Magnet Precalculus CD Complex Coordinates

Devin D. Droddy

Contents

Chapter 1	Page 2	
1.1	2	

Chapter 1

1.1

Polar coordinates on the complex plain can be represented as a complex number. Any polar point (r, θ) can be represented as $r(\cos(\theta) + \sin(\theta))$, or $r \operatorname{cis}(\theta)$. Complex numbers are generally written as $z = \dots$

The multiplication rule says that for any two complex points, z_1 and z_2 , written as $z = r(\operatorname{cis}(\theta))$, $z_1 z_2 = r_1 r_2 \operatorname{cis}(\theta_1 + \theta_2)$. Conversely, $\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis}(\theta_1 - \theta_2)$ DeMoivre's Theorem is that $z^n = (r \operatorname{cis}(\theta))^n = r^n \operatorname{cis}(n\theta)$

If a complex number z satisfies the equation $z^n = w$, we say that z is a complex n^{th} root of w. We can use DeMoivre's Theorem to find these distinct n^{th} roots. Let $w = r(\cos(\theta) + i\sin(\theta))$ be a complex number in polar form. If $w \neq 0$, w has n distinct roots given by the formula below, where k = 0, 1, 2, 3, ..., n - 1. $z_k = \sqrt[n]{r} \operatorname{cis}(\frac{\theta + 2\pi k}{n})$