Práctica 4: ESPACIOS VECTORIALES CON PRODUCTO INTERNO. ORTOGONALIDAD.

Cuando no se especifica lo contrario, el producto interno en \mathbb{R}^n es x^Ty y el espacio vectorial \mathbb{R}^n se considera con suma y producto por escalares habituales.

Un conjunto de vectores $\{u_1,\ldots,u_n\}$ es un *conjunto ortogonal* si sus vectores son ortogonales dos a dos, es decir, $\langle u_i,u_j\rangle=0$ cuando $i\neq j$. Diremos que el conjunto dado es un *conjunto ortonormal* si es un conjunto ortogonal y todos sus vectores tiene norma igual a 1, es decir, es un conjunto ortogonal y $\|u_i\|=\sqrt{\langle u_i,u_i\rangle}=1$ para todo $i\in\{1,\ldots,n\}$.

Espacios vectoriales con producto interno

- 1. Verificar en cada caso que el producto definido es producto interno en ${\cal V}.$
 - a) Sea $V = \mathbb{R}^n$, un vector $v \in V$ lo pensamos como $v = (v_1, \dots, v_n)^T$. Definiendo

$$\langle u, v \rangle = u^T v = \sum_{i=1}^n u_i v_i.$$

Resulta $\langle u, v \rangle$ así definido un producto interno en V.

Sea $V = \mathbb{C}^n$. Definiendo

$$\langle u, v \rangle = u^T \bar{v} = \sum_{i=1}^n u_i \overline{v_i}.$$

donde \bar{v} es el vector de \mathbb{C}^n cuyas componentes son los conjugados de las componentes del vector v. Resulta $\langle u, v \rangle$ así definido un producto interno en V.

Este producto interno definido en \mathbb{F}^n se conoce como **producto interno canónico**.

b) En $V = \mathbb{R}^2$ se puede considerar para $u = (u_1, u_2)^T$ y $v = (v_1, v_2)^T$

$$\langle u, v \rangle = u_1 v_1 - u_2 v_1 - u_1 v_2 + 4u_2 v_2.$$

Esto define un producto interno en V.

c) Sea $V = \mathcal{M}_{n \times n}(\mathbb{F})$, para $A = (a_{ij})$ y $B = (b_{ij})$, definamos

$$\langle A, B \rangle = \sum_{i,j} a_{ij} \overline{b_{ij}},$$

esto constituye un producto interno en V.

Si dada una matriz A se considera su *matriz adjunta* dada por su matriz transpuesta conjugada $B^* = \bar{B}^T$, es decir que $b_{ij}^* = \overline{b_{ji}}$, puede expresarse este producto interno en función de la traza de una matriz

$$\langle A, B \rangle = \operatorname{tr}(AB^*) = \operatorname{tr}(B^*A).$$

d) Sean t_0, \dots, t_n escalares distintos. Sea V el espacio vectorial de los polinomios sobre \mathbb{F} de grado menor o igual a n. Para $p, q \in V$ definimos

$$\langle p, q \rangle = p(t_0)\overline{q(t_0)} + \dots + p(t_n)\overline{q(t_n)}.$$

e) Sea V el espacio vectorial de las funciones reales continuas en el intervalo [a,b]. Para $f,g\in V$ sea

$$\langle f, g \rangle = \int_{a}^{b} f(t)g(t)dt,$$

esto define un producto interno.

2. Determinar en cada caso si el producto definido es un producto interno en \mathbb{R}^n . En caso de no serlo, indicar qué axioma no se verifica.

a)
$$u \times v = \sum_{i=1}^{n} u_i |v_i|$$
.

b)
$$u \times v = \left| \sum_{i=1}^{n} u_i v_i \right|$$
.

c)
$$u \times v = \sum_{i=1}^{n} u_i \sum_{i=1}^{n} v_i$$
.

d)
$$u \times v = \left(\sum_{i=1}^{n} u_i^2 v_i^2\right)^{\frac{1}{2}}$$
.

- 3. Verificar que $\langle f,g\rangle=\int_1^e\ln(x)f(x)g(x)dx$ es un producto interno en $\mathcal{C}([1,e])$, espacio de las funciones continuas a valores reales en el intervalo [1,e].
- 4. Dados $u, v \in V$ espacio vectorial con producto interno, probar que u = v si y solo si $\langle u, w \rangle = \langle v, w \rangle$ para todo $w \in V$.

Ortogonalidad y norma

- 5. Dar un ejemplo en \mathbb{R}^2 de dos vectores linealmente independientes que no sean ortogonales y un ejemplo de dos vectores ortogonales que no sean linealmente independientes.
- 6. Dados los vectores $v_1 = \begin{bmatrix} 1 \\ 2 \\ -2 \\ 1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 4 \\ 0 \\ 4 \\ 0 \end{bmatrix}$, $v_3 = \begin{bmatrix} 1 \\ -1 \\ -1 \\ -1 \end{bmatrix}$ y $v_4 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$, determinar qué par de vectores son ortogonales.
- 7. Dada la matriz

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 3 \\ 3 & 6 & 4 \end{bmatrix},$$

calcular:

- a) Un vector no nulo x ortogonal al espacio fila de A.
- b) Un vector no nulo y ortogonal al espacio columna de A.
- c) Un vector no nulo z ortogonal al espacio nulo de A.
- 8. Verificar la ley del paralelogramo para los vectores $u, v \in \mathbb{R}^n$:

$$||u + v||^2 + ||u - v||^2 = 2(||u||^2 + ||v||^2).$$

- 9. Sea $\mathcal{C}([1,e])$, con el producto interno definido en el ejercicio 3.
 - a) Calcular ||f|| para $f(x) = \sqrt{2}$.
 - b) Hallar un polinomio de grado uno que sea ortogonal a g(x) = 1.
- 10. Sea $u = \left(\frac{1}{6}, \frac{1}{6}, \frac{3}{6}, \frac{5}{6}\right)^T$ y sea $P = uu^T$.
 - a) Probar que Pu = u.
 - b) Probar que si v es ortogonal a u entonces Pv = 0.
 - c) ¿Cuál es la dimensión de N(P)?. Encontrar una base para N(P).
- 11. Dados $u = (u_1, u_2)^T, v = (v_1, v_2)^T \in \mathbb{R}^2$ definimos el producto interno:

$$\langle u, v \rangle = u_1 v_1 - u_2 v_1 - u_1 v_2 + 4u_2 v_2.$$

- a) Calcular $||e_1|| \ y \ ||e_2||$.
- b) Verificar la designaldad de Cauchy-Swartz para $u = (u_1, u_2)^T$ y $v = e_1$.

Bases ortogonales

- 12. *a*) Verificar que los vectores $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ y $\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$ de \mathbb{R}^3 son ortogonales.
 - b) Determinar una base ortonormal de \mathbb{R}^3 donde dos de sus vectores son paralelos a los dados en el apartado anterior.
- 13. Sea V un espacio vectorial sobre \mathbb{R} con producto interno $\langle \cdot, \cdot \rangle$ y $||x|| = \langle x, x \rangle^{\frac{1}{2}}$. Si dim(V) = n y $\{v_1, \dots, v_n\}$ es un conjunto ortogonal de vectores no nulos de V, probar que:
 - a) $\{v_1, \ldots, v_n\}$ es una base de V.
 - b) Si $||v_i|| = 1$ para $i \in \{1, ..., n\}, ||x||^2 = \sum_{i=1}^n |\langle x, v_i \rangle|^2 \quad \forall x \in V.$
- 14. Sea $W = \langle \{v_1, \dots, v_p\} \rangle$. Mostrar que si x es ortogonal a todo v_j , para $j \in \{1, \dots, p\}$, luego x es ortogonal a todo vector en W.
- 15. En cada caso, mostrar que $\{u_1, u_2\}$ o $\{u_1, u_2, u_3\}$ es una base ortogonal para \mathbb{R}^2 o \mathbb{R}^3 respectivamente, y luego expresar a x como combinación lineal de la base correspondiente.

a)
$$u_1 = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$$
, $u_2 = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$, $x = \begin{bmatrix} 9 \\ -7 \end{bmatrix}$.

b)
$$u_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
, $u_2 = \begin{bmatrix} -1 \\ 4 \\ 1 \end{bmatrix}$, $u_3 = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$, $x = \begin{bmatrix} 8 \\ -4 \\ -3 \end{bmatrix}$.

Espacios ortogonales - Complementos ortogonales

- 16. Sea A una matriz $m \times n$. Demostrar que todo vector $x \in \mathbb{R}^n$ puede escribirse en la forma x = p + u, donde p está en Fil(A) y $u \in nul(A)$. Mostrar que si la ecuación Ax = b es consistente, entonces hay una única p en Fil(A) tal que Ap = b.
- 17. Mostrar que si $x \in W \cap W^{\perp}$, entonces x = 0.
- 18. Sea V un espacio vectorial con producto interno y W un subespacio vectorial de V. Demostrar las siguientes proposiciones:
 - a) $v \in W^{\perp}$ si y solo si v es ortogonal a todo vector $u \in U$ donde $\langle U \rangle = W$.
 - b) W^{\perp} es un subespacio vectorial de V.
 - c) $(W^{\perp})^{\perp} = W$.
- 19. Sean $A=(a_{ij})$ y $B=(b_{ij})$ matrices reales de tamaño $n\times n$ y

$$\langle A, B \rangle = \sum_{i,j} a_{ij} b_{ij},$$

un producto interno en el espacio de las matrices reales $n \times n$.

- a) Hallar una base ortogonal para $\mathcal{M}_{n\times n}(\mathbb{R})$ para dicho producto interno.
- b) Hallar W^{\perp} siendo $W \subseteq \mathcal{M}_{2\times 2}(\mathbb{R})$ el espacio generado por $\left\{ \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right\} \subset \mathcal{M}_{2\times 2}(\mathbb{R})$.

$$c) \ \ \text{idem } b) \ \text{para} \ W = \left\{ \begin{bmatrix} a & b & c \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, a,b,c \in \mathbb{R} \right\}.$$

- 20. Calcular el complemento ortogonal del subespacio de \mathbb{R}^3 generado por los vectores $(1,1,2)^T$ y $(1,2,3)^T$. Sugerencia: Pensar los vectores como filas de una matriz A.
- 21. Sea S el hiperplano de \mathbb{R}^4 que contienen a todos los vectores que satisfacen la ecuación $x_1 + x_2 + x_3 + x_4 = 0$. Calcular una base para el espacio S^{\perp} .

22. Sean

$$u_1 = \begin{bmatrix} 0 \\ 1 \\ -4 \\ -1 \end{bmatrix}, u_2 = \begin{bmatrix} 3 \\ 5 \\ 1 \\ 1 \end{bmatrix}, u_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ -4 \end{bmatrix}, u_4 = \begin{bmatrix} 5 \\ -3 \\ -1 \\ 1 \end{bmatrix}, x = \begin{bmatrix} 10 \\ -8 \\ 2 \\ 0 \end{bmatrix}.$$

Sean $V = \langle \{u_1, u_2, u_3\} \rangle \subseteq \mathbb{R}^4$ y $W = \langle \{u_4\} \rangle \subseteq \mathbb{R}^4$.

- a) Probar que $V = W^{\perp}$.
- b) Escribir x como suma de dos vectores, uno en V y el otro en W.

Proceso de Ortogonalizacin de Gram-Schmidt

- 23. a) Sean $v_1=(2,1)^T, v_2=(-1,1)^T\in\mathbb{R}^2$. Aplicar el proceso de Gram-Schmidt y encontrar una base ortogonal $\{w_1,w_2\}$ en \mathbb{R}^2 . Dibujar los vectores v_1,v_2,w_1 y w_2 .
 - b) Sean $v_1=(1,0,0), v_2=(1,1,1), v_3=(1,1,2)\in\mathbb{R}^3$. Aplicar el proceso de Gram-Schmidt y encontrar una base ortogonal $\{w_1,w_2,w_3\}$ en \mathbb{R}^3 . Dibujar los vectores v_1,v_2,v_3,w_1,w_2 y w^3 .
- 24. a) Encontrar un conjunto ortonormal q_1, q_2, q_3 para el cual q_1 y q_2 generan el espacio columna de:

$$A = \begin{bmatrix} 1 & 1 \\ 2 & -1 \\ -2 & 4 \end{bmatrix}.$$

- b) ¿Cuál es el espacio asociado a A que contiene a q_3 ?
- 25. Sean $V = \mathcal{C}\left([-1,1]\right)$ con el producto interno $\langle f,g \rangle = \int\limits_{-1}^{1} f\left(x\right)g\left(x\right) \ dx, B = \{p_{0},p_{1},p_{2},p_{3}\}$ donde $p_{j}: [-1,1] \to \mathbb{R}/p_{j}\left(x\right) = x^{j}, j = 0,1,2,3 \text{ y } W = \langle B \rangle.$

Aplicar el proceso de ortogonalización de Gram-Schmidt y obtener una base ortogonal B' de W.

- 26. Siendo $u = \begin{pmatrix} 3 \\ 0 \\ -1 \end{pmatrix}$ y $v = \begin{pmatrix} 8 \\ 5 \\ -6 \end{pmatrix}$, utilizar el proceso de Gram-Schimdt para producir una base ortogonal de $\langle \{u, v\} \rangle$.
- 27. Sea

$$A = \begin{bmatrix} 1 & 2 & 5 \\ -1 & 1 & 4 \\ -1 & 4 & -3 \\ 1 & -4 & 7 \\ 1 & 2 & 1 \end{bmatrix}.$$

Encontrar una base ortogonal para el espacio columna de A.

Proyección ortogonal - Descomposición ortogonal

28. En cada uno de los siguientes casos, considerar a L como el subespacio de \mathbb{R}^3 tal que $L = \langle a \rangle$. Calcular $proy_{s/L}$ b y comprobar que el vector $b - proy_{s/L}$ b es perpendicular al vector a.

a)
$$b = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$$
 y $a = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.
b) $b = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$ y $a = \begin{bmatrix} -1 \\ -3 \\ -1 \end{bmatrix}$.

- 29. Sea W un subespacio vectorial de V y $\{w_1, \ldots, w_p\}$ base ortogonal de W. Sea $v \in V W$, probar que $v proy_{s/W} v$ es perpendicular a w para todo $w \in W$.
- 30. Sea W un subespacio de \mathbb{R}^n con una base ortogonal $\{w_1, \dots, w_p\}$ y sea $\{v_1, \dots, v_q\}$ una base ortogonal de W^{\perp} .

- a) Explicar por qué $\{w_1,\ldots,w_p,v_1,\ldots,v_q\}$ es un conjunto ortogonal.
- b) Explicar por qué el conjunto definido en el ítem anterior genera \mathbb{R}^n . Sugerencia: Utilizar el ejercicio anterior.
- c) Demostrar que dim $W + \dim W^{\perp} = n$.

31. Sea
$$W$$
 el subespacio generado por $v_1=\begin{pmatrix}3\\1\\-1\\1\end{pmatrix}$, y $v_2=\begin{pmatrix}1\\-1\\1\\-1\end{pmatrix}$.

- a) Si $y = (3, 1, 5, 1)^T$, escribirlo como la suma de un vector en W y uno en W^{\perp} .
- b) Si $y = (3, -1, 1, 13)^T$, encontrar el punto más cercano a y en W.
- c) Si $y = (2, 4, 0, 1)^T$, encontrar la mejor aproximación a y mediante vectores de la forma $c_1v_1 + c_2v_2$. Hallar la distancia de y a W.

32. Sean
$$u_1 = \left(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right)^T$$
, $u_2 = \left(-\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right)^T$ y $U = [u^1 u^2]$.

- a) Calcular $U^T U$ y UU^T .
- b) Sean $y = (4, 8, 1)^T$ y W = C(U). Calcular $proy_{s/W}$ y y $(UU^T)y$.