x

Two channels are welded to a rolled W section as shown. Determine the moments of inertia of the combined section with respect to the centroidal x-axis.

					110.1.1	Axis X-X			Axis Y-Y		
		Designation in ²		Depth in.	Width in.	\bar{I}_{r} , $\bar{\eta}_{\mathrm{r}}^{4}$	$\overline{k}_{\mathrm{r}}$, in.	y, in. (\overline{I}_y , in4	\overline{k}_y , in.	\overline{x} , in.
W Shapes (Wide-Flange Shapes)	Y =>	W18 × 76† W16 × 57 W14 × 38 W8 × 31	22.3 16.8 11.2 9.12	18.2 16.4 14.1 8.00	11.0 7.12 6.77 8.00	1330 758 385 110	7.73 6.72 5.87 3.47		152 43.1 26.7 37.1	2.61 1.60 1.55 2.02	
S Shapes (American Standard Shapes)		\$18 × 54.7† \$12 × 31.8 \$10 × 25.4 \$6 × 12.5	16.0 9.31 7.45 3.66	18.0 12.0 10.0 6.00	6.00 5.00 4.66 3.33	901 217 123 22.9	7.07 4.83 4.07 2.45		20.7 9.33 6.73 1.80	1.14 1.00 0.980 0.702	
C Shapes (American Standard Channels)	Y X $-\bar{x}$	C12×20.7† C10×15.3 C8×11.5 C6×8.2	6.08 4.48 3.37 2.39	12.0 10.0 8.00 6.00	2.94 2.60 2.26 1.92	129 67.3 32.5 13.1	4.61 3.87 3.11 2.34		3.86 2.27 1.31 0.687	0.797 0.711 0.623 0.536	0.698 0.634 0.572 0.512
Angles X	₹ X	L6×6×1‡ L4×4×½ L3×3×¼ L6×4×½ L5×3×½ L5×3×½ L5×3×½ L3×2×¼	11.0 3.75 1.44 4.75 3.75 1.19			35.4 5.52 1.23 17.3 9.43 1.09	1.79 1.21 0.926 1.91 1.58 0.983	1.86 1.18 0.836 1.98 1.74 0.980	35.4 5.52 1.23 6.22 2.55 0.390	1.79 1.21 0.926 1.14 0.824 0.569	1.86 1.18 0.836 0.981 0.746 0.487

					Axds X-X			Axis Y-Y			
		Designation	Area mm²	Depth mm	Width mm	106 mm4	$\overline{k}_{\!\scriptscriptstyle m T}$	y mm	\overline{I}_y 106 mm4	\overline{k}_y	\overline{x} mm
W Shapes (Wide-Flange Shapes)	$x \longrightarrow x$	W460 × 113† W410 × 85 W360 × 57.8 W200 × 46.1	14400 10900 7230 5890	462 417 358 203	279 181 172 203	554 316 160 45.8	196 171 149 88.1		63.3 17.9 11.1 15.4	66.3 40.6 39.4 51.3	
S Shapes (American Standard Shapes)	xx	\$460 × 81.4† \$310 × 47.3 \$250 × 37.8 \$150 × 18.6	10300 6010 4810 2360	457 305 254 152	152 127 118 84.6	333 90.3 51.2 9.16	180 123 103 62.2		8.62 3.88 2.80 0.749	29.0 25.4 24.1 17.8	
C Shapes (American Standard Channels)	$X \longrightarrow X$ \overline{x}	C310 × 30.8† C250 × 22.8 C200 × 17.1 C150 × 12.2	3920 2890 2170 1540	305 254 203 152	74.7 66.0 57.4 48.8	53.7 28.0 13.5 5.45	117 98.3 79.0 59.4		1.61 0.945 0.545 0.296	20.2 18.1 15.8 13.6	17.7 16.1 14.5 13.0
Angles X	$\frac{1}{\bar{y}}x$	L152 × 152 × 25.4‡ L102 × 102 × 12.7 L76 × 76 × 6.4 L152 × 102 × 12.7 L127 × 76 × 12.7 L76 × 51 × 6.4	7100 2420 929 3060 2420 768			14.7 2.30 0.512 7.20 3.93 0.454	45.5 30.7 23.5 48.5 40.1 24.2	47.2 30.0 21.2 50.3 44.2 24.9	14.7 2.30 0.512 2.59 1.06 0.162	45.5 30.7 23.5 29.0 20.9 14.5	47.2 30.0 21.2 24.9 18.9 12.4

Vector Mechanics for Engineers: Statics Moments of Inertia of Common Geometric Shapes

$$\begin{split} I_x &= \frac{1}{2} m r^2 \\ I_y &= I_z = \frac{1}{4} m r^2 \end{split}$$

$$I_x = \frac{1}{12} m(b^2 + c^2)$$

$$I_y = \frac{1}{12} mc^2$$

$$I_z = \frac{1}{12} mb^2$$

$$\begin{split} I_x &= \frac{1}{2} \, m a^2 \\ I_y &= I_z = \frac{1}{12} \, m (3 a^2 + L^2) \end{split}$$

$$I_x = \frac{1}{12} m(b^2 + c^2)$$

$$I_y = \frac{1}{12} m(c^2 + a^2)$$

$$I_z = \frac{1}{12} m(a^2 + b^2)$$

$$I_x = I_y = I_z = \frac{2}{5} ma^2$$

1 - 39

The moment of inertia for hollow disk 1 about the *y*-axis can be calculated by:

- A) I_x from table below
- B) I_v from table below
- C) I_x from table below + parallel axis theorem
- $\int D I_v$ from table below + parallel axis theorem
 - E) None of the above

200 mm

 $100 \, \mathrm{mm}$

200 mm

The moment of inertia for hollow disk about the *y*-axis can be calculated by:

- A) I_x from table below
- B) I_v from table below
- C) I_x from table below + parallel axis theorem
- DI_v from table below + parallel axis theorem
- E) None of the above

200 mm

 $100 \, \mathrm{mm}$

200 mm

$$I_x = \frac{1}{2}mr^2$$

$$I_y = I_z = \frac{1}{4}mr^2$$