KAUNO TECHNOLOGIJOS UNIVERSITETAS INFORMATIKOS FAKULTETAS

Intelektikos pagrindai (P176B101) Laboratorinis darbas Nr.1

Atliko:

IFF-9/8 gr. studentas Lukas Navašinskas 2022 m. kovo 8 d.

Priėmė:

lekt. Nečiūnas Audrius

doc. Paulauskaitė-Tarasevičienė Agnė

KAUNAS 2022

Contents

1.	Duomenų rinkinys	3
	Duomenų rinkinio kokybės analizė	
	Atributų histogramos	
4.	Duomenų kokybės problemos ir sprendimai	10
5.	Sąryšiai tarp atributų	10
6.	Scatter plot matrix diagrama	18
7.	Koreliacijos matrices diagrama	19
8.	Duomenų normalizacija	19

1. Duomenų rinkinys

Laboratoriniui darbui pasirinktas automobilių specifikacijų rinkinys. Rinkinį sudaro šie atributai:

Tolydiniai atributai: Year (Metai), Engine Cylinders (Cilindrų kiekis), Engine Displacement (Variklio darbinis tūris), City MPG (Kuro sanaudos mieste Mylios per Galoną), Highway MPG (Kuro sanaudos užmiestyje Mylios per Galoną), Annual Fuel Cost (Kasmetinė kuro kaina), Tailpipe CO2 in Grams/Mile (CO2 gramų išmetimas per mylią)

Kategoriniai atributai: Drive (Varomieji ratai), Transmission (Transmisija), Turbocharger (Turbina), Supercharger (kompresorius), Fuel Type (kuro tipas)

2. Duomenų rinkinio kokybės analizė

Tolydinių atributų analizė:

Atributo	Kiekis	Trūkstamos	Kardinalumas	Minimali	Maksimali	1-asis	3-iasis	Vidurkis	Mediana	Standartinis
pavadinimas	(Eilučių	reikšmės, %		reikšmė	reikšmė	kvartilis	kvartilis			nuokrypis
	sk.)									
Year	38113	0	34	1984	2017	1991	2009	2000.195	2001	10.465
Engine	37977	0.357	9	2	16	4	6	5.737	6	1.752
Cylinders										
Engine	37979	0.352	66	0	8.4	2.2	4.3	3.318	3	1.362
Displacement										
City MPG	38113	0	93	6	150	15	20	17.981	17	6.850
Highway	38113	0	83	9	122	20	27	24.081	24	7.027
MPG										
Annual Fuel	38113	0	60	500	6050	1600	2350	1970.675	1950	532.555
Cost										
Tailpipe CO2	38113	0	592	0	1269.571	388	555.438	472.761	467.737	122.200
in										
Grams/Mile										

pav. 1 Tolydinio tipo atributų kokybės analizės lentelė

Kategorinių atributų analizė:

Atributo	Kiekis	Trūkstamos	Kardinalumas	Moda	Modos	Moda,	2-oji Moda	2-osios	2-oji
pavadinimas	(Eilučių	reikšmės,			dažnumas	%		Modos	Moda, %
	sk.)	%						dažnumas	
Drive	36924	3.120	7	Front-	13351	35.030	Rear-Wheel	13018	34.156
				Wheel			Drive		
Transmission	38102	0.0289	46	Automatic	11042	28.972	Manual 5-	8323	21.838
				4-Speed			Speed		
Turbocharger	5239	86.254	2	None	32874	13.746	Yes	5239	13.756
Supercharger	693	98.182	2	None	37420	1.818	Yes	693	1.818
Fuel Type	38113	0	14	Regular	25258	66.271	Premium	10133	26.587

pav. 2 Kategorinio tipo atributų kokybės analizės lentelė

3. Atributų histogramos

Tolydinio atributo "Year" reikšmės pasiskirsčiusios netolygiai, nuo 1984 iki 1997 reikšmių kiekiai mažėja eksponentiškai, o toliau auga tolygiai. Matome, kad įrašų apie mašinas 1984 ir 1985 metais buvo ženkliai daugiau.

Kategorinio atributo "Drive" reikšmės pasiskirčiusios netolygiai. Matome, kad duomenų rinkinyje populiariausios dokumentuotos mašinos buvo varomos galu, o kitos priekiu.

Iš šio kategorinio atributo "Transimssion" histogramos galime spręsti, kad reikšmės yra pasiskirsčiusios netolygiai. Taip pat matome, kad yra nereikšmingų atributų, kurių vertė palyginus su populiariausiais atributais yra beveik nulinė. Reikėtų šiuos atributus šalinti.

Šio tolydinio atributo "Engine Cylinders" galime matyti, kad duomenų rinkinyje mašinos turėjo daugiausiai 4 ir 6 cilindrus. Atributų vertės histogramoje pasiskirsčiusios netolygiai

Iš šio Tolydinio atributo histogramos "Engine Displacement" galime matyti, kad reikšmės yra pasiskirsčiusios netolygiai. Šiame duomenų rinkinyje daugiausia mašinų turėjo 2, 3 ir 2.5 litrų variklio darbinius tūrius.

Iš šio tolydinio atributo "City MPG" histogramos galime matyti, kad šiame duomenų rinkinyje mašinos dažniausiai galėdavo nuvažiuoti 15 mylių per vieną galoną kuro mieste. Histogramoje vertės pasiskirsčiosios netolygiai

Iš šio tolydinio atributo "Highway MPG" histogramos galime matyti, kad šiame duomenų rinkinyje mašinos dažniausiai galėdavo nuvažiuoti 24 mylias per vieną galoną kuro užmiestyje. Histogramoje vertės pasiskirsčiosios netolygiai

Iš šio atributo "Annual Fuel Cost" histogramos galime matyti, kad žmonės daugiausia sumokėdavo 2350 dolerių per metus už kurą. Histogramoje atributų vertės pasiskirsčiuios netolygiai

Iš šio kategorinio atributo "Fuel Type" galime matyti, kad populiariausias kuras mašinom tarp 1984 ir 2017 buvo "Regular", tai benzinas kurio kuro oktaninis skaičius yra ~87

4. Duomenų kokybės problemos ir sprendimai

Duomenų rinkinio atributai turėjo trūkstamų reikšmių bei išskirčių. Įrašai kurie turėjo tuščių reikšmių, bei išskirčių buvo ištrinti. Išskirčių radimui buvo pasinaudota "python" biblioteka "pandas", randami kvantiliai ir pagal juos atrenkami duomenys.

Kodo fragmentas išskirčių radimui ir šalinimui:

```
def salintiOutliers(df):
    Q1 = df.quantile(0.25)
    Q3 = df.quantile(0.75)
    IQR = Q3 - Q1
    df = df[~((df < (Q1 - 1.5 * IQR)) | (df > (Q3 + 1.5 * IQR))).any(axis=1)]
    return df
```

Kodo fragmentas ištrinti eilutes su trūkstamomis reikšmėmis: data.dropna()

5. Sąryšiai tarp atributų

Šiame atributų sarišyje tarp "Year" ir "Tailpipe CO2 in Grams/Mile" galime matyti, kad daugiausią teršalų išmetančios mašinos (>900 CO2 g/myl) egzistavo tarp 1984 ir 2005 metų.

Iš šito sąryšio tarp "Engine Cylinders" ir "Engine Displacement" galime matyti, kad variklio darbinis tūris stipriai priklauso nuo cilindrų kiekio.

Iš šio sąryšio tarp "City MPG" ir "Engine Displacement" galime matyti, kad mašinos su didesniu variklio tūriu mieste sunaudoja mažiau kuro. Tai kelia klausimų ar šis duomenų rinkinys yra tikslus, nes tai nėra logiška.

Iš šio sąryšio tarp "Highway MPG" ir "Engine Displacement" galime matyti, kad mašinos su didesniu variklio tūriu mieste sunaudoja mažiau kuro. Tai kelia klausimų ar šis duomenų rinkinys yra tikslus, nes tai nėra logiška

Iš šio sąryšio tarp "Annual Fuel Cost" ir "Year" galime matyti, kasmetinės kuro kainos buvo didžiausios tarp 1985 ir 1995

City MPG & Rear-Wheel Drive

6. Scatter plot matrix diagrama

Kaip matome iš Scatter Plot Matrix, duomenų rinkinyje turime stipriai susijusių tolydinių atributų.

7. Koreliacijos matrices diagrama

Koreliacijos matricoje matome, kad stipriai susiję atributai yra "Engine Cylinders" ir "Engine Displacement" koreliacijos koeficientu 0.9, taip pat "City MPG" ir "Highway MPG" koeficientu 0.93 . Taip pat matome, kad "Annual Fuel Cost" ir "Engine cylinders" bei "Engine Displacement" atributai koreliuoja su koeficientu ~0.78

8. Duomenų normalizacija

Programos kodas atlikti duomenų normalizacijai:

```
def normalize(data):
    result = data.copy()
    for x in data:
        max = data[x].max()
        min = data[x].min()
        result[x] = (data[x] - min) / (max - min)
    return result
```