$m \in \mathbb{R}$.

 \mathbf{F}

Nome	Soluções	Número
		LEI MIEI

Grupo I – Sem justificar, indique o valor lógico das seguintes proposições.

Resposta correta: 0.75 Resposta em branco: 0 Resposta errada: -0,25 Cotação mínima do grupo: 0

1. O conjunto $D = \{(x,y) \in \mathbb{R}^2 : y - x \ge 0 \land (x-1)^2 + (y+1)^2 < 16\}$ é aberto e limitado. \square 2. Se $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ é tal que $\lim_{(x,y)\to(0,2)} f(x,y) = 1$, então $\lim_{x\to 0} f(x,mx+2) = 1$, para todo o \square

3. Não existe uma função $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ com derivadas parcias de segunda ordem contínuas X tal que $f_x(x,y) = y^3 + 8xy$ e $f_y(x,y) = 3xy^2 - 4x^2$.

4. A função $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por $f(x,y) = \begin{cases} x & \text{se } y \neq x^2 \\ 2-y & \text{se } y = x^2 \end{cases}$ é descontínua em todos \square X os pontos da forma (b,b^2) , $b \in \mathbb{R}$.

5. Seja $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ uma função derivável. Se $\nabla f(1,1)$ e $v \in \mathbb{R}^2 \setminus \{(0,0)\}$ são vetores ortogonais, então $\frac{\partial f}{\partial v}(1,1) = 0$.

6. Se $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ é tal que $\frac{\partial f}{\partial v}(0,1) = v_1 v_2$, para todo o vetor $v = (v_1, v_2) \in \mathbb{R}^2 \setminus \{(0,0)\}$, \boxed{X} então f não é derivável em (0,1).

7. Seja $\mathscr C$ a curva de interseção da superfície $z=2y^2+x$ com o plano vertical x=1. X O declive da reta tangente a $\mathscr C$ no ponto (1,-1,3) é positivo.

8. Se $z(x,y)=y+f(x^2-y^2)$, sendo $f\colon \mathbb{R} \longrightarrow \mathbb{R}$ uma função derivável, então $u \longmapsto f(u)$ \boxed{X} \boxed{X} \boxed{X}

9. O conjunto de nível 2 da função $f(x,y,z)=x^2+(y-1)^2$ é um cilindro circular que contém o ponto (1,2,0).

10. Se $f,g:\mathbb{R}^2\longrightarrow\mathbb{R}$ são funções com derivadas parciais de primeira ordem contínuas tais que f(1,1)=g(2,1)=2 e $\nabla f(1,1)=\nabla g(2,1)=(1,2),$ então o plano tangente ao gráfico de f em (1,1,f(1,1)) também é tangente ao gráfico de g em (2,1,g(2,1)).

(Continua)

Grupo II – Apresente os cálculos que realizar e justifique as suas respostas. Responda na folha de teste.

- 1. [3 val] Determine, se existir, $\lim_{(x,y)\to(0,0)} f(x,y)$, para
 - (a) $f(x,y) = e^{x^2y} + \frac{x y^4}{x^3 + y^4}$ (b) $f(x,y) = \begin{cases} \frac{\sin(2x^3 2y)}{x^3 y} & \text{se } y < x^3 \\ x + 2 & \text{se } y \ge x^3 \end{cases}$
 - (a) Não existe, basta observar que $\lim_{\substack{(x,y)\to(0,0)\\x=0}} f(x,y) = 0$ e $\lim_{\substack{(x,y)\to(0,0)\\y=0}} f(x,y) = +\infty$.
 - (b) $\lim_{(x,y)\to(0,0)} f(x,y) = 2$ uma vez que $\lim_{\substack{(x,y)\to(0,0)\\y< x^3}} \frac{\sin(2x^3 2y)}{x^3 y} = 2$ e $\lim_{\substack{(x,y)\to(0,0)\\y \ge x^3}} (x+2) = 2$.
- 2. [5.5 val] Considere a função $f:\mathbb{R}^2\longrightarrow\mathbb{R}$ definida por

$$f(x,y) = \begin{cases} \frac{x^2y + xy^2}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

(a) Mostre que a função f é contínua em (0,0).

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0 = f(0,0). \text{ Notar que } \frac{x^2y + xy^2}{x^2 + y^2} = y \frac{x^2}{x^2 + y^2} + x \frac{y^2}{x^2 + y^2}.$$

(b) Mostre que, qualquer que seja o vetor $v = (v_1, v_2) \in \mathbb{R}^2 \setminus \{(0, 0)\}$, existe $\frac{\partial f}{\partial v}(0, 0)$.

$$\frac{\partial f}{\partial v}(0,0) = \lim_{h \to 0} \frac{f(hv_1, hv_2) - f(0,0)}{h} = \frac{v_1^2 v_2 + v_1 v_2^2}{v_1^2 + v_2^2}.$$

(c) Determine $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$, para todo o $(x,y) \in \mathbb{R}^2$.

Da alínea anterior, resulta, com $v=(1,0), \frac{\partial f}{\partial x}(0,0)=\frac{\partial f}{\partial v}(0,0)=0$ e, com $v=(0,1), \frac{\partial f}{\partial y}(0,0)=\frac{\partial f}{\partial v}(0,0)=0$.

Para $(x, y) \neq (0, 0)$,

$$\frac{\partial f}{\partial x}(x,y) = \frac{(2xy+y^2)(x^2+y^2) - 2(x^2y+xy^2)x}{(x^2+y^2)^2}$$

e

$$\frac{\partial f}{\partial y}(x,y) = \frac{(x^2 + 2xy)(x^2 + y^2) - 2(x^2y + xy^2)y}{(x^2 + y^2)^2}.$$

(d) Estude a diferenciabilidade de f em (1,1) e em (0,0).

Em (1,1) a função f é diferenciável pois, pela alínea anterior, as derivadas parciais em (1,1) são contínuas (funções racionais).

A função f não é diferenciável em (0,0), porque, considerando, por exemplo, v=(1,1), das alíneas (b) e (c), resulta

$$\underbrace{\frac{\partial f}{\partial v}(0,0)}_{1} \neq v_1 \underbrace{\frac{\partial f}{\partial x}(0,0)}_{0} + v_2 \underbrace{\frac{\partial f}{\partial y}(0,0)}_{0}$$

3. [2 val] Considere a função $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por

$$f(x,y) = x^4 + y^4 - 4xy + 1.$$

Determine os pontos críticos de f e classifique-os quanto à sua natureza, indicando o valor do extremo quando existir.

O ponto (0,0) é um ponto de sela de f e os pontos (-1,-1) e (1,1) são minimizantes locais sendo o mínimo de f em ambos os pontos igual a -1.

4. [2 val] Utilize o método dos multiplicadores de Lagrange para determinar os extremos da função $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por

$$f(x,y) = y - x$$

no conjunto $\mathscr{C} = \left\{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 = 2 \right\}.$

Os candidatos a extremantes condicionados resultam apenas dos pontos críticos da função de Lagrange e são (-1,1) para $\lambda=\frac{1}{2}$ e (1,-1) para $\lambda=-\frac{1}{2}$. A função f atinge, sobre $\mathscr C$, o valor máximo 2 em (-1,1) e o valor mínimo -2 em (1,-1).