ANALISIS RUNTUN WAKTU DAN PENENTUAN MODEL TERBAIK PADA DATA SUHU CUACA DI KOTA SURAKARTA TAHUN 2012-2016 MENGGUNAKAN METODE SEASONAL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (SARIMA)

Disusun guna memenuhi Ujian Akhir Semester Mata Kuliah Analisis Runtun Waktu Dosen Pengampu: Dr. Winita Sulandari, S.Si., M.Si.

Disusun oleh:

Kelompok 9

Aprilia Saniatul Rahmawati (M0721007)

Rizki Ramadhani (M0721061)

Syifa Salsabila Gita Parahita (M0721065)

PROGRAM STUDI STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SEBELAS MARET SURAKARTA

2023

DAFTAR ISI

DAFTA	R ISI	ii
DAFTA	R GAMBAR	iv
DAFTA	R TABEL	iv
DAFTA	R LAMPIRAN	iv
BAB I P	ENDAHULUAN	5
1.1	Latar Belakang	5
1.2	Rumusan Masalah	6
1.3	Tujuan Penelitian	6
1.4	Manfaat Penelitian	6
BAB II I	METODOLOGI PENELITIAN	7
2.1	Analisis Data	7
2.2	Menentukan Model Peramalan	7
2.3	Peramalan Suhu Kota Surakarta pada Bulan Januari 2017	8
BAB III	PEMBAHASAN	9
3.1	Analisis Data	9
3.1.	1 Deskripsi Data	9
3.1.	2 Analisis Plot Data	9
3.2	Menentukan Model Peramalan	10
3.2.	Membagi Data Menjadi Data Training dan Data Testing	10
3.2.	2 Uji Kestasioneran Data	11
3.2.	3 Identifikasi Model	13
3.2.	4 Uji Signifikansi Parameter	13
3.2	5 Analisis Residual	15
3.2.	Peramalan untuk Data Testing	17
3.2.	7 Menentukan Model Terbaik	21
3.3	Peramalan Suhu Kota Surakarta Bulan Januari 2017	21
BAB IV	PENUTUP	22
4.1	Kesimpulan	22
4.2	Saran	2.2

DAFTAR PUSTAKA	23
LAMPIRAN	24

DAFTAR GAMBAR

Gambar 3. 1 Plot Time Series Data Suhu Bulanan Kota Surakarta Tahun 2012-2016	10
Gambar 3. 2 Plot Runtun Waktu Data Training	11
Gambar 3. 3 Output Minitab Analisis Box-cox	
Gambar 3. 4 Plot ACF dan PACF Data Training	
o a contract of the contract o	
DAFTAR TABEL	
Tabel 3. 1 Statistik Deskriptif Data Suhu di Kota Surakarta	9
Tabel 3. 2 Pembagian Data Training dan Data Testing	
Tabel 3. 3 Hasil uji signifikansi	
Tabel 3. 4 Hasil uji normalitas	
Tabel 3. 5 Hasil uji Ljung-Box	
Tabel 3. 6 Hasil Analisis Residual	
Tabel 3. 7 Hasil Peramalan ARIMA(2,0,0)(0,0,0) ¹²	
Tabel 3. 8 Hasil Peramalan ARIMA(2,0,0)(0,0,1) ¹²	
Tabel 3. 9 Hasil Peramalan ARIMA $(0,0,1)(0,0,1)^{12}$	
Tabel 3. 10 Perbandingan nilai error	
DAFTAR LAMPIRAN	
Lampiran 1. Data Suhu Kota Surakarta Periode Januari 2012 hingga Desember 2016	24
Lampiran 2. Output Minitab Uji Signifikansi Parameter	25
Lampiran 3. Resisual	27
Lampiran 4. Output Minitab Uji Normalitas Residu	29
Lampiran 5. Output Minitab Uji Independensi Residual	32

BAB I PENDAHULUAN

1.1 Latar Belakang

Kota Surakarta merupakan sebuah kawasan urban yang terus mengalami perkembangan pesat di Jawa Tengah. Seiring dengan perkembangannya, kota ini juga memiliki suhu yang mencolok sepanjang tahun. Fenomena ini bukan hanya sekedar titik data dalam catatan cuaca, namun sebuah ciri penting dari dinamika atmosfer. Menurut Anwar (2017) suhu udara merupakan salah satu unsur yang penting dari keadaan cuaca. Suhu udara dalam suatu wilayah biasanya diukur dalam dua kondisi atau keadaan, suhu udara minimum dan maksimum. Suhu udara minimum adalah suatu keadaan Dimana suhu udara pada suatu wilayah berada pada titik terendah dalam interval waktu tertentu. Sedangkan suhu udara maksimum adalah keadaan Dimana suhu udara wilayah tertentu berada pada titik tertinggi. Memahami dan menganalisis pola suhu yang berkembang menjadi sangat penting sehingga informasi suhu tidak hanya memberikan pemahaman tentang perubahan cuaca tetapi juga memberikan landasan yang krusial untuk perencanaan dan pengembangan berbagai sektor di masa mendatang.

Penelitian ini bertujuan untuk melakukan analisis runtun waktu menggunakan data suhu di Kota Surakarta pada tahun 2012-2016 dengan menggunakan data bulanan yang berfluktuasi berulang. Pola data yang berfluktuasi berulang dalam kurun waktu tertentu disebut dengan pola musiman sehingga metode yang dapat digunakan adalah *Seasonal Autoregressive Integrated Moving Average* (SARIMA). SARIMA merupakan pengembangan dari metode ARIMA yang dapat menganalisis pola data yang berulang atau musiman dalam kurun waktu yang tetap seperti kuartalan, semesteran, dan tahunan (Widianingsih dkk, 2022). Karena adanya pola musiman, maka bentuk umum model adalah $ARIMA(p, d, q)(P, D, Q)^S$, yang dapat dinyatakan dengan persamaan beriku (Wei, 2006):

$$\phi_P(B^S)\phi_p(B)(1-B)^d(1-B^S)^D\dot{Z}_t = \theta_q(B)\Theta_O(B^S)\alpha_t$$

Analisis SARIMA akan membantu dalam memahami tren, pola musiman, dan fluktuasi suhu yang mungkin terjadi di Kota Surakarta. Penelitian ini akan menentukan model SARIMA terbaik yang sesuai dengan data suhu, memprediksi nilai suhu di masa depan, dan mengevaluasi keakuratannya.

Penelitian ini yang menekankan pada analisis runtun waktu menggunakan pendekatan SARIMA diharapkan dapat memberikan kontribusi dalam memahami dinamika suhu di Kota Surakarta dan memberikan wawasan yang berharga untuk perencanaan dan menghadapi variasi cuaca di masa mendatan.

1.2 Rumusan Masalah

Berdasarkan latar belakang yang telah diuraikan, permasalahan yang dapat dirumuskan adalah sebagai berikut.

- 1. Bagaimana analisis pola data suhu cuaca di Kota Surakarta periode Januari 2012 hingga Desember 2016?
- 2. Bagaimana model terbaik untuk meramalkan suhu cuaca di Kota Surakarta menggunakan metode *Seasonal Autoregressive Integrated Moving Average* (SARIMA)?
- 3. Bagaimana peramalan suhu cuaca di Kota Surakarta bulan Januari 2017 berdasarkan model *Seasonal Autoregressive Integrated Moving Average* (SARIMA) terbaik?

1.3 Tujuan Penelitian

Berdasarkan permasalahan yang telah dirumuskan, maka tujuan dari penelitian sebagai berikut.

- 1. Mengetahui analisis pola data suhu cuaca di Kota Surakarta periode Januari 2012 hingga Desember 2016.
- 2. Mengetahui model terbaik untuk meramalkan suhu cuaca di Kota Surakarta menggunakan metode *Seasonal Autoregressive Integrated Moving Average* (SARIMA).
- 3. Mengetahui peramalan suhu cuaca di Kota Surakarta bulan Januari 2017 berdasarkan model *Seasonal Autoregressive Integrated Moving Average* (SARIMA) terbaik.

1.4 Manfaat Penelitian

Manfaat dari penelitian ini yaitu dapat digunakan sebagai rujukan bagi para peneliti yang ingin melakukan kajian penelitian menggunakan metode *Seasonal Autoregressive Integrated Moving Average* (SARIMA). Selain itu, hasil dari penelitian ini diharapkan dapat memberikan kontribusi yang berarti bagi masyarakat dan pemerintah Kota Surakarta untuk dijadikan pertimbangan dalam pengambilan keputusan untuk kebijakan yang lebih efektif terkait perencanaan menghadapi variasi suhu cuaca di masa mendatang.

BAB II

METODOLOGI PENELITIAN

2.1 Analisis Data

Data yang digunakan pada penelitian ini adalah data sekunder yang diambil dari situs resmi Badan Pusat Statistik. Data tersebut adalah data suhu Kota Surakarta pada bulan Januari 2012 hingga Desember 2016. Total data yang digunakan adalah sebanyak 60 data. Dari data tersebut akan dilakukan analisis data dengan langkah sebagai berikut.

1. Deskripsi Data.

Melihat statistik deskriptif dari data suhu Kota Surakarta pada bulan Januari 2012 hingga Desember 2016.

2. Analisis Plot Data.

Melakukan plot *Time Series* untuk mengidentifikasi pola data *Time Series* dari data suhu Kota Surakarta pada bulan Januari 2012 hingga Desember 2016.

2.2 Menentukan Model Peramalan

Dari data yang diperoleh akan dilakukan pemodelan peramalan *SARIMA* dengan menggunakan *software* Minitab dan Microsoft Excel. Langkah-langkah analisis yang digunakan dalam penelitian ini adalah sebagai berikut.

1. Membagi Data Menjadi Data Training dan Data Testing.

Data dibagi menjadi dua, yaitu 48 data awal sebagai data *training* dan 12 data akhir sebagai data *testing*.

2. Uji Kestasioneran Data.

Menguji data apakah sudah stasioner terhadap rata-rata dan variansi.

3. Identifikasi Model.

Menentukan orde model dengan melihat lag yang signifikan pada plot ACF dan PACF.

4. Uji Signifikansi Parameter.

Melakukan uji signifikansi parameter dari orde model yang diperoleh dari langkah sebelumnya.

5. Analisis Residual.

Melakukan pemeriksaan residual dengan melakukan uji normalitas dan uji White Noise.

6. Peramalan untuk Data *Testing*.

Melakukan peramalan data *training* dengan model yang memenuhi uji residual sebanyak data *testing*.

7. Menentukan model terbaik.

Menentukan model terbaik dengan melihat nilai error dari masing-masing model.

2.3 Peramalan Suhu Kota Surakarta pada Bulan Januari 2017

Melakukan peramalan suhu Kota Surakarta pada Bulan Januari 2017 menggunakan model terbaik.

BAB III

PEMBAHASAN

Pada bab pembahasan akan dilakukan peramalan data suhu di Kota Surakarta pada bulan Januari 2012 hingga bulan Desember 2016 menggunakan model *Seasonal Autoregressive Integrated Moving Average* (SARIMA).

3.1 Analisis Data

3.1.1 Deskripsi Data

Data yang digunakan dalam analisis adalah data bulanan suhu di Kota Surakarta sejak bulan Januari 2012 hingga bulan Desember 2016 dengan jumlah 60 data. Data dapat dilihat pada Lampiran 1. Data tersebut bersumber dari situs resmi Badan Pusat Statistik. Dilakukan analisis statistik deskriptif untuk data keseluruhan yang ditunjukkan pada Tabel 3.1.

Tabel 3. 1 Statistik Deskriptif Data Suhu di Kota Surakarta

Variabel	N	Minimum	Median	Maksimum	Mean
Suhu	60	25,8	27,05	29,1	27,127

Tabel 3.1 menunjukkan bahwa suhu di Kota Surakarta yang berjumlah 60 data memiliki suhu rata-rata sebesar 27,127°C. Suhu terendah adalah sebesar 25,8°C yaitu pada bulan Januari 2012 dan Januari-Februari 2014, serta yang tertinggi adalah pada bulan Oktober 2015 yaitu sebesar 29,1°C.

3.1.2 Analisis Plot Data

Dilakukan identifikasi data menggunakan plot *time series* terlebih dahulu sebelum melakukan analisis lebih lanjut. Plot *time series* digunakan untuk melihat apakah terdapat pola musiman dan/atau tren pada data.

Gambar 3. 1 Plot Time Series Data Suhu Bulanan Kota Surakarta Tahun 2012-2016

Gambar 3.1 menunjukkan bahwa data suhu bulanan di Kota Surakarta pada bulan Januari 2012 hingga bulan Desember 2016 memiliki pola kenaikan yang berulang pada periode tertentu. Hal tersebut menyimpulkan bahwa data memiliki pola musiman.

3.2 Menentukan Model Peramalan

3.2.1 Membagi Data Menjadi Data Training dan Data Testing

Secara keseluruhan, data suhu bulanan di Kota Surakarta tahun bulan Januari 2012 hingga bulan Desember 2016 berjumlah 60 data. Data selanjutnya dibagi menjadi dua bagian, yaitu data *training* dan data *testing*. Data *training* adalah 48 data pertama, sedangkan 12 data sisanya merupakan data *testing*. Pembagian data *training* dan data *testing* ditampilkan pada Tabel 3.2.

Tabel 3. 2 Pembagian Data Training dan Data Testing

Pembagian Data	Proporsi
Data Training	Januari 2012 - Desember 2015
Data Testing	Januari - Desember 2016

Plot runtun waktu untuk data *training* dari data suhu bulanan di Kota Surakarta tahun bulan Januari 2012 hingga bulan Desember 2016 ditunjukkan pada Gambar 3.2.

Gambar 3. 2 Plot Runtun Waktu Data Training

3.2.2 Uji Kestasioneran Data

a. Stasioneritas terhadap variansi

Kestasioneran dalam variansi dapat dilihat menggunakan analisis Box-Cox untuk mengetahui nilai lamda. Hasil identifikasi stasioneritas menunjukkan nilai lamda sebesar -5,00 dapat dilihat pada Gambar 3.3. Nilai tersebut sudah sangat kecil atau sudah stasioner dalam variansi sehingga tidak diperlukan transformasi data.

Gambar 3. 3 Output Minitab Analisis Box-cox

b. Stasioneritas terhadap rata-rata

Pengujian stasioneritas terhadap rata-rata dapat dilihat dari plot ACF dan PACF dari data *training*.

Gambar 3. 4 Plot ACF dan PACF Data Training

Gambar 3.4 menunjukkan bahwa plot ACF *cut off* setelah lag 1, pada Gambar 3.4 dari plot PACF dapat dilihat juga adanya *cut off* setelah lag 2. Hal ini menunjukkan data sudah stasioner terhadap rata-rata sehingga tidak perlu dilakukan *differencing*.

3.2.3 Identifikasi Model

Apabila data telah stasioner terhadap variansi dan rata-rata, langkah selanjutnya yaitu mencari model yang mungkin digunakan dari plot ACF dan PACF. Model yang digunakan adalah ARIMA $(p,d,q)(P,D,Q)^s$ dengan p merupakan asumsi untuk nilai ordo AR non-musiman, sedangkan P merupakan asumsi nilai ordo AR masiman. d merupakan differencing non-musiman, sedangkan D merupakan differencing musiman. q merupakan asumsi nilai ordo MA non-musiman, sedangkan Q merupakan asumsi nilai ordo MA musiman. Orde non-musiman ditunjukkan pada banyaknya lag-lag awal sebelum cut off yang keluar dari pita konfidensi, sedangkan untuk orde musiman ditunjukkan pada banyaknya lag musiman yang keluar dari pita konfidensi.

Hasil mengamati plot ACF dan PACF pada Gambar 3.3, dapat diidentifikasi model sebagai berikut.

- a. p = 0, 1, dan 2. Berdasarkan plot PACF, terdapat beberapa lag yang keluar dari pita konfidensi, yaitu lag pertama dan kedua.
- b. d = 0. Data sudah stasioner sehingga tidak dilakukan differencing.
- c. q = 0 dan 1. Berdasarkan plot ACF, terdapat beberapa lag yang keluar dari pita konfidensi sebelum *cut off*, yaitu pada lag pertama.
- d. P = 0. Berdasarkan plot PACF tidak terdapat lag musiman yang keluar dari pita konfidensi.
- e. D = 0. Data sudah stasioner sehingga tidak dilakukan differencing.
- f. Q = 0 dan 1. Berdasarkan plot ACF terlihat lag ke-12 keluar dari pita konfidensi.

3.2.4 Uji Signifikansi Parameter

Dari hasil yang diperoleh pada langkah sebelumnya, maka selanjutnya dirumuskan beberapa model yang memungkinkan melalui uji signifikansi. Praduga yang diperoleh pada analisis ini untuk melihat signifikansi terhadap model yang diuji menggunakan *software Minitab*. Beberapa model yang dicoba tertera pada Tabel 3.3.

Tabel 3. 3 Hasil uji signifikansi

Model	Parameter	p-value	Keterangan	Hasil
	AR 1	0,000	Signifikan	Mamanuhi uii
$ARIMA(2,0,0)(0,0,1)^{12}$	AR 2	0,002	Signifikan	Memenuhi ujisignifikansi
	SMA 1	0,000	Signifikan	Signifikansi
	AR 1	0,006	Signifikan	
	4 D 2	R 2 0,063	Tidak	Tidak
ARIMA $(2,0,1)(0,0,1)^{12}$	AR 2		Signifikan	
AKINIA(2,0,1)(0,0,1)	MA 1	0,998	Tidak	memenuhi uji signifikansi
	MA I	0,998	Signifikan	Sigilitikalisi
	SMA 1	0,000	Signifikan	-
ADIMA (2.0.0)(0.0.0)12	AR 1	0,000	Signifikan	Memenuhi uji
$ARIMA(2,0,0)(0,0,0)^{12}$	AR 2	0,000	Signifikan	signifikansi
	AR 1	0,000	Signifikan	T: 4.1.
ARIMA $(2,0,1)(0,0,0)^{12}$	AR 2	0,000	Signifikan	Tidak memenuhi uji
ARIMA(2,0,1)(0,0,0)	МА 1	0,795	Tidak	3
	MA 1		Signifikan	signifikansi
ARIMA $(1,0,0)(0,0,1)^{12}$	AR 1	0,000	Signifikan	Memenuhi uji
AKINIA(1,0,0)(0,0,1)	SMA 1	0,000	Signifikan	signifikansi
ADD(A)(1,0,1)(0,0,0)12	AR 1	0,045	Signifikan	Memenuhi uji
$ARIMA(1,0,1)(0,0,0)^{12}$	MA 1	0,000	Signifikan	signifikansi
ADDIA (0.0.1) (0.0.0) 12	MA 1	0,000	Signifikan	Memenuhi uji
$ARIMA(0,0,1)(0,0,0)^{12}$	MA 1			signifikansi
ARIMA $(1,0,0)(0,0,0)^{12}$	AR 1	0,000	Signifikan	Memenuhi uji
AKIWIA(1,0,0)(0,0,0)	AK I		Sigilitikali	signifikansi
ARIMA $(0,0,0)(0,0,1)^{12}$	SMA 1	0,000	Signifikan	Memenuhi uji
AKIWA(0,0,0)(0,0,1)	SMA 1	0,000	Sigiiiikaii	signifikansi
	AR 1	0,156	Tidak	Tidak
$ARIMA(1,0,1)(0,0,1)^{12}$	AK I	0,130	signifikan	- memenuhi uji
AKIWA(1,0,1)(0,0,1)	MA 1	0,000	Signifikan	signifikansi
	SMA 1	0,000	Signifikan	Signifikansi
ARIMA $(0,0,1)(0,0,1)^{12}$	MA 1	0,000	Signifikan	Memenuhi uji
$\Delta \mathbf{Kiivi} \Delta (0,0,1)(0,0,1)$	SMA 1	0,000	Signifikan	signifikansi

Tabel 3.3 menunjukkan bahwa terdapat 8 model SARIMA yang parameternya signifikan yaitu $ARIMA(2,0,0)(0,0,1)^{12}$, $ARIMA(2,0,0)(0,0,0)^{12}$, $ARIMA(1,0,0)(0,0,1)^{12}$, $ARIMA(1,0,1)(0,0,0)^{12}$, $ARIMA(0,0,1)(0,0,0)^{12}$,

ARIMA $(1,0,0)(0,0,0)^{12}$, ARIMA $(0,0,0)(0,0,1)^{12}$, ARIMA $(0,0,1)(0,0,1)^{12}$. Selanjutnya akan dilakukan analisis residual untuk memeriksa ketepatan model.

3.2.5 Analisis Residual

a. Uji Normalitas

Uji normalitas pada residual untuk model yang parameternya signifikan dengan menggunakan uji *Shapiro-Wilk*.

- Hipotesis

 H_0 : Residual model berdistribusi normal

 H_1 : Residual model tidak berdistribusi normal

- Tingkat signifikansi: $\alpha = 0.05$

- Daerah kritis: H_0 ditolak jika nilai p - value < 0.05

- Statistik uji

Berdasarkan Lampiran 4 didapatkan statistik uji pada Tabel 3.4.

Model Keterangan *p-value* $(2,0,0)(0,0,1)^{12}$ > 0.100Normal $(2,0,0)(0,0,0)^{12}$ > 0,100Normal $(1,0,0)(0,0,1)^{12}$ > 0,100 Normal $(1,0,1)(0,0,0)^{12}$ 0,050 Tidak Normal $(0,0,1)(0,0,0)^{12}$ 0,014 Tidak Normal $(1,0,0)(0,0,0)^{12}$ > 0.100Normal $(0,0,0)(0,0,1)^{12}$ > 0.100Normal $(0,0,1)(0,0,1)^{12}$ > 0.100 Normal

Tabel 3. 4 Hasil uji normalitas

- Kesimpulan

Tabel 3.4 menunjukkan hasil statistik uji yang dapat disimpulkan bahwa model ARIMA(1,0,1)(0,0,0)¹² dan ARIMA(0,0,1)(0,0,0)¹² memiliki *p-value* < 0,05, sehingga H_0 ditolak yang artinya kedua model tersebut tidak berdistribusi normal. Enam model lainnya yaitu ARIMA(2,0,0)(0,0,1)¹², ARIMA(2,0,0)(0,0,0)¹², ARIMA(1,0,0)(0,0,1)¹², ARIMA(1,0,0)(0,0,0)¹², ARIMA(0,0,0)(0,0,1)¹², dan

ARIMA $(0,0,1)(0,0,1)^{12}$ memiliki p-value > 0,05, maka H_0 gagal ditolak yang berarti kelima model memenuhi uji normalitas dan berdistribusi normal.

b. Uji Asumsi White Noise

Uji asumsi residual *white noise* dilakukan untuk melihat apakah model independen atau tidak. Uji independensi residual menggunakan uji Ljung-Box.

- Hipotesis

 H_0 : Residual bersifat white noise

 H_1 : Residual tidak bersifat white noise

- Tingkat signifikansi: $\alpha = 0.05$

Daerah kritis: H_0 ditolak jika nilai p - value < 0.05

- Statistik uji

Berdasarkan Lampiran 5 didapatkan statistik uji pada Tabel 3.5.

Tabel 3. 5 Hasil uji Ljung-Box

Model	p-va	ılue	Keterangan
	Lag 12	0,222	
$(2,0,0)(0,0,1)^{12}$	Lag 24	0,592	White noise
	Lag 36	0,699	
	Lag 12	0,292	
$(2,0,0)(0,0,0)^{12}$	Lag 24	0,724	White noise
	Lag 36	0,752	
	Lag 12	0,000	
$(1,0,0)(0,0,1)^{12}$	Lag 24	0,000	Tidak white noise
	Lag 36	0,000	
	Lag 12	0,000	
$(1,0,1)(0,0,0)^{12}$	Lag 24	0,000	Tidak white noise
	Lag 36	0,000	
	Lag 12	0,000	
$(0,0,1)(0,0,0)^{12}$	Lag 24	0,000	Tidak white noise
	Lag 36	0,000	
	Lag 12	0,000	
$(1,0,0)(0,0,0)^{12}$	Lag 24	0,000	Tidak white noise
	Lag 36	0,000	
	Lag 12	0,000	
$(0,0,0)(0,0,1)^{12}$	Lag 24	0,000	Tidak white noise
	Lag 36	0,000	
	Lag 12	0,131	
$(0,0,1)(0,0,1)^{12}$	Lag 24	0,152	White noise
	Lag 36	0,461	

- Kesimpulan

Tabel 3.5 menunjukkan hasil statistik uji asumsi *white noise* yang dapat disimpulkan bahwa terdapat tiga model yaitu ARIMA(2,0,0)(0,0,1)¹², ARIMA(2,0,0)(0,0,0)¹², dan ARIMA(0,0,1)(0,0,1)¹² yang memiliki *p-value* > 0,05, sehingga H_0 gagal ditolak yang artinya ketiga model memenuhi uji asumsi independensi residual. Sedangkan lima model lainnya yaitu ARIMA(1,0,0)(0,0,1)¹², ARIMA(1,0,1)(0,0,0)¹², ARIMA(0,0,1)(0,0,0)¹², ARIMA(1,0,0)(0,0,0)¹², dan ARIMA(0,0,0)(0,0,1)¹² memiliki *p-value* < 0,05, sehingga H_0 ditolak yang berarti kelima model lainnya tidak memenuhi uji asumsi independensi residual.

3.2.6 Peramalan untuk Data Testing

Berdasarkan analisis residual pada sub bab 3.2.5 didapatkan hasil seperti pada Tabel 3.6.

Model	Normal	White noise
$(2,0,0)(0,0,1)^{12}$	Normal	White Noise
$(2,0,0)(0,0,0)^{12}$	Normal	White Noise
$(1,0,0)(0,0,1)^{12}$	Normal	Tidak White Noise
$(1,0,1)(0,0,0)^{12}$	Tidak Normal	Tidak White Noise
$(0,0,1)(0,0,0)^{12}$	Tidak Normal	Tidak White Noise
$(1,0,0)(0,0,0)^{12}$	Normal	Tidak White Noise
$(0,0,0)(0,0,1)^{12}$	Normal	Tidak White Noise
$(0,0,1)(0,0,1)^{12}$	Normal	White Noise

Tabel 3. 6 Hasil Analisis Residual

Berdasarkan Tabel 3.6 didapatkan tiga model yang memenuhi uji asumsi residual yaitu $ARIMA(2,0,0)(0,0,1)^{12}$, $ARIMA(2,0,0)(0,0,0)^{12}$, dan $ARIMA(0,0,1)(0,0,1)^{12}$

a. Peramalan dengan Model ARIMA(2,0,0)(0,0,0)¹²

Model peramalan yang terbentuk dari ARIMA(2,0,0)(0,0,0)¹² sebagai berikut.

$$\phi_P(B^S)\phi_p(B)(1-B)^d(1-B^S)^D Z_t = \theta_q(B)\Theta_Q(B^S)a_t$$

$$\phi_0(B^{12})\phi_2(B)(1-B)^0(1-B^{12})^0 Z_t = \theta_0(B)\Theta_0(B^{12})a_t$$

$$(1 - \phi_1 B - \phi_2 B^2) Z_t = a_t$$

$$Z_t - \phi_1 B Z_t - \phi_2 B^2 Z_t = a_t$$

$$Z_t - \phi_1 Z_{t-1} - \phi_2 Z_{t-2} = a_t$$

$$Z_t = 18,722 + (0,967) Z_{t-1} + (-0,658) Z_{t-2}$$

Dari model peramalan di atas, didapatkan nilai peramalan dan plot perbandingan data *testing* dengan hasil peramalan dapat dilihat pada Tabel 3.7.

Tabel 3. 7 Hasil Peramalan $ARIMA(2,0,0)(0,0,0)^{12}$

Bulan	Nilai Aktual	Nilai Peramalan
Januari 2016	27,4	27,2344
Februari 2016	26,5	26,5306
Maret 2016	27,4	26,3183
April 2016	27,9	27,7808
Mei 2016	27,8	27,6721
Juni 2016	26,9	27,2464
Juli 2016	27,1	26,4419
Agustus 2016	27	27,2275
September 2016	27,5	26,9992
Oktober 2016	27,3	27,5485
November 2016	27,2	27,0261
Desember 2016	26,6	27,061

b. Peramalan dengan Model ARIMA $(2,0,0)(0,0,1)^{12}$

Model peramalan yang terbentuk dari ARIMA(2,0,0)(0,0,1)12 sebagai berikut.

$$\phi_P(B^S)\phi_P(B)(1-B)^d(1-B^S)^DZ_t = \theta_q(B)\Theta_Q(B^S)\alpha_t$$

$$\begin{split} \phi_0(B^{12})\phi_2(B)(1-B)^0(1-B^{12})^0Z_t &= \theta_0(B)\Theta_1(B^{12})a_t\\ (1-\phi_1B-\phi_2B^2)Z_t &= a_t(1+\Theta_1B^{12})\\ Z_t-\phi_1BZ_t-\phi_2B^2Z_t &= a_t+\Theta_1B^{12}a_t\\ Z_t-\phi_1Z_{t-1}-\phi_2Z_{t-2} &= a_t+\Theta_1a_{t-12}\\ Z_t &= a_t+\phi_1Z_{t-1}+\phi_2Z_{t-2}+\Theta_1a_{t-12}\\ Z_t &= 15,2474+(0,892)Z_{t-1}+(-0,454)Z_{t-2}+(-0,737)a_{t-12} \end{split}$$

Dari model peramalan di atas, didapatkan nilai peramalan dan plot perbandingan data *testing* dengan hasil peramalan dapat dilihat pada Tabel 3.8.

Tabel 3. 8 Hasil Peramalan ARIMA(2,0,0)(0,0,1)¹²

Bulan	Nilai Aktual	Nilai Peramalan
Januari 2016	27,4	26,92294794
Februari 2016	26,5	26,62939868
Maret 2016	27,4	26,53289244
April 2016	27,9	27,45587559
Mei 2016	27,8	27,95489778
Juni 2016	26,9	27,60901121
Juli 2016	27,1	26,44902224
Agustus 2016	27	27,22171792
September 2016	27,5	26,65869323
Oktober 2016	27,3	27,03977836
November 2016	27,2	27,02315164
Desember 2016	26,6	26,40605176

c. Peramalan dengan Model ARIMA(0,0,1)(0,0,1)¹²

Model peramalan yang terbentuk dari ARIMA(0,0,1)(0,0,1)¹² sebagai berikut.

$$\begin{split} \phi_P(B^S)\phi_p(B)(1-B)^d(1-B^S)^DZ_t &= \theta_q(B)\Theta_Q(B^S)a_t\\ \phi_0(B^{12})\phi_2(B)(1-B)^0(1-B^{12})^0Z_t &= \theta_1(B)\Theta_1(B^{12})a_t\\ Z_t &= a_t(1+\theta_1B)(1+\Theta_1B^{12})\\ Z_t &= a_t(1+\theta_1B^{12}+\theta_1B+\theta_1\Theta_1B^{13})\\ Z_t &= a_t+\Theta_1a_{t-12}+\theta_1a_{t-1}+\theta_1\Theta_1a_{t-13}\\ Z_t &= 27,123+(-0,757)a_{t-12}+(-0,8479)a_{t-1}+(0,6418)a_{t-13} \end{split}$$

Dari model peramalan di atas, didapatkan nilai peramalan dan plot perbandingan data *testing* dengan hasil peramalan seperti pada Tabel 3.9.

Tabel 3. 9 Hasil Peramalan $ARIMA(0,0,1)(0,0,1)^{12}$

Nilai Aktual	Nilai Peramalan
27,4	26,11264
26,5	26,05363
27,4	26,92388
27,9	26,53289
27,8	26,43925
26,9	25,87765
27,1	26,09466
27	26,22198
27,5	26,06135
27,3	25,75006
27,2	26,00644
26,6	25,61006
	27,4 26,5 27,4 27,9 27,8 26,9 27,1 27 27,5 27,3 27,2

3.2.7 Menentukan Model Terbaik

Model peramalan terbaik dipilih berdasarkan nilai *error* terkecil agar kesalahan dalam peramalan dapat diminimalkan dan pemilihan model terbaik dapat dilihat secara visual melalui plot antara nilai aktual dan peramalan. Ringkasan nilai *error* pada masingmasing model terangkum dalam Tabel 3.10.

Tabel 3. 10 Perbandingan nilai error

Model	MAPE
ARIMA(2,0,0)(0,0,0) ¹²	15,22%
$ARIMA(2,0,0)(0,0,1)^{12}$	18,79%
ARIMA(0,0,1)(0,0,1) ¹²	47,32%

Dari Tabel 3.10 didapatkan model terbaik yaitu ARIMA $(2,0,0)(0,0,0)^{12}$ dengan nilai $error\ MAPE$ sebesar 15,22%.

3.3 Peramalan Suhu Kota Surakarta Bulan Januari 2017

Pada tahap ini, model terbaik yang didapat yaitu ARIMA(2,0,0)(0,0,0)¹² akan digunakan untuk meramalkan suhu Kota Surakarta pada bulan Januari 2017 dengan persamaan model sebagai berikut.

$$Z_t = a_t + \phi_1 Z_{t-1} + \phi_2 Z_{t-2}$$

Pada Lampiran 2 didapatkan nilai $a_t = 18,722, \phi_1 = 0,967, \text{ dan } \phi_2 = -0,658.$

$$Z_{61} = 18,722 + (0,967)27,061 + (-0,658)27,0261$$

$$Z_{61} = 26,5466$$

Dengan menggunakan model ARIMA(2,0,0)(0,0,0) 12 didapatkan suhu Kota Surakarta pada bulan Januari 2017 sebesar 26,5466° \mathcal{C} .

BAB IV

PENUTUP

4.1 Kesimpulan

Berdasarkan penelitian yang telah dilakukan, maka kesimpulan yang didapat dari penelitian adalah sebagai berikut.

- 1. Pola data suhu cuaca di Kota Surakarta periode Januari 2012 hingga Desember 2016 adalah data berpola musiman tanpa tren.
- 2. Model terbaik untuk meramalkan suhu cuaca di Kota Surakarta menggunakan metode Seasonal Autoregressive Integrated Moving Average (SARIMA) adalah model ARIMA $(2,0,0)(0,0,0)^{12}$ dan memiliki persamaan matematis sebagai berikut $Z_t = 18,722 + (0,967)Z_{t-1} + (-0,658)Z_{t-2}$.
- 3. Peramalan suhu cuaca di Kota Surakarta pada bulan Januari 2017 berdasarkan model *Seasonal Autoregressive Integrated Moving Average* (SARIMA) terbaik adalah sebesar 26,5466°C.

4.2 Saran

Berdasarkan dengan hasil penelitian yang telah dilakukan terkait peramalan suhu cuaca di Kota Surakarta periode Januari 2012 hingga Desember 2016 menggunakan metode *Seasonal Autoregressive Integrated Moving Average* (SARIMA), saran yang dapat diberikan adalah untuk Pemerintah Kota Surakarta agar dapat melakukan tinjauan dan membuat kebijakan untuk mengatasi perubahan iklim berupa suhu cuaca ekstrem yang dapat mempengaruhi kehidupan sehari-hari masyarakat di Surakarta. Pemerintah Kota juga diharapkan dapat merancang mitigasi yang tepat berupa kebijakan perencanaan tata ruang yang dapat mengurangi risiko terkait suhu ekstrem.

DAFTAR PUSTAKA

- Anwar, S. (2017). Peramalan Suhu Udara Jangka Pendek di Kota Banda Aceh dengan Metode Autoregressive Integrated Moving Average (ARIMA). *Malikussaleh Journal of Mechanical Science and Technology*, 5(1), 6-12.
- Wei, W. S. (2006). Time Series Analysis: Univariate and Multivariate Methods. *New York: Pearson*.
- Widianingsih, P., Darmawan, G., & Sunengsih, N. (2022). Analisis Intervensi dalam Model SARIMA untuk Memprediksi Laju Inflasi di Kota Tasikmalaya. *Formosa Journal of Science and Technology*, *1*(4), 293-304.

LAMPIRAN

Lampiran 1. Data Suhu Kota Surakarta Periode Januari 2012 hingga Desember 2016

Bulan	Suhu	Bulan	Suhu	Bulan	Suhu
Januari 2012	25,8	September 2013	27,5	Mei 2015	27,3
Februari 2012	26,7	Oktober 2013	28,5	Juni 2015	26,7
Maret 2012	26,6	November 2013	27,2	Juli 2015	26,6
April 2012	27,3	Desember 2013	26,5	Agustus 2015	27
Mei 2012	27,2	Januari 2014	25,8	September 2015	27,7
Juni 2012	26,6	Februari 2014	25,8	Oktober 2015	29,1
Juli 2012	26	Maret 2014	26,7	November 2015	28,8
Agustus 2012	26	April 201	27,2	Desember 2015	28,4
September 2012	27,3	Mei 2014	27,9	Januari 2016	27,4
Oktober 2012	28,3	Juni 2014	27,4	Februari 2016	26,5
November 2012	28,1	Juli 2014	26,5	Maret 2016	27,4
Desember 2012	26,7	Agustus 2014	26,7	April 2016	27,9
Januari 2013	26,2	September 2014	27,2	Mei 2016	27,8
Februari 2013	26,5	Oktober 2014	28,9	Juni 2016	26,9
Maret 2013	27	November 2014	28,1	Juli 2016	27,1
April 2013	27,4	Desember 2014	26,8	Agustus 2016	27
Mei 2013	27,3	Januari 2015	26,8	September 2016	27,5
Juni 2013	26,8	Februari 2015	27	Oktober 2016	27,3
Juli 2013	26,4	Maret 2015	27	November 2016	27,2
Agustus 2013	26,4	April 2015	27,3	Desember 2016	26,6

Lampiran 2. Output Minitab Uji Signifikansi Parameter

	Final Estimates of Parameters				
	Type Coef SE Coef T-Value P-Value				
	AR 1 0,892 0,135 6,61	0,000			
$ARIMA(2,0,0)(0,0,1)^{12}$	AR 2 -0,454 0,135 -3,36	0,002			
	SMA 12 -0,737 0,171 -4,30	0,000			
	Constant 15,2474 0,0991 153,83	0,000			
	Mean 27,132 0,176				
	Final Estimates of Parameters				
	Type Coef SE Coef T-Value P-	Value			
$ARIMA(2,0,0)(0,0,0)^{12}$	AR 1 0,967 0,116 8,32	0,000			
	AR 2 -0,658 0,123 -5,37	0,000			
	Constant 18,7220 0,0762 245,58	0,000			
	Mean 27,078 0,110				
	Final Estimates of Parameters				
	Type Coef SE Coef T-Value P-	Value			
$ARIMA(1,0,0)(0,0,1)^{12}$	AR 1 0,645 0,124 5,21	0,000			
111111111(1)0)0)(0)0)1)	SMA 12 -0,757 0,158 -4,78	0,000			
	Constant 9,638 0,104 93,08	0,000			
	Mean 27,129 0,291				
	Final Estimates of Parameters				
	Type Coef SE Coef T-Value P-	Value			
ARIMA $(1,0,0)(0,0,0)^{12}$	AR 1 0,341 0,165 2,07	0,045			
	MA 1 -0,712 0,126 -5,63	0,000			
	Constant 17,855 0,138 129,15	0,000			
	Mean 27,092 0,210				
	Final Estimates of Parameters				
ADDM A (0.0.1) (0.0.0)12	Type Coef SE Coef T-Value P-	Value			
$ARIMA(0,0,1)(0,0,0)^{12}$	MA 1 -0,8209 0,0896 -9,16	0,000			
	Constant 27,099 0,149 182,33	0,000			
	Mean 27,099 0,149				

	Final Estimates of Parameters				
	Type Coef SE Coef T-Value P-Value				
$ARIMA(1,0,0)(0,0,0)^{12}$	AR 1 0,622 0,120 5,17 0,000				
	Constant 10,2386 0,0951 107,65 0,000				
	Mean 27,104 0,252				
	Final Estimates of Parameters				
	Type Coef SE Coef T-Value P-Value				
$ARIMA(0,0,0)(0,0,1)^{12}$	SMA 12 -0,748 0,177 -4,21 0,000				
	Constant 27,143 0,135 201,08 0,000				
	Mean 27,143 0,135				
	Final Estimates of Parameters				
	Type Coef SE Coef T-Value P-Value				
$ARIMA(0,0,1)(0,0,1)^{12}$	MA 1 -0,8479 0,0761 -11,15 0,000				
(-,-,-, (-,-,-,	SMA 12 -0,757 0,172 -4,40 0,000				
	Constant 27,123 0,170 159,31 0,000				
	Mean 27,123 0,170				

Lampiran 3. Resisual

200,001	200,000	100,001	101,000	001,000	100,000	000,001	001,001
0,24624	-0,39801	-0,27714	-0,15938	-0,43610	-0,79906	-0,56595	0,07921
0,27132	0,20805	0,32619	0,16188	-0,04088	0,40743	-0,04387	-0,08393
-0,38321	-0,95381	-0,12593	-0,47360	-0,46531	-0,25259	-0,16035	-0,06686
0,29402	0,43541	0,26183	0,71275	0,58310	0,50964	0,15900	0,22706
-0,34093	-0,40729	-0,25073	-0,47019	-0,37752	-0,02594	-0,14591	-0,33791
-0,25929	-0,44974	-0,35266	-0,19424	-0,18897	-0,56371	-0,46303	-0,16790
-0,28488	-0,53541	-0,28263	-0,78606	-0,94374	-0,79036	-0,61317	-0,44647
-0,36564	-0,35026	-0,25405	-0,16032	-0,32417	-0,41702	-0,67574	-0,27590
0,48627	0,55473	0,66879	0,69436	0,46724	0,88298	0,20084	0,44765
0,05323	0,29770	0,43032	0,64289	0,81759	1,07406	0,52794	0,13709
-0,15438	-0,01338	-0,12206	0,13858	0,32999	0,25182	0,14627	0,01387
-0,09630	-0,56164	-0,30188	-0,83433	-0,66975	-1,02373	-0,35674	-0,15086
-0,28925	0,16041	-0,44275	-0,16462	-0,34908	-0,65259	-0,51946	-0,39312
-0,19698	0,02219	-0,27711	-0,17076	-0,31231	-0,04147	-0,60993	-0,27712
0,29134	-0,09707	0,37173	0,23132	0,15750	0,27186	-0,02281	0,21630
-0,11774	0,01696	0,15583	0,17470	0,17184	0,36074	0,13834	-0,03547
0,12058	-0,14064	0,18596	-0,02138	0,06007	0,01184	0,26638	0,31698
-0,16901	-0,28060	-0,17241	-0,34774	-0,34818	-0,42594	0,00356	-0,24798
-0,14968	-0,26297	-0,30306	-0,34501	-0,41305	-0,51481	-0,28415	-0,06722
0,03971	-0,20537	-0,06681	-0,21057	-0,35980	-0,26591	-0,23735	-0,17082
0,33013	0,63129	0,33459	0,79375	0,69649	0,83409	0,20706	0,35995
0,66863	0,56765	0,80592	0,70397	0,82941	1,14962	0,96242	0,68065
-0,87096	-0,97510	-0,72064	-0,87308	-0,57971	-0,77263	-0,05213	-0,59872
-0,00106	0,24028	-0,44638	-0,00752	-0,12300	-0,66371	-0,37593	-0,01021
-0,52433	-0,63872	-0,58843	-1,08485	-1,19790	-0,92814	-0,95423	-0,92014
-0,28575	-0,42271	-0,26252	-0,07949	-0,31554	-0,49257	-0,88657	-0,08094
-0,06333	0,01644	0,14630	0,10503	-0,13985	0,40743	-0,42568	-0,34037
-0,06417	-0,35381	0,22949	0,16686	0,21593	0,34741	-0,04620	0,25351
0,42254	0,45524	0,58432	0,65239	0,62388	0,73629	0,55803	0,34478
-0,26128	-0,39244	-0,09569	-0,43180	-0,21099	-0,19928	0,25460	-0,03120
-0,41219	-0,34812	-0,57443	-0,38975	-0,42566	-0,78816	-0,43022	-0,38667
0,22383	0,39295	0,02697	0,08717	-0,04945	-0,02814	-0,26522	0,07714
-0,07687	0,10704	0,09417	0,17958	0,14173	0,34741	-0,09759	-0,15135
1,01844	1,45524	1,11500	1,64334	1,68480	1,73629	1,03747	1,15906
0,06467	-0,65938	0,37460	-0,77797	-0,38188	-0,12153	0,99625	0,01046
-0,39231	-0,06663	-0,61724	-0,08205	0,01461	-0,92373	-0,06158	0,05994
0,78976 0,22415	0,66372 0,00785	0,32843	-0,13409 0,10294	-0,31086 0,15631	-0,11481	0,37093	0,32900
-0,11817		0,28171	*	*	0,08519	0,52033	0,24965
0,27317	-0,18553 0,24614	-0,15671 0,08031	-0,13393 0,33464	-0,22718 0,38762	-0,03926 0,26074	0,17562 0,19182	-0,02526 0,22484
-0,35319	-0,04395	-0,38172	-0,10111	-0,11705	0,26074	-0,26009	-0,43740
-0,33319	-0,04393 -0,44644	-0,38172 -0,46694	-0,10111	-0,11703	-0,52594	-0,20009	-0,43740 -0,24991
-0,51291	-U, 44 U 44	-0,40074	-0,57100	-0,30278	-0,32334	-0,03313	-U,4 4 771

0,23335	0,03373	0,18231	-0,08013	-0,25032	-0,25259	-0,22098	0,00143
-0,01861	0,13541	0,19151	0,13273	0,10662	0,20964	0,05562	0,06540
0,50109	0,38280	0,58276	0,54487	0,51362	0,66074	0,63025	0,58646
0,65078	1,36928	0,75867	1,41291	1,57952	1,62517	1,18134	0,69951
0,12327	0,17641	0,11655	0,01784	0,40454	0,45402	0,91217	0,33205
0,96275	0,98818	0,66080	0,71294	0,96905	0,24070	1,30332	0,94325

Lampiran 4. Output Minitab Uji Normalitas Residu

Lampiran 5. Output Minitab Uji Independensi Residual

ARIMA(2,0,0)(0,0,1) ¹²	Modified Box-Pierce (Ljung-Box) Chi-Square Statistic Lag 12 24 36 48 Chi-Square 10,65 17,92 27,39 * DF 8 20 32 * P-Value 0,222 0,592 0,699 *
ARIMA(2,0,0)(0,0,0) ¹²	Modified Box-Pierce (Ljung-Box) Chi-Square Statistic Lag 12 24 36 48 Chi-Square 10,76 16,79 27,17 * DF 9 21 33 * P-Value 0,292 0,724 0,752 *
ARIMA(1,0,0)(0,0,1) ¹²	Modified Box-Pierce (Ljung-Box) Chi-Square Statistic Lag 12 24 36 48 Chi-Square 32,53 62,61 70,61 * DF 9 21 33 * P-Value 0,000 0,000 0,000 *
ARIMA(1,0,1)(0,0,0) ¹²	Modified Box-Pierce (Ljung-Box) Chi-Square Statistic Lag 12 24 36 48 Chi-Square 35,75 60,80 73,97 * DF 9 21 33 * P-Value 0,000 0,000 0,000 *
ARIMA(0,0,1)(0,0,0) ¹²	Modified Box-Pierce (Ljung-Box) Chi-Square Statistic Lag 12 24 36 48 Chi-Square 44,16 78,37 94,89 * DF 10 22 34 * P-Value 0,000 0,000 0,000 *
ARIMA(1,0,0)(0,0,0) ¹²	Modified Box-Pierce (Ljung-Box) Chi-Square Statistic Lag 12 24 36 48 Chi-Square 92,16 163,35 195,87 * DF 10 22 34 * P-Value 0,000 0,000 0,000 *
ARIMA(0,0,0)(0,0,1) ¹²	Modified Box-Pierce (Ljung-Box) Chi-Square Statistic Lag 12 24 36 48 Chi-Square 36,05 72,56 88,13 * DF 10 22 34 * P-Value 0,000 0,000 0,000 *

Modified Box-Pierce (Ljung-Box) Chi-Square Statistic

ARIMA $(0,0,1)(0,0,1)^{12}$

Lag	12	24	36	48
Chi-Square	13,75	27,60	33,13	*
DF	9	21	33	*
P-Value	0,131	0,152	0,461	*