網有節範大學

上机报告

课程名称:《》

姓名:

学号:

专业:

日期: 2025年4月12日

目录

1	问题	重还	1
	1.1	问题描述	1
	1.2	问题分析	1
2	符号	说明 ····································	2
3	第一	问求解	2
	3.1	数值计算	2
	3.2	结论	2
4	第二	问求解	2
	4.1	平均子力价值的计算	2
	4.2	不同初始位置对平均子力价值的影响	2
	4.3	收敛过程	3
5	第三	·····································	5
	5.1	理论背景	5
	5.2	实验设计	5
	5.3	收敛过程	5
	5.4	实验结果	5
参	考文献	状	5
附	录 A	文件清单	7
附	录 B	pai.py 文件	7
附	录 C	plot1.py 文件	7
附	录 D	plot2.py 文件	7
附	录 E	average.py 文件	7

1 问题重述

1.1 问题描述

图 1: "象"的可能位置

1.2 问题分析

题目要求我们完成如下目标:

2 符号说明

表 1: 符号说明表

符号	含义	
X_n P	第 n 步时象的位置 转移概率矩阵	

3 第一问求解

- 3.1 数值计算
- 3.2 结论
- 4 第二问求解
- 4.1 平均子力价值的计算

$$avg x = \frac{1}{7} \sum_{i=1}^{7} x_i$$

$$= \frac{1}{7} (3 \times 0.1250 + 1 \times 0.1250 + 2 \times 0.1250$$

$$+ 4 \times 0.2500 + 2 \times 0.1250 + 1 \times 0.1250 + 3 \times 0.1250)$$

$$= \frac{1}{7} (0.3750 + 0.1250 + 0.2500 + 1.0000 + 0.2500 + 0.1250 + 0.3750)$$

$$= \frac{1}{7} \times 2.5000$$

$$= 0.3571$$

4.2 不同初始位置对平均子力价值的影响

我们的算法思路大致如下:

- 1. **初始化**: 对 $\forall X_0 = i \in S$ 作为初始位置。
- 2. **迭代**:对于 n=1 到 N,考虑 X_n 的分布,用程序对分布进行模拟:

$$X_n \sim P(X_{n-1}, \cdot)$$

$$\bar{V}_n = \frac{1}{n} \sum_{k=1}^n V(X_k)$$

3. **取平均**:将模拟过程重复 M 次取平均值作为最终结果。

4.3 收敛过程

我们将模拟过程进行可视化处理,得到图2所示的收敛过程。

图 2: 不同初始位置的价值收敛过程

表 2: 轨道长度与平均子力价值

轨道长度 N	平均子力价值
10	2.5000
50	2.3600
100	2.3900
500	2.4940
1000	2.4760
5000	2.5024
10000	2.5177

5 第三问求解

- 5.1 理论背景
- 5.2 实验设计
- 5.3 收敛过程
- 5.4 实验结果

图 3: 另一种收敛过程

参考文献

- [1] 百度百科. 象棋. https://baike.baidu.com/item/%E8%B1%A1%E6%A3%8B, 访问时间: 2025 年 4 月 12 日.
- [2] 刘海洋. LATEX 入门. 电子工业出版社, 北京, 2013.

A 文件清单

表 3: 文件清单

序号	文件名	类型	用途
1	pai.py	Python	计算
2	sim.py	Python	模拟
3	plot1.py	Python	绘制
4	plot2.py	Python	绘制
5	average.py	Python	绘制

B pai.py 文件

Listing 1: pai.py

C plot1.py 文件

Listing 2: plot1.py

D plot2.py 文件

Listing 3: plot2.py

E average.py 文件

Listing 4: average.py