Willian Chen

Truth Table

A-	13	J C	[Y
0	n	(2)	
0	~		0
-	0	1 1	' 1
0	1	òΙ	O
0	1	il	•
)	0	0	0
	0		
- 1 (0 1	1	l
[i	0	9
	\lfloor , \rfloor	$ \cdot $	ſ

AB	(6	(
00	0	1 (1	7
७(0	0	-
(1	0	(1)	
10	0	V	

Trus	Tasse		
A	B	1 (1 >
0000111	00110011	0 1 0 1 0 1	1 1 1 0000 0

Kc	mough	Me	<u>C</u>
Ag	(0	. (
60	1_1		\sim_L
01		1	T
[1	0	0	J
(0)	0	0	
ſ		-	

ProSlen 1

William Chen

1,

2.

Problem 2

William Chen

A	B	10	/ >
0	6	6	1
0	0	(0
6	(0	0
0		1	0
1	0	0	0
(0	(0
(O	0
(1	

SOP:

Y= ABC +ABC

A/B/C	14
0 6 6	1
0 6 1	6
0 11 0	1
-+	0
100	
	0
	6
\	

SOP;

YZABC +ABC+ABC+ABC

1. YZABC+ABC

2.
$$Y = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

= $\overline{BC}(\overline{A+A}) + \overline{BC}(\overline{A+A})$
= $\overline{BC} + \overline{BC} = \overline{C(\overline{B}+13)} = \overline{C}$

	χ,	1 X2	/×3	SCX1, X2, X3 !	1 \$ /101
0	0	0	6	1	J(X1, X2,X3)
(-	0	0	1	(0
2	0		0	1	0
3	6	1	1	1	G
9	ſ	0	6	j	0
5	ſ	0	1	6	1
6	١	-1	0	1	6
7	(1	

$$f(x_1, x_2, x_3) = x_1 \cdot x_2 \cdot x_3$$
 $f(x_1, x_2, x_3) = x_1 \cdot x_2 \cdot x_3$ $f(x_1, x_2, x_3) = x_1 \cdot x_2 \cdot x_3 \in x_1 + x_2 + x_3$

Karnays Map

Alterlace

S(X11X2X3) = XX, S2X3 + X1 X2X3 + X1 X2X3 + X1 X2X3

+X1 X2 X3 + X1 X2 X3

E

SOP:

f(x1, x2, x3)=x1 x2 x3 + x1 x2 x3 + x1 x2 x3 + x1 x2 x3

Pos:

S(x1, x1, x3) = (x, + x2+x3) (x1+x2+x3)(x1+x2+x3) (x1+x2+x3)

MINIMAL COST:

$$f(x_{1}/x_{2}/x_{3}) = \overline{x_{1}}x_{2}x_{3} + x_{1}x_{2}x_{3} + x_{1}x_{2}x_{3} + x_{1}x_{2}x_{3}$$

$$= x_{3}(\overline{x_{1}}x_{2} + x_{1}x_{2}) + \overline{x_{3}}(x_{1}\overline{x_{2}} + x_{1}x_{2})$$

$$= x_{3}(\overline{x_{2}}(x_{1}+\overline{x_{1}})) + x_{3}(x_{1}(\overline{x_{2}}+x_{2}))$$

$$= x_{3}\overline{x_{2}} + \overline{x_{3}}x_{1} = x_{1}\overline{x_{3}} + \overline{x_{2}}x_{3}$$

Kamaush Map

SOP: S(X1,X2,X3) = X1+X2 = X1X2

x₁ | 5(x₁,x₂,x₃)

Problem 6

Willian Chen

Karnaugh Map

Y= AB + ACTO + AC = A(B+CTO+C) (+C) = A(B+C+D) (+C) = AC+AB+AD D = A(C+B+D)

Circuit

Truth Table

A	-	13	10			Y
0000	7	0	0		1	
0		l [0		l	
[l	C)		10		
				1		

Kernaugh Map

PEATBEC

19 Gates Total: 16 AND Gates 3 NOT GAJES Por an N-2° decoder, 1 NOT Gates and 2° (N-1)

Part 10

1

2

3.

.

•

Problem 11

William Chen

•

William Chen Problem 12 - O A B Z B ENABLE? AB ATS AB

(TO-37) 8 to 1 Multiplexer こっててないいいい (J9-I13) 8 to 1 Mustiplexer (I6-131) 16771100122 (716-727) 8 to 1 Mul-Helexa []24-J31) I24 I21 8 to 1 126 127 128 MUTTIPLEXE I30 I31 BC 2 to 4 Decodes

2.

Truth Table for f(x1, x2, x3) = ZM(0, 2, 4, 6, 7)

X1	XZ	1 x3	15(Kin	x2, x3,
0	O	0	r	(0)
0	0	16	0	(1)
0	1	0	1	(2)
	0		0	(3)
	0	0	0	(4) (5)
1	(101	l	(6)
1	l	1 /	1	(7)

Losic Expression

S(x1,x2,x3) = x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3

Question 1:

- SIMPLIST expression into)

S= (x1x2 +x1x2 +x1x2 +x1x2) x3 +x1x2x3

#2

Problem 14-3

Problem 15 William Chen

 $\int (x_{1},x_{2},x_{3},x_{4},x_{5}) = \overline{x_{1}} \overline{x_{2}} \overline{x_{4}} \overline{x_{5}} + x_{1}x_{2} + x_{1}x_{3} + x_{1}x_{4} + x_{3}x_{4}x_{5} - \overline{x_{1}} (\overline{x_{2}} \overline{x_{4}} \overline{x_{5}}) + x_{1}(x_{2} + x_{3} + x_{4}) + x_{3}x_{4}x_{5} - \overline{x_{1}} (\overline{x_{2}} (\overline{x_{4}} \overline{x_{5}})) + x_{1}(x_{2} + x_{3} + x_{4}) + x_{3}x_{4}x_{5} - \overline{x_{1}} (\overline{x_{2}} + (\overline{x_{4}} \overline{x_{5}})) + x_{1}(x_{2} + x_{3} + x_{4}) + x_{3}x_{4}x_{5} - \overline{x_{1}} (\overline{x_{2}} + \overline{x_{4}} + \overline{x_{5}}) + x_{1}(x_{2} + x_{3} + x_{4}) + x_{3}x_{4}x_{5} - \overline{x_{1}} (\overline{x_{2}} + \overline{x_{4}} + \overline{x_{5}}) + x_{1}(x_{2} + x_{3} + x_{4}) + x_{3}x_{4}x_{5} - \overline{x_{1}} (\overline{x_{2}} + \overline{x_{4}} + \overline{x_{5}}) + x_{1}(x_{2} + x_{3} + x_{4}) + x_{3}x_{4}x_{5} - \overline{x_{1}} (\overline{x_{2}} + \overline{x_{4}} + \overline{x_{5}}) + x_{1}(x_{2} + x_{3} + x_{4}) + x_{3}x_{4}x_{5}$

Problem 16 f(x1,1x2, x3) = x1 x2 + x2 x3 + x1 x2 x3 Truth Table

	XI	1/2 / X3	5(x1, x2, x3)		
	0 0	6 0	6		
	2 6				
	4 (0 0	0		
	6 1		0		+1,42,4,3
a a	/ []		(K1243	
1	×1 -		6 41 4143		
	×2	3 to 8	3	$\int -\int (x_{ij} X_z)$	(23)
	×3 —	Decoder	6		7 - 3)
	(-	En	7		

Problem 17-1

Truth Table:

(0	rrent	5+9+0		Next	Stell
XI	Xz	1 X3	Input	1 411 4	12/3
0 0 0 0 1 1 1 1	0 1 1 1 1 0 0	0 1 0 0 1 1 0			

Y(x1, x2, x3) = x2 x3 + x1 x3

4x2 0 0	`
14 10	1
10/0/1	

Y (x,, x2, x3) = x2 x3 + x, x3

XI KI	(2)	
00 0 0 0 XI XI	7 1 (1)	1
01	1	1
11/1/1	U	1
10 0	0	1

Y3(x1, x2, x3) = x1 x2 + x1 x2

XX	×7 6	
XIFL		11
01	6	0
11	1	i
(0)	0	0

Finite State Machine

Proyen 17-2

States;

So - Last Input is 0

SI - There is a lafter last zero

Sh-There are 2 organize 1's after last zero

Input

Io: laret 0 on FSM

I, : Input | on Form

State	Current State	Input	Next State
Transition	\$0 \$1 \$2 \$0 \$1 \$2	I CO III	So So So Si S2 S2

keri

$$S_0 \rightarrow G_0$$
 $T_0 \rightarrow 0$
 $S_1 \rightarrow G_1$ $T_1 \rightarrow 1$
 $S_2 \rightarrow G_0$

Current	Stcte B	IMPUT	X Next	State
0	G	0	0	0
0	l	0	6	6
l	1	0	×	X
l	0	0	O	0
0	6	1	6	1
6	1	1	1	6
l l	()	1	×	×
T		1	1	O

x= \$ (A, B, I)	=AI+BI
-----------------	--------

V 2	10
48	
00 0 10	
010	
11 × X	
10 0 0	
Y= f(4, 8, I) = I	
17	
AB 0 1	
11 XX	
000	

