Lecture 16

E(XY) > also known as Correlation between X and Y.

CORRELATION COEFFICIENT

$$P_{XY} = \frac{Cov(X,Y)}{\sqrt{Var(X) Var(Y)}} = \frac{Cov(X,Y)}{\sqrt{\nabla_X \nabla_Y}}$$

Two important properties of Pxx

(1)
$$-1 \le P_{XY} \le 1$$
(2) implies (1) implies (2)
(2) $-\nabla_{X} \nabla_{Y} \le Cov(X,Y) \le \nabla_{X} \nabla_{Y}$

Proof: Let σ_{x}^{2} , σ_{y}^{2} be the variances of X and Y. Let W = X - aY for some constant a.

$$V_{AY}(W) = E[(x-aY)^{2}] - (E[x-aY])^{2}$$

$$= E[x^{2} + a^{2}Y^{2} - 2aXY] - (\mu_{X} - a\mu_{Y})^{2}$$

$$= (E(x^{2}) - \mu_{X}^{2}) - 2a(E(XY) - \mu_{X}\mu_{Y}) + a^{2}(E(Y^{2}) - \mu_{Y}^{2})^{-1}$$

$$\Rightarrow$$
 $Var(w) = Var(x) - 2a (ov(x, x) + a^2 Var(x))$

	Interpretation of PXX	•
,	Pxx describes the infor	mation we gain about
	. 71	7
	Y by observing X. For	r example, a positive
	correlation coefficient	Pxx > 0 suggests that
	when x is high w.r.	t. its expected value,
1 ===	Y also tends to be high	fxy > 0 suggests that to its expected value, n. When x is low, Y is
	likely to be low.	
	to the second	
	A negative correlation coef	f. Pxx < 0 suggests
	Heat a bigh stalling of X	is likely to be
	accompanied by a love	is likely to be vice versa.
	accompanie sy a sou	, views of 1 - Vice
	1 1: 20x relationship	entrugers X and X
	A linear relationship to produces the extreme val	1100 O I
	produces the extreme The	$\chi = 11$
	T 11: Y) V - 1 × ma
	Do this Yourself => 6	y and the
	5	
	Eq:	0 1 1 10
	J .	$P_{XY} = \begin{cases} -1 & \text{if } a < 0 \end{cases}$
X>	height, Y -> weight	0, if a = 0
	OL Pxy <1	L+1, if a 70
$\times \rightarrow$	tempin, Y > tempin	
	Kolvin Celcius	
	Pxy=1	× → distance of a cell Phone from a Tower
×.	Telephone, Y -> Social =	
~	number Security	Y -> Power of received
	Pxx =0 Number	-1< Pxx <0
	/ ×	

UNCORRELATED RANDOM VARIABLES

2 r.v.'s x and Y are uncorrelated if

$$C_{XY} = Cov(X,Y) = 0$$
 (Covariance = 0)

$$E(\times Y) = E(\times)E(Y)$$

INDEPENDENT RANDOM VARIABLES

2 r. v. s x and Y are independent if

$$f_{X,Y}(x,y) = f_{X}(x)f_{Y}(y)$$

Joint = Product of marginals.

ALWAYS TRUE

If X and Y are are independent also uncorrelated

If X and Y X and Y are are uncorrelated independent.

(NOT TRUE IN General)

1 1	To Show W and Z are NOT independent,
	D K
	find the find the joint PDF of product of marginals
	joint PDF of product of marginals
-	(Z, W)
	$f(aw) + f_{z}(a) f_{w}(w)$
	$f_{Z,W}(z,\omega) \neq f_{Z}(z)$
	JZ,W
	CI HAVE NOT AND COURT
	Show they are NOT the Equal
	2

Conditioning by an EVENT

Conditional Joint PMF

For discrete random variables x and Y, an an event B, with P(B) >0, the conditional joint PMF of X and Y given B is

$$P(x,y) = \begin{cases} P_{X,Y}(x,y) & \text{if } (x,y) \in B \\ \hline P[B] & \text{otherwise.} \end{cases}$$

Conditional Joint PDF

Given an event B, with P(B) >0, the conditional joint PDF of X and Y is

$$\frac{f}{x,Y(B)} = \begin{cases}
\frac{f}{x,Y}(x,y) & \text{if } (x,y) \in B \\
\frac{f}{y,Y}(x,y) & \text{otherwise.}
\end{cases}$$

Example: (X Y) have the Joint PDF

$$f_{xy}(x,y) = \begin{cases} 1/15 & 0 \le x \le 5, 0 \le y \le 3 \\ 0, & \text{otherwise} \end{cases}$$

Find conditional PDF of

Answer: We first $\frac{1}{3}$ $\frac{1}{3}$

$$P(B) = \int \int f_{X,Y}(x,3) dx dy$$

$$Y = 0 \quad x = 4-y$$

Conditional Variance

Conditional Variance of the random Variable W = g(x, Y) given an event B is

Expand

Example Continued

Previous Example, what is

Recall, we already found fx, Y/B ie the

Conditional PDF

$$=\int_{1}^{3}\int_{1}^{3}$$

$$= \int_{y=0}^{3} \int_{x=4-y}^{3} \int_{x=4-y}^{3}$$

$$=\frac{123}{20}$$

$$=\frac{123}{20}$$
 (check yourself...)

CONDITIONING BY A RANDOM VARIABLE

Conditional PMF

$$P_{X|Y}(x|y) = P[X=x|Y=y]$$

$$= \frac{P[X=x, Y=y]}{P[Y=y]}$$

7) the joint PMF can be written as

$$P_{X,Y}(x,y) = P_{Y}(y) \cdot P_{X|Y}(x|y).$$

=
$$P_{X}(x) \cdot P_{Y|X}(y|x)$$

Conditional Expected Value

$$E[g(x,Y)|Y=y] = \sum_{x} g(x,y) P_{x|Y}(x|y).$$

Conditional PMF.

$$E[X|Y=y] = \sum_{x} x \cdot P_{X|Y}(x|y)$$

X

Conditional PDF

For y such that $f_{Y}(y) > 0$, the conditional PDF of X given $\{Y = y\}$ is

$$f_{X|Y}(x|y) = f_{X,Y}(x,y)$$

$$f_{Y}(y).$$

This implies

marginal a conditional of x given

$$f_{X,Y}(x,y) = f_{Y}(y) \cdot f_{X|Y}(x|y)$$

$$Joint = f_{x}(x) f_{Y|x}(y|x)$$

marginal. conditional of x given

$$f_{Y|X}(y|x) = f_{Y}(y)$$
 i.e. conditional = marginal of Y given of Y

$$f_{X|Y}(x|y) = f_{X}(x).$$

Example:
$$f(x|y) = \begin{cases} 1-y & y \le x \le 1. \\ 0 & \text{otherwise.} \end{cases}$$

$$E[X|Y=y] = \int x \cdot (\frac{1}{1-y}) dx = \frac{1+y}{2}$$

$$x=y$$
and $E[X|Y] = \frac{1+Y}{2} \rightarrow \text{this is a y.v. too!!}$

Similarly: E[E[g(x)]] = E[g(x)]

Example: Consider jointly normal (X, Y)

$$f(x,y) = \exp\left[-\left\{ \frac{(x-\mu_1)^2 - 2\rho(x-\mu_1)(y-\mu_2) + (y-\mu_2)^2}{\sigma_1\sigma_2} \right\} - 2\mu(x-\mu_1)(y-\mu_2) + (y-\mu_2)^2 \right\}$$

2 11 5, 52 11-02

We can define

$$\mu_2(x) = \mu_2 + \rho \frac{\nabla_2}{\nabla_1} (x - \mu_1)$$

$$\frac{\nabla^2}{\nabla_2} = \nabla_2 \sqrt{1 - \rho^2}$$

and rewrite the joint PDF as

$$f_{x,y}(x,y) = \frac{1}{1} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}} \frac{-\frac{(y-\mu_2(x))^2}{2\sigma_2^2}}{\sqrt{2\pi}\sigma_1}$$

$$f_{x}(x) \qquad f_{y}(y|x)$$

$$f_{x}(x)$$
 $f_{y|x}$

=> Conditional PDF of Y given X=x is

$$f_{Y|X} = \frac{\left(y - \widetilde{\mu}_2(x)\right)^2}{\sqrt{2\pi} \widetilde{\tau}_2^2}$$

 \rightarrow Gaussian with mean $M_2(\infty)$, and Variance \widetilde{D}_2^2 .

$$\Rightarrow E[Y|X=x] = \mu_2(x) = \mu_2 + \rho_{\bar{0}2}(x-\mu_1)$$

$$\Rightarrow E[Y|X] = \mu_2 + \rho_{\overline{0}}(X-\mu_1)$$

this is a random variable

$$E[E[Y|X]] = E[\mu_2] + \rho_{\overline{0}_2}(X-\mu_1)$$

$$= E[\mu_2] + \rho = \mu_2 = E[Y]$$

The above tells us that when P to, learning the value of X reduces the variance of Y, i.e. reduces the uncertainty in Y.

For jointly Gaussian r.v.'s to be uncorrelated p=0. However, if p=0,

then
$$\sigma_2^2 = \sigma_2^2$$
 and $\mu_2(\infty) = \mu_2$

$$\Rightarrow f_{Y|X}(y|x) = f_{Y}(y)$$

$$\Rightarrow f_{X,Y}(x,y) = f_{X}(x) f_{Y}(y)$$

Uncorrelated \Rightarrow Independence (for Jointly)

Gaussian

Independence \Rightarrow Uncorrelated (for any pair

of τ , ν , s)

Conditional Expectation and Mean Square Estimation

Conditional Expectetation plays an important role in the estimation of a random variable Y from another random variable X, when the optimality Criterion is to minimize the mean squared value of the estimation error.

Suppose that we wish to estimate a random variable Y with a constant C. How should we choose this constant?

Error in estimation = (Y-c)

1. Squared Estimation Error = (Y-C)2

Mean Squared Estimation Error = E (Y-c)2

So, we wish to find the constant C such that

 $MSE = E(Y-c)^2$ is minimized.

=) $c^* = arg min E(Y-c)^2$

 $MSE = E(Y-C)^{2} = \int (y-c)^{2} f_{Y}(y) dy$

 $\frac{d(MSE)}{dc} = \int_{-\infty}^{\infty} 2(y-c) f_{\gamma}(y) dy = 0$

$$\frac{d(MSE)}{dc} = \int_{-\infty}^{\infty} 2(y-c)f_{\gamma}(y)dy$$

Setting
$$\frac{d(MSE)}{dc} = 0$$

$$\Rightarrow C \int f_{\gamma}(y) dy = \int y f_{\gamma}(y) dy$$

$$= 1$$

$$= 1$$

$$E(\gamma)$$

C =
$$E(Y)$$
 \rightarrow this choice minimizes the MSE if the estimator is a Constant

Now, suppose that we wish to estimate Y not by a constant but by some function C(x) of the random variable x. Hence, our goal is to minimizes

$$MSE = E[(Y - c(x))^2]$$

what function

C(X) minimizes

the MSE?

$$c(x) = E[Y|X]$$

minimizes the MSE

or the (Minimum Mean Squared Estimation)

$$MSE = E \left[(Y - C(x))^{2} \right]$$

$$= \iint_{\infty} (y - C(x))^{2} f_{x,Y}(x,y) dy dx$$

$$= \iint_{\infty} (y - C(x))^{2} f_{x}(x) f_{y}(y|x) dy dx$$

$$= \iint_{\infty} (y - C(x))^{2} f_{y}(y|x) dy dx$$

$$= \iint_{\infty} (y - C(x))^{2} f_{y}(y|x) dy dx$$

$$= \iint_{\infty} (y - C(x))^{2} f_{y}(y|x) dy \text{ for every } x.$$

$$= \iint_{\infty} (y - C(x))^{2} f_{y}(y|x) dy \text{ for every } x.$$

$$= \iint_{\infty} (y - C(x))^{2} f_{y}(y|x) dy \text{ for every } x.$$

$$= \iint_{\infty} (y - C(x))^{2} f_{y}(y|x) dy \text{ for every } x.$$

$$= \iint_{\infty} (y - C(x))^{2} f_{y}(y|x) dy \text{ for every } x.$$

$$= \iint_{\infty} (y - C(x))^{2} f_{y}(y|x) dy \text{ for every } x.$$

$$= \iint_{\infty} (y - C(x))^{2} f_{y}(y|x) dy \text{ for every } x.$$

$$= \iint_{\infty} (y - C(x))^{2} f_{y}(y|x) dy \text{ for every } x.$$

$$= \iint_{\infty} (y - C(x))^{2} f_{y}(y|x) dy \text{ for every } x.$$

$$= \iint_{\infty} (y - C(x))^{2} f_{y}(y|x) dy \text{ for every } x.$$

$$= \iint_{\infty} (y - C(x))^{2} f_{y}(y|x) dy \text{ for every } x.$$

$$= \iint_{\infty} (y - C(x))^{2} f_{y}(y|x) dy \text{ for every } x.$$

$$= \iint_{\infty} (y - C(x))^{2} f_{y}(y|x) dy \text{ for every } x.$$

$$= \iint_{\infty} (y - C(x))^{2} f_{y}(y|x) dy \text{ for every } x.$$

$$= \iint_{\infty} (y - C(x))^{2} f_{y}(y|x) dy \text{ for every } x.$$

$$= \iint_{\infty} (y - C(x))^{2} f_{y}(y|x) dy \text{ for every } x.$$

$$= \iint_{\infty} (y - C(x))^{2} f_{y}(y|x) dy \text{ for every } x.$$

$$= \iint_{\infty} (y - C(x))^{2} f_{y}(y|x) dy \text{ for every } x.$$

$$= \iint_{\infty} (y - C(x))^{2} f_{y}(y|x) dy \text{ for every } x.$$

$$= \iint_{\infty} (y - C(x))^{2} f_{y}(y|x) dy \text{ for every } x.$$

$$= \iint_{\infty} (y - C(x))^{2} f_{y}(y|x) dy \text{ for every } x.$$

$$= \iint_{\infty} (y - C(x))^{2} f_{y}(y|x) dy \text{ for every } x.$$

$$= \iint_{\infty} (y - C(x))^{2} f_{y}(y|x) dy \text{ for every } x.$$

$$= \iint_{\infty} (y - C(x))^{2} f_{y}(y|x) dy \text{ for every } x.$$

$$= \iint_{\infty} (y - C(x))^{2} f_{y}(y|x) dy \text{ for every } x.$$

$$= \iint_{\infty} (y - C(x))^{2} f_{y}(y|x) dy \text{ for every } x.$$

$$= \iint_{\infty} (y - C(x))^{2} f_{y}(y|x) dy \text{ for every } x.$$

$$= \iint_{\infty} (y - C(x))^{2} f_{y}(y|x) dy \text{ for every } x.$$

$$= \iint_{\infty} (y - C(x))^{2} f_{y}(y|x) dy \text{ for every } x.$$

$$= \iint_{\infty} (y - C(x))^{2} f_{y}(y|x) dy \text{ for every } x.$$

$$= \iint_{\infty} (y - C(x))^{2} f_{y}(y|x) dy \text{ for every } x.$$

$$= \iint_{\infty} (y - C(x))^{2} f_{y}(y|x) dy \text{ for every } x.$$

$$= \iint_{\infty} (y$$