Hand Gesture Sign Language Recognition System

"When hands speak, technology listens."

Project Overview	
Goals	
1. Artificial Intelligence (AI) System	
Technologies & Tools	
Why Random Forest?	
Code Structure	
Prediction Handling.	
Graphical Interface	
Text-to-Speech (TTS)	
Keyboard Shortcuts (GUI Version)	
Dataset	
Features	
2. Internet of Things (IoT) System	
Components	
Special Considerations	
How It Works	
3. Mobile Application	
Platform & Tools	
Features	
4. Future Updates	

Project Overview

The **Hand Gesture Sign Language Recognition System** bridges the communication gap for individuals who are non-verbal or have speech impairments. It enables them to communicate using **hand gestures**, which are recognized in **real-time** and converted into text. The output can be displayed on-screen, on an IoT-powered LCD, or within a mobile app.

The system supports **Arabic and English alphabets** and **numerical digits**, ensuring inclusivity and accessibility.

Goals

The main goal of this project is to provide a way for people who are unable to speak to **communicate simply and effectively** with people who cannot understand sign language.

1. Artificial Intelligence (AI) System

Technologies & Tools

- Computer Vision:
 - MediaPipe real-time hand landmark detection.
 - OpenCV image processing & camera handling.
- Machine Learning:
 - Random Forest Classifier trained to recognize gestures (letters and numbers).
 - Data preprocessing with **normalization and augmentation**.

Why Random Forest?

We selected **Random Forest** because:

- It handles **non-linear relationships** well, suitable for complex hand gestures.
- It reduces **overfitting** through ensemble learning.
- It is **fast in training** and **efficient in real-time predictions** compared to deep learning approaches, making it ideal for lightweight hardware integration.

Code Structure

- File 1: Feature extraction with MediaPipe + training a Random Forest model.
- File 2: GUI + real-time prediction using the trained model with live camera input.

Prediction Handling

- Recognizes individual letters, SPACE, DEL, and Nothing.
- Accumulates characters into a sentence with auto-spacing and deletion support.
- Dynamically displays predictions and the evolving sentence.

Graphical Interface

- Shows a **live video stream** with hand landmark overlays.
- Uses a **neon-bordered canvas** for visual appeal.
- Includes buttons to **Reset** the sentence or **Speak it aloud**.

Text-to-Speech (TTS)

- Uses pyttsx3 and gTTS libraries to convert recognized letters or sentences into speech.
- Users can press the **Speak button** to hear the translated output.

Keyboard Shortcuts (GUI Version)

- Spacebar \rightarrow Add space
- **Backspace** → Delete character
- Enter \rightarrow Speak sentence
- **Escape** \rightarrow Exit application

Dataset

- Open-source sign language datasets.
- Custom images from webcam & mobile camera.
- Coverage:
 - A–Z (English)
 - o Arabic alphabet
 - **0–9 (Numbers)**

Features

- Real-time recognition with camera.
- **Bilingual support** (Arabic + English).
- **text-to-speech**: after detecting a gesture and translating it into a letter, the user can hear the letter pronounced.

2. Internet of Things (IoT) System

Components

- LCD Display to show recognized letters.
- ESP8266 Module acts as an integration hub, receiving results from Python and sending them to Arduino.
- Arduino UNO controls the LCD display.

Special Considerations

- The LCD does not natively support **Arabic letters**.
- To overcome this, Arabic characters were manually written in code bit by bit for correct display.

How It Works

- 1. Recognized gesture output is sent from the AI system via Python \rightarrow ESP8266 \rightarrow Arduino.
- 2. Arduino drives the LCD to display the recognized character.
- 3. The system provides immediate **hardware feedback** alongside software output.

3. Mobile Application

Platform & Tools

• Built using MIT App Inventor for rapid development.

Features

- Uses a camera to detect hand gestures.
- Translates gestures into letters in real-time.
- Integrated with the AI system: recognized letters are sent directly to the mobile app.
- Allows **on-the-go communication** for non-verbal users.

4. Future Updates

- **Gesture-to-words translation**: extend beyond letters/digits to recognize complete words.
- Expanded dataset for more natural communication.
- Cloud syncing for data storage and monitoring.