

CS 422: Data Mining Vijay K. Gurbani, Ph.D., Illinois Institute of Technology

Lecture 5: Decision Trees (continued),
Interpretation and evaluation
of Decision Trees,
Advanced Decision Trees

CS 422 vgurbani@iit.edu

- Receiver Operation Characteristics (ROC) Curve
 - Developed in 1950s for signal detection theory to analyze noisy signals
 - Characterize the trade-off between positive hits and false alarms
- Performance of classifier represented as a point on the curve for some threshold.
- Let *T*: Value of a diagnostic test, and *D*: indicator variable for the presence of a disease, and *c* a threshold.
- The ROC curve plots the TPR as Pr(T>c|D=1) against the FPR as Pr(T>c|D=0) for all values of c (a threshold).
 - c is usually taken to be sort(unique(T)).

How to calculate a ROC curve? (1)

- Let *T*: Result of a diagnostic test, and *D*: indicator variable for the presence of a disease.
 - D is your true label.
 - T is the probability associated with a prediction of the observations.
- The ROC curve plots the TPR against the FPR (1-specificity) $\forall c \in C$ (a threshold).

```
    C is usually taken to be sort(unique(T)).
```

- **Example**: Given some results:
- Compute sensitivity as a conditional probability:
 Pr(df\$prob > c | df\$label = 1) => sensitivity
- Compute specificity as a conditional probability:
 Pr(df\$prob <= c | df\$label = 0) => specificity
- plot(1-specificity, sensitivity) ∀ c ∈ {sort(unique(df\$prob))}

> head(df)

label prob

How to calculate a ROC curve? (2)

Inst#	Class	Score	Inst#	Class	Score
1	p	.9	11	p	.4
2	\mathbf{p}	.8	12	\mathbf{n}	.39
3	\mathbf{n}	.7	13	\mathbf{p}	.38
4	\mathbf{p}	.6	14	\mathbf{n}	.37
5	\mathbf{p}	.55	15	\mathbf{n}	.36
6	\mathbf{p}	.54	16	\mathbf{n}	.35
7	\mathbf{n}	.53	17	\mathbf{p}	.34
8	\mathbf{n}	.52	18	\mathbf{n}	.33
9	\mathbf{p}	.51	19	\mathbf{p}	.30
10	\mathbf{n}	.505	20	\mathbf{n}	.1

Source: Tom Fawcett, "ROC Graphs: Notes and Practical Considerations for Researchers (2004)" Online at http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.9777

Selecting a final model

- Recap: What you have done so far is evaluated models through K-fold cross validation and estimated their performance using confusion matrices and RoCs.
- Next step: Choosing the final model.
- The model chosen is the model that performs best.
- How do we define best? (The best model is also called the final model.)
- The best model is the one that gives you the smallest prediction error (or minimizes the loss function) on the training set and generalizes well on the testing set.

- (1) Overfitting and underfitting in decision tree models.
- If we allow the tree to grow (become deep), we run the risk of overfitting.
 - Overfitting can be mitigated by **pruning** the tree:
 Grow the tree to its entirety, then trim nodes in a
 bottom-up fashion. If generalization error improves,
 replace sub-tree by a leaf node. Class label of the
 leaf node is determined by majority class of the
 instances in the sub-tree.
- If we stop early, we may underfit (error on training data may be low).
- Strategies on when to stop splitting:
 - When the best candidate split at a node reduces the impurity by less than a threshold.
 - · How to set this threshold?
 - Stop when node has a certain number of observations.
 - When all observations in a node belong to the same class.
- Tradeoff between tree complexity vs. test set accuracy.

- Pruning: Two approaches:
 - Prepruning: Halt growth of tree based on some constraint (e.g., gain in impurity < threshold).
 - + : Shorter trees.
 - -: When to stop?
 - Post-pruning: Grow tree to maximum size, then trim (e.g., replace subtree with new leaf node whose class label is determined from majority class of records affiliated with the subtree.)
 - + : Gives better results than prepruning since we have benefit of the fully grown tree.
 - : Wasted compute cycles in constructing the subtree if we have to eventually prune it.

- (1) Overfitting and underfitting in decision tree models.
- To prune: Focus on the complexity parameter (cp) corresponding to error and xerror. These two
 act as multiple multiple R² and adjusted R² in regression.
 - The cp parameter is defined in rpart as the threshold value for the split such that any split that does not decrease the overall lack of fit by a factor of cp is not attempted.
 - Any split which does not improve the fit by cp will likely be pruned off by cross-validation, and that hence the program need not pursue it
- Choose cp value with lowest xerror and prune the tree by: prune(model, cp=<chosen cp value>)

```
> printcp(model)
Classification tree:
rpart(formula = survived ~ pclass + sex + age, data = train,
    method = "class")
Variables actually used in tree construction:
[1] age
           pclass sex
Root node error: 299/786 = 0.38
n= 786
      CP nsplit rel error xerror
1 0.4214
                          1.000 0.0455
2 0.0234
                    0.579 0.579 0.0388
3 0.0134
                    0.555 0.599 0.0393
4 0.0100
                    0.528 0.589 0.0391
> plotcp(model)
```


(1) Overfitting and underfitting in decision tree models.

To prune: Focus on the complexity parameter (cp) corresponding to error and xerror. These two
act as multiple multiple P² and adjusted P² in regression.

```
# Pruning the tree
- printcp(model)
    plotcp(model)
    cpx <- model$cptable[which.min(model$cptable[,"xerror"]), "CP"]
    pruned.model <- prune(model, cp=cpx)

Ch# Run predictions on the pruned model
    pred <- predict(pruned.model, test, type="class")</pre>
```

```
> printcp(model)
Classification tree:
rpart(formula = survived ~ pclass + sex + age, data = train,
    method = "class")
Variables actually used in tree construction:
[1] age
           pclass sex
Root node error: 299/786 = 0.38
n= 786
      CP nsplit rel error xerror
1 0.4214
                    1.000 1.000 0.0455
2 0.0234
                    0.579 0.579 0.0388
3 0.0134
                    0.555 0.599 0.0393
4 0.0100
                    0.528 0.589 0.0391
> plotcp(model)
```


• (2) Surrogate variables

```
Node number 1: 786 observations,
                                   complexity param=0.4214047
  predicted class=0 expected loss=0.3804071 P(node) =1
    class counts:
                   487
                         299
   probabilities: 0.620 0.380
  left son=2 (518 obs) right son=3 (268 obs)
 Primary splits:
                                     improve=102.305800, (0 missing)
      sex
             splits as RL,
                       to the right, improve= 30.798720, (0 missing)
      pclass < 1.5
                       to the right, improve= 6.130452, (0 missing)
      age < 9.5
  Surrogate splits:
                    to the right, agree=0.662, adj=0.007, (0 split)
      age < 5.5
```

• (3) Variable importance

Sums to 100, but the most important variable may not always be the first split in the tree

CS 422 vgurbani@iit.edu

Ensemble methods

- So far, we induce one classifier from training data.
- But, is wisdom of the crowds better?
- What if we created multiple classifiers and combined their prediction.
 - Will we get better results?

Ensemble methods

- "Wisdom of the crowds" => construct a set of base classifiers from training data and predict using a combination function.
 - Voting
 - Logistic regression
 - **—** ...
- The ensemble can be created in multiple ways.
 - Manipulate the training dataset.
 - Manipulate input features.
 - Manipulate class labels.
 - Manipulate learning algorithm.
 - Use different learning algorithms (MCS).

Ensemble methods

- Can work effectively well (for some datasets).
 - Suppose we have 25 base classifiers, each of which has an error rate of $\varepsilon = 0.35$.
 - If base classifiers are identical, all commit the same mistake and error rate of ensemble remains 0.35.
 - On the other hand, if all classifiers are independent (their errors are not correlated), then ...
 - ... Ensemble makes a wrong prediction only if $> \frac{1}{2}$ of the base classifiers predict incorrectly, i.e. :

$$P(X \ge 13) = \sum_{i=13}^{25} {25 \choose i} \varepsilon^{i} (1 - \varepsilon)^{25 - i} = 0.06$$

Ensemble methods: Random Forest

Modelling interannual variation in the spring and autumn land surface phenology of the European forest, Rodriguez-Galiano et al., 2016, Biogeosciences. CS~422

Ensemble methods: Random Forest

- Final word of wisdom: Ensemble methods are not universally better than their normal counterparts.
- For the ensemble method to be better, the individual classifiers should demonstrate some instability (their predictions should be independent).
 - Define instability as inappropriate sensitivity to input

Code: german-credit.Rmd

Class Imbalance

- Datasets with balanced class distribution are the exception as most (all) datasets have a imbalanced class distribution.
 - Medical
 - Manufacturing
- Correct classification of the rare (minority) class has greater value than correct classification of the majority class.
- Imbalanced classes present a number of problems to classification algorithms:
 - Accuracy is no longer a reasonable measurement.
 - Balanced accuracy is a better measure when the test (or training) datasets exhibit class imbalance.

Class Imbalance

- Other mitigation techniques:
 - Cost sensitive learning penalizes the model when it commits a false negative error.
 - Sampling techniques modify the class distribution such that the rare class is well represented in the training set.
 - Undersampling gathers less of the majority class observations for training.
 - Disadvantage: useful observations may not be part of the sample. (Can be overcome by sampling multiple times and using an ensemble method).
 - Oversampling gathers **more** of the minority class observations for training.
 - Disadvantage: If training data is noisy, oversampling may amplify the noise.
 - Hybrid approach uses both of the above techniques to arrive at a equivalent dataset.
 - Synthetic data may be generated, if possible. If so, the generation could ensure that the class distribution is equivalent.

Multi-class decision trees

- Classification extends to differentiating between multiple classes as well.
 - Code: multiclass.Rmd
- Evaluate multi-class regression models through overall accuracy, and per-class precision and recall.
- To create confusion matrices for each class in a multi-class classification, use a "one-vs-many" strategy.
 - Create per-class confusion matrices using the data from the overall multiclass confusion matrix (see next slide).
- To plot ROC curves, use "one-vs-many" strategy to plot different classes on the same ROC plot.
 - See the "add" parameter to ROCR::plot().

Multi-class decision trees

	Actual					
		Setosa	Versicolor	Virginica		
Predicted	Setosa	10	0	0		
	Versicolor	0	10	1		
	Virginica	0	0	9		

For class Setosa:

	Actual				
Predicted		Setosa	{Versicolor,Virginica}		
riculcicu	Setosa	10			
	{ Versicolor, Virginica}				