RHST-P (LAN インターフェース 2 軸雲台) 制御プロトコル仕様

1. 適用

RHST-P(LAN インターフェース 2 軸雲台)用の制御プロトコル仕様を示します。 TCP/IP 通信によりパンチルト機構を制御するためのプロトコルです。

2. 基本通信仕様

項目	内容
電気的規格	10/100Mbit Ethernet
伝送方式	TCP/IP
Client ∕ Server	雲台は TCP サーバーとして機能。 コントローラは TCP クライアントとして雲台 に接続する。
IPアドレス	静的に割り当て (事前に設定)
ポート番号	61055
伝文長	12 バイト固定長
通信制御	コマンド→レスポンス方式
誤り検出	BCC

3. 通信伝文フォーマット

(1) 基本フォーマット

データ長 12 バイト固定です。

0	1	2	3	4	5	6	7	8	9	10	11
RW	Reserved	Reserved	CmdH	CmdL	DataHH	DataHL	DataLH	DataLL	BccH	BccL	CR

バイト No	記号	内容
0	RW	読み出しか書き込みかを示す。 'R'(0x52)=読み出し、 'W'(0x57)=書き込み
1	Reserved	'0'(0x30)固定
2	Reserved	'0'(0x30)固定
3	CmdH	コマンドコード(MSB)
4	CmdL	コマンドコード(LSB)
5	DataHH	データ(MSB の上位)
6	DataHL	データ(MSB の下位)
7	DataLH	データ(LSB の上位)
8	DataLL	データ(LSB の下位)
9	ВссН	BCC コード(MSB)
10	BccL	BCC コード(LSB)
11	CR	エンドマーク(改行コード 0x0D)

エンドマーク以外は全ていわゆる表示可能な文字コードを使用します。

データは 16 ビットの値を送信/受信します。

16 ビットのデータを 4 桁の文字列で表現します。

例)0x1234 → '1'(0x31), '2'(0x32), '3'(0x33), '4'(0x34)

BCC コードの演算は、バイト 0~8 を 1 バイト単位で XOR 演算した結果を 2 桁の文字 列で表現し、バイト 9、10 に格納します。(データと同様の表現方法)

(2) 読み出しコマンド/レスポンス (2) Read command / response

コマンド (マスター \rightarrow スレーブ) command (master slave)

Ξ.		• • • •	•			- /						
	0	1	2	3	4	5	6	7	8	9	10	11
	'R' (0x52)	.0, (0×30)	,0, (0x30)	CmdH	CmdL	(NZXO) '*'	(0x2A) '*'	,*' (0x2A)	(0x2A) '*'	НээВ	BccL	CR

レスポンス $(スレーブ \rightarrow マスター)$ Response (slave master)

0	1	2	3	4	5	6	7	8	9	10	11
'R' (0x52)	'0' (0x30)	'0' (0x30)	CmdH	CmdL	DataHH	DataHL	DataLH	DataLL	BccH	BccL	CR

16 ビットのデータが 4 桁の文字列で読み出されます。

(3) 書き込みコマンド/レスポンス Write command / response

コマンド (マスター → スレーブ) command (master slave)

•		-	•		- /						_
0	1	2	3	4	5	6	7	8	9	10	11
'W' (0x57)	,0, (0×30)	,0, (0x30)	Стан	CmdL	DataHH	DataHL	DataLH	DataLL	НээВ	BccL	CR

16 ビットのデータを 4 桁の文字列で書き込みます。

レスポンス $(スレーブ \rightarrow マスター)$ Response (slave master)

0	1	2	3	4	5	6	7	8	9	10	11
'W' (0x57)	,0, (0x30)	,0) (0x30)	Стан	CmdL	.0' (0x30)	.0' (0x30)	'0' (0x30)	'0' (0x30)	НээВ	PccL	CR

4. エラーレスポンス

発行したコマンド伝文に異常があった場合、スレーブは下記のエラーレスポンスを 返します。

エラーレスポンスの伝文長は3バイトです。

エラーレスポンス (スレーブ → マスター)

0	1	2
NAK	CODE	CR

バイト No	記号	内容
0	NAK	Negative AcKnowledge を示すコード(0x15)。
1	CODE	エラーの内容を示します。 '1'(0x31) = BCC エラー '2'(0x32) = コマンドエラー その他 = 使用しません。
2	CR	エンドマーク(改行コード 0x0D)

5. コマンドリスト

コマンドコード	動作	設定データ or 読出しデータ	詳細	R or W
PR	PAN 右回転	***	右に回転	W
PL	PAN 左回転	****	左に回転	W
PE	PAN 停止	****	PAN のみ停止	W
TU	TILT 上回転	***	上に回転	W
TD	TILT下回転	***	下に回転	W
TE	TILT 停止	***	TILT のみ停止	W
ST	全停止	***	全て停止	W
PD	PAN の現在位置 (角度値)	xxxx	PAN の現在位置を 0.01 度単位で示します。 センター値は 18000。 例)右 10 度は 18000+1000=19000 これを 16 進数にすると 19000=4A38h。 '4','A','3','8'	R
TD	TILT の現在位置 (角度値)	xxxx	TILT の現在位置を 0.01 度単位で示します。 センター(水平)値は 9000。 例)下方 10 度は 9000-1000=8000 これを 16 進数にすると 8000=1F40。 '1','F','4','0'	R
PV	PAN 目標位置設定 (角度値)	XXXX	"GO"コマンド用に PAN の目標値を設定します。 設定する角度の値は、PD コマンドの説明と同じです。	R/W
TV	TILT 目標位置設定 (角度値)	XXXX	"GO"コマンド用に TILT の目標値を設定します。 設定する角度の値は、TD コマンドの説明と同じです。	R/W
GO	目標位置へ移動	****	PV コマンド、TV コマンドであらかじめ設定された目標位置に移動をします。	W
FD	ステータス取得	X000	X の文字を HEX 変換(0~F)し、ビット毎に意味付けをしています。 bit0=1 で移動中。 bit1~bit3 は未使用。	R
SP	速度設定	000X	X='0'(最低速)~'3'(最高速)。	R/W

(続く)

(続き)

コマンドコード	動作	設定データ or 読出しデータ	詳細	R or W
JP	ジョイスティック制御 PAN レベル値	xxxx	0000~01FFh。 JOYSTICK の位置の論理値。	W
JT	ジョイスティック制御 TILT レベル値	xxxx	0(左端)~1FFh(右端) 0(下端)~1FFh(上端)	W

ジョイスティック制御について

ジョイスティックでのなめらかな動作制御が可能なように、停止状態から最高速動作まで連続的に速度の変更が可能です。

但し、極低速状態ではモーターのトルクが低下するため動作しない場合があります。 その場合は、動作するレベルまでジョイスティックを傾けてください。

また、停止させる時は FFh または 100h を設定し確実に停止させてください。

改定メモ

版	内容	日付
ver1	初版	2017/10/30