

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«МИРЭА – Российский технологический университет» РТУ МИРЭА

Институт информационных технологий Кафедра вычислительной техники

Отчет по практической работе №4

по дисциплине

«Архитектура процессоров и микропроцессоров»

Выполнил: студент группы ИВБО-02-19 К. Ю. Денисов

Принял: старший преподаватель ка- Ю. М.Скрябин

федры ВТ

Работа выполена «____» ______ 202___ «Зачтено» «____» _____ 202___

1 Задание

Для заданного в таблице 4 закодированного графа разработать три микропрограммных автомата (МПА):

- 1. МПА Мили на жесткой логике;
- 2. Управляющий автомат на программируемой логике (УАПЛ) с принудительной адресацией с 2-я адресными полями;
- 3. УАПЛ с естественной адресацией.

Для УАПЛ выбрать смешанный способ микропрограммирования.

2 Перечень сокращений

Приведем также перечень сокращений, используемых в ходе данной работы:

МКП — микропрограмма

МПА — микропрограммный автомат

УАПЛ — управляющий автомат на программируемой логике

ГСА — граф-схема автомата

АЛУ — арифметико-логическое устройство

УУ — устройство управления

КС1 — первая комбинационная схема

КС2 — вторая комбинационная схема

ОП — операционное поле

АП — адресное поле

БП — безусловный переход

УП — условный переход

СЧАМК — счетчик адреса микрокоманд

ОЗУ — оперативное запоминающее устройство

РК — регистр команд

РС — распределитель сигналов

DC — дешифратор

SM – сумматор

КОП — код операции

PA1, PA2 — входные регистры AЛУ

 $PP_{AЛУ}$ — регистр результата АЛУ

РОН — регистр общего назначения

РДРОН — регистр данных регистров общего назначения

РАРОН — регистр адреса регистров общего назначения

3 Индивидуальный вариант № 9

В ходе данной лабораторной работы нам было предложено разработать три микропрограммных автомата (МПА). Приведем абстрактный граф-схему автомата (ГСА) (см. Рисунок 3.1). Где $a_1...a_5$ — состояния автомата, причем a_1' — конечное состояние автомата.

Рисунок 3.1 – Граф-схема автомата

Получим закодированный граф на базе Φ CA, заменив микрооперации управляющими сигналами $\{y\}$, а логические условия — осведомительными сигналами $\{x\}$.

Рассмотрим реализацию блока управления на базе МПА с жесткой логикой (автомат Мили), приведенного на Рисунке 3.2.

Рисунок 3.2 – МПА на жесткой логике на базе автомата Мили

В состав 3.2 МПА входят следующие структурные элементы:

- 2-х ступенчатая память автомата;
- дешифратор состояния (ДСсост.);
- две комбинационные схемы КС1 и КС2.

Память служит для запоминания состояния автомата.

Во второй ступени фиксируется текущее состояние, по которому комбинационная схема КС1 формирует набор управляющих сигналов. Первая ступень предназначена для формирования следующего состояния в зависимости от предыдущего и значений осведомительных сигналов. Переключение первой ступени памяти осуществляет схема КС1.

Двухступенчатая память применяется для исключения «гонок» из-за разницы в величине задержек в КС1 при переключении различных разрядов памяти.

Для ГСА (Рисунок 3.1) выходы операторных вершин, отмеченные символами $a_1...a_5$ соответствуют состояниям памяти МПА. Присвоим состояниям

двоичные коды:

$$a1(a1') = 000$$
 $a2 = 001$
 $a3 = 010$
 $a4 = 011$
 $a5 = 100$

Для кодирования пяти состояний потребовалось три двоичных разряда, соответственно память автомата будет строиться на трех триггерах. Выход вершины «начало» и вход в вершину «конец» отмечен одним и тем же символом а1. Это соответствует одному и тому же состоянию памяти и означает, что после выполнение своих функций по генерации {у} в соответствии заданной ГСА, МПА возвращается в исходное положение до следующей инициализации. Для этого в ГСА после вершины «Начало» необходимо поставить ждущую вершину:

Рисунок 3.3 – Ждущая вершина

Начало работы автомата обеспечивает сигнал «В», устанавливаемый извне в «1» (интерпретируется как осведомительный сигнал). После этого он сбрасывается в «0», а МПА после завершения работы снова переходит в состояние покоя «а1». Для реализации МПА необходимо по ГСА построить таблицу состояний и переходов автомата (Рисунок 3.4).

В таблице отмечаются состояния МПА, управляющие сигналы, формируемые в каждом состоянии при наличии определенных значений осведомительных сигналов. Кроме того, в правой колонке таблицы записываются сигналы возбуждения памяти, формируемые по кодам состояния текущего и следующего состояния памяти.

Значения сигналов определяются таблицами переключения триггеров, выбранных для построения памяти. В данном случае память реализована на RS-

Текущее состояние	Код текущего состояния	Управляющие сигналы (вход. Набор)	Осведомительные сигналы (условие)	Следующее состояние	Код следующего состояния	Сигналы возбуждения памяти
a1	000	y1, y3	B !B	a2 a1	001 000	S1 -
a2	001	y2, y4	1	a3	010	S2 R1
a3	010	y1, y5, y6 y6	x1 !x1	a5 a4	100 001	S3 R2 R1 R3 R2 S1
a4	011	y2, y4	x3 !x3	a2 a5	001 100	R3 R2 S1 S3 R2 R1
a 5	100	y3, y5	x2 !x2	а1' Ф1'	000 000	R3 R2 R1 R3 R2 R1

Рисунок 3.4 – Таблица состояний

триггерах. Таблица позволяет описать логическую организацию схем КС1 и КС2, т.е. произвести их абстрактный синтез.

Для КС1

$$y_1 = a_2B + a_5x_1$$

$$y_2 = a_3 + a_2x_3$$

$$y_3 = a_2B + a_1x_2$$

$$y_4 = a_3 + a_2x_3$$

$$y_5 = a_5x_1 + a_1x_2$$

$$y_6 = a_5x_1 + a_4\bar{x}_1$$

Для КС2

$$S_1 = a_2 B + a_4 \bar{x_1} + a_2 x_3$$
 $R_1 = a_3 + a_5 x_1 + a_5 \bar{x_3} + a_1 \bar{x_2}$
 $S_2 = a_3$ $R_2 = a_5 + a_4 + a_2 + a_1$
 $S_3 = a_5 x_1 + a_5 \bar{x_3}$ $R_3 = a_4 \bar{x_1} + a_2 x_3 + a_1$

По полученным логическим выражениям произведем структурный синтез схем КС1 и КС2 и построим электрическую функциональную схему МПА.

Приведем схему МПА, построенного на основе автомата Мили адресацией (Рисунок 3.5).

Рисунок 3.5 – МПА на основе автомата Мили

Реализация блока управления на базе МПА с программируемой логикой.

В МПА с программируемой логикой ГСА реализуется посредством микропрограммы (МКП), хранимой в управляющей памяти. Микропрограмма состоит из микрокоманд (МК), последовательность которых описывает графсхему алгоритма управления. Микрокоманда представляет собой машинное слово, состоящее из двух полей (Рисунок 3.6).

ОП АП

Рисунок 3.6 – Машинное слово МПА

В ОП микрокоманды записываются управляющие сигналы или их коды. В АП — коды номеров условных вершин ГСА и адрес или адреса перехода к следующей микрокоманде.

Организуем ОП смешанным горизонтально-вертикальным способом. В нашем случае ОП будет состоять из трех сегментов NY1-NY3, по которым распределяются управляющие сигналы (см. Таблицу 3.1).

NY1		N	Y2	NY3		
01	y1	01	y5	01	y6	
10	y4	10	y2	10	у3	
11	yk					
00	отс.	00	отс.	00	отс.	

Таблица 3.1 – Организация ОП смешанным способом

Способы перехода в микропрограммах к следующей микрокоманде определяются форматами адресных полей МК и правилами перехода. Принуди-

тельный переход выполняется по адресу, указанному в самой МК. Это соответствует безусловному переходу команд БП. При естественной адресации микрокоманд следующая микрокоманда адресуется посредством инкремента счетчика адреса микрокоманд (СЧАМК).

Микропрограммный автомат с принудительной адресацией МК Форматы МК с двумя адресными полями при принудительной адресации могут иметь следующий вид (Рисунок 3.7).

Рисунок 3.7 – Форматы микрокоманд. Принудительная адресация

В Таблице 3.2 представлена МКП, описывающая рассматриваемый алгоритм управления

Разряды	0:1	2:3	4:5	6:7	8:10	11:13	Вид
Адрес в УП	NY1	NY2	NY3	NX	A_0	A_1	УП
1	<y1></y1>	-	<y3></y3>	00	2	-	БУ
2	<y4></y4>	<y2></y2>	-	NX1	3	4	УΠ
3	-	-	<y6></y6>	NX3	5	2	УΠ
4	<y1></y1>	<y5></y5>	<y6></y6>	NX2	7	6	УΠ
5	-	-	-	NX2	7	6	УΠ
6	-	<y5></y5>	<y3></y3>	00	7	-	БУ
7	<y<sub>K></y<sub>	-	-	-	-	-	

Таблица 3.2 – Алгоритм управления. Принудительная адресация

Опишем структуру блока формирования сигналов перехода в виде следующей микрокоманды:

$$Z_1 = B\Pi + (NX_1\bar{x_1} + NX_2\bar{x_2} + NX_3\bar{x_3})$$

$$Z_2 = NX_1x_1 + NX_2x_2 + NX_3x_3$$

Приведем схему МПА с принудительной адресацией (Рисунок 3.8).

МПА на с принудительной адресацией

Рисунок 3.8 – МПА с принудительной адресацией

Микропрограммный автомат с естественной адресацией Рассмотрим вариант, предлагающий наличие двух типов микрокоманд: операционной, которая выполняет полезную работу и обрабатывает операторные вершины ГСА, и управляющей МК условного и безусловного переходов (Рисунок 3.9).

R	ОП	
R	NX	В

Рисунок 3.9 – Формат микрокоманд. Естественная адресация

В Таблице 3.3 представлена МКП, описывающая рассматриваемый алгоритм управления

Опишем структуру блока формирования сигналов перехода в виде следующей микрокоманды:

$$Z_1 = R + \bar{R} (NX_1\bar{x_1} + NX_2\bar{x_2} + NX_3\bar{x_3})$$

$$Z_2 = R [B\Pi + (NX_1x_1 + NX_2x_2 + NX_3x_3)]$$

Приведем схему МПА с естественной адресацией (Рисунок 3.10).

Адр. МКОП	R	NY1	NY2	NY3
Разр.	0	1:2	3:4	5:6
Адр. МКОП	R	NX	В	
Разр.	0	1:2	3:6	
1	0	<y1></y1>	-	<y3></y3>
2	0	<y4></y4>	<y2></y2>	-
3	1	NX1	9	
4	-	_	_	<y6></y6>
5	1	NX3	2	
6	0	00	00	00
7	1	NX2	1	2
8	0	<y<sub>K></y<sub>	-	-
9	0	<y1></y1>	<y5></y5>	<y6></y6>
10	1	NX2	12	
11	0	<y<sub>K></y<sub>	-	
12	0	-	<y5> <y3< td=""></y3<></y5>	
13	0	<y<sub>K></y<sub>	-	-

Таблица 3.3 – Алгоритм управления. Естественная адресация

Рисунок 3.10 – МПА с естественной адресацией

Вывод

В ходе данной практической работы мы ознакомились, разработали три МПА Мили на жесткой логике, УАПЛ с принудительной адресацией с 2-я адресными полями, УАПЛ с естественной адресацией.

Полученные знания применили на практике.