Métodos geométricos aplicados a ciências da informação

Fábio C. C. Meneghetti

Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

22 de fevereiro de 2022

Parte I

Motivação

• Claude Shannon (1916–2001): entropia como medida de informação de uma variável aleatória: $H(X) = -\sum_i p_i \log p_i$.

- Claude Shannon (1916–2001): entropia como medida de informação de uma variável aleatória: $H(X) = -\sum_i p_i \log p_i$.
- Fisher (1890–1962): medida de informação sobre um parâmetro θ que uma variável aleatória carrega: $I(\theta) = \int_{\mathcal{X}} p_{\theta}(x) \left(\log \frac{\mathrm{d} p_{\theta}}{\mathrm{d} \theta}(x)\right)^2 \mathrm{d} x$

- Claude Shannon (1916–2001): entropia como medida de informação de uma variável aleatória: $H(X) = -\sum_i p_i \log p_i$.
- Fisher (1890–1962): medida de informação sobre um parâmetro θ que uma variável aleatória carrega: $I(\theta) = \int_{\mathcal{X}} p_{\theta}(x) \left(\log \frac{\mathrm{d} p_{\theta}}{\mathrm{d} \theta}(x)\right)^2 \mathrm{d} x$
- C. R. Rao (1920–): a informação de Fisher sobre múltiplos parâmetros $(\theta_1, \dots, \theta_d)$ é uma métrica Riemanniana!

- Claude Shannon (1916–2001): entropia como medida de informação de uma variável aleatória: $H(X) = -\sum_i p_i \log p_i$.
- Fisher (1890–1962): medida de informação sobre um parâmetro θ que uma variável aleatória carrega: $I(\theta) = \int_{\mathcal{X}} p_{\theta}(x) \left(\log \frac{\mathrm{d} p_{\theta}}{\mathrm{d} \theta}(x)\right)^2 \mathrm{d} x$
- C. R. Rao (1920–): a informação de Fisher sobre múltiplos parâmetros $(\theta_1, \ldots, \theta_d)$ é uma métrica Riemanniana!
 - métrica da informação de Fisher

- Claude Shannon (1916–2001): entropia como medida de informação de uma variável aleatória: $H(X) = -\sum_i p_i \log p_i$.
- Fisher (1890–1962): medida de informação sobre um parâmetro θ que uma variável aleatória carrega: $I(\theta) = \int_{\mathcal{X}} p_{\theta}(x) \left(\log \frac{\mathrm{d} p_{\theta}}{\mathrm{d} \theta}(x)\right)^2 \mathrm{d} x$
- C. R. Rao (1920–): a informação de Fisher sobre múltiplos parâmetros $(\theta_1, \dots, \theta_d)$ é uma métrica Riemanniana!
 - métrica da informação de Fisher
 - ela induz uma geometria sobre as distribuições de probabilidade

- Claude Shannon (1916–2001): entropia como medida de informação de uma variável aleatória: $H(X) = -\sum_i p_i \log p_i$.
- Fisher (1890–1962): medida de informação sobre um parâmetro θ que uma variável aleatória carrega: $I(\theta) = \int_{\mathcal{X}} p_{\theta}(x) \left(\log \frac{\mathrm{d} p_{\theta}}{\mathrm{d} \theta}(x)\right)^2 \mathrm{d} x$
- C. R. Rao (1920–): a informação de Fisher sobre múltiplos parâmetros $(\theta_1, \dots, \theta_d)$ é uma métrica Riemanniana!
 - métrica da informação de Fisher
 - ela induz uma geometria sobre as distribuições de probabilidade
 - isso nos permite falar sobre distâncias e curvaturas no espaço das distribuições

- Claude Shannon (1916–2001): entropia como medida de informação de uma variável aleatória: $H(X) = -\sum_i p_i \log p_i$.
- Fisher (1890–1962): medida de informação sobre um parâmetro θ que uma variável aleatória carrega: $I(\theta) = \int_{\mathcal{X}} p_{\theta}(x) \left(\log \frac{\mathrm{d} p_{\theta}}{\mathrm{d} \theta}(x)\right)^2 \mathrm{d} x$
- C. R. Rao (1920–): a informação de Fisher sobre múltiplos parâmetros $(\theta_1, \ldots, \theta_d)$ é uma métrica Riemanniana!
 - métrica da informação de Fisher
 - ela induz uma geometria sobre as distribuições de probabilidade
 - isso nos permite falar sobre distâncias e curvaturas no espaço das distribuições
 - área de pesquisa: geometria da informação

Por exemplo:

no caso das distribuições gaussianas univariadas...

$$p(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{|x - \mu|^2}{2\sigma^2}\right),$$

Por exemplo:

• no caso das distribuições gaussianas univariadas...

$$p(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{|x - \mu|^2}{2\sigma^2}\right),$$

o espaço de parâmetros é

• com a métrica da informação de Fisher, obtemos uma geometria hiperbólica! (versão deformada do meio-plano de Poincaré)

• com a métrica da informação de Fisher, obtemos uma geometria hiperbólica! (versão deformada do meio-plano de Poincaré)

Parte II

Teoria

- distribuições de probabilidade
 - discretas: $X \in \{x_1, \dots, x_n\}$, $\mathbb{P}[X = x_i] = p_i$, $\sum_i p_i = 1$.

- distribuições de probabilidade
 - discretas: $X \in \{x_1, \dots, x_n\}$, $\mathbb{P}[X = x_i] = p_i$, $\sum_i p_i = 1$.
 - continuas: $X \in \mathcal{X}$, $\mathbb{P}[X \in A] = \int_A p(x) \, \mathrm{d}x$.

- distribuições de probabilidade
 - discretas: $X \in \{x_1, \dots, x_n\}$, $\mathbb{P}[X = x_i] = p_i$, $\sum_i p_i = 1$.
 - contínuas: $X \in \mathcal{X}$, $\mathbb{P}[X \in A] = \int_A p(x) \, \mathrm{d}x$.
- de forma mais geral, temos um espaço de probabilidade $(\mathcal{X}, \mathcal{F}, \mathbb{P})$, e uma medida σ -finita dominante μ .

- distribuições de probabilidade
 - discretas: $X \in \{x_1, \dots, x_n\}$, $\mathbb{P}[X = x_i] = p_i$, $\sum_i p_i = 1$.
 - contínuas: $X \in \mathcal{X}$, $\mathbb{P}[X \in A] = \int_A p(x) \, \mathrm{d}x$.
- de forma mais geral, temos um espaço de probabilidade $(\mathcal{X}, \mathcal{F}, \mathbb{P})$, e uma medida σ -finita dominante μ .
 - A função densidade é a derivada de Radon-Nikodym $p(x) = \frac{d\mathbb{P}}{d\mu}(x)$, $p \colon \mathcal{X} \to \mathbb{R}_+$ que satisfaz $\mathbb{P}(A) = \int_A p(x) \, \mathrm{d}\mu(x)$.

- distribuições de probabilidade
 - discretas: $X \in \{x_1, \dots, x_n\}$, $\mathbb{P}[X = x_i] = p_i$, $\sum_i p_i = 1$.
 - contínuas: $X \in \mathcal{X}$, $\mathbb{P}[X \in A] = \int_A p(x) \, \mathrm{d}x$.
- de forma mais geral, temos um espaço de probabilidade $(\mathcal{X}, \mathcal{F}, \mathbb{P})$, e uma medida σ -finita dominante μ .
 - A função densidade é a derivada de Radon-Nikodym $p(x) = \frac{d\mathbb{P}}{d\mu}(x)$, $p \colon \mathcal{X} \to \mathbb{R}_+$ que satisfaz $\mathbb{P}(A) = \int_A p(x) \, \mathrm{d}\mu(x)$.
 - \mathcal{X} enumerável e μ_c medida de contagem \implies distribuição discreta, p= função massa, $\int_{\mathbf{x}\in A}=\sum_{\mathbf{x}\in A}$

- distribuições de probabilidade
 - discretas: $X \in \{x_1, \dots, x_n\}$, $\mathbb{P}[X = x_i] = p_i$, $\sum_i p_i = 1$.
 - continuas: $X \in \mathcal{X}$, $\mathbb{P}[X \in A] = \int_A p(x) \, \mathrm{d}x$.
- de forma mais geral, temos um espaço de probabilidade $(\mathcal{X}, \mathcal{F}, \mathbb{P})$, e uma medida σ -finita dominante μ .
 - A função densidade é a derivada de Radon-Nikodym $p(x) = \frac{d\mathbb{P}}{d\mu}(x)$, $p \colon \mathcal{X} \to \mathbb{R}_+$ que satisfaz $\mathbb{P}(A) = \int_A p(x) \, \mathrm{d}\mu(x)$.
 - \mathcal{X} enumerável e μ_c medida de contagem \implies distribuição discreta, p= função massa, $\int_{x\in A}=\sum_{x\in A}$
 - $\mathcal{X} \subset \mathbb{R}^n$ e $\mu_{\mathcal{L}}$ medida de Lebesgue \implies distribuição contínua, p= função densidade

• um modelo estatístico é uma família parametrizada de distribuições $\mathcal{P} = \{\mathbb{P}_{\theta} : \theta \in \Theta\}$ no espaço $(\mathcal{X}, \mathcal{F})$.

- um modelo estatístico é uma família parametrizada de distribuições $\mathcal{P} = \{ \mathbb{P}_{\theta} : \theta \in \Theta \}$ no espaço $(\mathcal{X}, \mathcal{F})$.
 - $\Theta \subset \mathbb{R}^d$ conjunto aberto de parâmetros.

- um modelo estatístico é uma família parametrizada de distribuições $\mathcal{P} = \{ \mathbb{P}_{\theta} : \theta \in \Theta \}$ no espaço $(\mathcal{X}, \mathcal{F})$.
 - $\Theta \subset \mathbb{R}^d$ conjunto aberto de parâmetros.
 - na vida real costuma-se tomar como modelo a família de funções densidade $\left\{p_{\theta}=\frac{\mathrm{d}\mathbb{P}_{\theta}}{\mathrm{d}\mu}:\theta\in\Theta\right\}$.

- um modelo estatístico é uma família parametrizada de distribuições $\mathcal{P} = \{ \mathbb{P}_{\theta} : \theta \in \Theta \}$ no espaço $(\mathcal{X}, \mathcal{F})$.
 - $\Theta \subset \mathbb{R}^d$ conjunto aberto de parâmetros.
 - na vida real costuma-se tomar como modelo a família de funções densidade $\left\{p_{\theta} = \frac{\mathrm{d}\mathbb{P}_{\theta}}{\mathrm{d}\mu} : \theta \in \Theta\right\}$.
 - vamos considerar modelos estatísticos regulares:

- um modelo estatístico é uma família parametrizada de distribuições $\mathcal{P} = \{ \mathbb{P}_{\theta} : \theta \in \Theta \}$ no espaço $(\mathcal{X}, \mathcal{F})$.
 - $\Theta \subset \mathbb{R}^d$ conjunto aberto de parâmetros.
 - na vida real costuma-se tomar como modelo a família de funções densidade $\{p_{\theta} = \frac{d\mathbb{P}_{\theta}}{du} : \theta \in \Theta\}$.
 - vamos considerar modelos estatísticos regulares:
 - a função $\theta \mapsto p_{\theta}$ é C^{∞}

- um modelo estatístico é uma família parametrizada de distribuições $\mathcal{P} = \{ \mathbb{P}_{\theta} : \theta \in \Theta \}$ no espaço $(\mathcal{X}, \mathcal{F})$.
 - $\Theta \subset \mathbb{R}^d$ conjunto aberto de parâmetros.
 - na vida real costuma-se tomar como modelo a família de funções densidade $\left\{p_{\theta} = \frac{\mathrm{d}\mathbb{P}_{\theta}}{\mathrm{d}\mu} : \theta \in \Theta\right\}$.
 - vamos considerar modelos estatísticos regulares:
 - a função $\theta \mapsto p_{\theta}$ é C^{∞}
 - $p_{\theta}(x) > 0$ para todo x, θ

Vamos agora adicionar uma estrutura Riemanniana ao espaço $\Theta \simeq \mathcal{P}$.

Vamos agora adicionar uma estrutura Riemanniana ao espaço $\Theta \simeq \mathcal{P}.$

• denote por $\ell_{\theta}(x) \coloneqq \log p_{\theta}(x)$ a função log-probabilidade

Vamos agora adicionar uma estrutura Riemanniana ao espaço $\Theta \simeq \mathcal{P}.$

- denote por $\ell_{ heta}(x) \coloneqq \log p_{ heta}(x)$ a função log-probabilidade
- ullet a *métrica de Fisher* é a métrica Riemanniana (produto interno em $T_ heta\Theta$) dada por

$$g_{\theta}(V, W) := \int_{\mathcal{X}} p_{\theta}(x) \frac{\partial \ell_{\theta}(x)}{\partial V} \frac{\partial \ell_{\theta}(x)}{\partial W} d\mu(x).$$

Vamos agora adicionar uma estrutura Riemanniana ao espaço $\Theta \simeq \mathcal{P}.$

- ullet denote por $\ell_{ heta}(x) \coloneqq \log p_{ heta}(x)$ a função log-probabilidade
- ullet a *métrica de Fisher* é a métrica Riemanniana (produto interno em $T_ heta\Theta$) dada por

$$g_{\theta}(V, W) := \int_{\mathcal{X}} p_{\theta}(x) \frac{\partial \ell_{\theta}(x)}{\partial V} \frac{\partial \ell_{\theta}(x)}{\partial W} d\mu(x).$$

• na base coordenada local $\left\{e_i = \frac{\partial}{\partial \theta_i}\Big|_{\theta}\right\}_i$, a matriz da métrica é chamada de *matriz de Fisher I*(θ), com elementos

$$g_{ij}(\theta) \coloneqq g_{\theta}(e_i, e_j) = \int_{\mathcal{X}} p_{\theta}(x) \frac{\partial \ell_{\theta}(x)}{\partial \theta_i} \frac{\partial \ell_{\theta}(x)}{\partial \theta_j} \, \mathrm{d}\mu(x)$$

Vamos agora adicionar uma estrutura Riemanniana ao espaço $\Theta \simeq \mathcal{P}.$

- ullet denote por $\ell_{ heta}(x) \coloneqq \log p_{ heta}(x)$ a função log-probabilidade
- ullet a *métrica de Fisher* é a métrica Riemanniana (produto interno em $T_ heta\Theta$) dada por

$$g_{\theta}(V, W) := \int_{\mathcal{X}} p_{\theta}(x) \frac{\partial \ell_{\theta}(x)}{\partial V} \frac{\partial \ell_{\theta}(x)}{\partial W} d\mu(x).$$

• na base coordenada local $\left\{e_i = \frac{\partial}{\partial \theta_i}\Big|_{\theta}\right\}_i$, a matriz da métrica é chamada de *matriz de Fisher I*(θ), com elementos

$$g_{ij}(\theta) := g_{\theta}(e_i, e_j) = \int_{\mathcal{X}} p_{\theta}(x) \frac{\partial \ell_{\theta}(x)}{\partial \theta_i} \frac{\partial \ell_{\theta}(x)}{\partial \theta_j} d\mu(x)$$

• $I(\theta)$ é simétrica e positiva-definida.

Interpretações da métrica de Fisher

Em estatística

Interpretações da métrica de Fisher

- Em estatística
 - O escore de θ em x é o gradiente da função log-probabilidade:

$$s_{\theta}(x) = \nabla_{\theta} \log p_{\theta}(x) = \left(\frac{\partial \ell_{\theta}}{\partial \theta_{1}}, \dots, \frac{\partial \ell_{\theta}}{\partial \theta_{d}}\right)^{\top}(x)$$

 mede sensibilidade a mudanças nos parâmetros da função log-probabilidade

Interpretações da métrica de Fisher

Em estatística

• O escore de θ em x é o gradiente da função log-probabilidade:

$$s_{\theta}(x) = \nabla_{\theta} \log p_{\theta}(x) = \left(\frac{\partial \ell_{\theta}}{\partial \theta_{1}}, \dots, \frac{\partial \ell_{\theta}}{\partial \theta_{d}}\right)^{\top}(x)$$

- mede sensibilidade a mudanças nos parâmetros da função log-probabilidade
- A matriz de Fisher é a matriz de covariância do escore:

$$I(heta) = cov(s_{ heta}, s_{ heta}) = \mathbb{E}[s_{ heta} \cdot s_{ heta}^{ op}]$$

 é um limitante inferior para a covariância de um estimador não-enviesado θ̂ (Limitante de Cramér-Rao):

$$cov(\hat{\theta}) \ge I(\theta)^{-1}$$

• em teoria da informação

- em teoria da informação
 - entropia relativa (divergência de Kullback-Leibler):

$$D_{\mathsf{KL}}(p\|q) = \int_{\mathcal{X}} p(x) \log \frac{p(x)}{q(x)} \, \mathrm{d}\mu(x)$$

- em teoria da informação
 - entropia relativa (divergência de Kullback-Leibler):

$$D_{\mathsf{KL}}(p\|q) = \int_{\mathcal{X}} p(x) \log \frac{p(x)}{q(x)} \, \mathrm{d}\mu(x)$$

 diz quantos bits (na verdade nats), em média, são necessários para codificar p usando um código otimizado para codificar q

- em teoria da informação
 - entropia relativa (divergência de Kullback-Leibler):

$$D_{\mathsf{KL}}(p\|q) = \int_{\mathcal{X}} p(x) \log \frac{p(x)}{q(x)} \, \mathrm{d}\mu(x)$$

- diz quantos bits (na verdade nats), em média, são necessários para codificar p usando um código otimizado para codificar q
- a matriz de Fisher é o Hessiano diagonal da entropia relativa:

$$g_{ij}(heta_0) = \left. rac{\partial^2}{\partial heta_i \partial heta_j} \, D_{\mathsf{KL}}(p_{ heta_0} \| p_{ heta})
ight|_{ heta = heta_i}$$

ullet uma *estatística* é um mapa mensurável $\kappa\colon \mathcal{X} o \mathcal{Y}$

- ullet uma *estatística* é um mapa mensurável $\kappa\colon \mathcal{X} o \mathcal{Y}$
- induz uma família de distribuições de probabilidade *empurradas* $\kappa_* \mathbb{P}_{\theta}$ em \mathcal{Y} : $\kappa_* \mathbb{P}_{\theta}(A) := \mathbb{P}_{\theta}(\kappa^{-1}(A))$

- ullet uma *estatística* é um mapa mensurável $\kappa\colon \mathcal{X} o \mathcal{Y}$
- induz uma família de distribuições de probabilidade *empurradas* $\kappa_* \mathbb{P}_{\theta}$ em \mathcal{Y} : $\kappa_* \mathbb{P}_{\theta}(A) := \mathbb{P}_{\theta}(\kappa^{-1}(A))$
 - por sua vez, obtemos novas funções densidade $\tilde{p}_{\theta} = \frac{\mathrm{d}\kappa_* \mathbb{P}_{\theta}}{\mathrm{d}\mu}$

- ullet uma *estatística* é um mapa mensurável $\kappa\colon \mathcal{X} o \mathcal{Y}$
- induz uma família de distribuições de probabilidade *empurradas* $\kappa_* \mathbb{P}_{\theta}$ em \mathcal{Y} : $\kappa_* \mathbb{P}_{\theta}(A) := \mathbb{P}_{\theta}(\kappa^{-1}(A))$
 - por sua vez, obtemos novas funções densidade $\tilde{p}_{\theta} = \frac{\mathrm{d}\kappa_* \mathbb{P}_{\theta}}{\mathrm{d}\mu}$
- a estatística κ é dita suficiente se $p_{\theta}(x) = \tilde{p}_{\theta}(\kappa(x))h(x)$ para alguma função h independente de θ .

- ullet uma *estatística* é um mapa mensurável $\kappa\colon \mathcal{X} o \mathcal{Y}$
- induz uma família de distribuições de probabilidade *empurradas* $\kappa_* \mathbb{P}_{\theta}$ em \mathcal{Y} : $\kappa_* \mathbb{P}_{\theta}(A) := \mathbb{P}_{\theta}(\kappa^{-1}(A))$
 - ullet por sua vez, obtemos novas funções densidade $ilde{p}_{ heta}=rac{\mathrm{d}\kappa_*\mathbb{P}_{ heta}}{\mathrm{d}\mu}$
- a estatística κ é dita suficiente se $p_{\theta}(x) = \tilde{p}_{\theta}(\kappa(x))h(x)$ para alguma função h independente de θ .

Teorema (Chentsov)

A métrica de Fisher é a única métrica Riemanniana, a menos de uma constante, invariante por estatísticas suficientes.

• geodésicas são "linhas retas" nas variedades Riemannianas

- geodésicas são "linhas retas" nas variedades Riemannianas
- dados dois pontos $p_{\theta}, p_{\theta'}$, a curva $\gamma \colon [0,1] \to \mathcal{P}$ ligando-os, que minimiza comprimento, é um segumento de geodésica

- geodésicas são "linhas retas" nas variedades Riemannianas
- dados dois pontos $p_{\theta}, p_{\theta'}$, a curva $\gamma \colon [0,1] \to \mathcal{P}$ ligando-os, que minimiza comprimento, é um segumento de geodésica
 - o comprimento é dado por $\ell(\gamma)=\int_0^1 \sqrt{g_{\gamma(t)}(\dot{\gamma}(t),\dot{\gamma}(t))}\,\mathrm{d}t$

- geodésicas são "linhas retas" nas variedades Riemannianas
- dados dois pontos $p_{\theta}, p_{\theta'}$, a curva $\gamma \colon [0,1] \to \mathcal{P}$ ligando-os, que minimiza comprimento, é um segumento de geodésica
 - o comprimento é dado por $\ell(\gamma) = \int_0^1 \sqrt{g_{\gamma(t)}(\dot{\gamma}(t),\dot{\gamma}(t))} \,\mathrm{d}t$
 - essa noção define uma distância geodésica, chamada distância de Fisher-Rao¹ na geometria da informação:

$$d_{\mathsf{FR}}(p_{ heta},p_{ heta}') = \min_{\gamma} \left\{ \ell(\gamma) : \gamma(0) = p_{ heta}, \ \gamma(1) = p_{ heta}'
ight\}$$

¹quando a variedade é completa e conexa por caminhos □ ▶ ◆ @ ▶ ◆ ≧ ▶ ◆ ≧ ▶ ◆ ≥ ◆ ९ ९

- geodésicas são "linhas retas" nas variedades Riemannianas
- dados dois pontos $p_{\theta}, p_{\theta'}$, a curva $\gamma \colon [0,1] \to \mathcal{P}$ ligando-os, que minimiza comprimento, é um segumento de geodésica
 - o comprimento é dado por $\ell(\gamma) = \int_0^1 \sqrt{g_{\gamma(t)}(\dot{\gamma}(t),\dot{\gamma}(t))} \,\mathrm{d}t$
 - essa noção define uma distância geodésica, chamada distância de Fisher-Rao¹ na geometria da informação:

$$d_{\mathsf{FR}}(p_{ heta},p_{ heta}') = \min_{\gamma} \left\{ \ell(\gamma) : \gamma(0) = p_{ heta}, \ \gamma(1) = p_{ heta}' \right\}$$

ullet formalmente, são curvas que têm derivada covariante zero: $abla_{\dot{\gamma}}\dot{\gamma}\equiv 0$

- geodésicas são "linhas retas" nas variedades Riemannianas
- dados dois pontos $p_{\theta}, p_{\theta'}$, a curva $\gamma \colon [0,1] \to \mathcal{P}$ ligando-os, que minimiza comprimento, é um segumento de geodésica
 - o comprimento é dado por $\ell(\gamma) = \int_0^1 \sqrt{g_{\gamma(t)}(\dot{\gamma}(t),\dot{\gamma}(t))} \,\mathrm{d}t$
 - essa noção define uma distância geodésica, chamada distância de Fisher-Rao¹ na geometria da informação:

$$d_{\mathsf{FR}}(p_{ heta},p_{ heta}') = \min_{\gamma} \left\{ \ell(\gamma) : \gamma(0) = p_{ heta}, \ \gamma(1) = p_{ heta}' \right\}$$

- ullet formalmente, são curvas que têm derivada covariante zero: $abla_{\dot{\gamma}}\dot{\gamma}\equiv 0$
 - ∇ é a conexão dada pelos símbolos de Christoffel $\Gamma_{ij,k}(\theta) = \mathbb{E}_{p_{\theta}}[(\partial_i \partial_j \ell_{\theta} + \frac{1}{2} \partial_i \ell_{\theta} \partial_j \ell_{\theta}) \partial_k \ell_{\theta}]$

 $^{^1}$ quando a variedade é completa e conexa por caminhos hinspace hinspac

$$p_{\theta}(x) := \exp(\langle t(x), \theta \rangle - F(\theta) + k(x)), \quad x \in \mathcal{X}$$

• uma família exponencial $\{p_{\theta}: \theta \in \Theta\}$ com parâmetros naturais $\theta \in \Theta \subset \mathbb{R}^d$ é dada por

$$p_{\theta}(x) := \exp\left(\langle t(x), \theta \rangle - F(\theta) + k(x)\right), \quad x \in \mathcal{X}$$

t(x) estatística suficiente

$$p_{\theta}(x) := \exp(\langle t(x), \theta \rangle - F(\theta) + k(x)), \quad x \in \mathcal{X}$$

- t(x) estatística suficiente
- $F(\theta)$ função estritamente convexa

$$p_{\theta}(x) := \exp(\langle t(x), \theta \rangle - F(\theta) + k(x)), \quad x \in \mathcal{X}$$

- t(x) estatística suficiente
- $F(\theta)$ função estritamente convexa
- k(x) qualquer

$$p_{\theta}(x) := \exp(\langle t(x), \theta \rangle - F(\theta) + k(x)), \quad x \in \mathcal{X}$$

- t(x) estatística suficiente
- $F(\theta)$ função estritamente convexa
- k(x) qualquer
- há uma expressão simples para a matriz de Fisher: $g_{ij}(\theta) = \frac{\partial^2 F(\theta)}{\partial \theta_i \partial \theta_j}$

Famílias exponenciais englobam muitos casos

Famílias exponenciais englobam muitos casos

• distribuições normais: $t(x)=(x,x^2)$, $(\theta_1,\theta_2)=(\frac{\mu}{\sigma^2},\frac{-1}{2\sigma^2})$,

$$F = \frac{-\theta_1^2}{4\theta_2} + \frac{1}{2} \log \frac{-\pi}{\theta_2}, \ k(x) = 0$$

Famílias exponenciais englobam muitos casos

- distribuições normais: $t(x)=(x,x^2)$, $(\theta_1,\theta_2)=(\frac{\mu}{\sigma^2},\frac{-1}{2\sigma^2})$, $F=\frac{-\theta_1^2}{4\theta_2}+\frac{1}{2}\log\frac{-\pi}{\theta_2}$, k(x)=0
- distribuições poisson: t(x) = x, k(x) = x!, $\theta = \log \lambda$, $F(\theta) = \lambda = e^{\theta}$

Famílias exponenciais englobam muitos casos

- distribuições normais: $t(x)=(x,x^2)$, $(\theta_1,\theta_2)=(\frac{\mu}{\sigma^2},\frac{-1}{2\sigma^2})$, $F=\frac{-\theta_1^2}{4\theta_2}+\frac{1}{2}\log\frac{-\pi}{\theta_2}$, k(x)=0
- distribuições poisson: t(x) = x, k(x) = x!, $\theta = \log \lambda$, $F(\theta) = \lambda = e^{\theta}$
- gama, beta, exponencial, etc.

ullet famílias exponenciais têm parametrizações duais: $\eta =
abla_{ heta} F(heta)$

- ullet famílias exponenciais têm parametrizações duais: $\eta =
 abla_{ heta} F(heta)$
- ullet é possível voltar para os parâmetros naturais via $ullet =
 abla_\eta F^*(\eta)$

- ullet famílias exponenciais têm parametrizações duais: $\eta =
 abla_{ heta} F(heta)$
- ullet é possível voltar para os parâmetros naturais via $ullet =
 abla_{\eta} F^*(\eta)$
 - onde $F^*(\eta) \coloneqq \langle \theta, \eta \rangle F(\theta)$ é a transformada de Legendre

- ullet famílias exponenciais têm parametrizações duais: $\eta =
 abla_{ heta} F(heta)$
- ullet é possível voltar para os parâmetros naturais via $heta =
 abla_\eta F^*(\eta)$
 - onde $F^*(\eta) := \langle \theta, \eta \rangle F(\theta)$ é a transformada de Legendre
 - $F^*(\eta) = \int_{\mathcal{X}} p_{\theta}(x) \ell_{\theta}(x) \, \mathrm{d}\mu(x)$ é a entropia de Shannon negativa

- ullet famílias exponenciais têm parametrizações duais: $\eta =
 abla_{ heta} F(heta)$
- ullet é possível voltar para os parâmetros naturais via $heta=
 abla_\eta F^*(\eta)$
 - onde $F^*(\eta) := \langle \theta, \eta \rangle F(\theta)$ é a transformada de Legendre
 - $F^*(\eta) = \int_{\mathcal{X}} p_{\theta}(x) \ell_{\theta}(x) d\mu(x)$ é a entropia de Shannon negativa

- as parametrizações θ e η de fato são duais, no sentido que:
 - $e_i = \frac{\partial}{\partial \theta_i}, \ e^{*j} = \frac{\partial}{\partial n_i} \implies g(e_i, e^{*j}) = \delta_{ij}.$

- as parametrizações θ e η de fato são duais, no sentido que:
 - $e_i = \frac{\partial}{\partial \theta_i}, \ e^{*j} = \frac{\partial}{\partial n_i} \implies g(e_i, e^{*j}) = \delta_{ij}.$

• as parametrizações θ e η de fato são duais, no sentido que:

•
$$e_i = \frac{\partial}{\partial \theta_i}, \ e^{*j} = \frac{\partial}{\partial n_i} \implies g(e_i, e^{*j}) = \delta_{ij}.$$

• temos que $g_{ij}(\theta)=rac{\partial \eta_i}{\partial \theta_i}$, e $g^{*ij}(\eta)=rac{\partial \theta_i}{\partial \eta_i}$.

- as parametrizações θ e η de fato são duais, no sentido que:
 - $e_i = \frac{\partial}{\partial \theta_i}, \ e^{*j} = \frac{\partial}{\partial n_i} \implies g(e_i, e^{*j}) = \delta_{ij}.$

- temos que $g_{ij}(\theta) = \frac{\partial \eta_i}{\partial \theta_i}$, e $g^{*ij}(\eta) = \frac{\partial \theta_i}{\partial \eta_i}$.
- Observação: outras famílias, como as misturas, também têm parâmetros duais

- as parametrizações duais induzem duas geometrias dualmente planas:
 a (e)-geometria e a (m)-geometria
 - ulletsão simplesmente as geometrias planas das parametrizações θ e η

- as parametrizações duais induzem duas geometrias dualmente planas: a (e)-geometria e a (m)-geometria
 - ullet são simplesmente as geometrias planas das parametrizações heta e η
 - \bullet uma (e)-geodésica é uma reta nos parâmetros θ

- as parametrizações duais induzem duas geometrias dualmente planas:
 a (e)-geometria e a (m)-geometria
 - ullet são simplesmente as geometrias planas das parametrizações heta e η
 - ullet uma (e)-geodésica é uma reta nos parâmetros heta
 - uma (m)-geodésica é uma reta nos parâmetros η

- as parametrizações duais induzem duas geometrias dualmente planas:
 a (e)-geometria e a (m)-geometria
 - ullet são simplesmente as geometrias planas das parametrizações heta e η
 - ullet uma (e)-geodésica é uma reta nos parâmetros heta
 - ullet uma (m)-geodésica é uma reta nos parâmetros η
- as geometrias (e portanto as geodésicas) duais são descritas por uma família conexões ∇^{α} , $\alpha \in \mathbb{R}$, com coeficientes

$$\Gamma_{ij,k}^{(\alpha)}(\theta) = \mathbb{E}_{p_{\theta}}\left[\left(\partial_i \partial_j \ell_{\theta} + \frac{1-\alpha}{2} \partial_i \ell_{\theta} \partial_j \ell_{\theta}\right) \partial_k \ell_{\theta}\right]$$

Geodésicas duais

- as parametrizações duais induzem duas geometrias dualmente planas:
 a (e)-geometria e a (m)-geometria
 - \bullet são simplesmente as geometrias planas das parametrizações θ e η
 - ullet uma (e)-geodésica é uma reta nos parâmetros heta
 - ullet uma (m)-geodésica é uma reta nos parâmetros η
- as geometrias (e portanto as geodésicas) duais são descritas por uma família conexões ∇^{α} , $\alpha \in \mathbb{R}$, com coeficientes

$$\Gamma_{ij,k}^{(\alpha)}(\theta) = \mathbb{E}_{p_{\theta}} \left[\left(\partial_i \partial_j \ell_{\theta} + \frac{1 - \alpha}{2} \partial_i \ell_{\theta} \partial_j \ell_{\theta} \right) \partial_k \ell_{\theta} \right]$$

- $\alpha = 0 \implies$ geodésicas usuais
- ullet $\alpha=1 \Longrightarrow$ (e)-geodésicas
- $\alpha = -1 \implies$ (m)-geodésicas

Projeções de informação

• as (e)-projeções e (m)-projeções ortogonais em uma subvariedade S minimizam as entropias relativas duais $D_{KL}(p||q)$ e $D_{KL}(q||p)$

Projeções de informação

• as (e)-projeções e (m)-projeções ortogonais em uma subvariedade S minimizam as entropias relativas duais $D_{KL}(p||q)$ e $D_{KL}(q||p)$

- ullet os pontos são distribuições discretas $p\colon \mathcal{X} o [0,1]$
 - $\mathcal{X} = \{x_1, \dots, x_{d+1}\}$
 - $p(x_i) = p_i \in (0,1), \quad \sum_i p_i = 1$

- ullet os pontos são distribuições discretas $p\colon \mathcal{X} o [0,1]$
 - $\mathcal{X} = \{x_1, \dots, x_{d+1}\}$
 - $p(x_i) = p_i \in (0,1), \sum_i p_i = 1$
- essa variedade pode ser identificada com o interior do simplexo padrão

$$\mathring{\triangle}^d = \left\{ p \in \mathbb{R}^{d+1} \mid 0 < p_j < 1, \quad \sum_i p_i = 1 \right\}$$

- ullet os pontos são distribuições discretas $p\colon \mathcal{X} o [0,1]$
 - $\mathcal{X} = \{x_1, \dots, x_{d+1}\}$
 - $p(x_i) = p_i \in (0,1), \sum_i p_i = 1$
- essa variedade pode ser identificada com o interior do simplexo padrão

$$\mathring{\triangle}^d = \left\{ p \in \mathbb{R}^{d+1} \mid 0 < p_j < 1, \quad \sum_i p_i = 1 \right\}$$

- parametrização
 - domínio $\Theta = \left\{ (p_1, \dots, p_d) \in \mathbb{R}^d_+ \; \middle| \; \sum_i p_i < 1 \right\}$

- ullet os pontos são distribuições discretas $p\colon \mathcal{X} o [0,1]$
 - $\mathcal{X} = \{x_1, \dots, x_{d+1}\}$
 - $p(x_i) = p_i \in (0,1), \quad \sum_i p_i = 1$
- essa variedade pode ser identificada com o interior do simplexo padrão

$$\mathring{\triangle}^d = \left\{ p \in \mathbb{R}^{d+1} \mid 0 < p_j < 1, \quad \sum_i p_i = 1 \right\}$$

- parametrização
 - domínio $\Theta = \{(p_1, \ldots, p_d) \in \mathbb{R}^d_+ \mid \sum_i p_i < 1\}$
 - $\phi(p_1,\ldots,p_d)=(p_1,\ldots,p_d,p_{d+1}), \quad \text{com } p_{d+1}=1-\sum_{i=1}^d p_i$

$$g_{ij}(p) = \frac{1}{p_{d+1}} + \frac{\delta_{ij}}{p_i}$$

$$g_{ij}(p) = \frac{1}{p_{d+1}} + \frac{\delta_{ij}}{p_i}$$

• para calcular a distância de Fisher-Rao, fazemos uma reparametrização $z_i = 2\sqrt{p_i}$,

$$g_{ij}(p) = \frac{1}{p_{d+1}} + \frac{\delta_{ij}}{p_i}$$

- para calcular a distância de Fisher-Rao, fazemos uma reparametrização $z_i = 2\sqrt{p_i}$,
 - que leva pontos $p=(p_1,\ldots,p_{d+1})\in \mathbb{\Delta}^d$ em pontos z no setor positivo da esfera

$$\mathbb{S}_{2,+}^d = \left\{ z \in \mathbb{R}_+^{d+1} \mid \sum_{i=1}^{d+1} z_i^2 = 4 \right\}$$

$$g_{ij}(p) = \frac{1}{p_{d+1}} + \frac{\delta_{ij}}{p_i}$$

- para calcular a distância de Fisher-Rao, fazemos uma reparametrização $z_i = 2\sqrt{p_i}$,
 - que leva pontos $p=(p_1,\ldots,p_{d+1})\in \mathbb{\Delta}^d$ em pontos z no setor positivo da esfera

$$\mathbb{S}_{2,+}^d = \left\{ z \in \mathbb{R}_+^{d+1} \mid \sum_{i=1}^{d+1} z_i^2 = 4 \right\}$$

• nessa nova parametrização, a métrica de Fisher é a métrica esférica usual de $\mathbb{S}_{2,+}^d \subset \mathbb{R}^{d+1}$: $g_{ij}(z) = \left\langle \frac{\partial z}{\partial p_i}, \frac{\partial z}{\partial p_i} \right\rangle$

$$g_{ij}(p) = \frac{1}{p_{d+1}} + \frac{\delta_{ij}}{p_i}$$

- para calcular a distância de Fisher-Rao, fazemos uma reparametrização $z_i = 2\sqrt{p_i}$,
 - que leva pontos $p=(p_1,\ldots,p_{d+1})\in \mathbb{\Delta}^d$ em pontos z no setor positivo da esfera

$$\mathbb{S}_{2,+}^d = \left\{ z \in \mathbb{R}_+^{d+1} \mid \sum_{i=1}^{d+1} z_i^2 = 4 \right\}$$

- nessa nova parametrização, a métrica de Fisher é a métrica esférica usual de $\mathbb{S}^d_{2,+} \subset \mathbb{R}^{d+1}$: $g_{ij}(z) = \left\langle \frac{\partial z}{\partial p_i}, \frac{\partial z}{\partial p_i} \right\rangle$
- portanto a distância de Fisher-Rao entre p e q pode facilmente ser calculada como o comprimento do arco ligando z_p e z_q , que equivale a

$$g_{ij}(p) = \frac{1}{p_{d+1}} + \frac{\delta_{ij}}{p_i}$$

- para calcular a distância de Fisher-Rao, fazemos uma reparametrização $z_i = 2\sqrt{p_i}$,
 - que leva pontos $p=(p_1,\ldots,p_{d+1})\in {\mathbb A}^d$ em pontos z no setor positivo da esfera

$$\mathbb{S}_{2,+}^d = \left\{ z \in \mathbb{R}_+^{d+1} \mid \sum_{i=1}^{d+1} z_i^2 = 4 \right\}$$

- nessa nova parametrização, a métrica de Fisher é a métrica esférica usual de $\mathbb{S}_{2,+}^d \subset \mathbb{R}^{d+1}$: $g_{ij}(z) = \left\langle \frac{\partial z}{\partial p_i}, \frac{\partial z}{\partial p_i} \right\rangle$
- portanto a distância de Fisher-Rao entre p e q pode facilmente ser calculada como o comprimento do arco ligando z_p e z_q , que equivale a

$$d_{\mathsf{FR}}(p,q) = 2 \arccos \left(\sum_{i=1}^{d+1} \sqrt{p_i q_i} \right)$$

• um fato interessante é que o *comprimento da corda* ligando z_p e z_q fornece uma boa aproximação:

• um fato interessante é que o *comprimento da corda* ligando z_p e z_q fornece uma boa aproximação:

$$||z_p - z_q|| = 2 \left(\sum_{i=1}^{d+1} \left(\sqrt{p_i} - \sqrt{q_i} \right)^2 \right)^{1/2}$$

• um fato interessante é que o *comprimento da corda* ligando z_p e z_q fornece uma boa aproximação:

$$||z_p - z_q|| = 2 \left(\sum_{i=1}^{d+1} \left(\sqrt{p_i} - \sqrt{q_i} \right)^2 \right)^{1/2}$$

essa distância, sem o fator 2, é chamada distância de Hellinger d_H

Parte III

Aplicações

• problemas de classificação em aprendizado de máquina:

- problemas de classificação em aprendizado de máquina:
- ullet temos uma família parametrizada de funções $\left\{ \mathit{f}_{ heta} \colon \mathcal{X}
 ightarrow \mathbb{R}^{\mathit{K}}
 ight\}_{ heta \in \Theta}$

- problemas de classificação em aprendizado de máquina:
- ullet temos uma família parametrizada de funções $\left\{f_{ heta}\colon \mathcal{X} o \mathbb{R}^K
 ight\}_{ heta\in\Theta}$
 - $\mathcal{X} \subset \mathbb{R}^n$ é o espaço dos *vetores de característica* (ex: imagens)

- problemas de classificação em aprendizado de máquina:
- ullet temos uma família parametrizada de funções $\left\{f_{ heta}\colon \mathcal{X} o \mathbb{R}^K
 ight\}_{ heta\in\Theta}$
 - $\mathcal{X} \subset \mathbb{R}^n$ é o espaço dos *vetores de característica* (ex: imagens)
 - K é o número de classes (ex: cachorro, gato, etc.)

- problemas de classificação em aprendizado de máquina:
- ullet temos uma família parametrizada de funções $\left\{f_{ heta}\colon \mathcal{X} o \mathbb{R}^K
 ight\}_{ heta\in\Theta}$
 - $\mathcal{X} \subset \mathbb{R}^n$ é o espaço dos *vetores de característica* (ex: imagens)
 - K é o número de classes (ex: cachorro, gato, etc.)
 - $z = f_{\theta}(x)$ é chamado vetor *escore*

- problemas de classificação em aprendizado de máquina:
- ullet temos uma família parametrizada de funções $\left\{ \mathit{f}_{ heta} \colon \mathcal{X}
 ightarrow \mathbb{R}^{K}
 ight\}_{ heta \in \Theta}$
 - $\mathcal{X} \subset \mathbb{R}^n$ é o espaço dos *vetores de característica* (ex: imagens)
 - K é o número de classes (ex: cachorro, gato, etc.)
 - $z = f_{\theta}(x)$ é chamado vetor *escore*
 - $\theta \in \Theta$ são o *parâmetros da máquina* (geralmente dados por uma rede neural)

- problemas de classificação em aprendizado de máquina:
- ullet temos uma família parametrizada de funções $\left\{ \mathit{f}_{ heta} \colon \mathcal{X}
 ightarrow \mathbb{R}^{K}
 ight\}_{ heta \in \Theta}$
 - $\mathcal{X} \subset \mathbb{R}^n$ é o espaço dos *vetores de característica* (ex: imagens)
 - K é o número de classes (ex: cachorro, gato, etc.)
 - $z = f_{\theta}(x)$ é chamado vetor *escore*
 - $\theta \in \Theta$ são o *parâmetros da máquina* (geralmente dados por uma rede neural)
- transformamos o vetor escore em um vetor de probabilidades através da função $softmax \ \sigma \colon \mathbb{R}^K \to \mathring{\triangle}^{K-1}$ dada em coordenadas por

$$\sigma(z)_i = \frac{e^{z_i}}{\sum_{i=1}^K e^{z_i}}$$

- problemas de classificação em aprendizado de máquina:
- ullet temos uma família parametrizada de funções $\left\{ \mathit{f}_{ heta} \colon \mathcal{X} o \mathbb{R}^{K}
 ight\}_{ heta \in \Theta}$
 - $\mathcal{X} \subset \mathbb{R}^n$ é o espaço dos *vetores de característica* (ex: imagens)
 - K é o número de classes (ex: cachorro, gato, etc.)
 - $z = f_{\theta}(x)$ é chamado vetor *escore*
 - $\theta \in \Theta$ são o *parâmetros da máquina* (geralmente dados por uma rede neural)
- transformamos o vetor escore em um vetor de probabilidades através da função $softmax \ \sigma \colon \mathbb{R}^K \to \mathring{\triangle}^{K-1}$ dada em coordenadas por

$$\sigma(z)_i = \frac{e^{z_i}}{\sum_{i=1}^K e^{z_i}}$$

• podemos interpretar $\sigma(z)_i$ como a probabilidade do vetor pertencer à classe i

• treinamento supervisionado: somos fornecidos com um *conjunto de treinamento* $\{(x_i, y_i)\}_{i=1}^m \subset \mathcal{X} \times \{1, \dots, K\}$

- treinamento supervisionado: somos fornecidos com um conjunto de treinamento $\{(x_i,y_i)\}_{i=1}^m \subset \mathcal{X} \times \{1,\ldots,K\}$
- ullet tomamos uma função perda $\mathcal{L} \colon \mathbb{\Delta}^{K-1} \times \mathbb{\Delta}^{K-1} o \mathbb{R}_+$

- treinamento supervisionado: somos fornecidos com um *conjunto de treinamento* $\{(x_i, y_i)\}_{i=1}^m \subset \mathcal{X} \times \{1, \dots, K\}$
- tomamos uma função perda $\mathcal{L} \colon \mathbb{\Delta}^{K-1} \times \mathbb{\Delta}^{K-1} \to \mathbb{R}_+$
- o problema de aprendizado de máquina consiste em minimizar a perda média do conjunto de treinamento:

$$\min_{\theta \in \Theta} \quad \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}\left(\sigma \circ f_{\theta}(x_i), e_{y_i}\right)$$

- treinamento supervisionado: somos fornecidos com um *conjunto de treinamento* $\{(x_i, y_i)\}_{i=1}^m \subset \mathcal{X} \times \{1, \dots, K\}$
- tomamos uma função perda $\mathcal{L} \colon \mathbb{\Delta}^{K-1} \times \mathbb{\Delta}^{K-1} \to \mathbb{R}_+$
- o problema de aprendizado de máquina consiste em minimizar a perda média do conjunto de treinamento:

$$\min_{\theta \in \Theta} \quad \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}\left(\sigma \circ f_{\theta}(x_i), e_{y_i}\right)$$

• isso costuma ser feito através do método do gradiente

- funções perda mais usadas:
 - entropia cruzada: $h^{\times}(p,q) = \sum_{i} p_{i} \log \frac{1}{q_{i}}$

- funções perda mais usadas:
 - entropia cruzada: $h^{\times}(p,q) = \sum_{i} p_{i} \log \frac{1}{q_{i}}$
 - ullet perda quadrática: $\mathcal{L}(p,q) = \|p-q\|_2^2$

- funções perda mais usadas:
 - entropia cruzada: $h^{\times}(p,q) = \sum_i p_i \log \frac{1}{q_i}$
 - perda quadrática: $\mathcal{L}(p,q) = \|p-q\|_2^2$
- nossa proposta: usar as perdas geométrico-informacionais no simplexo, dadas pelo quadrado das distâncias apresentadas:

- funções perda mais usadas:
 - ullet entropia cruzada: $h^ imes(p,q) = \sum_i p_i \log rac{1}{q_i}$
 - perda quadrática: $\mathcal{L}(p,q) = \|p-q\|_2^2$
- nossa proposta: usar as perdas geométrico-informacionais no simplexo, dadas pelo quadrado das distâncias apresentadas:
 - $4L_{\mathsf{SFR}} = d_{\mathsf{FR}}^2(p,q) = 4\arccos\left(\sum_{i=1}^K \sqrt{p_i q_i}\right)^2$
 - $L_{\mathsf{SH}} = d_{\mathsf{H}}^2(p,q) = \sum_{i=1}^K \left(\sqrt{p_i} \sqrt{q_i} \right)^2$

- funções perda mais usadas:
 - ullet entropia cruzada: $h^ imes(p,q) = \sum_i p_i \log rac{1}{q_i}$
 - perda quadrática: $\mathcal{L}(p,q) = \|p-q\|_2^2$
- nossa proposta: usar as perdas geométrico-informacionais no simplexo, dadas pelo quadrado das distâncias apresentadas:
 - $4L_{SFR} = d_{FR}^2(p,q) = 4 \arccos \left(\sum_{i=1}^K \sqrt{p_i q_i}\right)^2$ • $L_{SH} = d_{H}^2(p,q) = \sum_{i=1}^K \left(\sqrt{p_i} - \sqrt{q_i}\right)^2$
- este é um trabalho em conjunto com H.K. Miyamoto e S.I.R. Costa, submetido para o ISIT 2022 (International Symposium on Information Theory)²

"Information-Geometric Loss Functions for Learning". Em: #SIT 2022. 2022 > 3 990

²Henrique K. Miyamoto, Fábio C. C. Meneghetti e Sueli I. R. Costa.

• observamos que existem relações assintóticas e desigualdades entre as perdas que introduzimos e a perda da entropia cruzada

 observamos que existem relações assintóticas e desigualdades entre as perdas que introduzimos e a perda da entropia cruzada

asymptotic relations octiveen afficient 1000 functions.

Proposition 1. Let $L_{\rm CE}$, $L_{\rm SFR}$ and $L_{\rm SH}$ be the cross-entropy loss, the squared Fisher-Rao loss, and the squared Hellinger loss, as defined in (7), (8) and (9) respectively. Then we have:

- 1) $L_{SFR}(y, f(\mathbf{x})) = L_{SH}(y, f(\mathbf{x})) + O(L_{SH}^2(y, f(\mathbf{x})));$
- 2) $L_{SFR}(y, f(\mathbf{x})) = L_{CE}(y, f(\mathbf{x})) + O(L_{CE}^2(y, f(\mathbf{x}))).$

Moreover, we have the inequality chain:

3) $L_{SH}(y, f(x)) \le L_{SFR}(y, f(x)) \le L_{CE}(y, f(x)).$

Proof: 1) is a direct consequence of (5). For 2) isolate

Resultados

Figura: Acurácia dos aprendizados com diferentes funções perda.

Resultados com ruído

(alguns rótulos do conjunto de treinamento recebem a classe errada)

(b) MNIST, $\eta = 0.5$

(a) Sintético, $\eta = 0.3$

(b) Sintético, $\eta = 0.5$

 possivelmente uma das razões das perdas de Fisher-Rao e Hellinger terem boa performance no caso ruidoso seja por elas serem limitadas

- possivelmente uma das razões das perdas de Fisher-Rao e Hellinger terem boa performance no caso ruidoso seja por elas serem limitadas
- este é um trabalho em andamento

• um reticulado posto-completo é um subconjunto de \mathbb{R}^n gerado por combinações lineares inteiras de uma base $\{b_1, \ldots, b_n\}$

- um reticulado posto-completo é um subconjunto de \mathbb{R}^n gerado por combinações lineares inteiras de uma base $\{b_1, \ldots, b_n\}$
- definimos o toro enrolado por Λ como

$$\mathbb{T}_{\Lambda} := \mathbb{R}^{n} / \Lambda = \left\{ \llbracket x \rrbracket_{\Lambda} = x + \Lambda \mid x \in \mathbb{R}^{n} \right\}$$

- um reticulado posto-completo é um subconjunto de \mathbb{R}^n gerado por combinações lineares inteiras de uma base $\{b_1, \ldots, b_n\}$
- definimos o toro enrolado por Λ como

$$\mathbb{T}_{\Lambda} := \mathbb{R}^{n} / \Lambda = \left\{ \llbracket x \rrbracket_{\Lambda} = x + \Lambda \mid x \in \mathbb{R}^{n} \right\}$$

ullet temos uma projeção canônica $\pi_\Lambda\colon\mathbb{R}^n o\mathbb{T}_\Lambda$, $\pi_\Lambda(x)=[\![x]\!]_\Lambda$

- um reticulado posto-completo é um subconjunto de \mathbb{R}^n gerado por combinações lineares inteiras de uma base $\{b_1, \ldots, b_n\}$
- definimos o toro enrolado por Λ como

$$\mathbb{T}_{\Lambda} := \mathbb{R}^{n} / \Lambda = \left\{ \llbracket x \rrbracket_{\Lambda} = x + \Lambda \mid x \in \mathbb{R}^{n} \right\}$$

- temos uma projeção canônica $\pi_{\Lambda} \colon \mathbb{R}^n \to \mathbb{T}_{\Lambda}, \ \pi_{\Lambda}(x) = \llbracket x \rrbracket_{\Lambda}$
- dada uma distribuição de probabilidade \mathbb{P} em \mathbb{R}^n , podemos enrolá-la no toro com um empurro via π_{Λ} , isto é, $\mathbb{P}_{\Lambda} := (\pi_{\Lambda})_* \mathbb{P}$

• se uma distribuição \mathbb{P} em \mathbb{R}^n tem densidade p(x), $x \in \mathbb{R}^n$, então a distribuição enrolada tem densidade

$$p_{\Lambda}(x) = \sum_{\lambda \in \Lambda} p(x + \lambda)$$

sobre \mathbb{T}_{Λ} ou uma região fundamental (ex: região de Voronoi)

• se uma distribuição \mathbb{P} em \mathbb{R}^n tem densidade p(x), $x \in \mathbb{R}^n$, então a distribuição enrolada tem densidade

$$p_{\Lambda}(x) = \sum_{\lambda \in \Lambda} p(x + \lambda)$$

sobre \mathbb{T}_{Λ} ou uma região fundamental (ex: região de Voronoi)

• assim, a partir de um modelo estatístico $\{p_{\theta}\}_{\theta \in \Theta}$ em \mathbb{R}^n obtemos um modelo estatístico $\{p_{\theta;\Lambda}\}_{\theta \in \Theta}$ em \mathbb{T}_{Λ} .

• se uma distribuição \mathbb{P} em \mathbb{R}^n tem densidade p(x), $x \in \mathbb{R}^n$, então a distribuição enrolada tem densidade

$$p_{\Lambda}(x) = \sum_{\lambda \in \Lambda} p(x + \lambda)$$

sobre \mathbb{T}_{Λ} ou uma região fundamental (ex: região de Voronoi)

- assim, a partir de um modelo estatístico $\{p_{\theta}\}_{\theta \in \Theta}$ em \mathbb{R}^n obtemos um modelo estatístico $\{p_{\theta;\Lambda}\}_{\theta \in \Theta}$ em \mathbb{T}_{Λ} .
- ex: gaussianas multivariadas

$$p_{\mu,\mathcal{K};\Lambda}(x) = rac{1}{\sqrt{(2\pi)^d \left| \det \mathcal{K}
ight|}} \sum_{\lambda \in \Lambda} e^{-rac{1}{2}(x+\lambda-\mu)^ op \mathcal{K}^{-1}(x+\lambda-\mu)}$$

• uma propriedade central dessas distribuições é que para variância crescente elas se aproximam da distribuição uniforme $\mathcal{U}(x) = \frac{1}{|\det \Lambda|}$

• uma propriedade central dessas distribuições é que para variância crescente elas se aproximam da distribuição uniforme $\mathcal{U}(x) = \frac{1}{|\det \Lambda|}$

• gostaríamos de estudar a geometria dessas distribuições

- gostaríamos de estudar a geometria dessas distribuições
 - em termos da geometria de Fisher-Rao

- gostaríamos de estudar a geometria dessas distribuições
 - em termos da geometria de Fisher-Rao
 - e em termos de medidas de divergência (Kulback-Leibler, f-divergências, normas L^p, etc.)

- gostaríamos de estudar a geometria dessas distribuições
 - em termos da geometria de Fisher-Rao
 - e em termos de medidas de divergência (Kulback-Leibler, f-divergências, normas L^p, etc.)
- já existe alguma pesquisa sobre distribuições desse tipo em termos da geometria de Wasserstein ³

³Anton Mallasto e Aasa Feragen. "Optimal Transport Distance between Wrapped Gaussian Distributions". Em: 38th MaxEnt. 2018

- gostaríamos de estudar a geometria dessas distribuições
 - em termos da geometria de Fisher-Rao
 - e em termos de medidas de divergência (Kulback-Leibler, f-divergências, normas L^p, etc.)
- já existe alguma pesquisa sobre distribuições desse tipo em termos da geometria de Wasserstein ³
- nossa motivação: o fator de achatamento (flatness factor) é a distância L^{∞} entre uma distribuição \mathbb{P}_{Λ} e a uniforme

³Anton Mallasto e Aasa Feragen. "Optimal Transport Distance between Wrapped Gaussian Distributions". Em: 38th MaxEnt. 2018

- gostaríamos de estudar a geometria dessas distribuições
 - em termos da geometria de Fisher-Rao
 - e em termos de medidas de divergência (Kulback-Leibler, f-divergências, normas L^p, etc.)
- já existe alguma pesquisa sobre distribuições desse tipo em termos da geometria de Wasserstein ³
- nossa motivação: o fator de achatamento (flatness factor) é a distância L^{∞} entre uma distribuição \mathbb{P}_{Λ} e a uniforme
 - ele é um parâmetro importante para construir códigos que atingem capacidade no canal AWGN e para garantir segredo no canal Wiretap

³Anton Mallasto e Aasa Feragen. "Optimal Transport Distance between Wrapped Gaussian Distributions". Em: 38th MaxEnt. 2018

- gostaríamos de estudar a geometria dessas distribuições
 - em termos da geometria de Fisher-Rao
 - e em termos de medidas de divergência (Kulback-Leibler, f-divergências, normas L^p, etc.)
- já existe alguma pesquisa sobre distribuições desse tipo em termos da geometria de Wasserstein ³
- nossa motivação: o fator de achatamento (flatness factor) é a distância L^{∞} entre uma distribuição \mathbb{P}_{Λ} e a uniforme
 - ele é um parâmetro importante para construir códigos que atingem capacidade no canal AWGN e para garantir segredo no canal Wiretap
 - queremos entender se o fator de achatamento medido com outras divergências também tem comportamento interessante

³Anton Mallasto e Aasa Feragen. "Optimal Transport Distance between Wrapped Gaussian Distributions". Em: 38th MaxEnt. 2018

- gostaríamos de estudar a geometria dessas distribuições
 - em termos da geometria de Fisher-Rao
 - e em termos de medidas de divergência (Kulback-Leibler, f-divergências, normas L^p , etc.)
- já existe alguma pesquisa sobre distribuições desse tipo em termos da geometria de Wasserstein ³
- nossa motivação: o fator de achatamento (flatness factor) é a distância L^{∞} entre uma distribuição \mathbb{P}_{Λ} e a uniforme
 - ele é um parâmetro importante para construir códigos que atingem capacidade no canal AWGN e para garantir segredo no canal Wiretap
 - queremos entender se o fator de achatamento medido com outras divergências também tem comportamento interessante
 - este tema está diretamente conectado ao mestrado do aluno ⁴

³Anton Mallasto e Aasa Feragen. "Optimal Transport Distance between Wrapped Gaussian Distributions". Em: 38th MaxEnt. 2018

⁴Fábio C. C. Meneghetti. "Reticulados: um estudo de alguns parâmetros relevantes para aplicações em criptografia". 2020

Parte IV

• queremos continuar estudando alguns aspectos teóricos

- queremos continuar estudando alguns aspectos teóricos
 - a relação entre a estrutura dualmente plana de Amari (M, g, ∇, ∇^*) e as geometrias simplética e Kähler

- queremos continuar estudando alguns aspectos teóricos
 - a relação entre a estrutura dualmente plana de Amari (M, g, ∇, ∇^*) e as geometrias simplética e Kähler
 - extensões da geometria da informação para espaços de dimensão infinita (ex: estrutura de Pistone-Sempi)

- queremos continuar estudando alguns aspectos teóricos
 - a relação entre a estrutura dualmente plana de Amari (M, g, ∇, ∇^*) e as geometrias simplética e Kähler
 - extensões da geometria da informação para espaços de dimensão infinita (ex: estrutura de Pistone-Sempi)
- entender se há relação entre nossa proposta de funções perda, e as α -Divergências, e também com o método do gradiente natural

- queremos continuar estudando alguns aspectos teóricos
 - a relação entre a estrutura dualmente plana de Amari (M, g, ∇, ∇^*) e as geometrias simplética e Kähler
 - extensões da geometria da informação para espaços de dimensão infinita (ex: estrutura de Pistone-Sempi)
- entender se há relação entre nossa proposta de funções perda, e as α -Divergências, e também com o método do gradiente natural
- formalizar a teoria das distribuições gaussianas enroladas no toro

- queremos continuar estudando alguns aspectos teóricos
 - a relação entre a estrutura dualmente plana de Amari (M, g, ∇, ∇^*) e as geometrias simplética e Kähler
 - extensões da geometria da informação para espaços de dimensão infinita (ex: estrutura de Pistone-Sempi)
- entender se há relação entre nossa proposta de funções perda, e as α -Divergências, e também com o método do gradiente natural
- formalizar a teoria das distribuições gaussianas enroladas no toro
 - procurar relações entre reticulados diferentes (ex: se $\Lambda = B \cdot \mathbb{Z}^n$, então $p_{\mu,K;\Lambda}(x) = \frac{1}{\det \Lambda} p_{\tilde{\mu},\tilde{K}:\mathbb{Z}^n}(B^{-1}x), \ \tilde{\mu} = B^{-1}\mu, \ \tilde{K} = B^{-1}KB^{-t})$

- queremos continuar estudando alguns aspectos teóricos
 - a relação entre a estrutura dualmente plana de Amari (M, g, ∇, ∇^*) e as geometrias simplética e Kähler
 - extensões da geometria da informação para espaços de dimensão infinita (ex: estrutura de Pistone-Sempi)
- entender se há relação entre nossa proposta de funções perda, e as α -Divergências, e também com o método do gradiente natural
- formalizar a teoria das distribuições gaussianas enroladas no toro
 - procurar relações entre reticulados diferentes (ex: se $\Lambda = B \cdot \mathbb{Z}^n$, então $p_{\mu,K;\Lambda}(x) = \frac{1}{\det \Lambda} p_{\tilde{\mu},\tilde{K}:\mathbb{Z}^n}(B^{-1}x), \ \tilde{\mu} = B^{-1}\mu, \ \tilde{K} = B^{-1}KB^{-t})$
 - reticulados duais parecem ter relação com a transformada de Fourier da distribuição

Livros

- [1] Shun'ichi Amari e Hiroshi Nagaoka. *Methods of information geometry*. Trad. por Daishi Harada. Translations of mathematical monographs. American Mathematical Society, 2007.
- [3] Nihat Ay, Jürgen Jost, Hông Vân Lê e Lorenz Schwachhöfer. Information Geometry. Springer International Publishing, 2017.
- [4] Ovidiu Calin e Constantin Udriște. *Geometric Modeling in Probability and Statistics*. Springer International Publishing, 2014.

Artigos

- [2] Colin Atkinson e Ann F. S. Mitchell. "Rao's Distance Measure". Em: Sankhyā: The Indian Journal of Statistics, Series A (1981).
- [6] Ahmet Demirkaya, Jiasi Chen e Samet Oymak. "Exploring the Role of Loss Functions in Multiclass Classification". Em: 54th CISS. 2020.
- [7] Anton Mallasto e Aasa Feragen. "Optimal Transport Distance between Wrapped Gaussian Distributions". Em: 38th MaxEnt. 2018.
- [8] Fábio C. C. Meneghetti. "Reticulados: um estudo de alguns parâmetros relevantes para aplicações em criptografia". 2020.
- [10] Frank Nielsen. "An Elementary Introduction to Information Geometry". Em: *Entropy* (2020).
- [12] Julianna Pinele, João E. Strapasson e Sueli I. R. Costa. "The Fisher-Rao Distance between Multivariate Normal Distributions: Special Cases, Bounds and Applications". Em: Entropy (2020).

- [5] Alberto Cena e Giovanni Pistone. "Exponential statistical manifold". Em: Annals of the Institute of Statistical Mathematics (2006).
- [11] Tomonori Noda. "Sympletic Structures on Statistical Manifolds". Em: J. Aust. Math. Soc. (2011).
- [13] Rui F. Vigelis, Luiza H. F. De Andrade e Charles C. Cavalcante. "Properties of a Generalized Divergence Related to Tsallis Generalized Divergence". Em: *IEEE Transactions on Information Theory* (2020).