A compressão visa a redução do volume de dados especialmente para fins de transmissão e armazenamento.

As áreas de aplicação são variadas:

- 1. Imagens médicas (ressonância, tomografia);
- 2. Digitalização de documentos em alta resolução (documentos históricos, livros raros, mapas, fotografias, coleções de jornais, revistas, etc);
- 3. Digitalização de pinacotecas inteiras, coleções de filmes e documentários raros, etc...

Supondo um vídeo RGB de qualidade HD, onde cada frame representa 1280x720 pixels de 8 bits, teríamos:

3x1280x720=2.764.800 bytes por frame

Se o mesmo vídeo tiver 2 h de duração a uma taxa de 30 fps:

Tempo total= (2*60)min=(2*60*60) s = 7200 s Total de frames= 7200*30 = 216.000 frames

Total de memória: 2.764.800*216.000≈556 Gbytes

Quando pensamos em streaming com resoluções e taxas de fps maiores (fullç HD e 60fps, por exemplo), temos a intuição da compressão desses dados.

O objetivo da compressão de imagens é reduzir o volume de dados;

Dados são representações de informações. Informações são conceitos e ideias passadas ao Observador;

A mesma informação pode ser passada na forma de dados compactados;

Vejamos a seguir, como separar esses dois conceitos para compactar os dados mantendo o principal da informação...

- 1) "A grande caixa retangular, a qual estava localizada no canto da linda mesa redonda, caiu rapidamente sobre o piso e rolou sobre este por alguns segundos"
- 2) "A caixa retangular sobre a mesa redonda caiu sobre o piso"

As frases acima são representações diferentes levando a mesma mensagem. A frase 1 usou d1=28 palavras enquanto a frase 2 usou d2=11

A taxa de compressão foi de C=d1/d2=2,54

C=2,54 é o ganho por usar a segunda frase para informar que a caixa caiu.

A compressão de dados é baseada na quantidade de dados redundantes. Para as frases citadas (d1>d2) a redundância relativa percentual R será:

$$R = \frac{d \, 1 - d \, 2}{d \, 1} * 100 \qquad \qquad R = \frac{C - 1}{C} * 100$$

60,7% das palavras da primeira frase são redundantes e podem ser eliminadas sem risco de perda da informação.

Nas imagens a representação da informação ocorre por meio de bits/bytes,

O objetivo da compressão de imagens é reduzir a quantidade de bytes necessários à representação das *features* (características visuais) presentes na imagem eliminando redundâncias de dados.

Existem 3 tipos de redundância:

- 1. Redundância de Código: desperdício de bits para representação de informação pouco frequente;
- 2. Redundância Espacial: *pixels* vizinhos são similares e podem ser representados com o mesmo valor;
- 3. Redundância Visual: a visão humana não necessita de muitos dados para interpretar a informação visual.

Redundância de Código

Usualmente, cada pixel de uma imagem é representada por uma quantidade constante de bits, em tons de cinza são 8 por pixel. Porém, nem todos os tons/cores "aparecem" nas imagens.

O ideal é utilizar uma representação (código) menor (menos bits) para tons mais frequentes e códigos maiores para tons menos frequentes.

Tabela 8.1 Exemplo de codificação de tamanho variável.

r _k	$p_r(r_k)$	Código 1	$I_1(r_k)$	Código 2	$I_2(r_k)$
$r_{87} = 87$	0,25	01010111	8	01	2
$r_{128} = 128$	0,47	10000000	8	1	1
$r_{196} = 186$	0,25	11000100	8	000	3
$r_{255} = 255$	0,03	11111111	8	001	3
r_k para $k \neq 87$, 128, 186, 255	0	_	8	_	0

Código de Huffman

Graylevels	n_i	h_i
0	3441	0.21
1	4423	0.27
2	3932	0.24
3	1802	0.11
4	1311	0.08
5	819	0.05
6	492	0.03
7	164	0.01
n_t	16384	

Código de Huffman

Graylevel	Probability	3	4	5	6	7	8
91	0.27	0.27	0.27	0.27	-0.28	→ 0.45	0.55
92	0.24	0.24	0.24	0.24	0.27	0.28-	0.45
90	0.21	0.21	0.21	0.21	0.24—	0.27—	
93	0.11	0.11	0.11	->0.17-	0.21—		
94	0.08	0.08	0.08	0.11-	-		
95	0.05	0.05	→0.09				
96	0.03	-0.04-					
97	0.01						

Graylevel	Probability	3	4	5		6	7	8_
91	0.27 01	0.27 01	0.27 01	0.27	01	0.28 00	0.10	0.550
92	0.24 10	0.24 10	0.24 10	0.24	10	0.27 01	0.28 00←	0.451
90	0.21 11	0.21 11	0.21 11	0.21	11	0.2410-	0.27 01-	,
93	0.11 001	0.11 001	0.11 001	0.17	000 ←	0.2111-		
94	0.08 0000	0.08 0000	0.08 0000	0.11	001			
95	0.05 00010	0.05 00010	0.09 0001-					
96	0.03 000110	0.04 00011						
97	0.01 000111							

Redundância Espacial

Refere-se ao alto grau de similaridade entre *pixels* vizinhos.

A intensidade da redundância espacial (calculada via função de autocorrelação) depende do nível de detalhes na imagem:

- A) imagens de alta redundância de *pixels*: grandes regiões contendo muita similaridade de *pixels* (baixa frequência espacial, larga resposta da função de autocorrelação);
- B) imagens com uma menor redundância relativa de *pixels*: poucas regiões contendo muita similaridade de *pixels* (alta frequência espacial, resposta estreita para a função de autocorrelação).

(B)

Redundância Espacial

Exemplo:

A técnica consiste em descrever a imagem utilizando sequencias (G,#)=(tom de cinza, quantas vezes ocorre esse tom de cinza) A imagem binária A com dimensões 128x128 possui um quadrado interno de

dimensões 64x64;

Se a profundidade de pixel for de 1 bit por pixel:

total= 128x128x1=16.384 bits;

Redundância Espacial

Há apenas dois níveis Gb e Gw.

Utilizando um esquema de representação que trabalhe sobre a alta redundância espacial:

- A representação (G,#) demanda 8 bits:
 - 1 bit para a intensidade e
 - 7 bits para a quantidade de ocorrências;
- Tamanho da compressão = 32 linhas de (Gb,128) + 64 linhas de ((Gb,32) (Gw,64)(Gb,32)) + 32 linhas de (Gb,128) = 32*8+64*(3*8)+32*8=2048 bits
- Taxa de compressão = 16348/2048=8 para 1


```
(Gb,128)

(Gb,128)

...

(Gb,128)

...

(Gb,128)

(Gb,32)(Gw,64)(Gb,32)

...

(Gb,32)(Gw,64)(Gb,32)

...

(Gb,32)(Gw,64)(Gb,32)

(Gb,32)(Gw,64)(Gb,32)

...

(Gb,128)

(Gb,128)

...
```

O sistema de visão humano apresenta certas peculiaridades:

- Nosso sistema é pobre em determinar o brilho absoluto de objetos na imagem;
- Para o olho humano a informação de brilho depende do tamanho e intensidade relativa dos objetos adjacentes na imagem (vizinhança).

Distorção de tamanho devido ao brilho relativo

Mach Band: distorção na percepção de Brilho na vizinhança de arestas.

Na verdade nem todos os dados da imagem são utilizados na interpretação visual humana;

Nosso sistema elimina "redundâncias visuais" fazendo atalhos para obter a representação;

O olho humano é sensível principalmente a arestas e cantos e insensível às variações de intensidade ao redor dessas regiões;

A compressão baseada em redundância visual produz uma nova imagem que é uma versão relativamente degradada da original:

• Diferentemente dos dois casos anteriores, esta classe de técnicas produz uma compressão com perdas de informações (a imagem descomprimida não será uma cópia da original).

Quantização não uniforme: imagens de 147x240

A) 8 bpp (\approx 34 kB) \rightarrow reduzida a \rightarrow B) 4 bpp (\approx 17 kB)

8 bpp = $[p_7 p_6 p_5 p_4 p_3 p_2 p_1 p_0] = 256$ níveis

4 bpp = $[p_7 p_6 p_5 p_4] = 16$ níveis

(A) (B)

Duas técnicas simples:

Amostragem não uniforme:

 As arestas são visualmente importantes, então utiliza-se uma amostragem espacial mais alta em regiões de arestas e uma amostragem menor em regiões suaves da imagem. Com isso a resolução espacial será maior nas arestas.

Quantização não uniforme:

 O sistema visual humano não é muito sensível a tons de cinza próximos às arestas. Ao invés de quantizar uniformemente a imagem, utiliza-se uma quantidade menor de tons de cinza (bits por pixel) nas regiões de arestas (3 ao invés de 8 bits, por exemplo);

Métricas

- 1. Redundância de Código: sem perdas;
- 2. Redundância Espacial: sem perdas;
- 3. Redundância Visual: com perdas.

Existem medidas para aferir a fidelidade da imagem comprimida em relação a original:

- MSE (Mean Square Error), quanto menor o MSE mais próximas serão as imagens original e comprimida;
- SNR (Signal to Noise Error), quanto maior o SNR mais próximas serão as imagens original e comprimida;
- PSNR (Peak to Peak Signal to Noise Error), etc.

elimina redundância visual, espacial e de código

Original Mapping Function

Quantizer Data Encoder Image

Um método de compressão sem perdas não apresenta o estágio Quantizer;

Mapping function: transforma a imagem para um novo domínio mais apropriado à eliminação de redundância espacial;

Quantizer: reduz a quantidade de valores que são gerados pela Mapping Function digitalizando esses valores para um subconjunto menor, é nesse estágio que a redundância visual da imagem original é reduzida;

Data Encoder: constrói uma representação comprimida aplicando os códigos de tamanho variável ao resultado do quantizer (reduz a redundância de código);

Os estágios Mapping Function e Data Encoder são totalmente reversíveis, eles não removem informação da imagem original;

O Quantizer remove informação da imagem resultando em uma descompressão que exibe uma versão degradada da imagem Original;

Um método de compressão sem perdas não apresenta o estágio Quantizer;

Data Decoder: reverte a operação do data encoder, produzindo valores iguais a saída do quantizer ou a saída do estágio mapping function a depender do método utilizado ter sido com ou sem perdas;

Inverse Mapping Function: produz a imagem descomprimida.

GIF	CompuServe	Graphic Interchange Format. A file format that uses lossless LZW coding [8.2.4] for 1- through 8-bit images. It is frequently used to make small animations and short low resolution films for the World Wide Web.		
PDF	Adobe Systems	Portable Document Format. A format for representing 2-D documents in a device and resolution independent way. It can function as a container for JPEG, JPEG 2000, CCITT, and other compressed images. Some PDF versions have become ISO standards.		
PNG	World Wide Web Consortium (W3C)	Portable Network Graphics. A file format that losslessly compresses full color images with transparency (up to 48 bits/pixel) by coding the difference between each pixel's value and a predicted value based on past pixels [8.2.9].		
TIFF	Aldus	Tagged Image File Format. A flexible file format supporting a variety of image compression standards, including JPEG, JPEG-LS, JPEG- 2000, JBIG2, and others.		
JPEG	ITU-T of p (mo cosi Huf of th	A Joint Photographic Experts Group standard for images of photographic quality. Its lossy baseline coding system (most commonly implemented) uses quantized discrete cosine transforms (DCT) on 8 × 8 image blocks [8.2.8], Huffman [8.2.1], and run-length [8.2.5] coding. It is one of the most popular methods for compressing images on the Internet.		

Bibliografia utilizada:

Gonzalez, R. e Woods, R. Digital Image Processing, 3rd edition.

Weeks, A. Fundamentals of Eletronic Image Processing, 2ª edição.