

Abdominal aorta ultrasound see **Abdominal** ultrasound

Abdominal aortic aneurysm see **Aortic** aneurysm

Abdominal hernia see **Hernia**Abdominal thrust see **Heimlich maneuver**

Abdominal ultrasound

Definition

Ultrasound technology allows doctors to "see" inside a patient without resorting to surgery. A transmitter sends high frequency sound waves into the body, where they bounce off the different tissues and organs to produce a distinctive pattern of echoes. A receiver "hears" the returning echo pattern and forwards it to a computer, which translates the data into an image on a television screen. Because ultrasound can distinguish subtle variations between soft, fluid-filled tissues, it is particularly useful in providing diagnostic images of the abdomen. Ultrasound can also be used in treatment.

Purpose

The potential medical applications of ultrasound were first recognized in the 1940s as an outgrowth of the sonar technology developed to detect submarines during World War II. The first useful medical images were produced in the early 1950s, and, by 1965, ultrasound quality had improved to the point that it came into general medical use. Improvements in the technology, application, and interpretation of ultrasound continue. Its low cost, versatility, safety and speed have brought it into the top drawer of medical imaging techniques.

While **pelvic ultrasound** is widely known and commonly used for fetal monitoring during **pregnancy**, ultrasound is also routinely used for general abdominal imaging. It has great advantage over x-ray imaging technologies in that it does not damage tissues with ionizing radiation. Ultrasound is also generally far better than plain x rays at distinguishing the subtle variations of soft tissue structures, and can be used in any of several modes, depending on the need at hand.

As an imaging tool, abdominal ultrasound generally is warranted for patients afflicted with: chronic or acute abdominal **pain**; abdominal trauma; an obvious or suspected abdominal mass; symptoms of liver disease, pancreatic disease, **gallstones**, spleen disease, kidney disease and urinary blockage; or symptoms of an abdominal **aortic aneurysm**. Specifically:

- Abdominal pain. Whether acute or chronic, pain can signal a serious problem—from organ malfunction or injury to the presence of malignant growths. Ultrasound scanning can help doctors quickly sort through potential causes when presented with general or ambiguous symptoms. All of the major abdominal organs can be studied for signs of disease that appear as changes in size, shape and internal structure.
- Abdominal trauma. After a serious accident, such as a car crash or a fall, internal bleeding from injured abdominal organs is often the most serious threat to survival. Neither the injuries nor the bleeding are immediately apparent. Ultrasound is very useful as an initial scan when abdominal trauma is suspected, and it can be used to pinpoint the location, cause, and severity of hemorrhaging. In the case of puncture **wounds**, from a bullet for example, ultrasound can locate the foreign object and provide a preliminary survey of the damage. The easy portability and versatility of ultrasound technology has brought it into common emergency room use, and even into limited ambulance service.
- Abdominal mass. Abnormal growths—tumors, cysts, abscesses, scar tissue and accessory organs—can be

located and tentatively identified with ultrasound. In particular, potentially malignant solid tumors can be distinguished from benign fluid-filled cysts and abscesses. Masses and malformations in any organ or part of the abdomen can be found.

- Liver disease. The types and underlying causes of liver disease are numerous, though **jaundice** tends to be a general symptom. Ultrasound can differentiate between many of the types and causes of liver malfunction, and is particularly good at identifying obstruction of the bile ducts and **cirrhosis**, which is characterized by abnormal fibrous growths and reduced blood flow.
- Pancreatic disease. Inflammation and malformation of the pancreas are readily identified by ultrasound, as are pancreatic stones (calculi), which can disrupt proper functioning.
- Gallstones. Gallstones cause more hospital admissions than any other digestive malady. These calculi can cause painful inflammation of the gallbladder and also obstruct the bile ducts that carry digestive enzymes from the gallbladder and liver to the intestines. Gallstones are readily identifiable with ultrasound.
- Spleen disease. The spleen is particularly prone to injury during abdominal trauma. It may also become painfully inflamed when beset with infection or cancer. These conditions also lend themselves well to ultrasonic inspection and diagnosis.
- Kidney disease. The kidneys are also prone to traumatic injury and are the organs most likely to form calculi, which can block the flow of urine and cause blood **poisoning** (uremia). A variety of diseases causing distinct changes in kidney morphology can also lead to complete kidney failure. Ultrasound imaging has proven extremely useful in diagnosing kidney disorders.
- Abdominal aortic aneurysm. This is a bulging weak spot in the abdominal aorta, which supplies blood directly from the heart to the entire lower body. These aneurysms are relatively common and increase in prevalence with age. A burst aortic aneurysm is imminently life-threatening. However, they can be readily identified and monitored with ultrasound before acute complications result.

Ultrasound technology can also be used for treatment purposes, most frequently as a visual aid during surgical procedures—such as guiding needle placement to drain fluid from a cyst, or to extract tumor cells for biopsy. Increasingly, direct therapeutic applications for ultrasound are being developed.

The direct therapeutic value of ultrasonic waves lies in their mechanical nature. They are shock waves, just like audible sound, and vibrate the materials through which they pass. These vibrations are mild, virtually unnoticeable at the frequencies and intensities used for imaging. Properly focused however, high-intensity ultrasound can be used to heat and physically agitate targeted tissues.

High-intensity ultrasound is used routinely to treat soft tissue injuries, such as strains, tears and associated scarring. The heating and agitation are believed to promote rapid healing through increased circulation. Strongly focused, high-intensity, high-frequency ultrasound can also be used to physically destroy certain types of tumors, as well as gallstones and other types of calculi. Developing new treatment applications for ultrasound is an active area of medical research.

Precautions

Properly performed, ultrasound imaging is virtually without risk or side effects. Some patients report feeling a slight tingling and/or warmth while being scanned, but most feel nothing at all. Ultrasound waves of appropriate frequency and intensity are not known to cause or aggravate any medical condition, though any woman who thinks she might be pregnant should raise the issue with her doctor before undergoing an abdominal ultrasound.

The value of ultrasound imaging as a medical tool, however, depends greatly on the quality of the equipment used and the skill of the medical personnel operating it. Improperly performed and/or interpreted, ultrasound can be worse than useless if it indicates that a problem exists where there is none, or fails to detect a significant condition. Basic ultrasound equipment is relatively inexpensive to obtain, and any doctor with the equipment can perform the procedure whether qualified or not. Patients should not hesitate to verify the credentials of technicians and doctors performing ultrasounds, as well as the quality of the equipment used and the benefits of the proposed procedure.

In cases where ultrasound is used as a treatment tool, patients should educate themselves about the proposed procedure with the help of their doctors—as is appropriate before any surgical procedure. Also, any abdominal ultrasound procedure, diagnostic or therapeutic, may be hampered by a patient's body type or other factors, such as the presence of excessive bowel gas (which is opaque to ultrasound). In particular, very obese people are often not good candidates for abdominal ultrasound.

Description

Ultrasound includes all sound waves above the frequency of human hearing—about 20 thousand hertz, or cycles per second. Medical ultrasound generally uses frequencies between one and 10 million hertz (1-10 MHz).

KEY TERMS

Accessory organ—A lump of tissue adjacent to an organ that is similar to it, but which serves no important purpose, if functional at all. While not necessarily harmful, such organs can cause problems if they grow too large or become cancerous. In any case, their presence points to an underlying abnormality in the parent organ.

Benign—In medical usage, benign is the opposite of malignant. It describes an abnormal growth that is stable, treatable and generally not life-threatening.

Biopsy—The surgical removal and analysis of a tissue sample for diagnostic purposes. Usually, the term refers to the collection and analysis of tissue from a suspected tumor to establish malignancy.

Calculus—Any type of hard concretion (stone) in the body, but usually found in the gallbladder, pancreas and kidneys. They are formed by the accumulation of excess mineral salts and other organic material such as blood or mucous. Calculi (pl.) can cause problems by lodging in and obstructing the proper flow of fluids, such as bile to the intestines or urine to the bladder.

Cirrhosis—A chronic liver disease characterized by the invasion of connective tissue and the degeneration of proper functioning—jaundice is often an accompanying symptom. Causes of cirrhosis include alcoholism, metabolic diseases, syphilis and congestive heart disease.

Common bile duct—The branching passage through which bile—a necessary digestive enzyme—travels from the liver and gallbladder into the small intestine. Digestive enzymes from the pancreas also enter the intestines through the common bile duct.

Computed tomography scan (CT scan)—A specialized type of x-ray imaging that uses highly focused and relatively low energy radiation to produce detailed two-dimensional images of soft tissue structures, particularly the brain. CT scans are the chief competitor to ultrasound and can yield higher quality images not disrupted by bone or gas. They are, however, more cumbersome, time consuming

and expensive to perform, and they use ionizing electromagnetic radiation.

Doppler—The Doppler effect refers to the apparent change in frequency of sound wave echoes returning to a stationary source from a moving target. If the object is moving toward the source, the frequency increases; if the object is moving away, the frequency decreases. The size of this frequency shift can be used to compute the object's speed—be it a car on the road or blood in an artery. The Doppler effect holds true for all types of radiation, not just sound.

Frequency—Sound, whether traveling through air or the human body, produces vibrations—molecules bouncing into each other—as the shock wave travels along. The frequency of a sound is the number of vibrations per second. Within the audible range, frequency means pitch—the higher the frequency, the higher a sound's pitch.

lonizing radiation—Radiation that can damage living tissue by disrupting and destroying individual cells at the molecular level. All types of nuclear radiation—x rays, gamma rays and beta rays—are potentially ionizing. Sound waves physically vibrate the material through which they pass, but do not ionize it.

Jaundice—A condition that results in a yellow tint to the skin, eyes and body fluids. Bile retention in the liver, gallbladder and pancreas is the immediate cause, but the underlying cause could be as simple as obstruction of the common bile duct by a gallstone or as serious as pancreatic cancer. Ultrasound can distinguish between these conditions.

Malignant—The term literally means growing worse and resisting treatment. It is used as a synonym for cancerous and connotes a harmful condition that generally is life-threatening.

Morphology—Literally, the study of form. In medicine, morphology refers to the size, shape and structure rather than the function of a given organ. As a diagnostic imaging technique, ultrasound facilitates the recognition of abnormal morphologies as symptoms of underlying conditions.

Higher frequency ultrasound waves produce more detailed images, but are also more readily absorbed and so cannot penetrate as deeply into the body. Abdominal ultrasound imaging is generally performed at frequencies between 2-5 MHz.

An ultrasound machine consists of two parts: the transducer and the analyzer. The transducer both produces the sound waves that penetrate the body and receives the reflected echoes. Transducers are built around piezoelectric ceramic chips. (Piezoelectric refers to electricity that is produced when you put pressure on certain crystals such as quartz). These ceramic chips react to electric pulses by producing sound waves (they are transmitting waves) and react to sound waves by producing electric pulses (receiving). Bursts of high frequency electric pulses supplied to the transducer causes it to produce the scanning sound waves. The transducer then receives the returning echoes, translates them back into electric pulses and sends them to the analyzer—a computer that organizes the data into an image on a television screen.

Because sound waves travel through all the body's tissues at nearly the same speed—about 3,400 miles per hour—the microseconds it takes for each echo to be received can be plotted on the screen as a distance into the body. The relative strength of each echo, a function of the specific tissue or organ boundary that produced it, can be plotted as a point of varying brightness. In this way, the echoes are translated into a picture. Tissues surrounded by bone or filled with gas (the stomach, intestines and bowel) cannot be imaged using ultrasound, because the waves are blocked or become randomly scattered.

Four different modes of ultrasound are used in medical imaging:

- A-mode. This is the simplest type of ultrasound in which a single transducer scans a line through the body with the echoes plotted on screen as a function of depth. This method is used to measure distances within the body and the size of internal organs. Therapeutic ultrasound aimed at a specific tumor or calculus is also A-mode, to allow for pinpoint accurate focus of the destructive wave energy.
- B-mode. In B-mode ultrasound, a linear array of transducers simultaneously scans a plane through the body that can be viewed as a two-dimensional image on screen. Ultrasound probes containing more than 100 transducers in sequence form the basis for these most commonly used scanners, which cost about \$50,000.
- M-Mode. The M stands for motion. A rapid sequence of B-mode scans whose images follow each other in sequence on screen enables doctors to see and measure range of motion, as the organ boundaries that produce reflections move relative to the probe. M-

- mode ultrasound has been put to particular use in studying heart motion.
- Doppler mode. **Doppler ultrasonography** includes the capability of accurately measuring velocities of moving material, such as blood in arteries and veins. The principle is the same as that used in radar guns that measure the speed of a car on the highway. Doppler capability is most often combined with B-mode scanning to produce images of blood vessels from which blood flow can be directly measured. This technique is used extensively to investigate valve defects, arteriosclerosis and **hypertension**, particularly in the heart, but also in the abdominal aorta and the portal vein of the liver. These machines cost about \$250,000.

The actual procedure for a patient undergoing an abdominal ultrasound is relatively simple, regardless of the type of scan or its purpose. **Fasting** for at least eight hours prior to the procedure ensures that the stomach is empty and as small as possible, and that the intestines and bowels are relatively inactive. Fasting also allows the gall bladder to be seen, as it contracts after eating and may not be seen if the stomach is full. In some cases, a full bladder helps to push intestinal folds out of the way so that the gas they contain does not disrupt the image. The patient's abdomen is then greased with a special gel that allows the ultrasound probe to glide easily across the skin while transmitting and receiving ultrasonic pulses.

This procedure is conducted by a doctor with the assistance of a technologist skilled in operating the equipment. The probe is moved around the abdomen to obtain different views of the target areas. The patient will likely be asked to change positions from side to side and to hold their breath as necessary to obtain the desired views. Discomfort during the procedure is minimal.

The many types and uses of ultrasound technology makes it difficult to generalize about the time and costs involved. Relatively simple imaging—scanning a suspicious abdominal mass or a suspected abdominal aortic aneurysm—will take about half an hour to perform and will cost a few hundred dollars or more, depending on the quality of the equipment, the operator and other factors. More involved techniques such as multiple M-mode and Doppler-enhanced scans, or cases where the targets not well defined in advance, generally take more time and are more expensive.

Regardless of the type of scan used and the potential difficulties encountered, ultrasound remains faster and less expensive than **computed tomography scans** (CT), its primary rival in abdominal imaging. Furthermore, as abdominal ultrasounds are generally undertaken as "medically necessary" procedures designed to detect the presence of suspected abnormalities, they are covered

under most types of major medical insurance. As always, though, the patient would be wise to confirm that their coverage extends to the specific procedure proposed. For nonemergency situations, most underwriters stipulate prior approval as a condition of coverage.

Specific conditions for which ultrasound may be selected as a treatment option—certain types of tumors, lesions, **kidney stones** and other calculi, muscle and ligament injuries, etc.—are described in detail under the appropriate entries in this encyclopedia.

Preparation

A patient undergoing abdominal ultrasound will be advised by their physician about what to expect and how to prepare. As mentioned above, preparations generally include fasting and arriving for the procedure with a full bladder, if necessary. This preparation is particularly useful if the gallbladder, ovaries or veins are to be examined.

Aftercare

In general, no aftercare related to the abdominal ultrasound procedure itself is required.

Risks

Abdominal ultrasound carries with it no recognized risks or side effects, if properly performed using appropriate frequency and intensity ranges. Sensitive tissues, particularly those of the reproductive organs, could possibly sustain damage if violently vibrated by overly intense ultrasound waves. In general though, such damage would only result from improper use of the equipment.

Any woman who thinks she might be pregnant should raise this issue with her doctor before undergoing an abdominal ultrasound, as a fetus in the early stages of development could be injured by ultrasound meant to probe deeply recessed abdominal organs.

Normal results

As a diagnostic imaging technique, a normal abdominal ultrasound is one that indicates the absence of the suspected condition that prompted the scan. For example, symptoms such as a persistent **cough**, labored breathing, and upper abdominal pain suggest the possibility of, among other things, an abdominal aortic aneurysm. An ultrasound scan that indicates the absence of an aneurysm would rule out this life-threatening condition and point to other, less serious causes.

Abnormal results

Because abdominal ultrasound imaging is generally undertaken to confirm a suspected condition, the results

of a scan often will prove abnormal—that is they will confirm the diagnosis, be it kidney stones, cirrhosis of the liver or an aortic aneurysm. At that point, appropriate medical treatment as prescribed by a patient's doctor is in order. See the relevant disease and disorder entries in this encyclopedia for more information.

Resources

BOOKS

Hall, Rebecca. The Ultrasonic Handbook: Clinical, Etiologic and Pathologic Implications of Sonographic Findings. Philadelphia: Lippincott, 1993.

Kevles, Bettyann Holtzmann. Naked to the Bone: Medical Imaging in the Twentieth Century. New Brunswick, NJ: Rutgers University Press, 1997.

Kremkau, Frederick W. *Diagnostic Ultrasound: Principles and Instruments*. Philadelphia: W. B. Saunders Co., 1993.

Shtasel, Philip. Medical Tests and Diagnostic Procedures: A Patient's Guide to Just What the Doctor Ordered. New York: Harper & Row, 1991.

Tempkin, Betty Bates. *Ultrasound Scanning: Principles and Protocols*. Philadelphia: W. B. Saunders Co., 1993.

The Patient's Guide to Medical Tests. Ed. Barry L. Zaret, et al. Boston: Houghton Mifflin, 1997.

PERIODICALS

"Ultrasound Detects Stomach Problems." USA Today Magazine (October 1992): 5.

Freundlich, Naomi. "Ultrasound: What's Wrong with this Picture?" *Business Week* (15 September 1997): 84-5.

McDonagh, D. Brian. "Ultrasound: Unsung Medical Hero." *USA Today Magazine* (September 1996): 66-7.

Murray, Maxine. "Basics of Ultrasonography." *Student British Medical Journal* (August 1996): 269-72.

Tait, N., and J. M. Little. "The Treatment of Gallstones." *British Medical Journal* (8 July 1995): 99-105.

ORGANIZATIONS

American College of Gastroenterology. 4900 B South 31st St., Arlington, VA 22206-1656. (703) 820-7400. http://www.acg.gi.org.

American Institute of Ultrasound in Medicine. 14750 Sweitzer Lane, Suite 100, Laurel, MD 20707-5906. (800) 638-5352. http://www.aium.org.

American Society of Radiologic Technologists. 15000 Central Ave., SE, Albuquerque, NM 87123-3917. (505) 298-4500. http://www.asrt.org.

Kurt Richard Sternlof

Abdominal wall defects

Definition

Abdominal wall defects are birth (congenital) defects that allow the stomach or intestines to protrude.

KEY TERMS

Hernia—Movement of a structure into a place it does not belong.

Umbilical—Referring to the opening in the abdominal wall where the blood vessels from the placenta enter.

Viscera—Any of the body's organs located in the chest or abdomen.

Description

Many unexpected and fascinating events occur during the development of a fetus inside the womb. The stomach and intestines begin development outside the baby's abdomen and only later does the abdominal wall enclose them. Occasionally, either the umbilical opening is too large, or it develops improperly, allowing the bowels or stomach to remain outside or squeeze through the abdominal wall.

Causes and symptoms

There are many causes for **birth defects** that still remain unclear. Presently, the cause(s) of abdominal wall defects is unknown, and any symptoms the mother may have to indicate that the defects are present in the fetus are nondescript.

Diagnosis

At birth, the problem is obvious, because the base of the umbilical cord at the navel will bulge or, in worse cases, contain viscera (internal organs). Before birth, an ultrasound examination may detect the problem. It is always necessary in children with one birth defect to look for others, because birth defects are usually multiple.

Treatment

Abdominal wall defects are effectively treated with surgical repair. Unless there are accompanying anomalies, the surgical procedure is not overly complicated. The organs are normal, just misplaced. However, if the defect is large, it may be difficult to fit all the viscera into the small abdominal cavity.

Prognosis

If there are no other defects, the prognosis after surgical repair of this condition is relatively good. However,

10% of those with more severe or additional abnormalities die from it. The organs themselves are fully functional; the difficulty lies in fitting them inside the abdomen. The condition is, in fact, a **hernia** requiring only replacement and strengthening of the passageway through which it occurred. After surgery, increased pressure in the stretched abdomen can compromise the function of the organs inside.

Prevention

Some, but by no means all, birth defects are preventable by early and attentive prenatal care, good **nutrition**, supplemental **vitamins**, diligent avoidance of all unnecessary drugs and chemicals—especially tobacco—and other elements of a healthy lifestyle.

Resources

PERIODICALS

Dunn, J. C., and E. W. Fonkalsrud. "Improved Survival of Infants with Omphalocele." *American Journal of Surgery* 173 (April 1997): 284-7.

Langer, J. C. "Gastroschisis and Omphalocele." *Seminars in Pediatric Surgery* 5 (May 1996): 124-8.

J. Ricker Polsdorfer, MD

Abnormal heart rhythms see **Arrhythmias**ABO blood typing see **Blood typing and crossmatching**

ABO incompatibility see **Erythroblastosis fetalis**

Abortion, habitual see **Recurrent miscarriage**

Abortion, partial birth

Definition

Partial birth abortion is a method of late-term abortion that terminates a **pregnancy** and results in the **death** and intact removal of a fetus. This procedure is most commonly referred to as intact dilatation and extraction (D & X).

Purpose

Partial birth abortion, or D&X, is performed to end a pregnancy and results in the death of a fetus, typically in

the late second or third trimester. Although D&X is highly controversial, some physicians argue that it has advantages that make it a preferable procedure in some circumstances. One perceived advantage is that the fetus is removed largely intact, allowing for better evaluation and **autopsy** of the fetus in cases of known fetal anomalies. Intact removal of the fetus may also confer a lower risk of puncturing the uterus or damaging the cervix. Another perceived advantage is that D&X ends the pregnancy without requiring the woman to go through labor, which may be less emotionally traumatic than other methods of late-term abortion. In addition, D&X may offer a lower cost and shorter procedure time.

Precautions

Women considering D&X should be aware of the highly controversial nature of this procedure. A controversy common to all late-term abortions is whether the fetus is viable, or able to survive outside of the woman's body. A specific area of controversy with D&X is that fetal death does not occur until after most of the fetal body has exited the uterus. Several states have taken legal action to limit or ban D&X and many physicians who perform abortions do not perform D&X. This may restrict the availability of this procedure to women seeking late-term abortion.

Description

Intact D&X, or partial birth abortion first involves administration of medications to cause the cervix to dilate, usually over the course of several days. Next, the physician rotates the fetus to a footling breech position. The body of the fetus is then drawn out of the uterus feet first, until only the head remains inside the uterus. Then, the physician uses an instrument to puncture the base of the skull, which collapses the fetal head. Typically, the contents of the fetal head are then partially suctioned out, which results in the death of the fetus, and reduces the sizes of the fetal head enough to allow it to pass through the cervix. The dead and otherwise intact fetus is then removed from the woman's body.

Preparation

Medical preparation for D&X involves an outpatient visit to administer medications, such as *laminaria*, to cause the cervix to begin dilating.

In addition, preparation may involve fulfilling local legal requirements, such as a mandatory waiting period, counseling, or an informed consent procedure reviewing stages of fetal development, **childbirth**, alternative abortion methods, and adoption.

KEY TERMS

Cervix—The narrow outer end of the uterus that separates the uterus from the vaginal canal.

Footling breech—A position of the fetus while in the uterus where the feet of the fetus are nearest the cervix would be the first part of the fetus to exit the uterus, with the head of the fetus being the last part to exit the uterus.

Laminaria—A medical product made from a certain type of seaweed that is physically placed near the cervix to cause it to dilate.

Aftercare

D&X typically does not require an overnight hospital stay, so a follow up appointment may be scheduled to monitor the woman for any complications.

Risks

With all abortion, the later in pregnancy an abortion is performed, the more complicated the procedure and the greater the risk of injury to the woman. In addition to associated emotion reactions, D&X carries the risk of injury to the woman, including heavy bleeding, blood clots, damage to the cervix or uterus, pelvic infection, and anesthesia-related complications. There is also a risk of incomplete abortion, meaning that the fetus is not dead when removed from the woman's body. Possible long-term risks include difficulty becoming pregnant or carrying a future pregnancy to term.

Normal results

The expected outcome of D&X is the termination of a pregnancy with removal of a dead fetus from the woman's body.

Resources

PERIODICALS

Epner, Janet E., et al. "Late-term Abortion." *JAMA* 280, no. 8 (26 August 1998): 724-729.

Sprang, M. LeRoy, and Neerhof, Mark G. "Rationale for Banning Abortions Late in Pregnancy." *JAMA* (26 August 1998): 744-747.

Swomley, John M. "The 'Partial-birth' Debate in 1998." *Humanist* (March/April 1998): 5-7.

Grimes, David A. "The Continuing Need for Late Abortion." *JAMA* (26 August 1998): 747-750.

ORGANIZATIONS

Planned Parenthood Federation of America. 810 Seventh Ave., New York, NY 10019. (212) 541-7800. FAX: (212) 245-1845.

OTHER

Status of partial-birth abortion laws in the states. Othmer Institute at Planned Parenthood of NYC. 2000.

Stefanie B. N. Dugan, M.S.

Abortion, selective

Definition

Selective abortion, also known as selective reduction, refers to choosing to abort a fetus, typically in a multi-fetal **pregnancy**, to decrease the health risks to the mother in carrying and giving birth to more than one or two babies, and also to decrease the risk of complications to the remaining fetus(es). The term selective abortion also refers to choosing to abort a fetus for reasons such as the woman is carrying a fetus which likely will be born with some birth defect or impairment, or because the sex of the fetus is not preferred by the individual.

Purpose

A woman may decide to abort for health reasons, for example, she is at higher risk for complications during pregnancy because of a disorder or disease such as diabetes.

However, selective reduction is recommended often in cases of multi-fetal pregnancy, or the presence of more than one fetus, typically, at least three or more fetuses. In the general population, multi-fetal pregnancy happens in only about 1-2% of pregnant women. But multi-fetal pregnancies occur far more often in women using fertility drugs.

Precautions

Because women or couples who use fertility drugs have made an extra effort to become pregnant, it is possible that the individuals may be unwilling or uncomfortable with the decision to abort a fetus in cases of multifetal pregnancy. Individuals engaging in fertility treatment should be made aware of the risk of multi-fetal pregnancy and consider the prospect of recommended reduction before undergoing fertility treatment.

Description

Selective reduction is usually performed between nine and 12 weeks of pregnancy and is most successful when performed in early pregnancy. It is a simple procedure and can be performed on an outpatient basis. A needle is inserted into the woman's stomach or vagina and potassium chloride is injected into the fetus.

Preparation

Individuals who have chosen selective reduction to safeguard the remaining fetuses should be counseled prior to the procedure. Individuals should receive information regarding the risks of a multi-fetal pregnancy to both the fetuses and the mother compared with the risks after the reduction.

Individuals seeking an abortion for any reason should consider the ethical implications whether it be because the fetus is not the preferred sex or because the fetus would be born with a severe birth defect.

Aftercare

Counseling should continue after the abortion because it is a traumatic event. Individuals may feel guilty about choosing one fetus over another. Mental health professionals should be consulted throughout the process.

Risks

About 75% of women who undergo selective reduction will go into **premature labor**. About 4-5% of women undergoing selective reduction also miscarry one or more of the remaining fetuses. The risks associated with multi-fetal pregnancy is considered higher.

Normal results

In cases where a multi-fetal pregnancy, three or more fetuses, is reduced to two, the twin fetuses typically develop as they would as if they were conceived as twins.

Resources

BOOKS

Knobil, Ernst and Jimmy D. Neill, editors. "Abortion." In *Encyclopedia of Reproduction*. San Diego: Adademic Press, 1998, pp.1-5.

Scott, James R., editor. "Induced Abortion." In *Danforth's Obstetrics and Gynecology*. Philadelphia: Lippincott Williams & Wilkins, 1999, pp.567-578.

PERIODICALS

Author unspecified. "Multiple Pregnancy Associated With Infertility Therapy." American Society for Reproductive Medicine, A Practice Committee Report (November 2000): 1-8.

KEY TERMS

Multi-fetal pregnancy—A pregnancy of two or more fetuses.

Selective reduction—Typically referred to in cases of multifetal pregnancy, when one or more fetuses are aborted to preserve the viability of the remaining fetuses and decrease health risks to the mother.

ORGANIZATIONS

The American Society for Reproductive Medicine. 1209 Montgomery Highway, Birmingham, AL 35216-2809. (205) 978-5000. http://www.asrm.org.

The Alan Guttmacher Institute. 120 Wall Street, New York, NY 10005. (212) 248-1111. http://www.agi-usa.org.

Meghan M. Gourley

Abortion, spontaneous see Miscarriage

Abortion, therapeutic

Definition

Therapeutic abortion is the intentional termination of a **pregnancy** before the fetus can live independently. Abortion has been a legal procedure in the United States since 1973.

Purpose

An abortion may be performed whenever there is some compelling reason to end a pregnancy. Women have abortions because continuing the pregnancy would cause them hardship, endanger their life or health, or because prenatal testing has shown that the fetus will be born with severe abnormalities.

Abortions are safest when performed within the first six to 10 weeks after the last menstrual period. The calculation of this date is referred to as the gestational age and is used in determining the stage of pregnancy. For example, a woman who is two weeks late having her period is said to be six weeks pregnant, because it is six weeks since she last menstruated.

About 90% of women who have abortions do so before 13 weeks and experience few complications. Abortions performed between 13-24 weeks have a higher

rate of complications. Abortions after 24 weeks are extremely rare and are usually limited to situations where the life of the mother is in danger.

Precautions

Most women are able to have abortions at clinics or outpatient facilities if the procedure is performed early in pregnancy. Women who have stable diabetes, controlled epilepsy, mild to moderate high blood pressure, or who are HIV positive can often have abortions as outpatients if precautions are taken. Women with heart disease, previous **endocarditis**, **asthma**, lupus erythematosus, uterine fibroid tumors, blood clotting disorders, poorly controlled epilepsy, or some psychological disorders usually need to be hospitalized in order to receive special monitoring and medications during the procedure.

Description

Very early abortions

Between five and seven weeks, a pregnancy can be ended by a procedure called menstrual extraction. This procedure is also sometimes called menstrual regulation, mini-suction, or preemptive abortion. The contents of the uterus are suctioned out through a thin (3-4 mm) plastic tube that is inserted through the undilated cervix. Suction is applied either by a bulb syringe or a small pump.

Another method is called the "morning after" pill, or emergency **contraception**. Basically, it involves taking high doses of birth control pills within 24 to 48 hours of having unprotected sex. The high doses of hormones causes the uterine lining to change so that it will not support a pregnancy. Thus, if the egg has been fertilized, it is simply expelled from the body.

There are two types of emergency contraception. One type is identical to ordinary birth control pills, and uses the hormones estrogen and progestin). This type is available with a prescription under the brand name Preven. But women can even use their regular birth control pills for emergency contraception, after they check with their doctor about the proper dose. About half of women who use birth control pills for emergency contraception get nauseated and 20 percent vomit. This method cuts the risk of pregnancy 75 percent.

The other type of morning-after pill contains only one hormone: progestin, and is available under the brand name Plan B. It is more effective than the first type with a lower risk of **nausea and vomiting**. It reduces the risk of pregnancy 89 percent.

Women should check with their physicians regarding the proper dose of pills to take, as it depends on the

Between 5 and 7 weeks, a pregnancy can be ended by a procedure called menstrual extraction. The contents of the uterus are suctioned out through a thin extraction tube that is inserted through the undilated cervix. (Illustration by Electronic Illustrators Group.)

brand of birth control pill. Not all birth control pills will work for emergency contraception.

Menstrual extractions are safe, but because the amount of fetal material is so small at this stage of development, it is easy to miss. This results in an incomplete abortion that means the pregnancy continues.

First trimester abortions

The first trimester of pregnancy includes the first 13 weeks after the last menstrual period. In the United States, about 90% of abortions are performed during this period. It is the safest time in which to have an abortion, and the time in which women have the most choice of how the procedure is performed.

MEDICAL ABORTIONS. Medical abortions are brought about by taking medications that end the pregnancy. The advantages of a first trimester medical abortion are:

- The procedure is non-invasive; no surgical instruments are used.
- Anesthesia is not required.
- Drugs are administered either orally or by injection.
- The procedure resembles a natural miscarriage.
 Disadvantages of a medical abortion are:
- The effectiveness decreases after the seventh week.

- The procedure may require multiple visits to the doctor.
- Bleeding after the abortion lasts longer than after a surgical abortion.
- The woman may see the contents of her womb as it is expelled.

Two different medications can be used to bring about an abortion. Methotrexate (Rheumatrex) works by stopping fetal cells from dividing which causes the fetus to die.

On the first visit to the doctor, the woman receives an injection of methotrexate. On the second visit, about a week later, she is given misoprostol (Cytotec), an oxygenated unsaturated cyclic fatty acid responsible for various hormonal reactions such as muscle contraction (prostaglandin), that stimulates contractions of the uterus. Within two weeks, the woman will expel the contents of her uterus, ending the pregnancy. A follow-up visit to the doctor is necessary to assure that the abortion is complete.

With this procedure, a woman will feel cramping and may feel nauseated from the misoprostol. This combination of drugs is 90-96% effective in ending pregnancy.

Mifepristone (RU-486), which goes by the brand name Mifeprex, works by blocking the action of progesterone, a hormone needed for pregnancy to continue, then stimulates uterine contractions thus ending the pregnancy. It can be taken a much as 49 days after the first day of a woman's last period. On the first visit to the doctor, a woman takes a mifepristone pill. Two days later she returns and, if the miscarriage has not occurred, takes two misoprostol pills, which causes the uterus to contract. Five percent of women won't need to take misoprostol. After an observation period, she returns home.

Within four days, 90% of women have expelled the contents of their uterus and completed the abortion. Within 14 days, 95-97% of women have completed the abortion. A third follow-up visit to the doctor is necessary to confirm through observation or ultrasound that the procedure is complete. In the event that it is not, a surgical abortion is performed. Studies show that 4.5 to 8 percent of women need surgery or a blood **transfusion** after taking mifepristone, and the pregnancy persists in about 1 percent of women. In this case, surgical abortion is recommended because the fetus may be damanged. Side effects include nausea, vaginal bleeding and heavy cramping. The bleeding is typically heavier than a normal period and may last up to 16 days.

Mifepristone is not recommended for women with **ectopic pregnancy**, an **IUD**, who have been taking long-

term steroidal therapy, have bleeding abnormalities or on blood-thinners such as Coumadin.

Surgical abortions

First trimester surgical abortions are performed using vacuum aspiration. The procedure is also called dilation and evacuation (D & E), suction dilation, vacuum curettage, or suction curettage.

Advantages of a vacuum aspiration abortion are:

- It is usually done as a one-day outpatient procedure.
- The procedure takes only 10-15 minutes.
- Bleeding after the abortion lasts five days or less.
- The woman does not see the products of her womb being removed.

Disadvantages include:

- The procedure is invasive; surgical instruments are used.
- Infection may occur.

During a vacuum aspiration, the woman's cervix is gradually dilated by expanding rods inserted into the cervical opening. Once dilated, a tube attached to a suction pump is inserted through the cervix and the contents of the uterus are suctioned out. The procedure is 97-99% effective. The amount of discomfort a woman feels varies considerably. Local anesthesia is often given to numb the cervix, but it does not mask uterine cramping. After a few hours of rest, the woman may return home.

Second trimester abortions

Although it is better to have an abortion during the first trimester, some second trimester abortions may be inevitable. The results of **genetic testing** are often not available until 16 weeks. In addition, women, especially teens, may not have recognized the pregnancy or come to terms with it emotionally soon enough to have a first trimester abortion. Teens make up the largest group having second trimester abortions.

Some second trimester abortions are performed as a D & E. The procedures are similar to those used in the first trimester, but a larger suction tube must be used because more material must be removed. This increases the amount of cervical dilation necessary and increases the risk of the procedure. Many physicians are reluctant to perform a D & E this late in pregnancy, and for some women is it not a medically safe option.

The alternative to a D & E in the second trimester is an abortion by induced labor. Induced labor may require an overnight stay in a hospital. The day before the procedure, the woman visits the doctor for tests, and to either

KEY TERMS

Endocarditis—An infection of the inner membrane lining of the heart.

Fibroid tumors—Fibroid tumors are non-cancerous (benign) growths in the uterus. They occur in 30-40% of women over age 40, and do not need to be removed unless they are causing symptoms that interfere with a woman's normal activities.

Lupus erythematosus—A chronic inflammatory disease in which inappropriate immune system reactions cause abnormalities in the blood vessels and connective tissue.

Prostaglandin—Oxygenated unsaturated cyclic fatty acids responsible for various hormonal reactions such as muscle contraction.

Rh negative—Lacking the Rh factor, genetically determined antigens in red blood cells that produce immune responses. If an Rh negative woman is pregnant with an Rh positive fetus, her body will produce antibodies against the fetus's blood, causing a disease known as Rh disease. Sensitization to the disease occurs when the women's blood is exposed to the fetus's blood. Rh immune globulin (RhoGAM) is a vaccine that must be given to a woman after an abortion, miscarriage, or prenatal tests in order to prevent sensitization to Rh disease.

have rods inserted in her cervix to help dilate it or to receive medication that will soften the cervix and speed up labor.

On the day of the abortion, drugs, usually prostaglandins to induce contractions, and a salt water solution, are injected into the uterus. Contractions begin, and within eight to 72 hours the woman delivers the fetus.

Side effects of this procedure include nausea, vomiting, and **diarrhea** from the prostaglandins, and **pain** from uterine cramps. Anesthesia of the sort used in **childbirth** can be given to mask the pain. Many women are able to go home a few hours after the procedure.

Very early abortions cost between \$200-\$400. Later abortions cost more. The cost increases about \$100 per week between the thirteenth and sixteenth week. Second trimester abortions are much more costly because they often involve more risk, more services, anesthesia, and sometimes a hospital stay. Insurance carriers and HMOs may or may not cover the procedure. Federal law pro-