19. Binomial Coefficients & The Binomial Theorem

Recall: $C(n,r) = \binom{n}{r} = \frac{n!}{r!(n-r)!}$ # of r-combinations (ie # of r-element subsets) called a "binomial coefficient" read " n. choose r" of an n-element set

Simple Observations on Binomial Coefficients

$$\binom{n}{0} = \frac{n!}{0! (n-0)!} = \frac{n!}{(1)(n)!} = 1 \qquad \binom{n}{1} = \frac{n!}{1!(n-1)!} = \frac{n \cdot (n-1)!}{(1)(n-1)!} = n$$

For any $r \in \{0, 1, ..., n\}$,

$$\binom{n}{r} = \frac{n!}{r! (n-r)!} = \frac{n!}{(n-(n-r))! (n-r)!} = \frac{n!}{(n-r)! (n-(n-r))!} = \binom{n}{n-r}$$

Thus,

$$\binom{n}{n} = \binom{n}{\mathsf{n-n}} = \binom{n}{\mathsf{o}} = 1 \qquad \qquad \binom{n}{n-1} = \binom{n}{\mathsf{n-(n-1)}} = \binom{n}{\mathsf{1}} = \mathsf{n}$$

PASCAL'S IDENTITY & PASCAL'S TRIANGLE

Theorem 19.1. (PASCAL'S IDENTITY) Let n and k be integers such that $n \ge k + 1$ and $k \ge 0$. Then

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$$

Proof of Pascal's Identity.

$$LS = \binom{n}{k} + \binom{n}{k+1} = \frac{n!}{k! (n-k)!} + \frac{n!}{(k+1)! (n-(k+1))!}$$

$$= \frac{n!}{k! (n-k)(n-k-1)!} + \frac{n!}{(k+1) \cdot k! \cdot (n-k-1)!}$$

^{*} These notes are solely for the personal subscommendation of the studocu

$$= \frac{n! (k+1)}{(k+1)k! (n-k)(n-k-1)!} + \frac{n! (n-k)}{(k+1)\cdot k! (n-k)(n-k-1)!}$$

$$= \frac{n! [(k+1) + (n-k)]}{(k+1)\cdot k! (n-k)(n-k-1)!} = \frac{n! (n+1)}{(k+1)! (n-k)!}$$

$$= \frac{(n+1)!}{(k+1)! (n+1-(k+1))!} = \binom{n+1}{k+1} = RS$$

Pascal's Triang	e (in terms of binomial coefficients)
n = 0	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
n=1	$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
n=2	$\begin{pmatrix} 2 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 2 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} 2 \\ 2 \end{pmatrix}$
n=3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
n=4	$\begin{pmatrix} 4 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 4 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} 4 \\ 2 \end{pmatrix} \qquad \begin{pmatrix} 4 \\ 3 \end{pmatrix} \qquad \begin{pmatrix} 4 \\ 4 \end{pmatrix}$
	<u> </u>

Pasca	l's Triai	ngle									(wi	th eva	luated	coeffic	ients)
n = 0								1							
n = 1							1		1						
n=2						1		2		1					
n=3					1		3		3		1				
n=4				1	_	4		6		4		1			
n=5			1		5		10		10		5		1		
n=6		1		6		15		20		15		6		1	
n=7	1		7		21		35		35		21		7		1

:

ROW SUMS OF PASCAL'S TRIANGLE

row #		row sum
n = 0	1	= 1
n = 1	1 + 1	= 2
n=2	1 + 2 + 1	= 4
n=3	1 + 3 + 3 + 1	= 8

Theorem 19.2. For all integers $n \geq 0$,

$$\sum_{i=0}^{n} \binom{n}{i} = \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n} = 2^{n}$$

Proof of Theorem 19.2. (by induction)

* For each
$$n \in \mathbb{N}$$
, let $P(n)$: $\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n} = 2^n$

& P(0) is true.

*** I.S. Let k be an integer such that $k \ge n_0 = 0$. We must prove $P(k) \longrightarrow P(k+1)$.

**** I.H. Assume P(k) is true:

ie assume
$$\binom{k}{0} + \binom{k}{1} + \dots + \binom{k}{k} = 2^k$$
 Induction Hypothesis

(goal: prove P(k+1) follows from P(k))

P(k+1) says
$$\binom{k+1}{k+1} + \binom{k+1}{k+1} + \binom{k+1}{k+1} = 2^{k+1}$$

Downloaded by Nexus Tech (nexus.w124rd225@gmail.com)

$$\begin{aligned} & = \qquad 2^{k} \qquad + \qquad 2^{k} \qquad \text{(since } 2^{k+1} = 2 \cdot 2^{k} = 2^{k} + 2^{k}) \\ & = \binom{k}{0} + \binom{k}{1} + \dots + \binom{k}{k} + \binom{k}{0} + \binom{k}{1} + \dots + \binom{k}{k} \qquad \text{(using } IH. + \text{wice!}) \\ & = \binom{k}{0} + \binom{k}{0} + \binom{k}{1} + \binom{k}{1} + \binom{k}{2} + \dots + \binom{k}{k-1} + \binom{k}{k} + \binom{k}{k} \qquad \text{(rearrarging } \\ & = \binom{k}{0} + \binom{k}{1} + \binom{k}{1} + \binom{k}{2} + \dots + \binom{k}{k-1} + \binom{k}{k} + \binom{k}{k} \qquad \text{(using } Identity } \\ & = \binom{k}{0} + \binom{k+1}{1} + \binom{k+1}{2} + \dots + \binom{k+1}{k} + \binom{k}{k} \qquad \text{(using } Identity } \\ & = \binom{k+1}{0} + \binom{k+1}{1} + \binom{k+1}{2} + \dots + \binom{k+1}{k} + \binom{k+1}{k+1} \\ & \leq \inf(\binom{k}{0}) = 1 = \binom{k+1}{0} \text{ and } \binom{k}{k} = 1 = \binom{k+1}{k+1} \end{aligned}$$

$$= LS \text{ of } P(k+1) \qquad \text{(is ince } 2^{k+1} = 2 \cdot 2^{k} = 2^{k} + 2^{k} \text{)}$$

$$= \binom{k}{0} + \binom{k}{1} + \binom{k$$

**** Conclusion Since P(0) is true and since we proved P(k) \longrightarrow P(k+1), it follows from Mathematical Induction that P(n) is true for all integers n>0.

Another Proof of Theorem 19.2. Let S be an n-element set.

Also,

THE BINOMIAL THEOREM

Theorem 19.3. (THE BINOMIAL THEOREM) Let x and y be variables, and let $n \in \mathbb{N}$. Then

$$(x+y)^{n} = \sum_{i=0}^{n} {n \choose i} x^{n-i} y^{i}$$

$$= {n \choose 0} x^{n} y^{0} + {n \choose 1} x^{n-1} y^{1} + {n \choose 2} x^{n-2} y^{2} + \dots + {n \choose n} x^{0} y^{n}$$

Ex.
$$(x+y)^2 = (x+y)(x+y)$$

= $x^2 + 2xy + y^2$

from each of these
two factors, either
X or y must contribute
to one of the final terms
in the expansion.

Example 19.4. Fully evaluate $\left(2-\frac{1}{x}\right)^3$ first from scratch, then using the Binomial Theorem.

$$(2 - \frac{1}{X})^{3} = (2 - \frac{1}{X})(2 - \frac{1}{X})(2 - \frac{1}{X})$$

$$= (4 - \frac{2}{X} - \frac{2}{X} + \frac{1}{X^{2}})(2 - \frac{1}{X})$$

$$= 8 - \frac{4}{X} - \frac{4}{X} + \frac{2}{X^{2}} - \frac{4}{X} + \frac{2}{X^{2}} + \frac{2}{X^{2}} - \frac{1}{X^{3}}$$

$$= 8 - \frac{12}{X} + \frac{6}{X^{2}} - \frac{1}{X^{3}}$$

$$(2 - \frac{1}{X})^{3} = \sum_{i=0}^{3} {3 \choose i} 2^{3-i} \cdot (-\frac{1}{X})^{i}$$

$$= (3) 2^{3} \cdot (-\frac{1}{X})^{0} + (3) \cdot 2^{3} \cdot (-\frac{1}{X})^{i} + (3) \cdot 2^{i} \cdot (-\frac{1}{X})^{3} + (3) \cdot 2^{i} \cdot (-\frac{1}{X})^{3}$$

$$= (1)(8)(1) + (3)(4)(-\frac{1}{X}) + (3)(2)(\frac{1}{X^{2}}) + (1)(1)(-\frac{1}{X^{3}})$$

$$= 8 + (-\frac{12}{X}) + \frac{6}{X^{2}} + (-\frac{1}{X^{3}})$$
This document is available free of charge on **Studocu**

Example 19.5. Find the coefficients of $x^{12}y^{17}$ and $x^{13}y^{16}$ in the expansion of $(3x^2 - 5y)^{23}$

$$(3x^{2}-5y)^{23} = \sum_{i=0}^{23} {\binom{23}{i}(3x^{2})^{23-i}(-5y)^{i}}$$

$$= \sum_{i=0}^{23} {\binom{23}{i} \cdot 3^{23-i} \cdot (x^{2})^{23-i}(-5)^{i} \cdot y^{i}}$$

$$= \sum_{i=0}^{23} {\binom{23}{i} \cdot 3^{23-i} \cdot (-5)^{i} \cdot x^{46-2i} \cdot y^{i}}$$
for each $i \in \{0,1,...,23\}$, this is the coefficient of the term $x^{46-2i} \cdot y^{i}$

for the coefficient of the term $x^{12}y^{17}$, we need the index i Such that $x^{46-2i}.y^i = x^{12}.y^{17}$ thus $\begin{cases} 46-2i=12 \iff i=17 \end{cases}$ there is a solution $i=17 \iff i=17 \end{cases}$ exponents of both x andy, namely i=17 60 the coefficient of $\chi^{12}y^{17}$ is $\binom{23}{17}3^{6}.(-5)^{17}$ [plugin i=17 to $\binom{23}{17}3^{23-1}.(-5)^{17}$]

for the coefficient of the term $x^{13}y^{16}$, we need the index i such that $x^{46-2i}.y^i=x^{13}.y^{16}$ thus $\begin{cases} 46-2i=13 \iff i=33/2 \end{cases}$ there is no solution $i=16 \iff i=16 \end{cases}$ X and y's exponents 6. $x^{13}y^{16}$ does not ever appear in the expansion of $(3x^2-5y)^{23}$ (even worse, the Solution for x's exponent alone ie the coefficient of x13y16 is zero. is not an integer...)

STUDY GUIDE

Important terms and concepts:

binomial coefficient

♦ Pascal's Identity

 $\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$

♦ Row sums of Pascal's Triangle

 $\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n} = 2^n$

⋄ The Binomial Theorem

 $(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^{n-i} y^i$

 \diamond coefficient of a specified term in the expansion of $(x+y)^n$

Supp. Exercise List (on Brightspace) Rosen textbook

§10 # 3, 5 §6.4 # 3, 7, 9, 15, 23, 25, 26b, 27