Programming with R for Beginners: Part I

1. โปรแกรม R Studio

2. เริ่มต้นทำการทดสอบการทำงานด้วยการตรวจสอบเวอร์ชั่นของ R โดยใช้คำสั่ง version (พิมพ์คำสั่งในหน้าต่าง Console)

- 3. หากต้องการเคลียร์หน้าต่าง Console ใช้คำสั่ง Ctrl+L
- 4. การใช้งานแพ็กเกจ (Package)

วิธีที่ 1

- ติดตั้งแพ็กเกจที่ต้องการโดยใช้คำสั่ง install.packages("ชื่อแพ็กเกจ")
- โหลดแพ็กเกจขึ้นมาใช้งานโดยใช้คำสั่ง library("ชื่อแพ็กเกจ")

<u>วิธีที่ 2</u>

- ที่หน้าต่าง Graphical output คลิกเลือกแท็ป (Tab) Packages แล้วคลิกปุ่ม Install

- ที่ช่อง Packages ใส่ชื่อแพ็กเกจที่ต้องการติดตั้ง ในที่นี้ใส่เป็นแพ็กเกจที่ชื่อว่า pracma (Practical Numerical Math Functions) แล้วกดปุ่ม Install

- เมื่อต้องการโหลดแพ็กเกจขึ้นมาใช้งาน ให้ไปที่หน้าต่าง Graphical output คลิกเลือกแท็ป (Tab) Packages แล้วคลิกเลือก แพ็กเกจที่ต้องการโหลด

- ทดสอบการทำงานของแพ็กเกจ pracma

```
> idivide(7, 3)
> mod(7, 3)
```

- * สามารถดูรายชื่อแพ็กเกจทั้งหมดได้ที่ https:// cran.r-project.org/web/packages/available_packages_by_name.html
- 5. การตั้งชื่อตัวแปร ชื่อตัวแปรประกอบไปด้วยตัวอักษร (Letters), ตัวเลข (Numbers), เครื่องหมายจุด (Dot) (.) และเครื่องหมาย ขีดล่าง (Underline) (_) โดยที่ตัวแปรสามารถขึ้นต้นด้วยตัวอักษรหรือเครื่องหมายจุดที่ไม่ตามด้วยตัวเลขได้
- 6. การใช้งานหน้าต่าง R Script ไปที่ทูลบาร์ (Tool Bar) คลิกที่ไอคอนแรก (รูปกระดาษว่าง) แล้วเลือกเมนู R Script

7. ตัวอย่างคำสั่งในเรื่องของการกำหนดค่าตัวแปร

- การกำหนดค่าให้กับตัวแปร ใช้เครื่องหมาย = หรือ <--
- คำสั่ง cat() ใช้ในการแสดงผลหลายๆ ค่า
- ถ้าต้องการเรียกดูตัวแปรทั้งหมด ใช้คำสั่ง print(ls())
- ถ้าต้องการลบตัวแปร ใช้คำสั่ง rm(ชื่อตัวแปร)
- ถ้าต้องการลบตัวแปรทั้งหมด ใช้คำสั่ง rm(list = ls())
- 8. ชนิดข้อมูล (Data Types)
 - (18.1) ชนิดข้อมูลแบบพื้นฐาน (Atomic)
 - (18.2) ชนิดข้อมูลแบบเวกเตอร์ (Vector) เป็นชุดข้อมูลประเภทเดียวกันมากกว่า 1 ตัวขึ้นไป
 - (18.3) ชนิดข้อมูลแบบแฟกเตอร์ (Factor) เป็นชุดข้อมูลสำหรับข้อมูลเชิงคุณภาพ (Categorical data) จะประกอบไปด้วย level หรือ category ของข้อมูลว่ามีทั้งหมดกี่ประเภท
 - (18.4) ชนิดข้อมูลแบบลิสต์ (List) เป็นชุดข้อมูลเวกเตอร์ชนิดพิเศษที่สามารถบรรจุข้อมูลประเภทใดก็ได้ โดยไม่จำเป็นต้องเป็น ข้อมูลชนิดเดียวกัน
 - (18.5) ชนิดข้อมูลแบบเมตริกซ์ (Matrix) เป็นชุดข้อมูลประเภทเดียวกันที่เก็บไว้เป็น 2 มิติ คือเป็นแถว (row) และคอลัมน์ (column)
 - (18.6) ชนิดข้อมูลแบบอาร์เรย์ (Array) เป็นชุดข้อมูลเมตริกซ์ที่มีจำนวนมิติมากกว่า 2 มิติ
 - (18.7) ชนิดข้อมูลแบบดาต้าเฟรม (Data Frame) เป็นชุดข้อมูลเมตริกซ์ โดยแต่ละคอลัมน์จะเป็นตัวแปรซึ่งมีข้อมูลชนิดเดียวกัน และทุกๆ คอลัมน์จะมีจำนวนแถวเท่ากัน
 - (18.8) ชนิดข้อมูลที่สูญหาย (Missing values) แทนค่าได้ด้วยตัวแปรพิเศษ NA มาจากคำว่า Not Available ส่วนค่าที่ไม่นิยาม เป็นตัวเลขจะแทนด้วย NaN มาจากคำว่า Not a Number

(18.1) ชนิดข้อมูลแบบพื้นฐาน (Atomic)

ชนิดข้อมูล	คำอธิบาย
Logical	ข้อมูลชนิดตรรกะ มีค่าเป็น True หรือ False
Integer	ข้อมูลตัวเลขชนิดจำนวนเต็ม
Numeric	ข้อมูลตัวเลขชนิดจำนวนจริง
Complex	ข้อมูลชนิดจำนวนเชิงซ้อน
Character, String	ข้อมูลชนิดตัวอักษร
Raw	ข้อมูลชนิด bitstream แสดงข้อมูลในรูปเลขฐาน 16

- R จะประมวลผลตัวเลขในลักษณะของจำนวนจริงเสมอ หากต้องการกำหนดให้ตัวเลขเป็นจำนวนเต็มจะต้องเติม L ไว้ด้านหลัง เช่น 2L
- Inf (Infinity) หมายถึงมีค่าอนันต์ แต่สามารถนำมาคำนวณได้
- NaN (Not a Number) หมายถึงหาค่าไม่ได้
- ตัวอย่างคำสั่ง

- (18.2) ชนิดข้อมูลแบบเวกเตอร์ (Vector) เป็นชุดข้อมูลประเภทเดียวกันมากกว่า 1 ตัวขึ้นไป คำสั่งในการสร้างเวกเตอร์ คือ c() และคำสั่งในการกำหนดเวกเตอร์ว่างๆ ไว้เพื่อใช้งาน คือ vector()
- ตัวอย่างคำสั่ง

```
| Vector.R * | Source on Save | Source o
```

(18.3) ชนิดข้อมูลแบบแฟกเตอร์ (Factor) เป็นชุดข้อมูลสำหรับข้อมูลเชิงคุณภาพ (Categorical data) จะประกอบไปด้วย level หรือ category ของข้อมูลว่ามีทั้งหมดกี่ประเภท

ตัวอย่างคำสั่ง

```
P Factor.R *

| Source on Save | C | Factor | Factor
```

(18.4) ชนิดข้อมูลแบบลิสต์ (List) เป็นชุดข้อมูลเวกเตอร์ชนิดพิเศษที่สามารถบรรจุข้อมูลประเภทใดก็ได้ โดยไม่จำเป็นต้องเป็น ข้อมูลชนิดเดียวกัน

ตัวอย่างคำสั่ง (คำสั่ง str() ใช้เรียกดูโครงสร้างข้อมูล)

```
Dist.R ×
🗘 🖒 📗 🔚 🗐 Source on Save 🛮 🔍 🙇 🔻 📳 🔻
  1 myList = list(
        one = 1:5,
        two = 1,
       three = c(3, 4),
       four = matrix(11:16, ncol = 3),
five = c("a", "b")
  6
  8
     myList
 10
 11
     str(myList)
      summary(myList)
 12
 13
 14
     myList§one
     myList[[1]]
```

(18.5) ชนิดข้อมูลแบบเมตริกซ์ (Matrix) เป็นชุดข้อมูลประเภทเดียวกันที่เก็บไว้เป็น 2 มิติ คือเป็นแถว (row) และคอลัมน์ (column) ในการสร้างเมตริกซ์จะต้องกำหนดจำนวนแถวด้วยคำสั่ง nrow และกำหนดจำนวนคอลัมน์ด้วยคำสั่ง ncol

ตัวอย่างคำสั่ง

```
Matrix.R *

1 data = c(1, 2, 3, 4, 5, 6)
2 A_mat = matrix(data, nrow = 2, byrow = T)
3
4 A_mat
5 A_mat[1,]
6 A_mat[, 2]
7 A_mat[2, 3]
8
9 diag(4)
10 matrix(0, nrow = 3, ncol = 4)
```

(18.6) ชนิดข้อมูลแบบอาร์เรย์ (Array) เป็นชุดข้อมูลเมตริกซ์ที่มีจำนวนมิติมากกว่า 2 มิติ โดยใช้คำสั่ง dim() ในการกำหนดจำนวน มิติ

ตัวอย่างคำสั่ง

(18.7) ชนิดข้อมูลแบบดาต้าเฟรม (Data Frame) เป็นชุดข้อมูลเมตริกซ์ โดยแต่ละคอลัมน์จะเป็นตัวแปรซึ่งมีข้อมูลชนิดเดียวกัน และทุกๆ คอลัมน์จะมีจำนวนแถวเท่ากัน

ตัวอย่างคำสั่ง

```
DataFrame.R *

| Source on Save | The state of the state
```

ตัวอย่างคำสั่ง

```
my_df$id
     my_df[["id"]]
14
15
     my_df[[1]]
16
17
     my_df$name
     my_df[["name"]]
18
     my_df[, 2]
19
20
21 my_df[, 1:2]
22 my_df[2:3, ]
23 my_df[, c("id", "age")]
24 my_df[c(1, 3), ]
25
26 my_df[my_df$age == 22, ]
```

(18.8) ชนิดข้อมูลที่สูญหาย (Missing values) แทนค่าได้ด้วยตัวแปรพิเศษ NA มาจากคำว่า Not Available ส่วนค่าที่ไม่นิยาม เป็นตัวเลขจะแทนด้วย NaN มาจากคำว่า Not a Number ซึ่ง NaN ถือเป็นรูปแบบหนึ่งของ NA

ตัวอย่างคำสั่ง

ตัวอย่างคำสั่ง

แบบฝึกหัด

1. จงสร้างตัวแปรเพื่อเก็บข้อมูลดังต่อไปนี้

name	gender	height	weight	age	bmi
Paul	Male	152	81	42	0
John	Male	171.5	50	38	0
Lisa	Female	165	59	26	0

- 2. จงเขียนคำสั่งเพื่อเรียกดูโครงสร้างของตัวแปรที่สร้างขึ้นในข้อที่ 1.
- 3. จงเขียนคำสั่งเพื่อเรียกดูแถวข้อมูล ที่มีค่าส่วนสูงมากกว่า 160 ซม.
- 4. จงเขียนคำสั่งเพื่อหาค่าเฉลี่ยของอายุ
- 5. จงเขียนคำสั่งเพื่อคำนวณหาค่าดัชนีมวลกาย (bmi) โดยที่ ค่าดัชนีมวลกาย (bmi) = น้ำหนัก (กิโลกรัม) / ส่วนสูง (เมตร)² และเก็บ ค่าดัชนีมวลกายที่คำนวณได้ลงในตัวตัวแปร bmi
- 6. จงเขียนคำสั่งเพื่อเรียกดูชื่อ (name) คนที่มีค่าดัชนีมวลกาย (bmi) มากกว่า 25

Programming with R for Beginners: Part II

- 1. การนำเสนอข้อมูล (Visualization with R)
 - (1.1) ติดตั้งแพ็กเกจสำหรับการแสดงผลด้วยกราฟ แพ็กเกจชื่อ ggplot2 (โดยใช้คำสั่ง install.packages("ชื่อแพ็กเกจ") หรือใช้ เครื่องมือของ R Studio)
 - (1.2) ทำการโหลดแพ็กเกจขึ้นมาใช้งาน (โดยใช้คำสั่ง library("ชื่อแพ็กเกจ") หรือใช้เครื่องมือของ R Studio)
 - (1.3) เพิ่มพื้นที่ (Chunk) ในการเขียนสคริปต์ใหม่ และเขียนคำสั่งดังต่อไปนี้ เสร็จแล้วกดปุ่มบันทึก (Save) (ไอคอนรูปแผ่นดิสก์) (วิเคราะห์ผลลัพธ์ที่เกิดขึ้น) แล้วกดปุ่มรัน

```
dat = data.frame(
  model = c("DT", "KNN", "NN"),
  accuracy = c(70.5, 93.0, 85.6)
)
dat
ggplot(data=dat, aes(x=model, y=accuracy, fill=model)) + geom_bar(stat="identity")
```


- 2. การนำเสนอข้อมูล (Visualization with R) (ต่อ)
 - (2.1) ติดตั้งแพ็กเกจสำหรับการแปลงโครงสร้างของข้อมูล แพ็กเกจชื่อ reshape2 (โดยใช้คำสั่ง install.packages("ชื่อแพ็กเกจ") หรือใช้เครื่องมือของ R Studio)
 - (2.2) ทำการโหลดแพ็กเกจขึ้นมาใช้งาน (โดยใช้คำสั่ง library("ชื่อแพ็กเกจ") หรือใช้เครื่องมือของ R Studio)
 - (2.3) เพิ่มพื้นที่ (Chunk) ในการเขียนสคริปต์ใหม่ และเขียนคำสั่งดังต่อไปนี้ เสร็จแล้วกดปุ่มบันทึก (Save) (ไอคอนรูปแผ่นดิสก์) (วิเคราะห์ผลลัพธ์ที่เกิดขึ้น) แล้วกดปุ่มรัน

```
bar = ggplot(data=dat2, aes(x=variable, y=value, fill=dataset)) +
  geom_bar(stat="identity", position=position_dodge(), colour="black")
line = ggplot(data=dat2, aes(x=dataset, y=value, group=variable, colour=variable)) +
  geom_line() + geom_point()
bar
```

line

Programming with R for Beginners: Part III

- 1. การวิเคราะห์ข้อมูลด้วยกระบวนวิธี Linear Regression
 - (1.1) เขียนคำสั่งเพื่ออ่านไฟล์ข้อมูล

```
data.train = read.csv("heating_oil_train.csv")
data.train
```

ฟังก์ชั่น read.csv() ทำการอ่านไฟล์ นามสกุล .csv

(1.2) โครงสร้างข้อมูลของ heating oil train.csv

Attribute	Туре	Description
Insulation	Integer	ฉนวนกันความร้อนภายในบ้าน
Temperature	Integer	อุณหภูมิภายนอกบ้านในปีที่ผ่านมา
Heating_Oil	Integer	ปริมาณการสั่งซื้อน้ำมันเพื่อทำความร้อนเมื่อปีที่ผ่านมา
Num_Occupants	Integer	จำนวนผู้อาศัยอยู่ภายในบ้าน
Avg_Age	Double (Real)	อายุเฉลี่ยของผู้อาศัยอยู่ในบ้าน
Home_Size	Integer	ขนาดของบ้าน (ตัวเลขมากแสดงว่าขนาดใหญ่)

Insulation <int></int>	Temperature <int></int>	Heating_Oil <int></int>	Num_Occupants <int></int>	Avg_Age <dbl></dbl>	Home_Size <int></int>
6	74	132	4	23.8	4
10	43	263	4	56.7	4
3	81	145	2	28.0	6
9	50	196	4	45.1	3
2	80	131	5	20.8	2
5	76	129	3	21.5	3
5	72	131	4	23.5	3
6	88	161	2	38.2	6
5	77	184	3	42.5	3
10	42	225	3	51.1	1
1-10 of 1,218 rows			Previous 1 2	3 4 5	6 100 Next

(1.3) เขียนคำสั่งเรียกใช้งานฟังก์ชั่น lm() เพื่อทำการสร้างโมเดลด้วยกระบวนวิธี Linear Regression (วิธีพิมพ์เครื่องหมาย Tilde หรือ Accent (~) ใช้คำสั่ง Alt+126)

```
model = lm(Heating_Oil~., data=data.train)
model
```

```
Call:
|m(formula = Heating_Oil ~ ., data = data.train)

Coefficients:
(Intercept) Insulation Temperature Num_Occupants Avg_Age
135.4809 3.3255 -0.8699 -0.2690 1.9658
Home_size
3.1715
```

(1.4) เขียนคำสั่งเรียกใช้งานฟังก์ชั่น read.csv() เพื่อทำการอ่านไฟล์สำหรับพยากรณ์ข้อมูล (ทดสอบโมเดล)

```
data.test = read.csv("heating_oil_test.csv")
data.test
```

Insulation	Temperature	Num_Occupants	Avg_Age	Home_Size
<int></int>	<int></int>	<int></int>	<dbl></dbl>	<int></int>
5	69	10	70.1	7
5	80	1	66.7	1
4	89	9	67.8	7
7	81	9	52.4	6
4	58	8	22.9	7
4	58	6	37.4	3
6	51	2	51.6	3
2	73	5	37.4	4
9	39	1	56.9	7
8	84	5	64.5	2
1-10 of 42,650 rows		Previous 1	2 3 4	5 6 100 Next

ข้อสังเกต ข้อมูลสำหรับพยากรณ์ (ทดสอบโมเดล) จะไม่มีแอทริบิวท์ Heating Oil

(1.5) เขียนคำสั่งเรียกใช้งานฟังก์ชั่น predict() เพื่อทำการพยากรณ์ข้อมูล (การนำโมเดลมาใช้งานเพื่อพยากรณ์ค่าของข้อมูล)

```
p = predict(model, data.test)
data.test$predict = p
data.test
```

predict	Home_Size	Avg_Age	Num_Occupants	Temperature	Insulation
<dbl></dbl>	<int></int>	<dbl></dbl>	<int></int>	<int></int>	<int></int>
249.3982	7	70.1	10	69	5
216.5368	1	66.7	1	80	5
224.4218	7	67.8	9	89	4
207.9126	6	52.4	9	81	7
163.3933	7	22.9	8	58	4
179.7495	3	37.4	6	58	4
221.4805	3	51.6	2	51	6
163.4900	4	37.4	5	73	2
265.2700	7	56.9	1	39	9
220.8045	2	64.5	5	84	8
100 Next	3 4 5 6	vious 1 2	Dro		10 of 42,650 rows

(1.6) เขียนคำสั่งเรียกใช้งานฟังก์ชั่น write.csv() เพื่อทำการบันทึกผลลัพธ์ที่ได้ออกเป็นไฟล์ .csv

write.csv(data.test, file="predict_heating.csv")

แบบฝึกหัดที่ 1

- (1) เป้าหมายของการวิเคราะห์คือประเมิน (พยากรณ์) ค่าใช้จ่ายในการรักษาพยาบาล (expenses) โดยใช้โมเดล Linear Regression
- (2) ไฟล์ข้อมูลสำหรับนำไปสร้างโมเดล คือ insurance train.csv

	sex <fctr></fctr>	bmi <dbl></dbl>	children	smoker <fctr></fctr>	region <fctr></fctr>	expenses <dbl></dbl>			
~ubi>	<icii <="" td=""><td>~ubi></td><td>\ubis</td><td>\ICU/</td><td>\lu_1</td><td>\u012</td></icii>	~ubi>	\ubis	\ICU/	\lu_1	\u012			
19	female	27.9	0	yes	southwest	16884.9			
18	male	33.8	1	no	southeast	1725.			
28	male	33.0	3	no	southeast	4449.4			
33	male	22.7	0	no	northwest	21984.47			
32	male	28.9	0	no	northwest	3866.86			
31	female	25.7	0	no	southeast	3756.62			
37	male	29.8	2	no	northeast	6406.41			
23	male	34.4	0	no	southwest	1826.84			
56	female	39.8	0	no	southeast	11090.72			
27	male	42.1	0	yes	southeast	st 39611.7			
1-10 of	f 669 rows			Previous	1 2 3 4	5 6 67 Nex			

- (3) ไฟล์ข้อมูลสำหรับพยากรณ์ (ทดสอบโมเดล) คือ insurance test.csv
- (4) บันทึกผลลัพธ์ที่ได้จากการพยากรณ์เป็นไฟล์ กำหนดให้ชื่อว่า predict insurance.csv
- 2. การวิเคราะห์ข้อมูลด้วยกระบวนวิธี Decision Tree
 - (2.1) ติดตั้งแพ็กเกจสำหรับใช้งานฟังก์ชั่นทางด้าน Decision Tree แพ็กเกจชื่อ rpart (โดยใช้คำสั่ง install.packages("ชื่อ แพ็กเกจ") หรือใช้เครื่องมือของ R Studio)
 - (2.2) ทำการโหลดแพ็กเกจขึ้นมาใช้งาน (โดยใช้คำสั่ง library("ชื่อแพ็กเกจ") หรือใช้เครื่องมือของ R Studio)
 - (2.3) เขียนคำสั่งเรียกใช้งานฟังก์ชั่น read.csv() เพื่อทำการอ่านไฟล์ข้อมูลสำหรับนำไปสร้างโมเดล และไฟล์ข้อมูลสำหรับพยากรณ์ ข้อมูล (ทดสอบโมเดล)

```
kyp.train = read.csv("kyphosis_train.csv")
kyp.test = read.csv("kyphosis_test.csv")
```

(2.4) โครงสร้างข้อมูลของ kyphosis_train.csv ข้อมูลเกี่ยวกับเด็กที่เคยผ่าตัดแก้ไขกระดูกสันหลัง

Attribute	Туре	Description
Kyphosis	Factor	มีการเกิดการเสียรูปหลังการผ่าตัดหรือไม่ (absent/present)
Age	Integer	อายุ (เดือน)
Number	Integer	จำนวนกระดูกสันหลังที่เกี่ยวข้อง
Start	Integer	จำนวนกระดูกส่วนแรก (ส่วนบน) ที่ถูกดำเนินการ

X	Kyphosis	Age		N	lumb	er				Star
<int></int>	<fctr></fctr>	<int></int>			<1	nt>				<int></int>
1	absent	71				3				5
2	absent	158				3		1		
3	present	128	4			5				
4	absent	2				5				3
5	absent	1	4		1		15			
6	absent	1				2				16
7	absent	61				2				17
8	absent	37				3				16
9	absent	113				2				16
10	present	59				6				12
10 of 5	57 rows		Previous	1	2	3	4	5	6	Nex

(2.5) เขียนคำสั่งเรียกใช้งานฟังก์ชั่น rpart() เพื่อทำการสร้างโมเดลด้วยกระบวนวิธี Decision Tree โดยพิจารณเลือกแอทริบิวท์ที่ เหมาะสม (แอทริบิวท์ที่เป็นลำดับ หรือ ID ไม่นำมาพิจารณในการสร้างโมเดล)

```
fit = rpart(Kyphosis ~ Age + Number + Start, method="class", data=kyp.train)
summary(fit)
```

(2.6) เขียนคำสั่งเรียกใช้งานฟังก์ชั่น plot() และ text() เพื่อสร้างกราฟ Decision Tree

```
plot(fit, uniform=TRUE, main="Classification Tree for Kyphosis")
text(fit, use.n=TRUE, all=TRUE, cex=0.8)
```


(2.7) เขียนคำสั่งเรียกใช้งานฟังก์ชั่น predict() เพื่อทำการพยากรณ์ข้อมูล (การนำโมเดลมาใช้งานเพื่อพยากรณ์ค่าของข้อมูล) แล้ว บันทึกค่าที่พยากรณ์หรือทำนายได้ลงในชุดข้อมูล

```
p = predict(fit, kyp.test, type="class")
kyp.test$predict = p
kyp.test
```


แบบฝึกหัดที่ 2

- (1) เป้าหมายของการวิเคราะห์คือทำนายสาขาวิชาให้ตรงกับความสามารถของนักศึกษา (Major) [computer, hotel, marketing, management] โดยใช้โมเดล Decision Tree
- (2) ไฟล์ข้อมูลสำหรับนำไปสร้างโมเดล คือ student_train.csv

จากชุดข้อมูลจะเห็นว่ามีแอทริบิวท์ Student_ID ซึ่งเป็นแอทริบิวท์ที่เป็นลำดับ และไม่นำมาพิจารณในการสร้างโมเดล จึงต้องใช้ ฟังก์ชัน subset() ในการเลือกแอทริบิวท์อีกครั้ง

```
stu.train = read.csv("student_train.csv")
stu.train = subset(stu.train, select = -c(Student_ID))
```

- (3) แสดงกราฟ Decision Tree ของโมเดลที่สร้างขึ้น
- (4) ไฟล์ข้อมูลสำหรับพยากรณ์ (ทดสอบโมเดล) คือ student test.csv
- (5) บันทึกค่าที่พยากรณ์หรือทำนายได้ลงในชุดข้อมูล