

Software Requirements, Specifications and Formal Methods

A/Prof. Lei Niu

Sequence and Logic

- Sets are unordered collections
- When the order is significant, we can <u>use sequence to model</u> the ordered collections
- In programming languages, sequences can model arrays, lists and queues
- In Z, we declare a sequence of items from set S as: seq S

DAYS ::= friday | monday | saturday | sunday | thursday | tuesday | wednesday

weekday : seq DAYS

weekday = \langle monday, tuesday, wednesday, thursday, friday\rangle

- Actually, sequences are just functions whose domains are consecutive numbers, starting with one.
- Another way to write weekday is

```
weekday = \{1 \mapsto monday, 2 \mapsto tuesday, 3 \mapsto wednesday, 4 \mapsto thursday, 5 \mapsto friday\}
```

 Therefore sequences are also functions, so operators defined for functions also apply to sequences

$$weekday 3 = wednesday$$

 Since sequences are also set, all the set operators also apply on sequences

```
#weekday = 5
```


E.g., lists, arrays, files, sequences, trace histories, ... Elements indexed and contiguously numbered.

A sequence has 1^{st} element, 2^{nd} element, 3^{rd} element, etc. . . (numbered from 1 rather than 0 in Z)

$$\operatorname{seq} T == \{s : \mathbb{N} + T \mid \operatorname{dom} s = 1 . . \# s\}$$

N.B.: sequences have a finite (but arbitrary) length. Sequences are functions, which are relations, which are sets.

Length of sequence s is its cardinality, #s.

Empty sequence, $s = \emptyset$ has #s = 0. Normally written as:

⟨⟩ – the empty sequence

Like the empty set \emptyset , the empty sequence is typed.

Non-empty sequences:

$$\operatorname{seq}_1 T == \operatorname{seq} T \setminus \{\langle \rangle \}$$

Injective sequences (i.e., no repeated elements):

$$\operatorname{iseq} T == \operatorname{seq} T \cap (\mathbb{N} \rightarrowtail T)$$

The sequence containing just one element, $s=\{1\mapsto x\}$, has #s=1 and is written as

 $\langle x \rangle$ – a singleton sequence

The sequence $\{1 \mapsto x_1, 2 \mapsto x_2, \dots, n \mapsto x_n\}$ is normally written as

$$\langle x_1, x_2, \dots, x_n \rangle$$
 – a multi-element sequence

Examples:

 $\langle 11,29,3,7 \rangle \in \operatorname{seq} \textit{primes}$ $\langle J,O,N,A,T,H,A,N \rangle \in \operatorname{seq} \textit{CHAR}$ Unlike for standard sets, two 'N' elements are distinct maplets $3 \mapsto N$ and $8 \mapsto N$. $\langle \bot, \Gamma, \leftrightarrows \rangle \in \operatorname{seq} \textit{Path}$

Length (= cardinality) of above sequences is 4, 8 and 3 respectively.

N.B., unlike sets, sequences can have repeated elements. E.g.:

$$\langle Emma \rangle \neq \langle Emma, Emma, Emma \rangle$$

$$\langle Alice, Emma \rangle \neq \langle Emma, Alice \rangle$$

Concatenation operation

The concatenation operation combines two sequences into one.

week = =
$$<$$
weekday> \land $<$ Saturday> \land $<$ Sunday>

Note: we must use the brackets to make <Saturday> and <Sunday> into sequences of one element because both operands of the concatenation operator must be sequences.

Concatenation

For $s, t \in \operatorname{seq} T$

$$s \cap t \quad \text{-the function } 1 \dots (\#s + \#t) \to T$$
 with elements
$$j \mapsto \begin{cases} s(j) & \text{if } 1 \leq j \leq \#s \\ t(j - \#s) & \text{if } \#s < j \leq (\#s + \#t) \end{cases}$$

More formally:

$$s \cap t = s \cup (-\#s) g t$$

Concatenation of two sequences of length 5 and 3:

$$\#(s \cap t) = \#s + \#t = 5 + 3 = 8.$$

Concatenation example:

$$\langle A \rangle \cap \langle L, I, C, E \rangle =$$

 $\langle A, L \rangle \cap \langle I, C, E \rangle =$
 $\langle A, L, I, C, E \rangle$

$$\langle a,b,c,\ldots \rangle$$
 is shorthand for $\langle a \rangle \cap \langle b \rangle \cap \langle c \rangle \cap \ldots$

Laws

$$\langle \rangle \cap s = s \cap \langle \rangle = s$$

 $r \cap (s \cap t) = (r \cap s) \cap t$
 $(r \cap s = r \cap t) \Rightarrow s = t$

Other sequence operations

If $s \in \operatorname{seq} T$ and $s \neq \langle \rangle$ (i.e., $s \in \operatorname{seq}_1 T$):

First element:

$$head s = s(1)$$

 \bullet 00000

Last element:

$$last s = s(\#s)$$

00000

No first element:

$$tail \ s = succ_{9}(\{1\} \triangleleft s) \circ \bullet \bullet \bullet \bullet \bullet$$

No last element:

$$front s = \{\#s\} \triangleleft s$$

•••••

Avoid applying these functions to an empty sequence; e.g., $head\langle\rangle$ is undefined. $\rangle\rangle$

Example

$$lue{C_1} lue{O_2} lue{D_3} lue{E_4}$$

For
$$s = \langle \mathsf{C}, \mathsf{O}, \mathsf{D}, \mathsf{E} \rangle$$
 (which is $\{1 \mapsto \mathsf{C}, 2 \mapsto \mathsf{O}, 3 \mapsto \mathsf{D}, 4 \mapsto \mathsf{E} \}$)

 $head \ s = \mathsf{C}$
 $last \ s = \mathsf{E}$
 $tail \ s = \{0 \mapsto 1, 1 \mapsto 2, 2 \mapsto 3, 3 \mapsto 4, \dots\}_{\S}^{S} \quad \{2 \mapsto \mathsf{O}, 3 \mapsto \mathsf{D}, 4 \mapsto \mathsf{E} \}$
 $= \{1 \mapsto \mathsf{O}, 2 \mapsto \mathsf{D}, 3 \mapsto \mathsf{E} \}$
 $= \{0 \mapsto \mathsf{C}, 2 \mapsto \mathsf{D}, 3 \mapsto \mathsf{E} \}$
 $= \{0 \mapsto \mathsf{C}, 2 \mapsto \mathsf{D}, 3 \mapsto \mathsf{E} \}$
 $= \{\mathsf{C}, \mathsf{C}, \mathsf{D}, \mathsf{C} \mapsto \mathsf{C}, 3 \mapsto \mathsf{D}, 4 \mapsto \mathsf{E} \}$
 $= \{\mathsf{C}, \mathsf{C}, \mathsf{C$

More general versions of *front* and *tail*, using *generic* construction:

E.g., for extracting portions of files as a sequence of bytes.

```
For s \in \text{seq}_1 T,

front \ s = s \underline{for} (\# s - 1)

tail \ s = s \underline{after} 1
```

Laws:

$$s \underline{for} 0 = \langle \rangle$$

 $s \underline{for} \# s = s$
 $s \underline{after} 0 = s$
 $s \underline{after} \# s = \langle \rangle$

Reversal

Reverse of a sequence: rev s

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{b}_2 & \mathbf{c}_3 & \mathbf{d}_4 & \mathbf{e}_5 & \mathbf{f}_6 & \mathbf{g}_7 \end{bmatrix}$$

$$|\mathbf{g}_1| \mathbf{f}_2 |\mathbf{e}_3| \mathbf{d}_4 |\mathbf{c}_5| \mathbf{b}_6 |\mathbf{a}_7|$$

Sequence $\langle D, O, G \rangle$ is converted to $\langle G, O, D \rangle$ using the *rev* function!

Laws

$$rev\langle\rangle = \langle\rangle$$

 $rev\langle x\rangle = \langle x\rangle$
 $rev(rev\ s) = s$
 $rev(s \ t) = (rev\ t) \ (rev\ s)$

For example

$$\mathit{rev}(\langle a,b\rangle ^{\, \smallfrown} \langle c,d\rangle) = \langle d,c\rangle ^{\, \smallfrown} \langle b,a\rangle$$

Distributed operations

Concatenation of a sequence of sequences:

More formally, $^{\frown}/$: $\operatorname{seq}(\operatorname{seq} T) \to \operatorname{seq} T$ satisfies

and also

Question: What is

$$rev(^{\ }/\langle\langle N,A,H\rangle,\langle T,A\rangle,\langle N,O\rangle,\langle J\rangle\rangle)$$
?

Basic predicates

- Predicates are the textual unit of logic
- A few kinds of basic predicates
 - Two values for predicates: True and false
 - Equals: e1 = e2
 - \circ Set membership: x ∈ S

Using predicates in Z

- We create models by a process of specialization or restriction
- First, we declare data types, variables
- Then, we add predicates to <u>specify the particular objects that</u> we want

For example, we throw two dices with two integer variables, this declaration restricts their values to the range from one to six:

$$d_1, d_2: 1...6$$

Using predicates in Z

- A situation is a particular assignment of values to variables
- The two dices example has 36 distinct situations

• If we restrict the situations, then we can add a predicate to admit only situations where two numbers add up to seven:

$$d_1, d_2: 1...6$$

$$d_1 + d_2 = 7$$

d_1	1	2	3	4	5	6
$\overline{d_2}$	6	5	4	3	2	1

Predicates in Z definitions don't have to be equations

$$d_1, d_2: 1 \dots 6$$

$$d_1 < d_2$$

The predicate in this definition is satisfied in these situations

- Less than (<) is a relation
- In Z, we can use relationship to form a predicate
- Unary relations
 - One argument
 - Such as odd(x) and leap_year(year)
- Binary relations
 - Two arguments
 - Such as <, divides, ⊆, and mother(son, mum)

 In Z, we can define our own relations with a prefix, i.e., an expression without its arguments

```
odd_{-}: \mathbb{P} \mathbb{Z}
... definition omitted ...
```

- Then we can express that k is odd via odd(k)
- Another example: mother

```
mother_: PERSON ↔ PERSON

(mother_) = {(ishmael, hagar), (isaac, sarah), (esau, rebekah), (jacob, rebekah)}
```


- A binary relations divides, the set of pairs of numbers where the first evenly divides the second,
 - 4 divides 12 is true
 - 5 divides 12 is false
- We can define divides

```
divides: \mathbb{Z} \leftrightarrow \mathbb{Z}
... definition omitted ...
```

- And we can express that 4 divides 12 as
 - (4, 12) \in divides, or
 - 4 divides 12

Logical connectives

- We use logical connectives to build complex predicates from simple ones
- The truth value of a predicate that contains logical connective is determined by the truth values of its constituent simple predicates
- In the following discussion, we will use p and q to stand for any predicate

Conjunction

- The predicate $p \wedge q$ (p and q) is called a conjunction
- A conjunction is used to strengthen predicates by combining requirements
- A conjunction is only satisfied by situations that satisfy both of its conjects: It is true only when both of its conjects are true
- Truth table for the conjunction

p	q	$p \wedge q$
false	false	false
false	true	false
true	false	false
true	true	true

Conjunction

 This predicate says that the numbers on the two dice add up to seven, and the first number is less than the second:

$$\frac{d_1, d_2: 1...6}{(d_1+d_2=7) \land (d_1 < d_2)}$$

It is satisfied in three situations only:

Disjunction

- The predicate $p \lor q$ (p or q) is called a disjunction
- Disjunction is used to offer alternatives
- A disjunction is satisfied by any situation that satisfied any of its disjuncts
- It is true when either or both of its disjuncts is true

p	q	$p \vee q$
false	false	false
false	true	true
true	false	true
true	true	true

Disjunction

 A disjunction is said to be weaker than its disjuncts because it is usually satisfied by a larger number of situations

$$(d_1 + d_2 = 7) \lor (d_1 < d_2)$$

 Disjunctions can be used to express case analyses where situations can be classified into cases and all the situations in a case are handled the same way

Disjunction

 $TEMP == \mathbb{Z}$

 The following predicates define the status of water on different degrees

```
PHASE ::= solid | liquid | gas

temp : TEMP
phase : PHASE
(temp < 0 \land phase = solid) \lor
(0 \le temp \le 100 \land phase = liquid) \lor
(temp > 100 \land phase = gas)
```


Negation

- The predicate $\neg p$ (not p) is called a negation.
- Negation inverts the truth value of a predicate
- Negation $\neg p$ is satisfied in all situation that are not satisfied by p
- When p is true/false, its negation is false/true

p	$\neg p$
true	false
false	true

Equivalence

- The predicate $p \Leftrightarrow q$ (p equals q) is called equivalence
- The equivalence is true when p and q have the same truth value, no mater it is true or false
- An equivalence is satisfied in situations that make both its constituent predicates true or false

p	q	$p \Leftrightarrow q$
false	false	true
false	true	false
true	false	false
true	true	true

Equivalence

Quiz:

 Check the following predicates and answer what happens at temp = 0? and temp = 100?

```
temp: TEMP

phase: PHASE

temp \le 0 \Leftrightarrow phase = solid
0 \le temp < 100 \Leftrightarrow phase = liquid
temp > 100 \Leftrightarrow phase = gas
```

- When temp = 0, the water is a mixture of solid and liquid
- When temp =100, the water is not in any status

Implication

- The predicate $p \Rightarrow q$ (p implicate q) is called implication
- The implication $p \Rightarrow q$ is true in every case except when p is true and q is false

p	q	$p \Rightarrow q$
false	false	true
false	true	true
true	false	false
true	true	true

- p is the antecedent (pre-condition), and q is the consequent (post-condition).
- If a true antecedent generates a false consequent, then the implication is false. Otherwise, the implication is always true

- Quantifiers introduce local variables into predicates
- The simple ∀ (for all), is the universal quantifier
- A general form of a universally quantified predicate is

∀ declaration • predicate

- It indicates the predicate after the delimiter (dot) is true for all values of bound variables that are admitted by the declaration before the dot
- The scope of the bound variables is limited to the predicate;
 outside this scope, the bound variables are undefined

```
nmax : \mathbb{Z}
ns : \mathbb{P} \mathbb{Z}
\forall i : ns \bullet i \leq nmax
```

- This predicate is pronounced, "For all i in ns, i is less than or equal to nmax"
- The bound variable i is just a place-holder that stands for any element of ns

Consider the relation divides,

$$divides == \{..., (5, 10), (10, 10), (1, 11), (11, 11), (1, 12), (2, 12), (3, 12), ...\}$$

Can be rewritten in a more formal way

```
divides: \mathbb{Z} \leftrightarrow \mathbb{Z}
\forall d, n : \mathbb{Z} \bullet
d \underline{divides} \ n \Leftrightarrow n \bmod d = 0
```


Let assume $ns = \{n1, n2, n3,...\}$

Then the quantified predicate

$$\forall i : ns \bullet i \leq nmax$$

means the same think as

$$n_1 \leq nmax \wedge n_2 \leq nmax \wedge n_3 \leq nmax \wedge \dots$$

So in another word, the universal quantifier is a generalization of logic "and".

Existential quantifier

- There is another quantifier which is a generalization of logic "or"
- The existential quantifier ∃ (exists)
- A general form of a existential quantified predicate is
 - \exists declaration \cdot *predicate*
- It indicates the predicate after the delimiter (dot) is true for at least one values of bound variables that are admitted by the declaration before the dot

Existential quantifier

$$\exists i : ns \bullet i \leq nmax$$

- This predicate is pronounced, "there exists an i in ns, such that i is less than or equal to nmax."
- It is an abbreviation for this disjunction:

$$n_1 \leq nmax \vee n_2 \leq nmax \vee n_3 \leq nmax \vee \dots$$

Boolean types

- Z has no built-in Boolean type
- The following example is NOT Z (wrong example)

beam, door:
$$BOOLEAN$$

beam \Rightarrow door

In Z, we have to define the binary enumerations instead

$$BEAM := off \mid on$$

$$DOOR ::= closed \mid open$$

Set Comprehensions

 We had introduced all basic components of Z, and now we can do some real work with Z notations.

$$ODD == \{..., -5, -3, -1, 1, 3, 5, ...\}$$

- This is not a formal definition of set ODD in Z
- A formal definition of set ODD shall be

$$ODD == \{i : \mathbb{Z} \bullet 2 * i + 1\}$$

Set Comprehensions

A set comprehension has the form

```
{ declaration | predicate • expression }
{ source | filter • pattern }
```

- Declaration (source): introduce all variables used in the predicate and expression
- Predicate (filter): specify the constrictions on the values of the variables
- Expression (pattern): specify the features of the set members
- The predicate and expression are optional

Set Comprehension

How to define a set of odd numbers beginning with 11:

1. Define the set of natural number (source) with the declaration

$$\{i:\mathbb{N}\}=\{0,1,2,3,4,5,6,7,8,\ldots\}$$

2. Add the predicate (filter), i.e., only elements larger than four can pass through

$$\{i: \mathbb{N} \mid i > 4\} = \{5, 6, 7, 8, \dots\}$$

3. Add the expression (pattern) and transform the elements

$$\{i: \mathbb{N} \mid i > 4 \bullet 2 * i + 1\} = \{11, 13, 15, 17, \dots\}$$

Lambda expression

- Functions can also be defined using the set comprehension
- We can also use the <u>lambda expression</u> to define a function
- A lambda expression is an abbreviation for a set comprehension and retains the same declaration, predicate and expression structure

$(\lambda declaration \mid predicate \bullet expression)$

 The Greek letter lambda indicates it is a function, but not just an ordinary set

Lambda expression

Three ways to define a function

Using the set comprehension

$$isqr == \{i : \mathbb{Z} \bullet i \mapsto i * i \}$$

Using a lambda expression

$$isqr == (\lambda i : \mathbb{Z} \bullet i * i)$$

Using an axiomatic definition with a quantifier

$$isqr: \mathbb{Z} \to \mathbb{N}$$

$$\forall i : \mathbb{Z} \bullet isqr i = i * i$$

They all means the same:

$$isqr = \{ \ldots, -2 \mapsto 4, -1 \mapsto 1, 0 \mapsto 0, 1 \mapsto 1, 2 \mapsto 4, \ldots \}$$

OF WOLLONGONG

Formal specification of prime number

With the set comprehension, we can define the formal specification of sets

- The formal specification of prime number:
 - An integer larger than 1 that is only divisible by itself and 1
 - **–** 2, 3, 5, 7, 11, 13, ...

$$PRIME == \{ n : \mathbb{N} \mid n > 1 \land \neg (\exists m : 2 ... n - 1 \bullet n \bmod m = 0) \}$$

 Alternatively, we can use the set difference operator (\) to remove all exclusive elements

$$\mathbb{N}_2 == \mathbb{N} \setminus \{0, 1\}$$

$$PRIME == \mathbb{N}_2 \setminus \{\forall n, m : \mathbb{N}_2 \bullet n * m \}$$

Local definitions

- Sometimes we want to introduce a local variable that has on particular value, then we can use "let"
- We use the *let* construct to avoid writing the same expression again and again

For example, we introduced the integer square root predicate:

$$\forall a : \mathbb{N} \bullet iroot(a) * iroot(a) \leq a < (iroot(a) + 1) * (iroot(a) + 1)$$

The predicate spells out iroot(a) four time, then we can use let to abbreviate it with the single letter r

$$\forall a : \mathbb{N} \bullet (\mathbf{let} \ r == iroot(a) \bullet r * r \le a < (r+1) * (r+1))$$

Conditional expressions

- Sometimes we wish to assign one or another value to a variable, depending on the truth of some predicate
- We can use the conditional expression construct " if ... then ... else ... " to express the two-way cases analysis
- For example, the absolute value function can be defined as

$$|-|: \mathbb{Z} \to \mathbb{N}$$

$$\forall x : \mathbb{Z} \bullet |x| = \text{if } x \ge 0 \text{ then } x \text{ else } -x$$

Actually, the conditional expression is an abbreviation for disjunction

$$\forall x : \mathbb{Z} \bullet (x \ge 0 \land |x| = x) \lor (x < 0 \land |x| = -x)$$

