Lest We Forget: Learn from Out-of-Sample Forecast Errors When Optimizing Portfolios

Barroso Pedro, Konark Saxena.

The Review of Financial Studies, 2021

解读者: 屠雪永

2021.06.10

Outline

- Introduction
- Research design
 - Regression to the Mean in Optimization Inputs
 - Correcting out-of-sample forecast errors
- Empirical study
 - Constructing Galton Portfolios
 - The OOS Performance
- Conclusion

1. Introduction-- Motivation

- Historical OOS forecast errors of portfolio optimization inputs, such as future means, variances, and correlations, are typically **not used** in subsequent estimations.
- A long history of (usually large) OOS errors should be of some use in correcting the estimates obtained from a historical sample.
- It is based on a simple intuition: learn from past OOS forecast errors to improve subsequent forecasts.

$$oldsymbol{w}_t\!=\!rac{oldsymbol{\Sigma}_t^{-1}oldsymbol{\mu}}{\mathbf{1}oldsymbol{\Sigma}_t^{-1}oldsymbol{\mu}},$$

1. Introduction-- Motivation

1. Introduction-- Framework

Galton method and OLS(**Fama-MacBeth**)

Empirical Bayesian interpretation and **Shrinkage**

Research design

Empirical study

Constructing Galton Portfolios

The OOS Performance

Analyzing the Sources of Improvement

1. Introduction-- Contribution

- This is the first paper that makes explicit use of OOS errors to improve the portfolio allocation decision.
- Compute the shrinkage parameters by minimizing the sum of squared
 OOS errors, instead of using closed form expressions for the posteriors.
- Use the entire historical sample as the estimation universe, including stocks that are no longer traded or in the current investment universe.

2. Regression to the Mean in Optimization Inputs

 The vector of relative weights of the mean-variance (MV) optimal risky portfolio is

$$\boldsymbol{w}_{t} = \frac{\boldsymbol{\Sigma}_{t}^{-1} \boldsymbol{\mu}}{\mathbf{1} \boldsymbol{\Sigma}_{t}^{-1} \boldsymbol{\mu}}, \tag{1}$$

- where μ is a N-by-1 vector of mean returns, 1 is a N-by-1 vectors of ones, N is the number of assets, and Σ is the covariance matrix
- The historical estimates

$$m{\mu}_{ extsf{H},t}\!=\!\sum_{s=t- extsf{H}+1}^t\!m{r}_{ extsf{H},s}/ extsf{H}$$
 $m{\Sigma}_{ extsf{H},t}\!=\!(m{r}_{ extsf{H},t}\!-\!m{\mu}_{ extsf{H},t})(m{r}_{ extsf{H},t}\!-\!m{\mu}_{ extsf{H},t})'/(extsf{H}\!-\!1)$

2. Correcting out-of-sample forecast errors

 Consider the following reversion to the mean (or "Galton") corrected forecast for mean returns:

$$\mu_{i,t+1|t} = g_{0,m,t} + g_{1,m,t} \mu_{i,H,t}. \tag{2}$$

- $\mu_{i,t+1|t}$ in Equation (2) is expected to be a better predictor of ex post realizations compared to $\mu_{i,H,t}$. ---OLS
- Similarly, using linear "Galton" corrections, $g_{,v,t}$ $g_{,c,t}$ and $g_{,\rho,t}$, for other optimization inputs (variances, covariances, and correlations)

2. Normal approximation of the prior and posterior.

 Assuming the central limit theorem applies, we approximate the prior distribution by a normal distribution, a vector X_t generated from an (approximate) two-stage Gaussian model:

$$X_t | \mu_x, \Sigma_x \sim \mathcal{N}_N(\mu_x, \Sigma_x),$$
 (3)

$$\boldsymbol{\mu}_x \sim \mathcal{N}(\mu_{0,x} \mathbf{1}_N, \tau_x^2 \boldsymbol{\Sigma}_x),$$
 (4)

Equation (4) is the Bayesian informative prior normally distributed with mean $\mu_{0,x}$ and covariance matrix $\tau_x^2 \Sigma_x$. If $\mu_{0,x}$ and τ_x are known, then we obtain Stein shrinkage(Efron and Morris ,1972)

$$\mu_x | X_t = \mu_{0,x} \mathbf{1} + g_{1,x} (X_t - \mu_{0,x} \mathbf{1}),$$
 (5)

• Where $g_{1,x}\!=\! au_x^2/(1\!+\! au_x^2),\;g_{1,x}\!\in\![0,1].$

2. Shrinkage versus Galton forecasts

- Empirical Bayesian approaches first estimate hyperparameters from historical data and then apply analytically derived expressions to infer the shrinkage intensity from these estimated hyperparameters.
- It is likely to **underperform** in environments in which the assumptions of these competing models are consistent with the data.

Empirical Bayesian restriction on shrinkage coefficients.

difference: the empirical Bayesian interpretation restricts the shrinkage coefficients to be between 0 and 1

3. Constructing Galton Portfolios

$$\mu_{i,t+1|t} = g_{0,m,t} + g_{1,m,t} \mu_{i,H,t}. \tag{2}$$

$$\longrightarrow \mu_{i,\mathsf{G},t}, \, \sigma_{i,\mathsf{G},t}, \, \sigma_{i,j,\mathsf{G},t}, \, \text{or} \, \rho_{i,j,\mathsf{G},t}$$

Guarantee of being positive semidefinite

$$\Sigma_{\mathsf{G},t} = diag(\boldsymbol{\sigma}_{\mathsf{G},t})\boldsymbol{\rho}_{\mathsf{G},t}diag(\boldsymbol{\sigma}_{\mathsf{G},t}),\tag{6}$$

The Galton mean-variance (MV) portfolio is

$$\boldsymbol{w}_{\mathsf{G},t}^{MV} = \frac{\boldsymbol{\Sigma}_{\mathsf{G},t}^{-1} \boldsymbol{\mu}_{\mathsf{G},t}}{\mathbf{1} \boldsymbol{\Sigma}_{\mathsf{G},t}^{-1} \boldsymbol{\mu}_{\mathsf{G},t}}.$$
 (7)

The Galton global minimum variance (GMV) portfolio is

$$\boldsymbol{w}_{\mathsf{G},t}^{GMV} = \frac{\boldsymbol{\Sigma}_{\mathsf{G},t}^{-1} \mathbf{1}}{\mathbf{1} \boldsymbol{\Sigma}_{\mathsf{G},t}^{-1} \mathbf{1}}.$$
 (8)

3. Special cases of the Galton forecast optimization

$$\mu_{i,t+1|t} = g_{0,m,t} + g_{1,m,t}\mu_{i,H,t}. \tag{2}$$

The equally weighted ("1 over N") Talmud portfolio

$$g_{1,m} = g_{1,v} = g_{1,\rho} = 0$$

The Markowitz ex post tangency portfolio(MV)

$$g_{1,m} = g_{1,v} = g_{1,\rho} = 1$$
 $w_t = \frac{\Sigma_t^{-1} \mu}{1 \Sigma_t^{-1} \mu}$

The sample global minimum variance portfolio(GMV)

$$g_{1,m} = 0, g_{1,v} = g_{1,\rho} = 1$$
 $w_t = \frac{\Sigma_t^{-1} \mathbf{1}}{\mathbf{1}\Sigma_t^{-1} \mathbf{1}}$

3. Fama-MacBeth estimation of the Galton coefficients

Rolling window: H =60; ex post window of E =12

$$X_{i,E,t+E} = g_0 + g_1 X_{i,H,t} + \epsilon_{i,t}$$

$$MSFE = E[(\boldsymbol{X}_{E,t+E} - \boldsymbol{X}_{t+E|t})^2].$$

• For each period $s \le t$ in the sample, we run the following cross-sectional regression:

$$X_{i,\mathsf{E},s} = g_{0,s}^{fm} + g_{1,s}^{fm} X_{\mathsf{H},s-\mathsf{E}} + e_{s,i},$$

$$\hat{g}_{0,t} = \sum_{s=1}^{t} \hat{g}_{0,s}^{fm}/t$$
 $\hat{g}_{1,t} = \sum_{s=1}^{t} \hat{g}_{1,s}^{fm}/t$

Require one additional learning period (L) to correct for past OOS errors

- Data
 - estimation universe: monthly returns of the entire universe of CRSP
 - investment universe: the 50 stocks with the largest market capitalization in December (Annual adjustment)
- Period: 1952.01 to 2016.12
 - OOS prediction: 1967:01
 - initial learning period (L):120 months

4. The OOS Performance-- Estimated Galton coefficients

$$X_{i,E,t+E} = g_0 + g_1 X_{i,H,t} + \epsilon_{i,t}$$

Table 1 Regression to the mean

	Covariance	Correlation	Correlation Variance		
A. All stocks (include	$ling\ microcaps)$				
Intercept	0.00	0.13	0.01	0.01	
t-stat $(=0)$	8.63	11.20	8.63	5.87	
Slope	0.36	0.28	0.55	-0.16	
t-stat(=0)	10.30	17.48	11.43	-4.88	
Greater than $0 (\%)$	1.00	1.00	0.98	0.21	
t-stat(=1)	-17.94	-44.69	-9.46	-35.21	
Smaller than 1 (%)	0.93	1.00	0.88	1.00	
R-squared (%)	4.18	3.11	12.17	1.94	
Min	392,941.00	392,941.00	887.00	887.00	
Average	$5,\!412,\!795.63$	5,412,795.63	2,991.97	2991.97	
Max	10,720,765.00	10,720,765.00	4,631.00	4631.00	

The best estimate is somewhere between the past values and the mean values.

Table 2
OOS performance of the MVE portfolio

Mean variance portfolios:	Performan	ce statistics							
Strategies	Sharpe	Active share	are Turnover Bankruptcy rate Statistics for portfolio weights (w_i) and their sta						stability
					$[$ Min w_i	$\operatorname{Max} w_i$	$\operatorname{Mean}[\sigma_t(w_i)]$	$\mathrm{SD}[\sigma_t(w_i)]$	$\sum w_i I(w_i < 0)$
				Sta	ndard strat	egies			
Value weighted	0.37	0.00	2.18	0.00	0.69	9.17	1.66	0.51	0.00
Talmud 1/N	0.38	26.51	6.59	0.00	2.00	2.00	0.00	0.00	0.00
Markowitz	-0.27	6,630.02	127,08.17	6.50	-1,001.13	927.99	364.13	2,332.89	-6,612.71
		•		G	alton strate	gies			
Galton	0.47	120.76	78.35	0.00	-13.42	15.63	6.14	1.66	-78.63
Galton (excl. microcaps)	0.52	105.09	65.72	0.00	-10.97	14.31	5.35	1.46	-63.67
Galton EB	0.61	64.47	34.26	0.00	-4.74	10.83	3.33	0.77	-26.38
				Shr	inkage strat	tegies			
Jorion	-0.27	2,988.79	6,434.03	3.00	-443.28	418.04	163.30	1,059.82	-2,970.82
Markowitz (JS)	-0.02	554.08	686.50	0.33	-91.56	97.91	31.98	46.26	-508.30
Elton Gruber (JS)	-0.16	169.50	191.59	0.50	-13.29	31.82	9.19	36.89	-121.96
Ledoit Wolf (JS)	0.11	125.91	121.73	0.00	-9.97	28.61	7.28	5.08	-80.33
			Expected ut	ility Maximization s	trategies (w.	ith investme	ent in the riskless	rate)	
Kan Zhou	0.05		401.28	0.00	-52.33	43.82	15.60	23.52	-249.82
Tu Zhou (CKZ)	0.22		186.75	0.00	-23.23	21.57	7.24	12.22	-95.58

- Bankruptcy rate (percentage of months returns below -100%).
- Galton EB is the most likely to have attractive performance after transaction costs.

- Shrinkage strategies and alternative empirical Bayesian methods
- *Jorian* :Jorion (1986)
 - shrinks the expected returns toward the expected return on the sample GMV
- Elton Gruber: The Elton and Gruber (1973) (EG)
 - shrinks correlations to the global average correlation, but does not shrink volatility estimates

$$\Sigma_{\mathsf{EG},t} = diag(\boldsymbol{\sigma}_{\mathsf{H},t}) \boldsymbol{\rho}_{\mathsf{EG},t} diag(\boldsymbol{\sigma}_{\mathsf{H},t}),$$

- Ledoit Wolf: The Ledoit and Wolf (2004a) (LW)
 - the covariance matrix is partially shrunk toward the constant-correlation (EG) model.
 μ_{IS} = μ₀1 + g_{1,IS} (μ_H μ₀1),
- James-Stein shrinkage : $g_{1,\mathrm{JS}} = \max\left(1 \frac{(N-3)\sigma_0^2/T}{\|\boldsymbol{\mu}_{\mathrm{H}} \mu_0 \mathbf{1}\|^2}, 0\right), N \ge 4.$

 μ_0 and σ_0^2 are the grand mean and grand variance obtained by pooling all N time series of returns

- Expected utility maximization in the presence of estimation error.
- Kan and Zhou: Kan and Zhou (2007) (KZ) $\tilde{U}(\hat{w}) = \tilde{\mu}_p \frac{\gamma}{2}\tilde{\sigma}_p^2$ propose instead an optimized combination of three funds (the sample GMV, the sample MV, and the risk-less rate) that maximizes expected investor utility
- Tu and Zhou (CKZ): Tu and Zhou (2011) (TZ)
 build on KZ and propose optimal combinations of naive 1/N
 portfolios with optimized strategies. We include the TZ combination
 of the 1=N with KZ, denoted as CKZ

Table 3
Risk statistics and VAR-style hit rates of MVE portfolios

A. Expectation versus realiz	ation statistics									
	<u> </u>	Excess returns			Standard deviation (σ) and corresponding hit rates					
	Expected r	Realized r	RMSFE	Expected σ	Realized σ	r < Qz(1%)	r < Qz(5%)	r>Qz(95%)	r>Qz(99%)	
Value weighted		5.51			14.80					
p-value										
Talmud 1/N		5.92			15.37					
p-value										
Markowitz	398.28	-253.57	431.91	54.08	933.51	49.33	54.67	26.17	22.33	
p-value		(.00)				(.00)	(.00)	(.00)	(.00)	
					Gal <u>ton strat</u> egi	es				
Galton	13.32	8.60	5.29	19.03	18.27	0.83	4.33	3.67	1.17	
p-value		(.07)				(.68)	(.45)	(.13)	(.68)	
Galton (excl. microcaps)	9.61	8.41	4.64	16.49	16.09	1.00	4.67	3.67	1.17	
p-value		(.60)				(1.00)	(.71)	(.13)	(.68)	
Galton EB	8.54	7.36	3.51	14.69	12.14	1.50	3.50	2.33	0.50	
p-value		(.49)				(.22)	(.09)	(.00)	(.22)	
				S	hrinkage strate	gies				
Jorion	80.30	-111.70	151.47	23.26	415.56	40.17	44.33	33.33	28.67	
p-value		(.01)				(.00)	(.00)	(.00)	(.00)	
Markowitz (JS)	14.74	-2.02	28.64	4.46	95.83	34.33	39.50	36.83	32.00	
p-value		(.23)				(.00)	(.00)	(.00)	(.00)	
Elton Gruber (JS)	16.57	-26.24	50.24	12.76	162.61	10.83	16.00	12.33	5.67	
p-value		(.08)				(.00)	(.00)	(.00)	(.00)	
Ledoit Wolf (JS)	13.64	2.39	6.60	10.17	21.05	8.00	13.83	9.33	4.17	
p-value		(.00)				(.00)	(.00)	(.00)	(.00)	
			Expected u	tility Maximization	strategies (with	h investment in t	the riskless rate)			
Kan Zhou		1.19			25.71					
p-value		(0.01)								
Tu Zhou (CKZ)		3.70			16.86					
p-value		(0.00)								

The Galton methods achieve the most accurate performance.

D. Farac at Fron-Style hite rates	s using various moment estimators Covariance and mean estimation methods									
	Galton	Galton (EB)	Markowitz (JS)	Ledoit Wolf (JS)	Galton	Galton (EB)	Markowitz (JS)	Ledoit Wolf (JS)		
Portfolios		First percenti	le hit rates (r <qz(< th=""><th>1%))</th><th></th><th>Fifth percentil</th><th>le hit rates (r<qz(< th=""><th>5%))</th></qz(<></th></qz(<>	1%))		Fifth percentil	le hit rates (r <qz(< th=""><th>5%))</th></qz(<>	5%))		
				Standard S	Strategies					
Value weighted	1.17	1.50	3.50	3.83	4.00	4.67	7.50	7.67		
Talmud 1/N	1.33	1.50	3.67	3.83	4.67	5.33	7.67	8.17		
Markowitz	0.00	0.00	36.17	1.67	0.67	2.33	41.50	6.17		
	Galton strategies									
Galton	0.83	1.00	4.17	4.67	4.33	4.50	8.33	9.00		
Galton (excl. microcaps)	0.67	1.00	4.17	4.00	4.50	4.67	9.50	9.00		
Galton EB	1.17	1.50	5.17	4.00	3.17	3.50	11.50	9.50		
	Shrinkage Strategies									
Jorion	0.00	0.00	35.33	2.33	1.33	2.50	40.83	6.33		
Markowitz (JS)	0.00	0.00	34.33	3.50	1.50	2.17	39.50	6.00		
Elton Gruber (JS)	1.33	2.17	4.17	6.67	4.17	5.67	9.83	13.67		
Ledoit Wolf (JS)	0.50	0.83	9.67	8.00	3.17	3.83	15.50	13.83		
, ,	Expected utility Maximization strategies (with investment in the riskless rate)									
Kan Zhou	0.00	0.00	34.83	2.83	1.67	2.33	40.00	6.00		
Tu Zhou (CKZ)	0.67	1.00	6.67	3.33	3.00	3.17	12.50	6.00		
$\%$ not rejected (p -value $\geq .05$)	66.67	58.33	0.00	8.33	41.67	58.33	0.00	41.67		
% not rejected $(p\text{-value}\geq .01)$	100.00	91.67	0.00	8.33	66.67	66.67	0.00	41.67		
High (% > target)	33.33	33.33	100.00	100.00	0.00	16.67	100.00	100.00		
Low ($\% \le \text{target}$)	66.67	66.67	0.00	0.00	100.00	83.33	0.00	0.00		

 Galton moments provide effective risk management measure for a variety of strategies.

4. Robustness Check

- Stock universes
 - 50 largest firms → →
 - we simulate 1,000 horse races of sampling 50 randomly from the stock universe each year
- Galton estimation window choices
 - H =60/120/180
 - E=12/60
 - L=60/108/180
 - N=30/50/75/100

5. Analyzing the Sources of Improvement

Table 6
Dissecting the Galton strategy: OOS performance of hybrid strategies

A. Sharpe ratios with hybrid shrinking of moments											
	Mean shrinkage estimators										
							Galton strategies				
	Markowitz	Jorion	James-Stein	Cross-validation	(50 largest)	(all stocks)	(excl. microcaps)	(EB, empirical bayes) [equivalent to GMV]			
Covariance matrix shrinkage	e^{-} $estimators$										
Markowitz	-0.27	-0.27	-0.02	-0.17	0.20	0.24	0.23	0.19			
Jorion	-0.27	-0.27	-0.02	-0.17	0.20	0.24	0.23	0.19			
Elton Gruber (JS)	-0.12	0.13	-0.16	0.15	0.47	0.44	0.47	0.52			
Ledoit Wolf (JS)	0.12	-0.13	0.11	0.16	0.56	0.53	0.55	0.57			
Cross-validation	-0.08	0.03	0.32	-0.13	0.55	0.56	0.56	0.55			
Galton (50 largest)	-0.00	0.11	0.06	-0.18	0.58	0.52	0.56	0.60			
Galton	-0.21	-0.18	0.05	-0.16	0.56	0.47	0.52	0.60			
Galton (covariance)	-0.26	-0.06	0.10	-0.26	0.52	0.43	0.48	0.57			
Galton (excl. microcaps)	-0.28	-0.22	0.05	-0.03	0.57	0.47	0.52	0.61			
Galton ÈB	-0.28	-0.22	0.05	-0.03	0.57	0.47	0.52	0.61			

The main sources of this improvement is the estimation to mean.

5. Analyzing the Sources of Improvement

 ${\bf Table~7} \\ {\bf Galton~ coefficients~ of~ characteristic\text{-}sorted~ portfolios~ with~ persistent~ means}$

	Covariance	Correlation	Variance	Mean return
A. Size and value	<i>ie</i>			
Intercept	0.00	-0.03	0.00	0.01
t-stat $(=0)$	1.29	-0.31	1.34	2.88
Slope	0.89	1.00	0.91	0.37
t-stat $(=0)$	5.11	8.79	4.59	2.47
t-stat(=1)	-0.66	0.01	-0.46	-4.15
R-squared (%)	43.16	40.87	42.00	16.60
B. Operating pr	ofitability and	investment		
Intercept	0.00	0.35	0.00	0.01
t-stat $(=0)$	2.54	5.82	2.00	2.85
Slope	0.81	0.51	0.87	0.30
t-stat $(=0)$	6.87	8.71	6.75	3.42
t-stat $(=1)$	-1.66	-8.37	-1.01	-8.04
R-squared (%)	25.40	5.21	32.61	8.44

The coefficient of the mean is positive.

5. Analyzing the Sources of Improvement

Table 8
Optimizing assets with persistent means: OOS performance and risk summary

				(===)		()				
A. Size (ME), Book	k-to- $market$ (.	BTM), Be	$ta,\ Investments$	(IN), $Operating$	•	, ,		,		
Strategies		S	harpe ratio		Ratio of realized σ to average expected σ					
	ME-BTM	OP-IN	ME-BETA	ME-MOM	ME-BTM	OP-IN	ME-BETA	ME-MOM		
Value weighted	0.56	0.56	0.57	0.56						
Talmud 1/N	0.57	0.59	0.59	0.54						
Markowitz	1.41	0.71	-0.08	1.30	1.42	1.32	7.67	1.67		
				Galton	strategies					
Galton	1.49	0.96	0.76	1.59	0.95	1.11	1.12	1.25		
Galton EB	1.44	0.96	0.79	1.59	0.95	1.11	1.10	1.26		
Galton GMV	1.08	0.91	0.71	0.87	1.02	1.08	1.17	0.94		
				Shrinkag	e strategies					
Jorion	1.51	0.81	-0.06	1.42	1.39	1.35	7.05	1.67		
Markowitz (JS)	1.17	0.77	0.69	1.11	1.38	1.36	1.40	1.47		
Elton Gruber (JS)	0.63	0.87	0.56	0.76	2.40	1.61	2.41	1.96		
Ledoit Wolf (JS)	0.81	0.83	0.59	1.02	1.67	1.53	1.64	1.27		
		Expe	cted utility max	imization strateg	gies (with inves	tment in t	he riskless rate)			
Kan Zhou	1.426	0.77	0.59	1.434						
Tu Zhou (CKZ)	1.435	0.75	0.50	1.432						
				Global minimum	variance strat	egies				
Markowitz GMV	1.17	0.77	0.69	0.81	1.38	1.36	1.40	1.45		
Elton Gruber GMV	0.63	0.88	0.56	0.76	2.40	1.61	2.41	1.72		
Ledoit Wolf GMV	0.81	0.85	0.59	0.77	1.67	1.53	1.64	1.30		

GMV portfolios do not necessarily dominate their MV counterparts

6. Managing the Transaction Costs of Optimized Portfolios

Table 9
OOS performance with transaction costs

Strategies	Sharpe	Turnover	Net Sharpe	Turnover	Net Sharpe	Turnover	Net Sharpe	Turnover		
Strategies	onarpe	Turnover	10 bps		30 bps		50 b			
A. Transaction cost agnostic strategies										
	Standard strategies									
Value weighted	0.37	2.18	0.37		0.36		0.36			
Talmud 1/N	0.38	6.59	0.38		0.37		0.36			
Markowitz	-0.27	12708.17	-0.30		-0.38		-0.41			
				Galtor	1 strategies					
Galton	0.47	78.35	0.42		0.31		0.21			
Galton (excl. microcaps)	0.52	65.72	0.47		0.37		0.27			
Galton ÈB	0.61	34.26	0.57		0.50		0.43			
				Shrinka	ge strategies					
Jorion	-0.27	6434.03	-0.33		-0.42		-0.46			
Markowitz (JS)	-0.02	686.50	-0.11		-0.25		-0.38			
Elton Gruber (JS)	-0.16	191.59	-0.16		-0.18		-0.19			
Ledoit Wolf (JS)	0.11	121.73	0.04		-0.09		-0.20			
, ,		Expected	utility maximi	zation strate	gies (with inve	stment in th	e riskless rate)			
Kan Zhou	0.05	401.28	-0.15		-0.53		-0.88			
Tu Zhou (CKZ)	0.22	186.75	0.08		-0.19		-0.45			

• Galton EB strategy outperforms for all three levels of costs

7. Conclusion

- Firstly, Galton-optimized portfolios perform quite well OOS in Sharp ratio.
- Secondly, the method also performs better at estimating the risk of portfolios constructed using different approaches.
- Thirdly, the performance of the Galton optimizing portfolios shows robustness to **trading costs**.