

Institutt for teknisk kybernetikk Fakultet for informasjonsteknologi, matematikk og elektroteknikk

Norges teknisk-naturvitenskapelige universitet (NTNU)

Faglig kontakt under eksamen: Trond Andresen, tlf. **7359 4358**, mobil **9189 7045** Han går to veiledningsrunder, ca. kl. 0940 - 1010 og ca. kl. 1115 - 1145.

Eksamen i TTK4105 reguleringsteknikk

mandag 4. juni 2007

Tid: 0900 - 1300

Denne besvarelse teller 100% på karakteren.

Sensur vil foreligge innen tre uker. Den blir også lagt ut på fagets nettsted når den er klar.

Hjelpemiddelkombinasjon D: Kalkulator med tomt minne tillatt. Ingen trykte eller håndskrevne hjelpemidler tillatt, unntatt Rottmann.

Prosenttallene angir den relative vekt oppgavene tillegges ved bedømmelsen.

Flere spørsmål kan besvares meget enkelt ved å bruke **formelsamlinga** bakerst i oppgavesettet. **Se kjapt gjennom den før du begynner**. Sjekk den alltid før du gir opp! Men du må forklare hvordan du bruker noe, når du henter det fra formelsamlinga.

Noen spørsmål skal besvares ved å **måle ut verdier på figurer i oppgavesettet** – i slike tilfeller godtas en viss "måleunøyaktighet"! Der **kan man tegne i figuren og levere det påtegnede arket som en del av besvarelsen**. Oppgavesettet har dobbelt sett med sider der hvor det er slike figurer.

STUDENTS MAY ANSWER THIS EXAM IN ENGLISH IF THAT IS PREFERRED.

Oppgave 1 (32 %) (Tips: det er ikke noe krevende regnearbeid i denne oppgaven)

Gitt prosessen
$$h_0(s) = h_r h_u(s) = K_p \frac{1 - Ts}{1 + Ts} e^{-\tau s}, T \text{ og } \tau > 0$$
 (1.1)

- a) (5%) Skissér grovt enhetssprangresponsen til h_0 . Men indikér K_p , T og τ i skissen. Er systemet åpent stabilt?
- b) (3 %) Sett $K_p = 0.25$. Skissér Nyquist(= polar)diagrammet til h_0 . (Tips: Diagrammet blir uhyre enkelt og ser likedan ut for alle verdier av T og $\tau > 0$).
- c) (5 %) Bruk nå Nyquist-diagrammet:

Hva blir den øvre verdi K_{pk} (= $K_{p, \text{kritisk}}$) når det lukkede system (altså med enhetstilbakekopling) er på stabilitetsgrensa?

Hva blir forsterkningsmarginen ΔK (i [dB]) når $K_p = 0.25$?

 K_p kan i dette tilfellet også være noe negativ før det lukkede system blir ustabilt. Finn den nedre grensa $K_{pkn} < 0$, hvor det lukkede system blir ustabilt!

d) (4 %) Det benyttes *fra nå av og i resten av oppgaven* en rasjonal approksimasjon for $e^{-\tau s}$. Det oppgis at det lukkede system h(s) da blir

$$h(s) = \frac{K_p(1 - Ts)\left(1 - \frac{\tau}{2}s\right)}{(1 + Ts)\left(1 + \frac{\tau}{2}s\right) + K_p(1 - Ts)\left(1 - \frac{\tau}{2}s\right)}$$
(1.2)

Hvilken rasjonal approksimasjon for $e^{-\tau s}$ er det som er benyttet?

- e) (4%) Finn K_{pk} og K_{pkn} ved hjelp av Rouths kriterium. Sammenlign med resultatene fra punkt c).
- f) (4%) For $K_p > K_{pk}$ blir det lukkede system ustabilt. Det får N_n poler i høyre halvplan. Finn N_n ved hjelp av Nyquists kriterium! (NB: husk at ω gjennomløper $-\infty$ til $+\infty$, ikke 0 til $+\infty$.) Alternativt kan du finne N_n ved hjelp av Rouths kriterium. Det gis poeng bare for ett alternativ, så du trenger ikke gjøre begge deler.
- g) (7%) Vi setter $K_p = 0.9$, T = 1, $\tau = 0.5$. Inngangsignalet til h(s) er et enhetssprang. Regn ut ω_0 (tips: rundt tall!). Responsen til y(t) blir som vist i figur 1.1. Finn ω_0 med utgangspunkt i målinger på grafen! (Tegn i diagrammet og levér det som del av besvarelsen.)

Oppgave 2 (21 %)

Figur 2.1 viser en struktur med enhetstilbakekopling og foroverkopling *fra* referansen.

a) (5 %) (Se i dette punktet bort fra figurteksten "pådragsorgan + vogn".) Finn transferfunksjonen $h(s) = \frac{y}{r}(s)$. Finn den ideelle foroverkopling $h_{fi}(s)$.

Vi skal nå anvende dette på et *krengetog*. Vognene skal krenge i svingene slik at vektorsummen av gravitasjon og sidekraft peker mest mulig vinkelrett mot golvet. Vi forenkler problemet til følgende: Betrakt ei enkelt vogn (figur 2.2) med treghetsmoment J [kgm²] rundt lengdeaksen. Vogna tenkes å være opplagret i sitt tyngdepunkt. Vi har med andre ord ingen pendelvirkning – i den grad vogna dreier seg rundt sin lengdeakse, er det fordi den påsettes et ytre dreiemoment d [Nm] fra togets reguleringssystem. Pådragsorganet har en viss treghet, og må derfor trekkes inn i prosessmodellen $h_u(s)$. Dreiemomentet d følger differensialligninga

figur 2.2

$$\dot{d} = \frac{1}{T}(-d + Ku) \tag{2.1}$$

I dette tilfellet er u signalet inn på pådragsorganet. Vinkelposisjonen y til vogna betraktes som systemutgang. Parameteren g er tyngdens akselerasjon, og sentripetalakselerasjonen kalles a. a(t) måles, og omregnes løpende til en ekvivalent referansevinkel r(t) for vogna, $r = \arctan(a/g)$ (men du trenger ikke denne formelen til spørsmålene i denne oppgaven, så dette var bare for å bidra til å forklare systemets virkemåte.)

b) (7 %) Vis at den ideelle foroverkopling $h_{fi}(s)$ fra r til u i dette tilfellet blir

$$h_{fi}(s) = \frac{J}{K}(s^2 + Ts^3). {(2.2)}$$

Foreslå en mer realistisk foroverkopling $h_f(s)$ som har den egnskap at dens amplitude \rightarrow konst. når $\omega \rightarrow \infty$! Hva betyr denne forverkoplinga for systemets stabilitet?

- c) (4 %) Hvorfor må du ha derivatvirkning i regulatoren $h_r(s)$ for dette systemet? Verbalt svar er tilstrekkelig.
- d) (5%) Anta at vi ønsker null stasjonært avvik når referansen er en rampefunksjon; r(t) = at, t > 0. Trengs det integralvirkning i regulatoren? Ut fra c) og d): Hva slags regulator ender vi da opp med? Verbale svar er tilstrekkelige.

Oppgave 3 (21 %) (diverse)

a) (5 %) Du skal svare på om følgende systemer er asymptotisk stabile, marginalt stabile eller ustabile. De er gitt ved sine transferfunksjoner:

$$\frac{1}{s^2}$$
, $\frac{1-Ts}{1+Ts}$, $\frac{1+Ts}{1-Ts}$, $\frac{1}{(1+Ts)(1-Ts)}$, $\frac{e^{-\tau s}}{1+s^2}$, (3.1)

Svar ved å angi bokstavene A, M, U i samme rekkefølge som transferfunksjonene er listet opp. For at gjetting ikke skal premieres, gis det minus ett poeng for feil svar. Sett derfor X hvis du er usikker.

- b) (2 %) Hvilke to stabile systemer i (3.1) er av ikke-minimum-fase type? Angi dem med nummer ut fra rekkefølgen i (3.1).
- c) (4 %) Skissen til høyre viser et typisk amplitudeforløp for et avviksforhold $|N(j\omega)| = \left|\frac{1}{1+h_0(j\omega)}\right|, \quad h_0 = h_r h_u$ Hvilke to kvalitative endringer skjer med grafen hvis forsterkninga i regulatoren h_r økes?
- d) (5 %) Tegn blokkdiagram hvor en generell kontinuerlig monovariabel prosess $\frac{y}{u}(s) = h_u(s)$ inngår i et diskret reguleringssystem.

 (Tips: diagrammet skal bl.a. inneholde de tre elementer som er vist til høyre.) Indikér hvor r[k], y[k], u[k], u(t), y(t) er i diagrammet

 e) (5 %) Hvordan går du fram hvis du vil lage en diskret regulator med
- e) (5%) Hvordan går du fram hvis du vil lage en diskret regulator med utgangspunkt i en kontinuerlig regulator? Hvordan kan du ta hensyn til virkninga av tastetida *T*, i de tilfeller at denne er så stor at dens virkning ikke kan ignoreres?

Oppgave 4 (10 %)

Gitt en prosess
$$\frac{y}{u}(s) = h_u(s) = \frac{s+1}{s^2 + 5s + 6}$$
 (4.1)

a) (5 %) Vis at denne kan representeres ved tilstandsromformen

$$\dot{\underline{x}} = A\underline{x} + \underline{b}u, \quad y = \underline{c}^T\underline{x}, \quad \text{der } A = \begin{bmatrix} -3 & 0 \\ 0 & -2 \end{bmatrix}, \quad \underline{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \underline{c}^T = \begin{bmatrix} 2 & -1 \end{bmatrix}$$
(4.2)

b) (5 %) Finn transisjonsmatrisa
$$\Phi(t)$$
!
Anta $u(t) = \mu_1(t)$ (enhetssprang), og $\underline{x}(0) = \underline{0}$. Vis at $\underline{x}(t) = \begin{bmatrix} \frac{1}{3}(1 - e^{-3t}) \\ \frac{1}{2}(1 - e^{-2t}) \end{bmatrix}$!

Oppgave 5 (16 %)

Figur 5.1 viser frekvensresponsen til en $h_0 = h_r h_u$ med proporsjonalregulator; $K_p = 0.1$.

- a) (4 %) Er det lukkede system stabilt for denne verdien av K_p ? Begrunnet svar!
- b) (6 %) Det skal brukes PI-regulator på systemet. Finn verdier for K_p og T_i ved hjelp av Ziegler-Nichols' metode!
- c) (3 %) Med parametre valgt i følge pkt. b), blir frekvensgangen til den åpne sløyfes transferfunksjon som vist i Nicholsdiagrammet til høyre Kommentér!
- d) (3 %) Hvor mye ville du eventuelt ha endret K_p ? (Tegn i diagrammet og levér denne sida som del av besvarelsen!)

