Foundations of Tidy Machine Learning

MACHINE LEARNING IN THE TIDYVERSE

Dmitriy (Dima) Gorenshteyn
Lead Data Scientist, Memorial Sloan
Kettering Cancer Center

The Core of Tidy Machine Learning

The Core of Tidy Machine Learning

List Column Workflow

1 Make a list column nest()

Work with list columns

map()

3 Simplify the list columns unnest()

map_*()

The Gapminder Dataset

- dslabs package
- Observations: 77 countries for 52 years per country (1960-2011)
- Features:
 - o year
 - infant_mortality
 - life_expectancy
 - fertility
 - population
 - gdpPercap

List Column Workflow

1 Make a list column nest()

Work with list columns map()

3 Simplify the list columns unnest()
map_*()

Step 1: Make a List Column - Nest Your Data

country	year	infant_mortality	life_expectancy	fertility	population	gdpPercap
Algeria	1960	148	47.5	7.65	11124892	1242
Algeria	1961	148	48	7.65	11404859	1047
Algeria	1962	148	48.6	7.65	11690152	820
Argentina	1960	59.9	65.4	3.11	20619075	5253
Argentina	1961	59.7	65.5	3.1	20953079	5450
Argentina	1962	59.6	65.6	3.09	21287682	5318
Australia	1960	20.3	70.9	3.45	10292328	9393
Australia	1961	20	71.1	3.55	10494911	9428
Australia	1962	19.5	70.9	3.43	10691220	9381
Austria	1960	37.3	68.8	2.7	7065525	7415
Austria	1961	35	69.7	2.79	7105654	7781
Austria	1962	32.9	69.5	2.8	7151077	7937

Step 1: Make a List Column - Nest Your Data

country	data
Algeria	<tibble 6]="" [52="" x=""></tibble>
Argentina	<tibble 6]="" [52="" x=""></tibble>
Australia	<tibble 6]="" [52="" x=""></tibble>
Austria	<tibble 6]="" [52="" x=""></tibble>

country	year	infant_mortality	life_expectancy	fertility	population	gdpPercap
Algeria	1960	148	47.5	7.65	11124892	1242
Algeria	1961	148	48	7.65	11404859	1047
Algeria	1962	148	48.6	7.65	11690152	820
Argentina	1960	59.9	65.4	3.11	20619075	5253
Argentina	1961	59.7	65.5	3.1	20953079	5450
Argentina	1962	59.6	65.6	3.09	21287682	5318
Australia	1960	20.3	70.9	3.45	10292328	9393
Australia	1961	20	71.1	3.55	10494911	9428
Australia	1962	19.5	70.9	3.43	10691220	9381
Austria	1960	37.3	68.8	2.7	7065525	7415
Austria	1961	35	69.7	2.79	7105654	7781
Austria	1962	32.9	69.5	2.8	7151077	7937

Nesting By Country

		country	year	infant_mortality	life_expectancy	fertility	population	gdpPercap
		Algeria	1960	148	47.5	7.65	11124892	1242
		Algeria	1961	148	48	7.65	11404859	1047
		Algeria	1962	148	48.6	7.65	11690152	820
country	data	Argentina	1960	59.9	65.4	3.11	20619075	5253
Algeria	<tibble 6]="" [52="" x=""></tibble>	Argentina	1961	59.7	65.5	3.1	20953079	5450
Argentina	<tibble 6]="" [52="" x=""></tibble>	Argentina	1962	59.6	65.6	3.09	21287682	5318
Australia	<tibble 6]="" [52="" x=""></tibble>	Australia	1960	20.3	70.9	3.45	10292328	9393
Austria	<tibble 6]="" [52="" x=""></tibble>	Australia	1961	20	71.1	3.55	10494911	9428
		Australia	1962	19.5	70.9	3.43	10691220	9381
		Austria	1960	37.3	68.8	2.7	7065525	7415
		Austria	1961	35	69.7	2.79	7105654	7781
		Austria	1962	32.9	69.5	2.8	7151077	7937

Viewing a Nested Tibble

		nested\$data[[1]]
country	data	sted\$datar
Algeria	<tibble 6]="" [52="" x=""></tibble>	ness
Argentina	<tibble 6]="" [52="" x=""></tibble>	
Australia	<tibble 6]="" [52="" x=""></tibble>	
Austria	<tibble 6]="" [52="" x=""></tibble>	non

country	year	infant_mortality	life_expectancy	fertility	population	gdpPercap
Algeria	1960	148	47.5	7.65	11124892	1242
Algeria	1961	148	48	7.65	11404859	1047
Algeria	1962	148	48.6	7.65	11690152	820

nested\$data[[4]]

Austria	1960	37.3	68.8	2.7	7065525	7415
Austria	1961	35	69.7	2.79	7105654	7781
Austria	1962	32.9	69.5	2.8	7151077	7937

Viewing a Nested Tibble

```
> nested$data[[4]]
# A tibble: 52 x 6
    year infant_mortality life_expectancy fertility population gdpPercap
   <int>
                    <dbl>
                                     <dbl>
                                               <dbl>
                                                          <dbl>
                                                                     <int>
   1960
                     37.3
                                                                      7415
                                      68.8
                                                2.70
                                                        7065525
   1961
                     35.0
                                      69.7
                                                                      7781
                                                2.79
                                                        7105654
                     32.9
                                      69.5
   1962
                                                2.80
                                                        7151077
                                                                      7937
 4 1963
                     31.2
                                      69.6
                                                2.82
                                                        7199962
                                                                      8209
                     29.7
   1964
                                      70.1
                                                2.80
                                                        7249855
                                                                      8652
                     28.3
   1965
                                      69.9
                                                2.70
                                                        7298794
                                                                      8893
```


Step 3: Simplify List Columns - unnest()

			country	year	infant_mortality	life_expectancy	fertility	population	gdpPercap
			Algeria	1960	148	47.5	7.65	11124892	1242
			Algeria	1961	148	48	7.65	11404859	1047
			Algeria	1962	148	48.6	7.65	11690152	820
country	data		Argentina	1960	59.9	65.4	3.11	20619075	5253
Algeria	<tibble 6]="" [52="" x=""></tibble>		Argentina	1961	59.7	65.5	3.1	20953079	5450
Argentina	<tibble 6]="" [52="" x=""></tibble>		Argentina	1962	59.6	65.6	3.09	21287682	5318
Australia	<tibble 6]="" [52="" x=""></tibble>		Australia	1960	20.3	70.9	3.45	10292328	9393
Austria	<tibble 6]="" [52="" x=""></tibble>		Australia	1961	20	71.1	3.55	10494911	9428
			Australia	1962	19.5	70.9	3.43	10691220	9381
			Austria	1960	37.3	68.8	2.7	7065525	7415
			Austria	1961	35	69.7	2.79	7105654	7781
			Austria	1962	32.9	69.5	2.8	7151077	7937
		unnest()							

Step 3: Simplify List Columns - unnest()

```
nested %>%
  unnest(data)
# A tibble: 4,004 x 7
   country year infant_mortality life_expectancy fertility population
   <fct>
         <int>
                                                       <dbl>
                            <dbl>
                                            <dbl>
                                                                  <dbl>
 1 Algeria 1960
                              148
                                             47.5
                                                        7.65
                                                               11124892
 2 Algeria 1961
                              148
                                             48.0
                                                               11404859
                                                        7.65
 3 Algeria 1962
                              148
                                             48.6
                                                        7.65
                                                               11690152
                              148
                                             49.1
 4 Algeria 1963
                                                        7.65
                                                               11985130
                                                                          . . .
 5 Algeria 1964
                              149
                                             49.6
                                                        7.65
                                                               12295973
                                                                          . . .
 6 Algeria 1965
                                              50.1
                                                        7.66
                                                               12626953
                              149
```


Let's Get Started!

MACHINE LEARNING IN THE TIDYVERSE

The map family of functions

MACHINE LEARNING IN THE TIDYVERSE

Dmitriy (Dima) Gorenshteyn
Lead Data Scientist, Memorial Sloan
Kettering Cancer Center

List Column Workflow

1 Make a list column nest()

Work with list columns

map()

3 Simplify the list columns unnest()

map_*()

List Column Workflow

1 Make a list column nest()

Work with list columns map()

3 Simplify the list columns unnest()
map_*()

The map Function

$$map(.x = , .f =)$$

The map Function

```
map(.x = , .f = )
.x = [vector]
.x = [[list]]
.f = function()
.r
.f = ~formula
```

The map Function

```
map(.x = , .f = )
.x = [vector]
.x = [[list]]
.f = mean
.r
.f = ~mean(.x)
```

Population Mean by Country

	country	year	infant_mortality	life_expectancy	fertility	population	gdpPercap
	Algeria	1960	148	47.5	7.65	11124892	1242
-1	Algeria	1961	148	48	7.65	11404859	1047
nested\$data[[1]]	Algeria	1962	148	48.6	7.65	11690152	820
asted\$data							
ue-							

country	d	ata		
Algeria	<tibble< td=""><td>[52</td><td>Х</td><td>6]></td></tibble<>	[52	Х	6]>
Argentina	<tibble< td=""><td>[52</td><td>Х</td><td>6]></td></tibble<>	[52	Х	6]>
Australia	<tibble< td=""><td>[52</td><td>Х</td><td>6]></td></tibble<>	[52	Х	6]>
Austria	<tibble< td=""><td>[52</td><td>х</td><td>6]></td></tibble<>	[52	х	6]>

```
mean(nested$data[[1]]$population)
```

[1] 23129438

Population Mean by Country

```
map(.x = nested\$data, .f = \sim mean(.x\$population))
[[1]]
[1] 23129438
[[2]]
[1] 30783053
[[3]]
[1] 16074837
[[4]]
[1] 7746272
```


2: Work with List Columns - map() and mutate()

```
pop_df <- nested %>%
  mutate(pop_mean = map(data, ~mean(.x$population)))
pop_df
```

3: Simplify List Columns - unnest()

```
pop_df %>%
  unnest(pop_mean)
```


List Column Workflow

1 | Make a list column

2 Work with list columns

3 Simplify the list columns

Work With + Simplify List Columns With map_*()

function	returns
map()	list
map_dbl()	double
map_lgl()	logical
map_chr()	character
map_int()	integer

Work With + Simplify List Columns With map_dbl()

```
nested %>%
mutate(pop_mean = map_dbl(data, ~mean(.x$population)))
```

```
# A tibble: 77 x 3
country data pop_mean
<fct> fct> <list> <dbl>
1 Algeria <tibble [52 x 6]> 23129438
2 Argentina <tibble [52 x 6]> 30783053
3 Australia <tibble [52 x 6]> 16074837
4 Austria <tibble [52 x 6]> 7746272
5 Bangladesh <tibble [52 x 6]> 97649407
```


Build Models with map()

Let's map something!

MACHINE LEARNING IN THE TIDYVERSE

Tidy your models with broom

MACHINE LEARNING IN THE TIDYVERSE

Dmitriy (Dima) Gorenshteyn
Lead Data Scientist, Memorial Sloan
Kettering Cancer Center

List Column Workflow

1 Nake a list column

2 Work with list columns

library(broom)
library(Metrics)
library(rsample)

3 Simplify the list columns

List Column Workflow

1 Nake a list column

2 Work with list columns

3 Simplify the list columns

library(broom)

library(Metrics)
library(rsample)

• • •

Broom Toolkit

- tidy(): returns the statistical findings of the model (such as coefficients)
- glance(): returns a concise one-row summary of the model
- augment(): adds prediction columns to the data being modeled

Summary of algeria_model

> summary(algeria_model) Call: lm(formula = life_expectancy ~ year, data = .x) Residuals: Min 1Q Median 3Q Max -4.044 -1.577 -0.543 1.700 3.843 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -1.197e+03 3.994e+01 -29.96 <2e-16 *** 6.349e-01 2.011e-02 31.56 <2e-16 *** vear Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 2.177 on 50 degrees of freedom Multiple R-squared: 0.9522, Adjusted R-squared: 0.9513 F-statistic: 996.2 on 1 and 50 DF, p-value: < 2.2e-16

tidy()

> summary(algeria_model) Call: lm(formula = life_expectancy ~ year, data = .x)

Residual standard error: 2.177 on 50 degrees of freedom Multiple R-squared: 0.9522, Adjusted R-squared: 0.9513 F-statistic: 996.2 on 1 and 50 DF, p-value: < 2.2e-16


```
library(broom)

tidy(algeria_model)
```

```
term estimate std.error statistic p.value
1 (Intercept) -1196.5647772 39.93891866 -29.95987 1.319126e-33
2 year 0.6348625 0.02011472 31.56209 1.108517e-34
```


glance()

```
> summary(algeria_model)
Call:
lm(formula = life_expectancy ~ year, data = .x)
Residuals:
  Min
          1Q Median 3Q
                             Max
-4.044 -1.577 -0.543 1.700 3.843
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.197e+03 3.994e+01 -29.96 <2e-16 ***
            6.349e-01 2.011e-02 31.56 <2e-16 ***
vear
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.177 on 50 degrees of freedom
Multiple R-squared: 0.9522, Adjusted R-squared: 0.9513
F-statistic: 996.2 on 1 and 50 DF, p-value: < 2.2e-16
```


glance()

glance(algeria_model)

```
r.squared adj.r.squared sigma statistic p.value df
0.9522064 0.9512505 2.176948 996.1653 1.108517e-34 2
logLik AIC BIC deviance df.residual
-113.2171 232.4342 238.288 236.9552 50
```


augment()

augment(algeria_model)

Plotting Augmented Data

```
augment(algeria_model) %>%
  ggplot(mapping = aes(x = year)) +
  geom_point(mapping = aes(y = life_expectancy)) +
  geom_line(mapping = aes(y = .fitted), color = "red")
```


Let's use broom!

MACHINE LEARNING IN THE TIDYVERSE

