LECTURE 4 INTRODUCTION TO QUANTUM COMPUTING, THE CIRCUIT MODEL

INF587 Quantum computer science and applications

Thomas Debris-Alazard

Inria, École Polytechnique

THE OBJECTIVE OF THE DAY

 ${\it Computer science: art of computing...}$

What do we mean by quantum computing?

→ The quantum circuit model!

COURSE OUTLINE

- 1. Notation and basic circuits
 - Quantum circuits: representation of unitaries and measurement
 - The quantum gate CNOT
 - Controlled unitaries
- 2. The Solovay-Kitaev theorem and the quantum gate model (universal quantum gates)
- 3. Simulating classical circuits with quantum circuits
- 4. Quantum parallelism and interference
- 5. A quantum algorithm: Simon's algorithm

CLASSICAL COMPUTATION

Boolean circuit: finite directed acyclic (no loop) graph with AND, OR and NOT classical gates which has input and output nodes.

A circuit computes $f: \{0,1\}^n \longrightarrow \{0,1\}^m$ if given n input bits x, it outputs m bits given by f(x).

A circuit C_n decides a language $L \subseteq \{0,1\}^n$ if C_n given $\mathbf{x} \in \{0,1\}^n$ outputs one if and only if $\mathbf{x} \in L$.

Two questions:

- What are the classical gates that enable to compute any function $f: \{0,1\}^n \longrightarrow \{0,1\}^m$?
- What class of languages circuits recognize?

CLASSICAL GATES AND UNIVERSALITY

Universality

Logic gates AND, OR and NOT are enough to compute any function $f: \{0,1\}^n \longrightarrow \{0,1\}^m$.

 \longrightarrow Is it doable quantumly?

Problem: any quantum operation is invertible (even unitary) but AND is not invertible...

CLASSICAL GATES AND UNIVERSALITY

Universality

Logic gates AND, OR and NOT are enough to compute any function $f: \{0,1\}^n \longrightarrow \{0,1\}^m$.

 \longrightarrow Is it doable quantumly?

Problem: any quantum operation is invertible (even unitary) but AND is not invertible...

Toffoli (also CCNOT) Gate

The Toffoli gate takes 3 input bits and outputs 3 bits as follows:

Toffoli
$$(x, y, z) = (x, y, z \text{ XOR } (x \text{ AND } y))$$

Proposition: Inversability and Universality

- The Toffoli gate is invertible,
- Any classical circuit computing a function f consisting of N gates in the set {AND, OR, NOT} can be computed using O(N) Toffoli gates.

→ In particular: the number of Toffoli gates is roughly the same

UNIFORMLY POLYNOMIAL CIRCUITS

But is the classical circuit model meaningful?

Complexity Theory: uniformly polynomial circuits

Family of circuits $C \stackrel{\text{def}}{=} \{C_n\}_n$ with n input bits and one output bit such that there is polylog(n)-space Turing machine that outputs C_n given n.

$$L_C \stackrel{\text{def}}{=} \bigcup_{n} \left\{ \mathbf{x} \in \left\{0,1\right\}^n \ : \ C_n(\mathbf{x}) = 1 \right\}$$

 $L \in P$ if and only if there exits a uniform family of circuits C such that $L = L_C$.

 \longrightarrow Given a uniform family of circuits $C = \{C_n\}$: C_n has at most poly(n)-gates!

AND QUANTUM COMPUTATION?

What about quantum computation?

Is the circuit model reasonable? If yes, what is doable quantumly and at which cost?

AND QUANTUM COMPUTATION?

What about quantum computation?

Is the circuit model reasonable? If yes, what is doable quantumly and at which cost?

Two intuitions:

- ▶ "Quantum circuit" can simulate classical circuits because Toffoli gates are universal...
 - → Therefore: quantum circuits define a "reasonable" model of computation.
- ► Complexity of computation will be taken into account from the number of "quantum gates"
 - → Therefore: we expect quantum circuits to measure the complexity as in the classical case

NOTATION AND BASIC CIRCUITS

During this course we consider the state space $\mathbb{C}^{2^n} = \underbrace{\mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2}_{n \text{ times}}$ of n-qubits register

State space, computational basis and measurement

We will always write *n*-qubits registers as

$$\sum_{\mathbf{x} \in \{0,1\}^n} \alpha_{\mathbf{x}} \left| \mathbf{x} \right\rangle \quad \text{ where } \left| \mathbf{x} \right\rangle = \left| x_1, \ldots, x_n \right\rangle \ \left(= \left| x_1 \right\rangle \otimes \cdots \otimes \left| x_n \right\rangle \right) \text{ and } \sum_{\mathbf{x} \in \{0,1\}^n} \left| \alpha_{\mathbf{x}} \right|^2 = 1.$$

The family $(|x\rangle)_{x\in\{0,1\}^n}$ is known as the computational basis

→ All the considered measurements (in this course) will be in the computational basis.

QUANTUM CIRCUIT AND TENSORIAL PRODUCT

Given two quantum states $|\psi_1\rangle$, $|\psi_2\rangle$ and two unitaries U_1 , U_2 , the circuit representation of

$$\left(\mathsf{U}_1\otimes\mathsf{U}_2
ight)\left(\ket{\psi_1}\otimes\ket{\psi_2}
ight)$$

is given by

Exercise

- 1. What becomes $\frac{|00\rangle+|01\rangle}{\sqrt{2}}$ when feeding to the above circuit?
- 2. Describe a quantum circuit that transforms $|00\rangle$ into $\frac{|10\rangle-|11\rangle}{\sqrt{2}}$.

QUANTUM CIRCUIT AND TENSORIAL PRODUCT

Solution

1. What becomes $\frac{|00\rangle+|01\rangle}{\sqrt{2}}$ when feeding to the above circuit?

It becomes:
$$U_1 \mid 0 \rangle \otimes U_2 \left(\frac{\mid 0 \rangle + \mid 1 \rangle}{\sqrt{2}} \right) = \frac{1}{\sqrt{2}} U_1 \mid 0 \rangle \otimes U_2 \mid 0 \rangle + \frac{1}{\sqrt{2}} U_1 \mid 0 \rangle \otimes U_2 \mid 1 \rangle.$$

2. Describe a quantum circuit that transforms $|00\rangle$ into $\frac{|10\rangle-|11\rangle}{\sqrt{2}}$.

QUANTUM CIRCUIT AND MEASUREMENT

A measurement converts $|\psi\rangle=\alpha\,|0\rangle+\beta\,|1\rangle$ into a probabilistic classical bit $b\in\{0,1\}$ where

$$\mathbb{P}(b=0) = |\alpha|^2$$
 and $\mathbb{P}(b=1) = |\beta|^2$.

The circuit representation of a measurement is

$$|\psi\rangle$$
 b

Exercise

Give the distribution of the following probabilistic bits b:

- 1. |0| H b
- 2. |0\ H H H

Exercise

Give the distribution of the following probabilistic bits b:

1. |0\) H b

The output bit b is uniform, namely: $\mathbb{P}(b=0) = \mathbb{P}(b=1) = \frac{1}{2}$.

2. |0| H H b

As $H^2 = I_2$, the output bit b is always zero.

THE QUANTUM CNOT GATE

Let us introduce the Controlled-NOT gate (unitary) over 2-qubits:

$$|a,b\rangle \mapsto |a,a\oplus b\rangle$$

It is a unitary (it maps the computational basis to the computation basis).

Quantum CNOT-gate $|a, b\rangle \mapsto |a, a \oplus b\rangle$

• Matrix representation:

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{pmatrix}$$

• Circuit representation:

$$|a,b\rangle \mapsto |a,a\oplus b\rangle$$

is the quantum generalization of the XOR operation!

Be careful

The XOR operation $(a, b) \mapsto a \oplus b$ cannot be a quantum operation because is not invertible.

Given two wires, is it possible to swap two qubits?

$$\begin{split} |a,b\rangle &\longrightarrow |a,a\oplus b\rangle \\ &\longrightarrow |a\oplus (a\oplus b)\,,a\oplus b\rangle \\ &\longrightarrow |b,(a\oplus b)\oplus b\rangle \\ &= |b,a\rangle\,. \end{split}$$

COPYING QUBIT

Given a qubit $|\psi\rangle$, is it possible to build a quantum circuit that copies it?

→ No! Because the no-cloning theorem (see Exercise session 1)

But it is doable for classical bit $(b, 0) \mapsto (b, 0 \oplus b) = (b, b)$...

Given a qubit $|\psi\rangle$, is it possible to build a quantum circuit that copies it?

→ No! Because the no-cloning theorem (see Exercise session 1)

But it is doable for classical bit $(b, 0) \mapsto (b, 0 \oplus b) = (b, b)...$

Take a look at the quantum case

We have built an entangled state!

Bell States

$$|\psi_{xy}
angle\stackrel{\mathrm{def}}{=} rac{|0,y
angle + (-1)^x |1, (1 \oplus y)
angle}{\sqrt{2}}$$

The quantum circuit building Bell states

$$\ket{y}$$
 $\boxed{\qquad \qquad \qquad }$ $\ket{\psi_{xy}}$

$$|\mathsf{x},\mathsf{y}\rangle \xrightarrow{\mathsf{H} \otimes \mathsf{I}_{\underline{2}}} \frac{|\mathsf{0}\rangle + (-\mathsf{1})^{\mathsf{x}} \, |\mathsf{1}\rangle}{\sqrt{2}} \otimes |\mathsf{y}\rangle = \frac{|\mathsf{0},\mathsf{y}\rangle + (-\mathsf{1})^{\mathsf{x}} \, |\mathsf{1},\mathsf{y}\rangle}{\sqrt{2}} \xrightarrow{\mathsf{c-NOT}} \frac{|\mathsf{0},\mathsf{y}\rangle + (-\mathsf{1})^{\mathsf{x}} \, |\mathsf{1},(\mathsf{1} \oplus \mathsf{y})\rangle}{\sqrt{2}}$$

CONTROLLED UNITARY

Controlled U-gate

Let **U** be any unitary over n-qubits. The controlled **U**-gate has one control qubit $|b\rangle$ and n target qubits $|\psi\rangle$. It is defined as

- If b = 0, it outputs $|b\rangle \otimes |\psi\rangle$.
- If b = 1, it outputs $|b\rangle \otimes \mathbf{U} |\psi\rangle$.

Circuit representation:

→ Controlled-U = If condition then instruction U

Exercise

Show that the CNOT gate is the controlled X-gate.

QUANTUM CIRCUITS

Quantum circuits: starting from n qubits initialized at $|0^n\rangle$ and then successively apply the two admissible operations (unitary and measurements).

Applying U_1 and then U_2 is equivalent to applying (U_2U_1)

→ we can assume the algorithm performs a unitary, then a measurement, then a unitary, then measurement and so on...

We will consider only algorithms where we first perform all the unitary operations and then perform measurements in the computational basis.

→ As powerful as general algorithms (admitted)

AUXILIARY QUBITS

$$\begin{array}{c} \mathsf{U}:|\psi\rangle\longrightarrow\mathsf{U}\,|\psi\rangle \\ \\ \longrightarrow \mathsf{It} \text{ is often easier to build } \mathsf{U}':|\psi\rangle\,|0\rangle_{\mathsf{aux}}\longrightarrow\mathsf{U}(|\psi\rangle)\,|0\rangle_{\mathsf{aux}} \end{array}$$

Extra qubits are called auxiliary qubits, ancilliary qubits or workspace.

 \longrightarrow it is important that they start at $|0\rangle$ and end at $|0\rangle$ (see Exercise session)

Any classical function can be computed with gates {AND, OR, NOT} (universal gates)

What are the quantum universal gates?

The following gate is important (first time in this course)

The $\pi/8$ -gate

It maps $|0\rangle \mapsto |0\rangle$ and $|1\rangle \mapsto e^{i\pi/4} |1\rangle$:

$$\mathbf{T} \stackrel{\text{def}}{=} \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$$

Origin of the terminology

Up to an unimportant global phase T is equal to T = $e^{i\pi/8}$ $\begin{pmatrix} e^{-i\pi/8} & 0 \\ 0 & e^{i\pi/8} \end{pmatrix}$

UNIVERSAL QUANTUM GATES: THE SOLOVAY-KITAEV THEOREM

Solovay-Kitaev Theorem (admitted)

Let $\mathcal{G} = \{CNOT, H, T\}$. Any unitary **U** over *n*-qubits can be approximated by applying

$$O\left(2^{2n}\log^4\left(\frac{1}{\varepsilon}\right)\right)$$

gates from \mathcal{G} with accuracy ε .

In other words, from the description of U, one can construct a sequence $G_1,\ldots,G_N\in\mathcal{G}$ with $N=O(2^{2n}\log^4(\frac{1}{r}))$ and

$$\|\mathbf{G}_{N} \dots \mathbf{G}_{1} - \mathbf{U}\| \leq \varepsilon,$$

where $\|\mathbf{G}_N \dots \mathbf{G}_1 - \mathbf{U}\| \stackrel{\text{def}}{=} \max_{|\psi\rangle} \|\mathbf{G}_N \dots \mathbf{G}_1 |\psi\rangle - \mathbf{U} |\psi\rangle\|$ is the operator norm.

→ The log term is important: exponential accuracy with a polynomial number of gates

Other universal gates?

Yes! The CNOT and qubits gates are also universal

Quantum circuits \iff Unitary evolutions

SOLOVAY-KITAEV THEOREM: BE CAREFUL

$$O\left(2^{2n}\log^4\left(\frac{1}{\varepsilon}\right)\right)$$
 gates {CNOT, H, T} to approximate any unitary U \longrightarrow exponential cost 2^{2n}

Does any unitary need an exponential number of gates to be built?

SOLOVAY-KITAEV THEOREM: BE CAREFUL

$$O\left(2^{2n}\log^4\left(rac{1}{arepsilon}
ight)
ight)$$
 gates {CNOT, H, T} to approximate any unitary U \longrightarrow exponential cost 2^{2n}

Does any unitary need an exponential number of gates to be built?

No! As for classical computations there are unitaries easy to compute, other not...

THE QUANTUM GATE MODEL

The Quantum Gate Model

The quantum running time of a unitary ${\bf U}$ is the amount of 1 and 2-qubit gates needed to apply ${\bf U}$.

The running time of a single-qubit measurement is 1.

A NATURAL QUESTION

One may say that estimating the running time as the number of 1-2 qubits unitaries is an overkill

—— It can be hard to implement some 1 or 2 qubits unitary...

A more reasonable model

Running time: number H, T and CNOT gates that are used

 \longrightarrow The "difficulty" to implement quantum circuits reduces to compute this small set of gates!

By the Solovay-Kitaev theorem

The running time of the above model is the same than in the quantum gate model, but up to polynomial factor (in the input length n) if one targets an exponentially close accuracy...

In conclusion: lot of debates to define the running time of quantum circuits...

For us: no debates, we don't care of polynomial factors (even if it is a hard problem to handle in "practice"...) and we will use the quantum gate model

CLASSICAL CASE

C computing a function f with T gates can be transformed into a reversible circuit C_{rev} that consists only of O(T) Toffoli gates, possibly with some junk state junk(\mathbf{x}).

Informally, the junk part keeps a place to perform intermediary computations

Simulating classical circuits with quantum circuits

Classical Toffoli gates can be interpreted as a quantum unitary acting on three qubits:

Toffoli
$$|x, y, z\rangle \stackrel{\text{def}}{=} |x, y, z \oplus xy\rangle$$

Therefore: C_{rev} can be interpreted as a unitary U:

$$U\left|\mathbf{x},0^{m+j}\right\rangle \stackrel{\text{def}}{=} \left|\mathbf{x}\right\rangle \left|f(\mathbf{x})\right\rangle \left|\text{junk}(\mathbf{x})\right\rangle$$

---- Quantum computers are at least as powerful as classical computers!

REMOVING THE JUNK PART AND IMPLEMENTING \mathbf{u}_f

The unitary Uf

For any function $f: \{0,1\}^n \to \{0,1\}^m$ that can be computed classically with a circuit that runs in time T, there exists a quantum circuit on n+m qubits that runs in time O(T) that can perform the unitary

 $U_f: |x\rangle |y\rangle \rightarrow |x\rangle |y \oplus f(x)\rangle$.

Be careful:

 $|\mathbf{x}\rangle\mapsto|f(\mathbf{x})\rangle$ may not be a quantum operation (for instance f be the zero function).

 \longrightarrow The auxiliary qubit $|\mathbf{y}\rangle$ ensures that \mathbf{U}_f is a unitary!

REMOVING THE junk part and implementing \mathbf{u}_f

Proof

- 1. On input $|x\rangle$ $|y\rangle$ $|0\rangle$ $|0\rangle$, first swap the second and fourth registers to get $|x\rangle$ $|0\rangle$ $|0\rangle$ $|y\rangle$.
- 2. Apply C_{rev} on the 3 first registers to get the state $|\mathbf{x}\rangle|f(\mathbf{x})\rangle|\text{junk}(\mathbf{x})\rangle|\mathbf{y}\rangle$.
- 3. For *i* from 1 to *m*, apply a **CNOT** gate between the *i*th wire of the second register and the *i*th wire of the forth register. We then have the state $|\mathbf{x}\rangle|f(\mathbf{x})\rangle|\text{junk}(\mathbf{x})\rangle|\mathbf{y}\oplus f(\mathbf{x})\rangle$.
- 4. Apply C_{rev}^{\dagger} on the three first registers to get the state $|\mathbf{x}\rangle$ $|\mathbf{0}\rangle$ $|\mathbf{v}\oplus f(\mathbf{x})\rangle$.
- 5. Swap the second and forth register to get the state $|x\rangle$ $|y \oplus f(x)\rangle$ $|0\rangle$ $|0\rangle$.

QUANTUM PARALLELISM: ONE BIT FUNCTIONS

Let
$$f: \{0, 1\} \to \{0, 1\}$$

 $\mathbf{U}_f: |x\rangle |y\rangle \to |x\rangle |y \oplus f(x)\rangle$

Consider the following quantum circuit:

What quantum state is $|\psi\rangle$?

QUANTUM PARALLELISM: ONE BIT FUNCTIONS

Let
$$f: \{0, 1\} \to \{0, 1\}$$

 $\mathbf{U}_f: |x\rangle |y\rangle \to |x\rangle |y \oplus f(x)\rangle$

Consider the following quantum circuit:

What quantum state is $|\psi\rangle$?

- 1. After the first gate we have: $\frac{|0\rangle+|1\rangle}{\sqrt{2}}\otimes|0\rangle=\frac{|00\rangle+|10\rangle}{\sqrt{2}}$,
- 2. Applying U_f leads to (use the linearity):

$$|\psi\rangle = \frac{|0,f(0)\rangle + |1,f(1)\rangle}{\sqrt{2}}$$

Tensorization of the Hadamard Gate

Consider,

$$\mathsf{H}^{\otimes n} \stackrel{\mathsf{def}}{=} \underbrace{\mathsf{H} \otimes \cdots \otimes \mathsf{H}}_{n \; \mathsf{times}}$$

Then (see Exercise session 1),

$$H^{\otimes n}\left|0^n\right> = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} \left|x\right>.$$

The following circuit performs the quantum parallelism (here $f: \{0,1\}^n \to \{0,1\}^m$)

IS QUANTUM PARALLELISM USEFUL?

Measurement of $\frac{1}{\sqrt{2^n}} \sum_{\mathbf{x}} |\mathbf{x}, f(\mathbf{x})\rangle$ gives $f(\mathbf{x})$ for only one value of \mathbf{x} ...

→ Interference is a nice example of how using quantum parallelism!

Remember, the "-1" of the Hadamard gate gives you a huge power...

INTERFERENCE (DEUTSCH'S ALGORITHM)

Consider the following circuit (here $f:\{0,1\} \rightarrow \{0,1\}$)

What is the value of b?

INTERFERENCE (DEUTSCH'S ALGORITHM)

Consider the following circuit (here $f: \{0, 1\} \rightarrow \{0, 1\}$)

What is the value of b?

- 1. After applying the **X** and **H** gates: $\frac{|0\rangle+|1\rangle}{\sqrt{2}}\otimes\frac{|0\rangle-|1\rangle}{\sqrt{2}}=\frac{|00\rangle-|01\rangle+|10\rangle-|11\rangle}{2}$,
- 2. Applying U_f leads to (use the linearity):

$$\frac{|0,f(0)\rangle-|0,1\oplus f(0)\rangle+|1,f(1)\rangle-|1,1\oplus f(1)\rangle}{2}=\left\{\begin{array}{c}\pm\frac{|0\rangle+|1\rangle}{\sqrt{2}}\otimes\frac{|0\rangle-|1\rangle}{\sqrt{2}}&\text{if }f(0)=f(1)\\\pm\frac{|0\rangle-|1\rangle}{\sqrt{2}}\otimes\frac{|0\rangle+|1\rangle}{\sqrt{2}}&\text{if }f(0)\neq f(1)\end{array}\right.$$

3. Applying the last Hadamard gate leads to (use that $H^2 = I_2$):

$$\begin{cases} & \pm |0\rangle \otimes \frac{|0\rangle - |1\rangle}{\sqrt{2}} & \text{if } f(0) = f(1) \\ & \pm |1\rangle \otimes \frac{|0\rangle + |1\rangle}{\sqrt{2}} & \text{if } f(0) \neq f(1) \end{cases}$$

- 4. Measuring the first qubit always leads to $f(0) \oplus f(1)!$
 - \longrightarrow We obtained a global property of $f(i.e., f(0) \oplus f(1))$ with only one evaluation of f(x)!

The problem

- Input: A function $f: \{0,1\}^n \longrightarrow \{0,1\}^n$.
- Promise: $\exists s \in \{0,1\}^n$: $(f(x) = f(y) \iff (x = y) \text{ or } (x = y \oplus s))$.
- Goal: Find s.

SIMON'S ALGORITHM

1. Start from the 2n qubit state, with 2 registers of n qubits.

$$|\psi_0\rangle = |0^n\rangle |0^n\rangle.$$

2. Apply $\mathbf{H}^{\otimes n}$ on the first n qubits to get

$$|\psi_1\rangle = \frac{1}{\sqrt{2^n}} \sum_{\mathbf{x} \in \{0,1\}^n} |\mathbf{x}\rangle |0^n\rangle.$$

3. Apply U_f on the state to get

$$|\psi_2\rangle = \frac{1}{\sqrt{2^n}} \sum_{\mathbf{x} \in \{0,1\}^n} |\mathbf{x}\rangle \, |f(\mathbf{x})\rangle = \frac{1}{\sqrt{\sharp \text{Im}(f)}} \sum_{\mathbf{y} \in \text{Im}(f)} \frac{1}{\sqrt{2}} \left(|\mathbf{x}_{\mathbf{y}}\rangle + |\mathbf{x}_{\mathbf{y}} \oplus \mathbf{s}\rangle\right) |\mathbf{y}\rangle \, .$$

4. Measure the second register and obtain some value $y \in Im(f)$. The resulting state on the first register is

$$|\psi_4(\mathbf{y})\rangle = \frac{1}{\sqrt{2}}(|\mathbf{x}_{\mathbf{y}}\rangle + |\mathbf{x}_{\mathbf{y}} \oplus \mathbf{s}\rangle).$$

5. Apply $\mathbf{H}^{\otimes n}$ on the first register to get

$$|\psi_5(\mathbf{y})\rangle = \frac{1}{\sqrt{2^n}} \sum_{\mathbf{z} \in \{0,1\}^n} \left(\frac{1}{\sqrt{2}} (-1)^{\mathbf{x}\mathbf{y} \cdot \mathbf{z}} + \frac{1}{\sqrt{2}} (-1)^{(\mathbf{x}\mathbf{y} \oplus \mathbf{s}) \cdot \mathbf{z}} \right) |\mathbf{z}\rangle \; .$$

5. Apply $\mathbf{H}^{\otimes n}$ on the first register to get

$$|\psi_5(\mathbf{y})\rangle = \frac{1}{\sqrt{2^n}} \sum_{\mathbf{z} \in \{0,1\}^n} \left(\frac{1}{\sqrt{2}} (-1)^{\mathbf{x}_{\mathbf{y}} \cdot \mathbf{z}} + \frac{1}{\sqrt{2}} (-1)^{(\mathbf{x}_{\mathbf{y}} \oplus \mathbf{s}) \cdot \mathbf{z}} \right) |\mathbf{z}\rangle .$$

Now, if $\mathbf{s} \cdot \mathbf{z} = 0$, we have $\left(\frac{1}{\sqrt{2}}(-1)^{x_y \cdot z} + \frac{1}{\sqrt{2}}(-1)^{(x_y \oplus \mathbf{s}) \cdot z}\right) = \sqrt{2}(-1)^{x_y \cdot z}$ and if $\mathbf{s} \cdot \mathbf{z} = 1$, we have $\left(\frac{1}{\sqrt{2}}(-1)^{x_y \cdot z} + \frac{1}{\sqrt{2}}(-1)^{(x_y \oplus \mathbf{s}) \cdot z}\right) = 0$. Therefore, we can write

$$|\psi_5(\mathbf{y})\rangle = \sqrt{\frac{2}{2^n}} \sum_{\substack{\mathbf{z} \in \{0,1\}^n \\ \mathbf{s} \cdot \mathbf{z} = 0}} (-1)^{\mathbf{x}\mathbf{y} \cdot \mathbf{z}} |\mathbf{z}\rangle.$$

6. Measure this state in the computational basis. You get a random z satisfying $z \cdot s = 0$.

This algorithm gives
$$(z_1, \ldots, z_n)$$
 s.t $\sum_{i=1}^n z_i s_i = 0$.

We repeat the algorithm m times to get m random values $\mathbf{z}^1, \dots, \mathbf{z}^m$ satisfying $\mathbf{z}^k \cdot \mathbf{s} = 0$

We obtain the following system (s is the unknown): Zs = 0 where Z
$$\stackrel{\text{def}}{=} \left(z_j^i \right)_{\substack{1 \leq i \leq n \\ 1 \leq j \leq m}}$$

 \longrightarrow If **Z** has rank n, we perform a Gaussian elimination to recover s!

It will be verified with high probability if m large enough, m = Cn for some constant C > 0.

CONCLUSION

We have solved Simon's problem in polynomial time with high probability with only O(n) queries to f (i.e., O(n) calls to U_{fr} step 3)

→ Is it doable classically?

Simon has proved that any classical randomized algorithm that finds s with high probability needs to make $\geq C\sqrt{2^n}$ queries to f where C constant

→ Quantum computing provides an exponential advantage!

There are many results about the query complexity of quantum algorithm

► Ronald de Wolf's lecture notes, Chapters 11-12.

https://arxiv.org/pdf/1907.09415.pdf

CONCLUSION

•	We have solved Simon's problem in polynomial time with high probability with	only O(n)
	queries to f (i.e., $O(n)$ calls to U_f , step 3)	

→ Is it doable classically?

Simon has proved that any classical randomized algorithm that finds s with high probability needs to make $\geq C\sqrt{2^n}$ queries to f where C constant

--- Quantum computing provides an exponential advantage!

There are many results about the query complexity of quantum algorithm

► Ronald de Wolf's lecture notes, Chapters 11-12.

https://arxiv.org/pdf/1907.09415.pdf

But one may say that solving Simon's problem is useless...

Simon's algorithm has been "the starting point" of Shor's algorithm that quantumly breaks all current deployed public key cryptography

→ Come at Lecture 6!

