

Longitudinal Deep Kernel Gaussian Process Regression

Presented by: Junjie Liang

About Me

- 4th-year Ph.D. student at Penn State University
- Research interest:
 - > Longitudinal data analysis
 - Causal inference
- E-mail: jul672@psu.edu
- Github: https://github.com/junjieliang672/L-DKGPR.git

Outline

- Background
- Longitudinal Deep Kernel Gaussian Process Regression
- Experiments
- Conclusion

Correlation in Longitudinal Data

Observed outcomes over time are correlated

(Longitudinal Correlation)

Correlation in Longitudinal Data

Individuals can also be correlated (Cluster Correlation)

- ➤ Correlation can be weak/strong/absent.
- ➤ Predictive model needs to account for the complex, unknown data correlation

Gaussian Process

- A distribution over functions $f \sim \mathcal{GP}(\mu, k_{\gamma})$
- Kernel function $k_{\gamma}(\cdot, \cdot)$ describes the correlation between a pair of data.
- Any finite data collections has multivariate Gaussian distribution: $(\mathbf{f}|X) \sim N(\mu_X, K_{XX})$
- Outcome distribution (regression) $(y|\mathbf{f}) \sim N(\mathbf{f}, \sigma^2 I)$

Gaussian Process for longitudinal data

• Pros:

• Using parametrized kernel to model correlation between observed outcomes. The kernel function provides smooth interpolation between samples, granting GP the ability to cope with irregularly sampled data.

• Cons:

- Expressive power of GP is dispensed to the choice of kernel. Choosing an appropriate kernel often involves a tedious process of trial and error.
- Existing GPs for longitudinal data do not scale to thousands of covariates and millions of data points.

Outline

- Background
- Longitudinal Deep Kernel Gaussian Process Regression
- Experiments
- Conclusion

Overview of L-DKGPR

- Goal: Make accurate outcome prediction while accounting for the complex, unknown multilevel data correlation.
 - \triangleright Learn $p(y|X) \sim N(\mu, \Sigma)$, make prediction using μ , estimate correlation using Σ

Solve the system with ←

- Latent space inducing points
- Variational inference

$$p(\mathbf{y}|X) = \int p(\mathbf{y}|\mathbf{f})p(\mathbf{f}|X)d\mathbf{f}$$

$$(\mathbf{y}|\mathbf{f}) \sim N(\mathbf{f}, \sigma^2 I)$$
 Eliminate the need for kernel searching using deep kernels

Deep Kernels for Multilevel Correlation

 $f = \alpha^{(v)} f^{(v)} + \alpha^{(i)} f^{(i)}$ $f^{(v)} \sim \mathcal{GP}\left(\mathbf{0}, k_{\gamma}^{(v)}\right) \rightarrow \text{Kernel for time-varying effects}$ $f^{(i)} \sim \mathcal{GP}\left(\mathbf{0}, k_{\phi}^{(i)}\right) \rightarrow \text{Kernel for time-invariant effects}$

Deep Kernels for Multilevel Correlation

Figure 1: Structure of the deep kernels.

Model Inference – Inducing Points

Model Inference – Latent Space Inducing Points

- Z lies in the latent space
- Z is distinct from all existing X

 $(\mathbf{f}, \mathbf{u}|X, \mathbf{Z}) \sim N\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} K_{XX}, K_{XZ} \\ K_{XZ}^T & K_{ZZ} \end{bmatrix}\right)$

 $k_{\gamma}^{(v)}(\mathbf{x}, \mathbf{z}) = k_{SE}(e_{\gamma}(\mathbf{x}), \mathbf{z})$ $k_{\gamma}^{(v)}(\mathbf{z}_{i}, \mathbf{z}_{j}) = k_{SE}(\mathbf{z}_{i}, \mathbf{z}_{j})$

Figure 1: Structure of the deep kernels.

 $\forall (x \in \mathcal{X}, z \in \mathcal{Z}), \iota(x) \neq \iota(z)$

Model Inference – Variational Inference

$$\Theta^* = \arg\max_{\Theta} \log p(\mathbf{y}|X, Z)$$

$$\mathcal{L}_{\text{ELBO}} \stackrel{\text{def}}{=} \mathbb{E}_{q(\mathbf{f}, \mathbf{u}|X, Z)}[\log p(\mathbf{y}|\mathbf{f})] - \text{KL}(q(\mathbf{u}|X, Z)||p(\mathbf{u}|Z))$$

We define the proposal posterior $q(\mathbf{u}|X,Z) = N(\boldsymbol{\mu}_q, L_qL_q^T)$, to speed up the computation, we follow the deterministic training conditional (DTC) [1]. By simplifying the ELBO, we can:

- Compute the exact ELBO without the need for Monte Carlo sampling.
- Compute the optimal proposal posterior in analytical form.

Algorithm 1: L-DKGPR

Input: Training set $S = \{X, y\}$, latent dimension D_v, D_i , number of inducing points M, gradient-based optimizer and its related hyper-parameters (i.e., learning rate, weight decay, mini-batch size), alternating frequency T.

- 1 Initialize the parameters $\Theta = \{\sigma^2, Z, \alpha^{(v)}, \alpha^{(i)}, \gamma, \phi\}$
- 2 while Not converged do

```
Update proposal posterior q(\mathbf{u}|X,Z) according to (10) and (12)

t=0

for t < T do

Update \Theta using the input optimizer.

t=t+1

Step2
```


Outline

- Background
- Longitudinal Deep Kernel Gaussian Process Regression
- Experiments
- Conclusion

Research questions

How does L-DKGPR perform compared to existing models?

- Prediction accuracy on longitudinal regression tasks
- Quality of correlation estimation

How do different model components contribute to L-DKGPR?

- Isolating kernel components
- Solving exact ELBO vs. Monte Carlo estimation

Data sets and Baselines

- Data:
 - Simulated data.
 - Three real-world data sets.
- Baselines:
 - Conventional longitudinal models: GLMM[2]; GEE[3]
 - State-of-the-art longitudinal models: LMLFM[4]; LGPR[5]
 - Gaussian Process models: KISSGP[6]; ODVGP[7]

Regression accuracy

Table 1: Regression accuracy R² (%) comparison on simulated data with different correlation structures.

Method	LC	MC(C=2)	MC(C=3)	MC(C=4)	MC(C=5)
L-DKGPR	86.0 ± 0.2	$91.3 {\pm} 0.2$	$99.6 {\pm} 0.2$	$99.8 {\pm} 0.2$	$99.8 {\pm} 0.2$
KISSGP	85.9 ± 1.7	-43.4 ± 33.3	-55.5 ± 7.1	-58.2 ± 14.4	-57.2 ± 17.9
ODVGP	82.3 ± 5.2	-1.6 ± 16.9	-14.7 ± 6.5	-13.5 ± 8.4	-6.1 ± 4.4
LGPR	-37.1 ± 19.1	-123.6 ± 162.0	-26.3 ± 43.2	-9.1 ± 14.8	-0.1 ± 5.9
LMLFM	54.7 ± 15.1	-138.3 ± 121.9	-48.3 ± 123.6	22.6 ± 49.0	36.2 ± 41.1
GLMM	5.3 ± 27.9	-656.3 ± 719.8	-801.4 ± 507.4	-684.1 ± 491.3	-528.7 ± 313.5
GEE	59.0 ± 24.5	-636.1 ± 606.0	-703.6 ± 465.8	-665.6 ± 554.3	-516.5 ± 457.5

Table 2: Regression accuracy R^2 (%) on real-world data sets. We use 'N/A' to denote execution error.

Data sets	N	I	P	L-DKGPR	KISSGP	ODVGP	LGPR	LMLFM	GLMM	GEE
TADPOLE	595	50	24	44.0 ± 5.6	1.2 ± 10.1	9.0 ± 14.1	-261.1 ± 9.0	8.7 ± 5.1	50.8±5.5	-11.4±4.8
SWAN	550	50	137	46.8 ± 4.9	42.4 ± 4.6	29.0 ± 3.1	-16.6 ± 12.7	38.6 ± 4.2	40.1 ± 7.7	46.4 ± 8.0
GSS	1,500	50	1,553	19.1 ± 3.7	12.5 ± 6.3	-7.6 ± 3.3	N/A	15.3 ± 1.4	N/A	-4.6 ± 3.5
TADPOLE	8,771	1,681	24	64.9 ± 1.4	0.6 ± 3.9	21.1 ± 1.0	N/A	10.4 ± 0.6	61.9 ± 1.9	17.6 ± 0.7
SWAN	28,405	3,300	137	52.5 ± 0.4	20.5 ± 7.6	24.9 ± 21.8	N/A	48.6 ± 2.0	N/A	N/A
GSS	59,599	4,510	1,553	56.9 ± 0.1	53.1 ± 0.9	15.4 ± 27.0	N/A	54.8 ± 2.2	N/A	N/A

Correlation estimation

Figure 2: Outcome correlation estimated by all GP methods on simulated data.

Isolating kernel components

Table 3: Effect on the regression accuracy R² (%) of different components of L-DKGPR

Data sets	L-DKGPR	L-DKGPR-v	L-DKGPR-i	L-RBF-GPR
TADPOLE	64.9±1.4	13.2±1.1	56.3 ± 1.3	55.5±2.4
SWAN	52.5±0.4	29.0±3.2	16.7 ± 2.4	5.4±1.6
GSS	56.9±0.1	56.2±0.1	-0.2 ± 0.2	-14.1±0.4

Time-varying Time-invariant Non-deep kernel only kernel

Advantage of solving the exact ELBO

Table 4: Effect of solving L-DKGPR using Algorithm 1 vs. Monte Carlo sampling.

Data sets	Solver	M	Iterations	R^2 (%)	
SWAN	Alg. 1	10	300	52.5±0.4	
	Sampling	10	300	3.1 ± 0.2	
	Sampling	128	3,000	51.4 ± 0.4	
	Alg. 1	10	300	56.9±0.1	
GSS	Sampling	10	300	4.5 ± 0.1	
	Sampling	128	3,000	55.6 ± 0.1	
		<u></u>			
13x Inducing points			10x Iterations		

Summary

- We proposed L-DKGPR, a novel GP with deep kernel specifically designed to cope with longitudinal data that exhibits complex, unknown correlation.
- We improved the scalability of existing GP using two key techniques:
 (i) latent space inducing points; (ii) variational inference.
- With extensive experiments using both simulated and real-world data, we demonstrated the superior performance of L-DKGPR over state-of-the-art models.

Thank you!

- E-mail: jul672@psu.edu
- Github: https://github.com/junjieliang672/L-DKGPR.git

Reference

- [1] Seeger, M., Williams, C., & Lawrence, N. (2003). Fast forward selection to speed up sparse Gaussian process regression (No. CONF).
- [2] Bates, D., Mächler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1).
- [3] Inan, G., & Wang, L. (2017). PGEE: An R Package for Analysis of Longitudinal Data with High-Dimensional Covariates. R J., 9(1), 393.
- [4] Liang, J., Xu, D., Sun, Y., & Honavar, V. (2020, April). LMLFM: Longitudinal Multi-Level Factorization Machine. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 04, pp. 4811-4818).
- [5] Timonen, J., Mannerström, H., Vehtari, A., & Lähdesmäki, H. (2019). An interpretable probabilistic machine learning method for heterogeneous longitudinal studies. arXiv preprint arXiv:1912.03549.
- [6] Wilson, A. G., Hu, Z., Salakhutdinov, R. R., & Xing, E. P. (2016). Stochastic variational deep kernel learning. Advances in Neural Information Processing Systems, 29, 2586-2594.
- [7] Salimbeni, H., Cheng, C. A., Boots, B., & Deisenroth, M. (2018). Orthogonally decoupled variational gaussian processes. In Advances in neural information processing systems (pp. 8711-8720).