

UNIVERSIDADE DO ESTADO DE SANTA CATARINA ENGENHARIA DE SOFTWARE

PROJETO PRÁTICO PARA O PROBLEMA DA DIVERSIDADE MÁXIMA

ANGELINA MACHADO DE SIQUEIRA

PROFESSOR(A): MARCELO DE SOUZA

55MQU – MÉTODOS QUANTITATIVOS

IBIRAMA

DEZEMBRO DE 2023

SUMÁRIO

1.	PROBLEMA	3
2.	MODELO MATEMÁTICO	4
3.	METAHEURÍSTICA	5
4.	AMBIENTE EXPERIMENTAL	6

1. PROBLEMA

O problema da diversidade máxima foi abordado nesse projeto em primeira etapa com solver, como um problema de programação linear inteira. Já na segunda etapa foi considerado o modelo não linear. Esse problema tem como objetivo escolher um subconjunto $M \subset N$, com ênfase na distância máxima entre os elementos escolhidos, um dos exemplos seria a Escolha de pessoas mais diferentes para montar uma equipe, para o cálculo da distância usa-se a distância euclidiana. Esse trabalho usou instâncias que contém a essas distâncias para a seleção dos itens m. Para esse problema é considerado o conjunto de índices dos elementos N, e suas distâncias.

2. MODELO MATEMÁTICO

Modelo matemático considerado pela heurística, como um problema quadrático,

 (f_1) Maximizar

$$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} d(i,j) x_i x_j \tag{1}$$

sujeito a:

$$\sum_{i=1}^{n} x_i = m, \qquad (2)$$

$$x_i \in \{0,1\}, \forall i = 1,..., n$$
. (3)

Modelo matemático considerado pelo solver

 (f_2) Maximizar

$$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} d(i,j) y_{ij}$$
 (4)

sujeito a:

$$\sum_{i=1}^{n} x_i = m , \qquad (5)$$

$$x_i + x_j - y_{ij} \le 1, \forall (i, j) \in Q,$$
 (6)

$$-x_i + y_{ij} \le 0, \forall (i,j) \in Q, \tag{7}$$

$$-x_{j}+y_{i_{j}}\leq 0, \forall (i,j)\in Q, \tag{8}$$

$$y_{ij} \in \{0,1\}, \forall (i,j) \in Q,$$
 (9)

$$x_i \in \{0,1\}, \forall i \in N. \tag{10}$$

3. **METAHEURÍSTICA**

A meta heurística selecionada para resolver o problema foi a da busca local iterada, que recebe uma solução inicial para executar uma busca local, e enquanto um critério de parada não é satisfeito ela perturba a solução corrente e executa uma busca local nessa solução que foi alterada e passa por um critério de aceitação para escolha da melhor solução.

```
Procedimento ILS

s_0 = \text{GeraSolucaoInicial}
s^* = \text{BuscaLocal } (s_0)
Faça
s' = \text{Perturbacao}(s^*, \frac{\text{história}}{\text{história}})
s^{*'} = \text{BuscaLocal}(s')
s^* = \text{CriterioAceitacao } (s^*, s^{*'}, \frac{\text{história}}{\text{história}})
Enquanto critério de parada não for satisfeito
Fim-Procedimento.
```

Figura 1. Pseudo-código da metaheurística ILS

No projeto foi desenvolvido uma função de gerar a solução inicial de forma aleatória. A busca Local tem como estratégia primeira melhora. A perturbação foi feita com uma taxa de 10 %, fazendo um swap de um elemento selecionado por um elemento não selecionado. A busca local implementa uma busca local na solução que foi alterada. Para critério de parada foi selecionado a quantidade máxima de iteração assim como o tempo de 5 minutos. Para critério de aceitação foi, uma solução s*' passa ser corrente caso melhore o valor da função objetivo da solução s*, ou seja, se Z(s*') > Z(s*).

4. AMBIENTE EXPERIMENTAL

Configuração da máquina	AMD Ryzen™ 5 3500U with Radeon Vega Mobile Gfx CPU 2,10 GHz 4 núcleos
Execuções na busca local iterada	100
Perturbação	10
Time	5 minutos no máximo

In at â a ai a a	N.I.	N.4	шс	T/II C)	Calvan	T/C)	
Instâncias	N	M	ILS	T(ILS)	Solver	T(S)	avaliação
GKD-a_12	10	4	649.7216	0.01284	649.72168	0.209275	igual
GKD-a_12	10	4	1181.473	0.00988	1181.4730 2	0.260659	igual
GKD-a_16	10	6	2106.738	0.0122	2106.7386 4	0.219850	igual
GKD-a_17	10	6	2349.917	0.01304	2349.9171 7	0.2069	igual
GKD-a_1	10	2	239.12135	0.00659	243.97252	0.18606	solver
GKD-a_23	10	8	2720.611	0.013002	2720.6112 200000002	0.1796	igual
GKD-a_24	10	8	3506.0868	0.0165	3506.0868 100000002	0.174	igual
GKD-a_27	15	3	668.88478	0.01451	670.80497	1.1415	Solver
GKD-a_2	10	2	202.9669	0.00705	210.65042	0.205980	solver
GKD-a_30	15	3	571.844	0.01264	575.13625	0.9220	solver
GKD-a_31	15	4	596.19629	0.01707	596.19629	1.14497	igual
GKD-a_32	15	4	875.773	0.01609	875.77328	1.23010	igual
GKD-a_38	15	6	2114.321	0.0262	2116.5036 60000000	2.7850	solver
GKD-a_39	15	6	2987.212	0.0267927	2987.2121 7	2.6812	igual
GKD-a_41	15	9	7271.144	0.039976	7271.144	1.715661	igual
GKD-a_42	15	9	6366.3223 9	0.0386	6366.322	2.12260	igual
GKD-a_46	15	12	10305.450 0	0.0680	10305.45	0.36712	igual
GKD-a_47	15	12	13126.98	0.0853424	13126.98	0.3791	igual

GKD-a_8	10	3	363.2458	0.0069	363.24583	0.22426	igual
GKD-a_9	10	3	541.08961	0.0070642	541.08961	0.23255	igual
GKD-b_1	25	2	116.76068	0.015952	121.24863	1.70783	solver
GKD-b_2	25	2	244.980	0.0150	247.39558	1.59093	solver
ADICIONADO INSTÂNCIAS MAIORES							
GKD-b_17	50	15	7659.776	2.35	6939.3737 5	Foi até o limite	heurística
GKD-b_18	50	15	13862.296	1.40	13089.584 909999996	Foi até o limite	heurística
GKD-b_21	100	10	5402.306	2.27			
GKD-b_26	100	30	47683.493	37.4214			
GKD-b_36	125	37	111485.58 4	100.53			
GKD-b_40	125	37	120923.32 60	133.408			
GKD-b_49	150	45	199702.54 5	272.47			