

Energy Balance and Analysis

Yunzhongda Peng | MSD 2017 Candidate
Arch 753 Building Performance Simulation
Instructor: Mostapha S. Roudsari
University of Pennsylvania
School of Design

Energy Balance

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

Storage

Exterior Wall: Mass Alt Res

Window Area Halfed

Exterior Wall: Max R Value

Air Change Rate: 1/Day

With Shading

Inner Walls, Roof and Slabs Set Adiabatic

From the analysis above, heat conduction of the enclosure within the building contributes the most to the energy loss, while human activities tops after setting the indoor enclosure components adiabatic. Other factors only slightly affect the energy balance.