Probabilistic Forecasting with nnetsauce (using Density Estimation, Bayesian inference, Conformal prediction and Vine copulas)

T. Moudiki (thierrymoudiki.github.io)

2024-07-26

Context

- Quasi-randomized neural networks (QRNs) applied to time series lags for forecasting
- Uncertainty quantification using Kernel Density Estimation,
 Bayesian inference, Conformal prediction and Vine copulas
- ► Implemented in Python package nnetsauce version 0.23.0

Plan

- ▶ 1 Key components of nnetsauce forecasting
 - □ 1 1 Quasi-randomized neural networks (QRNs)
 - □ 1 2 Uncertainty quantification in forecasting
- 2 QRN forecasting with nnetsauce
 - 2 1 nnetsauce's description (Python version)
 - 2 2 Install+import Python packages (including nnetsauce)
 - 2 3 Import data for the demo
 - 2 4 Using the fit + predict interface
 - ≥ 2 5 Using GPUs
 - 2 6 Time series cross-validation
 - 2 7 AutoML with LazyMTS

Plan.

▶ 1 - Key components of nnetsauce forecasting

- □ 1 1 Quasi-randomized neural networks (QRNs)
- ▶ 1 2 Uncertainty quantification in forecasting
- 2 QRN forecasting with nnetsauce
 - 2 1 nnetsauce's description (Python version)
 - 2 2 Install+import Python packages (including nnetsauce)
 - 2 3 Import data for the demo
 - 2 4 Using the fit + predict interface
 - □ 2 5 Using GPUs
 - 2 6 Time series cross-validation
 - 2 7 AutoML with LazyMTS

1 - Key components of nnetsauce forecasting

1 - 1 Quasi-randomized neural networks (QRNs)

Figure 1: QRN principle

- See also this doc
- ightharpoonup A simple case: **base learner** = Linear Regression (next page)

1 - 1 - Quasi-randomized *neural* networks (QRNs)

Simple case: base learner = Linear Regression; $y \in \mathbb{R}^n$, to be explained by $X^{(j)}, j \in \{1, \dots, p\}$

$$y = \beta_0 + \sum_{j=1}^{p} \beta_j \mathbf{X}^{(j)} + \sum_{l=1}^{L} \gamma_l g\left(\sum_{j=1}^{p} \mathbf{W}^{(j,l)} \mathbf{X}^{(j)}\right) + \epsilon$$

With:

- ightharpoonup g: activation function ightharpoonup nonlinearity
- L: number of nodes in the **hidden layer**
- $\triangleright W^{(j,l)}$, hidden layer: **pseudo/quasi-random**
- ► Quasi-random: designed to cover the space parsimoniously
- secret sauce: "Layer normalization" (centering and scaling twice)
- $\triangleright \beta_i$ and γ_I : linear model coefficients
- $ightharpoonup \epsilon$: residuals

1 - 1 - Quasi-randomized *neural* networks (QRNs)

QRNs applied to time series

- \triangleright **Response** y = most recent time series observations
- \triangleright Covariates X = time series lags
- base learner: can be any Machine Learning model
- Multivariate forecasting case: the base learner shared by all the time series

Point forecasts/Uncertainty quantification

- Point forecasts: cool, but not very informative. How wrong can we be, based on the assumptions that we made: answers how "certain" can we be about the forecast?
- Uncertainty quantification needed: prediction intervals and/or predictive simulations.
- prediction intervals: point forecast +/- a term (with a level of confidence)
- predictive simulations: future scenarios for the variables of interest

In nnetsauce

- Based on:
 - Bayesian priors
 - ► In-sample residuals = model fit true observation on the whole training set
 - Calibrated residuals = model fit true observation on a held-out calibration set
 - (Vine) Copulas (since nnetsauce v0.23.0)
- Calibrated residuals used in nnetsauce for methods based on sequential split conformal prediction (more on this later)

Short focus on **sequential split conformal prediction** (see also https://github.com/thierrymoudiki/2024-07-17-scp-block-bootstrap)

Short focus on *copulas* (source vine-copula.org)

Figure 2: Copulas

Recap

- In nnetsauce version 0.23.0:
 - Via a Bayesian base learner
 - Via a conformalized base learner
 - Via in-sample residuals for methods based on:
 - parametric residuals distribution inference (gaussian)
 - density estimation and simulation of residuals (kde)
 - bootstrap resampling (bootstrap and block-bootstrap)
 - vine copulas (vine-*)
 - Via calibrated residuals for methods based on sequential split conformal prediction (SCP) (scp*-kde, scp*-bootstrap, scp*-block-bootstrap, scp*-vine-*)

Plan.

- ▶ 1 Key components of nnetsauce forecasting
 - □ 1 1 Quasi-randomized neural networks (QRNs)
 - □ 1 2 Uncertainty quantification in forecasting

2 - QRN forecasting with nnetsauce

- 2 1 nnetsauce's description (Python version)
- 2 2 Install+import Python packages (including nnetsauce)
- 2 3 Import data for the demo
- 2 4 Using the fit + predict interface
- ≥ 2 5 Using GPUs
- 2 6 Time series cross-validation
- 2 7 AutoML with LazyMTS

2 - QRN forecasting with nnetsauce

- 2 1 nnetsauce's description (Python version)
 - General-purpose Machine Learning using Randomized and Quasi-Randomized neural networks
 - □ GitHub: https://github.com/Techtonique/nnetsauce
 - PyPI: https://pypi.org/project/nnetsauce/
 - Conda: https://anaconda.org/conda-forge/nnetsauce
 - ► Tasks:
 - Classification
 - Regression
 - Univariate/Multivariate time series forecasting

2 - 1 nnetsauce's description (Python version) (cont'd)

- Simple interface for each model:
 - ▶ fit: fitting model to training data
 - predict: model inference on unseen data
- ► **GPU** version optimizes matrices multiplication using **JAX** (not magical)
- Classes MTS and DeepMTS for time series forecasting
- DeepMTS seems to be more suited for *nearly* stationary data (but I encourage you to try and tell me)
- Automated Machine Learning (AutoML) with classes LazyMTS and LazyDeepMTS
- Cross-validation

2 - 2 Install+import Python packages (including nnetsauce)

pip install nnetsauce

pip install git+https://github.com/Techtonique/mlsauce.git

```
import nnetsauce as ns # import the package
import mlsauce as ms
import numpy as np
import pandas as pd
import seaborn as sns

from sklearn.linear_model import Ridge
from statsmodels.tsa.seasonal import STL

sns.set_theme(style="darkgrid")
```

2 - 3 Import data for the demo

Input format (univariate time series)

date	value
1949-01-01	112.0
1949-02-01	118.0
1949-03-01	132.0
1949-04-01	129.0
1949-05-01	121.0
1949-06-01	135.0

2 - 3 Import data for the demo Input format (multivariate time series)

date	Consumption	Income
1970-01-01	0.615986218	0.972261043
1970-04-01	0.46037569	1.169084717
1970-07-01	0.876791423	1.55327055
1970-10-01	-0.274245141	-0.255272381
1971-01-01	1.897370758	1.987153628
1971-04-01	0.911992909	1.447334175

2 - 3 Import data for the demo

Univariate: Monthly anti-diabetic drug sales in Australia from 1992 to 2008

```
url = "https://raw.githubusercontent.com/Techtonique/"
url += "datasets/main/time_series/univariate/"
url += "a10.csv"
df_a10 = pd.read_csv(url)
df_a10.index = pd.DatetimeIndex(df_a10.date) # must have
df_a10.drop(columns=['date'], inplace=True)
```

df_a10.plot()

2 - 3 Import data for the demo (cont'd)

Multivariate: Heater vs Ice cream sales data set

```
url = "https://raw.githubusercontent.com/Techtonique/"
url += "datasets/main/time_series/multivariate/"
url += "ice_cream_vs_heater.csv"
df_temp = pd.read_csv(url)
df_temp.index = pd.DatetimeIndex(df_temp.date) # must have
# first other difference
df_icecream = df_temp.drop(columns=['date']).diff().\
dropna()
```

df_icecream.plot()

A few examples of probabilistic forecasting with nnetsauce:

- Gaussian
- Bayesian (Gaussian prior on base learner)
- Kernel Density Estimation (KDE) and sequential split conformal prediction (SCP)
- ► Conformalized base learner: TweedieRegressor + SCP
- ▶ Vine Copula (combined with SCP)

Also use the docs for exact spec.:

https://techtonique.github.io/nnetsauce/nnetsauce.html#MTS

Gaussian

regr.predict(h=30); # 30-steps ahead forecast

regr.plot("heater", type_plot="pi") # plot pred. int.

Bayesian (Gaussian prior)

```
regr.predict(h=40, return_std=True); # 40-steps ahead
```

regr.plot(type_plot="pi")

SCP-KDE

```
regr.predict(h=40); # 40-steps ahead
```

regr.plot(type_plot="spaghetti")

Conformalized base learner

```
from sklearn.linear_model import TweedieRegressor
obj0 = ns.PredictionInterval(obj=TweedieRegressor(),
                             method="splitconformal",
                             type split="sequential",
                             level=95)
regr = ns.MTS(obj=obj0,
              lags=20,
              show_progress=False)
regr.fit(df_icecream);
regr.predict(h=30, return_pi=True);
```

regr.plot("heater", type_plot="pi") # plot one series

▶ Vine copula + sequential split conformal

```
import nnetsauce as ns
from sklearn.linear model import TweedieRegressor
regr = ns.MTS(obj=TweedieRegressor(),
              lags=25, # no. of time series lags
              type_pi="scp-vine-tll", # vine copula spec.
              replications=250, # no. of sample paths
              show_progress=False)
regr.fit(df icecream);
regr.predict(h=30);
```

regr.plot("heater", type_plot="spaghetti")

regr.plot("icecream", type_plot="spaghetti")

2 - 5 Using GPUs

- Public notebook on GitHub (https://bit.ly/45RchgD)
- Simulated multivariate time series: 100 series, 10000 observations
- Ran on Kaggle notebooks, with accelerator GPU P100

```
import numpy as np
import pandas as pd
import nnetsauce as ns
from sklearn.linear_model import Ridge
from time import time
```

2 - 5 Using GPUs (cont'd)

Example 1 on CPU, using Ridge regression

```
regr = Ridge()
obj_MTS = ns.MTS(regr,
                 lags = 15,
                 n_hidden_features=5,
                 nodes sim="uniform",
                 backend="cpu", # specify backend
                 verbose = 1)
start = time()
obj MTS.fit(df)
print(f"Elapsed: {time()-start}")
```

Elapsed: 64.46652388572693

2 - 5 Using GPUs (cont'd)

► Example 2 on GPU (uses JAX behind the scenes), using Ridge regression

```
regr = Ridge()
obj MTS = ns.MTS(regr,
                 lags = 15,
                 n hidden features=5,
                 nodes sim="uniform",
                 backend="gpu", # specify backend
                 verbose = 1)
start = time()
obj_MTS.fit(df_)
print(f"Elapsed: {time()-start}")
```

Elapsed: 40.53069853782654

▶ 37% time gain

2 - 5 Using GPUs (cont'd)

Example 3 on GPU (uses **JAX** behind the scenes), using Ridge regression on GPU (mlsauce implementation) too

```
regr = ms.RidgeRegressor(reg_lambda=1.0, backend="gpu")
obj MTS = ns.MTS(regr,
                 lags = 15,
                 n hidden features=5,
                 nodes sim="uniform",
                 backend="gpu", # specify backend
                 verbose = 1)
start = time()
obj_MTS.fit(df_)
print(f"Elapsed: {time()-start}")
```

Elapsed: 23.551459312438965

- ▶ 63% time gain
- Can also use xgboost with tree method='gpu_hist' e.g

2 - 6 Time series cross-validation

2 methods: fixed window and increasing window

Example in nnetsauce

```
import nnetsauce as ns
import numpy as np
import pandas as pd
import statsmodels.api as sm
from sklearn.linear_model import Ridge
from statsmodels.tsa.base.datetools import dates from str
# some example data
mdata = sm.datasets.macrodata.load pandas().data
# prepare the dates index
dates = mdata[['year', 'quarter']].astype(int).astype(str)
quarterly = dates["year"] + "Q" + dates["quarter"]
quarterly = dates from str(quarterly)
mdata = mdata[['realgovt', 'tbilrate', 'cpi']]
mdata.index = pd.DatetimeIndex(quarterly)
data = np.log(mdata).diff().dropna()
```

Example in nnetsauce (cont'd)

```
obj MTS = ns.MTS(Ridge(), lags = 3,
                 n hidden features=7,
                  replications=100,
                  seed=24, verbose = 0,
                  type_pi="scp2-block-bootstrap",
                  show_progress=False)
cv = obj_MTS.cross_val_score(data,
                verbose = 0,
                initial_window=100,
                horizon=5,
                level=95.
                fixed window=False, # True for rolling
                show progress=False,
                scoring="coverage")[1]
```

Example in nnetsauce (cont'd)

Average coverage on 98 samples

print(cv.mean)

92.51700680272108

Example in nnetsauce (cont'd)

```
obj MTS = ns.MTS(Ridge(), lags = 3,
                 n hidden features=7,
                  replications=100,
                  seed=24, verbose = 0,
                  type_pi="scp2-block-bootstrap",
                  show_progress=False)
cv = obj_MTS.cross_val_score(data,
                verbose = 0,
                initial_window=100,
                horizon=5,
                level=95.
                fixed window=True, # False for increasing
                show progress=False,
                scoring="coverage")[1]
```

Example in nnetsauce (cont'd)

Average coverage on 98 samples

print(cv.mean)

92.44897959183673

2 - 7 Automated Machine Learning (AutoML) with LazyMTS

```
# split data into training/testing set
n = data.shape[0]
\max_{i} idx_{train} = np.floor(n*0.9)
training index = np.arange(0, max idx train)
testing index = np.arange(max idx train, n)
df train = data.iloc[training index,:]
df test = data.iloc[testing index,:]
# Train + predict on 3 ML models
regr mts = ns.LazyMTS(lags = 25,
                      type_pi="scp2-kde",
                      kernel="gaussian",
                      replications=250,
                      estimators=["Ridge",
                       "ElasticNet",
                       "RandomForestRegressor"],
                       show_progress=False);
models, predictions = regr mts.fit(df train, df test);
```

2 - 7 Automated Machine Learning (AutoML) with LazyMTS (cont'd)

print(models[['RMSE', 'COVERAGE']])

##		RMSE	COVERAGE
##	Model		
##	MTS(ElasticNet)	0.20	87.30
##	MTS(RandomForestRegressor)	0.20	88.89
##	MTS(Ridge)	0.28	80.95

2 - 7 Automated Machine Learning (AutoML) with LazyMTS (cont'd)

2 - 7 Automated Machine Learning (AutoML) with LazyMTS (cont'd)

```
print(models.sort_values(by='COVERAGE',
ascending=False)[['COVERAGE']].head(5))
```

##		COVERAGE
##	Model	
##	MTS(AdaBoostRegressor)	92.06
##	MTS(BaggingRegressor)	92.06
##	MTS(ExtraTreeRegressor)	90.48
##	MTS(KNeighborsRegressor)	90.48
##	MTS(ElasticNetCV)	88.89