Лекция 6

Импульсный режим работы ОУ. Компаратор

Цель лекции:

Изучение принципов работы генераторов импульсных сигналов; Изучить принцип действия триггера Шмитта.

План лекции:

- 1. Импульсный режим работы ОУ, компаратор.
- 2. Триггер Шмитта.
- 3. Передаточная характеристика триггера Шмитта.

Уровни входного сигнала ОУ в импульсном режиме превышают значения, соответствующие линейной области амплитудной характеристики ОУ. Выходное напряжение ОУ в импульсном режиме равно его максимально возможной величине и определяется либо напряжением $U^+_{\rm Bыx.\,max}$, либо $U^-_{\rm Bыx.\,max}$. В импульсном режиме ОУ работает на горизонтальных участках амплитудной характеристики (см. Лекцию 2).

Работу ОУ в импульсном режиме рассмотрим на примере компаратора — схемы, осуществляющей сравнение измеряемого входного напряжения $(U_{\rm BX})$ с опорным напряжением $(U_{\rm OII})$. Опорное напряжение представляет собой неизменное по величине напряжение положительной или отрицательной полярности, а входное напряжение изменяется во времени. При достижении входным напряжением уровня $U_{\rm OII}$ происходит изменение полярности напряжения на выходе ОУ, например с $U_{\rm Bыx.max}^+$ на $U_{\rm Bыx.max}^-$. При $U_{\rm OII}$ =0 компаратор осуществляет фиксацию момента перехода входного напряжения через нуль.

Простейшая схема компаратора и его передаточная характеристика показаны на рис. 1a. Входное напряжение компаратора равно

 $U_0 = U_{\rm BX} - U_{\rm OII}$, если $U_{\rm BX} < U_{\rm OII}$, $U_0 < 0$, то $U_{\rm BMX} = U_{\rm BMX,max}^+$. При $U_{\rm BX} > U_{\rm OII}$ и $U_0 > 0$, $U_{\rm BMX} = U_{\rm BMX,max}^-$. Компаратор переключается в момент равенства $U_{\rm BX} = U_{\rm OII}$. Выходное напряжение имеет прямоугольную форму. Длительность прямоугольных импульсов зависит от соотношения амплитудного значения синусоиды U_m и $U_{\rm OII}$. Значит, компаратор можно применять для преобразования синусоидального сигнала в прямоугольные импульсы напряжения.

Временные диаграммы работы для положительного значения напряжения U_п и периодического входного сигнала приведены на рис. 1б.

Рис. 1. Схема компаратора на ОУ (a) и его передаточная характеристика (δ)

Основными параметрами компараторов являются чувствительность и быстродействие. Под чувствительностью, или разрешающей способностью, понимают минимальную разность входных аналоговых сигналов, при которой компаратор изменяет свое состояние по выходу.

Выходной сигнал компаратора почти всегда действует на входы логических цепей и потому согласуется с ними по уровню и мощности.

Таким образом, компаратор — это устройство перехода от аналоговых к цифровым сигналам. Компараторы являются одним из основных узлов любого аналого-цифрового преобразователя.

Рис. 2. Временные диаграммы компаратора для периодического входного сигнала

Компараторы нашли широкое применение в системах автоматического управления в измерительной технике, а также для построения различных устройств импульсного и цифрового действия (АЦП, ЦАП).

Генераторы импульсных сигналов

Импульсные (релаксационные) генераторы могут работать в одном из трех режимов: автоколебательном, ждущем и синхронизации.

В автоколебательном режиме генераторы непрерывно формируют импульсные сигналы без внешнего воздействия. В режиме автоколебаний у релаксационного генератора нет состояния устойчивого равновесия. Он непрерывно переходит из одного состояния квазиравновесия в другое без

внешних воздействий. При этом генерируются импульсы, именно в таком режиме работает мультивибратор.

В ждущем режиме генератор имеет одно состояние устойчивого равновесия и одно квазиравновесия. Генераторы формируют импульсный сигнал лишь по приходу внешнего сигнала. Переход из устойчивого равновесия в квазиравновесие происходит под действием внешнего запускающего импульса, а обратный переход – самопроизвольно.

В режиме синхронизации генераторы вырабатывают импульсы напряжения, частота которых равна или кратна частоте синхронизирующего сигнала. Режим синхронизации подобен автоколебательному режиму, но переход из одного квазиравновесного состояния в другое осуществляется под действием периодических синхронизирующих внешних импульсов.

Основой релаксационных генераторов на ОУ обычно является триггер Шмитта. Триггер Шмитта представляет собой компаратор, охваченный ПОС.

Триггер Шмитта

Триггером называется устройство, имеющее два устойчивых состояния и способное под действием управляющих сигналов скачком переходить из одного устойчивого состояния в другое.

Триггер Шмитта (или пороговое устройство) функционально является компаратором, уровни включения и выключения которого не совпадают, как у обычного компаратора, а различаются на величину, называемую **гистерезисом переключения** ΔU . Это бистабильная схема, переключение которой зависит от амплитуды запускающих импульсов. Такие схемы успешно применяются там, где требуется изменять форму импульсов, формировать прямоугольные импульсы из синусоидальных колебаний и фиксировать превышение сигналами постоянного тока установленного уровня (порога). Схема триггера Шмитта на ОУ представлена на рис. 3a.

Схема имеет положительную обратную связь, выполненную в виде сопротивлений R_1 , R_2 . Коэффициент ПОС $\chi = R_1/(R_1 + R_2)$.

Для нормальной работы схемы, должно быть выполнено условие $K_{\rm A}\cdot\chi>1$. Рассмотрим работу схемы. Пусть входное отрицательное напряжение, подаваемое на инверсный вход, превышает напряжение на неинвертирующем входе. Этому соответствует выходное напряжение $U_{\rm Bыx}=U_{\rm Bыx.\,max}^+$. Тогда на неинвертирующем входе будет $U_{\rm Bx2}=U_{\rm Bыx.\,max}^+\cdot\chi$ - это значение соответствует $U_{\rm Bыkn}$. Если изменить полярность сигнала $U_{\rm Bx1}$ на инвертирующем входе и увеличить его значение до $U_{\rm Bx2}$, то выходное напряжение $U_{\rm Bыx.\,max}^+$ за счет действия ПОС изменится скачком до значения $U_{\rm Bыx.\,max}^-$.

При этом напряжение на неинвертирующем входе изменится до величины $U_{\rm BX2} = U_{\rm Bыx.\,max}^- \cdot \chi$ соответствующей $U_{\rm BKN}$. Таким образом, переключение схемы в состояние $U_{\rm Bыx.max}^-$ происходит при достижении $U_{\rm Bx}$ напряжения (порога) срабатывания $U_{\rm cp}$, а возращение в исходное состояние $U_{\rm Bыx} = U_{\rm Bыx.max}^+$ - при снижении $U_{\rm Bx}$ до напряжения (порога) отпускания $U_{\rm OTH}$.

Чтобы произошло новое переключение, необходимо снова создать отрицательную полярность $U_{\rm Bx1}$ с величиной $U_{\rm Bx1} > U_{\rm Bx2}$. Триггер Шмитта обладает передаточной характеристикой с гистерезисом (рис. 4.16, δ). Ширина петли гистерезиса равна сумме двух величин; $\Delta U_{\rm Bx} = U_{\rm Bыx.\, max}^+ \cdot \chi + U_{\rm Bыx.\, max}^- \cdot \chi$. Так как $\chi = R_1/(R_1 + R_2)$ то легко изменять ширину петли гистерезиса. В таких схема могут быть самые различные источники опорного напряжения.

Рис. 3. Схема триггера Шмитта (a) и его передаточная характеристика (δ)

Рис. 4. иллюстрирует применение триггера Шмитта для преобразования входного напряжения произвольной формы в прямоугольное напряжение с заданным временем установления, не зависящим от формы входного напряжения.

Рис. 4. Временные диаграммы работы триггера Шмитта