

# Carl von Ossietzky Universität Oldenburg

## informatiCup 2021 — spe\_ed

Team Chillow - Uni Oldenburg (Florian Trei & Jonas Hellmann)



Jonas Hellmann jonas-hellmann.de





## Übersicht der Lösungsansätze



- Eigenschaften:
  - Berechnet eigene Züge im Voraus
  - → Vermeidet Geschwindigkeitsüber- und Unterschreitung
  - → Vermeidet Kollisionen mit bereits bestehenden Spuren
- Konfiguration:
  - Max. Geschwindigkeit
  - Anzahl der Züge, die vorberechnet werden

- Eigenschaften:
  - Berechnet eigene Züge im Voraus
  - → Vermeidet Geschwindigkeitsüber- und Unterschreitung
  - → Vermeidet Kollisionen mit bereits bestehenden Spuren
- Konfiguration:
  - Max. Geschwindigkeit
  - Anzahl der Züge, die vorberechnet werden



- Eigenschaften:
  - Berechnet eigene Züge im Voraus
  - → Vermeidet Geschwindigkeitsüber- und Unterschreitung
  - → Vermeidet Kollisionen mit bereits bestehenden Spuren
- Konfiguration:
  - Max. Geschwindigkeit
  - Anzahl der Züge, die vorberechnet werden





- Eigenschaften:
  - Berechnet eigene Züge im Voraus
  - → Vermeidet Geschwindigkeitsüber- und Unterschreitung
  - → Vermeidet Kollisionen mit bereits bestehenden Spuren
- Konfiguration:
  - Max. Geschwindigkeit
  - Anzahl der Züge, die vorberechnet werden





- Eigenschaften:
  - Berechnet eigene Züge im Voraus
  - → Vermeidet Geschwindigkeitsüber- und Unterschreitung
  - → Vermeidet Kollisionen mit bereits bestehenden Spuren
- Konfiguration:
  - Max. Geschwindigkeit
  - Anzahl der Züge, die vorberechnet werden
- Probleme:
  - Laufen in Sackgassen



### PathfindingAl

- Eigenschaften:
  - Berechnet, wie viele Punkte je Aktion erreichbar sind
  - → Vermeidet das Betreten von Sackgassen



## PathfindingAl

- Eigenschaften:
  - Berechnet, wie viele Punkte je Aktion erreichbar sind
  - → Vermeidet das Betreten von Sackgassen
- Konfiguration:
  - Max. Geschwindigkeit
  - Anzahl der Pfade die berechnet werden
- Probleme:
  - Aktionen anderer Spieler bleiben unbeachtet

- Eigenschaft
  - Berechnet Anzahl Züge voraus mit Gegneraktionen
  - → Wählt eine Aktion die sicher überlebt



- Eigenschaft
  - Berechnet Anzahl Züge voraus mit Gegneraktionen
  - → Wählt eine Aktion, die sicher überlebt
- Konfiguration
  - Max. Geschwindigkeit
  - Tiefe (Anzahl vorberechneter Züge)
  - Gegnerdistanz
- Probleme
  - Laufen in Sackgassen



- Eigenschaft
  - Berechnet Anzahl Züge voraus mit Gegneraktionen
  - → Wählt eine Aktion, die sicher überlebt
- Konfiguration
  - Max. Geschwindigkeit
  - Tiefe (Anzahl vorberechneter Züge)
  - Gegnerdistanz
- Probleme
  - Laufen in Sackgassen



- Eigenschaft
  - Berechnet Anzahl Züge voraus mit Gegneraktionen
  - → Wählt eine Aktion, die sicher überlebt
- Konfiguration
  - Max. Geschwindigkeit
  - Tiefe (Anzahl vorberechneter Züge)
  - Gegnerdistanz
- Probleme
  - Laufen in Sackgassen



- Eigenschaft
  - Berechnet Anzahl Züge voraus mit Gegneraktionen
  - → Wählt eine Aktion, die sicher überlebt
- Konfiguration
  - Max. Geschwindigkeit
  - Tiefe (Anzahl vorberechneter Züge)
  - Gegnerdistanz
- Probleme
  - Laufen in Sackgassen



- Eigenschaft
  - Berechnet Anzahl Züge voraus mit Gegneraktionen
  - → Wählt eine Aktion, die sicher überlebt
- Konfiguration
  - Max. Geschwindigkeit
  - Tiefe (Anzahl vorberechneter Züge)
  - Gegnerdistanz
- Probleme
  - Laufen in Sackgassen



- Eigenschaft
  - Berechnet Anzahl Züge voraus mit Gegneraktionen
  - → Wählt eine Aktion, die sicher überlebt
- Konfiguration
  - Max. Geschwindigkeit
  - Tiefe (Anzahl vorberechneter Züge)
  - Gegnerdistanz
- Probleme
  - Laufen in Sackgassen



- Eigenschaft
  - Berechnet Anzahl Züge voraus mit Gegneraktionen
  - → Wählt eine Aktion, die sicher überlebt
- Konfiguration
  - Max. Geschwindigkeit
  - Tiefe (Anzahl vorberechneter Züge)
  - Gegnerdistanz
- Probleme
  - Laufen in Sackgassen



- Eigenschaft
  - Berechnet Anzahl Züge voraus mit Gegneraktionen
  - → Wählt eine Aktion, die sicher überlebt
- Konfiguration
  - Max. Geschwindigkeit
  - Tiefe (Anzahl vorberechneter Züge)
  - Gegnerdistanz
- Probleme
  - Laufen in Sackgassen



- Eigenschaft
  - Berechnet Anzahl Züge voraus mit Gegneraktionen
  - → Wählt eine Aktion, die sicher überlebt
- Konfiguration
  - Max. Geschwindigkeit
  - Tiefe (Anzahl vorberechneter Züge)
  - Gegnerdistanz
- Probleme
  - Laufen in Sackgassen



- Eigenschaft
  - Berechnet Anzahl Züge voraus mit Gegneraktionen
  - → Wählt eine Aktion, die sicher überlebt
- Konfiguration
  - Max. Geschwindigkeit
  - Tiefe (Anzahl vorberechneter Züge)
  - Gegnerdistanz
- Probleme
  - Laufen in Sackgassen



- Eigenschaft
  - Berechnet Anzahl Züge voraus mit Gegneraktionen
  - → Wählt eine Aktion, die sicher überlebt
- Konfiguration
  - Max. Geschwindigkeit
  - Tiefe (Anzahl vorberechneter Züge)
  - Gegnerdistanz
- Probleme
  - Laufen in Sackgassen



## SearchTreePathfindingAl

- Eigenschaft:
  - 1. Sucht alle sicher überlebenden Aktionen
  - 2. Findet die Aktion, die die meisten Punkte erreicht
- Konfiguration:
  - SearchTreeAl
  - PathfindingAl
- Probleme:
  - Aggressive Gegenspieler
    - → Kann in Sackgassen abgedrängt werden

## PathfindingSearchTreeAl

- Eigenschaft:
  - 1. Sucht die Aktionen nach erreichbaren Punkten
  - 2. Findet davon eine Aktion, die sicher überlebt
- Konfiguration:
  - SearchTreeAl
  - PathfindingAl
  - Toleranz für Pfade
- Probleme:
  - Aggressive Gegenspieler



#### Relationaler Entwurf einer DB









#### **Erste Evaluation**

- Zeitraum von 16 Tagen
- 1000 Spiel-Simulationen
- 638685 berechnete Spielzüge

### **Erste Evaluation**

| Klasse                  | Info                                                                                                  | Wins | Plays | Gewinn-rate (%) |
|-------------------------|-------------------------------------------------------------------------------------------------------|------|-------|-----------------|
| PathfindingSearchTreeAI | max_speed=1, paths_tolerance<br>=0.75, count_paths_to_check=<br>50, depth=2, distance_to_check<br>=30 | 12   | 18    | 66.67           |
| SearchTreePathfindingAI | max_speed=1, count_paths_to_<br>check=25, depth=2, distance_<br>to_check=20                           | 17   | 26    | 65.38           |
| PathfindingSearchTreeAI | max_speed=1, paths_tolerance<br>=0.75, count_paths_to_check=<br>25, depth=2, distance_to_check<br>=10 | 10   | 16    | 62.50           |
| PathfindingSearchTreeAI | max_speed=1, paths_tolerance<br>=0.75, count_paths_to_check=<br>75, depth=3, distance_to_check<br>=10 | 7    | 12    | 58.33           |
| PathfindingSearchTreeAI | max_speed=2, paths_tolerance<br>=0.75, count_paths_to_check=<br>75, depth=3, distance_to_check<br>=20 | 8    | 15    | 53.33           |
| PathfindingSearchTreeAI | max_speed=1, paths_tolerance<br>=0.75, count_paths_to_check=<br>75, depth=2, distance_to_check<br>=10 | 9    | 17    | 52.94           |
| PathfindingAI           | max_speed=1, count_paths_to_<br>check=50                                                              | 63   | 120   | 52.50           |
| •••                     |                                                                                                       |      |       |                 |

Tabelle 5.2: Auswertung der besten KI-Konfiguration

#### **Zweite Evaluation**

- Auswahl der besten 25 Konfigurationen
- Zeitraum von 15 Tagen
- weitere 500 Spiel-Simulationen
- 508407 berechnete Spielzüge

## **Zweite Evaluation**

| Klasse                  | Info                                                                                                  | Wins | Plays | Gewinn-<br>rate (%) |
|-------------------------|-------------------------------------------------------------------------------------------------------|------|-------|---------------------|
| PathfindingSearchTreeAI | max_speed=1, paths_tolerance<br>=0.75, count_paths_to_check=<br>50, depth=3, distance_to_check<br>=10 | 33   | 99    | 33.33               |
| PathfindingSearchTreeAI | max_speed=1, paths_tolerance<br>=0.75, count_paths_to_check=<br>50, depth=2, distance_to_check<br>=20 | 31   | 96    | 32.29               |
| PathfindingSearchTreeAI | max_speed=1, paths_tolerance<br>=0.75, count_paths_to_check=<br>50, depth=2, distance_to_check<br>=30 | 25   | 88    | 28.41               |
| PathfindingSearchTreeAI | max_speed=1, paths_tolerance<br>=0.75, count_paths_to_check=<br>75, depth=2, distance_to_check<br>=10 | 27   | 99    | 27.27               |
| SearchTreePathfindingAI | max_speed=1, count_paths_to_<br>check=75, depth=2, distance_<br>to_check=10                           | 25   | 93    | 26.88               |
| PathfindingSearchTreeAI | max_speed=1, paths_tolerance<br>=0.75, count_paths_to_check=<br>75, depth=3, distance_to_check<br>=10 | 23   | 89    | 25.84               |
| SearchTreePathfindingAI | max_speed=1, count_paths_to_<br>check=50, depth=2, distance_<br>to_check=10                           | 23   | 90    | 25.56               |
| •••                     |                                                                                                       |      |       |                     |

Tabelle 5.3: Ergebnis der zweiten Evaluation



#### Eingesetzte Technologien







**GitHub** 

























# Carl von Ossietzky Universität Oldenburg

## informatiCup 2021 — spe\_ed

Team Chillow - Uni Oldenburg (Florian Trei & Jonas Hellmann)