$\lceil \alpha \text{ode} \rfloor$

Valutazione capitolati

2025/03/11

Responabile Nicolò Bovo

Redattori Romeo Calearo

Elia Leonetti

Giovanni Battista Matteazzi

Validatori Manuel Cinnirella

Massimo Chioru

Alessandro Di Pasquale

 ${\bf AlphaCode}$

Università Degli Studi di Padova Versione 1.0.0

Indice

I.	Scopo del documento	3
II.	Capitolato scelto	3
	II.1. C4 NearYou	3
	Descrizione	3
	Obiettivi	3
	Dominio Tecnologico	3
	Aspetti Positivi	4
	Aspetti negativi	4
	Conclusione	4
III.	Capitolati non scelti	4
	III.1. C3: Automatizzare le routine digitali tramite l'intelligenza generativa	4
	Descrizione	4
	Obiettivi	5
	Dominio tecnologico	5
	Aspetti Positivi	5
	Aspetti negativi	5
	Conclusioni	5
	III.2. C6: Sistema di gestione di un magazzino distribuito	5
	Descrizione	5
	Obiettivi	6
	Dominio tecnologico	6
	Aspetti Positivi	
	Aspetti negativi	
	Conclusioni	6

I. Scopo del documento

Si intende documentare il processo di analisi dei capitolati, e le valutazioni attribuite a ciascuno, da cui è conseguita la scelta del capitolato **C4: Near You**, oggetto della nostra candidatura.

II. Capitolato scelto

II.1. C4 NearYou

Descrizione

Il progetto propone una piattaforma di advertising personalizzato basata su intelligenza artificiale e geolocalizzazione per noleggi di biciclette. Gli utenti riceveranno annunci pertinenti su un display integrato, simulato tramite una web-app, in base alla loro posizione e profilo. Il sistema utilizza data stream processing per raccogliere, arricchire e salvare dati GPS e profili utenti, elaborandoli con LLM. Una dashboard mostrerà in tempo reale la posizione dei mezzi e gli annunci, visibili solo agli utenti interessati e vicini all'attività commerciale. L'obiettivo è migliorare il coinvolgimento, l'efficacia pubblicitaria e il ritorno sugli investimenti per i brand.

Obiettivi

Il progetto affronta il problema della pubblicità generica e poco efficace, proponendo una soluzione che personalizza i messaggi pubblicitari in base al contesto e ai comportamenti degli utenti. La piattaforma prevede:

- Utilizzo di dati geospaziali per offrire annunci contestuali basati sulla posizione dell'utente.
- Integrazione di tecnologie di prossimità e LLM per l'elaborazione avanzata dei dati e la generazione dinamica di annunci.
- Simulazione di scenari reali, con lo sviluppo di un simulatore GPS per testare il sistema in diverse condizioni.
- Interfaccia utente con mappa interattiva, che mostra in tempo reale le posizioni degli utenti e gli annunci associati ai punti di interesse rilevanti.

L'idea è di implementare la piattaforma anche su veicoli con un piccolo schermo che visualizza gli annunci personalizzati per i passeggeri, migliorando la visibilità e il targeting degli inserzionisti.

Dominio Tecnologico

Il progetto richiede un'infrastruttura tecnologica avanzata per garantire un'elaborazione efficiente dei dati in tempo reale. Gli strumenti principali includono:

- Simulazione di dati GPS: Generazione di dati geospaziali realistici tramite script in **Python**.
- Message Broker: Apache Kafka, RabbitMQ o HiveMQ per disaccoppiare il flusso di dati in ingresso.
- Data Stream Processing: **Apache Airflow**, **Apache NiFi**, **Apache Spark** o **Apache Flink** per l'elaborazione in tempo reale dei dati.

- LLM per la generazione di annunci: LangChain o Flow per la creazione di messaggi pubblicitari personalizzati.
- Database e Storage: **PostGIS**, **ClickHouse** o **Timescale** per la gestione di dati geospaziali e in serie temporale.
- Data Visualization: **Superset**, **Grafana** o **Tableau** per il monitoraggio e la visualizzazione delle informazioni.

Aspetti Positivi

Di questo capitolato il gruppo ha particolarmente apprezzato:

- L'integrazione di diverse tecnologie all'interno dello stesso progetto, come la geolocalizzazione, la visualizzazione su mappa delle informaizoni, l'analisi dei dati utente e la generazione di testi personalizzati tramite LLM. Tutti questi elementi hanno contribuito a renderlo un progetto moderno e al passo coi tempi.
- La disponibilità dell'azienda a seguire il gruppo e a fornire supporto e confronti costanti.
- La qualità e l'attenzione posta nel presentare il capitolato, rendendo esplicite le richieste e le finalità del progetto.
- La buona libertà di scelta delle tecnologie da utilizzare e la conseguente flessibilità nel lavorare al progetto permettendo di scegliere gli strumenti meglio conosciuti dal gruppo.

Aspetti negativi

Il gruppo aveva inizialmente manifestato delle perplessità nell'accettare questo capitolato a causa delle implicazioni etiche legate all'uso dell'Intelligenza Artificiale in campo pubblicitario. Tuttavia, dopo un'analisi approfondita del progetto, è emerso che il metodo proposto per presentare degli annunci pubblicitari risulta più etico rispetto ad altre soluzioni esistenti. Il sistema, infatti, si basa su criteri di pertinenza contestuale e preferenze dell'utente, evitando pratiche invasive e migliorando l'esperienza pubblicitaria per l'utente finale.

Conclusione

Nonostante anche altri capitolati presentassero delle soluzioni all'avanguardia e al passo con i tempi e pure altre aziende si fossero rivelate disponibili alla collaborazione, il gruppo ha trovato solo in questo capitolato tutti gli aspetti positivi desiderati raggruppati insieme, portandolo a diventare la prima scelta per la candidatura.

III. Capitolati non scelti

III.1. C3: Automatizzare le routine digitali tramite l'intelligenza generativa

Descrizione

Il capitolato propone lo sviluppo di un servizio ad agenti, attraverso il quale gli utenti possano disegnare localmente un workflow, o definirlo usando il linguaggio naturale. Sfruttando le API dei software locali e l'intelligenza artificiale in cloud, l'applicativo

implementa autonomamente il workflow indicato, automatizzando attività quotidiane che l'utente svolgerebbe manualmente.

Obiettivi

Il progetto ha lo scopo di utilizzare un'IA generativa, che risieda in cloud, capace di comunicare con software locale e restituire le automazioni che soddisfano il workflow richiesto dall'utente. Le automazioni devono risultare eseguibili sia localmente che direttamente presso i servizi finali (in questo caso, attraverso le apposite API). In particolare, è necessario soddisfare le seguenti richieste:

- Creare un client, per Mac o PC, che permetta agli utenti di disegnare dei workflow tramite interfaccia "drag and drop".
- Creare un repository di «blocchi» funzionali che accedono alle API applicative.
- Consentire all'utente di descrivere in linguaggio naturale l'attività di logica per ciascun passo del workflow, di cui il software costruirà la logica di automazione in autonomia.

Dominio tecnologico

L'azienda raccomanda l'uso delle seguenti tecnologie:

- **Python**, **C**#, **Swift** e **React** per lo sviluppo del Client (rispettivamente in ambiente Windows, Apple e su interfaccia web).
- MongoDB o altro database locale, per la memorizzazione dei dati necessari.
- NodeJS, Python, Typescript per lo sviluppo della parte back-end.
- AWS Bedrock per sfruttare i sistemi d'intelligenza artificiale generativa.

Aspetti Positivi

• Visione concreta del prodotto finale

Aspetti negativi

- Stack tecnologico particolarmente estensivo
- Lo sviluppo della funzionalità di interpretazione del linguaggio naturale può risultare molto dispendiosa in termini temporali e di complessità.

Conclusioni

L'impatto pratico e la visione molto chiara sulle finalità del prodotto sono stati valutati positivamente, a tal punto che il gruppo stava valutando questo capitolato come prima scelta. Durante una fase di analisi successiva sono emersi dubbi sulla fattibilità del progetto entro le scadenze indicate, e quindi è stato indicato come seconda scelta.

III.2. C6: Sistema di gestione di un magazzino distribuito

Descrizione

Il capitolato C6 propone lo sviluppo di un'applicazione per gestire in modo ottimale l'inventario di diversi magazzini distribuiti sul territorio. L'obiettivo principale è quello di monitorare e ottimizzare in tempo reale le scorte di ogni sede, assicurando una corretta sincronizzazione dei dati e gestendo eventuali conflitti, come nel caso di ordini simultanei per lo stesso prodotto.

Obiettivi

Il sistema di gestione dovrà essere in grado di:

- Ottimizzare i livelli di scorte: il sistema dovrà monitorare costantemente l'inventario, suggerendo o automatizzando azioni di riassortimento o trasferimento tra magazzini al fine di mantenere scorte minime senza compromettere l'operatività.
- Gestire la condivisione dei dati in tempo reale: attraverso una sincronizzazione continua, sarà possibile avere una visione chiara e centralizzata delle scorte presenti in ogni magazzino, con aggiornamenti in tempo reale riguardo alle operazioni di prelievo, ricezione e trasferimento.
- Implementare riassortimento predittivo: l'utilizzo di algoritmi di machine learning permetterà di prevedere la domanda futura in base a dati storici, stagionalità e pattern di consumo. Questo approccio ridurrà il rischio di esaurimento scorte e ottimizzerà l'allocazione dei materiali tra magazzini.
- Risolvere i conflitti di aggiornamento simultaneo: saranno implementati meccanismi che gestiranno le situazioni in cui aggiornamenti simultanei dell'inventario, provenienti da magazzini differenti, potrebbero creare discrepanze nei dati (ad esempio, utilizzando tecniche di versionamento o timestamp).

Dominio tecnologico

Vengono consigliate tecnologie in linea con lo stack abitualmente utilizzato da M31:

- Node.js, Nest.js, TypeScript per lo sviluppo server-side di servizi modulari.
- Go per le componenti ad alte prestazioni, utili per la sincronizzazione.
- NATS o Kafka per la comunicazione distribuita e asincrona.
- **Kubernetes** per orchestrare i servizi in un ambiente cloud scalabile.
- MongoDB e PostgreSQL, una combinazione di NoSQL e database relazionali per gestire dati eterogenei.
- Redis, sistema di caching per ridurre la latenza.

Aspetti Positivi

- La gestione ottimale delle scorte è fondamentale per molte aziende, quindi si tratta di un problema concreto e molto richiesto.
- Si sperimentano microservizi, comunicazione tramite message broker e sincronizzazione di dati in tempo reale.
- Aspetto predittivo: l'integrazione di algoritmi di machine learning permette di esplorare tecniche di data science e forecasting.

Aspetti negativi

- Complessità elevata: gestire transazioni distribuite, conflitti di aggiornamento e sincronizzazione in tempo reale può essere impegnativo.
- Necessità di un'infrastruttura di test robusta.
- Richiede buone competenze su microservizi, reti e gestione dei dati.

Conclusioni

Questo capitolato è risultato molto stimolante, in particolare per l'impatto molto concreto dell'IA sulla produttività. Il gruppo stava valutando il capitolato come possibile scelta, ma a

causa della discrepanza tra le esigenze dello stack tecnologico e le nostre competenze, infine non è stato considerato.

Firmato da: AlphaCode®

Data: 2025-03-17: 18:35:34