METHOD FOR THE PRODUCTION OF MULTIPLY-UNSATURATED FATTY ACIDS IN TRANSGENIC ORGANISMS

Publication number: WO2005012316

Publication date:

2005-02-10

Inventor:

ZANK THORSTEN (DE); BAUER JOERG (DE); CIRPUS PETRA (DE); ABBADI AMINE (DE); HEINZ ERNST (DE); QIU XIAO (CA); VRINTEN PATRICIA (CA); SPERLING PETRA (DE); DOMERGUE FREDERIC (DE); MEYER ASTRID (DE); KIRSCH JELENA (DE)

Applicant:

BASF PLANT SCIENCE GMBH (DE); ZANK
THORSTEN (DE); BAUER JOERG (DE); CIRPUS
PETRA (DE); ABBADI AMINE (DE); HEINZ ERNST
(DE); QIU XIAO (CA); VRINTEN PATRICIA (CA);
SPERLING PETRA (DE); DOMERGUE FREDERIC
(DE); MEYER ASTRID (DE); KIRSCH JELENA (DE)

Classification:

- international:

C11B1/02; C12N9/02; C12N9/10; C11B1/00; C12N9/02;

C12N9/10; (IPC1-7): C07H

- european:

Application number: WO2004EP07957 20040716

Priority number(s): DE20031035992 20030801; DE20031044557 20030924;

DE20031047869 20031010; DE20031059593 20031218;

DE20001047005 20001010, DE20001000000 20001

DE200410009457 20040227; DE200410012370

20040313; DE200410024014 20040514

Also published as:

WO2005012316 (A3)
 EP1654344 (A3)
 EP1654344 (A2)
 EP1654344 (A0)
 CA2533613 (A1)

Cited documents:

E XP002266491 E XP002200201 E XP009046591 E XP002228745 E XP002174836

Report a data error here

Abstract of WO2005012316

The invention relates to a method for the production of multiply-unsaturated fatty acids in an organism, into which nucleic acids have been introduced, which code for polypeptides with Delta-5 elongase activity. Said nucleic acid sequences, optionally with further nucleic acid sequences, coding for polypeptides for the biosynthesis of fatty acids and lipid metabolism, are advantageously expressed in the organism. Nucleic acid sequences coding for a Delta-6 desaturase, a Delta-5 desaturase, Delta-4 desaturase and/or Delta-6 elongase activity are particularly advantageous and, advantageously, said saturases and elongases are derived from Thalassiosira, Euglena or Ostreococcus. The invention further relates to a method for the production of oils and/or triacylglycerides with an increased content of long-chain, multiplyunsaturated fatty acids. A particular embodiment of the invention is a method for the production of unsaturated omega-3 fatty acids and a method for the production of triglycerides with an increased content of unsaturated fatty acids, in particular, of Delta-3 fatty acids with more than three double bonds. Also disclosed is the production of a transgenic organism, preferably a transgenic plant, or a transgenic microorganism with increased content of omega-3 fatty acids, oils or lipids with omega-3 double bonds as a result of the expression of the elongases and desaturases employed in the above method, preferably in combination with omega-3 desaturases, for example a omega-3 desaturase from fungi of the family Pythiaceae such as the genus Phytophtora, for example, the genus and species Phytophtora infestans, or a omega-3 desaturase from algae such as the family Prasinophyceae, for example, the genus Ostreococcus and, particularly, the genus and species Ostreococcus tauri or diatomaceae such as the genus Thalassiosira and, particularly, the genus and species Thalassiosira pseudonana. The invention also relates to the nucleic acid sequences, nucleic acid constructs, vectors and organisms containing the nucleic acid sequences and/or the nucleic acid constructs and transgenic organisms containing said nucleic acid sequences, nucleic acid constructs and/or vectors. A further part of the invention relates to oils, lipids and/or fatty acids produced according to the above method and use thereof and, furthermore, unsaturated fatty acids and triglycerides with an increased content of unsaturated fatty acids and use

THIS PAGE BLANK (USPTO)

thereof.

Data supplied from the esp@cenet database - Worldwide

THIS PAGE BLANK (USPTO)

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 10. Februar 2005 (10.02.2005)

PCT

(10) Internationale Veröffentlichungsnummer WO 2005/012316 A2

(51)	Internationale l	Patentklassifikation ⁷ :	C07H	103 59 593.7 18. Dezember 2003 (18.12.2003) DE
` ,	Internationales	Aktenzeichen: PCT/EP2004 Anmeldedatum:	4/007957	10 2004 009 457.8 27. Februar 2004 (27.02.2004) DE 10 2004 012 370.5 13. März 2004 (13.03.2004) DE
(/	16. Juli 2004 (16.07.2004)			10 2004 024 014.0 14. Mai 2004 (14.05.2004) DE
(25)	Einreichungssprache: Deutsch		Deutsch	(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BASF PLANT SCIENCE GMBH [DE/DE]; 67056
(26)	Veröffentlichungssprache: Deutsch		Deutsch	Ludwigshafen (DE).
(30)	D) Angaben zur Priorität:			(72) Erfinder; und
	103 35 992.3	1. August 2003 (01.08.200	3) DE	(75) Erfinder/Anmelder (nur für US): ZANK, Thorsten
	103 44 557.9	24. September 2003 (24.09.200	3) DE	[DE/DE]; Seckenheimer Str. 4-6, 68165 Mannheim
	103 47 869.8	10. Oktober 2003 (10.10.200)3) DE	(DE). BAUER, Jörg [DE/DE]; Thorwaldsenstr. 4A,
				[Fortsetzung auf der nächsten Seite]

(54) Title: METHOD FOR THE PRODUCTION OF MULTIPLY-UNSATURATED FATTY ACIDS IN TRANSGENIC ORGANISMS

(54) Bezeichnung: VERFAHREN ZUR HERSTELLUNG MEHRFACH UNGESÄTTIGTER FETTSÄUREN IN TRANSGENEN

(57) Abstract: The invention relates to a method for the production of multiply-unsaturated fatty acids in an organism, into which nucleic acids have been introduced, which code for polypeptides with Δ -5 elongase activity. Said nucleic acid sequences, optionally with further nucleic acid sequences, coding for polypeptides for the biosynthesis of fatty acids and lipid metabolism, are advantageously expressed in the organism. Nucleic acid sequences coding for a Δ-6 desaturase, a Δ-5 desaturase, Δ-4 desaturase and/or Δ-6 elongase activity are particularly advantageous and, advantageously, said saturases and elongases are derived from Thalassiosira, Euglena or Ostreococcus. The invention further relates to a method for the production of oils and/or triacylglycerides with an increased content of long-chain, multiply-unsaturated fatty acids. A particular embodiment of the invention is a method for the production of unsaturated ω-3 fatty acids and a method for the production of triglycerides with an increased content of unsaturated fatty acids, in particular, of Δ -3 fatty acids with more than three double bonds. Also disclosed is the production of a transgenic organism, preferably a transgenic plant, or a transgenic microorganism with increased content of ω-3 fatty acids, oils or lipids with ω-3 double bonds as a result of the expression of the elongases and desaturases employed in the above method, preferably in combination with ω-3 desaturases, for example a ω-3 desaturase from fungi of the family Pythiaceae such as the genus Phytophtora, for example, the genus and species Phytophtora infestans, or a ω-3 desaturase from algae such as the family Prasinophyceae, for example, the genus Ostreococcus and, particularly, the genus and species Ostreococcus tauri or diatomaceæ such as the genus Thalassiosira and, particularly, the genus and species Thalassiosira pseudonana. The invention also relates to the nucleic acid sequences, nucleic acid constructs, vectors and organisms containing the nucleic acid sequences and/or the nucleic acid constructs and transgenic organisms containing said nucleic acid sequences, nucleic acid constructs and/or vectors. A further part of the invention relates to oils, lipids and/or fatty acids produced according to the above method and use thereof and, furthermore, unsaturated fatty acids and triglycerides with an increased content of unsaturated fatty acids and use thereof.

(57) Zusammenfassung: Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von mehrfach unge sättigten Fettsäuren in einem Organismus, indem Nukleinsäuren in den Organismus eingebracht werden, die für Polypeptide mit Δ-5-Elongaseaktivität codieren. Vorteilhaft können diese Nukleinsäuresequenzen gegebenenfalls zusammen mit weiteren Nukleinsäuresequenzen, die für Polypeptide der Biosynthese des Fettsäure- oder Lipidstoffwechels codieren, in dem Organismus exprimiert werden. Besonders vorteilhaft sind Nukleinsäuresequenzen, die für eine Δ-6-Desaturase-, eineΔ-5-Desaturase-, Δ-4-Desaturaseund/oder Δ-6-Elongascaktivität codieren. Vorteilhaft stammen diese Desaturasen und Elongasen aus Thalassiosira, Euglena oder Ostreococcus. Weiterhin betrifft die Erfindung ein Verfahren zur Herstellung von Ölen und/oder Triacylglyceriden mit einem erhöhten Gehalt an langkettigen mehrfach ungesättigten Fettsäuren. Die vorliegende Erfindung betrifft ausserdem in einer bevorzugten Ausführungsform ein Verfahren zur Herstellung von ungesättigten ω-3 Fettsäuren sowie ein Verfahren zur Herstellung von Triglyceriden mit einem erhöhten Gehalt an ungesättigten Fettsäuren, besonders von ω-3 Fettsäuren mit mehr als drei Doppelbindungen. Die Erfindung betrifft die Herstellung eines transgenen Organismus mit erhöhtem Gehalt an ungesättigten ω-3-Fettsäuren, Ölen oder Lipiden mit ω-3-Doppelbindungen aufgrund der Expression der im erfindungsgemässen Verfahren verwendeten Elongasen und Desaturasen

WO 2005/012316

[Fortsetzung auf der nächsten Seite]

67061 Ludwigshafen (DE). CIRPUS, Petra [DE/DE]; Landteilstr. 12, 68163 Mannheim (DE). ABBADI, Amine [DE/DE]; Lübbersmeyer Weg 26, 22549 Hamburg (DE). HEINZ, Ernst [DE/DE]; Püttkampsweg 13, 22609 Hamburg (DE). QIU, Xiao [CN/CA]; 403 Kendardine Road, Saskatoon, Sk., S7N 3S5 (CA). VRINTEN, Patricia [CA/CA]; 725 310 Stillwater Drive, Saskatoon, Sk. S7J 4H5 (CA). SPERLING, Petra [DE/DE]; Eberhardstr. 9, 22041 Hamburg (DE). DOMERGUE, Frederic [FR/DE]; Bahrenfelder Steindamm 98, 22761 Hamburg (DE). MEYER, Astrid [DE/DE]; Jessenstr. 14, 22767 Hamburg (DE). KIRSCH, Jelena [DE/DE]; Ohnhorststr. 18, 22609 Hamburg (DE).

- (74) Anwalt: PRESSLER, Uwe; c/o BASF Aktienge-sellschaft, 67056 Ludwigshafen (DE).
- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,

- MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

 ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

vorteilhaft in Verbindung mit ω-3-Desaturasen z.B. einer ω-3-Desaturase aus Pilzen der Familie Pythiaceae wie der Gattung Phytophtora beispielsweise der Gattung und Art Phytophtora infestans oder einer ω-3-Desaturase aus Algen wie der Familie der Prasinophyceae z.B. der Gattung Ostreococcus speziell der Gattung und Art Ostreococcus tauri oder Diatomeen wie der Gattung Thalassiosira speziell der Gattung und Art Thalassiosira pseudonana. Die Erfindung betrifft weiterhin die Nukleinsäuresequenzen, Nukleinsäuresequenzen und Organismen enthaltend die erfindungsgemässen Nukleinsäuresequenzen, Vektoren enthaltend die Nukleinsäuresequenzen und/oder die Nukleinsäurekonstrukte sowie transgene Organismen enthalten die vorgenannten Nukleinsäuresequenzen, Nukleinsäurekonstrukte und/oder Vektoren. Ein weiterer Teil der Erfindung betrifft Öle, Lipide und/oder Fettsäuren hergestellt nach dem erfindungsgemässen Verfahren und deren Verwendung. Ausserdem betrifft die Erfindung ungesättigte Fettsäuren sowie Triglyceride mit einem erhöhten Gehalt an ungesättigten Fettsäuren und deren Verwendung.

PCT/EP2004/007957 WO 2005/012316

Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenen Organismen

Beschreibung

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von mehrfach ungesättigten Fettsäuren in einem Organismus, indem Nukleinsäuren in den Organismus eingebracht werden, die für Polypeptide mit Δ-5-Elongaseaktivität codieren. Vorteilhaft können diese Nukleinsäuresequenzen gegebenenfalls zusammen mit weiteren Nukleinsäuresequenzen, die für Polypeptide der Biosynthese des Fettsäure- oder Lipidstoffwechels codieren, in dem Organismus exprimiert werden. Besonders vorteilhaft sind Nukleinsäuresequenzen, die für eine Δ -6-Desaturase-, eine Δ -5-Desaturase-, Δ-4-Desaturase-, Δ-12-Desaturase- und/oder Δ-6-Elongaseaktivität codieren. Vorteilhaft stammen diese Desaturasen und Elongasen aus Thalassiosira, Euglena oder Ostreococcus. Weiterhin betrifft die Erfindung ein Verfahren zur Herstellung von Ölen und/oder Triacylglyceriden mit einem erhöhten Gehalt an langkettigen

15 mehrfach ungesättigten Fettsäuren.

Die vorliegende Erfindung betrifft außerdem in einer bevorzugten Ausführungsform ein Verfahren zur Herstellung von ungesättigten ω-3 Fettsäuren sowie ein Verfahren zur Herstellung von Triglyceriden mit einem erhöhten Gehalt an ungesättigten Fettsäuren, besonders von ω-3 Fettsäuren mit mehr als drei Doppelbindungen. Die Erfindung 20 betrifft die Herstellung eines transgenen Organismus bevorzugt einer transgenen Pflanze oder eines transgenen Mikroorganismus mit erhöhtem Gehalt an ungesättigten ω -3-Fettsäuren, Ölen oder Lipiden mit ω -3-Doppelbindungen aufgrund der Expression der im erfindungsgemäßen Verfahren verwendeten Elongasen und Desaturasen vorteilhaft in Verbindung mit ω-3-Desaturasen z.B. einer ω-3-Desaturase aus Pilzen 25 der Familie Pythiaceae wie der Gattung Phytophtora beispielsweise der Gattung und Art Phytophtora infestans oder einer ω-3-Desaturase aus Algen wie der Familie der Prasinophyceae.z.B. der Gattung Ostreococcus speziell der Gattung und Art Ostreococcus tauri oder Diatomeen wie der Gattung Thalassiosira speziell der Gattung und Art Thalassiosira pseudonana.

- 30 Die Erfindung betrifft weiterhin die Nukleinsäuresequenzen, Nukleinsäurekonstrukte, Vektoren und Organismen enthaltend die erfindungsgemäßen Nukleinsäuresequenzen, Vektoren enthaltend die Nukleinsäuresequenzen und/oder die Nukleinsäurekonstrukte sowie transgene Organismen enthalten die vorgenannten Nukleinsäuresequenzen, Nukleinsäurekonstrukte und/oder Vektoren.
- 35 Ein weiterer Teil der Erfindung betrifft Öle, Lipide und/oder Fettsäuren hergestellt nach dem erfindungsgemäßen Verfahren und deren Verwendung. Außerdem betrifft die Erfindung ungesättigte Fettsäuren sowie Triglyceride mit einem erhöhten Gehalt an ungesättigten Fettsäuren und deren Verwendung.
- Fettsäuren und Triacylglyceride haben eine Vielzahl von Anwendungen in der 40 Lebensmittelindustrie, der Tierernährung, der Kosmetik und im Pharmabereich.

Je nachdem, ob es sich um freie gesättigte und ungesättigte Fettsäuren oder um Triacylglyceride mit einem erhöhten Gehalt an gesättigten oder ungesättigten Fettsäuren handelt, sind sie für die unterschiedlichsten Anwendungen geeignet. Mehrfachungesättigte Fettsäuren wie Linol- und Linolensäure sind für Säugetiere essentiell, da sie nicht von diesen selbst hergestellt werden können. Deshalb stellen mehrfach ungesättigte ω -3-Fettsäuren und ω -6-Fettsäuren einen wichtigen Bestandteil der tienischen und menschlichen Nahrung dar.

Mehrfach ungesättigte langkettige ω-3-Fettsäuren wie Eicosapentaensäure (= EPA, C20:5^{Δ5,8,11,14,17}) oder Docosahexaensäure (= DHA, C22:6^{Δ4,7,10,13,16,19}) sind wichtige
Komponenten der menschlichen Ernährung aufgrund ihrer verschiedenen Rollen in der Gesundheit, die Aspekte wie die Entwicklung des kindlichen Gehirns, der Funktionalität des Auges, der Synthese von Hormonen und anderer Signalstoffe, sowie die Vorbeugung von Herz-Kreislauf-Beschwerden, Krebs und Diabetes umfassen (Poulos, A Lipids 30:1-14, 1995; Horrocks, LA und Yeo YK Pharmacol Res 40:211-225, 1999). Es besteht aus diesem Grund ein Bedarf an der Produktion mehrfach ungesättigter langkettiger Fettsäuren.

Aufgrund der heute üblichen Zusammensetzung der menschlichen Nahrung ist ein Zusatz von mehrfach ungesättigten ω-3-Fettsäuren, die bevorzugt in Fischölen vorkommen, zur Nahrung besonders wichtig. So werden beispielsweise mehrfach ungesättigte Fettsäuren wie Docosahexaensäure (= DHA, C22:6^{Δ4,7,10,13,16,19}) oder Eisosapentaensäure (= EPA, C20:5^{ΔS,8,11,14,17}) Babynahrung zur Erhöhung des Nährwertes zugesetzt. Der ungesättigten Fettsäure DHA wird dabei ein positiver Effekt auf die Entwicklung und Aufrechterhaltung von Gehirnfunktionen zugeschrieben.

20

30

35

Im folgenden werden mehrfach ungesättigte Fettsäuren als PUFA, PUFAs, LCPUFA oder LCPUFAs bezeichnet (poly unsaturated fatty acids, PUFA, mehrfach ungesättigte Fettsäuren; long chain poly unsaturated fatty acids, LCPUFA, langkettige mehrfach ungesättigte Fettsäuren).

Hauptsächlich werden die verschiedenen Fettsäuren und Triglyceride aus Mikroorganismen wie Mortierella oder Schizochytrium oder aus Öl-produzierenden Pflanzen wie Soja, Raps, Algen wie Crypthecodinium oder Phaeodactylum und weiteren gewonnen, wobei sie in der Regel in Form ihrer Triacylglyceride (= Triglyceride = Triglycerole) anfallen. Sie können aber auch aus Tieren wie z.B. Fischen gewonnen werden. Die freien Fettsäuren werden vorteilhaft durch Verseifung hergestellt. Sehr langkettige mehrfach ungesättigte Fettsäuren wie DHA, EPA, Arachidonsäure (= ARA, C20:4^{A5.8.11,14}), Dihomo-γ-linolensäure (C20:3^{A6,11,14}) oder Docosapentaensäure (DPA, C22:5^{A7,10,13,16,19}) werden in Ölfruchtpflanzen wie Raps, Soja, Sonnenblume, Färbersaflor nicht synthetisiert. Übliche natürliche Quellen für diese Fettsäuren sind Fische wie Hering, Lachs, Sardine, Goldbarsch, Aal, Karpfen, Forelle, Heilbutt, Makrele, Zander oder Thunfisch oder Algen.

Je nach Anwendungszweck werden Öle mit gesättigten oder ungesättigten Fettsäuren bevorzugt. So werden z.B. in der humanen Ernährung Lipide mit ungesättigten Fett-

15

säuren speziell mehrfach ungesättigten Fettsäuren bevorzugt. Den mehrfach ungesättigten ω-3-Fettsäuren wird dabei ein positiver Effekt auf den Cholesterinspiegel im Blut und damit auf die Möglichkeit der Prävention einer Herzerkrankung zugeschrieben. Durch Zugabe dieser ω-3-Fettsäuren zur Nahrung kann das Risiko einer Herzerkrankung, eines Schlaganfalls oder von Bluthochdruck deutlich verringert werden. Auch entzündliche speziell chronisch entzündliche Prozesse im Rahmen immunologischer Erkrankungen wie rheumatroider Arthritis lassen sich durch ω-3-Fettsäuren positiv beeinflussen. Sie werden deshalb Lebensmitteln speziell diätischen Lebensmitteln zugegeben oder finden in Medikamenten Anwendung. ω-6-Fettsäuren wie Arachidonsäure haben bei diesen rheumatischen Erkrankungen aufgrund unserer üblichen Nahrungsmittelzusammensetzung eher einen negativen Effekt auf diese Krankheiten.

ω-3- und ω-6-Fettsäuren sind Vorläufer von Gewebshormonen, den sogenannten Eicosanoiden wie den Prostaglandinen, die sich von der Dihomo-γ-linolensäure, der Arachidonsäure und der Eicosapentaensäure ableiten, den Thromoxanen und Leukotrienen, die sich von der Arachidonsäure und der Eicosapentaensäure ableiten. Eicosanoide (sog. PG₂-Serie), die aus ω-6-Fettsäuren gebildet werden fördern in der Regel Entzündungsreaktionen, während Eicosanoide (sog. PG₃-Serie) aus ω-3-Fettsäuren geringe oder keine entzündungsfördernde Wirkung haben.

Aufgrund ihrer positiven Eigenschaften hat es in der Vergangenheit nicht an Ansätzen 20 gefehlt, Gene, die an der Synthese von Fettsäuren bzw. Triglyceriden beteiligt sind, für die Herstellung von Ölen in verschiedenen Organismen mit geändertem Gehalt an ungesättigten Fettsäuren verfügbar zu machen. So wird in WO 91/13972 und seinem US-Äquivalent eine Δ -9-Desaturase beschrieben. In WO 93/11245 wird eine Δ -15-Desaturase in WO 94/11516 wird eine Δ-12-Desaturase beansprucht. Weitere 25 Desaturasen werden beispielsweise in EP-A-0 550 162, WO 94/18337, WO 97/30582, WO 97/21340, WO 95/18222, EP-A-0 794 250, Stukey et al., J. Biol. Chem., 265, 1990: 20144-20149, Wada et al., Nature 347, 1990: 200-203 oder Huang et al., Lipids 34, 1999: 649-659 beschrieben. Die biochemische Charakterisierung der verschiedenen Desaturasen ist jedoch bisher nur unzureichend erfolgt, da die Enzyme als 30 membrangebundene Proteine nur sehr schwer zu isolieren und zu charakterisieren sind (McKeon et al., Methods in Enzymol. 71, 1981: 12141-12147, Wang et al., Plant Physiol. Biochem., 26, 1988: 777-792). In der Regel erfolgt die Charakterisierung membrangebundener Desaturasen durch Einbringung in einen geeigneten Organismus, der anschließend auf Enzymaktivität mittels Edukt- und Produktanalyse unter-35 sucht wird. Δ-6-Desaturasen werden in WO 93/06712, US 5,614,393, US5614393, WO 96/21022, WO00/21557 und WO 99/27111 beschrieben und auch die Anwendung zur Produktion in transgenen Organismen beschrieben wie in WO98/46763 WO98/46764, WO9846765. Dabei wird auch die Expression verschiedener Desaturasen wie in WO99/64616 oder WO98/46776 und Bildung polyungesättigter Fettsäuren 40 beschrieben und beansprucht. Bzgl. der Effektivität der Expression von Desaturasen und ihren Einfluss auf die Bildung polyungesättigter Fettsäuren ist anzumerken, dass durch Expression einer einzelnen Desaturase wie bisher beschrieben lediglich geringe

25

30

35

Gehalte an ungesättigten Fettsäuren/Lipiden wie z.B. γ-Linolensäure und Stearidonsäure erreicht wurden. Weiterhin wurde in der Regel ein Gemisch aus ω -3- und ω -6-Fettsäuren erhalten.

Besonders geeignete Mikroorganismen zur Herstellung von PUFAs sind Mikroorganismen wie Mikroalgen wie Phaeodactylum tricornutum, Porphiridium-Arten, Thraustochytrien-Arten, Schizochytrien-Arten oder Crypthecodinium-Arten, Ciliaten, wie Stylonychia oder Colpidium, Pilze, wie Mortierella, Entomophthora oder Mucor und/oder Moosen wie Physcomitrella, Ceratodon und Marchantia (R. Vazhappilly & F. Chen (1998) Botanica Marina 41: 553-558; K. Totani & K. Oba (1987) Lipids 22: 1060-1062; M. Akimoto et al. (1998) Appl. Biochemistry and Biotechnology 73: 269-278). Durch Stammselektion ist eine Anzahl von Mutantenstämmen der entsprechenden 10 Mikroorganismen entwickelt worden, die eine Reihe wünschenswerter Verbindungen, einschließlich PUFAs, produzieren. Die Mutation und Selektion von Stämmen mit verbesserter Produktion eines bestimmten Moleküls wie den mehrfach ungesättigten Fettsäuren ist jedoch ein zeitraubendes und schwieriges Verfahren. Deshalb werden, wann immer möglich wie oben beschrieben gentechnologische Verfahren bevorzugt. 15 Mit Hilfe der vorgenannten Mikroorganismen lassen sich jedoch nur begrenzte Mengen der gewünschten mehrfach ungesättigten Fettsäuren wie DPA, EPA oder ARA herstellen. Wobei diese in der Regel je nach verwendeten Mikroorganismus als Fettsäuregemische aus beispielsweise EPA, DPA und ARA anfallen. 20

Für die Synthese von Arachidonsäure, Eicosapentaensäure (EPA) und Docosahexaensäure (DHA) werden verschiedene Synthesewege diskutiert (Figur. 1). So erfolgt die Produktion von EPA bzw. DHA in marinen Bakterien wie Vibrio sp. oder Shewanella sp. nach dem Polyketid-Weg (Yu, R. et al. Lipids 35:1061-1064, 2000; Takeyama, H. et al. Microbiology 143:2725-2731, 1997).

Ein alternative Strategie verläuft über die wechselnde Aktivität von Desaturasen und Elongasen (Zank, T.K. et al. Plant Journal 31:255-268, 2002; Sakuradani, E. et al. Gene 238:445-453, 1999). Eine Modifikation des beschriebenen Weges über $\Delta 6$ -Desaturase, $\Delta 6$ -Elongase, $\Delta 5$ -Desaturase, $\Delta 5$ -Elongase, $\Delta 4$ -Desaturase ist der Sprecher-Syntheseweg (Sprecher 2000, Biochim. Biophys. Acta 1486:219-231) in Säugetieren. Anstelle der $\Delta 4$ -Desaturierung erfolgt hier ein weiterer Elongationsschritt auf C_{24} , eine weitere $\Delta 6$ -Desaturierung und abschliessend eine β -Oxidation auf die C_{22} -Kettenlänge. Für die Herstellung in Pflanzen und Mikroorganismen ist der sogenannte Sprecher-Syntheseweg (siehe Figur 1) allerdings nicht geeignet, da die Regulationsmechanismen nicht bekannt sind.

Die polyungesättigten Fettsäuren können entsprechend ihrem Desaturierungsmuster in zwei große Klassen, in ω -6- oder ω -3-Fettsäuren eingeteilt werden, die metabolisch und funktionell unterschiedlich Aktivitäten haben (Fig. 1).

Als Ausgangsprodukt für den ω -6-Stoffwechselweg fungiert die Fettsäure Linoisäure (18:2 $^{\Delta 9,12}$), während der ω -3-Weg über Linolensäure (18:3 $^{\Delta 9,12,15}$) abläuft. Linolensäure 40

15

20

25

-30

35

40

wird dabei durch Aktivität einer ω -3-Desaturase gebildet (Tocher et al. 1998, Prog. Lipid Res. 37, 73-117; Domergue et al. 2002, Eur. J. Biochem. 269, 4105-4113).

Säugetiere und damit auch der Mensch verfügen über keine entsprechende Desaturaseaktivität (Δ-12- und ω-3-Desaturase) und müssen diese Fettsäuren (essentielle Fettsäuren) über die Nahrung aufnehmen. Über die Abfolge von Desaturase- und Elongase-Reaktionen werden dann aus diesen Vorstufen die physiologisch wichtigen polyungesättigten Fettsäuren Arachidonsäure (= ARA, 20:4^{Δ5,8,11,14}), eine ω-6-Fettsäure und die beiden ω-3-Fettsäuren Eicosapentaen- (= EPA, 20:5^{Δ5,8,11,14,17}) und Docosahe-xaensäure (DHA, 22:6^{Δ4,7,10,13,17,19}) synthetisiert. Die Applikation von ω-3-Fettsäuren zeigt dabei die wie oben beschrieben therapeutische Wirkung bei der Behandlung von Herz-Kreislaufkrankheiten (Shimikawa 2001, World Rev. Nutr. Diet. 88, 100-108), Entzündungen (Calder 2002, Proc. Nutr. Soc. 61, 345-358) und Arthridis (Cleland und James 2000, J. Rheumatol. 27, 2305-2307).

Aus ernährungsphysiologischer Sicht ist es deshalb wichtig bei der Synthese mehrfach ungesättigter Fettsäuren eine Verschiebung zwischen dem ω -6-Syntheseweg und dem ω -3-Syntheseweg (siehe Figur 1) zu erreichen, so dass mehr ω -3-Fettsäuren hergestellt werden. In der Literatur wurden die enzymatischen Aktivitäten verschiedener ω -3-Desaturasen beschrieben, die C_{18:2}-, C_{22:4}- oder C_{22:5}-Fettsäuren desaturieren (siehe Figur 1). Keine der biochemisch beschriebenen Desaturasen setzt jedoch ein breites Substratspektrum des ω -6-Synthesewegs zu den entsprechenden Fettsäuren des ω -3-Syntheseweg um.

Es besteht daher weiterhin ein großer Bedarf an einer ω -3-Desaturase, die zur Herstellung von ω -3-polyungesättigte Fettsäuren geeignet ist. Alle bekannten pflanzlichen und cyanobakteriellen ω -3-Desaturasen desaturieren C_{18} -Fettsäuren mit Linolsäure als Substrat, können aber keine C_{20} - oder C_{22} -Fettsäuren desaturieren.

Von dem Pilz Saprolegnia dicilina ist eine ω -3-Desaturase bekannt [Pereira et al. 2004, Biochem. J. 378(Pt 2):665-71], die C₂₀-mehrfach ungesättigte Fettsäuren desaturieren kann. Von Nachteil ist jedoch, dass diese ω -3-Desaturase keine C₁₈- oder C₂₂-PUFAs, wie den wichtigen Fettsäuren C_{18:2}-, C_{22:4}- oder C_{22:5}-Fettsäuren des ω -6-Syntheseweg desaturieren kann. Ein weiterer Nachteil dieses Enzyms ist, dass es keine Fettsäuren desaturieren kann, die an Phospholipide gebunden sind. Es werden nur die CoA-Fettsäureester umgesetzt.

Die Verlängerung von Fettsäuren durch Elongasen um 2 bzw. 4 C-Atome ist für die Produktion von C₂₀- bzw. C₂₂-PUFAs von entscheidender Bedeutung. Dieser Prozess verläuft über 4 Stufen. Der erste Schritt stellt die Kondensation von Malonyl-CoA an das Fettsäure-Acyl-CoA durch die Ketoacyl-CoA-Synthase (KCS, im weiteren Text als Elongase bezeichnet). Es folgt dann ein Reduktionschritt (Ketoacyl-CoA-Reduktase, KCR), ein Dehydratationsschritt (Dehydratase) und ein abschliessender Reduktionsschritt (enoyl-CoA-Reduktase). Es wurde postuliert, dass die Aktivität der Elongase die Spezifität und Geschwindigkeit des gesamten Prozesses beeinflussen (Millar and Kunst, 1997 Plant Journal 12:121-131).

In der Vergangenheit wurden zahlreiche Versuche unternommen, Elongase Gene zu erhalten. Millar and Kunst, 1997 (Plant Journal 12:121-131) und Millar et al. 1999, (Plant Cell 11:825-838) beschreiben die Charakterisierung von pflanzlichen Elongasen zur Synthese von einfachungesättigten langkettigen Fettsäuren (C22:1) bzw. zur Synthese von sehr langkettigen Fettsäuren für die Wachsbildung in Pflanzen (C_{28} - C_{32}). Beschreibungen zur Synthese von Arachidonsäure und EPA finden sich beispielsweise in WO0159128, WO0012720, WO02077213 und WO0208401. Die Synthese von mehrfachungesättigter C24 Fettsäuren ist beispielsweise in Tvrdik et al 2000, JCB 149:707-717 oder WO0244320 beschrieben.

5

- Zur Herstellung von DHA (C22:6 n-3) in Organismen, die diese Fettsäure natürlicherweise nicht produzieren, wurde bisher keine spezifische Elongase beschrieben. Bisher wurden nur Elongasen beschrieben, die C₂₀- bzw. C₂₄-Fettsäuren bereitstellen. Eine Δ-5-Elongase-Aktivität wurde bisher noch nicht beschrieben.
- Höhere Pflanzen enthalten mehrfach ungesättigte Fettsäuren wie Linolsäure (C18:2) und Linolensäure (C18:3). ARA, EPA und DHA kommen im Samenöl höherer Pflanzen gar nicht oder nur in Spuren vor (E. Ucciani: Nouveau Dictionnaire des Huiles Végé-15 tales. Technique & Documentation - Lavoisier, 1995. ISBN: 2-7430-0009-0). Es ware jedoch vorteilhaft, in höheren Pflanzen, bevorzugt in Ölsaaten wie Raps, Lein, Sonnenblume und Soja, LCPUFAs herzustellen, da auf diese Weise große Mengen qualitativ hochwertiger LCPUFAs für die Lebensmittelindustrie, die Tierernährung und für pharmazeutische Zwecke kostengünstig gewonnen werden können. Hierzu müssen 20 vorteilhaft über gentechnische Methoden Gene kodierend für Enzyme der Biosynthese von LCPUFAs in Ölsaaten eingeführt und exprimiert werden. Dies sind Gene, die beispielsweise für Δ -6-Desaturasen, Δ -6-Elongasen, Δ -5-Desaturasen oder Δ -4-Desaturasen codieren. Diese Gene können vorteilhaft aus Mikroorganismen und niederen Pflanzen isoliert werden, die LCPUFAs herstellen und in den Membranen 25 oder Triacylglyceriden einbauen. So konnten bereits Δ -6-Desaturase-Gene aus dem Moos Physcomitrella patens und Δ -6-Elongase-Gene aus P. patens und dem Nemato
 - den C. elegans isoliert.
 30 Erste transgene Pflanzen, die Gene kodierend für Enzyme der LCPUFA-Biosynthese enthalten und exprimieren und LCPUFAs produzieren wurden beispielsweise in DE 102 19 203 (Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in Pflanzen) erstmals beschrieben. Diese Pflanzen produzieren allerdings LCPUFAs in Mengen, die für eine Aufarbeitung der in den Pflanzen enthaltenen Öle noch weiter optimiert werden müssen.
 - Um eine Anreicherung der Nahrung und/oder des Futters mit diesen mehrfach ungesättigten Fettsäuren zu ermöglichen, besteht daher ein großer Bedarf an einem einfachen, kostengünstigen Verfahren zur Herstellung dieser mehrfach ungesättigten Fettsäuren speziell in eukaryontischen Systemen.
 - 40 Es bestand daher die Aufgabe weitere Gene bzw. Enzyme, die für die Synthese von LCPUFAs geeignet sind, speziell Gene, die eine Δ -5-Elongase-, eine Δ -5-Desaturase-,

 Δ -4-Desaturase-, Δ -12-Desaturase- oder Δ -6-Desaturaseaktivität aufweisen, für die Herstellung von mehrfach ungesättigten Fettsäuren zur Verfügung zu stellen. Eine weitere Aufgabe dieser Erfindung war die Bereitstellung von Genen bzw. Enzymen, die eine Verschiebung von den ω -6-Fettsäuren zu den ω -3-Fettsäuren hin ermöglichen.

Weiterhin bestand die Aufgabe ein Verfahren zur Herstellung von mehrfach ungesättigten Fettsäuren in einem Organismus vorteilhaft in einem eukaryontischen Organismus bevorzugt in einer Pflanze oder einem Mikroorganismus zu entwickeln. Diese Aufgabe wurde durch das erfindungsgemäße Verfahren zur Herstellung von Verbindungen der allgemeinen Formel I

$$\begin{array}{c|c}
CH_{2} & CH_{2} & CH_{2} \\
\hline
CH = CH & CH_{2} & CH_{3}
\end{array}$$
(I)

in transgenen Organismen mit einem Gehalt von mindestens 1 Gew.-% dieser Verbindungen bezogen auf den Gesamtlipidgehalt des transgenen Organismus, dadurch gekennzeichnet, dass es folgende Verfahrensschritte umfasst:

- a) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche
 für eine Δ-9-Elongase- und/oder eine Δ-6-Desaturase-Aktivität codiert, und
 - b) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ -8-Desaturase- und/oder eine Δ -6-Elongase-Aktivität codiert, und
 - c) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ-5-Desaturase-Aktivität codiert, und
- 20 d) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ-5-Elongase-Aktivität codiert, und
 - e) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ-4-Desaturase-Aktivität codiert, und

wobei die Variablen und Substituenten in der Formel I die folgende Bedeutung haben:

25 R¹ = Hydroxyl-, CoenzymA-(Thioester), Lyso-Phosphatidylcholin-, Lyso-Phosphatidylethanolamin-, Lyso-Phosphatidylglycerol-, Lyso-Diphosphatidylglycerol-, Lyso-Phosphatidylserin-, Lyso-Phosphatidylinositol-, Sphingobase-, oder einen Rest der allgemeinen Formel II

15

20

25

$$H_{2}C-O-R^{2}$$
 $HC-O-R^{3}$
 $H_{2}C-O-$
(II)

R² = Wasserstoff-, Lyso-Phosphatidylcholin-, Lyso-Phosphatidylethanolamin-, Lyso-Phosphatidylglycerol-, Lyso-Phosphatidylserin-, Lyso-Phosphatidylinositol- oder gesättigtes oder ungesättigtes C₂-C₂₄-Alkylcarbonyl-,

 R^3 = Wasserstoff-, gesättigtes oder ungesättigtes C_2 - C_{24} -Alkylcarbonyl-, oder R^2 oder R^3 unabhängig voneinander einen Rest der allgemeinen Formel la:

$$\begin{array}{c|c}
O & CH_2 & CH_2 & CH_3 \\
\hline
CH = CH & CH_2 & CH_3
\end{array}$$
(Ia)

10 n = 2, 3, 4, 5, 6, 7 oder 9, m = 2, 3, 4, 5 oder 6 und p = 0 oder 3, gelöst.

R¹ bedeutet in der allgemeinen Formel I Hydroxyl-, CoenzymA-(Thioester), Lyso-Phosphatidylcholin-, Lyso-Phosphatidylethanolamin-, Lyso-Phosphatidylglycerol-, Lyso-Phosphatidylserin-, Lyso-Phosphatidylinositol-, Sphingobase-, oder einen Rest der allgemeinen Formel II

$$H_{2}C-O-R^{2}$$
 $H_{2}C-O-R^{3}$ (II)

Die oben genannten Reste von R¹ sind immer in Form ihrer Thioester an die Verbindungen der allgemeinen Formel I gebunden.

 R^2 bedeutet in der allgemeinen Formel II Wasserstoff-, Lyso-Phosphatidylcholin-, Lyso-Phosphatidylethanolamin-, Lyso-Phosphatidylglycerol-, Lyso-Diphosphatidylglycerol-, Lyso-Phosphatidylserin-, Lyso-Phosphatidylinositol- oder gesättigtes oder ungesättigtes C_2 - C_{24} -Alkylcarbonyl-,

Als Alkylreste seien substituiert oder unsubstituiert, gesättigt oder ungesättigte C_2 - C_2 -Alkylcarbonyl-Ketten wie Ethylcarbonyl-, n-Propylcarbonyl-, n-Butylcarbonyl-, n-Pentylcarbonyl-, n-Hexylcarbonyl-, n-Hexylcarbonyl-, n-Octylcarbonyl-, n-Nonylcarbonyl-, n-Decylcarbonyl-, n-Undecylcarbonyl-, n-Dodecylcarbonyl-, n-Tridecylcarbonyl-, n-Hexadecylcarbonyl-, n-Hexade

decylcarbonyl-, n-Octadecylcarbonyl-, n-Nonadecylcarbonyl-, n-Eicosylcarbonyl-, n-Docosanylcarbonyl- or n-Tetracosanylcarbonyl- genannt, die ein oder mehrere Doppelbindungen enthalten. Gesättigte oder ungesättigte C₁₀-C₂₂-Alkylcarbonylreste wie n-Decylcarbonyl-, n-Undecylcarbonyl-, n-Dodecylcarbonyl-, n-Tridecylcarbonyl-, n-Tetradecylcarbonyl-, n-Pentadecylcarbonyl-, n-Hexadecylcarbonyl-, n-Hepta-5 decylcarbonyl-, n-Octadecylcarbonyl-, n-Nonadecylcarbonyl-, n-Eicosylcarbonyl-, n-Docosanylcarbonyl- oder n-Tetracosanylcarbonyl-, die ein oder mehrere Doppelbindungen enthalten, sind bevorzugt. Besonders bevorzugt sind gesättigte und/oder ungesättigte C₁₀–C₂₂–Alkylcarbonylreste wie C₁₀–Alkylcarbonyl-, C₁₁–Alkylcarbonyl-, C₁₂-Alkylcarbonyl-, C₁₃-Alkylcarbonyl-, C₁₄-Alkylcarbonyl-, C₁₆-Alkylcarbonyl-, C₁₈-10 Alkylcarbonyl-, C20-Alkylcarbonyl- oder C22-Alkylcarbonylreste, die ein oder mehrere Doppelbindungen enthalten. Ganz besonders bevorzugt sind gesättigte oder ungesättigte C_{16} – C_{22} –Alkylcarbonylreste wie C_{16} –Alkylcarbonyl-, C_{18} –Alkylcarbonyl-, C_{20} – Alkylcarbonyl- oder C22-Alkylcarbonylreste, die ein oder mehrere Doppelbindungen enthalten. Diese vorteilhaften Reste können zwei, drei, vier, fünf oder sechs Doppel-15 bindungen enthalten. Die besonders vorteilhaften Reste mit 20 oder 22 Kohlenstoffatomen in der Fettsäurekette enthalten bis zu sechs Doppelbindungen, vorteilhaft drei, vier, fünf oder sechs Doppelbindungen, besonders bevorzugt fünf oder sechs Doppelbindungen. Alle genannten Reste leiten sich von den entsprechenden Fettsäuren ab.

R³ bedeutet in der allgemeinen Formel II Wasserstoff-, gesättigtes oder ungesättigtes 20 C₂-C₂₄-Alkylcarbonyl.

25

30

40

Als Alkylreste seien substituiert oder unsubstituiert, gesättigt oder ungesättigte C2-C24-Alkylcarbonyl-Ketten wie Ethylcarbonyl-, n-Propylcarbonyl-, n-Butylcarbonyl-, n-Pentylcarbonyl-, n-Hexylcarbonyl-,n-Heptylcarbonyl-, n-Octylcarbonyl-, n-Nonylcarbonyl-, n-Decylcarbonyl-, n-Undecylcarbonyl-, n-Dodecylcarbonyl-, n-Tridecylcarbonyl-, n-Tetradecylcarbonyl-, n-Pentadecylcarbonyl-, n-Hexadecylcarbonyl-, n-Heptadecylcarbonyl-, n-Octadecylcarbonyl-, n-Nonadecylcarbonyl-, n-Eicosylcarbonyl-, n-Docosanylcarbonyl- or n-Tetracosanylcarbonyl- genannt, die ein oder mehrere Doppelbindungen enthalten. Gesättigte oder ungesättigte C₁₀-C₂₂-Alkylcarbonylreste wie n-Decylcarbonyl-, n-Undecylcarbonyl-, n-Dodecylcarbonyl-, n-Tridecylcarbonyl-, n-Tetradecylcarbonyl-, n-Pentadecylcarbonyl-, n-Hexadecylcarbonyl-, n-Heptadecylcarbonyl-, n-Octadecylcarbonyl-, n-Nonadecylcarbonyl-, n-Eicosylcarbonyl-, n-Docosanylcarbonyl- oder n-Tetracosanylcarbonyl-, die ein oder mehrere Doppelbindungen enthalten, sind bevorzugt. Besonders bevorzugt sind gesättigte und/oder 35 ungesättigte C₁₀-C₂₂-Alkylcarbonylreste wie C₁₀-Alkylcarbonyl-, C₁₁-Alkylcarbonyl-, C₁₂--Alkylcarbonyl-, C₁₃--Alkylcarbonyl-, C₁₄--Alkylcarbonyl-, C₁₆--Alkylcarbonyl-, C₁₈--Alkylcarbonyl-, C20-Alkylcarbonyl- oder C22-Alkylcarbonylreste, die ein oder mehrere Doppelbindungen enthalten. Ganz besonders bevorzugt sind gesättigte oder unge sättigte C₁₆--C₂₂--Alkylcarbonylreste wie C₁₆--Alkylcarbonyl-, C₁₈--Alkylcarbonyl-, C₂₀--Alkylcarbonyl- oder C22-Alkylcarbonylreste, die ein oder mehrere Doppelbindungen enthalten. Diese vorteilhaften Reste können zwei, drei, vier, fünf oder sechs Doppelbindungen enthalten. Die besonders vorteilhaften Reste mit 20 oder 22 Kohlenstoffatomen in der Fettsäurekette enthalten bis zu sechs Doppelbindungen, vorteilhaft drei,

40

vier, fünf oder sechs Doppelbindungen, besonders bevorzugt fünf oder sechs Doppelbindungen. Alle genannten Reste leiten sich von den entsprechenden Fettsäuren ab.

Die oben genannten Reste von R^1 , R^2 and R^3 können mit Hydroxyl- und/oder Epoxygruppen substituierte sein und/oder können Dreifachbindungen enthalten.

Vorteilhaft enthalten die im erfindungsgemäßen Verfahren hergestellten mehrfach ungesättigten Fettsäuren mindestens zwei vorteilhaft drei, vier, fünf oder sechs Doppelbindungen. Besonders vorteilhaft enthalten die Fettsäuren vier fünf oder sechs Doppelbindungen. Im Verfahren hergestellte Fettsäuren haben vorteilhaft 18-, 20- oder 22-C-Atome in der Fettsäurekette, bevorzugt enthalten die Fettsäuren 20 oder 22 Kohlenstoffatome in der Fettsäurekette. Vorteilhaft werden gesättigte Fettsäuren mit den im Verfahren verwendeten Nukleinsäuren wenig oder gar nicht umgesetzt. Unter wenig ist zu verstehen, das im Vergleich zu mehrfach ungesättigten Fettsäuren die gesättigten Fettsäuren mit weniger als 5 % der Aktivität, vorteilhaft weniger als 3 %, besonders vorteilhaft mit weniger als 2 %, ganz besonders bevorzugt mit weniger als 1; 0,5; 0,25 oder 0,125 % umgesetzt werden. Diese hergestellten Fettsäuren können als einziges Produkt im Verfahren hergestellt werden oder in einem Fettsäuregemisch vorliegen.

Bei den im erfindungsgemäßen Verfahren verwendeten Nukleinsäuresequenzen handelt es sich um isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ -9-Elongase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -6-Elongase- und/oder Δ -4-Desaturaseaktivität codieren.

Vorteilhaft werden im erfindungsgemäßen Verfahren Nukleinsäuresequenzen, die für Polypeptide mit Δ -9-Elongase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -6-Elongase-, Δ -5-Desaturase-, Δ -5-Elongase- oder Δ -4-Desaturaseaktivität codieren, verwendet ausgewählt aus der Gruppe bestehend aus:

- einer Nukleinsäuresequenz mit der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, 25 SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, 30 SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ 35 ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 oder SEQ ID NO: 183 dargestellten Sequenz, oder
 - b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von den in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18,

SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 118, SEQ ID NO: 120, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID NO: 138 oder SEQ ID NO: 184 dargestellten Aminosäuresequenzen ableiten lassen, oder

- Derivate der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, 15 SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, 20 SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 oder SEQ ID NO: 183 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Identität auf Aminosäureebene mit SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID 25 NO:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID 30 NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 35 118, SEQ ID NO: 120, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID NO: 138 oder SEQ ID NO: 184 codieren und eine Δ-9-Elongase-, Δ-6-Desaturase-, Δ-8-Desaturase-, Δ-6-Elongase-, Δ-5-Desaturase-, Δ-5-Elongaseoder Δ-4-Desaturaseaktivität aufweisen.
- Vorteilhaft bedeuten die Substituenten R² oder R³ in den allgemeinen Formeln I und II unabhängig voneinander gesättigtes oder ungesättigtes C₁₈-C₂₂-Alkylcarbonyl-, besonders vorteilhaft bedeuten sie unabhängig voneinander ungesättigtes C₁₈-, C₂₀- oder C₂₂-Alkylcarbonyl- mit mindestens zwei Doppelbindungen.

Eine bevorzugte Ausführungsform des Verfahrens ist dadurch gekennzeichnet, dass eine Nukleinsäuresequenz zusätzlich in den Organismus eingebracht wird, die für Polypeptide mit ω -3-Desaturase-Aktivität codiert, ausgewählt aus der Gruppe bestehend aus:

- a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 87 oder SEQ ID NO: 105 dargestellten Sequenz, oder
 - b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 88 oder SEQ ID NO: 106 dargestellten Aminosäuresequenz ableiten lassen, oder
- Derivate der in SEQ ID NO: 87 oder SEQ ID NO: 105 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 60 % Identität auf Aminosäureebene mit SEQ ID NO: 88 oder SEQ ID NO: 106 codieren und eine ω3-Desaturaseaktivität aufweisen.

In einer weiteren bevorzugten Ausführungsform ist das Verfahren dadurch gekennzeichnet, dass eine Nukleinsäuresequenz zusätzlich in den Organismus eingebracht wird, die für Polypeptide mit Δ-12-Desaturaseaktivität codiert, ausgewählt aus der Gruppe bestehend aus:

- einer Nukleinsäuresequenz mit der in SEQ ID NO: 107 oder SEQ ID NO: 109 dargestellten Sequenz, oder
- 20 b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 108 oder SEQ ID NO: 110 dargestellten Aminosäuresequenz ableiten lassen, oder
- c) Derivate der in SEQ ID NO: 107 oder SEQ ID NO: 109 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 60 % Identität auf Aminosäureebene mit SEQ ID NO: 108 oder SEQ ID NO: 110 codieren und eine Δ-12-Desaturaseaktivität aufweisen.

Diese vorgenannten Δ -12-Desaturasesequenzen können allein oder in Kombination mit den ω 3-Desaturasesequenzen mit den im Verfahren verwendeten Nukleinsäuresequenzen, die für Δ -9-Elongasen, Δ -6-Desaturasen, Δ -8-Desaturasen, Δ -6-Elongasen, Δ -6-Desaturasen, Δ -6-Desa

30 Δ -5-Desaturasen, Δ -5-Elongasen und/oder Δ -4-Desaturasen codieren verwendet werden.

Tabelle 1 gibt die Nukleinsäuresequenzen, den Herkunftsorganismus und die Sequenz-ID-Nummer wieder.

NI-	Organismus	Aktivität	Sequenznummer
Nr.	Organismus		
1.	Euglena gracilis	Δ-8-Desaturase	SEQ ID NO: 1
2.	Isochrysis galbana	Δ-9-Elongase	SEQ ID NO: 3
3.	Phaeodactylum tricornutum	Δ-5-Desaturase	SEQ ID NO: 5
4.	Ceratodon purpureus	Δ-5-Desaturase	SEQ ID NO: 7
5.	Physcomitrella patens	Δ-5-Desaturase	SEQ ID NO: 9
6.	Thraustrochytrium sp.	Δ-5-Desaturase	SEQ ID NO: 11
7.	Mortierella alpina	Δ-5-Desaturase	SEQ ID NO: 13
8.	Caenorhabditis elegans	Δ-5-Desaturase	SEQ ID NO: 15
9.	Borago officinalis	Δ-6-Desaturase	SEQ ID NO: 17
10.	Ceratodon purpureus	Δ-6-Desaturase	SEQ ID NO: 19
11.	Phaeodactylum tricornutum	Δ-6-Desaturase	SEQ ID NO: 21
12.	Physcomitrella patens	Δ-6-Desaturase	SEQ ID NO: 23
13.	Caenorhabditis elegans	Δ-6-Desaturase	SEQ ID NO: 25
14.	Physcomitrella patens	Δ-6-Elongase	SEQ ID NO: 27
15.	Thraustrochytrium sp.	Δ-6-Elongase	SEQ ID NO: 29
16.	Phytophtora infestans	Δ-6-Elongase	SEQ ID NO: 31
17.	Mortierella alpina	Δ-6-Elongase	SEQ ID NO: 33
18.	Mortierella alpina	Δ-6-Elongase	SEQ ID NO: 35
19.	Caenorhabditis elegans	Δ-6-Elongase	SEQ ID NO: 37
20.	Euglena gracilis	Δ-4-Desaturase	SEQ ID NO: 39
21.	Thraustrochytrium sp.	Δ-4-Desaturase	SEQ ID NO: 41
22.	Thalassiosira pseudonana	Δ-5-Elongase	SEQ ID NO: 43
23.	Thalassiosira pseudonana	Δ-6-Elongase	SEQ ID NO: 45
24.	Crypthecodinium cohnii	Δ-5-Elongase	SEQ ID NO: 47
25.	Crypthecodinium cohnii	Δ-5-Elongase	SEQ ID NO: 49
26.	Oncorhynchus mykiss	Δ-5-Elongase	SEQ ID NO: 51
27.	Oncorhynchus mykiss	Δ-5-Elongase	SEQ ID NO: 53
28.	Thalassiosira pseudonana	Δ-5-Elongase	SEQ ID NO: 59

		14	T
Nr.	Organismus	Aktivität	Sequenznummer
		∆-5-Elongase	SEQ ID NO: 61
		∆-5-Elongase	SEQ ID NO: 63
		∆-5-Elongase	SEQ ID NO: 65
32.	Ostreococcus tauri	Δ-5-Elongase	SEQ ID NO: 67
33.	Ostreococcus tauri	Δ-6-Elongase	SEQ ID NO: 69
34.	Prímula farinosa	Δ-6-Desaturase	SEQ ID NO: 71
35.	Primula vialii	Δ-6-Desaturase	SEQ ID NO: 73
36.	Ostreococcus tauri	Δ-5-Elongase	SEQ ID NO: 75
37.	Ostreococcus tauri	Δ-5-Elongase	SEQ ID NO: 77
38.	Ostreococcus tauri	Δ-5-Elongase	SEQ ID NO: 79
39.	Ostreococcus tauri	Δ-6-Elongase	SEQ ID NO: 81
40.	Thraustrochytrium sp.	Δ-5-Elongase	SEQ ID NO: 83
41.	Thalassiosira pseudonana	Δ-5-Elongase	SEQ ID NO: 85
41.	Phytophtora infestans	ω-3-Desaturase	SEQ ID NO: 87
43.	Ostreococcus tauri	Δ-6-Desaturase	SEQ ID NO: 89
44.	Ostreococcus tauri	Δ-5-Desaturase	SEQ ID NO: 91
45.	Ostreococcus tauri	Δ-5-Desaturase	SEQ ID NO: 93
46.	Ostreococcus tauri	Δ-4-Desaturase	SEQ ID NO: 95
47.		Δ-6-Desaturase	SEQ ID NO: 97
48.		Δ-5-Desaturase	SEQ ID NO: 99
49.		Δ-5-Desaturase	SEQ ID NO: 101
		Δ-4-Desaturase	SEQ ID NO: 103
50.		ω-3-Desaturase	SEQ ID NO: 105
51		Δ-12-Desaturase	SEQ ID NO: 107
53		Δ-12-Desaturase	SEQ ID NO: 109
		Δ-6-Elongase	SEQ ID NO: 111
54		Δ-5-Elongase	SEQ ID NO: 113
55	· · · (DC044067)	Δ-5-Elongase	SEQ ID NO: 117
57		Δ-5-Elongase	SEQ ID NO: 119

Nr.	Organismus	Aktivität	Sequenznummer
58.	Euglena gracilis	Δ-5-Elongase	SEQ ID NO: 131
59.	Euglena gracilis	Δ-5-Elongase	SEQ ID NO:133
60.	Arabidopsis thaliana	Δ-5-Elongase	SEQ ID NO: 135
61.	Arabidopsis thaliana	Δ-5-Elongase	SEQ ID NO: 137
62.	Phaeodactylum tricornutum	Δ-6-Elongase	SEQ ID NO: 183

Die im Verfahren hergestellten mehrfach ungesättigten Fettsäuren sind vorteilhaft in Membranlipiden und/oder Triacylglyceriden gebunden, können aber auch als freie Fettsäuren oder aber gebunden in Form anderer Fettsäureester in den Organismen vorkommen. Dabei können sie als "Reinprodukte" oder aber vorteilhaft in Form von Mischungen verschiedener Fettsäuren oder Mischungen unterschiedlicher Glyceride vorliegen. Die in den Triacylglyceriden gebundenen verschieden Fettsäuren lassen sich dabei von kurzkettigen Fettsäuren mit 4 bis 6 C-Atomen, mittelkettigen Fettsäuren mit 8 bis 12 C-Atomen oder langkettigen Fettsäuren mit 14 bis 24 C-Atomen ableiten, bevorzugt sind die langkettigen Fettsäuren besonders bevorzugt sind die langkettigen Fettsäuren.

5

10

15

20

25

30

Im erfindungsgemäßen Verfahren werden vorteilhaft Fettsäureester mit mehrfach ungesättigten C₁₈--, C₂₀- und/oder C₂₂-Fettsäuremolekülen mit mindestens zwei Doppelbindungen im Fettsäureester, vorteilhaft mit mindestens drei, vier, fünf oder sechs Doppelbindungen im Fettsäureester, besonders vorteilhaft von mindestens fünf oder sechs Doppelbindungen im Fettsäureester hergestellt und führen vorteilhaft zur Synthese von Linolsäure (=LA, C18:2^{Δ9,12}), γ-Linolensäure (= GLA, C18:3^{Δ6,9,12}), Stearidonsäure (= SDA, C18:4 ^{Δ6,9,12,15}), Dihomo-γ-Linolensäure (= DGLA, 20:3 ^{Δ8,11,14}), ω-3-Eicosatetraensäure (= ETA, C20:4 ^{Δ5,8,11,14}), Arachidonsäure (ARA, C20:4 ^{Δ5,8,11,14}), Eicosapentaensäure (EPA, C20:5^{Δ5,8,11,14,17}), ω-6-Docosapentaensäure (C22:5^{Δ4,7,10,13,16}), ω-3-Docosapentaensäure (= DPA, C22:5^{Δ7,10,13,16,19}), Docosahexaensäure (= DHA, C22:6^{Δ4,7,10,13,16,19}) oder deren Mischungen, bevorzugt ARA, EPA und/oder DHA. Ganz besonders bevorzugt werden, ω-3-Fettsäuren wie EPA und/oder DHA hergestellt.

Die Fettsäureester mit mehrfach ungesättigten C₁₈--, C₂₀- und/oder C₂₂-Fettsäuremolekülen können aus den Organismen, die für die Herstellung der Fettsäureester verwendet wurden, in Form eines Öls oder Lipids beispielsweise in Form von Verbindungen wie Sphingolipide, Phosphoglyceride, Lipide, Glycolipide wie Glycosphingolipide, Phospholipide wie Phosphatidylethanolamin, Phosphatidylcholin, Phosphatidylserin, Phosphatidylglycerol, Phosphatidylinositol oder Diphosphatidylglycerol, Monoacylglyceride, Diacylglyceride, Triacylglyceride oder sonstige Fettsäureester wie die AcetylCoenzymA-Ester, die die mehrfach ungesättigten Fettsäuren mit mindestens zwei, drei, vier, fünf oder sechs bevorzugt fünf oder sechs Doppelbindungen enthalten, isoliert werden, vorteilhaft werden sie in der Form ihrer Diacylglyceride, Triacylglyceride und/oder in Form des Phosphatidylcholin isoliert, besonders bevorzugt in der Form der

Triacylglyceride. Neben diesen Estern sind die mehrfach ungesättigten Fettsäuren auch als freie Fettsäuren oder gebunden in anderen Verbindungen in den Organismen vorteilhaft den Pflanzen enthalten. In der Regel liegen die verschiedenen vorgenannten Verbindungen (Fettsäureester und frei Fettsäuren) in den Organismen in einer ungefähren Verteilung von 80 bis 90 Gew.-% Triglyceride, 2 bis 5 Gew.-% Diglyceride, 5 bis 10 Gew.-% Monoglyceride, 1 bis 5 Gew.-% freie Fettsäuren, 2 bis 8 Gew.-% Phospholipide vor, wobei sich die Summe der verschiedenen Verbindungen zu 100 Gew.-% ergänzt.

-10

15

20

25

30

40

Im erfindungsgemäßen Verfahren werden die hergestellten LCPUFAs mit einem Gehalt von mindestens 3 Gew.-%, vorteilhaft von mindestens 5 Gew.-%, bevorzugt von mindestens 8 Gew.-%, besonders bevorzugt von mindestens 10 Gew.-%, ganz besonders bevorzugt von mindestens 15 Gew.-% bezogen auf die gesamten Fettsäuren in den transgenen Organismen vorteilhaft in einer transgenen Pflanze hergestellt. Dabei werden vorteilhaft C₁₈- und/oder C₂₀-Fettsäuren, die in den Wirtsorganismen vorhanden sind, zu mindestens 10 %, vorteilhaft zu mindestens 20 %, besonders vorteilhaft zu mindestens 30 %, ganz besonders vorteilhaft zu mindestens 40 % in die entsprechenden Produkte wie DPA oder DHA, um nur zwei beispielhaft zu nennen, umgesetzt. Vorteilhaft werden die Fettsäuren in gebundener Form hergestellt. Mit Hilfe der im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren lassen sich diese ungesättigten Fettsäuren an sn1-, sn2- und/oder sn3-Position der vorteilhaft hergestellten Triglyceride bringen. Da im erfindungsgemäßen Verfahren von den Ausgangsverbindungen Linolsäure (C18:2) bzw. Linolensäure (C18:3) mehrere Reaktionsschritte durchlaufen werden, fallen die Endprodukte des Verfahrens wie beispielsweise Arachidonsäure (ARA), Eicosapentaensäure (EPA), ω-6-Docosapentaensäure oder DHA nicht als absolute Reinprodukte an, es sind immer auch geringe Spuren der Vorstufen im Endprodukt enthalten. Sind in dem Ausgangsorganismus bzw. in der Ausgangspflanze beispielsweise sowohl Linolsäure als auch Linolensäure vorhanden, so liegen die Endprodukte wie ARA, EPA oder DHA als Mischungen vor. Die Vorstufen sollten vorteilhaft nicht mehr als 20 Gew.-%, bevorzugt nicht mehr als 15 Gew.-%, besonders bevorzugt nicht als 10 Gew.-%, ganz besonders bevorzugt nicht mehr als 5 Gew.-% bezogen auf die Menge des jeweilige Endprodukts betragen. Vorteilhaft werden in einer transgenen Pflanze als Endprodukte nur ARA, EPA oder nur DHA im erfindungsgemäßen Verfahren gebunden oder als freie Säuren hergestellt. Werden die Verbindungen ARA, EPA und DHA gleichzeitig hergestellt, werden sie vorteilhaft in einem Verhältnis von mindesten 1:1:2 (EPA:ARA:DHA), vorteilhaft von mindestens 35 1:1:3, bevorzugt von 1:1:4, besonders bevorzugt von 1:1:5 hergestellt.

Fettsäureester bzw. Fettsäuregemische, die nach dem erfindungsgemäßen Verfahren hergestellt wurden, enthalten vorteilhaft 6 bis 15 % Palmitinsäure, 1 bis 6 % Stearinsäure; 7 – 85 % Ölsäure; 0,5 bis 8 % Vaccensäure, 0,1 bis 1 % Arachinsäure, 7 bis 25 % gesättigte Fettsäuren, 8 bis 85 % einfach ungesättigte Fettsäuren und 60 bis 85 % mehrfach ungesättigte Fettsäuren jeweils bezogen auf 100 % und auf den Gesamtfettsäuregehalt der Organismen. Als vorteilhafte mehrfach ungesättigte Fettsäure sind in den Fettsäureester bzw. Fettsäuregemische bevorzugt mindestens

0,1; 0,2; 0,3; 0,4; 0,5; 0,6; 0,7; 0,8; 0,9 oder 1 % bezogen auf den Gesamtfettsäuregehalt an Arachidonsäure enthalten. Weiterhin enthalten die Fettsäureester bzw. Fettsäuregemische, die nach dem erfindungsgemäßen Verfahren hergestellt wurden, vorteilhaft Fettsäuren ausgewählt aus der Gruppe der Fettsäuren Erucasäure (13-

- Docosaensäure), Sterculinsäure (9,10-Methylene octadec-9-enonsäure), Malvalinsäure (8,9-Methylen Heptadec-8-enonsäure), Chaulmoogrinsäure (Cyclopenten-dodecansäure), Furan-Fettsäure (9,12-Epoxy-octadeca-9,11-dienonsäure), Vernonsäure (9,10-Epoxyoctadec-12-enonsäure), Tarinsäure (6-Octadecynonsäure),6-Nonadecynonsäure, Santalbinsäure (t11-Octadecen-9-ynoic acid), 6,9-
- Octadecenynonsäure, Pyrulinsäure (t10-Heptadecen-8-ynonsäure), Crepenyninsäure (9-Octadecen-12-ynonsäure), 13,14-Dihydrooropheinsäure, Octadecen-13-ene-9,11-diynonsäure, Petroselensäure (cis-6-Octadecenonsäure), 9c,12t-Octadecadiensäure, Calendulasäure (8t10t12c-Octadecatriensäure), Catalpinsäure (9t11t13c-Octadecatriensäure), Eleosterinsäure (9c11t13t-Octadecatriensäure), Jacarinsäure
- 15 (8c10t12c-Octadecatriensäure), Punicinsäure (9c11t13c-Octadecatriensäure), Parinarinsäure (9c11t13t15c-Octadecatetraensäure), Pinolensäure (all-cis-5,9,12-Octadecatriensäure), Laballensäure (5,6-Octadecadienallensäure), Ricinolsäure (12-Hydroxyölsäure) und/oder Coriolinsäure (13-Hydroxy-9c,11t-Octadecadienonsäure). Die vorgenannten Fettsäuren kommen in den nach dem erfindungsgemäßen Verfahren
- hergestellten Fettsäureester bzw. Fettsäuregemischen in der Regel vorteilhaft nur in Spuren vor, das heißt sie kommen bezogen auf die Gesamtfettsäuren zu weniger als 30 %, bevorzugt zu weniger als 25 %, 24 %, 23 %, 22 % oder 21 %, besonders bevorzugt zu weniger als 20 %, 15 %, 10 %, 9 %, 8 %, 7%, 6 % oder 5%, ganz besonders bevorzugt zu weniger als 4 %, 3 %, 2 % oder 1 % vor. In einer weiteren
- bevorzugten Form der Erfindung kommen diese vorgenannten Fettsäuren bezogen auf die Gesamtfettsäuren zu weniger als 0,9%; 0,8%; 0,7%; 0,6%; oder 0,5%, besonders bevorzugt zu weniger als 0,4%; 0,3%; 0,2%; 0,1% vor. Vorteilhaft enthalten die nach dem erfindungsgemäßen Verfahren hergestellten Fettsäureester bzw. Fettsäuregemische weniger als 0,1 % bezogen auf die Gesamtfettsäuren und/oder keine Buttersäure, (20) Kein Chalectorin keine Chalecto
- kein Cholesterin, keine Clupanodonsäure (= Docosapentaensäure, C22:5^{Δ4,8,12,15,21}) sowie keine Nisinsäure (Tetracosahexaensäure, C23:6^{Δ3,8,12,15,18,21}).

Durch die erfindungsgemäßen Nukleinsäuresequenzen bzw. im erfindungsgemäßen Verfahren verwendeten Nukleinsäuresequenzen kann eine Steigerung der Ausbeute an mehrfach ungesättigten Fettsäuren von mindestens 50 %, vorteilhaft von mindestens 80 %, besonders vorteilhaft von mindestens 100 %, ganz besonders vorteilhaft von mindestens 150 % gegenüber den nicht transgenen Ausgangsorganismus beispielsweise einer Hefe, einer Alge, einem Pilz oder einer Pflanze wie Arabidopsis oder Lein beim Vergleich in der GC-Analyse siehe Beispiele erreicht werden.

Auch chemisch reine mehrfach ungesättigte Fettsäuren oder Fettsäurezusammensetzungen sind nach den vorbeschriebenen Verfahren darstellbar. Dazu werden die
Fettsäuren oder die Fettsäurezusammensetzungen aus dem Organismus wie den
Mikroorganismen oder den Pflanzen oder dem Kulturmedium, in dem oder auf dem die
Organismen angezogen wurden, oder aus dem Organismus und dem Kulturmedium in

bekannter Weise beispielsweise über Extraktion, Destillation, Kristallisation, Chromatographie oder Kombinationen dieser Methoden isoliert. Diese chemisch reinen Fettsäuren oder Fettsäurezusammensetzungen sind für Anwendungen im Bereich der Lebensmittelindustrie, der Kosmetikindustrie und besonders der Pharmaindustrie vorteilhaft.

Als Organismus für die Herstellung im erfindungsgemäßen Verfahren kommen prinzipiell alle Organismen wie Mikroorganismen, nicht-humane Tiere oder Pflanzen in Frage.

Als Pflanzen kommen prinzipiell alle Pflanzen in Frage, die in der Lage sind Fettsäuren zu synthetisieren wie alle dicotylen oder monokotylen Pflanzen, Algen oder Moose. Vorteilhaft Pflanzen sind ausgewählt aus der Gruppe der Pflanzenfamilien Adelotheciaceae, Anacardiaceae, Asteraceae, Apiaceae, Betulaceae, Boraginaceae, Brassicaceae, Bromeliaceae, Caricaceae, Cannabaceae, Convolvulaceae, Chenopodiaceae, Crypthecodiniaceae, Cucurbitaceae, Ditrichaceae, Elaeagnaceae, Ericaceae, Euphorbiaceae, Fabaceae, Geraniaceae, Gramineae, Juglandaceae, Lauraceae, Leguminosae, Linaceae, Euglenaceae, Prasinophyceae oder Gemüsepflanzen oder Zierpflanzen wie Tagetes in Betracht.

Beispielhaft seien die folgenden Pflanzen genannt ausgewählt aus der Gruppe: Adelotheciaceae wie die Gattungen Physcomitrella z.B. die Gattung und Arten Physcomitrella patens, Anacardiaceae wie die Gattungen Pistacia, Mangifera, Anacar-20 dium z.B. die Gattung und Arten Pistacia vera [Pistazie], Mangifer indica [Mango] oder Anacardium occidentale [Cashew], Asteraceae wie die Gattungen Calendula, Carthamus, Centaurea, Cichorium, Cynara, Helianthus, Lactuca, Locusta, Tagetes, Valeriana z.B. die Gattung und Arten Calendula officinalis [Garten-Ringelblume], Carthamus tinctorius [Färberdistel, safflower], Centaurea cyanus [Kornblume], Cichorium intybus 25 [Wegwarte], Cynara scolymus [Artichoke], Helianthus annus [Sonnenblume], Lactuca sativa, Lactuca crispa, Lactuca esculenta, Lactuca scariola L. ssp. sativa, Lactuca scariola L. var. integrata, Lactuca scariola L. var. integrifolia, Lactuca sativa subsp. romana, Locusta communis, Valeriana locusta [Salat], Tagetes lucida, Tagetes erecta oder Tagetes tenuifolia [Studentenblume], Apiaceae wie die Gattung Daucus z.B. die 30 Gattung und Art Daucus carota [Karotte], Betulaceae wie die Gattung Corylus z.B. die Gattungen und Arten Corylus avellana oder Corylus colurna [Haselnuss], Boraginaceae wie die Gattung Borago z.B. die Gattung und Art Borago officinalis [Borretsch], Brassicaceae wie die Gattungen Brassica, Camelina, Melanosinapis, Sinapis, Arabadopsis z.B. die Gattungen und Arten Brassica napus, Brassica rapa ssp. [Raps], 35 Sinapis arvensis Brassica juncea, Brassica juncea var. juncea, Brassica juncea var. crispifolia, Brassica juncea var. foliosa, Brassica nigra, Brassica sinapioides, Camelina sativa, Melanosinapis communis [Senf], Brassica oleracea [Futterrübe] oder Arabidopsis thaliana, Bromeliaceae wie die Gattungen Anana, Bromelia (Ananas) z.B. die Gattungen und Arten Anana comosus, Ananas ananas oder Bromelia comosa 40 [Ananas], Caricaceae wie die Gattung Carica wie die Gattung und Art Carica papaya [Papaya], Cannabaceae wie die Gattung Cannabis wie die Gattung und Art Cannabis

15

20

25

30

35

40

45

sative [Hanf], Convolvulaceae wie die Gattungen Ipomea, Convolvulus z.B. die Gattungen und Arten Ipomoea batatus, Ipomoea pandurata, Convolvulus batatas, Convolvulus tiliaceus, Ipomoea fastigiata, Ipomoea tiliacea, Ipomoea triloba oder Convolvulus panduratus [Süßkartoffel, Batate], Chenopodiaceae wie die Gattung Beta wie die Gattungen und Arten Beta vulgaris, Beta vulgaris var. altissima, Beta vulgaris var. Vulgaris, Beta maritima, Beta vulgaris var. perennis, Beta vulgaris var. conditiva oder Beta vulgaris var. esculenta [Zuckerrübe], Crypthecodiniaceae wie die Gattung Crypthecodinium z.B. die Gattung und Art Cryptecodinium cohnii, Cucurbitaceae wie die Gattung Cucubita z.B. die Gattungen und Arten Cucurbita maxima, Cucurbita mixta, Cucurbita pepo oder Cucurbita moschata [Kürbis], Cymbellaceae wie die Gattungen Amphora, Cymbella, Okedenia, Phaeodactylum, Reimeria z.B. die Gattung und Art Phaeodactylum tricornutum, Ditrichaceae wie die Gattungen Ditrichaceae, Astomiopsis, Ceratodon, Chrysoblastella, Ditrichum, Distichium, Eccremidium, Lophidion, Philibertiella, Pleuridium, Saelania, Trichodon, Skottsbergia z.B. die Gattungen und Arten Ceratodon antarcticus, Ceratodon columbiae, Ceratodon heterophyllus, Ceratodon purpurascens, Ceratodon purpureus, Ceratodon purpureus ssp. convolutus, Ceratodon purpureus ssp. stenocarpus, Ceratodon purpureus var. rotundifolius, Ceratodon ratodon, Ceratodon stenocarpus, Chrysoblastella chilensis, Ditrichum ambiguum, Ditrichum brevisetum, Ditrichum crispatissimum, Ditrichum difficile, Ditrichum falcifolium, Ditrichum flexicaule, Ditrichum giganteum, Ditrichum heteromallum, Ditrichum lineare, Ditrichum lineare, Ditrichum montanum, Ditrichum montanum, Ditrichum pallidum, Ditrichum punctulatum, Ditrichum pusillum, Ditrichum pusillum var. tortile, Ditrichum rhynchostegium, Ditrichum schimperi, Ditrichum tortile, Distichium capillaceum, Distichium hagenii, Distichium inclinatum, Distichium macounii, Eccremidium floridanum, Eccremidium whiteleggei, Lophidion strictus, Pleuridium acuminatum, Pleuridium alternifolium, Pleuridium holdridgei, Pleuridium mexicanum, Pleuridium ravenelii, Pleuridium subulatum, Saelania glaucescens, Trichodon borealis, Trichodon cylindricus oder Trichodon cylindricus var. oblongus, Elaeagnaceae wie die Gattung Elaeagnus z.B. die Gattung und Art Olea europaea [Olive], Ericaceae wie die Gattung Kalmia z.B. die Gattungen und Arten Kalmia latifolia, Kalmia angustifolia, Kalmia microphylla, Kalmia polifolia, Kalmia occidentalis, Cistus chamaerhodendros oder Kalmia lucida [Berglorbeer], Euglenaceae wie die Gattungen Ascoglena, Astasia, Colacium, Cyclidiopsis, Euglena, Euglenopsis, Hyalaphacus, Khawkinea, Lepocinclis, Phacus, Strombomonas, Trachelomonas z.B. die Gattung und Art Euglena gracilis; Euphorbiaceae wie die Gattungen Manihot, Janipha, Jatropha, Ricinus z.B. die Gattungen und Arten Manihot utilissima, Janipha manihot,, Jatropha manihot., Manihot aipil, Manihot dulcis, Manihot manihot, Manihot melanobasis, Manihot esculenta [Manihot] oder Ricinus communis [Rizinus], Fabaceae wie die Gattungen Pisum, Albizia, Cathormion, Feuillea, Inga, Pithecolobium, Acacia, Mimosa, Medicajo, Glycine, Dolichos, Phaseolus, Soja z.B. die Gattungen und Arten Pisum sativum, Pisum arvense, Pisum humile [Erbse], Albizia berteriana, Albizia julibrissin, Albizia lebbeck, Acacia berteriana, Acacia littoralis, Albizia berteriana, Albizzia berteriana, Cathormion berteriana, Feuillea berteriana, Inga fragrans, Pithecellobium berterianum, Pithecellobium fragrans, Pithecolobium berterianum, Pseudalbizzia berteriana, Acacia julibrissin,

Acacia nemu, Albizia nemu, Feuilleea julibrissin, Mimosa julibrissin, Mimosa speciosa,

Sericanrda julibrissin, Acacia lebbeck, Acacia macrophylla, Albizia lebbek, Feuilleea lebbeck, Mimosa lebbeck, Mimosa speciosa [Seidenbaum], Medicago sativa, Medicago falcata, Medicago varia [Alfalfa] Glycine max Dolichos soja, Glycine gracilis, Glycine hispida, Phaseolus max, Soja hispida oder Soja max [Sojabohne], Funariaceae wie die Gattungen Aphanorrhegma, Entosthodon, Funaria, Physcomitrella, Physcomitrium 5 z.B. die Gattungen und Arten Aphanorrhegma serratum, Entosthodon attenuatus, Entosthodon bolanderi, Entosthodon bonplandii, Entosthodon californicus, Entosthodon drummondii, Entosthodon jamesonii, Entosthodon leibergii, Entosthodon neoscoticus, Entosthodon rubrisetus, Entosthodon spathulifolius, Entosthodon tucsoni, Funaria americana, Funaria bolanderi, Funaria calcarea, Funaria californica, Funaria calves-10 cens, Funaria convoluta, Funaria flavicans, Funaria groutiana, Funaria hygrometrica, Funaria hygrometrica var. arctica, Funaria hygrometrica var. calvescens, Funaria hygrometrica var. convoluta, Funaria hygrometrica var. muralis, Funaria hygrometrica var. utahensis, Funaria microstoma, Funaria microstoma var. obtusifolia, Funaria muhlenbergii, Funaria orcuttii, Funaria plano-convexa, Funaria polaris, Funaria 15 ravenelii, Funaria rubriseta, Funaria serrata, Funaria sonorae, Funaria sublimbatus, Funaria tucsoni, Physcomitrella californica, Physcomitrella patens, Physcomitrella readeri, Physcomitrium australe, Physcomitrium californicum, Physcomitrium collenchymatum, Physcomitrium coloradense, Physcomitrium cupuliferum, Physcomitrium drummondii, Physcomitrium eurystomum, Physcomitrium flexifolium, Physcomitrium 20 hookeri, Physcomitrium hookeri var. serratum, Physcomitrium immersum, Physcomitrium kellermanii, Physcomitrium megalocarpum, Physcomitrium pyriforme, Physcomitrium pyriforme var. serratum, Physcomitrium rufipes, Physcomitrium sandbergii, Physcomitrium subsphaericum, Physcomitrium washingtoniense, Geraniaceae wie die Gattungen Pelargonium, Cocos, Oleum z.B. die Gattungen und Arten Cocos nucifera, 25 Pelargonium grossularioides oder Oleum cocois [Kokusnuss], Gramineae wie die Gattung Saccharum z.B. die Gattung und Art Saccharum officinarum, Juglandaceae wie die Gattungen Juglans, Wallia z.B. die Gattungen und Arten Juglans regia, Juglans ailanthifolia, Juglans sieboldiana, Juglans cinerea, Wallia cinerea, Juglans bixbyi, Juglans californica, Juglans hindsii, Juglans intermedia, Juglans jamaicensis, Juglans 30 major, Juglans microcarpa, Juglans nigra oder Wallia nigra [Walnuss], Lauraceae Wie die Gattungen Persea, Laurus z.B. die Gattungen und Arten Laurus nobilis [Lorbeer], Persea americana, Persea gratissima oder Persea persea [Avocado], Leguminosae wie die Gattung Arachis z.B. die Gattung und Art Arachis hypogaea [Erdnuss], Linaceae wie die Gattungen Linum, Adenolinum z.B. die Gattungen und Arten Linum 35 usitatissimum, Linum humile, Linum austriacum, Linum bienne, Linum angustifolium, Linum catharticum, Linum flavum, Linum grandiflorum, Adenolinum grandiflorum, Linum lewisii, Linum narbonense, Linum perenne, Linum perenne var. lewisii, Linum pratense oder Linum trigynum [Lein], Lythrarieae wie die Gattung Punica z.B. die Gattung und Art Punica granatum [Granatapfel], Malvaceae wie die Gattung Gossypi-40 um z.B. die Gattungen und Arten Gossypium hirsutum, Gossypium arboreum, Gossypium barbadense, Gossypium herbaceum oder Gossypium thurberi [Baumwolle], Marchantiaceae wie die Gattung Marchantia z.B. die Gattungen und Arten Marchantia berteroana, Marchantia foliacea, Marchantia macropora, Musaceae wie die Gattung Musa z.B. die Gattungen und Arten Musa nana, Musa acuminata, Musa paradisiaca, 45

Musa spp. [Banane], Onagraceae wie die Gattungen Camissonia, Oenothera z.B. die Gattungen und Arten Oenothera biennis oder Camissonia brevipes [Nachtkerze], Palmae wie die Gattung Elacis z.B. die Gattung und Art Elaeis guineensis [Ölpalme], Papaveraceae wie die Gattung Papaver z.B. die Gattungen und Arten Papaver orientale, Papaver rhoeas, Papaver dubium [Mohn], Pedaliaceae wie die Gattung ... Sesamum z.B. die Gattung und Art Sesamum indicum [Sesam], Piperaceae wie die Gattungen Piper, Artanthe, Peperomia, Steffensia z.B. die Gattungen und Arten Piper aduncum, Piper amalago, Piper angustifolium, Piper auritum, Piper betel, Piper cubeba, Piper longum, Piper nigrum, Piper retrofractum, Artanthe adunca, Artanthe elongata, Peperomia elongata, Piper elongatum, Steffensia elongata. [Cayennepfeffer], . 10 Poaceae wie die Gattungen Hordeum, Secale, Avena, Sorghum, Andropogon, Holcus, Panicum, Oryza, Zea (Mais), Triticum z.B. die Gattungen und Arten Hordeum vulgare, Hordeum jubatum, Hordeum murinum, Hordeum secalinum, Hordeum distichon Hordeum aegiceras, Hordeum hexastichon., Hordeum hexastichum, Hordeum irregulare, Hordeum sativum, Hordeum secalinum [Gerste], Secale cereale [Roggen], 15 Avena sativa, Avena fatua, Avena byzantina, Avena fatua var. sativa, Avena hybrida [Hafer], Sorghum bicolor, Sorghum halepense, Sorghum saccharatum, Sorghum vulgare, Andropogon drummondii, Holcus bicolor, Holcus sorghum, Sorghum aethiopicum, Sorghum arundinaceum, Sorghum caffrorum, Sorghum cernuum, Sorghum dochna, Sorghum drummondii, Sorghum durra, Sorghum guineense, Sorghum 20 lanceolatum, Sorghum nervosum, Sorghum saccharatum, Sorghum subglabrescens, Sorghum verticilliflorum, Sorghum vulgare, Holcus halepensis, Sorghum miliaceum, Panicum militaceum [Hirse], Oryza sativa, Oryza latifolia [Reis], Zea mays [Mais] Triticum aestivum, Triticum durum, Triticum turgidum, Triticum hybernum, Triticum macha, Triticum sativum oder Triticum vulgare [Weizen], Porphyridiaceae wie die 25 Gattungen Chroothece, Flintiella, Petrovanella, Porphyridium, Rhodella, Rhodosorus, Vanhoeffenia z.B. die Gattung und Art Porphyridium cruentum, Proteaceae wie die Gattung Macadamia z.B. die Gattung und Art Macadamia intergrifolia [Macadamia], Prasinophyceae wie die Gattungen Nephroselmis, Prasinococcus, Scherffelia, Tetraselmis, Mantoniella, Ostreococcus z.B. die Gattungen und Arten Nephroselmis 30 olivacea, Prasinococcus capsulatus, Scherffelia dubia, Tetraselmis chui, Tetraselmis suecica, Mantoniella squamata, Ostreococcus tauri, Rubiaceae wie die Gattung Coffea z.B. die Gattungen und Arten Cofea spp., Coffea arabica, Coffea canephora oder Coffea liberica [Kaffee], Scrophulariaceae wie die Gattung Verbascum z.B. die Gattungen und Arten Verbascum blattaria, Verbascum chaixii, Verbascum densiflorum, 35 Verbascum lagurus, Verbascum longifolium, Verbascum lychnitis, Verbascum nigrum, Verbascum olympicum, Verbascum phlomoides, Verbascum phoenicum, Verbascum pulverulentum oder Verbascum thapsus [Königskerze], Solanaceae wie die Gattungen Capsicum, Nicotiana, Solanum, Lycopersicon z.B. die Gattungen und Arten Capsicum annuum, Capsicum annuum var. glabriusculum, Capsicum frutescens [Pfeffer], 40. Capsicum annuum [Paprika], Nicotiana tabacum, Nicotiana alata, Nicotiana attenuata, Nicotiana glauca, Nicotiana langsdorffii, Nicotiana obtusifolia, Nicotiana quadrivalvis, Nicotiana repanda, Nicotiana rustica, Nicotiana sylvestris [Tabak], Solanum tuberosum [Kartoffel], Solanum melongena [Aubergine] Lycopersicon esculentum, Lycopersicon lycopersicum., Lycopersicon pyriforme, Solanum integrifolium oder Solanum lycopersi-45

cum [Tomate], Sterculiaceae wie die Gattung Theobroma z.B. die Gattung und Art Theobroma cacao [Kakao] oder Theaceae wie die Gattung Camellia z.B. die Gattung und Art Camellia sinensis [Tee].

Vorteilhafte Mikroorganismen sind beispielweise Pilze ausgewählt aus der Gruppe der Familien Chaetomiaceae, Choanephoraceae, Cryptococcaceae, Cunninghamellaceae, Demetiaceae, Moniliaceae, Mortierellaceae, Mucoraceae, Pythiaceae, Sacharomycetaceae, Saprolegniaceae, Schizosacharomycetaceae, Sodariaceae oder Tuberculariaceae.

Beispielhaft seien die folgenden Mikroorganismen genannt ausgewählt aus der Gruppe: Choanephoraceae wie den Gattungen Blakeslea, Choanephora z.B. die Gattungen und Arten Blakeslea trispora, Choanephora cucurbitarum, Choanephora 10 infundibulifera var. cucurbitarum, Mortierellaceae wie der Gattung Mortierella z.B. die Gattungen und Arten Mortierella isabellina, Mortierella polycephala, Mortierella ramanniana, Mortierella vinacea, Mortierella zonata, Pythiaceae wie den Gattungen Phytium, Phytophthora z.B. die Gattungen und Arten Pythium debaryanum, Pythium intermedium, Pythium irregulare, Pythium megalacanthum, Pythium paroecandrum, 15 Pythium sylvaticum, Pythium ultimum, Phytophthora cactorum, Phytophthora cinnamomi, Phytophthora citricola, Phytophthora citrophthora, Phytophthora cryptogea, Phytophthora drechsleri, Phytophthora erythroseptica, Phytophthora lateralis, Phytophthora megasperma, Phytophthora nicotianae, Phytophthora nicotianae var. parasitica, Phytophthora palmivora, Phytophthora parasitica, Phytophthora syringae, 20 Saccharomycetaceae wie den Gattungen Hansenula, Pichia, Saccharomyces, Saccharomycodes, Yarrowia z.B. die Gattungen und Arten Hansenula anomala, Hansenula californica, Hansenula canadensis, Hansenula capsulata, Hansenula ciferrii, Hansenula glucozyma, Hansenula henricii, Hansenula holstii, Hansenula minuta, Hansenula nonfermentans, Hansenula philodendri, Hansenula polymorpha, 25 Hansenula saturnus, Hansenula subpelliculosa, Hansenula wickerhamii, Hansenula r wingei, Pichia alcoholophila, Pichia angusta, Pichia anomala, Pichia bispora, Pichia burtonii, Pichia canadensis, Pichia capsulata, Pichia carsonii, Pichia cellobiosa, Pichia ciferrii, Pichia farinosa, Pichia fermentans, Pichia finlandica, Pichia glucozyma, Pichia guilliermondii, Pichia haplophila, Pichia henricii, Pichia holstii, Pichia jadinii, Pichia 30 lindnerii, Pichia membranaefaciens, Pichia methanolica, Pichia minuta var. minuta, Pichia minuta var. nonfermentans, Pichia norvegensis, Pichia ohmeri, Pichia pastoris, Pichia philodendri, Pichia pini, Pichia polymorpha, Pichia quercuum, Pichia rhodanensis, Pichia sargentensis, Pichia stipitis, Pichia strasburgensis, Pichia subpelliculosa, Pichia toletana, Pichia trehalophila, Pichia vini, Pichia xylosa, Saccharomyces aceti, 35 Saccharomyces bailii, Saccharomyces bayanus, Saccharomyces bisporus, Saccharomyces capensis, Saccharomyces carlsbergensis, Saccharomyces cerevisiae, Saccharomyces cerevisiae var. ellipsoideus, Saccharomyces chevalieri, Saccharomyces delbrueckii, Saccharomyces diastaticus, Saccharomyces drosophilarum, Saccharomyces elegans, Saccharomyces ellipsoideus, Saccharomyces fermentati, Saccharomyces 40 florentinus, Saccharomyces fragilis, Saccharomyces heterogenicus, Saccharomyces hienipiensis, Saccharomyces inusitatus, Saccharomyces italicus, Saccharomyces

10

15

25

30

35.

40

kluyveri, Saccharomyces krusei, Saccharomyces lactis, Saccharomyces marxianus, Saccharomyces microellipsoides, Saccharomyces montanus, Saccharomyces norbensis, Saccharomyces oleaceus, Saccharomyces paradoxus, Saccharomyces pastorianus, Saccharomyces pretoriensis, Saccharomyces rosei, Saccharomyces rouxii, Saccharomyces uvarum, Saccharomycodes Iudwigii, Yarrowia lipolytica, Schizosacharomycetaceae such as the genera Schizosaccharomyces e.g. the species Schizosaccharomyces japonicus var. japonicus, Schizosaccharomyces japonicus var. versatilis, Schizosaccharomyces malidevorans, Schizosaccharomyces octosporus, Schizosaccharomyces pombe var. malidevorans, Schizosaccharomyces pombe var. pombe, Thraustochytriaceae such as the genera Althornia, Aplanochytrium, Japonochytrium, Schizochytrium, Thraustochytrium e.g. the species Schizochytrium aggregatum, Schizochytrium limacinum, Schizochytrium mangrovei, Schizochytrium minutum, Schizochytrium octosporum, Thraustochytrium aggregatum, Thraustochytrium amoeboideum, Thraustochytrium antacticum, Thraustochytrium arudimentale, Thraustochytrium aureum, Thraustochytrium benthicola, Thraustochytrium globosum, Thraustochytrium indicum, Thraustochytrium kerguelense, Thraustochytrium kinnei, Thraustochytrium motivum, Thraustochytrium multirudimentale, Thraustochytrium pachydermum, Thraustochytrium proliferum, Thraustochytrium roseum, Thraustochytrium rossii, Thraustochytrium striatum oder Thraustochytrium visurgense.

20 Weitere vorteilhafte Mikroorganismen sind beispielweise Bakterien ausgewählt aus der Gruppe der Familien Bacillaceae, Enterobacteriacae oder Rhizobiaceae.

Beispielhaft seien die folgenden Mikroorganismen genannt ausgewählt aus der Gruppe: Bacillaceae wie die Gattung Bacillus z.B die Gattungen und Arten Bacillus acidocaldarius, Bacillus acidoterrestris, Bacillus alcalophilus, Bacillus amyloliquefaciens, Bacillus amylolyticus, Bacillus brevis, Bacillus cereus, Bacillus circulans, Bacillus coagulans, Bacillus sphaericus subsp. fusiformis, Bacillus galactophilus, Bacillus globisporus, Bacillus globisporus subsp. marinus, Bacillus halophilus, Bacillus lentimorbus, Bacillus lentus, Bacillus licheniformis, Bacillus megaterium, Bacillus polymyxa, Bacillus psychrosaccharolyticus, Bacillus pumilus, Bacillus sphaericus, Bacillus subtilis subsp. spizizenii, Bacillus subtilis subsp. subtilis oder Bacillus thuringiensis; Enterobacteriacae wie die Gattungen Citrobacter, Edwardsiella, Enterobacter, Erwinia, Escherichia, Klebsiella, Salmonella oder Serratia z.B die Gattungen und Arten Citrobacter amalonaticus, Citrobacter diversus, Citrobacter freundii, Citrobacter genomospecies, Citrobacter gillenii, Citrobacter intermedium, Citrobacter koseri, Citrobacter murliniae, Citrobacter sp., Edwardsiella hoshinae, Edwardsiella ictaluri, Edwardsiella tarda, Erwinia alni, Erwinia amylovora, Erwinia ananatis, Erwinia aphidicola, Erwinia billingiae, Erwinia cacticida, Erwinia cancerogena, Erwinia carnegieana, Erwinia carotovora subsp. atroseptica, Erwinia carotovora subsp. betavasculorum, Erwinia carotovora subsp. odorifera, Erwinia carotovora subsp. wasabiae, Erwinia chrysanthemi, Erwinia cypripedii, Erwinia dissolvens, Erwinia herbicola, Erwinia mallotivora, Erwinia milletiae, Erwinia nigrifluens, Erwinia nimipressuralis, Erwinia persicina, Erwinia psidii, Erwinia pyrifoliae, Erwinia quercina, Erwinia rhapontici, Erwinia rubrifaciens, Erwinia salicis, Erwinia stewartii, Erwinia tracheiphila, Erwinia uredovora, Escherichia

adecarboxylata, Escherichia anindolica, Escherichia aurescens, Escherichia blattae, Escherichia coli, Escherichia coli var. communior, Escherichia coli-mutabile, Escherichia fergusonii, Escherichia hermannii, Escherichia sp., Escherichia vulneris, Klebsiella aerogenes, Klebsiella edwardsii subsp. atlantae, Klebsiella ornithinolytica, Klebsiella oxytoca, Klebsiella planticola, Klebsiella pneumoniae, Klebsiella pneumoniae subsp. 5 pneumoniae, Klebsiella sp., Klebsiella terrigena, Klebsiella trevisanii, Salmonella abony, Salmonella arizonae, Salmonella bongori, Salmonella choleraesuis subsp. arizonae, Salmonella choleraesuis subsp. bongori, Salmonella choleraesuis subsp. cholereasuis, Salmonella choleraesuis subsp. diarizonae, Salmonella choleraesuis subsp. houtenae, Salmonella choleraesuis subsp. indica, Salmonella choleraesuis 10 subsp. salamae, Salmonella daressalaam, Salmonella enterica subsp. houtenae, Salmonella enterica subsp. salamae, Salmonella enteritidis, Salmonella gallinarum, Salmonella heidelberg, Salmonella panama, Salmonella senftenberg, Salmonella typhimurium, Serratia entomophila, Serratia ficaria, Serratia fonticola, Serratia grimesii, Serratia liquefaciens, Serratia marcescens, Serratia marcescens subsp. marcescens, 15 Serratia marinorubra, Serratia odorifera, Serratia plymouthensis, Serratia plymuthica, Serratia proteamaculans, Serratia proteamaculans subsp. quinovora, Serratia quinivorans oder Serratia rubidaea; Rhizobiaceae wie die Gattungen Agrobacterium, Carbophilus, Chelatobacter, Ensifer, Rhizobium, Sinorhizobium z.B. die Gattungen und Arten Agrobacterium atlanticum, Agrobacterium ferrugineum, Agrobacterium gelatino-20 vorum, Agrobacterium larrymoorei, Agrobacterium meteori, Agrobacterium radiobacter, Agrobacterium rhizogenes, Agrobacterium rubi, Agrobacterium stellulatum, Agrobacterium turnefaciens, Agrobacterium vitis, Carbophilus carboxidus, Chelatobacter heintzii, Ensifer adhaerens, Ensifer arboris, Ensifer fredii, Ensifer kostiensis, Ensifer kummerowiae, Ensifer medicae, Ensifer meliloti, Ensifer saheli, Ensifer terangae, Ensifer 25 xinjiangensis, Rhizobium ciceri Rhizobium etli, Rhizobium fredii, Rhizobium galegae, Rhizobium gallicum, Rhizobium giardinii, Rhizobium hainanense, Rhizobium huakuii, Rhizobium huautlense, Rhizobium indigoferae, Rhizobium japonicum, Rhizobium leguminosarum, Rhizobium loessense, Rhizobium loti, Rhizobium lupini, Rhizobium mediterraneum, Rhizobium meliloti, Rhizobium mongolense, Rhizobium phaseoli, 30 Rhizobium radiobacter, Rhizobium rhizogenes, Rhizobium rubi, Rhizobium sullae, Rhizobium tianshanense, Rhizobium trifolii, Rhizobium tropici, Rhizobium undicola, Rhizobium vitis, Sinorhizobium adhaerens, Sinorhizobium arboris, Sinorhizobium fredii, Sinorhizobium kostiense, Sinorhizobium kummerowiae, Sinorhizobium medicae, Sinorhizobium meliloti, Sinorhizobium morelense, Sinorhizobium saheli oder Sinorhizo-35 bium xinjiangense.

Weitere vorteilhafte Mikroorganismen für das erfindungsgemäße Verfahren sind beispielweise Protisten oder Diatomeen ausgewählt aus der Gruppe der Familien Dinophyceae, Turaniellidae oder Oxytrichidae wie die Gattungen und Arten: Crypthecodinium cohnii, Phaeodactylum tricornutum, Stylonychia mytilus, Stylonychia pustulata, Stylonychia putrina, Stylonychia notophora, Stylonychia sp., Colpidium campylum oder Colpidium sp.

Vorteilhaft werden im erfindungsgemäßen Verfahren transgene Organismen wie Pilze wie Mortierella oder Traustochytrium, Hefen wie Saccharomyces oder Schizosaccharomyces, Moose wie Physcomitrella oder Ceratodon, nicht-humane Tiere wie Caenorhabditis, Algen wie Nephroselmis, Pseudoscourfielda, Prasinococcus, 5 · Scherffelia, Tetraselmis, Mantoniella, Ostreococcus, Crypthecodinium oder Phaeodactylum oder Pflanzen wie zweikeimblättrige oder einkeimblättrige Pflanzen verwendet. Besonders vorteilhaft werden Organismen im erfindungsgemäßen Verfahren verwendet, die zu den Öl-produzierenden Organismen gehören, das heißt die für die Herstellung von Ölen verwendet werden, wie Pilze wie Mortierella oder Thraustochytrium, Algen wie Nephroselmis, Pseudoscourfielda, Prasinococcus, Scherffelia, 10 Tetraselmis, Mantoniella, Ostreococcus, Crypthecodinium, Phaeodactylum oder Pflanzen, insbesondere Pflanzen bevorzugt Ölfruchtpflanzen, die große Mengen an Lipidverbindungen enthalten, wie Erdnuss, Raps, Canola, Sonnenblume, Saflor (Carthamus tinctoria), Mohn, Senf, Hanf, Rizinus, Olive, Sesam, Calendula, Punica, Nachtkerze, Königskerze, Distel, Wildrosen, Haselnuss, Mandel, Macadamia, Avoca-15 do, Lorbeer, Kürbis, Lein, Soja, Pistazien, Borretsch, Bäume (Ölpalme, Kokosnuss oder Walnuss) oder Feldfrüchte, wie Mais, Weizen, Roggen, Hafer, Triticale, Reis, Gerste, Baumwolle, Maniok, Pfeffer, Tagetes, Solanaceen-Pflanzen, wie Kartoffel, Tabak, Aubergine und Tomate, Vicia-Arten, Erbse, Alfalfa oder Buschpflanzen (Kaffee, Kakao, Tee), Salix-Arten sowie ausdauernde Gräser und Futterfeldfrüchte. Bevorzugte 20 erfindungsgemäße Pflanzen sind Ölfruchtpflanzen, wie Erdnuss, Raps, Canola, Sonnenblume, Saflor, Mohn, Senf, Hanf, Rhizinus, Olive, Calendula, Punica, Nachtkerze, Kürbis, Lein, Soja, Borretsch, Bäume (Ölpalme, Kokosnuss). Besonders bevorzugt sind C18:2- und/oder C18:3-Fettsäure reiche Pflanzen wie Sonnenblume, Färberdistel, Tabak, Königskerze, Sesam, Baumwolle, Kürbis, Mohn, Nachtkerze, 25 Walnuss, Lein, Hanf, Distel oder Färberdistel. Ganz besonders bevorzugt sind Pflanzen wie Färberdistel, Sonnenblume, Mohn, Nachtkerze, Walnuss, Lein oder Hanf.

Für das erfindungsgemäße beschriebene Verfahren ist es vorteilhaft in den Organismus zusätzlich zu den unter Verfahrensschritt (a) bis (d) eingebrachten Nukleinsäuren sowie den ggf. eingebrachten Nukleinsäuresequenzen, die für die ω -3-Desaturasen codieren, zusätzlich weitere Nukleinsäuren einzubringen, die für Enzyme des Fettsäure- oder Lipidstoffwechsels codieren.

30

35

40

Im Prinzip können alle Gene des Fettsäure– oder Lipidstoffwechsels vorteilhaft in Kombination mit der(den) erfinderischen Δ-5-Elongase(n), Δ-6-Elongase(n) und/oder ω-3-Desaturase(n) [im Sinne dieser Anmeldung soll der Plural den Singular und umgekehrt beinhalten] im Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren verwendet werden vorteilhaft werden Gene des Fettsäure– oder Lipidstoffwechsels ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]–Desaturase(n), Acyl-ACP–Thioesterase(n), Fettsäure–Acyl-Transferase(n), Acyl-CoA:Lysophospholipid-Acyltransferasen, Fettsäure–Synthase(n), Fettsäure–Hydroxylase(n), Acetyl-Coenzym A–Carboxylase(n), Acyl-Coenzym A–Oxidase(n), Fettsäure–Desaturase(n), Fettsäure–Acetylenasen, Lipoxygenasen, Triacylglycerol–Lipasen, Allenoxid–Synthasen, Hydroperoxid–Lyasen oder Fettsäure–Elongase(n) in

10

40

Kombination mit der Δ -5-Elongase, Δ -6-Elongase und/oder ω -3-Desaturase verwendet. Besonders bevorzugt werden Gene ausgewählt aus der Gruppe der Δ -4-Desaturasen, Δ -5-Desaturasen, Δ -6-Desaturasen, Δ -8-Desatuasen, Δ -9-Desaturasen, Δ -12-Desaturasen, Δ -6-Elongasen oder Δ -9-Elongasen in Kombination mit den vorgenannten Genen für die Δ -5-Elongase, Δ -6-Elongase und/oder ω -3-Desaturase verwendet, wobei einzelne Gene oder mehrere Gene in Kombination verwendet werden können.

Die erfindungsgemäßen Δ-5-Elongasen haben gegenüber den humanen Elongasen oder Elongasen aus nicht-humanen Tieren wie denen aus Oncorhynchus, Xenopus oder Ciona die vorteilhafte Eigenschaft, dass sie C22-Fettsäuren nicht zu den entsprechenden C24-Fettsäuren elongieren. Weiterhin setzen sie vorteilhaft keine Fettsäuren mit einer Doppelbindung in Δ -6-Position um, wie sie von den humanen Elongasen oder den Elongasen aus nicht-humanen Tieren umgesetzt werden. Besonders vorteilhafte Δ -5-Elongasen setzen bevorzugt nur ungesättigte C $_{20}$ -Fettsäuren um. Diese vorteilhaften Δ -5-Elongasen weisen einige putative Transmembran-Helixes (5 – 7) auf. Vorteilhaft werden nur C_{20} -Fettsäuren mit einer Doppelbindung in Δ -5-Position umgesetzt, wobei ω -3- C_{20} Fettsäuren bevorzugt werden (EPA). Weiterhin haben sie in einer -15 bevorzugten Ausführungsform der Erfindung die Eigenschaft, dass sie neben der ∆-5-Elongaseaktivität vorteilhaft keine oder nur eine relativ geringe Δ -6-Elongaseaktivität aufweisen. Im Gegensatz dazu weisen die humanen Elongasen oder nicht-humanen Tier-Elongasen eine annäherend gleiche Aktivität gegenüber Fettsäuren mit einer Δ-6oder Δ -5-Doppelbindung auf. Diese vorteilhaften Elongasen werden als sogenannte 20 monofunktionelle Elongasen bezeichnet. Die humanen Elongasen oder die nichthumanen Tierelongasen werden dem gegenüber als multifunktionelle Elongasen bezeichnet, die neben den vorgenannten Substraten auch monoungesättigte C_{16} - und C_{18} -Fettsäuren beispielsweise mit Δ -9- oder Δ -11-Doppelbindung umsetzen. Vorteilhaft setzen die monofunktionellen Elongasen in einem Hefefütterungstext, in dem als Substrat EPA den Hefen zugesetzt wurde, mindestens 15 Gew.-% des zugesetzten EPAs zu Docosapentaensäure (DPA, C22:5^{A7,10,13,16,19}), vorteilhaft mindestens 20 Gew.-%, besonders vorteilhaft mindestens 25 Gew.-% um. Wird als Substrat γ-Linolensäure (= GLA, C18:3^{Δ6,9,12}) gegeben, so wird diese vorteilhaft gar nicht elongiert. Ebenfalls wird auch C18:3^{Δ5,9,12} nicht elongiert. In einer anderen vorteilhaften Aus-30 führungsform werden weniger als 60 Gew.-% des zugesetzten GLA zu Dihomo-ylinolensäure (= C20:3^{48,11,14}) umgesetzt, vorteilhaft weniger als 55 Gew.-%, bevorzugt weniger als 50 Gew.-%, besonders vorteilhaft weniger als 45 Gew.-%, ganz besonders vorteilhaft weniger als 40 Gew.-%. In einer weiteren ganz bevorzugten Ausführungsform der erfindungsgemäßen Δ -5-Elongaseaktivität wird GLA nicht umgesetzt. 35

Die Figuren 27 und 28 geben die gemessenen Substratspezifitäten der verschiedenen Elongasen wieder. In Figur 27 sind die Spezifitäten der multifunktnonellen Elongasen von Xenopus laevis (Fig. 27 A), Ciona intestinalis (Fig. 27 B) und Oncorhynchus mykiss (Fig. 27 C) wiedergegeben. Alle diese Elongasen setzen ein breites Spektrum an Substraten um. Dies kann im erfindungsgemäßen Verfahren zu Nebenprodukten führen, die durch weitere enzymatische Aktivitäten umgesetzt werden müssen. Diese Enzyme sind deshalb im erfindungsgemäßen Verfahren weniger bevorzugt. Die

bevorzugten monofunktionellen Elongasen und ihre Substratspezifität werden in Figur 28 wiedergegeben. Figur 28 A zeigt die Spezifität der Ostreococcus tauri Δ -5-Elongase. Dies setzt nur Fettsäuren mit einer Doppelbindung in Δ -5-Position um. Vorteilhaft werden nur C20-Fettsäuren umgesetzt. Eine ähnlich hohe Substratspezifität weist die Δ -5-Elongase von Thalassiosira pseudonana (Fig. 28. C) auf. Sowohl die Δ -6-Elongase von Ostreococcus tauri (Fig. 28 B) als auch die von Thalassiosira pseudonana (Fig. 28 D) setzen vorteilhaft nur Fettsäuren mit einer Doppelbindung in Δ -6-Position um. Vorteilhaft werden nur C18-Fettsäuren umgesetzt. Auch die Δ -5-Elongasen aus Arabidopsis thaliana und Euglena gracilis zeichnen sich durch ihre Spezifität aus.

- Vorteilhafte erfindungsgemäße Δ-6-Elongasen zeichnen sich ebenfalls durch eine hohe Spezifität aus, das heißt bevorzugt werden C₁₈-Fettsäuren elongiert. Vorteilhaft setzen sie Fettsäuren mit einer Doppelbindung in Δ-6-Position um. Besonders vorteilhafte Δ-6-Elongasen setzen vorteilhaft C₁₈-Fettsäuren mit drei oder vier Doppelbindungen im Molekül um, wobei diese eine Doppelbindung in Δ-6-Position enthalten müssen.
- Weiterhin haben sie in einer bevorzugten Ausführungsform der Erfindung die Eigenschaft, dass sie neben der Δ-6-Elongaseaktivität vorteilhaft keine oder nur eine relativ geringe Δ-5-Elongaseaktivität aufweisen. Im Gegensatz dazu weisen die humanen Elongasen oder nicht-humanen Tier-Elongasen eine annäherend gleiche Aktivität gegenüber Fettsäuren mit einer Δ-6- oder Δ-5-Doppelbindung auf. Diese vorteilhaften
- Elongasen werden als sogenannte monofunktionelle Elongasen bezeichnet. Die humanen Elongasen oder die nicht-humanen Tierelongasen werden, wie oben beschrieben, dem gegenüber als multifunktionelle Elongasen bezeichnet, die neben den vorgenannten Substraten auch monoungesättigte C₁₆- und C₁₈-Fettsäuren beispielsweise mit Δ-9- oder Δ-11-Doppelbindung umsetzen. Vorteilhaft setzen die
- monofunktionellen Elongasen in einem Hefefütterungstext, in dem als Substrat EPA den Hefen zugesetzt wurde, mindestens 10 Gew.-% der zugesetzten α-Linolensäure (= ALA, C18:3^{Δ9,12,15}) bzw. mindestens 40 Gew.-% der zugesetzten γ-Linolensäure (= GLA, C18:3^{Δ6,9,12}), vorteilhaft mindestens 20 Gew.-% bzw. 50 Gew.-%, besonders vorteilhaft mindestens 25 Gew.-% bzw. 60 Gew.-% um. Besonders vorteilhaft wird auch C18:4^{Δ6,9,12,15} (Stearidonsäure) elongiert. SDA wird dabei zu mindestens 40 Gew.
 - auch C18:4^{Δ6,9,12,15} (Stearidonsäure) elongiert. SDA wird dabei zu mindestens 40 Gew.-%, vorteilhaft zu mindestens 50 Gew.-%, besonders vorteilhaft zu mindestens 60 Gew.-%, ganz besonders vorteihaft zu mindestens 70 Gew.-% umgesetzt. Besonders vorteilhafte Δ-6-Elongasen zeigen keine oder nur eine sehr geringe Aktivität (weniger als 0,1 Gew-% Umsatz) gegenüber den folgenden Substraten: C18:1^{Δ6}, C18:1^{Δ9},
- 35 C18:1 $^{\Delta 11}$, C20:2 $^{\Delta 11,14}$, C20:3 $^{\Delta 11,14,17}$, C20:3 $^{\Delta 8,11,14}$, C20:4 $^{\Delta 5,8,11,14}$, C20:5 $^{\Delta 5,8,11,14,17}$ oder C22:4 $^{\Delta 7,10,13,16}$.

Die Figuren 29 und 30 sowie die Tabelle 18 geben die gemessenen Substratspezifitäten der verschiedenen Elongasen wieder.

Die erfindungsgemäße ω-3-Desaturase hat gegenüber den bekannten ω-3-Desaturase die vorteilhafte Eigenschaft, dass sie ein breites Spektrum an ω-6-Fettsäuren desaturieren kann, bevorzugt werden C₂₀- und C₂₂-Fettsäuren wie C_{20:2}-, C_{20:3}-, C_{20:4}-, C_{22:4}- oder C_{22:5}-Fettsäuren desaturiert. Aber auch die kürzeren C₁₈-Fettsäuren wie C_{18:2}-

10

15

25

30

. 35

40

oder $C_{18:3}$ -Fettsäuren werden vorteilhaft desaturiert. Durch diese Eigenschaften der ω -3-Desaturase ist es vorteilhaft möglich das Fettsäurespektrum innerhalb eines Organismus vorteilhaft innerhalb einer Pflanze oder einem Pilz von den ω -6-Fettsäuren zu den ω -3-Fettsäuren hin zu verschieben. Bevorzugt werden von der erfindungsgemäßen ω -3-Desaturase C_{20} -Fettsäuren desaturiert. Innerhalb des Organismus werden diese Fettsäuren aus dem vorhandenen Fettsäurepool zu mindestens 10%, 15%, 20%, 25% oder 30% zu den entsprechenden ω -3-Fettsäuren umgesetzt. Gegenüber den C_{18} -Fettsäuren weist die ω -3-Desaturase eine um den Faktor 10 geringere Aktivität auf, das heißt es werden nur ca. 1,5 bis 3% der im Fettsäurepool vorhandenen Fettsäuren zu den entsprechenden ω -3-Fettsäuren umgesetzt. Bevorzugtes Substrat der erfindungsgemäßen ω -3-Desaturase sind die in Phospholipiden gebundenen ω -6-Fettsäuren. Figur 19 zeigt deutlich am Beispiel der Desaturierung von Dihomo-ylinolensäure [$C_{20.4}^{\Delta 8,11,14}$], dass die ω -3-Desaturase bei der Desaturierung vorteilhaft nicht zwischen an sn1- oder sn2-Position gebundenen Fettsäuren unterscheidet. Sowohl an sn1- oder sn2-Position in den Phospholipide gebundene Fettsäuren werden desaturiert. Weiterhin ist vorteilhaft, dass die ω -3-Desaturase eine breite Palette von Phospholipiden wie Phosphatidylcholin (= PC), Phosphatidylinositol (= PIS) oder Phosphatidylethanolamin (= PE) umsetzt. Schließlich lassen sich auch Desaturierungsprodukte in den Neutrallipiden (= NL), das heißt in den Triglyceriden finden.

Die erfingungsgemäßen Δ-4-Desaturasen, Δ-5-Desaturasen und Δ-6-Desaturasen haben gegenüber den bekannten Δ-4-Desaturasen, Δ-5-Desaturasen und Δ-6-Desaturasen den Vorteil, dass sie Fettsäuren gebunden an Phospholipide oder CoA-Fettsäureester, vorteilhaft CoA-Fettsäureester umsetzen können.

Vorteilhaft setzen die im erfingungsgemäßen Verfahren verwendeten Δ -12-Desaturasen Ölsäure (C18:1^{Δ 9}) zu Linolsäure (C18:2^{Δ 9,12}) oder C18:2^{Δ 6,9} zu C18:3^{Δ 6,9,12} (= GLA) um. Vorteilhaft setzen die verwendeten Δ -12-Desaturasen Fettsäuren gebunden an Phospholipide oder CoA-Fettsäureester, vorteilhaft gebunden an CoA-Fettsäureester um.

Durch die enzymatische Aktivität der im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren, die für Polypeptide mit Δ -5-Elongase-, Δ -6-Elongase- und/oder ω -3-Desaturaseaktivität codieren, vorteilhaft in Kombination mit Nukleinsäuresequenzen, die für Polypeptide des Fettsäure- oder Lipidstoffwechsels wie weiteren Polypeptiden mit Δ -4-, Δ -5-, Δ -6-, Δ -8-, Δ -12-Desaturase- oder Δ -5-, Δ -6-oder Δ -9-Elongaseaktivität codieren, können unterschiedlichste mehrfach ungesättigte Fettsäuren im erfindungsgemäßen Verfahren hergestellt werden. Je nach Auswahl der für das erfindungsgemäße Verfahren verwendeten Organismen wie den vorteilhaften Pflanzen lassen sich Mischungen der verschiedenen mehrfach ungesättigten Fettsäuren oder einzelne mehrfach ungesättigte Fettsäuren wie EPA oder ARA in freier oder gebundener Form herstellen. Je nachdem welche Fettsäurezusammensetzung in der Ausgangspflanze vorherrscht (C18:2- oder C18:3-Fettsäuren) entstehen so Fettsäuren, die sich von C18:2-Fettsäuren ableiten, wie GLA, DGLA oder ARA oder, die sich von C18:3-Fettsäuren ableiten, wie SDA, ETA oder EPA. Liegt in der für das Verfahren

verwendeten Pflanze als ungesättigte Fettsäure nur Linolsäure (= LA, C18:2^{A9,12}) vor, so können als Produkte des Verfahrens nur GLA, DGLA und ARA entstehen, die als freie Fettsäuren oder gebunden vorliegen können. Ist in der im Verfahren verwendeten Pflanze als ungesättigte Fettsäure nur α-Linolensäure (= ALA, C18:3^{Δ9,12,15}) beispielsweise wie in Lein, so können als Produkte des Verfahrens nur SDA, ETA, EPA und/oder DHA entstehen, die wie oben beschrieben als freie Fettsäuren oder gebunden vorliegen können. Durch Modifikation der Aktivität des an der Synthese beteiligten Enzyms Δ-5-Elongase vorteilhaft in Kombination mit der Δ-4--, Δ-5--, Δ-6--, Δ-12-Desaturase und/oder Δ -6-Elongase, oder der Δ -4-, Δ -5-, Δ -8-, Δ -12-Desaturase, und/oder Δ-9-Elongase lassen sich gezielt in den vorgenannten Organismen vorteil-10 haft in den vorgenannten Pflanzen nur einzelne Produkte herstellten. Durch die Aktivität der Δ –6–Desaturase und Δ –6–Elongase entstehen beispielsweise GLA und DGLA bzw. SDA und ETA, je nach Ausgangspflanze und ungesättigter Fettsäure. Bevorzugt entstehen DGLA bzw. ETA oder deren Mischungen. Werden die Δ -5-Desaturase, die Δ –5–Elongase und die Δ –4–Desaturase zusätzlich in die Organismen 15 vorteilhaft in die Pflanze eingebracht, so entstehen zusätzlich ARA, EPA und/oder DHA. Dies gilt auch für Organismen in die vorher die Δ -8-Desaturase und Δ -9-Elongase eingebracht wurde. Vorteilhaft werden nur ARA, EPA oder DHA oder deren Mischungen synthetisiert, abhängig von der in im Organismus bzw. in der Pflanze vorliegenden Fettsäure, die als Ausgangssubstanz für die Synthese dient. Da es sich 20 um Biosyntheseketten handelt, liegen die jeweiligen Endprodukte nicht als Reinsubstanzen in den Organismen vor. Es sind immer auch geringe Mengen der Vorläuferverbindungen im Endprodukt enthalten. Diese geringen Mengen betragen weniger als 20 Gew.-%, vorteilhaft weniger als 15 Gew.-%, besonders vorteilhaft weniger als 10 Gew.-%, ganz besonders vorteilhaft weniger als 5, 4, 3, 2 oder 1 Gew.-% bezogen auf 25 das Endprodukt DGLA, ETA oder deren Mischungen bzw. ARA, EPA, DHA oder deren Mischungen vorteilhaft EPA oder DHA oder deren Mischungen.

Das von der erfindungsgemäßen Nukleinsäure kodierte Protein zeigt ein hohe Spezifität für die beiden Vorstufen C18:4 46,9,12,15 - und C20:5 45,8,11,14,17 -Fettsäuren zur Synthese von DHA (Vorstufen und Synthese von DHA siehe Figur 1). Das von SEQ NO: 53 kodierte Protein hat damit eine Spezifität für $\Delta 6$ - und $\Delta 5$ -Fettsäuren mit zusätzlich einer $\omega 3$ -Doppelbindung (Figur 2). Die $\Delta - 5$ -Elongase hat eine keto-Acyl-CoA-Synthase-Aktivität, die vorteilhaft Fettsäurereste von Acyl-CoA-Estern um 2 Kohlenstoffatome verlängert.

30

40

Mittels der Δ -5-Elongase-Gene, der Δ 5-Desaturase aus Phaeodacylum sowie der Δ 4-Desaturase aus Euglena konnte die Synthese von DHA in Hefe (Saccharomyces cerevisiae) nachgewiesen werden (Figur 3).

Neben der Produktion der Ausgangsfettsäuren für die erfindungsgemäße Δ -5-Elongase, Δ -6-Elongase und/oder ω -3-Desaturase direkt im Organismus können die Fettsäuren auch von außen gefüttert werden. Aus Kostengründen ist die Produktion im Organismus bevorzugt. Bevorzugt Substrate der ω -3-Desaturase sind die Linolsäure (C18:2^{Δ 9,12}), die γ -Linolensäure (C18:3 Δ 6,9,12), die Eicosadiensäure (C20:2 Δ 11,14), die

10

Dihomo-γ-linolensäure (C20: $3^{\Delta 8,11,14}$), die Arachidonsäure (C20: $4^{\Delta 5,8,11,14}$), die Docosatetraensäure (C22:4^{Δ7,10,13,16}) und die Docosapentaensäure (C22:5^{Δ4,7,10,13,15}).

Zur Steigerung der Ausbeute im beschriebenen Verfahren zur Herstellung von Ölen und/oder Triglyceriden mit einem vorteilhaft erhöhten Gehalt an mehrfach ungesättigten Fettsäuren ist es vorteilhaft die Menge an Ausgangsprodukt für die Fettsäuresynthese zu steigern, dies kann beispielsweise durch das Einbringen einer Nukleinsäure in den Organismus, die für ein Polypeptid mit Δ -12-Desaturase codiert, erreicht werden. Dies ist besonders vorteilhaft in Öl-produzierenden Organismen wie der Familie der Brassicaceae wie der Gattung Brassica z.B. Raps; der Familie der Elaeagnaceae wie die Gattung Elaeagnus z.B. die Gattung und Art Olea europaea oder der Familie Fabaceae wie der Gattung Glycine z.B. die Gattung und Art Glycine max, die einen hohen Ölsäuregehalt aufweisen. Da diese Organismen nur einen geringen Gehalt an Linoisäure aufweisen (Mikoklajczak et al., Journal of the American Oil Chemical Society, 38, 1961, 678 - 681) ist die Verwendung der genannten Δ -12-Desaturasen zur Herstellung des Ausgangsprodukts Linolsäure vorteilhaft. 15

Im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren stammen vorteilhaft aus Pflanzen wie Algen beispielsweise Algen der Familie der Prasinophyceae wie aus den Gattungen Heteromastix, Mammella, Mantoniella, Micromonas, Nephroselmis, Ostreococcus, Prasinocladus, Prasinococcus, Pseudoscourfielda, Pycnococcus, Pyramimonas, Scherffelia oder Tetraselmis wie den Gattungen und Arten Heteromastix longifillis, Mamiella gilva, Mantoniella squamata, Micromonas pusilla, Nephroselmis 20 olivacea, Nephroselmis pyriformis, Nephroselmis rotunda, Ostreococcus tauri, Ostreococcus sp. Prasinocladus ascus, Prasinocladus lubricus, Pycnococcus provasolii, Pyramimonas amylifera, Pyramimonas disomata, Pyramimonas obovata, Pyramimonas orientalis, Pyramimonas parkeae, Pyramimonas spinifera, Pyramimonas sp., Tetraselmis apiculata, Tetraselmis carteriaformis, Tetraselmis chui, Tetraselmis convolutae, 25 Tetraselmis desikacharyi, Tetraselmis gracilis, Tetraselmis hazeni, Tetraselmis impellucida, Tetraselmis inconspicua, Tetraselmis levis, Tetraselmis maculata, Tetraselmis marina, Tetraselmis striata, Tetraselmis subcordiformis, Tetraselmis suecica, Tetraselmis tetrabrachia, Tetraselmis tetrathele, Tetraselmis verrucosa, Tetraselmis verrucosa fo. rubens oder Tetraselmis sp. oder aus Algen der Familie 30 Euglenaceae wie aus den Gattungen Ascoglena, Astasia, Colacium, Cyclidiopsis, Euglena, Euglenopsis, Hyalophacus, Khawkinea, Lepocinclis, Phacus, Strombomonas oder Trachelomonas wie die Gattungen und Art Euglena acus, Euglena geniculata, Euglena gracilis, Euglena mixocylindracea, Euglena rostrifera, Euglena viridis, Colacium stentorium, Trachelomonas cylindrica oder Trachelomonas volvocina. 35 Vorteilhaft stammen die verwendeten Nukleinsäuren aus Algen der Gattungen Euglena, Mantoniella oder Ostreococcus.

Weitere vorteilhafte Pflanzen sind Algen wie Isochrysis oder Crypthecodinium, Algen/ Diatomeen wie Thalassiosira oder Phaeodactylum, Moose wie Physcomitrella o-40

der Ceratodon oder höheren Pflanzen wie den Primulaceae wie Aleuritia, Calendula stellata, Osteospermum spinescens oder Osteospermum hyoseroides, Mikroorganismen wie Pilzen wie Aspergillus, Thraustochytrium, Phytophthora, Entomophthora, Mucor oder Mortierella, Bakterien wie Shewanella, Hefen oder Tieren wie Nematoden wie Caenorhabditis, Insekten, Fröschen, Seegurken oder Fischen. Vorteilhaft stammen die erfindungsgemäßen isolierten Nukleinsäuresequenzen aus einem Tier aus der Ordnung der Vertebraten. Bevorzugt stammen die Nukleinsäuresequenzen aus der Klasse der Vertebrata; Euteleostomi, Actinopterygii; Neopterygii; Teleostei; Euteleostei, Protacanthopterygii, Salmoniformes; Salmonidae bzw. Oncorhynchus oder Vertebrata. 10 Amphibia, Anura, Pipidae, Xenopus oder Evertebrata wie Protochordata, Tunicata, Holothuroidea, Cionidae wie Amaroucium constellatum, Botryllus schlosseri, Ciona intestinalis, Molgula citrina, Molgula manhattensis, Perophora viridis oder Styela partita. Besonders vorteilhaft stammen die Nukleinsäuren aus Pilzen, Tieren oder aus Pflanzen wie Algen oder Moosen, bevorzugt aus der Ordnung der Salmoniformes wie 15 der Familie der Salmonidae wie der Gattung Salmo beispielsweise aus den Gattungen und Arten Oncorhynchus mykiss, Trutta trutta oder Salmo trutta fario, aus Algen wie den Gattungen Mantoniella oder Ostreococcus oder aus den Diatomeen wie den Gattungen Thalassiosira oder Phaeodactylum oder aus Algen wie Crypthecodinium.

Vorteilhaft werden im erfindungsgemäßen Verfahren die vorgenannten Nukleinsäure20 sequenzen oder deren Derivat oder Homologe, die für Polypeptide codieren, die noch die enzymatische Aktivität der durch Nukleinsäuresequenzen codierten Proteine besitzen. Diese Sequenzen werden einzeln oder in Kombination mit den für die Δ-12-Desaturase, Δ-4-Desaturase, Δ-5-Desaturase, Δ-6-Desaturase, Δ-5-Elongase, Δ-6-Elongase und/oder ω-3-Desaturase codierenden Nukleinsäuresquenzen in Expressionskonstrukte cloniert und zum Einbringen und zur Expression in Organismen verwendet. Diese Expressionskonstrukte ermöglichen durch ihre Konstruktion eine vorteilhafte optimale Synthese der im erfindungsgemäßen Verfahren produzierten mehrfach ungesättigten Fettsäuren.

Bei einer bevorzugten Ausführungsform umfasst das Verfahren ferner den Schritt des 30 Gewinnens einer Zelle oder eines ganzen Organismus, der die im Verfahren verwendeten Nukleinsäuresequenzen enthält, wobei die Zelle und/oder der Organismus mit einer erfindungsgemäßen Nukleinsäuresequenz, die für die Δ-12-Desaturase, Δ-4-Desaturase, Δ-5-Desaturase, Δ-6-Desaturase, Δ-5-Elongase, Δ-6-Elongase und/oder ω-3-Desaturase codiert, einem Genkonstrukt oder einem Vektor wie nachfolgend 35 beschrieben, allein oder in Kombination mit weiteren Nukleinsäuresequenzen, die für Proteine des Fettsäure- oder Lipidsstoffwechsels codieren, transformiert wird. Bei einer weiteren bevorzugten Ausführungsform umfasst dieses Verfahren ferner den Schritt des Gewinnens der Öle, Lipide oder freien Fettsäuren aus dem Organismus oder aus der Kultur. Bei der Kultur kann es sich beispielsweise um eine Fermentationskultur 40 beispielsweise im Falle der Kultivierung von Mikroorganismen wie z.B. Mortierella, Thalassiosira, Mantoniella, Ostreococcus, Saccharomyces oder Thraustochytrium oder um eine Treibhaus oder Feldkultur einer Pflanze handeln. Die so hergestellte Zelle oder der so hergestellte Organismus ist vorteilhaft eine Zelle eines Öl-produzierenden Organismus wie einer Ölfruchtpflanze wie beispielsweise Erdnuss, Raps, Canola, Lein, Hanf, Erdnuss, Soja, Safflower, Hanf, Sonnenblumen oder Borretsch.

Unter Anzucht ist beispielsweise die Kultivierung im Falle von Pflanzenzellen, -gewebe oder -organe auf oder in einem Nährmedium oder der ganzen Pflanze auf bzw. in einem Substrat beispielsweise in Hydrokultur, Blumentopferde oder auf einem Ackerboden zu verstehen.

"Transgen" bzw. "Rekombinant" im Sinne der Erfindung bedeutet bezüglich zum
 Beispiel einer Nukleinsäuresequenz, einer Expressionskassette (= Genkonstrukt) oder einem Vektor enthaltend die erfindungsgemäße Nukleinsäuresequenz oder einem Organismus transformiert mit den erfindungsgemäßen Nukleinsäuresequenzen, Expressionskassette oder Vektor alle solche durch gentechnische Methoden zustandegekommenen Konstruktionen, in denen sich entweder

- 15 a) die erfindungsgemäße Nukleinsäuresequenz, oder
 - eine mit der erfindungsgemäßen Nukleinsäuresequenz funktionell verknüpfte genetische Kontrollsequenz, zum Beispiel ein Promotor, oder
 - c) (a) und (b)

sich nicht in ihrer natürlichen, genetischen Umgebung befinden oder durch gentechnische Methoden modifiziert wurden, wobei die Modifikation beispielhaft eine Substitution, Addition, Deletion, Inversion oder Insertion eines oder mehrerer Nukleo-20 tidreste sein kann. Natürliche genetische Umgebung meint den natürlichen genomischen bzw. chromosomalen Locus in dem Herkunftsorganismus oder das Vorliegen in einer genomischen Bibliothek. Im Fall einer genomischen Bibliothek ist die natürliche, genetische Umgebung der Nukleinsäuresequenz bevorzugt zumindest noch teilweise erhalten. Die Umgebung flankiert die Nukleinsäuresequenz zumindest an einer Seite 25 und hat eine Sequenzlänge von mindestens 50 bp, bevorzugt mindestens 500 bp, besonders bevorzugt mindestens 1000 bp, ganz besonders bevorzugt mindestens 5000 bp. Eine natürlich vorkommende Expressionskassette - beispielsweise die natürlich vorkommende Kombination des natürlichen Promotors der erfindungsgemäßen Nukleinsäuresequenzen mit den entsprechenden Δ -12-Desaturase-, Δ -4-30 Desaturase-, Δ -5-Desaturase-, Δ -6-Desaturase-, Δ -8-Desaturase-, ω -3-Desaturase-, Δ -9-Elongase-, Δ -6-Elongase- und/oder Δ -5-Elongasegenen – wird zu einer transgenen Expressionskassette, wenn diese durch nicht-natürliche, synthetische ("künstliche") Verfahren wie beispielsweise einer Mutagenisierung geändert wird. Entsprechende Verfahren sind beispielsweise beschrieben in US 5,565,350 oder 35 WO 00/15815.

Unter transgenen Organismus bzw. transgener Pflanze im Sinne der Erfindung ist wie vorgenannt zu verstehen, dass die im Verfahren verwendeten Nukleinsäuren nicht an

15

20

25

30

ihrer natürlichen Stelle im Genom eines Organismus sind, dabei können die Nukleinsäuren homolog oder heterolog exprimiert werden. Transgen bedeutet aber auch wie genannt, dass die erfindungsgemäßen Nukleinsäuren an ihrem natürlichen Platz im Genom eines Organismus sind, dass jedoch die Sequenz gegenüber der natürlichen Sequenz verändert wurde und/oder das die Regulationssequenzen, der natürlichen Sequenzen verändert wurden. Bevorzugt ist unter transgen die Expression der erfindungsgemäßen Nukleinsäuren an nicht natürlicher Stelle im Genom zu verstehen, das heißt eine homologe oder bevorzugt heterologe Expression der Nukleinsäuren liegt vor. Bevorzugte transgene Organismen sind Pilze wie Mortierella oder Phytophtora, Moose wie Physcomitrella, Algen wie Mantoniella, Euglena, Crypthecodinium oder Ostreococcus, Diatomeen wie Thalassiosira oder Phaeodyctylum oder Pflanzen wie die Ölfruchtpflanzen.

Als Organismen bzw. Wirtsorganismen für die im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren, die Expressionskassette oder den Vektor eignen sich prinzipiell vorteilhaft alle Organismen, die in der Lage sind Fettsäuren speziell ungesättigte Fettsäuren zu synthetisieren bzw. für die Expression rekombinanter Gene geeignet sind. Beispielhaft seien Pflanzen wie Arabidopsis, Asteraceae wie Calendula oder Kulturpflanzen wie Soja, Erdnuss, Rizinus, Sonnenblume, Mais, Baumwolle, Flachs, Raps, Kokosnuss, Ölpalme, FärberSaflor (Carthamus tinctorius) oder Kakaobohne, Mikroorganismen wie Pilze beispielsweise die Gattung Mortierella, Thraustochytrium, Saprolegnia, Phytophtora oder Pythium, Bakterien wie die Gattung Escherichia oder Shewanella, Hefen wie die Gattung Saccharomyces, Cyanobakterien, Ciliaten, Algen wie Mantoniella, Euglena, Thalassiosira oder Ostreococcus oder Protozoen wie Dinoflagellaten wie Crypthecodinium genannt. Bevorzugt werden Organismen, die natürlicherweise Öle in größeren Mengen synthetisieren können wie Pilze wie Mortierella alpina, Pythium insidiosum, Phytophtora infestans oder Pflanzen wie Soja, Raps, Kokosnuss, Ölpalme, FärberSaflor, Flachs, Hanf, Rizinus, Calendula, Erdnuss, Kakaobohne oder Sonnenblume oder Hefen wie Saccharomyces cerevisiae, besonders bevorzugt werden Soja, Flachs, Raps, FärberSaflor, Sonnenblume, Calendula, Mortierella oder Saccharomyces cerevisiae. Prinzipiell sind als Wirtsorganismen neben den vorgenannten transgenen Organismen auch transgene Tiere vorteilhaft nicht-humane Tiere geeignet beispielsweise C. elegans, Ciona intestinalis oder Xenopus laevis.

Nutzbare Wirtszellen sind weiterhin genannt in: Goeddel, Gene Expression Techno-35. logy: Methods in Enzymology 185, Academic Press, San Diego, CA (1990).

Verwendbare Expressionsstämme z.B. solche, die eine geringere Proteaseaktivität aufweisen sind beschrieben in: Gottesman, S., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 119-128.

Hierzu gehören Pflanzenzellen und bestimmte Gewebe, Organe und Teile von 40 Pflanzen in all ihren Erscheinungsformen, wie Antheren, Fasern, Wurzelhaare, Stängel, Embryos, Kalli, Kotelydonen, Petiolen, Emtematerial, pflanzliches Gewebe, reproduktives Gewebe und Zellkulturen, das von der eigentlichen transgenen Pflanze abgeleitet ist und/oder dazu verwendet werden kann, die transgene Pflanze hervorzubringen.

Transgene Pflanzen, die die im erfindungsgemäßen Verfahren synthetisierten mehrfach ungesättigten Fettsäuren enthalten, können vorteilhaft direkt vermarktet werden ohne dass die synthetisierten Öle, Lipide oder Fettsäuren isoliert werden müssen. 5 Unter Pflanzen im erfindungsgemäßen Verfahren sind ganze Pflanzen sowie alle Pflanzenteile, Pflanzenorgane oder Pflanzenteile wie Blatt, Stiel, Samen, Wurzel, Knollen, Antheren, Fasern, Wurzelhaare, Stängel, Embryos, Kalli, Kotelydonen, Petiolen, Erntematerial, pflanzliches Gewebe, reproduktives Gewebe, Zellkulturen, die sich von der transgenen Pflanze abgeleiten und/oder dazu verwendet werden können, 10 die transgene Pflanze hervorzubringen. Der Samen umfasst dabei alle Samenteile wie die Samenhüllen, Epidermis- und Samenzellen, Endosperm oder Embyrogewebe. Die im erfindungsgemäßen Verfahren hergestellten Verbindungen können aber auch aus den Organismen vorteilhaft Pflanzen in Form ihrer Öle, Fett, Lipide und/oder freien Fettsäuren isoliert werden. Durch dieses Verfahren hergestellte mehrfach ungesättig-15 ten Fettsäuren lassen sich durch Emten der Organismen entweder aus der Kultur, in der sie wachsen, oder vom Feld ernten. Dies kann über Pressen oder Extraktion der Pflanzenteile bevorzugt der Pflanzensamen erfolgen. Dabei können die Öle, Fette, Lipide und/oder freien Fettsäuren durch sogenanntes kalt schlagen oder kalt pressen ohne Zuführung von Wärme durch Pressen gewonnen werden. Damit sich die Pflan-20 zenteile speziell die Samen leichter aufschließen lassen, werden sie vorher zerkleinert, gedämpft oder geröstet. Die so vorbehandelten Samen können anschließend gepresst werden oder mit Lösungsmittel wie warmen Hexan extrahiert werden. Anschließend wird das Lösungsmittel wieder entfernt. Im Falle von Mikroorganismen werden diese nach Ernte beispielsweise direkt ohne weitere Arbeitsschritte extrahiert oder aber nach 25 Aufschluss über verschiedene dem Fachmann bekannte Methoden extrahiert. Auf diese Weise können mehr als 96 % der im Verfahren hergestellten Verbindungen isoliert werden. Anschließend werden die so erhaltenen Produkte weiter bearbeitet, das heißt raffiniert. Dabei werden zunächst beispielsweise die Pflanzenschleime und Trübstoffe entfernt. Die sogenannte Entschleimung kann enzymatisch oder beispiels-30 weise chemisch/physikalisch durch Zugabe von Säure wie Phosphorsäure erfolgen. Anschließend werden die freien Fettsäuren durch Behandlung mit einer Base beispielsweise Natronlauge entfernt. Das erhaltene Produkt wird zur Entfernung der im Produkt verbliebenen Lauge mit Wasser gründlich gewaschen und getrocknet. Um die noch im Produkt enthaltenen Farbstoffe zu entfernen werden die Produkte einer 35 Bleichung mit beispielsweise Bleicherde oder Aktivkohle unterzogen. Zum Schluss wird das Produkt noch beispielsweise mit Wasserdampf noch desodoriert.

Vorzugsweise sind die durch dieses Verfahren produzierten PUFAs bzw. LCPUFAs
 C₁₈-, C₂₀- oder C₂₂-Fettsäuremoleküle vorteilhaft C₂₀- oder C₂₂-Fettsäuremoleküle mit mindestens zwei Doppelbindungen im Fettsäuremolekül, vorzugsweise drei, vier, fünf oder sechs Doppelbindungen. Diese C₁₈-, C₂₀- oder C₂₂-Fettsäuremoleküle lassen sich aus dem Organismus in Form eines Öls, Lipids oder einer freien Fettsäure isolieren.

Geeignete Organismen sind beispielsweise die vorstehend erwähnten. Bevorzugte Organismen sind transgene Pflanzen.

Eine Ausführungsform der Erfindung sind deshalb Öle, Lipide oder Fettsäuren oder Fraktionen davon, die durch das oben beschriebene Verfahren hergestellt worden sind, besonders bevorzugt Öl, Lipid oder eine Fettsäurezusammensetzung, die PUFAs umfassen und von transgenen Pflanzen herrühren.

Diese Öle, Lipide oder Fettsäuren enthalten wie oben beschrieben vorteilhaft 6 bis 15 % Palmitinsäure, 1 bis 6 % Stearinsäure; 7 – 85 % Ölsäure; 0,5 bis 8 % Vaccensäure, 0,1 bis 1 % Arachinsäure, 7 bis 25 % gesättigte Fettsäuren, 8 bis 85 % einfach ungesättigte Fettsäuren und 60 bis 85 % mehrfach ungesättigte Fettsäuren jeweils 10 bezogen auf 100 % und auf den Gesamtfettsäuregehalt der Organismen. Als vorteilhafte mehrfach ungesättigte Fettsäure sind in den Fettsäureester bzw. Fettsäuregemische bevorzugt mindestens 0,1; 0,2; 0,3; 0,4; 0,5; 0,6; 0,7; 0,8; 0,9 oder 1 % bezogen auf den Gesamtfettsäuregehalt an Arachidonsäure enthalten. Weiterhin enthalten die Fettsäureester bzw. Fettsäuregemische, die nach dem erfindungsgemäßen Verfahren 15 hergestellt wurden, vorteilhaft Fettsäuren ausgewählt aus der Gruppe der Fettsäuren Erucasäure (13-Docosaensäure), Sterculinsäure (9,10-Methylene octadec-9enonsäure), Malvalinsäure (8,9-Methylen Heptadec-8-enonsäure), Chaulmoogrinsäure (Cyclopenten-dodecansäure), Furan-Fettsäure (9,12-Epoxy-octadeca-9,11dienonsäure), Vernonsäure (9,10-Epoxyoctadec-12-enonsäure), Tarinsäure (6-20 Octadecynonsäure),6-Nonadecynonsäure, Santalbinsäure (t11-Octadecen-9-ynoic acid), 6,9-Octadecenynonsäure, Pyrulinsäure (t10-Heptadecen-8-ynonsäure), Crepenyninsäure (9-Octadecen-12-ynonsäure), 13,14-Dihydrooropheinsäure, Octadecen-13ene-9,11-diynonsäure, Petroselensäure (cis-6-Octadecenonsäure), 9c,12t-Octadecadiensäure, Calendulasäure (8t10t12c-Octadecatriensäure), Catalpinsäure 25 (9t11t13c-Octadecatriensäure), Eleosterinsäure (9c11t13t-Octadecatriensäure), Jacarinsäure (8c10t12c-Octadecatriensäure), Punicinsäure (9c11t13c-Octadecatriensäure), Parinarinsäure (9c11t13t15c-Octadecatetraensäure), Pinolensäure (all-cis-5,9,12-Octadecatriensäure), Laballensäure (5,6-Octadecadienallensäure), Ricinolsäure (12-Hydroxyölsäure) und/oder Coriolinsäure (13-Hydroxy-9c,11t-30 Octadecadienonsäure). Die vorgenannten Fettsäuren kommen in den nach dem erfindungsgemäßen Verfahren hergestellten Fettsäureester bzw. Fettsäuregemischen in der Regel vorteilhaft nur in Spuren vor, das heißt sie kommen bezogen auf die Gesamtfettsäuren zu weniger als 30 %, bevorzugt zu weniger als 25 %, 24 %, 23 %, 22 % oder 21 %, besonders bevorzugt zu weniger als 20 %, 15 %, 10 %, 9 %, 8 %, 35 7%, 6 % oder 5%, ganz besonders bevorzugt zu weniger als 4 %, 3 %, 2 % oder 1 % vor. In einer weiteren bevorzugten Form der Erfindung kommen diese vorgenannten Fettsäuren bezogen auf die Gesamtfettsäuren zu weniger als 0,9%; 0,8%; 0,7%; 0,6%; oder 0,5%, besonders bevorzugt zu weniger als 0,4%; 0,3%; 0,2%; 0,1% vor. Vorteilhaft enthalten die nach dem erfindungsgemäßen Verfahren hergestellten Fettsäurees-40 ter bzw. Fettsäuregemische weniger als 0,1 % bezogen auf die Gesamtfettsäuren

und/oder keine Butterbuttersäure, kein Cholesterin, keine Clupanodonsäure (=

Docosapentaensäure, C22: $5^{\Delta4,8,12,15,21}$) sowie keine Nisinsäure (Tetracosahexaensäure, C23: $6^{\Delta3,8,12,15,18,21}$).

Vorteilhaft enthalten die erfindungsgemäßen Öle, Lipide oder Fettsäuren mindestens 0,5%, 1%, 2%, 3%, 4% oder 5%, vorteilhaft mindestens 6%, 7%, 8%, 9% oder 10%, besonders vorteilhaft mindestens 11%, 12%, 13%, 14% oder 15% ARA oder mindestens 0,5%, 1%, 2%, 3%, 4% oder 5%, vorteilhaft mindestens 6%, oder 7%, besonders vorteilhaft mindestens 8%, 9% oder 10% EPA und/oder DHA bezogen auf den Gesamtfettsäuregehalt des Produktionsorganismus vorteilhaft einer Pflanze, besonders vorteilhaft einer Ölfruchtpflanze wie Soja, Raps, Kokosnuss, Ölpalme, Färbersafflor, Flachs, Hanf, Rizinus, Calendula, Erdnuss, Kakaobohne, Sonnenblume oder den oben genannten weiteren ein- oder zweikeimblättrigen Ölfruchtpflanzen.

10

Eine weitere erfindungsgemäße Ausführungsform ist die Verwendung des Öls, Lipids, der Fettsäuren und/oder der Fettsäurezusammensetzung in Futtermitteln, Nahrungsmitteln, Kosmetika oder Pharmazeutika. Die erfindungsgemäßen Öle, Lipide, Fettsäuren oder Fettsäuregemische können in der dem Fachmann bekannten Weise zur Abmischung mit anderen Ölen, Lipiden, Fettsäuren oder Fettsäuregemischen tierischen Ursprungs wie z.B. Fischölen verwendet werden. Auch diese Öle, Lipide, Schen Ursprungs wie z.B. Fischölen verwendet werden und tierischen Bestandteilen Fettsäuren oder Fettsäuregemische, die aus pflanzlichen und tierischen Bestandteilen bestehen, können zur Herstellung von Futtermitteln, Nahrungsmitteln, Kosmetika oder Pharmazeutika verwendet werden.

20 Unter dem Begriff "Öl", "Lipid" oder "Fett" wird ein Fettsäuregemisch verstanden, das ungesättigte, gesättigte, vorzugsweise veresterte Fettsäure(n) enthält. Bevorzugt ist, dass das Öl, Lipid oder Fett einen hohen Anteil an mehrfach ungesättigten freien oder vorteilhaft veresterten Fettsäure(n), insbesondere Linolsäure, v-Linolensäure, Dihomo- γ -linolensäure, Arachidonsäure, α -Linolensäure, Stearidonsäure, Eicosatetraensäure, Eicosapentaensäure, Docosapentaensäure oder Docosahexaensäure hat. Vorzugs-25 weise ist der Anteil an ungesättigten veresterten Fettsäuren ungefähr 30 %, mehr bevorzugt ist ein Anteil von 50 %, noch mehr bevorzugt ist ein Anteil von 60 %, 70 %, 80 % oder mehr. Zur Bestimmung kann z.B. der Anteil an Fettsäure nach Überführung der Fettsäuren in die Methylestern durch Umesterung gaschromatographisch bestimmt werden. Das Öl, Lipid oder Fett kann verschiedene andere gesättigte oder ungesättigte 30 Fettsäuren, z.B. Calendulasäure, Palmitin-, Palmitolein-, Stearin-, Ölsäure etc., enthalten. Insbesondere kann je nach Ausgangsorganismus der Anteil der verschiedenen Fettsäuren in dem Öl oder Fett schwanken.

Bei den im Verfahren hergestellten mehrfach ungesättigte Fettsäuren mit vorteilhaft mindestens zwei Doppelbindungen enthalten, handelt es sich wie oben beschrieben beispielsweise um Sphingolipide, Phosphoglyceride, Lipide, Glycolipide, Phospholipide, Monoacylglycerin, Diacylglycerin, Triacylglycerin oder sonstige Fettsäureester.

Aus den so im erfindungsgemäßen Verfahren hergestellten mehrfach ungesättigte
40 Fettsäuren mit vorteilhaft mindestens fünf oder sechs Doppelbindungen lassen sich
die enthaltenden mehrfach ungesättigten Fettsäuren beispielsweise über eine Alkali-

10

15

behandlung beispielsweise wäßrige KOH oder NaOH oder saure Hydrolyse vorteilhaft in Gegenwart eines Alkohols wie Methanol oder Ethanol oder über eine enzymatische Abspaltung freisetzen und isolieren über beispielsweise Phasentrennung und anschließender Ansäuerung über z.B. H₂SO₄. Die Freisetzung der Fettsäuren kann auch direkt ohne die vorhergehend beschriebene Aufarbeitung erfolgen.

Die im Verfahren verwendeten Nukleinsäuren können nach Einbringung in einem Organismus vorteilhaft einer Pflanzenzelle bzw. Pflanze entweder auf einem separaten Plasmid liegen oder vorteilhaft in das Genom der Wirtszelle integriert sein. Bei Integration in das Genom kann die Integration zufallsgemäß sein oder durch derartige Rekombination erfolgen, dass das native Gen durch die eingebrachte Kopie ersetzt wird, wodurch die Produktion der gewünschten Verbindung durch die Zelle moduliert wird, oder durch Verwendung eines Gens in trans, so dass das Gen mit einer funktionellen Expressionseinheit, welche mindestens eine die Expression eines Gens gewährleistende Sequenz und mindestens eine die Polyadenylierung eines funktionell transkribierten Gens gewährleistende Sequenz enthält, funktionell verbunden ist. Vorteilhaft werden die Nukleinsäuren über Multiexpressionskassetten oder Konstrukte zur multiparallelen Expression in die Organismen vorteilhaft zur multiparallelen samenspezifischen Expression von Genen in die Pflanzen gebracht.

Moose und Algen sind die einzigen bekannten Pflanzensysteme, die erhebliche
 Mengen an mehrfach ungesättigten Fettsäuren, wie Arachidonsäure (ARA) und/oder Eicosapentaensäure (EPA) und/oder Docosahexaensäure (DHA) herstellen. Moose enthalten PUFAs in Membranlipiden während Algen, algenverwandte Organismen und einige Pilze auch nennenswerte Mengen an PUFAs in der Triacylglycerolfraktion akkumulieren. Daher eignen sich Nukleinsäuremoleküle, die aus solchen Stämmen isoliert werden, die PUFAs auch in der Triacylglycerolfraktion akkumulieren, besonders vorteilhaft für das erfindungsgemäße Verfahren und damit zur Modifikation des Lipidund PUFA-Produktionssystems in einem Wirt, insbesondere Pflanzen, wie Ölfruchtpflanzen, beispielsweise Raps, Canola, Lein, Hanf, Soja, Sonnenblumen, Borretsch. Sie sind deshalb vorteilhaft im erfindungsgemäßen Verfahren verwendbar.

Als Substrate der im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren, die für Polypeptide mit Δ-12-Desaturase-, Δ-5-Desaturase-, Δ-4-Desaturase-, Δ-6-Desaturase-, Δ-8-Desaturase-, Δ-9-Elongase-, Δ-5-Elongase-, Δ-6-Elongase- und/oder ω-3-Desaturase-Aktivität codieren, und/oder den weiteren verwendeten Nukleinsäuren wie den Nukleinsäuren, die für Polypeptide des Fettsäure- oder Lipidstoffwechsels ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]-Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäure-Acyl-Transferase(n), Acyl-CoA:Lysophospholipid-Acyltransferase(n), Fettsäure-Synthase(n), Fettsäure-Hydroxylase(n), Acetyl-Coenzym A-Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure-Desaturase(n), Fettsäure-Acetylenase(n), Lipoxygenase(n), Triacylglycerol-Lipase(n), Allenoxid-Synthase(n), Hydroperoxid-Lyase(n) oder Fettsäure-Elongase(n) codieren eignen sich vorteilhaft C₁₆-, C₁₈- oder C₂₀-Fettsäuren. Bevorzugt werden die

im Verfahren als Substrate umgesetzten Fettsäuren in Form ihrer Acyl-CoA-Ester und/oder ihrer Phospholipid-Ester umgesetzt.

Zur Herstellung der erfindungsgemäßen langkettigen PUFAs müssen die mehrfach ungesättigten C₁₈-Fettsäuren zunächst durch die enzymatische Aktivität einer Desatuungesättigten C₁₈-Fettsäuren zunächst durch die enzymatische Aktivität einer Desaturase zwei rase zunächst desaturiert und anschließend über eine Elongase um mindestens zwei Kohlenstoffatome verlängert werden. Nach einer Elongationsrunde führt diese Enzym-Kohlenstoffatome verlängert werden. Nach einer Elongationsrunden zu C₂₂-Fettsäuren. Die aktivität zu C₂₀-Fettsäuren, und nach zwei Elongationsrunden zu C₂₂-Fettsäuren. Die aktivität der erfindungsgemäßen Verfahren verwendeten Desaturasen und Elongasen Aktivität der erfindungsgemäßen Verfahren verwendeten Desaturasen und Elongasen führt vorzugsweise zu C₁₈-, C₂₀- und/oder C₂₂-Fettsäuren vorteilhaft mit mindestens führt vorzugsweise zu C₁₈-, C₂₀- und/oder C₂₂-Fettsäuren wirt drei, vier, fünf oder zwei Doppelbindungen im Fettsäuremolekül, vorzugsweise mit drei, vier, mindestens zwei Doppelbindungen im Fettsäuremolekül, vorzugsweise mit drei, vier, fünf oder sechs Doppelbindungen, ganz besonders bevorzugt mit fünf oder sechs Doppelbindungen im Molekül. Nachdem eine erste Desaturierung und die Verlänge-Doppelbindungen im Molekül. Nachdem eine erste Desaturierungs- und Elongierungsschritte wie rung stattgefunden hat, können weitere Desaturierungs- und Elongierungsschritte wie

rung stattgefunden hat, können weitere Desaturierungs- und Elongierungsschritte wie z.B. eine solche Desaturierung in Δ–5- und Δ-4-Position erfolgen. Besonders bevorzugt als Produkte des erfindungsgemäßen Verfahrens sind Dihomo-γ-linolensäure, Arachidonsäure, Eicosapentaensäure, Docosapetaensäure und/oder Docosahesaensäure. Die C₂₀-Fettsäuren mit mindestens zwei Doppelbindungen in der Fettsäure können Die C₂₀-Fettsäuren mit mindestens zwei Doppelbindungen in der freien Fettsäure oder durch die erfindungsgemäße enzymatische Aktivität in Form der freien Fettsäure oder in Form der Ester, wie Phospholipide, Glycolipide, Sphingolipide, Phosphoglyceride, in Form der Ester, wie Phospholipide, Glycolipide, Sphingolipide

Monoacylglycerin, Diacylglycerin oder Triacylglycerin, verlängert werden.

Der bevorzugte Biosyntheseort von Fettsäuren, Ölen, Lipiden oder Fette in den vorteilhaft verwendeten Pflanzen ist beispielsweise im allgemeinen der Samen oder Zellschichten des Samens, so dass eine samenspezifische Expression der im Verzehren verwendeten Nukleinsäuren sinnvoll ist. Es ist jedoch naheliegend, dass die fahren verwendeten Nukleinsäuren sinnvoll ist.

Biosynthese von Fettsäuren, Ölen oder Lipiden nicht auf das Samengewebe beschränkt sein muss, sondern auch in allen übrigen Teilen der Pflanze - beispielsweise in Epidermiszellen oder in den Knollen - gewebespezifisch erfolgen kann.

25

Werden im erfindungsgemäßen Verfahren als Organismen Mikroorganismus wie Hefen wie Saccharomyces oder Schizosaccharomyces, Pilze wie Mortierella, Aspergillus, Phytophtora, Entomophthora, Mucor oder Thraustochytrium Algen wie Isochrysis, Mantoniella, Euglena, Ostreococcus, Phaeodactylum oder Crypthecodinium verwendet, so werden diese Organismen vorteilhaft fermentativ angezogen.

Durch die Verwendung der erfindungsgemäßen Nukleinsäuren, die für eine Δ-5-Elongase codieren, können im Verfahren die hergestellten mehrfach ungesättigten Fettsäuren mindestens um 5 %, bevorzugt mindestens um 10 %, besonders bevorzugt mindestens um 20 %, ganz besonders bevorzugt um mindestens 50 % gegenüber dem Wildtyp der Organismen, die die Nukleinsäuren nicht rekombinant enthalten, erhöht werden.

Durch das erfindungsgemäße Verfahren können die hergestellten mehrfach ungesättigten Fettsäuren in den im Verfahren verwendeten Organismen prinzipiell auf zwei Arten erhöht werden. Es kann vorteilhaft der Pool an freien mehrfach ungesättigten Fettsäuren und/oder der Anteil der über das Verfahren hergestellten veresterten mehrfach ungesättigten Fettsäuren erhöht werden. Vorteilhaft wird durch das erfindungsgemäße Verfahren der Pool an veresterten mehrfach ungesättigten Fettsäuren in den transgenen Organismen erhöht.

Werden im erfindungsgemäßen Verfahren als Organismen Mikroorganismen verwendet, so werden sie je nach Wirtsorganismus in dem Fachmann bekannter Weise 10 angezogen bzw. gezüchtet. Mikroorganismen werden in der Regel in einem flüssigen Medium, das eine Kohlenstoffquelle meist in Form von Zuckern, eine Stickstoffquelle meist in Form von organischen Stickstoffquellen wie Hefeextrakt oder Salzen wie Ammoniumsulfat, Spurenelemente wie Eisen-, Mangan-, Magnesiumsalze und gegebenenfalls Vitamine enthält, bei Temperaturen zwischen 0°C und 100°C, bevor-15 zugt zwischen 10°C bis 60°C unter Sauerstoffbegasung angezogen. Dabei kann der pH der Nährflüssigkeit auf einen festen Wert gehalten werden, das heißt während der Anzucht reguliert werden oder nicht. Die Anzucht kann batch weise, semi batch weise oder kontinuierlich erfolgen. Nährstoffe können zu Beginn der Fermentation vorgelegt oder semikontinuierlich oder kontinuierlich nachgefüttert werden. Die hergestellten 20 mehrfach ungesättigten Fettsäuren können nach dem Fachmann bekannten Verfahren wie oben beschrieben aus den Organismen isoliert werden. Beispielsweise über Extraktion, Destillation, Kristallisation, ggf. Salzfällung und/oder Chromatographie. Die Organismen können dazu vorher noch vorteilhaft aufgeschlossen werden.

Das erfindungsgemäße Verfahren wird, wenn es sich bei den Wirtsorganismen um Mikroorganismen handelt, vorteilhaft bei einer Temperatur zwischen 0°C bis 95°, bevorzugt zwischen 10°C bis 85°C, besonders bevorzugt zwischen 15°C bis 75°C, ganz besonders bevorzugt zwischen 15°C bis 45°C durchgeführt.

Der pH-Wert wird dabei vorteilhaft zwischen pH 4 und 12, bevorzugt zwischen pH 6 und 9, besonders bevorzugt zwischen pH 7 und 8 gehalten.

Das erfindungsgemäße Verfahren kann batchweise, semi-batchweise oder kontinuierlich betrieben werden. Eine Zusammenfassung über bekannte Kultivierungsmethoden ist im Lehrbuch von Chmiel (Bioprozeßtechnik 1. Einführung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) oder im Lehrbuch von Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)) zu finden.

Das zu verwendende Kulturmedium hat in geeigneter Weise den Ansprüchen der jeweiligen Stämme zu genügen. Beschreibungen von Kulturmedien verschiedener Mikroorganismen sind im Handbuch "Manual of Methods für General Bacteriology" der merican Society für Bacteriology (Washington D. C., USA, 1981) enthalten.

Diese erfindungsgemäß einsetzbaren Medien umfassen wie oben beschrieben gewöhnlich eine oder mehrere Kohlenstoffquellen, Stickstoffquellen, anorganische Salze, Vitamine und/oder Spurenelemente.

- Bevorzugte Kohlenstoffquellen sind Zucker, wie Mono-, Di- oder Polysaccharide. Sehr gute Kohlenstoffquellen sind beispielsweise Glucose, Fructose, Mannose, Galactose, Ribose, Sorbose, Ribulose, Lactose, Maltose, Saccharose, Raffinose, Stärke oder Cellulose. Man kann Zucker auch über komplexe Verbindungen, wie Melassen, oder andere Nebenprodukte der Zucker-Raffinierung zu den Medien geben. Es kann auch vorteilhaft sein, Gemische verschiedener Kohlenstoffquellen zuzugeben. Andere mögliche Kohlenstoffquellen sind Öle und Fette wie z.B. Sojaöl, Sonnenblumenöl, Erdnussöl und/oder Kokosfett, Fettsäuren wie z.B. Palmitinsäure, Stearinsäure und/oder Linolsäure, Alkohole und/oder Polyalkohole wie z. B. Glycerin, Methanol und/oder Ethanol und/oder organische Säuren wie z.B. Essigsäure und/oder Milchsäure.
- Stickstoffquellen sind gewöhnlich organische oder anorganische Stickstoffverbindungen oder Materialien, die diese Verbindungen enthalten. Beispielhafte Stickstoffquellen umfassen Ammoniak in flüssiger- oder gasform oder Ammoniumsalze, wie Ammoniumsulfat, Ammoniumchlorid, Ammoniumphosphat, Ammoniumcarbonat oder Ammoniumnitrat, Nitrate, Harnstoff, Aminosäuren oder komplexe Stickstoffquellen, wie Maisquellwasser, Sojamehl, Sojaprotein, Hefeextrakt, Fleischextrakt und andere. Die Stickstoffquellen können einzeln oder als Mischung verwendet werden.
 - Anorganische Salzverbindungen, die in den Medien enthalten sein können, umfassen die Chlorid-, Phosphor- oder Sulfatsalze von Calcium, Magnesium, Natrium, Kobalt, Molybdän, Kalium, Mangan, Zink, Kupfer und Eisen.
- 25 Als Schwefelquelle für die Herstellung von schwefelhaltigen Feinchemikalien, insbesondere von Methionin, können anorganische schwefelhaltige Verbindungen wie beispielsweise Sulfate, Sulfite, Dithionite, Tetrathionate, Thiosulfate, Sulfide aber auch organische Schwefelverbindungen, wie Mercaptane und Thiole, verwendet werden.
- Als Phosphorquelle können Phosphorsäure, Kaliumdihydrogenphosphat oder Dikalium30 hydrogenphosphat oder die entsprechenden Natrium haltigen Salze verwendet werden.
 - Chelatbildner können zum Medium gegeben werden, um die Metallionen in Lösung zu halten. Besonders geeignete Chelatbildner umfassen Dihydroxyphenole, wie Catechol oder Protocatechuat, oder organische Säuren, wie Citronensäure.
- Die erfindungsgemäß zur Kultivierung von Mikroorganismen eingesetzten Fermentationsmedien enthalten üblicherweise auch andere Wachstumsfaktoren, wie Vitamine oder Wachstumsförderer, zu denen beispielsweise Biotin, Riboflavin, Thiamin, Folsäure, Nikotinsäure, Panthothenat und Pyridoxin gehören. Wachstumsfaktoren und Salze stammen häufig von komplexen Medienkomponenten, wie Hefeextrakt,

Melassen, Maisquellwasser und dergleichen. Dem Kulturmedium können überdies geeignete Vorstufen zugesetzt werden. Die genaue Zusammensetzung der Medienverbindungen hängt stark vom jeweiligen Experiment ab und wird für jeden spezifischen Fall individuell entschieden. Information über die Medienoptimierung ist erhältlich aus dem Lehrbuch "Applied Microbiol. Physiology, A Practical Approach" (Hrsg. P.M. Rhodes, P.F. Stanbury, IRL Press (1997) S. 53-73, ISBN 0 19 963577 3). Wachstumsmedien lassen sich auch von kommerziellen Anbietern beziehen, wie Standard 1 (Merck) oder BHI (Brain heart infusion, DIFCO) und dergleichen.

Sämtliche Medienkomponenten werden, entweder durch Hitze (20 min bei 1,5 bar und 121°C) oder durch Sterilfiltration, sterilisiert. Die Komponenten können entweder zusammen oder nötigenfalls getrennt sterilisiert werden. Sämtliche Medienkomponenten können zu Beginn der Anzucht zugegen sein oder wahlfrei kontinuierlich oder chargenweise hinzugegeben werden.

Die Temperatur der Kultur liegt normalerweise zwischen 15°C und 45°C, vorzugsweise bei 25°C bis 40°C und kann während des Experimentes konstant gehalten oder verändert werden. Der pH-Wert des Mediums sollte im Bereich von 5 bis 8,5, vorzugsweise um 7,0 liegen. Der pH-Wert für die Anzucht lässt sich während der Anzucht durch Zugabe von basischen Verbindungen wie Natriumhydroxid, Kaliumhydroxid, Ammoniak bzw. Ammoniakwasser oder sauren Verbindungen wie Phosphorsäure oder Schwefelsäure kontrollieren. Zur Kontrolle der Schaumentwicklung können Anti-20 schaummittel wie z. B. Fettsäurepolyglykolester, eingesetzt werden. Zur Aufrechterhaltung der Stabilität von Plasmiden können dem Medium geeignete selektiv wirkende Stoffe, wie z. B. Antibiotika, hinzugefügt werden. Um aerobe Bedingungen aufrechtzuerhalten, werden Sauerstoff oder Sauerstoff haltige Gasmischungen, wie z.B. Umgebungsluft, in die Kultur eingetragen. Die Temperatur der Kultur liegt 25 normalerweise bei 20°C bis 45°C und vorzugsweise bei 25°C bis 40°C. Die Kultur wird solange fortgesetzt, bis sich ein Maximum des gewünschten Produktes gebildet hat. Dieses Ziel wird normalerweise innerhalb von 10 Stunden bis 160 Stunden erreicht.

Die so erhaltenen, insbesondere mehrfach ungesättigte Fettsäuren enthaltenden, Fermentationsbrühen haben üblicherweise eine Trockenmasse von 7,5 bis 25 Gew.-%.

30

35

Die Fermentationsbrühe kann anschließend weiterverarbeitet werden. Je nach Anforderung kann die Biomasse ganz oder teilweise durch Separationsmethoden, wie z. B. Zentrifugation, Filtration, Dekantieren oder einer Kombination dieser Methoden aus der Fermentationsbrühe entfernt oder vollständig in ihr belassen werden. Vorteilhaft wird die Biomasse nach Abtrennung aufgearbeitet.

Die Fermentationsbrühe kann aber auch ohne Zellabtrennung mit bekannten Methoden, wie z. B. mit Hilfe eines Rotationsverdampfers, Dünnschichtverdampfers, Fallfilmverdampfers, durch Umkehrosmose, oder durch Nanofiltration, eingedickt beziehungsweise aufkonzentriert werden. Diese aufkonzentrierte Fermentationsbrühe kann schließlich zur Gewinnung der darin enthaltenen Fettsäuren aufgearbeitet werden.

Die im Verfahren gewonnenen Fettsäuren eignen sich auch als Ausgangsmaterial für die chemische Synthese von weiteren Wertprodukten. Sie können beispielsweise in Kombination miteinander oder allein zur Herstellung von Pharmaka, Nahrungsmittel, Tierfutter oder Kosmetika verwendet werden.

- 5 Ein weiterer erfindungsgemäßer Gegenstand sind isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ-5-Elongase codieren, wobei die durch die Nukleinsäuresequenzen codierten Δ-5-Elongasen C₂₀-Fettsäuren mit mindestens vier Doppelbindungen im Fettsäuremolekül umsetzen; die vorteilhaft letztlich in Diacylglyceride und/oder Triacylglyceride eingebaut werden.
- Vorteilhafte isolierte Nukleinsäuresequenzen sind Nukleinsäuresequenzen, die für Polypeptide mit Δ-5-Elongaseaktivität codieren und die eine Aminosäuresequenz enthalten ausgewählt aus der Gruppe einer Aminosäuresequenz mit der in SEQ ID NO: 115, SEQ ID NO: 116, SEQ ID NO: 139, SEQ ID NO: 140, SEQ ID NO: 141 oder SEQ ID NO: 142 dargestellten Sequenz.
- Weitere vorteilhafte isolierte Nukleinsäuresequenzen sind Nukleinsäuresequenzen, die für Polypeptide mit Δ-5-Elongaseaktivität codieren und die eine Kombination der Aminosäuresequenzen enthalten ausgewählt aus der Gruppe:
 - SEQ ID NO: 115 und SEQ ID NO: 139, SEQ ID NO: 115 und SEQ ID NO: 140 oder SEQ ID NO: 139 und SEQ ID NO: 140; oder
- 20 b) SEQ ID NO: 116 und SEQ ID NO: 141, SEQ ID NO: 116 und SEQ ID NO: 142 oder SEQ ID NO: 141 und SEQ ID NO: 142; oder
 - c) SEQ ID NO: 115, SEQ ID NO: 139 und SEQ ID NO: 140 oder SEQ ID NO: 116, SEQ ID NO: 141 und SEQ ID NO: 142.
- Die in den Sequenzen SEQ ID NO: 115 (NXXXHXXMYXYYX), SEQ ID NO: 116
 25 (HHXXXXWAWW), SEQ ID NO: 139 (LHXXHH), SEQ ID NO: 140 (TXXQXXQF), SEQ ID NO: 141 (DTXFMV) und SEQ ID NO: 142 (TQAQXXQF) wiedergegebenen Sequenzen stellen konservierte Bereiche der verschiedenen Elongasen wieder. Tabelle 2 gibt die Bedeutung der in den genannten Nukleinsäuresequenzen enhaltenen mit X bezeichneten Aminosäuren wieder (Spalte 3). Auch die bevorzugten Aminosäuren in den verschiedenen Positionen sind der Tabelle zu entnehmen (Spalte 3). Spalte 1 gibt die SEQ ID NO wieder, Spalte 2 die Position in der Sequenz.

Tabelle 2: Bedeutung der mit X bezeichneten Aminosäure in den Konsensus-Sequenzen.

SEQ ID NO:	Position des X in der Sequenz	Aminosäure	bevorzugte Aminosäure
115 (NXXXHXXMYXYYX)	2	Ser, Cys, Leu, Gly	Cys, Leu
115	3	Thr, Phe, Ile, Ser, Val, Trp, Gly	Phe, Trp
115	4	Val, Ile	Val, Ile
115	6	Val, Ile, Thr	Val, Ile
115	7	lle, Phe, Val, Leu, Cys	Cys, Val
115	10	Ser, Gly, Tyr, Thr, Ala	Thr, Ser
115	13	Phe, Met, Thr, Leu, Ala, Gly	Leu
116 (HHXXXXWAWW)	3	Ala, Ser, Thr	Ala, Ser besonders bevor- zugt Ala
116	4	Thr, Met, Val, Leu, lle, Ser	Leu, Thr besonders bevor- zugt Leu
116	5	Val, Thr, Met, Leu, lle	lle, Ser besonders bevor- zugt lle
116	6	Val, Met, Leu, Ile, Ala, Pro, Ser, Phe	lle, Ser besonders bevor- zugt lle
139 LHXXHH	3	Val, Tyr, Ile	Val, Thr
139	4	Tyr, Phe	Tyr

2005/012316		<u> </u>	
SEQ ID NO:	Position des X in der Sequenz	Aminosäure	bevorzugte Aminosäure
140 TXXQXXQF	2	Asn, Asp, Thr, Gln, Met, Ser, Ala	Gln
140	3	Thr, Cys, Leu, Met, Ala, Ile, Val, Phe	Ala, Met
140	5	Met, Ile, Leu	Met
140	6	Val, Ile, Leu, Thr, Phe	Leu
141 DTXFMV	3	Leu, Ile, Val, Tyr, Phe, Ala	Phe
142 TQAQXXQF	5	Met, Ile, Leu	Met, Leu besonders bevor- zugt Met
142	6	Val, Ile, Leu, Thr, Phe	Leu

Besonders vorteilhafte Δ -5-Elongasen enthalten mindestens eine der Sequenzen SEQ ID NO: 116, SEQ ID NO: 141 und/oder SEQ ID NO: 142.

Besonders vorteilhafte isolierte Nukleinsäuresequenzen sind Sequenzen ausgewählt aus der Gruppe:

10

15

- a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63; SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 113, SEQ ID NO: 131 oder SEQ ID NO: 133 dargestellten Sequenz,
- b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 114, SEQ ID NO: 132 oder SEQ ID NO: 134 dargestellten Aminosäuresequenz ableiten lassen, oder
 - c) Derivate der in SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63; SEQ ID NO: 65, SEQ ID NO: 67,

SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 113, SEQ ID NO: 131 oder SEQ ID NO: 133 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäurebene mit SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 84, SEQ ID NO: 85, SEQ ID NO: 113, SEQ ID NO: 131 oder SEQ ID NO: 133 codieren und eine Δ -5-Elongaseaktivität aufweisen.

Ein weiterer Erfindungsgegenstand sind isolierte Nukleinsäuresequenzen, die für 10 Polypeptide mit Δ-6-Elongaseaktivität codieren, ausgewählt aus der Gruppe:

 einer Nukleinsäuresequenz mit der in SEQ ID NO: 69, SEQ ID NO: 81, SEQ ID NO: 111 oder SEQ ID NO: 183 dargestellten Sequenz,

15

20

25

- b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 70, SEQ ID NO: 82, SEQ ID NO: 112 oder SEQ ID NO: 184 dargestellten Aminosäuresequenz ableiten lassen, oder
 - c) Derivate der in SEQ ID NO: 69, SEQ ID NO: 81, SEQ ID NO: 111 oder SEQ ID NO: 183 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 70, SEQ ID NO: 82, SEQ ID NO: 112 oder SEQ ID NO: 184 codieren und eine Δ -6-Elongaseaktivität aufweisen.

Ein weiterer Erfindungsgegenstand sind isolierte Nukleinsäuresequenzen, die für Polypeptide mit ω -3-Desaturaseaktivität codieren, ausgewählt aus der Gruppe:

- a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 87 oder SEQ ID NO: 105dargestellten Sequenz,
- b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 88 oder SEQ ID NO: 106 dargestellten Aminosäuresequenz ableiten lassen, oder
- c) Derivate der in SEQ ID NO: 87 oder SEQ ID NO: 105 dargestellten Nukleinsäure sequenz, die für Polypeptide mit mindestens 60 % Identität auf Aminosäureebene mit SEQ ID NO: 88 oder SEQ ID NO: 106 aufweisen und eine ω-3 Desaturaseaktivität aufweisen.

Ein weiterer Erfindungsgegenstand sind isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ -6-Desaturaseaktivität codieren, ausgewählt aus der Gruppe:

35 a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 89 oder in SEQ ID NO: 97 dargestellten Sequenz,

- b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 90 oder SEQ ID NO: 98 dargestellten Aminosäuresequenz ableiten lassen, oder
- c) Derivate der in SEQ ID NO: 89 oder SEQ ID NO: 97 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 90 oder SEQ ID NO: 98 codieren und eine Δ-6-Desaturaseaktivität aufweisen.

Ein weiterer Erfindungsgegenstand sind isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ -5-Desaturaseaktivität codieren, ausgewählt aus der Gruppe:

- a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID
 NO: 99 oder in SEQ ID NO: 101 dargestellten Sequenz,
 - b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 100 oder in SEQ ID NO: 102 dargestellten Aminosäuresequenz ableiten lassen, oder
- c) Derivate der in SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 99 oder in SEQ ID NO: 101 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 100 oder in SEQ ID NO: 102 codieren und eine Δ-5-Desaturaseaktivität aufweisen.
- 20 Ein weiterer Erfindungsgegenstand sind isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ-4-Desaturaseaktivität codieren, ausgewählt aus der Gruppe:
 - einer Nukleinsäuresequenz mit der in SEQ ID NO: 95 oder in SEQ ID NO: 103 dargestellten Sequenz,
- b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen
 25 Codes von der in SEQ ID NO: 96 oder SEQ ID NO: 104 dargestellten Aminosäuresequenz ableiten lassen, oder
 - c) Derivate der in SEQ ID NO: 95 oder SEQ ID NO: 103 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 96 oder SEQ ID NO: 104 codieren und eine Δ -4-Desaturaseaktivität aufweisen.

Ein weiterer Erfindungsgegenstand sind isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ -12-Desaturaseaktivität codieren, ausgewählt aus der Gruppe:

30

 einer Nukleinsäuresequenz mit der in SEQ ID NO: 107 oder in SEQ ID NO: 109 dargestellten Sequenz,

- b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 108 oder SEQ ID NO: 110 dargestellten Aminosäuresequenz ableiten lassen, oder
- c) Derivate der in SEQ ID NO: 107 oder SEQ ID NO: 109 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 50 % Homologie auf Aminosäureebene mit SEQ ID NO: 108 oder SEQ ID NO: 110 codieren und eine Δ-12-Desaturaseaktivität aufweisen.

Ein weiterer Erfindungsgegenstand sind Genkonstrukte, die die erfindungsgemäßen Nukleinsäuresequenzen SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63; SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, 15 SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 oder SEQ ID NO: 183 enthalten, wobei die Nukleinsäure funktionsfähig mit einem oder mehreren Regulationssignalen verbunden ist. Zusätzlich können weitere Biosynthesegene des Fettsäure- oder Lipidstoffwechsels enthält ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]-Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäu-20 re-Acyl-Transferase(n), Acyl-CoA:Lysophospholipid-Acyltransferase(n), Fettsäure-Synthase(n), Fettsäure-Hydroxylase(n), Acetyl-Coenzym A-Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure-Desaturase(n), Fettsäure-Acetylenasen, Lipoxygenasen, Triacylglycerol-Lipasen, Allenoxid-Synthasen, Hydroperoxid-Lyasen oder Fettsäure-Elongase(n) im Genkonstrukt enthalten sein. Vorteilhaft sind zusätzlich 25 Biosynthesegene des Fettsäure- oder Lipidstoffwechsels ausgewählt aus der Gruppe der Δ -4-Desaturase, Δ -5-Desaturase, Δ -6-Desaturase, Δ -8-Desatuase, Δ -9-Desaturase, Δ -12-Desaturase, Δ -6-Elongase, Δ -9-Elongase oder ω -3-Desaturase enthalten.

Vorteilhaft stammen alle die im erfindungsgemäßen Verfahren verwendeten Nukleinsäuresequenzen aus einem eukaryontischen Organismus wie einer Pflanze, einem Mikroorganismus oder einem Tier. Bevorzugt stammen die Nukleinsäuresequenzen aus der Ordnung Salmoniformes, Xenopus oder Ciona, Algen wie Mantoniella, Crypthecodinium, Euglena oder Ostreococcus, Pilzen wie der Gattung Phytophtora oder von Diatomeen wie den Gattungen Thalassiosira oder Phaeodactylum.

40

Die im Verfahren verwendeten Nukleinsäuresequenzen, die für Proteine mit ω -3-Desaturase-, Δ -4-Desaturase-, Δ -5-Desaturase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -9-Desaturase-, Δ -12-Desaturase-, Δ -5-Elongase-, Δ -6-Elongase- oder Δ -9-Elongase-Aktivität codieren, werden vorteilhaft allein oder bevorzugt in Kombination in einer Expressionskassette (= Nukleinsäurekonstrukt), die die Expression der Nukleinsäuren in einem Organismus vorteilhaft einer Pflanze oder einem Mikroorganismus ermöglicht,

eingebracht. Es kann im Nukleinsäurekonstrukt mehr als eine Nukleinsäuresequenz einer enzymatischen Aktivität wie z.B. einer Δ -12-Desaturase, Δ -4-Desaturase, Δ -5-Desaturase, Δ -6-Desaturase, Δ -5-Elongase, Δ -6-Elongase und/oder ω -3-Desaturase enthalten sein.

Zum Einbringen werden die im Verfahren verwendeten Nukleinsäuren vorteilhaft einer 5 Amplifikation und Ligation in bekannter Weise unterworfen. Vorzugsweise geht man in Anlehnung an das Protokoll der Pfu-DNA-Polymerase oder eines Pfu/Taq-DNA-Polymerasegemisches vor. Die Primer werden in Anlehnung an die zu amplifizierende Sequenz gewählt. Zweckmäßigerweise sollten die Primer so gewählt werden, dass das Amplifikat die gesamte kodogene Sequenz vom Start- bis zum Stop-Kodon umfasst. 10 Im Anschluss an die Amplifikation wird das Amplifikat zweckmäßigerweise analysiert. Beispielsweise kann die Analyse nach gelelektrophoretischer Auftrennung hinsichtlich Qualität und Quantität erfolgen. Im Anschluss kann das Amplifikat nach einem Standardprotokoll gereinigt werden (z.B. Qiagen). Ein Aliquot des gereinigten Amplifikats steht dann für die nachfolgende Klonierung zur Verfügung. Geeignete Klonie--15 rungsvektoren sind dem Fachmann allgemein bekannt. Hierzu gehören insbesondere Vektoren, die in mikrobiellen Systemen replizierbar sind, also vor allem Vektoren, die eine effiziente Klonierung in Hefen oder Pilze gewährleisten, und die stabile Transformation von Pflanzen ermöglichen. Zu nennen sind insbesondere verschiedene für die T-DNA-vermittelte Transformation geeignete, binäre und co-integrierte Vektorsysteme. 20 Derartige Vektorsysteme sind in der Regel dadurch gekennzeichnet, dass sie zumindest die für die Agrobakterium-vermittelte Transformation benötigten vir-Gene sowie die T-DNA begrenzenden Sequenzen (T-DNA-Border) beinhalten. Vorzugsweise umfassen diese Vektorsysteme auch weitere cis-regulatorische Regionen wie Promotoren und Terminatoren und/oder Selektionsmarker, mit denen entsprechend transfor-25 mierte Organismen identifiziert werden können. Während bei co-integrierten Vektorsystemen vir-Gene und T-DNA-Sequenzen auf demselben Vektor angeordnet sind, basieren binäre Systeme auf wenigstens zwei Vektoren, von denen einer vir-Gene, aber keine T-DNA und ein zweiter T-DNA, jedoch kein vir-Gen trägt. Dadurch sind letztere Vektoren relativ klein, leicht zu manipulieren und sowohl in E.-coli als auch in 30 Agrobacterium zu replizieren. Zu diesen binären Vektoren gehören Vektoren der-Serien pBIB-HYG, pPZP, pBecks, pGreen. Erfindungsgemäß bevorzugt verwendet werden Bin19, pBI101, pBinAR, pGPTV und pCAMBIA. Eine Übersicht über binäre Vektoren und ihre Verwendung gibt Hellens et al, Trends in Plant Science (2000) 5, 446–451. Für die Vektorpräparation können die Vektoren zunächst mit Restriktionsen-35 donuklease(n) linearisiert und dann in geeigneter Weise enzymatisch modifiziert werden. Im Anschluss wird der Vektor gereinigt und ein Aliquot für die Klonierung eingesetzt. Bei der Klonierung wird das enzymatisch geschnittenen und erforderlichenfalls gereinigten Amplifikat mit ähnlich präparierten Vektorfragmenten mit Einsatz von Ligase kloniert. Dabei kann ein bestimmtes Nukleinsäurekonstrukt bzw. Vektor- oder 40 Plasmidkonstrukt einen oder auch mehrere kodogene Genabschnitte aufweisen. Vorzugsweise sind die kodogenen Genabschnitte in diesen Konstrukten mit regulatorischen Sequenzen funktional verknüpft. Zu den regulatorischen Sequenzen gehören insbesondere pflanzliche Sequenzen wie die oben beschriebenen Promotoren und

Terminatoren. Die Konstrukte lassen sich vorteilhafterweise in Mikroorganismen, insbesondere Escherichia coli und Agrobacterium tumefaciens, unter selektiven Bedingungen stabil propagieren und ermöglichen einen Transfer von heterologer DNA in Pflanzen oder Mikroorganismen.

- Unter der vorteilhaften Verwendung von Klonierungsvektoren können die im Verfahren verwendeten Nukleinsäuren, die erfinderischen Nukleinsäuren und Nukleinsäurekonstrukte in Organismen wie Mikroorganismen oder vorteilhaft Pflanzen eingebracht werden und damit bei der Pflanzentransformation verwendet werden, wie denjenigen, die veröffentlicht sind in und dort zitiert sind: Plant Molecular Biology and Biotechno-
- logy (CRC Press, Boca Raton, Florida), Kapitel 6/7, S. 71-119 (1993); F.F. White, Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press, 1993, 15-38; B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press (1993), 128-143; Potrykus, Annu.
- 15 Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225)). Die im Verfahren verwendeten Nukleinsäuren, die erfinderischen Nukleinsäuren und Nukleinsäurekonstrukte und/oder Vektoren lassen sich damit zur gentechnologischen Veränderung eines breiten Spektrums an Organismen vorteilhaft an Pflanzen verwenden, so dass diese bessere und/oder effizientere Produzenten von PUFAs werden.
- 20 Es gibt eine Reihe von Mechanismen, durch die eine Veränderung des erfindungsgemäßen Δ-12-Desaturase-, Δ-5-Elongase-, Δ-6-Elongase, Δ-5-Desaturase-, Δ-4-Desaturase-, Δ-6-Desaturase- und/oder ω-3-Desaturase-Proteins sowie der weiteren im Verfahren verwendeten Proteine wie die Δ-12-Desaturase-, Δ-9-Elongase-, Δ-6-Desaturase-, Δ-8-Desaturase-, Δ-6-Elongase-, Δ-5-Desaturase- oder Δ-4-Desaturase-
- Proteine möglich ist, so dass die Ausbeute, Produktion und/oder Effizienz der Produktion der vorteilhaft mehrfach ungesättigten Fettsäuren in einer Pflanze bevorzugt in einer Ölfruchtpflanze oder einem Mikroorganismus aufgrund dieses veränderten Proteins direkt beeinflusst werden kann. Die Anzahl oder Aktivität der Δ-12-Desaturase-, ω-3-Desaturase-, Δ-9-Elongase-, Δ-6-Desaturase-, Δ-8-Desaturase-, Δ-6-
- Elongase-, Δ-5-Desaturase-, Δ-5-Elongase- oder Δ-4-Desaturase-Proteine oder -Gene kann erhöht werden, so dass größere Mengen der Genprodukte und damit letztlich größere Mengen der Verbindungen der allgemeinen Formel I hergestellt werden. Auch eine de novo Synthese in einem Organismus, dem die Aktivität und Fähigkeit zur Biosynthese der Verbindungen vor dem Einbringen des/der entsprechenden Gens/Gene fehlte, ist möglich. Entsprechendes gilt für die Kombination mit weiteren Desaturasen
- oder Elongasen oder weiteren Enzymen aus dem Fettsäure- und Lipidstoffwechsel.
 Auch die Verwendung verschiedener divergenter, d.h. auf DNA-Sequenzebene unterschiedlicher Sequenzen kann dabei vorteilhaft sein bzw. die Verwendung von Promotoren zur Genexpression, die eine andere zeitliche Genexpression z.B. abhängig vom Reifegrad eines Samens oder Öl-speichernden Gewebes ermöglicht.

Durch das Einbringen eines Δ -12-Desaturase-, ω -3-Desaturase-, Δ -9-Elongase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -6-Elongase-

10

15

und/oder Δ -4-Desaturase-Genes in einen Organismus allein oder in Kombination mit anderen Genen in eine Zelle kann nicht nur den Biosynthesefluss zum Endprodukt erhöht, sondern auch die entsprechende Triacylglycerin-Zusammensetzung erhöht oder de novo geschaffen werden. Ebenso kann die Anzahl oder Aktivität anderer Gene, die am Import von Nährstoffen, die zur Biosynthese einer oder mehrerer Fettsäuren, Ölen, polaren und/oder neutralen Lipiden nötig sind, erhöht sein, so dass die Konzentration dieser Vorläufer, Cofaktoren oder Zwischenverbindungen innerhalb der Zellen oder innerhalb des Speicherkompartiments erhöht ist, wodurch die Fähigkeit der Zellen zur Produktion von PUFAs, wie im folgenden beschrieben, weiter gesteigert wird. Durch Optimierung der Aktivität oder Erhöhung der Anzahl einer oder mehrerer ∆-12-Desaturase-, ω -3-Desaturase-, Δ -9-Elongase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -6-Elongase-, Δ -5-Desaturase-, Δ -5-Elongase- oder Δ -4-Desaturase-Gene, die an der Biosynthese dieser Verbindungen beteiligt sind, oder durch Zerstören der Aktivität einer oder mehrerer Gene, die am Abbau dieser Verbindungen beteiligt sind, kann es möglich sein, die Ausbeute, Produktion und/oder Effizienz der Produktion von Fettsäure- und Lipidmolekülen aus Organismen und vorteilhaft aus Pflanzen zu steigern.

Die im erfindungsgemäßen Verfahren verwendeten isolierten Nukleinsäuremoleküle codieren für Proteine oder Teile von diesen, wobei die Proteine oder das einzelne Protein oder Teile davon eine Aminosäuresequenz enthält, die ausreichend homolog zu einer Aminosäuresequenz ist, die in den Sequenzen SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ 20 ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID 25 NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID NO: 110, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 118, SEQ ID NO: 120, 30 SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID NO: 138 oder SEQ ID NO: 184 dargestellt ist, so dass die Proteine oder Teile davon noch eine Δ -12-Desaturase-, ω -3-Desaturase-, Δ -9-Elongase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -6-Desaturase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -8-Desaturase-, Elongase-, Δ -5-Desaturase-, Δ -5-Elongase- oder Δ -4-Desaturase-Aktivität aufweisen. Vorzugsweise haben die Proteine oder Teile davon, die von dem Nukleinsäuremole-35 kül/den Nukleinsäuremolekülen kodiert wird/werden, noch seine wesentliche enzymatische Aktivität und die Fähigkeit, am Stoffwechsel von zum Aufbau von Zellmembranen oder Lipidkörperchen in Organismen vorteilhaft in Pflanzen notwendigen Verbindungen oder am Transport von Molekülen über diese Membranen teilzunehmen. Vorteilhaft sind die von den Nukleinsäuremolekülen kodierten Proteine zu mindestens etwa 50 %, 40 vorzugsweise mindestens etwa 60 % und stärker bevorzugt mindestens etwa 70 %, 80 % oder 90 % und am stärksten bevorzugt mindestens etwa 85 %, 86 %, 87 %, 88 %, 89 %, 90 %, 91 %, 92 %, 93 %, 94 %, 95 %, 96 %, 97 %, 98 %, 99 % oder mehr

identisch zu den in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74. SEQ ID NO: 76. SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID 10 NO: 104, SEQ ID NO: 106 SEQ ID NO: 108, SEQ ID NO: 110, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 118, SEQ ID NO: 120, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID NO: 138 oder SEQ ID NO: 184 dargestellten Aminosäuresequenzen. Im Sinne der Erfindung ist unter Homologie oder homolog, Identität oder 15 identisch zu verstehen.

Die Homologie wurde über den gesamten Aminosäure- bzw. Nukleinsäuresequenzbereich berechnet. Für das Vergleichen verschiedener Sequenzen stehen dem Fachmann eine Reihe von Programmen, die auf verschiedenen Algorithmen beruhen zur Verfügung. Dabei liefern die Algorithmen von Needleman und Wunsch oder Smith und Waterman besonders zuverlässige Ergebnisse. Für die Sequenzvergleiche wurde das 20 Programm PileUp verwendet (J. Mol. Evolution., 25, 351-360, 1987, Higgins et al., CABIOS, 5 1989: 151-153) oder die Programme Gap und BestFit [Needleman and Wunsch (J. Mol. Biol. 48; 443-453 (1970) und Smith and Waterman (Adv. Appl. Math. 2; 482-489 (1981)], die im GCG Software-Packet [Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711 (1991)] enthalten sind. Die oben in 25 Prozent angegebenen Sequenzhomologiewerte wurden mit dem Programm GAP über den gesamten Sequenzbereich mit folgenden Einstellungen ermittelt: Gap Weight: 50, Length Weight: 3, Average Match: 10.000 und Average Mismatch: 0.000. Diese Einstellungen wurden, falls nicht anders angegeben, immer als Standardeinstellungen für Sequenzvergleiche verwendet wurden. 30

Unter wesentlicher enzymatischer Aktivität der im erfindungsgemäßen Verfahren verwendeten Δ-12-Desaturase-, ω-3-Desaturase-, Δ-9-Elongase, Δ-6-Desaturase, Δ-8-Desaturase, Δ-6-Elongase, Δ-5-Desaturase, Δ-5-Elongase oder Δ-4-Desaturase ist zu verstehen, dass sie gegenüber den durch die Sequenz mit SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 97

NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 oder SEQ ID NO: 183 und deren Derivate codierten Proteinen/Enzymen im Vergleich noch mindestens eine enzymatische Aktivität von mindestens 10 %, bevorzugt 20 %, besonders bevorzugt 30 % und ganz besonders 40 % aufweisen und damit am Stoffwechsel von zum Aufbau von Fettsäuren, Fettsäureester wie Diacylglyceride und/oder Triacylglyceride in einem Organismus vorteilhaft einer Pflanze oder Pflanzenzelle notwendigen Verbindungen oder am Transport von Molekülen über Membranen teilnehmen können, wobei C₁₈₇, C₂₀₇ oder C₂₂-Kohlenstoffketten im Fettsäuremolekül mit Doppelbindungen an mindestens zwei, vorteilhaft drei, vier, fünf oder sechs Stellen gemeint sind.

5

10

.. 15

20

Vorteilhaft im Verfahren verwendbare Nukleinsäuren stammen aus Bakterien, Pilzen, Diatomeen, Tieren wie Caenorhabditis oder Oncorhynchus oder Pflanzen wie Algen oder Moosen wie den Gattungen Shewanella, Physcomitrella, Thraustochytrium, Fusarium, Phytophthora, Ceratodon, Mantoniella, Ostreococcus, Isochrysis, Aleurita, Muscarioides, Mortierella, Borago, Phaeodactylum, Crypthecodinium, speziell aus den Gattungen und Arten Oncorhynchus mykiss, Xenopus laevis, Ciona intestinalis, Thalassiosira pseudonona, Mantoniella squamata, Ostreococcus sp., Ostreococcus tauri, Euglena gracilis, Physcomitrella patens, Phytophtora infestans, Fusarium graminaeum, Cryptocodinium cohnii, Ceratodon purpureus, Isochrysis galbana, Aleurita farinosa, Thraustochytrium sp., Muscarioides viallii, Mortierella alpina, Borago officinalis, Phaeodactylum tricornutum, Caenorhabditis elegans oder besonders vorteilhaft aus Oncorhynchus mykiss, Euglena gracilis, Thalassiosira pseudonana oder Crypthecodinium cohnii.

Alternativ können im erfindungsgemäßen Verfahren Nukleotidsequenzen verwendet werden, die für eine Δ -12-Desaturase, ω -3-Desaturase, Δ -9-Elongase, Δ -6-25 Desaturase, Δ -8-Desaturase, Δ -6-Elongase, Δ -5-Desaturase, Δ -5-Elongase oder Δ -4-Desaturase codieren und die an eine Nukleotidsequenz, wie in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, 30 SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, 35 SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 oder SEQ ID NO: 183 dargestellt, vorteilhaft unter stringenten Bedingungen hybridisie-40

Die im Verfahren verwendeten Nukleinsäuresequenzen werden vorteilhaft in einer Expressionskassette, die die Expression der Nukleinsäuren in Organismen wie Mikroorganismen oder Pflanzen ermöglicht, eingebracht.

Dabei werden die Nukleinsäuresequenzen, die für die Δ -12-Desaturase, ω -3-Desaturase, Δ -9-Elongase, Δ -6-Desaturase, Δ -8-Desaturase, Δ -6-Elongase, Δ -5-Desaturase, Δ-5-Elongase oder Δ-4-Desaturase codieren, mit einem oder mehreren Regulationssignalen vorteilhafterweise zur Erhöhung der Genexpression funktionell verknüpft. Diese regulatorischen Sequenzen sollen die gezielte Expression der Gene und der Proteinexpression ermöglichen. Dies kann beispielsweise je nach Wirtsorganismus bedeuten, dass das Gen erst nach Induktion exprimiert 10 und/oder überexprimiert wird, oder dass es sofort exprimiert und/oder überexprimiert wird. Beispielsweise handelt es sich bei diesen regulatorischen Sequenzen um Sequenzen an die Induktoren oder Repressoren binden und so die Expression der Nukleinsäure regulieren. Zusätzlich zu diesen neuen Regulationssequenzen oder anstelle dieser Sequenzen kann die natürliche Regulation dieser Sequenzen vor den 15 eigentlichen Strukturgenen noch vorhanden sein und gegebenenfalls genetisch verändert worden sein, so dass die natürliche Regulation ausgeschaltet und die Expression der Gene erhöht wurde. Die Expressionskassette (= Expressionskonstrukt = Genkonstrukt) kann aber auch einfacher aufgebaut sein, das heißt es wurden keine zusätzlichen Regulationssignale vor die Nukleinsäuresequenz oder dessen Derivate 20 inseriert und der natürliche Promotor mit seiner Regulation wurde nicht entfernt. Stattdessen wurde die natürliche Regulationssequenz so mutiert, dass keine Regulation mehr erfolgt und/oder die Genexpression gesteigert wird. Diese veränderten Promotoren können in Form von Teilsequenzen (= Promotor mit Teilen der erfindungsgemäßen Nukleinsäuresequenzen) auch allein vor das natürliche Gen zur Steigerung 25 der Aktivität gebracht werden. Das Genkonstrukt kann außerdem vorteilhafterweise auch eine oder mehrere sogenannte "enhancer Sequenzen" funktionell verknüpft mit dem Promotor enthalten, die eine erhöhte Expression der Nukleinsäuresequenz ermöglichen. Auch am 3'-Ende der DNA-Sequenzen können zusätzliche vorteilhafte Sequenzen inseriert werden wie weitere regulatorische Elemente oder Terminatoren. 30 Die Δ -12-Desaturase-, ω -3-Desaturase-, Δ -4-Desaturase-, Δ 5-Desaturase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -5-Elongase-, Δ -6-Elongase- und/oder Δ -9-Elongase-Gene können in einer oder mehreren Kopien in der Expressionskassette (= Genkonstrukt) enthalten sein. Vorteilhaft liegt nur jeweils eine Kopie der Gene in der Expressionskassette vor. Dieses Genkonstrukt oder die Genkonstrukte können 35 zusammen im Wirtsorganismus exprimiert werden. Dabei kann das Genkonstrukt oder die Genkonstrukte in einem oder mehreren Vektoren inseriert sein und frei in der Zelle vorliegen oder aber im Genom inseriert sein. Es ist vorteilhaft für die Insertion weiterer Gene im Wirtsgenom, wenn die zu exprimierenden Gene zusammen in einem Gen-40 konstrukt vorliegen.

Die regulatorischen Sequenzen bzw. Faktoren können dabei wie oben beschrieben vorzugsweise die Genexpression der eingeführten Gene positiv beeinflussen und dadurch erhöhen. So kann eine Verstärkung der regulatorischen Elemente vorteilhaft-

erweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird.

- verbessert wird. Eine weitere Ausführungsform der Erfindung sind ein oder mehrere Genkonstrukte, die eine oder mehrere Sequenzen enthalten, die durch SEQ ID NO: 1, SEQ ID NO: 3, SEQ 5 ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, 10 SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105 SEQ ID NO: 107, SEQ ID NO: 15 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 oder SEQ ID NO: 183 oder dessen Derivate definiert sind und für Polypeptide gemäß SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, 20 SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID NO: 110, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 118, SEQ ID NO: 120, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID NO: 138 30 oder SEQ ID NO: 184 kodieren. Die genannten Δ -12-Desaturase-, ω -3-Desaturase-, Δ -9-Elongase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -6-Elongase-, Δ -5-Desaturase-, Δ -5-Elongase- oder Δ -4-Desaturase-Proteine führen dabei vorteilhaft zu einer Desaturierung oder Elongierung von Fettsäuren, wobei das Substrat vorteilhaft ein, zwei, drei, vier, fünf oder sechs Doppelbindungen aufweist und vorteilhaft 18, 20 oder 22 Kohlen-35 stoffatome im Fettsäuremolekül aufweist. Gleiches gilt für ihre Homologen, Derivate oder Analoga, die funktionsfähig mit einem oder mehreren Regulationssignalen, vorteilhafterweise zur Steigerung der Genexpression, verbunden sind.
 - Vorteilhafte Regulationssequenzen für das neue Verfahren liegen beispielsweise in Promotoren vor, wie dem cos-, tac-, trp-, tet-, trp-tet-, lpp-, lac-, lpp-lac-, laclq-, T7-, T5-, T3-, gal-, trc-, ara-, SP6-, λ-PR- oder λ-PL-Promotor und werden vorteilhaft- erweise in Gram-negativen Bakterien angewendet. Weitere vorteilhafte Regulations-

sequenzen liegen beispielsweise in den Gram-positiven Promotoren amy und SPO2, in den Hefe- oder Pilzpromotoren ADC1, MFa, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH oder in den Pflanzenpromotoren CaMV/35S [Franck et al., Cell 21 (1980) 285-294], PRP1 [Ward et al., Plant. Mol. Biol. 22 (1993)], SSU, OCS, lib4, usp, STLS1, B33, nos oder im Ubiquitin- oder Phaseolin-Promotor vor. In diesem Zusammenhang 5 vorteilhaft sind ebenfalls induzierbare Promotoren, wie die in EP-A-0 388 186 (Benzylsulfonamid-induzierbar), Plant J. 2, 1992:397-404 (Gatz et al., Tetracyclininduzierbar), EP-A-0 335 528 (Abzisinsäure-induzierbar) oder WO 93/21334 (Ethanoloder Cyclohexenol-induzierbar) beschriebenen Promotoren. Weitere geeignete Pflanzenpromotoren sind der Promotor von cytosolischer FBPase oder der ST-LSI-10 Promotor der Kartoffel (Stockhaus et al., EMBO J. 8, 1989, 2445), der Phosphoribosylpyrophosphatamidotransferase-Promotor aus Glycine max (Genbank-Zugangsnr. U87999) oder der in EP-A-0 249 676 beschriebene nodienspezifische Promotor. Besonders vorteilhafte Promotoren sind Promotoren, welche die Expression in Geweben ermöglichen, die an der Fettsäurebiosynthese beteiligt sind. Ganz besonders 15 vorteilhaft sind samenspezifische Promotoren, wie der ausführungsgemäße USP Promotor aber auch andere Promotoren wie der LeB4-, DC3, Phaseolin- oder Napin-Promotor. Weitere besonders vorteilhafte Promotoren sind samenspezifische Promotoren, die für monokotyle oder dikotyle Pflanzen verwendet werden können und in US 5,608,152 (Napin-Promotor aus Raps), WO 98/45461 (Oleosin-Promotor 20 aus Arobidopsis), US 5,504,200 (Phaseolin-Promotor aus Phaseolus vulgaris), WO 91/13980 (Bce4-Promotor aus Brassica), von Baeumlein et al., Plant J., 2, 2, 1992:233-239 (LeB4-Promotor aus einer Leguminose) beschrieben sind, wobei sich diese Promotoren für Dikotyledonen eignen. Die folgenden Promotoren eignen sich beispielsweise für Monokotyledonen lpt-2- oder lpt-1-Promotor aus Gerste (WO 25 95/15389 und WO 95/23230), Hordein-Promotor aus Gerste und andere, in WO 99/16890 beschriebene geeignete Promotoren.

Es ist im Prinzip möglich, alle natürlichen Promotoren mit ihren Regulationssequenzen, wie die oben genannten, für das neue Verfahren zu verwenden. Es ist ebenfalls möglich und vorteilhaft, zusätzlich oder alleine synthetische Promotoren zu verwenden, besonders wenn sie eine Samen-spezifische Expression vermitteln, wie z.B. beschrieben in WO 99/16890.

30

35

40

Um einen besonders hohen Gehalt an PUFAs vor allem in transgenen Pflanzen zu erzielen, sollten die PUFA-Biosynthesegene vorteilhaft samenspezifisch in Ölsaaten exprimiert werden. Hierzu können Samen-spezifische Promotoren verwendet werden, bzw. solche Promotoren die im Embryo und/oder im Endosperm aktiv sind. Samenspezifische Promotoren können prinzipiell sowohl aus dikotolydonen als auch aus monokotolydonen Pflanzen isoliert werden. Im folgenden sind vorteilhafte bevorzugte Promotoren aufgeführt: USP (= unknown seed protein) und Vicilin (Vicia faba) [Bäumlein et al., Mol. Gen Genet., 1991, 225(3)], Napin (Raps) [US 5,608,152], Acyl-Carrier Protein (Raps) [US 5,315,001 und WO 92/18634], Oleosin (Arabidopsis thaliana) [WO 98/45461 und WO 93/20216], Phaseolin (Phaseolus vulgaris) [US 5,504,200], Bce4 [WO 91/13980], Leguminosen B4 (LegB4-Promotor) [Bäumlein et al., Plant J.,

10

2,2, 1992], Lpt2 und lpt1(Gerste) [WO 95/15389 u. WO95/23230], Samen-spezifische Promotoren aus Reis, Mais u. Weizen [WO 99/16890], Amy32b, Amy 6-6 und Aleurain [US 5,677,474], Bce4 (Raps) [US 5,530,149], Glycinin (Soja) [EP 571 741], Phosphoenol-Pyruvatcarboxylase (Soja) [JP 06/62870], ADR12-2 (Soja) [WO 98/08962], Isocitratlyase (Raps) [US 5,689,040] oder α-Amylase (Gerste) [EP 781 849].

Die Pflanzengenexpression lässt sich auch über einen chemisch induzierbaren Promotor erleichtern (siehe eine Übersicht in Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48:89-108). Chemisch induzierbare Promotoren eignen sich besonders, wenn gewünscht wird, dass die Genexpression auf zeitspezifische Weise erfolgt. Beispiele für solche Promotoren sind ein Salicylsäure-induzierbarer Promotor (WO 95/19443), ein Tetracyclin-induzierbarer Promotor (Gatz et al. (1992) Plant J. 2, 397-404) und ein Ethanol-induzierbarer Promotor.

Um eine stabile Integration der Biosynthesegene in die transgene Pflanze über mehrere Generation sicherzustellen, sollte jede der im Verfahren verwendeten Nukleinsäuren, die für die Δ -12-Desaturase, ω -3-Desaturase, Δ -9-Elongase, Δ -6-Desaturase, Δ -8-Desaturase, Δ -6-Elongase, Δ -5-Desaturase, Δ -5-Elongase und/oder 15 Δ -4-Desaturase codieren, unter der Kontrolle eines eigenen bevorzugt eines unterschiedlichen Promotors exprimiert werden, da sich wiederholende Sequenzmotive zu Instabilität der T-DNA bzw. zu Rekombinationsereignissen führen können. Die Expressionskassette ist dabei vorteilhaft so aufgebaut, dass einem Promotor eine geeignete Schnittstelle zur Insertion der zu exprimierenden Nukleinsäure folgt vorteil-20 haft in einem Polylinker anschließend gegebenenfalls ein Terminator hinter dem Polylinker liegt. Diese Abfolge wiederholt sich mehrfach bevorzugt drei-, vier- oder fünfmal, so dass bis zu fünf Gene in einem Konstrukt zusammengeführt werden und so zur Expression in die transgene Pflanze eingebracht werden können. Vorteilhaft wiederholt sich die Abfolge bis zu dreimal. Die Nukleinsäuresequenzen werden zur 25 Expression über die geeignete Schnittstelle beispielsweise im Polylinker hinter den Promotor inseriert. Vorteilhaft hat jede Nukleinsäuresequenz ihren eigenen Promotor und gegebenenfalls ihren eigenen Terminator. Derartige vorteilhafte Konstrukte werden beispielsweise in DE 10102337 oder DE 10102338 offenbart. Es ist aber auch möglich mehrere Nukleinsäuresequenzen hinter einem Promotor und ggf. vor einem Terminator 30 zu inserieren. Dabei ist die Insertionsstelle bzw. die Abfolge der inserierten Nukleinsäuren in der Expressionskassette nicht von entscheidender Bedeutung, das heißt eine Nukleinsäuresequenz kann an erster oder letzter Stelle in der Kassette inseriert sein, ohne dass dadurch die Expression wesentlich beeinflusst wird. Es können in der Expressionskassette vorteilhaft unterschiedliche Promotoren wie beispielsweise der 35 USP-, LegB4 oder DC3-Promotor und unterschiedliche Terminatoren verwendet werden. Es ist aber auch möglich nur einen Promotortyp in der Kassette zu verwenden. Dies kann jedoch zu unerwünschten Rekombinationsereignissen führen.

Wie oben beschrieben sollte die Transkription der eingebrachten Gene vorteilhaft durch geeignete Terminatoren am 3'-Ende der eingebrachten Biosynthesegene (hinter dem Stoppcodon) abgebrochen werden. Verwendet werden kann hier z.B. der OCS1 Terminator. Wie auch für die Promotoren, so sollten hier für jedes Gen unterschiedliche Terminatorsequenzen verwendet werden.

Das Genkonstrukt kann, wie oben beschrieben, auch weitere Gene umfassen, die in die Organismen eingebracht werden sollen. Es ist möglich und vorteilhaft, in die Wirtsorganismen Regulationsgene, wie Gene für Induktoren, Repressoren oder Enzyme, welche durch ihre Enzymaktivität in die Regulation eines oder mehrerer Gene eines Biosynthesewegs eingreifen, einzubringen und darin zu exprimieren. Diese Gene können heterologen oder homologen Ursprungs sein. Weiterhin können vorteilhaft im Nukleinsäurekonstrukt bzw. Genkonstrukt weitere Biosynthesegene des Fettsäureoder Lipidstoffwechsels enthalten sein oder aber diese Gene können auf einem 10 weiteren oder mehreren weiteren Nukleinsäurekonstrukten liegen. Vorteilhaft werden als Biosynthesegene des Fettsäure- oder Lipidstoffwechsels ein Gen ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]-Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäure-Acyl-Transferase(n), Acyl-CoA:Lysophospholipid-Acyltransferase(n), Fettsäure-Synthase(n), Fettsäure-Hydroxylase(n), Acetyl-Coenzym A-Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure-Desaturase(n), Fettsäure-Acetylenase(n), Lipoxygenase(n), Triacylglycerol-Lipase(n), Allenoxid-Synthase(n), Hydroperoxid-Lyase(n) oder Fettsäure-Elongase(n) oder deren Kombinationen verwendet. Besonders vorteilhafte Nukleinsäuresequenzen sind Biosynthesegene des Fettsäure- oder Lipidstoffwechsels ausgewählt aus der 20 Gruppe der Acyl-CoA:Lysophospholipid-Acyltransferase, ω -3-Desaturase, Δ -4-Desaturase, Δ -5-Desaturase, Δ -6-Desaturase, Δ -8-Desatuase, Δ -9-Desaturase, Δ -12-Desaturase, Δ -5-Elongase, Δ -6-Elongase und/oder Δ -9-Elongase.

Dabei können die vorgenannten Nukleinsäuren bzw. Gene in Kombination mit anderen Elongasen und Desaturasen in Expressionskassetten, wie den vorgenannten, kloniert werden und zur Transformation von Pflanzen Mithilfe von Agrobakterium eingesetzt werden.

25

30

35

40

Die regulatorischen Sequenzen bzw. Faktoren können dabei wie oben beschrieben vorzugsweise die Genexpression der eingeführten Gene positiv beeinflussen und dadurch erhöhen. So kann eine Verstärkung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird. Die Expressionskassetten können prinzipiell direkt zum Einbringen in die Pflanze verwendet werden oder aber in einen Vektoren eingebracht werden.

Diese vorteilhaften Vektoren, vorzugsweise Expressionsvektoren, enthalten die im Verfahren verwendeten Nukleinsäuren, die für die Δ -12-Desaturasen, ω -3-Desaturasen, Δ -9-Elongasen, Δ -6-Desaturasen, Δ -8-Desaturasen, Δ -6-Elongasen, Δ -5-Desaturasen, Δ -5-Elongasen oder Δ -4-Desaturasen codieren, oder ein Nukleinsäurekonstrukt, die die verwendeten Nukleinsäure allein oder in Kombination mit weiteren Biosynthesegenen des Fettsäure- oder Lipidstoffwechsels wie den Acyl-

15

20

CoA:Lysophospholipid-Acyltransferasen, ω -3-Desaturasen, Δ -4-Desaturasen, Δ -5-Desaturasen, Δ -6-Desaturasen, Δ -8-Desaturasen, Δ -9-Desaturasen, Δ -12-Desaturasen, ω3-Desaturasen, Δ -5-Elongasen, Δ -6-Elongasen und/oder Δ -9-Elongasen. Wie hier verwendet, betrifft der Begriff "Vektor" ein Nukleinsäuremolekül, das eine andere Nukleinsäure transportieren kann, an welche es gebunden ist. Ein Vektortyp ist ein "Plasmid", was für eine zirkuläre doppelsträngige DNA-Schleife steht, in die zusätzlichen DNA-Segmente ligiert werden können. Ein weiterer Vektortyp ist ein viraler Vektor, wobei zusätzliche DNA-Segmente in das virale Genom ligiert werden können. Bestimmte Vektoren können in einer Wirtszelle, in die sie eingebracht worden sind, autonom replizieren (z.B. Bakterienvektoren mit bakteriellem Replikationsursprung). Andere Vektoren werden vorteilhaft beim Einbringen in die Wirtszelle in das Genom einer Wirtszelle integriert und dadurch zusammen mit dem Wirtsgenom repliziert. Zudem können bestimmte Vektoren die Expression von Genen, mit denen sie funktionsfähig verbunden sind, steuern. Diese Vektoren werden hier als "Expressionsvektoren" bezeichnet. Gewöhnlich haben Expressionsvektoren, die für DNA-Rekombinationstechniken geeignet sind, die Form von Plasmiden. In der vorliegenden Beschreibung können "Plasmid" und "Vektor" austauschbar verwendet werden; da das Plasmid die am häufigsten verwendete Vektorform ist. Die Erfindung soll jedoch diese anderen Expressionsvektorformen, wie virale Vektoren, die ähnliche Funktionen ausüben, umfassen. Ferner soll der Begriff Vektor auch andere Vektoren, die dem Fachmann bekannt sind, wie Phagen, Viren, wie SV40, CMV, TMV, Transposons, IS-Elemente, Phasmide, Phagemide, Cosmide, lineare oder zirkuläre DNA, umfassen.

Die im Verfahren vorteilhaft verwendeten rekombinanten Expressionsvektoren umfassen die unten beschriebenen Nukleinsäuren oder das oben beschriebene Genkonstrukt in einer Form, die sich zur Expression der verwendeten Nukleinsäuren in 25 einer Wirtszelle eignen, was bedeutet, dass die rekombinanten Expressionsvektoren eine oder mehrere Regulationssequenzen, ausgewählt auf der Basis der zur Expression zu verwendenden Wirtszellen, die mit der zu exprimierenden Nukleinsäuresequenz funktionsfähig verbunden ist, umfasst. In einem rekombinanten Expressionsvektor bedeutet "funktionsfähig verbunden", dass die Nukleotidsequenz von Interesse derart 30 an die Regulationssequenz(en) gebunden ist, dass die Expression der Nukleotidsequenz möglich ist und sie aneinander gebunden sind, so dass beide Sequenzen die vorhergesagte, der Sequenz zugeschriebene Funktion erfüllen (z.B. in einem In-vitro-Transkriptions-/Translationssystem oder in einer Wirtszelle, wenn der Vektor in die Wirtszelle eingebracht wird). Der Begriff "Regulationssequenz" soll Promotoren, 35 Enhancer und andere Expressionskontrollelemente (z.B. Polyadenylierungssignale) umfassen. Diese Regulationssequenzen sind z.B. beschrieben in Goeddel: Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990), oder siehe: Gruber und Crosby, in: Methods in Plant Molecular Biology and Biotechnolgy, CRC Press, Boca Raton, Florida, Hrsgb.: Glick und Thompson, Kapitel 7, 40 89-108, einschließlich der Literaturstellen darin. Regulationssequenzen umfassen solche, welche die konstitutive Expression einer Nukleotidsequenz in vielen Wirtszelltypen steuern, und solche, welche die direkte Expression der Nukleotidsequenz nur in bestimmten Wirtszellen unter bestimmten Bedingungen steuern. Der Fachmann weiß,

dass die Gestaltung des Expressionsvektors von Faktoren, wie der Auswahl der zu transformierenden Wirtszelle, dem Ausmaß der Expression des gewünschten Proteins usw., abhängen kann.

Die verwendeten rekombinanten Expressionsvektoren können zur Expression von Δ-12-Desaturasen, ω -3-Desaturasen, Δ -9-Elongasen, Δ -6-Desaturasen, Δ -8-5 Desaturasen, Δ-6-Elongasen, Δ-5-Desaturasen, Δ-5-Elongasen und/oder Δ-4-Desaturasen in prokaryotischen oder eukaryotischen Zellen gestaltet sein. Dies ist vorteilhaft, da häufig Zwischenschritte der Vektorkonstruktion der Einfachheithalber in Mikroorganismen durchgeführt werden. Beispielsweise können die Δ -12-Desaturase-, ω-3-Desaturase-, Δ-9-Elongase-, Δ-6-Desaturase-, Δ-8-Desaturase-, Δ-6-Elongase-, 10 Δ -5-Desaturase-, Δ -5-Elongase- und/oder Δ -4-Desaturase-Gene in bakteriellen Zellen, Insektenzellen (unter Verwendung von Baculovirus-Expressionsvektoren), Hefe- und anderen Pilzzellen (siehe Romanos, M.A., et al. (1992) "Foreign gene expression in yeast: a review", Yeast 8:423-488; van den Hondel, C.A.M.J.J., et al. (1991) "Heterologous gene expression in filamentous fungi", in: More Gene Manipulations in Fungi, 15 J.W. Bennet & L.L. Lasure, Hrsgb., S. 396-428: Academic Press: San Diego; und van den Hondel, C.A.M.J.J., & Punt, P.J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, Peberdy, J.F., et al., Hrsgb., S. 1-28, Cambridge University Press: Cambridge), Algen (Falciatore et al., 1999, Marine Biotechnology.1, 3:239-251), Ciliaten der Typen: Holotrichia, 20 Peritrichia, Spirotrichia, Suctoria, Tetrahymena, Paramecium, Colpidium, Glaucoma, Platyophrya, Potomacus, Desaturaseudocohnilembus, Euplotes, Engelmaniella und Stylonychia, insbesondere der Gattung Stylonychia lemnae, mit Vektoren nach einem Transformationsverfahren, wie beschrieben in WO 98/01572, sowie bevorzugt in Zellen vielzelliger Pflanzen (siehe Schmidt, R. und Willmitzer, L. (1988) "High efficiency 25 Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana leaf and cotyledon explants" Plant Cell Rep.:583-586; Plant Molecular Biology and Biotechnology, C Press, Boca Raton, Florida, Kapitel 6/7, S.71-119 (1993); F.F. White, B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press (1993), 128-43; Potrykus, Annu. 30 Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225 (und darin zitierte Literaturstellen)) exprimiert werden. Geeignete Wirtszellen werden ferner erörtert in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Der rekombinante Expressionsvektor kann alternativ, zum Beispiel unter Verwendung von T7-Promotor-Regulationssequenzen und T7-Polymerase, in 35 vitro transkribiert und translatiert werden.

Die Expression von Proteinen in Prokaryoten erfolgt meist mit Vektoren, die konstitutive oder induzierbare Promotoren enthalten, welche die Expression von Fusionsoder nicht-Fusionsproteinen steuern. Typische Fusions-Expressionsvektoren sind u.a. pGEX (Pharmacia Biotech Inc; Smith, D.B., und Johnson, K.S. (1988) Gene 67:31-40), pMAL (New England Biolabs, Beverly, MA) und pRIT5 (Pharmacia, Piscataway, NJ), bei denen Glutathion-S-Transferase (GST), Maltose E-bindendes Protein bzw. Protein A an das rekombinante Zielprotein fusioniert wird.

Beispiele für geeignete induzierbare nicht-Fusions-E. coli-Expressionsvektoren sind u.a. pTrc (Amann et al. (1988) Gene 69:301-315) und pET 11d (Studier et al., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Kalifornien (1990) 60-89). Die Zielgenexpression vom pTrc-Vektor beruht auf der Transkription durch Wirts-RNA-Polymerase von einem Hybrid-trp-lac-Fusionspromotor. Die Zielgenexpression aus dem pET 11d-Vektor beruht auf der Transkription von einem T7-gn10-lac-Fusions-Promotor, die von einer coexprimierten viralen RNA-Polymerase (T7 gn1) vermittelt wird. Diese virale Polymerase wird von den Wirtsstämmen BL21 (DE3) oder HMS174 (DE3) von einem residenten λ-Prophagen bereitgestellt, der ein T7 gn1-Gen unter der Transkriptionskontrolle des lacUV 5-

10

15

35

Promotors birgt.

Andere in prokaryotischen Organismen geeignete Vektoren sind dem Fachmann bekannt, diese Vektoren sind beispielsweise in E. coli pLG338, pACYC184, die pBR–Reihe, wie pBR322, die pUC–Reihe, wie pUC18 oder pUC19, die M113mp–Reihe, pKC30, pRep4, pHS1, pHS2, pPLc236, pMBL24, pLG200, pUR290, pIN-III113-B1, λgt11 or pBdCl, in Streptomyces pIJ101, pIJ364, pIJ702 oder pIJ361, in Bacillus pUB110, pC194 oder pBD214, in Corynebacterium pSA77 oder pAJ667.

Bei einer weiteren Ausführungsform ist der Expressionsvektor ein Hefe-Expressionsvektor. Beispiele für Vektoren zur Expression in der Hefe S. cerevisiae umfassen pYeDesaturasec1 (Baldari et al. (1987) Embo J. 6:229-234), pMFa (Kurjan und 20 Herskowitz (1982) Cell 30:933-943), pJRY88 (Schultz et al. (1987) Gene 54:113-123) sowie pYES2 (Invitrogen Corporation, San Diego, CA). Vektoren und Verfahren zur Konstruktion von Vektoren, die sich zur Verwendung in anderen Pilzen, wie den filamentösen Pilzen, eignen, umfassen diejenigen, die eingehend beschrieben sind in: van den Hondel, C.A.M.J.J., & Punt, P.J. (1991) "Gene transfer systems and vector 25 development for filamentous fungi, in: Applied Molecular Genetics of fungi, J.F. Peberdy et al., Hrsgb., S. 1-28, Cambridge University Press: Cambridge, oder in: More Gene Manipulations in Fungi [J.W. Bennet & L.L. Lasure, Hrsgb., S. 396-428: Academic Press: San Diego]. Weitere geeignete Hefevektoren sind beispielsweise pAG-1, YEp6, YEp13 oder pEMBLYe23. 30

Alternativ können die Δ -12-Desaturasen, ω -3-Desaturasen, Δ -9-Elongasen, Δ -6-Desaturasen, Δ -8-Desaturasen, Δ -6-Elongasen, Δ -5-Desaturasen, Δ -5-Elongasen und/oder Δ -4-Desaturasen in Insektenzellen unter Verwendung von Baculovirus-Expressionsvektoren exprimiert werden. Baculovirus-Vektoren, die zur Expression von Proteinen in gezüchteten Insektenzellen (z.B. Sf9-Zellen) verfügbar sind, umfassen die pAc-Reihe (Smith et al. (1983) Mol. Cell Biol.. 3:2156-2165) und die pVL-Reihe (Lucklow und Summers (1989) Virology 170:31-39).

Die oben genannten Vektoren bieten nur einen kleinen Überblick über mögliche geeignete Vektoren. Weitere Plasmide sind dem Fachmann bekannt und sind zum Beispiel beschrieben in: Cloning Vectors (Hrsgb. Pouwels, P.H., et al., Elsevier, Amsterdam-New York-Oxford, 1985, ISBN 0 444 904018). Weitere geeignete Expres-

sionssysteme für prokaryotische und eukaryotische Zellen siehe in den Kapiteln 16 und 17 von Sambrook, J., Fritsch, E.F., und Maniatis, T., Molecular Cloning: A Laboratory Manual, 2. Auflage, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.

- 5 Bei einer weiteren Ausführungsform des Verfahrens können die Δ-12-Desaturasen, ω-3-Desaturasen, Δ-9-Elongasen, Δ-6-Desaturasen, Δ-8-Desaturasen, Δ-6-Elongasen, Δ-5-Desaturasen, Δ-5-Elongasen und/oder Δ-4-Desaturasen in einzelligen Pflanzenzellen (wie Algen), siehe Falciatore et al., 1999, Marine Biotechnology 1 (3):239-251 und darin zitierte Literaturangaben, und Pflanzenzellen aus höheren Pflanzen (z.B.
- Spermatophyten, wie Feldfrüchten) exprimiert werden. Beispiele für Pflanzen-Expressionsvektoren umfassen solche, die eingehend beschrieben sind in: Becker, D., Kemper, E., Schell, J., und Masterson, R. (1992) "New plant binary vectors with selectable markers located proximal to the left border", Plant Mol. Biol. 20:1195-1197; und Bevan, M.W. (1984) "Binary Agrobacterium vectors for plant transformation", Nucl.
- Acids Res. 12:8711-8721; Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press, 1993, S. 15-38.

20

25

30

35

Eine Pflanzen-Expressionskassette enthält vorzugsweise Regulationssequenzen, welche die Genexpression in Pflanzenzellen steuern können und funktionsfähig verbunden sind, so dass jede Sequenz ihre Funktion, wie Termination der Transkription, erfüllen kann, beispielsweise Polyadenylierungssignale. Bevorzugte Polyadenylierungssignale sind diejenigen, die aus Agrobacterium tumefaciens-T-DNA stammen, wie das als Octopinsynthase bekannte Gen 3 des Ti-Plasmids pTiACH5 (Gielen et al., EMBO J. 3 (1984) 835ff.) oder funktionelle Äquivalente davon, aber auch alle anderen in Pflanzen funktionell aktiven Terminatoren sind geeignet.

Da die Pflanzengenexpression sehr oft nicht auf Transkriptionsebenen beschränkt ist, enthält eine Pflanzen-Expressionskassette vorzugsweise andere funktionsfähig verbunden Sequenzen, wie Translationsenhancer, beispielsweise die Overdrive-Sequenz, welche die 5'-untranslatierte Leader-Sequenz aus Tabakmosaikvirus, die das Protein/RNA-Verhältnis erhöht, enthält (Gallie et al., 1987, Nucl. Acids Research 15:8693-8711).

Die Pflanzengenexpression muss wie oben beschrieben funktionsfähig mit einem geeigneten Promotor verbunden sein, der die Genexpression auf rechtzeitige, zelloder gewebespezifische Weise durchführt. Nutzbare Promotoren sind konstitutive Promotoren (Benfey et al., EMBO J. 8 (1989) 2195-2202), wie diejenigen, die von Pflanzenviren stammen, wie 35S CAMV (Franck et al., Cell 21 (1980) 285-294), 19S CaMV (siehe auch US 5352605 und WO 84/02913) oder Pflanzenpromotoren, wie der in US 4,962,028 beschriebene der kleinen Untereinheit der Rubisco.

Andere bevorzugte Sequenzen für die Verwendung zur funktionsfähigen Verbindung in Pflanzengenexpressions-Kassetten sind Targeting-Sequenzen, die zur Steuerung des Genproduktes in sein entsprechendes Zellkompartiment notwendig sind (siehe eine

Übersicht in Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423 und darin zitierte Literaturstellen), beispielsweise in die Vakuole, den Zellkern, alle Arten von Plastiden, wie Amyloplasten, Chloroplasten, Chromoplasten, den extrazellulären Raum, die Mitochondrien, das Endoplasmatische Retikulum, Ölkörper, Peroxisomen und andere Kompartimente von Pflanzenzellen.

Die Pflanzengenexpression lässt sich auch wie oben beschrieben über einen chemisch induzierbaren Promotor erleichtern (siehe eine Übersicht in Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48:89-108). Chemisch induzierbare Promotoren eignen sich besonders, wenn gewünscht wird, dass die Genexpression auf zeitspezifische Weise erfolgt. Beispiele für solche Promotoren sind ein Salicylsäure-induzierbarer Promotor (WO 95/19443), ein Tetracyclin-induzierbarer Promotor (Gatz et al. (1992) Plant J. 2, 397-404) und ein Ethanol-induzierbarer Promotor.

10

15

Auch Promotoren, die auf biotische oder abiotische Stressbedingungen reagieren, sind geeignete Promotoren, beispielsweise der pathogeninduzierte PRP1-Gen-Promotor (Ward et al., Plant. Mol. Biol. 22 (1993) 361-366), der hitzeinduzierbare hsp80-Promotor aus Tomate (US 5,187,267), der kälteinduzierbare Alpha-Amylase-Promotor aus Kartoffel (WO 96/12814) oder der durch Wunden induzierbare pinII-Promotor (EP-A-0 375 091).

Es sind insbesondere solche Promotoren bevorzugt, welche die Genexpression in Geweben und Organen herbeiführen, in denen die Fettsäure-, Lipid- und Ölbiosynthese stattfindet, in Samenzellen, wie den Zellen des Endosperms und des sich 20 entwickelnden Embryos. Geeignete Promotoren sind der Napingen-Promotor aus Raps (US 5,608,152), der USP-Promotor aus Vicia faba (Baeumlein et al., Mol Gen Genet, 1991, 225 (3):459-67), der Oleosin-Promotor aus Arabidopsis (WO 98/45461), der Phaseolin-Promotor aus Phaseolus vulgaris (US 5,504,200), der Bce4-Promotor aus Brassica (WO 91/13980) oder der Legumin-B4-Promotor (LeB4; Baeumlein et al., 25 1992, Plant Journal, 2 (2):233-9) sowie Promotoren, welche die samenspezifische Expression in Monokotyledonen-Pflanzen, wie Mais, Gerste, Weizen, Roggen, Reis usw. herbeiführen. Geeignete beachtenswerte Promotoren sind der lpt2- oder lpt1-Gen-Promotor aus Gerste (WO 95/15389 und WO 95/23230) oder die in WO 99/16890 beschriebenen (Promotoren aus dem Gersten-Hordein-Gen, dem Reis-Glutelin-Gen, 30 dem Reis-Oryzin-Gen, dem Reis-Prolamin-Gen, dem Weizen-Gliadin-Gen, Weizen-Glutelin-Gen, dem Mais-Zein-Gen, dem Hafer-Glutelin-Gen, dem Sorghum-Kasirin-Gen, dem Roggen-Secalin-Gen).

Insbesondere kann die multiparallele Expression der im Verfahren verwendeten Δ-12-Desaturasen, ω-3-Desaturasen, Δ-9-Elongasen, Δ-6-Desaturasen, Δ-8-Desaturasen, Δ-6-Elongasen, Δ-5-Desaturasen, Δ-5-Elongasen und/oder Δ-4-Desaturasen gewünscht sein. Die Einführung solcher Expressionskassetten kann über eine simultane Transformation mehrerer einzelner Expressionskonstrukte erfolgen oder bevorzugt durch Kombination mehrerer Expressionskassetten auf einem Konstrukt. Auch können

mehrere Vektoren mit jeweils mehreren Expressionskassetten transformiert und auf die Wirtszelle übertragen werden.

Ebenfalls besonders geeignet sind Promotoren, welche die plastidenspezifische Expression herbeiführen, da Plastiden das Kompartiment sind, in dem die Vorläufer sowie einige Endprodukte der Lipidbiosynthese synthetisiert werden. Geeignete Promotoren, wie der virale RNA-Polymerase-Promotor, sind beschrieben in WO 95/16783 und WO 97/06250, und der clpP-Promotor aus Arabidopsis, beschrieben in WO 99/46394.

Vektor-DNA lässt sich in prokaryotische oder eukaryotische Zellen über herkömmliche Transformations- oder Transfektionstechniken einbringen. Die Begriffe "Transformati-10 on" und "Transfektion", Konjugation und Transduktion, wie hier verwendet, sollen eine Vielzahl von im Stand der Technik bekannten Verfahren zum Einbringen fremder Nukleinsäure (z.B. DNA) in eine Wirtszelle, einschließlich Calciumphosphat- oder Calciumchlorid-Copräzipitation, DEAE-Dextran-vermittelte Transfektion, Lipofektion, natürliche Kompetenz, chemisch vermittelter Transfer, Elektroporation oder Teilchen-15 beschuss, umfassen. Geeignete Verfahren zur Transformation oder Transfektion von Wirtszellen, einschließlich Pflanzenzellen, lassen sich finden in Sambrook et al. (Molecular Cloning: A Laboratory Manual., 2. Aufl., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) und anderen Labor-Handbüchern, wie Methods in Molecular Biology, 1995, Bd. 44, Agrobacterium 20 protocols, Hrsgb: Gartland und Davey, Humana Press, Totowa, New Jersey.

Wirtszellen, die im Prinzip zum Aufnehmen der erfindungsgemäßen Nukleinsäure, des erfindungsgemäßen Genproduktes oder des erfindungsgemäßen Vektors geeignet sind, sind alle prokaryotischen oder eukaryotischen Organismen. Die vorteilhafterweise verwendeten Wirtsorganismen sind Mikroorganismen, wie Pilze oder Hefen oder Pflanzenzellen vorzugsweise Pflanzen oder Teile davon. Pilze, Hefen oder Pflanzen werden vorzugsweise verwendet, besonders bevorzugt Pflanzen, ganz besonders bevorzugt Pflanzen, wie Ölfruchtpflanzen, die große Mengen an Lipidverbindungen enthalten, wie Raps, Nachtkerze, Hanf, Diestel, Erdnuss, Canola, Lein, Soja, Saflor, Sonnenblume, Borretsch, oder Pflanzen, wie Mais, Weizen, Roggen, Hafer, Triticale, Reis, Gerste, Baumwolle, Maniok, Pfeffer, Tagetes, Solanaceen-Pflanzen, wie Kartoffel, Tabak, Aubergine und Tomate, Vicia-Arten, Erbse, Alfalfa, Buschpflanzen (Kaffee, Kakao, Tee), Salix-Arten, Bäume (Ölplame, Kokosnuss) sowie ausdauernde Gräser und Futterfeldfrüchte. Besonders bevorzugte erfindungsgemäße Pflanzen sind Ölfruchtpflanzen, wie Soja, Erdnuss, Raps, Canola, Lein, Hanf, Nachtkerze, Sonnenblume, Saflor, Bäume (Ölpalme, Kokosnuss).

25

30

35

40

Ein weiterer erfindungsgemäßer Gegenstand sind wie oben beschrieben isolierte Nukleinsäuresequenz, die für Polypeptide mit Δ-5-Elongase-Aktivität codieren, wobei die durch die Nukleinsäuresequenzen codierten Elongase C₁₆- und C₁₈- Fettsäuren mit einer Doppelbindung und vorteilhaft mehrfach ungesättigte C₁₈-Fettsäuren mit einer

 $\Delta 6$ -Doppelbindung und mehrfach ungesättigte C₂₀-Fettsäuren mit einer $\Delta 5$ -Doppelbindung umsetzt. C22-Fettsäuren werden nicht elongiert.

Vorteilhafte isolierte Nukleinsäuresequenzen sind Nukleinsäuresequenzen, die für Polypeptide mit Δ-5-Elongaseaktivität codieren und die eine Aminosäuresequenz enthalten ausgewählt aus der Gruppe einer Aminosäuresequenz mit der in SEQ ID NO: 115, SEQ ID NO: 116, SEQ ID NO: 139, SEQ ID NO: 140, SEQ ID NO: 141 oder SEQ ID NO: 142 dargestellten Sequenz.

Weitere vorteilhafte isolierte Nukleinsäuresequenzen sind Nukleinsäuresequenzen, die für Polypeptide mit Δ-5-Elongaseaktivität codieren und die eine Kombination der Aminosäuresequenzen enthalten ausgewählt aus der Gruppe:

SEQ ID NO: 115 und SEQ ID NO: 139, SEQ ID NO: 115 und SEQ ID NO: 140 a) oder SEQ ID NO: 139 und SEQ ID NO: 140; oder

10

25

30

- SEQ ID NO: 116 und SEQ ID NO: 141, SEQ ID NO: 116 und SEQ ID NO: 142 b) oder SEQ ID NO: 141 und SEQ ID NO: 142; oder
- SEQ ID NO: 115, SEQ ID NO: 139 und SEQ ID NO: 140 oder SEQ ID NO: 116, 15 SEQ ID NO: 141 und SEQ ID NO: 142.

Bevorzugte Nukleinsäuresequenzen, die für Polypeptide mit ∆-5-Elongaseaktivität codieren enthalten vorteilhaft die vorgenannten Aminosäuresequenzen. Diese werden in Tabelle 2 näher beschrieben.

- Besonders vorteilhafte isolierte Nukleinsäuresequenzen sind Sequenzen ausgewählt 20 aus der Gruppe:
 - einer Nukleinsäuresequenz mit der in SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 113, SEQ ID NO: 131 oder SEQ ID NO: 133 dargestellten Sequenz,
 - b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 114, SEQ ID NO: 132 oder SEQ ID NO: 134 dargestellten Aminosäuresequenz ableiten lassen, oder
 - c) Derivate der in SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 113, SEQ ID NO: 131 oder SEQ ID NO: 133 dargestellten Nuklein-35 säuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäu-

. 5

15

20

reebene mit SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 114, SEQ ID NO: 132 oder SEQ ID NO: 134 aufweisen und eine Δ -5-Elongaseaktivität aufweisen.

Weitere Erfindungsgegenstände sind die im folgenden aufgezählten Nukleinsäuresequenzen, die für Δ -6-Elongasen, ω -3-Desaturasen, Δ -6-Desaturasen, Δ -5-Desaturasen, Δ -4-Desaturasen oder Δ -12-Desaturasen codieren.

Weitere vorteilhafte isolierte Nukleinsäuresequenzen sind Sequenzen ausgewählt aus der Gruppe:

- einer Nukleinsäuresequenz mit der in SEQ ID NO: 69, SEQ ID NO: 81, SEQ ID NO: 111 oder SEQ ID NO: 183 dargestellten Sequenz,
- b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 70, SEQ ID NO: 82, SEQ ID NO: 112 oder SEQ ID NO: 184 dargestellten Aminosäuresequenz ableiten lassen, oder
- c) Derivate der in SEQ ID NO: 69, SEQ ID NO: 81, SEQ ID NO: 111 oder SEQ ID NO: 183 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 70, SEQ ID NO: 82, SEQ ID NO: 112 oder SEQ ID NO: 184 codieren und eine Δ-6-Elongaseaktivität aufweisen.

Isolierte Nukleinsäuresequenzen, die für Polypeptide mit ω -3-Desaturaseaktivität codieren, ausgewählt aus der Gruppe:

- a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 87 oder SEQ ID NO: 105
 25 dargestellten Sequenz,
 - b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 88 oder SEQ ID NO: 106 dargestellten Aminosäuresequenz ableiten lassen, oder
- c) Derivate der in SEQ ID NO: 87 oder SEQ ID NO: 105 dargestellten Nukleinsäure 30 sequenz, die für Polypeptide mit mindestens 60 % Identität auf Aminosäureebene mit SEQ ID NO: 88 oder SEQ ID NO: 106 aufweisen und eine ω-3 Desaturaseaktivität aufweisen.

Isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ -6-Desaturaseaktivität codieren, ausgewählt aus der Gruppe:

 a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 89 oder in SEQ ID NO: 97 dargestellten Sequenz,

- b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 90 oder SEQ ID NO: 98 dargestellten Aminosäuresequenz ableiten lassen, oder
- c) Derivate der in SEQ ID NO: 89 oder SEQ ID NO: 97 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 90 oder SEQ ID NO: 98 codieren und eine Δ-6-Desaturaseaktivität aufweisen.

Isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ -5-Desaturaseaktivität codieren, ausgewählt aus der Gruppe:

- a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID
 NO: 99 oder in SEQ ID NO: 101 dargestellten Sequenz,
 - b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 100 oder in SEQ ID NO: 102 dargestellten Aminosäuresequenz ableiten lassen, oder
- c) Derivate der in SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 99 oder in SEQ ID NO: 101 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 100 oder in SEQ ID NO: 102 codieren und eine Δ-5-Desaturaseaktivität aufweisen.
- 20 Isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ-4-Desaturaseaktivität codieren, ausgewählt aus der Gruppe:
 - einer Nukleinsäuresequenz mit der in SEQ ID NO: 95 oder in SEQ ID NO: 103 dargestellten Sequenz,
- b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen
 Codes von der in SEQ ID NO: 96 oder SEQ ID NO: 104 dargestellten Aminosäuresequenz ableiten lassen, oder
 - c) Derivate der in SEQ ID NO: 95 oder SEQ ID NO: 103 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 96 oder SEQ ID NO: 104 codieren und eine Δ-6-Desaturaseaktivität aufweisen.

lsolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ -12-Desaturaseaktivität codieren, ausgewählt aus der Gruppe:

30

 einer Nukleinsäuresequenz mit der in SEQ ID NO: 107 oder in SEQ ID NO: 109 dargestellten Sequenz,

- Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 108 oder SEQ ID NO: 110 dargestellten Aminosäuresequenz ableiten lassen, oder
- c) Derivate der in SEQ ID NO: 107 oder SEQ ID NO: 109 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 50 % Homologie auf Aminosäureebene mit SEQ ID NO: 108 oder SEQ ID NO: 110 codieren und eine Δ-12-Desaturaseaktivität aufweisen.

Die oben genannte erfindungsgemäßen Nukleinsäuren stammen von Organismen, wie nicht-humanen Tieren, Ciliaten, Pilzen, Pflanzen wie Algen oder Dinoflagellaten, die PUFAs synthetisieren können.

10

15

25

30

Vorteilhaft stammen die isolierten oben genannten Nukleinsäuresequenzen aus der Ordnung Salmoniformes, Xenopus oder Ciona, den Diatomeengattungen Thalassiosira oder Crythecodinium oder aus der Familie der Prasinophyceae wie der Gattung Ostreococcus oder der Familie Euglenaceae wie der Gattung Euglena oder Pythiaceae wie der Gattung Phytophtora stammt.

Ein weiterer erfindungsgemäßer Gegenstand sind wie oben beschrieben isolierte Nukleinsäuresequenz, die für Polypeptide mit ω -3-Desaturase-Aktivität codieren, wobei die durch die Nukleinsäuresequenzen codierten ω -3-Desaturasen C_{18} -, C_{20} - und C_{22} - Fettsäuren mit zwei, drei, vier oder fünf Doppelbindungen und vorteilhaft mehrfach ungesättigte C_{18} -Fettsäuren mit zwei oder drei Doppelbindungen und mehrfach ungesättigte C_{20} -Fettsäuren mit zwei, drei oder vier Doppelbindungen umsetzt. Auch C_{22} -Fettsäuren mit vier oder fünf Doppelbindungen werden desaturiert.

Zu den erfindungsgemäßen Gegenständen gehören außerdem, wie oben beschrieben, isolierte Nukleinsäuresequenz, die für Polypeptide mit Δ-12-Desaturasen, Δ-4-Desaturasen, Δ-5-Desaturasen und Δ-6-Desaturasen codieren, wobei die durch diese Nukleinsäuresequenzen codierten Δ-12-Desaturasen, Δ-4-Desaturasen, Δ-5-Desaturasen oder Δ-6-Desaturasen C₁₈-, C₂₀- und C₂₂-Fettsäuren mit ein, zwei, drei, vier oder fünf Doppelbindungen und vorteilhaft mehrfach ungesättigte C₁₈-Fettsäuren mit ein, zwei oder drei Doppelbindungen wie C18:1^{Δ9}, C18:2^{Δ9,12}oder C18:3 ^{Δ9,12,15}, mehrfach ungesättigte C₂₀-Fettsäuren mit drei oder vier Doppelbindungen wie C20:3^{Δ8,11,14} oder C20:4^{Δ8,11,14,17} oder mehrfach ungesättigte C₂₂-Fettsäuren mit vier oder fünf Doppelbindungen wie C22:4^{Δ7,10,13,16} oder C22:5^{Δ7,10,13,16,19} umsetzen. Vorteil-

haft werden die Fettsäuren in den Phospholipiden oder CoA-Fettsäureestern desatu-

Der Begriff "Nukleinsäure(molekül)", wie hier verwendet, umfasst in einer vorteilhaften Ausführungsform zudem die am 3'- und am 5'-Ende des kodierenden Genbereichs gelegene untranslatierte Sequenz: mindestens 500, bevorzugt 200, besonders bevorzugt 100 Nukleotide der Sequenz stromaufwärts des 5'-Endes des kodierenden Bereichs und mindestens 100, bevorzugt 50, besonders bevorzugt 20 Nukleotide der Sequenz stromabwärts des 3'-Endes des kodierenden Genbereichs. Ein "isoliertes"

riert, vorteilhaft in den CoA-Fettsäureester.

Nukleinsäuremolekül wird von anderen Nukleinsäuremolekülen abgetrennt, die in der natürlichen Quelle der Nukleinsäure vorliegen. Eine "isolierte" Nukleinsäure hat vorzugsweise keine Sequenzen, welche die Nukleinsäure in der genomischen DNA des Organismus, aus dem die Nukleinsäure stammt, natürlicherweise flankieren (z.B. Sequenzen, die sich an den 5'- und 3'-Enden der Nukleinsäure befinden). Bei verschiedenen Ausführungsformen kann das isolierte Δ -12-Desaturase-, ω -3-Desaturase-, Δ -9-Elongase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -6-Elongase-, Δ -5-Desaturase-, Δ -5-Elongase- oder Δ-4-Desaturasemolekül zum Beispiel weniger als etwa 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0,5 kb oder 0,1 kb an Nukleotidsequenzen enthalten, die natürlicherweise das Nukleinsäuremolekül in der genomischen DNA der Zelle, aus der die Nuklein-10 säure stammt flankieren.

Die im Verfahren verwendeten Nukleinsäuremoleküle, z.B. ein Nukleinsäuremolekül mit einer Nukleotidsequenz der SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, 15 SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, 20 SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 oder SEQ ID NO: 183 oder eines Teils -25 davon, kann unter Verwendung molekularbiologischer Standardtechniken und der hier bereitgestellten Sequenzinformation isoliert werden. Auch kann Mithilfe von Vergleichsalgorithmen beispielsweise eine homologe Sequenz oder homologe, konservierte Sequenzbereiche auf DNA oder Aminosäureebene identifiziert 30 werden. Diese können als Hybridisierungssonde sowie Standard-Hybridisierungstechniken (wie z.B. beschrieben in Sambrook et al., Molecular Cloning: A Laboratory Manual. 2. Aufl., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) zur Isolierung weiterer im Verfahren nützlicher Nukleinsäuresequenzen verwendet werden. Überdies lässt sich ein Nukleinsäuremolekül, umfassend eine vollständige Sequenz der SEQ ID NO: 1, SEQ ID NO: 35 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID 40 NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID

NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 oder SEQ ID NO: 183 oder einen Teil davon, durch Polymerasekettenreaktion isolieren, wobei Oligonukleotidprimer, die auf der Basis dieser Sequenz oder von Teilen davon, . 5 verwendet werden (z.B. kann ein Nukleinsäuremolekül, umfassend die vollständigen Sequenz oder einen Teil davon, durch Polymerasekettenreaktion unter Verwendung von Oligonukleotidprimern isoliert werden, die auf der Basis dieser gleichen Sequenz erstellt worden sind). Zum Beispiel lässt sich mRNA aus Zellen isolieren (z.B. durch das Guanidiniumthiocyanat-Extraktionsverfahren von Chirgwin et al. (1979) Bioche-10 mistry 18:5294-5299) und cDNA mittels Reverser Transkriptase (z.B. Moloney-MLV-Reverse-Transkriptase, erhältlich von Gibco/BRL, Bethesda, MD, oder AMV-Reverse-Transkriptase, erhältlich von Seikagaku America, Inc., St.Petersburg, FL) herstellen. Synthetische Oligonukleotidprimer zur Amplifizierung mittels Polymerasekettenreaktion lassen sich auf der Basis einer der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, 15 SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID 20 NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ 25 ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 oder SEQ ID NO: 183 gezeigten Sequenzen oder Mithilfe der in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, 30 SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, 35 SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID NO: 110, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 118, SEQ ID NO: 120, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID NO: 138 oder SEQ ID NO: 184 dargestellten 40 Aminosäuresequenzen erstellen. Eine erfindungsgemäße Nukleinsäure kann unter Verwendung von cDNA oder alternativ von genomischer DNA als Matrize und geeigneten Oligonukleotidprimern gemäß Standard-PCR-Amplifikationstechniken amplifiziert werden. Die so amplifizierte Nukleinsäure kann in einen geeigneten Vektor kloniert werden und mittels DNA-Sequenzanalyse charakterisiert werden. Oligonukleotide, die 45

einer Desaturase-Nukleotidsequenz entsprechen, können durch Standard-Syntheseverfahren, beispielsweise mit einem automatischen DNA-Synthesegerät, hergestellt werden.

Homologe der verwendeten Δ -12-Desaturase-, ω -3-Desaturase-, Δ -9-Elongase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -6-Elongase-, Δ -5-Desaturase-, Δ -5-Elongase- oder Δ-4-Desaturase-Nukleinsäuresequenzen mit der Sequenz SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID 10 NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ 15 ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 oder SEQ ID NO: 183 bedeutet beispielsweise allelische Varianten mit mindestens etwa 50 oder 60 %, vorzugsweise mindestens etwa 60 oder 70 %, stärker bevorzugt mindestens etwa 70 oder 80 %, 90 % oder 95 % und noch stärker bevorzugt mindestens etwa 85 20 %, 86 %, 87 %, 88 %, 89 %, 90 %, 91 %, 92 %, 93 %, 94 %, 95 %, 96 %, 97 %, 98 %, 99 % oder mehr Identität bzw. Homologie zu einer in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID 25 NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID 30 NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111; SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 oder SEQ ID NO: 183 gezeigten Nukleotidsequenzen oder ihren Homologen, Derivaten oder 35 Analoga oder Teilen davon. Weiterhin sind isolierte Nukleinsäuremoleküle einer Nukleotidsequenz, die an eine der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID 40 NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID

NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, 5 SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 oder SEQ ID NO: 183 gezeigten Nukleotidsequenzen oder einen Teil davon hybridisieren, z.B. unter stringenten Bedingungen hybridisiert. Unter einem Teil gemäß der Erfindung ist dabei zu verstehen, dass mindestens 25 Basenpaare (= bp), 50 bp, 75 bp, 100 bp, 125 bp oder 150 bp, bevorzugt mindestens 175 bp, 200 bp, 225 bp, 250 bp, 275 bp oder 300 bp, 10 besonders bevorzugt 350 bp, 400 bp, 450 bp, 500 bp oder mehr Basenpaare für die Hybridisierung verwendet werden. Es kann auch vorteilhaft die Gesamtsequenz verwendet werden. Allelische Varianten umfassen insbesondere funktionelle Varianten, die sich durch Deletion, Insertion oder Substitution von Nukleotiden aus/in der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, 15 SEQ ID NO: 13, SEQ.ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, 20 SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 25 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 oder SEQ ID NO: 183 dargestellten Sequenz erhalten lassen, wobei aber die Absicht ist, dass die Enzymaktivität der davon herrührenden synthetisierten Proteine für die Insertion eines oder mehrerer Gene vorteilhafterweise beibehalten wird. Proteine, die noch die enzymatische Aktivität der Δ-12-Desaturase, ω-3-30 Desaturase, Δ -9-Elongase, Δ -6-Desaturase, Δ -8-Desaturase, Δ -6-Elongase, Δ -5-Desaturase, Δ -5-Elongase oder Δ -4-Desaturase besitzen, das heißt deren Aktivität im wesentlichen nicht reduziert ist, bedeutet Proteine mit mindestens 10 %, vorzugsweise 20 %, besonders bevorzugt 30 %, ganz besonders bevorzugt 40 % der ursprünglichen Enzymaktivität, verglichen mit dem durch SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, 35 SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID 40 NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ 45

ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 oder SEQ ID NO: 183 kodierten Protein. Die Homologie wurde über den gesamten Aminosäure- bzw. Nukleinsäurese- quenzbereich berechnet. Für das Vergleichen verschiedener Sequenzen stehen dem Fachmann eine Reihe von Programmen, die auf verschiedenen Algorithmen beruhen zur Verfügung. Dabei liefern die Algorithmen von Needleman und Wunsch oder Smith und Waterman besonders zuverlässige Ergebnisse. Für die Sequenzvergleiche wurde das Programm PileUp verwendet (J. Mol. Evolution., 25, 351-360, 1987, Higgins et al., CABIOS, 5 1989: 151-153) oder die Programme Gap und BestFit [Needleman and Wunsch (J. Mol. Biol. 48; 443-453 (1970) und Smith and Waterman (Adv. Appl. Math. 2; 482-489 (1981)], die im GCG Software-Packet [Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711 (1991)] enthalten sind. Die oben in Prozent angegebenen Sequenzhomologiewerte wurden mit dem Programm GAP über den gesamten Sequenzbereich mit folgenden Einstellungen ermittelt: Gap Weight: 50, Length Weight: 3, Average Match: 10.000 und Average Mismatch: 0.000. Die falls nicht anders angegeben als Standardeinstellungen immer für Sequenzvergleiche verwendet 15 wurden.

Homologen der SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, 20 SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, 25 SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 oder SEQ ID NO: 183 bedeuten beispielsweise auch bakterielle, Pilz- und Pflanzenhomologen, verkürzte Sequenzen, einzelsträngige DNA 30 oder RNA der kodierenden und nicht-kodierenden DNA-Sequenz.

Homologen der SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 29, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO:

40

113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 oder SEQ ID NO: 183 bedeutet auch Derivate, wie beispielsweise Promotorvarianten. Die Promotoren stromaufwärts der angegebenen Nukleotidsequenzen können durch einen oder mehrere Nukleotidaustausche, durch Insertion(en) und/oder Deletion(en) modifiziert werden, ohne dass jedoch die Funktionalität oder Aktivität der Promotoren gestört wird. Es ist weiterhin möglich, dass die Aktivität der Promotoren durch Modifikation ihrer Sequenz erhöht ist oder dass sie vollständig durch aktivere Promotoren, sogar aus heterologen Organismen, ersetzt werden.

Die vorgenannten Nukleinsäuren und Proteinmoleküle mit Δ -12-Desaturase-, ω -3-10 Desaturase-, Δ -9-Elongase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -6-Elongase-, Δ -5-Desaturase-, Δ-5-Elongase- und/oder Δ-4-Desaturase-Aktivität, die am Stoffwechsel von Lipiden und Fettsäuren, PUFA-Cofaktoren und Enzymen oder am Transport lipophiler Verbindungen über Membranen beteiligt sind, werden im erfindungsgemäßen Verfahren zur Modulation der Produktion von PUFAs in transgenen Organismen 15 vorteilhaft in Pflanzen, wie Mais, Weizen, Roggen, Hafer, Triticale, Reis, Gerste, Sojabohne, Erdnuss, Baumwolle, Linum Arten wie Öl- oder Faserlein, Brassica-Arten, wie Raps, Canola und Rübsen, Pfeffer, Sonnenblume, Borretsch, Nachtkerze und Tagetes, Solanacaen-Pflanzen, wie Kartoffel, Tabak, Aubergine und Tomate, Vicia-Arten, Erbse, Maniok, Alfalfa, Buschpflanzen (Kaffee, Kakao, Tee), Salix-Arten, Bäume 20 (Ölpalme, Kokosnuss) und ausdauernden Gräsern und Futterfeldfrüchten, entweder direkt (z.B. wenn die Überexpression oder Optimierung eines Fettsäurebiosynthese-Proteins einen direkten Einfluss auf die Ausbeute, Produktion und/oder Effizienz der Produktion der Fettsäure aus modifizierten Organismen hat) verwendet und/oder können eine indirekt Auswirkung haben, die dennoch zu einer Steigerung der Ausbeu-25 te, Produktion und/oder Effizienz der Produktion der PUFAs oder einer Abnahme unerwünschter Verbindungen führt (z.B. wenn die Modulation des Stoffwechsels von Lipiden und Fettsäuren, Cofaktoren und Enzymen zu Veränderungen der Ausbeute, Produktion und/oder Effizienz der Produktion oder der Zusammensetzung der gewünschten Verbindungen innerhalb der Zellen führt, was wiederum die Produktion 30 einer oder mehrerer Fettsäuren beeinflussen kann).

Die Kombination verschiedener Vorläufermoleküle und Biosyntheseenzyme führt zur Herstellung verschiedener Fettsäuremoleküle, was eine entscheidende Auswirkung auf die Zusammensetzung der Lipide hat. Da mehrfach ungesättigte Fettsäuren (= PUFAs) nicht nur einfach in Triacylglycerin sondern auch in Membranlipide eingebaut werden.

Besonders zur Herstellung von PUFAs, beispielsweise Stearidonsäure, Eicosapentaensäure und Docosahexaensäure eignen sich Brasicaceae, Boraginaceen, Primulaceen, oder Linaceen. Besonders vorteilhaft eignet sich Lein (Linum usitatissimum) zur Herstellung von PUFAS mit dem erfindungsgemäßen Nukleinsäuresequenzen vorteilhaft, wie beschrieben, in Kombination mit weiteren Desaturasen und Elongasen.

10

Die Lipidsynthese lässt sich in zwei Abschnitte unterteilen: die Synthese von Fettsäuren und ihre Bindung an sn-Glycerin-3-Phosphat sowie die Addition oder Modifikation einer polaren Kopfgruppe. Übliche Lipide, die in Membranen verwendet werden, umfassen Phospholipide, Glycolipide, Sphingolipide und Phosphoglyceride. Die Fettsäuresynthese beginnt mit der Umwandlung von Acetyl-CoA in Malonyl-CoA durch die Acetyl-CoA-Carboxylase oder in Acetyl-ACP durch die Acetyltransacylase. Nach einer Kondensationsreaktion bilden diese beiden Produktmoleküle zusammen Acetoacetyl-ACP, das über eine Reihe von Kondensations-, Reduktions- und Dehydratisierungsreaktionen umgewandelt wird, so dass ein gesättigtes Fettsäuremolekül mit der gewünschten Kettenlänge erhalten wird. Die Produktion der ungesättigten Fettsäuren aus diesen Molekülen wird durch spezifische Desaturasen katalysiert, und zwar entweder aerob mittels molekularem Sauerstoff oder anaerob (bezüglich der Fettsäuresynthese in Mikroorganismen siehe F.C. Neidhardt et al. (1996) E. coli und Salmonella. ASM Press: Washington, D.C., S. 612-636 und darin enthaltene Literaturstellen; Lengeler et al. (Hrsgb.) (1999) Biology of Procaryotes. Thieme: Stuttgart, New 15 York, und die enthaltene Literaturstellen, sowie Magnuson, K., et al. (1993) Microbiological Reviews 57:522-542 und die enthaltenen Literaturstellen). Die so hergestellten an Phospholipide gebundenen Fettsäuren müssen anschließend wieder für die weitere Elongationen aus den Phospholipiden in den FettsäureCoA-Ester-Pool überführt werden. Dies ermöglichen Acyl-CoA:Lysophospholipid-Acyltransferasen. Weiterhin können diese Enzyme die elongierten Fettsäuren wieder von den CoA-Estern auf die 20 Phospholipide übertragen. Diese Reaktionsabfolge kann gegebenenfalls mehrfach durchlaufen werden.

Vorläufer für die PUFA-Biosynthese sind beispielsweise Ölsäure, Linol- und Linolensäure. Diese C_{18} -Kohlenstoff-Fettsäuren müssen auf C_{20} und C_{22} verlängert werden, damit Fettsäuren vom Eicosa- und Docosa-Kettentyp erhalten werden. Mithilfe der im 25 Verfahren verwendeten Desaturasen wie der Δ -12-, ω 3-, Δ -4-, Δ -5-, Δ -6- und Δ -8-Desaturasen und/oder der Δ -5-, Δ -6-, Δ -9-Elongasen können Arachidonsäure, Eicosapentaensäure, Docosapentaensäure oder Docosahexaensäure vorteilhaft Eicosapentaensäure und/oder Docosahexaensäure hergestellt werden und anschlie-30 ßend für verschiedene Zwecke bei Nahrungsmittel-, Futter-, Kosmetik- oder pharmazeutischen Anwendungen verwendet werden. Mit den genannten Enzymen können C_{20} - und/oder C_{22} -Fettsäuren mit mindestens zwei vorteilhaft mindestens drei, vier, fünf oder sechs Doppelbindungen im Fettsäuremolekül, vorzugsweise C20- oder C22-Fettsäuren mit vorteilhaft vier, fünf oder sechs Doppelbindungen im Fettsäuremolekül hergestellt werden. Die Desaturierung kann vor oder nach Elongation der entspre-35 chenden Fettsäure erfolgen. Daher führen die Produkte der Desaturaseaktivitäten und der möglichen weiteren Desaturierung und Elongation zu bevorzugten PUFAs mit höherem Desaturierungsgrad, einschließlich einer weiteren Elongation von C_{20} zu C_{22} -Fettsäuren, zu Fettsäuren wie y-Linolensäure, Dihomo-y-linolensäure, Arachidonsäure, 40 Stearidonsäure, Eicosatetraensäure oder Eicosapentaensäure. Substrate der verwendeten Desaturasen und Elongasen im erfindungsgemäßen Verfahren sind C_{16} -, C_{18} oder C_{20} -Fettsäuren wie zum Beispiel Linolsäure, γ -Linolensäure, α -Linolensäure, Dihomo-γ-linolensäure, Eicosatetraensäure oder Stearidonsäure. Bevorzugte Sub-

10

15

20

strate sind Linolsäure, γ -Linolensäure und/oder α -Linolensäure, Dihomo- γ -linolensäure bzw. Arachidonsäure, Eicosatetraensäure oder Eicosapentaensäure. Die synthetisierten C_{20} - oder C_{22} -Fettsäuren mit mindestens zwei, drei, vier, fünf oder sechs Doppelbindungen in der Fettsäure fallen im erfindungsgemäßen Verfahren in Form der freien Fettsäure oder in Form ihrer Ester beispielsweise in Form ihrer Glyceride an.

Unter dem Begriff "Glycerid" wird ein mit ein, zwei oder drei Carbonsäureresten verestertes Glycerin verstanden (Mono-, Di- oder Triglycerid). Unter "Glycerid" wird auch ein Gemisch an verschiedenen Glyceriden verstanden. Das Glycerid oder das Glyceridgemisch kann weitere Zusätze, z.B. freie Fettsäuren, Antioxidantien, Proteine, Kohlenhydrate, Vitamine und/oder andere Substanzen enthalten.

Unter einem "Glycerid" im Sinne des erfindungsgemäßen Verfahrens werden ferner vom Glycerin abgeleitete Derivate verstanden. Dazu zählen neben den oben beschriebenen Fettsäureglyceriden auch Glycerophospholipide und Glyceroglycolipide. Bevorzugt seien hier die Glycerophospholipide wie Lecithin (Phosphatidylcholin), Cardiolipin, Phosphatidylglycerin, Phosphatidylserin und Alkylacylglycerophospholipide beispielhaft genannt.

Ferner müssen Fettsäuren anschließend an verschiedene Modifikationsorte transportiert und in das Triacylglycerin-Speicherlipid eingebaut werden. Ein weiterer wichtiger Schritt bei der Lipidsynthese ist der Transfer von Fettsäuren auf die polaren Kopfgruppen, beispielsweise durch Glycerin-Fettsäure-Acyltransferase (siehe Frentzen, 1998, Lipid, 100(4-5):161-166).

Veröffentlichungen über die Pflanzen-Fettsäurebiosynthese, Desaturierung, den Lipidstoffwechsel und Membrantransport von fetthaltigen Verbindungen, die Betaoxidation, Fettsäuremodifikation und Cofaktoren, Triacylglycerin-Speicherung und -Assemblierung einschließlich der Literaturstellen darin siehe in den folgenden Artikeln: Kinney, 1997, Genetic Engeneering, Hrsgb.: JK Setlow, 19:149-166; Ohlrogge und Browse, 1995, Plant Cell 7:957-970; Shanklin und Cahoon, 1998, Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:611-641; Voelker, 1996, Genetic Engeneering, Hrsgb.: JK Setlow, 18:111-13; Gerhardt, 1992, Prog. Lipid R. 31:397-417; Gühnemann-Schäfer & Kindl, 1995, Biochim. Biophys Acta 1256:181-186; Kunau et al., 1995, Prog. Lipid Res. 34:267-342; Stymne et al., 1993, in: Biochemistry and Molecular Biology of Membrane and Storage Lipids of Plants, Hrsgb.: Murata und Somerville, Rockville, American Society of Plant Physiologists, 150-158, Murphy & Ross 1998, Plant Journal. 13(1):1-16.

Die im Verfahren hergestellten PUFAs, umfassen eine Gruppe von Molekülen, die höhere Tiere nicht mehr synthetisieren können und somit aufnehmen müssen oder die höhere Tiere nicht mehr ausreichend selbst herstellen können und somit zusätzlich aufnehmen müssen, obwohl sie leicht von anderen Organismen, wie Bakterien, synthetisiert werden, beispielsweise können Katzen Arachidonsäure nicht mehr synthetisieren.

15

20

35

40

Unter Phospholipiden im Sinne der Erfindung sind zu verstehen Phosphatidylcholin, Phosphatidylethanolamin, Phosphatidylserin, Phosphatidylglycerin und/oder Phosphatidylinositol vorteilhafterweise Phosphatidylcholin. Die Begriffe Produktion oder Produktivität sind im Fachgebiet bekannt und beinhalten die Konzentration des Fermentationsproduktes (Verbindungen der Formel I), das in einer bestimmten Zeitspanne und einem bestimmten Fermentationsvolumen gebildet wird (z.B. kg Produkt pro Stunde pro Liter). Es umfasst auch die Produktivität innerhalb einer Pflanzenzelle oder einer Pflanze, das heißt den Gehalt an den gewünschten im Verfahren hergestellten Fettsäuren bezogen auf den Gehalt an allen Fettsäuren in dieser Zelle oder Pflanze. Der Begriff Effizienz der Produktion umfasst die Zeit, die zur Erzielung einer bestimmten Produktionsmenge nötig ist (z.B. wie lange die Zelle zur Aufrichtung einer bestimmten Durchsatzrate einer Feinchemikalie benötigt). Der Begriff Ausbeute oder Produkt/Kohlenstoff-Ausbeute ist im Fachgebiet bekannt und umfasst die Effizienz der Umwandlung der Kohlenstoffquelle in das Produkt (d.h. die Feinchemikalie). Dies wird gewöhnlich beispielsweise ausgedrückt als kg Produkt pro kg Kohlenstoffquelle. Durch Erhöhen der Ausbeute oder Produktion der Verbindung wird die Menge der gewonnenen Moleküle oder der geeigneten gewonnenen Moleküle dieser Verbindung in einer bestimmten Kulturmenge über einen festgelegten Zeitraum erhöht. Die Begriffe Biosynthese oder Biosyntheseweg sind im Fachgebiet bekannt und umfassen die Synthese einer Verbindung, vorzugsweise einer organischen Verbindung, durch eine Zelle aus Zwischenverbindungen, beispielsweise in einem Mehrschritt- und stark regulierten Prozess. Die Begriffe Abbau oder Abbauweg sind im Fachgebiet bekannt und umfassen die Spaltung einer Verbindung, vorzugsweise einer organischen Verbindung, durch eine Zelle in Abbauprodukte (allgemeiner gesagt, kleinere oder weniger komplexe Moleküle) beispielsweise in einem Mehrschritt- und stark regulierten Prozess. Der Begriff Stoffwechsel ist im Fachgebiet bekannt und 25 umfasst die Gesamtheit der biochemischen Reaktionen, die in einem Organismus stattfinden. Der Stoffwechsel einer bestimmten Verbindung (z.B. der Stoffwechsel einer Fettsäure) umfasst dann die Gesamtheit der Biosynthese-, Modifikations- und Abbauwege dieser Verbindung in der Zelle, die diese Verbindung betreffen. 30

Bei einer weiteren Ausführungsform kodieren Derivate des erfindungsgemäßen Nukleinsäuremoleküls wieder gegeben in SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 131, SEQ ID NO: 133 oder SEQ ID NO: 183 Proteine mit mindestens 40 %, vorteilhaft etwa 50 oder 60 %, vorzugsweise mindestens etwa 60 oder 70 % und stärker bevorzugt mindestens etwa 70 oder 80 %, 80 bis 90 %, 90 bis 95 % und am stärksten bevorzugt mindestens etwa 96 %, 97 %, 98 %, 99 % oder mehr Homologie (= Identität) zu einer vollständigen Aminosäuresequenz der SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID

10

15

wurden.

NO: 68, SEQ ID NO: 70, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID NO: 110, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 132, SEQ ID NO: 134 oder SEQ ID NO: 184. Die Homologie wurde über den gesamten Aminosäure- bzw. Nukleinsäuresequenzbereich berechnet. Für die Sequenzvergleiche wurde das Programm PileUp verwendet (J. Mol. Evolution., 25, 351-360, 1987, Higgins et al., CABIOS, 5 1989: 151-153) oder die Programme Gap und BestFit [Needleman and Wunsch (J. Mol. Biol. 48; 443-453 (1970) und Smith and Waterman (Adv. Appl. Math. 2; 482-489 (1981)], die im GCG Software-Packet [Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711 (1991)] enthalten sind. Die oben in Prozent angegebenen Sequenzhomologiewerte wurden mit dem Programm BestFit über den gesamten Sequenzbereich mit folgenden Einstellungen ermittelt: Gap Weight: 50, Length Weight: 3, Average Match: 10.000 und Average Mismatch: 0.000. Die falls nicht anders angegeben als Standardeinstellungen immer für Sequenzvergleiche verwendet

Die Erfindung umfasst zudem Nukleinsäuremoleküle, die sich von einer der in SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID 20 NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 131, SEQ ID NO: 133 oder SEQ ID NO: 183 gezeigten Nukleotidsequenzen 25 (und Teilen davon) aufgrund des degenerierten genetischen Codes unterscheiden und somit die gleiche Δ -12-Desaturase, ω -3-Desaturase, Δ -6-Desaturase, Δ -5-Desaturase, Δ -4-Desaturase, Δ -6-Elongase oder Δ -5-Elongase codieren wie diejenige, die von den in SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, 30 SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 1.05, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 113, SEQ ID NO: 131, SEQ ID NO: 133 oder SEQ ID NO: 183 gezeigten Nukleotidsequenzen kodiert 35 wird.

Zusätzlich zu den in SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 113, SEQ ID NO: 131, SEQ ID NO: 133 oder SEQ ID NO: 183 gezeigten Δ-12-

Desaturasen, ω -3-Desaturasen, Δ -5-Elongasen, Δ -6-Desaturasen, Δ -5-Desaturasen, Δ -4-Desaturasen oder Δ -6-Elongasen erkennt der Fachmann, dass DNA-Sequenzpolymorphismen, die zu Änderungen in den Aminosäuresequenzen der Δ-12-Desaturase, ω -3-Desaturase, Δ -5-Elongase, Δ -6-Desaturase, Δ -5-Desaturase, Δ -4-Desaturase und/oder Δ -6-Elongase führen, innerhalb einer Population existieren können. Diese genetischen Polymorphismen im Δ -12-Desaturase-, $\dot{\omega}$ -3-Desaturase-, Δ -5-Elongase-, Δ -6-Desaturase-, Δ -5-Desaturase-, Δ -4-Desaturase- und/oder Δ -6-Elongase-Gen können zwischen Individuen innerhalb einer Population aufgrund von natürlicher Variation existieren. Diese natürlichen Varianten bewirken üblicherweise eine Varianz von 1 bis 5 % in der Nukleotidsequenz des Δ -12-Desaturase-, ω -3-Desaturase-, Δ -5-Elongase-, Δ -6-Desaturase-, Δ -5-Desaturase-, Δ -4-Desaturase-10 und/oder Δ -6-Elongase-Gens. Sämtliche und alle dieser Nukleotidvariationen und daraus resultierende Aminosäurepolymorphismen in der Δ -12-Desaturase, ω -3-Desaturase, Δ -5-Elongase, Δ -6-Desaturase, Δ -5-Desaturase, Δ -4-Desaturase und/oder Δ -6-Elongase, die das Ergebnis natürlicher Variation sind und die funktionelle Aktivität von nicht verändern, sollen im Umfang der Erfindung enthalten sein. 15

Für das erfindungsgemäße Verfahren vorteilhafte Nukleinsäuremoleküle können auf der Grundlage ihrer Homologie zu den hier offenbarten Δ -12-Desaturase-, ω -3-Desaturase-, Δ -5-Elongase-, Δ -6-Desaturase-, Δ -5-Desaturase-, Δ -4-Desaturaseund/oder Δ -6-Elongase-Nukleinsäuren unter Verwendung der Sequenzen oder eines Teils davon als Hybridisierungssonde gemäß Standard-Hybridisierungstechniken unter 20 stringenten Hybridisierungsbedingungen isoliert werden. Dabei können beispielsweise isolierte Nukleinsäuremoleküle verwendet werden, die mindestens 15 Nukleotide lang sind und unter stringenten Bedingungen mit dem Nukleinsäuremolekülen, die eine Nukleotidsequenz der SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, 25 SEQ ID NO: 69, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 113, SEQ ID NO: 131, SEQ ID NO: 133 oder SEQ ID NO: 183 umfassen, hybridisieren. 30 Es können auch Nukleinsäuren mindestens 25, 50, 100, 250 oder mehr Nukleotide verwendet werden. Der Begriff "hybridisiert unter stringenten Bedingungen", wie hier verwendet, soll Hybridisierungs- und Waschbedingungen beschreiben, unter denen Nukleotidsequenzen, die mindestens 60 % homolog zueinander sind, gewöhnlich aneinander hybridisiert bleiben. Die Bedingungen sind vorzugsweise derart, dass 35 Sequenzen, die mindestens etwa 65 %, stärker bevorzugt mindestens etwa 70 % und noch stärker bevorzugt mindestens etwa 75 % oder stärker zueinander homolog sind, gewöhnlich aneinander hybridisiert bleiben. Diese stringenten Bedingungen sind dem Fachmann bekannt und lassen sich in Current Protocols in Molecular Biology, John Wiley & Sons, N. Y. (1989), 6.3.1-6.3.6., finden. Ein bevorzugtes, nicht einschränken-40 des Beispiel für stringente Hybridisierungsbedingungen sind Hybridisierungen in 6 x Natriumchlorid/Natriumcitrat (sodium chloride/sodiumcitrate = SSC) bei etwa 45°C, gefolgt von einem oder mehreren Waschschritten in 0,2 x SSC, 0,1 % SDS bei 50 bis

65°C. Dem Fachmann ist bekannt, dass diese Hybridisierungsbedingungen sich je nach dem Typ der Nukleinsäure und, wenn beispielsweise organische Lösungsmittel vorliegen, hinsichtlich der Temperatur und der Konzentration des Puffers unterscheiden. Die Temperatur unterscheidet sich beispielsweise unter "Standard-

den. Die Temperatur unterscheidet sich beispielsweise unter "StandardHybridisierungsbedingungen" je nach dem Typ der Nukleinsäure zwischen 42°C und
58°C in wässrigem Puffer mit einer Konzentration von 0,1 bis 5 x SSC (pH 7,2). Falls
organisches Lösungsmittel im obengenannten Puffer vorliegt, zum Beispiel 50 %
Formamid, ist die Temperatur unter Standardbedingungen etwa 42°C. Vorzugsweise
sind die Hybridisierungsbedingungen für DNA:DNA-Hybride zum Beispiel 0,1 x SSC
und 20°C bis 45°C, vorzugsweise zwischen 30°C und 45°C. Vorzugsweise sind die
Hybridisierungsbedingungen für DNA:RNA-Hybride zum Beispiel 0,1 x SSC und 30°C
bis 55°C, vorzugsweise zwischen 45°C und 55°C. Die vorstehend genannten Hybridisierungstemperaturen sind beispielsweise für eine Nukleinsäure mit etwa 100 bp (=
Basenpaare) Länge und einem G + C-Gehalt von 50 % in Abwesenheit von Formamid
bestimmt. Der Fachmann weiß, wie die erforderlichen Hybridisierungsbedingungen
anhand von Lehrbüchern, wie dem vorstehend erwähnten oder aus den folgenden
Lehrbüchern Sambrook et al., "Molecular Cloning", Cold Spring Harbor Laboratory,

10

15

Approach", IRL Press at Oxford University Press, Oxford; Brown (Hrsgb.) 1991,
20 "Essential Molecular Biology: A Practical Approach", IRL Press at Oxford University
Press, Oxford, bestimmt werden können.

1989; Hames und Higgins (Hrsgb.) 1985, "Nucleic Acids Hybridization: A Practical

Zur Bestimmung der prozentualen Homologie (= Identität) von zwei Aminosäuresequenzen (z.B. einer der Sequenzen der SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, 25 SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID NO: 110, SEQ ID NO: 114, SEQ ID NO: 132, SEQ ID NO: 134 oder SEQ ID NO: 184) oder von zwei Nukleinsäuren (z.B. SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, 30 SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79; SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 35 109, SEQ ID NO: 113, SEQ ID NO: 131, SEQ ID NO: 133 oder SEQ ID NO: 183) werden die Sequenzen zum Zweck des optimalen Vergleichs untereinander geschrieben (z.B. können Lücken in die Sequenz eines Proteins oder einer Nukleinsäure eingefügt werden, um ein optimales Alignment mit dem anderen Protein oder der anderen Nukleinsäure zu erzeugen). Die Aminosäurereste oder Nukleotide an den entsprechenden Aminosäurepositionen oder Nukleotidpositionen werden dann verglichen. Wenn eine Position in einer Sequenz durch den gleichen Aminosäurerest oder das gleiche Nukleotid wie die entsprechende Stelle in der anderen Sequenz belegt wird, dann sind die Moleküle an dieser Position homolog (d.h. Aminosäure- oder

Nukleinsäure-"Homologie", wie hier verwendet, entspricht Aminosäure- oder Nukleinsäure-"Identität"). Die prozentuale Homologie zwischen den beiden Sequenzen ist eine Funktion der Anzahl an identischen Positionen, die den Sequenzen gemeinsam sind (d.h. % Homologie = Anzahl der identischen Positionen/Gesamtanzahl der Positionen x 100). Die Begriffe Homologie und Identität sind damit als Synonym anzusehen. Die verwendeten Programme bzw. Algorithmen sind oben beschrieben.

Ein isoliertes Nukleinsäuremolekül, das für eine Δ -12-Desaturase, ω -3-Desaturase, Δ -6-Desaturase, Δ -5-Desaturase, Δ -4-Desaturase, Δ -5-Elongase und/oder Δ -6-Elongase kodiert, die zu einer Proteinsequenz der SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, 10 SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID NO: 110, SEQ ID NO: 114, SEQ ID NO: 132, SEQ ID NO: 134 oder SEQ ID NO: 184 homolog ist, kann durch Einbringen einer oder mehrerer Nukleotidsubstitutionen, -15 additionen oder -deletionen in eine Nukleotidsequenz der SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, 20 SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 113, SEQ ID NO: 131, SEQ ID NO: 133 oder SEQ ID NO: 183 erzeugt werden, so dass eine oder mehrere Aminosäuresubstitutionen, additionen oder -deletionen in das kodierte Protein eingebracht werden. Mutationen können in eine der Sequenzen der SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, 25 SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 30 109, SEQ ID NO: 113, SEQ ID NO: 131, SEQ ID NO: 133 oder SEQ ID NO: 183 durch Standardtechniken, wie stellenspezifische Mutagenese und PCR-vermittelte Mutagenese, eingebracht werden. Vorzugsweise werden konservative Aminosäuresubstitutionen an einer oder mehreren der vorhergesagten nicht-essentiellen Aminosäureresten hergestellt. Bei einer "konservativen Aminosäuresubstitution" wird der Aminosäurerest 35 gegen einen Aminosäurerest mit einer ähnlichen Seitenkette ausgetauscht. Im Fachgebiet sind Familien von Aminosäureresten mit ähnlichen Seitenketten definiert worden. Diese Familien umfassen Aminosäuren mit basischen Seitenketten (z.B. Lysin, Arginin, Histidin), sauren Seitenketten (z.B. Asparaginsäure, Glutaminsäure), ungeladenen polaren Seitenketten (z.B. Glycin, Asparagin, Glutamin, Serin, Threonin, 40 Tyrosin, Cystein), unpolaren Seitenketten, (z.B. Alanin, Valin, Leucin, Isoleucin, Prolin, Phenylalanin, Methionin, Tryptophan), beta-verzweigten Seitenketten (z.B. Threonin, Valin, Isoleucin) und aromatischen Seitenketten (z.B. Tyrosin, Phenylalanin, Tryp-

tophan, Histidin). Ein vorhergesagter nicht-essentieller Aminosäurerest in einer Δ -12-Desaturase, ω -3-Desaturase, Δ -6-Desaturase, Δ -5-Desaturase, Δ -4-Desaturase, Δ -5-Desaturase, Δ -6-Desaturase, Δ -7-Desaturase, Δ -8-Desaturase, Δ -9-Desaturase, Δ -9-Desaturase, Elongase oder Δ-6-Elongase wird somit vorzugsweise durch einen anderen Aminosäurerest aus der gleichen Seitenkettenfamilie ausgetauscht. Alternativ können bei einer anderen Ausführungsform die Mutationen zufallsgemäß über die gesamte oder einen Teil der Δ -12-Desaturase, ω -3-Desaturase, Δ -6-Desaturase, Δ -5-Desaturase, Δ -4-Desaturase, Δ -5-Elongase oder Δ -6-Elongase kodierenden Sequenz eingebracht werden, z.B. durch Sättigungsmutagenese, und die resultierenden Mutanten können nach der hier beschriebenen Δ -12-Desaturase-, ω -3-Desaturase-, Δ -6-Desaturase-, Δ -5-Desaturase-, Δ-4-Desaturase-, Δ-5-Elongase- oder Δ-6-Elongase--Aktivität durch-10 mustert werden, um Mutanten zu identifizieren, die die Δ-12-Desaturase-, ω-3-Desaturase-, Δ -6-Desaturase-, Δ -5-Desaturase-, Δ -4-Desaturase-, Δ -5-Elongase- oder Δ-6-Elongase-Aktivität beibehalten haben. Nach der Mutagenese einer der Sequenzen SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59. SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, 15 SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 113, SEQ ID NO: 131, SEQ ID NO: 133 oder SEQ ID NO: 183 kann das kodierte Protein rekombinant 20 exprimiert werden, und die Aktivität des Proteins kann z.B. unter Verwendung der hier beschriebenen Tests bestimmt werden.

Weitere Erfindungsgegenstände sind transgene nicht-humane Organismen, die die erfindungsgemäßen Nukleinsäuren SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47,
25 SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 113, SEQ ID NO: 131, SEQ ID NO: 133 oder SEQ ID NO: 183 enthalten oder ein Genkonstrukt oder einen Vektor, die diese erfindungsgemäßen Nukleinsäuresequenzen enthalten. Vorteilhaft handelt es sich bei dem nicht-humanen Organismus um einen Mikroorganismus, ein nicht-humanes Tier oder eine Pflanze, besonders bevorzugt um eine Pflanze.

Diese Erfindung wird durch die nachstehenden Beispiele weiter veranschaulicht, die nicht als beschränkend aufgefasst werden sollten. Der Inhalt sämtlicher in dieser Patentanmeldung zitierten Literaturstellen, Patentanmeldungen, Patente und veröffentlichten Patentanmeldungen ist hier durch Bezugnahme aufgenommen.

Beispiele

Beispiel 1: Allgemeine Klonierungsverfahren:

Die Klonierungsverfahren wie z.B. Restriktionsspaltungen, Agarose-Gelelektrophorese, Reinigung von DNA-Fragmenten, Transfer von Nukleinsäuren auf Nitrozellulose und Nylon Membranen, Verknüpfen von DNA-Fragmenten, Transformation von Escherichia coli Zellen, Anzucht von Bakterien und die Sequenzanalyse rekombinanter DNA wurden wie bei Sambrook et al. (1989) (Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6) beschrieben durchgeführt.

Beispiel 2: Sequenzanalyse rekombinanter DNA:

- Die Sequenzierung rekombinanter DNA-Moleküle erfolgte mit einem Laserfluoreszenz-DNA-Sequenzierer der Firma ABI nach der Methode von Sanger (Sanger et al. (1977) Proc. Natl. Acad. Sci. USA74, 5463-5467). Fragmente resultierend aus einer Polymerase Kettenreaktion wurden zur Vermeidung von Polymerasefehlern in zu exprimierenden Konstrukten sequenziert und überprüft.
- 15 Beispiel 3: Klonierung von Genen aus Oncorhynchus mykiss

Durch Suche nach konservierten Bereichen in den Proteinsequenzen entsprechend der in der Anmeldung aufgeführten Elongase-Gene wurden zwei Sequenzen mit entsprechenden Motiven in der Sequenzdatenbank von Genbank identifiziert.

entsprechenden wet	Genbank No	Aminosäuren
Gen-Name	Genbank No	
OmELO2	CA385234, CA364848, CA366480	264
OmELO3	CA360014, CA350786	295
OIIILLOG	·	

Gesamt-RNA von Oncoryhnchus mykiss wurde mit Hilfe des RNAeasy Kits der Firma

20 Qiagen (Valencia, CA, US) isoliert. Aus der Gesamt-RNA wurde mit Hilfe von oligo-dTCellulose poly-A+ RNA (mRNA) isoliert (Sambrook et al., 1989). Die RNA wurde mit
dem Reverse Transcription System Kit von Promega revers transcribiert und die
synthetisierte cDNA in den lambda ZAP Vektor (lambda ZAP Gold, Stratagene)
kloniert. Entsprechend Herstellerangaben wurde die cDNA zur Plasmid-DNA entpackt.

25 Die cDNA-Plasmid-Bank wurde dann für die PCR zur Klonierung von Expressionsplasmiden verwendet.

Beispiel 4: Klonierung von Expressionsplasmiden zur heterologen Expression in Hefen

Für die Klonierung der zwei Sequenzen zur heterologen Expression in Hefen wurden folgende Oligonukleotide für die PCR-Reaktion verwendet:

Primer	Nukleotidsequenz
5' f* OmELO2	5' aagcttacataatggcttcaacatggcaa (SEQ ID NO: 179)
3' r* OmELO2	5' ggatccttatgtcttcttgctcttcctgtt (SEQ ID NO: 180)
5' f OmELO3	5' aagcttacataatggagacttttaat (SEQ ID NO: 181)
3' r OmELO3	5' ggatccttcagtccccctcactttcc (SEQ ID NO: 182)

·

5 Zusammensetzung des PCR-Ansatzes (50 μL):

5,00 µL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl2

5.00 µL 2mM dNTP

1,25 µL je Primer (10 pmol/µL)

10 0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C Denaturierungstemperatur: 1 min 94°C Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

15

20

25

Das PCR Produkt wurde für 2 h bei 37 °C mit den Restriktionsenzymen HindIII und BamHI inkubiert. Der Hefe-Expressionsvektor pYES3 (Invitrogen) wurde in gleicherweise inkubiert. Anschliessend wurde das 812 bp bzw. 905 bp große PCR Produkt sowie der Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolge mittels Qiagen Gel purification Kit gemäss Herstellerangaben. Anschliessend wurden Vektor und Elongase cDNA ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide pYES3-OmELO2 und pYES3-OmELO3 wurden durch Sequenzierung verifiziert und in den Saccharomyces Stamm INVSc1 (Invitrogen) durch Elektroporation (1500 V) transformiert. Zur Kontrolle wurde pYES3 parallel transformiert. Anschliessend wurden die Hefen auf Komplett-Minimalmedium ohne Tryptophan mit 2 % Glucose ausplattiert. Zellen, die auf ohne Tryptophan im Medium wachstumsfähig waren, enthalten damit die entsprechenden Plasmide pYES3, pYES3-OmELO2 (SEQ ID NO: 51) und pYES3-OmELO3 (SEQ ID NO: 53). Nach der Selektion wurden je zwei Transformaten zur weiteren funktionellen Expression ausgewählt.

Beispiel 5:

Klonierung von Expressionsplasmiden zur Samen-spezifischen

Expression in Pflanzen

Für die Transformation von Pflanzen wurde ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu wurde mit folgendem Primerpaar Notl-Schnitt-

stellen am 5' und 3'-Ende des kodierenden Sequenz eingefügt: 5

PSUN-OmELO2

Forward: 5'-GCGGCCGCATAATGGCTTCAACATGGCAA (SEQ ID NO: 175)

Reverse: 3'-GCGGCCGCTTATGTCTTCTTGCTCTTCCTGTT (SEQ ID NO: 176)

PSUN-OMELO3

Forward: 5'-GCGGCCGCataatggagacttttaat (SEQ ID NO: 177) 10

Reverse: 3'-GCGGCCGCtcagtccccctcactttcc (SEQ ID NO: 178)

Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 µL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl2 15.

5,00 µL 2mM dNTP

1,25 µL je Primer (10 pmol/µL)

0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR: 20

> Anlagerungstemperatur: 1 min 55°C Denaturierungstemperatur: 1 min 94°C Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

35

Die PCR Produkte wurden für 16 h bei 37 °C mit dem Restriktionsenzym Notl inkubiert. 25 Der Pflanzen-Expressionsvektor pSUN300-USP wurde in gleicherweise inkubiert. Anschliessend wurde die PCR Produkte sowie der 7624 bp große Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolge mittels Qiagen Gel purification Kit gemäss Herstellerangaben. Anschliessend wurden Vektor und PCR-Produkte ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide 30 pSUN-OmELO2 und pSUN-OmELO3 wurde durch Sequenzierung verifiziert.

pSUN300 ist ein Derivat des Plasmides pPZP (Hajdukiewicz, P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors forplant transformation. Plant Mol Biol 25:989-994). pSUN-USP entstand aus pSUN300, indem in pSUN300 ein USP-Promotor als EcoRI- Fragment inseriert wurde. Das Polyadenylierungssignal ist das des Octopinsynthase-Gens aus dem A. tumefaciens Ti-Plasmid (ocs-Terminator, Genbank Accession V00088) (De Greve, H., Dhaese, P., Seurinck, J., Lemmers, M., Van Montagu, M. and Schell, J. Nucleotide sequence and

transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982) Der USP-Promotor entspricht den Nukleotiden 1-684 (Genbank Accession X56240), wobei ein Teil der nichtcodierenden Region des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfragment wurde mittels käuflichen T7–Standard-primer (Stratagene) und mit Hilfe eines synthetisierten Primers über eine PCR–Reaktion nach Standardmethoden amplifiziert. (Primersequenz: 5'-GTCGACCCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCC GGATCTGCTGGCTATGAA-3', SEQ ID NO: 174). Das PCR–Fragment wurde mit EcoRI/Sall nachgeschnitten und in den Vektor pSUN300 mit OCS Terminator eingesetzt. Es entstand das Plasmid mit der Bezeichnung pSUN-USP.Das Konstrukt wurde zur Transformation von Arabidopsis thaliana, Raps, Tabak und Leinsamen verwendet.

Beispiel 6: Lipidextraktion aus Hefen und Samen:

10

35

40

Die Auswirkung der genetischen Modifikation in Pflanzen, Pilzen, Algen, Ciliaten oder auf die Produktion einer gewünschten Verbindung (wie einer Fettsäure) kann bestimmt werden, indem die modifizierten Mikroorganismen oder die modifizierte Pflanze unter geeigneten Bedingungen (wie den vorstehend beschriebenen) gezüchtet werden und das Medium und/oder die zellulären Komponenten auf die erhöhte Produktion des gewünschten Produktes (d.h. von Lipiden oder einer Fettsäure) untersucht wird. Diese Analysetechniken sind dem Fachmann bekannt und umfassen Spektroskopie, Dünn-20 schichtchromatographie, Färbeverfahren verschiedener Art, enzymatische und mikrobiologische Verfahren sowie analytische Chromatographie, wie Hochleistungs-Flüssigkeitschromatographie (siehe beispielsweise Ullman, Encyclopedia of Industrial Chemistry, Bd. A2, S. 89-90 und S. 443-613, VCH: Weinheim (1985); Fallon, A., et al., (1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in Biochemis-25 try and Molecular Biology, Bd. 17; Rehm et al. (1993) Biotechnology, Bd. 3, Kapitel III: "Product recovery and purification", S. 469-714, VCH: Weinheim; Belter, P.A., et al. (1988) Bioseparations: downstream processing for Biotechnology, John Wiley and Sons; Kennedy, J.F., und Cabral, J.M.S. (1992) Recovery processes for biological Materials, John Wiley and Sons; Shaeiwitz, J.A., und Henry, J.D. (1988) Biochemical 30 Separations, in: Ullmann's Encyclopedia of Industrial Chemistry, Bd. B3; Kapitel 11, S. 1-27, VCH: Weinheim; und Dechow, F.J. (1989) Separation and purification techniques in biotechnology, Noyes Publications).

Neben den oben erwähnten Verfahren werden Pflanzenlipide aus Pflanzenmaterial wie von Cahoon et al. (1999) Proc. Natl. Acad. Sci. USA 96 (22):12935-12940, und Browse et al. (1986) Analytic Biochemistry 152:141-145, beschrieben extrahiert. Die qualitative und quantitative Lipid- oder Fettsäureanalyse ist beschrieben bei Christie, William W., Advances in Lipid Methodology, Ayr/Scotland: Oily Press (Oily Press Lipid Library; 2); Christie, William W., Gas Chromatography and Lipids. A Practical Guide - Ayr, Scotland: Oily Press, 1989, Repr. 1992, IX, 307 S. (Oily Press Lipid Library; 1); "Progress in Lipid Research, Oxford: Pergamon Press, 1 (1952) - 16 (1977) u.d.T.: Progress in the Chemistry of Fats and Other Lipids CODEN.

Zusätzlich zur Messung des Endproduktes der Fermentation ist es auch möglich, andere Komponenten der Stoffwechselwege zu analysieren, die zur Produktion der gewünschten Verbindung verwendet werden, wie Zwischen- und Nebenprodukte, um die Gesamteffizienz der Produktion der Verbindung zu bestimmen. Die Analyseverfahren umfassen Messungen der Nährstoffmengen im Medium (z.B. Zucker, Kohlenwasserstoffe, Stickstoffquellen, Phosphat und andere Ionen), Messungen der Kohlenwassezusammensetzung und des Wachstums, Analyse der Produktion üblicher Biomassezusammensetzung und Messungen von Gasen, die während der Metabolite von Biosynthesewegen und Messungen von Gasen, die während der Fermentation erzeugt werden. Standardverfahren für diese Messungen sind in Applied
Microbial Physiology; A Practical Approach, P.M. Rhodes und P.F. Stanbury, Hrsgb., IRL Press, S. 103-129; 131-163 und 165-192 (ISBN: 0199635773) und darin angegebenen Literaturstellen beschrieben.

Ein Beispiel ist die Analyse von Fettsäuren (Abkürzungen: FAME, Fettsäuremethylester; GC-MS, Gas-Flüssigkeitschromatographie-Massenspektrometrie; TAG, Triacylglycerin; TLC, Dünnschichtchromatographie).

15

20

40

Der unzweideutige Nachweis für das Vorliegen von Fettsäureprodukten kann mittels Analyse rekombinanter Organismen nach Standard-Analyseverfahren erhalten werden: GC, GC-MS oder TLC, wie verschiedentlich beschrieben von Christie und den Literaturstellen darin (1997, in: Advances on Lipid Methodology, Vierte Aufl.: Christie, Oily Press, Dundee, 119-169; 1998, Gaschromatographie-Massenspektrometrie-Verfahren, Lipide 33:343-353).

Das zu analysierende Material kann durch Ultraschallbehandlung, Mahlen in der Glasmühle, flüssigen Stickstoff und Mahlen oder über andere anwendbare Verfahren aufgebrochen werden. Das Material muss nach dem Aufbrechen zentrifugiert werden.

Das Sediment wird in Aqua dest. resuspendiert, 10 min bei 100°C erhitzt, auf Eis abgekühlt und erneut zentrifugiert, gefolgt von Extraktion in 0,5 M Schwefelsäure in Methanol mit 2 % Dimethoxypropan für 1 Std. bei 90°C, was zu hydrolysierten Öl- und Lipidverbindungen führt, die transmethylierte Lipide ergeben. Diese Fettsäuremethylester werden in Petrolether extrahiert und schließlich einer GC-Analyse unter Verwendung einer Kapillarsäule (Chrompack, WCOT Fused Silica, CP-Wax-52 CB, 25 mikrom, 0,32 mm) bei einem Temperaturgradienten zwischen 170°C und 240°C für 20 min und 5 min bei 240°C unterworfen. Die Identität der erhaltenen Fettsäuremethylester muss unter Verwendung von Standards, die aus kommerziellen Quellen erhältlich sind (d.h. Sigma), definiert werden.

35 Pflanzenmaterial wird zunächst mechanisch durch Mörsern homogenisiert, um es einer Extraktion zugänglicher zu machen.

Dann wird 10 min auf 100°C erhitzt und nach dem Abkühlen auf Eis erneut sedimentiert. Das Zellsediment wird mit 1 M methanolischer Schwefelsäure und 2 % Dimethoxypropan 1h bei 90°C hydrolysiert und die Lipide transmethyliert. Die resultierenden Fettsäuremethylester (FAME) werden in Petrolether extrahiert. Die extrahierten FAME werden durch Gasflüssigkeitschromatographie mit einer Kapillarsäule (Chrompack,

WCOT Fused Silica, CP-Wax-52 CB, 25 m, 0,32 mm) und einem Temperaturgradienten von 170°C auf 240°C in 20 min und 5 min bei 240°C analysiert. Die Identität der Fettsäuremethylester wird durch Vergleich mit entsprechenden FAME-Standards (Sigma) bestätigt. Die Identität und die Position der Doppelbindung kann durch geeignete chemische Derivatisierung der FAME-Gemische z.B. zu 4,4-Dimethoxyoxazolin-Derivaten (Christie, 1998) mittels GC-MS weiter analysiert werden.

Hefen, die wie unter Beispiel 4 mit den Plasmiden pYES3, pYES3-OmELO2 und pYES3-OmELO3 transformiert wurden, wurden folgendermaßen analysiert:

Die Hefezellen aus den Hauptkulturen wurden durch Zentrifugation (100 x g, 10 min, 20°C) geerntet und mit 100 mM NaHCO₃, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 ml 1N methonolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO₃, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend wurden die PE-Phasen mit Na₂SO₄ getrocknet, unter Argon

eingedampft und in 100 μl PE aufgenommen. Die Proben wurden auf einer DB-23-Kapillarsäule (30 m, 0,25 mm, 0,25 μm, Agilent) in einem Hewlett-Packard 6850-20 Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50°C bis 250°C mit

Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma).

einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten) programmiert.

Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001, Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.

Beispiel 7: Funktionelle Charakterisierung von OmELO2 und OmELO3:

OmELO2 zeigt keine Elongase-Aktivität, während für OmELO3 eine deutliche Aktivität mit verschiedenen Substraten nachgewiesen werden konnte. Die Substratspezifität der OmElo3 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Figur 2). Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Alle transgene Hefen zeigen die Synthese neuer Fettsäuren, den Produkten der OmElo3-Reaktion. Dies bedeutet, dass das Gen OmElo3 funktional exprimiert werden konnte.

Figur 2 zeigt, dass die OmElo3 eine Substratspezifität aufweist, die mit hoher Spezifität zur Verlängerung von $\Delta 5$ - und $\Delta 6$ -Fettsäuren mit einer $\omega 3$ -Doppelbindung führt. Es konnte in geringerer Spezifität des weiteren auch $\omega 6$ -Fettsäuren (C18 und C20)

elongiert werden. Stearidonsäure (C18:4 ω 3) und Eicosapentaensäure (C20:5 ω 3) stellen die besten Substrate für die OmElo3 dar (bis zu 66 % Elongation).

Beispiel 8: Rekonstitution der Synthese von DHA in Hefe

20

35

Die Rekonstitution der Biosynthese von DHA (22:6 ω 3) wurde ausgehend von EPA (20:5 ω 3) bzw. Stearidonsäure (18:4 ω 3) durch die Coexpression der OmElo3 mit der Δ -4-Desaturase aus Euglena gracilis bzw. der Δ -5-Desaturase aus Phaeodactylum 5 tricornutum und der Δ -4-Desaturase aus Euglena gracilis durchgeführt. Dazu wurden weiterhin die Expressionsvektoren pYes2-EgD4 und pESCLeu-PtD5 konstruiert. Der o.g. Hefestamm, der bereits mit dem pYes3-OmElo3 (SEQ ID NO: 55) transformiert ist, wurde weiter mit dem pYes2-EgD4 bzw. gleichzeitig mit pYes2-EgD4 und pESCLeu-PtD5 transformiert. Die Selektion der transformierten Hefen erfolgte auf Komplett-10 Minimalmedium-Agarplatten mit 2% Glucose, aber ohne Tryptophan und Uracil im Falle des pYes3-OmELO/pYes2-EgD4-Stammes und ohne Tryptophan, Uracil und Leucin im Falle des pYes3-OmELO/pYes2-EgD4+pESCLeu-PtD5-Stammes. Die Expression wurde wie oben angegeben durch die Zugabe von 2% (w/v) Galactose induziert. Die Kulturen wurden für weitere 120 h bei 15°C inkubiert.

Figur 3 zeigt die Fettsäureprofile von transgenen Hefen, die mit 20:5 ω 3 gefüttert wurden. In der Kontroll-Hefe (A), die mit dem pYes3-OmElo3-Vektor und dem leeren Vektor pYes2 transformiert wurden, wurde 20:5 ω 3 sehr effizient zu 22:5 ω 3 elongiert (65% Elongation). Die zusätzliche Einführung der Eg∆-4-Desaturase führte zu der Umsetzung von 22:5 ω 3 zu 22:6 ω 3 (DHA). Die Fettsäure-Zusammensetzung der transgenen Hefen ist in Figure 5 wiedergegeben. Nach der Co-Expression von OmElo3 und EgD4 konnte bis zu 3% DHA in Hefen nachgewiesen werden.

In einem weiteren Co-Expressionsexperiment wurden OmElo3, EgD4 und eine $\Delta 5$ -Desaturase aus P. tricornutum (PtD5) zusammen exprimiert. Die transgenen Hefen wurden mit Stearidonsäure (18:4 ω 3) gefüttert und analysiert (Figur 4). Die Fettsäure-25 Zusammensetzung dieser Hefen ist in Figur 5 aufgeführt. Durch OmElo3 wurde die gefütterte Fettsäure 18:4 ω 3 zu 20:4 ω 3 elongiert (60% Elongation). Letztere wurde durch die PtD5 zu 20:5 ω 3 desaturiert. Die Aktivität der PtD5 betrug 15%. 20:5 ω 3 konnte weiterhin durch die OmElo3 zu 22:5 ω 3 elongiert werden. Im Anschluß wurde die neu synthetisierte 22:5 $\omega 3$ zu 22:6 $\omega 3$ (DHA) desaturiert. In diesen Experimenten 30 konnte bis zu 0,7% DHA erzielt werden.

Aus diesen Experimenten geht hervor, dass die in dieser Erfindung verwendeten Sequenzen OmElo3, EgD4 und PtD5 für die Produktion von DHA in eukaryotischen Zellen geeignet sind.

30

35

Beispiel 9: Erzeugung von transgenen Pflanzen

a) Erzeugung transgener Rapspflanzen (verändert nach Moloney et al., 1992, Plant Cell Reports, 8:238-242)

Zur Erzeugung transgener Rapspflanzen können binäre Vektoren in Agrobacterium tumefaciens C58C1:pGV2260 oder Escherichia coli genutzt (Deblaere et al, 1984, Nucl. Acids. Res. 13. 4777-4788). Zur Transformation von Rapspflanzen (Var. Drakkar, NPZ Nordeutsche Pflanzenzucht, Höhenlieth, Deutschland), wird eine 1:50 Verdünnung einer Übernachtkultur einer positiv transformierten Agrobakterienkolonie in Murashige-Skoog Medium (Murashige und Skoog 1962 Physiol. Plant. 15, 473) mit 3 % Saccharose (3MS-Medium) benutzt. Petiolen oder Hypokotyledonen frisch gekeimter steriler Rapspflanzen (zu je ca. 1 cm²) werden in einer Petrischale mit einer 1:50 Agrobakterienverdünnung für 5-10 Minuten inkubiert. Es folgt eine 3-tägige Colnkubation in Dunkelheit bei 25°C auf 3MS-Medium mit 0,8 % Bacto-Agar. Die Kultivierung wird nach 3 Tagen mit 16 Stunden Licht / 8 Stunden Dunkelheit weitergeführt und in wöchentlichem Rhythmus auf MS-Medium mit 500 mg/l Claforan (Cefota-15 xime-Natrium), 50 mg/l Kanamycin, 20 mikroM Benzylaminopurin (BAP) und 1,6 g/l Glukose weitergeführt. Wachsende Sprosse werden auf MS-Medium mit 2 % Saccharose, 250 mg/l Claforan und 0,8 % Bacto-Agar überführt. Bilden sich nach drei Wochen keine Wurzeln, so wurde als Wachstumshormon 2-Indolbuttersäure zum 20 Bewurzeln zum Medium gegeben.

Regenerierte Sprosse werden auf 2MS-Medium mit Kanamycin und Claforan erhalten, nach Bewurzelung in Erde überführt und nach Kultivierung für zwei Wochen in einer Klimakammer oder im Gewächshaus angezogen, zur Blüte gebracht, reife Samen geerntet und auf Elongase-Expression wie Δ -5-Elongase- oder Δ -6-Elongaseaktivität oder ω -3-Desaturaseaktivität mittels Lipidanalysen untersucht. Linien mit erhöhten Gehalten an C20- und C22 mehrfachungesättigten Fettsäuren können so identifiziert werden.

b) Herstellung von transgenen Leinpflanzen

Die Herstellung von transgenen Leinpflanzen können zum Beispiel nach der Methode von Bell et al., 1999, In Vitro Cell. Dev. Biol.-Plant. 35(6):456-465 mittels particle bombartment erzeugt werden. In der Regel wurde eine Agrobakterien-vermittelte Transformation zum Beispiel nach Mlynarova et al. (1994), Plant Cell Report 13: 282-285 zur Leintransformation verwendet.

Beispiel 10: Klonierung von Δ5-Elongase-Genen aus Thraustochytrium aureum ATCC34304 und Thraustochytrium ssp.

Durch Vergleiche der verschiedenen in dieser Anmeldung gefundenen Elongase-Proteinsequenzen konnten konservierte Nukleinsäurebereiche definiert werden (Histidin-Box: His-Val-X-His-His, Tyrosin-Box: Met-Tyr-X-Tyr-Tyr). Mit Hilfe dieser Sequenzen wurde eine EST-Datenbank von T. aureum ATCC34304 und Thraustochytrium ssp. nach weiteren Δ -5-Elongasen durchsucht. Folgende neue Sequenzen konnten gefunden werden:

Gen-Name	Nukleotide	Aminosäuren
BioTaurELO1	828 bp	275
TL16y2	831	276

Gesamt-RNA von T. aureum ATCC34304 und Thraustochytrium ssp. wurde mit Hilfe des RNAeasy Kits der Firma Qiagen (Valencia, CA, US) isoliert. Aus der Gesamt-RNA wurde mit Hilfe des PolyATract Isolierungssystems (Promega) mRNA isoliert. Die mRNA wurde mit dem Marathon cDNA Amplification-Kit (BD Biosciences) reverse transkribiert und entsprechend der Herstellerangaben Adaptoren ligiert. Die cDNA-Bank wurde dann für die PCR zur Klonierung von Expressionsplasmiden mittels 5'- und 3'-RACE (rapid amplification of cDNA ends) verwendet.

10 Beispiel 11: Klonierung von Expressionsplasmiden zur heterologen Expression in Hefen

Für die Klonierung der Sequenz zur heterologen Expression in Hefen wurden folgende Oligonukleotide für die PCR-Reaktion verwendet:

Primer	Nukleotidsequenz
5' f* BioTaurELO1 3' r* BioTaurELO1 5'f*TL16y2 3'r*TL16y2	5' gacataatgacgagcaacatgag (SEQ ID NO: 170) 5' cggcttaggccgacttggccttggg (SEQ ID NO: 171) 5' agacataatggacgtcgtcgagcagcaatg (SEQ ID NO: 172) 5' ttagatggtcttctgcttcttgggcgcc (SEQ ID NO: 173)

15

Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 µL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl2

 $5,00~\mu L~2mM~dNTP$

20 1,25 μL je Primer (10 pmol/μL)

0,50 µL pfu-Polymerase

Die Advantage-Polymerase von Clontech wurde eingesetzt.

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C

25 Denaturierungstemperatur: 1 min 94°C

Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

Die PCR Produkte BioTaurELO1 (siehe SEQ ID NO: 65) und TL16y2 (siehe SEQ ID NO: 83) wurde für 30 min bei 21 °C mit dem Hefe-Expressionsvektor pYES2.1-TOPO (Invitrogen) inkubiert gemäss Herstellerangaben. Das PCR-Produkt wird dabei durch einen T-Überhang und Aktivität einer Topoisomerase (Invitrogen) in den Vektor ligiert.

- Nach der Inkubation erfolgte dann die Transformation von E. coli DH5α Zellen. Entsprechende Klone wurden durch PCR identifiziert, die Plasmid-DNA mittels Qiagen DNAeasy-Kit isoliert und durch Sequenzierung verifiziert. Die korrekte Sequenz wurde dann in den Saccharomyces Stamm INVSc1 (Invitrogen) durch Elektroporation (1500 V) transformiert. Zur Kontrolle wurde der leere Vektor pYES2.1 parallel transformiert.
- Anschließend wurden die Hefen auf Komplett-Minimalmedium ohne Uracil mit 2 % Glucose ausplattiert. Zellen, die ohne Uracil im Medium wachstumsfähig waren, enthalten damit die entsprechenden Plasmide pYES2.1, pYES2.1-BioTaurELO1 und pYES2.1-TL16y2. Nach der Selektion wurden je zwei Transformaten zur weiteren funktionellen Expression ausgewählt.

15 Beispiel 12:

Klonierung von Expressionsplasmiden zur Samen-spezifischen Expression in Pflanzen

Für die Transformation von Pflanzen wurde ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu wurde mit folgendem Primerpaar Notl-Schnittstellen am 5' und 3'-Ende des kodierenden Sequenz eingefügt:

PSUN-BioTaurELO1

Forward: 5'-GCGGCCGCATAATGACGAGCAACATGAGC (SEQ ID NO: 166) Reverse: 3'-GCGGCCGCTTAGGCCGACTTGGCCTTGGG (SEQ ID NO: 167)

PSUN-TL16y2

25

Forward: 5'-GCGGCCGCACCATGGACGTCGTCGAGCAGCAATG (SEQ ID NO: 168)

Reverse: 5'-GCGGCCGCTTAGATGGTCTTCTGCTTCTTGGGCGCC

30 (SEQ ID NO: 169)

Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 µL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl2

5,00 µL 2mM dNTP

35 1,25 μL je Primer (10 pmol/μL)

0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C
Denaturierungstemperatur: 1 min 94°C
Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

Die PCR Produkte wurden für 16 h bei 37 °C mit dem Restriktionsenzym Notl inkubiert.

Der Pflanzen-Expressionsvektor pSUN300-USP wurde in gleicherweise inkubiert.

Anschliessend wurde die PCR Produkte sowie der 7624 bp große Vektor durch

Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente
Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente
ausgeschnitten. Die Aufreinigung der DNA erfolge mittels Qiagen Gel Purification Kit
gemäss Herstellerangaben. Anschließend wurden Vektor und PCR-Produkte ligiert.

Dazu wurde das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide
pSUN-BioTaurELO1 und pSUN-TL16y2 wurden durch Sequenzierung verifiziert.

pSUN300 ist ein Derivat des Plasmides pPZP (Hajdukiewicz,P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors forplant transformation. Plant Mol Biol 25:989-994). pSUN-USP entstand aus pSUN300, indem in pSUN300 ein USP-Promotor als EcoRI- Fragment inseriert wurde. Das Polyadenylierungssignal ist das des Octopinsynthase-Gens aus dem A. tumefaciens Ti-Plasmid (ocs-Terminator, Genbank Accession V00088) (De Greve,H., Dhaese,P., 20 Seurinck, J., Lemmers, M., Van Montagu, M. and Schell, J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982) Der USP-Promotor entspricht den Nukleotiden 1-684 (Genbank Accession X56240), wobei ein Teil der nichtcodierenden Region des USP-Gens im Promotor enthalten ist. Das 25 684 Basenpaar große Promotorfragment wurde mittels käuflichen T7-Standardprimer (Stratagene) und mit Hilfe eines synthetisierten Primers über eine PCR-Reaktion nach Standardmethoden amplifiziert. (Primersequenz: 5'-GTCGACCCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCC GGATCTGCTGGCTATGAA-3', SEQ ID NO: 165). Das PCR-Fragment wurde mit 30 EcoRI/Sall nachgeschnitten und in den Vektor pSUN300 mit OCS Terminator eingesetzt. Es entstand das Plasmid mit der Bezeichnung pSUN-USP.Das Konstrukt wurde zur Transformation von Arabidopsis thaliana, Raps, Tabak und Leinsamen verwendet.

35

40

Die Lipidextraktion aus Hefen und Samen erfolgte identisch zu Beispiel 6.

Beispiel 13: Funktionelle Charakterisierung von BioTaurELO1 und TL16y2:

Die Substratspezifität der BioTaurELO1 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Figur 6). Figur 6 zeigt die Fütterungsexperimente zur Bestimmung der Funktionalität und Substratspezifität mit Hefe-

WO 2005/012316 PCT/EP2004/007957

stämmen, die entweder den Vektor pYes2.1 (Kontrolle = Control) oder den Vektor pYes2.1-BioTaurELO1 (= BioTaur) mit der Δ -5-Elongase enthalten. In beiden Ansätzen wurde 200 uM γ -Linolensäure und Eicosapentaensäure dem Hefeinkubationsmedium zugesetzt und 24 h inkubiert. Nach Extraktion der Fettsäuren aus den Hefen wurden diese transmethyliert und gaschromatographisch aufgetrennt. Die aus den beiden gefütterten Fettsäuren entstandenen Elongationsprodukte sind durch Pfeile markiert.

Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Alle transgene Hefen zeigen die Synthese neuer Fettsäuren, den Produkten der BioTaurELO1-Reaktion. Dies bedeutet, dass das Gen BioTaurELO1 funktional exprimiert werden konnte.

10

20

Figur 6 zeigt, dass die BioTaurELO1 eine Substratspezifität aufweist, die mit hoher Spezifität zur Verlängerung von $\Delta5$ - und $\Delta6$ -Fettsäuren mit einer $\omega3$ -Doppelbindung führt. Des weiteren konnten auch $\omega6$ -Fettsäuren (C18 und C20) elongiert werden. Es werden γ -Linolensäure (C18:3 $\omega6$) mit 65,28 %, Stearidonsäure (C18:4 $\omega3$) mit 65.66 % und Eicosapentaensäure (C20:5 $\omega3$) mit 22,01 % Konversion umgesetzt. Die Substratspezifitäten der verschiedenen Fütterungsexperimente sind in Tabelle 3 dargestellt (siehe am Ende der Beschreibung).

Die Konversionsrate von GLA bei Fütterung von GLA und EPA betrug 65,28 %. Die Konversionsrate von EPA bei gleicher Fütterung von GLA und EPA betrug 9,99 %. Wurde nur EPA gefüttert, so betrug die Konversionsrate von EPA 22,01 %. Auch Arachidonsäure (= ARA) wurde bei Fütterung umgesetzt. Die Konversionsrate betrug 14,47 %. Auch Stearidonsäure (= SDA) wurde umgesetzt. In diesem Fall betrug die Konversionsrate 65,66 %.

Die Funktionalität und Substratspezifität von TL16y2 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden. Tabelle 4 zeigt die Fütterungsexperimente. Die Fütterungsversuche wurden in gleicherweise durchgeführt wie für BioTaurELO1 beschrieben. Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der TL16y2-Reaktion (Fig. 11). Dies bedeutet, dass das Gen TL16y2 funktional exprimiert werden konnte.

15

Tabelle 4: Expression von TL16y2 in Hefe.

_	er gaschroma Fettsäure	C18:3 (n-6)	C18:4 (n-3)	C20:3 (n-6)	C20:4 (n-6)	C20:4 (n-3)	C20:5 (n-3)	C22:4 (n-6)	C22:5 (n-3)
YES	250 uM EPA						13,79		
			 	 	 		25,81	 	2,25
TL16y2	250 uM EPA	i I			<u> </u>			 	
pYES	50 uM EPA					1	5,07	1	
						+	2,48		1,73
TL16y2	50 uM EPA						 	-	-
pYES	250 uMGLA	8,31						_	_
TL16y2	250 uM GLA	3,59		10,71					
pYES	250 uM ARA				16,03				
TL16y2	250 uM ARA	-		1	15,2		3,87		
pYES	250 uM SDA		26,79	3		0,35			
PILO			7,74			29,1	7		

Die in Tabelle 4 wiedergegebenen Ergebnisse zeigen mit TL16y2 gegenüber der Kontrolle folgende prozentuale Umsätze: a) % Umsatz EPA (250 uM): 8 %, b) % Umsatz EPA (50 uM): 41 %, c) % Umsatz ARA: 20,3 %, d) % Umsatz SDA: 79, 4% und e) % Umsatz GLA: 74,9 %.

TL16y2 zeigt damit $\Delta 5$ -, $\Delta 6$ - und $\Delta 8$ -Elongaseaktivität. Dabei ist die Aktivität für C18-Fettsäuren mit $\Delta 6$ -Doppelbindung am höchsten. Abhängig von der Konzentration an gefütterten Fettsäuren werden dann C20-Fettsäuren mit einer $\Delta 5$ - bzw. $\Delta 8$ -Doppelbindung verlängert.

Beispiel 14: Klonierung von Genen aus Ostreococcus tauri

Durch Suche nach konservierten Bereichen in den Proteinsequenzen mit Hilfe der in der Anmeldung aufgeführten Elongase-Gene mit Δ -5-Elongaseaktivität oder Δ -6-Elongaseaktivität konnten zwei Sequenzen mit entsprechenden Motiven in einer Ostreococcus tauri Sequenzdatenbank (genomische Sequenzen) identifiziert werden.

Es handelt sich dabei um die folgenden Sequenzen:

Gen-Name	SEQ ID	Aminosäuren
OtELO1, (Δ-5-Elongase)	SEQ ID NO: 67	300 .
OtELO2, (Δ-6-Elongase)	SEQ ID NO: 69	292

OtElo1 weist die höchste Ähnlichkeit zu einer Elongase aus Danio rerio auf (GenBank AAN77156; ca. 26 % Identität), während OtElo2 die größte Ähnlichkeit zur Physcomitrella Elo (PSE) [ca. 36 % Identität] aufweist (Alignments wurden mit dem tBLASTn-Aalgorithmus (Altschul et al., J. Mol. Biol. 1990, 215: 403 – 410) durchgeführt.

Die Klonierung wurde wie folgt durchgeführt:

40 ml einer Ostreococcus tauri Kultur in der stationären Phase wurden abzentrifugiert und in 100 μl Aqua bidest resuspendiert und bei –20°C gelagert. Auf der Basis des PCR-Verfahren wurden die zugehörigen genomischen DNAs amplifiziert. Die entsprechenden Primerpaare wurden so ausgewählt, dass sie die Hefe-Konsensus-Sequenz für hocheffiziente Translation (Kozak, Cell 1986, 44:283-292) neben dem Startcodon trugen. Die Amplifizierung der OtElo-DNAs wurde jeweils mit 1 μl aufgetauten Zellen, 200 μM dNTPs, 2,5 U Taq-Polymerase und 100 pmol eines jeden Primers in einem Gesamtvolumen von 50 μl durchgeführt. Die Bedingungen für die PCR waren wie folgt:
15 Erste Denaturierung bei 95°C für 5 Minuten, gefolgt von 30 Zyklen bei 94°C für 30 Sekunden, 55°C für 1 Minute und 72°C für 2 Minuten sowie ein letzter Verlängerungsschritt bei 72°C für 10 Minuten.

Beispiel 15: Klonierung von Expressionsplasmiden zur heterologen Expression in Hefen:

Zur Charakterisierung der Funktion der Elongasen aus Ostreococcus tauri wurden die offenen Leserahmen der jeweiligen DNAs stromabwärts des Galactose-induzierbaren GAL1-Promotors von pYES2.1/V5-His-TOPO (Invitrogen) kloniert, wobei pOTE1 und pOTE2 erhalten wurden.

Der Saccharomyces cerevisiae-Stamm 334 wurde durch Elektroporation (1500 V) mit dem Vektor pOTE1 bzw. pOTE2 transformiert. Als Kontrolle wurde eine Hefe verwendet, die mit dem leeren Vektor pYES2 transformiert wurde. Die Selektion der transformierten Hefen erfolgte auf Komplett-Minimalmedium (CMdum)-Agarplatten mit 2% Glucose, aber ohne Uracil. Nach der Selektion wurden je drei Transformanten zur weiteren funktionellen Expression ausgewählt.

Für die Expresssion der Ot-Elongasen wurden zunächst Vorkulturen aus jeweils 5 ml CMdum-Flüssigmedium mit 2% (w/v) Raffinose aber ohne Uracil mit den ausgewählten Transformanten angeimpft und 2 Tage bei 30°C, 200 rpm inkubiert.

5 ml CMdum-Flüssigmedium (ohne Uracil) mit 2% Raffinose und 300 μM verschiedener Fettsäuren wurden dann mit den Vorkulturen auf eine OD₆₀₀ von 0,05 angeimpft.

Die Expression wurde durch die Zugabe von 2% (w/v) Galactose induziert. Die Kulturen wurden für weitere 96 h bei 20°C inkubiert.

Klonierung von Expressionsplasmiden zur Samen-spezifischen Expres-Beispiel 16: sion in Pflanzen

Für die Transformation von Pflanzen wurde ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu wurden mittels PCR Notl-Schnittstellen am 5' und 5 3'-Ende der kodierenden Sequenzen eingefügt. Die entsprechenden Primersequenzen wurden von den 5'- und 3-Bereich von OtElo1 und OtElo2 abgeleitet.

Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 µL Template cDNA 10 5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl₂ 5,00 µL 2mM dNTP 1,25 µL je Primer (10 pmol/µL) 0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt. 15 Reaktionsbedingungen der PCR: Anlagerungstemperatur: 1 min 55°C

Denaturierungstemperatur: 1 min 94°C Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35 20

Die PCR Produkte wurden für 16 h bei 37 °C mit dem Restriktionsenzym Notl inkubiert. Der Pflanzen-Expressionsvektor pSUN300-USP wurde in gleicherweise inkubiert. Anschliessend wurde die PCR Produkte sowie der Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolgte mittels Qiagen Gel Purification Kit gemäss Herstellerangaben. Anschliessend wurden Vektor und PCR-Produkte ligiert. Dazu 25 wurde das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide pSUN-OtELO1 und pSUN-OtELO2 wurde durch Sequenzierung verifiziert.

pSUN300 ist ein Derivat des Plasmides pPZP (Hajdukiewicz,P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989-994). pSUN-USP entstand aus pSUN300, indem 30 in pSUN300 ein USP-Promotor als EcoRI- Fragment inseriert wurde. Das Polyadenylierungssignal ist das des Ostreococcus-Gens aus dem A. tumefaciens Ti-Plasmid (ocs-Terminator, Genbank Accession V00088) (De Greve, H., Dhaese, P., Seurinck, J., Lemmers, M., Van Montagu, M. and Schell, J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. 35 Appl. Genet. 1 (6), 499-511 (1982). Der USP-Promotor entspricht den Nukleotiden 1 bis 684 (Genbank Accession X56240), wobei ein Teil der nichtcodierenden Region des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfrag-

ment wurde mittels käuflichen T7-Standardprimer (Stratagene) und mit Hilfe eines synthetisierten Primers über eine PCR-Reaktion nach Standardmethoden amplifiziert. (Primersequenz:

5'-GTCGACCCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCC GGATCTGCTGGCTATGAA-3', SEQ ID NO: 164). Das PCR-Fragment wurde mit EcoRI/Sall nachgeschnitten und in den Vektor pSUN300 mit OCS Terminator eingesetzt. Es entstand das Plasmid mit der Bezeichnung pSUN-USP.Das Konstrukt wurde zur Transformation von Arabidopsis thaliana,

10 Beispiel 17: Expression von OtELO1 und OtELO2 in Hefen

Raps, Tabak und Leinsamen verwendet.

20

25

30

Hefen, die wie unter Beispiel 15 mit den Plasmiden pYES3, pYES3-OtELO1 und pYES3-OtELO2 transformiert wurden, wurden folgendermaßen analysiert:

Die Hefezellen aus den Hauptkulturen wurden durch Zentrifugation (100 x g, 5 min, 20°C) geerntet und mit 100 mM NaHCO₃, pH 8,0 gewaschen, um restliches Médium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 ml 1 N methanolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO₃, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend wurden die PE-Phasen mit Na₂SO₄ getrocknet, unter Argon eingedampft und in 100 μl PE aufgenommen. Die Proben wurden auf einer DB-23-Kapillarsäule (30 m, 0,25 mm, 0,25 μm, Agilent) in einem Hewlett-Packard 6850-Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50°C bis 250°C mit einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten) programmiert.

Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma). Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001,Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.

Beispiel 18: Funktionelle Charakterisierung von OtELO1 und OtELO2:

Die Substratspezifität der OtElo1 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Tab.5). Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der OtElo1-Reaktion. Dies bedeutet, dass das Gen OtElo1 funktional exprimiert werden konnte.

Tabelle 4 zeigt, dass die OtElo1 eine enge Substratspezifität aufweist. Die OtElo1 konnte nur die C20-Fettsäuren Eicosapentaensäure (Figur 7) und Arachidonsäure (Figur 8) elongieren, bevorzugte aber die ω -3-desaturierte Eicosapentaensäure.

Tabelle 5:

Fettsäuresubstrat	Umsatz (in %)
16:0	=
16:1 ^{Δ9}	•
18:0	-
18:1 ^{Δ9}	
18:1 ^{∆11}	-
18:2 ^{Δ9,12}	-
18:3 ^{Δ6,9,12}	-
18:3 ^{∆5,9,12}	-
20:3 ^{Δ8,11,14}	. •
20:4 ^{Δ5,8,11,14}	10,8 ± 0,6
20:5 ^{45,8,11,14,17}	46,8 ± 3,6
22:4 ^{Δ7,10,13,16}	-
22:6 ^{Δ4,7,10,13,16,19}	- ·

5

Tabelle 5 zeigt die Substratspezifität der Elongase OtElo1 für C20 polyungesättigte Fettsäuren mit einer Doppelbindung in Δ5 Position gegenüber verschiedenen Fettsäuren.

Die Hefen, die mit dem Vektor pOTE1 transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert. Jeder Wert gibt den Mittelwert (n=3)
± Standardabweichung wieder.

Die Substratspezifität der OtElo2 (SEQ ID NO: 81) konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Tab. 6). Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der OtElo2-Reaktion.

5 Dies bedeutet, dass das Gen OtElo2 funktional exprimiert werden konnte.

Tabelle 6:

Fettsäuresubstrat	Umsatz (in %)
16:0	-
16:1 ^{∆9}	-
16:3 ^{Δ7,10,13}	-
18:0	-
18:1 ^{∆6}	-
18:1 ^{Δ9}	-
18:1 ^{∆11}	-
18:2 ^{∆9,12}	-
18:3 ^{∆6,9,12}	15,3±
18:3 ^{Δ5,9,12}	•
18:4 ^{Δ6,9,12,15}	21,1±
20:2 ^{Δ11,14}	-
. 20:3 Δ8,11,14	
20:4 ^{Δ5,8,11,14}	-
20:5 ^{45,8,11,14,17}	•
22:4 ^{Δ7,10,13,16}	-
22:5. ^{47,10,13,16,19}	
22:6 ^{Δ4,7,10,13,16,19}	•

Tabelle 6 zeigt die Substratspezifität der Elongase OtElo2 gegenüber verschiedenen Fettsäuren.

Die Hefen, die mit dem Vektor pOTE2 transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert. Jeder Wert gibt den Mittelwert (n=3) ± Standardabweichung wieder.

20

Die enzymatische Aktivität, die in Tabelle 6 wiedergegeben wird, zeigt klar, dass OTELO2 eine Δ -6-Elongase ist.

Beispiel 19: Klonierung von Genen aus Thalassiosira pseudonana

Durch Suche nach konservierten Bereichen in den Proteinsequenzen mit Hilfe der in der Anmeldung aufgeführten Elongase-Gene mit Δ -5-Elongaseaktivität oder Δ -6-Elongaseaktivität konnten zwei Sequenzen mit entsprechenden Motiven in einer Thalassiosira pseudonana Sequenzdatenbank (genomische Sequenzen) identifiziert werden. Es handelt sich dabei um die folgenden Sequenzen:

SEQ ID	Aminosäuren
43	358
59	358
45	272
	43

Eine 2 L Kultur von T. pseudonana wurde in f/2 Medium (Guillard, R.R.L. 1975. Culture of phytoplankton for feeding marine invertebrates. In Culture of Marine Invertebrate Animals (Eds. Smith, W.L. and Chanley, M.H.), Plenum Press, New York, pp 29-60.) für 14 d (= Tage) bei einer Lichtstärke von 80 E/cm² angezogen. Nach Zentrifugation der Zellen wurde RNA mit Hilfe des RNAeasy Kits der Firma Quiagen (Valencia, CA, US) nach Herstellerangaben isoliert. Die mRNA wurde mit dem Marathon cDNA Amplification-Kit (BD Biosciences) reverse transkribiert und entsprechend den Herstellerangaben Adaptoren ligiert. Die cDNA-Bank wurde dann für die PCR zur Klonierung 15 von Expressionsplasmiden mittels 5'- und 3'-RACE (rapid amplification of cDNA ends) verwendet.

Beispiel 20: Klonierung von Expressionsplasmiden zur heterologen Expression in -Hefen

Die entsprechenden Primerpaare wurden so ausgewählt, dass sie die Hefe-Konsensus-Sequenz für hocheffiziente Translation (Kozak, Cell 1986, 44:283-292) neben dem Startcodon trugen. Die Amplifizierung der TpElo-DNAs wurde jeweils mit 1 μL cDNA, 200 μM dNTPs, 2,5 U Advantage-Polymerase und 100 pmol eines jeden Primers in einem Gesamtvolumen von 50 µl durchgeführt. Die Bedingungen für die PCR waren wie folgt: Erste Denaturierung bei 95°C für 5 Minuten, gefolgt von 30 Zyklen bei 94°C für 30 Sekunden, 55°C für 1 Minute und 72°C für 2 Minuten sowie ein letzter Verlängerungsschritt bei 72°C für 10 Minuten.

Für die Klonierung der Sequenz zur heterologen Expression in Hefen wurden folgende Oligonukleotide für die PCR-Reaktion verwendet:

Gen-Name und SEQ ID NO:	Primersequenz
TpELO1 (Δ5-Elongase), SEQ ID NO: 59	F:5'-accatgtgctcaccaccgccgtc (SEQ ID NO: 158)
	R:5'- ctacatggcaccagtaac (SEQ ID NO: 159)
TpELO2 (Δ5-Elongase), SEQ ID NO: 85	F:5'-accatgtgctcatcaccgccgtc (SEQ ID NO: 160)
·	R:5'-ctacatggcaccagtaac (SEQ ID NO: 161)
TpELO3 (Δ6-Elongase), SEQ ID NO:45	F:5'-accatggacgcctacaacgctgc (SEQ ID NO: 162)
	R:5'- ctaagcactcttcttcttt (SEQ ID NO: 163)

^{*}F=forward primer, R=reverse primer

Die PCR Produkte wurde für 30 min bei 21 °C mit dem Hefe-Expressionsvektor - pYES2.1-TOPO (Invitrogen) gemäß Herstellerangaben inkubiert. Das PCR-Produkt wird dabei durch einen T-Überhang und Aktivität einer Topoisomerase (Invitrogen) in den Vektor ligiert. Nach der Inkubation erfolgte dann die Transformation von E. coli DH5α Zellen. Entsprechende Klone wurden durch PCR identifiziert, die Plasmid-DNA mittels Qiagen DNAeasy-Kit isoliert und durch Sequenzierung verifiziert. Die korrekte
 Sequenz wurde dann in den Saccharomyces Stamm INVSc1 (Invitrogen) durch Elektroporation (1500 V) transformiert. Zur Kontrolle wurde der leere Vektor pYES2.1 parallel transformiert. Anschließend wurden die Hefen auf Komplett-Minimalmedium ohne Uracil mit 2 % Glucose ausplattiert. Zellen, die ohne Uracil im Medium wachstumsfähig waren, enthalten damit die entsprechenden Plasmide pYES2.1, pYES2.1-TpELO1, pYES2.1-TpELO2 und pYES2.1-TpELO3. Nach der Selektion wurden je zwei Transformaten zur weiteren funktionellen Expression ausgewählt.

Beispiel 21: Klonierung von Expressionsplasmiden zur Samen-spezifischen Expression in Pflanzen

Für die Transformation von Pflanzen wird ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu wird mit folgendem Primerpaar Notl-Schnittstellen am 5' und 3'-Ende der kodierenden Sequenz eingefügt:

PSUN-TPELO1

Forward: 5'-GCGGCCGCACCATGTGCTCACCACCGCCGTC (SEQ ID NO: 152)

Reverse: 3'-GCGGCCGCCTACATGGCACCAGTAAC (SEQ ID NO: 153)

PSUN-TPELO2

Forward: 5'-GCGGCCGCACCATGTGCTCATCACCGCCGTC (SEQ ID NO: 154)

Reverse: 3'-GCGGCCGCCTACATGGCACCAGTAAC (SEQ ID NO: 155)

PSUN-TPELO3

Forward: 5'-GCGCCGCaccatggacgcctacaacgctgc (SEQ ID NO: 156) 5 Reverse: 3'-GCGGCCGCCTAAGCACTCTTCTTT (SEQ ID NO: 157)

Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 µL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl2

5,00 µL 2mM dNTP 10

1,25 µL je Primer (10 pmol/µL)

0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C 15 Denaturierungstemperatur: 1 min 94°C Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

30

35

Die PCR Produkțe werden für 16 h bei 37 °C mit dem Restriktionsenzym Notl inkubiert. Der Pflanzen-Expressionsvektor pSUN300-USP wird in gleicherweise inkubiert. 20 Anschliessend werden die PCR Produkte sowie der 7624 bp große Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolgt mittels Qiagen Gel Purification Kit gemäss Herstellerangaben. Anschließend werden Vektor und PCR-Produkte ligiert. Dazu wird das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide 25 pSUN-TPELO1, pSUN-TPELO2 und pSUN-TPELO3 werden durch Sequenzierung verifiziert.

pSUN300 ist ein Derivat des Plasmides pPZP (Hajdukiewicz,P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors forplant transformation. Plant Mol Biol 25:989-994). pSUN-USP entstand aus pSUN300, indem in pSUN300 ein USP-Promotor als EcoRI- Fragment inseriert wurde. Das Polyadenylierungssignal ist das des Octopinsynthase-Gens aus dem A. tumefaciens Ti-Plasmid (ocs-Terminator, Genbank Accession V00088) (De Greve, H., Dhaese, P., Seurinck, J., Lemmers, M., Van Montagu, M. and Schell, J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982) Der USP-Promotor entspricht den Nukleotiden 1-684 (Genbank Accession X56240), wobei ein Teil der nichtcodierenden Region des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfragment

wurde mittels käuflichen T7-Standardprimer (Stratagene) und mit Hilfe eines synthetisierten Primers über eine PCR-Reaktion nach Standardmethoden amplifiziert.

(Primersequenz: 5'-GTCGACCCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCC GGATCTGCTGGCTATGAA-3'; SEQ ID NO: 151).

Das PCR-Fragment wurde mit EcoRI/Sall nachgeschnitten und in den Vektor pSUN300 mit OCS Terminator eingesetzt. Es entstand das Plasmid mit der Bezeichnung pSUN-USP.Das Konstrukt wurde zur Transformation von Arabidopsis thaliana, Raps, Tabak und Leinsamen verwendet.

Die Lipidextraktion aus Hefen und Samen erfolgte identisch zu Beispiel 6. 10

Beispiel 22: Expression von TpELO1, TpELO2 und TpELO3 in Hefen

Hefen, die wie unter Beispiel 4 mit den Plasmiden pYES2, pYES2-TpELO1, pYES2-TpELO2 und pYES2-TpELO3 transformiert wurden, wurden folgendermaßen analysiert:

- Die Hefezellen aus den Hauptkulturen wurden durch Zentrifugation (100 x g, 5 min, 20°C) geerntet und mit 100 mM NaHCO₃, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 ml 1 N methanolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit 20 Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO3, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend wurden die PE-Phasen mit Na₂SO₄ getrocknet, unter Argon eingedampft und in 100 µl PE aufgenommen. Die Proben wurden auf einer DB-23-Kapillarsäule (30 m, 0,25 mm, 0,25 µm, Agilent) in einem Hewlett-Packard 6850-25 Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50°C bis 250°C mit einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten) programmiert.
- Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma). Die Methodik ist beschrieben zum 30 Beispiel in Napier and Michaelson, 2001, Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.
- Beispiel 23: Funktionelle Charakterisierung von TpELO1 und TpELO3: 35

Die Substratspezifität der TpElo1 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Fig. 9). Die gefütterten Substrate sind in großen Mengen

in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der TpElo1-Reaktion. Dies bedeutet, dass das Gen TpElo1 funktional exprimiert werden konnte.

Tabelle 7 zeigt, dass die TpElo1 eine enge Substratspezifität aufweist. Die TpElo1
 konnte nur die C20-Fettsäuren Eicosapentaensäure und Arachidonsäure elongieren, bevorzugte aber die ω-3-desaturierte Eicosapentaensäure.

Die Hefen, die mit dem Vektor pYES2-TpELO1 transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert.

Tabelle 7: Expression von TpELO1 in Hefe. In den Spalten 1 und 3 sind die Kontrolreaktionen für die Spalten 2 (gefüttert 250 μ M 20:4 Δ 5,8,11,14) und 4 (gefüttert 250 μ M 20:5 Δ 5,8,11,14,17) wiedergegeben.

<u> </u>	Expression	Expression	Expression	Expression
Fettsäuren	1	2	3	4
16:0	18.8	17.8	25.4	25.2
16:1 ^{Δ9}	28.0	29.8	36.6	36.6
18:0	5.2	5.0	6.8	6.9
18:1 ^{Δ9}	25.5	23.6	24.6	23.9
20:4 ^{Δ5,8,11,14}	22.5	23.4	-	-
22:4 ^{Δ7,10,13,16}	-	0.4	-	-
20:5 ^{Δ5,8,11,14,17}		_	6.6	6.5
22:5 ^{Δ7,10,13,16,19}		- ::	-	0.9
% Umsatz	0	1.7	0	12.2

- Die Substratspezifität der TpElo3 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Fig. 10). Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der TpElo3-Reaktion. Dies bedeutet, dass das Gen TpElo3 funktional exprimiert werden konnte.
- 20 Tabelle 8 zeigt, dass die TpElo3 eine enge Substratspezifität aufweist. Die TpElo3 konnte nur die C18-Fettsäuren γ-Linolensäure und Stearidonsäure elongieren, bevorzugte aber die ω-3-desaturierte Stearidonsäure.

Die Hefen, die mit dem Vektor pYES2-TpELO3 transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert.

Tabelle 8: Expression von TpELO3 in Hefe. Spalte 1 zeigt das Fettsäureprofil von Hefe ohne Fütterung. Spalte 2 zeigt die Kontrollreaktion. In den Spalten 3 bis 6 wurden γ-Linolensäure, Stearidonsäure, Arachidonsäure und Eicosapentaensäure gefüttert (250 µM jeder Fettsäure).

Fettsäuren	1	2	3	4	5	6
16:0	17.9	20.6	17.8	16.7	18.8	18.8
16:1 ^{Δ9}	41.7	18.7	27.0	33.2	24.0	31.3
18:0	7.0	7.7	6.4	6.6	5.2	6,0
18:1 ^{Δ9}	33.3	16.8	24.2	31.8	25.5	26.4
18:2 ^{∆9,12}	-	36.1	-	-	-	-
18:3 ^{Δ6,9,12}	-	-	6.1	-	-	
18:4 ^{Δ6,9,12,15}	-	-	-	1.7	-	
20:2 ^{Δ11,14}	_	0	-	-	-	
20:3 ^{A8,11,14}	-	-	18.5	-	-	
20:4 ^{Δ8,11,14,17}	-	-	-	10.0	-	
20:4 ^{\Delta 5,8,11,14}	-		-	-	22.5	
22:4 ^{Δ7,10,13,16}	-	- ,	-	-	0	
20:5 ^{\Delta 5,8,11,14,17}	-	-	-	-	-	17.4
22:5 ^{Δ7,10,13,16,19}	-	-	-	-	-	0
% Umsatz	0	0	75	85	0	0

10 Beispiel 24: Klonierung eines Expressionsplasmides zur heterologen Expression der Pi-omega3Des in Hefen

Der Pi-omega3Des Klon wurde für die heterologe Expression in Hefen über PCR mit entsprechenden Pi-omega3Des spezifischen Primern in den Hefe-Expressionsvektor pYES3 kloniert. Dabei wurde ausschließlich der für das Pi-omega3Des Protein kodierende offene Leseraster des Gens amplifiziert und mit zwei Schnittstellen für die

15 kodierende offene Leseraster des Gens amplifiziert und mit zwei Schnittstellen für die Klonierung in den pYES3 Expressionsvektor versehen: Forward Primer: 5'-TAAGCTTACATGGCGACGAAGGAGG (SEQ ID NO: 149)
Reverse Primer: 5'-TGGATCCACTTACGTGGACTTGGT (SEQ ID NO: 150)

Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 μL Template cDNA
 5,00 μL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl₂
 5,00 μL 2mM dNTP
 1,25 μL je Primer (10 pmol/μL des 5'-ATG sowie des 3'-Stopp Primers)
 0,50 μL Advantage-Polymerase

10 Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C Denaturierungstemperatur: 1 min 94°C Elongationstemperatur: 2 min 72°C

15 Anzahl der Zyklen: 35

Das PCR Produkt wurde für 2 h bei 37 °C mit den Restriktionsenzymen HindIII und BamHI inkubiert. Der Hefe-Expressionsvektor pYES3 (Invitrogen) wurde in gleicherweise inkubiert. Anschließend wurde das 1104 bp große PCR Produkt sowie der Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolge mittels Qiagen Gel 20 purification Kit gemäss Herstellerangaben. Anschließend wurden Vektor und Desaturase-cDNA ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Das entstandene Plasmid pYES3-Pi-omega3Des wurde durch Sequenzierung überprüftt und in den Saccharomyces Stamm INVSc1 (Invitrogen) durch Elektroporation (1500 V) transformiert. Zur Kontrolle wurde pYES3 parallel transformiert. Anschliessend wurden 25 die Hefen auf Komplett-Minimalmedium ohne Tryptophan mit 2 % Glucose ausplattiert. Zellen, die auf ohne Tryptophan im Medium wachstumsfähig waren, enthalten damit die entsprechenden Plasmide pYES3, pYES3-Pi-omega3Des. Nach der Selektion wurden je zwei Transformaten zur weiteren funktionellen Expression ausgewählt.

30 Beispiel 25: Klonierung von Expressionsplasmiden zur Samen-spezifischen Expression in Pflanzen

Für die Transformation von Pflanzen wurde ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu wurde mit folgendem Primerpaar Notl-Schnittstellen am 5' und 3'-Ende der kodierenden Sequenz eingefügt:

35 PSUN-Pi-omega3Des

Reverse: 3'-GCGGCCGCTTACGTGGACTTGGTC (SEQ ID NO: 147)

Forward: 5'-GCGGCCGCatGGCGACGAAGGAGG (SEQ ID NO: 148)

Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 µL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl₂

5 5,00 µL 2mM dNTP

1,25 µL je Primer (10 pmol/µL)

0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR:

10 Anlagerungstemperatur: 1 min 55°C

Denaturierungstemperatur: 1 min 94°C

Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

Die PCR Produkte wurden für 4 h bei 37 °C mit dem Restriktionsenzym Notl inkubiert.

Der Pflanzen-Expressionsvektor pSUN300-USP wurde in gleicherweise inkubiert.

Anschließend wurde die PCR Produkte sowie der 7624 bp große Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolge mittels Qiagen Gel purification Kit gemäss Herstellerangaben. Anschliessend wurden Vektor und PCR-Produkte ligiert.

Dazu wurde das Rapid Ligation Kit von Roche verwendet. Das entstandene Plasmid pSUN-Piomega3Des wurde durch Sequenzierung verifiziert.

Beispiel 26: Expression von Pi-omega3Des in Hefen

Hefen, die wie unter Beispiel 24 mit dem Plasmid pYES3 oder pYES3- Pi-omega3Des transformiert wurden, wurden folgendermaßen analysiert:

Die Hefezellen aus den Hauptkulturen wurden durch Zentrifugation (100 x g, 5 min, 20°C) geerntet und mit 100 mM NaHCO₃, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 ml 1 N methanolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO₃, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend wurden die PE-Phasen mit Na₂SO₄ getrocknet, unter Argon eingedampft und in 100 μl PE aufgenommen. Die Proben wurden auf einer DB-23-Kapillarsäule (30 m, 0,25 mm, 0,25 μm, Agilent) in einem Hewlett-Packard 6850-

Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50°C bis 250°C mit einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten) programmiert. Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma). Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001,Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.

10 Beispiel 27: Funktionelle Charakterisierung von Pi-omega3Des:

1 1

5

15

20

Die Substratspezifität der Pi-omega3Des konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Figur 12 bis 18). Die gefütterten Substrate liegen in großen Mengen in allen transgenen Hefen vor, wodurch die Aufnahme dieser Fettsäuren in die Hefen bewiesen ist. Die transgenen Hefen zeigen die Synthese neuer Fettsäuren, den Produkten der Pi-omega3Des-Reaktion. Dies bedeutet, dass das Gen Pi-omega3Des funktional exprimiert werden konnte.

Figur 12 gibt die Desaturierung von Linolsäure (18:2 ω-6-Fettsäure) zu α-Linolensäure (18:3 ω-3-Fettsäure) durch die Pi-omega3Des wieder. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen, die mit dem Leervektor pYES2 (Figur 12 A) oder dem Vektor pYes3-Pi-omega3Des (Figur 12 B) transformiert worden waren. Die Hefen wurden in Minimalmedium in Gegenwart von C18:2 $^{\Delta 9,12}$ -Fettsäure (300 μM) kultiviert. Anschließend wurden die FAMEs über GLC analysiert.

- In Figur 13 ist die Desaturierung von γ -Linolensäure (18:3 ω -6-Fettsäure) zu Stearidonsäure (18:4 ω -3-Fettsäure) durch Pi-omega3Des wiedergegeben.
- Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen, die mit dem Leervektor pYES2 (Figur 13 A) oder dem Vektor pYes3-Piomega3Des (Figur 13 B) transformiert worden waren. Die Hefen wurden in Minimalmedium in Gegenwart von γ-C18:3^{Δ6,9,12}-Fettsäure (300 μM) kultiviert. Anschließend wurden die FAMEs über GLC analysiert.
- Figur 14 gibt die Desaturierung von C20:2-ω-6-Fettsäure zu C20:3-ω-3-Fettsäure durch Pi-omega3Des wieder. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen, die mit dem Leervektor pYES2 (Figur 14 A) oder dem Vektor pYes3-Pi-omega3Des (Figur 14 B) transformiert worden waren. Die Hefen wurden in Minimalmedium in Gegenwart von C20:2^{Δ11,14}-Fettsäure (300 μM) kultiviert.
 Anschließend wurden die FAMEs über GLC analysiert.
 - Figur 15 gibt die Desaturierung von C20:3-ω-6-Fettsäure zu C20:4-ω-3-Fettsäure durch Pi-omega3Des wieder. Die Synthese der Fettsäuremethylester erfolgte durch

saure Methanolyse intakter Zellen, die mit dem Leervektor pYES2 (Figur 15 A) oder dem Vektor pYes3-Pi-omega3Des (Figur 15 B) transformiert worden waren. Die Hefen wurden in Minimalmedium in Gegenwart von C20:3^{Δ8,11,14}-Fettsäure (300 μM) kultiviert. Anschließend wurden die FAMEs über GLC analysiert.

5 In Figur 16 wird die Desaturierung von Arachidonsäure (C20:4-ω-6-Fettsäure) zu Eicosapentaensäure (C20:5-ω-3-Fettsäure) durch die Pi-omega3Des gezeigt.

10

15

35

Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen, die mit dem Leervektor pYES2 (Figur 16 A) oder dem Vektor pYes3-Piomega3Des (Figur 16 B) transformiert worden waren. Die Hefen wurden in Minimalmedium in Gegenwart von C20:4^{Δ5,8,11,14}-Fettsäure (300 μM) kultiviert. Anschließend wurden die FAMEs über GLC analysiert.

Figur 17 gibt die Desaturierung von Docosatetraensäure (C22:4- ω -6-Fettsäure) zu Docosapentaensäure (C22:5- ω -3-Fettsäure) durch Pi-omega3Des wieder. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen, die mit dem Leervektor pYES2 (Figur 17 A) oder dem Vektor pYes3-Pi-omega3Des (Figur 17 B) transformiert worden waren. Die Hefen wurden in Minimalmedium in Gegenwart von C22:4 $^{\Delta 7,10,13,16}$ -Fettsäure (300 μ M) kultiviert. Anschließend wurden die FAMEs über GLC analysiert.

Die Substratspezifität der Pi-omega3Des gegenüber verschiedenen Fettsäuren ist
Figur 18 zu entnehmen. Die Hefen, die mit dem Vektor pYes3-Pi-omega3Des transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert. Jeder Wert gibt einen Mittelwert aus drei Messungen wieder. Die Umsetzungsraten (%
Desaturation) wurden mit der Formel:
[Produkt]/[Produkt]+[Substrat]*100 errechnet.

Wie unter Beispiel 9 beschrieben kann auch die Pi-omega3Des zur Erzeugung transgener Pflanzen verwendet werden. Aus den Samen dieser Pflanzen kann dann die Lipidextraktion wie unter Beispiel 6 beschrieben erfolgen.

30 Beispiel 28: Klonierung von Desaturasegenen aus Ostreococcus tauri

Durch Suche nach konservierten Bereichen in den Proteinsequenzen mit Hilfe von konservierten Motiven (His-Boxen, Domergue et al. 2002, Eur. J. Biochem. 269, 4105-4113) konnten fünf Sequenzen mit entsprechenden Motiven in einer Ostreococcus tauri Sequenzdatenbank (genomische Sequenzen) identifiziert werden. Es handelt sich dabei um die folgenden Sequenzen:

Gen-Name	SEQ ID	Aminosäuren	Homologie
OtD4	SEQ ID NO: 95	536	Δ-4-Desaturase
OtD5.1	SEQ ID NO: 91	201	Δ-5-Desaturase
OtD5.2	SEQ ID NO: 93	237	Δ-5-Desaturase
OtD6.1	SEQ ID NO: 89	456	Δ-6-Desaturase
OtFad2	SEQ ID NO: 107	361	Δ-12-Desaturase

Die Alignments zur Auffindung von Homologien der einzelnen Gene wurden mit dem tBLASTn-Aalgorithmus (Altschul et al., J. Mol. Biol. 1990, 215: 403 – 410) durchgeführt.

5 Die Klonierung erfolgte wie folgt:

40 ml einer Ostreococcus tauri Kultur in der stationären Phase wurden abzentrifugiert und in 100 μl Aqua bidest resuspendiert und bei –20°C gelagert. Auf der Basis des PCR-Verfahren wurden die zugehörigen genomischen DNAs amplifiziert. Die entsprechenden Primerpaare wurden so ausgewählt, dass sie die Hefe-Konsensus-Sequenz für hocheffiziente Translation (Kozak, Cell 1986, 44:283-292) neben dem Startcodon trugen. Die Amplifizierung der OtDes-DNAs wurde jeweils mit 1 μl aufgetauten Zellen, 200 μM dNTPs, 2,5 U Taq-Polymerase und 100 pmol eines jeden Primers in einem Gesamtvolumen von 50 μl durchgeführt. Die Bedingungen für die PCR waren wie folgt: Erste Denaturierung bei 95°C für 5 Minuten, gefolgt von 30 Zyklen bei 94°C für 30 Sekunden, 55°C für 1 Minute und 72°C für 2 Minuten sowie ein letzter Verlängerungsschritt bei 72°C für 10 Minuten.

Folgende Primer wurden für die PCR eingesetzt:

OtDes6.1 Forward: 5'ggtaccacataatgtgcgtggagacggaaaataacg3' (SEQ ID NO: 145)

OtDes6.1 Reverse: 5'ctcgagttacgccgtctttccggagtgttggcc3' (SEQ ID NO: 146)

20 Beispiel: 29 Klonierung von Expressionsplasmiden zur heterologen Expression in Hefen:

Zur Charakterisierung der Funktion der Desaturase OtDes6.1 (= Δ-6-Desaturase) aus Ostreococcus tauri wurde der offenen Leserahmen der DNA stromabwärts des Galactose-induzierbaren GAL1-Promotors von pYES2.1/V5-His-TOPO (Invitrogen) kloniert, wobei der entsprechenden pYES2.1-OtDes6.1 Klon erhalten wurde. In entsprechender Art und Weise können weitere Desaturase-Gene aus Ostreococcus kloniert werden.

Der Saccharomyces cerevisiae-Stamm 334 wurde durch Elektroporation (1500 V) mit dem Vektor pYES2.1-OtDes6.1 transformiert. Als Kontrolle wurde eine Hefe verwendet, die mit dem leeren Vektor pYES2 transformiert wurde. Die Selektion der transformierten Hefen erfolgte auf Komplett-Minimalmedium (CMdum)-Agarplatten mit 2% Glucose, aber ohne Uracil. Nach der Selektion wurden je drei Transformanten zur weiteren funktionellen Expression ausgewählt.

Für die Expresssion der OtDes6.1 Desaturase wurden zunächst Vorkulturen aus jeweils 5 ml CMdum-Flüssigmedium mit 2% (w/v) Raffinose aber ohne Uracil mit den ausgewählten Transformanten angeimpft und 2 Tage bei 30°C, 200 rpm inkubiert. 5 ml CMdum-Flüssigmedium (ohne Uracil) mit 2% Raffinose und 300 μM verschiedener Fettsäuren wurden dann mit den Vorkulturen auf eine OD₆₀₀ von 0,05 angeimpft. Die Expression wurde durch die Zugabe von 2% (w/v) Galactose induziert. Die Kulturen wurden für weitere 96 h bei 20°C inkubiert.

Beispiel: 30 Klonierung von Expressionsplasmiden zur Samen-spezifischen Expression in Pflanzen

Für die Transformation von Pflanzen wird ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu werden mittels PCR NotI-Schnittstellen am 5' und 3'-Ende der kodierenden Sequenzen eingefügt. Die entsprechenden Primersequenzen werden von den 5'- und 3-Bereich der Desaturasen abgeleitet.

20 Zusammensetzung des PCR-Ansatzes (50 μL):

5,00 µL Template cDNA 5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl₂ 5,00 µL 2mM dNTP 1,25 µL je Primer (10 pmol/µL) 0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C Denaturierungstemperatur: 1 min 94°C Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

10

15

25

30

Die PCR Produkte werden für 16 h bei 37 °C mit dem Restriktionsenzym Notl inkubiert. Der Pflanzen-Expressionsvektor pSUN300-USP wird in gleicherweise inkubiert. Anschliessend werden die PCR Produkte sowie der Vektor durch Agarose-

Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolgt mittels Qiagen Gel Purification Kit gemäss Herstellerangaben. Anschliessend werden Vektor und PCR-Produkte ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide werden durch Sequenzierung verifiziert.

pSUN300 ist ein Derivat des Plasmides pPZP (Hajdukiewicz,P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989-994). pSUN-USP entstand aus pSUN300, indem in pSUN300 ein USP-Promotor als EcoRI- Fragment inseriert wurde. Das Polyadenylierungssignal ist das des Ostreococcus-Gens aus dem A. tumefaciens Ti-Plasmid (ocs-Terminator, Genbank Accession V00088) (De Greve, H., Dhaese, P., Seurinck, J., Lemmers, M., Van Montagu, M. and Schell, J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982). Der USP-Promotor entspricht den Nukleotiden 1 bis 684 (Genbank Accession X56240), wobei ein Teil der nichtcodierenden Region des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfrag-15 ment wurde mittels käuflichen T7-Standardprimer (Stratagene) und mit Hilfe eines synthetisierten Primers über eine PCR-Reaktion nach Standardmethoden amplifiziert. (Primersequenz: 5'-

GTCGACCCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCC 20 GGATCTGCTGGCTATGAA-3', SEQ ID NO: 144). Das PCR-Fragment wurde mit EcoRI/Sall nachgeschnitten und in den Vektor pSUN300 mit OCS Terminator eingesetzt. Es entstand das Plasmid mit der Bezeichnung pSUN-USP.Das Konstrukt wurde zur Transformation von Arabidopsis thaliana, Raps, Tabak und Leinsamen verwendet. 25

Expression von OtDes6.1 in Hefen Beispiel: 31

5

10

30

35

Hefen, die wie unter Beispiel 4 mit den Plasmiden pYES2 und pYES2-OtDes6.2 transformiert wurden, wurden folgendermaßen analysiert:

Die Hefezellen aus den Hauptkulturen wurden durch Zentrifugation (100 x g, 5 min, 20°C) geerntet und mit 100 mM NaHCO₃, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 ml 1 N methanolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO₃, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend wurden die PE-Phasen mit Na₂SO₄ getrocknet, unter Argon eingedampft und in 100 μl PE aufgenommen. Die Proben wurden auf einer DB-23-

- Kapillarsäule (30 m, 0,25 mm, 0,25 μm, Agilent) in einem Hewlett-Packard 6850-Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50°C bis 250°C mit einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten) programmiert.
- Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma). Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001,Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters.
 439(3):215-218.
 - Beispiel: 32 Funktionelle Charakterisierung von Desaturasen aus Ostreococcus:
- Die Substratspezifität von Desaturasen kann nach Expression in Hefe (siehe Beispiele Klonierung von Desaturase-Genen, Hefeexpression) durch die Fütterung mittels verschiedener Hefen ermittelt werden. Beschreibungen für die Bestimmung der einzelnen Aktivitäten finden sich in WO 93/11245 für Δ15–Desaturasen, WO 94/11516 für Δ12–Desaturasen, WO 93/06712, US 5,614,393, US5614393, WO 96/21022, WO0021557 und WO 99/27111 für Δ6-Desaturasen, Qiu et al. 2001, J. Biol. Chem. 276, 31561-31566 für Δ4-Desaturasen, Hong et al. 2002, Lipids 37,863-868 für Δ5-Desaturasen.
- Tabelle 9 gibt die Substratspezifität der Desaturase OtDes6.1 gegenüber verschiedenen Fettsäuren wieder. Die Substratspezifität der OtDes6.1 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden. Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der OtDes6.2-Reaktion (Fig. 20). Dies bedeutet, dass das Gen OtDes6.1 funktional exprimiert werden konnte.
 - Die Hefen, die mit dem Vektor pYES2-OtDes6.1 transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert. Jeder Wert gibt den Mittelwert (n=3) ±
- 30 Standardabweichung wieder. Die Aktivität entspricht der Konversionsrate errechnet nach [Substrat/(Substrat+Produkt)*100].

Tabelle 9 zeigt, dass die OtDes6.1 eine Substratspezifität für Linol- und Linolensäure (18:2 und 18:3) aufweist, da mit diesen Fettsäuren die höchsten Aktivitäten erreicht werden. Die Aktivität für Ölsäure (18:1) und Palmitoleinsäure (16:1) ist dagegen deutlich geringer. Die bevorzugte Umsetzung von Linol- und Linolensäure zeigt die Eignung dieser Desaturase für die Herstellung von polyungesättigten Fettsäuren.

Substrate	Aktivität in %
16:1 ^{∆9}	5,6
18:1 ^{∆9}	13,1
18:2 ^{Δ9,12}	68,7
18:3 ^{49,12,15}	64,6

Figur 20 zeigt die Umsetzung von Linolsäure durch OtDes6.1. Die Analyse der FAMEs erfolgte über Gaschrommatographie. Das gefütterte Substrat (C18:2) wird zu γ-C18:3 umgesetzt. Sowohl Edukt als auch das entstandene Produkt sind durch Pfeile markiert.

In Figur 21 wird die Umsetzung von Linolsäure (= LA) und α -Linolensäure (= ALA) in 10 Gegenwart von OtDes6.1 zu γ-Linolensäure (= GLA) bzw. Stearidonsäure (= STA) wiedergegeben (Figur 21 A und C). Weiterhin zeigt Figur 21 die Umsetzung von Linolsäure (= LA) und α -Linolensäure (= ALA) in Gegenwart der Δ -6-Desaturase OtDes6.1 zusammen mit der Δ -6-Elongase PSE1 aus Physcomitrella patens (Zank et al. 2002, Plant J. 31:255-268) und der Δ -5-Desaturase PtD5 aus Phaeodactylum 15 tricornutum (Domergue et al. 2002, Eur. J. Biochem. 269, 4105-4113) zu Dihomo-ylinolensäure (= DHGLA) und Arachidonsäure (= ARA, Figur 21 B) bzw. zu Dihomostearidonsäure (= DHSTA) bzw. Eicosapentaensäure (= EPA, Figur 21 D). Figur 21 zeigt deutlich, dass die Reaktionsprodukte GLA und STA der Δ -6-Desaturase OtDes6.1 in Gegenwart der Δ -6-Elongase PSE1 fast quantitativ zu DHGLA bzw. DHSTA elongiert 20 wird. Die nachfolgende Desaturierung durch die Δ -5-Desaturase PtD5 erfolgt ebenfalls reibungslos zu ARA bzw. EPA. Es werden ca. 25 – 30% des Elongaseprodukts desaturiert (Figur 21 B und D).

Die folgenden Tabelle 10 gibt eine Übersiche über die klonierten Ostreococcus Desaturasen wieder:

	Ostreococcus tauri Desaturasen						
	<u> </u>	ļ					
Name	bp	aa	Homologie	Cyt. B5	His-Box1	His-Box2	His-Box3
ļ	1		Δ-4- Desatu-				
OtD4	1611	536	rase	HPGG	HCANH	WRYHHQVSHH	QVEHHLFP
			Δ-5-				
OtD5.1	606	201	Desaturase		-	-	QVVHHLFP
			Δ-5-				
OtD5.2	714	237	Desaturase	-	-	WRYHHMVSHH	QIEHHLPF
			Δ-6-				
OtD6.1	1443	480	Desaturase	HPGG	HEGGH	WNSMHNKHH	QVIHHLFP
			Δ-12-				
OtFAD2	1086	361	Desaturase	-)	HECGH	WQRSHAVHH	HVAHH

Beispiel: 33 Klonierung von Desaturasegenen aus Thalassiosira pseudonana

Durch Suche nach konservierten Bereichen in den Proteinsequenzen mit Hilfe von konservierten Motiven (His-Boxen, siehe Motive) konnten sechs Sequenzen mit entsprechenden Motiven in einer Thalassiosira pseudonana Sequenzdatenbank (genomische Sequenzen) identifiziert werden. Es handelt sich dabei um die folgenden Sequenzen:

Gen-Name	SEQ ID	Aminosäuren	. Homologie
TpD4	SEQ ID NO: 103	503	Δ-4-Desaturase
TpD5-1	SEQ ID NO: 99	476	Δ-5-Desaturase
TpD5-2	SEQ ID NO: 101	482	Δ-5-Desaturase
TpD6	SEQ ID NO: 97	484	Δ-6-Desaturase
TpFAD2	SEQ ID NO: 109	434	Δ-12-Desaturase
TpO3	SEQ ID NO: 105	418	ω-3-Desaturase

10

Die Klonierung erfolgte wie folgt:

40 ml einer *Thalassiosira pseudonana* Kultur in der stationären Phase wurden abzentrifugiert und in 100 μl Aqua bidest resuspendiert und bei –20°C gelagert. Auf der Basis des PCR-Verfahren wurden die zugehörigen genomischen DNAs amplifiziert. Die

WO 2005/012316 PCT/EP2004/007957

entsprechenden Primerpaare wurden so ausgewählt, dass sie die Hefe-Konsensus-Sequenz für hocheffiziente Translation (Kozak, Cell 1986, 44:283-292) neben dem Startcodon trugen. Die Amplifizierung der TpDes-DNAs wurde jeweils mit 1 µl aufgetauten Zellen, 200 µM dNTPs, 2,5 U *Taq*-Polymerase und 100 pmol eines jeden Primers in einem Gesamtvolumen von 50 µl durchgeführt. Die Bedingungen für die PCR waren wie folgt: Erste Denaturierung bei 95°C für 5 Minuten, gefolgt von 30 Zyklen bei 94°C für 30 Sekunden, 55°C für 1 Minute und 72°C für 2 Minuten sowie ein letzter Verlängerungsschritt bei 72°C für 10 Minuten.

Beispiel: 34 Klonierung von Expressionsplasmiden zur heterologen Expression in Hefen:

10

25

Zur Charakterisierung der Funktion der Desaturasen aus *Thalassiosira pseudonana* wird der offenen Leserahmen der jeweiligen DNA stromabwärts des Galactose-induzierbaren GAL1-Promotors von pYES2.1/V5-His-TOPO (Invitrogen) kloniert, wobei der entsprechenden pYES2.1-Klone erhalten werden.

Der Saccharomyces cerevisiae-Stamm 334 wird durch Elektroporation (1500 V) mit den Vektoren pYES2.1-TpDesaturasen transformiert. Als Kontrolle wird eine Hefe verwendet, die mit dem leeren Vektor pYES2 transformiert wird. Die Selektion der transformierten Hefen erfolgt auf Komplett-Minimalmedium (CMdum)-Agarplatten mit 2% Glucose, aber ohne Uracil. Nach der Selektion werden je drei Transformanten zur weiteren funktionellen Expression ausgewählt.

Für die Expresssion der Tp-Desaturasen werden zunächst Vorkulturen aus jeweils 5 ml CMdum-Flüssigmedium mit 2% (w/v) Raffinose aber ohne Uracil mit den ausgewählten Transformanten angeimpft und 2 Tage bei 30°C, 200 rpm inkubiert.

5 ml CMdum-Flüssigmedium (ohne Uracil) mit 2% Raffinose und 300 μM verschiedener Fettsäuren werden dann mit den Vorkulturen auf eine OD₆₀₀ von 0,05 angeimpft. Die Expression wird durch die Zugabe von 2% (w/v) Galactose induziert. Die Kulturen werden für weitere 96 h bei 20°C inkubiert.

Beispiel: 35 Klonierung von Expressionsplasmiden zur Samen-spezifischen Expression in Pflanzen

Für die Transformation von Pflanzen wird ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu werden mittels PCR Notl-Schnittstellen am 5' und 3'-Ende der kodierenden Sequenzen eingefügt. Die entsprechenden Primersequenzen werden von den 5'- und 3-Bereich der Desaturasen abgeleitet.

Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 µL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl₂

5,00 µL 2mM dNTP

5 1,25 μL je Primer (10 pmol/μL)

0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C

Denaturierungstemperatur: 1 min 94°C

Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

10

25

30

Die PCR Produkte werden für 16 h bei 37 °C mit dem Restriktionsenzym Notl inkubiert. Der Pflanzen-Expressionsvektor pSUN300-USP wird in gleicherweise inkubiert.

- Anschliessend werden die PCR Produkte sowie der Vektor durch AgaroseGelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolgt mittels Qiagen Gel Purification Kit gemäss
 Herstellerangaben. Anschliessend werden Vektor und PCR-Produkte ligiert. Dazu
 wurde das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide
 werden durch Sequenzierung verifiziert.
 - pSUN300 ist ein Derivat des Plasmides pPZP (Hajdukiewicz,P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989-994). pSUN-USP entstand aus pSUN300, indem in pSUN300 ein USP-Promotor als EcoRI- Fragment inseriert wurde. Das Polyadeny-lierungssignal ist das des OCS-Gens aus dem A. tumefaciens Ti-Plasmid (ocs-Terminator, Genbank Accession V00088) (De Greve,H., Dhaese,P., Seurinck,J., Lemmers,M., Van Montagu,M. and Schell,J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982). Der USP-Promotor entspricht den Nukleotiden 1 bis 684 (Genbank Accession X56240), wobei ein Teil der nichtcodierenden Region
 - des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfragment wurde mittels käuflichen T7-Standardprimer (Stratagene) und mit Hilfe eines synthetisierten Primers über eine PCR-Reaktion nach Standardmethoden amplifiziert. (Primersequenz: 5'-
- 35 GTCGACCGGGGACTAGTGGGCCCTCTAGACCCGGGGGATCC GGATCTGCTGGCTATGAA-3'; SEQ ID NO: 143)

Das PCR-Fragment wurde mit EcoRI/Sall nachgeschnitten und in den Vektor pSUN300 mit OCS Terminator eingesetzt. Es entstand das Plasmid mit der Bezeichnung pSUN-USP.Das Konstrukt wurde zur Transformation von Arabidopsis thaliana, Raps, Tabak und Leinsamen verwendet.

5 Beispiel: 36 Expression von Tp-Desaturasen in Hefen

10

15

20

25

Hefen, die wie unter Beispiel 4 mit den Plasmiden pYES2 und pYES2-TpDesaturasen transformiert werden, werden folgendermaßen analysiert:

Die Hefezellen aus den Hauptkulturen werden durch Zentrifugation (100 x g, 5 min, 20°C) geerntet und mit 100 mM NaHCO₃, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten werden Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu werden die Zellsedimente mit 2 ml 1 N methanolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren werden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO₃, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend werden die PE-Phasen mit Na₂SO₄ getrocknet, unter Argon eingedampft und in 100 μl PE aufgenommen. Die Proben werden auf einer DB-23-Kapillarsäule (30 m, 0,25 mm, 0,25 μm, Agilent) in einem Hewlett-Packard 6850-Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse sind wie folgt: Die Ofentemperatur wird von 50°C bis 250°C mit einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten) programmiert.

Die Identifikation der Signale erfolgt durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma). Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001,Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.

Beispiel: 37 Funktionelle Charakterisierung von Desaturasen aus Thalassiosira pseudonana:

Die Substratspezifität von Desaturasen kann nach Expression in Hefe (siehe Beispiele Klonierung von Desaturase-Genen, Hefeexpression) durch die Fütterung mittels verschiedener Hefen ermittelt werden. Beschreibungen für die Bestimmung der einzelnen Aktivitäten finden sich in WO 93/11245 für Δ15–Desaturasen, WO 94/11516 für Δ12–Desaturasen, WO 93/06712, US 5,614,393, US5614393, WO 96/21022,
WO0021557 und WO 99/27111 für Δ6-Desaturasen, Qiu et al. 2001, J. Biol. Chem. 276, 31561-31566 für Δ4-Desaturasen, Hong et al. 2002, Lipids 37,863-868 für Δ5-Desaturasen.

Die Aktivität der einzelnen Desaturasen wird aus der Konversionsrate errechnet nach der Formel [Substrat/(Substrat+Produkt)*100].

Die folgenden Tabellen 11 und 12 geben eine Übersicht über die clonierten Thalassiosira pseudonana Desaturasen wieder.

5 Tabelle 11: Länge und charakteristische Merkmale der cionierten Thalassiosira Desaturasen.

Desaturase	cDNA (bp)	Protein (aa)	Cyt. B5	His-Box1	His-Box2	His-Box3
TpD4	1512	503	HPGG	HDGNH	WELQHMLGHH	QIEHHLFP
TpD5-1	1431	476	HPGG	HDANH	WMAQHWTHH	QVEHHLFP
TpD5-2	1443	482	HPGG	HDANH	WLAQHWTHH	QVEHHLFP
TpD6	1449	484	HPGG	HDFLH	WKNKHNGHH	QVDHHLFP
TpFAD2	1305	434	-	HECGH	HAKHH	HVAHHLFH
(d12)						
TpO3	1257	419	-	HDAGH	WLFMVTYLQH	HVVHHLF
					Н	

Tabelle 12: Länge, Exons, Homolgie und Identitäten der clonierten Desaturasen.

_	GDN			First Blood His	Hom./Iden.
Des.	A (bp)	Exon 1	Exon 2	First Blast Hit	nom.//den.
TpD4	2633	496-1314	1571-2260	Thrautochitrium D4- des	56% / 43%
TpD5-1	2630	490-800	900-2019	Phaeodactylum D5- des	74% / 62%
TpD5-2	2643	532-765	854-2068	Phaeodactylum D5- des	72% / 61%
TpD6	2371	379-480	630-1982	Phaeodactylum D6- des	83% / 69%
TpFAD2	2667	728-2032	- .	Phaeodactylum FAD2	76% / 61%
ТрО3	2402	403-988	1073-1743	Chaenorhabdidis Fad2	49% / 28%

¹⁰ Analog zu den vorgenannten Beispielen lassen sich auch die Δ -12-Desaturasegene aus Ostreococcus und Thalassiosira clonieren.

Beispiel 38 Klonierung von Eiongase Genen aus Xenopus laevis und Ciona intestinalis

Durch Suche nach konservierten Bereichen (siehe Konsensus-Sequenzen, SEQ ID NO: 115 und SEQ ID NO: 116) in den Proteinsequenzen in Gendatenbanken (Genbank) mit Hilfe der in der Anmeldung aufgeführten Elongase-Gene mit Δ -5-Elongaseaktivität oder Δ -6-Elongaseaktivität konnten weitere Elongasesequenzen aus anderen Organismen identifiziert und isoliert werden. Aus X. laevis bzw. aus C. intestinalis konnten mit entsprechenden Motiven jeweils weitere Sequenzen identifiziert werden. Es handelt sich dabei um die folgenden Sequenzen:

	·		0=0 ID NO:	Aminosäuren
Gen-Name	Organismus	Genbank-Nr.	SEQ ID NO:	Aminosauren
			447	303
ELO(XI)	Xenopus laevis	BC044967	117	
		1//4/07/10	119	290
ELO(Ci)	Ciona intestinalis	AK112719	110	

10

20

25

5

Der cDNA Klon von X. laevis wurde vom NIH (National Institut of Health) bezogen [Genetic and genomic tools for Xenopus research: The NIH Xenopus initiative, Dev. Dyn. 225 (4), 384-391 (2002)].

Der cDNA Klon von C. inetstinalis wurde von der Universität von Kyto bezogen [Satou,Y., Yamada,L., Mochizuki,Y., Takatori,N., Kawashima,T., Sasaki,A., Hamaguchi,M., Awazu,S., Yagi,K., Sasakura,Y., Nakayama,A., Ishikawa,H., Inaba,K. and Satoh,N. "A cDNA resource from the basal chordate Ciona intestinalis" JOURNAL Genesis 33 (4), 153-154 (2002)].

Beispiel 39: Klonierung von Expressionsplasmiden zur heterologen Expression in -Hefen

Die Amplifizierung der Elongase-DNAs wurde jeweils mit 1 μL cDNA, 200 μM dNTPs, 2,5 U Advantage-Polymerase und 100 pmol eines jeden Primers in einem Gesamtvolumen von 50 μl durchgeführt. Die Bedingungen für die PCR waren wie folgt: Erste Denaturierung bei 95°C für 5 Minuten, gefolgt von 30 Zyklen bei 94°C für 30 Sekunden, 55°C für 1 Minute und 72°C für 2 Minuten sowie ein letzter Verlängerungsschritt bei 72°C für 10 Minuten.

Für die Klonierung der Sequenz zur heterologen Expression in Hefen wurden folgende Oligonukleotide für die PCR-Reaktion verwendet:

Gen-Name und SEQ ID NO:	Primersequenz
ELO(XI) SEQ ID NO: 121	F:5'- AGGATCCATGGCCTTCAAGGAGCTCACATC
SEQ ID NO: 122	R:5'- CCTCGAG <u>TCA</u> ATGGTTTTTGCTTTTCAATG- CACCG
ELO(Ci), SEQ ID NO: 123	F:5'- TAAGCTTATGGACGTACTTCATCGT
SEQ ID NO: 124	R:5'- TCAGATCT <u>TTA</u> ATCGGTTTTACCATT

^{*}F=forward primer, R=reverse primer

Die PCR Produkte wurde für 30 min bei 21 °C mit dem Hefe-Expressionsvektor - pYES2.1-TOPO (Invitrogen) gemäß Herstellerangaben inkubiert. Das PCR-Produkt wird dabei durch einen T-Überhang und Aktivität einer Topoisomerase (Invitrogen) nach Herstellerangaben in den Vektor ligiert. Nach der Inkubation erfolgte dann die Transformation von E. coli DH5α Zellen. Entsprechende Klone wurden durch PCR - identifiziert, die Plasmid-DNA mittels Qiagen DNAeasy-Kit isoliert und durch Sequenzierung verifiziert. Die korrekte Sequenz wurde dann in den Saccharomyces Stamm INVSc1 (Invitrogen) durch Elektroporation (1500 V) transformiert. Zur Kontrolle wurde der leere Vektor pYES2.1 parallel transformiert. Anschließend wurden die Hefen auf Komplett-Minimalmedium ohne Uracil mit 2 % Glucose ausplattiert. Zellen, die ohne Uracil im Medium wachstumsfähig waren, enthalten damit die entsprechenden Plasmide pYES2.1, pYES2.1-ELO(XI) und pYES2.1-ELO(Ci). Nach der Selektion wurden je zwei Transformaten zur weiteren funktionellen Expression ausgewählt.

15 Beispiel 40: Klonierung von Expressionsplasmiden zur Samen-spezifischen Expression in Pflanzen

Für die Transformation von Pflanzen wird ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu werden mit folgendem Primerpaar Notl-Schnittstellen am 5' und 3'-Ende der kodierenden Sequenz eingefügt:.

20 pSUN-ELO(XI)

Forward: 5'-GCGGCCGCACCATGGCCTTCAAGGAGCTCACATC

(SEQ ID NO: 125)

Reverse: 3'-GCGGCCGCCTTCAATGGTTTTTGCTTTTCAATGCACCG

(SEQ ID NO: 126)

25 pSUN-ELO(Ci)

Forward: 5'-GCGGCCGCACCATGGACGTACTTCATCGT

(SEQ ID NO: 127)

Reverse: 3'-GCGGCCGCTTTAATCGGTTTTACCATT

(SEQ ID NO: 128)

Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 µL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl2

5,00 µL 2mM dNTP

1,25 µL je Primer (10 pmol/µL)

1 × 1 × 1

0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR: 10

> Anlagerungstemperatur: 1 min 55°C Denaturierungstemperatur: 1 min 94°C Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

Die PCR Produkte wurden für 16 h bei 37 °C mit dem Restriktionsenzym Notl inkubiert. Der Pflanzen-Expressionsvektor pSUN300-USP wurde in gleicherweise inkubiert. 15 Anschliessend wurden die PCR Produkte sowie der 7624 bp große Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolgte mittels Qiagen Gel Purification Kit gemäß Herstellerangaben. Anschließend wurden Vektor und PCR-Produkte ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide 20 pSUN-ELO(XI) und pSUN-ELO(Ci) wurden durch Sequenzierung verifiziert.

pSUN300 ist ein Derivat des Plasmides pPZP [Hajdukiewicz,P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors forplant transformation. Plant Mol Bioł 25:989-994]. pSUN-USP entstand aus pSUN300, indem in pSUN300 ein USP-Promotor als EcoRI- Fragment inseriert wurde. Das Polyadeny-25 lierungssignal ist das des Octopinsynthase-Gens aus dem A. tumefaciens Ti-Plasmid (ocs-Terminator, Genbank Accession V00088) (De Greve, H., Dhaese, P., Seurinck, J., Lemmers, M., Van Montagu, M. and Schell, J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982) Der USP-Promotor entspricht den Nukleotiden 1-30 684 (Genbank Accession X56240), wobei ein Teil der nichtcodierenden Region des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfragment wurde mittels käuflichen T7-Standardprimer (Stratagene) und mit Hilfe eines synthetisierten Primers über eine PCR-Reaktion nach Standardmethoden amplifiziert. 35

Primersequenz: 5'-GTCGACCCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCC GGATCTGCTGGCTATGAA-3' (SEQ ID NO: 129).

Das PCR-Fragment wurde mit EcoRI/Sall nachgeschnitten und in den Vektor pSUN300 mit OCS Terminator eingesetzt. Es entstand das Plasmid mit der Bezeichnung pSUN-USP. Das Konstrukt wurde zur Transformation von Arabidopsis thaliana, Raps, Tabak und Leinsamen verwendet.

5 Die Lipidextraktion aus Hefen und Samen erfolgte identisch zu Beispiel 6.

Beispiel 41: Expression von ELO(XI) und ELO(Ci) in Hefen

Hefen, die wie unter Beispiel 4 mit den Plasmiden pYES2, pYES2-ELO(XI) und pYES2-ELO(Ci) transformiert wurden, wurden folgendermaßen analysiert:

- Die Hefezellen aus den Hauptkulturen wurden durch Zentrifugation (100 x g, 5 min, 20°C) geerntet und mit 100 mM NaHCO₃, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 ml 1 N methanolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit
- Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO₃, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend wurden die PE-Phasen mit Na₂SO₄ getrocknet, unter Argon eingedampft und in 100 μl PE aufgenommen. Die Proben wurden auf einer DB-23-Kapillarsäule (30 m, 0,25 mm, 0,25 μm, Agilent) in einem Hewlett-Packard 6850-
- 20 Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50°C bis 250°C mit einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten) programmiert.
 - Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma). Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001,Lipids. 36(8): 761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.
 - Beispiel 42: Funktionelle Charakterisierung von ELO(XI) und ELO(Ci):

25

- Die Substratspezifität der ELO(XI) konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Fig. 22). Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der ELO(XI)-Reaktion. Dies bedeutet, dass das Gen ELO(XI) funktional exprimiert werden konnte.
- Tabelle 13 zeigt, dass die ELO(XI) eine breite Substratspezifität aufweist. Es werden sowohl C18 als auch C20 Fettsäuren verlängert, wobei ein Bevorzugung von Δ5- und Δ6-desaturierten Fettsäuren zu beobachten ist.

Die Hefen, die mit dem Vektor pYES2-ELO(XI) transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert.

5 Tabelle 13: Expression von ELO(XI) in Hefe. Beschrieben ist die Umsetzungsrate (Konversionsrate) verschiedener Edukte (gefüttert jeweils 250 μΜ).

Edukte	Konversion der Edukte durch ELO(XI) in %
6:0	3
6:1 ^{Δ9}	0
8:0	2
	0
18:2 ^{∆9,12}	3
18:3 ^{Δ6,9,12}	12
18:3 ^{Δ5,9,12}	13
18:3 ^{Δ9,12,15}	3
18:4 ^{∆6,9,12,15}	20
20:3 ^{Δ8,11,14}	5
20:3 ^{Δ11,14,17}	. 13
20:4 ^{\Delta 5,8,11,14}	15
20:5 ^{Δ5,8,11,14,17}	10
22:4 ^{Δ7,10,13,16}	0
22:6 ^{Δ4,7,10,13,16,19}	0

Die Substratspezifität der ELO(Ci) konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Fig. 23). Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der ELO(Ci)-Reaktion. Dies bedeutet, dass das Gen ELO(Ci) funktional exprimiert werden konnte.

Tabelle 14: Expression von ELO(Ci) in Hefe. Beschrieben ist die Umsetzungsrate (Konversionsrate) verschiedener Edukte (gefüttert jeweils 250 µM).

Edukte	Konversion der Edukte durch ELO(Ci) in %
16:0	0
16:1 ^{Δ9}	0
18:0	0
18:1 ^{△9}	0
18: ^{2Δ9,12}	23
18:3 ^{Δ6,9,12}	10
18:3 ^{45,9,12}	38
18:3 ^{Δ9,12,15}	25
18:4 ^{Δ6,9,12,15}	3
20:3 ^{Δ8,11,14}	10
20:3 ^{Δ11,14,17}	. 8
20:4∆5,8,11,14	10
20:5∆5,8,11,14,17	15
22:4∆7,10,13,16	0
22:6∆4,7,10,13,16,19	0

Tabelle 14 zeigt, dass die ELO(Ci) eine breite Substratspezifität aufweist. Es werden sowohl C18 als auch C20 Fettsäuren verlängert, wobei ein Bevorzugung von Δ 5- und Δ 6-desaturierten Fettsäuren zu beobachten ist.

Die Hefen, die mit dem Vektor pYES2-ELO(Ci) transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert.

Beispiel 43: Klonierung von Genen aus Ostreococcus tauri

Durch Suche nach konservierten Bereichen in den Proteinsequenzen mit Hilfe der hierin beschriebenen Elongase-Gene mit Δ-5-Elongaseaktivität oder Δ-6-Elongaseaktivität konnten je zwei Sequenzen mit entsprechenden Motiven in einer Ostreococcus tauri Sequenzdatenbank (genomische Sequenzen) identifiziert werden. Es handelt sich dabei um die folgenden Sequenzen:

Com Nama	SEQ ID	Aminosäuren
Gen-Name OtELO1, (Δ-5-Elongase)	SEQ ID NO: 67	300
OLELO I, (A-3-Liongaco)	SEQ ID NO: 113	300
O(LLO 1.2, \alpha o Llongara /	SEQ ID NO: 69	292
OLELOZ, (A-0-Liorigado)	SEQ ID NO: 111	292
OtELO2.1, (Δ-6-Elongase)	SEQ ID NO. TT	

OtElo1 und OtElo1.2 weisen die höchste Ähnlichkeit zu einer Elongase aus Danio rerio auf (GenBank AAN77156; ca. 26 % Identität), während OtElo2 und OtElo2.1 die größte Ähnlichkeit zur Physcomitrella Elo (PSE) [ca. 36 % Identität] aufweisen (Alignments wurden mit dem tBLASTn-Aalgorithmus (Altschul et al., J. Mol. Biol. 1990, 215: 403 – 410) durchgeführt.

Die Klonierung der Elongasen wurde wie folgt durchgeführt:

40 ml einer Ostreococcus tauri Kultur in der stationären Phase wurden abzentrifugiert und in 100 μl Aqua bidest resuspendiert und bei –20°C gelagert. Auf der Basis des PCR-Verfahren wurden die zugehörigen genomischen DNAs amplifiziert. Die entsprechenden Primerpaare wurden so ausgewählt, dass sie die Hefe-Konsensus-Sequenz für hocheffiziente Translation (Kozak, Cell 1986, 44:283-292) neben dem Startcodon trugen. Die Amplifizierung der OtEio-DNAs wurde jeweils mit 1 μl aufgetauten Zellen, 200 μM dNTPs, 2,5 U Taq-Polymerase und 100 pmol eines jeden Primers in einem Gesamtvolumen von 50 μl durchgeführt. Die Bedingungen für die PCR waren wie folgt: Erste Denaturierung bei 95°C für 5 Minuten, gefolgt von 30 Zyklen bei 94°C für 30 Sekunden, 55°C für 1 Minute und 72°C für 2 Minuten sowie ein letzter Verlängerungsschritt bei 72°C für 10 Minuten.

Beispiel 44: Klonierung von Expressionsplasmiden zur heterologen Expression in Hefen:

Zur Charakterisierung der Funktion der Elongasen aus Ostreococcus tauri wurden die offenen Leserahmen der jeweiligen DNAs stromabwärts des Galactose-induzierbaren GAL1-Promotors von pYES2.1/V5-His-TOPO (Invitrogen) kloniert, wobei pOTE1, pOTE1.2, pOTE2 und pOTE2.1 erhalten wurden.

Der Saccharomyces cerevisiae-Stamm 334 wurde durch Elektroporation (1500 V) mit dem Vektor pOTE1, pOTE1.2, pOTE2 bzw. pOTE2.1 transformiert. Als Kontrolle wurde eine Hefe verwendet, die mit dem leeren Vektor pYES2 transformiert wurde. Die Selektion der transformierten Hefen erfolgte auf Komplett-Minimalmedium (CMdum)-

10 Selektion der transformierten Hefen erfolgte auf Komplett-Minimalmedium (CMdum)-Agarplatten mit 2% Glucose, aber ohne Uracil. Nach der Selektion wurden je drei Transformanten zur weiteren funktionellen Expression ausgewählt.

Für die Expresssion der Ot-Elongasen wurden zunächst Vorkulturen aus jeweils 5 ml CMdum-Flüssigmedium mit 2% (w/v) Raffinose aber ohne Uracil mit den ausgewählten Transformanten angeimpft und 2 Tage bei 30°C, 200 rpm inkubiert. 5 ml CMdum-Flüssigmedium (ohne Uracil) mit 2% Raffinose und 300 μM verschiedener Fettsäuren wurden dann mit den Vorkulturen auf eine OD₆₀₀ von 0,05 angeimpft. Die Expression wurde durch die Zugabe von 2% (w/v) Galactose induziert. Die Kulturen wurden für weitere 96 h bei 20°C inkubiert.

20 Beispiel 45: Klonierung von Expressionsplasmiden zur Samen-spezifischen Expression in Pflanzen

Für die Transformation von Pflanzen wurde ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu wurden mittels PCR Noti-Schnittstellen am 5' und 3'-Ende der kodierenden Sequenzen eingefügt. Die entsprechenden Primersequenzen wurden von den 5'- und 3-Bereich von OtElo1, OtElo1.2, OtElo2 und OtElo2.1 abgeleitet.

Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 µL Template cDNA 5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl₂

30 5,00 μL 2mM dNTP

25

1,25 μ L je Primer (10 pmol/ μ L)

0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR:

35 Anlagerungstemperatur: 1 min 55°C Denaturierungstemperatur: 1 min 94°C

Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

Die PCR Produkte werden für 16 h bei 37 °C mit dem Restriktionsenzym Notl inkubiert. Der Pflanzen-Expressionsvektor pSUN300-USP wird in gleicherweise inkubiert. Anschließend wurden die PCR Produkte sowie der Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolgte mittels Qiagen Gel Purification Kit gemäß Herstellerangaben. Anschliessend wurden Vektor und PCR-Produkte ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide pSUN-OtELO1, pSUN-OtELO1.2, pSUN-OtELO2 und pSUN-OtELO2.2 wurden durch Sequenzierung verifiziert.

pSUN300 ist ein Derivat des Plasmides pPZP [Hajdukiewicz,P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors for plant 10 transformation. Plant Mol Biol 25:989-994]. pSUN-USP entstand aus pSUN300, indem in pSUN300 ein USP-Promotor als EcoRI- Fragment inseriert wurde. Das Polyadenylierungssignal ist das des Ostreococcus-Gens aus dem A. tumefaciens Ti-Plasmid (ocs-Terminator, Genbank Accession V00088) (De Greve, H., Dhaese, P., Seurinck, J., Lemmers, M., Van Montagu, M. and Schell, J. Nucleotide sequence and transcript map 15 of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982). Der USP-Promotor entspricht den Nukleotiden 1 bis 684 (Genbank Accession X56240), wobei ein Teil der nichtcodierenden Region des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfragment wurde mittels käuflichen T7-Standardprimer (Stratagene) und mit Hilfe eines 20 synthetisierten Primers über eine PCR-Reaktion nach Standardmethoden amplifiziert.

Primersequenz:

25

5'-GTCGACCCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCC GGATCTGCTGGCTATGAA-3'). (SEQ ID NO: 130)

Das PCR-Fragment wurde mit EcoRI/Sall nachgeschnitten und in den Vektor pSUN300 mit OCS Terminator eingesetzt. Es entstand das Plasmid mit der Bezeichnung pSUN-USP. Das Konstrukt wurde zur Transformation von Arabidopsis thaliana, Raps, Tabak und Leinsamen verwendet.

30 Beispiel 46: Expression von OtElo1, OtElo1.2, OtElo2 und OtELO2.2 in Hefen

Hefen, die wie unter Beispiel 15 mit den Plasmiden pYES3, pYES3-OtELO1, pYES3-OtELO1.2, pYES3-OtELO2 und pYES3-OtELO2.2 transformiert wurden, wurden folgendermaßen analysiert:

Die Hefezellen aus den Hauptkulturen wurden durch Zentrifugation (100 x g, 5 min, 20°C) geerntet und mit 100 mM NaHCO₃, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 ml 1 N methanolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit

Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO₃, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend wurden die PE-Phasen mit Na₂SO₄ getrocknet, unter Argon eingedampft und in 100 µl PE aufgenommen. Die Proben wurden auf einer DB-23-

- Kapillarsäule (30 m, 0,25 mm, 0,25 µm, Agilent) in einem Hewlett-Packard 6850-Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50°C bis 250°C mit einer Rate von 5°C/min und schließlich 10 min bei 250°C (halten) programmiert.
- Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma). Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001,Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.
- 15. Beispiel 47: Funktionelle Charakterisierung von OtElo1, OtElo1.2, OtElo2 und OtElo2.1:

20

25

35

Die Substratspezifität der OtElo1 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Tab. 15). Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der OtElo1-Reaktion. Dies bedeutet, dass das Gen OtElo1 funktional exprimiert werden konnte.

Tabelle 15 zeigt, dass OtElo1 bzw. OtElo1.2 eine enge Substratspezifität aufweist. OtElo1 bzw. OtElo1.2 konnte nur die C20-Fettsäuren Eicosapentaensäure (Figur 24A, 24B) und Arachidonsäure (Figur 25A, 25B) elongieren, bevorzugte aber die ω-3-desaturierte Eicosapentaensäure.

Tabelle 15 zeigt die Substratspezifität der Elongase OtElo1 und OtElo1.2 für C20 polyungesättigte Fettsäuren mit einer Doppelbindung in $\Delta 5$ Position gegenüber verschiedenen Fettsäuren.

Die Hefen, die mit dem Vektor pOTE1 bzw. pOTE1.2 transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert.

Die Substratspezifität der OtElo2 (SEQ ID NO: 81) OtElo2.1 (SEQ ID NO: 111) konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Tab. 16). Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der OtElo2-Reaktion. Dies bedeutet, dass die Gene OtElo2 und OtElo2.1 funktional exprimiert werden konnte.

Tabelle 15:

Fettsäuresubstrat	Umsatz (in %) OtElo1	Umsatz (in %) OtElo1.	
16:0	-	-	
16:1 ^{Δ9}	-	•	
18:0	-	-	
18:1 ^{∆9}	•	-	
18:1 ^{∆11}	-	-	
18:2 ^{Δ9,12}	-	-	
18:3 ^{∆6,9,12}	-	-	
18:3 ^{Δ5,9,12}	-	-	
20:3 ^{Δ8,11,14}	-	-	
20:4 ^{Δ5,8,11,14}	10,8 ± 0,6	38,0	
20:5 ^{Δ5,8,11,14,17}	46,8 ± 3,6	68,6	
22:4 ^{Δ7,10,13,16}	-		
22:6 ^{Δ4,7,10,13,16,19}	-	-	

Tabelle 16 zeigt die Substratspezifität der Elongase OtElo2 und OtElo2.1 gegenüber verschiedenen Fettsäuren. OtElo2.1 zeigt eine deutlich höhere Aktivität.

- Die Hefen, die mit dem Vektor pOTE2 bzw. pOTE2.1 transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert.
- Die enzymatische Aktivität, die in Tabelle 16 wiedergegeben wird, zeigt klar, dass 0tElo2 bzw. OtElo2.1 eine Δ -6-Elongase ist.

Tabelle 16:

Fettsäuresubstrat	Umsatz (in %) OtElo2	Umsatz (in %)OtELO2.2
16:0	-	١ 🛥
. 16:1 ^{∆9}	-	•
16:3 ^{∆7,10,13}	•	•
18:0	-	•
18:1 ^{∆6}	-	-
18:1 ^{∆9}	-	-
18:1 ^{Δ11}	•	
18:2 ^{Δ9,12}		-
18:3 ^{∆6,9,12}	15,3	55,7
18:3 ^{∆5,9,12}	• .	-
18:4 ^{Δ6,9,12,15}	21,1	70,4
20:2 ^{Δ11,14}	-	-
20:3 ^{Δ8,11,14}	•	-
20:4 ^{Δ5,8,11,14}	-	
20:5 ^{45,8,11,14,17}	-	-
22:4 ^{Δ7,10,13,16}	-	
22:5 ^{Δ7,10,13,16,19}	-	-
22:6 ^{Δ4,7,10,13,16,19}	-	-

Figur 24 A – D zeigt die Elongation von Eicosapentaensäure durch OtElo1 (B) bzw. OtElo1.2 (D). Die Kontrollen (A, C) zeigen nicht das Produkt der Elongation (22:5ω3).

5

Figur 25 A – D zeigt die Elongation von Arachidonsäure durch OtElo1 (B) bzw. OtElo1.2 (D). Die Kontrollen (A, C) zeigen nicht das Produkt der Elongation (22:4ω6).

Beispiel 48: Klonierung von Elongase-Genen aus Euglena gracilis und Arabidopsis thaliana

10 Durch Suche nach konservierten Bereichen in den Proteinsequenzen mit Hilfe der in der Anmeldung aufgeführten Elongase-Gene mit Δ-5-Elongaseaktivität oder Δ-6-Elongaseaktivität konnten Sequenzen aus Arabidopsis thaliana bzw. Euglena gracilis

mit entsprechenden Motiven in Sequenzdatenbanken (Genbank, Euglena EST Bank) identifiziert werden. Es handelt sich dabei um die folgenden Sequenzen:

identifiziert werden. Es nan	doi: 0.5	i e e e e e e e e e e e e e e e e e e e
	SEQ ID	Aminosäuren
Gen-Name	SEQ ID NO: 131	262
EGY1019 (E. gracilis)		262
EGY2019 (E. gracilis)	SEQ ID NO: 133	298
At3g06460 (A. thaliana)	SEQ ID NO: 135	278
At3g06470 (A. thaliana)	SEQ ID NO: 137	
At3g00470 (7 t along)		. salat durchgeführt:

Die Klonierung der Elongasen aus Euglena gracilis wurden wie folgt durchgeführt:

Der Euglena gracilis Stamm 1224-5/25 wurde erhalten von der Sammlung für Algenkulturen Göttingen (SAG). Zur Isolierung wurde der Stamm in Medium II (Calvayrac R and Douce R, FEBS Letters 7:259-262, 1970) für 4 Tage bei 23 °C unter einem Licht-/Dunkelintervall von 8 h / 16 h (35 mol s-1 m-2 Lichtstärke) angezogen.

Gesamt-RNA von einer viertägigen Euglena Kultur wurde mit Hilfe des RNAeasy Kits der Firma Qiagen (Valencia, CA, US) isoliert. Aus der Gesamt-RNA wurde mit Hilfe von oligo-dT-Cellulose poly-A+ RNA (mRNA) isoliert (Sambrook et al., 1989). Die RNA vurde mit dem Reverse Transcription System Kit von Promega revers transcribiert und die synthetisierte cDNA in den lambda ZAP Vektor (lambda ZAP Gold, Stratagene) kloniert. Entsprechend der Herstellerangaben wurde die cDNA zur Plasmid-DNA kloniert. Entsprechend der Herstellerangaben wurde die cDNA zur Plasmid-DNA kloniert. Und Klone wurden zur Zufallssequenzierung ansequenziert. Aus der Gesamtentpackt und Klone wurden zur Zufallssequenzierung ansequenziert. Die RNA wurde mit Hilfe des PolyATract Isolierungssystems (Promega) mRNA isoliert. Die mRNA wurde mit dem Marathon cDNA Amplification-Kit (BD Biosciences) reverse mRNA wurde mit dem Marathon cDNA Amplification-Kit (BD Biosciences) reverse transkribiert und entsprechend der Herstellerangaben wurden die Adaptoren ligiert. Die cDNA-Bank wurde dann für die PCR zur Klonierung von Expressionsplasmiden mittels 5'- und 3'-RACE (rapid amplification of cDNA ends) verwendet.

20 Die Klonierung der Elongasen aus Arabidopsis thaliana wurde wie folgt durchgeführt:

Ausgehend von der genomischen DNA wurden für die beiden Gene Primer entsprechend am 5'- und 3'-Ende des offenen Leserahmens abgeleitet.

Zur Isolierung von Gesamt-RNA aus *A. thaliana* wurde nach Chrigwin *et al.*, (1979) verfahren. Blätter von 21 Tage alten Pflanzen wurden in flüssigem Stickstoff zermörsert, mit Aufschlusspuffer versetzt und für 15 min bei 37 °C inkubiert. Nach Zentrifugasert, mit Aufschlusspuffer versetzt und für 15 min bei 37 °C inkubiert. Nach Zentrifugation (10 min, 4 °C, 12000xg) wurde die RNA im Überstand mit 0,02 Volumen 3 M Natriumacetat pH 5,0 und 0,75 Volumen Ethanol bei –20 °C für 5 h präzipitiert. Die RNA wurde dann nach einem weiteren Zentrifugationsschritt in 1 mL TES pro gangangsmaterial aufgenommen, einmal mit einem Volumen Phenol-Chloroform und Ausgangsmaterial aufgenommen, einmal mit einem Volumen Phenol-Chloroform und einmal mit einem Volumen Chloroform extrahiert und die RNA mit 2,5 M LiCl gefällt. einmal mit einem Volumen Zentrifugieren und Waschen mit 80 %igem Ethanol wurde die Nach anschliessendem Zentrifugieren und Waschen mit 80 wurde die cDNA RNA in Wasser resuspendiert. Entsprechend Sambrook et al. 1989 wurde die cDNA

synthetisiert und RT-PCR mit den abgeleiteten Primer durchgeführt. Die PCR-Produkte wurden nach Herstellerangaben in den Vektor pYES2.1-TOPO (Invitrogen) kloniert.

- Beispiel 49: Klonierung von Expressionsplasmiden zur heterologen Expression in Hefen:
- Zur Charakterisierung der Funktion der Elongasen aus *A. thalina* wurden die offenen Leserahmen der jeweiligen DNAs stromabwärts des Galactose-induzierbaren GAL1-Promotors von pYES2.1/V5-His-TOPO (Invitrogen) kloniert, wobei pAt60 und pAt70 erhalten wurden.
- Der Saccharomyces cerevisiae-Stamm 334 wurde durch Elektroporation (1500 V) mit dem Vektor pAt60 bzw. pAt70 transformiert. Als Kontrolle wurde eine Hefe verwendet, die mit dem leeren Vektor pYES2.1 transformiert wurde. Die Selektion der transformierten Hefen erfolgte auf Komplett-Minimalmedium (CMdum)-Agarplatten mit 2% Glucose, aber ohne Uracil. Nach der Selektion wurden je drei Transformanten zur weiteren funktionellen Expression ausgewählt.
- 15 Für die Expresssion der At-Elongasen wurden zunächst Vorkulturen aus jeweils 5 ml CMdum-Flüssigmedium mit 2% (w/v) Raffinose aber ohne Uracil mit den ausgewählten Transformanten angeimpft und 2 Tage bei 30°C, 200 rpm inkubiert.
 - 5 ml CMdum-Flüssigmedium (ohne Uracil) mit 2% Raffinose und 300 μM verschiedener Fettsäuren wurden dann mit den Vorkulturen auf eine OD₆₀₀ von 0,05 angeimpft. Die Expression wurde durch die Zugabe von 2% (w/v) Galactose induziert. Die Kulturen wurden für weitere 96 h bei 20°C inkubiert.
 - Beispiel 50: Expression von pAt60 und pAt70 in Hefen

20

- Hefen, die wie unter Beispiel 5 mit den Plasmiden pYES2.1, pAt60 bzw. pAt70 transformiert wurden, wurden folgendermaßen analysiert:
- Die Hefezellen aus den Hauptkulturen wurden durch Zentrifugation (100 x g, 5 min, 25 20°C) geerntet und mit 100 mM NaHCO₃, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 ml 1 N methanolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit . 30 Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO3, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend wurden die PE-Phasen mit Na₂SO₄ getrocknet, unter Argon eingedampft und in 100 µl PE aufgenommen. Die Proben wurden auf einer DB-23-Kapillarsäule (30 m, 0,25 mm, 0,25 µm, Agilent) in einem Hewlett-Packard 6850-35 Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50°C bis 250°C mit

einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten) programmiert.

Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma). Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001, Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.

Beispiel 51: Funktionelle Charakterisierung von pAt60 und pAt70

Die Substratspezifität der Elongasen At3g06460 bzw. At3g06470 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Tab. 17, Fig. 26). Die gefütterten Substrate sind in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der Gene At3g06460 Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der Gene At3g06470. Dies bedeutet, dass diese Gene funktional exprimiert werden konnte.

Tabelle 17: Elongation von EPA durch die Elongasen At3g06460 bzw. At3g06470. Messung der Hefeextrakte nach Fütterung mit 250 uM EPA.

,		-		Gehalt an C22:5n-3
Gen	Gefütterte Fe	ttsäure	Gehalt anC20:5n-	Genalt an Ozz.on o
			20.8	0,6
At3g06460	EPA (C20:5n-	-3)		11
At3g06460	EPA (C20:5n	-3)	25,4	1,1
Konversionsrat			06460: 3,0 %	At3g06470: 4,1 %
Romone				

15

20

10

Figur 26 gibt die Elongation von 20:5n-3 durch die Elongasen At3g06470 wieder.

Beispiel 52: Klonierung einer Elongase aus Phaeodactylum tricornutum

Ausgehend von konservierten Bereichen in den Proteinsequenzen mit Hilfe der in der Anmeldung aufgeführten Elongase-Gene mit Δ -6-Elongaseaktivität wurden degenerierte Primer hergestellt und mit diesen eine *Phaeodactylum* cDNA Bank mittels PCR durchsucht. Folgende Primer-Sequenzen wurden eingesetzt:

		Korrespondierende
Primer-Name		Aminosäuren
Phaelo forward1	AA(C/T)CTUCTUTGGCTUTT(C/T)TA (SEQ ID NO. 185)	NLLWLFY
Phaelo reverse1	GA(C/T)TGUAC(A/G)AA(A/G)AA(C/T)TGUG C(A/G)AA (SEQ ID NO. 186)	FAQFFVQS

Nukleotidbasen in Klammern bedeuten, dass eine Mischung von Oligonukleotiden mit jeweils der einen oder anderen Nukleotidbase vorliegen.

Herstellung der Phaeodactylum cDNA Bank:

Eine 2 L Kultur von P. tricornutum UTEX 646 wurde in f/2 Medium (Guillard, R.R.L. 1975. Culture of phytoplankton for feeding marine invertebrates. In Culture of Marine Invertebrate Animals (Eds. Smith, W.L. and Chanley, M.H.), Plenum Press, New York, pp 29-60.) für 14 d (= Tage) bei einer Lichtstärke von 35 E/cm² angezogen. Gefrorene Zellen wurden nach Zentrifugation in der Gegenwart von flüssigem Stickstoff zu einem feinen Pulver gemahlen und mit 2 mL Homogenisierungspuffer (0,33 M Sorbitol, 0,3 M 10 NaCl, 10 mM EDTA, 10 mM EGTA, 2% SDS, 2% Mercaptoethanol in 0,2 M Tris-Cl ph 8,5) resuspendiert. Nach Zugabe von 4 mL Phenol und 2 mL Chloroform wurde 15 min kräftig bei 40-50 °C geschüttelt. Anschliessend wurde zentrifugiert (10 min x 10000g) und die wässerige Phase schrittweise mit Chloroform extrahiert. Nukleinsäuren wurden. 15 dann durch Zugabe von 1/20 Volumen 4 M Natriumhydrogencarbonatlösung gefällt und zentrifugiert. Das Pellet wurde in 80 mM Tris-borat pH 7,0 und 1 mM EDTA aufgenommen und die RNA mit 8 M Lithiumclorid gefällt. Nach Zentrifugation und Waschen mit 70%igem Ethanol wurde das RNA-Pellet mit Rnase-freiem Wasser aufgenommen. Poly(A)-RNA wurde mit Dynabeads (Dynal, Oslo, Norwegen) nach Herstellerangaben 20 isoliert und die Erst-Strang-cDNA-Synthese mit MLV-Rtase von Roche (Mannheim) durchgeführt. Die Zweit-Strang-Synthese erfolgte dann mittels DNA Polymerase I und Klenow Fragment, gefolgt von einem RnaseH Verdau. Die cDNA wurde mit T4 DNA Polymerase behandelt und anschliessend EcoRI/XhoI Adaptoren (Pharmacia, Freiburg) mittels T4 Ligase angehängt. Nach Xhol Verdau, Phosphorylierung und Geltren-25 nung wurden Fragmente grösser als 300 bp entsprechend der Herstellerangaben in den lambda ZAP Express Phagen ligiert (Stratagene, Amsterdam, Niederlande). Nach Massenexcision der cDNA-Bank und Plasmid-Rückgewinnung wurde die Plasmid-Bank in E. coli DH10B Zellen transformiert und zur PCR-Sichtung eingesetzt.

Mittels den oben genannten degenerierten Primern konnte das PCR-Fragment mit der Sequenznummer SEQ ID NO: 187 generiert werden.

Dieses Fragment wurde mit Digoxigenin markiert (Roche, Mannheim) und als Sonde für die Sichtung der Phagen-Bank verwendet.

Mit Hilfe der Sequenz SEQ ID NO: 187 konnte die Gensequenz SEQ ID NO: 183 erhalten werden, die das Volllängen-RNA-Molekül der Δ6-Elongase von Phaeodacty-lum darstellt:

Beispiel 53: Klonierung von Expressionsplasmiden zur heterologen Expression in - Hefen

Die entsprechenden Primerpaare wurden so ausgewählt, dass sie die Hefe-Konsensus-Sequenz für hocheffiziente Translation (Kozak, Cell 1986, 44:283-292) \'

neben dem Startcodon trugen. Die Amplifizierung der PtELO6-DNA wurde jeweils mit 1 μL cDNA, 200 μM dNTPs, 2,5 U Advantage-Polymerase und 100 pmol eines jeden Primers in einem Gesamtvolumen von 50 µl durchgeführt. Die Bedingungen für die PCR waren wie folgt: Erste Denaturierung bei 95°C für 5 Minuten, gefolgt von 30 Zyklen bei 94°C für 30 Sekunden, 55°C für 1 Minute und 72°C für 2 Minuten sowie ein letzter Verlängerungsschritt bei 72°C für 10 Minuten.

Für die Klonierung der Sequenz zur heterologen Expression in Hefen wurden folgende Oligonukleotide für die PCR-Reaktion verwendet:

Gen-Name und	Primersequenz
SEQ ID NO:	
	F:5'-GCGGCCGCACATAATGATGGTACCTTCAAG
PtELO6 (SEQ ID NO: 183)	(SEQ ID NO: 188)
\ - 	R:3'- GAAGACAGCTTAATAGACTAGT
	(SEQ ID NO: 189)

^{*}F=forward primer, R=reverse primer

Die PCR Produkte wurden für 30 min bei 21 °C mit dem Hefe-Expressionsvektor pYES2.1-TOPO (Invitrogen) gemäß Herstellerangaben inkubiert. Das PCR-Produkt 10 (siehe SEQ ID NO: 192) wurde dabei durch einen T-Überhang und Aktivität einer Topoisomerase (Invitrogen) in den Vektor ligiert. Nach der Inkubation erfolgte dann die Transformation von E. coli DH5lpha Zellen. Entsprechende Klone wurden durch PCR identifiziert, die Plasmid-DNA mittels Qiagen DNAeasy-Kit isoliert und durch Sequenzierung verifiziert. Die korrekte Sequenz wurde dann in den Saccharomyces Stamm INVSc1 (Invitrogen) durch Elektroporation (1500 V) transformiert. Zur Kontrolle wurde der leere Vektor pYES2.1 parallel transformiert. Anschließend wurden die Hefen auf Komplett-Minimalmedium ohne Uracil mit 2 % Glucose ausplattiert. Zellen, die ohne Uracil im Medium wachstumsfähig waren, enthalten damit die entsprechenden Plasmide pYES2.1 und pYES2.1-PtELO6. Nach der Selektion wurden je zwei Trans-20 formaten zur weiteren funktionellen Expression ausgewählt.

Beispiel 54: Klonierung von Expressionsplasmiden zur Samen-spezifischen Expression in Pflanzen

Für die Transformation von Pflanzen wird ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu wird mit folgendem Primerpaar Notl-Schnittstellen am 5' 25 und 3'-Ende der kodierenden Sequenz eingefügt:.

PSUN-PtELO6

Forward: 5'-GCGGCCGCACCATGATGGTACCTTCAAGTTA (SEQ ID NO: 190)

Reverse: 3'-GAAGACAGCTTAATAGGCGGCCGC (SEQ ID NO: 191) 30

Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 µL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl2

5,00 µL 2mM dNTP

5 1,25 μL je Primer (10 pmol/μL)

0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C

10 Denaturierungstemperatur: 1 min 94°C

Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

25

30

Die PCR Produkte werden für 16 h bei 37 °C mit dem Restriktionsenzym Notl inkubiert. Der Pflanzen-Expressionsvektor pSUN300-USP wird in gleicherweise inkubiert.

Anschliessend werden die PCR Produkte sowie der 7624 bp große Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolgt mittels Qiagen Gel Purification Kit gemäss Herstellerangaben. Anschließend werden Vektor und PCR-Produkte ligiert. Dazu wird das Rapid Ligation Kit von Roche verwendet. Das entstandene Plasmide pSUN-PtELO wird durch Sequenzierung verifiziert.

pSUN300 ist ein Derivat des Plasmides pPZP (Hajdukiewicz,P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors forplant transformation. Plant Mol Biol 25:989-994). pSUN-USP entstand aus pSUN300, indem in pSUN300 ein USP-Promotor als EcoRI- Fragment inseriert wurde. Das Polyadeny-lierungssignal ist das des Octopinsynthase-Gens aus dem A. tumefaciens Ti-Plasmid (ocs-Terminator, Genbank Accession V00088) (De Greve,H., Dhaese,P., Seurinck,J., Lemmers,M., Van Montagu,M. and Schell,J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982). Der USP-Promotor entspricht den Nukleotiden 1-684 (Genbank Accession X56240), wobei ein Teil der nichtcodierenden Region des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfragment wurde mittels käuflichen T7-Standardprimer (Stratagene) und mit Hilfe eines synthetisierten Primers über eine PCR-Reaktion nach Standardmethoden amplifiziert.

(Primersequenz: 5'-35 GTCGACCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCC
GGATCTGCTGGCTATGAA-3'; SEQ ID NO: 151).

Das PCR-Fragment wurde mit EcoRI/Sall nachgeschnitten und in den Vektor pSUN300 mit OCS Terminator eingesetzt. Es entstand das Plasmid mit der Bezeich-

nung pSUN-USP.Das Konstrukt wurde zur Transformation von Arabidopsis thaliana, Raps, Tabak und Leinsamen verwendet.

Die Lipidextraktion aus Hefen und Samen erfolgte identisch zu Beispiel 6.

Beispiel 55: Expression von PtElo in Hefen

5 Hefen, die wie unter Beispiel 4 mit den Plasmiden pYES2 und pYES2-PtELO6 transformiert wurden, wurden folgendermaßen analysiert:

Die Hefezellen aus den Hauptkulturen wurden durch Zentrifugation (100 x g, 5 min, 20°C) geerntet und mit 100 mM NaHCO₃, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 ml 1 N methanolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 10 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO₃, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend wurden die PE-Phasen mit Na₂SO₄ getrocknet, unter Argon eingedampft und in 100 µl PE aufgenommen. Die Proben wurden auf einer DB-23-15 Kapillarsäule (30 m, 0,25 mm, 0,25 μm, Agilent) in einem Hewlett-Packard 6850-Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50°C bis 250°C mit einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten) programmiert. 20

Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma). Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001, Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.

Beispiel 56: Funktionelle Charakterisierung von PtELO6:

25

30

35

In Figur 29 ist die Umsetzung von C18:3^{Δ6,9,12} und C18:4^{Δ6,9,12,15} wiedergegeben. Die Substrate werden um je zwei Kohlenstoffatome elongiert es entstehen jeweils die Fettsäuren C20:3^{Δ8,11,14} bzw. C20:4^{Δ8,11,14,17}. Die Substratspezifität von PtELO6 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Fig. 30). Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der PtElo6-Reaktion. Dies bedeutet, dass das Gen PtELO6 funktional exprimiert werden konnte.

Tabelle 18 zeigt, dass die PtElo6 eine enge Substratspezifität aufweist. PtELO6 konnte nur die C18-Fettsäuren Linolsäure, Linolensäure, γ -Linolensäure und Stearidonsäure elongieren, bevorzugte aber die ω -3-desaturierte Stearidonsäure (siehe auch Figur 30).

Fütterungsexperiment: Fettsäuren (fett) wurden jeweils mit 250 µM zugegeben. Die unterstrichenen Fettsäuren wurden neu gebildet.

Tabelle 18: Substratspezifität der PtElo6

gefütterte Fetts	iure:	+ 18:2	+ 18:3	+ 18:3	+ 18:4
16:0	16,2	18,2	15,2	20	04:48
16:1	50,6	20,5	22,8	33,5	34,2
18:0	5,4	6,3	6,2	5,2	12,4
18:1	27,7	14,6	19,6	19,3	16,7
18:2		40		·	
18:3	•		32,9		
18:3				12,3	
18:4					4,5
20:2		0,4			
20:3			3,4		
20:3				9,7	
20:4					<u>14.5</u>
% Elongation	0,0	0,99	9,37	44,09	76,32

- 5 Folgende Fettsäuren wurden gefüttert, aber nicht umgesetzt:
 - 18:1^{Δ6}, 18:1^{Δ9}, 18:1^{Δ11}
 - 20:2^{Δ11,14}, 20:3^{Δ11,14,17}, 20:3^{Δ8,11,14}, 20:4^{Δ5,8,11,14}, 20:5^{Δ5,8,11,14,17}
 - 22:4^{Δ7,10,13,16}

Die Hefen, die mit dem Vektor pYES2-PtELO6 transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert. So wurden die Ergebnisse, die in den Figuren 29 und 30 sowie in der Tabelle 16 dargestellt wurden, ermittelt.

Äquivalente:

Der Fachmann erkennt oder kann viele Äquivalente der hier beschriebenen erfindungsgemäßen spezifischen Ausführungsformen feststellen, indem er lediglich Routineexperimente verwendet. Diese Äquivalente sollen von den Patentansprüchen umfasst sein.

Umsetzungsraten der gefütterten Fettsäuren. Die Konversionsraten wurden berechnet nach der Formel: [Konversionsrate]= [Produkt]/[[Substrat]+[Produkt]*100. Tabelle 3:

BioTaur-Klone Fläche in %	one Fläc	he in % de	der GC-Analyse	alyse	 				'					
		- }-	40.4		2.8.1	C18:3	C18:4	C20:3	C20:4 (C20:4	C20:5	C22:4	C22:4	C22:5
Clone	Fett- säure	C16:0	(n-7)	C18:0	(6-u)	(9-u)	(n-3)	(p-u)	(u-e)	(n-3)	(n-3)	(u-e)	(S-f)	(6-11)
\neg	Voing	21 261	41.576	4.670	25.330									
ioi Aecioi	ב ב ב								 					
BioTaur	Keine	20.831	37.374	4.215	26.475									
					1	44 674					13.792			
Vector	GLA+	22.053	23.632	5.487	17.289	±/c:11								
	EPA													107,
								6.620			10.149			1.12/
BioTaur	GLA+	20.439	25.554	6.129	19.587	3.52		0.020						
	EPA													
				- 1-	100		<u> </u>				16.225			
Vector	EPA	20.669	28.985	6.292	21.12									
							-	-			11.519			3.251
BioTaur	EPA	20.472	26.913	6.570	23.131						1			
					107.04				27.069			 		
Vector	ARA	23.169	23.332	6.58/	12.735									
					24 354				9.648			1.632		
BioTaur	ARA	20.969	31.281	2.50/	3							1	1	
		1		6 642	6.344		47.911	!						
Vector	SDA	18.519	12.020		: } 		·				_	-	0 0 0	
PioToil	SDA AGS	19.683	15.878	7.246	8.403		13.569			25.946			0.070	
								-					,	

10

20

25

Patentansprüche

1. Verfahren zur Herstellung von Verbindungen der allgemeinen Formel I

$$\begin{array}{c}
O \\
CH_{2}
\end{array}$$

$$\begin{array}{c}
CH_{2}$$

$$CH_{2}$$

$$CH_{$$

in transgenen Organismen mit einem Gehalt von mindestens 1 Gew.-% dieser Verbindungen bezogen auf den Gesamtlipidgehalt des transgenen Organismus, dadurch gekennzeichnet, dass es folgende Verfahrensschritte umfasst:

- a) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ -9-Elongase- oder eine Δ -6-Desaturase-Aktivität codiert, und
- b) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ-8-Desaturase- oder eine Δ-6-Elongase-Aktivität codiert, und
 - c) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ-5-Desaturase-Aktivität codiert, und
- d) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ-5-Elongase-Aktivität codiert, und
 - e) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ-4-Desaturase-Aktivität codiert, und

wobei die Variablen und Substituenten in der Formel I die folgende Bedeutung haben:

R¹ = Hydroxyl-, CoenzymA-(Thioester), Lyso-Phosphatidylcholin-, Lyso-Phosphatidylethanolamin-, Lyso-Phosphatidylglycerol-, Lyso-Diphosphatidylglycerol-, Lyso-Phosphatidylserin-, Lyso-Phosphatidylinositol-, Sphingobase-, oder einen Rest der allgemeinen Formel II

$$H_2C-O-R^2$$
 H_2C-O

- $\label{eq:R2} R^2 = Wasserstoff-, Lyso-Phosphatidylcholin-, Lyso-Phosphatidylethanolamin-, Lyso-Phosphatidylglycerol-, Lyso-Diphosphatidylglycerol-, Lyso-Phosphatidylserin-, Lyso-Phosphatidylinositol- oder gesättigtes oder ungesättigtes <math>C_2\text{-}C_{24}\text{-}Alkylcarbonyl-,$
- P³ = Wasserstoff-, gesättigtes oder ungesättigtes C₂-C₂₄-Alkylcarbonyl-, oder R² oder R³ unabhängig voneinander einen Rest der allgemeinen Formel la:

$$\begin{array}{c|c} O & CH_2 & CH_2 & CH_3 \\ \hline \end{array}$$
 (Ia)

n = 2, 3, 4, 5, 6, 7 oder 9, m = 2, 3, 4, 5 oder 6 und p = 0 oder 3.

- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Nukleinsäuresequenzen, die für Polypeptide mit Δ-9-Elongase-, Δ-6-Desaturase-, Δ-8-Desaturase-, Δ-6-Elongase-, Δ-5-Desaturase-, Δ-5-Elongase- oder Δ-4-Desaturaseaktivität codieren, ausgewählt sind aus der Gruppe bestehend aus:
- einer Nukleinsäuresequenz mit der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, a) 15 SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, 20 SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID 25 NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 oder SEQ ID NO: 183 dargestellten Sequenz, oder 30
 - Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von den in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38,

SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 118, SEQ ID NO: 130, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID NO: 138 oder SEQ ID NO: 184 dargestellten Aminosäuresequenzen ableiten lassen, oder

10

5

C) Derivate der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59,

20

15

SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75,

SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO:

25

103, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO:

137 oder SEQ ID NO: 183 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Identität auf Aminosäureebene mit SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO:

30

NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26,

-

SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 40, SEQ ID NO: 42,

SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50,

35

SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70,

00

SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID

ID NO: 88, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 118, SEQ ID NO: 120, SEQ ID

40

NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID NO: 138 oder SEQ ID NO: 184 codieren und eine Δ -9-Elongase-, Δ -6-Desaturase-, Δ -6-Elongase-, Δ -5-Desaturase-, Δ -5-Elongase- oder Δ -

4-Desaturaseaktivität aufweisen.

20

- 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zusätzlich in den Organismus eine Nukleinsäuresequenz eingebracht wird, die für Polypeptide mit ω3-Desaturasaktivität codiert, ausgewählt aus der Gruppe bestehend aus:
- 5 a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 87 oder SEQ ID NO: 105 dargestellten Sequenz, oder
 - Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 88 oder SEQ ID NO: 106 dargestellten Aminosäuresequenz ableiten lassen, oder
 - c) Derivate der in SEQ ID NO: 87 oder SEQ ID NO: 105 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 60 % Identität auf Aminosäureebene mit SEQ ID NO: 88 oder SEQ ID NO: 106 codieren und eine ω3-Desaturasaktivität aufweisen.
- Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass zusätzlich in den Organismus eine Nukleinsäuresequenz eingebracht wird, die für Polypeptide mit Δ-12-Desaturasaktivität codiert, ausgewählt aus der Gruppe bestehend aus:
 - einer Nukleinsäuresequenz mit der in SEQ ID NO: 107 oder SEQ ID NO: 109 dargestellten Sequenz, oder
 - b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 108 oder SEQ ID NO: 110 dargestellten Aminosäuresequenz ableiten lassen, oder
- c) Derivate der in SEQ ID NO: 107 oder SEQ ID NO: 110 dargestellten
 25 Nukleinsäuresequenz, die für Polypeptide mit mindestens 60 % Identität auf Aminosäureebene mit SEQ ID NO: 108 oder SEQ ID NO: 110 codieren und eine Δ-12-Desaturasaktivität aufweisen.
 - Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass die Substituenten R² oder R³ unabhängig voneinander gesättigtes oder ungesättigtes C₁₈-C₂₂-Alkylcarbonyl- bedeuten.
 - 6. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass die Substituenten R² oder R³ unabhängig voneinander ungesättigtes C₁₈-, C₂₀oder C₂₂-Alkylcarbonyl- mit mindestens zwei Doppelbindungen bedeuten.
- 7. Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass der transgene Organismus ein transgener Mikroorganismus oder eine transgene Pflanze ist.

PCT/EP2004/007957

- 8. Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, dass der transgene Organismus eine Öl-produzierende Pflanze, eine Gemüsepflanze oder Zierpflanze ist.
- Verfahren nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, dass die transgene Organismus eine transgene Pflanze ausgewählt aus der Gruppe der Pflanzenfamilien: Adelotheciaceae, Anacardiaceae, Asteraceae, Apiaceae, Bétulaceae, Boraginaceae, Brassicaceae, Bromeliaceae, Caricaceae, Cannabaceae, Convolvulaceae, Chenopodiaceae, Crypthecodiniaceae, Cucurbitaceae, Ditrichaceae, Elaeagnaceae, Ericaceae, Euphorbiaceae, Fabaceae, Geraniaceae, Gramineae, Juglandaceae, Lauraceae, Leguminosae, Linaceae oder Prasinophyceae ist.
 - 10. Verfahren nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet, dass die Verbindungen der allgemeinen Formel I aus dem Organismus in Form ihrer Öle, Lipide oder freien Fettsäuren isoliert werden.
- 15 11. Verfahren nach den Ansprüchen 1 bis 10, dadurch gekennzeichnet, dass die Verbindungen der allgemeinen Formel I in einer Konzentration von mindestens 5 Gew.-% bezogenen auf den gesamten Lipidgehalt des transgenen Organismus isoliert werden.
- Öl, Lipide oder Fettsäuren oder eine Fraktion davon, hergestellt durch das
 Verfahren nach einem der Ansprüche 1 bis 11.
 - 13. Öl-, Lipid- oder Fettsäurezusammensetzung, die PUFAs hergestellt nach einem Verfahren nach einem der Ansprüche 1 bis 11 umfasst und von transgenen Pflanzen stammt.
- 14. Verfahren zur Herstellung von Ölen, Lipiden oder Fettsäurezusammen 25 setzungen durch Mischen von Öl, Lipide oder Fettsäuren gemäß Anspruch 12
 oder Öl-, Lipid- oder Fettsäurezusammensetzung gemäß Anspruch 13 mit tierischen Ölen, Lipiden oder Fettsäuren.
- Verwendung von Öl, Lipide oder Fettsäuren gemäß Anspruch 12 oder Öl-,
 Lipid- oder Fettsäurezusammensetzung gemäß Anspruch 13 oder Ölen, Lipiden oder Fettsäurezusammensetzungen hergestellt gemäß Anspruch 14 in Futter, Nahrungsmitteln, Kosmetika oder Pharmazeutika.
- Isolierte Nukleinsäuresequenz, die für Polypeptide mit Δ-5-Elongaseaktivität codiert und die eine Aminosäuresequenz enthält ausgewählt aus der Gruppe einer Aminosäuresequenz mit der in SEQ ID NO: 115, SEQ ID NO: 116, SEQ ID NO: 139, SEQ ID NO: 140, SEQ ID NO: 141 oder SEQ ID NO: 142 dargestellten Sequenz.

15

30

- 17. Isolierte Nukleinsäuresequenz gemäß Anspruch 16, dadurch gekennzeichnet, dass die Nukleinsäuresequenz, die für Polypeptide mit Δ-5-Elongaseaktivität codiert, eine Kombination der Aminosäuresequenzen enthält ausgewählt aus der Gruppe:
- a) SEQ ID NO: 115 und SEQ ID NO: 139, SEQ ID NO: 115 und SEQ ID
 NO: 140 oder SEQ ID NO: 139 und SEQ ID NO: 140; oder
 - b) SEQ ID NO: 116 und SEQ ID NO: 141, SEQ ID NO: 116 und SEQ ID NO: 142 oder SEQ ID NO: 141 und SEQ ID NO: 142; oder
 - c) SEQ ID NO: 115, SEQ ID NO: 139 und SEQ ID NO: 140 oder SEQ ID NO: 116, SEQ ID NO: 141 und SEQ ID NO: 142.
 - 18. Isolierte Nukleinsäuresequenzen gemäß Anspruch 16 oder 17, die für Polypeptide mit Δ-5-Elongaseaktivität codieren, dadurch gekennzeichnet, dass die Nukleinsäuresequenz ausgewählt ist aus der Gruppe:
 - einer Nukleinsäuresequenz mit der in SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 113, SEQ ID NO: 131 oder SEQ ID NO: 133 dargestellten Sequenz,
- Discretischen Codes von der in SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 86, SEQ ID NO: 114, SEQ ID NO: 132 oder SEQ ID NO: 134 dargestellten Aminosäuresequenz ableiten lassen, oder
 - c) Derivate der in SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 113, SEQ ID NO: 131 oder SEQ ID NO: 133 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 44, SEQ ID NO: 46, SEQ D NO: 48, SEQ ID NO: 50, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 114, SEQ ID NO: 132 oder SEQ ID NO: 134 codieren und eine Δ-5-Elongaseaktivität aufweisen.

PCT/EP2004/007957

20

- 19. Isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ-6-Elongaseaktivität codieren, ausgewählt aus der Gruppe:
 - einer Nukleinsäuresequenz mit der in SEQ ID NO: 69, SEQ ID NO: 81,
 SEQ ID NO: 111 oder SEQ ID NO: 183 dargestellten Sequenz,
- 5 b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 70, SEQ ID NO: 82, SEQ ID NO: 112 oder SEQ ID NO: 184 dargestellten Aminosäuresequenz ableiten lassen, oder
- c) Derivate der in SEQ ID NO: 69, SEQ ID NO: 81, SEQ ID NO: 111 oder SEQ ID NO: 183 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 70, SEQ ID NO: 82, SEQ ID NO: 112 oder SEQ ID NO: 184 codieren und eine Δ-6-Elongaseaktivität aufweisen.
- 20. Isolierte Nukleinsäuresequenzen, die für Polypeptide mit ω-3 15 Desaturaseaktivität codieren, ausgewählt aus der Gruppe:
 - einer Nukleinsäuresequenz mit der in SEQ ID NO: 87 oder SEQ ID NO:
 105 dargestellten Sequenz,
 - b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 88 oder SEQ ID NO: 106 dargestellten Aminosäuresequenz ableiten lassen, oder
 - c) Derivate der in SEQ ID NO: 87 oder SEQ ID NO: 105 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 60 % Identität auf Aminosäureebene mit SEQ ID NO: 88 oder SEQ ID NO: 106 aufweisen und eine ω-3-Desaturaseaktivität aufweisen.
 - 21. Isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ-6-Desaturaseaktivität codieren, ausgewählt aus der Gruppe:
 - einer Nukleinsäuresequenz mit der in SEQ ID NO: 89 oder in SEQ ID NO: 97 dargestellten Sequenz,
- 30 b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 90 oder SEQ ID NO: 98 dargestellten Aminosäuresequenz ablelten lassen, oder
- c) Derivate der in SEQ ID NO: 89 oder SEQ ID NO: 97 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 90 oder SEQ ID NO: 98 codieren und eine Δ-6-Desaturaseaktivität aufweisen.

- 22. Isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ-5-Desaturaseaktivität codieren, ausgewählt aus der Gruppe:
 - einer Nukleinsäuresequenz mit der in SEQ ID NO: 91, SEQ ID NO: 93,
 SEQ ID NO: 99 oder in SEQ ID NO: 101 dargestellten Sequenz,
- b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 100 oder in SEQ ID NO: 102 dargestellten Aminosäuresequenz ableiten lassen, oder
- C) Derivate der in SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 99 oder in SEQ ID NO: 101 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 100 oder in SEQ ID NO: 102 codieren und eine Δ-5-Desaturaseaktivität aufweisen.
- 23. Isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ-4 15 Desaturaseaktivität codieren, ausgewählt aus der Gruppe:
 - einer Nukleinsäuresequenz mit der in SEQ ID NO: 95 oder in SEQ ID NO: 103 dargestellten Sequenz,
 - Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 96 oder SEQ ID NO: 104 dargestellten Aminosäuresequenz ableiten lassen, oder
 - c) Derivate der in SEQ ID NO: 95 oder SEQ ID NO: 103 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 96 oder SEQ ID NO: 104 codieren und eine Δ-4-Desaturaseaktivität aufweisen.
 - 25 24. Isolierte Nukleinsäuresequenz, die für Polypeptide mit Δ-12-Desaturasaktivität codieren, ausgewählt aus der Gruppe bestehend aus:
 - einer Nukleinsäuresequenz mit der in SEQ ID NO: 107 oder SEQ ID
 NO: 109 dargestellten Sequenz, oder
 - b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 108 oder SEQ ID NO: 110 dargestellten Aminosäuresequenz ableiten lassen, oder
 - c) Derivate der in SEQ ID NO: 107 oder SEQ ID NO: 109 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 50 % Identität auf Aminosäureebene mit SEQ ID NO: 108 oder SEQ ID NO: 110 codieren und eine Δ-12-Desaturasaktivität aufweisen.

PCT/EP2004/007957

- 25. Isolierte Nukleinsäuresequenz nach den Ansprüchen 16 bis 24, wobei die Sequenz von einer Alge, einem Pilz, einem Mikroorganismus, einer Pflanze oder einem nicht-humanen Tier stammt.
- 26. Isolierte Nukleinsäuresequenz nach den Ansprüchen 16 bis 25, wobei die
 5 Sequenz aus der Ordnung Salmoniformes, den Diatomeengattungen Thalassiosira oder Crythecodinium oder aus der Familie der Prasinophyceae, Euglenaceae oder Pythiaceae stammt.
 - 27. Aminosäuresequenz, die von einer isolierten Nukleinsäuresequenz nach einem der Ansprüche 16 bis 26 codiert wird.
- 10 28. Genkonstrukt, enthaltend eine isolierte Nukleinsäure nach einem der Ansprüche 16 bis 26, wobei die Nukleinsäure funktionsfähig mit einem oder mehreren Regulationssignalen verbunden ist.
- Genkonstrukt nach Anspruch 28, dadurch gekennzeichnet, dass das Nukleinsäurekonstrukt zusätzliche Biosynthesegene des Fettsäure- oder Lipidstoffwechsels enthält ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]-Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäure-Acyl-Transferase(n), Acyl-CoA:Lysophospholipid-Acyltransferase(n), Fettsäure-Synthase(n), Fettsäure-Hydroxylase(n), Acetyl-Coenzym A-Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure-Desaturase(n), Fettsäure-Acetylenasen, Lipoxygenasen, Triacylglycerol-Lipasen, Allenoxid-Synthasen, Hydroperoxid-Lyasen oder Fettsäure-Elongase(n).
 - 30. Genkonstrukt nach Anspruch 28 oder 29, dadurch gekennzeichnet, dass das Nukleinsäurekonstrukt zusätzliche Biosynthesegene des Fettsäure- oder Lipidstoffwechsels enthält ausgewählt aus der Gruppe der Δ-4-Desaturase-, Δ-5-Desaturase-, Δ-6-Desaturase-, Δ-8-Desaturase-, Δ-9-Desaturase-, Δ-12-Desaturase-, Δ-6-Elongase- oder Δ-9-Elongase.
 - 31. Vektor, enthaltend eine Nukleinsäure nach den Ansprüchen 16 bis 26 oder ein Genkonstrukt nach den Ansprüchen 28 bis 30.
- Transgener nicht-humaner Organismus, enthaltend mindestens eine Nukleinsäure nach den Ansprüchen 16 bis 26, ein Genkonstrukt nach den Ansprüchen 28 bis 30 oder einen Vektor nach Anspruch 31.
 - 33. Transgener nicht-humaner Organismus nach Anspruch 32, wobei der Organismus ein Mikroorganismus, ein nicht-humanes Tier oder eine Pflanze ist.
- 35 34. Transgener nicht-humaner Organismus nach Anspruch 32 oder 33, wobei der Organismus eine Pflanze ist.

Figur 2: Substratspezifität der Δ-5-Elongase (SEQ ID NO: 53) gegenüber verschiedenen Fettsäuren

Figur 3: Rekonstitution der DHA-Biosynthese in Hefe ausgehend von 20:5ω3.

Retentionszeit

Figur 4: Rekonstitution der DHA-Biosynthese in Hefe ausgehend von 18:4ω3.

Fettsäure-Zusammensetzung (in Mol %) transgener Hefen, die mit den Vektoren pYes3-OmELO3/pYes2-EgD4 oder pYes3-OmELO3/pYes2-EgD4+pESCLeu-PtD5 transformiert worden waren. Die Hefezellen wurden in Minimalmedium ohne Tryptophan und Uracil / und Leucin in Gegenwart von 250 μM 20:5^{Δ5,8,11,14,17} bzw. 18:4^{Δ6,9,12,15} kultiviert. Die Fettsäuremethylester wurden durch saure Methanolyse aus Zellsedimenten gewonnen und über GLC analysiert. Jeder Wert gibt den Mittelwert (n=4) ± Standardabweichung wieder.

	pYes3-OmELO/pYes2-EgD4	pYes3-OmELO/pYes2-EgD4 EgD4 + pESCLeu-PtD5
Fettsäuren	Fütterung mit 20:5 ^{25,8,11,14,17}	Fütterung mit 18:4 ^{Δ6,9,12,15}
	9,35 ± 1,61	7,35 ± 1,37
16:0	14,70 ± 2,72	10,02 ± 1,81
16:1 ^{Δ9}	5,11 ± 1,09	4,27 ± 1,21
18:0	19,49 ± 3,01	10,81 ± 1,95
18:1 ⁴⁹	18,93 ± 2,71	11,61 ± 1,48
18:1 ^{Δ11}	-	7,79 ± 1,29
18:4 ^{Δ6,9,12,15}	3,24 ± 0,41	$1,56 \pm 0,23$
20:1 ^{Δ11}	11,13± 2,07	$4,40 \pm 0,78$
20:1 ^{Δ13}	11,101 2,90	30,05 ± 3,16
20:4 ^{Δ8,11,14,17}	c 01± 1 10	3,72 ± 0,59
20:5 ^{45,8,11,14,17}	6,91± 1,10	5,71 ± 1,30
22:4 ^{Δ10,13,16,17}		1,10 ± 0,27
22:5 ^{47,10,13,16,19}	8,77 ± 1,32	0,58 ± 0,10
22:6 ^{44,7,10,13,16,19}	2,73 ± 0,39	0,00 = 4,

Figur 6: Fütterungsexperiment zur Bestimmung der Funktionalität und Substratspezifität mit Hefestämmen

22:5^{Δ7,10,13,16,19} 22:447,10,13,16 22:507,10,13,16,19 22:407,10,13,16 20:545,11,14,17 20:445,11,14 Expression 10: TpELO1 + 20:5^{A5,8,11,14,17} Expression 9: Kontrolle + 20:5^{Δ5,8,11,14,17} Expression 7: Kontrolle + 20: $4^{\Delta5,8,11,14}$ Expression 8: TpELO1 + 20:4^{Δ5,8,11,14} Figur 9: Expression von TpELO1 in Hefe 18:0 16:149 16:0

Figur 10: Expression von TpELO3 in Hefe.

Figur 11: Expression von Thraustochytrium Δ5-Elongase TL16/pYES2.1 in Hefe.

Figur 12: Desaturierung von Linolsäure (18:2 ω -6-Fettsäure) zu α -Linolensäure (18:3 ω -3-Fettsäure) durch Pi-omega3Des.

Figur 13: Desaturierung von γ -Linolensäure (18:3 ω -6-Fettsäure) zu Stearidonsäure (18:4 ω -3-Fettsäure) durch Pi-omega3Des.

Figur 14: Desaturierung von C20:2 ω -6-Fettsäure zu C20:3 ω -3-Fettsäure durch Pi-omega3Des.

Figur 15: Desaturierung von C20:3- ω -6-Fettsäure zu C20:4- ω -3-Fettsäure durch Pi-omega3Des.

Figur 16: Desaturierung von Arachidonsäure (C20:4-ω-6-Fettsäure) zu Eicosapentaensäure (C20:5-ω-3-Fettsäure) durch die Pi-omega3Des.

Figur 17: Desaturierung von Docosatetraensäure (C22:4-ω-6-Fettsäure) zu Docosapentaensäure (C22:5-ω-3-Fettsäure) durch Pi-omega3Des.

Figur 18: Substratspezifität der Pi-omega3Des gegenüber verschiedenen Fettsäuren

% Desaturierung

Figur 19: Desaturierung von Phospholipid gebundener Arachidonsäure zu EPA durch die Pi-Omega3Des

Figur 20: Umsetzung von Linolsäure (Pfeil) zu γ -Linolensäure (γ -18:3) durch Ot-Des6.1.

Absorption mAU

Retentionszeit

Figur 21: Umsetzung von Linolsäure und α-Linolensäure (A und C), sowie Rekonstitution des ARA- bzw. EPA-Syntheseweges in Hefe (B und D) in Gegenwart von OtD6.1.

Figur 22: Expression von ELO(XI) in Hefe.

Figur 23:

Figur 24: Elongation von Eicosapentaensäure durch OtElo1 (B) bzw. OtElo1.2 (D). Die Kontrollen (A, C) zeigen nicht das Produkt der Elongation (22:5ω3).

Figur 25: Elongation von Arachidonsäure durch OtElo1 (B) bzw. OtElo1.2 (D). Die Kontrollen (A, C) zeigen nicht das Produkt der Elongation (22:4ω6).

Absorption in mA

Figur 26: Elongation von 20:5n-3 durch die Elongasen At3g06470.

Retentionszeit in min

13

15

17

19

11

9

7

5

,1 ;

Figur 27: Substratspezifität der Xenopus Elongase (A), Ciona Elongase (B) und Oncorhynchus Elongase (C)

Figur 28: Substratspezifität der Ostreococcus Δ -5-Elongase (A), der Ostreococcus Δ -6-Elongase (B), der Thalassiosira Δ -5-Elongase (C) und Thalassiosira Ostreococcus Δ -6-Elongase (D)

Figur 29: Expression der Phaeodactylum tricornutum Δ-6-Elongase (PtELO6) in Hefe. A) zeigt die Elongation der C18:3^{Δ6,8,12} Fettsäure und B) die Elongation der C18:4^{Δ6,9,12,15} Fettsäure

Figur 30: Figur 30 zeigt die Substratspezifität von PtELO6 in Bezug auf die gefütterten Substrate.

PtELO6 Spezifität

SEQUENCE LISTING

<110> BASF Plant Science GmbH	
<110> BASF Frank Gottenstellung von mehrfach ungsättigten Fettsäuren <120> Verfahren zur Herstellung von mehrfach ungsättigten Fettsäuren transgenen Organismen	in
<130> PF54756 <140> 20030601	
<141> 2003-08-01	
<160> 192	
<170> PatentIn version 3.1	
<210> 1 <211> 1266 <212> DNA <213> Euglena gracilis	
<220> <221> CDS <222> (1)(1266) <223> Delta-8-Desaturase	
<pre><400> 1 atg aag tca aag cgc caa gcg ctt ccc ctt aca att gat gga aca aca aca atg aag tca aag cgc caa gcg ctt ccc ctt aca att gat gga aca aca aca atg aag tca aag cgc caa gcg ctt ccc ctt aca att gat gga aca aca aca atg aag tca aag cgc caa gcg ctt ccc ctt aca att gat gga aca aca aca atg aag tca aag cgc caa gcg ctt ccc ctt aca att gat gga aca aca aca atg aag tca aag cgc caa gcg ctt ccc ctt aca att gat gga aca aca aca atg aag tca aag cgc caa aca aca aca atg aag tca aag cgc caa gcg ctt ccc ctt aca att gat gga aca aca aca atg aag tca aag cgc caa aca aca aca aca aca aca a</pre>	48
tat gat gtg tct gcc tgg gtc aat ttc cac cct ggt ggt gcg gaa att tat gat gtg tct gcc tgg gtc aat ttc cac cct ggt ggt gcg gaa att Tyr Asp Val Ser Ala Trp Val Asn Phe His Pro Gly Gly Ala Glu Ile 25	96
ata gag aat tac caa gga agg gat gcc act gat gcc ttc atg gtt atg ata gag aat tac caa gga agg gat gcc act gat gcc ttc atg gtt atg ata gag aat tac caa gga agg gat gcc act gat gcc ttc atg gtt atg ata gag aat tac caa gga agg gat gcc act gat gcc ttc atg gtt atg ata gag aat tac caa gga agg gat gcc act gat gcc ttc atg gtt atg ata gag aat tac caa gga agg gat gcc act gat gcc ttc atg gtt atg ata gag aat tac caa gga agg gat gcc act gat gcc ttc atg gtt atg ata gag aat tac caa gga agg gat gcc act gat gcc ttc atg gtt atg	144
cac tot caa gaa goo tto gao aag oto aag ogo atg oco aaa ato aat His Ser Gln Glu Ala Phe Asp Lys Leu Lys Arg Met Pro Lys Ile Asn 50 55	192
ccc agt tct gag ttg cca ccc cag gct gca gtg aat gaa gct caa gag Pro Ser Ser Glu Leu Pro Pro Gln Ala Ala Val Asn Glu Ala Gln Glu 70 75 80	240
gat ttc cgg aag ctc cga gaa gag ttg atc gca act ggc atg ttt gat gat ttc cgg aag ctc cga gaa gag ttg atc gca act ggc atg ttt gat lys Leu Arg Glu Glu Leu Ile Ala Thr Gly Met Phe Asp Asp Phe Arg Lys Leu Arg Glu Glu Leu Ile Ala Thr Gly Met Phe Asp 95	288
gcc tcc ccc ctc tgg tac tca tac aaa atc agc acc aca ctg ggc ctt Ala Ser Pro Leu Trp Tyr Ser Tyr Lys Ile Ser Thr Thr Leu Gly Leu 100 105 110	336
gga gtg ctg ggt tat ttc ctg atg gtt cag tat cag atg tat ttc att Gly Val Leu Gly Tyr Phe Leu Met Val Gln Tyr Gln Met Tyr Phe Ile 115 120 125	384
ggg gca gtg ttg ctt ggg atg cac tat caa cag atg ggc tgg ctt tct Gly Ala Val Leu Leu Gly Met His Tyr Gln Gln Met Gly Trp Leu Ser 130 140	432
cat gac att tgc cac cac cag act ttc aag aac cgg aac tgg aac aac His Asp Ile Cys His His Gln Thr Phe Lys Asn Arg Asn Trp Asn Asn 145 150 155	480

									- 2	2						
								Gly	_		_	ttt Phe				528
							-				-	acc Thr				576
												gcc Ala 205				624
												ctc Leu				672
	_				_	_		_		_	-	cgg Arg				720
												gac Asp				768
			_		_		_	_		-		Gly		_	_	816
												atg Met 285				864
		_	_	_	_			-	_		_	gtt Val				912
		_					_					ctg Leu		_		960
			_		_					-	-	GJÀ āāc	-			1008
												tgg Trp				1056
	_			_					_		_	acc Thr 365			_	1104
												ctg Leu				1152
												GJA aaa				1200
								Ala				gag Glu				1248
_			gct Ala 420		taa											1266

<210>	2	
<211>	421	
<212>	PRT	
<213>	Euglena	gracili

<400> 2

Met Lys Ser Lys Arg Gln Ala Leu Pro Leu Thr Ile Asp Gly Thr Thr

Tyr Asp Val Ser Ala Trp Val Asn Phe His Pro Gly Gly Ala Glu Ile

Ile Glu Asn Tyr Gln Gly Arg Asp Ala Thr Asp Ala Phe Met Val Met 35 40 . 45

His Ser Gln Glu Ala Phe Asp Lys Leu Lys Arg Met Pro Lys Ile Asn

Pro Ser Ser Glu Leu Pro Pro Gln Ala Ala Val Asn Glu Ala Gln Glu

Asp Phe Arg Lys Leu Arg Glu Glu Leu Ile Ala Thr Gly Met Phe Asp

Ala Ser Pro Leu Trp Tyr Ser Tyr Lys Ile Ser Thr Thr Leu Gly Leu

Gly Val Leu Gly Tyr Phe Leu Met Val Gln Tyr Gln Met Tyr Phe Ile

Gly Ala Val Leu Leu Gly Met His Tyr Gln Gln Met Gly Trp Leu Ser 135

His Asp Ile Cys His His Gln Thr Phe Lys Asn Arg Asn Trp Asn Asn

Leu Val Gly Leu Val Phe Gly Asn Gly Leu Gln Gly Phe Ser Val Thr

Cys Trp Lys Asp Arg His Asn Ala His His Ser Ala Thr Asn Val Gln

Gly His Asp Pro Asp Ile Asp Asn Leu Pro Leu Leu Ala Trp Ser Glu

Asp Asp Val Thr Arg Ala Ser Pro Ile Ser Arg Lys Leu Ile Gln Phe

Gln Gln Tyr Tyr Phe Leu Val Ile Cys Ile Leu Leu Arg Phe Ile Trp

WO 2005/012316 PCT/EP2004/007957

4

Cys Phe Gln Ser Val Leu Thr Val Arg Ser Leu Lys Asp Arg Asp Asn 245 250 255

Gln Phe Tyr Arg Ser Gln Tyr Lys Lys Glu Ala Ile Gly Leu Ala Leu 260 265 270

His Trp Thr Leu Lys Ala Leu Phe His Leu Phe Phe Met Pro Ser Ile 275 280 285

Leu Thr Ser Leu Leu Val Phe Phe Val Ser Glu Leu Val Gly Gly Phe 290 295 300

Gly Ile Ala Ile Val Val Phe Met Asn His Tyr Pro Leu Glu Lys Ile 305 310 315 320

Gly Asp Ser Val Trp Asp Gly His Gly Phe Ser Val Gly Gln Ile His 325 330 335

Glu Thr Met Asn Ile Arg Arg Gly Ile Ile Thr Asp Trp Phe Phe Gly 340 345 350

Gly Leu Asn Tyr Gln Ile Glu His His Leu Trp Pro Thr Leu Pro Arg 355 360 365

His Asn Leu Thr Ala Val Ser Tyr Gln Val Glu Gln Leu Cys Gln Lys 370 375 380

His Asn Leu Pro Tyr Arg Asn Pro Leu Pro His Glu Gly Leu Val Ile 385 390 395 400

Leu Leu Arg Tyr Leu Ala Val Phe Ala Arg Met Ala Glu Lys Gln Pro
405 410 415

Ala Gly Lys Ala Leu 420

<210> 3

<211> 777

<212> DNA

<213> Isochrysis galbana

<220>

<221> CDS

<222> (1)..(777)

<223> Delta-9-Elongase

<400> 3

atg gcc ctc gca aac gac gcg gga gag cgc atc tgg gcg gct gtg acc Met Ala Leu Ala Asn Asp Ala Gly Glu Arg Ile Trp Ala Ala Val Thr 1 10 15

gac ccg gaa atc ctc att ggc acc ttc tcg tac ttg cta ctc aaa ccg 96
Asp Pro Glu Ile Leu Ile Gly Thr Phe Ser Tyr Leu Leu Lys Pro
20 25 30

48

O 2005/012316 5	
ctg ctc cgc aat tcc ggg ctg gtg gat gag aag aag ggc gca tac agg Leu Leu Arg Asn Ser Gly Leu Val Asp Glu Lys Lys Gly Ala Tyr Arg 35 40	144
acg tcc atg atc tgg tac aac gtt ctg ctg gcg ctc ttc tct gcg ctg Thr Ser Met Ile Trp Tyr Asn Val Leu Leu Ala Leu Phe Ser Ala Leu 60	192
agc ttc tac gtg acg gcg acc gcc ctc ggc tgg gac tat ggt acg ggc Ser Phe Tyr Val Thr Ala Thr Ala Leu Gly Trp Asp Tyr Gly Thr Gly 70 80	240
gcg tgg ctg cgc agg caa acc ggc gac aca ccg cag ccg ctc ttc cag gcg tgg ctg cgc agg caa acc ggc gac aca ccg cag ccg ctc ttc cag Ala Trp Leu Arg Arg Gln Thr Gly Asp Thr Pro Gln Pro Leu Phe Gln 85 90	288
tgc ccg tcc ccg gtt tgg gac tcg aag ctc ttc aca tgg acc gcc aag Cys Pro Ser Pro Val Trp Asp Ser Lys Leu Phe Thr Trp Thr Ala Lys	336
gca ttc tat tac tcc aag tac gtg gag tac ctc gac acg gcc tgg ctg Ala Phe Tyr Ser Lys Tyr Val Glu Tyr Leu Asp Thr Ala Trp Leu 120 125	384
agg gtc tcc ttt ctc cag gcc ttc cac cac ttt ggc gcg ccg tgg gat Arg Val Ser Phe Leu Gln Ala Phe His His Phe Gly Ala Pro Trp Asp	432
gtg tac ctc ggc att cgg ctg cac aac gag ggc gta tgg atc ttc atg Gtg tac ctc ggc att cgg ctg cac aac gag ggc gta tgg atc ttc atg Gtg tac ctc ggc att cgg ctg cac aac gag ggc gta tgg atc ttc atg Gtg tac ctc ggc att cgg ctg cac aac gag ggc gta tgg atc ttc atg Gtg tac ctc ggc att cgg ctg cac aac gag ggc gta tgg atc ttc atg Gtg tac ctc ggc att cgg ctg cac aac gag ggc gta tgg atc ttc atg Gtg tac ctc ggc att cgg ctg cac aac gag ggc gta tgg atc ttc atg Gtg tac ctc ggc att cgg ctg cac aac gag ggc gta tgg atc ttc atg Gtg tac ctc ggc att cgg ctg cac aac gag ggc gta tgg atc ttc atg Gtg tac ctc ggc att cgg ctg cac aac gag ggc gta tgg atc ttc atg Gtg tac ctc ggc att cgg ctg cac aac gag ggc gta tgg atc ttc atg	480
ttt ttc aac tcg ttc att cac acc atc atg tac acc tac tac ggc ctc ttt ttc aac tcg ttc att cac acc atc atg tac acc tac tac ggc ctc ttt ttc aac tcg ttc att cac acc atc atg tac acc tac tac ggc ctc ttt ttc aac tcg ttc att cac acc atc atg tac acc tac tac ggc ctc ttt ttc aac tcg ttc att cac acc atc atg tac acc tac tac ggc ctc ttt ttc aac tcg ttc att cac acc atc atg tac acc tac tac ggc ctc ttt ttc aac tcg ttc att cac acc atc atg tac acc tac tac ggc ctc ttt ttc aac tcg ttc att cac acc atc atg tac acc tac tac ggc ctc ttt ttc aac tcg ttc att cac acc atc atg tac acc tac tac ggc ctc ttt ttc aac tcg ttc att cac acc atc atg tac acc tac tac ggc ctc ttt ttc aac tcg ttc att cac acc atc atg tac acc tac tac ggc ctc ttt ttc aac tcg ttc att cac acc atc atg tac acc tac tac ggc ctc	528
acc gcc gcg gtat aag ttc aag gcc aag ccg ctc atc acc gcg atg Thr Ala Ala Gly Tyr Lys Phe Lys Ala Lys Pro Leu Ile Thr Ala Met	576
cag atc tgc cag ttc gtg ggc ggc ttc ctg ttg gtc tgg gac tac atc Gln Ile Cys Gln Phe Val Gly Gly Phe Leu Leu Val Trp Asp Tyr Ile 200 205	624
aac gtc ccc tgc ttc aac tcg gac aaa ggg aag ttg ttc agc tgg gct Asn Val Pro Cys Phe Asn Ser Asp Lys Gly Lys Leu Phe Ser Trp Ala 215 220	672
ttc aac tat gca tac gtc ggc tcg gtc ttc ttg ctc ttc tgc cac ttt ttc aac tat gca tac gtc ggc tcg gtc ttc ttg ctc ttc tgc cac ttt Phe Asn Tyr Ala Tyr Val Gly Ser Val Phe Leu Leu Phe Cys His Phe 230 240	720
ttc tac cag gac aac ttg gca acg aag aaa tcg gcc aag gcg ggc aag ttc tac cag gac aac ttg gca acg aag aaa tcg gcc aag gcg ggc aag ttc tac cag gac aac ttg gca acg aag aaa tcg gcc aag gcg ggc aag ttc tac cag gac aac ttg gca acg aag aaa tcg gcc aag gcg ggc aag ttc tac cag gac aac ttg gca acg aag aaa tcg gcc aag gcg ggc aag ttc tac cag gac aac ttg gca acg aag aaa tcg gcc aag gcg ggc aag ttc tac cag gac aac ttg gca acg aag aaa tcg gcc aag gcg ggc aag ttc tac cag gac aac ttg gca acg aag aaa tcg gcc aag gcg ggc aag	768
cag ctc tag Gln Leu	777

<210> 4 <211> 258 <212> PRT <213> Isochrysis galbana

<400> 4

Met Ala Leu Ala Asn Asp Ala Gly Glu Arg Ile Trp Ala Ala Val Thr 1 5 ' 10 15

Asp Pro Glu Ile Leu Ile Gly Thr Phe Ser Tyr Leu Leu Leu Lys Pro 20 25 30

Leu Leu Arg Asn Ser Gly Leu Val Asp Glu Lys Lys Gly Ala Tyr Arg 35 40 45

Thr Ser Met Ile Trp Tyr Asn Val Leu Leu Ala Leu Phe Ser Ala Leu 50 60

Ser Phe Tyr Val Thr Ala Thr Ala Leu Gly Trp Asp Tyr Gly Thr Gly 65 70 75 80

Ala Trp Leu Arg Arg Gln Thr Gly Asp Thr Pro Gln Pro Leu Phe Gln 85 90 95

Cys Pro Ser Pro Val Trp Asp Ser Lys Leu Phe Thr Trp Thr Ala Lys 100 105 110 .

Ala Phe Tyr Tyr Ser Lys Tyr Val Glu Tyr Leu Asp Thr Ala Trp Leu 115 120 125

Arg Val Ser Phe Leu Gln Ala Phe His His Phe Gly Ala Pro Trp Asp 130 135 140

Val Tyr Leu Gly Ile Arg Leu His Asn Glu Gly Val Trp Ile Phe Met 145 150 155 160

Phe Phe Asn Ser Phe Ile His Thr Ile Met Tyr Thr Tyr Tyr Gly Leu 165 170 175

Thr Ala Ala Gly Tyr Lys Phe Lys Ala Lys Pro Leu Ile Thr Ala Met 180 185 190

Gln Ile Cys Gln Phe Val Gly Gly Phe Leu Leu Val Trp Asp Tyr Ile 195 200 205

Asn Val Pro Cys Phe Asn Ser Asp Lys Gly Lys Leu Phe Ser Trp Ala

Phe Asn Tyr Ala Tyr Val Gly Ser Val Phe Leu Leu Phe Cys His Phe 225 230 235 240

Phe Tyr Gln Asp Asn Leu Ala Thr Lys Lys Ser Ala Lys Ala Gly Lys 245 250 255

Gln Leu

2210> 5 2211> 1410 2212> DNA 2213> Phaeodactylum tricornutum	
<220> <221> CDS <222> (1)(1410) <223> Delta-5-Desaturase	
<400> 5 atg gct ccg gat gcg gat aag ctt cga caa cgc cag acg act gcg gta atg gct ccg gat gcg gat aag ctt cga caa cgc cag acg act gcg gta Acg gct ccg gat gcg gat aag ctt cga caa cgc cag acg act gcg gta atg gct ccg gat gcg gta Acg Gln Arg Gln Thr Thr Ala Val Acg Gln Arg Gln Thr Thr Ala Val Acg Gln Thr Thr Thr Thr Thr Ala Val Acg Gln Thr	48
gcg aag cac aat gct gct acc ata tcg acg cag gaa cgc ctt tgc agt gcg aag cac aat gct gct acc ata tcg acg cag gaa cgc ctt tgc agt Ser Thr Gln Glu Arg Leu Cys Ser Ala Lys His Asn Ala Ala Thr Ile Ser Thr Gln Glu Arg Leu Cys Ser	96
ctg tct tcg ctc aaa ggc gaa gaa gtc tgc atc gac gga atc atc tat Leu Ser Ser Leu Lys Gly Glu Glu Val Cys Ile Asp Gly Ile Ile Tyr 40 45	144
gac ctc caa tca ttc gat cat ccc ggg ggt gaa acg atc aaa atg ttt Asp Leu Gln Ser Phe Asp His Pro Gly Gly Glu Thr Ile Lys Met Phe 55 60	192
ggt ggc aac gat gtc act gta cag tac aag atg att cac ccg tac cat ggt ggc aac gat gtc act gta cag tac aag atg att cac ccg tac cat Gly Gly Asn Asp Val Thr Val Gln Tyr Lys Met Ile His Pro Tyr His 70 70 80	240
acc gag aag cat ttg gaa aag atg aag cgt gtc ggc aag gtg acg gat Thr Glu Lys His Leu Glu Lys Met Lys Arg Val Gly Lys Val Thr Asp 90	288
ttc gtc tgc gag tac aag ttc gat acc gaa ttt gaa cgc gaa atc aaa ttc gtc tgc gag tac aag ttc gat acc gaa ttt gaa cgc gaa atc aaa ttc gtc tgc gag tac aag ttc gat acc gaa ttt gaa cgc gaa atc aaa ttc gtc gaa ttt gaa cgc gaa atc aaa ttc gtc gaa ttt gaa cgc gaa atc aaa	336
cga gaa gtc ttc aag att gtg cga cga ggc aag gat ttc ggt act ttg cga Glu Val Phe Lys Ile Val Arg Arg Gly Lys Asp Phe Gly Thr Leu 120 125	384
gga tgg ttc ttc cgt gcg ttt tgc tac att gcc att ttc ttc tac ctg Gly TTP Phe Phe Arg Ala Phe Cys Tyr Ile Ala Ile Phe Phe Tyr Leu 135 140	432
cag tac cat tgg gtc acc acg gga acc tct tgg ctg ctg gcc gtg gcc Gln Tyr His Trp Val Thr Thr Gly Thr Ser Trp Leu Leu Ala Val Ala 150 155 160	480
tac gga atc tcc caa gcg atg att ggc atg aat gtc cag cac gat gcc tac gga atc tcc caa gcg atg att ggc atg aat gtc cag cac gat gcc tac gga atc tcc caa gcg atg att ggc atg aat gtc cag cac gat gcc tac gga atc tcc caa gcg atg att ggc atg aat gtc cag cac gat gcc tac gga atc tcc caa gcg atg att ggc atg aat gtc cag cac gat gcc tac gga atc tcc caa gcg atg att ggc atg aat gtc cag cac gat gcc tac gga atc tcc caa gcg atg att ggc atg aat gtc cag cac gat gcc tac gga atc tcc caa gcg atg att ggc atg aat gtc cag cac gat gcc tac gga atc tcc caa gcg atg att ggc atg aat gtc cag cac gat gcc tac gga atc tcc caa gcg atg att ggc atg atf at gcc tac gga atc tcc caa gcg atg att ggc atg atg at gcc tac gga atc tcc caa gcg atg att ggc atg atg at gcc tac gga atc tcc caa gcg atg att ggc atg at gcc tac gga atc tcc caa gcg atg atc tggc atg atg atc ggc atg atc gcc tac gga atc tcc caa gcg atg atc ggc atg atg atc ggc atg atc ggc atg	528
aac cac ggg gcc acc tcc aag cgt ccc tgg gtc aac gac atg cta ggc Asn His Gly Ala Thr Ser Lys Arg Pro Trp Val Asn Asp Met Leu Gly	576
ctc ggt gcg gat ttt att ggt ggt tcc aag tgg ctc tgg cag gaa caa Ctc ggt gcg gat ttt att ggt ggt tcc aag tgg ctc tgg cag gaa caa Leu Gly Ala Asp Phe Ile Gly Gly Ser Lys Trp Leu Trp Gln Glu Gln 200 205	624
cac tgg acc cac cac gct tac acc aat cac gcc gag atg gat ccc gat His Trp Thr His His Ala Tyr Thr Asn His Ala Glu Met Asp Pro Asp 210 215	672

WO 2005/012316 PCT/EP2004/007957

8

								•	•	•						
_			_	_		-		cta Leu			_					720 .
								cgc Arg								768
								tcc Ser 265								816
								ctt Leu								864
								aag Lys								912
								gct Ala								960
								gga Gly								1008
		Ser						ctg Leu 345								1056
								gcc Ala							gaa Glu	1104
								gtc Val								1152
								gga Gly								1200
								agc Ser								1248
								aaa Lys 425								1296
tac Tyr	ccg Pro	tgg Trp 435	Ile	cac His	caa Gln	aac Asn	ttt Phe 440	ctc Leu	tcc Ser	acc Thr	gtc Val	cgc Arg 445	tac Tyr	atg Met	cac His	1344
gcg Ala	gcc Ala 450	GJA aaa	acc Thr	ggt Gly	gcc Ala	aac Asn 455	tgg Trp	cgc Arg	cag Gln	atg Met	gcc Ala 460	aga Arg	gaa Glu	aat Asn	ccc Pro	1392
				gcg Ala	taa					٠.						1410

<210> 6 <211> 469 <212> PRT

<213> Phaeodactylum tricornutum

<400> 6

Met Ala Pro Asp Ala Asp Lys Leu Arg Gln Arg Gln Thr Thr Ala Val

Ala Lys His Asn Ala Ala Thr Ile Ser Thr Gln Glu Arg Leu Cys Ser

Leu Ser Ser Leu Lys Gly Glu Glu Val Cys Ile Asp Gly Ile Ile Tyr

Asp Leu Gln Ser Phe Asp His Pro Gly Gly Glu Thr Ile Lys Met Phe

Gly Gly Asn Asp Val Thr Val Gln Tyr Lys Met Ile His Pro Tyr His

Thr Glu Lys His Leu Glu Lys Met Lys Arg Val Gly Lys Val Thr Asp

Phe Val Cys Glu Tyr Lys Phe Asp Thr Glu Phe Glu Arg Glu Ile Lys

Arg Glu Val Phe Lys Ile Val Arg Arg Gly Lys Asp Phe Gly Thr Leu

Gly Trp Phe Phe Arg Ala Phe Cys Tyr Ile Ala Ile Phe Phe Tyr Leu

Gln Tyr His Trp Val Thr Thr Gly Thr Ser Trp Leu Leu Ala Val Ala 150

Tyr Gly Ile Ser Gln Ala Met Ile Gly Met Asn Val Gln His Asp Ala

Asn His Gly Ala Thr Ser Lys Arg Pro Trp Val Asn Asp Met Leu Gly

Leu Gly Ala Asp Phe Ile Gly Gly Ser Lys Trp Leu Trp Gln Glu Gln

His Trp Thr His His Ala Tyr Thr Asn His Ala Glu Met Asp Pro Asp

Ser Phe Gly Ala Glu Pro Met Leu Leu Phe Asn Asp Tyr Pro Leu Asp

His Pro Ala Arg Thr Trp Leu His Arg Phe Gln Ala Phe Phe Tyr Met

.' !

10

Pro Val Leu Ala Gly Tyr Trp Leu Ser Ala Val Phe Asn Pro Gln Ile 260 265 270

Leu Asp Leu Gln Gln Arg Gly Ala Leu Ser Val Gly Ile Arg Leu Asp 275 280 285

Asn Ala Phe Ile His Ser Arg Arg Lys Tyr Ala Val Phe Trp Arg Ala 290 295 300

Val Tyr Ile Ala Val Asn Val Ile Ala Pro Phe Tyr Thr Asn Ser Gly 305 310 315 320

Leu Glu Trp Ser Trp Arg Val Phe Gly Asn Ile Met Leu Met Gly Val 325 330 335

Ala Glu Ser Leu Ala Leu Ala Val Leu Phe Ser Leu Ser His Asn Phe 340 345 350

Glu Ser Ala Asp Arg Asp Pro Thr Ala Pro Leu Lys Lys Thr Gly Glu 355 360 365

Pro Val Asp Trp Phe Lys Thr Gln Val Glu Thr Ser Cys Thr Tyr Gly 370 375 380

Gly Phe Leu Ser Gly Cys Phe Thr Gly Gly Leu Asn Phe Gln Val Glu 385 390 395 400

His His Leu Phe Pro Arg Met Ser Ser Ala Trp Tyr Pro Tyr Ile Ala 405 410 415

Pro Lys Val Arg Glu Ile Cys Ala Lys His Gly Val His Tyr Ala Tyr 420 425 430

Tyr Pro Trp Ile His Gln Asn Phe Leu Ser Thr Val Arg Tyr Met His 435 440 445

Ala Ala Gly Thr Gly Ala Asn Trp Arg Gln Met Ala Arg Glu Asn Pro 450 460

Leu Thr Gly Arg Ala

<210>

<211> 1344

<212> DNA

<213> Ceratodon purpureus

<220>

<221> CDS

<222> (1)..(1344)

<223> Delta-5-Desaturase

<400> 7

		PC I/EI 200	-
VO 2005/012316	11		18
atg gta tta cga gag caa g	ag cat gag cca ttc ttc att aaa at lu His Glu Pro Phe Phe Ile Lys II 10	T GAL	
1 -	yac gat gct gtc ctg aga tca cat c Asp Asp Ala Val Leu Arg Ser His P 25	ra ddt	96
20	tat aaa aat atg gat gcc act acc g Tyr Lys Asn Met Asp Ala Thr Thr N 40	rta ttc '	L 44
33	tot aaa gaa gog tat caa tgg ctg Ser Lys Glu Ala Tyr Gln Trp Leu 55	aca daa	192
50	aca caa gaa cca gag atc cca gat Thr Gln Glu Pro Glu Ile Pro Asp 75	att aad	240
65	att gat gat gtg aac atg gga act , Ile Asp Asp Val Asn Met Gly Thr 90	rrc aac	288
	t gcc caa ata aat aaa agt ttc act r Ala Gln Ile Asn Lys Ser Phe Thr 105	rat cta	336
700	a gaa gga ctt atg gat gga tct cct a Glu Gly Leu Met Asp Gly Ser Pro 125	- +ta ttc	384
113	tt gaa aca atc ttc aca att ctt tt eu Glu Thr Ile Phe Thr Ile Leu Ph 135	+ aca ttc	432
tac ctt caa tac cac a	ca tat tat ctt cca tca gct att ct hr Tyr Tyr Leu Pro Ser Ala Ile Le 155	a atg gga eu Met Gly 160	480
145	ttg gga tgg tta atc cat gaa ttc g ttg Gly Trp Leu Ile His Glu Phe A 170	as cat cat	528
	aga tac tac aat gat ttg gcc agc t Arg Tyr Tyr Asn Asp Leu Ala Ser 1 185	+ ++c all	576
20.	gga ttc tca tct ggt ggt tgg aaa Gly Phe Ser Ser Gly Gly Trp Lys 200 205	~~ ראמ כמט	624
199	gcc aca aat gtt gtt gga cga gac Ala Thr Asn Val Val Gly Arg Asp 215	ana mat cit	672
210	215 tat gct aca gtg gca gaa cat ctc Tyr Ala Thr Val Ala Glu His Leu 230 235	and ant tat	720
Asp Leu vai 110	g gtt atg act cta ttc aga tgg caa p Val Met Thr Leu Phe Arg Trp Glr 5	art att cat	768
Ser Gin Asp 24		- c++ cag tca	816

				·					12	2						
atc Ile	att Ile	ttt Phe 275	gtt Val	agt Ser	cag Gln	atg Met	cca Pro 280	act Thr	cat His	tat Tyr	tat Tyr	gac Asp 285	tat Tyr	tac Tyr	aga Arg	864
aat Asn	act Thr 290	gcg Ala	att Ile	tat Tyr	gaa Glu	cag Gln 295	gtt Val	ggt Gly	ctc Leu	tct Ser	ttg Leu 300	cac His	tgg Trp	gct Ala	tgg Trp	912
tca Ser 305	ttg Leu	ggt Gly	caa Gln	ttg Leu	tat Tyr 310	ttc Phe	cta Leu	ccc Pro	gat Asp	tgg Trp 315	tca Ser	act Thr	aga Arg	ata Ile	atg Met 320	960
ttc Phe	ttc Phe	ctt Leu	gtt Val	tct Ser 325	cat His	ctt Leu	gtt Val	gga Gly	ggt Gly 330	ttc Phe	ctg Leu	ctc Leu	tct Ser	cat His 335	gta Val	1008
gtt Val	act Thr	ttc Phe	aat Asn 340	cat His	tat Tyr	tca Ser	gtg Val	gag Glu 345	aag Lys	ttt Phe	gca Ala	ttg Leu	agc Ser 350	tcg Ser	aac Asn	1056
atc Ile	atg Met	tca Ser 355	aat Asn	tac Tyr	gct Ala	tgt Cys	ctt Leu 360	caa Gln	atc Ile	atg Met	acc Thr	aca Thr 365	aga Arg	aat Asn	atg Met	1104
aga Arg	cct Pro 370	gga Gly	aga Arg	ttc Phe	att Ile	gac Asp 375	tgg Trp	ctt Leu	tgg Trp	gga Gly	ggt Gly 380	ctt Leu	aac Asn	tat Tyr	cag Gln	1152
att Ile 385	gag Glu	cac His	cat	ct't Leu	ttc Phe 390	cca Pro	acg Thr	atg Met	cca Pro	cga Arg 395	cac His	aac Asn	ttg Leu	aac Asn	act Thr 400	1200
gtt Val	atg Met	cca Pro	ctt Leu	gtt Val 405	Lys	gag Glu	ttt Phe	gca Ala	gca Ala 410	gca Ala	aat Asn	ggt	tta Leu	cca Pro 415	tac Tyr	1248
atg Met	gtc Val	gac Asp	gat Asp 420	Tyr	ttc Phe	aca Thr	gga Gly	ttc Phe 425	tgg Trp	ctt Leu	gaa Glu	att Ile	gag Glu 430	caa Gln	ttc Phe	1296
cga Arg	aat Asn	att Ile 435	Ala	aat Asn	gtt Val	gct .Ala	gct Ala 440	aaa Lys	ttg Leu	act Thr	aaa Lys	aag Lys 445	att Ile	gcc Ala	tag	1344
<21 <21 <21 <21	1> 2>	8 447 PRT Cera	todo	n pu	rpur	eus						•				
<40		8														
Met 1	Val	. Leu	Arg	Glu 5	Gln	Glu	His	Glu	Pro 10	Phe	Phe	: Ile	Lys	Ile 15	qaA :	
Gly	. Lys	Trp	20	Gln	ılle	: Asp	Asp	Ala 25	Val	Leu	. Arg	Ser	His	Pro	Gly	
Gly	Ser	Ala 35	ılle	. Thr	Thr	Туг	Lys 40	. Asr	Met	Asp	Ala	Thr 45	Thr	val	Phe	

His Thr Phe His Thr Gly Ser Lys Glu Ala Tyr Gln Trp Leu Thr Glu 50 55

Leu Lys Lys Glu Cys Pro Thr Gln Glu Pro Glu Ile Pro Asp Ile Lys 65 70 75 80

Asp Asp Pro Ile Lys Gly Ile Asp Asp Val Asn Met Gly Thr Phe Asn 85

Ile Ser Glu Lys Arg Ser Ala Gln Ile Asn Lys Ser Phe Thr Asp Leu 100 105 110

Arg Met Arg Val Arg Ala Glu Gly Leu Met Asp Gly Ser Pro Leu Phe 125

Tyr Ile Arg Lys Ile Leu Glu Thr Ile Phe Thr Ile Leu Phe Ala Phe 130 135 140

Tyr Leu Gln Tyr His Thr Tyr Tyr Leu Pro Ser Ala Ile Leu Met Gly
145 150 150 155

Val Ala Trp Gln Gln Leu Gly Trp Leu Ile His Glu Phe Ala His His 165 170 175

Gln Leu Phe Lys Asn Arg Tyr Tyr Asn Asp Leu Ala Ser Tyr Phe Val 185 190

Gly Asn Phe Leu Gln Gly Phe Ser Ser Gly Gly Trp Lys Glu Gln His
195 200 205

Asn Val His His Ala Ala Thr Asn Val Val Gly Arg Asp Gly Asp Leu 210 215

Asp Leu Val Pro Phe Tyr Ala Thr Val Ala Glu His Leu Asn Asn Tyr 225 230 235

Ser Gln Asp Ser Trp Val Met Thr Leu Phe Arg Trp Gln His Val His 255 245 250

Trp Thr Phe Met Leu Pro Phe Leu Arg Leu Ser Trp Leu Leu Gln Ser 260 265

Ile Ile Phe Val Ser Gln Met Pro Thr His Tyr Tyr Asp Tyr Tyr Arg

Asn Thr Ala Ile Tyr Glu Gln Val Gly Leu Ser Leu His Trp Ala Trp 290 295

Ser Leu Gly Gln Leu Tyr Phe Leu Pro Asp Trp Ser Thr Arg Ile Met 320

Phe Phe Leu Val Ser His Leu Val Gly Phe Leu Leu Ser His Val 335

Val Thr Phe Asn His Tyr Ser Val Glu Lys Phe Ala Leu Ser Ser Asn 340 Ile Met Ser Asn Tyr Ala Cys Leu Gln Ile Met Thr Thr Arg Asn Met Arg Pro Gly Arg Phe Ile Asp Trp Leu Trp Gly Gly Leu Asn Tyr Gln 375 380 Ile Glu His His Leu Phe Pro Thr Met Pro Arg His Asn Leu Asn Thr 385 Val Met Pro Leu Val Lys Glu Phe Ala Ala Ala Asn Gly Leu Pro Tyr Met Val Asp Asp Tyr Phe Thr Gly Phe Trp Leu Glu Ile Glu Gln Phe 420 425 Arg Asn Ile Ala Asn Val Ala Ala Lys Leu Thr Lys Lys Ile Ala 440 <210> 9 <211> 1443 <212> DNA <213> Physcomitrella patens <220> <221> CDS (1)..(1443) <222> <223> Delta-5-Desaturase atg gcg ccc cac tot gcg gat act gct ggg ctc gtg cct tot gac gaa Met Ala Pro His Ser Ala Asp Thr Ala Gly Leu Val Pro Ser Asp Glu 48 ttg agg cta cga acg tcg aat tca aag ggt ccc gaa caa gag caa act 96 Leu Arg Leu Arg Thr Ser Asn Ser Lys Gly Pro Glu Gln Glu Gln Thr ttg aag aag tac acc ctt gaa gat gtc agc cgc cac aac acc cca gca Leu Lys Lys Tyr Thr Leu Glu Asp Val Ser Arg His Asn Thr Pro Ala 144 40 gat tgt tgg ttg gtg ata tgg ggc aaa gtc tac gat gtc aca agc tgg 192 Asp Cys Trp Leu Val Ile Trp Gly Lys Val Tyr Asp Val Thr Ser Trp 55 att ccc aat cat ccg ggg ggc agt ctc atc cac gta aaa gca ggg cag 240 Ile Pro Asn His Pro Gly Gly Ser Leu Ile His Val Lys Ala Gly Gln 288 gat too act cag off the gat too tat cac occ off tat gto agg aaa Asp Ser Thr Gln Leu Phe Asp Ser Tyr His Pro Leu Tyr Val Arg Lys 85 336 atg ctc gcg aag tac tgt att ggg gaa tta gta ccg tct gct ggt gat. Met Leu Ala Lys Tyr Cys Ile Gly Glu Leu Val Pro Ser Ala Gly Asp 100 105

									1:	•						
gac Asp	aag Lys	ttt Phe 115	aag Lys	aaa Lys	gca Ala	Thr	ctg Leu 120	gag Glu	tat Tyr	gca Ala	gat Asp	gcc Ala 125	gaa Glu	aat Asn	gaa Glu	384
gat Asp	ttc Phe 130	tat Tyr	ttg Leu	gtt Val	gtg Val	aag Lys 135	caa Gln	cga Arg	gtt Val	gaa Glu	tct Ser 140	tat Tyr	ttc Phe	aag Lys	agt Ser	432
aac Asn 145	aag Lys	ata Ile	aac Asn	ccc Pro	caa Gln 150	att Ile	cat His	cca Pro	cat His	atg Met 155	atc Ile	ctg Leu	aag Lys	tca Ser	ttg Leu 160	480
ttc Phe	att Ile	ctt Leu	G17 GGG	gga Gly 165	tat Tyr	ttc Phe	gcc Ala	agt Ser	tac Tyr 170	tat Tyr	tta Leu	gcg Ala	ttc Phe	ttc Phe 175	tgg Trp	528
tct Ser	tca Ser	agt Ser	gtc Val 180	ctt Leu	gtt Val	tct Ser	ttg Leu	ttt Phe 185	ttc Phe	gca Ala	ttg Leu	tgg Trp	atg Met 190	eja aaa	ttc Phe	576
ttc Phe	gca Ala	gcg Ala 195	gaa Glu	gtc Val	ggc Gly	gtg Val	tcg Ser 200	att Ile	caa Gln	cat His	gat Asp	gga Gly 205	aat Asn	cat His	ggt Gly	624
tca Ser	tac Tyr 210	act Thr	aaa Lys	tgg Trp	cgt Arg	ggc Gly 215	ttt Phe	gga Gly	tat Tyr	atc Ile	atg Met 220	gga Gly	gcc Ala	tcc Ser	cta Leu	672
gat Asp 225	Leu	gtc Val	gga Gly	gcc Ala	agt Ser 230	agc Ser	ttc Phe	atg Met	tgg Trp	aga Arg 235	GIII	caa Gln	cac His	gtt Val	gtg Val 240	720
gga Gly	. cat His	cac His	tcg Ser	ttt Phe 245	Thr	aat Asn	gtg Val	gac Asp	aac Asn 250	TAL	gat Asp	cct Pro	gat Asp	att Ile 255	AL 9	768
gtg Val	, aaa . Lys	gat Asp	cca Pro 260	Asp	gtc Val	agg Arg	agg Arg	gtt Val 265	gcg Ala	acc Thr	aca Thr	caa Gln	cca Pro 270	- PT A	caa Gln	816
tgg Trr	tat Tyr	cat His	Ala	tat Tyr	cag Gln	cat His	ato Ile 280	Tyr	ctg Leu	gca Ala	gta Val	tta Leu 285	TAT	gga Gly	act Thr	864
cta Lei	a gct 1 Ala 290	Lev	aac 1 Lys	g agt s Sei	att	ttt Phe 295	Lev	gat Asp	gat Asp	tto Phe	ctt Lev 300	IATO	tac Tyr	tto Phe	aca Thr	912
Gl ₃ 309	y Sei	r Ile	e Gly	y Pro	310	Lys	Va.	L Ala	ггĀг	315	5	PLC) ner	((31)	ttc Phe 320	960
aac Asi	ato n Ile	tto Pho	c ttt e Phe	caq e Gl: 32	n Gly	aag / Lys	r cto : Lev	g cta ı Lev	tat Tyr 330	E ATS	g tto a Phe	e tad	ato Met	tto Phe 335	gtg Val	1008
tt: Le	g cca	a to o Se	t gtg r Val	l Ty	c ggt r Gly	gtt Val	cac His	tco s Sex 345	C GT	a gga	a act	t tto r Phe	ttq Lev 350	1 270	a cta a Leu	1056
ta Ty	t gte r Va	g gc 1 Al 35	a Se	t ca r Gl	g cto n Leo	att i Ile	aca Th:	r GI	t tgg Y Tr]	g ate	g tt t Le	a gct u Ala 36	a Pin	t ct e Le	t ttt u Phe	1104
ca Gl:	a gt n Va 37	l Al	a ca a Hi	t gt s Va	c gte 1 Va	g gat l Ası 379) As	t gti p Val	t gca	a tt a Ph	t cc e Pr 38	0 111	a cc	a ga o Gl	a ggt u Gly	1152

10	
ggg aag gtg aag gga gga tgg gct gca atg cag gtt gca aca act ac Gly Lys Val Lys Gly Gly Trp Ala Ala Met Gln Val Ala Thr Thr Th 385 390 395 40	ır
gat ttc agt cca cgc tca tgg ttc tgg ggt cat gtc tct gga gga tt Asp Phe Ser Pro Arg Ser Trp Phe Trp Gly His Val Ser Gly Gly Le 405 410 415	a 1248 au
aac aac caa att gag cat cat ctg ttt cca gga gtg tgc cat gtt ca Asn Asn Gln Ile Glu His His Leu Phe Pro Gly Val Cys His Val Hi 420 425 430	
tat cca gcc att cag cct att gtc gag aag acg tgc aag gaa ttc ga Tyr Pro Ala Ile Gln Pro Ile Val Glu Lys Thr Cys Lys Glu Phe As 435 440 445	
gtg cct tat gta gcc tac cca act ttt tgg act gcg ttg aga gcc ca Val Pro Tyr Val Ala Tyr Pro Thr Phe Trp Thr Ala Leu Arg Ala Hi 450 455 460	
ttt gcg cat ttg aaa aag gtt gga ttg aca gag ttt cgg ctc gat gg Phe Ala His Leu Lys Lys Val Gly Leu Thr Glu Phe Arg Leu Asp Gl 465 470 475 48	Y
tga	1443
<210> 10 <211> 480 <212> PRT <213> Physcomitrella patens	
<400> 10	
Met Ala Pro His Ser Ala Asp Thr Ala Gly Leu Val Pro Ser Asp Gl 1 5 10 15	u
Leu Arg Leu Arg Thr Ser Asn Ser Lys Gly Pro Glu Gln Glu Gln Th 20 25 30	r
Leu Lys Lys Tyr Thr Leu Glu Asp Val Ser Arg His Asn Thr Pro Al 35 40 45	a
Asp Cys Trp Leu Val Ile Trp Gly Lys Val Tyr Asp Val Thr Ser Tr 50 55 60	p
Ile Pro Asn His Pro Gly Gly Ser Leu Ile His Val Lys Ala Gly Gl 65 70 75 80	
Asp Ser Thr Gln Leu Phe Asp Ser Tyr His Pro Leu Tyr Val Arg Ly 85 90 95	s
Met Leu Ala Lys Tyr Cys Ile Gly Glu Leu Val Pro Ser Ala Gly As	q
Asp Lys Phe Lys Lys Ala Thr Leu Glu Tyr Ala Asp Ala Glu Asn Gl 115 120 125	u

Asn Lys Ile Asn Pro Gln Ile His Pro His Met Ile Leu Lys Ser Leu 145 150 155 160

Phe Ile Leu Gly Gly Tyr Phe Ala Ser Tyr Tyr Leu Ala Phe Phe Trp 165 170 175

Ser Ser Ser Val Leu Val Ser Leu Phe Phe Ala Leu Trp Met Gly Phe . 180 185 190

Phe Ala Ala Glu Val Gly Val Ser Ile Gln His Asp Gly Asn His Gly
195 200 205

Ser Tyr Thr Lys Trp Arg Gly Phe Gly Tyr Ile Met Gly Ala Ser Leu 210 220

Asp Leu Val Gly Ala Ser Ser Phe Met Trp Arg Gln Gln His Val Val 225 230 235

Gly His His Ser Phe Thr Asn Val Asp Asn Tyr Asp Pro Asp Ile Arg 245 250 255

Val Lys Asp Pro Asp Val Arg Arg Val Ala Thr Thr Gln Pro Arg Gln 260 265 270

Trp Tyr His Ala Tyr Gln His Ile Tyr Leu Ala Val Leu Tyr Gly Thr 275 280 285

Leu Ala Leu Lys Ser Ile Phe Leu Asp Asp Phe Leu Ala Tyr Phe Thr 290 295 300

Gly Ser Ile Gly Pro Val Lys Val Ala Lys Met Thr Pro Leu Glu Phe 305 310 315 320

Asn Ile Phe Phe Gln Gly Lys Leu Leu Tyr Ala Phe Tyr Met Phe Val 325 330

Leu Pro Ser Val Tyr Gly Val His Ser Gly Gly Thr Phe Leu Ala Leu $340 \hspace{1cm} 345 \hspace{1cm} 345$

Tyr Val Ala Ser Gln Leu Ile Thr Gly Trp Met Leu Ala Phe Leu Phe 355 . 360 365

Gln Val Ala His Val Val Asp Asp Val Ala Phe Pro Thr Pro Glu Gly 370 380

Gly Lys Val Lys Gly Gly Trp Ala Ala Met Gln Val Ala Thr Thr Thr 385 390 395

Asp Phe Ser Pro Arg Ser Trp Phe Trp Gly His Val Ser Gly Gly Leu 405 410 415

Asn Asn Gli	ı Ile Glı 420	ı His His	Leu Phe 425		Val Cys	His Val	His
Tyr Pro Ala		n Pro Ile	Val Glu 440	Lys Thr	Cys Lys 445		Așp
Val Pro Tyr 450	Val Ala	Tyr Pro 455		Trp Thr	Ala Leu 460	Arg Ala	His
Phe Ala His	Leu Lys	Lys Val 470	Gly Leu	Thr Glu 475	_	Leu Asp	Gly 480
<210> 11 <211> 1320 <212> DNA <213> Thra	ustrochy	/trium					
<220> <221> CDS <222> (1) <223>	.(1320)						
<400> 11 atg ggc aag Met Gly Lys							
gag gcg aac Glu Ala Asr				att ctg		ggc gtc	
tac gac gcg Tyr Asp Ala 35							
ttg acc gag Leu Thr Glu 50							
ttt cat cag Phe His Glr 65							
aag ctg gat Lys Leu Asp							
gcg cgg cgc Ala Arg Arg							
ctc gtc gcc Leu Val Ala 115	Glu Gly						
cgc gtc gtg Arg Val Val 130	gag atc Glu Ile	gtg gcg Val Ala 135	ctc ttc Leu Phe	gcg ctc Ala Leu	tcg ttc Ser Phe 140	tgg ctc Trp_Leu	atg 432 Met
tcc aag gcc Ser Lys Ala							

Val Ser Thr Thr Phe Ala Asn Leu Tyr Ser Val Gly His Ser Val Gly

•

420 425 430

gcc gac acc aag aag cag gac tga Ala Asp Thr Lys Lys Gln Asp 435 1320

<210> 12

<211> 439 <212> PRT

<213> Thraustrochytrium

<400> 12

١'

Met Gly Lys Gly Ser Glu Gly Arg Ser Ala Ala Arg Glu Met Thr Ala 1 5 10 15

Glu Ala Asn Gly Asp Lys Arg Lys Thr Ile Leu Ile Glu Gly Val Leu 20 25 30

Tyr Asp Ala Thr Asn Phe Lys His Pro Gly Gly Ser Ile Ile Asn Phe 35 40

Leu Thr Glu Gly Glu Ala Gly Val Asp Ala Thr Gln Ala Tyr Arg Glu 50 60

Phe His Gln Arg Ser Gly Lys Ala Asp Lys Tyr Leu Lys Ser Leu Pro 65 70 75 80

Lys Leu Asp Ala Ser Lys Val Glu Ser Arg Phe Ser Ala Lys Glu Gln 85 90 95

Ala Arg Arg Asp Ala Met Thr Arg Asp Tyr Ala Ala Phe Arg Glu Glu 100 105 110

Leu Val Ala Glu Gly Tyr Phe Asp Pro Ser Ile Pro His Met Ile Tyr 115 · 120 125

Arg Val Val Glu Ile Val Ala Leu Phe Ala Leu Ser Phe Trp Leu Met 130 - 135 140

Ser Lys Ala Ser Pro Thr Ser Leu Val Leu Gly Val Val Met Asn Gly
145 150 155 160

Ile Ala Gln Gly Arg Cys Gly Trp Val Met His Glu Met Gly His Gly

Ser Phe Thr Gly Val Ile Trp Leu Asp Asp Arg Met Cys Glu Phe Phe
180 185 190

Tyr Gly Val Gly Cys Gly Met Ser Gly His Tyr Trp Lys Asn Gln His 195 200 205

Ser Lys His His Ala Ala Pro Asn Arg Leu Glu His Asp Val Asp Leu 210 215 220

Asn Thr Leu Pro Leu Val Ala Phe Asn Glu Arg Val Val Arg Lys Val 235 230

Lys Pro Gly Ser Leu Leu Ala Leu Trp Leu Arg Val Gln Ala Tyr Leu

Phe Ala Pro Val Ser Cys Leu Leu Ile Gly Leu Gly Trp Thr Leu Tyr

Leu His Pro Arg Tyr Met Leu Arg Thr Lys Arg His Met Glu Phe Val 280

Trp Ile Phe Ala Arg Tyr Ile Gly Trp Phe Ser Leu Met Gly Ala Leu

Gly Tyr Ser Pro Gly Thr Ser Val Gly Met Tyr Leu Cys Ser Phe Gly 315

Leu Gly Cys Ile Tyr Ile Phe Leu Gln Phe Ala Val Ser His Thr His

Leu Pro Val Thr Asn Pro Glu Asp Gln Leu His Trp Leu Glu Tyr Ala 345

Ala Asp His Thr Val Asn Ile Ser Thr Lys Ser Trp Leu Val Thr Trp 355

Trp Met Ser Asn Leu Asn Phe Gln Ile Glu His His Leu Phe Pro Thr

Ala Pro Gln Phe Arg Phe Lys Glu Ile Ser Pro Arg Val Glu Ala Leu

Phe Lys Arg His Asn Leu Pro Tyr Tyr Asp Leu Pro Tyr Thr Ser Ala 405

Val Ser Thr Thr Phe Ala Asn Leu Tyr Ser Val Gly His Ser Val Gly 425 420

Ala Asp Thr Lys Lys Gln Asp 435

<210> 13 <211> 1341 <212> DNA

<213> Mortierella alpina

<220>

<221> CDS

<222> (1)..(1341)

<223> Delta-5-Desaturase

<400		13									 				40
Met 1										tgg Trp					48
										atc Ile					96
			_		_	-	-			ggt Gly					1 44
_			-			-	_		_	gtc Val		_			192
			_	-	-	_		_	_	aag Lys 75		_	_		240
_	_	_			_					gag Glu	_				288
										ttt Phe					. 336
_		_		_						cga Arg	_				384
										ctc Leu					432
										gca Ala 155					480
										cat His					528
										att Ile					576
										tgg Trp					624
										gga Gly					672
_	-				-	_	_	-		aag Lys 235					720
	_							_		gtt Val				_	768
										atc Ile					816

O 200	5/012	316												P	CT/EI	2004/0079
0 200	57012	.510							23	3						
			260					265					270			
gtc Val	aag Lys	acc Thr 275	aat Asn	gac Asp	gct Ala	att Ile	cgt Arg 280	gtc Val	aat Asn	ccc Pro	atc Ile	tcg Ser 285	aca Thr	tgg Trp	cac His	864
act Thr	gtg Val 290	atg Met	ttc Phe	tgg Trp	ggc Gly	ggc Gly 295	aag Lys	gct Ala	ttc Phe	ttt Phe	gtc Val 300	tgg Trp	tat Tyr	cgc Arg	ctg Leu	912
att Ile 305	gtt Val	ccc Pro	ctg Leu	cag Gln	tat Tyr 310	ctg Leu	ccc Pro	ctg Leu	ggc	aag Lys 315	gtg Val	ctg Leu	ctc Leu	ttg Leu	ttc Phe 320	960
acg Thr	gtc Val	gcg Ala	gac Asp	atg Met 325	gtg Val	tcg Ser	tct Ser	tac Tyr	tgg Trp 330	ctg Leu	gcg	ctg Leu	acc Thr	ttc Phe 335	cag Gln	1008
gcg Ala	aac Asn	cac His	gtt Val 340	gtt Val	gag Glu	gaa Glu	gtt Val	cag Gln 345	tgg Trp	ccg Pro	ttg Leu	cct Pro	gac Asp 350	gag Glu	aac Asn	1056
ggg Gly	atc Ile	atc Ile 355	caa Gln	aag Lys	gac Asp	tgġ Trp	gca Ala 360	gct Ala	atg Met	cag Gln	gtc Val	gag Glu 365	act Thr	acg Thr	cag Gln	1104
gat As <u>r</u>	tac Tyr 370	Ala	cac His	gat Asp	tcg Ser	cac His 375	Leu	tgg Trp	acc Thr	agc Ser	atc Ile 380	1111	Gly	agc Ser	ttg Leu	1152
aad Asi 385	tac Tyr	cag Gln	gct Ala	gtg Val	cac His	His	ctg Leu	ttc Phe	ccc Pro	aac Asn 395	. var	tcg Ser	cag Gln	cac His	cat His 400	1200
ta! Ty:	c ccc r Pro	gat Asp	att lle	cts Lev 405	ı Ala	ato Ile	atc lle	aag Lys	aac Asn 410	TILL	tgc Cys	ago Ser	gag Glu	tac Tyr 415		1248
gt Va	t cca l Pro	tac Tyr	ctt Lev 420	ı Val	aag L Lys	gat Asp	acg Thr	Phe 425	trp	cas Gln	gca Ala	ttt Phe	gct Ala 430		cat His	1296
tt Le	g gag u Gl	g cad 1 His 435	Lei	g cgt	g Val	cti L Lei	gga 1 Gly 44(Let	cgt Arg	ccc Pro	aag Lys	gaa Glu 445	GIL	j tag	ī	1341
<2 <2	10> 11> 12> 13>	14 446 PRT Mor	tier	ella	alp	ina										
<4	00>	14												•		
Me 1	t Gl	y Th	r As	p G1 5	n Gl	у Гу	s Th	r Pho	e Thi	c Tr	p Gl	u Gl	u Le	u Ala 15	a Ala	
	- 3-	∽ ml=	. T.,	- 7 <i>-</i>	~ A=	n Le	u Le	u Le	u Ala	a Il	e Ar	g Gl	y Ar	g Va	l Tyr	

His Asn Thr Lys Asp Asp Leu Leu Leu Ala Ile Arg Gly Arg Val Tyr 20 25 30

Asp Val Thr Lys Phe Leu Ser Arg His Pro Gly Gly Val Asp Thr Leu 35 40 45

Leu Leu Gly Ala Gly Arg Asp Val Thr Pro Val Phe Glu Met Tyr His 50 55

Ala Phe Gly Ala Ala Asp Ala Ile Met Lys Lys Tyr Tyr Val Gly Thr 65 70 75 80

Leu Val Ser Asn Glu Leu Pro Ile Phe Pro Glu Pro Thr Val Phe His 85 90 95

Lys Thr Ile Lys Thr Arg Val Glu Gly Tyr Phe Thr Asp Arg Asn Ile 100 105 110

Asp Pro Lys Asn Arg Pro Glu Ile Trp Gly Arg Tyr Ala Leu Ile Phe 115 $\,$ 120 $\,$ 125 $\,$

Gly Ser Leu Ile Ala Ser Tyr Tyr Ala Gln Leu Phe Val Pro Phe Val 130 135 140

Val Glu Arg Thr Trp Leu Gln Val Val Phe Ala Ile Ile Met Gly Phe 145 150 155 160

Ala Cys Ala Gln Val Gly Leu Asn Pro Leu His Asp Ala Ser His Phe 165 170 175

Ser Val Thr His Asn Pro Thr Val Trp Lys Ile Leu Gly Ala Thr His 180 185 190

Asp Phe Phe Asn Gly Ala Ser Tyr Leu Val Trp Met Tyr Gln His Met 195 200 205

Leu Gly His His Pro Tyr Thr Asn Ile Ala Gly Ala Asp Pro Asp Val 210 215 220

Ser Thr Ser Glu Pro Asp Val Arg Arg Ile Lys Pro Asn Gln Lys Trp 225 230 235 240

Phe Val Asn His Ile Asn Gln His Met Phe Val Pro Phe Leu Tyr Gly 245 250 255

Leu Leu Ala Phe Lys Val Arg Ile Gln Asp Ile Asn Ile Leu Tyr Phe 260 265 270

Val Lys Thr Asn Asp Ala Ile Arg Val Asn Pro Ile Ser Thr Trp His 275 280 285

Thr Val Met Phe Trp Gly Gly Lys Ala Phe Phe Val Trp Tyr Arg Leu 290 295 300

Ile Val Pro Leu Gln Tyr Leu Pro Leu Gly Lys Val Leu Leu Leu Phe 305 310 315 320

Thr Val Ala Asp Met Val Ser Ser Tyr Trp Leu Ala Leu Thr Phe Gln 325 330 335

	Asn	His	Val 340	Val	. Glu	G1u	ı Val	L G1 34	n Tr 5	p Pı	co Le	eu 1	Pro	Asp 350	Glu	. As	n	
Gly 1	Ile	Ile 355	Gln	Lys	s Asp	Tr	Ala 36	a Al	a Me	et G	ln V	al (Glu 365	Thr	Thr	- G1	n	
Asp '	Tyr 370	Ala	His	As _]	o Sei	Hi:	s Le [.]	u Tr	TP T	nr S	er I 3	le 80	Thr	Gly	Sei	Le	eu	
Asn '	Tyr	Gln	Ala	u Va	1 Hi:	s Hi	s Le	u Pl	ne P	ro A	sn V 95	al	Ser	Gln	His	5 H:	is 00	
Tyr	Pro	Asp	ıl.	e Le 40	u Al	a Il	e Il	e L	ys A 4	sn T 10	hr C	ys	Ser	Glu	17y:	r L; 5	ys	
Val	Pro	Туг	Le:	u Va O	l Ly	s As	p Tì	nr P	he T 25	xp G	3ln 2	Ala	Phe	Ala 430	Se	r H	is	
Leu	Glu	His 435	s Le	u Ar	g Va	.1 Le	eu G: 4	ly L 40	eu P	rg I	Pro 1	Lys	Glu 445	Glu	1			
<210 <210 <210 <210	1> 2>	15 134 DNA Cae		abd	itis	ele	gans											
<22	_																	
<22 <22	1> 2>	CDS (1) Del	(1	1344 5-De) satu:	rase												
<22 <22 <22 <40 atg	1> 2> 3>	(1) Del	(1 ta-5	1344 5-De	satu ag c lu G			at (gag Glu	cca Pro 10	ttc Phe	tto Phe	e ati	t aa e Ly	a a 's I 1	tt : 1e : 5	gat Asp	48
<22 <22 <22 <40 atg Met	1> 2> 3> 0> gti	(1) Del 15 a tt l Le	ta-5	ga g ga g gg g gt o	satu ag c lu G	aa g ln G	ag C	gat Asp	G1u	10	cta	aga	a t.c	a ca	1 it c	5 ca	ggt	4 8 96
<22 <22 <22 <40 atg Met 1 gga Gly	1> 2> 3> 00> y gt; Va: Va:	(1) Del 15 a tt l Le a tç s Tr	ta-S	ga g rg G gt G	ag c	aa g ln G tt g le Z	ag of lu H	jat Asp aaa Lys	gct Ala 25 aat	gtc Val atg	ctg	aga Arg	a tc g Se c ac	a car r Hi 30	t c.s P	ca ro	ggt Gly ttc	
<22 <22 <22 <40 atg Met 1 gga Gly	1> 2> 3> 00> y gt; Vai a aa y Ly t ag	(1) Del 15 a tt 1 Le a tg x Tr t ga x A 3: a t pr	a con Arrival and	ga ggrg Ggrg G	ag c lu G	aa g ln G le F	ag column agac col	at Asp aaa Lys	gct Ala 25 aat Asn	gtc Val atg Met	ctg Leu gat Asp	aga Arg gcc Ala	a tc g Se c ac a Th 45 a tg	a car Hi	1 c.s.P)	ca ro ta al	ggt Gly ttc Phe	96
<22 <22 <22 <40 atg Met 1 gga Gly cac His	1> 2> 3> 00> gt. Va aaa Ly t age c act. g aaa Ly g agu Ly	(1) Del 15 a ttt a tçç s Tr t gg a t gr a A: 3: a t p	ta-5 a cg a cg b C 2 ca a I ca a a a a I ca a a a a I ca a a a a a a a a a a a a a a a a a a	13444 5-De ga gg gt gg gt co tt at	ag c lu G aa a ln I act a Thr T	aa g ln G tt g le I	ag of lu H	gat Asp aaa Lys 40 aaa Lys	gct Ala 25 aat Asn gaa Glu	gtc Val atg Met	ctg Leu gat Asp tat	aga Arg Ala Ca Gl:	a tc. g Se c ac a Th 45 a tg	a car Hi 30 t acr Th	1 t co.s P	ca ro ta al	ggt Gly ttc Phe gaa Glu	96 144
<22 <22 <22 <40 atg Met 1 ggs Gly cac Hi:	1> 2> 3> 00> gt. Va. aay Ly carry tage carry tage gu Ly	(1) Del 15 a ttt 1 Le a tgr x A: 3: a t pr	ta-5	13444 5-De ga g gr g g g g t c o t t t c s a t i i i i i i i i i i i i i i i i i i	ag c lu G aa a ln I act a Thr T	aa galn o	ag collustications against the state of the	gat Asp aaa Lys 40 aaa Lys	gct Ala 25 aat Asn gaa Glu gaa	gtc Val atg Met gcg Ala	ctg Leu gat Asp tat Tyr gag Glu 75	aga Arc Ala ca Gl 60	a tc g Se c ac a Th 45 a tg n Tr	a car Hir 30 car Tr	1 cc g g at at a sp :	ca ro ta val aca Thr	ggt Gly ttc Phe gaa Glu aag Lys 80	96 144 192

ı

								•	21	J						
			100					105					110			
cgt Arg	atg Met	cga Arg 115	gtt Val	cgt Arg	gca Ala	Glu	gga Gly 120	ctt Leu	atg Met	gat Asp	gga Gly	tct Ser 125	cct Pro	ttg Leu	ttc Phe	384
tac Tyr	att Ile 130	aga Arg	aaa Lys	att Ile	ctt Leu	gaa Glu 135	Thr	atc Ile	ttc Phe	aca Thr	att Ile 140	Leu	ttt Phe	gca Ala	ttc Phe	432
tac Tyr 145	ctt Leu	caa Gln	tac Tyr	cac His	aca Thr 150	tat Tyr	tat Tyr	ctt Leu	cca Pro	tca Ser 155	gct Ala	att Ile	cta Leu	atg Met	gga Gly 160	480
gtt Val	gcg	tgg Trp	caa Gln	caa Gln 165	ttg Leu	gga Gly	tgg Trp	ttá Leu	atc Ile 170	cat His	gaa Glu	ttc Phe	gca Ala	cat His 175	cat His	528
cag Gln	ttg Leu	ttc Phe	aaa Lys 180	aac Asn	aga Arg	tac Tyr	tac Tyr	aat Asn 185	gat Asp	ttg Leu	gcc Ala	agc Ser	tat Tyr 190	ttc Phe	gtt Val	576
gga Gly	aac Asn	ttt Phe 195	tta Leu	caa Gln	gga Gly	ttc Phe	tca Ser 200	tct Ser	Gly	ggt Gly	tgg Trp	aaa Lys 205	gag Glu	cag Gln	cac His	624
aat Asn	gtg Val 210	cat His	cac His	gca Ala	gcc Ala	aca Thr 215	aat Asn	gtt Val	gtt Val	gga Gly	cga Arg 220	gac Asp	gga Gly	gat Asp	ctt Leu	672
gat Asp 225	tta Leu	gtc Val	cca Pro	ttc Phe	tat Tyr 230	gct Ala	aca Thr	gtg Val	gca Ala	gaa Glu 235	cat His	ctc Leu	aac Asn	aat Asn	tat Tyr 240	720
tct Ser	cag Gln	gat Asp	tca Ser	tgg Trp 245	gtt Val	atg Met	act Thr	cta Leu	ttc Phe 250	aga Arg	tgg Trp	caa Gln	cat His	gtt Val 255	cat His	768
tgg Trp	aca Thr	ttc Phe	atg Met 260	Leu	cca Pro	ttc Phe	ctc Leu	cgt Arg 265	Leu	tcg Ser	tgg Trp	ctt Leu	ctt Leu 270	cag Gln	tca Ser	816
ato Ile	att Ile	ttt Phe 275	Val	agt Ser	cag Gln	atg Met	cca Pro 280	act Thr	cat His	tat Tyr	tat Tyr	gac Asp 285	Tyr	tac Tyr	aga Arg	864
aat Asr	act Thr 290	Ala	att Ile	tat Tyr	gaa Glu	cag Gln 295	Val	ggt Gly	ctc Leu	tct Ser	Leu 300	Hıs	tgg Trp	gct Ala	tgg Trp	912
tea Ser 305	Leu	ggt ggt	caa Gln	ttg Leu	tat Tyr 310	Phe	cta Leu	. ccc . Pro	gat Asp	tgg Trp 315	Ser	act Thr	aga Arg	ata Ile	Met 320	960
tto Phe	tto Phe	ctt Lev	gtt Val	Ser 325	His	ctt Leu	gtt Val	gga Gly	ggt Gly 330	Phe	ctg Leu	cto Leu	tct Ser	His 335	gta Val	1008
gti Val	act L Thr	tto Phe	aat Asr 340	n His	tat Tyr	tca Ser	gtg Val	gag . Glu 345	. Lys	ttt Phe	gca Ala	ttg Lev	ago Ser 350	Sex	aac Asn	1056
ato Ile	ato e Met	tca Sea 355	: Ası	tac 1 Tyr	gct Ala	tgt Cys	ctt Leu 360	Glr	ato l Ile	ato Met	acc Thr	aca Thr	Arg	aat JAsr	atg Met	1104
aga Arg	a cct	gga Gly	a aga y Arg	a tto g Phe	att	gac Asp	tgg Trp	ctt Lev	t tgg ı Try	Gl ⁷ d dds	a ggt / Gly	ctt Leu	aac Asr	tat ı Tyı	cag Gln	1152

,	27													
370	375	3	80											
att gag cac cat ct Ile Glu His His Le 385	t ttc cca acg u Phe Pro Thr 390	atg cca cga c Met Pro Arg H 395	ac aac ttg aac is Asn Leu Asn	act 1200 Thr 400										
gtt atg cca ctt gt Val Met Pro Leu Va 40	I TAR GIG LIFE	gca gca gca a Ala Ala Ala A 410	aat ggt tta cca Asn Gly Leu Pro 415	tac 1248 Tyr										
atg gtc gac gat ta Met Val Asp Asp Ty 420	at ttc aca gga yr Phe Thr Gly	ttc tgg ctt g Phe Trp Leu 0 425	gaa att gag caa Glu Ile Glu Gln 430	ttc 1296 Phe										
cga aat att gca aa Arg Asn Ile Ala As 435	at gtt gct gct sn Val Ala Ala 440	Thys hear	aaa aag att gcc Lys Lys Ile Ala 445	tag 1344										
	itis elegans													
<400> 16 Met Val Leu Arg G	uu cin Glu Hi	s Glu Pro Phe	Phe Ile Lys Ile	a Asp										
Met Val Leu Arg G	i	10	15											
Gly Lys Trp Cys C	In Ile Asp As	p Ala Val Leu 25	Arg Ser His Pro	o Gly										
Gly Ser Ala Ile 5	Thr Thr Tyr Ly 40	ys Asn Met Asp)	Ala Thr Thr Va	l Phe										
His Thr Phe His 6	33													
Leu Lys Lys Glu 65	70													
Asp Asp Pro Ile	85	30												
Ile Ser Glu Lys 100	Arg Ser Ala G	iln Ile Asn Lys 105	s Ser Phe Thr As 110	sp Leu										
Arg Met Arg Val	Arg Ala Glu C	Sly Leu Met Asp 120	p Gly Ser Pro Lo 125	eu Phe										
Tyr Ile Arg Lys 130	Ile Leu Glu 1	rhr Ile Phe Th	r Ile Leu Phe A 140	la Phe										
Tyr Leu Gln Tyr 145	His Thr Tyr 1	Tyr Leu Pro Se 15	r Ala Ile Leu M 5	et Gly 160										
Val Ala Trp Gln	Gln Leu Gly 165	Trp Leu Ile Hi 170	is Glu Phe Ala E 1	lis His .75										

Gln Leu Phe Lys Asn Arg Tyr Tyr Asn Asp Leu Ala Ser Tyr Phe Val 180 185 190

Gly Asn Phe Leu Gln Gly Phe Ser Ser Gly Gly Trp Lys Glu Gln His 195 200 205

Asn Val His His Ala Ala Thr Asn Val Val Gly Arg Asp Gly Asp Leu 210 215 220

Asp Leu Val Pro Phe Tyr Ala Thr Val Ala Glu His Leu Asn Asn Tyr 225 230 235 240

Ser Gln Asp Ser Trp Val Met Thr Leu Phe Arg Trp Gln His Val His 245 250 255

Trp Thr Phe Met Leu Pro Phe Leu Arg Leu Ser Trp Leu Leu Gln Ser 260 265 270

Ile Ile Phe Val Ser Gln Met Pro Thr His Tyr Tyr Asp Tyr Tyr Arg 275 280 285

Asn Thr Ala Ile Tyr Glu Gln Val Gly Leu Ser Leu His Trp Ala Trp 290 295 300

Ser Leu Gly Gln Leu Tyr Phe Leu Pro Asp Trp Ser Thr Arg Ile Met 305 310 315

Phe Phe Leu Val Ser His Leu Val Gly Phe Leu Leu Ser His Val 325 330 335

Val Thr Phe Asn His Tyr Ser Val Glu Lys Phe Ala Leu Ser Ser Asn 340 345 350

Ile Met Ser Asn Tyr Ala Cys Leu Gln Ile Met Thr Thr Arg Asn Met 355 360 365

Arg Pro Gly Arg Phe Ile Asp Trp Leu Trp Gly Gly Leu Asn Tyr Gln
370 380

Ile Glu His His Leu Phe Pro Thr Met Pro Arg His Asn Leu Asn Thr 385 390 395 400

Val Met Pro Leu Val Lys Glu Phe Ala Ala Ala Asn Gly Leu Pro Tyr 405 410 415

Met Val Asp Asp Tyr Phe Thr Gly Phe Trp Leu Glu Ile Glu Gln Phe
420 430

Arg Asn Ile Ala Asn Val Ala Ala Lys Leu Thr Lys Lys Ile Ala
435
445

PCT/EP2004/007957 WO 2005/012316 29

<210> 17 <211> 1683 <212> DNA <213> Borago officinalis	
<220> <221> CDS <222> (42)(1388) <222> Delta-6-Desaturase	
<pre><400> 17 tatctgccta ccctcccaaa gagagtagtc atttttcatc a atg gct gct caa atc</pre>	56
aag aaa tac att acc tca gat gaa ctc aag aac cac gat aaa ccc gga Lys Lys Tyr Ile Thr Ser Asp Glu Leu Lys Asn His Asp Lys Pro Gly 10 15 20	104
gat cta tgg atc tcg att caa ggg aaa gcc tat gat gtt tcg gat tgg Asp Leu Trp Ile Ser Ile Gln Gly Lys Ala Tyr Asp Val Ser Asp Trp 25 30 35	152
gtg aaa gac cat cca ggt ggc agc ttt ccc ttg aag agt ctt gct ggt Val Lys Asp His Pro Gly Gly Ser Phe Pro Leu Lys Ser Leu Ala Gly	200
caa gag gta act gat gca ttt gtt gca ttc cat cct gcc tct aca tgg Gln Glu Val Thr Asp Ala Phe Val Ala Phe His Pro Ala Ser Thr Trp 60 65	248
aag aat ctt gat aag ttt ttc act ggg tat tat ctt aaa gat tac tct Lys Asn Leu Asp Lys Phe Phe Thr Gly Tyr Tyr Leu Lys Asp Tyr Ser 80	296
gtt tct gag gtt tct aaa gat tat agg aag ctt gtg ttt gag ttt tct gtt tct gag gtt tct aaa gat tat agg aag ctt gtg ttt gag ttt tct Val Ser Glu Val Ser Lys Asp Tyr Arg Lys Leu Val Phe Glu Phe Ser you 95	344
aaa atg ggt ttg tat gac aaa aaa ggt cat att atg ttt gca act ttg Lys Met Gly Leu Tyr Asp Lys Lys Gly His Ile Met Phe Ala Thr Leu 105 110	392
tgc ttt ata gca atg ctg ttt gct atg agt gtt tat ggg gtt ttg ttt Cys Phe Ile Ala Met Leu Phe Ala Met Ser Val Tyr Gly Val Leu Phe	440
tgt gag ggt gtt ttg gta cat ttg ttt tct ggg tgt ttg atg ggg ttt tgt gag ggt gtt ttg gta cat ttg ttt tct ggg tgt ttg atg ggg ttt Cys Glu Gly Val Leu Val His Leu Phe Ser Gly Cys Leu Met Gly Phe	488
ctt tgg att cag agt ggt tgg att gga cat gat gct ggg cat tat atg ctt tgg att cag agt ggt tgg att gga cat gat gct ggg cat tat atg Leu Trp Ile Gln Ser Gly Trp Ile Gly His Asp Ala Gly His Tyr Met 160 165	536
gta gtg tct gat tca agg ctt aat aag ttt atg ggt att ttt gct gca gta gtg tct gat tca agg ctt aat aag ttt atg ggt att ttt gct gca gta gtg tct gat tca agg ctt aat aag ttt atg ggt att ttt gct gca gta gtg tct gat tca agg ctt aat aag ttt atg ggt att ttt gct gca gta gtg tct gat tca agg ctt aat aag ttt atg ggt att ttt gct gca gta gtg tct gat tca agg ctt aat aag ttt atg ggt att ttt gct gca gta gtg tct gat tca agg ctt aat aag ttt atg ggt att ttt gct gca gta gtg tct gat tca agg ctt aat aag ttt atg ggt att ttt gct gca gta gtg tct gat tca agg ctt aat aag ttt atg ggt att ttt gct gca gta gtg tct gat tca agg ctt aat aag ttt atg ggt att ttt gct gca gta gtg tct gat tca agg ctt aat aag ttt atg ggt att ttt gct gca gta gtg tct gat tca agg ctt aat aag ttt atg ggt att ttt gct gca gta gtg tct gat tca agg ctt aat aag ttt atg ggt att ttt gct gca gta gtg tct gat tca agg ctt aat aag ttt atg ggt att ttt atg gct gca gta gtg tct gat ct gat gat gtg gt att ttt atg gct gca gta gtg tct gat gat gtg gtg gt att ttt gct gca gta gtg gtg gtg gtg gtg gtg gtg gtg gtg	584
aat tgt ctt tca gga ata agt att ggt tgg tgg aaa tgg aac cat aat Asn Cys Leu Ser Gly Ile Ser Ile Gly Trp Trp Lys Trp Asn His Asn 190 195	632
gca cat cac att gcc tgt aat agc ctt gaa tat gac cct gat tta caa Ala His His Ile Ala Cys Asn Ser Leu Glu Tyr Asp Pro Asp Leu Gln	680

1

								,	3	U							
		200					205					210					
	ata Ile 215				_				_								728
	cat His						_							_			776
	gta Val													_	_		824
	ctc Leu																872
	gtg Val			_	-	_	_		-						_		920
	tgg Trp 295					_							-	-	-		968
	atg Met																1016
cag Gln	ttc Phe															•	1064
	GJĀ āāā																1112
	tgt Cys																1160
	gag Glu 375																1208
	tcg Ser																1256
	tat Tyr																1304
	aac Asn																1352
	ttg Leu										taa	aatt	acco	tt			1398
agtt	cato	jta a	taat	ttga	ag at	tate	gtato	tcc	tate	ttt	gtgt	ctte	rtc t	tggt	tctac	:	1458
ttgt	tgga	agt o	atto	caac	et to	tctt	ttat	ggt:	ttat	tag	atgt	ttt	ta a	tata	Ltttē	ı	1518
gaggttttgc tttcatctcc attat						gato	, aat	aagg	gagt	tgca	tatt	gt c	aatt	gttgt	:	1578	

getcaatate tgatattttg gaatgtactt tgtaccactg tgttttcagt tgaagetcat 1638
gtgtacttct atagactttg tttaaatggt tatgtcatgt tattt 1683

<210> 18

<211> 448

<212> PRT

<213> Borago officinalis

14, 6.

<400> 18

Met Ala Ala Gln Ile Lys Lys Tyr Ile Thr Ser Asp Glu Leu Lys Asn 1 5 15

His Asp Lys Pro Gly Asp Leu Trp Ile Ser Ile Gln Gly Lys Ala Tyr 20 25 30

Asp Val Ser Asp Trp Val Lys Asp His Pro Gly Gly Ser Phe Pro Leu 35

Lys Ser Leu Ala Gly Gln Glu Val Thr Asp Ala Phe Val Ala Phe His 50 55

Pro Ala Ser Thr Trp Lys Asn Leu Asp Lys Phe Phe Thr Gly Tyr Tyr 65 75 80

Leu Lys Asp Tyr Ser Val Ser Glu Val Ser Lys Asp Tyr Arg Lys Leu 85 90 95

Val Phe Glu Phe Ser Lys Met Gly Leu Tyr Asp Lys Lys Gly His Ile 100 105 110

Met Phe Ala Thr Leu Cys Phe Ile Ala Met Leu Phe Ala Met Ser Val

Tyr Gly Val Leu Phe Cys Glu Gly Val Leu Val His Leu Phe Ser Gly 130 135 140

Ala Gly His Tyr Met Val Val Ser Asp Ser Arg Leu Asn Lys Phe Met 165 170 175

Gly Ile Phe Ala Ala Asn Cys Leu Ser Gly Ile Ser Ile Gly Trp Trp 180 185 190

Lys Trp Asn His Asn Ala His His Ile Ala Cys Asn Ser Leu Glu Tyr 195 200 205

Asp Pro Asp Leu Gln Tyr Ile Pro Phe Leu Val Val Ser Ser Lys Phe 210 215 220

Phe Gly Ser Leu Thr Ser His Phe Tyr Glu Lys Arg Leu Thr Phe Asp ' 230 235

Ser Leu Ser Arg Phe Phe Val Ser Tyr Gln His Trp Thr Phe Tyr Pro 250

Ile Met Cys Ala Ala Arg Leu Asn Met Tyr Val Gln Ser Leu Ile Met 265

Leu Leu Thr Lys Arg Asn Val Ser Tyr Arg Ala Gln Glu Leu Leu Glý

Cys Leu Val Phe Ser Ile Trp Tyr Pro Leu Leu Val Ser Cys Leu Pro

Asn Trp Gly Glu Arg Ile Met Phe Val Ile Ala Ser Leu Ser Val Thr 310 315

Gly Met Gln Gln Val Gln Phe Ser Leu Asn His Phe Ser Ser Val

Tyr Val Gly Lys Pro Lys Gly Asn Asn Trp Phe Glu Lys Gln Thr Asp 345

Gly Thr Leu Asp Ile Ser Cys Pro Pro Trp Met Asp Trp Phe His Gly

Gly Leu Gln Phe Gln Ile Glu His His Leu Phe Pro Lys Met Pro Arg

Cys Asn Leu Arg Lys Ile Ser Pro Tyr Val Ile Glu Leu Cys Lys 390.

His Asn Leu Pro Tyr Asn Tyr Ala Ser Phe Ser Lys Ala Asn Glu Met

Thr Leu Arg Thr Leu Arg Asn Thr Ala Leu Gln Ala Arg Asp Ile Thr 420 425

Lys Pro Leu Pro Lys Asn Leu Val Trp Glu Ala Leu His Thr His Gly 440

<210> 19 <211> 1563

<212> DNA

<213> Ceratodon purpureus

<220>

<221> CDS

<222> (1)..(1563)

<223> Delta-6-Desaturase

<400> 19

										33								4.0
Met 1	Val	Ser	Gln	2 GTA	Gly	GTĀ	Dea	Der	10		•				15			48
att Ile	gac Asp	gtt Val	gag Glu 20	cac His	ttg Leu	gca Ala	acg Thr	atg Met 25	CC.	c ct	cc g eu V	gtc /al	agt Ser	gac Asp 30	Phe	ct Le	a u	96
aat Asn	gtc Val	ctg Leu 35	gga Gly	acg Thr	act Thr	ttg Leu	ggc Gly 40	cag Glr	tg Tr	g a	gt d er 1	ctt Leu	tcc Ser 45	act Thr	aca Thi	tt Ph	ic ie	144
gct Ala	ttc Phe 50	aaç Lys	g agg s Arg	r cto	acg Thr	act Thi	aag Lys	aaa Lys	a ca s Hi	ıc a .s S	gt er	tcg Ser 60	gac Asp	atc Ile	tc: Se:	ggt rVa	g al	192
gag Glu 65		cae Glr	a aaa n Lys	a gaa s Glu	a tog u Sei 70	g gti Vai	c gcg l Ala	ı Arı	g gg	-2 -	ca ro	gtt Val	gag Glu	aat Asr	at Il	t to e S	et er 0	240
	ı tcg ı Sei	g gt	t gc	g ca a G1: 85	g cc	c at	c agg e Arg	g cg Ar	gaş gA:		gg	gtg Val	cag Glr	gat 1 Asp	aa 5 Ly 95	a a s L	ys ag	288
cc; Pr	g gt o Vai	t ac l Th	t ta r Ty 10	r se	c ct r Le	g aa u Ly	g ga	t gt p Va 10		ct t la s	cg Ser	cac	gat As <u>r</u>	ate Me	g cc t Pr 0	c c	ag ln	336
ga As	c tg p Cy	c tg s Tr 11	g at		a at e Il	c aa e Ly	a ga 's Gl	ر ح	ug g ys V	tg al	tat Tyr	gat Asr	gt Va 12	g ag 1 Se 5	c ac	ec t	tc he	384
gc Al	t ga a Gl 13	g ca u Gl		c co s Pr	et gg co Gl	.у С.	ic ac Ly Th	ggt urVa	tt a al I	tc [le	aac Asn	acc Thi	ta r Ty	c tt r Ph	c gg e Gi	ga o ly 1	ga Arg	432
ga As	ic go		ca ga hr A	at gi	tt to al Pl	c to ne So	ct ac er Th	r P	tc o	cac	gca Ala 155		c ac r Th	c to	a t	gg (aag Lys 160	480
		et c	ag a	sn P	to to he To	ac a yr I	tc gg le G	gg a ly A		ctt Leu 170	gtt Val	ag Ar	g ga	ig ga Lu Gl	ag c lu P 1	cg ro 75	act Thr	528
t (tg ga eu G	ag c lu L	eu L	•	ag g ys G	ag t lu T	ac a yr A	T 0 C	ag 1u .85	ttg Leu	aga Arq	a gc g Al	c ct	et ti eu Pl 1	tc t he I 90	tg .eu	aga Arg	576
g. G	aa c lu G	ln I	tt t eu P	tc a he L	ag a ys S	gt t er s	ет п	aa t ys S	cc Ser	tac Tyr	tac Ty:	c ct r Le	t t eu Pl 2	tc a he L 05	ag a ys T	ct	ctc Leu	624
a	le A			cc a Ser l	att g [le \	al a	gcc a Ala T 215	ca a	agc Ser	att Ile	gc Al	g at a I: 22	ta a le I 20	tc a le S	gt (ctg Leu	tac Tyr	672
1			tac o	egg 9	gcg g Ala '	gtt (/al :	ctg t Leu I	ta Leu	tca [.] Ser	gcc Ala	ag Se 23	-	tg a eu M	tg g let G	igc	ttg Leu	ttt Phe 240	720
		caa (Gln (cag Gln	Cys	gga Gly '	tgg Irp	ttg ! Leu !	ict Ser	cac His	gat Asr 250	-	t c le L	ta c eu F	ac o	at	cag Gln 255	gta Val	768
1	ttt (Phe (gag Glu	Thr	cgc Arg 260	tgg Trp	ctc Leu	aat (Asn	gac Asp	gtt Val 265	٠	: gg	ge t Ly T	at 9 yr 7	gtg g Val 1	gtc Val 270	ggc Gly	aac Asn	816

					•				3	4						
gtt Val	gtt Val	ctg Leu 275	gga Gly	ttc Phė	agt Ser	gtc Val	tcg Ser 280	tgg Trp	tgg Trp	aag Lys	acc Thr	aag Lys 285	cac His	aac Asn	ctg Leu	864
												aca Thr				912
												aaa Lys				960
												cag Gln				1008
												agt Ser				1056
												ctt Leu 365				1104
												tgg Trp				1152
												gta Val				1200
												gta Val				1248
												gac Asp				1296
												gtg Val 445				1344
tgg Trp	ttc Phe 450	acc Thr	gga Gly	ggt Gly	ctc Leu	aac Asn 455	aga Arg	cag Gln	att Ile	gag Glu	cat His 460	cat His	cta Leu	ttt Phe	cca Pro	1392
	Met		Arg	His		Leu	Asn	Lys	Ile		Pro	cac His				1440
ttg Leu	tgc Cys	aag Lys	aag Lys	cat His 485	gga Gly	ctg Leu	gtc Val	tac Tyr	gaa Glu 490	gac Asp	gtg Val	agc Ser	atg Met	gct Ala 495	tcg Ser	1488
Gly	act Thr	tac Tyr	cgg Arg 500	gtt Val	ttg Leu	aaa Lys	aca Thr	ctt Leu 505	aag Lys	gac Asp	gtt Val	gcc Ala	gat Asp 510	gct Ala	gct Ala	1536
	cac His	_	_		_	-	-	tga				•				1563

<210> 20 <211> 520 <212> PRT

<213> Ceratodon purpureus

<400> 20

Met Val Ser Gln Gly Gly Gly Leu Ser Gln Gly Ser Ile Glu Glu Asn 1 5 10

Ile Asp Val Glu His Leu Ala Thr Met Pro Leu Val Ser Asp Phe Leu 20 25 30

Asn Val Leu Gly Thr Thr Leu Gly Gln Trp Ser Leu Ser Thr Thr Phe 35 40 45

Ala Phe Lys Arg Leu Thr Thr Lys Lys His Ser Ser Asp Ile Ser Val

Glu Ala Gln Lys Glu Ser Val Ala Arg Gly Pro Val Glu Asn Ile Ser 65 70 75 80

Gln Ser Val Ala Gln Pro Ile Arg Arg Trp Val Gln Asp Lys Lys 85 90 95

Pro Val Thr Tyr Ser Leu Lys Asp Val Ala Ser His Asp Met Pro Gln 100 105 110

Asp Cys Trp Ile Ile Ile Lys Glu Lys Val Tyr Asp Val Ser Thr Phe 115 120 125

Ala Glu Gln His Pro Gly Gly Thr Val Ile Asn Thr Tyr Phe Gly Arg 130 135 140

Asp Ala Thr Asp Val Phe Ser Thr Phe His Ala Ser Thr Ser Trp Lys 145 150 155 160

Ile Leu Gln Asn Phe Tyr Ile Gly Asn Leu Val Arg Glu Glu Pro Thr 165 170 175

Leu Glu Leu Leu Lys Glu Tyr Arg Glu Leu Arg Ala Leu Phe Leu Arg

Glu Gln Leu Phe Lys Ser Ser Lys Ser Tyr Tyr Leu Phe Lys Thr Leu 195 200 205

'Ile Asn Val Ser Ile Val Ala Thr Ser Ile Ala Ile Ile Ser Leu Tyr 210 215 220

Lys Ser Tyr Arg Ala Val Leu Leu Ser Ala Ser Leu Met Gly Leu Phe 225 230 235

Ile Gln Gln Cys Gly Trp Leu Ser His Asp Phe Leu His His Gln Val 245 250 255 Phe Glu Thr Arg Trp Leu Asn Asp Val Val Gly Tyr Val Val Gly Asn 260 265 270

Val Val Leu Gly Phe Ser Val Ser Trp Trp Lys Thr Lys His Asn Leu 275 280 285

His His Ala Ala Pro Asn Glu Cys Asp Gln Lys Tyr Thr Pro Ile Asp 290 295 300

Glu Asp Ile Asp Thr Leu Pro Ile Ile Ala Trp Ser Lys Asp Leu Leu 305 310 315 320

Ala Thr Val Glu Ser Lys Thr Met Leu Arg Val Leu Gln Tyr Gln His 325 330 335

Leu Phe Phe Leu Val Leu Leu Thr Phe Ala Arg Ala Ser Trp Leu Phe 340 345 350

Trp Ser Ala Ala Phe Thr Leu Arg Pro Glu Leu Thr Leu Gly Glu Lys 355 360 365

Leu Leu Glu Arg Gly Thr Met Ala Leu His Tyr Ile Trp Phe Asn Ser 370 380

Val Ala Phe Tyr Leu Leu Pro Gly Trp Lys Pro Val Val Trp Met Val 385 390 395 400

Val Ser Glu Leu Met Ser Gly Phe Leu Leu Gly Tyr Val Phe Val Leu 405 410 410

Ser His Asn Gly Met Glu Val Tyr Asn Thr Ser Lys Asp Phe Val Asn 420 430

Ala Gln Ile Ala Ser Thr Arg Asp Ile Lys Ala Gly Val Phe Asn Asp 435 440 445

Trp Phe Thr Gly Gly Leu Asn Arg Gln Ile Glu His His Leu Phe Pro 450 460

Thr Met Pro Arg His Asn Leu Asn Lys Ile Ser Pro His Val Glu Thr
465 470 475 480

Leu Cys Lys Lys His Gly Leu Val Tyr Glu Asp Val Ser Met Ala Ser 485

Gly Thr Tyr Arg Val Leu Lys Thr Leu Lys Asp Val Ala Asp Ala Ala 500 510

Ser His Gln Gln Leu Ala Ala Ser 515 520

<210><211><211><212><213>	21 14: DN: Ph	A	acty	, Ylum	trio	corn	ıtum									
<220> <221> <222> <223>	(1) (uras:	e									1	
<400> atg gg Met Gl			ly (ggg Gly 5	gac Asp	gct Ala	cgg Arg	Ala	tcg Ser 10	aag Lys	ggc	tca Ser	acg Tḥr	gcg Ala 15	gct Ala	48
cgc as	ag a Ys I	:le S	agt Ser 20	tgg Trp	cag Gln	gaa Glu	gtc Val	aag Lys 25	acc Thr	cac His	gcg Ala		ccg Pro 30	gag Glu	gac Asp	96
gcc to Ala T	rp 1	itc a [le :	att Ile	cac His	tcc Ser	aat Asn	aag Lys 40	gtc Val	tac Tyr	gac Asp	gtg Val	tcc Ser 45	aac Asn	tgg Trp	cac [,] His	144
gaa c Glu H 5	is I	ecc (gga Gly	ggc Gly	gcc Ala	gtc Val 55	att Ile	ttc Phe	acg Thr	cac His	gcc Ala 60	ggt Gly	gac Asp	gac Asp	atg Met	192
acg g Thr A 65	ac a	att Ile	ttc Phe	gct Ala	gcc Ala 70	ttt Phe	cac His	gca Ala	ccc Pro	gga Gly 75	tcg Ser	cag Gln	tcg Ser	ctc Leu	atg Met 80	240
aag a Lys L	ag ys	ttc Phe	tac Tyr	att Ile 85	ggc Gly	gaa Glu	ttg Leu	ctc Leu	ccg Pro 90	gaa Glu	acc Thr	acc Thr	ggc Gly	aag Lys 95	gag Glu	288
ccg c Pro G	ag Sln	caa Gln	atc Ile 100	gcc Ala	ttt Phe	gaa Glu	aag Lys	ggc Gly 105	tac Tyr	cgc Arg	gat Asp	ctg Leu	cgc Arg 110		aaa Lys	336
ctc a Leu 1	atc [le	atg Met 115	atg Met	ggc Gly	.atg Met	ttc Phe	aag Lys 120	tcc Ser	aac Asn	aag Lys	tgg Trp	ttc Phe 125	tac Tyr	gtc Val	tac Tyr	384
aag t Lys (tgc Cys 130	ctc Leu	agc Ser	aac Asn	Met	gcc Ala 135	TTE	tgg Trp	gcc	gcc Ala	gcc Ala 140	C.7.0	gct Ala	, cto Lev	gtc Val	432
ttt i Phe i 145	tac Tyr	tcg Ser	gac Asp	cgc	tto Phe 150	Trp	gta Val	cac His	ctg Leu	gcc Ala 155	Ser	gcc Ala	gto Val	ato Met	ctg Leu 160	480
Gly '	aca Thr	ttc Phe	ttt Phe	cag Glr 165	Gir	tcg Ser	gga Gly	tgg Trp	ttg Lev 170	. Alt	a cac	gac Asp	ttt Phe	t ctq Let 179	cac His	528
cac His	cag Gln	gtc Val	tto Phe 180	thr:	aag Lys	g cgo	aag Julys	g cac s His 189	2 GTZ	gat Asi	cto p Lev	. Gly	gga Gly		c ttt u Phe	576
tgg Trp	GJÀ aāa	aac Asn 195	Leu	ato Me	g caq c Gl	g ggt	tac Y Tyi	Sei	gta val	ı caç L Glı	g tgg n Trg	tgg Trp 209		a aa s As:	c aag n Lys	624
cac His	aac Asn 210	Gly	cac His	cae Hi:	c gc s Ala	c gto a Val	r Pro	c aac	c cto n Le	ca ı Hi	c tgo s Cy: 220	5 00.	c to c Se	c gc r Al	a gtc a Val	672

	Gln														tgg Trp 240	720
tcc Ser	gtc Val	cag Gln	caa Gln	gcc Ala 245	cag Gln	tct Ser	tac Tyr	cgg Arg	gaa Glu 250	ctc Leu	caa Gln	gcc Ala	gac Asp	gga Gly 255		768
gat Asp	tcg Ser	ggt Gly	ttg Leu 260	gtc Val	aag Lys	ttc Phe	atg Met	atc Ile 265	cgt Arg	aac Asn	caa Gln	tcc Ser	tac Tyr 270	ttt Phe	tac Tyr	816
ttt Phe	ccc Pro	atc Ile 275	ttg Leu	ttg Leu	ctc Leu	gcc Ala	cgc Arg 280	ctg Leu	tcg Ser	tgg Trp	ttg Leu	aac Asn 285	gag Glu	tcc Ser	ttc Phe	864
aag Lys	tgc Cys 290	gcc Ala	ttt Phe	Gly	ctt Leu	gga Gly 295	gct Ala	gcg Ala	tcg Ser	gag Glu	aac Asn 300	gct Ala	gct Ala	ctc Leu	gaa Glu	912
ctc Leu 305	aag Lys	gcc Ala	aag Lys	ggt Gly	ctt Leu 310	cag Gln	tac Tyr	ccc Pro	ctt Leu	ttg Leu 315	gaa Glu	aag Lys	gct Ala	ggc	atc Ile 320	960
ctg Leu	ctg Leu	cac His	tac Tyr	gct Ala 325	tgg Trp	atg Met	ctt Leu	aca Thr	gtt Val 330	tcg Ser	tcc Ser	ggc	ttt Phe	gga Gly 335	cgc Arg	1008
ttc Phe	tcg Ser	ttc Phe	gcg Ala 340	tac Tyr	acc Thr	gca Ala	ttt Phe	tac Tyr 345	ttt Phe	cta Leu	acc Thr	gcg Ala	acc Thr 350	gcg Ala	tcc Ser	1056
tgt Cys	gga Gly	ttc Phe 355	ttg Leu	ctc Leu	gcc Ala	att Ile	gtc Val 360	ttt Phe	ggc Gly	ctc Leu	ggc Gly	cac His 365	aac Asn	ggc Gly	atg Met	1104
gcc Ala	acc Thr 370	tac Tyr	aat Asn	gcc Ala	gac Asp	gcc Ala 375	cgt Arg	ccg Pro	gac Asp	ttc Phe	tgg Trp 380	aag Lys	ctc Leu	caa Gln	gtc Val	1152
acc Thr 385	acg Thr	act Thr	cgc Arg	aac Asn	gtc Val 390	acg Thr	ggc Gly	gga Gly	cac His	ggt Gly 395	ttc Phe	ccc Pro	caa Gln	gcc Ala	ttt Phe 400	1200
gtc Val	gac Asp	tgg Trp	ttc Phe	tgt Cys 405	ggt Gly	ggc Gly	ctc Leu	cag Gln	tac Tyr 410	caa Gln	gtc Val	gac Asp	cac His	cac His 415	tta Leu	1248
			ctg Leu 420													1296
gaa Glu	tcg Ser	ttc Phe 435	tgc Cys	aag Lys	gag Glu	tgg Trp	ggt Gly 440	gtc Val	cag Gln	tac Tyr	cac His	gaa Glu 445	gcc Ala	gac Asp	ctt Leu	1344
gtg Val	gac Asp 450	Gly ggg	acc Thr	atg Met	gaa Glu	gtc Val 455	ttg Leu	cac His	cat His	ttg Leu	ggc Gly 460	agc Ser	gtg Val	gcc Ala	GJÅ āāc	1392
gaa Glu 465	ttc Phe	gtc Val	gtg Val	gat Asp	ttt Phe 470	Val	cgc Arg	gat Asp	gga Gly	ccc Pro 475	gcc Ala	atg Met	taa			1434

<210> 22 <211> 477 <212> PRT

<213> Phaeodactylum tricornutum

<400> 22

Met Gly Lys Gly Gly Asp Ala Arg Ala Ser Lys Gly Ser Thr Ala Ala

Arg Lys Ile Ser Trp Gln Glu Val Lys Thr His Ala Ser Pro Glu Asp

Ala Trp Ile Ile His Ser Asn Lys Val Tyr Asp Val Ser Asn Trp His 35 40 45

Glu His Pro Gly Gly Ala Val Ile Phe Thr His Ala Gly Asp Asp Met

Thr Asp Ile Phe Ala Ala Phe His Ala Pro Gly Ser Gln Ser Leu Met

Lys Lys Phe Tyr Ile Gly Glu Leu Leu Pro Glu Thr Thr Gly Lys Glu 85 90 95

Pro Gln Gln Ile Ala Phe Glu Lys Gly Tyr Arg Asp Leu Arg Ser Lys 100 105 110

Leu Ile Met Met Gly Met Phe Lys Ser Asn Lys Trp Phe Tyr Val Tyr 115 120 125

Lys Cys Leu Ser Asn Met Ala Ile Trp Ala Ala Ala Cys Ala Leu Val 130 135 140

Phe Tyr Ser Asp Arg Phe Trp Val His Leu Ala Ser Ala Val Met Leu 145 150 150 160

Gly Thr Phe Phe Gln Gln Ser Gly Trp Leu Ala His Asp Phe Leu His 165 170 175

His Gln Val Phe Thr Lys Arg Lys His Gly Asp Leu Gly Gly Leu Phe 180 180 185 . 190

Trp Gly Asn Leu Met Gln Gly Tyr Ser Val Gln Trp Trp Lys Asn Lys
195 200 205

His Asn Gly His His Ala Val Pro Asn Leu His Cys Ser Ser Ala Val 210 215 220

Ala Gln Asp Gly Asp Pro Asp Ile Asp Thr Met Pro Leu Leu Ala Trp 225 230 230

Ser Val Gln Gln Ala Gln Ser Tyr Arg Glu Leu Gln Ala Asp Gly Lys 245 250 255

Asp Ser Gly Leu Val Lys Phe Met Ile Arg Asn Gln Ser Tyr Phe Tyr 265 270

Phe Pro Ile Leu Leu Ala Arg Leu Ser Trp Leu Asn Glu Ser Phe

Lys Cys Ala Phe Gly Leu Gly Ala Ala Ser Glu Asn Ala Ala Leu Glu 295

Leu Lys Ala Lys Gly Leu Gln Tyr Pro Leu Leu Glu Lys Ala Gly Ile

Leu Leu His Tyr Ala Trp Met Leu Thr Val Ser Ser Gly Phe Gly Arg

Phe Ser Phe Ala Tyr Thr Ala Phe Tyr Phe Leu Thr Ala Thr Ala Ser 345

Cys Gly Phe Leu Leu Ala Ile Val Phe Gly Leu Gly His Asn Gly Met 360

Ala Thr Tyr Asn Ala Asp Ala Arg Pro Asp Phe Trp Lys Leu Gln Val 375 380

Thr Thr Thr Arg Asn Val Thr Gly Gly His Gly Phe Pro Gln Ala Phe

Val Asp Trp Phe Cys Gly Gly Leu Gln Tyr Gln Val Asp His His Leu 405

Phe Pro Ser Leu Pro Arg His Asn Leu Ala Lys Thr His Ala Leu Val

Glu Ser Phe Cys Lys Glu Trp Gly Val Gln Tyr His Glu Ala Asp Leu

Val Asp Gly Thr Met Glu Val Leu His His Leu Gly Ser Val Ala Gly

Glu Phe Val Val Asp Phe Val Arg Asp Gly Pro Ala Met 470

<210> 23 <211> 1578

<212> DNA

<213> Physcomitrella patens

<220>

<221> CDS

<222> (1)..(1578)

<223> Delta-6-Desaturase

<400> 23

									4	1								
atg Met 1	gta Val	ttc Phe	gcg Ala	ggc Gly 5	ggt Gly	gga Gly	ctt Leu	cag Gln	cag Gln 10	ggc	tct Ser	ctc Leu	gaa Glu	ag ıG	aa lu .5	aac Asn		48
atc Ile	gac Asp	gtc Val	gag Glu 20	cac His	att Ile	gcc Ala	agt Ser	atg Met 25	tct Ser	ctc Leu	ttc Phe	agc Sei	gao Asj 30	p F	tc he	ttc Phe		96
agt Ser	tat Tyr	gtg Val 35	tct Ser	tca Ser	act Thr	gtt Val	ggt Gly 40	tcg Ser	tgg Trp	agc Ser	gta Val	Cac His 45	ag Se	t a	ta (le	caa Gln	1	.44
cct Pro	ttg Leu 50	aag Lys	cgc Arg	ctg Leu	acg Thr	agt Ser 55	aag Lys	aag Lys	cgt Arg	gtt Val	tcg Ser 60	gaa Gli	a ag ı Se	c g r I	yct Ala	gcc Ala	1	.92 ´
gtg Val 65	caa Gln	tgt Cys	ata Ile	tca Ser	gct Ala 70	gaa Glu	gtt Val	cag Gln	aga Arg	aat Asr 75	tcg Ser	ag Se:	t ac r Th	c (cag Gln	gga Gly 80		240
act Thr	gcg Ala	gag	gca Ala	ctc Leu 85	gca Ala	gaa Glu	tca Ser	gtc Val	gtg Val 90	aag Lys	p cco	ac Th	g ag r Ar		cga Arg 95	agg Arg	;	288
tca Ser	tct Ser	cag Glr	tgg Trp) Lys	ı aag Lys	tcg Ser	aca Thr	cac His	PLU	cta Le	a tca ı Se:	a ga r Gl	agt uVa 11		gca Ala	gta Val		336
cac His	aac Asr	: aaq 1 Ly:	s Pro	a ago Sei	c gat r Asp	tgc Cys	tgg Trp	, 114	gtt Val	gt: L Va	a aaa l Lya	a aa s As 12	·-·	ag Ys	gtg Val	tat Tyr		384
gat As <u>r</u>	gtt Val	L Se	c aa r As:	t tti n Pho	t gcg e Ala	g gad Asp 135	S GT	g cat 1 His	ccc Fr	gg Gl	a gg y Gl 14	,	a g	tt al	att Ile	agt Ser		432 .
act Thi	туз	t tt	t gg e Gl	a cg y Ar	a gad g Asj 15	o GT	e aca y Thi	a ga: r As;	t gt p Va	t tt 1 Ph 15		t ag	gt t er P	tt he	cat His	gca Ala 160		480
gc: Ala	t tc	t ac	a tg r Tr	g aa p Ly 16	a at s Il 5	t ct e Le	t caa u Gl	a ga n As	c tt p Ph 17	- 1 X	c at	t gg	gt g ly A	ac .sp	gtg Val 175		•	528
ag Ar	g gt g Va	g ga 1 Gl	g cc u Pr 18	o Th	t cc r Pr	a ga o Gl	g ct u Le	g ct u Le 18	n ra	a ga 's As	it tt sp Ph	ic c	~ 5 ~	aa 1u .90	at <u>o</u> Met	aga Arg	ŗ	576
gc Al	t ct a Le	t tt u Ph 19	e Le	g ag eu Ar	g ga	g ca u Gl	a ct n Le 20	u Pr	c aa le Ly	a ag	gt to er Se		aa t ys I 05	tg .eu	tac Ty:	tat Tyr	<u>:</u> :	624
gt Va	t at l Me 21	t Ly	ng ct ys Le	g ct eu Le	c ac	g aa r As 21	n va	t go 1 Al	t at a II	t ti Le Pl		ct g la A 20	cg a	agc Ser	at Il	t gca e Ala	3. 3.	672
at Il 22	.e I1	a to	gt to ys Ti	gg ag cp Se	gc as er Ly 23	s Tr	et at ur Il	t to .e Se	er A	ra v	tt t al L 35	tg g eu A	ct (cca Ser	gc Al	t tg: a Cy: 240	t s O	720
at Me	g at et Me	g g et A	ct c la L	eu C	gt ti ys Pl 45	ec ca ne G	aa ca ln Gl	ag to In Cy	ys G	ga t ly T 50	gg c	ta t eu S	er i	cat	ga As 25	t tt p Pho 5	t e	768
ct Le	cc ca	ac a is A	sn G	ag g ln V 60	tg t al P	tt ga he G	ag ad lu Tl	nr A	gc t rg T 65	rp L	tt a eu A	at g sn (gtt Val 270	_	c gg 1 Gl	Х З	816

										-						
tat Tyr	gtg Val	Ile 275	Gly	aac Asn	gcc Ala	gtt Val	ctg Leu 280	Gly	ttt Phe	agt Ser	aca Thr	ggg Gly 285	tgg Trp	tgg Trp	aag Lys	864
gag Glu	aag Lys 290	His	aac Asn	ctt Leu	cat His	cat His 295	gct Ala	gct Ala	cca Pro	aat Asn	gaa Glu 300	tgc Cys	gat Asp	cag Gln	act Thr	912
	Gln		att Ile													960
			ata Ile													1008
ctc Leu	caa Gln	tac Tyr	cag Gln 340	cat His	ctg Leu	ttc Phe	ttc Phe	atg Met 345	ggt Gly	ctg Leu	tta Leu	ttt Phe	ttc Phe 350	gcc Ala	cgt Arg	1056
			ctc Leu													1104
			gac Asp													1152
			gtc Val													1200
			atg Met													1248
			gta Val 420													1296
aaa Lys	gaa Glu	ttc Phe 435	gtg Val	agt Ser	gca Ala	cag Gln	atc Ilė 440	gta Val	tcc Ser	aca Thr	cgg Arg	gat Asp 445	atc Ile	aaa Lys	gga Gly	1344
aac Asn	ata Ile 450	ttc Phe	aac Asn	gac Asp	tgg Trp	ttc Phe 455	act Thr	ggt Gly	Gly ggc	ctt Leu	aac Asn 460	agg Arg	caa Gln	ata Ile	gag Glu	1392
			ttc Phe													1440
			gag Glu													1488
gta Val	tct Ser	att Ile	gct Ala 500	acc Thr	Gly ggc	act Thr	tgc Cys	aag Lys 505	gtt Val	ttg Leu	aaa Lys	Ala	ttg Leu 510	aag Lys	gaa Glu	1536
			gct Alạ										taa			1578

<210> 24 <211> 525 <212> PRT

<213> Physcomitrella patens

1.

400> 24

Met Val Phe Ala Gly Gly Gly Leu Gln Gln Gly Ser Leu Glu Glu Asn 1 5 10 15

Ile Asp Val Glu His Ile Ala Ser Met Ser Leu Phe Ser Asp Phe Phe 20 25 30

Ser Tyr Val Ser Ser Thr Val Gly Ser Trp Ser Val His Ser Ile Gln 35 40 45

Pro Leu Lys Arg Leu Thr Ser Lys Lys Arg Val Ser Glu Ser Ala Ala 50 55

Val Gln Cys lle Ser Ala Glu Val Gln Arg Asn Ser Ser Thr Gln Gly 65 70 75 80

Thr Ala Glu Ala Leu Ala Glu Ser Val Val Lys Pro Thr Arg Arg Arg 90 95

Ser Ser Gln Trp Lys Lys Ser Thr His Pro Leu Ser Glu Val Ala Val 100 105 110

His Asn Lys Pro Ser Asp Cys Trp Ile Val Val Lys Asn Lys Val Tyr 115 120 125

Asp Val Ser Asn Phe Ala Asp Glu His Pro Gly Gly Ser Val Ile Ser 130 135 140

Thr Tyr Phe Gly Arg Asp Gly Thr Asp Val Phe Ser Ser Phe His Ala 145 150 155 160

Ala Ser Thr Trp.Lys Ile Leu Gln Asp Phe Tyr Ile Gly Asp Val Glu 165 170 175

Arg Val Glu Pro Thr Pro Glu Leu Leu Lys Asp Phe Arg Glu Met Arg 180 185 190

Ala Leu Phe Leu Arg Glu Gln Leu Phe Lys Ser Ser Lys Leu Tyr Tyr 195 200 205

Val Met Lys Leu Leu Thr Asn Val Ala Ile Phe Ala Ala Ser Ile Ala 210 215 220

Ile Ile Cys Trp Ser Lys Thr Ile Ser Ala Val Leu Ala Ser Ala Cys 225 230 235

Met Met Ala Leu Cys Phe Gln Gln Cys Gly Trp Leu Ser His Asp Phe 245 250 255

- Tyr Val Ile Gly Asn Ala Val Leu Gly Phe Ser Thr Gly Trp Trp Lys 275 280 285
- Glu Lys His Asn Leu His His Ala Ala Pro Asn Glu Cys Asp Gln Thr 290 \ 295 300
- Tyr Gln Pro Ile Asp Glu Asp Ile Asp Thr Leu Pro Leu Ile Ala Trp 305 310 315 320
- Ser Lys Asp Ile Leu Ala Thr Val Glu Asn Lys Thr Phe Leu Arg Ile 325 330 335
- Leu Gln Tyr Gln His Leu Phe Phe Met Gly Leu Leu Phe Phe Ala Arg 340 345 350
- Gly Ser Trp Leu Phe Trp Ser Trp Arg Tyr Thr Ser Thr Ala Val Leu . 355 360 365
- Ser Pro Val Asp Arg Leu Leu Glu Lys Gly Thr Val Leu Phe His Tyr 370 375 380
- Phe Trp Phe Val Gly Thr Ala Cys Tyr Leu Leu Pro Gly Trp Lys Pro 385 390 395 400
- Leu Val Trp Met Ala Val Thr Glu Leu Met Ser Gly Met Leu Leu Gly
 405 410 415
- Phe Val Phe Val Leu Ser His Asn Gly Met Glu Val Tyr Asn Ser Ser 420 425
- Lys Glu Phe Val Ser Ala Gln Ile Val Ser Thr Arg Asp Ile Lys Gly 435 440 445
- Asn Ile Phe Asn Asp Trp Phe Thr Gly Gly Leu Asn Arg Gln Ile Glu 450 455 460
- His His Leu Phe Pro Thr Met Pro Arg His Asn Leu Asn Lys Ile Ala 465 470 480
- Pro Arg Val Glu Val Phe Cys Lys Lys His Gly Leu Val Tyr Glu Asp 485 490 495
- Val Ser Ile Ala Thr Gly Thr Cys Lys Val Leu Lys Ala Leu Lys Glu 500 505 510
- Val Ala Glu Ala Ala Ala Glu Gln His Ala Thr Thr Ser 515 520 525

<210> 25 <211> 1332 <212> DNA <213> Caenorhabditis	elegans		-
<220> <221> CDS <222> (1)(1332) <223> Delta-6-Desatur	ase		
<400> 25 atg gtc gtc gac aag aa Met Val Val Asp Lys As 1 5	at gec tee ggg ett ega atg an Ala Ser Gly Leu Arg Met 10	g aag gtc gat ggc : Lys Val Asp Gly 15	48
1	gc gag gaa ttg gtg aag aaa er Glu Glu Leu Val Lys Ly: 25	a cat cca gga gga s His Pro Gly Gly 30	96
	at aga aat tcg gat gct ac yr Arg Asn Ser Asp Ala Th 40	t cat att ttc cac r His Ile Phe His 45	144
gct ttc cac gaa gga t Ala Phe His Glu Gly S	ct tct cag gct tat aag ca er Ser Gln Ala Tyr Lys Gl 55 60	a ctt gac ctt ctg n Leu Asp Leu Leu	192
Lys Lys His Gly Glu F	ac gat gaa ttc ctt gag aa Lis Asp Glu Phe Leu Glu Ly 0 75	a caa ttg gaa aag ys Gln Leu Glu Lys 80	240
65	gat atc aat gta tca gca ta Asp Ile Asn Val Ser Ala T 90	at gat gtc agt gtt yr Asp Val Ser Val 95	288
gca caa gaa aag aaa Ala Gln Glu Lys Lys	atg gtt gaa tca ttc gaa a Met Val Glu Ser Phe Glu L 105	aa cta cga cag aag ys Leu Arg Gln Lys 110	336
ctt cat gat gat gga Leu His Asp Asp Gly 115	tta atg aaa gca aat gaa a Leu Met Lys Ala Asn Glu T 120	ca tat ttc ctg ttt hr Tyr Phe Leu Phe 125	384
aaa gcg att tca aca Lys Ala Ile Ser Thr	ctt tca att atg gca ttt g Leu Ser Ile Met Ala Phe A 135	gca ttt tat ctt cag Ala Phe Tyr Leu Gln L40	432
tat ctt gga tgg tat Tyr Leu Gly Trp Tyr 145	att act tct gca tgt tta t Ile Thr Ser Ala Cys Leu I 150 155	tta gca ctt gca tgg Leu Ala Leu Ala Trp 160	480
	tta aca cat gag ttc tgc Leu Thr His Glu Phe Cys: 170	cat caa cag cca aca His Gln Gln Pro Thr 175	528
	aat gat act att tct.ttg Asn Asp Thr Ile Ser Leu 185	ttc ttt ggt aat ttc Phe Phe Gly Asn Phe 190	576
	aga gat tgg tgg aag gac Arg Asp Trp Trp Lys Asp 200	aag cat aac act cat Lys His Asn Thr His 205	624
	gta att gat cat gac ggt Nal Ile Asp His Asp Gly 215	gat atc gac ttg gca Asp Ile Asp Leu Ala 220	672

								·	71	,						•
cca Pro 225	ctt Leu	ttc Phe	gca Ala	ttt Phe	att Ile 230	cca Pro	gga Gly	gat Asp	ttg Leu	tgc Cys 235	aag Lys	tat Tyr	aag Lys	gcc Ala	agc Ser 240	720 .
ttt Phe	gaa Glu	aaa Lys	gca Ala	att Ile 245	ctc Leu	aag Lys	att Ile	gta Val	cca Pro 250	tat Tyr	caa Gln	cat His	ctc Leu	tat Tyr 255	ttc Phe	768
acc Thr	gca Ala	atg Met	ctt Leu 260	cca Pro	atg Met	ctc. Leu	cgt Arg	ttc Phe 265	tca Ser	tgg Trp	act Thr	ggt Gly	cag Gln 270	tca Ser	gtt Val	816
caa Gln	tgg Trp	gta Val 275	ttc Phe	aaa Lys	gag Glu	aat Asn	caa Gln 280	atg Met	gag Glu	tac Tyr	aag Lys	gtc Val 285	tat Tyr	caa Gln	aga Arg	864
aat Asn	gca Ala 290	ttc Phe	tgg Trp	gag Glu	caa Gln	gca Ala 295	aca Thr	atț Ile	gtt Val	gga Gly	cat His 300	tgg Trp	gct Ala	tgg Trp	gta Val	912
ttc Phe 305	tat Tyr	caa Gln	ttg Leu	ttc Phe	tta Leu 310	tta Leu	cca Pro	aca Thr	tgg Trp	cca Pro 315	ctt Leu	cgg Arg	gtt Val	gct Ala	tat Tyr 320	960
ttc Phe	att Ile	att Ile	tca Ser	caa Gln 325	atg Met	gga Gly	gga Gly	ggc Gly	ctt Leu 330	ttg Leu	att Ile	gct Ala	cac His	gta Val 335	gtc Val	1008
act Thr	ttc Phe	aac Asn	cat His 340	aac Asn	tct Ser	gtt Val	gat Asp	aag Lys 345	tat Tyr	cca Pro	gcc Ala	aat Asn	tct Ser 350	cga Arg	att Ile	1056
tta Leu	aac Asn	aac Asn 355	ttc Phe	gcc Ala	gct Ala	ctt Leu	caa Gln 360	Ile	ttg Leu	acc Thr	aca Thr	cgc Arg 365	aac Asn	atg Met	act Thr	1104
cca Pro	tct Ser 370	Pro	ttc Phe	att Ile	gat Asp	tgg Trp 375	Leu	tgg Trp	ggt Gly	Gly	ctc Leu 380	Asn	tat Tyr	cag Gln	atc Ile	1152
gag Glu 385	His	cac His	ttg Leu	ttc Phe	cca Pro 390	Thr	atg Met	cca Pro	cgt Arg	tgc Cys 395	Asn	ctg Leu	aat Asn	gct Ala	tgc Cys 400	1200
gtg Val	aaa Lys	tat Tyr	gtg Val	aaa Lys 405	. Glu	tgg Trp	tgc Cys	aaa Lys	gag Glu 410	Asn	aat Asn	ctt Leu	cct Pro	tac Tyr 415	ctc Leu	1248
gto Val	gat	gac Asp	tac Tyr 420	Phe	gac Asp	gga Gly	tat Tyr	gca Ala 425	Met	aat Asn	ttg Leu	caa Gln	caa Gln 430	Leu	aaa Lys	1296
aat Asn	atg Met	gct Ala 435	gag Glu	cac His	att Ile	caa Gln	gct Ala 440	. Lys	gct Ala	gcc Ala	taa	L				1332
	_														•	

<210> 26 <211> 443 <212> PRT

<213> Caenorhabditis elegans

<400> 26

Met Val Val Asp Lys Asn Ala Ser Gly Leu Arg Met Lys Val Asp Gly 1 5 15

- Lys Trp Leu Tyr Leu Ser Glu Glu Leu Val Lys Lys His Pro Gly Gly 20 25 30
- Ala Val Ile Glu Gln Tyr Arg Asn Ser Asp Ala Thr His Ile Phe His 35 40 45
- Ala Phe His Glu Gly Ser Ser Gln Ala Tyr Lys Gln Leu Asp Leu Leu 50 55 60
- Lys Lys His Gly Glu His Asp Glu Phe Leu Glu Lys Gln Leu Glu Lys 65 70 75 80
- Arg Leu Asp Lys Val Asp Ile Asn Val Ser Ala Tyr Asp Val Ser Val 85 90 95
- Ala Gln Glu Lys Lys Met Val Glu Ser Phe Glu Lys Leu Arg Gln Lys
 100 105 110
- Leu His Asp Asp Gly Leu Met Lys Ala Asn Glu Thr Tyr Phe Leu Phe 115 120 125
- Lys Ala Ile Ser Thr Leu Ser Ile Met Ala Phe Ala Phe Tyr Leu Gln 130 135
- Tyr Leu Gly Trp Tyr Ile Thr Ser Ala Cys Leu Leu Ala Leu Ala Trp 145 150 155 160
- Gln Gln Phe Gly Trp Leu Thr His Glu Phe Cys His Gln Gln Pro Thr 165 170 175
- Lys Asn Arg Pro Leu Asn Asp Thr Ile Ser Leu Phe Phe Gly Asn Phe 180 185 190
- Leu Gln Gly Phe Ser Arg Asp Trp Trp Lys Asp Lys His Asn Thr His 195 200 205
- His Ala Ala Thr Asn Val Ile Asp His Asp Gly Asp Ile Asp Leu Ala 210 215 220
- Pro Leu Phe Ala Phe Ile Pro Gly Asp Leu Cys Lys Tyr Lys Ala Ser 225 230 235 240
- Phe Glu Lys Ala Ile Leu Lys Ile Val Pro Tyr Gln His Leu Tyr Phe 245 250 255
- Thr Ala Met Leu Pro Met Leu Arg Phe Ser Trp Thr Gly Gln Ser Val 260 265 270
- Gln Trp Val Phe Lys Glu Asn Gln Met Glu Tyr Lys Val Tyr Gln Arg 275 280 285

Asn Ala 290		Trp	Glu	Gln	Ala 295	Thr	Ile	Val	Gly	His 300	Trp	Ala	Trp	Val	
Phe Tyr 305	: Gln	Leu	Phe	Leu 310	Leu	Pro	Thr	Trp	Pro 315	Leu	Arg	Val	Ala	Tyr 320	
Phe Ile	: Ile	Ser	Gln 325	Met	Gly	Gly	Gly	Leu 330	Leu	Ile	Ala	His	Val 335	Va1	
Thr Phe	: Asn	His 340	Asn	Ser	Val	Asp	Lys 345	Tyr	Pro	Ala	Asn	Ser 350	Arg	Ile	
Leu Asr	Asn 355	Phe	Ala	Ala	Leu	Gln 360	Ile	Leu	Thr	Thr	Arg 365	Asn	Met	Thr	
Pro Ser 370		Phe	Ile	Asp	Trp 375	Leu	Ттр	Gly	Gly	Leu 380	Asn	Tyr	Gln	Ile	
Glu His 385	His	Leu	Phe	Pro 390	Thr		Pro	Arg	Сув 395	Asn	Leu	Asn	Ala	Cys 400	
Val Lys	Tyr	Val	Lys 405	Glu	Trp	Суз	Lys	Glu 410	Asn	Asn	Leu	Pro	Tyr 415	Leu	
Val Asp	Asp	Тут 420	Phe	Asp	Gly	Tyr	Ala 425	Met	Asn	Leu	Gln	Gln 430	Leu	Lys	
Asn Met	Ala 435	Glu	His	Ile	Gln	Ala 440	Lys	Ala	Ala						
<211>	27 873														
<212> <213>	DNA Physo	comit	rell	la pa	tens	3									
<222>	CDS		-												
<223>	Delta	1-5-E	Elong	jase											
<400> atg gag Met Glu 1															48
cag ggc Gln Gly															96
acg ccc Thr Pro															144
gtc ctc Val Leu 50	ggt Gly	gtt Val	tct Ser	gta Val	tac Tyr 55	ttg Leu	act Thr	att Ile	gtc Val	att Ile 60	gga Gly	Gly aaa	ctt Leu	ttg Leu	192

tgg Trp 65	ata Ile	aag Lys	gcc Ala	agg Arg	gat Asp 70	ctg Leu	aaa Lys	ccg Pro	cgc Arg	gcc Ala 75	tcg Ser	gag Glu	cca Pro	ttt Phe	ttg Leu 80	240
ctc Leu	caa Gln	gct Ala	ttg Leu	gtg Val 85	ctt Leu	gtg Val	cac His	aac Asn	ctg Leu 90	ttc Phe	tgt Cys	ttt Phe	gcg Ala	ctc Leu 95	agt Ser	288
ctg Leu	tat Tyr	atg Met	tgc Cys 100	gtg Val	ggc. Gly	atc Ile	gct Ala	tat Tyr 105	cag Gln	gct Ala	att Ile	acc Thr	tgg Trp 110	cgg Arg	tac Tyr	336
tct Ser	ctc Leu	tgg Trp 115	ggc	aat Asn	gca Ala	tac Tyr	aat Asn 120	cct Pro	aaa Lys	cat His	aaa Lys	gag Glu 125	atg Met	gcg Ala	att Ile	384
ctg Leu	gta Val 130	Tyr	ttg Leu	ttc Phe	tac Tyr	atg Met 135	Ser	aag Lys	tac Tyr	gtg Val	gaa Glu 140	ttc Phe	atg Met	gat Asp	acc Thr	432
gtt Val 145	Ile	atg Met	ata Ile	ctg Leu	aag Lys 150	Arg	agc Ser	acc Thr	agg Arg	caa Gln 155	ata Ile	agc Ser	ttc Phe	ctc Leu	cac His 160	. ·. 480
gtt Val	tat Tyr	cat His	cat His	tct Ser 165	Sez	att Ile	tcc Ser	ctc Leu	att Ile 170	بريد	tgg Trp	gct Ala	att Ile	gct Ala 175	cat His	528
cac His	gct Ala	cct Pro	ggc Gl _y 180	/ Gl	gaa Glu	a gca ı Ala	tat Tyr	tgg Trp 185) Ser	gcg Ala	gct Ala	ctg Leu	aac Asn 190	tca Ser	gga Gly	576
gtç Va]	cat L His	gtt Val	Le	ate 1 Mei	g tai	t gcg r Ala	tat Ty:	L TA:	tto Phe	ttg Lev	gct Ala	gcc A Ala 209		ctt Lev	cga Arg	624
agi Se:	t age	r Pro	a aaq o Ly:	g tta s Le	a aa u Ly	a aat s Ast 21	и гА	g tad	c cti	ttt 1 Phe	tgg Tr		agg Arg	j tao	ttg Leu	672
ac Th	r Gl	a tte n Ph	c ca e Gl	a at n Me	g tt t Ph 23	e GI	g tt n Ph	t at e Me	g ct t Le	g aad u Asi 23!		a gtg u Vai	g caq l Gli	g gci n Ala	tac Tyr 240	720
ta Ty	c ga r As	c at p Me	g aa t Ly	a ac s Th	r As	t gc n Al	g cc a Pr	a ta o Ty	t cc r Pr 25		a tg n Tr	g ct p. Le	g ato u Ilo	e Ly: 25	g att s Ile 5	768
tt Le	g tt u Ph	c ta e Ty	c ta r Ty 26	r Me	g at t Il	c to e Se	g tt r Le	g ct u Le 26	u	t ct e Le	t tt u Ph	c gg e Gl	c aa y As: 27		t tac e Tyr	816
gt Va	a ca 1 Gl	ia aa .n Ly 27	rs Ty	c at	c as Le Ly	aa co ys Pr	c to c Se 28	E AE	ic gg	a aa y Ly	g ca s Gl	a aa n Ly 28		a gc y Al	t aaa a Lys	864
	ur G	ag to Lu 90	ja													873
<. <.	210> 211> 212> 213>	28 290 PR:	o r	mitr	ella	pat	ens									

<213> Physcomitrella patens

<400> 28

- Met Glu Val Val Glu Arg Phe Tyr Gly Glu Leu Asp Gly Lys Val Ser
- Gln Gly Val Asn Ala Leu Leu Gly Ser Phe Gly Val Glu Leu Thr Asp 20 25 30
- Thr Pro Thr Thr Lys Gly Leu Pro Leu Val Asp Ser Pro Thr Pro Ile 35 40
- Val Leu Gly Val Ser Val Tyr Leu Thr Ile Val Ile Gly Gly Leu Leu
 50 60
- Trp Ile Lys Ala Arg Asp Leu Lys Pro Arg Ala Ser Glu Pro Phe Leu 65 70 75 80
- Leu Gln Ala Leu Val Leu Val His Asn Leu Phe Cys Phe Ala Leu Ser 85 90 95
- Leu Tyr Met Cys Val Gly Ile Ala Tyr Gln Ala Ile Thr Trp Arg Tyr 100 105 110
- Ser Leu Trp Gly Asn Ala Tyr Asn Pro Lys His Lys Glu Met Ala Ile 115 120 125
- Leu Val Tyr Leu Phe Tyr Met Ser Lys Tyr Val Glu Phe Met Asp Thr 130 135 140
- Val Ile Met Ile Leu Lys Arg Ser Thr Arg Gln Ile Ser Phe Leu His 145 150 155 160
- Val Tyr His His Ser Ser Ile Ser Leu Ile Trp Trp Ala Ile Ala His 165 170 175
- His Ala Pro Gly Gly Glu Ala Tyr Trp Ser Ala Ala Leu Asn Ser Gly 180 185 190
- Val His Val Leu Met Tyr Ala Tyr Tyr Phe Leu Ala Ala Cys Leu Arg 195 200 205
- Ser Ser Pro Lys Leu Lys Asn Lys Tyr Leu Phe Trp Gly Arg Tyr Leu 210 215 220
- Thr Gln Phe Gln Met Phe Gln Phe Met Leu Asn Leu Val Gln Ala Tyr 225 230 235 240
- Tyr Asp Met Lys Thr Asn Ala Pro Tyr Pro Gln Trp Leu Ile Lys Ile 245 250 255
- Leu Phe Tyr Tyr Met Ile Ser Leu Leu Phe Leu Phe Gly Asn Phe Tyr 260 265 270

Val Gln Lys Tyr Ile Lys Pro Ser Asp Gly Lys Gln Lys Gly Ala Lys 275 280 285

Thr Glu 290

165

<210> 29 <211> 1049 <212> DNA <213> Thraustochytrium <220> <221> CDS (43)..(858) <222> <223> Delta-6-Elongase <400> 29 gaatteggea egagagegeg eggageggag aceteggeeg eg atg atg gag eeg Met Met Glu Pro ctc gac agg tac agg gcg ctg gcg gag ctc gcc gcg agg tac gcc agc Leu Asp Arg Tyr Arg Ala Leu Ala Glu Leu Ala Ala Arg Tyr Ala Ser 102 15 10 tcg gcg gcc ttc aag tgg caa gtc acg tac gac gcc aag gac agc ttc Ser Ala Ala Phe Lys Trp Gln Val Thr Tyr Asp Ala Lys Asp Ser Phe 25 gtc ggg ccc ctg gga atc cgg gag ccg ctc ggg ctc ctg gtg ggc tcc Val Gly Pro Leu Gly Ile Arg Glu Pro Leu Gly Leu Val Gly Ser 198 gtg gtc ctc tac ctg agc ctg ctg gcc gtg gtc tac gcg ctg cgg aac Val Val Leu Tyr Leu Ser Leu Leu Ala Val Val Tyr Ala Leu Arg Asn 246 tac ctt ggc ggc ctc atg gcg ctc cgc agc gtg cat aac ctc ggg ctc 294 Tyr Leu Gly Gly Leu Met Ala Leu Arg Ser Val His Asn Leu Gly Leu tgc ctc ttc tcg ggc gcc gtg tgg atc tac acg agc tac ctc atg atc 342 Cys Leu Phe Ser Gly Ala Val Trp Ile Tyr Thr Ser Tyr Leu Met Ile 95 cag gat ggg cac ttt cgc agc ctc gag gcg gca acg tgc gag ccg ctc 390 Gln Asp Gly His Phe Arg Ser Leu Glu Ala Ala Thr Cys Glu Pro Leu aag cat ccg cac ttc cag ctc atc agc ttg ctc ttt gcg ctg tcc aag 438 Lys His Pro His Phe Gln Leu Ile Ser Leu Leu Phe Ala Leu Ser Lys atc tgg gag tgg ttc gac acg gtg ctc ctc atc gtc aag ggc aac aag . Ile Trp Glu Trp Phe Asp Thr Val Leu Leu Ile Val Lys Gly Asn Lys 486 140 ctc ege ttc etg cac gtc ttg cac cac gcc acg acc ttt tgg etc tac 534 Leu Arg Phe Leu His Val Leu His His Ala Thr Thr Phe Trp Leu Tyr 155 150 gcc atc gac cac atc ttt ctc tcg tcc atc aag tac ggc gtc gcg gtc 582 Ala Ile Asp His Ile Phe Leu Ser Ser Ile Lys Tyr Gly Val Ala Val 175

'U	200	05/01	2316												J	PC 1/EF	2004/0075
									•	5	2						
i	aat Asn	gct Ala	ttc Phe	atc Ile	cac His 185	Thr	gtc Val	atg Met	tac Tyr	gcg Ala 190	cac His	tac Tyr	ttc Phe	cgc Arg	cca Pro 195	ttc Phe	630
					Arg										cag Gln		678
:	att [le	ttc Phe	agc Ser 215	Ile	GJÅ	atc Ile	cat Kis	acc Thr 220	gcc Ala	att Ile	tac Tyr	tgg Trp	cac His 225	Tyr	gac Asp	tgc Cys	726
Ç	gag 31u	ccg Pro 230	Leu	gtg Val	cat His	acc Thr	cac His 235	ttt Phe	tgg Trp	gaa Glu	tac Tyr	gtc Val 240	acg Thr	ccc Pro	tac Tyr	ctt Leu	774
I	tc Phe 245	gtc Val	gtg Val	ccc Pro	ttc Phe	ctc Leu 250	atc Ile	ctc Leu	ttt Phe	ttc Phe	aat Asn 255	ttt Phe	tac Tyr	ctg Leu	cag Gln	cag Gln 260	822
7	ac	gtc Val	ctc Leu	gcg Ala	ccc Pro 265	gca Ala	aaa Lys	acc Thr	aag Lys	aag Lys 270	gca Ala	tag	cca	cg ta	aca		868
9	ıtaç	gacc	agc a	agcgo	ccgaç	gg ac	gcgt	gcc	g cgt	tato	gcg	aag	cacga	aaa	taaag	gaagat	928
c	atı	tga	ttc a	aacga	aggct	ca ct	tgeg	gcca	a cga	agaaa	aaaa	aaa	aaaa	aaa a	aaaa	aaaaa	988
ā	aaa	aaaa	aaa a	aaaa	aaaa	aa aa	aaaa	aaaa	a aaa	aaaa	aaaa	aaaa	aaaa	aaa a	aaaa	aaaaa	1048
	:																1049
<	210 213 213 213	L> : 2> 1	30 271 PRT Chrau	ıstoo	hyti	rium											
<	400)> :	30														
1	let	Met	Glu	Pro	Leu 5	Asp	Arg	Tyŗ	Arg	Ala 10	Leu	Ala	Glu	Leu	Ala 15	Ala	
A	rg	Tyr	Ala	Ser 20	Ser	Ala	Ala	Phe	Lys 25	Trp	Gln	Val	Thr	Tyr 30	Asp	Ala	
L	ys	Asp	Ser 35	Phe	Val	Gly	Pro	Leu 40	Gly	Ile	Arg	Glu	Pro 45	Leu	Gly	Leu	
L	еп	Val 50	Gly	Ser	Val	Val	Leu 55	Tyr	Leu	Ser	Leu	Leu 60	Ala	Val	Val	Tyr	

Ala Leu Arg Asn Tyr Leu Gly Gly Leu Met Ala Leu Arg Ser Val His 65 70 75 80

Tyr Leu Met Ile Gln Asp Gly His Phe Arg Ser Leu Glu Ala Ala Thr

100

			PCT/EP2004/007957
WO 2005/012316	•	53	

WO 2005/012316	
39	
Cys Glu Pro Leu Lys His Pro His Phe Gln Leu Ile Ser Leu Leu Phe 125 115	
Ala Leu Ser Lys Ile Trp Glu Trp Phe Asp Thr Val Leu Leu Ile Val 130 135	
Lys Gly Asn Lys Leu Arg Phe Leu His Val Leu His His Ala Thr Thr 160 145 150	
Phe Trp Leu Tyr Ala Ile Asp His Ile Phe Leu Ser Ser Ile Lys Tyr 165 170 175	
Gly Val Ala Val Asn Ala Phe Ile His Thr Val Met Tyr Ala His Tyr 180 185	
Phe Arg Pro Phe Pro Lys Gly Leu Arg Pro Leu Ile Thr Gln Leu Gln 205 195	
Ile Val Gln Phe Ile Phe Ser Ile Gly Ile His Thr Ala Ile Tyr Trp 210 210	
His Tyr Asp Cys Glu Pro Leu Val His Thr His Phe Trp Glu Tyr Val 235 225	
Thr Pro Tyr Leu Phe Val Val Pro Phe Leu Ile Leu Phe Phe Asn Phe 255 245	
Tyr Leu Gln Gln Tyr Val Leu Ala Pro Ala Lys Thr Lys Lys Ala 265 270	
<210> 31 <211> 837 <212> DNA <213> Phytophthora infestans	
<220> <221> CDS <222> (1).(837) <223> Delta-6-Elongase	
<400> 31 atg tcg act gag cta ctg cag agc tac tac gcg tgg gcc aac gcc acg atg tcg act gag cta ctg cag agc tac tac gcg tgg gcc aac gcc acg atg tcg act gag cta ctg cag agc tac tac gcg tgg gcc aac gcc acg atg tcg act gag cta ctg cag agc tac tac gcg tgg gcc aac gcc acg atg tcg act gag cta ctg cag agc tac tac gcg tgg gcc aac gcc acg atg tcg act act gcg acg acg acg acg acg acg acg acg acg	48
gag gcc aag ctg ctg gac tgg gtc gac cct gag ggc ggc tgg aag gtg glu Ala Lys Leu Leu Asp Trp Val Asp Pro Glu Gly Gly Trp Lys Val 30	96
cat cct atg gca gac tac ccc cta gcc aac ttc tcc agc gtc tac gcc His Pro Met Ala Asp Tyr Pro Leu Ala Asn Phe Ser Ser Val Tyr Ala 45	144
atc tgc gtc gga tac ttg ctc ttc gta atc ttc ggc acg gcc ctg atg atc tgc gtc gga tac ttg ctc ttc gta atc ttc ggc acg gcc ctg atg Ile Cys Val Gly Tyr Leu Leu Phe Val Ile Phe Gly Thr Ala Leu Met 55 60	192

aaa Lys 65	atg Met	gga Gly	gtc Val	ccc Pro	gcc Ala 70	atc Ile	aag Lys	acc Thr	agt Ser	cca Pro 75	tta Leu	cag Gln	ttt Phe	gtg Val	tac Tyr 80		240
aac Asn	ccc Pro	atc Ile	caa Gln	gtc Val 85	att Ile	gcc Ala	tgc Cys	tct Ser	tat Tyr 90	atg Met	tgc Cys	gtg Val	gag Glu	gcc Ala 95	gcc Ala		288
atc Ile	cag Gln	gcc Ala	tac Tyr 100	cgc Arg	aac Asn	ggc Gly	tac Tyr	acc Thr 105	gcc Ala	gcc Ala	ccg Pro	tgc Cys	aac Asn 110	gcc Ala	ttt Phe		336
aag Lys	tcc Ser	gac Asp 115	gac Asp	ccc Pro	gtc Val	atg Met	ggc Gly 120	aac Asn	gtt Val	ctg Leu	tac Tyr	ctc Leu 125	ttc Phe	tat Tyr	ctc Leu	•	3,84
tcc Ser	aag Lys 130	atg Met	ctc Leu	gac Asp	ctg Leu	tgc Cys 135	gac Asp	aca Thr	gtc Val	ttc Phe	att Ile 140	atc Ile	cta Leu	gga Gly	aag Lys		432
Lys 145	Trp	Lys	cag Gln	Leu	Ser 150	Ile	Leu	His	Val	Tyr 155	His	His	Leu	Thr	160		480
ctt Leu	ttc Phe	gtc Val	tạc Tyr	tat Tyr 165	gtg Val	acg Thr	ttc Phe	cgc Arg	gcc Ala 170	gct Ala	cag Gln	gac Asp	GJÀ aaa	gac Asp 175	tca Ser		528
Tyr	Ala	Thr	atc Ile 180	Val	Leu	Asn	Gly	Phe 185	Val	His	Thr	Ile	Met 190	Tyr	Thr	•	576
Tyr	Tyr	Phe 195		Ser	Ala	His	Thr 200	Arg	Asn	Ile	Trp	Trp 205	Lys	Lys	Tyr		624
Leu	Thr 210	Arg	att Ile	Gln	Leu	Ile 215	Gln	Phe	Val	Thr	Met 220	Asn	Val	Gln	GIÀ		672
Туг 225	Leu	Thr	tac Tyr	Ser	Arg 230	Gln	Cys	Pro	Gly	Met 235	Pro	Pro	ГУS	Val	240		720
Leu	Met	Tyr	Leu	Val 245	Tyr	Val	Gln	Ser	Leu 250	Phe	Trp	Leu	Phe	Met 255			768
t t c Phe	tac Tyr	att Ile	Arg 260	Ala	tac Tyr	gtg Val	tto Phe	ggc Gly 265	Pro	aag Lys	aaa Lys	ccg Pro	Ala 270	Val	gag Glu		816
_	_	_	aag Lys				•										837
<21 <21 <21 <21	.1> .2>	32 278 PRT Phyt	opht:	hora	ı inf	esta	ıns										
<40	00>	32															

Met Ser Thr Glu Leu Leu Gln Ser Tyr Tyr Ala Trp Ala Asn Ala Thr 1 5 10 . 15

- Glu Ala Lys Leu Leu Asp Trp Val Asp Pro Glu Gly Gly Trp Lys Val 20 25 30
- His Pro Met Ala Asp Tyr Pro Leu Ala Asn Phe Ser Ser Val Tyr Ala 35 40 45
- Ile Cys Val Gly Tyr Leu Leu Phe Val Ile Phe Gly Thr Ala Leu Met
 50 55
 - Lys Met Gly Val Pro Ala Ile Lys Thr Ser Pro Leu Gln Phe Val Tyr 65 75 80
 - Asn Pro Ile Gln Val Ile Ala Cys Ser Tyr Met Cys Val Glu Ala Ala 85 90 95
 - Ile Gln Ala Tyr Arg Asn Gly Tyr Thr Ala Ala Pro Cys Asn Ala Phe 100 105 110
 - Lys Ser Asp Asp Pro Val Met Gly Asn Val Leu Tyr Leu Phe Tyr Leu 115 120 125
 - Ser Lys Met Leu Asp Leu Cys Asp Thr Val Phe Ile Ile Leu Gly Lys 130 135 140
 - Lys Trp Lys Gln Leu Ser Ile Leu His Val Tyr His His Leu Thr Val 145 150 155 160
 - Leu Phe Val Tyr Tyr Val Thr Phe Arg Ala Ala Gln Asp Gly Asp Ser 165 170 175
 - Tyr Ala Thr Ile Val Leu Asn Gly Phe Val His Thr Ile Met Tyr Thr 180 185 190
 - Tyr Tyr Phe Val Ser Ala His Thr Arg Asn Ile Trp Trp Lys Lys Tyr 195 200 205
 - Leu Thr Arg Ile Gln Leu Ile Gln Phe Val Thr Met Asn Val Gln Gly 210 215 220
 - Tyr Leu Thr Tyr Ser Arg Gln Cys Pro Gly Met Pro Pro Lys Val Pro 225 230 235
 - Leu Met Tyr Leu Val Tyr Val Gln Ser Leu Phe Trp Leu Phe Met Asn 245 255
 - Phe Tyr Ile Arg Ala Tyr Val Phe Gly Pro Lys Lys Pro Ala Val Glu 260 265 270
 - Glu Ser Lys Lys Lys Leu 275

									•	•	oc							
		.1> .2>	33 954 DNA Mort	iere	ella	alpi	.na				٠							
	<22 <22 <22 <22	1> 2>		.(95 a-6-		ıgase	· .						-					
	<40 atg Met	gcc	33 gcc Ala	gca Ala	ato Ile	ttg Leu	gac Asp	aag Lys	gtc Val	aac Asn 10	tto Phe	ggc Gly	att Ile	gat Asp	cag Glr 15	ccc Pro		48
	ttc Phe	gga Gly	atc Ile	aag Lys 20	ctc Leu	gac Asp	acc Thr	tac Tyr	ttt Phe 25	gct Ala	cag Gln	gcc Ala	tat Tyr	gaa Glu 30	cto Leu	gtc Val		96
	acc Thr	gga Gly	aag Lys 35	tcc Ser	atc Ile	gac Asp	tcc Ser	ttc Phe 40	gtc Val	ttc Phe	cag Gln	gag Glu	ggc Gly 45	gtc Val	acg Thr	Pro	•	144
	ctc Leu	tcg Ser 50	acc Thr	cag Gln	aga Arg	gag Glu	gtc Val 55	gcc Ala	atg Met	tgg Trp	act Thr	atc Ile 60	act Thr	tac Tyr	ttc Phe	gtc Val		192
	gtc Val 65	atc Ile	ttt Phe	ggt Gly	ggt Gly	cgc Arg 70	cag Gln	atc Ile	atg Met	aag Lys	agc Ser 75	cag Gln	gac Asp	gcc Ala	ttc Phe	aag Lys 80		240
•	ctc Leu	aag Lys	ccc Pro	ctc Leu	ttc Phe 85	atc Ile	ctc Leu	cac	aac Asn	ttc Phe 90	ctc Leu	ctg Leu	acg Thr	atc Ile	gcg Ala 95	tcc Ser		288
	gga Gly	tcg Ser	ctg Leu	ttg Leu 100	ctc Leu	ctg Leu	ttc Phe	atc Ile	gag Glu 105	aac Asn	ctg Leu	gtc Val	ccc Pro	atc Ile 110	ctc Leu	gcc Ala		336
	aga Arg	aac Asn	gga Gly 115	ctt Leu	ttc Phe	tac Tyr	gcc Ala	atc Ile 120	tgc Cys	gac Asp	gac Asp	ggt Gly	gcc Ala 125	tgg Trp	acc Thr	cag Gln		384
	cgc Arg	ctc Leu 130	gag Glu	ctc Leu	ctc Leu	tac Tyr	tac Tyr 135	ctc Leu	aac Asn	tac Tyr	ctg Leu	gtc Val 140	aag Lys	tac Tyr	tgg Trp	gag Glu		432
	ttg Leu 145	gcc Ala	gac Asp	Thr	Val	ttt Phe 150	Leu	gtc Val	ctc Leu	Lys	aag Lys 155	Lys	cct Pro	ctt Leu	gag Glu	ttc Phe 160		480
	ctg Leu	các His	tac Tyr	ttc Phe	cac His 165	cac His	tcg Ser	atg Met	acc Thr	atg Met 170	gtt Val	ctc Leu	tgc Cys	ttt Phe	gtc Val 175	cag Gln		528
	ctt Leu	gga Gly	gga Gly	tac Tyr 180	Thr	tca Ser	gtg Val	tcc Ser	tgg Trp 185	gtc Val	cct Pro	att Ile	acc Thr	ctc Leu 190	aac Asn	ttg Leu		576
	act Thr	gtc Val	cac His 195	gtc Val	ttc Phe	atg Met	tac Tyr	tac Tyr 200	tac Tyr	tac Tyr	atg Met	cgc Arg	tcc Ser 205	gct Ala	gcc Ala	ggt Gly		624
	gtt Val	cgc Arg 210	atc Ile	tgg Trp	tgg Trp	aag Lys	cag Gln 215	tac Tyr	ttg Leu	acc Thr	act Thr	ctc Leu 220	cag Gln	atc Ile	gtc Val	cag Gln		672

2003/0	1123	10								57									
ttc gt Phe Va 225	tt c al I	tt Leu	gac Asp	ctc Leu	gga Gly 230	ttc Phe	atc Ile	tac Tyr	tto Phe	2 to 2 Cy 23		cc la	tac Tyr	acc Thr	tac Tyr	Pt 24	c ne 10	720)
gcc to Ala Pi	tc a	acc Thr	tac Tyr	ttc Phe 245	ccc Pro	tgg Trp	gct Ala	ccc Pro	aad Asi 25		al G	gly	aag Lys	tgc Cys	gcc Ala 255	gg G	gt Ly	768	3
acc g	ag (ggt Gly	gct Ala 260	gct Ala	ctc Leu	ttt Phe	Gly	tgc Cys 265	GI.	a c	tc o eu I	etc Leu	tcc Ser	agc Ser 270	_	C1	tc eu	810	6
ttg c Leu L	eu	ttt Phe 275	atc Ile	aac Asn	ttc Phe	tac Tyr	cgc Arg 280	TTE	ac Th	c t r T	ac a yr i	aat Asn	gcc Ala 285	aag Lys	gcc Ala	a L	ys	86	4
gca g Ala A	lec Nla 290	aag Lys	gag Glu	cgt Arg	gga Gly	ago Ser 295	ASI	ttt Phe	ac Th	c c		aag Lys 300	act Thr	gtc Val	Lys	g t s S	er	91	2
ggc g Gly G 305	gga Gly	tcg Ser	Pro	aaq Lys	aag Lys 310	Pro	tco Sei	: aaq	g ag s Se	-	ag ys 15	cac His	atc Ile	taa	L			95	4
<210: <211: <212: <213:	> 3 > 1	84 817 PRT Mort	iere	ella	alp	ina	, <u>-</u>												
<400		34																	
Met . 1	Ala	Ala	Ala	a Il 5	e Le	u As	b FA	s Va	1 A:	sn : O	Phe	G1y	, Ile	e Asj	p Gl 15	n I	Pro		
Phe	Gly	Ile	e Ly 20	s 'Le	u As	p Th	г Ту	r Ph 25	ie A	la	Gln	Ala	ту:	r G1 30	u L∈	eu '	Val		
Thr	Gly	Ly:	s Se	r Il	e As	p Se	r Ph 40	e Va	al P	he	Gln	Glı	1 Gl 45	y Va	.1 Tł	ar	Pro		
Leu	Ser 50	Th	r Gl	n Ar	g G]	Lu Va 59	il Al	a Me	et I	rp	Thr	11 60	e Th	r Ty	r P	he	Val		
Val 65	I1e	e Ph	e Gl	y G	ly A: 70	rg G: O	ln I	le M	et I	ùуs	Ser 75	Gl:	n As	p Al	la P	he	80 FÀ2		
Leu 	Lys	s Pr	o Le	eu Pi 8	he I 5	le L	eu H	is A	sn 1	Phe 90	Leu	ı Le	u Th	ur I	le A 9	1a 5	Ser		
Gly		r Le	eu Lo 1	eu L 00	eu L	eu P	he I	le G 1	1u .05	Asn	Let	ı Va	1 P:	ro I	le L 10	eu	Ala		
Arg	AS:	n G	ly L 15	eu P	he T	yr A	la I 1	le 0 20	ys	Asp	Ası	Ģ G]	ly A 1	lа Т 25	rp 1	hr	Gln		
Arg	, Le 13	u G 0	lu L	eu I	eu I	yr T 1	yr I .35	eu 1	\sn	Туг	Le	u Va 14	al L 40	ys T	yr 1	ľтр	Glu		

Leu Ala Asp Thr Val Phe Leu Val Leu Lys Lys Lys Pro Leu Glu Phe Leu His Tyr Phe His His Ser Met Thr Met Val Leu Cys Phe Val Gln 165 170 Leu Gly Gly Tyr Thr Ser Val Ser Trp Val Pro Ile Thr Leu Asn Leu Thr Val His Val Phe Met Tyr Tyr Tyr Tyr Met Arg Ser Ala Ala Gly 195 200 Val Arg Ile Trp Trp Lys Gln Tyr Leu Thr Thr Leu Gln Ile Val Gln 215 220 Phe Val Leu Asp Leu Gly Phe Ile Tyr Phe Cys Ala Tyr Thr Tyr Phe Ala Phe Thr Tyr Phe Pro Trp Ala Pro Asn Val Gly Lys Cys Ala Gly 245 250 Thr Glu Gly Ala Ala Leu Phe Gly Cys Gly Leu Leu Ser Ser Tyr Leu Leu Leu Phe Ile Asn Phe Tyr Arg Ile Thr Tyr Asn Ala Lys Ala Lys 275 280 Ala Ala Lys Glu Arg Gly Ser Asn Phe Thr Pro Lys Thr Val Lys Ser Gly Gly Ser Pro Lys Lys Pro Ser Lys Ser Lys His Ile 310 <210> <211> 957 <212> DNA <213> Mortierella alpina <220> <221> CDS <222> (1)..(957) <223> Delta-6-Elongase <400> 35 atg gag teg att geg eea tte etc eea tea aag atg eeg eaa gat etg 48 Met Glu Ser Ile Ala Pro Phe Leu Pro Ser Lys Met Pro Gln Asp Leu 10 ttt atg gac ett gee ace get ate ggt gte egg gee geg eee tat gte 96 Phe Met Asp Leu Ala Thr Ala Ile Gly Val Arg Ala Ala Pro Tyr Val 20 gat cet etc gag gee geg etg gtg gee eag gee gag aag tae atc ecc Asp Pro Leu Glu Ala Ala Leu Val Ala Gln Ala Glu Lys Tyr Ile Pro

				•					59	•						
acg Thr	att Ile 50	gtc Val	cat His	cac His	Thr	cgt Arg 55	GJÀ āāā	ttc Phe	ctg Leu	gtc Val	gcg Ala 60	gtg Val	gag Glu	tcg Ser	cct Pro	192
ttg Leu 65	gcc Ala	cgt Arg	gag Glu	ctg Leu	ccg Pro 70	ttg Leu	atg Met	aac Asn	ccg Pro	ttc Phe 75	cac His	gtg Val	ctg Leu	ttg Leu	atc Ile 80	240
gtg Val	ctc Leu	gct Ala	tat Tyr	ttg Leu 85	gtc Val	acg Thr	gtc Val	ttt Phe	gtg Val 90	ggc Gly	atg Met	cag Gln	atc Ile	atg Met 95	aag Lys	288
aac Asn	ttt Phe	gag Glu	cgg Arg 100	ttc Phe	gag Glu	gtc Val	aag Lys	acg Thr 105	ttt Phe	tcg Ser	ctc Leu	ctg Leu	cac His 110	aac Asn	ttt Phe	336
tgt Cys	ctg Leu	gtc Val 115	Ser	atc Ile	agc Ser	gcc Ala	tac Tyr 120	atg Met	tgc Cys	ggt Gly	Gly	atc Ile 125	ctg Leu	tac Tyr	gag Glu	384
gct Ala	tat Tyr 130	Glr	gcc Ala	aac Asn	tat Tyr	gga Gly 135	ctg Leu	ttt Phe	gag Glu	aac Asn	gct Ala 140	. ALU	gat Asp	cat His	acc Thr	432
ttc Phe 145	Lys	ggt Gl	ctt Leu	cct Pro	atg Met 150	gcc Ala	aag Lys	atg Met	atc Ile	tgg Trp 155	, nec	ttc Phe	tac Tyr	ttc Phe	tcc Ser 160	480
aag Lys	ato Ile	ato Me	g gag E Glu	ttt Phe 165	. Val	gac Asp	acc Thr	atg Met	atc Ile 170	Med	gto Val	cto L Lev	aag Lys	aag Lys 175	aac Asn	528
aac Asr	cgo Arg	caq g Gl	g ato n Ilo 180	e Ser	ttc Phe	ttg Leu	cac His	gtt Val 185	. TYI	cac His	cac His	s Ser	Ser 190		ttc Phe	576
acc Thi	e ate	c tg e Tr 19	p Tr	g ttg p Lev	g gto ı Val	acc Thr	ttt Phe 200	s var	gca L Ala	e cc	c aac o Asi	c ggt n Gly 209	,	gco Ala	tac Tyr	624
tt: Ph	c tc e Se 21	r Al	t gc a Al	g ttg a Le	g aac ı Asr	tcg Sei 21	e Phe	ato e Ile	c cat	gt: Va	g at 1 I1 22	-	tad t Ty	ggc Gly	tac Y Tyr	. 672
ta Ty 22	r Ph	c tt e Le	g tc u Se	g gc r Al	c ttg a Leu 230	1 GT	z tto y Phi	c aaq e Ly:	g cae	g gt n Va 23	T 26	g tt r Ph	c ato	c aag e Ly:	g ttc s Phe 240	720
ta Ty	c at r Il	c ac e Th	g cg r Ar	g Se	g caq r Gli 5	g at	g ac t Th	r GT	g tt n Ph 25	e cy	c at	g at t Me	g tc t Se	g gt r Va 25	c cag l Gln 5	768
to Se	t to	c to r Ti	ng ga np As 26	p Me	g ta t Ty	c gc r Al	c at a Me	g aa t Ly 26	s va	c ct l Le	t gg u Gl	jc cg .y Ar	c cc g Pr 27		a tac y Tyr	. 816
cc Pr	c tto Pl	ie Pl	c at ne IJ 75	c ac e Th	g gc r Al	t ct a Le	g ct u Le 28	u ir	g tt p Ph	c ta le Ty	c at	g tg t Tr 28	<u>.</u>	c at r Me	g ctc t Leu	864
gg G]	Ly Le	c to eu Pl 90	to ta ne Ty	ac aa yr As	ic tt in Ph	t ta e Ty 29	r Ar	ga aa g Ly	ıg aa 's As	ic go	נם בט	ag tt ys Le 00	g go au Al	c aa .a Ly	g cag 's Gln	
A.	ec a la Li 05	ag g ys A	cc ga la A	ac go sp Al	t go la Al 31	a Ly	rs G	ag aa lu Ly	ag go /s Al	a aq la A:	Ly D	ag ti ys Le	eu Gi	ng ta Ln	aa	957

<210> 36

<211> 318 <212> PRT

<213> Mortierella alpina

<400> '36

Met Glu Ser Ile Ala Pro Phe Leu Pro Ser Lys Met Pro Gln Asp Leu

Phe Met Asp Leu Ala Thr Ala Ile Gly Val Arg Ala Ala Pro Tyr Val

Asp Pro Leu Glu Ala Ala Leu Val Ala Gln Ala Glu Lys Tyr Ile Pro

Thr Ile Val His His Thr Arg Gly Phe Leu Val Ala Val Glu Ser Pro

Leu Ala Arg Glu Leu Pro Leu Met Asn Pro Phe His Val Leu Leu Ile

Val Leu Ala Tyr Leu Val Thr Val Phe Val Gly Met Gln Ile Met Lys

Asn Phe Glu Arg Phe Glu Val Lys Thr Phe Ser Leu Leu His Asn Phe

Cys Leu Val Ser Ile Ser Ala Tyr Met Cys Gly Gly Ile Leu Tyr Glu

Ala Tyr Gln Ala Asn Tyr Gly Leu Phe Glu Asn Ala Ala Asp His Thr

Phe Lys Gly Leu Pro Met Ala Lys Met Ile Trp Leu Phe Tyr Phe Ser

Lys Ile Met Glu Phe Val Asp Thr Met Ile Met Val Leu Lys Lys Asn

Asn Arg Gln Ile Ser Phe Leu His Val Tyr His His Ser Ser Ile Phe

Thr Ile Trp Trp Leu Val Thr Phe Val Ala Pro Asn Gly Glu Ala Tyr

Phe Ser Ala Ala Leu Asn Ser Phe Ile His Val Ile Met Tyr Gly Tyr

Tyr Phe Leu Ser Ala Leu Gly Phe Lys Gln Val Ser Phe Ile Lys Phe

PCT/EP2004/007957

WO 2005/012316 Tyr Ile Thr Arg Ser Gln Met Thr Gln Phe Cys Met Met Ser Val Gln Ser Ser Trp Asp Met Tyr Ala Met Lys Val Leu Gly Arg Pro Gly Tyr 260 Pro Phe Phe Ile Thr Ala Leu Leu Trp Phe Tyr Met Trp Thr Met Leu Gly Leu Phe Tyr Asn Phe Tyr Arg Lys Asn Ala Lys Leu Ala Lys Gln Ala Lys Ala Asp Ala Ala Lys Glu Lys Ala Arg Lys Leu Gln 310 <210> 37 <211> 867 <212> DNA <213> Caenorhabditis elegans <220> <221> CDS <222> (1)..(867) <223> Delta-6-Elongase atg gct cag cat ccg ctc gtt caa cgg ctt ctc gat gtc aaa ttc gac 48 <400> 37 Met Ala Gln His Pro Leu Val Gln Arg Leu Leu Asp Val Lys Phe Asp acg aaa cga ttt gtg gct att gct act cat ggg cca aag aat ttc cct Thr Lys Arg Phe Val Ala Ile Ala Thr His Gly Pro Lys Asn Phe Pro 96 gac gca gaa ggt cgc aag ttc ttt gct gat cac ttt gat gtt act att 144 Asp Ala Glu Gly Arg Lys Phe Phe Ala Asp His Phe Asp Val Thr Ile cag get tea ate etg tae atg gte gtt gtg tte gga aca aaa tgg tte 192 Gln Ala Ser Ile Leu Tyr Met Val Val Phe Gly Thr Lys Trp Phe atg cgt aat cgt caa cca ttc caa ttg act att cca ctc aac atc tgg 240 Met Arg Asn Arg Gln Pro Phe Gln Leu Thr Ile Pro Leu Asn Ile Trp aat ttc atc ctc gcc gca ttt tcc atc gca gga gct gtc aaa atg acc 288 Asn Phe Ile Leu Ala Ala Phe Ser Ile Ala Gly Ala Val Lys Met Thr 85 cca gag ttc ttt gga acc att gcc aac aaa gga att gtc gca tcc tac 336 Pro Glu Phe Phe Gly Thr Ile Ala Asn Lys Gly Ile Val Ala Ser Tyr tgc aaa gtg ttt gat ttc acg aaa gga gag aat gga tac tgg gtg tgg Cys Lys Val Phe Asp Phe Thr Lys Gly Glu Asn Gly Tyr Trp Val Trp 384

ctc ttc atg gct tcc aaa ctt ttc gaa ctt gtt gac acc atc ttc ttg

Leu Phe Met Ala Ser Lys Leu Phe Glu Leu Val Asp Thr Ile Phe Leu

135

130

432

								ı	62	=						
gtt Val 145	ctc Leu	cgt Arg	aaa Lys	cgt Arg	cca Pro 150	ctc Leu	atg Met	ttc Phe	ctt Leu	cac His 155	tgg Trp	tat Tyr	cac His	cat His	att Ile 160	480
ctc Leu	acc Thr	atg Met	atc Ile	tac Tyr 165	gcc Ala	tgg Trp	tac Tyr	tct Ser	cat His 170	cca Pro	ttg Leu	acc Thr	cca Pro	gga Gly 175	ttc Phe	528
aac Asn	aga Arg	tac Tyr	gga Gly 180	att Ile	tat Tyr	ctt Leu	aac Asn	ttt Phe 185	gtc Val	gtc Val	cac His	gcc Ala	ttc Phe 190	atg Met	tac Tyr	576
tct Ser	tac Tyr	tac Tyr 195	ttc _. Phe	ctt Leu	cgc Arg	tcg Ser	atg Met 200	aag Lys	att Ile	cgc Arg	gtg Val	cca Pro 205	gga Gly	ttc Phe	atc Ile	624
gcc Ala	caa Gln 210	gct Ala	atc Ile	aca Thr	tct Ser	ctt Leu 215	caa Gln	atc Ilė	gtt Val	caa Gln	ttc Phe 220	atc Ile	atc Ile	tct Ser	tgc Cys	672
gcc Ala 225	gtt Val	ctt Leu	gct Alà	cat His	ctt Leu 230	ggt Gly	tat Tyr	ctc Leu	atg Met	cac His 235	ttc Phe	acc Thr	aat Asn	gcc Ala	aac Asn 240	720
tgt Cys	gat Asp	ttc Phe	gag Glu	cca Pro 245	tca Ser	gta Val	ttc Phe	aag Lys	ctc Leu 250	gca Ala	gtt Val	ttc Phe	atg Met	gac Asp 255	aca Thr	768
aca Thr	tac Tyr	ttg Leu	gct Ala 260	ctt Leu	ttc Phe	gtc Val	aac Asn	ttc Phe 265	ttc Phe	ctc Leu	caa Gln	tca Ser	tat Tyr 270	gtt Val	CtC Leu	816
cgc Arg	gga Gly	gga Gly 275	aaa Lys	gac Asp	aag Lys	tac Tyr	aag Lys 280	gca Ala	gtg Val	cca Pro	aag Lys	aag Lys 285	aag Lys	aac Asn	aac Asn	864
taa									•							867
<21 <21 <21		38 288						.*								
<21		PRT	orha	bdit	is e	lega	ns									
	3>	PRT	orha	bdit	is e	lega	ns									
<21 <40	3> 0>	PRT Caen 38						Arg	Leu 10	Leu	Asp	Val	Lys	Phe 15	Asp	
<21 <40 Met	3> 0> Ala	PRT Caen 38 Gln	· His	Pro 5	Leu	Val	Gln		10			Val Lys		15	_	
<21 <40 Met 1	3> 0> Ala Lys	PRT Caen 38 Gln Arg	· His · Phe 20	Pro 5 Val	Leu Ala	Val	Gln Ala	Thr 25	10 His	Gly	Pro		Asn 30	15 Phe	Pro	
<21 <40 Met 1 Thr	3> 0> Ala Lys	PRT Caen 38 Gln Arg . Glu 35	Phe 20	Pro 5 Val	Leu Ala Lys	Val Ile Phe	Gln Ala Phe 40	Thr 25	10 His	Gly	Pro Phe	Lys	Asn 30	Phe	Pro Ile	
<21 <40 Met 1 Thr	3> 0> Ala Lys Ala 50	PRT Caen 38 Gln Arg Glu 35	Phe 20 Gly	Pro 5 Val	Leu Ala Lys	Val Ile Phe Met 55	Gln Ala Phe 40	Thr 25 Ala	His Asp	Gly His	Pro Phe Gly 60	Lys Asp 45	Asn 30 Val	Phe Thr	Pro Ile	

Pro Glu Phe Phe Gly Thr Ile Ala Asn Lys Gly Ile Val Ala Ser Tyr 100 Cys Lys Val Phe Asp Phe Thr Lys Gly Glu Asn Gly Tyr Trp Val Trp

1.

Leu Phe Met Ala Ser Lys Leu Phe Glu Leu Val Asp Thr Ile Phe Leu 130 135 140

Val Leu Arg Lys Arg Pro Leu Met Phe Leu His Trp Tyr His His Ile 145 150 150 155 160

Leu Thr Met Ile Tyr Ala Trp Tyr Ser His Pro Leu Thr Pro Gly Phe 165

Asn Arg Tyr Gly Ile Tyr Leu Asn Phe Val Val His Ala Phe Met Tyr 180 185 190

Ser Tyr Tyr Phe Leu Arg Ser Met Lys Ile Arg Val Pro Gly Phe Ile 195 200 205

Ala Gln Ala Ile Thr Ser Leu Gln Ile Val Gln Phe Ile Ile Ser Cys 210 215 220

Ala Val Leu Ala His Leu Gly Tyr Leu Met His Phe Thr Asn Ala Asn 225 230 235 240

Cys Asp Phe Glu Pro Ser Val Phe Lys Leu Ala Val Phe Met Asp Thr 245 255

Thr Tyr Leu Ala Leu Phe Val Asn Phe Phe Leu Gln Ser Tyr Val Leu 260 265 270

Arg Gly Gly Lys Asp Lys Tyr Lys Ala Val Pro Lys Lys Lys Asn Asn 275 280 280 285

<210> 39 <211> 1626

<212> DNA

<213> Euglena gracilis

<220>

<221> CDS

<222> (1)..(1626)

<223> Delta-4-Desaturase

<400> 39
atg ttg gtg ctg ttt ggc aat ttc tat gtc aag caa tac tcc caa aag
Met Leu Val Leu Phe Gly Asn Phe Tyr Val Lys Gln Tyr Ser Gln Lys
1 10 15

aac ggc aag ccg gag aac gga gcc acc cct gag aac gga gcg aag ccg 96 Asn Gly Lys Pro Glu Asn Gly Ala Thr Pro Glu Asn Gly Ala Lys Pro

•

					•					-							
			20					25					30				
															gcc Ala	14	4
						cca Pro 55									tac Tyr	19	2
						Gly										24	0
gat Asp	gag Glu	gtg Val	agg Arg	cgg Arg 85	cac His	atc Ile	ctc Leu	ccc Pro	acc Thr 90	gat Asp	Gly	tgg Trp	ctg Leu	acg Thr 95	tgc Cys	28	8
						gtc Val										33	5
						Gly										384	4
						ggg Gly 135										432	2
cgc Arg 145	att Ile	Gly	acg Thr	ctg Leu	cag Gln 150	gac Asp	ccc Pro	aag Lys	acg Thr	ttc Phe 155	tat Tyr	gct Ala	tgg Trp	gga Gly	gag Glu 160	480)
						ttg Leu										528	3
						cgc Arg										576	5
gtg Val	ctc Leu	acc Thr 195	ctc Leu	ttc Phe	ttc Phe	gtg Val	tcg Ser 200	tgg Trp	tac Tyr	atg Met	tgg Trp	gtg Val 205	gcc Ala	cac His	aag Lys	624	ı
tcc Ser	ttc Phe 210	ctc Leu	tgg Trp	gcc Ala	gcc Ala	gtc Val 215	tgg Trp	Gly	ttc Phe	gcc Ala	ggc Gly 220	tcc Ser	cac His	gt <i>c</i> Val	Gly ggg	672	} -
ctg Leu 225	agc Ser	atc Ile	cag Gln	cac His	gat Asp 230	ggc Gly	aac Asn	cac His	Gly	gcg Ala 235	ttc Phe	agc Ser	cgc Arg	aac Asn	aca Thr 240	720)
						GJÀ aaa										768	j.
						cag Gln										816	i
						cta Leu										864	i
						ctg Leu										912	:

	290					295					300					
cag Gln 305	ccg Pro	cac His	cac His	cgc Arg	ttc Phe 310	cag Gln	cac His	ctg Leu	ttc Phe	gcg Ala 315	ttc Phe	cca Pro	ctg Leu	ttc Phe	gcc Ala 320	960
ctg Leu	atg Met	aca Thr	atc Ile	agc Ser 325	aag Lys	gtg Val	ctg Leu	acc Thr	agc Ser 330	gat Asp	ttc Phe	gct Ala	gtc Val	tgc Cys 335	ctc Leu	1008
agc Ser	atg Met	aag Lys	aag Lys 340	GJA āāā	tcc Ser	atc Ile	gac Asp	tgc Cys 345	tcc Ser	tcc Ser	agg Arg	ctc Leu	gtc Val 350	cca Pro	ctg Leu	1056
gag Glu	eja aaa	cag Gln 355	ctg Leu	ctg Leu	ttc Phe	tgg Trp	360 G1A BBB	gcc Ala	aag Lys	ctg Leu	gcg Ala	aac Asn 365	ttc Phe	ctg Leu	ttg Leu	1104
cag Gln	att Ile 370	gtg Val	ttg Leu	cca Pro	tgc Cys	tac Tyr 375	ctc Leu	cac His	GJA aaa	aca Thr	gct Ala 380	1100	ggc	ctg Leu	gcc Ala	1152
ctc Leu 385	ttc Phe	tct	gtt Val	gct Ala	cac His 390	Leu	gtg Val	tcg Ser	Gly	gag Glu 395	- Y-	ctc Leu	gcg	atc Ile	tgc Cys 400	1200
ttc Phe	atc Ile	ato Ile	aac Asn	cac His 405	atc Ile	agc Ser	gag Glu	tct Ser	tgt Cys 410	GIU	ttt Phe	atg Met	aat Asn	aca Thr 415	agc Ser	1248
ttt Phe	caa Gln	aco Thi	gcc Ala 420	ιAla	cgg Arg	agg Arg	aca Thr	gag Glu 425	Met	ctt Leu	caç ı Glr	g gca n Ala	gca Ala 430		cag Gln	1296
gca Ala	gcç Ala	gaq G1: 43.	ı Ala	aaç Lys	aag Lys	gtg Val	aag Lys 440	PIC	aco Thi	e cet	cca Pro	a ccg o Pro 449		gat Asj	tgg Trp	1344
gct Ala	gtg Val 450	LTh	a caq r Gli	g gto n Val	caa Glr	tgc Cys 455	Cys	gtg Val	aai L Asi	t tgg n Trj	g age o Are 46	9	a ggt r Gly	gg Gl	c gtg y Val	1392
ttg Let 46	ı Ala	aa a As	t can n Hi	c cto s Leo	tci Sei 470	c G13	ggq Gly	ttg Y Lei	jaa 1 As:	c ca n Hi 47	5 61	g at n Il	c gag e Gl	g ca u Hi	t cat s His 480	1440
ct:	g tto u Pho	c cc e Pr	c ag o Se	c ate	e Se	g cat	gce Ala	c aac a Asi	c ta n Ty 49	T	c ac o Th	c at r Il	c gc e Al	c cc a Pr 49	t gtt o Val 5	1488
gt: Va	g aa 1 Ly	g ga s Gl	g gt. u Va 50	1 CY	c ga s Gl	g gaq u Gli	g ta u Ty	c gg r Gl; 50	у те	g cc u Pr	g ta o Ty	c aa r Ly	g aa 's As 51		c gtc r Val	1536
ac Th	g tt r Ph	c to e Ti 51	p As	t gc p Al	a gt a Va	c tg 1 Cy	t gg s Gl 52	A Me	g gt t Va	t ca 1 Gl	g ca n Hi	ic ct is Le 52		g tt	g atg eu Met	
gg G1	t gc y Al 53	a P	a co co Pr	g gt o Va	g cc 1 Pr	a ac to Th	r As	c gg n Gl	g ga	c as	נם בי	ag to /s Se 10	ea ta er	ıa		1626

<210> 40 <211> 541 <212> PRT <213> Euglena gracilis

<400> 40

Met Leu Val Leu Phe Gly Asn Phe Tyr Val Lys Gln Tyr Ser Gln Lys 1 5 10 15

Asn Gly Lys Pro Glu Asn Gly Ala Thr Pro Glu Asn Gly Ala Lys Pro 20 25 30

Gln Pro Cys Glu Asn Gly Thr Val Glu Lys Arg Glu Asn Asp Thr Ala 35 40

Asn Val Arg Pro Thr Arg Pro Ala Gly Pro Pro Pro Ala Thr Tyr Tyr 50 60

Asp Ser Leu Ala Val Ser Gly Gln Gly Lys Glu Arg Leu Phe Thr Thr 65 70 75 80

Asp Glu Val Arg Arg His Ile Leu Pro Thr Asp Gly Trp Leu Thr Cys 85 90 95

His Glu Gly Val Tyr Asp Val Thr Asp Phe Leu Ala Lys His Pro Gly 100 105 110

Gly Gly Val Ile Thr Leu Gly Leu Gly Arg Asp Cys Thr Ile Leu Ile 115 $$ 120 $$ 125 $$

Glu Ser Tyr His Pro Ala Gly Arg Pro Asp Lys Val Met Glu Lys Tyr 130 , 135 140

Arg Ile Gly Thr Leu Gln Asp Pro Lys Thr Phe Tyr Ala Trp Gly Glu 145 150 155 160

Ser Asp Phe Tyr Pro Glu Leu Lys Arg Arg Ala Leu Ala Arg Leu Lys 165 170 175

Glu Ala Gly Gln Ala Arg Arg Gly Gly Leu Gly Val Lys Ala Leu Leu 180 185 190

Val Leu Thr Leu Phe Phe Val Ser Trp Tyr Met Trp Val Ala His Lys 195 200 205

Ser Phe Leu Trp Ala Ala Val Trp Gly Phe Ala Gly Ser His Val Gly 210 215 220

Leu Ser Ile Gln His Asp Gly Asn His Gly Ala Phe Ser Arg Asn Thr 225 230 235 240

Leu Val Asn Arg Leu Ala Gly Trp Gly Met Asp Leu Ile Gly Ala Ser 245 250 255

Ser Thr Val Trp Glu Tyr Gln His Val Ile Gly His His Gln Tyr Thr 260 265 270 Asn Leu Val Ser Asp Thr Leu Phe Ser Leu Pro Glu Asn Asp Pro Asp 275 280 285

Val Phe Ser Ser Tyr Pro Leu Met Arg Met His Pro Asp Thr Ala Trp 290 295 300

Gln Pro His His Arg Phe Gln His Leu Phe Ala Phe Pro Leu Phe Ala 305 310 315

Leu Met Thr Ile Ser Lys Val Leu Thr Ser Asp Phe Ala Val Cys Leu 325 330 330

Ser Met Lys Lys Gly Ser Ile Asp Cys Ser Ser Arg Leu Val Pro Leu

Glu Gly Gln Leu Leu Phe Trp Gly Ala Lys Leu Ala Asn Phe Leu Leu 365

Gln Ile Val Leu Pro Cys Tyr Leu His Gly Thr Ala Met Gly Leu Ala 370 380

Leu Phe Ser Val Ala His Leu Val Ser Gly Glu Tyr Leu Ala Ile Cys 385 390 395

Phe Ile Ile Asn His Ile Ser Glu Ser Cys Glu Phe Met Asn Thr Ser 405 410 415

Phe Gln Thr Ala Ala Arg Arg Thr Glu Met Leu Gln Ala Ala His Gln

Ala Ala Glu Ala Lys Lys Val Lys Pro Thr Pro Pro Pro Asn Asp Trp

Ala Val Thr Gln Val Gln Cys Cys Val Asn Trp Arg Ser Gly Gly Val

Leu Ala Asn His Leu Ser Gly Gly Leu Asn His Gln Ile Glu His His
455 470 475 480

Leu Phe Pro Ser Ile Ser His Ala Asn Tyr Pro Thr Ile Ala Pro Val

Val Lys Glu Val Cys Glu Glu Tyr Gly Leu Pro Tyr Lys Asn Tyr Val 500 505 510

Thr Phe Trp Asp Ala Val Cys Gly Met Val Gln His Leu Arg Leu Met 515 520 525

Gly Ala Pro Pro Val Pro Thr Asn Gly Asp Lys Lys Ser 530 540

<210> <211> <212> <213>	41 1548 DNA Thra		chyt	rium	ı			•							
	CDS (1). Delt			tura	se .							,			
<400> atg acg Met Thu 1	41 g gtc c Val	G1A aaa	ttt Phe 5	gac Asp	gaa Glu	acg Thr	gtg Val	act Thr 10	atg Met	gac Asp	acg Thr	gtc Val	cgc Arg 15	aac Asn	48
cac aad His Asi	atg 1 Met	ccg Pro 20	gac Asp	gac Asp	gcc Ala	tgg Trp	tgc Cys 25	gcg Ala	atc Ile	cac His	G1y	acc Thr 30	gtg Val	tac Tyr	96
gac ato Asp Ile	acc Thr	aag Lys	ttc Phe	agc Ser	aag Lys	gtg Val 40	cac His	ccc Pro	Gly	G1A aaa	gac Asp 45	atc Ile	atc Ile	atg Met	144
ctg gcc Leu Ala 50	gct Ala	ggc Gly	aag Lys	gag Glu	gcc Ala 55	acc Thr	atc Ile	ctg Leu	ttc Phe	gag Glu 60	acc Thr	tac Tyr	cac His	atc Ile	192
aag ggd Lys Gly 65	gtc Val	ccg Pro	gac Asp	gcg Ala 70	gtg Val	ctg Leu	cgc Arg	aag Lys	tac Tyr 75	aag Lys	gtc Val	ggc	aag Lys	ctc Leu 80	240
ccc cac Pro Glr															288
tcg gcc Ser Ala	tcc Ser	tac Tyr 100	tac Tyr	tcg Ser	tgg Trp	gac Asp	agc Ser 105	gag Glu	ttt Phe	tac Tyr	agg Arg	gtg Val 110	ctc Leu	cgc Arg	336
gag cgc Glu Arg	gtc Val 115	gcc Ala	aag Lys	aag Lys	ctg Leu	gcc Ala 120	gag Glu	ccc Pro	GJÅ āāc	ctc Leu	atg Met 125	cag Gln	cgc Arg	gcg Ala	384
egc atg Arg Met 130	Glu	ctc Leu	tgg Trp	gcc Ala	aag Lys 135	gcg Ala	atc Ile	ttc Phe	ctc Leu	ctg Leu 140	gca Ala	ggt Gly	ttc Phe	tgg Trp	432
ggc tcc Gly Ser 145	ctt Leu	tac Tyr	gcc Ala	atg Met 150	tgc Cys	gtg Val	cta Leu	gac Asp	ccg Pro 155	cac His	ggc Gly	ggt Gly	gcc Ala	atg Met 160	480
gta gcc Val Ala	gcc Ala	gtt Val	acg Thr 165	ctc Leu	ggc Gly	gtg Val	ttc Phe	gct Ala 170	gcc Ala	ttt Phe	gtc Val	gga Gly	act Thr 175	tgc Cys	528
atc cag Ile Gln	cac His	gac Asp 180	ggc Gly	agc Ser	cac His	ggc Gly	gcc Ala 185	ttc Phe	tcc Ser	aag Lys	tcg Ser	cga Arg 190	ttc Phe	atg Met	576
aac aag Asn Lys															624
acc tgg Thr Trp	gag Glu	atg Met	cag Gln	cac His	gtt Val	ctt Leu	ggc Gly	cac His	cac His	ccg Pro	tac Tyr	acc Thr	aac Asn	ctc Leu	672

WO 2005/012316 69

WO 2005/012316 69	
215 220	
atc gag atg gag aac ggt ttg gcc aag gtc aag ggc gcc gac gtc gac atc gag atg gag aac ggt ttg gcc aag gtc aag ggc gcc gac gtc gac atc gag atg gag aac ggt ttg gcc aag gtc aag ggc gcc gac gtc gac Ite gag atg gag aac ggt ttg gcc aag gtc aag ggc gcc gac gtc gac atc gag atg gag aac ggt ttg gcc aag gtc aag ggc gcc gac gtc gac atc gag atg gag aac ggt ttg gcc aag gtc aag ggc gcc gac gtc gac atc gag atg gag atg gag acc gac gtc gac atc gag atg gag atg gag acc gac gtc gac atc gag atg gag atg gag acc gac gtc gac atc gag atg gag atg gag acc gac gtc gac atc gag atg gag atg gag acc gac gtc gac atc gag atg gag atg gag acc gac gtc gac atc gag atg gag atg gag acc gac gtc gac atc gag atg gag atg gag acc gac gtc gac atc gag atg gag atg gag acc gac gtc gac atc gag atg gag atg gag acc gac gtc gac atc gag atg gag atg gag acc gac gtc gac atc gag atg gag atg gag acc gac gtc gac atc gag atg gag atg gag acc gac gtc gac atc gag atg gag atg gag acc gac gtc gac atc gag atg gag atg gag acc gac gtc gac atc gag atg gag atg gag acc gac gtc gac gtc gac atc gag atg gag atg gag acc gac gtc ga	720
ccg aag aag gtc gac cag gag agc gac ccg gac gtc ttc agt acg tac rcg aag aag gtc gac cag gag agc gac ccg gac gtc ttc agt acg tac rcg aag aag gtc gac cag gag agc gac ccg gac gtc ttc agt acg tac rcg aag aag gtc gac ccg gac gtc ttc agt acg tac row Thr Tyr row Lys Lys Val Asp Gln Glu Ser Asp Pro Asp Val Phe Ser Thr Tyr 245	768
ccg atg ctt cgc ctg cac ccg tgg cac cgc cag cgg ttt tac cac aag ccg atg ctt cgc ctg cac ccg tgg cac cgc cag cgg ttt tac cac aag ccg atg ctt cgc ctg cac ccg tgg cac cgc cag cgg ttt tac cac aag ccg atg ctt cgc ctg cac ccg tgg cac cgc cag cgg ttt tac cac aag ccg atg ctt cgc ctg cac ccg tgg cac cgc cag cgg ttt tac cac aag ccg atg ctt cgc ctg cac ccg tgg cac cgc cag cgg ttt tac cac aag ccg atg ctt cgc ctg cac ccg tgg cac cgc cag cgg ttt tac cac aag ccg atg ctt cgc ctg cac ccg tgg cac cgc cag cgg ttt tac cac aag ccg atg ctt cgc ctg cac ccg tgg cac cgc cag cgg ttt tac cac aag	816
ttc cag cac ctg tac gcc ccg ttt atc ttt ggg tct atg acg att aac ttc cag cac ctg tac gcc ccg ttt atc ttt ggg tct atg acg att aac ttc cag cac ctg tac gcc ccg ttt atc ttt ggg tct atg acg att aac ttc cag cac ctg tac gcc ccg ttt atc ttt ggg tct atg acg att aac ttc cag cac ctg tac gcc ccg ttt atc ttt ggg tct atg acg att aac ttc cag cac ctg tac gcc ccg ttt atc ttt ggg tct atg acg att aac	864
aag gtg att tcc cag gat gtc ggg gtt gtg ctg cgc aag cgc ctg ttc aag gtg att tcc cag gat gtc ggg gtt gtg ctg cgc aag cgc ctg ttc Lys Val Ile Ser Gln Asp Val Gly Val Val Leu Arg Lys Arg Leu Phe	912
cag atc gac gcc aac tgc cgg tat ggc agc ccc tgg tac gtg gcc cgc cag atc gac gcc aac tgc cgg tat ggc agc ccc tgg tac gtg gcc cgc cag atc gac gcc aac tgc cgg tat ggc agc ccc tgg tac gtg gcc cgc cag atc gac gcc aac tgc cgg tat ggc agc ccc tgg tac gtg gcc cgc cag atc gac gcc aac tgc cgc cag atc gac gcc aac tgc cgc cag atc gac gcc aac tgc agc ccc tgg tac gtg gcc cgc cag atc gac gcc aac tgc cgc cag atc gac gcc aac tgc agc ccc tgg tac gtg gcc cgc cag atc gac gcc aac tgc agc agc ccc tgg tac gtg gcc cgc cag atc gac gcc aac tgc cgc agc agc agc agc agc agc agc agc a	960
ttc tgg atc atg aag ctc ctc acc acg ctc tac atg gtg gcg ctt ccc ttc tgg atc atg aag ctc ctc acc acg ctc tac atg gtg gcg ctt ccc ttc tgg atc atg aag ctc ctc acc acg ctc tac atg gtg gcg ctt ccc ttc tgg atc atg aag ctc ctc acc acg ctc tac atg gtg gcg ctt ccc ttc tgg atc atg aag ctc ctc acc acg ctc tac atg gtg gcg ctt ccc ttc tgg atc atg aag ctc ctc acc acg ctc tac atg gtg gcg ctt ccc 335 330 335	1008
atg tac atg cag ggg cct gct cag ggc ttg aag ctt ttc ttc atg gcc Met Tyr Met Gln Gly Pro Ala Gln Gly Leu Lys Leu Phe Phe Met Ala 345	1056 .
cac ttc acc tgc gga gag gtc ctc gcc acc atg ttt att gtc aac cac His Phe Thr Cys Gly Glu Val Leu Ala Thr Met Phe Ile Val Asn His	1104
atc atc gag ggc gtc agc tac gct tcc aag gac gcg gtc aag ggc gtc atc atc gag ggc gtc agc tac gct tcc aag gac gcg gtc aag ggc gtc atc atc gag ggc gtc agc tac gct tcc aag gac gcg gtc aag ggc gtc atc atc gag ggc gtc agc tcc aag gac gcg gtc aag ggc gtc atc atc gag ggc gtc agc scalars atc atc gag ggc gtc agc gcg gtc aag ggc gtc atc atc gag ggc gtc aag gac gcg gtc aag ggc gtc atc atc gag ggc gtc agc gcg gtc aag ggc gtc atc atc atc gag ggc gtc agc gcg gtc aag ggc gtc atc atc atc gag ggc gtc agc gcg gtc aag ggc gtc atc atc atc gag ggc gtc agc agc gcg gtc aag ggc gtc atc atc atc gag ggc gtc agc gcg gtc aag ggc gtc atc atc atc gag ggc gtc agc gcg gtc aag ggc gtc atc atc atc gag ggc gtc agc gcg gtc aag ggc gtc atc atc atc gag ggc gtc agc gcg gtc aag ggc gtc atc atc atc gag ggc gtc agc gcg gtc aag ggc gtc atc atc atc gag ggc gtc agc gcg gtc aag ggc gtc atc atc atc gag ggc gtc agc gcg gtc aag ggc gtc atc atc atc gag ggc gtc agc gcg gtc aag ggc gtc atc atc atc gag ggc gtc agc gtc agc gcg gcg gtc agc gcg gcg gtc agc gcg gcg gcg gtc agc gcg gcg gtc agc gcg gcg gcg gcg gcg gcg gcg gcg gc	1152
atg gct ccg ccg cgc act gtg cac ggt gtc acc ccg atg cag gtg acg atg gct ccg ccg cgc act gtg cac ggt gtc acc ccg atg cag gtg acg atg gct ccg ccg cgc act gtg cac ggt gtc acc ccg atg cag gtg acg atg gct ccg ccg cgc act gtg cac ggt gtc acc ccg atg cag gtg acg atg gct ccg ccg cgc act gtg cac ggt gtc acc ccg atg cag gtg acg atg gct ccg ccg cgc act gtg cac ggt gtc acc ccg atg cag gtg acg atg gct ccg ccg cgc act gtg cac ggt gtc acc ccg atg cag gtg acg atg gct ccg ccg cgc act gtg cac ggt gtc acc ccg atg cag gtg acg atg gct ccg ccg cgc act gtg cac ggt gtc acc ccg atg cag gtg acg atg gct ccg ccg ccg cgc act gtg cac ggt gtc acc ccg atg cag gtg acg atg gct ccg ccg ccg ccg act gtg cac ggt gtc acc ccg atg cag gtg acg atg gct ccg ccg ccg ccg ccg act gtg cac ggt gtc acc ccg atg cag gtg acg atg gct ccg ccg ccg ccg ccg act gtg cac ggt gtc acc ccg atg cac gcg acc gc	1200
caa aag gcg ctc agt gcg gcc gag tcg gcc aag tcg gac gcc gac aag Caa aag gcg ctc agt gcg gcc gag tcg gcc aag tcg gac gcc gac aag Caa aag gcg ctc agt gcg gcc gag tcg gcc aag tcg gac gcc gac aag Caa aag gcg ctc agt gcg gcc gag tcg gcc aag tcg gac gcc gac aag Caa aag gcg ctc agt gcg gcc gag tcg gcc aag tcg gac gcc gac aag Caa aag tcg gac gcc gac aag Caa aag tcg gac gcc gac aag Caa aag tcg gcc gcc gcc gcc gcc gcc gcc gcc gc	1248
acg acc atg atc ccc ctc aac gac tgg gcc gct gtg cag tgc cag acc Thr Thr Met Ile Pro Leu Asn Asp Trp Ala Ala Val Gln Cys Gln Thr 420 425	1296
tct gtg aac tgg gct gtc ggg tcg tgg ttt tgg aac cac ttt tcg ggc tct gtg aac tgg gct gtc ggg tcg tgg ttt tgg aac cac ttt tcg ggc tct gtg aac tgg gct gtc ggg tcg tgg ttt tgg aac cac ttt tcg ggc tct gtg aac tag gct gtc ggg tcg tgg ttt tgg aac cac ttt tcg ggc tct gtg aac tag gct gtc ggg tcg tgg ttt tgg aac cac ttt tcg ggc tcd gtg aac tag gct gtc gtg ttt tgg aac cac ttt tcg ggc tcd gtg aac tgg aac tag gcc tct gtg aac tag gct gtc gtg ttt tgg aac cac ttt tcg ggc tcd gtg tcg tgg ttt tgg aac cac ttt tcg ggc tcd gtg tcg tgg ttt tgg aac cac ttt tcg ggc tcd gtg aac tag gct gtc gtg ttt tgg aac cac ttt tcg ggc tcd gtg tcg tgg ttt tgg aac cac ttt tcg ggc	1344
ggc ctc aac cac cag att gag cac cac tgc ttc ccc caa aac ccc cac Gly Leu Asn His Gln Ile Glu His His Cys Phe Pro Gln Asn Pro His 455	1392
acg gtc aac gtc tac atc tcg ggc atc gtc aag gag acc tgc gaa gaa acg gtc aac gtc tac atc tcg ggc atc gtc aag gag acc tgc gaa gaa acg gtc aac gtc tac atc tcg ggc atc gtc aag gag acc tgc gaa gaa acg gtc aac gtc tac atc tcg ggc atc gtc aag gag acc tgc gaa gaa 480 Thr Val Asn Val Tyr Ile Ser Gly Ile Val Lys Glu Thr Cys Glu Glu 480 465	1440
tac ggc gtg ccg tac cag gct gag atc agc ctc ttc tct gcc tat ttc Tyr Gly Val Pro Tyr Gln Ala Glu Ile Ser Leu Phe Ser Ala Tyr Phe	1488

485

490

495

aag atg ctg tcg cac ctc cgc acg ctc ggc aac gag gac ctc acg gcc Lys Met Leu Ser His Leu Arg Thr Leu Gly Asn Glu Asp Leu Thr Ala 500 505 1536

tgg tcc acg tga Trp Ser Thr 1548

515

<210> 42 <211> 515

<211> 515 <212> PRT

<213> Thraustochytrium

<400> 42

Met Thr Val Gly Phe Asp Glu Thr Val Thr Met Asp Thr Val Arg Asn 1 5 10 10

His Asn Met Pro Asp Asp Ala Trp Cys Ala Ile His Gly Thr Val Tyr
20 25 30

Asp Ile Thr Lys Phe Ser Lys Val His Pro Gly Gly Asp Ile Ile Met 35 40

Leu Ala Ala Gly Lys Glu Ala Thr Ile Leu Phe Glu Thr Tyr His Ile 50 55

Lys Gly Val Pro Asp Ala Val Leu Arg Lys Tyr Lys Val Gly Lys Leu 65 70 75

Pro Gln Gly Lys Clys Gly Glu Thr Ser His Met Pro Thr Gly Leu Asp 85 90 95

Ser Ala Ser Tyr Tyr Ser Trp Asp Ser Glu Phe Tyr Arg Val Leu Arg 100 105 110

Glu Arg Val Ala Lys Lys Leu Ala Glu Pro Gly Leu Met Gln Arg Ala 115 120 125

Arg Met Glu Leu Trp Ala Lys Ala Ile Phe Leu Leu Ala Gly Phe Trp 130 \cdot 135 \cdot 140

Gly Ser Leu Tyr Ala Met Cys Val Leu Asp Pro His Gly Gly Ala Met 145 150 155 160

Val Ala Ala Val Thr Leu Gly Val Phe Ala Ala Phe Val Gly Thr Cys 165 170 175

Ile Gln His Asp Gly Ser His Gly Ala Phe Ser Lys Ser Arg Phe Met

Asn Lys Ala Ala Gly Trp Thr Leu Asp Met Ile Gly Ala Ser Ala Met 195 . 200 205

- Thr Trp Glu Met Gln His Wal Leu Gly His His Pro Tyr Thr Asn Leu 210 215 220
- Ile Glu Met Glu Asn Gly Leu Ala Lys Val Lys Gly Ala Asp Val Asp 240 225 230
- Pro Lys Lys Val Asp Gln Glu Ser Asp Pro Asp Val Phe Ser Thr Tyr 245 250 255
- Pro Met Leu Arg Leu His Pro Trp His Arg Gln Arg Phe Tyr His Lys 260 265 270
- Phe Gln His Leu Tyr Ala Pro Phe Ile Phe Gly Ser Met Thr Ile Asn 275 280
- Lys Val Ile Ser Gln Asp Val Gly Val Val Leu Arg Lys Arg Leu Phe 290 295
- Gln Ile Asp Ala Asn Cys Arg Tyr Gly Ser Pro Trp Tyr Val Ala Arg 305 310 315
- Phe Trp Ile Met Lys Leu Leu Thr Thr Leu Tyr Met Val Ala Leu Pro 335
- Met Tyr Met Gln Gly Pro Ala Gln Gly Leu Lys Leu Phe Phe Met Ala 340 345 . 350
- His Phe Thr Cys Gly Glu Val Leu Ala Thr Met Phe Ile Val Asn His 355
- Ile Ile Glu Gly Val Ser Tyr Ala Ser Lys Asp Ala Val Lys Gly Val 370
- Met Ala Pro Pro Arg Thr Val His Gly Val Thr Pro Met Gln Val Thr 400 385
- Gln Lys Ala Leu Ser Ala Ala Glu Ser Ala Lys Ser Asp Ala Asp Lys 410 415
- Thr Thr Met Ile Pro Leu Asn Asp Trp Ala Ala Val Gln Cys Gln Thr 420 425 430
- Ser Val Asn Trp Ala Val Gly Ser Trp Phe Trp Asn His Phe Ser Gly 435
- Gly Leu Asn His Gln Ile Glu His His Cys Phe Pro Gln Asn Pro His
 450 450
- Thr Val Asn Val Tyr Ile Ser Gly Ile Val Lys Glu Thr Cys Glu Glu 465 470 475

Tyr Gly Val Pro Tyr Gln Ala Glu Ile Ser Leu Phe Ser Ala Tyr Phe 485 490 495

Lys Met Leu Ser His Leu Arg Thr Leu Gly Asn Glu Asp Leu Thr Ala 500 505 510

Trp Ser Thr 515

<210> <211> 960 DNA <212> <213> Thalassiosira pseudonana <220> <221> CDS (1)..(960) <222> <223> Delta-5-Elongase <400> 43 48 atg gtg ttg tac aat gtg gcg caa gtg ctg ctc aat ggg tgg acg gtg Met Val Leu Tyr Asn Val Ala Gln Val Leu Leu Asn Gly Trp Thr Val 10 tat gcg att gtg gat gcg gtg atg aat aga gac cat ccg ttt att gga 96 Tyr Ala Ile Val Asp Ala Val Met Asn Arg Asp His Pro Phe Ile Gly agt aga agt ttg gtt ggg gcg gcg ttg cat agt ggg agc tcg tat gcg 144 Ser Arg Ser Leu Val Gly Ala Ala Leu His Ser Gly Ser Ser Tyr Ala 40 gtg tgg gtt cat tat tgt gat aag tat ttg gag ttc ttt gat acg tat 192 Val Trp Val His Tyr Cys Asp Lys Tyr Leu Glu Phe Phe Asp Thr Tyr 55 ttt atg gtg ttg agg ggg aaa atg gac cag atg gta ctt ggt gaa gtt 240 Phe Met Val Leu Arg Gly Lys Met Asp Gln Met Val Leu Gly Glu Val ggt ggc agt gtg tgg tgt ggc gtt gga tat atg gat atg gag aag atg Gly Gly Ser Val Trp Cys Gly Val Gly Tyr Met Asp Met Glu Lys Met 288 · 336 ata cta ctc agc ttt gga gtg cat cgg tct gct cag gga acg ggg aag Ile Leu Leu Ser Phe Gly Val His Arg Ser Ala Gln Gly Thr Gly Lys get tte ace aac aac gtt ace aat cea cat etc acg ett eea cet cat 384 Ala Phe Thr Asn Asn Val Thr Asn Pro His Leu Thr Leu Pro Pro His 120 tct aca aaa aca aaa aaa cag gtc tcc ttc ctc cac atc tac cac cac Ser Thr Lys Thr Lys Lys Gln Val Ser Phe Leu His Ile Tyr His His 432 135 acg acc ata gcg tgg gca tgg tgg atc gcc ctc cgc ttc tcc ccc ggt 480 Thr Thr Ile Ala Trp Ala Trp Trp Ile Ala Leu Arg Phe Ser Pro Gly 155 150 gga gac att tac ttc ggg gca ctc ctc aac tcc atc atc cac gtc ctc 528 Gly Asp Ile Tyr Phe Gly Ala Leu Leu Asn Ser Ile Ile His Val Leu

73 170 165 atg tat tcc tac tac gcc ctt gcc cta ctc aag gtc agt tgt cca tgg Met Tyr Ser Tyr Tyr Ala Leu Ala Leu Leu Lys Val Ser Cys Pro Trp 576 aaa cga tac ctg act caa gct caa tta ttg caa ttc aca agt gtg gtg Lys Arg Tyr Leu Thr Gln Ala Gln Leu Leu Gln Phe Thr Ser Val Val 624 gtt tat acg ggg tgt acg ggt tat act cat tac tat cat acg aag cat 672 Val Tyr Thr Gly Cys Thr Gly Tyr Thr His Tyr Tyr His Thr Lys His gga gcg gat gag aca cag cct agt tta gga acg tat tat ttc tgt tgt 720 Gly Ala Asp Glu Thr Gln Pro Ser Leu Gly Thr Tyr Tyr Phe Cys Cys gga gtg cag gtg ttt gag atg gtt agt ttg ttt gta ctc ttt tcc atc Gly Val Gln Val Phe Glu Met Val Ser Leu Phe Val Leu Phe Ser Ile 768 ttt tat aaa cga tcc tat tcg aag aag aac aag tca gga gga aag gat Phe Tyr Lys Arg Ser Tyr Ser Lys Lys Asn Lys Ser Gly Gly Lys Asp 816 agc aag aag aat gat gat ggg aat aat gag gat caa tgt cac aag gct Ser Lys Asn Asp Asp Gly Asn Asn Glu Asp Gln Cys His Lys Ala atg aag gat ata tcg gag ggt gcg aag gag gtt gtg ggg cat gca gcg Met Lys Asp Ile Ser Glu Gly Ala Lys Glu Val Val Gly His Ala Ala 290 295 912 aag gat got gga aag ttg gtg got acg aga gta agg tgt aag gtg taa 960 Lys Asp Ala Gly Lys Leu Val Ala Thr Arg Val Arg Cys Lys Val <210> 44 <211> 319 <212> PRT <213> Thalassiosira pseudonana <400> 44 Met Val Leu Tyr Asn Val Ala Gln Val Leu Leu Asn Gly Trp Thr Val Tyr Ala Ile Val Asp Ala Val Met Asn Arg Asp His Pro Phe Ile Gly Ser Arg Ser Leu Val Gly Ala Ala Leu His Ser Gly Ser Ser Tyr Ala Val Trp Val His Tyr Cys Asp Lys Tyr Leu Glu Phe Phe Asp Thr Tyr Phe Met Val Leu Arg Gly Lys Met Asp Gln Met Val Leu Gly Glu Val Gly Gly Ser Val Trp Cys Gly Val Gly Tyr Met Asp Met Glu Lys Met 95 85

Ile Leu Leu Ser Phe Gly Val His Arg Ser Ala Gln Gly Thr Gly Lys 105 100

Ala Phe Thr Asn Asn Val Thr Asn Pro His Leu Thr Leu Pro Pro His 120

Ser Thr Lys Thr Lys Lys Gln Val Ser Phe Leu His Ile Tyr His His

Thr Thr Ile Ala Trp Ala Trp Trp Ile Ala Leu Arg Phe Ser Pro Gly 150

Gly Asp Ile Tyr Phe Gly Ala Leu Leu Asn Ser Ile Ile His Val Leu 170

Met Tyr Ser Tyr Tyr Ala Leu Ala Leu Leu Lys Val Ser Cys Pro Trp 185

Lys Arg Tyr Leu Thr Gln Ala Gln Leu Leu Gln Phe Thr Ser Val Val 200

Val Tyr Thr Gly Cys Thr Gly Tyr Thr His Tyr Tyr His Thr Lys His

Gly Ala Asp Glu Thr Gln Pro Ser Leu Gly Thr Tyr Tyr Phe Cys Cys 225

Gly Val Gln Val Phe Glu Met Val Ser Leu Phe Val Leu Phe Ser Ile 250

Phe Tyr Lys Arg Ser Tyr Ser Lys Lys Asn Lys Ser Gly Gly Lys Asp

Ser Lys Lys Asn Asp Asp Gly Asn Asn Glu Asp Gln Cys His Lys Ala

Met Lys Asp Ile Ser Glu Gly Ala Lys Glu Val Val Gly His Ala Ala 295

Lys Asp Ala Gly Lys Leu Val Ala Thr Arg Val Arg Cys Lys Val

<210> 45

<211> 819

<212> DNA

<213> Thalassiosira pseudonana

<220>

ď

<221> CDS

<222> (1)..(819) <223> Delta-5-Elongase

Argania

<pre><400> 45 atg gac gcc tac aac gct gca atg gat aag atc ggt gcc gcc atc atc atg gac gcc tac aac gct gca atg gat aag atc ggt gcc gcc atc atc atg gac gcc tac aac gct gca atg gat aag atc ggt gcc gcc atc atc atg gac gcc tac aac gct gca atg gat aag atc ggt gcc gcc atc atc atg gac gac gcc atc atc atg gac gcc gcc atc atc atg gac gcc gcc atc atc atg gac gac gcc atc atc atg gac gcc gcc gcc gcc atc atg gac gcc gcc gcc gcc gcc gcc gcc gcc gc</pre>	48
gat tgg tct gat ccc gat gga aag ttc cgt gcc gat aga gag gac tgg gat tgg tct gat ccc gat gga aag ttc cgt gcc gat aga gag gac tgg gat tgg tct gat ccc gat gga aag ttc cgt gcc gat aga gag gac tgg gat tgg tct gat ccc gat gga aag ttc cgt gcc gat aga gag gac tgg gat tgg tct gat ccc gat gga aag ttc cgt gcc gat aga gag gac tgg gat tgg tct gat ccc gat gga aag ttc cgt gcc gat aga gag gac tgg gat tgg tct gat ccc gat gga aag ttc cgt gcc gat aga gag gac tgg gat tgg tct gat ccc gat gga aag ttc cgt gcc gat aga gag gac tgg gat tgg tct gat ccc gat gga aag ttc cgt gcc gat aga gag gac tgg gat tgg tct gat ccc gat gga aag ttc cgt gcc gat aga gag gac tgg gat tgg tct gat ccc gat gga aag ttc cgt gcc gat aga gag gac tgg gat tgg tct gat ccc gat gga aag ttc cgt gcc gat aga gag gac tgg gat tgg tct gat ccc gat gga aag ttc cgt gcc gat aga gag gac tgg gat tgg tct gat ccc gat gga aag ttc cgt gcc gat aga gag gac tgg aga tgg tct gat ccc gat gga aag ttc cgt gcc gat aga gag gac tgg aga tgg tct gat ccc gat gga aag ttc cgt gcc gat aga gag gac tgg aga tgg tct gat ccc gat gga aag tcc cgt gcc gat aga gag gac tgg aga tgg tct gat ccc gat gga aag tcc cgt gcc gat aga gag gac tgg aga tgg tct gat ccc gat gga aag tcc cgt gcc gat aga gag gac tgg aga tgg tct gat ccc gat gga aag tcc cgt gcc gat aga gag gac tgg gat aga gat tg	96
tgg ctc tgc gac ttc cgt agc gcc atc acc atc gcc ctc atc tac atc tgg ctc tgc gac ttc cgt agc gcc atc acc atc gcc ctc atc tac atc tgg ctc tgc gac ttc cgt agc gcc atc acc atc gcc ctc atc tac atc tgg ctc tgc gac ttc cgt agc gcc atc acc atc gcc ctc atc tac atc	144
gcc ttc gtc atc ctc ggt tcc gcc gtc atg caa tcc ctc ccc gca atg Ala Phe Val Ile Leu Gly Ser Ala Val Met Gln Ser Leu Pro Ala Met 55 60	192
gat ccc tac ccc atc aaa ttc ctc tac aac gtc tcc caa atc ttc ctt gat ccc tac ccc atc aaa ttc ctc tac aac gtc tcc caa atc ttc ctt acc tac ccc atc aaa ttc ctc tac aac gtc tcc caa atc ttc ctt gat ccc tac ccc atc aaa ttc ctc tac aac gtc tcc caa atc ttc ctt gat ccc tac ccc atc aaa ttc ctc tac aac gtc tcc caa atc ttc ctt gat ccc tac ccc atc aaa ttc ctc tac aac gtc tcc caa atc ttc ctt gat ccc tac ccc atc aaa ttc ctc tac aac gtc tcc caa atc ttc ctt gat ccc tac ccc atc aaa ttc ctc tac aac gtc tcc caa atc ttc ctt gat ccc tac ccc atc aaa ttc ctc tac aac gtc tcc caa atc ttc ctc gat ccc tac ccc atc aaa ttc ctc tac aac gtc tcc caa atc ttc ctc gat ccc tac ccc atc aaa ttc ctc tac aac gtc tcc caa atc ttc ctc gat ccc tac ccc atc aaa ttc ctc tac aac gtc tcc caa atc ttc ctc gat ccc tac ccc atc atc aaa ttc ctc tac aac gtc tcc gat ccc tac ccc atc atc aaa ttc ctc tac aac gtc tcc gat ccc tac ccc atc atc aaa ttc ctc tac aac gtc tcc gat ccc tac ccc atc atc aaa ttc ctc tac aac gtc tcc gat ccc tac ccc atc atc aaa ttc ctc tac aac gtc tcc gat ccc tac ccc atc atc aaa ttc ctc tac aac gtc tcc gat ccc tac ccc atc atc aaa ttc ctc tac aac gtc tcc gat ccc tac ccc atc atc aaa ttc ctc tac aac gtc tcc gat ccc tac ccc atc atc aaa ttc ctc tac aac gtc tcc gat ccc tac ccc atc atc aaa ttc ctc tac aac gtc tcc gat ccc tac ccc atc atc aaa ttc ctc tac aac gtc tcc gat ccc tac ccc atc atc aaa ttc ctc tac aac gtc tcc gat ccc tac ccc atc atc aaa ttc ctc tac aac gtc tcc gat ccc tac ccc atc atc aaa ttc ctc tac aac gtc tcc gat ccc tac ccc atc acc acc atc acc acc a	240
tgt gcc tac atg act gtc gag gcg gga ttt ttg gcc tac cgc aat gga tgt gcc tac atg act gtc gag gcg gga ttt ttg gcc tac cgc aat gga tgt gcc tac atg act gtc gag gcg gga ttt ttg gcc tac cgc aat gga tgt gcc tac atg act gtc gag gcg gga ttt ttg gcc tac cgc aat gga tgt gcc tac atg act gtc gag gcg gga ttt ttg gcc tac cgc aat gga tgt gcc tac atg act gtc gag gcg gga ttt ttg gcc tac cgc aat gga tgt gcc tac atg act gtc gag gcg gga ttt ttg gcc tac cgc aat gga	288
tat acc gtc atg cct tgc aat cat ttc aat gtg aat gat cct ccc gtg tat acc gtc atg cct tgc aat cat ttc aat gtg aat gat cct ccc gtg tat acc gtc atg cct tgc aat cat ttc aat gtg aat gat cct ccc gtg tat acc gtc atg cct tgc aat cat ttc aat gtg aat gat cct ccc gtg tat acc gtc atg cct tgc aat cat ttc aat gtg aat gat cct ccc gtg tat acc gtc atg cct tgc aat cat ttc aat gtg aat gat cct ccc gtg tat acc gtc atg cct tgc aat cat ttc aat gtg aat gat cct ccc gtg tat acc gtc atg cct tgc aat cat ttc aat gtg aat gat cct ccc gtg tat acc gtc atg cct tgc aat cat ttc aat gtg aat gat cct ccc gtg tat acc gtc atg cct tgc aat cat ttc aat gtg aat gat cct ccc gtg tat acc gtc atg cct tgc aat cat ttc aat gtg aat gat cct ccc gtg	336
gcg aat ctt ctt tgg ttg ttt tat att tcc aag gtg tgg gac ttt tgg Ala Asn Leu Trp Leu Phe Tyr Ile Ser Lys Val Trp Asp Phe Trp Ala Asn Leu Trp Leu Phe Tyr Ile Ser Lys Val Trp 125	384
gat acc att ttc att gtg ttg ggg aag aag tgg cgt caa tta tct ttc gat acc att ttc att gtg ttg ggg aag aag tgg cgt caa tta tct ttc Asp Thr Ile Phe Ile Val Leu Gly Lys Lys Trp Arg Gln Leu Ser Phe 135	432
ttg cat gta tac cat cac acc atc ttt cta ttc tat tgg ctg aat ttg cat gta tac cat cac acc atc ttt cta ttc tat tgg ctg aat ttg cat gta tac cat cac acc atc ttt cta ttc tat tgg ctg aat ttg cat gta tac cat cac acc atc ttt cta ttc tat tgg ctg aat ttg cat gta tac cat cac acc atc ttt cta ttc tat tgg ctg aat ttg cat gta tac cat cac acc atc ttt cta ttc tat tgg ctg aat ttg cat gta tac cat cac acc atc ttt cta ttc tat tgg ctg aat ttg cat gta tac cat cac acc atc ttt cta ttc tat tgg ctg aat	480
gcc aat gtc ttg tac gat ggt gac atc ttc ctt acc atc ttg ctc aat gcc aat gtc ttg tac gat ggt gac atc ttc ctt acc atc ttg ctc aat Ala Asn Val Leu Tyr Asp Gly Asp Ile Phe Leu Thr Ile Leu Leu Asn 175 165	528
gga ttc atc cac acg gtg atg tac acg tat tac ttc atc tgt atg cat gga ttc atc cac acg gtg atg tac acg tat tac ttc atc tgt atg cat gga ttc atc cac acg gtg atg tac acg tat tac ttc atc tgt atg cat gga ttc atc cac acg gtg atg tac acg tat tac ttc atc tgt atg cat gga ttc atc cac acg gtg atg tac acg tat tac ttc atc tgt atg cat gga ttc atc cac acg gtg atg tac acg tat tac ttc atc tgt atg cat gga ttc atc cac acg gtg atg tac acg tat tac ttc atc tgt atg cat gga ttc atc cac acg gtg atg tac acg tat tac ttc atc tgt atg cat gga ttc atc cac acg gtg atg tac acg tat tac ttc atc tgt atg cat gga ttc atc cac acg gtg atg tac acg tat tac ttc atc tgt atg cat gga ttc atc cac acg gtg atg tac acg tat tac ttc atc tgt atg cat	576
acc aaa gat tcc aag acg ggc aag agt ctt cct ata tgg tgg aag tcg Thr Lys Asp Ser Lys Thr Gly Lys Ser Leu Pro Ile Trp Trp Lys Ser 205	624
agt ttg acg gcg ttt cag ttg ttg caa ttc act atc atg atg agt cag ser Leu Thr Ala Phe Gln Leu Leu Gln Phe Thr Ile Met Met Ser Gln 215	672
gct acc tac ctt gtc ttc cac ggg tgt gat aag gtg tcg ctt cgt atc Ala Thr Tyr Leu Val Phe His Gly Cys Asp Lys Val Ser Leu Arg Ile 230 230 235	720
Ala Thr Tyr Leu Val 230 225 acg att gtg tac ttt gtg tcc ctt ttg agt ttg ttc ttc ctt ttt gct acg att gtg tac ttt gtg tcc ctt ttg agt ttg ttc ttc ctt ttt gct Thr Ile Val Tyr Phe Val Ser Leu Leu Ser Leu Phe Phe Leu Phe Ala 255 245	768
Thr Ile Val Tyr Phe Val Set 250 245 cag ttc ttt gtg caa tca tac atg gca ccc aaa aag aag agt gct Gln Phe Phe Val Gln Ser Tyr Met Ala Pro Lys Lys Lys Ser Ala	816

270

265 260

819 tag

76

<210> 46

WO 2005/012316

<211> 272

<212> PRT

<213> Thalassiosira pseudonana

<400> 46

Met Asp Ala Tyr Asn Ala Ala Met Asp Lys Ile Gly Ala Ala Ile Ile

Asp Trp Ser Asp Pro Asp Gly Lys Phe Arg Ala Asp Arg Glu Asp Trp

Trp Leu Cys Asp Phe Arg Ser Ala Ile Thr Ile Ala Leu Ile Tyr Ile

Ala Phe Val Ile Leu Gly Ser Ala Val Met Gln Ser Leu Pro Ala Met

Asp Pro Tyr Pro Ile Lys Phe Leu Tyr Asn Val Ser Gln Ile Phe Leu

Cys Ala Tyr Met Thr Val Glu Ala Gly Phe Leu Ala Tyr Arg Asn Gly

Tyr Thr Val Met Pro Cys Asn His Phe Asn Val Asn Asp Pro Pro Val

Ala Asn Leu Leu Trp Leu Phe Tyr Ile Ser Lys Val Trp Asp Phe Trp

Asp Thr Ile Phe Ile Val Leu Gly Lys Lys Trp Arg Gln Leu Ser Phe 130

Leu His Val Tyr His His Thr Thr Ile Phe Leu Phe Tyr Trp Leu Asn

Ala Asn Val Leu Tyr Asp Gly Asp Ile Phe Leu Thr Ile Leu Leu Asn

Gly Phe Ile His Thr Val Met Tyr Thr Tyr Tyr Phe Ile Cys Met His

Thr Lys Asp Ser Lys Thr Gly Lys Ser Leu Pro Ile Trp Trp Lys Ser

Ser Leu Thr Ala Phe Gln Leu Leu Gln Phe Thr Ile Met Met Ser Gln 215

. 7	O 20	05/0	122	16														F	CT/E	P2004/
•	U 20	03/0	123	10								7	7							
	Ala 225	Thr	T	yr I	Leu	Val.	Phe 230	His	G1	y c	ys i			Va	1 S	er L	eu A	Arg :	11e 240	
	Thr	Ile	e V	al '	Tyr	Phe 245	Val	Ser	. Le	eu L	eu	Ser 250	Leu	. Ph	ne P	he I	eu :	Phe 255	Ala	
	Gln	Ph	e P	he	Val 260	Gln	Ser	туз	r M	et P	Ala 265	Pro	Ļys	; Ly	ys L	ys 1 2	ys 270	Ser	Ala	
	<21 <21 <21 <21	1>	47 93 Di	6 IA	:hec	odin	ium.	coh	nii											
	<22	1> 22>	C	os 1). elta	. (93 a-5-	6) Elor	ıgası	e			Т									
	Me' 1	t S	er	Ala	Phe	Me 5	e Tn	I De	su i	FLO	J	10	_					15	tcg Ser	
	gc Al	c t a L	tg eu	gtc Val	acq Th	g ct r Le	g gg u Gl	a aa .y L:	ag Ys	gat Asp.	gto Val 25	tc Se	c ag r Se	er I	ect Pro	tca Ser	gct Ala 30	ttt Phe	caa Gln	
	gc Al	t g .a V	tc al	act Thr	gg Gl	c tt y Ph	c to e Cy	jc a /s A	gg rg	gag Glu 40	Gl:	tg 1 Tr	ng gi	ly	att Ile	ccg Pro 45	aca	gta Val	ttc L Phe	
	C7	s I	tg eu	ggg	ta Y Ty	c tt r Le	g go	ıa M	tg let	gtc Val	ta Ty:	c go r Al	g g La A	cc la	aga Arg 60	aga Arg	Pro	cto Le	c ccg 1 Pro	
	G: 6:	ln E	ac Iis	gg G1	c ta	c at	g g et V 7	ar t	gcg Ala	gtg Val	ga . As	c c	gt t rg C 7	gc ys 5	ttc Phe	gct Ala	gci Ala	t tg	g aac p Asn 80	

ttg gct ctc tct gtc ttc agc act tgg ggc ttc tac cac atg gct gtc Leu Ala Leu Ser Val Phe Ser Thr Trp Gly Phe Tyr His Met Ala Val

ggg ctc tac aac atg aca gag acg agg ggc ttg caa ttc acc atc tgc Gly Leu Tyr Asn Met Thr Glu Thr Arg Gly Leu Gln Phe Thr Ile Cys

ggt tcg act ggg gag ctc gtg cag aac ctt cag act ggc cca acc gct Gly Ser Thr Gly Glu Leu Val Gln Asn Leu Gln Thr Gly Pro Thr Ala

ctg gcg ctc tgc ctc ttc tgc ttc agc aag atc ccc gag ttg atg gac Leu Ala Leu Cys Leu Phe Cys Phe Ser Lys Ile Pro Glu Leu Met Asp

acg gtg ttt ctc atc ctg aag gcc aag aag gtc cgc ttc ttg cag tgg Thr Val Phe Leu Ile Leu Lys Ala Lys Lys Val Arg Phe Leu Gln Trp

tac cac cat gcc aca gtc atg ctc ttc tgt tgg ctc gcc ctc gcg acg

Tyr His His Ala Thr Val Met Leu Phe Cys Trp Leu Ala Leu Ala Thr

135

100

115

96

192

240

288

336

384

432

480

528

7 0 20	05/01	2510							78	3						21 2004/00//2
gag Glu	tac Tyr	act Thr	cct Pro 180	ggc Gly	ttg Leu	tgg Trp	ttt Phe	gcg Ala 185	gcg Ala	acg Thr	aac Asn	tac Tyr	ttc Phe 190	gtg Val	cac His	576
tcc Ser	atc Ile	atg Met 195	tac Tyr	atg Met	tac Tyr	ttc Phe	ttc Phe 200	ctc Leu	atg Met	acc Thr	ttc Phe	aag Lys 205	tcg Ser	gcc Ala	gcg Ala	624
aag Lys	gtg Val 210	gtg Val	aag Lys	ccc Pro	atc Ile	gcc Ala 215	cct Pro	ctc Leu	atc Ile	aca Thr	gtt Val 220	atc	cag Gln	att Ile	gct Ala	672
cag Gln 225	atg Met	gtc Val	tgg Trp	ggc	ctc Leu 230	atc Ile	gtc Val	aac Asn	ggc Gly	atc Ile 235	gcc Ala	atc Ile	acc Thr	acc Thr	ttc Phe 240	720
ttc Phe	acg Thr	act Thr	ggt Gly	gcc Ala 245	tgc Cys	cag Gln	atc Ile	cag Gln	tct Ser 250	gtg Val	act Thr	gtg Val	tat Tyr	tcg Ser 255	gcc Ala	768
atc Ile	atc Ile	atg Met	tac Tyr 260	gct Ala	tcg Ser	tac Tyr	ttc Phe	tac Tyr 265	ctg Leu	ttc Phe	tçc Ser	cag Gln	ctc Leu 270	ttc Phe	ttc Phe	816
gag Glu	gcc Ala	cat His 275	ggt Gly	gcc Ala	gct Ala	ggc Gly	aag Lys 280	aac Asn	aag Lys	aag Lys	aag Lys	ttg Leu 285	acc Thr	cgc Arg	gag Glu	864
ctc Leu	tct Ser 290	Arg	aaa Lys	atc Ile	tcg Ser	gag Glu 295	gct Ala	ctc Leu	ctg Leu	aac Asn	acc Thr 300	ggt Gly	gac Asp	gag Glu	gtt Val	912
	Lys			aag Lys												936
<21 <21	1> 2>	48 311 PRT Cryp	thec	odin	ium	cohn	ii ,	. •	-						-	
<40	0>	48													•	
Met 1	Ser	Ala	. Phe	Met 5	Thr	Leu	Pro	Gln	Ala 10	Leu	Ser	Asp	Val	Thr 15	Ser	
Ala	Lev	ı Val	Thr 20	Leu	Gly	Lys	Asp	Val 25	. Ser	Ser	Pro	Ser	Ala 30	Phe	Gln	
Ala	. Val	Thr 35	· Gly	Phe	Cys	Arg	Glu 40	ı Glr	Trp	Glÿ	·Ile	Pro 45	Thr	Val	Phe	
Cys	Lev 50	ı Gly	туг	Leu	Ala	Met 55	: Val	. Туг	: Ala	Ala	Arg 60	Arg	Pro	Leu	Pro	
Glr 65	n His	s Gly	, Тух	. Met	70	Ala	. Val	l Asp	Arg	75	: Phe	e Ala	Ala	Trp	Asn 80	

Leu Ala Leu Ser Val Phe Ser Thr Trp Gly Phe Tyr His Met Ala Val 85 90 95

Gly Leu Tyr Asn Met Thr Glu Thr Arg Gly Leu Gln Phe Thr Ile Cys 105 100

1.

Gly Ser Thr Gly Glu Leu Val Gln Asn Leu Gln Thr Gly Pro Thr Ala 120

Leu Ala Leu Cys Leu Phe Cys Phe Ser Lys Ile Pro Glu Leu Met Asp

Thr Val Phe Leu Ile Leu Lys Ala Lys Lys Val Arg Phe Leu Gln Trp 150

Tyr His His Ala Thr Val Met Leu Phe Cys Trp Leu Ala Leu Ala Thr

Glu Tyr Thr Pro Gly Leu Trp Phe Ala Ala Thr Asn Tyr Phe Val His

Ser Ile Met Tyr Met Tyr Phe Phe Leu Met Thr Phe Lys Ser Ala Ala

Lys Val Val Lys Pro Ile Ala Pro Leu Ile Thr Val Ile Gln Ile Ala 215

Gln Met Val Trp Gly Leu Ile Val Asn Gly Ile Ala Ile Thr Thr Phe

Phe Thr Thr Gly Ala Cys Gln Ile Gln Ser Val Thr Val Tyr Ser Ala

Ile Ile Met Tyr Ala Ser Tyr Phe Tyr Leu Phe Ser Gln Leu Phe Phe 265

Glu Ala His Gly Ala Ala Gly Lys Asn Lys Lys Leu Thr Arg Glu

Leu Ser Arg Lys Ile Ser Glu Ala Leu Leu Asn Thr Gly Asp Glu Val

Ser Lys His Leu Lys Val Asn 310

<210> 49

<211> 927

<212> DNA

<213> Crypthecodinium cohnii

<220>

<221> CDS <222> (1)..(927) <223> Delta-5-Elongase

<400> 49

									0	•						
atg Met 1	gct Ala	tcc Ser	tac Tyr	caa Gln 5	caa Gln	gca Ala	ttc Phe	tcc Ser	gaa Glu 10	ttg Leu	gct Ala	aga Arg	gct Ala	ttg Leu 15	tcc Ser	48
act Thr	ttg Leu	aac Asn	cac His 20	gac Asp	ttc Phė	tcc Ser	agc Ser	gtc Val 25	gag Glu	cca Pro	ttc Phe	aaa Lys	gtc Val 30	gtg Val	acg Thr	96
cag Gln	ttc Phe	tgc Cys 35	agg Arg	gac Asp	cag Gln	tgg Trp	gcg Ala 40	atc Ile	ccg Pro	aca Thr	gtc Val	ttt Phe 45	tgc Cys	atc Ile	ggt Gly	144
tac Tyr	ttg Leu 50	gca Ala	atg Met	gtc Val	tac Tyr	gcc Ala 55	acg Thr	cga Arg	aga Arg	cct Pro	atc Ile 60	gcg Ala	aag Lys	cac His	ccc Pro	192
tac Tyr 65	atg Met	tct Ser	ctc Leu	gtg Val	gat Asp 70	cgc Arg	tgc Cys	ttt Phe	gcg Ala	gcc Ala 75	tgg Trp	aac Asn	ttg Leu	ggc Gly	ctc Leu 80	240
tcg Ser	ctc Leu	ttc Phe	agt Ser	tgc Cys 85	tgg Trp	ggc Gly	ttc Phe	tac Tyr	cac His 90	atg Met	gca Ala	gtg Val	gga Gly	ctc Leu 95	tcc Ser	288
cac His	acc Thr	act Thr	tgg Trp 100	aat Asn	ttc Phe	G1Å aaa	ctc Leu	cag Gln 105	ttc Phe	acc Thr	atc Ile	tgc Cys	ggc Gly 110	agc Ser	acc Thr	336
acg Thr	gag Glu	ctt Leu 115	gtg Val	aat Asn	ggc Gly	ttc Phe	cag Gln 120	aag Lys	ggc Gly	ceg Pro	gcg Ala	gcc Ala 125	ctc Leu	gcc Ala	ctc Leu	384
atc Ile	ctg Leu 130	ttc Phe	tgc Cys	ttc Phe	tcc Ser	aag Lys 135	atc Ile	ccg Pro	gag Glu	ttg Leu	ggc Gly 140	gac Asp	acc Thr	gtc Val	ttc Phe	432
ttg Leu 145	atc Ile	ttg Leu	aag Lys	gga Gly	aag Lys 150	aag Lys	gtc Val	cgc Arg	ttc Phe	ttg Leu 155	cag Gln	tgg Trp	tac Tyr	cac His	cac His 160	480
acg Thr	acc Thr	gtg Val	atg Met	ctc Leu 165	ttc Phe	tgt Cys	tgg Trp	atg Met	gcc Ala 170	ttg Leu	gcg Ala	act Thr	gag Glu	tac Tyr 175	act Thr	528
cct Pro	gga Gly	ttg Leu	tgg Trp 180	Phe	gcg Ala	gcc Ala	acg Thr	aac Asn 185	Tyr	ttc Phe	gtg Val	cac His	tcc Ser 190	atc Ile	atg Met	576
tac Tyr	atg Met	tac Tyr 195	Phe	Phe	ctc Leu	Met	Thr	Phe	Lys	Thr	Ala	Ala	Gly	atc Ile	atc Ile	624
aag Lys	Pro 210	Ile	gcg Ala	cct	ctc Leu	atc Ile 215	Thr	atc Ile	atc Ile	cag Gln	atc Ile 220	Ser	cag Gln	atg Met	gtc Val	672
tgg Trp 225	Gly	ttg Leu	gtc Val	gtg Val	aac Asn 230	Ala	ato Ile	gcc Ala	gtc Val	ggc Gly 235	Thr	ttc Phe	ttc Phe	acc	aca Thr 240	720
Gly	aac Asn	tgc Cys	cag Gln	ato Ile 245	Gln	gca Ala	gtg Val	aca Thr	gtc Val 250	Туг	tcc Ser	gcc Ala	ato Ile	gtg Val 255	atg Met	768
tac Tyr	gcc Ala	tco Ser	tac Tyr 260	Phe	tac Tyr	ctc Leu	ttc Phe	ggc Gly 265	Gln	cto Leu	ttc Phe	ttc Phe	gag Glu 270	. Ala	cag Gln	816

atg aag gtg aat tga Met Lys Val Asn 305

927

<210> 50 <211> 308

<212> PRT

<213> Crypthecodinium cohnii

<400> 50

Met Ala Ser Tyr Gln Gln Ala Phe Ser Glu Leu Ala Arg Ala Leu Ser

Thr Leu Asn His Asp Phe Ser Ser Val Glu Pro Phe Lys Val Val Thr

Gln Phe Cys Arg Asp Gln Trp Ala Ile Pro Thr Val Phe Cys Ile Gly

Tyr Leu Ala Met Val Tyr Ala Thr Arg Arg Pro Ile Ala Lys His Pro

Tyr Met Ser Leu Val Asp Arg Cys Phe Ala Ala Trp Asn Leu Gly Leu 65 70 75 80

Ser Leu Phe Ser Cys Trp Gly Phe Tyr His Met Ala Val Gly Leu Ser

His Thr Thr Trp Asn Phe Gly Leu Gln Phe Thr Ile Cys Gly Ser Thr

Thr Glu Leu Val Asn Gly Phe Gln Lys Gly Pro Ala Ala Leu Ala Leu

Ile Leu Phe Cys Phe Ser Lys Ile Pro Glu Leu Gly Asp Thr Val Phe

Leu Ile Leu Lys Gly Lys Lys Val Arg Phe Leu Gln Trp Tyr His His

Thr Thr Val Met Leu Phe Cys Trp Met Ala Leu Ala Thr Glu Tyr Thr

Pro Gly Leu Trp Phe Ala Ala Thr Asn Tyr Phe Val His Ser Ile Met 185

82 Tyr Met Tyr Phe Phe Leu Met Thr Phe Lys Thr Ala Ala Gly Ile Ile 200 Lys Pro Ile Ala Pro Leu Ile Thr Ile Ile Gln Ile Ser Gln Met Val Trp Gly Leu Val Val Asn Ala Ile Ala Val Gly Thr Phe Phe Thr Thr Gly Asn Cys Gln Ile Gln Ala Val Thr Val Tyr Ser Ala Ile Val Met 250 245 Tyr Ala Ser Tyr Phe Tyr Leu Phe Gly Gln Leu Phe Phe Glu Ala Gln 265 Gly Ser Ala Gly Lys Asp Lys Lys Lys Leu Ala Arg Glu Leu Ser Arg Lys Val Ser Arg Ala Leu Thr Ala Thr Gly Glu Glu Val Ser Lys His 295 290 Met Lys Val Asn 305 <210> 51 <211> 795 <212> DNA <213> Oncorhynchus mykiss <220> <221> CDS <222> (1)..(795) <223>. Delta-5-Elongase <400> 51 atg get tea aca tgg caa age gtt cag tee atg ege cag tgg att tta 48 Met Ala Ser Thr Trp Gln Ser Val Gln Ser Met Arg Gln Trp Ile Leu 10 gag aat gga gat aaa agg aca gac cca tgg cta ctg gtc tac tcc cct 96 Glu Asn Gly Asp Lys Arg Thr Asp Pro Trp Leu Leu Val Tyr Ser Pro atg cca gtg gcc att ata ttc ctc ctc tat ctt ggt gtg gtc tgg gct Met Pro Val Ala Ile Ile Phe Leu Leu Tyr Leu Gly Val Val Trp Ala 192 ggg ccc aag ctg atg aaa cgc agg gaa cca gtt gat ctc aag gct gta Gly Pro Lys Leu Met Lys Arg Arg Glu Pro Val Asp Leu Lys Ala Val 55 ctc att gtc tac aac ttc gcc atg gtc tgc ctg tct gtc tac atg ttc Leu Ile Val Tyr Asn Phe Ala Met Val Cys Leu Ser Val Tyr Met Phe 240 70 cat gag ttc ttg gtc acg tcc ttg ctg tct aac tac agt tac ctg tgt 288

His Glu Phe Leu Val Thr Ser Leu Leu Ser Asn Tyr Ser Tyr Leu Cys

90

O 200	5/012	2316							83	2				,	PC I/E	F 2004/00/73
caa Gln	cct Pro	gtg Val	gat Asp 100	tac Tyr	agc Ser	act Thr	agt Ser	cca Pro 105	cta	aca	atg Met	agg Arg	atg Met 110	gcc Ala	aaa Lys	336
gta Val	tgc Cys	tgg Trp 115		ttt Phe	ttc Phe	ttc Phe	tcc Ser 120	aag Lys	gtc Val	ata Ile	gaa Glu	ttg Leu 125	gct Ala	gac Asp	acg Thr	384
gtg Val	ttc Phe 130	ttc Phe	atc Ile	ctg Leu	agg Arg	aag Lys 135	aag Lys	aac Asn	agt Ser	cag Gln	ctg Leu 140	act Thr	ttc Phe	ctg Leu	cat His	432
gtc Val 145	tat Tyr	cac His	cat His	ggc Gly	acc Thr 150	atg Met	atc Ile	ttc Phe	aac Asn	tgg Trp 155	tgg Trp	gca Ala	Gly ggg	gtc Val	aag Lys 160	480
tat Tyr	ctg Leu	gct Ala	gga Gly	ggc Gly 165	caa Gln	tcg Ser	ttc Phe	ttc Phe	atc Ile 170	ggc	ctg Leu	ctc Leu	aat Asn	acc Thr 175	ttt Phe	528
gtg Val	cac His	atc Ile	gtg Val 180	atg Met	tac Tyr	tct Ser	tac Tyr	tac Tyr 185	gga Gly	ctg Leu	gct Ala	gcc Ala	ctg Leu 190	GTA	cct Pro	576
cac His	acg Thr	cag Gln 195	. Lys	tac Tyr	tta Leu	tgg Trp	tgg Trp 200	гÀг	cgc Arg	tat Tyr	ctg Leu	acc Thr 205		ctg Leu	cag Gln	624
ctg Leu	ctc Leu 210	Glr	ttt Phe	gtc Val	ctg Leu	ttg Leu 215	Thr	act Thr	cac His	act Thr	ggc Gly 220	·TAT	aac Asn	ctc Leu	ttc Phe	672
act Thr 225	Glu	tgt Cys	gac Asp	tto Phe	ccg Pro 230	Asp	tcc Ser	atg Met	aac Asn	gct Ala 235	, vai	g gtg L Val	g ttt L Phe	gcc Ala	tac Tyr 240	720
tgt Cys	gto Val	agt L Sei	cto Lev	att 1116 245	Ala	ctc Leu	tto Phe	ago Ser	aac Asr 250	Pile	tac Ty	tai Ty	c Glr	g ago n Sei 259	tac Tyr	768
cto Lei	aac 1 Asi	age a Are	g aag g Lys 260	s Sei	aag Lys	, aag Lys	aca Thi	a taa	1							795
<2: <2:	10> 11> 12> 13>	52 264 PRT Onc	orhy:	nchu	s myl	kiss										
	00>															
Me 1	t'Al	a Se	r Th	r Tr	p Gl	n Se:	r Va	1 Gl:	n Se	r Me	t Ar	g Gl	n Tr	p Il 15	e Leu	ı
G1	u As	n Gl	y As 20	р Lу	s Ar	g Th	r As	p Pr 25	o Tr	p Le	u Le	u Va	1 Ty 30	r Se	r Pro	
Me	t Pr	o Va		a Il	e Il	e Ph	e Le 40	u Le	и Ту	r Le	eu Gl	y Va 45	ıl Va S	.1 Tr	p Ala	1

Gly Pro Lys Leu Met Lys Arg Glu Pro Val Asp Leu Lys Ala Val 50 55 60

WO 2005/012316 PCT/EP2004/007957

84

Leu Ile Val Tyr Asn Phe Ala Met Val Cys Leu Ser Val Tyr Met Phe 65 70 80

His Glu Phe Leu Val Thr Ser Leu Leu Ser Asn Tyr Ser Tyr Leu Cys 85 90 95

Gln Pro Val Asp Tyr Ser Thr Ser Pro Leu Ala Met Arg Met Ala Lys 100 105 110

Val Cys Trp Trp Phe Phe Phe Ser Lys Val Ile Glu Leu Ala Asp Thr 115 120 125

Val Phe Phe Ile Leu Arg Lys Lys Asn Ser Gln Leu Thr Phe Leu His 130 135 140

Val Tyr His His Gly Thr Met Ile Phe Asn Trp Trp Ala Gly Val Lys 145 150 155 160

Tyr Leu Ala Gly Gly Gln Ser Phe Phe Ile Gly Leu Leu Asn Thr Phe 165 170 175

Val His Ile Val Met Tyr Ser Tyr Tyr Gly Leu Ala Ala Leu Gly Pro 180 185 190

His Thr Gln Lys Tyr Leu Trp Trp Lys Arg Tyr Leu Thr Ser Leu Gln 195 200 205

Leu Leu Gln Phe Val Leu Leu Thr Thr His Thr Gly Tyr Asn Leu Phe 210 215 220

Thr Glu Cys Asp Phe Pro Asp Ser Met Asn Ala Val Val Phe Ala Tyr 225 230 235 240

Cys Val Ser Leu Ile Ala Leu Phe Ser Asn Phe Tyr Tyr Gln Ser Tyr 245 250 255

Leu Asn Arg Lys Ser Lys Lys Thr

<210> 53

<211> 885

<212> DNA

<213> Oncorhynchus mykiss

<220>

<221> CDS

<222> (1)..(885)

<223> Delta-5-Elongase

<400> 53

atg gag act ttt aat tat aaa cta aac atg tac ata gac tca tgg atg Met Glu Thr Phe Asn Tyr Lys Leu Asn Met Tyr Ile Asp Ser Trp Met 1 5 10 15 48

O 2005/012316	85	PCT/EP2004/00/95/
ggt ccc aga gat gag cgg gta Gly Pro Arg Asp Glu Arg Val 20	cag gga tgg ctg ctt ctg gac aac Gln Gly Trp Leu Leu Leu Asp Asn 25	tac 96 Tyr
	gtc atg tac ctg ctg atc gta tgg Val Met Tyr Leu Leu Ile Val Trp 40	atg 144 Met
	aga cag ccg gtg tct tgc cgg ggt Arg Gln Pro Val Ser Cys Arg Gly 60	ctc 192 Leu
_	c ctc acg atc ttg tcc ttc tat atg Y Leu Thr Ile Leu Ser Phe Tyr Met 75	g ttc 240 : Phe 80
	g tgg cac ggg gat tat aac ttc ttd 1 Trp His Gly Asp Tyr Asn Phe Pho 90 95	tgc 288 E Cys
caa gac aca cac agt gca gg Gln Asp Thr His Ser Ala Gl 100	a gaa acc gat acc aag atc ata aa y Glu Thr Asp Thr Lys Ile Ile As 105 110	t gtg 336 n Val
ctg tgg tgg tac tac ttc to Leu Trp Trp Tyr Tyr Phe Se 115	c aag ctc ata gag ttt atg gat ac er Lys Leu Ile Glu Phe Met Asp Th 120 125	c ttc 384 r Phe
Phe Phe Ile Leu Arg Lys A	ac aac cat caa atc acg ttt ctg ca sn Asn His Gln Ile Thr Phe Leu Hi 35 140	c atc 432 s Ile
	tc aac atc tgg tgg ttc gtc atg aa eu Asn Ile Trp Trp Phe Val Met As 155	ac tgg 480 sn Trp 160
	ac ttt ggt gcc tcc ctg aac agc t yr Phe Gly Ala Ser Leu Asn Ser P 170	tc atc 528 he Ile 75
cat gtc ctg atg tac tct t His Val Leu Met Tyr Ser 1 180	ac tat ggg ctc tct gct gtc ccg g Yr Tyr Gly Leu Ser Ala Val Pro A 185	cc ttg 576 la Leu
Arg Pro Tyr Leu Trp Trp 1 195	ag aaa tac atc aca caa gta cag c Lys Lys Tyr Ile Thr Gln Val Gln L 200 205	•
Gln Phe Phe Leu Thr Met 210	ccc cag acg ata tgt gca gtc att t Ser Gln Thr Ile Cys Ala Val Ile 1 215 220	
Cys Asp Phe Pro Arg GIY 225 230	tgg ctg tat ttc cag ata ttc tat of tag ctg tag tyr Phe Gln Ile Phe Tyr 1 235	240 .
Thr Leu Ile Ala Leu Phe 245	tca aac ttc tac att cag act tac Ser Asn Phe Tyr Ile Gln Thr Tyr 250	255
His Leu Val Ser Gin Lys 260	aag gag tat cat cag aat ggc tct Lys Glu Tyr His Gln Asn Gly Ser 265 270	
tca ttg aat ggc cat gtg Ser Leu Asn Gly His Val 275	aat ggg gtg aca ccc acg gaa acc Asn Gly Val Thr Pro Thr Glu Thr 280	att aca 864 Ile Thr

cac agg aaa gtg agg ggg gac His Arg Lys Val Arg Gly Asp 290

885

<210> 54 <211> 295 <212> PRT <213> Oncorhynchus mykiss

<400> 54

Met Glu Thr Phe Asn Tyr Lys Leu Asn Met Tyr Ile Asp Ser Trp Met

Gly Pro Arg Asp Glu Arg Val Gln Gly Trp Leu Leu Leu Asp Asn Tyr 25

Pro Pro Thr Phe Ala Leu Thr Val Met Tyr Leu Leu Ile Val Trp Met

Gly Pro Lys Tyr Met Arg His Arg Gln Pro Val Ser Cys Arg Gly Leu

Leu Leu Val Tyr Asn Leu Gly Leu Thr Ile Leu Ser Phe Tyr Met Phe

Tyr Glu Met Val Ser Ala Val Trp His Gly Asp Tyr Asn Phe Phe Cys

Gln Asp Thr His Ser Ala Gly Glu Thr Asp Thr Lys Ile Ile Asn Val 105

Leu Trp Trp Tyr Tyr Phe Ser Lys Leu Ile Glu Phe Met Asp Thr Phe

Phe Phe Ile Leu Arg Lys Asn Asn His Gln Ile Thr Phe Leu His Ile 135

Tyr His His Ala Ser Met Leu Asn Ile Trp Trp Phe Val Met Asn Trp

Val Pro Cys Gly His Ser Tyr Phe Gly Ala Ser Leu Asn Ser Phe Ile 170

His Val Leu Met Tyr Ser Tyr Tyr Gly Leu Ser Ala Val Pro Ala Leu

Arg Pro Tyr Leu Trp Trp Lys Lys Tyr Ile Thr Gln Val Gln Leu Ile

Gln Phe Phe Leu Thr Met Ser Gln Thr Ile Cys Ala Val Ile Trp Pro 220

		PCT/EP2004/007957
WO 2005/012316	87	

01	
Cys Asp Phe Pro Arg Gly Trp Leu Tyr Phe Gln Ile Phe Tyr Val Ile 235 230 235	
Thr Leu Ile Ala Leu Phe Ser Asn Phe Tyr Ile Gln Thr Tyr Lys Lys 255	
His Leu Val Ser Gln Lys Lys Glu Tyr His Gln Asn Gly Ser Val Ala 260 265 270	•
Ser Leu Asn Gly His Val Asn Gly Val Thr Pro Thr Glu Thr Ile Thr 275 280 285	
His Arg Lys Val Arg Gly Asp 290 295	
<210> 55 <211> 6753 <212> DNA <213> Oncorhynchus mykiss	
<220> <221> CDS <222> (513)(1397) <223> Delta-5-Elongase	
<400> 55 acggattaga agccgccgag cgggtgacag ccctccgaag gaagactctc ctccgtgcgt	60
ectegteete aceggtegeg tteetgaaac geagatgtge etegegeege actgeteega	120
cetegteete aceggtegeg tteetgaaat geagaagaagat tggcagtaac	180
acaataaaga ttctacaata ctagctttta tggttatgaa gaggaaaaat tggcagtaac	240
ctggccccac aaaccttcaa atgaacgaat caaattaaca accataggat gataatgcga	300
tragtttttt agccttattt ctggggtaat taatcagcga agcgatgatt tttgatctat	360
taacagatat ataaatgcaa aaactgcatt aaccacttta actaatactt tcaacatttt	420
cggtttgtat tacttcttat tcaaatgtaa taaaagtatc aacaaaaaat tgttaatata	480
cctctatact ttaacgtcaa ggagaaaaaa ccccggatcg gactactagc agctgtaata	533
cgactcacta tagggaatat taagcttaca ta atg gag act ttt aat tat aaa Met Glu Thr Phe Asn Tyr Lys 1 5	333
cta aac atg tac ata gac tca tgg atg ggt ccc aga gat gag cgg gta Leu Asn Met Tyr Ile Asp Ser Trp Met Gly Pro Arg Asp Glu Arg Val 10 20	581
cag gga tgg ctg ctt ctg gac aac tac cct cca acc ttt gca cta aca Gln Gly Trp Leu Leu Asp Asn Tyr Pro Pro Thr Phe Ala Leu Thr 25	629
gtc atg tac ctg ctg atc gta tgg atg ggg ccc aag tac atg aga cac Val Met Tyr Leu Leu Ile Val Trp Met Gly Pro Lys Tyr Met Arg His 40 45 50	677
aga cag ccg gtg tct tgc cgg ggt ctc ctc ttg gtc tac aat ctg ggc Arg Gln Pro Val Ser Cys Arg Gly Leu Leu Leu Val Tyr Asn Leu Gly 60 65	725

								1	8	5						
ctc Leu	acg Thr	atc Ile	ttg Leu 75	tcc Ser	ttc Phe	tat Tyr	atg Met	ttc Phe 80	tat Tyr	gag Glu	atg Met	gtg Val	tct Ser 85	gct Ala	gtg Val	773
tgg Trp	cac His	aga aga	gat Asp	tat Tyr	aac Asn	ttc Phe	ttt Phe 95	tgc Cys	caa Gln	gac Asp	aca Thr	cac His 100	agt Ser	gca Ala	gga Gly	821
gaa Glu	acc Thr 105	gat Asp	acc Thr	aag Lys	atc Ile	ata Ile 110	aat Asn	gtg Val	ctg Leu	tgg Trp	tgg Trp 115	tac Tyr	tac Tyr	ttc Phe	tcc Ser	869
aag Lys 120	ctc Leu	ata Ile	gag Glu	ttt Phe	atg Met 125	gat Asp	acc Thr	ttc Phe	ttc Phe	ttc Phe 130	atc Ile	ctg Leu	cgg Arg	aag Lys	aac Asn 135	917
aac Asn	cat His	caa Gln	atc Ile	acg Thr 140	ttt Phe	ctg Leu	cac His	atc Ile	tac Tyr 145	cac His	cat His	gct Ala	agc Ser	atg Met 150	ctc Leu	965
aac Asn	atc Ile	tgg Trp	tgg Trp 155	ttc Phe	gtc Val	atg Met	aac Asn	tgg Trp 160	gtg Val	ccc Pro	tgt Cys	ggt Gly	cac His 165	tcc Ser	tac Tyr	1013
ttt Phe	ggt Gly	gcc Ala 170	tcc Ser	ctg Leu	aac Asn	agc Ser	ttc Phe 175	atc Ile	cat His	gtc Val	.ctg Leu	atg Met 180	tac Tyr	tct Ser	tac Tyr	1061
tat Tyr	ggg Gly 185	ctc Ļeu	tct Ser	gct Ala	gtc Val	ccg Pro 190	gcc Ala	ttg Leu	cgg	ccc Pro	tat Tyr 195	cta Leu	tgg Trp	tgg Trp	aag Lys	1109
aaa Lys 200	tac Tyr	atc Ile	aca Thr	caa Gln	gta Val 205	cag Gln	ctg Leu	att Ile	cag Gln	ttc Phe 210	ttt Phe	ttg Leu	acc Thr	atg Met	tcc Ser 215	1157
cag Gln	acg Thr	ata Ile	tgt Cys	gca Ala 220	gtc Val	att Ile	tgg Trp	cca Pro	tgt Cys 225	gat Asp	ttc Phe	ccc Pro	aga Arg	Gly ggg	tgg Trp	1205
ctg Leu	tat Tyr	ttc Phe	cag Gln 235	Ile	ttc Phe	tat Tyr	gtc Val	atc Ile 240	aca Thr	ctt Leu	att Ile	gcc Ala	ctt Leu 245	ttc Phe	tca Ser	1253
aac Asn	ttc Phe	tac Tyr 250	att Ile	cag Gln	act Thr	tac Tyr	aag Lys 255	Lys	cac His	ctt Leu	gtt Val	tca Ser 260	Gln	aag Lys	aag Lys	1301
gag Glu	tat Tyr 265	His	cag Gln	aat Asn	ggc Gly	tct Ser 270	Val	gct Ala	tca Ser	ttg Leu	aat Asn 275	Gly	cat His	gtg Val	aat Asn	1349
ggg Gly 280	Val	aca Thr	ccc Pro	acg Thr	gaa Glu 285	Thr	att	aca Thr	cac His	agg Arg 290	Lys	gtg Val	agg Arg	GJA GGG	gac Asp 295	1397
tga	agga	tcc	acta	gtaa	.cg g	ccgc	cagt	g tg	ctgg	aatt	ctg	caga	tat	ccag	cacagt	1457
ggc	ggcc	gct	cgag	tcta	ga g	ggcc	cttc	g aa	.ggta	agcc	tat	ccct	aac	ccto	tectcg	1517
gtc	tcga	ttc	tacg	cgta	cc g	gtca	tcat	c ac	cato	acca	ttg	agtt	taa	acco	gctgat	1577
cct	agag	ggc	cgca	tcat	gt a	atta	gtta	t gt	cacc	rctta	cat	tcac	gcc	ctcc	ccccac	1637
ato	eget	cta	accg	raaaa	igg a	agga	gtta	g ac	aacc	tgaa	gto	tagg	tcc	ctat	ttattt	1697
ttt	tata	gtt	atgt	tagt	at t	aaga	acgt	t at	ttat	attt	caa	attt	ttc	tttt	ttttct	1757

10, 1.

gtacagacgc gtgtacgcat gtaacattat actgaaaacc ttgcttgaga aggttttggg 1817 acgctcgaag gctttaattt gcaagctgcg gccctgcatt aatgaatcgg ccaacgcgcg 1877 gggagaggcg gtttgcgtat tgggcgctct tccgcttcct cgctcactga ctcgctgcgc 1937 teggtegtte ggetgeggeg ageggtatea geteacteaa aggeggtaat aeggttatee 1997 acagaatcag gggataacgc aggaaagaac atgtgagcaa aaggccagca aaagcccagg 2057 aaccgtaaaa aggccgcgtt gctggcgttt ttccataggc tccgccccc tgacgagcat 2117 cacaaaaatc gacgctcaag tcagaggtgg cgaaacccga caggactata aagataccag 2177 gegttteece ctggaagete cetegtgege teteetgtte egaceetgee gettacegga 2237 tacctgtccg cctttctccc ttcgggaagc gtggcgcttt ctcatagctc acgctgtagg 2297 tateteagtt eggtgtaggt egttegetee aagetggget gtgtgeaega acceeegtt 2357 cagecegace getgegeett ateeggtaac tategtettg agtecaacce ggtaagacae 2417 gacttatege cactggeage agecactggt aacaggatta geagagegag gtatgtagge 2477 ggtgctacag agttcttgaa gtggtggcct aactacggct acactagaag gacagtattt 2537 ggtatctgcg ctctgctgaa gccagttacc ttcggaaaaa gagttggtag ctcttgatcc 2597 ggcaaacaaa ccaccgctgg tagcggtggt ttttttgttt gcaagcagca gattacgcgc 2657 agaaaaaaag gatctcaaga agatcctttg atcttttcta cggggtctga cgctcagtgg 2717 aacgaaaact cacgttaagg gattttggtc atgagattat caaaaaggat cttcacctag 2777 atccttttaa attaaaaatg aagttttaaa tcaatctaaa gtatatatga gtaaacttgg 2837 tetgacagtt accaatgett aatcagtgag geacetatet cagegatetg tetatttegt 2897 tcatccatag ttgcctgact ccccgtcgtg tagataacta cgatacggga gcgcttacca 2957 totggcccca gtgctgcaat gataccgcga gacccacgct caccggctcc agatttatca 3017 gcaataaacc agccagccgg aagggccgag cgcagaagtg gtcctgcaac tttatccgcc 3077 tccatccagt ctattaattg ttgccgggaa gctagagtaa gtagttcgcc agttaatagt 3137 ttgcgcaacg ttgttgccat tgctacaggc atcgtggtgt cacgctcgtc gtttggtatg 3197 gcttcattca gctccggttc ccaacgatca aggcgagtta catgatcccc catgttgtgc 3257 aaaaaagcgg ttagctcctt cggtcctccg atcgttgtca gaagtaagtt ggccgcagtg 3317 ttatcactca tggttatggc agcactgcat aattetetta etgteatgce ateegtaaga 3377 tgcttttctg tgactggtga gtactcaacc aagtcattct gagaatagtg tatgcggcga 3437 ccgagttgct cttgcccggc gtcaacacgg gataataccg cgccacatag cagaacttta 3497 aaagtgctca tcattggaaa acgttcttcg gggcgaaaac tctcaaggat cttaccgctg 3557 ttgagatcca gttcgatgta acceactcgt gcacceaact gatcttcage atcttttact 3617 ttcaccagcg tttctgggtg agcaaaaaca ggaaggcaaa atgccgcaaa aaagggaata 3677 agggcgacac ggaaatgttg aatactcata ctcttccttt ttcaatatta ttgaagcatt 3737 tatcagggtt attgtctcat gagcggatac atatttgaat gtatttagaa aaataaacaa 3797

ataggggttc	cgcgcacatt	tccccgaaaa	gtgccacctg	acgtctaaga	aaccattatt	3857
atcatgacat	taacctataa	aaataggcgt	atcacgaggc	cctttcgtct	tcaagaaatt	3917
cggtcgaaaa	aagaaaagga	gagggccaag	agggagggca	ttggtgacta	ttgagcacgt	3977
gagtatacgt	gattaagcac	acaaaggcag	cttggagtat	gtctgttatt	aatttcacag	4037
gtagttctgg	tccattggtg	aaagtttgcg	gcttgcagag	cacagaggcc	gcagaatgtg	4097
ctctagattc	cgatgctgac	ttgctgggta	ttatatgtgt	gcccaataga	aagagaacaa	4157
ttgacccggt	tattgcaagg	aaaatttcaa	gtcttgtaaa	agcatataaa	aatagttcag	4217
gcactccgaa	atacttggtt	ggcgtgtttc	gtaatcaacc	taaggaggat	gttttggctc	4277
tggtcaatga	ttacggcatt	gatatcgtcc	aactgcacgg	agatgagtcg	tggcaagaat	4337
accaagagtt	cctcggtttg	ccagttatta	aaagactcgt	atttccaaaa	gactgcaaca	4397
tactactcag	tgcagcttca	cagaaacctc	attcgtttat	tecettgttt	gattcagaag	4457
caggtgggac	aggtgaactt	ttggattgga	actcgatttc	tgactgggtt	ggaaggcaag	4517
agagccccga	gagcttacat	tttatgttag	ctggtggact	gacgccagaa	aatgttggtg	4577
atgcgcttag	attaaatggc	gttattggtg	ttgatgtaag	cggaggtgtg	gagacaaatg	4637
gtgtaaaaga	ctctaacaaa	atagcaaatt	tcgtcaaaaa	tgctaagaaa	taggttatta	4697
ctgagtagta	tttatttaag	tattgtttgt	gcacttgccc	tagcttatcg	atgataagct	4757
gtcaaagatg	agaattaatt	ccacggacta	.tagactatac	tagatactcc	gtctactgta	4817
cgatacactt	ccgctcaggt	cettgtectt	taacgaggcc	ttaccactct	tttgttactc	4877
tattgatcca	gctcagcaaa	ggcagtgtga	tctaagattc	tatcttcgcg	atgtagtaaa	4937
actagctaga	ccgagaaaga	gactagaaat	gcaaaaggca	cttctacaat	ggctgccatc	4997
attattatcc	gatgtgacgc	tgcagcttct	caatgatatt	cgaatacgct	ttgaggagat	5057
acagcctaat	atccgacaaa	ctgttttaca	gatttacgat	cgtacttgtt	acccatcatt	5117
gaattttgaa	catccgaacc	tgggagtttt	ccctgaaaca	gatagtatat	ttgaacctgt	5177
ataataatat	atagtctagc	gctttacgga	agacaatgta	tgtatttcgg	ttcctggaga	5237
aactattgca	tctattgcat	aggtaatctt	gcacgtcgca	tccccggttc	attttctgcg	5297
tttccatctt	gcacttcaat	agcatatctt	tgttaacgaa	gcatctgtgc	ttcattttgt	5357
agaacaaaaa	tgcaacgcga	gagcgctaat	ttttcaaaca	aagaatctga	gctgcatttt	5417
tacagaacag	aaatgcaacg	cgaaagcgct	attttaccaa	cgaagaatct	gtgcttcatt	5477
tttgtaaaac	aaaaatgcaa	cgcgacgaga	gcgctaattt	ttcaaacaaa	gaatctgagc	5537
tgcattttta	cagaacagaa	atgcaacgcg	agagcgctat	tttaccaaca	aagaatctat	5597
acttctttt	tgttctacaa	aaatgcatcc	cgagagcgct	atttttctaa	caaagcatct	5657
tagattactt	tttttctcct	tțgtgcgctc	tataatgcag	tctcttgata	actttttgca	5717
ctgtaggtcc	gttaaggtta	gaagaaggct	actttggtgt	ctattttctc	ttccataaaa	5777
aaagcctgac	tccacttccc	gcgtttactg	attactagcg	aagctgcggg	tgcattttt	5837

caagataaag	gcatccccga	ttatattcta	taccgatgtg	gattgcgcat	actttgtgaa	5897
cagaaagtga	tagcgttgat	gattcttcat	tggtcagaaa	attatgaacg	gtttcttcta	5957
ttttgtctct	atatactacg	tataggaaat	gtttacattt	tcgtattgtt	ttcgattcac	6017
tctatgaata	gttcttacta	caatttttt	gtctaaagag	taatactaga	gataaacata	6077
aaaaatgtag	aggtcgagtt	tagatgcaag	ttcaaggagc	gaaaggtgga	tgggtaggtt	6137
atatagggat	atagcacaga	gatatatagc	aaagagatac	ttttgagcaa	tgtttgtgga	6197
agcggtattc	gcaatgggaa	gctccacccc	ggttgataat	cagaaaagcc	ccaaaaacag	6257
gaagattgta	taagcaaata	tttaaattgt	aaacgttaat	attttgttaa	aattcgcgtt	6317
aaatttttgt	taaatcagct	cattttttaa	cgaatagccc	gaaatcggca	aaatccctta	6377
taaatcaaaa	gaatagaccg	agatagggtt	gagtgttgtt	ccagtttcca	acaagagtcc	6437
actattaaag	aacgtggact	ccaacgtcaa	agggcgaaaa	agggtctatc	agggcgatgg	6497
cccactacgt	gaaccatcac	cctaatcaag	ttttttgggg	tcgaggtgcc	gtaaagcagt	6557
aaatcggaag	ggtaaacgga	tgcccccatt	tagagettga	cggggaaagc	cggcgaacgt	6617
ggcgagaaag	gaagggaaga	aagcgaaagg	agcgggggct	agggcggtgg	gaagtgtagg	6677
ggtcacgctg	ggcgtaacca	ccacacccgc	cgcgcttaat	ggggcgctac	agggcgcgtg	6737
gggatgatcc	actagt					6753

<210> 56 <211> 295

<212> PRT <213> Oncorhynchus mykiss

<400> 56

Met Glu Thr Phe Asn Tyr Lys Leu Asn Met Tyr Ile Asp Ser Trp Met 1 5 5 10 10 15

Gly Pro Arg Asp Glu Arg Val Gln Gly Trp Leu Leu Leu Asp Asn Tyr 20 25 30

Pro Pro Thr Phe Ala Leu Thr Val Met Tyr Leu Leu Ile Val Trp Met 35 40 45

Gly Pro Lys Tyr Met Arg His Arg Gln Pro Val Ser Cys Arg Gly Leu 50 60

Leu Leu Val Tyr Asn Leu Gly Leu Thr Ile Leu Ser Phe Tyr Met Phe 65 70 75 80

Tyr Glu Met Val Ser Ala Val Trp His Gly Asp Tyr Asn Phe Phe Cys 85 90 95

Gln Asp Thr His Ser Ala Gly Glu Thr Asp Thr Lys Ile Ile Asn Val

WO 2005/012316 PCT/EP2004/007957

92 Leu Trp Trp Tyr Tyr Phe Ser Lys Leu Ile Glu Phe Met Asp Thr Phe Phe Phe Ile Leu Arg Lys Asn Asn His Gln Ile Thr Phe Leu His Ile 140 Tyr His His Ala Ser Met Leu Asn Ile Trp Trp Phe Val Met Asn Trp 155 Val Pro Cys Gly His Ser Tyr Phe Gly Ala Ser Leu Asn Ser Phe Ile His Val Leu Met Tyr Ser Tyr Tyr Gly Leu Ser Ala Val Pro Ala Leu Arg Pro Tyr Leu Trp Trp Lys Lys Tyr Ile Thr Gln Val Gln Leu Ile Gln Phe Phe Leu Thr Met Ser Gln Thr Ile Cys Ala Val Ile Trp Pro Cys Asp Phe Pro Arg Gly Trp Leu Tyr Phe Gln Ile Phe Tyr Val Ile Thr Leu Ile Ala Leu Phe Ser Asn Phe Tyr Ile Gln Thr Tyr Lys Lys 245 250 His Leu Val Ser Gln Lys Lys Glu Tyr His Gln Asn Gly Ser Val Ala Ser Leu Asn Gly His Val Asn Gly Val Thr Pro Thr Glu Thr Ile Thr 280 His Arg Lys Val Arg Gly Asp 290 <210> 57 <211> 6645 <212> DNA <213> Oncorhynchus mykiss <220> <221> CDS <222> (513)..(1304) <223> Delta-5-Elongase <400> 57 acggattaga agccgccgag cgggtgacag ccctccgaag gaagactctc ctccgtgcgt

<400> 57
acggattaga agccgccgag cgggtgacag ccctccgaag gaagactctc ctccgtgcgt 60
cctcgtcctc accggtcgcg ttcctgaaac gcagatgtgc ctcgcgccgc actgctccga 120
acaataaaga ttctacaata ctagctttta tggttatgaa gaggaaaaat tggcagtaac 180
ctggccccac aaaccttcaa atgaacgaat caaattaaca accataggat gataatgcga 240

cgactcacta tagggaatat taagcttaca ta atg gct tca aca tgg caa agc Met Ala Ser Thr Trp Gln Ser gtt cag tcc atg cgc cag tgg att tta gag aat gga gat aaa agg aca 581 Val Gln Ser Met Arg Gln Trp Ile Leu Glu Asn Gly Asp Lys Arg Thr 15 gac cca tgg cta ctg gtc tac tcc cct atg cca gtg gcc att ata ttc 629 Asp Pro Trp Leu Leu Val Tyr Ser Pro Met Pro Val Ala Ile Ile Phe ctc ctc tat ctt ggt gtg gtc tgg gct ggg ccc aag ctg atg aaa cgc Leu Leu Tyr Leu Gly Val Val Trp Ala Gly Pro Lys Leu Met Lys Arg 677 agg gaa cca gtt gat ctc aag gct gta ctc att gtc tac aac ttc gcc Arg Glu Pro Val Asp Leu Lys Ala Val Leu Ile Val Tyr Asn Phe Ala 725 atg gtc tgc ctg tct gtc tac atg ttc cat gag ttc ttg gtc acg tcc 773 Met Val Cys Leu Ser Val Tyr Met Phe His Glu Phe Leu Val Thr Ser 80 ttg ctg tct aac tac agt tac ctg tgt caa cct gtg gat tac agc act 821 Leu Leu Ser Asn Tyr Ser Tyr Leu Cys Gln Pro Val Asp Tyr Ser Thr 95 agt cca ctg gcg atg agg atg gcc aaa gta tgc tgg tgg ttt ttc ttc Ser Pro Leu Ala Met Arg Met Ala Lys Val Cys Trp Trp Phe Phe Phe 869 110 tee aag gte ata gaa ttg get gae acg gtg tte tte ate etg agg aag .917 Ser Lys Val Ile Glu Leu Ala Asp Thr Val Phe Phe Ile Leu Arg Lys 125 aag aac agt cag ctg act ttc ctg cat gtc tat cac cat ggc acc atg Lys Asn Ser Gln Leu Thr Phe Leu His Val Tyr His His Gly Thr Met 965 145 atc ttc aac tgg tgg gca ggg gtc aag tat ctg gct gga ggc caa tcg 1013 Ile Phe Asn Trp Trp Ala Gly Val Lys Tyr Leu Ala Gly Gly Gln Ser tto tto atc ggc ctg ctc aat acc ttt gtg cac atc gtg atg tac tct 1061 Phe Phe Ile Gly Leu Leu Asn Thr Phe Val His Ile Val Met Tyr Ser tac tac gga ctg gct gcc ctg ggg cct cac acg cag aag tac tta tgg 1109 Tyr Tyr Gly Leu Ala Ala Leu Gly Pro His Thr Gln Lys Tyr Leu Trp 190 tgg aag cgc tat ctg acc tca ctg cag ctg ctc cag ttt gtc ctg ttg 1157 Trp Lys Arg Tyr Leu Thr Ser Leu Gln Leu Leu Gln Phe Val Leu Leu 205 200 acc act cac act ggc tac aac ctc ttc act gag tgt gac ttc ccg gac 1205 Thr Thr His Thr Gly Tyr Asn Leu Phe Thr Glu Cys Asp Phe Pro Asp 220

94

tcc atg aac gct gtg gtg ttt gcc tac tgt gtc agt ctc att gct ctc Ser Met Asn Ala Val Val Phe Ala Tyr Cys Val Ser Leu Ile Ala Leu 235 240 245	1253
ttc agc aac ttc tac tat cag agc tac ctc aac agg aag agc aag aag Phe Ser Asn Phe Tyr Tyr Gln Ser Tyr Leu Asn Arg Lys Ser Lys Lys 250 255 260	1301
aca taaggateca etagtaaegg eegeeagtgt getggaatte tgeagatate Thr	1354
catcacactg geggeegete gageatgeat ctagagggee geatcatgta attagttatg	1414
tcacgcttac attcacgccc tcccccaca tccgctctaa ccgaaaagga aggagttaga	1474
caacctgaag tetaggteee tatttatttt tttatagtta tgttagtatt aagaacgtta	1534
tttatatttc aaatttttct tttttttctg tacagacgcg tgtacgcatg taacattata	1594
ctgaaaacct tgcttgagaa ggttttggga cgctcgaagg ctttaatttg cggccctgca	1654
ttaatgaatc ggccaacgcg cggggagagg cggtttgcgt attgggcgct cttccgcttc	1714
ctcgctcact gactcgctgc gctcggtcgt tcggctgcgg cgagcggtat cagctcactc	1774
aaaggcggta atacggttat ccacagaatc aggggataac gcaggaaaga acatgtgagc	1834
aaaaggccag caaaagccca ggaaccgtaa aaaggccgcg ttgctggcgt ttttccatag	1894
gctccgcccc cctgacgagc atcacaaaaa tcgacgctca agtcagaggt ggcgaaaccc	1954
gacaggacta taaagatacc aggegtttee eeetggaage teeetegtge geteteetgt	2014
teegaceetg cegettaceg gatacetgte egeetttete eettegggaa gegtggeget	2074
ttotcatago toacgotgta ggtatotoag ttoggtgtag gtogttogot coaagotggg	2134
ctgtgtgcac gaaccccccg ttcagcccga ccgctgcgcc ttatccggta actatcgtct	2194
tgagtccaac ccggtaagac acgacttatc gccactggca gcagccactg gtaacaggat	2254
tagcagagcg aggtatgtag gcggtgctac agagttcttg aagtggtggc ctaactacgg	2314
ctacactaga aggacagtat ttggtatctg cgctctgctg aagccagtta ccttcggaaa	2374
aagagttggt agetettgat eeggeaaaca aaceaeeget ggtageggtg gtttttttgt	2434
ttgcaagcag cagattacgc gcagaaaaaa aggatctcaa gaagatcctt tgatcttttc	2494
tacggggtet gacgeteagt ggaacgaaaa eteaegttaa gggattttgg teatgagatt	2554
atcaaaaagg atcttcacct agatcctttt aaattaaaaa tgaagtttta aatcaatcta	2614
aagtatatat gagtaaactt ggtctgacag ttaccaatgc ttaatcagtg aggcacctat	2674
ctcagegate tgtctattte gttcatecat agttgcetga eteceegteg tgtagataae	2734
tacgatacgg gagcgcttac catctggccc cagtgctgca atgataccgc gagacccacg	2794
ctcacegget ccagatttat cagcaataaa ccagccagec ggaagggeeg agegeagaag	2854
tggtcctgca actttatccg cctccattca gtctattaat tgttgccggg aagctagagt	2914
aagtagtteg ccagttaata gtttgcgcaa cgttgttggc attgctacag gcatcgtggt	2974
gtcactctcg tcgtttggta tggcttcatt cagctccggt tcccaacgat caaggcgagt	3034

tacatgatcc cccatgttgt gcaaaaaagc ggttagctcc ttcggtcctc cgatcgttgt 3094 cagaagtaag ttggccgcag tgttatcact catggttatg gcagcactgc ataattctct tactgtcatg ccatccgtaa gatgcttttc tgtgactggt gagtactcaa ccaagtcatt 3214 ctgagaatag tgtatgcggc gaccgagttg ctcttgcccg gcgtcaatac gggataatag 3274 tgtatcacat agcagaactt taaaagtgct catcattgga aaacgttctt cggggcgaaa 3334 actotomagg atottacogo tgttgagato cagttogatg tamccoacto gtgcaccoam 3394 ctgatcttca gcatctttta ctttcaccag cgtttctggg tgagcaaaaa caggaaggca 3454 aaatgccgca aaaaagggaa taagggcgac acggaaatgt tgaatactca tactcttcct 3514 ttttcaatgg gtaataactg atataattaa attgaagctc taatttgtga gtttagtata 3574 catgcattta cttataatac agttttttag ttttgctggc cgcatcttct caaatatgct 3634 teccageetg ettttetgta aegtteacee tetacettag catecettee etttgeaaat 3694 agtectette caacaataat aatgteagat eetgtagaga eeacateate caeggtteta 3754 tactgttgac ccaatgcgtc tcccttgtca tctaaaccca caccgggtgt cataatcaac 3814 caatcgtaac cttcatctct tccacccatg tctctttgag caataaagcc gataacaaaa 3874 tetttgtege tettegeaat gteaacagta ecettagtat attetecagt agatagggag 3934 cccttgcatg acaattctgc taacatcaaa aggcctctag gttcctttgt tacttcttct 3994 geogeotget teaaaceget aacaatacet gggeocacea caeegtgtge attegtaatg tetgeceatt etgetattet gtatacacce geagagtact geaatttgae tgtattacca 4714 atgtcagcaa attttctgtc ttcgaagagt aaaaaattgt acttggcgga taatgccttt 4174 ageggettaa etgtgeeete catggaaaaa teagteaaga tateeacatg tgtttttagt 4234 aaacaaattt tgggacctaa tgcttcaact aactccagta attccttggt ggtacgaaca 4294 tecaatgaag cacacaagtt tgtttgettt tegtgeatga tattaaatag ettggeagea 4354 acaggactag gatgagtagc agcacgttcc ttatatgtag ctttcgacat gatttatctt 4414 cgtttcctgc aggtttttgt tctgtgcagt tgggttaaga atactgggca atttcatgtt 4474 tetteaacae tacatatgeg tatatatace aatetaagte tgtgeteett eettegttet 4534 tccttctgtt cggagattac cgaatcaaaa aaatttcaaa gaaaccgaaa tcaaaaaaaa 4594 gaataaaaaa aaaatgatga attgaattga aaagctagct tatcgatgat aagctgtcaa 4654 agatgagaat taattccacg gactatagac tatactagat actccgtcta ctgtacgata 4714 cactteeget caggicettg teetttaacg aggeettace actetttigt tactetattg 4774 atccagctca gcaaaggcag tgtgatctaa gattctatct tcgcgatgta gtaaaactag 4834 ctagaccgag aaagagacta gaaatgcaaa aggcacttct acaatggctg ccatcattat 4894 tatccgatgt gacgctgcag cttctcaatg atattcgaat acgctttgag gagatacagc 4954 ctaatateeg acaaactgtt ttacagattt acgategtae ttgttaceea teattgaatt 5014 ttgaacatcc gaacctggga gttttccctg aaacagatag tatatttgaa cctgtataat 5074

aatatatagt ctagcgcttt acggaagaca atgtatgtat ttcggttcct ggagaaacta 5134 ttgcatctat tgcataggta atcttgcacg tcgcatcccc ggttcatttt ctgcgtttcc 5194 atcttgcact tcaatagcat atctttgtta acgaagcatc tgtgcttcat tttgtagaac 5254 aaaaatgcaa cgcgagagcg ctaatttttc aaacaaagaa tctgagctgc atttttacag 5314 aacagaaatg caacgcgaaa gcgctatttt accaacgaag aatctgtgct tcatttttgt 5374 aaaacaaaaa tgcaacgcga cgagagcgct aatttttcaa acaaagaatc tgagctgcat 5434 ttttacagaa cagaaatgca acgcgagagc gctattttac caacaaagaa tctatacttc 5494 ttttttgttc tacaaaaatg catcccgaga gcgctatttt tctaacaaag catcttagat 5554 tacttttttt ctcctttgtg cgctctataa tgcagtctct tgataacttt ttgcactgta 5614 ggtccgttaa ggttagaaga aggctacttt ggtgtctatt ttctcttcca taaaaaaagc 5674 ctgactccac ttcccgcgtt tactgattac tagcgaagct gcgggtgcat tttttcaaga 5734 taaaggcatc cccgattata ttctataccg atgtggattg cgcatacttt gtgaacagaa 5794 agtgatagcg ttgatgattc ttcattggtc agaaaattat gaacggtttc ttctattttg 5854 tototatata otaogtatag gaaatgttta cattttogta ttgttttoga ttoactotat 5914 gaatagttet tactacaatt tttttgteta aagagtaata etagagataa acataaaaaa 5974 tgtagaggtc gagtttagat gcaagttcaa ggagcgaaag gtggatgggt aggttatata 6034 gggatatagc acagagatat atagcaaaga gatacttttg agcaatgttt gtggaagcgg 6094 tattcgcaat gggaagctcc accccggttg ataatcagaa aagccccaaa aacaggaaga 6154 ttgtataagc aaatatttaa attgtaaacg ttaatatttt gttaaaattc gcgttaaatt 6214 tttgttaaat cagctcattt tttaacgaat agcccgaaat cggcaaaatc ccttataaat 6274 caaaagaata gaccgagata gggttgagtg ttgttccagt ttccaacaag agtccactat 6334 taaagaacgt ggactccaac gtcaaagggc gaaaaagggt ctatcagggc gatggcccac 6394 tacgtgaacc atcaccctaa tcaagttttt tggggtcgag gtgccgtaaa gcagtaaatc 6454 ggaagggtaa acggatgccc ccatttagag cttgacgggg aaagccggcg aacgtggcga 6514 gaaaggaagg gaagaaagcg aaaggagcgg gggctagggc ggtgggaagt gtaggggtca 6574 cgctgggcgt aaccaccaca cccgccgcgc ttaatggggc gctacagggc gcgtggggat 6634 gatccactag t 6645

Met Ala Ser Thr Trp Gln Ser Val Gln Ser Met Arg Gln Trp Ile Leu 1 5 10

Glu Asn Gly Asp Lys Arg Thr Asp Pro Trp Leu Leu Val Tyr Ser Pro
20 25 30

<210> 58 <211> 264

<212> PRT

<213> Oncorhynchus mykiss

<400> 58

Met Pro Val Ala Ile Ile Phe Leu Leu Tyr Leu Gly Val Val Trp Ala

Gly Pro Lys Leu Met Lys Arg Arg Glu Pro Val Asp Leu Lys Ala Val

Leu Ile Val Tyr Asn Phe Ala Met Val Cys Leu Ser Val Tyr Met Phe

His Glu Phe Leu Val Thr Ser Leu Leu Ser Asn Tyr Ser Tyr Leu Cys

Gln Pro Val Asp Tyr Ser Thr Ser Pro Leu Ala Met Arg Met Ala Lys

Val Cys Trp Trp Phe Phe Phe Ser Lys Val Ile Glu Leu Ala Asp Thr

Val Phe Phe Ile Leu Arg Lys Lys Asn Ser Gln Leu Thr Phe Leu His

Val Tyr His His Gly Thr Met Ile Phe Asn Trp Trp Ala Gly Val Lys

Tyr Leu Ala Gly Gly Gln Ser Phe Phe Ile Gly Leu Leu Asn Thr Phe

Val His Ile Val Met Tyr Ser Tyr Tyr Gly Leu Ala Ala Leu Gly Pro

His Thr Gln Lys Tyr Leu Trp Trp Lys Arg Tyr Leu Thr Ser Leu Gln

Leu Leu Gln Phe Val Leu Leu Thr Thr His Thr Gly Tyr Asn Leu Phe

Thr Glu Cys Asp Phe Pro Asp Ser Met Asn Ala Val Val Phe Ala Tyr

Cys Val Ser Leu Ile Ala Leu Phe Ser Asn Phe Tyr Tyr Gln Ser Tyr

Leu Asn Arg Lys Ser Lys Lys Thr 260

<210> 59

<211> 1077 <212> DNA

<213> Thalassiosira pseudonana

<220>

	(1077) ta-5-Elong					
<400> 59 atg tgc tc Met Cys Se 1	a tca ccg r Ser Pro 5	ccg tca ca Pro Ser Gl	aa tcc aaa in Ser Lys 10	aca aca tcc Thr Thr Ser	ctc cta g Leu Leu A 15	ca 48 la
cgg tac ac Arg Tyr Th	c acc gcc r Thr Ala 20	gcc ctc ct Ala Leu Le	c ctc ctc eu Leu Leu 25	acc ctc aca Thr Leu Thr	aca tgg t Thr Trp C 30	gc 96
cac ttc gc His Phe Al 35	a Phe Pro	gcc gcc ac Ala Ala Th 40	ır Ala Thr	ccc ggc ctc Pro Gly Leu 45	acc gcc g Thr Ala G	raa 144 Hu
atg cac tc Met His Se 50	c tac aaa r Tyr Lys	gtc cca ct Val Pro Le	tc ggt ctc eu Gly Leu	acc gta ttc Thr Val Phe 60	tac ctg c Tyr Leu I	tg 192 Jeu
agt cta cc Ser Leu Pr 65	g tca cta o Ser Leu	aag tac gt Lys Tyr Va 70	tt acg gac al Thr Asp	aac tac ctt Asn Tyr Leu 75	Ala Lys I	lag 240 Lys 80
tat gat at Tyr Asp Me	g aag tca t Lys Ser 85	ctc cta ac Leu Leu Th	og gaa tca hr Glu Ser 90	atg gtg ttg Met Val Leu	tac aat g Tyr Asn V 95	rtg 288 Val
gcg caa gt Ala Gln Va	g ctg ctc 1 Leu Leu 100	aat ggg to Asn Gly T	gg acg gtg rp Thr Val 105	tat gcg att Tyr Ala Ile	gtg gat g Val Asp A 110	gcg 336 Ala
gtg atg aa Val Met As 11	n Arg Asp	His Pro P	tt att gga he Ile Gly 20	agt aga agt Ser Arg Ser 125	ttg gtt g Leu Val 0	ggg 384 31y
gcg gcg tt Ala Ala Le 130	g cat agt eu His Ser	ggg agc to Gly Ser So 135	cg tat gcg er Tyr Ala	gtg tgg gtt Val Trp Val 140	cat tat t	egt 432 Cys
gat aag ta Asp Lys Ty 145	it ttg gag r Leu Glu	ttc ttt g Phe Phe A 150	at acg tat sp Thr Tyr	ttt atg gtg Phe Met Val 155	Leu Arg (ggg 480 Gly L60
aaa atg ga Lys Met As	ac cag gto sp Gln Val 165	. Ser Phe L	tc cac atc eu.His Ile 170	tac cac cac Tyr His His	acg acc a Thr Thr 1 175	ata 528 Ile
gcg tgg gc Ala Trp Al	a tgg tgg la Trp Trp 180	g atc gcc c o Il <u>e</u> Ala L	tc cgc ttc eu Arg Phe 185	tcc ccc ggt Ser Pro Gly	gga gac a Gly Asp 1 190	att 576 Ile
Tyr Phe G	gg gca cto Ly Ala Leu 95	ı Leu Asn S	cc atc atc er Ile Ile 00	cac gtc ctc His Val Leu 205	atg tat i	tcc 624 Ser
tac tac go Tyr Tyr Al 210	cc ctt gcc la Leu Ala	c cta ctc a Leu Leu L 215	ag gtc agt ys Val Ser	tgt cca tgg Cys Pro Trp 220	aaa cga Lys Arg	tac 672 Tyr
ctg act ca Leu Thr G 225	aa gct caa ln Ala Glr	a tta ttg c n Leu Leu G 230	aa ttc aca In Phe Thr	agt gtg gtg Ser Val Val 235	Val Tyr	acg 720 Thr 240
ggg tgt ad Gly Cys T	og ggt tat hr Gly Tyr	act cat t Thr His T	ac tat cat Yr Tyr His	acg aag cat Thr Lys His	gga gcg Gly Ala	gat 768 Asp

WO 2005/012316 99 255 250 245 gag aca cag cct agt tta gga acg tat tat ttc tgt tgt gga gtg cag 816 Glu Thr Gln Pro Ser Leu Gly Thr Tyr Tyr Phe Cys Cys Gly Val Gln 265 gtg ttt gag atg gtt agt ttg ttt gta ctc ttt tcc atc ttt tat aaa 864 Val Phe Glu Met Val Ser Leu Phe Val Leu Phe Ser Ile Phe Tyr Lys 280 cga tcc tat tcg aag aag aac aag tca gga gga aag gat agc aag aag 912 Arg Ser Tyr Ser Lys Lys Asn Lys Ser Gly Gly Lys Asp Ser Lys Lys aat gat gat ggg aat aat gag gat caa tgt cac aag gct atg aag gat Asn Asp Asp Gly Asn Asn Glu Asp Gln Cys His Lys Ala Met Lys Asp 310 ata tog gag ggt gcg aag gag gtt gtg ggg cat gca gcg aag gat gct Ile Ser Glu Gly Ala Lys Glu Val Val Gly His Ala Ala Lys Asp Ala 1008 gga aag ttg gtg gct acg gcg agt aag gct gta aag agg aag gga act Gly Lys Leu Val Ala Thr Ala Ser Lys Ala Val Lys Arg Lys Gly Thr 1056 1077 cgt gtt act ggt gcc atg tag Arg Val Thr Gly Ala Met <210> 60

<211> 358

<212> PRT

<213> Thalassiosira pseudonana

<400> 60

Met Cys Ser Ser Pro Pro Ser Gln Ser Lys Thr Thr Ser Leu Leu Ala

Arg Tyr Thr Thr Ala Ala Leu Leu Leu Leu Thr Leu Thr Trp Cys

His Phe Ala Phe Pro Ala Ala Thr Ala Thr Pro Gly Leu Thr Ala Glu 40

Met His Ser Tyr Lys Val Pro Leu Gly Leu Thr Val Phe Tyr Leu Leu

Ser Leu Pro Ser Leu Lys Tyr Val Thr Asp Asn Tyr Leu Ala Lys Lys

Tyr Asp Met Lys Ser Leu Leu Thr Glu Ser Met Val Leu Tyr Asn Val

Ala Gln Val Leu Leu Asn Gly Trp Thr Val Tyr Ala Ile Val Asp Ala

Val Met Asn Arg Asp His Pro Phe Ile Gly Ser Arg Ser Leu Val Gly 120 115

. !

Ala Ala Leu His Ser Gly Ser Ser Tyr Ala Val Trp Val His Tyr Cys 130 140

Asp Lys Tyr Leu Glu Phe Phe Asp Thr Tyr Phe Met Val Leu Arg Gly 145 150 . 155 160

Lys Met Asp Gln Val Ser Phe Leu His Ile Tyr His His Thr Thr Ile 165 170 175

Ala Trp Ala Trp Trp Ile Ala Leu Arg Phe Ser Pro Gly Gly Asp Ile 180 185 190

Tyr Phe Gly Ala Leu Leu Asn Ser Ile Ile His Val Leu Met Tyr Ser 195 200 205

Tyr Tyr Ala Leu Ala Leu Leu Lys Val Ser Cys Pro Trp Lys Arg Tyr 210 215 220

Leu Thr Gln Ala Gln Leu Leu Gln Phe Thr Ser Val Val Val Tyr Thr 225 230 235 240

Gly Cys Thr Gly Tyr Thr His Tyr Tyr His Thr Lys His Gly Ala Asp 245 250 255

Glu Thr Gln Pro Ser Leu Gly Thr Tyr Tyr Phe Cys Cys Gly Val Gln 260 265 270

Val Phe Glu Met Val Ser Leu Phe Val Leu Phe Ser Ile Phe Tyr Lys 275 280 285

Arg Ser Tyr Ser Lys Lys Asn Lys Ser Gly Gly Lys Asp Ser Lys Lys 290 295 300

Asn Asp Asp Gly Asn Asn Glu Asp Gln Cys His Lys Ala Met Lys Asp 305 310 315

Ile Ser Glu Gly Ala Lys Glu Val Val Gly His Ala Ala Lys Asp Ala
325 330 335

Gly Lys Leu Val Ala Thr Ala Ser Lys Ala Val Lys Arg Lys Gly Thr 340 345

Arg Val Thr Gly Ala Met 355

<210> 61

<211> 933

<212> DNA

<213> Thalassiosira pseudonana

<220>

1.

<221> CDS <222> (1)(933) (<223> Delta-5-Elongase	
<pre><400> 61 atg cac tcc tac aaa gtc cca ctc ggt ctc acc gta ttc tac ctg ctg Met His Ser Tyr Lys Val Pro Leu Gly Leu Thr Val Phe Tyr Leu Leu 1 5</pre>	48
agt cta ccg tca cta aag tac gtt acg gac aac tac ctt gcc aaa aag Ser Leu Pro Ser Leu Lys Tyr Val Thr Asp Asn Tyr Leu Ala Lys Lys 20 25 30	96
tat gat atg aag tca ctc cta acg gaa tca atg gtg ttg tac aat gtg Tyr Asp Met Lys Ser Leu Leu Thr Glu Ser Met Val Leu Tyr Asn Val 35 40 45	144
gcg caa gtg ctg ctc aat ggg tgg acg gtg tat gcg att gtg gat gcg Ala Gln Val Leu Leu Asn Gly Trp Thr Val Tyr Ala Ile Val Asp Ala 50 55	192
gtg atg aat aga gac cat ccg ttt att gga agt aga agt ttg gtt ggg Val Met Asn Arg Asp His Pro Phe Ile Gly Ser Arg Ser Leu Val Gly 65 70 80	240
gcg gcg ttg cat agt ggg agc tcg tat gcg gtg tgg gtt cat tat tgt Ala Ala Leu His Ser Gly Ser Ser Tyr Ala Val Trp Val His Tyr Cys 85 90 95	288
gat aag tat ttg gag ttc ttt gat acg tat ttt atg gtg ttg agg ggg Asp Lys Tyr Leu Glu Phe Phe Asp Thr Tyr Phe Met Val Leu Arg Gly 100 105 110	336
aaa atg gac cag gtc tcc ttc ctc cac atc tac cac cac acg acc ata Lys Met Asp Gin Val Ser Phe Leu His Ile Tyr His His Thr Thr Ile 115 120 125	384
gcg tgg gca tgg tgg atc gcc ctc cgc ttc tcc ccc ggt gga gac att Ala Trp Ala Trp Trp Ile Ala Leu Arg Phe Ser Pro Gly Gly Asp Ile 130 135 140	432
tac ttc ggg gca ctc ctc aac tcc atc atc cac gtc ctc atg tat tcc Tyr Phe Gly Ala Leu Leu Asn Ser Ile Ile His Val Leu Met Tyr Ser 145 150 155 160	480
tac tac gcc ctt gcc cta ctc aag gtc agt tgt cca tgg aaa cga tac Tyr Tyr Ala Leu Ala Leu Leu Lys Val Ser Cys Pro Trp Lys Arg Tyr 165 170 175	528
ctg act caa gct caa tta ttg caa ttc aca agt gtg gtg gtt tat acg Leu Thr Gln Ala Gln Leu Leu Gln Phe Thr Ser Val Val Val Tyr Thr 180 185 190	576
ggg tgt acg ggt tat act cat tac tat cat acg aag cat gga gcg gat Gly Cys Thr Gly Tyr Thr His Tyr Tyr His Thr Lys His Gly Ala Asp 195 200 205	624
gag aca cag cct agt tta gga acg tat tat ttc tgt tgt gga gtg cag Glu Thr Gln Pro Ser Leu Gly Thr Tyr Tyr Phe Cys Cys Gly Val Gln 210 215 220	672
gtg ttt gag atg gtt agt ttg ttt gta ctc ttt tcc atc ttt tat aaa Val Phe Glu Met Val Ser Leu Phe Val Leu Phe Ser Ile Phe Tyr Lys 225 230 235 240	720
cga tcc tat tcg aag aag aac aag tca gga gga aag gat agc aag aag Arg Ser Tyr Ser Lys Lys Asn Lys Ser Gly Gly Lys Asp Ser Lys Lys	768

. . . .

V	O 200)5/01	2316													PCT/EP20	004/007
					٠					10	2						
			•		245			•		250					255		
	aat Asn	gat Asp	gat Asp	ggg Gly 260	aat Asn	aat Asn	gag Glu	gat Asp	caa Gln 265	tgt Cys	cac His	aag Lys	gct Ala	atg Met 270	aag Lys	gat Asp	816
	ata Ile	tcg Ser	gag Glu 275	ggt Gly	gcg Ala	aag Lys	gag Glu	gtt Val 280	gtg Val	Gly aaa	cat His	gca Ala	gcg Ala 285	aag Lys	gat Asp	gct Alà	864
	gga Gly	aag Lys 290	ttg Leu	gtg Val	gct Ala	acg Thr	gcg Ala 295	agt Ser	aag Lys	gct Ala	gta Val	aag Lys 300	agg Arg	aag Lys	gga Gly	act Thr	912
			act Thr				tag			·							933
	<210 <211 <211 <211	L> : 2> :	62 310 PRT Thala	issio	osira	a pse	eudoi	nana	٠								
	<400	>	62									•					
•	Met 1	His	Ser	Tyr	Lys 5	Val	Pro	Leu	Gly	Leu 10	Thr	Val	Phe	Tyr	Leu 15	Leu	
	Ser	Leu	Pro	Ser 20	Leu	Lys	Tyr	Val	Thr 25	Asp	Asn	Tyr	Leu	Ala 30	Lys	Lys	
	Tyr	Asp	Met 35	Lys	Ser	Leu	Leu	Thr 40	Glu	Ser	Met	Va1	Leu 45	Tyr	Asn	Val	
	Ala	Gln 50	Val	Leu	Leu	Asn	Gly 55	Trp	Thr	Val	Tyr	Ala 60	Ile	Val	Asp	Ala	
	Val 65	Met :	Asn	Arg	Asp	His 70	Pro	Phe	Ile	Gly	Ser 75	Arg	Ser	Leu	Val	Gly 80	
	Ala	Ala	. Leu	His	Ser 85	Gly	Ser	Ser	Tyr	Ala 90	Val	Trp	Val	His	Туг 95	Cys	•
	Asp	Lys	Tyr	Leu 100	Glu	Phe	Phe	Asp	Thr 105		Phe	Met	Val	Leu 110		Gly	
	Lys	Met	Asp 115		Val	Ser	Phe	Leu 120		Ile	тут	His	His 125	Thx	Thr	Ile	
	Ala	Trp	Ala	Trp	Trp	Ile	Ala 135		Arg	Phe	Ser	Pro 140		Gly	Asp	Ile	

Tyr Phe Gly Ala Leu Leu Asn Ser Ile Ile His Val Leu Met Tyr Ser 145 155 160

Tyr Tyr Ala Leu Ala Leu Leu Lys Val Ser Cys Pro Trp Lys Arg Tyr 165 170 170 170 175

103

Leu Thr Gln Ala Gln Leu Leu Gln Phe Thr Ser Val Val Tyr Thr 180 185	
Gly Cys Thr Gly Tyr Thr His Tyr Tyr His Thr Lys His Gly Ala Asp 200 205	
Glu Thr Gln Pro Ser Leu Gly Thr Tyr Tyr Phe Cys Cys Gly Val Gln 210 215	
Val Phe Glu Met Val Ser Leu Phe Val Leu Phe Ser Ile Phe Tyr Lys 235 240	
Arg Ser Tyr Ser Lys Lys Asn Lys Ser Gly Gly Lys Asp Ser Lys Lys 250 255	
Asn Asp Asp Gly Asn Asn Glu Asp Gln Cys His Lys Ala Met Lys Asp 270 265	
Ile Ser Glu Gly Ala Lys Glu Val Val Gly His Ala Ala Lys Asp Ala 280 285	
Gly Lys Leu Val Ala Thr Ala Ser Lys Ala Val Lys Arg Lys Gly Thr 290 295 300	
Arg Val Thr Gly Ala Met 305 310	
<210> 63 <211> 933 <212> DNA <213> Thalassiosira pseudonana	
<220> <221> CDS <222> (1)(933) <223> Delta-5-Elongase	
<pre><400> 63 atg cac tcc tac aaa gtc cca ctc ggt ctc acc gta ttc tac ctg ctg Met His Ser Tyr Lys Val Pro Leu Gly Leu Thr Val Phe Tyr Leu Leu 10 10 15</pre>	48
agt cta ccg tca cta aag tac gtt acg gac aac tac ctt gcc aaa aag agt cta ccg tca cta aag tac gtt acg gac aac tac ctt gcc aaa aag ser Leu Pro Ser Leu Lys Tyr Val Thr Asp Asn Tyr Leu Ala Lys Lys Ser Leu Pro Ser Leu Lys Tyr Val 25	96
tat gat atg aag tca ctc cta acg gaa tca atg gtg ttg tac aat gtg Tyr Asp Met Lys Ser Leu Leu Thr Glu Ser Met Val Leu Tyr Asn Val 45	144
gcg caa gtg ctg ctc aat ggg tgg acg gtg tat gcg att gtg gat gcg Ala Gln Val Leu Leu Asn'Gly Trp Thr Val Tyr Ala Ile Val Asp Ala 55	192
gtg atg aat aga gac cat ccg ttt att gga agt aga agt ttg gtt ggg Val Met Asn Arg Asp His Pro Phe Ile Gly Ser Arg Ser Leu Val Gly	240

								•		7							
65					70					75					80		
										gtg Val							288
gat Asp	aag Lys	tat Tyr	ttg Leu 100	gag Glu	ttc Phe	ttt Phe	gat Asp	acg Thr 105	tat Tyr	ttt Phe	atg Met	gtg Val	ttg Leu 110	agg Arg	Gly aga		336
										tac Tyr							384
										tcc Ser							432
										cac His 155							480
tac Tyr	tac Tyr	gcc Ala	ctt Leu	gcc Ala 165	cta Leu	ctc Leu	aag Lys	gtc Val	agt Ser 170	tgt Cys	cca Pro	tgg Trp	aaa Lys	cga Arg 175	tac Tyr		528
										agt Ser							576
										acg Thr							624
										ttc Phe							672
										ttt Phe 235							720
										gga Gly							768
										cac His						-	816
										cat His							864
		Leu					Ser			gta Val							912
			ggt Gly			tag											933

<210> <211>

⁶⁴ 310

<212> PRT

<213> Thalassiosira pseudonana

<400> 64

Met His Ser Tyr Lys Val Pro Leu Gly Leu Thr Val Phe Tyr Leu Leu 1 5 10 15

Ser Leu Pro Ser Leu Lys Tyr Val Thr Asp Asn Tyr Leu Ala Lys Lys

Tyr Asp Met Lys Ser Leu Leu Thr Glu Ser Met Val Leu Tyr Asn Val 35 40 45

Ala Gln Val Leu Leu Asn Gly Trp Thr Val Tyr Ala Ile Val Asp Ala 50 55

Val Met Asn Arg Asp His Pro Phe Ile Gly Ser Arg Ser Leu Val Gly 65 70 75 80

Ala Ala Leu His Ser Gly Ser Ser Tyr Ala Val Trp Val His Tyr Cys 85 90 95

Asp Lys Tyr Leu Glu Phe Phe Asp Thr Tyr Phe Met Val Leu Arg Gly 100 105 110

Lys Met Asp Gln Val Ser Phe Leu His Ile Tyr His His Thr Thr Ile 115 120 125

Ala Trp Ala Trp Trp Ile Ala Leu Arg Phe Ser Pro Gly Gly Asp Ile 130 135

Tyr Phe Gly Ala Leu Leu Asn Ser Ile Ile His Val Leu Met Tyr Ser 145 150 150

Tyr Tyr Ala Leu Ala Leu Leu Lys Val Ser Cys Pro Trp Lys Arg Tyr 165 170 170 175

Leu Thr Gln Ala Gln Leu Leu Gln Phe Thr Ser Val Val Val Tyr Thr 180 185 190

Gly Cys Thr Gly Tyr Thr His Tyr Tyr His Thr Lys His Gly Ala Asp

Glu Thr Gln Pro Ser Leu Gly Thr Tyr Tyr Phe Cys Cys Gly Val Gln 210 215

Val Phe Glu Met Val Ser Leu Phe Val Leu Phe Ser Ile Phe Tyr Lys 225 230 235

Arg Ser Tyr Ser Lys Lys Asn Lys Ser Gly Gly Lys Asp Ser Lys Lys 255

Asn Asp Asp Gly Asn Asn Glu Asp Gln Cys His Lys Ala Met Lys Asp 260 265

Ile		Glu 275	Gly	Ala	Lys	Glu	Val 280	Val	Gly	His	Ala	Ala 285	Lys	Asp	Ala	•
Gly	Lys 290	Leu	Val	Ala	Thr	Ala 295	Ser	Lys	Ala	Val	Lys 300	Arg	Lys	Gly	Thr	•
Arg 305	val	Thr.	Gly	Ala	Met 310											:
<210 <211 <212 <213	.> 8 !> I	5 25 NA hrau	stoc	hytr	rium	aure	eum								-	
	L> C		. (825 a-5-E		jase										•	
<400 atg Met 1	acq	5 agc Ser	aac Asn	atg Met 5	agc Ser	gcg Ala	tgg Trp	ggc Gly	gtc Val 10	gcc Ala	gtc Val	gac Asp	cag Gln	acg Thr 15	cag Gln	48
cag Gln	gtc Val	gtc Val	gac Asp 20	cag Gln	atc Ile	atg Met	ggc Gly	ggc Gly 25	gcc Ala	gag Glu	ccg Pro	tac Tyr	aag Lys 30	ctg Leu	aca Thr	96
gaa Glu	Gly aaa	cgc Arg 35	atg Met	acg Thr	aac Asn	gtc Val	gag Glu 40	acg Thr	atg Met	ctg Leu	gcg Ala	atc Ile 45	gag Glu	tgc Cys	Gly	144
tac Tyr	gcc Ala 50	gcc Ala	atg Met	ctg Leu	ctg Leu	ttc Phe 55	ctg Leu ;	acc Thr	ccg Pro	atc Ile	atg Met 60	aag Lys	cag Gln	gcc Ala	gag Glu	192
aag Lys 65	Pro	ttc Phe	gag Glu	ctc Leu	aag Lys 70	tcc Ser	ttc Phe	aag Lys	ctc Leu	gcc Ala 75	cac His	aac Asn	ctg Leu	ttc Phe	ctg Leu 80	240 .
ttc Phe	gtc Val	ctg Leu	tcc Ser	gcc Ala 85	tac Tyr	atg Met	tgc Cys	ctc Leu	gag Glu 90	acc Thr	gtc Val	cgc Arg	cag Gln	gcc Ala 95	tac Tyr	288
ctt Leu	gcg Ala	Gly	tac Tyr 100	tcg Ser	gtg Val	ttc Phe	Gly	aac Asn 105	Asp	atg Met	gag Glu	aag Lys	ggc Gly 110	agc Ser	gag Glu	336
ccg Pro	cac	gcg Ala 115	cac His	ggc	atg Met	gcc Ala	caa Gln 120	Ile	gtg Val	tgg Trp	atc Ile	ttt Phe 125	Tyr	gtg Val	tcc Ser	384
aag Lys	gcg Ala 130	tac Tyr	gag Glu	ttc Phe	gtg Val	gac Asp 135	acg Thr	ctg Leu	atc	atg Met	atc Ile 140	Leu	tgc Cys	aaa Lys	aag Lys	432
ttc Phe 145	Asn	cag Gln	gtc Val	tcc Ser	gtc Val 150		cac His	gtg Val	tac Tyr	cac His	His	gcc Ala	acc Thr	atc Ile	ttt Phe 160	480
gct Ala	atc Ile	tgg Trp	ttt Phe	atg Met	atc	gcc Ala	aag Lys	tac Tyr	gcc	ccg	ggc	ggc	gac Asp	gca Ala	tac Tyr	528

				165					170					175			
ttt Phe	agc Ser	gtc Val	atc Ile 180	ctg Leu	aac Asn	tcg Ser	ttc Phe	gtg Val 185	cac His	acc Thr	gtc Val	atg Met	tac Tyr 190	gcg Ala	tac Tyr		576
tac Tyr	ttc Phe	ttc Phe 195	tcg Ser	tcg Ser	cag Gln	ggc ggc	ttc Phe 200	ggg Gly	ttc Phe	gtc Val	aag Lys	ccg Pro 205	atc Ile	aag Lys	ccg Pro		624
tac Tyr	atc Ile 210	acc Thr	tcg Ser	ctg Leu	cag Gln	atg Met 215	acg Thr	cag Gln	ttc Phe	atg Met	gcg Ala 220	atg Met	ctc Leu	gtg Val	cag Gln		672 /
Ser 225	Leu	Tyr	Asp	Tyr	230	TÄT	PIO	Cys	110,0	235		cag Gln			240		720
aag Lys	ctc Leu	cto	ggc Gly	gtg Val 245	TAI	atg Met	ctc	acc Thr	ctg Leu 250		gcg Ala	cto Lev	ttc Phe	ggc Gly 255	aac Asn	•	768
ttt Phe	tto Phe	gto Val	caç Glr 260	ı Sei	tac Tyr	cto Lev	aaç Lys	aag Lys 265	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	aac Ası	aaq Lys	g cco	aag Lys 270	gcc Ala	aag Lys		816
	gco Ala		3.	,							•						825

<210> 66 <211> 274 <212> PRT

<213> Thraustochytrium aureum

<400> 66

Met Thr Ser Asn Met Ser Ala Trp Gly Val Ala Val Asp Gln Thr Gln

Gln Val Val Asp Gln Ile Met Gly Gly Ala Glu Pro Tyr Lys Leu Thr 20 25

Glu Gly Arg Met Thr Asn Val Glu Thr Met Leu Ala Ile Glu Cys Gly
35 40 45

Tyr Ala Ala Met Leu Leu Phe Leu Thr Pro Ile Met Lys Gln Ala Glu

Lys Pro Phe Glu Leu Lys Ser Phe Lys Leu Ala His Asn Leu Phe Leu

Phe Val Leu Ser Ala Tyr Met Cys Leu Glu Thr Val Arg Gln Ala Tyr

Leu Ala Gly Tyr Ser Val Phe Gly Asn Asp Met Glu Lys Gly Ser Glu

Pro His Ala His Gly Met Ala Gln Ile Val Trp Ile Phe Tyr Val Ser

Lys	Ala 130	туг	Glu	, Phe	Val	Asp 135	Thr	Leu	Ile	Met	Ile 140	Leu	Cys	Lys	Lys	
Phe 145	Asn	Gln	Val	Ser	Val 150	Leu	His	Val	Tyr	His 155	His	Ala	Thr	Ile	Phe 160	
Ala	Ile	Trp	Phe	Met 165	Ile	Ala	Lys	Tyr	Ala 170	Pro	Gly	Gly	Asp	Ala 175	Tyr	
Phe	Ser	Val	Ile 180	Leu	Asn	Ser	Phe	Val 185	His	Thr	Val	Met	Туг 190	Ala	Tyr	
Tyr	Phe	Phe 195	Ser	Ser	Gln	Gly	Phe 200	Gly	Phe	Val	Lys	Pro 205	Tle	Lys	Pro	
Tyr	Ile 210	Thr	Ser	Leu	Gln	Met 215	Thr	Gln	Phe	Met	Ala 220	Met	Leu	Val	Gln	
Ser 225		Tyr	Asp	Tyr	Leu 230	Tyr	Pro	Cys	Asp	Tyr 235	Pro	Gln	Gly	Leu	Val 240	•
Lys	Leu	Leu	Gly	Va1 245	Tyr	Met	Leu	Thr	Leu 250	Leu	Ala	Leu	Phe ·	Gly 255	Asn	
Phe	Phe	Val	Gln 260		ΤΫ́	Leu	Lys	Lys 265	Ser	Asn	Lys	Prọ	Lys 270	Ala	Lys	
Ser	Ala	,														
<21 <21	1>	67 903					•									
<21 <21	_	DNA Ostr	eoco	ccus	tau	ri										
<22 <22 <22 <22	1> 2>		. (90 .a-5-		gase											
ato	0> agc Ser	acc	tcc Ser	ggt Gly 5	gcg Ala	ctg Leu	ctg Leu	Pro	gcg Ala	atc Ile	gcg Ala	ttc Phe	gcc Ala	gcg Ala 15	tac Tyr	48
gcg Ala	tac Tyr	gcg Ala	acg Thr 20	tac Tyr	gcc Ala	tac Tyr	gcc	ttt Phe 25	gag Glu	tgg Trp	tcg Ser	cac His	gcg Ala 30	aat Asn	ggc	96
ato Ile	gac Asp	aac Asn 35	gtc Val	gac Asp	gcg Ala	cgc `Arg	gag Glu 40	tgg Trp	ato · Ile	ggt Gly	gcg Ala	ctg Leu 45	tcg Ser	ttg Leu	agg Arg	144
cto	ccg Pro	gcg Ala	atc lle	gcg Ala	acg Thr	acg Thr	atg Met	tac Tyr	ctg Lev	ttg Leu	ttc Phe	tgc Cys	ctg Leu	gtc Val	gga Gly	192

			I CI/LI 20	
VO 2005/012316		109		
5.0	55	60		
ccg agg ttg atg gcg as	3 149	ttc gac ccg aag Phe Asp Pro Lys 75	ggg ttc atg Gly Phe Met 80	240
ctg gcg tac aat gcg tac Leu Ala Tyr Asn Ala Tyr 85		ttc aac gtc gtc Phe Asn Val Val 90	gtg ctc ggg Val Leu Gly 95	288
atg ttc gcg cga gag a Met Phe Ala Arg Glu I 100	tc tcg ggg ctg le Ser Gly Leu 105	ggg cag ccc gtg Gly Gln Pro Val	tgg ggg tca Trp Gly Ser 110	336
acc atg ccg tgg agc g Thr Met Pro Trp Ser A	at aga aaa tcg sp Arg Lys Ser 120	ttt aag atc ctc Phe Lys Ile Leu 125	: ctc ggg gtg . Leu Gly Val	384
tgg ttg cac tac aac a Trp Leu His Tyr Asn I	135	140		432
atg gtt gcg cgc aag	aag acg aag ca Lys Thr Lys Gl: 150	g ttg agc ttc tt n Leu Ser Phe Le 155	g cac gtt tat u His Val Tyr 160	480
cat cac gcc ctg ttg His His Ala Leu Leu 165	atc tgg gcg tg Ile Trp Ala Tr	g tgg ttg gtg tg p Trp Leu Val Cy 170	t cac ttg atg s His Leu Met 175	528
gcc acg aac gat tgt Ala Thr Asn Asp Cys	18	35	190	576
ttc att cac atc gtg Phe Ile His Ile Val	200	2	05	624
att cga tgc ccg tgg Ile Arg Cys Pro Trp	215	220		672
ttc gtc att gtc ttc Phe Val Ile Val Phe	230	235	240	720
tgc ccg gtc acc ct Cys Pro Val Thr Le	5	250	255	768
ctc gtg ctc ttc gg Leu Val Leu Phe Gl 260	y Asii 1110 -1-	265	270	816
cgc ggc gac ggc gc Arg Gly Asp Gly Al 275	g agt tcc gtg a Ser Ser Val 280	aaa cca gcc gag Lys Pro Ala Glu	acc acg cgc gcg Thr Thr Arg Ala 285	864
ccc agc gtg cga cg Pro Ser Val Arg A 290	ge acg ega tet eg Thr Arg Ser 295	cga aaa att gac Arg Lys Ile Asp 300	taa	903

<210> 68 <211> 300 <212> PRT <213> Ostreococcus tauri

WO 2005/012316 PCT/EP2004/007957

<400> 68

Met Ser Ala Ser Gly Ala Leu Leu Pro Ala Ile Ala Phe Ala Ala Tyr

Ala Tyr Ala Thr Tyr Ala Tyr Ala Phe Glu Trp Ser His Ala Asn Gly
20 25 30

Ile Asp Asn Val Asp Ala Arg Glu Trp Ile Gly Ala Leu Ser Leu Arg 35 40 45

Leu Pro Ala Ile Ala Thr Thr Met Tyr Leu Leu Phe Cys Leu Val Gly 50 60

Pro Arg Leu Met Ala Lys Arg Glu Ala Phe Asp Pro Lys Gly Phe Met 65 70 75 80

Leu Ala Tyr Asn Ala Tyr Gln Thr Ala Phe Asn Val Val Val Leu Gly 85 90 95

Met Phe Ala Arg Glu Ile Ser Gly Leu Gly Gln Pro Val Trp Gly Ser 100 105 110

Thr Met Pro Trp Ser Asp Arg Lys Ser Phe Lys Ile Leu Leu Gly Val 115 120 125

Trp Leu His Tyr Asn Asn Gln Tyr Leu Glu Leu Leu Asp Thr Val Phe 130 135

Met Val Ala Arg Lys Lys Thr Lys Gln Leu Ser Phe Leu His Val Tyr 145 150 155 160

His His Ala Leu Leu Ile Trp Ala Trp Trp Leu Val Cys His Leu Met 165 170 175

Ala Thr Asn Asp Cys Ile Asp Ala Tyr Phe Gly Ala Ala Cys Asn Ser

Phe Ile His Ile Val Met Tyr Ser Tyr Tyr Leu Met Ser Ala Leu Gly
195 200 205

Ile Arg Cys Pro Trp Lys Arg Tyr Ile Thr Gln Ala Gln Met Leu Gln 210 220

Phe Val Ile Val Phe Ala His Ala Val Phe Val Leu Arg Gln Lys His 225 230 235 240

Cys Pro Val Thr Leu Pro Trp Ala Gln Met Phe Val Met Thr Asn Met 245 250 255

Arg Gly Asp Gly Ala Ser Ser	Val Lys Pro 1	Ala Glu Thr	Thr Arg Ala
275	280	285	

	Ser 290		Arg	Arg	Thr	Arg 295	Ser	Arg	ГÀг	Ile	Asp 300
--	------------	--	-----	-----	-----	------------	-----	-----	-----	-----	------------

2210> 69 2211> 879 2212> DNA 2213> Ostreococcus tauri	
<220> <221> CDS <222> (1)(879) <223> Delta-6-Elongase	
<pre><400> 69 atg agt ggc tta cgt gca ccc aac ttt tta cac aga ttc tgg aca aag atg agt ggc tta cgt gca ccc aac ttt tta cac aga ttc tgg aca aag atg agt ggc tta cgt gca ccc aac ttt tta cac aga ttc tgg aca aag atg agt ggc tta cgt gca ccc aac ttt tta cac aga ttc tgg aca aag atg agt ggc tta cgt gca ccc aac ttt tta cac aga ttc tgg aca aag atg agt ggc tta cgt gca ccc aac ttt tta cac aga ttc tgg aca aag atg agt ggc tta cgt gca ccc aac ttt tta cac aga ttc tgg aca aag atg agt ggc tta cgt gca ccc aac ttt tta cac aga ttc tgg aca aag atg agt ggc tta cgt gca ccc aac ttt tta cac aga ttc tgg aca aag atg agt ggc tta cgt gca ccc aac ttt tta cac aga ttc tgg aca aag atg agt ggc tta cgt gca ccc aac ttt tta cac aga ttc tgg aca aag atg agt ggc tta cgt gca ccc aac ttt tta cac aga ttc tgg aca aag atg agt ggc tta cgt gca ccc aac ttt tta cac aga ttc tgg aca aag atg agt ggc tta cgt gca ccc aac ttt tta cac aga ttc tgg aca aag atg agt ggc tta cgt gca ccc aac ttt tta cac aga ttc tgg aca aag atg agt ggc tta cgt gca ccc aac ttt tta cac aga ttc tgg aca aag atg agt ggc tta cgt gca ccc aac ttt tta cac aga ttc tgg aca aag atg agt gca ccc aac ttt tta cac aga ttc tgg aca aag atg agt gca ccc aac ttt tta cac aga ttc tgg aca aag atg agt gca ccc aac ttt tta cac aga ttc tgg aca aag atg agt gca ccc aac ttt tta cac aga ttc tgg aca aag atg agt gca ccc acc acc acc acc acc acc acc acc</pre>	48
tgg gac tac gcg att tcc aaa gtc gtc ttc acg tgt gcc gac agt ttt tgg gac tac gcg att tcc aaa gtc gtc ttc acg tgt gcc gac agt ttt Trp Asp Tyr Ala Ile Ser Lys Val Val Phe Thr Cys Ala Asp Ser Phe 20 25	96
cag tgg gac atc ggg cca gtg agt tcg agt acg gcg cat tta ccc gcc Gln Trp Asp Ile Gly Pro Val Ser Ser Thr Ala His Leu Pro Ala	144
att gaa too cot acc coa ctg gtg act agc otc ttg tto tac tta gtc att gaa too cot acc cca ctg gtg act agc otc ttg tto tac tta gtc Ile Glu Ser Pro Thr Pro Leu Val Thr Ser Leu Leu Phe Tyr Leu Val 55 60	192
aca gtt ttc ttg tgg tat ggt cgt tta acc agg agt tca gac aag aaa Thr Val Phe Leu Trp Tyr Gly Arg Leu Thr Arg Ser Ser Asp Lys Lys 75	240
att aga gag cct acg tgg tta aga aga ttc ata ata tgt cat aat gcg att aga gag cct acg tgg tta aga aga ttc ata ata tgt cat aat gcg att aga gag cct acg tgg tta aga aga ttc ata ata tgt cat aat gcg att aga gag cct acg tgg tta aga aga ttc ata ata tgt cat aat gcg att aga gag cct acg tgg tta aga aga ttc ata ata tgt cat aat gcg att aga gag cct acg tgg tta aga aga ttc ata ata tgt cat aat gcg att aga gag cct acg tgg tta aga aga ttc ata ata tgt cat aat gcg att aga gag cct acg tgg tta aga aga ttc ata ata tgt cat aat gcg att aga gag cct acg tgg tta aga aga ttc ata ata tgt cat aat gcg att aga gag cct acg tgg tta aga aga ttc ata ata tgt cat aat gcg att aga gag cct acg tgg tta aga aga ttc ata ata tgt cat aat gcg att aga gag cct acg tgg tta aga aga ttc ata ata tgt cat aat gcg att aga gag cct acg tgg tta aga aga ttc ata ata tgt cat aat gcg	288
ttc ttg ata gtc ctc agt ctt tac atg tgc ctt ggt tgt gtg gcc caa Phe Leu Ile Val Leu Ser Leu Tyr Met Cys Leu Gly Cys Val Ala Gln 100 105	336
gcg tat cag aat gga tat act tta tgg ggt aat gaa ttc aag gcc acg Ala Tyr Gln Asn Gly Tyr Thr Leu Trp Gly Asn Glu Phe Lys Ala Thr 115 120 125	384
gaa act cag ctt gct ctc tac att tac att ttt tac gta agt aaa ata Glu Thr Gln Leu Ala Leu Tyr Ile Tyr Ile Phe Tyr Val Ser Lys Ile	432
tac gag ttt gta gat act tac att atg ctt ctc aag aat aac ttg cgg tac gag ttt gta gat act tac att atg ctt ctc aag aat aac ttg cgg Tyr Glu Phe Val Asp Thr Tyr Ile Met Leu Leu Lys Asn Asn Leu Arg Tyr Glu Phe Val Asp Thr Tyr Ile Met Leu Leu Lys Asn Asn Leu Arg 150 150	480
caa gta agt ttc cta cac att tat cac cac agc acg att tcc ttt att cac gta agt agt ttc cta cac att tat cac cac agc acg att tcc ttt att cac gta agt agt ttc cta cac att tat cac cac agc acg att tcc ttt att cac gta agt agt agg att tcc ttt att cac gta agc acg att tcc ttt att att cac gta agc acg att tcc ttt att att cac gta agc acg att tcc ttt att att cac gta agc acg att tcc ttt att att cac gta agc acg att tcc ttt att att cac gta agc acg att tcc ttt att att cac gta agc acg att tcc ttt att att cac gta agc acg att tcc ttt att att cac gta agc acg att tcc ttt att att cac gta agc acg att tcc ttt att att cac gta agc acg att tcc ttt att att cac gta agc acg att tcc ttt att att cac gta agc acg att tcc ttt att cac gta agc acg acg att tcc ttt att cac gta agc acg acg acg acg acg acg acg acg ac	528
tgg tgg atc att gct cgg agg gct ccg ggt ggt gat gct tac ttc agc Trp Trp Ile Ile Ala Arg Arg Ala Pro Gly Gly Asp Ala Tyr Phe Ser	576

VO 2005/012316	•				PCT/EP2004/007
			112		
	180	1	.85	190	
gcg gcc ttg Ala Ala Leu 195	aac tca tgg Asn Ser Tr	gta cac g Val His V 200	tg tgc atg al Cys Met '	tac acc tat tat Tyr Thr Tyr Tyr 205	cta 624 Leu
tta tca acc Leu Ser Thr 210	ctt att gga Leu Ile Gly	a aaa gaa g / Lys Glu A 215	sp Pro Lys ?	cgt tcc aac tac Arg Ser Asn Tyr 220	ctt 672 Leu
tgg tgg ggt Trp Trp Gly 225	cgc cac cta Arg His Lev 230	ı Thr Gln M	tg cag atg	ctt cag ttt ttc Leu Gln Phe Phe	Phe 240
aac gta ctt Asn Val Leu	caa gcg tt: Gln Ala Le: 245	g tac tgc g 1 Tyr Cys A	gct tcg ttc Ala Ser Phe 250	tct acg tat ccc Ser Thr Tyr Pro 255	aag 768 Lys
ttt ttg tcc Phe Leu Ser	aaa att ct Lys Ile Le 260	ı Leu Val T	tat atg atg. Tyr Met Met 265	agc ctt ctc ggc Ser Leu Leu Gly 270	ttg 816 Leu
ttt ggg cat Phe Gly His 275	ttc tac ta Phe Tyr Ty	tcc aag c Ser Lys H 280	cac ata gca His Ile Ala	gca gct aag ctc Ala Ala Lys Leu 285	cag 864 Gln
aaa aaa cag Lys Lys Gln 290					879
<210> 70 <211> 292 <212> PRT <213> Ostre	eococcus ta	uri		,	•
<400> 70	•				
Met Ser Gly 1	Leu Arg Al 5	a Pro Asn I	Phe Leu His	Arg Phe Trp Thr 15	Lys
Trp Asp Tyr	Ala Ile Se 20		Val Phe Thr 25	Cys Ala Asp Ser 30	Phe
Gln Trp Asp 35	Ile Gly Pr	o Val Ser S 40	Ser Ser Thr	Ala His Leu Pro 45	Ala
Ile Glu Ser 50	Pro Thr Pr	o Leu Val 3 55	Thr Ser Leu	Leu Phe Tyr Leu 60	ı Val
Thr Val Phe 65	Leu Trp Ty		Leu Thr Arg 75	Ser Ser Asp Lys	Lys 80
Ile Arg Glu	Pro Thr Tr 85	p Leu Arg A	Arg Phe Ile 90	Ile Cys His Asr 95	n Ala
Phe Leu Ile	Val Leu Se		Met Cys Leu 105	Gly Cys Val Ala	a Gln

Ala Tyr Gln Asn Gly Tyr Thr Leu Trp Gly Asn Glu Phe Lys Ala Thr 115 120 125

, 113
Glu Thr Gln Leu Ala Leu Tyr Ile Tyr Ile Phe Tyr Val Ser Lys Ile 130 135
Tyr Glu Phe Val Asp Thr Tyr Ile Met Leu Leu Lys Asn Asn Leu Arg 150 155 160
Gln Val Ser Phe Leu His Ile Tyr His His Ser Thr Ile Ser Phe Ile 165 170 175
Trp Trp Ile Ile Ala Arg Arg Ala Pro Gly Gly Asp Ala Tyr Phe Ser 180 185 190
Ala Ala Leu Asn Ser Trp Val His Val Cys Met Tyr Thr Tyr Tyr Leu 195 200
Leu Ser Thr Leu Ile Gly Lys Glu Asp Pro Lys Arg Ser Asn Tyr Leu 210 215 220
Trp Trp Gly Arg His Leu Thr Gln Met Gln Met Leu Gln Phe Phe 240 225 240
Asn Val Leu Gln Ala Leu Tyr Cys Ala Ser Phe Ser Thr Tyr Pro Lys 245 250 255
Phe Leu Ser Lys Ile Leu Leu Val Tyr Met Met Ser Leu Leu Gly Leu 260 265 270
Phe Gly His Phe Tyr Tyr Ser Lys His Ile Ala Ala Ala Lys Leu Gln 285 275
Lys Lys Gln Gln 290
<210> 71 <211> 1362 <212> DNA <213> Primula farinosa
<220> <221> CDS <222> (1)(1362) <223> Delta-6-Desaturase
<pre><400> 71 atg gct aac aaa tct cca cca aac ccc aaa aca ggt tac ata acc agc 48 Met Ala Asn Lys Ser Pro Pro Asn Pro Lys Thr Gly Tyr Ile Thr Ser 10 15</pre>
tca gac ctg aaa tcc cac aac aag gca ggt gac cta tgg ata tca atc 96 Ser Asp Leu Lys Ser His`Asn Lys Ala Gly Asp Leu Trp Ile Ser Ile 20 25 30
cac ggc caa gtc tac gac gtg tcc tct tgg gcc gcc ctt cat ccg ggg 144 His Gly Gln Val Tyr Asp Val Ser Ser Trp Ala Ala Leu His Pro Gly

WO 2005/012316 114 45 40 ggc act gcc cct ctc atg gcc ctt gca gga cac gac gtg acc gat gct Gly Thr Ala Pro Leu Met Ala Leu Ala Gly His Asp Val Thr Asp Ala ttc ctc gcg tac cat ccc cct tcc act gcc cgt ctc ctc cct cct ctc 240 Phe Leu Ala Tyr His Pro Pro Ser Thr Ala Arg Leu Leu Pro Pro Leu tet ace aac etc ett ett caa aac cae tee gte tee eec ace tee tea 288 Ser Thr Asn Leu Leu Gln Asn His Ser Val Ser Pro Thr Ser Ser 90 gac tac cgc aaa ctc ctc gac aac ttc cat aaa cat ggc ctt ttc cgc Asp Tyr Arg Lys Leu Leu Asp Asn Phe His Lys His Gly Leu Phe Arg 105 384 gcc agg ggc cac act gct tac gcc acc ttc gtc ttc atg ata gcg atg-Ala Arg Gly His Thr Ala Tyr Ala Thr Phe Val Phe Met Ile Ala Met ttt cta atg agc gtg act gga gtc ctt tgc agc gac agt gcg tgg gtc Phe Leu Met Ser Val Thr Gly Val Leu Cys Ser Asp Ser Ala Trp Val 432 cat ttg gct agc ggc gga gca atg ggg ttc gcc tgg atc caa tgc gga His Leu Ala Ser Gly Gly Ala Met Gly Phe Ala Trp Ile Gln Cys Gly 480 150 tgg ata ggt cac gac tct ggg cat tac cgg att atg tct gac agg aaa 528 Trp Ile Gly His Asp Ser Gly His Tyr Arg Ile Met Ser Asp Arg Lys tgg aac tgg ttc gcg caa atc cta agc aca aac tgc ctc cag ggg att 576 Trp Asn Trp Phe Ala Gln Ile Leu Ser Thr Asn Cys Leu Gln Gly Ile 185 agt atc ggg tgg tgg aag tgg aac cat aat gcg cac cac atc gct tgc 624 Ser Ile Gly Trp Trp Lys Trp Asn His Asn Ala His His Ile Ala Cys 200 aat age etg gat tae gae eee gae ete eag tat ate eet ttg ete gte Asn Ser Leu Asp Tyr Asp Pro Asp Leu Gln Tyr Ile Pro Leu Leu Val 720 gtc tcc ccc aag ttc ttc aac tcc ctt act tct cgt ttc tac gac aag Val Ser Pro Lys Phe Phe Asn Ser Leu Thr Ser Arg Phe Tyr Asp Lys 230 aag ctg aac ttc gac ggc gtg tcg agg ttt ctg gtt tgc tac cag cac 768 Lys Leu Asn Phe Asp Gly Val Ser Arg Phe Leu Val Cys Tyr Gln His 255 816 tgg acg ttt tat ccg gtc atg tgt gtc gct agg ctg aac atg ctc gcg Trp Thr Phe Tyr Pro Val Met Cys Val Ala Arg Leu Asn Met Leu Ala 265 cag tca ttt ata acg ctt ttc tcg agt agg gag gtg tgc cat agg gcg Gln Ser Phe Ile Thr Leu Phe Ser Ser Arg Glu Val Cys His Arg Ala 864 280 caa gag gtt ttc gga ctt gcc gtg ttt tgg gtt tgg ttt ccg ctt tta 912 Gln Glu Val Phe Gly Leu'Ala Val Phe Trp Val Trp Phe Pro Leu Leu

300

960

ctt tct tgt tta cct aat tgg ggc gag agg att atg ttt ttg ctt gcg

Leu Ser Cys Leu Pro Asn Trp Gly Glu Arg Ile Met Phe Leu Leu Ala

305 310 315 320	
agc tat tcc gtt acg ggg ata caa cac gtg cag ttc agc ttg aac cat Ser Tyr Ser Val Thr Gly Ile Gln His Val Gln Phe Ser Leu Asn His 325	1008
ttt tct tcg gac gtc tat gtg ggc ccg cca gta ggt aat gac tgg ttc Phe Ser Ser Asp Val Tyr Val Gly Pro Pro Val Gly Asn Asp Trp Phe 340 345	1056
aag aaa cag act gcc ggg aca ctt aac ata tcg tgc ccg gcg tgg atg Lys Lys Gln Thr Ala Gly Thr Leu Asn Ile Ser Cys Pro Ala Trp Met 355 360 365	1104
gat tgg ttc cat ggc ggg tta cag ttt cag gtc gag cac cac ttg ttt Asp Trp Phe His Gly Gly Leu Gln Phe Gln Val Glu His His Leu Phe 370 375 380	1152
ccg cgg atg cct agg ggt cag ttt agg aag att tct cct ttt gtg agg Pro Arg Met Pro Arg Gly Gln Phe Arg Lys Ile Ser Pro Phe Val Arg 385 390 395 400	1200
gat ttg tgt aag aaa cac aac ttg cct tac aat atc gcg tct ttt act Asp Leu Cys Lys Lys His Asn Leu Pro Tyr Asn Ile Ala Ser Phe Thr 405 410 415	
aaa gcg aat gtg ttt acg ctt aag acg ctg aga aat acg gcc att gag Lys Ala Asn Val Phe Thr Leu Lys Thr Leu Arg Asn Thr Ala Ile Glu 420 425 430	1296
gct cgg gac ctc tct aat ccg ctc cca aag aat atg gtg tgg gaa gct Ala Arg Asp Leu Ser Asn Pro Leu Pro Lys Asn Met Val Trp Glu Ala 435 440 445	1344
ctt aaa act ctc ggg tga	1362
Leu Lys Thr Leu Gly 450	,
Leu Lys Thr Leu Gly	•
Leu Lys Thr Leu Gly 450 <210> 72 <211> 453 <212> PRT	,
Leu Lys Thr Leu Gly 450 <210> 72 <211> 453 <212> PRT <213> Primula farinosa <400> 72 Met Ala Asn Lys Ser Pro Pro Asn Pro Lys Thr Gly Tyr Ile Thr Se 1 5	
Leu Lys Thr Leu Gly 450 <210> 72 <211> 453 <212> PRT <213> Primula farinosa <400> 72 Met Ala Asn Lys Ser Pro Pro Asn Pro Lys Thr Gly Tyr Ile Thr Se	
Leu Lys Thr Leu Gly 450 <210> 72 <211> 453 <212> PRT <213> Primula farinosa <400> 72 Met Ala Asn Lys Ser Pro Pro Asn Pro Lys Thr Gly Tyr Ile Thr Se 1 5 Ser Asp Leu Lys Ser His Asn Lys Ala Gly Asp Leu Trp Ile Ser Il	.e
Leu Lys Thr Leu Gly 450 <210> 72 <211> 453 <212> PRT <213> Primula farinosa <400> 72 Met Ala Asn Lys Ser Pro Pro Asn Pro Lys Thr Gly Tyr Ile Thr Se 1 5 10 15 Ser Asp Leu Lys Ser His Asn Lys Ala Gly Asp Leu Trp Ile Ser Il 20 His Gly Gln Val Tyr Asp Val Ser Ser Trp Ala Ala Leu His Pro Gl	.e Ly
Leu Lys Thr Leu Gly 450 <210> 72 <211> 453 <212> PRT <213> Primula farinosa <400> 72 Met Ala Asn Lys Ser Pro Pro Asn Pro Lys Thr Gly Tyr Ile Thr Se 1	.e Ly la

Asp Tyr Arg Lys Leu Leu Asp Asn Phe His Lys His Gly Leu Phe Arg 100 105 110

Ala Arg Gly His Thr Ala Tyr Ala Thr Phe Val Phe Met Ile Ala Met 115 120 125

Phe Leu Met Ser Val Thr Gly Val Leu Cys Ser Asp Ser Ala Trp Val 130 135 140

His Leu Ala Ser Gly Gly Ala Met Gly Phe Ala Trp Ile Gln Cys Gly 145 150 155 160

Trp Ile Gly His Asp Ser Gly His Tyr Arg Ile Met Ser Asp Arg Lys 165 170 175

Trp Asn Trp Phe Ala Gln Ile Leu Ser Thr Asn Cys Leu Gln Gly Ile 180 185 190

Ser Ile Gly Trp Trp Lys Trp Asn His Asn Ala His His Ile Ala Cys 195 200

Asn Ser Leu Asp Tyr Asp Pro Asp Leu Gln Tyr Ile Pro Leu Leu Val 210 215

Val Ser Pro Lys Phe Phe Asn Ser Leu Thr Ser Arg Phe Tyr Asp Lys 225 230 235 240

Lys Leu Asn Phe Asp Gly Val Ser Arg Phe Leu Val Cys Tyr Gln His

Trp Thr Phe Tyr Pro Val Met Cys Val Ala Arg Leu Asn Met Leu Ala 260 265 270

Gln Ser Phe Ile Thr Leu Phe Ser Ser Arg Glu Val Cys His Arg Ala 275 280 285

Gln Glu Val Phe Gly Leu Ala Val Phe Trp Val Trp Phe Pro Leu Leu 290 295 300

Leu Ser Cys Leu Pro Asn Trp Gly Glu Arg Ile Met Phe Leu Leu Ala 305 310 315 320

Ser Tyr Ser Val Thr Gly Ile Gln His Val Gln Phe Ser Leu Asn His 325 330 335

Phe Ser Ser Asp Val Tyr Val Gly Pro Pro Val Gly Asn Asp Trp Phe 340 345 350

Lys Lys Gln Thr Ala Gly Thr Leu Asn Ile Ser Cys Pro Ala Trp Met 355 360 365

Asp Trp Phe His Gly Gly Leu Gln Phe Gln Val Glu His His Leu Phe 370 375	
Pro Arg Met Pro Arg Gly Gln Phe Arg Lys Ile Ser Pro Phe Val Arg 385 390 395	
Asp Leu Cys Lys Lys His Asn Leu Pro Tyr Asn Ile Ala Ser Phe Thr 405 410 415	
Lys Ala Asn Val Phe Thr Leu Lys Thr Leu Arg Asn Thr Ala Ile Glu 420 425 430	
Ala Arg Asp Leu Ser Asn Pro Leu Pro Lys Asn Met Val Trp Glu Ala 445 435	
Leu Lys Thr Leu Gly 450	
<210> 73 <211> 1362 <212> DNA <213> Primula vialii	
<220> <221> CDS <222> (1)(1362)	
<223> Delta-6-Desaturase	·
<pre><223> Delta-6-Desaturase <400> 73 atg gct aac aaa tct cca cca aac ccc aaa aca ggt tac att acc agc atg gct aac aaa tct cca cca aac ccc aaa fly Tyr Ile Thr Ser Met Ala Asn Lys Ser Pro Pro Asn Pro Lys Thr Gly Tyr Ile Thr Ser 10</pre>	48
<pre><223> Delta-6-Desaturase <400> 73 atg gct aac aaa tct cca cca aac ccc aaa aca ggt tac att acc agc atg gct aac aaa tct cca cca aac ccc aaa aca ggt tac att acc agc atg gct aac aaa tct cca cca aac ccc aaa aca ggt tac att acc agc Thr Gly Tyr Ile Thr Ser 10</pre>	4 8
<pre><223> Delta-6-Desaturase <400> 73 atg gct aac aaa tct cca cca aac ccc aaa aca ggt tac att acc agc atg gct aac aaa tct cca cca aac ccc aaa aca ggt tac att acc agc Met Ala Asn Lys Ser Pro Pro Asn Pro Lys Thr Gly Tyr Ile Thr Ser 10</pre>	
<pre><223> Delta-6-Desaturase <400> 73 atg gct aac aaa tct cca cca aac ccc aaa aca ggt tac att acc agc Met Ala Asn Lys Ser Pro Pro Asn Pro Lys Thr Gly Tyr Ile Thr Ser Met Ala Asn Lys Ser Pro Pro Asn Pro Lys Thr Gly Tyr Ile Thr Ser 10</pre>	_. 96
<pre><223> Delta-6-Desaturase <400> 73 atg gct aac aaa tct cca cca aac ccc aaa aca ggt tac att acc agc Met Ala Asn Lys Ser Pro Pro Asn Pro Lys Thr Gly Tyr Ile Thr Ser Met Ala Asn Lys Ser Pro Pro Asn Pro Lys Thr Gly Tyr Ile Thr Ser 10</pre>	96
<pre><223> Delta-6-Desaturase <400> 73 atg gct aac aaa tct cca cca aac ccc aaa aca ggt tac att acc agc Met Ala Asn Lys Ser Pro Pro Asn Pro Lys Thr Gly Tyr Ile Thr Ser Met Ala Asn Lys Ser Pro Pro Asn Pro Lys Thr Gly Tyr Ile Thr Ser 10</pre>	. 96 144 192
<pre><223> Delta-6-Desaturase <400> 73 atg gct aac aaa tct cca cca aac ccc aaa aca ggt tac att acc agc Met Ala Asn Lys Ser Pro Pro Asn Pro Lys Thr Gly Tyr Ile Thr Ser 10</pre>	. 96 144 192 240

										·							
		115					120					125					
ttt Phe	cta Leu 130	acg Thr	agc Ser	gtg Val	acc Thr	gga Gly 135	gtc Val	ctt Leu	tgc Cys	agc Ser	gac Asp 140	agt Ser	gcg Ala	tgg Trp	gtc Val		432
cat His 145	ctg Leu	gct Ala	agc Ser	Gly ggc	gca Ala 150	gca Ala	atg Met	ggg ggg	ttc Phe	gcc Ala 155	tgg Trp	atc Ile	cag Gln	tgc Cys	gga Gly 160		480
tgg Trp	ata Ile	ggt Gly	cac His	gac Asp 165	tct Ser	Gly ggg	cat His	tac Tyr	cgg Arg 170	att Ile	atg Met	tct Ser	gac Asp	agg Arg 175	aaa Lys		528
tgg Trp	aac Asn	Trp	ttc Phe 180	gcġ Ala	cag Gln	gtc Val	ctg Leu	agc Ser 185	aca Thr	aac Asn	tgc Cys	ctc Leu	cag Gln 190	GJÀ aaa	atc Ile		576
agt Ser	atc Ile	ggg Gly 195	tgg Trp	tgg Trp	aag Lys	tgg Trp	aac Asn 200	cat His	aac Asn	gcc Ala	cac His	cac His 205	att Ile	gct Ala	tgc Cys		624
aat Asn	agc Ser 210	ctg Leu	gac Asp	tac Tyr	gac Asp	ccc Pro 215	gac Asp	ctc Leu	cag Gln	tat Tyr	atc Ile 220	cct Pro	ttg Leu	ctc Leu	gtg Val		672
gtc Val 225	tcc Ser	ccc Pro	aag Lys	ttc Phe	ttc Phe 230	aac Asn	tcc Ser	ctt Leu	act Thr	tct Ser 235	cgt Arg	ttc Phe	tac Tyr	gac Asp	aag Lys 240		720
aag Lys	ctg Leu	aat Asn	ttc Phe	gac Asp 245	Gly	gtg Val	tca Ser	agg Arg	ttt Phe 250	ctg Leu	gtt Val	tgc Cys	tac Tyr	cag Gln 255	cac His		768
tgg Trp	acg Thr	ttt Phe	tat Tyr 260	cca Pro	gtc Val	atg Met	tgt Cys	gtc Val 265	gct Ala	agg Arg	cta Leu	aaç Asn	atg Met 270	atc Ile	gca Ala	٠.	816
cag Gln	tcg Ser	ttt Phe 275	ata Ile	acg Thr	ctt Leu	ttc Phe	tcg Ser 280	agc Ser	agg Arg	gag Glu	gtg Val	ggt Gly 285	cat His	agg Arg	gcg Ala		864
caa Gln	gag Glu 290	att Ile	ttc Phe	gga Gly	ctt Leu	gct Ala 295	gtg Val	ttt Phe	tgg Trp	gtt Val	tgg Trp 300	ttt Phe	ccg Pro	ctc Leu	ctg Leu		912
ctc Leu 305	tct Ser	tgc Cys	tta Leu	cct Pro	aat Asn 310	tgg Trp	agc Ser	gag Glu	agg Arg	att Ile 315	atg Met	ttt Phe	ctg Leu	cta Leu	gcg Ala 320		960
agc Ser	tat Tyr	tcc Ser	gtt Val	acg Thr 325	GŢĀ	ata Ile	cag Gln	cac His	gtg Val 330	cag Gln	ttc Phe	agc Ser	ttg Leu	aac Asn 335	cat His		1008
ttt Phe	tct Ser	tcg Ser	gac Asp 340	Val	tac Tyr	gtg Val	Gly	ccg Pro 345	cca Pro	gta Val	gct Ala	aac Asn	gac Asp 350	Trp	ttc Phe		1056
aag Lys	aaa Lys	cag Gln 355	act Thr	gct Ala	Gly	aca Thr	ctt Leu 360	Asn	ata Ile	tcg Ser	tgc Cys	ccg Pro 365	Ala	tgg Trp	atg Met		1104
gac Asp	tgg Trp 370	Phe	cat His	ggc	. ela aaa	ttg Leu 375	Gln	ttt Phe	cag Gln	Val	gag Glu 380	His	cac His	ttg Leu	ttt Phe		1152
ccg Pro	cgg Arg	atg Met	cct Pro	agg Arg	ggt	cag Gln	ttt Phe	agg Arg	aag Lys	att Ile	tct Ser	cct	ttt Phe	gtg Val	agg Arg		1200

PCT/EP2004/007957 WO 2005/012316 119 400 390 385 gat ttg tgt aag aaa cac aac ttg cct tac aat atc gcg tct ttt act 1248 Asp Leu Cys Lys Lys His Asn Leu Pro Tyr Asn Ile Ala Ser Phe Thr. 405 aaa gca aac gtg ttg acg ctt aag acg ctg aga aat acg gcc att gag 1296 Lys Ala Asn Val Leu Thr Leu Lys Thr Leu Arg Asn Thr Ala Ile Glu gct cgg gac ctc tct aat ccg acc cca aag aat atg gtg tgg gaa gcc 1344 Ala Arg Asp Leu Ser Asn Pro Thr Pro Lys Asn Met Val Trp Glu Ala 440 1362 gtc cac aca cac ggc tag Val His Thr His Gly 450 <210> 74 <211> 453 <212> PRT <213> Primula vialii <400> 74 Met Ala Asn Lys Ser Pro Pro Asn Pro Lys Thr Gly Tyr Ile Thr Ser Ser Asp Leu Lys Gly His Asn Lys Ala Gly Asp Leu Trp Ile Ser Ile His Gly Glu Val Tyr Asp Val Ser Ser Trp Ala Gly Leu His Pro Gly 40

Gly Ser Ala Pro Leu Met Ala Leu Ala Gly His Asp Val Thr Asp Ala

Phe Leu Ala Tyr His Pro Pro Ser Thr Ala Arg Leu Leu Pro Pro Leu

Ser Thr Asn Leu Leu Gln Asn His Ser Val Ser Pro Thr Ser Ser

Asp Tyr Arg Lys Leu Leu His Asn Phe His Lys Ile Gly Met Phe Arg 105

Ala Arg Gly His Thr Ala Tyr Ala Thr Phe Val Ile Met Ile Val Met

Phe Leu Thr Ser Val Thr Gly Val Leu Cys Ser Asp Ser Ala Trp Val

His Leu Ala Ser Gly Ala Ala Met Gly Phe Ala Trp Ile Gln Cys Gly

Trp Ile Gly His Asp Ser Gly His Tyr Arg Ile Met Ser Asp Arg Lys

- Trp Asn Trp Phe Ala Gln Val Leu Ser Thr Asn Cys Leu Gln Gly Ile 180 185 190
- Ser Ile Gly Trp Trp Lys Trp Asn His Asn Ala His His Ile Ala Cys 195 200 205
- Asn Ser Leu Asp Tyr Asp Pro Asp Leu Gln Tyr Ile Pro Leu Leu Val 210 215 220
- Val Ser Pro Lys Phe Phe Asn Ser Leu Thr Ser Arg Phe Tyr Asp Lys 225 230 230
- Lys Leu Asn Phe Asp Gly Val Ser Arg Phe Leu Val Cys Tyr Gln His 245 250 255
- Trp Thr Phe Tyr Pro Val Met Cys Val Ala Arg Leu Asn Met Ile Ala 260 265 270
- Gln Ser Phe Ile Thr Leu Phe Ser Ser Arg Glu Val Gly His Arg Ala 275 280 285
- Gln Glu Ile Phe Gly Leu Ala Val Phe Trp Val Trp Phe Pro Leu Leu 290 295 300
- Leu Ser Cys Leu Pro Asn Trp Ser Glu Arg Ile Met Phe Leu Leu Ala 305 310 315 320
- Ser Tyr Ser Val Thr Gly Ile Gln His Val Gln Phe Ser Leu Asn His 325 330 335
- Phe Ser Ser Asp Val Tyr Val Gly Pro Pro Val Ala Asn Asp Trp Phe 340 345
- Lys Lys Gln Thr Ala Gly Thr Leu Asn Ile Ser Cys Pro Ala Trp Met 355 360 365
- Asp Trp Phe His Gly Gly Leu Gln Phe Gln Val Glu His His Leu Phe
- Pro Arg Met Pro Arg Gly Gln Phe Arg Lys Ile Ser Pro Phe Val Arg 385 390 395 400
- Asp Leu Cys Lys Lys His Asn Leu Pro Tyr Asn Ile Ala Ser Phe Thr 405 410 415
- Lys Ala Asn Val Leu Thr Leu Lys Thr Leu Arg Asn Thr Ala Ile Glu 420 425 430
- Ala Arg Asp Leu Ser Asn Pro Thr Pro Lys Asn Met Val Trp Glu Ala 435 440 445

Val His Thr His Gly 450	
<210> 75 <211> 903 <212> DNA <213> Ostreococcus tauri	
<220> <221> CDS <222> (1)(903) <223> Delta-5-Elongase	
<pre><400> 75 atg agc gcc tcc ggt gcg ctg ctg ccc gcg atc gcg tcc gcc gcg tac atg agc gcc tcc ggt gcg ctg ctg ccc gcg atc gcg tcc gcc gcg tac Met Ser Ala Ser Gly Ala Leu Leu Pro Ala Ile Ala Ser Ala Ala Tyr 10 15</pre>	48
gcg tac gcg acg tac gcc tac gcc ttt gag tgg tcg cac gcg aat ggc Ala Tyr Ala Thr Tyr Ala Tyr Ala Phe Glu Trp Ser His Ala Asn Gly 20 25 30	96
atc gac aac gtc gac gcg cgc gag tgg atc ggt gcg ctg tcg ttg agg Ile Asp Asn Val Asp Ala Arg Glu Trp Ile Gly Ala Leu Ser Leu Arg 35 40 45	144
ctc ccg gcg atc gcg acg atg tac ctg ttg ttc tgc ctg gtc gga Leu Pro Ala Ile Ala Thr Thr Met Tyr Leu Leu Phe Cys Leu Val Gly	192
ccg agg ttg atg gcg aag cgc gag gcg ttc gac ccg aag ggg ttc atg Pro Arg Leu Met Ala Lys Arg Glu Ala Phe Asp Pro Lys Gly Phe Met 70 75 80	240
ctg gcg tac aat gcg tat cag acg gcg ttc aac gtc gtc gtg ctc ggg ctg gcg tac aat gcg tat cag acg gcg ttc aac gtc gtc gtg ctc ggg ctg gcg tac aat gcg tat cag acg gcg ttc aac gtc gtc gtg ctc ggg ctg gcg tac aat gcg tat cag acg gcg ttc aac gtc gtc gtg ctc ggg ctg gcg tac aat gcg tat cag acg gcg ttc aac gtc gtc gtg ctc ggg ctg gcg tac aat gcg tac aac gtc gtc gtg ctc ggg ctg gcg tac aat gcg scg ttc aac gtc gtc gtg ctc ggg ctg gcg tac aat gcg tac aac gtc gtc gtg ctc ggg ctg gcg tac aat gcg tac aac gtc gtc gtg ctc ggg ctg gcg tac aac gtc gtc gtg ctc ggg ctg gcg tac aac gtc gtc gtg ctc ggg ctg gcg tac aac gtc gtc gtc gtg ctc ggg ctg gcg tac aac gtc gtc gtc gtg ctc ggg ctg gcg tac aac gtc gtc gtc gtc gtg ctg gcg tac aac gtc gtc gtc gtg ctc ggg ctg gcg tac aac gtc gtc gtc gtc gtg ctg gcg tac aac gtc gtc gtc gtc gtg ctg gcg tac aac gcc gcg tac aac gtc gtc gtc gtc gtc gtc gtc gtc gcg ctg gcg tac aac gcc gcg tac aac gtc gtc gtc gtc gtc gtc gtc gtc gtc gt	288
atg ttc gcg cga gag atc tcg ggg ctg ggg cag ccc gtg tgg ggg tca Met Phe Ala Arg Glu Ile Ser Gly Leu Gly Gln Pro Val Trp Gly Ser 100 105	336
acc atg ccg tgg agc gat aga aaa tcg ttt aag atc ctc ctc ggg gtg Thr Met Pro Trp Ser Asp Arg Lys Ser Phe Lys Ile Leu Leu Gly Val 115 120 125	384
tgg ttg cac tac aac aac aaa tat ttg gag cta ttg gac act gtg ttc Trp Leu His Tyr Asn Asn Lys Tyr Leu Glu Leu Leu Asp Thr Val Phe 130 135	432
atg gtt gcg cgc aag aag acg aag cag ttg agc ttc ttg cac gtt tat Met Val Ala Arg Lys Lys Thr Lys Gln Leu Ser Phe Leu His Val Tyr 145 150 150	480
cat cac gcc ctg ttg atc tgg gcg tgg tgg ttg gtg tgt cac ttg atg His His Ala Leu Leu Ile Trp Ala Trp Trp Leu Val Cys His Leu Met 165 170 175	528
gcc acg aac gat tgt atc gat gcc tac ttc ggc gcg gcg tgc aac tcg Ala Thr Asn Asp Cys Ile Asp Ala Tyr Phe Gly Ala Ala Cys Asn Ser 180 185	576
ttc att cac atc gtg atg tac tcg tat tat ctc atg tcg gcg ctc ggc Phe Ile His Ile Val Met Tyr Ser Tyr Tyr Leu Met Ser Ala Leu Gly	624

VO 200	J3/U1.	2310													PC 17.	LP200	4/00/3
									12	22							
		195					200					205					
att Ile	cga Arg 210	tgc Cys	ccg Pro	tgg Trp	aag Lys	cga Arg 215	tac Tyr	atc Ile	acc Thr	cag Gln	gct Ala 220	caa Gln	atg Met	ctc Leu	caa Gln		672
ttc Phe 225	gtc Val	att Ile	gtc Val	ttc Phe	gcg Ala 230	cac His	gcc Ala	gtg Val	ttc Phe	gtg Val 235	ctg Leu	cgt Arg	cag Gln	aag Lys	cac His 240		720
tgc Cys	ccg Pro	gtc Val	acc Thr	ctt Leu 245	cct Pro	tgg Trp	gcg Ala	caa Gln	atg Met 250	ttc Phe	gtc Val	atg Met	acg Thr	aac Asn 255	atg Met		768
	gtg Val																816
cgc Arg	ggc Gly	gac Asp 275	ggc Gly	gcg Ala	agt Ser	tcc Ser	gtg Val 280	aaa Lys	cca Pro	gcc Ala	gag Glu	acc Thr 285	acg Thr	cgc Arg	gcg Ala	•	864
ccc Pro	agc Ser 290	gtg Val	cga Arg	cgc Arg	acg Thr	cga Arg 295	tct Ser	cga Arg	aaa Lys	att Ile	gac Asp 300	taa					903
<21 <21 <21 <21	1> 3 2> 3	76 300 PRT Ostre	e0000	ccus	tau	ri											
<40	0>	76															
Met 1	Ser	Ala	Ser	Gly 5	Ala	Leu	Leu	Pro	Ala 10	Ile	Ala	Seŗ	Ala	Ala 15	Tyr		
Ala	Tyr	Ala	Thr 20	Tyr	Ala	Tyr	Ala	Phe 25	Glu	Trp	Ser	His	Ala 30	Asn	Gly		
Ile	Asp	Asn 35	Val	Asp	Ala	Arg	Glu 40	Trp	Ile	Gly	Ala	Leu 45	Ser	Leu	Arg		
Leu	Pro 50	Ala	Ile	Ala	Thr	Thr 55	Met	Tyr	Leu	Leu	Phe 60	Cys	Leu	Val	Gly		
Pro 65	Arg	Leu	Met	Ala	Lys 70	Arg	Glu	Ala	Phe	Asp 75	Pro	Lys	Gly	Phe	Met 80		
Leu	Ala	Tyr	Asn	Ala 85	Tyr	Gln	Thr	Ala	Phe 90	Asn	Val	Val	Val	Leu 95	Gly		
Met	Phe	Ala	Arg 100	Glu	Ile	Ser	Gly	Leu 105	Gly	Gln	Pro	Val	Trp 110	Gly	Ser		
Thr	Met	Pro 115	Trp	Ser	Asp	Arg	Lys 120	Ser	Phe	Lys	Ile	Leu 125	Leu	Gly	Val		
Trp	Leu	His	Tyr	Asn	Asn	Lys	тут	Leu	Glu	Leu	Leu	Asp	Thr	Val	Phe		

Met Val Ala Arg Lys Lys Thr Lys Gln Leu Ser Phe Leu His Val Tyr 145 150 150 155 160	
His His Ala Leu Leu Ile Trp Ala Trp Trp Leu Val Cys His Leu Met 165 170 175	
Ala Thr Asn Asp Cys Ile Asp Ala Tyr Phe Gly Ala Ala Cys Asn Ser 180 185 190	
Phe Ile His Ile Val Met Tyr Ser Tyr Tyr Leu Met Ser Ala Leu Gly 195 200	
Ile Arg Cys Pro Trp Lys Arg Tyr Ile Thr Gln Ala Gln Met Leu Gln 210 215 220	
Phe Val Ile Val Phe Ala His Ala Val Phe Val Leu Arg Gln Lys His 225 230 235 240	
Cys Pro Val Thr Leu Pro Trp Ala Gln Met Phe Val Met Thr Asn Met 255	
Leu Val Leu Phe Gly Asn Phe Tyr Leu Lys Ala Tyr Ser Asn Lys Ser 260 265 270	
Arg Gly Asp Gly Ala Ser Ser Val Lys Pro Ala Glu Thr Thr Arg Ala 275 280 285	
Pro Ser Val Arg Arg Thr Arg Ser Arg Lys Ile Asp 290 295 300	
<210> 77 <211> 903 <212> DNA <213> Ostreococcus tauri	
<220> <221> CDS <222> (1)(903) <223> Delta-5-Elongase	
<pre><400> 77 atg agc gcc tcc ggt gcg ctg ctg ccc gcg atc gcg ttc gcc gcg tac atg agc gcc tcc ggt gcg ctg ctg ccc gcg atc gcg ttc gcc gcg tac Met Ser Ala Ser Gly Ala Leu Leu Pro Ala Ile Ala Phe Ala Ala Tyr 1 10 15</pre>	48
gcg tac gcg acg tac gcc tac gcc ttt gag tgg tcg cac gcg aat ggc Ala Tyr Ala Thr Tyr Ala Tyr Ala Phe Glu Trp Ser His Ala Asn Gly 20 25	96
atc gac aac gtc gac gcg cgc gag tgg atc ggt gcg ctg tcg ttg agg Ile Asp Asn Val Asp Ala Arg Glu Trp Ile Gly Ala Leu Ser Leu Arg 35 40	144
ctc ccg gcg atc gcg acg acg atg tac ctg ttg ttc tgc ctg gtc gga Leu Pro Ala Ile Ala Thr Thr Met Tyr Leu Leu Phe Cys Leu Val Gly	192

								•								
	50					55					60					
ccg Pro 65	agg Arg	ttg Leu	atg Met	gcg Ala	aag Lys 70	cgc Arg	gag Glu	gcg Ala	ttc Phe	gac Asp 75	ccg Pro	aag Lys	Gly ggg	ttc Phe	atg Met 80	240
ctg Leu	gcg Ala	tac Tyr	aat Asn	gcg Ala 85	tat Tyr	cag Gln	acg Thr	gcg Ala	ttc Phe 90	aac Asn	gtc Val	gtc Val	gtg Val	ctc Leu 95	GJA aaa	288
				gag Glu												336
				agc Ser												384
tgg Trp	ttg Leu 130	cac His	tac Tyr	aac Asn	aac Asn	aaa Lys 135	tat Tyr	ttg Leu	gag Glu	cta Leu	ttg Leu 140	gac Asp	act Thr	gtg Val	ttc Phe	432
atg Met 145	gtt Val	gcg Ala	cgc Arg	aag Lys	aag Lys 150	acg Thr	aag Lys	cag Gln	ttg Leu	agc Ser 155	ttc Phe	ttg Leu	cac His	gtt Val	tat Tyr 160	480
cat His	cac His	gcc Ala	ctg Leu	ttg Leu 165	atc Ile	tgg Trp	gcg Ala	tgg Trp	tgg Trp 170	ttg Leu	gtg Val	tgt Cys	cac His	ttg Leu 175	atg Met	528
gcc Ala	acg Thr	aac Asn	gat Asp 180	tgt Cys	atc Ile	gat Asp	gcc Ala	tac Tyr 185	ttc Phe	ggc	gcg Ala	gcg Ala	tgc Cys 190	aac Asn	tcg Ser	576
ttc Phe	att Ile	cac His 195	atc Ile	gtg Val	atg Met	tac Tyr	tcg Ser 200	tat Tyr	tat Tyr	ctc Leu	atg Met	tcg Ser 205	gcg Ala	ctc Leu	Gly	624
att Ile	cga Arg 210	tgc Cys	ccg Pro	tgg Trp	aag Lys	cga Arg 215	tac Tyr	atc Ile	acc Thr	cag Gln	gct Ala 220	caa Gln	atg Met	ctc Leu	caa Gln	672
ttc Phe 225	gtc Val	att Ile	gtc Val	ttc Phe	gcg Ala 230	cac His	gcc Ala	gtg Val	ttc Phe	gtg Val 235	ctg Leu	cgt Arg	cag Gln	aag Lys	cac His 240	720
tgc Cys	ccg Pro	gtc [.] Val	acc Thr	ctt Leu 245	cct Pro	tgg Trp	gcg Ala	caa Gln	atg Met 250	ttc Phe	gtc Val	atg Met	acg Thr	aac Asn 255	atg Met	768
ctc Leu	gtg Val	ctc Leu	ttc Phe 260	GJA aaa	aac Asn	ttc Phe	tac Tyr	ctc Leu 265	aag Lys	gcg Ala	tac Tyr	tcg Ser	aac Asn 270	aag Lys	tcg Ser	816
cgc Arg	Gly Gly	gac Asp 275	ggc Gly	gcg Ala	agt Ser	tcc Ser	gtg Val 280	aaa Lys	cca Pro	gcc Ala	gag Glu	acc Thr 285	acg Thr	cgc Arg	gcg Ala	864
				cgc Arg								taa				903

<210> 78 ...
<211> 300
<212> PRT
<213> Ostreococcus tauri

5 mg - 1

<400> 78

Met Ser Ala Ser Gly Ala Leu Leu Pro Ala Ile Ala Phe Ala Ala Tyr 1 5 10 15

Ala Tyr Ala Thr Tyr Ala Tyr Ala Phe Glu Trp Ser His Ala Asn Gly
20 25 30

Ile Asp Asn Val Asp Ala Arg Glu Trp Ile Gly Ala Leu Ser Leu Arg 35 40 45

Leu Pro Ala Ile Ala Thr Thr Met Tyr Leu Leu Phe Cys Leu Val Gly 50

Pro Arg Leu Met Ala Lys Arg Glu Ala Phe Asp Pro Lys Gly Phe Met 65 70 . 75

Leu Ala Tyr Asn Ala Tyr Gln Thr Ala Phe Asn Val Val Val Leu Gly 85 90 95.

Met Phe Ala Arg Glu Ile Ser Gly Leu Gly Gln Pro Val Trp Gly Ser 100 . 105

Thr Met Pro Trp Ser Asp Arg Lys Ser Phe Lys Ile Leu Leu Gly Val 115 120 125

Trp Leu His Tyr Asn Asn Lys Tyr Leu Glu Leu Leu Asp Thr Val Phe 130 135 140

Met Val Ala Arg Lys Lys Thr Lys Gln Leu Ser Phe Leu His Val Tyr 145 150 150 150 160

His His Ala Leu Leu Ile Trp Ala Trp Trp Leu Val Cys His Leu Met 165 170 170 175

Ala Thr Asn Asp Cys Ile Asp Ala Tyr Phe Gly Ala Ala Cys Asn Ser 180 185 190

Phe Ile His Ile Val Met Tyr Ser Tyr Tyr Leu Met Ser Ala Leu Gly 195 200 205

Ile Arg Cys Pro Trp Lys Arg Tyr Ile Thr Gln Ala Gln Met Leu Gln 210 215 220

Phe Val Ile Val Phe Ala His Ala Val Phe Val Leu Arg Gln Lys His 225 230 230

Cys Pro Val Thr Leu Pro Trp Ala Gln Met Phe Val Met Thr Asn Met 245

Leu Val Leu Phe Gly Asn Phe Tyr Leu Lys Ala Tyr Ser Asn Lys Ser 265

Arg	Gly	Asp	Gly	Ala	Ser	Ser	Val	Lys	Pro	Ala	Glu	Thr	Thr	Arg	Ala
		275					280					285			

Pro	Ser	Val	Arg	Arg	Thr	Arg	Ser	Arg	Lys	Ile	Asp
	290					295					300

<210> <211> <212> <213> <220> <221> <222> <223>	903 DNA	-	3)		ri			. ,		·					
<400> atg ag Met Se 1															48
gcg ta Ala Ty															, 96
atc ga Ile As															144
ctc cc Leu Pr 50	o Ala	atc Ile	gcg Ala	acg Thr	acg Thr 55	atg Met	tac Tyr	ctg Leu	ttg Leu	ttc Phe 60	tgc Cys	ctg Leu	gtc Val	gga Gly	192
ccg ag Pro Ar 65															240
ctg gc Leu Al															288
atg tt Met Ph															336
acc at Thr Me															384
tgg tt Trp Le 13	u His														432
atg gt Met Va 145															480
cat ca His Hi															528
gcc ac Ala Th															576

`										12	7							
				180					185					190				
	ttc Phe	att Ile	cac His 195	atc Ile	gtg Val	atg Met	tac Tyr	tcg Ser 200	tat Tyr	tat Tyr	ctc Leu	atg Met	tcg Ser 205	gcg Ala	ctc Leu	Gly	6	24
	att Ile	cga Arg 210	tgc Cys	ccg Pro	tgg Trp	aag Lys	cga Arg 215	tac Tyr	atc Ile	acc Thr	cag Gln	gct Ala 220	caa Gln	atg Met	ctc Leu	caa Gln	6	72
	ttc Phe 225	gtc Val	att Ile	gtc Val	ttc Phe	gcg Ala 230	cac His	gcc Ala	gtg Val	ttc Phe	gtg Val 235	ctg Leu	cgt Arg	cag Gln	aag Lys	cac His 240	7	Ż0
	tgc Cys	ccg Pro	gtc Val	acc Thr	ctt Leu 245	cct Pro	tgg Trp	gcg Ala	caa Gln	atg Met 250	ttc Phe	gtc Val	atg Met	acgʻ Thr	aac Asn 255	atg Met	7	68
	ctc Leu	gtg Val	ctc Leu	ttc Phe 260	GJĀ āāā	aac Asn	ttc Phe	tac Tyr	ctc Leu 265	aag Lys	gcg Ala	tac Tyr	tcg Ser	aac Asn 270	aag Lys	tcg Ser	8	16
	cgc	ggc Gly	gac Asp 275	ggc	gcg Ala	agt Ser	tcc Ser	gtg Val 280	aaa Lys	cca Pro	gcc Ala	gag Glu	acc Thr 285	acg Thr	cgc Arg	gcg Ala	ε	364
	ccc Pro	agc Ser 290	Val	cga Arg	cgc Arg	acg Thr	cga Arg 295	tct Ser	cga Arg	aaa Lys	att Ile	gac Asp 300	taa				2	03
	<21 <21 <21 <21	1> 2> 3>	80 300 PRT Ostr	eoco	ccus	tau	ri											
	Met 1	Ser	Ala	Ser	Gly 5	Ala	Leu	Leu	Pro	Ala 10	Ile	Ala	Ser	Ala	Ala 15	Tyr		
	Ala	Тух	: Ala	Thr 20	Туг	Ala	Tyr	Ala	Phe 25	Glu	Trp	Ser	His	Ala 30	Asn	Gly		
	Ile	Asp	Asn 35	v Val	. Asp	Ala	Arg	Glu 40	Trp	Ile	Gly	Ala	Leu 45	ser	Leu	Arg		-
	Leu	Pro 50	Ala	ıle	a Ala	Thr	Thr 55	Met	Tyr	Leu	Leu	Phe 60	Cys	. Leu	Val	Gly		
	Pro 65	Arg	g Lev	ı Met	: Ala	Lys 70	Arg	Glu	ı Ala	Phe	Asr 75	Pro	Lys	Gly	Phe	Met 80		
	Lev	a Ala	а Туг	: Asr	n Ala 85	а Туг	Gln	Thi	Ala	Phe 90	e Ası	ı Val	. Val	l Val	. Leu 95	ı Gly		
	Met	: Phe	e Ala	Arg 100		ı Ile	e Ser	Gly	/ Let 105	1 G13	g Gli	n Pro	Va.	110	G13	y Ser		
	The	. Me	t Pro		o Sei	r Asg	Arg	J Lys 120	s Sei	r Phe	e Ly	s Ile	12!	ı Lev	ı Gly	y Val		

Trp Leu His Tyr Asn Asn Gln Tyr Leu Glu Leu Leu Asp Thr Val Phe Met Val Ala Arg Lys Lys Thr Lys Gln Leu Ser Phe Leu His Val Tyr 155 His His Ala Leu Leu Ile Trp Ala Trp Trp Leu Val Cys His Leu Met 165 170 Ala Thr Asn Asp Cys Ile Asp Ala Tyr Phe Gly Ala Ala Cys Asn Ser Phe Ile His Ile Val Met Tyr Ser Tyr Tyr Leu Met Ser Ala Leu Gly Ile Arg Cys Pro Trp Lys Arg Tyr Ile Thr Gln Ala Gln Met Leu Gln 215 Phe Val Ile Val Phe Ala His Ala Val Phe Val Leu Arg Gln Lys His Cys Pro Val Thr Leu Pro Trp Ala Gln Met Phe Val Met Thr Asn Met 245 250 Leu Val Leu Phe Gly Asn Phe Tyr Leu Lys Ala Tyr Ser Asn Lys Ser 260 265 Arg Gly Asp Gly Ala Ser Ser Val Lys Pro Ala Glu Thr Thr Arg Ala 280 285 Pro Ser Val Arg Arg Thr Arg Ser Arg Lys Ile Asp 295 <210> 81 <211> 879 <212> DNA <213> Ostreococcus tauri <220> <221> CDS <222> (1)..(879) <223> Delta-6-Elongase <400> 81 atg agt ggc tta cgt gca ccc aac ttt tta cac aga ttc tgg aca aag 48 Met Ser Gly Leu Arg Ala Pro Asn Phe Leu His Arg Phe Trp Thr Lys 10 tgg gac tac gcg att tcc aaa gtc gtc ttc acg tgt gcc gac agt ttt 9.6 Trp Asp Tyr Ala Ile Ser Lys Val Val Phe Thr Cys Ala Asp Ser Phe 20 25 cag tgg gac atc ggg cca gtg agt tcg agt acg gcg cat tta ccc gcc Gln Trp Asp Ile Gly Pro Val Ser Ser Ser Thr Ala His Leu Pro Ala

											129	9									
		3	5					40						45	5						
att Ile	. ga . G]	lu s	.cc Ser	cct Pro	acc Thr	cca Pro	ctg Leu 55	gtg Val	r ac . Th	ct a	agc Ser	ctc Leu	tte Lev 60	j ti	tc he '	tac Tyr	tta Leu	g V	tc al	192	
Thr 65	· Va	al 1	?he	Leu	Trp	tat Tyr 70	GTĀ	Arg	ادل	eu :	LIII	75	56.		-			8	0	240	
Ile	a A:	rg (Glu	Pro	Thr 85	tgg Tr	Leu	AI	д А	rg .	90						95			288	
Phe	e L	eu	Ile	Val 100	Le	agt Sei	Le	ı Ty	1	.05	Cys	Dec		, ,		110			•	336	
Ala	аТ	Άľ	Gln 115	Asn	GT:	a tai	r jin	12	0	. .	013			1	125	-				384	
ga Gl	u 7	ct hr	cag Gln	ctt Lev	gc Al	t cto a Le	c ta u Ty 13	r TT	t t	cac fyr	att Ile	Pho	t ta e Ty 14	_	gta Val	agt Ser	aa Ly	a a	ata Ile	432	
ta Ty 14	T (gag 3lu	ttt Phe	gta Va	L As	t ac p Th · 15	r Ty	c at r Il	t a .e 1	atg Met	ctt Leu	ct Le 15		ng a	aat Asn	aac Asr	tt Le	g u	cgg Arg 160	480)
ca Gl	ia (gta Val	aga	tto Pho	c ct e Le 16	a ca u Hi 55	c ac	t te ur Ty	at (/r)	cac His	cac His	, 56	c ac r Tl	eg hr	att Ile	Sei	Ph 17	t e 5	att Ile	528	3
tç Tı	rb ig	tgg Trp	ato Ile	e at e Il 18	e Al	t co .a Ar	g ag	g A	La	ccg Pro 185	317	gg Gl	t g y A	at sp	gct	19	e tt r Pl	ie ie	agc Ser	57	
A.	la	Ala	Le ¹	u As 5	n Se	er To	D V	al H 2	00	vaı	. cy.	5 14C		<i>1</i>	205	5		•		. 62	4
t L	ta eu	tca Ser 210	Th	c ct r Le	ta u I	tt gg le G	TA T	aa g ys G 15	aa lu	gat Asp	cc Pr	t aa o Ly		gt rg 20	Se	c aa c As	c to n T	ac yr	ctt Leu	67	2
T	gg rp 25	tgç Tr <u>r</u>	gg Gl	t co	gc c	ıs L	ta a eu T 30	cg c hr G	aa In	ato Met	g ca : Gl		tg c et I 35	tt eu	Gl	g tt n Ph	t t e P	tc he	ttc Phe 240	72	:О
a A	ac sn	gta Val	a ct L Le	t ca	ln A	cg t la L 45	tg t eu T	ac t yr (ys gc	gci Ala	t to a Se 25		tc t he s	ct Ser	ac Th	g ta r Ti	r P	cc ro 55	aag Lys	76	58
t	tt Phe	tt: Le:	g to ıSe	er L	aa a ys I 60	tt c	tg o eu I	tc g	gtc /al	tа: Ту: 26	r Me	ga t M	tg a et :	agc Ser	ct Le		c g su G 70	igc	ttg Leu	83	16
t I	ctt Phe	Gl;	y H:	at t is P 75	tc t he :	ac t Yr T	at (ser .	aag Lys 280	HI	c at s II	a g le A	ca la	gca Ala	go Al 28		ag o ys I	teu	cag Gln	8	64
			s G	ag c ln G		ga	•									٠				8	79

<211> 292 <212> PRT

<213> Ostreococcus tauri

<400> 82

Met Ser Gly Leu Arg Ala Pro Asn Phe Leu His Arg Phe Trp Thr Lys 10

Trp Asp Tyr Ala Ile Ser Lys Val Val Phe Thr Cys Ala Asp Ser Phe

Gln Trp Asp Ile Gly Pro Val Ser Ser Ser Thr Ala His Leu Pro Ala 40

Ile Glu Ser Pro Thr Pro Leu Val Thr Ser Leu Leu Phe Tyr Leu Val

Thr Val Phe Leu Trp Tyr Gly Arg Leu Thr Arg Ser Ser Asp Lys Lys

Ile Arg Glu Pro Thr Trp Leu Arg Arg Phe Ile Ile Cys His Asn Ala 90

Phe Leu Ile Val Leu Ser Leu Tyr Met Cys Leu Gly Cys Val Ala Gln 105

Ala Tyr Gln Asn Gly Tyr Thr Leu Trp Gly Asn Glu Phe Lys Ala Thr

Glu Thr Gln Leu Ala Leu Tyr Ile Tyr Ile Phe Tyr Val Ser Lys Ile

Tyr Glu Phe Val Asp Thr Tyr Ile Met Leu Leu Lys Asn Asn Leu Arg

Gln Val Arg Phe Leu His Thr Tyr His His Ser Thr Ile Ser Phe Ile

Trp Trp Ile Ile Ala Arg Arg Ala Pro Gly Gly Asp Ala Tyr Phe Ser 185

Ala Ala Leu Asn Ser Trp Val His Val Cys Met Tyr Thr Tyr Tyr Leu

Leu Ser Thr Leu Ile Gly Lys Glu Asp Pro Lys Arg Ser Asn Tyr Leu

Trp Trp Gly Arg His Leu Thr Gln Met Gln Met Leu Gln Phe Phe

Asn Val Leu Gln Ala Leu Tyr Cys Ala Ser Phe Ser Thr Tyr Pro Lys 250

480

528 .

Phe Leu Ser Lys Ile Leu Leu Val Tyr Met Met Ser Leu Leu Gly Leu 260 265 270	
Phe Gly His Phe Tyr Tyr Ser Lys His Ile Ala Ala Lys Leu Gln 275 280 285	
Lys Lys Gln Gln 290	
<210> 83 <211> 831 <212> DNA <213> Thraustochytrium sp.	
<220> <221> CDS <222> (1)(831) <223> Delta-5-Elongase	
<pre><400> 83 atg gac gtc gtc gag cag caa tgg cgc cgc ttc gtg gac gcc gtg gac Met Asp Val Val Glu Gln Gln Trp Arg Arg Phe Val Asp Ala Val Asp 1 5 10 15</pre>	48
aac gga atc gtg gag ttc atg gag cat gag aag ccc aac aag ctg aac Asn Gly Ile Val Glu Phe Met Glu His Glu Lys Pro Asn Lys Leu Asn 20 25 30	96
gag ggc aag ctc ttc acc tcg acc gag gag atg atg gcg ctt atc gtc Glu Gly Lys Leu Phe Thr Ser Thr Glu Glu Met Met Ala Leu Ile Val 35 40 45	144
ggc tac ctg gcg ttc gtg gtc ctc ggg tcc gcc ttc atg aag gcc ttt Gly Tyr Leu Ala Phe Val Val Leu Gly Ser Ala Phe Met Lys Ala Phe 50 55 60	192
gtc gat aag cct ttc gag ctc aag ttc ctc aag ctc gtg cac aac atc Val Asp Lys Pro Phe Glu Leu Lys Phe Leu Lys Leu Val His Asn Ile 65 70 75 80	240
ttc ctc acc ggt ctg tcc atg tac atg gcc acc gag tgc gcg cgc cag Phe Leu Thr Gly Leu Ser Met Tyr Met Ala Thr Glu Cys Ala Arg Gln 85 90 95	288
gca tac ctc ggc ggc tac aag ctc ttt ggc aac ccg atg gag aag ggc Ala Tyr Leu Gly Gly Tyr Lys Leu Phe Gly Asn Pro Met Glu Lys Gly 100 105 110	336

acc gag tog cac goc cog ggc atg gcc aac atc atc tac atc ttac tac Thr Glu Ser His Ala Pro Gly Met Ala Asn Ile Ile Tyr Ile Phe Tyr

gtg agc aag ttc ctc gaa ttc ctc gac acc gtc ttc atg atc ctc ggc Val Ser Lys Phe Leu Glu Phe Leu Asp Thr Val Phe Met Ile Leu Gly

aag aag tgg aag cag ctc agc ttt ctc cac gtc tac cac cac gcg agc Lys Lys Trp Lys Gln Leu Ser Phe Leu His Val Tyr His His Ala Ser

atc agc ttc atc tgg ggc atc atc gcc cgc ttc gcg ccc ggt ggc gac Ile Ser Phe Ile Trp Gly Ile Ile Ala Arg Phe Ala Pro Gly Gly Asp

155

135

150

/O 2 00	05/01	2316													PCT/E	P2004	4/0079
									13	2							
			-	165					170					175			
gcc Ala	tac Tyr	ttc Phe	tct Ser 180	acc Thr	atc Ile	ctc Leu	aac Asn	agc Ser 185	agc Ser	gtg Val	cat His	gtc V al	gtg Val 190	ctc Leu	tac Tyr		576
ggc	tac Tyr	tac Tyr 195	gcc Ala	tcg Ser	acc Thr	acc Thr	ctc Leu 200	Gly	tac Tyr	acc Thr	ttc Phe	atg Met 205	cgc Arg	ccg Pro	ctg Leu		624
ege Arg	ccg Pro 210	tac Tyr	att Ile	acc Thr	acc Thr	att Ile 215	cag Gln	ctc Leu	acg Thr	cag Gln	ttc Phe 220	atg Met	gcc Ala	atg Met	gtc Val		672
gtc Val 225	cag Gln	tcc Ser	gtc Val	tat Tyr	gac Asp 230	tac Tyr	tac Tyr	aac Asn	ccc Pro	tgc Cys 235	gac Asp	tac Tyr	ccg Pro	cag Gln	ccc Pro 240		720
ctc Leu	gtc Val	aag Lys	ctg Leu	ctc Leu 245	ttc Phe	tgg Trp	tac Tyr	atg Met	ctc Leu 250	acc Thr	atg Met	ctc Leu	Gly	ctc Leu 255	ttc Phe		768
ggc Gly	aac Asn	ttc Phe	ttc Phe 260	gtg Val	cag Gln	cag Gln	tac Tyr	ctc Leu 265	aag Lys	ccc Pro	aag Lys	gcg Ala	ccc Pro 270	aag Lys	aag Lys		816
		acc Thr 275	atc Ile	taa													831
<21 <21 <21 <21	1> : 2> :	84 276 PRT Thra	usto	chyt:	rium	sp.		•									
<40	0>	84												,			
Met 1	Asp	Val	Val	Glu 5	Gln	Gln	Trp	Arg	Arg 10	Phe	Val	Asp	Ala	Val 15	Asp		
Asn	Gly	Ile	Val 20	Glu	Phe	Met	Glu	His 25	Glu	Lys	Pro	Asn	. Lys 30	Leu	Asn		
Glu	Gly	Lys 35	Leu	Phe	Thr	Ser	Thr 40	Glu	Glu	Met	Met	Ala 45	Leu	Ile	Val		
Gly	Тут 50	Leu	Ala	Phe	Val	Val 55	Leu	Gly	Ser	Ala	Phe 60	Met	. Lys	Ala	Phe		
Val .65	Asp	Lys	Pro	Phe	Glu 70	Leu	Lys	Phe	Leu	Lys 75	Leu	. Val	. His	Asn	Ile 80		
Phe	Leu	Thr	Gly	Leu 85	Ser	Met	Туг	Met	Ala 90	Thr	Glu	Cys	a Ala	95	Gln.		
Ala	тут	Leu	Gly 100		Тух	. Lys	Lev	Phe 105		Asr	Pro	Met	: Glu 110	Lys	Gly		
Thr	Glu	Ser 115		. Ala	Pro	Gly	Met 120		Asr	ılle	: Ile	125	: Ile	Phe	Tyr		

Val Ser Lys 130	Phe Leu Glu	Phe Leu As	sp Thr Val	Phe Met Ile 140	Leu Gly
Lys Lys Trp 145	Lys Gln Leu 150	Ser Phe L	eu His Val 155	Tyr His His	Ala Ser 160
Ile Ser Phe	Ile Trp Gly 165	Ile Ile A	la Arg Phe 170	Ala Pro Gly	Gly Asp 175
Ala Tyr Phe	Ser Thr Ile 180		Ser Ser Val .85	His Val Val 190	Leu Tyr
Gly Tyr Tyr 195	Ala Ser Thr	Thr Leu G 200	Sly Tyr Thr	Phe Met Arg 205	Pro Leu
210		215		Phe Met Ala 220	
225	230	•	235	Asp Tyr Pro	_. 240
	245		250	Met Leu Gly	255
Gly Asn Phe	Phe Val Gln 260		Leu Lys Pro 265	Lys Ala Pro 270	Lys Lys
Gln Lys Thr 275		Y.			
<210> 85 <211> 1077 <212> DNA <213> Thal	assiosira ps	eudonana			
	.(1077) a-5-Elongase				
<400> 85 atg tgc tca Met Cys Ser 1	cca ccg ccg Pro Pro Pro 5	tca caa t Ser Gln S	tcc aaa aca Ser Lys Thr 10	aca tcc ctc Thr Ser Leu	cta gca 48 Leu Ala 15
cgg tac acc Arg Tyr Thr	acc gcc gcc Thr Ala Ala 20	Leu Leu L	ctc ctc acc Leu Leu Thr 25	ctc aca acg Leu Thr Thr 30	tgg tgc 96 Trp Cys
cac ttc gcc His Phe Ala 35	ttc cca gcc Phe Pro Ala	gcc acc g `Ala Thr A 40	gcc aca ccc Ala Thr Pro	ggc ctc acc Gly Leu Thr 45	gcc gaa 144 Ala Glu
atg cac tcc Met His Ser	tac aaa gto Tyr Lys Val	cca ctc g Pro Leu G	ggt ctc acc Gly Leu Thr	gta ttc tac Val Phe Tyr	ctg ctg 192 Leu Leu

, 134

								,	•	-						
	50					55					60					
agt Ser 65	cta Leu	ccg Pro	tca Ser	cta Leu	aag Lys 70	tac Tyr	gtt Val	acg Thr	gac Asp	aac Asn 75	tac Tyr	ctt Leu	gcc Ala	aaa Lys	Lys 80	240
															gtg Val	288 .
gcg Ala	caa Gln	gtg Val	ctg Leu 100	ctc Leu	aat Asn	GJ ^A aaa	tgg Trp	acg Thr 105	gtg Val	tat Tyr	gcg Ala	att	gtg Val 110	Asp	gcg Ala	336
gtg Val	atg Met	aat Asn 115	aga Arg	gac Asp	cat His	cct Pro	ttt Phe 120	Ile	gga Gly	agt Ser	aga Arg	agt Ser 125	ttg Leu	gtt Val	GJA aaa	384
gcg Ala	gcg Ala 130	Leu	cat His	agt Ser	GJA aaa	agc Ser 135	tcg Ser	tat Tyr	gcg Ala	gtg Val	tgg Trp 140	gtt Val	cat His	tat Tyr	tgt Cys	432
gat Asp 145	aag Lys	tat Tyr	ttg Leu	gag Glu	ttc Phe 150	ttt Phe	gat Asp	acg Thr	tat Tyr	ttt Phe 155	atg Met	gtg Val	ttġ Leu	agg Arg	ggg Gly 160	480
aaa Lys	atg Met	gac Asp	cag Gln	gtc Val 165	tcc Ser	ttc Phe	ctc Leu	cac His	atc Ile 170	tac Tyr	cac His	cac His	acg Thr	acc Thr 175	ata Ile	528
gcg	tgg Trp	gca Ala	tgg Trp 180	tgg Trp	atc Ile	gcc Ala	ctc Leu	ege Arg 185	ttc Phe	tcc Ser	ccc Pro	ggc Gly	gga Gly 190	gac Asp	att Ile	576
tac Tyr	ttc Phe	ggg Gly 195	gca Ala	ctc Leu	ctc Leu	aac Asn	tcc Ser 200	atc Ile	atc Ile	cac His	gtc Val	ctc Leu 205	atg Met	tat Tyr	tcc Ser	624
tac Tyr	tac Tyr 210	gcc Ala	ctt Leu	gcc Ala	cta Leu	ctc Leu 215	aag Lys	gtc Val	agt Ser	tgt Cýs	cca Pro 220	tgg Trp	aaa Lys	cga Arg	tac Tyr	672
ttg Leu 225	act Thr	caa Gln	gct Ala	caa Gln	tta Leu 230	ttg Leu	caa Gln	ttc Phe	aca Thr	agt Ser 235	gtg Val	gtg Val	gtt Val	tat Tyr	acg Thr 240	720
GJA aaa	tgt Cys	acg [.] Thr	ggt Gly	tat Tyr 245	act Thr	cat His	tac Tyr	tat Tyr	cat His 250	acg Thr	aag Lys	cat His	gga Gly	gcg Ala 255	gat Asp	768
gag Glu	aca Thr	cag Gln	cct Pro 260	agt Ser	tta Leu	gga Gly	acg Thr	tat Tyr 265	tat Tyr	ttc Phe	tgt Cys	tgt Cys	gga Gly 270	gtg Val	cag Gln	816
gtg Val	Phe	gag Glu 275	atg Met	gtt Val	agt Ser	ttg Leu	ttt Phe 280	gta Val	ctc Leu	ttt Phe	tcc Ser	atc Ile 285	ttt Phe	tat Tyr	aaa Lys	864
cga Arg	tcc Ser 290	tạt Tyr	tcg Ser	aag Lys	aag Lys	aac Asn 295	aag Lys	tca Ser	gga Gly	gga Gly	aag Lys 300	gat Asp	agc Ser	aag Lys	aag Lys	912
aat Asn 305	gat Asp	gat Asp	G1Å aaa	aat Asn	aat Asn 310	gag Glu	gat Asp	caa Gln	tgt Cys	cac His 315	aag Lys	gct Ala	atg Met	aag Lys	gat Asp 320	960
ata Ile	tcg Ser	gag Glu	ggt Gly	gcg Ala	aag Lys	gag Glu	gtt Val	gtg Val	Gly ggg	cat His	gca Ala	gcg Ala	aag Lys	gat Asp	gct Ala	1008

WO 2005/012316 135 330 gga aag ttg gtg gct acg gcg agt aag gct gta aag agg aag gga act Gly Lys Leu Val Ala Thr Ala Ser Lys Ala Val Lys Arg Lys Gly Thr 1056 345 340 1077 cgt gtt act ggt gcc atg tag Arg Val Thr Gly Ala Met 355 <210> 86 <211> 358 <212> PRT <213> Thalassiosira pseudonana <400> 86 Met Cys Ser Pro Pro Pro Ser Gln Ser Lys Thr Thr Ser Leu Leu Ala Arg Tyr Thr Thr Ala Ala Leu Leu Leu Leu Thr Leu Thr Thr Trp Cys His Phe Ala Phe Pro Ala Ala Thr Ala Thr Pro Gly Leu Thr Ala Glu Met His Ser Tyr Lys Val Pro Leu Gly Leu Thr Val Phe Tyr Leu Leu Ser Leu Pro Ser Leu Lys Tyr Val Thr Asp Asn Tyr Leu Ala Lys Lys . Tyr Asp Met Lys Ser Leu Leu Thr Glu Ser Met Val Leu Tyr Asn Val Ala Gln Val Leu Leu Asn Gly Trp Thr Val Tyr Ala Ile Val Asp Ala Val Met Asn Arg Asp His Pro Phe Ile Gly Ser Arg Ser Leu Val Gly Ala Ala Leu His Ser Gly Ser Ser Tyr Ala Val Trp Val His Tyr Cys 135 Asp Lys Tyr Leu Glu Phe Phe Asp Thr Tyr Phe Met Val Leu Arg Gly 155 Lys Met Asp Gln Val Ser Phe Leu His Ile Tyr His His Thr Thr Ile Ala Trp Ala Trp Trp Ile Ala Leu Arg Phe Ser Pro Gly Gly Asp Ile

Tyr Phe Gly Ala Leu Leu Asn Ser Ile Ile His Val Leu Met Tyr Ser 200

Tyr Tyr Ala Leu Ala Leu Leu Lys Val Ser Cys Pro Trp Lys Arg Tyr 210 215 220	
Leu Thr Gln Ala Gln Leu Leu Gln Phe Thr Ser Val Val Val Tyr Thr 225 230 235 240	
Gly Cys Thr Gly Tyr Thr His Tyr Tyr His Thr Lys His Gly Ala Asp 245 250 255	
Glu Thr Gln Pro Ser Leu Gly Thr Tyr Tyr Phe Cys Cys Gly Val Gln 260 265 270	
Val Phe Glu Met Val Ser Leu Phe Val Leu Phe Ser Ile Phe Tyr Lys 275 280 285	
Arg Ser Tyr Ser Lys Lys Asn Lys Ser Gly Gly Lys Asp Ser Lys Lys 290 . 295 . 300	
Asn Asp Asp Gly Asn Asn Glu Asp Gln Cys His Lys Ala Met Lys Asp 305 310 315 320	
Ile Ser Glu Gly Ala Lys Glu Val Val Gly His Ala Ala Lys Asp Ala 325 330 335	
Gly Lys Leu Val Ala Thr Ala Ser Lys Ala Val Lys Arg Lys Gly Thr 340 345 350	
Arg Val Thr Gly Ala Met 355	
<210> 87 <211> 1086 <212> DNA <213> Phytophthora infestans	
<220> <221> CDS <222> (1)(1086) <223> Omega-3-Desaturase	
<pre><400> 87 atg gcg acg aag gag gcg tat gtg ttc ccc act ctg acg gag atc aag Met Ala Thr Lys Glu Ala Tyr Val Phe Pro Thr Leu Thr Glu Ile Lys 1 5 10 15</pre>	48
cgg tcg cta cct aaa gac tgt ttc gag gct tcg gtg cct ctg tcg ctc Arg Ser Leu Pro Lys Asp Cys Phe Glu Ala Ser Val Pro Leu Ser Leu 20 25 30	96
tac tac acc gtg cgt tgt ctg gtg atc gcg gtg gct cta acc ttc ggt Tyr Tyr Thr Val Arg Cys Leu Val Ile Ala Val Ala Leu Thr Phe Gly 35 40 45	. 144
ctc aac tac gct cgc gct ctg ccc gag gtc gag agc ttc tgg gct ctg Leu Asn Tyr Ala Arg Ala Leu Pro Glu Val Glu Ser Phe Trp Ala Leu	192

60 50 gac gcc gca ctc tgc acg ggc tac atc ttg ctg cag ggc atc gtg ttc 240 Asp Ala Ala Leu Cys Thr Gly Tyr Ile Leu Leu Gln Gly Ile Val Phe 288 tgg ggc ttc ttc acg gtg ggc cac gat gcc ggc cac ggc gcc ttc tcg Trp Gly Phe Phe Thr Val Gly His Asp Ala Gly His Gly Ala Phe Ser 85 336 . ege tac cac etg ett aac tte gtg gtg gge act tte atg cac teg etc Arg Tyr His Leu Leu Asn Phe Val Val Gly Thr Phe Met His Ser Leu 105 atc ctc acg ccc ttc gag tcg tgg aag ctc acg cac cgt cac cac Cac Ile Leu Thr Pro Phe Glu Ser Trp Lys Leu Thr His Arg His His His 384 120 aag aac acg ggc aac att gac egt gac gag gtc ttc tac eeg caa ege 432 Lys Asn Thr Gly Asn Ile Asp Arg Asp Glu Val Phe Tyr Pro Gln Arg aag gee gae gae cae eeg etg tet ege aac etg att etg geg ete ggg Lys Ala Asp Asp His Pro Leu Ser Arg Asn Leu Ile Leu Ala Leu Gly 155 gea geg tgg etc gec tat ttg gtc gag ggc ttc cet cet egt aag gtc 528 Ala Ala Trp Leu Ala Tyr Leu Val Glu Gly Phe Pro Pro Arg Lys Val 165 aac cac ttc aac ccg ttc gag cct ctg ttc gtg cgt cag gtg tca gct Asn His Phe Asn Pro Phe Glu Pro Leu Phe Val Arg Gln Val Ser Ala 624 gtg gta atc tct ctc gcc cac ttc ttc gtg gcc gga ctc tcc atc Val Val Ile Ser Leu Leu Ala His Phe Phe Val Ala Gly Leu Ser Ile 200 tat ctg agc ctc cag ctg ggc ctt aag acg atg gca atc tac tac tat 672 Tyr Leu Ser Leu Gln Leu Gly Leu Lys Thr Met Ala Ile Tyr Tyr Tyr 720 gga cct gtt ttt gtg ttc ggc agc atg ctg gtc att acc acc ttc cta Gly Pro Val Phe Val Phe Gly Ser Met Leu Val Ile Thr Thr Phe Leu 230 cac cac aat gat gag gag acc cca tgg tac gcc gac tcg gag tgg acg His His Asn Asp Glu Glu Thr Pro Trp Tyr Ala Asp Ser Glu Trp Thr 768 tac gtc aag ggc aac ctc tcg tcc gtg gac cga tcg tac ggc gcg ctc Tyr Val Lys Gly Asn Leu Ser Ser Val Asp Arg Ser Tyr Gly Ala Leu 816 260 265 att gac aac ctg agc cac aac atc ggc acg cac cag atc cac cat 864 Ile Asp Asn Leu Ser His Asn Ile Gly Thr His Gln Ile His His Leu 280 ttc cct atc att ccg cac tac aaa ctc aag aaa gcc act gcg gcc ttc 912 Phe Pro Ile Ile Pro His Tyr Lys Leu Lys Lys Ala Thr Ala Ala Phe 295 cac cag get tte cet gag ete gtg ege aag age gae gag eea att ate 960 His Gln Ala Phe Pro Glu Leu Val Arg Lys Ser Asp Glu Pro Ile Ile aag got tto tto ogg gtt gga ogt oto tac goa aac tac ggo gtt gtg 1008 Lys Ala Phe Phe Arg Val Gly Arg Leu Tyr Ala Asn Tyr Gly Val Val

325 330 335

gac cag gag gcg aag ctc ttc acg cta aag gaa gcc aag gcg gcg acc 1056
Asp Gln Glu Ala Lys Leu Phe Thr Leu Lys Glu Ala Lys Ala Ala Thr
340 345 350

gag gcg gcg gcc aag acc aag tcc acg taa 1086 Glu Ala Ala Lys Thr Lys Ser Thr 355 360

<210> 88 <211> 361 <212> PRT

<213> Phytophthora infestans

<400> 88

Met Ala Thr Lys Glu Ala Tyr Val Phe Pro Thr Leu Thr Glu Ile Lys 1 5 10 15

Arg Ser Leu Pro Lys Asp Cys Phe Glu Ala Ser Val Pro Leu Ser Leu 20 25 30

Tyr Tyr Thr Val Arg Cys Leu Val Ile Ala Val Ala Leu Thr Phe Gly 35 40 45

Leu Asn Tyr Ala Arg Ala Leu Pro Glu Val Glu Ser Phe Trp Ala Leu 50 55 60

Asp Ala Ala Leu Cys Thr Gly Tyr Ile Leu Leu Gln Gly Ile Val Phe 65 , 70 75 80

Trp Gly Phe Phe Thr Val Gly His Asp Ala Gly His Gly Ala Phe Ser 85 90 95

Arg Tyr His Leu Leu Asn Phe Val Val Gly Thr Phe Met His Ser Leu 100 105 110

Ile Leu Thr Pro Phe Glu Ser Trp Lys Leu Thr His Arg His His His 115 120 125

Lys Asn Thr Gly Asn Ile Asp Arg Asp Glu Val Phe Tyr Pro Gln Arg 130 135 140

Lys Ala Asp Asp His Pro Leu Ser Arg Asn Leu Ile Leu Ala Leu Gly 145 150 155 160

Ala Ala Trp Leu Ala Tyr Leu Val Glu Gly Phe Pro Pro Arg Lys Val

Asn His Phe Asn Pro Phe Glu Pro Leu Phe Val Arg Gln Val Ser Ala 180 $\,$ 185 $\,$ 190 $\,$

Val Val Ile Ser Leu Leu Ala His Phe Phe Val Ala Gly Leu Ser Ile 195 200 205

Tyr Leu Ser Leu Gln Leu Gly Leu Lys Thr Met Ala Ile Tyr Tyr 210 215 220	
Gly Pro Val Phe Val Phe Gly Ser Met Leu Val Ile Thr Thr Phe Leu 225 230 235 240	
His His Asn Asp Glu Glu Thr Pro Trp Tyr Ala Asp Ser Glu Trp Thr 245 250 255	
Tyr Val Lys Gly Asn Leu Ser Ser Val Asp Arg Ser Tyr Gly Ala Leu 260 265 270	
Ile Asp Asn Leu Ser His Asn Ile Gly Thr His Gln Ile His His Leu 275 280 285	
Phe Pro Ile Ile Pro His Tyr Lys Leu Lys Lys Ala Thr Ala Ala Phe 290 295 300	
His Gln Ala Phe Pro Glu Leu Val Arg Lys Ser Asp Glu Pro Ile Ile 305 310 315 320	
Lys Ala Phe Phe Arg Val Gly Arg Leu Tyr Ala Asn Tyr Gly Val Val 325 330 335	
Asp Gln Glu Ala Lys Leu Phe Thr Leu Lys Glu Ala Lys Ala Ala Thr 340 345 350	
Glu Ala Ala Lys Thr Lys Ser Thr 355 360	
<210> 89 <211> 1371 <212> DNA <213> Ostreococcus tauri	
<220> <221> CDS <222> (1)(1371) <223> Delta-6-Desaturase	
<pre><400> 89 atg tgc gtg gag acg gaa aat aac gat ggg atc ccc acg gtg gag atc Met Cys Val Glu Thr Glu Asn Asn Asp Gly Ile Pro Thr Val Glu Ile 1 5 10 15</pre>	48
gcg ttc gac ggt gag cgc gag cgg gcg gag gca aac gtg aag ctg tcc Ala Phe Asp Gly Glu Arg Glu Arg Ala Glu Ala Asn Val Lys Leu Ser 20 25 30	96
gcg gag aag atg gag ccg gcg gcg ctg gcg aag acg ttc gcg agg cgg Ala Glu Lys Met Glu Pro Ala Ala Leu Ala Lys Thr Phe Ala Arg Arg 35 40 45	L44
tac gtc gtg atc gag ggg gtg gag tac gat gtg acg gat ttt aag cac Tyr Val Val Ile Glu Gly Val Glu Tyr Asp Val Thr Asp Phe Lys His	192

								•	14	·							
	50					55					60						
											aac Asn					2	40
											tcg Ser						88
											aag Lys						3,6
											tgg Trp					. 3	84
											cac His 140					4	32
	_	-				_		-			acg Thr					4	80
											gct Ala					5	28
											cac His					Ś	76
											ttc Phe					6	24
											atg Met 220					6	72
cac His 225	gcg Ala	acg Thr	cct Pro	caa Gln	aag Lys 230	gtt Val	cgt Arg	cac His	gac Asp	atg Met 235	gat Asp	ctg Leu	gac Asp	acc Thr	acc Thr 240	7	20
											gac Asp					7	68
Gly Gly	ttt Phe	agc Ser	aag Lys 260	tac Tyr	tgg Trp	ttg Leu	cgc Arg	ctt Leu 265	cag Gln	gcg Ala	tgg Trp	acc Thr	ttc Phe 270	atc Ile	ccc Pro	8	16
gtg Val	acg Thr	tcc Ser 275	GJĀ āāc	ttg Leu	gtg Val	ctc Leu	ctt Leu 280	ttc Phe	tgg Trp	atg Met	ttt Phe	ttc Phe 285	ctc Leu	cac His	ccc Pro	8	64
tcc Ser	aag Lys 290	gct Ala	ttg Leu	aag Lys	ggt Gly	ggc Gly 295	aag Lys	tac Tyr	gaa Glu	gag Glu	ttg Leu 300	gtg Val	tgg Trp	atg Met	ctc Leu	9	12
											gcg Ala					9	60
acc Thr	gcg Ala	atg Met	cag Gln	tcc Ser	tac Tyr	ggc Gly	tta Leu	ttt Phe	ttg Leu	gcg Ala	acg Thr	agc Ser	tgg Trp	gtg Val	agc Ser	10	80

		141		
	325	330	335	
ggc tgc tat ctg Gly Cys Tyr Leu 340	tťt gca cac t Phe Ala His I	ttc tcc acg tcg Phe Ser Thr Ser 345	cac acg cac ctg His Thr His Leu 350	gat 1056 Asp
gtg gtg ccc gcg Val Val Pro Ala 355	Asp Glu His 1	ctc tcc tgg gtt Leu Ser Trp Val 360	cga tac gcc gtc Arg Tyr Ala Val 365	gat 1104 Asp
cac acg atc gac His Thr Ile Asp 370	atc gat ccg a Ile Asp Pro 3 375	agt caa ggt tgg Ser Gln Gly Trp	gtg aac tgg ttg Val Asn Trp Leu 380	atg 1152 Met
ggc tac ctc aac Gly Tyr Leu Asn 385	tgc caa gtc (Cys Gln Val) 390	atc cac cac ctc Ile His His Leu 395	ttt ccg agc atg Phe Pro Ser Met	ccg 1200 Pro 400
cag ttc cgc cag Gln Phe Arg Gln	ccc gag gta Pro Glu Val 405	tct cgc cgc ttc Ser Arg Arg Phe 410	gtc gcc ttt gcg Val Ala Phe Ala 415	aaa 1248 Lys
aag tgg aac ctc Lys Trp Asn Leu 420	aac tac aag Asn Tyr Lys	gtc atg acc tac Val Met Thr Tyr 425	gcc ggt gcg tgg Ala Gly Ala Trp 430	aag 1296 Lys
gca acg ctc gga Ala Thr Leu Gly 435	Asn Leu Asp .	aac gtg ggt aag Asn Val Gly Lys 440	cac tac tac gtg His Tyr Tyr Val 445	cac 1344 His
ggc caa cac tcc Gly Gln His Ser 450				1371
<210> 90 <211> 456 <212> PRT <213> Ostreocoo	ccus tauri			
<400> 90		-	•	
Met Cys Val Glu 1	Thr Glu Asn	Asn Asp Glv Ile		
	3	10	Pro Thr Val Glu 15	Ile
Ala Phe Asp Gly 20		10	15	
. 20	Glu Arg Glu	10 Arg Ala Glu Ala 25	Asn Val Lys Leu	Ser
Ala Glu Lys Met	Glu Arg Glu Glu Pro Ala	Arg Ala Glu Ala 25 Ala Leu Ala Lys 40	Asn Val Lys Leu 30	Ser
Ala Glu Lys Met 35 Tyr Val Val Ile 50	Glu Arg Glu . Glu Pro Ala Glu Gly Val 55	Arg Ala Glu Ala 25 Ala Leu Ala Lys 40 Glu Tyr Asp Val	Asn Val Lys Leu 30 Thr Phe Ala Arg 45 Thr Asp Phe Lys	Ser Arg His
Ala Glu Lys Met 35 Tyr Val Val Ile 50 Pro Gly Gly Thr 65	Glu Arg Glu Glu Pro Ala Glu Gly Val 55 Val Ile Phe 70	Arg Ala Glu Ala 25 Ala Leu Ala Lys 40 Glu Tyr Asp Val Tyr Ala Leu Ser 75	Asn Val Lys Leu 30 Thr Phe Ala Arg 45 Thr Asp Phe Lys 60	Ser Arg His Asp 80

- Asp Asp Ala Glu Met Leu Gln Asp Phe Ala Lys Trp Arg Lys Glu Leu 115 120 125
- Glu Arg Asp Gly Phe Phe Lys Pro Ser Pro Ala His Val Ala Tyr Arg 130 135 140
- Phe Ala Glu Leu Ala Ala Met Tyr Ala Leu Gly Thr Tyr Leu Met Tyr 145 .155 .160
- Ala Arg Tyr Val Val Ser Ser Val Leu Val Tyr Ala Cys Phe Phe Gly
 165 170 175
- Ala Arg Cys Gly Trp Val Gln His Glu Gly Gly His Ser Ser Leu Thr 180 \$185\$
- Gly Asn Ile Trp Trp Asp Lys Arg Ile Gln Ala Phe Thr Ala Gly Phe 195 200 205
- Gly Leu Ala Gly Ser Gly Asp Met Trp Asn Ser Met His Asn Lys His 210 225
- His Ala Thr Pro Gln Lys Val Arg His Asp Met Asp Leu Asp Thr Thr 225 230 235 240
- Pro Ala Val Ala Phe Phe Asn Thr Ala Val Glu Asp Asn Arg Pro Arg 250 255
- Gly Phe Ser Lys Tyr Trp Leu Arg Leu Gln Ala Trp Thr Phe Ile Pro 260 265 270
- Val Thr Ser Gly Leu Val Leu Leu Phe Trp Met Phe Phe Leu His Pro 275 280 285
- Ser Lys Ala Leu Lys Gly Gly Lys Tyr Glu Glu Leu Val Trp Met Leu 290 295 300
- Ala Ala His Val Ile Arg Thr Trp Thr Ile Lys Ala Val Thr Gly Phe 305 310 315 320
- Thr Ala Met Gln Ser Tyr Gly Leu Phe Leu Ala Thr Ser Trp Val Ser 325 330 335
- Gly Cys Tyr Leu Phe Ala His Phe Ser Thr Ser His Thr His Leu Asp 340 345 350
- Val Val Pro Ala Asp Glu His Leu Ser Trp Val Arg Tyr Ala Val Asp 355 360 365
- His Thr Ile Asp Ile Asp Pro Ser Gln Gly Trp Val Asn Trp Leu Met 370 380

									1								
Gly 3	Fyr	Leu	As	п Су	's G]	ln Vá 90	1 Il	e Hi	s Hi	is Le 39	eu Ph	ie Pr	o Se	er Me	et Pi 40	ro 00	
Gln :	Phe	Arg	g Gl	.n Pi 4(ro G: 05	lu Va	al Se	er Al	rg Ai 4:	rg Pl 10	ne Vä	al Al	La Ph	ne A. 4:	la L: 15	ys	
Lys	Trp	Ası	1 Le	eu As 20	sn T	yr L	ys Va	al Me	et T 25	hr T	yr A	la G	ly A. 4.	la T: 30	rp L	ys	
Ala	Thr	Le [.]	ս G: 5	ly A	sn L	eu A	sp A	sn V 40	al G	ly L	ys H	is T	yr T 45	yr V	al H	is	
Gly	Gln 450		s S	er G	ly I	ys T 4	hr A .55	la	•								
<210 <210 <210 <210	1> 2>		7	coco	cus !	taur	L										
<22	1> 2>	(1)	((606) -5-D). esat	uras	e				-						
	0> ta Ty			Leu	cta Leu 5	tcg Ser	ctc :	aag Lys	tcg Ser	tgc Cys 10	ttc ·	gtc (Val	gac Asp	gat Asp	ttc Phe 15	aac Asn	48
	ta i Ty	c t	he	tcc Ser 20	gga Gly	cgc Arg	atc Ile	ggc Gly	tgg Trp 25	gtc Val	aag Lys	gtg Val	atg Met	aag Lys 30	ttc Phe	acc Thr	96
cg: Ar	g G] = gg	Ly G	ag 31u 35	gcg Ala	atc Ile	gca Ala	ttt Phe	tgg Trp 40	ggc Gly	acc Thr	aag Lys	ctc Leu	ttg Leu 45	tgg Trp	gcc Ala	gcg Ala	144
ta Ty:	t ta r Ty 50	yr 1	ctc Leu	gcg Ala	ttg Leu	ccg Pro	cta Leu 55	aag Lys	atg Met	tcg Ser	cat His	cgg Arg 60	ccg Pro	ctc Leu	gga Gly	gaa Glu	192
Le 65	u L	eu 2	Ala	Leu	Trp	70	gtc Val	1111	Giu		75		_			80	240
.gc Al	g t a P	tc he	atg Met	ttc Phe	caa Gln 85	gtc Val	gcc Ala	cac His	gtc Val	gtc Val 90	ggc	gag Glu	gtt Val	cac His	ttc Phe 95	ttc Phe	288
Tì	r L	eu	Asp	Ala 100	. Lys	ASI	AIG	val	105	5	2		_	110)	cag Gln	336
Ct Le	cc a	itg Set	tcg Ser 115	Ser	gcg Ala	g gat a Asp	ttc Phe	gcc Ala 120		e Gly	tco Ser	aag Lys	ttt Phe 125		g acg o Thi	g cac His	384
																	122

ttc tcc gga ggc tta aac tac caa gtc gtc cac cat ctc ttc ccg ggc Phe Ser Gly Gly Leu Asn Tyr Gln Val Val His His Leu Phe Pro Gly

								•	14	44						
	130					135				•	140					
		cac His														480
		aag Lys														528
		cgc Arg														576
		ecg Pro 195							tga				•			606
<21 <21 <21 <21	1> 2>	92 201 PRT Ostr	e0 c 0	cus	tau	ri										
<40	0>	92														
Met 1	Tyr	Gly	Leu	Leu 5	Ser	Leu	Lys	Ser	Cys 10	Phe	Val	Asp	Asp	Phe 15	Asn	
Ala	Tyr	Phe	Ser 20	Gly	Ārg	Ile	Gly	Trp 25	Val	Lys	Val	Met	Lys 30	Phe	Thr	
Arg	Gly	Glu 35	Ala	Ile	Ala	Phe	Trp 40	Gly	Thr	Lys	Leu	Leu 45	Trp	Ala	Ala	
Tyr	тут 50	Leu	Ala	Leu	Pro	Leu 55	Lys	Met	Ser	His	Arg 60	Pro	Leu	Gly ′	Glu	
Leu 65	Leu	Ala	Leu	Trp	Ala 70	Val	Thr	Glu	Phe	Val 75	Thr	Gly	Trp	Leu	Leu 80	
Ala	Phe	Met [.]	Phe	Gln 85	Val	Ala	His	Val	Val 90	Gly	Glu	Val	His	Phe 95	Phe	
Thr	Leu	Asp	Ala 100	Lys	Asn	Arg	Val	Asn 105	Leu	Gly	Trp	Gly	Glu 110	Ala	Gln	
Leu	Met	Ser 115	Ser	Ala	Asp	Phe	Ala 120	His	Gly	Ser	Lys	Phe 125	Trp	Thr	His	
Phe	Ser 130	Gly	G1y	Leu	Asn	туr 135	Gln	Val	Val	His	His 140	Leu	Phe	Pro	·Gly	
Val 145	Cys	His	Val	His	Tyr 150	Pro	Ala	Leu	Ala	Pro 155	Ile	Ile	Lys	Ala	Ala 160	
Ala	Glu	Lys	His	Gly	Leu	His	Tyr	Gln	Ile	Tyr ·	Pro	Thr	Phe	Trp	Ser	

Ala Leu Arg Ala His Phe Arg His Leu Ala Asn Val Gly Arg Ala Ala 180 185 190

Tyr Val Pro Ser Leu Gln Thr Val'Gly

<210> .93 <211> 714 DNA <212> <213> Ostreococcus tauri <220> <221> CDS <222> (1)..(714) Delta-5-Desaturase <400> 93 atg gtg agc cat cac tcg tac tgt aac gac gcg gat ttg gat cag gat 48 Met Val Ser His His Ser Tyr Cys Asn Asp Ala Asp Leu Asp Gln Asp 10 96 gtg tac acc gca ctg ccg ctc ctg cgc ctg gac ccg tct cag gag ttg Val Tyr Thr Ala Leu Pro Leu Leu Arg Leu Asp Pro Ser Gln Glu Leu 20 aag tgg ttt cat cga tac cag gcg ttt tac gcc ccg ctc atg tgg ccg Lys Trp Phe His Arg Tyr Gln Ala Phe Tyr Ala Pro Leu Met Trp Pro 40 192 ttt ttg tgg ctc gcg gcg cag ttt ggc gac gcg cag aac atc ctg atc Phe Leu Trp Leu Ala Ala Gln Phe Gly Asp Ala Gln Asn Ile Leu Ile gac cga gcg tcg ccg ggc gtc gcg tac aag gga ttg atg gcg aac gag Asp Arg Ala Ser Pro Gly Val Ala Tyr Lys Gly Leu Met Ala Asn Glu 240 288 gtc gcg ctg tac gtt ctc ggt aag gtt tta cac ttt ggt ctt ctc ctc Val Ala Leu Tyr Val Leu Gly Lys Val Leu His Phe Gly Leu Leu Leu ggc gtt cct gcg tac ttg cac gga ttg tcc aac gcg atc gtt cca ttc Gly Val Pro Ala Tyr Leu His Gly Leu Ser Asn Ala Ile Val Pro Phe 336 105 100 384 Leu Ala Tyr Gly Ala Phe Gly Ser Phe Val Leu Cys Trp Phe Phe Ile 120 432 gtc agc cat aac ctc gaa gcg ctg aca ccc gtt aac ctt aac aag tcc Val Ser His Asn Leu Glu Ala Leu Thr Pro Val Asn Leu Asn Lys Ser acg aag aac gac tgg ggg gcg tgg cag atc gag aca tcg gcg tct tgg Thr Lys Asn Asp Trp Gly Ala Trp Gln Ile Glu Thr Ser Ala Ser Trp 480 150 ggc aac gcg ttc tgg agc ttc ttc tct gga ggt ctg aac ctg caa atc Gly Asn Ala Phe Trp Ser Phe Phe Ser Gly Gly Leu Asn Leu Gln Ile 528 gag cac cac ctc ttc ccg ggc atg gcg cac aac ctg tac ccg aag atg 576 Glu His His Leu Phe Pro Gly Met Ala His Asn Leu Tyr Pro Lys Met

146 180 185 190 gtg ccg atc atc aag gac gag tgt gcg aaa gcg ggc gtt cgc tac acc Val Pro Ile Ile Lys Asp Glu Cys Ala Lys Ala Gly Val Arg Tyr Thr 624 ggt tac ggt ggc tac acc ggc ctg ctc ccg atc acc cgc gac atg ttc 672 Gly Tyr Gly Gly Tyr Thr Gly Leu Leu Pro Ile Thr Arg Asp Met Phe 215 tcc tac ctc cat aag tgt ggc cga acg gcg aaa cta gcc taa 714 Ser Tyr Leu His Lys Cys Gly Arg Thr Ala Lys Leu Ala <210> <211> 237 <212> PRT <213> Ostreococcus tauri <400> 94 Met Val Ser His His Ser Tyr Cys Asn Asp Ala Asp Leu Asp Gln Asp 10 Val Tyr Thr Ala Leu Pro Leu Leu Arg Leu Asp Pro Ser Gln Glu Leu 25 Lys Trp Phe His Arg Tyr Gln Ala Phe Tyr Ala Pro Leu Met Trp Pro Phe Leu Trp Leu Ala Ala Gln Phe Gly Asp Ala Gln Asn Ile Leu Ile Asp Arg Ala Ser Pro Gly Val Ala Tyr Lys Gly Leu Met Ala Asn Glu Val Ala Leu Tyr Val Leu Gly Lys Val Leu His Phe Gly Leu Leu Leu Gly Val Pro Ala Tyr Leu His Gly Leu Ser Asn Ala Ile Val Pro Phe Leu Ala Tyr Gly Ala Phe Gly Ser Phe Val Leu Cys Trp Phe Phe Ile Val Ser His Asn Leu Glu Ala Leu Thr Pro Val Asn Leu Asn Lys Ser Thr Lys Asn Asp Trp Gly Ala Trp Gln Ile Glu Thr Ser Ala Ser Trp 155 Gly Asn Ala Phe Trp Ser Phe Phe Ser Gly Gly Leu Asn Leu Gln Ile Glu His His Leu Phe Pro Gly Met Ala His Asn Leu Tyr Pro Lys Met

Val Pro Ile Ile Lys Asp Glu Cys Ala Lys Ala Gly Val Arg Tyr Thr 195 200 205	
Gly Tyr Gly Gly Tyr Thr Gly Leu Leu Pro Ile Thr Arg Asp Met Phe 210 215 220	
Ser Tyr Leu His Lys Cys Gly Arg Thr Ala Lys Leu Ala 225 230 235	
<210> 95 <211> 1611 <212> DNA <213> Ostreococcus tauri	
<220> <221> CDS <222> (1)(1611) <223> Delta-4-Desaturase	
<pre><400> 95 atg tac ctc gga cgc cgt ctc gag agc ggg acg acg cga ggg atg Met Tyr Leu Gly Arg Gly Arg Leu Glu Ser Gly Thr Thr Arg Gly Met 1 5</pre>	48
atg cgg acg cac gcg cgg cga ccg tcg acg tcg aat ccg tgc gcg Met Arg Thr His Ala Arg Arg Pro Ser Thr Thr Ser Asn Pro Cys Ala 20 25 30	96
cgg tca cgc gtg cgt aag acg acg gag cga tcg ctc gcg cga gtg cga Arg Ser Arg Val Arg Lys Thr Thr Glu Arg Ser Leu Ala Arg Val Arg 35 40	144
cga tcg acg agt gag aag gga agc gcg ctc gtg ctc gag cga gag agc Arg Ser Thr Ser Glu Lys Gly Ser Ala Leu Val Leu Glu Arg Glu Ser 50 55	192
gaa cgg gag aag gag gga ggg aaa gcg cga gcg gag gga ttg cga Glu Arg Glu Lys Glu Glu Gly Gly Lys Ala Arg Ala Glu Gly Leu Arg 65 70	240
ttc caa cgc ccg gac gtc gcc gcg ccg ggg gga gcg gat cct tgg aac Phe Gln Arg Pro Asp Val Ala Ala Pro Gly Gly Ala Asp Pro Trp Asn 85 90 95	288
gac gag aag tgg aca aag acc aag tgg acg gta ttc aga gac gtc gcg Asp Glu Lys Trp Thr Lys Thr Lys Trp Thr Val Phe Arg Asp Val Ala 100 105 110	336
tac gat ctc gat cct ttc ttc gct cga cac ccc gga gga gac tgg ctc Tyr Asp Leu Asp Pro Phe Phe Ala Arg His Pro Gly Gly Asp Trp Leu 115 120 125	384
ctg aac ttg gcc gtg gga cga gac tgc acc gcg ctc atc gaa tcc tat Leu Asn Leu Ala Val Gly Arg Asp Cys Thr Ala Leu Ile Glu Ser Tyr 130 135	432
cac ttg cga cca gag gtg gcg acg gct cgt ttc aga atg ctg ccc aaa His Leu Arg Pro Glu Val Ala Thr Ala Arg Phe Arg Met Leu Pro Lys 145 150 150	480
ctc gag gat ttt ccc gtc gag gcc gtg ccc aag tcc ccg aga ccg aac Leu Glu Asp Phe Pro Val Glu Ala Val Pro Lys Ser Pro Arg Pro Asn	528

		140		
	165	170	175	
gat tcg ccg tta Asp Ser Pro Leu 180	Tyr Asn Asn	att cgc aac cga Ile Arg Asn Arg 185	gtc cgc gaa gag Val Arg Glu Glu 190	ctc 576 Leu
		atg cac aga cag Met His Arg Gln 200		
		cgc cgc ctt ttg Arg Arg Leu Leu		
		ttc cgg ctg cct Phe Arg Leu Pro 235		
ggg cgt gga ttg Gly Arg Gly Leu	gtc tca cga Val Ser Arg 245	ttc agg cac tgc Phe Arg His Cys 250	gcc aac cac ggc Ala Asn His Gly 255	gcg 768 Ala
	Pro Ala Val	aac ggc gtc ctc Asn Gly Val Leu 265		
ctc atc ggc ggc Leu Ile Gly Gly 275	tcg tcc ttg Ser Ser Leu	atg tgg aga tat Met Trp Arg Tyr 280	cac cac caa gtc His His Gln Val 285	agc 864 Ser
		aac gcc atg gat Asn Ala Met Asp		
		gac gct cgc cgg Asp Ala Arg Arg 315	Pro Lys Ser Trp	
cat cgc ttc cag His Arg Phe Gln	cag tgg tac Gln Trp Tyr 325	atg ttt tta gcg Met Phe Leu Ala 330	ttc ccg ttg ttg Phe Pro Leu Leu 335	cag 1008 Gln
gtt gcc ttc caa Val Ala Phe Gln 340	Val Gly Asp	att gcc gca ctg Ile Ala Ala Leu 345	ttc acg cgt gat Phe Thr Arg Asp 350	acc 1056 Thr
gaa ggc gct aag Glu Gly Ala Lys 355	ctt cac ggg Leu His Gly	gcg acg acg tgg Ala Thr Thr Trp 360	gag ctt acc acg Glu Leu Thr Thr 365	gtt 1104 Val
		ttc ggt ctt ttg Phe Gly Leu Leu		
aac cac gcg gtg Asn His Ala Val 385	agt tot gtt Ser Ser Val 390	ttg ctg ggg atc Leu Leu Gly Ile 395	gtc ggt ttc atg Val Gly Phe Met	gcg 1200 Ala 400
tgc caa ggt ata Cys Gln Gly Ile	gtt ctg gcg Val Leu Ala 405	tgc acg ttt gct Cys Thr Phe Ala 410	gtg agt cac aat Val Ser His Asn 415	gtc 1248 Val
gcg gag gcg aag Ala Glu Ala Lys 420	: Ile Pro`Glu	gac acc gga gga Asp Thr Gly Gly 425	gaa gcc tgg gag Glu Ala Trp Glu 430	aga 1296 Arg
gat tgg ggt gtc Asp Trp Gly Val	cag cag ttg Gln Gln Leu	gtg act agc gcc Val Thr Ser Ala	gac tgg ggt gga Asp Trp Gly Gly	aag 1344 Lys

c	2005	5/012	316												P	CT/EF	2004/0079
_										14	9						
			435					440					445				
	ata Ile	ggt Gly 450	aac Asn	ttc Phe	ttc Phe	acg Thr	ggt Gly 455	ggc Gly	ctc Leu	aac Asn	ttg Leu	caa Gln 460	gtt Val	gag Glu	cac His	cac His	1392
	ttg Leu 465	ttt Phe	ccg Pro	gcg Ala	att Ile	tgc Cys 470	ttc Phe	gtc Val	cac His	tac Tyr	ccg Pro 475	gac Asp	atc Ile	gcg Ala	aag Lys	atc Ile 480	1440
									aac Asn							agg Arg·	1488
	act Thr	ctt Leu	cct Pro	ggt Gly 500	att Ile	ttc Phe	gtc Val	caa Gln	ttc Phe 505	tgg Trp	aga Arg	ttt Phe	atg Met	aag Lys 510	gac Asp	atg Met	1536
	Gly	acg Thr	gct Ala 515	gag Glu	caa Gln	att Ile	ggt Gly	gaa Glu 520	gtt Val	cca Pro	ttg Leu	ccg Pro	aag Lys 525	att Ile	ecc Pro	aac Asn	1584
					ccg Pro				tag								1611
	<210 <210 <210 <210	1>	96 536 PRT Ostre	e0000	cus	tau	ri			ı							
	<400	0> 9	96														
	Met 1	Tyr	Ļeu	Gly	Arg 5	Gly	Arg	Leu	Glu	Ser 10	Gly	Thr	Thr	Arg	Gly 15	Met	
	Met	Arg	Thr	His 20	Ala	Arg	Arg	Pro	Ser 25	Thr	Thr	Ser	Asn	Pro 30	Cys	Ala	
	Arg	Ser	Arg 35	Val	Arg	Lys	Thr	Thr 40	Glu	Arg	Ser	Leu	Ala 45	Arg	Val	Arg	
	Arg	Ser 50	Thr	Ser	Glu	Lys	Gly 55	Ser	Ala	Leu	Val	Leu 60	Glu	Arg	Glu	Ser	
	Glu 65	Arg	Glu	Lys	Glu	Glu 70	Gly	Gly	Lys	Ala	Arg 75	Ala	Glu	Gly	Leu	Arg 80	
	Phe	Gln	Arg	Pro	Asp 85	Val	Ala	Ala	Pro	90 GJA	Gly	Ala	Asp	Pro	Trp 95	Asn	
	Asp	Glu	Lys	Trp 100	Thr	ГŽS	Thr	Lys	Trp 105	Thr	Val	Phe	Arg	Asp 110	Val	Ala	
	Tyż	Asp	Leu 115	Asp	Pro	Phe	Phe	Ala 120	Arg	His	Pro	Gly	Gly 125	Asp	Trp	Leu	

Leu Asn Leu Ala Val Gly Arg Asp Cys Thr Ala Leu Ile Glu Ser Tyr 130 135 140

Leu Glu Asp Phe Pro Val Glu Ala Val Pro Lys Ser Pro Arg Pro Asn 165 170 175

Asp Ser Pro Leu Tyr Asn Asn Ile Arg Asn Arg Val Arg Glu Glu Leu 180 185 190

Phe Pro Glu Glu Gly Lys Asn Met His Arg Gln Gly Gly Asp His Gly 195 200 205

Asp Gly Asp Asp Ser Gly Phe Arg Arg Leu Leu Met Pro Cys Thr 210 215 220

Tyr Ser Leu Pro Gly Val Pro Phe Arg Leu Pro Pro Arg Val Ser Arg 225 230 235 240

Gly Arg Gly Leu Val Ser Arg Phe Arg His Cys Ala Asn His Gly Ala 245 250 255

Met Ser Pro Ser Pro Ala Val Asn Gly Val Leu Gly Leu Thr Asn Asp 260 265 270

Leu Ile Gly Gly Ser Ser Leu Met Trp Arg Tyr His His Gln Val Ser 275 280 285

His His Ile His Cys Asn Asp Asn Ala Met Asp Gln Asp Val Tyr Thr 290 295 300

Ala Met Pro Leu Leu Arg Phe Asp Ala Arg Arg Pro Lys Ser Trp Tyr 305 310 315 320

Val Ala Phe Gln Val Gly Asp Ile Ala Ala Leu Phe Thr Arg Asp Thr 340 345 350

Glu Gly Ala Lys Leu His Gly Ala Thr Thr Trp Glu Leu Thr Thr Val 355 360 . 365

Val Leu Gly Lys Ile Val His Phe Gly Leu Leu Gly Pro Leu Met 370 380

Asn His Ala Val Ser Ser Val Leu Leu Gly Ile Val Gly Phe Met Ala 385 390 395 400

Cys Gln Gly Ile Val Leu Ala Cys Thr Phe Ala Val Ser His Asn Val 405 410 415

Ala	Glu		Lys 420	Ilė	Pro	Glu	Asp	Thr 425	Gly	Gly	Glu	Ala	Trp 430	Glu	Arg	
Asp	Trp	G1y 435	Val	Gln	Gln	Leu	Val 440	Thr	Ser	Ala	qaA	Trp 445	gly	Gly	Lys	
Ile	Gly 450	Asn	Phe	Phe	Thr	Gly 455	Gly	Leu	Asn	Leu	Gln 460	Val	Glu	His	His	
Leu 465	Phe	Pro	Ala	Ile	Cys 470	Phe [.]	Val	His	Tyż	Pro 475	Asp	Ile	Ala	Lys	Ile 480	
Val	Lys	Glu	Glu	Ala 485	Ala	Lys	Leu	Asn	Ile 490	Pro	Tyr	Ala	Ser	Tyr 495	Arg	
Thr	Leu	Pro	Gly 500	Ile	Phe	Val	Gln	Phe 505	Trp	Arg	Phe	Met	Lys 510	Asp	Met	
Gly	Thr	Ala 515	Glu	Gln	Ile	Gly	Glu 520	Val	Pro	Leu	Pro	Lys 525	Ile	Pro	Asn [.]	
Pro	Gln 530		Ala	Pro	Lys	Leu 535	Ala									
<21		97														
	2>	1455 DNA Thal	assi	osir	a ps	eudo	nana									
<21 <21 <22 <22 <22	2> 3> 0> 1> 2>	DNA Thal CDS (1).	assi .(14 a-6-	55)			nana									
<21 <21 <22 <22 <22 <22	2> 3> 0> 1> 2> 3>	DNA Thal CDS (1). Delt	.(14 a-6-	55) Desa	tura	se		•								
<21 <21 <22 <22 <22 <22 <40	2> 3> 0> 1> 2> 3>	DNA Thal CDS (1). Delt	.(14 a-6-	55) Desa	tura	se	gcc	αca	gct Ala 10	acc Thr	aag Lys	cgt Arg	agt Ser	gga Gly 15	gca Ala	48
<21 <22 <22 <22 <22 <40 atg	2> 3> 0> 1> 2> 3> 00> 1 gga 3 Gly	DNA Thal. CDS (1). Delt 97 aaa Lys	.(14 a-6- gga Gly	55) Desa gga Gly 5	gac Asp	se gca Ala	gcc Ala	gca Ala	Ala 10 tac	act	tgg	cag	gag	15 gtg	gca Ala aag Lys	48 96
<21 <22 <22 <22 <22 <40 atg Met 1 ttg Let	2> 3> 0> 1> 2> 3> 00> 1 gga 1 gga 1 dae	DNA Thal CDS (1). Delt 97 aaa Lys ttg	.(14 a-6- gga Gly gcg Ala 20	55) Desa gga Gly 5 gag	gac Asp aag Lys	gca Ala ccg Pro	gcc Ala cag Gln	gca Ala aag Lys 25	Ala 10 tac Tyr	act Thr	tgg Trr	cag Glr	gag Glu 30	15 gtg Val	aag	
<21 <22 <22 <22 <22 <40 atg Met 1 ttg Let	2> 3> 0> 1> 2> 3> 0> 1> 2> 3> 1 0> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DNA Thal CDS (1). Delt 97 aaaa Lys ttgg: Leu : atc	.(14 a-6- gga Gly gcg Ala 20	gga ggy 5 gag glu ccc	gac Asp aag Lys gac Asp	gca Ala Ccg Pro gat Asp	gcc Ala cag Gln gcc Ala 40	gca Ala aag Lys 25 tgg	tac Tyr gta Val	act Thr gtc Val	tgg Trr cac His	cago Gln	gag Glu 30 aac Asn	gtg 15 gtg Val	aag Lys	96
<21 <22 <22 <22 <40 at 9 Met 1 tt 9 Let tag Tyr	2>3> 0>1> 2>3> 0>1> 2>3> 0>1> 2>50> 0>1> 0>1> 0>1> 0>1> 0>1> 0>1> 0>1>	DNA Thal CDS (1). Delt 97 aaaa Lys Lys Lttg 11e 35	.(14 a-6-	gga gga Gly 5 gag Glu ccc	gac Asp aag Lys gac Asp	gca Ala ccg pro gat tac Tyr 55	gcc Ala cag Gln gcc Ala 40	gca Ala Ala Lys 25 tgg	tac Tyr gta Val	act Thr gtc Val	tgg Trr cac His ggs Gly	cag	gag Glu 30 aac Asn gtg	gtg yal val aaa Lys val	aag Lys gtc Val	96 144

85 90 336 ccg gag agt gtg gag cat aag gat caa aga cag ttg gat ttc gag aag Pro Glu Ser Val Glu His Lys Asp Gln Arg Gln Leu Asp Phe Glu Lys 105 gga tat cgt gat tta cgg gcc aag ctt gtc atg atg ggg atg ttc aag 384 Gly Tyr Arg Asp Leu Arg Ala Lys Leu Val Met Met Gly Met Phe Lys 120 tcg agt aag atg tat tat gca tac aag tgc tcg ttc aat atg tgc atg 432 Ser Ser Lys Met Tyr Tyr Ala Tyr Lys Cys Ser Phe Asn Met Cys Met 135 tgg ttg gtg gcg gtg gcc atg gtg tac tac tcg gac agt ttg gca atg Trp Leu Val Ala Val Ala Met Val Tyr Tyr Ser Asp Ser Leu Ala Met 480 155 528 cac att gga tcg gct ctc ttg ttg gga ttg ttc tgg cag cag tgt gga His Ile Gly Ser Ala Leu Leu Leu Gly Leu Phe Trp Gln Gln Cys Gly 165 576 tgg ctt gcg cac gac ttt ctt cac cac caa gtc ttt aag caa cga aag Trp Leu Ala His Asp Phe Leu His His Gln Val Phe Lys Gln Arg Lys 185 tac gga gat etc gtt ggc atc ttt tgg gga gat etc atg cag ggg ttc 624 Tyr Gly Asp Leu Val Gly Ile Phe Trp Gly Asp Leu Met Gln Gly Phe 200 tcg atg cag tgg tgg aag aac aag cac aat ggc cac cat gct gtt ccc 672 Ser Met Gln Trp Trp Lys Asn Lys His Asn Gly His His Ala Val Pro 220 210 215 720 aac ttg cac aac tct tcc ttg gac agt cag gat ggt gat ccc gat att Asn Leu His Asn Ser Ser Leu Asp Ser Gln Asp Gly Asp Pro Asp Ile 235 230 gat acc atg cca ctc ctt gct tgg agt ctc aag cag gct cag agt ttc 768 Asp Thr Met Pro Leu Leu Ala Trp Ser Leu Lys Gln Ala Gln Ser Phe 245 250 aga gag atc aat aag gga aag gac agt acc ttc gtc aag tac gct atc Arg Glu Ile Asn Lys Gly Lys Asp Ser Thr Phe Val Lys Tyr Ala Ile 816 265 aaa tto cag goa tto aca tac tto coo ato oto oto ttg got ogo ato 864 Lys Phe Gln Ala Phe Thr Tyr Phe Pro Ile Leu Leu Leu Ala Arg Ile 280 285 912 tot tgg ttg aat gaa tcc ttc aaa act gca ttc gga ctc gga gct gcc Ser Trp Leu Asn Glu Ser Phe Lys Thr Ala Phe Gly Leu Gly Ala Ala 960 tcg gag aat gcc aag ttg gag ttg gag aag cgt gga ctt cag tac cca Ser Glu Asn Ala Lys Leu Glu Leu Glu Lys Arg Gly Leu Gln Tyr Pro 1008 ctt ttg gag aag ctt gga atc acc ctt cat tac act tgg atg ttc gtc Leu Leu Glu Lys Leu Gly Ile Thr Leu His Tyr Thr Trp Met Phe Val 330 ete tet tee gga ttt gga agg tgg tet ett eea tat tee ate atg tat 1056 Leu Ser Ser Gly Phe Gly Arg Trp Ser Leu Pro Tyr Ser Ile Met Tyr 340 345 ttc ttc act gcc aca tgc tcc tcg gga ctt ttc ctc gca ttg gtc ttt 1104 Phe Phe Thr Ala Thr Cys Ser Ser Gly Leu Phe Leu Ala Leu Val Phe

									15	3						
		355					360					365				
gga Gly	ttg Leu 370	gga Gly	cac His	aac Asn	ggt Gly	atg Met 375	tca Ser	gtg Val	tac Tyr	gat Asp	gcc Ala 380	acc Thr	acc Thr	cga Arg	cct Pro	1152
gac Asp 385	ttc Phe	tgg Trp	caa Gln	ctc Leu	caa Gln 390	gtc Val	acc Thr	act Thr	aca Thr	cgt Arg 395	aac Asn	atc Ile	att Ile	ggt Gly	gga Gly 400	1200
cac His	Gly	att Ile	ccc Pro	caa Gln 405	ttc Phe	ttt Phe	gtg Val	gat Asp	tgg Trp 410	ttc Phe	tgc Cys	ggt Gly	gga Gly	ttg Leu 415	caa Gln	1248
tac Tyr	caa Gln	gtg Val	gat Asp 420	cac His	cac His	ctc Leu	ttc Phe	ccc Pro 425	atg Met	atg Met	cct Pro	aga Arg	aac Asn 430	aat Asn	atc Ile	1296
gcg Ala	aaa Lys	tgc Cys 435	cac His	aag Lys	ctt Leu	gtg Val	gag Glu 440	tca Ser	ttc Phe	tgt Cys	aag Lys	gag Glu 445	tgg Trp	ggt Gly	gtg Val	1344
aag Lys	tac Tyr 450	cat His	gag Glu	gcc Ala	gat Asp	atg Mét 455	tgg Trp	gat Asp	Gly Gly	acc Thr	gtg Val 460	gaa Glu	gtg Val	ttg Leu	caa Gln	1392
cat His 465	ctc Leu	tcc Ser	aag Lys	gtg Val	tcg Ser 470	gat Asp	gat Asp	ttc Phe	ctt Leu	gtg Val 475	gag Glu	atg Met	gtg Val	aag Lys	gat Asp 480	1440
		gcc Ala	_	taa			٠									1455
<21 <21 <21 <21	1> 2>	98 484 PRT Thal	assi	osir	a ps	eudoi	nana									
<21 <21	1> 2> 3>	484 PRT	assi	osir	a ps	eudoi	nana									
<21 <21 <21 <40	1> 2> 3>	484 PRT Thal						Ala	Ala 10	Thr	Lys	Arg	Ser	Gly 15	Ala	
<21 <21 <21 <40 Met	1> 2> 3> 0>	484 PRT Thal 98 Lys	Gly	Gly 5	Asp	Ala	Ala	.*	10					15		
<21 <21 <21 <40 Met 1	1> 2> 3> 0> Gly	484 PRT Thal 98 Lys	Gly Ala 20	Gly 5 Glu	Asp	Ala	Ala Gln	Ala	10 Tyr	Thr	Trp	Gln	Glu 30	Val	Lys	
<21 <21 <40 Met 1 Leu Lys	1> 2> 3> 0> Gly Lys	484 PRT Thal 98 Lys Leu Ile 35	Gly Ala 20 Thr	Gly 5 Glu Pro	Asp Lys	Ala Pro Asp	Ala Gln Ala 40	Ala Lys 25	10 Tyr Val	Thr Val	Trp His	Gln Gln 45	Glu 30 Asn	Val	Lys Val	
<21 <21 <40 Met 1 Leu Lys	1> 2> 3> 0> Gly Lys His	484 PRT Thal 98 Lys Leu Ile 35	Gly Ala 20 Thr	Gly 5 Glu Pro	Asp Lys Asp	Ala Pro Asp	Ala Gln Ala 40 Asp	Ala Lys 25	Tyr Val	Thr Val Gly	Trp His Gly 60	Gln Gln 45	Glu 30 Asn Val	Val Lys Val	Lys Val	
<21 <21 <40 Met 1 Leu Lys Tyr Thr 65	1> 2> 3> 0> Gly Lys His	484 PRT Thal 98 Lys Leu Ile 35 Val	Gly Ala 20 Thr	Gly 5 Glu Pro	Asp Trp Asp	Ala Pro Asp Tyr 55	Ala Gln Ala 40 Asp	Ala Lys 25 Trp	Tyr Val Pro	Thr Val Gly Phe 75	Trp His Gly 60	Gln 45 Ala	Glu 30 Asn Val	Val Lys Val	Lys Val Phe Ala	

- Gly Tyr Arg Asp Leu Arg Ala Lys Leu Val Met Met Gly Met Phe Lys 115 120 125
- Ser Ser Lys Met Tyr Tyr Ala Tyr Lys Cys Ser Phe Asn Met Cys Met 130 140
- Trp Leu Val Ala Val Ala Met Val Tyr Tyr Ser Asp Ser Leu Ala Met 145 150 155 160
- His Ile Gly Ser Ala Leu Leu Leu Gly Leu Phe Trp Gln Gln Cys Gly
- Trp Leu Ala His Asp Phe Leu His His Gln Val Phe Lys Gln Arg Lys
 180 185 190
- Tyr Gly Asp Leu Val Gly Ile Phe Trp Gly Asp Leu Met Gln Gly Phe 195 200 205
- Ser Met Gln Trp Trp Lys Asn Lys His Asn Gly His His Ala Val Pro 210 220
- Asn Leu His Asn Ser Ser Leu Asp Ser Gln Asp Gly Asp Pro Asp Ile 225 230 235
- Asp Thr Met Pro Leu Leu Ala Trp Ser Leu Lys Gln Ala Gln Ser Phe 245 255
- Arg Glu Ile Asn Lys Gly Lys Asp Ser Thr Phe Val Lys Tyr Ala Ile 260 265 270
- Lys Phe Gln Ala Phe Thr Tyr Phe Pro Ile Leu Leu Ala Arg Ile 275 280 285
- Ser Trp Leu Asn Glu Ser Phe Lys Thr Ala Phe Gly Leu Gly Ala Ala 290 295 300
- Ser Glu Asn Ala Lys Leu Glu Leu Glu Lys Arg Gly Leu Gln Tyr Pro 305 310 315 320
- Leu Ser Ser Gly Phe Gly Arg Trp Ser Leu Pro Tyr Ser Ile Met Tyr 340 345 350
- Phe Phe Thr Ala Thr Cys Ser Ser Gly Leu Phe Leu Ala Leu Val Phe 355 360 365
- Gly Leu Gly His Asn Gly Met Ser Val Tyr Asp Ala Thr Thr Arg Pro 370 375 380

Asp Phe Trp Gln 385	Leu Glr 390	n Val T	hr Th	r Thr	Arg A 395	sn I	le Il	e G	ly G 4	ly 00	
His Gly Ile Pro	Gln Phe	e Phe V	al As	p Trp 410	Phe C	ys G	ly Gl	.у Lo 4:	eu G 15	ln	
Tyr Gln Val Asp	His Hi	s Leu I	Phe Pr 42	ro Met 25	Met F	ro A	rg As	sn A	sn I	:le	
Ala Lys Cys His 435	Lys Le	u Val (3lu Se 440	er Phe	: Cys I	ys G 4	lu Ti 145	rp G	ly V	/al	
Lys Tyr His Glu 450	Ala As	p Met ' 455	Irp A	sp Gly	Thr \	/al 0 460	lu V	al L	eu (3ln	٠
His Leu Ser Lys 465	: Val Se 47	r Asp	Asp P	he Lei	val (475	Glu 1	Met V	al I	ys .	Asp 480	
Phe Pro Ala Me	:			***							
<210> 99 <211> 1431 <212> DNA <213> Thalass	iosira)	oseudor	nana								
	-	-									
<220> <221> CDS <222> (1)(1 <223> Delta-5	431)										
<220> <221> CDS <222> (1)(1 <223> Delta-5 <400> 99 atg ccc ccc aa Met Pro Pro As	431) -Desatu	rase	too (ege at Arg Il 1(e Arg	aac Asn	cgc a	atc Ile	ccc Pro 15	acc Thr	48
<220> <221> CDS <222> (1)(1 <223> Delta-5	431) -Desatu c gcc g n Ala A 5 c gtt g r Val A	rase at atc sp Ile	tcc o	arg 11	e arg	gac	ccc Pro	gcc	15 acc	caa	48 96
<220> <221> CDS <222> (1)(1 <223> Delta-5 <400> 99 atg ccccc aa Met Pro Pro As 1 aaa aca ggt ac Lys Thr Gly Th	431) -Desatu .c gcc g in Ala A 5 .c gtt g ir Val A	at atc sp Ile cc tct la Ser	gcc Ala	gac aa Asp As 25 aag gg	ac aac an Asn gc aac ly Asn	gac Asp gag Glu	ccc (Pro	gcc Ala 30	15 acc Thr	caa Gln aac	
<pre><220> <221> CDS <222> (1)(1 <223> Delta-5 <400> 99 atg ccc ccc aa Met Pro Pro As 1 aaa aca ggt ac Lys Thr Gly Th</pre>	431) -Desatu c gcc g n Ala A 5 c gtt g nr Val A) c ctc a nr Leu I	at atc sp Ile cc tct la Ser	gcc Ala	gac as Asp As 25 aag gg Lys G	ac aac sn Asn gc aac ly Asn	gac Asp gag Glu	gtc Val	gcc Ala 30 gtc Val	acc Thr atc Ile	caa Gln aac Asn	96
<220> <221> CDS <222> (1)(1 <223> Delta-5 <400> 99 atg ccc ccc aa Met Pro Pro As 1 aaa aca ggt ac Lys Thr Gly Th 20 tcc gtc cga ac Ser Val Arg Th 35 ggc aca att tc Gly Thr Ile T	431) -Desatu c gcc g m Ala A 5 c gtt g m Val A c ctc a mr Leu I at gac a yr Asp 1 tt ggt 9 he Gly 6	at atc sp Ile cc tct la Ser laa tct bys Ser att gct cle Ala 55	gcc Ala ctc Leu 40 gac Asp	gac aa Asp As 25 aag gg Lys G	ac aac aac aac ly Asn tc cat al His	gac Asp gag Glu cct Pro 60	gtc Val 45 gga Gly	gcc Ala 30 gtc Val gga Gly	acc Thr atc Ile gag	caa Gln aac Asn gtt Val	96 144
<220> <221> CDS <222> (1).(1 <223> Delta-5 <400> 99 atg ccc ccc aa Met Pro Pro As 1 aaa aca ggt ac Lys Thr Gly Th 20 tcc gtc cga ac Ser Val Arg Th 35 ggc aca att t Gly Thr Ile T 50 gtc aag ttc t Val Lys Phe P	431) -Desatu c gcc g m Ala A 5 c gtt g m Val A c ctc a mr Leu I at gac a yr Asp 1 tt ggt g	at atc sp Ile cc tct la Ser lat tct ser att gct le Ala 55 ggg aat	gcc Ala ctc Leu 40 gac Asp	gac aa Asp As 25 aag gi Lys G ttt g Phe V gtt a Val T	ac aac as Asn Asn Itc cat al His Ct att Ar Ile	gac Asp gag Glu cct Pro 60 cag	gtc Val 45 gga Gly tat	gcc Ala 30 gtc Val gga Gly aat Asn	acc Thr atc Ile gag Glu atg Met	caa Gln aac Asn gtt Val	96 144 192

, 156

										,0							
			100					105					110				
														cgt Arg		38	4
												Tyr		gct Ala		43	2 .
														acc Thr		48	0
														ttt Phe 175		, 52	8
														aat Asn		57	6
														ttt Phe		62	4
														cat His		67	2
														agc Ser		72	0
														cac His 255		76	8
														ttc Phe		_. 81	.6
														att Ile		86	4
														aat Asn		91	.2
ttc Phe 305	att Ile	gtc Val	aag Lys	agg Arg	agg Arg 310	aag Lys	tac Tyr	gcc Ala	gtt Val	gca Ala 315	ttg Leu	agg Arg	atg Met	atg Met	tac Tyr 320	96	0
att Ile	tac Tyr	ttg Leu	aac Asn	att Ile 325	gtc Val	agc Ser	ccc Pro	ttc Phe	atg Met 330	aac Asn	aat Asn	ggt Gly	ttg Leu	agc Ser 335	tgg Trp	100	8
tct Ser	acc Thr	ttt Phe	gga. Gly 340	atc Ile	atc Ile	atg Met	ttg Leu	atg Met 345	gga Gly	atc Ile	agc Ser	gag Glu	agt Ser 350	ctc Leu	act Thr	105	6
														gat Asp		110	4
														tgg Trp		115	2

157 375 1200 aag tog cag gtg gag act tog tot acc tat ggg ggt ttt att too gga Lys Ser Gln Val Glu Thr Ser Ser Thr Tyr Gly Gly Phe Ile Ser Gly tgt ctt acg gga gga ctc aac ttt cag gtg gaa cat cat ctc ttt ccc Cys Leu Thr Gly Gly Leu Asn Phe Gln Val Glu His His Leu Phe Pro 1248 405 cgt atg age agt get tgg tat cet tac att gea eet acg gtt egt gag 1296 Arg Met Ser Ser Ala Trp Tyr Pro Tyr Ile Ala Pro Thr Val Arg Glu gtt tgc aag aag cac ggg gtg aac tac gct tat tat cct tgg att ggg Val Cys Lys His Gly Val Asn Tyr Ala Tyr Tyr Pro Trp Ile Gly 1344 cag aat ttg gta tca aca ttc aaa tac atg cat cgc gct ggt agt gga Gln Asn Leu Val Ser Thr Phe Lys Tyr Met His Arg Ala Gly Ser Gly 1392 450 1431 gcc aac tgg gag ctc aag ccg ttg tct gga agt gcc taa Ala Asn Trp Glu Leu Lys Pro Leu Ser Gly Ser Ala <210> 100 <211> 476 <212> PRT <213> Thalassiosira pseudonana Met Pro Pro Asn Ala Asp Ile Ser Arg Ile Arg Asn Arg Ile Pro Thr
10 15 <400> 100 Lys Thr Gly Thr Val Ala Ser Ala Asp Asn Asn Asp Pro Ala Thr Gln Ser Val Arg Thr Leu Lys Ser Leu Lys Gly Asn Glu Val Val Ile Asn Gly Thr Ile Tyr Asp Ile Ala Asp Phe Val His Pro Gly Gly Glu Val Val Lys Phe Phe Gly Gly Asn Asp Val Thr Ile Gln Tyr Asn Met Ile His Pro Tyr His Thr Gly Lys His Leu Glu Lys Met Lys Ala Val Gly Lys Val Val Asp Trp Gln Ser Asp Tyr Lys Phe Asp Thr Pro Phe Glu

Arg Glu Ile Lys Ser Glu Val Phe Lys Ile Val Arg Arg Gly Arg Glu

Phe Gly Thr Thr Gly Tyr Phe Leu Arg Ala Phe Phe Tyr Ile Ala Leu

Phe Phe Thr Met Gln Tyr Thr Phe Ala Thr Cys Thr Thr Phe Thr Thr Tyr Asp His Trp Tyr Gln Ser Gly Val Phe Ile Ala Ile Val Phe Gly Ile Ser Gln Ala Phe Ile Gly Leu Asn Val Gln His Asp Ala Asn His Gly Ala Ala Ser Lys Arg Pro Trp Val Asn Asp Leu Leu Gly Phe Gly Thr Asp Leu Ile Gly Ser Asn Lys Trp Asn Trp Met Ala Gln His Trp 215 Thr His His Ala Tyr Thr Asn His Ser Glu Lys Asp Pro Asp Ser Phe Ser Ser Glu Pro Met Phe Ala Phe Asn Asp Tyr Pro Ile Gly His Pro Lys Arg Lys Trp Trp His Arg Phe Gln Gly Tyr Phe Leu Phe Met Leu Gly Leu Tyr Trp Leu Ser Thr Val Phe Asn Pro Gln Phe Ile Asp Leu Arg Gln Arg Gly Ala Gln Tyr Val Gly Ile Gln Met Glu Asn Asp Phe Ile Val Lys Arg Arg Lys Tyr Ala Val Ala Leu Arg Met Met Tyr Ile Tyr Leu Asn Ile Val Ser Pro Phe Met Asn Asn Gly Leu Ser Trp 330 Ser Thr Phe Gly Ile Ile Met Leu Met Gly Ile Ser Glu Ser Leu Thr 345 Leu Ser Val Leu Phe Ser Leu Ser His Asn Phe Ile Asn Ser Asp Arg 360 Asp Pro Thr Ala Asp Phe Lys Lys Thr Gly Glu Gln Val Cys Trp Phe Lys Ser Gln Val Glu Thr Ser Ser Thr Tyr Gly Gly Phe Ile Ser Gly Cys Leu Thr Gly Gly Leu Asn Phe Gln Val Glu His His Leu Phe Pro

410

Arg	Met	Ser	Ser 420	Ala	Trp	Tyr	Pro	туr 425	Ile	Ala	Pro	Thr	Val 430	Arg	Glu		
Val	Cys	Lys 435	Lys	His	Gly	Val	Asn 440	Tyr	Ala	Tyr	Tyr	Pro 445	Trp	Ile	Gly		
Gln	Asn 450	Leu	Val	Ser	Thr	Phe 455	Lys	Tyr	Met	His	Arg 460	Ala	Gly	Ser	Gly		
Ala 465	Asn	Trp	Glu	Leu	Lys 470	Pro	Leu	Ser	Gly	Ser 475	Ala				•		
<210 <210 <210 <210	L> : 2> !	LO1 L449 DNA Thala	assic	osira	ı pse	eudor	nana	•									
<220 <220 <220 <220	1> (2>		.(144 a-5-D		curas	se			* 1 4								
										,							
<400 atg Met 1	cca	101 ccc Pro	aac Asn	gcc Ala 5	gag Glu	gtc Val	aaa Lys	aac Asn	ctc Leu 10	cgt Arg	tca Ser	cgt Arg	tcc Ser	atc Ile 15	cca Pro		48
acg Thr	aag Lys	aag Lys	tcc Ser 20	agt Ser	tca Ser	tcg Ser	tca Ser	tcc Ser 25	acc Thr	gcg Ala	aac Asn	gac Asp	gat Asp 30	ccg Pro	gct Ala		96
acc Thr	caa Gln	tcc Ser 35	acc Thr	tca Ser	cct Pro	gtg Val	aac Asn 40	cga Arg	acc Thr	ctc Leu	aag Lys	tct Ser 45	ttg Leu	aat Asn	gga Gly	3	144
aac Asn	gaa Glu 50	ata Ile	gct Ala	att Ile	gac Asp	ggt Gly 55	gtć Val	atc Ile	tat Tyr	gat Asp	att Ile 60	gat Asp	ggc	ttt Phe	gtc Val	:	192
cat His 65	cct Pro	gga Gly	gga Gly	gag Glu	gtt Val 70	att Ile	agc Ser	ttc Phe	ttt Phe	gga Gly 75	ggc	aac Asn	gat Asp	gtg Val	act Thr 80	:	240
gta Val	cag Gln	tac Tyr	aaa Lys	atg Met 85	att Ile	cat His	ccg Pro	tat Tyr	cat His 90	aat Asn	agt Ser	aag Lys	cat His	ctc Leu 95	gag Glu	:	288
aag Lys	atg Met	aga Arg	gcc Ala 100	gtt Val	gga Gly	aag Lys	att Ile	gca Ala 105	gac Asp	tac Tyr	tcc Ser	aca Thr	gag Glu 110	tac Tyr	aag Lys		336
ttc Phe	gac Asp	aca Thr 115	Pro	ttt Phe	gaa Glu	cga Arg	gag Glu 120	atc Ile	aaa Lys	tcc Ser	gaa Glu	gtg Val 125	ttc Phe	aaa Lys	atc Ile		384
gtc Val	cgt Arg 130	Arg	gga Gly	cgt Arg	gaa Glu	ttc Phe 135	ggt Gly	aca Thr	aca Thr	gga Gly	tat Tyr 140	Phe	ctc Leu	cgt Arg	gcc Ala		432
ttc Phe	ttc Phe	tac Tyr	att Ile	gct Ala	ctc Leu	ttc Phe	ttc Phe	acc Thr	atg Met	caa Gln	tac Tyr	acc Thr	ttc Phe	gcc Ala	aca Thr		480

								1	1	bU						
145					150					155					160	
tgc Cys	act Thr	acc Thr	ttc Phe	acc Thr 165	Thr	tac Tyr	gat Asp	cat His	tgg Trp 170	tat Tyr	caa Gln	agt Ser	Gly	gta Val 175	ttc Phe	528
atc Ile	gcc Ala	att Ile	gtg Val 180	ttt Phe	ggt Gly	atc Ile	tca Ser	caa Gln 185	gct Ala	ttc Phe	att Ile	GJA aaa	ttg Leu 190	aat Asn	gta Val	576
caa Gln	cat His	gat Asp 195	gcc Ala	aat Asn	cac His	gga Gly	gct Ala 200	gct Ala	agc Ser	aaa Lys	cga Arg	ect Pro 205	tgg Trp	gtg Val	aat Asn	624
gat Asp	ctc Leu 210	ctt Leu	gga Gly	tct Ser	gga Gly	gct Ala 215	gat Asp	ctc Leu	atc Ile	ggt Gly	gga Gly 220	tgc Cys	aaa Lys	tgg Trp	aac Asn	672
tgg Trp 225	ttg Leu	gct Ala	cag Gln	cat His	tgg Trp 230	act Thr	cat His	cat His	gcg Ala	tat Tyr 235	acc Thr	aat Asn	cac His	gct Ala	gat Asp 240	720
												aac Asn				768
tat Tyr	ccc Pro	att Ile	ggt Gly 260	cac His	ccc Pro	aaa Lys	aga Arg	aag Lys 265	tgg Trp	tgg Trp	cat His	agg Arg	ttc Phe 270	caa Gln	Gly	816
ctc Leu	tac Tyr	ttc Phe 275	cta Leu	atc Ile	atg Met	ctg Leu	agt Ser 280	ttc Phe	tat Tyr	tgg Trp	gta Val	tcg Ser 285	atg Met	gta Val	ttc Phe	864
aac Asn	cca Pro 290	caa Gln	gtt Val	atc Ile	gac Asp	ctc Leu 295	egt Arg	cat His	gct Ala	gga Gly	gct Ala 300	gcc Ala	tac Tyr	gtt Val	gga Gly	912
												aag Lys				960
gca Ala	ctt Leu	cgt Arg	gca Ala	atg Met 325	tac Tyr	ttc Phe	tat Tyr	ttc Phe	aac Asn 330	atc Ile	tat Tyr	tgt Cys	ccg Pro	att Ile 335	gtc Val	1008
												ctc Leu				1056
gtt Val	agc Ser	gaa Glu 355	agc Ser	ttc Phe	atg Met	ctc Leu	tcc Ser 360	ggt Gly	cta Leu	ttc Phe	gta Val	ctc Leu 365	tca Ser	cac His	aac Asn	1104
ttt Phe	gaa Glu 370	aat Asn	tcc Ser	gaa Glu	cgt Arg	gat Asp 375	cct Pro	acc Th <u>r</u>	tct Ser	gag Glu	tat Tyr 380	cgc Arg	aag Lys	act Thr	ggt	1152
gag Glu 385	caa Gln	gta Val	tgt Cys	tgg Trp	ttc Phe 390	aag Lys	tct Ser	caa Gln	gtg Val	gag Glu 395	act Thr	tct Ser	tct Ser	acc Thr	tac Tyr 400	1200
gga Gly	ggt Gly	atc Ile	gtt Val	gct Ala 405	GJA aaa	tgt Cys	ctc Leu	act Thr	ggt Gly 410	gga Gly	ctc Leu	aac Asn	ttt Phe	caa Gln 415	gtg Val	1248
gag Glu	cat His	cat His	ttg Leu	ttc Phe	ccg Pro	agg Arg	atg Met	agc Ser	agt Ser	gct Ala	tgg Trp	tat Tyr	cct Pro	ttc Phe	atc Ile	1296

O 200	5/012	2316													CI/E	1 2004/00/2
•				•					16	1						
			420					425					430			
gcg Ala	ccg Pro	aag Lys 435	gtt Val	aga Arg	gag Glu	att Ile	tgt Cys 440	aag Lys	aag Lys	cat His	gga Gly	gtt Val 445	aga Arg	tac Tyr	gct Ala	1344
tac Tyr	tat Tyr 450	ccg Pro	tac Tyr	atc Ile	tgg Trp	cag Gln 455	aac Asn	ttg Leu	cat His	tct Ser	acc Thr 460	gtg Val	agt Ser	tac Tyr	atg · Met	1392
cat His 465	eja aaa	acg Thr	gga Gly	acg Thr	gga Gly 470	gct Ala	aga Arg	tgg Trp	gag Glu	ctt Leu 475	cag Gln	ccg Pro	ttg Leu	tct Ser	gga Gly 480	1440
agg Arg	gcg Ala	tag							•	-						1449
<210 <211 <212 <213	L> 4 2> 1	102 182 PRT Fhala	assio	osira	a pse	eudor	nana									
<400)> :	102														
Met 1	Pro	Pro	Asn	Ala 5	Glu	Val	Lys	Asn	Leu 10	Arg	Ser	Arg	Ser	Ile 15	Pro	
Thr	Lys	Lys	Ser 20	Ser	Ser	Ser	Ser	Ser 25	Thr	Ala	Asn	Asp	Asp 30	Pro	Ala	
Thr	Gln	Ser 35	Thr		Pro	Val	Asn 40	Arg	Thr	Leu	Lys	Ser 45	Leu	Asn	Gly	
Asn	Glu 50	Ile	Ala	Ile	Asp	Gly 55	Val	Ile	Tyr	Asp	Ile 60	Asp	Gly	Phe	Val	
His 65	Pro	Gly	Gly	Glu	Val 70	·Ile	Ser	Phe	Phe	Gly 75	Gly	Asn	qaA .	Val	Thr 80	
Val	.Gln	Tyr	Lys	Met 85	Ile	His	Pro	Tyr	His 90	Asn	Ser	Ŀуs	His	Leu 95	Glu	
Lys	Met	Arg	Ala 100		Gly	Lys	Ile	Ala 105		Tyr	Ser	Thr	Glu 110	Tyr	Lys	
Phe	Asp	Thr 115		Phe	Glu	Arg	Glu 120		. Lys	Ser	Glu	Val 125	. Phe	Lys	Ile	
Val	Arg 130		Gly	' Arg	Glu	Phe 135		Thr	Thr	Gly	туг 140	Phe	. Leu	Arg	Ala	
Phe 145		туг	· Ile	a Ala	Leu 150		Ph∈	Thr	Met	: Glr 155	Tyr	Thr	Phe	. Ala	Thr 160	
Cys	Thr	Thr	Phe	Thr 165		Туг	Asp	His	Tr:	Tyr	Gln	Sex	Gly	Val	. Phe	-

- Ile Ala Ile Val Phe Gly Ile Ser Gln Ala Phe Ile Gly Leu Asn Val 180 185 190
- Gln His Asp Ala Asn His Gly Ala Ala Ser Lys Arg Pro Trp Val Asn 195 200 205
- Asp Leu Leu Gly Ser Gly Ala Asp Leu Ile Gly Gly Cys Lys Trp Asn 210 220
- Trp Leu Ala Gln His Trp Thr His His Ala Tyr Thr Asn His Ala Asp 225 230 235 240
- Lys Asp Pro Asp Ser Phe Ser Ser Glu Pro Val Phe Asn Phe Asn Asp 245 250 250
- Tyr Pro Ile Gly His Pro Lys Arg Lys Trp Trp His Arg Phe Gln Gly 260 265 270
- Leu Tyr Phe Leu Ile Met Leu Ser Phe Tyr Trp Val Ser Met Val Phe 275 280 280
- Asn Pro Gln Val Ile Asp Leu Arg His Ala Gly Ala Ala Tyr Val Gly 290 295 300
- Phe Gln Met Glu Asn Asp Phe Ile Val Lys Arg Arg Lys Tyr Ala Met 305 310 315 320
- Ala Leu Arg Ala Met Tyr Phe Tyr Phe Asn Ile Tyr Cys Pro Ile Val 325 330 335
- Asn Asn Gly Leu Thr Trp Ser Thr Val Gly Ile Ile Leu Leu Met Gly 340 345 350
- Val Ser Glu Ser Phe Met Leu Ser Gly Leu Phe Val Leu Ser His Asn 355 360 365
- Phe Glu Asn Ser Glu Arg Asp Pro Thr Ser Glu Tyr Arg Lys Thr Gly
- Glu Gln Val Cys Trp Phe Lys Ser Gln Val Glu Thr Ser Ser Thr Tyr 385 390 395 400
- Gly Gly Ile Val Ala Gly Cys Leu Thr Gly Gly Leu Asn Phe Gln Val 405 410 415
- Glu His His Leu Phe Pro Arg Met Ser Ser Ala Trp Tyr Pro Phe Ile 420 425 430
- Ala Pro Lys Val Arg Glu Ile Cys Lys Lys His Gly Val Arg Tyr Ala 435 440 445

528

4.

Tyr Ty 45	r Pi	co T	yr I	le T	rp G	ln A 55	sn 1	Leu I	His S	Ser :	Thr \\ 460	Val S	Ser T	yr N	Met	
His Gl 465	Ly Tì	hr G	ly 1	hr (31y F 170	la A	urg '	Trp (Glu 1	Leu (475	Gln i	Pro 1	Leu S	Ser (Gl _Y 480	
Arg Al	la															
<210> <211> <212> <213>	15 DN	12 A	sio	sira	pse	udon	ana									
<220> <221> <222> <223>	CI (1	.)			uras	e										
<400> atg t Met C			ggc Gly	aac Asn 5	ctc Leu	cca Pro	gca Ala	tcc Ser	acc Thr 10	gca Ala	cag Gln	ctc Leu	aag Lys	tcc Ser 15	acc Thr	48
tcg a Ser I	ys :	Pro	cag Gln 20	cag Gln	caa Gln	cat His	gag Glu	cat His 25	ege Arg	acc Thr	atc Ile	tcc Ser	aag Lys 30	tcc Ser	gag Glu	96
ctc g Leu <i>P</i>	Ala	caa Gln 35	cac His	aac Asn	acg Thr	ccc Pro	aaa Lys 40	tca Ser	gca Ala	tgg Trp	tgt Cys	gcc Ala 45	gtc Val	cac His	tcc Ser	144
act o	ccc Pro 50	gcc Ala	acc Thr	gac Asp	cca Pro	tcc Ser 55	cac	tcc Ser	aac Asn	aac Asn	aaa Lys 60	caa Gln	cac His	gca Ala	cac His	192
cta (Leu ' 65	gtç Val	ctc Leu	gac Asp	att Ile	acc Thr 70	gac Asp	ttt Phe	gcg Ala	tcc Ser	cgc Arg 75	cat His	cca Pro	ggg	gga Gly	gac Asp 80	240
ctc Leu	atc. Ile	ctc Leu	ctċ Leu	gct Ala 85	tcc Ser	ggc ggc	aaa Lys	a gac s Asr	gcc Ala 90	tcg Sex	gto Val	g ctg L Leu	ttt Phe	gaa Glu 95	aca Thr	288
tac Tyr	cat His	cca Pro	cgt Arg 100	GIA	gtt Val	ccg Pro	acq Th:	g tot r Sei 10!		att	caa e Gli	a aag n Lys	ctg Lev 110		g att n Ile	336
gga Gly	gtg Val	atg Met 115	GIU	gag Glu	gag ı Glu	gcg Ala	tt Ph	e AL	g gat g Ası	te Se:	g tt: r Ph	t tad e Ty: 12:		tgg Tr	g act o Thr	384
gat Asp	tct Ser 130	Asp	ttt Phe	tat	act Thi	gtg Val	Lпе	g aa u Ly	g ag	g ag	g gt g Va 14		g gag 1 Gli	g cgg	g ttg g Leu	432

gag gag agg ggg ttg gac agg agg gga tcg aaa gag att tgg atc aag Glu Glu Arg Gly Leu Asp Arg Arg Gly Ser Lys Glu Ile Trp Ile Lys 145

gct ttg ttc ttg ttg gtt gga ttt tgg tac tgt ttg tac aag atg tat Ala Leu Phe Leu Leu Val Gly Phe Trp Tyr Cys Leu Tyr Lys Met Tyr

									16	4						
				165					170					175		
act Thr	acg Thr	tcg Ser	gat Asp 180	atc Ile	gat Asp	cag Gln	tac Tyr	ggt Gly 185	att Ile	gcc Ala	att Ile	gcc Ala	tat Tyr 190	tct Ser	atț Ile	576
gga Gly	atg Met	gga Gly 195	acc Thr	ttt Phe	gcg Ala	gca Ala	ttc Phe 200	atc Ile	ggc	acg Thr	tgt Cys	att Ile 205	caa Gln	cac His	gat Asp	624
gga Gly	aat Asn 210	cac His	ggt Gly	gca Ala	ttc Phe	gct Ala 215	cag Gln	aac Asn	aag Lys	tta Leu	ctc Leu 220	aac Asn	aag Lys	ttg Leu	gct Ala	672
ggg Gly 225	tgg Trp	acg Thr	ttg Leu	gat Asp	atg Met 230	att Ile	ggt Gly	gcg Ala	agt Ser	gcg Ala 235	ttt Phe	acg Thr	tgg Trp	gag Glu	ctt Leu 240	720
cag Gln	cac His	atg Met	ctg Leu	ggg Gly 245	cat His	cat His	cca Pro	tat Tyr	acg Thr 250	aat Asn	gtg Val	ttg Leu	gat Asp	ggg Gly 255	gtg Val	768
gag Glu	gag Glu	gag Glu	agg Arg 260	aag Lys	gag Glu	agg Arg	GJA aaa	gag Glu 265	gat Asp	gtt Val	gct Ala	ttg Leu	gaa Glu 270	gaa Glu	aag Lys	816
gat Asp	cag Gln	gat Asp 275	ttt Phe	gaa Glu	gtt Val	gcc Ala	aca Thr 280	tcc Ser	gga Gly	cga Arg	tta Leu	tat Tyr 285	cat His	att Ile	gat Asp	864
gcc Ala	aat Asn 290	gta Val	cgt Arg	tat Tyr	ggt Gly	tcg Ser 295	gta Val	tgg Trp	aat Asn	gtc Val	atg Met 300	agg Arg	ttt Phe	tgg Trp	gct Ala	912
atg Met 305	Lys	gtc Val	att Ile	acg Thr	atg Met 310	gga Gly	tat Tyr	atg Met	atg Met	gga Gly 315	tta Leu	CCA Pro	atc Ile	TYT	ttt Phe 320	960
cat His	gga Gly	gta Val	ctg Leu	agg Arg 325	gga Gly	gtt Val	gga Gly	ttg Leu	ttt Phe 330	Val	att Ile	Gly	cat His	ttg Leu 335	gcg Ala	1008
tgt Cys	gga Gly	gag Glu	ttg Leu 340	ttg Leu	gcg Ala	acg Thr	atg Met	ttt Phe 345	att Ile	gtg Val	aat Asn	cac	gtc Val 350	ITe	gag Glu	1056
ggt Gly	gtg Val	agt Ser 355	Туг	gga Gly	acg Thr	aag Lys	gat Asp 360	Leu	gtt Val	ggt Gly	ggt	gcg Ala 365	. Ser	cat His	gta Val	1104
gat Asp	gag Glu 370	Lys	aag Lys	att Ile	gtc Val	aag Lys 375	cca Pro	acg Thr	act	gta Val	Leu 380	Gly	gat Asp	aca Thr	cca Pro	1152
atg Met 385	: Val	aag Lys	act Thr	. cgc : Arg	gag Glu 390	Glu	gca Ala	ttg Leu	aaa Lys	ago Ser 395	Asn	ago Ser	aat Asn	aac Asn	aac Asn 400	1200
aag Lys	g aag Lys	g aag Lys	ggş ggg	gag Glu 405	. Lys	aac Asn	tcg Ser	gta Val	Pro 410	Ser	gtt Val	cca Pro	Phe	aac Asn 419	gac Asp	1248
tgg Trg	g gca o Ala	a gca a Ala	gto Val 420	. Glr	tgc Cys	cag Gln	acc Thr	Ser 425	· Val	g aat L Asr	tgg Trp	tct Ser	e cca Pro 430	CT?	tca Ser	1296
tgg Tr <u>r</u>	tto Phe	tgg Trp	g aat o Asr	cac His	ttt Phe	tct Ser	GJ7	g gga	cto Lev	tct Ser	cat His	caç Glı	g att	gaç Glu	cat His	1344

cac ttg ttc ccc agc att tgt cat aca aac tac tgt cat Asn Tyr Cys His Thr Asn Tyr Cys His Ile Gln Asp

gtt gtg gag agt acg tgt gct gag tac gug tac gug tac gug tac gug tac gug tac gug tac Ser Asn Leu Phe Val Ass Tyr Gly Lys Met Ass Ile Ser His Leu Lys Phe Ass Ile Ser Ass Ileu Phe Val Ass Ileu Phe V

ttg ggt aaa gcc aag tgt gag tag Leu Gly Lys Ala Lys Cys Glu 500 1512

<210> 104 <211> 503 <212> PRT

<213> Thalassiosira pseudonana

<400> 104

Met Cys Asn Gly Asn Leu Pro Ala Ser Thr Ala Gln Leu Lys Ser Thr 1 5 10 15

Ser Lys Pro Gln Gln His Glu His Arg Thr Ile Ser Lys Ser Glu 20 25 30

Leu Ala Gln His Asn Thr Pro Lys Ser Ala Trp Cys Ala Val His Ser 35 40 45

Thr Pro Ala Thr Asp Pro Ser His Ser Asn Asn Lys Gln His Ala His 50 55 60

Leu Val Leu Asp Ile Thr Asp Phe Ala Ser Arg His Pro Gly Gly Asp 65 70 75 80

Leu Ile Leu Leu Ala Ser Gly Lys Asp Ala Ser Val Leu Phe Glu Thr 85 90 95

Tyr His Pro Arg Gly Val Pro Thr Ser Leu Ile Gln Lys Leu Gln Ile 100 105 110

Gly Val Met Glu Glu Glu Ala Phe Arg Asp Ser Phe Tyr Ser Trp Thr 115 120 125

Asp Ser Asp Phe Tyr Thr Val Leu Lys Arg Arg Val Val Glu Arg Leu 130 135 140

Glu Glu Arg Gly Leu Asp Arg Arg Gly Ser Lys Glu Ile Trp Ile Lys 145 150 150 155

Ala Leu Phe Leu Leu Val Gly Phe Trp Tyr Cys Leu Tyr Lys Met Tyr 165 170 175 Thr Thr Ser Asp Ile Asp Gln Tyr Gly Ile Ala Ile Ala Tyr Ser Ile 180 185 190

Gly Met Gly Thr Phe Ala Ala Phe Ile Gly Thr Cys Ile Gln His Asp 195 200 205

Gly Asn His Gly Ala Phe Ala Gln Asn Lys Leu Leu Asn Lys Leu Ala 210 215 220

Gly Trp Thr Leu Asp Met Ile Gly Ala Ser Ala Phe Thr Trp Glu Leu 225 230 235 240

Gln His Met Leu Gly His His Pro Tyr Thr Asn Val Leu Asp Gly Val 245 250 255

Glu Glu Glu Arg Lys Glu Arg Gly Glu Asp. Val Ala Leu Glu Glu Lys 260 265 270

Asp Gln Asp Phe Glu Val Ala Thr Ser Gly Arg Leu Tyr His Ile Asp 275 .280 285

Ala Asn Val Arg Tyr Gly Ser Val Trp Asn Val Met Arg Phe Trp Ala 290 $$ 295 $$ 300

Met Lys Val Ile Thr Met Gly Tyr Met Met Gly Leu Pro Ile Tyr Phe 305 310 315 310 320

His Gly Val Leu Arg Gly Val Gly Leu Phe Val Ile Gly His Leu Ala 325 330 335

Cys Gly Glu Leu Leu Ala Thr Met Phe Ile Val Asn His Val Ile Glu 340 345 350

Gly Val Ser Tyr Gly Thr Lys Asp Leu Val Gly Gly Ala Ser His Val 355 360 365

Asp Glu Lys Lys Ile Val Lys Pro Thr Thr Val Leu Gly Asp Thr Pro 370 375 380

Met Val Lys Thr Arg Glu Glu Ala Leu Lys Ser Asn Ser Asn Asn Asn 385 390 395 . 400

Lys Lys Gly Glu Lys Asn Ser Val Pro Ser Val Pro Phe Asn Asp 405 410 415

Trp Ala Ala Val Gln Cys Gln Thr Ser Val Asn Trp Ser Pro Gly Ser 420 425 430

Trp Phe Trp Asn His Phe Ser Gly Gly Leu Ser His Gln Ile Glu His

4.00

His	Leu 450	Phe	Pro	Se'r	Ile	Cys I 455	His	Thr	Asn	Tyr	Cys 460	His	Ile	Gln	Asp	
Val 465	Val	Glu	Ser	Thr	Cys 470	Ala (Glu	TYY	Gly	Val 475	Pro	Tyr	Gln	Ser	Glu 480	
Ser	Asn	Leu	Phe	Va1 485	Ala	Tyr (Gly	Lys	Met 490	Ile	Ser	His	Leu	Lys 495	Phe	
Leu	Gly	Lys	Ala 500	Lys	Cys	Glu			•							
<21 <21 <21 <21	1> 2>	105 1257 DNA Thal	assi	osira	ı pse	eudon	ana	•								
<22	1> 2>		. (12: a-3-		uras	se										
		105 aga Arg	tta Leu	aca Thr 5	tcc Ser	acc Thr	ttc Phe	ctc Leu	atc Ile 10	gca Ala	ttg Leu	gca Ala	ttc Phe	tcc Ser 15	tcc Ser	48
tcc Ser	ato	aat Asr	gcc Ala 20	ttc Phe	tct Ser	cca Pro	caa Gln	cgg Arg 25	cca Pro	cca Pro	cgt Arg	act Thr	atc Ile 30	acc Thr	aaa Lys	96
agt Ser	aaa Lys	gto Val	caa l Gln	agc Ser	acc Thr	gtg Val	cta Leu 40	ccc Pro	ata Ile	ccg Pro	acc	aag Lys 45	gat Asp	gat Asp	ctg Leu	144
aac Ası	ttt Phe 50	cto	caa ıGln	. cca Pro	caa Gln	ctc Leu 55	gat Asp	gag Glu	aat Asn	gat Asp	cto Leu 60	tac Tyr	ctc Leu	gac Asp	gat Asp	192
gto Val 65	c aad l Asi	c ac	t cca r Pro	cca Pro	aga Arg 70	gca Ala	ggt Gly	acc Thr	ato Ile	atg Met 75	aaç Lys	atg Met	ttg Leu	ccg Pro	aag Lys 80	240
ga: Gl:	a ac	g tt r Ph	c aac e Asr	att 11e 85	gat Asp	aca Thr	gca Ala	act Thr	tca Ser 90	tto Lev	ggt 1 Gly	tac Tyr	ttt Phe	ggt Gl ₃ 95	atg Met	288
ga As	t at	g gc t Al	a gcg a Ala 100	a Val	gts Val	tcg Ser	tco Ser	ato Met 10	- Trni	tto Lev	g cta 1 Lev	aat 1 Asi	gct Ala 110		gta Val	336
ac Th	t tc r Se	g ga r As 11	p Glı	g tac	cat His	gct Ala	ctt Let 120	ı Pro	a ctt	e cci	t cto Len	Caa 1 Gl: 125	1 WTG	a gca a Ala	a aca a Thr	384
gt Va	g at 1 I1 13	e Pr	c tt	t cag e Gli	g cta n Lev	ttg Lev 135	ı Ala	t ggg a Gl	g tto y Pho	e gce e Ala	c ate a Me 14	r iri	g tgt o Cy:	ate	g tgg t Trp	432
tg Cy	c at	t gg e Gl	a ca y Hi	c gat s Asj	get Ala	gga Gly	a cat	t tc s Se	t ac	t gt r Va	t tc 1 Se	g aa r Ly	g aca s Thi	a aa c Ly	g tgg s Trp	480

									7	68						
145	ı			,	150					155					160	
atc Ile	aac Asn	cga Arg	gtc Val	gtt Val 165	Gly	gaa Glu	gtg Val	gct Ala	cat His 170	tct Ser	gtt Val	gtt Val	tgt Cys	ctc Leu 175		528
ccg Pro	Phe	gtg Val	cct Pro 180	tgg Trp	cag Gln	atg Met	tcg Ser	cat His 185	Arg	aaa Lys	cac His	cat His	ttg Leu 190	aat Asn	cac His	576
aat Asn	cat His	att Ile 195	gaa Glu	aag Lys	gac Asp	tac Tyr	tct Ser 200	His	aag Lys	tgg Trp	tac Tyr	agt Ser 205	cgc Arg	gac Asp	gag Glu	62 4
ttt Phe	gat Asp 210	gat Asp	atc Ile	cca Pro	caa Gln	ctc Leu 215	tat Tyr	aag Lys	aca Thr	ttt Phe	ggc Gly 220	tac Tyr	aac Asn	cca Pro	aga Arg	672
atg Met 225	Met	caa Gln	ctt Leu	cca Pro	ttc Phe 230	ctc Leu	tac Tyr	ttc Phe	atg Met	tat Tyr 235	ctt Leu	gca Ala	ttg Leu	gga Gly	att Ile 240	720
												tgg Trp				768
												gcc Ala				. 816
gca Ala	act Thr	gct Ala 275	gga Gly	tcg Ser	ctt Leu	tgg Trp	atg Met 280	aat Asn	atg Met	ggt Gly	aca Thr	gca Ala 285	gac Asp	ttc Phe	acg Thr	864
												tgg Trp				912
gta Val 305	aca Thr	tac Tyr	ctt Leu	cag Gln	cat His 310	cat His	tca Ser	gaa Glu	gac Asp	gga Gly 315	aag Lys	cta Leu	tac Tyr	act Thr	gat Asp 320	960
gaa Glu	acg Thr	ttt Phe	aca Thr	ttt Phe 325	gaa Glu	aag Lys	gga Gly	gcc Ala	ttc Phe 330	gag Glu	acc Thr	gtg Val	gat Asp	cgt Arg 335	tcg Ser	1008
tac Tyr	Gly ggc	aag Lys	ttg Leu 340	atc Ile	aac Asn	cga Arg	atg Met	tcg Ser 345	cat His	cac His	atg Met	atg Met	gac Asp 350	ggt Gly	cac His	1056
gtg Val	gtg Val	cac His 355	cac His	ttg Leu	ttc Phe	ttt Phe	gaa Glu 360	cgt Arg	gta Val	cct Pro	cac His	tac Tyr 365	aga Arg	tta Leu	gag Glu	1104
gca Ala	gct Ala 370	acc Thr	gaa Glu	gct Ala	ctt Leu	gtg Val 375	aaa Lys	gga Gly	atg Met	gat Asp	gaa Glu 380	acg Thr	gga Gly	cag Gln	aaa Lys	1152
												gcc Ala				1200
aac Asn	gga Gly	ttt Phe	cgc Arg	gac Asp 405	aat Asn	tgg Trp	tt <i>c</i> Phe	ctt Leu	gtt Val 410	gaa Glu	gag Glu	gag Glu	aac Asn	atc Ile 415	aaa Lys	1248
agg Arg	gag Glu	tag									•					1257

<210> 106 <211> 418 <212> PRT <213> Thalassiosira pseudonana <400> 106

Met Tyr Arg Leu Thr Ser Thr Phe Leu Ile Ala Leu Ala Phe Ser Ser 1 5 10 15

Ser Ile Asn Ala Phe Ser Pro Gln Arg Pro Pro Arg Thr Ile Thr Lys 20 25 30

Ser Lys Val Gln Ser Thr Val Leu Pro Ile Pro Thr Lys Asp Asp Leu 35 40 45

Asn Phe Leu Gln Pro Gln Leu Asp Glu Asn Asp Leu Tyr Leu Asp Asp 50 55

Val Asn Thr Pro Pro Arg Ala Gly Thr Ile Met Lys Met Leu Pro Lys 65 70 75 80

Glu Thr Phe Asn Ile Asp Thr Ala Thr Ser Leu Gly Tyr Phe Gly Met 85 90 95

Asp Met Ala Ala Val Val Ser Ser Met Thr Leu Leu Asn Ala Ile Val

Thr Ser Asp Gln Tyr His Ala Leu Pro Leu Pro Leu Gln Ala Ala Thr

Val Ile Pro Phe Gln Leu Leu Ala Gly Phe Ala Met Trp Cys Met Trp 130 135 140

Cys Ile Gly His Asp Ala Gly His Ser Thr Val Ser Lys Thr Lys Trp

Ile Asn Arg Val Val Gly Glu Val Ala His Ser Val Val Cys Leu Thr 165 170 175

Pro Phe Val Pro Trp Gln Met Ser His Arg Lys His His Leu Asn His 180 185 190

Asn His Ile Glu Lys Asp Tyr Ser His Lys Trp Tyr Ser Arg Asp Glu 195 200 205

Phe Asp Asp Ile Pro Gln Leu Tyr Lys Thr Phe Gly Tyr Asn Pro Arg 210 215

Met Met Gln Leu Pro Phe Leu Tyr Phe Met Tyr Leu Ala Leu Gly Ile 225 230 230 235

96

Pro Asp Gly Gly His Val Val Phe Tyr Gly Arg Met Trp Glu Gly Val 250 Ser Leu Gln Lys Lys Phe Asp Ala Ala Ile Ser Val Ala Val Ser Cys 265 Ala Thr Ala Gly Ser Leu Trp Met Asn Met Gly Thr Ala Asp Phe Thr 280 Val Val Cys Met Val Pro Trp Leu Val Leu Ser Trp Trp Leu Phe Met Val Thr Tyr Leu Gln His His Ser Glu Asp Gly Lys Leu Tyr Thr Asp Glu Thr Phe Thr Phe Glu Lys Gly Ala Phe Glu Thr Val Asp Arg Ser Tyr Gly Lys Leu Ile Asn Arg Met Ser His His Met Met Asp Gly His Val Val His His Leu Phe Phe Glu Arg Val Pro His Tyr Arg Leu Glu 360 365 Ala Ala Thr Glu Ala Leu Val Lys Gly Met Asp Glu Thr Gly Gln Lys 375 His Leu Tyr Lys Tyr Ile Asp Thr Pro Asp Phe Asn Ala Glu Ile Val 390 Asn Gly Phe Arg Asp Asn Trp Phe Leu Val Glu Glu Glu Asn Ile Lys 405 Arg Glu <210> 107 <211> 1086 <212> DNA <213> Ostreococcus tauri <220> <221> CDS <222> (1)..(1086) <223> Delta-12-Desaturase atg cag gag ggg gtg cga aac att ccg aac gag tgc ttt gag acg gga Met Gln Glu Gly Val Arg Asn Ile Pro Asn Glu Cys Phe Glu Thr Gly 10 cat ctt gaa aga ccc tgg cgt tcc ggc cgg tgt ggg cgc gat ccc ggt His Leu Glu Arg Pro Trp Arg Ser Gly Arg Cys Gly Arg Asp Pro Gly

tog aat tgg ggc gct ggc ttc cgc ttt ttt tcg ctc aag ggg ttt tgg Ser Asn Trp Gly Ala Gly Phe Arg Phe Phe Ser Leu Lys Gly Phe Trp 40 tgg ccg gcg tgg tgg gcg tac gcg ttc gtg acg ggg acg gcg gcc act Trp Pro Ala Trp Trp Ala Tyr Ala Phe Val Thr Gly Thr Ala Ala Thr 192 ggg tgt tgg gtc gcc gcg cac gag tgc ggg cac ggc gcg ttc agc gat Gly Cys Trp Val Ala Ala His Glu Cys Gly His Gly Ala Phe Ser Asp 240 70 aac aag acg ttg caa gat gcg gtt gga tac gtg ttg cac tcg ttg ctc Asn Lys Thr Leu Gln Asp Ala Val Gly Tyr Val Leu His Ser Leu Leu 288 ttg gtg ccg tac ttt tct tgg cag cga tca cac gcg gtg cat cac tcg Leu Val Pro Tyr Phe Ser Trp Gln Arg Ser His Ala Val His His Ser agg acg aat cac gtt ctt gag ggc gag acg cac gtg ccg gcg cgc ttg 384 Arg Thr Asn His Val Leu Glu Gly Glu Thr His Val Pro Ala Arg Leu ggg acg gaa gac gcc aac gtc gtg ttc aag ctt cgc gaa ttg atc ggt Gly Thr Glu Asp Ala Asn Val Val Phe Lys Leu Arg Glu Leu Ile Gly 432 135 gaa ggg ccg ttc acg ttt ttc aac ctc gtc ggc gtc ttc gcg ctc gga Glu Gly Pro Phe Thr Phe Phe Asn Leu Val Gly Val Phe Ala Leu Gly 480 150 145 tgg ccg att tac ttg ctc acc ggc gcg agc ggc gga ccg gtg cgc ggt Trp Pro Ile Tyr Leu Leu Thr Gly Ala Ser Gly Gly Pro Val Arg Gly 528 170 aac acg aac cac ttc tta ccc ttc atg ggc gag aaa ggt aag cac gcg Asn Thr Asn His Phe Leu Pro Phe Met Gly Glu Lys Gly Lys His Ala 576 185 ctg ttc ccg ggt aag tgg gcg aag aag gtg tgg cag tct gac atc ggc Leu Phe Pro Gly Lys Trp Ala Lys Lys Val Trp Gln Ser Asp Ile Gly 624 672 215 att gcc aca gtg atg gca ctc tac gtc ggc ccg tac atg gtg acc aac Ile Ala Thr Val Met Ala Leu Tyr Val Gly Pro Tyr Met Val Thr Asn 720 ttt tgg ctc gtc ttg tac acg tgg tta cag cac acc gac gtt gac gtg 768 Phe Trp Leu Val Leu Tyr Thr Trp Leu Gln His Thr Asp Val Asp Val ccg cac ttc gag ggc gac gat tgg aac ttg gtc aag ggg gca ttc atg 816 Pro His Phe Glu Gly Asp Asp Trp Asn Leu Val Lys Gly Ala Phe Met acg atc gat cgc ccg tac ggc cca gtt ttt gat ttc ttg cac cac cgc
Thr Ile Asp Arg Pro Tyr Gly Pro Val Phe Asp Phe Leu His His Arg 275 atc ggc agc acg cac gtc gcg cac cac atc aac aca cca ttc ccg cat 912 Ile Gly Ser Thr His Val Ala His His Ile Asn Thr Pro Phe Pro His

172 290 295 300 960 tac aag gct caa atg gcg acg gat gcg cta aag gag gcg tat ccc gac Tyr Lys Ala Gln Met Ala Thr Asp Ala Leu Lys Glu Ala Tyr Pro Asp 305 1008 etc tac ett tac gat eca act eeg ate geg ace get acg tgg ege gtg Leu Tyr Leu Tyr Asp Pro Thr Pro Ile Ala Thr Ala Thr Trp Arg Val 330 ggg agc aag tgc atc gcc gtc gtg aag aag gga gac gaa tgg gtg ttc 1056 Gly Ser Lys Cys Ile Ala Val Val Lys Lys Gly Asp Glu Trp Val Phe 345 acg gat aag caa ctc ccg gtc gcg gcg tga 1086 Thr Asp Lys Gln Leu Pro Val Ala Ala 355 360 <210> 108 <211> 361 <212> PRT <213> Ostreococcus tauri <400> 108 Met Gln Glu Gly Val Arg Asn Ile Pro Asn Glu Cys Phe Glu Thr Gly His Leu Glu Arg Pro Trp Arg Ser Gly Arg Cys Gly Arg Asp Pro Gly Ser Asn Trp Gly Ala Gly Phe Arg Phe Phe Ser Leu Lys Gly Phe Trp Trp Pro Ala Trp Trp Ala Tyr Ala Phe Val Thr Gly Thr Ala Ala Thr Gly Cys Trp Val Ala Ala His Glu Cys Gly His Gly Ala Phe Ser Asp Asn Lys Thr Leu Gln Asp Ala Val Gly Tyr Val Leu His Ser Leu Leu Leu Val Pro Tyr Phe Ser Trp Gln Arg Ser His Ala Val His His Ser 100 Arg Thr Asn His Val Leu Glu Gly Glu Thr His Val Pro Ala Arg Leu 115 120 Gly Thr Glu Asp Ala Asn Val Val Phe Lys Leu Arg Glu Leu Ile Gly Glu Gly Pro Phe Thr Phe Phe Asn Leu Val Gly Val Phe Ala Leu Gly Trp Pro Ile Tyr Leu Leu Thr Gly Ala Ser Gly Gly Pro Val Arg Gly

WO 2005/012316 173 Asn Thr Asn His Phe Leu Pro Phe Met Gly Glu Lys Gly Lys His Ala Leu Phe Pro Gly Lys Trp Ala Lys Lys Val Trp Gln Ser Asp Ile Gly Val Val Ala Val Leu Gly Ala Leu Ala Ala Trp Ala Ala His Ser Gly 215 Ile Ala Thr Val Met Ala Leu Tyr Val Gly Pro Tyr Met Val Thr Asn Phe Trp Leu Val Leu Tyr Thr Trp Leu Gln His Thr Asp Val Asp Val Pro His Phe Glu Gly Asp Asp Trp Asn Leu Val Lys Gly Ala Phe Met Thr Ile Asp Arg Pro Tyr Gly Pro Val Phe Asp Phe Leu His His Arg Ile Gly Ser Thr His Val Ala His His Ile Asn Thr Pro Phe Pro His Tyr Lys Ala Gln Met Ala Thr Asp Ala Leu Lys Glu Ala Tyr Pro Asp Leu Tyr Leu Tyr Asp Pro Thr Pro Ile Ala Thr Ala Thr Trp Arg Val Gly Ser Lys Cys Ile Ala Val Val Lys Lys Gly Asp Glu Trp Val Phe Thr Asp Lys Gln Leu Pro Val Ala Ala <210> 109 <211> 1305 <212> DNA <213> Thalassiosira pseudonana <220> <221> CDS <222> (1)..(1305) <223> Delta-12-Desaturase atg gga aag gga gga aga tca gta acc cgc gct caa aca gca gaa aag Met Gly Lys Gly Gly Arg Ser Val Thr Arg Ala Gln Thr Ala Glu Lys

tca gca cac acc atc caa acc ttc acc gac ggc cga tgg gtc tcc ccc Ser Ala His Thr Ile Gln Thr Phe Thr Asp Gly Arg Trp Val Ser Pro

						•				• •	•						
				20					25					30			
							gat Asp										144
:	atc Ile	aag Lys 50	gcg Ala	gtc Val	atc Ile	ccc Pro	aaa Lys 55	gag Glu	tgc Cys	ttc Phe	gaa Glu	cga Arg 60	agc Ser	tac Tyr	ctc Leu	cac His	192
:							cgt Arg										240
•	tac Tyr	atc Ile	gcc Ala	cac His	tca Ser 85	acg Thr	ctc Leu	tcc Ser	acc Thr	gat Asp 90	att Ile	ccc Pro	tcc Ser	gag Glu	tta Leu 95	ctg Leu	288
							tgg Trp										336
							acc Thr										384
							ccc Pro 135										432
							gtg Val										480
							cga Arg									Glu	528
	_						gcc Ala	_	_	_	_					aat ⁽ Asn	576
							gcc Ala										624
							atc Ile 215										672
							gct Ala										720
							gag Glu										768
							ttg Leu										816
							gtt Val										864
							ctt Leu										912

300 295 290 cag gcg tgg ctt gtg ctc tac act tgg ctt cag cac aat gat ccc tcc 960 Gln Ala Trp Leu Val Leu Tyr Thr Trp Leu Gln His Asn Asp Pro Ser gtg cct caa tat gga agt gac gaa tgg aca tgg gtc aag gga gct ttg Val Pro Gln Tyr Gly Ser Asp Glu Trp Thr Trp Val Lys Gly Ala Leu 1008 325 tcg acg att gat cgc ccg tat ggt atc ttt gac ttc ttc cat cac aag 1056 Ser Thr Ile Asp Arg Pro Tyr Gly Ile Phe Asp Phe Phe His His Lys att gga agc act cac gta gct cat cat ttg ttc cac gag atg cca ttt 1104 Ile Gly Ser Thr His Val Ala His His Leu Phe His Glu Met Pro Phe 360 tac aag gcg gat gtg gct act gcg tcg atc aag ggt ttc ttg gag ccg Tyr Lys Ala Asp Val Ala Thr Ala Ser Ile Lys Gly Phe Leu Glu Pro 1152 375 aag gga ctt tac aac tat gat cca acg cct tgg tat gtg gcc atg tgg 1200 Lys Gly Leu Tyr Asn Tyr Asp Pro Thr Pro Trp Tyr Val Ala Met Trp agg gtg gcc aag act tgt cat tat att gag gat gtg gat gga gtt cag Arg Val Ala Lys Thr Cys His Tyr Ile Glu Asp Val Asp Gly Val Gln 1248 405 tat tat aag agt ttg gag gat gtg cct ttg aag aag gat gcc aag aag 1296 Tyr Tyr Lys Ser Leu Glu Asp Val Pro Leu Lys Lys Asp Ala Lys Lys 1305 tct gat tag Ser Asp <210> 110 <211> 434 <212> PRT <213> Thalassiosira pseudonana <400> 110 Met Gly Lys Gly Gly Arg Ser Val Thr Arg Ala Gln Thr Ala Glu Lys Ser Ala His Thr Ile Gln Thr Phe Thr Asp Gly Arg Trp Val Ser Pro 25 Tyr Asn Pro Leu Ala Lys Asp Ala Pro Glu Leu Pro Ser Lys Gly Glu Ile Lys Ala Val Ile Pro Lys Glu Cys Phe Glu Arg Ser Tyr Leu His Ser Met Tyr Phe Val Leu Arg Asp Thr Val Met Ala Val Ala Cys Ala Tyr Ile Ala His Ser Thr Leu Ser Thr Asp Ile Pro Ser Glu Leu Leu

١,

- Ser Val Asp Ala Leu Lys Trp Phe Leu Gly Trp Asn Thr Tyr Ala Phe 100 105 110
- Trp Met Gly Cys Ile Leu Thr Gly His Trp Val Leu Ala His Glu Cys 115 120 125
- Gly His Gly Ala Phe Ser Pro Ser Gln Thr Phe Asn Asp Phe Trp Gly 130 135
- Phe Ile Met His Gln Ala Val Leu Val Pro Tyr Phe Ala Trp Gln Tyr 145 150 155 160
- Ser His Ala Lys His His Arg Arg Thr Asn Asn Ile Met Asp Gly Glu 165 170 175
- Ser His Val Pro Asn Ile Ala Lys Glu Met Gly Leu Asn Glu Lys Asn 180 185 190
- Glu Arg Ser Gly Gly Tyr Ala Ala Ile His Glu Ala Ile Gly Asp Gly 195 200 205
- Pro Phe Ala Met Phe Gln Ile Phe Ala His Leu Val Ile Gly Trp Pro 210 215 220
- Ile Tyr Leu Met Gly Phe Ala Ser Thr Gly Arg Leu Gly Gln Asp Gly 225 230 235 240
- Lys Glu Leu Gln Ala Gly Glu Ile Ile Asp His Tyr Arg Pro Trp Ser 245 250 255
- Lys Met Phe Pro Thr Lys Leu Arg Phe Lys Ile Ala Leu Ser Thr Leu 260 265 270
- Gly Val Ile Ala Ala Trp Val Gly Leu Tyr Phe Ala Ala Gln Glu Tyr 275 280 285
- Gly Val Leu Pro Val Val Leu Trp Tyr Ile Gly Pro Leu Met Trp Asn 290 295 300
- Gln Ala Trp Leu Val Leu Tyr Thr Trp Leu Gln His Asn Asp Pro Ser 305 310 315 320
- Val Pro Gln Tyr Gly Ser Asp Glu Trp Thr Trp Val Lys Gly Ala Leu 325 330 335
- Ser Thr Ile Asp Arg Pro Tyr Gly Ile Phe Asp Phe Phe His His Lys 340 345
- Ile Gly Ser Thr His Val Ala His His Leu Phe His Glu Met Pro Phe 355 360 365

Tyr Lys Ala Asp Val Ala Thr Ala Ser Ile Lys Gly Phe Leu Glu Pro 370 380	
Lys Gly Leu Tyr Asn Tyr Asp Pro Thr Pro Trp Tyr Val Ala Met Trp 385 390 395 400	
Arg Val Ala Lys Thr Cys His Tyr Ile Glu Asp Val Asp Gly Val Gln 405 410 415	
Tyr Tyr Lys Ser Leu Glu Asp Val Pro Leu Lys Lys Asp Ala Lys Lys 420 425 430	
Ser Asp	
<210> 111 (211> 879) <212> DNA <213> Ostreococcus tauri	
<220> <221> CDS <222> (1)(879) <223> Delta-6-Elongase	
<pre><400> 111 atg agt ggc tta cgt gca ccc aac ttt tta cac aga ttc tgg aca aag Met Ser Gly Leu Arg Ala Pro Asn Phe Leu His Arg Phe Trp Thr Lys 1</pre>	.48
tgg gac tac gcg att tcc aaa gtc gtc ttc acg tgt gcc gac agt ttt Trp Asp Tyr Ala Ile Ser Lys Val Val Phe Thr Cys Ala Asp Ser Phe 25 30	96
cag tgg gac atc ggg cca gtg agt tcg agt acg gcg cat tta ccc gcc Gln Trp Asp Ile Gly Pro Val Ser Ser Ser Thr Ala His Leu Pro Ala 35 40 45	144
att gaa too oot acc coa otg gtg act ago otc ttg tto tac tta gto Ile Glu Ser Pro Thr Pro Leu Val Thr Ser Leu Leu Phe Tyr Leu Val 50 55 60	192
aca gtt ttc ttg tgg tat ggt cgt tta acc agg agt tca gac aag aaa Thr Val Phe Leu Trp Tyr Gly Arg Leu Thr Arg Ser Ser Asp Lys Lys 65 70 75 80	240
att aga gag cct acg tgg tta aga aga ttc ata ata tgt cat aat gcg Ile Arg Glu Pro Thr Trp Leu Arg Arg Phe Ile Ile Cys His Asn Ala 95	288
ttc ttg ata gtc ctc agt ctt tac atg tgc ctt ggt tgt gtg gcc caa Phe Leu Ile Val Leu Ser Leu Tyr Met Cys Leu Gly Cys Val Ala Gln 100 105 110	336
gcg tat cag aat gga tat act tta tgg ggt aat gaa ttc aag gcc acg Ala Tyr Gln Asn Gly Tyr Thr Leu Trp Gly Asn Glu Phe Lys Ala Thr 115 120 125	384
gaa act cag ctt gct ctc tac att tac att ttt tac gta agt aaa ata Glu Thr Gln Leu Ala Leu Tyr Ile Tyr Ile Phe Tyr Val Ser Lys Ile	432

									,		•						
		130					135					140					
T	ac yr 45	gag Glu	ttt Phe	gta Val	gat Asp	act Thr 150	tac Tyr	att Ile	atg Met	ctt Leu	ctc Leu 155	aag Lys	aat Asn	aac Asn	ttg Leu	cgg Arg 160	480
G	aa ln	gta Val	agt Ser	ttc Phe	cta Leu 165	cac	att Ile	tat Tyr	cac His	cac His 170	agc Ser	acg Thr	att Ile	tcc Ser	ttt Phe 175	att Ile	528
T	,rb ,ga	tgg Trp	atc Ile	att Ile 180	gct Ala	cgg Arg	agg Arg	gct Ala	ccg Pro 185	ggt Gly	ggt Gly	gat Asp	gct Ala	tac Tyr 190	ttc Phe	agc Ser	576
g A	cg la	gcc Ala	ttg Leu 195	aac Asn	tca Ser	tgg Trp	gta Val	cac His 200	gtg Val	tgc Cys	atg Met	tac Tyr	acc Thr 205	tat Tyr	tat Tyr	cta Leu	624
L	ta eu	tca Ser 210	acc Thr	ctt Leu	att Ile	gga Gly	aaa Lys 215	gaa Glu	gat Asp	cct Pro	aag Lys	cgt Arg 220	tcc Ser	aac Asn	tac Tyr	ctt Leu	672
T	gg Tp 25	tgg Trp	ggt Gly	cgc Arg	cac His	cta Leu 230	acg Thr	caa Gln	atg Met	cag Gln	atg Met 235	ctt Leu	cag Gln	ttt Phe	ttc Phe	ttc Phe 240	720
A	ac	gta Val	ctt Leu	caa Gln	gcg Ala 245	ttg Leu	tac Tyr	tgc Cys	gct Ala	tcg Ser 250	ttc Phe	tct Ser	acg Thr	tat Tyr	ccc Pro 255	aag Lys	768
Þ	tt he	ttg Leu	tcc Ser	aaa Lys 260	att Ile	ctg Leu	ctc Leu	gtc Val	tat Tyr 265	atg Met	atg Met	agc Ser	ctt Leu	ctc Leu 270	ggc Gly	ttg Leu	816
F	tt he	GJA aaa	cat His 275	ttc Phe	tac Tyr	tat Tyr	tcc Ser	aag Lys 280	cac His	ata Ile	gca Ala	gca Ala	gct Ala 285	aag Lys	ctc Leu	cag Gln	864
			cag Gln	-	tga				1								879
<	210 211 212 213	l> 2 2> 1	112 292 PRT Ostre		cus	taux	ci										
<	400)> 1	112														
M 1		Ser	Gly	Leu	Arg 5	Ala	Pro	Asn	Phe	Leu 10	His	Arg	Phe	Trp	Thr 15	Lys	
T	rp	Asp	Tyr	Ala 20	Ile	Ser	ГÀа	Va1	Val 25	Phe	Thr	Cys	Ala	Asp 30	Ser	Phe	
, G	ln	Trp	Asp 35	Ile	Gly	Pro	Val	Ser 40	Ser	Ser	Thr	Ala	His 45	Leu	Pro	Ala	
3	le	Glu 50	Ser	Pro	Thr	Pro	Leu `55	Val	Thr	Ser	Leu	Leu 60	Phe	Tyr	Leu	Val	
	hr 55	Val	Phe	Leu	Trp	туr 70	Gly	Arg	Leu	Thr	Arg 75	Ser	Ser	qaA	Lys	Lys 80	

- Ile Arg Glu Pro Thr Trp Leu Arg Arg Phe Ile Ile Cys His Asn Ala
- Phe Leu Ile Val Leu Ser Leu Tyr Met Cys Leu Gly Cys Val Ala Gln 105
- Ala Tyr Gln Asn Gly Tyr Thr Leu Trp Gly Asn Glu Phe Lys Ala Thr
- Glu Thr Gln Leu Ala Leu Tyr Ile Tyr Ile Phe Tyr Val Ser Lys Ile 135
- Tyr Glu Phe Val Asp Thr Tyr Ile Met Leu Leu Lys Asn Asn Leu Arg
- Gln Val Ser Phe Leu His Ile Tyr His His Ser Thr Ile Ser Phe Ile 170
- Trp Trp Ile Ile Ala Arg Arg Ala Pro Gly Gly Asp Ala Tyr Phe Ser 180
- Ala Ala Leu Asn Ser Trp Val His Val Cys Met Tyr Thr Tyr Tyr Leu 200
- Leu Ser Thr Leu Ile Gly Lys Glu Asp Pro Lys Arg Ser Asn Tyr Leu
- Trp Trp Gly Arg His Leu Thr Gln Met Gln Met Leu Gln Phe Phe Phe
- Asn Val Leu Gln Ala Leu Tyr Cys Ala Ser Phe Ser Thr Tyr Pro Lys
- Phe Leu Ser Lys Ile Leu Leu Val Tyr Met Met Ser Leu Leu Gly Leu
- Phe Gly His Phe Tyr Tyr Ser Lys His Ile Ala Ala Ala Lys Leu Gln

Lys Lys Gln Gln 290 .

<210> 113 <211> 903 <212> DNA

<213> Ostreococcus tauri

<220>

<221> CDS
<222> (1)..(903)
<223> Delta-5-Elongase

<400) - 1	.13														
atg	agc	gcc	tcc Ser	ggt Gly 5	gcg Ala	ctg Leu	ctg Leu	ccc Pro	gcg Ala 10	atc Ile	gcg Ala	ttc Phe	gcc Ala	gcg Ala 15	tac Tyr	48
gcg Ala	tac Tyr	gcg Ala	acg Thr 20	tac Tyr	gcc Ala	tac Tyr	gcc Ala	ttt Phe 25	gag Glu	tgg Trp	tcg Ser	cac His	gcg Ala 30	aat Asn	Gly gg¢	96
atc Ile	gac Asp	aac Asn 35	gtc Val	gac Asp	gcg Ala	cgc Arg	gag Glu 40	tgg Trp	atc Ile	ggt Gly	gcg Ala	ctg Leu 45	tcg Ser	ttg Leu	agg Arg	144
ctc Leu	ccg Pro 50	gcg Ala	atc Ile	gcg Ala	acg Thr	acg Thr 55	atg Met	tac Tyr	ctg Leu	ttg Leu	ttc Phe 60	tgc Cys	ctg Leu	gtc Val	gga Gly	192
ccg Pro 65	agg Arg	ttg Leu	atg Met	gcg Ala	aag Lys 70	cgc Arg	gag Glu	gcg Ala	ttc Phe	gac Asp 75	ccg Pro	aag Lys	GJÄ äää	ttc Phe	atg Met 80	240
ctg Leu	gcg Ala	tac Tyr	aat Asn	gcg Ala 85	tat Tyr	cag Gln	acg Thr	gcg Ala	ttc Phe 90	aac Asn	gtc Val	gtc Val	gtg Val	ctc Leu 95	G1Å äää	288
												gtg Val				336
acc Thr	atg Met	ccg Pro 115	tgg Trp	agc Ser	gat Asp	aga Arg	aaa Lys 120	tcg Ser	ttt Phe	aag Lys	atc Ile	ctc Leu 125	ctc Leu	Gly ggg	gtg Val	384
tgg Trp	ttg Leu 130	cac His	tac Tyr	aac Asn	aac Asn	aaa Lys 135	tat Tyr	ttg Leu	gag Glu	cta Leu	ttg Leu 140	gac Asp	act Thr	gtg Val	ttc Phe	432
atg Met 145	gtt Val	gcg Ala	cgc Arg	aag Lys	aag Lys 150	acg Thr	aag Lys	cag Gln	ttg Leu	agc Ser 155	ttc Phe	ttg Leu	cac His	gtt Val	tat Tyr 160	480
cat His	cac His	gcc Ala	ctg Leu	ttg Leu 165	atc Ile	tgg Trp	gcg Ala	tgg Trp	tgg Trp 170	ttg Leu	gtg Val	tgt Cys	cac His	ttg Leu 175	atg Met	528
gcc Ala	acg Thr	aac Asn	gat Asp 180	tgt Cys	atc Ile	gat Asp	gcc Ala	tac Tyr 185	ttc Phe	Gly ggc	gcg Ala	gcg Ala	tgc Cys 190	aac Asn	tcg Ser	576
ttc Phe	att Ile	cac His 195	atc Ile	gtg Val	atg Met	tac Tyr	tcg Ser 200	tat Tyr	tat Tyr	ctc Leu	atg Met	tcg Ser 205	gcg Ala	ctc Leu	ggc Gly	624
att	cga Arg 210	tgc Cys	ccg Pro	tgg Trp	aag Lys	cga Arg 215	tac Tyr	atc Ile	acc Thr	cag Gln	gct Ala 220	caa Gln	atg Met	ctc Leu	caa Gln	672
ttc Phe 225	gtc Val	att Ile	gtc Val	ttc Phe	gcg Ala 230	cac His	gcc Ala	gtg Val	ttc Phe	gtg Val 235	ctg Leu	cgt Arg	cag Gln	aag Lys	cac His 240	720
tgc Cys	ccg Pro	gtc Val	acc Thr	ctt Leu 245	cct Pro	tgg Trp	gcg Ala	caa Gln	atg Met 250	ttc Phe	gtc Val	atg Met	acg Thr	aac Asn 255	atg Met	768
ctc Leu	gtg Val	ctc Leu	ttc Phe	GJÀ āāā	aac Asn	ttc Phe	tac Tyr	ctc Leu	aag Lys	gcg Ala	tac Tyr	tcg Ser	aac Asn	aag Lys	tcg Ser	816

١,

181 265 ege gge gae gge geg agt tee gtg aaa eea gee gag ace aeg ege geg 864 Arg Gly Asp Gly Ala Ser Ser Val Lys Pro Ala Glu Thr Thr Arg Ala 280 903 ccc agc gtg cga cgc acg cga tct cga aaa att gac taa Pro Ser Val Arg Arg Thr Arg Ser Arg Lys Ile Asp <210> 114 <211> 300 <212> PRT <213> Ostreococcus tauri <400> 114 Met Ser Ala Ser Gly Ala Leu Leu Pro Ala Ile Ala Phe Ala Ala Tyr Ala Tyr Ala Thr Tyr Ala Tyr Ala Phe Glu Trp Ser His Ala Asn Gly Ile Asp Asn Val Asp Ala Arg Glu Trp Ile Gly Ala Leu Ser Leu Arg Leu Pro Ala Ile Ala Thr Thr Met Tyr Leu Leu Phe Cys Leu Val Gly Pro Arg Leu Met Ala Lys Arg Glu Ala Phe Asp Pro Lys Gly Phe Met Leu Ala Tyr Asn Ala Tyr Gln Thr Ala Phe Asn Val Val Leu Gly Met Phe Ala Arg Glu Ile Ser Gly Leu Gly Gln Pro Val Trp Gly Ser 105 Thr Met Pro Trp Ser Asp Arg Lys Ser Phe Lys Ile Leu Leu Gly Val Trp Leu His Tyr Asn Asn Lys Tyr Leu Glu Leu Leu Asp Thr Val Phe Met Val Ala Arg Lys Lys Thr Lys Gln Leu Ser Phe Leu His Val Tyr His His Ala Leu Leu Ile Trp Ala Trp Trp Leu Val Cys His Leu Met Ala Thr Asn Asp Cys Ile Asp Ala Tyr Phe Gly Ala Ala Cys Asn Ser

Phe Ile His Ile Val Met Tyr Ser Tyr Tyr Leu Met Ser Ala Leu Gly 200

Ile Arg Cys Pro Trp Lys Arg Tyr Ile Thr Gln Ala Gln Met Leu Gln

Phe Val Ile Val Phe Ala His Ala Val Phe Val Leu Arg Gln Lys His 235 230

Cys Pro Val Thr Leu Pro Trp Ala Gln Met Phe Val Met Thr Asn Met 245

Leu Val Leu Phe Gly Asn Phe Tyr Leu Lys Ala Tyr Ser Asn Lys Ser 260 265 .

Arg Gly Asp Gly Ala Ser Ser Val Lys Pro Ala Glu Thr Thr Arg Ala 280

Pro Ser Val Arg Arg Thr Arg Ser Arg Lys Ile Asp 295

<210> 115

<211> 13

<212> PRT <213> Konsensus

<220>

<221> MISC_FEATURE

<222> (1)..(13)

<223> Xaa in der Sequenz an der Position 2, 3, 4, 6, 7, 8 und 9 hat die in Tabelle A wiedergegebene Bedeutung.

<400> 115

Asn Xaa Xaa Xaa His Xaa Xaa Met Tyr Xaa Tyr Tyr Xaa 5 10

<210> 116 <211> 10 <212> PRT

<213> Konsensus

<220>

<221> MISC_FEATURE

<222> (1)..(10)

<223> Xaa an der Position 3, 4, 5 und 6 in der Sequenz hat die in Tabel le A wiedergegebene Bedeutung.

His His Xaa Xaa Xaa Trp Ala Trp Trp 5

<210> 117

<211> 909

<212> DNA

<213> Xenopus laevis

<220>

Maria Car

<221> CDS <222> (1)..(909) <223> Delta-5-Elongase atg gcc ttc aag gag ctc aca tca agg gca gtg ctc ctg tat gat gaa Met Ala Phe Lys Glu Leu Thr Ser Arg Ala Val Leu Leu Tyr Asp Glu 48 tgg att aaa gat gct gat cct agg gtt gaa gac tgg cca ctc atg tcc 96 Trp Ile Lys Asp Ala Asp Pro Arg Val Glu Asp Trp Pro Leu Met Ser tet cet ate eta caa ace ate ate age get tae ate tae ttt gte 144 Ser Pro Ile Leu Gln Thr Ile Ile Ile Gly Ala Tyr Ile Tyr Phe Val 40 aca tca ttg ggc cca agg atc atg gag aac agg aag ccg ttt gct ctg 192 Thr Ser Leu Gly Pro Arg Ile Met Glu Asn Arg Lys Pro Phe Ala Leu 55 aag gag atc atg gca tgt tac aac tta ttc atg gtt ctg ttt tct gtg 240 Lys Glu Ile Met Ala Cys Tyr Asn Leu Phe Met Val Leu Phe Ser Val tac atg tgc tat gag ttt ctc atg tcg ggc tgg gct act gga tat tcc Tyr Met Cys Tyr Glu Phe Leu Met Ser Gly Trp Ala Thr Gly Tyr Ser 288 ttt aga tgt gac att gtt gac tac tct cag tca cct cag gcg tta cgg 336 Phe Arg Cys Asp Ile Val Asp Tyr Ser Gin Ser Pro Gin Ala Leu Arg atg gcc tgg acc tgc tgg ctc ttc tat ttt tca aag ttc att gaa tta 384 Met Ala Trp Thr Cys Trp Leu Phe Tyr Phe Ser Lys Phe Ile Glu Leu tta gac act gtt ttc ttt gtg ctg cgt aag aag aac agc cag att aca 432 Leu Asp Thr Val Phe Phe Val Leu Arg Lys Lys Asn Ser Gln Ile Thr ttc ctg cac gtc tat cac cac tcc att atg cct tgg acg tgg ttt 480 Phe Leu His Val Tyr His His Ser Ile Met Pro Trp Thr Trp Phe 150 gga gtc aaa ttt gct cca ggt ggt ttg ggc aca ttc cat gca ctg gtg Gly Val Lys Phe Ala Pro Gly Gly Leu Gly Thr Phe His Ala Leu Val 528 165 aac tgt gtg gtc cat gtt atc atg tac agc tac tac ggc ctg tca gcc 576 Asn Cys Val Val His Val Ile Met Tyr Ser Tyr Tyr Gly Leu Ser Ala 180 ttg ggg cct gcc tac cag aag tac ctg tgg tgg aaa aag tac atg acg 624 Leu Gly Pro Ala Tyr Gln Lys Tyr Leu Trp Trp Lys Lys Tyr Met Thr 200 tct atc caa ctg acc cag ttc ttg atg gtt act ttt cac atc ggc cag Ser Ile Gln Leu Thr Gln Phe Leu Met Val Thr Phe His Ile Gly Gln 672 tte tte tte atg gag aat tge eeg tae eag tat eee gte tte ttg tat 720 Phe Phe Phe Met Glu Asn Cys Pro Tyr Gln Tyr Pro Val Phe Leu Tyr gtc att tgg ctg tac ggg ttc gtt ttc tta atc ttg ttc ctc aac ttc 768 Val Ile Trp Leu Tyr Gly Phe Val Phe Leu Ile Leu Phe Leu Asn Phe

250 tgg ttc cac gct tac atc aaa gga cag agg ctg ccg aaa gcc gtc caa 816 Trp Phe His Ala Tyr Ile Lys Gly Gln Arg Leu Pro Lys Ala Val Gln 265 aat ggc cac tgc aag aac aac aac caa gaa aac act tgg tgc aag Asn Gly His Cys Lys Asn Asn Asn Gln Glu Asn Thr Trp Cys Lys 280 aac aaa aac cag aaa aac ggt gca ttg aaa agc aaa aac cat tga 909 Asn Lys Asn Gln Lys Asn Gly Ala Leu Lys Ser Lys Asn His 295 300 <210> 118 <211> 302 <212> PRT <213> Xenopus laevis <400> 118 Met Ala Phe Lys Glu Leu Thr Ser Arg Ala Val Leu Leu Tyr Asp Glu Trp Ile Lys Asp Ala Asp Pro Arg Val Glu Asp Trp Pro Leu Met Ser Ser Pro Ile Leu Gln Thr Ile Ile Gly Ala Tyr Ile Tyr Phe Val Thr Ser Leu Gly Pro Arg Ile Met Glu Asn Arg Lys Pro Phe Ala Leu · Lys Glu Ile Met Ala Cys Tyr Asn Leu Phe Met Val Leu Phe Ser Val Tyr Met Cys Tyr Glu Phe Leu Met Ser Gly Trp Ala Thr Gly Tyr Ser Phe Arg Cys Asp Ile Val Asp Tyr Ser Gln Ser Pro Gln Ala Leu Arg Met Ala Trp Thr Cys Trp Leu Phe Tyr Phe Ser Lys Phe Ile Glu Leu 120 Leu Asp Thr Val Phe Phe Val Leu Arg Lys Lys Asn Ser Gln Ile Thr Phe Leu His Val Tyr His His Ser Ile Met Pro Trp Thr Trp Phe 150 Gly Val Lys Phe Ala Pro Gly Gly Leu Gly Thr Phe His Ala Leu Val Asn Cys Val Val His Val Ile Met Tyr Ser Tyr Tyr Gly Leu Ser Ala

Leu Gly Pro Ala Tyr Gln Lys Tyr Leu Trp Trp Lys Lys Tyr Met Thr 200 205	
Ser Ile Gln Leu Thr Gln Phe Leu Met Val Thr Phe His Ile Gly Gln 210 220	
Phe Phe Phe Met Glu Asn Cys Pro Tyr Gln Tyr Pro Val Phe Leu Tyr 240 225	
Val Ile Trp Leu Tyr Gly Phe Val Phe Leu Ile Leu Phe Leu Asn Phe 245 245	
Trp Phe His Ala Tyr Ile Lys Gly Gln Arg Leu Pro Lys Ala Val Gln 260 265 270	
Asn Gly His Cys Lys Asn Asn Asn Gln Glu Asn Thr Trp Cys Lys 285	
Asn Lys Asn Gln Lys Asn Gly Ala Leu Lys Ser Lys Asn His 290 295 300	
<210> 119 <211> 870 <212> DNA <213> Ciona intestinalis	
<220> <221> CDS <222> (1)(870) <223> Delta-5-Elongase	
<pre><400> 119 atg gac gta ctt cat cgt ttc tta gga ttc tac gaa tgg acg ctg act Met Asp Val Leu His Arg Phe Leu Gly Phe Tyr Glu Trp Thr Leu Thr 10 15</pre>	48
The standard coc ctt	96
ttc gcg gac ccc cga gtg gca aaa tgg cct tta ata gaa aac ccc ctt Phe Ala Asp Pro Arg Val Ala Lys Trp Pro Leu Ile Glu Asn Pro Leu 20 25 30	
cct aca att gct att gtg ttg ctg tac ctg gcg ttt gtt ctg tat att Pro Thr Ile Ala Ile Val Leu Leu Tyr Leu Ala Phe Val Leu Tyr Ile 35	144
cct aca att gct att gtg ttg ctg tac ctg gcg ttt gtt ctg tat att Pro Thr Ile Ala Ile Val Leu Leu Tyr Leu Ala Phe Val Leu Tyr Ile 45 ggg ccg cgt ttt atg cga aaa aga gca cca gtt gac ttt ggt tta ttc Gly Pro Arg Phe Met Arg Lys Arg Ala Pro Val Asp Phe Gly Leu Phe 50	192
Phe Ala Asp Pro Arg var 25 cct aca att gct att gtg ttg ctg tac ctg gcg ttt gtt ctg tat att Pro Thr Ile Ala Ile Val Leu Tyr Leu Ala Phe Val Leu Tyr Ile 45 ggg ccg cgt ttt atg cga aaa aga gca cca gtt gac ttt ggt tta ttc Gly Pro Arg Phe Met Arg Lys Arg Ala Pro Val Asp Phe Gly Leu Phe 50 ctc cct gga tat aac ttt gct ttg gtt gca tta aat tat tat atc ctg Leu Pro Gly Tyr Asn Phe Ala Leu Val Ala Leu Asn Tyr Tyr Ile Leu 70 80	192 240
Phe Ala Asp Pro Arg vot 25 cct aca att gct att gtg ttg ctg tac ctg gcg ttt gtt ctg tat att Pro Thr Ile Ala Ile Val Leu Tyr Leu Ala Phe Val Leu Tyr Ile 45 ggg ccg cgt ttt atg cga aaa aga gca cca gtt gac ttt ggt tta ttc Gly Pro Arg Phe Met Arg Lys Arg Ala Pro Val Asp Phe Gly Leu Phe 55 ctc cct gga tat aac ttt gct ttg gtt gca tta aat tat tat atc ctg Leu Pro Gly Tyr Asn Phe Ala Leu Val Ala Leu Asn Tyr Tyr Ile Leu 75 80	192

	•		180		
	100	. 105		110	
aac gct gta Asn Ala Val 115	tgg tgg tat Trp Trp Tyr	tat gta tcc Tyr Val Ser 120.	aag ata ata gag Lys Ile Ile Gli 129	ı Leu Phe Asp	384
act gtg ttg Thr Val Leu 130	ttc act cta Phe Thr Leu	cgc aaa cga Arg Lys Arg 135	gac cga caa gta Asp Arg Gln Val 140	a act ttc ctt l Thr Phe Leu	432
cat gtt tat His Val Tyr 145	cac cat tct His His Ser 150	acc atg ccc Thr Met Pro	ctg ttg tgg tgg Leu Leu Trp Trp 155	y att ggg gca p Ile Gly Ala 160	480
aag tgg gtg Lys Trp Val	cct ggt ggg Pro Gly Gly 165	caa tca ttt Gln Ser Phe	gtt ggc atc ata Val Gly Ile Ile 170	a ctg aac tcc e Leu Asn Ser 175	528
agt gtt cat Ser Val His	gtt atc atg Val Ile Met 180	tat acg tac Tyr Thr Tyr 185	tat gga ttg to Tyr Gly Leu Se	a gcc ttg ggg r Ala Leu Gly 190	576
cct cac atg Pro His Met 195	cag aag ttt Gln Lys Phe	cta tgg tgg Leu Trp Trp 200	aag aaa tat ato bys Lys Tyr Ilo 20	e Thr Met Leu	624
caa ctg gtt Gln Leu Val 210	caa ttt gtt Gln Phe Val	ctt gcc atc Leu Ala Ile 215	tac cat act go Tyr His Thr Ala 220	t cga tca ttg a Arg Ser Leu	. 672
tac gtt aaa Tyr Val Lys 225	tgt ccc tcg Cys Pro Ser 230	cct gtt tgg Pro Val Trp	atg cac tgg gca Met His Trp Ala 235	a ctt atc ttg a Leu Ile Leu 240	720
tac gct ttc Tyr Ala Phe	tca ttc att Ser Phe Ile 245	ttg ctt ttc Leu Leu Phe	tca aac ttc tac Ser Asn Phe Ty: 250	c atg cat gcc r Met His Ala 255	768
tat atc aag Tyr Ile Lys	aaa tca aga Lys Ser Arg 260	aaa ggg aaa Lys Gly Lys 265	n gag aat ggc ag: s Glu Asn Gly Se: s	t cga gga aaa r Arg Gly Lys 270	816
ggt ggt gta Gly Gly Val 275	agt aat gga Ser Asn Gly	aag gaa aag Lys Glu Lys 280	g ctg cac gct aa : Leu His Ala As: 28	o Gly Lys Thr	864
gat taa Asp			•		870
<210> 120 <211> 289 <212> PRT <213> Cion	a intestinal	is			
<400> 120					
Met Asp Val 1	Leu His Arg 5	Phe Leu Gly	y Phe Tyr Glu Tr 10	p Thr Leu Thr 15	
Phe Ala Asp	Pro Arg Val 20	Ala Lys Tr 25	o Pro Leu Ile Gl	u Asn Pro Leu 30	
Pro Thr Ile 35	Ala Ile Val	Leu Leu Tyr 40	c Leu Ala Phe Va 45		

PCT/EP2004/007957 WO 2005/012316

187

Gly Pro Arg Phe Met Arg Lys Arg Ala Pro Val Asp Phe Gly Leu Phe 50 55 60

Leu Pro Gly Tyr Asn Phe Ala Leu Val Ala Leu Asn Tyr Tyr Ile Leu

Gln Glu Val Val Thr Gly Ser Tyr Gly Ala Gly Tyr Asp Leu Val Cys

Thr Pro Leu Arg Ser Asp Ser Tyr Asp Pro Asn Glu Met Lys Val Ala

Asn Ala Val Trp Trp Tyr Tyr Val Ser Lys Ile Ile Glu Leu Phe Asp

Thr Val Leu Phe Thr Leu Arg Lys Arg Asp Arg Gln Val Thr Phe Leu

His Val Tyr His His Ser Thr Met Pro Leu Leu Trp Trp Ile Gly Ala 145

Lys Trp Val Pro Gly Gly Gln Ser Phe Val Gly Ile Ile Leu Asn Ser

Ser Val His Val Ile Met Tyr Thr Tyr Tyr Gly Leu Ser Ala Leu Gly

Pro His Met Gln Lys Phe Leu Trp Trp Lys Lys Tyr Ile Thr Met Leu

Gln Leu Val Gln Phe Val Leu Ala Ile Tyr His Thr Ala Arg Ser Leu

Tyr Val Lys Cys Pro Ser Pro Val Trp Met His Trp Ala Leu Ile Leu

Tyr Ala Phe Ser Phe Ile Leu Leu Phe Ser Asn Phe Tyr Met His Ala

Tyr Ile Lys Lys Ser Arg Lys Gly Lys Glu Asn Gly Ser Arg Gly Lys

Gly Gly Val Ser Asn Gly Lys Glu Lys Leu His Ala Asn Gly Lys Thr 280

Asp

<210> 121 <211> 30

.' :

```
<212> DNA
<213> Primer
  <220>
  <221> misc_feature
  <222> (1)..(30)
  <223>
  <400> 121
 aggatecatg geetteaagg ageteacate
                                                                          30
  <210> 122
  <211> 35
<212> DNA
  <213> Primer
  <220>
  <221> misc_feature
  <222> (1)..(35)
  <223>
  <400> 122
                                                                          35
  cctcgagtca atggtttttg cttttcaatg caccg
' <210> 123
<211> 25
   <212> DNA
  <213> Primer
  <220>
  <221> misc_feature
  <222>
         (1)..(25)
  <223>
   <400> 123
                                                                          25
   taagcttatg gacgtacttc atcgt
  <210> 124
  <211> 26
<212> DNA
  <213> Primer
   <220>
   <221> misc_feature
   <222> (1)..(26)
   <223>
<400> 124
                                                                          26
   tcagatcttt aatcggtttt accatt
   <210> 125
  <211>
         34
   <212> DNA
   <213> Primer
   <220>
   <221> misc_feature
   <222>
         (1)..(34)
   <223>
```

Friel.

```
<400> 125
                                                                        34
gcggccgcac catggccttc aaggagctca catc
<210> 126
<211> 38
<212> DNA
<213> Primer
<220>
<221> misc_feature
<222>
       (1)..(38)
<223>
<400> 126
                                                                        38
geggeegeet teaatggttt ttgettttea atgeaceg
<210> 127
 <211> 29
 <212> DNA
 <213> Primer
 <220>
 <221> misc_feature
 <222> (1)..(29)
 <223>
 <400> 127
                                                                         29
 geggeegeac catggaegta etteategt
 <210> 128
<211> 27
<212> DNA
 <213> Primer
 <220>
 <221> misc_feature
  <222> (1)..(27)
 <223>
  <400> 128
                                                                          27
  geggeegett taateggttt taecatt
  <210> 129
  <211> 60
  <212> DNA
  <213> Primer
  <220>
  <221> misc_feature
  <222> (1)..(60)
  <223>
  gtcgacccgc ggactagtgg gccctctaga cccgggggat ccggatctgc tggctatgaa
   <210> 130
<211> 60
   <212> DNA
```

<213> Primer <220> <221> misc_feature (1)..(60) <222> <223> <400> 130 gtcgacccgc ggactagtgg gccctctaga cccgggggat ccggatctgc tggctatgaa <210> 131 <211> 789 <212> DNA <213> Euglena gracilis <220> <221> CDS <222> (1)..(789) <223> Delta-5-Elongase atg ctg ggg gcc atc gcg gac gtc gtg ctc cgg ggg ccc gcc gca ttc Met Leu Gly Ala Ile Ala Asp Val Val Leu Arg Gly Pro Ala Ala Phe 48 10 cac tgg gac cct gcc acc acc ccg ctc gca tcg atc gtc agc ccc tgt His ${\tt Trp}$ Asp ${\tt Pro}$ Ala ${\tt Thr}$ ${\tt Thr}$ ${\tt Pro}$ Leu Ala Ser Ile Val Ser ${\tt Pro}$ Cys . 96 . 20 gtg gcc tec gtg gcg tac ctg ggg gcc atc ggg ctg ctg aag cgc cgc Val Ala Ser Val Ala Tyr Leu Gly Ala Ile Gly Leu Leu Lys Arg Arg 40 act gga ccg gag gtc cgc tcc aag ccc ttc gag ctg cta cac aac ggg Thr Gly Pro Glu Val Arg Ser Lys Pro Phe Glu Leu Leu His Asn Gly 192 240 Leu Leu Val Gly Trp Ser Leu Val Val Leu Leu Gly Thr Leu Tyr Gly 70 gcg ttc cag cgc gtg cag gag gac ggc cgg ggg gtg cag gcc ctc ctg Ala Phe Gln Arg Val Gln Glu Asp Gly Arg Gly Val Gln Ala Leu Leu 288 90 336 tgc acc cag cgg cca cca tct cag atc tgg gac ggc ccg gtg ggg tac Cys Thr Gln Arg Pro Pro Ser Gln Ile Trp Asp Gly Pro Val Gly Tyr 105 384 tte acg tac etc tte tac etc geg aag tac tgg gag etg geg gac act Phe Thr Tyr Leu Phe Tyr Leu Ala Lys Tyr Trp Glu Leu Ala Asp Thr gtc atc ctc gcc ctc cgc cag aag ccc acc atc ccc ctc cac gtc tac 432 Val Ile Leu Ala Leu Arg Gln Lys Pro Thr Ile Pro Leu His Val Tyr 135 . cat cac gcc gtc atg ctg ttc atc gtg tgg tcg tgg ttc gcg cac ccc 480 His His Ala Val Met Leu Phe Ile Val Trp Ser Trp Phe Ala His Pro 155 150 tgg ctc gag ggg agc tgg tgc tcc ctg gtc aac tct ttc atc cac 528 Trp Leu Glu Gly Ser Trp Trp Cys Ser Leu Val Asn Ser Phe Ile His 165

, 191	
acg gtg atg tac tcg tac tac acc ctg acg gtg gtt ggc atc aac cct Thr Val Met Tyr Ser Tyr Tyr Thr Leu Thr Val Val Gly Ile Asn Pro 180 185	576
tgg tgg aag aag tgg atg acc acc atg cag atc atc cag ttc atc acg Trp Trp Lys Lys Trp Met Thr Thr Met Gln Ile Ile Gln Phe Ile Thr 195 200 205	624
ggc tgc gtg tac gtc atg gcg ttc ttc ggc cta tat tat gcc ggg gcg Gly Cys Val Tyr Val Met Ala Phe Phe Gly Leu Tyr Tyr Ala Gly Ala 215	672
ggc tgc acc tcc aac gtg tac act gcc tgg ttc tcg atg ggg gtc aac Gly Cys Thr Ser Asn Val Tyr Thr Ala Trp Phe Ser Met Gly Val Asn 230 240	720
ctc agc ttt ctg tgg ctc ttc gct ctt ttc ttc cgc cg	768
aaa cct agc cgg aag gag tag Lys Pro Ser Arg Lys Glu 260	789
<210> 132 <211> 262 <212> FRT <213> Euglena gracilis	
<400> 132	
Met Leu Gly Ala Ile Ala Asp Val Val Leu Arg Gly Pro Ala Ala Phe 15	
His Trp Asp Pro Ala Thr Thr Pro Leu Ala Ser Ile Val Ser Pro Cys 25 30	
Val Ala Ser Val Ala Tyr Leu Gly Ala Ile Gly Leu Leu Lys Arg Arg 45 35	
Thr Gly Pro Glu Val Arg Ser Lys Pro Phe Glu Leu Leu His Asn Gly 50 55 60	
Leu Leu Val Gly Trp Ser Leu Val Val Leu Leu Gly Thr Leu Tyr Gly 65 70 75 80	
Ala Phe Gln Arg Val Gln Glu Asp Gly Arg Gly Val Gln Ala Leu Leu 90 95	
Cys Thr Gln Arg Pro Pro Ser Gln Ile Trp Asp Gly Pro Val Gly Tyr 100 105 110	
Phe Thr Tyr Leu Phe Tyr Leu Ala Lys Tyr Trp Glu Leu Ala Asp Thr 115 120 125	
Val Ile Leu Ala Leu Arg Gln Lys Pro Thr Ile Pro Leu His Val Tyr 130 135 140	

145	t Leu Phe 150	Ile Val Trp	Ser Trp Phe 155		Pro .60
Trp Leu Glu Gly Se		Cys Ser Leu 170	Val Asn Ser	Phe Ile H 175	iis
Thr Val Met Tyr Se 180	r Tyr Tyr	Thr Leu Thr 185	Val Val Gly	Ile Asn P 190	'ro
Trp Trp Lys Lys Tr 195	p Met Thr	Thr Met Gln 200	Ile Ile Gln 205	Phe Ile T	'hr
Gly Cys Val Tyr Va 210	l Met Ala 215	Phe Phe Gly	Leu Tyr Tyr 220	Ala Gly A	.la
Gly Cys Thr Ser As 225	n Val Tyr 230	Thr Ala Trp	Phe Ser Met 235		140
Leu Ser Phe Leu Tr 24	_	Ala Leu Phe 250	Phe Arg Arg	Ser Tyr S 255	er
Lys Pro Ser Arg Ly 260	s Glu	-	•		
<210> 133 <211> 789 <212> DNA					
<213> Euglena gra	cilis	·			
<213> Euglena gra <220> <221> CDS <222> (1)(789) <223> Delta-5-Elc <400> 133	ngase		.caa aaa caa	acc aca t	to 48
<2213> Euglena gra <220> <221> CDS <222> (1)(789) <223> Delta-5-Elc <400> 133 atg ctg ggg gcc at Met Leu Gly Ala II 1 5	ngase c gcg gac e Ala Asp	Val Val Leu 10	Arg Gly Pro	Ala Ala F 15	he
<213> Euglena gra <220> <221> CDS <222> (1)(789) <223> Delta-5-Elc <400> 133 atg ctg ggg gcc at Met Leu Gly Ala II	ngase c gcg gac e Ala Asp c acc acc	Val Val Leu 10 ccg ctc gca	Arg Gly Pro	Ala Ala F 15 agc ccc t	cgt 96
<pre><213> Euglena gra <220> <221> CDS <222> (1)(789) <223> Delta-5-Elc <400> 133 atg ctg ggg gcc at Met Leu Gly Ala II 1</pre>	ngase c gcg gac e Ala Asp c acc acc a Thr Thr	Val Val Leu 10 ccg ctc gca Pro Leu Ala 25 ggg gcc atc	Arg Gly Pro tcg atc gtc Ser Ile Val ggg ctg ctg	agc ccc t Ser Pro C 30	egt 96 Eys
<220> <221> CDS <221> CDS <222> (1)(789) <223> Delta-5-Eld <400> 133 atg ctg ggg gcc at Met Leu Gly Ala II 1 5 cac tgg gac cct gc His Trp Asp Pro Al 20 gtg gcc tcc gtg gc Val Ala Ser Val Al	ngase c gcg gac e Ala Asp c acc acc a Thr Thr g tac ctg a Tyr Leu c cgc tcc	Val Val Leu 10 ccg ctc gca Pro Leu Ala 25 ggg gcc atc Gly Ala Ile 40 aag ccc ttc	Arg Gly Pro tcg atc gtc Ser Ile Val ggg ctg ctg Gly Leu Leu 45 gag ctg cta	Ala Ala F 15 agc ccc t Ser Pro C 30 aag cgc c Lys Arg A	ept 96 Eys Egc 144 Erg 192
<2213> Euglena gra <220> <221> CDS <222> (1)(789) <223> Delta-5-Elc <400> 133 atg ctg ggg gcc at Met Leu Gly Ala Il 1	ngase c gcg gac e Ala Asp c acc acc a Thr Thr g tac ctg a Tyr Leu c cgc tcc l Arg Ser 55 g tcc ctc	Val Val Leu 10 ccg ctc gca Pro Leu Ala 25 ggg gcc atc Gly Ala Ile 40 aag ccc ttc Lys Pro Phe	Arg Gly Pro tcg atc gtc Ser Ile Val ggg ctg ctg Gly Leu Leu 45 gag ctg cta Glu Leu Leu 60 ctc ggg acg	Ala Ala F 15 agc ccc t Ser Pro C 30 aag cgc c Lys Arg A cac aac g His Asn G	egt 96 Eys Egc 144 Erg 192 Egg 192 Egg 240

PCT/EP2004/007957 193 tgc acc cag cgg cca cca tct cag atc tgg gac ggc ccg gtg ggg tac 336 Cys Thr Gln Arg Pro Pro Ser Gln Ile Trp Asp Gly Pro Val Gly Tyr 105 ttc acg tac ctt ttc tac ctc gcg aag tac tgg gag ctg gtg gac act Phe Thr Tyr Leu Phe Tyr Leu Ala Lys Tyr Trp Glu Leu Val Asp Thr 384 gtc atc ctc gcc ctc cgc cag aag ccc acc atc ccc ctc cac gtc tac 432 Val Ile Leu Ala Leu Arg Gln Lys Pro Thr Ile Pro Leu His Val Tyr cat cac gcc gtc atg ctg ttc att gtg tgg tcg tgg ttc gcg cac ccc 480 His His Ala Val Met Leu Phe Ile Val Trp Ser Trp Phe Ala His Pro 155 150 tgg ctc gag ggg agc tgg tgg tgc tcc ctg gtc aac tct ttc atc cac Trp Leu Glu Gly Ser Trp Trp Cys Ser Leu Val Asn Ser Phe Ile His 528 acg gtg atg tac tcg tat tac acc ctg acg gtg gtt ggc atc aac cct Thr Val Met Tyr Ser Tyr Tyr Thr Leu Thr Val Val Gly Ile Asn Pro 576 185 tgg tgg aag aag tgg atg acc acc atg cag atc atc cag ttc atc acg Trp Trp Lys Lys Trp Met Thr Thr Met Gln Ile Ile Gln Phe Ile Thr 624 200 ggc tgc gtg tac gtc acg gcg ttc ttc ggc cta tac tat gcc ggg gcg 672 Gly Cys Val Tyr Val Thr Ala Phe Phe Gly Leu Tyr Tyr Ala Gly Ala gge tge acc tcc aac gtg tac act gcc tgg ttc tcg atg ggg gtc aac 720 Gly Cys Thr Ser Asn Val Tyr Thr Ala Trp Phe Ser Met Gly Val Asn 768 789 aaa cct agc cgg aag gag tag Lys Pro Ser Arg Lys Glu 260 <210> 134 <211> 262 <212> PRT <213> Euglena gracilis

<400> 134

Met Leu Gly Ala Ile Ala Asp Val Val Leu Arg Gly Pro Ala Ala Phe 10 ,

His Trp Asp Pro Ala Thr Thr Pro Leu Ala Ser Ile Val Ser Pro Cys

Val Ala Ser Val Ala Tyr Leu Gly Ala Ile Gly Leu Leu Lys Arg Arg

Thr Gly Pro Glu Val Arg Ser Lys Pro Phe Glu Leu Leu His Asn Gly

WO 2005/012316 PCT/EP2004/007957

194

Leu Leu Val Gly Trp Ser Leu Val Val Leu Leu Gly Thr Leu Tyr Gly 70

Ala Tyr Gln Arg Val Gln Glu Asp Gly Arg Gly Val Gln Ala Leu Leu 90

Cys Thr Gln Arg Pro Pro Ser Gln Ile Trp Asp Gly Pro Val Gly Tyr

Phe Thr Tyr Leu Phe Tyr Leu Ala Lys Tyr Trp Glu Leu Val Asp Thr 120

Val Ile Leu Ala Leu Arg Gln Lys Pro Thr Ile Pro Leu His Val Tyr 135

His His Ala Val Met Leu Phe Ile Val Trp Ser Trp Phe Ala His Pro

Trp Leu Glu Gly Ser Trp Trp Cys Ser Leu Val Asn Ser Phe Ile His 170

Thr Val Met Tyr Ser Tyr Tyr Thr Leu Thr Val Val Gly Ile Asn Pro

Trp Trp Lys Lys Trp Met Thr Thr Met Gln Ile Ile Gln Phe Ile Thr

Gly Cys Val Tyr Val Thr Ala Phe Phe Gly Leu Tyr Tyr Ala Gly Ala 215

Gly Cys Thr Ser Asn Val Tyr Thr Ala Trp Phe Ser Met Gly Val Asn 230

Leu Ser Phe Leu Trp Leu Phe Ala Leu Phe Phe Arg Arg Ser Tyr Ser 245

Lys Pro Ser Arg Lys Glu 260

<210> 135 <211> 897

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(897)

<223> Delta-5-Elongase

<400> 135

atg gca tot gtt tac toc acc cta acc tac tgg ctc gtc cac cac ccc Met Ala Ser Val Tyr Ser Thr Leu Thr Tyr Trp Leu Val His His Pro

WO 2005/012316

O 2005/012316 195	
tac att gcc aac ttc acg tgg acc gaa ggt gaa aca cta ggc tcc acc Tyr Ile Ala Asn Phe Thr Trp Thr Glu Gly Glu Thr Leu Gly Ser Thr 20 25 30	96
gtt ttc ttt gtc ttt gtc gtc gtc tcc ctt tac ctc tcc gcc aca ttc Val Phe Phe Val Phe Val Val Val Ser Leu Tyr Leu Ser Ala Thr Phe 35 40	144
ctc ctc cga tac acc gtc gat tca ctc ccc aca ctc ggt ccc cgc att Leu Leu Arg Tyr Thr Val Asp Ser Leu Pro Thr Leu Gly Pro Arg Ile 50 55	192
ctc aaa cca atc aca gcc gtt cac agc ctc att ctc ttc ctc ctc tcc Leu Lys Pro Ile Thr Ala Val His Ser Leu Ile Leu Phe Leu Leu Ser 65 70 80	240
tta acc atg gcc gtt ggt tgc act ctc tcc cta atc tct tcc tcg gac Leu Thr Met Ala Val Gly Cys Thr Leu Ser Leu Ile Ser Ser Ser Asp 90	288
ccg aag gcg cgt ctc ttc gac gcc gtt tgt ttc ccc ctc gac gtg aaa Pro Lys Ala Arg Leu Phe Asp Ala Val Cys Phe Pro Leu Asp Val Lys 100 105 110	336
cct aag gga ccg ctt ttc ttt tgg gct caa gtc ttt tac ctc tcg aag Pro Lys Gly Pro Leu Phe Phe Trp Ala Gln Val Phe Tyr Leu Ser Lys 115 120 125	384
atc ctt gag ttc gta gac aca ctt ctc atc ata ctc aac aaa tca atc Ile Leu Glu Phe Val Asp Thr Leu Leu Ile Ile Leu Asn Lys Ser Ile 130 135	432
caa cgg ctc tcg ttc ctc cac gtc tac cac gca acg gtt gtg att Gln Arg Leu Ser Phe Leu His Val Tyr His His Ala Thr Val Val Ile 145 150 155 160	480
ttg tgc tac ctc tgg tta cga aca cgt caa tcg atg ttt cct gtt ggg Leu Cys Tyr Leu Trp Leu Arg Thr Arg Gln Ser Met Phe Pro Val Gly 165 . 170 175	528
ctc gtg ttg aac tcg acg gtc cat gtg att atg tac ggg tac tat ttc Leu Val Leu Asn Ser Thr Val His Val Ile Met Tyr Gly Tyr Tyr Phe 180 185	576
ctc tgc gct atc gga tcg agg ccc aag tgg aag aag ttg gtg acg aat Leu Cys Ala Ile Gly Ser Arg Pro Lys Trp Lys Lys Leu Val Thr Asn 195 200 205	624
ttt caa atg gtt cag ttt gct ttc ggc atg ggg tta gga gcc gct tgg Phe Gln Met Val Gln Phe Ala Phe Gly Met Gly Leu Gly Ala Ala Trp 210 215	672
atg ctc cca gag cat tat ttc ggg tcg ggt tgc gcc ggg att tgg aca Met Leu Pro Glu His Tyr Phe Gly Ser Gly Cys Ala Gly Ile Trp Thr 240	720
gtt tat ttc aat ggt gtg ttt act gct tct cta ttg gct ctc ttc tac Val Tyr Phe Asn Gly Val Phe Thr Ala Ser Leu Leu Ala Leu Phe Tyr 245 250 255	768
aac ttc cac tcc aag aac tat gag aag act aca acg tcg cct ttg tat Asn Phe His Ser Lys Asn Tyr Glu Lys Thr Thr Thr Ser Pro Leu Tyr 260 265 270	816
aag atc gaa tcc ttt ata ttt att cac gga gag agg tgg gca aat aaa Lys Ile Glu Ser Phe Ile Phe Ile His Gly Glu Arg Trp Ala Asn Lys 285	864

gcg att aca tta ttt tcc aag aaa aac gat taa Ala Ile Thr Leu Phe' Ser Lys Lys Asn Asp 295

897

<210> 136 <211> 298 <212> PRT

<213> Arabidopsis thaliana

<400> 136

Met Ala Ser Val Tyr Ser Thr Leu Thr Tyr Trp Leu Val His His Pro

Tyr Ile Ala Asn Phe Thr Trp Thr Glu Gly Glu Thr Leu Gly Ser Thr

Val Phe Phe Val Phe Val Val Val Ser Leu Tyr Leu Ser Ala Thr Phe

Leu Leu Arg Tyr Thr Val Asp Ser Leu Pro Thr Leu Gly Pro Arg Ile 55

Leu Lys Pro Ile Thr Ala Val His Ser Leu Ile Leu Phe Leu Leu Ser

Leu Thr Met Ala Val Gly Cys Thr Leu Ser Leu Ile Ser Ser Ser Asp

Pro Lys Ala Arg Leu Phe Asp Ala Val Cys Phe Pro Leu Asp Val Lys 105

Pro Lys Gly Pro Leu Phe Phe Trp Ala Gln Val Phe Tyr Leu Ser Lys

Ile Leu Glu Phe Val Asp Thr Leu Leu Ile Ile Leu Asn Lys Ser Ile

Gln Arg Leu Ser Phe Leu His Val Tyr His His Ala Thr Val Val Ile

Leu Cys Tyr Leu Trp Leu Arg Thr Arg Gln Ser Met Phe Pro Val Gly

Leu Val Leu Asn Ser Thr Val His Val Ile Met Tyr Gly Tyr Tyr Phe 180

Leu Cys Ala Ile Gly Ser Arg Pro Lys Trp Lys Lys Leu Val Thr Asn

Phe Gln Met Val Gln Phe Ala Phe Gly Met Gly Leu Gly Ala Ala Trp 215

197 Met Leu Pro Glu His Tyr Phe Gly Ser Gly Cys Ala Gly Ile Trp Thr 230 Val Tyr Phe Asn Gly Val Phe Thr Ala Ser Leu Leu Ala Leu Phe Tyr 250 Asn Phe His Ser Lys Asn Tyr Glu Lys Thr Thr Thr Ser Pro Leu Tyr 265 260 Lys Ile Glu Ser Phe Ile Phe Ile His Gly Glu Arg Trp Ala Asn Lys 280 Ala Ile Thr Leu Phe Ser Lys Lys Asn Asp 295 <210> 137 <211> 837 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (1)..(837) <223> Delta-5-Elongase atg gca tca att tac tcc tct tta acc tac tgg ctc gtt aac cac ccc 48 Met Ala Ser Ile Tyr Ser Ser Leu Thr Tyr Trp Leu Val Asn His Pro tac atc tcc aat ttt act tgg atc gaa ggt gaa acc cta ggc tcc acc Tyr Ile Ser Asn Phe Thr Trp Ile Glu Gly Glu Thr Leu Gly Ser Thr 20 gtc ttt ttc gta tcc gtc gta gtc tcc gtt tac ctc tcc gcc acg ttc Val Phe Phe Val Ser Val Val Ser Val Tyr Leu Ser Ala Thr Phe 40 ete ete ega tee gee ate gat tea ete eea tea ete agt eea egt ate 192 Leu Leu Arg Ser Ala Ile Asp Ser Leu Pro Ser Leu Ser Pro Arg Ile ctc aaa ccg atc aca gcc gtc cac agc cta atc ctc tgt ctc ctc tcc Leu Lys Pro Ile Thr Ala Val His Ser Leu Ile Leu Cys Leu Leu Ser tta gtc atg gcc gtc ggt tgc act ctc tca ata acc tca tct cac gcg Leu Val Met Ala Val Gly Cys Thr Leu Ser Ile Thr Ser Ser His Ala 288 tet tea gat eeg atg geg egt tte ett eac geg att tge ttt eec gte 336 Ser Ser Asp Pro Met Ala Arg Phe Leu His Ala Ile Cys Phe Pro Val gac gtt aaa cct aac gga ccg ctt ttc ttc tgg gct caa gtc ttc tac 384 Asp Val Lys Pro Asn Gly Pro Leu Phe Phe Trp Ala Gln Val Phe Tyr 115 ctc tcg aag atc ctc gag ttc gga gac acg atc ctc atc ata ctc ggc 432 Leu Ser Lys Ile Leu Glu Phe Gly Asp Thr Ile Leu Ile Ile Leu Gly

135

· 198	
aaa tca atc caa cgg cta tcc ttc ctc cac gtg tac cac cac gcg acg Lys Ser Ile Gln Arg Leu Ser Phe Leu His Val Tyr His His Ala Thr 145 150 155 160	480
gtt gtg gtc atg tgt tat ctc tgg ctc cga act cgc caa tcg atg ttt Val Val Val Met Cys Tyr Leu Trp Leu Arg Thr Arg Gln Ser Met Phe 165 170 175	528
ccg att gcg ctc gtg acg aat tcg acg gta cac gtc atc atg tac ggt Pro Ile Ala Leu Val Thr Asn Ser Thr Val His Val Ile Met Tyr Gly 180 185 190	576
tac tac ttc ctc tgc gcc gtt gga tcg agg ccc aag tgg aag aga ttg Tyr Tyr Phe Leu Cys Ala Val Gly Ser Arg Pro Lys Trp Lys Arg Leu 195 200 205	624
gtg acg gat tgt cag att gtt cag ttt gtt ttc agt ttc ggg tta tcc Val Thr Asp Cys Gln Ile Val Gln Phe Val Phe Ser Phe Gly Leu Ser 210 215 220	672
ggt tgg atg ctc cga gag cac tta ttc ggg tcg ggt tgc acc ggg att Gly Trp Met Leu Arg Glu His Leu Phe Gly Ser Gly Cys Thr Gly Ile 225 230 235 240	720
tgg gga tgg tgt ttc aac gct gca ttt aat gct tct ctt ttg gct ctc Trp Gly Trp Cys Phe Asn Ala Ala Phe Asn Ala Ser Leu Leu Ala Leu . 245 250 255	768
ttt tcc aac ttc cat tca aag aat tat gtc aag aag cca acg aga gag Phe Ser Asn Phe His Ser Lys Asn Tyr Val Lys Lys Pro Thr Arg Glu 260 265 270	816
gat ggc aaa aaa agc gat tag Asp Gly Lys Lys Ser Asp 275	837
<210> 138 <211> 278 <212> PRT <213> Arabidopsis thaliana	
<400> 138	
Met Ala Ser Ile Tyr Ser Ser Leu Thr Tyr Trp Leu Val Asn His Pro 1 5 10 15	
Tyr Ile Ser Asn Phe Thr Trp Ile Glu Gly Glu Thr Leu Gly Ser Thr 20 25 30	
Val Phe Phe Val Ser Val Val Ser Val Tyr Leu Ser Ala Thr Phe 35 40 45	
Leu Leu Arg Ser Ala Ile Asp Ser Leu Pro Ser Leu Ser Pro Arg Ile 50 55 60	
Leu Lys Pro Ile Thr Ala Val His Ser Leu Ile Leu Cys Leu Leu Ser 65 70 75 80	
Leu Val Met Ala Val Gly Cys Thr Leu Ser Ile Thr Ser Ser His Ala 85 90 95	

Ser Ser Asp Pro Met Ala Arg Phe Leu His Ala Ile Cys Phe Pro Val 105 100

11, 1.

Asp Val Lys Pro Asn Gly Pro Leu Phe Phe Trp Ala Gln Val Phe Tyr

Leu Ser Lys Ile Leu Glu Phe Gly Asp Thr Ile Leu Ile Ile Leu Gly

Lys Ser Ile Gln Arg Leu Ser Phe Leu His Val Tyr His His Ala Thr

Val Val Val Met Cys Tyr Leu Trp Leu Arg Thr Arg Gln Ser Met Phe

Pro Ile Ala Leu Val Thr Asn Ser Thr Val His Val Ile Met Tyr Gly

Tyr Tyr Phe Leu Cys Ala Val Gly Ser Arg Pro Lys Trp Lys Arg Leu

Val Thr Asp Cys Gln Ile Val Gln Phe Val Phe Ser Phe Gly Leu Ser

Gly Trp Met Leu Arg Glu His Leu Phe Gly Ser Gly Cys Thr Gly Ile 230

Trp Gly Trp Cys Phe Asn Ala Ala Phe Asn Ala Ser Leu Leu Ala Leu

Phe Ser Asn Phe His Ser Lys Asn Tyr Val Lys Lys Pro Thr Arg Glu 260

Asp Gly Lys Lys Ser Asp

<210> 139

<211> 6

<212> PRT

<213> Konsensus

<220>

<221> MISC_FEATURE

<223> Xaa in der Position 3 und 4 in der Sequenz hat die in Tabelle A w <222> (1)..(6) iedergegebene Bedeutung.

<400> 139

Leu His Xaa Xaa His His

<210> 140 <211> 8

```
<212> PRT
<213> Konsensus
 <220>
 <221> MISC_FEATURE
 <222>
        (1)..(8)
        Xaa an der Position 2, 3, 5 und 6 in der Sequenz hat die in Tabel
 <223>
        le A wiedergegebene Bedeutung.
 <400> 140
 Thr Xaa Xaa Gln Xaa Xaa Gln Phe
                 S
 1
 <210> 141
 <211> 6
  <212> PRT
 <213> Konsensus
 <220>
  <221> MISC_FEATURE
  <222>
        (1)..(6)
  <223> Xaa an Postion 3 in der Sequenz hat die in Tabelle A wiedergegebe
        ne Bedeutung.
 <400> 141
  Asp Thr Xaa Phe Met Val
                 5
 <210> 142
<211> 8
  <212> PRT
<213> Konsensus
  <220>
  <221> MISC_FEATURE
  <222> (1)..(8)
  <223> Xaa an Postion 5 und 6 in der Sequenz hat die in Tabelle A wieder
         gegebene Bedeutung.
  <400> 142
  Thr Gln Ala Gln Xaa Xaa Gln Phe
  <210> 143
  <211> 60
  <212> DNA
  <213> Primer
  <220>
  <221> misc_feature
        (1)..(60)
  <222>
  <223>
  <400> 143
  gtcgacccgc ggactagtgg gccctctaga cccgggggat ccggatctgc tggctatgaa
  <210> 144
```

```
<211> 60
 <212> DNA
 <213> Primer
  <220>
 <221> misc_feature
<222> (1)..(60)
  <223>
<400> 144
  gtcgacccgc ggactagtgg gccctctaga cccgggggat ccggatctgc tggctatgaa
                                                                               60
  <210> 145
  <211> 36
  <212> DNA
<213> Primer
  <220>
  <221> misc_feature
  <222> (1)..(36)
  <223>
  <400> 145
                                                                                36
  ggtaccacat aatgtgcgtg gagacggaaa ataacg
   <210> 146
<211> 33
   <212> DNA
<213> Primer
   <220>
   <221> misc_feature
   <222> (1)..(33)
   <223>
   <400> 146
                                                                                 33
   ctcgagttac gccgtctttc cggagtgttg gcc
   <210> 147
<211> 24
<212> DNA
    <213> Primer
    <220>
    <221> misc_feature
<222> (1)..(24)
    <223>
    <400> 147
                                                                                  24
    geggeegett acgtggaett ggte
    <210> 148
    <211> 24
<212> DNA
     <213> Primer
     <220>
     <221> misc_feature
     <222> (1)..(24)
```

<223>

10,000

```
<400> 148
                                                                       24
gcggccgcat ggcgacgaag gagg
<210> 149
<211> 25
<212> DNA
<213> Primer
<220>
<221> misc_feature
<222> (1)..(25)
<223>
<400> 149
                                                                       25
taagcttaca tggcgacgaa ggagg
<210> 150
<211> 24
<212> DNA
<213> Primer
<220>
<221> misc_feature
<222>
      (1)..(24)
<223>
<400> 150
                                                                       24
tggatccact tacgtggact tggt
<210> 151
<211> 60
<212> DNA
<213> Primer
<220>
<221> misc_feature
<222> (1)..(60)
<223>
<400> 151
gtcgacccgc ggactagtgg gccctctaga cccgggggat ccggatctgc tggctatgaa
                                                                       60
<210> 152
<211>
       31
<212> DNA
<213> Primer
<220>
<221> misc_feature
<222> (1)..(31)
<223>
<400> 152
                                                                       31
geggeegeac catgtgetea ceaeegeegt c
<210> 153
<211> 26
```

<210> 157 <211> 27 <212> DNA <213> Primer

<221> misc_feature <222> (1)..(27)

<220>

<223>

<400>	157		
gcggccg	cct aagcactctt	cttcttt	27
<210>	158		
<211>	23		
<212>	DNA		
<213>	Primer	•	
		•	
<220>			
	misc_feature		
	(1)(23)		
<223>	(1)(25)		
~2237			
		·	
<400>	158		22
accatgt	get caccaccgcc	gtc	23
<210>	159	·	
<211>	18		
<212>	DNA		
<213>	Primer		
1225			
<220>			
	mine footure	O.	
<221>	misc_feature		
<222>	(1)(18)		
<223>			
		·	
<400>	159		
ctacate	gca ccagtaac		18
<210>	160	,	
<211>	23		
<212>	DNA		
<213>	Primer		
~213/	LT IMET		
<220>			
		1	
<221>	misc_feature	·	
<222>	(1)(23)		
<223>		•	
	•		
<400>	160		
accato	tgct catcaccgcc	gtc	23
		-	
<210>	161		
<211>	18		
<212>	DNA		
<213>	Primer		
<220>			
<221>	misc_feature		
<222>	(1)(18)		
<223>			
		•	
<400>	161		
			18
ctacat	ggca ccagtaac	•	-0
<210>	162		
<211>	23		
<212>	DNA		

1.

<210> 166 <211> 29 <212> DNA <213> Primer

<221> misc_feature <222> (1)..(29)

<220>

<223>

<213> Primer

4. . . .

206

<400> 166 29 geggeegeat aatgaega'ge aacatgage <210> 167 <211> 29 <212> DNA <213> Primer <220> <221> misc_feature <222> (1)..(29) <223> <400> 167 29 geggeegett aggeegaett ggeettggg <210> 168 <211> 34 <212> DNA <213> Primer <220> <221> misc_feature <222> (1)..(34) <223> <400> 168 34 gcggccgcac catggacgtc gtcgagcagc aatg <210> 169 <211> 36 <212> DNA <213> Primer <220> <221> misc_feature <222> (1)..(36) <223> <400> 169 36 gcggccgctt agatggtctt ctgcttcttg ggcgcc <210> 170 <211> 23 <212> DNA <213> Primer <220> <221> misc_feature <222> (1)..(23) -<223> <400> 170 23 gacataatga cgagcaacat gag <210> 171 <211> 25 <212> DNA

<400> 175

```
<220>
<221> misc_feature
<222>
      (1)..(25)
<223>
                                                                          . 25
<400> 171
cggcttaggc cgacttggcc ttggg
<210> 172
<211> 30
<212> DNA
<213> Primer
<220>
<221> misc_feature
 <222> (1)..(30)
 <223>
 <400> 172
                                                                            30
 agacataatg gacgtcgtcg agcagcaatg
 <210> 173
<211> 28
 <212> DNA
<213> Primer
 <220>
 <221> misc_feature
 <222> (1)..(28)
 <223>
 <400> 173
                                                                             28
 ttagatggtc ttctgcttct tgggcgcc
  <210> 174
<211> 60
  <212> DNA
<213> Primer
  <220>
  <221> misc_feature
  <222> (1)..(60)
  <223>
  gtcgacccgc ggactagtgg gccctctaga cccgggggat ccggatctgc tggctatgaa
  <400> 174
                                                                             60
  <210> 175
<211> 29
   <212> DNA
   <213> Primer
   <220>
   <221> misc_feature <222> (1)..(29)
   <223>
```

<213> Primer

```
29
  gcggccgcat aatggcttca acatggcaa
  <210> 176
<211> 32
  <212> DNA
  <213> Primer
  <220>
  <221> misc_feature
  <222> (1)..(32)
  <223>
  <400> 176
                                                                             32
  geggeegett atgtettett getetteetg tt
  <210> 177
  <211> 26
  <212> DNA
<213> Primer
· <220>
  <221> misc_feature
  <222> (1)..(26)
  <223>
  <400> 177
                                                                             26
  gcggccgcat aatggagact tttaat
  <210> 178
  <211> 28
<212> DNA
  <213> Primer
  <220>
  <221> misc_feature
  <222> (1)..(28)
  <223>
  <400> 178
                                                                             28
  gcggccgctc agtccccct cactttcc
  <210> 179
   <211> 29
  <212> DNA
<213> Primer
  <220>
  <221> misc_feature
   <222> (1)..(29)
   <223>
   <400> 179
                                                                              29
  aagcttacat aatggcttca acatggcaa
  <210> 180
<211> 30
<212> DNA
```

PCT/EP2004/007957 WO 2005/012316 209 <220> <221> misc_feature <222> (1)..(30) <223> <400> 180 30 ggatcettat gtettettge tetteetgtt <210> 181 <211> 26 <212> DNA <213> Primer <222> (1)..(26) <223> 26 <400> 181 aagcttacat aatggagact tttaat <210> 182 <211> 27 <212> DNA <213> Primer <220> <221> misc_feature <222> (1)..(27) <223> 27 <400> 182 ggatecttea gtececete aetttee <210> 183 <211> 993 <212> DNA <213> Phaeodactylum tricornutum <220> <221> CDS <222> (103)..(939) <223> Delta-6-Elongase

ggtcttttgt ggtagctatc gtcatcacac gcaggtcgtt gctcactatc gtgatccgta 60 tattgaccgt gcacttgtgt aaaacagaga tatttcaaga gt atg atg gta cct 114 tca agt tat gac gag tat atc gtc atg gtc aac gac ctt ggc gac tct Ser Ser Tyr Asp Glu Tyr Ile Val Met Val Asn Asp Leu Gly Asp Ser 10 att ctg agc tgg gcc gac cct gat cac tat cgt gga cat acc gag gga Ile Leu Ser Trp Ala Asp Pro Asp His Tyr Arg Gly His Thr Glu Gly 210 tgg gag ttc act gac ttt tct gct gct ttt agc att gcc gtc gcg tac 258 Trp Glu Phe Thr Asp Phe Ser Ala Ala Phe Ser Ile Ala Val Ala Tyr

ctc ctg ttt gtc ttt gtt gga tct ctc att atg agt atg gga gtc Leu Leu Phe Val Phe Val Gly Ser Leu Ile Met Ser Met Gly Val 65 gca att gac cct tat ccg ctc aag ttt gtc tac aat gtt tca cag Ala Ile Asp Pro Tyr Pro Leu Lys Phe Val Tyr Asn Val Ser Gln 70 atg ctt tgt gct tac atg acc att gaa gcc agt ctt cta gct tat Met Leu Cys Ala Tyr Met Thr Ile Glu Ala Ser Leu Leu Ala Tyr 85	Pro att 354 Ile cgt 402 Arg 100 ccg 450 Pro gat 498
Leu Leu Phe Val Phe Val Gly Ser Leu Ile Met Ser Met Gly Val 55 60 60 65 Gly Val Gly Gly Gly Gly Gly Gly Gly Gly Gly Gl	Pro att 354 Ile cgt 402 Arg 100 ccg 450 Pro gat 498
Ala Ile Asp Pro Tyr Pro Leu Lys Phe Val Tyr Asn Val Ser Gln 70 75 80 atg ctt tgt gct tac atg acc att gaa gcc agt ctt cta gct tat Met Leu Cys Ala Tyr Met Thr Ile Glu Ala Ser Leu Leu Ala Tyr	cgt 402 Arg 100 ccg 450 Pro 498
Met Leu Cys Ala Tyr Met Thr Ile Glu Ala Ser Leu Leu Ala Tyr	Arg 100 ccg 450 Pro gat 498
	Pro gat 498
aac ggc tac aca ttc tgg cct tgc aac gat tgg gac ttt gaa aag Asn Gly Tyr Thr Phe Trp Pro Cys Asn Asp Trp Asp Phe Glu Lys 105 110 115	
cct atc gct aag ctc ctc tgg ctc ttt tac gtt tcc aaa att tgg Pro Ile Ala Lys Leu Leu Trp Leu Phe Tyr Val Ser Lys Ile Trp 120 125 130	
ttt tgg gac acc atc ttt att gtt ctc ggg aag aag tgg cgt caa Phe Trp Asp Thr Ile Phe Ile Val Leu Gly Lys Lys Trp Arg Gln 135 140 145	
tcc ttc ctg cac gtc tac cat cac acc acc atc ttt ctc ttc t	
ttg aat gca cat gta aac ttt gat ggt gat att ttc ctc acc atc. Leu Asn Ala His Val Asn Phe Asp Gly Asp Ile Phe Leu Thr Ile 1 165 170 175	
ttg aac ggt ttc atc cac acc gtc atg tac acg tac tac ttc att Leu Asn Gly Phe Ile His Thr Val Met Tyr Thr Tyr Tyr Phe Ile 185 190 195	-
atg cac acc aag gtc cca gag acc ggc aaa tcc ttg ccc att tgg Met His Thr Lys Val Pro Glu Thr Gly Lys Ser Leu Pro Ile Trp 200 205 210	
aaa tot agt ttg aca ago atg cag otg gtg cag tto ato acg atg . Lys Ser Ser Leu Thr Ser Met Gln Leu Val Gln Phe Ile Thr Met I 215 220 225	
acg cag gct atc atg atc ttg tac aag ggc tgt gct ccc cat and the Gln Ala Ile Met Ile Leu Tyr Lys Gly Cys Ala Ala Pro His 230 235 240	
cgg gtg gtg aca tcg tac ttg gtt tac att ttg tcg ctc ttt att f Arg Val Val Thr Ser Tyr Leu Val Tyr Ile Leu Ser Leu Phe Ile 1 245 250 255	
ttc gcc cag ttc ttt gtc agc tca tac ctc aag ccg aag aag aag Phe Ala Gln Phe Phe Val Ser Ser Tyr Leu Lys Pro Lys Lys Lys Lys 275	
aca gct taa gcgaaatttg ggtctacgtt aaaacaatta cgttacaaaa Thr Ala	979
aaaaaaaaa aaaa	993
<210> 184	

<210> 184 <211> 278 <212> PRT ${^{\frac{1}{2}}}{^{\frac{1}{2}}}{^{\frac{1}{2}}}{^{-\frac{1}{2}}}{^{-\frac{1}{2}}}$

<213> Phaeodactylum tricornutum

<400> 184

Met Met Val Pro Ser Ser Tyr Asp Glu Tyr Ile Val Met Val Asn Asp

Leu Gly Asp Ser Ile Leu Ser Trp Ala Asp Pro Asp His Tyr Arg Gly 25

His Thr Glu Gly Trp Glu Phe Thr Asp Phe Ser Ala Ala Phe Ser Ile

Ala Val Ala Tyr Leu Leu Phe Val Phe Val Gly Ser Leu Ile Met Ser 50 50

Met Gly Val Pro Ala Ile Asp Pro Tyr Pro Leu Lys Phe Val Tyr Asn 75

Val Ser Gln Ile Met Leu Cys Ala Tyr Met Thr Ile Glu Ala Ser Leu

Leu Ala Tyr Arg Asn Gly Tyr Thr Phe Trp Pro Cys Asn Asp Trp Asp 100 105

Phe Glu Lys Pro Pro Ile Ala Lys Leu Leu Trp Leu Phe Tyr Val Ser

Lys Ile Trp Asp Phe Trp Asp Thr Ile Phe Ile Val Leu Gly Lys Lys

Trp Arg Gln Leu Ser Phe Leu His Val Tyr His His Thr Thr Ile Phe

Leu Phe Tyr Trp Leu Asn Ala His Val Asn Phe Asp Gly Asp Ile Phe

Leu Thr Ile Val Leu Asn Gly Phe Ile His Thr Val Met Tyr Thr Tyr

Tyr Phe Ile Cys Met His Thr Lys Val Pro Glu Thr Gly Lys Ser Leu 195 200 205

Pro Ile Trp Trp Lys Ser Ser Leu Thr Ser Met Gln Leu Val Gln Phe 210 215

Ile Thr Met Met Thr Gln Ala Ile Met Ile Leu Tyr Lys Gly Cys Ala

Ala Pro His Ser Arg Val Val Thr Ser Tyr Leu Val Tyr Ile Leu Ser 250 255

4. . .

ttgttcgccc agttctttgt cagctc

212

Leu Phe Ile Leu Phe Ala Gln Phe Phe Val Ser Ser Tyr Leu Lys Pro 270 260 265 Lys Lys Lys Thr Ala 275 <210> 185 <211> 20 <212> DNA <213> Primer <220> <221> misc_feature <222> (1)..(20) <223> N in den Positionen 3 und 18 bedeutet C oder T. <400> 185 20 aanctuctut ggctuttnta <210> 186 <211> 23 <212> DNA <213> Primer <220> <221> misc_feature <222> (1)..(23) <223> N in den Positionen 3 und 15 bedeutet C oder T. N in den Position en 9, 12 und 21 bedeutet A oder G. <400> 186 23 gantguacna anaantgugc naa <210> 187 <211> 446 <212> DNA <213> PCR-Fragment <220> <221> misc_feature <222> (1)..(446) <223> PCR-Fragment <400> 187 aageteetet ggetetttta egttteeaaa atttgggatt tttgggacae catetttatt 60 120 gttctcggga agaagtggcg tcaactttcc ttcctgcacg tctaccatca caccaccatc 180 tttctcttct actggttgaa tgcacatgta aactttgatg gtgatatttt cctcaccatc gtcttgaacg gtttcatcca caccgtcatg tacacgtact acttcatttg catgcacacc 240 aaggtcccag agaccqgcaa atccttgccc atttggtgga aatctagttt gacaagcatg 300 360 cagctggtgc agttcatcac gatgatgacg caggctatca tgatcttgta caagggctgt getgeteece atageegggt ggtgacateg tacttggttt acattttgte getetttatt 420

WO 2005/012316 PCT/EP2004/007957

214

ccttggcgac	tctatictga	gctgggccga	ccctgatcac	tatcgtggac	ataccgaggg	120
atgggagttc	actgactttt	ctgctgcttt	tagcattgcc	gtcgcgtacc	tcctgtttgt	180
ctttgttgga	tctctcatta	tgagtatggg	agtccccgca	attgaccctt	atccgctcaa	240
gtttgtctac	aatgtttcac	agattatgct	ttgtgcttac	atgaccattg	aagccagtct	300
tctagcttat	cgtaacggct	acacattctg	gccttgcaac	gattgggact	ttgaaaagcc	360
gcctatcgct	aagctcctct	ggctctttta	cgtttccaaa	atttgggatt	tttgggacac	420
catctttatt	gttctcggga	agaagtggcg	tcaactttcc	ttcctgcacg	tctaccatca	480
caccaccatc	tttctcttct	actggttgaa	tgcacatgta	aactttgatg	gtgatatttt	540
cctcaccatc	gtcttgaacg	gtttcatcca	caccgtcatg	tacacgtact	acttcatttg	600
catgcacacc	aaggtcccag	agaccggcaa	atccttgccc	atttggtgga	aatctagttt	660
gacaaycatg	cagctggtgc	agttcatcac	gatgatgacg	caggctatca	tgatcttgta	720
caagggctgt	gctgctcccc	atagccgggt	ggtgacatcg	tactťggttt	acattttgtc	780
gctctttatt	ttgttcgccc	agttctttgt	cagctcatac	ctcaagccga	agaagaagaa	840
gacagcttaa	tagactagt		• • ,			859

The state of the s

THIS PAGE BLANK (USPTO)