

# Aror University of Art, Architecture, Design and Heritage SUKKUR, Sindh

Department of Multimedia and Gaming Course: Data Structures CSC-221 (Practical) Instructor: Engr. Fatima Jaffar

#### Lab No. 2

| <b>Objective:</b> Ur     | nderstanding and implem                                  | enting array o    | perations                 |
|--------------------------|----------------------------------------------------------|-------------------|---------------------------|
| Name:                    |                                                          | Roll Number:      |                           |
| Score:                   | Signature:                                               | Date:             | 28/ 08/ 2024              |
|                          |                                                          |                   |                           |
| Introduction             | n•                                                       |                   |                           |
|                          | u variable that can store mu                             | ultiple values of | the same type.            |
| For example              |                                                          | impro varaes or   | one sume type.            |
| Suppose a cl             | ass has 27 students, and we do f creating 27 separate va |                   | •                         |
| thom: mstea              |                                                          | rade[27];         | simply create an array.   |
| Here, <b>grade</b> type. | is an array that can hold a                              | maximum of 27     | elements of <b>double</b> |
| Array Dec                | elaration:                                               |                   |                           |
|                          | dataType arrayN                                          | ame[arraySize];   |                           |
| For Example:             |                                                          |                   |                           |
|                          | int x[6];                                                |                   |                           |
|                          | int - type of elem                                       | ent to be stored  |                           |
|                          | <b>x</b> - name of the ar                                | тау               |                           |
|                          | <b>6</b> - size of the arra                              | ay                |                           |

## **Access Elements in Array:**

Each element in an array is associated with a number. The number is known as an array index. We can access elements of an array by using those indices.

// syntax to access array elements
 array[index];



#### **Few Things to Remember:**

- The array indices start with 0. Meaning x[0] is the first element stored at index 0.
- If the size of an array is n, the last element is stored at index (n-1). In this example, x[5] is the last element.
- Elements of an array have consecutive addresses. For example, suppose the starting address of x[0] is 2120.
- Then, the address of the next element x[1] will be 2124, the address of x[2] will be 2128, and so on.

Here, the size of each element is increased by 4. This is because the size of int is 4 bytes.

# **Array Initialization:**

```
// declare and initialize and array int x[6] = \{19, 10, 8, 17, 9, 15\};
```

## **Example 1: Displaying Array Elements**

```
#include <iostream>
using namespace std;
int main() {
  int numbers[5] = {7, 5, 6, 12, 35};

// Printing array elements
  for (int i = 0; i < 5; ++i) {
    cout << numbers[i] << " ";
  } return 0;}</pre>
```

#### LAB TASKS

- 1. Write program that takes Inputs from User and Store Them in an Array.
- 2. Write a program that Displays Sum and Average of Array Elements Using for Loop
- 3. Write a loop to find and print the maximum and minimum element in the array.
- 4. Write a program to search for a value in the array.
- 5. Declare an array of only 0s and 1s, write a problem to count the occurrences of 0s.
- 6. Write a program to add a new value in the array on 0 index.
- 7. Write a program to add a new value at the end of the array.
- 8. Ask the user to input a position and a new value, then update the array at that position. Print the updated array.
- 9. Write a program to delete a number at index 0 of an array.
- 10. Write a program to delete a number at last index of an array.