Univerzita Karlova v Praze Matematicko-fyzikální fakulta

BAKALÁŘSKÁ PRÁCE

Jmďż"no Pďż"ďż"jmenďż"

Ndž"zev prdž"ce

Nďż"zev katedry nebo ďż"stavu

Vedoucí bakalářské práce: Vedoucďż" prďż"ce

Studijní program: studijnďż" program

Studijní obor: studijnďz" obor

Praha ROK

Prohlašuji, že jsem tuto bakalářskou práci vypracoval(a) samostatně a výhradně s použitím citovaných pramenů, literatury a dalších odborných zdrojů.			
Beru na vědomí, že se na moji práci vztahují práva a povinnosti vyplývající ze zákona č. 121/2000 Sb., autorského zákona v platném znění, zejména skutečnost, že Univerzita Karlova v Praze má právo na uzavření licenční smlouvy o užití této práce jako školního díla podle §60 odst. 1 autorského zákona.			
V dne	Podpis autora		

Název práce: Nďż"zev prďż"ce

Autor: Jmďž"no Pďž"ďž"jmenďž"

Katedra: Nďż"zev katedry nebo ďż"stavu

Vedoucí bakalářské práce: Vedoucďż" prďż"ce, katedra

Abstrakt: Abstrakt.

Klíčová slova: klďż″ďż″ovďż″ slova

Title: Name of thesis

Author: Jmďż"no Pďż"ďż"jmenďż"

Department: Name of the department

Supervisor: Vedoucďż" prďż"ce, department

Abstract: Abstract.

Keywords: key words

Podďż"kovďż"nďż".

Obsah

U	vod		2
1	1.1 1.2 1.3	ulární automaty Co jsou to celulární automaty	
2		kazy na literaturu Několik ukázek	4
3	Tab 3.1	ulky, obrázky, programy Tabulky	5 5 6
Zá	ivěr		8
Se	znan	n obrázků	9
Se	znan	n tabulek	10
Se	znan	n poudž"itdž"ch zkratek	11
Po	ďż″ď	ż"lohy	12

$\mathbf{\acute{U}vod}$

Následuje několik ukázkových kapitol, které doporučují, jak by se měla bakalářská práce sázet. Primárně popisují použití TEXové šablony, ale obecné rady poslouží dobře i uživatelům jiných systémů.

1. Celulární automaty

1.1 Co jsou to celulární automaty

Celulární automat je diskrétní model, který se skládá z pravidelné mřížky buněk. Buňky se nacházejí v určitých stavech, přičemž množina stavů a pravidla pro přechod mezi stavy jsou společná pro celý automat. Celulární automat se vyvíjí diskrétně v čase (celý najednou).

1.2 Elementární celulární automaty

Wofram popisuje 256 elementárních celulárních automatů. Jedná se o binární 1D automaty, kde nový stav každé buňky závisí pouze na jejím stavu a stavu přímých sousedů. Formálně by se dal přechod zapsat jako:

$$x_i(t+1) = f(x_{i-1}(t), x_i(t), x_{i+1}(t))$$

, kde

$$f: \{0,1\}^3 \to \{0,1\}$$

, tudíž existuje $2^{2^3} = 2^8 = 256$ takových funkcí f.

1.3 Jiné 1D celulární automaty

- Nemusíme se omezovat jen na těsné sousedy.
- Můžeme povolit více než 2 stavy.
- Významným druhem celulárních automatů jsou totalistické automaty. Nehledě na to, jak velké se používá okolí a kolik stavů buňlky nabývají, v totalistických automatech se pouze číselně posčítají hodnoty hodnoty buňky s celým jejím okolím a podle součtu hodnot se přiřadí výsledná hodnota. Přechodová funkce pro automat s okolím velikosti o a počtem stavů s se tedy dá vyjádřít jako:

$$f: \{0,...,(s-1)(o+1)\} \to \{0,...,s-1\}$$

1.4 Dvourozměrné celulární automaty

V oblasti 2D celulárních automatů se používají hlavně totalistické automaty, protože vytváření jiných typů pravidel by bylo příliš složité. Typických příkladem totalistického 2D automatu je Game Of Life. To je dvourozměrný automat nad binární abecedou používající 8-okolí, který se řídí pravidlem, že živá buňka přežívá, pokud má 2 až 3 zivé sousedy (jinak umírá), zatímco mrtvá buňka obžije, pokud má právě 3 živé sousedy. Game Of Life se stal nástrojem mnoha různých hříček. Nicméně pro účely šifrování se nezdá být moc užitečný, protože nejde dostatečně parametrizovat.

1.5 Implementace celulárních automatů

V teorii se typicky uvažují celulární automaty na nekonečném hříšti. V počátečním stavu mají se však všechny nenulové hodnoty vyskytují jen uvnitř nějaké konečné oblasti buněk. Nenulové hodnoty se pak ale mohou neomezeně rozrůstat do všech stran. Rychlost tohoto rozšiřování lze zhora omezit na základě velikosti okolí aplikovaného pravidla.

V praxi implementujeme celý automat na konečném hříšti. Možnosti jsou dvě. Buď celý automat zacyklíme a jeho vývoj v čase "pokresluje nekonečnou válcovou plochu", nebo automat na stranách ohraničíme a při aplikaci pravidel na okraji hřiště čteme nulové hodnoty za jeho okrajem.

Výhodou je snadné implementace a nízké paměťové nároky. Nevýhodou je, že vývoj celého automatu periodicky opakuje, pokud provedeme dostatečný počet kroků.

2. Odkazy na literaturu

Odkazy na literaturu vytváříme nejlépe pomocí příkazů \citet, \citep atp. (viz laTeXový balíček natbib) a následného použití BibTeXu. V matematickém textu obvykle odkazujeme stylem "Jméno autora/autorů (rok vydání)", resp. "Jméno autora/autorů [číslo odkazu]". V českém/slovenském textu je potřeba se navíc vypořádat s nutností skloňovat jméno autora, respektive přechylovat jméno autorky. Je potřeba mít na paměti, že standardní příkazy \citet, \citep produkují referenci se jménem autora/autorů v prvním pádě a jména autorek jsou nepřechýlena.

Pokud nepoužíváme bibTEX, řídíme se normou ISO 690 a zvyklostmi oboru. Jména časopisů lze uvádět zkráceně, ale pouze v kodifikované podobě.

2.1 Několik ukázek

Mezi nejvíce citované statistické články patří práce Kaplana a Meiera a Coxe (??). ? napsal článek o t-testu.

Prof. Anděl je autorem učebnice matematické statistiky (viz ?). Teorii odhadu se věnuje práce ?. V případě odkazů na specifickou informaci (definice, důkaz, ...) uvedenou v knize bývá užitečné uvést specificky číslo kapitoly, číslo věty atp. obsahující požadovanou informaci, např. viz ?, Věta 4.22 nebo (viz ?, Věta 4.22).

Mnoho článků je výsledkem spolupráce celé řady osob. Při odkazování v textu na článek se třemi autory obvykle při prvním výskytu uvedeme plný seznam: ? představili koncept EM algoritmu. Respektive: Koncept EM algoritmu byl představen v práci Dempstera, Lairdové a Rubina (?). Při každém dalším výskytu již používáme zkrácenou verzi: ? nabízejí též několik příkladů použití EM algoritmu. Respektive: Několik příkladů použití EM algoritmu lze nalézt též v práci Dempstera a kol. (?).

U článku s více než třemi autory odkazujeme vždy zkrácenou formou: První výsledky projektu ACCEPT jsou uvedeny v práci Genbergové a kol. (?). V textu nenapíšeme: První výsledky projektu ACCEPT jsou uvedeny v práci ?.

3. Tabulky, obrázky, programy

Používání tabulek a grafů v odborném textu má některá společná pravidla a některá specifická. Tabulky a grafy neuvádíme přímo do textu, ale umístíme je buď na samostatné stránky nebo na vyhrazené místo v horní nebo dolní části běžných stránek. LATEX se o umístění plovoucích grafů a tabulek postará automaticky.

Každý graf a tabulku očíslujeme a umístíme pod ně legendu. Legenda má popisovat obsah grafu či tabulky tak podrobně, aby jim čtenář rozuměl bez důkladného studování textu práce.

Na každou tabulku a graf musí být v textu odkaz pomocí jejich čísla. Na příslušném místě textu pak shrneme ty nejdůležitější závěry, které lze z tabulky či grafu učinit. Text by měl být čitelný a srozumitelný i bez prohlížení tabulek a grafů a tabulky a grafy by měly být srozumitelné i bez podrobné četby textu.

Na tabulky a grafy odkazujeme pokud možno nepřímo v průběhu běžného toku textu; místo "Tabulka 3.1 ukazuje, že muži jsou v průměru o 9,9 kg těžší než ženy" raději napíšeme "Muži jsou o 9,9 kg těžší než ženy (viz Tabulka 3.1)".

3.1 Tabulky

U tabulek se doporučuje dodržovat následující pravidla:

- Vyhýbat se svislým linkám. Silnějšími vodorovnými linkami oddělit tabulku od okolního textu včetně legendy, slabšími vodorovnými linkami oddělovat záhlaví sloupců od těla tabulky a jednotlivé části tabulky mezi sebou. V IATEXu tuto podobu tabulek implementuje balík booktabs. Chceme-li výrazněji oddělit některé sloupce od jiných, vložíme mezi ně větší mezeru.
- Neměnit typ, formát a význam obsahu políček v tomtéž sloupci (není dobré do téhož sloupce zapisovat tu průměr, onde procenta).
- Neopakovat tentýž obsah políček mnohokrát za sebou. Máme-li sloupec Rozptyl, který v prvních deseti řádcích obsahuje hodnotu 0,5 a v druhých deseti řádcích hodnotu 1,5, pak tento sloupec raději zrušíme a vyřešíme to jinak. Například můžeme tabulku rozdělit na dvě nebo do ní vložit popisné řádky, které informují o nějaké proměnné hodnotě opakující se v následujícím oddile tabulky (např. "Rozptyl = 0,5" a níže "Rozptyl = 1,5").
- Čísla v tabulce zarovnávat na desetinnou čárku.

Efekt	Odhad	$\begin{array}{c} \textbf{Sm\'{e}rod.} \\ \textbf{chyba}^a \end{array}$	P-hodnota
Abs. člen	-10,01	1,01	
Pohlaví (muž)	9,89	5,98	0,098
Výška (cm)	0,78	0,12	< 0.001

Pozn: a Směrodatná chyba odhadu metodou Monte Carlo.

Tabulka 3.1: Maximálně věrohodné odhady v modelu M.

V tabulce je někdy potřebné používat zkratky, které se jinde nevyskytují.
 Tyto zkratky můžeme vysvětlit v legendě nebo v poznámkách pod tabulkou. Poznámky pod tabulkou můžeme využít i k podrobnějšímu vysvětlení významu některých sloupců nebo hodnot.

3.2 Obrázky

Několik rad týkajících se obrázků a grafů.

- Graf by měl být vytvořen ve velikosti, v níž bude použit v práci. Zmenšení příliš velkého grafu vede ke špatné čitelnosti popisků.
- Osy grafu musí být řádně popsány ve stejném jazyce, v jakém je psána práce (absenci diakritiky lze tolerovat). Kreslíme-li graf hmotnosti proti výšce, nenecháme na nich popisky ht a wt, ale osy popíšeme Výška [cm] a Hmotnost [kg]. Kreslíme-li graf funkce h(x), popíšeme osy x a h(x). Každá osa musí mít jasně určenou škálu.
- Chceme-li na dvourozměrném grafu vyznačit velké množství bodů, dáme pozor, aby se neslily do jednolité černé tmy. Je-li bodů mnoho, zmenšíme velikost symbolu, kterým je vykreslujeme, anebo vybereme jen malou část bodů, kterou do grafu zaneseme. Grafy, které obsahují tisíce bodů, dělají problémy hlavně v elektronických dokumentech, protože výrazně zvětšují velikost souborů.
- Budeme-li práci tisknout černobíle, vyhneme se používání barev. Čáry rozlišujeme typem (plná, tečkovaná, čerchovaná,...), plochy dostatečně rozdílnými intensitami šedé nebo šrafováním. Význam jednotlivých typů čar a ploch vysvětlíme buď v textové legendě ke grafu anebo v grafické legendě, která je přímo součástí obrázku.
- Vyhýbejte se bitmapovým obrázkům o nízkém rozlišení a zejména JPEGům (zuby a kompresní artefakty nevypadají na papíře pěkně). Lepší je vytvářet obrázky vektorově a vložit do textu jako PDF.

3.3 Programy

Algoritmy, výpisy programů a popis interakce s programy je vhodné odlišit od ostatního textu. Jednou z možností je použití LATEXového balíčku fancyvrb (fancy verbatim), pomocí něhož je v souboru makra.tex nadefinováno prostředí code. Pomocí něho lze vytvořit např. následující ukázky.

```
> mean(x)
[1] 158.90
> objekt$prumer
[1] 158.90
```

Menší písmo:

```
> mean(x)
[1] 158.90
> objekt$prumer
[1] 158.90
```

Bez rámečku:

> mean(x)
[1] 158.90
> objekt\$prumer
[1] 158.90

Užší rámeček:

> mean(x)
[1] 158.90
> objekt\$prumer
[1] 158.90

Závěr

Seznam obrázků

Seznam tabulek

Seznam pouďž"itďž"ch zkratek

Pďž"ďž"lohy