Xinyue Feng

Email: fengxy26@gmail.com | Phone: 86-137 2549 2612 Website: https://fengxystar.github.io

EDUCATION

Nanjing University

Nanjing, China

M.S. in Statistics

2019 – 2022 (Expected)

GPA: 3.86/4.0 (Ranking: 1st/15)

Sun Yat-sen University

Guangzhou, China

B.S. in Statistics

2015 - 2019

GPA: 3.75/4.0

Courses: Multivariate Statistical Analysis (97/100), Stochastic Processes (98/100), Data Structures and

Algorithm in C++ (96/100), Digital Image Processing (94/100), etc.

RESEARCH INTERESTS

Computer Vision, Medical Image Analysis, Statistical Machine Learning

PATENTS

Xinyue Feng, Wujun Li, Song Zhou. Building surface crack detection method based on image processing. Patent No.201911371906. 2020

Xinyue Feng, Wujun Li, Song Zhou. Image-based bridge crack detection method. Patent No.201911371902, 2020

RESEARCH EXPERIENCE

A Hierarchical Unsupervised Framework for Hand-drawn Diagrams Recognition

Microsoft Research Asia

Sep.2021– Mar.2022

Advisors: Dr. Hao Wang and Dr. Yun Wang

Proposed Method: A hierarchical Bayesian deep learning model for interpretable fine-grained detection and transformation from unstructured sketches to structured diagrams without human annotation.

Contribution:

- The first unsupervised method for hand-drawn diagrams recognition.
- Results verify that our method significantly improves upon the state of the art.

Robust Hashing Learning in Image Retrieval via Random Smoothing

LAMDA Group, the Department of Computer Science and Technology

Oct.2020 - June.2021

Advisors: Prof. Wujun Li

Proposed Method: We propose a certified defense method in image retrieval called Smoothing Hashing (SH). It builds a robust hashing model towards adversarial perturbations by adding Gaussian noise, and it is supported theoretically by Neyman-Pearson Lemma.

Contribution:

- The first defense method for hashing-based retrieval model.
- Significantly improve the robust accuracy: MNIST(+64.2%), CIFAR10(+81.4%), NUSWIDE(+62.6%).

• It is supported theoretically.

A Noise-Robust Method for Crack Segmentation

LAMDA Group, the Department of Computer Science and Technology Oct. 2019– Jan.2020

Advisors: Prof. Wujun Li

Proposed Method: We propose a noise-robust crack segmentation method consisting of two steps: Multi-direction Non-minimum Suppression and pixel expansion-based crack connection.

Contribution:

- More robust to the noise than existing crack segmentation algorithms.
- Obtain more continuous cracks, which provides a good foundation for subsequent crack analysis.

Segmentation of Pectoral Muscle in Mammograms (Best B.S. thesis)

Computational Medical Imaging Laboratory

Aug.2018 – Jun.2019

Advisors: Prof. Yao Lu

Proposed Method: We propose a novel pectoral muscle segmentation method combining the deep learning method and the traditional image processing method, so that the traditional algorithm can refine the results of the deep neural network.

Contribution:

- The first attempt to combine traditional techniques and deep learning methods in pectoral muscle segmentation.
- Achieves state-of-the-art performance: DDSM(+0.6%), MIAS(+1.4%), Inbreast(+0.8%), cases provided by three cooperative hospitals(+0.6%).

COMPETITION

	26/1681 (Top 2%). CVPR2021 Security AI Challenger	2021
•	First Prize (Top 1%), China Undergraduate Mathematical Contest in Modeling	2017

HONORS AND AWARDS

	HUAWEI Fellowship, NJU	2020
•	First Prize (Top 5%), Excellent Student Scholarship, NJU	2019-2021
•	University-level Excellent Graduation Thesis, SYSU	2019
	First Prize (Top 5%), Excellent Student Scholarship, SYSU	2016-2019

SKILLS

- Programming Language: Python, MATLAB, C/C++, R, SQL
- Tools: PyTorch, Tensorflow, OpenCV