Econ 703 Fall 2007 Homework 6

Due Tuesday, October 30.

1. (Brouwer fixed point theorem)

Let I = [0, 1], and that suppose that $f: I \to I$ is continuous. Prove that there exists $x \in I$ such that f(x) = x.

- 2. Let f be a continuous real-valued function on \mathbb{R} , of which it is known that f'(x) exists for all $x \neq 0$ and that $f'(x) \to 3$ as $x \to 0$. Does it follow that f'(0) exists? Either prove or disprove your statement.
- 3. (Newton's method, part 1)

Let $f:[a,b] \to \mathbb{R}$ be twice differentiable on [a,b], with f(a) < 0, f(b) > 0, $f'(x) \ge c > 0$, and $0 \le f''(x) \le M$ for all $x \in [a,b]$.

- (a) Show that there exists a unique point x^* in (a, b) s.t. $f(x^*) = 0$.
- (b) Pick $x_0 \in (x^*, b)$ and define the sequence $\{x_n\}$ by $x_{n+1} = x_n f(x_n)/f'(x_n)$. Interpret this geometrically, in terms of the tangent to the graph of f.
- (c) Prove that $x_{n+1} \leq x_n$, and that $x_n \to x^*$.
- (d) Use Taylor's Theorem to show that $x_{n+1} x^* = \frac{f''(z_n)}{2f'(x_n)}(x_n x^*)^2$, for some $z_n \in (x^*, x_n)$
- (e) Letting A = M/(2c), deduce that

$$0 \le xn - x^* \le A^{-1} [A(x0 - x^*)]^{2n}.$$

4. Suppose f'(x) exists, g'(x) exists, $g'(x) \neq 0$, and f(x) = g(x) = 0. Prove that

$$\lim_{t \to x} \frac{f(t)}{g(t)} = \frac{f'(t)}{g'(t)}.$$

5. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2 \sin(\frac{1}{x})$ for $x \neq 0$, and f(x) = 0 for x = 0. Show that f'(x) exists at all points $x \in \mathbb{R}$, but that f'(x) is not continuous at x = 0.

1