Lecture 6 - The Fourier Transform

Introduction

Fourier series are only applicable to periodic functions, however we can still decompose a non-periodic function in to its Fourier components - this process is called a Fourier transform. This is no longer expressed as a sum of sine and cosine waves but as an integral. Examples of non-periodic signals include pulse signals and noise signals.

Calculating a Fourier Transform

The Fourier transform of a function f(t) is a function of a new variable ω , which is found from the following formula.

The Fourier transform of f(t) is a function $F(\omega)$ defined by:

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$$

It is frequently the case that when a Fourier transform is calculated the result is a complex function, as you will see in the following examples.

Example 1. Find the Fourier Transform of the function defined by

$$f(t) = \begin{cases} 3 & -1 < t < 1 \\ 0 & otherwise \end{cases}$$

A graph of f(t) is shown below.

We apply the formula for finding the Fourier transform:

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt$$

Note that in this case the function is defined to be zero outside the interval -1 < t < 1 and so the integral reduces to,

$$F(\omega) = \int_{-1}^{1} 3e^{-j\omega t} dt$$

$$= \left[\frac{3e^{-j\omega t}}{-j\omega}\right]_{-1}^{1}$$

$$= \left[\frac{3e^{-j\omega}}{-j\omega} - \frac{3e^{j\omega}}{-j\omega} \right]$$

$$=\frac{3e^{j\omega}-3e^{-j\omega}}{j\omega}$$

If we now make use of Euler's relations:

$$e^{j\theta} = \cos\theta + j\sin\theta, \quad e^{-j\theta} = \cos\theta - j\sin\theta$$

We can write the Fourier transform as,

$$F(\omega) = 6 \frac{\sin \omega}{\omega}$$

Its graph is shown below. The function $\frac{\sin\omega}{\omega}$ occurs frequently and is often referred to as the sinc function.

Example 2. Find the Fourier transform of the function $f(t) = u(t)e^{-t}$ where u(t) is the unit step function.

The graph of the function is shown below. Note that the function is zero when t is negative.

The Fourier transform of this function is given by,

$$F(\omega) = \int_{-\infty}^{\infty} u(t)e^{-t}e^{-j\omega t}dt$$

Because $u(t)e^{-t}$ is zero when t is negative then we can modify the limits accordingly,

$$F(\omega) = \int_{0}^{\infty} u(t)e^{-t}e^{-j\omega t}dt$$

Further, since u(t) is equal to 1 for any value of t greater than zero then,

$$F(\omega) = \int_{0}^{\infty} e^{-t} e^{-j\omega t} dt$$

Carrying out the integration by combining the two exponential terms,

$$F(\omega) = \int_{0}^{\infty} e^{-(1+j\omega)t} dt = \left[\frac{e^{-(1+j\omega)t}}{-(1+j\omega)} \right]_{0}^{\infty}$$

Complete the integration by noting that the contribution from the upper limit is zero because e^{-t} tends to zero as t tends to infinity.

$$F(\omega) = \frac{1}{1 + j\omega}$$

Because the Fourier transform is a complex function we cannot immediately plot its graph. However, it is possible to find its modulus and argument, and plot graphs of these against ω . Such plots are called amplitude spectra and phase spectra respectively.

The amplitude spectrum of $f(t) = u(t)e^{-t}$ is the modulus of $\frac{1}{1+j\omega}$ which equals $\frac{1}{\sqrt{1+\omega^2}}$. A graph of this is shown below.

The phase spectrum is the argument of the $\frac{1}{1+i\omega}$.

It is usual practice to make use of tables of transforms such as those shown below.

Table of common Fourier transforms.

f(t)	$F(\omega)$
$Au(t)e^{-\alpha t}, \alpha > 0$	A
$Au(t)e^{-t}$, $\alpha > 0$	$\alpha + j\omega$
$\int 1 -\alpha \le t \le \alpha$	$2 \sin \omega \alpha$
$\begin{cases} 1 & -\alpha \le t \le \alpha \\ 0 & \text{otherwise} \end{cases}$	ω
A, constant	$2\pi A\delta(\omega)$
Au(t)	$A\left(\pi\delta(\omega)-\frac{\mathrm{j}}{\omega}\right)$
$\delta(t)$	1
$\delta(t-a)$	$e^{-j\omega a}$
cos at	$\pi[\delta(\omega+a)+\delta(\omega-a)]$
sin at	$\frac{\pi}{j} \left[\delta(\omega - a) - \delta(\omega + a) \right]$
$e^{-\alpha t }, \alpha > 0$	$\frac{2\alpha}{\alpha^2 + \omega^2}$