**INTRODUCTION TO** 

## Machine Learning

#### **Artificial Intelligence**

Computer programs that do what minds do

#### **Machine Learning**

Computational models that improve automatically with experience

#### **Deep Learning**

Computational models composed of multiple processing layers to learn representation of data with multiple levels of abstraction



### What is Learning?

- Herbert Simon: "Learning is any process by which a system improves performance from experience."
- What is the task?
  - Classification
  - Categorization/clustering
  - Problem solving / planning / control
  - Prediction
  - others



- Machine learning is programming computers to optimize a performance criterion using example data or past experience.
- There is no need to "learn" to calculate payroll
- Learning is used when:
  - Human expertise does not exist (navigating on Mars),
  - Humans are unable to explain their expertise (speech recognition)
  - Solution changes in time (routing on a computer network)
  - Solution needs to be adapted to particular cases (user biometrics)

### What is Machine Learning?

Aspect of AI: creates knowledge

#### **Definition:**

"changes in [a] system that ... enable [it] to do the same task or tasks drawn from the same population more efficiently and more effectively the next time." (Simon 1983)

There are two ways that a system can improve:

- 1. By acquiring new knowledge
  - acquiring new facts
  - acquiring new skills
- 2. By adapting its behavior
  - solving problems more accurately
  - solving problems more efficiently



### Workings in Machine Learning?

- Optimize a performance criterion using example data or past experience.
- Role of Statistics: Inference from a sample
- Role of Computer science: Efficient algorithms to
  - Solve the optimization problem
  - Representing and evaluating the model for inference



# What We Talk About When We Talk About "Learning"

- Learning general models from a data of particular examples
- Data is cheap and abundant (data warehouses, data marts); knowledge is expensive and scarce.
- Example in retail: Customer transactions to consumer behavior:

People who bought "Da Vinci Code" also bought "The Five People You Meet in Heaven" (www.amazon.com)

 Build a model that is a good and useful approximation to the data.

### Data Mining

- Retail: Market basket analysis, Customer relationship management (CRM)
- Finance: Credit scoring, fraud detection
- Manufacturing: Optimization, troubleshooting
- Medicine: Medical diagnosis
- Telecommunications: Quality of service optimization
- Bioinformatics: Motifs, alignment
- Web mining: Search engines
- \_ ...

### ۲

#### **Traditional Programming**



#### **Machine Learning**



### Areas of Influence for Machine Learning

- 1. **Statistics:** How best to use samples drawn from unknown probability distributions to help decide from which distribution some new sample is drawn?
- 2. **Brain Models:** Non-linear elements with weighted inputs (Artificial Neural Networks) have been suggested as simple models of biological neurons.
- 3. Adaptive Control Theory: How to deal with controlling a process having unknown parameters that must be estimated during operation?
- **Psychology:** How to model human performance on various learning tasks?
- 5. **Artificial Intelligence:** How to write algorithms to acquire the knowledge humans are able to acquire, at least, as well as humans?
- **Evolutionary Models:** How to model certain aspects of biological evolution to improve the performance of computer programs?

### Н

### Related Disciplines

- Artificial Intelligence
- Data Mining
- Probability and Statistics
- Information theory
- Numerical optimization
- Computational complexity theory
- Control theory (adaptive)
- Psychology (developmental, cognitive)
- Neurobiology
- Linguistics
- Philosophy

### Types of Learning

- Association
- Supervised (inductive) learning
  - Training data includes desired outputs
- Unsupervised learning
  - Training data does not include desired outputs
- Semi-supervised learning
  - Training data includes a few desired outputs
- Reinforcement learning
  - Rewards from sequence of actions

### 7

### Learning Associations

Basket analysis:

P(Y|X) probability that somebody who buys X also buys Y where X and Y are products/services.

Example: P (chips | beer) = 0.7

- Given examples of a function (X, F(X))
- Predict function F(X) for new examples X
  - Discrete F(X): Classification
  - Continuous F(X): Regression
  - F(X) = Probability(X): Probability estimation

### What is the right Hypothesis?



### Hypothesis - Linear Separation



### Hypothesis – Quadratic Separation



## Hypothesis - Noisy/Mislabeled Data



## Hypothesis - Overfitting



### Hypothesis – Underfitting?



### Hypothesis - More data



### Hypothesis – More complex



### Linear Regression

 Example: Price of a used car

x : car attribute

y: price

•  $y = g(x \mid \theta)$ model: g()parameters:  $\theta = (w, w_0)$ 



### H

### Regression

- Example: Price of a used car
- x : car attributes

y: price

$$y = g(x \mid \theta)$$

g() model,

 $\theta$  parameters



### Polynomial Regression

 Example: Growth of a species

x:age

y: length

```
    y = g (x | θ)
        model:
        g ()
        parameters:
        θ = (w<sub>3</sub>, w<sub>2</sub>, w<sub>1</sub>, w<sub>0</sub>)
```



### Some Regression Applications

- Cost estimation
  - Energy consumption
- Control
  - Angle of steering wheel for robot car
  - Kinematics of a robot arm
- Predicted response
  - Surface materials

### Range of Methods

- Methods differ in terms of
  - The form of hypothesis space
  - The way to find best hypothesis given data
- There are many successful approaches
  - Decision trees
  - Support vector machines
  - Neural networks
  - Case-based reasoning

- ...

### Classification

- Example: Credit scoring
- Differentiating between low-risk and high-risk customers from their income and savings



Discriminant: IF income >  $\theta_1$  AND savings >  $\theta_2$ THEN low-risk ELSE high-risk

### Classification: Applications

- Aka Pattern recognition
- Face recognition: Pose, lighting, occlusion (glasses, beard), make-up, hair style
- Character recognition: Different handwriting styles.
- Speech recognition: Temporal dependency.
  - Use of a dictionary or the syntax of the language.
  - Sensor fusion: Combine multiple modalities; eg, visual (lip image) and acoustic for speech
- Medical diagnosis: From symptoms to illnesses
- \_\_\_\_\_

### Face Recognition

#### Training examples of a person









#### Test images











### Supervised Learning: Uses

- Prediction of future cases: Use the rule to predict the output for future inputs
- Knowledge extraction: The rule is easy to understand
- Compression: The rule is simpler than the data it explains
- Outlier detection: Exceptions that are not covered by the rule, e.g., fraud

### Unsupervised Learning

- Learning "what normally happens"
- No output
- Clustering: Grouping similar instances
- Example applications
  - Customer segmentation in CRM
  - Image compression: Color quantization
  - Bioinformatics: Learning motifs

### **Image Clustering**







### ٧

### Reinforcement Learning

- Learning a policy: A sequence of outputs
- No supervised output but delayed reward
- Credit assignment problem
  - Which action led me to winning the game?
- Examples
  - Game playing
  - Robot in a maze
  - Multiple agents, partial observability, ...

### **Reinforcement Learning:**

#### **Overview**

- Characteristics
  - Learning a Policy: A sequence of outputs
  - No supervised output, but a delayed reward
  - Credit assignment problem:
    - Which action led me to winning the game?
- Examples
  - Elevator scheduling
  - Backgammon and Chess
  - Robot control

# Some more examples of tasks that are best solved by using a learning algorithm

#### 1. Recognizing patterns:

- Facial identities or facial expressions
- Handwritten or spoken words
- Medical images

#### 2. Generating patterns:

Generating images or motion sequences

#### 3. Recognizing anomalies:

- Unusual sequences of credit card transactions
- Unusual patterns of sensor readings in a nuclear power plant or unusual sound in your car engine.

#### 4. Prediction:

• Future stock prices or currency exchange rates

#### **ML problems**

- 1. The web contains a lot of data.
- 2. Tasks with very big datasets often use machine learning
  - especially if the data is noisy or non-stationary.
- 3. Spam filtering, fraud detection:
  - The enemy adapts so we must adapt too.
- 4. Recommendation systems:
  - Lots of noisy data. Million dollar prize!
- 5. Information retrieval:
  - Find documents or images with similar content.
- 6. Data Visualization:
  - Display a huge database in a revealing way

# Sample Applications

- Web search
- Computational biology
- Finance
- E-commerce
- Space exploration
- Robotics
- Information extraction
- Social networks
- Debugging
- [Your favorite area]

#### ML in a Nutshell

- Tens of thousands of machine learning algorithms
- Hundreds new every year
- Every machine learning algorithm has three components:
  - Representation
  - Evaluation
  - Optimization

## Usual ML stages

- Hypothesis, data
- Training or learning
- Testing or generalization

# ML lifecyle



#### Machine Learning as a Process



## Representation

- Decision trees
- Sets of rules / Logic programs
- Instances
- Graphical models (Bayes/Markov nets)
- Neural networks
- Support vector machines
- Model ensembles
- Etc.

## ML as a Process: Data Preparation

- Needed for several reasons
  - Some Models have strict data requirements
    - Scale of the data, data point intervals, etc
  - Some characteristics of the data may impact dramatically on the model performance
- Time on data preparation should not be underestimated



#### ML as a Process: Feature engineering

- Determine the predictors (features) to be used is one of the most critical questions
- Sometimes we need to add predictors
- Reduce Number:
  - Fewer predictors more interpretable model and less costly
  - Most of the models are affected by high dimensionality, specially for non-informative predictors



Binning predictors

#### ML as a Process: Model Building

- Data Splitting
  - Allocate data to different tasks
    - model training
    - performance evaluation
  - Define Training, Validation and Test sets
- Feature Selection (Review the decision made previously)
- Estimating Performance
  - Visualization of results discovery interesting areas of the problem space
  - Statistics and performance measures
- Evaluation and Model selection
  - The 'no free lunch' theorem no a priory assumptions can be made
  - Avoid use of favorite models if NEEDED

# Designing a Learning System

- Choose the training experience
- Choose exactly what is too be learned, i.e. the target function.
- Choose how to represent the target function.
- Choose a learning algorithm to infer the target function from the experience.



# Types of testing

- Evaluate performance by testing on data NOT used for testing (both should be randomly sampled)
- Cross validation methods for small data sets
- The more (relevant) data the better.

#### **Testing**

- How well the learned system work?
- Generalization
  - Performance on unseen or unknown scenarios or data
  - Brittle vs robust performance

## Training vs. Test Distribution

- Generally assume that the training and test examples are independently drawn from the same overall distribution of data.
  - IID: Independently and identically distributed
- If examples are not independent, requires collective classification.
- If test distribution is different, requires transfer learning.

#### **Evaluation**

- Accuracy
- Precision and recall
- Squared error
- Likelihood
- Posterior probability
- Cost / Utility
- Margin
- Entropy
- K-L divergence
- Etc.

#### H

## Measuring Performance

- Generalization accuracy
- Solution correctness
- Solution quality (length, efficiency)
- Speed of performance

## .

## Scaling issues in ML

- Number of
  - Inputs
  - Outputs
  - Batch vs realtime
  - Training vs testing

## **Optimization**

- Combinatorial optimization
  - E.g.: Greedy search
- Convex optimization
  - E.g.: Gradient descent
- Constrained optimization
  - E.g.: Linear programming

#### ML in Practice

- Understanding domain, prior knowledge, and goals
- Data integration, selection, cleaning, pre-processing, etc.
- Learning models
- Interpreting results
- Consolidating and deploying discovered knowledge
- Loop

# Machine Learning versus Human Learning

- Some ML behavior can challenge the performance of human experts (e.g., playing chess)
- Although ML sometimes matches human learning capabilities, it is not able to learn as well as humans or in the same way that humans do
- There is no claim that machine learning can be applied in a truly creative way
- Formal theories of ML systems exist but are often lacking (why a method succeeds or fails is not clear)
- ML success is often attributed to manipulation of symbols (rather than mere numeric information)



#### Resources: Datasets

- UCI Repository:
  <a href="http://www.ics.uci.edu/~mlearn/MLRepository.html">http://www.ics.uci.edu/~mlearn/MLRepository.html</a>
- UCI KDD Archive: <a href="http://kdd.ics.uci.edu/summary.data.application.html">http://kdd.ics.uci.edu/summary.data.application.html</a>
- Statlib: <a href="http://lib.stat.cmu.edu/">http://lib.stat.cmu.edu/</a>
- Delve: <a href="http://www.cs.utoronto.ca/~delve/">http://www.cs.utoronto.ca/~delve/</a>



#### Resources: Journals

- Journal of Machine Learning Research <u>www.jmlr.org</u>
- Machine Learning
- Neural Computation
- Neural Networks
- IEEE Transactions on Neural Networks
- IEEE Transactions on Pattern Analysis and Machine Intelligence
- Annals of Statistics
- Journal of the American Statistical Association

#### Resources: Conferences

- International Conference on Machine Learning (ICML)
  - ICML05: <a href="http://icml.ais.fraunhofer.de/">http://icml.ais.fraunhofer.de/</a>
- European Conference on Machine Learning (ECML)
  - ECML05: <a href="http://ecmlpkdd05.liacc.up.pt/">http://ecmlpkdd05.liacc.up.pt/</a>
- Neural Information Processing Systems (NIPS)
  - NIPS05: <a href="http://nips.cc/">http://nips.cc/</a>
- Uncertainty in Artificial Intelligence (UAI)
  - UAI05: <a href="http://www.cs.toronto.edu/uai2005/">http://www.cs.toronto.edu/uai2005/</a>
- Computational Learning Theory (COLT)
  - COLT05: <a href="http://learningtheory.org/colt2005/">http://learningtheory.org/colt2005/</a>
- International Joint Conference on Artificial Intelligence (IJCAI)
  - IJCAI05: <a href="http://ijcai05.csd.abdn.ac.uk/">http://ijcai05.csd.abdn.ac.uk/</a>
- International Conference on Neural Networks (Europe)
  - ICANN05: http://www.ibspan.waw.pl/ICANN-2005/