1. Siguin E_1, E_2, E_3 espais vectorials sobre un cos K, i siguin f i g dues aplicacions lineals,

$$f \colon E_1 \to E_2, \quad g \colon E_2 \to E_3.$$

- (a) Demostreu que Im $f = \ker g$ si, i només si, Im $g^* = \ker f^*$.
- (b) Aprofiteu l'apartat anterior per veure que si V i W són dos espais vectorials i $\varphi \colon V \to W$ és una aplicació lineal, aleshores φ és injectiva si, i només si, φ^* és exhaustiva, i φ és exhaustiva si, i només si, φ^* és injectiva.
- 2. Sigui K un cos. Sigui $E=K_n[x]=\{p(x)\in K[x]\mid \operatorname{grau}(p(x))\leq n\}.$
 - (a) Donat $a \in K$, proveu que l'aplicació $\omega \colon E \to K$ definida per $\omega(p(x)) = p(a)$ és un element de E^* . Determineu la dimensió i una base de $\operatorname{Ker}(\omega)$.
 - (b) Per $i \in \{0, ..., n\}$, considerem l'aplicació $\omega_i : E \to K$ $\omega_i(p(x)) = p(i)$. Proveu que $\mathcal{B} = (\omega_0, ..., \omega_n)$ és una base de E^* si i només si K té característica 0 o característica p > n. Determineu una base $(p_0(x), ..., p_n(x))$ de E tal que \mathcal{B} sigui la base dual d'aquesta base.
 - (c) Ara fixem $K = \mathbb{R}$, i suposem que n > 0. Considerem l'aplicació:

$$\alpha \colon \quad \mathbb{R}_n[x] \quad \to \quad \mathbb{R}$$

$$p(x) \quad \mapsto \quad \int_0^1 p(x) dx$$

- (i) Demostreu que α és una forma lineal sobre $\mathbb{R}_n[x]$.
- (ii) Pel que hem vist anteriorment, tenim que $(\alpha_0, \ldots, \alpha_n)$ és una base de $\mathbb{R}_n[x]^*$ on $\alpha_i(p(x)) = p(i)$. Deduïu que existeixen escalars $\lambda_0, \ldots, \lambda_n \in \mathbb{R}$ tals que per a tot $p \in \mathbb{R}_n[x]$,

$$\int_0^1 p(x)dx = \sum_{i=0}^n \lambda_i p(i).$$

(iii) Determineu els escalars λ_i per al cas n=2.