

Description

The VSM18N03 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

V_{DS} =30V,I_D =18A

 $R_{DS(ON)} < 7m\Omega @ V_{GS} = 10V$

 $R_{DS(ON)}$ < 10m Ω @ V_{GS} =4.5V

- High density cell design for ultra low Rdson
- Fully characterized Avalanche voltage and current

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

SOP-8

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM18N03-S8	VSM18N03	SOP-8	Ø330mm	12mm	4000 units

Absolute Maximum Ratings (T_A=25 ℃ unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	30	V	
Gate-Source Voltage	Vgs	±20	V	
Drain Current-Continuous	I _D	18	А	
Drain Current-Continuous(T _A =100℃)	I _D (100℃)	12.7	А	
Pulsed Drain Current	I _{DM}	72	Α	
Maximum Power Dissipation	P _D	3	W	
Single pulse avalanche energy (Note 5)	E _{AS}	204	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 150	°C	

Thermal Characteristic

Thermal Resistance,Junction-to-Ambient ^(Note 2)	R _{0JA}	42	°C/W
--	------------------	----	------

Electrical Characteristics (T_A=25°Cunless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250µA	30	33	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =30V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)	·					
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	0.7	1.1	1.4	V
Dunin Course On Chata Basistana	D	V _{GS} =10V, I _D =12A	-	5.5	7	mΩ
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =4.5V, I _D =10A	-	6.5	10	
Forward Transconductance	g FS	V _{DS} =5V,I _D =12A	5	-	-	S
Dynamic Characteristics (Note4)				•		•
Input Capacitance	C _{lss}	V _{DS} =15V,V _{GS} =0V, F=1.0MHz	-	2100	-	PF
Output Capacitance	C _{oss}		-	460	-	PF
Reverse Transfer Capacitance	C _{rss}	Γ-1.UIVIΠZ	-	230	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		-	20	-	nS
Turn-on Rise Time	t _r	V_{DD} =10 V , I_D =12 A	-	15	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10V, R_{GEN} =2.7 Ω	-	60	-	nS
Turn-Off Fall Time	t _f		-	10	-	nS
Total Gate Charge	Qg	\/ -15\/ -12\	-	41	-	nC
Gate-Source Charge	Q _{gs}	V _{DS} =15V,I _D =12A, V _{GS} =10V	-	14	-	nC
Gate-Drain Charge	Q _{gd}	VGS-10V	-	11	-	nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =18A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	18	Α

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- **5.** E_{AS} condition: $Tj=25^{\circ}C$, $V_{DD}=15V$, $V_{G}=10V$,L=0.5mH, $Rg=25\Omega$

Test Circuit

1) E_{AS} Test Circuits

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Rdson On-Resistance(mΩ)

Figure 3 Rdson- Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Vds Drain-Source Voltage (V)
Figure 7 Capacitance vs Vds

Figure 9 BV_{DSS} vs Junction Temperature

Vds Drain-Source Voltage (V)

Figure 8 Safe Operation Area

T_J-Junction Temperature(°C)

Figure 10 V_{GS(th)} vs Junction Temperature

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance

SOP-8 Package Information

COMMON DIMENSIONS
(UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN	NOM	MAX	
Α	1.35	1.55	1.75	
A1	0.10	0.15	0.25	
A2	1.25	1.40	1.65	
A3	0.50	0.60	0.70	
b	0.38	_	0.51	
b1	0.37	0.42	0.47	
С	0.18	_	0.25	
c1	0.17	0.20	0.23	
D	4.80	4.90	5.00	
E	5.80	6.00	6.20	
E1	3.80	3.90	4.00	
е	1.17	1.27	1.37	
L	0.45	0.60	0.80	
L1		1.04REF		
L2	0.25BSC			
R	0.07	_	I	
R1	0.07	_	_	
h	0.30	0.40	0.50	
θ	0.	_	8*	
θ 1	15*	17°	19*	
θ 2	11*	13*	15*	
θ3	15 °	17*	19*	
θ 4	11'	13°	15 °	