Parallel Solver Essentials for Computational Scientists

Part 1: Shared Memory Systems

Karl Rupp

me@karlrupp.net https://karlrupp.net/ http://github.com/karlrupp/slides @karlrupp

now: Freelance Scientist

formerly and soon again: Institute for Microelectronics, TU Wien

Kazan Federal University October 19, 2016

Current Many-Core Architectures

High FLOP/Watt ratio High memory bandwidth Attached via PCI-Express

AMD FirePro W9100 320 GB/sec

INTEL Xeon Phi 320 (220?) GB/sec

NVIDIA Tesla K20 250 (208) GB/sec

https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

Theoretical Peak Performance

Theoretical Peak Performance per Watt

Theoretical Peak Floating Point Operations per Watt, Double Precision

Theoretical Peak Performance (FLOPs) per Byte of Memory Bandwidth

About

Initial release in 2007

Proprietary programming model by NVIDIA

C++ with extensions

Proprietary compiler extracts GPU kernels

Software Ecosystem

Vendor-tuned libraries: cuBLAS, cuSparse, cuSolver, cuFFT, etc.

Python bindings: pyCUDA

Community projects: CUSP, MAGMA, VexCL, ViennaCL, etc.

```
void work(double *x, double *y, double *z, int N)
{
    for (size_t i=0; i<N; ++i)
        z[i] = x[i] + y[i];
}</pre>
```

```
int main(int argc, char **argv)
{
  int N = atoi(argv[1]);
  double *x = malloc(N*sizeof(double));
  ...
  ...
  work(x, y, z, N); // call kernel
  ...
  free(x);
}
```

```
void work(double *x, double *y, double *z, int N)
{
    #pragma omp parallel for
    for (size_t i=0; i<N; ++i)
        z[i] = x[i] + y[i];
}</pre>
```

```
int main(int argc, char **argv)
{
  int N = atoi(argv[1]);
  double *x = malloc(N*sizeof(double));
  ...
  ...
  work(x, y, z, N); // call kernel
  ...
  free(x);
}
```

```
void work(double *x, double *y, double *z, int N)
{
    #pragma omp parallel
{    int thread_id = omp_get_thread_num();
    for (size_t i=thread_id; i<N; i += omp_get_num_threads())
        z[i] = x[i] + y[i];
} }</pre>
```

```
int main(int argc, char **argv)
{
  int N = atoi(argv[1]);
  double *x = malloc(N*sizeof(double));
  ...
  ...
  work(x, y, z, N); // call kernel
  ...
  free(x);
}
```

```
__global__ void work(double *x, double *y, double *z, int N)
{
  int thread_id = blockIdx.x*blockDim.x + threadIdx.x;
  for (size_t i=thread_id; i<N; i += blockDim.x * gridDim.x)
    z[i] = x[i] + y[i];
}</pre>
```

```
int main(int argc, char **argv)
{
  int N = atoi(argv[1]);
  double *x = malloc(N*sizeof(double));
  cudaMalloc(&gpu_x, N*sizeof(double));
  cudaMemcpy(gpu_x, x, N*8, cudaMemcpyHostToDevice);
  ...
  work<<<128, 256>>>(x, y, z, N); // call kernel
  ...
  cudaMemcpy(gpu_x, x, N*8, cudaMemcpyDeviceToHost);
  ...
  free(x);
}
```


Thread Control (1D)

Local ID in block: threadIdx.x

Threads per block: blockDim.x

ID of block: blockIdx.x

No. of blocks: gridDim.x

Recommended Default Values

Typical block size: 256 or 512 Typical number of blocks: 256

At least 10 000 logical threads recommended

Offset Memory Access

```
__global__
void work(double *x, double *y, double *z, int N, int k)
{
  int thread_id = blockIdx.x*blockDim.x + threadIdx.x;
  for (size_t i=thread_id; i<N; i += blockDim.x * gridDim.x)
    z[i+k] = x[i+k] + y[i+k];
}</pre>
```


Strided Memory Access

```
__global__
void work(double *x, double *y, double *z, int N, int k)
{
  int thread_id = blockIdx.x*blockDim.x + threadIdx.x;
  for (size_t i=thread_id; i<N; i += blockDim.x * gridDim.x)
    z[i*k] = x[i*k] + y[i*k];
}</pre>
```


Strided Memory Access

Array of structs problematic

```
typedef struct particle
{
   double pos_x; double pos_y; double pos_z;
   double vel_x; double vel_y; double vel_z;
   double mass;
} Particle;

__global___
void increase_mass(Particle *particles, int N)
{
   int thread_id = blockIdx.x*blockDim.x + threadIdx.x;
   for (int i=thread_id; i<N; i += blockDim.x * gridDim.x)
      particles[i].mass *= 2.0;
}</pre>
```

Strided Memory Access

Workaround: Structure of Arrays

```
typedef struct particles
{
    double *pos_x; double *pos_y; double *pos_z;
    double *vel_x; double *vel_y; double *vel_z;
    double *mass;
} Particle;

__global___
void increase_mass(Particle *particles, int N)
{
    int thread_id = blockIdx.x*blockDim.x + threadIdx.x;
    for (int i=thread_id; i<N; i += blockDim.x * gridDim.x)
        particles.mass[i] *= 2.0;
}</pre>
```

Reductions

Use N values to compute 1 result value

Examples: Dot-products, vector norms, etc.

Reductions with Few Threads

Decompose N into chunks for each thread

Compute chunks in parallel

Merge results with single thread

Reductions with Many Threads

Decompose ${\cal N}$ into chunks for each workgroup Use fast on-chip synchronization within each workgroup

Sum result for each workgroup separately

z y

Reductions with Many Threads


```
shared_m[threadIdx.x] = thread_sum;
for (int stride = blockDim.x/2; stride>0; stride/=2) {
    __syncthreads();
    if (threadIdx.x < stride)
        shared_m[threadIdx.x] += shared_m[threadIdx.x+stride];
}</pre>
```

Prefix Sum

Inclusive: Determine $y_i = \sum_{k=1}^i x_k$

Exclusive: Determine $y_i = \sum_{k=1}^{i-1} x_k$, $y_1 = 0$

Example

x: 4, 3, 6, 5, 4, 7, 4, 4, 4

y: 4, 7, 13, 18, 22, 29, 33, 37, 41 (inclusive)

y: 0, 4, 7, 13, 18, 22, 29, 33, 37 (exclusive)

Applications

Sparse matrix setup Graph algorithms

Prefix Sum Implementation


```
for (int stride = 1; stride < blockDim.x; stride *= 2)
{
    __syncthreads();
    shared_buffer[threadIdx.x] = my_value;
    __syncthreads();
    if (threadIdx.x >= stride)
        my_value += shared_buffer[threadIdx.x - stride];
}
__syncthreads();
shared_buffer[threadIdx.x] = my_value;
```

Other Parallel Primitives

Sort

Gather and Scatter

Load to shared memory and work there

etc.

GPU-Accelerated Software Libraries

Linear Algebra: ViennaCL, MAGMA, CUSP, VexCL, ...

Solvers: ViennaCL, MAGMA, cuSolver, Paralution, clAMG, ...

FFT: cuFFT, clFFT, FFTW, ...

Primitives: VexCL, Boost.Compute, ...

Machine Learning: Caffe, cuDNN, ...

Overview

Pipelined CG

Merge global reductions

Kernel fusion

Parallel Incomplete LU Factorizations

Level scheduling

Nonlinear relaxation

Algebraic Multigrid

Parallel aggregation

Sparse matrix-matrix products

Pseudocode

Choose x_0

$$p_0 = r_0 = b - Ax_0$$

- For i = 0 until convergence 1. Compute and store Ap_i
 - 2. Compute $\langle p_i, Ap_i \rangle$
 - 3. $\alpha_i = \langle r_i, r_i \rangle / \langle p_i, Ap_i \rangle$
 - **4.** $x_{i+1} = x_i + \alpha_i p_i$
 - $5. r_{i+1} = r_i \alpha_i A p_i$
 - **6**. Compute $\langle r_{i+1}, r_{i+1} \rangle$
 - 7. $\beta_i = \langle r_{i+1}, r_{i+1} \rangle / \langle r_i, r_i \rangle$
 - 8. $p_{i+1} = r_{i+1} + \beta_i p_i$

EndFor

BLAS-based Implementation

-

SpMV, AXPY

For i = 0 until convergence

- 1. SpMV \leftarrow No caching of Ap_i
- 2. DOT ← Global sync!
- 3. -
- 4. AXPY
- 5. AXPY \leftarrow No caching of r_{i+1}
- 6. DOT ← Global sync!
- 7. -
- 8. AXPY

EndFor

Performance Modelling

6 Kernel Launches (plus two for reductions)

Two device to host data reads from dot products

Model SpMV as seven vector accesses (5-point stencil)

$$T(N) = 8 \times 10^{-6} + 2 \times 2 \times 10^{-6} + (7 + 2 + 3 + 3 + 2 + 3) \times 8 \times N$$
/Bandwidth

Performance Modeling: Conjugate Gradient Optimizations

Optimization: Rearrange the algorithm

Remove unnecessary reads

Remove unnecessary synchronizations

Use custom kernels instead of standard BLAS

Standard CG

Choose x_0

$$p_0 = r_0 = b - Ax_0$$

For i = 0 until convergence

- 1. Compute and store Ap_i
- 2. Compute $\langle p_i, Ap_i \rangle$
- 3. $\alpha_i = \langle r_i, r_i \rangle / \langle p_i, Ap_i \rangle$
- **4.** $x_{i+1} = x_i + \alpha_i p_i$
- $5. r_{i+1} = r_i \alpha_i A p_i$
- **6**. Compute $\langle r_{i+1}, r_{i+1} \rangle$
- 7. $\beta_i = \langle r_{i+1}, r_{i+1} \rangle / \langle r_i, r_i \rangle$
- 8. $p_{i+1} = r_{i+1} + \beta_i p_i$

EndFor

Pipelined CG

Choose x_0

$$p_0 = r_0 = b - Ax_0$$

For i = 1 until convergence

- 1. i = 1: Compute α_0 , β_0 , Ap_0
- 2. $x_i = x_{i-1} + \alpha_{i-1}p_{i-1}$
- 3. $r_i = r_{i-1} \alpha_{i-1}Ap_i$
- 4. $p_i = r_i + \beta_{i-1}p_{i-1}$
- 5. Compute and store Ap_i
- 6. Compute $\langle Ap_i, Ap_i \rangle$, $\langle p_i, Ap_i \rangle$, $\langle r_i, r_i \rangle$
- 7. $\alpha_i = \langle r_i, r_i \rangle / \langle p_i, Ap_i \rangle$
- 8. $\beta_i = (\alpha_i^2 \langle Ap_i, Ap_i \rangle \langle r_i, r_i \rangle) / \langle r_i, r_i \rangle$

EndFor

Benefits of Pipelining also for Large Matrices

Content

Parallel Incomplete LU Factorizations

Level scheduling Nonlinear relaxation

ILU - Basic Idea

Factor sparse matrix $A \approx \tilde{L}\tilde{U}$ \tilde{L} and \tilde{U} sparse, triangular ILU0: Pattern of \tilde{L} , \tilde{U} equal to A

ILUT: Keep k elements per row

Solver Cycle Phase

Residual correction $\tilde{L}\tilde{U}x = z$ Forward solve $\tilde{L}y = z$ Backward solve $\tilde{U}x = y$ Little parallelism in general

ILU Level Scheduling

Build dependency graph

Substitute as many entries as possible simultaneously

Trade-off: Each step vs. multiple steps in a single kernel

$$\begin{pmatrix}
5 & \times & \times & \times & \times & \times & \times \\
3 & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times$$

ILU Interpretation on Structured Grids

ILU Interpretation on Structured Grids

ILU Interpretation on Structured Grids

ILU Interpretation on Structured Grids

Sequential

for i=2..n
for k=1..i-1, (i,k)in A

$$a_{ik} = a_{ik}/a_{kk}$$

for j=k+1..n, (i,j)in A
 $u_{ij} = a_{ij} - a_{ik}a_{kj}$

Parallel

for (sweep = 1, 2, ...)

parallel for (i,j) in A

if (i > j)

$$l_{ij} = (a_{ij} - \sum_{k=1}^{j=1} l_{ik} u_{kj}) / u_{jj}$$

else

 $u_{ij} = a_{ij} - \sum_{k=1}^{j=1} l_{ik} u_{kj}$

Fine-Grained Parallel ILU Setup

Proposed by Chow and Patel (SISC, vol. 37(2)) for CPUs and MICs Massively parallel (one thread per row)

Preconditioner Application

Truncated Neumann series:

$$\mathbf{L}^{-1} \approx \sum_{k=0}^{K} (\mathbf{I} - \mathbf{L})^k, \quad \mathbf{U}^{-1} \approx \sum_{k=0}^{K} (\mathbf{I} - \mathbf{U})^k$$

Exact triangular solves not necessary

Content

Algebraic Multigrid

Parallel aggregation

Sparse matrix-matrix products

Multigrid

Ingredients of Algebraic Multigrid

Smoother (Relaxation schemes, etc.)

Coarsening

Interpolation (Inter-grid transfer)

Classical coarsening

Aggregation coarsening

Multigrid Parallelization

Setup Phase

Determination of coarse points in parallel by graph splitting

Compute coarse operators $A^{k+1} = R^k A^k P^k$ (where $A^0 = A$)

Datastructures: analyze and allocate

Limited fine-grained parallelism

Cycle Phase

Parallel Jacobi Smoother Restriction $R^k x^k$, prolongation $P^k x^{k+1}$ Direct solution on coarsest level Static datastructures

Enough fine-grained parallelism

AMG Sparse Matrix-Matrix Multiplication

Coarse Grid Operator

$$A^{\text{coarse}} = RA^{\text{fine}}P$$

Common choice: $R = P^{T}$

Computation

Explicitly set up $R = P^{T}$ (hard in parallel)

$$C = A^{\text{fine}}P$$

$$A^{\text{coarse}} = RC$$

AMG Sparse Matrix-Matrix Multiplication

AMG Benchmark

Summary

Parallel Primitives

Embarassingly parallel operations (vector addition, etc.)

Reductions

Prefix Sums

etc.

Solvers on Shared Memory Architectures

Pipelining to reduce synchronization costs

Pipelining to increase data reuse

Replace sequential stages with parallel alternatives

