Requirements Engineering Process

Requirements Engineering Processes

 Processes used to discover, analyse and validate system requirements.

Topics covered

- Feasibility study
- Requirements elicitation and analysis
- Requirements validation
- Requirements management

Requirements engineering processes

- The processes used for RE vary widely depending on the application domain, the people involved and the organisation developing the requirements
- However, there are a number of generic activities common to all processes
 - Feasibility Study
 - Requirements elicitation and analysis
 - Requirements validation
 - Requirements management

The requirements engineering process

Feasibility study

- A feasibility study decides whether or not the proposed system is worthwhile
- A short focused study that checks
 - If the system contributes to organisational objectives
 - If the system can be engineered using current technology and within budget
 - If the system can be integrated with other systems that are used

Feasibility study implementation

- Based on information assessment (what is required), information collection and report writing
- Questions for people in the organisation
 - What if the system wasn't implemented?
 - What are current process problems?
 - How will the proposed system help?
 - What will be the integration problems?
 - Is new technology needed? What skills?
 - What facilities must be supported by the proposed system?

Elicitation and analysis

- Sometimes called requirements elicitation or requirements discovery
- Involves technical staff working with customers to find out about the application domain, the services that the system should provide and the system's operational constraints
- May involve end-users, managers, engineers involved in maintenance, domain experts, trade unions, etc. These are called stakeholders

Problems

- Stakeholders don't know what they really want
- Stakeholders express requirements in their own terms
- Different stakeholders may have conflicting requirements
- Organisational and political factors may influence the system requirements
- The requirements change during the analysis process. New stakeholders may emerge and the business environment change

The requirements elicitation and analysis process

Process activities

- Requirements discovery
 - Interacting with stakeholders to discover their requirements. Domain requirements are also discovered at this stage.
- Requirements classification and organization
 Groups related requirements and organizes them into coherent clusters
- Prioritisation and negotiation
 Prioritising requirements and resolving requirements conflicts.
- Requirements specification
 Requirements are documented and input into the next step.

Requirements discovery

- The process of gathering information about the required and existing systems and distilling the user and system requirements from this information.
- Interaction is with system stakeholders from managers to external regulators.
- Systems normally have a range of stakeholders.

Interviewing

- Formal or informal interviews with stakeholders.
- Types of interview
 - Closed interviews based on pre-determined list of questions
 - Open interviews where various issues are explored with stakeholders.
- Effective interviewing
 - Be open-minded, avoid pre-conceived ideas about the requirements and are willing to listen to stakeholders.

©Ian Sommervill Prompt the Interviewe to aetidiscussions

Problems with interviews

- Application specialists may use language to describe their work that isn't easy for the requirements engineer to understand.
- Usually, interviews are not good for understanding domain requirements.
 - Requirements engineers cannot understand specific domain terminology
 - Some domain knowledge is so familiar that people find it hard to articulate or think that it isn't worth articulating.

Ethnography

- A social scientists spends a considerable time observing and analysing how people actually work.
- People do not have to explain or articulate their work.
- Social and organizational factors of importance may be observed.
- Ethnographic studies have shown that work is usually richer and more complex than suggested by simple system models.

Scope of ethnography

- Requirements that are derived from the way that people actually work rather than the way in which process definitions say they ought to work
- Ethnography is effective for understanding existing processes but cannot identify new features that should be added to a system.
- Thus, not always appropriate for discovering organizational or domain requirements.

Requirements specification

- The process of writing down the user and system requirements in a requirements document.
- User requirements have to be understandable by end-users and customers who do not have a technical background.
- System requirements are more detailed requirements and may include more technical information.
- The requirements may be part of a contract for the system development

It is therefore important that these are as complete as possible.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 17

Way of writing requirements specification

Notation	Description
Natural language	The requirements are written using numbered sentences in natural language. Each sentence should express one requirement.
Structured natural language	The requirements are written in natural language on a standard form or template. Each field provides information about an aspect of the requirement.
Graphical notations	Graphical models, supplemented by text annotations, are used to define the functional requirements for the system; UML use case and sequence diagrams are commonly used.
Mathematical specifications	These notations are based on mathematical concepts such as finite-state machines or sets. Although these unambiguous specifications can reduce the ambiguity in a requirements document, most customers don't understand a formal specification. They cannot check that it represents what they want and are reluctant to accept it as a system contract

Natural language specification

- Requirements are written as natural language sentences supplemented by diagrams and tables.
- Used for writing requirements because it is expressive, intuitive and universal. This means that the requirements can be understood by users and customers.

Guidelines for writing specification

- Invent a standard format and use it for all requirements.
- Use language in a consistent way. Use shall for mandatory requirements, should for desirable requirements.
- Use text highlighting to identify key parts of the requirement.
- Avoid the use of computer jargon.
- Include an explanation (rationale) of why a requirement is necessary.

Problems with natural language

- Lack of clarity
 - Precision is difficult without making the document difficult to read.
- Requirements confusion
 - Functional and non-functional requirements tend to be mixed-up.
- Requirements amalgamation
 - Several different requirements may be expressed together.

Structured specification

- An approach to writing requirements where the freedom of the requirements writer is limited and requirements are written in a standard way.
- This works well for some types of requirements e.g. requirements for embedded control system but is sometimes too rigid for writing business system requirements.

Form-based specification

- Definition of the function or entity.
- Description of inputs and where they come from.
- Description of outputs and where they go to.
- Information about the information needed for the computation and other entities used.
- Description of the action to be taken.
- Pre and post conditions (if appropriate).
- The side effects (if any) of the function.

Tabular specification

- Used to supplement natural language.
- Particularly useful when you have to define a number of possible alternative courses of action.
- For example, the insulin pump systems bases its computations on the rate of change of blood sugar level and the tabular specification explains how to calculate the insulin requirement for different scenarios.

Example

Condition	Action
Sugar level falling (r2 < r1)	CompDose = 0
Sugar level stable (r2 = r1)	CompDose = 0
Sugar level increasing and rate of increase decreasing $((r2-r1) < (r1-r0))$	CompDose = 0
Sugar level increasing and rate of increase stable or increasing $((r2-r1) \ge (r1-r0))$	CompDose = round ((r2 – r1)/4) If rounded result = 0 then CompDose = MinimumDose

Use cases

- Use-cases are a kind of scenario that are included in the UML.
- Use cases identify the actors in an interaction and which describe the interaction itself.
- A set of use cases should describe all possible interactions with the system.
- UML sequence diagrams may be used to add detail to use-cases by showing the sequence of event processing in the system.

Use cases for Mentcare system

