Scilab Textbook Companion for Thermodynamics by B. L . Singhal¹

Created by
Keshav Pandey
B.Tech
Mechanical Engineering
UKTU
College Teacher
Mr. Naresh Kumar
Cross-Checked by
Lavitha Pereira and Mukul Kulkarni

December 18, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Thermodynamics

Author: B. L. Singhal

Publisher: Tech-max Publications, Pune

Edition: 3

Year: 2011

ISBN: 978-81-8492-103-8

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	List of Scilab Codes	
1	Thermodynamics Concepts	10
2	First Law of Thermodynamics	38
3	Second Law of Thermodynamics	77
4	Entropy	93
5	Properties of Steam	106
6	Properties of Steam	116
7	IC Engines	148

List of Scilab Codes

Exa 1.4	Kinetic and Potential Energy	10
Exa 1.5	Absolute Pressure	11
Exa 1.6	Determine the pressure	11
Exa 1.7	Water level and mass change	12
Exa 1.8	Absolute pressure of steam	13
Exa 1.9	Height of fluid	13
Exa 1.10	Absolute pressure of gas	14
Exa 1.11	Absolute pressure in KPa	15
Exa 1.12	Temperature corresponding to Thermometric Property	15
Exa 1.13	temperature in degree C	16
Exa 1.14	Calculate the temperature	17
Exa 1.16	Temperature of fluid	17
Exa 1.17	Calculate the temperature	18
Exa 1.18	Temperature	18
Exa 1.19	Thermometer Reading	19
Exa 1.20	Reading of thermometers	20
Exa 1.21	Specific Volume and Density	21
Exa 1.22	Mass of oxygen used	21
Exa 1.23	Mass and No of moles of air	22
Exa 1.24	Mass of air	23
Exa 1.26	Specific heat of metal	23
Exa 1.27	Time required for cooling	24
Exa 1.28	Amount of work will be done	25
Exa 1.29	Workk done by the fluid	25
Exa 1.30	Final Pressure and Volume	26
Exa 1.31	Work done by the system	26
Exa 1.32	Work done by the air	27
Eva 1 33	Change in enthalpy and internal energy	27

Exa 1.34	Pressure of O2
Exa 1.35	Pressure exerted by CO2
Exa 1.36	Pressure exerted by air
Exa 1.37	Determine specific Volume
Exa 1.38	Pressure and Temperature of Gas
Exa 1.39	Temperature of cylinder
Exa 1.40	Partial Pressure of each constituent
Exa 1.41	Partial pressure of each gas
Exa 1.42	Gas Constant Molecular weight
Exa 1.43	Molecular mass Gas constant Pressure
Exa 1.44	Specific heats of gases
Exa 2.1	Calculate Equillibrium temperature
Exa 2.2	Steam flow rate
Exa 2.3	Change in internal energy
Exa 2.4	Net work for cycle
Exa 2.5	Change in internal energy 40
Exa 2.6	DeltaU DeltaPE DeltaKE
Exa 2.7	Rate of work in KW
Exa 2.8	Change in internal energy
Exa 2.9	Net heat transfer
Exa 2.10	Change in internal energy
Exa 2.11	Heat transfer across the system
Exa 2.12	Final temperature of gas
Exa 2.13	Mass of oxygen used 4
Exa 2.14	Specific heat gas constant and density 4
Exa 2.15	Heat added Work done temperature
Exa 2.16	Heat Work Energy Enthalpy 4
Exa 2.17	Find the distance
Exa 2.18	Heat transfer and workdone
Exa 2.19	Net workdone
Exa 2.20	Find specific heat
Exa 2.21	Mass Index Workdone Heat
Exa 2.22	Workdone and final pressure
Exa 2.23	Work transfer and change in energy 54
Exa 2.24	Work done in expansion
Exa 2.25	heat transfer and maximum internal energy 50
Exa 2.26	Net work done
Exa 2.27	Amount of work

Exa	2.28	Work done and index	59
Exa	2.29.a	Q DeltaU and W	60
Exa	2.29	Max Temperature Work done heat transfer	60
Exa	2.30	Density and mass flow rate	61
Exa	2.31	Workdone heat transfer and internal energy	62
Exa	2.32	Calculate power required	64
Exa	2.33	Work done Internal energy heat transfer	64
Exa	2.34	Temperature of air	65
Exa	2.35	Velocity Mass flow rate Diameter	66
Exa	2.36	Heat transfered per Kg of air	67
Exa	2.37	Enthalpy of second exit stream	67
Exa	2.38	Change in enthalpy and rate of workdone	68
Exa	2.39	Power required to drive the compressor	69
Exa	2.40	Output of turbine	70
Exa	2.41	Flow of work Mass flow rate	71
Exa	2.42	Power required and ratio of diameter	71
Exa	2.43	Mass flow rate and specific enthalpy	72
Exa	2.44	Power required to drive the pump	73
Exa	2.45	Exit temperature of air	74
Exa	2.46	Rate of flow of water	75
Exa	2.47	Amount of discharged air	75
Exa	2.48	Work done by the air	76
Exa	3.1	Determine COP	77
Exa	3.2	COP Temperature and Heat Rejected	77
Exa	3.3	Power Input COP	78
Exa	3.4	COP and Heat transfer rate	79
Exa	3.5	Source and sink temperature	79
Exa	3.6	Power required to heat pump	80
Exa	3.7	Operation in which engine delivers more power	81
Exa	3.8	Temperature of cold space	81
Exa	3.10	Time required to freeze water	82
Exa	3.11	Possibilty of claim	83
Exa	3.12	Power required to run the heat pump	83
Exa	3.13	Patent of engine	84
Exa	3.14	Heat rejected Work done and Efficiency	84
Exa	3.15	Heat absorbed by the refrigerant	85
Exa	3.16	Rate of heat supply and heat rejection	86
Exa	3.17	Inventors Claim	87

Exa 3.18	Max Power and Max Temperature	88
Exa 3.20	Expansion Ratio	89
Exa 3.21	Minimum Theoretical area	89
Exa 3.24	COP and Work input	90
Exa 3.25	Determine the COP	91
Exa 3.26	Heat Supplied and efficiency	92
Exa 4.1	Clausias Inequality	93
Exa 4.2	Classify the cycle	93
Exa 4.3	Entropy Change	94
Exa 4.4	Efficiency and Lowest temperature	95
Exa 4.5	Change in entropy	95
Exa 4.6	Change in entropy	96
Exa 4.7	Change in entropy	97
Exa 4.8	Increase in entropy	98
Exa 4.9	Increase of entropy	98
Exa 4.11	Increase in entropy	99
Exa 4.14	Change in internal energy Work done Heat transfer	100
Exa 4.15	Entropy change of universe	100
Exa 4.17	Final temperature Work done heat transfer	101
Exa 4.18	Index Work done Specific entropy	103
Exa 4.21	Entropy Change	104
Exa 4.22	Change in entropy	104
Exa 5.1	Available and unavailable energy	106
Exa 5.2	Reversible work and Irreversibility	106
Exa 5.3	Increase in available energy	107
Exa 5.4	Availability and unavailable energy	108
Exa 5.5	Motor Capability	108
Exa 5.6	Availability of heat energy and unavailable heat	109
Exa 5.7	Available energy added to the system	109
Exa 5.8	Available and unavailable energy	110
Exa 5.9	Heat abstracted Availability and Loss Availability	111
Exa 5.10	Availability of products	111
Exa 5.11	Change in entropy	112
Exa 5.12	Mass flow rate and other parameters	113
Exa 5.13	Loss of availability	114
Exa 5.14	Loss in available energy	115
Exa 6.e	Find Specific Enthalpy	116
Exa 6.1	Type of steam	116

Exa 6.2	Temperature Enthalpy and Specific Volume 118
Exa 6.3	Volume Enthalpy and Internal energy
Exa 6.4	Enthalpy Specific Volume and Entropy 119
Exa 6.5	Ratio of mass flow rate
Exa 6.6	Enthalpy Energy and Mass
Exa 6.7	Dryness fraction of steam
Exa 6.8	Added heat
Exa 6.9	Required Heat
Exa 6.10	Workdone and latent heat of steam
Exa 6.11	Quality of steam
Exa 6.12	Enthalpy Internal Energy Entropy
Exa 6.13	Temperature and Pressure
Exa 6.14	Work done Enthalpy and Heat Transfered 127
Exa 6.15	Rate of heat transfer and Density
Exa 6.16	Quantity of heat
Exa 6.17	Heat transfered per Kg of steam
Exa 6.18	Dryness fraction and Mass of steam
Exa 6.19	Condition of steam
Exa 6.20	Work done and condition of steam
Exa 6.21	Amount of work done
Exa 6.22	Specific work of expansion
Exa 6.23	Final Specific volume temperature and entropy 135
Exa 6.24	Condition of steam and change in entropy 136
Exa 6.25	Pressure at exit of throttle valve
Exa 6.26	State of steam Exit area of nozzle
Exa 6.27	Dryness Fraction of steam
Exa 6.28	Dryness Fraction of steam
Exa 6.29	Minimum value of dryness fraction
Exa 6.30	Dryness fraction of steam
Exa 6.31	Quality of steam
Exa 6.32	Dryness fraction of steam
Exa 6.33	Net work done and Rankine Efficiency 144
Exa 6.34	Thermal Efficiency and Turbine work 145
Exa 6.35	Heat supplied Dryness Fraction Work done Efficiency . 146
Exa 7.1	Friction Power
Exa 7.2	BP of the engine
Exa 7.3	Power and Efficiencies
Exa 7.4	Bore and length of stroke

Exa 7.5	Indicated Power of Engine	151
Exa 7.6	Diameter and stroke of engine	152
Exa 7.7	Indicated Power of Engine	152
Exa 7.8	Engine Crank Shaft Speed	153
Exa 7.9	Power and Efficiency	154
Exa 7.10	Fuel Consumption and Efficiency	154
Exa 7.11	IP BP and Efficiency	155

Chapter 1

Thermodynamics Concepts

Scilab code Exa 1.4 Kinetic and Potential Energy

```
1 //Exa 1.4
2 clc;
3 clear;
4 close;
5 format('v',9);
7 // Given Data :
8 \text{ m} = 500; //\text{Kg}
9 g=7.925; //m/s^2
10 Z=40; //Km
11 C=2400; //Kmph
12 PE=m*g*Z*1000; //Nm
13 disp("Relative to earth.");
14 disp(PE, "Potential Energy in Nm: ");
15 KE=m*(C*1000/3600)^2/2; /Nm
16 disp(KE, "Kinetic Energy in Nm:");
17 disp("Relative to moon.");
18 w = 2.94 * m; //Nm
19 PE=w*Z*1000; //Nm
20 disp(PE, "Potential Energy in Nm: ");
21 KE=m*(C*1000/3600)^2/2; /Nm
```

```
22 disp(KE, "Kinetic Energy in Nm:");
```

Scilab code Exa 1.5 Absolute Pressure

```
1 //Exa 1.5
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data :
8 VGR=57; //KN/m^2
9 Patm=765; //mm of Hg
10 //101.325KN/m^2=760 mm of Hg
11 VGR=VGR*760/101.325; //mm og Hg
12 Pabs=Patm-VGR; //mm of Hg
13 disp(Pabs, "Absolute pressure in mm of Hg : ");
```

Scilab code Exa 1.6 Determine the pressure

```
1 //Exa 1.6
2 clc;
3 clear;
4 close;
5 format('v',8);
6
7 //Given Data:
8 g=9.81;//m/s^2
9 rho_o=0.825*10^3;//Kg/m^3
10 rho_w=1*10^3;//Kg/m^3
11 rho_Hg=13.45*10^3;//Kg/m^3
12 h_o=50/100;//m
13 h_w=65/100;//m
```

Scilab code Exa 1.7 Water level and mass change

```
1 //Exa 1.7
2 clc;
3 clear;
4 close;
5 format('v',7);
7 //Given Data :
8 rho=1000; //\text{Kg/m}^3
9 d=0.3; //m
10 C=1.5; //m/s
11 h=4.5; //m
12 FlowRate = 2000; //\text{Kg/min}
13 d2=15/100; // diameter of discharging line in meter
14 t=15; //\min
15 r=3; //m
16 WaterDischarge=rho*%pi/4*(d/2)^2*C*t*60; //\text{Kg}
17 WaterReceived=FlowRate*t;//Kg
```

```
18 NetWaterReceived=WaterReceived-WaterDischarge; // Kg
19 disp(NetWaterReceived, "Mass change in tank in Kg : "
    );
20 //m=rho*A*h
21 h=NetWaterReceived/rho/(%pi/4*r^2); // m
22 disp(h, "Water level in meter : ");
```

Scilab code Exa 1.8 Absolute pressure of steam

```
//Exa 1.8
clc;
clc;
clear;
close;
format('v',7);

//Given Data :
Pmercury=10;//cm of Hg
Patm=76;//cm of Hg
Pwater=3.5/13.6;//cm of Hg
Pabs=Pmercury+Patm-Pwater;//cm of Hg
Pabs=Pabs/76*1.01325;//bar
disp(Pabs,"Absolute pressure of steam in bar : ");
```

Scilab code Exa 1.9 Height of fluid

```
1 //Exa 1.9
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data:
8 Pmercury=10;//cm of Hg
```

```
9 Patm=760; //mm of Hg
10 Patm=1.01325; //bar
11 Pabs=1.2; // bar
12 sg_oil=0.8;
13 \text{ sg_water=13.6};
14 sg_mercury=13.6;
15 rho_w = 1000; //Kg.m^3
16 g=9.81; // gravity constant
17 deltaP=Pabs-Patm; // bar
18 deltaP=deltaP*10^5; //N/m^2
19 / deltaP = rho_o *g *h_o
20 rho_o=sg_oil*rho_w; // kg/m^3
21 h_o=deltaP/rho_o/g;//m
22 disp(h_o," Height of fluid in oil manometer in meter
      : ");
23 h_w=deltaP/rho_w/g;//m
24 disp(h_w," Height of fluid in water manometer in
      meter : ");
25 rho_m=sg_mercury*rho_w; // kg/m^3
26 \text{ h_m=deltaP/rho_m/g;//m}
27 disp(h_m," Height of fluid in mercury manometer in
      meter : ");
```

Scilab code Exa 1.10 Absolute pressure of gas

```
1 //Exa 1.10
2 clc;
3 clear;
4 close;
5 format('v',9);
6
7 //Given Data:
8 Patm=75;//mm of Hg
9 Patm=Patm*1.01325/76;//bar
10 rho=800;//Kg.m^3
```

```
11 h=30/100; //m
12 g=9.81; // gravity constant
13 deltaP=rho*g*h*10^-5; // bar
14 Pabs=deltaP+Patm; // bar
15 disp(Pabs, "Absolute pressure of gas in bar: ");
```

Scilab code Exa 1.11 Absolute pressure in KPa

```
1 //Exa 1.11
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data :
8 h1=5.1/100; /m
9 h2=10/100; /m
10 Patm=75.5; //mm of Hg
11 Patm=Patm*1.01325/76*10^5; //bar
12 sg_k=0.8;
13 sg_Hg=13.6;
14 rho_w=1000; //\text{Kg/m}^3
15 g=9.81; // gravity constant
16 P_{\text{kerosine}} = sg_{\text{k}} * rho_{\text{w}} * g * h1; //N/m^2
17 P_Hg=sg_Hg*rho_w*g*h2; //N/m^2
18 Pabs=P_Hg+Patm-P_kerosine; /Nm^2
19 disp(Pabs/1000, "Absolute pressure of gas in KPa: ")
```

Scilab code Exa 1.12 Temperature corresponding to Thermometric Property

```
1 //Exa 1.12
```

```
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data:
8 t_ice=0;//degree centigrade
9 p_ice=1.5;
10 t_steam=100; //degree centigrade
11 p_steam = 7.5;
12 // t = a * log(p) + b
13 //solving for a and b by matrix
14 A=[log(p_ice) 1;log(p_steam) 1];
15 B=[t_ice;t_steam];
16 X = A^- - 1 * B;
17 a=X(1);
18 b=X(2);
19 p=3.5; // bar
20 t=a*log(p)+b;//degree C
21 disp(t, "Temperature scale in degree C: ");
```

Scilab code Exa 1.13 temperature in degree C

```
1 //Exa 1.13
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data:
8 theta1_p1=273.16;//K
9 p_gauge1=32;//mm of Hg
10 p_atm=752;//mm of Hg
11 p_gauge2=76;//mm of Hg
12 P1=p_gauge1+p_atm;//mm of Hg
```

```
13 P2=p_gauge2+p_atm; //mm of Hg
14 theta2_p2=theta1_p1*(P2/P1); //in K
15 theta2_p2=theta2_p2-273; //degree C
16 disp(theta2_p2, "Temperature in degree C: ");
```

Scilab code Exa 1.14 Calculate the temperature

```
1 //Exa 1.14
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data :
8 R0=2.8; //ohm
9 t0=0; // degree C
10 R1=3.8; //ohm
11 t1=100; // degree C
12 R2=5.8; //ohm\
13 //R=R0*(1+alfa*t)
14 alfa=(R1/R0-1)/t1;
15 t2=(R2/R0-1)/alfa; // degree C
16 disp(t2," Temperature at R2 in degree C : ");
```

Scilab code Exa 1.16 Temperature of fluid

```
1 //Exa 1.16
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data :
```

```
8 //F=2*C;
9 FbyC=2;
10 disp("(F-32)/9=C/5");
11 C=32/(FbyC-9/5);//degree C
12 F=C*FbyC;//degree F
13 disp(F+460, "Temperature fluid in degree R:");
14 disp(C+273, "Temperature fluid in degree K:");
```

Scilab code Exa 1.17 Calculate the temperature

```
1 / Exa 1.17
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 // Given Data :
8 T1=0; //degree centigrade
9 \text{ K1=1.83};
10 T2=100; // degree centigrade
11 K2=6.78;
12 //T = a * log(K) + b
13 //solving for a and b by matrix
14 A = [\log(K1) \ 1; \log(K2) \ 1];
15 B=[T1;T2];
16 X = A^- - 1 * B;
17 a=X(1);
18 b=X(2);
19 K=2.42; //bar
20 T=a*log(K)+b; // degree C
21 disp(T, "Temperature in degree C: ");
```

Scilab code Exa 1.18 Temperature

```
1 //Exa 1.18
2 clc;
3 clear;
4 close;
5 format('v',6);
6
7 //Given Data :
8 //t=N/30-100/3
9 //t=N
10 N=(-100/3)/(1-1/30);//degree C
11 disp(N,"Temperatur at which degree C equals to degree N(degree C): ");
```

Scilab code Exa 1.19 Thermometer Reading

```
1 // Exa 1.19
2 clc;
3 clear;
4 close;
5 format('v',6);
7 // Given Data :
8 // epsilon = 0.2*t - 5*10^-4*t^2; //mV
9 t_{ice=0}; // degree C
10 epsilon_ice=0.2*t_ice-5*10^-4*t_ice^2; //mV
11 t_steam=100; // degree C
12 epsilon_steam=0.2*t_steam-5*10^-4*t_steam^2; //mV
13 / At t = 60;
14 t=60; //degree C
15 epsilon=0.2*t-5*10^-4*t^2; /mV
16 reading=(t_steam-t_ice)/(epsilon_steam-epsilon_ice)
      *(epsilon-epsilon_ice)
17 disp(reading, "Thermometer will read(degree C): ");
```

Scilab code Exa 1.20 Reading of thermometers

```
1 / \text{Exa} \ 1.20
2 clc;
3 clear;
4 close;
5 format('v',7);
7 //Given Data :
8 tA1=0; //degree centigrade
9 tB1=0;//degree centigrade
10 tA2=100; // degree centigrade
11 tB2=100; //degree centigrade
12 / tA = l + m * tB + n * tb^2
13 1=0; //by putting tA and tB equals to zero
14 / tA = m * tB + n * tB^2
15 //Thermometer immersed in oil bath
16 tA1=51; // degree centigrade
17 tB1=50; // degree centigrade
18 //solving for m and n by matrix
19 A=[tB1 tB1^2;tB2 tB2^2];
20 B = [tA1; tA2];
21 X = A^{-1} + B;
22 \text{ m=X(1)};
23 n=X(2);
24 tA=25; // degree centigrade
25 P=[n m -tA]; //polynomial for calculation of tB
26 	ext{ tB=roots(P)};
27 tB=tB(2); //neglecting + ve sign
28 disp(tB,"When A reads 25 degree C, B reading in
      degree C: ");
29 //let tB=25;//degree C
30 tB=25; //degree C
31 tA=1+m*tB+n*tB^2; // degree C
```

```
32 disp(tA,"When B reads 25 degree C, A reading in
        degree C: ");
33 disp("B is correct. A shows error greater than B.")
34 //Answer is not accurate in the book.
```

Scilab code Exa 1.21 Specific Volume and Density

```
1 / Exa 1.21
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 // Given Data:
8 p=10; //bar
9 T=327+273; //K
10 \quad M = 42.4;
11 m=1; //Kg
12 Rdegree=8314.3; /Nm/KgK
13 R=Rdegree/M; //Nm/KgK
14 V=m*R*T/p/10^5; //m^3/Kg
15 disp(V, "Specific volume in m<sup>3</sup>/Kg; ");
16 rho=m/V; //\text{Kg/m}^3
17 disp(rho, "Density of gas in Kg/m<sup>3</sup>: ");
```

Scilab code Exa 1.22 Mass of oxygen used

```
1 //Exa 1.22
2 clc;
3 clear;
4 close;
5 format('v',6);
```

```
7 //Given Data :
8 Rdegree=8314.3; //Universal Gas Constant
9 M=32; //Molecular weight of gas
10 p1=3*10^6; //N/m^2
11 V1=250*10^-3; //m^3
12 T1=20+273; //K
13 p2=1.8*10^6; //N/m^2
14 V2=V1; //m^3
15 T2=16+273; //K
16 R=Rdegree/M; //Nm/KgK
17 m1=p1*V1/R/T1; //Kg
18 m2=p2*V2/R/T2; //Kg
19 mass_used=m1-m2; //Kg
20 disp(mass_used, "Mass of oxygen used in Kg : ");
```

Scilab code Exa 1.23 Mass and No of moles of air

```
1 / Exa 1.23
2 clc;
3 clear;
4 close;
5 format('v',8);
7 // Given Data :
8 Rdegree=8314.3; // Universal Gas Constant
9 r=12; //meter
10 Patm=75; /cm of Hg
11 Patm=Patm/76*1.01325*10^5; //N/m^2
12 V=4/3*\%pi*r^3; //m^3
13 M_air=28.97;
14 M_H2=2
15 Tair=18+273; //K
16 g=9.81; // gravity constant
17 Rair=Rdegree/M_air;//Nm/KgK
18 RH2=Rdegree/M_H2; //Nm/KgK
```

```
19  //p*V=m*R*T
20  m_air=Patm*V/Rair/Tair; //Kg
21  disp(m_air, "Mass of air in kg : ");
22  n_air=m_air/M_air; // moles
23  disp(n_air, "No. of moles : ");
24  m_H2=n_air*M_H2; //Kg
25  disp(m_H2, "Mass of H2 in kg : ");
26  Load=g*(m_air-m_H2); //N
27  disp(Load, "Load balloon can lift in N; ");
```

Scilab code Exa 1.24 Mass of air

```
1 / \text{Exa} \ 1.24
2 clc;
3 clear;
4 close;
5 format('v',6);
7 // Given Data :
8 p1=1;//bar
9 p2=0.45; // bar
10 R=287; //KJ/KgK
11 V=40; //m^3
12 V1=40; //\text{m}^3
13 V2=40; //m^3
14 T1=35+273; //K
15 T2=5+273; //K
16 \text{ m} = \text{p1} * 10^5 * \text{V1/R/T1} - \text{p2} * 10^5 * \text{V2/R/T2}
17 disp(m, "Mass of air removed in Kg: ");
```

Scilab code Exa 1.26 Specific heat of metal

```
1 / \text{Exa} \ 1.26
```

```
2 clc;
3 clear;
4 close;
5 format('v',6);
6
7 //Given Data :
8 m=1;//Kg
9 t=80;//degree C
10 mw=10;//Kg
11 t1=25;//degree C
12 delta_t=5;//degree C
13 t2=delta_t+t1;//degree C
14 Sw=4.187;//Kj/KgK
15 //m*S*(t-t2)=mw*Sw*(t2-t1)
16 S=mw*Sw*(t2-t1)/m/(t-t2);//Kj/KgK
17 disp(S,"Specific heat of metal in KJ/KgK : ");
```

Scilab code Exa 1.27 Time required for cooling

```
1 //Exa 1.27
2 clc;
3 clear;
4 close;
5 format('v',6);
6
7 //Given Data :
8 m=500;//Kg
9 t1=45;//degree C
10 t0=5;//degree C
11 CP=4.18;//KJ/Kg-degree C
12 Qdot=41.87;//MJ/hr
13 Q=m*CP*(t1-t0);//KJ
14 Q=Q/1000;//MJ
15 Time=Q/Qdot;//hrs
16 disp(Time, "Time required in hours : ");
```

Scilab code Exa 1.28 Amount of work will be done

```
1 //Exa 1.28
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data :
8 V1=2; //m^3
9 V2=4; //m^3
10 W=integrate('10^5*(V^2+6*V)', 'V', V1, V2); //Nm or J
11 W=W/1000; //KJ
12 disp(W,"Work done in KJ : ");
```

Scilab code Exa 1.29 Workk done by the fluid

```
1 //Exa 1.29
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data :
8 p1=3;//bar
9 V1=0.18;//m^3/Kg
10 p2=0.6;//bar
11 C=p1*10^5*V1^2;//Nm
12 V2=sqrt((p1/p2)*V1^2);//m^3Kg
13 W=integrate('C/V^2','V',V1,V2);//Nm/Kg
14 W=W/1000;//KJ/Kg
15 disp(W,"Work done in KJ/Kg : ");
```

Scilab code Exa 1.30 Final Pressure and Volume

```
1 / \text{Exa} \ 1.30
2 clc;
3 clear;
4 close;
5 format('v',7);
7 //Given Data :
8 W=160; //kJ
9 W = W * 1000; //J
10 V1=800; // litres
11 V1=V1/1000; //\text{m}^3
12 / p = 7 - 3*V
13 //[7*(V2-V1)-1.5*(V2^2-V1^2)]-W/10^5=0;/Nm \text{ or } J
14 / 7*V2 - 7*V1 - 1.5*V2^2 + 1.5*V1^2 - W/10^5; / Nm \text{ or } J
15 //P = [-10^5*1.5 \ 10^5*7 \ -10^5*7*V1+10^5*1.5*V1^2-W]
16 P = [-1.5 \ 7 \ -7*V1+1.5*V1^2-W/10^5];
17 V2=roots(P);//m^3
18 V2=V2(2); //(V2(1)) gives -ve value which is not
      possible)
19 disp(V2, "Final Volume in m<sup>3</sup>: ");
20 P2=7-3*V2; //bar
21 disp(P2, "Final Pressure in bar: ");
22 //Answer is wrong in the book as calculation is
      wrong for V2.
```

Scilab code Exa 1.31 Work done by the system

```
1 //Exa 1.31
2 clc;
```

```
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data :
8 p0=1;//bar
9 p0=p0*10^5;//N/m^2
10 V1=0;//m^3
11 V2=0.7;//m^3
12 //No p.dV work for cylinder as boundaries are
13 W=p0*integrate('1','V',V1,V2);
14 W=W/1000;//KJ/Kg
15 disp(W,"Workdone by the system in KJ:");
```

Scilab code Exa 1.32 Work done by the air

```
1 //Exa 1.32
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data :
8 p0=101.3; //KPa
9 V1=1.2; //m^3
10 V2=0; //m^3
11 //No p.dV work by rigid boundary
12 W=p0*integrate('1', 'V', V1, V2);
13 disp(W,"Workdone by the air in KJ : ");
```

Scilab code Exa 1.33 Change in enthalpy and internal energy

```
1 //Exa 1.33
```

```
2 clc;
3 clear;
4 close;
5 format('v',9);
7 // Given Data:
8 \text{ T1} = 300; //K
9 T2=2300; //K
10 Gamma=1.5;
11 m=1; //Kg
12 / Cp = 0.85 + 0.0004 * T + 50 * 10^{-5} * T^{2}
13 \text{H2subH1} = \text{integrate} (\text{'m*}(0.85 + 0.00004 * T + 5*10^- - 5*T^2)', \text{'}
      T', T1, T2); //KJ/Kg
14 disp(H2subH1, "Change in enthalpy in KJ/Kg: ");
15 U2subU1=integrate ('m*(0.85+0.00004*T+5*10^-5*T^2)/
      Gamma', T', T1, T2); //KJ/Kg
16 disp(U2subU1, "Change in internal energy in KJ: ");
```

Scilab code Exa 1.34 Pressure of O2

```
1 //Exa 1.34
2 clc;
3 clear;
4 close;
5 format('v',9);
6
7 //Given Data :
8 m=1;//Kg
9 v=1;//m^3
10 T=127+273;//K
11 a=138;//KNm^4/(Kgmol)^2
12 a=a*10^3;//Nm^4/(Kgmol)^2
13 M_02=32;//
14 vm=v*M_02;//m^3/Kgmol
15 //p*v=n*R*T
```

Scilab code Exa 1.35 Pressure exerted by CO2

```
1 / \text{Exa} \ 1.35
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data :
8 \text{ m} = 22; //\text{Kg}
9 T=300; //K
10 V=5; //m^3
11 M=44; //Kg/Kgmol
12 a=362.9; /(KNm^4/Kgmol^2)
13 b=0.0314; //\text{m}^3/\text{Kgmol}
14 Rdash=8314.3; //gas constant
15 R=Rdash/M; /Nm/KgK
16 p=m*R*T/V; //Pa
17 p=p/10^5; //bar
18 disp(p, "Pressure, when gas behaves like a perfect
      gas in bar : ");
19 Vdash=V/m*M; //m^3/Kgmole
20 //[p+a/vm^2]*[vm-b]=R*T
21 p=Rdash*T/(Vdash-b)-a*10^3/Vdash^2; //N/m^2
```

Scilab code Exa 1.36 Pressure exerted by air

```
1 //Exa 1.36
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data :
8 pc=37.7; // bar
9 Tc=132.5; //K
10 vc = 0.093; //m^3 Kgmol
11 R=287; //Nm/KgK
12 m = 10; //Kg
13 T = 300; //K
14 V = 0.3; //m^3
15 a=27*R^2*Tc^2/64/pc/10^5;
16 b=R*Tc/8/pc/10<sup>5</sup>;//
17 / (p+a/V^2) * (V-b) = R*T
18 p=R*T/(V-b)-a/V^2; //N/m^2
19 p=p/10^5; //bar
20 disp(p,"Pressure exerted by air in bar: ");
```

Scilab code Exa 1.37 Determine specific Volume

```
1 //Exa 1.37
2 clc;
3 clear;
4 close;
5 format('v',8);
```

```
7 // Given Data :
8 pc=221.2; // bar
9 Tc=374.15+273; //K
10 p=100; //bar
11 T=400+273; //K
12 R=462; /Nm/KgK
13 / p*v=R*T
14 v=R*T/p/10^5; //m^3/Kg
15 disp(v, "Specific volume, v by perfect gas equation
      in m^3/Kg : ");
16 pr=p/pc;
17 Tr=T/Tc;
18 Z=0.84; //From compressibility chart
19 v = Z * R * T/p/10^5
20 disp(v, "Specific volume, v by compressibility chart
      in m^3/Kg : ");
```

Scilab code Exa 1.38 Pressure and Temperature of Gas

```
1 //Exa 1.38
2 clc;
3 clear;
4 close;
5 format('v',8);
6
7 //Given Data:
8 pr=5;
9 Z=0.8;
10 pc=46.4;//bar
11 Tc=191.1;//K
12 Tr=1.44;//
13 p=pr*pc;//bar
14 disp(p,"Pressure in bar: ");
15 T=Tr*Tc;//K
```

```
16 disp(T, "Temperature in K: ");
```

Scilab code Exa 1.39 Temperature of cylinder

```
1 / \text{Exa} \ 1.39
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 // Given Data :
8 V=0.01653; //m^3
9 m=5.6; //\text{Kg}
10 M=28; //Kg/Kgmol
11 p=200; //bar
12 \quad Z = 0.605;
13 Rdash=8314.3; //J/Kgk
14 R=Rdash/M; //J/Kgk
15 / p*V = m*Z*R*T
16 T=p*10^5*V/m/Z/R;/K
17 disp(T, "Temperature in K: ");
```

Scilab code Exa 1.40 Partial Pressure of each constituent

```
1 //Exa 1.40
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data:
8 mC0=0.45;//Kg
9 mAir=1;//Kg
```

```
10 V = 0.4; //m^3
11 T=15+273; //K
12 MCO=28; //\text{Kg/Kgmo}
13 MO2=32; //Kg/Kgmol
14 MN2=28; //\text{Kg/Kgmol}
15 m02=23.3/100*mAir; //Kg
16 mN2=76.7/100*mAir; //\text{Kg}
17 Rdash=8314.3; //J/Kgk
18 / p*V = m*Z*R*T
19 pCO=mCO*Rdash/MCO*T/V/10^5; //bar
20 pO2=mO2*Rdash/MO2*T/V/10^5;//bar
21 pN2=mN2*Rdash/MN2*T/V/10^5;//bar
22 disp(pCO, "Pressure of CO in bar: ");
23 disp(pO2, "Pressure of O2 in bar: ");
24 disp(pN2, "Pressure of N2 in bar: ");
25 p = pCO + pO2 + pN2; //bar
26 disp(p, "Total pressure in vessel in bar: ");
```

Scilab code Exa 1.41 Partial pressure of each gas

```
1 //Exa 1.41
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data:
8 ma=0.4;/Kg
9 mb=0.8;//Kg
10 Ma=44;
11 Mb=29;
12 V=0.4;//m^3
13 T=300;//K
14 Rdash=8314.3;//J/Kgk
15 Ra=Rdash/Ma;//Nm/KgK
```

```
16 Rb=Rdash/Mb; //Nm/KgK
17 na=ma/Ma; // moles
18 nb=mb/Mb; // moles
19 //p*V=n*R*T
20 pa=na*Rdash/1000*T/V; // bar
21 pb=nb*Rdash/1000*T/V; // bar
22 disp(pa," Pressure of container A in KPa: ");
23 disp(pb," Pressure of container B in KPa: ");
24 p=pa+pb; // Kpa
25 disp(p," Pressure of mixture in KPa: ");
26 // Ans of Pb is wrong in the book.
```

Scilab code Exa 1.42 Gas Constant Molecular weight

```
1 / Exa 1.42
2 clc;
3 clear;
4 close;
5 format('v',8);
6
7 // Given Data :
8 Rdash=8314.3; //J/Kgk
9 m02=23.15/100;
10 mN2 = 75.52/100;
11 mArgon=1.29/100;
12 \text{ mCO}2 = 0.04/100;
13 \text{ MO2} = 32;
14 MN2=28;
15 MArgon=40;
16 \text{ MCO2} = 44;
17 R02=Rdash/M02; //J/KgK
18 RN2=Rdash/MN2; //J/KgK
19 RArgon=Rdash/MArgon; //J/KgK
20 RCO2=Rdash/MCO2; //J/KgK
R = (m02*R02+mN2*RN2+RArgon*mArgon+RC02*mC02)/(m02+mN2)
```

```
+mArgon+mCO2); //J/KgK
22 disp(R, "Characteristic gas constant for air in J/KgK
       : ");
23 M=Rdash/R; //Kg/Kgmol
24 disp(M, "Molecular weight of air in Kg/Kgmol: ");
25 p=1.013; //bar
26 \text{ nO2=mO2/MO2}; // \text{moles}
27 nCO2=mCO2/MCO2; //moles
28 \text{ nN2=mN2/MN2;}//\text{moles}
29 nArgon=mArgon/MArgon; //moles
30 n=n02+nN2+nArgon+nC02;
31 p02=n02/n*p; //bar
32 \text{ pN2=nN2/n*p;} // \text{bar}
33 pArgon=nArgon/n*p;//bar
34 \text{ pCO2=nCO2/n*p;}//bar
35 disp(pO2, "Pressure of O2 in bar: ");
36 disp(pN2, "Pressure of N2 in bar: ");
37 disp(pArgon, "Pressure of Argon in bar: ");
38 disp(pCO2, "Pressure of CO2 in bar: ");
```

Scilab code Exa 1.43 Molecular mass Gas constant Pressure

```
1 //Exa 1.43
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data:
8 y02=0.3;
9 yN2=0.5;
10 yC02=0.2;
11 V=1;//m^3
12 T=27+273;//K
13 m=8;//Kg
```

```
14 \text{ MO2=32};
15 \text{ MN2=28};
16 \text{ MCO2} = 44;
17 M=1/(y02/M02+yN2/MN2+yC02/MC02); //Kg/Kgmol
18 disp(M, "Molecular mass for mixture in Kg/Kgmol: ");
19 Rdash=8314.3; //J/Kgk
20 R=Rdash/M; /Nm/KgK
21 disp(R, "Gas constant R of mixture in Nm/KgK:");
22 p=m*R*T/V/10^5; //bar
23 disp(p, "Pressure exerted by gases in bar: ");
24 n02 = y02 / M02 * m; // moles
25 nCO2 = yCO2 / MCO2 * m; // moles
26 nN2=yN2/MN2*m; //moles
27 disp(nO2, "Mole fraction of O2(moles): ");
28 disp(nN2, "Mole fraction of N2(moles): ");
29 disp(nCO2, "Mole fraction of CO2(moles): ");
```

Scilab code Exa 1.44 Specific heats of gases

```
1 //Exa 1.44
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data :
8 mN2=4;//Kg
9 m02=2.4;//Kg
10 mC02=1.6;//Kg
11 M02=32;
12 MN2=28;
13 MC02=44;
14 Gamma=1.4;
15 //Rdash=Cpdash*(1-1/Gamma)
16 Rdash=8.3143;//J/KgK
```

```
17 Cpdash=Rdash*Gamma/(Gamma-1); //KJ/KgmolK
18 Cvdash=Cpdash/Gamma; //KJ/KgmolK
19 CpO2 = Cpdash/MO2; //KJ/KgmolK
20 CpN2=Cpdash/MN2; //KJ/KgmolK
21 CpCO2 = Cpdash/MCO2; //KJ/KgmolK
22 CvO2=Cvdash/MO2;//KJ/Kg
23 CvN2 = Cvdash/MN2; //KJ/Kg
24 CvCO2 = Cvdash/MCO2; //KJ/Kg
25 disp("Specific heat of gases: ");
26 disp("For N2, Cp is "+string(CpN2)+" KJ/Kg & Cv is "
     +string(CvN2)+" \mathrm{KJ/Kg."});
27 disp("For O2, Cp is "+string(CpO2)+" KJ/Kg & Cv is "
     +string(CvO2)+" KJ/Kg.");
28 disp("For CO2, Cp is "+string(CpCO2)+" KJ/Kg & Cv is
       "+string(CvCO2)+" KJ/Kg.");
29 Cp = (m02*Cp02+mN2*CpN2+mC02*CpC02)/(m02+mN2+mC02); //
     KJ/KgK
30 disp(Cp, "Specific heat of mixture, Cp in KJ/KgK: ")
31 Cv = (m02*Cv02+mN2*CvN2+mC02*CvC02)/(m02+mN2+mC02); //
     KJ/KgK
32 disp(Cv, "Specific heat of mixture, Cv in KJ/KgK: ")
```

Chapter 2

First Law of Thermodynamics

Scilab code Exa 2.1 Calculate Equillibrium temperature

```
1 / Exa 2.1
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data :
8 \text{ mc} = 10; //\text{Kg}
9 Cpc=0.4; //KJ/KgK
10 Cpw=4.187; //KJ/KgK(Specific heat of water)
11 tc=90; // degree_centigrade
12 Vw = 0.35; //m^3
13 tw=30; // degree_centigrade
14 density_water=1000; //\text{Kg/m}^3
15 mw=Vw*density_water; //Kg
16 / \text{mc} \cdot \text{Cpc} \cdot (\text{tc-t}) = \text{mw} \cdot \text{Cpw} \cdot (\text{t-tw})
17 t=(mw*Cpw*tw+mc*Cpc*tc)/(mw*Cpw+mc*Cpc);//
       degree_centigrade
18 disp(t," Equillibrium temperature in
       degree_centigrade : ");
```

Scilab code Exa 2.2 Steam flow rate

Scilab code Exa 2.3 Change in internal energy

```
1 //Exa 2.3
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data
8 WA=20;//KJ
9 QA=15;//KJ
10 QB=10;//KJ
11 U2subU1=QA-WA;//change in internal energy in KJ
12 disp(U2subU1, "Change in internal energy in KJ:");
```

Scilab code Exa 2.4 Net work for cycle

```
1 / Exa 2.4
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data
8 Q1=120; //KJ
9 Q2=-16; //KJ
10 Q3=-48; //KJ
11 Q4=12; //KJ
12 W1=60000; //N-m
13 W2=68000; //N-m
14 W3=120000; //N-m
15 W4=44000; //N-m
16 Net_work=Q1+Q2+Q3+Q4; //KJ
17 disp(Net_work*1000,"Net Work in N-m : ");
18 disp("Option (ii) is true.")
```

Scilab code Exa 2.5 Change in internal energy

```
1  //Exa 2.5
2  clc;
3  clear;
4  close;
5  format('v',7);
6
7  //Given Data
8  T1=100; // degree_centigrade
9  T1=T1+273; // kelvin
```

```
10 T2=200; // degree_centigrade
11 T2=T2+273; // kelvin
12
13 delQbydelT=1.005; //KJ/k
14 // delWbydelT=(4-0.12*T); //KJ/k
15 Q=integrate('1.005', 'T', T1, T2);
16 W=integrate('4-0.12*T', 'T', T1, T2);
17 U2subU1=Q-W; // change in internal energy in KJ
18 disp(U2subU1, "Change in internal energy in KJ: ");
```

Scilab code Exa 2.6 DeltaU DeltaPE DeltaKE

```
1 / Exa 2.6
2 clc;
3 clear:
4 close;
5 format('v',7);
7 // Given Data
8 \text{ m} = 20; //\text{Kg}
9 mw = 200; //Kg
10 Z1=15; //m
11 Z2=0; //m
12 g=9.81; // gravity constant
13
14 disp("(i) Stone is about to enter the water");
15 deltaPE=m*g*(Z2-Z1)/1000; //KJ
16 Q=0; //Heat Transfer
17 W=0; //Work Transfer
18 deltaE=Q-W; //Energy Transfer
19 //deltaE=deltaU+deltaKE+deltaPE
20 deltaU=0;//no change in temperature
21 deltaKE= deltaE-deltaU-deltaPE; //KJ
22 disp(deltaU, "deltaU in KJ: ");
23 disp(deltaPE, "deltaPE in KJ: ");
```

```
24 disp(deltaKE, "deltaKE in KJ: ");
25 disp(Q,"Q in KJ : ");
26 disp(W, "W in KJ : ");
27
28 disp("(ii) Stone has come to rest near the tank.");
29 Q=0; //Heat Transfer
30 W=0; //Work Transfer
31 deltaE=Q-W;//Energy Transfer
32 deltaKE=0; //rest condition
33 //deltaE=deltaU+deltaKE+deltaPE
34 deltaU= deltaE-deltaKE-deltaPE; //\mathrm{KJ}
35 disp(deltaU, "deltaU in KJ: ");
36 disp(deltaPE, "deltaPE in KJ: ");
37 disp(deltaKE, "deltaKE in KJ: ");
38 disp(Q,"Q in KJ : ");
39 disp(W,"W in KJ : ");
40
41 disp("(iii) Heat is transferred to surroundings.");
42 deltaKE=0; //Energy Transferred to water
43 deltaPE=0;
44 \quad W = 0;
45 deltaE=deltaU+deltaKE+deltaPE
46 Q=deltaE+W;//KJ
47 disp(deltaU, "deltaU in KJ: ");
48 disp(deltaPE, "deltaPE in KJ: ");
49 disp(deltaKE, "deltaKE in KJ: ");
50 disp(Q,"Q in KJ : ");
51 disp(W, "W in KJ : ");
```

Scilab code Exa 2.7 Rate of work in KW

```
1 //Exa 2.7
2 clc;
3 clear;
4 close;
```

```
5 format('v',7);
7 // Given Data
8 \text{ SigmaW=30; } //\text{KJ}
9 n=10; // cycles/min
10 Q1_2=50; //KJ
11 / Q2_3 = 0; / KJ
12 / Q3_1 = 0; / KJ
13 / W1_2 = 0; / KJ
14 W2_3=30; //KJ
15 / W3_1 = 0; / KJ
16 deltaU1_2=20; //KJ
17 deltaU2_3=-10; //KJ
18 // delta U 3_1 = 0; //KJ
19 //Q-W=deltaU
20 //For Proess 1-2:
21 \ W1_2 = Q1_2 - deltaU1_2; //KJ
22 disp(W1_2,"W1-2 in KJ : ");
23 //For Proess 2-3
24 Q2_3=W2_3+deltaU2_3;/KJ
25 disp(Q2_3,"Q2-3 in KJ : ");
\frac{26}{\text{For Proess }3-1}
27 \text{ W3}_1 = \text{SigmaW} - \text{W1}_2 - \text{W2}_3; //\text{KJ}
28 disp(W3_1, W3_1 in KJ : ");
29 SigmaQ=SigmaW; //KJ
30 Q3_1 = SigmaQ - Q1_2 - Q2_3; //KJ
31 disp(Q3_1, "Q3-1 in KJ : ");
32 \text{ deltaU3}_1 = Q3_1 - W3_1; //KJ
33 disp(deltaU3_1,"U1-U3 \text{ or } deltaU3-1 \text{ in } KJ : ");
34 RateOfWork=SigmaW*n; //KJ/min
35 RateOfWork=RateOfWork/60;//KJ/sec or KW
36 disp(RateOfWork, "Rate of work in KW: ");
```

Scilab code Exa 2.8 Change in internal energy

```
1 / Exa 2.8
2 clc;
3 clear;
4 close;
5 format('v',9);
7 // Given Data:
8 \text{ m} = 50; //\text{Kg}
9 C1=10; //m/s
10 C2=30; //m/s
11 Z2subZ1=40; //m
12 Q = 30000; //J
13 W1 = -4500; //J
14 W2 = 0.002; //KWh
15 g=9.81; // gravity constant
16 W2=W2*3600*1000; //J
17 / sigmaQ - sigmaW = E2 - E1 = (U2 - U1) + (C2^2 - C1^2) / 2 + g * (Z2 - Z1)
18 U2subU1=Q-(W1+W2)-(C2^2-C1^2)/2-g*(Z2subZ1);//J
19 disp(U2subU1, "Change in Internal energy in J: ");
```

Scilab code Exa 2.9 Net heat transfer

```
1 //Exa 2.9
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data
8 deltaU=-4000;//KJ
9 W=-1.2;//KWh
10 W=W*3600;//KJ
11 Q=W+deltaU;//KJ/hr
12 disp(Q,"Net heat transfer in KJ/hr:");
```

Scilab code Exa 2.10 Change in internal energy

```
1 / Exa 2.10
2 clc;
3 clear;
4 close;
5 format('v',6);
7 // Given Data
8 mw = 100; //\text{Kg}
9 T=30; //min
10 T=T*60; //sec
11 P=1; /KW
12 Q = -50; //KJ
13 Sw=4.19; //KJ/KgK(Specific heat of water)
14 W = -P *T ; //KJ
15 //Q=W+deltaU
16 deltaU=Q-W; //KJ
17 disp(deltaU, "Chage in internal energy in kJ:");
18 delta_t=deltaU/mw/Sw;//sec
19 disp(delta_t, "Rise in temperature in degree C : ");
```

Scilab code Exa 2.11 Heat transfer across the system

```
1 //Exa 2.11
2 clc;
3 clear;
4 close;
5 format('v',6);
6
7 //Given Data
```

```
8 V=12; // Volt
9 I=6; // Ampere
10 t=1.5; // hr
11 t=t*3600; // sec
12 deltaU=-750; // KJ
13 W=V*I*t/1000; // KJ
14 Q=W+deltaU; // KJ
15 disp(Q," Heat transfer in KJ : ");
```

Scilab code Exa 2.12 Final temperature of gas

```
1 / Exa 2.12
2 clc;
3 clear;
4 close;
5 format('v',6);
7 // Given Data
8 Q=82;/KJ
9 p1=4; //bar
10 m=1; //Kg
11 V1=0.21; //\text{m}^3
12 T2=127; // degree Centigrade
13 R=300; //Nm/KgK
14 W=0; // because V is constant.
15 disp(W,"Work done in KJ: ");
16 //Q-W=deltaU
17 deltaU=Q-W;/KJ
18 disp(deltaU, "Change in internal energy in KJ: ");
19 / p1*V1 = m*R*T1
20 T1=p1*10^5*V1/m/R; //kelvin
21 T1=T1-273; // degree centigrade
22 delta_t=T2-T1; // degree centigrade
23 Cv=deltaU/delta_t; //KJ/KgK
24 disp(Cv, "Specific Heat in KJ/KgK : ");
```

Scilab code Exa 2.13 Mass of oxygen used

```
1 / Exa 2.13
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data :
8 V1 = 250; // litres
9 V2 = 250; // litres
10 p1=3; //Mpa
11 t1=20; // degree_centigrade
12 p2=1.8; //Mpa
13 t2=16; // degree_centigrade
14 Gamma=1.4; //
15 rho=1.43; //Kg/m^3
16 p=0.1013; //Mpa
17
18 V1=V1/1000; //\text{m}^3
19 V2=V2/1000; //m^3
20 T1=t1+273; // Kelvin
21 T2=t2+273; // Kelvin
22 / p = rho *R*T
23 T=0+273; // Kelvin
24 R=p*10^6/rho/T; /Nm/KgK
25 / p*V = m*R*T
26 \text{ m1=p1*10^6*V1/R/T1;}//\text{Kg}
27 \text{ m}2=p2*10^6*V2/R/T2; //Kg
28 Mass_oxygen=m1-m2; //\text{Kg}
29 disp(Mass_oxygen, "Mass of oxygen used in Kg:");
30 //\text{Cv}*(\text{Gamma}-1)=\text{R}
31 Cv=R/(Gamma-1); //Nm/KgK
32 \ Q=m2*Cv*(t1-t2); //J
```

```
33 disp(Q,"Heat transferred in J: ");
```

Scilab code Exa 2.14 Specific heat gas constant and density

```
1 / \text{Exa} \ 2.14
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 // Given Data :
8 \text{ m} = 50/1000; //\text{Kg}
9 t1=14; // degree_centigrade
10 t2=74; // degree_centigrade
11 t_heating=300; // sec
12 Pheater=10.04; // Watts
13 Gamma=1.4;
14
15
16 Q=Pheater*t_heating;//J
17 / Q = m \cdot Cp \cdot (t2 - t1)
18 Cp=Q/m/(t2-t1); //J/KgK
19 disp(Cp, "Specific heat of air in J/KgK: ");
20 //Cp*(1-1/Gamma) = R
21 R=Cp*(1-1/Gamma); //Gas Constant in Nm/KgK
22 disp(R, "Gas constant of air in Nm/KgK: ");
23 / p = rho *R*T
24 p = 0.1; //Mpa
25 T=0+273; //kelvin
26 rho=p*10^6/R/T; //Kg/m^3
27 disp(rho, "Density of air in Kg/m<sup>3</sup>: ");
```

Scilab code Exa 2.15 Heat added Work done temperature

```
1 / Exa 2.15
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data:
8 \text{ m=1}; //\text{Kg}
9 V1=0.3; //\text{m}^3
10 p=3.2*100; //Kpa
11 p1=3.2*100; //Kpa
12 p2=3.2*100; //Kpa
13 V2=2*V1; //m^3
14 Cp=1.003; //KJ/KgK
15 R=0.2927; //KJ/kgK
16 / p*V = m*R*T
17 T1=p1*V1/m/R; //kelvin
18 T2=p2*V2/m/R; // kelvin
19 Q=m*Cp*(T2-T1); //KJ
20 disp(Q,"Heat Added in KJ: ");
21 W=p*(V2-V1); //KJ
22 disp(W, "Work done in KJ: ");
23 disp(round(T1), "Initial temperature of air in kelvin
       : ");
24 disp(round(T2), "Final temperature of air in kelvin :
       ");
```

Scilab code Exa 2.16 Heat Work Energy Enthalpy

```
1 //Exa 2.16
2 clc;
3 clear;
4 close;
5 format('v',7);
```

```
7 // Given Data :
8 p=105; //Kpa
9 p1=105; //Kpa
10 p2=105; //Kpa
11 V1=0.25; //\text{m}^3
12 V2=0.45; //m^3
13 T1=10+273; // \text{kelvin}
14 T2 = 240 + 273; // kelvin
15
16 Q=integrate('0.4+18/(T+40)', 'T', T1, T2); //KJ
17 disp(Q,"Heat Transfer in KJ: ");
18 W=p*(V2-V1); //KJ
19 disp(W,"Work Transfer in KJ: ");
20 deltaU=Q-W; //KJ
21 disp(deltaU, "Change in internal energy in KJ L;");
22 deltaH=Q;/KJ
23 disp(deltaH, "Change in enthalpy in KJ:");
```

Scilab code Exa 2.17 Find the distance

```
1 //Exa 2.17
2 clc;
3 clear;
4 close;
5 format('v',6);
6
7 //Given Data:
8 N=250;//rpm
9 tau=10;//min
10 Q1=-5;//KJ
11 deltaU=2;//KJ
12 p=1.2;//bar
13 p=p*100;//KJ
14 E=24;//volt
15 I=0.45;//Ampere
```

```
16  A=0.1; //m^2
17  T=0.5; //Nm
18  Q2=E*I*tau*60/1000; //KJ
19  Q=Q1+Q2; //KJ
20  // Consider piston moves through a distance y
21  //Q-(W1+W2)=deltaU where W1=p*A*y
22  W2=-T*2*%pi*N*tau; //Nm
23  W2=W2/1000; //KJ
24  y=(Q-W2-deltaU)/A/p; // meter
25  disp(y*100," Distance in cm : ");
26  // Ans is wrong in the book.
```

Scilab code Exa 2.18 Heat transfer and workdone

```
1 / Exa 2.18
2 clc;
3 clear;
4 close;
5 format('v',8);
6
7 // Given Data :
8 \text{ m=0.8; } / \text{Kg}
9 p1=1; // bar
10 p2=5; //bar
11 T1 = 25 + 273; // kelvin
12 R=287; //KJ/kgK
13
14 W=m*R*T1*log(p1/p2);//J
15 disp(W/1000,"Work done in KJ: ");
16 U2subU1=0;//change in internal energy
17 Q=W+U2subU1;//J
18 disp(Q/1000," Heat Transfer in KJ: ");
```

Scilab code Exa 2.19 Net workdone

```
1 / \text{Exa} \ 2.19
2 clc;
3 clear;
4 close;
5 format('v',8);
 7 // Given Data :
8 \text{ m=1}; //\text{Kg}
9 p1=100; //\text{Kpa}
10 T1=300; // \text{kelvin}
11 V_{ratio} = 1/2; //V2/V1
12 T=1; //Nm
13 tau=1; //hr
14 tau=tau*60; //min
15 N = 400; //rpm
16 R=0.287; //KJ/kgK
17
18 W1=m*R*T1*log(V_ratio); //KJ
19 W2=-T*2*\%pi*N*tau/1000; //KJ
20 W = W1 + W2; //KJ
21 disp(W,"Net work transfer in KJ: ");
```

Scilab code Exa 2.20 Find specific heat

```
1 //Exa 2.20
2 clc;
3 clear;
4 close;
5 format('v',8);
6
7 //Given Data:
8 m=2;//Kg
9 T1=125+273;//kelvin
```

Scilab code Exa 2.21 Mass Index Workdone Heat

```
1 //Exa 2.21
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data :
8 V1=0.5; //\text{m}^3
9 p1=1.5; //bar
10 T1=100+273; // \text{kelvin}
11 V2=0.125; //m^3
12 p2=9; //bar
13 R=287; //KJ/KgK
14
15 m=p1*10^5*V1/R/T1; //Kg
16 disp(m, "Mass of air in Kg: ");
17 / p1*V1^n=p2*V2^n
18 n = \log(p2/p1)/\log(V1/V2); //
```

```
19 disp(n, "Value of index : ");
20 W=(p1*V1-p2*V2)*10^5/(n-1);//Nm
21 disp(W/1000, "Work done in KJ : ");
```

Scilab code Exa 2.22 Workdone and final pressure

```
1 / Exa 2.22
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data :
8 p1=1; //bar
9 V1=0.14; //\text{m}^3
10 V2=0.07; //m^3
11 R=287; //KJ/KgK
12
13 //p*V=R*k1*V^{(-2/5)} or p*V^{(7/5)}=K
14 K=p1*10^5*V1^(7/5); /Nm/Kg
16 disp(W,"Work done in Nm : ");
17 p2=K*V2^(-7/5); //N/m^2
18 p2=p2/10<sup>5</sup>; //bar
19 disp(p2, "Final pressure in bar : ");
20 //Ans in the book is wrong.
```

Scilab code Exa 2.23 Work transfer and change in energy

```
1 //Exa 2.23
2 clc;
3 clear;
4 close;
```

```
5 format('v',7);
7 // Given Data :
8 \text{ m} = 2; //\text{Kg}
9 Q=0; //KJ(because of adiabatic process)
10 p1=1; //Mpa
11 p1=p1*10^6/1000; //Kpa
12 t1=200; // degree centigrade
13 T1=t1+273; // kelvin
14 p2=100; //Kpa
15 n=1.2;
16 R=0.196; //KJ/KgK
17
18 T2=T1*(p2/p1)^((n-1)/n);//kelvin
19 t2=T2-273; //degree centigrade
20 u1=196+0.718*t1; //KJ
21 u2=196+0.718*t2; //KJ
22 deltau=u2-u1; //KJ
23 deltaU=m*deltau; //KJ
24 disp(deltaU, "Change in internal energy in KJ: ");
25 \text{ W=Q-deltaU}; //\text{KJ}
26 disp(W, "Work transfer in KJ: ");
27 W1=m*R*(T1-T2)/(n-1);//KJ
28 disp(W1, "Displacement work in KJ: ");
```

Scilab code Exa 2.24 Work done in expansion

```
1 //Exa 2.24
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data:
8 m=1.5;//Kg
```

```
9 V1=0.06; //m^3
10 p1=5.6*10; //Kpa
11 t2=240; // degree centigrade
12 T2=t2+273; // kelvin
13 a=0.946;
14 b=0.662;
15 K=10^-4;
16
17 //p*V=m*R*T=m*(a-b)*T
18 T1=p1*10^5*V1/m/(a-b)/1000; //Kelvin
19 U2subU1=integrate('m*(b+K*T)', 'T', T1, T2); //KJ
20 Q=0; // isentropic process
21 W=Q-U2subU1; //KJ
22 disp(W, "Work done in KJ: ");
23 // Answer in the book is wrong.
```

Scilab code Exa 2.25 heat transfer and maximum internal energy

```
1 / \text{Exa} \ 2.25
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data:
8 \text{ m=1.5}; //\text{Kg}
9 p1 = 1000; //Kpa
10 p2=200; //Kpa
11 V1=0.2; //\text{m}^3
12 V2=1.2; //m^3
13 / p = a + b * v
14 //solving for a and b by matrix
15 A = [1 V1; 1 V2];
16 B=[p1;p2];
17 X = A^- - 1 * B;
```

```
18 \ a=X(1);
19 b=X(2);
20 W=integrate('a+b*V', 'V', V1, V2); //KJ/Kg
21 disp(W,"Work transfer in KJ/Kg: ");
22 u2SUBu1=(1.5*p2*V2+35)-(1.5*p1*V1+35); //KJ/Kg
23 disp(u2SUBu1,"Change in internal energy in KJ/Kg : "
     );
24 q=W+u2SUBu1; //KJ/Kg
25 disp(q,"Heat transfer in KJ/Kg: ");
26 / u = 1.5 * (a+b*V)*V+35;
27 //1.5*a+2*V*1.5*b=0;//for max value putting du/dV=0
28 V=-1.5*a/2/1.5/b; //m^3/Kg
29 p=a+b*V; //KPa
30 u_max=1.5*p*V+35; //KJ/Kg
31 disp(u_max, "Maximum internal energy in KJ/Kg:");
32 //Answer in the book is wrong because a is 1160
      instead of 1260.
```

Scilab code Exa 2.26 Net work done

```
1 //Exa 2.26
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data :
8 V1=5; //m^3
9 p1=2; //bar
10 t1=27; //degree centigrade
11 T1=t1+273; //kelvin
12 p2=6; //bar
13 p3=p1; //bar
14 R=287; //KJ/KgK
15 n=1.3;
```

Scilab code Exa 2.27 Amount of work

```
1 / Exa 2.27
2 clc;
3 clear;
4 close;
5 format('v',8);
6
7 // Given Data :
8 Q1_2=85; //KJ
9 Q2_3=-90; //KJ
10 W2_3 = -20; //KJ
11
12 Q3_1=0; // Adiabatic process
13 W1_2=0; //constant volume process
14 //integrate (dQ)=integrate (dW)
15 W3_1=Q1_2+Q2_3+Q3_1-W1_2-W2_3;//KJ
16 disp(W3_1, "Direction is 3-1 and work in KJ: ");
```

Scilab code Exa 2.28 Work done and index

```
1 / Exa 2.28
2 clc;
3 clear;
4 close;
5 format('v',5);
7 // Given Data :
8 V1 = 200/1000; //m^3
9 p1=4; //bar
10 T1=400; //K
11 p2=1;//bar
12 H3subH2=72; //KJ
13 Cp=1; //KJ/KgK
14 Cv = 0.714; //KJ/KgK
15
16 Gamma=Cp/Cv;
17 R = Cp - Cv; //KJ/KgK
18 / p*V = m*R*T
19 m=p1*10^5*V1/R/1000/T1; //Kg
20 T2=T1*(p2/p1)^((Gamma-1)/Gamma); //K
21 V2=p1*V1/T1*T2/p2; //m^3
22 W1_2=m*R*(T1-T2)/(Gamma-1);//KJ
23 disp(W1_2, "Work done W1-2 in KJ : ");
24 //H3subH2 = m*Cp(T3-T2);
25 T3=(H3subH2+m*Cp*T2)/m/Cp; //K
26 \text{ W2}_3 = \text{m} * \text{R} * (\text{T3} - \text{T2}); //\text{KJ}
27 W = W1_2 + W2_3; //KJ
28 disp(W, "Workdone in KJ: ");
29 / \text{W} = \text{m*R*} (\text{T1-T3}) / (\text{n-1})
30 n=m*R*(T1-T3)/W+1;//
31 disp(n, "Index of expansion: ");
```

Scilab code Exa 2.29.a Q DeltaU and W

```
1 //Exa 2.29A
2 clc;
3 clear;
4 close;
5 format('v',9);
7 // Given Data :
8 \text{ m=5}; //\text{Kg}
9 / u = 3.62 * p * v
10
11 p1=550; //KPa
12 p2=125; //KPa
13 V1=0.25; //\text{m}^3
14 / p*V^(1/2) = C
15 n=1.2;
16 V2=(p1/p2)^(1/n)*V1;//m^3/Kg
17 W=(p1*V1-p2*V2)*10^5/(n-1)/1000; //KJ
18 delta_u=(3.62*p2*V2)-(3.62*p1*V1); //KJ/Kg
19 deltaU=m*delta_u;//KJ
20 disp(deltaU, "Change in internal energy in KJ: ");
21 Q=W+deltaU;//KJ
22 Q = Q / 1000; //MJ
23 disp(Q,"Heat transfer in MJ: ");
```

Scilab code Exa 2.29 Max Temperature Work done heat transfer

```
1 //Exa 2.29
2 clc;
3 clear;
4 close;
```

```
5 format('v',9);
7 //Given Data :
8 p1=10; //bar
9 p2=2; //bar
10 V1=0.1; //\text{m}^3
11 V2=0.9; //m^3
12 R=300; /Nm/Kg-K
13 m=1; //\text{Kg}
14 / p = a * v + b
15 //solving for a and b by matrix
16 \quad A = [V1 \quad 1; V2 \quad 1];
17 B=[p1;p2];
18 X = A^- - 1 * B;
19 a=X(1);
20 b=X(2);
21 / p = a * v + b = a * R * T / p + b
22 //2*p-b=0;//on differentiating
23 p=b/2; //bar
24 / p = a * v + b
25 v = (p-b)/a; //m^3/Kg
26 \text{ T=p*10^5*v/R;} / \text{K}
27 disp(T, "Maximum temperature in K : ");
28 W=integrate('(a*v+b)*10^5','v',V1,V2);/Nm/Kg
29 W=W/10^3; //KJ/KgK
30 disp(W, "Work done in KJ: ");
31 T1=p1*10^5*V1/R;//K
32 T2=p2*10^5*V2/R; //K
33 \text{ Gamma} = 1.4;
34 Cv=R/(Gamma-1); /Nm/KgK
35 Cv = Cv / 1000; //KJ/KgK
36 \text{ deltaU=m*Cv*(T2-T1);}//\text{KJ/Kg}
37 Q=W+deltaU; //KJ
38 disp(-Q,"Net Heat transfer in KJ; ");
```

Scilab code Exa 2.30 Density and mass flow rate

```
1 //Exa 2.30
2 clc;
3 clear;
4 close;
5 format('v',6);
6
7 //Given Data :
8 Vdot=0.032; //m^3/s
9 d=1.5; //m
10 L=4.2; //m
11 m=3500; //Kg
12 V=%pi/4*d^2*L; //m^3
13 rho=m/V; //Kg/m^3
14 disp(rho, "Density of liquid in Kg/m^3 : ");
15 m_dot=rho*Vdot; //Kg/s
16 disp(m_dot, "Mass flow rate in Kg/s : ");
```

Scilab code Exa 2.31 Workdone heat transfer and internal energy

```
1 //Exa 2.31
2 clc;
3 clear;
4 close;
5 format('v',8);
6
7 //Given Data:
8 p1=1;//bar
9 T1=20+273;//K
10 p2=6;//bar
11 m=1;//Kg
12 R=287;//Nm/Kg
13 Gamma=1.4;
14 Cp=1.005;//KJ/KgK
```

```
15 Cv = 0.7175; //KJ/KgK
16 / T2=T1 : Isothermal compression
17 T2subT1=0;
18 deltaU=m*Cv*(T2subT1); //KJ
19 disp("Isothermal:");
20 disp(deltaU, "Change in internal energy in KJ:");
21 Wsf=m*R/1000*T1*\log(p1/p2); //KJ/Kg
22 disp(Wsf,"Work done in KJ/Kg : ");
23 p2V2subp1V1=0;//isothermal process
24 Q=Wsf+deltaU+p2V2subp1V1; //KJ/Kg
25 disp(Q,"Heat transfer in KJ/Kg : ");
26 disp("Isentropic:");
27 T2=T1*(p2/p1)^((Gamma-1)/Gamma); //K
28 U2subU1=m*Cv*(T2-T1); //KJ/Kg
29 disp(U2subU1, "Change in internal energy in KJ/Kg:"
      );
30 \text{H2subH1} = \text{m} * \text{Cp} * (\text{T2} - \text{T1}); //\text{KJ/Kg}
31 disp(H2subH1, "Change in heat in KJ/Kg: ");
32 Q=0; // adiabatic process
33 disp(Q,"Heat transfer in KJ/Kg: ");
34 Wsf=Q-H2subH1; //KJ/Kg
35 disp(Wsf,"Work done in KJ/Kg: ");
36 disp("Polytropic : ");
37 \text{ n=1.25}; // \text{index}
38 T2=T1*(p2/p1)^((n-1)/n);/K
39 deltaU=m*Cv*(T2-T1); //KJ/Kg
40 disp(deltaU, "Change in internal energy in KJ/Kg:")
41 H2subH1=m*Cp*(T2-T1); //KJ/Kg
42 Wsf=(n/(n-1))*m*R/1000*(T1-T2); //KJ/Kg
43 disp(Wsf,"Work done in KJ/Kg: ");
44 Q=Wsf+H2subH1; //KJ/Kg
45 disp(Q,"Heat transfer in KJ/Kg: ");
46 //Answer of chane in internal energy for last part
      is wrong in the book.
```

Scilab code Exa 2.32 Calculate power required

```
1  //Exa 2.32
2  clc;
3  clear;
4  close;
5  format('v',6);
6
7  //Given Data :
8  p1=5; //bar
9  p2=50; //bar
10  V=0.001; //m^3/Kg
11  m_dot=10; //Kg/s
12  wsf=integrate('-V',"p",p1*10^5,p2*10^5); //J/kg
13  wsf=wsf/1000; //KJ/Kg
14  Wsf=abs(wsf)*m_dot; //KW(leaving -ve sign as it is to indiacte heat is supplied)
15  disp(Wsf,"Power required in KW:");
```

Scilab code Exa 2.33 Work done Internal energy heat transfer

```
1 //Exa 2.33
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data:
8 p1=10^5;//Pa
9 p2=5*10^5;//Pa
10 T1=25+273;//K
11 V1=1.8;//m^3/Kg
```

```
12 V2=p1/p2*V1; //m^3/Kg
13 W=-p1*V1*log(p2/p1); //J/kg
14 W=W/1000; //KJ/Kg
15 disp(W,"Workdone in KJ: ");
16 deltaU=0; //As in a isothermal process T2-T1 =0
17 disp(deltaU,"Change in internal energy in KJ: ");
18 Q=-W; //KJ/Kg(As in a isothermal process T2-T1 =0)
19 disp(Q,"Heat Transfered in KJ/Kg: ");
```

Scilab code Exa 2.34 Temperature of air

```
1 / \text{Exa} \ 2.34
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data:
8 p=6; //bar
9 \text{ m=18; } / \text{Kg}
10 v = 260; //m/s
11 rho=4; //\text{Kg/m}^3
12 Q=42; //KJ/Kg
13 W = 261; //KW
14 Cv = 0.715; //KJ/KgK
15 pA=1; //bar
16 vA = 60; //m/s
17 mdotA=14; //Kg/s
18 CvA = 0.835; //m^3/Kg
19 TA=115+273; //K
20 pB=5.5; // bar
21 vB=15; //m/s
22 mdotB=4; //Kg/s
23 CvB = 0.46; //m^3/Kg
24 TB=600+273; //K
```

Scilab code Exa 2.35 Velocity Mass flow rate Diameter

```
1 / \text{Exa} \ 2.35
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data :
8 h1=3000; //KJ/Kg
9 C1=60; //m/s
10 h2=2762; //KJ/Kg
11 Q=0; //KJ
12 m=1; //\text{Kg}
13 W=0; //in case of nozzle
14 //Q-W=m*[(h2-h1)+(C2^2-C1^2)/2/1000+g*(Z2-Z1)/1000]
15 Z2subZ1=0;//as Z1=Z2 for horizontal nozzle
16 C2 = sqrt(-(h2-h1)*2*1000+C1^2); //m/s
17 disp(C2, "Velocity at exit of nozzle in m/s:");
18 A1=0.1; //\text{m}^3
19 v1=0.187; //\text{m}^3/\text{Kg}
20 mdot=A1*C1/v1; //Kg/s
21 disp(mdot, "Mass flow rate through the nozzle in Kg/s
       : ");
22 v2=0.498; //\text{m}^3/\text{Kg}
```

```
23 //mdot=A2*C2/v2=\%pi/4*d^2*C2/v2
24 d2=sqrt(mdot/%pi*4*v2/C2);//m
25 disp(d2,"Diameter of nozzle at exit in meter:");
```

Scilab code Exa 2.36 Heat transfered per Kg of air

```
1 / \text{Exa} \ 2.36
2 clc;
3 clear;
4 close;
5 format('v',6);
7 // Given Data :
8 \text{ p1=4;} // \text{bar}
9 p2=1; //bar
10 T1=40+273; //K
11 T2=2.5+273; //K
12 C1=40; //m/s
13 C2=200; //m/s
14 W=52; //KJKg
15 m=1; //\text{Kg}
16 Cp=1.005; //KJ/KgK
17 Z2subZ1=0; //as Z1=Z2
18 Q=W+m*[Cp*(T2-T1)+(C2^2-C1^2)/2/1000];/KJ/Kg
19 disp(Q,"Heat transferred per Kg of air in KJ/Kg: ");
```

Scilab code Exa 2.37 Enthalpy of second exit stream

```
1 //Exa 2.37
2 clc;
3 clear;
4 close;
5 format('v',8);
```

```
7 // Given Data :
8 \text{ m1dot} = 0.01; //\text{Kg/s}
9 h1=2950; //KJ/Kg
10 C1=20; //m/s
11 m2dot=0.1; //\text{Kg/s}
12 h2 = 2565; //KJ/Kg
13 C2=120; //m/s
14 m3dot=0.001; //\text{Kg/s}
15 h3=421; //KJ/Kg
16 C3=0; //m/s
17 C4=0; //m/s
18 Wsf_dot=25; //KW
19 Qdot=0; //KJ
20 / m1dot + m2dot = m3dot + m4dot
21 m4dot=m1dot+m2dot-m3dot; //Kg/s
22 / m1dot*(h1+C1^2/2/1000)+m2dot*(h2+C2^2/2/1000)=
      m3dot*(h3+C3^2/2/1000)+m4dot*(h4+C4^2/2/1000)+
      Wsf\_dot
23 h4 = (m1dot*(h1+C1^2/2/1000)+m2dot*(h2+C2^2/2/1000)-
      m3dot*(h3+C3^2/2/1000)-Wsf_dot)/m4dot-C4
      ^2/2/1000; //KJ/Kg
24 disp(h4, "Enthalpy of 2nd exit stream in KJ/Kg:");
```

Scilab code Exa 2.38 Change in enthalpy and rate of workdone

```
1 //Exa 2.38
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data:
8 mdot=0.5;//kg/s
9 p1=1.4;//bar
```

```
10 rho1=2.5; // kg/m^3
11 u1=920; //kJ/kg
12 C1 = 200; //m/s
13 p2=5.6; //bar
14 rho2=5; // kg/m^3
15 u2=720; //kJ/kg
16 C2=180; //m/s
17 Qdot = -60; / \text{kW}
18 Z21=60; //m
19 g=9.81; // gravity constant
20 h21=u2-u1+(p2*10^5/(rho2*1000)-p1*10^5/(rho1*1000));
      //kJ/kg(change in enthalpy)
21 H21=mdot*h21; //kW(total change in enthalpy)
22 disp(H21, "Change in enthalpy, H2-H1 in kW: ");
23 Wsf = Qdot - mdot * [h21 + (C2^2 - C1^2)/2/1000 + g*(Z21)/1000];
24 disp(Wsf, "Rate of workdone, Wsf in kW:");
```

Scilab code Exa 2.39 Power required to drive the compressor

```
1 //Exa 2.39
2 clc;
3 clear;
4 close;
5 format('v',8);
6
7 //Given Data:
8 mdot=0.4;//Kg/s
9 C1=6;//m/s
10 p1=1;//bar
11 p1=p1*100;//KPa
12 V1=0.16;//m^3/Kg
13 u2subu1=88;//KJ/Kg
14 Qdot=-59;//W
15 Qdot=Qdot/1000;//KJ/s
```

```
16 W=0.059; //KJ/
17 Gamma=1.4;
18 Z2subZ1=0;
19 h2subh1=Gamma*u2subu1; //KJ
20 Wdot=Qdot-mdot*(h2subh1); //As C1=C2, C2^2-C1^2=0 & Z2-Zi=0
21 disp(Wdot, "Power in KW:");
```

Scilab code Exa 2.40 Output of turbine

```
1 / \text{Exa} \ 2.40
2 clc;
3 clear;
4 close;
5 format('v',5);
7 // Given Data :
8 mdot=1; //Kg/s
9 p1=40; //bar
10 T1=1047+273; //K
11 C1 = 200; //m/s
12 C2=100; //m/s
13 p2=1; //bar
14 Qdot=0; //W
15 Cp=1.05; //KJ/KgK
16 R=300; /Nm/KgK
17 Gamma=1.4;
18 / p*v = m*R*T
19 v1dot=mdot*R*T1/p1/10^5; //m^3/s
20 v2dot=(p1/p2)^(1/Gamma)*v1dot; //m^3/s
21 T2=p2*v2dot/p1/v1dot*T1; //K
22 \text{ Wsf\_dot=Qdot-mdot*[Cp*(T2-T1)+(C2^2-C1^2)/2/1000];}//
      KJ/s or KW
23 disp(Wsf_dot,"Output of turbine in KJ/s or KW: ");
```

Scilab code Exa 2.41 Flow of work Mass flow rate

```
1 //Exa 2.41
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data :
8 A1C1=0.7; //\text{m}^3/\text{s}
9 p1=85; //KPa
10 p2=650; //KPa
11 v1=0.35; //\text{m}^3/\text{Kg}
12 v2=0.1; //\text{m}^3/\text{Kg}
13 d1=10/100; //m
14 d2=6.25/100; /m
15
16 mdot = A1C1/v1; //Kg/s
17 p2v2SUBp1v1=mdot*(p2*v2-p1*v1); //KJ/s
18 disp(p2v2SUBp1v1, "Change in flow work in KJ/s:");
19 disp(mdot, "Mass flow rate in Kg/s: ");
20 C1=A1C1/(\%pi/4*d1^2);//m/s
21 A2C2=mdot*v2; //m^3/s
22 C2=A2C2/(\%pi/4*d2^2);//m/s
23 C2subC1=C2-C1; //m/s
24 disp(C2subC1,"Velocity change in m/s : ");
```

Scilab code Exa 2.42 Power required and ratio of diameter

```
1 //Exa 2.42
2 clc;
3 clear;
```

```
4 close;
5 format('v',7);
7 // Given Data :
8 \text{ m} = 12/60; //\text{Kg/s}
9 C1=12; //m/s
10 p1=1*100; //KPa
11 v1=0.5; //\text{m}^3/\text{Kg}
12 C2=90; //m/s
13 p2=8*100; //KPa
14 v2=0.14; //\text{m}^3/\text{Kg}
15 deltah=150; //KJ/Kg
16 Qdot = -700/60; //KJ/s
17 // Assuming deltaPE=0=g*(Z2-Z1)
18 // Qdot-Wdot=mdot*(deltah+(C2^2-C1^2)/2/1000+g*(Z2-Z1)
      )/1000)
19 Wdot=Qdot-m*(deltah+(C2^2-C1^2)/2/1000);/KW
20 disp(abs(Wdot), "Power required to drive the
      compressor in KW: ");
21 / A1C1/v1 = A2C2/v2
22 d1BYd2=sqrt(C2/v2*v1/C1);
23 disp(d1BYd2," Ratio of inlet to outlet pipe diameter
      : ");
```

Scilab code Exa 2.43 Mass flow rate and specific enthalpy

```
1 //Exa 2.43
2 clc;
3 clear;
4 close;
5 format('v',8);
6
7 //Given Data:
8 h1=160;//KJ/Kg
9 h2=2380;//KJ/Kg
```

Scilab code Exa 2.44 Power required to drive the pump

```
1 / \text{Exa} \ 2.44
2 clc;
3 clear;
4 close;
5 format('v',8);
7 // Given Data :
8 v=0.001; //m^3/Kg
9 DisRate=10/60; //\text{m}^3/\text{s}
10 p1=100; //KN/m^2
11 p2=300; //KN/m^2
12 Z1=3; //m
13 Z2=9; /m
14 d1=0.25; //m
15 d2=0.17; //m
16 Qdot=0; //KJ/s (Adiabatic process)
17 //A1*C1=A2*C2=DisRate
18 C1=DisRate/(\%pi/4*d1^2);//m/s
19 C2=DisRate/(\%pi/4*d2^2);//m/s
20 mdot=DisRate/v; //\mathrm{Kg/s}
```

Scilab code Exa 2.45 Exit temperature of air

```
1 / \text{Exa} \ 2.45
2 clc;
3 clear:
4 close;
5 format('v',8);
7 // Given Data :
8 mdot=5; //Kg/s
9 T1 = 27 + 273; //K
10 / Z1 = Z2
11 deltaPE=0;
12 Wdot = -100; //KW
13 C1=60; //m/s
14 C2=150; //m/s
15 q=-2; //KJ/Kg
16 Cp=1.05; //KJ/Kg
17 Qdot=mdot*q; //KJ/s
18 delta_h=Cp; //KJ/Kg
19 //Qdot-Wdot=mdot*(delta_h*(T2-T1)+(C2^2-C1^2)
      /2/1000+g*(Z2-Z1))/1000)
20 T2=((Qdot-Wdot)/mdot-(C2^2-C1^2)/2/1000)/delta_h+T1;
21 disp(T2, "Exit temperature in K: ");
```

Scilab code Exa 2.46 Rate of flow of water

```
1 / \text{Exa} \ 2.46
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data :
8 t1=90; //degreeC
9 t2=30; //degreeC
10 modot=3; //\text{Kg/s}
11 / h = 1.7 * t + 11 * 10^{-4} * t^{2}
12 h1=1.7*t1+11*10^-4*t1^2; //KJ/Kg
13 h2=1.7*t2+11*10^-4*t2^2; //KJ/Kg
14 tw1=27; //degreeC
15 tw2=67; //degreeC
16 Cp=4.2; //KJ/KgK
17 / h = Cp * tw ; / / KJ/Kg
18 hw1=Cp*tw1; //KJ/Kg
19 hw2=Cp*tw2; //KJ/Kg
20 // \text{modot} * (h1-h2) = \text{mwdot} * (hw2-hw1)
21 mwdot=modot*(h1-h2)/(hw2-hw1); //Kg/s
22 disp(mwdot, "Rate of flow of water in Kg/s:");
```

Scilab code Exa 2.47 Amount of discharged air

```
1 //Exa 2.47
2 clc;
3 clear;
4 close;
```

```
format('v',6);

//Given Data :
V1=6;//m^3
p1=20*100;//Kpa
T1=37+273;//K
p2=10*100;//Kpa
V2=V1;//m^3
R=0.287;//KJ/KgK
m1=p1*V1/R/T1;//Kg
//T2=T1*(p2/p1)^((Gamma-1)/Gamma)
Gamma=1.4;
T2=T1*(p2/p1)^((Gamma-1)/Gamma);//K
m2=p2*V2/R/T2;//Kg
m=m1-m2;//mass of air discharged in Kg
disp(m,"Mass of air discharged in Kg :");
```

Scilab code Exa 2.48 Work done by the air

```
1 //Exa 2.48
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data :
8 V1=1.5; //m^3
9 V2=0; //m^3
10 p=1.02; //bar
11 W=p*10^5*integrate('1','V',V1,V2); //J
12 disp(W/1000,"Work done by the air in KJ : ");
```

Chapter 3

Second Law of Thermodynamics

Scilab code Exa 3.1 Determine COP

```
1 //Exa 3.1
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data:
8 Q2=1800;//KJ/hr
9 Q2=Q2/3600;//KJ/sec or KW
10 W=0.35;//KW
11 COP=Q2/W;
12 disp(COP, "COP is:");
```

Scilab code Exa 3.2 COP Temperature and Heat Rejected

```
1 //Exa 3.2
```

```
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data :
8 Q2=1; //KJ/sec or KW
9 W=0.4; //KW
10 T2=-30+273; //K
11 COP=Q2/W;
12 disp(COP, "COP of refrigerator is : ");
13 T1=T2*(1+COP)/COP; //K
14 disp(T1, "Temperature at which heat is rejected in K : ");
15 Q1=Q2*(1+COP)/COP; //KW
16 disp(Q1, "Heat rejected per KW of cooling(KW) : ");
```

Scilab code Exa 3.3 Power Input COP

```
1 //Exa 3.3
2 clc;
3 clear;
4 close;
5 format('v',6);
6
7 //Given Data :
8 Q2=100;//KJ/sec or KW
9 T2=-20+273;//K
10 T1=35+273;//K
11 COP=T2/(T1-T2);
12 disp(COP, "COP is : ");
13 W=Q2/COP;//KW
14 disp(W, "Power input in KJ/s or KW : ");
15 COPheatpump=T1/(T1-T2);//
16 disp(COPheatpump, "COP as heat pump : ");
```

```
17 Eta_engine=(1-T2/T1)*100;
18 disp(Eta_engine, "Efficiency as an engine in % : ");
```

Scilab code Exa 3.4 COP and Heat transfer rate

```
//Exa 3.4
clc;
clear;
close;
format('v',6);

//Given Data :
Q2dot=12000;//KJ/hr
Wdot=0.75;//KW
Wdot=Wdot*3600;//KJ/hr
COP=Q2dot/Wdot;
disp(COP, "Coefficient of Performance is : ");
Q1dot=Q2dot+Wdot;//KJ/hr
disp(Q1dot, "Heat transfer rate in condenser in KJ/hr : ");
```

Scilab code Exa 3.5 Source and sink temperature

```
1 //Exa 3.5
2 clc;
3 clear;
4 close;
5 format('v',6);
6
7 //Given Data :
8 Eta1=25/100; // efficiency
9 deltaT=20; // degree centigrade
10 //T2dash=T2-20; //K
```

```
11  //Tldash=T1;//K
12  deltaEta1=30/100;
13  Eta_dash=30/100;//efficiency
14  //Eta1/Eta_dash=(1-T2dash/T1dash)/(1-T2/T1)
15  //T1-T2=100;
16  //0.75*T1-T2=0;
17  A=[1 -1;0.75 -1];
18  B=[100;0];
19  X=A^-1*B;
20  //Solution for T1 and T2 by matrix
21  T1=X(1);//K
22  T2=X(2);//K
23  disp(T1, "Source temperature in K:");
24  disp(T2, "Sink temperature in K:");
```

Scilab code Exa 3.6 Power required to heat pump

```
1  //Exa 3.6
2  clc;
3  clear;
4  close;
5  format('v',6);
6
7  //Given Data :
8  T1=23+273; //K
9  COP_HP=2.5;
10  HeatLost=60000; //KJ/hr
11  HeatGenerated=4000; //KJ/hr
12  Q1=HeatLost-HeatGenerated; //KJ/hr
13  W=Q1/COP_HP; //KJ/hr
14  W=W/3600; //KJ/s or KW
15  disp(W,"Power input in KW : ");
```

Scilab code Exa 3.7 Operation in which engine delivers more power

```
1 //Exa 3.7
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data :
8 T1 = 400 + 273; //K
9 T2=20+273; //K
10 T3=100+273; //K
11 T4=T2; //K
12 Q1=12000; //KW
13 Q3=25000; //KW
14 Eta1=1-T2/T1; // Efficiency
15 W1=Eta1*Q1; //KW
16 disp(W1, "Power of Engine 1, W1 in KW: ");
17 Eta2=1-T4/T3; // Efficiency
18 W2=Eta2*Q3;/KW
19 disp(W2, "Power of Engine 2, W2 in KW: ");
20 disp("W1>W2, The engine 1 delivers more power.");
```

Scilab code Exa 3.8 Temperature of cold space

```
1 //Exa 3.8
2 clc;
3 clear;
4 close;
5 format('v',6);
6
7 //Given Data :
8 Wdot=200;//W
9 t1=40;//degree centigrade
10 //Q2dot=20*(t1-t2);//W
```

```
11 //COP=Q2dot/W2dot=T2/(T1-T2)

12 //(t1-t2)/(W2dot/20)=(t1+273)/(t1-t2)

13 //20*t1^2+20*t2^2-20*2*t1*t2-t1*Wdot-273*Wdot

14 //(t2+273)/(t1-t2)=(t1-t2)/(Wdot/20)

15 //t2^2-(2*t1+(Wdot/20))*t2-273*(Wdot/20)+t1^2

16 P=[1 -(2*t1+(Wdot/20)) -273*(Wdot/20)+t1^2];

17 t2=roots(P);

18 t2=t2(2);//degree C

19 //Taken only -ve value as t2 cant be greater than t1

20 disp(t2, Temperature of cold space(degree C)");
```

Scilab code Exa 3.10 Time required to freeze water

```
1 / Exa 3.10
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data:
8 \text{ m=0.8; } / \text{Kg}
9 hi=335; //KJ/Kg-water
10 T1=24+273; //K
11 T2=0+273; //K
12 Wdot = 400; / /W
13 Wdot=Wdot/1000; //KW
14 Q2=m*hi; //KJ
15 ActualCOP=T2/(T1-T2)*30/100;
16 Q2dot=ActualCOP/Wdot; //KJ/s
17 T=Q2/Q2dot; //sec
18 disp(T, "Time required to freeze the water in sec:"
      );
```

Scilab code Exa 3.11 Possibilty of claim

```
1 / Exa 3.11
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data:
8 T1 = 727 + 273; //K
9 T2=27+273; //K
10 Wdot=76; /KW
11 FuelBurned=4; //\text{Kg/hr}
12 FuelBurned=4/3600; //\text{Kg/sec}
13 FuelHeatingValue=75000; //KJ/Kg
14 Q1dot=FuelBurned*FuelHeatingValue; //KJ/s or KW
15 Eta=Wdot/Q1dot*100; //\%
16 disp(Eta, "Actual Efficiency of Engine in %:");
17 Eta_c=(1-T2/T1)*100; //\%
18 disp(Eta_c, "Carnot Efficiency of Engine in %: ");
19 disp("Claim of inventor is wrong as actual
      efficiency is greater than carnot efficiency.");
```

Scilab code Exa 3.12 Power required to run the heat pump

```
1 //Exa 3.12
2 clc;
3 clear;
4 close;
5 format('v',5);
6
7 //Given Data:
8 T1=24+273;//K
9 T2=10+273;//K
10 Q1=1500;//kJ/min
```

```
11 Q1=Q1/60; //kW
12 COP_ideal=T1/(T1-T2);
13 ActualCOP=COP_ideal*30/100;
14 W=Q1/ActualCOP; //kW
15 disp(W,"Power required in kW:");
16 //Answer is wrong in the book as calculation for Q1 is wrong.
```

Scilab code Exa 3.13 Patent of engine

```
1 / Exa 3.13
2 clc;
3 clear;
4 close;
5 format('v',5);
6
7 // Given Data:
8 T1=450; //K
9 T2=280; //K
10 Q1=1200; //KJ
11 W = 0.15; //KWh
12 W = W * 3600; //KJ
13 Eta_a=W/Q1*100; //\%
14 disp(Eta_a, "Actual Efficiency of Engine in %:");
15 Eta_c=(1-T2/T1)*100; //\%
16 disp(Eta_c, "Carnot Efficiency of Engine in %:");
17 disp("We would not issue a patent as actual
      efficiency is greater than carnot efficiency.");
```

Scilab code Exa 3.14 Heat rejected Work done and Efficiency

```
1 //Exa 3.14
2 clc;
```

```
3 clear;
4 close;
5 format('v',7);
7 // Given Data :
8 T1=1000; //K
9 T3=100; //K
10 Q1=1680; //KJ
11 / Eta_a = Eta_b : 1 - T2/T1 = 1 - T3/T2
12 T2 = sqrt(T1 * T3); //K
13 Eta_a=1-T2/T1;
14 Eta_b=Eta_a;
15 W1=Eta_a*Q1; //KJ
16 Q2=Q1-W1; //KJ
17 Q3=(1-Eta_b)*Q2;//KJ
18 disp(Q3," Heat rejected by engine B in KJ: ");
19 disp(T2, "Temperature at which heat is rejected by
      engine A in K: ");
20 disp(W1, "Workdone by engine A in KJ; ");
21 W2=Eta_b*Q2; //KJ
22 disp(W2, "Workdone by engine B in KJ; ");
23 // If W1=W2
24 / Q/T = constant
25 T2 = (T1 + T3)/2; //K
26 Eta_a=(1-T2/T1)*100; //\%
27 Eta_b=(1-T3/T2)*100; //\%
28 disp("If Engine A & B deliver equal work.")
29 disp(Eta_a, "Efficiency of Engine A in \%: ");
30 disp(Eta_b, "Efficiency of Engine B in %: ");
```

Scilab code Exa 3.15 Heat absorbed by the refrigerant

```
1 //Exa 3.15
2 clc;
3 clear;
```

```
4 close;
5 format('v',8);
7 // Given Data :
8 T1=800+273; //K
9 T2=30+273; //K
10 T3=30+273; //K
11 T4 = -15 + 273; //K
12 Q1=1900; //KJ
13 W2 = 290; //KJ
14 / Eta = 1 - T2/T1 = W1/Q1
15 W1=(1-T2/T1)*Q1;//KJ
16 Q2=Q1-W1; //KJ
17 W3 = W1 - W2; //KJ
18 / COP = T4 / (T3 - T4) = Q4 / W3
19 Q4=T4/(T3-T4)*W3;//KJ
20 disp(Q4," Heat absorbed by refrigerant in KJ: ");
21 \quad Q3 = W3 + Q4; //KJ
22 TotalHeat=Q2+Q3; //KJ
23 disp(TotalHeat, "Total Heat transferred to reservoir
      at 30 degree centigrade in KJ: ");
```

Scilab code Exa 3.16 Rate of heat supply and heat rejection

```
1 //Exa 3.16
2 clc;
3 clear;
4 close;
5 format('v',6);
6
7 //Given Data:
8 T1=840+273;//K
9 T2=60+273;//K
10 T3=5+273;//K
11 W3=30;//KW
```

```
12 Q3=17; //KJ/s
13 //Q3/T3=Q4/T4
14 T4=T2; //K
15 Q4=Q3/T3*T4; //KJ/s
16 W2=Q4-Q3; //KJ/s
17 W1=W2+W3; //KJ/s
18 Q1subQ2=W1; //KJ/s
19 / Q1/T1 = Q2/T2
20 Q1ByQ2=T1/T2;
21 / Q1subQ2=Q1subQ2*Q2-Q2
22 Q2=Q1subQ2/(Q1ByQ2-1); //KW
23 Q1=Q1ByQ2*Q2; //KW
24 disp(Q1," Rate of heat supply from 800 degree C
      source in KW: ");
25 disp(Q2+Q4,"Rate of heat rejection to sink in KW:"
     );
```

Scilab code Exa 3.17 Inventors Claim

```
1 //Exa 3.17
2 clc;
3 clear;
4 close;
5 format('v',6);
6
7 //Given Data :
8 T1=27+273; //K
9 T2=-23+273; //K
10 W=1; //KW
11 Q2=20000; //KJ/hr
12 Q2=Q2/3600; //KJ/s
13 ActualCOP=Q2/W;
14 disp(ActualCOP, "Actual COP of machine : ");
15 IdealCOP=T2/(T1-T2);
16 disp(IdealCOP, "Ideal COP of machine : ");
```

```
17 disp("ActualCOP>IdealCOP, Inventor claim is wrong.");
```

Scilab code Exa 3.18 Max Power and Max Temperature

```
1 / \text{Exa} \ 3.18
2 clc;
3 clear;
4 close;
5 format('v',8);
7 // Given Data :
8 //Heat Pump in winter
9 Q1=2400; //KJ/hr/degree temperature difference
10 t1=20; //degreeC
11 t2=0; //degreeC
12 Q1=Q1*(t1-t2)/3600; //KJ/s
13 T1=t1+273; //K
14 T2=t2+273; //K
15 COP = T1/(T1-T2);
16 \text{ W=Q1/COP}; //\text{KW}
17 disp(W,"Power required to drive heat pump in KW: ")
18 // Refrigerating unit in summer
19 T4 = 20 + 273; //K
20 //Q4 = 2400*(T3-T4)/3600; //KJ/s
21 Q3subQ4=W; //KJ
22 //COP=Q4/(Q3subQ4)=T4/(T3-T4);
23 / T3^2 - 2*T3*T4+T4^2 - T4*3600/2400*(Q3subQ4)=0
P = [1 -2*T4 T4^2-T4*3600/2400*(Q3subQ4)]
25 T3=roots(P);
26 T3=T3(1); //K(Maximum outside temperature)
27 disp(T3, "Maximum outside temperature in K:");
28 disp(T3-273, "or in degree C:");
```

Scilab code Exa 3.20 Expansion Ratio

```
1 / Exa 3.20
2 clc;
3 clear;
4 close;
5 format('v',5);
7 // Given Data :
8 VcByVa=14; // Overall expansion ratio
9 T1=257+273; //K
10 T2=27+273; //K
11 Gamma=1.4;
12 Ta=T1; //K
13 Tb=T1; //K
14 Tc=T2; //K
15 Td=T2;/K
  VcByVb=(Tb/Tc)^(1/(Gamma-1));//Expansion ratio for
      Adiabatic Process:
17 disp(VcByVb, "Expansion ratio for adiabatic process :
      ");
18 VbByVa=VcByVa/VcByVb; // Expansion ratio for
      Isothermal Process:
19 disp(VbByVa, "Expansion ratio for Isothermal process
     : ");
20 Eta=(1-T2/T1)*100; //\%
21 disp(Eta," Thermal Efficiency of carnot cycle in \%:
     ");
```

Scilab code Exa 3.21 Minimum Theoretical area

```
1 / \text{Exa} \ 3.21
```

```
2 clc;
3 clear;
4 close;
5 format('v',7);
7 //Given Data :
8 W = 10; /KW
9 //For flat plate collector
10 T1=90+273; //K
11 T2=27+273; //K
12 Tmax=T1; //K
13 IE=1; //KW/m<sup>2</sup> incident energy
14 EtaCollection = 60/100;
15 / \text{Eta} = 1 - \text{T2/T1} = \text{W/Q1}
16 Q1=W/(1-T2/T1); //KJ/s
17 A1=Q1/IE/EtaCollection; //m^2
18 disp(A1, "Solar Collector Area required in m<sup>2</sup>: ");
19 //For parabolic collector
20 T3=250+273; //K
21 T4 = 27 + 273; //K
22 Tmax=T3;/K
23 IE=1; //KW/m<sup>2</sup> incident energy
24 EtaCollection=50/100;
25 / \text{Eta} = 1 - \text{T2/T1} = \text{W/Q1}
26 Q3=W/(1-T4/T3); //KJ/s
27 A2=Q3/IE/EtaCollection; //m^2
28 disp(A2, "Parabolic Solar Collector Area required in
      m^2 : ");
29 //Answer of 2nd part is wrong in the book.
```

Scilab code Exa 3.24 COP and Work input

```
1 //Exa 3.24
2 clc;
3 clear;
```

```
4 close;
5 format('v',7);
7 // Given Data :
8 T1=40+273; //K
9 T2=5+273; //K
10 T3=400+273; //K
11 T4=T1; //K
12 Q2=1500; //KJ/min
13 COP_R = T2/(T1-T2);
14 disp(COP_R, "COP of refrigerator is: ");
15 Q2dot=Q2/60; //KJ/s
16 Wdot=Q2dot/COP_R; //KW
17 disp(Wdot,"Work Input to refrigerator in KW: ");
18 Eta=(1-T4/T3); //\%
19 Q3dot=Wdot/Eta;//KW
20 OverallCOP=Q2dot/Q3dot;//
21 disp(OverallCOP, "Overall COP of refrigerator: ");
22 //Ans of overall COP is wrong in the book.
```

Scilab code Exa 3.25 Determine the COP

```
1 //Exa 3.25
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data :
8 T1=1500; //K
9 T2=450; //K
10 T3=150; //K
11 Q3=250; //KJ
12 COP_CR=T3/(T2-T3);
13 disp(COP_CR, "COP of cold refrigerator is : ");
```

```
14 COP_HR=T2/(T1-T2);
15 disp(COP_HR,"COP of hotter refrigerator is : ");
16 COP=T3/(T1-T3);
17 disp(COP,"COP of composite system is : ");
```

Scilab code Exa 3.26 Heat Supplied and efficiency

```
1 / \text{Exa} \ 3.26
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data :
8 T1=870; //K
9 T2=580; //K
10 T3=290; //K
11 Wdot=85; //KW
12 Q3=3000;//KJmin
13 Q3=Q3/60; //KJ/s
14 Q1plusQ2=Wdot+Q3; //KJ
15 / \operatorname{sigma}(Q/T) = 0
16 / Q1/T1+Q2/T2=Q3/T3
17 / Q1/T1 + (Q1plusQ2 - Q1)/T2 - Q3/T3 = 0
18 Q1 = (-Q3*T1*T2/T3+Q1plusQ2*T1)/(T1-T2); //KW
19 disp(Q1,"Heat Supplied by source1 in KW: ");
20 Q2=Q1plusQ2-Q1; //KW
21 disp(Q2," Heat Supplied by source2 in KW: ");
22 Eta=Wdot/(Q1+Q2)*100; /\%
23 disp(Eta," Efficiency of engine in \%:");
```

Chapter 4

Entropy

Scilab code Exa 4.1 Clausias Inequality

Scilab code Exa 4.2 Classify the cycle

```
1 / Exa 4.2
2 clc;
3 clear;
4 close;
5 format('v',8);
7 // Given Data :
8 T1=290+273; // Kelvin
9 T2=8.5+273; // Kelvin
10 Q1=300; //KJ
11 // Case 1 :
12 Q2=-215; //KJ
13 sigmaQbyT=Q1/T1+Q2/T2
14 \mbox{\tt disp}\mbox{(sigmaQbyT,"(i)}\mbox{ } Q1/T1\!\!+\!\!Q2/T2\mbox{ } =\mbox{ ");}
15 disp("It is less than zero. Cycle is irreversible")
16 // Case 2 :
17 Q2=-150; //KJ
18 sigmaQbyT=Q1/T1+Q2/T2
19 disp(sigmaQbyT,"(ii) Q1/T1+Q2/T2 = ");
20 disp("It is equal to zero. Cycle is reversible");
21 // Case 3 :
22 Q2 = -75; //KJ
23 \text{ sigmaQbyT=Q1/T1+Q2/T2}
24 \texttt{disp}(\texttt{sigmaQbyT,"}(\texttt{iii}) \ Q1/T1+Q2/T2 = ");
25 disp("It is greater than zero. Cycle is impossible."
      );
```

Scilab code Exa 4.3 Entropy Change

```
1 //Exa 4.3
2 clc;
3 clear;
4 close;
5 format('v',6);
```

```
7 //Given Data :
8 V1=10; //m^3
9 T1=175+273; //Kelvin
10 T2=36+273; //Kelvin
11 p1=5; //bar
12 p2=1; //bar
13 R=287; //KJ/KgK
14 Cp=1.005; //KJ/KgK
15 //p*V=m*R*T
16 m=p1*10^5*V1/R/T1; //Kg
17 deltaS=m*Cp*log(T2/T1)+m*R/1000*log(p1/p2); //KJ/K
18 disp(deltaS, "Entropy change in KJ/K : ");
```

Scilab code Exa 4.4 Efficiency and Lowest temperature

```
1 //Exa 4.4
2 clc;
3 clear;
4 close;
5 format('v',6);
6
7 //Given Data :
8 deltaS=5;//KJ/KgK
9 W=2000;//KJ/Kg
10 T1=327+273;//Kelvin
11 Q1=deltaS*T1;//KJ/Kg
12 Q2=Q1-W;//KJ/Kg
13 Eta=W/Q1*100;//%
14 disp(Eta," Efficiency in % : ");
15 T2=Q2/Q1*T1;//K
16 disp(T2,"Lowest temperature in Kelvin : ");
```

Scilab code Exa 4.5 Change in entropy

```
1 / Exa 4.5
2 clc;
3 clear;
4 close;
5 format('v',8);
7 // Given Data:
8 \text{ mc} = 0.5; //\text{Kg}
9 Tc=100+273; //K
10 Cpc=0.393; //KJ/KgK
11 Tw = 10 + 273; //K
12 Cpw = 4.2; //KJ/KgK
13 Q=integrate('mc*Cpc', 'T', Tc, Tw); //KJ
14 deltaSc=integrate('mc*Cpc/T', 'T', Tc, Tw); //KJ/K
15 deltaSw=abs(Q)/Tw;//KJ/K
16 deltaSuniverse=deltaSc+deltaSw; // \text{Kj/K}
17 disp(deltaSuniverse, "Part (i) Chane in entropy in KJ
      /K : ");
18 T1=383; //K
19 T2=283; //K
20 T = (T1+T2)/2; //K
21 deltaSuniverse=mc*Cpc*[integrate('1/T','T',T1,T)+
      integrate('1/T', 'T', T2, T)]; //KJ/K
22 disp(deltaSuniverse, "Part (ii) Chane in entropy in
      KJ/K : ");
```

Scilab code Exa 4.6 Change in entropy

```
1 //Exa 4.6
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data :
```

```
8 Tc=35+273; //K
9 W=500; //KJ
10 T1=308; //K
11 T2=308; //K
12 T0=15+273; //K
13 Q=W; //KJ
14 deltaS1=0; //as heat supplied is zero
15 deltaS2=Q/T0; //KJ/K
16 disp(deltaS2, "Change in entropy in KJ/K: ");
```

Scilab code Exa 4.7 Change in entropy

```
1 / Exa 4.7
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data :
8 mi=0.5; //\text{Kg}
9 Ti = -10 + 273; //K
10 Cpi=2; //KJ/KgK
11 Cpw=4.2; //KJ/KgK
12 Li = 334; //KJ/Kg
13 mc=5;/Kg
14 Tc=80+273; //K
15 Cpc=0.5; //KJ/KgK
16 T0=0+273; //K
17 //mi * [Cpi * (T0-Ti)+Li+Cpw * (T-T0)]=mc*Cpc* (Tc-T)
18 T = (mc*Cpc*Tc-mi*Cpi*(T0-Ti)-mi*Li+mi*Cpw*T0)/(mi*Cpw
      +mc*Cpc);/K
19 deltaSi=mi*Cpi*log(T0/Ti)+Li/T0+mi*Cpw*log(T/T0);//
     KJ/K
20 disp(deltaSi,": Entropy chane of Ice in KJ/K:");
21 deltaSc=mc*Cpc*log(T/Tc); //KJ/K
```

Scilab code Exa 4.8 Increase in entropy

```
1 //Exa 4.8
2 clc;
3 clear:
4 close;
5 format('v',7);
7 //Given Data :
8 \text{ m1=5}; //\text{Kg}
9 T1=200+273; //K
10 Cp1=0.4; //KJ/KgK
11 m2=100; //Kg
12 T2=30+273; //K
13 Cp2=2.1; //KJ/KgK
14 / m1*Cp1*(T1-T)=m2*Cp2*(T-T2)
15 T = (m1*Cp1*T1+T2*m2*Cp2)/(m2*Cp2+m1*Cp1); //K
16 deltaS1=integrate('m1*Cp1/T', 'T', T1, T); //KJ/K
17 deltaS2=integrate('m2*Cp2/T', 'T', T2, T); //KJ/K
18 deltaSsurr=0; //No heat transfer neglected
19 deltaSuniverse=deltaS1+deltaS2+deltaSsurr;//KJ/K
20 disp(deltaSuniverse,"Increase in Entropy of universe
       in KJ/K : ");
```

Scilab code Exa 4.9 Increase of entropy

```
1 //Exa 4.9
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data :
8 HeatTransfer=2; //KJ/degreeCentigrade(it is d'Q/dT)
9 T1=27+273; //K
10 T2=127+273; //K
11 deltaS=integrate('HeatTransfer/T', 'T',T1,T2); //KJ/K
12 disp(deltaS, "Entropy change when heat is transfered to system in KJ/K:");
13 disp(deltaS, "Entropy change when end states are achieved by stirring action in KJ/K:");
```

Scilab code Exa 4.11 Increase in entropy

```
1 // Exa 4.11
2 clc;
3 clear;
4 close;
5 format('v',7);
7 //Given Data :
8 \text{ m1=2}; //\text{Kg}
9 T1=80+273; //K
10 m2=3; //\text{Kg}
11 T2=30+273; //K
12 Cp=4.187; //KJ/KgK
13 / m1 * Cp1 * (T1-T) = m2 * Cp2 * (T-T2)
14 T = (m1*Cp*T1+T2*m2*Cp)/(m2*Cp+m1*Cp); //K
15 deltaS=integrate('m1*Cp/T', 'T', T1,T)+integrate('m2*
      \mathrm{Cp/T}', 'T', T2, T); //\mathrm{KJ/K}
16 disp(deltaS, "Total Entropy change due to mixing
```

```
process in KJ/K: ");
```

Scilab code Exa 4.14 Change in internal energy Work done Heat transfer

```
1 / Exa 4.14
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data :
8 V1=4; //\text{m}^3
9 V2=4; //m^3
10 m = 20; //Kg
11 p1=4*100; //KPa
12 p2=8*100; //KPa
13 Cp=1.005; //KJ/KgK
14 Cv = 0.718; //KJ/KgK
15 R = Cp - Cv; //KJ/KgK
16 T1=p1*V1/m/R; //K
17 T2=p2*V2/m/R; //K
18 deltaU=m*Cv*(T2-T1); //KJ
19 disp(deltaU, "Change in internal energy in KJ: ");
20 W = 0; //KJ
21 disp(W, "Since no movement, Work done in KJ: ");
22 Q=W+deltaU; //KJ
23 disp(Q,"Heat transfered in KJ: ");
24 deltaS=integrate('m*Cv/T', 'T', T1, T2); //KJ/K
25 disp(deltaS, "Entropy change in KJ/K:");
```

Scilab code Exa 4.15 Entropy change of universe

```
1 // \text{Exa} \ 4.15
```

```
2 clc;
3 clear;
4 close;
5 format('v',9);
7 //Given Data :
8 V1=4; //\text{m}^3
9 V2=4; /m^3
10 m = 600/1000; //Kg
11 C=150; //J/K
12 T1=100+273; //K
13 T0=8+273; //K
14 Cp=C/1000; //KJ/K
15 deltaSblock=integrate({\rm 'Cp/T'}, {\rm 'T'}, T1, T0); {\rm //KJ/K}
16 Q = Cp * (T1 - T0); //KJ
17 deltaSlake=Q/T0; //KJ/K
18 deltaSuniverse=deltaSblock+deltaSlake; //KJ/K
19 disp(deltaSuniverse, "Part (i) Entropy change of
      universe in KJ/K : ");
20 \text{ T1} = 8 + 273; //K
21 Z=100; //meter
22 \text{ g=9.81;} // \text{gravity constant}
23 PE=m*g*Z/1000; //KJ
24 deltaT=PE/Cp;//degree centigrade
25 T2=T1+deltaT; //K
deltaSblock=-integrate('^{\circ}Cp/T', 'T', T1, T2); //^{\circ}KJ/K
27 deltaSlake=PE/T0; //KJ/K
28 deltaSuniverse=deltaSblock+deltaSlake; //KJ/K
29 disp(deltaSuniverse,"Part (ii) Entropy change of
      universe in KJ/K : ");
```

Scilab code Exa 4.17 Final temperature Work done heat transfer

```
1 //Exa 4.17
2 clc;
```

```
3 clear;
4 close;
5 format('v',7);
7 // Given Data :
8 \text{ m=1}; //\text{Kg}
9 p1=1; // bar
10 T1=290; //K
11 p2=30; //bar
12 T2=290; //K
13 n=1.3; //constant
14 R=300; /Nm/KgK
15 Cv = 0.72; //KJ/KgK
16 disp("part (a) Isothermally")
17 V1=R*T1/p1/10^5; //m^3/Kg
18 V2=p1*V1/p2; //m^3/Kg
19 w=p1*10^5*V1*log(V2/V1)/1000; //KJ/Kg
20 disp(w, "Workdone in KJ/Kg: ");
21 deltaU=m*Cv*(T2-T1); //KJ(as T1=T2)
22 disp(deltaU, "Change in internal energy in KJ:");
23 q=w+deltaU; //KJ/Kg
24 disp(q,"Heat transfer in KJ/Kg: ");
25 S2subS1=m*R/1000*log(V2/V1)+m*Cv*log(T2/T1); //KJ/KgK
26 disp(S2subS1, "Change in entropy in KJ/KgK:");
27
28 disp("part (b) Polytropically")
29 T2=T1*(p2/p1)^((n-1)/n);/K
30 disp(T2, "Temperature T2 in K:");
31 V1=R*T1/p1/10^5; //m^3/Kg
32 V2=(p1/p2)^(1/n)*V1; //m^3/Kg
33 w = m*R/1000*(T1-T2)/(n-1);;//KJ/Kg
34 disp(w," Workdone in KJ/Kg: ");
35 deltaU=m*Cv*(T2-T1); //KJ(as T1=T2)
36 \text{ q=w+deltaU}; //KJ/Kg
37 disp(q,"Heat transfer in KJ/Kg : ");
38 S2subS1=m*R/1000*log(V2/V1)+m*Cv*log(T2/T1); //KJ/KgK
39 disp(S2subS1, "Change in entropy in KJ/KgK: ");
```

Scilab code Exa 4.18 Index Work done Specific entropy

```
1 // \text{Exa} \ 4.18
2 clc;
3 clear;
4 close;
5 format('v',7);
7 //Given Data :
8 \text{ P1} = 480; //\text{kPa}
9 T1=190+273; //K
10 T3=190+273; //K
11 P2=94; //kPa
12 P3=150; //kPa
13 T2=T3*P2/P3; //K
14 R=0.29; //KJ/KgK
15 m=1; //Kg
16 Cp=1.011; //KJ/KgK
17 / T2/T1 = (P2/P1) ((Gamma-1)/Gamma)
18 / ((Gamma-1)/Gamma) = log(T2/T1)/log(P2/P1); //
19 Gamma=1.402; //by trial method
20 disp(Gamma, "Index of adiabatic expansion:");
21 Cv=R/(Gamma-1); //KJ/KgK
22 W1_2=m*R*(T1-T2)/(Gamma-1); //KJ/Kg
23 disp(W1_2,"Work done, W1-2 per Kg of air in KJ/Kg :
      ");
24 W2_3=0; // Constant volume process
  disp(W2_3,"Work done, W2-3 per Kg of air in KJ/Kg:
      ");
26 \text{ W3}_1=\text{m*R*T2*log}(P3/P1); //KJ/Kg
27 disp(W3_1,"Work done, W1-2 per Kg of air in KJ/Kg:
      ");
W = W1_2 + W2_3 + W3_1; //KJ/Kg
29 disp(W, "Total Work done in KJ/Kg: ");
```

Scilab code Exa 4.21 Entropy Change

```
1 / Exa 4.21
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 // Given Data:
8 p1=5; //bar
9 T1=30+273; //K
10 p2=4; //bar
11 m=1; //Kg
12 R=0.287; //KJ/KgK
13 // \det aS = m*R*log(p1/p2) + m*Cp*log(T2/T1); //KJ/kgK
14 deltaS=m*R*log(p1/p2); //KJ/kgK(T2/T1 leads to 2nd
      term zero)
15 disp(deltaS, "Entropy Change in KJ/KgK:
```

Scilab code Exa 4.22 Change in entropy

```
1 //Exa 4.22
2 clc;
3 clear;
4 close;
```

```
5 format('v',7);
6
7 //Given Data:
8 Cpg=1.05; //KJ/KgK
9 t1=400; //degree centigrade
10 t2=360; //degree centigrade
11 T=30+273; //K
12 Q=Cpg*(t1-t2); //KJ/Kg
13 deltaSsurr=Q/T; //KJ/KgK
14 deltaSsystem=integrate('Cpg/T', 'T', t1+273, t2+273); // KJ/KgK
15 deltaSuniverse=deltaSsystem+deltaSsurr; //KJ/KgK
16 disp(deltaSuniverse, "Change in entropy of the universe in KJ/KgK: ");
```

Chapter 5

Properties of Steam

Scilab code Exa 5.1 Available and unavailable energy

```
1 //Exa 5.1
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data :
8 deltaQ=1000;//KJ
9 T=1073;//Kelvin
10 T0=20+273;//Kelvin
11 deltaS=deltaQ/T;//KJ/K
12 A=deltaQ-T0*deltaS;//KJ
13 disp(A,"Available energy in KJ : ");
14 UA=T0*deltaS;//KJ
15 disp(UA,"Unavailable energy in KJ : ");
```

Scilab code Exa 5.2 Reversible work and Irreversibility

```
1 / Exa 5.2
2 clc;
3 clear;
4 close;
5 format('v',6);
7 // Given Data:
8 \text{ m} = 2; //\text{Kg}
9 T1=300+273; // Kelvin
10 T2=150+273; // Kelvin
11 T0 = 20 + 273; // Kelvin
12 Cp=0.45; //KJ/KgK
13 deltaQ=m*Cp*(T1-T2); //KJ
14 deltaS=m*Cp*log(T1/T2);//KJ/K
15 A=deltaQ-T0*deltaS;//KJ
16 disp(A, "Reversible work or Available energy in KJ:
      ");
17 UA=T0*deltaS; //KJ
18 disp(UA, "Irreversibility in KJ: ");
19 //Irreversibilty is not calculated in the book and
      asked in the question.
```

Scilab code Exa 5.3 Increase in available energy

```
1 //Exa 5.3
2 clc;
3 clear;
4 close;
5 format('v',6);
6
7 //Given Data:
8 m=5;//Kg
9 p=1;//bar
10 T0=20+273;//Kelvin
11 T1=23+273;//Kelvin
```

```
12 T2=227+273; // Kelvin
13 Cp=1.005; // J/KgK
14 deltaS=Cp*log(T1/T2); // KJ/KgK
15 deltaQ=Cp*(T2-T1); // KJ
16 A=m*(deltaQ+T0*deltaS); // KJ
17 disp(A, "Increase in availability due to heating in KJ: ");
```

Scilab code Exa 5.4 Availability and unavailable energy

```
1 //Exa 5.4
2 clc;
3 clear;
4 close;
5 format('v',6);
6
7 //Given Data :
8 Q1=400; //KJ
9 T1=1227+273; //Kelvin
10 T2=27+273; //Kelvin
11 A=Q1-T2*Q1/T1; //KJ
12 disp(A,"Availability of the system in KJ: ");
13 UA=Q1-A; //KJ
14 disp(UA,"Unavailable energy in KJ: ");
```

Scilab code Exa 5.5 Motor Capability

```
1 //Exa 5.5
2 clc;
3 clear;
4 close;
5 format('v',6);
6
```

```
7 //Given Data :
8 P=1; //KW or KJ/s
9 Q=6; //MJ/hr
10 Q=Q*1000/3600; //KJ/s
11 T1=26+273; // Kelvin
12 T2=3+273; // Kelvin
13 COP=T1/(T1-T2);
14 W=Q/COP; //KJ/s or KW
15 disp(W,"Work required to pump heat in KJ/s or KW : ");
16 disp("As P>W, required condition can be maintained.")
```

Scilab code Exa 5.6 Availability of heat energy and unavailable heat

```
//Exa 5.6
clc;
clear;
close;
format('v',6);

//Given Data :
   T=727+273; // Kelvin
   T0=17+273; // Kelvin
deltaQ=4000; // KJ
deltaS=deltaQ/T; // KJ/K
A=deltaQ-T0*deltaS; // KJ
UA=T0*deltaS; // KJ
disp(A," Availability of heat energy in KJ: ");
UA=T0*deltaS; // KJ
disp(UA," Unavailable heat energy in KJ: ");
```

Scilab code Exa 5.7 Available energy added to the system

```
1 //Exa 5.7
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data :
8 deltaQ=850; //KJ
9 T=180+273; //Kelvin
10 T0=22+273; //Kelvin
11 deltaS=deltaQ/T; //KJ/K
12 A=deltaQ-T0*deltaS; //KJ
13 disp(A,"Available energy in KJ:");
```

Scilab code Exa 5.8 Available and unavailable energy

```
1 // \text{Exa} 5.8
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data :
8 \text{ deltaQ=850; } //\text{KJ}
9 T1=1400+273; // Kelvin
10 T2=250+273; // Kelvin
11 T0 = 20 + 273; // Kelvin
12 Q = -1000; //KJ
13 deltaS1=Q/T1; //KJ/K(-ve as heat leaving)
14 deltaS2=abs(Q)/T2;//KJ/K(+ve\ Q\ as\ steam\ receives
      heat)
15 deltaS=deltaS1+deltaS2; //KJ/K
16 disp("Part (i) As energy leaves the hot gases: ");
17 A=(T1-T0)*deltaS1;//KJ
18 UA=T0*deltaS1; //KJ
```

```
disp(A, "Available energy in KJ : ");
disp(UA, "Unavailable energy in KJ : ");
disp("Part (ii) As energy enters the system : ");
A=(T2-T0)*deltaS2;//KJ
UA=T0*deltaS2;//KJ
disp(A, "Available energy in KJ : ");
disp(UA, "Unavailable energy in KJ : ");
```

Scilab code Exa 5.9 Heat abstracted Availability and Loss Availability

```
1 / Exa 5.9
2 clc;
3 clear;
4 close;
5 format('v',8);
6
7 // Given Data :
8 \text{ deltaQ} = 850; //KJ
9 T1=523; // Kelvin
10 T2=873; // Kelvin
11 T0=288; // Kelvin
12 dQ_by_dT = 100; //KJ/K
13 deltaS=integrate('100/T', 'T', T1, T2); //KJ/K
14 deltaQ=integrate('100', 'T', T1, T2); //KJ
15 disp(deltaQ, "Total heat abstracted in KJ: ");
16 A=deltaQ-T0*deltaS;//KJ
17 disp(A, "Availability in KJ: ");
18 Loss=deltaQ-A; //KJ
19 disp(Loss, "Loss of availability in KJ: ");
```

Scilab code Exa 5.10 Availability of products

```
1 / \text{Exa} 5.10
```

```
2 clc;
3 clear;
4 close;
5 format('v',8);
6
7 //Given Data :
8 p0=1;//bar
9 T0=17+273;//Kelvin
10 T1=1817+273;//Kelvin
11 Cp=1;//KJ/KgK
12 deltaQ=Cp*(T1-T0);//KJ/Kg
13 deltaS=Cp*log(T0/T1);//KJ/KgK
14 deltaS_fluid=-deltaS;//KJ/KgK(As deltaS_surrounding =0)
15 A=deltaQ-T0*deltaS_fluid;//KJ
16 disp(A,"Availability of hot products in KJ:");
```

Scilab code Exa 5.11 Change in entropy

```
1 //Exa 5.11
2 clc;
3 clear;
4 close;
5 format('v',8);
6
7 //Given Data :
8 T1=1200;//Kelvin
9 T2=400;//Kelvin
10 T0=300;//Kelvin
11 Qsource=-150;//KJ/s
12 Qsystem=150;//KJ/s
13 deltaS_source=Qsource/T1;//KJ/sK
14 deltaS_system=Qsystem/T2;//KJ/sK
15 deltaS_net=deltaS_source+deltaS_system;//KJ/sK
16 disp(deltaS_net,"Net change in entropy in KJ/sK : ")
```

```
;
17 A1=(T1-T0)*-deltaS_source;//KJ/s
18 disp(A1, "Available energy of heat source in KJ/s : "
);
19 A2=(T2-T0)*deltaS_system;//KJ/s
20 disp(A2, "Available energy of system in KJ/s : ");
21 E_decrease=A1-A2;//KJ/s
22 disp(E_decrease, "Decrease in available energy in KJ/s : ");
```

Scilab code Exa 5.12 Mass flow rate and other parameters

```
1 / Exa 5.12
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data :
8 Tg1=1127+273; // Kelvin
9 Tg2=527+273; // Kelvin
10 T2=250+273; // Kelvin
11 T0 = 27 + 273; // Kelvin
12 Cpg=1; //KJ/KgK
13 mw=5; //\text{Kg/s}
14 hfg=1716.2; //KJ/Kg
15 / \text{mg} \cdot \text{Cpg} \cdot (\text{Tg1} - \text{Tg2}) = \text{mw} \cdot \text{hfg}
16 mg=mw*hfg/Cpg/(Tg1-Tg2); //Kg/s
17 disp(mg, "Mass flow rate of gases in Kg/s:");
18 deltaSg=mg*Cpg*log(Tg2/Tg1); //KJ/sK
19 disp(deltaSg, "Entropy change of gases in KJ/sK: ");
20 deltaSw=mw*hfg/T2; //KJ/sK
21 disp(deltaSw, "Entropy change of water in KJ/sK:");
22 deltaSnet=deltaSg+deltaSw; //KJ/sK
23 disp(deltaSnet," Net Entropy change in KJ/sK: ");
```

```
Q1=mw*hfg;//KJ/s
Sa_sub_Sb=-deltaSg;//KJ/sK
26 A1=Q1-T0*(Sa_sub_Sb);//KJ/s
27 disp(A1,"Availability of hot gases in KJ/s:");
28 A2=Q1-T0*deltaSw;//KJ/s
29 disp(A2,"Availability of water in KJ/s:");
30 UA1=T0*(Sa_sub_Sb);//KJ/s
31 disp(UA1,"Unavailable energy of hot gases in KJ/s:
");
32 UA2=T0*deltaSw;//KJ/s
33 disp(UA2,"Unavailable energy of water in KJ/s:");
34 E_increase=T0*deltaSnet;/KJ/s
35 disp(E_increase,"Increase in unavailable energy in KJ/s:");
```

Scilab code Exa 5.13 Loss of availability

```
1 / Exa 5.13
2 clc;
3 clear;
4 close;
5 format('v',6);
6
7 // Given Data :
8 \text{ mg}=5; //\text{Kg}
9 p1=3; // bar
10 T1=500; // Kelvin
11 Q = 500; //KJ
12 Cv = 0.8; //KJ/Kg
13 T0=300; // Kelvin
14 T=1300; // Kelvin
15 / Q = mg * Cv * (T2 - T1)
16 T2=Q/mg/Cv+T1; //Kelvin
17 A1 = Q - T0 * Q / T; //KJ
18 deltaSg=mg*Cv*log(T2/T1); //KJ/K
```

Scilab code Exa 5.14 Loss in available energy

```
1 / Exa 5.14
2 clc;
3 clear;
4 close;
5 format('v',6);
7 // Given Data :
8 \text{ m=3;} //\text{Kg}
9 p1=3; //bar
10 T1 = 450; // Kelvin
11 Q = 600; //KJ
12 Cv = 0.81; //KJ/Kg
13 T0=300; // Kelvin
14 T=1500; // Kelvin
15 deltaSsource=Q/T; //KJ/K
16 / Q = m \cdot Cv \cdot (T2 - T1)
17 T2=Q/m/Cv+T1; //Kelvin
18 A1=Q-T0*deltaSsource; //KJ
19 deltaSg=m*Cv*log(T2/T1); //KJ/K
20 A2=Q-T0*deltaSg; //KJ
21 Loss=A1-A2; //KJ
22 disp(Loss,"Loss in available energy due to heat
      transfer in KJ : ");
```

Chapter 6

Properties of Steam

Scilab code Exa 6.e Find Specific Enthalpy

```
1 // Example :
2 clc;
3 clear;
4 close;
5 format('v',8);
7 // Given Data :
8 p1=0.02; //bar
9 hg1=2535.5; //KJ/Kg(at 0.02 bar)
10 p2=0.03; //bar
11 hg2=2545.6; //KJ/Kg(at 0.03 bar)
12 delta_h12=hg2-hg1; //KJ/KgK
13 p3=0.024; //bar
14 p4=0.02; //bar
15 delta_h=delta_h12/0.01*(p3-p4); //KJ/KgK
16 \text{ hg\_dash=hg1+delta\_h;} //\text{KJ/Kg}
17 disp(hg\_dash,"Specific enthalpy in KJ/Kg : ");
```

Scilab code Exa 6.1 Type of steam

```
1 / Exa 6.1
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data:
8 \text{ m} = 2; //\text{Kg}
9 p=8; //bar
10 H = 5535; //KJ
11 h=H/m; //KJ/Kg
12 hg = 2767.5; //KJ/Kg
13 disp(h, "Specific Enthalpy in KJ/Kg: ");
14 disp(hg, "Given Enthalpy in KJ/Kg: ");
15 disp("Given enthalpy = specific enthalpy. System is
      dry saturated.");
16 m=1; //\text{Kg}
17 p=2550*10^3/10^5; //bar
18 v = 0.2742; //m^3/Kg
19 disp(v, "Specific volume in m<sup>3</sup>/Kg: ");
20 vg = 0.078352; //m^3
21 disp(vg, "Given specific volume in <math>m^3/Kg : ");
22 Ts=225+273; //K
23 disp("Since v>vg. System is super heated.");
24 Tsup=v/vg*Ts; //K
25 disp(Tsup-273, "Temperature of super heated steam in
      degree C: ");
26 \text{ m=1}; //\text{Kg}
27 p = 60; //bar
28 h=2470.73; //KJ/Kg
29 disp(h, "Enthalpy in KJ/Kg: ");
30 hg = 2475; //KJ/Kg
31 disp(hg, "Given enthalpy in KJ/Kg: ");
32 disp("Since h>hg. System is in vapour state.");
33 //let x be the dryness fraction
34 / h = h f + x * h g
35 hf = 1213.69; //KJ/Kg
36 hfg=1517.3; //KJ/Kg
```

```
37 x=(h-hf)/hfg;
38 disp(x,"Dryness fraction: ");
39 //Steam table is used to get some data.
```

Scilab code Exa 6.2 Temperature Enthalpy and Specific Volume

```
1 / Exa 6.2
2 clc;
3 clear;
4 close;
5 format('v',8);
7 // Given Data:
8 p=5; //bar
9 x = 0.98;
10 ts=151.84; //degree C
11 hf = 652.8; //KJ/Kg
12 hfg=2098; //KJ/Kg
13 vg=0.373; //\text{m}^3/\text{Kg}
14 disp(ts, "Temperature of steam in degree C: ");
15 h=hf+x*hfg; //KJ/Kg
16 disp(h, "Enthalpy of steam in KJ/Kg: ");
17 v=x*vg; //m^3/Kg
18 disp(v, "Specific volume in m<sup>3</sup>/Kg; ");
19 //Steam table is used to get some data.
```

Scilab code Exa 6.3 Volume Enthalpy and Internal energy

```
1 //Exa 6.3
2 clc;
3 clear;
4 close;
5 format('v',8);
```

```
7 // Given Data :
8 \text{ m=1}; //\text{Kg}
9 p=12; //bar
10 x = 0.95;
11 ts=187.96; // degree C
12 vg=0.1632; //\text{m}^3/\text{Kg}
13 hf = 814.7; //KJ/Kg
14 hfg=1970.7; //KJ/Kg
15 disp(ts, "Temperature of steam in degree C: ");
16 v=x*vg; //m^3/Kg
17 disp(v, "Specific volume in m<sup>3</sup>/Kg; ");
18 h=hf+x*hfg; //KJ/Kg
19 disp(h, "Enthalpy of steam in KJ/Kg: ");
20 u=h-p*10^5*v/1000; //KJ/Kg
21 disp(u,"Internal energy in KJ/Kg : ");
22 //Steam table is used to get some data.
```

Scilab code Exa 6.4 Enthalpy Specific Volume and Entropy

```
1 //Exa 6.4
2 clc;
3 clear;
4 close;
5 format('v',8);
6
7 //Given Data:
8 m=1;//Kg
9 p=8;//bar
10 Tsup=280;//degree C
11 h1=2950.4;//KJ/Kg(at 250 degree C)
12 h2=3057.3;//KJ/Kg(at 300 degree C)
13 Tsup1=250;//degree C
14 Tsup2=300;//degree C
15 hsup=h1+(h2-h1)/(Tsup2-Tsup1)*(Tsup-Tsup1);//KJ/Kg
```

```
disp(hsup, "Specific enthalpy in KJ/Kg: ");
17 v1=0.293; //m^3/Kg(at 250 degree C)
18 v2=0.324; //m^3/Kg(at 300 degree C)
19 vsup=v1+(v2-v1)/(Tsup2-Tsup1)*(Tsup-Tsup1); //m^3/Kg
20 disp(vsup, "Specific volume in m^3/Kg: ");
21 S1=7.04; //KJ/KgK(at 250 degree C)
22 S2=7.235; //KJ/KgK(at 300 degree C)
23 Ssup=S1+(S2-S1)/(Tsup2-Tsup1)*(Tsup-Tsup1)
24 disp(Ssup, "Specific enthalpy in KJ/KgK: ");
25 //Steam table is used to get some data.
```

Scilab code Exa 6.5 Ratio of mass flow rate

```
1 //Exa 6.5
2 clc;
3 clear;
4 close;
5 format('v',8);
7 // Given Data:
8 p1=0.1; //bar
9 p2=0.1; //bar
10 \times 1 = 0.95;
11 t3=20; // degree C
12 t2=35; //degree C
13 t4=45; //degree C
14 hf1=191.8; //KJ/Kg
15 hfg1=2397.9; //KJ/Kg
16 h1=hf1+x1*hfg1; //KJ/kg
17 h2=188.4; //KJ/Kg(at 45 degree C)
18 h3=83.9; //KJ/Kg(at 20 degree C)
19 h4=146.6; //KJ/Kg(at 35 degree C)
20 /m1*(h1-h2)=mw*(h4-h3)
21 mwBYm1 = (h1-h2)/(h4-h3); //Kg of water/Kg of steam
22 disp(mwBYm1," Ratio of mass flow rate of cooling
```

```
water to condensing steam(Kg of water/Kg of steam
): ");
23 //Steam table is used to get some data.
```

Scilab code Exa 6.6 Enthalpy Energy and Mass

```
1 / Exa 6.6
2 clc;
3 clear;
4 close;
5 format('v',8);
7 // Given Data :
8 V=3; //m^3
9 t=200; //degree C
10 Pat=1; //bar
11 Pgauge=7; //bar
12 P=Pgauge+Pat; //bar
13 ts = 170.41; // degree C
14 tsup=t; //degree C
15 vsup=0.261; //\text{m}^3/\text{Kg}
16 hsup=2838.6; //KJ/Kg
17 m=V/vsup; //Kg
18 H=m*hsup;//KJ
19 disp(H, "Total Enthalpy in KJ: ");
20 / H = U + p * V
21 U=H-P*10^5*V/1000; //KJ
22 disp(U, "Total internal energy of system in KJ; ");
23 disp(m, "Mass of steam in Kg : ");
24 //Steam table is used to get some data.
```

Scilab code Exa 6.7 Dryness fraction of steam

```
1 //Exa 6.7
2 clc;
3 clear;
4 close;
5 format('v',8);
6
7 //Given Data :
8 mw=1;//Kg
9 m_steam=39;//mass of dry steam in Kg
10 ms=mw+m_steam;//Kg
11 x=m_steam/ms;//dryness fraction
12 disp(x,"Dryness fraction; ");
```

Scilab code Exa 6.8 Added heat

```
1 / Exa 6.8
2 clc;
3 clear;
4 close;
5 format('v',8);
7 // Given Data :
8 \text{ m} = 10; //\text{Kg}
9 p=10; //bar
10 x = 0.9;
11 t1=20; //degree C
12 hf = 762.6; //KJ/Kg
13 hfg=2013.6; //KJ/Kg
14 H=m*(hf+x*hfg); //KJ;
15 disp(H,"Enthalpy of wet steam in KJ: ");
16 hf1=83.9; //KJ/Kg(at 20 degree C)
17 Hf1=m*hf1; //KJ
18 HeatAdded=H-Hf1; //KJ
19 disp(HeatAdded, "Heat added in KJ: ");
20 //Steam table is used to get some data.
```

Scilab code Exa 6.9 Required Heat

```
1 / Exa 6.9
2 clc;
3 clear;
4 close;
5 format('v',8);
7 //Given Data :
8 t=50; // degree C
9 p1=13; //bar
10 Cpw=4.187; //KJ/KgK
11 Cp = 0.0535; //KJ/KgK
12 \times 1 = 0.97;
13 hf = Cpw * (t-0); //KJ/Kg
14 hf1=814.7; //KJ/Kg(at p1=13 bar)
15 hfg1=1970.7; //KJ/Kg(at p1=13 bar)
16 hg1=2785.4; //KJ/Kg(at p1=13 bar)
17 Q=hf1+x1*hfg1-hf; //KJ/Kg
18 disp(Q,"Heat required to produce steam in KJ/Kg: ")
19 Q1=hg1-hf; //KJ/Kg
20 disp(Q1," Heat required to produce dry saturated
      steam in KJ/Kg : ");
21 tsup1SUBts1=40; //degree C
22 Q2=hg1+Cp*(tsup1SUBts1)-hf;//KJ/Kg
23 disp(Q2," Heat required to produce super heated steam
       in KJ/Kg : ");
24 //Steam table is used to get some data.
25 //Ans is wrong in the book for last part.
```

Scilab code Exa 6.10 Workdone and latent heat of steam

```
1 / Exa 6.10
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data:
8 p=8; //bar
9 x = 0.8;
10 vf = 0.001115; //\text{m}^3/\text{kg}
11 vg=0.24; //\text{m}^3/\text{kg}
12 hf = 720.9; //kJ/kg (at p=8 bar)
13 hfg=2046.5; //kJ/kg (at p=8 bar)
14 m=1; // kg
15 We=100*p*(x*vg-vf); //kJ/kg
16 disp(We,"External workdone during evaporation in kJ/
      kg : ");
17 Q=x*hfg-We;//KJ
18 disp(Q,"External latent heat of steam in kJ: ")
19
20 //Steam table is used to get some data.
21 //Ans is wrong in the book for last part.
```

Scilab code Exa 6.11 Quality of steam

```
1 //Exa 6.11
2 clc;
3 clear;
4 close;
5 format("v",7);
6
7 //Given Data:
8 p1=20;//bar
9 Tsup1=350;//degree C
10 m1=1;//Kg
```

```
11 p2=20; //bar
12 m2=1; //Kg
13 p3=p1;//bar
14 Tsup3=250; // degree C
15 m3=m1+m2; //Kg
16 Cp=2.25; //KJ/Kg
17 hg1=2797.2; //KJ/Kg(at p=20 bar)
18 hg2=hg1; //KJ/Kg(at p=20 bar)
19 hg3=hg1; //KJ/Kg(at p=20 bar)
20 ts1=212.37; // degree C
21 ts2=ts1; //degree C
22 ts3=ts1;//degree C
23 / m1*h1+m2*h2=m3*h3
24 h2 = (m3*(hg3+Cp*(Tsup3-ts3))-m1*(hg1+Cp*(Tsup1-ts1)))
     /m2; //KJ/Kg
25 disp(h2, "Enthalpy of boiler2 in KJ/Kg: ");
26 disp(hg2, "hg2(KJ/Kg)
                         : ");
27 disp("steam is wet because h2<hg2")
28 / h2 = hf2 + x2 * hfg2 / l as steam is wet because h2 < hg2
29 hf2=908.6; //KJ/Kg
30 hfg2=1888.6; //KJ/Kg
31 	ext{ x2=(h2-hf2)/hfg2;}//
32 disp(x2, "Dryness : ");
33 //Steam table is used to get some data.
34 //Ans is wrong in the book.
```

Scilab code Exa 6.12 Enthalpy Internal Energy Entropy

```
1 //Exa 6.12
2 clc;
3 clear;
4 close;
5 format('v',8);
6
7 //Given Data :
```

```
8 \text{ m} = 2; //\text{Kg}
9 p=8; //bar
10 x = 0.8;
11 hf=720.9; //KJ/Kg(at p=8 bar)
12 hfg=2046.5; //KJ/Kg(at p=8 bar)
13 h=hf+x*hfg;//KJ/Kg
14 H=m*h; //KJ
15 disp(H, "Total enthalpy of steam in KJ: ");
16 Vg = 0.227; //m^3/Kg
17 V = m * x * Vg; //m^3
18 \operatorname{disp}(V, "Volume in m^3 : ");
19 We=p*10^5*V/1000;//KJ
20 disp(We, "External work of evaporation in KJ:");
21 U=H-We;//KJ
22 disp(U, "Total internal energy in KJ: ");
23 Sf = 2.061; //KJ/K
24 Sfg=4.578; //KJ/K
25 S=m*(Sf+x*Sfg); //KJ/K
26 disp(S, "Total entropy in KJ/K : ");
27 //Steam table is used to get some data.
```

Scilab code Exa 6.13 Temperature and Pressure

```
1 //Exa 6.13
2 clc;
3 clear;
4 close;
5 format('v',6);
6
7 //Given Data:
8 p1=600;//KPa
9 p1=p1/100;//bar
10 T1=200;//degree C
11 Vsup1=0.352;//m^3/Kg(at 6 bar)
12 V1=Vsup1;//m^3/Kg
```

```
13  V2=V1; //m^3(system is at constant volume)
14  Vg2=V2; //m^3/Kg(For dry saturated)
15  Tsup1=153.3; // degree C
16  Tsup2=154.8; // degree C
17  vg1=0.34844; //m^3/Kg
18  vg2=0.36106; //m^3/Kg
19  ts2=Tsup1+(Tsup2-Tsup1)/(vg2-vg1)*(V1-vg1); // degree C
20  disp(ts2, "Temperature at which steam begins to condense in degree C:");
21  pg1=5.2; // bar
22  pg2=5.4; // bar
23  p2=pg1+(pg2-pg1)/(Tsup2-Tsup1)*(ts2-Tsup1); // bar
24  disp(p2, "Pressure in bar is:");
25  // Some data is taken from steam table.
```

Scilab code Exa 6.14 Work done Enthalpy and Heat Transfered

```
1 //Exa 6.14
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data :
8 \text{ m} = 2; //\text{Kg}
9 p1=15; //bar
10 p2=15; //bar
11 Tsup1=250; //degree C
12 T1=Tsup1; //degree C
13 V1=0.152; //\text{m}^3/\text{Kg} (at 15 bar)
14 hf2=844.7; //KJ/Kg(at p=15 bar)
15 hg2=2789.9; //KJ/Kg(at p=15 bar)
16 hfg2=1945.2; //KJ/Kg(at p=15 bar)
17 h1=2923; //KJ/Kg
```

```
18  Vg2=0.1317; //m^3/Kg(at 15 bar)
19  x2=0.6; //dry
20  h2=hf2+x2*hfg2; //KJ/Kg
21  V2=x2*Vg2; //m^3/Kg
22  w=(p2*V2-p1*V1)*10^5/10^3; //KJ/Kg
23  W=m*w; //KJ
24  disp(W, "Total work done in KJ: ");
25  H2subH1=m*(h2-h1); //KJ/Kg
26  disp(H2subH1, "Change in enthalpy in KJ/Kg: ");
27  Q=H2subH1; //KJ
28  disp(Q, "Heat transfered in KJ: ");
29  //Steam table is used to get some data.
```

Scilab code Exa 6.15 Rate of heat transfer and Density

```
1 / Exa 6.15
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data :
8 p_{gauge} = 15; //bar
9 p_at=750; //mm of Hg
10 p_at=p_at/760*1.01325; //bar
11 p=p_gauge+p_at;//bar
12 ms = 200; //\text{Kg/hr}
13 Cpw=4.187; //KJ/KgK
14 t1=80; //degree C
15 hf1=Cpw*t1; //KJ/Kg
16 hf2=858.6; //KJ/Kg(at p=16 bar)
17 hg2=2791.8; //KJ/Kg(at p=16 bar)
18 hfg2=1933.2; //KJ/Kg(at p=16 bar)
19 ts=201.37; //degree C
20 \text{ x} 2 = 0.8; //dry
```

```
21 h2=hf2+x2*hfg2; //KJ/Kg
22 q=ms*(h2-hf1); //KJ/hr
23 q=q/3600; //KJ/s
24 disp(q,"Heat transfer in boiler in KJ/s : ");
25 tsup=ts+t1;//degree C
26 Cp=2.2; //KJ/KgK
27 hsup3=hg2+Cp*(tsup-ts); //KJ/Kg
28 qsup=ms*(hsup3-h2)/3600; //KJ/s
29 disp(qsup," Heat transferred in superheated steam in
      KJ/s : ");
30 Vg=0.1237; //\text{m}^3/\text{Kg} (at 16 bar)
31 Ts=201.37+273; //K
32 Tsup=tsup+273; //K
33 Vsup=Tsup/Ts*Vg; //m^3/Kg
34 density=1/Vsup; //\text{Kg/m}^3
35 disp(density," Density of steam in Kg/m^3: ");
36 //Steam table is used to get some data.
```

Scilab code Exa 6.16 Quantity of heat

```
1 //Exa 6.16
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data :
8 m=1.5; //Kg
9 p1=5; //bar
10 x1=0.8; //dry
11 x2=0.4; //dry
12 Vg1=0.373; //m^3/Kg(at 5 bar)
13 hf1=640.1; //KJ/Kg(at p=5 bar)
14 hfg1=2107.4; //KJ/Kg(at p=5 bar)
15 Vg2=x1/x2*Vg1; //m^3/Kg
```

```
16  p2=4; // bar (at Vg2=0.746)
17  hf2=529.6; //KJ/Kg(at p=4 bar)
18  hfg2=2184.9; //KJ/Kg(at p=4 bar)
19  V1=x1*Vg1; //m^3/Kg
20  V2=V1; //m^3/Kg
21  h1=hf1+x1*hfg1; //KJ/Kg
22  h2=hf2+x2*hfg2; //KJ/Kg
23  Q=m*[(h2-h1)-100*(p2*V2-p1*V1)]; //KJ
24  disp(Q," Quantity of heat in KJ:");
25  //Steam table is used to get some data.
```

Scilab code Exa 6.17 Heat transfered per Kg of steam

```
1 / Exa 6.17
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data:
8 p1=1; //bar
9 \text{ x1=0.523; } //\text{dry}
10 Vg1=1.694; //\text{m}^3/\text{Kg}(\text{at 1 bar})
11 hf1=417.5; //KJ/Kg(at p=1 bar)
12 hfg1=2258; //KJ/Kg(at p=1 bar)
13 h1=hf1+x1*hfg1; //KJ/Kg
14 V1=x1*Vg1; //\text{m}^3/\text{Kg}
15 V2=V1; //m<sup>3</sup>/Kg(Constant volume process)
16 Vg2=V2; //m^3/Kg
17 p2=2; //bar; //at Vg2 from steam table
18 hg2=2706.3; //KJ/Kg(at 2 bar)
19 h2=hg2; //KJ/Kg
20 W=0; //KJ/Kg of steam
21 q=W+(h2-h1)-100*(p2*V2-p1*V1); //KJ/Kg
22 disp(q,"Heat transfered in KJ/Kg : ");
```

Scilab code Exa 6.18 Dryness fraction and Mass of steam

```
1 //Exa 6.18
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 // Given Data :
8 V1=0.9; //\text{m}^3
9 p1=8; // bar
10 x1=0.9; //dry
11 p2=4; //bar
12 Vg1=0.24; //\text{m}^3/\text{Kg} (at 8 bar)
13 hf1=720.9; //KJ/Kg(at p=8 bar)
14 hfg1=2046.5; //KJ/Kg(at p=8 bar)
15 Vg2=0.462; //\text{m}^3/\text{Kg}(\text{at 4 bar})
16 hf2=604.7; //KJ/Kg(at p=4 bar)
17 hfg2=2132.9; //KJ/Kg(at p=4 bar)
18 / h1 = h2 : hf1 + x1 * hfg1 = hf2 + x2 * hfg2
19 x2=((hf1+x1*hfg1)-hf2)/hfg2;//dry
20 disp(x2, "Dryness fraction of steam: ");
21 m1 = V1/x1/Vg1; //Kg
22 V2 = V1; //m^3
23 m2 = V2/x2/Vg2; //Kg
24 \text{ m=m1-m2; } / \text{Kg}
25 disp(m, "Mass of steam blown off in Kg:");
26 //Steam table is used to get some data.
```

Scilab code Exa 6.19 Condition of steam

```
1 / Exa 6.19
2 clc;
3 clear;
4 close;
5 format('v',7);
7 //Given Data :
8 \text{ m=5}; //\text{Kg}
9 p1=10; //bar
10 x1=0.9; //dry
11 p2=4; //bar
12 ts1=179.88; // degree C(at 10 bar)
13 disp(ts1, "Final condition of steam, (Temperature in
      degree C) : ");
14 Vg1=0.1943; //\text{m}^3/\text{Kg} (at 8 bar)
15 hf1=762.6; //KJ/Kg(at p=10 bar)
16 hfg1=2013.6; //KJ/Kg(at p=10 bar)
17 h1=hf1+x1*hfg1; //KJ/Kg
18 V1 = x1 * Vg1; //KJ/kg
19 u1=h1-p1*V1*10^5/1000; //KJ/Kg
20 U1=m*u1; //KJ
21 Tsup2=179.88; // \text{degree C}
22 t11=150; //degree C
23 h11=2752; //KJ/Kg(at 4bar, 150 degree C)
24 v11=0.471; //\text{m}^3/\text{Kg} (at 4bar, 150 degree C)
25 s11=6.929; //KJ/KgK(at 4bar, 150 degree C)
26 t22=200; // degree C
27 h22=2860.4; //KJ/Kg(at 4bar, 200 degree C)
28 v22=0.534; //\text{m}^3/\text{Kg} (at 4bar, 200 degree C)
29 s22=7.171; //KJ/KgK(at 4bar, 200 degree C)
30 h2=h11+(h22-h11)/(t22-t11)*(ts1-t11);//KJ/Kg
31 v2=v11+(v22-v11)/(t22-t11)*(ts1-t11);//m^3/Kg
32 	ext{ s2=s11+(s22-s11)/(t22-t11)*(ts1-t11); //m^3}
33 u2=h2-p2*10^5*v2/1000; //KJ/Kg
34 \text{ U2=m*u2;}//\text{KJ}
35 \text{ deltaU=U2-U1;}//\text{KJ}
36 disp(deltaU, "Change in internal energy in KJ;");
37 sf1=2.138; //KJ/KgK
```

```
38 sfg1=4.445; //KJ/Kg
39 s1=(sf1+x1*sfg1); //KJ/KgK
40 deltaS=m*(s2-s1); //KJ/K
41 Q=(ts1+273)*(deltaS); //KJ
42 disp(Q,"Heat transfer in KJ:");
43 W=Q-deltaU; //KJ
44 disp(W,"Workdone in KJ:");
45 //Steam table is used to get some data.
46 //Answer is not accurate in the book.
```

Scilab code Exa 6.20 Work done and condition of steam

```
1 / Exa 6.20
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data :
8 \text{ m} = 2; //\text{Kg}
9 p1=15; // bar
10 V1=0.3; //\text{m}^3
11 p2=1.5; //bar
12 v1 = V1/m; //m^3/Kg
13 //p1*v1^(1.3)=p2*v2^(1.3)
14 v2 = exp((log(p1)+1.3*log(v1)-log(p2))/1.3); //m^3/Kg
15 Vg2=1.1635; //\text{m}^3/\text{Kg}(\text{at } 1.5 \text{ bar})
16 \text{ x2=v2/Vg2; //dry}
17 disp(x2, "Dryness of steam : ");
18 n=1.3;
19 W=m*(p1*v1-p2*v2)*10^5/(n-1); //J
20 \text{ W=W/1000; //KJ}
21 disp(W, "Workdone in KJ: ");
22 //Steam table is used to get some data.
23 //Answer is wrong in the book.
```

Scilab code Exa 6.21 Amount of work done

```
1 //Exa 6.21
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data :
8 m1=5; //Kg
9 p1=5; //bar
10 Tsup1=200; //degree C
11 p2=0.1; //bar
12 h1=2855; //KJ/Kg(from molliers diagram)
13 h2=2235; //KJ/Kg(from molliers diagram)
14 W=m1*(h1-h2); //KJ
15 disp(W,"Workdone in KJ : ");
16 //Steam table is used to get some data.
```

Scilab code Exa 6.22 Specific work of expansion

```
1 //Exa 6.22
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data :
8 p1=160;//bar
9 Tsup1=550;//degree C(from steam table)
10 q=0;//adiabatic process
```

```
11 deltaS=0.1; //KJ/KgK
12 p2=0.2; //bar
13 t11=500; // degree C
14 t22=600; //degree C
15 h11=3297.1; //KJ/Kg(at 4bar, 500 degree C)
16 h22=3571; //KJ/Kg(at 4bar, 600 degree C)
17 h1=h11+(h22-h11)/(t22-t11)*(Tsup1-t11); //KJ/Kg
18 s11=6.305; //KJ/KgK(at 4bar, 500 degree C)
19 s22=6.639; //KJ/KgK(at 4bar,600 degree C)
20 s1=s11+(s22-s11)/(t22-t11)*(Tsup1-t11);//KJ/KgK
21 s2=deltaS+s1; //KJ/KgK
22 hf2=251.4; //KJ/Kg(at 0.2 bar)
23 hfg2=2358.2; //KJ/Kg(at 0.2 bar)
24 sf2=0.832; //KJ/KgK(at 0.2 bar)
25 sfg2=7.077; //KJ/KgK(at 0.2 bar)
26 / s2 = sf2 + x2 * sfg2
27 x2=(s2-sf2)/sfg2;//dryness
28 h2=hf2+x2*hfg2; //KJ
29 Wsf_a=h1-h2; //KJ/Kg
30 disp(Wsf_a, "Actual Work of expansion in KJ:");
31 //Steam table is used to get some data.
```

Scilab code Exa 6.23 Final Specific volume temperature and entropy

```
1 //Exa 6.23
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data:
8 mdot=2;//Kg/s
9 p1=10;//bar
10 Tsup1=200;//degree C(from steam table)
11 p2=1;//bar
```

```
12 h1=2826.8; //KJ/Kg(at 10bar, 200 degree C)
13 S1=6.692; //KJ/KgK(at 10bar, 200 degree C)
14 ts2=99.63; //degree C(at 1bar)
15 Vg2=1.694; //\text{m}^3/\text{Kg}(\text{at 1bar})
16 hf2=417.5; //KJ/Kg(at 1bar)
17 hfg2=2258; //KJ/Kg(at 1bar)
18 sf2=1.303; //KJ/KgK(at 1bar)
19 sfg2=6.057; //KJ/KgK(at 1bar)
20 / S1 = sf2 + x2 * sfg2
21 x2=(S1-sf2)/sfg2;//dryness
22 V3=x2*Vg2; //m^3/Kg
23 t2=ts2; // degree C
24 S2=S1; //KJ/KgK
25 \text{ Qdot}=0;/KJ
26 h2=hf2+x2*hfg2; //KJ/Kg
27 Wsf_dot=Qdot-mdot*((h2-h1)); //KJ/Kg
28 disp(Wsf_dot,"Work output of turbine in KJ/s or W:
  //Steam table is used to get some data.
```

Scilab code Exa 6.24 Condition of steam and change in entropy

```
1 //Exa 6.24
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data :
8 p1=7; //bar
9 x1=0.8; //dryness
10 p2=1; //bar
11 hf1=697; //KJ/Kg(at 7bar)
12 hfg1=2064.9; //KJ/Kg(at 7bar)
13 hf2=417.5; //KJ/Kg(at 1bar)
```

```
14 hfg2=2258; //KJ/Kg(at 1bar)
15 //hf1+x1*hfg1=hf2+x2*hfg2
16 x2=(hf1+x1*hfg1-hf2)/hfg2; //dryness
17 disp(x2,"Final conditio of steam(dryness): ");
18 sf2=1.303; //KJ/Kg(at 1bar)
19 sfg2=6.057; //KJ/Kg(at 1bar)
20 sf1=1.992; //KJ/Kg(at 7bar)
21 sfg1=4.713; //KJ/Kg(at 7bar)
22 deltaS=(sf2+x2*sfg2)-(sf1+x1*sfg1)
23 disp(deltaS,"Change in entropy in KJ/KgK: ");
24 //Steam table is used to get some data.
```

Scilab code Exa 6.25 Pressure at exit of throttle valve

```
1 / \text{Exa} 6.25
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data :
8 p1=10; //bar
9 \text{ x1=0.9;} // \text{dryness}
10 p2=1; //bar
11 hf1=762.6; //KJ/Kg(at 10bar)
12 hfg1=2013.6; //KJ/Kg(at 10bar)
13 h1 = hf1 + x1 * hfg1; //KJ/Kg
14 h2=h1; //KJ/Kg
15 hg2=h2; //KJ/Kg
16 p2=0.075; //bar(from steam table)
17 disp(p2, "Pressure at exit in bar: ");
18 //Steam table is used to get some data.
```

Scilab code Exa 6.26 State of steam Exit area of nozzle

```
1 / \text{Exa} 6.26
2 clc;
3 clear;
4 close;
5 format('v',7);
7 //Given Data :
8 \text{ m1dot}=3; //\text{Kg/min}
9 p1=10; //bar
10 Tsup1=250; // degree C
11 m2dot=5; //Kg/min
12 p2=10; //bar
13 x2=0.7; //dryness
14 p3=10; //bar
15 p4=5; //bar
16 p5=2; //bar
17 m3dot=m1dot+m2dot; //Kg/min
18 hsup1=2826.8; //KJ/Kg(at 10bar)
19 hf2=762.6; //KJ/Kg(at 10bar)
20 hf3=762.6; //KJ/Kg(at 10bar)
21 hfg2=2013.6; //KJ/Kg(at 10bar)
22 hfg3=2013.6; //KJ/Kg(at 10bar)
23 / m1dot*hsup1+m2dot*(hf2+x2*hfg2)=m3dot*(hf3+x3*hfg3)
24 	ext{ x3=((m1dot*hsup1+m2dot*(hf2+x2*hfg2))/m3dot-hf3)/}
      hfg3; //dryness
25 disp(x3, "State of steam after mixing(dryness): ");
26 x4=0.838; //dryness (from molliers diagram)
27 disp(x4, "State of steam after throttling (dryness):
      ");
28 sf3=2.138; //KJ/KgK(From steam table)
29 sfg3=4.445; //KJ/KgK(From steam table
30 sf4=1.860; //KJ/KgK(From steam table)
31 sfg4=4.959; //KJ/KgK(From steam table
32 \text{ s4SUBs3=m3dot/60*[(sf4+x4*sfg4)-(sf3+x3*sfg3)];//KJ/}
      Kg
```

Scilab code Exa 6.27 Dryness Fraction of steam

```
1 / Exa 6.27
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data :
8 \text{ ms}=5; //\text{Kg}
9 m2=140; //\text{Kg}
10 p=10; //bar
11 mc=20; //KJ/K
12 t1=20; //degree C
13 mwdot=20; //\text{Kg}
14 t2=40; //degree C
15 Cpw=4.19; //KJ/KgK
16 hfg=2021.4; //KJ/Kg(at 10bar)
17 ts=179.88; //degree C
18 //ms*(x*hfg)+ms*Cpw*(ts-t2)=m2*Cpw*(t2-t1)+mc*(t2-t1)
```

```
)
19 x=(m2*Cpw*(t2-t1)+mc*(t2-t1)-ms*Cpw*(ts-t2))/ms/hfg;
//dryness
20 disp(x,"Dryness fraction of steam : ");
21 //Steam table is used to get some data.
```

Scilab code Exa 6.28 Dryness Fraction of steam

```
1 //Exa 6.28
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data :
8 p1=15; //bar
9 p2=15; //bar
10 p3=1; //bar
11 Tsup3=150; //degree C
12 mw = 0.2; //\text{Kg/min}
13 ms=10; //\text{Kg/min}
14 x1=ms/(ms+mw); //dryness
15 disp(x1, "Dryness factor of steam : ");
16 hf2=844.7; //KJ/Kg(from steam table, at 15 bar)
17 hfg2=1945.2; //KJ/Kg(from steam table, at 15 bar)
18 hsup3=2776.3; //KJ/Kg (from steam table, at 15 bar)
19 / \text{hsup} 3 = \text{hf} 2 + x2 * \text{hfg} 2 ; / / \text{KJ/Kg}
20 x2=(hsup3-hf2)/hfg2;//KJ/Kg
21 x=x1*x2; //dryness
22 disp(x,"Dryness fraction in the mains: ");
23 //Steam table is used to get some data.
```

Scilab code Exa 6.29 Minimum value of dryness fraction

```
1 / \text{Exa} 6.29
2 clc;
3 clear;
4 close;
5 format('v',5);
7 // Given Data:
8 p1=1; //MPa
9 p2=100; //KPa
10 p1=p1*10^6/10^5; //bar
11 p2=p2*10^3/10^5; //bar
12 hf1=762.5; //KJ/Kg (from steam table)
13 hfg2=2013.6; //KJ/Kg(from steam table)
14 hg2=2675.5; //KJ/Kg (from steam table)
15 / hg2 = hf1 + x1 * hfg2 ; //KJ/Kg
16 	 x1 = (hg2 - hf1) / hfg2; //
17 disp(x1,"Dryness fraction in the mains: ");
18 //Steam table is used to get some data.
```

Scilab code Exa 6.30 Dryness fraction of steam

```
1 //Exa 6.30
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data:
8 p1=900;//KN/m^2
9 p2=900;//KN/m^2
10 p3=0.1013;//MN/m^2
11 p1=p1/10^2;//bar
12 p3=p2/10^2;//bar
13 p3=p3*10^6/10^5;//bar
14 Tsup3=115;//degree C
```

```
15  ms=1.8; //Kg
16  mw=0.16; //Kg
17  x1=ms/(ms+mw); //dryness
18  hf2=742.6; //KJ/Kg(from steam table)
19  hfg2=2029.5; //KJ/Kg(from steam table)
20  hg3=2676; //KJ/Kg(from steam table)
21  Ts3=100; //degree C
22  Cp=2; //KJ/KgK
23  //hf2+x2*hfg2=hg3+Cp*(Tsup3-Ts3); //KJ/Kg
24  x2=(hg3+Cp*(Tsup3-Ts3)-hf2)/hfg2; //KJ/Kg
25  x=x1*x2; //dryness
26  disp(x, "Dryness fraction of steam in mains: ");
27  //Steam table is used to get some data.
```

Scilab code Exa 6.31 Quality of steam

```
1 // \text{Exa} \ 6.31
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data :
8 p1=1.5; //MPa
9 p1=p1*10^6/10^5; //bar
10 p2=p1; //bar
11 p3=0.1; //MPa
12 p3=p3*10^6/10^5; //bar
13 Tsup3=110; // degree C
14 Vw = 0.15; // litres
15 Vw=0.15*10^-3; //m^3 at 70 degree C
16 ms = 3.24; //Kg
17 Vf = 0.001023; //\text{m}^3/\text{Kg}
18 mw = Vw / Vf ; //Kg
19 x1=ms/(ms+mw); //dryness
```

```
20  hf2=844.7; //KJ/Kg(from steam table)
21  hfg2=1945.2; //KJ/Kg(from steam table)
22  hg3=2675; //KJ/Kg(from steam table)
23  Ts3=99.63; // degree C
24  Cp=2; //KJ/KgK
25  // hf2+x2*hfg2=hg3+Cp*(Tsup3-Ts3); //KJ/Kg
26  x2=(hg3+Cp*(Tsup3-Ts3)-hf2)/hfg2; //KJ/Kg
27  x=x1*x2; // dryness
28  disp(x, "Quality of steam in pipe line(Dryness fraction): ");
29  //Steam table is used to get some data.
```

Scilab code Exa 6.32 Dryness fraction of steam

```
1 / Exa 6.32
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 // Given Data :
8 p1=1.5; //MPa
9 p1=p1*10^6/10^5; //bar
10 p_gauge=7; //bar
11 p_at=1; //bar
12 p2=p_gauge+p_at;//bar
13 p3=1; //bar
14 Tsup3=110; //degree C
15 mw=3.5; //\text{Kg}
16 ms=48; //\text{Kg}
17 Cp = 2.1; //KJ/KgK
18 x1=ms/(ms+mw);//dryness
19 hf2=720.9; //KJ/Kg(from steam table)
20 hfg2=2059.3; //KJ/Kg(from steam table)
21 hg3=2675.5; //KJ/Kg (from steam table)
```

```
22 Ts3=99.63; // degree C
23 // hf2+x2*hfg2=hg3+Cp*(Tsup3-Ts3); // KJ/Kg
24 x2=(hg3+Cp*(Tsup3-Ts3)-hf2)/hfg2; // KJ/Kg
25 x=x1*x2; // dryness
26 disp(x," Quality of steam in pipe line(Dryness fraction): ");
27 // Steam table is used to get some data.
```

Scilab code Exa 6.33 Net work done and Rankine Efficiency

```
1 / Exa 6.33
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data:
8 p1=20; //bar
9 Tsup3=360; // degree C
10 pb=0.08; //bar
11 m=1; //Kg
12 hf1=173.9; //KJ/Kg(from steam table)
13 h1=hf1; //KJ/Kg
14 wp=(p1-pb)/10; //KJ/Kg
15 h2=h1+wp; //KJ/Kg
16 h3=3160.62; //KJ/Kg(from steam table)
17 S3=6.994; //KJ/Kg
18 Sf4=0.593; //KJ/Kg (from steam table)
19 Sfg4=7.637; //KJ/Kg (from steam table)
20 S3=6.994; //KJ/Kg
21 / S3 = S4 = Sf4 + x4 * Sfg4
22 x4=(S3-Sf4)/Sfg4;//dryness
23 hf4=173.9; //KJ/Kg(from steam table)
24 hfg4=2403.2; //KJ/Kg(from steam table)
25 h4=hf4+x4*hfg4; //KJ/Kg
```

```
26 Ws=h3-h4-wp; //KJ/Kg

27 disp(Ws,"Net work done in KJ/Kg:");

28 EtaR=Ws/(h3-h2)*100; //%

29 disp(EtaR,"Rankine efficiency in %:");

30 //Steam table is used to get some data.
```

Scilab code Exa 6.34 Thermal Efficiency and Turbine work

```
1 / Exa 6.34
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given Data:
8 p1=80; //bar
9 Tsup3=350; //degree C
10 pb=712.5/760*1.01325; //bar
11 mdot=2; //Kg/s
12 / \text{mdot} = 1; / \text{Kg}
13 h3=2964; //KJ/Kg(Molliers diagram)
14 h4=2184; //KJ/Kg(Molliers diagram)
15 WT=h3-h4; //KJ/Kg
16 WTdot=mdot*WT; //KW
17 disp(WTdot, "Total turbine work in KW: ");
18 wp=(p1-pb)/10; //KJ/Kg
19 hf1=411.35; //KJ/Kg(from steam table)
20 h1=hf1; //KJ/Kg
21 h2=h1+wp; //KJ/Kg
22 qi=h3-h2; //KJ/Kg
23 EtaR=(WT-wp)/qi*100; //\%
24 disp(EtaR, "Rankine efficiency in \%:");
25 //Steam table is used to get some data.
```

Scilab code Exa 6.35 Heat supplied Dryness Fraction Work done Efficiency

```
1 / \text{Exa} 6.35
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given Data:
8 p1=30; //bar
9 Tsup3=350; //degree C
10 pb=0.5; // bar
11 h1=340.5; //KJ/Kg (from steam table, at 0.5 bar)
12 Vw = 0.001; //m^3/Kg
13 wp=(p1-pb)*10^5*Vw/1000;//KJ/Kg
14 h2=h1+wp; //KJ/Kg
15 h3=2854.8; //KJ/Kg(from steam table, at 30 bar)
16 S3=6.286; //KJ/KgK
17 S4=S3; //KJ/KgK
18 Sf4=1.091; //KJ/KgK
19 Sfg4=6.503; //KJ/KgK
20 / S4 = Sf4 + x4 * Sfg4
21 x4=(S4-Sf4)/Sfg4;//dryness
22 disp(x4," Dryness fraction of steam entering in
      condenser : ");
23 hf4=340.5; //KJ/Kg(from steam table)
24 hfg4=2305.4; //KJ/Kg(from steam table)
25 \text{ h4=hf4+x4*hfg4;} //\text{KJ/Kg}
26 q = h3 - h2; //
27 disp(q," Heat supplied to stem in boiler in KJ: ");
28 Ws=h3-h4-(h2-h1); //KJ/Kg
29 disp(Ws, "Work done in KJ/Kg:");
30 steam_rate=3600/Ws; //KJ/KWh
```

```
31 disp(steam_rate, "Steam rate per in KJ/Kwh: ");
32 EtaR=Ws/(h3-h2)*100;//%
33 disp(EtaR, "Rankine efficiency in %:");
34 //Steam table is used to get some data.
```

Chapter 7

IC Engines

Scilab code Exa 7.1 Friction Power

```
1 //Ex 7.1
2 clc;
3 clear;
4 close;
5 format('v',5);
6
7 //Given data:
8 T=10;//N-m
9 N=1500;//rpm
10 IP=1.85;//KW
11 //Calculation
12 BP=T*2*%pi*N/60/1000;//KW
13 FP=IP-BP;//KW
14 disp(FP, "Friction power(KW): ");
```

Scilab code Exa 7.2 BP of the engine

```
1 / Ex 7.2
```

```
2 clc;
3 clear;
4 close;
5 format('v',7);
7 // Given data :
8 d=18/100; /m
9 L=26/100; /m
10 N = 400; //rpm
11 positive_mep=6; // bar
12 negative_mep=-0.3; // bar
13 n=180; // strokes/min
14 Etta_m=0.75;
15
16 // Calculation
17 Pm=positive_mep+negative_mep; // bar
18 A = \%pi/4*d^2; //m^2
19 IP=Pm*10^5*A*L*n/60/1000; //KW
20 BP=IP*Etta_m; //KW
21 disp(BP, "B.P. of engine in KW: ");
```

Scilab code Exa 7.3 Power and Efficiencies

```
1 //Ex 7.3
2 clc;
3 clear;
4 close;
5 format('v',6);
6
7 //Given data:
8 r=6;//cm
9 d=10/100;//m
10 L=12.5/100;//m
11 Pmi=2.6;//bar
12 W=60;//N
```

```
13 S=19; //N
14 R=40/100; //m
15 mf = 1; //\text{Kg/hr}
16 mf=mf/60/60; //\text{Kg/sec}
17 CV = 42000; //KJ/Kg
18 N = 2000; //rpm
19
20 // Calculation
21 A = \%pi/4*d^2; //m^2
22 n=N/2; //no. of strokes/min
23 IP=Pmi*10^5*A*L*n/60/1000; //KW
24 disp(IP, "Indicated Power in KW: ");
25 BP=(W-S)*R*2*%pi*N/60/1000; //KW
26 disp(BP, "Brake Power in KW: ");
27 Etta_m=BP/IP*100; //\%
28 disp(Etta_m, "Mechanical efficiency in \%: ");
29 Etta_o=BP/mf/CV*100; //\%
30 disp(Etta_o, "Overall efficiency in %: ");
31 Gamma=1.4; //constant
32 Etta_a=(1-1/(r^{(Gamma-1))})*100 ; //\%
33 disp(Etta_a, "Air standard efficiency in \% : ");
34 Etta_r=Etta_o/Etta_a*100; //\%
35 disp(Etta_r," Relative efficiency in \%: ");
```

Scilab code Exa 7.4 Bore and length of stroke

```
1 //Ex 7.4
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given data:
8 IP=50;//KW
9 Vf=16;//litre/hr
```

```
10 Sp_gravity_fuel=0.755;
11 CV = 44500; //KJ/Kg
12 N = 3000; //rpm
13 Pmi = 5.2; //bar
14
15 // Calculation
16 mf=Vf*10^-3*Sp\_gravity\_fuel*1000;/Kg/hr
17 mf=mf/3600; //\text{Kg/s}
18 Etta_i=IP/mf/CV*100; //%
19 disp(Etta_i, "Indicated thermal efficiency in %:");
20 //IP=Pmi*10^5*\%pi/4*d^2*L*N/2/60/1000;//KW
d = (IP*60*1000/Pmi/10^5/(%pi/4)/1.1/(N/2))^(1/3); //
      meter(L=1.1*d)
22 disp(d*100, "Bore in cm : ");
23 L=1.1*d; // meter
24 disp(L*100, "Length of stroke in cm : ");
```

Scilab code Exa 7.5 Indicated Power of Engine

```
1 //Ex 7.5
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given data :
8 Vs=5.7; //litre
9 Vs=Vs/1000; //m^3
10 Pm=600; //KN/m^2
11 N=800; //rpm
12
13 // Calculation
14 n=N/2; //No. of strokes/min
15 IP=Pm*Vs*n/60; //KW
16 disp(IP, "Indicated power of Engine in KW : ");
```

Scilab code Exa 7.6 Diameter and stroke of engine

```
1 / Ex 7.6
2 clc;
3 clear;
4 close;
5 format('v',7);
7 //Given data :
8 n1=6; //cylinders
9 IP=100; /KW
10 N=800; //\text{rpm}
11 Lbyd=1.25; //stroke to bore ratio
12 Etta_m=80/100;
13 bmep=5;//bar
14
15 // Calculation
16 n=N/2; //No. of strokes/min
17 / IP = Pm * \%pi / 4 * d^2 * d * Lbyd * n / 60000
18 d=(IP/(bmep*\%pi/4*Lbyd*n/60000))^(1/3);//m
19 L=Lbyd*d; //m
20 disp(d,"Diameter in meter: ");
21 disp(L,"Length ofstroke in meter: ");
22 //Solution is not complete in the book.
```

Scilab code Exa 7.7 Indicated Power of Engine

```
1 //Ex 7.7
2 clc;
3 clear;
4 close;
```

```
5 format('v',7);
6
7 //Given data:
8 d=110/1000;//m
9 L=140/1000;//m
10 Pmi=600;//KN/m^2
11 N=1000;//rpm
12 n=N;//strokes/min(for 2 stroke)
13 A=%pi/4*d^2;//m^2
14 IP=Pmi*A*L*n/60;//KW
15 disp(IP,"Indicated power of the engine in KW:");
```

Scilab code Exa 7.8 Engine Crank Shaft Speed

```
1 / Ex 7.8
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given data :
8 n1=6; // cylinders
9 IP=150; /KW
10 N=800; //\text{rpm}
11 TwoLN=320; //m/s
12 Lbyd=1.2;//stroke to bore ratio
13 Pmi=650; //\text{Kn/m}^2
14
15 // Calculation
16 //IP = n1 *Pmi * (\%pi/4 * d^2) *L*n/60; //KW
17 d = sqrt(IP/n1/Pmi/(\%pi/4)*2/TwoLN*2*60); //meter(L*N)
      replaced by TwoLN/2)
18 L=Lbyd*d; //in meter
19 N = TwoLN/2/L; //rpm
20 disp(N,"Engine crank shaft speed in rpm : ");
```

Scilab code Exa 7.9 Power and Efficiency

```
1 / Ex 7.9
2 clc;
3 clear;
4 close;
5 format('v',7);
7 //Given data :
8 d=250/1000; // meter
9 L=400/1000; //meter
10 Pmi = 6.50; //bar
11 N = 250; //rpm
12 NetBrakeLoad=1080; //N
13 Db=1.5; // meter
14 mf = 10; //\text{Kg/hr}
15 mf=mf/60/60; //\text{Kg/sec}
16 CV = 44300; //KJ/Kg
17
18 // Calculation
19 n=N/2; //stroke/min
20 IP=Pmi*10^5*(%pi/4*d^2)*L*n/60/1000;//KW
21 disp(IP, "Indicated Power in KW: ");
22 Rb=Db/2; //meter
23 BP=NetBrakeLoad*Rb*2*%pi*N/60/1000;//KW
24 disp(BP, "Brake Power in KW: ");
25 Etta_m=BP/IP*100; //\%
26 disp(Etta_m, "Mechanical Efficiency in \%: ");
27 Etta_i=IP/mf/CV*100;//%
28 disp(Etta_i, "Indicated Thermal Efficiency in %:");
```

Scilab code Exa 7.10 Fuel Consumption and Efficiency

```
1 //Ex 7.10
2 clc;
3 clear;
4 close;
5 format('v',7);
7 //Given data :
8 mf=20; //\text{Kg/hr}
9 BP=80; /KW
10 Etta_m=80/100;
11 CV = 45000; //KJ/Kg
12 bsfc=mf/BP;//break specified fuel consumption in Kg/
13 disp(bsfc,"Break specified fuel consumption in Kg/
     KWh : ");
14 IP=BP/Etta_m; //KW
15 mf=mf/60/60; //\text{Kg/s}
16 n=mf/100; //Kg/KWh
17 Etta_b=BP/mf/CV*100; //\%
18 disp(Etta_b, "Break Efficiency in % : ");
19 Etta_I=Etta_b/Etta_m;//
20 disp(Etta_I,"Indicated thermal Efficiency in \%: ");
```

Scilab code Exa 7.11 IP BP and Efficiency

```
1 //Ex 7.11
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 //Given data:
8 d=270/1000;//meter
9 L=380/1000;//meter
10 Pmi=6;//bar
```

```
11  N=350; //rpm
12  WsubS=1000; //N
13  Db=1.5; //meter
14  mf=10; //Kg/hr
15  CV=44400; //KJ/Kg
16
17  IP=Pmi*10^5*(%pi/4*d^2)*L*N/2/60/1000; //KW
18  disp(IP, "Indicated Power in KW:");
19  BP=(WsubS)*%pi*Db*N/60/1000; //KW
20  disp(BP, "Brake Power in KW:");
21  Etta_m=BP/IP*100; //%
22  disp(Etta_m, "Mechanical Efficiency in %:");
23  mf=mf/60/60; //Kg/s
24  Etta_b=BP/mf/CV*100; //
25  disp(Etta_b, "Indicated thermal Efficiency in %:");
```