11

12

1

2

3

1

2

CLAIMS

What is claimed is:

- 1 1. A method for estimating the precision of measurements taken from an 2 array, comprising:
- 3 (a) identifying a set of low-level data measurements;
- 4 (b) estimating a standard deviation, σ_{ε} of an additive error component, ε ;
- 5 (c) estimating a background parameter, α ;
- 6 (d) identifying a set of replicated high-level data measurements;
- 7 (e) estimating a standard deviation, σ_{η} , from the standard deviation of the logarithm of the replicated high-level data set;
- 9 (f) measuring a signal, y, wherein said signal indicates an amount of a biological molecule; and
 - (g) estimating a variance of the measured signal as $V \hat{a} r(\hat{\mu}) = \hat{\sigma}_{\varepsilon}^{2} + \hat{\mu}^{2} e^{\hat{\sigma}_{\eta}^{2}} \left(e^{\hat{\sigma}_{\eta}^{2}} 1 \right), \text{ where } \hat{\mu}^{2} = (y \alpha)^{2}.$
 - 2. The method of claim 1, wherein said identifying step (a) comprises the use of a thresholding algorithm to establish a cutoff, and the set of low-level data consists of those data with values less than the cutoff.
 - 3. The method of claim 2, wherein the thresholding algorithm comprises the steps of:
- identifying A_N, an initial set of low-level data measurements consisting
 of q percent of the total number of data points having the lowest
 measurement values, A_N = {x₁, x₂, ..., x_{no}};
- 6 (b) calculating a mean and a standard deviation of the initial set;
- 7 (c) calculating a cutoff point, u_N = mean plus c x the standard deviation, 8 wherein $2 \le c \le 3$;
- 9 (d) defining a new set, $A_{N+1} = \{x_j < u_N\};$
- 10 (e) calculating a mean and standard deviation of the new set; and
- 11 (f) repeating steps (c) and (d) using the mean and standard deviation of the 12 new set until the algorithm converges.
- 1 4. The method of claim 2, wherein the thresholding algorithm comprises 2 the steps of:

14

15

16

1

2

1

2

1

2

- identifying A_N , an initial set, of low-level data consisting of q percent of the total number of data points having the lowest measurement values, $A_N = \{x_1, x_2, \dots, x_{no}\};$
- 6 (b) calculating a median of the initial set, $m_0 = \text{median } \{x_j\}_{j=1}^{n_0}$ and a median of the absolute deviations about the median,
- $MAD_0 = \text{median } \left\{ x_j m_o \right|_{j=1}^{n_o};$
- 9 (c) calculating a cutoff point, $u_0 = MAD_0 + c \times s_0$, wherein $s_0 = 10$ $MAD_0/0.675$ and $2 \le c \le 3$;
- 11 (d) defining a new set, $A_{N+1} = \{x_j < u_N\};$
- 12 (e) calculating a median and a median of the absolute deviations about the median of the new set; and
 - (f) repeating steps (c) and (d) using the median and the median of the absolute deviations about the median of the new set until the algorithm converges.
 - 5. The method of claim 2, wherein the mean of the low-level data measurements is used as the estimate of the background parameter, α .
 - 6. The method of claim 1, wherein the standard deviation of the low-level data measurements is used as the estimate of the parameter σ_{ε} .
 - 7. The method of claim 1, wherein, a mean of negative control data is used as the estimate of the background parameter, α .
 - 1 8. The method of claim 1, wherein the biological molecule is a nucleic 2 acid.
 - 1 9. The method of claim 8, wherein the nucleic acid is mRNA.
 - 1 10. The method of claim 8, wherein the biological molecule is DNA.
 - 1 11. The method of claim 10, wherein the DNA is cDNA.
 - 1 12. The method of claim 10, wherein the DNA is genomic.
 - 1 13. The method of claim 1, wherein the biological molecule is a protein.
 - 1 14. The method of claim 1, wherein the biological molecule is a lipid.