Photon production at the LHC Remi Lafaye On behalf of the ATLAS and CMS collaborations ATLAS

Photon production at LHC

- Goals
 - ☐ Test of perturbative QCD predictions
 - □ Probe gluon content of the proton (direct photon produced mainly from qg)
 - Understand photon background for Higgs to 2γ and New Physics searches
- Prompt photons & Photon-jet
 - pQCD and PDF tests
 - ☐ Photon-jet: +information on the fragmentation component
- Di-photons
 - □ Test of collinear and k_T factorization approaches and soft gluon logarithmic resummation techniques
 - ☐ Understanding of the **fragmentation** component

Fragmentation

Reconstruction & identification

- Photon reconstruction:
 - ☐ From EM calorimeter cells
 - Not matched to tracks (unconverted)
 - 2 & 1 track matching for converted γ
- Photon identification:
 - Main background from jets with π^0 & η
 - CMS: topological fit of the cluster shape
 - ATLAS: shower shape variables in first layer
 (high η granularity)

ATLAS

CMS

960 GeV photon in ATLAS @ 7TeV

Higgs to γγ candidate in CMS

Prompt photons - Signal extraction

- QCD jet production is orders of magnitudes above the signal: Jet rejection uses shower shape and isolation ($\Delta R < 0.4$) criteria
- Signal extraction largely data-driven:
 - CMS: E_T/p_T for photon conversions (@low E_T) + isolation
 - ATLAS: 2D sideband (isolation + identification)
 - Signal pdf taken from MC, corrected using electron samples

Background pdf from data (with reverse identification, or isolation)

Phys. Rev. D 84 (2011) 052011

Prompt photons - Cross section vs E_T

Prompt photons – Constraining PDFs

- ☐ Adding LHC 2010 measurements together with RHIC, SppS, Tevatron
- Constraints on quark PDF are negligible
- LHC data lead to up to 20% gluon PDF uncertainty reduction

■ Note: leads to >20% PDF uncertainty reduction for $\sigma(gg\rightarrow H)$

Process / Cross section	$gg \to H(120)$
NNPDF2.1	$11640 \pm 181 \text{ fb}$
NNPDF2.1 + LHC IsoPhotons	$11701 \pm 140 \; \mathrm{fb}$

Photon-jet

ATLAS:

Compared to JETPHOX predictions

- \Box E_T^{γ}>25 GeV, p_T^{jet}>20 GeV
- ☐ Two regions with different fragmentation contributions:☐ Same and opposite eta signs
- ☐ 3 regions in y^{jet}: different x values
- ☐ 3 different PDF tested (CTEQ10, MSTW2008 & NNPDF2.1)
- JETPHOX overestimates the data at low E_T (same as for prompt γ)
- Worse agreement for the most forward rapidities

Phys. Rev. D 85, 092014 (2012)

Photon-jet – Constraining PDFs

- Current LHC data gives little constraint on gluon and light quarks PDF
- □ ~5% PDF uncertainty reduction

Carminati, Costa, d'Enterria, Koletsou, Marchiori, Rojo, Stockton, Tartarelli (2012) arXiv:1212.5511 [hep-ph]

NNPDF2.1

- Pseudo DATA with factor 2 to 3 lower uncertainties is promising
- ☐ Could be up to 40% reduction in some regions (gluon + quarks @ low x)

Photon-jet dynamics with 37 pb⁻¹

ATLAS

Photon-jet 2.14 fb⁻¹

CMS:

Compared to JETPHOX and SHERPA predictions

- ☐ JETPHOX in good agreement
- SHERPA underestimates the data

CMS-PAS-OCD-11-005

- \Box E_T $^{\gamma}$ >40 GeV, p_T^{jet}>30 GeV
- \Box 4 regions in η^{γ}
- 2 regions in η^{jet}
- □ PDF used: CTEQ6 (SHERPA) and CT10 (JETPHOX)

Di-photons - Signal extraction

CMS: 2D Template fit

- Two isolated photons E_T>23, 20 GeV
- \square separated by $\Delta R > 0.45$
- ☐ di-photon trigger efficiency >99.9%

ATLAS: Two methods to subtract the jet background (jet-jet and γ -jet events)

- 2D Template Fit with leakage correction
- 2x2D Sideband, extended with jj isolation correlation
- Two isolated photons E_T>25, 22 GeV
- \square separated by $\triangle R > 0.4$
- di-photon trigger efficiency ~98%

Di-photons – Drell-Yan subtraction

- Second background for di-photon events is Drell-Yan
- ☐ Electron background subtraction
 - Impurity is measured bin by bin
 - And then subtracted from the differential yields

Di-photons - Cross section vs m_{yy}

Total cross section in acceptance with current ATLAS selection: σ =44.0^{+3.2}_{-4.2} pb

DIPHOX+GAMMA2MC:39⁺⁷₋₆ pb, 2γNNLO: 44⁺⁶₋₅ pb SHERPA & PYTHIA: 36 pb, rescaled by factor 1.2

Th. uncertainties: dominated by scale error and then PDFs Large fragmentation contribution at low mass:

SHERPA better than PYTHIA because it includes the real part of NLO γ emission At intermediate and high masses SHERPA performance is worse than PYTHIA's 2 γ NNLO better overall than DIPHOX because of NNLO γ emission 2 γ NNLO prediction is very close to data over the whole m $_{\gamma\gamma}$ range

Di-photons - Cross section vs p^T_{γγ}

 $p_{T\gamma\gamma}$ ~0 sensitive to initial state soft gluon radiation

 \Rightarrow as expected, cross section is over estimated by DIPHOX and $2\gamma NNLO$

Guillet shoulder clearly visible, except for PYTHIA (fragmentation suppressed by isolation requirements)

SHERPA is in very good agreement with data, as well as 2γNNLO except @ low p_T

Di-photons - Cross section vs $\cos \theta^*_{\gamma\gamma}$

Large $\cos\theta^*_{\gamma\gamma}$ generally badly reproduced (fragmentation enhanced region) Otherwise very good agreement

Photon production at the LHC - Conclusion

- Measured photon differential cross sections are in good agreement with Monte-Carlo generators and fixed order calculations.
 - With highest disagreement at low p_T
- ☐ Constraints on gluon PDF from LHC photon data are promising (up to 20% uncertainty reduction on gluon PDF from prompt photons)
- □ Potential for gluon and light quark PDF reduced uncertainties using latest photon-jet measurements
- ☐ Lots of new results in 2013:
 - Measurement of the di-photon cross-section with ATLAS 4.9 fb⁻¹
 @ 7 TeV, 2011 dataset, published January 2013, JHEP01(2013) 086
 - Measurement of the triple differential photon-jet cross-section with CMS 2.14 fb⁻¹
 @ 7 TeV 2011 dataset, CMS-PAS-QCD-11-005
 - ☐ Measurement of photon-jet dynamics (37 pb⁻¹) with ATLAS, <u>ATLAS-CONF-2013-023</u>
 - □ Prompt photon cross section (4.7 fb⁻¹) with ATLAS, <u>ATLAS-CONF-2013-022</u>
 - **...**

