GEOMETRÍA Tomo 5

5th SECONDARY

ASESORÍA

1. En la figura mostrada, M,N,P y Q son puntos medios de los lados AB, BC, CD y AD respectivamente, si las áreas de 3 regiones cuadrangulares sombreadas son de 4m², 3m² y 6m². Calcule el área de la cuarta región sombreada.

2. En un paralelogramo ABCD, M y N son puntos medios de \overline{BC} y \overline{CD} respectivamente, \overline{AM} \cap \overline{BN} = {P}, si el área de la región ABCD es 60 m².

03. El perímetro de una región rombal es igual a 32 m y la suma de las longitudes de sus diagonales es 20 m. Calcule el área de la región rombal.

04. En la figura, si BD = 4 u y FC = 9 u, halle el área de la región rectangular ADEF.

05. En la figura se muestra el corte transversal de una llanta y una palanca ABC para desarmarla, si AB = 10 cm y BC = 20 cm. Calcule el área de la corona circular.

Piden: s

$$S = \pi.(AP)^2$$
 ...(1)

- Se traza el segmento tangente \overline{AP} .
 - Teorema de la tangente.

$$(AP)^2 = (20 + 10)10$$

 $(AP)^2 = 300$...(2)

Reemplazando 2 en 1.

$$S = 300\pi \text{ cm}^2$$

06. En la figura se muestra dos sectores circulares AOB y COD equivalentes, si BC = OC. Calcule el valor de x

07. Halle el área del sector circular DQB, si R = 4 u.

Se observa que: m4BQE = 45°

$$\rightarrow \theta = 45^{\circ}$$

- Como R = 4 u
- Reemplazando

$$S = \frac{45}{360} .\pi.4^2$$

$$S = 2\pi u^2$$

8. En el triángulo ABC, se traza \overline{BP} perpendicular al plano ABC, si AB = 5 m, BC = 7 m, AC = 6 m y PB = 5 m, Calcule la distancia del punto P al segmento \overline{AC} .

Por teorema de las 3 perpendiculares.

$$\rightarrow \overline{BH} \perp \overline{AC}$$

Por teorema de Herón en el ∆ABC.

BH =
$$\frac{2}{6}\sqrt{9(9-5)(9-7)(9-6)}$$

$$BH = \frac{1}{3}\sqrt{9(4)(2)(3)}$$

$$BH = 2\sqrt{6}$$

Por t. Pitágoras

$$x^2 = 5^2 + \left(2\sqrt{6}\right)^2$$

$$x^2 = 49$$

$$x = 7$$

09. En un triángulo ABC recto B, se ubica un punto M en \overline{AB} y se traza \overline{MP} perpendicular al plano ABC, si \overline{MP} = 6 m, \overline{MB} = 2 m, \overline{AC} = 9 m y \overline{AM} = 5 m. Calcule la medida del ángulo que forma \overline{PC} con el plano ABC.

10. En la figura, AB = BC = BD = 2 u, Halle el área de la región triangular ACD.

- Piden: S
- Se observa que: $AD = AC = DC = 2\sqrt{2}$
- ▲ ADC : Equilátero

$$\bullet \quad \mathbf{S} = \frac{(2\sqrt{2})^2 \sqrt{3}}{4}$$

$$S = 2\sqrt{3} u^2$$