GRADED ASSIGNMENT ALGORITHM MASTER THEOREM SOLUTION

a)
$$T(n) = 3T(n/2) + n$$

b)
$$T(n) = 64T(n/8) - n^2(\log n)$$

c) T (n) =
$$2nT(n/2) + n^n$$

d)
$$T(n) = 3T(n/3) + n/2$$

e)
$$.T(n) = 7T(n/3) + n^2$$

A)
$$T(n)=3T(n/2)+n$$

Solution:
$$\Theta(n \land log_a b) a = 3 b = 2 f(n) = \Theta(n) => d = 1 b \land d = 2 => a > b^d$$

So, Case 3. Thus,
$$T(n) = \Theta(n \land log_a b)$$

b)
$$T(n) = 64T(n/8) - n^2(\log n)$$

Solution: NA
$$f(n) = n^2(\log n)$$

Here f(n) is not in the form of $\Theta(n^d)$.

So we cannot apply Master Theorem.

c)
$$T(n) = 2nT(n/2) + n^n$$

Solution: NA $f(n) = n^n$ is not in the form of $\Theta(n^d)$.

So we cannot apply Master Theorem.

d)
$$T(n) = 3T(n/3) + n/2$$

Solution:
$$\Theta(n^3 \log n)$$
 a = 3 b = 3 f(n) = $\Theta(n)$ => d = 1 b ^ d = 3 = a => a= b^d

So, Case 2 .Thus,
$$T(n) = \Theta(n^d \log n) = \Theta(n^3 \log n)$$

e)
$$T(n) = 7T(n/3) + n^2$$

Solution:
$$\Theta(n2)$$
 a = 7 b = 3 f(n) = $\Theta(n^2)$ => d = 2 b^d = 3 = 9 > a => a < b^d

So, Case 1. Thus,
$$T(n) = \Theta(n^d) = \Theta(n^2)$$