G10 Science: Class 2 Homework

- 1. Contrast the way in which the elements in ionic and covalent compounds achieve stability. [2 mark]
- 2. For each of the following compounds, classify the compound as ionic or covalent and name the compound. [8 marks]

Chemical Formula	lonic/ Covalent	Chemical Name
SO ₂		
PbO ₂		
AlCl ₃		
N ₂ O		
KClO₃		
SnO ₂		
FePO ₄		
N ₂ O ₄		

- 3. Hydrogen peroxide H_2O_2 is a molecular compound used to disinfect cuts. Why is this formula of this compound not written as HO? [2 marks]
- 4. An unknown element X forms a compound with chlorine: XCl₂. Predict the chemical formula of the compound that element X makes with oxygen. Justify your answer. [2 marks]

- 5. Consider the following reaction: $AgNO_3(aq) + NaCl(aq) \rightarrow AgCl(s) + NaNO_3(aq)$
 - a) Label the reactants and products in this reaction. [2 marks]
 - b) Write the chemical name for the compounds that are dissolved in water. [3 marks]
 - c) Write the chemical name for the precipitate. [1 mark]
- 6. Write the balanced chemical equation for the following: [14 marks]
 - a) Potassium oxide + Water → Potassium hydroxide
 - b) Aluminum + Oxygen → Aluminum oxide
 - c) Silicon dioxide + Hydrogen fluoride → Silicon tetrafluoride + Water
 - d) Tetraphosphorus + decoxide + Water → Hydrogen phosphate
 - e) Nitrogen trihydride + Nitrogen monoxide → Nitrogen + Water
 - f) Complete combustion of Pentane (C₅H₁₂)
 - g) Complete combustion of Diethyl ether $(C_4H_{10}O)$

Name:	Mark:	/94
Name:	IVIdik.	/94

7. Complete the following table. [20 marks]

Chemical Formula	Chemical Name
NaBr	
	Magnesium oxide
	Calcium carbonate
Li ₂ S	
Be(OH)₂	
	Lithium sulfate
CaO	
	Potassium iodide
	Boron trifluoride
PF ₅	
CS ₂	
	Chromium (III) nitride
FeO	
SnO ₂	
	Nickel (II) fluoride
AgF	
	Beryllium chlorate
	Ammonium chloride
Ca(NO ₂) ₂	
H ₂	

8. Balance the following chemical equations and classify the type of reaction. Write "syn" for synthesis, "dec" for decomposition, "SD" for single displacement and "DD" for double displacement. [22 marks]

Reaction Type

0.2

- a) _____ $H_2 +$ ____ $O_2 \rightarrow$ _____ H_2O _____
- b) _____ $N_2 +$ ____ $H_2 \rightarrow$ ____ NH_3
- c) $\underline{\hspace{1cm}} S_8 + \underline{\hspace{1cm}} O_2 \rightarrow \underline{\hspace{1cm}} SO_3$
- d) ____ $N_2 +$ ___ $O_2 \rightarrow$ ___ N_2O
- e) $\underline{\hspace{1cm}}$ HgO \Rightarrow $\underline{\hspace{1cm}}$ Hg + $\underline{\hspace{1cm}}$ O₂
- f) $\underline{\hspace{1cm}}$ Zn + $\underline{\hspace{1cm}}$ HCl \rightarrow $\underline{\hspace{1cm}}$ ZnCl₂ + $\underline{\hspace{1cm}}$ H₂
- g) $_$ SiCl₄ + $_$ H₂O \rightarrow $_$ H₄SiO₄ + $_$ HCl
- h) $\underline{\hspace{1cm}}$ Na + $\underline{\hspace{1cm}}$ H₂O \rightarrow $\underline{\hspace{1cm}}$ NaOH + $\underline{\hspace{1cm}}$ H₂
- i) $\underline{\hspace{1cm}}$ H₃PO₄ \rightarrow $\underline{\hspace{1cm}}$ H₄P₂O₇ + $\underline{\hspace{1cm}}$ H₂O
- j) _____ $C_{10}H_{16} +$ _____ $Cl_2 \rightarrow$ _____ C + _____ HCl
- k) $\underline{\hspace{1cm}}$ CO₂ + $\underline{\hspace{1cm}}$ NH₃ \rightarrow $\underline{\hspace{1cm}}$ OC(NH₂)₂ + $\underline{\hspace{1cm}}$ H₂O
- 1) _____ $Si_2H_3 +$ _____ $O_2 \rightarrow$ _____ $SiO_2 +$ _____ H_2O_3
- m) _____ $Al(OH)_3 +$ _____ $H_2SO_4 \rightarrow$ _____ $Al_2(SO_4)_3 +$ _____ H_2O _____
- n) _____ Fe + ____ $O_2 \rightarrow$ ____ Fe₂ O_3
- o) _____ Fe₂(SO₄)₃ + ____ KOH \rightarrow ____ K₂SO₄ + ____ Fe(OH)₃ ____
- p) ____ CaSO₄ + ___ KOH \rightarrow ___ Ca(OH)₂ + ___ K₂SO₄ ___
- q) _____ $FeS_2 +$ _____ $O_2 \rightarrow$ _____ $Fe_2O_3 +$ _____ SO_2
- r) $_$ Al + $_$ FeO \rightarrow $_$ Al₂O₃ + $_$ Fe
- s) _____ Fe₂O₃ + _____ H₂ \rightarrow _____ Fe + _____ H₂O ____
- t) _____ Fe + ____ $H_2SO_4 \rightarrow$ _____ $H_2 +$ _____ $Fe_2(SO_4)_3$ _____
- u) ____ Al_4C_3 + ____ $H_2O \rightarrow$ ____ $CH_4 +$ ____ $Al(OH)_3$ ____
- v) $\underline{\hspace{1cm}}$ Na + $\underline{\hspace{1cm}}$ O2 \rightarrow $\underline{\hspace{1cm}}$ Na₂O

9. Explain why you should not cook on a barbeque in an enclosed space. [3 marks]

10. Classify the following chemical equations as representing synthesis, decomposition, single displacement, double displacement, combustion reactions or neutralization. [5 marks]

a) Ammonia + Sulfuric acid → Ammonium sulfate

b) Aluminum + Copper(II) chloride → Aluminum chloride + Copper

c) Phosphoric acid + Sodium hydroxide -> Water + Sodium phosphate

d) Aluminum sulfate → Aluminum oxide + Sulfur trioxide e) Ethane (C_2H_6) + Oxygen \rightarrow Carbon dioxide + Water

11. Write a balanced chemical equation for the each of the reactions in Question (10). [10 marks]

b) _____

c)

d) _____