Ən uzun səyahət

İOİ 2023'ün orqanizatorları çətin vəziyyətə düşüblər. Onlar növbəti günlər üçün Ópusztaszer kəndinə səyahət planlamağı unudublar. Amma bəlkə hələ də çox gec deyil...

Ópusztaszer'da 0'dan N-1'ə nömrələnmiş N sayda görülməli məkan var. Bu yerlərin bəziləri *iki istiqamətli* **yollarla** əlaqələndirilib. Hər bir məkan cütü ən çox bir yol ilə əlaqələndirilib. Orqanizatorlar hansı yerlər bir-biri ilə əlaqələndirilib *bilmirlər*.

Ópusztaszer'da olan yol şəbəkəsində istənilən 3 müxtəlif məkan arasında ən az δ sayda yol varsa, bu şəbəkənin **sıxlığına** δ deyək. Başqa sözlə, $0 \le u < v < w < N$ şərtini ödəyən istənilən (u,v,w) üçlüyü üçün, (u,v),(v,w) və (u,w) cütləri arasında ən az δ sayda cüt yol ilə əlaqələndirilib.

Orqanizatorlar elə bir D ədədi \emph{bilir} ki, bu şəbəkənin sıxlığı ən az D'dir. Nəzər yetirin ki, D 3'dən böyük ola bilməz.

Orqanizatorlar Ópusztaszer'a **zənglər** edərək bəzi məkanlar arasındakı yollar barədə məlumatlar ala bilərlər. Hər bir zəngdə iki boş olmayan $[A[0],\ldots,A[P-1]]$ və $[B[0],\ldots,B[R-1]]$ məkan massivləri verilməlidir. Bütün məkanlar müxtəlif olmalıdır, yəni

- A[i]
 eq A[j], $0 \le i < j < P$ şərtini ödəyən hər i və j üçün;
- $B[i] \neq B[j]$, $0 \le i < j < R$ şərtini ödəyən hər i və j üçün;
- A[i]
 eq B[j], $0 \le i < P$ və $0 \le j < R$ şərtini ödəyən hər i və j üçün.

Hər zəngə cavab olaraq A və B arasında əlaqə olub olmadığı deyilir. Daha dəqiq, bütün i, j ($0 \le i < P, 0 \le j < R$) cütləri üçün A[i] və B[j] arasında yol olub-olmadığına baxılır və əgər hər hansı A[i] və B[j] arasında yol olarsa, o zaman true, əks halda false cavabı qayıdır.

l uzunluqlu $t[0], t[1], \ldots, t[l-1]$ məkan ardıcıllığına o vaxt **səyahət** deyək ki, bütün məkanlar müxtəlif olsun, 0 və l-2 arasında olan hər i üçün t[i] və t[i+1] məkanları arasında yol olsun. l uzunluqlu səyahət o zaman **ən uzun səyahət** adlansın ki, l+1 uzunluqlu səyahət olmasın.

Sizin vəzifəniz Ópusztaszer'da olan ən uzun səyahəti tapmaqda orqanizatorlara kömək etməkdir.

İmplementasiya detalları

Aşağıdakı proseduru implement etməlisiniz:

```
int[] longest_trip(int N, int D)
```

- N: Ópusztaszer'da olan məkanların sayı.
- D: yol şəbəkəsinin zəmanət verilən ən az sıxlığı
- Bu prosedur ən uzun səyahəti göstərən $t = [t[0], t[1], \dots, t[l-1]]$ massivini qaytarmalıdır.
- Bu prosedur hər test zamanı bir neçə dəfə çağırıla bilər.

Yuxarıda verilən prosedur aşağıdakı proseduru çağıra bilər:

bool are_connected(int[] A, int[] B)

- *A*: boş olmayan müxtəlif məkan massivi.
- B: boş olmayan müxtəlif məkan massivi.
- A və B massivinin ortaq elementi yoxdur.
- ullet Əgər A'dakı hər hansı məkan ilə B'dəki hər hansı məkan arasında yol varsa bu zaman prosedur true, əks halda false qaytarır.
- Bu prosedur hər longest_trip proseduru zamanı ən çox $32\,640$ dəfə çağırıla bilər, ümumilikdə isə ən çox $150\,000$ dəfə çağırıla bilər.
- A və B massivinin ümumi uzunluqlarının cəmi $1\,500\,000$ 'i keçməməlidir.

Qreyder adaptiv **deyil**. Hər bir həll eyni testlər üzərində yoxlanılır. Yəni N və D dəyərləri, həmçinin hansı məkanlar arasında yollar olduğu hər bir test daxilində longest_trip prosedurunun hər bir çağırışı üçün dəyişməzdir.

Nümunələr

Nümunə 1

N=5, D=1, və yolların aşağıdakı kimi qoşulduğu bir ssenariyə nəzər yetirək:

longest_trip proseduru aşağıdakı kimi çağırılır:

Bu prosedur are_connected proseduruna aşağdakı kimi çağırışlar edə bilər.

Çağırış	Qoşulu olan yollar	Qaytarılan dəyər
are_connected([0], [1, 2, 4, 3])	(0,1) və $(0,2)$	true
are_connected([2], [0])	(2,0)	true
are_connected([2], [3])	(2,3)	true
are_connected([1, 0], [4, 3])	heç biri	false

Dördüncü çağırışda məlum olur ki (1,4), (0,4), (1,3) və (0,3) cütlərinin $heç\ biri$ arasında yol yoxdur. Şəbəkənin sıxlığı ən az D=1 olduğuna görə, (0,3,4) üçlüyündən (3,4) cütü arasında yol olmalıdır. Oxşar şəkildə, 0 və 1 məkanları arasında da yol olmalıdır.

Burada artıq 5 uzunluqlu t=[1,0,2,3,4] ardıcıllığının ən uzun səyahət olduğunu deyə bilirik, və daha uzun səyahət tapmaq mümkün deyil. Buna görə də longest_trip proseduru [1,0,2,3,4] qaytara bilər.

N=4, D=1, və yolların aşağıdakı kimi qoşulduğu başqa bir ssenariyə baxaq:

longest_trip proseduru aşağıdakı kimi çağırılır:

Burada ən uzun səyahətin uzunluğu 2'dir. Buna görə də are_connected'ə olan bir neçə çağırışdan sonra longest_trip proseduru [0,1], [1,0], [2,3] or [3,2] cütlərindən hər hansı birini qaytara bilər

Nümunə 2

0'cı alt tapşırığında əlavə olaraq $N=256\,$ olan test var. Bu testi yarış sistemində olan yükləyə bildiyiniz əlavənin içində görə bilərsiniz.

Məhdudiyyətlər

- $3 \le N \le 256$
- longest_trip'ə olan çağırışlarda N'lərin cəmi $1\,024$ 'ü keçmir.
- $1 \le D \le 3$

Alt tapşırıqlar

- 1. (5 bal) D=3
- 2. (10 bal) D=2
- 3. (25 bal) D=1. l^\star ən uzun səyahətin uzunluğunu göstərsin. longest_trip proseduru l^\star uzunluqlu səyahət qaytarmaq məcburiyyətində deyil. Əvəzində ən az $\left\lceil \frac{l^\star}{2} \right\rceil$ uzunluqlu səyahət qaytarmağı kifayətdir.
- 4. (60 bal) D=1

4'cü alt tapşırıqda sizin balınız bir longest_trip proseduru zamanı are_connected proseduruna olan çağırışların sayından asılı olacaq. Alt tapşırığın hər testindəki bütün longest_trip çağırışları zamanı are_connected maksimum q dəfə çağırılmış olsun. Sizin balınız aşağıdakı cədvələ uyğun hesablanacaq.

Şərt	Bal
$2750 < q \leq 32640$	20
$550 < q \le 2750$	30
$400 < q \leq 550$	45
$q \leq 400$	60

Əgər hər hansı test'də are_connected proseduruna olan çağırışlar İmplementasiya Detallarında verilən şərtlərə uyğun gəlməsə və ya longest_trip'in qaytardığı cavab səhv olarsa, uyğun alt tapşırıq 0 bal verəcək.

Nümunə qreyder

C ssenarilərin sayını, yəni longest_trip proseduruna olan çağırışların sayını göstərsin. Nümunə qreyder girişi aşağıdakı formada oxuyur:

• sətir 1: C

C ssenarinin izahı ilə giriş davam edir.

Nümunə qreyder hər ssenarinin izahını aşağıdakı formatda oxuyur:

- sətir 1:ND
- sətir 1+i ($1 \leq i < N$): $U_i[0]$ $U_i[1]$ \dots $U_i[i-1]$

Burada hər bir U_i ($1 \le i < N$) i ölçülü bir massivdir və məkanlar arasındakı yolları göstərir. $1 \le i < N$ və $0 \le j < i$ şərtini ödəyən hər bir i və j üçün:

- əgər j və i məkanı arasında yol varsa o zaman $U_i[j]$ dəyəri 1 olmalıdır;
- əgər j və i məkanı arasında yol yoxdursa o zaman $U_i[j]$ dəyəri 0 olmalıdır.

Hər bir ssenaridə longest_trip çağırılmazdan əvvəl nümunə qreyder yol şəbəkəsinin sıxlığının ən az D olub olmadığını yoxlayır. Əgər şərt ödənməsə Insufficient Density mesajı göstərir və dayanır.

Əgər nümunə qreyder protokoldan kənara çıxma təyin edərsə o zaman çıxışa Protocol Violation: <MSG> verir. Burada <MSG> aşağıdakı mesajlardan biridir:

- invalid array: are_connected proseduruna olan çağırışların birində, ya A ya da B
 - o boşdur, və ya
 - $\circ 0$ və N-1 arasında olmayan bir ədəd var, və ya
 - o hansısa elementdən orda ən az iki ədəd var.
- \bullet non-disjoint arrays: are_connected çağırılması üçün istifadə edilən , A və B massivlərinin ortaq elementi var.
- too many calls: bir longest_trip çağırışı zaman are_connected'a olan çağırışların sayı $32\,640$ 'ı və ya ümumi limit olan $150\,000$ 'i aşır.
- too many elements: are_connected'a olan bütün çağırışlarda istifadə olunan massivlərdəki elementlərin sayları cəmi $1\,500\,000$ 'i keçir.

Əks halda, longest_trip prosedurunun qaytardığı massiv hansısa mənfi olmayan l ədədi üçün $t[0], t[1], \ldots, t[l-1]$ olsun. Nümunə qreyder bu ssenari üçün aşağıdakı formatda üç sətir çıxışa verir:

- sətir 1: *l*
- sətir $2: t[0] \ t[1] \ \dots \ t[l-1]$
- sətir 3: bu ssenaridə are_connected proseduruna olan çağırışların sayı

Ən sonda nümunə qreyder aşağıdakı məlumatı çıxışa verir:

• sətir $1+3\cdot C$: bütün longest_trip prosedurları arasında are_connected proseduruna olan maksimum çağırışların sayı