

探索性資料分析(EDA)_探討變數之間的關係

emboh

=~

簡報閱讀

範例與作業

問題討論

學習心得(完成)

重要知識點

掌握不同變數類型間的關係,以數值的方式, 列三種資料型態的關係

• 連續 vs 連續

透過以下範例,了解變數之間的關係

20 筆資料, 收集到 5 種資料, 包含

• sex:性別

• insomnia:失眠

• age:年齡

• height:身高

• weight:體重

	sex	insomnia	age	height	weight
0	Male	Y	23	180	100
1	Male	N	40	170	68
2	Male	N	5	100	20
3	Male	N	30	176	70
4	Male	N	1	70	10
5	Female	N	40	160	45
6	Female	Y	16	170	50
7	Female	Y	27	166	58
8	Female	Υ	43	155	58
9	Female	N	8	35	17
10	Male	Υ	23	170	101
11	Male	N	39	168	65
12	Male	N	5	101	22
13	Male	N	29	175	79
14	Male	N	1	72	12
15	Female	N	42	163	40
16	Female	Y	13	169	53
17	Female	Y	29	163	52
18	Female	Y	41	151	56
19	Female	N	10	40	14

- 圖像型就是把圖畫出來,透過資料在圖 形上走勢,判斷變數間的相關性。
- 數值型就是運用一些數值的特性,判斷變數間是否存在某些相關性。

今天的課程介紹如何透過數值來挖掘變數之間的特 性。

每一個類型皆介紹一種常見的用法

- 連續 vs 連續# Pearson 相關係數
- 離散 vs 離散# Cramer's V 係數
- 離散 vs 連續
 - # Point biserial's correlation
 - # Cohen's ds
 - # eta-squared

連續 vs 連續: Pearson 相關係數

用於量測兩個連續型變數之間,線性相依的程度 在今天的課程範例中,height:身高;weight: 體重為連續型。

常用r作為代表符號

$$r = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=0}^{n} (X_i - \bar{X})^2 \sum_{i=0}^{n} (Y_i - \bar{Y})^2}}$$

Pearson 相關係數只能呈現線性關係,第三列的 圖形,圖形呈現對稱關係,但Pearson 相關係數 為0。

Pearson 判斷相關的準則

相關係數範圍	變數之間關聯程度
1	完全線性相關
0.7-0.99	高度線性相關
0.4-0.69	中度線性相關
0.1-0.39	低度線性相關
< 0.1	無線性相關

stats.pearsonr 計算相關性

由於 pearsonr 有兩個回傳結果,我們只需取第一個回傳值為相關係數 corr, _=stats.pearsonr(data['height'], data['weight'])
print(corr) #代表身高和體重有高度線性相關

0.8380879580762451

圖形和數值皆呈現高度的線性相關性。

離散 vs 離散: Cramer's V 係數

Cramer's V 運用卡方檢定的結果來運算出一 個可以估算離散型變數的相關性的指標。

定義如下:

$$V = \sqrt{\frac{\chi^2}{n \times (MIN(r,c)-1)}}$$

r:交叉列連表(contingency table)的行數

C:交叉列連表(contingency table)的列數

n:資料總筆數

計算 Cramer's V 係數的步驟

目標:我們想要探討性別與失眠的關係

Step1:用交叉列連表(contingency table) 整理資料

$df^* = MIN(r,c) - 1$

• Step3:運用 researchpy 套件,計算出 Cramer's V 係數

Cramer's V 判斷相關的準則

不同的自由度,有對應判斷兩個離散型變數強度的準則。

df*	negligible	small	medium	large
1	0 ~ .10	.10 ~ .30	.30 ~ .50	.50 or more
2	0 ~ .07	.07 ~ .21	.21 ~ .35	.35 or more
3	0 ~ .06	.06 ~ .17	.17 ~ .29	.29 or more
4	0 ~ .05	.05 ~ .15	.15 ~ .25	.25 or more
5	0 ~ .05	.05 ~ .13	.13 ~ .22	.22 or more

researchpy.crosstab 計算相關性

Step 1:用交叉列連表(contingency table) 整理資料

Step 2:計算資料自由度 df

$a_j - min(i, c) - i$

```
df = min(contTable.shape[0], contTable.shape[1]) - 1
df
```

Step 3:運用 researchpy 套件,計算出 Cramer's V 係數

• 失眠狀態和性別呈現中度相關

```
crosstab, res = researchpy.crosstab(data['sex'], data['insomnia'], test='chi-square')
#print(res)
print("Cramer's value is",res.loc[2,'results'])|
#這邊用卡方施定變位性,所以採用的 test 參數為卡方 "test =" argument.
# 採用的變數性這個模組中,自己而能變對無來判斷。Cramer's Phi if it a 2x2 table, or Cramer's V is larger than 2x2.

Cramer's value is 0.4082
```

```
valiate_CramerV(df,res.loc[2,'results'])
```

^{&#}x27;medium'

離散 vs 連續: Eta Squared (η2)

Eta Squared (η^2)

• 描述一個離散型變數和連續型變數的相關性

elpoy

$$\eta^2 = \frac{SS_{Between}}{SS_{Total}}$$

$$SS_{total} = SS_{within} + SS_{between}$$

以連續型變數的數值計算變異數

總變異數:

$$SS_{total} = \sum_{all} (X_i - \bar{X}_{all})^2$$

組內變異數:

$$SS_{within} = \sum_{g \in$$
各組 $i \in$ 各組資料 $(X_{gi} - \bar{X}_g)^2$

組間變異數:

$$SS_{between} = \sum_{g \in \text{AL}} n_g (\bar{X}_g - \bar{X})$$

Eta Squared (η2) 判斷相關的準則

η^2	Interpretation
----------	----------------

Negligible	0.00 < 0.01
Small	0.01 < 0.06
Medium	0.06 < 0.14
Large	0.14 <= 1.00

離散 vs 連續: Eta Squared (η2)

目標:失眠和體重的相關性

• Step1:取出失眠和體重資料

• Step2:運用 pg.anova 計算三種變異數

Step3:變異數換算得到 Eta Squared (η²)

pg.anova 計算變異數

計算相關性 Eta Squared (η2)

0.2330204030001333

```
def valiate_etaSq(etaSq):
    if etaSq < .01:
        qual = 'Negligible'
    elif etaSq < .06:
        qual = 'Small'
    elif etaSq < .14:
        qual = 'Medium'
    else:
        qual = 'Large'
    return(qual)
valiate_etaSq(etaSq)</pre>
```

^{&#}x27;Large'

失眠狀態和體重呈現高度相關

總結

今天的課程中,透過數值的方法,偵測三種不同資料類型的相關性。

方法	Pe	arson 皮爾森	Cramer's V 克雷莫		
變數特性	兩個	I成對 連續 變數	兩個成對 離散 變數	成對的- 一個離私	

回到今天的程式範例

☐ Ä Ü

- pip install pingouin
- pip install researchpy

延伸閱讀

何謂卡方檢定?

在Cramer's 我們用到卡方檢定,驗證從兩個變數 抽出的配對觀察值組是否互相獨立,如果不獨立則 代表變數間可能相關。

	男	女	總計
右	43	44	87
左	9	4	13
總計	52	48	100

	男	女	總計
右	43 (45.24)	44 (41.76)	87
左	9 (6.76)	4 (6.24)	13
總計	52	48	

圖表資料來源:**皮爾森卡方檢驗**

透過以下範例	,	了解變數	
之間的關係			

連續 vs 連續:Pearson	
相關係數	

Pearson 判斷相關的準則 >

下一步:閱讀範例與完成作業

