ECE519B/496A Selected Topics

MIMO and UWB Communications

Part 1 Introduction and Review

Xiaodai Dong

Course information

Instructor: Xiaodai Dong

Schedule:

Lectures: Mondays, Thursdays 11:30 am-12:50 pm

Location: ECS 128

Office Hours:

Thursdays 1:00 pm-2:00 pm or by email appointment EOW 439

CourseSpaces for course materials

Optional Textbooks

Fundamentals of Wireless Communication by D. Tse and P. Viswanath

Optional Textbooks

Wireless Communications by A. Goldsmith

Marking Scheme

Assignments: 15%

Mid-term 30%
 Date: Feb. 28, 2019 in class

Presentation 25%

Project 30%

Instructor

- Professor at UVic (ECE)
- 2002-2004: Assistant professor at U of Alberta (ECE)
- 1999-2002: Wireless Division, Nortel Networks
- Office: EOW 439
- Email: xdong@ece.uvic.ca
- My research: Wireless communication and signal processing
 - www.ece.uvic.ca/~xdong
 - https://scholar.google.ca/citations?user=esl-KA0AAAJ&hl=en&oi=ao

Course Objectives

 Introduce the fundamentals of wireless channels, orthogonal frequency division multiplex (OFDM), multiple input multiple output (MIMO), 4G mobile standards, narrowband internet of things (NB-IoT), and new technologies of 5G: massive MIMO, millimeter wave

Course Outlines

- Wireless propagation and channel modeling
- OFDM
- MIMO
- 4G LTE specifications
- Carrier aggregation
- LTE-U, LAA
- NB-IoT
- Millimeter wave (mmWave) channels
- Massive MIMO

Prerequisites

- ECE 350, 450
- Signals and systems
 - LTI systems
 - Convolution
 - Fourier series and Fourier transform
 - Sampling theorem
- Complex numbers
- Probability, random variables and stochastic process

Introduction

- Wireless industry is huge and the driving force to the internet of things (IoT).
- There are various wireless technologies of different
 - data ratesbits/s
 - system capacity
 sum rate or # of users supported
 - coverage distance
 - power/energy efficiency wattz (joules) per bit or per km
 - latencyms

No single solution fits all applications.

- Cellular networks: 1G, 2G, 3G, 4G, upcoming 5G
 - Organization: 3GPP
 - Licensed spectrum
 - Global/regional deployment, mobility support
 - NB-IOT
 - Star topology, D2D in the talks

Wi-Fi

- Organization: WiFi Alliance
- Unlicensed ISM bands: 2.4 GHz, 5.8 GHz, 60 GHz
- 20+ meters indoor, greater distance outdoor
- 802.11a/b/g/n/ac/ax (2.4, 5 GHz), 802.11ad/ay (60 GHz)
- 802.11ah Wi-Fi Halow (sub-1 GHz)
- Star topology, peer to peer

4G LTE Network Architecture

Radio Access Networks (RANs)

evolved Packet Core Network

CSci5221: 3G/4G Cellular Network Architecture Overview

Base Transceiver Station (BTS)

BTS/ Cell site/ Cell tower

MOTOROLA

User Equipment

http://blog.gsmarena.com/take-peek-inside-galaxy-alpha-samsungs-first-metal-clad-smartphone/

Bluetooth/Bluetooth Low Energy

- Organization: Bluetooth Special Interest Group
- Unlicensed ISM band: 2.4 GHz
- Master/slave architecture, piconet (1 Master and up to 7 slaves)
- 10-60-240 meters
- Physical layer all the way to application profiles
- 25, 50 Mbps

IEEE 802.15.4 + Zigbee

- Organization: IEEE and Zigbee Alliance
- Unlicensed ISM bands: 2.4 GHz, 868 MHz (Europe, 915 MHz (USA, Australia)
- 10-300 meters
- IEEE 802.15.4: Low rate wireless personal area networks, physical layer and media access control layer
- Zigbee: wireless mesh networks, network layer, applications layer, etc.
- Low data rate, long battery life

- Low power wide area networks (LPWAN)
 - Many IoT applications need low data rate, long battery life and long distance communications.
 - NB-IoT and LTE-M are the low power solutions from cellular industry.
 - Other proprietary technologies gaining tractions.
 - Sigfox: BPSK, ultra narrowband (200Hz)
 - LoRa: chirped modulation, spread spectrum
 - https://www.link-labs.com/blog/sigfox-vs-lora
 - https://www.postscapes.com/long-range-wireless-iotprotocol-lora/
 - A few km to 15-30 km (miles), star topology, same ISM band
 - Build the network

	Europe	North America	China	Korea	Japan	India
Frequency band	867-869MHz	902-928MHz	470- 510MHz	920- 925MHz	920- 925MHz	865- 867MHz
Channels	10	64 + 8 +8	In definition by Technical Committee			
Channel BW Up	125/250kHz	125/500kHz				
Channel BW Dn	125kHz	500kHz				
TX Power Up	+14dBm	+20dBm typ (+30dBm allowed)				
TX Power Dn	+14dBm	+27dBm				
SF Up	7-12	7-10				
Data rate	250bps- 50kbps	980bps-21.9kpbs				
Link Budget Up	155dB	154dB				
Link Budget Dn	155dB	157dB				

Source: LoRa Alliance

OSI reference model for computer/communication networks

Source: CTIA

CTIA

CRTC.ca

Signal and channel model

The received signal is usually modeled as

$$y(t) = h(t) * s(t) + n(t)$$

where h(t) is the linear channel.

- In the previous chapters, we only considered
 - $-h(t) = \delta(t) \rightarrow AWGN$ channel
 - -s(t) has finite duration of T for each symbol
- We consider bandlimited channel h(t) and bandlimited signal s(t), because practical systems are all bandlimited.

I-Q transmitter for bandpass signals

Baseband processing

I-Q receiver for 2-D bandpass signals

Receiver

 How to detect the transmitted information from the noise corrupted received signal?

BPSK example

Received noisy signal

SNR = 5 dB

After matched filter and sampling

After MF noiseless signal

Geometric view

Equivalent channel

Figure 2.18 Set-up for applying Nyquist criterion.

When is
$$y_k = I_k$$
?

LTE Video

 https://www.youtube.com/watch?v=2nsEAw_Sir Q&index=2&list=PLE6yE0jB6BTMJXIXw4PS1k OqqZ9ty7eoG