Université Laval	Examen final informatique
Faculté des Sciences et de Génie	Hiver 2016
École d'actuariat	Date: Samedi 23 avril 2016

Act-2001 Introduction à l'actuariat 2

Professeur: Etienne Marceau

Nom de famille de l'étudiant	Prénom de l'étudiant	Matricule

Instructions:

- L'examen contient 4 questions à développement.
- Le total des points est de **100 points**.
- La durée est de 120 minutes.
- Veuillez écrire votre nom sur le questionnaire.
- Veuillez écrire vos réponses dans le présent cahier seulement.
- Veuillez faire vos brouillons sur les documents prévus à cet effet.
- Veuillez retourner le présent cahier, les annexes et le papier brouillon à la fin de l'examen.

Questions	Points obtenus	Points
1		35
2		35
3		25
4		35
Total		120 (10 points bonus)

© Etienne Marceau, 2016.

1. (35 points). Les coûts pour les 3 lignes d'affaires d'un portefeuille d'une société d'assurance sont représentés par les v.a. indépendantes

$$X_1 \sim Pareto(\alpha_1, \lambda)$$
 $X_2 \sim Gamma(\alpha_2, \beta)$ $X_3 \sim LNorm(\mu, \sigma)$.

Les coûts pour le portefeuille sont définis par la v.a. S où

$$S = X_1 + X_2 + X_3.$$

On a recours générateur par défaut de R pour produire m = 1000000 (1 million) réalisations de (U_1, U_2, U_3) où U_1, U_2, U_3 sont des v.a. i.i.d. de loi uniforme standard.

On fixe set.seed(20160419).

On produit dans l'ordre $\left(U_1^{(1)},U_2^{(1)},U_3^{(1)}\right),$ $\left(U_1^{(2)},U_2^{(2)},U_3^{(2)}\right),$..., $\left(U_1^{(m)},U_2^{(m)},U_3^{(m)}\right)$:

j	$U_1^{(j)}$	$U_2^{(j)}$	$U_3^{(j)}$
1	0.74011861	0.8075052	0.1863795
2	0.04820467	0.3257164	0.7577736
m	0.09028961	0.6300705	0.527429

Questions:

(a) (6pts). Les paramètres des lois de X_1, X_2 et X_3 sont fixées de telle sorte que

$$E[X_i] = 164.8721$$
 et $Var(X_i) = 46707.74$ pour $i = 1, 2, 3$.

Calculer les 3 paires de paramètres (de façon explicite).

(b) **(6pts).** Utiliser la méthode inverse pour produire m = 1000000 (1 million) réalisations $\left(X_1^{(j)}, X_2^{(j)}, X_3^{(j)}\right)$ de $\left(X_1^{(j)}, X_2^{(j)}, X_3^{(j)}\right)$ où

$$X_i^{(j)} = F_{X_i}^{-1} \left(U_i^{(j)} \right)$$
 pour $j = 1, ..., m$ et $i = 1, 2, 3$.

- i. Indiquer la réalisation #3 de $\left(X_1^{(j)}, X_2^{(j)}, X_3^{(j)}\right)$.
- ii. Indiquer la réalisation #4 de $(X_1^{(j)}, X_2^{(j)}, X_3^{(j)})$

On a

j	$X_1^{(j)}$	$X_2^{(j)}$	$X_3^{(j)}$
1	202.978324	280.28661	41.01152
2	6.476416	36.68981	201.20596
•••			
m	12.463598	141.55622	107.12310

- (c) (2pts). Produire m réalisations $S^{(j)}$ de S :
 - i. Indiquer la méthode pour y parvenir.
 - ii. Indiquer les réalisations #3 et #4 de S.

- (d) **(6pts).** Avec les résultats de l'item (1c), calculer une approximation de $\varphi = \Pr(S > 1000)$. (Vérification : $\Pr(S > 1500) \simeq 0.021318$)
 - i. Indiquer l'expression de l'approximation $\widetilde{\varphi}$ de φ .
 - ii. Indiquer la valeur de l'approximation $\widetilde{\varphi}$ de φ .
 - iii. Calculer un intervalle de confiance avec un niveau de confiance de 95 % pour l'approximation $\tilde{\varphi}$ de φ .
- (e) (2pts). Avec les résultats de l'item (1c), calculer une approximation de $VaR_{\kappa}(S)$ pour $\kappa = 0.999$.
 - Indiquer la méthode.
 - Indiquer la valeur.
- (f) (3pts). Avec les résultats de l'item (1c), calculer une approximation de $TVaR_{\kappa}(S)$ pour $\kappa = 0.999$.
 - Indiquer l'expression de l'approximation.
 - Indiquer la valeur.
- (g) (3pts). Avec les résultats de l'item (1c), calculer une approximation de la contribution pour X_1 , de la contribution de X_2 et de la contribution de X_3 selon la méthode d'Euler à $VaR_{\kappa}(S)$ pour $\kappa = 0.999$.
 - Indiquer l'expression.
 - Indiquer les trois valeurs.
- (h) **(4.5pts).** Avec les résultats de l'item (1c), calculer une approximation de la contribution pour X_1 , de la contribution de X_2 et de la contribution de X_3 selon la méthode d'Euler à $TVaR_{\kappa}(S)$ pour $\kappa = 0.999$.
 - Indiquer l'expression.
 - Indiquer les trois valeurs.
- (i) **(2.5pts).** Supposons que la mesure de risque est $\rho_{\kappa}(S) = E[S] + \sqrt{Var(S)}\Phi^{-1}(\kappa)$. Calculer les valeurs exactes (sans les simulations) de la contribution pour X_1 , de la contribution de X_2 et de la contribution de X_3 selon la méthode d'Euler à $\rho_{\kappa}(S)$ pour $\kappa = 0.999$. Comparer avec les valeurs obtenues en (1h). Commenter brièvement.

Solution OK:

(a) (6pts). Les paramètres des lois de X_1 , X_2 et X_3 sont fixées de telle sorte que

$$E[X_i] = 164.8721$$
 et $Var(X_i) = 46707.74$ pour $i = 1, 2, 3$.

Calculer les 3 paires de paramètres (de façon explicite).

Pour chaque loi, on établit le système de 2 équations et 2 inconnus (les paramètres). Les solutions sont analytiques.

On obtient:

- i. Loi Pareto : $\alpha = 4.784422$ et $\lambda = 623.945768$
- ii. Loi gamma : $\alpha = 0.581976707$ et $\beta = 0.003529867$
- iii. Loi lognormale : $\mu = 4.60517$ et $\sigma = 1$

(b) **(6pts).** Utiliser la méthode inverse pour produire m=1000000 (1 million) réalisations $\left(X_1^{(j)},X_2^{(j)},X_3^{(j)}\right)$ de $\left(X_1^{(j)},X_2^{(j)},X_3^{(j)}\right)$ où

$$X_i^{(j)} = F_{X_i}^{-1} \left(U_i^{(j)} \right)$$
 pour $j = 1, ..., m$ et $i = 1, 2, 3$.

i. Indiquer la réalisation #3 de $\left(X_1^{(j)}, X_2^{(j)}, X_3^{(j)}\right)$.

ii. Indiquer la réalisation #4 de $(X_1^{(j)}, X_2^{(j)}, X_3^{(j)})$.

On a

j	$X_1^{(j)}$	$X_2^{(j)}$	$X_3^{(j)}$
1	202.978324	280.28661	41.01152
2	6.476416	36.68981	201.20596
\overline{m}	12.463598	141.55622	107.12310

On obtient

j	$X_1^{(j)}$	$X_2^{(j)}$	$X_3^{(j)}$
3	30.51848	160.723811	140.17034
4	345.38655	4.975294	46.37279

- (c) (2pts). Produire m réalisations $S^{(j)}$ de S:
 - i. Indiquer la méthode pour y parvenir.

On a

$$S^{(j)} = X_1^{(j)} + X_2^{(j)} + X_3^{(j)}$$

- ii. Indiquer les réalisations #3 et #4 de S : 331.4126 396.7346
- (d) **(6pts).** Avec les résultats de l'item (1c), calculer une approximation de $\varphi = \Pr(S > 1000)$. (Vérification : $\Pr(S > 1500) \simeq 0.021318$)
 - i. Indiquer l'expression de l'approximation $\widetilde{\varphi}$ de $\varphi.$ On a

$$\widetilde{\varphi} = \frac{1}{n_{sim}} \sum_{j=1}^{n_{sim}} 1_{\{S^{(j)} > 1500\}}$$

$$= 0.021318$$

ii. Indiquer la valeur de l'approximation $\widetilde{\varphi}$ de $\varphi.$ On obtient

$$\widetilde{\varphi} = \frac{1}{1000000} \sum_{j=1}^{1000000} 1_{\{S^{(j)} > 1500\}}$$

$$= 0.086053$$

iii. Calculer un intervalle de confiance avec un niveau de confiance de 95 % pour l'approximation $\tilde{\varphi}$ de φ .

On a

$$err = \sqrt{\frac{\widetilde{\varphi}\left(1 - \widetilde{\varphi}\right)}{1000000}} = 0.0001444422$$

On a

$$\left[\widetilde{\varphi} + err \times \Phi^{-1}\left(0.025\right), \widetilde{\varphi} + err \times \Phi^{-1}\left(0.975\right)\right]$$

On obtient: [0.08550334,0.08662066]

- (e) **(2pts).** Avec les résultats de l'item (1c), calculer une approximation de $VaR_{\kappa}(S)$ pour $\kappa = 0.999$.
 - Indiquer la méthode.

On utilise la fonction quantile avec type =1

Ou on trie les réalisations : $S^{[1]} < ... < S^{[n_{sim}]}$ (réalisations de v.a. continues) et on a

$$VaR_{\kappa}(S) \simeq S^{[j_0]}$$

où $j_0 = n_{sim} \times kappa$ (quand j_0 est entier)

• Indiquer la valeur.

On obtient: 3014.871

- (f) (3pts). Avec les résultats de l'item (1c), calculer une approximation de $TVaR_{\kappa}(S)$ pour $\kappa = 0.999$.
 - Indiquer l'expression de l'approximation. Comme $j_0 = n_{sim} \times kappa$ est entier, on a

$$TVaR_{\kappa}(S) \simeq \frac{1}{n_{sim}(1-\kappa)} \sum_{j=1}^{n_{sim}} S^{(j)} \times 1_{\{S^{(j)} > S^{[j_0]}\}}$$

et

$$TVaR_{\kappa}(S) \simeq \frac{1}{n_{sim}(1-\kappa)} \sum_{j=j_0+1}^{n_{sim}} S^{[j]}$$
$$= \frac{1}{n_{sim} - j_0} \sum_{j=j_0+1}^{n_{sim}} S^{[j]}$$

• Indiquer la valeur.

On obtient: 3865.766

- (g) (3pts). Avec les résultats de l'item (1c), calculer une approximation de la contribution pour X_1 , de la contribution de X_2 et de la contribution de X_3 selon la méthode d'Euler à $VaR_{\kappa}(S)$ pour $\kappa = 0.999$.
 - Indiquer l'expression.

On a

$$VaR_{\kappa}(X_i; S) \simeq \sum_{j=1}^{n_{sim}} X_i^{(j)} \times 1_{\{S^{(j)} = S^{[j_0]}\}}$$

• Indiquer les trois valeurs.

On obtient: 2534.775

323.193

156.9032

(h) **(4.5pts).** Avec les résultats de l'item (1c), calculer une approximation de la contribution pour X_1 , de la contribution de X_2 et de la contribution de X_3 selon la méthode d'Euler à $TVaR_{\kappa}(S)$ pour $\kappa = 0.999$.

• Indiquer l'expression. On a

$$TVaR_{\kappa}(X_i; S) \simeq \frac{1}{n_{sim}(1-\kappa)} \sum_{j=1}^{n_{sim}} X_i^{(j)} \times 1_{\{S^{(j)} > S^{[j_0]}\}}$$

2056.908

- Indiquer les trois valeurs. On obient: 1426.093 382.7649
- (i) **(2.5pts).** Supposons que la mesure de risque est $\rho_{\kappa}(S) = E[S] + \sqrt{Var(S)}\Phi^{-1}(\kappa)$. Calculer les valeurs exactes (sans les simulations) de la contribution pour X_1 , de la contribution de X_2 et de la contribution de X_3 selon la méthode d'Euler à $\rho_{\kappa}(S)$ pour $\kappa = 0.999$. Comparer avec les valeurs obtenues en (1h). Commenter brièvement.

Pour les 3 v.a., la contribution est

$$\rho_{\kappa}\left(X_{i};S\right) = E\left[X_{i}\right] + \frac{Var\left(X_{i}\right) + \sum_{l=1,l\neq i}^{3} Cov\left(X_{i},X_{l}\right)}{\sqrt{Var\left(S\right)}}\Phi^{-1}\left(\kappa\right).$$

On obtient: 550.4614 550.4614 550.4614

En raison des hypothèses (espérances identiques, variances identiques), les contributions de chaque v.a. seraient la même peu importe la valeur de κ . Cela est "étonnant" compte tenu des valeurs obtenues quand la mesure TVaR est utilisée. Dans les présentes circonstances, la mesure ρ n'est pas recommaj

2. (35 points). La valeur présente (actualisée) des coûts pour un contrat d'assurance continue temporaire n = 60 ans émis à un assuré d'âge x est définie par la v.a. Z où

$$Z = bv^{T_x} \times 1_{\{T_x \le n\}},$$

avec x = 40, b = 100000 et

$$v = e^{-0.04}$$
.

On modélise la mortalité de l'assuré par la loi $Gompertz(\beta, \gamma)$ où

$$\mu(x) = \beta e^{\gamma x}, \ x \ge 0,$$

et

$$\overline{F}(x) = \exp\left(-\frac{\beta}{\gamma}\left(e^{\gamma x} - 1\right)\right) = \exp\left(-\frac{\beta}{\ln(c)}\left(c^x - 1\right)\right), x > 0,$$

avec $\beta = 0.00003$ et $\gamma = \ln{(1.1)}$.

Générateur de nombres pseudo-aléatoires (identique à celui de la question 1). On utilise le générateur congruentiel linéraire ($a=41358,\ m=2^{31}-1,\ x_0=20150418$) pour générer 1000 (mille) réalisations de $\left(U_1^{(j)},U_2^{(j)},U_3^{(j)}\right)$ de (U_1,U_2,U_3) où

$$U_i^{(j)} = \frac{x_{3(j-1)+i}}{m}, \ j = 1, 2, ..., 1000 \text{ et } i = 1, 2, 3,$$

avec $x_l = \text{mod}(a \times x_{l-1}; m), \ l = 1, 2, ..., 3000.$ Exemple : $U_1^{(1)} = \frac{x_1}{m}, \ U_2^{(1)} = \frac{x_2}{m}, \ U_3^{(1)} = \frac{x_3}{m}, U_1^{(2)} = \frac{x_3}{m}, ..., U_3^{(1000)} = \frac{x_{3000}}{m}.$ On obtient :

j	$U_1^{(j)}$	$U_2^{(j)}$	$U_3^{(j)}$
1	0.073263705	0.040303568	0.874980833
1000	0.721695824	0.895905397	0.855403030

Questions:

- (a) (3pts). Développer l'expression de $\overline{F}_{T_x}(t)$ et indiquer la loi de T_x (avec ses paramètres).
- (b) (1pts). Développer l'expression de l'espérance de Z.
- (c) (3pts). Évaluer approximativement l'espérance de Z en utilisant la fonction integrate en R (voir l'aide en R) ou MAPLE.
- (d) (5pts). Développer l'expression de $F_Z(z)$, où $z \in \vartheta_Z = \{0\} \cup [bv^n, b]$.
- (e) **(4pts).** Calculer $F_Z(z)$, où z = 0 et $z = \frac{b}{2}$.
- (f) (2pts). Développer l'expression de la VaR de Z.
- (g) (2pts). Calculer $VaR_{\kappa}(Z)$, pour $\kappa = 0.95$.
- (h) **(15pts).** Soient un vecteur de v.a. i.i.d. $(T_{x,1}, T_{x,2}, T_{x,3})$ avec $T_{x,1} \sim T_x$. On définit $S = Z_1 + Z_2 + Z_3$ avec $Z_i = bv^{T_{x,i}} \times 1_{\{T_{x,i} \leq n\}}, i = 1, 2, 3$.
 - i. (5pts). Utiliser la méthode inverse pour produire n = 1000 réalisations de $\left(T_{x,1}^{(j)}, T_{x,2}^{(j)}, T_{x,3}^{(j)}\right)$ de $\left(T_{x,1}, T_{x,2}, T_{x,3}\right)$. Note : pour chaque j, on simule $T_{x,i}^{(j)}$ avec $U_i^{(j)}$, i = 1, 2, 3:

- Indiquer la méthode pour chacune des 3 v.a.
- Indiquer la réalisation #1 de $(T_{x,1}, T_{x,2s}, T_{x,3})$.
- Indiquer la réalisation #1000 de $(T_{x,1}, T_{x,2}, T_{x,3})$.
- ii. (6pts). Produire n=1000 réalisations $\left(Z_1^{(j)},Z_2^{(j)},Z_3^{(j)}\right)$ de (Z_1,Z_2,Z_3) et $S^{(j)}$ de S:
 - Indiquer la méthode pour y parvenir.
 - Indiquer les réalisations #1 et #1000 de (Z_1, Z_2, Z_3) .
 - Indiquer les réalisations #1 et #1000 de S.
- iii. (4pts). Avec les résultats de l'item (2(h)ii), calculer une approximation de $\varphi = \Pr(S > 100000)$.
 - Indiquer l'expression de l'approximation $\widetilde{\varphi}$ de φ .
 - Indiquer la valeur de l'approximation $\widetilde{\varphi}$ de φ .

Solution (35 points): OK

(a) (3 points). Développer l'expression de $\overline{F}_{T_x}(t)$ et indiquer la loi de T_x (avec ses paramètres).

On déduit

$$\overline{F}_{x}\left(t\right) = \frac{\exp\left(-\frac{\beta}{\gamma}\left(e^{\gamma(x+t)} - 1\right)\right)}{\exp\left(-\frac{\beta}{\gamma}\left(e^{\gamma x} - 1\right)\right)} = \exp\left(-\frac{\beta}{\gamma}e^{\gamma x}\left(e^{\gamma t} - 1\right)\right)$$

et

$$\mu_x(t) = \mu(x+t) = \beta e^{\gamma x} e^{\gamma t}.$$

Ainsi, si $X \sim Gomp(\beta, \gamma)$, alors $T_x \sim Gomp(\beta e^{\gamma x}, \gamma)$.

(b) (1 points). Développer l'expression de l'espérance de Z.

On obtient

$$E\left[Z\right] = \int_{0}^{n} bv^{t} \times f_{T_{x}}\left(t\right) dt$$

(c) (3 points). Évaluer approximativement l'espérance de Z en utilisant la fonction integrate en R (voir l'aide en R) ou MAPLE.

On obtient

$$E[Z] = 23578.76$$

(d) (5 points). Développer l'expression de $F_Z(z)$, où $z \in \vartheta_Z = \{0\} \cup [bv^n, b]$. On sait que

$$F_{Z}\left(0\right) = \Pr\left(T_{x} > n\right) = \overline{F}_{T_{x}}\left(n\right)$$

De plus

$$F_{Z}(x) = \begin{cases} \overline{F}_{T_{x}}(n) &, x = 0\\ \overline{F}_{T_{x}}(n) &, 0 < x < bv^{n}\\ \overline{F}_{T_{x}}(\gamma) &, bv^{n} < x < b\\ 1 &, x \ge b \end{cases}$$

οù

$$\gamma = -\frac{1}{\delta} \ln \left(\frac{x}{b} \right)$$

- (e) **(4 points).** Calculer $F_Z(z)$, où z = 0 et $z = \frac{b}{2}$. Valeur de $F_Z(0) : F_Z(0) = \overline{F}_{T_x}(n) = 0.01325522$ Valeur de $F_Z(\frac{b}{2}) : F_Z(\frac{b}{2}) = \overline{F}_{T_{ix}}(-\frac{1}{\delta}\ln(\frac{1}{2})) = \overline{F}_{T_x}(\frac{1}{0.04}\ln(2)) = \overline{F}_{T_x}(17.328679514) = 0.9417166$
- (f) (2 points). Développer l'expression de la VaR de Z.

Si
$$0 < \kappa \le \overline{F}_{T_x}(n)$$
, $VaR_{\kappa}(Z) = 0$
Si $\overline{F}_{T_x}(n) < \kappa < 1$, $VaR_{\kappa}(Z) = be^{-\delta VaR_{1-\kappa}(T_x)} =$

- (g) (2 points). Calculer $VaR_{\kappa}(Z)$, pour $\kappa = 0.95$. Comme $\overline{F}_{T_r}(n) < 0.95 < 1$, on obtient
 - $VaR_{1-0.95}(T_x) = 16.01277$
 - $VaR_{0.95}(Z) = 100000 \times \exp(-0.04 \times 16.01277) = 52702.315185$
- (h) **(15 points).** Soient un vecteur de v.a. i.i.d. $(T_{x,1}, T_{x,2}, T_{x,3})$ avec $T_{x,1} \sim T_x$. On définit $S = Z_1 + Z_2 + Z_3$ avec $Z_i = bv^{T_{x,i}} \times 1_{\{T_{x,i} \leq n\}}, i = 1, 2, 3$.
 - i. (5 points). Utiliser la méthode inverse pour produire n=1000 réalisations de $\left(T_{x,1}^{(j)},T_{x,2}^{(j)},T_{x,3}^{(j)}\right)$ de $(T_{x,1},T_{x,2},T_{x,3})$. Note : pour chaque j, on simule $T_{x,i}^{(j)}$ avec $U_i^{(j)}$, i=1,2,3 :
 - Indiquer la méthode pour chacune des 3 v.a. On utilise la méthode inverse avec

$$T_{xi}^{(j)} = F_{T_x} \left(U_i^{(j)} \right)$$
$$= \frac{1}{\gamma} \ln \left(1 - \frac{\gamma}{\beta e^{\gamma x}} \ln \left(1 - U_i^{(j)} \right) \right).$$

- Indiquer la réalisation #1 de $(T_{x,1}, T_{x,2}, T_{x,3})$. On obtient : > vT1[1] 19.37909; > vT2[1] 14.24638; > vT3[1] 52.35685 ...
- Indiquer la réalisation #1000 de $(T_{x,1}, T_{x,2}, T_{x,3})$. On obtient : > vT1[1000] 47.30317; > vT2[1000] 53.23686; vT3[1000] 51.60117
- ii. (6 points). Produire n = 1000 réalisations $(Z_1^{(j)}, Z_2^{(j)}, Z_3^{(j)})$ de (Z_1, Z_2, Z_3) et $S^{(j)}$ de S:
 - (2 points). Indiquer la méthode pour y parvenir.
 - (2 points). Indiquer les réalisations #1 et #1000 de (Z_1, Z_2, Z_3) . Réalisation #1 : 46062.83 56560.72 12315.96 Réalisation #1000 : 15075.08 11889.98 12693.92
 - (2 points). Indiquer les réalisations #1 et #1000 de S. Réalisation #1 : 114939.5 Réalisation #1000 : 39658.98
- iii. (4 points). Avec les résultats de l'item (2(h)ii), calculer une approximation de $\varphi = \Pr(S > 100000)$.
 - (2 points). Indiquer l'expression de l'approximation $\widetilde{\varphi}$ de φ .

Expression:

$$\widetilde{\varphi} = \frac{1}{n_{sim}} \sum_{j=1}^{n_{sim}} 1_{\left\{S^{(j)} > 100000\right\}}$$

• (2 points). Indiquer la valeur de l'approximation $\widetilde{\varphi}$ de φ . On obtient : 0.118

3. (25 points). On considère un contrat de rente discrète temporaire n=40 ans, émis à un individu d'âge x=60.

La durée de vie de l'individu est modélisée à partir de la table de mortalité fournie.

La rente annuelle g = 10000 est versée au début de l'année et elle cesse au décès s'il advient avant la durée n.

On utilise une force d'intérêt de 3% pour les calculs.

On définit la v.a. Z comme étant la valeur présente des coûts pour le contrat où

$$Z = \sum_{k=0}^{n-1} gv^k \times 1_{\{T_x > k\}}.$$

La v.a. T_x représente la durée de vie de l'individu d'âge x.

Questions:

(a) (2 pts). À partir de la table de mortalité, calculer les valeurs de $\overline{F}_{T_x}(k)$, pour k = 1, 10 et 20.

(Vérification: $\overline{F}_{T_x}(5) = 0.933143340$; $\overline{F}_{T_x}(15) = 0.690043598$; $\overline{F}_{T_x}(30) = 0.143845203$).

- (b) (4 pts). Calculer E[Z].
 - i. (2pts). Développer l'expression de E[Z].
 - ii. (2pts). Indiquer la valeur de E[Z].
- (c) (2pts). Indiquer une seconde définition possible de Z.
- (d) (6pts. Calculer Var(Z).
 - i. (2pts). Développer l'expression de $E[Z^2]$.
 - ii. (1 pt). Développer l'expression de Var(Z).
 - iii. (3pts). Indiquer les valeurs de $E[Z^2]$ et de Var(Z).
- (e) (2pts). Indiquer les 2 valeurs les moins élevées et les 2 valeurs les plus élevées que peut prendre Z.
- (f) (2pts). Indiquer la probabilité que Z prenne la valeur la moins élevée.
- (g) (2pts). Indiquer la probabilité que Z prenne la valeur la plus élevée.
- (h) (2pts). Calculer $VaR_{\kappa}(Z)$ pour $\kappa = 0.05$ et 0.95.
- (i) (3pts). Calculer $TVaR_{\kappa}(Z)$ pour $\kappa = 0.95$.

Solution: OK

(a) (2 pts). À partir de la table de mortalité, calculer les valeurs de $\overline{F}_{T_x}(k)$, pour k = 1, 10 et 20.

 $(\text{V\'{e}rification}: \overline{F}_{T_x}\left(5\right) = 0.933143340; \overline{F}_{T_x}\left(15\right) = 0.690043598; \overline{F}_{T_x}\left(30\right) = 0.143845203).$

- On obtient: 0.988910000; 0.832148927; 0.509630301
- (b) (4 pts). Calculer E[Z].

i. (2pts). Développer l'expression de E[Z]. On a

$$E[Z] = \sum_{k=0}^{39} 10000v^k \ \overline{F}_{T_{60}}(k)$$

ou

$$E[Z] = \sum_{k=0}^{39} \left(\sum_{j=0}^{k} 10000v^{j} \right) \left(F_{T_{60}}(k+1) - F_{T_{60}}(k) \right) + \left(\sum_{j=0}^{39} 10000v^{j} \right) \overline{F}_{T_{60}}(40)$$

ii. (2pts). Indiquer la valeur de E[Z]. On obtient : 147257.1

(c) (2pts). Indiquer une seconde définition possible de Z.

On a (pour x = 60)

$$Z = \begin{cases} \left(\sum_{j=0}^{[T(x)]} 10000v^j \right), T_x < 40 \\ \left(\sum_{j=0}^{39} 10000v^j \right), T_x > 40 \end{cases}$$

(d) (6pts. Calculer Var(Z).

i. (2pts). Développer l'expression de $E[Z^2]$. On a

$$E[Z^{2}] = \sum_{k=0}^{39} \left(\sum_{j=0}^{k} 10000v^{j} \right)^{2} (F_{T_{60}}(k+1) - F_{T_{60}}(k)) + \left(\sum_{j=0}^{39} 10000v^{j} \right)^{2} \overline{F}_{T_{60}}(40)$$

ii. (1 pt). Développer l'expression de $Var\left(Z\right)$. On a

$$Var(Z) = E[Z^2] - E[Z]^2$$

iii. (3pts). Indiquer les valeurs de $E\left[Z^2\right]$ et de $Var\left(Z\right)$. On obtient : 24548452254 2pts et 2863787368 1pt

(e) (2pts). Indiquer les 2 valeurs les moins élevées et les 2 valeurs les plus élevées que peut prendre Z.

Valeurs les moins élevées :

- 10000,
- $\sum_{j=0}^{1} 10000v^j = 10000 \times \frac{1-e^{-0.03\times 2}}{1-e^{-0.03}} = 19704.455336$

Valeurs les plus élevées :

• $\sum_{j=0}^{38} 10000v^j = 10000 \times \frac{1-e^{-0.03\times39}}{1-e^{-0.03}} = 233343.092106$

- $\sum_{j=0}^{39} 10000v^j = 10000 \times \frac{1 e^{-0.03 \times 40}}{1 e^{-0.03}} = 236446.761519$
- (f) **(2pts).** Indiquer la probabilité que Z prenne la valeur la moins élevée. Probabilité : $(\overline{F}_{T_{60}}(0) \overline{F}_{T_{60}}(1)) = 1 0.988910000 = 0.01109$
- (g) (2pts). Indiquer la probabilité que Z prenne la valeur la plus élevée. Probabilité : $\overline{F}_{T_{60}}$ (39) =0.009321511
- (h) (2pts). Calculer $VaR_{\kappa}\left(Z\right)$ pour $\kappa=0.05$ et 0.95. Valeurs : 38261.41 et 219954
- (i) (3pts). Calculer $TVaR_{\kappa}\left(Z\right)$ pour $\kappa=0.95.$ Valeurs : 153689 et 227803.9

4. (35 points). Pour la prochaine année, le montant total des sinistres pour l'ensemble du portefeuille d'assurance maladie est représenté par la v.a. $S_n = X_1 + ... + X_n$ où les v.a. X_1 , ..., X_n sont i.i.d.

Les coûts pour le contrat i sont définis par la v.a.

$$X_i = I_i \times B_i,$$

où les lois des v.a. indépendantes I_i et B_i sont

$$I_i \sim Bernoulli (q = 0.1)$$

 $B_i \sim Gamma (\alpha = 0.5, \beta = 0.05)$.

On définit $W_n = \frac{S_n}{n}$.

Questions:

- (a) (15 points). Pour un contrat, ...
 - ... écrire l'expression de $F_{X_1}(x)$;
 - ... calculer $F_{X_1}(0)$ et $F_{X_1}(40)$ (**vérification**: $F_{X_1}(10) = 0.9682689$);
 - ... expliquer comment obtenir $VaR_{\kappa}(X_1)$ pour $\kappa = 0.8$ et 0.99;
 - ... calculer $VaR_{\kappa}(X_1)$ pour $\kappa = 0.8$ et 0.99;
 - ... donner l'expression de $TVaR_{\kappa}(X_1)$ pour $\kappa = 0.8$ et 0.99;
 - ... calculer $TVaR_{\kappa}(X_1)$ pour $\kappa = 0.8$ et 0.99.
- (b) (15 points). Pour un portefeuille de n = 200 contrats, ...
 - ... indiquer la loi de S_n ;
 - ... écrire l'expression de $F_{W_n}(x)$;
 - ... calculer $F_{W_n}(0)$ et $F_{W_n}(40)$ (vérification: $F_{W_{200}}(1) = 0.5426902$);
 - ... expliquer comment obtenir $VaR_{\kappa}(W_n)$ pour $\kappa = 0.8$ et 0.99;
 - ... calculer $VaR_{\kappa}(W_n)$ pour $\kappa = 0.8$ et 0.99;
 - ... donner l'expression de $TVaR_{\kappa}(W_n)$ pour $\kappa = 0.8$ et 0.99; et
 - ... calculer $TVaR_{\kappa}(W_n)$ pour $\kappa = 0.8$ et 0.99.
- (c) **(5 points).** On définit les bénéfices de mutualisation par contrat selon la mesure VaR et la mesure TVaR par

$$B_{\kappa,n}^{VaR} = VaR_{\kappa}(X) - VaR_{\kappa}(W_n)$$

$$B_{\kappa,n}^{TVaR} = TVaR_{\kappa}(X) - TVaR_{\kappa}(W_n).$$

Pour n = 200, ...

- \bullet ... calculer les valeurs de $B_{\kappa,n}^{VaR}$ et $B_{\kappa,n}^{TVaR}$ pour $\kappa=0.8$ et 0.99;
- ... commenter les valeurs obtenues de $B_{\kappa,n}^{VaR}$ et $B_{\kappa,n}^{TVaR}$ pour $\kappa=0.8$ et 0.99.

Solution: (35 points).

(a) (15 points). Pour un contrat, ...

- (1 point).... écrire l'expression de $F_{X_1}(x)$;
 - $-F_{X_1}(x) = 1 q + qF_{B_1}(x)$
- (2 points).... calculer $F_{X_1}(0)$ et $F_{X_1}(40)$ (vérification: $F_{X_1}(10) = 0.9682689$);
 - $-F_{X_1}(0) = 1 q = 0.9$
 - $-F_{X_1}(40) = 0.99545$

• (2 points).... expliquer comment obtenir
$$VaR_{\kappa}(X_1)$$
 pour $\kappa = 0.8$ et 0.99;
$$-F_X^{-1}(u) = \begin{cases} 0, & 0 < u \leq 1-q \\ F_B^{-1}\left(\frac{u-(1-q)}{q}\right), & 1-q < u < 1 \end{cases}$$

- (3 points).... calculer $VaR_{\kappa}(X_1)$ pour $\kappa = 0.8$ et 0.99;
 - $-VaR_{0.8}(X)=0$
 - $-VaR_{0.99}(X) = 27.05543$

 $-VaR_{\kappa}(X) = F_{\chi}^{-1}(\kappa)$

• (2 points).... donner l'expression de $TVaR_{\kappa}(X_1)$ pour $\kappa = 0.8$ et 0.99;

$$-TVaR_{\kappa}(X_{1}) = \begin{cases} \frac{qE[B]}{1-\kappa}, & 0 < \kappa \leq 1-q\\ \frac{q}{1-\kappa}E\left[B \times 1_{\{B \geq VaR_{\kappa}(X)\}}\right], & 1-q < \kappa < 1 \end{cases}$$
$$-TVaR_{\kappa}(X_{1}) = \begin{cases} \frac{q}{1-\kappa}\frac{\alpha}{\beta}, & 0 < \kappa \leq 1-q\\ \frac{q}{1-\kappa}\frac{\alpha}{\beta}, & 0 < \kappa \leq 1-q\\ \frac{q}{1-\kappa}\frac{\alpha}{\beta}, & 1-q < \kappa < 1 \end{cases}$$

- (4 points)... calcular $TVaR_{\kappa}(X_1)$ pour $\kappa = 0.8$ et 0.99
 - $TVaR_{0.8}(X_1) = 5$
 - $-TVaR_{0.99}(X_1) = 43.92861$
- (b) (15 points). Pour un portefeuille de n = 200 contrats, ...
 - (1 point)... indiquer la loi de S_n ;
 - la v.a. S_n obéit à une loi binomiale : $S_n \sim Binom(n, q; F_B)$
 - (2 points).... écrire l'expression de $F_{W_n}(x)$;
 - $-F_{W_n}(x) = F_{S_n}(xn)$
 - $-F_{S_n}(y) = f_{N_n}(0) + \sum_{k=1}^n f_{N_n}(k) F_{B'_1 + \dots + B'_k}(y)$
 - $-F_{S_n}(y) = f_{N_n}(0) + \sum_{k=1}^n f_{N_n}(k) H(y; k \times 0.5, 0.05)$
 - $f_{N_n}(k) = \binom{n}{k} q^k (1-q)^{n-k}, k \in \{0, 1, 2, ..., n\}$
 - (3 points).... calculer $F_{W_n}(0)$ et $F_{W_n}(40)$ (vérification: $F_{W_{200}}(1) = 0.5426902$);
 - $F_{W_n}(0) = f_{N_n}(0) = 0$
 - $-F_{W_{\pi}}(40) = 0.5945688$
 - (1 point).... expliquer comment obtenir $VaR_{\kappa}(W_n)$ pour $\kappa = 0.8$ et 0.99;
 - On doit inverser F_{S_n}
 - Comme $F_{S_n}^{-1}\left(u\right)$ n'est pas analytique, on doit procéder numériquement avec la fonction optimize ou uniroot
 - $-VaR_{\kappa}(W_n) = VaR_{\kappa}\left(\frac{S_n}{n}\right) = \frac{1}{n}VaR_{\kappa}(S_n)$
 - (3 points)... calculer $VaR_{\kappa}(W_n)$ pour $\kappa = 0.8$ et 0.99;
 - $-VaR_{0.8}(W_n) = 1.30408$
 - $-VaR_{0.99}(W_n) = 2.057451$

- (1 points)... donner l'expression de $TVaR_{\kappa}(W_n)$ pour $\kappa = 0.8$ et 0.99; et
 - $TVaR_{\kappa}(W_n) = \frac{1}{n}TVaR_{\kappa}(S_n)$
 - $TVaR_{\kappa}\left(S_{n}\right) = \sum_{k=1}^{n} f_{N_{n}}\left(k\right) \frac{k \times \alpha \times 0.5}{\beta} \left(1 H\left(VaR_{\kappa}\left(S_{n}\right); k \times 0.5 + 1, 0.05\right)\right)$
- (4 points)... calculer $TVaR_{\kappa}(W_n)$ pour $\kappa = 0.8$ et 0.99.
 - $-TVaR_{0.8}(W_n) = 1.574632$
 - $-TVaR_{0.99}(W_n) = 2.260136$
- (c) **(5 points).** On définit les bénéfices de mutualisation par contrat selon la mesure VaR et la mesure TVaR par

$$B_{\kappa,n}^{VaR} = VaR_{\kappa}(X) - VaR_{\kappa}(W_n)$$

$$B_{\kappa,n}^{TVaR} = TVaR_{\kappa}(X) - TVaR_{\kappa}(W_n).$$

Pour n = 200, ...

- (4 points).... calculer les valeurs de $B_{\kappa,n}^{VaR}$ et $B_{\kappa,n}^{TVaR}$ pour $\kappa=0.8$ et 0.99;
 - $B_{0.8,200}^{VaR} = -1.30408$
 - $-\ B_{0.99,200}^{VaR} = \! 27.05543\text{--}1.574632 \! = 25.480798$
 - $-\ B_{0.8,200}^{TVaR} = 5 1.574632 = 3.425368$
 - $-\ B_{0.99,200}^{TVaR} = 43.92861 \text{--} 2.260136 = 41.668474$
- (1 point).... commenter les valeurs obtenues de $B_{\kappa,n}^{VaR}$ et $B_{\kappa,n}^{TVaR}$ pour $\kappa = 0.8$ et 0.99.
 - -avec $\kappa=0.8,$ on illustre le fait que la VaR n'est pas sous-additive
 - pour κ =0.8 ou 0.99, on met clairement en valeur le bénéfice à mutualiser les risques indépendants

FIN