IFT6162 - Homework 1

This repository contains three programming assignments for IFT6162 covering dynamic programming, optimal control, and numerical methods.

Grading and Time Allocation

 $\label{lem:please read grading_AND_TIME_ALLOCATION.md first for: - Detailed grading rubric and point distribution - Time allocation recommendations - Submission requirements and expectations - Debugging tips and common pitfalls$

Quick Overview

Problem	Weight	Time	Files
Supermarket	45%	12-15h	 supermarket_refrigeration/
Refrigeration			
(Trajectory			
Optimization MPC)			
Bus Engine	35%	8-10h	<pre>bus_engine_replacement/</pre>
Replacement			
(Smooth Bellman &			
NFXP)			
Projection	20%	5-7h	<pre>projection_methods_assignment/</pre>
Methods			
(Collocation &			
Galerkin)			

Total estimated time: 25-32 hours

Quick Start

Environment Setup

Create a virtual environment at the project root:

```
python3 -m venv venv
source venv/bin/activate
pip install --upgrade pip
pip install numpy scipy matplotlib jax jaxlib jaxopt optax chex absl-py
```

Running the Assignments

Each problem has detailed instructions in its respective question.md file:

1. Supermarket Refrigeration:

```
cd supermarket_refrigeration
python3 trajectory_optimization.py  # Quick test (30 min)
python3 trajectory_optimization.py --full # Full evaluation (4 hours)

2. Bus Engine Replacement:
cd bus_engine_replacement
python3 bus_replacement.py # Runs in 2-3 minutes

3. Projection Methods:
cd projection_methods_assignment
python3 timber_projection.py # Test implementations
python3 contraction_investigation.py # Verify contraction properties
```

Submission Requirements

You are NOT required to write formal multi-page reports. For each problem:

- Submit your completed implementation files
- Include generated plots and output metrics
- For Problem 1 only: Add brief commentary (1-2 paragraphs) on results
- No lengthy derivations or literature reviews needed

Problem Descriptions

Problem 1: Supermarket Refrigeration (45%)

Implement multiple shooting Model Predictive Control for a hybrid refrigeration system. You'll coordinate compressors and valves to minimize energy while respecting temperature and pressure constraints. Uses JAX for autodiff and SLSQP for constrained optimization.

Problem 2: Bus Engine Replacement (35%)

Implement Harold Zurcher's bus engine replacement model using smooth Bellman equations. Estimate cost parameters via maximum likelihood with the NFXP algorithm and implicit differentiation through fixed-point solvers.

Problem 3: Projection Methods (20%)

Implement collocation and Galerkin methods for continuous-state dynamic programming. Solve a timber harvesting problem and investigate when parametric value iteration converges.

Debugging Tips

• JAX issues: Use jnp instead of np inside JIT-compiled functions

- Constraint violations: Check that temperature and pressure bounds are being satisfied
- Slow convergence: Verify warm-starting and check that gradients are being computed correctly
- Numerical instability: Use log-space operations (logsum exp) for probabilities

Additional Resources

Each subdirectory contains: - question.md: Detailed problem description and mathematical background - Template files with TODO markers indicating what to implement - Helper functions and simulation code (already implemented)

See ${\tt GRADING_AND_TIME_ALLOCATION.md}$ for comprehensive guidance on each problem.