Московский Авиационный Институт (Национальный исследовательский университет)

Институт №8 "Информационных технологий и прикладной математики"

Курсовой проект

по курсу «Вычислительные системы» I семестр

Задание 4

Студен	т: Ядров А. Л.
Группа:	M8O-1015-20
Руководитель:	Никулин С. П.
Оценка:	
Дата: ˌ	
Подпись преподавателя:	

1. Задача

Составить программу на языке Си с процедурами решения трансцендентных алгебраических уравнений различными методами (итераций, Ньютона, дихотомии). Нелинейные уравнения оформить как параметры-функции, разрешив относительно неизвестной величины при необходимости.

2. Вариант

Nº	Уравнение	Отрезок, содержащий корень	Базовый метод	Приближенное значение корня
1	$e^x + \ln(x) + 10x$	[3, 4]	Ньютона	3.5265
2	$\cos(x) - e^{\frac{-x^2}{2}} + x + 1$	[1, 2]	дихотомии	1.0804

3. Общий метод решения

Для начала необходимо описать возможностями языка Си вычисление приближенного значения функции, нахождения корня методом итераций, методом Ньютона и методом дихотомии. Далее подставить заданные значения и вывести высчитанные корни, затем сравнить с приближенными значениями х.

4. Общие сведения о программе

Аппаратное обеспечение: домашний ноутбук

Операционная система: Fedora 33

Язык и система программирования: C, CLion

Число строк программы: 71

Местонахождение файлов: /CLionProjects/kursach/main.c Компиляция программы в консоли Fedora: gcc -lm -g main.c

Вызов программы: ./a.out

5. Функциональное назначение

Программа предназначена для решения трансцендентных алгебраических уравнений различными численными методами.

3

6. Описание логической структуры

Программа получает на вход требуемый отрезок, далее находит корень уравнения F(x) = 0 различными методами и выводит значение на экран.

7. Описание переменных и констант

РМЯ	Имя Тип Назначение	
eps	double	Машинное ε

8. Описание функций

function F1(x : double) : double

Функция, вычисляющая значение функции $e^x + \ln(x) + 10x$

Имя	Тип	Вид	Назначение
X	double	Входной параметр	Значение аргумента для вычисления значения функции $e^x + \ln(x) + 10x$

function F2(x : double) : double

Функция, вычисляющая значение функции $\cos{(x)} - \mathrm{e}^{\frac{-x^2}{2}} + x + 1$

Имя	Тип	Вид	Назначение	
X	double	Входной параметр	Значение аргумента для вычисления значения функции $\cos(x) - e^{\frac{-x^2}{2}} + x + 1$	

function F1_1(x : double) : double

Функция, вычисляющая значение производной функции $e^x + \ln(x) + 10x$

РМЯ	Тип	Вид	Назначение
X	double	Входной параметр	Значение аргумента для вычисления значения производной функции $e^x + \ln(x) + 10x$

function F2_2(x : double) : double

Функция, вычисляющая значение производной функции $\cos{(x)} - \mathrm{e}^{\frac{-x^2}{2}} + x + 1$

Имя	Тип	Вид	Назначение
X	double	Входной параметр	Значение аргумента для вычисления значения $\cos(x) - e^{\frac{-x^2}{2}} + x + 1$

function f1(x : double) : double

Функция, вычисляющая выраженный х для функции $e^x + \ln(x) + 10 x$

Имя	Тип	Вид	Назначение
X	double	Входной параметр	Значение аргумента для вычисления выраженного х для функции $e^x + \ln(x) + 10x$

function f2(x : double) : double

Функция, вычисляющая выраженный х для функции $\cos{(x)} - \mathrm{e}^{\frac{-x^2}{2}} + x + 1$

Имя	Тип	Вид	Назначение
X	double	Входной параметр	Значение аргумента для вычисления выраженного x для функции $\cos{(x)} - e^{\frac{-x^2}{2}} + x + 1$

Function dth(f(double), a, b, eps : double) : double

Функция, вычисляющая корень уравнения f(x) = 0 методом дихотомии

Имя	Тип	Вид	Назначение
f(double)			Функция, для которой вычисляется корень
a	double	Входной параметр	Левая граница отрезка
b			Правая граница отрезка
eps			Машинное ε

Function iter(f(double), a, b, eps : double) : double

Функция, вычисляющая корень уравнения f(x) = 0 методом итераций

Имя	Тип	Вид	Назначение
f(double)			Функция выраженного х
a	double	Входной параметр	Левая граница отрезка
b			Правая граница отрезка
eps			Машинное ε

Function newton(F(double), F1(double), a, b, eps: double): double

Функция, вычисляющая корень уравнения f(x) = 0 методом Ньютона

Имя	Тип	Вид	Назначение
F(double)			Функция F(x)
F1(double)	double	Входной параметр	Функция производной функции F(x)
a			Левая граница отрезка
b			Правая граница отрезка
eps			Машинное ε

function ans(F(double), F1(double), f(double), a, b, eps: double): void

Функция вывода ответа на уравнение F(x) = 0, решенное 3 различными методами

Имя	Тип	Вид	Назначение
F(double)			Функция F(x)
F1(double)			Функция производной функции F(x)
f(double)	double	Входной параметр	Функция выраженного х
a			Левая граница отрезка
b			Правая граница отрезка
eps			Машинное ε

9. Входные данные

Отсутствуют

10. Выходные данные

```
Функция \exp(x) + \ln(x) - 10x
```

Корень, полученный методом дихотомии: 3.5264980

Корень, полученный методом итераций: 3.5264980

Корень, полученный методом Ньютона: 3.5264980

Функция cos(x) - $exp(-0.5*x^2) + x - 1$

Корень, полученный методом дихотомии: 1.0894428

Корень, полученный методом итераций: 1.0894428 Корень, полученный методом Ньютона: 1.0894428

11. Тестовые примеры

Не предусмотрены.

12. Дневник отладки

Дата	Место	Событие	Действие по исправлению

13. Выводы по задаче

Я составил программу на языке Си с процедурами решения трансцендентных алгебраических уравнений различными численными методами, и, следовательно, научился пользоваться этими методами.

14. Протокол

```
[Temi4@localhost kursach]$ cat main.c
#include <stdio.h>
#include <math.h>

double F1(double x) {
  return exp(x) + log(x) - 10 * x;
}
```

```
double F2(double x) {
  return cos(x) - exp(-pow(x, 2) / 2) + x - 1;
}
double f1(double x) {
  return log(10*x-log(x));
}
double f2(double x) {
  return 1 + \exp(-pow(x, 2) / 2) - \cos(x);
}
double F1_1(double x) {
  return exp(x) + 1 / x - 10;
}
double F2_1(double x) {
  return -\sin(x) + x * \exp(-pow(x, 2) / 2) + 1;
}
double dth(double f(double), double a, double b, double eps) {
  double x;
  while (fabs(a - b) > eps) {
     x = (a + b) / 2;
     if (f(x) * f(a) < 0) {
       b = x;
     } else {
       a = x;
     }
  return (a+b)/2;
}
```

```
double itter(double f(double), double a, double b, double eps) {
  double x = (a + b) / 2;
  while (fabs(f(x) - x) > eps) {
    x = f(x);
  }
  return x;
}
double newton(double F(double), double F1(double), double a, double b, double eps) {
  double x = (a + b / 2);
  while (fabs(F(x) / F1(x)) > eps) \{
    x = F(x)/F1(x);
  }
  return x;
}
void ans(double F(double), double F1(double), double f(double), double a, double b, double eps){
  printf("Корень, полученный методом дихотомии: %11.7f\n", dth(F, a, b, eps));
  printf("Корень, полученный методом итераций: \%11.7f\n", itter(f, a, b, eps));
  printf("Корень, полученный методом Ньютона: \%11.7f\n", newton(F, F1, a, b, eps));
}
int main() {
  double eps = 1;
  while (1 + eps/2 > 1){
    eps /= 2;
  }
  printf("Функция \exp(x) + \ln(x) - 10x\n");
  ans(F1, F1_1, f1, 3, 4, eps);
  printf("Функция cos(x) - exp(-0.5*x^2) + x - 1^n");
  ans(F2, F2_1, f2, 1, 2, eps);
  return 0;
}[Temi4@localhost kursach]$ gcc -lm -g main.c
[Temi4@localhost kursach]$ ./a.out
Функция \exp(x) + \ln(x) - 10x
```

Корень, полученный методом дихотомии: 3.5264980

Корень, полученный методом итераций: 3.5264980

Корень, полученный методом Ньютона: 3.5264980

Функция cos(x) - $exp(-0.5*x^2) + x - 1$

Корень, полученный методом дихотомии: 1.0894428

Корень, полученный методом итераций: 1.0894428

Корень, полученный методом Ньютона: 1.0894428

[Temi4@localhost kursach]\$