Mixed logit modelling in Stata

An overview

Arne Risa Hole University of Sheffield

UK Stata Users Group meeting September 2013

Background

- The conditional logit model (McFadden, 1974) is the 'workhorse' model for analysing discrete choice data
- While widely used this model has several well-known limitations:
 - Cannot account for preference heterogeneity among respondents (unless it's related to observables)
 - IIA property: can lead to unrealistic predictions
- This has led researchers in various disciplines to consider more flexible alternatives
- The mixed logit model extends the standard conditional logit model by allowing one or more of the parameters in the model to be randomly distributed

Mixed logit models in Stata (pre Stata 13)

- Official Stata:
 - xtmelogit
- User written:
 - gllamm
 - mixlogit
 - Iclogit
 - gmnl
 - bayesmlogit
 - Islogit
- I will give examples of the use of some of these commands in this talk

Outline

- Theoretical foundations the random utility model
- Mixed logit with continuous distributions (mixlogit)
- Mixed logit with discrete distributions (*Iclogit*)
- Generalised multinomial logit (gmnl)
- Bayesian mixed logit (bayesmlogit)

The random utility model

The utility decision maker n obtains from choosing alternative j is given by

$$U_{nj} = V_{nj} + \varepsilon_{nj}$$

where V_{nj} is a function of observable attributes of the alternatives, \mathbf{x}_{nj} , and of the decision maker, \mathbf{z}_n

- \bullet ε_{nj} is unknown and treated as random
- \blacksquare The probability that decision maker n chooses alternative i is

$$\begin{array}{lcl} P_{ni} & = & \Pr(U_{ni} > U_{nj}) \forall j \neq i \\ \\ & = & \Pr(V_{ni} + \varepsilon_{ni} > V_{nj} + \varepsilon_{nj}) \forall j \neq i \\ \\ & = & \Pr(\varepsilon_{nj} - \varepsilon_{ni} < V_{ni} - V_{nj}) \forall j \neq i \end{array}$$

■ Different discrete choice models are obtained from different assumptions about the distribution of the random terms

The conditional logit model

If we make the assumption that the random terms are IID type I extreme value distributed we obtain the conditional logit model:

$$P_{ni} = \frac{\exp(\sigma_n V_{ni})}{\sum_{j=1}^{J} \exp(\sigma_n V_{nj})}$$

 Typically the representative utility is specified to be a linear-in-parameters function

$$V_{ni} = \mathbf{x}'_{ni}\boldsymbol{\beta} + \mathbf{z}'_{n}\boldsymbol{\gamma}_{i}$$

- σ_n is a scale parameter which is typically normalised to 1. Assumes ε_{nj} is homoscedastic (more on that later).
- To estimate the conditional logit model in Stata we use the asclogit ('alternative-specific conditional logit') command

Limitations of the conditional logit

- Assumes that respondents have the same preferences (or that their preferences depend on observable characteristics)
- Equal proportional substitution between the alternatives:

$$\frac{\partial P_{ni}}{\partial x_{nj}^*} \frac{x_{nj}^*}{P_{ni}} = -x_{nj}^* P_{nj} \beta^*$$

- Note that this expression does not depend on *i*
- This is due to the assumption that the error terms are independent. Another consequence is is the IIA property:

$$\frac{P_{ni}}{P_{nk}} = \frac{\exp(V_{ni}) / \sum_{j=1}^{J} \exp(V_{nj})}{\exp(V_{nk}) / \sum_{i=1}^{J} \exp(V_{nj})} = \frac{\exp(V_{ni})}{\exp(V_{nk})}$$

Extension: the mixed logit model

- The mixed logit model overcomes these limitations by allowing the coefficients in the model to vary across decision makers
- The mixed logit choice probability is given by:

$$P_{ni} = \int \frac{\exp(\mathbf{x}'_{ni}\boldsymbol{\beta})}{\sum_{j=1}^{J} \exp(\mathbf{x}'_{nj}\boldsymbol{\beta})} f(\boldsymbol{\beta}|\boldsymbol{\theta}) d\boldsymbol{\beta}$$

where $f(\boldsymbol{\beta}|\boldsymbol{\theta})$ is the density function of $\boldsymbol{\beta}$

- Allowing the coefficients to vary implies that we allow for the fact that different decision makers may have different preferences
- It can also be seen that the IIA property no longer holds

Panel data

- If we observe an individual making several choices this can be taken into account in the analysis
- The probability of a particular sequence of choices is given by:

$$S_n = \int \prod_{t=1}^{T} \prod_{j=1}^{J} \left[\frac{\exp(\mathbf{x}'_{njt}\boldsymbol{\beta})}{\sum_{j=1}^{J} \exp(\mathbf{x}'_{njt}\boldsymbol{\beta})} \right]^{y_{njt}} f(\boldsymbol{\beta}|\boldsymbol{\theta}) d\boldsymbol{\beta}$$

where $y_{njt} = 1$ if the individual chose alternative j in choice situation t and 0 otherwise

Maximum simulated likelihood

■ The θ parameters can be estimated by maximising the simulated log-likelihood function

$$SLL = \sum_{n=1}^{N} \ln \left\{ \frac{1}{R} \sum_{r=1}^{R} \prod_{t=1}^{T} \prod_{j=1}^{J} \left[\frac{\exp(\mathbf{x}_{njt}' \boldsymbol{\beta}_{n}^{[r]})}{\sum_{j=1}^{J} \exp(\mathbf{x}_{njt}' \boldsymbol{\beta}_{n}^{[r]})} \right]^{y_{njt}} \right\}$$

where $oldsymbol{eta}_n^{[r]}$ is the r-th draw for individual n from the distribution of $oldsymbol{eta}$

■ This approach can be implemented in Stata using the *mixlogit* command (Hole, 2007)

Example: Households' choice of electricity supplier

- Subset of the data from Huber and Train (2000)
- Residential electricity customers presented with a series of experiments with four alternative electricity suppliers
- Price is either fixed or a variable rate that depends on the time of day or the season
- The following attributes are included in the experiment:
 - Price in cents per kWh if fixed price, 0 if TOD or seasonal rates
 - Contract length in years
 - Whether a local company (0-1 dummy)
 - Whether a well-known company (0-1 dummy)
 - TOD rates (0-1 dummy)
 - Seasonal rates (0-1 dummy)

First 16 records in dataset

- . use http://fmwww.bc.edu/repec/bocode/t/traindata.dta, clear
- . list in 1/12, sepby(gid)

	+								
	У	price	contract	local	wknown	tod	seasonal	gid	pid
	ļ								
1.	0	7	5	0	1	0	0	1	1
2.	0	9	1	1	0	0	0	1	1
3.	0	0	0	0	0	0	1	1	1
4.	1	0	5	0	1	1	0	1	1
5.	0	7	0	0	1	0	0	2	1
6.	0	9	5	0	1	0	0	2	1
7.	1	0	1	1	0	1	0	2	1
8.	0	0	5	0	0	0	1	2	1
	İ								
9.	j 0	9	5	0	0	0	0	3	1
10.	įο	7	1	0	1	0	0	3	1
11.	İο	0	0	0	1	1	0	3	1
12.	1	0	0	1	0	0	1	3	1
	+								

Independent normally distributed coefficients

- . global randvars "contract local wknown tod seasonal"
- . mixlogit y price, rand(\$randvars) group(gid) id(pid) nrep(500)

Iteration 0: log likelihood = -1321.8371 (not concave)
 (output omitted)

Iteration 5: log likelihood = -1105.2832

Mixed logit model Number of obs = 4780 LR chi2(5) = 502.21 Log likelihood = -1105.2832 Prob > chi2 = 0.0000

У	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
Mean						
price	9585486	.065665	-14.60	0.000	-1.08725	8298476
contract	2664931	.0463752	-5.75	0.000	3573869	1755994
local	2.138131	.2286567	9.35	0.000	1.689973	2.58629
wknown	1.551129	.176043	8.81	0.000	1.206091	1.896167
tod	-9.324015	.6113342	-15.25	0.000	-10.52221	-8.125822
seasonal	-9.354167	.6126139	-15.27	0.000	-10.55487	-8.153466
	·					
SD						
contract	.3851452	.0411142	9.37	0.000	.3045629	.4657275
local	1.871411	.2237016	8.37	0.000	1.432964	2.309858
wknown	1.241902	.1698206	7.31	0.000	.9090594	1.574744
tod	2.470736	.3040799	8.13	0.000	1.87475	3.066721
seasonal	2.261269	.2508061	9.02	0.000	1.769698	2.75284

The sign of the estimated standard deviations is irrelevant: interpret them as being positive

^{. *}Save coefficients for later use

[.] matrix b = e(b)

Correlated normally distributed coefficients

/155

1.664762

.293901

```
. *Starting values
matrix start = b[1.1..7].0.0.0.0.b[1.8].0.0.0.b[1.9].0.0.b[1.10].0.b[1.11]
. mixlogit y price, rand($randvars) group(gid) id(pid) nrep(500) ///
> corr from(start, copy)
            log likelihood = -1105.2832 (not concave)
Iteration 0:
 (output omitted)
Iteration 8: log likelihood = -1052.5628
Mixed logit model
                                          Number of obs = 4780
                                          LR chi2(15)
                                                        = 607.65
Log likelihood = -1052.5628
                                          Prob > chi2
                                                            0.0000
                Coef.
                       Std. Err. z P>|z|
                                               [95% Conf. Interval]
      price |
            -.9787741 .070082 -13.97 0.000 -1.116132
                                                        -.8414159
            -.2720893 .0461627 -5.89 0.000 -.3625666 -.181612
   contract |
            2.465699 .3208127 7.69 0.000 1.836918 3.094481
      local
            1.909235 .2441677 7.82 0.000 1.430675 2.387794
     wknown
       tod | -9.482937 .6453369 -14.69 0.000 -10.74777 -8.2181
   seasonal | -9.550856
                      .6487147 -14.72 0.000 -10.82231 -8.279398
              .4042082 .0538859 7.50 0.000 .2985938 .5098225
      /111
       /121
              .8208457 .3444456 2.38 0.017 .1457448 1.495947
              .6398508 .2402662 2.66 0.008 .1689378 1.110764
       /131
       /141
             -.1434189 .3279705 -0.44 0.662 -.7862293 .4993915
       /151
              .4056873 .3557024 1.14 0.254
                                               -.2914765 1.102851
       /122
              2.557771
                      .3423882 7.47 0.000
                                              1.886702 3.228839
1.037865 2.168974
              1.603419 .2885535 5.56
      /132
                                        0.000
       /142
              .5591408
                      .3596689 1.55 0.120
                                               -.1457972 1.264079
      /152
              .3354436 .4288803 0.78 0.434
                                               -.5051464 1.176034
       /133
              .6870104 .1541434 4.46 0.000
                                               .3848949 .9891259
       /143
             -.5710674 .2779083 -2.05 0.040
                                               -1.115758 -.0263772
       /153
            -.0338141 .3143597 -0.11 0.914
                                               -.6499477 .5823196
              2.666976 .3572386 7.47 0.000 1.966801 3.367151
      /144
      /154
              1.994679
                      .3533701 5.64 0.000
                                             1.302086 2.687271
```

0.000

1.088727

2.240797

Coefficient covariance matrix

- The parameters in the bottom panel of the output are the elements of the lower-triangular matrix L, where the covariance matrix for the random coefficients is given by $\Sigma = LL'$
- The *mixlcov* command can be used postestimation to obtain the elements in the Σ matrix along with their standard errors:
 - . mixlcov (output omitted)

У	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
v11	.1633843	.0435622	3.75	0.000	.0780039	.2487646
v21	.3317926	.1402982	2.36	0.018	.0568131	.606772
v31	.2586329	.1021618	2.53	0.011	.0583996	.4588663
v41	0579711	.1317639	-0.44	0.660	3162236	.2002814
v51	.1639821	.1503037	1.09	0.275	1306078	.458572
v22	7.215978	1.779245	4.06	0.000	3.728722	10.70323
v32	4.626398	1.258291	3.68	0.000	2.160193	7.092603
v42	1.312429	.9886205	1.33	0.184	6252314	3.25009
v52	1.190995	1.217745	0.98	0.328	-1.195743	3.577732
v33	3.452346	.9864134	3.50	0.000	1.519012	5.385681
v43	.4124413	.5923773	0.70	0.486	7485968	1.57348
v53	.7742056	.712642	1.09	0.277	6225471	2.170958
v44	7.772087	2.067076	3.76	0.000	3.720692	11.82348
v54	5.468447	1.586649	3.45	0.001	2.358672	8.578222
v55	7.028424	1.777315	3.95	0.000	3.544951	10.5119

Predicted probabilities and marginal effects

We may want to investigate how the probability of choosing an alternative changes if the company is well-known:

```
. preserve
. set seed 12345
. gen rnd = runiform()
. bysort pid gid (rnd): gen alt = n
. replace wknown = 0 if alt == 1
(483 real changes made)
. mixlpred p0, nrep(500)
. replace wknown = 1 if alt == 1
(1195 real changes made)
. mixlpred pl, nrep(500)
. gen p diff = p1-p0
. sum p diff if alt==1
   Variable |
                  Obs
                              Mean Std. Dev.
     p diff | 1195 .1523634 .075117 .0141819
                                                           .3574491
. restore
```

■ Note: this does not give us standard errors. Can use the bootstrap, but normally too time consuming

Willingness to pay estimates

Since price is assumed to be a fixed parameter, we have the convenient result that

$$E(WTP^k) = -\frac{E(\beta^k)}{\beta^{price}}$$

■ This can be calculated using the *wtp* command (SSC):

```
. wtp price $randvars
```

```
        wtp
        -.27798991
        2.5191709
        1.9506387
        -9.6885863
        -9.7579781

        11
        -.337131675
        1.8956186
        1.4822387
        -10.669959
        -10.4398

        ul
        -.18466306
        3.1427233
        2.4188904
        -9.0072139
        -9.0761563
```

■ This shows that the average respondent is willing to pay 2.5 cents per kWh more if the company is local, for example

Individual-level coefficients

- The mixed logit model can be used to estimate individual-level coefficients
- The expected value of β conditional on a given response pattern \mathbf{y}_n and a set of alternatives characterised by \mathbf{x}_n is given by:

$$E[\boldsymbol{\beta}|\mathbf{y}_{n},\mathbf{x}_{n}] = \frac{\int \boldsymbol{\beta} \prod_{t=1}^{T} \prod_{j=1}^{J} \left[\frac{\exp(\mathbf{x}'_{njt}\boldsymbol{\beta})}{\sum_{j=1}^{J} \exp(\mathbf{x}'_{njt}\boldsymbol{\beta})} \right]^{y_{njt}} f(\boldsymbol{\beta}|\boldsymbol{\theta}) d\boldsymbol{\beta}}{\int \prod_{t=1}^{T} \prod_{j=1}^{J} \left[\frac{\exp(\mathbf{x}'_{njt}\boldsymbol{\beta})}{\sum_{j=1}^{J} \exp(\mathbf{x}'_{njt}\boldsymbol{\beta})} \right]^{y_{njt}} f(\boldsymbol{\beta}|\boldsymbol{\theta}) d\boldsymbol{\beta}}$$

Intuitively this can be thought of as the conditional mean of the coefficient distribution for the sub-group of individuals who face the same alternatives and make the same choices Revelt and Train (2000) suggest approximating $E[\beta|\mathbf{y}_n,\mathbf{x}_n]$ using simulation:

$$\widehat{\boldsymbol{\beta}_n} = \frac{\frac{1}{R} \sum_{r=1}^R \boldsymbol{\beta}_n^{[r]} \prod_{t=1}^T \prod_{j=1}^J \left[\frac{\exp(\mathbf{x}_{njt}' \boldsymbol{\beta}_n^{[r]})}{\sum_{j=1}^J \exp(\mathbf{x}_{njt}' \boldsymbol{\beta}_n^{[r]})} \right]^{y_{njt}}}{\frac{1}{R} \sum_{r=1}^R \prod_{t=1}^T \prod_{j=1}^J \left[\frac{\exp(\mathbf{x}_{njt}' \boldsymbol{\beta}_n^{[r]})}{\sum_{j=1}^J \exp(\mathbf{x}_{njt}' \boldsymbol{\beta}_n^{[r]})} \right]^{y_{njt}}}$$

where $\boldsymbol{\beta}_n^{[r]}$ is the r-th draw for individual n from the estimated distribution of $\boldsymbol{\beta}$

■ This approach can be implemented with the *mixlbeta* command after estimating a model using *mixlogit*

Example: the distribution of the individual-level coefficient for contract length

- . mixlbeta contract, nrep(500) saving(contract_data) replace
- . use contract_data, clear
- . kdensity contract, title("")

Discrete parameter distributions

- So far we have assumed that the distribution of the coefficients in the model is continuous
- Alternatively the coefficients may be discrete, which leads to the latent class model
- Each respondent is assumed to belong to a class q, where preferences vary across, but not within, classes
- In this case the probability of a particular sequence of choices is given by:

$$S_n = \sum_{q=1}^{Q} H_{nq} \prod_{t=1}^{T} \prod_{j=1}^{J} \left[\frac{\exp(\mathbf{x}'_{njt} \boldsymbol{\beta}_q)}{\sum_{j=1}^{J} \exp(\mathbf{x}'_{njt} \boldsymbol{\beta}_q)} \right]^{y_{njt}}$$

■ The probability of belonging to class q, H_{nq} , is typically specified as

$$H_{nq} = rac{\exp(\mathbf{z}_n' \mathbf{\gamma}_q)}{\sum_{q=1}^{Q} \exp(\mathbf{z}_n' \mathbf{\gamma}_q)}$$

where $\gamma_{\mathcal{Q}}=0$

■ The log-likelihood for this model is

$$S_n = \sum_{n=1}^{N} \ln \left\{ \sum_{q=1}^{Q} H_{nq} \prod_{t=1}^{T} \prod_{j=1}^{J} \left[\frac{\exp(\mathbf{x}'_{njt}\boldsymbol{\beta}_q)}{\sum_{j=1}^{J} \exp(\mathbf{x}'_{njt}\boldsymbol{\beta}_q)} \right]^{y_{njt}} \right\}$$

- This expression can be maximised directly using standard methods, or indirectly using the EM algorithm
- In Stata the former approach is implemented by gllamm (Rabe-Hesketh and Skrondal, 2012) and the latter by the Iclogit command (Pacifico and Yoo, 2012)

3-class model

■ Note: no standard errors. We can use these estimates as starting values for *gllamm*

Note: Model estimated via EM algorithm

3-class model using the *lclogitml* wrapper for *gllamm*

. lclogitml, iterate(10)

```
-gllamm- is initialising. This process may take a few minutes.
Iteration 0:
            log likelihood = -1118.2357 (not concave)
(output omitted)
Iteration 3:
            log likelihood = -1118.2348
Latent class model with 3 latent classes
                Coef. Std. Err.
                                  z P>|z|
                                                 [95% Conf. Interval]
            -.8034478 .1178941 -6.81 0.000
                                               -1.034516 -.5723797
     price |
   contract | -.5066114 .0592648 -8.55 0.000
                                             -.6227682 -.3904546
             .4995165 .2047987 2.44 0.015 .0981185 .9009146
     local |
    wknown
            .3566455 .1823778 1.96 0.051 -.0008085 .7140995
            -5.99186 .9318469 -6.43 0.000 -7.818246 -4.165473
       tod
   seasonal -6.647019 .9928728
                                 -6.69 0.000
                                               -8.593014 -4.701024
choice?
            -.2115514 .0847294 -2.50 0.013
     price |
                                                -.377618 -.0454848
             .0234125 .0301625 0.78 0.438
                                              -.0357049
                                                         .0825298
   contract |
     local
             3.086841 .2504324 12.33 0.000 2.596003
                                                         3.57768
    wknown |
             2.308963 .2336502 9.88 0.000 1.851017 2.766909
       tod
             -1.878439 .7354142 -2.55 0.011 -3.319824 -.4370538
   seasonal |
             -1.964792 .7642616
                                 -2.57
                                        0.010
                                                -3.462717
                                                          -.4668668
choice3
     price |
             -1.139812 .1411815 -8.07 0.000
                                               -1.416522 -.8631009
   contract |
             -.2304551 .0654821 -3.52 0.000
                                               -.3587976 -.1021126
     local
             1.675052 .3361127 4.98 0.000
                                               1.016283
                                                          2.33382
    wknown
             1.64531 .2618367 6.28 0.000 1.132119
                                                           2.1585
       tod
             -12.5301
                     1.386537 -9.04
                                       0.000 -15.24767 -9.812542
   seasonal
             -11.74968
                       1.138413
                                 -10.32
                                        0.000
                                                -13.98093
                                 -0.96 0.337
chare?
     cons
              .0002157
                                                -.5617159 .5621473
```

Choosing the number of latent classes

- We have seen that the number of latent classes needs to be specified prior to estimating the latent class model
- In practice the following procedure is often used to determine the optimal number of classes:
 - Estimate models with different numbers of classes, say 2-10
 - Choose the preferred model using the AIC, CAIC and/or BIC information criteria

Classes	LLF	Nparam	AIC	CAIC	BIC
2	-1211.352	13	2448.704	2495.571	2482.571
3	-1118.236	20	2276.471	2348.575	2328.575
4	-1085.303	27	2224.607	2321.946	2294.946
5	-1040.488	34	2148.976	2271.552	2237.552
6	-1028.56	41	2139.121	2286.933	2245.933
7	-1006.369	48	2108.738	2281.786	2233.786
8	-990.2386	55	2090.477	2288.761	2233.761
9	-983.6419	62	2091.284	2314.804	2252.804
10	-978.0925	69	2094.185	2342,942	2273.942

Posterior class membership probabilities

As we have seen the class membership probability is given by

$$H_{nq} = rac{\exp(\mathbf{z}_n' \gamma_q)}{\sum_{q=1}^{Q} \exp(\mathbf{z}_n' \gamma_q)}$$

- This is the **prior** class membership probability
- The **posterior** class membership probability is given by

$$G_{nq} = \frac{H_{nq} \prod_{t=1}^{T} \prod_{j=1}^{J} \left[\frac{\exp(\mathbf{x}'_{njt} \boldsymbol{\beta}_q)}{\sum_{j=1}^{J} \exp(\mathbf{x}'_{njt} \boldsymbol{\beta}_q)} \right]^{y_{njt}}}{\sum_{q=1}^{Q} H_{nq} \prod_{t=1}^{T} \prod_{j=1}^{J} \left[\frac{\exp(\mathbf{x}'_{njt} \boldsymbol{\beta}_q)}{\sum_{j=1}^{J} \exp(\mathbf{x}'_{njt} \boldsymbol{\beta}_q)} \right]^{y_{njt}}}$$

Posterior class membership probabilities

 The prior and posterior class membership probabilities can be calculated using the postestimation command *lclogitpr* with the *up* and *cp* options

- . lclogitpr H, up
- . sum H*

Variable	Obs	Mean	Std. Dev.	Min	Max
H1	4780	.273921	0	.273921	.273921
H2	4780	.3620063	0	.3620063	.3620063
н3	4780	.3640727	0	.3640727	.3640727

- . lclogitpr G, cp
- . sum G*

Variable	Obs	Mean	Std. Dev.	Min	Max
G1	4780	.2717595	.4252277	9.61e-13	1
G2	4780	.3634778	.4545172	3.94e-12	1
G3	4780	.3647628	.4625874	4.22e-14	.9999977

Choice probabilities

■ The probability of choosing an alternative in a choice situation can be calculated using *lclogitpr* with the *pr* option

```
. lclogitpr P, pr
```

. sum P*

Variable	Obs	Mean	Std. Dev.	Min	Max
P	4780	.25	.1838437	.0116864	.8217464
P1	4780	.25	.2142197	.0064628	.8243505
P2	4780	.25	.2187802	.016932	.8660929
P3	4780	.25	.3238693	.0006114	.9779206

- Here P1, P2 and P3 are the choice probabilities conditional on belonging to class 1, 2 and 3
- P is the unconditional choice probability, or the average of P1-P3 weighted by the prior class membership probabilities

Individual-level parameters

- The latent class model can be used to estimate individual-level coefficients
- The expected value of β conditional on a given response pattern \mathbf{y}_n and a set of alternatives characterised by \mathbf{x}_n is given by:

$$E[\boldsymbol{\beta}|\mathbf{y}_n,\mathbf{x}_n] = \sum_{q=1}^{Q} \boldsymbol{\beta}_q G_{nq}$$

• We can obtain an estimate of β_n by plugging in our estimates of β_q and G_{nq} into this formula

Example: the distribution of the individual-level coefficient for contract length

. kdensity b_contract, title("")

Scale heterogeneity

- In the preceding analysis we have assumed that preference heterogeneity is the main driver behind individuals making different choices
- Recently some researchers (e.g. Louviere et al. 1999) have suggested that much of the preference heterogeneity may be better described as "scale" heterogeneity
- That is, with attribute coefficients fixed, the scale of the idiosyncratic error term is greater for some consumers than it is for others
- Since the scale of the error term is inversely related to the error variance, this argument implies that choice behavior is more random for some consumers than it is for others

The Generalised Multinomial Logit (G-MNL) model

■ The G-MNL model (Fiebig et al., 2010) extends the mixed logit by specifying

$$\boldsymbol{\beta}_n = \sigma_n \boldsymbol{\beta} + \{\gamma + \sigma_n (1 - \gamma)\} \boldsymbol{\eta}_n$$

where β is a constant vector, γ is a scalar parameter, η_n is distributed MVN(0, Σ)

- $\sigma_n = \exp(\overline{\sigma} + \theta \mathbf{z}_n + \tau v_n)$, where \mathbf{z}_n is a vector of characteristics of individual n and v_n is distributed N(0,1).
- $\overline{\sigma}$ is a normalizing constant which is set so that the mean of σ_n is equal to 1 when $\theta=0$

Special cases of G-MNL

- lacksquare G-MNL-I: $oldsymbol{eta}_n=\sigma_noldsymbol{eta}+oldsymbol{\eta}_n$ (when $\gamma=1$)
- lacksquare G-MNL-II: $oldsymbol{eta}_n=\sigma_n(oldsymbol{eta}+oldsymbol{\eta}_n)$ (when $\gamma=0$)
- S-MNL: $\boldsymbol{\beta}_n = \sigma_n \boldsymbol{\beta}$ (when $var(\boldsymbol{\eta}_n) = 0$)
- Mixed logit: $oldsymbol{eta}_n = oldsymbol{eta} + oldsymbol{\eta}_n$ (when $\sigma_n = 1$)
- lacksquare Standard conditional logit: $m{eta}_n = m{eta}$ (when $\sigma_n = 1$ and $var(m{\eta}_n) = 0$)

S-MNL example

```
. gmnl y price contract local wknown tod seasonal, group(gid) id(pid) ///
> nrep(500)
Iteration 0: log likelihood = -1348.2029 (not concave)
(output omitted)
Iteration 5: log likelihood = -1318.5702
Generalized multinomial logit model
                                            Number of obs
                                                                 4780
                                             Wald chi2(6)
                                                                 68.64
Log likelihood = -1318.5702
                                             Prob > chi2
                                                                 0.0000
                                (Std. Err. adjusted for clustering on pid)
                                      z P> | z |
                                                    [95% Conf. Interval]
                  Coef.
                         Std. Err.
      price |
              -.7580152
                         .0986035
                                  -7.69 0.000
                                                 -.9512745
                                                               -.564756
   contract |
              -.1586749 .0285772 -5.55 0.000 -.2146852 -.1026645
              1.585564 .2219014 7.15 0.000 1.150645 2.020483
      local
             1.226283 .174271 7.04 0.000 .8847181 1.567848
     wknown
             -7.423988 .9242881 -8.03 0.000 -9.235559 -5.612417
        tod |
   seasonal
              -7.484115
                         .9345008 -8.01 0.000
                                                 -9.315703
                                                              -5.652527
                          .127856
                                    7.92 0.000
                                                    .7624783
       /tau |
               1.013072
                                                               1.263665
```

The sign of the estimated standard deviations is irrelevant: interpret them as being positive

G-MNL-II example

being positive

```
. gmnl y price, rand($randyars) group(gid) id(pid) nrep(500) gamma(0)
Iteration 0: log likelihood = -1316.6538 (not concave)
(output omitted)
Iteration 11: log likelihood = -1097.9075
Generalized multinomial logit model
                                          Number of obs
                                                               4780
                                           Wald chi2(6)
                                                             126.96
Log likelihood = -1097.9075
                                           Prob > chi2
                                                               0.0000
                               (Std. Err. adjusted for clustering on pid)
                Coef.
                        Std. Err.
                                          P>|z|
                                                   [95% Conf. Interval]
Mean
      price
             -1.114902 .1050251 -10.62 0.000 -1.320747 -.9090566
             -.3132268 .0693406 -4.52 0.000 -.4491318 -.1773218
   contract |
      local
             2.465006 .321147 7.68 0.000
                                                 1.835569 3.094442
             1.867701 .2279987 8.19 0.000 1.420832 2.314571
     wknown
             -10.73435 .9956536 -10.78 0.000 -12.68579 -8.782904
        tod |
   seasonal
              -10.72091
                       .983361 -10.90 0.000
                                               -12.64826 -8.793559
SD
             .4326061 .064926 6.66 0.000
   contract |
                                                 .3053536
                                                            .5598587
              2.111132 .3134762 6.73 0.000
                                                            2.725534
      local
                                                  1.49673
              1.360522 .1999992 6.80 0.000 .9685305
     wknown
                                                            1.752513
               2.8647
                        .4243209 6.75 0.000
                                                   2.033046
                                                             3,696353
        tod
                        .3417888
                                7.61
   seasonal
               2.601677
                                          0.000
                                                   1.931783
              -.4978479
                        .0990645
                                   -5.03
      /tau
                                          0.000
                                                  -.6920107
The sign of the estimated standard deviations is irrelevant: interpret them as
```

- gmnl has a similar suite of post-estimation commands to mixlogit
- See Gu et al. (2013) for more info

An alternative to MSL: Bayesian estimation

- We have seen that the parameters in the mixed logit model can be estimated using maximum simulated likelihood
- Alternatively we can use Bayesian procedures to obtain the estimates
- The results can be interpreted in the same way as if they were maximum likelihood estimates
- The Bayesian approach can therefore be viewed as an alternative algorithm to obtain the estimates

 By Bayes rule, we have that the posterior parameter distribution is given by

$$K(\theta|Y) = \frac{L(Y|\theta)k(\theta)}{L(Y)}$$

where $L(Y|\theta)$ is the likelihood function (the probability of observing the data given the parameters), $k(\theta)$ is the prior parameter distribution and $L(Y) = \int L(Y|\theta)k(\theta)d\theta$

- The mean of the posterior distribution can be shown to have the same asymptotic properties as the maximum likelihood estimator
- The Bayesian approach involves taking many draws from the posterior distribution and averaging these draws

- Train (2009) describes an algorithm for taking draws from the posterior distribution of the coefficients in a mixed logit with normally distributed coefficients
- This algorithm is implemented by the *bayesmlogit* command (Baker, 2013)
- The mean and variance of β as well as the individual-level parameters, β_n , are treated as parameters to be estimated
- The values from the algorithm converges to draws from the posterior distribution
- The iterations prior to convergence are called the 'burn-in'
- Even after convergence the draws are correlated, so only a portion of the draws are kept

Correlated normally distributed coefficients

. bayesmlogit y price, rand(\$randvars) group(gid) id(pid) draws(20000) ///

> burn(10000) thin(10) saving(betal) replace

Payragian Mixed Logit Model

Bayesian Mixed Logit	Model			servations oups		.00
Acceptance rates:				oices		
Fixed coefs	= 0.087			tal draws		
Random coefs(ave,min		0 195 0 27		rn-in draws		
Random Coers(ave,min	,max)= 0.230,	0.133, 0.27			10 draws ke	
У	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
Fixed	!					
price	2010195	.0121183	-16.59	0.000	2247997	1772393
Random	+					
contract	2891212	.0596938	-4.84	0.000	4062607	1719817
local	2.64075	.3331781	7.93	0.000	1.986942	3.294558
wknown	2.048036	.2474377	8.28	0.000	1.562479	2.533592
tod	-9.774435	.5827792	-16.77	0.000	-10.91805	-8.630824
seasonal	-9.807829	.5833574	-16.81	0.000	-10.95257	-8.663084
Cov Random	+					
var_contract	.2605256	.0494688	5.27	0.000	.163451	.3576002
cov contractlocal	.3446803	.1849132	1.86		0181821	.7075426
cov contractwknown	.2895433	.1418135	2.04		.0112571	.5678296
cov_contracttod	1531769	.1834363	-0.84		5131412	.2067874
cov contractseasonal	0339583	.1600677	-0.21		3480654	.2801489
var local	7.454412	1.762436	4.23		3.995915	10.91291
cov localwknown	4.680826	1.177204	3.98	0.000	2.370753	6.9909
cov_localtod	3037282	1.097876	-0.28		-2.458133	1.850676
cov localseasonal	.1552508	.9601524	0.16	0.872	-1.728894	2.039395
var wknown	3.827949	.9450303	4.05	0.000	1.973479	5.682419
cov_wknowntod	604678	.8000253	-0.76	0.450	-2.174599	.965243
cov_wknownseasonal	1699213	.6828207	-0.25	0.804	-1.509847	1.170004
var_tod	6.888885	1.701412	4.05	0.000	3.550138	10.22763
cov_todseasonal	4.245384	1.145296	3.71	0.000	1.997926	6.492842
var_seasonal	5.743988	1.362853	4.21	0.000	3.069607	8.418369

(output omitted)

References and further reading I

- Baker MJ. 2013. Adaptive Markov chain Monte Carlo sampling and estimation in Mata. Hunter College Department of Economics Working Paper 440. Available at http://ideas.repec.org/p/htr/hcecon/440.html.
- Fiebig DG, Keane MP, Louviere J, Wasi N. 2010. The generalized multinomial logit model: Accounting for scale and coefficient heterogeneity. Marketing Science 29: 393–421.
- Greene WH, Hensher DA. 2010. Does scale heterogeneity across individuals matter? An empirical assessment of alternative logit models. Transportation 37: 413-428.
- Gu Y, Hole AR, Knox S. 2013. Fitting the generalized multinomial logit model in Stata. Stata Journal 13: 382-397.
- Hole AR. 2007. Fitting mixed logit models by using maximum simulated likelihood. Stata Journal 7: 388-401.
- Huber J, Train K. 2001. On the similarity of classical and Bayesian estimates of individual mean partworths. Marketing Letters 12: 259-269.
- Louviere JJ, Meyer RJ, Bunch DS, Carson RT, Dellaert B, Hanemann WM, Hensher D, Irwin J. 1999.
 Combining sources of preference data for modeling complex decision processes. Marketing Letters 10:
 205–217.

References and further reading II

- McFadden DL. 1974. Conditional logit analysis of qualitative choice behavior. In Frontiers in Econometrics, Zarembka P (ed.). Academic Press: New York.
- Pacifico D, Yoo H. 2012. Iclogit: A Stata module for estimating latent class conditional logit models via the Expectation-Maximization algorithm. Stata Journal, forthcoming. Available at: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2174146.
- Rabe-Hesketh, S and Skrondal, A. 2012. Multilevel and Longitudinal Modeling Using Stata, Third Edition.
 Stata Press: College Station.
- Revelt D, Train K. 2000. Customer-specific taste parameters and mixed logit: Households' choice of electricity supplier. Working Paper, Department of Economics, University of California, Berkeley.
- Train KE, Weeks M. 2005. Discrete choice models in preference space and willingness-to-pay space. In Application of simulation methods in environmental and resource economics, Scarpa R, Aberini A (eds.). Springer: Dordrecht.
- Train KE. 2009. Discrete Choice Methods with Simulation, Second Edition. Cambridge University Press: Cambridge.