p4

17. (Amended) Use of an assembly according to claim 14 as self-assembled electronic circuit elements, electrodes, and metal coatings.

REMARKS

Claims 1-17 remain in the application. Claims 3, 4, 6-9, 14, 16 and 17 have been amended to eliminate multiple dependencies. Attached hereto is a marked up version of the changes made to claims 3, 4, 6-9, 14, 16 and 17 by the current amendment. The attached page is captioned "Version with markings to show changes made." The filing fee has been calculated based upon these amendments to the claims.

Respectfully submitted,

FROMMER LAWRENCE & HAUG LLP Attorneys for Applicants

Bv:

William S. Frommer Reg. No. 25,506 Tel. (212) 588-0800

VERSION WITH MARKINGS TO SHOW CHANGES MADE

In the claims:

- 3. (Amended) A multifunctional linker molecule according to claim 1 or 2, characterized in that it exhibits a length between about 8 Å and about 30 Å.
- 4. (Amended) A multifunctional linker molecule according to <u>claim 1</u> any of claims 1 to 3, characterized in that X comprises a structure having a hydrocarbon skeleton with two identical or different substituents that are used for connecting to and/or forming of the molecular groups FUNC₁ and FUNC₂.
- 6. (Amended) A multifunctional linker molecule according to claim 4 or 5, characterized in that the substituents of X are directed at an angle α relative to one another such that $90^{\circ} < \alpha < 270^{\circ}$.
- 7. (Amended) A multifunctional linker molecule according to <u>claim 4</u> any of claims 4 to 6, characterized in that X comprises a conjugated system, an aromatic π-system and/or contains heteroatoms, like N, O or S, and/or contains at least one electron donating substituent, like CH₃, O⁻, COO⁻, N(CH₃)₂ or NH₂, and/or electron accepting substituent, like CN, COCH₃, CONH₂, CO₂CH₃, N(CH₃)₃⁺, NO₂, F, CI, Br, I, OCF₃, or SO₂NH₂.
- 8. (Amended) A multifunctional linker molecule according to <u>claim 4</u> any of claims 4 to 7, characterized in that X is selected from the group comprising
- a) linear or branched structures comprising alkanes, alkenes, alkynes and combinations thereof comprising 3-12 carbon atoms and exhibiting at two ends substituents of the group consisting of amines, carboxylic acids, sulfonic acids and phosphonic acids according to claim 5;
- b) structures having the general formula

and derivatives thereof containing heteroatoms, like N, S, and/or O, or electron donating or accepting substituents; R can be methyl, phenyl or alkoxyl and wherein $FUNC_1$ and $FUNC_2$ are attached via the N-atoms of the two amine substituents indicated by \underline{N} ; structures having the general formula

and derivatives thereof containing electron donating or accepting substituents wherein $FUNC_1$ and $FUNC_2$ are attached via the N-atoms of the amine substituents indicated by \underline{N} ; structures having the general formula

and derivatives thereof containing hereroatoms, like N, S, and/or O, or electron donating or accepting substituents; and wherein FUNC₁ and FUNC₂ are attached via the carbon atoms of the two carboxylic acid substituents indicated by <u>C</u>; structures having the general formula

wherein FUNC₁ and FUNC₂ are attached via the carbon atoms of the two carboxylic acid substituents indicated by \underline{C} ; structures having the general formula

and derivatives thereof containing electron donating or accepting substituents wherein $FUNC_1$ and $FUNC_2$ are attached via the N- or S-atoms of the two amine of sulfonic acid substituents indicated by \underline{N} and \underline{S} ; structures having the general formula

$$Z = N$$

$$Z$$

amino acid side chain and $FUNC_1$ and $FUNC_2$ are attached via \underline{Z} ; and

c) electron donors like hydroquinones and electron acceptors, like quinones and diimides carrying to substituents of the groups consisting of amines, carboxylic acids, sulfonic acids and phosphonic acids according to claim 5.

- 9. (Amended) A multifunctional linker molecule according to <u>claim 1</u> any of claims 1 to 8, characterized in that FUNC₁ and FUNC₂ independently of each other are connected to X via N, C, S, or P, and are selected from the group comprising
- $-\underline{NH}, -NH\underline{CO}, -NH\underline{CO}\underline{NH}, -NH\underline{CS}\underline{NH}, -NH\underline{CO}\underline{NH}\underline{NH}, -NH\underline{CS}\underline{NH}\underline{NH}, -NH\underline{CO}\underline{NH}\underline{NH}, -NH\underline{CO}\underline{NH}\underline{NH}\underline{NH}, -NH\underline{CO}\underline{NH}\underline{NH}, -NH\underline{CO}\underline{NH}, -NH\underline{CO}\underline{N$
- -NHCONHNHCO in case of a connection via N;
- -CONH, -CONHNH, and -CONHNHCO in case of a connection via C;
- -SO₂NH, -SO₂NHNH, and -SO₂NHNHCO in case of a connection via S; and
- -PO₂NH, -PO₂NHNH, and -PO₂NHNHCO in case of a connection via P.
- 10. (Amended) A multifunctional linker molecule according to <u>claim 1</u> any of claims 1 to 9, characterized in that CON 1 and CON 2 connected to FUNC1 and FUNC2 via <u>NH</u> or <u>CO</u>, independently of each other are selected from the groups comprising
- -(CHR)_nCOOH; -(CHR)_nNC; -(CHR)_nNH₂; -(CHR)_nNHCS₂H; -(CHR)_nOPO₃H₂; -
- (CHR)_nOSO₃H; -(CHR)_nPO₃H₂; -(CHR)_nSH; -(CHR)_nSO₃H; -CSOH; and -CS₂H in case of a connection via NH; and
- -(CHR)_nCOOH; -(CHR)_nNC; -(CHR)_nNH₂; -(CHR)_nNHCS₂H; -(CHR)_nOPO₃H₂; -
- $(CHR)_nOSO_3H$; - $(CHR)_nPO_3H_2$; - $(CHR)_nSH$; and - $(CHR)_nSO_3H$ in case of a connection via \underline{CO} ; and

where R is H, CH₂OH, or CH₃ and n is 1 or 2, and iconic forms thereof.

- 14. (Amended) 1-, 2-, or 3-dimensional assembly of nanostructured units comprising a multifunctional linker according to <u>claim 1</u> any of claims 1 to 13, wherein the conductivity of the assembly is determined by the structure of the multifunctional linker.
- 16. (Amended) Assembly according to claim 14 or 15 in the form of a thin film of interconnected nanostructured units.

17. (Amended) Use of an assembly according to <u>claim 14</u> any of claims 14 to 16 as self-assembled electronic circuit elements, electrodes, and metal coatings.