

CS 372 Lecture #32

IP Network Address Translation (NAT)

- implementation
- issues

Sharing an IP address

- Motivated by
 - exhaustion of IP address space
 - conservation of resources
 - share internet access through just one IP address
 - home networks, other small LANs
 - too expensive to have unique IP address for each host
- ... but users want to maintain security/privacy
 - avoid address conflicts, collisions

Network Address Translation (NAT)

- Multiple computers at one site can share a single global IP address (external IP address)
 - entire local network uses just one external IP address
 - theoretically, over 65,000 hosts
 - all internal addresses managed locally
 - individual addresses are treated like global addresses for security/privacy
 - transparent to all users
 - can change ISP / external address without affecting local addresses
 - devices inside local net can not be explicitly addressed by external hosts
 - a security plus!
- Implementation
 - in-line configuration
 - All traffic entering or leaving the network must go through the <u>NAT device</u>
 - Internal communications do not use the NAT device
 - 10.0.x.x addresses reserved for internal use

NAT Implementation (example)

network have <u>same single source</u>
NAT IP address: 138.76.29.7,
different source port numbers

Datagrams with source or destination in this network have 10.0.0/24 address for source, destination (as usual)

Implementation

Software solutions

- Standard PC with
 - NAT software, e.g.:
 - Linux masquerade
 - Windows RRAS (Routing and Remote Access Server)
 - extra NIC required
- OK for slower speed networks (e.g., 10 Mbps)
 - NAT box must translate addresses in time for the usual network functions to work
 - calculating RTT, detecting congestion, etc.

Hardware solutions

- Special-purpose hardware for high-speed networks (e.g., gigabit Ethernet)
- Hybrid solutions
 - Routers can incorporate software for NAT
 - Used in medium-speed networks (e.g., 100 Mbps)

NAPT

Network Address and Port Translation

- Most popular implementation of NAT
 - Usually just called NAT
- Keeps track of local/external IP addresses and port numbers
- Allows
 - multiple applications on a single host in the private network to communicate with multiple destinations
 - multiple hosts in the private network to communicate with a single destination
- The effect of NAT is to form a virtual private connection between a computer in a private network and a remote host (internet site).
 - Of course, the connection may be to a computer in a separate private network (through another NAT box)

Example NAT table

- Entry in table records protocol port number as well as IP address
- Port numbers are re-assigned to avoid conflicts
- Note: this requires the NAT box (router) to have some transport-layer functionality

Example: NAT device external address is 128.210.24.6

Direction	Initial value	Translated	Unchanged
out	Source 10.0.0.125:30000	Source 128.210.24.6:40001	Destination 68.18.6.225:80
out	Source 10.0.0.77:30000	Source 128.210.24.6:40002	Destination 68.18.6.225:80
in	Destination 128.210.24.6:40002	Destination 10.0.0.77:30000	Source 68.18.6.225:80
in	Destination 128.210.24.6:40001	Destination 10.0.0.125:30000	Source 68.18.6.225:80

NAT table

- For an <u>out-going</u> datagram:
 - Translation table records
 - internal source address
 - original source port number
 - Source address is changed to the NAT's external address.
 - Source port number is reassigned
 - Translation table records
 - destination address
 - re-assigned source port number
 - Checksum is recalculated
 - Datagram is reconstructed
 - (Destination address / port number are not changed)

- For an <u>in-coming</u> datagram:
 - Destination address is changed to the internal address recorded in the translation table.
 - Destination port number is changed to the port number recorded in the translation table.
 - Checksum is recalculated
 - Datagram is reconstructed
 - (Source address / port number are not changed)

NAT traversal problem

- When initial contact is attempted from outside the site, there is no translation table entry
 - E.G., a private network might be running one or more servers through a NAT system
- Example: External client wants to connect to server with address 10.0.0.1
 - server address 10.0.0.1 local to LAN (client can' t use it as destination address)
 - only one externally visible NAT' ed address: 138.76.29.7

NAT traversal problem

Solution 1: Statically configure NAT to forward incoming connection requests at given port to server (one server only)

e.g., (123.76.29.7, port 2500) always
 forwarded to 10.0.0.1 port 25000

Solution 2: Universal PnP Internet Gateway Device (IGD) Protocol (one server only).

- Automates static configuration
- Allows NAT' ed host to:
 - map (private IP, private port #) to (public IP, public port #)
 - advertise (public IP, public port #)
 - So DNS can work
 - add/remove (lease) port mappings

NAT traversal problem

2. connection to relay initiated by client

3. relaying established

I. connection to relay initiated by NATed host

router

10.0.0.1

Solution 3: relaying (used in Skype)

- NATed client establishes connection to relay
- external client connects to relay
- relay bridges packets between to connections

Solution 4: (Twice NAT)

- NAT box provides DNS service
 - Works in most cases
 - Doesn't work if remote request uses
 IP address instead of domain name

Network Address Translation

- 16-bit port-number field:
 - ~65,000 simultaneous connections with a single external address!
- NAT is controversial.
 - Objections include:
 - routers should only process up to the network layer
 - NAT requires access to port numbers
 - ISP overload
 - address shortage should instead be solved by IPv6

Summary Lecture #32

NAT

- external/internal address
- external/internal port numbers
- translation table
- initial contact solutions
- objections