BỘ GIÁO DỰC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC

ĐÁP ÁN - THANG ĐIỂM KỲ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẮNG NĂM 2006 Môn: TOÁN, khối D

(Đáp án - Thang điểm có 04 trang)

Câu	Ý	Nội dung	Điểm
I			2,00
-	1	Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1,00 điểm)	
		$y = x^3 - 3x + 2.$ • TXD: \mathbb{R} .	
		• Sự biến thiên: $y' = 3x^2 - 3$, $y' = 0 \Leftrightarrow x = -1$, $x = 1$.	0.25
		Bảng biến thiên:	0,25
		x -∞ -1 1 +∞	
		y' + 0 - 0 +	
		7 4 +∞	
		y	
		-∞	
		$y_{CD} = y(-1) = 4, y_{CT} = y(1) = 0.$	0,50
		• Đồ thị:	
		У	
		4	
		2	0,25
		$\begin{bmatrix} -1 & O \end{bmatrix}$ 1 x	
-	2	Tìm m để d cắt (C) tại 3 điểm phân biệt (1,00 điểm)	
		Phương trình đường thẳng d là: $y = m(x-3) + 20$.	0,25
		Phương trình hoành độ giao điểm của d và (C) là:	
		$x^3 - 3x + 2 = m(x - 3) + 20 \iff (x - 3)(x^2 + 3x + 6 - m) = 0.$	0,25
		Đường thẳng d cắt đồ thị (C) tại 3 điểm phân biệt khi và chỉ khi	0.25
		$f(x) = x^2 + 3x + 6 - m$ có 2 nghiệm phân biệt khác 3	0,25
		$\Delta = 9 - 4(6 - m) > 0 \qquad m > \frac{15}{m}$	
		$\Leftrightarrow \begin{cases} \Delta = 9 - 4(6 - m) > 0 \\ f(3) = 24 - m \neq 0 \end{cases} \Leftrightarrow \begin{cases} m > \frac{15}{4} \\ m \neq 24. \end{cases}$	0,25
		$(m \neq 24.$	0,20

II			2,00
	1	Giải phương trình (1,00 điểm)	
		Phương trình đã cho tương đương với:	
		$-2\sin 2x \cdot \sin x - 2\sin^2 x = 0 \iff \sin x \left(\sin 2x + \sin x\right) = 0$	0,50
		$\Leftrightarrow \sin^2 x (2\cos x + 1) = 0.$	0,50
		• $\sin x = 0 \Leftrightarrow x = k\pi$ $(k \in \mathbb{Z})$.	0,25
		• $\cos x = -\frac{1}{2} \iff x = \pm \frac{2\pi}{3} + k2\pi$ $(k \in \mathbb{Z}).$	0,25
	2	Giải phương trình (1,00 điểm)	
		Đặt $t = \sqrt{2x-1}$ $(t \ge 0) \Rightarrow x = \frac{t^2+1}{2}$. Phương trình đã cho trở thành:	0,25
		$t^4 - 4t^2 + 4t - 1 = 0$	0,23
		$\Leftrightarrow (t-1)^2 (t^2 + 2t - 1) = 0 \Leftrightarrow t = 1, t = \sqrt{2} - 1.$	0,50
		Với $t = 1$, ta có $x = 1$. Với $t = \sqrt{2} - 1$, ta có $x = 2 - \sqrt{2}$.	0,25
III			2,00
	1	Tìm tọa độ điểm A' đối xứng với A qua d ₁ (1,00 điểm)	
		Mặt phẳng (α) đi qua $A(1;2;3)$ và vuông góc với d_1 có phương trình là:	0.50
		$2(x-1)-(y-2)+(z-3)=0 \iff 2x-y+z-3=0.$	0,50
		Tọa độ giao điểm H của d ₁ và (α) là nghiệm của hệ:	
		` '	
		$\begin{cases} \frac{x^2}{2} = \frac{y+2}{-1} = \frac{z-3}{1} \iff \begin{cases} y = -1 \implies H(0:-1:2) \end{cases}$	0,25
		$\begin{cases} \frac{x-2}{2} = \frac{y+2}{-1} = \frac{z-3}{1} & \iff \begin{cases} x = 0 \\ y = -1 & \Rightarrow H(0; -1; 2). \\ z = 2 \end{cases}$	0,23
		Vì A' đối xứng với A qua d_1 nên H là trung điểm của AA' \Rightarrow A'(-1;-4;1).	0,25
	2		0,23
		Viết phương trình đường thẳng Δ (1,00 điểm) Vì Δ đi qua A, vuông góc với d ₁ và cắt d ₂ , nên Δ đi qua giao điểm B của	
		d_2 và (α) .	0,25
		2 ()	
		Tọa độ giao điểm B của d_2 và (α) là nghiệm của hệ:	
		$\begin{cases} \frac{x-1}{-1} = \frac{y-1}{2} = \frac{z+1}{1} \\ 2x - y + z - 3 = 0 \end{cases} \iff \begin{cases} x = 2 \\ y = -1 \\ z = -2 \end{cases} \Rightarrow B(2; -1; -2).$	
		$\begin{cases} -1 & 2 & 1 \iff y = -1 \implies B(2; -1; -2). \end{cases}$	0,25
		Vector chỉ phương của \triangle là: $\overrightarrow{u} = \overrightarrow{AB} = (1; -3; -5)$.	0,25
		Phương trình của Δ là: $\frac{x-1}{1} = \frac{y-2}{-3} = \frac{z-3}{-5}$.	0,25
IV		1 3 3	2,00
	1	Tính tích phân (1,00 điểm)	
		$I = \int_0^1 (x-2)e^{2x} dx. \text{Dặt } \begin{cases} u = x-2 \\ dv = e^{2x} dx \end{cases} \Rightarrow du = dx, \ v = \frac{1}{2}e^{2x}.$	0,25
		$I = \frac{1}{2}(x-2)e^{2x}\Big _{0}^{1} - \frac{1}{2}\int_{0}^{1}e^{2x}dx$	0,25
		$= -\frac{e^2}{2} + 1 - \frac{1}{4}e^{2x}\Big _0^1 = \frac{5 - 3e^2}{4}.$	0,50

$\begin{array}{c} \text{Diều kiện: } x,y>-1. \text{ Hệ dã cho tương đương với:} \\ \left\{e^{x+a}-e^x+\ln(1+x)-\ln(1+a+x)=0 (1) \\ y=x+a (2) \\ Hệ dã cho có nghiệm duy nhất khi và chỉ khi phương trình (1) có nghiệm duy nhất trong khoảng (-1;+\infty). $		2	Chứng minh với mọi a > 0, hệ phương trình có nghiệm duy nhất (1,00 điểm)	
Hệ đã cho có nghiệm duy nhất khi và chỉ khi phương trình (1) có nghiệm duy nhất trong khoảng $(-1; +\infty)$. Xét hàm số $f(x) = e^{x+a} - e^x + \ln(1+x) - \ln(1+a+x)$, với $x > -1$. Do $f(x)$ liên tục trong khoảng $(-1; +\infty)$ và $\lim_{x \to -1} f(x) = +\infty$ nên phương trình $f(x) = 0$ có nghiệm trong khoảng $(-1; +\infty)$. Mặt khác: $f'(x) = e^{x+a} - e^x + \frac{1}{1+x} - \frac{1}{1+a+x}$ $= e^x \left(e^a - 1\right) + \frac{a}{(1+x)(1+a+x)} > 0, \forall x > -1.$ $\Rightarrow f(x) $				
Hệ đã cho có nghiệm duy nhất khi và chỉ khi phương trình (1) có nghiệm duy nhất trong khoảng $(-1; +\infty)$. Xét hàm số $f(x) = c^{x+a} - c^x + \ln(1+x) - \ln(1+a+x)$, với $x > -1$. Do $f(x)$ liên tục trong khoảng $(-1; +\infty)$ và $\lim_{x \to -1} f(x) = +\infty$ nên phương trình $f(x) = 0$ có nghiệm trong khoảng $(-1; +\infty)$. Mặt khác: $f'(x) = e^{x+a} - e^x + \frac{1}{1+x} - \frac{1}{1+a+x}$ $= e^x (e^a - 1) + \frac{a}{(1+x)(1+a+x)} > 0, \forall x > -1.$ $\Rightarrow f(x) $			$\int e^{x+a} - e^x + \ln(1+x) - \ln(1+a+x) = 0 $ (1)	
$ \begin{array}{c} \text{nhắt trong khoảng } (-1; + \infty). \\ \text{Xét hàm số } f(x) = e^{x+a} - e^x + \ln(1+x) - \ln(1+a+x), \ \text{với } x > -1. \\ \text{Do } f(x) \ \text{liên trục trong khoảng } (-1; + \infty) \ \text{và} \\ \lim_{x \to -1} f(x) = -\infty, \ \lim_{x \to +\infty} f(x) = +\infty \\ \text{nên phương trình } f(x) = 0 \ \text{có nghiệm trong khoảng } (-1; + \infty). \\ \text{Mặt kháe:} \\ f'(x) = e^{x+a} - e^x + \frac{1}{1+x} - \frac{1}{1+a+x} \\ = e^x (e^a - 1) + \frac{a}{(1+x)(1+a+x)} > 0, \forall x > -1. \\ \Rightarrow f(x) \ \text{dồng biến trong khoảng } (-1; + \infty). \\ \text{Suy ra, phương trình } f(x) = 0 \ \text{có nghiệm duy nhất trong khoảng } (-1; + \infty). \\ \text{Suy ra, phương trình } f(x) = 0 \ \text{có nghiệm duy nhất trong khoảng } (-1; + \infty). \\ \text{Vày, hệ dã cho có nghiệm duy nhất.} \\ \hline \textbf{V.a} \\ \hline 1 \ \text{Tim tọa độ điểm M để dướng tròn tâm M tiếp xúc } (1,00 \text{ điểm}) \\ \text{Dường tròn } (C) \text{ có tâm } I(1; 1), \text{ bán kinh R } = 1. \\ \text{Vì M } \in \mathbf{d} \text{ nên M } M(x; x + 3). \\ \hline \text{Yêu câu của bài toán tương đương với:} \\ \text{MI} = \mathbf{R} + 2\mathbf{R} \Leftrightarrow (x - 1)^2 + (x + 2)^2 = 9 \Leftrightarrow x = 1, x = -2. \\ \hline \text{Vậy, có hai điểm M thỏa mân yêu câu bài toán là: M}_1(1; 4), M}_2(-2; 1). \\ \hline \text{2} \ \text{Số cách chọn 4 học sinh tử 12 học sinh đã cho là } \mathbf{C}_{12}^4 = 495. \\ \hline \text{Số cách chọn 4 học sinh tmần hỗi lớp có i 1 học sinh. Số cách chọn là:} \\ \hline \mathbf{C}_{5}^2 \mathbf{C}_{4}^4 \mathbf{C}_{3}^1 = 120. \\ - \text{Lớp B có 2 học sinh, các lớp B, C mỗi lớp có 1 học sinh. Số cách chọn là:} \\ \hline \mathbf{C}_{5}^2 \mathbf{C}_{4}^4 \mathbf{C}_{3}^2 = 120. \\ - \text{Lớp C có 2 học sinh, các lớp C, A mỗi lớp có 1 học sinh. Số cách chọn là:} \\ \hline \mathbf{C}_{5}^2 \mathbf{C}_{4}^4 \mathbf{C}_{3}^2 = 60. \\ \hline \text{Số cách chon 4 học sinh mà mỗi lớp có i 1 học sinh. Số cách chọn là:} \\ \hline \mathbf{C}_{5}^2 \mathbf{C}_{4}^4 \mathbf{C}_{3}^2 = 60. \\ \hline \text{Số cách chon 4 học sinh mà mỗi lớp có i 1 học sinh. Số cách chọn là:} \\ \hline \mathbf{C}_{5}^4 \mathbf{C}_{4}^2 \mathbf{G}_{3}^2 = 60. \\ \hline \text{Số cách chon 4 học sinh mà mỗi lớp có i 1 học sinh. Số cách chọn là:} \\ \hline \mathbf{C}_{5}^4 \mathbf{C}_{4}^2 \mathbf{G}_{3}^2 = 60. \\ \hline \text{Số cách chon 4 học sinh mà mỗi lớp có i 1 học sinh. Số cách chọn là:} \\ \hline \mathbf{C}_{5}^4 \mathbf{C}_{4}^2 \mathbf{G}_{3}^2 = 60. \\ \hline Số cách chon 4 học sinh mà mỗi lớp có i 1 học $			$y = x + a \tag{2}$	
Do $f(x)$ liên tục trong khoảng $(-1;+\infty)$ và $\lim_{x\to -1^-} f(x) = -\infty, \lim_{x\to +\infty} f(x) = +\infty$ nên phương trình $f(x) = 0$ có nghiệm trong khoảng $(-1;+\infty)$. Mặt khác: $f'(x) = e^{x+a} - e^x + \frac{1}{1+x} - \frac{1}{1+a+x}$ $= e^x \left(e^a - 1\right) + \frac{a}{(1+x)(1+a+x)} > 0, \forall x > -1.$ $\Rightarrow f(x) \text{ dồng biến trong khoảng } (-1;+\infty).$ 0,25 Suy ra, phương trình $f(x) = 0$ có nghiệm duy nhất trong khoảng $(-1;+\infty)$. 0,25 Vây, hệ đã cho có nghiệm duy nhất. V.a 1 Tim toa độ điểm M để đường tròn tâm M tiếp xúc $(1,00 \text{ diểm})$ Đường tròn (C) có tâm $I(1;1)$, bán kinh $R=1$. Vì $M \in d$ nên $M(x;x+3)$. 0,25 Yêu cầu của bài toán tương dương với: $MI = R + 2R \Leftrightarrow (x-1)^2 + (x+2)^2 = 9 \Leftrightarrow x = 1, x = -2.$ 0,50 Vây, có hai điểm M thòa mãn yêu cầu bài toán là: $M_1(1;4)$, $M_2(-2;1)$. 0,25 2 Số cách chọn 4 học sinh thuộc không quá 2 trong 3 lớp $(1,00)$ điểm) Số cách chọn 4 học sinh tử 12 học sinh đã cho là $C_{12}^4 = 495$. 0,25 Số cách chọn 4 học sinh mà mỗi lớp có ít nhất một em được tính như sau: - Lớp A có 2 học sinh, các lớp B, C mỗi lớp có 1 học sinh. Số cách chọn là: $C_3^2 \cdot C_4^1 \cdot C_3^1 = 40$ Lớp B có 2 học sinh, các lớp C, A mỗi lớp có 1 học sinh. Số cách chọn là: $C_3^1 \cdot C_4^1 \cdot C_3^1 = 60$. Số cách chọn 4 học sinh mà mỗi lớp có 1 thát một học sinh. Số cách chọn là: $C_3^1 \cdot C_4^1 \cdot C_3^1 = 60$. Số cách chọn 4 học sinh mà mỗi lớp có 1 thát một học sinh. Số cách chọn là: $C_3^1 \cdot C_4^1 \cdot C_3^1 = 60$.				0,25
$\lim_{x \to -\Gamma} f(x) = -\infty, \lim_{x \to +\infty} f(x) = +\infty$ nên phương trình $f(x) = 0$ có nghiệm trong khoảng $(-1; +\infty)$. 0.25 Mặt khác: $f'(x) = e^{x+a} - e^x + \frac{1}{1+x} - \frac{1}{1+a+x}$ $= e^x (e^a - 1) + \frac{a}{(1+x)(1+a+x)} > 0, \forall x > -1.$ $\Rightarrow f(x) \text{ dồng biển trong khoảng } (-1; +\infty).$ Suy ra, phương trình $f(x) = 0$ có nghiệm duy nhất trong khoảng $(-1; +\infty)$. 0.25 Vây, hệ đã cho có nghiệm duy nhất. V.a 1 Tìm tọa độ điểm M để đường tròn tâm M tiếp xúc $(1,00 \text{ diểm})$ 0.25 Vi M \in d nên M $(x; x + 3)$. 0.25 Yêu cầu của bài toán tương đương với: $MI = R + 2R \Leftrightarrow (x - 1)^2 + (x + 2)^2 = 9 \Leftrightarrow x = 1, x = -2.$ 0.50 Vây, có hai điểm M thóa mãn yêu cầu bài toán là: M ₁ $(1; 4)$, M ₂ $(-2; 1)$. 0.25 2 Số cách chọn 4 học sinh thuộc không quá 2 trong 3 lớp $(1,00 \text{ diểm})$ Số cách chọn 4 học sinh tử 12 học sinh đã cho là $C_{12}^4 = 495$. 0.25 Số cách chọn 4 học sinh mà mỗi lớp có it nhất một em được tính như sau: $-Lớp A có 2 học sinh, các lớp B, C mỗi lớp có 1 học sinh. Số cách chọn là: C_3^2 C_4^1 C_3^1 = 120. -Lớp B có 2 học sinh, các lớp C, A mỗi lớp có 1 học sinh. Số cách chọn là: C_5^1 C_4^1 C_3^2 = 60. Số cách chọn 4 học sinh mà mỗi lớp có 1 thọc sinh. Số cách chọn là: C_5^1 C_4^1 C_3^2 = 60. Số cách chọn 4 học sinh mà mỗi lớp có 1 thật một học sinh là: 120 + 90 + 60 = 270.$			Xét hàm số $f(x) = e^{x+a} - e^x + \ln(1+x) - \ln(1+a+x)$, với $x > -1$.	
nên phương trình $f(x) = 0$ có nghiệm trong khoảng $(-1; +\infty)$. Mặt khác: $f'(x) = e^{x+a} - e^x + \frac{1}{1+x} - \frac{1}{1+a+x}$ $= e^x \left(e^a - 1\right) + \frac{a}{(1+x)(1+a+x)} > 0, \forall x > -1.$ $\Rightarrow f(x) \text{ đồng biến trong khoảng } (-1; +\infty).$ Suy ra, phương trình $f(x) = 0$ có nghiệm duy nhất trong khoảng $(-1; +\infty)$. Vây, hệ đã cho có nghiệm duy nhất. V.a 1 Tim tọa độ điểm M để đường tròn tâm M tiếp xúc $(1,00 \text{ diểm})$ Đường tròn (C) có tâm $1(1; 1)$, bán kinh $R = 1$. Vì $M \in d$ nên $M(x; x + 3)$. Q.25 Yếu cầu của bài toán tương đương với: $MI = R + 2R \Leftrightarrow (x - 1)^2 + (x + 2)^2 = 9 \Leftrightarrow x = 1, x = -2.$ Vây, có hai điểm M thòa mãn yêu cầu bài toán là: $M_1(1; 4)$, $M_2(-2; 1)$. Q.25 2 Số cách chọn 4 học sinh thuộc không quá 2 trong 3 lớp $(1,00 \text{ diểm})$ Số cách chọn 4 học sinh từ 12 học sinh đã cho là $C_{12}^{12} = 495$. Q.25 Số cách chọn 4 học sinh mà mỗi lớp có it nhất một em được tính như sau: - Lớp A có 2 học sinh, các lớp B, C mỗi lớp có 1 học sinh. Số cách chọn là: $C_5^2 \cdot C_4^1 \cdot C_3^1 = 120$ - Lớp C có 2 học sinh, các lớp C, A mỗi lớp có 1 học sinh. Số cách chọn là: $C_5^1 \cdot C_4^2 \cdot C_3^2 = 60$ Số cách chọn 4 học sinh mà mỗi lớp có it nhất một học sinh là: $120 + 90 + 60 = 270.$			Do $f(x)$ liên tục trong khoảng $(-1; +\infty)$ và	
nên phương trình $f(x) = 0$ có nghiệm trong khoảng $(-1; +\infty)$. Mặt khác: $f'(x) = e^{x+a} - e^x + \frac{1}{1+x} - \frac{1}{1+a+x}$ $= e^x \left(e^a - 1\right) + \frac{a}{(1+x)(1+a+x)} > 0, \forall x > -1.$ $\Rightarrow f(x) \text{ đồng biến trong khoảng } (-1; +\infty).$ Suy ra, phương trình $f(x) = 0$ có nghiệm duy nhất trong khoảng $(-1; +\infty)$. Vây, hệ đã cho có nghiệm duy nhất. V.a 1 Tim tọa độ điểm M để đường tròn tâm M tiếp xúc $(1,00 \text{ diểm})$ Đường tròn (C) có tâm $1(1; 1)$, bán kinh $R = 1$. Vì $M \in d$ nên $M(x; x + 3)$. Q.25 Yếu cầu của bài toán tương đương với: $MI = R + 2R \Leftrightarrow (x - 1)^2 + (x + 2)^2 = 9 \Leftrightarrow x = 1, x = -2.$ Vây, có hai điểm M thòa mãn yêu cầu bài toán là: $M_1(1; 4)$, $M_2(-2; 1)$. Q.25 2 Số cách chọn 4 học sinh thuộc không quá 2 trong 3 lớp $(1,00 \text{ diểm})$ Số cách chọn 4 học sinh từ 12 học sinh đã cho là $C_{12}^{12} = 495$. Q.25 Số cách chọn 4 học sinh mà mỗi lớp có it nhất một em được tính như sau: - Lớp A có 2 học sinh, các lớp B, C mỗi lớp có 1 học sinh. Số cách chọn là: $C_5^2 \cdot C_4^1 \cdot C_3^1 = 120$ - Lớp C có 2 học sinh, các lớp C, A mỗi lớp có 1 học sinh. Số cách chọn là: $C_5^1 \cdot C_4^2 \cdot C_3^2 = 60$ Số cách chọn 4 học sinh mà mỗi lớp có it nhất một học sinh là: $120 + 90 + 60 = 270.$			$\lim_{x \to -1^{+}} f(x) = -\infty, \lim_{x \to +\infty} f(x) = +\infty$	
$f'(x) = e^{x+a} - e^x + \frac{1}{1+x} - \frac{1}{1+a+x}$ $= e^x \left(e^a - 1\right) + \frac{a}{(1+x)(1+a+x)} > 0, \forall x > -1.$ $\Rightarrow f(x) \text{ dồng biến trong khoảng } (-1; + \infty).$ $\text{Suy ra, phương trình } f(x) = 0 \text{ có nghiệm duy nhất trong khoảng } (-1; + \infty).$ $\text{Vây, hệ dã cho có nghiệm duy nhất.}$ V.a $1 \text{Tim tọa độ diễm M để đường tròn tâm M tiếp xúc } (1,00 \text{ diễm})$ $\text{Dường tròn } (C) \text{ có tâm } I(1; 1), \text{ bán kính } R = 1.$ $\text{Vi } M \in d \text{ nên } M(x; x + 3).$ $\text{Yêu cầu của bài toán tương đương với:}$ $MI = R + 2R \Leftrightarrow (x - 1)^2 + (x + 2)^2 = 9 \Leftrightarrow x = 1, x = -2.$ $\text{Vây, có hai điểm M thỏa mãn yêu cầu bài toán là: } M_1(1; 4), M_2(-2; 1).$ $\text{2} \text{Số cách chọn 4 học sinh thuộc không quá 2 trong 3 lớp } (1,00 \text{ điểm})$ $\text{Số cách chọn 4 học sinh trì 12 học sinh đã cho là } C_{12}^4 = 495.$ $\text{Sổ cách chọn 4 học sinh mà mỗi lớp có ít nhất một em được tính như sau:}$ $\text{- Lớp A có 2 học sinh, các lớp B, C mỗi lớp có 1 học sinh. Số cách chọn là:}$ $C_5^2, C_4^1, C_3^1 = 120.$ $\text{- Lớp B có 2 học sinh, các lớp A, B mỗi lớp có 1 học sinh. Số cách chọn là:}$ $C_5^1, C_4^1, C_3^2 = 60.$ $\text{Số cách chọn 4 học sinh mà mỗi lớp có ít nhất một học sinh là:}$ $120 + 90 + 60 = 270.$				0,25
$=e^{x}\left(e^{a}-1\right)+\frac{a}{(1+x)(1+a+x)}>0, \forall x>-1.$ $\Rightarrow f(x) \text{ dồng biến trong khoảng }(-1;+\infty).$ Suy ra, phương trình $f(x)=0$ có nghiệm duy nhất trong khoảng $(-1;+\infty)$. $0,25$ $Vây, hệ đã cho có nghiệm duy nhất.$ $0,25$ $1 \text{ Tim tọa độ diễm M dễ đường tròn tâm M tiếp xúc }(1,00 \text{ diễm})$ $0,25$ $1 \text{ Dường tròn }(C) \text{ có tâm }I(1;1), \text{ bán kính }R=1.$ $Vì M∈ d nên M(x;x+3).$ $0,25$ $1 \text{ Yêu cầu của bài toán tương đương với:}$ $MI=R+2R\Leftrightarrow (x-1)^2+(x+2)^2=9\Leftrightarrow x=1, x=-2.$ $0,50$ $1 \text{ Vây, có hai điểm M thỏa mãn yêu cầu bài toán là: }M_1(1;4), M_2(-2;1).$ $1 \text{ Số cách chọn 4 học sinh thuộc không quá 2 trong 3 lớp }(1,00 \text{ diễm})$ $1 \text{ Số cách chọn 4 học sinh trình trì 12 học sinh đã cho là }C_{12}^4=495.$ $1 \text{ Số cách chọn 4 học sinh mà mỗi lớp có it nhất một em được tính như sau:}$ $1 \text{ Lớp A có 2 học sinh, các lớp B, C mỗi lớp có 1 học sinh. Số cách chọn là:}$ $1 \text{ C}_{5}^{1}\text{ C}_{4}^{2}\text{ C}_{3}^{1}=120.$ $1 \text{ Lớp B có 2 học sinh, các lớp C, A mỗi lớp có 1 học sinh. Số cách chọn là:}$ $1 \text{ C}_{5}^{1}\text{ C}_{4}^{2}\text{ C}_{3}^{1}=90.$ $1 \text{ Lớp C có 2 học sinh, các lớp A, B mỗi lớp có 1 học sinh. Số cách chọn là:}$ $1 \text{ C}_{5}^{1}\text{ C}_{4}^{1}\text{ C}_{3}^{2}=60.$ $1 \text{ Số cách chọn 4 học sinh mà mỗi lớp có it nhất một học sinh là:}$ $1 \text{ C}_{5}^{1}\text{ C}_{4}^{1}\text{ C}_{3}^{2}=60.$ $1 \text{ Số cách chọn 4 học sinh mà mỗi lớp có it nhất một học sinh là:}$ $1 \text{ C}_{5}^{1}\text{ C}_{4}^{1}\text{ C}_{3}^{2}=60.$			Mặt khác:	
$\Rightarrow f(x) \text{ dồng biến trong khoảng } (-1; +\infty).$ Suy ra, phương trình $f(x) = 0$ có nghiệm duy nhất trong khoảng $(-1; +\infty)$. $0,25$ Vây, hệ đã cho có nghiệm duy nhất. 1 Tìm tọa độ điểm M để đường tròn tâm M tiếp xúc $(1,00 \text{ diễm})$ $\text{Dường tròn } (C) \text{ có tâm } I(1; 1), \text{ bán kính } R = 1.$ $\text{Vì } M \in \text{d nên } M(x; x + 3).$ $\text{Yêu cầu của bài toán tương đương với:}$ $MI = R + 2R \Leftrightarrow (x - 1)^2 + (x + 2)^2 = 9 \Leftrightarrow x = 1, x = -2.$ $\text{Vây, có hai điểm M thỏa mãn yêu cầu bài toán là: } M_1(1; 4), M_2(-2; 1).$ $\text{Số cách chọn 4 học sinh thuộc không quá 2 trong 3 lớp } (1,00 \text{ diễm})$ $\text{Số cách chọn 4 học sinh từ 12 học sinh đã cho là } C_{12}^4 = 495.$ $\text{Số cách chọn 4 học sinh mà mỗi lớp có ít nhất một em được tính như sau:}$ $\text{- Lớp A có 2 học sinh, các lớp B, C mỗi lớp có 1 học sinh. Số cách chọn là:}$ $C_3^2, C_4^1, C_3^1 = 120.$ $\text{- Lớp B có 2 học sinh, các lớp C, A mỗi lớp có 1 học sinh. Số cách chọn là:}$ $C_1^2, C_4^2, C_3^2 = 90.$ $\text{- Lớp C có 2 học sinh, các lớp A, B mỗi lớp có 1 học sinh. Số cách chọn là:}$ $C_3^1, C_4^1, C_3^2 = 60.$ $\text{Số cách chọn 4 học sinh mà mỗi lớp có ít nhất một học sinh là:}$ $120 + 90 + 60 = 270.$			$f'(x) = e^{x+a} - e^x + \frac{1}{1+x} - \frac{1}{1+a+x}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$= e^{x} \left(e^{a} - 1 \right) + \frac{a}{(1+x)(1+a+x)} > 0, \forall x > -1.$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			\Rightarrow f(x) đồng biến trong khoảng (-1;+ ∞).	0,25
1 Tìm tọa độ điểm M để đường tròn tâm M tiếp xúc (1,00 điểm) Dường tròn (C) có tâm I(1; 1), bán kính R = 1. Vì M∈ d nên M(x; x+3). Q,25 Yêu cầu của bài toán tương đương với: MI = R + 2R ⇔ (x-1)² + (x+2)² = 9 ⇔ x = 1, x = −2. Vây, có hai điểm M thỏa mãn yêu cầu bài toán là: M₁ (1; 4), M₂ (−2; 1). 2 Số cách chọn 4 học sinh thuộc không quá 2 trong 3 lớp (1,00 điểm) Số cách chọn 4 học sinh từ 12 học sinh đã cho là C⁴₁₂ = 495. Số cách chọn 4 học sinh mà mỗi lớp có ít nhất một em được tính như sau: - Lớp A có 2 học sinh, các lớp B, C mỗi lớp có 1 học sinh. Số cách chọn là: C⁴₂ C⁴₄ C⁴₃ = 120. - Lớp B có 2 học sinh, các lớp A, B mỗi lớp có 1 học sinh. Số cách chọn là: C¹₂ C⁴₄ C³₃ = 90. - Lớp C có 2 học sinh, các lớp A, B mỗi lớp có 1 học sinh. Số cách chọn là: C¹₃ C⁴₄ C³₃ = 60. Số cách chọn 4 học sinh mà mỗi lớp có ít nhất một học sinh là: 120+90+60=270.				0,25
Đường tròn (C) có tâm I(1; 1), bán kính R = 1. Vì M ∈ d nên M(x; x + 3). 0,25 Yêu cầu của bài toán tương đương với: $ MI = R + 2R \Leftrightarrow (x-1)^2 + (x+2)^2 = 9 \Leftrightarrow x = 1, x = -2. 0,50 $ Vậy, có hai điểm M thỏa mãn yêu cầu bài toán là: $M_1(1; 4)$, $M_2(-2; 1)$. 0,25 2 Số cách chọn 4 học sinh thuộc không quá 2 trong 3 lớp (1,00 điểm) Số cách chọn 4 học sinh từ 12 học sinh đã cho là $C_{12}^4 = 495$. 0,25 Số cách chọn 4 học sinh mà mỗi lớp có ít nhất một em được tính như sau: - Lớp A có 2 học sinh, các lớp B, C mỗi lớp có 1 học sinh. Số cách chọn là: C_5^2 . C_4^1 . $C_3^1 = 120$ Lớp B có 2 học sinh, các lớp C, A mỗi lớp có 1 học sinh. Số cách chọn là: C_5^1 . C_4^1 . $C_3^1 = 90$. 0,50 - Lớp C có 2 học sinh, các lớp A, B mỗi lớp có 1 học sinh. Số cách chọn là: C_5^1 . C_4^1 . $C_3^2 = 60$. Số cách chọn 4 học sinh mà mỗi lớp có ít nhất một học sinh là: $120 + 90 + 60 = 270$.	V.a			
Vì M∈ d nên M(x;x+3). 0,25 Yêu cầu của bài toán tương đương với: $MI = R + 2R \Leftrightarrow (x-1)^2 + (x+2)^2 = 9 \Leftrightarrow x = 1, x = -2.$ $Vây, có hai điểm M thỏa mãn yêu cầu bài toán là: M1(1; 4), M2(-2; 1). 0,25 2 Số cách chọn 4 học sinh thuộc không quá 2 trong 3 lớp (1,00 điểm) Số cách chọn 4 học sinh từ 12 học sinh đã cho là C_{12}^4 = 495. 0,25 Số cách chọn 4 học sinh mà mỗi lớp có ít nhất một em được tính như sau: - Lớp A có 2 học sinh, các lớp B, C mỗi lớp có 1 học sinh. Số cách chọn là: C_5^2.C_4^1.C_3^1 = 120. - Lớp B có 2 học sinh, các lớp C, A mỗi lớp có 1 học sinh. Số cách chọn là: C_5^1.C_4^1.C_3^1 = 90. 0,50 - Lớp C có 2 học sinh, các lớp A, B mỗi lớp có 1 học sinh. Số cách chọn là: C_5^1.C_4^1.C_3^2 = 60. Số cách chọn 4 học sinh mà mỗi lớp có ít nhất một học sinh là: 120 + 90 + 60 = 270.$		1		
Yêu cầu của bài toán tương đương với: $MI = R + 2R \Leftrightarrow (x-1)^2 + (x+2)^2 = 9 \Leftrightarrow x = 1, x = -2. $ 0,50 $Vây, có hai điểm M thỏa mãn yêu cầu bài toán là: M1 (1; 4), M2 (-2; 1). $ 0,25				
$MI = R + 2R \Leftrightarrow (x-1)^2 + (x+2)^2 = 9 \Leftrightarrow x = 1, x = -2. $ 0,50 $V_{3}^2y, \text{ c\'o hai diểm M thỏa mãn yêu cầu bài toán là: } M_1(1;4), M_2(-2;1). $ 0,25 $2 S_{0}^2 \text{ cách chọn 4 học sinh thuộc không quá 2 trong 3 lớp (1,00 điểm)}$ $S_{0}^2 \text{ cách chọn 4 học sinh từ 12 học sinh đã cho là } C_{12}^4 = 495. $ 0,25 $S_{0}^2 \text{ cách chọn 4 học sinh mà mỗi lớp có ít nhất một em được tính như sau:} - Lớp A có 2 học sinh, các lớp B, C mỗi lớp có 1 học sinh. Số cách chọn là:} C_{5}^2.C_{4}^1.C_{3}^1 = 120. $ - Lớp B có 2 học sinh, các lớp C, A mỗi lớp có 1 học sinh. Số cách chọn là:} $C_{5}^1.C_{4}^2.C_{3}^1 = 90. $ 0,50 $- \text{Lớp C có 2 học sinh, các lớp A, B mỗi lớp có 1 học sinh. Số cách chọn là:} C_{5}^1.C_{4}^1.C_{3}^2 = 60. $ Số cách chọn 4 học sinh mà mỗi lớp có ít nhất một học sinh là:} $120 + 90 + 60 = 270. $			$\forall i \ M \in d \ \text{nen} \ M(x; x+3).$	0,25
Vậy, có hai điểm M thỏa mãn yêu cầu bài toán là: M ₁ (1; 4), M ₂ (-2; 1). 0,25 2 Số cách chọn 4 học sinh thuộc không quá 2 trong 3 lớp (1,00 điểm) Số cách chọn 4 học sinh từ 12 học sinh đã cho là C ₁₂ ⁴ = 495. 0,25 Số cách chọn 4 học sinh mà mỗi lớp có ít nhất một em được tính như sau: - Lớp A có 2 học sinh, các lớp B, C mỗi lớp có 1 học sinh. Số cách chọn là: C ₅ ² .C ₄ ¹ .C ₃ ¹ = 120. - Lớp B có 2 học sinh, các lớp C, A mỗi lớp có 1 học sinh. Số cách chọn là: C ₅ ¹ .C ₄ ² .C ₃ ¹ = 90. 0,50 - Lớp C có 2 học sinh, các lớp A, B mỗi lớp có 1 học sinh. Số cách chọn là: C ₅ ¹ .C ₄ ¹ .C ₃ ² = 60. Số cách chọn 4 học sinh mà mỗi lớp có ít nhất một học sinh là: 120+90+60=270.				0.50
2 Số cách chọn 4 học sinh thuộc không quá 2 trong 3 lớp (1,00 điểm) Số cách chọn 4 học sinh từ 12 học sinh đã cho là $C_{12}^4 = 495$. Số cách chọn 4 học sinh mà mỗi lớp có ít nhất một em được tính như sau: - Lớp A có 2 học sinh, các lớp B, C mỗi lớp có 1 học sinh. Số cách chọn là: $C_5^2.C_4^1.C_3^1 = 120.$ - Lớp B có 2 học sinh, các lớp C, A mỗi lớp có 1 học sinh. Số cách chọn là: $C_5^1.C_4^2.C_3^1 = 90.$ - Lớp C có 2 học sinh, các lớp A, B mỗi lớp có 1 học sinh. Số cách chọn là: $C_5^1.C_4^1.C_3^2 = 60.$ Số cách chọn 4 học sinh mà mỗi lớp có ít nhất một học sinh là: $120 + 90 + 60 = 270.$			$MI = R + 2R \iff (x-1)^2 + (x+2)^2 = 9 \iff x = 1, x = -2.$	0,30
Số cách chọn 4 học sinh từ 12 học sinh đã cho là $C_{12}^4 = 495$. Số cách chọn 4 học sinh mà mỗi lớp có ít nhất một em được tính như sau: - Lớp A có 2 học sinh, các lớp B, C mỗi lớp có 1 học sinh. Số cách chọn là: $C_5^2.C_4^1.C_3^1 = 120.$ - Lớp B có 2 học sinh, các lớp C, A mỗi lớp có 1 học sinh. Số cách chọn là: $C_5^1.C_4^2.C_3^1 = 90.$ - Lớp C có 2 học sinh, các lớp A, B mỗi lớp có 1 học sinh. Số cách chọn là: $C_5^1.C_4^1.C_3^2 = 60.$ Số cách chọn 4 học sinh mà mỗi lớp có ít nhất một học sinh là: $120 + 90 + 60 = 270.$			Vậy, có hai điểm M thỏa mãn yêu cầu bài toán là: $M_1(1; 4)$, $M_2(-2; 1)$.	0,25
Số cách chọn 4 học sinh mà mỗi lớp có ít nhất một em được tính như sau: - Lớp A có 2 học sinh, các lớp B, C mỗi lớp có 1 học sinh. Số cách chọn là: $C_5^2.C_4^1.C_3^1 = 120.$ - Lớp B có 2 học sinh, các lớp C, A mỗi lớp có 1 học sinh. Số cách chọn là: $C_5^1.C_4^2.C_3^1 = 90.$ - Lớp C có 2 học sinh, các lớp A, B mỗi lớp có 1 học sinh. Số cách chọn là: $C_5^1.C_4^1.C_3^2 = 60.$ Số cách chọn 4 học sinh mà mỗi lớp có ít nhất một học sinh là: $120 + 90 + 60 = 270.$		2		
- Lớp A có 2 học sinh, các lớp B, C mỗi lớp có 1 học sinh. Số cách chọn là: $C_5^2.C_4^1.C_3^1=120.$ - Lớp B có 2 học sinh, các lớp C, A mỗi lớp có 1 học sinh. Số cách chọn là: $C_5^1.C_4^2.C_3^1=90.$ - Lớp C có 2 học sinh, các lớp A, B mỗi lớp có 1 học sinh. Số cách chọn là: $C_5^1.C_4^1.C_3^2=60.$ Số cách chọn 4 học sinh mà mỗi lớp có ít nhất một học sinh là: $120+90+60=270.$				0,25
$C_5^2.C_4^1.C_3^1 = 120.$ - Lớp B có 2 học sinh, các lớp C, A mỗi lớp có 1 học sinh. Số cách chọn là: $C_5^1.C_4^2.C_3^1 = 90.$ - Lớp C có 2 học sinh, các lớp A, B mỗi lớp có 1 học sinh. Số cách chọn là: $C_5^1.C_4^1.C_3^2 = 60.$ Số cách chọn 4 học sinh mà mỗi lớp có ít nhất một học sinh là: $120 + 90 + 60 = 270.$				
$C_5^1.C_4^2.C_3^1 = 90.$ - Lớp C có 2 học sinh, các lớp A, B mỗi lớp có 1 học sinh. Số cách chọn là: $C_5^1.C_4^1.C_3^2 = 60.$ Số cách chọn 4 học sinh mà mỗi lớp có ít nhất một học sinh là: $120+90+60=270.$				
- Lớp C có 2 học sinh, các lớp A, B mỗi lớp có 1 học sinh. Số cách chọn là: $C_5^1.C_4^1.C_3^2 = 60.$ Số cách chọn 4 học sinh mà mỗi lớp có ít nhất một học sinh là: $120+90+60=270.$				0,50
120 + 90 + 60 = 270.			- Lớp C có 2 học sinh, các lớp A, B mỗi lớp có 1 học sinh. Số cách chọn là:	ŕ
			120 + 90 + 60 = 270.	0,25

V.b			2,00
	1	Giải phương trình (1,00 điểm)	
		Phương trình đã cho tương đương với:	0.50
		$2^{2x} \left(2^{x^2-x}-1\right)-4 \left(2^{x^2-x}-1\right)=0 \iff \left(2^{2x}-4\right) \left(2^{x^2-x}-1\right)=0.$	0,50
		$\bullet \ 2^{2x} - 4 = 0 \Leftrightarrow 2^{2x} = 2^2 \Leftrightarrow x = 1.$	
		$ 2^{x^2-x} - 1 = 0 \Leftrightarrow 2^{x^2-x} = 1 \Leftrightarrow x^2 - x = 0 \Leftrightarrow x = 0, x = 1. $	0,50
		Vậy, phương trình đã cho có hai nghiệm $x = 0$, $x = 1$.	
	2	Tính thể tích của khối chóp A.BCNM (1,00 điểm)	
		N N C K B	
		Gọi K là trung điểm của BC, H là hình chiếu vuông góc của A trên SK. Do BC ⊥ AK, BC ⊥ SA nên BC ⊥ AH. Do AH ⊥ SK, AH ⊥ BC nên AH ⊥ (SBC).	0,25
		Xét tam giác vuông SAK: $\frac{1}{AH^2} = \frac{1}{SA^2} + \frac{1}{AK^2} \Rightarrow AH = \frac{2\sqrt{3}a}{\sqrt{19}}$.	0,25
		Xét tam giác vuông SAB: $SA^2 = SM.SB \Rightarrow \frac{SM}{SB} = \frac{SA^2}{SB^2} = \frac{4}{5}$.	
		Xét tam giác vuông SAC: $SA^2 = SN.SC \Rightarrow \frac{SN}{SC} = \frac{SA^2}{SC^2} = \frac{4}{5}$.	0,25
		Suy ra: $\frac{S_{SMN}}{S_{SBC}} = \frac{16}{25} \Rightarrow S_{BCNM} = \frac{9}{25} S_{SBC} = \frac{9\sqrt{19}a^2}{100}$.	
		Vậy, thể tích của khối chóp A.BCNM là: $V = \frac{1}{3}$.AH.S _{BCNM} = $\frac{3\sqrt{3}a^3}{50}$.	0,25

Nếu thí sinh làm bài không theo cách nêu trong đáp án mà vẫn đúng thì được đủ điểm từng phần như đáp án quy định.

----- Hết -----