Image editing in text2img models

Igor Ryabkov

Problem: a small edit to the prompt causes a global impact on the result image

A robotic fox in a spacesuit flies through a snow swirl, with lights and fir branches all around him

A robotic bear in a spacesuit flies through a snow swirl, with lights and fir branches all around him

Solutions:

- Prompt-to-prompt
- Dreambooth

Dreambooth

Goal: Using 3-5 images of the object, be able to generate it in different context

Input images

in the Acropolis

in a doghouse

in a bucket

getting a haircut

How can we specify our object to the model?

Using template: "[V] [class name]"

Example: "The [V] dog on the street"

What exactly is [V]?

- Words like "special", "my", "unique"?
- Random characters: "xxy5syt00"?

Best way to create [V]:

- Choose rare tokens
- Find which words they refer to
- Concatenate them

Often used: "sks"

Example: "The sks dog on the street"

Problems:

Language drift

Overfitting

Fine-tuning:

Reconstruction Loss "A [V] dog" Text → Image **Shared** Input images (\sim 3-5) Weights Image Text → Image "A dog" "A dog" Class-Specific Prior Preservation Loss

Class-specific Prior Preservation Loss:

$$\mathbb{E}_{\mathbf{x},\mathbf{c},\boldsymbol{\epsilon},\boldsymbol{\epsilon}',t}[w_t||\hat{\mathbf{x}}_{\theta}(\alpha_t\mathbf{x}+\sigma_t\boldsymbol{\epsilon},\mathbf{c})-\mathbf{x}||_2^2+$$

$$+\lambda w_{t'}\|\hat{\mathbf{x}}_{\theta}(\alpha_{t'}\mathbf{x}_{pr}+\sigma_{t'}\boldsymbol{\epsilon}',\mathbf{c}_{pr})-\mathbf{x}_{pr}\|_{2}^{2}]$$

Method capabilities:

Bottom view **♦**

Back view ▶

Art Renditions

Property Modification

Method capabilities:

Method limitations:

- incorrect context synthesis
- Context-appearance entanglement
- Overfitting

Input images

(a) Incorrect context synthesis

(b) Context-appearance entanglement

in the Bolivian salt flats on top of a blue fabric

(c) Overfitting

in the forest

Comparison

Method	DINO ↑	CLIP-I↑	CLIP-T↑
Real Images	0.774	0.885	N/A
DreamBooth (Imagen)	0.696	0.812	0.306
DreamBooth (Stable Diffusion)	0.668	0.803	0.305
Textual Inversion (Stable Diffusion)	0.569	0.780	0.255

Input Images

DreamBooth (Imagen)

DreamBooth (Stable Diffusion)

Textual Inversion (Stable Diffusion)

Fine-tuning

Inference

Comparison

No	class	noun:
	"A [7"

A [V]

A [V] on top of blue fabric

A [V] with a river in the background

 Method
 DINO↑
 CLIP-I↑

 Correct Class
 0.744
 0.853

 No Class
 0.303
 0.607

 Wrong Class
 0.454
 0.728

Incorrect class noun: "A [V] dog"

A [V] dog

A [V] dog on top of blue fabric

A [V] dog with a river in the background

Correct class noun: "A [V] sunglasses"

A [V] sunglasses

A [V] sunglasses on top of blue fabric

A [V] sunglasses with a river in the background

Prompt-to-prompt

Goal: without fine-tuning, be able to change a small aspect in a picture: change a word, add some context, change the intensity of a word

"a cake with decorations."

jelly bedns

"My fluffy bunny doll."

"Children drawing of a castle next to a river."

The importance of Cross-Attention Layer

It specifies the pixels that need to be changed

Algorithm

16 **Return** (z_0, z_0^*)

Algorithm 1: Prompt-to-Prompt image editing

```
1 Input: A source prompt \mathcal{P}, a target prompt \mathcal{P}^*, and a random seed s.
2 Optional for local editing: w and w^*, words in \mathcal{P} and \mathcal{P}^*, specifying the editing region.
3 Output: A source image x_{src} and an edited image x_{dst}.
4 z_T \sim N(0, I) a unit Gaussian random variable with random seed s;
z_T^* \leftarrow z_T;
6 for t = T, T - 1, ..., 1 do
7 z_{t-1}, M_t \leftarrow DM(z_t, \mathcal{P}, t, s);
    M_t^* \leftarrow DM(z_t^*, \mathcal{P}^*, t, s);
      \widehat{M}_t \leftarrow Edit(M_t, M_t^*, t);
       z_{t-1}^* \leftarrow DM(z_t^*, \mathcal{P}^*, t, s) \{ M \leftarrow \widehat{M}_t \};
        if local then
11
             \alpha \leftarrow B(\overline{M}_{t,w}) \cup B(\overline{M}_{t,w^*}^*);
12
         z_{t-1}^* \leftarrow (1-\alpha) \odot z_{t-1} + \alpha \odot z_{t-1}^*;
13
        end
15 end
```

Cross-Attention Layer

Text to Image Cross Attention

Cross Attenetion Control

Word swap:
$$Edit(M_t, M_t^*, t) := \begin{cases} M_t^* & \text{if } t < \tau \\ M_t & \text{otherwise,} \end{cases}$$

Prompt refinement:

$$(Edit(M_t, M_t^*, t))_{i,j} := \begin{cases} (M_t^*)_{i,j} \\ (M_t)_{i,A(j)} \end{cases}$$

if A(j) = Noneotherwise.

"A photo of a bear wearing sunglasses and having a drink."

Source image

"...wearing a squared sunglasses ... "

"...beer drink."

"...coffee drink."

"..wheatgrass drink."

Source image

"...mat black car ... "

"...old car ... "

"...at sunset."

"...in Manhattan."

Attention Re-weighting:

$$(Edit(M_t, M_t^*, t))_{i,j} := \begin{cases} c \cdot (M_t)_{i,j} \\ (M_t)_{i,j} \end{cases}$$

if $j = j^*$ otherwise.

"The picnic is ready under a blossom(\(\psi \)) tree."

"My colorful(\(\psi\)) bedroom."

Comparison

Table 1: **User Study results.** The participants were asked to rate: (1) background / structure preservation with respect to the source image, (2) alignment to the text, and (3) realism.

	VQGAN+CLIP	Text2Live	baseline	Ours
(1) Background / Structure \	1.84 ± 1.11	4.15 ± 1.09	3.38 ± 1.12	4.64 ± 0.64
(2) Text Alignment ↑	2.46 ± 1.16	2.89 ± 1.22	4.26 ± 1.03	4.55 ± 0.71
(3) Realism ↑	1.32 ± 0.70	2.36 ± 1.12	4.11 ± 0.93	4.42 ± 0.82