# ECE/CS 252 Intro to Computer Engineering

Week 04 Discussion

### Logic Gates



### **Build Logic Circuit From Equation**

• F = ABCD

 $F = \overline{A + BC} \cdot D$ 

#### **Build Logic Circuit From Truth Table**

- Can easily create a functionally correct (but perhaps inefficient) circuit by "reading" truth table
  - "When does the output need to equal 1?"

| Α | В | С | F |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 0 |

4

W

#### Don't Connect Gate Outputs Together!

- · Causes contention!
- What happens if one gate outputs a 1 and the other outputs a 0?



5

W

#### **Decoders**

• What are the output values?





#### **Decoders**

• What must the input values be?

### **Multiplexer Operation**

• Multiplexers make a choice!



| Software Analogy                               |  |
|------------------------------------------------|--|
| $ f(S == 1) $ $ Y = D_1 $ $ else $ $ Y = D_0 $ |  |

## Multiplexer Waveform

• Complete the waveform for the multiplexer shown





### Adders

• A Full Adder processes **one column** (a single bit position) of a binary addition

• Connect the adder inputs so that it performs the computation K + M, where K=5 and M=6



11

### Wrapping Up

- Up Next:
  - Sequential Circuits
  - Flip-Flops
  - Finite State Machines
  - Registers
  - Memory
- Remember the homework!
- Remember your videos and reading
  - Including the video quiz!
- · Questions?

12