.7 99 -1.318 0.167 10.3 167 -0.664 0.320 11.9 200 -0.011 0.399 13.5 161 0.643 0.324 15.1 94 1.296 0.172 16.7 37 1.950 0.060	classes observé Zc Loi normale effectifs theoriques 5.5 5 -2.625 0.013 6.67 7.1 30 -1.972 0.057 29.95 8.7 99 -1.318 0.167 87.76 10.3 167 -0.664 0.320 167.75 11.9 200 -0.011 0.399 209.16 13.5 161 0.643 0.324 170.13 15.1 94 1.296 0.172 90.27 16.7 37 1.950 0.060 31.25

$$D^2 = \sum_{i=1}^k \frac{(O-T)^2}{T}$$

 $D^2 = 3,96$

$$D^2 = 3,96$$

 $\chi^2_{\alpha} = ?$

• calcul du degré de liberté

v = nombre de classes - 1 - nb paramètres estimés

choix du risque (de se tromper)

$$\alpha = 1\%, 5\%, 10\%...$$

Exemple:

Paramètres estimés = 2 (moyenne, écart-type)

Nombre de classes : 9

$$v = 9 - 1 - 2 = 6$$

 $\chi_{\alpha}^2 = \text{LOI.KHIDEUX.INVERSE.DROITE}(0,05;6) = 12,59$ (Ou lecture dans une table)

 $D^2 < \chi_\alpha^2$: on ne peut pas rejeter l'hypothèse d'une distribution normale au risque 5% de se tromper.

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

$$p(X=k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

$$\mu = \sigma^2 = \lambda$$

$$p(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$
$$\mu = \sigma^2 = \lambda$$

$$\mu = \frac{a+b}{2}$$

$$\sigma^2 = \frac{(b-a)^2}{12}; \sigma = \frac{b-a}{2\sqrt{3}}$$

Formules à mémoriser :

$$Z_c = \frac{X_c - \mu}{\sigma}$$

$$D^2 = \sum_{i=1}^k \frac{(O-T)^2}{T}$$

= LOI.NORMALE.STANDARD.N $(Z_C; FAUX)$

Calcul des effectifs dans Excel

- 1. Définir les bornes supérieures des classes (col.1, k lignes)
- 2. Sélectionner la colonne voisine +1 lignes (k+1) (col.2)
- 3. =FREQUENCE (matrice X;col.1)
- 4. CTRL+SHIFT+ENTREE : {FREQUENCE (matrice X;col.1)}

Représentation graphique dans Excel

- 1. Calculer le centre des classes (col.3)
- 2. Sélectionner la col.2 (fréquences)
- 3. Tracer un histogramme
- 4. Clic droit : sélectionner des données
- 5. Modifier les étiquettes de l'axe horizontal : centre des classes (col.3)

Ou : utilitaire d'analyse