KENDA:

- Print paths in staircase
- Print all paths from source to destinction
- Shortest path in a matrix with hurdles

Akash Deep Verma	
Amreshwar	
Anil	
ANUBHAV RAMNANI	
Arunava Basak	
Debasish Brahma	Rules
Gautam Vysyaraju	$Q \longrightarrow Q \top$
Harshad Sanjay Marathe	$A \longrightarrow PC$
Harshdeep Srivastava	100% active
krishnamurthy Donta	
M S Haseeb Khan	
Mahesh Baswaraj	
Mohan Kumar M	
Nishant Raj	
Pranjul Kesharwani	
Prasanna	
Priyank Varshney	
Rahul	
Sahil Urade	
Saurabh Dayal	
SHIVAM SHIV	
Subhash	
Surya Shanmughasundaram	
Vikas Yadav	
Yoshita Rathore	

— Print paths in staircase you are dimbing a staircase and it takes A steps to neach top. Each time you either climb 1 or 2 steps In how many ways can you climb to the top ? NOTE: you need to return all distinct ways to climb in lexicographical order A = 1A = 20/p = [[1]] $O/\rho = [[1]], [2]$ 112 A = 4 A = 3 121 2 1 1

22

O/p = [[1]], [12] [2]

To print all paths in a Staircase using recursion, what are the recursive states to be used from the state generatePaths (A, currentPath)?

0 users have participated


```
freudocode
    ary 11 List of List
   main (int A) (
        ary = new Away List <> ()
        AL parn = new Away List <> ()
         generate path (A, path)
         return any
     3
        generate Patry (int A, Rist < Integer > patr) (
   pior
         11 Base
          if (A==0) &
                               away add deep copy
           any add (path) _____ and (new Al (path>)
           12 return
          if (A<O) return;
          // climb one step
           patn.add(1)
                                // Do
          generate Paths (A-I, path) // recurr
           path. remove (path. size ()-1) // Undo
         // climb step
          path.add (2)
          generate Paths (A-2, path)
           path. remove (path. size ()-1)
```

$$A = 3$$

anume N=A

TC: 0(n * 2ⁿ)

SC : O(N)

To print all paths in lexicographical order the easiest way is to?

45 users have participated

	A	Generate those paths first, which exhaust right moves before down moves	7%
>	В	Generate those paths first, which exhaust down moves before right moves	73%
_	С	Generate all paths first in any order then, then sort them treating as strings	9%
_	D	Generate paths going down / right in random order	11%

```
ary n lit of string //global
  main (A,B) {
      ary 11 re-mit
               sh sc poth du de
        all Paths (0,0,"" A-L, B-1)
       ret ans
  roid all Paths (sr, sc, path, dr, dc) &
       11 Boxc
       if (sr == dr 66 sc == dc) {
          any.add (puth)
            metur n
        12
        // Edge cases out of bounds
        if (sx > dr 11 sc > dc) return
        11 go down
         all pathy (sx+1, sc, path +"D", dx, dc)
        // go xisat
        all paths (sx, sc+L, path +"P", dx, dc)
                           TC O(N*2")
                          SC O(N)
N= A+B-2
                                           Breat: 22:35
```



```
min length = \infty
   ACTTO // global
                                               some dimension as ACT
  main (ATTT), sx, sc, dx, dc) &
        min length = \infty
         visited [TT] // boolean mateix of ,0
         find Shortest Path Length (sx, sc, dr, dc, length, visited)
         if (\min L \operatorname{engl} n = = \infty) ret -L
          set min Longin
   ١٦
       find snortest path Length (sx, sc, dx, dc, length visited)
roid
        if ( sr<0 11 sr > A, length 11 sc<0 11 sc > A too. length
              11 ATSX) TSCI == 0 11 visited TXX (TC) ) (
              return
         ١χ
        // when we reach dest
        if ( sx == dr &6 sc == dc) (e
              and = min (and, length)
             heturn
       visited [sx] (sc) = true // DO
          pown
       ]]
      find snortest path Length ( sx+1, sc, dr, dc, length +1, visited)
          14+
      find shortest path Length ( sx, sc-1, dr, dc, length + 1, visited)
          Up
      find snortest path Length ( sr-1, sc, dr, dc, length + 1, visited)
```

