MATH 307: Individual Homework 11

John Mays

03/15/21, Dr. Guo

Problem 1

The function $f: P^3 \to \mathbb{R}$, where $f(\alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3) = \alpha_3$, is a linear mapping, because it satisfies both conditions of a linear mapping.

Proof:

Let $\alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3$ and $\beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$ be vectors in P^3 , and let $\alpha_0, \alpha_1, \alpha_2, \alpha_3, \beta_0, \beta_1, \beta_2, \beta_3$ and λ be scalars in \mathbb{R} .

1. Scalar Multiplication:

$$f(\lambda(\alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3))$$

$$= f(\lambda \alpha_0 + \lambda \alpha_1 x + \lambda \alpha_2 x^2 + \lambda \alpha_3 x^3))$$

$$= \lambda \alpha_3$$

$$= \lambda f(\alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3)$$

2. Vector Addition:

$$f((\alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3) + (\beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3))$$

$$= f((\alpha_0 + \beta_0) + (\alpha_1 + \beta_1)x + (\alpha_2 + \beta_2)x^2 + (\alpha_3 + \beta_3)x^3)$$

$$= \alpha_3 + \beta_3$$

$$= f(\alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3) + f(\beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3)$$

Problem 2

- A: Symmetric, Hermitian, Diagonal: (Upper-Triangular, Lower-Triangular)
- **B:** Lower-Triangular
- C: Upper-Triangular
- **D:** Symmetric
- \mathbf{E} : Hermitian
- F: None

Problem 3

$$(\alpha A + \beta B)^T = \alpha A^T + \beta B^T$$

LHS:

The matrix $\alpha A + \beta B$ has a ji-th entry = $\alpha a_{ji} + \beta b_{ji}$.

By the mechanics of a transpose, the *ij*-th entry of the $(\alpha A + \beta B)^T$ will equal the *ji*-th entry of $(\alpha A + \beta B)$.

In other words, the *ij*-th entry of the LHS = $\alpha a_{ji} + \beta b_{ji}$.

RHS:

The matrix A has a ji-th entry = a_{ji}

The matrix B has a ji-th entry = b_{ji}

By the definition of a transpose, the matrix A^T has a ij-th entry = a_{ii}

By the definition of a transpose, the matrix B^T has a ij-th entry = b_{ji}

Then by the scalar multiplication and matrix addition properties, we can say that the ij-th entry of $\alpha A^T + \beta B^T$, the RHS = $\alpha a_{ji} + \beta b_{ji}$.

Conclusion:

For all legal indices i, j, the ij-th entry of $\alpha A^T + \beta B^T =$ the ij-th entry of $(\alpha A + \beta B)^T$.

Therefore $\alpha A^T + \beta B^T = (\alpha A + \beta B)^T$.

Problem 4

For the sake of notation, let's call B the conjugate transpose of A, s.t. $B=A^*$ Assume the matrix A is Hermitian.

$$\implies A = B$$

$$\implies a_{ij} \in A = b_{ij} \in B$$

If $a_{ij} \in A$ is on the diagonal, then i = j. Therefore $b_{ji} \in B = b_{ij} \in B$

This implies that the conjugate transpose of any $a_{ij} \in A$ on the diagonal of A is mapped to the same position, (i, j).

Therefore $a_{ij} = b_{ij} = \overline{a_{ij}}$. This can only be true if $\text{Im}(a_{ij}) = 0$.

Therefore the diagonal entries of a Hermitian matrix must be real-valued.