Livret d'exercices – L 2 – FSES Analyse 2

Rappel : raisonnement par récurrence	2
Exercices se rapportant aux Suites	4
Exercices se rapportant au chapitre Séries	.7
Exercices se rapportant au chapitre Primitives et Intégration	11
Exercices se rapportant au chapitre Optimisation de fonctions de deux variables	17

Rappel (?) utile : le raisonnement par récurrence

C'est un raisonnement que l'on utilise pour montrer qu'une propriété est vraie pour tout n entier naturel (ou entier naturel strictement positif...). On peut l'utiliser dans de nombreux domaines des mathématiques : arithmétique, suites, matrices...

Exemples:

Exemple 1 :
$$P_n$$
: « pour tout n > 0, on a 1+ 2+...+n = $\frac{n(n+1)}{2}$ »

Exemple 2 : soit
$$(U_n)$$
 la suite définie par $U_0 = 2$ et $U_{n+1} = \frac{1}{2}U_n + 2$.

$$P_n$$
: « Montrer que pour tout entier naturel n, $U_n=4-\frac{1}{2^{n-1}}$ »

Exemple 3 : soit
$$(U_n)$$
 la suite définie par $U_0 = 2$ et $U_{n+1} = U_n + 2n + 5$.

 P_n : « Montrer que pour tout entier naturel n, $U_n > n^2$ »

Exemple 4 : Soit A =
$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
.

$$P_n$$
: « Montrer que pour tout n > 0, on a $A^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$ »

Ce raisonnement se déroule toujours en trois étapes. Il est impératif de respecter ces trois étapes et d'être très scrupuleux dans la rédaction.

On veut montrer qu'une propriété P_n est vraie pour tout entier naturel n.

Etape 1: initialisation

On vérifie que la propriété est vraie au rang n = 0

Etape 2 : hérédité

On suppose que la propriété est vraie **pour un entier n fixé (c'est l'hypothèse de récurrence)** et on montre qu'elle se transmet au rang (n+1).

Etape 3 : conclusion

La propriété est vraie au rang 0, elle s'est transmise, donc elle est vraie pour tout n entier naturel.

Mise en application sur des exemples

Retour à l'exemple 1

 P_n : pour tout n > 0, on a 1+ 2+...+n = $\frac{n(n+1)}{2}$. Montrons cette propriété par récurrence sur n.

Initialisation : vérifions que la propriété pour n = 1

$$\frac{1(1+1)}{2} = 1$$
 donc la propriété est vraie.

<u>Hérédité</u>: **on suppose** que pour un entier n fixé, P_n est vraie. On veut montrer qu'elle se transmet au rang (n+1) c'est-à-dire que 1+2+...+(n+1) = $\frac{(n+1)(n+1+1)}{2} = \frac{(n+1)(n+2)}{2}$

2

On va se servir de l'hypothèse de récurrence.

1+2+....+ (n+1) = 1+2+...+ n+ (n+1) =
$$\frac{n(n+1)}{2}$$
 + (n+1) = $\frac{n(n+1)}{2}$ + $\frac{2(n+1)}{2}$ = $\frac{(n+2)(n+1)}{2}$

Ce qu'il fallait démontrer!

<u>Conclusion</u>: La propriété est vraie au rang 1, elle s'est transmise, donc elle est vraie pour tout n entier naturel > 0.

Retour à l'exemple 4

Soit (U_n) la suite définie par $U_0 = 2$ et $U_{n+1} = U_n + 2n + 5$.

 P_n : Montrer que pour tout entier naturel n, $U_n > n^2$

Initialisation: vérifions que la propriété pour n = 0

 $U_0 = 2$ donc on a bien $U_0 > 0^2$. Donc la propriété est vraie au rang 0.

<u>Hérédité</u>: **on suppose** que pour un entier n fixé, P_n est vraie. On veut montrer qu'elle se transmet au rang (n+1) c'est-à-dire que $U_{n+1} > (n+1)^2$

On sait par définition que $U_{n+1} = U_n + 2n + 5$.

Or par hypothèse de récurrence, $U_n > n^2$ donc $U_{n+1} > n^2 + 2n + 5$.

Reste à vérifier que $n^2 + 2n + 5 > (n+1)^2$. Or $(n+1)^2 = n^2 + 2n + 1$ donc l'inégalité est vraie.

Donc $U_{n+1} > (n+1)^2$

<u>Conclusion</u>: La propriété est vraie au rang 0, elle s'est transmise, donc elle est vraie pour tout n entier naturel.

Exercices se rapportant au chapitre Suites

Exercice Su.1 Questions « en vrac »

- 1) Si le premier terme d'une suite (U_n) est U_0 , quel est le rang du 25^{ème} terme ?
- 2) Les nombres 15, 19, 25 sont-ils 3 termes consécutifs d'une suite arithmétique ?
- 3) Les nombres 2, 8, 32 sont-ils 3 termes consécutifs d'une suite géométrique ?
- 4) Si le premier terme d'une suite (U_n) est U_1 , quel est le rang du 14^{ème} terme ?

Exercice Su.2 Les questions sont indépendantes

- 1) La suite (U_n) est une SA de premier terme U_0 = 5 et de raison r = 2. Calculer U_{25} et $S_{13} = \sum_{k=0}^{13} U_k$
- 2) La suite (U_n) est une SA de raison r = 3 et telle que U_{20} = 64. Calculer S = $\sum_{k=20}^{35} U_k$
- 3) Calculer la somme des nombres pairs de 2 à 6612.

Exercice Su.3 Les questions sont indépendantes

- 1) La suite (U_n) est une SG de premier terme U_0 = 1 et de raison q = 2. Calculer U_{10} et
- 2) La suite (U_n) est une SG telle que $U_5 = 3$ et $U_7 = 12$. Déterminer q.
- 4) Soit une SG de premier terme $U_0 = 4096$ et de raison q = 0.5. Calculer la somme

$$S = \sum_{k=4}^{12} U_k$$

Exercice Su.4

Soit (U_n) la suite définie par $U_0=12$ et $U_{n+1}=\frac{3}{4}U_n+2$

1ère méthode

- 1) Montrer par récurrence que pour tout n entier naturel $U_n \ge 8$.
- 2) Déterminer le sens de variation de (U_n) .
- 3) Etudier la convergence de la suite.

2ème méthode

Retrouver ces résultats en utilisant la méthode d'étude des suites arithmético-géométriques.

4

Exercice Su.5

Etudier les variations des suites de termes généraux :

1)
$$U_n = \frac{1}{n} + \frac{1}{n+1}$$

1)
$$U_n = \frac{1}{n} + \frac{1}{n+1}$$

2) $U_{n+1} = \sqrt{1 + U_n^2}$
3) $U_n = 1, 2^n + n$

3)
$$U_n = 1,2^n + n$$

4)
$$U_n = \sum_{k=1}^n \frac{1}{k}.$$

Exercice Su.6

Déterminer la limite des suites de termes généraux :

- 1) $U_n = \frac{n^2 1}{n + 1}$
- 2) $U_n = \frac{n+1}{n-n^4}$ pour n entier naturel non nul
- 3) $U_n = -2\left(\frac{1}{3}\right)^n$
- 4) $U_n = -2(3)^n$
- 5) $U_n = \sum_{k=1}^n \frac{1}{2^k}$.

Exercice Su.7

Soit $(U_n)_{n \in IN}$ une suite définie par $U_0 = 1$ et $U_{n+1} = \frac{2U_n}{3+2U_n}$

- 1) Calculer les 5 premiers termes de la suite.
- 2) La suite $(U_n)_{n \in IN}$ est-elle arithmétique ?
- 3) On suppose que pour tout entier naturel n, $U_n \neq 0$ et $V_n = \frac{1}{U_n}$
 - a) Montrer que $(V_n)_{n\in IN}$ est arithmétique et donner ses éléments caractéristiques.
 - b) Donner l'expression de V_n en fonction de n.
 - c) En déduire l'expression de ${\rm U}_{\rm n}$ en fonction de n.
- 4) Etudier la monotonie de $(U_n)_{n \in IN}$.
- 5) Montrer que pour tout entier naturel n, $0 < U_n < 1$.

Exercice Su.8

On considère la suite $(U_n)_{n \in IN}$ de réels strictement positifs, définie par

 $U_0 = 2$ et pour tout $n \in IN$, $ln(U_{n+1}) = 1 + ln(U_n)$

- 1) Exprimer U_{n+1} en fonction de U_n et préciser la nature de la suite $(U_n)_{n \in IN}$.
- 2) Déterminer la monotonie de la suite $(U_n)_{n \in IN}$ et préciser sa limite.
- 3) Exprimer la somme $\sum_{k=0}^{n} U_k$ en fonction de n.
- 4) Exprimer la somme $\sum_{k=0}^{n} \ln (U_k)$ en fonction de n. En déduire le calcul de $U_1 \times U_2 \times ... \times U_n$ en fonction de n.

Exercice Su.9

Utiliser le théorème des suites monotones pour montrer la convergence des suites de terme général :

- 1) $U_n = \sum_{k=1}^n \frac{1}{k^2}$.
- 2) $U_n = \prod_{k=1}^n \frac{2k-1}{2k}$

Exercice Su.10

- 1) Utiliser le théorème des suites monotones pour montrer la convergence de la suite de terme général $U_n = \sum_{k=1}^n \frac{1}{k+n}$.
- 2) Montrer que pour tout $x \in [0; 1[, \ln(1+x) \le x \le -\ln(1-x)$
- 3) Déduire la limite de la suite (U_n)

Exercice Su.11

Soit (U_n) la suite définie par $U_n = \sum_{k=1}^n e^{1/k}$ pour tout $n \ge 1$.

Montrer en utilisant le théorème de comparaison que la suite diverge.

Exercice Su.12

Soit (U_n) la suite définie par $\mathbf{U_n} = \sqrt{n+1} - \sqrt{n}$

Montrer que $\frac{1}{2\sqrt{n+1}} \leq U_n \leq \frac{1}{\sqrt{n+1}}$ puis déterminer la limite de la suite.

Exercice Su.13

Soit (U_n) la suite définie par $U_n = \sum_{k=0}^n \frac{1}{k!}$ et soit (V_n) la suite définie par $V_n = U_n + \frac{1}{n(n!)}$

Montrer que ces suites convergent vers une même limite (que l'on ne cherchera pas à déterminer)

Exercices se rapportant au chapitre Séries

Exercice Se.1

Donner la nature de la série de t.g. $\frac{n-3}{n+4}$.

Exercice Se.2

Etudier la nature de la série de t.g. $U_n = \ln\left(1 + \frac{1}{n}\right)$ pour $n \ge 1$

Première méthode : étudier la suite des sommes partielles

Deuxième méthode : utiliser le critère d'équivalence.

Exercice Se.3

Etudier la nature des séries de t.g. suivants et donner leur somme éventuelle

$$\text{1)}\quad U_n=\,\left(\!\frac{2}{3}\!\right)^{\!n}\text{, } n\geq 0.$$

2)
$$U_n = 3^n e^{-n}$$
, $n \ge 0$

3)
$$U_n = \frac{5^n}{n!}$$

2)
$$U_n = 3^n e^{-n}$$
, $n \ge 0$.
3) $U_n = \frac{5^n}{n!}$
4) $U_n = \frac{3^{3n+1}}{(n+1)!}$, pour $n \ge 0$.

(On reconnaitra une série particulière du cours).

Exercice Se.4

En utilisant le critère de comparaison, montrer que la série de t.g. $U_n = \frac{\ln{(n)}}{n}$ est divergente (pour $n \ge 1$)

Exercice Se.5

En utilisant le critère de d'Alembert (ou en reconnaissant des séries « classiques ») déterminer la nature des séries de t.g.

1)
$$U_n = \frac{1}{n!}, n \ge 0$$

2)
$$U_n = \frac{n!}{n^n}$$
, $n \ge 0$

3)
$$U_n = \frac{n!n^n}{(2n)!}$$
, $n \ge 0$

Exercice Se.6

En utilisant le critère de Cauchy (ou en reconnaissant des séries « classiques ») déterminer la nature des séries de t.g.

7

1)
$$U_n = \left(\frac{n}{2n+1}\right)^n$$
, $n \ge 0$

2)
$$U_n = \left(\frac{3n+2}{2n+5}\right)^n$$
, $n \ge 0$

3)
$$U_n = \left(\frac{n}{n+1}\right)^{n^2}$$
, $n \ge 0$

4)
$$U_n = \frac{n^{\ln{(n)}}}{(\ln{(n)})^n}$$
, $n > 1$

Exercice Se.7

- 1) Montrer que pour tout n > 0 on a $\frac{1}{n(n+1)} = \frac{1}{n} \frac{1}{n+1}$.
- 2) Calculer la somme partielle de la série $\sum_{n>0} \frac{1}{n(n+1)}$. Quelle est la nature de la série ?
- 3) Etudier le la même façon la série de t.g. $\frac{1}{n(n-1)}$ avec $n \ge 2$.
- 4) Montrer que pour tout $n \ge 2$, $\frac{1}{n^2} \le \frac{1}{n(n-1)}$ et en déduire la nature de la série de t.g. $\frac{1}{n^2}$

Exercice Se.8

- 1) Quelle est la nature des séries suivantes $\sum_{n\geq 1} \frac{2n^2+1}{n^4}$ et $\sum_{n\geq 1} \frac{3n+5}{n^2}$?
- 2) Discuter selon la valeur du réel a strictement positif, la nature de la série de terme général

$$U_n = \frac{n^2 + 2}{n^a + 1}$$

Exercice Se.9

Etudier la nature des séries de termes généraux suivants (on utiliser des critères d'équivalence ou du « $n^{\alpha}U_{n}$ »)

1)
$$U_n = \frac{\sqrt{n+1} - \sqrt{n}}{n}, n > 0$$

- 2) $U_n = e^{\frac{1}{n}} 1$, pour $n \ge 1$ (penser aux développements limités)
- 3) $U_n = \sqrt[n^2]{3} 1$, pour $n \ge 1$ (on transformera l'écriture !)

$$4)\; U_n = \; ln\left(\frac{n^2+n+1}{n^2+n-1}\right) \text{, pour } n \geq 1 \; \text{(on montrera que } \frac{n^2+n+1}{n^2+n-1} = 1 + \frac{2}{n^2+n-1} \text{)}$$

5)
$$U_n = e^{-\sqrt{n}}$$
, $n \ge 0$.

Exercices se rapportant au chapitre Primitives et intégration.

Exercice PI.1

Calculer les intégrales suivantes :

$$A = \int_{1}^{4} \frac{2x^{3} + x^{2} - 5x + 1}{x} dx, \quad B = \int_{3}^{4} \frac{2x - 2}{x^{2} - 2x} dx, \quad C = \int_{-\frac{3}{2}}^{-1} e^{2x + 3} dx, \quad D = \int_{5}^{10} \sqrt{t - 1} dt,$$

$$E = \int_{-1}^{1} \frac{1}{\sqrt{x + 3}} dx, \quad F = \int_{2}^{3} \frac{x + 4}{x^{2} + 8x - 9} dx, \quad G = \int_{2}^{3} \frac{1}{(2x + 3)^{3}} dx \text{ et } H = \int_{0}^{2} \frac{x^{2} + 2x}{x + 1} dx$$
Indication: Pour H: écrire $\frac{x^{2} + 2x}{x^{2} + 8x - 9}$ sous la forme: $ax + b + \frac{c}{ax + 6}$:

Indication: Pour H: écrire
$$\frac{x^2 + 2x}{x+1}$$
 sous la forme : $ax + b + \frac{c}{x+1}$;

$$I = \int_{-1}^{2} \frac{x}{x^2 + 1} dx \qquad J = \int_{-1}^{2} x e^{3x - 1} dx$$

Exercice PI.2

Soit f la fonction définie sur \mathbb{R} par $f(x) = (x-1)e^{-x}$.

Déterminer a et b réels tels que la fonction F définie sur \mathbb{R} par $F(x) = (ax + b)e^{-x}$ soit une primitive de f sur \mathbb{R} .

Exercice PI.3

Déterminer la primitive F de f vérifiant la condition donnée.

1.
$$f(x) = 3x(x^2 + 1)^4$$
 et $F(1) = 0$,

2.
$$f(x) = \frac{\ln^2(x)}{x}$$
 et $F(e) = 0$.

Exercice PI.4

Quelques applications économiques (les questions sont indépendantes)

1) Le coût marginal de production d'un bien de consommation est donné par

Cm(q) = -12q² + 18q +32 et les coûts fixes valent 43. Déterminer l'expression du coût total, du coût moyen et du coût variable.

- 2) Une recette marginale est donnée par Rm(q) = -2q² 2q + 60. Déterminer la fonction recette totale et la fonction demande.
- 3) Soit la fonction demande $D(q) = 25 q^2$ et la fonction offre O(q) = 2q+1. Sous l'hypothèse d'une concurrence parfaite, calculer le surplus consommateur SC.
- 4) L'investissement net est donné par $I(t) = 9\sqrt{t}$. Déterminer le niveau de la formation de capital entre la 5ième et la 8ième année (intervalle [4;8])

Exercice PI.5

On considère la fonction f définie sur $]0,+\infty[$ par $f(x)=\frac{1+\ln(x)}{x}.$

- 1. Étudier les variations de f sur $]0,+\infty[$,
- 2. Déterminer l'abscisse a du point d'intersection de C_f avec l'axe des abscisses,
- 3. On note S₁ l'aire de la partie de plan délimitée par l'axe des abscisses, la courbe C_f et les droites d'équation $x = \frac{1}{e}$ et x = 1.

On note S_2 l'aire de la partie de plan délimitée par l'axe des abscisses, la courbe C_f et les droites d'équation x = 1 et x = m, m > 1.

Déterminer m pour que $S_1 = S_2$.

Exercice PI.6

Soit f la fonction définie sur \mathbb{R} par $f(x) = 9x^2 + 4x$.

- 1. Calculer la valeur moyenne de f sur l'intervalle [0,2]. (On notera V_m cette valeur)
- 2. Déterminer $c \in [0, 2]$ tel que $f(c) = V_m$.
- 3. Déterminer b > 0 tel que la valeur moyenne de f sur [0,b] soit égale à 5.

Exercice PI.7

Pour tout x > 0, on pose $I(x) = \int_{x}^{2x} \frac{dt}{\sqrt{1+t^2}}$.

- 1. (a) Montrer que si $t \ge 0$ on a : $\frac{1}{1+t} \le \frac{1}{\sqrt{1+t^2}}$.
 - (b) Montrer que si t > 0 on a : $\frac{1}{\sqrt{1+t^2}} \le \frac{1}{t}$.
- 2. (a) En déduire, pour x > 0, un encadrement de I(x).
 - (b) Déterminer $\lim_{x \to +\infty} I(x)$.

Exercice PI.8

On pose: $I_n = \int_0^1 t^n \sqrt{1-t} \, dt \quad \forall n \in \mathbb{N}.$

- 1. Justifier l'existence de I_n .
- 2. Montrer que : $\forall n \in \mathbb{N}$ on a : $I_n \ge I_{n+1}$. (Cela signifie que la suite (I_n) est décroissante)
- 3. Montrer que : $\forall n \in \mathbb{N}$ on a : $I_n \ge 0$. (Cela signifie que la suite (I_n) est minorée par 0)

10

Exercice PI.9

À l'aide d'une intégration par parties, calculer les intégrales suivantes :

$$A = \int_0^3 x \sqrt{3-x} \, dx, B = \int_0^1 \frac{\ln(x+1)}{(x+1)^2} \, dx \text{ et } C = \int_0^{-1} (2x^2+1)e^{3x} \, dx.$$

Exercice PI.10

- 1. (a) Déterminer réels a, b et c réels tels que : $\forall x > 0$, $\frac{1}{x(x^2+1)} = \frac{a}{x} + \frac{bx+c}{x^2+1}$.
 - (b) En déduire l'intégrale : $I = \int_{\frac{1}{2}}^{1} \frac{1}{x(x^2+1)} dx$.
- 2. À l'aide d'une intégration par parties, calculer $J = \int_{\frac{1}{2}}^{1} \frac{x \ln x}{(x^2 + 1)^2} dx$.

Exercice PI.11

Pour tout entier naturel n, on note :

$$I_n = \int_0^1 \frac{t^n}{1+t^2} Dt$$
 $J_n = \int_0^1 t^n \ln(1+t^2) dt$

- 1. (a) Montrer que : $\forall n \ge 0$, $0 \le I_n \le \frac{1}{n+1}$.
 - (b) En déduire $\lim_{n\to+\infty} I_n$.
- 2. À l'aide d'une intégration par parties, montrer que : $J_n = \frac{\ln 2}{n+1} \frac{2}{n+1}I_{n+2}$
- 3. En déduire la limite de (J_n) et celle de (nJ_n) .

Exercice PI.12

En utilisant le changement de variable indiqué, calculer les intégrales suivantes :

$$A = \int_1^2 \frac{(\ln t)^2}{t} dt \text{ avec } x = \ln t$$

$$B = \int_0^3 \frac{t \ln(1+t^2)}{1+t^2} dt \text{ avec } x = 1+t^2$$

$$C = \int_1^2 \frac{dx}{x + \sqrt{x}} \text{ avec } t = \sqrt{x}$$

Exercice PI.13

1) Calculer l'intégrale I = $\int_0^1 \frac{e^x}{1+e^x} dx$ à l'aide du changement de variable u = e^x .

2) Soit J = $\int_0^1 \frac{1}{1+e^x} dx$. Montrer que I + J = 1. En déduire la valeur de J.

Exercice PI.14

1. En posant $y = x^n$, calculer $J_n = \int_0^1 \frac{x^{2n-1}}{1+x^n} dx$

2. En déduire $\lim_{n\to+\infty} J_n$.

Exercice PI.15

1. (a) Déterminer a et b réels tels que : $\forall t > 1$, $\frac{1}{t^2 - 1} = \frac{a}{t - 1} + \frac{b}{t + 1}$.

(b) Calculer: $I = \int_{e}^{e^2} \frac{1}{t^2 - 1} dt$.

2. En posant $t = e^x$, calculer $J = \int_1^2 \frac{1}{e^x - e^{-x}} dx$.

Exercice PI.16

Etudier la convergence des intégrales généralisées suivantes et donner leur valeur éventuelle :

$$I = \int_{-1}^{1} \frac{1}{x - 1} dx \qquad \qquad J = \int_{0}^{+\infty} x e^{-x} dx \qquad \qquad K = \int_{-\infty}^{0} x e^{-x} dx \qquad \qquad L = J = \int_{1}^{+\infty} x^{\frac{1}{3}} dx$$

Exercices se rapportant au chapitre fonctions de deux variables

Exercice fo.1

Pour chacune des fonctions suivantes, préciser le domaine de définition $\mathcal D$ et le représenter.

- 1. $f(x,y) = x^2 + 2y^2 x^3\sqrt{y}$
- 2. $f(x,y) = \frac{xy}{x^2 + y^2 2y 3}$
- 3. $f(x,y) = \ln(x^2 + y 1)$
- 4. $f(x,y) = \sqrt{xy x + 2y 2}$ Indication: Vérifier que xy x + 2y 2 = (y 1)(x + 2)

Exercice fo.2

Dans chacun des cas suivants, déterminer et représenter la courbe de niveau k de la fonction f:

- 1. $f(x; y) = \ln(xy 1)$ et k = 0
- 2. $f(x;y) = e^{y-x^2+2x}$ et k = 1

Exercice fo.3

On considère la fonction f définie par $f(x,y) = e^{3x} - y + 2\sqrt{xy}$.

- 1. Déterminer le domaine de définition \mathcal{D} de la fonction f.
- 2. Calculer alors les dérivées partielles de f en un point X = (x, y) avec $xy \ne 0$.

Exercice fo.4

On reprend les fonctions de l'exercice 1.

Calculer les dérivées partielles de f en un point quelconque de \mathcal{D} puis les élasticités partielles au point a (après avoir vérifié que $a \in \mathcal{D}$ et que $f(a) \neq 0$).

13

- 1. $f(x,y) = x^2 + 2y^2 x^3\sqrt{y}$ a = (-1,1)
- 2. $f(x,y) = \frac{xy}{x^2 + y^2 2y 3}$ a = (1,1)
- 3. $f(x,y) = \ln(x^2 + y 1)$ a = (1,e)
- 4. $f(x,y) = \sqrt{xy x + 2y 2}$ a = (1,2)

Exercice fo.5

Donner une valeur approchée de f au point X_0

1.
$$f(x,y) = \sqrt{4x - x^2 + 4y - y^2}$$
 et $X_0 = (1,98; 0,01)$

2.
$$f(x,y) = \frac{2x^2 - 3y^2}{x^2y + y^2}$$
 et $X_0 = (0,95;1,02)$

3.
$$f(x,y) = x^{\frac{1}{5}} \cdot y^{\frac{4}{5}}$$
 et $X_0 = (10,1; 9,95)$

Exercice fo.6

Calculer les dérivées partielles premières et secondes de f après avoir précisé le domaine de définition.

1.
$$f(x,y) = xy + \ln(x)\ln(y)$$

$$2. \ f(x,y) = \frac{y}{x+y}$$

3.
$$f(x,y) = \frac{e^{-x}}{y-a}$$
, $a \in \mathbb{R}$

Exercice fo.7

Étudier, quand c'est possible, les extrema locaux des fonctions suivantes :

1.
$$f(x,y) = x^3 + x^2 - xy + y^2 + 4$$

2.
$$f(x,y) = e^x + e^y + e^{-x-y}$$

3.
$$f(x,y) = -x^2 + x - xy + y - y^2$$
.

4.
$$f(x,y) = (x^2 + y^2)e^{x^2 - y^2}$$
.

5.
$$f(x,y) = \frac{x^2y}{2} + x^2 + \frac{y^3}{3} - 4y$$

Exercice fo.8

En utilisant la méthode par substitution, déterminer les extrema des fonctions suivantes soumises chacune à la contrainte d'égalité indiquée :

1.
$$f(x,y) = xy$$
 sous la contrainte $x - e^y = 0$.

2.
$$f(x,y) = x^2 - 2xy$$
 sous la contrainte $x + y = 1$.

Reprendre la question en utilisant la méthode de Lagrange.

Exercice fo.9

En utilisant la méthode de votre choix, déterminer les extrema des fonctions suivantes soumises aux contraintes suivantes :

- 1. $f(x,y) = x^2 3y^2$ sous la contrainte x + 2y 1 = 0.
- 2. f(x,y) = x 2y sous la contrainte $x^2 + y^2 = 1$.

Exercice fo.10

Optimiser la fonction de Cobb-Douglas $f(K,L) = K^{0,4}L^{0,5}$ sous la contrainte 3K + 4L = 108.

Exercice fo.11

- 1) Quelle combinaison des biens x et y doit produire une entreprise pour minimiser ses coûts lorsque sa fonction coût est $C(x,y) = 6x^2 + 10y^2 xy + 30$ et lorsque la production est soumise à la contrainte x + y = 34?
- 2) Quelle combinaison des produits x et y doit fabriquer une entreprise pour maximiser ses profits lorsque sa fonction profit est $f(x,y) = 80x 2x^2 xy 3y^2 + 100y$ et lorsque la capacité maximale de production est x + y = 12?

Exercice fo.12

Déterminer les extrema de la fonction d'utilité $U(x,y) = xy^{1/3}$ sous la contrainte budgétaire x + 3y = 12.

Exercice fo.13

Si x et y milliers d'euros sont dépensés en travail et en équipement, une usine produit $Q(x,y) = 50x^{1/2}y^2$ unités d'un bien.

L'entreprise dispose d'une enveloppe de 80 000 €.

Comment cette somme doit-elle être répartie entre le travail et l'équipement afin que le niveau de production soit le plus élevé possible?