Please find below the most useful formulas in EC122. To use them properly, you need to know when they are applicable (what are the assumptions, what must be given in the question).

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i}, \quad s_{x}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_{i}^{2} - n\bar{x}^{2} \right)$$

$$\text{Skewness} = \frac{1}{ns_{x}^{3}} \sum_{i=1}^{n} (x_{i} - \bar{x})^{3} = \frac{1}{ns_{x}^{3}} \left(\sum_{i=1}^{n} x_{i}^{3} - 3(n-1)\bar{x}s_{x}^{2} - n\bar{x}^{3} \right)$$

$$P(B_{j}|A) = \frac{P(A \cap B_{j})}{P(A)} = \frac{P(A \cap B_{j})}{\sum_{k=1}^{n} P(A \cap B_{k})} = \frac{P(A|B_{j}) \cdot P(B_{j})}{\sum_{k=1}^{n} P(A|B_{k}) \cdot P(B_{k})}$$

$$\mu_{X} = E(X) = \sum_{i} x_{i}p(x_{i}), \quad \sigma^{2} = E(X - E(X))^{2} = E(X^{2}) - [E(X)]^{2} = \sum_{i=1}^{n} x_{i}^{2}p(x_{i}) - \mu_{X}^{2}$$

$$E(a + bX) = a + bE(X), \quad Var(a + bX) = b^{2}Var(X)$$

$$E(\bar{X}) = E(X) = \mu_{X}, \quad Var(\bar{X}) = \frac{1}{n}Var(X) = \frac{\sigma^{2}}{n}$$

Distribution	Probability density function	Mean	Variance
Uniform	$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } a \le x \le b\\ 0 & \text{otherwise} \end{cases}$	$\frac{1}{2}(a+b)$	$\frac{1}{12}(b-a)^2$
Bernoulli	$P(B=1) = \pi, P(B=0) = 1 - \pi$	π	$\pi(1-\pi)$
Binomial	$P(S = k) = \pi^k (1 - \pi)^{n-k} \frac{n!}{k!(n-k)!}$	$n\pi$	$n\pi(1-\pi)$
Poisson	$P(X=k) = \frac{e^{-\mu}\mu^k}{k!}$	μ	μ
Normal	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$	μ	σ^2

$$\pi \in \left[\bar{p} - z_{\alpha/2} \sqrt{\frac{\bar{p}(1 - \bar{p})}{n}}, \ \bar{p} + z_{\alpha/2} \sqrt{\frac{\bar{p}(1 - \bar{p})}{n}} \right]$$

$$\pi_1 - \pi_2 \in \left[(\bar{p} - \bar{q}) - z_{\alpha/2} \sqrt{\frac{\bar{p}(1 - \bar{p})}{n}} + \frac{\bar{q}(1 - \bar{q})}{m}, \ (\bar{p} - \bar{q}) + z_{\alpha/2} \sqrt{\frac{\bar{p}(1 - \bar{p})}{n}} + \frac{\bar{q}(1 - \bar{q})}{m} \right]$$

$$\mu_X \in \left[\bar{x} - z_{\alpha/2} \frac{\sigma_X}{\sqrt{n}}, \ \bar{x} + z_{\alpha/2} \frac{\sigma_X}{\sqrt{n}} \right]$$

$$\mu_X \in \left[\bar{x} - t_{n-1,\alpha/2} \frac{s_x}{\sqrt{n}}, \ \bar{x} + t_{n-1\alpha/2} \frac{s_x}{\sqrt{n}} \right]$$

$$\mu_X - \mu_Y \in \left[(\bar{x} - \bar{y}) - z_{\alpha/2} \sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}, \ (\bar{x} - \bar{y}) + z_{\alpha/2} \sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}} \right]$$

$$\mu_X - \mu_Y \in \left[(\bar{x} - \bar{y}) - t_{n+m-2,\alpha/2} \sqrt{\frac{s_p^2}{n} + \frac{s_p^2}{m}}, \ (\bar{x} - \bar{y}) + t_{n+m-2,\alpha/2} \sqrt{\frac{s_p^2}{n} + \frac{s_p^2}{m}} \right]$$
 where,
$$s_p^2 = \frac{(n-1)s_X^2 + (m-1)s_Y^2}{n+m-2}$$

$$\sigma_X^2 \in \left[\frac{(n-1)s_X^2}{\chi_{n-1,\alpha/2}^2}, \frac{(n-1)s_X^2}{\chi_{n-1,1-\alpha/2}^2} \right]$$

$$Z = \frac{\bar{P} - \pi}{\sqrt{\frac{\pi(1-\bar{\tau})}{n}}} \sim N(0,1), \quad Z = \frac{(\bar{P} - \bar{Q}) - (\pi - \pi)}{\sqrt{\frac{\bar{\tau}(1-\bar{\tau})}{n}} + \frac{\bar{\tau}(1-\bar{\tau})}{m}} \sim N(0,1), \quad \bar{r} = \left(\frac{n}{n+m} \right) \bar{p} + \left(\frac{m}{n+m} \right) \bar{q}$$

$$Z = \frac{\bar{X} - \mu}{\sigma_X / \sqrt{n}} \sim N(0,1), \quad Z = \frac{(\bar{X} - \bar{Y}) - (\mu_X - \mu_Y)}{\sqrt{\frac{\sigma_X^2}{n}} + \frac{\sigma_Y^2}{m}} \sim N(0,1), \quad T = \frac{\bar{X} - \mu}{S_X / \sqrt{n}} \sim t_{n-1}$$

$$T = \frac{(\bar{X} - \bar{Y}) - (\mu_X - \mu_Y)}{\sqrt{\frac{s_2^2}{n}} + \frac{s_p^2}{m}} \sim t_{n+m-2}, \quad S^2 = \left(\frac{n-1}{n+m-2} \right) \cdot S_X^2 + \left(\frac{m-1}{n+m-2} \right) \cdot S_Y^2$$

$$C = \frac{(n-1)S_X^2}{\sigma_X^2} \sim \chi_{n-1}^2, \quad C = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i} \sim \chi_{k-1}^2, \quad C = \sum_{i=1}^k \sum_{j=i}^l \frac{(O_{ij} - E_{ij})^2}{E_{ij}} \sim \chi_{(k-1)(l-1)}^2$$

$$F = \frac{S_X^2}{S_Y^2} \sim F_{n-1,m-1}, \quad F = \frac{SSB/(k-1)}{SSW/(n-k)} \sim F_{k-1,n-k}$$

$$n = n_1 + \ldots + n_k, \quad SST = \sum_{i=1}^k \sum_{j=1}^{n_i} x_{ij}^2 - n\bar{x}^2, \quad SSB = \sum_{i=1}^k n_i \bar{x}_i^2 - n\bar{x}^2, \quad SST = SSB + SSW$$

$$s_{xy} = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y}) = \frac{1}{n-1} \left(\sum_{i=1}^n x_i y_i - n\bar{x}\bar{y} \right)$$

$$r_{xy} = \frac{\sum_{i=1}^n x_i y_i - n\bar{x}\bar{y}}{\sqrt{(\sum_{i=1}^n x_i^2 - n\bar{x}^2)(\sum_{i=1}^n y_i^2 - n\bar{y}^2)}} = \frac{s_{xy}}{s_x \cdot s_y}$$

$$t = \frac{r_{xy} \sqrt{n-2}}{r_{xy} \sqrt{n-2}} \sim t_{n-2}$$

$$\hat{y}_i = b_0 + b_1 x_i, \quad b_1 = \sum_{i=1}^n x_i y_i - n\bar{x}\bar{y} = \frac{s_{xy}}{s_x^2} = r_{xy} \cdot \frac{s_y}{s_x}, \quad b_0 = \bar{y} - b_1 \bar{x}$$

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2, \quad SSE = e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)^2$$

$$SST = SSR + SSE, \quad R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST} = r_{xy}^2$$

$$s_e^2 = \frac{1}{n-2} \sum_{i=1}^{n} e_i^2 = \frac{n-1}{n-2} (s_y^2 - b_1^2 \cdot s_x^2)$$

$$s_{b_1}^2 = \frac{s_e^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2} = \frac{s_e^2}{\sum_{i=1}^{n} x_i^2 - n\bar{x}^2}$$

$$t = \frac{b_1 - \beta}{s_{b_1}} \sim t_{n-2}$$

$$\beta \in [b_1 - t_{\alpha/2, n-2} \cdot s_{b_1}, \ b_1 + t_{\alpha/2, n-2} \cdot s_{b_1}]$$