Correcting Molecular Mechanics Binding Free Energies with Machine Learning Potentials

Harry Moore¹; **Finlay Clark**²; Dávid Péter Kovács¹; Mateusz Bieniek³; Graeme Robb⁴; Julien Michel²; Gábor Csányi¹; Daniel J. Cole³

¹Engineering Laboratory, University of Cambridge, Cambridge CB2 1PZ, United Kingdom

University of Edinburgh, David Browster Bood, Edinburgh EUC

Alchemical binding free energy calculations are an important tool in drug discovery

- Alchemical relative binding free energy calculations are used routinely in the hit-tolead and lead optimisation stages of drug discovery¹
- Alchemical absolute binding free energy calculations show promise for virtual screening

Molecular mechanics force fields produce an upper limit on accuracy of predictions

- Molecular mechanics (MM) functional form is a severe approximation
- Machine learning
 potentials (MLPs) such
 as ANI-2x² and MACE³
 offer substantial
 improvements in
 accuracy at a much
 lower cost than QM
 methods
- $V(\mathbf{r}^{N}) = \sum_{\text{bonds}} \frac{k_{i}}{2} (l_{i} l_{i,0})^{2} + \sum_{\text{angles}} \frac{k_{i}}{2} (\theta_{i} \theta_{i,0})^{2} + \sum_{\text{torsions}} \frac{V_{n}}{2} (1 + \cos(n\omega \gamma))$ $+ \sum_{i=1}^{N} \sum_{j=i+1}^{N} \left(4\varepsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right] + \frac{q_{i}q_{j}}{4\pi\varepsilon_{0}r_{ij}} \right)$

Prediction of the energy of H₂O with ANI²

Current results show no improvement for relative calculations and are affected by a systematic offset

Machine learning potentials can be used to correct the results of molecular-mechanics-based calculations

- Rufa et al.⁴ calculated the **relative binding free energies** for a series of ligands to non-receptor tyrosine kinase TYK2 using the ff14SB/TIP3P/OFF 1.0.0 force fields.
- Correcting the ligand intramolecular energies with ANI-2x significantly reduced RMSE from 0.97 [95% CI: 0.68, 1.21] to 0.47 [95% CI: 0.31, 0.63] kcal mol⁻¹

- Relative binding free energy results for TYK2 (ff14SB/TIP3P/OFF 2.0.0) do not change significantly when corrected with ANI-2x or MACE
- Absolute binding free energy results for TYK2⁵ would be significantly worsened by large (~ 4 kcal mol⁻¹) systematic offsets from the corrections towards weaker free energies of binding. These cancel out in relative calculations.
- Absolute binding free energy results for MIF / MIF180 also substantially worsened

Method	$\Delta G_{\mathrm{Bind}}^{o} / \mathrm{kcal} \; \mathrm{mol}^{-1}$
Experiment ⁶	-8.98 ± 0.28
MM	-9.96 ± 0.34
MM/ML	-12.07 ± 0.62

We attempt to correct binding free energies using ANI-2x or a transferrable MACE model, using a replicaexchange equilibrium sampling protocol implemented using OpenMM 8, OpenMM-ML, and OpenMMTools

Differences in torsional sampling are not responsible for the systematic offset

 Substantial differences in torsional distributions between OFF1 and ANI-2x were highlighted by Rufa et al.

- Rerunning a calculation using an MM force field with torsions re-fit to ANI-2x did not decrease the systematic offset observed for the TYK2 ligands
- Current scheme uses point charges and LJ terms from the MM force field to describe the intermolecular interactions throughout. In future, improved embedding schemes such as the electrostatic embedding scheme proposed by Zinojev⁷ may reduce errors.

Conclusions

- Corrections with ANI-2x and MACE do not significantly change relative binding free energy results for TYK2
- Corrections for TYK2 show a large systematic offset towards weaker binding free energies which would dramatically worsen absolute binding free energy results
- Accuracy may be improved by moving beyond mechanical embedding⁷

References

- 1. Z. Cournia, B. Allen and W. Sherman, *J. Chem. Inf. Model.*, 2017, **57**, 2911–2937.
- 2. C. Devereux, J. S. Smith, K. K. Huddleston, K. Barros, R. Zubatyuk, O. Isayev and A. E. Roitberg, *J. Chem. Theory Comput.*, 2020, **16**,
- I. Batatia, D. P. Kovacs, G. N. C. Simm, C. Ortner, and G. Csanyi, "MACE: Higher order equivariant message passing neural networks for fast and accurate force fields," in *Advances in Neural Information Processing Systems*, ed. A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, 2022.
- 4. D. A. Rufa, H. E. Bruce Macdonald, J. Fass, M. Wieder, P. B. Grinaway, A. E. Roitberg, O. Isayev and J. D. Chodera, bioRxiv, 2020, DOI: 10.1101/2020.07.29.227959.
- 5. Y. Khalak, G. Tresadern, M. Aldeghi, H. M. Baumann, D. L. Mobley, B. L. de Groot and V. Gapsys, *Chem. Sci.*, 2021, **12**, 13958–13971.
 6. J. A. Cisneros, M. J. Robertson, M. Valhondo and W. L. Jorgensen, *J. Am. Chem. Soc.*, 2016, **138**, 8630–8638.
- 7. K. Zinovjev, *J. Chem. Theory Comput.*, 2023, **19**, 1888–1897.