

Understanding Modern Power MOSFETs

Fairchild Power Seminar 2006

1

Session Objectives

- Explain what a board designer needs to know about MOSFETs
- Explain how to choose a MOSFET for synchronous buck applications
 - Which MOSFETs are needed for a 12V input, 1.2V output, 20A, 300kHz buck converter?
 - · How are they selected?

Agenda

- DC behavior explaining $R_{DS(ON)}$
- Thermal behavior
- Avalanche breakdown
- Switching behavior
 - · Explaining the effects of gate charge
- Synchronous buck circuitry
- Half-bridge structure

3

Power Introducing the N-channel MOSFET

- · In power electronics, a MOSFET is usually used to implement a semiconductor switch
- Consider the N-channel (enhancement mode) **MOSFET**
- If 0V is applied between gate and source (V_{GS} = 0V) the MOSFET switch is open
- If a large positive voltage is applied between gate and source (e.g. V_{GS} = 10V), the MOSFET switch is closed
- As the gate is high impedance it should NEVER be left open
 - · This applies to logic inputs on chips for the same reason

Drain Gate Source

FAIRCHILD

Introducing the P-channel MOSFET

- · Sometimes P-channel MOSFETs are used
- Consider the P-channel (enhancement mode) MOSFET
- If 0V is applied between gate and source (V_{GS} = 0V) the MOSFET switch is open
- If a large negative voltage is applied between gate and source (e.g., V_{GS} = -10V), the MOSFET switch is closed

FAIRCHILD

Uni-directional and Bi-directional Switches

- · All MOSFETs have a body diode
- A single MOSFET switch can block voltage in only one direction
- To block voltages in both directions, a diode is needed
 - This allows uni-directional current flow
- To block voltages in both directions, allowing bi-directional current flow, a second MOSFET is needed
- · This configuration is used in
 - · Battery chargers
 - · Lighting dimmers

FAIRCHILD

Uni-directional Switch Example

Design challenges

- Size
- · Power dissipation
- I_D capability

Topology choices

- Single PMOS & Schottky
- · Dual PMOS (bi-directional)

Charger Application Circuit MOSFET used as a current source Charger Battery

Proposed solutions to meet design challenges

- Single PMOS BGA or FLMP MOSFET
- Single PMOS & Schottky MicroFET MOSFET
- Dual PMOS FLMP MOSFET or MicroFET MOSFET

FAIRCHILD

g

Bi-directional Switch Example

Bi-directional advantages

- · Full isolation in 'OFF state'
- Bi-directional current control
- · Reduced loss vs. standard diode
- · Additional protection
- Full function in SSOT-6
- · Accessory connector & USB Interface
- Ideal for applications where bi-directional operation, leakage protection, and digital control are required.

Package	V _{gs} Max.	R _{ds(on)} Max (mΩ)			Part Number	Release
		V _{gs} @ - 4.5V	V _{gs} @ - 2.5V	V _{gs} @ -1.8V		
SSOT-6	8	250	350	450	FDC6332L	Released

Logic Signal

10

Load

MOSFET Voltage Rating

- When a MOSFET is in the OFF state, it prevents current flowing through the load, except for a small leakage current, I_{DSS}
- Here, V_{dc} must not exceed the maximum specified drain-source voltage of the MOSFET, V_{DS} max
- · The ability of a MOSFET to block voltage
 - · Decreases with temperature
 - Decreases with negative V_{GS}

V_{dc}
Load resistor

11

Choosing the Right Voltage Rating

- The voltage rating of the MOSFET must be larger than the bus voltage V_{dc}
- · Allow safety margin for:
 - · Bus voltage variations
 - · Input voltage spikes
 - · Ringing in synchronous buck
 - · Motor drive spikes
 - · Flyback transformer spikes
 - Change in $V_{\rm DS}$ at low temperature
 - Change in V_{DS} with negative V_{GS}

Typical MOSFET voltage ratings

Portable equipment 20V FPGA, VLSI supply 20V,30V

 24V motor drive
 60V

 48V system
 80-100V

 80V system
 150-200V

85VAC - 220VAC 450-600V Three phase PSU 800-1000V

Example: FDD16AN080AN R_{DS(ON)}

On Characteristics

V _{GS(TH)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	2	-	4	V	
r _{DS(ON)}	Drain to Source On Resistance	$I_D = 50A, V_{GS} = 10V$	-	0.013	0.016		
		$I_D = 25A, V_{GS} = 6V$	-	0.019	0.029	0	
		I _D = 50A, V _{GS} = 10V, T _J = 175°C	,	0.032	0.037	Ω	

Figure 9. Drain to Source On Resistance vs Drain Current

Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature

17

Effect of Technology on R_{DS(ON)}

- · For a given technology
 - Increasing the required V_{DS} max rating will increase the $R_{\text{DS}(\text{ON})}$ for the same die size
 - Increasing the die size will decrease R_{DS(ON)}
- One of several important targets when developing newer MOSFET technologies is to improve the specific R_{DS(ON)}
 - Formally measured as $R_{\text{DS}(\text{ON})}\,x$ square millimeter
 - Often simply R_{DS(ON)} x square
- Our new SuperFETTM technology has a lower specific R_{DS(ON)} than our CFET technology
 - CFET technology 0.65Ω/600V device fits into D²PAK
 - SuperFET technology $0.19\Omega/600V$ device fits into D^2PAK

puwer Comparison of MOSFET Key Parameters								
75V MOSFET techno	ology trends - Compa	aring MOSFETs of equal die size)					
	HUF75545P3 (Older Planar)	FDB045AN08A0 (Newer Trench)						
R _{DS(on)}	10mΩ	4.5mΩ						
Q_g	235nC	138nC						
P_d	270W	310W						
t _{rr} (@ 25°C)	100ns	53ns						
Q _{rr} (@ 25°C)	300nC	54nC						
22		FAIRCHIL						

DC Characteristics

- · The transfer and saturation characteristics show the relationship between V_{GS} , I_D and V_{DS}
 - · If not otherwise specified, the forward transconductance, gm, which is the incremental change in In per change in $V_{\mbox{\scriptsize DS}},$ can be determined from the transfer characteristics
 - · The saturation characteristics show the boundary between linear and saturation modes, and can also be used to estimate gm
- In saturation mode, I_D= gm(V_{GS}-V_{TH}): used when considering switching

Maximum Permitted Gate Voltage

- The maximum permitted gate voltage, V_{GS} max is specified in the absolute maximum ratings of the datasheet
 - · If this value is exceeded, the MOSFET will be destroyed
- Oscillation on the gate can lead to transient voltages, which could exceed $V_{\mbox{\scriptsize GS}}\,\mbox{max}$ and therefore destroy the gate
 - · Pay particular attention to the gate drive layout
 - · Keep the gate drivers very close to the gate
- If using negative gate drive on the MOSFET, which we generally do not recommend, note that the V_{DS} max rating will also be reduced by the amount of the negative gate drive

Switching Times for Resistive Loads

- **Switching Time Test Circuit**
- Switching times for resistive loads are measured with specified $V_{\text{GS}},\,V_{\text{DS}}$ and I_{D}
 - Here, R_g =0 during the on time, R_g = R_{GS} during the off time
 - · Alternatively, a gate resistor is used
- · Most MOSFET switching applications have inductive loads
 - For these applications, the above timing diagram is less useful than the gate charging characteristics reviewed later

27

MOSFET Selection Criteria DC Operation

Main Criteria

- Voltage Rating (V_{DS} max)
- R_{DS(ON)}
- V_{GS} needed to switch on device sufficiently
- · Package type (through hole or surface mount)
- · Package thermal characteristics

Supplementary criteria

· Peak current rating

Selection and Thermal Calculation Example

Example:

A switch is needed for the following DC drive application:

• V_{bus}: 48V (from local power supply)

• Nominal current: 4A

Peak current: 8A for 2 seconds (infrequently)

Ambient temperature: 85 deg C max
 DPAK (TO252) no copper area for cooling permitted

Select a MOSFET that can do this

· Taking absolute worst case assumptions

· Taking realistic assumptions

Ignore switching losses

29

Selection Steps

- The bus voltage is a well-regulated 48V supply
 - Fairchild offers 60V, 75V, 80V, 100V MOSFETs in DPAK
 - · Select 75V to give sufficient margin
- · From the FDDxxAN08 datasheets
 - Thermal resistance, junction-to-ambient for DPAK is 100K/W
 - Maximum junction temperature is 175°C

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance Junction to Case TO-252	1.11	°C/W
$R_{\theta JA}$	Thermal Resistance Junction to Ambient TO-252	100	°C/W
R _{θJA}	Thermal Resistance Junction to Ambient TO-252, 1in2 copper pad area	52	°CM

Selection Steps: Power Dissipation

Junction Temperature = Maximum Ambient Temperature +

Thermal Resistance x Power Dissipation

Thermal Resistance = 100 K/W

Junction Temp Max = 175° C

Ambient Temp Max = 85° C

Power Dissipation Max = $(175 - 85)/100 = 0.9W = I_{load}^2 x R_{DS(ON)}$

(Switching losses have been ignored)

31

Selection Steps: Determining R_{DS(ON)}

 I_{load}^2 x $R_{DS(ON)} = 0.9W$ (in the absence of switching losses)

As I_{load} = 4A, $R_{DS(ON)}$ needs to be less than 56 milliohms

The R_{DS(ON)} specification must be met at 175° C

Choose the smallest device (device with the highest $R_{\rm DS(ON)})$ to meet this requirement: here the FDD16AN080A

On Characteristics

V _{GS(TH)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	2	-	4	V
r _{DS(ON)}	Drain to Source On Resistance	I _D = 50A, V _{GS} = 10V		0.013	0.016	
		I _D = 25A, V _{GS} = 6V	-	0.019	0.029	0
		I _D = 50A, V _{GS} = 10V, T _J = 175°C	-	0.032	0.037	Ω

Calculation of Die Temperature at 4A Continuous Current

- The calculation of die temperature using the previous formula will give a very conservative result
 - 100 x I_{load}^2 x $R_{DS(ON)}$ + 85 = 100 x 16 x 0.037 + 85 = 144° C
 - \bullet Reason: the $R_{DS(ON)}$ rating used is the 175 $^{\!o}$ C rating
- So we calculate the temperature at 4A using iteration
 - \bullet The $R_{\text{DS}(\text{ON})}$ versus temperature curve is approximated as a line
 - R_{DS(ON)} = 1, T = 25° C
 - $R_{DS(ON)} = 2$, $T = 160^{\circ} C$
 - Here R_{DS(ON)} is normalized with respect to the 25° C value
- · The iteration spreadsheet is shown on the following page
 - The die temperature is around 125° C

Iteration Spreadsheet

Thermal resistance	100	K/W	Thermal resistance	1.11	K/W
Current	4	Α	Current	8	Α
Step	Temperature	Rdson	Step	Temperature	Rdson
		0.0140			0.0285
1	85.00	0.0202	1	125.81	0.0245
2	117.36	0.0236	2	125.53	0.0244
3	122.72	0.0241	3	125.53	0.0244
4	123.61	0.0242	4	125.53	0.0244
5	123.76	0.0242	5	125.53	0.0244
6	123.79	0.0242	6	125.53	0.0244
7	123.79	0.0242	7	125.53	0.0244
8	123.79	0.0242	8	125.53	0.0244
9	123.79	0.0242	9	125.53	0.0244

35

Calculation of Temperature After the 8A, Two Second Long Pulse

- For estimation of the heating effect of the short 2 second pulse, we used the thermal resistance junction-to-case
- This assumes that
 - the die heats up in that short time (see thermal impedance curve in the datasheet)
 - the PCB does not heat up in that time
- For the short pulse, the extra heating is only a few degrees, so there is not expected to be a problem with this pulse
 - Full thermal modeling and verification by experiment is needed to validate this

Thermal Characteristics					
$R_{\theta JC}$	Thermal Resistance Junction to Case TO-252	1.11	°C/W		
$R_{\theta JA}$	Thermal Resistance Junction to Ambient TO-252	100	°C/W		
R _{e.IA}	Thermal Resistance Junction to Ambient TO-252, 1in2 copper pad area	52	°C/W		

The Importance of Avalanche Current

- The avalanche current I_{AS} , together with the time in avalanche, t_{AV} , are the factors determining whether a part will fail in avalanche or not
 - The failure mode which will destroy a device in avalanche is triggered by an effect involving heating

$$\begin{aligned} & \text{maxenergy} = \text{I}_{\text{AS}}^2 \times \text{constant} \times \text{t}_{\text{AV}} \\ & \text{I}_{\text{AS}}^2 \times \text{t}_{\text{AV}} = \text{constant2} \end{aligned}$$

· The avalanche energy is less important

41

Effect of Temperature on Breakdown Voltage

- The breakdown voltage increases with temperature
 - As the avalanche process heats up the die, the effective breakdown voltage is often higher, typically 30%
- At low temperatures, the breakdown voltage and the ability to block voltage drops

Normalized Drain to Source Breakdown Voltage vs. Junction Temperature

FAIRCHILD SEMICONDUCTOR

Avalanche Rating for Medium Voltage MOSFETs

- The maximum I_{AV} specification needs to be derated for higher temperature operation
- · For Fairchild Semiconductor automotive-rated parts, we provide curves showing the I_{AV} at junction temperatures of 25° C and 150° C

Inductive Switching Capability

$$\boldsymbol{t}_{\text{AV}} = \frac{\boldsymbol{L}\boldsymbol{I}_{\text{AS}}}{\boldsymbol{B}_{\text{VDSS}} - \boldsymbol{V}_{\text{DD}}}$$

$$\boldsymbol{t}_{\text{AV}} = \frac{\boldsymbol{L}\boldsymbol{I}_{\text{AS}}}{\boldsymbol{B}_{\text{VDSS}} - \boldsymbol{V}_{\text{DD}}} \qquad \qquad \boldsymbol{E}_{\text{AS}} = \frac{1}{2}\boldsymbol{L}\boldsymbol{I}_{\text{AS}}^{2} \times \frac{\boldsymbol{B}\boldsymbol{V}_{\text{DSS}}}{\boldsymbol{B}\boldsymbol{V}_{\text{DSS}} - \boldsymbol{V}_{\text{DD}}}$$

FAIRCHILD

Avalanche Rating for High Voltage MOSFETs

For high voltage MOSFETs, we specify I_{AS} max and E_{AS} max at 25° C

Absolute Maximum Ratings To = 25°C unless otherwise noted

Symbol	Parameter	Parameter			
D	Drain Current - Continuous (T _C = 25°C)		11	11*	А
	- Continuous (T _C = 100°C)		7	7*	А
l _{DM}	Drain Current - Pulsed	(Note 1)	33	33*	Α
V _{GSS}	Gate-Source Voltage		± 30		V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	340		mJ
AR	Avalanche Current	(Note 1)	11		А
E _{AR}	Repetitive Avalanche Energy	(Note 1)	12.5		mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	4.5		V/ns

- Notes: Notes: 1. Repetitive Rating: Pulse width limited by maximum junction temperature 2. $I_{AS} = 5.5A$, $V_{DD} = 50V$, $R_{G} = 25 \Omega$, Starting $T_{J} = 25^{\circ}C$ 3. $I_{SD} \le 11A$, $di/dt \le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_{J} = 25^{\circ}C$ 4. Pulse Test: Pulse width $\le 300\mu s$, Duty cycle $\le 2\%$

- 5. Essentially independent of operating temperature

FAIRCHILD

Internal Capacitances Affecting Losses

- The diagram shows the three capacitances that affect switching losses
- These capacitances cause energy losses in two ways:
 - C_{gd} and C_{gs} slow down the switching on of the MOSFET, which increases the switching losses
 - The energy loss from charging the capacitances back and forth during switching cycles

4

power franchise

First Stage of Switching

- During the first stage of switching, nothing much happens
- The gate is charged up to the V_{TH} threshold
- Some energy, but not much is needed to charge C_{gs} and C_{gd} to this level

Second Stage of Switching

- When the gate voltage exceeds the threshold voltage, current starts to flow through the MOSFET
- The MOSFET is now working as follows:

$$I_D = gm(V_{GS} - V_{TH})$$

- The gate voltage increases, which increases the drain current until the test current in the inductor is reached
- This happens at the voltage V_{SP}=I_D/gm+V_{TH}

FAIRCHILD

49

Third Stage of Switching

- The high drain voltage is now sustained only by the C_{gd} capacitance
- During the third stage, the capacitor is discharged
 - The energy in this capacitance is relatively small
 - But it slows down the voltage waveform and has a major effect on the switching losses

Gate Loss Calculation

- Before we calculate the losses for the third stage, we will introduce the concept of charge, rather than capacitance
 - We note Q=CV and Q=It
- The stray capacitances C_{gd} , C_{gs} etc. are normally expressed as gate charges Q_{gd} , Q_{gs} etc.
 - · This simplifies the loss calculation to

Time to charge $Q_{ad} = Q_{ad}$ / Gate drive current

Q: charge, C: capacitance, V:voltage, I: current, L: inductance, t: time

51

Third Stage of Switching Example

- Take the datasheet test conditions as an example
 - $I_D = 50A$
 - V_{DD} = 40V
 - I_a = 1mA
- From datasheet
 - Q_{gd} = 7.2nC
 - Assume V_{SP} = 4V
- \bullet Energy loss in C_{gd} is
 - 0.5 x Q x V
 - 0.5 x 7.2nC x (40-4)V
 - Loss = 0.129mJ

- Time to charge Qgd is
 - $t = Q_{gd}/I_g$
 - $t = 7.2nC/1mA = 7.2\mu s$
- Power loss in third stage
 - P = average V x current
 - $P = 0.5 \times 40 V \times 50 A$
 - $P = 1000W (for 7.2\mu s)$
- Energy loss per cycle due to slower switching
 - 1000W x 7.2µs = 7.2mJ

Summary of Switching on Losses

Stage 1: Charging up to V_{TH}

• Small gate losses No ramp up losses

Stage 2: Current ramp up

• Small gate losses 5.7mJ loss in ramp up

• Stage 3: V_{DS} ramp down

• Small gate losses 7.2mJ loss in ramp up

· Stage 4: Final charging of gate

Small gate losses
 No ramp up losses

• Total gate losses using $Q_{g(tot)}$ of 47nC

• 0.5 x 47nC x 10V = 0.235 mJ

Total losses: 5.7mJ + 7.2mJ + 0.235mJ = 13.135 mJ

55

Total Switching Losses

- · Up until now, we have considered the switch on losses
 - The switch off behavior is identical to the switch on behavior, only in reverse
- · So the total switching losses are
 - · Switch on losses + switch off losses
- The switching energy is converted to switching power loss by multiplying by frequency
 - $P_{sw} = (E_{on} + E_{off}) x$ frequency
 - So for 200Hz switching:
 - $P_{sw} = (13.1+13.1)$ mJ x 200Hz = 5.24W

$$P_{\text{SW}} = \left(\frac{V_{\text{IN}} \times I_{\text{OUT}}}{2}\right) \left(F_{\text{SW}}\right) \left(\frac{Q_{\text{GS2}} + Q_{\text{GD}}}{I_{\text{DRIVER(H-L)}}} + \frac{Q_{\text{GS2}} + Q_{\text{GD}}}{I_{\text{DRIVER(L-H)}}}\right)$$

Safe Operating Area

- During switching (at the end of the second stage), we have a peak power dissipation of 2000W
 - V_{DS} = 50V
 - I_D = 40A
- The safe operating area plots shows which voltages and currents can be sustained for which time, if T₁ max is not exceeded

Forward Bias Safe Operating Area

59

Gate Oscillation Revisited

- Earlier we noted that gate oscillation can cause an overshoot on the gate, which could destroy the silicon
- A second problem with gate oscillation is that the maximum current and maximum voltage point of the safe-operating area will be crossed multiple times
 - This could destroy the part, or at best, greatly increase the switching losses

Synchronous Buck Topology

- Our session objective was to understand MOSFET selection for the synchronous buck topology
- The synchronous buck topology output stage is similar to a classical PWM output stage on a microcontroller followed by a filter
- The duty cycle D is controlled to give the right output voltage
 - In steady state D = V_{out}/V_{in}

61

FAIRCHILD

power franchise

Synchronous Buck Topology

- In the steady state condition, consider the case with the high side device ON
- · The low side device is OFF
- Current flows through the high side device into the inductor

62

- · The high side device switches OFF
 - As the low side device is OFF, the inductor current will be taken up by the low side diode
- The switching node voltage V_s is therefore NEGATIVE

FAIRCHILD

- · It is important to make sure that the high side switch is turned off to avoid cross-conduction (also called shoot through)
- · Current flows upwards
- The switching node voltage V_s is still negative

Both OFF Again

- · The low side device switches OFF
- As the high side device is OFF, the inductor current will be taken up by the low side diode
- The switching node voltage V_s is still **NEGATIVE**

power franchise Voltage on V_S During Switching **High Side** Low Side ON ON V_{DD} V_{S} **0V** $\mathsf{IxR}_{\mathsf{DS}(\mathsf{ON})}$ V_{D} Diode Diode ON ON The negative voltage scale has been exaggerated FAIRCHILD 64

Synchronous Buck Switches

- Application presumed to be 12V input, 1.5V output
- The High Side switch will be ON for a short time as the duty cycle will be low
 - Switching losses per cycle will be high as the full current and the full input voltage need to be switched
 - Due to the low duty cycle, the conduction losses will be less dominant than for an equivalent Low Side switch
- · The Low Side switch is ON for most of the time
 - · Conduction losses will therefore dominate
 - Switching losses per cycle are lower as the full input current is switched at the diode voltage

Selecting Power MOSFETs for Synchronous Buck Applications: Step 1

 Calculate the high side conduction loss per $m\Omega$ of $R_{DS(ON)}$:

$$P_{\text{CONDHS}} = I_{\text{OUT}}^{2} \times \frac{V_{\text{OUT}}}{V_{\text{IN}}} \times 10^{-3}$$

 and the switching loss per nC of gate charge:

$$P_{\text{SWHS}} = V_{\text{IN}} \times I_{\text{OUT}} \times F_{\text{SW}} \times \left(\frac{1}{I_{\text{DRIVER}}}\right) \times 10^{-9} \\ P_{\text{SWLS}} \approx 1 \times I_{\text{OUT}} \times F_{\text{SW}} \times \left(\frac{1}{I_{\text{DRIVER}}}\right) \times 10^{-9}$$

 Calculate the low side conduction loss per milliohm of R_{DS(ON)}:

$$P_{\text{CONDLS}} = \left(1 - \frac{V_{\text{OUT}}}{V_{\text{IN}}}\right) \times I_{\text{OUT}}^{2} \times 10^{-3}$$

· and approximate the switching loss per nC of gate charge:

$$P_{\text{SWLS}} \approx 1 \times I_{\text{OUT}} \times F_{\text{SW}} \times \left(\frac{1}{I_{\text{DRIVER}}}\right) \times 10^{-9}$$

Selecting Power MOSFETs for Synchronous Buck Applications: Step 2

· We will consider two different examples to show how the operating conditions affect the MOSFET choice

Sync. Buck data input			conduction loss per mOhm			
Vin	5	V	high side 0.06600 low side 0.0340			
Vout	3.3	V	switching loss per nC.			
lout	10	Α	high side	0.00676	low side	0.00135
fsw	230000	Hz				
ldrv	1.7	Α				

Sy	nc. Buck data	conduction loss per mOhm					
Vin	12	V	high side 0.04000 low side 0.360				
Vout	1.2	V		switching loss per nC.			
lout	20	Α	high side	0.04235	low side	0.00353	
fsw	300000	Hz		<u> </u>	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
ldn	17	Λ					

Selecting Power MOSFETs for Synchronous Buck Applications: Step 3

- · Build a spreadsheet for the selected devices, calculate the loss. Select the MOSFET based on package, cost and loss data. Check the results in a more detailed calculation and lab test
- · Use FDD8896 HS and LS for example 1
 - FDD8874 is slightly better for the low side, but we recommend using just one part type
- Use FDS6294 HS and FDD8870 LS for example 2
 - If no cooling area is allowed, use two FDD8870 devices

				Example 1	loss in W	Example 2	loss in W
part		Rdson	Qg typ	HS1	LS1	HS2	LS2
FDD8870	DPAK	3.9	91	0.87	0.25	4.01	1.73
FDD8874	DPAK	5.1	54	0.70	0.25	2.49	2.03
FDD8896	DPAK	5.7	46	0.69	0.25	2.18	2.21
FDD8876	DPAK	8.2	34	0.77	0.32	1.77	3.07
FDD8880	DPAK	10	23	0.82	0.37	1.37	3.68
FDS6294	SO-8	11.3	10	0.81	0.40	0.88	4.10
FDD8878	DPAK	15	19	1.12	0.54	1.40	5.47

69

FAIRCHILD

