Autour des diagrammes de décision quantiques

Malo Leroy

Parcours recherche – CentraleSupélec

12 juin 2024

Les bases de données croissent rapidement

Les algorithmes classiques sont parfois inefficaces

[.] log₁₀ du nombre de pages indexées par Google

Les bases de données croissent rapidement

Les algorithmes classiques sont parfois inefficaces

Les **algorithmes quantiques** permettent de résoudre certains problèmes plus efficacement

[.] log₁₀ du nombre de pages indexées par Google

Les machines quantiques sont en développement et resteront coûteuses financièrement

 \Downarrow

Il y a un besoin d'outils de simulation et de vérification d'algorithmes quantiques

Les simulations sont très coûteuses en temps de calcul

Grover	Classique	Quantique	Simulation
Complexité	N	\sqrt{N}	$N\sqrt{N}$

Elles nécessitent une structure de données adaptée

État de l'art

- Interprétation abstraite
- Arithmétique des intervalles réels
- Diagrammes de décision quantiques

État de l'art

- Interprétation abstraite
- Arithmétique des intervalles réels
- Diagrammes de décision quantiques

Solution: diagrammes additifs abstraits

L'interprétation abstraite permet de déterminer des propriétés ou d'accélérer des calculs

Exemple : signe d'une expression $e = (3+2) \times (-5)$

$$signe(e) = (signe(3) + signe(2)) \times signe(-5)$$

$$= (\oplus + \oplus) \times \ominus$$

$$= \oplus \times \ominus$$

$$= \ominus$$

L'interprétation abstraite permet de déterminer des propriétés ou d'accélérer des calculs

Elle peut être exacte ou approximative

L'interprétation abstraite est applicable aux intervalles réels

$$[1,2] * [-1,1] = [-2,2]$$

 $[1,2] + [-1,1] = [0,3]$
 $[1,2] \wedge [-1,1] = [1,1]$

Le résultat de l'opération est **le plus petit intervalle** contenant tous les résultats élément par élément

Une fonction booléenne

$$f: \{0,1\}^n \to \{0,1\}$$

peut être représentée par une table de vérité

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	$f(x_1,x_2)$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

pour
$$f(x_1,x_2) = x_1 \lor (x_2 \land x_3)$$

Les diagrammes de décision permettent de représenter des fonctions booléennes

Les diagrammes de décision permettent de représenter des fonctions booléennes

On tire parti de la structure de la fonction

Un état quantique est une superposition d'états incompatibles

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$
 (un qubit)

Un état quantique est une superposition d'états incompatibles

$$|\psi\rangle=\alpha\,|0\rangle+\beta\,|1\rangle$$
 (un qubit)
 n qubits $\Rightarrow 2^n$ états incompatibles

On note les états sous forme de vecteurs

$$\alpha |01\rangle + \beta |11\rangle = \begin{pmatrix} \alpha \\ 0 \\ \beta \\ 0 \end{pmatrix}$$

La représentation usuelle est proche des tables de vérité

x_1	<i>x</i> ₂	$\langle x_1 x_2 \psi \rangle$
0	0	α
0	1	0
1	0	β
1	1	0

pour
$$|\psi\rangle = \alpha \, |00\rangle + \beta \, |10\rangle$$

Les états peuvent être représentés par des diagrammes de décision quantiques

On tire parti de la structure de l'état

Les états peuvent être représentés par des diagrammes de décision quantiques

Dans le pire cela reste exponentiel

Retour sur l'état de l'art

- ✓ Interprétation abstraite
- ✓ Arithmétique des intervalles réels
- ✓ Diagrammes de décision quantiques

On va utiliser ces concepts <u>ensemble</u>, avec une nouveauté : l'additivité

Retour sur l'état de l'art

- ✓ Interprétation abstraite
- ✓ Arithmétique des intervalles réels
- ✓ Diagrammes de décision quantiques
- + Nouveauté : additivité

Solution : diagrammes additifs abstraits

Objectifs

- Modèle formel de diagrammes de décision additifs abstraits
- Implémentation du modèle

Méthodologie

Modèle

- \checkmark Intervalles de $\mathbb C$ cartésiens & polaires
- √ Diagrammes
- ✓ Approximation locale, globale
- ✓ Erreur
- √ Fusion forcée
- √ Algorithmes de réduction

Exemple : on considère l'état
$$\begin{pmatrix} 2+10i\\1+4i\\2i\\i \end{pmatrix}$$

Exemple : on considère l'état
$$\begin{pmatrix} 2+10i\\1+4i\\2i\\i \end{pmatrix}$$

Il existe des régularités.

Exemple: on obtient le diagramme additif

Exemple: on obtient le diagramme additif

Réduisons ce diagramme

On peut forcer la fusion de A et B

Implémentation

- \checkmark Intervalles de $\mathbb C$ cartésiens & polaires
- ✓ Diagrammes : construction, évaluation
- √ Diagrammes aléatoires
- ✓ Fusion forcée
- ~ Algorithmes de réduction

On peut toujours plus réduire les diagrammes

 \downarrow

Gain en espace arbitrairement grand (jusqu'à exponentiel)

Suite du projet

- Ajustements
 - Fonctions d'erreur
 - Algorithmes de réduction
- Nouveaux concepts
 - Automates d'arbres
 - Diagrammes de décisions et applications localement inversibles (LIMDD)
- Implémentation
 - Interface graphique
 - Lecteur QASM

Cadre du projet Formation future

Encadrant : Renaud Vilmart

Équipe : QuaCS

■ Laboratoire : Laboratoire Méthodes Formelles

Continuer la formation en informatique théorique...

Électifs

- Génie logiciel orienté objet
- Informatique théorique
- Calcul haute performance
- Modèles et sys. pour la gestion de données

Complément scientifique : métaheuristiques

... et progresser en **programmation**

Année de césure Digital Tech Year

- Semestre au Paris Digital Lab
- Semestre en entreprise à l'international
- Projets variés en équipe

Dominantes / mentions

- Informatique et numérique
 - Sciences du logiciel
 - Architecture des systèmes informatiques
- Physique et nanotechnologies
 - Quantum engineering

Conclusion

Questions

Complément sur les césures

- Digital Tech Year
 - Semestre au Paris Digital Lab
 - Semestre en entreprise à l'international
- Stage
 - Entreprise
 - Laboratoire
 - France ou à international
- Stage en laboratoire
 - En France ou à l'international

Implémentation

- Code (2,2k lignes)
 - Langage C++
 - GNU C Compiler
 - CMake
- Tests
 - Google Test
 - GitHub Actions

Mise en forme

- Versionnage
 - Git
 - GitHub
- DocumentationDoxygen

