Министерство науки и высшего образования Федеральное государственное бюджетное образовательное учреждение высшего образования «Уфимский университет науки и технологий»

Кафедра АСУ

Отчет по лабораторной работе Дисциплина: «Теория принятия решений»

> Выполнил: ст. гр. ПИ-215Бз Швецов А.Е. Проверил: Ярцев Р.А.

Лабораторная работа №1

Тема: Решение задач линейного программирования и анализ чувствительности с помощью MS Excel.

Цель: изучить возможности надстройки Поиск решения пакета MS Excel для решения однокритериальных задач теории принятия решений.

Порядок выполнения работы:

- 1. Изучение теории и примера.
- 2. Построение математической модели проблемы в виде задачи линейного программирования.
- 3. Решение задачи с использованием надстройки Поиск решения пакета MS Excel.
- 4. Анализ чувствительности решения с использованием сценариев.
- 5. Составление отчёта по лабораторной работе, в котором представляется:
- Формулировка индивидуального задания;
- Математическая модель и пояснение к её построению;
- Снимок экрана монитора, содержащий табличную модель задачи, снимки отчетов по результатам, устойчивости и пределам, а также снимок отчета по сценариям с содержательными пояснениями к ним;
- В выводы по лабораторной работе.

Задание №14:

Из четырех видов сырья необходимо составить смесь, в состав которой должно входить не менее 26 ед. химического вещества A, 30 ед. — вещества B и 24 ед. — вещества C.

Количество единиц химического вещества, содержащегося в 1 кг сырья каждого вида, указано в таблице. В ней же приведена цена 1 кг сырья каждого вида.

Составить смесь, содержащую не менее необходимого количества данного вида и имеющую минимальную стоимость.

Вещество	Кол-во единиц вещества, содержащегося в 1кг сырья			
		CD		
	1	2	3	4
A	1	1	-	4
В	2	-	3	5
С	1	2	4	6
Цена 1кг сырья(руб)	5	6	7	8

Математическая модель и пояснения к её построению:

В ячейки А1:Е5 переносим значения из таблицы, приложенной к заданию.

В ячейку G1 вводим «Кол-во кг». В ячейках G2:G5 указываем начальные значения количества каждого вещества равные 0.

	Α	В	С	Цена
Сырьё 1	1	2	1	5
Сырьё 2	1	0	2	6
Сырьё 3	0	3	4	7
Сырьё 4	4	5	8	8

ı	1.7
	Кол-во
	КГ
	0
	0
	0
	0

В ячейку А7 вводим «Необходимо». В ячейках В7:D7 указываем данные из условия, в нашем случае это 26 30 и 24.

	A	В	С	Цена
Сырьё 1	1	2	1	5
Сырьё 2	1	0	2	6
Сырьё 3	0	3	4	7
Сырьё 4	4	5	8	8

Кол-во		
КГ		
0		
0		
0		
0		

Необходимо	26	30	24
------------	----	----	----

Чтобы отслеживать сколько и какого вещества мы получаем дополним нашу таблицу.

В ячейку А9 вводим «Получено», в ячейках В9:D9 указываем формулы для подсчёта количества каждого вещества:

B9 = СУММПРОИЗВ(B2:B5;G2:G5)

C9 = CУММПРОИЗВ(C2:C5;G2:G5)

D9 = CУММПРОИЗВ(D2:D5;G2:G5)

Также создадим поле для ответа.

В ячейку A11 вводим «Полученная стоимость», в ячейке B11 указываем формулу:

B11 = СУММПРОИЗВ(E2:E5;G2:G5)

Перед использованием метода «Поиск решений» наша таблица выглядит следующим образом:

	Α	В	С	Цена		Кол-во кг
Сырьё 1	1	2	1	5		0
Сырьё 2	1	0	2	6		0
Сырьё 3	0	3	4	7		0
Сырьё 4	4	5	8	8		0
				_	•	
Необходимо	26	30	24			
				-		
Получено	0	0	0			
			•	-		

Открываем диалоговое окно метода «Поиск решений» и указываем входные данные.

Нажимаем «Найти решение».

Полученная стоимость

Теперь наша таблица имеет вид:

	Α	В	С	Цена
Сырьё 1	1	2	1	5
Сырьё 2	1	0	2	6
Сырьё 3	0	3	4	7
Сырьё 4	4	5	8	8

Кол-во
КГ
0
0
0
6,5

Необходимо	26	30	24

Получено	26	32,5	52

Полученная стоимость	52
----------------------	----

«Поиск решения» помог нам определить оптимальное решение для текущей задачи, а именно:

Требуется взять 6,5 кг сырья номер 4 чтобы получить минимум 26 единиц химического вещества A, 30 единиц вещества B и 24 единиц вещества С. При этом полученная стоимость будет равна 52 рублям, что является минимальной стоимостью

Вывод:

Во время выполнения работы были изучены возможности надстройки «Поиск решения» пакета MS Excel для решения однокритериальных задач теории принятия решений.