Computational Complexity

Measuring by counting, Big O notation, growth rates, growth rates for list algorithms

Algorithms

An **algorithm** is a step-by-step description of how to solve a problem.

- Example problem: (Search) Find if a particular item belongs to a list.
- Algorithm: Go through the list elements, one-at-a-time starting from the front. For each element, compare it to the item you are searching. Stop when there's a match (true) or when you run off the end of a the list (false – no match).
- Can translate the algorithm into code:

```
Node p = head;
while (p != null) {
   if (item.equals(p.data))
     return true;
   p = p.next;
}
return false;
```

Measuring efficiency

- Algorithms can be coded into different languages and run on different machines.
- You can't measure the efficiency of an algorithm by determining how long it takes to run.
- To measure efficiency, you essentially count single statements.
 Assume:
 - Single, simple statements (not calls to methods, for example) all take the same amount of time to execute.
 - The amount of time to execute a method depends on:
 - The number of simple statements inside the method body.
 - The time required for a call to any other method inside inside the body.
 - The amount of time required to execute a loop depends on the number of times the loop body executes. Do the same counting as for a method.

Worst case

Algorithm efficiency (time efficiency) is measured by how many simple statements are executed for an input of size *n*. In the worst case:

Statement count & execution time

- The time required for an algorithm to solve a problem is a function T(n), where n is the size of the instance of the problem.
- The worst-case time is the maximum time taken (number of statement executions) over all instances of size *n*.
- If *T*(*n*) is a polynomial, then the algorithm is a **polynomial time algorithm**.
- Problems that cannot be solved in polynomial time (or less) are considered to be intractable.

Computational complexity

- Computational complexity is a branch of theoretical computer science concerned with the difficulty of problems in terms of how many resources are required (time or space) to solve them.
- **Big O notation** gives an estimate of the efficiency of an algorithm. It uses only the *dominant term* of the running time *T(n)*.
- An algorithm with $T(n) = 4n^3 + 265n + 1000000$ would be $O(n^3)$.
- An algorithm with $T(n) = n^3 \log_2 n + 5n^2 + 345678n 1289$ would be $O(n^3 \log n)$.

Algorithmic growth rates

This table shows growth rates of common algorithms.

Complexity	Comment	Example Algorithm
O(1)	Time independent of input size (constant)	Look up k th element of an array
O(log n)	Time grows by 1 when input size doubles (logarithmic)	Binary search
O(n)	Time proportional to input size (linear)	Linear search
O(n log n)	Best time for sorts	Mergesort
O(n ²)	Double the input size -> quadruple the time (quadratic)	Elementary sorts (bubble, selection, insertion)
O(n!)	Intractable	Brute force Traveling Salesman Problem

Do growth rates matter?

Absolutely, yes! Algorithms can be too slow to be useful. This table shows f(n) when n is 8.

f(n)	Value at n = 8
f(n) = 1	1
$f(n) = \log_2 n$	3
f(n) = n	8
$f(n) = n \log_2 n$	24
$f(n)=n^2$	64
$f(n) = 2^n$	4,096
f(n) = n!	40,320

Complexities of list algorithms

The computational complexity of an algorithm depends in part on the underlying data structure.

Operation	LinkedList	ArrayList
add(value) // at end	O(n)	O(1) [If not full]
addToFront(value)	O(1)	O(n)
indexOf(value)	O(n)	O(n)
get(index)	O(n)	O(1)
remove(index)	O(n)	O(n)
size()	O(1) or O(n) depending on implementation	O(1)