プロジェクト実習 I ヒューマンインタフェース報告書

【レポート1】

題目	認知課題実験	(1)	に関す	る報告

	心心怀虑天然(1)10月10日								
1= 11 -t.									
報告者	3	班	学生	番号	2212200	3	氏名	阿波野	5 隼英
	 メールアドレス				b212200	3@edu	.kit.ac	. јр	
実験実	施日		2023	年	12	月	11	_ 日	
報告書	提出		2023	年	12	月	18	_ 日	
「ヒューマ	ンイン	ノタフ	ェース幸	B告書	チェック	リス	ト」記載	の下記	項目の自己チェック
✓□	ペー	ジ番号	が記入る	されて	いる				
✓□	✓□ 文体は統一している(通常は常体=だ・である調を用いる)								
✓□	´□ 日本語として理解不能な箇所がない								
✓□	図表題がある								
✓□	図表題の位置が適切(図は下、表は上)								
✓□	図表がページや段組をまたいでいない								
✓□	図表番号が本文の引用と対応している								
✓□	表項目に凡例・単位表記が記されている								
✓□	√□ 表中に書かれた記号や略記の説明がされている								
✓□	実験	目的が	『正しく	書か∤	ている				
✓□	実験	方法が	『正しく	書か∤	ている				
✓□	実験	結果の)うち、ま	基準約	計量(平	均值,	標準偏	差)がji	適切に記述されている
✓□	実験	結果の)うち, t	検定	の結果が	適切に	こ記述され	れている	
✓□	実験結果のうち、分散分析の結果が適切に記述されている								
✓□	結果	に基っ	びいた考察	察がた	されてい	る			

1 目的

私たちが観察する「もの」の形や大きさは、外部の刺激対象の忠実な模写ではない。周囲の客観的な世界とそれに対応する認知の世界の間には、さまざまな程度の不一致が存在し、これは主に刺激配置や主観的な要因(経験、構え、欲求などの個人的な条件)によって規定されている。典型的な刺激配置による不一致の例として、幾何学的錯視が挙げられる。これは誤差ではなく、刺激図形の幾何学的性質に基づいて規則的に変化する。この見え方の歪みは、錯視図にのみ特有のものでなく、日常の状況でもよく生じる。そこで本実験では、ミュラーリヤー錯視図形を例に取り、刺激条件と認知の法則性を理解し、認知特性に関する実験方法と分析手法を学ぶ。

2 方法

2.1 実験方法

2.1.1 刺激図形

ミュラーリヤーの錯視図形 (図) を使用する. 標準刺激の主線は 10cm で,矢羽の長さは 3cm に固定されているが,鋏角は 5 つの種類 $(60^\circ$ $,120^\circ$ $,180^\circ$ $,240^\circ$ $,300^\circ$) に変える. 標準刺激の折り目を内側に曲げて比較刺激を挿入し,スライドさせて使用する. 標準刺激を変えて,5 つの条件を順次変化させる.

2.1.2 手続き

比較刺激を調整し、標準刺激の主線と同じ長さに見える、比較刺激の直線の長さ (主観的等価点: PSE) を求める。PSE と主線の客観的な長さ (10cm) の差分が、錯視量 (I) となる。比較刺激が最も短く見える地点 (数 mm しか見えない地点) から調節を開始する「上昇系列 (A)」と、最も長く見える地点 (比較刺激用紙の最も端の地点) から開始する「下降系列 (D)」の 2 つの条件を設定する。それぞれ 4 回ずつ、計 8 回の実験を行い、8 つの PSE を求める。5 種類の刺激条件 (鋏角) の実施順、上昇系列 (A) と下降系列 (D) の試行順が偏らないように、本実験では誕生月によって、実験の試行順を指定する。

3 実験結果

15人を対象に実験データをとった. 錯視量についての基礎統計量は以下の表のとおり.

No. 60A60D 120A120D 180A 180D 240A240D 300A 300D 1 1.895 1.6875 1.58 1.675 0.69 1.1425 -0.163 0.1475 -0.983 -1.0175 2 0.46750.395 0.74250.95250.53-0.19 0.2975-0.595 -0.935 -0.28750.655 -0.4225 3 0.7150.2650.220.3125 0.1375-0.5325-0.7425-0.7125-0.02 0.26750.075 -0.6875 -1.2875 0.36 0.06 0.075 -0.2025 -1.125 4 5 1.651.171.541.180.3075-0.1225 -0.985-1.13 -1.365-1.6356 0.060.335-0.12 -0.2 -0.085-0.265-1.5375-1.7625-2.5175-2.8657 1.405 1.41 0.8250.985 0.42750.3575-0.5875-0.6975-0.515-0.83758 0.54750.1775-0.8325-1.525-1.58251.37251.14 1.28 0.5575-0.79259 0.698 -0.035 -0.308 0.8520.02-0.375-0.75-0.7131.108-0.8910 0.440.130.90.680.21-0.06-0.94-0.95-1.01-1.16-1.315-0.875-0.485-0.581.045 0.3875 1.245 1.5525 2.5925 11 -0.3812 0.995 0.42750.6850.35250.71750.27-0.7525-1.0625-0.685 -2.09 13 0.6050.10250.1525-0.24 0.40750.0825-0.5925 -0.4275-1.0775 -0.6575 14-1.7252.075 -0.125-4 -2.35-4.425-8.8 -9.1 -4.375-6.8751.0125 0.5725 0.1625 -0.2275 -0.2325 -0.7425 -2.045 -2.3325 -1.31-1.5715 0.5990333330.66420.509 0.0881333330.120966667-0.1665 -1.1257 -1.280666667 -1.174866667 -1.4307 Ave 1.0027388830.7446513760.6318487611.2900471120.7831656791.267796457 2.1874115152.2918569881.2239649781.94106953

表 1 錯視量の基礎統計量

3.1 t 検定の結果

上昇系列 (A) と下降系列 (D) の間に有意差があるかどうかを調べるために行った t 検定の結果を以下に示す.

データ 自由度 t 値 p 値 60A vs. 60D -0.2349314 0.8177120A vs. 120D 1.6487 14 0.1215180A vs. 180D 1.4591 0.166614 240A vs. 240D 1.3875 0.18714 300A vs. 300D 0.25731.181 14

表 2 t 検定の結果

有意水準 (p < 0.05) を満たす p 値は存在しなかった.

3.2 分散分析の結果

3.2.1 上昇系列 (A) の条件下

表 3 一元分散分析の結果

Source	Df	Sum Sq	Mean Sq	F value	Pr(>F)
angle.up.	4	45.76	11.44	6.89	0.0000979 **
Residuals	70	116.21	1.66		

F 値が 6.89 で, p 値が 0.0000979 となっており,少なくとも 1 つのグループの平均が他のグループと統計的に有意に異なることを示している.

表 4 多重比較の結果

Comparison	Estimate	Std. Error	t value	Pr(> t)
180A - 120A == 0	-0.38803	0.47049	-0.825	0.92210
240A - 120A == 0	-1.63470	0.47049	-3.474	0.00758 **
300A - 120A == 0	-1.68387	0.47049	-3.579	0.00544 **
60A - 120A == 0	0.09003	0.47049	0.191	0.99969
240A - 180A == 0	-1.24667	0.47049	-2.650	0.07231 .
300A - 180A == 0	-1.29583	0.47049	-2.754	0.05608 .
60A - 180A == 0	0.47807	0.47049	1.016	0.84713
300A - 240A == 0	-0.04917	0.47049	-0.105	0.99997
60A - 240A == 0	1.72473	0.47049	3.666	0.00423 **
60A - 300A == 0	1.77390	0.47049	3.770	0.00301 **

95% family-wise confidence level

図1 グループごとの信頼区間

3.2.2 下降系列 (D) の条件下

表 5 一元分散分析の結果

Source	Df	Sum Sq	Mean Sq	F value	Pr(>F)
angle.down.	4	48.9	12.225	4.758	0.00187 **
Residuals	70	179.8	2.569		

F 値が 4.758 で,p 値が 0.00187 となっており,少なくとも 1 つのグループの平均が他のグループと統計的に有意に異なることを示している.

表 6 多重比較の結果

Comparison	Estimate	Std. Error	t value	Pr(¿—t—)
180D - 120D	-0.2546	0.5853	-0.435	0.99239
240D - 120D	-1.3688	0.5853	-2.339	0.14505
300D - 120D	-1.5188	0.5853	-2.595	0.08220
60D - 120D	0.5761	0.5853	0.984	0.86152
240D - 180D	-1.1142	0.5853	-1.904	0.32512
300D - 180D	-1.2642	0.5853	-2.160	0.20715
60D - 180D	0.8307	0.5853	1.419	0.61749
300D - 240D	-0.1500	0.5853	-0.256	0.99903
60D - 240D	1.9449	0.5853	3.323	0.01205*
60D - 300D	2.0949	0.5853	3.579	0.00556**

95% family-wise confidence level

図 2 グループごとの信頼区間

4 考察

4.1 系列差についての考察

t 検定の結果 (表 2) より、A と D の間に有意差は見られなかった。したがって、上昇系列による測定と下降系列による測定の間で有意な差はない、つまり系列差が錯視量に及ぼす影響はほとんどないと考えられる。

4.2 鋏角差についての考察

分散分析の結果 (表 3~6) より、上昇系列 (A)、下降系列 (D) 両方で、有意な差 (p>0.05) が見られた。したがって、「鋏角の間に差はない」という帰無仮説を棄却することができる。この分析結果と、以下のグラフのような関係から、鋏角が大きくなるほど錯視量は小さくなる (\Leftrightarrow 鋏角が大きくなるほど PSE は大きくなる) と考えられる。

図3 鋏角と錯視量の関係

参考文献

1.『2023_HI 実験テキスト_最終版』