

Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application.

1. (Currently Amended) Compounds of the formula (I)

in which

X ~~represents~~ is halogen, alkyl, alkoxy, alkenyloxy, alkylthio, alkylsulphinyl, alkylsulphonyl, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, cyano,

Z ~~represents~~ is in each case optionally substituted aryl or hetaryl[[],];

W and Y independently of one another ~~represents~~ are hydrogen, halogen, alkyl, alkoxy, alkenyloxy, haloalkyl, haloalkoxy, haloalkenyloxy, nitro or cyano[[],];

A ~~represents in each case optionally halogen substituted alkyl, alkenyl, alkoxyalkyl, saturated, optionally substituted cycloalkyl,~~

D ~~represents hydrogen or represents in each case optionally halogen substituted alkyl, alkenyl or alkoxyalkyl,~~

A and D together with the atoms to which they are attached ~~represents~~ are a saturated or unsaturated 6- or 7-membered ring which optionally contains at least one

further heteroatom and which is unsubstituted or substituted in the A,D moiety or represent an optionally substituted 5-membered ring[[,]];

G representsis hydrogen (a) or representsis one of the groups selected from the group consisting of:

in which

E representsis a metal ion or an ammonium[[,]];

L representsis oxygen or sulphur[[,]];

M representsis oxygen or sulphur[[,]];

R¹ represents-is in each case optionally halogen-substituted alkyl, alkenyl, alkoxyalkyl, alkylthioalkyl, polyalkoxyalkyl or optionally halogen-, alkyl- or alkoxy-substituted cycloalkyl which may be interrupted by at least one heteroatom, representsis in each case optionally substituted phenyl, phenylalkyl, hetaryl, phenoxyalkyl or hetaryloxyalkyl[[,]];

R² representsis in each case optionally halogen-substituted alkyl, alkenyl or represents in each case is optionally substituted cycloalkyl, phenyl or benzyl[[,]];.

R^3 , R^4 and R^5 independently of one another ~~represents~~are in each case optionally halogen-substituted alkyl, alkoxy, alkylamino, dialkylamino, alkylthio, alkenylthio, cycloalkylthio or ~~represent~~in each case optionally is substituted phenyl, benzyl, phenoxy or phenylthio; and

R^6 and R^7 independently of one another ~~represent~~are hydrogen, in each case optionally halogen-substituted alkyl, cycloalkyl, alkenyl, alkoxy, alkoxyalkyl, ~~represent~~ optionally substituted phenyl, ~~represent~~is optionally substituted benzyl or together with the N atom to which they are attached ~~represent~~are a ring which is optionally interrupted by oxygen or sulphur.

2. (Currently Amended) Compounds of the formula (I) according to Claim 1 in which

X ~~represents~~is halogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_3 - C_6 -alkenyloxy, C_1 - C_6 -alkylthio, C_1 - C_6 -alkylsulphinyl, C_1 - C_6 -alkylsulphonyl, C_1 - C_6 -haloalkoxy, C_3 - C_6 -haloalkenyloxy, nitro or cyano[.,.];

W and Y independently of one another ~~represent~~are hydrogen, halogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, nitro or cyano[.,.];

Z ~~represents~~is one of the radicals selected from the group consisting of:

V^1 represents ~~is~~ halogen, C_1 - C_{12} -alkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkylthio, C_1 - C_6 -alkylsulphinyl, C_1 - C_6 -alkylsulphonyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy, nitro, cyano or represents phenyl, phenoxy, phenoxy- C_1 - C_4 -alkyl, phenyl- C_1 - C_4 -alkoxy, phenylthio- C_1 - C_4 -alkyl or phenyl- C_1 - C_4 -alkylthio, each of which is optionally mono- or polysubstituted by halogen, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy, nitro or cyano[.,.];

V^2 and V^3 independently of ~~one another~~ represent ~~are~~ hydrogen, halogen, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_4 -haloalkyl or C_1 - C_4 -haloalkoxy[.,.];

~~A represents in each case optionally halogen substituted C_1 - C_8 -alkyl, C_3 - C_8 -alkenyl or optionally C_1 - C_4 -alkyl, halogen or C_1 - C_4 -alkoxy substituted C_2 - C_6 -cycloalkyl,~~

~~D represents hydrogen, represents in each case halogen substituted C_1 - C_8 -alkyl or C_3 - C_8 -alkenyl,~~

~~A and D together represent in each case are~~ optionally substituted C_4 - C_6 -alkanediyl or C_4 - C_6 -alkenediyl in which optionally one methylene group may be replaced by oxygen or sulphur,

wherein possible substituents being in each case are:

halogen, hydroxyl, mercapto or ~~in each case~~ optionally halogen-substituted C_1 - C_{10} -alkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkylthio, C_3 - C_7 -cycloalkyl, phenyl, benzyloxy or a further C_1 - C_6 -alkanediyl grouping,

or which optionally contains one of the following groups

or represents is C₃-alkanediyl which is optionally mono- to trisubstituted by halogen, C₁-C₆-alkyl, C₁-C₄-haloalkyl or C₁-C₆-alkoxy[[],];

G represents is hydrogen (a) or represents one of the groups selected from the group consisting of:

in which

E represents is a metal ion or an ammonium ion[[],];

L represents s oxygen or sulphur; and

M representsis oxygen or sulphur[[,]]:

R^1 represents in each case optionally halogen-substituted C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, C_1 - C_8 -alkylthio- C_1 - C_8 -alkyl, poly- C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl or optionally halogen, C_1 - C_6 -alkyl or C_1 - C_6 -alkoxy-substituted C_3 - C_8 -cycloalkyl in which optionally one or more not directly adjacent ring members are replaced by oxygen and/or sulphur,

represents is optionally halogen-, cyano-, nitro-, C₁-C₆-alkyl-, C₁-C₆-alkoxy-, C₁-C₆-haloalkyl-, C₁-C₆-haloalkoxy-, C₁-C₆-alkylthio- or C₁-C₆-alkylsulphonylsubstituted phenyl,

represents is optionally halogen-, nitro-, cyano-, C₁-C₆-alkyl-, C₁-C₆-alkoxy-, C₁-C₆-haloalkyl- or C₁-C₆-haloalkoxy-substituted phenyl-C₁-C₆-alkyl,

represents is optionally halogen- or C₁-C₆-alkyl-substituted 5- or 6-membered hetaryl.

represents is optionally halogen- or C₁-C₆-alkyl-substituted phenoxy-C₁-C₆-alkyl or

~~represents~~ is in each case optionally halogen-, amino- or C₁-C₆-alkyl-substituted 5-or 6-membered hetarylloxy-C₁-C₆-alkyl[[,]]:

R^2 represents in each case optionally halogen-substituted C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_1 - C_8 -alkoxy- C_2 - C_8 -alkyl, poly- C_1 - C_8 -alkoxy- C_2 - C_8 -alkyl,

representsis optionally halogen-, C₁-C₆-alkyl- or C₁-C₆-alkoxy-substituted C₃-C₈-cycloalkyl or

representsis in each case optionally halogen-, cyano-, nitro-, C₁-C₆-alkyl-, C₁-C₆-alkoxy-, C₁-C₆-haloalkyl- or C₁-C₆-haloalkoxy-substituted phenyl or benzyl[[],];

R³ representsis optionally halogen-substituted C-C₈-alkyl or representsis in each case optionally halogen-, C₁-C₆-alkyl-, C₁-C₆-alkoxy-, C₁-C₄-haloalkyl-, C₁-C₄-haloalkoxy-, cyano- or nitro-substituted phenyl or benzyl[[],];

R⁴ and R⁵ independently of one another representare in each case optionally halogen-substituted C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₈-alkylamino, di-(C₁-C₈-alkyl)-amino, C₁-C₈-alkylthio, C₂-C₈-alkenylthio, C₃-C₇-cycloalkylthio or representsare in each case optionally halogen-, nitro-, cyano-, C₁-C₄-alkoxy-, C₁-C₄-haloalkoxy-, C₁-C₄-alkylthio-, C₁-C₄-haloalkylthio-, C₁-C₄-alkyl- or C₁-C₄-haloalkylsubstituted phenyl, phenoxy or phenylthio[[],];

R⁶ and R⁷ independently of one another representare hydrogen, represent in each case-optionally halogen-substituted C₁-C₈-alkyl, C₃-C₈-cycloalkyl, C₁-C₈-alkoxy, C₃-C₈-alkenyl, C₁-C₈-alkoxy-C₁-C₈-alkyl, represent optionally halogen-, C₁-C₈-haloalkyl-, C₁-C₈-alkyl- or C₁-C₈-alkoxy-substituted phenyl, represent optionally halogen-, C₁-C₈-alkyl-, C₁-C₈-haloalkyl- or C₁-C₈-alkoxy-substituted benzyl or together representsare an optionally C₁-C₄-alkyl-substituted C₃-C₆-alkylene radical in which optionally one methylene group is replaced by oxygen or sulphur[[],];

R^{13} ~~represents~~is hydrogen, ~~represents~~ in each case optionally halogen-substituted C_1 - C_8 -alkyl or C_1 - C_8 -alkoxy, ~~represents~~ optionally halogen-, C_1 - C_4 -alkyl- or C_1 - C_4 -alkoxy-substituted C_3 - C_8 -cycloalkyl in which optionally one methylene group is replaced by oxygen or sulphur, or ~~represents~~ in each case optionally halogen-, C_1 - C_6 -alkyl-, C_1 - C_6 -alkoxy-, C_1 - C_4 -haloalkyl-, C_1 - C_4 -haloalkoxy-, nitro- or cyano-substituted phenyl, phenyl- C_1 - C_4 -alkyl or phenyl- C_1 - C_4 -alkoxy[[,]];

R^{14} ~~represents~~is hydrogen or C_1 - C_8 -alkyl; or

R^{13} and R^{14} together ~~represents~~are C_4 - C_6 -alkanediyl[[,]];

R^{15} and R^{16} are identical or different and ~~represents~~are C_1 - C_6 -alkyl; or

R^{15} and R^{16} together ~~represents~~are a C_2 - C_4 -alkanediyl radical which is optionally substituted by C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl or by optionally halogen-, C_1 - C_6 -alkyl-, C_1 - C_4 -haloalkyl-, C_1 - C_6 -alkoxy-, C_1 - C_4 -haloalkoxy-, nitro- or cyano-substituted phenyl[[,]];

R^{17} and R^{18} independently of one another ~~represent~~are hydrogen, ~~represent~~ optionally halogen-substituted C_1 - C_8 -alkyl or ~~represents~~are optionally halogen-, C_1 - C_6 -alkyl-, C_1 - C_6 -alkoxy-, C_1 - C_4 -haloalkyl-, C_1 - C_4 -haloalkoxy-, nitro- or cyano-substituted phenyl; or

R^{17} and R^{18} together with the carbon atom to which they are attached ~~represents~~are a carbonyl group or ~~represent~~ optionally halogen-, C_1 - C_4 -alkyl- or C_1 - C_4 -alkoxy-substituted C_5 - C_7 -cycloalkyl in which optionally one methylene group is replaced by oxygen or sulphur[[,]];

R^{19} and R^{20} independently of one another ~~representare~~ C_1 - C_{10} -alkyl, C_2 - C_{10} -alkenyl, C_1 - C_{10} -alkoxy, C_1 - C_{10} -alkylamino, C_3 - C_{10} -alkenylamino, di-(C_1 - C_{10} -alkyl)-amino or di-(C_3 - C_{10} -alkenyl)amino.

3. (Currently Amended) Compounds of the formula (I) according to Claim 1 in which

W ~~representsis~~ hydrogen, fluorine, chlorine, bromine, methyl, ethyl, methoxy or ethoxy[[],];

X ~~representsis~~ fluorine, chlorine, bromine, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_3 - C_4 -alkenyloxy, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy, C_3 - C_4 -haloalkenyloxy, nitro or cyano[[],];

Y ~~representsis~~ hydrogen, fluorine, chlorine, bromine, C_1 - C_4 -alkyl, C_1 - C_2 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_2 -haloalkoxy[[],];

Z ~~representsis~~ one of the radicals selected from the group consisting of:

V¹ represents is fluorine, chlorine, bromine, C₁-C₆-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphonyl, C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy, nitro, cyan or represents is phenyl, phenoxy, phenoxy-C₁-C₂-alkyl, phenyl-C₁-C₂-alkoxy, phenylthio-C₁-C₂-alkyl or phenyl-C₁-C₂-alkylthio, each of which is optionally mono- or disubstituted by fluorine, chlorine, bromine, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy, nitro or cyano[[],];

V² and V³ independently of one another represent are hydrogen, fluorine, chlorine, bromine, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₂-haloalkyl or C₁-C₂-haloalkoxy[[],];

A represents C₁-C₆-alkyl, C₃-C₆-alkenyl or C₃-C₆-cycloalkyl,

D represents hydrogen, C₁-C₆-alkyl or C₃-C₆-alkenyl,

A and D together represents are optionally substituted C₄-C₅-alkanediyl in which optionally one methylene group may be replaced by a carbonyl group, oxygen or

sulphur, possible substituents being hydroxyl, C₁-C₆-alkyl, C₁-C₄-alkoxy or a further C₁-C₄-alkanediyl grouping, or

which optionally contains one of the following groups

or ~~represents~~ are C₃-alkanediyl which is optionally mono- or disubstituted by fluorine, chlorine, trifluoromethyl, methyl, ethyl or methoxy[.,.];

G ~~represents~~ is hydrogen (a) or ~~represents one of the groups selected from the~~ group consisting of:

in which

E ~~represents~~ is a metal ion or an ammonium ion[.,.];

L ~~represents~~ is oxygen or sulphur; and

M ~~represents~~ is oxygen or sulphur[.,.];

R¹ ~~representsis~~ C₁-C₈-alkyl, C₂-C₈-alkenyl, C₁-C₄-alkoxy-C₁-C₂-alkyl, C₁-C₄-alkylthio-C₁-C₂-alkyl, each of which is optionally mono- to trisubstituted by fluorine or chlorine, or ~~representsis~~ C₃-C₆-cycloalkyl which is optionally mono- or disubstituted by fluorine, chlorine, C₁-C₂-alkyl or C₁-C₂-alkoxy and in which optionally one or two not directly adjacent ring members are replaced by oxygen,

~~representsis~~ phenyl which is optionally mono- or disubstituted by fluorine, chlorine, bromine, cyano, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₂-haloalkyl or C₁-C₂-haloalkoxy,

R² ~~representsis~~ C₁-C₈-alkyl, C₂-C₈-alkenyl or C₁-C₄-alkoxy-C₂-C₄-alkyl, each of which is optionally mono- to trisubstituted by fluorine,

~~representsis~~ C₃-C₆-cycloalkyl which is optionally monosubstituted by C₁-C₂-alkyl or C₁-C₂-alkoxy, or

~~representsis~~ phenyl or benzyl, each of which is optionally mono- or disubstituted by fluorine, chlorine, bromine, cyano, nitro, C₁-C₄-alkyl, C₁-C₃-alkoxy, trifluoromethyl or trifluoromethoxy[[],];

R³ ~~representsis~~ C₁-C₆-alkyl which is optionally mono- to trisubstituted by fluorine or ~~representsis~~ phenyl or benzyl, each of which is optionally monosubstituted by fluorine, chlorine, bromine, C₁-C₄-alkyl, C₁-C₄-alkoxy, trifluoromethyl, trifluoromethoxy, cyano or nitro[[],];

R⁴ ~~representsis~~ C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkylamino, di-(C₁-C₆-alkyl)amino, C₁-C₆-alkylthio, C₃-C₄-alkenylthio, C₃-C₆-cycloalkylthio, each of which is

optionally mono- to trisubstituted by fluorine, or ~~represents~~is phenyl, phenoxy or phenylthio, each of which is optionally mono- or disubstituted by fluorine, chlorine, bromine, nitro, cyano, C₁-C₃-alkoxy, C₁-C₃-haloalkoxy, C₁-C₃-alkylthio, C₁-C₃-haloalkylthio, C₁-C₃-alkyl or trifluoromethyl[[],,];

R⁵ ~~represents~~is C₁-C₆-alkoxy or C₁-C₆-alkylthio[[],,];

R⁶ ~~represents~~is hydrogen, ~~represents~~—C₁-C₆-alkyl, C₃-C₆-cycloalkyl, C₁-C₆-alkoxy, C₃-C₆-alkenyl, C₁-C₆-alkoxy-C₁-C₄-alkyl, each of which is optionally mono- to trisubstituted by fluorine, ~~represents~~is phenyl which is optionally mono- or disubstituted by fluorine, chlorine, bromine, trifluoromethyl, C₁-C₄-alkyl or C₁-C₄-alkoxy, ~~represents~~is benzyl which is optionally monosubstituted by fluorine, chlorine, bromine, C₁-C₄-alkyl, trifluoromethyl or C₁-C₄-alkoxy[[],,];

R⁷ ~~represents~~is C₁-C₆-alkyl, C₃-C₆-alkenyl or C₁-C₆-alkoxy- C₁-C₄-alkyl[[],,];

R⁶ and R⁷ together ~~represents~~are a C₄-5-alkylene radical which is optionally mono- or disubstituted by methyl or ethyl and in which optionally one methylene group is replaced by oxygen or sulphur[[],,];

R¹⁵ and R¹⁶ are identical and ~~represents~~are C₁-C₄-alkyl[[],,];

R¹⁵ and R¹⁶ together ~~represents~~are a C₂-C₃-alkanediyl radical which is optionally mono- or disubstituted by methyl, ethyl, propyl or isopropyl[[],,];

R¹⁷ and R¹⁸ independently ~~of one another~~ ~~represent~~are hydrogen, ~~represent~~ methyl, ethyl, propyl, isopropyl, butyl, isobutyl or tert-butyl, each of which is optionally mono- to trisubstituted by fluorine and/or chlorine; ~~or~~

R¹⁷ and R¹⁸ together with the carbon to which they are attached ~~represents~~ are a carbonyl group or ~~represents~~ are optionally methyl-, ethyl-, methoxy- or ethoxy-substituted C₅-C₆-cycloalkyl in which optionally one methylene group is replaced by oxygen.

4. (Currently Amended) Compounds of the formula (I) according to Claim 1 in which

W ~~represents~~ is hydrogen, methyl, ethyl or chlorine[[],];

X ~~represents~~ is chlorine, methyl, ethyl, propyl, methoxy, ethoxy, propoxy or trifluoromethyl[[],];

Y ~~represents~~ is hydrogen, chlorine or methyl[[],];

Z ~~represents~~ is one of the radicals selected from the group consisting of:

V¹ ~~represents~~ is fluorine, chlorine, bromine, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, methoxy, ethoxy, n-propoxy, isopropoxy, trifluoromethyl, trifluoromethoxy; SO₂C₂H₅, SCH₃, phenoxy, nitro or cyano[[],];

V^2 and V^3 independently of one another ~~represent~~are hydrogen, fluorine, chlorine, methyl, methoxy or trifluoromethyl[[],];

A represents methyl, ethyl, propyl or butyl,

D represents hydrogen, methyl or ethyl,

A and D together ~~represent~~are optionally substituted C_{4-5} -alkanediyil in which optionally one methylene group is replaced by oxygen or sulphur and which is optionally substituted by hydroxyl, methyl, ethyl, methoxy, ethoxy or by a further C_1-C_4 -alkanediyil grouping or represent C_3 -alkanediyil which is optionally mono- or disubstituted by fluorine, methyl, trifluoromethyl or methoxy[[],];

G represents is hydrogen (a) or represents is selected from the group consisting of one of the groups

in which

E represents is a metal ion equivalent or an ammonium ion[[],];

L represents is oxygen or sulphur; and

M ~~represents~~is oxygen or sulphur[[],];

R¹ ~~represents~~is C₁-C₆-alkyl, C₂-C₆-alkenyl, C₁-C₂-alkoxy-C₁-alkyl, C₁-C₂-alkylthio-C₁-alkyl, each of which is optionally mono- to trisubstituted by fluorine, or represents cyclopropyl or cyclohexyl, each of which is optionally monosubstituted by fluorine, chlorine, methyl or methoxy,

~~represents~~is phenyl which is optionally monosubstituted by fluorine, chlorine, bromine, cyano, nitro, methyl, methoxy, trifluoromethyl or trifluoromethoxy[[],];

R² ~~represents~~is C₁-C₈-alkyl, C₂-C₆-alkenyl or C₁-C₄-alkoxy-C₂-C₃-alkyl, each of which is optionally monosubstituted by fluorine,

or ~~represents~~is phenyl or benzyl, each of which is optionally monosubstituted by fluorine, chlorine, cyano, nitro, methyl, ethyl, n-propyl, i-propyl, methoxy, ethoxy, trifluoromethyl or trifluoromethoxy[[],];

R³ ~~represents~~is methyl, ethyl, n-propyl, isopropyl, each of which is optionally mono- to trisubstituted by fluorine, or represents phenyl or benzyl, each of which is optionally monosubstituted by fluorine, chlorine, bromine, methyl, tert-butyl, methoxy, trifluoromethyl, trifluoromethoxy, cyano or nitro[[],];

R⁴ ~~represents~~is C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylamino, di-(C₁-C₄-alkyl)amino, C₁-C₄-alkylthio, each of which is optionally mono- to trisubstituted by fluorine, or ~~represents~~is phenyl, phenoxy or phenylthio, each of which is optionally monosubstituted by fluorine, chlorine, bromine, nitro, cyano, C₁-C₂-alkoxy, C₁-C₂-fluoroalkoxy, C₁-C₂-alkylthio, C₁-C₂-fluoroalkylthio or C₁-C₃-alkyl[[],];

R⁵ ~~represents~~is methoxy, ethoxy, propoxy, butoxy, methylthio, ethylthio, propylthio or butylthio[[],];

R⁶ ~~represents~~is hydrogen, represents C₁-C₄-alkyl, C₃-C₆-cycloalkyl, C₁-C₄-alkoxy, C₃-C₄-alkenyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, each of which is optionally mono- to trisubstituted by fluorine, ~~represents~~is phenyl which is optionally monosubstituted by fluorine, chlorine, bromine, trifluoromethyl, methyl or methoxy, represents benzyl which is optionally monosubstituted by fluorine, chlorine, bromine, methyl, trifluoromethyl or methoxy[[],];

R⁷ ~~represents~~is methyl, ethyl, propyl, isopropyl, butyl, isobutyl or allyl[[],];

R⁶ and R⁷ ~~represents~~are a C₄-C₅-alkylene radical in which optionally one methylene group is replaced by oxygen or sulphur.

5. (Currently Amended) Compounds of the formula (I) according to Claim 1 in which

W ~~represents~~is hydrogen or methyl[[],];

X ~~represents~~is chlorine or methyl[[],];

Y ~~represents~~is hydrogen or methyl[[],];

Z ~~represents~~is one of the radicals selected from the group consisting of:

V^1 representsis fluorine, chlorine, methyl, isopropyl, methoxy, trifluoromethyl, trifluoromethoxy, $\text{SO}_2\text{C}_2\text{H}_5$, SCH_3 , phenoxy or nitro[[],];

V^2 representsis hydrogen, fluorine, chlorine or trifluoromethyl[[],];

A represents methyl or ethyl;

D represents methyl or ethyl;

A and D together representsare optionally substituted $\text{C}_4\text{-C}_5$ -alkanediyl in which optionally one methylene group is replaced by oxygen and which is optionally substituted by a further $\text{C}_1\text{-C}_2$ -alkanediyl grouping, or representsare C_3 -alkanediyl which is optionally mono- or disubstituted by fluorine, methyl or trifluoromethyl[[],];

G representsis hydrogen (a) or represents one of the groupsis selected from the group consisting of:

in which

L representsis oxygen; and

M representsis oxygen[[],];

R¹ representsis C₁-C₆-alkyl or cyclopropyl[[,]];

R² representsis C₁-C₈-alkyl or C₁-C₄-alkoxy-C₂-C₃-alkyl[[,]];

R³ representsis methyl, ethyl or isopropyl.

6. (Currently Amended) A process for preparing compounds of the formula
(I) according to Claim 1, characterized in that, to obtain

(A) compounds of the formula (I-a)

in which

A, D, W, X, Y and Z are as defined above,

(a) halochlorocarbonyl ketones of the formula (II)

in which

W, X, Y and Z are as defined above

Hal represents is halogen, or

(β) malonic acid derivatives of the formula (III)

in which

W, X, Y and Z are as defined above and

U represents is NH₂ or C₁-C₈-alkoxy

are reacted with hydrazines of the formula (IV)

A-NH-NH-D (IV)

in which

A and D are as defined above,

if appropriate in the presence of a diluent and if appropriate in the presence of a base, or

(γ) compounds of the formula (V)

in which

A, D, W, X, Y and Z are as defined above and

R^8 represents is C_1 - C_8 -alkyl,

are reacted, if appropriate in the presence of a diluent and if appropriate in the presence of a base,

compounds of the formulae (I-a) to (I-g) shown above in which A, D, G, W, X, Y and Z are as defined above, compounds of the formulae (I'-a) to (I'-g)

in which

A, D, G, W, X and Y are as defined above and

Z' represents is chlorine, bromine, iodine,

are reacted with boronic acids of the formula (VI)

in which

Z is as defined above

in the presence of a solvent, a base and a catalyst, suitable catalysts being, in particular, palladium complexes,

(C) compounds of the formula (I-b) shown above in which A, D, R¹, W, X, Y and Z are as defined above, compounds of the formula (I-a) shown above in which A, D, W, X, Y and Z are as defined above are ~~in each case~~ reacted

(α) with acid halides of the formula (VII)

in which

R¹ is as defined above and

Hal ~~represents~~ is halogen

or

(β) with carboxylic anhydrides of the formula (VIII)

in which

R^1 is as defined above,

if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder,

(D) compounds of the formula (I-c) shown above in which A, D, R^2 , M, W, X, Y and Z are as defined above and L ~~represents~~^{is} oxygen, compounds of the formula (I-a) shown above in which A, D, W, X, Y and Z are as defined above ~~are in each case reacted~~

with chloroformic esters or chloroformic thioesters of the formula (IX)

in which

R^2 and M are as defined above,

if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder;

(E) compounds of the formula (I-c) shown above in which A, D, R^2 , M, W, X, Y and Z are as defined above and L ~~represents~~^{is} sulphur, compounds of the formula (I-a) shown above in which A, D, W, X, Y and Z are as defined above ~~are in each case reacted~~

with chloromonothioformic esters or chlorodithioformic esters of the formula (X)

in which

M and R² are as defined above,

if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder

and

(F) compounds of the formula (I-d) shown above in which A, D, R³, W, X, Y and Z are as defined above, compounds of the formula (I-a) shown above in which A, D, W, X, Y and Z are as defined above are ~~in each case~~ reacted with

sulphonyl chlorides of the formula (XI)

in which

R³ is as defined above,

if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder,

(G) compounds of the formula (I-e) shown above in which A, D, L, R⁴, R⁵, W, X, Y and Z are as defined above, compounds of the formula (I-a) shown above in which A, D, W, X, Y and Z are as defined above are **in each case** reacted

with phosphorus compounds of the formula (XII)

in which

L , R^4 and R^5 are as defined above and

Hal represents is halogen[[,]];

if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder,

compounds of the formula (I-f) shown above in which A, D, E, W, X, Y and Z are as defined above, compounds of the formula (I-a) in which A, D, W, X, Y and Z are as defined above are ~~in each case~~ reacted

with metal compounds or amines of the formulae (XIII) or (XIV), respectively

in which

Me representsis a mono- or divalent metal[[],];

t representsis the number 1 or 2; and

R^4 , R^{10} , R^{11} , R^{12} independently of one another represent hydrogen or alkyl, if appropriate in the presence of a diluent[[],];

compounds of the formula (I-g) shown above in which A, D, L, R^6 , R^7 , W, X, Y and Z are as defined above, compounds of the formula (I-a) shown above in which A, D, W, X, Y and Z are as defined above are ~~in each case~~ reacted

(α) with isocyanates or isothiocyanates of the formula (XV)

in which

R^6 and L are as defined above,

if appropriate in the presence of a diluent and if appropriate in the presence of a catalyst, or

(β) with carbamoyl chlorides or thiocarbamoyl chlorides of the formula (XVI)

in which

L, R⁶ and R⁷ are as defined above,

if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder.

7. (Currently Amended) Compounds of the formula (II)

in which

W, X, Y and Z are as defined above and

Hal represents is halogen.

8. (Currently Amended) Compounds of the formula (III)

in which

W, X, Y and Z are as defined above and

U represents is NH₂ or C₁-C₈-alkoxy.

9. (Original) Compounds of the formula (V)

in which

A, D, W, X, Y, Z and R' are as defined above.

10. (Original) Compounds of the formula (XVIII)

in which

A, R' and D are as defined above.

11. (Original) Compounds of the formula (XIX)

in which

W, X, Y, Z and T are as defined above, except for the compound

12. (Original) Compounds of the formula (XX)

in which

W, X, Y, Z and T are as defined above, except for the compounds

13. (Original) Compounds of the formula (XXI)

in which

W, X, Y, Z and R⁸ are as defined above, except for the compounds

14. (Currently Amended) Compositions for controlling pests, unwanted vegetation and/or unwanted microorganisms, ~~characterized in that they comprise~~comprising at least one compound of the formula (I) according to Claim 1.

15. (Withdrawn) Method for controlling animal pests, unwanted vegetation and/or unwanted microorganisms, characterized in that compounds of the formula (I) according to Claim 1 are allowed to act on pests, unwanted vegetation, unwanted microorganisms and/or their habitat.

16. (Withdrawn) Use of compounds of the formula (I) according to Claim 1 for controlling animal pests, unwanted vegetation and/or unwanted microorganisms.

17. (Withdrawn) Process for preparing compositions for controlling pests, unwanted vegetation and/or unwanted microorganisms, characterized in that compounds of the formula (I) according to Claim 1 are mixed with extenders and/or surfactants.

18. (Withdrawn) Use of compounds of the formula (I) according to Claim 1 for preparing compositions for controlling pests, unwanted vegetation and/or unwanted microorganisms.

19. (Currently Amended) Compositions, comprising an effective amount of an active compound combination comprising, as components,

(a') at least one compound of the formula (I) in which A, D, G, W, X, Y and Z are as defined above

and

(b') at least one crop plant compatibility-improving compound selected from the following group consisting of compounds:

4-dichloroacetyl-1-oxa-4-azaspiro[4.5]decane (AD-67, MON-4660), 1-dichloroacetylhexa hydro-3,3,8a-trimethylpyrrolo[1,2-a]pyrimidin-6(2H)-one (dicycl6non, BAS-145138), 4-dichloroacetyl-3,4-dihydro-3-methyl-2H-1,4-benzoxazine (benoxacor), 1-methylhexyl 5-chloroquinoline-8-oxyacetate (cloquintocet-mexyl —ef. ~~also related compounds in EP A 86750, EP A 94349, EP A 191736, EP A 492366~~), 3-(2-chlorobenzyl)-1-(1-methyl-1-phenylethyl)urea (cumyluron), a-(cyanomethoximino)phenylacetonitrile (cyometrinil), 2,4-dichlorophenoxyacetic acid (2,4-D), 4-(2,4-dichlorophenoxy)butyric acid (2,4-DB), 1-(1-methyl-1-phenylethyl)-3-(4-methylphenyl)urea (daimuron, dymron), 3,6-dichloro-2-methoxybenzoic acid (dicamba), S-1-methyl 1-phenylethyl piperidine-1-thiocarboxylate (dimepiperate), 2,2-dichloro-N-(2-oxo-2-(2-propenylamino)ethyl)-N-(2-propenyl)-acetamide (DKA-24), 2,2-dichloro-N,N-di-2-propenylacetamide (dichlormid), 4,6-dichloro-2-phenylpyrimidine (fenclorim), ethyl 1-(2,4-dichlorophenyl)-5-trichloromethyl-iH-1,2,4-triazole-3-carboxylate (fenchlorazole-ethyl —ef. ~~also related compounds in EP A 174562 and EP A 346620~~), phenylmethyl 2-chloro-4-trifluoromethylthiazole-5-carboxylate (flurazole), 4-chloro-N-(1,3-dioxolan-2-yl-methoxy)-a-trifluoroacetophenone oxime (fluxofenim), 3-dichloroacetyl-5-(2-furanyl)-2,2-dimethyloxazolidine (furilazole, MON-13900), ethyl

4,5-dihydro-5,5-diphenyl-3-isoxazolecarboxylate 5 (isoxadifen-ethyl — cf. also related compounds in WO A 95/07897), 1-(ethoxycarbonyl)-ethyl 3,6-dichloro-2-methoxybenzoate (lactidichlor), (4-chloro-o-tolyloxy)acetic acid (MCPA), 2-(4-chloro-o-tolyloxy)propionic acid (mecoprop), diethyl 1-(2,4-dichlorophenyl)-4,5-dihydro-5-methyl-1H-pyrazole-3,5-dicarboxylate (mefenpyr-diethyl — cf. also related compounds in WO A 91/07874), 2-dichloromethyl-2-methyl-1,3-dioxolane (MG-191), 2-propenyl-1-oxa-4-azaspiro[4.5]decane-4-carbodithioate (MG-838), 1,8-naphthalic anhydride, a-(1,3-dioxolan-2-ylmethoximino)phenylacetonitrile (oxabetrinil), 2,2-dichloro-N-(1,3-dioxolan-2-yl-methyl)-N-(2-propenyl)acetamide (PPG-1292), 3-dichloroacetyl 2,2,5-timethyloxazolidine (R-28725), 3-dichloroacetyl 2,2,5-timethyloxazolidine (R-29148), 4-(4-chloro-o-tolyl)butyric acid, 4-(4-chlorophenoxy)butyric acid, diphenylmethoxyacetic acid, methyl diphenylmethoxyacetate, ethyl diphenylmethoxyacetate, methyl 1-(2-chlorophenyl)-5-phenyl-1H-pyrazole-3-carboxylate, ethyl 1-(2,4-dichlorophenyl)-5-methyl-1H-pyrazol-3-carboxylate, ethyl 1-(2,4-dichlorophenyl)-5-isopropyl-1H-pyrazole-3-carboxylate, ethyl 1-(2,4-dichlorophenyl)-5-(1,1-di-methylethyl)-1H-pyrazole-3-carboxylate, ethyl 1-(2,4-dichlorophenyl)-5-phenyl 1H-pyrazole-3-carboxylate (cf. also related compounds in EP-A 269806 and EP-A 333131), ethyl 5-(2,4-dichlorobenzyl)-2-isoxazoline-3-carboxylate, ethyl 5-phenyl 2-isoxazoline-3-carboxylate, ethyl 5-(4-fluorophenyl)-5-phenyl-2-isoxazoline 3-carboxylate (cf. also related compounds in WO A 91/08202), 1,3-dimethylbut-1-yl 5-chloroquinoline-8-oxyacetate, 4-allyloxybutyl 5-chloroquinoline-8-oxyacetate, 1-allyloxyprop-2-yl 5-chloroquinoline-8-oxyacetate, methyl 5-chloroquinoxaline-8-oxyacetate, ethyl 5-chloroquinoline-8-oxyacetate, allyl 5-chloroquinoxaline-8-oxyacetate, 2-oxoprop-1-yl 5-chloroquinoline-8-oxyacetate, diethyl

5-chloroquinoline-8-oxymalonate, diallyl 5-chloroquinoxaline-8-oxymalonate, diethyl 5-chloroquinoline-8-oxymalonate (cf. also related compounds in EP-A 582198), 4-carboxychroman-4-ylacetic acid (AC-304415, cf. EP-A-613618), 4-chlorophenoxyacetic acid, 3,3'-dimethyl-4-methoxybenzophenone, 1-bromo-4-chloromethylsulphonylbenzene, 1-[4-(N-2-methoxybenzoylsulphamoyl)phenyl]-3-methylurea (also known as N-(2-methoxybenzoyl)-4-[(methylaminocarbonyl)amino]benzenesulphonamide), 1-[4-(N-2-methoxybenzoylsulphamoyl)phenyl]-3,3-dimethylurea, 1-[4-(N-4,5-dimethylbenzoylsulphamoyl)phenyl]-3-methylurea, 1-[4-(N-naphthylsulphamoyl)phenyl]-3,3-dimethylurea, N-(2-methoxy-5-methylbenzoyl)-4-(cyclopropylaminocarbonyl)benzenesulphonamide[[],]:

and/or one of the following compounds, defined by general formulae,

of the general formula (IIa)

or of the general formula (IIb)

or of the formula (IIc)

where

n is a number between 0 and 5[[],];

A¹ represents one of the divalent heterocyclic groupings shown below

n represents a number between 0 and 5[[],];

A² represents optionally C₁-C₄-alkyl- and/or C₁-C₄-alkoxy-carbonyl-substituted alkanediyl having 1 or 2 carbon atoms[[],];

R²¹ represents hydroxyl, mercapto, amino, C₁-C₆-alkoxy, C₁-C₆-alkylthio, C₁-C₆-alkylamino or di-(C₁-C₄-alkyl)-amino[[],];

R²² represents hydroxyl, mercapto, amino, C₁-C₆-alkoxy, C₁-C₈-alkenyloxy, C₁-C₆-alkylthio, C₁-C₆-alkylamino or di-(C₁-C₄-alkyl)-amino[[],];

R²³ represents in each case optionally fluorine-, chlorine- and/or bromine-substituted C₁-C₄-alkyl[[],];

R^{24} represents ~~is~~ hydrogen, in each case optionally fluorine-, chlorine- and/or bromine-substituted C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl or C_2 - C_6 -alkynyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, dioxolanyl- C_1 - C_4 -alkyl, furyl, furyl- C_1 - C_4 -alkyl, thienyl, thiazolyl, piperidinyl, or optionally fluorine-, chlorine- and/or bromine- or C_1 - C_4 -alkyl-substituted phenyl[[],];

R^{25} represents ~~is~~ hydrogen, in each case optionally fluorine-, chlorine- and/or bromine-substituted C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl or C_2 - C_6 -alkynyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, dioxolanyl- C_1 - C_4 -alkyl, furyl, furyl- C_1 - C_4 -alkyl, thienyl, thiazolyl, piperidinyl, or optionally fluorine-, chlorine- and/or bromine- or C_1 - C_4 -alkyl-substituted phenyl, or together with R^{24} represents ~~is~~ C_3 - C_6 -alkanediyl or C_2 - C_5 -oxaalkanediyl, each of which is optionally substituted by C_1 - C_4 -alkyl, phenyl, furyl, a fused benzene ring or by two substituents which, together with the C atom to which they are attached, form a 5- or 6-membered carbocycle[[],];

R^{26} represents ~~is~~ hydrogen, cyano, halogen, or represents in each case optionally fluorine-, chlorine- and/or bromine-substituted C_1 - C_4 -alkyl, C_3 - C_6 -cycloalkyl or phenyl[[],];

R^{27} represents ~~is~~ hydrogen, optionally hydroxyl-, cyano-, halogen- or C_1 - C_4 -alkoxy-¹ substituted C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl or tri-(C_1 - C_4 -alkyl)-silyl[[],];

R^{28} represents ~~is~~ hydrogen, cyano, halogen, or represents in each case ~~is~~ optionally fluorine-, chlorine- and/or bromine-substituted C_1 - C_4 -alkyl, C_3 - C_6 -cycloalkyl or phenyl[[],];

X¹ representsis nitro, cyano, halogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy[[],];

X² representsis hydrogen, cyano, nitro, halogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy[[],];

X³ representsis hydrogen, cyano, nitro, halogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy[[],];

and/or the following compounds, defined by general formulae,

of the general formula (IId)

or the general formula (IIe)

where

n representsis a number between 0 and 5[[],];

R²⁹ ~~represents~~is hydrogen or C₁-C₄-alkyl[[],];

R³⁰ ~~represents~~is hydrogen or C₁-C₄-alkyl[[],];

R³¹ ~~represents~~is hydrogen, in each case optionally cyano-, halogen- or C₁-C₄-alkoxysubstituted C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkylthio, C₁-C₆-alkylamino or di-(C₁-C₄-alkyl)-amino, or ~~in each case~~is optionally cyano-, halogen- or C₁-C₄-alkylsubstituted C₃-C₆-cycloalkyl, C₃-C₆-cycloalkyloxy, C₃-C₆-cycloalkylthio or C₃-C₆-cycloalkylamino[[],];

R³² ~~represents~~is hydrogen, optionally cyano-, hydroxyl-, halogen- or C₁-C₄-alkoxysubstituted C₁-C₆-alkyl, ~~in each case~~ optionally cyano-, or halogen-substituted C₃-C₆-alkenyl or C₃-C₆-alkynyl, or optionally cyano-, halogen- or C₁-C₄-alkyl-substituted C₃-C₆-cycloalkyl[[],];

R³³ ~~represents~~is hydrogen, optionally cyano-, hydroxyl-, halogen- or C₁-C₄-alkoxy substituted C₁-C₆-alkyl, ~~in each case~~ optionally cyano- or halogen-substituted C₃-C₆-alkenyl or C₃-C₆-alkynyl, optionally cyano-, halogen- or C₁-C₄-alkyl-substituted C₃-C₆-cycloalkyl, or optionally nitro-, cyano-, halogen-, C₁-C₄-alkyl-, C₁-C₄-haloalkyl, C₁-C₄-alkoxy- or C₁-C₄-haloalkoxy-substituted phenyl, or together with R³² ~~represents~~is in each case optionally C₁-C₄-alkyl-substituted C₂-C₆-alkanediyl or C₂-C₅-oxaalkanediyl[[],];

X⁴ ~~represents~~is nitro, cyano, carboxyl, carbamoyl, formyl, sulphamoyl, hydroxyl, amino, halogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy[[],]; and

X⁵ represents is nitro, cyano, carboxyl, carbamoyl, formyl, sulphamoyl, hydroxyl, amino, halogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy.

20. (Currently Amended) Compositions according to Claim 19, where the crop plant compatibility-improving compound is selected from the following group consisting of eompoounds:

cloquintocet-mexyl, fenchlorazole-ethyl, isoxadifen-ethyl, mefenpyr-diethyl, furilazole, fenclorim, cumyluron, dymron or the compounds

and

21. (Original) Compositions according to Claim 19 or 20 where the crop plant compatibility-improving compound is cloquintocet-mexyl or mefenpyr-diethyl.

22. (Withdrawn) Method for controlling unwanted vegetation, characterized in that a composition according to Claim 19 is allowed to react on the plants or their habitat.

23. (Withdrawn) Use of a composition according to Claim 19 for controlling unwanted vegetation.

24. (Withdrawn) Method for controlling unwanted vegetation, characterized in that a compound of the formula (I) according to Claim 1 and the crop plant compatibility-improving compound as set forth in Claim 19 are allowed to act on the plants or their habitat separately, one soon after the other.