

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Technical Memorandum 33-736

Volume II

*Mission Design Data for Venus, Mars, and
Jupiter Through 1990*

Andrey B. Sergeyevsky

(NASA-CF-143516) MISSION DESIGN DATA FOR
VENUS, MARS, AND JUPITER THROUGH 1990,
VOLUME 2 (Jet Propulsion Lab.) 235 P
HC \$7.50

875-32141

CSCL 22

Unclassified
G3/12 35316

JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORNIA

September 1, 1975

30 September 1975

NASA ETC-4326

NASA Scientific and Technical
Information Facility
P. O. Box 8757
Baltimore-Washington International Airport
Baltimore, Maryland 21240

Attention: NASA Representative (S-AK-RKT)

Gentlemen:

Attached herewith are COSATI Technical Report Standard Title Pages for JPL Technical Documents released during July and August 1975.

Two copies each of the Technical Memoranda and Special Publication listed below are enclosed for your systems input and listing in the unlimited, unclassified category in STAR.

1. TM 33-584 Tracking and Data System Support for the Pioneer Project
Vol. III Pioneer 10--From April 1, 1972, Through the Jupiter
Encounter Period, January 1974
2. TM 33-725 Libra: An Inexpensive Geodetic Network Densification
System
3. TM 33-731 Experimental Aerodynamic Characteristics of Vehicles
Traveling in Tubes
4. TM 33-733 Single- and Dual-Carrier Microwave Noise Abatement in
the Deep Space Network
5. TM 33-735 Sequential Least-Squares Using Orthogonal Transformations
6. TM 33-736 Mission Design Data for Venus, Mars, and Jupiter Through
Vol. I 1990
7. TM 33-736 Mission Design Data for Venus, Mars, and Jupiter Through
Vol. II 1990
8. TM 33-736 Mission Design Data for Venus, Mars, and Jupiter Through
Vol. III 1990

HOW TO FILL OUT THE TECHNICAL REPORT STANDARD TITLE PAGE

Make items 1, 4, 5, 9, 12, and 13 agree with the corresponding information on the report cover. Use all capital letters for title (item 4). Leave items 2, 6, and 14 blank. Complete the remaining items as follows:

3. Recipient's Catalog No. Reserved for use by report recipients.
7. Author(s). Include corresponding information from the report cover. In addition, list the affiliation of an author if it differs from that of the performing organization.
8. Performing Organization Report No. Insert if performing organization wishes to assign this number.
10. Work Unit No. Use the agency-wide code (for example, 923-50-10-06-72), which uniquely identifies the work unit under which the work was authorized. Non-NASA performing organizations will leave this blank.
11. Insert the number of the contract or grant under which the report was prepared.
15. Supplementary Notes. Enter information not included elsewhere but useful, such as: Prepared in cooperation with... Translation of (or by)... Presented at conference of... To be published in...
16. Abstract. Include a brief (not to exceed 200 words) factual summary of the most significant information contained in the report. If possible, the abstract of a classified report should be unclassified. If the report contains a significant bibliography or literature survey, mention it here.
17. Key Words. Insert terms or short phrases selected by the author that identify the principal subjects covered in the report, and that are sufficiently specific and precise to be used for cataloging.
18. Distribution Statement. Enter one of the authorized statements used to denote releasability to the public or a limitation on dissemination for reasons other than security of defense information. Authorized statements are "Unclassified—Unlimited," "U. S. Government and Contractors only," "U. S. Government Agencies only," and "NASA and NASA Contractors only."
19. Security Classification (of report). NOTE: Reports carrying a security classification will require additional markings giving security and downgrading information as specified by the Security Requirements Checklist and the DoD Industrial Security Manual (DoD 5220.22-M).
20. Security Classification (of this page). NOTE: Because this page may be used in preparing announcements, bibliographies, and data banks, it should be unclassified if possible. If a classification is required, indicate separately the classification of the title and the abstract by following these items with either "(U)" for unclassified, or "(C)" or "(S)" as applicable for classified items.
21. No. of Pages. Insert the number of pages.
22. Price. Insert the price set by the Clearinghouse for Federal Scientific and Technical Information or the Government Printing Office, if known.

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No. 33-736, Vol. II	2. Government Accession No.	3. Recipient's Catalog No.	
4. Title and Subtitle MISSION DESIGN DATA FOR VENUS, MARS, AND JUPITER THROUGH 1990		5. Report Date September 1, 1975	
7. Author(s) Andrey B. Sergeyevsky		6. Performing Organization Code	
9. Performing Organization Name and Address JET PROPULSION LABORATORY California Institute of Technology 4800 Oak Grove Drive Pasadena, California 91103		10. Work Unit No.	
		11. Contract or Grant No. NAS 7-100	
		13. Type of Report and Period Covered Technical Memorandum	
12. Sponsoring Agency Name and Address NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D.C. 20546		14. Sponsoring Agency Code	
15. Supplementary Notes			
16. Abstract The purpose of this document is to provide a handbook, containing working data to be used in the selection and trajectory design of missions to Venus, Mars and Jupiter during the 1975-1990 time period.			
17. Key Words (Selected by Author(s)) Astronautics (General) Astrodynamics Space Transportation Lunar and Planetary Exploration (Advanced)		18. Distribution Statement Unclassified -- Unlimited	
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 3-231	22. Price

PREFACE

This document is divided into three volumes. Volume I comprises the mission design data for Venus, Volume II the data for Mars, and Volume III the data for Jupiter.

TABLE OF CONTENTS

A. INTRODUCTION	1-1
B. DESCRIPTION OF TRAJECTORY DATA	1-1
C. DESCRIPTION OF PLANETARY POSITIONAL DATA	1-3
REFERENCES	1-5

LIST OF FIGURES

1. Definition of B-Plane	1-4
2. Definition of Cone and Clock Angle	1-4
Contours of C_3 and Flight Times, VHP, DLA, ZAL, INC, ZAP, ETS, LVI, SZE, ETE, THA, SG1, SG2, and SG3 for Earth to Mars Missions Launched in 1979-80, 1981-82, 1984, 1985-86, 1988, 1990	3-1 through 3-84
Mars Positional Data for the Years 1975 to 1995	3-8 ^c through 3-231

MISSION DESIGN DATA FOR VENUS, MARS AND JUPITER THROUGH 1990

Andrey B. Sergeyevsky

A. INTRODUCTION

This document presents mission design data for direct transfer trajectories from Earth to three planets – Venus, Mars and Jupiter, extending previously published information (see Refs. 1, 2, 3, 4 and 5) through the 1990 departure opportunity.

The primary purpose of this effort is to provide the mission analyst with graphical information, sufficient for preliminary mission design and evaluation. The data follows closely the format of Reference 4 and reflects methods of Reference 2. A specially modified version of the Space Research Conic Program (SPARC) (see Ref. 6) was used to generate the trajectory information presented. The data were automatically contour-plotted on the SC4020 plotter using the General Plot Program (GPP) (see Ref. 7), then hand retouched and labeled. A special program (VIEWPE) was constructed to provide planetary positional data in graphical form, plotted on the SC4020, and presented in original format.

The data are arranged in three sections by arrival planet, in natural sequence. Each section consists of two parts – the trajectory characteristics for all available opportunities to the particular planet, in chronological order, followed by that planet's positional data for every calendar year, from 1975 to 1995.

The persevering and encouraging insistence of management, especially that of Mr. Willard E. Bollman to carry this effort through to completion, as well as the graphic and editorial support of Mr. Richard W. Rackus are gratefully acknowledged.

B. DESCRIPTION OF TRAJECTORY CHARACTERISTICS DATA

I. General

The data represent trajectory performance information plotted in the departure date/arrival date space, thus

defining all possible transfer trajectories between the two bodies, within the time-span considered. Fourteen individual parameters are contour-plotted on the departure energy (C_3) background contour chart, for each opportunity. The following opportunities are presented:

To Venus: 1975, 1976/7, 1978, 1980, 1981, 1983, 1984/5, 1986, 1988, 1989/90.

To Mars: 1979, 1981/2, 1983/4, 1985/6, 1988, 1990.

To Jupiter: 1977, 1978, 1979, 1980/81, 1981/82, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990.

2. Definition of Terms

The following parameters are displayed on the contour plots:

C_3 = Earth departure energy (km^2/sec^2); same as the square of departure hyperbolic excess velocity $V_\infty^2 = C_3 = V_I^2 - 2GM/R_I$, where

V_I = conic injection velocity (km/sec)

GM = gravitational constant times mass of the attracting body, from Reference 8:

GM_{VENUS} = 0.32486010E6
(km^3/sec^2)

GM_{EARTH} = 0.39860115E6

GM_{MARS} = 0.42828444E5

$GM_{JUPITER}$ = 0.12670772E9

$R_I = R_S + h_I$, Injection radius (km), sum of surface radius R_S PLANET and injection altitude h_I , where (see Ref. 8):	DLA	Geocentric declination (vs. mean Earth equator of launch date) of the departure V_∞ - vector. May impose launch constraints. (deg)
$R_{S_{VENUS}} = 6052$ (km)	ZAL	Angle between departure V_∞ vector and Sun-Earth vector. Equivalent to Earth-probe-Sun angle, several days out. (deg)
$R_{S_{EARTH}} = 6378.16$	INC	Heliocentric inclination of transfer trajectory with mean ecliptic (Earth orbital) plane of launch date. (deg)
$R_{S_{MARS}} = 3393.4$	ZAP	Angle between arrival V_∞ vector and the arrival planet-to-Sun vector. Equivalent to planet-probe-Sun angle at far encounter; for subsolar impact would be equal to 180° .(deg).
$R_{S_{JUPITER}} = 71372$	ETS	Angle in arrival B-plane, measured from T-axis, clockwise, to projection of Sun-to-planet vector. Equivalent to solar occultation region center-line. (deg)
TF Time of flight (Days)	LVI	Planetocentric latitude of vertical impact vs arrival planet equator. Note that Venusian north is below ecliptic, while Mars' and Jupiter's is above. Equivalent to declination of the incoming asymptote (i.e., the negative of incoming V_∞ vector) in planetary equator system.
CD Earth to planet communication distance at arrival (km)	ZAE	Angle between arrival V_∞ vector and the planet-to-Earth vector. Equivalent to planet-probe-Earth angle at far encounter. (Deg.)
VHP Arrival hyperbolic excess velocity	ETE	Angle in arrival B-plane, measured from T-axis, clockwise, to projection of Earth-to-planet vector. Equivalent to Earth occultation region centerline. (deg)
$V_\infty = \sqrt{V^2 - \frac{2GM}{R}}$, (km/sec), where V = Heliocentric conic arrival velocity at heliocentric radius R (km).	THA	Angle in arrival B-plane, from T-axis, clockwise, to major axis of error dispersion ellipse (0 - 180 deg).
Arrival Planet Orbit insertion velocity increment ΔV , at perihelion, may be computed from V_∞ :	SG1	Semi-major axis magnitude of B-plane dispersion ellipse, resulting from a spherically distributed V_∞ velocity vector error of 0.1 m/sec on departure asymptote (km).
$\Delta V = \sqrt{V_\infty^2 + \frac{GM}{R_p}} - \sqrt{\frac{2GM R_A}{R_p(R_A + R_p)}}$	SG2	Semi-minor axis of above dispersion ellipse (km).
where R_p and R_A are planetocentric perihelion and apohelion radii (km), respectively. Similarly, if specific capture orbit period P (sec) and perihelion radius R_p are desired:		
$\Delta V = \sqrt{V^2 + \frac{2GM}{R_p}} - \sqrt{\frac{2GM}{R_p} - 3\sqrt{\left(\frac{2GM\pi}{P}\right)^2}}$		
B-PLANE A plane normal to the incoming V_∞ - vector and passing through the center of planet.		
T-AXIS Axis in B-plane, parallel to ecliptic (Earth mean orbital) plane (see Figure 1).		

SG3 Arrival time dispersion, normal to B-plane,
for above error model (sec).

YR/M/D Year, Month, Date.

C. DESCRIPTION OF PLANETARY POSITIONAL DATA

1. General

The data represent planetary geometry-related information plotted versus calendar arrival date at the target planet. Each set of seven plots represents the annual time history of 19 parameters, and may be used for flyby and orbiter missions.

2. Description of Curve Labels

P	Target planet, equivalent to probe approaching or in orbit about target planet.
E	Earth
S	Sun
CA	Cone Angle, i.e., Sun-probe-object (Earth or Canopus, etc.) angle. (See Figure 2.)
KA	Clock Angle, i.e., angle between projections of the Probe-Canopus and probe-object vectors into the plane normal to the sun-line (for which CA = 90°). (See Figure 2.)
RISEXX	Rise time (GMT) of planet through 6° horizon mask at DSN Station No. XX. (e.g., XX = 14 = GOLDSTONE, 43 = CANBERRA, 63 = MADRID.)
SETXX	Set time (GMT) of planet through 6° horizon mask at DSN Station No. XX.

3. Description of Plots

Plot	Y-axis label	
a)	DECLIN	Geocentric Earth equatorial declination of planet (P), planetocentric planetary equatorial declination of Earth (E) and Sun (S). Note that Venusian north is below ecliptic.
b)	EC.LON	Heliocentric ecliptic longitude of planet.
c)	CA,KA	Cone (ECA) and Clock (EKA) angle of Earth and cone angle of Canopus (CCA) as seen from a Sun-Canopus oriented spacecraft near target planet, P (see Figure 2).
d)	DISTANCE	Sun-Planet distance (SP) and Earth-Planet communication distance (EP) in mill. km.
e)	SUN-EARTH-PLANET	Sun-Earth-Planet angle (SEP), indicating times of superior ($SEP \approx 0$) and inferior ($SEP \approx 180^\circ$) conjunction; $SEP > 5^\circ$ is a communications constraint.
f)	STATION RISE/SET	Rise and Set times (GMT) of planet at 3 DSN Stations on Earth, 6° mask.

Figure 1. Definition of B-Plane

Figure 2. Definition of Cone and Clock Angle

REFERENCES

1. Clarke, V. C., Jr., Bollman, W. E., Roth, R. T., Scholey, W. J., "Design Parameters for Ballistic Interplanetary Trajectories Part I. One-way Transfers to Mars and Venus," JPL TR 32-77, January 1963.
2. Clarke, V. C., Jr., Bollman, W. E., Feritis, P. H., Roth, R. Y., "Design Parameters for Ballistic Interplanetary Trajectories Part II. One-way Transfers to Mercury and Jupiter," JPL TR 32-77, January 1966.
3. Richards, R. J., Roth, R. Y., "Earth-Mars Trajectories," JPL TM 33-100, June 1965.
4. Kohlhase, C. E., Bollman, W. E., "Trajectory Selection Considerations for Voyager Missions to Mars During the 1971-1977 Time Period," JPL TM 33-210, September 1965.
5. Wallace, R. A., "Trajectory Considerations for a Mission to Jupiter in 1972," JPL TM 33-375, March 1968.
6. Roth, R., Zorian, M. D., "Space Research Conic Program, Phase III," JPL 900-130, Rev. A, May 1969.*
7. "General Plot Program," JPL 900-341, Anon., May 1970.*
8. Melbourne, W. G., Mulholland, T. D., Sjogren, W. L., Sturms, F. M., Jr., "Constants and Related Information for Astrodynamical Calculations, 1968," JPL TR 32-1306, July 1968.

*JPL Internal Document

C₃
♂
1979

CONTOURS OF C₃ AND FLIGHT TIMES EARTH TO MARS 1979-80

DEPARTURE DATE

DLA
Q
1979

ZAL
Q
1979

INC
Q
1979

PRECEDING PAGE BLANK NOT FILMED

ZAP
♂
1979

PRECEDING PAGE BLANK NOT FILMED

LVI
♂
1979

PRECEDING PAGE BLANK NOT FILMED

ETE
1979

SG2
Q
1979

PRECEDING PAGE BLANK NOT FILMED

QS
1981

VHP
♂
1981

DLA
Q
1981

CONTOURS OF C₃ AND DLA EARTH TO MARS 1981-82

CALENDAR DATE AT NOON GMT
DEPARTURE DATE

PRECEDING PAGE BLANK NOT FILMED

ZAL
OA
1981

$$CD = 290 \times 10^6$$

ARRIVAL DATE
CALIFNDAR DATE AT NOON GMT

PRECEDING PAGE BLANK NOT FILMED

INC
♂
1981

CALNDAR DATE AT NOON GMT
DEPARTURE DAIF

CONTOURS OF C₃ AND INC EARTH TO MARS 1981-82

ZAP
♂
1981

ET8
♂
1981

PRECEDING PAGE BLANK NOT FILMED

1881
Q5

CONTOURS OF C_3 AND LVI EARTH TO MARS 1981-82
ARRIVAL DATE JULIAN DAY CALENDAR DATE AT NOON GMT DEPARTURE DATE

ZAE
1981

PRECEDING PAGE BLANK NOT FILMED

THA
Q1
1981

PRECEDING PAGE BLANK NOT FILMED

SG1
1981

SG2
Q
1981

RECEDING PAGE BLANK NOT FILMED

SG3
♂
1981

1984
C₃
Q₃

CONTOURS OF C₃ AND FLIGHT TIMES EARTH TO MARS 1984
ARRIVAL DATE AT NOON GMT
CALENDAR DATE AT NOON GMT
DEPARTURE DATE

PRECEDING PAGE BLANK NOT FILMED

VHP
1984

DLA
♂
1984

CONTOURS OF C₁ AND DLA EARTH TO MARS | 291

CALENDAR DATE AT NOON GMT
DEPARTURE DATE

ZAL
Q1
1984

INC
Q
1984

CONTOURS OF C_3 AND INC EARTH TO MARS 1984
ARRIVAL DATE AT NOON GMT
CALENDAR DATE AT NOON GMT
DEPARTURE DATE

CONTOURS OF C₃ AND ZAP EARTH TO MARS 1984

ARRIVAL DATE

CALENDAR DATE AT NOON GMT

DEPARTURE DATE

ETS
Q1
1984

PRECEDING PAGE BLANK NOT FILMED

Q₁
1984

ZAE
1984

CONTOURS OF C₃ AND ZAE EARTH TO MARS 1984

CALENDAR DATE AT NOON GMT
DEPARTURE DATE

ETE
♂
1984

THA
1984

CONTOURS OF C_3 AND THA EARTH TO MARS 1984

CALENDAR DATE AT NOON GMT
DEPARTURE DATE

CONTOURS OF C₃ AND SG2 EARTH TO MARS 1984

JULIAN DAY
CALENDAR DATE AT NOON GMT

DEPARTURE DATE

SG2
1984 Q1

SG3
♂
1994

CONTOURS OF C_3 AND SG3 EARTH TO MARS 1984

CALENDAR DATE AT NOON GMT
DEPARTURE DATE

1985 Q₃

PRECEDING PAGE BLANK NOT FILMED

VHP
1985

DLA
1985

CONTOURS OF C₃ AND DLA EARTH TO MARS 1985-86
ARRIVAL DATE AT NOON GMT
CALENDAR DATE AT NOON GMT
DEPARTURE DATE

PRECEDING PAGE BLANK NOT FILMED

ZAL
Q
1985

ZAP
Q
1985

ETS
♂
1995

ARRIVAL DATE
PRECEDING PAGE BLANK NOT FILMED

349

Q VI
1985

CONTOURS OF C₃ AND LVI FROM EARTH TO MARS 1985-86

CALENDAR DATE AT NOON GMT
DEPARTURE DATE

ZAE
♂
1985

CONTOURS DE C₃ ET ZAI TERRE TO MARS 1985-86

CALENDAR DATE AT NOON GMT

~~PRECEDING PAGE BLANK NOT FILMED~~

ETE
Q
1985

THA
Q
1986

PRECEDING PAGE BLANK NOT FILMED

CONTOURS OF C₃ AND SG1 EARTH TO MARS 1985-86

CALENDARIATI AT NOON G.M.T.
DEPARTS 8 P.M.

SG1
♂
1985

SG2
1985

CONTOURS OF C₃ AND SG2 I. EARTH TO MARS 1985-86

CALNDAR DATE AT NOON C.MT
DEPARTURE DATE

RECEDING PAGE BLANK NOT FILMED

SG3
♂
1985

CONTOURS DE r_3 AND SURFACE EARTH TO MARS 1983 86

ELINWÆR 199

INT PARTURI DAI

C_3
1988

CALENDAR DATE AT NOON GMT

DEPARTURE DATE

CONTOURS OF C_3 AND FLIGHT TIMES EARTH TO MARS 1988

PRECEDING PAGE BLANK NOT FILMED

ARRIVAL DATE

CALENDAR DATE AT NOON GMT

VHP
Q
1388

ZAL
QA
1988

ETS
♂
1968

LV
Q
1988

ZAE
♂
1988

Q ETE
1988

THA
Q
1988

SG1
Q1
1968

SG2
♂
1998

CONTOURS OF C₁ AND SC2 EARTH TO MARS 1963

DEPARTURE DATA

CALENDAR DATE AT NOON GMT

SG3
1000

Q₃
1990

VHP
♂
1990

CONTOURS DE C₁ ET VITESSE D'ARRIVÉE SUR MARS 1990

DEPARTURE DATA

(ALENDAHAI AL MAJLIS)

卷之三

DLA
O
1990

CONTOURS OF C_3 AND DLA EARTH TO MARS 1990

CALCNDAR DATA AT NOON GMT
DEPARTURE DATE

ZAL
Q
1990

INC
♂
1990

CONTOURS DE C₁ ET INCARCÉRATION DE MARS (1991)

DEPARTURE DATA

ETS
♂
1990

CONTOURS OF C₃ AND ET'S EARTH TO MARS 1990

CALNDAR DATE AT NOON GMT
DEPARTURE DATE

Q E
1990

CONTOURS OF C₃ AND LVI EARTH TO MARS 1990

ETE
♂
1990

THA
Q
1990

CONTOURS OF C₃ AND THA EARTH TO MARS 1990

CALNDAR DATE AT NOON GMT
DEPARTURE DATE

PRECEDING PAGE BLANK NOT FILMED

SG2
Q
1990

CONT'D: SG1 AND SG2 FROM EARTH TO MARS 1990

CALNDAR DATE AT NOON GMT
DEPARTURE DATE

PRECEDING PAGE BLANK NOT FILMED

MARS 1975

MARS 1975

MARS 1975

PRECEDING PAGE BLANK NOT FILMED

C - 2

CA, KA OF EARTH, CA CANOP

MARS 1975

MARS

1975

MARS 1975

MARS 1975

MARS 1976

MARS 1976

MARS 1976

MARS 1976

CA, KA OF EARTH, CA CANOP

MARS

1976

MARS 1976

MARS 1976

MARS 1977

MARS 1977

MARS 1977

MARS

1977

MARS 1977

MARS 1977

MARS 1977

STATION RISE/SET GMT. HR

24.

18.

12.

6.

0.

MARS 1978

MARS 1978

MARS 1978

MARS

1978

MARS 1978

MARS 1978

STATION RISE/SET GMT. HR

MARS 1978

MARS 1979

MARS 1979

MARS 1979

MARS 1979

MARS

1979

SUN-EARTH-PLANET, DEG

MARS 1979

MARS 1979

STATION RISE/SET GMT. HR

MARS 1980

MARS 1980

MARS

1980

· MARS

1980

MARS 1980

MARS 1980

MARS 1980

STATION RISE/SET GMT. HR

MARS 1981

MARS 1981

MARS 1981

MARS 1981

MARS 1981

MARS 1981

MARS 1981

MARS 1982

MARS 1982

MARS 1982

MARS

1982

MARS 1982

MARS 1982

MARS 1982

MARS 1983

MARS 1983

MARS 1983

MARS 1983

MARS

1983

SUN-EARTH-PLANET, DEG

MARS' 1983

MARS 1983

MARS 1984

MARS 1984

MARS

1984

MARS.

1984

MARS 1984

MARS 1984

MARS 1984

MARS 1985

MARS 1985

MARS 1985

MARS 1985

MARS 1985

MARS 1985

MARS 1985

MARS 1986

MARS 1986

MARS 1986

MARS 1986

MARS 1986

MARS 1986

MARS 1986

MARS 1987

MARS 1987

MARS 1987

MARS 1987

MARS 1987

SUN-EARTH-PLANET. DEG

MARS 1987

MARS 1987

STATION RISE/SET GMT. HR

MARS 1988

MARS

1988

PRECEDING PAGE BLANK NOT FILMED

MARS

1988

MARS 1988

MARS 1988

STATION RISE/SET GMT. HR

MARS 1989

MARS 1989

MARS 1989

MARS

1989

MARS 1989

MARS 1989

MARS 1989

MARS 1990

MARS 1990

MARS 1990

MARS 1990

MARS

1990

MARS 1990

MARS 1990

STATION RISE/SET GMT. HR

MARS 1991

MARS 1991

MARS 1991

CA, KA OF EARTH, CA CANOP

MARS

1991

MARS

1991

MARS 1991

MARS 1992

MARS 1992

MARS 1992

MARS 1992

MARS

1992

MARS 1992

MARS 1992

STATION RISE/SET GMT. HR

MARS

1993

MARS 1993

MARS 1993

CA, KA OF EARTH, CA CANOP

MARS 1993

MARS 1993

MARS 1993

MARS 1993

STATION RISE/SET GMT, HR

MARS

1994

MARS 1994

MARS 1994

MARS

1994

MARS 1994

MARS 1994

MARS 1994

STATION RISE/SET GMT. HR

MARS 1995

MARS

1995

MARS 1995

MARS 1995

MARS

1995

MARS 1995

