GÉOMÉTRIE ET POLYNÔMES Planche 1 : Géométrie

1 Vecteurs du plan et de l'espace

Exercice 1. * On considère les vecteurs :

$$u' = \begin{pmatrix} 1 \\ 3 \end{pmatrix}, v' = \begin{pmatrix} 0 \\ -1 \end{pmatrix} \in \mathbb{R}^2, \quad u = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, v = \begin{pmatrix} 1 \\ 0 \\ -3 \end{pmatrix}, w = \begin{pmatrix} -2 \\ 0 \\ 6 \end{pmatrix} \in \mathbb{R}^3.$$

1. Calculer, lorsque cela a un sens, les combinaisons linéaires suivantes :

$$u' + 3v'$$
, $2u' - v'$, $u' + v' - u$, $2u + v - w$, $4w$, $u' + 7w$.

- 2. Déterminer si, parmi les vecteurs u, v et w il y en a deux qui sont colinéaires.
- **3.** Le vecteur $\begin{pmatrix} 1\\2\\5 \end{pmatrix}$ est-il combinaison linéaire de u et v? Et le vecteur $\begin{pmatrix} 0\\1\\2 \end{pmatrix}$.
- **4.** Les vecteurs u' et v' forment-ils une base de \mathbb{R}^2 ? Même question pour les vecteurs u, v et w de \mathbb{R}^3 .

Exercice 2. * On considère les vecteurs $\begin{pmatrix} 1 \\ m \end{pmatrix}$ et $\begin{pmatrix} m \\ 1 \end{pmatrix}$ où $m \in \mathbb{R}$ est un paramètre.

- 1. Déterminer les valeurs de m pour lesquelles les deux vecteurs sont colinéaires.
- **2.** Même question pour les vecteurs $\binom{m}{m^2}$ et $\binom{m}{1}$.

Exercice 3. On considère les deux vecteurs du plan $u = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ et $v = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

- 1. Calculer le déterminant de u et v.
- 2. Écrire sous forme de système l'équation vectorielle

$$xu + yv = \left(\begin{array}{c} a \\ b \end{array}\right),$$

où x et y sont les inconnues et a et b des paramètres réels. En vue du point précédent, que peut on dire du nombre de solutions du système?

- **3.** Résoudre le système en fonction des paramètres a et b.
- **4.** Reprendre les points précédents pour les vecteurs $u = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ et $v = \begin{pmatrix} -3 \\ 6 \end{pmatrix}$.

Exercice 4. * Soient $A \begin{pmatrix} 4 \\ 0 \end{pmatrix}$, $B \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ et $C \begin{pmatrix} 6 \\ 3 \end{pmatrix}$ trois points de \mathbb{R}^2 . Déterminer les vecteurs \overrightarrow{AA} , \overrightarrow{AB} , \overrightarrow{BA} , \overrightarrow{AC} et \overrightarrow{BC} . Le quadrilatère OABC est-il un parallélogramme?

Exercice 5. *

- 1. Soit ABCD un parallélogramme dans \mathbb{R}^2 . Exprimer ses diagonales \overrightarrow{AC} et \overrightarrow{BD} en fonction de ses côtés \overrightarrow{AB} et \overrightarrow{AD} .
- 2. Montrer que les diagonales d'un parallélogramme s'intersectent au milieu de leurs longueurs.

Exercice 6. Formuler et démontrer un résultat analogue à l'exercice précédent pour les diagonales des parallélépipèdes dans l'espace.

2 Produit scalaire, orthogonalité et norme.

Exercice 7. Calculer les normes ||u||, ||v||, le produit scalaire $u \cdot v$, le cosinus de l'angle non orienté entre les vecteurs u et v, ainsi que le projecté orthogonal de u sur v et de v sur u.

1.
$$u = \begin{pmatrix} -1 \\ 2 \\ -3 \end{pmatrix}, v = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}, 2. $u = \begin{pmatrix} \sqrt{2} \\ \sqrt{3} \\ \sqrt{5} \end{pmatrix}, v = \begin{pmatrix} \sqrt{8} \\ -\sqrt{27} \\ 0 \end{pmatrix}.$$$

Exercice 8. Vérifier que les repères suivants sont orthonormés (les vecteurs sont de norme 1 et deux-à-deux orthogonaux).

1.
$$u = \begin{pmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{pmatrix}$$
, $v = \begin{pmatrix} -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{pmatrix}$, **2.** $u = \begin{pmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \\ 0 \end{pmatrix}$, $v = \begin{pmatrix} -\frac{\sqrt{3}}{3} \\ \frac{\sqrt{3}}{3} \\ \frac{\sqrt{3}}{3} \end{pmatrix}$, $w = \begin{pmatrix} -\frac{\sqrt{6}}{6} \\ \frac{\sqrt{6}}{6} \\ -\frac{\sqrt{6}}{3} \end{pmatrix}$.

Exercice 9. Montrer que les diagonales d'un losange sont orthogonales.

Exercice 10. *

- **1.** Trouver un vecteur w de norme 1, orthogonal aux vecteurs $u = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$ et $v = \begin{pmatrix} 0 \\ 3 \\ -2 \end{pmatrix}$.
- **2.** Trouver un vecteur c de norme 1, qui forme l'angle $\pi/3$ avec les vecteurs $a = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ et $b = \begin{pmatrix} 1 \\ \sqrt{3} \\ 0 \end{pmatrix}$.

Exercice 11. Calculer l'angle formé par les diagonales des deux faces adjacentes dans un cube.

3 Droites dans le plan

Exercice 12. On considère les points $A \begin{pmatrix} -1 \\ 1 \end{pmatrix}$, $B \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ et $C \begin{pmatrix} 5 \\ 4 \end{pmatrix}$ de \mathbb{R}^2 .

- 1. Montrer que ces trois points sont alignés.
- 2. Donner une équation paramètrique, puis cartesienne de la droite par ces trois points.

2

3. On pose $D\left(\begin{smallmatrix} -4\\ m \end{smallmatrix}\right)$. Déterminer $m\in\mathbb{R}$ pour que $A,\,B$ et D soient alignés.

Exercice 13. Dans le plan, soient \mathcal{D} la droite passant par le point $A \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ de vecteur directeur $v = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ et \mathcal{D}' la droite d'équation cartésienne x + y = 1. Déterminer de façon géométrique (avec un dessin) et algébrique l'intersection de ces deux droites.

Exercice 14. On considère les trois points $A\begin{pmatrix} 4\\0 \end{pmatrix}$, $B\begin{pmatrix} 2\\3 \end{pmatrix}$ et $C\begin{pmatrix} 6\\3 \end{pmatrix}$ de \mathbb{R}^2 .

- 1. Trouver l'ensemble des points $M\left(\begin{smallmatrix}x\\y\end{smallmatrix}\right)$ du plan qui vérifient $\overrightarrow{AM}\perp\overrightarrow{BC}$.
- 2. En déduire une équation cartésienne et paramétrique de la droite perpendiculaire à la droite BC et passant par A.

Exercice 15. * Dans \mathbb{R}^2 , donner une équation paramétrique et une équation cartésienne pour chacune des droites suivantes.

- **1.** Droite passant pas les points $A \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et $B \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.
- **2.** Droite passant par le point $C \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ et de vecteur directeur $u = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$.
- 3. Droite passant par le point $P \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et orthogonale à la droite d'équation 3x + 4y + 5 = 0.

Exercice 16. Dans le plan \mathbb{R}^2 , trouver les points d'intersection des droites d_1 et d_2 décrites par les équations suivantes :

- 1. $d_1: 2x + 5y + 1 = 0$ et $d_2: x 2y 4 = 0$,
- **2.** $d_1: \binom{1}{2} + s \binom{2}{1}, \ s \in \mathbb{R} \text{ et } d_2: 3x 2y 4 = 0,$
- **3.** $d_1: \binom{1}{2} + s \binom{2}{3}, s \in \mathbb{R} \text{ et } d_2: \binom{3}{2} + t \binom{4}{5}, t \in \mathbb{R}.$

Exercice 17. (Partiel 2015/2016) On rappelle que la *médiatrice* d'un segment est la droite orthogonale à ce segment et passant par son milieu. Soient $A \begin{pmatrix} 2 \\ 3 \end{pmatrix}$, $B \begin{pmatrix} 0 \\ -1 \end{pmatrix}$ et $C \begin{pmatrix} 4 \\ 1 \end{pmatrix}$ trois points du plan.

- 1. Donner une équation paramétrique de la médiatrice m_{AB} du segment [AB].
- 2. Soit $D \in m_{AB}$. Montrer que $\|\overrightarrow{AD}\| = \|\overrightarrow{BD}\|$.
- 3. Donner une équation cartésienne de la médiatrice m_{AC} du segment [AC].
- 4. Trouver le point M d'intersection des médiatrices m_{AB} et m_{AC} .
- 5. Montrer que $\|\overrightarrow{AM}\| = \|\overrightarrow{BM}\| = \|\overrightarrow{CM}\|$.

Exercice 18. * Calculer la distance entre le point $A \binom{5}{2}$ et la droite d: x + 6y + 3 = 0 dans \mathbb{R}^2 .

4 Produit vectoriel

Exercice 19. * Calculer les produits vectoriels des vecteurs u et v suivants.

1.
$$u = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $v = \begin{pmatrix} 2 \\ 0 \\ 4 \end{pmatrix}$, **2.** $u = \begin{pmatrix} -1 \\ 4 \\ 2 \end{pmatrix}$, $v = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, **3.** $u = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}$, $v = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}$.

Exercice 20. Soient les trois points de l'espace $A \begin{pmatrix} -1 \\ -2 \\ 3 \end{pmatrix}$, $B \begin{pmatrix} 0 \\ 2 \\ 4 \end{pmatrix}$ et $C \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix}$.

- 1. Déterminer le point D tel que ABCD soit un parallélogramme.
- 2. Calculer l'aire de ce parallélogramme.

Exercice 21. Soient les deux vecteurs de \mathbb{R}^3 suivants $u = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ et $v = \begin{pmatrix} 0 \\ 1 \\ t \end{pmatrix}$, où $t \in \mathbb{R}$.

- **1.** Déterminer $||u \wedge v||$, puis ||u|| et ||v||.
- 2. En déduire l'ensemble des t tels que l'angle entre u et v soit $\pm \pi/3$.
- **3.** Calculer l'aire du parallélogramme de côtés u et v.

Exercice 22. * Calculer les aires des figures suivantes.

- **1.** Parallélogramme engendré par les vecteurs $a = \begin{pmatrix} 0 \\ 3 \\ -2 \end{pmatrix}$ et $b = \begin{pmatrix} -1 \\ 2 \\ 5 \end{pmatrix}$.
- **2.** Triangle de sommets $A \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $B \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix}$ et $C \begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix}$.
- **3.** Parallélépipède engendré par les vecteurs $u = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$, $v = \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}$ et $w = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$.

Exercice 23. * Calculer le volume du parallélépipède engendré par les vecteurs $u = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$, $v = \begin{pmatrix} 0 \\ 3 \\ -2 \end{pmatrix}$ et $w = \begin{pmatrix} -1 \\ 5 \\ 0 \end{pmatrix}$.

5 Droites et plans dans l'espace

Exercice 24. * Déterminer une équation paramétrique puis cartésienne de la droite de l'espace passant par les points $A \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix}$, $B \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$. Vérifier qu'il ne s'agit pas d'une droite vectorielle (c'est-à-dire, elle ne contient pas l'origine) et donner une équation paramétrique et une équation cartésienne de la droite vectorielle parallèle à la droite par A et B.

Exercice 25. * Dans \mathbb{R}^3 , donner une équation paramétrique et une équation cartésienne pour chacune des droites suivantes.

- **1.** Droite passant par les points $A \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$ et $B \begin{pmatrix} 3 \\ 4 \\ -1 \end{pmatrix}$.
- **2.** Droite passant par le point $C \begin{pmatrix} -3 \\ 5 \\ 2 \end{pmatrix}$ et de vecteur directeur $u = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$.
- 3. Droite étant l'intersection des plans $P_1: 6x+2y-z-9=0$ et $P_2: 3x+2y+2z-12=0$.
- **4.** Droite passant par le point $Q\begin{pmatrix}0\\-2\\3\end{pmatrix}$ et orthogonale au plan P:3x-y+2z-6=0.

Exercice 26. *

1. Soit \mathcal{P} le plan de \mathbb{R}^3 défini par l'équation cartésienne x+y+2z+1=0. Donner une équation paramétrique de \mathcal{P} .

4

2. Soit \mathcal{P} le plan de \mathbb{R}^3 défini par l'équation paramétrique $\begin{cases} x = 1 + t + s \\ y = t - s \\ z = -1 + 2t - s \end{cases}, t, s \in \mathbb{R}.$ Donner une équation cartésienne de \mathcal{P} .

Exercice 27. Donner une équation paramétrique et une équation cartésienne pour chacun des plans de \mathbb{R}^3 suivants.

- **1.** Plan passant par le point $A \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix}$ et orthogonal au vecteur $n = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$.
- **2.** Plan passant par le point $B\begin{pmatrix} 3\\ -2\\ 5 \end{pmatrix}$ et parallèle au plan d'équation x=0.
- **3.** Plan passant par l'origine et engendré par les vecteurs $u = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ et $v = \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix}$.
- **4.** Plan passant par les points $P \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$, $Q \begin{pmatrix} -1 \\ 4 \\ 5 \end{pmatrix}$ et $R \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix}$.

Exercice 28. * (Partiel 2014/2015) Pour tout réel $m \in \mathbb{R}$, on considère le plan P_m de \mathbb{R}^3 défini par l'équation cartésienne

$$m^2x + (2m - 1)y + mz = 3.$$

- 1. Pour quelles valeurs du paramètre m le point $A \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ appartient-il à P_m ?
- **2.** Pour quelle valeur de m le vecteur $n = \begin{pmatrix} 2 \\ -5/2 \\ 1 \end{pmatrix}$ est-il orthogonal à P_m ?

Exercice 29. Dans \mathbb{R}^3 , trouver les points d'intersection des plans p_1 et p_2 donnés par les équations suivantes.

1.
$$p_1: \begin{pmatrix} 1\\2\\1 \end{pmatrix} + \alpha \begin{pmatrix} 2\\1\\3 \end{pmatrix} + \beta \begin{pmatrix} 1\\0\\-1 \end{pmatrix}, \ \alpha, \beta \in \mathbb{R} \text{ et } p_2: x+y+5z-2=0.$$

2.
$$p_1: \begin{pmatrix} 1\\2\\1 \end{pmatrix} + \alpha \begin{pmatrix} 2\\1\\3 \end{pmatrix} + \beta \begin{pmatrix} 1\\0\\-1 \end{pmatrix}, \ \alpha, \beta \in \mathbb{R} \text{ et } p_2: \begin{pmatrix} 0\\0\\1 \end{pmatrix} + \gamma \begin{pmatrix} 1\\2\\3 \end{pmatrix} + \delta \begin{pmatrix} 4\\2\\3 \end{pmatrix}, \ \gamma, \delta \in \mathbb{R}.$$

Exercice 30. * Pour les triplets de points de \mathbb{R}^3 suivants, déterminer s'ils sont alignés ou pas. Si oui, donner une équation cartésienne de la droite qui les contient et, si non, une équation paramétrique du plan qui les contient.

1.
$$A \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$
, $B \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ et $C \begin{pmatrix} 5 \\ 4 \\ -2 \end{pmatrix}$.

2.
$$A \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $B \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$ et $C \begin{pmatrix} 0 \\ 0 \\ -2 \end{pmatrix}$.

3.
$$A \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}$$
, $B \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ et $C \begin{pmatrix} 3 \\ -3 \\ 1 \end{pmatrix}$.

Exercice 31. * Pour chacune d'équations suivantes (cartésienne ou paramétrique), préciser si elle définit une droite ou un plan dans \mathbb{R}^3 . S'il s'agit d'une droite, en donner deux points distincts, s'il s'agit d'un plan, en donner trois points distincts non alignés.

5

1.
$$2x + 3y + z + 5 = 0$$
, 2.
$$\begin{cases} x = -5t + 1 \\ y = 2t + 3 \\ z = -t + 2 \end{cases}$$
 3.
$$\begin{cases} 2x + y + 2z - 2 = 0 \\ x = 0, \end{cases}$$
 4.
$$\begin{cases} x = -5t + 1 \\ y = 2t + 3 \end{cases}$$
 $t \in \mathbb{R}$.

Exercice 32. * Décider si les affirmations suivantes sont vraies ou fausses.

- **1.** Le point $A \begin{pmatrix} -1 \\ -2 \\ 0 \end{pmatrix}$ appartient à la droite $d: \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + s \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, s \in \mathbb{R}.$
- **2.** La droite $d: \begin{cases} 2x + y z + 3 = 0 \\ x 2y + z 5 = 0 \end{cases}$ est contenue dans le plan p: 5y 3z + 13 = 0.
- **3.** Le point $B \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ appartient au plan $p: \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix} + \alpha \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \ \alpha, \beta \in \mathbb{R}.$
- **4.** La droite $d: \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + t \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \ t \in \mathbb{R}$, est parallèle au plan p: x+y-z+3=0.

Exercice 33. * Soit \mathcal{D} la droite dans l'espace, définie par l'équation paramétrique :

$$\begin{cases} x = 1 + \frac{t\sqrt{6}}{6} \\ y = \frac{t\sqrt{6}}{6} \\ z = \frac{2t\sqrt{6}}{6} \end{cases}, t \in \mathbb{R}.$$

Soit Δ la droite intersection des deux plans d'équations cartésiennes :

$$x + y + z - 1 = 0$$
 et $x - y - 2 = 0$.

Calculer le cosinus de l'angle aigu entre ces deux droites.

Exercice 34.

- **1.** Calculer la distance entre le point $A \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ et la droite $d : \begin{pmatrix} 2 \\ 3 \\ 5 \end{pmatrix} + t \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}, t \in \mathbb{R}$.
- **2.** Calculer la distance entre le point $B \begin{pmatrix} 10 \\ 3 \\ 1 \end{pmatrix}$ et le plan $p: \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + s \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} + t \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, s, t \in \mathbb{R}.$
- **3.** Calculer la distance entre les plans parallèles d'équations 2x y + 3z = 0 et -4x + 2y 6z + 8 = 0.

Exercice 35. Soient P_1 et P_2 les plans de l'espace d'équations cartésiennes :

$$P_1: 2x + y - 1 + 3 = 0$$
 et $P_2: -x + z = 0$.

Soit α l'angle aigu entre ces deux plans. On note n_1 et n_2 les vecteurs normaux de P_1 et P_2 respectivement. On suppose que n_1 et n_2 sont de norme 1, et ont leur première coordonnée positive.

6

- 1. Déterminer les coordonnées de n_1 et n_2 .
- **2.** Montrer que α est l'angle aigu entre n_1 et n_2 .
- **3.** En déduire $\sin(\alpha)$.