

Patent

Serial No. 10/764,951

Amendment in Reply to Final Office Action of June 30, 2008

Appendix A

Table of Contents

General Information	1
Physical and Thermal Properties	3
Mechanical Properties	5
Hydrolytic Stability	6
Dimensional Stability	7
Thermal Aging	8
Electrical Properties	11
Effect of Humidity	12
Effect of Temperature	14
Effect of Frequency	16
Corona Life	18
Chemical Properties	19
Radiation Resistance.....	20
Kapton® Film Type Information	23
Nominal Construction, Type FN	23
Safety and Handling	25
Soldering and Hot Wire Stripping	25
Welding and Flame Cutting	25
Scrap Disposal	25
Fire Hazards.....	25
Static Electricity	25

Kapton® is used in applications such as the solar array and for thermal management in the United States space program.

General Information

Kapton® polyimide film possesses a unique combination of properties that make it ideal for a variety of applications in many different industries. The ability of Kapton® to maintain its excellent physical, electrical, and mechanical properties over a wide temperature range has opened new design and application areas to plastic films.

Kapton® is synthesized by polymerizing an aromatic dianhydride and an aromatic diamine. It has excellent chemical resistance; there are no known organic solvents for the film. Kapton® does not melt or burn as it has the highest UL-94 flammability rating: V-0. The outstanding properties of Kapton® permit it to be used at both high and low temperature extremes where other organic polymeric materials would not be functional.

Adhesives are available for bonding Kapton® to itself and to metals, various paper types, and other films.

Kapton® polyimide film can be used in a variety of electrical and electronic insulation applications: wire and cable tapes, formed coil insulation, substrates for flexible printed circuits, motor slot liners, magnet wire insulation, transformer and capacitor insulation, magnetic and pressure-sensitive tapes, and tubing. Many of these applications are based on the excellent balance of electrical, thermal, mechanical, physical, and chemical properties of Kapton® over a wide range of temperatures. It is this combination of useful properties at temperature extremes that makes Kapton® a unique industrial material.

Three types of Kapton® are described in this bulletin:

- Kapton® Type HN, all-polyimide film, has been used successfully in applications at temperatures as low as -269°C (-452°F) and as high as 400°C (752°F).

Type HN film can be laminated, metallized, punched, formed, or adhesive coated. It is available as 7.5 µm (0.3 mil), 12.5 µm (0.5 mil), 19 µm (0.75 mil), 25 µm (1 mil), 50 µm (2 mil), 75 µm (3 mil), and 125 µm (5 mil) films.

- Kapton® Type VN, all-polyimide film with all of the properties of Type HN, plus superior dimensional stability. Type VN is available as 12.5 µm (0.5 mil), 19 µm (0.75 mil), 25 µm (1 mil), 50 µm (2 mil), 75 µm (3 mil), and 125 µm (5 mil) films.
- Kapton® Type FN, a Type HN film coated on one or both sides with Teflon® FEP fluoropolymer resin, imparts heat sealability, provides a moisture barrier, and enhances chemical resistance. Type FN is available in a number of combinations of polyimide and Teflon® FEP thicknesses (see Table 16).

Note: In addition to these three types of Kapton®, films are available with the following attributes:

- antistat
- thermally conductive
- polyimides for fine line circuitry
- cryogenic insulation
- corona resistant
- pigmented for color
- conformable
- other films tailored to meet customers' needs

Data for these films are covered in separate product bulletins, which can be obtained from your DuPont representative.

The Chemical Abstracts Service Registry Number for Kapton® polyimide film is [25036-53-7].

Kapton® withstands the harsh chemical and physical demands on diaphragms used in automotive switches.

Kapton® is used in numerous electronic applications, including hard disk drives.

Physical and Thermal Properties

Kapton® polyimide films retain their physical properties over a wide temperature range. They have been used in field applications where the environmental temperatures were as low as -269°C (-452°F) and as high as 400°C (752°F).

Complete data are not available at these extreme conditions, and the majority of technical data presented in this section falls in the 23 to 200°C (73 to 392°F) range.

Table 1
Physical Properties of Kapton® Type 100 HN Film, 25 µm (1 mil)

Physical Property	Typical Value at 23°C (73°F)	Typical Value at 200°C (392°F)	Test Method
Ultimate Tensile Strength, MPa (psi)	231 (33,500)	139 (20,000)	ASTM D-882-91, Method A*
Yield Point at 3%, MPa (psi)	69 (10,000)	41 (6000)	ASTM D-882-91
Stress to Produce 5% Elongation, MPa (psi)	90 (13,000)	61 (9000)	ASTM D-882-91
Ultimate Elongation, %	72	83	ASTM D-882-91
Tensile Modulus, GPa (psi)	2.5 (370,000)	2.0 (290,000)	ASTM D-882-91
Impact Strength, N·cm (ft·lb)	78 (0.58)		DuPont Pneumatic Impact Test
Folding Endurance (MIT), cycles	285,000		ASTM D-2176-89
Tear Strength—Propagating (Elmendorf), N (lbf)	0.07 (0.02)		ASTM D-1922-89
Tear Strength—Initial (Graves), N (lbf)	7.2 (1.6)		ASTM D-1004-90
Density, g/cc or g/mL	1.42		ASTM D-1505-90
Coefficient of Friction—Kinetic (Film-to-Film)	0.48		ASTM D-1894-90
Coefficient of Friction—Static (Film-to-Film)	0.63		ASTM D-1894-90
Refractive Index (Sodium D Line)	1.70		ASTM D-542-90
Poisson's Ratio	0.34		Avg. Three Samples Elongated at 5%, 7%, 10%
Low Temperature Flex Life	Pass		IPC TM 650, Method 2.6.18

*Specimen Size: 25 × 150 mm (1 × 6 in); Jaw Separation: 100 mm (4 in); Jaw Speed: 50 mm/min (2 in/min); Ultimate refers to the tensile strength and elongation measured at break.

Table 2
Thermal Properties of Kapton® Type 100 HN Film, 25 µm (1 mil)

Thermal Property	Typical Value	Test Condition	Test Method
Melting Point	None	None	ASTM E-794-85 (1989)
Thermal Coefficient of Linear Expansion	20 ppm/°C (11 ppm/°F)	-14 to 38°C (7 to 100°F)	ASTM D-696-91
Coefficient of Thermal Conductivity, W/m-K	0.12	296 K	ASTM F-433-77 (1987)* ¹
$\frac{\text{cal}}{\text{cm} \cdot \text{sec} \cdot ^\circ\text{C}}$	2.87×10^{-4}	23°C	
Specific Heat, J/g·K (cal/g·°C)	1.09 (0.261)		Differential Calorimetry
Flammability	94V-0		UL-94 (2-B-85)
Shrinkage, %	0.17 1.25	30 min at 150°C 120 min at 400°C	IPC TM 650, Method 2.2.4.A ASTM D-5214-91
Heat Sealability	Not Heat Sealable		
Limiting Oxygen Index, %	37		ASTM D-2863-87
Solder Float	Pass		IPC TM 650, Method 2.4.13A
Smoke Generation	DM = <1	NBS Smoke Chamber	NFPA-258
Glass Transition Temperature (T_g)		A second order transition occurs in Kapton® between 360°C (680°F) and 410°C (770°F) and is assumed to be the glass transition temperature. Different measurement techniques produce different results within the above temperature range.	

Patent
Serial No. 10/764,951
Amendment in Reply to Final Office Action of June 30, 2008

Appendix B

Polyimide PI

[Click here to return to materials](#)

Find products containing this material in the following form:

All

Search

Common Brand Names: Kapton, Kinel, Upilex, Upimol, Vespel

General Description:

General Description : Normally infusible, coloured (often amber) high performance polymers with predominantly aromatic molecules of high thermal stability. Semi-fabricated shapes are usually supplied by the polymer manufacturer and made by powder sintering or working with more tractable pre-cursors and completing polymerisation in final form, though some melt-processable grades of resin are manufactured. They have excellent high temperature properties and radiation resistance, inherently low flammability and smoke emission, low creep and high wear resistance and are very expensive. They have moderately high water absorption and are prone to hydrolysis and attack by alkalis and concentrated acids.

A widely used form is Kapton® film, made in thicknesses from 0.008 to 0.125mm and which is a transparent amber colour. Thicker polyimide items are usually opaque. A range of Kapton film variants are also available. In each of these, a large measure of Kapton's basic properties are combined with an extra attribute eg increased electrical or thermal conductivity, improved corona resistance, opacity and thermoplasticity.

Films are used for capacitors, insulation, printed circuit boards and in aerospace; other applications include engine components, bearings and mechanical parts exposed to radiation.

Explanation of Kapton grade descriptions

HN Regular Kapton - Transparent Amber

CB Opaque black version of HN

MT Aluminium oxide filled, increased thermal conductivity, opaque yellow

MTB Opaque black version of MT

CR Improved corona resistance - translucent yellow

XC Electrically (semi-)conductive - opaque black

KJ Thermoplastic - transparent yellow

Chemical Resistance

Acids - concentrated

Poor

Acids - dilute	Fair
Alcohols	Poor
Alkalis	Poor
Aromatic hydrocarbons	Good
Greases and Oils	Good
Halogenated Hydrocarbons	Good
Halogens	Fair
Ketones	Good

Electrical Properties

Dielectric constant @1MHz	3.4
Dielectric strength (kV mm ⁻¹)	22
Dissipation factor @ 1kHz	0.0018
Surface resistivity (Ohm/sq)	10 ¹⁶
Volume resistivity (Ohmcm ³)	10 ¹⁸

Mechanical Properties

Coefficient of friction	0.42
Elongation at break (%)	8-70
Hardness - Rockwell	E52-99
Izod impact strength (J m ⁻¹)	80
Tensile modulus (GPa)	2.0-3.0
Tensile strength (MPa)	70-150

Physical Properties

Density (g cm ⁻³)	1.42
Flammability	V0
Limiting oxygen index (%)	53
Radiation resistance	Good
Refractive index	1.66
Resistance to Ultra-violet	Poor
Water absorption - over 24 hours (%)	0.2-2.9

Thermal Properties

Coefficient of thermal expansion (x10 ⁻⁶ K ⁻¹)	30-60
Heat-deflection temperature - 1.8MPa (C)	360
Lower working temperature (C)	-270
Specific heat (J K ⁻¹ kg ⁻¹)	1090
Thermal conductivity (W m ⁻¹ K ⁻¹)	0.10-0.35 @ 23C
Upper working temperature (C)	250-320

Properties Polymide Film

Property		Value				
Material		HN	CB	MT	MTB	CR
Coefficient of thermal expansion	x10 ⁻⁶ K ⁻¹	20				
Corona Resistance @ 20kV mm ⁻¹ 50 Hz	hr	200				>100,
Density	g cm ⁻³	1.42	1.42	1.85	1.85	1.54
Dielectric Constant @ 1MHz		3.4				
Dielectric Constant @ 1kHz		3.4	4.5	4.2	4.2	3.9
Dielectric Strength @25μm thick	kV mm ⁻¹	300	80	165	70 @ 0.075mm	290
Dissipation Factor @1MHz		0.01				
Dissipation Factor @1kHz		0.0018	0.19			0.003
Elongation at Break	%	70	45	50-60	50-60	45

Initial Tear Strength	$\text{g } \mu\text{m}^{-1}$	20				
Moisture absorption	%	2.8	3	3		
Permeability to Carbon Dioxide @25C	$\times 10^{-13} \text{ cm}^3 \cdot \text{cm cm}^{-2} \text{ s}^{-1} \text{ Pa}^{-1}$	0.5				
Permeability to Hydrogen @25C	$\times 10^{-13} \text{ cm}^3 \cdot \text{cm cm}^{-2} \text{ s}^{-1} \text{ Pa}^{-1}$	1				
Permeability to Nitrogen @25C	$\times 10^{-13} \text{ cm}^3 \cdot \text{cm cm}^{-2} \text{ s}^{-1} \text{ Pa}^{-1}$	0.03				
Permeability to Oxygen @25C	$\times 10^{-13} \text{ cm}^3 \cdot \text{cm cm}^{-2} \text{ s}^{-1} \text{ Pa}^{-1}$	0.1				
Permeability to Water @25C	$\times 10^{-13} \text{ cm}^3 \cdot \text{cm cm}^{-2} \text{ s}^{-1} \text{ Pa}^{-1}$	400				
Permeability to Water @38C	$\times 10^{-13} \text{ cm}^3 \cdot \text{cm cm}^{-2} \text{ s}^{-1} \text{ Pa}^{-1}$	500				
Shrinkage @400C	%	1.2-1.5	1	1	1	0.6
Surface Resistivity	Ohm/sq					3.6×10^6
Tensile modulus	GPa	2.5	2.7	4	4	3.2
Tensile strength	MPa	230	135	125	125	150
Thermal Conductivity @23C	$\text{W m}^{-1} \text{ K}^{-1}$	0.16	0.45	0.45	0.45	0.38
Volume Resistivity	Ohmcm	1.5×10^{17}	10^{13}	10^{14}	10^{14}	2.3×10^6

Properties Polymide Chopped Fibre

Property		Value
Specific Tenacity	cN/tex	38
Extension to break	%	30
Limiting Oxygen Index	%	38
Shrinkage @180C	%	<1
Tenacity	GPa	540

[Click here to return to materials](#)

[Back to Top](#)

Patent
Serial No. 10/764,951
Amendment in Reply to Final Office Action of June 30, 2008

Appendix C

The Engineering ToolBox

www.EngineeringToolBox.com

Resources, Tools and Basic Information for Engineering and Design of Technical Applications!

 Search

Thermal Conductivity of some common Materials

Thermal conductivity of some common materials as aluminum, asphalt, brass, copper, steel and many more

[Sponsored Links](#)

Thermal conductivity is the quantity of heat transmitted through a unit thickness in a direction normal to a surface of unit area, due to a unit temperature gradient under steady state conditions.

Thermal conductivity, or heat transfer coefficients, of some common materials and products can be found in the table below:

Thermal Conductivity - k - (W/m K)			
Material/Substance	25	125	225
Acetone	0.16		
Acrylic	0.2		
Air	0.024		
Alcohol	0.17		
Aluminum	260	255	250
Aluminum Oxide	30		
Ammonia	0.022		
Antimony	18.5		
Argon	0.016		
Asbestos-cement board	0.744		
Asbestos-cement sheets	0.166		
Asbestos-cement	2.07		
Asbestos, loosely packed	0.15		
Asbestos mill board	0.14		
Asphalt	0.75		
Balsa	0.048		
Bitumen	0.17		
Benzene	0.16		
Beryllium	218		
Brass	109		
Brick dense	1.31		
Brick work	0.69		
Cadmium	92		
Carbon	1.7		
Cement, portland	0.29		
Cement, mortar	1.73		
Chalk	0.09		
Cobalt	69		

Thermal Conductivity of some common Materials

Appendix A

Concrete, light	0.42			
Concrete, stone	1.7			
Constantan	22			
Copper	401	400	398	
Corian (ceramic filled)	1.06			
Corkboard	0.043			
Cork, regranulated	0.044			
Cork, ground	0.043			
Cotton	0.03			
Carbon Steel	54	51	47	
Cotton Wool insulation	0.029			
Diatomaceous earth (Sil-o-cel)	0.06			
Earth, dry	1.5			
Ether	0.14			
Epoxy	0.35			
Felt insulation	0.04			
Fiberglass	0.04			
Fiber insulating board	0.048			
Fiber hardboard	0.2			
Fireclay brick 500°C	1.4			
Foam Glass	0.042			
Gasoline	0.15			
Glass	1.05			
Glass, Pearls, dry	0.18			
Glass, Pearls, saturated	0.76			
Glass, window	0.96			
Glass, wool Insulation	0.04			
Glycerol	0.28			
Gold	310	312	310	
Granite	1.7 - 4.0			
Gypsum or plaster board	0.17			
Hairfelt	0.05			
Hardboard high density	0.15			
Hardwoods (oak, maple..)	0.16			
Helium	0.142			
Hydrogen	0.168			
Ice (0°C, 32°F)	2.18			
Insulation materials	0.035 - 0.16			
Iridium	147			
Iron	80	68	60	
Iron, wrought	59			
Iron, cast	55			
Kapok insulation	0.034			
Kerosene	0.15			
Lead Pb	35			
Leather, dry	0.14			
Limestone	1.25 - 1.33			
Magnesia insulation (85%)	0.07			
Magnesium	156			
Marble	2.6			

RF Cafe

We Filter Out the Noise™
Your Home to the Information Superhighway™

Engineering Forums
Win a T-Shirt or Mug
Over 2,200 Unique Pages!

Main Courses	Appetizers	Desserts	House Specials	← 4 Menus
Application Notes	Industry Standards	Software	Chemistry	Mathematics
Books - RF/MW	Magazines	Technical Papers	Electronics	Mechanical
Calculators	Magazine Articles	Technical Resources	General	Physics
Engineering Sites	Organizations	Test Notes		
Event Calendar	Job Search	Vendors/Parts		RF.Cafe Geocaching - Win!

Thermal Conductivity & Coefficient of Expansion^a

narda
microwave-test

12

**High Performance RF &
Microwave Catalog Products**

Substance	Thermal Conductivity (W/cm·°C)	Coefficient of Thermal Expansion (ppm/°C)	Density (g/cm³)	Specific Thermal Conductivity ^b (W/cm·°C)
Air (still)	0.0003			
Alumina	0.276			
Alumina (85%)	0.118			
Aluminum	2.165	0.23	2.7	0.81
Beryllia (99.5%)	1.969			
Beryllia (97%)	1.575			
Beryllia (95%)	1.161			
Beryllium	1.772			
Beryllium-Copper	1.063			
Boron Nitride	0.394			
Brass (70/30)	1.220			
Copper	3.937	0.17	8.9	0.45
Copper/Inv ^c /Copper	1.64	0.084	8.4	.020
Copper/Mo ^d /Copper	1.82	0.060	9.9	0.18
Copper/Mo ^d -Cu/Copper	2.45-2.80	0.60-0.10	8.4	0.26-0.30
Diamond (room temp)	6.299			
Epoxy	0.008			
Epoxy (thermally conductive)	0.008			
FR-4 (G-10)	0.894			
GaAs	0.591			
Glass	0.008			
Gold	2.913			
Heatsink Compound	0.894			
Helium (liquid)	0.000307			
Invar	0.11	0.013	8.1	0.014
Iron	0.659			
Kovar	0.17	0.59	8.3	0.020
Lead	0.343			
Magnesium	1.575			
Mica	0.007			
Molybdenum	1.299			
Monel	0.197			

Mylar	0.002			
Nickel	0.906			
Nitrogen (liquid)	0.001411			
Phenolic	0.002			
Platinum	0.734			
Sapphire (a-axis)	0.32			
Sapphire (c-axis)	0.35			
Silicon (pure)	1.457			
Silicon (0.0025 Ω-cm)	1.457			
Silicon Carbide	0.90			
Silicon Dioxide (amorphous)	0.014			
Silicon Dioxide (quartz, a-axis)	0.059			
Silicon Dioxide (quartz, c-axis)	0.11			
Silicone Grease	0.002			
Silicone Rubber	0.002			
Silicon Nitride	0.16 - 0.33			
Silver	4.173			
Stainless Steel (321)	0.146			
Stainless Steel (410)	0.240			
Steel (low carbon)	0.669			
Teflon	0.002			
Tin	0.630			
Titanium	0.219	0.086	4.4	0.016
Tungsten	1.969			
Water	0.0055			
Zinc	1.024			

a: Approximate values from 0 °C to 100 °C

b: Thermal conductivity divided by specific gravity (introduced by Dr. Carl Zweenen & K.A. Schmidt)

c: Invar

d: Molybdenum

Limited time offer

[CLICK HERE](#)

Ads by Google

Rf Publications
Download free ic
design technical
papers today!
www.mentor.com/dsm

 application notes patents product catalogs
 The Engineering Search Engine **Find:**

Visitor locations
Click to see ClustrMaps™

Contact Information
RF Cafe
Mt. Airy, NC
(336) 786-5299
A Disruptive Web Presence™
 GPS Coordinates:
N 36°31.504', W 080°39.048'

 [Check our RSS feed page](#)

UP_title

Dow 19-Nov 2:33pm (C)Yahoo!

13200
13100
13000
12900

10am 12pm 2pm 4pm

 [Gadgets powered by Google](#)