In what conditions is there diastolic mitral leaflet doming with the leaflet concave toward the LA?

- 1. Rheumatic MS
- 2. Rheumatic and calcific MS
- 3. Rheumatic and congenital MS
- 4. Rheumatic MS and AI with flow hitting the mitral valve

In what conditions is there diastolic mitral leaflet doming with the leaflet concave toward the LA?

- 1. Rheumatic MS
- 2. Rheumatic and calcific MS
- ➤ 3. Rheumatic and congenital MS
 - 4. Rheumatic MS and AI with flow hitting the mitral valve

In mitral stenosis, which is the best view to guide placement of the beam to measure the narrowest orifice area?

- A. The parasternal long-axis view
- B. The parasternal short-axis view
- C. The apical 2-chamber view
- D. The apical 4-chamber view

In mitral stenosis, which is the best view to guide placement of the beam to measure the narrowest orifice area?

- ► A. The parasternal long-axis view
 - B. The parasternal short-axis view
 - C. The apical 2-chamber view
 - D. The apical 4-chamber view

A patient has mitral stenosis with an E-wave deceleration time of 1000 milliseconds. What is the mitral valve area?

- 1. 0.22 cm²
- 2. 0.75 cm²
- 3. Depends on cardiac output
- 4. 1.5 cm²

A patient has mitral stenosis with an E-wave deceleration time of 1000 milliseconds. What is the mitral valve area?

- 1. 0.22 cm²
- ≥ 2. 0.75 cm²
 - 3. Depends on cardiac output
 - 4. 1.5 cm²

How does the mitral pressure half time vary with these parameters?

- 1. Directly with mitral valve area, directly with ventricular stiffness
- 2. Directly with mitral valve area, inversely with ventricular stiffness
- 3. Inversely with mitral valve area, directly with ventricular stiffness
- 4. Inversely with mitral valve area, inversely with ventricular stiffness

How does the mitral pressure half time vary with these parameters?

- 1. Directly with mitral valve area, directly with ventricular stiffness
- 2. Directly with mitral valve area, inversely with ventricular stiffness
- 3. Inversely with mitral valve area, directly with ventricular stiffness
- ► 4. Inversely with mitral valve area, inversely with ventricular stiffness

What condition can explain the difference in MV area by planimetry and half time in the following patient?

- A. Mild aortic insufficiency
- B. Post-balloon atrial shunt PFO
- C. Moderate mitral regurgitation
- D. Left atrial enlargement

What condition can explain the difference in MV area by planimetry and half time in this patient?

- A. Mild aortic insufficiency
- **B.** Post-balloon atrial shunt PFO
- C. Moderate mitral regurgitation
- D. Left atrial enlargement

What condition can explain the difference in MV area by planimetry and half time in this patient?

- A. Mild aortic insufficiency
- ▶ B. Post-balloon atrial shunt PFO
 - C. Moderate mitral regurgitation
 - D. Left atrial enlargement

What is the mitral valve area in this patient?

- A. 0.82 cm²
- B. 1.34 cm²
- C. 1.0 cm²
- D. Need more data


```
Peak flow rate = 2\pi r^2 v (\alpha / 180)

r = 1.06 cm

v = 38 cm/sec

\alpha = 110^\circ

Peak flow rate = 164 cm^3 / sec

MVA = Peak flow rate / Peak velocity

= (164 cm^3 / sec) / (200 cm/sec)

= 0.82 cm^2
```

What is the mitral valve area in this patient?

- ► A. 0.82 cm²
 - B. 1.34 cm²
 - C. 1.0 cm²
 - D. Need more data

In evaluating mitral stenosis, the pressure half time is calculated as:

- a. The time taken to drop to 0.7 x the peak pressure gradient
- b. The time taken to drop to half the peak pressure gradient
- c. The time taken to drop to half the peak velocity
- d. The pressure gradient at half the diastolic filling period

In evaluating mitral stenosis, the pressure half time is calculated as:

- a. The time taken to drop to 0.7 x the peak pressure gradient
- b. The time taken to drop to half the peak pressure gradient
 - c. The time taken to drop to half the peak velocity
 - d. The pressure gradient at half the diastolic filling period