MATH1064 Cheatsheet

Abyan Majid

O View on GitHub

1	Logi	c, inference, and proof	2		3.2	Quotient-Remainder theorem	6
	1.1	Truth tables	2		3.3	Expressions for quotient and remainder	6
	1.2	Logical equivalences	2		3.4	Lemma: bounds for divisors	6
	1.3	Equivalences for conditionals and biconditionals $.$	2		3.5	Congruence definition	6
	1.4	Equivalences for quantifiers	2		3.6	Congruence theorems	6
	1.5	Contrapositive, converse, and inverse of condi-			3.7	Definitions and theorems for primes	7
		tional statements	2		3.8	GCD and LCM definitions	7
	1.6	Negation of quantifiers	2		3.9	Finding GCD and LCM via prime factorization .	7
	1.7	Rules of inference	3		3.10	Finding GCD via Euclidean algorithm (Credits:	
	1.8	Rules of inference for quantified statements	3			Anthony Cheung)	7
	1.9	Proof methods	3		3.11	Verifying prime using trial division	7
	1.10	Without loss of generality (WLOG)	4				
				4	O-N	otation, mathematical induction, recursion	8
2		, functions, sequences, sums	4		4.1	Big O , Big Ω , Big Θ	8
	2.1	Union, intersection, difference, complement, subset	4		4.2	Big O complexity order	8
	2.2	Set identities and their logic counterparts	4		4.3	Some O-Notation properties	8
	2.3	Cardinality, power set, and cartesian product of sets	4		4.4	Triangle inequality	8
	2.4	Proof methods for set equivalences	4		4.5	Induction - intuition and definition	9
	2.5	Domain, codomain, preimage, image, range of			4.6	Template for induction	9
		functions	4		4.7	Template for closed formula	9
	2.6	Injective, surjective, bijective, and composite	_				
	a -	functions	5	5	Cour	nting	10
	2.7	Proving injection, surjection, and non-existent	_		5.1	Product, sum, subtraction, divison rules	10
	0.0	functions	5		5.2	Relevant applications of the product rule	10
	2.8	Arithmetic and geometric sequences, and recur-	_		5.3	Tree diagrams	10
	0.0	rence	5		5.4	Permutation: definition, theorem, corollaries	10
	2.9	Fibonacci and factorials sequences	5		5.5	Combination: definition, theorem, corollary	11
	2.10	Summation notation	5		5.6	Choosing k elements from n + order and repetition	
	2.11	Summation definitions	6		5.7	Binomial theorem	11
3	Num	aber theory	6		5.8	Pascal's identity and triangle	11
,	3.1	Addition, multiplication, and transitivity theo-	J		5.9	Inlusion-exclusion	12
	9.1	rems of divisibility	6		5.10	Pigeonhole principle + generalized form	12
		TOTAL OF GIVENDINING	U	I	5.10	1 15commone principie Scheranzed form	14

1 Logic, inference, and proof

1.1 Truth tables

		NOT p	p AND q	p OR q	p XOR q	IF p THEN q	q IF AND ONLY IF p
p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p\oplus q$	p o q	$p \iff q$
Т	Т	F	Т	Т	F	Т	Т
Т	F	F	F	Т	${ m T}$	F	F
F	Т	Т	F	Т	${ m T}$	Т	F
F	F	Т	F	F	F	Т	T

1.2 Logical equivalences

Logical equivalence	Name of law
$\neg(p \land q) \equiv \neg p \lor \neg q$	De Morgan's laws
$\neg(p \lor q) \equiv \neg p \land \neg q$	
$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	Distributive laws
$p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$	
$p \wedge q \equiv q \wedge p$	Commutative laws
$p\vee q\equiv q\vee p$	
$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	Associative laws
$(p\vee q)\vee r\equiv p\vee (q\vee r)$	
$p \wedge \mathbf{T} \equiv p$	Identity laws
$p ee \mathbf{F} \equiv p$	
$pee\mathbf{T}\equiv\mathbf{T}$	Universal bound laws
$p\wedge {f F}\equiv {f F}$	
$p \lor \neg p \equiv \mathbf{T}$	Negation laws
$p \wedge \neg p \equiv \mathbf{F}$	
$\neg(\neg p) \equiv p$	Double negation law
$p \wedge p \equiv p$	Idempotent laws
$p\vee p\equiv p$	
$p \lor (p \land q) \equiv p$	Absorption laws
$p \land (p \lor q) \equiv p$	

1.3 Equivalences for conditionals and biconditionals

Logical equivalence	Description
$p \to q \equiv \neg p \lor q$	Expressing $p \to as \neg p \lor$
$p \iff q \equiv (p \to q) \land (q \to p)$	Expressing \iff as a conjunction of conditionals

1.4 Equivalences for quantifiers

Logical equivalence	Description
$\forall x \in D, P(x) \equiv P(x_1) \land P(x_2) \land \dots \land P(x_n)$	Expressing \forall as a conjunction of predicates
$\exists x \in D : P(x) \equiv P(x_1) \lor P(x_2) \lor \dots \lor P(x_n)$	Expressing \exists as a disjunction of predicates

1.5 Contrapositive, converse, and inverse of conditional statements

Given a conditional statement $p \rightarrow q$		
Contrapositive	$\neg q \rightarrow \neg p$	
Converse	q o p	
Inverse	$\neg p \rightarrow \neg q$	

1.6 Negation of quantifiers

Given	Negation
$\forall x \in D, P(x)$	$\exists x \in D : \neg P(x)$
$\exists x \in D : P(x)$	$\forall x \in D, \neg P(x)$

1.7 Rules of inference

Rule of inference	Name
p	Modus ponens
$\frac{p \to q}{\therefore q}$	
$\neg q$	Modus tollens
$\frac{p \to q}{\because \neg p}$	
p o q	Hypothetical syllogism
$\frac{q \to r}{\therefore p \to r}$	
$p \lor q$	Disjunctive syllogism
$\frac{\neg p}{\therefore q}$	
$ \frac{\frac{\neg p}{\therefore q}}{\frac{p}{\therefore p \lor q}} $	Addition/generalization
$\frac{p \wedge q}{\therefore p}$	Simplification/specialisation
$\frac{p}{\frac{q}{\therefore p \wedge q}}$	Conjunction
$p \lor q$	Resolution
$\neg p \lor r$	

1.8 Rules of inference for quantified statements

Rule of inference	Name
$\frac{\forall x P(x)}{\therefore P(c)}$	Universal instantiation
$\frac{P(c) \text{ for arbitrary } c}{\therefore \forall x P(x)}$	Universal generalisation
$\frac{\exists x P(x)}{\therefore P(c) \text{ for some } c}$	Existential instantiation
$\frac{P(c) \text{ for some } c}{\therefore \exists x P(x)}$	Existential generalisation

1.9 Proof methods

Name of proof	Step-by-step procedure	Effective use case
Direct proof	To prove $p \to q$:	When given a
	1. assume p is true	statement in the
	2. show that q must also be true	form $p \to q$
	otherwise $p \to q$ is false since $\mathbf{T} \to \mathbf{F} \equiv \mathbf{F}$	
Proof by contraposition	Since $p \to q \equiv \neg q \to \neg p$, to prove $p \to q$:	When given a
	1. assume $\neg q$ is true	statement in the
	2. show that $\neg p$ must also be true	form $p \to q$, and
	otherwise $\neg q \rightarrow \neg p$ is false since $\mathbf{T} \rightarrow \mathbf{F} \equiv \mathbf{F}$,	direct proof failed.
	and therefore $p \to q$ is false.	
Proof by contradiction	To prove p ,	When given a
	1. assume $\neg p$ is true	statement in the
	2. show that $\neg p$ leads to a contradiction,	form p
	i.e. $\neg p \to (r \land \neg r)$. Otherwise, p is true.	
Disproof by counterexample	To disprove $\forall x \in D, P(x),$	When given state-
	find one example for which $P(x)$ is false.	-ments with universal
		quantifiers.
Proof by cases	To prove $\forall x \in D, P(x)$,	When it appears
	1. identify all cases for which the	that you can prove
	truthness/falsity of P(x) may vary.	one example and
	2. make assumptions WLOG where necessary	and every other
	3. show that all cases prove $P(x)$ true/false.	example will follow.

1.10 Without loss of generality (WLOG)

Without loss of generality (WLOG) is the act of making a simplifying assumption along the lines of: "if this simple case is true, then trivially every other cases must be true".

2 Sets, functions, sequences, sums

2.1 Union, intersection, difference, complement, subset

Name	Set operation	Description
Union	$A \cup B$	All elements that are in A or B or both
Intersection	$A \cap B$	All elements that are both in A and B
Difference	$A \setminus B$	All elements that are in A but not in B
Complement	\overline{A}	All elements in the universal set that are not in A
Subset	$A \subseteq B$	A is a subset of B ; every element in A is also in B
Proper subset	$A \subsetneq B$	A is a subset of B and $A \neq B$.

2.2 Set identities and their logic counterparts

Set	Logic
\cap (intersection)	\wedge (and)
∪ (union)	∨ (or)
\overline{A} (complement)	¬ (not)
U (universal set)	T (tautology)
Ø (empty set)	F (contradiction)

2.3 Cardinality, power set, and cartesian product of sets

Name	Operation	Description	Given $A = \{p, q\}, B = \{r, s\}$
Cardinality	A	Number of elements in A	A = 2
Power set	$\mathcal{P}(A)$	Set of all subsets of A	$\mathcal{P}(A) = \{\emptyset, \{p\}, \{q\}, \{p, q\}\}\$
(Size of set $= 2^n$)		including the empty set	
Cartesian product	$A \times B$	Set of all ordered <i>n</i> -tuples	$A \times B = \{(p, r), (p, s), (q, r), (q, s)\}$
(Size of set = $ A \cdot B $)		from A and B	

2.4 Proof methods for set equivalences

To prove $A = B$, show that $A \subseteq B$ and $B \subseteq A$	
Method	Step-by-step procedure
Element method	To prove $A \subseteq B$,
	1. let $x \in A$
	2. construct worded proof with set operations to arrive at $x \in B$
Logical equivalences	To prove $A \subseteq B$,
	1. let $x \in A$
	2. rewrite set operators with their logical counterparts
	3. derive $x \in B$ from $x \in A$ using logical equivalences

2.5 Domain, codomain, preimage, image, range of functions

Given $f: X \to Y$		Given $f(x) = y$		
Terminology	Description	Terminology Description		
Domain (X)	All possible inputs for f	Preimage (x)	$x \in X$ that is mapped to some $y \in Y$ by f	
Codomain (Y)	All possible outputs for f	Image (y)	$y \in Y$ to which some $x \in X$ is mapped by f	

2.6 Injective, surjective, bijective, and composite functions

Function type	Definition
Injective (one-to-one)	A function $f: X \to Y$ where $\forall x \in X, x$ is
	assigned a different $y \in Y$, and $ X \leq Y $.
Surjective (onto)	A function $f: X \to Y$ where all $\forall y \in Y, y$ is
	an image of some $x \in X$, and $ X \ge Y $.
Bijective (one-to-one correspondence)	A function that is both injective and surjective,
	where $ X = Y $
Composite	A function $(f \circ g)(a) = f(g(a))$ where
	a function f takes another function g as input.

2.7 Proving injection, surjection, and non-existent functions

What to prove	How to prove
$f: X \to Y$ is injective	1) If a graph of f is given or derivable, commit horizontal line test
	2) Alternatively, show that if $f(x_1) = f(x_2)$ for arbitrary $x_1, x_2 \in X$
	with $x_1 \neq x_2$, then $x_1 = x_2$.
$f: X \to Y$ is NOT injective	Show that $\exists x_1, x_2 \in X$ such that $x_1 \neq x_2$ and $f(x_1) = f(x_2)$
$f: X \to Y$ is surjective	Show that $\forall y \in \mathbb{Z}, \exists x \in \mathbb{Z} \text{ such that } f(x) = y$
$f: X \to Y$ is NOT surjective	Show that $\exists y \in Y$ such that $\forall x \in X, f(x) \neq y$
$f: X \to Y$ is not a function	1) If a graph of f is given or derivable, commit vertical line test
	if there exists a vertical line that intersects the graph more than once,
	then f is not a function.
	2) If the expression for f is given, make y the subject and prove
	algebraically that there are more than one value for y .

2.8 Arithmetic and geometric sequences, and recurrence

Name of sequence	Definition	n-th Term	Series
Arithmetic sequence	${a, a + d, a + 2d,, a + nd}$, where	$a_n = a_1 + (n-1)d$	$S_n = n(\frac{a_1 + a_n}{2}))$
	a is the initial term and d is difference		_
Geometric sequence	$\{a, ar, ar^2,, ar^n\}$, where	$a_n = ar^{n-1}$	$S_n = a_1(\frac{1-r^n}{1-r})$
	a is the initial term and r is common ratio		

2.9 Fibonacci and factorials sequences

Name of sequence	Definition
Fibonacci sequence	a sequence $\{f_0, f_1, f_2\}$ defined by initial conditions $f_0 = 0, f_1 = 1$
	and the recurrence relation $f_n = f_{n-1} + f_{n-2}$ for $n = 2, 3, 4,$
Factorials sequence	$(n!)_{n\geq 0} = \{1, 1, 2, 6, 24, 120,\},$ or defined
	recursively as $0! = 1$, $n! = (n-1)! \times n$ for $n \ge 1$

2.10 Summation notation

To represent the sum of some sequence $a_m + a_{m+1} + ... + a_n$, we write: $\sum_{i=m}^n a_i$

2.11 Summation definitions

Property	Definition
Addition/subtraction over the same range	$\sum_{i=m}^{n} a_i \pm \sum_{i=m}^{n} b_i = \sum_{i=m}^{n} (a_i \pm b_i)$
Taking out a common factor	$\sum_{i=m}^{n} ca_i = c \sum_{i=m}^{n} a_i$
Combining consecutive indices	$\sum_{i=p}^{q} a_i + \sum_{i=q+1}^{r} a_i = \sum_{i=p}^{r} a \text{ if } p \le q \le r$
Index shift	$\sum_{i=m}^{n} a_i = \sum_{i=m+p}^{n+p} a_{i-p} = \sum_{i=m-q}^{n-q} a_{i+q}$
Telescoping sums	$\sum_{i=m}^{n} (a_i - a_{i+1}) = a_m - a_{n+1} \text{ if } m \le n$

3 Number theory

3.1 Addition, multiplication, and transitivity theorems of divisibility

Theorem	Definition
Addition	If $a b$ and $a c$, then $a (b+c)$
Multiplication	If $a b$, then $a bc$ for all $c \in \mathbb{Z}$
Transitivity	If $a b$ and $b c$, then $a c$

3.2 Quotient-Remainder theorem

Quotient-Remainder Theorem
Given integer $a \in \mathbb{Z}$ and $b \in \mathbb{Z}^+$, then there exists
Two unique integers q and r, with $0 \le r < d$, such that $a = dq + r$

3.3 Expressions for quotient and remainder

Expressions for quotient (q) and remainder (r)
$$q = a \text{ div } d = \lfloor \frac{a}{d} \rfloor$$

$$r = a \text{ mod } d = a - (d \times \lfloor \frac{a}{d} \rfloor)$$

3.4 Lemma: bounds for divisors

	Bounds for divisors
Let $n, d \in \mathbb{Z}$.	If $ n \ge 1$ and $d n$, then $0 < d \le n $

3.5 Congruence definition

Congruence
$a \equiv b \pmod{m}$ denotes that a is congruent to $b \pmod{m}$ if and only if $m (a-b)$

3.6 Congruence theorems

Theorem 1		
If $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$, then a and b are congruent		
modulo m if and only if $\exists k \in \mathbb{Z}$ such that $a = b + km$		
Theorem 2		
Let $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$,		
if $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then		
$a+c \equiv b+d \pmod{m}$ and $ac \equiv bd \pmod{m}$		

3.7 Definitions and theorems for primes

Name	Definition
Prime number	Given $p \in \mathbb{Z}$ with $p > 1$, p is prime if the only positive
	factors of p are 1 and p .
Fundamental theorem of arithmetic	$\forall x \in \mathbb{Z}$ where $x > 1$, x can be written uniquely as a prime,
	or as a product of 2 or more primes where the prime
	factors are written in order of nondecreasing size.
Composite integer	$k \in \mathbb{Z}^+$ is a composite integer if $\exists a, b \in \mathbb{Z}^+$
	where $a < k$ and $b < k$, such that $k = ab$.
Relatively prime	Let $a, b \in \mathbb{Z}$, a and b are realtively prime if $gcd(a, b) = 1$
Pairwise relatively prime	$a_1, a_2,, a_n \in \mathbb{Z}$ are pairwise relatively prime if
	$gcd(a_i, a_j) = 1$ whenever $1 \le i \le j \le n$

3.8 GCD and LCM definitions

Name	Definition
Greatest Common Divisor	Let $a, b \in \mathbb{Z}$ where $a \neq 0$ and $b \neq 0$. The GCD of a and b ,
	denoted $gcd(a, b)$ is d such that $d a$ and $d b$
Least Common Multiple	The LCM of a and b , denoted $lcm(a, b)$, is the smallest
	$k \in \mathbb{Z}^+$ such that $a k$ abd $b k$
Relationship between GCD and LCM of $a,b\in\mathbb{Z}$	$ab = \gcd(a, b) \cdot \operatorname{lcm}(a, b)$

3.9 Finding GCD and LCM via prime factorization

Suppose the prime factorization of $a, b \in \mathbb{Z}$ are:		
$a = p_1^{a_1} \cdot p_2^{a_2} \cdot \ldots \cdot p_n^{a_n}$		
$b = p_1^{\bar{b}_1} \cdot p_2^{\bar{b}_2} \cdot \ldots \cdot p_n^{b_n}$		
What to find	How	
What to find GCD	How $\gcd(a,b) = (P_1^{\min(a_1,b_1)})(P_2^{\min(a_2,b_2)})(P_n^{\min(a_n,b_n)})$ $\operatorname{lcm}(a,b) = (P_1^{\max(a_1,b_1)})(P_2^{\max(a_2,b_2)})(P_n^{\max(a_n,b_n)})$	

3.10 Finding GCD via Euclidean algorithm (Credits: Anthony Cheung)

Euclidean algorithm		
Step	What to do	
1	Calculate $a \div b$ to find quotient q and remainder r that satisfy $a = bq + r$	
2	Case I. If $r = 0$, then conclude that $gcd(a, b) = b$	
3	Case II. Else if $r \neq 0$, then repeat steps 1 and 2 but calculate $gcd(b, r)$ instead	

Example: gcd(345, 92) = 23

3.11 Verifying prime using trial division

Trial divison Given $a \in \mathbb{Z}$, a is prime, if for all primes $k \leq \sqrt{a}$, k|a.

4 O-Notation, mathematical induction, recursion

4.1 Big O, Big Ω , Big Θ

O-Notation	Definition
Worst-case complexity (O)	$f(x)$ is $O(g(x))$ if and only if $\forall x > k, f(x) \le C g(x) $,
" $f(x)$ grows SLOWER than $g(x)$ "	for some constants C and k .
Best-case complexity (Ω)	$f(x)$ is $\Omega(g(x))$ if and only if $\forall x > k, f(x) \ge C g(x) $,
" $f(x)$ grows FASTER than $g(x)$ "	for some positive constants C and k .
Average-case complexity (Θ)	$f(X)$ is $\Theta(g(x))$ if and only if $f(x) \in O(g(x))$ and $f(x) \in \Omega(g(x))$.
" $f(x)$ grows at the SAME RATE as $g(x)$ "	That is, $C_1 g(x) \le f(x) \le C_2 g(x) $ for positive constants C_1, C_2, k

4.2 Big O complexity order

$$\label{eq:optimize} \textbf{Big O complexity order}$$

$$O(1) < O(\log(n)) < O(n) < O(n\log(n)) < O(n^2) < O(2^n) < O(n!)$$

Elements

4.3 Some O-Notation properties

#	Property
1	$f(n) \in O(f(n))$
2	$O(c \cdot f(n)) = O(f(n))$
3	O(f(n) + f(n)) = O(f(n))
4	$O(f(n)g(n)) = f(n) \cdot O(g(n))$

4.4 Triangle inequality

Triangle inequality
$$|a+b| \leq |a|+|b|$$
 Useful for problems in the form $a+b \in O(g(n)),\ a+b \in \Omega(g(n)),\ or\ a+b \in \Theta(g(n))$

4.5 Induction - intuition and definition

Point	Explanation	
Intuition	Suppose we have a ladder, and	
	(1) We can reach the first rung of the ladder #BASIS	
	(2) If we can reach a particular rung of the ladder, then we can	
	reach the next rung #INDUCTIVE HYPOTHESIS	
	#INDUCTION: By (1), we can reach the first rung. By (2), since we can reach	
	the first rung, then we can reach the second rung. Then by (2) again, since	
	we can reach the second rung, then we can reach the third rung. Repeating	
	(2), we can show that we can reach the fourth rung, the fifth, and so on.	
Definition	To prove $\forall n \in \mathbb{Z}^+, P(n)$, we complete two steps:	
	(1) Basis step: Verify that $P(1)$ is true	
	(2) Inductive step: Show that $\forall k \in \mathbb{Z}^+, P(k) \to P(k+1)$. To do this	
	you assume $P(k)$ is true (inductive hypothesis). Then, show that if $P(k)$ is true,	
	then $P(k+1)$ must also be true.	

4.6 Template for induction

Step	What to do
1	Express statement to be proved in the form " $\forall n \geq b, P(n)$ for a fixed b"
2	BASIS STEP: Show that $P(b)$ is true
3	INDUCTIVE STEP:
	(3.1) State inductive hypothesis in the form "assume that $P(k)$ is true for
	an arbitrary fixed integer $k \geq b$ "
	(3.2) State what $P(k+1)$ says, ie. what needs to be proved under inductive hypothesis
	(3.3) Prove $P(k+1)$ using assumption $P(k)$
4	State the conclusion, e.g. ".: By induction, $\forall n \in \mathbb{Z}^+$ with $n \geq b$, $P(n)$."

4.7 Template for closed formula

Step	What to do
1	BASIS STEP: Verify initial conditions for which T_n is true
2	INDUCTIVE STEP:
	(2.1) Rewrite T_{k+1} in terms of previous terms, eg. T_k
	(2.2) Use the inductive hypothesis T_k to prove T_{k+1}

5 Counting

5.1 Product, sum, subtraction, divison rules

Rule	Definition	
Product rule	Given a procedure with two tasks, where	
	1. The first task can be done in n_1 ways	
	2. The second task can be done in n_2 ways	
	The total number of ways to do the procedure is $n_1 \times n_2$	
Sum rule	Given a task that can be done in one of n_1 ways	
	or in one of n_2 , where n_1 and n_2 are mutually exclusive,	
	then the total number of ways to do the task is $n_1 + n_2$	
Subtraction rule	If a task can be done in ONLY either n_1 ways or n_2 ways,	
	then the number of ways to do the task is $n_1 + n_2 - M$, where	
	M is the number of ways common to both ways.	
	In set notation: $ A_1 \cup A_2 = A_1 + A_2 - A_1 \cap A_2 $	
Division rule	Given a task that can be done in n ways which can be,	
	categorized into d groups, the total number of ways to	
	do the task is $\frac{n}{d}$	
	In set notation: If a set A is the union of n pairwise disjoint	
	subsets each with d elements, then $n = \frac{ A }{d}$	

5.2 Relevant applications of the product rule

Example	By product rule
No. of functions from a set with n elements	m^n
to a set with m elements	
No. of injective functions from a set with n	$m \times (m-1) \times (m-2) \times \times (n-m+1)$
elements to a set with m elements	
No. of subsets of a finite set S	$ \mathcal{P}(S) = 2^{ S }$

5.3 Tree diagrams

Tree diagrams

Counting problems can sometimes be solved using tree diagrams where each branch represent a possible choice

Example: There are 8 bit strings of length 4 without consecutive 1s

5.4 Permutation: definition, theorem, corollaries

Definition of permutation

A permutation of a set of distinct objects is an ordered arrangement of these objects. An r-permutation is said to be an ordered arrangement of r elements of a set.

Useful theorem for permutation

Given $n \in \mathbb{Z}^+$ and $r \in \mathbb{Z}$ with $1 \le r \le n$, the r-permutations of a set with n distinct elements is given by $P(n,r) = n \times (n-1) \times (n-2) \times \ldots \times (n-r+1)$

Corollary 1

If n and r are integers with $0 \le r \le n$, then $P(n,r) = \frac{n!}{(n-r)!}$

Corollary 2

$$P(n,n) = n!$$

5.5Combination: definition, theorem, corollary

Definition of combination

An r-combination of elements of a set with n elements is an unoredered selection of relements from the set. Common notations include $\binom{n}{r}$, C(n,r), and ${}^{n}C_{r}$

Useful theorem for combinations

Given $n, r \in \mathbb{Z}$, where $n \geq 0$ and $0 \leq r \leq n$, the number of r-permutations of a set with n elements is $C(n,r) = \frac{n!}{r!(n-r)!}$

Corollary

Let $n, r \in \mathbb{Z}$, with $n, r \geq 0$ and $r \leq n$, then C(n, r) = C(n, n - r)

Choosing k elements from n + order and repetition

	Order matters	Order doesn't matter
Repetition matters	n^k	$\binom{k+n-1}{n-1}$
Repetition doesn't matter	$\frac{n!}{(n-k)!}$	$\binom{n}{k}$

5.7Binomial theorem

Binomial theorem

Let
$$x$$
 and y be variables, and let n be a nonnegative integer. Then, we have:
$$(x+y)^n = \sum_{j=0}^n \binom{n}{j} x^{n-j} y^j = \binom{n}{0} x^n + \binom{n}{1} x^{n-1} y + \ldots + \binom{n}{n-1} x y^{n-1} + \binom{n}{n} y^n$$

Corollary 1

Let n be a nonnegative integer. Then, $\sum_{k=0}^{n} \binom{n}{k} = 2^n$ Corollary 2

Let $n \in \mathbb{Z}^+$. Then, $\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0$ Corollary 3

Let
$$n \in \mathbb{Z}^+$$
. Then, $\sum_{k=0}^n (-1)^k \binom{n}{k} = 0$

Let n be a nonnegative number. Then, $\sum_{k=0}^{n} 2^k \binom{n}{k} = 3^n$

Pascal's identity and triangle

Pascal's identity

Let
$$n, k \in \mathbb{Z}^+$$
 with $n \geq k$. Then, $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$

Pascal's triangle

5.9 Inlusion-exclusion

Lemmas for the size of set union

No of elements in 2 sets: $|A \cup B| = |A| + |B| - |A \cap B|$ No of elements in 3 sets: $|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$

Principle of Inclusion-Exclusion

Let A_1, A_2, \ldots, A_n b finite sets. Then the size of set union of n sets is given by:

$$|A_1 \cup \ldots \cup A_n| = \sum_{i} |A_i| - \sum_{i} |A_i \cap A_j| + \sum_{i < j < k} |A_i \cap A_j \cap A_k| - \sum_{i < j < k < \ell} |A_i \cap A_j \cap A_k \cap A_\ell| + \ldots \pm |A_1 \cap A_2 \cap \ldots \cap A_n|$$

In short, you simply follow:

- 1. Add the size of each set individually
- 2. Subtract all two-way intersections
 - 3. Add all three-way intersections
- 4. Subtract all four-way intersections
 - 5. Add all five-way intersections

And so on...

5.10 Pigeonhole principle + generalized form

Pigeonhole principle

If you have n pigeons sitting in k pigeonholes, and if n > k, then at least one of the pigeonholes contains at least two pigeons.

Generalised pigeonhole principle

If you have n pigeons sitting in k pigeonholes, and if $n>k\cdot m$, then at least one of the pigeonholes contains at least m+1 pigeons.