Lecture 4 (2.4 - 2.6)

Rui Li

September 28, 2018

Contents

2.4.1 Implication	1
2.5 Converse and Contrapositive	2
2.6 If and Only If	2

Example: Show that:

$$\neg (P \land (\neg Q \land R)) \equiv \neg (P \land Q) \lor R$$

Solution:

2.4.1 Implication

Definition:

$$P \rightarrow Q$$
 (P implies Q) (If P then Q)

P	Q	$P \to Q$
True	True	True
True	False	False
False	True	True
False	False	True

 $P \to Q$ is called a conditional statement, where P is the hypothesis and Q is the conclusion.

Examples:

P = "You Study", Q = "You pass", $P \rightarrow Q$ = "If you study then you pass"

For all real x, if x > 2 then $x^2 > 4$

For all real x, if $x \ge 2$ then $x^2 > 4$

Negating Implications

Р	Q	$P \rightarrow Q$	$\neg P \lor Q$
True	True	True	True
True	False	False	False
False	True	True	True
False	False	True	True

$$P \to Q \equiv \neg P \lor Q$$

Thus,

$$\neg(P \to Q) \equiv \neg(\neg P \lor Q)$$
$$\equiv \neg \neg P \land \neg Q$$
$$\equiv P \land \neg Q$$

2.5 Converse and Contrapositive

Definition:

Converse of $P \to Q$ is $Q \to P$

Contrapositive of $P \to Q$ is $(\neg Q) \to (\neg P)$

However, $P \to Q \neq Q \to P$

Additionally $\neg Q \rightarrow \neg P \equiv P \rightarrow Q$

Example:

"If a < b then $a \le b$ "

Converse: "If $a \le b$ then a < b"

Contrapositive: "If a > b then $a \ge b$ "

2.6 If and Only If

Definition:

 $P \leftrightarrow Q$ (P if and only if Q)

P	Q	$P \leftrightarrow Q$
True	True	True
True	False	False
False	True	False
False	False	False