УДК 546. 41'23+681+23

ИССЛЕДОВАНИЕ ВНУТРЕННЫХ РАЗРЕЗОВ В КВАЗИТРОЙНОЙ СИСТЕМЕ CASE-GA-SE

Ягубов Н.И.

Бакинский государственный университет, Баку, e-mail: nagiyagubov@rambler.ru

Методами физико-химического анализа ДТА, РФА, МСА, а также измерением микротвердости и плотности исследованы внутренние разрезы Ga_2Se_3 -CaSe, Se-Ca Ga_2Se_4 , Se-Ca Ga_2Se_7 и $CaGaSe_2$ -Ca Ga_2Se_4 в квазитройной системе CaSe-Ga-Se и построены их диаграммы состояния. В системе Ga_2Se_3 -CaSe образуется два соединения: инконгруэнтно плавящееся $CaGa_4Se_7$ при 1000° С и $CaGa_2Se_4$ конгруэнтно плавящееся при 1100° С. Диаграмма состояния системы Se-Ca Ga_2Se_4 квазибинарная эвтектического типа. В системе Se-Ca Ga_2Se_4 образуется эвтектика которая составляет 5 ат.% Se и температура плавления Se-CaSe

Ключевые слова: фазовая диаграмма, эвтектика, квазибинарный разрез, солидус

INVESTIGATION OF THE INTERNAL INCISION IN QUASI-TERNARY CASE-GA-SE SYSTEM

Yagubov N.I.

Baku State University, Baku, e-mail: nagiyagubov@rambler.ru

By the methods of the physico-chemical analysis differential-thermal, X-ray diffraction, microstructure , and microhardness measurements and density the internal cuts Ga_2Se_3 -CaSe, Se-Ca Ga_2Se_4 , Se-Ca Ga_4Se_7 and $CaGaSe_2$ -Ca Ga_2Se_4 in quasi-ternary system CaSe-Ga-Se were studied and their phase diagrams were built. In the system Ga_2Se_3 -CaSe two compounds are founded: incongruently melting $SaGa_4Se_7$ at $1000^{\circ}C$ and congruently melting $SaGa_2Se_4$ at $1100^{\circ}C$. The phase diagram of the system Se-Ca Ga_2Se_4 quasi-binary eutectic type. The system has a eutectic, which contains 5 mol% Se and melts at $190^{\circ}C$. The phase diagrams of the systems Se-Ca Ga_4Se_7 and $CaGaSe_7$ -Ca Ga_7Se_4 are partially quasi-binary.

Keywords: phase diagram, eutectic, quasi-binary cut, solidus

Известно, что среди важных материалов, применяемых в оптоэлектронике, фотоприемниках, фоторезисторах, лазерах и люминофорах занимают соединения и твердые растворы на основе халкогенидов элементов подгруппы кальция [4, 9, 10, 11].

С этой точки зрения было интересно исследовать физико-химическое взаимодействие халькогенидов кальция с халькогенидами галлия. Поиск новых фоточувствительных и люминесцентных материалов имеет как научное, так и практическое значение. Ранее нами исследованы некоторые квазибинарные разрезы тройной системы Ca-Ga-Se [1, 6, 7, 8].

Целью настоящей работы является исследования внутренних разрезов Ga_2Se_3 -CaSe, Se-Ca Ga_2Se_4 и Se-Ca Ga_4Se_7 в квазитройной системе CaSe-Ga-Se.

Соединение GaSe плавится конгруэнтно при 960°С [3] и имеет гексагональную решетки с параметрами a=3,755; c=15,94 Å, Z=4, пр.гр. $P6_3$ /mmc- D^4_{6h} , плотность $\rho=5,03$ г/см³ и микротвердость 300 МПа [3]. Соединение CaSe плавится конгруэнтно при 1470°С и кристаллизуется в кубической сингонии с параметрами решетки a=5,908 Å, пр.гр. Fm3m, плотность $\rho=3,57$ г/см³ и микротвердость 1250 МПа [2, 5].

Материалы и методы исследования

Синтез сплавов системы Ga_2Se_3 -CaSe синтезированы из компонентов Ga_2Se_3 и CaSe в эвакуированных кварцевых ампулах в интервале температур $1000-1200\,^{\circ}$ С, после чего проводили гомогенизирующий отжиг образов при $600\,^{\circ}$ С и $800\,^{\circ}$ С в течение $240\,^{\circ}$ ч. Сплавы системы Se-Ca Ga_2Se_4 и Se-Ca Ga_4Se_7 синтезированы аналогичным ампульным методом. Режим термической обработки сплавов выбирали на основании диаграммы плавкости.

Сплавы системы Ga_2Se_3 -CaSe, Se-Ca Ga_2Se_4 и Se-Ca Ga_4Se_7 исследовались методами физико-химического анализа: дифференциально-термическим (ДТА), рентгенфазовым (РФА), микроструктурным (МСА), а также посредством измерения плотности и микротвердости.

Дифференциальный термический анализ проводился в термографе «Termoskan-2». В качестве эталона использовалось соединение ${\rm Al_2O_3}$ и скорость нагрева была $10\,^{\circ}{\rm C/muh}$.

Рентгенофазовый анализ проводился на рентгенодифрактометре «D2 PHASER». Для исследования были использованы Си Кα излучение и никелевый (Ni) фильтр. Микроструктурный анализ (МСА) проводился на металлографическом микроскопе «МИМ-8». Для выявления фазовых границ в качестве травителя был использован раствор следующего состава: 10 мл H₂SO₄ + 5г K₂Cr₂O₇. Микротвердость сплавов измеряли с помощью микротвердомера «ПМТ–3». Для каждой фазы определяли зависимость микротвердости от состава. Плотность сплавов определяли пикнометрическим методом, в качестве рабочий жидкости использовали толуол.

Результаты исследования и их обсуждение

С целью выяснения химических процессов, происходящих в системе ${\rm Ga_2Se_3}$ — CaSe были синтезированы сплавы в широ-

ком диапазоне концентраций.

Литые образцы, богатые Ga_2Se_3 , компактные слитки темно-коричнево цвета. Сплавы, богатые CaSe, имеют вид спеков черного цвета. Сплавы богатые Ga_2Se_3 устойчивы по отношению к воздуху и воде. CaSe и сплавы на его основе на воздухе постепенно подвергаются гидролизу и изменяют свой цвет от темно-коричневого до черного. Все сплавы системы хорошо растворяются в минеральных кислотах (H_2SO_4 , HNO_3). Отожженные сплавы исследованы методами физико-химического анализа.

ДТА сплавов системы Ga_2Se_3 —CaSe показывает, что при нагревании на термограммах сплавов обнаружили два, три и четыре эндотермических эффекта, относящихся к солидусу и ликвидусу. Результаты ДТА показали, что все фиксированные эффекты на кривых нагревания и охлаждения обратимы. В результате исследований построена фазовая диаграмма системы Ga_2Se_3 —CaSe (рис. 1).

 $Puc.\ 1.\ Диаграмма состояния системы <math>Ga_{,}Se_{,}$ -CaSe

Как видно из рис. 1 сечение Ga_2Se_3 —CaSe тройной системы Ca-Ga-Se квазибинарное.

В системе Ga_2Se_3 —CaSe обнаружено образование двух соединений с составами $CaGa_2Se_4$ и $CaGa_4Se_7$. Соединение

СаGа $_4$ Se $_7$ образуется перитектической реакции: Ж + СаGа $_2$ Se $_4$ ↔ СаGа $_4$ Se $_7$ температура его образования — 1000 °C. Соединение СаGа $_2$ Se $_4$ образуется по реакции CaSe+ Ga $_2$ Se $_3$ ↔ СаGа $_2$ Se $_4$ и плавится конгруэнтно при 1100 °C.

Установлено наличие двух эвтектических точек в системе. Координаты эвтектики, образующийся между соединениями Ga₂Se₃ и CaGa₄Se₇: 11 мол. % CaSe, плавление — 975 °C. Другая эвтектика образуется между соединениями CaSe и CaGa₂Se₄: 57 мол. % CaSe, а плавление 1010 °C.При исследование ДТА сплавов на термограммах наблюдаются 2—5 эндотермических эффекта. На стороне соединения Ga₂Se₃ в интервале концентрации сплавов 0—33,3 мол. % CaSe появление большого количества эндотермических эффектов объясняется наличием трех фазовых переходов на основе Ga₂Se₃.

Фазовый переход $\alpha \leftrightarrow \beta$ происходит при $600\,^{\circ}$ С, а $\beta \leftrightarrow \gamma$ при $800\,^{\circ}$ С (рис. 1). В сплаве состава 50 мол. % CaSe при $1100\,^{\circ}$ С образуется один эндотермическии эффект, и этот эффект соответствует температуре плавле-

ния соединения CaGa₂Se₄.

В результате микроструктурного анализа установлено, что только на стороне соединения Ga_2Se_3 существуют однофазные области. Область твердого раствора образующегося на основе соединения Ga_2Se_3 в зависимости от температуры возрастает.

При исследовании микроструктуры выявлено, что сплавы системы Ga₂Se₃-CaSe в пределах 0–5 мол. % CaSe, 25 и 50 мол. % CaSe однофазные, остальные сплавы двухфазные.

С целью уточнения области твердого раствора, образующегося на основе Ga_2Se_3 в системе Ga_2Se_3 —CaSe синтезированы сплавы с составами 3, 4, 5 и 6 мол. % CaSe в течение 300 ч. и при тех же температурах прямо закаляли в ледяной воде. Затем указанные образцы исследовали микроструктурным анализом.

В результате выяснено, что при комнатной температуре на основе Ga_2Se_3 растворяется 5 мол. % CaSe, а на основе CaSe области твердого раствора практически не определены. Результаты микроструктурного анализа полностью идентичны с результатами дифференциально-термического анализа.

С целью подтверждения результатов ДТА, МСА в системе Ga₂Se₃—CaSe проводили рентгенофазовый анализ сплавов 33,3 и 50 мол. % CaSe.

Установлено, что дифракционные максимумы и межплоскостные расстояния, полученные на дифрактограммах соединений $CaGa_4Se_7$ и $CaGa_2Se_4$ отличаются от исходных компонентов (рис. 2).

Puc. 2. Дифрактограммы сплавов системы Ga_2Se_3 -CaSe. $1-Ga_2Se_3$, $2-CaGa_2Se_4$, $3-CaGa_4Se_p$, 4-GaSe

Таблица 1 Рентгенографические данные соединения CaGa₂Se₄

№ п/п	I nisbi.	2θ	d _{təc.}	d _{hesab.}	$1/d^2_{\text{təc.}}$	1/d ² _{hesab.}	hkl
1	55	16,32	5,4312	5,4393	0,0339	0,0338	101
2	10	29,50	3,7824	3,7796	0,0699	0,0700	211
3	5	25,70	3,4720	3,528	0,0829	0,0815	300
4	25	27,76	3,2109	3,1718	0,0970	0,0994	002
5	10	29,00	3,0763	3,0763	0,1055	0,1055	031
6	80	30,18	2,9587	2,9463	0,1142	0,1152	131
7	35	33,78	2,6512	2,6500	0,1423	0,1424	321
8	50	36,98	2,4308	2,4275	0,1692	0,1697	401
9	10	38,12	2,3607	2,3511	0,1795	0,1809	302
10	25	42,78	2,1137	2,1148	0,2238	0,2236	003
11	100	47,14	1,9310	1,9291	0,2682	0,2687	123
12	9	48,68	1,8701	1,8653	0,2859	0,2874	521
13	11	51,24	1,7813	1,7846	0,3151	0,3140	133
14	9	52,20	1,7503	1,7511	0,3262	0,3261	600
15	11	52,92	1,7301	1,7290	0,3341	0,3345	152
16	8	53,66	1,7108	1,7119	0,3417	0,3412	323
17	8	58,20	1,5851	1,5859	0,3980	0,3976	004

На дифрактограммах сплавов в интервале концентрации 0–50 мол.% CaSe участвуют дифракционные линии соединений

 ${\rm CaGa_4Se_7}$ и ${\rm CaGa_2Se_4}$, а дифрактограммы сплавов в пределах 50–100 мол. % CaSe состоят из дифракционных линии соединений

Са Ga_2Se_4 и CaSe. На основании результатов рентгенофазового анализа установлено, что соединение Ca Ga_2Se_4 кристаллизуется в ромбической сингонии с параметрами решетки: $a=10,506;\ \varepsilon=10,521;\ c=6,343\ \text{Å},\ Z=4,\ \text{пр.гр.}$ Fddd, плотность $\rho_{\text{пик.}}=4,68\ \text{г/cm}^3,\ \rho_{\text{рент.}}=4,70\ \text{г/cm}^3.$ Результаты рентгенографического анализа соединения Ca Ga_2Se_4 представлены в табл. 1.

Соединение $CaGa_4Se_7$ изоструктурно с соединением $CaGa_2Se_4$ и кристаллизуется в ромбической сингонии с параметрами решетки: a=15,12; e=9,66; c=5,26 Å, Z=3, пр.гр. Pmn2, плотность $\rho_{\text{пик.}}=5,25$ г/см³, $\rho_{\text{рент.}}=5,30$ г/см³. Результаты рентгенографического анализа соединения $CaGa_4Se_7$ представлены в табл. 2.

Ликвидус системы Ga_2Se_3 —CaSe ограничен кривыми моновариантного равновесия α -фазы образующейся на основе Ga_2Se_3 , соединений $CaGa_4Se_7$, $CaGa_2Se_4$ и CaSe.

В интервале концентрации 0–11 мол. % CaSe в начале из жидкости осаждаются первичные кристаллы β -фазы, а затем α -фазы. В узкой области (10–15 мол. % CaSe) из жидкости выделяются первичные кристаллы соединения CaGa $_4$ Se $_7$.

В интервале концентрации 15–57 мол. % СаSe из жидкости осаждаются первичные кристаллы CaGa₂Se₄. В последующей области из жидкости выделяются первичные кристаллы соединения CaSe. Некоторые физико-химические свойства сплавов системы Ga₂Se₃—CaSe представлены в табл. 3.

Плотность и микротвердость соединений $CaGa_4Se_7$, $CaGa_2Se_4$ соответственно равны 5,25 г/см³, 4,68 г/см³и 2600 МПа; 2400 МПа.

Как видно из табл. 3 в системе получены различные величины микротвердости которые соответствуют микротвердости α -твердому раствору образующему на основе Ga_2Se_3 , (2600-2700) МПа, микротвердости соединения $CaGa_4Se_7$, (2400-2410) МПа микротвердости $CaGa_2Se_4$, (1250-1260) МПа, микротвердости $CaGa_2Se_4$, (1250-1260) МПа, микротвердости соединения CaSe.

Таким образом, в системе Ga_2Se_3 —CaSe изучен характер химического взаимодействия. Установлено, что диаграммы состояния системы —квазибинарная и характеризуется образованием соединений $CaGa_4Se_7$ и $CaGa_2Se_4$. Температуры плавления эвтектических точек, образующихся в сплавах 11 и 57 мол. % CaSe в составе соответственно 975 и 1010 °C.

Таблица 2 Рентгенографические данные соединения CaGa₄Se₇

№ п/п	I _{отн.}	d _{təc.}	d _{hesab}	$1/d^2_{\text{təc}}$	1/d ² _{hesab.}	hkl
1	100	5,2620	5,2620	0,0361	0,0361	001
2	3,9	4,8260	4,8280	0,0429	0,0429	010
3	2,9	4,0696	4,0604	0,0604	0,0604	220
4	3,7	3,9186	3,9436	0,0651	0,0643	211
5	16,0	3,7796	3,7823	0,0700	0,0699	400
6	4,1	3,7202	3,6394	0,0722	0,0755	301
7	2,0	3,5685	3,5578	0,0785	0,0790	021
8	2,9	3,4639	3,4858	0,0833	0,0823	320
9	10,5	3,1813	3,2208	0,0987	0,0964	030
10	5,7	3,1377	3,1497	0,1015	0,1008	130
11	8,8	3,0670	3,0247	0,1063	0,1093	500
12	2,94	2,9455	2,9630	0,1153	0,1139	230
13	56,6	2,6315	2,6315	0,1444	0,1444	002
14	48,7	2,4129	2,4147	0,1717	0,1715	040
15	11,1	2,3506	2,3325	0,1807	0,1838	320
16	3,1	2,1457	2,1602	0,2174	0,2143	700
17	4,9	1,9959	1,9984	0,2510	0,2504	701
18	1,8	1,9611	1,9570	0,2600	0,2611	711
19	29,0	1,9123	1,9142	0,2734	0,2729	150
20	8,7	1,8887	1,8901	0,2803	0,2799	800
21	15,2	1,7845	1,7789	0,3140	0,3160	801
22	24,9	1,7537	1,7533	0,3252	0,3253	003
23	13,4	1,7344	1,7314	0,3324	0,3334	242
24	2,4	1,5339	1,5316	0,4250	0,4263	161

Ta	блица 3
Составы, результаты ДТА, измерения микротвердости и определение	
плотности сплавов системы Ga ₂ Se ₂ -CaSe	

Состав,	мол. %	Термические эффекты Плотность,		Микротвердость фаз, МПа			
Ga,Se,	CaSe	нагревания, °С	г/см ³	α CaGa ₄ Se ₇		CaGa ₂ Se ₄	CaSe
2002				P = 0.20 H		P = 0.15 H	
100	0,0	600, 800, 1020	4,92	3100	_	_	_
97	3,0	540,580,820,830, 995,1015	4,90	3150	_	_	_
95	5,0	970, 1010	4,89	3160	_	_	_
90	10	500,945,970	4,84	Evtek.	Evtek.	_	_
85	15	500,945,970, 1000	4,80	_	_	_	_
80	20	500,945,970, 1000,1030	4,74	_	2670	_	_
75	25	500,945,970, 1000,1050	4,71	_	2640	_	_
70	30	500,945,970, 1000,1070	4,99	_	2630	_	_
66,66	33,33	1000, 1080	5,25	_	2600	_	_
65	35	1000, 1085	5,03	_	2620	_	_
60	40	1000, 1090	4,86	_	2620	2410	_
55	45	1000, 1095	4,74	_	2620	2410	_
50	50	1100	4,68	_	2620	2400	_
45	55	1010, 1050	4,52	_		_	_
43,5	56,5	1010	4,45	_		Evtek.	Evtek.
40	60	1010, 1060	4,16	_	_	_	1260
30	70	1010, 1180	4,04	_	_	_	1260
20	80	1010, 1290	3,88	_	_	_	1260
10	90	1010, 1370	3,72	_	_	_	1250
0,0	100	1470	3,57	_	_	_	1250

В системе Ga_2Se_3 —CaSe в интервале 0–5% CaSe ниже линии солидуса кристаллизуется однофазный α -твердый раствор, в интервале 5–33,3 мол.% CaSe— $(\alpha + CaGa_4Se_7)$, а в интервале концентрации 50–100 мол.% CaSe двухфазные сплавы состава (CaGa $_2Se_4$ +CaSe).

Система Se-CaGa, Se,

С целью построения диаграммы состояния системы Se-CaGa₂Se₄ синтезированы сплавы в интервале концентрации 0–100 мол. % CaGa₂Se₄. Целью настоящей исследуемой работы является исследование характера химического взаимодействия в системе Se-CaGa₂Se₄ и установление существования новых фаз и области твердого раствора. С этой точки зрения изучение характера химического взаимодействия и фазовых равновесий в системе Se- CaGa₂Se₄ является актуальным.

Синтез сплавов системы Se-CaGa $_2$ Se $_4$ проведен совместным плавлением из компонентов Se и CaGa $_2$ Se $_4$ в кварцевых ампулах в интервале температур 500—1100 °C. Полученные сплавы отжигались при температуре 180 в течение 150 ч.

Сплавы системы Se-CaGa₂Se₄ компактные, блестяще-черного цвета. Сплавы системы несмотря на устойчивость их к воздуху и воде, не устойчивые к минеральным кислотам. После гомогенизации сплавы системы Se-CaGa $_2$ Se $_4$ были исследованы физико-химическими методами анализа.

Результаты дифференциально-термического анализа показывают, что в системе наблюдаются два эндотермических эффекта. Для проведения микроструктурного анализа сплавы отшлифованы, приведены в блестящее состояние. Для определения фазовых границ в качестве травителя взят концентрированный раствор 5 мл конц. $HNO_3 + 10$ мл H_2O_2 .

В результате микроструктурного анализа установлено, что только на стороне соединения ${\rm CaGa_2Se_4}$ существует однофазная область. Остальные сплавы системы двухфазные.

С целью уточнение области твердого раствора на основе $CaGa_sSe_4$ синтезированы сплавы с составами 5, 7, 10 и 12 мол. % Se. Затем их отжигали при температуре 100 и 200 °C в течение 100 ч. Образцы соответственно при тех же температурах прямо охлаждались в ледяной воде. На основании результатов микроструктурного анализа установлено, что в системе на основе $CaGa_sSe_4$ при комнатной температуре растворяется 7 мол. % Se, а при 200 °C -10 мол. % Se.

Для подтверждения квазибинарности системы Se-CaGa $_2$ Se $_4$ проведен рентгенографический анализ сплавов. Результаты рентгенографического анализа показывают, что рентгенограммы сплавов системы составлены из смеси дифракционных линий исходных компонентов. И это указывает на двухфазность сплавов системы, т.е. система квазибинарная. Сравнение дифрактограмм исходных компонентов и сплавов с составами 30 и 70 мол. % CaGa $_2$ Se $_4$ системы представлено на рис. 3.

На основании полученных результатов построена диаграмма состояния системы

Se-CaGa, Se, (рис. 4).

Установлено, что система Se-CaGa₂Se₄ квазибинарная, эвтектического типа. Состав эвтектики, образующейся в системе $5\,\mathrm{Mon.\%}$ CaGa₂Se₄, а температура $190\,^{\circ}\mathrm{C}$. Установлено, что при комнатной температуре в системе на основе соединения CaGa₂Se₄ растворяется $7\,\mathrm{Mon.\%}$ Se, а при $190\,^{\circ}\mathrm{C} - 10\,\mathrm{Mon.\%}$ Se. Некоторые физико-

химические свойства сплавов системы Se-CaGa₂Se₄ представлены в табл. 4.

Как видно из табл. 4 в системе получены два разных значения микротвердости. Величина микротвердости 600 МПа соответствует величине микротвердости Se, а величина (2400–2490) МПа микротвердости α -твердого раствора, полученного на основе CaGa₂Se₄. Плотность сплавов системы в зависимости от состава меняется линейно (табл. 4).

Система Se-CaGa₄Se₇

С целью исследования диаграммы состояния сечения Se-CaGa $_4$ Se $_7$ квазитройной системы CaSe—Ga-Se взяты компоненты Se и CaGa $_4$ Se $_7$. Учитывая перитектический характер образования CaGa $_4$ Se $_7$, с целью достижения полноты реакции, соединение отжигали на 15–20 °C ниже перитектической температуры в течение (1000 °C) 300 ч. При синтезе тройных сплавов соблюдали вышеуказанный режим.

 $Puc.\ 3.\ Дифрактограммы\ сплавов\ системы\ Se-CaGa_2Se_4.\ 1-Se$, 2-30 , 3-80, 4-100 мол. $\%\ CaGa_2Se_4$

Рис. 4. Диаграмма состояния системы Se-CaGa,Se,

Таблица 4 Составы, результаты ДТА, измерения микротвердости и определение плотности сплавов системы Se–CaGa,Se,

Coc	гав, мол.%	Термические эффекты на-	Плотность,	Микротвердость фаз, МПа		
Se	CaGa,Se,	гревания, °С	ш/см ³	α	β	
	2 7			P=0,15 H	P=0,20 H	
100	0.0	221	4,80	600	_	
97	3,0	195	4,79	600	_	
95	5,0	190	4,78	Evtektika	Evtektika	
90	10	190, 280	4,77	_	_	
80	20	190, 450	4,74	_	_	
70	30	190, 480	4,73	_	2490	
60	40	190, 715	4,72	_	2490	
50	50	190, 810	4,72	_	2490	
40	60	190, 900	4,71	_	2490	
30	70	190, 960	4,70	_	2490	
20	80	190, 1020	4,69	_	2490	
10	90	190, 1080	4,69	_	2490	
5,0	95	390, 1090	4,68	_	2480	
0,0	100	1100	4,68	_	2400	

Изучено отношение к наружной среде сплавов системы Se-CaGa $_4$ Se $_7$. Установлено, что все сплавы системы устойчивы по отношению к воздуху, воде и органическим растворителям , только в сильных минеральных кислотах (HCl, HNO $_3$, H $_2$ SO $_4$), хорошо растворяются. После завершения гомогенизации образцов сплавов система была исследована физико-химическими методоми анализа. На основании результатов ДТА установлено, что на термограммах сплавов

системы наблюдаются два и три обратимы эндотермических эффекта. Наличие большого количества термических эффектов в системе показывает, что между компонентами происходит сложное взаимодействие.

На основании результатов микроструктурного анализа сплавов обнаружено, что все сплавы системы двухфазные. В системе на основе исходных компонентов область твердого раствора практически не определена.

 $Puc.\ 5$. Дифрактограммы сплавов системы $Se\text{-}CaGa_4Se_7\ 1-Se$, 2-30 , 3-70 , 4-100 мол. $\%\ CaGa_2Se_4Se_7\ 1-Se$, 2-30 , 3-70 ,

Рис. 6. Диаграмма состояния системы Se-CaGa, Se,

Для подтверждения результатов ДТА и МСА приводили рентгенофазовый анализ сплавов системы $Se\text{-}CaGa_4Se_7$. Установлено, что на рентгенограммах сплавов 30 и 70 мол. % $Se\text{-}CaGa_4Se_7$ кроме дифракци-

онных линий Se и $CaGa_4Se_7$ наблюдаются и дополнительные линии (рис. 5). Это указывает на участие дополнительных фаз кроме бинарных соединений в составе сплавов. Таким образом, результаты рентгенофазо-

вого анализа хорошо согласуются с данными ДТА и МСА. На основании указанных методов физико-химического анализа построена фазовая диаграмма системы Se-CaGa $_4$ Se $_7$ (рис. 6). Система Se-CaGa $_4$ Se $_7$ частично- квазибинарная и является сечением квазитройной системы CaSe—Ga-Se.

Ликвидус системы CaSe–Ga-Se ограничен кривыми моновариантного равновесия Se и CaGa $_4$ Se $_7$. В системе Se-CaGa $_4$ Se $_7$ между Se и CaGa $_4$ Se $_7$ образуется эвтектка, состав которой 5 мол. % CaGa $_4$ Se $_7$. В интервале концентрации 5–95 мол. % CaGa $_4$ Se $_7$ ниже линии ликвидуса из жидкости кристаллизуются, первичные кристаллы соединения CaSe и образуется двухфазная область, состоящая из (ж + CaSe). В системе происходят эвтектичекие и перитектические превращения.

В интервале 5–95 мол. % $CaGa_4Se_7$ ниже линии солидуса начинается повторная кристаллизация (Ж + $CaGa_4Se_7$ + CaSe) и происходит перитектический процесс:

$$\mathcal{K} + CaSe \leftrightarrow CaGa_{4}Se_{7}$$

В результате ниже линии солидуса кристаллизуются двухфазные сплавы, содержащие (Se +CaGa $_4$ Se $_7$).

В табл. 5 представлены некоторые физико-химические свойства системы Se-CaGa $_4$ Se $_7$. Как видно из табл. 5, плотность сплавов монотонно меняется в зависимости от состава

При измерении микротвердости сплавов системы получены два ряда различных

значений микротвердости. Значение микротвердости (600–620) МПа соответствует микротвердости Se и значение 2600 МПа — микротвердости соединения $CaGa_4Se_7$.

Система CaGaSe,-CaGa,Se,

Для выяснения характера взаимодействия между CaGaSe $_2$ и CaGa $_2$ Se $_4$ исследована система CaGaSe $_2$ —CaGa $_2$ Se $_4$.

Сплавы системы получали в основном сплавлением рассчитанных количеств стехиометрических CaGaSe, и CaGa₂Se₄ в вакуумированных до 0,133 Па кварцевых ампулах при 1000–1250 °С. Соединение CaGaSe₂ плавится инконгруэнтно при 930 °С. Для получения равновесного состояния соединение CaGaSe₂ отжигали ниже температуры перитектики на 15–20 °С. Для достижения равновесного состояния сплавы, системы CaGaSe₂—CaGa₂Se₄ отжигали при 600 °С в течение 400 ч.

Сплавы системы исследовали методами дифференциально-термического (ДТА). рентгенографического (РФА), микроструктурного (МСА) анализов, путем измерения микротвердости и определения плотности.

Результаты ДТА показывают, что на термограммах сплавов системы, обнаружены два и три эндотермических эффекта нагревания . Эти данные указывают, что в системе $CaGaSe_2$ и $CaGa_2Se_4$ происходят сложные химические процессы. Микроструктурный анализ сплавов системы показал, что за исключением вблизи $CaGa_2Se_4$ все сплавы являются двухфазными.

Таблица 5 Составы, результаты ДТА, измерения микротвердости и определение плотности сплавов системы Se-CaGa₄Se₇

Coc	тав, мол.%	Термические эффекты	Плотность,	Микротвердость фаз, МПа		
Se	CaGa ₄ Se ₇	нагревания, °С	Γ / cm^3	Se	CaGa ₄ Se ₇	
				P=0,10 H	P=0,15 H	
100	0,0	221	4,80	600	_	
95	5,0	185,200	4,82	600	_	
90	10	185,280	4,84	620	_	
80	20	185,290,390	4,86	620	_	
70	30	185,350,520	4,89	_	2600	
60	40	185,410,650	4,98	_	2600	
50	50	185,530,750	5,05	620	2600	
40	60	185,630,850	5,08	_	2600	
30	70	185,740,930	5,12	620	2600	
20	80	185,820,980	5,15	_	2600	
10	90	185,925,103	5,20	_	2600	
0,0	100	1000,1080	5,25	_	2600	

Рис. 7. Дифрактограммы сплавов системы CaGaSe ₂-CaGa ₂Se ₄. 1 – CaGaSe ₂, 2 – 30, 3 – 50, 4 – 70, 5 – 100 mol % CaGa ₂Se ₄

Рис. 8. Диаграмма состояния системы CaGaSe₂ и CaGa₂Se₄

Для определения области твердых растворов на основе соединения $CaGa_2Se_4$ сплавы, содержащие 3, 5, 7 и 10 мол. %

 ${\rm CaGaSe_2}$ после плавки отжигали при температурах 2200 и $600\,^{\circ}{\rm C}$ в течение 240 ч. Затем сплавы закаляли в ледяной воде и исследо-

вали методом микроструктурного анализа. Установлено, что растворимость на основе $CaGa_2Se_4$ при комнатной температуре составляет 6 мол. % $CaGaSe_2$ а при температуре 850 °C -12 мол. % $CaGaSe_2$.

С целью подтверждения диаграммы состояния и фазовых соотношений проводили рентгенофазовый анализ.

Установлено, что на рентгенограммах сплавов 30 и 70 мол. % $CaGaSe_2$ кроме дифракционных линий $CaGaSe_2$ и $CaGa_4Se_7$ наблюдаются и дополнительные линии (рис. 7), что указывает на участие дополнительных фаз, кроме бинарных соединений, в составе сплавов.

Таким образом, результаты рентгенофазового анализа подтверждаются данными ДТА и МСА. И так, на основании результатов физико-химического анализа построена диаграмма состояния системы $CaGaSe_2-CaGa_2Se_4$ (рис. 8).

Ликвидус системы $CaGaSe_2$ — $CaGa_2Se_4$ состоит из ветвей первичной кристаллизации CaSe и α -фазы твердых растворов на основе $CaGa_2Se_4$. В интервале концентраций 75–100 мол. % $CaGa_2Se_4$ первично кристаллизуется α -фаза. В пределах 0–75 мол. % $CaGa_2Se_4$ первично кристаллизуется $CaSe_4$.

Соединение CaGaSe₂ выше температуры разлагается и образуется двухфазные области Во время вторичной кристаллизации в интервале концентрации 0-70 и 70-88 мол. % CaGa₂Se₄ соответственно кристаллизуются трехфазные сплавы и (M + CaSe + α). В интервале концентраций 0-94 мол. % CaGa₂Se₄ ниже линии со-

лидуса кристаллизуются двухфазные сплавы (CaGaSe $_2$ + α).

Микротвердость образцов системы измеряли на микротвердомере ПМТ-3 при нагрузках, выбранных в результате изучения зависимости мнкротвердостп для каждой фазы от нагрузки. В табл. 6 приведены некоторые физико-химические свойства сплавов системы CaGaSe,-CaGa,Se,

Как видно из табл. 6 в системе CaGaSe₂-CaGa₂Se₄ получены две разных значения микротвердости. Значения микротвердости 1100 МПа соответствует CaGaSe₂, а величина микротвердости (2400–2470) МПа соответствует микротвердости α -твердого раствора, на основе CaGa₂Se₄. Плотность сплавов системы в зависимости от состава меняется линейно (табл. 6).

Заключение

Методами физико-химического анализа ДТА, РФА, МСА, а также измерением микротвердости и плотности исследованы внутренние разрезы Ga_2Se_3 -CaSe, Se-Ca Ga_2Se_4 , Se-Ca Ga_2Se_7 и Ca $GaSe_2$ -Ca Ga_2Se_4 квазитройной системы CaSe-Ga-Se и построены их диаграммы состояния.

В системе Ga_2Se_3 —CaSe обнаружено образование двух соединений с составами $CaGa_2Se_4$ и $CaGa_4Se_7$. Установлено, что соединение $CaGa_4Se_7$ образуется по перитектического реакцией: $\mathcal{K}+CaGa_2Se_4 \leftrightarrow CaGa_4Se_7$ температура его образования — $1000\,^{\circ}\mathrm{C}$. Соединение $CaGa_2Se_4$ образуется по реакцией $CaSe+Ga_2Se_4 \leftrightarrow CaGa_2Se_4$ и плавится конгруэнтно при $1100\,^{\circ}\mathrm{C}$.

Таблица 6 Составы, результаты ДТА, измерения микротвердости и определение плотности сплавов системы $CaGaSe_2$ - $CaGa_2Se_4$

Состав мол.%		Термические эффекты	Плотность,	Микротверодость фаз, МРа		
CaGaSe,	CaGa ₂ Se ₄	нагревания, °С	г/см ³	CaGaSe,	α	
CaGasc ₂	$CaGa_2SC_4$			P = 0.15 N	P=0,20 N	
100	0.0	930, 1250	4,30	1160	_	
90	10	850,915,1220	4,42	1160	_	
80	20	850,510,1210	4,45	1160	_	
70	30	850,900,1170	4,50	_	2470	
60	40	850,895,1150	4,52	_	2470	
50	50	850,875,110	4,58	_	2470	
40	60	850,1060	4,61	_	2470	
30	70	850,1000	4,62	_	2470	
25	75	850, 930	4,63	_	2470	
20	80	850, 950, 1000	4,64	_	2470	
15	85	850, 900, 1025	4,65	_	2470	
10	90	870, 1050	4,66	_	2470	
5,0	95	950, 1080	4,68	_	2470	
0,0	100	1100	4,68	_	2400	

На основании результатов рентгенофазового анализа установлено, что соединение $CaGa_2Se_4$ кристаллизуется в ромбической сингонии с параметрами решетки: a=10,506; e=10,521; c=6,343 Å, Z=4, пр.гр. Fddd, плотность $\rho_{\text{пик.}}=4,68 \text{ г/см}^3$, $\rho_{\text{рент.}}=4,70 \text{ г/см}^3$. Соединение $CaGa_4Se_7$ изоструктурно с соединением $CaGa_2Se_4$ и кристаллизуется в ромбической сингонии с параметрами решетки: a=15,12; e=9,66; c=5,26 Å, Z=3, пр.гр. Pmn2, плотность $\rho_{\text{пик.}}=5,25 \text{ г/см}^3$, $\rho_{\text{рент.}}=5,30 \text{ г/см}^3$. Установлено, что разрез Se-CaGa $_2Se_4$ является квазибинарным эвтектического типа, а разрезы Se-CaGa $_4Se_7$ и $CaGaSe_2$ -CaGa $_2Se_4$ частичноквазибинарные. Во всех изученных системах на основе исходных компонентов определены области твердых раствов.

Список литературы

- 1. Алиев И.И., Ягубов Н.И., Мамедова Н.А. Физико-химические исследование системы Ca_3 In-CaSe // Журн. хим. проблемы. -2013. № 4. C. 432–436.
- 2. Диаграммы состояния двойных металлических систем. Справочник: В 3 т. Т. 2. Под. Ред. Н.П. Лякишева. М.: Машиностроение, 1997. 1024 с.

- 3. Лужная Н.П., Бабаева П.К., Рустамов П.Г. Диаграмма состоистемы Ga-Se и свойства образующихся фаз. В книге Новые полутроводниковые материалы. – Баку. Элм. 1972. – С. 27–32.
- 4. Тагиев Б.Г., Тагиев О.Б., Джаббаров Р.Б., Мусаева Н.Н., Касимов У.Ф. Фотолюминесценция в соединениях $Ca_4Ga_2S_7$: Ce^{3+} и $Ca_4Ga_2S_7$: $Pr^{3+//}$ Неорган. материалы. 2000. Т. 36, № 1. С. 3—6.
- . Физико-химические свойства полупроводниковых в тв. Справочник. М.: Изд-во. «Наука», 1979. 399 с.
- 6. Ягубов Н.И. Синтез и исследование физико-химичестых войств халькогаллатов и халькоиндатов элементов II А руппы. Дис. канд.хим.наук. Баку, 1990. 189 с.
- 7. Ягубов Н.И., Алиев И.И., Мамедова Н.А., Бадалли И.Ф. Фазовые равновесие в системе GaSe-CaSe // Международный журнал прикладных и фундаментальных исследований (Москва «Академия естествознания»). 2015. № 3. С. 18–22.
- 8. Ягубов Н.И., Алиев И.И., Велиев В.Г. Фазовые равновесие в системе CaIn₂-CaSe // Журн. хим. проблемы. 2013. № 3. С. 363—367.
- 9. Georgobiani A.N., Tagiev B.G., Abushov S.A., Tagiev O.B., Zhen Xu, and Suling Zhao. Photo–and thermoluminescence of Eu, BaGa_Se_4, Eu,BaGa_Se_4, Eu,Ce crystals // Inorg.mat. -2008.-v. 44, N₂ 2. -P.110–114.
- 10. Jabbarov R.B. Photoluminescence of Mn^{2+} ions in $CaGa_5Se_4$ // J. Physics. 2001. v. 7. No 2. P. 6–69.
- 11. Najafov H., Kato A., Toyota H., Iwat K., Bayramov A and Lida S. Effekt Ce co-doping on $CaGa_2S_4$:Eu phosphor: II. Thermoluminescence // Japn. J. Appl. Phys. 2002. v. 44. P. 2058–2065.