TURUNAN DAN INTEGRAL

Definisi

Jika fungsi y = f(x) maka turunan fungsi y terhadap x ditulis dengan y'(x) atau f '(x) dan didefinisikan sebagai:

$$y'(x) = f'(x) = \frac{dy}{dx} = \frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Nilai fungsi turunan untuk x = a adalah:

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Rumus-rumus Turunan Fungsi

1.
$$y = a.x^n \rightarrow y' = a.n. x^{n-1}$$

2.
$$y = a.U^n \rightarrow y' = (a.n. U^{n-1}). U'$$

3.
$$y = \sin U \rightarrow y' = (\cos U).U'$$

4.
$$y = \cos U \rightarrow y' = (-\sin U). U'$$

5.
$$y = tan U \rightarrow y' = (sec^2U). U'$$

6.
$$y = \cot U \rightarrow y' = (-\csc^2 U). U'$$

7.
$$y = sec U \rightarrow y' = (secU \cdot tanU) \cdot U'$$

8.
$$y = cosec U \rightarrow y' = (-cosecU.cotanU). U'$$

Sifat-sifat Turunan Fungsi

1.
$$y = c \rightarrow y' = 0$$

2.
$$y = c. U \rightarrow y' = c. U'$$

3.
$$y = U \pm V \rightarrow y = U' \pm V'$$

4.
$$y = U.V \rightarrow y = U'.V + V'.U$$

5.
$$y = \frac{U}{V} \rightarrow y' = \frac{U'.V - V'.U}{V^2}$$

Gradien Garis Singgung

Titik (x_1, y_1) adalah titik singgung garis g dengan kurva y = f(x).

Gradien (kemiringan) garis singgung kurva y = f(x) adalah $m = f'(x_1)$ maka persamaan garis singgungnya:

$$y - y_1 = m(x - x_1)$$

Fungsi Naik dan Turun

Interval fungsi naik dan fungsi turun, yaitu jika fungsi f'(x) > 0 maka fungsi naik, sebaliknya jika f'(x) < 0 maka fungsi akan turun.

Titik Stasioner

Fungsi y = f(x) mengalami stasioner jika f'(x) = 0 dan terdapat titik-titik stasioner. Jenis-jenis titik stasioner:

1. Titik balik maksimum

Syarat:
$$f'(x) = 0 \text{ dan } f''(x) < 0$$

2. Titik balik minimum

Syarat:
$$f'(x) = 0 \text{ dan } f''(x) > 0$$

3. Titik belok horizontal

Syarat:
$$f'(x) = 0 \text{ dan } f''(x) = 0$$

B. Integral

Definisi

Integral merupakan antiturunan (antidifferensial) dan secara umum dapat dirumuskan menjadi:

$$\int f(x) dx = \int F'(x) dx = F(x) + c$$

Sifat-sifat Integral

1. $\int k.f(x) dx = k. \int f(x) dx$

2. $\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx$

3. $\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$

4. $\int_{0}^{a} f(x) dx = 0$

5. $\int_{a}^{b} k.f(x) dx = k. \int_{a}^{b} f(x) dx$

6. $\int_{a}^{p} f(x) dx + \int_{0}^{b} f(x) dx = \int_{a}^{b} f(x) dx$

7. $\int_{a}^{b} \{f(x) \pm g(x)\} dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$

Rumus Dasar Integral

1. $\int dx = x + c$

2. $\int x^{n} dx = \frac{1}{n+1} x^{n+1} + c$

3. $\int ax^n dx = \frac{a}{n+1}x^{n+1} + c$

4. $\int k \, dx = kx + c$

5. $\int_{-x}^{1} dx = \operatorname{Ln}|x| + c$

6. $\int a^x dx = \frac{a^x}{Ln a} + c$

7. $\int e^x dx = e^x + c$

Teknik Integral

1. Metode substitusi

Misalkan, u = g(x) dengan g(x) merupakan fungsi yang mempunyai turunan maka:

$$\int f(g(x)). g'(x) = \int f(u). du = F(u) + c$$

Dimana F(u) adalah anti-turunan dari f(u).

2. Teknik parsial

Teknik parsial biasanya digunakan untuk mencari integral suatu fungsi yang tidak dapat dicari menggunakan teknik substitusi.

Jika u = f(x) dan v = g(x) maka berlaku rumus:

$$\int u.dv = u.v - \int v.du$$

Aplikasi Integral

a. Menghitung Luas daerah

Luas daerah yang dibatasi kurva dan sumbu

Luas daerah yang dibatasi dua buah kurva terhadap batas sumbu x:

$$L = \int_{a}^{b} (y_{1} - y_{2}) dx = \int_{a}^{b} [f_{1}(x) - f_{2}(x)] dx$$

Luas daerah yang dibatasi kurva dan sumbu y:

b. Menghitung Volume Benda Putar

Volume benda putar terhadap sumbu x:

Volume benda putar terhadap sumbu y:

Volume daerah yang dibatasi dua buah kurva, yaitu:

$$V = \pi \int_{0}^{b} (x_1^2 - x_2^2) \, dy$$

TURUNAN & INTEGRAL

CONTOH SOAL

1. Soal Ujian SNMPTN

Diketahui fungsi f dan g dengan $f(x) = x^2 + 4x + 1$ dan $g'(x) = \sqrt{10 - x^2}$ dengan g'(x) menyatakan turunan pertama fungsi g. Nilai turunan pertama g o f di x = 0 adalah....

- (A) 3
- (B) 6
- (C) 9
- (D) 12
- (E) 15

Pembahasan:

$$f(x) = x^2 + 4x + 1$$

$$f'(x) = 2x + 4$$

 $g'(x) = \sqrt{10 - x^2}$

Maka:

$$(g \circ f)'(x) = f'(x) \cdot g'(f(x))$$

$$= (2x+4)(\sqrt{10-(x^2+4x+1)^2})$$

$$(g \circ f)'(0) = (2.0 + 4) \sqrt{10 - (1)^2}$$

$$=4.3=12$$

Jawaban: D

2. Soal Ujian SNMPTN

$$15\int_{2}^{3}x\sqrt{x-2}dx = \dots$$

- (A) 18
- (D) 24
- (B) 20
- (E) 26
- (C) 22

Pembahasan:

$$=15\int_{2}^{3}x\sqrt{x-2}dx$$

Gunakan integral parsial.

Misalkan:

$$u = x$$
 $dv = \sqrt{x-2}$

$$du = dx$$
 $v = \frac{2}{3}(x-2)^{\frac{3}{2}}$
= $u.v - \int v.du$

$$= 15 \left[x \left(\frac{2}{3} (x - 2)^{\frac{3}{2}} \right) - \int \frac{2}{3} (x - 2)^{\frac{3}{2}} dx \right]$$

$$= 15 \left[\frac{2}{3} x (x - 2)^{\frac{3}{2}} - \frac{4}{15} (x - 2)^{\frac{5}{2}} \right]_{2}^{3}$$

$$= 15 \left[\left(\frac{2}{3} 3 (3 - 2)^{\frac{3}{2}} \right) - \left(\frac{2}{3} 3 (2 - 2)^{\frac{3}{2}} \right) \right] - \left[\left(\frac{4}{15} (3 - 2)^{\frac{5}{2}} \right) - \left(\frac{4}{15} (2 - 2)^{\frac{5}{2}} \right) \right]$$

$$= 15 \left[(2 - 0) - \left(\frac{4}{15} + 0 \right) \right]$$

$$= 15 \left[2 - \frac{4}{15} \right] = 15 \left[\frac{26}{15} \right] = 26$$

Jawaban: E

3. Soal Ujian SNMPTN

Jika pada integral disubstitusikan $\int_{0}^{\frac{1}{2}} \frac{\sqrt{x}}{\sqrt{1-x}} dx$

 $\sqrt{x} = \sin y$ maka menghasilkan....

- (A) $\int_{0}^{\frac{1}{2}} \sin^2 x \ dx$
- (B) $\int_{0}^{\frac{1}{2}} \frac{\sin^2 y}{\cos^2 y} dy$
- (C) $2\int_{0}^{\frac{\pi}{4}} \sin^2 x \ dx$
- (D) $\int_{0}^{\frac{\pi}{4}} \sin^2 y \, dy$
- (E) $2\int_{0}^{\frac{\pi}{6}} \sin^{2} x$

Pembahasan:

Step 1: Mencari nilai dx

$$\sqrt{x} = \sin y$$

$$x = \sin^2 y$$

$$\frac{dx}{dy} = 2\sin y \cdot \cos y$$

$$dx = 2\sin y \cdot \cos y \, dy$$

Step 2: Mencari batas antara x = 0 dan

$$x = \frac{1}{2}$$

Untuk x = 0

$$\sqrt{x} = \sin y$$

$$0 = \sin y$$

$$y = 0$$
Untuk $x = \frac{1}{2}$

$$\sqrt{x} = \sin y$$

$$\sqrt{\frac{1}{2}} = \sin y$$

$$\frac{1}{2}\sqrt{2} = \sin y$$

$$y = 45^{\circ} = \frac{\pi}{4}$$

Step 3: Mencari hasil substitusi integral

$$\int_{0}^{\frac{1}{2}} \frac{\sqrt{x}}{\sqrt{1-x}} dx \text{ ke } \sqrt{x} = \sin y$$

$$= \int_{0}^{\frac{1}{2}} \frac{\sqrt{x}}{1-x} dx = \int_{0}^{\frac{\pi}{4}} \frac{\sin y}{\sqrt{1-\sin^{2} y}} 2 \sin y \cos y \ dy$$

$$= \int_{0}^{\frac{\pi}{4}} \frac{\sin y}{\sqrt{\cos^{2} y}} 2 \sin y \cos y \ dy$$

$$= \int_{0}^{\frac{\pi}{4}} \frac{\sin y}{\cos y} 2 \sin y \cos y \ dy$$

$$= \int_{0}^{\frac{\pi}{4}} \frac{\sin y}{\cos y} 2 \sin y \cos y \ dy$$

$$= \int_{0}^{\frac{\pi}{4}} 2 \sin^{2} y \ dy = 2 \int_{0}^{\frac{\pi}{4}} \sin^{2} x$$
Jawaban: C