

Lecture 8.2 - Supervised Learning Neural Networks - Universal Approximators

Erik Bekkers

NN: Universal Approximators

Theorem: Universal Approximators

- Let f be any continuous function on a compact area of \mathbb{R}^D
- Let h any fixed analytic function which is not polynomial (e.g. logistic function, tanh function, ...).

Given any small number $\epsilon > 0$ of an acceptable error, we can find a number M and weights $\mathbf{w}^{(2)} \in \mathbb{R}^M$ and $\mathbf{W}^{(1)} \in \mathbb{R}^{M \times D}$ such that:

$$|f(\mathbf{x}) - y(\mathbf{x}, \mathbf{W}^{(1)}, \mathbf{w}^{(2)})| < \epsilon$$
with $y(\mathbf{x}, \mathbf{W}^{(1)}, \mathbf{w}^{(2)}) = \sum_{m=0}^{M} w_m^{(2)} h\left(\sum_{d=0}^{D} w_{md}^{(1)} x_d\right)$

Caution: for smaller ϵ we usually need larger M

Neural Networks with ReLU = max(0,a)

Learned basis functions with ReLU

Approximation with ReLU NNs/PWL functions

Deep Neural Nets and Shallow Neural Nets

- Take a neural net with L layers.
- Take a more shallow neural net with L' < L layers.
- Approximate the deep neural net with shallow neural net up to error ε
- Usually number of units $M(\varepsilon)$ of shallow net scales exponentially for decreasing ε !

Expressive power ReLU networks

Expressive power of ReLU-DNN = number of linear regions

- Polynomial in width, but exponential with depth
- With fixed network capacity

parameters
$$\approx$$
 width² · depth

Most expressive power is gained by going deeper with less neurons per layer than staying shallow with more neurons per layer.

Example: Function Approximations

(a)
$$f(x) = x^2$$

(b)
$$f(x) = Sin(x)$$

(c)
$$f(x) = |x|$$

(d)
$$f(x) = - (\chi)$$

- ◆ N=50 datapoints
- ◆ MLP: 2 layers, 3 hidden units with tanh activation function. 1 linear output unit.
- → Hidden unit outputs: dashed curves

Figure: MLP approximating four different functions (red curves) (Bishop 5.3)

Example: Function Approximations

Piece-wise linear approximation with 2-layer NN

M=3 hidden units

M=20 hidden units

Example: Classification with Neural Nets

MLP:

- 2 layers
- # of inputs: 2
- 2 hidden units with tanh activation function
- # of outputs:
- Output activation function: (a): (b) of the contraction of the contr
- Red line: MLP decision boundary
- Green line: optimal decision boundary from synthetic data distribution

Figure: MLP for classification with 2 classes (Bishop5.4)