EISSN 2319 - 7765

Indian Journal of

Engineering

sg-separation axioms

Balasubramanian S1, Sandhya C2

- 1. Department of Mathematics, Govt. Arts College (A), Karur 639 005, Tamilnadu, India, E-mail: mani55682@rediffmail.com
- 2. Department of Mathematics, C.S.R. Sarma College, Ongole 523 001, Andhraparadesh, India, E-mail: sandhya_karavadi@yahoo.co.uk

Received 17 September; accepted 03 October; published online 01 November; printed 16 November 2012

ABSTRACT

In this paper we discuss new separation axioms using sg-open sets.

Mathematics Subject Classification Number: 54D10, 54D15.

Keywords- sgi spaces.

1. INTRODUCTION

Norman Levine introduced generalized closed sets in 1970. After him various Authors [1-18; 20-29] studied different versions of generalized sets and related topological properties. Recently V.K. Sharma studied separation axioms for g-open. Following V.K. Sharma we are going to study further properties of sgseparation axioms. Throughout the paper a space X means a topological space (X,τ). For any subset A of X its complement, interior, closure, sq-interior, sg-closure are denoted respectively by the symbols Ac, Ao, cl(A), sg-int(A) and sg-cl(A).

1.1. **Definition 1.1**

(i) g-closed[resp: sg-closed] if $cl(A) \subseteq U[resp: scl(A) \subseteq U]$ whenever $A \subseteq U$ and U is open[resp: semi-open] in X.

(ii) g-open[resp: sg-open] if its complement is (i) g-closed[resp: sg-closed].

Note 1: The class of regular open sets, open sets, g-open sets and sg-open sets are denoted by RO(X), τ(X), GO(X) and SGO(X) respectively. Clearly $RO(X)\subset \tau(X)\subset GO(X)\subset SGO(X)$.

Note 2: $A \in SGO(X, x)$ means A is a semipro generalized-open neighborhood of X containing x.

1.2. Definition 1.2

A \subset X is called clopen[resp: nearly-clopen; semi-clopen; g-clopen; sg-clopen] if it is both open[resp: regular-open; semi-open; g-open; sg-open] and closed[resp: regular-closed; semi-closed; g- closed; sg-closed]

1.3. Definition 1.3

A function $f: X \to Y$ is said to be

- (i) Continuous [resp: nearly continuous, semi-continuous] if inverse image of open set is open[resp: regular-open, semi-open]
- (ii) g-continuous [resp: sq-continuous] if inverse image of closed set is g-closed [resp: sq-closed]
- (iii) irresolute [resp: nearly irresolute, sg-irresolute] if inverse image of semi-open [resp: regular-open, sg-open] set is semi-open [resp: regular-open, sg-
- (iv) g-irresolute [resp: sg-irresolute; sg-irresolute] if inverse image of g-closed [resp: sg-closed, sg-closed] set is g-closed [resp: sg-closed; sg-closed]
- (v) open [resp: nearly open, semi-open] if the image of open set is open [resp: regular-open, semi-open]
- (vi) g-open [resp: sg-open] if the image of open set is g-open [resp: sg-open]
- (vii)homeomorphism [resp: nearly homeomorphism, semi-homeomorphism] if f is bijective, continuous [resp: nearly-continuous, semi-continuous] and f-1 is continuous[resp: nearly-continuous, semi-continuous]
- (viii)rc-homeomorphism [resp: sc-homeomorphism] if f is bijective r-irresolute [resp: irresolute] and f^1 is r-irresolute [resp: irresolute]
- (ix) g-homeomorphism [resp: sg-homeomorphism] if f is bijective g-continuous [resp: sg-continuous] and f-1 is g-continuous [resp: sg-continuous]
- (x) gc-homeomorphism [resp: sgc-homeomorphism] if f is bijective g-irresolute [resp: sg-irresolute] and f^{-1} is g-irresolute[resp: sg-irresolute]

1.4. Definition 1.4

X is said to be

- (i) compact [nearly compact, semi-compact, g-compact, sg-compact] if every open[regular-open, semi-open, g-open, sg-open] cover has a finite sub
- (ii) $T_0[rT_0, sT_0, g_0]$ space if for each $x \neq y \in X \exists U \in \tau(X)[RO(X); SO(X); GO(X)]$ containing either x or y.
- (iii) $T_1[rT_1, sT_1, g_1]$ space if for each $x \neq y \in X \exists U$, $V \in \tau(X)[RO(X); SO(X); GO(X)]$ such that $x \in U-V$ and $y \in V-U$.
- (iv) $T_2[rT_2, sT_2, g_2]$ space if for each $x \neq y \in X \exists U, V \in \tau(X)[RO(X); SO(X); GO(X)]$ such that $x \in U$; $y \in V$ and $U \cap V = \phi$.
- (v) T_{1/2} [rT_{1/2}, pT_{1/2}] if every g-closed[rg-closed, pg-closed] set is closed [r-closed, pre-closed]

2. SG-CONTINUITY AND PRODUCT SPACES

2.1. Theorem 2.1

Let Y and $\{X_{\alpha}: \alpha \in I\}$ be Topological Spaces. Let $f: Y \to \Pi X_{\alpha}$ be a function. If f is sg-continuous, then $\pi_{\alpha} \bullet f: Y \to X_{\alpha}$ is sg-continuous.

Proof: Suppose f is sg-continuous and $\pi_{\alpha}:\Pi X_{\beta} \to X_{\alpha}$ is continuous for each $\alpha \in I$, $\pi_{\alpha} \circ f$ is sg-continuous.

Converse of the above theorem is not true in general.

Example 2.1: Let $X = \{p, q, r, s\}$; $\tau_X = \{\phi, \{q\}, \{p, q\}, \{q, r\}, \{p, q, r\}, X\}$, $Y_1 = Y_2 = \{a, b\}$; $\tau_{Y1} = \{\phi, \{a\}, Y_1\}$; $\tau_{Y2} = \{\phi, \{a\}, Y_2\}$; $Y = Y_1 \times Y_2 = \{(a, a), (a, b), (b, a), (b, b)\}$ and $\tau_{Y1} = \{\phi, \{a\}, Y_1\}$; $\tau_{Y2} = \{\phi, \{a\}, Y_2\}$; $Y = Y_1 \times Y_2 = \{(a, a), (a, b), (b, a), (b, a)\}$, $Y_1 \times Y_2 = \{\phi, \{a\}, Y_1\}$; $\tau_{Y2} = \{\phi, \{a\}, Y_2\}$; $Y = Y_1 \times Y_2 = \{(a, a), (a, b), (b, a), (b, a)\}$, $Y_1 \times Y_2 = \{\phi, \{a\}, Y_2\}$; $Y = Y_1 \times Y_2 = \{\phi, \{a\}, Y_2\}$; Y =

2.2. Theorem 2.2

If Y is $sT_{1/2}$ and $\{X_{\alpha}: \alpha \in I\}$ be Topological Spaces. Let $f: Y \to \Pi X_{\alpha}$ be a function, then f is sg-continuous iff $\pi_{\alpha} \bullet f: Y \to X_{\alpha}$ is sg-continuous.

2.3. Corollary 2.3

Let f_{α} : $X_{\alpha} \to Y_{\alpha}$ be a function and let $f: \Pi X_{\alpha} \to \Pi Y_{\alpha}$ be defined by $f(x_{\alpha})_{\alpha \in I} = (f_{\alpha}(x_{\alpha}))_{\alpha \in I}$. If f is sg-continuous then each f_{α} is sg-continuous.

2.4. Corollary 2.4

For each α , let X_{α} be $sT_{1/2}$ and let f_{α} : $X_{\alpha} \rightarrow Y_{\alpha}$ be a function and let $f: \Pi X_{\alpha} \rightarrow \Pi Y_{\alpha}$ be defined by $f(x_{\alpha})_{\alpha \in I} = (f_{\alpha}(x_{\alpha}))_{\alpha \in I}$, then f is sg-continuous iff each f_{α} is sg-continuous.

3. SG_i SPACES i = 0, 1, 2

3.1. Definition 3.1

X is said to be

(i) a sg₀ space if for each pair of distinct points x, y of X, there exists a sg-open set G containing either of the point x or y.

(ii) a sg₁ space if for each pair of distinct points x, y of X there exists a sg-open set G containing x but not y and a sg-open set H containing y but not x. (iii)a sg₂ space if for each pair of distinct points x, y of X there exists disjoint sg-open sets G and H such that G containing x but not y and H containing y but not x.

Note 2: $X \text{ is } sg_2 \rightarrow X \text{ is } sg_1 \rightarrow X \text{ is } sg_0.$

Example 3.1: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a, c\}, X\}$ then X is sg_0 but not rT_0 and T_0 , i = 0, 1, 2.

(ii) $\tau = \{\phi, \{a\}, \{a, c\}, X\}$ then X is not sg_i for i = 0, 1, 2.

Example 3.2: Let $X = \{a, b, c, d\}$ and

(i) $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$ then X is sg_i ; i = 0, 1, 2.

(ii) $\tau = \{\phi, \{a\}, \{a, b\}, \{c, d\}, \{a, c, d\}, X\}$ then X is not sg_i for i = 0, 1, 2.

Remark 3.1: If X is $sT_{1/2}$ then sT_i and sg_i are one and the same for i = 0,1,2.

3.2. Theorem 3.1

- (i) Every [resp: regular open] open subspace of sg_i space is sg_i for i = 0, 1, 2.
- (ii) [25] The product of sg_i spaces is again sg_i for i = 0, 1, 2.
- (iii) sg-continuous image of T_i[resp: rT_i] spaces is sg_i for i = 0, 1, 2.

3.3. Theorem 3.2

(i) X is sg_0 iff $\forall x \in X$, $\exists U \in SGO(X)$ containing x such that the subspace U is sg_0 .

(ii)X is sg₀ iff distinct points of X have disjoint sg-closures.

3.4. Theorem 3.3

The following are equivalent:

- (i) X is sg₁.
- (ii) Each one point set is sg-closed.
- (iii) Each subset of X is the intersection of all sg-open sets containing it.
- (iv) For any $x \in X$, the intersection of all sg-open sets containing the point is the set $\{x\}$.

3.5. Theorem 3.4

If X is sg_1 then distinct points of X have disjoint sg-closures.

3.6. Theorem 3.5

Suppose x is a sg-limit point of a subset of A of a sg1 space X. Then every neighborhood of x contains infinitely many distinct points of A.

3.7. Theorem 3.6

X is sq₂ iff the intersection of all sq-closed, sq-neighborhoods of each point of the space is reduced to that point.

Proof: Let X be sg_2 and $x \in X$, for each $y \ne x$ in X, \exists U, $V \in SGO(X)$ such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$. Since $x \in U - V$, hence X-V is a sg-closed, sg-neighborhood of x to which y does not belong. Consequently, the intersection of all sg-closed, sg-neighborhoods of x is reduced to $\{x\}$. Conversely let $y \ne x$ in X, by hypothesis \exists a sg-closed, sg-neighborhood U of x such that $y \not\in U$. Now \exists $G \in SGO(X)$ such that $x \in G \subset U$. Thus G and X-U are disjoint sg-open sets containing x and y respectively. Hence X is sg_2 .

3.8. Theorem 3.7

If to each x∈X, there exist a sg-closed, sg-open subset of X containing x which is also a sg₂ subspace of X, then X is sg₂.

Proof: Let x∈X, U a sg-closed, sg-open subset of X containing x and which is also a sg₂ subspace of X, then the intersection of all sg-closed, sg-neighborhoods of x in U is reduced to {x}. U being sg-closed, sg-open, these are sg-closed, sg-neighborhoods of x in X. Thus the intersection of all sg-closed, sg-neighborhoods of x is reduced to {x}. Hence by Theorem 3.6, X is sg₂.

3.9. Theorem 3.9

If X is sg_2 then the diagonal Δ in X×X is sg-closed.

Balasubramanian et al.

sg-separation axioms,

Indian Journal of Engineering, 2012, 1(1), 46-54,

RESEARCH

Proof: Let $(x, y) \in X \times X - \Delta$, then $x \neq y$. Since X is $sg_2 \exists U$; $V \in SGO(X)$ s.t. $x \in U$; $y \in V$ and $U \cap V = \phi$, implies $(U \times V) \cap \Delta = \phi$ and therefore $(x, y) \in (U \times V) \subset X \times X - \Delta \in SGO(X \times X)$. Hence Δ is sg-closed.

3.10. Theorem 3.9

In sg2-space, sg-limits of sequences, if exists, are unique.

3.11. Theorem 3.10

In a sg₂ space, a point and disjoint sg-compact subspace can be separated by disjoint sg-open sets.

Proof: Let X be a sg₂ space, $x \in X$ and C a sg-compact subspace of X not containing x. Let $y \in C$ then for $x \neq y$ in X, \exists disjoint sg-open nbds G_x and H_y . Allowing this for each y in C, we obtain a class $\{H_y\}$ whose union covers C; and since C is sg-compact, some finite subclass $\{H_i, i = 1 \text{ to } n\}$ covers C. If G_i is sg-nbd of x corresponding to H_i , we put $G = \bigcup_{i=1-n}G_i$ and G_i and G_i are constants.

3.12. Corollary 3.1

(i) In a T₁ [resp: rT₁; g₁] space, each singleton set is sg-closed.

(ii) If X is T₁ [resp: rT₁; g₁] then distinct points of X have disjoint sg-closures.

(iii)If X is T₂ [resp: rT₂; g₂] then the diagonal Δin X×X is sg-closed.

(iv) Show that in a T₂ [resp: rT₂; g₂] space, a point and disjoint compact[resp: nearly-compact; g-compact] subspace can be separated by disjoint sg-open sets

3.13. Theorem 3.11

Every sg-compact subspace of a sg2 space is sg-closed.

Proof: Let C be sg-compact subspace of a sg_2 space. If $x \in C^c$, by above Theorem x has a sg-nbd G s.t $x \in G \subset C^c$. Thus C^c is the union of sg-open sets and therefore C^c is sg-open. Thus C is sg-closed.

3.14. Corollary 3.2

Every compact [resp: nearly-compact; g-compact] subspace of a T₂ [resp: rT₂; g₂] space is sg-closed.

3.15. Theorem 3.12

If $f: X \rightarrow Y$ is injective, sg-irresolute and Y is sg_i then X is sg_i, i = 0, 1, 2.

Proof: Let $x \neq y \in X$, then \exists a sg-open set $V_x \subset Y$ such that $f(x) \in V_x$ and $f(y) \notin V_x$ and \exists a sg-open set $V_y \subset Y$ such that $f(y) \in V_y$ with $f(x) \neq f(y)$. By sg-irresoluteness of f, $f^{-1}(V_x)$ is sg-open in X such that $x \in f^{-1}(V_x)$; $y \notin f^{-1}(V_x)$ is sg-open in X such that $y \in f^{-1}(V_y)$. Hence X is sg₂

Similarly one can prove the remaining part of the Theorem.

3.16. Corollary 3.3

(i) If $f: X \to Y$ is injective, sg-continuous and Y is T_i then X is sg_i , i = 0, 1, 2.

(ii) If $f: X \rightarrow Y$ is injective, r-irresolute[r-continuous] and Y is rT_i then X is sg_i , i = 0, 1, 2.

(iii) The property of being a space is sgo is a sg-Topological property.

(iv) Let $f: X \to Y$ is a sgc-homeomorphism, then X is sg_i if Y is sg_i, i = 0, 1, 2.

3.17. Theorem 3.13

Let X be T_1 and $f: X \to Y$ be sg-closed surjection. Then X is sg_1 .

3.18. Theorem 3.14

Every sg-irresolute map from a sg-compact space into a sg2 space is sg-closed.

Proof: If $f: X \to Y$ is sg-irresolute where X is sg-compact and Y is sg₂. Let $C \subset X$ be closed, then $C \subset X$ is sg-closed and hence C is sg-compact and so f(C) is sg-compact. But then f(C) is sg-closed in Y. Hence the image of any sg-closed set in X is sg-closed set in Y. Thus f is sg-closed.

3.19. Theorem 3.15

Any sg-irresolute bijection from a sg-compact space onto a sg2 space is a sgc-homeomorphism.

Proof: Let f be a sg-irresolute bijection from a sg-compact space onto a sg2 space. Let $G \in SGO(X)$. Then $X - G \in SGC(X)$ and hence $f(X - G) \in SGC(Y)$. Since f is bijective f(X - G) = Y - f(G) and therefore $f(G) \in SGO(Y)$. Hence f is M-sg-open. Thus f is sgc-homeomorphism.

3.20. Corollary 3.4

Any sg-continuous bijection from a sg-compact space onto a sg2 space is a sg-homeomorphism.

3.21. Theorem 3.16

The following are equivalent:

(i) X is sg

(ii) For each pair $x \neq y \in X \exists$ a sg-open, sg-closed set V such that $x \in V$ and $y \notin V$, and

(iii) For each pair $x \neq y \in X \exists f: X \rightarrow [0, 1]$ such that f(x) = 0 and f(y) = 1 and f is sg-continuous.

3.22. Theorem 3.17

If $f: X \rightarrow Y$ is sg-irresolute and Y is sg₂ then

(i) the set $A = \{(x_1, x_2): f(x_1) = f(x_2)\}\$ is sg-closed in $X \times X$.

(ii)G(f), Graph of f, is sg-closed in X×Y.

Proof: (i) Let $A = \{(x_1, x_2): f(x_1) = f(x_2)\}$. If $(x_1, x_2) \in X \times X - A$, then $f(x_1) \neq f(x_2) \Rightarrow \exists$ disjoint V_1 and $V_2 \in SGO(Y)$ such that $f(x_1) \in V_1$ and $f(x_2) \in V_2$, then by sgirresoluteness of $f(x_1) \in SGO(X, x_1)$ for each $f(x_1) \in SGO(X, x_2)$.

(ii) Let $(x, y) \notin G(f) \Rightarrow y \neq f(x) \Rightarrow \exists$ disjoint V; W \in SGO(Y) such that $f(x) \in V$ and $y \in W$. Since f is sg-irresolute, $\exists U \in$ SGO(X) such that $x \in U$ and $f(U) \subset W$. Therefore we obtain $(x, y) \in U \times V \subset X \times Y - G(f)$. Hence $X \times Y - G(f) \in SGO(X \times Y)$.

3.23. Theorem 3.18

Balasubramanian et al.

sg-separation axioms,

Indian Journal of Engineering, 2012, 1(1), 46-54,

If $f: X \to Y$ is sg-open and $A = \{(x_1, x_2): f(x_1) = f(x_2)\}$ is closed in X×X. Then Y is sg₂.

3.24. Theorem 3.19

Let Y and $\{X_{\alpha}: \alpha \in I\}$ be Topological Spaces. If $f: Y \to \Pi X_{\alpha}$ be a sg-continuous function and Y is $rT_{1/2}$, then ΠX_{α} and each X_{α} are sg_i, i = 0,1,2.

3.25. Theorem 3.20

Let X be an arbitrary space, R an equivalence relation in X and $p: X \to X/R$ the identification map. If $R \subset X \times X$ is sg-closed in $X \times X$ and p is sg-open map, then X/R is sg_2 .

Proof: Let p(X), $\neq p(Y) \in X/R$. Since x and y are not related, $R \subset X \times X$ is sg-closed in $X \times X$. There are sg-open sets U and V such that $x \in U$, $y \in V$ and $U \times V \subset R^c$. Thus $\{p(U), p(V)\}$ are disjoint and also sg-open in X/R since p is sg-open.

3.26. Theorem 3.21

The following four properties are equivalent:

(i) X is sg₂

(ii) Let $x \in X$. For each $y \neq x$, $\exists U \in SGO(X)$ such that $x \in U$ and $y \notin sgcl(U)$

(iii)For each $x \in X$, $\bigcap \{ sgcl(U)/U \in SGO(X) \text{ and } x \in U \} = \{ x \}.$

(iv) The diagonal $\Delta = \{(x, x)/x \in X\}$ is sg-closed in $X \times X$.

Proof: (i) \Rightarrow (ii) Let $x \in X$ and $y \ne x$. Then there are disjoint sg-open sets U and V such that $x \in U$ and $y \in V$. Clearly V c is sg-closed, sgcl(U) $\subset V^c$, $y \notin V^c$ and therefore $y \notin \text{sgcl}(U)$.

(ii) \Rightarrow (iii) If $y \neq x$, then $\exists U \in SGO(X, x)$ and $y \notin sgcl(U)$. So $y \notin \cap \{sgcl(U)/U \in SGO(X) \text{ and } x \in U\}$.

(iii) \Rightarrow (iv) We prove Δ^c is sg-open. Let $(x, y) \notin \Delta$. Then $y \neq x$ and $\bigcap \{sgcl(U)/U \in SGO(X) \text{ and } x \in U\} = \{x\} \text{ there is some } U \in SGO(X) \text{ with } x \in U \text{ and } y \notin sgcl(U).$ Since $U \bigcap (sgcl(U))^c = \phi$, $U \times (sgcl(U))^c$ is a sg-open set such that $(x, y) \in U \times (sgcl(U))^c \subseteq \Delta^c$.

(iv) \Rightarrow (i) $y \neq x$, then $(x, y) \notin \Delta$ and thus there exist sg-open sets U and V such that $(x, y) \in U \times V$ and $(U \times V) \cap \Delta = \phi$. Clearly, for the sg-open sets U and V we have; $x \in U$, $y \in V$ and $U \cap V = \phi$.

4. SGG₃ AND SGG₄ SPACES

4.1. Definition 4.1

X is said to be

(i) a sg₃ space if for every sg-closed sets F and a point x∉F ∃ disjoint U, V∈SPO(X)such that F⊆U; x∈V

(ii) a sgg₃ space if for every sg-closed sets F and x∉ F∃ disjoint U, V∈SGO(X)such that F⊆U; x∈V

(iii)a sg₄ space if for each pair of disjoint F; H∈SGC(X), ∃ disjoint U, V∈SPO(X) s.t. F⊆U; H⊆V

(iv) a sgg₄ space if for each pair of disjoint F; $H \in SGC(X)$, \exists disjoint U, $V \in SGO(X)$ s.t. $F \subseteq U$; $H \subseteq V$

Note: $rT_i \rightarrow sg_i \rightarrow sgg_i$, i = 3, 4. but the converse is not true in general.

Example 4.1: Let $X = \{a, b, c\}$ and

(i) $\tau = \{\phi, \{a\}, \{b, c\}, X\}$ then X is sgg_i .

(ii) $\tau = \{\phi, \{a\}, X\}$ then X is not sgg_i, sg_i and rT_i for i = 3, 4.

4.2. Lemma 4.1

X is sg-regular iff X is nearly-regular and $rT_{1/2.}$

Proof: X is sg-regular, then obviously X is nearly-regular. Let $A \subseteq X$ be sg-closed. For each $x \notin A \exists V_x \in SGO(X, x)$ such that $V_x \cap A = \emptyset$. If $V = \bigcup \{V_x : x \notin A\}$, then V is sg-open and V = X - A. Hence A is sg-closed implies X is $rT_{1/2}$.

4.3. Theorem 4.1

If X is sg_3 . Then for each $x \in X$ and each $U \in SGO(X, x) \exists a sg-neighborhood V of x such that <math>sgcl(A) \subset U$.

Proof: Let $x \in X$ and U a sg-neighborhood of x. Let B = X - U, then B is sg-closed and by sg-regularity of X, \exists disjoint V, W \in SGO(X) such that $x \in V$ and B \subseteq W. Then sgcl(V) \cap B = $\phi \Rightarrow$ sgcl(V) \subseteq X - B.

4.4. Theorem 4.2

The following are equivalent:

(i) X is sg₃.

(ii) For every point $x \in X$ and for every $G \in SGO(X, x)$, $\exists U \in SGO(X)$ such that $x \in U \subseteq sgcl(U) \subseteq G$.

(iii) For every sg-closed set F, the intersection of al sg-closed sg-neighborhoods of F is exactly F.

(iv) For every set A and B \in SGO(X) such that A \cap B $\neq \phi$, \exists G \in SGO(X)such that A \cap G $\neq \phi$ and sgcl(G) \subseteq B.

(v) For every $A \neq \emptyset$ and $B \in SGC(X)$ with $A \cap B = \emptyset$, \exists disjoint G; $H \in SGO(X)$ such that $A \subseteq G$ and $B \subseteq H$.

4.5. Theorem 4.3

If X is sgg_3 . Then for each $x \in X$ and each $U \in SGO(X, x)$, $\exists V \in SGO(X, x)$ such that $sgcl(A) \subset U$.

Proof: Let $x \in X$ and U a sg-nbd of x. Let B = X - U, then B is sg-closed and by sgg-regularity of X, \exists disjoint V, $W \in SGO(X)$ such that $x \in V$ and $B \subseteq W$. Then $ggcl(V) \cap B = \emptyset \Rightarrow ggcl(V) \subseteq X - B$.

4.6. Corollary 4.1

If X is T₃ [resp: rT₃; g₃]. Then for each x∈ X and each sg-open neighborhood U of x there exists a sg-open neighborhood V of x such that sgcl(A) ⊂U.

4.7. Theorem 4.4

If $f: X \rightarrow Y$ is sg-closed, sg-irresolute bijection. Then X is sgg₃ iff Y is sgg₃.

Proof: Let F be closed set in X and $x \notin F$, then $f(x) \notin f(F)$ and f(F) is sg-closed in Y. By sgg_3 of Y, \exists V; $W \in SGO(y)$ such that $f(X) \in V$ and $f(F) \subseteq W$. Hence $x \in f^{-1}(V)$ and $f \subseteq f^{-1}(W)$, where $f^{-1}(V)$ and $f^{-1}(W)$ are disjoint sg-open sets in X (by sg-irresoluteness of f). Hence X is sgg_3 .

Conversely, X be sgg_3 and K any sg-closed in Y with $y \notin K$, then $f^{-1}(K)$ is sg-closed in X such that $f^{-1}(y) \notin f^{-1}(K)$. By sgg_3 of X, \exists disjoint V, $W \in SGO(X)$ such that $f^{-1}(y) \in V$ and $f^{-1}(K) \subseteq W$. Hence $y \in f(V)$ and $K \subseteq f(W)$ such that f(V) and f(W) are disjoint sg-open sets in X. Thus Y is sgg_3

4.8. Theorem 4.5

X is sg-normal iff for every sg-closed set F and a sg-open set G containing A, there exists a sg-open set V such that $F \subseteq V \subseteq sgcl(V) \subseteq G$

Balasubramanian et al.

sg-separation axioms,

Indian Journal of Engineering, 2012, 1(1), 46-54,

4.9. Theorem 4.6

X is sg-normal iff for every pair of disjoint sg-closed sets A and B, there exist disjoint sg-open sets U and V such that A⊆U and B⊆V.

Proof: Necessity: Follows from the fact that every sg-open set is sg-open.

Sufficiency: Let A, B be are disjoint sg-closed sets and U, V are disjoint sg-open sets such that $A \subseteq U$ and $B \subseteq V$. Since U and V are sg-open sets, $A \subseteq U$ and $B \subseteq V \Rightarrow A \subseteq sg(U)^\circ$ and $B \subseteq sg(U)^\circ$. Hence $sg(U)^\circ$ and $sg(V)^\circ$ are disjoint sg-open sets satisfying the axiom of sg-normality.

4.10. Theorem 4.7

The following are equivalent:

- (i) X is sg-normal
- (ii) For any pair of disjoint closed sets A and B, ∃ disjoint U; V∈SGO(X) such that A⊆U and B⊆V
- (iii)For every closed set A and an open B containing A, ∃ U∈SGO(X) such that A⊆U⊆sgcl(U)⊆B
- (iv) For every closed set A and a sg-open B containing A, ∃ U∈SGO(X) such that A⊆U⊆sgcl(U)⊆(B)°
- (v) For every $A \in SGC(X)$, and every $B \in \tau(X,A)$, $\exists U \in SGO(X)$ such that $A \subseteq sgcl(A) \subseteq U \subseteq sgcl(U) \subseteq B$.

4.11. Theorem 4.8

The following are equivalent:

- (i) X is sg-normal
- (ii) For every A∈SGC(X) and every sg-open set containing A, ∃ a sg-clopen set V such that A⊆V⊆U.

4.12. Theorem 4.9

Let X be an almost normal space and $F \cap A = \emptyset$ where F is regularly closed and A is sg-closed, then \exists disjoint U; $V \in \tau$ such that $F \subseteq U$; $B \subseteq V$.

4.13. Theorem 4.10

X is almost normal iff for every disjoint sets F and A where F is regular closed and A is closed, \exists disjoint sg-open sets in X such that F \subseteq U; B \subseteq V.

Proof: Necessity: Follows from the fact that every open set is sg-open.

Sufficiency: Let F, A be disjoint s.t. $F \in RC(X)$ and A is closed, \exists disjoint U; $V \in SGO(X)$ s.t. $F \subseteq U$; $B \subseteq V$. Hence $F \subseteq U^{\circ}$; $B \subseteq V^{\circ}$, where U° and V° are disjoint open sets. Hence X is almost regular.

5. SG-R₁ SPACES; i = 0,1:.

5.1. Definition 5.1

Let $x \in X$. Then

(i) sg-kernel of x is defined and denoted by $Ker_{\{sg\}}\{x\} = \bigcap \{U: U \in SGO(X) \text{ and } x \in U\}$

(ii)Ker_{sg}F = \cap {U: U∈ SGO(X) and F⊂ U}

5.2. Lemma 5.1

Let $A \subset X$, then $Ker_{\{sq\}}\{A\} = \{x \in X : sgcl\{x\} \cap A \neq \emptyset.\}$

5.3. Lemma 5.2

Let $x \in X$. Then $y \in Ker_{sg}\{x\}$ iff $x \in sgcl\{y\}$.

Proof: Suppose that $y \notin Ker_{(sg)}\{x\}$. Then $\exists V \in SGO(X)$ containing x such that $y \notin V$. Therefore we have $x \notin sgcl\{y\}$. The proof of converse part can be done similarly.

5.4. Lemma 5.3

For any points $x \neq y \in X$, the following are equivalent:

(i) $Ker_{sg}\{x\} \neq Ker_{sg}\{y\}$; (ii) $sgcl\{x\} \neq sgcl\{y\}$.

Proof: (i) \Rightarrow (ii): Let $Ker_{(sg)}\{x\} \neq Ker_{(sg)}\{y\}$, then $\exists z \in X$ such that $z \in Ker_{(sg)}\{y\}$. From $z \in Ker_{(sg)}\{x\}$ it follows that $\{x\} \cap sgcl\{z\} \neq \phi \Rightarrow x \in sgcl\{z\}$. By $z \notin Ker_{(sg)}\{y\}$, we have $\{y\} \cap sgcl\{z\} = \phi$. Since $x \in sgcl\{z\}$, $sgcl\{x\} \subset sgcl\{z\}$ and $\{y\} \cap sgcl\{x\} = \phi$. Therefore $sgcl\{y\} \neq sgcl\{y\}$. Now $Ker_{(sg)}\{y\} \Rightarrow sgcl\{y\}$.

(ii) \Rightarrow (i): If $sgc[\{x\} \neq sgc[\{y\}]$. Then $\exists z \in X$ such that $z \in sgc[\{x\}]$ and $z \notin sgc[\{y\}]$. Then $\exists a sg$ -open set containing z and therefore containing z but not z, namely, $z \notin sgc[\{x\}]$. Hence $sgc[\{x\}]$ is $sgc[\{x\}]$.

5.5. Definition 5.2

X is said to be

- (i) sg-R0 iff sgcl{x} \subseteq G whenever $x \in$ G \in SGO(X).
- (ii) weakly sg-R₀ iff \cap sgcl{x} = ϕ .

 $\underbrace{ (\text{iii}) \text{ sg-R}_1 \text{ iff for } x,y \in X \text{ such that } \text{ sgcl}\{x\} \neq \text{sgcl}\{y\} \exists \text{ disjoint U; } V \in SGO(X) \text{ such that } \text{sgcl}\{x\} \subseteq U \text{ and } \text{sgcl}\{y\} \subseteq V. }$

Example 5.1: Let $X = \{a, b, c, d\}$ and

(i) $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ then X is sgR₀ and weakly sgR₀.

(ii) $\tau = \{\varphi,\,\{a,\,b\},\,\{a,\,b,\,c\},\,X\}$ then X is $sgR_1.$

Remark 5.1:

- (i) $r-R_i \Rightarrow R_i \Rightarrow g R_i \Rightarrow sgR_i$, i=0, 1.
- (ii) Every weakly-R₀ space is weakly sg R₀.

5.6. Lemma 5.1

Every sgR₀ space is weakly sgR₀.

Converse of the above Theorem is not true in general by the following Examples.

Example 5.2

- (i) Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{a, b\}, \{c, d\}, \{a, c, d\}, X\}$, then X is weakly sgR_0 but not sgR_0 .
- (ii) Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a, b\}, X\}$, then X is sgR_0 and R_0 .

5.7. Theorem 5.1

Balasubramanian et al.

sg-separation axioms,

Indian Journal of Engineering, 2012, 1(1), 46-54,

Every sg-regular space X is sg2 and sg-R0.

Proof: Let X be sg-regular and let $x \neq y \in X$. By Lemma 4.1, $\{x\}$ is either sg-open or sg-closed. If $\{x\}$ is sg-open, $\{x\}$ is sg-open and hence sg-clopen. Thus $\{x\}$ and $X - \{x\}$ are separating sg-open sets. Similar argument, for $\{x\}$ is sg-closed gives $\{x\}$ and $X - \{x\}$ are separating sg-closed sets. Thus X is sg₂ and sg-R₀.

5.8. Theorem 5.2

X is $sg-R_0$ iff given $x \neq y \in X$; $sgcl\{x\} \neq sgcl\{y\}$.

Proof: Let X be sg-R₀ and let let $x, \neq y \in X$. Suppose U is a sg-open set containing x but not y, then $y \in \text{sgcl}\{y\} \subset X$ -U and so $x \notin \text{sgcl}\{y\}$. Hence $\text{sgcl}\{x\} \neq \text{sgcl}\{y\}$.

Conversely, let $x, \neq y \in X$ such that $sgcl\{x\} \neq sgcl\{y\} \Rightarrow sgcl\{x\} \subseteq X$ - $sgcl\{y\} = U(say)$ a sg-open set in X. This is true for every $sgcl\{x\}$. Thus $\cap sgcl\{x\} \subseteq U$ where $x \in sgcl\{x\} \subseteq U \in SGO(X)$, which in turn implies $\cap sgcl\{x\} \subseteq U$ where $x \in U \in SGO(X)$. Hence $X \in sgcl\{x\} \subseteq U$ is sgR_0 .

5.9. Theorem 5.3

 $X \text{ is weakly sgR}_0 \text{ iff } Ker_{\{sg\}}\!\{x\} \neq X \text{ for any } x\!\in\!X.$

Proof: Let $x_0 \in X$ such that $ker_{\{sg\}}\{x_0\} = X$. This means that x_0 is not contained in any proper sg-open subset of X. Thus $x_0 \in sgcl\{x\}$ of every singleton set. Hence $x_0 \in sgcl\{x\}$, a contradiction.

Conversely assume $\text{Ker}_{(sg)}\{x\} \neq X$ for any $x \in X$. If there is an $x_0 \in X$ such that $x_0 \in \cap \{sgc(x)\}$, then every sg-open set containing x_0 must contain every point of X. Therefore, the unique sg-open set containing x_0 is X. Hence $\text{Ker}_{(sg)}\{x_0\} = X$, which is a contradiction. Thus X is weakly $sg-x_0$.

5.10. Theorem 5.4

The following statements are equivalent:

- (i) X is sg-R₀ space.
- (ii) For each $x \in X$, $sgcl\{x\} \subset Ker_{\{sg\}}\{x\}$
- (iii)For any sg-closed set F and a point $x \notin F$, $\exists U \in SGO(X)$ such that $x \notin U$ and $F \subset U$.
- (iv) Each sg-closed set F can be expressed as $F = \bigcap \{G : G \text{ is sg-open and } F \subseteq G \}$.
- (v) Each sg-open set G can be expressed as $G = \bigcup \{A: A \text{ is sg-closed and } A \subseteq G\}$.
- (vi) For each sg-closed set F, $x \notin F$ implies $sg-cl\{x\} \cap F = \emptyset$.

Proof: (i) \Rightarrow (ii) For any $x \in X$, we have $Ker_{\{sg\}}\{x\} = \bigcap \{U: U \in SGO(X) \text{ and } x \in U\}$. Since X is $sg-R_0$, each sg-pen set containing x contains $sgcl_{\{x\}}$. Hence $sgcl_{\{x\}} \subset Ker_{\{sg\}}\{x\}$.

(ii) \Rightarrow (iii) Let $x \notin F \in SGC(X)$. Then for any $y \in F$; $sgcl\{y\} \subset F$ and so $x \notin sgcl\{y\} \Rightarrow y \notin sgcl\{x\}$ that is $\exists U_y \in SGO(X)$ such that $y \in U_y$ and $x \notin U_y \forall y \in F$. Let $U = \bigcup \{U_y : U_y \in SGO(X), y\}$ and $x \notin U_y \}$. Then $U \in SGO(X)$ such that $x \notin U$ and $x \notin U_y \}$.

(iii) \Rightarrow (iv) Let $F \in SGO(X)$ and $N = \bigcap \{G : G \text{ is sg-open and } F \subset G\}$. Then $F \subset N \to (1)$.

Let $x \notin F$, then by (iii) $\exists G \in SGO(X)$ such that $x \notin G$ and $F \subset G$.

Hence $x \notin N$ which implies $x \in N \Rightarrow x \in F$. Hence $N \subseteq F \rightarrow (2)$.

Therefore from (1) and (2), each sg-closed set $F = \bigcap \{G: G \text{ is sg-open and } F \subset G\}$

 $(iv) \Rightarrow (v)$ obvious.

 $(v) \Rightarrow (vi)$ Let $x \notin F \in SGC(X)$. Then $X - F = G \in SGO(X, x)$. Then by (v), $G = \bigcup \{A : A \text{ is sg-closed and } A \subseteq G\}$, and so $\exists M \in SGC(X)$ such that $x \in M \subseteq G$; and hence $g \in SGC(X) \subseteq G$ which implies $g \in SGC(X) \subseteq G$.

(vi) \Rightarrow (i) Let $x \in G \in SGO(X)$. Then $x \notin (X-G)$, which is a sg-closed set. Therefore by (vi) $sgcl\{x\} \cap (X-G) = \emptyset$, which implies that $sgcl\{x\} \subseteq G$. Thus X is sgR_0 space.

5.11. Theorem 5.5

Let $f: X \to Y$ be a sg-closed one-one function. If X is weakly sg-R₀, then so is Y.

5.12. Theorem 5.6

If X is weakly sg-R₀, then for every space Y, X×Y is weakly sg-R₀.

Proof: \cap sgcl $\{(x,y)\}\subseteq \cap \{sgcl\{x\}\times sgcl\{y\}\} = \cap [sgcl\{x\}]\times [sgcl\{y\}]\subseteq \emptyset \times Y = \emptyset$. Hence $X\times Y$ is sgR_0 .

5.13. Corollary 5.1

- (i) If X and Y are weakly sgR₀, then X× Y is weakly sgR₀.
- (ii) If X and Y are sgR₀, then X× Y is weakly sgR₀.
- (iii) If X is sgR₀ and Y are weakly R₀, then X× Y is weakly sgR₀.

5.14. Theorem 5.7

 $X \text{ is } sgR_0 \text{ iff for any } x,\,y \in \,X,\,sgcl\{x\} \neq sgcl\{y\} \Rightarrow sgcl\{x\} \cap sgcl\{y\} = \varphi.$

Proof: Let X is sgR₀ and x, $y \in X$ such that sgcl{x} \neq sgcl{y}. Then $\exists z \in sgcl\{x\}$ such that $z \notin sgcl\{y\}$ (or $z \in sgcl\{y\}$) such that $z \notin sgcl\{x\}$. There exists $V \in SGO(X)$ such that $y \notin V$ and $z \in V$; hence $x \in V$. Therefore, $x \notin sgcl\{y\}$. Thus $x \in [sgcl\{y\}]^c \in SGO(X)$, which implies $sgcl\{x\} \subset [sgcl\{y\}]^c$ and $sgcl\{x\} \cap sgcl\{y\} = \phi$. The proof for otherwise is similar.

Sufficiency: Let $x \in V \in SGO(X)$. Let $y \notin V$, i.e., $y \in V^c$. Then $x \neq y$ and $x \notin sgcl\{y\}$. Hence $sgcl\{x\} \neq sgcl\{y\}$. But $sgcl\{x\} \cap sgcl\{y\} = \phi$. Hence $y \notin sgcl\{x\}$. Therefore $sgcl\{x\} \cap V$.

5.15. Theorem 5.8

 $X \text{ is } sgR_0 \text{ iff for any } x,\,y\in X,\, Ker_{\{sg\}}\{x\} \neq Ker_{\{sg\}}\{y\} \Longrightarrow Ker_{\{sg\}}\{x\} \cap Ker_{\{sg\}}\{y\} = \varphi.$

Proof: If X is sgR_0 , by Lemma 5.3 for any x, $y \in X$ if $Ker_{(sg)}\{x\} \neq Ker_{(sg)}\{y\}$ then $sgcl\{x\} \neq sgcl\{y\}$. Assume that $z \in Ker_{(sg)}\{x\} \cap Ker_{(sg)}\{y\}$. By $z \in Ker_{(sg)}\{x\}$ and Lemma 5.2, it follows that $x \in sgcl\{z\}$. Since $x \in sgcl\{z\}$, $sgcl\{x\} = sgcl\{z\}$. Similarly, we have $sgcl\{y\} = sgcl\{z\} = sgcl\{z\}$. This is a contradiction. Therefore, we have $Ker_{(sg)}\{y\} \cap Ker_{(sg)}\{y\} = \emptyset$.

Conversely, let $x, y \in X$, s.t. $sgcl\{x\} \neq sgcl\{y\}$, then by Lemma 5.3, $ker_{(sg)}\{x\} \neq ker_{(sg)}\{y\}$. By hypothesis $ker_{(sg)}\{x\} \cap ker_{(sg)}\{y\} = \phi$ which implies $sgcl\{x\} \cap sgcl\{y\} = \phi$. But $z \in sgcl\{x\}$ implies that $x \in ker_{(sg)}\{z\}$ and hence $ker_{(sg)}\{z\} \neq \phi$. Therefore by Theorem 5.7 X is a sgR_0 space.

5.16. Theorem 5.9

The following properties are equivalent:

- (i) X is a sg-R₀ space.
- $\text{(ii) For any A } \neq \phi \text{ and } G \in SGO(X) \text{ such that } A \cap G \neq \phi \; \exists \; F \in SGC(X) \text{such that } A \cap F \neq \phi \text{ and } F \subset G.$

Balasubramanian et al.

sg-separation axioms,

Indian Journal of Engineering, 2012, 1(1), 46-54,

Proof: (i) \Rightarrow (ii): Let $A \neq \emptyset$ and $G \in SGO(X)$ such that $A \cap G \neq \emptyset$. There exists $x \in A \cap G$. Since $x \in G \in SGO(X)$, $sgcl\{x\} \subset G$. Set $F = sgcl\{x\}$, then $F \in SGC(X)$, $F \subset G$ and $A \cap F \neq \emptyset$

(ii) \Rightarrow (i): Let $G \in SGO(X)$ and $x \in G$. By (2), $sgcl\{x\} \subset G$. Hence X is $sg-R_0$.

5.17. Theorem 5.10

The following properties are equivalent:

(i) X is a sg-R₀ space;

(ii) $x \in \text{sgcl}\{y\}$ iff $y \in \text{sgcl}\{x\}$, for any points x and y in X.

Proof: (i) \Rightarrow (ii): Assume X is sgR₀. Let x \in sgcl{y} and D be any sg-open set such that y \in D. Now by hypothesis, x \in D. Therefore, every sg-open set which contain y contains x. Hence y \in sgcl{x}.

(ii) ⇒ (i): Let U be a sg-open set and x∈U. If y∉ U, then x∉sgcl{y} and hence y∉sgcl{x}. This implies that sgcl{x}⊂U. Hence X is sgR₀.

5.18. Theorem 5.11

The following properties are equivalent:

(i) X is a sgR₀ space;

(ii) If F is sg-closed, then F = Ker(sg)(F);

(iii) If F is sg-closed and $x \in F$, then $Ker_{\{sg\}}\{x\} \subseteq F$;

(iv) If $x \in X$, then $Ker_{\{sg\}}\{x\} \subset sgcl\{x\}$.

Proof: (i) \Rightarrow (ii): Let $x \notin F \in SGC(X) \Rightarrow (X-F) \in SGO(X, x)$. For X is sgR_0 , $sgcl(\{x\}) \subset (X-F)$. Thus $sgcl(\{x\}) \cap F = \emptyset$ and $x \notin Ker_{\{sg\}}(F)$. Hence $Ker_{\{sg\}}(F) = F$.

(ii) \Rightarrow (iii): A \subset B \Rightarrow Ker_{sg}(A) \subset Ker_{sg}(B). Therefore, by (2) Ker_{sg}(xC Ker_{sg}(xC) \subset Ker_{sg}(xC) \subset Ker_{sg}(xC) \subset Ker_{sg}(xC) \subset Ker_{sg}(xC) \subset Ker_{sg}(xC) \subset Sgcl{x}.

 $(iv) \Rightarrow (i)$: Let $x \in sgcl\{y\}$. Then by Lemma 5.2 $y \in Ker_{(sg)}\{x\}$. Since $x \in sgcl\{x\}$ and $sgcl\{x\}$ is sg-closed, by (iv) we obtain $y \in Ker_{(sg)}\{x\} \subseteq sgcl\{x\}$. Therefore $x \in sgcl\{y\}$ implies $y \in sgcl\{x\}$. The converse is obvious and X is sgR_0 .

5.19. Corollary 5.2

The following properties are equivalent:

(i) X is sgR_0 . (ii) $sgcl\{x\} = Ker_{\{sg\}}\{x\} \forall x \in X$.

Proof: Straight forward from Theorems 5.4 and 5.11.

Recall that a filterbase F is called sg-convergent to a point x in X, if for any sg-open set U of X containing x, there exists B∈ F such that B⊂ U.

5.20. Lemma 5.4

Let x and y be any two points in X such that every net in X sg-converging to y sg-converges to x. Then x∈ sgcl{y}.

Proof: Suppose that $x_n = y$ for each $n \in N$. Then $\{x_n\}_{n \in N}$ is a net in sgcl{((y))}. Since $\{x_n\}_{n \in N}$ sg-converges to y, then $\{x_n\}_{n \in N}$ sg-converges to x and this implies that $x \in \operatorname{sgcl}\{y\}$.

5.21. Theorem 5.12

The following statements are equivalent:

(i) X is a sgR₀ space;

(ii) If x, $y \in X$, then $y \in sgcl\{x\}$ iff every net in X sg-converging to y sg-converges to x.

Proof: (i) \Rightarrow (ii): Let x, y \in X such that y \in sgcl{x}. Suppose that $\{x_{\alpha}\}_{\alpha \in I}$ is a net in X such that $\{x_{\alpha}\}_{\alpha \in I}$ sg-converges to y. Since y \in sgcl{x}, by Thm. 5.7 we have sgcl{x} = sgcl{y}. Therefore x \in sgcl{y}. This means that $\{x_{\alpha}\}_{\alpha \in I}$ sg-converges to x.

Conversely, let x, $y \in X$ such that every net in X sg-converging to y sg-converges to x. Then $x \in \text{sg-cl}\{y\}[\text{by 5.4}]$. By Thm. 5.7, we have $\text{sgcl}\{x\} = \text{sgcl}\{y\}$. Therefore $y \in \text{sgcl}\{x\}$.

(ii) \Rightarrow (i): Let x, $y \in X$ such that $sgcl\{x\} \cap sgcl\{y\} \neq \emptyset$. Let $z \in sgcl\{x\} \cap sgcl\{y\}$. So \exists a net $\{x_{\alpha}\}_{\alpha \in I}$ in $sgcl\{x\}$ such that $\{x_{\alpha}\}_{\alpha \in I}$ sg-converges to z. Since $z \in sgcl\{y\}$, then $\{x_{\alpha}\}_{\alpha \in I}$ sg-converges to y. It follows that $y \in sgcl\{x\}$. Similarly we obtain $x \in sgcl\{y\}$. Thus $sgcl\{y\}$ = $sgcl\{y\}$. Hence X is sgR_0 .

5.22. Theorem 5.13

- (i) Every subspace of sqR₁ space is again sqR₁.
- (ii) Product of any two sgR₁ spaces is again sgR₁.
- (iii) X is sgR_1 iff given $x \neq y \in X$, $sgcl\{x\} \neq sgcl\{y\}$.
- (iv) Every sg2 space is sgR1.
- (v) If X is sg-R₁, then X is sg-R₀.

 $(\text{vi})X \text{ is sg-} \bar{\mathbb{R}}_1 \text{ iff for } x, y \in X, \\ \text{Ker}_{\{sg\}}\{x\} \neq \text{Ker}_{\{sg\}}\{y\}, \\ \exists \text{ disjoint } U; \\ \text{V} \in SGO(X) \text{ such that } \text{ sgcl}\{x\} \sqsubset U \text{ and sgcl}\{y\} \sqsubset V. \\ \text{SGO}(X) \text{ such that } \text{ sgcl}\{x\} \vdash U \text{ and sgcl}\{y\} \vdash V. \\ \text{SGO}(X) \text{ such that } \text{ sgcl}\{x\} \vdash U \text{$

The converse of (iv) is not true. However, we have the following result.

5.23. Theorem 5.14

Every sg1 and sgR1 space is sg2.

Proof: Let $x \neq y \in X$. Since X is sg₁; $\{x\}$ and $\{y\}$ are sg-closed sets such that sgcl $\{x\} \neq$ sgcl $\{y\}$. Since X is sgR₁, there exists disjoint sg-open sets U and V such that $x \in U$; $y \in V$. Hence X is sg₂.

5.24. Corollary 5.3

X is sg₂ iff it is sgR₁ and sg₁.

Theorem 5.15: The following are equivalent

(i) X is sg-R₁. (ii) \cap sgcl{x} = {x}. (iii)For any x \in X, \cap sg[nbds{x}] = {x}.

Proof: (i) \Rightarrow (ii) Let $y \neq x \in X$ such that $y \in \text{sgcl}\{x\}$. Since X is sgR_1 , $\exists U \in \text{SGO}(X)$ such that $y \in U$, $x \notin U$ or $x \in U$, $y \notin U$. In either case $y \notin \text{sgcl}\{x\}$. Hence $\bigcirc \text{sgcl}\{x\} = \{x\}$.

(ii) ⇒ (iii) If y ≠ x ∈ X, then x ∉ ∩sgcl{y}, so there is a sg-open set containing x but not y. Therefore y ∉ ∩sg[nbds{x}]. Hence ∩sg[nbds{x}] = {x}.

(iii) \Rightarrow (i) Let $x \neq y \in X$. by hypothesis, $y \notin \cap sg[nbds\{x\}]$ and $x \notin \cap sg[nbds\{y\}]$, which implies $sgcl\{x\} \neq sgcl\{y\}$. Hence X is $sg-R_1$.

5.25. Theorem 5.16

The following are equivalent:

Balasubramanian et al.

sg-separation axioms,

Indian Journal of Engineering, 2012, 1(1), 46-54,

(i) X is sg-R₁.

(ii) For each pair x, $y \in X$ with $sgcl\{x\} \neq sgcl\{y\}$, \exists a sg-open, sg-closed set V s.t. $x \in V$ and $y \notin V$, and

(iii)For each $x \neq y \in X$ with $sgcl\{x\} \neq sgcl\{y\}$, \exists a sg-continuous function $f: X \rightarrow [0, 1]$ s.t. f(x) = 0 and f(y) = 1.

Proof: (i) \Rightarrow (ii) Let x, y \in X with sgcl{x} \neq sgcl{y}, \exists disjoint U; W \in SGO(X) such that sgcl{x} \subset U and sgcl{y} \subset W and V = sgcl(U) is sg-open and sg-closed such that x \in V and y \notin V.

(ii) \Rightarrow (iii) Let x, y \in X with sgcl{x} \neq sgcl{y}, and let V be sg-open and sg-closed such that $x \in V$ and $y \notin V$. Then $f: X \rightarrow [0, 1]$ defined by f(z) = 0 if $z \in V$ and f(z) = 1 if $z \notin V$ satisfied the desired properties.

(iii) \Rightarrow (i) Let x, y \in X such that sgcl{x} \neq sgcl{y}, let $f: X \rightarrow [0, 1]$ such that f is sg-continuous, f(x) = 0 and f(y) = 1. Then $U = f^{-1}([0, 1/2))$ and $V = f^{-1}([1/2, 1])$ are disjoint sg-open and sg-closed sets in X, such that sgcl{x} $\subseteq U$ and sgcl{y} $\subseteq V$.

6. SG-C_i AND SG-D_i SPACES, i = 0,1,2:

6.1. Definition 6.1

X is said to be a

(i) sg-C₀ space if for each pair of distinct points x, y of X there exists a sg-open set G whose closure contains either of the point x or y.

(ii) sg-C₁ space if for each pair of distinct points x, y of X there exists a sg-open set G whose closure containing x but not y and a sg-open set H whose closure containing y but not x.

(iii)sg-C₂ space if for each pair of distinct points x, y of X there exists disjoint sg-open sets G and H such that G containing x but not y and H containing y but not x.

Note: $sg-C_2 \Rightarrow sg-C_1 \Rightarrow sg-C_0$. Converse need not be true in general as shown by.

Example 6.1: Let $X = \{a, b, c, d\}$ and

(i) $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ then X is sg-C_i, i = 1, 2.

(ii) $\tau = \{\phi, \{a\}, \{a, b\}, \{c, d\}, \{a, c, d\}, X\}$ then X is not sg-C_i, i = 0, 1, 2.

6.2. Theorem 6.1

(i) Every subspace of sg-C_i space is sg-C_i.

(ii) Every sgi spaces is sg-Ci.

(iii)Product of sg-Ci spaces are sg-Ci.

6.3. Theorem 6.2

Let (X, τ) be any sg-C_i space and $A \neq \phi \subseteq X$ then A is sg-C_i iff $(A, \tau_{/A})$ is sg-C_i.

6.4. Theorem 6.3

(i) If X is sg-C₁ then each singleton set is sg-closed.

(ii)In an sg-C₁ space disjoint points of X has disjoint sg- closures.

6.5. Definition 6.2

 $A \subset X$ is called a sg-Difference(Shortly sgD-set) set if there are two U, $V \in SGO(X)$ such that $U \neq X$ and A = U - V.

Clearly every sg-open set U different from X is a sgD-set if A = U and $V = \phi$.

6.6. Definition 6.3

X is said to be a

(i) $sg-D_0$ if for any pair of distinct points x and y of X there exist a sgD-set in X containing x but not y or a sgD set in X containing y but not x.

(ii) sg-D₁ if for any pair of distinct points x and y in X there exist a sgD-set of X containing x but not y and a sgD-set in X containing y but not x.

(iii)sg-D2 if for any pair of distinct points x and y of X there exists disjoint sgD-sets G and H in X containing x and y respectively.

Example 6.2: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{b\}, \{a, c\}, X\}$ then X is sgD_i , i = 0, 1, 2.

Remark 6.2: (i) If X is rT_i, then it is sg_i, i = 0, 1, 2 and converse is false.

(ii) If X is sg_i, then it is $sg_{(i-1)}$, i = 1, 2.

(iii) If X is sg_i , then it is $sg-D_i$, i=0, 1, 2.

(iv) If X is sg-D_i, then it is sg-D_{i-1}, i = 1, 2.

6.7. Theorem 6.4

The following statements are true:

(i) X is $sg-D_0$ iff it is sg_0 .

(ii) X is sg-D₁ iff it is sg-D₂.

Corollary 6.1: If X is sg-D₁, then it is sg₀. **Proof:** Remark 6.1(iv) and Theorem 6.2(i)

6.8. Definition 6.4

A point $x \in X$ which has X as the unique sg-neighborhood is called sg.c.c point.

6.9. Theorem 6.5

For an sg₀ space X the following are equivalent:

(i) X is sg-D₁; (ii) X has no sg.c.c point.

Proof: (i) \Rightarrow (ii) Since X is sg-D₁, then each point x of X is contained in a sgD-set O = U - V and thus in U. By Definition U \neq X. This implies that x is not a sg.c.c point.

(ii) \Rightarrow (i) If X is sg₀, for each $x \neq y \in X$, at least one of them, x (say) has a sg-nbd U containing x but not y. Thus $U \neq X$ is a sgD-set. If X has no sg.c.c point, y is not a sg.c.c point, so there exists a sg-nbd V of y such that $V \neq X$. Thus $y \in (V-U)$ but not x and V-U is a sgD-set. Thus X is sg-D₁.

6.10. Corollary 6.2

A sg_0 space X is sg- D_1 iff there is a unique sg.c.c point in X.

Proof: Only uniqueness is sufficient to prove. If x_0 and y_0 are two sg.c.c points in X then since X is sg₀, at least one of x_0 and y_0 say x_0 , has a sgneighborhood U such that $x_0 \in U$ and $y_0 \notin U$, hence $U \neq X$, x_0 is not a sg.c.c point, a contradiction.

Balasubramanian et al.

sg-separation axioms,

Indian Journal of Engineering, 2012, 1(1), 46-54,

6.11. Definition 6.5

X is sg-symmetric if for x and y in X, $x \in sgcl\{y\}$ implies $y \in sgcl\{x\}$.

6.12. Theorem 6.6

X is sg-symmetric iff $\{x\}$ is sgg-closed for each $x \in X$.

Proof: Assume that $x \in sgcl(y)$ but $y \notin sgcl(x)$. This means that $[sgcl(x)]^c$ contains y. This implies that $sgcl(y) \subset [sgcl(x)]^c$. Now $[sgcl(x)]^c$ contains x which is a

Conversely, If $\{x\} \subset E \in SGO(X)$ but $sgcl\{x\} \not\subset E$, then $sgcl\{x\}$ and E^c are not disjoint. Let y belongs to their intersection. Now we have $x \in sgcl\{y\} \subset E^c$ and $x \notin E$. But this is a contradiction.

6.13. Corollary 6.3

If X is a sg₁, then it is sg-symmetric.

Proof: Follows from theorem 2.2(ii), Remark 6.2 and theorem 6.6.

6.14. Corollary 6.4

The following are equivalent:

(i) X is sg-symmetric and sgo

(ii) X is sg₁.

Proof: By Corollary 6.3 and Remark 6.1 it suffices to prove only (i) \Rightarrow (ii). Let $x \neq y$ and by sg_0 , we may assume that $x \in G_1 \subset \{y\}^c$ for some $G_1 \in SGO(X)$. Then $x \notin sgcl\{y\}$ and hence $y \notin sgcl\{x\}$. There exists a $G_2 \in SGO(X)$ such that $y \in G_2 \subset \{x\}^c$ and X is a sg_1 space.

6.15. Theorem 6.7

For a sg-symmetric space X the following are equivalent:

(ii) X is sg-D₁;

(iii) X is sg₁. **Proof:** (i) \Rightarrow (iii) Corollary 6.4 and (iii) \Rightarrow (i) Remark 6.1.

6.16. Theorem 6.8

(i) If $f:X \to Y$ is a sg-irresolute surjective function and $E \in SGD(Y)$, $f^{-1}(E) \in SGD(X)$.

(ii) If Y is sg-D₁ and $f: X \to Y$ is sg-irresolute and bijective, then X is sg-D₁.

6.18. Theorem 6.9

X is sg-D₁ iff for each pair of distinct points x, y in X there exist a sq-irresolute surjective function f: X o Y, where Y is a sq-D₁ space such that f(x) and f(y) are distinct.

Proof: Necessity. For every $x \neq y \in X$, it suffices to take the identity function on X.

Sufficiency. Let $x \neq y \in X$. By hypothesis, \exists a sg-irresolute, surjective function f: X onto a sg-D₁ space Y s.t. $f(x) \neq f(y)$. Therefore, \exists disjoint G_x ; $G_y \in SGD(Y)$ s.t. $f(x) \in G_x$ and $f(y) \in G_y$. Then by Theorem 6.8(i), $f^{-1}(G_x)$ and $f^{1}(G_y) \in SGD(X)$ containing x and y respectively. Therefore X is sg-D₁ space.

6.19. Corollary 6.5

Let $\{X_{\alpha}/\alpha \in I\}$ be any family of topological spaces. If X_{α} is sg-D₁ for each $\alpha \in I$, so is ΠX_{α} . **Proof:** Let $(x_{\alpha}) \neq (y_{\alpha}) \in \Pi X_{\alpha}$. Then there exists an index $\beta \in I$ s.t. $x_{\beta} \neq I$ y_{β} . The natural projection $P_{\beta}: \Pi X_{\alpha} \to X_{\beta}$ is almost continuous and almost open and $P_{\beta}: ((x_{\alpha})) = P_{\beta}: ((y_{\alpha}))$. Since X_{β} is $g_{\beta} = D_{1}$, ΠX_{α} is $g_{\beta} = D_{2}$.

REFERENCES

- Ahmad Al.Omari and Mohd. Salmi Md Noorani, Regular generalized w-closed sets, I.J.M.M.S.Vol(2007).
- S.P.Arya and T.Nour, Characterizations of s-normal spaces, I.J.P.A.M.,21(8)(1990),717-719. 2.
- S.N. Bairagya and S.P. Baisnab, On structure of Generalized open sets, Bull. Cal. Math. Soc., 79(1987)81-88.

 K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps in Topological Spaces, Mem. Fac. Sci. Kochi. Univ(Math)12(1991)05-13.
- Chawalit Boonpok-Generalized continuous functions from any topological space into product, Naresuan University journal (2003)11(2)93-98.
- Chawalit Boonpok, Preservation Theorems concering g-Hausdorf and rg-Hausdorff spaces, KKU. Sci. J.31(3)(2003)138-140.
- R.Devi, K. Balachandran and H.Maki, semi-Generalized Homeomorphisms and Generalized semi-Homeomorphismin Topological Spaces, IJPAM, 26(3)(1995)271-284.
- W.Dunham, T_{1/2}, Spaces, Kyungpook Math. J.17 (1977), 161-169.
- A.I. El-Maghrabi and A.A. Naset, Between semi-closed snd GS-closed sets, J.Taibah. Uni. Sci. 2(2009)79-87.
- M. Ganster, S. Jafarai and G.B. Navalagi, on semi-g-regular and semi-g-normal spaces.
- 11. Jiling Cao, Sina geenwood and Ivan Reilly, Generalized closed sets: A Unified Approach.
- Jiling Cao, M. Ganster and Ivan Reily, on sg-closed sets and $g\alpha$ -closed sets. 12.
- Jin Han Park, On s-normal spaces and some functions, IJPAM 30(6) (1999)575-580. 13
- S.R.Malghan, Generalized closed maps, The J. Karnataka Univ. Vol.27 (1982)82-88. 14.
- Miguel Caldas and R.K. Saraf, A surve on semi-T_{1/2} spaces, Pesquimat, Vol.II, No.1 (1999)33-40. 15
- Miguel Caldas, R.K. Saraf, A Research on characterization of semi-T_{1/2} spaces, Divulgenious, Math.Vol.8(1)(2000)43-50 16
- G.B. Navalagi, Properties of gs-closed sets and sg-closed sets in Topology. 17.
- 18. G. B. Navalagi Semi-Generalized separation in Topology.
- 19. Norman Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19 (2) (1970), 89-96.
- 20. T.Noiri, semi-normal spaces and some functions, Acta Math. Hungar 65 (3) (1994) 305-311.
- T.Noiri, Mildly Normal spaces and some functions, Kyungpook Math. J. 36 (1996) 183-190.
- T. Noiri and V.Popa, On G-regular spaces and some functions, Mem. Fac. Sci. Kochi. Univ(Math)20(1999)67-74.
- N. Palaniappan and K. Chandrasekhara rao, Regular Generalized closed sets, Kyungpook M.J. Vol.33(2)(1993)211-219.
- V.K. Sharma, g-open sets and Almost normality, Acta Ciencia Indica, Vol XXXIIIM, No.3(2007)1249-1251. V.K. Sharma, sg-separation axioms, Acta Ciencia Indica, Vol XXXIIIM, No.3(2007)1253-1259.
- V.K. Sharma, g-separation axioms, Acta Ciencia Indica, Vol XXXIIIM, No.4(2007)1271-1276.
- M.K.R.S. Veerakumar, concerning semi T_{1/3} spaces.
- M.K.R.S. Veerakumar, pre-semi-closed sets, Indian J. Math. Vol 44, No.2(2002)165-181.
- M.K.R.S. Veerakumar, Between closed sets and g-closed sets, Mem. Fac. Sci. Kochi. Univ(Math)21(2000)01-19.

