Lung Sample Marilyn Mcbride

Date of Birth **2000-04-16**

Sex Male

Physician

Dr. Jennifer Johnson

Institution

Gutierrez Group

Tumor specimen: source Lung CollectedDate 2023-12-29 ReceivedDate 2023-12-29 TumorPercentage 72%

Normal specimen: source Blood CollectedDate 2024-01-02 ReceivedDate 2024-01-07

GENOMIC VARIANTS

Somatic - Potentially Actionable

variant allele fraction

NF1

c.4394A>G p.S2309Cfs*10 Frameshift-LOF

3.51%

Somatic - Biologically Relevant

IKZF1

c.3113A>G p.N1465S Missensevariant(exon2)-GOF 18.76%

MPL c.1543_1545delinsAAA p.W515K

21.92%

Spliceregionvariant-GOF 21.9

Germline - Pathogenic

No Germline - Pathogenic variants were found in the limited set of genes on which we report.

Pertinent Negatives

CSF1R HBB

ERCC2 | IDH1

IMMUNOTHERAPY MARKERS

Tumor Mutational Burden

Microsatellite Instability Status

18 m/Mb

89%

Stable

Equivocal

High

FDA-APPROVED THERAPIES, Current Diagnosis

KRAS G12C Inhibitors

Sotorasib

NCCN, Consensus, Non-Small Cell Lung Cancer

MSK OncoKB, Level 1 KRASp.G12C G12C-GOF

FDA-APPROVED THERAPIES, Other Indications

KRAS G12C Inhibitors

Sotorasib

NCCN, Consensus, Non-Small Cell Lung Cancer

MSK OncoKB, Level 1 KRASp.G12C G12C-GOF

ADDITIONAL INDICATORS

Un	favora	ble Progn	osis

NCCN, Consensus, Non-Small Cell Lung Cancer KRASp.G12C Gain-of-function

CLINICAL TRIALS

A Study of VS-6766 v. VS-6766 + Defactinib in Recurrent G12V, Other KRAS and BRAF Non-Small Cell Lung Cancer

Phase 2 City, state - x mi KRAS mutation

A Phase 1/2 Study of MRTX849 in Patients With Cancer Having a KRAS G12C Mutation KRYSTAL-1

Phase 1/2 City, state - x mi KRAS mutation STK11 mutation

First-in-human Study of DRP-104 (Sirpiglenastat) as Single Agent and in Combination With Atezolizumab in Patients With Advanced Solid Tumors. (NCT04471415)

Phase 1/2 City, state - x mi NFE2L2 mutation STK11 mutation

VARIANTS OF UNKNOWN SIGNIFICANCE

Somatic	Mutation effect	Variant allele fraction
DICER1	c.5492G>A p.E1705V Frameshift-GOF NM_001011645	10.63%
НВВ	c.364G>A p.E27K Spliceregionvariant-GOF NM_001011645	18.81%
MYO1G	c.145G>A p.V49M Nonsense-GOF NM_001011645	3.43%
TLR8	c.3113A>G p.N515H Missensevariant(exon2)-GOF NM_001011645	2.28%
PHF6	c.3113A>G p.R225X Spliceregionvariant-GOF NM_001011645	3.88%
BRCA2	c.5946delT p.S1982Rfs*22 Nonsense-GOF NM_001011645	8.32% -
PHF6	c.3113A>G p.R225X Spliceregionvariant-GOF NM_001011645	3.86%
Germline	Mutation effect	Condition
SDHB	c.487T>C p.S163P Nonsense-LOF NM_001011645	recent

LOW COVERAGE REGIONS

MAPK1

PIK3CA

SOMATIC VARIANT DETAILS - POTENTIALLY ACTIONABLE

NF1

c.4394A>G p.S2309Cfs*10 Frameshift-LOF

VAF: 3.51% -

FAT1 encodes a transmembrane protein involved in tumor suppressor signaling. FAT1 protein can regulate transcriptional activity by sequestering beta-catenin, thereby preventing it from entering the nucleus. Loss of function mutations and copy number loss of FAT1 are associated with cancer progression.

SOMATIC VARIANT DETAILS - BIOLOGICALLY RELEVANT

IKZF1

c.3113A>G p.N1465S Missensevariant(exon2)-GOF

VAF: 18.76%

FAT1 encodes a transmembrane protein involved in tumor suppressor signaling. FAT1 protein can regulate transcriptional activity by sequestering beta-catenin, thereby preventing it from entering the nucleus. Loss of function mutations and copy number loss of FAT1 are associated with cancer progression.

MPL

c.1543_1545delinsAAA p.W515K Spliceregionvariant-GOF

VAF: 21.92%

KRAS is a GDP/GTP binding protein that acts as an intracellular signal transducer. KRAS is involved in several pathways involved in cellular proliferation and survival, including the PI3K-AKT-mTOR pathway and the Ras-Raf-MEK-ERK pathway. Activating mutations, copy number gains, and overexpression of KRAS are associated with cancer progression.

CLINICAL HISTORY

Diagnosed on

2023-12-27