Epsilon-Delta Definition of Limits, Math 221

The $\epsilon - \delta$ definition of limits is confusing! In this worksheet, we will try to break it down and understand it better. First the definition:

"We say that $\lim_{x\to a} f(x) = L$ if for every $\epsilon > 0$, we can find some $\delta > 0$ such that $0 < |x-a| < \delta$ we have $|f(x) - L| < \epsilon$."

Question 1. What does the expression $|x-a| < \delta$ really mean? If you are not sure, interpret it for a concrete value of a and $\delta = .5$. Every time you see the expression |x-a| you can now replace it with this phrase!

There are two other ways to interpret this definition:

Interpretation 1: A question "If we want f(x) to differ from L by no more than ϵ , then how close should x be to a? The answer to this question is δ !

Interpretation 2: A game You are playing the Calculus Games against me. If you lose, I will point and laugh at you. I will give you a function f(x), numbers a, L and a number ϵ . You have to give me back a number δ so that if $|x - a| < \delta$ then $|f(x) - f(a)| < \epsilon$.

In both cases, your goal given an ϵ is to give back a δ . You are guaranteed that δ will be some expression in terms of ϵ .

Here is a general approach to doing $\epsilon - \delta$ problems:

- 1. Rewrite the goal.
- 2. Simplify |f(x) L| and rewrite it as M|x a| where M is some expression.
- 3. Bound M in terms of δ , normally using the triangle inequality.
- 4. If necessary, assume that $\delta \leq 1$ to get $|f(x) f(a)| < c\delta$ for some constant c.
- 5. Now choose $\delta = \min(1, \epsilon/c)$.

Question 2: Go through the examples in the notes (pg 32-34), check that they conform to this outline.

Using this new understanding, let's revisit the limit problems done in notes. You can use the following as a model for all $\epsilon - \delta$ problems.

Question 3: Using the $\epsilon - \delta$ definition of limit show that $\lim_{x \to 5} 2x + 1 = 11$. **Answer:** Given $\epsilon > 0$ need to find a _____ so that if $|x - 1| < \delta$ then ____ $< \epsilon$.

$$|f(x) - 11| = |2x + 1 - 11|$$

= _____
= ____

If $|x-5| < \delta$, then |f(x)-11| < So if $\delta < \epsilon/2$ then |f(x)-11| <

Question 4: Using the $\epsilon - \delta$ definition of limit show that $\lim_{x\to 3} x^2 = 9$. **Answer:** Given $\epsilon > 0$ need to find a $\delta > 0$ so that if _____ then |f(x) - 9| < 0

$$|f(x) - 9| = |x^2 - 9|$$

If
$$|x-3| < \delta$$
, then $|x+3| = |----| = |x-3| + 6 < ----$, so

$$|f(x) - 9| < \dots$$

Assume that $\delta < 1$, so $\delta + 6 < 7$.

If |x-3| < _____ and $\delta <$ 1, then |f(x)-9| < ____. So if $\delta =$ min(____, ___), then ____.

In the above examples the sentences are super important! Your solutions should have as many. Use the above as a guideline.

Question 5. Using the $\epsilon - \delta$ definition of limit show that $\lim_{x\to 1} 2x - 4 = -2$.

Question 6. Using the $\epsilon - \delta$ definition of limit show that $\lim_{x\to 4} \sqrt{x} = 2$. (Hint: to get a |x-4| in the expression for |f(x)-2| multiply and divide by an appropriate conjugate.)

Question 7. You have been promoted to chief square-builder at your factory, and federal regulations require your squares have a cross-sectional area of 100cm² with a maximum error of 1cm². Within what tolerance must you measure the side length of the square?

Question 8. Each of the following attempted definitions for when $\lim_{x\to a} f(x) = L$ is flawed: identify what the flaw is, and explain why it is a problem. "We say that $\lim_{x\to a} f(x) = L$ if....":

- 1. for every ϵ there is a $\delta > 0$ such that for $0 < |x a| < \delta$, it is true that $|f(x) L| < \epsilon$.
- 2. for every $\epsilon > 0$ there is a δ such that for all x with $0 < |x a| < \delta$, it is true that $|f(x) L| < \epsilon$.
- 3. for every $\epsilon > 0$ there is a $\delta > 0$ such that for all x with $|x a| < \delta$, it is true that $|f(x) L| < \epsilon$.
- 4. for every $\epsilon > 0$ there is a $\delta > 0$ such that for all x with $0 < |x a| < \delta$, it is true that $0 < |f(x) L| < \epsilon$.
- 5. for every $\delta > 0$ there is an $\epsilon > 0$ such that for all x with $0 < |x a| < \delta$, it is true that $|f(x) L| < \epsilon$.