Homework 3

For life the value	th poly	romal	interpo	lation	we choose
The value y/	y = ao + a,	Xr Q2 X	+ 93×3+0	24 X 4 + 1	a ₅ x ⁵
	the six				
$ \begin{array}{c} \chi_0 = 2.00 \\ \chi_1 = 4.25 \\ \chi_2 = 5.25 \\ \chi_3 = 7.81 \end{array} $	$\frac{\langle g(x_1) = g(x_2) = g(x_2) = g(x_2) = g(x_2) = g(x_2)}{\langle g(x_2) = g(x_2) = g(x_2) = g(x_2)}$	7. 1 6. 0 5.0			
$x_4 = 9.20$ $x_5 = 10.60$	$y(x_1) = y(x_2) =$	35			
$(y/4.25) = a_0$	+ ay (4.25) + a	2 (4.25) + a	13 (4. 25) FU	(5.25)4	05 (2.00) = 7.2 a5 (4.25) = 7.1 2-(5.25) = 6.0 (2.21) = 5.0
$y(7.81) = a_0$ $y(9.20) = a_0$ $y(10.60) = a_0$	+a ₁ (7.81) + U ₂ +a ₁ (9.20) + Q ₂ (+a ₁ (10.60) +a ₂ ((7.81) *+ az (9.20) ² + az (9. 10.60) ² + az (10.	20)2+ ay (9 20)3+ ay (9	(1.87) + Q5, (20) 4+ Q5, (6) 4+ Q5, (1)	19.20)5=3.5 19.60)5=5.0
	the six en				
1 4.25 1 5.25 1 7.81 1 9.20	60.996	76.766 144.70 476.38 748.69	326.25 769.69 3720.5 7163.9	3988.4	$a_{2} = 6.0$ $a_{3} = 5.0$ $a_{4} = 3.5$
1 10.66	The state of the s	1191.0	12625		a ₅ 5.0

Figure 1 Location of holes on the rectangular plate.

Cubic Spline formula is

{(x) = (xi - x)^3 Mi + (x - xi - 1)^3 Mi + (xi - x) (yi - 6 Mi - 1) + (x - xi - 1) (yi - 6 Mi - 1) We have Mi-1 + 4 Mir Mi+1 = 6 (yi-1-24 - yi+1)

Here h=2.5 n=5 Mo=0 M5=0

Substitute i=1 in equation MoraMir Ma = 6 (yo - 24, -42) = 414, +1/2 = -0.96 M1+4M2+M3= 62 (41-242+43)=> M+4M2+M3-0.096 M3+4M3+M4 = 6 (42-243+44) => M2+4M3+M4 = -048 M3+4M4+M5=62/43-244+45)=>M,+4M4=2.88 Substitute i-1 in eq, we get cubic spline 1st interval [24 -5] fix1= -0,0191x3+01148x2-0.1501x+7.1939 for 20=x=45 (2/x) = 0.03/7x3 - 0.4709x2+1.7072x+1776 for 4.5=x45x5 $f_3(x) = -0.0372x^3 + 0.6828x^2 - 4.5051x + 163729$ for $525 \le x \le 2.81$ July = 0.0789x3 - 1.9504x7+15.087x-33.4957 for 2816x =9 2 fo(x) = -0.0542x3+ 1.7777x2-17.320x+57.3723 for 9.2=x=106

Ex.3.2

a)
$$\frac{n \mid 1 \mid 2 \mid 3 \mid 4 \mid 5}{\Gamma(n) \mid 1 \mid 1 \mid 2 \mid 6 \mid 24}$$

```
import numpy as np
import matplotlib.pyplot as plt
plt.style.use('seaborn-poster')
% matplotlib inline
def divided_diff(x, y):
  function to calculate the divided
  differences table
  n = len(y)
  coef = np.zeros([n, n])
  # the first column is y
  coef[:,0] = y
  for j in range(1,n):
     for i in range(n-j):
       coef[i][j] = \
       (coef[i{+}1][j{-}1] - coef[i][j{-}1]) \, / \, (x[i{+}j]{-}x[i])
  return coef
def newton_poly(coef, x_data, x):
  evaluate the newton polynomial
  at x
  n = len(x_data) - 1
  p = coef[n]
  for k in range(1,n+1):
     p = coef[n-k] + (x -x_data[n-k])*p
  return p
x = np.array([1,2,3,4,5])
y = np.array([1,1,2,6,24])
# get the divided difference coef
a_s = divided\_diff(x, y)[0, :]
# evaluate on new data points
\#x_new = np.arange(1, 2, 3, 4, 5)
#Y_new = newton_poly(a_s, x, x_new)
plt.figure(figsize = (12, 8))
plt.plot(x, y, 'bo')
#plt.plot(x_new, y_new)
```

x	у	1 st order	2 nd order	3 rd order	4 th order
1	1				
		0			
2	1		0.5		
		1		0.333333	
3	2		1.5		-0.458333
		4		-1.5	
4	6		-3		
		-2			
5	4				

Newton's divided difference interpolation formula

$$f(x) = y_0 + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_1)f[x_0, x_1, x_2] + (x - x_0)(x - x_1)(x - x_2)f[x_0, x_1, x_2, x_3] + (x - x_0)(x - x_1)(x - x_2)(x - x_3)f[x_0, x_1, x_2, x_3, x_4]$$

$$f(x) = 1 + (x - 1) \times 0 + (x - 1)(x - 2) \times 0.5 + (x - 1)(x - 2)(x - 3) \times 0.333333 + (x - 1)(x - 2)(x - 3)(x - 4) \times -0.458333$$

$$f(x) = 1 + (x - 1) \times 0 + (x^2 - 3x + 2) \times 0.5 + (x^3 - 6x^2 + 11x - 6) \times 0.3333333 + (x^4 - 10x^3 + 35x^2 - 50x + 24) \times -0.458333$$

$$f(x) = 1 + (0) + (0.5x^2 - 1.5x + 1) + (0.3333333x^3 - 2x^2 + 3.666667x - 2) + (-0.458333x^4 + 4.583333x^3 - 16.041667x^2 + 22.916667x - 11)$$

$$f(x) = -0.458333x^4 + 4.916667x^3 - 17.541667x^2 + 25.083333x - 11$$

$$f(x) = \frac{\left(x_i - x\right)^3}{6h} M_{i-1} + \frac{\left(x - x_{i-1}\right)^3}{6h} M_i + \frac{\left(x_i - x\right)}{h} \left(y_{i-1} - \frac{h^2}{6} M_{i-1}\right) + \frac{\left(x - x_{i-1}\right)}{h} \left(y_i - \frac{h^2}{6} M_i\right)$$

We have $M_{i-1} + 4/(i+1) = \frac{6}{h^2} (y_{i-1} - 2y_i + y_{i+1})$ h=1 h=4 $M_{0=0}$ $M_{4=0}$ $M_{0} + 4/(4+1) = \frac{6}{h^2} (y_{0} - 2y_{1} + y_{2}) => 4/(4+1) = \frac{6}{h^2}$ $M_{1} + 4/(4+1) + M_{2} = \frac{6}{h^2} (y_{2} - 2y_{2} + y_{3}) => M_{1} + 4/(4+1) + M_{2} = 18$ $M_{2} + 4/(4+1) + M_{3} = \frac{6}{h^2} (y_{2} - 2y_{3} + y_{3}) => M_{2} + 4/(4+1) = 84$ $M_{2} + 4/(4+1) + M_{3} = \frac{6}{h^2} (y_{2} - 2y_{3} + y_{3}) => M_{2} + 4/(4+1) = 84$ $M_{2} + 4/(4+1) + M_{3} = \frac{6}{h^2} (y_{2} - 2y_{3} + y_{3}) => M_{2} + 4/(4+1) = 84$ $M_{3} + 4/(4+1) + M_{3} = \frac{6}{h^2} (y_{2} - 2y_{3} + y_{3}) => M_{3} + 4/(4+1) = 84$ $M_{1} + 4/(4+1) + M_{3} = \frac{6}{h^2} (y_{2} - 2y_{3} + y_{3}) => M_{1} + 4/(4+1) + M_{2} = 18$ $M_{1} + 4/(4+1) + M_{3} = \frac{6}{h^2} (y_{2} - 2y_{3} + y_{3}) => M_{1} + 4/(4+1) + M_{2} = 18$ $M_{1} + 4/(4+1) + M_{3} = \frac{6}{h^2} (y_{2} - 2y_{3} + y_{3}) => M_{1} + 4/(4+1) + M_{2} = 18$ $M_{1} + 4/(4+1) + M_{3} = \frac{6}{h^2} (y_{2} - 2y_{3} + y_{3}) => M_{1} + 4/(4+1) + M_{2} = 18$ $M_{1} + 4/(4+1) + M_{3} = \frac{6}{h^2} (y_{2} - 2y_{3} + y_{3}) => M_{1} + 4/(4+1) + M_{2} = 18$ $M_{1} + 4/(4+1) + M_{3} = \frac{6}{h^2} (y_{2} - 2y_{3} + y_{3}) => M_{1} + 4/(4+1) + M_{2} = 18$ $M_{1} + 4/(4+1) + M_{3} = \frac{6}{h^2} (y_{2} - 2y_{3} + y_{3}) => M_{1} + 4/(4+1) + M_{2} = 18$ $M_{1} + 4/(4+1) + M_{2} = \frac{6}{h^2} (y_{2} - 2y_{3} + y_{3}) => M_{1} + 4/(4+1) + M_{2} = 18$ $M_{1} + 4/(4+1) + M_{2} = \frac{6}{h^2} (y_{2} - 2y_{3} + y_{3}) => M_{1} + 4/(4+1) + M_{2} = 18$ $M_{1} + 4/(4+1) + M_{2} = \frac{6}{h^2} (y_{2} - 2y_{3} + y_{3}) => M_{1} + 4/(4+1) + M_{2} = 18$ $M_{1} + 4/(4+1) + M_{2} = \frac{6}{h^2} (y_{2} - 2y_{3} + y_{3}) => M_{1} + 4/(4+1) + M_{2} = 18$ $M_{1} + 4/(4+1) + M_{2} = \frac{6}{h^2} (y_{2} - 2y_{3} + y_{3}) => M_{2} + 4/(4+1) + M_{3} = 18$ $M_{1} + 4/(4+1) + M_{2} = \frac{6}{h^2} (y_{2} - 2y_{3} + y_{3}) => M_{2} + 4/(4+1) + M_{3} = 18$ $M_{1} + 4/(4+1) + M_{2} = \frac{6}{h^2} (y_{2} - 2y_{3} + y_{3}) => M_{2} + 4/(4+1) + M_{3} = 18$ $M_{1} + 4/(4+1) + M_{2} + M_{3} = 18$ $M_{2} + 4/(4+1) + M_{3} = 18$

Ex.3.3

$$f(x) = \sqrt{x+1}$$

interval [-1, 1]

```
>> pkg load symbolic
>> syms n x

>> C=chebyshevU(8,x)
C = (sym)

8 6 4 2
256*x - 448*x + 240*x - 40*x + 1
```

and the approx polynomial is pin = 514
Required that \$100 = f(0) = 1 and So we need to compute coefficients p that
An initial guess for par is pri/d) = fri/d) for reced-9 in which case and = fri/d)
For degree 7, the conditions plat = flat
P(1) = P(1)

d	coefficients		d	coe	coefficients		
1	p_0	=	+1	2	p_0	=	+1
	p_1	=	$+4.1421356237309505 * 10^{-1}$	•	p_1	=	$+4.8563183076125260 * 10^{-1}$
	e	==	$+1.7766952966368793 * 10^{-2}$:	p_2	=	$-7.1418268388157458 * 10^{-2}$
					e	=	$+1.1795695163108744*10^{-3}$
3	p_0	=	+1	4	p_0	=	+1
	p_1	=	$+4.9750045320242231 * 10^{-1}$	· I	p_1	==	$+4.9955939832918816 * 10^{-1}$
	p_2	=	$-1.0787308044477850 * 10^{-1}$	•	p_2	=	$-1.2024066151943025 * 10^{-1}$
	p_3	=	$+2.4586189615451115 * 10^{-3}$:	p_3	=	$+4.5461507257698486 * 10^{-3}$
	e	=	+1.1309620116468910 * 10-	۱ ا	p_4	=	$-1.0566681694362146 * 10^{-3}$
					e	=	$+1.2741170151556180 * 10^{-3}$
5	p_0	=	+1	6	p_0	=	+1
	p_1	=	$+4.9992197660031912 * 10^{-1}$		p_1	=	$+4.9998616695784914 * 10^{-1}$
	p_2	=	$-1.2378506719245053 * 10^{-1}$		p_2	=	$-1.2470733323278438*10^{-}$
	p_3	=	$+5.6122776972699739 * 10^{-2}$		p_3	=	$+6.0388587356982271 * 10^{-3}$
	p_4	=	$-2.3128836281145482 * 10^{-3}$	ì	p_4	=	$-3.1692053551807930 * 10^{-3}$
	p_5	=	+5.0827122737047148 * 10-3	1	p_5	=	$+1.2856590305148075 * 10^{-3}$
	e	=	+1.5725568940708201 * 10-6	,	P6	=	$-2.6183954624343642 * 10^{-3}$
					e	=	+2.0584155535630089 * 10-
7	p_0	=	+1	8	p_0	=	+1
	p_1	=	$+4.9999754817809228 * 10^{-1}$	· I	p_1	=	$+4.9999956583056759*10^{-1}$
	p_2	=	$-1.2493243476353655 * 10^{-1}$		p_2	=	$-1.2498490369914350 * 10^{-}$
	p_3	=	$+6.1859954146370910 * 10^{-2}$	1	p_3	=	$+6.2318494667579216*10^{-3}$
	p_4	=	$-3.6091595023208356 * 10^{-3}$	1	p_4	=	$-3.7982961896432244 * 10^{-3}$
	p_5	=	+1.9483946523450868 * 10-3	2	p ₅	=	+2.3642612312869460 * 10-
	p_6	=	$-7.5166134568007692 * 10^{-3}$		p_6	=	$-1.2529377587270574 * 10^{-3}$
	p ₇	=	$+1.4127567687864939 * 10^{-3}$		p ₇	=	$+4.5382426960713929 * 10^{-3}$
	e	=	+2.8072302919734948 * 10-7		p_8	=	$-7.8810995273670414 * 10^{-1}$
				1	e	=	+3.9460605685825989 * 10-

The numbers are coefficient pi for the polynomyal p(x), The table shows the maximum error for the approximation.

```
% construct N=8 data points
N=8;
xdata=linspace(-1,1,N);
```

```
ydata=sqrt(1+x)(xdata);
% construct many test points
xval=linspace(???,???,4001);
% construct the true test point values, for reference
yvalTrue=sinh(???);
% use Lagrange polynomial interpolation to evaluate
% the interpolant at the test points
yval=eval_lag(???,???,xval);
% plot reference values in thick green
plot(xval, yvalTrue, 'g', 'linewidth', 4);
hold on
% plot interpolation data points
plot(xdata, ydata, 'k+');
% plot interpolant in thin black
plot(xval, yval, 'k');
hold off
% estimate the approximation error of the interpolant
approximationError=max(abs(yvalTrue-yval))/max(abs(yvalTrue))
          5
```

10

15

20

25

Figure 1 sqrt(x+1)

