MAT220 manditory 1

Fromsa

February 21, 2018

- i) Injective Let $(a,b), (c,d) \in A \times B$. $f(a,b) = f(c,d) \iff (b,a) = (d,c) \implies (a,b) = (c,d)$. Therefore is f injective.
 - Surjective Let $(b, a) \in B \times A$. If f is surjective then $\exists (a, b) \in A \times B$ such that f(a, b) = (b, a) and this is the case for f.
 - **Bijective** Since f is both injective and surjective, it follows that f is bijective.

 \checkmark

ii) Let $y \in B$ then $\exists (a,b) \in A \times B$ such that g(a,b) = y

$$b = y \implies g(a, b) = b$$

Therefore is g surjective

For g to be surjective A must contain only one element.

- iii) Refleksiv Let $a \in \mathbb{R}$ then sin(a) = sin(a).
 - Symmetric Let $\{a,b\} \in \mathbb{R}$. If sin(a) = sin(b) then sin(b) = sin(a)
 - Transitiv Let $\{a, b, c\} \in \mathbb{R}$. If sin(a) = sin(b) and sin(b) = sin(c) then sin(a) = sin(c)

Therefore, $x \sim y$

- The equivalence class of $0, [0] = \{2\pi \cdot k | k \in \mathbb{Z}\}$
- The equivalence class of $\frac{\pi}{2}$, $\left[\frac{\pi}{2}\right] = \left\{\frac{\pi}{2} + 2\pi \cdot k | k \in \mathbb{Z}\right\}$
- iv) Refleksiv Let $a \in \mathbb{Q}$ then $a a = 0 \in \mathbb{Z}$.
 - Symmetric Let $a, b \in \mathbb{Q}$. If $a b \in Z$ then $b a = -(a b) \in \mathbb{Z}$
 - Transitiv Let $a, b, c \in \mathbb{Q}$. If $a b \in \mathbb{Z}$ and $b c \in \mathbb{Z}$ then $a c = a b + b c = (a b) + (b c) \in \mathbb{Z}$

Therefore, $q \sim p$

- The equivalence class of $\frac{3}{2}$, $[0] = \{\frac{2k+1}{2} | k \in \mathbb{Z}\}$ same as $[\frac{1}{2}]$
- The equivalence class of $1, [1] = \{k | k \in \mathbb{Z}\}$
- v) 2000 = 17 * 117 + 11 same as $2000 \equiv 11 \pmod{17}$
- vi) If a|b and a|c then by definition, $\exists k_1, k_2 \in \mathbb{Z}$ such that $b = a \cdot k_1$ and $c = a \cdot k_2$. $b + c = a \cdot k_1 + b \cdot k_2 = a(k_1 + k_2)$ Since \mathbb{Z} is closed under addition, we have that $(k_1 + k_2) \in \mathbb{Z}$.

Since \mathbb{Z} is closed under addition, we have that $(k_1 + k_2) \in \mathbb{Z}$ Thus, by definition a|(b+c)

vii) $gcd(n, n+2) \iff n+2 = n \cdot 1 + (2) \to n = 2 \cdot k + 0 \lor n = 2k + (1)$ Where $k \in \mathbb{Z}$ Possible solution are (2) and (1).

 $gcd(n, n+3) \iff n+3 = n \cdot 1 + (3) \to n = 3k + (2) \lor n = 3k + (1) \lor n = 3 \cdot k + 0$ Where $k \in \mathbb{Z}$

Possible solution are (3), (2) and (1).

- viii) Given $a \equiv 1 \pmod{4}$ and $b \equiv 2 \pmod{4}$. Since modulo is closed under addition, we have that $a - b \equiv 1 - 2 \pmod{4}$ and Since it is closed under multiplication, we have that $3(a-b) \equiv 3(1-2) \equiv -3 \equiv$ $1 \pmod{4}$.
 - ix) _

Addition table for \mathbb{Z}_6

Multiplication table for \mathbb{Z}_6