Università di Trento - Dip. di Ingegneria e Scienza dell'Informazione CdL in Informatica, Ingegneria dell'informazione e delle comunicazioni e Ingegneria dell'informazione e organizzazione d'impresa a.a. 2017-18 - PIAZZA 3 - "Primi passi in t."

1.1) Savete in forms algebrica à seguenti numeir complemi:

a)
$$(2i+3)(1-i) = 2i + 2i + 3 - 3i = 5-i$$

b)
$$\frac{1}{1+i} = \frac{1}{1+i} \cdot \frac{1-i}{1-i} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2}i$$
.

c)
$$\frac{(1+2i)^2}{1-i} = \frac{(1+2i)^2}{1-i} \cdot \frac{1+i}{1+i} = \frac{(1+4i-4)(1+i)}{2} = \frac{(-3+4i)(1+i)}{2} = \frac{-3-3i+4i-4}{2} = \frac{-7}{2} + \frac{i}{2}$$

b)
$$\frac{1}{1-i} + \frac{3}{2i} = \frac{1+i}{(1-i)(1+i)} + \frac{3}{2i} \frac{(-2i)}{(-2i)} = \frac{1+i}{2} - \frac{36i}{42}$$

$$= \frac{1}{2} - i = \frac{1}{2} + i$$

1.3)
$$z=2i$$
 $Re((z+1)(\overline{z}+3)) = Re((2i+1)(-2i+3)) =$

$$= Re(4+6i-2i+3) = Re(7+4i) = \overline{7}$$

$$Im(|z|i+\overline{(z+1)}) = Im(2i+\overline{(2i+1)}) = Im(2i+1-2i) = 0$$

$$2=3(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}).$$

c)
$$z = \frac{1 - i}{1 + i} = \frac{1 - i}{1 + i} \cdot \frac{1 - i}{1 - i} = \frac{1$$

Rez=x

$$1mz=y$$
 $\begin{cases} 2x-y+1>0 \end{cases}$ $\begin{cases} y \leq 2x+1 \\ -1 \leq y \leq 1 \end{cases}$

sono futti gli zet che distano da z=-1 esattamente Imz.

$$|z+1| = |mz|$$
 $\Rightarrow \int |mz| > 0$ $|z+1|^2 = (|mz|^2)^2 \Rightarrow \int |mz| > 0$ $|(Rez+1) + |mz||^2 = (|mz|^2)^2$

$$\begin{cases}
|m z| > 0 \\
(Rez + 1)^2 + (|mz|^2 = (|mz|^2 + 1)^2 = 0
\end{cases}$$

$$\neq \forall z = -1 + i \gamma \quad y \in \mathbb{R}, y > 0$$
.

1.6) i)
$$2z-3\overline{z}=3i+1$$
: pomiamo $z=x+iy$. Allora l'eq. ni naccire $2(x+iy)-3(x-iy)=3i+1$, orna

$$2x-3x+i(2y+3y)=3i+1$$
, da cui seque outoito chedere essere $-x=1$ e $5y=3$. Risulta $z=-1+3i$.

Porismo
$$Z=X+iy$$
. Allow lequencies in vacine $(X+iy)^2=2(X-iy)$, e directed $X^2+2xyi-y^2=2X-2yi$, or $(X^2-2X-y^2)+(2xy+2y)i=0(+i0)$. Altowino allows $\begin{cases} X^2-2X-y^2=0\\ 2xy+2y=0 \end{cases}$ $\Rightarrow \begin{cases} X^2-2X-y^2=0\\ 2xy+2y=0 \end{cases}$ Risulta allow $y=0$ e $x^2-2x=0$ $x=-1$ e $3-y^2=0$. Le 2 ricercate romo allow $z=0$, $z=2$, $z=-1$. Poismo $z=X+iy$. Allow l'equazione si rische $(x+iy)^2=2(x-iy)i$ e directa $x^2+2xyi-y^2=2xi+2y$, or $x^2-y^2-2y+(2xy-2x)i=0(+i0)$. Rimita allow $x^2-y^2-2y+(2xy-2x)i=0$. Rimita allow $x=0$ e $y^2+2y=0$ $y=1$ e $y^2-3=0$. Le z ricercate romo allow $z=0$, $z=0$, $z=2$.

 $Z = -\sqrt{3} + i \qquad e \qquad Z = \sqrt{3} + i \qquad \vdots$

1.7)
$$Z = -1 + i$$
 $Z = \sqrt{2} \left(-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} i \right) = \sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right)$

$$Z = \sqrt{4} = \left(\sqrt{2} \right)^4 \left(\cos \frac{4 \cdot 3\pi}{4} + i \sin \frac{4 \cdot 3\pi}{4} \right) = 4 \left(-1 \right) = -4.$$

$$Z = 1 - \sqrt{3}i$$

$$Z = 2 \left(\frac{1}{2} - \frac{\sqrt{3}i}{2} i \right) = 2 \left(\cos \left(-\frac{\pi}{3} \right) + i \sin \left(-\frac{\pi}{3} \right) \right)$$

$$Z = 2^4 = 2^4 \left(\cos \left(-4\pi \right) + i \sin \left(-4\pi \right) \right) = 16 \left(-\frac{1}{2} + \frac{\sqrt{3}i}{2} i \right)$$

$$Z = -8 + 8\sqrt{3}i.$$