

Tracker

Glucose Activity

日本

Authors:

Salar Rahili, Parin Dalal, Mehrdad Yazdani, Solmaz Shariat Torbaghan, and Michael Snyder

January_

- Women's Multi
- Egg, whole, cooked, hard-boiled
- La Croix, Spakling Water, Blackberry cucumber
- Beefy Noodle Broth Bowl
- Brach's, Star Brittes Peppermint Candy
- Organic & Raw Kombucha, Guava Goddess
- Chicken and Andouille Sausage Gumbo
- Great Value, Natural Unsweetened Applesauce
- Fried Rice|Smoked Salmon Roll Sushi|Goma Wakame
- Metformin 1000mg

Local Time

Training: 4 days with CGM, HRM, and logging With AI personalization no time horizon limits to forecast

No CGM used in forecasting

Only heart rate, food medication logs and a personalized model to forecast

Why personalization matters: Data suggests limited value in static food ranks

PB&J Sandwich

Glucose responses may vary by:

- User's physiology
- Meal
- Pre-prandial heart-rate
- Timing of the meal
- Prandial glucose/insulin levels
- Sleep patterns

Over 1,000 Participants Successfully Enrolled

Disease Type	Ge	Gender Age					ВМІ				
	Male	Female	<30	30-40	40-50	>50	<25	25-30	30-40	40-45	>45
HV	33%	67%	36%	40%	17%	7%	31%	29%	30%	8%	2%
PwPD	42%	58%	16%	44%	24%	16%	30%	21%	33%	10%	7 %
PwT2D	29%	71%	5%	35%	40%	21%	7%	13%	40%	22%	19%

Sugar Al app was used to collect data

Medication

Food

Over 22,500 individual applied to the study

Over **22,000** individuals applied to participate in the Sugar Challenge across the **50** states of the United States. We enrolled self-reported healthy, people with prediabetes, and people with Type 2 diabetes on metformin, glucagon-like peptide 1 agonist (GLP-1a), or sodium-glucose co-transporter 2 inhibitor (SGLT-2i) therapy. In addition, participants wore a continuous glucose monitor (CGM) and a heart rate monitor 20-24 hours/day, provided body weight at baseline and agreed to comprehensive logging of their activity, food, medication, and water consumption for 10 consecutive days.

ML infers parameters that suggest wide physiological differences in users

- Machine learning combined with our novel biophysical model learns personalization parameters having physiological analogs.
- These parameters provide several clinical insights:
 - Map patient histories to health transitions (e.g. Healthy Volunteers to PwT2D)
 - PwT2D's dysregulation is caused by different underlying conditions (seen in two ellipses)
 - Provide a path towards more personalized food and activity recommendations

For visualization, **2** out of **24** parameters are depicted on the right (Note that **high basal value**, does not equate to relatively **higher spikes**)

Most healthy users Pre-diabetic PwT2Ds

ML Analysis: Precise In silico glycemic response prediction for PwT2D on Metformin

Glucose Infusion Rate

In-silico users generated by uniformly sampling from:

BMI: 20-55, Age: 25-75, **Gender**: Male, Female

Race: Asian, Black, Mexican, White

In absence of user logging errors such as time of log or item logged, January Al's in-silico forecasting shows excellent accuracy across a wide range of physiologies.

In-silico	RMSE	MAE	Reg. A	Reg. B	Reg. C	Reg. D	Reg. E	Reg. C-D
120 mins prediction	19.8	14.2	87.6	11.6	0.8	0.0	0.0	0.8

ML Analysis: Precise In vivo glycemic response prediction for PwT2D on Metformin

After filtering for data integrity, January Al used data from 579 human participants

We used these criteria to evaluate the accuracy of our model compared to literature:

- 4 days of training data for each user
- Food, heart-rate, medication were inputs for personalized prediction
- Evaluations were only for postprandial glucose to predict the response of users after their logged meals

	Gender		Age				ВМІ				
	Male	Female	<30	30-40	40-50	>50	<25	25-30	30-40	40-45	>45
HV (#467)	38%	62%	34%	43%	15%	8%	35%	32%	26%	6%	2%
PwPDs (#26)	38%	62%	35%	42%	19%	4%	4%	12%	61%	23%	0%
PwT2Ds (Metformin #86)	34%	66%	1%	27%	48%	24%	5%	8%	40%	29%	17%

User errors include:

- Missing food and medication logs
- Improper time logging
- Improper food selection

Systematic errors include:

- Exclusion of sleep pattern modeling
- Exclusion of stress and other known secondary factors to glucose regulation

We tested different subgroups to find a correlation between the errors with **Age**, **Gender**, **BMI**, and **Race**. However, no significant correlation was found.

PwT2D	RMSE	MAPE	Reg. A	Reg. B	Reg. C	Reg. D	Reg. E	Reg. C-E
60 mins prediction	26.6	12.3	78.0	21.3	0.2	0.5	0.0	0.7
120 mins prediction	31.9	15.0	72.0	26.8	0.3	0.9	0.0	1.2

PwPD	RMSE	MAPE	Reg. A	Reg. B	Reg. C	Reg. D	Reg. E	Reg. C-E
60 mins prediction	18.2	12.4	78.5	19.9	0.0	1.6	0.0	1.6
120 mins prediction	20.6	14.5	73.1	25.3	0.0	1.6	0.0	1.6

Healthy	RMSE	MAPE	Reg. A	Reg. B	Reg. C	Reg. D	Reg. E	Reg. C-E
60 mins prediction	15.6	11.2	81.4	17.3	0.0	1.3	0.0	1.3
120 mins prediction	17.7	13.3	76.5	21.7	0.0	1.8	0.0	1.8

Acknowledgments:

We would like to thank Dr. Tracey McLaughlin, Dr. Ami Bhatt, Dr. Nima Aghaeepour, Dr. Justin Sonnenburg, and Dr. Parag Mallick for their contributions as editorial advisors.

We would like to thank Dr. James Shima and Dr. Maziyar Saberi for their useful feedback, the January.ai clinical staff for data collection, and our great Sugar Challenge participants.

Find us at www.january.ai

January_{,—}