МЕТОДИКА ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ АНОМАЛЬНЫХ ПОРОДООБРАЗУЮЩИХ МИНЕРАЛОВ

О. В. Андреева, Д. В. Новоселов

(TO «СургутНИПИнефть»; Тюменский государственный нефтегазовый университет)

Ключевые слова: горная порода, объемная и электронная плотности, галит, ангидрит, продуктивный интервал Key words: rock, the volume and electron density, halite, anhydrite, producing interval

В настоящее время в отделе петрофизики ТО «СургутНИПИнефть» одним из методов изучения полноразмерного керна является плотностной гамма-гамма метод (ГГМ-П). При этом регистрируемое рассеянное у-излучение определяется электронной плотностью породы бе. Электронная бе и объёмная б плотности среды, представленной одинаковыми атомами, связаны соотношением $\delta e/\delta = 2(Z/M)$ [1], где Z – атомный номер: M – относительная атомная масса. Поскольку для основных породообразующих минералов осадочных пород пластов группы А, Б и Ю Западной Сибири величина 2(Z/M) близка к единице, то есть бе=б, то регистрируемая величина электронной плотности характеризует также и объёмную плотность поролы.

Однако на ряде промысловых объектов, в связи с появлением в составе пород компонентов с соотношением бе/б отличным от единицы (водород в битуме, атомы железа, хлора, натрия и другие элементы с 2(Z/M) отличным от 1), применяемая методика ($\delta e = \delta$) не всегда является верной.

На основе анализа данных стандартных (ФЕС) и специальных (электронная плотность, РСА и др.) методов изучения кернового материала определяем содержание галита и ангидрита в поровом пространстве с учетом влияния этих факторов при выделении продуктивных интервалов методами ГИС.

Для примера рассмотрим горизонт, выделенный как продуктивный по данным геофизических исследований (низкая радиоактивность и невысокая плотность), в котором в результате испытаний в одной из скважин получен приток газа и конденсата, в ряде других скважин притока получено не было. Изучение литологических характеристик в шлифах показало, что по минералогическому составу преобладает кварц, составляющий 90-95%, встречаются отдельные участки шлифа, где в порах защемлен ангидрит, галит и битум. При этом по классификации Ханина, песчаники скважины с притоком относятся к коллекторам IV класса, а песчаники скважин, где притока получено не было, - к коллекторам V и VI класса. Допустим, что изначально все коллектора обладали хорошими коллекторскими свойствами, тогда их ухудшение связано, в основном, с очаговым распространением галита и ангидрита (битуминизация для данного района – незначительная).

Для исследований взяли коллекцию образцов (42 шт.), отобранных из рассматриваемых скважин данного горизонта. Оценка объемных содержаний кварца, ангидрита и галита проводилась по известным уравнениям средней объёмной и электронной плотности [2]. Учитывая известные значения объемных и электронных плотностей (для кварца - $\delta_{\rm nec} = 2,65 \ {\rm г/cm^3}, \ \delta_{\rm e \ nec} = 2,647 \ {\rm г/cm^3}, \ {\rm ангидритa} - \delta_{\rm ahr} = 2,95 \ {\rm г/cm^3}, \ \delta_{\rm e \ ahr} = 2,949 \ {\rm г/cm^3}, \ {\rm галитa} - \delta_{\rm ran} = 2,18 \ {\rm г/cm^3}, \ \delta_{\rm e \ ran} = 2,09 \ {\rm г/cm^3}, \ {\rm и \ тo}, \ {\rm чтo} \ {\rm pacчeты} \ {\rm проводились} \ {\rm для} \ {\rm сухих} \ {\rm проэкстрагированных} \ {\rm образцов} \ ({\rm для} \ {\rm воздухa} \ {\rm объёмная}$ плотность $\delta_{\rm d}\approx 0$ и электронная плотность $\delta_{\rm e,d}\approx 0$), эти уравнения примут вид

$$\begin{array}{l} \delta_{\text{cyx}} = 2,65k_{\text{nec}} + 2,95k_{\text{ahr}} + 2,18k_{\text{ran}} \; ; \\ \delta_{\text{ecvx}} = 2,647k_{\text{nec}} + 2,949k_{\text{ahr}} + 2,09k_{\text{ran}} \; , \end{array} \tag{1}$$

$$S_{\text{ecyx}} = 2,647k_{\text{nec}} + 2,949k_{\text{анг}} + 2,09k_{\text{гал}},$$
 (2)

где δ_{cvx} и δ_{ecvx} – соответственно объёмная и электронная плотности сухого проэкстрагированного образца, а $k_{nec}, k_{ahr}, k_{ran}$ – соответственно объёмные содержания песчаника, ангидрита, галита в образце.

При этом учитывается соотношение

$$k_{\text{nec}} + k_{\text{анг}} + k_{\text{гал}} + k_{\text{п}} = 1, \tag{3}$$

где k_n объемное содержание пустот в образце, заполненных воздухом.

Для расчета объемных содержаний галита и ангидрита в образце необходимо решить совместно уравнения (1), (2) и (3), где значения k_{n} и δ_{cyx} определяются газоволюметрическим методом.

Для замера электронной плотности δ_e образцов горных пород использовалась установка, созданная на основе гаммарегистратора «EGL 255» (рис.1).

Рис.1. Схема установки по определению электронной плотности

H – поверхность плоской мишени, перпендикулярно к ней падает поток γ -квантов I_0 . Ослабление пучка в веществе вызывается поглощением и рассеянием у-квантов. Рассеянный у-квант теряет часть своей энергии при столкновении с электронами и меняет направление распространения. На расстоянии х от внешней поверхности потока ү-квантов ослабляется до величины I(x) по закону:

$$I(x) = I_0 e^{-\mu x}. \tag{4}$$

Коэффициент пропорциональности μ называют полным линейным коэффициентом ослабления. Он имеет размерность см $^{-1}$ и численно равен доле моноэнергетических γ - квантов, выбывающих из параллельного пучка на единице пути излучения в веществе.

В результате проведенных измерений, построив зависимость I(x) от высоты каждого образца, по формуле (4), можно определить значение μ .

Затем значение электронной плотности с достаточно высокой точностью определяется по эталонной зависимости $\delta_{\text{есух}}$ от коэффициента ослабления μ . Для построения эталонной кривой выбрали коллекцию образцов-эталонов, электронная плотность которых известна. Такая кривая, построенная по значениям образцов ангидрита, галита, чистого кварцевого песчаника и воды, приведена на рис. 2.

Рис. 2. Зависимость электронной плотности δ_{ecyx} образцов-эталонов от коэффициента ослабления μ

Аппроксимирующее уравнение (линия тренда, см. рис. 2) имеет вид

$$\delta_{ecyx} = -141,51\mu - 0,0166$$
 . (5)

Уравнение (5) верно в области от 1 до 3 г/см³. Отметим также высокий коэффициент корреляции этой зависимости, равный 0,9959 (см. рис. 2).

Далее, в результате расчетов получили значения $k_{\text{пес}}$, $k_{\text{анг}}$ и $k_{\text{гал}}$ для каждого из выбранных образцов. Для последующего анализа выбрали в качестве критерия соотношение δ_{e}/δ . Ангидрит даёт увеличение объёмной плотности и соотношение δ_{e}/δ ≈ 1 . Галит, в свою очередь, уменьшает объёмную плотность и соотношение $\delta_{\text{e}}/\delta < 1$. На основе этого выделяем три группы образцов:

- 1) образцы, в которых значения объемной и электронной плотностей соответствуют следующим условиям: $0.96 < \delta_e / \delta < 1$ и $2.42 < \delta < 2.8$, что говорит о возможном присутствие и ангидрита, и галита;
- 2) образцы, у которых объёмная плотность δ >2,65 г/см³ и отношение $\delta_e/\delta \approx 1$, то есть эти образцы не содержат галит ($k_{\text{гал}}$ =0);
 - 3) образцы, у которых $\delta < 2.65$ и $\delta_o / \delta > 1$, что может свидетельствовать о наличие битума.

Образцы, которые попали в третью группу (битуминизация данных пород не превышает 3%), либо не попали ни в одну из выделенных групп (возможно содержание неучтенных в данной методике элементов), в рамках нашего исследования не рассматривались.

Итак, в образцах, относящихся к первой группе, рассчитаны содержание ангидрита $k_{\text{анг}}$ и галита $k_{\text{гал}}$, откуда установлено, что в среднем $k_{\text{анг}}=15$ - 20%, а $k_{\text{гал}}=5$ - 10%, при этом $k_{\text{п}}$ не превышает 6%. В образцах, относящихся ко второй группе – $k_{\text{анг}}=20$ - 25%, при этом значение $k_{\text{n}}=1$ - 2%.

Такое содержание ангидрита и галита в породе необходимо учитывать при выделении продуктивных интервалов, которые характеризуются низкими значениями радиоактивности. Отметим, что плотность породы определяется минеральным составом скелета (в нашем случае это кварц, ангидрит, галит), объемом пустотного пространства и плотностью насыщающего флюида. При этом, интервальное время зависит от соотношения минералов и их взаимного расположения в скелете (ангидрит имеет значение 164-189 мкс/м, галит — 208-238 мкс/м [3]). Для примера рассмотрим литолого-петрофизические разрезы. Представлен разрез, где выделен интервал с низкой радиоактивностью, плотностью 2,5 г/см3, который может характеризоваться как продуктивный (рис. 3).

Однако уменьшение интервального времени до 200 мкс, свидетельствует о том, что данный интервал засолонён и не является продуктивным.

На рис. 4 представлен разрез, в котором по условиям низкой радиоактивности и плотности породы 2,6 г/см3 выделен, возможно, продуктивный интервал. По значению интервального времени, которое составляет 190-200 мкс, можно сделать вывод, что данный интервал, скорее всего, ангидритизирован и в какой-то степени засолонен (о чём свидетельствуют результаты исследований образцов группы I).

	Ламент по выструменту	£ 1	311	Общая радиоактивность	Содержание ЕРЭ		Плотность	Плотность по обращам	Скорости	Пористость	Проницаемость ГИС+профильная	Проницаемость по образиям	П		Т	
Dyforms		≣	3,843,8	PARIMONETHMOSTIL PARIMONETHM	Калий ГНС	Span FHC		Oligammas FK —	Hamm sum odg 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	### DeltaTps ### De	Kn PHC 0 20 20 20 20 20 20 20 20 20 20 20 20 2	Knp IIIC	er o **** ** ** **	Hopata no FHC	2 1	Пореда не кериу
550-	h	31)	31	\$ 100 model	\	}	1	A Company		www.					T	
555	ĺ	32	32	A control	1	{	}	1	::	1	F					
560			33	(See	-	}	1	3		a {		:		2000		
65		33			1	\$	}	3		\$: ::				
70-	ľ	34	34	Z Z	2	1	>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		23	بَ	; ·				
75		35	35	Spirit upon	1		3	Mary		S. S	5	: ::				0.00000
80	K	36	36	Newson States	-	3	1	3 55		· # .:	Ų.	į ,3				
85		37	37		1		1		A)			 			-	
90		36	38		3	}	3	W. Charles								

Рис. 3. Литолого-петрофизический разрез исследуемого горизонта с выделенным «интервалом засолонения»

Рис. 4. Литолого-петрофизический разрез исследуемого горизонта с выделенным «интервалом засолонения и ангидритизации»

Соответственно, для выделения продуктивного интервала необходимо соблюдение следующих условий: низкая радиоактивность и уменьшение плотности при средней скорости (рис. 5).

Рис. 5. Литолого-петрофизический разрез исследуемого горизонта с выделенным продуктивным интервалом Выводы

- Разработана методика проведения экспериментов по определению электронной плотности образцов горных пород на основе гамма-регистратора «EGL 255».
- Определены качественные критерии δ_e/δ и δ , по которым возможно прогнозировать наличие ангидрита и галита в породе.
- Выделены геофизические параметры продуктивных интервалов: низкая радиоактивность менее 3 мкр/ч, плотность менее 2,5г/см³ и значение интервального времени от 215 до 225 мкс/м.
- Предложенная методика позволяет выявлять в породе минералы содержащие элементы, у которых электронная плотность не равна объемной. При этом детальное изучение таких минералов (значение плотностей, интервального времени и т.д.) позволит более точно прогнозировать продуктивные интервалы.

Список литературы

- 1. Петерсилье В. И., Пороскун В. И., Яценко Г. Г. Методические рекомендации по подсчёту геологических запасов нефти и газа объёмным методом. Москва-Тверь: ВНИГНИ, НПЦ «Тверьгеофизика», 2003.
- 2. Латышева М. Г., Мартынов В. Г., Соколова Т. Ф. Практическое руководство по интерпретации данных ГИС: учебное пособие для вузов.- М: ООО «Недра-Бизнесцентр», 2007. 327с.
 - 3. Добрынин В. М. Интерпретация результатов исследований нефтняных и газовых скважин. М.: Недра, 1988.

Сведения об авторах

Андреева О. В., научный сотрудник, ТО «СургутНИПИнефть», тел.: 687-216

Новоселов Д. В., ассистент кафедры «Разработка и эксплуатация нефтяных и газовых месторождений», Тюменский государственный нефтегазовый университет (3452)41-68-89

Andreeva O.V., researcher SurgutNIPIneft, tel.: 687-216

Novoselov D. V., assistant Department «Development and exploitation of oil and gas fields», Tyumen State Oil and Gas University, tel.: (3452) 41-68-89