BEST AVAILABLE COPY

	(19) Japan Patent Office (JP)						
	(12) Gazette of U	of Unexamined Utility Model Applications (U)					
	(11) Unexamined	d Utility Model Application No. H2-65493 Date: May 17 1990					
	(43) Publication I						
5	(51) Int. Cl. ³		ID C	ode	Internal Re	ference No.	
	B23K 26/00		P	7920-4E			
	26/02		Α	7920-4E			
			C	7920-4E			
	Request for Examination: Not requested						
10	No. of Claims: 1						
	(Total of pages)						
	(54) Title of the I	Device:	Laser	processor			
	(21) Utility	Model	Appl	ication No	.: S63-14574	1 7	
	(22) Filing Date: November 8 1988						
15	(72) Creator:	Tsuto	mu Ki	idokoro			
		c/o Fu	iji Ele	ctric Co.,	Ltd.		
		1-1 Ta	anabe	shinden, K	awasaki-ku,		
		Kawa	saki-s	hi, Kanaga	awa		
	(71) Applicant:	Fuji E	Electri	c Co., Ltd.			
20	1-1 Tanabeshinden, Kawasaki-ku,						
	Kawasaki-shi, Kanagawa						
	(74) Agent:	Paten	t	Attorney,	Iwao	Yamaguchi	

SPECIFICATION

5

10

15

20

25

- 1. Title of the Device: Laser Processor
- 2.Claim of Utility Model
- 1. A laser processor comprising: a first laser oscillator for emitting a processing laser beam; a laser beam detector, arranged to the rear of a total-reflection mirror of said first laser oscillator, for detecting leakage light from said laser beam leaking to the rear of said total-reflection mirror and outputting a detected signal in accordance with detection results; a second laser oscillator for emitting a visible laser beam substantially parallel to said laser beam; and a visual laser beam-emitting mechanism for, when a positioning permission signal is input, shielding said laser beam from the inside of an optical resonator of said first laser oscillator or the outside of said optical resonator and emitting said visible laser beam on to an optical path of said laser beam,

said laser processor characterized by positioning said laser beam relative to a material for processing by means of said visible laser beam emitted on to said optical path of said laser beam, and monitoring the intensity of said laser beam by means of said detected signal.

3. Detailed Description of the Device

(Field of Industrial Application)

Processing based on the utilizing of the power of a laser beam emitted from a solid-state laser of which a YAG laser represents a typical example or from a gas laser of which a CO₂ laser represents a typical example and the heating of an object irradiated with this laser beam is widely employed. While methods of processing based on the use of laser processor such as this constitute very useful methods of processing because the processing can be carried out without need for contact with the object being processed, due to the fact that the wavelength of the laser beam is in the non-visible range of either the near infrared light range or the ultraviolet range, a guide mechanism based on the use of a visible light is necessary to ascertain the position of the object to be processed.

10

15

20

25

5

The present design relates to a laser processor that performs thermal processing employing a non-visible laser beam such as that described above, and more particularly relates to a processor in which monitoring of the intensity of the processing laser beam is easy, compacting of the laser processor is easy, and positioning of the processing laser beam relative to the material for processing can be safely implemented.

(Prior Art)

In laser processing the relative positions of the laser beam and the object to be processed (hereinafter referred to as the work) must be determined (hereinafter this positioning will refer to either the positioning of a work or the positioning of a laser beam). This positioning is carried out while the processing laser beam is being irradiated and, apart from concerns about unwanted damage to the work, it is extremely dangerous to the human body, and in particular the eyes. Even if the eyes are turned away from the direction of the work, there remains a chance that reflected light

from the work would reflect from other objects and fall incident on the eyes. While it is possible for the positioning of the beam to be carried out without affecting the human body and work by significantly weakening the intensity of the laser beam, because the intensity adjustment of the laser beam must be carried out to the extend that the positioning is carried out, this results in a lowering of the efficiency of the laser processing.

5

10

15

20

25

For this reason, instead of a processing laser beam, conventional positioning of a work is carried out using a separate visual laser beam such as an He Ne laser beam that takes the same path as the processing laser beam as a guide light.

A conventional laser processor will be described with reference to FIG. 3. The symbols 1 to 5 denote the fundamental constituent elements of a solid-state laser oscillator, a laser medium 1 (for example a YAG crystal) being excited by an intense light of an excited lamp 2 (for example, krypton arc lamp) in an exciting chamber 3 that has, in order to facilitate efficient pumping, an inner surface of good reflectance. Based on the cooperative action of the excited state laser medium 1, a total-reflection mirror 4, and an output mirror 5 through which part of the light is transmitted and which reflects the remainder, the light is amplified by induced irradiation with the result that a processing laser beam 12 is output from the output mirror 5. The output laser beam 12 is converted on a work 14 by a reflection mirror 7 and condensing lens 8 and processing such as engraving, perforation, cutting and welding is carried out.

Because the laser beam 12 of a laser processor of this kind is a non-visible beam, the positioning of a spot 12a of said beam 12 on the work 14 using the lens 8 is impossible. For this reason, as shown in FIG. 3, an He Ne laser oscillator 9 that emits a visible laser beam 13 and causes the beam 13 to pass through the total reflection mirror 4 and fall incident on the optical path of the laser beam 12 is provided whereupon, as a result, a spot 13a of a beam 13 is formed on the spot 12a of the beam 12. Consequently, in this case, the spot 12a can be positioned by means of the spot 13a. The symbol 6 denotes a mechanical shutter arranged in an optical resonator 15 configured from the reflection mirror 4 and the output mirror 5, 16 denotes a laser oscillator configured from the laser medium 1, the excited lamp 2, the excited chamber 3 and the optical resonator 15, and when the shutter 6 is closed the laser oscillation within the optical resonator 15 is stopped and the spot 12a of the laser beam 12 is extinguished. Naturally, when this occurs, the spot 13a is also extinguished.

(Problems to be Solved by the Device)

5

10

15

20

25

The following problems are inherent to the laser processor of FIG. 3 described above.

1) There are dangers associated with simultaneous irradiating the processing laser beam 12 and the positioning visual laser beam 13. For this reason, when the positioning of the work 14 is being carried out, the fact that the processing laser beam 12 is not being irradiated must be confirmed by a suitable means such as the monitoring of the flow of current of the excited lamp 2 and,

accordingly, there is high likelihood of a dangerous state being produced.

2) Because the total length of the device is lengthened to the extent of length of the He·Ne laser oscillator 9, the laser processor is lengthened. In other words, the laser processor is large.

5

10

15

20

25

3) While the ideal configuration for monitoring the intensity of the processing laser beam 12 is a simple one that does not lengthen the laser processor and is based on the arrangement of an optical detector to the rear of the total-reflection mirror 4 to measure the leakage light of the laser beam 12 that leaks slightly from the total-reflection mirror 4, this constitution cannot be adopted in the device shown in FIG. 3 because the He Ne Laser oscillator 9 is arranged in the position of the optical director. For this reason, while not shown in the drawing, because the monitoring of the intensity of the laser beam 12 using the laser processor of FIG. 3 is based on the spectral diffraction of the laser beam 12 employing a spectral mirror the complexity of the mechanism, a problem inherent thereto is the complexity of this mechanism for monitoring the beam 12.

An object of the present design is to prevent the laser beam 12 from being emitted from the laser processor while positioning of the work 14 is being carried out to ensure that said positioning can be carried out safely. An additional object thereof is to shorten the length of the laser processor by arranging the He·Ne laser oscillator 9 for positioning the work 14 at the side of the processing laser oscillator 16. A further object thereof is to be able to monitor

the intensity of the beam 12 using a simple configuration without markedly lengthening the laser processor by arranging the optical detector for monitoring the intensity of the laser beam 12 to the rear of the total reflection mirror 4.

(Means to Resolve the Problems)

5

10

15

20

25

(Action)

In order to achieve these objects, the present design constitutes a laser processor configured to comprise: a first laser oscillator for emitting a processing laser beam; a laser beam detector, arranged to the rear of a total-reflection mirror of the first laser oscillator, for detecting leakage light from the laser beam leaking to the rear of the total-reflection mirror and outputting a detected signal in accordance with detected results; a second laser oscillator for emitting a visible laser beam substantially parallel to the laser beam; and a visual laser beam-emitting mechanism for, when a positioning permission signal is input, shielding said laser beam from the inside of an optical resonator of said first laser oscillator or the outside of said optical resonator and emitting the visible laser beam on to an optical path of the laser beam, wherein the positioning of the laser beam relative to a material for processing is carried out by means of the visible laser beam emitted on to the optical path of the laser beam, and the intensity of the laser beam is monitored by means of the detected signal.

Based on the adoption of the configuration described above, when there is no positioning permission signal input in the visual laser beam-emitting mechanism the laser beam is not shielded by

the emitting mechanism and, therefore, it is possible for thermal processing by means of the laser beam to be carried out, while when a positioning permission signal is input into the visual visible laser emitting mechanism the laser beam is shielded by the emitting mechanism with the result that the visible laser beam is emitted on to the optical path of the beam and, therefore, the laser beam can be positioned by means of the visible laser beam. Accordingly, in this case, because emitting of the laser beam to the outside of the laser processor is prevented when positioning is carried out by means of the visible laser beam, the positioning can be carried out safely. In addition, because the first laser oscillator and the second laser oscillator are arranged in a juxtaposed configuration, the laser processor can be formed comparatively shorter than a conventional laser processor. Furthermore, in this case, because a laser beam detector that is significantly smaller in size than the He-Ne Laser oscillator 9 described above can be formed, the output of the laser beam can be monitored without markedly lengthening the length of the laser processor using a simple configuration that is based on the employment of a laser beam detector alone.

(Embodiments)

5

10

15

20

25

A one embodiment of the present design will be described with reference to FIG. 1 and FIG. 2. FIG. 1 is a schematic view thereof, FIG. 2(a) and FIG. 2(b) are each perspective views of the different operating states of the main part of FIG. 1, the constituent components of FIG. 1 and FIG. 2 the same as those of FIG. 3 being

denoted by the same symbol as those used in FIG. 3.

5

10

15

20

25

In FIG. 1 and FIG. 2, the symbol 10 denotes an optical detector that serves as a laser beam detector arranged to the rear of a total reflection mirror 4 for detecting the leakage light of a laser beam 12 that leaks to the rear of the reflection mirror 4 and outputting a detection signal 10a in accordance with the detected result, the symbol 11 denotes a reflection mirror that alters the optical path of the visible laser beam 13 emitted by a He-Ne Laser oscillator 9, the laser oscillator 9 in this case being arranged so as to emit a beam 13 that is essentially parallel to the laser beam 12. The symbol 17 denotes a shutter arm of the shape shown in the drawing which is driven by a rotary solenoid 18 and, in this case, when there is no positioning permission signal 19 input into the solenoid 18 the arm 17 is made to adopt the position shown in FIG. 2(b) by the solenoid 18 whereupon, as a result, laser oscillation is carried out by a laser oscillator 15 and, when the signal 19 is input into the solenoid 18, the arm 17 is made to adopt a position as shown in FIG. 1 or FIG. 2(a) by the solenoid 18 that interrupts the optical path of the laser beam 12 of the optical resonator 15 whereupon, as a result, the optical resonator 15, in other words the laser oscillation of the laser oscillator 16 stops. The symbol 20 denotes a reflection mirror affixed to the shutter arm 17 for further reflecting a reflected light 131 of the laser beam 13 reflected by the reflection mirror 11 when the shutter arm 17 is in the state of FIG. 1 so as to emit a reflected light 132 on to the optical path of the laser beam 12, and the symbol 21 denotes a visible laser beamemitting mechanism configured from the reflection mirrors 11 and 19, the shutter arm 17, and the rotary solenoid 18. Because the parts of the mechanism 21 are configured as described above, the symbol 21 can be described as a visible laser beam-emitting mechanism that, when a positioning permission signal 19 is input, shields the laser beam 12 from the inside of the optical resonator 15 of the laser oscillator 16 and emits a reflecting light 132 that serves as a visible laser beam on to the optical path of the laser beam 12.

10

15

20

5

Because the laser processor of FIG. 1 is configured as described above, the shutter arm 17 does not shield the laser beam 12 from the inside of the optical resonator 15 when there is no positioning permission signal 19 input into the solenoid 18 and, therefore, the laser beam 12 is emitted from the laser oscillator 16 and, as a result, thermal processing on the work 14 is carried out. Moreover, at this time, because the optical detector 10 outputs a detected signal 10a in response to the intensity of the laser beam 12, the intensity of the beam 12 can be monitored by means of this signal 10a. Thereupon, when there is a wish for the work 14 or the laser beam 12 to be positioned, the signal 19 is input into the solenoid 18. Subsequently, because the beam 12 is shielded by the shutter 17 from the inside of the optical resonator 15, the laser beam 12 is not output from the output mirror 5 and, instead, the reflected light 132 passes though the output mirror 5 to be emitted on to the optical path of the beam 12. Accordingly, the work 14 and the laser beam 12 can be positioned by means of a spot 13a of

25

the reflected light 132 formed on the work 14.

5

10

15

20

25

Because the constitution and the operation of the laser processor of FIG. 1 and FIG. 2 are as described above, the emitting of the laser beam 12 will definitely be stopped when positioning of the work 14 and the laser beam 12 is carried out. Accordingly, the positioning of the work 14 and beam 12 can be safely carried out using this laser processor. In addition, the He·Ne Laser oscillator 9 and the processing laser oscillator 16 of the laser processor described above are juxtposedly arranged, and the optical detector 10 is arranged to the rear of the total reflection mirror 4 to monitor the intensity of the laser beam 12. Thereupon, by the employment of a photodiode or the like, the optical detector 10 can be formed as a size that is much smaller than the laser oscillator 9. Accordingly, based on the configuration of this laser processor, it is clear that the length of the processor can be formed comparatively much shorter than the conventional processor described above and, moreover, that the intensity of the laser beam 12 can be monitored using a simple configuration.

While in the embodiment described above the reflection mirror 20 is directly fixed to the shutter arm 17, the reflection mirror 20 in the present design may fixed to a support member interlinked with the arm 17. In addition, while in the present design the shutter arm 17 may be provided on the outside of the optical resonator 15, a measure for cooling the arm 17 or the like to prevent burn damage of the arm 17 by the beam 12 must be implemented.

(Effect of the Design)

5

10

15

20

25

As is described above, the present design constitutes a laser processor configured to comprise: a first laser oscillator for emitting a processing laser beam; a laser beam detector arranged to the rear of a total-reflection mirror of the first laser oscillator for detecting leakage light from the laser beam leaking to the rear of the total-reflection mirror and outputting a detected signal in accordance with the detected result thereof; a second laser oscillator for emitting a visible laser beam essentially parallel to the laser beam; and a visual laser beam-emitting mechanism for, when a positioning permission signal is input, shielding said laser beam from the inside of an optical resonator of said first laser oscillator or the outside of said optical resonator and emitting the visible laser beam on to an optical path of the laser beam, wherein the positioning of the laser beam relative to a material for processing is carried out by means of the visible laser beam emitted on to the optical path of the laser beam, and the intensity of the laser beam is monitored by means of the detected signal.

For this reason, by the adoption of the configuration described above, when there is no positioning permission signal input in the visual laser beam-emitting mechanism the laser beam is not shielded by the emitting mechanism and, therefore, it is possible for thermal processing by means of the laser beam to be carried out, while when a positioning permission signal is input into the visual visible laser emitting mechanism the laser beam is shielded by the emitting mechanism with the result that the visible

laser beam is emitted on to the optical path of the beam and, therefore, the laser beam can be positioned by means of the visible laser beam. Accordingly, in this case, because emitting of the laser beam to the outside of the laser processor is prevented when positioning is carried out by means of the visible laser beam, the present design has the effect whereby the positioning can be carried out safely. In addition, because the first laser oscillator and the second laser oscillator are arranged in a juxtaposed configuration, the present design has the effect whereby the laser processor can be formed comparatively shorter than a conventional laser processor. Furthermore, in this case, because a laser beam detector that is significantly smaller in size than the He-Ne Laser oscillator 9 described above can be formed, the present design has the effect whereby the output of the laser beam can be monitored without markedly lengthening the length of the laser processor using a simple configuration that is based on the employment of a laser beam detector alone.

4. Brief Description of the Drawings

5

10

15

20

25

FIG. 1 is a schematic view of one embodiment of the present design; FIG. 2(a) and FIG. 2(b) are each perspective views of the different operating states of the main part of FIG. 1; and FIG. 3 is a schematic view of a conventional laser processor.

4 Total-reflection mirror, 9 He Ne Laser oscillator, 10 Optical detector, 10a Detected signal, 12 Laser beam, 13 Visible laser beam, 14 Work, 15 Optical resonator, 16 Laser oscillator, 19 Positioning permission signal, 21 Visible laser beam-emitting

mechanism.

Patent Attorney, Iwao Yamaguchi

FIG. 1

- **16 LASER OSCILLATOR**
- 4 TOTAL-REFLECTION MIRROR
- 10a DETECTED SIGNAL
- 5 10 OPTICAL DETECTOR
 - 12 LASER BEAM
 - 15 OPTICAL RESONATOR
 - 9 He·Ne LASER OSCILLATOR
 - 13 VISUAL LASER BEAM
- 10 19 POSITIONING PERMISSION SIGNAL
 - 21 VISUAL LASER BEAM-EMITTING MECHANISM
 - 14 MATERIAL FOR PROCESSING

TRANSLATOR'S NOTES:

1. The "reflection mirrors 11 and 19" of line 3, page 11 of the text of the original should presumably read "reflection mirror 11".

⑩日本国特許庁(JP)

①実用新案出願公開

② 公開実用新案公報(U)

平2-65493

@Int. Cl. 5

識別配号

厅内整理番号

❷公開 平成2年(1990)5月17日

B 23 K 26/00 26/02

7920-4E 7920-4E 7920-4E P Ā

審査請求 未請求 請求項の数 1 (全 頁)

⑤考案の名称

レーザ加工機

②実 顧 昭63-145747

②出 頤 昭63(1988)11月8日

⑦考 案 者 所 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会

社内

⑪出 願 人 富士電機株式会社

神奈川県川崎市川崎区田辺新田1番1号

10代 理 人 弁理士 山口

- 1. 考案の名称 レーザ加工機
- 2. 実用新案登録請求の範囲
- 1) 加工用レーザビームを出射する第1レーザ発 振器と、前記第1レーザ発振器における全反射鏡 の後方に配置されかつ前記全反射鏡の後方に漏れ る前記レーザビームの漏洩光を検出してこの検出 結果に応じた検出信号を出力するレーザビーム検 出部と、可視レーザビームを前記レーザビームに ほぼ平行に出射する第2レーザ発振器と、位置決 め許可信号が入力されると前記第1レーザ発振器 の光共振器内かまたは前記光共振器外において前 記レーザビームを遮光しかつ前記レーザピームの 光路に削記可視レーザビームを出射させる可視レ ーザピーム出射機構とを備え、前記レーザピーム の前記光路に出射された前記可視レーザピームに よって前記レーザビームの被加工物に対する相対 的位置決めを行うと共に前記検出信号によって前 記レーサピームの強度を監視することを特徴とす るレーザ加工機。

1266

3. 考案の詳細な説明

〔産業上の利用分野〕

本考案は上記のような非可視レーザピームを用いて熱加工をするレーザ加工機。特に加工用レーザピームの強度の監視が容易であり。かつレーザ加工機の小形化が容易であり。かつ加工用レーザピームの被加工物に対する相対的な位置決めを安全に行うことができる加工機に関する。

[従来の技術]

レーザ加工をする場合は、レーザピームと被加

このために従来ワークの位置決めは加工用のレーザビームの代りに、加工用レーザビームと同一 径路をとる別の可視レーザビーム、たとえばHe・ Ne レーザビームを案内光として使用している。

第3図により従来のレーザ加工機を説明する。 しから5までは固体レーザ発振器の基本的な構成

このようなレーザ加工機ではレーザピーム 1 2 が非可視光線であるので。該ピーム 1 2 の 0 位置決 8 によるワーク 1 4 上のスポット 1 2 a の位置決 めが不可能である。このため、第 3 図においては、可視レーザピーム 1 3 を出射しかつこのピーム 13を全反射鏡 4 を透してレーザピーム 1 2 の 光路に入射させる He・Ne レーザ発振器 9 が設けられていて、この結果、ビーム 1 3 の 光スポット 1 3 a

がピーム 1 2 のスポット 1 2 a 上に形成される。 故に、この場合、光スポット 1 3 a によって射线 4 との位置決めを行うことができる。 6 は反射鏡 5 とりなる光共振器 1 5 内に配置 2 りたなる光共振器 1 5 との過程 2 との光共振器 1 5 といって 2 を閉じると 2 りんなる 2 りんからない 4 とのスポット 1 3 a も消滅する。

[考案が解決しようとする課題]

上述した第3図のレーザ加工機には次のような問題点がある。

1) 加工用レーザビーム 1 2 と位曜決め用可視レーザビーム 1 3 が同時に放射される危険性がある。 このためワーク 1 4 の位置決めを行う際は加工用 レーザビーム 1 2 が放射されていないことを励起 ランプ 2 の適電電流を監視するなどの適当な手段 で確認することが必要で、したがって、危険状態 の発生する確立が高い。

- 2) 装曜の全長がHe・Neレーザ発振器 9 の長さ だけ長くなるのでレーザ加工機の長さが長くなる。 つまりレーザ加工機が大形になる。
- 3) 加工用レーザピーム 1 2 の強度を監視するには、全反射鏡 4 の後方に光検出器を設置し、全反射鏡 4 より僅かに溺れるレーザピーム 1 2 の 備洩光を計測するのが構成が簡単でかつレーザ加工機の長さが長くなることがなくて好都合であるが、第3図ではこの光検出器のでこの構成が採用できない。このため、第3図のレーザ加工機では、9が最高このため、第3図のレーザ加工機では、9にしていが、レーザピーム 1 2 を分光ミラーを用いて分光して該ビーム 1 2 の 強度を監視するようにしているので、この場合、ピーム 1 2 の 強度が複雑であるという問題点がある。

本考案の目的は、ワーク14の位置決めを行う 際必ずレーサピーム12がレーザ加工機から出射 されることのないようにして、安全に該位置決め を行うことができるようにすることにある。また、 ワーク14の位置決め用のレーザ発振器9を加工

用レーザ発振器16の側方に配置して、レーザ加工機の長さが短くなるようにすることにある。そうして、さらに、レーザピーム12の強度監視用の光検出器を全反射鏡4の後方に配置して、レーザ加工機を大幅に長くすることなく、ビーム12の強度の監視が簡単な構成で行えるようにすることにある。

〔課題を解決するための手段〕

ビーム出射機構とを備え、前記レーザビームの前記光路に出射された前記可視レーザビームによって前記レーザピームの被加工物に対する相対的位置決めを行うと共に前記検出信号によって前記レーザピームの強度を監視するようにレーザ加工機を構成するものとする。

[作用]

上記のように構成すると、可視レーザにない、当時では関係に位置決め許可信号が入力されて逃光を行いていた。このでき、可視レーサビームと、可視レーサビームが出射機構によって、と、のできが入力されて、と、の可能を行って、というでは、いって、というでは、いって、というでは、いって、というでは、いって、というでは、いって、というでは、いって、というでは、いって、というには、いっと、というには、いっと、というには、いっと、というには、いっと、というには、いっと、というには、いっと、というには、いっと、というには、いっと、というに、また、第1

レーザ発振器と第2レーザ発振器とが並織された 構成となるので、レーザ加工機を従来のレーザ加工機をができる。 できるの場合、レーザピーム検出のかした。 はいれて、といったができるので、レーザピームの 形ですることができるので、レーザピームの 形ですることができるので、レーザピームの 長されたけの簡単な構成でレーザピームの 視することができる。

[実施例]

本考案の一実施例について第1回及び第2回により説明する。ここに、第1回は構成図、第2回の及び向はそれぞれ第1回における要認の異なる動作状態を示す斜視図で、第1回及び第2図においては第3図におけるものと同じものには第3図に示したのと同じ符号が付してある。

第1 図及び第2 図において、10は、全反射鏡4の後方に配置され、かつこの反射鏡4の後方に 帰れるレーザビーム12の偏視光を輸出してこの 検出結果に応じた検出信号10 aを出力するレー

ザピーム検出部としての光検出器、11はHe・ Ne レーザ発振器9が出射する可視レーザピーム 13の光路を変更するようにした反射鏡で、この 場合。レーザ発振器9はピーム13をレーザピー ム12にほぼ平行に出射するように配設されてい る。17はロータリーソレノイド18によって駁 動される図示の形状をしたシャッタアームで、こ の場合、ソレノイド18に位置決め許可信号19 が入力されていない時はソレノイド18によって アーム17が第2図1のに示した姿勢にされて、こ の結果光共振器 15でレーザ発振が行われるよう になっているが、ソレノイド18に信号19が入 力されると、アーム17がソレノイド18によっ て第 I 図または第 2 図 (a) に示したように光共振器 15におけるレーザビーム12の光路を遮断する 姿勢にされて、この結果光共振器15、換雪すれ ばレーザ発振器 1 6 のレーザ発振が停止するよう になっている。20は、シャッタアーム17が第 1図の状態になった時に、反射鏡11で反射され たレーザピーム 1 3 の反射光 131をさらに反射

してこの反射光 132をレーザピーム 1 2 の光路に出射させるようにシャッタアーム 1 7 に貼着した反射鏡で、2 1 は反射鏡 1 1, 19 とシャッタアーム 1 7 とロータリーソレノイド 1 8 とからなる可視レーザピーム 出射機構である。機構 2 1 においては各部が上述のように構成されているので、21 は位置決め許可信号 1 9 が入力されるとレーザ発振器 1 6 の光共振器 1 5 内においてレーザピーム 1 2 を逃光しかつレーサピーム 1 2 の光路に可視レーザピームとしての反射光 1 3 2 を出射させる可視レーザピーム 出射機構であるということができる。

第1図においてはレーザ加工機が上述のように 構成されているので、ソレノイド18に位置決め 許可信号19が入力されていないと、シャッタア ーム17が光共振器15内のレーザビーム12を 遮光しないためレーザ発振器16からレーザビー ム12が出射されて、この結果ワーク14に対し て熱加工が行われる。そうして、この時、光検出 器10がレーザピーム12の強度に応じた検出信

号10aを出力するので、この信号10aによっていることの強度を監視していることの出またはレーザー8にピーム12の強またはレード18にピーム13日に 光 大 た は い か ら の で と か ら の か ら で と か ら で と か ら で と か ら で と か ら で と か ら で と か ら で と か ら で と か ら で と か ら で と か ら で と か ら で と か ら で と か ら で と か ら で と か ら で と か ら で と か で と か で と か で と か で と か で と か で と か で と か で と か で と か で と か で き る。

第1図及び第2図においてはレーザ加工機の構成が助作が上述のようになっているので、ワーク14またはレーサピーム12の位置決めたがらいまずピーム12の出射が停止される。したがかって、このレーザ加工機によればワーク14まできる。また、このレーザ加工機においては、上述した最らにHe・Neレーザ発振器9が加工用レーザ発振器

〔考察の効果〕

上述したように、本考案においては、加工用レ

ーザピームを出射する第1レーザ発振器と、この 第1レーザ発振器における全反射鏡の後方に配置 されかつ全反射態の後方に爛れるレーザピームの **确洩光を後出してこの検出結果に応じた検出信号** を出力するレーザビーム検出部と、可視レーザビ - ムをレーザピームにほぼ平行に出射する第2レ ーザ発振器と、位置決め許可信号が入力されると 第1レーザ発暖器の光共振器内かまたは前記光共 援器外においてレーザビームを遮光しかつこのレ ーザビームの光路に可視レーザビームを出射させ る可視レーザピーム出射機構とを備え、レーザビ ームの光路に出射された可視レーザビームによっ てレーザピームの被加工物に対する相対的位態決 めを行うと共に前記検出信号によってレーザビー ムの強度を監視するようにレーザ加工機を構成し たっ

このため、上記のように構成すると、町視レーザビーム出射機構に位置決め許可信号が入力されていない時は該出射機構によってレーザビームが 遮光されないのでこのレーザビームによって熱加

工を行わせることができ、可視レーザビーム出射 機構に位置決め許可信号が入力されると該出射機 構によってレーザビームが遮光されて骸ピームの 光路に可視レーザビームが出射されるので、この 可視レーサピームによつてレーザピームの位置決 めを行うことができる。したがって、この場合、 可視レーザピームによる位置決めを行う際レーザ ピームがレーザ加工機外へ出射されることはない ので、本考案には上記位遺決めを安全に行うこと ができる効果があり、また、第1レーザ発掘器と 第 2 レーザ発振器とが並置された構成となるので。 本考案にはレーザ加工機を従来のレーザ加工機に 比べて短く形成することができる効果がある。そ うして、さらに、この場合、レーザビーム検出部 を上述したHe・Neレーザ発振器 9 よりもはるか に小形に形成することができるので、本考案には、 レーザ加工機の長さを大幅に長くするととなく。 レーザピーム検出部だけの簡単な構成でレーザビ ームの出力を監視することができる効果がある。 図面の簡単な説明

第1図は本考案の一実施例の構成図、第2図(a)及び第2図(b)はそれぞれ第1図における要部の異なる動作状態を示す斜視図、第3図は従来のレーザ加工機の構成図である。

4……全反射鏡、9……He・Neレーザ発振器、10……光検出器、10a……検出信号、12……レーザビーム、13……可視レーザビーム、14……ワーク、15……光共振器、16……レーザ発振器、19……位微決め許可信号、21……可視レーザビーム出射機構。

代理人并理士 山 口

代理人介理士 山 12 - 巖

実開2- 65493

第 2 図

1223

代理人作理士 山,口 一 龍

英聞2 65493

1284

代理人有理士 山,口

(图2 - 47.19)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.