625.661 Statistical Models and Regression

Module 6 Discussion Question

H.M. James Hung

Please complete all the following problems.

- **1.** Two different treatments are of interest. The first treatment has two levels (A versus B). The second treatment has two levels (a versus b). Denote by y the targeted response variable.
 - a) Construct a multiple linear regression model to estimate the difference in the expected value of y between A and B, the difference in the expected value of y between a and b, and the difference in the expected value of y among the four treatment combinations Aa, Ab, Ba, Bb.

Define X = 1 for A and 0 for B. Define Z = 1 for a and 0 for b.

The model for estimating the three differences in expected value of y:

$$E(y \mid X,Z) = \beta_0 + \beta_x X + \beta_z Z + \gamma XZ.$$

From this model, we can derive

For ${\it Aa}$, the expected value of y is ${\it E}(y\mid {\it X}=1,{\it Z}=1)={\it eta}_0+{\it eta}_x+{\it eta}_z+{\it \gamma}$.

For *Ab*, the expected value of y is $E(y \mid X = 1, Z = 0) = \beta_0 + \beta_x$.

For Ba, the expected value of y is $E(y \mid X = 0, Z = 1) = \beta_0 + \beta_z$.

For *Bb*, the expected value of y is $E(y \mid X = 0, Z = 0) = \beta_0$.

When $\gamma=0$,

for A, the expected value of y is $E(y \mid X = 1, Z) = \beta_0 + \beta_x + \beta_z Z$.

for B, the expected value of y is $E(y \mid X = 0, Z) = \beta_0 + \beta_z Z$.

for a, the expected value of y is $E(y \mid Z = 1, X) = \beta_0 + \beta_z + \beta_x X$.

for b, the expected value of y is $E(y \mid Z = 0, X) = \beta_0 + \beta_x X$.

When $\gamma \neq 0$, the expected value of y depends on the level of the second treatment.

b) Construct an analysis of variance model to estimate the difference in the expected value of y between A and B, the difference in the expected value of y between a and b, and the difference in the expected value of y among the four treatment combinations Aa, Ab, Ba, Bb.

Let τ_A be the mean effect of treatment A.

Let τ_B be the mean effect of treatment B.

Let λ_a be the mean effect of treatment a.

Let λ_b be the mean effect of treatment b.

Let μ be the overall mean effect.

The ANOVA model is

$$y_{hki} = \mu + \tau_h + \lambda_k + \gamma_{hk} + \varepsilon_{hki}$$
, $h = A, B$; $k = a, b$; $i = 1, ..., n$.

Conditions needed: $\tau_A + \tau_B = 0$; $\lambda_a + \lambda_b = 0$; $\sum_{h=A}^B \gamma_{hk} = 0$; $\sum_{k=a}^b \gamma_{hk} = 0$