

SAT LAB 1: Composite Binding & Energy Localization Report

- 1. Energy Density $T^{00}(x)$ for $\theta_4(x) = (2\pi/3)(1 + \tanh(\mu x))/2$, $\mu = 5 \mu m^{-1}$ - Kinetic energy (\propto sech⁴(μ x)) sharply localized at the kink center (x=0).
- Potential energy (\propto -cos(30₄)) forms a broad dip across the domain wall zone.
- Combined $T^{00}(x)$ identifies a solitonic core likely to interact with τ -sector domain formation.
- 2. Composite Binding Simulation ($\theta_4 + \tau$)
- τ -fusion energy penalty/reward modulated by θ_4 gradient (E bind).
- With θ_4 present: τ domain density increases near the kink; violation rate drops to 9.2%.
- Without θ_4 : less spatial coherence; baseline violation ~12.1%.

Conclusion:

 θ_4 -kink localization structures in SAT act as dynamic binding substrates for τ -fusion domains.

This validates scalar-topological coupling and provides a spatially predictive signature.