Serial No. **10/713, 940**Response Dated 19 April 2005
Reply to Office Action of September 24, 2004

Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Amend claims 6 and 15.

Listing of Claims:

1

2

3

4

5

6

7

8

10

11

12

2

3

4

5

1

1. **(original)** A voice detector comprising:

a plurality of Goertzel filters each operating at a different frequency within a voice range, some of the filters operating at frequencies of control signals and others of the filters operating at frequencies other than the control signals' frequencies, each filter for receiving a signal to be analyzed for presence of voice and detecting energy of the signal at the operating frequency of the filter; and

a comparator connected to the filters, for comparing the energies detected by the filters against thresholds and responsive to at least three of the filters simultaneously detecting energy above a noise threshold and below a control signal threshold by indicating that the signal comprises voice.

1

2. **(original)** The voice detector of claim 1 wherein:

the comparator is responsive to a filter of the filters operating at a frequency of a control signal and detecting energy above a control signal threshold by indicating that the analyzed signal comprises the control signal.

3. (original) The voice detector of claim 1 wherein:

the comparator is responsive to one of the filters operating at a frequency of a single-frequency control signal detecting energy above a first control signal threshold by indicating that the analyzed signal Serial No. **10/713, 940**Response Dated 19 April 2005
Reply to Office Action of September 24, 2004

- 5 comprises the single-frequency control signal, and is responsive to two of
- 6 the filters operating at frequencies of a dual-frequency control signal each
- 7 detecting energy above a second control signal threshold different from
- 8 the first control signal threshold by indicating that the analyzed signal
- 9 comprises the dual-frequency control signal.
- 4. **(original)** The voice detector of claim 1 further comprising:
- a detector that detects total energy of the signal to be analyzed;
- 3 wherein
- 4 the comparator is responsive to the total detected energy being
- 5 below a noise threshold by indicating that the analyzed signal comprises
- 6 noise or silence.
- 5. (original) The voice detector of claim 4 wherein:
- the comparator compares the energies detected by the filters
- against the thresholds by comparing ratios of the energies detected by
- 4 individual ones of the filters and the total detected energy against the
- 5 thresholds.

1

- 6. (currently amended) A call classifier comprising:
- a plurality of Goertzel filters each operating at a different frequency
- within a voice range, some of the filters operating at frequencies of control
- 4 signals and others of the filters operating at frequencies other than the
- 5 control signals frequencies, each filter for receiving windows of a signal to
- 6 be analyzed for presence of voice and detecting energy of the signal in the
- 7 windows at the operating frequency of the filter;
- a detector that detects in the windows total energy of the signal to
- 9 be analyzed; and
- a comparator connected to the filters, for comparing ratios of the
- energies detected by the individual filters in a window and the total

Serial No. 10/713, 940

Response Dated 19 April 2005

Reply to Office Action of September 24, 2004

12	detected energy in the window against thresholds, responsive to the total
13	detected energy in the widow not exceeding a noise threshold by
14	indicating that the analyzed signal comprises silence or noise, responsive
15	to one of the filters operating at a frequency of a single-frequency control
16	signal detecting in the window energy whose ratio exceeds a first control
17	signal threshold by indicating that the analyzed signal comprises said
18	single-frequency control signal, responsive to two of the filters operating at
19	frequencies of a dual-frequency control signal each detecting in the
20	window energy whose ratio exceeds a second control signal threshold by
21	indicating that the analyzed signal comprises said dual-frequency control
22	signal, and responsive to at least three of the filters each detecting in the
23	window energy whose ratio exceeds a voice threshold by indicating that
24	the signal comprises voice.

- 7. (original) The call classifier of claim 6 wherein:
- each window represents a different segment of the signal to beanalyzed.
- 8. **(original)** The call classifier of claim 6 wherein:
 each window represents a different tapered segment of the signal
- 3 to be analyzed.
 - (original) The call classifier of claim 6 wherein:
 each window represents a different segment of the signal to be
- 3 analyzed and wherein consecutive said windows partly overlap each
- 4 other.

1

1

2

- 1 10. **(original)** A method of detecting voice in a signal to be analyzed for presence of voice, comprising:
- detecting energy of the signal at operating frequencies of a plurality

4	of Goertzel filters each operating at a different frequency within a voice
5	range with some of the filters operating at frequencies of control signals
6	and others of the filters operating at frequencies other than the control
7	signals' frequencies;
8	comparing the energies detected by the filters against thresholds;
9	and
10	in response to at least three of the filters simultaneously detecting
11	energy above a noise threshold and below a control signal threshold,
12	indicating that the signal comprises voice.
1	11. (original) The method of claim 10 further comprising:
2	in response to a filter of the filters operating at a frequency of a
3	control signal detecting energy above a control signal threshold, indicating
4	that the analyzed signal comprises the control signal.
1	12. (original) The method of claim 10 further comprising:
2	in response to one of the filters operating at a frequency of a single-
3	frequency control signal detecting energy above a first control signal
4	threshold, indicating that the analyzed signal comprises the single-
5	frequency control signal; and
6	in response to two of the filters operating at frequencies of a dual-
7	frequency control signal each detecting energy above a second control
8	signal threshold different from the first control signal threshold, indicating
9	that the analyzed signal comprises the dual-frequency control signal.
1	13. (original) The method of claim 10 further comprising:
2	detecting total energy of the signal to be analyzed;
3	comparing the total detected energy against a noise threshold; and
4	in response to total detected energy being below the noise
5	threshold, indicating that the analyzed signal comprises noise or silence.

1	14. (original) The method of claim 13 wherein:
2	comparing the energies detected by the filters comprises
3	comparing ratios of the energies detected by individual ones of the
4	filters and the total detected energy against the thresholds.
1	15. (currently amended) A method of detecting voice in a signal
2	to be analyzed for presence of voice, comprising:
3	detecting energy of the signal at operating frequencies of a plurality
4	of Goertzel filters each operating at a different frequency within a voice
5	range, some of the filters operating at frequencies of control signals and
6	others of the filters operating at frequencies other than the control signals
7	frequencies, wherein each filter receives windows of the signal to be
8	analyzed for presence of voice and detects energy of the signal in the
9	windows at the operating frequency of the filter;
10	detecting in the windows total energy of the signal to be analyzed;
11	comparing ratios of the energies detected by the individual filters in
12	a window and the total detected energy in the window against thresholds;
13	in response to the total detected energy in the widow not exceeding
14	a noise threshold, indicating that the analyzed signal comprises silence or
15	noise;
16	in response to one of the filters operating at a frequency of a single-
17	frequency control signal detecting in the window energy whose ratio
18	exceeds a first control signal threshold, indicating that the analyzed signal
19	comprises said single-frequency control signal;
20	in response to two of the filters operating at frequencies of a dual-
21	frequency control signal each detecting in the window energy whose ratio
22	exceeds a second control signal threshold, indicating that the analyzed
23	signal comprises said dual-frequency control signal; and
24	in response to at least three of the filters each detecting in the

Serial No. **10/713, 940**Response Dated 19 April 2005
Reply to Office Action of September 24, 2004

- window energy whose ratio exceeds a voice threshold, indicating that the
 signal comprises voice.
- 1 16. (original) The method of claim 15 wherein:
 2 each window represents a different segment of the signal to be
 3 analyzed.
- 1 17. (original) The method of claim 15 wherein:
 2 each window represents a different tapered segment of the signal
 3 to be analyzed.
- 1 18. **(original)** The method of claim 15 wherein:
 2 each window represents a different segment of the signal to be
 3 analyzed and wherein consecutive said windows partly overlap each
 4 other.