28. МАКЕДОНСКА МАТЕМАТИЧКА ОЛИМПИЈАДА

РЕШЕНИЈА И РАСПРЕДЕЛБА НА ПОЕНИ

1. Нека $(a_n)_{n=1}^{+\infty}$ е низа дефинирана рекурзивно на следниот начин: $a_1=1$ и

$$a_{n+1} = 1 + \sum_{k=1}^{n} k a_k$$
.

Докажете дека за секој n > 1 важи $\sqrt[n]{a_n} < \frac{n+1}{2}$.

Решение. Да забележиме дека $a_n = n!$. (2 π) Ова тврдење ќе го докажеме на два начина.

Прв начин. Ќе докажеме дека $a_n = n!$ со математичка индукција. За n = 1, тврдењето е тривијално точно. Да претпоставиме дека важи $a_k = k!$ за $1 \le k \le n$. Тогаш имаме:

$$a_{n+1} = 1 + \sum_{k=1}^{n} k a_k = 1 + \sum_{k=1}^{n} k \cdot k! = 1 + \sum_{k=1}^{n} (k+1-1) \cdot k! = 1 + \sum_{k=1}^{n} [(k+1)! - k!] = 1 + (n+1)! - 1 = (n+1)!.$$
(3 π)

Втор начин. Да забележиме дека за секој $n \ge 1$ важи:

$$a_{n+2} - a_{n+1} = \left(1 + \sum_{k=1}^{n+1} k a_k\right) - \left(1 + \sum_{k=1}^{n} k a_k\right) = (n+1) \cdot a_{n+1}.$$

Тоа значи дека за $n \ge 1$ имаме $a_{n+2} = (n+2) \cdot a_{n+1}$. Заедно со $a_1 = 1$ и $a_2 = 2$, веднаш заклучуваме дека $a_n = n!$ важи за секој $n \ge 1$. (3 π)

Заклучок. Од неравенството меѓу аритметичка и геометриска средина, за секој n>1 добиваме:

$$\frac{n+1}{2} = \frac{1}{n} \cdot \frac{n(n+1)}{2} = \frac{1}{n} \cdot (1+2+\cdots+n) \ge \sqrt[n]{1 \cdot 2 \cdot \cdots \cdot n} = \sqrt[n]{n!} = \sqrt[n]{a_n}. (2\pi)$$

Знак за равенство важи ако и само ако сите броеви се еднакви, што повлекува строго неравенство: $\sqrt[n]{a_n} < \frac{n+1}{2}$. (1 π)

Забелешка: Трите поени што се доделуваат за доказ на тврдењето $a_n = n!$ не се адитивни. Натпреварувачот добива два поена доколку ја има воочено (без доказ) затворената форма за a_n , и најмногу уште три поена за коректен доказ на тој факт.

 \Diamond

2. Во градот на островите има точно 2021 остров поврзани со мостови. За секоја двојка острови A и B во градот, може да се стигне од A до B користејќи некои од мостовите. Притоа, за секои четири острови A_1 , A_2 , A_3 и A_4 важи следното: ако постои мост од A_i до A_{i+1} за секој $i \in \{1,2,3\}$, тогаш постои и мост помеѓу A_j и A_k за некои $j,k \in \{1,2,3,4\}$ такви што |j-k|=2.

Докажете дека барем еден остров во градот е директно поврзан со мост со секој друг остров во градот.

Решение. Ќе ја користиме следната терминологија (вообичаена во теоријата на графови): за островите велиме дека се memuha, за мостовите велиме дека се peбpa, а за секои два острови директно поврзани со мост дека се cocedu. Така, градот на островите го набљудуваме како едноставен сврзан граф (од ред 2021) со дополнителна особина за секој пат P_4 . (1 π) Да претпоставиме дека не постои теме соседно со секое останато, и да разгледаме теме v од најголем можен степен (т.е., со најмногу соседи). (1 π) Имајќи ја предвид сврзаноста на графот, постои сосед u на v и теме w кое не е сосед на v такви што u е ребро. (2 π) Според изборот на v, постои сосед v на v таков што v не е сосед на v. (3 π) Но, тогаш v0 е пат v1 без дополнителната особина, противречност. (1 π)

3. Нека ABCD е трапез таков што $AD \parallel BC$ и $\angle BCD < \angle ABC < 90^\circ$. Нека E е точката во која се сечат дијагоналите AC и BD. Опишаната кружница ω на триаголникот BEC ја сече отсечката CD во X. Полуправите AX и BC се сечат во Y, додека полуправите BX и AD се сечат во Z. Докажете дека: правата EZ е тангента на ω ако и само ако правата BE е тангента на опишаната кружница на триаголникот BXY.

Решение. Ќе дадеме два решенија со независна распределба на поени.

Прво решение. За почеток ќе докажеме дека опишаната кружница на триаголникот AED ја допира кружницата ω . Од Талесовата теорема имаме:

$$\frac{\overline{AE}}{\overline{CE}} = \frac{\overline{DE}}{\overline{BE}} \cdot (1\pi)$$

Тоа значи дека постои хомотетија \mathcal{H} со центар во E така што $\mathcal{H}(A) = C$ и $\mathcal{H}(D) = B$. Оваа хомотетија ја пресликува опишаната кружница на триаголникот AED во опишаната кружница на триаголникот $\mathcal{H}(A)\mathcal{H}(E)\mathcal{H}(D) = CEB$, што е точно ω . Следствено, правата што ги содржи центрите на овие две кружници минува низ нивната заедничка точка E, па тие се допираат во E. (1 π)

Оттука го заклучуваме следното: EZ е тангента на ω во E ако и само ако Z лежи на заедничката тангента t на ω и опишаната кружница на триаголникот AED. (1 π) Ќе докажеме дека: Z лежи на t ако и само ако ABXD е тетивен четириаголник. Навистина, ако Z лежи на t, тогаш (користејќи степен на точка) важи $\overline{ZB} \cdot \overline{ZX} = \overline{ZE}^2 = \overline{ZD} \cdot \overline{ZA}$, што кажува дека ABXD е тетивен четириаголник (спротивната насока на теоремата за степен на точка ја применуваме на $\overline{ZB} \cdot \overline{ZX} = \overline{ZD} \cdot \overline{ZA}$). (1 π)

За другата насока, да претпоставиме дека ABXD е тетивен. Тогаш t е радикалната оска на ω и на опишаната кружница на AED. Да забележиме и дека AD е радикалната оска на опишаните кружници на AED и ABXD, додека BX е радикалната оска на ω и на опишаната кружница на ABXD. Од теоремата за конкурентност на радикалните оски заклучуваме дека правите t, AD и BX се сечат во една точка; оваа точка е точно Z, што кажува дека Z лежи на t. (1 π) Докажавме дека: EZ е тангента на ω ако и само ако ABXD е тетивен.

Ја имаме следната низа еквиваленции:

правата EZ е тангента на $\omega \iff$ четириаголникот ABXD е тетивен $\iff \angle DBX = \angle DAX$ $\iff \angle EBX = \angle BYX \iff$ правата BE е тангента на опишаната кружница на триаголникот BXY. (1 π)

Имено, третата еквиваленција е последица на $\angle DAX = \angle BYX$ бидејќи A, X, Y се колинеарни и $AD \parallel BC$ (1π), додека четвртата еквиваленција следува од теоремата за агол помеѓу тангента и тетива. (1π)

Забелешка: Еден поен се добива за низата еквиваленции само доколку секоја од нив е докажана независно.

Второ решение. За почеток да воочиме дека AEXZ е тетивен четириаголник. (1 π) Имено, користејќи дека BCXE е тетивен и $AD \parallel BC$, добиваме:

$$\angle EAZ + \angle EXZ = \angle ECB + \angle EXZ = \angle EXB + \angle EXZ = 180^{\circ}.$$

Ова кажува дека AEXZ е навистина тетивен (2π), што од своја страна повлекува дека:

$$\angle XEZ = \angle XAZ = \angle XYB$$
. (1 π)

Од теоремата за агол помеѓу тетива и тангента имаме: EZ е тангента на кружницата ω ако и само ако $\angle XEZ = \angle XBE$. (1 π) Слично, BE е тангента на кружницата (BXY) ако и само ако $\angle XYB = \angle XBE$. (1 π)

Користејќи дека $\angle XEZ = \angle XYB$, ја добиваме следната низа еквиваленции:

правата EZ е тангента на кружницата $\omega \iff \angle XEZ = \angle XBE \iff \angle XYB = \angle XBE \iff$ правата BE е тангента на кружницата (BXY). (2 π)

Забелешка: Два поена се доделуваат за низата еквиваленции само доколку секоја од нив е веќе докажана независнпо. Еден поен се добива за воочување (без доказ) дека четириаголникот AEXZ е тетивен.

4. За даден природен број $n \geq 3$ имаме $n \times n$ табла на која што сите полиња се бели. Дефинираме лебдечки плус како петорка (M, L, R, A, B) од единечни полиња на таблата така што L е лево од M во истата редица, R е десно од M во истата редица, A е над M во истата колона и B е под M во истата колона. Дозволено е M да формира лебдечки плус со несоседни

полиња. Определете го најголемото k (во зависност од n) за кое е можно некои k полиња на таблата да се обојат во црно и притоа да не постои ниту еден црн лебдечки плус.

Решение. Ќе докажеме дека одговорот гласи: k = 4n - 4. Ако ги обоиме сите рабни полиња од таблата во црно, тогаш имаме точно 4n - 4 црни полиња, бидејќи секој раб има по n, и притоа секое ќоше (ги има 4) се брои два пати. (1 π) Ако постои црн лебдечки плус, тогаш неговиот центар, M, е во редица со барем 3 црни полиња и во колона со барем 3 црни полиња. Тоа значи дека M мора да е ќоше на таблата, што не е можно бидејќи не постои лебдечки плус со центар во ќоше. Заклучуваме дека конструкцијата е точна. (1 π)

Да докажеме сега дека доколку бројот на црни полиња на таблата е барем 4n-3, тогаш постои црн лебдечки плус. Претпоставувајќи го спротивното, секое црно поле ne e центар, M, на ниту еден лебдечки плус. Тоа значи дека барем една од четирите насоки \leftarrow , \rightarrow , \uparrow и \downarrow во однос на тоа поле ne codpэсu друго црно поле. Ги разгледуваме сите парови од облик (s,\leftarrow) , (s,\rightarrow) , (s,\uparrow) и (s,\downarrow) каде што s е црно поле, а стрелката од парот покажува во насока без црни полиња во однос на s. (1 \mathbf{n}) Нека P е бројот на вакви парови. Бидејќи ниту едно поле не е центар на црн лебдечки плус, заклучуваме дека имаме барем 4n-3 вакви парови. (1 \mathbf{n})

Ја разгледуваме првата колона од лево, K_{π} , што содржи црно поле (што значи дека сите колони лево од неа не содржат црни полиња). Нека x е најгорното црно поле од колоната K_{π} . Тогаш x припаѓа барем во два од разгледуваните парови: имено, во (x,\leftarrow) и (x,\uparrow) . Слично, ако y е најдолното црно поле од истата колона, тогаш и y припаѓа барем во два пара: имено, (y,\leftarrow) и (y,\downarrow) . Тоа значи дека во колоната K_{π} имаме барем два дополонителни пара, дури и кога x=y. Истото важи и за првата колона од десно што содржи црно поле, да ја означуваме со K_{π} . Секако $K_{\pi} \neq K_{\pi}$, бидејќи во спротивно има најмногу n црни полиња (сите во истата колона), што не е можно (4n-3>n). Заклучуваме дека постојат барем (4n-3)+4=4n+1 парови, односно дека $P\geq 4n+1$. (2 π)

За секој пар стрелката е во една од четири можни насоки. Од $P \ge 4n+1$ и принципот на Дирихле заклучуваме дека имаме најмалку n+1 парови со стрелките во истата насока, да речеме \to . (1 π) Тоа значи дека постојат парови $(s_1, \to), (s_2, \to), ..., (s_{n+1}, \to)$. Бидејќи таблата има точно n редици, принципот на Дирихле повлекува дека некои s_i и s_j лежат во иста редица, а со тоа и паровите (s_i, \to) и (s_j, \to) се во иста редица. Последното не е можно, бидејќи тогаш едно од s_i и s_j има црно поле во насока \to (едното поле е десно од другото). Оваа противречност покажува дека може да има најмногу 4n-4 црни полиња, при услов да не се појавува црн лебдечки плус. (1 π)

5. Нека $(x_n)_{n=1}^{+\infty}$ е низа дефинирана рекурзивно со $x_{n+1}=x_n(x_n-2)$ и $x_1=\frac{7}{2}$. Нека $x_{2021}=\frac{a}{b}$, каде што $a,b\in\mathbb{N}$ се заемно прости. Докажете дека: ако p е прост делител на a, тогаш p=3 или 3|p-1.

Решение. Најпрво да забележиме дека $\frac{7}{2}=2+\frac{1}{2}+1$. Нека $c_1=2$. Тогаш $x_1=c_1+\frac{1}{c_1}+1$. Да дефинираме $c_n=2^{2^{n-1}}$. Со математичка индукција ќе покажеме дека $x_n=c_n+\frac{1}{c_n}+1$ за секој n. Базата на индукцијата е веќе покажана. Од индуктивната хипотеза имаме:

$$x_{n+1} = x_n(x_n - 2) = (c_n + \frac{1}{c_n} + 1)(c_n + \frac{1}{c_n} - 1) = (c_n + \frac{1}{c_n})^2 - 1 = c_n^2 + \frac{1}{c_n^2} + 1$$
$$= 2^{2^n} + \frac{1}{2^{2^n}} + 1 = c_{n+1} + \frac{1}{c_{n+1}} + 1.$$
 (2 π)

Значи $x_n=\frac{c_n^2+c_n+1}{c_n}$, каде што именителот и броителот се заемно прости. Ова повлекува дека $a=c_{2021}^2+c_{2021}+1$ и $b=c_{2021}$. (1п). За поедноставен запис, да го означиме $c_{2021}=2^{2^{2020}}$ со c. Нека p е прост делител на a. Тогаш $p\neq 2$ бидејќи c^2+c+1 е непарен. Значи $p\geq 3$ и $p|c^2+c+1$, па полиномот $P(x)=x^2+x+1$ има решение c по модул p. (1п)

Ќе дадеме два докази дека последното имплицира p=3 или 3|p-1.

Прв доказ. (Со квадратни остатоци)

Од условот $p|c^2 + c + 1$ имаме:

$$p|(2c+1)^2 + 3 = 4c^2 + 4c + 4 = 4(c^2 + c + 1)$$
.

Имајќи предвид дека p>3, броевите p и 3 се заемно прости. Заклучуваме дека -3 е квадратен остаток по модул p. (1 π) Од Гаусовиот закон за квадратен реципроцитет имаме:

$$\left(\frac{3}{p}\right) = \left(\frac{p}{3}\right) \cdot (-1)^{\frac{3-1}{2} \cdot \frac{p-1}{2}} = \left(\frac{p}{3}\right) (-1)^{\frac{p-1}{2}}.$$

Оттука, пресметуваме:

$$\left(\frac{-3}{p}\right) = \left(\frac{3}{p}\right) \cdot \left(\frac{-1}{p}\right) = \left(\frac{3}{p}\right) \cdot (-1)^{\frac{p-1}{2}} = \left(\frac{p}{3}\right) \cdot (-1)^{p-1} = \left(\frac{p}{3}\right) \cdot (2\pi)$$

Значи, -3 е квадратен остаток по модул p ако и само ако p е квадратен остаток по модул 3. Последното е еквивалентно со 3|p-1 (1π).

Втор доказ. (Со ред по модул прост број и малата теорема на Ферма)

Ако $p|c^2 + c + 1$, тогаш важи и

$$p|c^3 - 1 = (c - 1) \cdot (c^2 + c + 1)$$
.

Така $c^3\equiv 1\pmod p$. Да го означиме со $\omega_p(c)$ редот на c по модул p. (Да се потсетиме дека тогаш $c^t\equiv 1\pmod p$) имплицира $\omega_p(c)|t$.) Заклучуваме дека $\omega_p(c)|3$. Следствено, или $\omega_p(c)=1$ или $\omega_p(c)=3$. (1 π) Случајот $\omega_p(c)=1$ се сведува на p|c-1, па $0\equiv c^2+c+1\equiv 3\pmod p$ имплицира p=3. (1 π) Другиот случај е $\omega_p(c)=3$. Од малата теорема на Ферма имаме дека $c^{p-1}\equiv 1\pmod p$, бидејќи (c,p)=1. (1 π) Користејќи дека $\omega_p(c)=3$ заклучуваме дека 3|p-1. (1 π)

Напомена: Точен доказ дека $p|c^2+c+1$ имплицира p=3 или 3|p-1 носи 4 поени. Поените за двата докази не се собираат.