ZGOUBI USERS' GUIDE

ZGOUBI ON WEB:

http://sourceforge.net/projects/zgoubi/

François Méot

Brookhaven National Laboratory Collider-Accelerator Department Upton, NY 11973

> 26 August 2019 (r1321)

ATLAS & CMS IRs, LHC

Snake Resonance Crossing in RHIC

Spin flip during ramp, AGS with snakes

Serpentine acceleration in EMMA

Cover figures:

upper left: collision optics at ATLAS and CMS [70],

upper right: evolution of the polarization upon crossing of the 393+ Q_y spin resonance in RHIC [14],

lower left: spin-flipping over an acceleration cycle in the AGS, in presence of the helical snakes [13],

lower right: serpentine acceleration in the prototype linear FFAG EMMA [52, 54].

Table of contents

P	ART	A Description of software contents	7
	GLO	OSSARY OF KEYWORDS, PART A	9
	OPT	TICAL ELEMENTS VERSUS KEYWORDS	11
	PRE	EFACE TO THE BNL EDITION (2015+)	13
	PRE	EFACE TO THE BNL EDITION (2012)	14
	INT	RODUCTION TO THE 4th EDITION (1997)	15
	INT	RODUCTION	17
1		MERICAL CALCULATION OF MOTION AND FIELDS	19
	1.1	zgoubi Frame	
	1.2	Integration of the Lorentz Equation	
		1.2.1 Integration in Magnetic Fields	
		1.2.2 Integration in Electric Fields	
		1.2.3 Integration in Combined Electric and Magnetic Fields	
		1.2.4 Calculation of the Time of Flight	22
	1.3	Calculation of \vec{E} and \vec{B} Fields and their Derivatives	
		1.3.1 1-D (Axial) Analytical Field Models and Extrapolation	23
		1.3.2 Extrapolation from 1-D axial field map	23
		1.3.3 Extrapolation From Median Plane Field Models	23
		1.3.4 Extrapolation from Arbitrary 2-D Field Maps	
		1.3.5 Interpolation in 3-D Field Maps	
		1.3.6 2-D Analytical Field Models and Extrapolation	
		1.3.7 3-D Analytical Models of Fields	
	1.4	Calculation of \vec{E} and \vec{B} from Field Maps	25
		1.4.1 1-D Axial Map, with Cylindrical Symmetry	
		1.4.2 2-D Median Plane Map, with Median Plane Antisymmetry	
		1.4.3 Arbitrary 2-D Map, no Symmetry	
		1.4.4 3-D Field Map	
		•	
2		N TRACKING	33
	2.1	Introduction	
	2.2	Integration in Magnetic Fields	
	2.3	Integration in Electric Fields	
	2.4	Integration in Combined Electric and Magnetic Fields	35
	2.5	Radiative polarization	36
	2.6	Spin Diffusion	36
3	SYN	NCHROTRON RADIATION	37
	3.1	Energy Loss and Dynamical Effects	37
	3.2	Spectral-Angular Radiated Densities	39
		3.2.1 Calculation of the Radiated Electric Field	40
		3.2.2 Calculation of the Fourier Transform of the Electric Field	42
4	SPA	CE CHARGE	43
5	ORI	BIT CORRECTION	45
6	DES	SCRIPTION OF THE AVAILABLE PROCEDURES	47
	6.1	Introduction	47
	6.2	Definition of an Object	
		6.2.1 MCOBJET: Monte-Carlo generation of a 6-D object	
		6.2.2 OBJET: Generation of an object	
		6.2.3 OBJETA: Object from Monte-Carlo simulation of decay reaction [32]	
	6.3	Declaring Options	
	0.5	Deciming Options	50

	6.3.6 6.3.7	GETFITVAL : Get values of <i>variables</i> as saved from former FIT[2] run		
	6.3.8	OPTICS: Write out optical functions. Log to zgoubi.OPTICS.out		4
	6.3.9	OPTIONS : Global or special options		5
	6.3.10	ORDRE: Taylor expansions order	70	5
		PARTICUL: Particle characteristics		7
	6.3.12	REBELOTE: 'Do it again'	78	3
		RESET : Reset counters and flags		
		SCALING : Power supplies and R.F. function generator		
		SPACECHARG: Space charge		
		SPNTRK: Spin tracking		
		SRLOSS: Synchrotron radiation energy loss [20]		
		SVDOC: SVD orbit correction		
		SYNRAD: Synchrotron radiation spectral-angular densities		
6.4		SYSTEM: System call		
6.4		Elements and Related Numerical Procedures		
6.5		Procedures		
	6.5.1	FAISCEAU, FAISCNL, FAISTORE: Print/Store particle coordinates	169	9
	6.5.2	$FOCALE, IMAGE[S]: Particle\ coordinates\ and\ beam\ size\ ;\ localization\ and\ size\ of\ horizontal\ waist$		
	6.5.3	$FOCALEZ, IMAGE [S] Z: Particle\ coordinates\ and\ beam\ size\ ;\ localization\ and\ size\ of\ vertical\ waist$		
	6.5.4	HISTO: 1-D histogram		
	6.5.5	IMAGE[S][Z]: Localization and size of vertical waists		
	6.5.6	MATRIX : Calculation of transfer coefficients, periodic parameters		
	6.5.7	PICKUPS: Bunch centroid path; orbit		
	6.5.8	PLOTDATA: Intermediate output for the PLOTDATA graphic software		
	6.5.9	SPNPRNL, SPNSTORE : Print/Store spin coordinates		
		SRPRNT : Print SR loss statistics		
		TWISS: Calculation of periodic optical parameters. Log to zgoubi.TWISS.out		
6.6		ements Regarding Various Functionalities		
0.0	-	Units in zgoubi		
	6.6.2	Reference rigidity		
	6.6.3	Time Varying Fields		
		Backward Ray-Tracing	184	
	6.6.4			1
	6.6.4 6.6.5		184	
		Checking Trajectories and Fields Across Optical Elements - the $I\!L$, plt and $I\!C$ flags	184	4
	6.6.5		184	4 5
	6.6.5 6.6.6	Checking Trajectories and Fields Across Optical Elements - the IL , plt and IC flags Labeling Keywords	184 185 185	4 5 5
	6.6.5 6.6.6 6.6.7	Checking Trajectories and Fields Across Optical Elements - the $I\!L$, .plt and $I\!C$ flags Labeling Keywords	184 185 185 186	4 5 5
	6.6.5 6.6.6 6.6.7 6.6.8 6.6.9	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	184 185 186 186 186	4 5 6 8
	6.6.5 6.6.6 6.6.7 6.6.8 6.6.9 6.6.10	Checking Trajectories and Fields Across Optical Elements - the IL, plt and IC flags Labeling Keywords	184 185 185 186 187	4 5 6 8 8
	6.6.5 6.6.6 6.6.7 6.6.8 6.6.9 6.6.10 6.6.11	Checking Trajectories and Fields Across Optical Elements - the IL, .plt and IC flags Labeling Keywords	184 185 185 186 186 188	4 5 6 8 8
	6.6.5 6.6.6 6.6.7 6.6.8 6.6.9 6.6.10 6.6.11 6.6.12	Checking Trajectories and Fields Across Optical Elements - the IL, .plt and IC flags Labeling Keywords	184 183 183 183 183 183 183	4 5 6 8 8 8
PART	6.6.5 6.6.6 6.6.7 6.6.8 6.6.9 6.6.10 6.6.11 6.6.12 6.6.13	Checking Trajectories and Fields Across Optical Elements - the IL, plt and IC flags Labeling Keywords	184 183 183 183 183 183 183	4 5 6 8 8 8 8
	6.6.5 6.6.6 6.6.7 6.6.8 6.6.9 6.6.10 6.6.11 6.6.12 6.6.13	Checking Trajectories and Fields Across Optical Elements - the IL, plt and IC flags Labeling Keywords Multi-turn Tracking in Circular Machines Positioning, (Mis-)Alignment, of Optical Elements and Field Maps Coded Integration Step Ray-tracing of an Arbitrarily Large Number of Particles Stopped Particles: The IEX Flag Negative Rigidity Fiel maps Eywords and input data formatting	184 185 186 187 188 188 188 188 188	4 5 6 8 8 8 8 8
GLO	6.6.5 6.6.6 6.6.7 6.6.8 6.6.9 6.6.10 6.6.11 6.6.12 6.6.13	Checking Trajectories and Fields Across Optical Elements - the IL, plt and IC flags Labeling Keywords Multi-turn Tracking in Circular Machines Positioning, (Mis-)Alignment, of Optical Elements and Field Maps Coded Integration Step Ray-tracing of an Arbitrarily Large Number of Particles Stopped Particles: The IEX Flag Negative Rigidity Fiel maps COF KEYWORDS, PART B	184 183 183 183 183 183 183 183	4 5 6 8 8 8 8
GL(6.6.5 6.6.6 6.6.7 6.6.8 6.6.9 6.6.10 6.6.11 6.6.12 6.6.13	Checking Trajectories and Fields Across Optical Elements - the IL, .plt and IC flags Labeling Keywords Multi-turn Tracking in Circular Machines Positioning, (Mis-)Alignment, of Optical Elements and Field Maps Coded Integration Step Ray-tracing of an Arbitrarily Large Number of Particles Stopped Particles: The IEX Flag Negative Rigidity Fiel maps Eywords and input data formatting OF KEYWORDS, PART B ELEMENTS VERSUS KEYWORDS	184 185 186 186 187 183 183 183	4 5 5 6 8 8 8 8 9

PART C Examples of input data files and output result files

	INTRODUCTION	307
1	MONTE CARLO IMAGES IN SPES 2	309
2	TRANSFER MATRICES ALONG A TWO-STAGE SEPARATION KAON BEAM LINE	312
3	IN-FLIGHT DECAY IN SPES 3	315
4	USE OF THE FITTING PROCEDURE	318
5	MULTITURN SPIN TRACKING IN SATURNE 3 GeV SYNCHROTRON	320
6	MICRO-BEAM FOCUSING WITH $ec{E} imes ec{B}$ QUADRUPOLES	322
P	ART D Running zgoubi and its post-processor/graphic interface zpop INTRODUCTION	327
1	GETTING TO RUN zgoubi AND zpop 1.1 Making the Executable Files zgoubi and zpop 1.1.1 The transportable package zgoubi 1.1.2 The post-processor and graphic interface package zpop 1.2 Running zgoubi 1.3 Running zpop	. 329 . 329 . 329
2	STORAGE FILES	329
	REFERENCES	332
	INDEX	337

PART A Description of software contents

Glossary of Keywords, Part A

Available keywords and where they are to be found in Part A.

AGSMM	AGS main magnet	95
AGSQUAD	AGS quadrupole	
AIMANT	Generation of dipole mid-plane 2-D map, polar frame	97
AUTOREF	Transport beam into a new reference frame	
BEAMBEAM	Beam-beam lens	
BEND	Bending magnet, Cartesian frame	104
BETATRON	Betatron core (momentum kick)	
BINARY	BINARY↔FORMATTED data converter	59
BREVOL	1-D uniform mesh magnetic field map	107
CARTEMES	2-D Cartesian uniform mesh magnetic field map	
CAVITE	Accelerating cavity	110
CHAMBR	Long transverse aperture limitation	114
CHANGREF	Transformation to a new reference frame	
CIBLE	Generate a secondary beam following target interaction	117
COLLIMA	Collimator	
DECAPOLE	Decapole magnet	119
DIPOLE	Dipole magnet, polar frame	120
DIPOLE-M	Generation of dipole mid-plane 2-D map, polar frame	122
DIPOLES	Dipole magnet N -tuple, polar frame	
DODECAPO	Dodecapole magnet	127
DRIFT	Field free drift space	128
EBMULT	Electro-magnetic multipole	129
EL2TUB	Two-tube electrostatic lens	130
ELMIR	Electrostatic N-electrode mirror/lens, straight slits	131
ELMIRC	Electrostatic N-electrode mirror/lens, circular slits	132
ELMULT	Electric multipole	133
ELREVOL	1-D uniform mesh electric field map	135
EMMA	2-D Cartesian or cylindrical mesh field map for EMMA FFAG	
END	End of input data list	
ERRORS	Injecting errors in optical elements	61
ESL	Field free drift space	128
FAISCEAU	Print particle coordinates	
FAISCNL	Store particle coordinates in file FNAME	169
FAISTORE	Store coordinates every <i>IP</i> other pass at labeled elements	169
FFAG	FFAG magnet, N-tuple	137
FFAG-SPI	Spiral FFAG magnet, N-tuple	139
FIN	End of input data list	60
FIT	Fitting procedure	
FOCALE	Particle coordinates and horizontal beam size at distance XL	171
FOCALEZ	Particle coordinates and vertical beam size at distance XL	172
GASCAT	Gas scattering	70
GETFITVAL	Get values of <i>variables</i> as saved from former FIT[2] run	71
GOTO	Branching statement	
HISTO	1-D histogram	
IMAGE	Localization and size of horizontal waist	171
IMAGES	Localization and size of horizontal waists	
IMAGESZ	Localization and size of vertical waists	172
IMAGEZ	Localization and size of vertical waist	
INCLUDE	File include statement	142

MAP2D	2-D Cartesian uniform mesh field map - arbitrary magnetic field	
MAP2D-E	2-D Cartesian uniform mesh field map - arbitrary electric field	144
MARKER	Marker	
MATRIX	Calculation of transfer coefficients, periodic parameters	175
MCDESINT	Monte-Carlo simulation of in-flight decay	72
MCOBJET	Monte-Carlo generation of a 6-D object	50
MULTIPOL	Magnetic multipole	146
OBJET	Generation of an object	53
OBJETA	Object from Monte-Carlo simulation of decay reaction	57
OCTUPOLE	Octupole magnet	147
OPTICS	Write out optical functions. Log to zgoubi.OPTICS.out	
OPTIONS	Global or special options	
ORDRE	Taylor expansions order	
PARTICUL	Particle characteristics	
PICKUPS	Bunch centroid path; orbit	
PLOTDATA	Intermediate output for the PLOTDATA graphic software	
POISSON	Read magnetic field data from <i>POISSON</i> output	
POLARMES	2-D polar mesh magnetic field map	
PS170	Simulation of a round shape dipole magnet	
QUADISEX	Sharp edge magnetic multipoles	
QUADRUPO	Quadrupole magnet	
REBELOTE	'Do it again'	
RESET	Reset counters and flags	
SCALING	Power supplies and R.F. function generator	
SEPARA	Wien Filter - analytical simulation	
SEXQUAD	Sharp edge magnetic multipole	
SEXTUPOL	Sextupole magnet	
SOLENOID	Solenoid	
SPACECHARG	Space charge	
SPINR	Spin rotation	
SPNPRNL	Store spin coordinates into file FNAME	
SPNPRT	Print spin coordinates	
SPNSTORE	Store spin coordinates every <i>IP</i> other pass at labeled elements	
SPNTRK	Spin tracking	
SRLOSS	Synchrotron radiation energy loss	
SRPRNT	Print SR loss statistics	
SVDOC	SVD orbit correction	
SYNRAD	Synchrotron radiation spectral-angular densities	
SYSTEM	System call	
TARGET	Generate a secondary beam following target interaction	
TOSCA	2-D and 3-D Cartesian or cylindrical mesh field map	
TRANSMAT	Matrix transfer	
TRAROT	Translation-Rotation of the reference frame	
TWISS	Calculation of periodic optical parameters. Log to zgoubi.TWISS.out .	
UNDULATOR	Undulator magnet	
UNIPOT	Unipotential cylindrical electrostatic lens	
VENUS	Simulation of a rectangular shape dipole magnet	
WIENFILT	Wien filter	
YMY	Reverse signs of Y and Z reference axes	

Optical elements versus keywords

What can be simulated What keyword(s) can be used for that

This glossary gives a list of keywords suitable for the simulation of common optical elements. These are classified in three categories: magnetic, electric and combined electro-magnetic elements.

Field map procedures are also listed; they provide a means for ray-tracing through measured or simulated electric and/or magnetic fields.

MAGNETIC ELEMENTS

AGS main magnet AGSMM

Betatron core BETATRON, CAVITE

Cyclotron magnet or sector DIPOLE[S], DIPOLE-M, FFAG, FFAG-SPI

Decapole DECAPOLE, MULTIPOL

Dipole[s], spectrometer dipole AIMANT, BEND, DIPOLE[S][-M], MULTIPOL, QUADISEX

Dodecapole DODECAPO, MULTIPOL

FFAG magnet DIPOLES, FFAG, FFAG-SPI, MULTIPOL

Helical dipole HELIX

Multipole MULTIPOL, QUADISEX, SEXQUAD

Octupole OCTUPOLE, MULTIPOL, QUADISEX, SEXQUAD Quadrupole QUADRUPO, MULTIPOL, SEXQUAD, AGSQUAD Sextupole SEXTUPOL, MULTIPOL, QUADISEX, SEXQUAD

Skew multipoles MULTIPOL Solenoid SOLENOID

Spectrometer dipole DIPOLE, DIPOLE-M, DIPOLES

Undulator UNDULATOR

Using field maps

1-D, cylindrical symmetry BREVOL

2-D, mid-plane symmetry CARTEMES, POISSON, TOSCA

2-D, no symmetry
2-D, polar mesh, mid-plane symmetry
3-D, no symmetry
TOSCA
EMMA FFAG quadrupole doublet
linear composition of field maps
TOSCA

ELECTRIC ELEMENTS

2-tube (bipotential) lens EL2TUB 3-tube (unipotential) lens **UNIPOT** Decapole **ELMULT** Dipole **ELMULT** Dodecapole **ELMULT** Multipole **ELMULT** N-electrode mirror/lens, straight slits **ELMIR** N-electrode mirror/lens, circular slits **ELMIRC** Octupole **ELMULT**

QuadrupoleELMULTR.F. (kick) cavityCAVITESextupoleELMULTSkew multipolesELMULT

Using field maps

1-D, cylindrical symmetry ELREVOL 2-D, no symmetry MAP2D-E

ELECTRO-MAGNETIC ELEMENTS

Decapole **EBMULT** Dipole **EBMULT** Dodecapole **EBMULT** Multipole **EBMULT** Octupole **EBMULT** Quadrupole **EBMULT** Sextupole **EBMULT** Skew multipoles **EBMULT**

Wien filter SEPARA, WIENFILT

PREFACE TO THE BNL EDITION, 2015+

New functionalities have been introduced:

- GOTO keyword, a conditional goto, useful for RLA simulations,
- *INCLUDE* keyword, working like the fortran "include", more or less equivalent to "call file" as found in other optics codes, useful for long or repetitive sequences.

A consequence of the latter is the possibility of requesting a "zgoubi.SEQUENCE.Out" output file which contains the whole developed optical sequence in a single file.

PREFACE TO THE BNL EDITION, 2012

The previous release of the Zgoubi Users' Guide as a Lab. report dates from 1997, making the present one the latest in a series of five [1]-[4].

zgoubi has undergone substantial developments since the 4th edition of the Users' Guide, in the frame of a number of projects and of beam dynamics studies, as the Neutrino Factory, lepton and hadron colliders, spin dynamics investigations at SuperB, RHIC, etc. As well the list of optical elements has grown, and so did the "Glossary of Keywords" list, pp. 9 and 191, including new simulation and computing procedures, which range from constraint-matching to overlapping magnetic fields capabilities to spin manipulations and other synchrotron radiation damping recipes.

The ouput files zgoubi.fai (local particle data) and zgoubi.plt (step-by-step-particle data across an optical element) have been reformated in columns, making them readily readable by graphic programs as "gnuplot". Ancillary output files, less voluminous than the latter two and useful for producing plots or for functioning checks, with names of the form "zgoubi.*.out" are available from various keywords, usually by specifying "PRINT" in the keyword's arguments, for instance in the case of "CAVITE" it will produce "zgoubi.CAVITE.Out" containing time dependence of RF parameters as experienced by the particles at traversal of the cavity, whereas "zgoubi.OPTICS.out" can be obtained from *OPTICS* keyword.

This evolution of **zgoubi** allows embedding "FIT[2]" procedure within "REBELOTE" (**zgoubi**'s DO-loop), whereas the latter has been confered the capability of changing values of any numerical data across zgoubi.dat. This allows parameter scans, while possibly using "SYSTEM" to store the outcomes in dedicated external files.

A series of auxiliary computing tools and graphic tools (based on "gnuplot") have been developed, aimed at making the designer's life easier, as, search for closed orbits in periodic machines, computation of optical functions and parameters, tune scans, dynamic aperture scans, spin dynamics data treatment, graphic scripts, etc., and including dedicated ones regarding, *e.g.*, FFAG and cyclotron design, AGS and RHIC studies, synchrotron radiation energy losses and their effects. In addition "python" interfaces are being developed by several users, possibly made available on web by their authors.

The code has been installed on SourceForge with the collaboration of J. S. Berg, in Sept. 2007, there it is fully and freely available [5]. The SourceForge package evolves and is maintained at the pace of on-going projects and design studies. It includes the source files, the post-processor program **zpop**, as well as many examples with their input data files ("zgoubi.dat") and output result files ("zgoubi.res") and the auxiliary toolbox.

The Users' Guide is intended to describe the contents of the most recent version of **zgoubi**. The code and its Guide are both far from being "finished products".

J. S. Berg and N. Tsoupas, BNL, have reviewed the final proof of the present document.

INTRODUCTION TO THE 4th EDITION, 1997

The initial version of **zgoubi**, dedicated to ray-tracing in magnetic fields, was developed by D. Garreta and J.C. Faivre at CEN-Saclay in the early 1970s. It was perfected for the purpose of studying the four spectrometers SPES I, II, III, IV at the Laboratoire National SATURNE (CEA-Saclay, France), and SPEG at GANIL (Caen, France). It is being used since long in several national and foreign laboratories.

The first manual was in French [1]. Accounting for many developments and improvements, and in order to facilitate access to the program an English version of the manual was written at TRIUMF with the assistance of J. Doornbos. P. Stewart prepared the manuscript for publication [2]

An updating of the latter was necessary for accompanying the third version of the code which included developments regarding spin tracking and ray-tracing in combined electric and magnetic fields; this was done with the help of D. Bunel (SATURNE Laboratory, Saclay) for the preparation of the document and lead to the third release [3].

In the mid-1990s, the computation of synchrotron radiation electromagnetic impulse and spectra was introduced for the purpose of studying interference effects at the LEP synchrotron radiation based diagnostic mini-wiggler. In the mean time, several new optical elements were added, such as electro-magnetic and other electrostatic lenses. Used since several years for special studies in periodic machines (*e.g.*, SATURNE at Saclay, COSY at Julich, LEP and LHC at CERN, Neutrino Factory rings), **zgoubi** has also undergone extensive developments regarding storage ring related features.

These developments of **zgoubi** have strongly benefited of the environment of the Groupe Théorie, Laboratoire National SATURNE, CEA/DSM-Saclay, in the years 1985-1995.

The graphic interface to **zgoubi** (addressed in Part D) has also undergone concomitant extensive developments, which make it a performing tool for the post-processing of **zgoubi** outputs.

The Users' Guide is intended to describe the contents of the most recent version of **zgoubi**, which is far from being a "finished product".

INTRODUCTION

The computer code **zgoubi** calculates trajectories of charged particles in magnetic and electric fields. At the origin specially adapted to the definition and adjustment of beam lines and magnetic spectrometers, it has so evolved that it allows the study of systems including complex sequences of optical elements such as dipoles, quadrupoles, arbitrary multipoles, FFAG magnets and other magnetic or electric devices, and is able as well to handle periodic structures. Compared to other codes, it presents several peculiarities, as follows - a non-exhaustive list:

- a numerical method for integrating the Lorentz equation, based on Taylor series, which optimizes computing time and provides high accuracy and strong symplecticity,
- spin tracking, using the same numerical method as for the Lorentz equation,
- account of stochastic photon emission, and its effects on particle dynamics,
- calculation of the synchrotron radiation electric field and spectra in arbitrary magnetic fields, from the ray-tracing outcomes,
- the possibility of using a mesh, which allows ray-tracing from simulated or measured (1-D, 2-D or 3-D) electric and magnetic field maps,
- a number Monte Carlo procedures : unlimited number of trajectories, in-flight decay, stochastic radiation, etc.,
- built-in fitting procedures allowing arbitrary variables and a large variety of constraints, easily expandable,
- multi-turn tracking in circular accelerators including features proper to machine parameter calculation and survey,
- simulation of time-varying power supplies,
- simulation of arbitrary radio-frequency programs.

The initial version of **zgoubi** was dedicated to ray-tracing in magnetic elements, beam lines, spectrometers. It was perfected for the purpose of studying, and operating, the four spectrometers SPES I, II, III, IV at the Laboratoire National SATURNE (CEA-Saclay, France), and, later, SPEG at GANIL (Caen, France).

Developments regarding spin tracking and ray-tracing in combined electric and magnetic fields were implemented, in the late 1980s and early 1990s respectively.

In the mid-1990s, the computation of synchrotron radiation electromagnetic impulse and spectra was introduced, for the purpose of synchrotron radiation diagnostic R&D at LEP, and further applied to the design of the SR diagnostics installations at LHC in the early 2000s. In the mean time, several new optical elements were added, such as electro-magnetic and other electrostatic lenses. Used since several years for special studies in periodic machines (*e.g.*, SATURNE at Saclay, COSY at Julich, LEP and LHC at CERN), **zgoubi** has also undergone extensive developments regarding storage ring related features.

Many developments have been accomplished since the early 2000s in the frame of a number of project design and beam dynamics studies, as the neutrino factory, lepton and hadron colliders, spin studies at AGS and RHIC, etc. As a consequence the list of optical elements and the compendium of numerical methods, so-called "Glossary of Keywords" list, pp. 9 and 191, has stretched with new simulation and computing procedures, ranging from fitting (FIT2 procedure; additional constraints) to overlapping magnetic field capabilities (DIPOLES, FFAG), spin manipulation (SPINR), optical elements (BEAMBEAM), radiation damping tools (SRLOSS) and many others (FAISTORE, MAP2D-E, OPTICS, PICKUPS, TWISS, etc.).

The graphic interface to **zgoubi** (**zpop**, Part D) has undergone extensive developments, making it a convenient companion tool to the use of **zgoubi**.

1 NUMERICAL CALCULATION OF MOTION AND FIELDS

1.1 zgoubi Frame

The reference frame of **zgoubi** is presented in Fig. 1. Its origin is in the median plane on a reference curve which generally (but not always) coincides with the optical axis of optical elements.

1.2 Integration of the Lorentz Equation

The Lorentz equation, which governs the motion of a particle of charge q, relativistic mass m and velocity \vec{v} in electric and magnetic fields \vec{e} and \vec{b} , is written

$$\frac{d(m\vec{v})}{dt} = q\left(\vec{e} + \vec{v} \times \vec{b}\right) \tag{1.2.1}$$

Noting $()' = \frac{d()}{ds}$ and taking

$$\vec{u} = \frac{\vec{v}}{v}, \quad ds = v \, dt \,, \quad \vec{u}' = \frac{d\vec{u}}{ds} \,, \quad m\vec{v} = mv\vec{u} = q \, B\rho \, \vec{u}$$
 (1.2.2)

where $B\rho$ is the rigidity of the particle, this equation can be rewritten

$$(B\rho)'\vec{u} + B\rho\vec{u}' = \frac{\vec{e}}{v} + \vec{u} \times \vec{b}$$
(1.2.3)

From position $\vec{R}(M_0)$ and unit velocity $\vec{u}(M_0)$ at point M_0 , position $\vec{R}(M_1)$ and unit velocity $\vec{u}(M_1)$ at point M_1 following a displacement Δs , are obtained from truncated Taylor expansions (Fig. 2)

$$\vec{R}(M_1) \approx \vec{R}(M_0) + \vec{u}(M_0) \, \Delta s + \vec{u}'(M_0) \, \frac{\Delta s^2}{2!} + \dots + \vec{u}'''''(M_0) \, \frac{\Delta s^6}{6!}$$

$$\vec{u}(M_1) \approx \vec{u}(M_0) + \vec{u}'(M_0) \, \Delta s + \vec{u}''(M_0) \, \frac{\Delta s^2}{2!} + \dots + \vec{u}'''''(M_0) \, \frac{\Delta s^5}{5!}$$
(1.2.4)

The rigidity at M_1 is obtained in the same way from

$$(B\rho)(M_1) \approx (B\rho)(M_0) + (B\rho)'(M_0)\Delta s + \dots + (B\rho)'''''(M_0)\frac{\Delta s^5}{5!}$$
 (1.2.5)

The equation of time of flight is written in a similar manner

$$T(M_1) \approx T(M_0) + T'(M_0) \Delta s + T''(M_0) \frac{\Delta s^2}{2} + \dots + T'''''(M_0) \frac{\Delta s^5}{5!}$$
 (1.2.6)

The derivatives $\vec{u}^{(n)} = \frac{d^n \vec{u}}{ds^n}$ and $(B\rho)^{(n)} = \frac{d^n(B\rho)}{ds^n}$ involved in these expressions are calculated as described in the next sections. For the sake of computing speed, three distinct software procedures are involved, depending on whether \vec{e} or \vec{b} is zero, or \vec{e} and \vec{b} are both non-zero.

Figure 1: Reference frame and coordinates (Y, T, Z, P) in **zgoubi**.

OX: in the direction of motion,

OY: normal to OX,

OZ: orthogonal to the (X, Y) plane,

 \vec{W} : projection of the velocity, \vec{v} , in the (X,Y) plane,

T = angle between \vec{W} and the X-axis,

P = angle between \vec{W} and \vec{v} .

Figure 2: Position and velocity of a particle in the reference frame.

1.2.1 Integration in Magnetic Fields

Considering $\vec{e}=0$ and given $\vec{B}=\frac{\vec{b}}{B\rho}$, eq. (1.2.3) reduces to

$$\vec{u}' = \vec{u} \times \vec{B} \tag{1.2.7}$$

The successive derivatives $\vec{u}^{(n)}=\frac{d^n\vec{u}}{ds^n}$ of \vec{u} needed in the Taylor expansions (eqs. 1.2.4) are calculated by differentiating $\vec{u}'=\vec{u}\times\vec{B}$

$$\vec{u}'' = \vec{u}' \times \vec{B} + \vec{u} \times \vec{B}'$$

$$\vec{u}''' = \vec{u}'' \times \vec{B} + 2\vec{u}' \times \vec{B}' + \vec{u} \times \vec{B}''$$

$$\vec{u}'''' = \vec{u}''' \times \vec{B} + 3\vec{u}'' \times \vec{B}' + 3\vec{u}' \times \vec{B}'' + \vec{u} \times \vec{B}'''$$

$$\vec{u}''''' = \vec{u}'''' \times \vec{B} + 4\vec{u}''' \times \vec{B}' + 6\vec{u}'' \times \vec{B}'' + 4\vec{u}' \times \vec{B}''' + \vec{u} \times \vec{B}''''$$
(1.2.8)

where
$$\vec{B}^{(n)} = \frac{d^n \vec{B}}{ds^n}$$
.

From

$$d\vec{B} = \frac{\partial \vec{B}}{\partial X} dX + \frac{\partial \vec{B}}{\partial Y} dY + \frac{\partial \vec{B}}{\partial Z} dZ = \sum_{i=1,3} \frac{\partial \vec{B}}{\partial X_i} dX_i$$
 (1.2.9)

and by successive differentiation, we get

$$\vec{B}' = \sum_{i} \frac{\partial \vec{B}}{\partial X_{i}} u_{i}$$

$$\vec{B}'' = \sum_{ij} \frac{\partial^{2} \vec{B}}{\partial X_{i} \partial X_{j}} u_{i} u_{j} + \sum_{i} \frac{\partial \vec{B}}{\partial X_{i}} u'_{i}$$

$$\vec{B}''' = \sum_{ijk} \frac{\partial^{3} \vec{B}}{\partial X_{i} \partial X_{j} \partial X_{k}} u_{i} u_{j} u_{k} + 3 \sum_{ij} \frac{\partial^{2} \vec{B}}{\partial X_{i} \partial X_{j}} u'_{i} u_{j} + \sum_{i} \frac{\partial \vec{B}}{\partial X_{i}} u''_{i}$$

$$\vec{B}'''' = \sum_{ijkl} \frac{\partial^{4} \vec{B}}{\partial X_{i} \partial X_{j} \partial X_{k} \partial X_{l}} u_{i} u_{j} u_{k} u_{l} + 6 \sum_{ijk} \frac{\partial^{3} \vec{B}}{\partial X_{i} \partial X_{j} \partial X_{k}} u'_{i} u_{j} u_{k}$$

$$+ 4 \sum_{ij} \frac{\partial^{2} \vec{B}}{\partial X_{i} \partial X_{j}} u''_{i} u_{j} + 3 \sum_{ij} \frac{\partial^{2} \vec{B}}{\partial X_{i} \partial X_{j}} u'_{i} u'_{j} + \sum_{i} \frac{\partial \vec{B}}{\partial X_{i}} u'''_{i}$$

$$(1.2.10)$$

From the knowledge of $\vec{u}(M_0)$ and $\vec{B}(M_0)$ at point M_0 of the trajectory, we calculate alternately the derivatives of $\vec{u}(M_0)$ and $\vec{B}(M_0)$, by means of eqs. (1.2.8) and (1.2.10), and inject these into eq. (1.2.4) so yielding $\vec{R}(M_1)$ and $\vec{u}(M_1)$.

1.2.2 Integration in Electric Fields [6]

Admitting that $\vec{b} = 0$, eq. (1.2.3) reduces to

$$(B\rho)'\vec{u} + B\rho\vec{u}' = \frac{\vec{e}}{v} \tag{1.2.11}$$

which, by successive differentiations, gives the recursive relations

$$(B\rho)''\vec{u} + B\rho\vec{u}' = \frac{\vec{e}}{v}$$

$$(B\rho)''\vec{u} + 2(B\rho)'\vec{u}' + B\rho\vec{u}'' = \left(\frac{1}{v}\right)'\vec{e} + \frac{\vec{e}'}{v}$$

$$(B\rho)'''\vec{u} + 3(B\rho)''\vec{u}' + 3(B\rho)''\vec{u}'' + B\rho\vec{u}''' = \left(\frac{1}{v}\right)''\vec{e} + 2\left(\frac{1}{v}\right)'\vec{e}' + \left(\frac{1}{v}\right)\vec{e}''$$

$$(B\rho)''''\vec{u} + 4(B\rho)'''\vec{u}' + 6(B\rho)''\vec{u}'' + 4(B\rho)'\vec{u}''' + B\rho\vec{u}'''' = \left(\frac{1}{v}\right)'''\vec{e} + 3\left(\frac{1}{v}\right)'''\vec{e}' + 3\left(\frac{1}{v}\right)''\vec{e}'' + \frac{1}{v}\vec{e}'''$$

$$(B\rho)'''''\vec{u} + 5(B\rho)''''\vec{u}' + etc.$$
(1.2.12)

that provide the derivatives $\frac{d^n \vec{u}}{ds^n}$ needed in the Taylor expansions (eq. 1.2.4)

$$\vec{u}' = \left(\frac{1}{v}\right) \vec{E} - \frac{(B\rho)'}{B\rho} \vec{u}$$

$$\vec{u}'' = \left(\frac{1}{v}\right)' \vec{E} + \left(\frac{1}{v}\right) \vec{E}'|_{B\rho} - 2\frac{(B\rho)'}{B\rho} \vec{u}' - \frac{(B\rho)''}{B\rho} \vec{u}$$

$$\vec{u}''' = \left(\frac{1}{v}\right)'' \vec{E} + 2\left(\frac{1}{v}\right)' \vec{E}'|_{B\rho} + \frac{1}{v} \vec{E}''|_{B\rho} - 3\frac{(B\rho)'}{B\rho} \vec{u}'' - 3\frac{(B\rho)''}{B\rho} \vec{u}' - \frac{(B\rho)'''}{B\rho} \vec{u}$$

$$\vec{u}'''' = \left(\frac{1}{v}\right)''' \vec{E} + 3\left(\frac{1}{v}\right)'' \vec{E}'|_{B\rho} + 3\left(\frac{1}{v}\right)' \vec{E}''|_{B\rho} + \left(\frac{1}{v}\right) \vec{E}'''|_{B\rho}$$

$$-4\frac{(B\rho)'}{B\rho} \vec{u}''' - 6\frac{(B\rho)''}{B\rho} \vec{u}'' - 4\frac{(B\rho)'''}{B\rho} \vec{u}' - \frac{(B\rho)''''}{B\rho} \vec{u}$$

$$(1.2.13)$$

 $\vec{B}(X,Y,Z)$ and derivatives are calculated in various ways, depending whether field maps or analytic representations of optical elements are used. The basic means are the following.

1.3.1 1-D (Axial) Analytical Field Models and Extrapolation

This procedure assumes cylindrical symmetry with respect to the X-axis. The longitudinal field component B_X or $E_X(X,r=0)$ $(r=(Y^2+Z^2)^{1/2})$, along that axis is derived by differentiation of an appropriate model of the potential V(X) (e.g., magnetic in SOLENOID, electrostatic in EL2TUB, UNIPOT). The longitudinal and radial field components $B_X(X,r)$, $B_r(X,r)$ and their derivatives off-axis $\frac{\partial^{i+j}B_X}{\partial X^i\partial r^j}$ and $\frac{\partial^{i+j}B_r}{\partial X^i\partial r^j}$ are obtained by Taylor expansions to the second to fifth order in r (depending on the optical element) assuming cylindrical symmetry (eq. (1.3.1)), and then transformed to the (X,Y,Z) Cartesian frame of **zgoubi** in order to provide the derivatives $\frac{\partial^{i+j+k}B}{\partial X^i\partial Y^j\partial Z^k}$ needed in eq. (1.2.15).

1.3.2 Extrapolation from 1-D axial field map [7]

A cylindrically symmetric field (e.g., using BREVOL, ELREVOL) can be described by an axial 1-D field map of its longitudinal component $B_X(X,r=0)$ ($r=(Y^2+Z^2)^{1/2}$), while the radial component on axis $B_r(X,r=0)$ is assumed to be zero. $B_X(X,r=0)$ is obtained at any point along the X-axis by a polynomial interpolation from the map mesh (see section 1.4.1). Then the field components $B_X(X,r)$, $B_r(X,r)$ at the position of the particle, (X,r) are obtained from Taylor expansions truncated at the fifth order in r (hence, up to the fifth order derivative $\frac{\partial^5 B_X}{\partial X^5}(X,0)$), assuming cylindrical symmetry

$$B_X(X,r) = B_X(X,0) - \frac{r^2}{4} \frac{\partial^2 B_X}{\partial X^2} (X,0) + \frac{r^4}{64} \frac{\partial^4 B_X}{\partial X^4} (X,0)$$

$$B_r(X,r) = -\frac{r}{2} \frac{\partial B_X}{\partial X} (X,0) + \frac{r^3}{16} \frac{\partial^3 B_X}{\partial X^3} (X,0) - \frac{r^5}{384} \frac{\partial^5 B_X}{\partial X^5} (X,0)$$
(1.3.1)

Then, by differentiation with respect to X and r, up to the second order, these expressions provide the derivatives of $\vec{B}(X,r)$. Finally a conversion from the (X,r) coordinates to the (X,Y,Z) Cartesian coordinates of **zgoubi** is performed, thus providing the expressions $\frac{\partial^{i+j+k}\vec{B}}{\partial X^i\partial Y^j\partial Z^k}$ needed in the eq. (1.2.10).

1.3.3 Extrapolation From Median Plane Field Models

In the median plane, $B_Z(X, Y, 0)$ and its derivatives with respect to X or Y may be derived from analytical models (e.g., in Venus magnet - VENUS, and sharp edge multipoles SEXQUAD and QUADISEX) or numerically by polynomial interpolation from 2-D field maps (e.g., CARTEMES, TOSCA).

Median plane antisymmetry is assumed, which results in

$$B_X(X, Y, 0) = 0$$

$$B_Y(X, Y, 0) = 0$$

$$B_X(X, Y, Z) = -B_X(X, Y, -Z)$$

$$B_Y(X, Y, Z) = -B_Y(X, Y, -Z)$$

$$B_Z(X, Y, Z) = B_Z(X, Y, -Z)$$
(1.3.2)

Accommodated with Maxwell's equations, this results in Taylor expansions below, for the three components of \vec{B} (here, B stands for $B_Z(X,Y,0)$)

$$B_X(X,Y,Z) = Z \frac{\partial B}{\partial X} - \frac{Z^3}{6} \left(\frac{\partial^3 B}{\partial X^3} + \frac{\partial^3 B}{\partial X \partial Y^2} \right)$$

$$B_Y(X,Y,Z) = Z \frac{\partial B}{\partial Y} - \frac{Z^3}{6} \left(\frac{\partial^3 B}{\partial X^2 \partial Y} + \frac{\partial^3 B}{\partial Y^3} \right)$$

$$B_Z(X,Y,Z) = B - \frac{Z^2}{2} \left(\frac{\partial^2 B}{\partial X^2} + \frac{\partial^2 B}{\partial Y^2} \right) + \frac{Z^4}{24} \left(\frac{\partial^4 B}{\partial X^4} + 2 \frac{\partial^4 B}{\partial X^2 \partial Y^2} + \frac{\partial^4 B}{\partial Y^4} \right)$$
(1.3.3)

which are then differentiated one by one with respect to X, Y, or Z, up to second or fourth order (depending on optical element or IORDRE option, see section 1.4.2) so as to get the expressions involved in eq. (1.2.10).

1.3.4 Extrapolation from Arbitrary 2-D Field Maps

2-D field maps that give the three components $B_X(X,Y,Z_0)$, $B_Y(X,Y,Z_0)$ and $B_Z(X,Y,Z_0)$ at each node (X,Y) of a Z_0 Z-elevation map may be used. \vec{B} and its derivatives at any point (X,Y,Z) are calculated by polynomial interpolation followed by Taylor expansions in Z, without any hypothesis of symmetries (see section 1.4.3 and keywords MAP2D, MAP2D-E).

1.3.5 Interpolation in 3-D Field Maps [8]

In 3-D field maps \vec{B} and its derivatives up to the second order with respect to X, Y or Z are calculated by means of a second order polynomial interpolation, from 3-D $3 \times 3 \times 3$ -point grid (see section 1.4.4).

1.3.6 2-D Analytical Field Models and Extrapolation

Several optical elements such as *BEND*, *WIENFILT* (that uses the *BEND* procedures), *QUADISEX*, *VENUS*, etc., are defined from the expression of the field and derivatives in the median plane. 3-D extrapolation of these off the median plane is drawn from Taylor expansions and Maxwell's equations.

1.3.7 3-D Analytical Models of Fields

In many optical elements such as QUADRUPO, SEXTUPOL, MULTIPOL, EBMULT, etc., the three components of \vec{B} and their derivatives with respect to X, Y or Z are obtained at any step along trajectories from analytical expression drawn from the scalar potential V(X, Y, Z), namely

$$B_X = \frac{\partial V}{\partial X}, \quad B_Y = \frac{\partial V}{\partial Y}, \quad B_Z = \frac{\partial V}{\partial Z}, \quad \frac{\partial B_X}{\partial X} = \frac{\partial^2 V}{\partial X^2}, \quad \frac{\partial B_X}{\partial Y} = \frac{\partial^2 V}{\partial X \partial Y}, \quad \text{etc.}$$
 (1.3.4)

and similarly for \vec{E} with opposite sign for the gradients.

Multipoles

The scalar potential used for the calculation of $\frac{\partial^{i+j+k}\vec{B}_n(X,Y,Z)}{\partial X^i\partial Y^i\partial Z^k}$ (i+j+k=0 to 4) in the case of magnetic and electro-magnetic multipoles with 2n poles (namely, QUADRUPO (n=2) to DODECAPO (n=6), MULTIPOL (n=1 to 10), EBMULT (n=1 to 10)) is [9]

$$V(X|Y|Z) = (n!)^2 \left(\sum_{i=1}^{\infty} (-1)^q \frac{G^{(2q)}(X)(Y^2 + Z^2)^q}{\sum_{i=1}^{n} (-1)^q} \frac{\sin\left(m\frac{\pi}{2}\right) Y^{n-m} Z^m}{\sum_{i=1}^{n} (-1)^q} \right)$$
(1.3.5)

In particular a skew 2n-pole component is created by taking $A_n = \pi/2n$.

A Note on Electrostatic Multipoles

A right electric multipole has the same field equations as the like-order skew magnetic multipole. Therefore, calculation of right or skew electric or electro-magnetic multipoles (*ELMULT*, *EBMULT*, *ELMULT*) uses the same eq. (1.3.5) together with the rotation process as described in section 1.3.7. The same method is used for arbitrary rotation of any multipole component around the *X*-axis.

1.4 Calculation of \vec{E} and \vec{B} from Field Maps

In this section, unless otherwise stated, $\vec{B} = (B_X(X,Y,Z), B_Y(X,Y,Z), B_Z(X,Y,Z))$ stands indifferently for electric field \vec{E} or magnetic field \vec{B} .

1.4.1 1-D Axial Map, with Cylindrical Symmetry

Let B_i be the value of the longitudinal component $B_X(X,r=0)$ of the field \vec{B} , at node i of a uniform mesh that defines a 1-D field map along the symmetry X-axis, while $B_r(X,r=0)$ is assumed to be zero $(r=(Y^2+Z^2)^{1/2})$. The field component $B_X(X,r=0)$ is calculated by a polynomial interpolation of the fifth degree in X, using a 5 points grid centered at the node of the 1-D map which is closest to the actual coordinate X of the particle.

The interpolation polynomial is

$$B(X,0) = A_0 + A_1X + A_2X^2 + A_3X^3 + A_4X^4 + A_5X^5$$
(1.4.1)

and the coefficients A_i are calculated by expressions that minimize the quadratic sum

$$S = \sum_{i} (B(X,0) - B_i)^2$$
 (1.4.2)

Namely, the source code contains the explicit analytical expressions of the coefficients A_i solutions of the normal equations $\partial S/\partial A_i=0$.

The derivatives $\frac{\partial^n B}{\partial X^n}(X,0)$ at the actual position X, as involved in eqs. (1.3.1), are then obtained by differentiation of the polynomial (1.4.1), giving

$$\frac{\partial B}{\partial X}(X,0) = A_1 + 2A_2X + 3A_3X^2 + 4A_4X^3 + 5A_5X^4$$

$$\frac{\partial^2 B}{\partial X^2}(X,0) = 2A_2 + 6A_3X + 12A_4X^2 + 20A_5X^3$$
...
$$\frac{\partial^5 B}{\partial X^5}(X,0) = 120A_5$$
(1.4.3)

1.4.2 2-D Median Plane Map, with Median Plane Antisymmetry

Let B_{ij} be the value of $B_Z(X,Y,0)$ at the nodes of a mesh which defines a 2-D field map in the (X,Y) plane while $B_X(X,Y,0)$ and $B_Y(X,Y,0)$ are assumed to be zero. Such a map may have been built or measured in either Cartesian or polar coordinates. Whenever polar coordinates are used, a change to Cartesian coordinates (described below) provides the expression of \vec{B} and its derivatives as involved in eq. (1.2.10). **zgoubi** provides three types of polynomial interpolation from the mesh (option IORDRE); namely, a second order interpolation, with either a 9- or a 25-point grid, or a fourth order interpolation with a 25-point grid (Fig. 3).

If the 2-D field map is built up from computer simulation, the grid in principle simply aims at interpolating the field and derivatives at a given point from its 9 or 25 neighbors. On the other hand if the map results from field measurements, the grid also has the virtue of smoothing field fluctuations.

Figure 3: Mesh in the (X,Y) plane. The grid is centered on the node which is closest to the actual position of the particle.

A: Cartesian mesh, 9-point interpolation grid.

B: Cartesian mesh, 25-point interpolation grid.

C: Polar mesh and moving Cartesian frame.

The mesh may be defined in Cartesian coordinates, (Figs. 3A and 3B) or in polar coordinates (Fig. 3C). The interpolation grid is centered on the node which is closest to the projection in the (X, Y) plane of the actual point of the trajectory.

The interpolation polynomial is

$$B(X,Y,0) = A_{00} + A_{10}X + A_{01}Y + A_{20}X^2 + A_{11}XY + A_{02}Y^2$$
(1.4.4)

to the second order, or

$$B(X,Y,0) = A_{00} + A_{10}X + A_{01}Y + A_{20}X^{2} + A_{11}XY + A_{02}Y^{2}$$

$$+ A_{30}X^{3} + A_{21}X^{2}Y + A_{12}XY^{2} + A_{03}Y^{3}$$

$$+ A_{40}X^{4} + A_{31}X^{3}Y + A_{22}X^{2}Y^{2} + A_{13}XY^{3} + A_{04}Y^{4}$$

$$(1.4.5)$$

to the fourth order. The coefficients A_{ij} are calculated by expressions that minimize, with respect to A_{ij} , the quadratic sum

$$S = \sum_{ij} (B(X, Y, 0) - B_{ij})^2$$
(1.4.6)

The source code contains the explicit analytical expressions of the coefficients A_{ij} solutions of the normal equations $\partial S/\partial A_{ij}=0$.

The A_{ij} may then be identified with the derivatives of B(X,Y,0) at the central node of the grid

$$A_{ij} = \frac{1}{i!j!} \frac{\partial^{i+j} B}{\partial X^i \partial Y^j} (0, 0, 0)$$
 (1.4.7)

The derivatives of B(X, Y, 0) with respect to X and Y, at the actual point (X, Y, 0) are obtained by differentiation of the interpolation polynomial, which gives (e.g., from (1.4.4) in the case of second order interpolation)

$$\frac{\partial B}{\partial X}(X, Y, 0) = A_{10} + 2A_{20}X + A_{11}Y
\frac{\partial B}{\partial Y}(X, Y, 0) = A_{01} + A_{11}X + 2A_{02}Y
\text{etc.}$$
(1.4.8)

This allows stepping to the calculation of $\vec{B}(X,Y,Z)$ and its derivatives as described in subsection 1.3.3 (eq. 1.3.3).

The Special Case of Polar Maps

In some optical elements (e.g., POLARMES, DIPOLE[S]) the field is given in polar coordinates. It is thus necessary to transform the field and derivatives from the polar frame of the map, (R, α, Z) to the Cartesian moving frame (X, Y, Z), Fig. 3C. This is done as follows.

In second order calculations the correspondence is (we note $B \equiv B_Z(Z=0)$)

$$\frac{\partial B}{\partial X} = \frac{1}{R} \frac{\partial B}{\partial \alpha}
\frac{\partial B}{\partial Y} = \frac{\partial B}{\partial R}
\frac{\partial^2 B}{\partial X^2} = \frac{1}{R^2} \frac{\partial^2 B}{\partial \alpha^2} + \frac{1}{R} \frac{\partial B}{\partial R}
\frac{\partial^2 B}{\partial X \partial Y} = \frac{1}{R} \frac{\partial^2 B}{\partial \alpha \partial R} - \frac{1}{R^2} \frac{\partial B}{\partial \alpha}
\frac{\partial^2 B}{\partial Y^2} = \frac{\partial^2 B}{\partial R^2}
\frac{\partial^3 B}{\partial X^3} = \frac{3}{R^2} \frac{\partial^2 B}{\partial \alpha \partial R} - \frac{2}{R^3} \frac{\partial B}{\partial \alpha}
\frac{\partial^3 B}{\partial X^2 \partial Y} = \frac{-2}{R^3} \frac{\partial^2 B}{\partial \alpha^2} - \frac{1}{R^2} \frac{\partial B}{\partial R} + \frac{1}{R} \frac{\partial^2 B}{\partial R^2}
\frac{\partial^3 B}{\partial X \partial Y^2} = \frac{2}{R^3} \frac{\partial B}{\partial \alpha} - \frac{2}{R^2} \frac{\partial^2 B}{\partial \alpha \partial R}
\frac{\partial^3 B}{\partial Y^3} = 0$$
(1.4.9)

In fourth order calculations the relations above are pushed to fourth order in X, Y whereas

$$\begin{array}{lll} \frac{\partial^3 B}{\partial X^3} &= \frac{1}{R^3} \frac{\partial^3 B}{\partial \alpha^3} + \frac{3}{R^2} \frac{\partial^2 B}{\partial \alpha \partial R} - \frac{2}{R^3} \frac{\partial B}{\partial \alpha} \\ \frac{\partial^3 B}{\partial X^2 \partial Y} &= \frac{1}{R^2} \frac{\partial^3 B}{\partial \alpha^2 \partial R} - \frac{2}{R^3} \frac{\partial^2 B}{\partial \alpha^2} - \frac{1}{R^2} \frac{\partial B}{\partial R} + \frac{1}{R} \frac{\partial^2 B}{\partial R^2} \\ \frac{\partial^3 B}{\partial X \partial Y^2} &= \frac{1}{R} \frac{\partial^3 B}{\partial \alpha \partial R^2} + \frac{2}{R^3} \frac{\partial B}{\partial \alpha} - \frac{2}{R^2} \frac{\partial^2 B}{\partial \alpha \partial R} \\ \frac{\partial^3 B}{\partial Y^3} &= \frac{\partial^3 B}{\partial R^3} \\ \frac{\partial^4 B}{\partial X^4} &= \frac{1}{R^4} \frac{\partial^4 B}{\partial \alpha^4} - \frac{8}{R^4} \frac{\partial^2 B}{\partial \alpha^2} + \frac{6}{R^3} \frac{\partial^3 B}{\partial \alpha^2 \partial R} + \frac{3}{R^2} \frac{\partial^2 B}{\partial R^2} - \frac{3}{R^3} \frac{\partial B}{\partial R} \\ \frac{\partial^4 B}{\partial X^3 \partial Y} &= \frac{1}{R^3} \frac{\partial^4 B}{\partial \alpha^3 \partial R} - \frac{3}{R^4} \frac{\partial^3 B}{\partial \alpha^3} + \frac{3}{R^2} \frac{\partial^3 B}{\partial \alpha \partial R^2} - \frac{8}{R^3} \frac{\partial^2 B}{\partial \alpha \partial R} + \frac{6}{R^4} \frac{\partial B}{\partial \alpha} \\ \frac{\partial^4 B}{\partial X^2 2 Y^2} &= \frac{1}{R^4} \frac{\partial^2 B}{\partial \alpha^2} - \frac{4}{R^3} \frac{\partial^3 B}{\partial \alpha^2 \partial R} - \frac{2}{R^2} \frac{\partial^2 B}{\partial R^2} + \frac{2}{R^3} \frac{\partial B}{\partial R} + \frac{1}{R^2} \frac{\partial^4 B}{\partial \alpha^2 \partial R^2} + \frac{1}{R} \frac{\partial^3 B}{\partial R^3} \\ \frac{\partial^4 B}{\partial X \partial Y^3} &= \frac{1}{R} \frac{\partial^4 B}{\partial \alpha \partial R^3} - \frac{3}{R^2} \frac{\partial^3 B}{\partial \alpha \partial R^2} + \frac{6}{R^3} \frac{\partial^2 B}{\partial \alpha \partial R} - \frac{6}{R^4} \frac{\partial^4 B}{\partial \alpha^4} \\ \frac{\partial^4 B}{\partial Y^4} &= \frac{\partial^4 B}{\partial R^4} \\ &= \frac{\partial^4 B}{\partial R^4} \\ &= \frac{\partial^4 B}{\partial R^4} \end{array}$$

NOTE: In case a particle goes beyond the limits of the field map, the field and its derivatives are extrapolated using a grid at the border of the map, which is the closest to the actual position of the particle. The flag IEX attached to the particle (section 6.6.11, p. 188) is then given the value -1.

1.4.3 Arbitrary 2-D Map, no Symmetry

The map is assumed to describe the field $\vec{B}(B_X, B_Y, B_Z)$ in the (X, Y) plane at elevation Z_0 . It provides the components $B_{X,ij}$, $B_{Y,ij}$, $B_{Z,ij}$ at each node (i,j) of a 2-D mesh.

The value of \vec{B} and its derivatives at the projection (X,Y,Z_0) of the actual position (X,Y,Z) of a particle is obtained by means of (parameter IORDRE in keyword data list - see for instance MAP2D, MAP2D-E) either a second degree polynomial interpolation from a 3×3 points grid (IORDRE=2), or a fourth degree polynomial interpolation from a 5×5 points grid (IORDRE=4), centered at the node (i,j) closest to the position (X,Y).

To second order for instance

$$B_{\ell}(X, Y, Z_0) = A_{00} + A_{10}X + A_{01}Y + A_{20}X^2 + A_{11}XY + A_{02}Y^2$$
(1.4.11)

where B_{ℓ} stands for any of the three components B_X , B_Y or B_Z . Differentiating then gives the derivatives

$$\frac{\partial B_{\ell}}{\partial X}(X, Y, Z_0) = A_{10} + 2A_{20}X + A_{11}Y$$

$$\frac{\partial^2 B_{\ell}}{\partial X \partial Y}(X, Y, Z_0) = A_{11}$$
etc.
$$(1.4.12)$$

Then follows a procedure of extrapolation from (X,Y,Z_0) to the actual position (X,Y,Z), based on Taylor series development.

No special symmetry is assumed, which allows the treatment of arbitrary field distribution (e.g., solenoid, helical snake).

Figure 4: A 3-D 27-point grid is used for interpolation of magnetic or electric fields and derivatives up to second order. The central node of the grid (i=j=k=0) is the closest to the actual position of the particle.

1.4.4 3-D Field Map

When using a 3-D field map, the vector field $\vec{B}(X,Y,Z)$ and its derivatives necessary for the calculation of position and velocity of the particle are obtained via second degree polynomial interpolation,

$$B_{\ell}(X,Y,Z) = A_{000} + A_{100}X + A_{010}Y + A_{001}Z + A_{200}X^{2} + A_{020}Y^{2} + A_{002}Z^{2} + A_{110}XY + A_{101}XZ + A_{011}YZ$$
(1.4.13)

 B_{ℓ} stands for any of the three components, B_X , B_Y or B_Z . By differentiation of B_{ℓ} one gets

$$\frac{\partial B_{\ell}}{\partial X} = A_{100} + 2A_{200}X + A_{110}Y + A_{101}Z$$

$$\frac{\partial^2 B_{\ell}}{\partial X^2} = 2A_{200}$$
(1.4.14)

and so on up to second order derivatives with respect to X, Y or Z.

The interpolation involves a $3 \times 3 \times 3$ -point parallelepipedic grid (Fig. 4), the origin of which is positioned at the node of the 3-D field map which is closest to the actual position of the particle.

Let B_{ijk}^{ℓ} be the value of the — measured or computed — magnetic field at each one of the 27 nodes of the 3-D grid (B^{ℓ} stands for B_X , B_Y or B_Z), and $B_{\ell}(X,Y,Z)$ be the value at a position (X,Y,Z) with respect to the central node of the 3-D grid. Thus, any coefficient A_i of the polynomial expansion of B_{ℓ} is obtained by means of expressions that minimize, with respect to A_i , the sum

$$S = \sum_{ijk} (B_{\ell}(X, Y, Z) - B_{ijk}^{\ell})^{2}$$
(1.4.15)

where the indices i, j and k take the values -1, 0 or +1 so as to sweep the 3-D grid. The source code contains the explicit analytical expressions of the coefficients A_{ijk} solutions of the normal equations $\partial S/\partial A_{ijk}=0$.

2 SPIN TRACKING

Spin motion tracking was implemented in **zgoubi** in the SATURNE years [10], it has been since used in a number of studies, including the transport of polarized muons in the Neutrino Factory [11], polarization survival in the superB project [12], studies on proton polarization with helical snakes at AGS [13] and RHIC [14], in the magic-energy electrostatic ring of the proton-EDM project [15], spin diffusion in eRHIC collider lattice - which includes spin rotators [16].

2.1 Introduction

The precession of the spin \vec{S} of a charged particle in electric and magnetic fields is governed by the Thomas-BMT first order differential equation [17]

$$\frac{d\vec{S}}{dt} = \frac{q}{m} \, \vec{S} \times \vec{\omega} \tag{2.1.1}$$

with, in the laboratory frame,

$$\vec{\omega} = (1 + \gamma G)\vec{b} + G(1 - \gamma)\vec{b}_{/\!/} + \gamma(G + \frac{1}{1 + \gamma})\frac{\vec{e} \times \vec{v}}{c^2}$$
(2.1.2)

 t, q, m, c, γ and G are respectively the time, charge, relativistic mass, speed of light, Lorentz relativistic factor and anomalous magnetic moment of the particle, \vec{b} and \vec{e} are the fields in the laboratory, \vec{b}_{\parallel} is the component of \vec{b} parallel to the velocity \vec{v} of the particle.

34 2 SPIN TRACKING

Equation (2.1.1) is normalized by introducing the same notation as for the Lorentz equation, page 19, namely $b = ||\vec{b}||$, $v = ||\vec{v}||$, $\vec{v} = v\vec{u}$, ds = vdt the differential path, $\frac{\gamma mv}{q} = B\rho$ the rigidity of the particle,

whereas $\vec{S}' = \frac{d\vec{S}}{ds} = \frac{1}{v} \frac{d\vec{S}}{dt}$ is the derivative of the spin with respect to the path. This yields

$$(B\rho) \vec{S}' = \vec{S} \times \vec{\omega} \quad \text{or} \quad \vec{S}' = \vec{S} \times \vec{\Omega}$$
 (2.1.3)

where, noting $\vec{B} = \vec{b}/B\rho$, $\vec{E} = \vec{e}/B\rho$,

$$\vec{\Omega} = \frac{\vec{\omega}}{B\rho} = (1 + \gamma G)\vec{B} + G(1 - \gamma)\vec{B}_{/\!/} + \frac{\beta\gamma}{c}(G + \frac{1}{1 + \gamma})\vec{E} \times \vec{u}$$
 (2.1.4)

This equation is solved in the same way as the reduced Lorentz equation (1.2.3). From the values of the precession factor $\vec{\omega}(M_0)$ and spin $\vec{S}(M_0)$ of the particle at position M_0 , the spin $\vec{S}(M_1)$ at position M_1 , following a displacement Δs (fig. 2), is obtained from truncated Taylor expansion

$$\vec{S}(M_1) \approx \vec{S}(M_0) + \frac{d\vec{S}}{ds}(M_0) \Delta s + \frac{d^2\vec{S}}{ds^2} (M_0) \frac{\Delta s^2}{2} + \frac{d^3\vec{S}}{ds^3} (M_0) \frac{\Delta s^3}{3!} + \frac{d^4\vec{S}}{ds^4} (M_0) \frac{\Delta s^4}{4!} + \frac{d^5\vec{S}}{ds^5} (M_0) \frac{\Delta s^5}{5!}$$
(2.1.5)

2.2 Integration in Magnetic Fields

In purely magnetic fields $\vec{e} = 0$ thus eq. (2.1.4) reduces to

$$\vec{\Omega}_b = (1 + \gamma G)\vec{B} + G(1 - \gamma)\vec{B}_{/\!\!/}$$
(2.2.1)

 \vec{S} and its derivatives $\vec{S}^{(n)} = d^n \vec{S}/ds^n$ satisfy the recursive differentiation relations

$$\vec{S}' = \vec{S} \times \vec{\Omega}_{b}$$

$$\vec{S}'' = \vec{S}' \times \vec{\Omega}_{b} + \vec{S} \times \vec{\Omega}'_{b}$$

$$\vec{S}''' = \vec{S}'' \times \vec{\Omega}_{b} + 2\vec{S}' \times \vec{\Omega}'_{b} + \vec{S} \times \vec{\Omega}''_{b}$$
etc. (2.2.2)

with the derivatives $d^n\vec{\Omega}_b/ds^n$ obtained by differentiation of eq. (2.2.1). This requires $\vec{B}_{/\!\!/}$ and derivatives, obtained in the following way,

$$\vec{B}_{/\!/} = (\vec{B} \cdot \vec{u}) \vec{u}$$

$$\vec{B}_{/\!/}' = (\vec{B}' \cdot \vec{u} + \vec{B} \cdot \vec{u}') \vec{u} + (\vec{B} \cdot \vec{u}) \vec{u}'$$

$$\vec{B}_{/\!/}'' = (\vec{B}'' \cdot \vec{u} + 2\vec{B}' \cdot \vec{u}' + \vec{B} \cdot \vec{u}'') \vec{u} + 2(\vec{B}' \cdot \vec{u} + \vec{B} \cdot \vec{u}') \vec{u}' + (\vec{B} \cdot \vec{u}) \vec{u}''$$
etc.

(2.2.3)

The quantities \vec{u} , \vec{B} and their derivatives as involved in these equations are known, being sub-products of the integration of the motion of the particle, eqs. (1.2.8, 1.2.10) p. 21.

2.3 Integration in Electric Fields

In purely electric fields $\vec{b} = 0$, thus eq. (2.1.2) reduces to

$$\omega_e = \frac{\beta \gamma}{c} (G + \frac{1}{1+\gamma}) \, \vec{e} \times \vec{u} \tag{2.3.1}$$

 \vec{S} and its derivatives $\vec{S}^{(n)} = d^n \vec{S}/ds^n$ satisfy the recursive differentiation relations

$$B\rho \vec{S}' = \vec{S} \times \vec{\omega}_{e}$$

$$(B\rho)'\vec{S}' + B\rho\vec{S}'' = \vec{S}' \times \vec{\omega}_{e} + \vec{S} \times \vec{\omega}'_{e}$$

$$(B\rho)''\vec{S}' + 2(B\rho)'\vec{S}'' + B\rho\vec{S}''' = \vec{S}'' \times \vec{\omega}_{e} + 2\vec{S}' \times \vec{\omega}'_{e} + \vec{S}' \times \vec{\omega}''_{e}$$
etc. (2.3.2)

that provide the derivatives $d^n \vec{S}/ds^n$ needed in the Taylor expansion (eq. 2.1.5). The derivatives $(B\rho)^{(n)} = d^n(B\rho)/ds^n$ above are a sub-product of the integration of the force law (eq. 1.2.18). The derivatives of ω_e

From $\gamma^2=1/(1-\beta^2)$ it comes $(\gamma+1)(\gamma-1)\beta^2/(1-\beta^2)$ and then

$$\frac{1}{1+\gamma} = \left(\frac{1}{\beta} - 1\right) \left(\frac{1}{\beta} + 1\right) (\gamma - 1)$$

which is easily differentiated, recursively,

$$\left(\frac{1}{1+\gamma}\right)' = \left(\frac{1}{\beta}\right)' \left(\frac{1}{\beta}+1\right) (\gamma-1) + \left(\frac{1}{\beta}-1\right) \left(\frac{1}{\beta}\right)' (\gamma-1) + \left(\frac{1}{\beta}-1\right) \left(\frac{1}{\beta}+1\right) \gamma'
\left(\frac{1}{1+\gamma}\right)'' = \left(\frac{1}{\beta}\right)'' \left(\frac{1}{\beta}+1\right) (\gamma-1) + \left(\frac{1}{\beta}-1\right) \left(\frac{1}{\beta}\right)'' (\gamma-1) + \left(\frac{1}{\beta}-1\right) \left(\frac{1}{\beta}+1\right) \gamma'' +
2 \left(\frac{1}{\beta}\right)' \left(\frac{1}{\beta}\right) (\gamma-1) + 2 \left(\frac{1}{\beta}\right)' \left(\frac{1}{\beta}\right)' (\gamma-1) + 2 \left(\frac{1}{\beta}-1\right) \left(\frac{1}{\beta}\right)' \gamma'
etc.$$
(2.3.4)

The interest of that formulation is that the $\left(\frac{1}{\beta}\right)^{(n)}$ are already known from the particle dynamics, eq. (1.2.21), as well as the derivatives

$$\frac{d^{n+1}\gamma}{ds^{n+1}} = \frac{q}{m} \frac{d^n(\vec{e} \cdot \vec{u})}{ds^n}$$

following eq. (1.2.20), whereas the $d^n(\vec{e} \cdot \vec{u})/ds^n$ are given by eq. (1.2.19).

2.4 Integration in Combined Electric and Magnetic Fields

When both \vec{e} and \vec{b} are non-zero, the complete eqs. (2.1.3, 2.1.4) must be considered.

36 2 SPIN TRACKING

The precession vector (eq. 2.1.4) and its derivatives can be split into independent, magnetic and electric components, namely

$$\vec{\omega} = \vec{\omega}_b + \vec{\omega}_e, \ \vec{\omega}' = \vec{\omega}_b' + \vec{\omega}_e',$$
 etc.

As a consequence, the spin vector $\vec{S}(s)$ and its derivatives at location M_0 prior to a Δs push to location M_1 (fig. 2) can be obtained by linear superposition of the separate solutions for the magnetic case (eq. 2.2.2) and for the electric case (eq. 2.3.2), namely

$$B\rho \vec{S}' = \\ \vec{S} \times \vec{\omega}_{b} + \vec{S} \times \vec{\omega}_{e}$$

$$B\rho \vec{S}'' = \\ \vec{S}' \times \vec{\omega}_{b} + \vec{S} \times \vec{\omega}'_{b} + \vec{S} \times \vec{\omega}'_{b} + \vec{S}' \times \vec{\omega}_{e} + \vec{S} \times \vec{\omega}'_{e} - (B\rho)'\vec{S}'$$

$$B\rho \vec{S}''' = \\ \underline{\vec{S}'' \times \vec{\omega}_{b} + 2\vec{S}' \times \vec{\omega}'_{b} + \vec{S} \times \vec{\omega}''_{b}}_{\text{Magnetic field component, eq. (2.2.2)}} + \vec{S}'' \times \vec{\omega}_{e} + 2\vec{S}' \times \vec{\omega}'_{e} + \vec{S} \times \vec{\omega}''_{e} - ((B\rho)''\vec{S}'' + 2(B\rho)''\vec{S}'')$$
Electric field component, eq. (2.3.2)
etc. (2.4.1)

The process is then completed by applying the Δs push, eq. (2.1.5).

2.5 Radiative polarization

Radiative spin transition is accounted for in a classical manner with an additional term in the Thomas-BMT differential equation for the motion of the polarization vector [18], namely, see Eqs. 2.1.1, 2.1.2 (in the absence of electric fields),

$$\frac{d\vec{S}}{dt} = \frac{q}{m} \left(\vec{S} \times (1 + a\gamma)\vec{b} + a(1 - \gamma)\vec{b}_{/\!/} \right) - \frac{1}{\tau_{ST}} \left(\vec{S} - \frac{2}{9} (\vec{S} \cdot \vec{u})\vec{u} + \frac{8}{5\sqrt{3}} \frac{\vec{u} \times \dot{\vec{u}}}{|\dot{\vec{u}}|} \right)$$
(2.5.1)

where the electron notation for the magnetic anomaly, a, replaces hadron's G (and q=-e with e the elementary charge, for electrons), \vec{u} is the unit velocity vector of the particle and $\vec{u}=d\vec{u}/dt=v\vec{u}'$ (eq. 1.2.2). The Sokolov-Ternov polarization equilibrium time constant has been introduced,

$$\tau_{ST} = \frac{4}{5\sqrt{3}} \frac{E}{\hbar \omega_c} \tau_0 \tag{2.5.2}$$

with $E = \gamma m_0$ the particle energy and $\hbar \omega_c = h \times 3\gamma^3 c / 2\rho$ the critical photon energy.

This radiative term is only added if the particle does radiate [19], that event being determined by the Monte Carlo photon emission simulation process described in Sec. 3.1. It has the effect of slightly changing the electron polarization, under the effect of radiation induced spin transition.

This radiative correction process is under installation in **zgoubi**. Its benchmarking includes comparison with statistical averages of quantum spin physics.

As to solving the differential eq. 2.5.1, the technique follows the **zgoubi** method, namely, introducing derivatives with respect to the path variable s, and fields normalized to $B\rho$,

$$\frac{d\vec{S}}{ds} = \left(\vec{S} \times \vec{(1+a\gamma)}\vec{B} + a(1-\gamma)\vec{B}_{\parallel}\right) - \frac{1}{\tau_{ST}}\left(\vec{S} - \frac{2}{9}(\vec{S} \cdot \vec{\beta})\vec{\beta} + \frac{8}{5\sqrt{3}}\frac{\vec{\beta} \times \dot{\vec{\beta}}}{|\vec{\beta}|}\right)$$
(2.5.3)

The derivatives of the unit velocity vector \vec{u} are outcomes of the solution of particle motion as detailed in Sec. 1.2. The derivatives of the polarization vector are computed as detailed in ec. 2.1.

2.6 Spin Diffusion

To be documented.

3 SYNCHROTRON RADIATION

zgoubi provides the simulation of two distinct types of synchrotron radiation (SR) manifestations namely, on the one hand energy loss by stochastic emission of photons and the ensuing perturbation on particle dynamics and, on the other hand the radiated electro-magnetic field impulse and its spectral-angular energy density as observed in the laboratory.

SR loss simulation was first installed in **zgoubi** in view of beam dynamics studies in the beam delivery system of the Next Linear Collider [20], based on a method developed in the frame of the ELFE project ("EU Lab. For Electrons") [21, 22, 23]. It was later used, and benchmarked including coupling, to account for damping effects in beam studies for various electron-ring and recirculator projects [12, 24, 25], and to account for spin diffusion studies in eRHIC collider lattice - which includes spin rotators [16].

SR electromagneitc impulse and spectrum computation was first installed in **zgoubi** for the study of interference effects at the LEP beam diagnostics miniwiggler [27]. These simulation tools were next used to design the LHC SR beam diagnostics systems, located in the IR4 RF section [28].

3.1 Energy Loss and Dynamical Effects

Most of the contents of the present section are drawn from Ref. [20].

Given a particle wandering in the magnetic field of an arbitrary optical element or field map, **zgoubi** computes the energy loss undergone, and its effect on the particle motion. The energy loss is calculated in a classical manner, by invoking two random processes that accompany the emission of a photon namely,

- the probability of emission,
- the energy of the photon.

The effects on the dynamics of the emitting particle either account for the sole alteration of its energy, or, if requested, include the angle kick. Particle position is supposed not to change upon emission of a photon. These calculations and ensuing dynamics corrections are performed at each integration step. In a practical manner, this requires centimeters to tens of centimeters steps in smoothly varying magnetic fields (a quantity to be determined before any simulation, from convergence trials).

Main aspects of the method are developed in the following.

Probability of Emission of a Photon

Given that the number of photons emitted within a step Δs can be very small (units or fractions of a unit)¹ a Poisson probability law

$$p(k) = \frac{\lambda^k}{k!} \exp(-\lambda) \tag{3.1.1}$$

is considered. k is the number of photons emitted over a $\Delta\theta$ (circular) arc of trajectory such that, the average number of photons per radian expresses as²

$$\lambda = \frac{20er_0}{8\hbar\sqrt{3}}\beta^2 B\rho \frac{\Delta s}{\rho} \tag{3.1.2}$$

where $r_0 = e^2/4\pi\epsilon_0 m_0 c^2$ is the classical radius of the particle of rest-mass m_0 , e is the elementary charge, $\hbar = h/2\pi$, h is the Planck constant, $\beta = v/c$, $B\rho$ is the particle stiffness. λ is evaluated at each integration step from the current values β , $B\rho$ and Δs , then a value of k is drawn by a rejection method.

Energy of the Photons

These k photons are assigned energies $\epsilon = h\nu$ at random, in the following way. The cumulative distribution of the energy probability law $p(\epsilon/\epsilon_c)d\epsilon/\epsilon_c$ (i.e., the probability of emission of a photon with energy in $[0,\epsilon]$) writes ³

$$\mathcal{P}(\epsilon/\epsilon_c) = \frac{3}{5\pi} \int_0^{\epsilon/\epsilon_c} \frac{d\epsilon}{\epsilon_c} \int_{\epsilon/\epsilon_c}^{\infty} K_{5/3}(x) dx$$
 (3.1.3)

where $K_5/3$ is a modified Bessel function and, $\epsilon_c = \hbar \omega_c$, $\omega_c = 2\pi \times 3\gamma^3 c/2\rho$ being the critical frequency in the presence of bending radius ρ ; ω_c is evaluated at each integration step from the current values γ and ρ , in other words, this energy loss calculation assumes constant magnetic field over the trajectory arc Δs . In the low frequency region $(\epsilon/\epsilon_c \ll 1)$ it can be approximated by

$$\mathcal{P}(\epsilon/\epsilon_c) = \frac{12\sqrt{3}}{2^{1/3} \, 5 \, \Gamma(\frac{1}{3})} (\frac{\epsilon}{\epsilon_c})^{1/3} \tag{3.1.4}$$

Cumulative energy distribution $\mathcal{P}(\epsilon/\epsilon_c)$.

About 40 values of $\mathcal{P}(\epsilon/\epsilon_c)$ computed from eq. 3.1.3 [26], honestly spread over a range $\epsilon/\epsilon_c \leq 10$ are tabulated in **zgoubi** source file (see figure). In order to get ϵ/ϵ_c , first a random value $0 < \mathcal{P} < 1$ is generated uniformly, then ϵ/ϵ_c is drawn either by simple inverse linear interpolation of the tabulated values

if
$$\mathcal{P} > 0.26$$
 (corresponding to $\epsilon/\epsilon_c > 10^{-2}$), or, if $\mathcal{P} < 0.26$ from eq. 3.1.4 that gives $\epsilon/\epsilon_c = \left(\frac{5 \, 2^{1/3} \Gamma(\frac{1}{3})}{12 \sqrt{3} \mathcal{P}}\right)^3$ with precision no less than 1% at $\mathcal{P} \to 0.26$.

¹For instance, a 1 GeV electron will emit about 20.6 photons per radian; an integration step size $\Delta s = 0.1$ m upon $\rho = 10$ m bending radius results in 0.2 photon per step.

²This leads for instance, in the case of electrons, to the classical formula $\lambda/\Delta\theta \approx 129.5 \text{E(GeV)}/2\pi \approx \gamma/94.9$.

³From a practical viewpoint, the value of the magnetic field first computed for a one-step push of the particle (eqs. 1.2.4, 1.2.8) is next used to obtain ρ and perform SR loss corrections afterwards.

When SR loss tracking is requested, several optical elements that contain a dipole magnetic field component (e.g., MULTIPOL, BEND) provide a printout of various quantities related to SR emission, as drawn from classical theoretical expressions, such as for instance,

- energy loss per particle $\Delta E(eV) = \frac{2}{3} r_0 c \gamma^3 B(T) \Delta \theta$, with B the dipole field exclusive of any other multipole component in the magnet, $\Delta \theta$ the total deviation as calculated from B, from the magnet length, and from the reference rigidity BORO (as defined with, e.g., [MC]OBJET)
- critical energy $\epsilon_c(eV) = \frac{3\gamma^3 c}{2\rho} \frac{\hbar}{e}$, with $\rho = BORO/B$ average energy of the photons radiated $<\epsilon> = \frac{8}{15\sqrt{3}}\epsilon_c$,
- rms energy of radiated photons $\epsilon_{rms} = 0.5591\epsilon_c$,
- number of radiated photons per particle $N = \Delta E / < \epsilon >$.

This is done in order to facilitate verifications, since on the other hand statistics regarding those values are drawn from the tracking and may be printed using the dedicated keyword SRPRNT.

Finally, upon user's request as well, SR loss can be limited to particular classes of optical elements, for instance dipole magnets alone, or dipole + quadrupole magnets, etc. This option is made available in order to allow further inspection, or easier comparison with other codes, for instance.

3.2 Spectral-Angular Radiated Densities

Most of the content in the present section is drawn from Refs. [27, 28, 29].

The ray-tracing procedures provide the ingredients necessary for the determination of the electric field radiated by the particle subject to acceleration, as shown in Fig. 5, this is developed in section 3.2.1. These ingredients further allow calculating the spectral-angular density of the radiation⁴, this is developed in section 3.2.2.

Figure 5: A scheme of the reference frame in **zgoubi** together with the vectors entering in the definition of the electric field radiated by the accelerated particle:

(x, y): horizontal plane; z: vertical axis.

 $\vec{R}(t)$ = particle position in the fixed frame (O, x, y, z);

 \vec{X} (time-independent) = position of the observer in the (O, x, y, z) frame;

 $\vec{r}(t) = \vec{X} - \vec{R}(t)$ = position of the particle with respect to the observer;

 $\vec{n}(t)$ = (normalized) direction of observation = $\vec{r}(t)/|\vec{r}(t)|$;

 $\vec{\beta}$ = normalized velocity vector of the particle $\vec{v}/c = (1/c)d\vec{R}/dt$.

3.2.1 Calculation of the Radiated Electric Field

The expression for the radiated electric field $\vec{\mathcal{E}}(\vec{n},\tau)$ as seen by the observer in the long distance approximation is [30]

$$\vec{\mathcal{E}}(\vec{n},\tau) = \frac{q}{4\pi\varepsilon_0 c} \frac{\vec{n}(t) \times \left[\left(\vec{n}(t) - \vec{\beta}(t) \right) \times d\vec{\beta}/dt \right]}{r(t) \left(1 - \vec{n}(t) \cdot \vec{\beta}(t) \right)^3}$$
(3.2.1)

where t is the time in which the particle motion is described and τ is the observer time. Namely, when at position $\vec{r}(t)$ with respect to the observer (or as well at position $\vec{R}(t) = \vec{X} - \vec{r}(t)$ in the (O, x, y, z) frame) the particle emits a signal which reaches the observer at time τ , such that $\tau = t + r(t)/c$ where r(t)/c is the delay necessary for the signal to travel from the emission point to the observer, which also leads by differentiation to the well-known relation

$$\frac{d\tau}{dt} = 1 - \vec{n}(t) \cdot \vec{\beta}(t) \tag{3.2.2}$$

The vectors $\vec{R}(t)$ and $\vec{\beta}(t) = \frac{v}{c}\vec{u}$ (eq. 1.2.2) that describe the motion are obtained from the ray-tracing (eqs. 1.2.4). The acceleration is calculated from (a form of eq. 1.2.1 with $\vec{e} = 0$)

$$\frac{d\vec{\beta}}{dt} = \frac{q}{m} \, \vec{\beta}(t) \times \vec{b}(t) \tag{3.2.3}$$

Then, given the observer position \vec{X} in the fixed frame, it is possible to calculate

$$\vec{r}(t) = \vec{X} - \vec{R}(t)$$
 and $\vec{n}(t) = \frac{\vec{r}(t)}{|\vec{r}(t)|}$ (3.2.4)

As an illustration, Fig. 6 has been produced using **zpop**, it shows the typical shape of the electric field impulse at the observer, with central peak width [29]

Figure 6: Left: typical shapes of the $\mathcal{E}_{\sigma}(t)$ and $\mathcal{E}_{\pi}(t)$ components of the electric field impulse (eq. 3.2.1) emitted by a 2.5 GeV electron on a $\rho=53.6$ m circular trajectory in a l=20 cm-long dipole, as observed in the direction of the centre of the dipole, $\phi=0, \gamma\psi=5$ (observation distance r=10 m). Right: the related spectral angular densities $\partial^3 W_{\sigma,\,\pi}/\partial\phi\,\partial\psi\,\partial\omega$ (eq. 3.2.10). After Ref. [29].

It is therefore necessary to express $\vec{n} - \vec{\beta}$ and $1 - \vec{n} \cdot \vec{\beta}$ in an adequate form for achieving accurate software computation.

The expression for \vec{n} is

$$\vec{n} = (n_x, n_y, n_z) = (\cos \psi \cos \phi, \cos \psi \sin \phi, \sin \psi)$$

$$= \left[1 - 2(\sin^2 \phi/2 + \sin^2 \psi/2) + 4\sin^2 \phi/2\sin^2 \psi/2, \sin \phi(1 - 2\sin^2 \psi/2), \sin \psi\right] \quad (3.2.5)$$

where ϕ and ψ are the observation angles, given by

$$\phi = \operatorname{Atg}\left(\frac{r_y}{r_x}\right) \text{ and } \psi = \operatorname{Atg}\left(\frac{r_z}{\sqrt{r_x^2 + r_y^2}}\right)$$
 (3.2.6)

with $\vec{r} = (r_x, r_y, r_z)$, while $\vec{\beta}$ can be written under the form

$$\vec{\beta} = (\beta_x, \beta_y, \beta_z) = \left[\sqrt{(\beta^2 - \beta_y^2 - \beta_z^2)}, \beta_y, \beta_z \right]$$

$$= \left[\sqrt{(1 - 1/\gamma^2 - \beta_y^2 - \beta_z^2)}, \beta_y, \beta_z \right] = (1 - a/2 + a^2/8 - a^3/16 + \dots, \beta_y, \beta_z) \quad (3.2.7)$$

where $a=1/\gamma^2+\beta_y^2+\beta_z^2.$ This leads to

$$n_x = 1 - \varepsilon_x$$
 and $\beta_x = 1 - \xi_x$

with

$$\varepsilon_x = 2(\sin^2 \phi/2 + \sin^2 \psi/2) - 4\sin^2 \phi/2\sin^2 \psi/2$$

and

$$\xi_x = a/2 - a^2/8 + a^3/16 + \dots$$

All this provides, on the one hand,

$$\vec{n} - \vec{\beta} = (-\varepsilon_x + \xi_x, n_y - \beta_y, n_z - \beta_z), \qquad (3.2.8)$$

whose components are combinations of terms of the same order of magnitude (ε_x and $\xi_x \sim 1/\gamma^2$ while n_u, β_u, n_z and $\beta_z \sim 1/\gamma$) and, on the other hand,

$$1 - \vec{n} \cdot \vec{\beta} = \varepsilon_x + \xi_x - n_y \beta_y - n_z \beta_z - \varepsilon_x \xi_x , \qquad (3.2.9)$$

that combines terms of the same order of magnitude (ε_x , ξ_x , $n_y\beta_y$ and $n_z\beta_z \sim 1/\gamma^2$), plus $\varepsilon_x\beta_x \sim 1/\gamma^4$. The precision of these expressions is directly related to the order at which the series

$$\xi_x = a/2 - a^2/8 + a^3/16 + \dots$$
 $(a = 1/\gamma^2 + \beta_y^2 + \beta_z^2)$

is pushed, however the convergence is fast since $a\sim 1/\gamma^2\ll 1$ in situations of concern.

3.2.2 Calculation of the Fourier Transform of the Electric Field

The Fourier transforms

$$FT_{\omega}[\vec{\mathcal{E}}(\tau)] = \int \vec{\mathcal{E}}(\tau)e^{-i\omega\tau}d\tau$$

of the σ and π electric field components provide the spectral angular energy density

$$\frac{\partial^3 W}{\partial \phi \, \partial \psi \, \partial \omega} = \frac{r^2}{\mu_0 c} \left| F T_\omega \left(\vec{\mathcal{E}}(\tau) \right) \right|^2 \tag{3.2.10}$$

Fig. 6-right gives a typical example in the case of a short magnet. These Fourier transforms are computed without resorting to FFT techniques, namely from

$$FT_{\omega}\left[\vec{\mathcal{E}}(\tau)\right] \approx \sum \vec{\mathcal{E}}(\tau_k) e^{-i\omega\tau_k} \Delta \tau_k$$
 (3.2.11)

for two reasons. On the one hand, the number of integration steps Δs that define the trajectory (eqs. 1.2.4), is arbitrary and therefore in general not of order 2^n . On the other hand, the integration step defines a constant time differential element $\Delta t_k = \Delta s/\beta c$ which results in the observer differential time element $\Delta \tau_k$, which is also the differential element of the Fourier transform, being non-constant, since both are related by eq. 3.2.2 in which $\vec{\beta}$ and \vec{n} vary as a function of the integration step number k.

An additional issue is that $\Delta \tau_k$ may reach drastically small values in the region of the central peak of the electric impulse emitted in a dipole, i.e., $1-\vec{n}(t)\cdot\vec{\beta}(t)\to 1/2\gamma^2$, whereas the total integrated time $\sum_{k=1}^N \Delta \tau_k$ may be several orders of magnitude larger. In terms of the physical phenomenon, the total duration of the electric field impulse as seen by the observer corresponds to the time delay $\sum_{k=1}^N \Delta \tau_k$ that separates photons emitted at the entrance of the magnet from photons emitted at the exit, but the significant part of it (in terms of energy density) which can be represented by the width $2\tau_c=2\frac{2\rho}{3\gamma^3}(1+\gamma^2\psi^2)^{3/2}$ of the radiation peak,

is a very small fraction of $\sum_{k=1}^{N} \Delta \tau_k$.

The consequence is that, again in relation to computer precision, the differential element $\Delta \tau_k$ involved in the computation of eq. 3.2.11 cannot be derived from such relation as $\Delta \tau_k = \sum_{k=1}^n \Delta \tau_k - \sum_{k=1}^{n-1} \Delta \tau_k$ but instead must be stored as is, in the course of the ray-tracing process, for subsequent data treatment.

4 SPACE CHARGE

zgoubi provides models for the simulation of space charge effects. This capability has been first developped in the context of a PhD work regarding fixed field ring proton driver design studies and accelerator-driven subcritical reactor applications. This section of the guide is essentially drawn from that PhD dissertation [31], which can be referred to for additional details - the document provides benchmarking proofs in both KV and Gaussian density models (see below), including bunch transport in a drift, transport in a beam line, bunch tracking in an FFAG ring represented using either **zgoubi**'s *FFAG* keyword or magnetic field maps.

To be documented further

5 ORBIT CORRECTION

Orbit correction in simple cases can be attempted using the FIT[2] procedure.

However, **zgoubi** provides an SVD orbit correction method. It is activate by the keyword *SVDOC*. Deatils can be found in Sec. 6.3.18, p. 90.

To be documented further

6 DESCRIPTION OF THE AVAILABLE PROCEDURES

6.1 Introduction

This chapter gives an inventory of the procedures available in **zgoubi**, their associated "keyword", and a brief description of the way they function.

The chapter has been split into several sections. Sections 6.2 to 6.5 explain the underlying content - physics and numerical methods - behind the keywords, they are organized by topics :

- How to defined an object (a set of initial coordinates),
- Available options,
- Optical elements and procedures,
- Output procedures.

Section 6.6 addresses further a series of functionalities that may be accessed by means of special input data or flags.

6.2 Definition of an Object

The description of the object, *i.e.*, initial coordinates of the ensemble of particles, must be the first procedure in the **zgoubi** input data file, zgoubi.dat.

Several types of automatically generated objects are available, they are described in the following pages and include,

- non-random object, with various distributions : individual particles, grids, object for MATRIX, etc.
- Monte Carlo distribution, with various distributions as well: 6-D window, ellipsoids, etc.

A recurrent quantity appearing in these procedures is *IMAX*, the number of particles to be ray-traced. The maximum value allowed for *IMAX* can be changed at leisure in the include file 'MAXTRA.H' where it is defined (that requires re-compiling **zgoubi**).

6.2.1 MCOBJET: Monte-Carlo generation of a 6-D object

MCOBJET generates a set of IMAX random 6-D initial conditions (the maximum value for IMAX is defined in the include file 'MAXTRA.H'). It can be used in conjunction with the keyword REBELOTE which either allows generating an arbitrarily high number of initial conditions, or, in the hypothesis of a periodic structure, allows multi-turn tracking with initial conditions at pass number IPASS identified with conditions at end of pass number IPASS - 1.

The first datum in MCOBJET is the reference rigidity (a negative value is allowed)

$$BORO = \frac{p_0}{q} \text{ (kG.cm)}$$

Depending on the value of the next datum, *KOBJ*, the *IMAX* particles have their initial random conditions Y, T, Z, P, X and D (relative rigidity, $B\rho/BORO$) generated on 3 different types of supports, as described below.

Next come the data

that specify the type of probability density for the 6 coordinates.

KY, KT, KZ, KP, KX can take the following values:

- 1. uniform density, $p(x) = 1/2\delta x$ if $-\delta x \le x \le \delta x$, p(x) = 0 elsewhere,
- 2. Gaussian density, $p(x) = \frac{1}{\delta x \sqrt{2\pi}} e^{-\frac{x^2}{2\delta x^2}}$,
- 3. parabolic density, $p(x) = \frac{3}{4\delta x}(1 \frac{x^2}{\delta x^2})$ if $-\delta x \le x \le \delta x$, p(x) = 0 elsewhere.

KD can take the following values:

- 1. uniform density, $p(D) = 1/2\delta D$ if $-\delta D \le D \le \delta D$, p(D) = 0 elsewhere,
- 2. exponential density, $p(D) = N_0 \exp(C_0 + C_1 l + C_2 l^2 + C_3 l^3)$ with $0 \le l \le 1$ and $-\delta D \le D \le \delta D$,
- 3. p(D) is determined by a kinematic relation, namely, with T = horizontal angle, $D = \delta D * T$.

Next come the central values for the random sorting,

$$Y_0$$
, T_0 , Z_0 , P_0 , X_0 , D_0

namely, the probability density laws p(x) (x = Y, T, Z, P or X) and p(D) described above apply to the variables $x - x_0$ ($\equiv Y - Y_0, T - T_0, ...$) and $D - D_0$ respectively. Negative value for D_0 is allowed (see section 6.6.12, page 188).

KOBJ = 1: Random generation of *IMAX* particles in a hyper-window with widths (namely the half-extent for uniform or parabolic distributions (KY, KT, ... = 1 or 3), and the r.m.s. width for Gaussian distributions (KY, KT, ... = 2))

$$\delta Y$$
, δT , δZ , δP , δX , δD

Then follow the cut-off values, in units of the r.m.s. widths δY , δT , ... (used only for Gaussian distributions, KY, KT, ... = 2)

$$N_{\delta Y}$$
, $N_{\delta T}$, $N_{\delta Z}$, $N_{\delta P}$, $N_{\delta X}$, $N_{\delta D}$

The last data are the parameters

$$N_0, C_0, C_1, C_2, C_3$$

needed for generation of the D coordinate upon option KD=2 (unused if $KD=1,\ 3$) and a set of three integer seeds for initialization of random sequences,

$$IR1$$
, $IR2$, $IR3$ (all $\simeq 10^6$)

All particles generated by MCOBJET are tagged with a (non-S) character, for further statistic purposes (e.g., with HISTO, MCDESINT).

KOBJ = 2: Random generation of IMAX = IY * IT * IZ * IP * IX * ID particles on a hyper-grid. The input data are the number of bars in each coordinate

the spacing of the bars

the width of each bar

$$\delta Y$$
, δT , δZ , δP , δX , δD

the cut-offs, used with Gaussian densities (in units of the r.m.s. widths)

$$N_{\delta Y}$$
, $N_{\delta T}$, $N_{\delta Z}$, $N_{\delta P}$, $N_{\delta X}$, $N_{\delta D}$

This is illustrated in Fig. 7.

The last two sets of data in this option are the parameters

$$N_0$$
, C_0 , C_1 , C_2 , C_3

needed for generation of the D coordinate upon option KD= 2 (unused if KD= 1, 3) and a set of three integer seeds for initialization of random sequences, IR1, IR2, and IR3 (all $\simeq 10^6$).

All particles generated by *MCOBJET* are tagged with a (non-S) character, for further statistic purposes (see *HISTO* and *MCDESINT*).

 $\mathbf{KOBJ} = \mathbf{3}$: Distribution of IMAX particles in a 6-D ellipsoid (with possible momentum correlation via dispersion) defined by the three sets of data (one set per 2-D phase-space)

$$\begin{array}{lll} \alpha_{Y}, & \beta_{Y}, & \frac{\varepsilon_{Y}}{\pi}, & N_{\varepsilon_{Y}} \ [, & N_{\varepsilon_{Y}}', \ \text{if} \ N_{\varepsilon_{Y}} < 0] \ [, & D_{Y}, \ D_{T}] \\ \alpha_{Z}, & \beta_{Z}, & \frac{\varepsilon_{Z}}{\pi}, & N_{\varepsilon_{Z}} \ [, & N_{\varepsilon_{Z}}', \ \text{if} \ N_{\varepsilon_{Z}} < 0] \ [, & D_{Z}, \ D_{P}] \\ \alpha_{X}, & \beta_{X}, & \frac{\varepsilon_{X}}{\pi}, & N_{\varepsilon_{X}} \ [, & N_{\varepsilon_{X}}', \ \text{if} \ N_{\varepsilon_{X}} < 0], \end{array}$$

where $\alpha_{X,Y,Z}$, $\beta_{X,Y,Z}$, $D_{Y,T}$, $D_{Z,P}$ are the ellipse parameters and the dispersions and derivatives, $\varepsilon_{X,Y,Z}/\pi$ are the *rms* emittances. This defines for each plane an elliptical frontier:

$$\frac{1+\alpha_Y^2}{\beta_Y}Y^2 + 2\alpha_Y YT + \beta_Y T^2 = \varepsilon_Y/\pi,$$

$$\frac{1+\alpha_Z^2}{\beta_Z}Z^2 + 2\alpha_Z ZP + \beta_Z P^2 = \varepsilon_Z/\pi,$$

$$\frac{1+\alpha_l^2}{\beta_l}l^2 + 2\alpha_l l\delta + \beta_l \delta^2 = \varepsilon_l/\pi,$$

with l the bunch length variable (unit is cm) and δ a short notation for $\delta p/p$, momentum spread.

Sorting cut-offs N_{ε_Y} , N_{ε_Z} and N_{ε_X} are accounted for if distributions are Gaussian (KY, KT, ... = 2); in this case rms values are

$$\sigma_Y = \sqrt{\beta_Y \times \varepsilon_Y/\pi} \ \text{ and } \sigma_T = \sqrt{\gamma_Y \times \varepsilon_Y/\pi},$$

$$\sigma_Z = \sqrt{\beta_Z \times \varepsilon_Z/\pi} \ \text{and } \sigma_P = \sqrt{\gamma_Z \times \varepsilon_Z/\pi},$$

$$\sigma_l = \sqrt{\beta_l \times \varepsilon_l/\pi} \ \text{(bunch length, unit cm), and } \sigma_\delta = \sqrt{\gamma_l \times \varepsilon_l/\pi} \ \text{momentum spread}.$$

For uniform sorting, the distribution extends over the intervals, for respectively the radial, axial and longitudinal distribution,

$$\pm\sqrt{\varepsilon_Y/\pi \times \beta_Y}$$
 and $\pm\sqrt{\varepsilon_Y/\pi \times \gamma_Y}$,
 $\pm\sqrt{\varepsilon_Z/\pi \times \beta_Z}$ and $\pm\sqrt{\varepsilon_Z/\pi \times \gamma_Z}$,
 $\pm\sqrt{\varepsilon_I/\pi \times \beta_I}$ and $\pm\sqrt{\varepsilon_I/\pi \times \gamma_I}$.

• N_{ε} may be negative. The meaning of this is for the sorting to fill up an elliptical ring that extends from $|N_{\varepsilon}|$ to N'_{ε} (rather than the inner region determined by the N_{ε} cut-off as discussed above, when $N_{\varepsilon} > 0$).

Figure 7: A scheme of input parameters to MCOBJET when KOBJ= 2.

Top: Possible distributions of the Y coordinate.

Bottom : A 2-D grid in (Y, Z) space.

6.2.2 OBJET : Generation of an object

OBJET is dedicated to the construction of sets of initial coordinates, in several ways.

The first datum is the reference rigidity (a negative value is allowed)

$$BORO = \frac{p_0}{q}$$

At the object, the beam is defined by a set of IMAX particles (the maximum value for IMAX is defined in the include file 'MAXTRA.H') with the initial conditions (Y, T, Z, P, X, D) with $D = B\rho/BORO$ the relative rigidity.

Depending on the value of the next datum *KOBJ*, these initial conditions may be generated in different ways, as follows.

KOBJ = 1 : Defines a grid in the Y, T, Z, P, X, D space. One defines the number of points desired

with $IY \le n_Y \dots ID \le n_D$ such that $n_Y \times n_T \times \dots \times n_D \le max(IMAX)$. One defines the sampling range in each coordinate

$$dY$$
, dT , dZ , dP , dX , dD

zgoubi then generates IMAX = IY * IT * IZ * IP * IX * ID particles with initial coordinates

0,
$$\pm dY$$
, $\pm 2 * dY$, ..., $\pm IY/2 * dY$,
0, $\pm dT$, $\pm 2 * dT$, ..., $\pm IT/2 * dT$,
0, $\pm dZ$, $\pm 2 * dZ$, ..., $\pm IZ/2 * dZ$,
0, $\pm dP$, $\pm 2 * dP$, ..., $\pm IP/2 * dP$,
0, $\pm dX$, $\pm 2 * dX$, ..., $\pm IX/2 * dX$,
0, $\pm dD$, $\pm 2 * dD$, ..., $\pm ID/2 * dD$,

In this option relative rigidities will be classified automatically in view of possible further use of $\mathit{IMAGES}[Z]$ for momentum analysis and image formation.

The particles are tagged with an index IREP possibly indicating a symmetry with respect to the (X,Y) plane, as explained in option KOBJ=3. If two trajectories have mid-plane symmetry, only one will be ray-traced, while the other will be deduced using the mid-plane symmetries. This is done for the purpose of saving computing time. It may be non-compatible with the use of some procedures (e.g. MCDESINT, which involves random processes) or with the use of non mid-plane symmetric fields.

The last datum is a reference in each coordinate, YR, TR, ZR, PR, XR, DR. For instance the reference rigidity is DR*BORO, resulting in the rigidity of a particle defined by I*dD to be (DR+I*dD)*BORO.

KOBJ = 1.1 : The initial Z and P conditions are

0,
$$dZ$$
, $2 * dZ$, ..., $(IZ - 1) * dZ$, 0, dP , $2 * dP$, ..., $(IP - 1) * dP$,

This object results in shorter outputs/CPU-time when studying problems with Z symmetry.

KOBJ = 1.2: Same as KOBJ = 1, but the mid-plane symmetry of the tracking is lifted, all particles are actually tracked.

KOBJ = 2: Next data: IMAX, IDMAX. Initial coordinates are entered explicitly for each trajectory. IMAX is the total number of particles. These may be classified in groups of equal number for each value of momentum, in order to fulfill the requirements of image calculations by IMAGES[Z]. IDMAX is the number of groups of momenta. The following initial conditions defining a particle are specified for each one of the IMAX particles

$$Y$$
, T , Z , P , X , D , $'A'$

where D * BORO is the rigidity (negative value allowed) and 'A' is a (arbitrary) tagging character.

The last record *IEX* (I=1, *IMAX*) contains *IMAX* times either the character "1" to indicates that the particle has to be tracked, or "-9" to indicates that the particle should not be tracked.

This option KOBJ= 2 may be be useful for the definition of objects including kinematic effects.

KOBJ = 2.1: Same as KOBJ = 2 except for the units, meter and radian in that case.

Note that in this option KOBJ = 2[.]], only the first 7 trajectories can possibly have their coordinates varied when using the FIT[2] procedure.

KOBJ = 3: This option allows the reading of initial conditions from an external input file *FNAME*. The next three data lines are :

```
IT1, IT2, ITStep
IP1, IP2, IPStep
YF, TF, ZF, PF, SF, DPF, TiF, TAG
YR, TR, ZR, PR, SR, DPR, TiR
InitC
```

followed by the storage file name FNAME.

IT1, IT2, ITStep cause the code to read coordinates of particles number IT1 through IT2 by step ITStep.

IP1, IP2, IPStep cause the code to read coordinates belonging in the passes range IP1 through IP2, step IPStep.

YF, TF, ZF, PF, SF, DPF, TiF are scaling factors whereas YR, TR, ZR, PR, SR, DPR, TiR are references added to the values of respectively Y, T, Z, P, S, DP as read in file FNAME, so that any coordinate C = Y, T, Z... is changed into CF*C + CR. In addition a flag character TAG allows retaining only particles with identical tagging letter LET, unless TAG='* in which case it has no selection effect for instance TAG='S' can be used to retain only secondary particles following in-flight decay simulations.

If InitC= 1 ray-tracing starts from the current coordinates F(J, I),

if InitC= 0 ray-tracing starts from the initial coordinates FO(J, I), as read from file FNAME.

The file *FNAME* must be formatted in the appropriate manner. The following *FORTRAN* sequence is an instance, details and possible updates are to be found in the source file 'obj3.f':

```
OPEN (UNIT = NL, FILE = FNAME, STATUS = 'OLD')
DO I = 1, IMAX
   READ (NL,100) LET (I), IEX(I), (FO(J,I),J=1,6), (F(J,I),J=1,6), I, IREP(I),
        LET(I), IEX(I), -1.D0+FO(1,I), (FO(J,I), J=2,MXJ),
           -1.D0+F(1,I),F(2,I),F(3,I),
           (F(J,I),J=4,MXJ),ENEKI,
           ID, I, IREP(I), SORT(I), D, D, D, D, RET(I), DPR(I),
> D, D, D, BORO, IPASS, KLEY, LBL1, LBL2, NOEL 100 FORMAT (1X,
   LET(IT), KEX, 1.D0-FO(1,IT), (FO(J,IT), J=2,MXJ),
    1 A1,1X,I2,1P,7E16.8,
  1.D0-F(1, IT), (FO(J, IT), J=2, MXJ),
            /,3E24.16,
   Z,P*1.D3,SAR,
                     TAR,
              /,4E24.16,E16.8,
   KART, IT, IREP(IT), SORT(IT), X, BX, BY, BZ, RET(IT), DPR(IT),
    4 /,I1,2I6,7E16.8,
EX,EY,EZ, BORO, IPASS, KLEY, (LABEL(NOEL,I),I=1,2),NOEL
    5 /,4E16.8,
                          I6,1X, A8,1X, 2A10,
 ENDDO
```

where the meaning of the parameters (apart from D=dummy real, ID=dummy integer) is the following

```
LET(I) : one-character string (for tagging)IEX(I) : flag, see KOBJ= 2 and page 188
```

FO(1-6,I): coordinates D, Y, T, Z, P and path length of particle num-

ber I, at the origin. D * BORO =rigidity

F(1-6,I): id, at the current position.

IREP is an index which indicates a symmetry with respect to the median plane. For instance, if Z(I+1) = -Z(I), then normally IREP(I+1) = IREP(I). Consequently the coordinates of particle I+1 will not be obtained from ray-tracing but instead deduced from those of particle I by simple symmetry. This saves on computing time.

KOBJ= 3 can be used for reading files filled by FAISCNL, FAISTORE. If more than IMAX particles are to be read from a file, use REBELOTE.

Note: In this option, one has to make sure that input data do not conflict with possible use of the keyword *PARTICUL* that assigns mass and charge.

KOBJ = 3.1: Same as KOBJ = 3, except for the formatting of trajectory coordinate data in *FNAME*, namely, according to the following *FORTRAN* sequence

```
OPEN (UNIT = NL, FILE = FNAME, STATUS = 'OLD')

CONTINUE

READ (NL,*,END=10,ERR=99) Y, T, Z, P, S, D

GOTO 1

CALL ENDFIL

CALL ERREAD
```

KOBJ = 3.2: As for **KOBJ=3.1**, except for the different format

READ (NL,
$$\star$$
) X, Y, Z, PX, PY, PZ

where PX, PY, and PZ, are the momenta in MeV/c. Note that DPR will be ignored in this case.

KOBJ = 3.3: As for **KOBJ=3.1**, except for the different format:

```
READ (NL, *) DP, Y, T, Z, P, S, TIME, MASS, CHARGE
```

where MASS is the mass in MeV/c and CHARGE is the charge in units of the elementary charge.

Note: For details and possible updates in the formatted read of concern in the *FORTRAN*, regarding options 3.1-3.3, see the source file 'obj3.f'.

RECOVERING FROM A CRASH

OBJET with option *KOBJ*=3 can be used to recover from a job crash, which would occur when multi-turn tracking - due to computer crash or else. This is discussed in the *SCALING* section, page 82, an example of job resuming is given page 260.

KOBJ = 5: Mostly dedicated to the calculation of first order transfer matrix and various other optical parameters, using for instance *MATRIX* or *TWISS*. The user defines the coordinate sampling

$$dY$$
, dT , dZ , dP , dD

These values should be small enough, so that the paraxial ray approximation be valid. The code generates 11 particles, with initial coordinates

$$0, YR \pm dY, TR \pm dT, ZR \pm dZ, PR \pm dP, DR \pm dD$$

given the reference trajectory

$$YR$$
, TR , ZR , PR , DR

(with DR * BORO the reference rigidity - negative value allowed).

KOBJ = 5.1 : Same as KOBJ = 5, except for an additional data line giving initial beam ellipse parameters and dispersions, α_Y , β_Y , α_Z , β_Z , α_X , β_X , D_Y , D_Y , D_Z , D_Z , for further transport of these using *MATRIX* or *OPTICS*, or for possible use by the *FIT*[2] procedure.

KOBJ = 5.N ($N \ge 2$): Like KOBJ = 5 except for its allowing $N \ge 2$ reference trajectories, rather than just one as in KOBJ = 5 case (thus N-1 additional input data lines are needed in this case). These reference trajectories can be for instance chromatic orbits. Zgoubi will generate N sets of 11 particles with initial coordinates in each set taken wrt. one of the N references.

A subsequent use of MATRIX would then cause the computation of N transport matrices.

Note that in the option KOBJ = 5.N, $N \ge 2$, only the first 7 reference trajectories can possibly have their coordinates varied when using the FIT[2] procedure.

KOBJ = **6**: Dedicated to the calculation of first and second order transport matrices, and some additional higher order transport coefficients, using for instance *MATRIX*. The input data are a reference trajectory and a coordinate sampling with respect to that reference (normally taken paraxial)

$$dY$$
, dT , dZ , dP , dD

to allow the building up of an object containing 61 particles (note: their coordinates can be checked by printing out into zgoubi.res using *FAISCEAU*), whereas a last data line gives the reference

$$YR$$
, TR , ZR , PR , DR

(with DR * BORO the reference rigidity - negative value allowed), which adds to the previous coordinate values.

KOBJ = **6.1**: Dedicated to the calculation of first, second and third order transport matrices, using for instance MATRIX. It builds fort that a 102 particle initial object. The sampling and functionning are similar to the 61 particle (KOBJ=6) and 11 particle (KOBJ=5) object cases.

KOBJ = 7 : Object with kinematics

The data and functioning are the same as for KOBJ= 1, except for the following

- *ID* is not used.
- PD is the kinematic coefficient, such that for particle number I, the initial relative rigidity D_I is calculated from the initial angle T_I following

$$D_I = DR + PD * T_I$$

while T_I is in the range

$$0, \pm PT, \pm 2 * PT, \ldots, \pm IT/2 * PT$$

as when using KOBJ=1.

KOBJ = 8 : Generation of phase-space coordinates on ellipses.

The ellipses are defined by the three sets of data (one set per ellipse)

$$\begin{array}{lll} \alpha_Y, & \beta_Y, & \varepsilon_Y/\pi \\ \alpha_Z, & \beta_Z, & \varepsilon_Z/\pi \\ \alpha_X, & \beta_X, & \varepsilon_X/\pi \end{array}$$

where α , β are the ellipse parameters and ε / is the ellipse surface, corresponding to an ellipse with equation

$$\frac{1+\alpha_Y^2}{\beta_Y}Y^2 + 2\alpha_Y YT + \beta_Y T^2 = \varepsilon_Y/\pi$$

(*idem* for the (Z, P) or (X, D) planes).

The ellipses are centered respectively on (Y_0, T_0) , (Z_0, P_0) , (X_0, D_0) .

The number of samples per plane is respectively IX, IY, IZ. If that value is zero, the central value above is assigned.

6.2.3 OBJETA: Object from Monte-Carlo simulation of decay reaction [32]

This generator simulates the reactions

$$M_1 + M_2 \longrightarrow M_3 + M_4$$

and then

$$M_4 \longrightarrow M_5 + M_6$$

where M_1 is the mass of the incoming body; M_2 is the mass of the target; M_3 is an outgoing body; M_4 is the rest mass of the decaying body; M_5 and M_6 are decay products. Example:

$$p + d \longrightarrow^{3} He + \eta$$
$$\eta \longrightarrow \mu^{+} + \mu^{-}$$

The first input data are the reference rigidity

$$BORO = p_0/q$$

an index IBODY which specifies the particle to be ray-traced, namely M3 (IBODY = 1), M5 (IBODY = 2) or M6 (IBODY = 3). In this last case, initial conditions for M6 must be generated by a first run of OBJETA with IBODY = 2; they are then stored in a buffer array, and restored as initial conditions at the next occurrence of OBJETA with IBODY = 3. Note that **zgoubi** by default assumes positively charged particles.

Another index, KOBJ, specifies the type of distribution for the initial transverse coordinates Y, Z; namely either uniform (KOBJ= 1) or Gaussian (KOBJ= 2). The other three coordinates T, P and D are deduced from the kinematic of the reactions.

The next data are the number of particles to be generated, *IMAX*, the masses involved in the two previous reactions.

$$M_1, M_2, M_3, M_4, M_5, M_6$$

and the kinetic energy T_1 of the incoming body (M_1) .

Then one gives the central value of the distribution for each coordinate

$$Y_0, T_0, Z_0, P_0, D_0$$

and the width of the distribution around the central value

$$\delta Y$$
, δT , δZ , δP , δD

so that only those particles in the range

$$Y_0 - \delta Y \le Y \le Y_0 + \delta Y$$
 ... $D_0 - \delta D \le D \le D_0 + \delta D$

will be retained. The longitudinal initial coordinate is uniformly sorted in the range

$$-XL < X_0 < XL$$

The random sequences involved may be initialized with different values of the two integer seeds IR_1 and IR_2 ($\simeq 10^6$).

Possible use of *PARTICUL* will have no effect: it will not change the mass and charge assumptions as set by *OBJETA*.

A series of options are available which allow the control of various of the procedures and functionalities of the code.

Some of these options are normally declared right after the object definition, for instance

- SPNTRK: switch-on spin tracking,
- *PARTICUL* to declare particle mass and charge, if for instance tracking in electric fields, or tracking spin, or in presence of synchrotron radiation energy loss simulations,

some may appear further down in the structure (in zgoubi.dat), for instance

- MCDESINT: switch-on in-flight decay, could be after a target,
- REBELOTE: for multi-turn tracking, including an extraction line section for instance,

others may normally be declared at the end of zgoubi.dat data pile, for instance

- END: end of a problem,
- FIT : fitting procedure can also appear before REBELOTE

GETFITVAL may appear before the object definition (keyword [MC]OBJET, normally the first in **zgoubi** input data list). This is the case if variables prior saved following a 'FIT[2]' procedure and then read back using GETFITVAL, happen to belong in the [MC]OBJET data list.

SYSTEM as well, may appear anywhere in the data list.

6.3.1 BINARY : BINARY ↔ FORMATTED data converter

This procedure translates field map data files from "BINARY" to "FORMATTED" – in the *FORTRAN* sense, or the other way.

The keyword is followed by, next data line,

the number of files to be translated [READ format option, a single digit integer, optional], number of data columns in the file, number of header lines in the file.

Fortran READ format, case of formatted input file:

If J is not given, the NCOL arrangement should be consistent with the following FORTRAN READ statement:

```
READ (unit=ln,*) (X7(I), I=1, NCOL) 
 If J=1, NCOL should be consistent with the following FORTRAN READ statement: READ (unit=ln, fmt='(1x, ncol*E11.2)') (X7(I), I=1, NCOL)
```

Fortran READ format, case of formatted input file:

Data are expected to have been recorded under the form of Ncol column rows.

Then follow, line by line, the NF names of the files to be translated.

Iff a file name begins with the prefix "B_" or "b_", it is assumed "binary", and hence converted to "formatted", and given the same name after suppression of the prefix "B_" or "b_". Conversely, iff the file name does not begin with "B_" or "b_", the file is presumed "formatted" and hence translated to "binary", and is given the same name after addition of the prefix "b_".

In its present state, the procedure *BINARY* only supports a limited number of read/write formats. Details concerning I/O formatting can be found in the *FORTRAN* file 'binary.f'.

6.3.2 END or FIN: End of input data list

The end of a problem, or of a set of several problems stacked in the data file, should be stated by means of the keywords *FIN* or *END*.

Any information following these keywords will be ignored.

In some cases, these keywords may cause some information to be printed in zgoubi.res, for instance when the keyword *PICKUPS* is used.

6.3.3 ERRORS: Injecting errors in optical elements

UNDER DEVELOPMENT

The keyword *ERRORS* allows injecting diverse types of errors in optical elements, including field and positionning defects. Uniform and Gaussian distribution laws are available.

Optical elements concerned can be discriminated using one or both of their labels.

ERRORS is under development, functionalities at the moment are the following:

MULTIPOL can be injected multipole field defects on any one of its dipole to 20-pole component. The defect can be relative (to the current field value) or absolute (adds to the current field value).

TOSCA can be injected a field defect that applies to the field map as a whole. The defect can be relative (to the current field value) or absolute (adds to the current field value).

Some rules:

- if REBELOTE is used in multi-turn mode (*i.e.*, its K argument value is 99), then the same defect series is applied at each pass, by default. However one may want to simulate one turn by repeating a cell subset, using REBELOTE, in which case defects of random type in the subset should be changed at each pass. This requires modification in errors of program.

6.3.4 FIT, FIT2: Fitting procedure

The keywords FIT, FIT2 allow the automatic adjustment of up to 20 variables, for fitting up to 20 constraints.

FIT was implemented in 1985, drawn from the matrix transport code BETA [33]. FIT2 is a simplex method (Nelder-Mead method), it has been implemented in 2007 [34]. One or the other may converge faster, or may have some advantages/disadvantages, depending on the problem.

Any physical parameter of any element in the zgoubi.dat data list may be varied. Examples of available constraints are, amongst others:

- trajectory coordinates in the F(J, I) array, I = particle number, J = coordinate number = 1 to 7 for respectively D, Y, T, Z, P, S =path length, time;
- spin coordinates;
- any of the 6×6 coefficients of the first order transfer matrix $[R_{ij}]$ as defined in the keyword MATRIX;
- any of the $6 \times 6 \times 6$ coefficients of the second order array $[T_{ijk}]$ as defined in MATRIX;
- any of the 4×4 coefficients of the beam σ -matrix
- transmission efficiency of an optical channel.
- tunes $\nu_{Y,Z}$ and periodic betatron functions $\beta_{Y,Z}$, $\alpha_{Y,Z}$, $\gamma_{Y,Z}$, as computed in the coupled hypothesis [35].

A full list of the constraints available is given in the table page 238.

FIT, FIT2 are compatible with the use of (i.e., can be encompassed in) REBELOTE for successive fitting trials using various sets of parameters (option K = 22 in REBELOTE).

VARIABLES

The first input data in *FIT*[2] is the number of variables *NV*. A variable is defined by a line of data comprised of

IR = number of the varied element in the structure

IP = number of the physical parameter to be varied in this element

XC = coupling parameter. Normally XC = 0. If $XC \neq 0$, coupling will occur (see below)

followed by, either

DV = allowed relative range of variation of the physical parameter IP

or

[Vmin, Vmax] = allowed interval of variation of the physical parameter IP

Numbering of the Elements (IR):

The elements (*i.e.*, keywords *DIPOLE*, *QUADRUPO*, etc.) as read by **zgoubi** in the zgoubi.dat sequence are assigned a number. which follows their sequence in the data file. It is that very number, *IR*, that the *FIT[2]* procedure uses. A simple way to get *IR* once the zgoubi.dat file has been built, is to do a preliminary run, since the first thing **zgoubi** does is copy the sequence from zgoubi.dat into the result file zgoubi.res, with all elements numbered.

Numbering of the Physical Parameters (IP):

All the data that follow a keyword are numbered - except for SCALING, see below.

With most of the keywords, the numbering follows the principle hereafter:

Input data

Input data	Numbering for FIT
'KEYWORD'	
first line	1, 2, 3,, 9
second line	10, 11, 12, 13,, 19
this is a comment	a line of comments is skipped
next line	20, 21, 22,, 29
and so on	

The examples of QUADRUPO (quadrupole) and TOSCA (Cartesian or cylindrical mesh field map) are as follows.

'QUADRUPO' IL XL, R_0 , B X_E , λ_E NCE, C_0 , C_1 , C_2 , C_3 , C_4 , C_5	1 10, 11, 12 20, 21 30, 31, 32, 33, 34, 35, 36
X_S, λ_S	40, 41
$NCS, C_0, C_1, C_2, C_3, C_4, C_5$	50, 51, 52, 53, 54, 55, 56
XPAS KPOS, XCE, YCE, ALE	60 70, 71, 72, 73
Input data	Numbering for FIT
'TOSCA'	
IC, IL	1, 2
BNORM, X- [, Y-, Z-]NORM	10, 11 [, 12, 13]
TIT	This is text
IX, IY, IZ, MOD	20, 21, 22, 23
FNAME	This is text
ID, A, B, C [A', B', C', etc. if $ID \ge 2$]	30, 31, 32, 33 [34, 35, 36 [, 37, 38, 39] if $ID \ge 2$]
IORDRE	40
XPAS	50
if KPOS=1:	
KPOS, XCE, YCE, ALE	60,61,62,63

70,71,72,73

Numbering for FIT

A different numbering, fully sequential, has been adopted in the following elements:

AIMANT, DIPOLE, EBMULT, ELMULT, MULTIPOL.

if KPOS=2 : KPOS

KPOS, XCE, YCE, ALE

It is illustrated here after in the case of MULTIPOL and DIPOLE-M.

Input data	Numbering for FIT
'MULTIPOL'	
0	1
365.760 10.0 7.5739 1.4939 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2, 3, 4, 5,, 13
10.0 4.0 0.80 0.0 0.0 0.0 0.0 0. 0. 0. 0. 0.	14, 15,, 24
$NC, C_0, C_1, C_2, C_3, C_4, C_5$	25, 26, 27, 28, 29, 30, 31
10.0 4.0 0.80 0.0 0.0 0.0 0.0 0. 0. 0. 0. 0.	32, 33,, 42
$NC, C_0, C_1, C_2, C_3, C_4, C_5$	43, 44,, 49
0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	50, 51,, 59
step size	60 [and 61, 62 reserved]
KPOS, XCE, YCE, ALE	63, 64, 65, 66

Input data	Numbering for FIT
'DIPOLE-M'	
NFACE, IC, IL	1, 2, 3
IAMAX, IRMAX	4, 5
B_0, N, B, G	6, 7, 8, 9
AT, ACENT, RM, RMIN, RMAX	10, 11, 12, 13, 14
λ , ξ	15,16
NC , C_0 , C_1 , C_2 , C_3 , C_4 , C_5 , shift	17, 18, 19, 20, 21, 22, 23, 24
$\omega, \theta, R_1, U_1, U_2, R_2$	25, 26, 27, 28, 29, 30
etc.	

Parameters in *SCALING* also have a sequential numbering, yet some positions are skipped, this is illustrated in the example hereafter which covers all possible working modes of *SCALING* (all details regarding the numbering can be found in the *FORTRAN* subroutine rscal.f):

Input data	Numbering in FIT	Quantities to be varied (see SCALING for details)
'SCALING'		(see selibility for details)
1 9	1 2	Non relevant
AGSMM *AF *BF		Keywords concerned, their labels
<u>-1 3 12 </u>	3 4 5	dB1, dB2, dB3 parameters in AGSMM
7.2135	6	Field factor
1	7	Timing
AGSMM *AD *BD		
<u>-1 3 12 1. 13 1. 14 1.</u>	8 9 10	
7.2135	11	
1	12	
AGSMM *CF		
<u>-1 3 12 1. 13 1. 14 1.</u>	13 14 15	
7.2135	16	
1	17	
AGSQUAD QH_*		
3		
0.605 0.77 0.879	18 19 20	Field factor
1 2000 10000	21 22 23	Timing
AGSQUAD QV_*		
3	24 25 26	
0.587 0.83 0.83	24 25 26	
1 2000 10000	27 28 29	
MULTIPOL	20	General rule. Precedes labeled cases if any.
-1	30	(meaningless)
0.72135154291	31	
MILITIPOL COLLI	32	(meaningless)
MULTIPOL COH1 1.10		No numbering if 1.10 type of option
./Csnk3D/bump_centered.scal		No numbering if 1.10 type of option
1 2		
MULTIPOL COH2		
1.10		
./Csnk3D/bump_centered.scal		
14		
MULTIPOL KICKH KICKV 2		
$\begin{bmatrix} 0.1 & 0.3 \end{bmatrix}$	33 34	Field factor
	35 34 35 36	
1 10	33 30	Timing

Coupled Variables (XC)

Coupling a variable parameter to any other parameter in the structure is possible. This is done by giving XC a value of the form int.ijk where the integer part "int" is the number of the coupled element in the structure (equivalent to IR, see above), and the decimal part "ijk" is the number of its parameter of concern (equivalent to IP, see above) (if the parameter number is in the range 1, 2, ..., 9 (resp. 10, 11, ... 19, and 100, ...), then ijk must take the form 00k (resp. 0jk, ijk)). For example, XC = 20.010 is a request for coupling with the parameter number 10 of element number 20 of the structure, while XC = 20.100 is a request for coupling with the parameter number 100 of element 20.

An element of the structure which is coupled (by means of $XC \neq 0$) to a variable declared in the data list of the FIT[2] keyword, needs not appear as one of the NV variables in that data list (this would be redundant information).

XC can be either positive or negative. If XC > 0, then the coupled parameter will be given the same value as the variable parameter (for example, symmetric quadrupoles in a lens triplet will be given the same field). If XC < 0, then the coupled parameter will be given a variation opposite to that of the variable, so that the sum of the two parameters stays constant (for example, an optical element can be shifted while preserving the length of the structure, by coupling together its upstream and downstream drift spaces).

Coupled Variables using SCALING

Because it applies a scaling factor to families of optical elements (as determined by their keyword and possible *LABEL1*, *LABEL2*), *CALING* can be used to couple FIT variables.

Variable Variation Range

There are two ways to define the allowed range for a variable, as follows.

- (i) DV : For a variable (parameter number IP under some keyword) with initial value v, the FIT[2] procedure is allowed to explore the range $v \times (1 \pm DV)$.
- (i) $[v_{min}, v_{max}]$: This specifies the allowed interval of variation.

CONSTRAINTS

The next input data in *FIT*[2] is the number of constraints, *NC*. A list of the available constraints is given in the table page 238; adding or changing a constraint resorts to the *FORTRAN* file ff.f.

Each constraint is defined by the following list of data:

IC[.IC2] = type of constraint (see table p. 238).

 $I, J = \text{constraint } (i.e., R_{ij}, \text{determinant, tune }; T_{ijk}; \sigma_{ij}; \text{trajectory } \#I \text{ and coordinate } \#J)$

IR = number of the keyword at the exit of which the constraint applies; instead of numeral, can also be '#End', so the constraint applies at the last keyword preceding 'FIT[2]'

V = desired value of the constraint

W = weight of the constraint (smaller W for higher weight)

NP NP additional parameters, values PR_{1-NP} , defining the constraint

IC=0: The coefficients σ_{11} (σ_{33}) = horizontal (vertical) beta values and σ_{22} (σ_{44}) = horizontal (vertical) derivatives ($\alpha = -\beta'/2$) are obtained by transport of their initial values at line start as introduced using for instance *OBJET*, *KOBJ=5.1*.

IC=0.1: Beam parameters: $\sigma_{11}=\beta_Y, \sigma_{12}=\sigma_{21}=-\alpha_Y, \sigma_{22}=\gamma_Y, \sigma_{33}=\beta_Z, \sigma_{34}=\sigma_{43}=-\alpha_Z, \sigma_{44}=\gamma_Z$; periodic dispersion: $\sigma_{16}=D_Y, \sigma_{26}=D_Y', \sigma_{36}=D_Z, \sigma_{46}=D_Z'$, all quantities derived by assuming periodic structure and identifying the first order transfer matrix with the form $Icos\mu+Jsin\mu$.

IC=1, 2: The coefficients R_{ij} and T_{ijk} are calculated following the procedures described in MATRIX, option IFOC=0. The fitting of the $[R_{ij}]$ matrix coefficients supposes the tracking of particles with paraxial coordinates, normally defined using OBJET option KOBJ=5 or 6.

Type of constraint	Parameters defining the constraints				Recommended			
IC		I J		Constraint	Constraint Additional parameter(s) NP Param. values, $pr_1 - pr_{NP}$		- [MC]OBJET; comments	
Transported σ -matrix $(\sigma(s) = T\sigma(0)\tilde{T})$	0	1-6	1-6	$\sigma_{IJ} \ \ (\sigma_{11} = \beta_Y, \sigma_{21, \ 12} = \alpha_Y, \text{etc.})$			OBJET/KOBJ=5.1	
Periodic σ -matrix $(\sigma = I \cos \mu + J \sin \mu)$, tunes $(N = 1 - 9 \ for \ MATRIX \ block \ 1-9)$	0.N (N≤9)	1-6 7 8 9 10	1-6 any any any any	$\sigma_{IJ} (\sigma_{11} = \cos \mu_Y + \alpha_Y \sin \mu_Y, \text{etc.})$ $\mu_Y / 2\pi$ $\mu_Z / 2\pi$ $\cos(\mu_Y)$ $\cos(\mu_Z)$			OBJET/KOBJ=5 if $N=1$, OBJET/KOBJ=5.N if $N \geq 2$	
First order transport coeffs. & determinants. Chromas.	1.1	1-6 7 8 7	1-6 j j 7	Transport coeff. R_{IJ} $j \neq 8$: YY-determinant ; j=8: YZ-det. $j \neq 7$: ZZ-determinant ; j=7: ZY-det. $dQ_Y / dp/p$			OBJET/KOBJ=5 OBJET/KOBJ=5.2	
Second order transport coeffs.	2	8 1-6	8 11-66	$dQ_Z \ / \ dp/p$ Transport coeff. $T_{I,j,k}$ $(j = [J/10], k = J - 10[J/10])$			OBJET/KOBJ=6	
Trajectory	3	1-IMAX	1 - 7	F(J,I)			[MC]OBJET	
coordinates		-1	1 - 7	$< F(J,i) >_{i=I1,I2}$	$\{_{2}^{0}$	I_1, I_2	$ \begin{array}{c} 1 \to IMAX \\ 1 \le I_1 \le I_2 \le IMAX \end{array} $	
(I = particle number; J=1-7 for D,Y,T,Z,P,S,time)	3.1 3.2 3.4	-2 -3 -4 1-IMAX 1-IMAX 1-IMAX	$ \begin{array}{c c} 1 - 7 \\ 1 - 7 \\ 1 - 7 \\ 1 - 7 \\ 1 - 7 \\ 1 - 7 \\ 1 - 7 \\ \end{array} $	$Sup(F(J,i))_{i=1,IMAX} \\ Dist \left[F(J,I)_{i=I1,I2}\right] \\ Dist \left[PU_i,i=1,N\right] \\ F(J,I)-FO(J,I) \\ F(J,I)+FO(J,I) \\ F(J,I)-F(J,K) $	3 2	$I_1, I_2, \Delta I$ $NOEL_A, NOEL_B$ K	$1 \le I_1 \le I_2 \le IMAX$ $1 \le I_1 \le I_2 \le IMAX$ PU range $K \le IMAX$	
	3.5	1-IMAX 1-IMAX	1-7	(F(J,I) - F(J,K))/F(J,K)	1	K	$K \leq IMAX$ $K \leq IMAX$	
Ellipse parameters	4	1-6	1-6	$\sigma_{IJ} (\sigma_{11} = \beta_Y, \\ \sigma_{12} = \sigma_{21} = \alpha_Y, \text{ etc.})$			OBJET/KOBJ=8; MCOBJET/KOBJ=3	
Number of particles	5	$ \begin{array}{c c} -1 \\ 1 - 3 \\ 4 - 6 \end{array} $	any any any	$N_{survived}/{ m IMAX} \ N_{in} \ \epsilon_{Y,Z,X}/N_{survived} \ N_{in} \ best \ \epsilon_{Y,Z,X,rms}/N_{survived}$	1	$\epsilon_{Y,Z,X}/\pi$	OBJET MCOBJET MCOBJET	
Coordinates & fields, across optical elements	7.1 7.2 7.3	$\begin{array}{c} 1-IMAX \\ 1-IMAX \\ 1-IMAX \end{array}$	$ \begin{array}{ c c c c } & 1 - 7 \\ & 1 - 7 \\ & 1 - 7 \end{array} $	min. or max. of $F(J, I)$ $\max(F(J, I)) - \min F(J, I)$ $\min F(J, I)) + \max(F(J, I))$	1 or 3 0 or 2 id.	1 or 2 [, X1, X2] X1, X2 id.	[MC]OBJET	
$(J=1, 2, 3 \text{ for } B_{X, Y, Z})$	7.6 7.7 7.8 7.9	1 – IMAX 1 – IMAX 1 – IMAX 1 – IMAX	$ \begin{array}{c c} 1 - 3 \\ 1 - 3 \\ 1 - 3 \\ 1 - 3 \end{array} $	min. or max. value of B_J $\max(B_J)$ - $\min(B_J)$ $\min(B_J)$ + $\max(B_J)$ $\int B_J ds$	1 or 3 0 or 2 id. id.	1 or 2 [, X1, X2] X1, X2 id. id.		
Spin	10 10.1 10.2 10.3	1-IMAX 1-IMAX 1-IDMAX 1-IDMAX	$ \begin{array}{r} 1 - 4 \\ 1 - 3 \\ \text{any} \\ 1 - 3 \end{array} $	$S_{X,Y,Z}(I), \vec{S}(I) $ $ S_{X,Y,Z}(I) - SO_{X,Y,Z}(I) $ spin rotation angle (rad) rotation axis, X-, Y- or Z-component			SPNTRK+ [MC]OBJET OBJET/KOBJ=2 OBJET/KOBJ=2	

IMAX: total number of particles tracked.

 $\textit{F(J,I)}: particle \ coordinate \ array \ ; \ J: \ coordinate \ (1-7 \ for \ respectively \ D, \ Y, \ T, \ Z, \ P, \ S, \ time, \ resp. \ units: \ none, \ cm, \ mrad, \ cm, \ mrad, \ cm, \ mrad, \ cm, \ \mu s) \ ; \ I: \ particle \ number.$

FO(J,I): initial particle coordinates.

S(J,I): spin coordinate array; J: coordinate (1, 2, 3 for respectively X, Y, Z); I: particle number.

SO(J,I): initial spin coordinates.

Constraints 7.1 - 7.9: X1 and X2, optional, define the longitudinal coordinate interval inside the optical element, over which it applies.

IC=3: If $1 \le I \le IMAX$ then the value of coordinate type J (J=1,6 for respectively D, Y, T, Z, P, S) of particle number I ($1 \le I \le IMAX$) is constrained. However I can take special meaning, as follows.

I = -1: the constraint is the average value of coordinate of type J over particles $[I_1, I_2]$,

I=-2: the constraint is the maximum value of coordinate of type J,

I=-3: the constraint is the distance between particles I_1-I_2 (step ΔI).

I=-4: take the average of the F(J,i) coordinate (J=1-7 for D,Y,T,Z,P,S,time) over (I2-I1+1) particles in the range i=I1-I2, get it at N different pickup locations $PU_1,PU_2,...,PU_N$. The constraint is, minimizing the distance between these averages, $Dist \left[< F(J,i) >_{i=I1,I2} \right]_{PU_{1-N}}$ (Ex.: minimize the difference between PU records, for a series of PUs along a beamline). If the number of locations is 997 (i.e., N+2=999) then all PUs upstream of IR are accounted for. This constraint requires declaring pick-ups using PICKUPS keyword, their locations are as numbered in the data list in zgoubi.res.

- IC=3.1: Absolute value of the difference between local and initial J-coordinate of particle I (convenient e.g. for closed orbit search).
- IC=3.2: Absolute value of the sum of the local and initial J-coordinate of particle number I.
- IC=3.4: Absolute value of the difference between local J-coordinates of particles respectively I and K.
- IC=3.5: Difference between local J-coordinates of particles respectively I and K, relative to J-coordinate of particle K.
- IC=4: The coefficients σ_{11} (σ_{33}) = horizontal (vertical) beta values and σ_{22} (σ_{44}) = horizontal (vertical) derivatives ($\alpha = -\beta'/2$) are derived from an ellipse match of the current particle population (as generated for instance using MCOBJET, KOBJ=3).

The fitting of the $[\sigma_{ij}]$ coefficients supposes the tracking of a relevant population of particles within an appropriate emittance.

- *IC*=5: The constraint value is the ratio of particles (over *IMAX*). Three cases possible:
 - I = -1, ratio of particles still on the run.
- $I=1,\ 2,\ 3,$ maximization of the number of particles encompassed within a given I-type (for respectively $Y,\ Z,\ D$) phase-space emittance value. Then, NP=1, followed by the emittance value. The center and shape of the ellipse are determined by a matching to the position and shape of the particle distribution.
- $I=4,\ 5,\ 6$, same as previous case, except for the ellipse, taken to be the *rms* matched ellipse to the distribution. Thus NP=0.
- IC=7 series: The constraint applies inside the optical element with number IR. This constraint is, namely, (possibly combinations of) the minimum or maximum values of the coordinates or fields, or the value of field integrals, along the particle trajectory over the extent $[X_0, X_{LIM}]$ of the element (regardless of the transverse trajectory coordinates Y and Z). Parameters $PR_2 = X_1$ and $PR_3 = X_2$ impose that the constraint only be applied within a limited interval $[X_1, X_2] \subset [X_0, X_{LIM}]$ inside the element. Note in that latter case, the element extent $[X_0, X_{LIM}]$ can be determined from a preliminary run with IL=1 (see Sec. 6.6.5, p. 184).
- IC=7.1: Minimum or maximum value as reached by coordinate J of particle number I.
- IC=7.2: Maximum minus minimum of the value of coordinate J of particle number I.
- IC=7.3: Maximum plus minimum of the value of coordinate J of particle number I.
- IC=7.6: Minimum ($PR_1=1$) or maximum ($PR_1=2$) value as reached by the X, Y or Z component of the field along the trajectory of particle number I.
- IC=7.7: Maximum minus minimum of the values taken by the X, Y or Z component of the field along the trajectory of particle number I.
- IC=7.8: Maximum plus minimum of the values taken by the X, Y or Z component of the field along the trajectory of particle number I.
- IC=7.9: Integral of the X, Y or Z component of the field as experienced by particle number I, across the optical element.
- IC=10: If $1 \le I \le IMAX$ then the constrint is the value of coordinate type J (J=1,3 for respectively S_X, S_Y, S_Z) of particle number I.
- IC=10.1: Difference between final and initial J-spin coordinate of particle I (convenient e.g. for \vec{n}_0 spin vector search).

IC=10.2: Constraint on spin rotation angle for particles of momentum group #K. This requires *OB-JET/KOBJ*=2, with groups of 3 particles, all particles in a group have the same momentum, and their spins in direction, respectively, X, Y, Z.

IC=10.3: Constraint on spin rotation axis for particles of momentum group #K. This requires *OB-JET/KOBJ*=2, with groups of 3 particles, all particles in a group have the same momentum, and their spins in direction, respectively, X, Y, Z.

OBJECT DEFINITION

Depending on the type of constraint (see table p. 238), constraint calculations are performed either from transport coefficient calculation and in such case require OBJET with either KOBJ = 5 or KOBJ = 6, or from particle distributions and in this case need object definition using for instance OBJET with KOBJ = 8, MCOBJET with KOBJ = 3.

THE FITTING METHODS

The FIT procedure was drawn from the matrix transport code BETA [33]. It is a direct sequential minimization of the quadratic sum of all errors (i.e., differences between desired and actual values for the NC constraints), each normalized by its specified weight W (the smaller W, the stronger the constraint).

The step sizes for the variation of the physical parameters depend on their initial values, and cannot be accessed by the user. At each iteration, the optimum value of the step size, as well as the optimum direction of variation, is determined for each one of the NV variables. Then follows an iterative global variation of all NV variables, until the minimization fails which results in a next iteration on the optimization of the step sizes.

The *FIT2* procedure is based on the Nelder-Mead method, it has various specificities, details can be found in Ref. [34].

The optimization process may be stopped by means of a penalty value, or a maximum number of iterations on the step size or on the call to the function.

COMBINING FIT[2] AND REBELOTE

FIT[2] may be followed by the keyword REBELOTE. This allows for instance executing again the fitting procedure, following a change, by REBELOTE, in the value of some parameter(s) in zgoubi.dat data list. More on that can be found under REBELOTE, Sec. 6.3.12, page 80.

An example is given page 239.

Conversely, *REBELOTE* may be followed by the keyword *FIT[2]*. This allows for instance optimization of constraints that require multi-turn tracking (*e.g.*, optimized tune-jump quadrupole settings for beam acceleration through depolarizing resonances).

FIT[2] OPTIONS

FIT and FIT2 accept various options, as follows.

- 'nofinal' option: a request to avoid a final run that would normally follow the completion of the fit, allowing for the variable values as just determined by FIT[2]. By default, i.e., if 'nofinal' does not appear in the FIT[2] data list, then that final run does occur. This is necessary in particular when it is desired to store resulting particle data, using FAISTORE, at the sole very final pass.
- 'save' [, FileName] option : a request for the variable values as resulting from FIT[2] to be saved, by default in zgoubi.FITVALS.out, or in FileName file if the latter is specified following the 'save' instruction.

- Penalty : value of the penalty to be reached, following what the FIT[2] procedure will be considered completed, and thus stopped.

- ITER: maximum allowed number of "calls to the function" (namely, (recursive) calls to zgoubi). Once that number is reached, *FIT*[2] is stopped, regardless of a possible "penalty" value.

An example using all five options, "nofinal", "save [FileName]", "penalty" and "ITER", is given in page 240.

6.3.5 GASCAT: Gas scattering

Modification of particle momentum and velocity vector, performed at each integration step, under the effect of scattering by residual gas.

Installation is to be completed.

6.3.6 GETFITVAL: Get values of variables as saved from former FIT[2] run

This keyword allows reading, from a file whose name needs be specified, parameter values to be assigned to optical elements in zgoubi.dat.

That file is expected to contain a copy-paste of the data under the FIT[2] procedure as displayed in zgoubi.res, normally under the form

```
STATUS OF VARIABLES (Iteration #
                                                                               LBL1 LBL2
LMNT VAR PARAM MINIMUM INITIAL FINAL
                                                 MAXIMUM
                                                             STEP
                                                                     NAME
                                    761.9484791 3.000E+03 1.254E-05 MULTIPOL HKIC DHCB02
                 -3.000E+03 762.
                                    -230.9846875 1.000E+03 4.182E-06 MULTIPOL
                -1.000E+03
                              -231.
                                                                                 HKIC DHCB08
      3 4 -1.000E+03 -320. -319.8554171 1.000E+03 4.182E-06 MULTIPOL VKIC DVCB02
 146
 308. 307.6860565 3.000E+03 1.254E-05 MULTIPOL HKIC DHCF02 -114. -113.8490362 1.000E+03 4.182E-06 MULTIPOL HKIC DHCF08
                 -3.000E+03
       6 4
 651
                -1.000E+03
       7 4 -1.000E+03 -78.9 -78.88730937 1.000E+03 4.182E-06 MULTIPOL VKIC DVCF02
8 4 -1.000E+03 212. 211.8789183 1.000E+03 4.182E-06 MULTIPOL VKIC DVCF08
  616
 652
                             212. 211.8789183 1.000E+03 4.182E-06 MULTIPOL VKIC DVCF08
# STATUS OF CONSTRAINTS
                        DESIRED
                                     WEIGHT
                                                    REACHED
 TYPE I J LMNT#
                                                                    KI2
                                                                            * Parameter(s)
       1 2 127 0.0000000E+00 1.0000E+00 1.0068088E-08 6.0335E-01 *
1 3 127 0.0000000E+00 1.0000E+00 7.0101405E-09 2.9250E-01 *
   3
                                                                               0:
   3 1 4 127 0.0000000E+00 1.0000E+00 2.9184383E-10 5.0696E-04 *
                                                                5.7727E-04 *
      1 5 127 0.0000000E+00 1.0000E+00
1 2 436 0.0000000E+00 1.0000E+00
                                                 3.1142381E-10
   3
   3
                                                 3.8438378E-09
                                                                 8.7944E-02 *
          3 436 0.0000000E+00 1.0000E+00 1.5773011E-09 1.4808E-02 *
                                                                2.9022E-04 *
                    0.0000000E+00 1.0000E+00
                                                 2.2081272E-10
   3
      1 4 436
   3
       1
          5
              436
                     0.0000000E+00 1.0000E+00
                                                 5.7930552E-11
                                                                 1.9975E-05 *
   Function called 1859 times
          1.68006E-16 Busy...
```

A '#' at the beginning of a line means it is commented, thus it will not be taken into account. However a copy-paste from zgoubi.res (which is the case in the present example) would not not need any commenting.

Since some of the FIT[2] variables may belong in [MC]OBJET, GETFITVAL may appear upstream of [MC]OBJET in zgoubi.dat, to allow updating the latter.

Once completed, FIT[2] will be followed by a final run of zgoubi.dat with variable values updated as resulting from the fit. This can be inhibited by indicating 'nofinal' option in FIT[2] (see page 68). For that final run GETFITVAL will be inhibited so avoid overridding the updated variable values.

6.3.7 MCDESINT: Monte-Carlo simulation of in-flight decay[36]

When MCDESINT is met in a structure (normally, after OBJET or after CIBLE), in-flight decay simulation starts. It must be preceded by PARTICUL for the definition of mass M_1 and COM lifetime τ_1 of the parent particle.

The two-body decay simulated is

$$1 \longrightarrow 2 + 3$$

The decay is isotropic in the center of mass. 1 is the incoming particle, with mass M_1 , momentum $p_1 = \gamma_1 M_1 \beta_1 c$ (relative momentum $D_1 = \frac{p_1}{q} \frac{1}{BORO}$ with BORO = reference rigidity, defined in [MC]OBJET). 2 and 3 are decay products with respective masses and momenta M_2 , M_3 and $p_2 = \gamma_2 M_2 \beta_2 c$, $p_3 = \gamma_3 M_3 \beta_3 c$. The average distance s_1 at which a particle will decay is related to its center of mass lifetime τ_1 by

$$s_1 = c\tau_1 \sqrt{\gamma_1^2 - 1}$$

The actual path length s up to the decay point is calculated, for each one of the particles defined by [MC]OBJET and prior t ray-tracing, from a random number $0 < R_1 \le 1$ by using the exponential decay formula

$$s = -s_1 \ell n R_1$$

After decay of the parent particle 1, particle 2 will be ray-traced with assumed positive charge, while particle 3 is discarded. Its scattering angles in the center of mass θ^* and ϕ are generated from two other random numbers $0 < R_2 \le 1$ and $0 < R_3 \le 1$ by

$$\theta^* = a\cos(1 - 2R_2) \qquad (0 < \theta^* \le \pi)$$

$$\phi = 2\pi R_3 \qquad (0 < \phi \le 2\pi)$$

 ϕ is a relativistic invariant, and θ in the laboratory frame (Fig. 8) is given by

$$\tan \theta = \frac{1}{\gamma_1} \frac{\sin \theta^*}{\frac{\beta_1}{\beta_2^*} + \cos \theta^*}$$

 β_2^* and momentum p_2 are given by

$$\gamma_2^* = \frac{M_1^2 + M_2^2 - M_3^2}{2M_1 M_2}$$

$$\gamma_2 = \gamma_1 \gamma_2^* (1 + \beta_1 \beta_2^* \cos \theta^*)$$

$$\beta_2 = \left(1 - \frac{1}{\gamma_2^2}\right)^{1/2}$$

$$p_2 = M_2 \sqrt{\gamma_2^2 - 1}$$

Finally, θ and ϕ are transformed into the angles T_2 and P_2 in the **zgoubi** frame, and the relative momentum takes the value $D_2 = \frac{p_2}{q} \frac{1}{BORO}$ (where BORO is the reference rigidity, see OBJET), while the starting position of M_2 is the very location of the parent particle decay, (Y_1, Z_1, s_1) .

The decay simulation by **zgoubi** satisfies the following procedures. In optical elements and field maps, after each integration step *XPAS*, the actual path length of the particle, F(6, I), is compared to its limit path length s. If s is passed, then the particle is considered as having decayed at $F(6, I) - \frac{XPAS}{2}$, at a position obtained by a linear translation from the position at F(6, I). Presumably, the smaller *XPAS*, the smaller the error on position and angles at the decay point.

Figure 8: At position $M(X_1, Y_1, Z_1)$, particle 1 decays into 2 and 3; **zgoubi** then proceeds with the computation of the trajectory of 2, while 3 is discarded. θ and ϕ are the scattering angles of particle 2 relative to the direction of the incoming particle 1; they transform to T_2 and P_2 in **zgoubi** frame.

In ESL and CHANGREF, F(6, I) is compared to s at the end of the element. If the decay occurs inside the element, the particle is considered as having decayed at its actual limit path length s, thus its coordinates at s are recalculated by translation.

The limit path length of all particles (I=1,IMAX) is stored in the array FDES(6,I). For further statistical purposes (e.g., use of HISTO) the daughter particle 2 is tagged with an 'S' standing for "secondary". When a particle decays, its coordinates D, Y, T, Z, P, s, time at the decay point are stored in FDES(J,I), J=1,7.

A note on negative drifts:

The use of negative drifts with MCDESINT is allowed and correct. For instance, negative drifts may occur in a structure for some of the particles when using CHANGREF (due to the Z-axis rotation or a negative XCE), or when using DRIFT with XL < 0. Provision has been made to take it into account during the MCDESINT procedure, as follows.

If, due to a negative drift, a secondary particle reaches back the decay location of its parent particle, then the parent particle is "resurrected" with its original coordinates at that location, the secondary particle is discarded, and ray-tracing resumes in a regular way for the parent particle which is again allowed to decay, after the same path length. This procedure is made possible by prior storage of the coordinates of the parent particles (in array FDES(J, I)) each time a decay occurs.

Negative steps (XPAS < 0) in optical elements are not compatible with MCDESINT.

6.3.8 OPTICS: Write out optical functions. Log to zgoubi.OPTICS.out

OPTICS normally appears next to object definition, it normally works in conjunction with element label(s). *OPTICS* causes the transport and write out, in zgoubi.res, of the 6×6 beam matrix, following options *KOPT* and 'label', below.

IF KOPT=0: Off

IF *KOPT=1*: Will transport the optical functions with initial values as specified in *OBJET*, option *KOBJ=5.1*. Note that *OPTICS* assumes the first particle of the set of 11 as defined by *OBJET*, to be the reference particle for computation of the transport coefficients.

Note: In the case of a periodic structure, the initial coordinate values in *OBJET[KOBJ=5.1]* may be the periodic ones (as obtained, for instance, from a first run using *MATRIX[IFOC=11]*). Using *TWISS* keyword instead may be considered in that case.

A second argument, 'label', allows

- if *label* = *all* : printing out, into zgoubi.res, after all keywords of the zgoubi.dat structure,
- otherwise, printing out at all keyword featuring $LABEL \equiv label$ as a first label (see section 6.6.6, page 185, regarding the labelling of keywords).

PRINT: An optional third argument, *IMP=1*, or equivalently the command 'PRINT', will cause saving of the transported optical functions into file zgoubi.OPTICS.out.

About the source code:

The program beamat ensures the transport of the beam matrix along the zgoubi.dat sequence. beamat is called by optico, itself called after each optical element, in the program zgoubi.

The starting beam matrix value is in the array FI, initialized by *OBJET[KOBJ=5.1]*, program obj5. The array F0 contains the running beam matrix.

The program beaimp prints to zgoubi.res, whereas optimp prints to zgoubi.OPTICS.out. Both are called from optics.

6.3.9 OPTIONS: Global or special options

OPTIONS allows on/off switching of various options.

Available, for now:

- "WRITE ON or OFF"

Role: inhibit (most of) write statements to zgoubi.res.

Interest: "WRITE OFF" may allow substantial savings on CPU time. "WRITE ON" sets back to normal (the 'normal' state of write outs may depend on the status of other commands, such as *REBELOTE*, on-going *FIT*[2], etc.).

- "CONSTY ON or OFF"

Role: force to constant Y and Z coordinates during stepwise integration.

This allows for instance checking fields, or fabricating field maps from **zgoubi**'s analytical models of optical elements, as follows.

Concurrent use of with $IL=1,\ 2,\ {\rm or}\ 7$ (cf. Sec. 6.6.5, p. 184) will allow logging \vec{B} and/or \vec{E} field(s) (and their derivatives) experienced across optical elements, in zgoubi.res, zgoubi.plt or zgoubi.impdev.out respectively.

As a consequence, forcing Y and Z to constant values, using "CONSTY ON", allows checking of fields (and derivatives) at constant Y and Z, as determined by OBJET, across (individual or short series of) optical elements. This may be helpful when setting up input data in **zgoubi**. It can be for instance of great help in case of complex geometrical and field data inputs, as in DIPOLES, FFAG.

Initial coordinates are set in a very regular manner using *OBJET*. The *Y* coordinate will stand for the radius value in the case of optical elements defined in polar coordinates (*e.g.*, *DIPOLES*, polar field maps, etc.).

6.3.10 ORDRE: Taylor expansions order

The position \vec{R} and velocity \vec{u} of a particle are obtained from Taylor expansions as described in eq. (1.2.4). By default, these expansions are up to the fifth order derivative of \vec{u} ,

$$\vec{R}_1 \approx \vec{R}_0 + \vec{u}\Delta s + \dots + \vec{u}^{(5)} \frac{\Delta s^6}{6!}$$

 $\vec{u}_1 \approx \vec{u} + \vec{u}'\Delta s + \dots + \vec{u}^{(5)} \frac{\Delta s^5}{5!}$

which corresponds to fourth order derivatives of fields \vec{B} , eq. (1.2.8). and of \vec{E} , eq. (1.2.13).

However, third or higher order derivatives of fields may be zero in some optical elements, for instance in a sharp edge quadrupole. Also, in several elements, no more than first and second order field derivatives are implemented in the code. One may also wish to save on computation time by limiting the time-consuming calculation of lengthy (while possibly ineffective in terms of accuracy) Taylor expansions.

In that spirit, the purpose of *ORDRE*, option IO = 2 - 5, is to allow for expansions to the $\vec{u}^{(n)}$ term in eq. 1.2.4. Default functioning is IO = 4, stated in *FORTRAN* file block.f.

Note the following:

As concerns the optical elements

DECAPOLE, DODECAPO, EBMULT, ELMULT, MULTIPOL, OCTUPOLE, QUADRUPO, SEXTUPOL

field derivatives (see eq. 1.2.10 p. 22, eq. 1.2.15 p. 22,) have been installed in the code according to $\vec{u}^{(5)}$ Taylor development order; it may not be as complete for other optical elements. In particular, in electric optical elements field derivatives (eq. 1.2.15) are usually provided to no more than second order, which justifies saving on computing time by means of *ORDRE*, so to avoid pushing Taylor expansions as high as $\vec{u}^{(5)}$.

NOTE: see also the option *IORDRE* in field map declarations (*DIPOLE-M*, *TOSCA*, etc.).

6.3.11 PARTICUL: Particle characteristics

Since **zgoubi** works using the rigidity, (BORO, as declared in [MC]OBJET), PARTICUL only needs be introduced (normally, following [MC]OBJET in the input data file zgoubi.dat) when the definition of some characteristics of the particles (mass, charge, gyromagnetic factor, life-time in the center of mass) is needed, as is the case when using the following procedures:

CAVITE : mass, charge

MCDESINT: mass, COM life-timeSPNTRK: mass, gyromagnetic factor

SRLOSS : mass, charge SYNRAD : mass, charge Electric and Electro-Magnetic elements : mass, charge

The declaration of *PARTICUL* must **precede** these keywords.

If *PARTICUL* is omitted, which is in general the case when ray-tracing ions in purely magnetic optical assemblies, then **zgoubi**, since it only knows the rigidity, will skip the computation of such quantities as time of flight.

6.3.12 REBELOTE: 'Do it again'

When REBELOTE is encountered in the input data file, the code execution jumps,

- either back to the beginning of the data file the default behavior,
- or, if option K=99.1 or K=99.2, back to a particular LABEL.

Then NPASS-1 passes (from LABEL to REBELOTE) follow.

As to the last pass, number NPASS+1, there are two possibilities:

- either it also encompasses the whole LABEL to REBELOTE range,
- or, upon request (option K=99.2), execution may exit that final pass upstream of *REBELOTE*, at a location defined by a second dedicated *LABEL* placed between the first above mentioned *LABEL*, and *REBELOTE*. In both cases, following the end of this "multiple-pass" procedure, the execution continues from the keyword which follows *REBELOTE*, until 'END' is encountered.

The two functionalities of *REBELOTE* are the following:

- REBELOTE can be used for Monte Carlo simulations when more than Max(IMAX) particles are to be tracked. Thus, when the following random procedures are used: MCOBJET, OBJETA, MCDESINT, SPNTRK (KSO = 5), their random seeds are not reset and independent statistics will add up.
- This includes **Monte Carlo simulations**, in beam lines: normally K = 0. NPASS runs through the same structure, from MCOBJET to REBELOTE will follow, resulting in the calculation of (1+NPASS)*IMAX trajectories, with as many random initial coordinates.
- REBELOTE can be used for multi-turn ray-tracing in circular machines: normally K=99 in that case (or K=99, see below). NPASS turns in the same structure will follow, resulting in the tracking of IMAX particles over 1+NPASS turns. For the simulation of pulsed power supplies, synchrotron motion, and other Q-jump manipulation, see SCALING.

For instance, using option described K=99.2 above, a full "injection line + ring + extraction line" installation can be simulated - kicker firing and other magnet ramping can be simulated using SCALING.

Using the double-*LABEL* method discussed above with option *K*=99.2, it is possible to encompass the ring between an injection line section (namely, with the element sequence of the latter extending from *OBJET* to the first *LABEL*), and an extraction line (its description will then follow *REBELOTE*), whereas the ring description extends from to the first *LABEL* to *REBELOTE*, with possible extraction, at the last pass, at the location of the second *LABEL*, located between the first one and *REBELOTE*.

Note: Some CAVITE options cause a reset-to-zero of individual particle path length⁵. This is for reasons of cumulated path length accuracy (a delta-path below computer accuracy compared to total path length would not be resolved - it can be for instance bunch length as compared to cumulated multi-turn distance around a large ring). This reset may not be desirable, it depends on the multi-turn problem dealt with using REBE-LOTE, it may be necessary for instance in long-term tracking in large rings, it is not in recirculating linacs. Option K=99 in REBELOTE will cause this reset, whereas option K=98 (UNDER DEVELOPMENT, IN cavite.f, IN THIS VERSION OF THE CODE) will avoid it everything else left unchanged.

• Case *IOPT=1*: In addition to what precedes, *REBELOTE* can change the value of arbitrary parameters in zgoubi.dat data list, using the forth argument *IOPT=1* (see page 275). *NPRM* tells the number of parameters to be changed. A series of *NPRM* lists of values, one list per parameter to be changed and each list with *NRBLT* data, tells the values to be taken by each one of these parameters, over the *NRBLT* passes of the *REBELOTE* process.

IOPT=1 is under development. To be document further.

• Printouts over NPASS+1 passes might result in a prohibitively big zgoubi.res file. They may be switched on/off by means of the option KWRIT=i.j, with i=1/0 respectively. The j flag allows a printout of the pass number and of some additional information to the video output, every 10^{j-1} turns if j>0; video output is essentially switched off during REBELOTE execution if j=0.

⁵For the geek: the "f(6,I)=0.d0" statements in cavite.f.

REBELOTE also provides information: statistical calculations and related data regarding particle decay (MCDESINT), spin tracking (SPNTRK), stopped particles (CHAMBR, COLLIMA), etc.

COMBINING REBELOTE AND FIT[2]

The keyword *REBELOTE* can follow *FIT*[2]. This allows executing again the fit procedure, after changing the value of some parameter(s) in zgoubi.dat using *REBELOTE* with option *IOPT=1*. That's the interest of the game: *REBELOTE* changes that (these) parameter(s), and then sends the zgoubi execution pointer back to the top of zgoubi.dat for a new *FIT*[2] run. Note that parameters in *FIT*[2] itself can be changed, if a parameter scan so requires for instance.

Conversely, *REBELOTE* may be followed by the keyword *FIT[2]*. This allows for instance optimization of constraints that require multi-turn tracking (*e.g.*, optimized tune-jump quadrupole settings for beam acceleration through depolarizing resonances).

EXAMPLES

An example of the use of the *REBELOTE* procedure is given page 276.

An example of FIT preceding REBELOTE is given page 239.

RECOVERING FROM A CRASH

When accelerating a bunch, *REBELOTE* is used to ensure the multi-turn process. Now, if the job is stopped - due to computer crash or else - it is possible to resume the tracking from the latest records (in [b_]zboubi.fai storage file), using *OBJET*, *KOBJ*= 3. *CAVITE* and *SCALING* aspects of the data file modifications necessary to ensure the recovery, in the case of pulsed magnets, are discussed respectively in the *SCALING* section, pp. 82, 85, an example of job resuming is given page 260.

6.3.13 RESET: Reset counters and flags

Resets counters involved in CHAMBR, COLLIMA, HISTO and INTEG procedures.

Switches off CHAMBR, MCDESINT, SCALING and SPNTRK options.

6.3.14 SCALING: Power supplies and R.F. function generator

SCALING acts as a function generator dedicated to

- varying fields in optical elements, potentials in electrostatic devices, possibly in correlation with RF parameters in *CAVITE*,
- varying one or more parameters (so, not necessarily field values), in an arbitray optical element. This capabilities is developed *on demand*, thus at present available in a limited number of optical elements (namely, CHANGREF, AGSMM, AGSQUAD). *To be documented further*.

SCALING is normally intended to be declared after the object definition. Nothing precludes declaring it later though, it will be taken into account from the moment that it is met in the **zgoubi** input data list.

Used in conjunction with *REBELOTE* for the simulation of multi-turn tracking, *SCALING* allows to change fields turn-by-turn in an arbitrary, user defined manner during an acceleration multi-turn. Fields (for instance main magnets fields) may instead be forced to follow a rigidity change caused by *CAVITE*, this can be obtained by simply using *NT=-1* as the first argument in *SCALING*, see below.

The latter case (*i.e.*, fields being correlated to *CAVITE*), allows the simulation of a recirculating linac (thus optical elements between cavities are scaled, following the rigidity increase cavity by cavity), or multiple RF stations in a ring.

SCALING acts on families of elements, a family being designated by its name that coincides with the keyword of the corresponding element. For instance, declaring MULTIPOL as to be scaled will result in the same timing law being applied to all MULTIPOLs in zgoubi.dat optical sequence. Subsets can be selected by labeling keywords in the data file (section 6.6.6, page 185) and adding the corresponding LABEL(s) in the SCALING declarations (9 LABELs maximum - for the geek: this can be changed in MXFS.H, parameter MLF). The family name of concern, as well as the scaling function for that family, are given as input data to the keyword SCALING. There is an upper limit to the number NF of families that can be declared as subject to a scaling law (this can be changed in the FORTRAN include file MXFS.H, parameter MXF).

A scaling law can be comprised of up to NT successive timings. NT is thus normally a positive integer, its value tells the number of timings used in simulating a time dependent power supply or RF function. The scaling factor at all turns is obtained by linear interpolation from the so declared timing series, see below. However, NT can also be a real and/or take negative values, being in this case an option switch, see below.

If a family appears more than once in the *SCALING* list (*i.e.*, identical keyword and label list), the following will occur:

- if each instance addresses a different parameter in the optical elements concerned, both scaling rules are applied,
- if two (or more) instances address the same parameter in the optical elements, the last instance will prevail.

If a family addressed is a subset of a previously declared one, the *SCALING* rule will override the previous one, for that subset only.

An example of data formatting for the simulation of an acceleration cycle in a circular machine is given in the following.

SCALING		
1 5		Active. $NF = 5$ families of elements are concerned, as listed below:
QUADRUPO QFA QFB		- QUADRUPO keywords labeled 'QFA' and Quadrupoles labeled 'QFB'
2		NT = 2 timings
18131.E-3	24176.E-3	The field increases (linearly) from $18131E-3*B_0$ to $24176E-3*B_0$
1	6379	from turn 1 to turn 6379
MULTIPOL		- General rule. Precedes labeled cases if any.
2		NT = 2 timings
18131.E-3	24176.E-3	Fields increase from 18131E-3* B_i to 24176E-3* B_i ($\forall i = 1, 10$ poles)
1	6379	from turn 1 to turn 6379
MULTIPOL QDA QDB		- MULTIPOL keywords labeled 'QDA' and Multipoles labeled 'QDB'
2		NT = 2 timings
18131.E-3	24176.E-3	Fields increase from 18131E-3* B_i to 24176E-3* B_i ($\forall i = 1, 10$ poles)
1	6379	from turn 1 to turn 6379
BEND		- All BEND keywords, regardless of any LABEL
2		NT = 2 timings
18131.E-3	24176.E-3	As above
1	6379	
CAVITE		- Accelerating cavity
3		NT = 3 timings
1 1.22	1.33352	The synchronous rigidity $(B\rho)_s$ increases linearly,
1 1200	6379	from $(B\rho)_{s_o}$ to $1.22*(B\rho)_{s_o}$ from turn 1 to 1200, and
		from 1.22 $*(B\rho)_{s_o}$ to 1.33352 $(B\rho)_{s_o}$ from turn 1200 to 6379

The timing is in unit of turns. In this example, TIMING = 1 to 6379 (turns). Therefore, at turn number N, B and B_i are updated in the following way. Let SCALE(TIMING = N) be the updating scale factor

$$SCALE(N) = 18.131 \frac{24.176 - 18.131}{1 + 6379 - 1} (N - 1)$$

and then

$$B(N) = SCALE(N)B_0$$

 $B_i(N) = SCALE(N)B_{i0}$

The RF frequency is computed using

$$f_{RF} = \frac{hc}{\mathcal{L}} \frac{q(B\rho)_s}{(q^2(B\rho)_s^2 + (Mc^2)^2)^{1/2}}$$

where the rigidity is updated in the following way. Let $(B\rho)_{s_o}$ be the initial rigidity (namely, $(B\rho)_{s_o} = BORO$ as defined in the keyword OBJET for instance). Then, at turn number N,

$$\begin{split} &\text{if } 1 \leq N \leq 1200 \text{ then, } \textit{SCALE}(N) = 1 + \frac{1.22 - 1}{1 + 1200 - 1} \left(N - 1\right) \\ &\text{if } 1200 \leq N \leq 6379 \text{ then, } \textit{SCALE}(N) = 1.22 + \frac{1.33352 - 1.22}{1 + 6379 - 1200} \left(N - 1200\right) \end{split}$$

and then,

$$(B\rho)_s(N) = SCALE(N) \cdot (B\rho)_{s_o}$$

from which value the calculations of $f_{RF}(N)$ follow.

Beyond the regular $NT \ge 1$ (or the short-cut NT = -1), there are coded "values" for NT, as follows.

Case of NT.Int: NT=1 and Int is an integer. This is for special scaling laws and/or reading from external files, as follows:

• NT = 1.10: allows taking the scaling law from an external data file, as in the following example:

MULTIPOL COH1 Scaling applies to all multipole field components, in MULTIPOL keywords having 'COH1' as first label.

in MULTIPOL keywords having 'COH1' as first label. Scaling is read from a file, file name e.g. 'scalingFile'; FAC

1.10 [,FAC] Scaling is read from a file, file is an additional scaling factor.

scalingFile File name (file is expected to contain at least N2 columns).

1 n Column number n lists the scaling factor at rigidity values listed in column number 1; current scaling is obtained by interpolation in this table

(and multiplied by FAC if specified).

• NT = 1.11: To be documented further.

someKEYWORD [someLABEL1] 1.11

• NT = 1.12: allows taking the scaling law from an external data file, as in the following example:

AGSQUAD QH_A17 Scaling applies to AGSQUAD keyword having 'COH1' as first label.

1.12 Scaling is read from a file, file name e.g. 'scalingFile'.

scalingFile File name (file is expected to contain at least 2+2*N2 columns).

N1, N2, p11, p12, p21, p22, ... N1=number of pairs, see next; N2=;

Scaling is obtained from interpolation in column pi1 and applied to parameter pi2 of AGSQUAD.

• NT = 1.13: To be documented further.

```
someKEYWORD [someLABEL1] 1.13
```

NT can take negative values, then acting as a switch for various types of hard-coded function generators, as follows:

- \bullet NT=-88: AC dipole function generator to be documented (details in subroutines scaling.f and scaler.f).
- NT = -87: AGS tune-jump quadrupoles to be documented
- NT = -77: field scaling law for FNAL proton driver to be documented
- NT = -60: field scaling follows $B\rho$ change by CAVITE, accounting for some starting value -
- NT = -2: allows reading an RF law (voltage, frequency, etc.) for *CAVITE* from an external data file. Useful for acceleration in fixed field rings for instance.
- NT = -1: this is convenient for synchrotron acceleration. In this case the next two lines both contain a single data (as for NT = 1), respectively the starting scaling factor value, and 1. The current field scaling factor will then be updated from the energy kick by the cavity if for instance CAVITE/IOPT=2 is used, namely,

$$SCALE(N) = SCALE(N-1) * \frac{B\rho(N)}{B\rho(N-1)}$$

Note that in the case of the previous example (assuming, though, that the ramping of the magnetic fields strictly follows the *CAVITE* kick, which was not strictly the case), the *SCALING* argument list can be simplified, including by suppressing '*CAVITE*' from the list, as follows:

```
SCALING- Scaling13Active. NF = 3 families of elements are concerned, as listed below- QUADRUPO QFA QFB- Quadrupoles labeled 'QFA' and Quadrupoles labeled 'QFB'-118131.E-31MULTIPOL QDA QDB- Multipoles labeled 'QDA' and Multipoles labeled 'QDB'-118131.E-31BEND- All BENDs (regardless of any LABEL)-118131.E-31- All BENDs (regardless of any LABEL)
```

Notes:

1. In causing, via *CAVITE*, a change of the synchronous rigidity, *SCALING* causes a change of the reference rigidity, following (see *CAVITE*)

$$B\rho_{ref} = BORO \longrightarrow B\rho_{ref} = BORO + \delta B\rho_s$$

2. It may happen that some optical elements won't scale, for source code development or updating reasons. This should be paid attention to by preliminary simulation tests.

SCALING AND THE FIT PROCEDURE: coupling variables

Because it applies a scaling factor to families of optical elements (as determined by their keyword and possible *LABEL1*, *LABEL2*), *CALING* can be used to couple FIT variables.

RECOVERING FROM A CRASH

When accelerating a bunch in a pulsed ring, *SCALING* is used to ramp magnetic fields, so following the rigidity increase by *CAVITE*. *CAVITE* may or may not be part of the *SCALING* argument list, see the two previous examples. Now, if the job stops during the multiturn tracking - due to computer crash or else - it is possible to resume the tracking from the latest records (in [b_]zboubi.fai storage file), using *OBJET*, *KOBJ*= 3. In the presence of acceleration using *CAVITE*, since there is no reference particle in **zgoubi**, *CAVITE* will read from [b_]zboubi.fai the reference rigidity at the corresponding time/turn when tracking crashed/resumes. Note that, as far as *CAVITE* is concerned, this recovery process in only installed for *CAVITE/Option*=2, a option often used for synchronous acceleration (recovery for additional *CAVITE* options can be added in cavite.f program).

6.3.15 SPACECHARG: Space charge

The keyword *SPACECHARG* enables (or disables) the calculation of space charge effects. It must be preceded by *PARTICUL* for definition of mass and charge values, as they enter in the definition of space charge parameters.

SPACECHARG is supposed to appear a first time at the location where space charge effects should start being taken into account, with the first data LMNT set to 'all' or a keyword.

SPACECHARG is supposed to appear a second time at the location where calculations should stop, with LMNT set to 'none'. It results in summary outputs in zgoubi.res.

Occurence of *PRINT* amongst *SPACECHARG* arguments results in storage of computational data and other relevant informations in zgoubi.SPACECHARG.out, as space charge computation proceeds.

6.3.16 SPNTRK: Spin tracking

The keyword *SPNTRK* allows switching spin tracking on (index *KSO*=1) or off (*KSO*=0), or resuming (index *KSO*=-1, following an occurrence *KSO*=0). It also permits the attribution of an initial spin to each one of the *IMAX* particles of the beam, following a distribution that depends on the option index *KSO*. It must be preceded by *PARTICUL* for the definition of mass and gyromagnetic factor.

KSO = 1 (respectively 2, 3): the *IMAX* particles defined with *[MC]OBJET* are given a longitudinal (1,0,0) spin component (respectively transverse horizontal (0,1,0), vertical (0,0,1)).

KSO = 4: initial spin components are entered explicitly for each one of the *IMAX* particles of the beam.

KSO = 4.1: three initial spin components S_X , S_Y , S_Z are entered explicitly just once, they are then assigned to each one of the *IMAX* particles of the beam.

KSO = 4.2: under development. Read spin components from a file, file name has to be provided. (that file at present can be zgoubi.res: KSO=4.2 looks for key "(deg) (deg)" that appears at start of the spin coordinates list under the keyword *SPNPRT*).

KSO = 5: random generation of IMAX initial spin conditions as described in Fig. 9. Given a mean polarization axis (S) defined by its angles T_0 and P_0 , and a cone of angle A with respect to this axis, the IMAX spins are sorted randomly in a Gaussian distribution

$$p(a) = \exp\left[-\frac{(A-a)^2}{2\delta A^2}\right]/\delta A\sqrt{2\pi}$$

and within a cylindrical uniform distribution around the (S) axis. Examples of simple distributions available by this mean are given in Fig. 10.

Figure 9: Spin distribution as obtained with option KSO = 5. The spins are distributed within an annular strip δA (standard deviation) at an angle A with respect to the axis of mean polarization (\vec{S}) defined by T_0 and P_0 .

Figure 10: Examples of the use of KSO = 5.

A: Gaussian distribution around a mean vertical polarization axis, obtained with T_0 = arbitrary, $P_0 = \pi/2$, A = 0 and $\delta A \neq 0$. B: Isotropic distribution in the median plane, obtained with $P_0 = \pm \pi/2$,

 $A = \pi/2$, and $\delta A = 0$.

6.3.17 SRLOSS: Synchrotron radiation energy loss [20]

The keyword SRLOSS allows activating or stopping (option KSR = 1,0 respectively) stepwise tracking of energy loss by stochastic emission of photons in magnetic fields, following the method described in section 3.1.

It can be chosen to allow radiation in the sole dipole fields, or in all types of fields regardless of their multipole composition. It can also be chosen to allow for the radiation induced transverse kick.

SRLOSS must be preceded by *PARTICUL* for defining mass and charge values as they enter in the definition of SR parameters.

Statistics on SR parameters are computed and updated while tracking, the results of which can be obtained by means of the keyword *SRPRNT*.

6.3.18 SVDOC: SVD orbit correction

UNDER DEVELOPMENT - Feb. 2019

The method is the following:

- 1. Reference trajectory (case of beam line) or orbit (case of periodic structure- requires FIT[2], see below): the initial coordinate(s) in OBJET are considered the reference(s) multiple references are allowed, see below. A reference does not have to be zero, however, FIT can be used do find the reference orbit initial coordinates, in that case FIT should appear before *SVDOC* in the sequence. For instance, (i) in a spectrometer beam line, FIT would allow to determine the necessary initial coordinates (varied by *FIT*) for a particle with a given momentum to acquire some requested radial excursion as some requested location down the line (the constraint(s) in *FIT*); (ii) if the sequence is assumed periodic, *FIT* will find the closed orbit (possibly multiple closed orbits, *e.g.* in the case of a multiple-pass recirculating linac, or a fixed-field ring such as a cyclotron or FFAG). A practical example of periodic orbit finding using *FIT[2]* is given in PART B, page 298.
- 2. The algorithm computes the A matrix (in $A\vec{x} = \vec{y} \vec{y_0}$, with x the correctors signal, y the pickups signal, $\vec{y_0}$ a reference PU signal the reference orbit), by injecting a non-zero signal (angle) in each orbit corrector, one after the other successively, and saving the successive PU readings (as rows of the A matrix). There can be up to 20 different particles tracked (meaning 20 different reference orbits, and 20 times more columns (PUs) in A), each PU is "multiple-beam", capable of discriminating each orbit in the SVD process (case for instace of chromatic orbits, or multiple-pass ERL, or FFAG lattice).
- 3. The inverse matrix A^{-1} is computed and stored (logged to zgoubi.SVD.out).
- 4. Optionally, SVDOC can carry on with error trials, in the following way:
- (i) apply the compensation signal (the SVD-inverted A^{-1} matrix) on the correctors,
- (ii) apply orbit defects,
- (iii) find the corrected [multiple-]orbit (logged to zgoubi.SVDOrbit.out),
- (iv) repeat (ii)-(iv).

The method is the following for instance in the case of a periodic sequence:

- use *ERRORS* to activate orbit defects. Note that *ERRORS* must be set to OFF in the zgoubi sequence, as (i) the first pass through the sequence is used to determine the $\vec{y_0}$ reference orbit mentionned earlier (possibly using *FIT[2]*, placed at the end of the sequence), (ii) the ON/OFF switch in *ERRORS* is managed by *SVDOC* in this procedure;
- SVDOC the strength in the correctors that the SVD used is reset to zero;
- FIT[2] finds the orbit resulting from these defects, this orbit is recorded at the PUs that the SVD used;
- SVDOC then sets the strengths in the correctors, using the SVD matrix;
- FIT[2] finds the new orbit presumably improved! and delivers it (logged to zgoubi.SVDOrbits.out, together with the uncorrected orbit).

A typical way to use the orbit correction algorithm is the following:

```
Title. The 'OPTICAL SEQUENCE', below, is assumed periodic.
1000.000000
                              reference rigidity (kG.cm)
1 1
0.E+00
             0.E+00 0.E+00 0.E+00 0.1. 'o'
! Start OPTICAL SEQUENCE here
...
! Some vertical corrector beloging in 'VKIC' family 'MULTIPOL' VKIC
[MULTIPOL data list]
! Some zero-length horizontal BPM beloging in 'HMON' family 'DRIFT' HMON
0.0000
! End OPTICAL SEQUENCE here
 'FIT'
                  ! This finds the periodic orbit:
4
                  ! Variables:
                           ! Vary Y0
! Vary T0
! Vary Z0
! Vary P0
1 30 0 [-.1,.1]
1 31 0 [-.1, .1]
1 32 0 [-.1, .1]
1 33 0 [-.1,.1] ! Vary PC
4 ! Constraints:
                                                  (default penalty=1e-10)
3.1 1 2 #End 0. 1. 0 ! Yfinal = Y0 3.1 1 2 #End 0. 1. 0 ! Tfinal = T0
3.1 1 2 #End 0. 1. 0 ! Tfinal = T0
3.1 1 2 #End 0. 1. 0 ! Zfinal = Z0
3.1 1 2 #End 0. 1. 0 ! Zfinal = P0
1 0 zgoubi.SVDOrbits.out
                 bi.SVDOrbits.out

PUV{VMON} ! Names of PU-H, -V, -HV families (max each =MPULAB/3=1).

CRV{VKIC} ! Name of corr-H, -V families; kick (rad).

1e-3 ! Kick values for computation of svd matrix (rad).

! "1" triggers ERRORS; "2" data are changed prior to that, following 2 lines; 5 trials.

! parameter 12 in ERRORS: value of HKIC dipole field: will set H orbit,
! parameter 22 in ERRORS: value of VKIC dipole field: will set V orbit.
PUH { HMON } PUV { VMON }
CRH{HKIC} CRV{VKIC}
1.e-3
1 2 5
ERRORS 12
ERRORS 22
! step 1: A^-1 is applied to correctors.
! Step 2: when back down to FIT (from here), FIT will get the corrected periodic orbit,
 'END'
```

To be documented further

6.3.19 SYNRAD: Synchrotron radiation spectral-angular densities

The keyword *SYNRAD* enables (or disables) the calculation of synchrotron radiation (SR) electric field and spectral angular energy density. It must be preceded by *PARTICUL* for defining mass and charge values, as they enter in the definition of SR parameters.

SYNRAD is supposed to appear a first time at the location where SR should start being taken into account, with the first data KSR set to 1. It results in on-line storage of the electric field vector and other relevant quantities in zgoubi.sre, as step by step integration proceeds. The observer position (XO, YO, ZO) is specified next to KSR.

Data stored in zgoubi.sre:

```
(ELx, ELy, ELz): electric field vector \vec{\mathcal{E}} (eq. 3.2.1)

(btx, bty, btz) = \vec{\beta} = \frac{1}{c} \times particle velocity

(gx, gy, gz) = \frac{d\vec{\beta}}{dt} = particle acceleration (eq. 3.2.3)

\Delta \tau = observer time increment (eq. 3.2.2)

t' = \tau - r(t')/c = retarded (particle) time

(rtx, rty, rtz): \vec{R}(t), particle to observer vector (eq. 3.2.4)

(x, y, z) = particle coordinates

\Delta s = step size in the magnet (fig. 2)

NS = step number

I = particle number

LET(I) = tagging letter

IEX(I) = stop flag (see section 6.6.11)
```

SYNRAD is supposed to appear a second time at the location where SR calculations should stop, with KSR set to 2. It results in the output of the angular energy density $\int_{\nu_1}^{\nu_2} \partial^3 W/\partial\phi \,\partial\psi \,\partial\nu$ (eq. 3.2.11) as calculated from the Fourier transform of the electric field (eq. 3.2.11). The spectral range of interest and frequency sampling (ν_1, ν_2, N) are specified next to KSR.

6.3.20 SYSTEM: System call

The keyword *SYSTEM* allows one or a series of system calls. It can appear anywhere, an arbitrary number of times, in the zgoubi.dat data list. It is effective at the very location where it appears.

SYSTEM keyword is followed by the list of the desired system commands. That can be saving zgoubi output files, calling again **zgoubi** at the end of a run so allowing dependent consecutive jobs, etc.

Examples of the use of SYSTEM are given in pp. 239, 292.

6.4 Optical Elements and Related Numerical Procedures

AGSMM: AGS main magnet

The AGS main magnet is a combined function dipole with straight axis (lines of constant field are straight lines). The field computation routines for *AGSMM* are the same as for *MULTIPOL* (details in section 1.3.7, page 24), however *AGSMM* has the following four particularities:

- There are only three multipole components present in AGSMM: dipole, quadrupole and sextupole.
- The dipole field B_0 is drawn from the reference rigidity, $B\rho_{ref}$, and follows the latter so to preserve $\rho = B\rho_{ref}/B_0$ and the orbit deviation L/ρ . In particular,
 - in the absence of acceleration, $B\rho_{ref} \equiv BORO$, with BORO the quantity appearing in the object definition using *IMClOBJET*.
 - in presence of acceleration using CAVITE, $B\rho_{ref}$ is changed to $BORO \times D_{ref}$ at each passage in the cavity, with D_{ref} the relative synchronous momentum increase, a quantity that **zgoubi** updates at cavity traversal.
- The field indices, quadrupole K1 and sextupole K2, are derived from the reference rigidity, $B\rho_{ref}$, via momentum-dependent polynomials, taken from Ref. [37], and following in that the methods found in the MAD model of the AGS [38].
- The AGS main dipole has back-leg windings, used for instance for injection and extraction orbit bumps. The number of winding turns and the number of ampere-turns are part of the data in the input data list. The intensity in the windings is accounted for in the conversion from total ampere-turns in the magnet to momentum and then to magnetic field.

Note: A consequence of items 2 and 3 is that no field value is required in defining the AGS main magnets in the zgoubi.dat input data list.

AGSQUAD: AGS quadrupole

The AGS quadrupoles are regular quadrupoles. The simulation of AGSQUAD uses the same field modelling as MULTIPOL, section 1.3.7, page 24. However amperes are provided as input to AGSQUAD rather than fields, the reason being that some of the AGS quadrupoles have two superimposed coil circuits, with separate power supplies. It has been dealt with this particularity by allowing for an additional set of quadrupole data in AGSQUAD, compared to MULTIPOL.

The field in AGSQUAD is computed using transfer functions, from the specified ampere-turns in the coils to magnetic field at pole-tip, that account for the non-linearity of the magnetic permeability [38].

AIMANT: Generation of dipole mid-plane 2-D map, polar frame

The keyword AIMANT provides an automatic generation of a dipole median plane field map in polar coordinates.

A more recent and improved version will be found in *DIPOLE-M*. In addition, a similar modelling, that however skips the stage of an intermediate mid-plane field map, can be found in *DIPOLE[S]*.

The extent of the map is defined by the following parameters, as shown in Figs. 11A and 11B,

AT : total angular aperture

RM : mean radius used for the positioning of field boundaries RMIN, RMAX : minimum and maximum radial boundaries of the map

The 2 or 3 effective field boundaries (EFB) inside the map are defined from geometric boundaries, the shape and position of which are determined by the following parameters,

ACENT: arbitrary angle, used for the positioning of the EFBs.

 ω : azimuth of an EFB with respect to ACENT

 θ : angle of a boundary with respect to its azimuth (wedge angle)

 R_1, R_2 : radius of curvature of an EFB U_1, U_2 : extent of the linear part of the EFB.

At any node of the map mesh, the value of the Z component of the field is calculated as

$$B_Z = \mathcal{F}(R,\theta) * B_0 * \left(1 + N * \left(\frac{R - RM}{RM}\right) + B * \left(\frac{R - RM}{RM}\right)^2 + G * \left(\frac{R - RM}{RM}\right)^3\right)$$
(6.4.1)

where N, B and G are respectively the first, second and third order field indices and $\mathcal{F}(R,\theta)$ is the fringe field coefficient (it determines the "flutter" in periodic structures).

Calculation of the Fringe Field Coefficient

With each EFB a realistic extent of the fringe field, λ , is associated (Figs. 11A and 11B), and a fringe field coefficient F is calculated. In the following λ stands for either λ_E (Entrance), λ_S (Exit) or λ_L (Lateral EFB).

If a node of the map mesh is at a distance of the EFB larger than λ , then F=0 outside the field map and F=1 inside. If a node is inside the fringe field zone, then F is calculated as follows.

Two options are available, for the calculation of F, depending on the value of ξ .

If $\xi \geq 0$, F is a second order type fringe field (Fig. 12) given by

$$F = \frac{1}{2} \frac{(\lambda - s)^2}{\lambda^2 - \xi^2} \quad \text{if } \xi \le s \le \lambda$$
 (6.4.2)

$$F = 1 - \frac{1}{2} \frac{(\lambda - s)^2}{\lambda^2 - \xi^2}$$
 if $-\lambda \le s \le -\xi$ (6.4.3)

where s is the distance to the EFB, and

$$F = \frac{1}{2} + \frac{s}{\lambda + \xi} \quad \text{if } 0 \le s \le \xi \tag{6.4.4}$$

$$F = \frac{1}{2} - \frac{s}{\lambda + \xi}$$
 if $-\xi \le s \le 0$ (6.4.5)

This simple model allows a rapid calculation of the fringe field, but may lead to erratic behavior of the field when extrapolating out of the median plane, due to the discontinuity of d^2B/ds^2 , at $s=\pm\xi$ and $s=\pm\lambda$. For better accuracy it is advised to use the next option.

Figure 11: A : Parameters used to define the field map and geometrical boundaries. B : Parameters used to define the field map and fringe fields.

If $\xi = -1$, F is an exponential type fringe field (Fig. 12) given by [39]

$$F = \frac{1}{1 + \exp P(s)} \tag{6.4.6}$$

where s is the distance to the EFB, and

$$P(s) = C_0 + C_1 \left(\frac{s}{\lambda}\right) + C_2 \left(\frac{s}{\lambda}\right)^2 + C_3 \left(\frac{s}{\lambda}\right)^3 + C_4 \left(\frac{s}{\lambda}\right)^4 + C_5 \left(\frac{s}{\lambda}\right)^5$$

$$(6.4.7)$$

The values of the coefficients C_0 to C_5 should be such that the derivatives of B_Z with respect to s be negligible at $s=\pm\lambda$, so as not to perturb the extrapolation of \vec{B} out of the median plane.

It is also possible to simulate a shift of the EFB, by giving a non zero value to the parameter *shift*. s is then changed to s— *shift* in the previous equation. This allows small variations of the total magnetic length.

Let F_E (respectively F_S , F_L) be the fringe field coefficient attached to the entrance (respectively exit, lateral) EFB following the equations above. At any node of the map mesh, the resulting value of the fringe field coefficient (eq. 6.4.1) is (Fig. 13)

$$\mathcal{F}(R,\theta) = F_E * F_S * F_L$$

In particular, $F_L \equiv 1$ if no lateral EFB is requested.

The Mesh of the Field Map

The magnetic field is calculated at the nodes of a mesh with polar coordinates, in the median plane. The radial step is given by

$$\delta R = \frac{RMAX - RMIN}{IRMAX - 1}$$

and the angular step by

$$\delta\theta = \frac{AT}{IAMAX - 1}$$

where, RMIN and RMAX are the lower and upper radial limits of the field map, and AT is its total angular aperture (Fig. 11B). IRMAX and IAMAX are the total number of nodes in the radial and angular directions.

Simulating Field Defects and Shims

Once the initial map is calculated, it is possible to perturb it by means of the parameter *NBS*, so as to simulate field defects or shims.

If NBS = -2, the map is globally modified by a perturbation proportional to $R - R_0$, where R_0 is an arbitrary radius, with an amplitude $\Delta B_Z/B_0$, so that B_Z at the nodes of the mesh is replaced by

$$B_Z*\left(1+\frac{\Delta B_Z}{B_0}\,\frac{R-R_0}{\text{RMAX}-\text{RMIN}}\right)$$

If NBS = -1, the perturbation is proportional to $\theta - \theta_0$, and B_Z is replaced by

$$B_Z * \left(1 + \frac{\Delta B_Z}{B_0} \frac{\theta - \theta_0}{AT}\right)$$

Figure 12: Second order type fringe field (upper plot) and exponential type fringe field (lower plot).

Figure 13: Effective value of $\mathcal{F}(R,\theta)$ for overlapping fringe fields F_1 and F_2 centered at O_1 and O_2 .

If NBS \geq 1, then NBS shims are introduced at positions $\frac{R_1 + R_2}{2}$, $\frac{\theta_1 + \theta_2}{2}$ (Fig. 14) [40] The initial field map is modified by shims with second order profiles given by

$$\theta = \left(\gamma + \frac{\alpha}{\mu}\right) \beta \, \frac{X^2}{\rho^2}$$

where X is shown in Fig. 14, $\rho = \frac{R_1 + R_2}{2}$ is the central radius, α and γ are the angular limits of the shim, β and μ are parameters.

At each shim, the value of B_Z at any node of the initial map is replaced by

$$B_Z * \left(1 + F\theta * FR * \frac{\Delta B_Z}{B_0}\right)$$

where $F\theta=0$ or FR=0 outside the shim, and $F\theta=1$ and FR=1 inside.

Extrapolation Off Median Plane

The vertical field \vec{B} and its derivatives in the median plane are calculated by means of a second or fourth order polynomial interpolation, depending on the value of the parameter IORDRE (IORDRE=2, 25 or 4, see section 1.4.2). The transformation from polar to Cartesian coordinates is performed following eqs. (1.4.9 or 1.4.10). Extrapolation off median plane is then performed by means of Taylor expansions following the procedure described in section 1.3.3.

Figure 14: A second order profile shim. The shim is centered at $\frac{(R_1+R_2)}{2}$ and $\frac{(\theta_1+\theta_2)}{2}$.

AUTOREF: Transport beam into a new reference frame

AUTOREF positions the new reference frame following four different options (apart from I = 0 which is just an "off" switch):

If I = 1, AUTOREF is equivalent to

$$CHANGREF[XCE = 0, YCE = Y(1), ALE = T(1)]$$

so that the new reference frame is at the exit of the last element, with particle 1 at the origin with its horizontal angle set to T=0.

If I = 2, it is equivalent to

so that the new reference frame is at the position (XW, YW) of the waist (calculated automatically in the same way as for *IMAGE*) of the three rays number 1, 4 and 5 (compatible for instance with *OBJET*, KOBJ = 5, 6, together with the use of *MATRIX*) while T(1), the horizontal angle of particle number I1, is set to zero.

If I = 3, it is equivalent to

CHANGREF[XW, YW, T(I1)]

so that the new reference frame is at the position (XW, YW) of the waist (calculated automatically in the same way as for IMAGE) of the three rays number I1, I2 and I3 specified as data, while T(I1) is set to zero.

- If I = 4: new horizontal beam centroid positionning XCE, YCE, ALE is provided. The beam is moved by XCE and then centered on YCE, ALE.
- If I = 4.1: new beam centroid positionning XCE, YCE, ALE, DCE, TIME is provided. The beam is moved by XCE and then centered on YCE, ALE. In addition, the beam is centered on a new relative momentum DCE and new timing value TIME.
- If I = 4.2: same as 4.1, except that particles all have their timing set to TIME.
- If I = 5: new vertical beam centroid positionning ZCE, PLE (position, angle) is provided. The beam is centered on vertical position and angle ZCE, PLE.

BEAMBEAM : Beam-beam lens

BEAMBEAM is a beam-beam lens simulation, a thin-lens transform [41], in the weak-strong approximation. Upon option using SPNTRK, BEAMBEAM will include spin kicks, after modelling as described in Ref. [42].

For software developers

rbb.f reads the data from zgoubi.dat; bb.f and programs therein do the beam (and spin when requested) dynamics.

BEND: Bending magnet, Cartesian frame

BEND is one of several keywords available for the simulation of dipole magnets. It presents the interest of easy handling, and is well adapted for the simulation of synchrotron dipoles and such other regular dipoles as sector magnets with wedge angles.

The field in *BEND* is defined in a Cartesian coordinate frame (unlike for instance *DIPOLE[S]* that uses a polar frame). As a consequence, having particle coordinates at entrance or exit of the magnet referring to the curved main direction of motion may require using *KPOS*, in particular *KPOS*=3 (in a circular accelerator cell for instance, see section 6.6.8, p. 186).

The dipole simulation accounts for the magnet geometrical length XL, for a possible skew angle (X-rotation, useful for obtaining vertical deviation magnet), and for the field B1 such that in absence of fringe field the deviation θ satisfies $XL = 2\frac{BORO}{B1} \sin \frac{\theta}{2}$.

Then follows the description of the entrance and exit EFBs and fringe fields. The wedge angles W_E (entrance) and W_S (exit) are defined with respect to the sector angle, with the signs as described in Fig. 15. Within a distance $\pm X_E(\pm X_S)$ on both sides of the entrance (exit) EFB, the fringe field model is used (same as for *QUADRUPO*, Fig. 36, p. 153); elsewhere, the field is supposed to be uniform.

If λ_E (resp. λ_S) is zero sharp edge field model is assumed at entrance (resp. exit) of the magnet and X_E (resp. X_S) is forced to zero. In this case, the wedge angle vertical first order focusing effect (if $\vec{B}1$ is non zero) is simulated at magnet entrance and exit by a kick $P_2 = P_1 - Z_1 \tan(\epsilon/\rho)$ applied to each particle (P_1 , P_2 are the vertical angles upstream and downstream the EFB, Z_1 the vertical particle position at the EFB, ρ the local horizontal bending radius and ϵ the wedge angle experienced by the particle; ϵ depends on the horizontal angle T).

Magnet (mis-)alignment is assured by *KPOS*. *KPOS* also allows some degrees of automatic alignment useful for periodic structures (section 6.6.8).

Figure 15: Geometry and parameters of BEND: XL = length, θ = deviation, W_E , W_S are the entrance and exit wedge angles. The motion is computed in the Cartesian frame (O, X, Y, Z).

From matrice-style code modeling, to zgoubi : Fig. 16 illustrates the conversion of matrix method style of data where the magnet is defined by its length and deviation angle (see MAD input below, using 'SBEND'), to **zgoubi** input data using *BEND* (in this particular case of an illustration of a rectangular magnet, *MULTIPOL* could be used, as well).

Figure 16: Simulating a matrix method style of rectangular magnet (*e.g.*, MAD's 'SBEND') by means of *BEND*, in three different ways, see text. In case (a), the straight length in **zgoubi**'s *BEND* is $L' = \rho \sin(A)$, whereas in cases (b, c) it is $L = 2\rho \sin(A/2)$.

• MAD style 'BEND' definition:

```
L = 1.
A = 0.1
Larc = L*(A/2.)/ sin(A/2.)
e1 = 0.
B: SBEND, L=Larc, ANGLE=A, e1 = e1, e2 = e2
• zgoubi, case (a) :
(a) YS=-rho*(1-cos(A)) translated, non-rotated BEND,
    followed by A {\mbox{\followed}} -rotation of frame
 'CHANGREF'
 YS -4.997916927068
99.8750260394 0.
0. 0. 0.05
0 0. 0. 0. 0. 0. 0.
                     ! e1=A/2
0. 0. 0.05
                     ! e2=A/2
0 0. 0. 0. 0. 0. 0.
1 0. 0. 0.
 'CHANGREF'
ZR -5.72957795131
```

• **zgoubi**, case (b) or (c) using KPOS=1 or 3:

```
(b) A/2 Z-rotated BEND followed by A/2 Z-rotation of frame
 'CHANGREF'
ZR -2.86478897565
 'BEND'
100. 0.
! e1=0
0. 0. 0.1
               ! e2=A
0 0. 0. 0. 0. 0. 0.
1 0. 0. 0.
'CHANGREF'
ZR -2.86478897565
(c) same as (b), using KPOS=3 instead
 'BEND'
100. 0.
0. 0. 0.
                ! e1=0
0 0. 0. 0. 0. 0. 0.
0. 0. 0.1
                ! e2=A
0 0. 0. 0. 0. 0. 0.
3 0. 0. -0.05
```

Negative bend, vertical bend, tricks : Use YMY for the former, TRAROT with a $\pm \pi$ X-rotation for the latter. The two can be combined, so that a vertical negative bend can be represented by the sequence $TRAROT[\pi]$, YMY, BEND[B>0], YMY, $TRAROT[-\pi]$, with positionning methods for BEND as discussed above (Fig. 16) still applying.

BETATRON: Betatron core (momentum kick)

BETATRON simulates a betatron yoke, for instance for slow extraction. It just imparts the particle a momentum kick, normally small.

BREVOL: 1-D uniform mesh magnetic field map

BREVOL reads a 1-D axial field map from a storage data file, whose content must match the following FORTRAN reading sequence (possible FORMAT updates are to be found in fmapw.f).

```
OPEN (UNIT = NL, FILE = FNAME, STATUS = 'OLD' [,FORM='UNFORMATTED'])
DO 1 I = 1, IX
    IF (BINARY) THEN
        READ(NL) X(I), BX(I)

ELSE
        READ(NL,*) X(I), BX(I)
ENDIF
1 CONTINUE
```

where IX is the number of nodes along the (symmetry) X-axis, X(I) their coordinates, and BX(I) are the values of the X component of the field. BX is normalized with BNORM factor prior to ray-tracing, as well X is normalized with the coefficient XNORM (useful to convert to centimeters, the working units in \mathbf{zgoubi}). For binary files, FNAME must begin with 'B_' or 'b_', a flag 'BINARY' will thus be set to '.TRUE.' by the FORTRAN.

X-cylindrical symmetry is assumed, resulting in BY and BZ taken to be zero on axis. $\vec{B}(X,Y,Z)$ and its derivatives along a particle trajectory are calculated by means of a 5-point polynomial interpolation followed by second order off-axis extrapolation (see sections 1.3.2, 1.4.1).

Entrance and/or exit integration boundaries may be defined in the same way as in *CARTEMES* by means of the flag ID and coefficients A, B, C, etc.

CARTEMES: 2-D Cartesian uniform mesh magnetic field map

CARTEMES was originally dedicated to the reading and processing of the measured median plane field maps of the QDD spectrometer SPES2 at Saclay, assuming mid-plane dipole symmetry. However, it can be used for the reading of any 2-D median plane maps, provided that the format of the field data storage file fits the following *FORTRAN* sequence

```
OPEN (UNIT = NL, FILE = FNAME, STATUS = 'OLD' [,FORM='UNFORMATTED'])
    IF (BINARY) THEN
        READ(NL) (Y(J), J=1, JY)
    ELSE
        READ(NL,FMT='(10F8.2)') (Y(J), J=1, JY)
        ENDIF
        DO 1 I=1, IX

IF (BINARY) THEN
        READ(NL) X(I), (BMES(I,J), J=1, JY)
    ELSE
        READ(NL,FMT='(10F8.1)') X(I), (BMES(I,J), J=1, JY)
        ENDIF
        CONTINUE
```

where, IX and JY are the number of longitudinal and transverse horizontal nodes of the uniform mesh, and X(I), Y(J) their coordinates. FNAME is the name of the file containing the field data. For binary files, FNAME must begin with 'B_' or 'b_', a flag 'BINARY' will thus be set to '.TRUE.' by the FORTRAN.

The measured field BMES is normalized with BNORM,

$$B(I, J) = BMES(I, J) \times BNORM$$

As well the longitudinal coordinate X is normalized with a *XNORM* coefficient (useful to convert to centimeters, the working units in **zgoubi**).

The vector field, \vec{B} , and its derivatives out of the median plane are calculated by means of a second or fourth order polynomial interpolation, depending on the value of the parameter IORDRE (IORDRE = 2, 25 or 4, see section 1.4.2).

In case a particle exits the mesh, its IEX flag is set to -1 (see section 6.6.11, p. 188), however it is still tracked with the field being *extrapolated* from the closest nodes of the mesh. Note that such extrapolation process may induce erratic behavior if the distance from the mesh gets too large.

Entrance and/or exit integration boundaries (so-called "droite de coupure" in the code) can be defined with the flag ID, as follows (Fig. 17).

If ID = 1: the integration in the field is terminated on a boundary with equation A'X + B'Y + C' = 0, and then the trajectories are extrapolated linearly onto the exit border of the map.

If ID = -1: an entrance boundary is defined, with equation A'X + B'Y + C' = 0, up to which trajectories are first extrapolated linearly from the map entrance border, prior to being integrated in the field.

If ID ≥ 2 : one entrance boundary, and ID-1 exit boundaries are defined, as above. The integration in the field terminates on the last (ID-1) exit boundary. No extrapolation onto the map exit border is performed in this case.

Figure 17: OXY is the coordinate system of the mesh. Integration boundaries may be defined, using $ID \neq 0$: particle coordinates are extrapolated linearly from the entrance face of the map, onto the boundary A'X + B'Y + C' = 0; after ray-tracing inside the map and terminating on the boundary AX + BY + C = 0, coordinates are extrapolated linearly onto the exit face of the map if ID = 2, or terminated on the last (ID - 1) boundary if ID > 2.

CAVITE: Accelerating cavity

CAVITE provides a simulation of a (zero length) accelerating cavity; it can be used in conjunction with keywords REBELOTE and SCALING for the simulation of multi-turn tracking with synchrotron or fixed field (FFAG, cyclotron) acceleration (see section 6.6.10). It can also be used to simulate recirculating linacs and energy-recovery linacs. CAVITE must be preceded by PARTICUL for the definition of mass M and charge q.

A major effect of CAVITE on optics settings is the following:

The reference rigidity $B\rho_{ref}$ in **zgoubi**, as used for instance when determining optical strengths from field values (see sections 1.2.1-1.2.3), is defined when creating the object by means of [MC]OBJET. However, in many cases - options as described below - that reference rigidity will be updated upon crossing a cavity, consistently with the amount of synchronous rigidity increase as induced by the energy change, namely,

$$B\rho_{ref} = BORO \longrightarrow B\rho_{ref} = BORO + \delta B\rho_s$$
 (6.4.8)

Note as an illustration of the process, that, in this case, a simple way to have the optical elements have their strengths maintained constant is to use SCALING with the option NTIM = -1.

- If IOPT = 0: CAVITE is switched off.
- If IOPT = 1 : CAVITE simulates the RF cavity of a synchrotron accelerator : the periodic motion over IP = 1, NPASS+ 1 turns (passes through the structure) is obtained using the keyword REBELOTE, option K = 99, while RF and optical elements time dependent functions are simulated by means of SCALING – see section 6.6.10. CAVITE may conveniently be located at the end of the optical structure, otherwise its phasing has to be provided. The synchrotron motion of any of the IMAX particles of a beam is obtained from the following mapping

$$\begin{cases} \phi_2 - \phi_1 = 2\pi f_{RF} \left(\frac{\ell}{\beta c} - \frac{\mathcal{L}}{\beta_s c} \right) \\ W_2 - W_1 = q\hat{V} \sin \phi_1 \end{cases}$$

= RF phase; $\phi_2 - \phi_1$ = variation of ϕ between two traversals

 \hat{V} = peak RF voltage

W = kinetic energy; $W_2 - W_1 = \text{energy gain at a traversal of } \textit{CAVITE}$

= length of the synchronous closed orbit (to be calculated by prior ray-tracing,

see 'CLOSED ORBIT COMPUTATION' below)

 $\beta_s c$ = velocity associated with the synchronous energy

= particle trajectory length between two traversals

 βc = particle velocity = velocity of light.

The RF frequency f_{RF} is a multiple of the synchronous revolution frequency, and is obtained from the input data, following

$$f_{RF} = \frac{hc}{\mathcal{L}} \frac{q(B\rho)_s}{\sqrt{q^2(B\rho)_s^2 + (Mc)^2}}$$

where h = harmonic number of the R.F $B\rho_s$ = rigidity associated with the synchronous energy

The synchronous rigidity $(B\rho)_s$ is obtained from the timing law specified by means of SCALING following $(B\rho)_s$ BORO · SCALE(TIMING) (see SCALING for the meaning and calculation of the scale factor SCALE(TIMING)). If SCALING is not used, $(B\rho)_s$ is assumed to keep the constant value BORO as given in the object description (see OBJET for instance).

The velocity βc of a particle is calculated from its current rigidity

$$\beta = \frac{q(B\rho)}{\sqrt{q^2(B\rho)^2 + (Mc)^2}}$$

The velocity $\beta_s c$ of the synchronous particle is obtained in the same way from

$$\beta_s = \frac{q(B\rho)_s}{\sqrt{q^2(B\rho)_s^2 + (Mc)^2}}$$

The kinetic energies and rigidities involved in these formulae are related by

$$q(B\rho) = \sqrt{W(W + 2Mc^2)}$$

Finally, the initial conditions for the mapping, at the first turn, are the following

- For the (virtual) synchronous particle

$$\phi_1 = \phi_s = \text{synchronous phase}$$

 $(B\rho)_{1s} = BORO$

- For any of the I = 1, IMAX particles of the beam

$$\phi_{1I} = \phi_s = \text{synchronous phase}$$

 $(B\rho)_{1I} = BORO * D_I$

where the quantities BORO and D_I are given in the object description.

Calculation of the Coordinates

Let $p_I = \left[p_{XI}^2 + p_{YI}^2 + p_{ZI}^2\right]^{1/2}$ be the momentum of particle I at the exit of the cavity, while $p_{I_0} = \left[p_{XI_0}^2 + p_{YI_0}^2 + p_{ZI_0}^2\right]^{1/2}$ is its momentum at the entrance. The kick in momentum is assumed to be fully longitudinal, resulting in the following relations between the coordinates at the entrance (denoted by the index zero) and at the exit

$$\begin{split} p_{XI} &= \left[p_I^2 - (p_{I_0}^2 - p_{XI_0}^2)\right]^{1/2} \\ p_{YI} &= p_{YI_0}, \quad \text{and} \quad p_{ZI} = p_{ZI_0} \quad \text{(longitudinal kick)} \\ X_I &= X_{I_0}, \quad Y_I = Y_{I_0} \quad \text{and} \quad Z_I = Z_{I_0} \quad \text{(zero length cavity)} \end{split}$$

and for the angles (see Fig. 1)

$$T_I = \operatorname{Atg}\left(\frac{p_{YI}}{p_{XI}}\right)$$

$$P_I = \operatorname{Atg}\left(\frac{P_{ZI}}{(p_{XI}^2 + p_{YI}^2)^{1/2}}\right)$$
(damping of the transverse motion)

• If IOPT = 2: the same simulation of a synchrotron RF cavity as for IOPT = 1 is performed, except that the keyword SCALING (family CAVITE) is not taken into account in this option: the increase in kinetic energy at each traversal, for the synchronous particle, is

$$\Delta W_s = q\hat{V}\,\sin\phi_s$$

where the synchronous phase ϕ_s is part of the input data to *CAVITE*. From this, the calculation of the law $(B\rho)_s$ and the RF frequency f_{RF} follows, according to the formulae given in the *IOPT* = 1 case.

IOPT = 2 can be used for SR loss compensation in *storage ring* mode. In that case ϕ_s should be given the appropriate value for compensation for SR induced energy loss.

IOPT = 2 handles double RF systems. Respective harmonic value and voltage amplitudes are h_1 , h_2 and V_1 , V_2 . It follows CERN ISR-TH-RF/80-26 [43]. In particular, the stable phase ϕ_n of the higher harmonic voltage is taken to be

$$\phi_{\rm n} = {\rm atan}({\rm tan}(\phi_{\rm s})/{\rm n})/{\rm n}$$

wherein $n = h_2/h_1$. The synchronous energy gain is

$$\Delta W_s = q\hat{V}\left(\sin(\phi_s) + k\sin(n\phi_n)\right)$$

with
$$k = V_2/V_1$$
.

The option IOPT=2 handles synchrotron radiation energy loss in the case of stationary bucket (see IOPT=11 for accelerating bucket). Compensation is derived from the synchronous phase ϕ_s , via $\Delta W_{SR}=q\hat{V}\sin\phi_s$, therefore assuming appropriate value

$$\phi_s = \sin(\Delta W_{SR}/q\hat{V})$$

with ΔW_{SR} = the energy loss between passes in the cavity.

• If IOPT = 3: sine RF law, acceleration without synchrotron motion. Any particle will be given a kick

$$\Delta W = q\hat{V} \sin \phi_s$$

where \hat{V} and ϕ_s are input data.

The option IOPT = 3 handles synchrotron radiation energy loss in the case of stationary bucket (as in IOPT = 2).

- If IOPT = 4: to be documented.
- If IOPT = 5: to be documented.
- If IOPT = 6: allows reading the RF frequency and/or phase law from an external file (wih name normally "zgoubi.freqLaw.In"). See routines cavite.f and scalin.f for details Was first used for acceleration in scaling FFAG [51].
- If IOPT = 7: fixed frequency RF, quasi- or isochronous acceleration. Was first used for quasi-isochronous, fixed frequency acceleration in the EMMA prototype linear FFAG [52, 53].

IOPT = 7 can be used for cyclotron acceleration.

- If IOPT = 8: to be documented.
- If IOPT = 9: to be documented.
- If IOPT = 10: fixed frequency RF. Was first installed/used for CEBAF and eRHIC ERL simulations. A Chambers matrix method is used to get the transverse focusing effect. Particles undergo a longitudinal boost in energy

$$\Delta W = q\hat{V}\cos(2\pi f_{RF}t + \phi_s)$$

with t the arrival time at the center of the cavity. The phase datum ϕ_s in this option has two roles, (i) that played in the equation above, (ii) determining the updating of **zgoubi**'s reference rigidity, namely,

$$B\rho_{ref} = BORO \rightarrow B\rho_{ref} = BORO + \delta B\rho_s \quad \text{with} \quad \delta B\rho_s = \frac{\Delta(\beta_s(W_s + M))}{ac}, \quad \Delta W_s = q\hat{V}\cos(\phi_s)$$
 (6.4.9)

The cavity length L as specified in the input data is also used to update the path length of the particles (linearly). An optional 'IOP' flag allows small ΔW approximation of Chambers matrices, as well as removing the longitudinal damping (thus geometrical emittance is conserved), as follows:

- IOP = 0: Default value; the transverse matrix is that of a drift with length L.
- IOP = 1 : Chambers matrix with $\Delta W/W$ approximation, namely, for both planes,

$$\begin{pmatrix} x \\ x' \end{pmatrix}_{out} = \begin{pmatrix} \sqrt{(W_i/W_o)} & L_{cav} \times \sqrt{(W_i/W_o)} \\ 0. & \sqrt{(W_i/W_o)} \end{pmatrix} \begin{pmatrix} x \\ x' \end{pmatrix}_{in}$$
(6.4.10)

with W_i , W_o respectively the incoming and outgoing kinetic energies.

- IOP = -1 : Same as 1, with matrix in both planes re-normalized to determinant=1 (i.e., $R_{ij} \rightarrow R_{ij}/\sqrt{R_{11}R_{12}-R_{21}R_{22}}$),
- IOP = 2 : Chambers matrix without approximation on $\Delta W/W$, namely, for both planes,

$$\begin{pmatrix} x \\ x' \end{pmatrix}_{out} = \begin{pmatrix} \cos(u) - \sqrt{2}\sin(u)\cos(\phi) & vW_i\sin(u)\cos(\phi) \\ -\frac{\sin(u)}{vW_o}(2\cos(\phi) + \frac{1}{\cos(\phi)}) & \frac{W_i}{W_o}(\cos(u) + \sqrt{2}\sin(u)\cos(\phi)) \end{pmatrix} \begin{pmatrix} x \\ x' \end{pmatrix}_{in}$$
(6.4.11)

with $u = \log(W_o/W_i)/(\sqrt{8}\cos(\phi))$, $v = \sqrt{8}L/(W_o - W_i)$, ϕ the particle phase at the cavity.

- IOP = -2 : Same as 2, with matrix in both planes re-normalized to determinant=1.
- If IOPT = 11: under development.

The same simulation of a synchrotron RF cavity as for IOPT = 2 is performed, IOPT = 11 handles synchrotron radiation energy loss as well, yet both stationnary or accelerated bucket.

CLOSED ORBIT COMPUTATION

Due to possible dipole type of optical defects (e.g., fringe fields, straight axis combined function dipoles), the closed orbit may not coincide with the ideal axis of the optical elements (hence it will be almost everywhere non-zero). One way to calculate it at the beginning of the structure (i.e., where the initial particle coordinates are defined) is to ray-trace a single particle over a sufficiently large number of turns, starting with initial conditions taken near the reference orbit, so as to obtain statistically well-defined transverse phase-space ellipses. The local closed orbit coincides with the coordinates Y_c , Z_c , P_c of the center of the ellipses. A few iterations are usually sufficient (avoid near-integer tunes) to ensure accuracy. Next, ray-tracing over one turn a particle starting with the initial condition (Y_c, T_c, Z_c, P_c) will provide the entire closed orbit, and as a sub-product its length \mathcal{L} (the F(6,1) coordinate in the FORTRAN).

RECOVERING FROM A CRASH

When accelerating a bunch in a pulsed ring, *SCALING* is used to ramp magnetic fields, so following the rigidity increase by *CAVITE*. *CAVITE* may or may not be part of the *SCALING* argument list, this is discussed in the *SCALING* section, page 85. Now, if the job is stopped - due to computer crash or else - it is possible to resume the tracking from the latest records (in [b_]zboubi.fai storage file), using *OBJET*, *KOBJ*= 3. In the presence of acceleration using *CAVITE*, since there is no reference particle in **zgoubi**, *CAVITE* will read from [b_]zboubi.fai the reference rigidity at the corresponding time/turn when tracking crashed/resumes. See the *SCALING* section for more (page 82) and the examples there, as well as the example page 260.

PRINT: The optional command 'PRINT', following the first argument, 'IOPT', in CAVITE keyword, will cause logging of computational data (synchronous time and momentum, RF phase, and much more) in the file zgoubi.CAVITE.Out.

For software developers

Cavity simulations are done in cavite.f. Management of the reference rigidity $B\rho_{ref}$ is ensured for part in cavite.f, and for part in routines associated with 'SCALING', essentially scaler.f.

CHAMBR: Long transverse aperture limitation

CHAMBR causes the identification, counting and stopping of particles that reach the transverse limits of the vacuum chamber. The chamber can be either rectangular (IFORM = 1) or elliptic (IFORM = 2). The chamber is centered at YC, ZC and has transverse dimensions $\pm YL$ and $\pm ZL$ such that any particle will be stopped if its coordinates Y, Z satisfy

$$(Y-YC)^2 \ge YL^2$$
 or $(Z-ZC)^2 \ge ZL^2$ if $IFORM=1$
$$\frac{(Y-YC)^2}{YL^2} + \frac{(Z-ZC)^2}{ZL^2} \ge 1$$
 if $IFORM=2$

The conditions introduced with CHAMBR are valid along the optical structure until the next occurrence of the keyword CHAMBR. Then, if IL = 1 the aperture is possibly modified by introducing new values of YC, ZC, YL and ZL, or, if IL = 2 the chamber ends and information is printed concerning those particles that have been stopped.

The testing is done in optical elements at each integration step, between the *EFBs*. For instance, in *QUADRUPO* there will be no testing from $-X_E$ to 0 and from XL to $XL + X_S$, but only from 0 to XL; in *DIPOLE*, there is no testing as long as the *ENTRANCE EFB* is not reached, and testing is stopped as soon as the *EXIT* or *LATERAL EFBs* are passed.

In optical elements defined in polar coordinates, *Y* stands for the radial coordinate (*e.g.*, *DIPOLE*, see Figs. 3C, p. 26, and 11, p. 98). Thus, centering *CHAMBR* at

YC = RM simulates a chamber curved with radius RM, and having a radial acceptance $RM \pm YL$. In DRIFT, the testing is done at the beginning and at the end, and only for positive drifts. There is no testing in CHANGREF.

When a particle is stopped, its index *IEX* (see *OBJET* and section 6.6.11) is set to the value -4, and its actual path length is stored in the array *SORT* for possible further use.

CHANGREF: Transformation to a new reference frame

CHANGREF transports particles from a reference plane (O, Y, Z) at path distance S, to a new one by a combination of translations and/or rotations. It essentially aims at positioning optical elements with respect to one another, as setting a reference frame at the entrance or exit of field maps, or to simulate misalignments (see also KPOS option). CHANGREF can be placed anywhere in a structure.

Spin tracking, particle decay and gas-scattering are taken into account in *CHANGREF*. Energy loss by synchrotron radiation (*SRLOSS* keyword) is not.

There are two "styles" of CHANGREF, as follows.

The "old style" CHANGREF requires the three data XCE, YCE, ALE and then gets the new particle coordinates Y_2 , T_2 , Z_2 , P_2 and path length S_2 from the old ones Y_1 , T_1 , Z_1 , P_1 and S_1 using

$$T_{2} = T_{1} - ALE$$

$$Y_{2} = \frac{(Y_{1} - YCE)\cos T_{1} + XCE\sin T_{1}}{\cos T_{2}}$$

$$DL^{2} = (XCE - Y_{2}\sin ALE)^{2} + (YCE - Y_{1} + Y_{2}\cos ALE)^{2}$$

$$Z_{2} = Z_{1} + DL\operatorname{tg}P_{1}$$

$$S_{2} = S_{1} + \frac{DL}{\cos P_{1}}$$

$$P_{2} = P_{1}$$

Figure 18: Scheme of the CHANGREF procedure.

where, XCE and YCE are shifts in the horizontal plane along, respectively, X- and Y-axis, and ALE is a rotation around the Z-axis. DL is given the sign of $XCE - Y_2 \sin(ALE)$.

The example below shows the use of *CHANGREF* for the symmetric positioning of a combined function dipole+quadrupole magnet in a drift-bend-drift geometry with 12.691 degrees deviation (obtained upon combined effect of a dipole component and of quadrupole axis shifted 1 cm off optical axis).

Zgoubi data file:

```
Using CHANGREF, "Old style"
'OBJET'
51.71103865921708
                          ! Electron, Ekin=15MeV.
                          ! One particle, with
2. 0. 0.0 0.0 0.0 1. 'R' ! Y_0=2 cm.
1 1 1 1 1 1 1
'MARKER'
                  .plt
                         ! Print into zgoubi.plt.
'DRIFT'
                          ! 10 cm drift.
10.
'CHANGREF'
                          ! 1/ half Z-rotation.
0.0.-6.34165
'CHANGREF'
                         ! 2/ Y-shift.
0.1.0.
                 ! Combined function dipole + quadrupole.
'MULTIPOL'
                         ! Print into zgoubi.plt.
  10. 2.064995867082342 2. 0. 0. 0. 0. 0. 0. 0. 0.
0 0 5. 1.1 1.00 1.00 1.00 1.00 1.00 1. 1. 1. 1.
  .1455
         2.2670 -.6395 1.1558 0. 0.
0 0 5. 1.1 1.00 1.00 1.00 1.00 1.00 1. 1. 1. 1.
         2.2670 -.6395 1.1558 0. 0.
4 .1455
0 0 0 0 0 0 0 0 0
.1 step size
1 0.0.
'CHANGREF'
0. -1. -6.34165
                         ! 1/ Y-shift, 2/ half Z-rotate.
'DRIFT'
                         ! 10 cm drift. Print into zgoubi.plt.
         - .plt
10.
'FAISCEAU'
```


Note: The square markers scheme the stepwise integration in case of ± 5 cm additional fringe field extent upstream and downstream of the 5 cm long multipole.

The "new style" CHANGREF allows all 6 degrees of freedom rather than just 3, namely, X-, Y-, Z-shift, X-, Y-, Z-rotation. In addition, **CHANGREF** "new style" allows up to 9 successive such elementary transformations, in arbitrary order. The "old style" example above is transposed into "new style", hereafter.

Zgoubi data file:

```
Using CHANGREF, "New Style"
'OBJET'
51.71103865921708
                        ! Electron, Ekin=15MeV.
1 1
                         ! One particle, with
2. 0. 0.0 0.0 0.0 1. 'R' ! Y_0=2 cm.
1 1 1 1 1 1 1
'MARKER' BEG
                 .plt ! Print into zgoubi.plt.
'DRIFT'
                         ! 10 cm drift.
10.
'CHANGREF'
ZR -6.34165 YS 1. ! 1/ half Z-rotate, 2/ Y-shift.
'MULTIPOL' ! Combined function dipole + quadrupole.
                       ! Print into zgoubi.plt.
5 10. 2.064995867082342 2. 0. 0. 0. 0. 0. 0. 0. 0.
0 0 5. 1.1 1.00 1.00 1.00 1.00 1.00 1. 1. 1. 1.
4 .1455 2.2670 -.6395 1.1558 0.0.
0 0 5. 1.1 1.00 1.00 1.00 1.00 1.00 1. 1. 1. 1.
4 .1455 2.2670 -.6395 1.1558 0.0.
0 0 0 0 0 0 0 0 0 0
.1 step size
1 0. 0. 0.
'CHANGREF'
YS -1. ZR -6.34165 ! 1/ Y-shift, 2/ half Z-rotate.
'DRIFT' - .plt ! 10 cm drift. Print into zgoubi.plt.
'DRIFT' - .plt
10.
'FAISCEAU'
'END'
```

CIBLE or TARGET: Generate a secondary beam following target interaction

The reaction is $1+2 \longrightarrow 3+4$ with the following parameters

The geometry of the interaction is shown in Fig. 19.

The angular sampling at the exit of the target consists of the NT coordinates $0, \pm TS, \pm 2*TS... \pm (NT-1)*TS/2$ in the median plane, and the NP coordinates $0, \pm PS, \pm 2*PS... \pm (NP-1)*PS/2$ in the vertical plane.

The position of B downstream is deduced from that of A upstream by a transformation equivalent to two transformations using CHANGREF, namely

$$CHANGREF(XCE = YCE = 0, ALE = \beta)$$

followed by

CHANGREF(
$$XCE = YCE = 0$$
, $ALE = \theta - \beta$).

Particle 4 is discarded, while particle 3 continues. The energy loss Q is related to the variable mass M_4 by

$$Q = M_1 + M_2 - (M_3 + M_4)$$
 and $dQ = -dM_4$

The momentum sampling of particle 3 is derived from conservation of energy and momentum, according to

$$M_1c^2 + W_2 = W_3 + W_4$$

 $p_4^2 = p_2^2 + p_3^2 - 2p_2p_3\cos(\theta - T)$

Figure 19: Scheme of the principles of CIBLE (TARGET)

A, T = position, angle of incoming particle 2 in the entrance reference frame

P = position of the interaction

B, T = position, angle of the secondary particle in the exit reference frame

 θ = angle between entrance and exit frames

 β = tilt angle of the target

COLLIMA: Collimator

COLLIMA acts as a mathematical aperture of zero length. It causes the identification, counting and stopping of particles that reach the aperture limits.

Physical Aperture

A physical aperture can be either rectangular (*IFORM* = 1) or elliptic (*IFORM* = 2). The collimator is centered at YC, ZC and has transverse dimensions $\pm YL$ and $\pm ZL$ such that any particle will be stopped if its coordinates Y, Z satisfy

$$(Y-YC)^2 \ge YL^2 \text{ or } (Z-ZC)^2 \ge ZL^2 \quad \text{if} \quad \textit{IFORM} = 1$$

$$\frac{(Y-YC)^2}{YL^2} + \frac{(Z-ZC)^2}{ZL^2} \ge 1 \quad \text{if} \quad \textit{IFORM} = 2$$

Longitudinal Phase-space Collimation

COLLIMA can act as a longitudinal phase-space aperture, coordinates acted on are selected with IFORM.J. Any particle will be stopped if its horizontal (h) and vertical (v) coordinates satisfy

$$(h \le h_{min} \text{ or } h \ge h_{max}) \text{ or } (v \le v_{min} \text{ or } v \ge v_{max})$$

wherein, h is either path length S if IFORM=6 or time if IFORM=7, and v is either 1+DP/P if J=1 or kinetic energy if J=2 (provided mass and charge have been defined using the keyword PARTICUL).

Transverse Phase-space Collimation

COLLIMA can act as a transverse phase-space aperture. Any particle will be stopped if its coordinates satisfy

$$\gamma_Y Y^2 + 2\alpha_Y YT + \beta_Y T^2 \ge \epsilon_Y / \pi$$
 if $IFORM = 11$ or 14 $\gamma_Z Z^2 + 2\alpha_Z ZP + \beta_Z P^2 \ge \epsilon_Z / \pi$ if $IFORM = 12$ or 15

If *IFORM*=11 (respectively 12) then ϵ_Y/π (respectively ϵ_Z/π) is to be specified by the user as well as $\alpha_{Y,Z}$, $\beta_{Y,Z}$. If *IFORM*=14 (respectively 15) then α_Y and β_Y (respectively α_Z , β_Z) are determined by **zgoubi** by prior computation of the matched ellipse to the particle population, so only $\epsilon_{Y,Z}/\pi$ need be specified by the user.

When a particle is stopped, its index *IEX* (see *OBJET* and section 6.6.11) is set to the value -4, and its actual path length is stored in the array *SORT* for possible further use with *HISTO*).

DECAPOLE: Decapole magnet (Fig. 20)

The meaning of parameters for DECAPOLE is the same as for QUADRUPO.

In fringe field regions the magnetic field $\vec{B}(X,Y,Z)$ and its derivatives up to fourth order are derived from the scalar potential expressed to the 5th order in Y and Z

$$V(X,Y,Z)=G(X)\left(Y^4Z-2Y^2Z^3+\frac{Z^5}{5}\right)$$
 with
$$G_0=\frac{B_0}{R_0^4}$$

The modelling of the fringe field form factor G(X) is described under QUADRUPO, p. 152.

Outside fringe field regions, or everywhere in sharp edge decapole ($\lambda_E = \lambda_S = 0$), $\vec{B}(X,Y,Z)$ in the magnet is given by

$$B_X = 0$$

 $B_Y = 4G_0(Y^2 - Z^2)YZ$
 $B_Z = G_0(Y^4 - 6Y^2Z^2 + Z^4)$

Figure 20: Decapole magnet

DIPOLE: Dipole magnet, polar frame

DIPOLE provides a model of a dipole field, and allows transverse indices. The field along a particle trajectory is computed as the particle motion proceeds, straightforwardly from the dipole geometrical boundaries. Field simulation in DIPOLE is the same as used in DIPOLE-M and AIMANT for computing a field map; the essential difference in DIPOLE is in its skipping that intermediate stage of field map generation found in DIPOLE-M and AIMANT.

DIPOLE is available in a version, DIPOLES, that allows overlapping of fringe fields in a configuration of neighboring magnets.

The dimensioning of the magnet is defined by (Fig. 11, p. 98)

AT: total angular aperture

RM: mean radius used for the positioning of field boundaries

The 2 or 3 effective field boundaries (EFB), from which the dipole field is drawn, are defined from geometric boundaries, the shape and position of which are determined by the following parameters.

ACENT: arbitrary inner angle, used for EFBs positioning ω : azimuth of an EFB with respect to ACENT

 θ : angle of an EFB with respect to its azimuth (wedge angle)

 R_1, R_2 : radius of curvature of an EFB U_1, U_2 : extent of the linear part of an EFB.

The magnetic field is calculated in polar coordinates. At any position (R, θ) along the particle trajectory the value of the vertical component of the mid-plane field is calculated using

$$B_Z(R,\theta) = \mathcal{F}(R,\theta) * B_0 * \left(1 + N * \left(\frac{R - RM}{RM}\right) + B * \left(\frac{R - RM}{RM}\right)^2 + G * \left(\frac{R - RM}{RM}\right)^3\right)$$
(6.4.12)

where N, B and G are respectively the first, second and third order field indices and $\mathcal{F}(R,\theta)$ is the fringe field coefficient (it determines the "flutter" in periodic structures).

Calculation of the Fringe Field Coefficient

With each EFB a realistic extent of the fringe field, λ (normally equal to the gap size), is associated and a fringe field coefficient F is calculated. In the following λ stands for either λ_E (Entrance), λ_S (Exit) or λ_L (Lateral EFB).

F is an exponential type fringe field (Fig. 12, p. 100) given by [39]

$$F = \frac{1}{1 + \exp P(s)}$$

wherein s is the distance to the EFB and depends on (R, θ) , and

$$P(s) = C_0 + C_1 \left(\frac{s}{\lambda}\right) + C_2 \left(\frac{s}{\lambda}\right)^2 + C_3 \left(\frac{s}{\lambda}\right)^3 + C_4 \left(\frac{s}{\lambda}\right)^4 + C_5 \left(\frac{s}{\lambda}\right)^5$$

It is also possible to simulate a shift of the *EFB*, by giving a non zero value to the parameter *shift*. s is then changed to s-*shift* in the previous equation. This allows small variations of the magnetic length.

Let F_E (respectively F_S , F_L) be the fringe field coefficient attached to the entrance (respectively exit, lateral) EFB. At any position on a trajectory the resulting value of the fringe field coefficient (eq. 6.4.12) is

$$\mathcal{F}(R,\theta) = F_E * F_S * F_L$$

In particular, $F_L \equiv 1$ if no lateral EFB is requested.

Calculation of the Mid-plane Field and Derivatives

 $B_Z(R,\theta)$ in Eq. 6.4.12 is computed at the $n \times n$ nodes (n=3 or 5 in practice) of a "flying" interpolation grid in the median plane centered on the projection m_0 of the actual particle position M_0 as schemed in Fig. 21. A polynomial interpolation is involved, of the form

$$B_Z(R,\theta) = A_{00} + A_{10}\theta + A_{01}R + A_{20}\theta^2 + A_{11}\theta R + A_{02}R^2$$

that yields the requested derivatives, using

$$A_{kl} = \frac{1}{k!l!} \frac{\partial^{k+l} B_Z}{\partial \theta^k \partial r^l}$$

Note that, the source code contains the explicit analytical expressions of the coefficients A_{kl} solutions of the normal equations, so that the operation is not CPU time consuming.

Figure 21: Interpolation method. m_0 and m_1 are the projections in the median plane of particle positions M_0 and M_1 and separated by δs , projection of the integration step.

Extrapolation Off Median Plane

From the vertical field \vec{B} and derivatives in the median plane, first a transformation from polar to Cartesian coordinates is performed, following eqs (1.4.9 or 1.4.10), then, extrapolation off median plane is performed by means of Taylor expansions, following the procedure described in section 1.3.3.

DIPOLE-M: Generation of dipole mid-plane 2-D map, polar frame

DIPOLE-M is a more recent, simpler and improved version of AIMANT.

The keyword *DIPOLE-M* provides an automatic generation of a dipole field map in polar coordinates. The extent of the map is defined by the following parameters, as shown in Figs. 11A and 11B.

AT : total angular aperture

RM : mean radius used for the positioning of field boundaries

RMIN, RMAX: minimum and maximum radii

The 2 or 3 effective field boundaries (EFB) inside the map are defined from geometric boundaries, the shape and position of which are determined by the following parameters.

ACENT: arbitrary inner angle, used for EFBs positioning ω : azimuth of an EFB with respect to ACENT

 θ : angle of an EFB with respect to its azimuth (wedge angle)

 R_1, R_2 : radius of curvature of an EFB U_1, U_2 : extent of the linear part of an EFB.

At any node of the map mesh, the value of the field is calculated as

$$B_Z(R,\theta) = \mathcal{F}(R,\theta) * B_0 * \left(1 + N * \left(\frac{R - RM}{RM}\right) + B * \left(\frac{R - RM}{RM}\right)^2 + G * \left(\frac{R - RM}{RM}\right)^3\right)$$
(6.4.13)

where N, B and G are respectively the first, second and third order field indices and \mathcal{F} is the fringe field coefficient.

Calculation of the Fringe Field Coefficient

With each EFB a realistic extent of the fringe field, λ (normally equal to the gap size), is associated and a fringe field coefficient F is calculated. In the following λ stands for either λ_E (Entrance), λ_S (Exit) or λ_L (Lateral EFB).

F is an exponential type fringe field (Fig. 12) given by [39]

$$F = \frac{1}{1 + \exp P(s)}$$

where s is the distance to the EFB, and

$$P(s) = C_0 + C_1 \left(\frac{s}{\lambda}\right) + C_2 \left(\frac{s}{\lambda}\right)^2 + C_3 \left(\frac{s}{\lambda}\right)^3 + C_4 \left(\frac{s}{\lambda}\right)^4 + C_5 \left(\frac{s}{\lambda}\right)^5$$

It is also possible to simulate a shift of the *EFB*, by giving a non zero value to the parameter *shift*. s is then changed to s-*shift* in the previous equation. This allows small variations of the total magnetic length.

Let F_E (respectively F_S , F_L) be the fringe field coefficient attached to the entrance (respectively exit, lateral) EFB. At any node of the map mesh, the resulting value of the fringe field coefficient (eq. 6.4.13) is

$$\mathcal{F}(R,\theta) = F_E * F_S * F_L$$

In particular, $F_L \equiv 1$ if no lateral EFB is requested.

The Mesh of the Field Map

The magnetic field is calculated at the nodes of a mesh with polar coordinates, in the median plane. The radial step is given by

$$\delta R = \frac{RMAX - RMIN}{IRMAX - 1}$$

and the angular step by

$$\delta\theta = \frac{AT}{IAMAX - 1}$$

where RMIN and RMAX are the lower and upper radial limits of the field map, and AT is its total angular aperture (Fig. 11B). IRMAX and IAMAX are the total number of nodes in the radial and angular directions.

Simulating Field Defects and Shims

Once the initial map is calculated, it is possible to modify it by means of the parameter *NBS*, so as to simulate field defects or shims.

If NBS = -2, the map is globally modified by a perturbation proportional to $R - R_0$, where R_0 is an arbitrary radius, with an amplitude $\Delta B_Z/B_0$, so that B_Z at the nodes of the mesh is replaced by

$$B_Z * \left(1 + \frac{\Delta B_Z}{B_0} \frac{R - R_0}{RMAX - RMIN}\right)$$

If NBS = -1, the perturbation is proportional to $\theta - \theta_0$, and B_Z is replaced by

$$B_Z * \left(1 + \frac{\Delta B_Z}{B_0} \frac{\theta - \theta_0}{AT} \right)$$

If NBS \geq 1, then NBS shims are introduced at positions $\frac{R_1 + R_2}{2}$, $\frac{\theta_1 + \theta_2}{2}$ (Fig. 14) [40] The initial field map is modified by shims with second order profiles given by

$$\theta = \left(\gamma + \frac{\alpha}{\mu}\right) \beta \, \frac{X^2}{\rho^2}$$

where X is shown in Fig. 12, $\rho = \frac{R_1 + R_2}{2}$ is the central radius, α and γ are the angular limits of the shim, β and μ are parameters.

At each shim, the value of B_Z at any node of the initial map is replaced by

$$B_Z * \left(1 + F\theta * FR * \frac{\Delta B_Z}{B_0}\right)$$

where $F\theta = 0$ or FR = 0 outside the shim, and $F\theta = 1$ and FR = 1 inside.

Extrapolation Off Median Plane

The vector field \vec{B} and its derivatives in the median plane are calculated by means of a second or fourth order polynomial interpolation, depending on the value of the parameter IORDRE (IORDRE=2, 25 or 4, see section 1.4.2). The transformation from polar to Cartesian coordinates is performed following eqs (1.4.9 or 1.4.10). Extrapolation off median plane is then performed by means of Taylor expansions, following the procedure described in section 1.3.3.

DIPOLES: Dipole magnet N-tuple, polar frame [44, 45]

DIPOLES works much like DIPOLE as to the field modelling, yet with the particularity that it allows positioning up to 5 such dipoles within the angular sector with full aperture AT thus allowing accounting for overlapping fringe fields. This is done in the following way⁶.

The dimensioning of the magnet is defined by

AT: total angular aperture

RM: mean radius used for the positioning of field boundaries

For each one of the N=1 to 5 dipoles of the N-tuple, the 2 effective field boundaries (entrance and exit EFBs) from which the dipole field (eqs. 6.4.14, 6.4.16) is drawn are defined from geometrical boundaries, the shape and position of which are determined by the following parameters (in the same manner as in *DIPOLE*, *DIPOLE-M*) (see Fig. 11-A, p. 98, and Fig. 22)

 ACN_i : arbitrary inner angle, used for EFBs positioning

 ω : azimuth of an EFB with respect to ACN

 θ : angle of an EFB with respect to its azimuth (wedge angle)

 R_1, R_2 : radius of curvature of an EFB U_1, U_2 : extent of the linear part of an EFB

Calculation of the Field From a Single Dipole

The magnetic field is calculated in polar coordinates. At all (R, θ) in the median plane (Z = 0), the magnetic field due a single one (index i) of the dipoles of a N-tuple magnet can take one of the forms below, upon option,

(i)
$$B_{Zi}(R,\theta) = B_{Z0,i} \mathcal{F}_i(R,\theta) \left(1 + b_{1i}(R - RM_i) / RM_i + b_{2i}(R - RM_i)^2 / RM_i^2 + \dots \right)$$
 (6.4.14)

(ii)
$$B_Z(R,\theta) = B_{Z_{0,i}} + \sum_{i=1}^N \mathcal{F}_i(R,\theta) \left(b_{1_i}(R - RM_i) + b_{2_i}(R - RM_i)^2 + \dots \right)$$
 (6.4.15)

(iii) Sandro Ruggiero's FFAG style of field, experimental, see routine dipsi.f

wherein $B_{Z0,i}$ is a reference field, at reference radius RM_i , and $\mathcal{F}(R,\theta)$ is the fringe field coefficient, see below. This field model is proper to simulate for instance chicane dipoles, cyclotron or FFAG magnets, etc.

Figure 22: Definition of a dipole triplet using the DIPOLES or FFAG procedures.

Calculation of the Fringe Field Coefficient

In a dipole, a realistic extent of the fringe field, g, is associated with each EFB, and a fringe field coefficient F is calculated.

F is an exponential type fringe field (Fig. 12, page 100) given by [39]

$$F = \frac{1}{1 + \exp P(d)}$$

wherein d is the distance to the EFB and depends on (R, θ) , and

⁶FFAG can be referred to as another instance of a procedure based on such method.

$$P(d) = C_0 + C_1 \left(\frac{d}{g}\right) + C_2 \left(\frac{d}{g}\right)^2 + C_3 \left(\frac{d}{g}\right)^3 + C_4 \left(\frac{d}{g}\right)^4 + C_5 \left(\frac{d}{g}\right)^5$$

In addition, g is made dependent of R (a way to simulate the effect of variable gap size on fringe field extent), under the form

$$g(R) = g_0 (RM/R)^{\kappa}$$

This dependence is accounted for rigorously if the interpolation method (see below) is used, or else to order zero (derivatives of g(R) are not considered) if the analytic method (below) is used.

Let F_E (respectively F_S) be the fringe field coefficient attached to the entrance (respectively exit) EFB; at any position on a trajectory the resulting value of the fringe field coefficient is taken to be

$$\mathcal{F}_i(R,\theta) = F_E * F_S \tag{6.4.16}$$

Calculation of the Field Resulting From all N Dipoles

Now, accounting for N neighboring dipoles in an N-tuple, the mid-plane field and field derivatives are obtained by addition of the contributions of the N dipoles taken separately, namely

$$B_Z(R,\theta) = \sum_{i=1,N} B_{Zi}(R,\theta)$$
 (6.4.17)

$$\frac{\partial^{k+l}\vec{B_Z}(R,\theta)}{\partial \theta^k \partial r^l} = \sum_{i=1,N} \frac{\partial^{k+l}\vec{B_Z}_i(R,\theta)}{\partial \theta^k \partial r^l}$$
(6.4.18)

Note that, in doing so it is not meant that field superposition does apply in reality, it is just meant to provide the possibility of obtaining a realistic field shape, that would for instance closely match (using appropriate $C_0 - C_5$ sets of coefficients) 3-D field simulations obtained from magnet design codes.

Calculation of the Mid-plane Field Derivatives

Two methods have been implemented to calculate the field derivatives in the median plane (Eq. 6.4.17), based on either analytical expressions derived from the magnet geometrical description, or classical numerical interpolation.

The first method has the merit of insuring best symplecticity in principle and fastest tracking. The interest of the second method is in its facilitating possible changes in the mid-plane magnetic field model $B_Z(R,\theta)$, for instance if simulations of shims, defects, or special R, θ field dependence need to be introduced.

Analytical method [46]:

The starting ingredients are, on the one hand distances to the EFBs,

$$d(R,\theta) = \sqrt{(x(R,\theta) - x_0(R,\theta))^2 + (y(R,\theta) - y_0(R,\theta))^2}$$

to be computed for the two cases d_{Entrance} , d_{Exit} , and on the other hand the expressions of the coordinates of particle position Mand its projection P on the EFB in terms of the magnet geometrical parameters, namely

$$\begin{array}{rcl} x(R,\theta) & = & \cos(ACN - \theta) - RM \\ y(R,\theta) & = & R\sin(ACN - \theta) \\ x_P(R,\theta) & = & \sin(u) \; (y(R,\theta) - y_b)/2 + x_b \; \sin^2(u) + x(R,\theta) \; \cos^2(u) \\ y_P(R,\theta) & = & \sin(u) \; (x(R,\theta) - x_b)/2 + y_b \; \cos^2(u) + y(R,\theta) \; \sin^2(u) \end{array}$$

with
$$x_b,\ y_b,\ u$$
 parameters drawn from the magnet geometry (sector angle, wedge angle, face curvatures, etc.). These ingredients allow calculating the derivatives $\frac{\partial^{u+v}x(R,\theta)}{\partial \theta^u\partial r^v}$, $\frac{\partial^{u+v}y(R,\theta)}{\partial \theta^u\partial r^v}$, $\frac{\partial^{u+v}x_0(R,\theta)}{\partial \theta^u\partial r^v}$, $\frac{\partial^{u+v}x_0(R,\theta)}{\partial \theta^u\partial r^v}$, $\frac{\partial^{u+v}y_0(R,\theta)}{\partial \theta^u\partial r^v}$, which, in turn, intervene in the derivatives of the compound functions $\frac{\partial^{u+v}F(R,\theta)}{\partial \theta^u\partial r^v}$, $\frac{\partial^{u+v}p(R,\theta)}{\partial \theta^u\partial r^v}$, $\frac{\partial^{u+v}d(R,\theta)}{\partial \theta^u\partial r^v}$.

Interpolation method:

The expression $B_Z(R,\theta)$ in Eq. 6.4.17 is, in this case, computed at the $n \times n$ nodes (n=3 or 5 in practice) of a "flying" interpolation grid in the median plane centered on the projection m_0 of the actual particle position M_0 as schemed in Fig. 23. A polynomial interpolation is involved, of the form

$$B_Z(R,\theta) = A_{00} + A_{10}\theta + A_{01}R + A_{20}\theta^2 + A_{11}\theta R + A_{02}R^2$$

that yields the requested derivatives, using

$$A_{kl} = \frac{1}{k!l!} \frac{\partial^{k+l} B}{\partial \theta^k \partial r^l}$$

Note that, the source code contains the explicit analytical expressions of the coefficients A_{kl} solutions of the normal equations, so that the operation is not CPU time consuming.

Figure 23: Interpolation method. m_0 and m_1 are the projections in the median plane of particle positions M_0 and M_1 and separated by δs , projection of the integration step.

Extrapolation Off Median Plane

From the vertical field \vec{B} and derivatives in the median plane, first a transformation from polar to Cartesian coordinates is performed, following eqs (1.4.9 or 1.4.10), then, extrapolation off median plane is performed by means of Taylor expansions, following the procedure described in section 1.3.3.

Sharp Edge

Sharp edge field fall-off at a field boundary can only be simulated if the following conditions are fulfilled:

- entrance (resp. exit) field boundary coincides with entrance (resp. exit) dipole limit (it means in particular, see Fig. 11, $\omega^+ = ACENT$ (resp. $\omega^- = -(AT ACENT)$), together with $\theta = 0$ at entrance (resp. exit) EFBs),
 - analytical method for calculation of the mid-plane field derivatives is used.

DODECAPO: Dodecapole magnet (Fig. 24)

The meaning of parameters for DODECAPO is the same as for QUADRUPO.

In fringe field regions the magnetic field $\vec{B}(X,Y,Z)$ and its derivatives up to fourth order are derived from the scalar potential approximated to the 6th order in Y and Z

$$V(X,Y,Z)=G(X)\left(Y^4-\frac{10}{3}Y^2Z^2+Z^4\right)YZ$$
 with $G_0=\frac{B_0}{R_0^5}$

The modelling of the fringe field form factor G(X) is described under QUADRUPO, p. 152.

Outside fringe field regions, or everywhere in sharp edge dodecapole ($\lambda_E=\lambda_S=0$) , $\vec{B}(X,Y,Z)$ in the magnet is given by

$$B_X = 0$$

$$B_Y = G_0(5Y^4 - 10Y^2Z^2 + Z^4)Z$$

$$B_Z = G_0(Y^4 - 10Y^2Z^2 + 5Z^4)Y$$

Figure 24: Dodecapole magnet

DRIFT or **ESL**: Field free drift space

DRIFT or ESL allow introduction of a drift space with length XL with positive or negative sign, anywhere in a structure. This is an exact transport: the associated equations of motion are (Fig. 25)

$$Y_2 = Y_1 + XL * tgT$$

$$Z_2 = Z_1 + \frac{XL}{\cos T} tgP$$

$$SAR_2 = SAR_1 + \frac{XL}{\cos T * \cos P}$$

whereas the velocity vector is left unchenged.

Figure 25: Transfer of particles in a drift space.

The flag '.plt' can be added as a second LABEL following DRIFT keyword. It causes local coordinates to be logged to zgoubi.res or to zgoubi.plt (in the same manner as IL=1, or 2, respectively, does in the case optical elements).

A drift can be split into pieces, using the 'split' flag. This may be used for graphic prurposes for instance: a sub-product of 'split' is its allowing using the IL flag, so logging coordinates to either zgoubi.res or to zgoubi.plt (in the same manner as IL=1 or 2, respectively, does in optical elements, step by step).

EBMULT: Electro-magnetic multipole

EBMULT simulates an electro-magnetic multipole, by addition of electric (\vec{E}) and magnetic (\vec{B}) multipole components (dipole to 20-pole). \vec{E} and its derivatives $\frac{\partial^{i+j+k}\vec{E}}{\partial X^i\partial Y^j\partial Z^k}$ $(i+j+k\leq 4)$ are derived from the general expression of the multipole scalar potential (eq. 1.3.5), followed by a $\frac{1}{2n}$ rotation (n=1,2,3,...) (see also ELMULT). \vec{B} and its derivatives are derived from the same general potential, as described in section 1.3.7 (see also MULTIPOL).

The entrance and exit fringe fields of the \vec{E} and \vec{B} components are treated separately, in the same way as described under *ELMULT* and *MULTIPOL*, for each one of these two fields. Wedge angle correction is applied in sharp edge field model if $\vec{B}1$ is non zero, as in *MULTIPOL*. Any of the \vec{E} or \vec{B} multipole field component can be X-rotated independently of the others.

Use PARTICUL prior to EBMULT, for the definition of particle mass and charge.

Figure 26: An example of \vec{E} , \vec{B} multipole : the achromatic quadrupole (known for its allowing null second order chromatic aberrations [47]).

EL2TUB: Two-tube electrostatic lens

The lens is cylindrically symmetric about the X-axis.

The length and potential of the first (resp. second) electrode are X1 and V1 (X2 and V2). The distance between the two electrodes is D, and their inner radius is R_0 (Fig. 27). The model for the electrostatic potential along the axis is [48]

$$\begin{split} V(X) &= \frac{V_2 - V_1}{2} \operatorname{th} \frac{\omega x}{R_0} \left[+ \frac{V_1 + V_2}{2} \right] & \text{if } D = 0 \\ V(X) &= \frac{V_2 - V_1}{2} \frac{1}{2\omega D/R_0} \ln \frac{\operatorname{ch} \omega}{\operatorname{ch} \omega} \frac{x + D}{R_0} \left[+ \frac{V_1 + V_2}{2} \right] & \text{if } D \neq 0 \end{split}$$

(x = distance from half-way between the electrodes; ω = 1.318; th = hyperbolic tangent; ch = hyperbolic cosine) from which the field $\vec{E}(X,Y,Z)$ and its derivatives are derived following the procedure described in section 1.3.1 (note that they don't depend on the constant term $\left\lceil \frac{V_1 + V_2}{2} \right\rceil$ which disappears when differentiating).

Use PARTICUL prior to EL2TUB, for the definition of particle mass and charge.

Figure 27: Two-electrode cylindrical electric lens.

ELMIR: Electrostatic N-electrode mirror/lens, straight slits

The device works as mirror or lens, horizontal or vertical. It is made of N 2-plate electrodes and has mid-plane symmetry.

Electrode lengths are L1, L2, ..., LN. D is the mirror/lens gap. The model for the Y-independent electrostatic potential is (after Ref. [49, p.412])

$$V(X,Z) = \sum_{i=2}^{N} \frac{Vi - Vi - 1}{\pi} \arctan \frac{\sinh(\pi(X - Xi - 1)/D)}{\cos(\pi Z/D)}$$

where Vi are the potential at the N electrodes (and normally V1=0 refers to the incident beam energy), Xi are the locations of the zero-length slits, X is the distance from the origin taken at the first slit (located at $X1\equiv 0$ between the first and second electrodes). From V(X,Z) the field $\vec{E}(X,Y,Z)$ and derivatives are deduced following the procedure described in section 1.3.7 (page 24).

The total X-extent of the mirror/lens is $L = \sum_{i=1}^{N} Li$.

In the mirror mode (option MT = 11 for vertical mid-plane or MT = 12 for horizontal mid-plane) stepwise integration starts at X = -L1 (entrance of the first electrode) and terminates either when back to X = -L1 or when reaching X = L - L1 (end of the N - th electrode). In the latter case particles are stopped with their index IEX set to -8 (see section 6.6.11 on page 188). Normally X1 should exceed 3D (enough that V(X < X1) have negligible effect in terms of trajectory behavior).

In the lens mode (option flag MT=21 for vertical mid-plane or MT=22 for horizontal mid-plane) stepwise integration starts at X=-L1 (entrance of the first electrode) and terminates either when reaching X=L-L1 (end of the N-th electrode) or when the particle deflection exceeds $\pi/2$. In the latter case the particle is stopped with their index IEX set to -3.

Use PARTICUL prior to ELMIR, for the definition of particle mass and charge.

Figure 28: Electrostatic N-electrode mirror/lens, straight slits, in the case N=3, in horizontal mirror mode (MT=11). Possible non-zero entrance quantities YCE, ALE should be specified us-

Possible non-zero entrance quantities YCE, ALE should be specified using CHANGREF, or using KPOS=3 with YCE and ALE=half-deviation matched to the reference trajectory.

ELMIRC: Electrostatic N-electrode mirror/lens, circular slits [49]

The device works as mirror or lens, horizontal or vertical. It is made of N 2-plate electrodes and has mid-plane symmetry⁷.

Electrode slits are circular, concentric with radii R1, R2, ..., RN-1, D is the mirror/lens gap. The model for the mid-plane (Z=0) radial electrostatic potential is (after Ref. [49, p.443])

$$V(r) = \sum_{i=2}^{N} \frac{Vi - Vi - 1}{\pi} \arctan\left(\sinh\frac{\pi(r - Ri - 1)}{D}\right)$$

where Vi are the potential at the N electrodes (and normally V1 = 0 refers to the incident beam energy). r is the current radius.

The mid-plane field $\vec{E}(r)$ and its r-derivatives are first derived by differentiation, then $\vec{E}(r,Z)$ and derivatives are obtained from Taylor expansions and Maxwell relations. Eventually a transformation to the rotating frame provides $\vec{E}(X,Y,Z)$ and derivatives as involved in eq. 1.2.15.

Stepwise integration starts at entrance (defined by RE, TE) of the first electrode and terminates when rotation of the reference rotating frame (RM, X, Y) has reached the value AT. Normally, R1 - RE and R1 - RS should both exceed 3D (so that potential tails have negligible effect in terms of trajectory behavior).

Positioning of the element is performed by means of KPOS (see section 6.6.8).

Use PARTICUL prior to ELMIRC, for the definition of particle mass and charge.

Figure 29: Electrostatic N-electrode mirror/lens, circular slits, in the case N=3, in horizontal mirror mode.

 $^{^{7}}$ NOTE: in the present version of the code, the sole horizontal mirror mode is operational, and N is limited to 3.

ELMULT: Electric multipole

The simulation of multipolar electric field \vec{M}_E proceeds by addition of the dipolar $(\vec{E}1)$, quadrupolar $(\vec{E}2)$, sextupolar $(\vec{E}3)$, etc., up to 20-polar $(\vec{E}10)$ components, and of their derivatives up to fourth order, following

$$\begin{split} \vec{M}_E &= \vec{E}1 + \vec{E}2 + \vec{E}3 + \ \dots \ + \vec{E}10 \\ \frac{\partial \vec{M}_E}{\partial X} &= \frac{\partial \vec{E}1}{\partial X} + \frac{\partial \vec{E}2}{\partial X} + \frac{\partial \vec{E}3}{\partial X} + \ \dots \ + \frac{\partial \vec{E}10}{\partial X} \\ \frac{\partial^2 M_E}{\partial X \partial Z} &= \frac{\partial^2 \vec{E}1}{\partial X \partial Z} + \frac{\partial^2 \vec{E}2}{\partial X \partial Z} + \frac{\partial^2 \vec{E}3}{\partial X \partial Z} + \ \dots \ + \frac{\partial^2 \vec{E}10}{\partial X \partial Z} \\ \text{etc.} \end{split}$$

The independent components $\vec{E}1$ to $\vec{E}10$ and their derivatives up to the fourth order are calculated by differentiating the general multipole potential given in eq. 1.3.5 (page 24), followed by a $\frac{\pi}{2n}$ rotation about the X-axis, so that the so defined right electric multipole of order n, and of strength [47, 50]

$$K_n = \frac{1}{2} \frac{\gamma}{\gamma^2 - 1} \frac{V_n}{R_0^n}$$

 $(V_n = \text{potential at the electrode}, R_0 = \text{radius at pole tip}, \gamma = \text{relativistic Lorentz factor of the particle})$ has the same focusing effect as the right magnetic multipole of order n and strength $K_n = \frac{B_n}{R_0^{n-1}B\rho}$ (B_n = field at pole tip, $B\rho$ = particle rigidity, see MULTIPOL).

The entrance and exit fringe fields are treated separately. They are characterized by the integration zone X_E at entrance and X_S at exit, as for *QUADRUPO*, and by the extent λ_E at entrance, λ_S at exit. The fringe field extents for the dipole component are λ_E and λ_S . The fringe field extent for the quadrupolar (sextupolar, ..., 20-polar) component is given by a coefficient E_2 (E_3 , ..., E_{10}) at entrance, and E_3 (E_4) at exit, such that the fringe field extent is E_4 0 (E_4 1) at entrance and E_5 1 (E_5 2) at exit.

If $\lambda_E = 0$ ($\lambda_S = 0$) the multipole lens is considered to have a sharp edge field at entrance (exit), and then, $X_E(X_S)$ is forced to zero (for the mere purpose of saving computing time).

If $E_i = 0$ ($S_i = 0$) (i = 2, 10), the entrance (exit) fringe field for multipole component i is considered as a sharp edge field.

Any multipole component $\vec{E}i$ can be rotated independently by an angle RXi around the longitudinal X-axis, for the simulation of positioning defects, as well as skew lenses.

Use PARTICUL prior to ELMULT, for the definition of particle mass and charge.

Figure 30: An electric multipole combining skew-quadrupole $(\vec{E}2\neq\vec{0},\ \vec{R}2=\pi/4)$ and skew-octupole $(\vec{E}4\neq\vec{0},\ \vec{R}4=\pi/8)$ components $(\vec{E}1=\vec{E}3=\vec{E}5=\ldots=\vec{E}10=\vec{0})$ [50].

ELREVOL: 1-D uniform mesh electric field map

ELREVOL reads a 1-D axial field map from a storage data file, whose content must fit the following FORTRAN reading sequence

```
OPEN (UNIT = NL, FILE = FNAME, STATUS = 'OLD' [,FORM='UNFORMATTED'])
DO 1 I=1, IX
   IF (BINARY) THEN
      READ(NL) X(I), EX(I)
   ELSE
      READ(NL,*) X(I), EX(I)
   ENDIF
1 CONTINUE
```

where IX is the number of nodes along the (symmetry) X-axis, X(I) their coordinates, and EX(I) are the values of the X component of the field. EX is normalized with ENORM prior to ray-tracing. As well the longitudinal coordinate X is normalized with a XNORM coefficient (useful to convert to centimeters, the working units in zgoubi).

X-cylindrical symmetry is assumed, resulting in EY and EZ taken to be zero on axis. $\vec{E}(X,Y,Z)$ and its derivatives along a particle trajectory are calculated by means of a 5-points polynomial interpolation followed by second order off-axis extrapolation (see sections 1.3.1 and 1.4.1).

Entrance and/or exit integration boundaries may be defined in the same way as in *CARTEMES* by means of the flag ID and coefficients A, B, C, A', B', C'.

Use PARTICUL prior to ELREVOL, for the definition of particle mass and charge.

EMMA: 2-D Cartesian or cylindrical mesh field map for EMMA FFAG

EMMA is dedicated to the reading and treatment of 2-D or 3-D Cartesian mesh field maps representing the EMMA FFAG cell quadrupole doublet⁸ [53, 54].

EMMA can sum up independent field maps of each of the two quadrupoles, with each its scaling coefficient. The two maps can be radially positioned independently of one another at Y_F , Y_D respectively, just like the actual EMMA quadrupoles. In particular,

MOD: operational and map FORMAT reading mode;

MOD≤19 : Cartesian mesh ; *MOD*>20 : cylindrical mesh.

MOD=0 : two 2D maps, one representing QF, one representing QD. A single map, superimposition of both, is built prior to tracking and used for tracking.

MOD=1: two 2D maps, one representing QF, one representing QD, a resulting single map is devised in the following way: QF_new is interpolated from QF with dr=xF, QD_new is interpolated from QD with dr=xD. A single map, superimposition of both, is built prior to tracking and used for tracking.

The parameters that move/position the maps, as (Y_F, Y_D) , are accessible from the FIT, allowing to adjust the cell tunes.

EMMA works much like TOSCA. Refer to that keyword, and to the FORTRAN file emmac.f, for details.

⁸The stepwise ray-tracing code Zgoubi is the on-line model code for the world's first non-scaling FFAG experiment.

FFAG: FFAG magnet, N-tuple [44, 45]

FFAG works much like DIPOLES as to the field modelling, apart from the radial dependence of the field, $B = B_0(r/r_0)^k$, so-called "scaling". Note that DIPOLES does similar job by using a Taylor r-expansion of $B_0(r/r_0)^k$.

The FFAG procedure allows overlapping of fringe fields of neighboring dipoles, thus simulating in some sort the field in a dipole N-tuple - as for instance in an FFAG doublet or triplet. A detailed application, with five dipoles, can be found in Ref. [44]. This is done in the way described below.

The dimensioning of the magnet is defined by

AT: total angular aperture

RM: mean radius used for the positioning of field boundaries

For each one of the N=1 to (maximum) 5 dipoles of the N-tuple, the two effective field boundaries (entrance and exit EFBs) from which the dipole field is drawn are defined from geometric boundaries, the shape and position of which are determined by the following parameters (in the same manner as in DIPOLE, DIPOLE-M) (see Fig. 11-A page 98, and Fig. 31)

 ACN_i : arbitrary inner angle, used for EFBs positioning

 ω : azimuth of an EFB with respect to ACN

 θ : angle of an EFB with respect to its azimuth (wedge angle)

 $R_1,\,R_2$: radius of curvature of an EFB $U_1,\,U_2$: extent of the linear part of an EFB

Figure 31: Definition of a dipole N-tuple (N=3, a triplet here) using the DIPOLES or FFAG procedures.

Calculation of the Field From a Single Dipole

The magnetic field is calculated in polar coordinates. At all (R, θ) in the median plane (z = 0), the magnetic field due a single one (index i) of the dipoles of a N-tuple FFAG magnet is written

$$B_{Zi}(R,\theta) = B_{Z0,i} \mathcal{F}_i(R,\theta) (R/R_M)^{K_i}$$

wherein $B_{Z0,i}$ is a reference field, at reference radius RM_i , whereas $\mathcal{F}(R,\theta)$ is calculated as described below.

Calculation of $\mathcal{F}_i(R,\theta)$

The fringe field coefficient $\mathcal{F}_i(R,\theta)$ associated with a dipole is computed as in the procedure *DIPOLES* (eq. 6.4.16), including (rigorously if the interpolation method is used, see page 125, or to order zero if the analytic method is used, see page 125) radial dependence of the gap size

$$g(R) = g_0 \left(RM/R \right)^{\kappa} \tag{6.4.19}$$

so to simulate the effect of gap shaping on $B_{Zi}(R,\theta)|_R$ field fall-off, over the all radial extent of a scaling FFAG dipole (with normally - but not necessarily in practice - $\kappa \approx K_i$).

Calculation of the Field Resulting From All N Dipoles

For the rest, namely, calculation of the full field at particle position from the N dipoles, analytical calculation or numerical interpolation of the mid-plane field derivatives, extrapolation off median plane, etc., things are performed exactly as in the case of the DIPOLES procedure (see page 125).

Sharp Edge

Sharp edge field fall-off at a field boundary can only be simulated if the following conditions are fulfilled:

- entrance (resp. exit) field boundary coincides with entrance (resp. exit) dipole limit (it means in particular, see Fig. 11, $\omega^+ = ACENT$ (resp. $\omega^- = -(AT ACENT)$), together with $\theta = 0$ at entrance (resp. exit) EFBs),
 - analytical method for calculation of the mid-plane field derivatives is used.

FFAG-SPI : Spiral FFAG magnet, N-tuple [45, 51]

FFAG-SPI works much like FFAG as to the field modelling, with essentially a different axial dependence.

The *FFAG-SPI* procedure allows overlapping of fringe fields of neighboring dipoles, thus simulating in some sort the field in a dipole *N*-tuple (similar to Fig. 31, page 137). This allows for instance accounting for fringe field effects, or clamps, as schemed in Fig. 32.

The dimensioning of the magnet is defined by

AT: total angular aperture

RM: mean radius used for the positioning of field boundaries

For each one of the N=1 to (maximum) 5 dipoles of the N-tuple, the two effective field boundaries (entrance and exit EFBs) from which the dipole field is drawn are defined from geometric boundaries, the shape and position of which are determined by the following parameters

 ACN_i : arbitrary inner angle, used for EFBs positioning ω : azimuth of an EFB with respect to ACN

 ξ : spiral angle

with ACN_i and ω as defined in Fig. 32 (similar to what can be found in Figs. 31 and 11-A).

Figure 32: A N-tuple spiral sector FFAG magnet (N=3 here, simulating active field clamps at entrance and exit side of a central dipole).

Calculation of the Field From a Single Dipole

The magnetic field is calculated in polar coordinates. At all (R, θ) in the median plane (Z = 0), the magnetic field due a single one (index i) of the dipoles of a N-tuple spiral FFAG magnet is written

$$B_{Zi}(R,\theta) = B_{Z0.i} \mathcal{F}_i(R,\theta) (R/R_M)^{K_i}$$

wherein $B_{Z0,i}$ is a reference field, at reference radius RM_i , whereas $\mathcal{F}(R,\theta)$ is calculated as described below.

Calculation of $\mathcal{F}_i(R,\theta)$

The fringe field coefficient $\mathcal{F}_i(R,\theta)$ associated with a dipole is computed as in the procedure *DIPOLES* (eq. 6.4.16), including radial dependence of the gap size

$$g(R) = g_0 \left(RM/R \right)^{\kappa} \tag{6.4.20}$$

so to simulate the effect of gap shaping on $B_{Zi}(R,\theta)|_R$ field fall-off, over the all radial extent of the dipole (with normally - yet not necessarily in practice - $\kappa \approx K_i$).

Calculation of the Full Field From All ${\cal N}$ Dipoles

For the rest, namely calculation of the full field at particle position, as resulting from the N dipoles, calculation of the mid-plane field derivatives, extrapolation off median plane, etc., things are performed in the same manner as for the DIPOLES procedure (see page 125).

GOTO: Branching statement [55]

****** To be completed *******

GOTO is a conditional goto, working much like the fortran branching statement. It sends the execution pointer to some keyword (e.g., "MARKER") in the optical sequence, characterized by one or two specific labels.

Available options:

- pass number

GOTO accepts GOBACK as an argument, this sends the execution pointer back to the next keyword immediately following the calling GOTO.

GOTO/GOBACK for instance can be used in RLA type of structures, to direct the **zgoubi** amongst the series of spreaders of mergers. A example is given in *******.

An example of an input data file of a recirculator ring, structured with GOTO statements, can be found in page 248.

INCLUDE: File include statement

INCLUDE works much like the fortran "include" statement: it allows a fragment of an input data list to be taken from a separate file; when *INCLUDE* is met in the input data file, the content of the separate file, or part of it, is inserted in the data sequence. The INCLUDE statement takes the following arguments:

- the number of input files to be included,
- their names, in as many lines, one name per line.

The file name may be followed by '[LBL_1A,LBL_2A:LBL_1B,LBL_2B]', with any of these four labels optional, as follows:

- LBL_1A [LBL_2A] identify to the first (and possibly second) label of some keyword in the include file, from which the include process will start (whatever precedes will be ignored). If none of 'LBL_1A, _2A' is declared, the include process starts from the beginning of the include file. Declaring the second label only takes the form '[,LBL_2A:LBL_1B,LBL_2B]'.
- LBL_1B [LBL_2B] identify to the first (and second) label of some keyword in the include file, at which the include process will end (whatever follows will be ignored). If none of 'LBL_1B, _2B' is declared, the include file will be included down to its end. Declaring the second label only takes the form '[LBL_1A,LBL_2A: ,LBL_2B]'.

Because **zgoubi** uses the reserved name zgoubi.dat as its standard working data file name, and as the presence of *INCLUDE* will cause the input data list to be changed (it is expanded to include the content of all included files), the user's input data file is no longer allowed the name zgoubi.dat if it contains *INCLUDE* keyword(s) (zgoubi.dat is reserved as the name of the expanded input file to zgoubi). This is overcome by using the command 'zgoubi -fileIn myFile' instead, with myFile \neq zgoubi.dat (see Sec. 1.2 in PART D of the guide, page 329).

An *INCLUDE* file may contain one or more *INCLUDE*. There is a limit in the allowed depth of *INCLUDE* statements within *INCLUDE* files, however high. **zgoubi** will warn the user when it is exceeded. It can be changed in prdata.f.

By contrast with other keywords, *INCLUDE* is not part on the LSTKEY.H keyword list (found in the 'include' folder). Instead, possible presence of *INCLUDE* in the input data file is dealt with by prdata program (prdata.f source file) in a simple way: the input data file is expanded so eliminating all *INCLUDE* occurences, and the expanded, complete, data list is stored in the standard **zgoubi** input data file zgoubi.dat. Thus **zgoubi** eventually actually works using a regular, complete, data list in a single input file, zgoubi.dat.

An example of an input data file of a recirculating ring, structured with INCLUDE statements, can be found in page 248.

MAP2D: 2-D Cartesian uniform mesh field map - arbitrary magnetic field [55]

MAP2D reads a 2-D field map that provides the three components B_X , B_Y , B_Z of the magnetic field at all nodes of a 2-D Cartesian uniform mesh in an (X,Y) plane. No particular symmetry is assumed, which allows the treatment of any type of field (e.g., solenoidal, or dipole, helical dipole, at arbitrary Z elevation - the map needs not be a mid-plane map).

The field map data file has to be be filled with a format that satisfies the *FORTRAN* reading sequence below (in principle compatible with *TOSCA* code outputs), details and possible updates are to be found in the source file 'fmapw.f':

At each step of the trajectory of a particle, the field and its derivatives are calculated using a second or fourth degree polynomial interpolation followed by a Z extrapolation (see sections 1.3.4 page 24, 1.4.3 page 28). The interpolation grid is 3*3-node for 2nd order (option IORDRE = 2) or 5*5 for 4th order (option IORDRE = 4).

Entrance and/or exit integration boundaries may be defined, in the same way as for CARTEMES.

MAP2D-E: 2-D Cartesian uniform mesh field map - arbitrary electric field

MAP2D-E reads a 2-D field map that provides the three components E_X , E_Y , E_Z of the electric field at all nodes of a 2-D Cartesian uniform mesh in an (X,Y) plane. No particular symmetry is assumed, which allows the treatment of any type of field (e.g., field of a parallel-plate mirror with arbitrary <math>Z elevation - the map needs not be a mid-plane map).

The field map data file has to be be filled with a format that satisfies the *FORTRAN* reading sequence below (in principle compatible with *TOSCA* code outputs), details and possible updates are to be found in the source file 'fmapw.f':

IX (JY) is the number of longitudinal (transverse horizontal) nodes of the 2-D uniform mesh, Z is the considered Z-elevation of the map. For binary files, FNAME must begin with 'E_' or 'b_', a flag 'BINARY' will thus be set to '.TRUE.'. The field $\vec{E} = (E_X, E_Y, E_Z)$ is next normalized with ENORM, prior to ray-tracing. As well the coordinates X, Y are normalized with X-, Y-NORM coefficients (useful to convert to centimeters, the working units in **zgoubi**.

At each step of the trajectory of a particle, the field and its derivatives are calculated using a second or fourth degree polynomial interpolation followed by a Z extrapolation (see sections 1.3.4 page 24, 1.4.3 page 28). The interpolation grid is 3*3-node for 2nd order (option IORDRE = 2) or 5*5 for 4th order (option IORDRE = 4).

Entrance and/or exit integration boundaries may be defined, in the same way as for CARTEMES.

MARKER: Marker

MARKER does nothing. Just a marker. No data.

As any other keyword, *MARKER* is allowed two *LABELs*. Using '.plt' as a second *LABEL* will cause storage of current coordinates into zgoubi.plt.

MULTIPOL: Magnetic multipole

The simulation of multipolar magnetic field \vec{M} by MULTIPOL proceeds by addition of the dipolar $(\vec{B}1)$, quadrupolar $(\vec{B}2)$, sextupolar $(\vec{B}3)$, etc., up to 20-polar $(\vec{B}10)$ components, and of their derivatives up to fourth order, following

$$\begin{split} \vec{M} &= \vec{B}1 + \vec{B}2 + \vec{B}3 + \ \dots \ + \vec{B}10 \\ \frac{\partial \vec{M}}{\partial X} &= \frac{\partial \vec{B}1}{\partial X} + \frac{\partial \vec{B}2}{\partial X} + \frac{\partial \vec{B}3}{\partial X} + \ \dots \ + \frac{\partial \vec{B}10}{\partial X} \\ \frac{\partial^2 \vec{M}}{\partial X \partial Z} &= \frac{\partial^2 \vec{B}1}{\partial X \partial Z} + \frac{\partial^2 \vec{B}2}{\partial X \partial Z} + \frac{\partial^2 \vec{B}3}{\partial X \partial Z} + \ \dots \ + \frac{\partial^2 \vec{B}10}{\partial X \partial Z} \end{split}$$

The independent components $\vec{B}1$, $\vec{B}2$, $\vec{B}3$, ..., $\vec{B}10$ and their derivatives up to the fourth order are calculated as described in section 1.3.7.

The entrance and exit fringe fields are treated separately. They are characterized by the integration zone X_E at entrance and X_S at exit, as for *QUADRUPO*, and by the extent λ_E at entrance, λ_S at exit. The fringe field extents for the dipole component are λ_E and λ_S . The fringe field for the quadrupolar (sextupolar, ..., 20-polar) component is given by a coefficient E_2 (E_3 , ..., E_{10}) at entrance, and S_2 (S_3 , ..., S_{10}) at exit, such that the extent is $\lambda_E * E_2$ ($\lambda_E * E_3$, ..., $\lambda_E * E_{10}$) at entrance and $\lambda_S * S_2$ ($\lambda_S * S_3$, ..., $\lambda_S * S_{10}$) at exit.

If $\lambda_E=0$ ($\lambda_S=0$) the multipole lens is considered to have a sharp edge field at entrance (exit), and then, X_E (X_S) is forced to zero (for the mere purpose of saving computing time). If $E_i=0$ ($S_i=0$) (i=2,10), the entrance (exit) fringe field for the multipole component i is considered as a sharp edge field. In sharp edge field model, the wedge angle vertical first order focusing effect (if $\vec{B}1$ is non zero) is simulated at magnet entrance and exit by a kick $P_2=P_1-Z_1\tan(\epsilon/\rho)$ applied to each particle (P_1,P_2 are the vertical angles upstream and downstream of the EFB, Z_1 is the vertical particle position at the EFB, ρ the local horizontal bending radius and ϵ the wedge angle experienced by the particle; ϵ depends on the horizontal angle T).

Any multipole component \vec{Bi} can be rotated independently by an angle RXi around the longitudinal X-axis, for the simulation of positioning defects, as well as skew lenses.

Magnet (mis-)alignment is assured by KPOS. KPOS also allows some degrees of automatic alignment useful for periodic structures (section 6.6.8).

OCTUPOLE: Octupole magnet (Fig. 33)

The meaning of parameters for *OCTUPOLE* is the same as for *QUADRUPO*. In fringe field regions the magnetic field $\vec{B}(X,Y,Z)$ and its derivatives up to fourth order are derived from the scalar potential approximated to the 8-th order in Y and Z

$$\begin{split} V(X,Y,Z) &= \left(G(X) - \frac{G''(X)}{20} \left(Y^2 + Z^2\right) + \frac{G''''(X)}{960} \left(Y^2 + Z^2\right)^2\right) \left(Y^3 Z - Y Z^3\right) \\ \text{with } G_0 &= \frac{B_0}{R_0^3} \end{split}$$

The modelling of the fringe field form factor G(X) is described under QUADRUPO, p. 152.

Outside fringe field regions, or everywhere in sharp edge dodecapole ($\lambda_E=\lambda_S=0$) , $\vec{B}(X,Y,Z)$ in the magnet is given by

$$\begin{split} B_X &= 0 \\ B_Y &= G_0 (3Y^2 - Z^2) \, Z \\ B_Z &= G_0 (Y^2 - 3Z^2) \, Y \end{split}$$

Figure 33: Octupole magnet

POISSON : Read magnetic field data from POISSON output

This keyword allows reading a field profile B(X) from *POISSON* output. Let *FNAME* be the name of this output file (normally, *FNAME* = outpoi.lis); the data are read following the *FORTRAN* statements here under

where X(I) is the longitudinal coordinate, and B(I) is the Z component of the field at a node (I) of the mesh. Ks and Rs are dummy variables appearing in the *POISSON* output file outpoi.lis but not used here.

From this field profile, a 2-D median plane map is built, with a rectangular and uniform mesh; mid-plane symmetry is assumed. The field at each node (X_i, Y_i) of the map is $B(X_i)$, independent of Y_i (i.e., the distribution is uniform in the Y direction).

For the rest, *POISSON* works in a way similar to *CARTEMES*.

POLARMES: 2-D polar mesh magnetic field map

Similar to *CARTEMES*, apart from the polar mesh frame: IX is the number of angular nodes, JY the number of radial nodes; X(I) and Y(J) are respectively the angle and radius of a node (these parameters are similar to those entering in the definition of the field map in DIPOLE-M).

PS170: Simulation of a round shape dipole magnet

PS170 is dedicated to a 'rough' simulation of CERN PS170 spectrometer dipole.

The field B_0 is constant inside the magnet, and zero outside. The pole is a circle of radius R_0 , centered on the X axis. The output coordinates are generated at the distance XL from the entrance (Fig. 34).

Figure 34: Scheme of the PS170 magnet simulation.

QUADISEX, SEXQUAD: Sharp edge magnetic multipoles

SEXQUAD defines in a simple way a sharp edge field with quadrupolar, sextupolar and octupolar components. QUADISEX adds a dipole component. The length of the element is XL. The vertical component $B \equiv B_Z(X, Y, Z = 0)$ of the field and its derivatives in median plane are calculated at each step using the following expressions

$$\begin{split} B &= B_0 \left(U + \frac{N}{R_0} Y + \frac{B}{R_0^2} Y^2 + \frac{G}{R_0^3} Y^3 \right) \\ \frac{\partial B}{\partial Y} &= B_0 \left(\frac{N}{R_0} + 2 \frac{B}{R_0^2} Y + 3 \frac{G}{R_0^3} Y^2 \right) \\ \frac{\partial^2 B}{\partial Y^2} &= B_0 \left(2 \frac{B}{R_0^2} + 6 \frac{G}{R_0^3} Y \right) \\ \frac{\partial^3 B}{\partial Y^3} &= 6 B_0 \frac{G}{R_0^3} \end{split}$$

and then extrapolated out of the median plane by Taylor expansion in Z (see section 1.3.3).

With option SEXQUAD, U = 0, while with QUADISEX, U = 1.

QUADRUPO: Quadrupole magnet (Fig. 35)

The length of the magnet XL is the distance between the effective field boundaries (EFB), Fig. 36. The field at the pole tip R_0 is R_0 .

The extent of the entrance (exit) fringe field is characterized by $\lambda_E(\lambda_S)$. The distance of ray-tracing on both sides of the EFBs, in the field fall off regions, will be \pm X_E at the entrance, and \pm X_S at the exit (Fig. 36), by prior and further automatic change of frame.

In the fringe field regions $[-X_E, X_E]$ and $[-X_S, X_S]$ on both sides of the EFBs, $\vec{B}(X, Y, Z)$ and its derivatives up to fourth order are calculated at each step of the trajectory from the analytical expressions of the three components B_X , B_Y , B_Z obtained by differentiation of the scalar potential (see section 1.3.7) expressed to the 8th order in Y and Z.

$$V(X,Y,Z) = \left(G(X) - \frac{G''(X)}{12} (Y^2 + Z^2) + \frac{G''''(X)}{384} (Y^2 + Z^2)^2 - \frac{G'''''(X)}{23040} (Y^2 + Z^2)^3\right) YZ$$

$$(G^{(n)}(X) = d^n G(X)/dX^n, etc.)$$

where G(X) is the gradient on axis [39]:

$$G(X) = \frac{G_0}{1 + \exp P(d(X))}$$
 with $G_0 = \frac{B_0}{R_0}$

and,

$$P(d) = C_0 + C_1 \left(\frac{d}{\lambda}\right) + C_2 \left(\frac{d}{\lambda}\right)^2 + C_3 \left(\frac{d}{\lambda}\right)^3 + C_4 \left(\frac{d}{\lambda}\right)^4 + C_5 \left(\frac{d}{\lambda}\right)^5$$

where d(X) is the distance to the field boundary and λ stands for λ_E or λ_S (normally, $\lambda \simeq 2 * R_0$). When fringe fields overlap inside the magnet $(XL \leq X_E + X_S)$, the gradient G is expressed as

$$G = G_E + G_S - 1$$

where, G_E is the entrance gradient and G_S is the exit gradient.

If $\lambda_E = 0$ ($\lambda_S = 0$), the field at entrance (exit) is considered as sharp edged, and then $X_E(X_S)$ is forced to zero (for the mere purpose of saving computing time).

Outside of the fringe field regions (or everywhere when $\lambda_E = \lambda_S = 0$) $\vec{B}(X,Y,Z)$ in the magnet is given by

$$B_X = 0$$

$$B_Y = G_0 Z$$

$$B_Z = G_0 Y$$

Figure 35: Quadrupole magnet

Figure 36: Scheme of the longitudinal field gradient G(X). (OX) is the longitudinal axis of the reference frame (0,X,Y,Z) of **zgoubi**. The length of the element is XL. Trajectories are ray-traced from $-X_E$ to $XL + X_S$, by means of respectively prior and final automatic change of frame.

SEPARA: Wien Filter - analytical simulation

Note: SEPARA is an analytical transport: simulation by stepwise integration may use WIENFILTER.

SEPARA provides an analytic simulation of an electrostatic separator. Input data are the length L of the element, the electric field E and the magnetic field B. The mass m and charge q of the particles are entered by means of the keyword PARTICUL.

The subroutines involved in SEPARA solve the following system of three equations with three unknown variables S, Y, Z (while $X \equiv L$), that describe the cycloidal motion of a particle in \vec{E}, \vec{B} static fields (Fig. 37).

$$X = -R\cos\left(\frac{\omega S}{\beta c} + \epsilon\right) - \frac{\alpha S}{\omega \beta c} + \frac{C_1}{\omega}$$
$$Y = R\sin\left(\frac{\omega S}{\beta c} + \epsilon\right) - \frac{\alpha}{\omega^2} - \frac{C_2}{\omega} + Y_0$$
$$Z = S\sin(P_0) + Z_0$$

where, S is the path length in the separator, $\alpha=-\frac{Ec^2}{\gamma}$, $\omega=-\frac{Bc^2}{m\gamma}$, $C_1=\beta\sin(T_0)\cos(P_0)$ and $C_2=\beta c\cos(T_0)\cos(P_0)$

are initial conditions. c = velocity of light, βc = velocity of the particle, $\gamma = (1-\beta^2)^{-\frac{1}{2}}$ and $\tan \epsilon = (C_2 + \frac{\alpha}{\omega})/C_1$. Y_0, T_0, Z_0, P_0 are the initial coordinates of the particle in the **zgoubi** reference frame. Here βc and γ are assumed constant, which is true as long as the change of momentum due to the electric field remains negligible all along the separator.

The option index IA in the input data allows switching to inactive element (thus equivalent to ESL), horizontal or vertical separator. Normally, E, B and the value of β_W for wanted particles are related by

$$B_{[T]} = -\frac{E_{[V/m]}}{\beta_W \cdot c_{[m/s]}}$$

Figure 37: Horizontal separation between a wanted particle, (W), and an unwanted particle, (U). (W) undergoes a linear motion while (U) undergoes a cycloidal motion.

SEXTUPOL: Sextupole magnet (Fig. 38)

The meaning of parameters for SEXTUPOL is the same as for QUADRUPO.

In fringe field regions the magnetic field $\vec{B}(X,Y,Z)$ and its derivatives up to fourth order are derived from the scalar potential approximated to 7th order in Y and Z

$$V(X,Y,Z) = \left(G(X) - \frac{G''(X)}{16} (Y^2 + Z^2) + \frac{G''''(X)}{640} (Y^2 + Z^2)^2\right) \left(Y^2 Z - \frac{Z^3}{3}\right)$$
 with $G_0 = \frac{B_0}{R_0^2}$

The modelling of the fringe field form factor G(X) is described under *QUADRUPO*, p. 152.

Outside fringe field regions, or everywhere in sharp edge sextupole ($\lambda_E = \lambda_S = 0$), $\vec{B}(X,Y,Z)$ in the magnet is given by

$$B_X = 0$$

$$B_Y = 2G_0YZ$$

$$B_Z = G_0(Y^2 - Z^2)$$

Figure 38: Sextupole magnet

SOLENOID: Solenoid (Fig. 39)

The solenoidal magnet has an effective length XL, a mean radius R_0 and an asymptotic field $B_0 = \mu_0 NI/XL$ (i.e., $\int_{-\infty}^{\infty} B_X(X,r)dX = \mu_0 NI$, $\forall r < R_0$), wherein B_X =longitudinal field component, NI = number of ampere-Turns, $\mu_0 = 4\pi 10^{-7}$.

The distance of ray-tracing beyond the effective length XL, is X_E at the entrance, and X_S at the exit (Fig. 39).

Two methods are available for the computation of the field $\vec{B}(X,r)$ and its derivatives.

Method 1: uses the on-axis field model

$$B_X(X, r = 0) = \frac{B_0}{2} \left[\frac{XL/2 - X}{\sqrt{(XL/2 - X)^2 + R_0^2}} + \frac{XL/2 + X}{\sqrt{(XL/2 + X)^2 + R_0^2}} \right]$$
(6.4.21)

with X = r = 0 taken at the center of the solenoid. This model assumes that the coil thickness is small compared to the mean radius R_0 . In this model, the magnetic length is

$$L_{mag} \equiv \frac{\int_{-\infty}^{\infty} B_X(X, r < R_0) dX}{B_X(X = r = 0)} = XL \sqrt{1 + \frac{4R_0^2}{XL^2}} > XL$$
 (6.4.22)

with in addition

$$B_X(\text{center}) \equiv B_X(X=r=0) = \frac{\mu_0 NI}{XL\sqrt{1+\frac{4R_0^2}{XL^2}}} \quad \xrightarrow{R_0 \ll XL} \quad \frac{\mu_0 NI}{XL}$$

From eq. 6.4.21, the field and its derivatives at all (X, Y, Z) are extrapolated, following the method described in section 1.3.1.

Method 2: computes $\vec{B}(X,r)$ (with $r=(Y^2+Z^2)^{1/2}$) and its derivatives up to second order at all (X,Y,Z) following the technique in Ref. [56], based on the three complete elliptic integrals K, E and Π . The latter are calculated with the algorithm proposed in the same reference, their derivatives are calculated by means of recursive relations [57].

Figure 39: Solenoidal magnet.

For software developers

Solenoid parameters are read from zgoubi.dat by rsolen.f. Initializations prior to tracking done in soleno.f. Field computation during tracking is in solenf.f.

SPINR: Spin rotation [58]

SPINR causes spin precession, a local transformation on the spin vector of the particles, as, e.g., in a local helical spin rotator. Two options are available, as follows.

IOPT = 0 inhibits the keyword.

If IOPT = 1: the precession is defined by its axis, at angle ϕ with respect to **zgoubi**'s X-axis and assumed in the horizontal plane, and by its value, μ .

If IOPT = 2: given the spin precession axis direction ϕ in the (X,Y) plane, the spin precession angle follows a function of the reference Lorentz factor:

$$\mu(\gamma) = \left(\frac{B}{B_0}\right)^2 \times \left(C_0 + \frac{C_1}{\gamma} + \frac{C_2}{\gamma^2} + \frac{C_3}{\gamma^3}\right)$$

with B and B_0 normally a nominal and a reference magnetic field value, and C_i empirical coefficients. The reference Lorentz factor corresponds to the reference rigidity BORO, as defined for instance with [MC]OBJET, possibly updated in the presence of acceleration (see section 6.6.2, page 184).

TOSCA: 2-D and 3-D Cartesian or cylindrical mesh field map (page 293 in PART B)

TOSCA is dedicated to the reading and treatment of

- 2-D Cartesian or cylindrical mesh mid-plane field maps (mid-plane is assumed anti-symmetry plane, as in an upright multipole),
 - 3-D Cartesian or cylindrical mesh field maps.

TOSCA was first installed to read TOSCA magnet computer code style of fieldmap output and formatting, hence the name. However the actual origin of the fieldmap, TOSCA or other computer code, does not matter.

TOSCA has been developed over the years to allow reading many different input formats, including 3-D maps given under the form of a series of files, partial 3-D maps with particular symmetry plane(s), etc. In order to select between the many possibilities, two input data, IZ and MOD.MOD2, are used. This is addressed in the following, and table 1, page 159, lists all possibilities as a function of the values given to IZ and MOD.MOD2.

A double-flag, MOD[.MOD2], determines whether Cartesian or Z-axis cylindrical mesh is used, and the nature and/or form of the field map data set.

The total number of field data files to be read is determined by the MOD[.MOD2] flag (see below) and by the parameter IZ that appears in the data list following the keyword. Each of these files contains the field components B_X , B_Y , B_Z on an (X,Y) mesh. IZ=1 for a 2-D map, and in this case B_X and B_Y are assumed zero all over the map⁹. For a 3-D map with mid-plane symmetry, described with a set of 2-D maps at various Z, then MOD=0 and $IZ\geq 2$, and thus, the first data file whose name follows in the data list is supposed to contain the median plane field (assuming Z=0 and $B_X=B_Y=0$), while the remaining IZ-1 file(s) contain the IZ-1 additional planes in increasing Z order. For arbitrary 3-D maps, no symmetry assumed, then MOD=1 and the total number of maps (whose names follow in the data list) is IZ, such that map number [IZ/2]+1 is the Z=0 elevation one.

The field map data file has to be be filled with a format that fits the *FORTRAN* reading sequence. The following is an instance, details and possible updates are to be found in the source file 'fmapw.f':

```
DO 1 K = 1, KZ

OPEN (UNIT = NL, FILE = FNAME, STATUS = 'OLD' [,FORM='UNFORMATTED'])

DO 1 J = 1, JY

DO 1 I = 1, IX

IF (BINARY) THEN

READ(NL) Y(J), Z(K), X(I), BY(J,K,I), BZ(J,K,I), BX(J,K,I)

ELSE

READ(NL,100) Y(J), Z(K), X(I), BY(J,K,I), BZ(J,K,I), BX(J,K,I)

100

FORMAT(1X,6E11.2)

ENDIF

1 CONTINUE
```

IX (JY, KZ) is the number of longitudinal (transverse horizontal, vertical) nodes of the 3-D uniform mesh. For letting **zgoubi** know in case these are binary files, FNAME must begin with 'B₋' or 'b₋'.

Other MOD[.MOD2] cases in addition to the above, are listed in table 1. The FORTRAN subroutine fmapw.f and its entries FMAPR, FMAPR2 can be looked up for more details, in particular regarding the formatting of the field map data file(s).

Once the field map(s) reading is completed, the field $\vec{B} = (B_X, B_Y, B_Z)$ is normalized by means of *BNORM* in a similar way as in *CARTEMES*. As well the coordinates X and Y (and Z in the case of 3-D field maps) are normalized by the X-[, Y-, Z-]NORM coefficient (useful to convert to centimeters, the working units in **zgoubi**).

At each step of the trajectory of a particle inside the map, the field and its derivatives are calculated as follows:

- in the case of a 2-D map, by means of a second or fourth order polynomial interpolation, depending on *IORDRE* (*IORDRE* = 2, 25 or 4), as for *CARTEMES*,
- in the case of a 3-D map, by means of a second order polynomial interpolation with a $3 \times 3 \times 3$ -point parallelepipedic grid, as described in section 1.4.4.

In the Cartesian mesh case, entrance and/or exit integration boundaries between which the trajectories are integrated in the field may be defined, in the same way as in *CARTEMES*.

A 'TITL' (a line of comments) is part of the arguments of the keyword TOSCA. It allows introducing necessary field map handling data, or some options, for instance :

- \diamond including 'HEADER N' allows specifying the number of header lines (N) at the top of the field map file. In the case of cylindrical field maps one line is necessary $(N \ge 1)$ to indicate the reference radius in particular (but also the mesh size, etc., lookup 'HEADER' in fmapw.f in case of doubt),
 - ♦ including 'FLIP' in TITL causes the field map to be X-flipped,

 $^{^9}$ Use MAP2D in case non-zero B_X , B_Y are to be taken into account in a 2-D map.

Table 1: The various IZ, MOD and MOD2 possibilities, when using TOSCA.

IZ: number of nodes of the *complete* field map along the Z direction (IZ=1 for 2-D)

MOD, MOD2: determine the coordinate system, symmetries, reading format and column sequence, etc.

NF: number of field map input data files to be declared. Always include mid-plane map.

Expected columns: formatting of the coordinates and field data columns in the field map data file(s)

'Exemple' example folder: examples of **zgoubi** runs using field maps can be found in the subfolders of zgoubi-code/exemples/KEYWORDS/TOSCA/cartesian (case $MOD \le 19$) or

zgoubi-code/exemples/KEYWORDS/TOSCA/cylindrical (case MOD \geq 20).

The rightmost column below indicates the subfolder of concern, following (IZ, MOD, MOD2) options of interest.

MOD	< 10 G				•	
MOD ≤ 19 : Cartesian mesh					Expected	
IZ	MOD	.MOD2	2 D	NF	$\begin{array}{c} \textbf{Expected} \\ \textbf{columns} \end{array}$	Example folder
1	0, 1	none or .1, .2, .3	2-D map. File contains $B_Z(X,Y) _{Z=0}$, mid-plane antisymmetry assumed. Several different reading formats (see fmapw.f/fmapr3).	1	Y, Z, X, BY, BZ, BX	IZ-MODMOD2_1-0-none/ (GSI KAOS spectrometer)
1	3	none or .1	2-D map. Used for AGS main magnet. If MOD2=1, $B_Z(X,Y,Z=0)$ field is perturbed by $(1+n_1Y+n_2Y^2+n_3Y^3)$ factor.	1	Special - see example	AGS/usingMainMagnetsMaps (AGS with main magnet maps)
1	15	.1 – .4	2-D map. Up to 4 files to be combined linearly into a new map: field at all node of new map is $\vec{B} = \sum_{i=1}^{i=MOD2} a_i \vec{B}_i$. Mid-plane antisymmetry is assumed: each file has to contain $B_Z(X,Y,Z=0)$.	1 - 4	Y, Z, X, BY, BZ, BX	IZ-MODMOD2_1-1514 (EMMA FFAG cell)
>1	0	none	3-D map. Files span upper half of magnet, one per $(X,Y) _{0\leq Z\leq Z_{max}}$ plane including median plane, mid-plane antisymmetry assumed.	1+IZ/2	Y, Z, X, BY, BZ, BX	IZ-MODMOD2_gt1-0-none/ (GSI KAOS spectrometer)
$\begin{array}{c} \text{odd,} \\ \geq 3 \end{array}$	1	none	$\mathbf{3-D}$ map. Files span full magnet volume, one file per (X,Y) plane, no symmetry assumed.	IZ	Y, Z, X, BY, BZ, BX	IZ-MODMOD2_gt1-1-none/ (AGS warm helix snake)
>1	12	none	3-D map. Single file, upper half of magnet, mid-plane antisymmetry assumed.	1		
>1	12	.1	3-D map. Single file, whole magnet volume, no symmetry assumed.	1	Y, Z, X, BY, BZ, BX	IZ-MODMOD2_gt1-121/ (AGS warm helix snake)
>1	12	.2	3-D map. Single file, 1/8th of the magnet, symmetry wrt. $(X,Y)_{Z=0}$, $(X,Z)_{Y=0}$, $(Y,Z)_{X=0}$ planes.	1		
odd, ≥ 3	15	.1 – .4	3-D map. Up to 4 files to be combined linearly into a new map, field at all node of new map is $\vec{B} = \sum_{i=1}^{i=MOD2} a_i \vec{B}_i$. Each file has to contain $B_{X,Y,Z}(X,Y,Z)$ data over IZ equally Z -spaced (X,Y) planes (no symmetry assumed).	1-4		
odd, ≥ 3	16	.1 – .4	3-D map. Fields from up to 4 maps to be combined linearly into a new field value at particle location, $\vec{B} = \sum_{i=1}^{i=MOD2} a_i \vec{B}_i$. Each file has to contain $B_{X,Y,Z}(X,Y,Z)$ data over IZ equally Z -spaced (X,Y) planes.	1 - 4	UNDER DEVELOPMENT	
$ ext{MOD} \geq 20$: Cylindrical mesh						
IZ	MOD	.MOD2				
1	25	.1 — .4	2-D map. Up to 4 files to be combined linearly into a new map: at all node of new map $\vec{B} = \sum_{i=1}^{i=MOD2} a_i \ \vec{B}_i$. Each file contains mid-plane $B_Z(X,Y,Z=0)$ data, mid-plane antisymmetry is assumed.	1 – 4	Y, Z, X, BY, BZ, BX	IZ-MODMOD2_1-1514 (EMMA FFAG cell)
>1	20, 21		3-D map. Single file. MOD=20: 1/4 magnet, cylindrical symmetry with respect to (Y,Z) plane and antisymmetry wrt (X,Y) plane. MOD=21: another type of symmetry (to be documented - see fmapw.f).	1	$\mathbf{Y}(r, \theta), \mathbf{Z}, \mathbf{X}(r, \theta),$ $\mathbf{BY}, \mathbf{BZ}, \mathbf{BX}$	IZ-MODMOD2_gt1-20 (KEK 150 MeV FFAG)
odd, ≥ 1	22, 23	.1 – .4	2-D or 3-D map. Mid-plane antisymmetry assumed. Up to 4 files can be combined linearly into a new one; each file is $Z \ge 0$ half-magnet. Field at all node of new map is $\vec{B} = \sum_{i=1}^{i=MOD^2} a_i \ \vec{B}_i$. Each file has to contain $B_{X,Y,Z}(X,Y,Z)$ data over $(IZ+1)/2$ equally Z -spaced (X,Y) planes. MOD=23 : special, test code (see fmapw.f).	1-4	$\begin{aligned} \mathbf{Y}(r,\theta) &= r\cos\theta, \mathbf{Z}, \\ \mathbf{X}(r,\theta) &= r\sin\theta, \\ \mathbf{BY}, \mathbf{BZ}, \mathbf{BX} \end{aligned}$	IZ-MODMOD2_gt1-2214 (ERIT FFAG)
odd, ≥ 3	24		3-D map, full volume. No symmetry assumed. The file contains $B_{X,Y,Z}(X,Y,Z)$ data over IZ equally Z -spaced (X,Y) planes.	1	θ , R , Z , B_{θ} , BR , BZ	

- \diamond including 'ZroBXY' forces $B_X = B_Y = 0$ at all Z=0 nodes of the field map mesh (only applies with MOD=15 and MOD=24),
- \diamond including 'RHIC_helix' will normalize *BNORM* to measured B field value versus helix current (measured B(I) data are hard-coded in program toscac.f). In that case, *BNORM* may be given the current value, in Amps, while a(1) in mode *MOD.MOD2=15.1* is used to normalize the field map (namely, $a(1) = 1/B_{max}$ with B_{max} the maximum field value on helix axis).

TRANSMAT : Matrix transfer

TRANSMAT performs a second order transport of the particle coordinates in the following way

$$X_{i} = \sum_{j} R_{ij} X_{j}^{0} + \sum_{j,k} T_{ijk} X_{j}^{0} X_{k}^{0}$$

where, X_i stands for any of the current coordinates Y, T, Z, P, path length and momentum dispersion, and X_i^0 stands for any of the initial coordinates. $[R_{ij}]$ ($[T_{ijk}]$) is the first order (second order) transfer matrix as usually involved in second order beam optics [33]. Second order transfer is optional. The length of the element represented by the matrix may be introduced for the purpose of path length updating.

Note: MATRIX delivers $[R_{ij}]$ and $[T_{ijk}]$ matrices in a format suitable for straightforward use with TRANSMAT.

TRAROT: Translation-Rotation of the reference frame

UNDER DEVELOPMENT. Check before use.

This procedure performs translation and rotation of the local **zgoubi** frame. It can be used for instance for skewing multipoles.

Relationship to spin tracking, particle decay or gas-scattering may not be fully installed, to be checked before use.

${\bf UNDULATOR: Undulator\ magnet}$

UNDULATOR magnet. UNDER DEVELOPMENT.

UNIPOT: Unipotential cylindrical electrostatic lens

The lens is cylindrically symmetric about the X-axis.

The length of the first (resp. second, third) electrode is X1 (resp. X2, X3). The distance between the electrodes is D. The potentials are V1 and V2. The inner radius is R_0 (Fig. 40). The model for the electrostatic potential along the axis is [59]

$$V(x) = \frac{V2 - V1}{2\omega D} \left[\ln \frac{\frac{\omega\left(x + \frac{X2}{2} + D\right)}{R_0}}{\frac{\omega\left(x + \frac{X2}{2}\right)}{R_0}} + \ln \frac{\frac{\omega\left(x - \frac{X2}{2} - D\right)}{R_0}}{\frac{\omega\left(x - \frac{X2}{2}\right)}{R_0}} \right]$$

(x= distance from the center of the central electrode; $\omega=1,318$; cosh = hyperbolic cosine), from which the field $\vec{E}(X,Y,Z)$ and its derivatives are deduced following the procedure described in section 1.3.1.

Use PARTICUL prior to UNIPOT, for the definition of particle mass and charge.

The total length of the lens is X1 + X2 + X3 + 2D; stepwise integration starts at entrance of the first electrode and terminates at exit of the third one.

Figure 40: Three-electrode cylindrical unipotential lens.

VENUS: Simulation of a rectangular shape dipole magnet

VENUS is dedicated to a 'rough' simulation of SATURNE Laboratory's VENUS dipole. The field B_0 is constant inside the magnet, with longitudinal extent XL and transverse extent $\pm YL$; outside these limits, $B_0=0$ (Fig. 41).

Figure 41: Scheme of VENUS rectangular dipole.

WIENFILT: Wien filter

WIENFILT simulates a Wien filter, with transverse and orthogonal electric and magnetic fields \vec{E}_Y , \vec{B}_Z or \vec{E}_Z , \vec{B}_Y (Fig. 37). It must be preceded by *PARTICUL* for the definition of particle mass and charge.

The length XL of the element is the distance between its entrance and exit EFBs. The electric and magnetic field intensities E_0 and B_0 in the central, uniform field region, normally satisfy the relation

$$B_0 = -\frac{E_0}{\beta_W c}$$

for the selection of "wanted" particles of velocity $\beta_W c$. Ray-tracing in field fall-off regions extends over a distance X_E (X_S) beyond the entrance (exit) EFB by means of prior and further automatic change of frame. Four sets of coefficients λ , C_0-C_5 allow the description of the entrance and exit fringe fields outside the uniform field region, following the model [39]

$$F = \frac{1}{1 + \exp(P(s))}$$

where P(s) is of the term

$$P(s) = C_0 + C_1 \left(\frac{s}{\lambda}\right) + C_2 \left(\frac{s}{\lambda}\right)^2 + C_3 \left(\frac{s}{\lambda}\right)^3 + C_4 \left(\frac{s}{\lambda}\right)^4 + C_5 \left(\frac{s}{\lambda}\right)^5$$

and s is the distance to the EFB. When fringe fields overlap inside the element (i.e., $XL \le X_E + X_S$), the field fall-off is expressed as

$$F = F_E + F_S - 1$$

where $F_E(F_S)$ is the value of the coefficient respective to the entrance (exit) EFB.

If $\lambda_E=0$ ($\lambda_S=0$) for either the electric or magnetic component, then both are considered as sharp edge fields and $X_E(X_S)$ is forced to zero (for the purpose of saving computing time). In this case, the magnetic wedge angle vertical first order focusing effect is simulated at entrance and exit by a kick $P_2=P_1-Z_1\tan(\epsilon/\rho)$ applied to each particle (P_1,P_2 are the vertical angles upstream and downstream the EFB, Z_1 the vertical particle position at the EFB, ρ the local horizontal bending radius and ϵ the wedge angle experienced by the particle; ϵ depends on the horizontal angle T). This is not done for the electric field, however it is advised not to use a sharp edge electric dipole model since this entails non symplectic mapping, and in particular precludes accounting for momentum effects of the non zero longitudinal electric field component.

$\mathbf{Y}\mathbf{M}\mathbf{Y}$: Reverse signs of Y and Z reference axes

YMY performs a 180° rotation of particle coordinates with respect to the X-axis, as shown in Fig. 42. This is done by means of a change of sign of Y and Z axes, and therefore coordinates, as follows

$$Y2 = -Y1$$
, $T2 = -T1$, $Z2 = -Z1$ and $P2 = -P1$

Figure 42: The use of YMY in a sequence of two identical dipoles of opposite signs.

6.5 Output Procedures

These procedures are dedicated to the storage or printing of particle coordinates, histograms, spin coordinates, etc. They may be called for at any spot in the data pile.

6.5.1 FAISCEAU, FAISCNL, FAISTORE: Print/Store particle coordinates

- FAISCEAU can be introduced anywhere in a structure data list (zgoubi.dat). It produces a print (into zgoubi.res) of initial and actual coordinates of the IMAX particles at the location where it stands, together tagging indices and letters, etc.
- FAISCNL is an older, less performing, version of FAISTORE, see below for the latter. It produces a lot more information on particles at current location, including spin components, decay distance, mass, charge, etc. (see list below), and stores it in a dedicated file FNAME (advised name is FNAME = 'zgoubi.fai' (formatted write) or 'b_zgoubi.fai' (binary write) if postprocessing with **zpop** should follow). This file may further on be read by means of *OBJET*, option *KOBJ*= 3, or used for other purposes such as graphics (see Part D of the Guide).

The data written to that file are formatted and ordered according to the FORTRAN sequence in the subroutine impfai.f, where details and possible updates are to found. The following is an instance:

```
OPEN (UNIT = NL, FILE = FNAME, STATUS = 'NEW')
      IF (BINARY) THEN
        DO 2 I=1, IMAX
             P = BORO*CL9 *F(1,I) * AMQ(2,I)
             ENERG = SQRT(P*P + AMQ(1,I)*AMQ(1,I))
ENEKI = ENERG - AMQ(1,I)
             WRITE (NFAI)
             IEX(I), -1.D0+FO(1, I), (FO(J, I), J=2, MXJ),
                                                                          tag, initial D-1,Y,T,Z,P,S,Time
             -1.D0+F(1,I),F(2,I),F(3,I),(F(J,I),J=4,MXJ),
                                                                          current D_i, Y, T, Z, P, S, Time
             (SI(J,I),J=1,4),(SF(J,I),J=1,4),
                                                                          spin components, initial and current
             ENEKI, ENERG,
                                                                          energy
             I, IREP(I), SORT(I), (AMQ(J,I), J=1,5), RET(I), DPR(I), PS,
                                                                          particle#.loss S.mass.O.G.life time
             BORO, IPASS, NOEL, KLEY, LBL1, LBL2, LET (I)
                                                                          BORO, pass#, element#, keyword, labels
        CONTINUE
        DO 1 I=1, IMAX
          P = BORO*CL9 *F(1,I) * AMQ(2,I)
          ENERG = SQRT(P*P + AMQ(1,I)*AMQ(1,I))
          ENEKI = ENERG - AMQ(1, I)
          WRITE (NFAI, 110)
          IEX(I), -1.D0+FO(1,I), (FO(J,I), J=2,MXJ),
           -1.D0+F(1,I),F(2,I),F(3,I),
           (F(J,I),J=4,MXJ),
           (SI(J,I),J=1,4),(SF(J,I),J=1,4),
          ENEKI, ENERG,
           I, IREP(I), SORT(I), (AMQ(J, I), J=1, 5), RET(I), DPR(I), PS,
          BORO, IPASS, NOEL,
          TX1, KLEY, TX1, TX1, LBL1, TX1, TX1, LBL2, TX1, TX1, LET(I), TX1
          INCLUDE "FRMFAI.H"
        CONTINUE
      ENDIF
         FORMAT(1X.
                  KEX,
                             XXXO, (FO(J,IT),J=2,MXJ)
        1P.
                  1X,I2,
                             7 (1X, E16.8)
                 XXX, Y, T * 1.D3,
C2
                ,3(1X,E24.16)
         Z,P*1.D3,SAR,TAR
C3
         ,4(1X,E24.16)
         SXo, SYo, SZo, So, SX, SY, SZ, S
C4
         ,8(1X,E15.7)
C5
          ENEKI, ENERG
         ,2(1X,E16.8)
         IT, IREP (IT),
                         SORT(IT), (AMO(J,I), J=1,5), RET(IT), DPR(IT), PS
C6
                      9(1X,E16.8)
         ,2(1X,I6),
                   IPASS, NOEL,
С7
           BORO,
          ,1X,E16.8, 2(1X,I6)
               'KLEY',
                           ('LABEL(NOEL, I)', I=1, 2),
                                                                 'LET(IT)
           ,1X,A1,A10,A1,
                             2(1X,A1,A,A1),
                                                                  1X,3A1)
The meaning of the main data is the following (see the keyword OBJET)
```

```
LET(I)
                   : one-character string, for tagging particle number I
IEX, I, IREP(I)
                   : flag, particle number, index
FO(1-6,I)
                   : coordinates D, Y, T, Z, P and path length at the origin of the structure
F(1-6,I)
                   : idem at the current position
SORT(I)
                   : path length at which the particle has possibly been stopped
                     (see CHAMBR or COLLIMA)
RET(I), DPR(I): synchrotron phase space coordinates; RET =phase (radian),
                     DPR = momentum dispersion (MeV/c) (see CAVITE)
IPASS
                   : turn number (see REBELOTE)
etc.
```

- FAISTORE has an effect similar to FAISCNL, with more features.
- On the first data line, *FNAME* may be followed by a series of up to 10 *LABELs*. If there is no label, the print occurs by default at the location of *FAISTORE*; if there are labels the print occurs right downstream of all optical elements wearing those labels (and no longer at the *FAISTORE* location).
- The next data line gives a parameter, IP: printing will occur at pass 1 and then at every IP other pass, if using REBELOTE with $NPASS \ge IP 1$.

For instance the following data list in zgoubi.dat:

```
FAISTORE
zgoubi.fai HPCKUP VPCKUP
12
```

will result in output prints into zgoubi.fai, at pass 1 and then at every 12 other pass, each time elements of the zgoubi.dat data list labeled either *HPCKUP* or *VPCKUP* are encountered.

Case of Binary storage: it can be obtained from *FAISCNL* and *FAISTORE*. This is for the sake of compactness and access speed, for instance in case voluminous amounts of data would have to be manipulated using **zpop**.

This is achieved by giving the storage file a name of the form b_FNAME or B_FNAME (e.g., 'b_zgoubi.fai'). The FORTRAN WRITE list is the same as in the FORMATTED case above.

This is compatible with the READ statements in **zpop** that will recognize binary storage from that very radical 'b_' or 'B_'.

Case of FIT[2] procedure: it may not be desired to store during the FITting process, but instead only when the FITtinig is completed. It is sufficient for that to (i) put 'AtFITfinal' as the first label following *FAISTORE* keyword, this will inhibit all storage until the final run following a FIT procedure, and (ii) avoid using the 'nofinal' instruction in *FIT[2]* (see p. 68)).

6.5 Output Procedures 171

6.5.2 FOCALE, IMAGE[S]: Particle coordinates and beam size; localization and size of horizontal waist

FOCALE calculates the dimensions of the beam and its mean transverse position, at a longitudinal distance XL from the position corresponding to the keyword FOCALE.

IMAGE computes the location and size of the closest horizontal waist.

IMAGES has the same effect as *IMAGE*, but, in addition, for a non-monochromatic beam it calculates as many waists as there are distinct momenta in the beam, provided that the object has been defined with a classification of momenta (see *OBJET*, *KOBJ*= 1, 2 for instance).

Optionally, for each of these three procedures, **zgoubi** can list a trace of the coordinates in the X, Y and in the Y, Z planes.

The following quantities are calculated for the N particles of the beam (IMAGE, FOCALE) or of each group of momenta (IMAGES)

• Longitudinal position:

$$\begin{split} \textit{FOCALE}: \quad X &= XL \\ \textit{IMAGE[S]}: \quad X &= -\frac{\sum_{i=1}^{N} Y_i * \mathsf{tg} T_i - \left(\sum_{i=1}^{N} Y_i * \sum_{i=1}^{N} \mathsf{tg} T_i\right) / N}{\sum_{i=1}^{N} \mathsf{tg}^2 T_i - \left(\sum_{i=1}^{N} \mathsf{tg} T_i\right)^2 / N} \\ Y &= Y_1 + X * \mathsf{tg} T_1 \end{split}$$

where Y_1 and T_1 are the coordinates of the first particle of the beam (*IMAGE*, *FOCALE*) or the first particle of each group of momenta (*IMAGES*).

• Transverse position of the center of mass of the waist (IMAGE[S]) or of the beam (FOCALE), with respect to the reference trajectory

$$YM = \frac{1}{N} \sum_{i=1}^{N} (Y_i + X \operatorname{tg} T_i) - Y = \frac{1}{N} \sum_{i=1}^{N} Y M_i$$

• FWHM of the image (IMAGE[S]) or of the beam (FOCALE), and total width, respectively, W and WT

$$W = 2.35 \left(\frac{1}{N} \sum_{i=1}^{N} Y M_i^2 - Y M^2\right)^{\frac{1}{2}}$$

$$WT = \max(YM_i) - \min(YM_i)$$

6.5.3 FOCALEZ, IMAGE[S]Z: Particle coordinates and beam size; localization and size of vertical waist

Similar to FOCALE and IMAGE[S], but the calculations are performed with respect to the vertical coordinates Z_i and P_i , in place of Y_i and T_i .

6.5 Output Procedures 173

6.5.4 HISTO: 1-D histogram

Any of the coordinates used in **zgoubi** may be histogrammed, namely initial $Y_0, T_0, Z_0, P_0, S_0, D_0$ or current Y, T, Z, P, S, D particle coordinates (S = path length; D may change in decay process simulation with MCDESINT, or when ray-tracing in \vec{E} fields), and also spin coordinates and modulus S_X, S_Y, S_Z and $\|\vec{S}\|$.

HISTO can be used in conjunction with MCDESINT, for statistics on the decay process, by means of TYP. TYP is a one-character string. If it is set equal to 'S', only secondary particles (they are tagged with an 'S') will be histogrammed. If it is set equal to 'P', then only parent particles (non-'S') will be histogrammed. For no discrimination between S-econdary and P-arent particles, TYP = Q' must be used.

The dimensions of the histogram (number of lines and columns) may be modified. It can be normalized with NORM = 1, to avoid saturation.

Histograms are indexed with the parameter *NH*. This allows making independent histograms of the same coordinate at several locations in a structure. This is also useful when piling up problems in a single input data file (see also *RESET*). *NH* is in the range 1-5.

If REBELOTE is used, the statistics on the 1+NPASS runs in the structure will add up.

6.5.5 IMAGE[S][Z]: Localization and size of vertical waists

See FOCALE[Z].

6.5 Output Procedures 175

6.5.6 MATRIX: Calculation of transfer coefficients, periodic parameters

MATRIX causes the calculation of the transfer coefficients through the optical structure, from the OBJET down to the location where MATRIX is introduced in the structure, or, upon option, down to the horizontal focus closest to that location. In this last case the position of the focus is calculated automatically in the same way as the position of the waist in IMAGE. Depending on OBJET and on option IFOC, MATRIX also delivers the beam matrix and betatron phase advances or (case of a periodic structure) periodic beam matrix and tunes, chromaticities and other global parameters.

Depending on the value of option IORD, different procedures follow

- If IORD = 0, MATRIX is inhibited (equivalent to FAISCEAU, whatever IFOC).
- If IORD = 1, using OBJET, KOBJ = 5[.N], the first order transfer matrix $[R_{ij}]$ is calculated, from a third order approximation of the coordinates. For instance

$$Y^{+} = \left(\frac{Y}{T_0}\right) T_0 + \left(\frac{Y}{T_0^2}\right) T_0^2 + \left(\frac{Y}{T_0^3}\right) T_0^3, \quad Y^{-} = -\left(\frac{Y}{T_0}\right) T_0 + \left(\frac{Y}{T_0^2}\right) T_0^2 - \left(\frac{Y}{T_0^3}\right) T_0^3$$

will yield, neglecting third order terms,

$$R_{11} = \left(\frac{Y}{T_0}\right) = \frac{Y^+ - Y^-}{2T_0}$$

This is repeated N times if OBJET, KOBJ = 5.N ($2 \le N \le 99$) is used, so delivering first order data for each 11-particle set, with for each set the reference trajectory being trajectory number $1+(N-1)\times11$ in the $N\times11$ -particle list (keyword FAISCEAU will print out that list in zgoubi.res, if desired).

If OBJET, KOBJ = 5.1 is used instead (hence introducing initial optical function values, $\alpha_{Y,Z}$, $\alpha_{Y,Z}$, $D_{Y,Z}$, $D_{Y,Z}'$), then, using the R_{ij} above, MATRIX will transport the optical functions and phase advances ϕ_Y , ϕ_Z , following

$$\begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix}_{at \; \text{MATRIX}} = \begin{pmatrix} R_{11}^2 & -2R_{11}R_{12} & R_{12}^2 \\ -R_{11}R_{21} & R_{12}R_{21} & R_{11}R_{12} \\ R_{21}^2 & -2R_{21}R_{22} & R_{22}^2 \end{pmatrix} \begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix}_{at \; \text{OBJET}}$$

$$\Delta\phi_Y = A \tan \frac{R_{12}}{\left(R_{11}\beta_{Y,objet} - R_{12}\alpha_{Y,objet}\right)}, \quad \Delta\phi_Z = A \tan \frac{R_{34}}{\left(R_{33}\beta_{Z,objet} - R_{34}\alpha_{Z,objet}\right)}, \tag{6.5.1}$$

$$\phi_{Y,Z} \to \phi_{Y,Z} + 2\pi$$
 if $\phi_{Y,Z} < 0$, given $[0,\pi]$ Atan determination

and print these out.

- If IORD = 2, using OBJET, KOBJ = 6, fifth order Taylor expansions are used for the calculation of the first order transfer matrix $[R_{ij}]$ and of the second order matrix $[T_{ijk}]$. Other higher order coefficients are also calculated.
- If *IORD* = 3, using *OBJET*, *KOBJ* = 6.1, transport coefficients up to 3rd order are computed using 102 rays (after routines developed for RAYTRACE [60, 61]).

An automatic generation of an appropriate object for the use of *MATRIX* can be obtained using the procedure *OBJET* (pages 53, 258),

- if IORD = 1, use $OBJET(KOBJ = 5[.N, 2 \le N \le 99])$, that generates up to 99*11 initial coordinates. In this case, up to 99 matrices may be calculated, each one wrt. to the reference trajectory of concern (trajectory number 1, 12, 23, ... 1+(N-1)×11 respectively).
- if IORD = 2, use OBJET(KOBJ = 6) that generates 61 initial coordinates.
- if IORD = 3, use OBJET(KOBJ = 6.1) that generates 102 initial coordinates.

The next option, IFOC, acts as follows

- If IFOC = 0, the transfer coefficients are calculated at the location of MATRIX, and with respect to the reference trajectory. For instance, Y^+ and T^+ above are defined for particle number i as $Y^+ = Y^+(i) Y(Ref)$, and $T^+ = T^+(i) T(ref)$.
- If IFOC = 1, the transfer coefficients are calculated at the horizontal focus closest to MATRIX (determined automatically), while the reference direction is that of the reference particle. For instance, Y^+ is defined for particle number i as $Y^+ = Y^+(i) Y_{focus}$, while T^+ is defined as $T^+ = T^+(i) T(ref.)$).
- If IFOC = 2, no change of reference frame is performed: the coordinates refer to the current frame. Namely, $Y^+ = Y^+(i)$, $T^+ = T^+(i)$, etc.

Periodic Structures

• If *IFOC* = 10 + *NPeriod*, then, from the 1-turn transport matrix as obtained in the way described above, *MATRIX* calculates periodic parameters characteristic of the structure such as optical functions and tune numbers, assuming that it is *NPeriod*-periodic, and in the coupled hypothesis, based on the Edwards-Teng method [35]. This only makes senss when met *at the end* of the zgoubi.dat sequence.

This is repeated N times if OBJET, KOBJ = 5.N ($2 \le N \le 99$) is used, so delivering first order data for each 11-particle set

If IORD = 2 (using OBJET, KOBJ = 6) additional periodic parameters are computed such as chromaticities, beta-function momentum dependence, etc.

PRINT: Addition of "PRINT" following IORD, IFOC [, coupled] will cause stacking of MATRIX output data into zgoubi.MATRIX.out file (convenient for use with e.g. gnuplot type of data treatment software).

Addition of "coupled" next to IORD, IFOC [, PRINT], in the case of periodic beam matrix request (i.e., IFOC = 10 + NPeriod) will cause use of coupled formalism.

About the source code:

The program matric computes the transport matrix coefficients, it is called by zgoubi when the keyword *MATRIX* is met along the zgoubi.dat sequence. matimp, called by matric, ensures the print out of the matrix (and possibly the beam matrix) in zgoubi.res, and upon 'PRINT' option in zgoubi.MATRIX.out as well.

6.5 Output Procedures 177

6.5.7 PICKUPS: Bunch centroid path; orbit

PICKUPS computes the average values of the coordinates of the particles in a bunch (coordinates of the bunch centroid) at one or more keywords specified by their *LABELs*. The list of *LABEL(s)* concerned is specified by the user, as part of the arguments under the keyword *PICKUPS*.

In conjunction with *REBELOTE* in the case of a periodic structure, with *REBELOTE* thus being used to cause multi-turn tracking, *PICKUPS* are zeroed at start of each turn.

Pickup data computed during **zgoubi** execution are stored in the file zgoubi.PICKUP.out, usable for further analysis, or for plotting (for instance, using gnuplot).

A summary of the list of pickups and their individual bunch data is listed in the result file zgoubi.res (below the *END* keyword) at the end of **zgoubi** execution. It is concluded with statistics as the *rms*, minimum and maximum values of the bunch centroid data over the ensemble of pickups.

6.5.8 PLOTDATA: Intermediate output for the PLOTDATA graphic software

PLOTDATA was at the origin implemented for the purpose of plotting particle coordinates using the TRIUMF PLOTDATA package [62]. However nothing precludes using it with a different aim.

The *PLOTDATA* keyword can be introduced at up to 20 locations in zgoubi.dat. There, particle coordinates will be stored in a local array, FF. They are overwritten at each pass. Usage of FF is left to the user, see *FORTRAN* subroutine pltdat.f.

6.5 Output Procedures 179

6.5.9 SPNPRNL, SPNSTORE : Print/Store spin coordinates

• SPNPRNL has similar effect to SPNPRT (page 180), except that the information is stored in a dedicated file FNAME (should post-processing with **zpop** follow, advised name is FNAME = 'zgoubi.spn' (formatted write) or 'b_zgoubi.spn' (binary write)). The data are formatted and ordered according to the FORTRAN sequence found in the subroutine spnprn.f, with meaning of printed quantities as follows:

LET(I),IEX(I): tagging character and flag (see *OBJET*)

SI(1-4,I) : spin components SX, SY, SZ and modulus, at the origin

SF(1-4,I) : idem at the current position GAMMA : Lorentz relativistic factor

I : particle number

IMAX : total number of particles ray-traced (see *OBJET*)

IPASS : turn number (see *REBELOTE*)

- SPNSTORE has an effect similar to SPNPRNL, with two more features.
- On the first data line, FNAME may be followed by a series of up to 10 LABELs proper to the elements of the zgoubi.dat data file at the exit of which the print should occur; if no label is given, the print occurs by default at the very location of SPNSTORE; if labels are given, then print occurs right downstream of all optical elements wearing those labels (and no longer at the SPNSTORE location).
- The next data line gives a parameter, IP: printing will occur every IP other pass, when using REBELOTE with NPASS > IP 1.

For instance the following data input in zgoubi.dat:

```
SPNSTORE
zgoubi.spn HPCKUP VPCKUP
12
```

will result in output prints into zgoubi.spn, every 12 other pass, each time elements of the zgoubi.dat data list labeled either *HPCKUP* or *VPCKUP* are encountered.

Note

Binary storage can be obtained from *SPNPRNL* and *SPNSTORE*. This is for the sake of compactness and I/O access speed by zgoubi or zpop, for instance in case voluminous amounts of data should be manipulated.

This is achieved by giving the storage file a name of the form b_FNAME or B_FNAME (e.g., 'b_zgoubi.spn'). The FORTRAN WRITE output list is the same as in the FORMATTED case above.

6.5.10 SPNPRT: Print spin coordinates

SPNPRT can be introduced anywhere in a structure. It produces a print out (to zgoubi.res) of various informations such as the initial and actual coordinates and modulus of the spin of the IMAX particles, their Lorentz factor γ , the mean values of the spin components, etc., at the location where it is placed in the zgoubi.dat data list.

PRINT: If "*PRINT*" appears after *SPNPRT*, then spin data will be stored in zgoubi.SPNPRT.Out. The latter is opened at the first occurence of "*PRINT*". In particular, if *REBELOTE* is used then data will be stacked in zgoubi.SPNPRT.Out.

MATRIX: If "MATRIX" appears after SPNPRT, then spin rotation matrix (or matrices) will be computed. This is done assuming appropriate initial particle and spin sampling has been defined (by respectively OBJET and SPNTRK), as follows:

- three particles are needed for *SPNPRT* to compute a spin matrix. All three have identical initial coordinates (for instance, the local stable precession axis coordinates) and rigidity, and their spins are on a direct triedra, for instance, respectively, $(S_X, S_Y, S_Z) = (1, 0, 0), (0, 1, 0), (0, 0, 1),$
- there may be several groups of three particles, each group with a particular rigidity (*i.e.*, the three particles in a group have the same momentum). OBJET with *KOBJ=1* or *KOBJ=2* can be used for instance to generate these particles by groups of like rigidity. *SPNPRT* will thus compute as many matrices.

6.5 Output Procedures 181

6.5.11 SRPRNT: Print SR loss statistics

SRPRNT may be introduced anywhere in a structure. It allows switching on synchrotron radiation energy loss computation. It produces in addition a print out (to zgoubi.res) of current state of statistics on several parameters related to SR loss presumably activated beforehand with keyword *SRLOSS*.

6.5.12 TWISS: Calculation of periodic optical parameters. Log to zgoubi.TWISS.out

TWISS causes the calculation of transport coefficients and various other global parameters, in particular periodical quantities as tunes and optical functions, in the coupled hypothesis. TWISS is normally placed at the end of the structure; it causes a series of up to 5 successive passes in the structure (at the manner of REBELOTE).

The object necessary for these calculations will be generated automatically if one uses OBJET with option KOBJ= 5.

TWISS works in a way similar to MATRIX, iterating the MATRIX process wherever necessary, changing for instance the reference trajectory in OBJET for dp/p related computations. In particular:

- It assumes that the reference particle (particle #1 of 11, when using *OBJET[KOBJ= 5]*) is located on the closed orbit. This condition has to be satisfied for TWISS to work consistently, because TWISS does not look for the closed orbit by itself. A simple way to first find the orbit is to have TWISS preceded by a dedicated FIT[2], see example in PART B, page 297.
- A first pass (the only one if KTW=1) through the structure allows computing the periodic optical functions at the end of the structure, from the rays.
- The periodic dispersions are used to define chromatic closed orbits at $\pm \delta p/p$. A second and a third pass (which terminate the process if KTW=2) with chromatic objects centered respectively on $\pm \delta p/p$ chromatic orbits will then compute the chromatic first order transport matrices. From these the chromaticities are deduced.
- Anharmonicities need two additional passes (which terminate the process if KTW=3). They are deduced from the difference in tunes for particles tracked on different transverse invariants, horizontal or vertical.

The execution of *TWISS* will cause printout to the file zgoubi. TWISS.out, a MADX type "twiss" file, with similar formatting, including periodic optical data as a header (tunes, chromaticities, etc.) and, in sequence element by element: optical functions, element strength, first order transport coefficients, spin \vec{n}_0 vector (requires 'SPNTRK' request).

About the source code:

The program beamat ensures the transport of the beam matrix along the zgoubi.dat sequence, at the orgin of the content of zgoubi.TWISS.out. beamat is called by optics, itself called after each optical element, in the program zgoubi.

The starting beam matrix value is in the array FI, initialized by the program twiss when met at the end of the zgoubi.dat sequence. The array F0 contains the running beam matrix.

The program optimp, called from opticc, prints to zgoubi.TWISS.out after each optical element of the zgoubi.dat sequence.

6.6 Complements Regarding Various Functionalities

6.6.1 Units in zgoubi

Units to be employed in **zgoubi** input data list (in zgoubi.dat) are stated in Part B of this guide. Part B should be carefully referred to about units to be used, when setting up the data list, as some insight in the code indicates:

Working units in **zgoubi** numerical integrator, and as to the normalized fields delivered to the integrator, satisfy to the following (in particular, whatever the units in the input data file, as listed in Part B, quantities of concern end up manipulated as follows):

- position coordinates (X, Y, Z, S) in centimeter,
- angle coordinates (T, P) in radian,
- time in μ second,
- energy in MeV,
- magnetic field in kG
- electrostatic field in MV/cm
- rigidity $B\rho$ in kG.cm,
- fields delivered to the integration procedure after convertion to strengths, units of $m^{-\text{integer}}$, for instance,
 - magnetic dipole strength $(B/B\rho = 1/\rho)$ is in m^{-1} (with B the field),
 - 2(n+1) order magnetic multipol strengths ($(B/R^n)/B\rho$, n=1 (quadrupole), n=2 (sextupole), etc.) are in $m^{-(n+1)}$ (with B the field at pole tip radius R),
 - etc.
 - 2(n+1) order magnetic multipol strengths $((\Phi/R^{(n+1)})/W$, n=1 (quadrupole), n=2 (sextupole), etc) are in $m^{-(n+1)}$ (with Φ the potential (in Volt) at pole tip radius R and W the kinetic energy of the particle (in electron-Volt)).

For historical reasons, since **zgoubi** was first developed in 1972, implementation of optical elements (as listed in Part B) has resulted in parameter definition resorting to a wide variety of units. For instance :

- element lengths in meter or centimeter,
- positioning angles in rad, mrad, degree,
- magnetic fields in Tesla or kGauss,
- electrostatic potentials in Volt, MVolt,
- electrostatic fields in Volt/m, V/cm, MVolt/m,
- etc.

6.6.2 Reference rigidity

zgoubi computes the strengths of optical elements (they are usually defined by their field) from the reference rigidity *BORO* as defined in [MC]OBJET. However using CAVITE, and indirectly SCALING, may affect the reference rigidity, following

$$B\rho_{ref} = BORO \longrightarrow B\rho_{ref} = BORO + \delta B\rho_s$$

with $\delta B\rho_s$ the synchronous rigidity increase (or decrease). A typical configuration where this would occur is that of multi-turn tracking in a pulsed synchrotron, where in general strengths have to follow the acceleration (see section 6.6.7).

6.6.3 Time Varying Fields

Fields can be varied as a function of time (in some cases this may mean as a function of turn number, see section 6.6.7), by means of the *SCALING* keyword.

Eventually some families of magnets may be given a different timing law for the simulation of special processes (e.g., time varying orbit bump, fast crossing of spin resonances with families of jump quadrupoles).

6.6.4 Backward Ray-Tracing

For the purpose of parameterization for instance, it may be interesting to ray-trace backward from the image toward the object. This can be performed by first reversing the position of optical elements in the structure, and then reversing the integration step sign in all the optical elements.

An illustration of this feature is given in the following Figure 43.

Figure 43: A. Regular forward ray-tracing, from object to image.

B. Same structure, with backward ray-tracing from image to object: negative integration step XPAS is used in the quadrupole.

6.6.5 Checking Trajectories and Fields Across Optical Elements - the IL, .plt and IC flags

- In all optical elements, an option $I\!L$ is available. It is normally set to $I\!L=0$ and in this case has no effect. Other possibilities are as follows :
- IL=1 causes a print in zgoubi.res of particle coordinates, fields and low-order derivatives, spin vector and other data, at each integration step along trajectories across the optical element. In the meantime, a calculation and summation of the values of $\vec{\nabla} \cdot \vec{B}$, $\vec{\nabla} \times \vec{B}$ and $\nabla^2 \vec{B}$ (same for \vec{E}) at all integration steps is performed, which allows a check of the behavior of \vec{B} (and/or \vec{E}) in field maps (all these derivatives should normally be zero).
- $I\!L=2$ causes a print of particle data (coordinates, \vec{B} and/or \vec{E} field(s) experienced, RF cavity related data, spin, etc.), particle status (e.g., decay status, whether it is still tracked, etc.), into the dedicated file zgoubi.plt, one line of data per article, at each integration step. This information can further be processed (using ${\bf zpop}^{10}$ or gnuplot, for instance). In order to minimize the volume of that storage file (when dealing with small step size, long optical elements, large number of particles, etc.) it is possible to print out every other 10^n integration step by taking $I\!L=2\times 10^n$ instead (for instance, $I\!L=200$ would cause output into zgoubi.plt every 100 other step).

¹⁰See Part D of the Guide.

- IL=7 causes similar outputs to IL=1, and more, in particular derivatives to higher order, yet into the dedicated file zgoubi.impdev.out, one line of data per particle, at each integration step. This information can be further plotted (e.g., using **zpop**, or gnuplot). An example is given in fig. 44, a plot of the quadrupole and sextupole field indices along the reference orbit in a combined function main dipole pertaining to the AGS lattice [63].

Figure 44: Typical field and derivatives - here, along the 10 GeV proton orbit across an AGS A-type main magnet. Derivatives are obtained from second degree polynomial interpolation from the magnet measured field map. Left: $dB_Z(s)/dY$ and $dB_Y(s)/dZ$, right: $d^2B_Y(s)/dZdY$, $d^2B_Y(s)/dYdZ$. These data were stored in zgoubi.impdev.out during execution, by stating IL=7 under TOSCA keyword.

- The '.plt' flag can be added as a second LABEL in the case of MARKER or DRIFT keywords. It comes in complement to IL=2 as the latter is not available (actually: IL=2 is available in DRIFT in the presence of the 'split' flag, see page 128), to log local coordinates to zgoubi.plt in the same manner as IL=2 does.
- IC: When dealing with field maps (e.g., CARTEMES, ELREVOL, TOSCA), an option index IC is available. It is normally set to IC = 0 and in this case has no effect. Other possibilities are as follows:
 - IC = 1 causes a print of the field map in zgoubi.res.
- IC = 2 will cause a print of the field map into the file zgoubi.map which can further be processed with **zpop** for plotting, superimposing trajectories, and other data treatment purposes.

6.6.6 Labeling Keywords

Keywords in **zgoubi** input data file zgoubi.dat can be LABEL'ed, for the purpose of the execution of such procedures as REBE-LOTE, PICKUPS, FAISCNL, FAISTORE, SCALING,. And also for the purpose of particle coordinate storage into zgoubi.plt (see section 6.6.5, IL=2 option).

A keyword in zgoubi.dat accepts two *LABELs*. The first one is used for the above mentioned purposes. An instance of the use of the second one is with *MARKER* or with *DRIFT*: it can be set to ".plt" for storage of current particle data into zgoubi.plt. The keyword and its *LABEL[s]* should fit within a 110-character long string on a single line (a quantity set in the *FORTRAN* file prdata.f).

6.6.7 Multi-turn Tracking in Circular Machines

Multi-turn tracking in circular machines can be performed by means of the keyword *REBELOTE*. *REBELOTE* is introduced in the zgoubi.dat data list with its argument *NPASS*+1 being the number of turns to be performed. It will cause a jump of the "multi-turn pointer" back to (details on page 78), either the beginning of the data list (default case), or to a particular *LABEL* in that list. From then on, tracking resumes down to *REBELOTE* again, and so forth until the requested number of passes has been reached.

Note: Some *CAVITE* options cause a reset-to-zero of individual particle path length 11 . This is for reasons of cumulated path length accuracy (a delta-path below computer accuracy compared to total path length would not be resolved - it can be for instance bunch length as compared to cumulated multi-turn distance around a large ring). This reset may not be desirable, it depends on the multi-turn problem dealt with using *REBELOTE*, it may be necessary for instance in long-term tracking in large rings, it is not in recirculating linacs. Option K=99 in K=99 in

Possible magnet timing laws B(T) during the multi-turn process (with T=1 to NPASS+1 counted in number of turns) can be introduced by means of SCALING.

In order that the *IMAX* particles of the beam start a new pass with the coordinates they had reached at the end of the previous one, the option K = 99 has to be specified in *REBELOTE*.

¹¹For the geek: the "f(6,I)=0.d0" statements in cavite.f.

Synchrotron acceleration can be simulated, using following the procedure:

- CAVITE appears in the zgoubi.dat data list (normally before REBELOTE), with option $IOPT \neq 0$,
- the RF frequency of the cavity may be given a timing law $f_{RF}(T)$ by means of SCALING, family CAVITE,
- the magnets are given a field timing law B(T), (with T=1 to NPASS+1 counted in number of turns) by means of SCALING.

Eventually some families of magnets may be given a different timing law for the simulation of special processes (e.g., time varying orbit bump, fast crossing of spin resonances with families of jump quadrupoles).

6.6.8 Positioning, (Mis-)Alignment, of Optical Elements and Field Maps

The last record in most optical elements and field maps is the positioning option *KPOS*. *KPOS* is followed by the positioning parameters, *e.g.*, *XCE*, *YCE* for translation and *ALE* for rotation. The positioning works in two different ways, depending whether the element is defined in Cartesian (X, Y, Z) coordinates (e.g., QUADRUPO, TOSCA), or polar (R, θ, Z) coordinates (DIPOLE).

Cartesian Coordinates:

If KPOS = 1, the optical element is moved (shifted by XCE, YCE and Z-rotated by ALE) with respect to the incoming reference frame. Trajectory coordinates after traversal of the element refer the element frame.

If KPOS=2, the shifts XCE and YCE, and the tilt angle ALE are taken into account, for mis-aligning the element with respect to the incoming reference, as shown in Fig. 45. The effect is equivalent to a CHANGREF(XCE, YCE, ALE) upstream of the optical element, followed by CHANGREF(XCS, YCS, ALS = -ALE) downstream of it, with computed XCS, YCS values as schemed in Fig. 45.

KPOS = 3 option is available for some optical elements (e.g., BEND, MULTIPOL, AGSMM); it is effective only if a non zero dipole component B1 is present, or if ALE is non-zero. It positions automatically the magnet in a symmetric manner with respect to the incoming and outgoing reference axis, convenient for periodic structures, as follows (Fig 46).

Both incoming and outgoing reference frames are tilted w.r.t. the magnet,

- either, by an angle ALE if $ALE \neq 0$,
- or, if ALE=0 by half the Z-rotation $\alpha_Z/2$ such that $L=2\frac{BORO}{B1}\sin(\alpha_Z/2)$, wherein L= geometrical length, BORO= = reference rigidity as defined in OBJET.

Next, the optical element is Y-shifted by $\delta Y = YCE$ (XCE is not used) in a direction orthogonal to the new magnet axis (i.e., at an angle $ALE + \pi/2$ wrt. the X axis of the incoming reference frame).

Figure 45: Case of Cartesian frame optical element. Left: positioning an optical element using KPOS = 1. Right: Mis-aligning an optical element using KPOS = 2. (X_E, Y_E) and (X_S, Y_S) are respectively the incoming and outgoing reference frames.

KPOS=4 applies to AGSMM (AGS main magnet) and MULTIPOL. It orients the magnet in a way similar to KPOS=3, with reference frame Z-rotated by $\alpha_Z/2$ as drawn from $L=2\frac{BORO}{B1}\sin(\alpha_Z/2)$.

However additional magnet mis-alignments (alignment errors) are available (Fig. 47): Z-rotation θ_Z , Z-shift δZ , Y-rotation θ_Y . Rotations apply at the center of the magnet.

Figure 46: Alignment in BEND by half the deviation, $\alpha_Z/2$, using KPOS=3. (X_E,Y_E) and (X_S,Y_S) are respectively the incoming and outgoing reference frames. Trajectory coordinates inside the magnet are defined in the magnet frame, (X_{ME},Y_{ME}) .

Figure 47: Additional magnet mis-alignement with KPOS=4.

Polar Coordinates

If KPOS = 1, the element is positioned automatically in such a way that a particle entering with zero initial coordinates and $1 + DP = B\rho/BORO$ relative rigidity will reach position $(RM, \frac{AT}{2})$ in the element with T = 0 angle with respect to the moving frame in the polar coordinates system of the element (Fig. ??; see *DIPOLE-M* and *POLARMES*).

If KPOS = 2, the map is positioned in such a way that the incoming reference frame is presented at radius RE with angle TE. The exit reference frame is positioned in a similar way with respect to the map, by means of the two parameters RS (radius) and TS (angle) (see Fig. 11A page 98A).

6.6.9 Coded Integration Step

In several optical elements (e.g., all multipoles, BEND) the integration step (in general noted XPAS) can be coded under the form $XPAS = \#E \mid C \mid S$, with E, C, S integers, E is the number of steps in the entrance fringe field region, C is the number of steps in the magnet body, and S is the number of steps in the exit fringe field region.

6.6.10 Ray-tracing of an Arbitrarily Large Number of Particles

Monte Carlo multi-particle simulations involving an arbitrarily large number of particles can be performed using MCOBJET together with REBELOTE, put at the end of the optical structure, with its argument NPASS being the number of passes through REBELOTE, and (NPASS+1)*IMAX the number of particles to be ray-traced. In order that new initial conditions (D, Y, T, Z, P, X) be generated at each pass, K=0 has to be specified in REBELOTE.

Statistics on coordinates, spins, and other histograms can be performed by means of such procedures as *HISTO*, *SPNTRK*, etc. that stack the information from pass to pass.

6.6.11 Stopped Particles: The IEX Flag

As described in *OBJET*, each particle I = 1, IMAX is attached a value IEX(I) of the IEX flag. Normally, IEX(I) = 1. Under certain circumstances, IEX may be changed to a negative value by **zgoubi**, as follows.

- -1: the trajectory happened to wander outside the limits of a field map
- -2: too many integration steps in an optical element (a quantity controlled in MXSTEP. H include file)
- -3: deviation happened to exceed $\pi/2$ in an optical element not designed to allow that
- -4: stopped by walls (procedures CHAMBR, COLLIMA)
- -5: too many iterations in subroutine depla.f
- -6: energy loss exceeds particle energy
- -7: field discontinuities larger than 50% within a field map
- -8: reached field limit in an optical element

Only in the case IEX = -1 will the integration not be stopped since in this case the field outside the map is extrapolated from the map data, and the particle may possibly get back into the map (see section 1.4.2 on page 25). In all other cases the particle will be stopped.

6.6.12 Negative Rigidity

zgoubi can handle negative rigidities $B\rho = p/q$. This is equivalent to considering either particles with negative charge (q < 0) or momentum (p < 0), or reversed fields (wrt. the field sign that shows in the zgoubi.dat optical element data list). Negative rigidities may be specified in terms of BORO < 0 or $D = B\rho/BORO < 0$ when defining the initial coordinates with OBJET or MCOBJET.

6.6.13 Fiel maps

Field maps read by dedicated keywords as TOSCA, CARTEMES, POLARMES, etc., may have, and in some cases must have a header. The header is a series of comment ligns, say N lines. The default value is N=8. If a field map with $N \neq 8$ is to be used, this need be specified in the field map title, as part of the "TITL" comment (see TOSCA or other field map keyword about TITL) under the form 'HEADER_N' with N > 0 placed anywhere within the TITL comment area.

PART B

Keywords and input data formatting

Glossary of Keywords, Part B

Available keywords: how to format their input data list.

AGSMM	AGS main magnet	
AGSQUAD	AGS quadrupole	
AIMANT	Generation of dipole mid-plane 2-D map, polar frame	. 199
AUTOREF	Transport beam into a new reference frame	203
BEAMBEAM	Beam-beam lens	204
BEND	Bending magnet, Cartesian frame	205
BETATRON	Betatron core (momentum kick)	207
BINARY	BINARY↔FORMATTED data converter	. 208
BREVOL	1-D uniform mesh magnetic field map	209
CARTEMES	2-D Cartesian uniform mesh magnetic field map	.210
CAVITE	Accelerating cavity	212
CHAMBR	Long transverse aperture limitation	.213
CHANGREF	Transformation to a new reference frame	214
CIBLE	Generate a secondary beam following target interaction	215
COLLIMA	Collimator	.216
DECAPOLE	Decapole magnet	.217
DIPOLE	Dipole magnet, polar frame	
DIPOLE-M	Generation of dipole mid-plane 2-D map, polar frame	.219
DIPOLES	Dipole magnet N-tuple, polar frame	.221
DODECAPO	Dodecapole magnet	222
DRIFT	Field free drift space	. 223
EBMULT	Electro-magnetic multipole	. 224
EL2TUB	Two-tube electrostatic lens	226
ELMIR	Electrostatic N-electrode mirror/lens, straight slits	227
ELMIRC	Electrostatic N-electrode mirror/lens, circular slits	228
ELMULT	Electric multipole	229
ELREVOL	1-D uniform mesh electric field map	230
EMMA	2-D Cartesian or cylindrical mesh field map for EMMA FFAG	. 231
END	End of input data list	.236
ESL	Field free drift space	. 223
ERRORS	Injecting errors in optical elements	. 232
FAISCEAU	Print particle coordinates	. 233
FAISCNL	Store particle coordinates in file FNAME	
FAISTORE	Store coordinates every <i>IP</i> other pass at labeled elements	
FFAG	FFAG magnet, N-tuple	
FFAG-SPI	Spiral FFAG magnet, N-tuple	
FIN	End of input data list	
FIT,FIT2	Fitting procedure	
FOCALE	Particle coordinates and horizontal beam size at distance XL	
FOCALEZ	Particle coordinates and vertical beam size at distance XL	
GASCAT	Gas scattering	
GETFITVAL	Get values of variables as saved from former FIT[2] run	
GOTO	Branching statement	
HISTO	1-D histogram	
IMAGE	Localization and size of horizontal waist	
IMAGES	Localization and size of horizontal waists	
IMAGESZ	Localization and size of vertical waists	
IMAGEZ	Localization and size of vertical waist	
INCLUDE	File include statement	
MAP2D	2-D Cartesian uniform mesh field map - arbitrary magnetic field	
MAP2D-E	2-D Cartesian uniform mesh field map - arbitrary electric field	250

MARKER	Marker	251
MATRIX	Calculation of transfer coefficients, periodic parameters	
MCDESINT	Monte-Carlo simulation of in-flight decay	
MCOBJET	Monte-Carlo generation of a 6-D object	
MULTIPOL	Magnetic multipole	
OBJET	Generation of an object	
OBJETA	Object from Monte-Carlo simulation of decay reaction	
OCTUPOLE	Octupole magnet	262
OPTICS	Write out optical functions. Log to zgoubi.OPTICS.out	263
OPTIONS	Global or special options	264
ORDRE	Taylor expansions order	265
PARTICUL	Particle characteristics	266
PICKUPS	Bunch centroid path; orbit	267
PLOTDATA	Intermediate output for the PLOTDATA graphic software	268
POISSON	Read magnetic field data from POISSON output	269
POLARMES	2-D polar mesh magnetic field map	270
PS170	Simulation of a round shape dipole magnet	271
QUADISEX	Sharp edge magnetic multipoles	272
QUADRUPO	Quadrupole magnet	273
REBELOTE	'Do it again'	275
RESET	Reset counters and flags	277
SCALING	Power supplies and R.F. function generator	278
SEPARA	Wien Filter - analytical simulation	279
SEXQUAD	Sharp edge magnetic multipole	280
SEXTUPOL	Sextupole magnet	281
SOLENOID	Solenoid	282
SPACECHARG	Space charge	283
SPINR	Spin rotation	284
SPNPRNL	Store spin coordinates into file FNAME	285
SPNSTORE	Store spin coordinates every <i>IP</i> other pass at labeled elements	285
SPNPRT	Print spin coordinates	285
SPNTRK	Spin tracking	286
SRLOSS	Synchrotron radiation energy loss	
SRPRNT	Print SR loss statistics	
SVDOC	SVD orbit correction	289
SYNRAD	Synchrotron radiation spectral-angular densities	290
SYSTEM	System call	291
TARGET	Generate a secondary beam following target interaction	
TOSCA	2-D and 3-D Cartesian or cylindrical mesh field map	
TRANSMAT	Matrix transfer	
TRAROT	Translation-Rotation of the reference frame	
TWISS	Calculation of periodic optical parameters. Log to zgoubi.TWISS.out	
UNDULATOR	Undulator magnet	
UNIPOT	Unipotential cylindrical electrostatic lens	
VENUS	Simulation of a rectangular shape dipole magnet	
WIENFILT	Wien filter	
YMY	Reverse signs of Y and Z reference axes	303

Optical elements versus keywords

What can be simulated What keyword(s) can be used for that

This glossary gives a list of keywords suitable for the simulation of common optical elements. These are classified in three categories: magnetic, electric and combined electro-magnetic elements.

Field map procedures are also listed; they provide a means for ray-tracing through measured or simulated electric and/or magnetic fields.

MAGNETIC ELEMENTS

AGS main magnet AGSMM

Betatron core BETATRON, CAVITE

Cyclotron magnet or sector DIPOLE[S], DIPOLE-M, FFAG, FFAG-SPI

Decapole DECAPOLE, MULTIPOL

Dipole[s], spectrometer dipole AIMANT, BEND, DIPOLE[S][-M], MULTIPOL, QUADISEX

Dodecapole DODECAPO, MULTIPOL

FFAG magnets DIPOLES, FFAG, FFAG-SPI, MULTIPOL

Helical dipole HELIX

Multipole MULTIPOL, QUADISEX, SEXQUAD

Octupole OCTUPOLE, MULTIPOL, QUADISEX, SEXQUAD Quadrupole QUADRUPO, MULTIPOL, SEXQUAD, AGSQUAD Sextupole SEXTUPOL, MULTIPOL, QUADISEX, SEXQUAD

Skew multipoles MULTIPOL
Solenoid SOLENOID
Undulator UNDULATOR

Using field maps

1-D, cylindrical symmetry BREVOL

2-D, mid-plane symmetry CARTEMES, POISSON, TOSCA

2-D, no symmetry

2-D, polar mesh, mid-plane symmetry

3-D, no symmetry

TOSCA

EMMA FFAG quadrupole doublet

linear composition of field maps

TOSCA

ELECTRIC ELEMENTS

2-tube (bipotential) lens **EL2TUB** 3-tube (unipotential) lens **UNIPOT** Decapole **ELMULT** Dipole **ELMULT** Dodecapole **ELMULT** Multipole **ELMULT** N-electrode mirror/lens, straight slits **ELMIR** N-electrode mirror/lens, circular slits **ELMIRC** Octupole **ELMULT** Quadrupole **ELMULT** R.F. (kick) cavity **CAVITE** Sextupole **ELMULT** Skew multipoles **ELMULT**

Using field maps

1D, cylindrical symmetry ELREVOL

2-D, no symmetry MAP2D-E

ELECTRO-MAGNETIC ELEMENTS

Decapole EBMULT
Dipole EBMULT
Dodecapole EBMULT
Multipole EBMULT
Octupole EBMULT
Quadrupole EBMULT
Sextupole EBMULT
Skew multipoles EBMULT

Wien filter SEPARA, WIENFILT

INTRODUCTION

Here after is given a detailed description of input data formatting and units. All available keywords appear in alphabetical order.

Keywords are read from the input data file by an unformatted *FORTRAN READ* statement. They be enclosed between quotes (*e.g.*, '*DIPOLE*').

Text string data such as comments or file names, are read by formatted READ statements, no quotes should be used in that case.

Numerical variables and indices are read by unformatted READ. It may therefore be necessary that integer variables be assigned an integer value.

In the following tables

- the first column shows the expected input parameters (actually, their values are expected), indices and text strings,
- the second column gives brief comments regarding their meaning and use,
- the third column gives the units or ranges,
- the fourth column indicates whether the expected parameter types are integer (I), real (E) or text string (A). For example, "I, 3*E" means that one integer followed by 3 reals is expected. "A80" means that a text string of maximum 80 characters is expected.

AGS main magnet

AGSMM

IL	$IL=1,2[imes 10^n],\ 7$: print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).	$0\text{-}2[\times10^n],7$	I
$MOD, dL,$ $R_0, dB1, dB2, dB3$	Type of magnet model ¹ ; unused; pole tip radius, 10 cm if set to zero; relative error on dipole, quadrupole, sextupole component.	2*no dim., cm, 3*no dim.	I[.I], 5*E
NBLW[.MOD], NBLW times : NW, I	Number of back-leg windings [back-leg winding model ²]; for each back-leg winding: number of windings, current.	≤2, <i>NBLW</i> × (any, Amp.)	I, NBLW × (I, E)
X_E, λ_E, E_2, E_3	Entrance face Integration zone; fringe field extent: dipole fringe field extent = λ_E ; quadrupole fringe field extent = $\lambda_E * E_2$; sextuppole fringe field extent = $\lambda_E * E_3$ (sharp edge if field extent is zero)	2*cm, 2*no dim.	4*E
$NCE, C_0 - C_5$	same as QUADRUPO	0-6, 6*no dim.	I, 6*E
X_S, λ_S, S_2, S_3 $NCS, C_0 - C_5$	Exit face Integration zone; as for entrance	2*cm, 2*no dim. 0-6, 6*no dim.	4*E I, 6*E
$NCS, C_0 - C_5$		0-0, 0 · 110 diffi.	1, 0 · E
R1, R2, R3	Skew angles of field components	3*rad	10*E
XPAS	Integration step	cm	E
If KPOS = 1-3 KPOS, XCE, YCE, ALE If KPOS = 4	Positioning as follows: KPOS=1: element aligned; $KPOS=2$: misaligned; shifts, tilt; $KPOS=3$: effective only if $B1 \neq 0$: entrance and exit frames are tilted wrt . the magnet by an angle of \bullet either ALE if ALE $\neq 0$ \bullet or $2 \operatorname{Arcsin}(B1 XL / 2BORO)$ if ALE=0	1-3, 2*cm, rad	I, 3*E
	X-, Y-shift, Z-rotation, Z-shift, Y-rotation Automatic ALE positioning as <i>KPOS</i> = 3, and in addition possible X- or Y- or Z-misalignment or Z-, Y-rotation. (under development).	4, cm, 2*(cm, rad)	I, 5*E

 $^{^{1}}MOD=1$: centered multipole model; MOD=2: long-shifted dipole model; MOD=3: short-shifted dipole model.

 $^{^2}MOD = 0 \text{ (default)} : \text{ user defined back-leg windings (defined in routine agsblw.f)}; MOD = 1 : \text{ actual AGS data are taken, namely} : \text{MM_A16AD} : \text{NBLW} = 1, \text{SIGN} = 1.D0, \text{NW} = 10 ; \text{MM_A17CF} : \text{NBLW} = 1, \text{SIGN} = 1.D0, \text{NW} = 10 ; \text{MM_A18CF} : \text{NBLW} = 1, \text{SIGN} = -1.D0, \text{NW} = 10 ; \text{MM_A19BD} : \text{NBLW} = 1, \text{SIGN} = -1.D0, \text{NW} = 12 ; \text{MM_B02BF} : \text{NBLW} = 2, \text{SIGN} = 1.D0, \text{NW} = 12 ; \text{SIGN} = 1.D0, \text{NW} = 12 ; \text{MM_B03CD} : \text{NBLW} = 1, \text{SIGN} = 1.D0, \text{NW} = 10 ; \text{MM_B03CD} : \text{NBLW} = 1, \text{SIGN} = 1.D0, \text{NW} = 10 ; \text{MM_B05A} : \text{NBLW} = 1, \text{SIGN} = -1.D0, \text{NW} = 10 ; \text{MM_B05D} : \text{NBLW} = 1, \text{SIGN} = 1.D0, \text{NW} = 6 ; \text{MM_K20B} : \text{NBLW} = 1, \text{SIGN} = 1.D0, \text{NW} = 6 ; \text{MM_L13CF} : \text{NBLW} = 1, \text{SIGN} = -1.D0, \text{NW} = 5 ; \text{MM_L14C} : \text{NBLW} = 1, \text{SIGN} = -1.D0, \text{NW} = 5 ; \text{MM_A07CD} : \text{NBLW} = 1, \text{SIGN} = -1.D0, \text{NW} = 5 ; \text{MM_A08C} : \text{NBLW} = 1, \text{SIGN} = -1.D0, \text{NW} = 5 ; \text{MM_B01B} : \text{NBLW} = 1, \text{SIGN} = 1.D0, \text{NW} = 6 ; \text{MM_L06A} : \text{NBLW} = 1, \text{SIGN} = 1.D0, \text{NW} = 5 ; \text{MM_L07C} : \text{NBLW} = 1, \text{SIGN} = -1.D0, \text{NW} = 5 ; \text{MM_L06A} : \text{NBLW} = 1, \text{SIGN} = -1.D0, \text{NW} = 5 ; \text{MM_L07C} : \text{NBLW} = 1, \text{SIGN} = -1.D0, \text{NW} = 5 ; \text{MM_L06A} : \text{NBLW} = 1, \text{SIGN} = -1.D0, \text{NW} = 5 ; \text{MM_L06A} : \text{NBLW} = 1, \text{SIGN} = -1.D0, \text{NW} = 5 ; \text{MM_L06A} : \text{NBLW} = 1, \text{SIGN} = -1.D0, \text{NW} = 5 ; \text{MM_L07C} : \text{NBLW} = 1, \text{SIGN} = -1.D0, \text{NW} = 5 ; \text{MM_L06A} : \text{NBLW} = 1, \text{SIGN} = -1.D0, \text{NW} = 5 ; \text{MM_L06A} : \text{NBLW} = 1, \text{SIGN} = -1.D0, \text{NW} = 5 ; \text{MM_L06A} : \text{NBLW} = 1, \text{SIGN} = -1.D0, \text{NW} = 5 ; \text{MM_L06A} : \text{NBLW} = 1, \text{SIGN} = -1.D0, \text{NW} = 5 ; \text{MM_L06A} : \text{NBLW} = 1, \text{SIGN} = -1.D0, \text{NW} = 5 ; \text{MM_L06A} : \text{NBLW} = 1, \text{SIGN} = -1.D0, \text{NW} = 5 ; \text{MM_L06A} : \text{NBLW} = 1, \text{SIGN} = -1.D0, \text{NW} = 5 ; \text{MM_L06A} : \text{NBLW} = 1, \text{SIGN} = -1.D0, \text{NW} = 5 ; \text{MM_L06A} : \text{NBLW} = 1, \text{SIGN} = -1.D0, \text{NW} = 5 ; \text{MM_L06A} : \text{NBLW} = 1, \text{SIGN} = -1.D0, \text{NW} = 5 ; \text{MM_L06A} : \text{NBLW} = 1, \text{SIGN} = -1.D0, \text{NW}$

AGSQUAD	AGS quadrupole			
		dim.	data type	FIT num.
IL	$I\!L=1,2[\times 10^n],~7$: print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).	$0-2[\times 10^n], 7$	Ι	
$XL, R_0, I_{W1}, I_{W2}, I_{W3}, dI_{W1}, dI_{W2}, dI_{W3}$	Length of element; radius at pole tip; current in windings; relative error on currents.	2*cm, 3*A 3*no dim	5*E 3*E	10 - 17
X_E, λ_E	Entrance face Integration zone ; fringe field extent. (sharp edge if field extent is zero)	2*cm	11*E	20, 21
NCE , $C_0 - C_5$	Same as QUADRUPO	0-6, 6*no dim.	I, 6*E	30 - 36
X_S,λ_S	Exit face Integration zone; as for entrance	2*cm	11*E	40, 41
NCS , $C_0 - C_5$		0-6, 6*no dim.	I, 6*E	50 - 56
R1	Roll angle	rad	E	60
XPAS	Integration step	cm	E	70
KPOS, XCE, YCE, ALE	KPOS=1 : element aligned, 2 : misaligned; shifts, tilt.	1-2, 2*cm, rad	I, 3*E	80 - 83

AIMANT	Generation of dipole mid-plane 2-D map, polar frame $B_Z = \mathcal{F}B_0 \left(1 - N\left(\frac{R-RM}{RM}\right) + B\left(\frac{R-RM}{RM}\right)^2 + G\left(\frac{R-RM}{RM}\right)^2 + $	$\left(\frac{M}{2}\right)^3$	
NFACE, IC, IL	Number of field boundaries $IC=1,2$: print field map $IL=1,2[\times 10^n],\ 7$: print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).	$2-3; 0-2; 0-2[\times 10^n],$	73*I
IAMAX, IRMAX	Azimuthal and radial number of nodes of the mesh	$\leq 400, \leq 10^4$	2*I
B_0 , N , B , G	Field and field indices	kG, 3*no dim.	4*E
AT, ACENT, RM, RMIN, RMAX	Mesh parameters: total angle of the map; azimuth for EFBs positioning; reference radius; minimum and maximum radii	2*deg, 3*cm	5*E
	ENTRANCE FIELD BOUNDARY		
λ, ξ	Fringe field extent (normally \simeq gap size); flag: - if $\xi \geq 0$: second order type fringe field with linear variation over distance ξ - if $\xi = -1$: exponential type fringe field: $F = (1 + \exp(P(s)))^{-1}$ $P(s) = C_0 + C_1(\frac{s}{\lambda}) + C_2(\frac{s}{\lambda})^2 + + C_5(\frac{s}{\lambda})^5$	cm, (cm)	2*E
NC , $C_0 - C_5$, shift	NC = 1 + degree of $P(s)$; C_0 to C_5 : see above ; EFB shift (ineffective if $\xi \geq 0$)	0-6, 6*no dim., cm	I, 7*E
$\omega^+, \theta, R_1, U_1, U_2, R_2$	Azimuth of entrance EFB with respect to ACENT; wedge angle of EFB; radii and linear extents of EFB (use $U_{\frac{1}{2}}=\mp\infty$ when $R_{1,2}=\infty$)	2*deg, 4*cm	6*E
	(Note : $\lambda = 0$, $\omega^+ = ACENT$ and $\theta = 0$ for sharp edge)		
	EXIT FIELD BOUNDARY (See ENTRANCE FIELD BOUNDARY)		
λ, ξ $NC, C_0 - C_5$, shift $\omega^-, \theta, R_1, U_1, U_2, R_2$	Fringe field parameters See above Positioning and shape of the exit EFB	cm, (cm) 0-6, 6*no dim., cm 2*deg, 4*cm	2*E 1, 7*E 6*E

(Note : $\lambda=0,\,\omega^-=$ -AT+ACENT and $\theta=0$ for <code>sharp edge</code>)

If NFACE $= 3$	LATERAL FIELD BOUNDARY (See ENTRANCE FIELD BOUNDARY)			
λ, ξ $NC, C_0 - C_5$, shift $\omega^-, \theta, R_1, U_1, U_2, R_2$, RM3	Next 3 records <i>only</i> if <i>NFACE</i> = 3 Fringe field parameters See above Positioning and shape of the lateral EFB; RM3 is the radial position on azimuth <i>ACENT</i>	cm, (cm) 0-6, 6*no dim., cm 2*deg, 5*cm	2*E I, 7*E 7*E	
NBS	Option index for perturbations to the field map	$-2 - 0 \text{ or } \ge 1$	I	
If $NBS = 0$	Normal value. No other record required			
If $NBS = -2$	The map is modified as follows:			
$R_0, \Delta B/B_0$	B transforms to $B*\left(1+rac{\Delta B}{B_0}rac{R-R_0}{RMAX-RMIN} ight)$	cm, no dim.	2*E	
If $NBS = -1$	the map is modified as follows:			
$\theta_0, \Delta B/B_0$	B transforms to $B*\left(1+rac{\Delta B}{B_0}rac{ heta- heta_0}{AT} ight)$	deg, no dim.	2*E	
If NBS ≥ 1	Introduction of NBS shims			
For I = 1, NBS	The following 2 records must be repeated NBS times			
$R_1, R_2, \theta_1, \theta_2, \lambda$	Radial and angular limits of the shim ; λ is unused	2*cm, 2*deg, cm	5*E	
$\gamma, \alpha, \mu, \beta$	geometrical parameters of the shim	2*deg, 2*no dim.	4*E	
IORDRE	Degree of interpolation polynomial: 2 = second degree, 9-point grid 25 = second degree, 25-point grid 4 = fourth degree, 25-point grid	2, 25 or 4	I	
XPAS	Integration step	cm	E	
KPOS	Positioning of the map, normally 2. Two options :	1-2	I	
If KPOS = 2 RE, TE, RS, TS	Positioning as follows: Radius and angle of reference, respectively, at entrance and exit of the map.	cm, rad, cm, rad	4*E	
If KPOS = 1 <i>DP</i>	Automatic positioning of the map, by means of reference relative momentum	no dim.	E	

 $A: Parameters \ used \ to \ define \ the \ field \ map \ and \ geometrical \ boundaries.$ $B: Parameters \ used \ to \ define \ the \ field \ map \ and \ fringe \ fields.$

Second order type fringe field.

Exponential type fringe field.

AUTOREF

If I = 5

ZCE, PLE

cm, mrad

2*E

I	1 : Equivalent to $CHANGREF(XCE=0,YCE=Y(1),ALE=T(1)),$ i.e., recentering of the beam on particle #1.	1-2 1-2	I I
	2: Equivalent to $CHANGREF(XW,YW,T(1))$, with (XW,YW) the location of the intersection (waist) of particles 1, 4 and 5 (useful with $MATRIX$, for automatic positioning of the first order focus).		
	3: Equivalent to $CHANGREF(XW,YW,T(I1))$, with (XW,YW) the location of the intersection (waist) of particles $I1$, $I2$ and $I3$ (for instance: $I1$ = central trajectory, $I2$ and $I3$ = paraxial trajectories that intersect at the first order focus).		
	 4: Equivalent to CHANGREF(XCE, YCE, ALE). 4.1: Equivalent to CHANGREF(XCE, YCE, ALE) with in addition centering of the beam on a new relative momentum DCE. 		
	5: The beam is centered vertically on ZCE, PLE.		
If $I = 3$ I1, I2, I3	Provide next record if $I=3$ Three particle numbers	3*(1- <i>IMAX</i>)	3*I
If $I = 4$ XCE, YCE, ALE	Provide next record if $I=4$ XCE and beam centroid new coordinates YCE, ALE	2*cm, mrad	3*E
If $I = 4.1$ XCE, YCE, ALE, DCE, TIME	Provide next record if $I=4.1$ XCE and beam centroid new coordinates YCE, ALE, DCE, TIME	$2*$ cm, mrad, -, μ s	6*E
If $I = 4.2$ XCE, YCE , ALE , DCE, $TIME$	Provide next record if $I=4.2$ XCE and beam centroid new coordinates YCE, ALE, DCE, time setting TIME (same for all particles).	2*cm, mrad, -, μs	6*E

Transport beam into a new reference frame

Provide next record if I=5

New vertical beam centroid coordinates ZCE, PLE

BEAMBEAM

SW, I	0/1 : off/on; beam intensity. Use SPNTRK to activate spin kicks.	0-2, Amp	I, E
$\alpha_Y, \ \beta_Y, \ \epsilon_{Y,norm}/\pi$	Beam parameters, horizontal.	- , m, m.rad	3*E
$\alpha_Z,\ \beta_Z,\ \epsilon_{Z,norm}/\pi$	Beam parameters, vertical.	- , m, m.rad	3*E
$\sigma_X,~\sigma_{dp/p}$	rms bunch length; rms momentum spread.	m, -	2*E
C, α	Ring circumference; momentum compaction.	m, -	2*E
$Q_Y,\ Q_Z,\ Q_s$	Tunes, horizontal, vertical, synchrotron.	-, -, -	3*E
A_Y, A_Z, A_X	Amplitudes, horizontal, vertical, longitudinal.	-, -, -	3*E

Beam-beam lens

BEND	Bending magnet, Cartesian frame		
IL	$IL=1,2[imes 10^n],\ 7$: print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).	$0-2[\times 10^n], 7$	I
XL, Sk, B1	Length ; skew angle ; field (change ALE and wedge signs, if $B < 0$).	cm, rad, kG	3*E
X_{E},λ_{E},W_{E}	Entrance face : Integration zone extent ; fringe field extent (normally \simeq gap height ; zero for sharp edge) ; wedge angle (>0 for rectangle magnet).	cm, cm, rad	3*E
$N, C_0 - C_5$	Unused ; fringe field coefficients : $B(s)=B1$ $F(s)$ with $F(s)=1/(1+\exp(P(s)))$ and $P(s)=\sum_{i=0}^5 C_i(s/\lambda)^i$	unused, 6*no dim.	I, 6*E
	Exit face :		
X_S, λ_S, W_S	See entrance face	cm, cm, rad	3*E
$N, C_0 - C_5$		unused, 6*no dim.	I, 6*E
XPAS	Integration step	cm	E
KPOS, XCE, YCE, ALE	KPOS=1: element aligned, 2: misaligned; shifts, Z-tilt. KPOS = 3: (XCE is unused) entrance and exit frames are	1-2, 2*cm, rad	I, 3*E

shifted by YCE and tilted wrt. the magnet by an angle of

• or $2 \operatorname{Arcsin}(B1 \times XL / 2 \times BORO)$ if ALE=0

• either ALE, if ALE is non-zero (normally, ALE>0 in that case)

Geometry and parameters of BEND: XL = length, $\theta = \text{deviation}$, W_E , W_S are the entrance and exit wedge angles. The motion is computed in the Cartesian frame (O,X,Y,Z).

• Example : Positive or negative field BEND

The data list at left hand, below, simulates a case of positive field, followed by two different ways to simulate the same magnet with negative field. (This can be copy-pasted to **zgoubi**, as is, for execution.)

The right hand column shows the transport matrix in all three cases.

```
Test signs, with wedges.
! Magnet deviation is ! tta=11.25deg=2asin(L/2rho)=2asin(B.L/2.Brho) with L=247.30039, Brho=1000, B=1.57776
! 1/ Positive B, regular form of input data 'OBJET'
1000.
.01 .1 .01 .1 0. .001
0. 0. 0. 0. 0. 1.
                                                                                                                                                                                    1), path length : 248.88547
                                                                                                                                            Reference particle (#
                                                                                                                                             TRANSFER MATRIX ORDRE 1 (MKSA units)
247.30039 0. 1.57776
20. 8. 0.04276056667
                                                                                                                                                                                                 0.00000 0.00000
0.00000 0.00000
0.985447 2.48908
-1.163098E-02 0.985390
                                                                                                                                            0.940559 2.42528
-4.768802E-02 0.940229
0.00000 0.00000
0.00000 0.00000
                                                                                                                                                                                                                                0 00000 0 0
                                                                                                                                                                                                                                                        0.482374
0.385904
0.00000
0.00000
                                                                             ! wedge is +2.45deg
4 .2401 1.8639 -.5572 .3904 0. 0. 0. 20. 8. 0.04276056667 4 .2401 1.8639 -.5572 .3904 0. 0. 0.
                                                                            ! wedge is +2.45deg
4 .2401 1.8639 -.5572 .3904 0. 0. 0. #30|10|30 3 0. 0. -.1963495408
                                                                                                                                                                                                                                                        6.370064E-02
                                                                                                                                             0.385970
                                                                                                                                                                       0.482384
                                                                                                                                                                                                     0.00000
                                                                                                                                                                                                                                0.00000
                                                                                                                                               0.00000
                                                                                                                                                                          0.00000
                                                                                                                                                                                                    0.00000
                                                                                                                                                                                                                               0.00000 0.0
                                                                                                                                                                                                                                                          1.00000
 'FAISCEAU'
  'MATRIX'
1 0
! 2/ Negative B. Compared to 1/ : R11-R44 unchaged, R16, R26 change sign. ! 2-a/ By changing sign of B. Note : signs of ALE and wedges have to be reversed. 'OBJET'
1000.
.01 .1 .01 .1 0. .001 0. 0. 0. 0. 0. 1.
                                                                                                                                             Reference particle (#
                                                                                                                                                                                        1), path length: 248.88547
 'BEND'
                                                                                                                                                          TRANSFER MATRIX ORDRE 1 (MKSA units)
0
247.30039 0. -1.57776
20. 8. -0.04276056667
4 .2401 1.8639 -.5572 .3904 0. 0. 0.
20. 8. -0.04276056667
4 .2401 1.8639 -.5572 .3904 0. 0. 0.
                                                                                                                                                                                                                             0.00000 0.0 -0.482374
0.00000 0.0 -0.385904
2.48908 0.0 0.00000
0.985390 0.0 0.00000
0.00000 1.0 6.370064E-02
                                                                                                                                              0.940559
                                                                                                                                            0.940559 2.42528
-4.768802E-02 0.940229
0.00000 0.00000
0.00000 0.00000
                                                                             ! wedge is +2.45deg
                                                                           ! wedge is +2.45deg
              1.8639 -.5572 .3904 0. 0. 0.
#30|10|30
3 0. 0. .1963495408
                                                                                                                                                                                                    0.00000
                                                                                                                                               0.00000
                                                                                                                                                                          0.00000
                                                                                                                                                                                                                               0.00000 0.0
                                                                                                                                                                                                                                                          1.00000
  'MATRIX'
1 0
! 2-a/ Using YMY instead. All data in BEND remain unchanged. 'OBJET' 1000.
.01 .1 .01 .1 0. .001
0. 0. 0. 0. 0. 1.
 'YMY'
                                                                                                                                             Reference particle (#
                                                                                                                                                                                       1), path length : 248.88547
                                                                                                                                             TRANSFER MATRIX ORDRE 1 (MKSA units) 0.940559 2.42528 0 0 00000
047.30039 0. 1.57776
20. 8. 0.04276056667
4 .2401 1.8639 -.5572 .3904 0. 0. 0.
20. 8. 0.04276056667
                                                                                                                                                                                                                               0.00000 0.0 -0.482374

        0.00000
        0.00000
        0.0
        -0.482374

        0.00000
        0.0000
        0.0
        -0.385904

        0.985447
        2.48908
        0.0
        0.00000

        0.00000
        0.00000
        0.00000
        0.00000

        0.00000
        0.00000
        1.0
        6.370064E-02

        0.00000
        0.00000
        1.00000
        1.00000

                                                                              ! wedge is +2.45deg
                                                                                                                                            -4.768802E-02 0.940229
! wedge is +2.45deg
                                                                                                                                            -0.385970
0.00000
  'MATRIX'
1 0
 'END'
```

E

BETATRON Betatron core (momentum kick)

dp-kick Momentum kick, relative to particle momentum.

A80

BINARY BINARY → FORMATTED data converter

NF[.J], NCol, NHDR Number of files to convert [READ format type, see below], $\leq 20, \leq 7, 0-9$ 3*I1

of data columns, of header lines.

The next NF lines :

FNAME Name of the file to be converted. File content is assumed binary

iff name begins with "B_" or "b_", assumed formatted otherwise.

READ format, case of formatted input file:

If FRM not given Format is '*'

If FRM=1 Format is '1X, 7E11.*'

READ format, case of binary input file:

Expected format is 7 column rows.

BREVOL	1-D uniform mesh magnetic field map <i>X</i> -axis cylindrical symmetry is assumed		
IC, IL	$I\!C=1,2$: print the map $I\!L=1,2[imes 10^n],~7$: print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).	$0-2; 0-2[\times 10^n], 7$	2*I
BNORM, XN	Field and X-coordinate unit conversion coeff. Convert values as read from map file, to kG and cm units.	2*UnitConv.	2*E
TITL	Title. Start with "FLIP" to get field map X-flipped.		A80
IX	Number of longitudinal nodes of the map	≤ 400	I
FNAME [, SUM] ^{1, 2}	File name		A80
ID, A, B, C [, A', B', C', B'' , etc., if $ID \ge 2$]	Integration boundary. Ineffective when $ID=0$. $ID=$ -1, 1 or ≥ 2 : as for <i>CARTEMES</i>	≥ -1 , 2*no dim., cm [,2*no dim., cm, etc.]	I,3*E [,3*E,etc.]
IORDRE	Unused	2, 25 or 4	I
XPAS	Integration step	cm	Е
KPOS, XCE, YCE, ALE	KPOS=1: element aligned, 2: misaligned; shifts, tilt.	1-2, 2*cm, rad	I, 3*E

```
OPEN (UNIT = NL, FILE = FNAME, STATUS = 'OLD' [,FORM='UNFORMATTED']) DO 1 I = 1, IX IF (BINARY) THEN READ(NL) X(I), BX(I) ELSE READ(NL,*) X(I), BX(I) ENDIF 1 CONTINUE
```

where X(I) and BX(I) are the longitudinal coordinate and field component at node (I) of the mesh. Binary file names must begin with FNAME 'B_' or 'b_'. 'Binary' will then automatically be set to '.TRUE.'.

 2 Sumperimposing (summing up) field maps is possible. Up to 4 at most.

To do so, pile up file names with 'SUM' following each name but the last one.

In the following example e.g., 3 field maps are read and summed up~:

```
myMapFile1 SUM
myMapFile2 SUM
myMapFile3
```

(all maps must all have their mesh defined in identical coordinate frame).

 $^{^{1}\}textit{ FNAME (e.g., solenoid.map) contains the field data. These must be formatted according to the following \textit{FORTRAN} sequence: \\$

CARTEMES	2-D Cartesian uniform mesh magnetic field map mid-plane symmetry is assumed		
$I\!C,I\!L$	$I\!C=1,2$: print the map $I\!L=1,2[imes 10^n],~7$: print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).	$0-2; 0-2[\times 10^n], 7$	2*I
BNORM, XN, YN	Field and X-,Y-coordinate unit conversion coeffs. Convert values as read from map file, to kG and cm units.	3*UnitConv.	3*E
TITL	Title. Start with "FLIP" to get field map X-flipped.		A80
IX,JY	Number of longitudinal (IX) and transverse (JY) nodes of the map	$\leq 400, \leq 200$	2*I
FNAME ¹	File name		A80
ID, A, B, C $[A', B', C', A'', B'', etc., if ID \ge 2]$	Integration boundary. Normally $ID=0$. $ID=-1$: integration in the map begins at entrance boundary defined by $AX+BY+C=0$. $ID=1$: integration in the map is terminated at exit boundary defined by $AX+BY+C=0$. $ID\geq 2$: entrance (A,B,C) and up to $ID-1$ exit $(A',B',C',A'',B'',etc.)$ boundaries	≥ -1,2*no dim., cm [,2*no dim., cm, etc.]	I, 3*E [3*E,etc.]
IORDRE	Degree of interpolation polynomial (see DIPOLE-M)	2, 25 or 4	I
XPAS	Integration step	cm	E
KPOS, XCE, YCE, ALE	KPOS=1 : element aligned, 2 : misaligned; shifts, tilt.	1-2, 2*cm, rad	I, 3*E

```
OPEN (UNIT = NL, FILE = FNAME, STATUS = 'OLD' [,FORM='UNFORMATTED'])
IF (BINARY) THEN
READ(NL) (Y(J), J=1, JY)
ELSE
    READ(NL,100) (Y(J), J=1, JY)
   ENDIF
100 FORMAT(10 F8.2)
   DO 1 I=1,IX
 IF (BINARY) THEN
 READ(NL) X(I), (BMES(I,J), J=1, JY)
 READ(NL,101) X(I), (BMES(I,J), J=1, JY)
101 FORMAT(10 F8.2)
   ENDIF
  CONTINUE
```

where X(I) and Y(J) are the longitudinal and transverse coordinates and BMES is the Z field component at a node (I,J) of the mesh. For binary files, FNAME must begin with 'B₂' or 'b₂'.

'Binary' will then automatically be set to '.TRUE.'

 $^{^2}$ FNAME (e.g., spes2.map) contains the field data. These must be formatted according to the following FORTRAN sequence :

OXY is the coordinate system of the mesh. Integration zone limits may be defined, using $ID \neq 0$: particle coordinates are extrapolated linearly from the entrance face of the map, into the plane A'X + B'Y + C' = 0; after ray-tracing inside the map and terminating on the integration boundary AX + BY + C = 0, coordinates are extrapolated linearly to the exit face of the map.

CAVITE 1

Accelerating cavity

CAVITE	$\Delta W = q \hat{V} \sin(2\pi h f \Delta t + \varphi_s)$ or other voltage and frequency laws.		
IOPT[.i] [,PRINT] [, Facility] [, SHIFT_PH0]	Option, see below ; $i=1$ (equivalently, presence of 'PRINT') causes info logged to zgoubi.CAVITE.Out; Facility is accounted for iff IOPT=11 (otherwise ignored), it can be: 'CornellSynch' or 'eRHIC_RCS'; 'SHIFT_PH0' is accounted for iff IOPT=10 (otherwise ignored), will shift the origin of phases $(\phi_s, \ \phi(t), \text{etc.})$ by $\pi/2$.	0-11, - , - , -	I[.1] [, A] [, A] [, A]
If IOPT=0	Element inactive		
X, X X, X	Unused. Unused.		
If IOPT=1 ²	f_{RF} follows the timing law given by SCALING		
\mathcal{L}, h \hat{V}, X	Reference closed orbit length; harmonic number. R.F. peak voltage; unused.	m, no dim. V, unused	2*E 2*E
If IOPT=2	f_{RF} follows $\Delta W_s = q \hat{V} \sin \phi_s$. Handles double RF systems		
$\mathcal{L}, h \text{ or } \{h_1, h_2\}$ $\hat{V} \text{ or } \{\hat{V}_1, \hat{V}_2\}, \phi_s$	Reference closed orbit length; harmonic number(s). R.F. peak voltage(s); synchronous phase.	m, no dim. V, rad	2*E 2*E
If IOPT=3	No synchrotron motion : $\Delta W = q \hat{V} \sin \phi_s$		
X, X \hat{V}, ϕ_s	Unused; unused. R.F. peak voltage; synchronous phase.	2*unused. V, rad	2*E 2*E
If IOPT=6	Read RF frequency and/or phase law from external file, "zgoubi.freqLaw.In".		
\mathcal{L}, E_k \hat{V}, Φ_s	Orbit length and kinetic energy at start of acceleration. R.F. peak voltage; synchronous phase.	m, MeV V, rad	2*E 2*E
If IOPT=7	Quasi- or isochronous acceleration.		
X, f_{RF}	Unused; RF frequency.	- , Hz	2*E
$\hat{V}, \; \Phi_s$	R.F. peak voltage; synchronous phase.	V, rad	2*E
If IOPT=10	Chambers matrix method (origin of phase determined by 'SHIFT_PHO' option	in line 1).	
L,f_{RF} $\hat{V},~\Phi_s$ [, IOP]	Cavity length; RF frequency R.F. peak voltage; synchronous phase; matrix (damping) options, either IOP =0: default value, transverse matrix is a drift, or IOP = $\pm 1: dE/E \ll 1$ approx. and, resp ^{ly} , $\begin{cases} \text{transverse damping} \\ \text{transv. determinant} = 1 \end{cases}$, or IOP = $\pm 2: \forall dE/E$ and, resp ^{ly} , $\begin{cases} \text{transverse damping} \\ \text{transv. determinant} = 1 \end{cases}$.	m, Hz V, rad, $[\in [-2, +2]]$	2*E [, I]
If IOPT=11	Acceleration in presence of SR loss (optionally, Facility= 'CornellSynch' or 'e	RHIC_RCS', line	1).
\mathcal{L}, E_k	Orbit length and kinetic energy at start of acceleration.	m, MeV	2*E
$\hat{V}, \; \Phi_s, U_0$	R.F. peak voltage; synchronous phase; SR loss at first pass ³ .	V, rad	2*E

Routines concerned, mostly : reavit.f (read input), cavite.f (cavity models).

 $^{^1}$ Use PARTICUL to declare mass and charge. 2 For ramping the R.F. frequency following $B\rho(t)$, use SCALING, with family CAVITE. 3 SR loss at subsequent turns is actualized using $U\propto E^4$.

CHAMBR	Long transverse aperture limitation ¹		
IA	0 : element inactive1 : (re)definition of the aperture2 : stop testing and reset counters, print information on stopped particles.	0-2	I
IFORM[.J], C1, C2, C3, C4	IFORM = 1 : rectangular aperture; IFORM = 2 : elliptical aperture. $J = 0$, default : opening is $^2 \pm YL = \pm C1$, $\pm ZL = \pm C2$, centered at $YC = C3$, $ZC = C4$. $J = 1$: opening is 2 , in Y : $[C1, C2]$, in Z : $[C3, C4]$	1-2[.0-1]	I[.I], 4*E

Any particle out of limits is stopped. ² When used with an optical element defined in polar coordinates (e.g., DIPOLE) YL is the radius and YC stands for the reference radius (normally, $YC \simeq RM$).

CHANGREF Transformation to a new reference frame

"Old Style" (Figure below):

XCE, YCE, ALE Longitudinal and transverse shifts, 2*cm, deg 3*E followed by Z-axis rotation

"New Style" (example below). In an arbitrary order, up to 9 occurrences of:

XS 'val', YS 'val', ZS 'val',
XR 'val', YR 'val', ZR 'val'

cm or deg up to 9*(A2,E)

Parameters in the CHANGREF procedure.

• Example : CHANGREF

```
Using CHANGREF "New Style
'OBJET'
51.71103865921708
                                              Electron, Ekin=15MeV.
1 1
                                                 One particle, with
2. 0. 0.0 0.0 0.0 1. 'R'
1 1 1 1 1 1 1
'MARKER' BEG .plt
                                 Y_0=2 cm, other coordinates zero.
                                          -> list into zgoubi.plt.
'DRIFT'
                                                        10 cm drift.
10.
'CHANGREF'
ZR -6.34165 YS 1.
                                First half Z-rotate, Next Y-shift.
               Combined function multipole, dipole + quadrupole.
2 -> list into zgoubi.plt. 5 10. 2.064995867082342 2. 0. 0. 0. 0. 0. 0. 0. 0.
0 0 0 0 0 0 0 0 0 0
.1 step size
1 0. 0. 0.
'CHANGREF'
YS -1. ZR -6.341
'DRIFT'
                        First Y-shift back, next half Z-rotate.
                                                        10 cm drift.
'FAISCEAU'
^{\prime} END^{\prime}
```

3*E

Ε

3*mrad

kG.cm

CIBLE, TARGET

TS, PS, DT

BORO

M_1, M_2, M_3, Q T_2, θ, β	Target, incident and scattered particle masses; Q of the reaction; incident particle kinetic energy; scattering angle; angle of the target	$5*\frac{MeV}{c^2}$, 2*deg	7*E
NT, NP	Number of samples in T and P coordinates after $CIBLE$		2*I

Sampling size; tilt angle

New reference rigidity after CIBLE

Generate a secondary beam following target interaction

Scheme of the principles of CIBLE (TARGET)

A,T = position, angle of incoming particle 2 in the entrance reference frame P = position of the interaction

B,T = position, angle of the secondary particle in the exit reference frame

 θ = angle between entrance and exit frames

 β = tilt angle of the target

COLLIMA	Collimator ¹		
IA	0 : element inactive1 : element active2 : element active and print information on stopped particles	0-2	I
Physical-space collimation IFORM[.J], C1, C2, C3, C4	IFORM = 1 or 2 : rectangular or elliptical aperture; $J = 0$, default : opening is $\pm YL = \pm C1$, $\pm ZL = \pm C2$, centered at $YC = C3$, $ZC = C4$. $J = 1$: opening is, in Y : $[C1, C2]$, in Z : $[C3, C4]$	1-2[.0-1], 4*cm	I[.I], 4*E
Longitudinal collimation IFORM.J, H_{min} , H_{max} , V_{min} , V_{max}	IFORM = 6 or 7 for horizontal variable resp ^{ly} S or Time, J=1 or 2 for vertical variable resp ^{ly} 1+dp/p, kinetic-E (MeV); horizontal and vertical limits	$2*$ cm or $2*\mu$ s, $2*$ no.dim or $2*$ MeV	I, 4*E
Phase-space collimation IFORM, $\alpha, \beta, \epsilon/\pi, N_\sigma$	IFORM = 11, 14: horizontal collimation; horizontal ellipse parameters (unused if 14) ² , emittance, cut-off IFORM = 12, 15: vertical collimation; vertical ellipse parameters (unused if 15) ² , emittance, cut-off IFORM = 13, 16: longitudinal collimation; to be implemented	11-16, no.dim, 2*m, no.dim	I, 4*E

 $^{^1\,}$ Any particle out of limits is stopped. $^2\,$ The rejection boundary is the $\it rms$ ellipse matched to the particle distribution.

DECAPOLE	Decapole magnet		
IL	$IL=1,2[\times 10^n],\ 7$: print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).	$0-2[\times 10^n], 7$	I
XL , R_0 , B_0	Length; radius and field at pole tip	2*cm, kG	3*E
X_E, λ_E	Entrance face : Integration zone extent ; fringe field extent ($\lesssim 2R_0, \lambda_E=0$ for sharp edge)	2*cm	2*E
$NCE, C_0 - C_5$	NCE = unused C_0-C_5 = Fringe field coefficients such that $G(s)=G_0/(1+\exp P(s))$, with $G_0=B_0/R_0^4$ and $P(s)=\sum_{i=0}^5 C_i(s/\lambda)^i$	unused, 6*no dim.	I, 6*E
X_S, λ_S $NCS, C_0 - C_5$	Exit face : see entrance face	2*cm 0-6, 6*no dim.	2*E I, 6*E
XPAS	Integration step	cm	E
KPOS, XCE, YCE, ALE	KPOS=1: element aligned, 2: misaligned; shifts, tilt.	1-2, 2*cm, rad	I, 3*E

DIPOLE						
	$B_Z = \mathcal{F}B_0 \left(1 + N \left(\frac{R - RM}{RM} \right) + B \left(\frac{R - RM}{RM} \right)^2 + G \left(\frac{R}{RM} \right)^2 \right)$	$\left(\frac{-RM}{RM}\right)^3$				
		dim.	data type	FIT num.		
IL	$I\!L=1,2[imes 10^n],~7$: print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).	$0-2[\times 10^n], 7$	I			
AT,RM	Total angular extent of the dipole; reference radius	deg, cm	2*E	2, 3		
$ACENT, B_0, N, B, G$	Azimuth for positioning of EFBs; field and field indices at $R \equiv RM$. $(N = \frac{RM}{B_0} \frac{dB}{dR}; B = \frac{RM}{2B_0} \frac{d^2B}{dR^2}; G = \frac{RM}{6B_0} \frac{d^3B}{dR^3})$.	deg., kG, 3*no dim.	5*E	4-8		
	ENTRANCE FIELD BOUNDARY					
λ, ξ	Fringe field extent (normally \simeq gap size); unused. Exponential type fringe field $F=1/(1+\exp(P(s)))$ with $P(s)=C_0+C_1(\frac{s}{\lambda})+C_2(\frac{s}{\lambda})^2++C_5(\frac{s}{\lambda})^5$	cm, unused	2*E	9, 10		
NC , $C_0 - C_5$, shift	Unused; C_0 to C_5 : see above; EFB shift	0-6, 6*no dim., cm	I, 7*E	11-18		
$\omega^+, \theta, R_1, U_1, U_2, R_2$	Azimuth of entrance EFB with respect to <i>ACENT</i> ; wedge angle of EFB; radii and linear extents of EFB (use $U_{\frac{1}{2}} = \mp \infty$ when $R_{1,2} = \infty$)	2*deg, 4*cm	6*E	19-24		
	(Note : $\lambda = 0$, $\omega^+ = ACENT$ and $\theta = 0$ for <u>sharp edge</u>)					
	EXIT FIELD BOUNDARY (See ENTRANCE FIELD BOUNDARY)					
λ, ξ $NC, C_0 - C_5$, shift	Fringe field parameters	cm, unused 0-6, 6*no dim., cm	2*E 1, 7*E	25, 26 27-34		
$\omega^-, \theta, R_1, U_1, U_2, R_2$	Positioning and shape of the exit EFB	2*deg, 4*cm	6*E	35-40		
	(Note: $\lambda = 0$, $\omega^- = -AT + ACENT$ and $\theta = 0$ for sharp edge)					
	LATERAL FIELD BOUNDARY (See ENTRANCE FIELD BOUNDARY)					
λ, ξ $NC, C_0 - C_5$, shift	Lateral EFB is inhibited if $\xi = 0$	cm, unused 0-6, 6*no dim., cm	2*E 1, 7*E	41-42 43-50		
	Positioning and shape of the EFB	2*deg, 5*cm	7*E	51-57		
IORDRE, Resol	Degree of interpolation polynomial: 2 = second degree, 9-point grid 25 = second degree, 25-point grid 4 = fourth degree, 25-point grid; size of flying mesh is XPAS/Resol	2, 25 or 4; no dim.	I, E	58, 59		
XPAS	Integration step	cm	E	60		
KPOS	Positioning of the map, normally 2. Two options :	1-2	I			
If KPOS = 2 RE, TE, RS, TS	Positioning as follows: Radius and angle of reference, respectively, at entrance and exit of the map.	cm, rad, cm, rad	4*E	64-67		
If KPOS = 1 <i>DP</i>	Automatic positioning of the map, by means of reference relative momentum	no dim.	E			

 $R_0, \Delta B/B_0$

If NBS = -1

 $\theta_0, \Delta B/B_0$

DIPOLE-M	Generation of dipole mid-plane 2-D map, polar frame $B_Z = \mathcal{F}B_0 \left(1 + N\left(\frac{R-RM}{RM}\right) + B\left(\frac{R-RM}{RM}\right)^2 + G\left(\frac{R-RM}{RM}\right)^2 + $	$\left(\frac{M}{2}\right)^3$	
NFACE, IC, IL	Number of field boundaries $IC=1,2$: print field map $IL=1,2[\times 10^n],\ 7$: print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).	$2-3; 0-2; 0-2[\times 10^n],$	7 3*I
IAMAX, IRMAX	Azimuthal and radial number of nodes of the mesh	$\leq 400, \leq 200$	2*I
B_0, N, B, G	Field and field indices	kG, 3*no dim.	4*E
AT, ACENT, RM, RMIN, RMAX	Mesh parameters: total angle of the map; azimuth for positioning of EFBs; reference radius; minimum and maximum radii	2*deg, 3*cm	5*E
	ENTRANCE FIELD BOUNDARY		
λ, ξ	Fringe field extent (normally \simeq gap size); unused. Exponential type fringe field $F=1/(1+\exp(P(s)))$ with $P(s)=C_0+C_1(\frac{s}{\lambda})+C_2(\frac{s}{\lambda})^2++C_5(\frac{s}{\lambda})^5$	cm, unused	2*E
NC , $C_0 - C_5$, shift	Unused; C_0 to C_5 : see above; EFB shift	0-6, 6*no dim., cm	I, 7*E
$\omega^+, \theta, R_1, U_1, U_2, R_2$	Azimuth of entrance EFB with respect to $ACENT$; wedge angle of EFB; radii and linear extents of EFB (use $U_{\frac{1}{2}}=\mp\infty$ when $R_{1,2}=\infty$)	2*deg, 4*cm	6*E
	(Note : $\lambda=0,\omega^+$ = ACENT and $\theta=0$ for <code>sharp edge</code>)		
	EXIT FIELD BOUNDARY (See ENTRANCE FIELD BOUNDARY)		
λ, ξ $NC, C_0 - C_5$, shift	Fringe field parameters	cm, unused 0-6, 6*nodim., cm	2*E 1, 7*E
$\omega^-, \theta, R_1, U_1, U_2, R_2$	Positioning and shape of the exit EFB	2*deg, 4*cm	6*E
	(Note : $\lambda = 0$, $\omega^- = -AT + ACENT$ and $\theta = 0$ for sharp edge)		
If NFACE $= 3$	LATERAL FIELD BOUNDARY (See ENTRANCE FIELD BOUNDA Next 3 records <i>only</i> if <i>NFACE</i> = 3	RY)	
λ, ξ NC, $C_0 - C_5$, shift	Fringe field parameters	cm, (cm) 0-6, 6*no dim., cm	2*E I, 7*E
$\omega^{-}, \theta, R_1, U_1, U_2, R_2,$ $RM3$	Positioning and shape of the lateral EFB; RM3 is the radial position on azimuth <i>ACENT</i>	2*deg, 5*cm	7*E
NBS	Option index for perturbations to the field map	normally 0	I
If $NBS = 0$	Normal value. No other record required		
If $NBS = -2$	The map is modified as follows:		

B transforms to $B*\left(1+\frac{\Delta B}{B_0}\frac{R-R_0}{RMAX-RMIN}\right)$

the map is modified as follows:

B transforms to $B*\left(1+\frac{\Delta B}{B_0}\frac{\theta-\theta_0}{AT}\right)$

cm, no dim.

deg, no dim.

2*E

2*E

If NBS ≥ 1	Introduction of NBS shims		
For I = 1, NBS	The following 2 records must be repeated NBS times		
$R_1, R_2, \theta_1, \theta_2, \lambda$	Radial and angular limits of the shim ; λ is unused	2*cm, 2*deg, cm	5*E
$\gamma, \alpha, \mu, \beta$	geometrical parameters of the shim	2*deg, 2*no dim.	4*E
IORDRE	Degree of interpolation polynomial: 2 = second degree, 9-point grid 25 = second degree, 25-point grid 4 = fourth degree, 25-point grid	2, 25 or 4	I
XPAS	Integration step	cm	E
KPOS	Positioning of the map, normally 2. Two options :	1-2	I
If KPOS = 2 RE, TE, RS, TS	Positioning as follows: Radius and angle of reference, respectively, at entrance and exit of the map.	cm, rad, cm, rad	4*E
If KPOS = 1 <i>DP</i>	Automatic positioning of the map, by means of reference relative momentum	no dim.	E

DIPOLES	Dipole magnet N -tuple, polar frame Depending on $KIRD[.i]$ below: (i) $B_Z = \sum_{i=1}^N B_{Z0,i} \mathcal{F}_i(R,\theta) \left(1 + b_{1_i}(R - RM_i)/RM_i + b_{2_i}(R)\right)$ (ii) $B_Z = B_{Z0,i} + \sum_{i=1}^N \mathcal{F}_i(R,\theta) \left(b_{1_i}(R - RM_i) + b_{2_i}(R - RM_i)\right)$	$(R - RM_i)^2 / RM_i^2 +$ $(RM_i)^2 +$)	
		dim.	data type	FIT num.
IL	$IL=1,2[imes 10^n],\ 7$: print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).	$0-2[\times 10^n], 7$	I	
N, AT, RM	Number of magnets in the N -tuple ; total angular extent of the dipole ; reference radius	no dim., deg, cm	I, 2*E	2-4
Repeat N times the fo	llowing sequence			
ACN, δRM^1 , B_0 , ind , b_i , $(i = 1, ind)$	Positioning of EFBs : azimuth, $RM_i=RM+\delta RM$; field; number of, and field indices at $R\equiv RM$ ($b_1=\frac{RM}{B_0}\frac{dB}{dR}$; $b_2=\frac{RM}{2B_0}\frac{d^2B}{dR^2}$; etc.).	\deg , cm, kG, $(ind + 1)*$ no dim.	3*E, I, ind*E	5-7, 8-(8+ind)
g_0, κ	ENTRANCE FIELD BOUNDARY Fringe field extent $(g = g_0 (RM/R)^{\kappa})$ Exponential type fringe field $F = 1/(1 + \exp(P(s)))$ with $P(s) = C_0 + C_1(\frac{s}{q}) + C_2(\frac{s}{q})^2 + + C_5(\frac{s}{q})^5$	cm, no dim.	2*E	(9+ind) to (10+ind)
$NC, C_0 - C_5$, shift $\omega^+, \theta, R_1, U_1, U_2, R_2$	Unused; C_0 to C_5 : see above; EFB shift Azimuth of entrance EFB with respect to ACN ; wedge angle of EFB; radii and linear extents of EFB (use $U_{\frac{1}{2}} = \mp \infty$ when $R_{1,2} = \infty$)	0-6, 6*no dim., cm 2*deg, 4*cm	I, 7*E 6*E	etc.
	(Note : $\lambda = 0$, $\omega^+ = ACN$ and $\theta = 0$ for <u>sharp edge</u>)			
	EXIT FIELD BOUNDARY (See ENTRANCE FIELD BOUNDA	RY)		
$g_0, \kappa \\ NC, C_0 - C_5, \text{ shift} \\ \omega^-, \theta, R_1, U_1, U_2, R_2$		cm, no dim. $0-6$, $6*$ no dim., cm $2*$ deg, $4*$ cm	2*E 1, 7*E 6*E	
	(Note : $\lambda=0, \omega^-=-AT+ACN$ and $\theta=0$ for sharp edge)			
	LATERAL FIELD BOUNDARY to be implemented - following	data not used		
g_0, κ	· · · · · · · · · · · · · · · · · · ·	cm, no dim.	2*E	
NC , $C_0 - C_5$, shift ω^- , θ , R_1 , U_1 , U_2 , R_2 . End of repeat		0-6, 6*no dim., cm 2*deg, 5*cm	1, 7*E 7*E	
KIRD[.i], Resol	If KIRD=0: analytical computation of field derivatives; i=0 or absent: default, B_Z formula (i) above, i=1: B_Z formula (i i=7-9: S. Ruggiero's FFAG (see dipsi.f routine). Resol = 2/4 for 2nd/4th order field derivatives computation If KIRD=2, 25 or 4: numerical interpolation of field derivatives; size of flying interpolation mesh is $XPAS/Resol$ KIRD=2 or 25: second degree, 9- or 25-point grid KIRD=4: fourth degree, 25-point grid	0, 2, 25 or 4; no dim. i),	I, E	
XPAS	Integration step	cm	E	
KPOS	Positioning of the magnet, normally 2. Two options :	1-2	I	
If KPOS = 2 RE, TE, RS, TS	Positioning as follows: Radius and angle of reference, respectively, at entrance and exit of the magnet	cm, rad, cm, rad	4*E	
If KPOS = 1 <i>DP</i>	Automatic positioning of the magnet, by means of reference relative momentum	no dim.	Е	

 $^{^1~}$ Non-zero $\delta R\!M$ requires KIRD= 2,4 or 25.

DODECAPO	Dodecapole magnet		
ΙL	$I\!L=1,2[\times 10^n],~7: \mbox{print coordinates, fields, etc., step-by-step,} \\ \mbox{in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).} \\$	$0-2[\times 10^n], 7$	I
XL, R_0, B_0	Length; radius and field at pole tip	2*cm, kG	3*E
X_E, λ_E	Entrance face : Integration zone extent ; fringe field extent ($\lesssim 2R_0, \lambda_E=0$ for sharp edge)	2*cm	2*E
$NCE, C_0 - C_5$	NCE = unused C_0-C_5 = Fringe field coefficients such that $G(s)=G_0/(1+\exp P(s))$, with $G_0=B_0/R_0^5$ and $P(s)=\sum_{i=0}^5 C_i(s/\lambda)^i$	unused, 6*no dim.	I, 6*E
X_S, λ_S $NCS, C_0 - C_5$	Exit face : see entrance face	2*cm 0-6, 6*no dim.	2*E I, 6*E
XPAS	Integration step	cm	E
KPOS, XCE, YCE, ALE	KPOS=1: element aligned, 2: misaligned; shifts, tilt.	1-2, 2*cm, rad	I, 3*E

Ε

DRIFT, ESL Field free drift space

XL [, 'split', N [, *IL*]]

length; 'split', optional, will split into N segments; IL=1 or 2 (0 is default), optional, causes log of particle data in zgoubi.res or zgoubi.plt.

cm

• Example : DRIFT

 \diamond Default format of *DRIFT*, to push particles 30 cm ahead :

'DRIFT'

 \diamond It can be split into 10, 3 cm long pieces. Optionally, using IL=2 will cause particle data print out to zgoubi.plt, at the downstream end of each piece.

 \diamond Two equivalent methods to cause particle data log to zgoubi.plt at the downstream end of a drift. 'DRIFT_0' is LABEL 1 here, '.plt' is LABEL 2.

EBMULT ¹	Electro-magnetic multipole		
IL	$IL=1,2[\times 10^n],\ 7$: print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).	$0-2[\times 10^n], 7$	I
$XL, R_0, E1, E2,, E10$	Electric poles Length of element; radius at pole tip; field at pole tip for dipole, quadrupole,, 20-pole electric components	2*cm, 10*V/m	12*E
$X_{E}, \lambda_{E}, E_{2},, E_{10}$	Entrance face Integration zone; fringe field extent: dipole fringe field extent = λ_E ; quadrupole fringe field extent = $\lambda_E * E_2$; 20-pole fringe field extent = $\lambda_E * E_{10}$ (for any component: sharp edge if field extent is zero)	2*cm, 9*no dim.	11*E
NCE , $C_0 - C_5$	same as QUADRUPO	0-6, 6*no dim.	I,6*E
$X_{S}, \lambda_{S}, S_{2},, S_{10}$ $NCS, C_{0} - C_{5}$	Exit face Integration zone; as for entrance	2*cm, 9*no dim. 0-6, 6*no dim.	11*E I, 6*E
R1, R2, R3,, R10	Skew angles of electric field components	10*rad	10*E
$XL, R_0, B1, B2,, B10$	Magnetic poles Length of element; radius at pole tip; field at pole tip for dipole, quadrupole,, 20-pole magnetic components	2*cm, 10*kG	12*E
$X_E, \lambda_E, E_2,, E_{10}$	Entrance face Integration zone; fringe field extent: dipole fringe field extent = λ_E ; quadrupole fringe field extent = $\lambda_E * E_2$; 20-pole fringe field extent = $\lambda_E * E_{10}$	2*cm, 9*no dim.	11*E
	(for any component : sharp edge if field extent is zero)		
<i>NCE</i> , $C_0 - C_5$	same as QUADRUPO	0-6, 6*no dim.	I,6*E

 $^{^{1}\,}$ Use PARTICUL to declare mass and charge.

	Exit face		
$X_S, \lambda_S, S_2,, S_{10}$	Integration zone; as for entrance	2*cm, 9*no dim.	11*E
NCS , $C_0 - C_5$		0-6, 6*no dim.	I, 6*E
R1, R2, R3,, R10	Skew angles of magnetic field components	10*rad	10*E
XPAS	Integration step	cm	Е
KPOS, XCE, YCE, ALE	KPOS=1: element aligned, 2: misaligned; shifts, tilt.	1-2, 2*cm, rad	I, 3*E

EL2TUB ¹	Two-tube electrostatic lens		
IL	$IL=1,2[\times 10^n],\ 7$: print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).	$0\text{-}2[\times 10^n], 7$	I
X_1, D, X_2, R_0	Length of first tube; distance between tubes; length of second tube; inner radius	3*m	4*E
V_1, V_2	Potentials	2*V	2*E
XPAS	Integration step	cm	E
KPOS, XCE, YCE, ALE	KPOS=1: element aligned, 2: misaligned; shifts, tilt.	1-2, 2*cm,	I, 3*E

Two-electrode cylindrical electric lens.

¹ Use *PARTICUL* to declare mass and charge.

ELMIR

IL	$IL=1,2[\times 10^n],\ 7$: print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).	$0-2[\times 10^n], 7$	I
N,L1,, LN, D, MT	Number of electrodes; electrode lengths; gap; mode (11/H-mir, 12/V-mir, 21/V-lens, 22/H-lens)	2-7, N*m, m	I, N*E, E, I
V1,,VN	Electrode potentials (normally $V1 = 0$)	N*V	N*E
XPAS	Integration step	cm	E
KPOS, XCE, YCE, ALE	KPOS=1: element aligned; 2: misaligned; shifts, tilt; 3: automatic positioning, $YCE=$ pitch, $ALE=$ half-deviation	1-2, 2*cm, rad	I, 3*E

Electrostatic N-electrode mirror/lens, straight slits

Electrostatic N-electrode mirror/lens, straight slits, in the case N=3, in horizontal mirror mode (MT=11). Possible non-zero entrance quantities YCE, ALE should be specified using CHANGREF, or using KPOS=3 with YCE and ALE=half-deviation matched to the reference trajectory.

ELMIRC

IL	$I\!L=1,2[\times 10^n],~7$: print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).	$0-2[\times 10^n], 7$	I
R1, R2, AT, D	Radius of first and second slits; total deviation angle; gap	4*m 2*m, rad, m	4*E 4*E
V - VA, VB - V	Potential difference	2*V	2*E
XPAS	Integration step	cm	E
KPOS RE, TE, RS, TS	Normally $KPOS = 2$ for positioning; Radius and angle at respectively entrance and exit.	1-2 cm, rad, cm, rad	I 4*E

Electrostatic N-electrode mirror/lens, circular slits

Electrostatic N-electrode mirror/lens, circular slits, in the case N=3, in horizontal mirror mode.

ELMULT 1	Electric multipole		
IL	$IL=1,2[imes 10^n],\ 7$: print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).	$0\text{-}2[\times 10^n], 7$	I
$XL, R_0, E1, E2,, E10$	Length of element; radius at pole tip; field at pole tip for dipole, quadrupole,, dodecapole components	2*cm, 10*V/m	12*E
$X_E, \lambda_E, E_2,, E_{10}$	Entrance face Integration zone; fringe field extent: dipole fringe field extent = λ_E ; quadrupole fringe field extent = $\lambda_E * E_2$; 20-pole fringe field extent = $\lambda_E * E_{10}$ (sharp edge if field extent is zero)	2*cm, 9*no dim.	11*E
$NCE, C_0 - C_5$	same as QUADRUPO	0-6, 6*no dim.	I, 6*E
$X_{S}, \lambda_{S}, S_{2},, S_{10}$ $NCS, C_{0} - C_{5}$	Exit face Integration zone; as for entrance	2*cm, 9*no dim. 0-6, 6*no dim.	11*E I, 6*E
R1, R2, R3,, R10	Skew angles of field components	10*rad	10*E
XPAS	Integration step	cm	Е
KPOS, XCE, YCE, ALE	KPOS=1: element aligned, 2: misaligned; shifts, tilt.	1-2, 2*cm, rad	I, 3*E

¹ Use PARTICUL to declare mass and charge.

ELREVOL 1	1-D uniform mesh electric field map X -axis cylindrical symmetry is assumed		
IC, IL	$IC=1,2$: print the map $IL=1,2[imes 10^n],\ 7$: print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).	$0-2; 0-2[\times 10^n], 7$	2*I
ENORM, X-NORM	Field and X-coordinate unit conversion coeff. Convert values as read from map file, to MV/cm and cm units.	2*UnitConv.	2*E
TITL	Title. Start with "FLIP" to get field map X-flipped.		A80
IX	Number of longitudinal nodes of the map	≤ 400	I
FNAME ²	File name		A80
ID, A, B, C [, A', B', C', B'' , etc., if $ID \ge 2$]	Integration boundary. Ineffective when $ID=0$. $ID=$ -1, 1 or ≥ 2 : as for <i>CARTEMES</i>	≥ -1 , 2*no dim., cm [,2*no dim., cm, etc.]	I,3*E [,3*E,etc.]
IORDRE	Unused	2, 25 or 4	I
XPAS	Integration step	cm	Е
KPOS, XCE, YCE, ALE	KPOS=1: element aligned, 2: misaligned; shifts, tilt.	1-2, 2*cm, rad	I, 3*E

```
OPEN (UNIT = NL, FILE = FNAME, STATUS = 'OLD' [,FORM='UNFORMATTED'])
DO 1 I = 1, IX

IF (BINARY) THEN

READ(NL) X(I), EX(I)
ELSE

READ(NL,*) X(I), EX(I)
ENDIF
1 CONTINUE
```

where X(I) and EX(I) are the longitudinal coordinate and field component at node (I) of the mesh. Binary file names FNAME must begin with 'B₋' or 'b₋'. 'Binary' will then automatically be set to '.TRUE.'

 $^{^{1}\,}$ Use PARTICUL to declare mass and charge.

 $^{^2}$ FNAME (e.g., e-lens.map) contains the field data. These must be formatted according to the following FORTRAN sequence :

EMMA

IL	$IL=1,2[\times 10^n],\ 7$: print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).	$0-2[\times 10^n], 7$	I
BNORM, XN, YN, ZN	Field and X-,Y-,Z-coordinate unit conversion coefficients. Convert values as read from map file, to kG and cm or rad.	4*UnitConv.	4*E
TITL	Title. Start with "FLIP" to get field map X-flipped		A80
IX, IY, IZ, MOD[.i]	Number of nodes of the mesh in the X, Y and Z directions, $IZ = 1$ for single 2-D map; MOD : operational and map $FORMAT$ reading mode $^{1}MOD \le 19$: Cartesian mesh; $MOD \ge 20$: cylindrical mesh; $.i$, optional, tells the reading $FORMAT$, default is '*'.	$\leq 400, \leq 200,$ 1, $\geq 0[.1-9]$	3*I
FNAME 1 $(K = 1, NF)$	Names of the NF files that contain the 2-D maps, ordered from $Z(1)$ to $Z(NF)$. If MOD =0: a single map, superimposition of QF and QD ones, is but If MOD =1: a single map, interpolated from $QF[x_F]$ and $QD[x_D]$ or If MOD =22: a single map, superimposition of QF and QD ones, is left MOD =24: field at particle is interpolated from a $QF(QD)$ pair of current $QF(QD)$ value, taken from of set of $QF(QD)$ pairs registered	nes, is built for tracki built for tracking. maps, closest to	A80
ID, A, B, C [, A', B', C', B'' , etc., if $ID \ge 2$]	Integration boundary. Ineffective when $ID=0$. $ID=-1, 1 \text{ or } \geq 2$: as for <i>CARTEMES</i>	≥ -1 , 2*no dim., cm [,2*no dim., cm, etc.]	I,3*E [,3*E,etc.]
IORDRE	If $IZ = 1$: as in <i>CARTEMES</i> If $IZ \neq 1$: unused	2, 25 or 4	I
XPAS	Integration step	cm	E
KPOS, XCE, YCE, ALE	KPOS=1: element aligned, 2: misaligned; shifts, tilt.	1-2, 2*cm, rad	I, 3*E

2-D Cartesian or cylindrical mesh field map for EMMA FFAG

 $^{^1}$ FNAME normally contains the field map data. If MOD=24 FNAME(K) contains the names of the QF maps and QD maps, as well as the QF-QD distance attached to each one of these pairs.

A1, 3*E

ERRORS Injecting errors in optical elements

(UNDER DEVELOPMENT)

ONF, NBR, SEED [, PRINT]

On/off switch (1/0); number of error sets to be injected (i.e., I1, I, I [,A5] ,,,[,] as well, number of lines following this one); random seed.

Occurence of PRINT will save error series in zgoubi.ERRORS.out.

The next line depends on the optical element of concern, and is to be one of the following: (only limited possibilities at the moment, under development)

,[,],,,,2*kG, MULTIPOL[{LBL1 [,LBL2]}], Keyword concerned [optionally, first and/or second label]; A8 [,A20[,A20]], N, TYP, AR, UG, N=1-10: pole concerned if TYP=BP, otherwise unused; I, A2, A1,

VC, HW, CUTOFF TYP= BP: field at pole (dipole to 20-pole), or XR: roll-angle; AR=A or R : error value is absolute or relative (to current one);

UG=U or G: uniform or Gaussian random law;

VC= central value; HW= half-width (case UG=U) or sigma (case UG=G);

cut-off value in units of sigma (unused if UG=U)

,[,],,,,2*kG, TOSCA[{LBL1 [,LBL2]}], Keyword concerned [optionally, first and/or second label]; A8 [,A20[,A20]],

N, TYP, AR, UG, N is unused:

I, A2, A1, A1, 3*E VC, HW, CUTOFF TYP= BP: field coefficient BNORM;

AR, UG, etc.: see abov

• Example : ERRORS

```
'ERRORS'
1 3 123466
                                            cut-off
                              1
                                  HM
MULTIPOL{KCV} 1 BP R U 0.d0
                                  1e-3
                                             Ω
               2 XR A U 0.d0
                                  0.349e - 3
                                             0
MULTIPOL{B}
               1 BP A G -1.d-3
                                  1.e-5
```

In this example the various attributes of the error keyword take the following values and meanings:

♦ 1st line:

- ONF = 1: error setting is on; NBR = 3: three error setting lines follow; seed = 123456♦ 2nd line:

- all MULTIPOL keywords with first label "KCV" in the optical sequence are concerned; multipole component ip=1 is affected, i.e., dipole component; "BP, R, U, 0.d0, 1e-3, 0": a random relative defect dB/B (AR=R) concerning the field $B_{\rm ip}$ (TYP=BP) for that component, will be sorted in a uniform (UG=U) distribution centered on $V_{\rm ip} = 0$ (VC=0.d0) with half-width $HW=10^{-3}$, CUTOFF at n-sigma (n=0 here) is unused (only used for Gaussian distributions, case UG=G) - $B_{\rm ip}$ is changed to $B_{\rm ip} + V_{\rm ip} + dB/B \times B_{\rm ip}$. ♦ 3rd line:

- all MULTIPOL keywords with first label "B" in the optical sequence are concerned; multipole component ip=2 is affected, i.e., quadrupole component; "XR, A, U, 0.d0, 0.349e-3, 0: a random absolute defect $dR_{\rm ip}$ (AR=A) of the roll-angle $R_{\rm ip}$ (TYP=XR) for that component, will be sorted in a uniform (UG=U) distribution centered on $V_{\rm ip} = 0$ (VC=0.d0) with halfwidth $HW = 0.349 \times 10^{-3}$ rad, CUTOFF at n-sigma (n=0 here) is unused (only used for Gaussian distributions, case UG=G) - $R_{\rm ip}$ is changed to $R_{\rm ip} + V_{\rm ip} + dR_{\rm ip}$.

- all TOSCA keywords in the optical sequence are concerned; field map field coefficient BNORM (see TOSCA keyword) is affected; BP, A, G, -1.d-3, 1.e-5, 3: a random absolute defect dBN (AR=A) concerning BNORM (TYP=BP) will be sorted in a Gaussian (UG=G) distribution centered on $BNC = -10^{-3}$ (VC=-1.d-3) with rms value $HW = 10^{-5}$, CUTOFF 3-sigma - BNORM is changed to BNC + dBN (not to BNORM + BNC + dBN!). (If AR=R instead: random relative defect dBN/BN generated, and BNORM changed to VC + dBN/BN).

FAISCEAU Print particle coordinates

Print particle coordinates at the location where the keyword is introduced in the structure. If frist label is 'FORCE', will force printout when normally inhibited (e.g., during FIT, or REBELOTE).

FAISCNL Store particle coordinates in file FNAME

FNAME¹ Name of storage file A80

(e.g., zgoubi.fai, or b_zgoubi.fai for binary storage).

FAISTORE Store coordinates every IP other pass [, at elements with appropriate label]

FNAME ¹ Name of storage file (e.g. zgoubi.fai). Optional: a series of up to 10 label(s), A80, [,LABEL(s)] (the first label of element(s) at the exit of which the store will occur); wild card accepted, in the form '*LABEL' or 'LABEL*' or '*LABEL*'. If either FNAME or first LABEL is 'none' then FAISTORE is inhibited. Store occurs at all elements if first LABEL is 'all' or 'ALL'.

IP Store every IP other pass (when using REBELOTE with NPASS \geq IP - 1). I

¹ Stored data can be read back from FNAME using OBJET, KOBJ = 3.

FFAG	FFAG magnet, N-tuple UNDER DEVELOPMENT $B_Z = \sum_{i=1}^{N} B_{Z0,i} \mathcal{F}_i(R,\theta) \left(R/R_{M,i} \right)^{K_i}$		
IL	$I\!L=1,2[\times 10^n],~7$: print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).	$0-2[\times 10^n], 7$	I
N, AT, RM	Number of dipoles in the FFAG N -tuple ; total angular extent of the dipole ; reference radius	no dim., deg, cm	I, 2*E
Repeat N times the follow	wing sequence		
ACN , δRM , B_{Z0} , K	Azimuth for dipole positioning ; $R_{M,i} = R\!M + \delta R\!M$; field at $R_{M,i}$; index	deg, cm, kG, no dim.	4*E
	ENTRANCE FIELD BOUNDARY		
g_0, κ $NC, C_0 - C_5$, shift $\omega^+, \theta, R_1, U_1, U_2, R_2$	Fringe field extent $(g=g_0(RM/R)^\kappa)$ Unused; C_0 to C_5 : fringe field coefficients; EFB shift Azimuth of entrance EFB with respect to ACN ; wedge angle of EFB; radii and linear extents of EFB (use $U_{\frac{1}{2}}=\mp\infty$ when $R_{1,2}=\infty$)	cm, no dim. 0-6, 6*no dim, cm 2*deg, 4*cm	2*E I, 7*E 6*E
	(Note : $g_0 = 0$, $\omega^+ = ACN$, $\theta = 0$ and KIRD=0 for sharp edge)		
	EXIT FIELD BOUNDARY (See ENTRANCE FIELD BOUNDARY))	
g_0, κ $NC, C_0 - C_5$, shift $\omega^-, \theta, R_1, U_1, U_2, R_2$	Fringe field parameters, see above	cm, no dim 0-6, 6*no dim, cm 2*deg, 4*cm	2*E 1, 7*E 6*E
	(Note: $g_0 = 0$, $\omega^- = -AT + ACN$, $\theta = 0$ and KIRD=0 for sharp ed	ge)	
	LATERAL FIELD BOUNDARY to be implemented - following dat	a not used	
g_0, κ $NC, C_0 - C_5$, shift $\omega^-, \theta, R_1, U_1, U_2, R_2$		cm, no dim 0-6, 6*no dim, cm 2*deg, 4*cm	2*E 1, 7*E 6*E
End of repeat			
KIRD, Resol	If KIRD=0: analytical computation of field derivatives; Resol = 2/4 for 2nd/4th order field derivatives computation If KIRD = 2, 4 or 25: numerical interpolation of field derivatives; size of flying interpolation mesh is XPAS/Resol KIRD=2 or 25: second degree, 9- or 25-point grid KIRD=4: fourth degree, 25-point grid	0, 2, 25 or 4; no dim.	I, E
XPAS	Integration step	cm	Е
KPOS	Positioning of the magnet, normally 2. Two options :	1-2	I
If KPOS = 2 RE, TE, RS, TS	Positioning as follows: Radius and angle of reference, respectively, at entrance and exit of the magnet	cm, rad, cm, rad	4*E
If KPOS = 1 <i>DP</i>	Automatic positioning of the magnet, by means of reference relative momentum	no dim.	E

FFAG-SPI	Spiral FFAG magnet, N -tuple UNDER DEVELOPMENT $B_Z = \sum_{i=1}^N B_{Z0,i} \mathcal{F}_i(R,\theta) \left(R/R_{M,i} \right)^{K_i}$		
ΙL	$I\!L=1,2[imes 10^n],~7$: print coordinates along trajectories, fields, etc., into zgoubi.res (1) or zgoubi.plt (2[$ imes 10^n$]) or zgoubi.impdev.out (7).	$0-2[\times 10^n], 7$	I
N, AT, RM	Number of dipoles in the FFAG N -tuple; total angular extent of the dipole; reference radius.	no dim., deg, cm	I, 2*E
Repeat N times the follo	wing sequence		
ACN , δRM , B_{Z0} , K	Azimuth for dipole positioning ; $R_{M,i}=R\!M+\delta R\!M$; field at $R_{M,i}$; index.	deg, cm, kG, no dim.	4*E
	ENTRANCE FIELD BOUNDARY		
g_0, κ $NC, C_0 - C_5$, shift $\omega^+, \xi, 4$ dummies	Fringe field extent $(g = g_0 (RM/R)^{\kappa})$ Unused; C_0 to C_5 : fringe field coefficients; EFB shift Azimuth of entrance EFB with respect to ACN ; spiral angle; $4 \times$ unused.	cm, no dim. 0-6, 6*no dim, cm 2*deg, 4*unused	2*E I, 7*E 6*E
	EXIT FIELD BOUNDARY (See ENTRANCE FIELD BOUNDARY)	
g_0, κ $NC, C_0 - C_5$, shift $\omega^-, \xi, 4$ dummies	Fringe field parameters, see above	cm, no dim 0-6, 6*no dim, cm 2*deg, 4*unused	2*E 1, 7*E 6*E
	LATERAL FIELD BOUNDARY to be implemented - following date	ta not used	
g_0, κ $NC, C_0 - C_5$, shift $\omega^-, \theta, R_1, U_1, U_2, R_2$		cm, no dim 0-6, 6*no dim, cm 2*deg, 4*cm	2*E 1, 7*E 6*E
End of repeat			
Integration boundaries	- next line is optional, starting with string IntLim:		
$\begin{array}{l} \operatorname{IntLim}, ID, A, B, C \\ [,A',B',C'] \end{array}$	Integration boundary. Line has to start with 'IntLim'. $ID = -1$: integration in the magnet begins at entrance boundary defined by A, B, C. $ID = 1$: integration is terminated at exit boundary defined by A', B', C'. $ID = 2$: both entrance and exit boundaries.	-1, 1, 2; deg; cm; deg [; id .]	I, 3*E [,3*E]
KIRD, Resol	If KIRD=0: analytical computation of field derivatives; Resol = 2/4 for 2nd/4th order field derivatives computation. If KIRD = 2, 4 or 25: numerical interpolation of field derivatives; size of flying interpolation mesh is XPAS/Resol. KIRD=2 or 25: second degree, 9- or 25-point grid KIRD=4: fourth degree, 25-point grid	0, 2, 25 or 4; no dim.	I, E
XPAS	Integration step	cm	E
KPOS, RE, TE, RS, TS	Positioning of the magnet, has to be 2. As follows: radius and angle of reference, respectively, at entrance and exit of the magnet.	2, 2*(cm, rad)	I, 4*E

FIN, END End of input data list

Any information in zgoubi.dat following these keywords will be ignored

FIT, FIT2	Fitting procedure		
NV [, nofinal] [, noSYSout] [, save [, FileName]]	NV: Number of physical parameters to be varied; 'nofinal' avoids final run (default is: final run performed using fitted values, once fit is done); 'noSYSout' inhibits system outp of variable and constraint status, except for start and end, and update of penalty value in between; 'save' saves fit variables when fit is completed, either in 'FileName' if specified, or by default in zgoubi.FITVALS.out.	≤ 20 [, nofinal] save [string] ut	I [, A7] [, A4 [, A80]]
For $I = 1$, NV	repeat NV times the following sequence		
indifferently, either: IR, IP, XC, DV	Number of the element in the structure; number of the physical parameter in the element; coupling switch of the form ir.ip with ip of the form ijk, i, j, k single digit, possibly 0, integers: off = 0, or $IP < 0$ if coupled variation is to be of opposite sign, or $IP > 0$ for same sign variation; variation range (\pm) .	\leq MXL ¹ , \leq MXD ¹ , \pm MXL.MXD ² , relative	2*I, 2*E
or: IR, IP, XC, $[V_{min}, V_{max}]$	IR , IP , XC as above; V_{min} , V_{max} : lower and upper limits of the variable, absolute ³ .		2*I, 3*E
NC [, Penalty [,ITER]] ⁴ For I = 1, NC	Number of constraints [, penalty [, max. numb. of iterations]]. repeat NC times the following sequence:	$\leq 20 [,10^{-n} [,>0]]$	I [, E [, I]]
$IC[.JC]$, I , J , IR , V^3 , WV , NP $[$, $p_i(i=1,NP)]$	IC , I and J define the type of constraint (see table below); IR : number of the element after which the constraint applies; V : value; W : weight (the stronger the lower WV) NP : number of parameters; if $NP \geq 1$, $p_i(i=1,NP)$: parameter values.	0-5, 3*(>0), current unit, 2*no dim., curr. units	I[.I1], 3*I, 2*E, I, <i>NP</i> *E

 $^{^1}$ The values for the maximum number of elements (i.e., keywords in zgoubi.dat) that a sequence in **zgoubi** can contain, MXL, and for the maximum number of parameters under a keyword, MXD, are set in the include file MXLD.H.

The coupling input data XC is of the form "integer.ijk" with integer \leq MXD and i, j, k 1-digit integers and such that ijk \leq MXD.

V is in current **zgoubi** units in the case of particle coordinates (i.e., cm, mrad, μ s, momentum relative to BORO) and B field (kG). It is in MKSA units (m, rad) in the case of matrix coefficients.

⁴ FIT[2] will stop when the sum of the squared residuals gets < *penalty*, or when the maximum allowed number of iterations is reached.

Type of			Paramete	rs defining the constraints			Recommended
constraint	IC	I	J	Constraint	Additio NP	pral parameter(s) Param. values, $pr_1 - pr_{NP}$	[MC]OBJET ; comments
Transported σ -matrix $(\sigma(s) = T\sigma(0)\tilde{T})$	0	1-6	1-6	$\sigma_{IJ} \ (\sigma_{11} = \beta_Y, \sigma_{21, 12} = \alpha_Y, \text{etc.})$			OBJET/KOBJ=5.1
Periodic σ -matrix $(\sigma = I \cos \mu + J \sin \mu)$, tunes $(N = 1 - 9 \ \text{for}$	$0.N \\ (N \le 9)$	1-6 7 8	1-6 any any	$\sigma_{IJ} (\sigma_{11} = \cos \mu_Y + \alpha_Y \sin \mu_Y, \text{etc.})$ $\frac{\mu_Y/2\pi}{\mu_Z/2\pi}$			OBJET/KOBJ=5 if $N=1$, OBJET/KOBJ=5.N if
MATRIX block 1-9)		9 10	any any	$\cos(\mu_Y) \\ \cos(\mu_Z)$			$N \geq 2$
First order transport coeffs. & determinants.	1	1-6 7 8	1-6 j j	Transport coeff. R_{IJ} $j \neq 8$: YY-determinant; j=8: YZ-det. $j \neq 7$: ZZ-determinant; j=7: ZY-det.			OBJET/KOBJ=5
Chromas.	1.1	7 8	7 8	$dQ_Y / dp/p$ $dQ_Z / dp/p$			OBJET/KOBJ=5.2
Second order transport coeffs.	2	1-6	11-66	Transport coeff. $T_{I,j,k}$ $(j = [J/10], k = J - 10[J/10])$			OBJET/KOBJ=6
Trajectory	3	1-IMAX	1 - 7	F(J,I)			[MC]OBJET
coordinates		-1	1 - 7	$\langle F(J,i)\rangle_{i=I1,I2}$	$\begin{cases} 0 \\ 2 \end{cases}$	I_1, I_2	$ \begin{vmatrix} 1 \to IMAX \\ 1 \le I_1 \le I_2 \le IMA. \end{vmatrix} $
(I = particle number; J=1-7 for D,Y,T,Z,P,S,time)		$ \begin{array}{c c} -2 \\ -3 \\ -4 \end{array} $	$ \begin{array}{r} 1 - 7 \\ 1 - 7 \\ 1 - 7 \end{array} $	$Sup(F(J,i))_{i=1,IMAX}$ $Dist [F(J,I)_{i=I1,I2}]$ $Dist [PU_i, i=1, N]$	3 2	$I_1, I_2, \Delta I$ $NOEL_A, NOEL_B$	$1 \le I_1 \le I_2 \le IMAX$ PU range
	3.1	$ \begin{array}{c c} 1 - IMAX \\ 1 - IMAX \end{array} $	1-7 1-7	F(J,I) - FO(J,I) $ F(J,I) + FO(J,I) $			
	3.4 3.5	$ \begin{array}{c c} 1 - IMAX \\ 1 - IMAX \\ 1 - IMAX \end{array} $	$ \begin{array}{c c} 1 - 7 \\ 1 - 7 \\ 1 - 7 \end{array} $	F(J,I) + F(J,I) F(J,I) - F(J,K) (F(J,I) - F(J,K))/F(J,K)	1 1	K K	$K \le IMAX \\ K \le IMAX$
Ellipse parameters	4	1-6	1-6	$\sigma_{IJ} (\sigma_{11} = \beta_Y, \\ \sigma_{12} = \sigma_{21} = \alpha_Y, \text{ etc.})$			OBJET/KOBJ=8 ; MCOBJET/KOBJ=3
Number of particles	5	$ \begin{array}{c c} -1 \\ 1-3 \\ 4-6 \end{array} $	any any any	$N_{survived}/ ext{IMAX} \ N_{in \; \epsilon_{Y,Z,X}}/N_{survived} \ N_{in \; best \; \epsilon_{Y,Z,X,rms}}/N_{survived}$	1	$\epsilon_{Y,Z,X}/\pi$	OBJET MCOBJET MCOBJET
Coordinates & fields, across optical elements	7.1 7.2 7.3	$ \begin{array}{c c} 1 - IMAX \\ 1 - IMAX \\ 1 - IMAX \end{array} $	$ \begin{array}{r r} 1 - 7 \\ 1 - 7 \\ 1 - 7 \end{array} $	min. or max. of $F(J, I)$ $\max(F(J, I)) - \min F(J, I)$ $\min F(J, I)) + \max(F(J, I))$	1 or 3 0 or 2 id.	1 or 2 [, X1, X2] X1, X2 id.	[MC]OBJET
(J=1, 2, 3 for $B_{X, Y, Z}$)	7.5 7.6 7.7 7.8 7.9	1-IMAX 1-IMAX 1-IMAX 1-IMAX	$ \begin{array}{c c} 1 - 3 \\ 1 - 3 \\ 1 - 3 \\ 1 - 3 \\ 1 - 3 \end{array} $	min. or max. value of B_J $\max(B_J)$ - $\min(B_J)$ $\min(B_J)$ + $\max(B_J)$ $\int B_J ds$	1 or 3 0 or 2 id. id.	1 or 2 [, X1, X2] X1, X2 id. id.	
Spin	10 10.1 10.2 10.3	$1-IMAX \\ 1-IMAX \\ 1-IDMAX \\ 1-IDMAX$	1 - 4 $1 - 3$ any $1 - 3$	$S_{X,Y,Z}(I), \ \vec{S}(I) \\ S_{X,Y,Z}(I) - SO_{X,Y,Z}(I) \\ \text{spin rotation angle (rad)} \\ \text{rotation axis, X-, Y- or Z-component}$			SPNTRK+ [MC]OBJET OBJET/KOBJ=2 OBJET/KOBJ=2

IMAX: total number of particles tracked.

F(J,I): particle coordinate array; J: coordinate (1-7 for respectively D, Y, T, Z, P, S, time, resp. units: none, cm, mrad, cm, mrad, cm, μ s); I: particle number. FO(J,I): initial particle coordinates.

S(J,I): spin coordinate array; J: coordinate (1, 2, 3 for respectively X, Y, Z); I: particle number.

SO(J,I): initial spin coordinates.

Constraints 7.1 - 7.9: X1 and X2, optional, define the longitudinal coordinate interval inside the optical element, over which it applies.

• Example: Combining FIT and REBELOTE

In the example below, FIT requests that (i) the particle trajectory with initial coordinates defined by OBJET have identical horizontal coordinates at both ends of the snake (this is achieved by varying Y_0 , T_0 in OBJET), and that (ii) the trajectory across the snake - an helix - be Y-centered along the snake axis.

The way this works:

FIT is executed a first time for $B\rho_{ref}=BORO=7205.1782956$ kG.cm, namely the execution loops between *OBJET* and FIT until the constraints are best fulfilled. Once this is completed, the execution pointer then goes to the next instruction in the data list, namely 'SPNPRT', this is discussed below, and then points to REBELOTE, which will have the effect of sending it back to the begining of zgoubi.dat data list. However, prior to that, the "1" flag, fourth data in first row in REBELOTE, requests a change of, next line, parameter number 35 in element "OBJET" (that is, the relative regidity of the particle, D). The list of values follows, namely, $\{1.3872739973\ 2.1368296674\ 4.8261190694\ 11.015241321\}$. The change occurs 4 times, according to NRBLT=4, the first data in REBELOTE data list.

Note that, (i) spin data so computed (spin vector components, precession, etc) are stored/stacked in zgoubi.SPNPRT.Out by placing the keyword 'SPNPRT' with label "PRINT", between FIT and REBELOTE; (ii) current updated FIT variables are saved in zgoubi.FITVALS.out_cat for each REBELOTE case, using SYSTEM.

```
Centering 5 helical orbits in the AGS warm helical snake 3-D OPERA map.
                      This data list may be copy-pasted and run, as is.
7.2051782956D3
                     ! Reference rigidity of the problem
1 1
1 1 ! A single particle. Initial coordinates : -2.2 0.0.0.0.1.'o' ! Yo, To, Zo, Po, So, p/po
                                     ! Yo, To, Zo, Po, So, p/po
                     ! proton data are necessary for spin tracking
938.27203 1.602176487E-19 1.7928474 0 0
 'SPNTRK'
4.1
                     ! Initial spin is positionned vertical
                                                                             0.01
0.0.1.
                                                                             0.00
 'FAISCEAU'
                                                                             0.0
 'SPNPRT'
'TOSCA'
0 20
                                                                             -.01
      100. 100. 100.
1.el
HEADER_0 wsnake
801 29 29 12.1
                      The map is a 801x29x29 node 3-D mesh
warmSnake.map
                     ! AGS warm snake 3-D OPERA map
                                                                          This figure shows how, using REBELOTE, the
0 0 0 0
2
                                                                           helical trajectories at five different momenta
2 0.
                                                                          are moved by the FIT procedure, one after the
      .0 0. 0.
                                                                          other, from initial off-centered position to final
 'FAISCEAU'
                                                                             centering on the snake axis (at Y=Z=0).
 'FIT'
                    ! Two variables. Save FIT variables (in zgoubi.FITVALS.out).
   save
                          Vary initial coordinate Y_0 (horiz. position)
 30 0 [-3,3]
 31 0
                         ! Vary initial coordinate T_0 (horiz.
        [-3,3]
    1E-2
                     ! Three constraints (penalty 2E-3 requested) :
3.1 1 2 6 0. 1. 0
                         ! Y_0=Y after at exit of the magnet
3.1 1 3 6 0. 1. 0
                         ! T 0=T after at exit of the magnet
7.3 1 2 6 0. 1. 0
                         ! Y min+Y max=0 inside the OPERA field map
 'SPNPRT' PRINT
                     ! Stack spin data (in zgoubi.SPNPRT.Out).
                     ! Save zgoubi.FITVALS.out data following from successive REBELOTE.
1
cat zgoubi.FITVALS.out >> zgoubi.FITVALS.out_cat
 'REBELOTE'
                     ! Will loop on re-doing the FIT for 4 additional particle rigidities
4 0.1 0 1
                     ! List of 4 successive values of D in OBJET follows
OBJET 35 1.3872739973 2.1368296674 4.8261190694 11.015241321
                     ! Save a copy of zgoubi.FITVALS.out_cat and of zgoubi.SPNPRT.Out_cat
\cp zgoubi.FITVALS.out_cat zgoubi.FITVALS.out_cat_copy
\cp zgoubi.SPNPRT.Out
                           zgoubi.SPNPRT.Out_copy
 'END'
```

• Example: FIT[2] options

FIT[2] options, "nofinal", "save FileName", "penalty" and "ITER", are all specified in the example below.

```
An example with FIT options
'GETFITVAL'
zgoubi.FITVALS.In
 'MCOBJET'1
57.36635309d3
                           ! reference rigidity
3.1
2 2 2 2 1 1
0. 0. 0. 0. 0. 4.61943880E-01
2.703371 1.859656 1.48563786487e-99
-2.592712 2.421706 1.48563786487e-99
0. 1. 0. 9
12345 23456 34567
 'PARTICUL'
                                                                                                                                  2
0.51099892 1.60217653e-19 1.15965218076e-3 0.0 0.0
'PICKUPS'
 #StartRing MULT BD2S #EndRing
DRIFT' DRIF
14.38218115
'MADUE"
'DRIFT'
                                                                                                                              7497
 'MARKER' #SSMid
'MARKER' #EndRing
'FIT2'
4 save zgoubiFIT.result nofinal  ! Variables saved in zgoubiFIT.result when FIT2 done. No final run.
!!! 4 save nofinal ! Would cause variables to be saved in default file zgoubi.FITVALS.out instead.
2 40 0 [-1.e-2,1.e-2] ! The four variables are Yo, To, Zo, Po in MCOBJET
2 41 0 [-1.e-2,1.e-2]
2 42 0 [-1.e-2,1.e-2]
2 43 0 [-1.e-2,1.e-2]
                                         ! penalty=1e-10. Maximum allowed calls to zgoubi is 90.
! The four constraints are : initial Y, T, Z, P of
! particle #1 equal to its final Y, T, Z, P.
4 1e-10 90
3.1 1 2 7500 0. 1. 0
3.1 1 3 7500 0. 1. 0
3.1 1 4 7500 0. 1. 0
3.1 1 5 7500 0. 1. 0
```

FOCALE	Particle coordinates and horizontal beam size at distance XL		
XL	Distance from the location of the keyword	cm	E
FOCALEZ	Particle coordinates and vertical beam size at distance XL		
XL	Distance from the location of the keyword	cm	Е

GASCAT	Gas scattering		
KGA	Off/On switch	0, 1	I
AI, DEN	Atomic number; density		2*E

A

GETFITVAL Get values of variables as saved from former FIT[2] run

FNAME Name of storage file. Zgoubi will proceed silently if

FNAME='none' or FNAME='NONE', or if the file is not found.

N*A20

GOTO Branching statement

Under development

OPTION Can be 'PASS#', 'GOBACK', 'NEXT' (skips the next element), String A

it can also be an existing Label1 (will send execution pointer to

closest following occurence of Label1).

If OPTION = PASS# One additional line needed :

LABEL_1, ..., LABEL_N List of labels (expected is label #1 that follows a keyword) to go to, N strings

pass after pass (passes are incremented, from 1 to N, by REBELOTE..

• Example : GOTO

I, 2*E, 2*I

HISTO

1-D histogram

 $J, X_{\min}, X_{\max}, NBK, NH$

J = type of coordinate to be histogrammed; the following are available:

- current coordinates:
- 1(D), 2(Y), 3(T), 4(Z), 5(P), 6(S),
- initial coordinates:

 $11(D_0), 12(Y_0), 13(T_0), 14(Z_0), 15(P_0), 16(S_0),$

• spin :

 $21(S_X)$, $22(S_Y)$, $23(S_Z)$, 24(< S >); X_{\min} , $X_{\max} =$ limits of the histogram, in units of the coordinate of concern; NBK = number of channels; NH = number of the histogram (for independence of histograms of the same coordinate)

NBL, KAR, NORM, TYP Number of lines (= vertical amplitude); alphanumeric character; normalization if NORM = 1, otherwise NORM = 0; TYP = 'P': primary particles are histogrammed, or 'S': secondary, or Q: all particles - for use with MCDESINT

1-24, 2* current units,

< 120, 1-5

normally 10-40, I, A1, I, A1 char., 1-2, P-S-Q

IMAGE Localization and size of horizontal waist

IMAGES Localization and size of horizontal waists

For each momentum group, as classified by means of OBJET, KOBJ = 1, 2 or 4

IMAGESZ Localization and size of vertical waists

For each momentum group, as classified by means of OBJET, KOBJ = 1, 2 or 4

IMAGEZ Localization and size of vertical waist

INCLUDE

File include statement

NBF

Number of files to be included.

I

NBF following lines (one file name per line):

[LBL_1B [, LBL_2B]]

FNAME [, [LBL_1A [, LBL_2A]]: Name of input zgoubi.dat-style file to be included. LBL_A: entrance branching tag, *LBL_B*: exit branching tag.

A80 [,[A20], [A20]]

• Example: INCLUDE

In this example of an energy-recovery electron recirculator [71], the linac, spreader and combiner data lists are given in separate files, declared as *INCLUDEs*. Using *INCLUDE* has a series of merits:

- it shortens the parent input data file, so making the optical structure more apparent,
- it allows picking optical spreader, combiner and ring sequences from files that may actually be set to for instance compute optical parameters; in that case, LBL_A and LBL_B are used for this targetted picking: they define the ends of the sequence to be *INCLUDE*'d, ignoring the upper and lower parts in the *INCLUDE*'d file (which may be specific, for instance, to MATRIX computations).

Note the following: (i) juggling between linac, spreaders, combiners and recirculating ring, is handled using *GOTO* statement, (ii) the use of *REBELOTE* in this ERL context is discussed in an example page 276.

```
! Splitter lines
'MARKER' SA1
'INCLUDE'
Cornell CBETA prototype (of an eRHIC) FFAG arc ERL
19.9411300960454126 ! T.m E tot=6MeV
                                                                                                                      ./SA/SAl.inc[LA.MATCH1:S1.MERGE.MAR.END\1]
 .01 .01 .01 .01 .01 .01
0.0.0.0.0.1.
-0.8475 1.5739 -0.8481 1.59 0. 1. 7.49E-03 4.12E-03 0. 0.
'PARTICUL'
                                                                                                                      ./SA/SA2.inc[LA.DEMER.MAR.BEG\2:S1.MERGE.MAR.END\2]
GOBACK
                                                                                                                      'MARKER'
 'SCALING'
                                                                                                                      ./SA/SA3.inc[SA3#S:SA3#E]
MULTIPOL
                                                                                                                      GOBACK
                                                                                                                      'MARKER' SA4
MULTIPOL SA1.1 SB1.1
                                                                                                                      ./SA/SA4.inc[SA4#S:SA4#E]
'OPTIONS'
                                                                                                                      'MARKER' FA
WRITE ON
                                                                                                                      ./FA/FA.inc[FA#S:FA#E]
!///// Racetrack sequence starts here, at linac entrance
! Linac
'INCLUDE'
                                                                                                                      'MARKER' X
./LA/LA_obj5.inc[LA.MAR.BEG\1:LA.MAR.END\1]
! Goto splitter line
                                                                                                                      ./X./X.inc[X#S:X#E]
PASS#
SA1 SA2 SA3 SA4 SA3 SA2 SA1
'MARKER' RT_SA
                                                                                                                     'MARKER' FB
! Goto FFAG return loop : arc+(DS+straight+DS)+arc
                                                                                                                      ./FB/FB.inc[FB#S:FB#E]
'GOIO
PASS#
FA FA FA FA FA FA FA FA
'MARKER' RT_FA
                                                                                                                     GOBACK
                                                                                                                      ! Combiner lines
'MARKER' SB1
'INCLUDE'
PASS#
                                                                                                                     1
./SB/SB1.inc[SB1#S:SB1#E]
'GOTO'
GOBACK
'MARKER' SB2
'INCLUDE'
PASS#
FB FB FB FB FB FB FB FB
'MARKER' RT_FB
! Goto combiner line
                                                                                                                      ./SB/SB2.inc[SB2#S:SB2#E]
'GOTO'
PASS#
SB1 SB2 SB3 SB4 SB3 SB2 SB1
'MARKER' RT_SB
                                                                                                                     GOBACK
'MARKER' SB3
 'MATRIX'
                                                                                                                      ./SB/SB3.inc[SB3#S:SB3#E]
'MARKER' rebelote
'REBELOTE' ! send zgoubi pointer back to
7 0.1 99 ! the top (and linac entrance), 7 times
                                                                                                                      GOBACK
                                                                                                                     'MARKER' SB4
 'MARKER' stop
                                                                                                                      ./SB/SB4.inc[SB4#S:SB4#E]
'GOTO'
GOBACK
'MATRIX'
                                                                                                                      1 0
'END'
```

MAP2D	2-D Cartesian uniform mesh field map - arbitrary magnetic field		
IC, IL	$IC=1,2$: print the field map $IL=1,2[imes 10^n],\ 7$: print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).	$0-2; 0-2[\times 10^n], 7$	2*I
BNORM, XN,YN	Field and X-,Y-coordinate unit conversion coeffs. Convert values as read from map file, to kG and cm units.	3*UnitConv.	3*E
TITL	Title. Start with "FLIP" to get field map X-flipped.		A80
IX,JY	Number of longitudinal and horizontal-transverse nodes of the mesh (the Z elevation is arbitrary)	$\leq 400, \leq 200$	2*I
FNAME ¹	File name		A80
ID, A, B, C [, $A', B', C',$ B'' , etc., if $ID \ge 2$]	Integration boundary. Ineffective when $ID=0$. $ID=-1, 1 \text{ or } \geq 2$: as for <i>CARTEMES</i>	≥ -1 , 2*no dim., cm [,2*no dim., cm, etc.]	I,3*E [,3*E,etc.]
IORDRE	Degree of polynomial interpolation, 2nd or 4th order.	2, 4	I
XPAS	Integration step	cm	E
KPOS, XCE, YCE, ALE	KPOS=1: element aligned, 2: misaligned; shifts, tilt.	1-2, 2*cm, rad	I, 3*E

These must be formatted according to the following FORTRAN read sequence (normally compatible with TOSCA code OUTPUTS - details and possible updates are to be found in the source file 'fmapw.f'):

```
{\rm OPEN}\;({\rm UNIT}={\rm NL},\,{\rm FILE}={\rm FNAME},\,{\rm STATUS}={\rm `OLD'})
DO 1 J = 1, JY
  DO 1 I = 1, IX
   IF (BINARY) THEN
          READ(NL) Y(J), Z(1), X(I), BY(I,J), BZ(I,J), BX(I,J)
          READ(NL,100)\;Y(J),\,Z(1),\,X(I),\,BY(I,J),\,BZ(I,J),\,BX(I,J)
100
            FORMAT (1X, 6E11.4)
         ENDIF
1
      CONTINUE
```

where X(I), Y(J) are the longitudinal, horizontal coordinates in the at nodes (I,J) of the mesh, Z(I) is the vertical elevation of the map, and BX, BY, BZ are the components of the field.

For binary files, FNAME must begin with 'B_' or 'b_'"; a logical flag 'Binary' will then automatically be set to '.TRUE.'

¹ FNAME (e.g., magnet.map) contains the field map data.

MAP2D-E 2-D Cartesian uniform mesh field map - arbitrary electric field

IC, IL	$IC=1,2$: print the field map $IL=1,2[imes 10^n],\ 7$: print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).	$0-2; 0-2[\times 10^n], 7$	2*I
ENORM, X-,Y-NORM	Field and X-,Y-coordinate unit conversion coeffs. Convert values as read from map file, to MV/cm and cm units.	3*UnitConv.	3*E
TITL	Title. Start with "FLIP" to get field map X-flipped.		A80
IX,JY	Number of longitudinal and horizontal-transverse nodes of the mesh (the Z elevation is arbitrary)	$\leq 400, \leq 200$	2*I
FNAME ¹	File name		A80
ID, A, B, C [, A', B', C', B'' , etc., if $ID \ge 2$]	Integration boundary. Ineffective when $ID=0$. $ID=-1, 1 \text{ or } \geq 2$: as for <i>CARTEMES</i>	≥ -1 , 2*no dim., cm [,2*no dim., cm, etc.]	I,3*E [,3*E,etc.]
IORDRE	Degree of polynomial interpolation, 2nd or 4th order.	2, 4	I
XPAS	Integration step	cm	Е

```
\begin{aligned} & \text{OPEN (UNIT = NL, FILE = FNAME, STATUS = 'OLD')} \\ & \text{DO 1 J = 1, JY} \\ & \text{DO 1 I = 1, IX} \\ & \text{IF (BINARY) THEN} \\ & \text{READ(NL) Y(J), Z(1), X(I), EY(I,J), EZ(I,J), EX(I,J)} \\ & \text{ELSE} \\ & \text{READ(NL,100) Y(J), Z(1), X(I), EY(I,J), EZ(I,J), EX(I,J)} \\ & \text{100} & \text{FORMAT (1X, 6E11.4)} \\ & \text{ENDIF} \\ & \text{1} & \text{CONTINUE} \end{aligned}
```

where X(I), Y(J) are the longitudinal, horizontal coordinates in the at nodes (I,J) of the mesh, Z(1) is the vertical elevation of the map, and EX, EY, EZ are the components of the field.

 $^{^{1}}$ FNAME (e.g., ''mirror.map'') contains the field map data. These must be formatted according to the following FORTRAN read sequence - details and possible updates are to be found in the source file 'fmapw.f':

MARKER

Marker

Just a marker. No data

'.plt' as a second LABEL will cause storage of current coordinates into zgoubi.plt

MATRIX

Calculation of transfer coefficients, periodic parameters

IORD, IFOC [, PRINT] [, coupled]

Options : 0-2, 0-1 or > 10 2*I[,A]

IORD = 0: Same effect as FAISCEAU

IORD = 1, using OBJET, KOBJ = 5[.N]: 1st order transfer parameters,

- if KOBJ = 5.1: beam matrix, phase advance, otherwise
- 1st order data (cf. IFOC value) for N different cases of optical reference.

IORD = 2, using OBJET, KOBJ = 6 : 1st order transfer matrix $[R_{ij}]$, 2nd order array $[T_{i\,jk}]$ and a few higher order transfer coefficients ; some periodic parameters in addition if IFOC > 10;

IORD = 3, using OBJET, KOBJ = 6.1: 1st order transfer matrix $[R_{ij}]$, 2nd and 3rd order arrays $[T_{ijk}]$, $[T_{ijkl}]$.

IFOC = 0: matrix at actual location ¹;

IFOC = 1: matrix at the closest first order horizontal focus 1 ;

IFOC = 10 + NPER: same as IFOC = 0, and also calculates 1 or N sets (case respectively of KOBJ = 5 or KOBJ = 5.N, $2 \leq N \leq 99$) of Twiss parameters, tune numbers, etc., assuming zgoubi.dat file describes one period of a NPER-period structure 1 .

Occurence of "PRINT" will cause printout to zgoubi.MATRIX.out file.

Occurrence of "coupled", in the periodic case (IFOC = 10 + NPER, above), will cause use of coupled formalism.

¹ The reference in computing transport coefficients and other periodic parameters is particle # 1 of the ray-traced set. If N 11-particle sets are ray-traced in order to get (in a single zgoubi run) transport coefficients for N different cases of reference orbit (using *OBJET*, KOBJ = 5.N, $2 \le N \le 99$), the reference particle for each 11-particle set is respectively particle #1, 12, 23, ... 1+(N-1)×11.

MCDESINT ¹	Monte-Carlo simulation of in-flight decay $M1 \rightarrow M2 + M3$		
[INFO,] 2 M 2, M 3, $ au$ 2 3	[Switch,]; masses of the two decay products;	[-,] $2*MeV/c^2$, s	[A4,] 3*E
I1, I2, I3	COM lifetime of particle 2 Seeds for random number generators	$3* \simeq 10^6$	3*I

Particle 1 decays into 2 and 3; **zgoubi** then calculates trajectory of 2, while 3 is discarded. θ and ϕ are the scattering angles of particle 2 relative to the direction of the incoming particle 1. They transform to T_2 and P_2 in Zgoubi frame.

¹ MCDESINT must be preceded by PARTICUL, for the definition of the mass and lifetime of the incoming particle M1.

² Presence of 'INFO' will cause more info on decay kinematics parameters to be printed zgoubi.res at each decay.

 $^{^{3}}$ $\tau 2$ can be left blank, in which case the lifetime of particle 2 is set to zero (it decays immediately, which from a practical point of view means that it is not tracked).

MCOBJET	Monte-Carlo generation of a 6-D object		
BORO	Reference rigidity	kG.cm	E
KOBJ	Type of support of the random distribution $KOBJ=1$: window $KOBJ=2$: grid $KOBJ=3$: phase-space ellipses	1-3	Ι
IMAX	Number of particles to be generated	$\leq 10^4$	
$KY, KT, KZ, KP, KX, KD^{1}$	Type of probability density	6*(1-3)	6*I
$Y_0, T_0, Z_0, P_0, X_0, D_0$	Mean value of coordinates ($D_0 = B\rho/BORO$)	m, rad, m, rad, m, no dim.	6*E
If KOBJ = 1	In a window		
$\begin{array}{l} \delta Y, \delta T, \delta Z, \delta P, \\ \delta X, \delta D \end{array}$	Distribution widths, depending on KY , KT etc. ¹	m, rad, m, rad, m, no dim.	6*E
$N_{\delta Y}, N_{\delta T}, N_{\delta Z}, N_{\delta P}, N_{\delta X}, N_{\delta D}$	Sorting cut-offs (used only for Gaussian density)	units of σ_Y , σ_T , etc.	6*E
N_0, C_0, C_1, C_2, C_3	Parameters involved in calculation of P(D)	no dim.	5*E
IR1, IR2, IR3	Random sequence seeds	$3*\simeq 10^6$	3*I
If $KOBJ = 2$	On a grid		
IY, IT, IZ, IP, IX, ID	Number of bars of the grid		6*I
PY, PT, PZ, PP, PX, PD	Distances between bars	m, rad, m rad, m, no dim.	6*E
$ \delta Y, \delta T, \delta Z, \delta P, \\ \delta X, \delta D $	Width of the bars (\pm) if uniform, Sigma value if Gaussian distribution	ibidem	6*E
$N_{\delta Y}, N_{\delta T}, N_{\delta Z}, N_{\delta P}, N_{\delta X}, N_{\delta D}$	Sorting cut-offs (used only for Gaussian density)	units of σ_Y , σ_T , etc.	6*E
N_0, C_0, C_1, C_2, C_3	Parameters involved in calculation of $P(D)$	no dim.	5*E
IR1, IR2, IR3	Random sequence seeds	$3*\simeq 10^6$	3*I

KD can take the values

 $^{^{1}}$ Let x=Y,T,Z,P or $X.\ KY,KT,KZ,KP$ and KX can take the values

^{1:} uniform, $p(x) = 1/2\delta x$ if $-\delta x \le x \le \delta x$

^{2:} Gaussian, $p(x) = \exp(-x^2/2\delta x^2)/\delta x\sqrt{2\pi}$

^{3:} parabolic, $p(x) = 3(1-x^2/\delta x^2)/4\delta x$ if $-\delta x \le x \le \delta x$

^{1:} uniform, $p(D) = 1/2\delta D$ if $-\delta D \le x \le \delta D$

^{2:} exponential, $p(D) = \text{No } \exp(C_0 + C_1 l + C_2 l^2 + C_3 l^3)$ if $-\delta D \le x \le \delta D$

^{3:} kinematic, $D = \delta D * T$

If KOBJ = 3On a phase-space ellipse 1. Four lines follow:

$\begin{aligned} &\alpha_Y, \beta_Y, \varepsilon_Y / \pi, N_{\sigma_{\epsilon_Y}} \\ &[, N'_{\sigma_{\epsilon_Y}} \text{ if } N_{\sigma_{\epsilon_Y}} < 0]^2 \\ &[, D_Y, D_T] \end{aligned}$	Ellipse parameters and emittance, Y-T phase-space; cut-off; dispersion and derivative	no dim., m/rad, m, units of $\sigma(\varepsilon_Y)$; [, m, rad]	4*E [,E] [,2*E]
$\begin{aligned} &\alpha_Z, \beta_Z, \varepsilon_Z/\pi, N_{\sigma_{\epsilon_Z}} \\ &[, N'_{\sigma_{\epsilon_Z}} \text{ if } N_{\sigma_{\epsilon_Z}} < 0]^2 \\ &[, D_Z, D_P] \end{aligned}$	Ellipse parameters and emittance, Z-P phase-space; cut-off; dispersion and derivative	no dim., m/rad, m, units of $\sigma(\varepsilon_Z)$ [, m, rad]	4*E [,E] [,2*E]
$(\alpha_X, \beta_X, \varepsilon_X/\pi, N_{\sigma_{\epsilon_X}})$ [, $N'_{\sigma_{\epsilon_X}}$ if $N_{\sigma_{\epsilon_X}} < 0$] ²	Ellipse parameters and emittance, X-D phase-space; cut-off	no dim., m/rad, m, units of $\sigma(\varepsilon_X)$	4*E [,E]
IR1, IR2, IR3	Random sequence seeds. In order for different runs to produce different series (meaning, ove seeds) launch zgoubi using 'irank' argument: [pathTo]/zgoubi -iran	•	3*I ger'.

Similar possibilities, non-random, are offered with *OBJET*, KOBJ=8 (p. 259)

Works with Gaussian density type only: sorting is within the ellipse frontier $(\frac{1+\sigma_Y^2}{\beta_Y^2}Y^2+2\alpha_YYT+\beta_YT^2=\frac{\varepsilon_Y}{\pi})$ if $N_{\sigma_{\epsilon_Y}}>0$, or, if $N_{\sigma_{\epsilon_Y}}<0$ sorting is within the annular region $[|N_{\sigma_{\epsilon_Y}}|,N'_{\sigma_{\epsilon_Y}}|]$ of that ellipse.

A scheme of input parameters to MCOBJET when KOBJ=2. Top: Possible distributions of the Y coordinate

Bottom : A 2-D grid in (Y, Z) space.

MULTIPOL Magnetic Multipole

		dim.	data type	FIT num.
IL	$IL = 1, 2[\times 10^n], 7$: print coordinates, fields, etc., step-by-step, in growhi rec (1), growhi plt (2), growhi impley out (7)	$0-2[\times 10^n], 7$	I	1
$XL, R_0, B1, B2,, B10,$	in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). Length of element; radius at pole tip; field at pole tip for dipole, quadrupole, , dodecapole components	2*cm,10*kG	12*E	2-13
$X_E, \lambda_E, E_2,, E_{10}$	Entrance face Integration zone; fringe field extent: dipole fringe field extent = λ_E ; quadrupole fringe field extent = $\lambda_E * E_2$;	2*cm,9*no dim.	11*E	14-24
	20-pole fringe field extent = $\lambda_E * E_{10}$ (sharp edge if field extent is zero)			
$NCE, C_0 - C_5$	same as QUADRUPO	0-6, 6*no dim.	I, 6*E	25-31
$X_S, \lambda_S, S_2,, S_{10}$	Exit face Integration zone; as for entrance	2*cm, 9*no dim.	11*E	32-42
NCS , $C_0 - C_5$		0-6, 6*no dim.	I, 6*E	43-49
R1, R2, R3,, R10	Skew angles of field components	10*rad	10*E	50-59
XPAS	Integration step	cm	E	60
If KPOS = 1-3 KPOS, XCE, YCE, ALE If KPOS = 4	Positioning as follows : $KPOS=1$: element aligned ; $KPOS=2$: misaligned ; shifts, tilt ; $KPOS=3$: effective only if $B1 \neq 0$: entrance and exit frames are tilted wrt . the magnet by an angle of \bullet either ALE if ALE $\neq 0$ \bullet or $2 \operatorname{Arcsin}(B1 \ XL / 2BORO)$ if ALE=0	1-3, 2*cm, rad	I, 3*E	61-64
	X-, Y-shift, Z-rotation, Z-shift, Y-rotation Automatic ALE positioning as <i>KPOS</i> = 3, and in addition possible X- or Y- or Z-misalignment or Z-, Y-rotation.	4, cm, 2*(cm, rad) I, 5*E	61-66

(under development).

OBJET

Generation of an object

Objet	Generation of an object		
BORO	Reference rigidity	kG.cm	Е
KOBJ[.K2]	Option index [.More options]	1-6	I
If $KOBJ = 1[.N]$	By default, tracking assumes mid-plane symmetry; N=1: generate particles with $Z_0>0$ only; N=2: same as default, but all particles tracked, no mid-plane sym	metry assumed.	
IY, IT, IZ, IP, IS, ID	Ray-Tracing assumes mid-plane symmetry. Generated points : $YR \pm IY * dY$, $TR \pm IT * dT$, $ZR \pm IZ * dZ$, $PR \pm IP * dP$ [$ZR + IZ * dZ$, $PR + IP * dP$ if KOBJ = 1.1], $SR \pm IS * dS$ and $DR \pm ID * dD$ coordinates ($IY \leq 20$,, $ID \leq 20$)	$\text{IY*IT*IZ*IP*IS*ID} \leq 10^4$	6*1
dY, dT, dZ, dP, dS, dD	Sampling size in Y,T,Z,P,S and in relative momentum $(dD=\delta B \rho/BORO)$	2(cm,mrad), cm, no dim.	6*E
YR, TR, ZR, PR, SR, DR	Reference trajectory ($DR = B\rho/BORO$)	2(cm,mrad), cm, no dim.	6*E
If $KOBJ = 2[.1]$	All the initial coordinates must be entered explicitly		
IMAX, IDMAX	total number of particles; number of distinct momenta (if $IDMAX > 1$, group particles of same momentum)	$IMAX \le 10^4$	2*I
For $I = 1$, $IMAX$	Repeat IMAX times the following line		
Y, T, Z, P, S, D, LET	Coordinates and tagging of the $IMAX$ particles; $If KOBJ = 2.1$ input units are different:	2(cm,mrad), cm, no dim., 2(m,rad), m, no dim.,	6*E, A1
IEX(I=1, IMAX)	IMAX times 1 or -9. If $IEX(I) = 1$ trajectory I is ray-traced, it is not if $IEX(I) = -9$.	1 or -9	IMAXI
If KOBJ=3[.N, N=0 - 3] [, 'HEADER_NH']	Read coordinates from storage file. Optional 'HEADER_NH' tell lines NH (case $N \neq 0$: default $NH=0$; case $N=0$: $NH=NHDFL$ N=0 (default): [b_]zgoubi.fai style data file FORMAT N=1: read FORMAT is ''READ (NL, *) Y, T, Z, P, S, DP'' N=2: read FORMAT is ''READ (NL, *) X, Y, Z, PX, PY, PZ'' N=3: read FORMAT is ''READ (NL, *) DP, Y, T, Z, P, S, TIME	hardcoded in robjet.f).	
IT1, IT2, ITStep	Read particles numbered IT1 to IT2, step ITStep (For more than 10^4 particles stored in <i>FNAME</i> , use ' <i>REBELOTE</i> ')	$\geq 1, \geq IT1, \geq 1$	3*I
IP1, IP2, IPStep	Read particles that belong in pass numbered IP1 to IP2, step IPStep	$\geq 1, \geq IP1, \geq 1$	3*I
YF, TF, ZF, PF, SF, DF, TF, TAG	Scaling factor. TAG-ing letter: no effect if $TAG=$ '*', otherwise only particles with TAG \equiv LET are retained.	7*no.dim, char.	7*E, A1
YR, TR, ZR, PR, SR, DR, TR	Reference. Given the previous line of data, all coordinate C (=Y, T) is transformed to C*CF+CR	2(cm, mrad), cm, no dim., μ s	7*E
InitC	0: set new $\vec{R}_0 = \vec{R}_0$ as read, new $\vec{R} = \vec{R}$ as read; 1: set new $\vec{R}_0 = \vec{R}$ as read, new $\vec{R} = \vec{R}$ as read; 2: save \vec{R} as read in new \vec{R}_0 , set new $\vec{R} = \vec{R}_0$ as read.	0-1	Ι
FNAME	File name (e.g., [b_]zgoubi.fai) (N in KOBJ=3.N determines storage FORMAT)		A80

If KOBJ = 5[.N, $N \ge 1$]	Generation of 11 particles, or 11*N if $N \geq 2$ (for use with MA	TRIX, IORD = 1)	
dY, dT , dZ , dP , dS , dD	Sampling size in Y, T, Z, P, S (unused) and D	2(cm,mrad), cm, no dim.	6*E
YR, TR, ZR, PR, SR, DR	Reference trajectory ($DR = B\rho/BORO$; SR is not sused)	2(cm,mrad), cm, no dim.	6*E
	One additional data line : Initial beam ellipse parameters ¹	2(no dim.,m), ?, ?, 2(m,rad)	6*E, 4*E
\diamond If $N \ge 2$ (KOBJ = 5.N) YR, TR, ZR, PR, SR, DR	An additional N-1 data lines ² Reference trajectory for block # i=2,N (block 1 is similar line about $DR = B\rho/BORO$; SR is not sused).	ov ᢓ (cm,mrad), cm, no dim.	6*E
If KOBJ = 6	Generation of 61 particles (for use with $MATRIX$, $IORD = 2$)	
dY, dT , dZ , dP , dS , dD	Sampling size in Y, T, Z, P, S (unused) and D	2(cm,mrad), cm, no dim.	6*E
YR, TR, ZR, PR, SR, DR	Reference trajectory ; $DR = B\rho/BORO$	2(cm,mrad), cm, no dim.	6*E
If $KOBJ = 7$	Object with kinematics		
If KOBJ = 7 IY, IT, IZ, IP, IS, ID	Object with kinematics $\label{eq:Number of points} $ Number of points in $\pm Y, \pm T, \pm Z, \pm P, \pm S$; ID is not used	$\textit{IY*IT*IZ*IP*IS} \leq 10^4$	6*I
	·	$IY*IT*IZ*IP*IS \le 10^4$ 2(cm,mrad), cm, mrad $^{-1}$	6*I 6*E
IY, IT, IZ, IP, IS, ID	Number of points in $\pm Y$, $\pm T$, $\pm Z$, $\pm P$, $\pm S$; ID is not used Sampling size in Y , T , Z , P and S ; dD = kinematic		
IY, IT, IZ, IP, IS, ID dY, dT, dZ, dP, dS, dD	Number of points in $\pm Y$, $\pm T$, $\pm Z$, $\pm P$, $\pm S$; ID is not used Sampling size in Y , T , Z , P and S ; dD = kinematic coefficient, such that $D(T) = DR + dD * T$	2(cm,mrad), cm, mrad ⁻¹	6*E
IY, IT, IZ, IP, IS, ID dY, dT, dZ, dP, dS, dD YR, TR, ZR, PR, SR, DR	Number of points in $\pm Y$, $\pm T$, $\pm Z$, $\pm P$, $\pm S$; ID is not used Sampling size in Y , T , Z , P and S ; dD = kinematic coefficient, such that $D(T) = DR + dD * T$ Reference $(DR = B\rho/BORO)$	2(cm,mrad), cm, mrad ⁻¹	6*E
 IY, IT, IZ, IP, IS, ID dY, dT, dZ, dP, dS, dD YR, TR, ZR, PR, SR, DR If KOBJ = 8 	Number of points in $\pm Y$, $\pm T$, $\pm Z$, $\pm P$, $\pm S$; ID is not used Sampling size in Y , T , Z , P and S ; dD = kinematic coefficient, such that $D(T) = DR + dD * T$ Reference ($DR = B\rho/BORO$) Generation of phase-space coordinates on ellipses 3 Number of samples in each 2-D phase-space;	2 (cm,mrad), cm, mrad $^{-1}$ 2(cm,mrad), cm, no dim. $0 \le IY, IZ, IS \le IMAX$,	6*E

 $^{^1}$ They can be transported by using MATRIX. 2 The maximum value for N, normally MXREF=999, is hard-coded in obj5.f. 3 Similar possibilities, random, are offered with MCOBJET, KOBJ=3 (p. 255).

'END'

• Example: OBJET, KOBJ=3, recovering from a crash

The job below simulates spin tracking in SATURNE 3 GeV proton synchrotron. Turn-by-turn coordinates at the beginning of the ring sequence are stored in zgoubi.fai during the tracking. *CAVITE/Option=2* is used.

The left column shows the input data file for initial job, turn3000.dat. Note: the 'INCLUDE' command uploads SATURNE.ring sequence, from the very file used in the example in Sec. 5 (page 320, PART B of the guide) - it only loads that part of the file which is comprised between the markers labelled "#StartRing" and "#EndRing").

The right column, job resume.dat, shows how *OBJET*, *KOBJ=3* is used to allow resuming tracking at start of turn #1000, possibly following a crash during that turn. *OBJET*, *KOBJ=3* requests reading initial coordinates from turn3000.fai, at turn 1000.

A possible check: the 2,000 tracking by resume.dat (right column below) should yield all three phase spaces, namely, (Y,T), (Z,P), (D,time) superimposing with turns 1,000-3,000 of the original turn3000.dat job (left column). If this does not happen: a quick check is by comparison of turn 1000 in turn3000.fai and the initial value of the coordinates in resume.fai, they should be *identical*.

This 3,000-turn job crashed at turn number 1,000. Particle coordinates were stored turn-by-turn at the beginning of the optical sequence, in turn3000.fai.

```
SATURNE. CROSSING GammaG=7-NUz, NUz=3.60877 (perturbed)
 'OBJET
5018.67
1
  1
        .458 0. 0. 1.00
0.
                             ′ 0′
   0.
 'PARTICUL'
PROTON
 'SPNTRK'
'FAISCNL'
turn3000.fai
 'SCALING'
OUADRUPO
5018.67E-3
MULTIPOL
5018.67E-3
BEND
-1
5018.67E-3
'INCLUDE'
SATURNE.ring[#StartRing:#EndRing]
 'CAVITE'
105.5556848673 3.
6000. 0.205303158892
 'REBELOTE'
2999 0.2
 'FAISCEAU'
 'SPNPRT'
```

The input data below recover from the crash, starting with coordinates as read at turn 1,000 in turn 3000.fai.

```
SATURNE. CROSSING GammaG=7-NUz, NUz=3.60877 (perturbed)
 'OBJET'
5018.67
1 1
1000 1000 1
1. 1. 1. 1. 1. 1. *
0. 0. 0. 0. 0. 0. 0.
turn3000 fai
 'PARTICUL'
PROTON
'SPNTRK'
'FAISTORE'
resume.fai
1 3
      PRINT
QUADRUPO
5018.67E-3
MULTIPOL
5018.67E-3
BEND
5018.67E-3
'INCLUDE'
SATURNE.ring[#StartRing:#EndRing]
'CAVITE'
2 PRINT
105.5556848673 3.
6000.
      0.205303158892
'REBELOTE'
2000 0.2
 'FAISCEAU'
 'SPNDRT'
```

Particle and spin coordinates at the end of the complete 3,000 turn run and at the end of the 1,000 to 3,000 turn recovery, as from the two files above, are *identical*, they are displayed below.

```
TRACE DU FAISCEAU
(follows element #
1 TRAJECTOIRES
                                           OBJET
                                                                                                                  FAISCEAU
          D
                     Y(cm)
                                  T(mr)
                                               2 (cm)
                                                           P(mr)
                                                                           S(cm)
                                                                                          D-1
                                                                                                     Y(cm)
                                                                                                                T(mr)
                                                                                                                          Z (cm)
                                                                                                                                       P(mr)
                                                                                                                                                      S(cm)
                  0.000 0.000 0.458 0.000
Time of flight (mus) : 1244.3530
                                                                  0.0000 0.0029
mass (MeV/c2): 938.272
                   Spin components of each of the
                                                                       1 particles, and rotation angle :
                       INITIAL
                                                                                      FINAL
                                                                                                                     GAMMA (Si,Sf) (Z,Sf_X) (Z,Sf)
                         SY
                                                                                                                   \begin{array}{cccc} & (\text{deg.}) & (\text{deg.}) & (\text{deg.}) \\ (\text{Sf\_X} : \text{projection of Sf on YZ plane}) \end{array}
o 1 0.000000 0.000000 1.000000 1.000000 -0.926463 0.185319 0.327602 1.000000
                                                                                                                                  70.877 29.496 70.877
```

OBJETA	Object from Monte-Carlo simulation of decay reaction		
	$M1+M2\longrightarrow M3+M4$ and $M4\longrightarrow M5+M6$		
BORO	Reference rigidity	kG.cm	E
IBODY, KOBJ	Body to be tracked : $M3$ ($IBODY=1$), $M5$ ($IBODY=2$) $M6$ ($IBODY=3$) ; type of distribution for Y_0 and Z_0 : uniform ($KOBJ=1$) or Gaussian ($KOBJ=2$)	1-3,1-2	2*I
IMAX	Number of particles to be generated (use 'REBELOTE' for more)	$\leq 10^4$	I
$M_1 - M_6$	Rest masses of the bodies	$6*GeV/c^2$	6*E
T_1	Kinetic energy of incident body	GeV	E
Y_0, T_0, Z_0, P_0, D_0	Only those particles in the range $Y_0 - \delta Y \leq Y \leq Y_0 + \delta Y$	2(cm,mrad), no dim.	5*E
	will be retained		
$\delta Y, \delta T, \delta Z, \delta P, \delta D$		2(cm,mrad), no dim.	5*E
XL	Half length of object : $-XL \le X_0 \le XL$ (uniform random distribution)	cm	E
IR1, IR2	Random sequence seeds	$2*\simeq 0^6$	2*I

OCTUPOLE	Octupole magnet		
IL	$IL=1,2[\times 10^n],\ 7$: print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).	$0-2[\times 10^n], 7$	I
XL, R_0, B_0	Length; radius and field at pole tip of the element	2*cm, kG	3*E
X_E, λ_E	Entrance face : Integration zone ; Fringe field extent ($\lambda_E=0$ for sharp edge)	2*cm	2*E
$NCE, C_0 - C_5$	NCE = unused C_0-C_5 = fringe field coefficients such that : $G(s)=G_0/(1+\exp\ P(s))$, with $G_0=B_0/R_0^3$ and $P(s)=\sum_{i=0}^5 C_i(s/\lambda)^i$	any, 6*no dim.	I, 6*E
	Exit face :		
X_S, λ_S	Parameters for the exit fringe field; see entrance	2*cm	2*E
NCS , $C_0 - C_5$		0-6, 6*no dim.	I, 6*E
XPAS	Integration step	cm	E
KPOS, XCE, YCE, ALE	KPOS=1: element aligned, 2: misaligned; shifts, tilt.	1-2, 2*cm, rad	I, 3*E

Octupole magnet

OPTICS

Write out optical functions. Log to zgoubi.OPTICS.out

IOPT[.NLBL], label(s)
[, IMP or 'PRINT']
[, coupled]

 $IOPT = 0/1: Off/On; NLBL = number of labels (default is 1); 0-1[.1-10], -, I[.I], \\ \text{'label': can be 'all', 'ALL', or a list of } NLBL \text{ first label(s) as} \\ -, - \\ \text{1-10*A20}, \\ \text{appearing at one or more elements in zgoubi.dat sequence}; \\ \text{II or A5, A7} \\ \text{wild card accepted, in the form '*label' or 'label*'.} \\ IMP = 1, \text{ or presence of 'PRINT', will cause storage of optical functions in zgoubi.OPTICS.out}; \text{ optical function computation is in coupled hypothesis if specified, uncoupled otherwise.} \\ \\ II. On the substitution of the substitution of$

• Example : OPTICS

The following will cause a print of transported optical functions in zgoubi.res, at all optical elements of the zgoubi.dat sequence, as well as their print out in zgoubi.OPTICS.out:

'OPTICS'
1 all PRINT

OPTIONS Global or special options

IOPT, NBOP IOPT = 0/1: Off/On; 0 (off) will inhibit all NBOP subsequent $0-1, \ge 0$ requests. NBOP: total number of options.

NBOP lines follow. Possible choices:

'WRITE', OPT OPT = ON/OFF: allows/inhibites (most) write statements (WRITE', 'ON' or 'OFF' 2*A to zgoubi.res

'CONSTY', OPT OPT = ON: forces constant Y and Z across optical elements 'CONSTY', 'ON'/'OFF' 2*A

• Example: OPTIONS, CONSTY

The example below yields (data saved to zgoubi.plt due to IL=2) 3-D field components (trivially uniform in that particular case, $B_R=B_\theta=0,\ B_Z=B_0$ at all (R,θ,Z)) on a $n_R\times n_\theta\times n_Z=(41-1)/2\times (R*AT/XPAS)\times (11-1)/2$ node, uniform 3-D mesh, with $\Delta R=\delta Y$ in OBJET=1 cm, $\Delta \theta\equiv XPAS/RM=10.471975512$ mrd, $\Delta Z=\delta Z$ in OBJET=0.2 cm, across a 60 degree hard-edged sector dipole (6 of these make up a uniform field cyclotron).

```
Cyclotron, classical.
'OBJET'
1000.e0
1. 0. 0.2 0. 0. 1.
0. 0. 0. 0. 0. 1.
 'OPTIONS'
CONSTY ON
 'DIPOLES'
1 60. 50.
30. 0. 5. 1 0.
0. 0.
4 .1455 2.2670 -.6395 1.1558 0. 0. 0.
                                                        ! EFB 1 hard-edge
30. 0. 1.E6 -1.E6 1.E6 1.E6
0. 0.
4 .1455 2.2670 -.6395 1.1558 0. 0. 0.
-30. 0. 1.E6 -1.E6 1.E6 1.E6
                                                        ! EFB 2
0.0.
                                                       ! EFB 3
                                          0. 0. 0.
0 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0 2 KIRD, Resol=IDB
                        0. 0. 0.
0.523598775598
   00. 0. 00. 0.
 'FAISCEAU'
 'END'
```

ORDRE	Taylor expansions order		
IO	Taylor expansions of \vec{R} and \vec{u} up to $\vec{u}^{(IO)}$ (default is $IO=4$)	2-5	Ι

PARTICUL Particle characteristics

Either:

M,Q,G, au,X Mass (or coded, see Note below); charge; gyromagnetic factor; MeV/c2, C, no dim., s, NA 5*E

COM life-time; unused

or:

Type ELECTRON, POSITRON, MUON+, MUON-, PROTON, DEUTERON, or HELION A

Note: If M is of the form $\{M1\ M2\}$, then when masses are assigned to particles from a previously defined object, the first half of the particles are given the mass M1, and the second half are given the mass M2.

If Q is zero, the reference charge is left unchanged.

Only the parameters to be used need their value be specified (for instance M, Q only when electric lenses are used, M, Q, G only when tracking spin); unused parameters can be set to zero.

PICKUPS Bunch centroid path; orbit

> Particle coordinates at pickups may be printed out in zgoubi.PICKUP.out; they are anyway listed next to the sequence 'END' keyword down zgoubi.res.

In multi-turn mode, pickup contents are zeroed at start of each pass.

N [,PRINT] 0: inactive

> > 1 : number of LABELs at which beam centroid is computed ≥ 0 [, string] I [,A]

[,PRINT] is optional: will cause print of pickup contents to zgoubi.PICKUP.out.

A list of N keywords' labels follows

LABEL1 [,LABEL2, [...]] The N label(s) at which beam data are to be computed/recorded. N string(s) N*A20

> If some "LABELi" in this list actually does not appear in zgoubi.dat optical sequence, then it is peacefully ignored;

wild card accepted, in the form '*LABEL' or 'LABEL*' or '*LABEL*'.

• Example : PICKUPS

A trick:

```
'PICKUPS'
none labelA labelB ...
```

This is a possible way to inhibit an earlier use of PICKUPS with "labelA, labelB, ..." keyword list. It is sufficient (and necessary) for that, that no keyword in zgoubi.dat data list have "none" as its first LABEL.

PLOTDATA Intermediate output for the PLOTDATA graphic software

To be documented.

POISSON	Read magnetic field data from POISSON output		
IC , IL	$I\!C=1,2$: print the field map $I\!L=1,2[imes 10^n],~7$: print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).	$0-2; 0-2[\times 10^n], 7$	2*I
BNORM, XN, YN	Field and X-,Y-coordinate unit conversion coeffs.	3*no dim.	3*E
TITL	Title. Start with "FLIP" to get field map X-flipped		A80
IX, IY	Number of longitudinal and transverse nodes of the uniform mesh	$\leq 400, \leq 200$	2*I
FNAME ¹	File name		A80
ID, A, B, C [, A', B', C', B'' , etc., if $ID \ge 2$]	Integration boundary. Ineffective when $ID=0$. $ID=-1, 1 \text{ or } \geq 2$: as for <i>CARTEMES</i>	≥ -1 , 2*no dim., cm [,2*no dim., cm, etc.]	I,3*E [,3*E,etc.]
IORDRE	Degree of interpolation polynomial as for <i>DIPOLE-M</i>	2, 25 or 4	I
XPAS	Integration step	cm	Е
KPOS, XCE, YCE, AL	E KPOS=1: element aligned, 2: misaligned; shifts, tilt.	1-2, 2*cm, rad	I, 3*E

```
I = 0 \\ 11 \ CONTINUE \\ I = I+1 \\ READ(LUN,101,ERR=99,END=10) \ K, \ K, \ K, \ R, \ X(I), \ R, \ R, \ B(I) \\ 101 \ FORMAT(I1, I3, I4, E15.6, 2F11.5, 2F12.3) \\ GOTO \ II \\ 10 \ CONTINUE
```

where X(I) is the longitudinal coordinate, and B(I) is the Z component of the field at a node (I) of the mesh. K's and R's are variables appearing in the *POISSON* output file outpoi.lis, not used here.

 $^{^1}$ FNAME (e.g., ''outpoi.lis'') contains the field map data. These must be formatted according to the following FORTRAN read sequence - details and possible updates are to be found in the source file 'fmapw.f':

POLARMES	2-D polar mesh magnetic field map mid-plane symmetry is assumed		
IC , IL	$I\!C=1,2$: print the map $I\!L=1,2[imes 10^n],~7$: print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).	$0-2; 0-2[\times 10^n], 7$	2*I
BNORM, AN,RN	Field and A-,R-coordinate unit conversion coeffs.	3*no dim.	3*E
TITL	Title. Start with "FLIP" to get field map X-flipped		A80
IA, JR	Number of angular and radial nodes of the mesh	$\leq 400, \leq 200$	2*I
FNAME ¹	File name		A80
ID, A, B, C [, A', B', C', B'' , etc., if $ID \ge 2$]	Integration boundary. Ineffective when $ID=0$. $ID=$ -1, 1 or ≥ 2 : as for <i>CARTEMES</i>	≥ -1 , 2*no dim., cm [,2*no dim., cm, etc.]	I,3*E [,3*E,etc.]
IORDRE	Degree of interpolation polynomial (see <i>DIPOLE-M</i>)	2, 25 or 4	I
XPAS	Integration step	cm	Е
KPOS If KPOS = 2	as for DIPOLE-M. Normally 2.	1-2	I
RE, TE, RS, TS If KPOS = 1		cm, rad, cm, rad	4*E
DP		no dim.	Е

```
OPEN (UNIT = NL, FILE = FNAME, STATUS = 'OLD' [,FORM='UNFORMATTED'])

IF (BINARY) THEN

READ(NL) (Y(J), J=1, JY)

ELSE

READ(NL,100) (Y(J), J=1, JY)

ENDIF

100 FORMAT(10 F8.2)

DO 1 I = 1,IX

IF (BINARY) THEN

READ (NL) X(I), (BMES(I,J), J=1, JY)

ELSE

READ(NL,101) X(I), (BMES(I,J), J=1, JY)

101 FORMAT(10 F8.1)

ENDIF

1 CONTINUE
```

where X(I) and Y(J) are the longitudinal and transverse coordinates and BMES is the Z field component at a node (I,J) of the mesh. For binary files, FNAME must begin with 'B_' or 'b_'. 'Binary' will then automatically be set to '.TRUE.'

 $^{^1}$ FNAME (e.g., spes2.map) contains the field data. These must be formatted according to the following FORTRAN read sequence - details and possible updates are to be found in the source file 'fmapw.f':

PS170	Simulation of a round shape dipole magnet		
IL	$IL=1,2[\times 10^n],\ 7$: print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).	$0-2[\times 10^n], 7$	I
XL, R_0, B_0	Length of the element, radius of the circular dipole, field	2*cm, kG	3*E
XPAS	Integration step	cm	Е
KPOS, XCE, YCE, ALE	KPOS=1: element aligned, 2: misaligned; shifts, tilt.	1-2, 2*cm, rad	I, 3*E

Scheme of the PS170 magnet simulation.

QUADISEX	Sharp edge magnetic multipoles $B_Z\mid_{Z=0}=B_0\left(1+\frac{N}{R_0}Y+\frac{B}{R_0^2}Y^2+\frac{G}{R_0^3}Y^3\right)$		
IL	$IL=1,2[\times 10^n],\ 7$: print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).	$0-2[\times 10^n], 7$	I
XL, R_0, B_0	Length of the element; normalization distance; field	2*cm, kG	3*E
N, EB1, EB2, EG1, EG2	Coefficients for the calculation of B. if $Y>0$: $B=EB1$ and $G=EG1$; if $Y<0$: $B=EB2$ and $G=EG2$.	5*no dim.	5*E
XPAS	Integration step	cm	E
KPOS, XCE, YCE, ALE	KPOS=1: element aligned, 2: misaligned; shifts, tilt.	1-2, 2*cm, rad	I, 3*E

QUADRUPO	Quadrupole magnet		
IL	$IL=1,2[\times 10^n],\ 7$: print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).	$0-2[\times 10^n], 7$	I
XL, R_0, B_0	Length; radius and field at pole tip	2*cm, kG	3*E
X_E, λ_E	Entrance face : Integration zone extent ; fringe field extent ($\simeq 2R_0, \lambda_E = 0$ for sharp edge)	2*cm	2*E
NCE , $C_0 - C_5$	NCE = unused C_0-C_5 = Fringe field coefficients such that $G(s)=G_0/(1+\exp P(s))$, with $G_0=B_0/R_0$ and $P(s)=\sum_{i=0}^5 C_i(s/\lambda)^i$	any, 6*no dim.	I, 6*E
	Exit face		
X_S, λ_S $NCS, C_0 - C_5$	See entrance face	2*cm 0-6, 6*no dim.	2*E I, 6*E
XPAS	Integration step	cm	E
KPOS, XCE, YCE, ALE	KPOS=1: element aligned, 2: misaligned; shifts, tilt.	1-2, 2*cm, rad	I, 3*E

Quadrupole magnet

Scheme of the elements QUADRUPO, SEXTUPOL, OCTUPOLE, DECAPOLE, DODECAPO and MULTIPOL

(OX) is the longitudinal axis of the reference frame (0,X,Y,Z) of **zgoubi**.

The length of the element is XL, but trajectories are calculated from $-X_E$ to $XL + X_S$, by means of automatic prior and further X_E and X_S translations.

2A10

arbitrary; 0-1; 3*I

0-1; 0, 22, 99

0, 99; [1[.any]] 2A10

REBELOTE

'Do it again'

NPASS, KWRIT, K[.n], [IOPT],

[, Label1 [, Label1']]

NPASS: Number of runs; KWRIT = 1.1 (resp. 0.0) switches (inhibits) FORTRAN WRITEs to .res and to screen;

K option :

K = 0: initial conditions (coordinates and spins) are generated following the regular functioning of [MC]OBJET. If random generators are

used (e.g. in MCOBJET) their seeds will not be reset.

K = 99 or 98: coordinates at end of previous pass are used as initial coordinates for the next pass; idem for spin components. K=99 causes

a reset of particle path-length in CAVITE 1, K=98 does not.

K=98 IS UNDER DEVELOPMENT, IN cavite.f, IN THIS VERSION OF THE CODE.

K = 99.1: a "Label1" is expected in the optical sequence, subsequent passes will start from that element with Label1, down to REBELOTE and so forth; K=99.2 : "Label1" and "Label2'" are expected ; the last pass (# NPASS+1) will terminate at element with Label1' whereupon zgoubi execution will jump to the keyword next to REBELOTE and will be carried out down to 'END'.

IOPT is optional:

IOPT = 1: will change the value of *NPRM* different parameters in one or more of optical elements, using the data list in the next line.

If $IOPT = 1^2$

NPRM

Number of parameters to be changed at each of the NPASS passes.

NV*E

I or A. I.

I

NPRM lines with the following sequence (tells parameters concerned, and for each, its successive values):

LMNT, KPRM, values

LMNT: two possible forms: (i) LMNT=element number in zgoubi.dat -, -, NV*dim³ sequence; (ii) LMNT=KEYWORD[{LABEL1 [, LABEL2]}], i.e., keyword concerned followed optionnally by LABEL1 (and possibly LABEL2) concerned.

KPRM: parameter number under that keyword (similar nomenclature to FIT[2], see page 237); 'values' defines the new parameter values.

'values' can take two forms:

- either an explicit list of NPASS numerical values
- or, first_value:last_value the interval between consecutive values will be (last_value - first_value)/(npass-1).

¹ Usefull if the tracking distance is orders of magnitudes greater than particle distances within a bunch: the computation of the synchronous phase of a particle (from its total path length and its distance to the virtual synchronous particle) may be jeopardized if the difference is within computer accuracy.

² IOPT=1 is compatible with use of the FIT[2] procedure: e.g., allows successive FITs in a single **zgoubi** run, with successive sets of optical parameter values.

³ V is in current **zgoubi** units in the case of particle coordinates (cm, mrad). It is in MKSA units (m, rad) in the case of matrix coefficients.

• Example: REBELOTE

In this example of an energy-recovery electron recirculator based on FFAG arcs, the arguments in the keyword *AUTOREF* and *CAVITE* are changed 20 times by *REBELOTE*, over the 21-pass recirculation process [72]. The role of *AUTOREF* is to mimic a spreader-recombiner, *i.e.*, re-centering the beam on the design FFAG orbit at the start of each one of the 11 accelerated and 10 decelerated return loop passes. The RF voltage in *CAVITE* is set positive (accelerating, from 7.944 GeV to 21.16 GeV) during the first 11 passes through the optical structure, and negative (decerating, from 21.16 to 7.944 GeV) over the remaining 10 passes. The voltage value at each pass is adjusted (for an energy of 1.322 GeV per turn on average) so to compensate the energy lost by synchrotron radiation in the arcs.

• Example: Combining REBELOTE and FIT See page 239.

'MULTIPOL' RBEN QF2 0 .Dip	13
110. 10. 0. 0.86286642 0. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
4 .1455 2.26706395 1.1558 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0.
'DRIFT' DRIF HD 14.547181	14
'MARKER' MARK CELLEND	15
6*138-1 additional such FD cells, simulating a 6 arc energy recovery ring, 138 cells per arc.	
'MARKER' ARC#E_6	5820
'OPTIONS' 1 1 WRITE ON	5821
'FAISTORE' zgoubi.fai	5822
'FAISCEAU'	5823
'CAVITE' 3 0 0	5824
1.322e9 1.57079632679 'AUTOREF' 4.1	5825
05.168354E-01 4.169759E+00 5.38813280E-01 'FAISCEAU' 'REBELOTE' 20 0.1 99 1	5826 5827
AUTOREF 11 -4.7493E-01 -4.1290E-01 -3.3292E-01 -2.368 -1.26268E-01 -2.59705E-03 (a list of 20 values)	
AUTOREF 12 3.34619E+00 2.58215E+00 1.87157E+00 1 5.90197E-01 1.05897E-02 (a list of 20 values)	20916
AUTOREF 13 .615682680 .692552080 .769421480 .844 .923160280 1.00002970 (a list of 20 values) CAVITE 20 1.337399e9 1.33934e9 1.34012e9 1.340 (15 more voltage values)1.30660e9 -1.3099 'SRPRNT' 'END'))18e9

277

RESET Reset counters and flags

Resets counters involved in *CHAMBR*, *COLLIMA*, *HISTO* and *INTEG* procedures.

Switches off CHAMBR, MCDESINT, SCALING and SPNTRK options.

0-1, 1-45 [,-] I1, I2 [,A]

A10 [,1-9*A20]

NT*E

relative

SCALING Power supplies and R.F. function generator

IOPT, NFAM [, PRINT] IOPT = 0 (inactive) or 1 (active); NFAM = number of families

to be scaled. Occurence of PRINT will cause printing of scaling

infos in zgoubi.SCALING.out.

For NF=1, NFAM: repeat NFAM times the following sequence:

NAMEF [, *Lbl* [, *Lbl*]] Name of family (i.e., keyword of concern); up to 9 labels,

wild card accepted, in the form '*myLabel' or 'myLabel*'.

,A20]]

NT [.Int] $NT \ge 1$: normal usage, number of timings (see NT = -1 for a -88, ..., 1[.Int][.I]

convenient, easy short-cut);

1. Int an integer, optional. For special scaling laws and/or

reading from external files - to be documented 1;

NT = -88: AC dipole function generator - to be documented²; NT = -87: AGS tune-jump quadrupoles - to be documented ¹; NT = -77: field scaling law for FNAL proton driver - to be

documented 1:

NT = -60: field scaling follows $B\rho$ change by CAVITE, from

starting value - to be documented 1;

NT = -2: to read RF law for *CAVITE* from an external data file. NT = -1: field scaling is updated to follow $B\rho$ change by CAVITE;

SCL(I), I = 1, NTScaling values, and in particular:

a single value if NT = -1; unused if NT = -2:

if NT = 1 then SCL(I) = SCL(1) whatever the pass number.

TIM(I), I = 1, NTCorresponding timings, in units of turns (1 if NT = -1; turn number NT*I

unused if NT = -2).

¹For the geek: details in subroutines scaling.f and scaler.f.

²Was developed to simulate RHIC spin flipper and AGS Booster AC dipole. For the geek: details in subroutines scaling.f and scaler.f.

SEPARA ¹ Wien Filter - analytical simulation

IA, XL, E, B, IA = 0: element inactive 0-2, m, I, 3*E IA = 1: horizontal separation V/m, T

IA = 2: vertical separation;

Length of the separator; electric field; magnetic field.

Horizontal separation between a wanted particle, (W), and an unwanted particle, (U). (W) undergoes a linear motion while (U) undergoes a cycloidal motion.

 $^{^{1}}$ SEPARA must be preceded by PARTICUL for the definition of mass and charge of the particles.

SEXQUAD	Sharp edge magnetic multipole $B_Z\mid_{Z=0}=B_0\left(\frac{N}{R_0}Y+\frac{B}{R_0^2}Y^2+\frac{G}{R_0^3}Y^3\right)$		
IL	$I\!L=1,2[imes 10^n],~7$: print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).	$0\text{-}2[\times10^n],7$	I
XL, R_0, B_0	Length of the element; normalization distance; field	2*cm, kG	3*E
N,EB1,EB2,EG1,EG2	Coefficients for the calculation of B. if $Y > 0$: $B = EB1$ and $G = EG1$; if $Y < 0$: $B = EB2$ and $G = EG2$.	5*no dim.	5*E
XPAS	Integration step	cm	E
KPOS, XCE, YCE, ALE	KPOS=1 : element aligned, 2 : misaligned; shifts, tilt.	1-2, 2*cm, rad	I, 3*E

SEXTUPOL	Sextupole Magnet		
IL	$I\!L=1,2[\times 10^n],~7$: print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).	$0\text{-}2[\times 10^n], 7$	I
XL, R_0, B_0	Length; radius and field at pole tip of the element	2*cm, kG	3*E
X_E, λ_E	Entrance face : Integration zone ; fringe field extent ($\lambda_E=0$ for sharp edge)	2*cm	2*E
$NCE, C_0 - C_5$	NCE = unused C_0-C_5 = Fringe field coefficients such that $G(s)=G_0/(1+\exp P(s))$, with $G_0=B_0/R_0^2$ and $P(s)=\sum_{i=0}^5 C_i(s/\lambda)^i$	any, 6* no dim.	I, 6*E
X_S, λ_S	Exit face: Parameters for the exit fringe field; see entrance	2*cm	2*E
NCS , $C_0 - C_5$		0-6, 6*no dim.	I, 6*E
XPAS	Integration step	cm	E
KPOS, XCE, YCE, ALE	KPOS=1: element aligned, 2: misaligned; shifts, tilt.	1-2, 2*cm, rad	I, 3*E

Sextupole magnet

SOLENOID	Solenoid		
IL	$IL=1,2[\times 10^n],\ 7: \mbox{print coordinates, fields, etc., step-by-step,} \\ \mbox{in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).} \\$	$0-2[\times 10^n], 7$	I
XL , R_0 , B_0 [, $MODL$]	Length ; radius ; asymptotic field (= μ_0NI/XL) ; MODL=1 : default, r -extrapolation from on-axis field model, MODL=2 : elliptic integrals method	2*cm, kG [, no dim.]	3*E
X_E, X_S	Entrance and exit integration zones	2*cm	2*E
XPAS	Integration step	cm	E
KPOS, XCE, YCE, ALE	KPOS=1: element aligned, 2: misaligned; shifts, tilt.	1-2, 2*cm, rad	I, 3*E

SPACECHARG	Space charge		
LMNT, model [, PRINT]	LMNT = 'all', 'none', or keyword; model: 'KV', 'Gaussian'; [optional: print out to zgoubi.SPACECHARG.out].	-, - [,-]	2*A [,A]
λ	Linear charge density	C/m	E

SPINR	Spin rotation		
IOPT	Option	0-2	I
If IOPT=0	Element inactive		
X, X	Unused	2*unused	2*E
If IOPT=1	Axis and spin precession angle values.		
ϕ,μ	Angle (in (X,Y) plane) between the X-axis and the spin precession axis; spin precession angle around that axis.	deg, deg	2*E
If IOPT=2	Given the spin precession axis direction, ϕ , in the horizontal plane,		
	angle follows a function of the Lorentz factor : $\mu(\gamma) = \left(\frac{B}{B_0}\right)^2 imes 0$	$\left(C_0 + \frac{C_1}{\gamma} + \frac{C_2}{\gamma^2} + \right.$	$\left(\frac{C_3}{\gamma^3}\right)$
$\phi, B, B_0, C_0, C_1, C_2, C_3$	Angle (in (X, Y) plane) between the X-axis and the spin precession axis; six coefficients that define the spin precession around that axis.	deg.; 6*no dim	7*E

SPNPRNL Store spin coordinates in file FNAME

FNAME ¹ Name of storage file (e.g., zgoubi.spn) A80

SPNSTORE Store spin coordinates every IP other pass

FNAME 1 Name of storage file (e.g., zgoubi.spn) [; label(s) of the element(s) A80 [,LABEL(s)] 2 at the exit of which the store occurs (10 labels maximum)]. [, 1-10*A20]

IP Store every IP other pass (when using REBELOTE

with $NPASS \ge IP - 1$).

SPNPRT [,PRINT] [,MATRIX]

Print spin coordinates, compute spin matrix

Print spin coordinates in zgoubi.res, at the location where this keyword is introduced in the structure.

A label '*PRINT*' is optional, if it appears, then local data are stored in the file zgoubi.SPNPRT.Out. That file is opened at the first occurence of *SPNPRT* and left open until **zgoubi** execution is completed.

A label '*MATRIX*' is optional, if it appears, then computation of spin rotation matrix is performed. This however assumes appropriate trajectory and spin sampling (see Sec. 6.5.10, p. 180).

¹ FNAME = 'none' will inhibit printing.

² If first *LABEL* = 'none' then printing will be inhibited.

SPNTRK ¹	Spin tracking		
KSO [.KSO2]	KSO=0: spin tracking [switched] off ² ; $KSO=-1$: spin tracking resumes. Otherwise: as stated below.	-1 or 0 or 1-3 0r 4[.1] or 5	I
If KSO = $1-3$	KSO = 1 (respectively 2, 3): all particles have their spin automatically set to $(1,0,0)$, longitudinal (respectively $(0,1,0)$, horizontal and $(0,0,1)$, vertical)		
If $KSO = 4$	Repeat <i>IMAX</i> times (corresponding to the <i>IMAX</i> particles in ' <i>OBJET</i> ') the following sequence :		
S_X, S_Y, S_Z	X, Y and Z initial components of the initial spin.	3*no dim.	3*E
If KSO = 4.1			
S_X, S_Y, S_Z	X, Y and Z components of the initial spins. These will be assigned to all particles.	3*no dim.	3*E
If KSO = 4.2 FNAME ³	File name (under development)		A80
TWINL	The name (under development)		7100
If $KSO = 5$	Random distribution in a cone (see figure)		
TO, PO	Enter the following two sequences: Angles of average polarization direction.	2*rad	2*E
$A, \delta A$	Angles of average polarization direction. $A = \text{angle of the cone around } (TO, PO)$; $\delta A = \text{standard deviation}$	2*rad	2*E
11, 011	of distribution around A	- 100	
IR	Random sequence seed	$\lesssim 10^6$	I

Option KSO = 5: spins are distributed at random within an annular strip with standard deviation δA , centered at an angle A with respect to the axis of mean polarization (\vec{S}) defined by T_0 and P_0 .

 $^{^{1}}$ SPNTRK must be preceded by PARTICUL for the definition of G and mass.

² Spin tracking can be switched off at any location in zgoubi.dat data list using KSO=0, and further away resumed using KSO=-1.

³FNAME contains the spin components. Formatting should be has follows:

SRLOSS	Synchrotron radiation energy loss		
KSR[.i] [,PRINT] [,KSOK]	On/off switch; $i=1$ for info output into <code>zgoubi.SRLOSS.Out</code> ; optional, $PRINT$, anywhere beyond KSR : has the same effect as $i=1$; under development: Sokolov-Ternov switch, optional (1/0 for on/off, default is off).	0 or 1[.1], -, 0 or 1	I[.I] [,A] [,I]
STR1[{lblst}] [, STR2 [,List]]	Apply SR loss to $STR1 = ALL$ or 'all' or a particular KEYWORD; $\{lblst\} = \{lbl1, lbl2,, lbl5\}$: a list of up to 5 labels to which this applies. Optional: $STR2 = cale$ will scale fields following energy loss; $List$: a list of up to 10 keywords to which this scaling applies.		A[1-5A] [,A] [,1-10A]
Option, seed	Option = 0 or 1 : SR causes dp only; option = 2 : SR causes dp and angle kick (under development).	$1 - 3, > 10^5$	I, I6

SRPRNT

Print SR loss statistics into zgoubi.res

SVDOC SVD orbit correction

UNDER DEVELOPEMENT - Feb. 2019

LABEL1 [,LABEL2, [...]] The N label(s) at which beam data are to be computed/recorded. N string(s) N*A20

If some "LABELi" in this list actually does not appear in zgoubi.dat optical sequence, then it is peacefully ignored;

wild card accepted, in the form '*LABEL' or 'LABEL*' or '*LABEL*'.

SYNRAD	Synchrotron radiation spectral-angular densities		
KSR	Switch 0: inhibit SR calculations 1: start 2: stop	0-2	I
If $KSR = 0$			
D1, D2, D3	Dummies		3*E
If KSR = 1			
X0, Y0, Z0	Observer position in frame of magnet next to SYNRAD	3*m	3*E
If KSR = 2			
ν_1, ν_2, N	Frequency range and sampling	2*eV, no dim.	2*E, I

SYSTEM System call

NCMD The number of calls to follow. ≥ 0 I

NCMD lines follow, one command per line.

• Example : SYSTEM

The first occurrence of the command (top region in the data list below) allows establishing links from remote folders to the current one (the one in which **zgoubi** is presently run). These folders happen to contain files appearing in the *SCALING* command, as well as OPERA field maps of the siberian snakes used in subsequent *TOSCA* commands.

The second occurrence of the command (bottom region in the data list below) allows saving zgoubi.res output file as resulting from the **zgoubi** run, under a different name.

```
AGS, polarized protons. 2 snakes. t = 145 ms.
'GETFITVAL'
fitVals.data
'OBJET' LBL_OBJfit
7069.3668040036146
.01 .01 .01 .01 0. .0001
0. 0. 0. 0. 0. 1.
'FAISCEAU'
'SYSTEM'
ln -sf /rap/lattice_tools/zgoubi/AgsZgoubiModel/snakeFieldMaps/TOSC3D/Csnk3D
ln -sf/rap/lattice_tools/zgoubi/AgsZgoubiModel/snakeFieldMaps/TOSC3D/Wsnk3D
'SCALING' LBL_SCLfit
1 1/
AGSMM *AF *BF *CF !# of params 2Bchanged. dB0 (FIT#3) dB1 (FIT#4) dB2
-1 3 13 3E-20 14 -1.473595E-03 15 8.01942
-1 3
1.00000000 ! (FIT #6)
1 AGSMM *AD *BD *CD !# of params 2Bchanged. dB0 (FIT#9) dB1 (FIT#10) -1 3 13 9E-20 14 -1.011857
                                                             14 -1.011857E-03 15 -1.70597
1.000000 ! (FIT#12)
1
AGSQUAD QH_* !# of params 2Bchanged. (FIT#15)
-1 1 15 0.0
-1
1.000000
AGSOUAD OV * OP *
                         !# of params 2Bchanged. (FIT#15)
1 15 0.0
1.000000
MULTIPOL QJUMP_*
7.06936680E+00
MULTIPOL COH1
 ./Csnk3D/H1x68.2_So142.3/CHREF_+_dipolCORR.scal
 ./Csnk3D/Hlx68.2_Sol42.3/CHREF_+_dipolCORR.scal
MULTIPOL COH2
 /Csnk3D/Hlx68.2_So142.3/CHREF_+_dipolCORR.scal
MULTIPOL COV2
./Csnk3D/Hlx68.2 Sol42.3/CHREF + dipolCORR.scal
MULTIPOL WOHL
 /Csnk3D/Hlx68.2_So142.3/CHREF_+_dipolCORR.scal_51.8_0.0
./Csnk3D/H1x68.2_So142.3/CHREF_+_dipo1CORR.sca1_51.8_0.0
MULTIPOL WOH2
./Csnk3D/H1x68.2_So142.3/CHREF_+_dipolCORR.scal_51.8_0.0
./Csnk3D/H1x68.2 So142.3/CHREF + dipolCORR.scal 51.8 0.0
CHANGREE WONKE
1.12
./Csnk3D/Hlx68.2_So142.3/CHREF_+_dipolCORR.scal_51.8_0.0
1 1 1 3
CHANGREF WSNKO
./Csnk3D/H1x68.2_So142.3/CHREF_+_dipolCORR.scal_51.8_0.0
CHANGREF CSNKE
./Csnk3D/Hlx68.2_Sol42.3/CHREF_+_dipolCORR.scal
1 1 1 3
CHANGREF CSNKO
./Csnk3D/H1x68.2_So142.3/CHREF_+_dipolCORR.scal 1 1 1 2
```


• Example : SYSTEM

An additional example can be found page 239

TOSCA

		dim.	data type	FIT num.
IC, IL	$I\!C=1,2$: print the map $I\!L=1,2[imes 10^n],~7$: print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).	$0-2; 0-2[\times 10^n], 7$	2*I	1, 2
BNORM, XN,YN, ZN	Field and X-,Y-,Z-coordinate unit conversion coefficients. Convert values as read from map file, to kG and cm or rad.	4*UnitConv.	4*E	10-13
TITL	Title. Include "FLIP" to get field map X-flipped. Include "HEADER n" if $FNAME$ starts with $n \geq 1$ header lines. Include "ZroBXY" to force $B_X = B_Y = 0$ at all Z=0 (only applies for MOD =15 and MOD =24). Include "RHIC_helix" to normalize $BNORM$ to measured value (B versus helix current, in program toscac.f).		A80	
IX, IY, IZ, ¹ MOD[.MOD2 [, a(i),i= 1,MOD2]]	Number of nodes of the mesh in the X,Y and Z directions, $IZ=1$ for a 2-D map; MOD and $MOD2$: field map style, see table next page; $a(i=1,MOD2)$ are the field normalisation factor	$\leq MXX, \leq MXY,$ $\leq IZ, [0-22.1-9], -$ rs.	3*I, I[.I [, MOD2 *E]]	20-24 [, 25-27
Next NF lines : FNAME ³	Map file name(s), one line per name. If $MOD=0$: $NF=1+[IZ/2]$, the NF 2-D maps are for $0 \le Z$ they are symmetrized with respect to the $Z(1)=0$ plane.	$\leq Z_{max},$	A80	
	If $MOD=1: NF=IZ$, no symmetry assumed; $Z(1)=Z_{max}$, $Z(1+[IZ/2])=0$ and $Z(NF)=-Z_{max}$. If $MOD=12:$ a single $FNAME$ file contains the all 3-D volume. $MOD=15, 20-22$, etc.: see table next page.			
ID, A, B, C [, A', B', C', A'' , etc., if $ID \ge 2$]	$Z(1+[IZ/2])=0$ and $Z(NF)=-Z_{max}$. If MOD =12 : a single $FNAME$ file contains the all 3-D volume.	≥ -1 , cm, $2*$ no dim. [, $idem$]	I,3*E [, 3*E,etc.]	30-33 [, 34-36, .
	$Z(1+[IZ/2])=0$ and $Z(NF)=-Z_{max}$. If $MOD=12$: a single $FNAME$ file contains the all 3-D volume. $MOD=15, 20-22$, etc.: see table next page. Integration boundary. Ineffective when $ID=0$.			L
A'' , etc., if $ID \ge 2$]	$Z(1+[IZ/2])=0$ and $Z(NF)=-Z_{max}$. If $MOD=12$: a single $FNAME$ file contains the all 3-D volume. $MOD=15,\ 20$ -22, etc.: see table next page. Integration boundary. Ineffective when $ID=0$. $ID=-1,\ 1$ or ≥ 2 : as for $CARTEMES$	2*no dim. [, <i>idem</i>]	3*E,etc.]	34-36, .
A'' , etc., if $ID \ge 2$] $IORDRE$ $XPAS$ If Cartesian mesh (see M	$Z(1+[IZ/2])=0$ and $Z(NF)=-Z_{max}$. If $MOD=12$: a single $FNAME$ file contains the all 3-D volume. $MOD=15, 20$ -22, etc.: see table next page. Integration boundary. Ineffective when $ID=0$. $ID=-1, 1$ or ≥ 2 : as for $CARTEMES$ If $IZ=1:2,25$ or 4 as in $CARTEMES$; unused if $IZ\neq 1$. Integration step	2*no dim. [,idem] 2, 25 or 4	3*E,etc.]	34-36, . 40

2-D and 3-D Cartesian or cylindrical mesh field map (page 158 in PART A)

DO JF = 1, NF OPEN (UNIT = NL, FILE = FNAME(JF), STATUS = 'OLD' [,FORM='UNFORMATTED']) DO J = 1, JY; DO I = 1, IX READ(NL,*) Y(J), Z(JF), X(I), BY(J,I), BZ(J,I), BX(J,I) ENDDO; ENDDO NL = NL + 1

node coordinates, field components at node

ENDDO BX and BY are assumed zero at all nodes of the 2-D mesh, regardless of BX(J,1,I), BY(J,1,I) values. Case of 3-D field maps :

DO JF = 1, NF OPEN (UNIT = NL, FILE = FNAME(JF), STATUS = 'OLD' [,FORM='UNFORMATTED']) DO J = 1, JY ; DO K = 1, KX ; DO J = 1, JX $READ(NL,^*) Y(J), Z(K), X(J), BY(J,K,I), BZ(J,K,I), BX(J,K,I) \\ ENDDO ; ENDDO ; ENDDO \\ NL = NL + 1$

node coordinates, field components at node

 $^{^1} MXX, MXY, IZ$ may be changed, they are stated in the include file PARIZ.H.

 $^{^2}$ Case of 2-D field maps: Each file FNAME(K) contains the field specific to elevation Z(K) and must be formatted according to the following FOR-TRAN read sequence (that usually fits TOSCA code OUTPUTS - details and possible updates are to be found in the source file 'fmapw.f':

³For binary files, *FNAME* must begin with 'B_' or 'b_'.

• The various IZ, MOD and MOD2 possibilities, when using TOSCA.

IZ: number of nodes of the *complete* field map along the Z direction (IZ=1 for 2-D)

MOD, MOD2: determine the coordinate system, symmetries, reading format and column sequence, etc.

NF: number of field map input data files to be declared. Always include mid-plane map.

Expected columns: formatting of the coordinates and field data columns in the field map data file(s)

'Exemple' example folder : examples of **zgoubi** runs using field maps can be found in the subfolders of zgoubi-code/exemples/KEYWORDS/TOSCA/cartesian (case $MOD \le 19$) or

zgoubi-code/exemples/KEYWORDS/TOSCA/cylindrical (case MOD \ge 20).

The rightmost column below indicates the subfolder of concern, following (IZ, MOD, MOD2) options of interest.

MOD <	≤ 19 : Car t	tesian mesh				
IZ	MOD	.MOD2		NF	Expected columns	Example folder
1	0, 1	none or .1, .2, .3	2-D map. File contains $B_Z(X,Y) _{Z=0}$, mid-plane antisymmetry assumed. Several different reading formats (see fmapw.f/fmapr3).	1	Y, Z, X, BY, BZ, BX	IZ-MODMOD2_1-0-none/ (GSI KAOS spectrometer)
1	3	none or .1	2-D map. Used for AGS main magnet. If MOD2=1, $B_Z(X,Y,Z=0)$ field is perturbed by $(1+n_1Y+n_2Y^2+n_3Y^3)$ factor.	1	Special - see example	AGS/usingMainMagnetsMaps (AGS with main magnet maps)
1	15	.1 — .4	2-D map. Up to 4 files to be combined linearly into a new map: field at all node of new map is $\vec{B} = \sum_{i=1}^{i=MOD2} a_i \vec{B_i}$. Mid-plane antisymmetry is assumed: each file has to contain $B_Z(X,Y,Z=0)$.	1 - 4	Y, Z, X, BY, BZ, BX	IZ-MODMOD2_1-1514 (EMMA FFAG cell)
>1	0	none	3-D map. Files span upper half of magnet, one per $(X,Y) _{0\leq Z\leq Z_{max}}$ plane including median plane, mid-plane antisymmetry assumed.	1+IZ/2	Y, Z, X, BY, BZ, BX	IZ-MODMOD2_gt1-0-none/ (GSI KAOS spectrometer)
	1	none	$\mathbf{3-D}$ map. Files span full magnet volume, one file per (X,Y) plane, no symmetry assumed.	IZ	Y, Z, X, BY, BZ, BX	IZ-MODMOD2_gt1-1-none/ (AGS warm helix snake)
>1	12	none	3-D map. Single file, upper half of magnet, mid-plane antisymmetry assumed.	1		
>1	12	.1	3-D map. Single file, whole magnet volume, no symmetry assumed.	1	Y, Z, X, BY, BZ, BX	IZ-MODMOD2_gt1-121/ (AGS warm helix snake)
>1	12	.2	3-D map. Single file, 1/8th of the magnet, symmetry wrt. $(X,Y)_{Z=0}$, $(X,Z)_{Y=0}$, $(Y,Z)_{X=0}$ planes.	1		
odd, ≥ 3	15	.1 – .4	3-D map. Up to 4 files to be combined linearly into a new map, field at all node of new map is $\vec{B} = \sum_{i=1}^{i=MOD2} a_i \ \vec{B}_i$. Each file has to contain $B_{X,Y,Z}(X,Y,Z)$ data over IZ equally Z -spaced (X,Y) planes (no symmetry assumed).	1 - 4		
odd, ≥ 3	16	.1 – .4	3-D map. Fields from up to 4 maps to be combined linearly into a new field value at particle location, $\vec{B} = \sum_{i=1}^{i=MOD2} a_i \ \vec{B}_i$. Each file has to contain $B_{X,Y,Z}(X,Y,Z)$ data over IZ equally Z -spaced (X,Y) planes.	1-4	UNDER DEVELOPMENT	
MOD 2	≥ 20 : Cyli	ndrical mesh				
IZ	MOD	.MOD2				
1	25	.1 — .4	2-D map. Up to 4 files to be combined linearly into a new map: at all node of new map $\vec{B} = \sum_{i=1}^{i=MOD2} a_i \vec{B}_i$. Each file contains mid-plane $B_Z(X,Y,Z=0)$ data, mid-plane antisymmetry is assumed.	1 - 4	Y, Z, X, BY, BZ, BX	IZ-MODMOD2_1-1514 (EMMA FFAG cell)
>1	20, 21		3-D map. Single file. MOD=20: 1/4 magnet, cylindrical symmetry with respect to (Y,Z) plane and antisymmetry wrt (X,Y) plane. MOD=21: another type of symmetry (to be documented - see fmapw.f).	1	$Y(r, \theta), Z, X(r, \theta),$ BY, BZ, BX	IZ-MODMOD2_gt1-20 (KEK 150 MeV FFAG)
odd, ≥ 1	22, 23	.1 – .4	2-D or 3-D map. Mid-plane antisymmetry assumed. Up to 4 files can be combined linearly into a new one; each file is $Z \geq 0$ half-magnet. Field at all node of new map is $\vec{B} = \sum_{i=1}^{i=MOD2} a_i \ \vec{B}_i$. Each file has to contain $B_{X,Y,Z}(X,Y,Z)$ data over ($IZ+1$)/2 equally Z -spaced (X,Y) planes. MOD=23: special, test code (see fmapw.f).	1-4	$\mathbf{Y}(r, \theta) = r \cos \theta, \mathbf{Z},$ $\mathbf{X}(r, \theta) = r \sin \theta,$ $\mathbf{BY}, \mathbf{BZ}, \mathbf{BX}$	IZ-MODMOD2_gt1-2214 (ERIT FFAG)
odd, ≥ 3	24		3-D map, full volume. No symmetry assumed. The file contains $B_{X,Y,Z}(X,Y,Z)$ data over IZ equally Z -spaced (X,Y) planes.	1	θ , R , Z , B_{θ} , BR , BZ	

TRANSMAT	Matrix transfer		
IORDRE	Transfer matrix order	1-2	I
XL	Length (ineffective, for updating)	m	Е
For $IA = 1, 6$:			
R(IA, IB), IB = 1	, First order matrix	m, rad	6 lines 6*E each
If IORDRE = 2	Following records <i>only</i> if <i>IORDRE</i> = 2		O'L Cacii
T(IA, IB, IC),	Second order matrix, six 6*6 blocks	m, rad	36 lines 6*E each

TRAROT Translation-Rotation	TRAROT	Translation-Rotation
-----------------------------	--------	----------------------

TX, TY, TZ, Translations, rotations 3*m, 3*rad 6*E RX, RY, RZ

TWISS 1

Calculation of periodic optical parameters. Log to zgoubi.TWISS.out

KTW[.KTW2], FacD, FacA [, coupled] KTW=0/1/2/3 : Off / as $\it MATRIX$ / add computation of chromaticities / add computation of anharmonicities.

0-3[.1], 2*any [,coupled] 2

I1[.I1], 2*E [,A]

KTW2: default is NO initial computation of closed orbit, whereas

KTW2=1 will cause computation of initial closed orbit, prior to TWISS-ing; FacD \times D = B ρ /BORO value applied, with D the momentum sampling

in OBJET ; FacA : unused ;

"coupled" will cause use of coupled formalism for matrix computation from rays.

¹ TWISS may be preceded by FIT[2]. This allows finding the closed orbit prior to doing TWISS. This is ilustrated in the example page 298.

• Example: orbit finding using FIT, followed by a TWISS procedure

"KTW=2" under TWISS will cause 4 successive runs of the optical sequence and will result in the delivery of a zgoubi.TWISS.out file, and in the print out to zgoubi.res of

- the on-momentum matrix of the optical structure,
- off-momentum matrices at $\frac{dp}{p} = \pm FacD * \delta D$,
- the Twiss parameters in the hypothesis of a stable periodic structure,
- the momentum compaction, chromaticities, etc.

Un-comment the FIT instruction below, and it will first find the orbit which will then be the reference trajectory in OB-JET[KOBJ=5], in generating the 11 sample rays necessary for TWISS.

```
'OBJET'
20015.55
                                   ! Rigidity (kG.cm) for 6 GeV electrons.
5 ! Generate an 11 particle set. Normally used for MATRIX or TWISS computation.
.001 .01 .001 .01 0. .0001 ! Coordinate sampling for MATRIX computation : delta-Y, -T, -Z etc.
0. 0. 0. 0. 0. 1. ! Coordinates of the reference orbit: Y- ,T- ,Z- ,P-, s-ref (unused), D-ref
! this is the coordinates of particle numb 1 of the 11-particle set.
Optical sequence here
.....! 'FIT'
! 2
! 1 30 0 [-1.,1.] ! vary Y-ref
! 1 31 0 [-1.,1.] ! vary T-ref
   4 1e-10
                                               ! particle 1: Y initial = Y final
 ! 3.1 1 2 #End 0.1.0
! 3.1 1 3 #End 0. 1. 0
                                              ! particle 1: T initial = T final
! particle 1: Z initial = Z final
! particle 1: P initial = P final
! 3.1 1 4 #End 0. 1. 0
! 3.1 1 5 #End 0. 1. 0
 'FAISCEAU'
  'TWISS'
 2 1. 1.
'END'
                                                 ! KTW = 3, FacD = 1
```

UNDULATOR Undulator magnet

Under development, to be documented

UNIPOT	Unipotential electrostatic lens		
IL	$IL=1,2[imes 10^n],\ 7$: print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).	$0-2[\times 10^n], 7$	I
X_1, D, X_2, X_3, R_0	Length of first tube; distance between tubes; length of second and third tubes; radius	5*m	5*E
V_1, V_2	Potentials	2*V	2*E
XPAS	Integration step	cm	E
KPOS, XCE, YCE, ALE	KPOS=1: element aligned, 2: misaligned; shifts, tilt.	1-2, 2*cm, rad	I, 3*E

VENUS Sin	mulation	of a	rectangular	dipole	magnet
-----------	----------	------	-------------	--------	--------

IL	$IL=1,2[imes 10^n],\ 7$: print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).	$0-2[\times 10^n], 7$	I
XL, YL, B_0	Length; width = $\pm YL$; field	2*cm, kG	3*E
XPAS	Integration step	cm	E
KPOS, XCE, YCE, ALE	KPOS=1 : element aligned, 2 : misaligned; shifts, tilt.	1-2, 2*cm, rad	I, 3*E

Scheme of VENUS rectangular dipole.

WIENFILT ¹	Wien filter		
IL	$IL=1,2[\times 10^n],\ 7$: print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).	$0-2[\times 10^n], 7$	I
XL, E, B, HV	Length; electric field; magnetic field; option: element inactive $(HV=0)$ horizontal $(HV=1)$ or vertical $(HV=2)$ separation	m, V/m, T, 0-2	3*E, I
$X_{\mathrm{E}},\lambda_{E_E},\lambda_{B_E}$	Entrance face: Integration zone extent; fringe field extents, E and B respectively (\simeg gap height)	3*cm	3*E
C_{E0} – C_{E5} C_{B0} – C_{B5}	Fringe field coefficients for E Fringe field coefficients for B	6*no dim. 6*no dim.	6*E 6*E
$X_S, \lambda_{E_S}, \lambda_{B_S}$ $C_{E0} - C_{E5}$ $C_{B0} - C_{B5}$	Exit face: See entrance face	3*cm 6*no dim. 6*no dim.	3*E 6*E 6*E
XPAS	Integration step	cm	Е
KPOS, XCE, YCE, ALE	KPOS=1: element aligned, 2: misaligned; shifts, tilt.	1-2, 2*cm, rad	I, 3*E

 $^{^{1}\,}$ Use PARTICUL to declare mass and charge.

YMY Reverse signs of Y and Z axes

Equivalent to a 180° rotation with respect to X-axis

The use of YMY in a sequence of two dipoles of opposite signs.

PART C

Examples of input data files and output result files

Examples 307

INTRODUCTION

Several examples of the use of **zgoubi** are given here. They show the contents of the input and output data files, and are also intended to help understanding some subtleties of the data definition.

Example 1: checks the resolution of the QDD spectrometer SPES 2 of SATURNE Laboratory [64], by means of a *Monte Carlo initial object* and an *analysis of images* at the focal plane with histograms. The *measured field maps* of the spectrometer are used for that purpose. The layout of SPES 2 is given in Fig. 48.

Example 2: calculates the *first and second order transfer matrices* of an 800 MeV/c kaon beam line [65] at each of its four foci: at the end of the first separation stage (vertical focus), at the intermediate momentum slit (horizontal focus), at the end of the second separation stage (vertical focus), and at the end of the line (double focusing). The first bending is represented by its *3-D map* previously calculated with the TOSCA magnet code. The second bending is simulated with *DIPOLE*. The layout of the line is given in Fig. 49.

Example 3: illustrates the use of MCDESINT and REBELOTE with a simulation of the in-flight decay

$$K \longrightarrow \mu + \nu$$

in the SATURNE Laboratory spectrometer SPES 3 [36]. The angular acceptance of SPES 3 is ± 50 mrd horizontally and ± 50 mrd vertically; its momentum acceptance is $\pm 40\%$. The bending magnet is simulated with *DIPOLE*. The layout of SPES 3 is given in Fig. 50.

Example 4: illustrates the operation of *the fitting procedure*: a quadrupole triplet is tuned from -0.7/0.3 T to field values leading to transfer coefficients R12=16.6 and R34=-.88 at the end of the beam line. Other example can be found in [66].

Example 5: shows the use of the *spin and multi-turn tracking procedures*, applied to the case of the SATURNE 3 GeV synchrotron [7, 10, 67]. Protons with initial vertical spin $(\vec{S} \equiv \vec{S}_Z)$ are accelerated through the $\gamma G = 7 - \nu_Z$ depolarizing resonance. For easier understanding, some results are summarized in Figs. 52, 53 (obtained with the graphic post-processor **zpop**, see Part D).

Example 6: shows *ray-tracing through a micro-beam line* that involves *magneto-electrostatic quadrupoles* for the suppression of second order (chromatic) aberrations [6]. The extremely small beam spot sizes involved (less than 1 micrometer) reveal the high accuracy of the ray-tracing (Figs. 54).

Many more examples can be found on the **zgoubi** development web site [5].

308 Examples

1 MONTE CARLO IMAGES IN SPES 2

Former Saclay/SATURNE and CERN QDD mass spectrometer [64].

Figure 48: SPES 2 Layout.

zgoubi data file.

SPES2 QDD SPECTROMETER, USING FIELD MAPS; MONTE-CARLO OBJECT WITH MOMENTUM GRID. 'MCOBJET' 2335. REFERENCE RIGIDITY. DISTRIBUTION IN GRID. NUMBER OF PARTICLES. UNIFORM DISTRIBUTIONS CENTRAL VALUES OF BARS. NUMBER OF BARS IN MOMENTUM. SPACE BETWEEN MOMENTUM BARS. WIDTH OF BARS. SORTING CUT-OFFS (UNUSED) FOR P(D) (UNUSED) SEEDS. HISTO OF D. 'HISTO' 3 -60. 60. 80 1 20 'T' 1 'Q' 'HISTO' 5 -60. 60. 80 1 20 'P' 1 'Q' 'DRIFT' 41.5 HISTO OF THETAO. HISTO OF PHIO. 41.5 'CARTEMES' QUADRUPOLE MAP. 0 0 -.96136E-3 1.1. ++++ CONCORDE ++++ 39 23 IC IL. BNORM, XNorm, YNorm IX IY. field map file name, quadrupole NO LIMIT PLANE. concord.map 2 2.5 2 0 0 0 0 'DRIFT' 21.8 'CHANGREF' 0. 32.5 -35.6 'CARTEMES' XPAS. KPOS. POSITIONING OF THE 1-ST BENDING. 8 0 0 1.04279E-3 1. 1. ++++ A1 ++++ 117 52 a1.map 0 0 0 0 0 field map file name, first dipole 0 0 0 0 0 2 2.5 2 0 0 0 'CHANGREF' 0. -28.65 -27.6137 'DRIFT' 33.15 'CHANGREF' 0. 27.5 -19.88 'CARTEMES' 0 0 POSITIONING OF THE EXIT FRAME. 10 11 POSITIONING OF THE 2-ND BENDING. 12 13 0 0 1.05778E-3 1.1. ++++ A2 ++++ 132 80 field map file name, second dipole a2.map 0 0 0 0 2.5 'CHANGREF' 41. -81. -21.945 'DRIFT' POSITIONING OF THE EXIT FRAME. 3.55 'HISTO' HISTO OF Y: SHOWS THE RESOLUTION OF THE SPECTROMETER. 16 2 -.5 2. 80 1 20 'Y' 1 'Q' 'END'

Excerpt from zgoubi.res: histograms of initial beam coordinates.

		PRIMAIRES	OORDONNEE ET SECONDAI 0.9970 /	RES		
	NORMALISE		,	1.003		
0						
9						
8 7	D	D	D	D	D	
6	D	D	D	D	D	
5 4	D D	D D	D D	D D	D D	
3	D	D	D	D	D	
2	D	D	D	D	D	
L)	D 0	D 0	D 0	D 0	D 0	
9	D	D	D	D	D	
7	D D	D D	D D	D D	D D	
5	D	D	D	D	D	
1	D D	D D	D D	D D	D D	
3	D	D	D	D	D	
2	D	D	D	D	D	
L	D 123456789012345678901	D 23456789012	D 3456789012345	D 6789012345678	D 901234567890123456	57890
	2 3					
	TOTAL COMPTAGE	:	10000 SUR 1	0000		
	NUMERO DU CANAL MOYEN COMPTAGE AU " "	: 1	51			
	COMPTAGE AU " " VAL. PHYS. AU " "	: 1	.000			
	RESOLUTION PAR CANAL	: 7	.500E-0			
	PARAMETRES PHYSIQUES DE COMPTAGE =	10000 PAR	TICULES			
	MIN = 0.99	80 , MAX	= 1.002	, $MAX-MIN =$	4.0000E-03	
	MOYENNE = SIGMA = 1.					
**	1 IEX,D,Y,T,Z,P,S,time : 1 ***********************************	******		******		
**	3 HISTO HISTOGRAMME PARTICULES DANS LA F	********* DE LA COUNTY PRIMAIRES ENETRE:	*****	*********** ETA RES		
**	3 HISTO HISTOGRAMME PARTICULES DANS LA F	********* DE LA COURTINAIRES	************* OORDONNEE TH ET SECONDAI	*********** ETA RES	******	
**	3 HISTO HISTOGRAMME PARTICULES DANS LA F	********* DE LA COUNTY PRIMAIRES ENETRE:	************* OORDONNEE TH ET SECONDAI	*********** ETA RES	******	
0 9	3 HISTO HISTOGRAMME PARTICULES DANS LA F	********* DE LA COUNTY PRIMAIRES ENETRE:	************* OORDONNEE TH ET SECONDAI	*********** ETA RES	******	
* * * 9 8 7	3 HISTO HISTOGRAMME PARTICULES DANS LA F NOR	********* DE LA COUNTY PRIMAIRES ENETRE:	coordonnee TH ET SECONDAI -60.00 /	************** ETA RES 60.00	(MRD)	
* * * 9 8 7 6	3 HISTO HISTOGRAMME PARTICULES DANS LA F NOR	DE LA C PRIMAIRES ENETRE : MALISE	OORDONNEE TH ET SECONDAI -60.00 /	ETA RES 60.00	(MRD) T	****
* * * · · · · · · · · · · · · · · · · ·	3 HISTO HISTOGRAMME PARTICULES DANS LA F NOR T T T TT T TT TT	DE LA C PRIMAIRES ENETRE : MALISE TT T TTTT TT	OORDONNEE TH ET SECONDAI -60.00 /	ETA RES 60.00	(MRD) T T T T TT TT TT TT TT TTT TTT TTT T	****
* * * 9 9 8 7 6 5 4 3	HISTO HISTOGRAMME PARTICULES DANS LA F NOR T T T TT T TTTTTTTTTTTTTTTTTTTTTT	DE LA COPRIMAIRES EMETRE : MALISE TT TT TT TT TTT TTT TTTT TTT TTTT TT	OORDONNEE THE T SECONDAI -60.00 /	ETA RES 60.00 T T T T T T T T T T T T T T T T T T	(MRD) T T T T T T T T T T T T T T T T T T T	****
* * * 0 9 8 7 6 5 4 3 2 1	HISTO HISTOGRAMME PARTICULES DANS LA F NOR T T T TT T TTT TT TTTTTTTTTTTTTTTTTT	DE LA C PRIMAIRES EMETRE : MALISE TT T TTTT TT T TTTTTTTTTTT TTTTTTTTTT	OORDONNEE TH ET SECONDAI -60.00 / T T T T T TITT TITT TITT TITTTTTTTTTT	ETA RES 60.00 T T T T T T T T T TTTTTTTTTTTTTTTT	(MRD) T T T T T T T T T T T T T T T T T T	****
* * * 0 9 8 7 6 5 4 3 3 2 1 0	HISTO HISTOGRAMME PARTICULES DANS LA F NOR T T T T TT T T TTTTT TITTT TTTTTTTTTT	DE LA C PRIMAIRES ENETRE : MALISE TT TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	OORDONNEE TH ET SECONDAI -60.00 / T T T T T T TT T T TTTTTTTTTTTTTTT	ETA RES 60.00 T T T TT TITT TITT TITTITTTTT TITTITTTTTTTT	(MRD) T T T TT TT TT TT TTTTTTTTTTTTTTTTTT	****
* * * 0 9 8 7 6 5 4 3 2 1 0 9 8	HISTO HISTOGRAMME PARTICULES DANS LA F NOR T T T T TT T T TTTTTTTTTTTTTTTTTTTTT	DE LA C PRIMAIRES EMETRE : MALISE TT T TITT TT T TITTT TT TTTTTTTTTTTTT	OORDONNEE TH ET SECONDAI -60.00 / T T T T TTTT TITTT TITTTTTTTTTTTTTTTT	ETA RES 60.00 T T T T TT TTTTTTTTTTTTTTTTTTTTTTT	(MRD) T T T T T T T T T T T T T T T T T T	****
* * *	HISTO HISTOGRAMME PARTICULES DANS LA F NOR T TT T T TT T T TTTTT TTTTTTTTTTTTTT	DE LA C PRIMAIRES ENETRE : MALISE TT T TITT TT T TITTITTT TITTITTTTTTTTT	OORDONNEE TH ET SECONDAI -60.00 / T T T T T TTT TITTTTTTTTTTTTTTTTTTTT	ETA RES 60.00 T T T T TT TITTT TITT TITTTTTTTTT TITTTTTTTT	T T T T T T T T T T T T T T T T T T T	****
** 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6	B HISTO HISTOGRAMME PARTICULES DANS LA F NOR T T T T T T T T TITIT TITITIT TITITITI	DE LA C PRIMAIRES ENETRE: MALISE TT T TTTT TT T TTTTT TT TTTTTTTTTTTT	OORDONNEE TH ET SECONDAI -60.00 / T T T T T TITT TITTITITITITITITITITITI	ETA RES 60.00 T T T T TT TTTTTTTTTTTTTTTTTTTTTTT	(MRD) T T T T T T T T T T T T T T T T T T	****
** 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4	HISTO HISTOGRAMME PARTICULES DANS LA F NOR T T T T TT T T TTTTT TITTTT TITTTTTTTT	DE LA COPRIMAIRES EMETRE: MALISE TT TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	DORDONNEE TH ET SECONDAI -60.00 / T T T T T TTTT TITTTTTTTTTTTTTTTTTTT	ETA RES 60.00 T T T T T TTTTTTTTTTTTTTTTTTTTTTTT	T T T T T T T T T T T T T T T T T T T	****
** 098765432109876543	T T T T T T T T T T T T T T T T T T T	DE LA C PRIMAIRES EMETRE : MALISE TT T TTTT TT TTTTTTTTTTTTTTTTTTTTTTT	OORDONNEE TH ET SECONDAI -60.00 / T T T TT T TTTT TTTTTTTTTTTTTTTTTT	ETA RES 60.00 T T T T TTT TTTT TTTT TTTTTTTTTTTT	(MRD) T T T T T T T T T T T T T T T T T T	****
** 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2	HISTO HISTOGRAMME PARTICULES DANS LA F NOR T T T T TT T T TTTTT TITTTT TITTTTTTTT	DE LA C PRIMAIRES ENETRE : MALISE TT T TITT TT T TITTITTT TITTITTTTTTTTT	OORDONNEE TH ET SECONDAI -60.00 / T T T T T TTT TITTITITITITITITITITITIT	ETA RES 60.00 T T T T TI TITT TITT TITTITITIT TITTITITITI	(MRD) T T T T T T T T T T T T T T T T T T	****
** 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2	HISTO HISTOGRAMME PARTICULES DANS LA F NOR T T T T TT T T TTTTT TITTTT TITTTTTTTT	DE LA C PRIMAIRES ENETRE : MALISE TT TTTTTTTTT TTTTTTTTTTTTTTTTTTTTTT	OORDONNEE TH ET SECONDAI -60.00 / T T T T T T TTTTTTTTTTTTTTTTTTTTTT	ETA RES 60.00 T T T T TTTTTTTTTTTTTTTTTTTTTTTTTT	(MRD) T T T T T T T T T T T T T T T T T T	Т
** 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2	HISTO HISTOGRAMME PARTICULES DANS LA F NOR T T T T TT T T TTTT TTTTTTTTTTTTTTTT	DE LA C PRIMAIRES EMETRE : MALISE TT T TTTT TT TTTTTTTTTTTTTTTTTTTTTTT	OORDONNEE TH ET SECONDAI -60.00 / T T T T T T TTTTTTTTTTTTTTTTTTTTTT	T T T T T T T T T T T T T T T T T T T	(MRD) T T T T T T T T T T T T T T T T T T	T
** 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2	3 HISTO HISTOGRAMME PARTICULES DANS LA F NOR T T T T T T T T TITT TITTITITITITITITI	DE LA C PRIMAIRES EMETRE : MALISE TT T TTTT TT TTTTTTTTTTTTTTTTTTTTTTT	OORDONNEE TH ET SECONDAI -60.00 / T T T T T TTT TTTTTTTTTTTTTTTTTTTT	ETA RES 60.00 T T T T TTT TITTTTTTTTTTTTTTTTTTTTTT	T T T T T T T T T T T T T T T T T T T	T
** 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2	3 HISTO HISTOGRAMME PARTICULES DANS LA F NOR	DE LA C PRIMAIRES ENEMTE: MALISE TT T TTTT TT T TTTTT TT TTTTTTTTTTTT	DORDONNEE TH ET SECONDAI -60.00 / T T T T T TTTT TITT TITTTTTTTTTTTTTT	ETA RES 60.00 T T T T TTT TITTTTTTTTTTTTTTTTTTTTTT	T T T T T T T T T T T T T T T T T T T	T
** 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2	HISTO HISTOGRAMME PARTICULES DANS LA F NOR T T T T TT T T TT T T TITITITITITIT TITITITI	DE LA C PRIMAIRES EMETRE : MALISE TT T TITT TT T TITTTTTTTTTTTTTTTTTTTT	OORDONNEE TH ET SECONDAI -60.00 / T T T T T TT T TTTTTTTTTTTTTTTTTTT	ETA RES 60.00 T T T T TT TTT TTTT TTTT TTTTTTTTTT	T T T T T T T T T T T T T T T T T T T	T
** 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2	HISTO HISTOGRAMME PARTICULES DANS LA F NOR T T T T T T T T TIT T T TITITITITITIT TOUTITITITITIT TITITITITITIT TITITITITITIT	DE LA C PRIMAIRES ENETRE : MALISE TT T TTTT TT T TTTTT TT TTTTTTTTTTTT	OORDONNEE TH ET SECONDAI -60.00 / T T T T T TITT TITTITITITITITITITITITI	T T T T T T T T T T T T T T T T T T T	T T T T T T T T T T T T T T T T T T T	T
** 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2	HISTO HISTOGRAMME PARTICULES DANS LA F NOR T T T T TT T T TT T T TITITITITITIT TITITITI	DE LA C PRIMAIRES ENETRE: MALISE TT T TTITT TT T TTITT TT TTTTTTTTTTTT	OORDONNEE TH ET SECONDAI -60.00 / T T T T T TT T TTTTTTTTTTTTTTTTTTT	T T T T T T T T T T T T T T T T T T T	T T T T T T T T T T T T T T T T T T T	T
** 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2	HISTO HISTOGRAMME PARTICULES DANS LA F NOR T T T T TT T T T T TT T T T TITITITITI	DE LA C PRIMAIRES ENERTE: MALISE TT T TTTT TT TTTTTTTTTTTTTTTTTTTTTTT	OORDONNEE THE T SECONDAI -60.00 / TT T T T T T T T T T T T T T T T T	T T T T T T T T T T T T T T T T T T T	T T T T T T T T T T T T T T T T T T T	T
**	HISTO HISTOGRAMME PARTICULES DANS LA F NOR T T T T TT T T TT T T TITITITITITITITI	DE LA C PRIMAIRES ENEMTE : MALISE TT T TTTT TT T TTTTT TT TTTTTTTTTTTT	DORDONNEE TH ET SECONDAI -60.00 / T T T T T TTTT TITT TITTTTTTTTTTTTTT	ETA RES 60.00 T T T T T T T T T T T T T T T T T T	(MRD) T T T T T T T T T T T T T T T T T T	T
* * *	HISTO HISTOGRAMME PARTICULES DANS LA F NOR T T T T TT T T TT T T TITITITITITITITI	DE LA C PRIMAIRES ENETRE : MALISE TT T TITT TT T TITTT TT T TITTTTTTTT TTTTTTTT	OORDONNEE TH ET SECONDAI -60.00 / T T T T T T T TT T TTTTTTTTTTTTTTT	ETA RES 60.00 T T T T T T T T T T T T T T T T T T	(MRD) T T T T T T T T T T T T T T T T T T	T

```
### HISTO

### HISTOGRAMME DE LA COORDONNEE PHI
PARTICULES PRIMATRES ET SECONDAIRES
DANS LA FENETRE : -60.00 / 60.00 (MRD)

NORMALISE

**PROPERCIONAL PROPERCIONAL PROPERCION
```

Excerpt from zgoubi.res: the final momentum resolution histogram at the spectrometer focal surface.

2 TRANSFER MATRICES ALONG A TWO-STAGE SEPARATION KAON BEAM LINE

800 MeV/c kaon beam line at BNL Alternating Gradient Synchrotron [65]. The line includes two separation Wien filters.

Layout of LESB3 beamline.

Figure 49: 800 MeV/c kaon beam line layout.

zgoubi data file.

'OBJET' 2668.5100	BEAM LINE. CAL		RANSFER COEFFICIENTS.	1
6	0001	AN OBJE	CT FOR CALCULATION FIRST ORDER TRANSFER	
0. 0. 0. 0. 0. 'PARTICUL'	1.	COEFFICI	ENTS WITH 'MATRIX'	2
'DRIFT'	7733E-19 0. 0.	O. KAON M &	Q, FOR USE IN WIEN FILTER	3
35.00000 'QUADRUPO'		Q1		4
0 76.2 15.24	13.6			
30. 30. 4 0.2490 30. 30.	5.3630 -2.4100	0.9870 0.	0.	
4 0.2490	5.3630 -2.4100	0.9870 0.	0.	
1 0.0.0. 'DRIFT'				5
25.00000 'QUADRUPO'		Q2		6
-	-11.357			
	5.3630 -2.4100	0.9870 0.	0.	
4 0.2490	5.3630 -2.4100	0.9870 0.	0.	
1 0.0.0. 'DRIFT'				7
-1.898 'TOSCA' 0 0		3-D MAP	THE OF FIRST BENDING MAGNET	8
1.0313E-3 1. 1 1D map at z=0,		в, х, у,	Z NORMALIZATION COEFFCNTS	5
59 39 1 0 bw6_0.map	100011			
0 0.0.0.				
1.1				
'CHANGREF' 070.78 -43 'FAISCEAU'	.8			9
'DRIFT' -49.38				11
'OCTUPOLE'				12
10. 15.24 .6				
0.0.	5.3630 -2.4100 5.3630 -2.4100			
.4	3.3630 -2.4100	0.9070 0.	0.	
'SEXTUPOL' 0 10. 15.24 2.4			MPENSATION Theta.Phi ABERRATION	13
	5.3630 -2.4100	0.9870 0.	0.	
	5.3630 -2.4100	0.9870 0.	0.	
.4 1 0.0.0.				
				14
'DRIFT' 50.0 'WIENFILT'		FIRST V	PERTICAL WIEN FILTER	14 15
'DRIFT' 50.0 'WIENFILT' 0 2.16 55.E5	0215576 2	FIRST V	ERTICAL WIEN FILTER	
'DRIFT' 50.0 'WIENFILT' 0 2.16 55.E5 20.10.10. 0.2401 1.8639 0.2401 1.8639	-0.5572 0.390	4 0. 0.	FERTICAL WIEN FILTER	
'DRIFT' 50.0 'WIENFILT' 0 2.16 55.E5 20. 10. 10. 0.2401 1.8639 0.2401 1.8639 20. 10. 10. 0.2401 1.8639	-0.5572 0.390 -0.5572 0.390 -0.5572 0.390	4 0. 0. 4 0. 0. 4 0. 0.	PERTICAL WIEN FILTER	
'DRIFT' 50.0 'WIENFILT' 0 2.16 55.E5 20. 10. 10. 0.2401 1.8639 0.2401 1.8639 20. 10. 10. 0.2401 1.8639 1. 0.2401 1.8639	-0.5572 0.390 -0.5572 0.390 -0.5572 0.390	4 0. 0. 4 0. 0. 4 0. 0.	VERTICAL WIEN FILTER	
'DRIFT' 50.0 'WIENFILT' 0 2.16 55.E5 - 20. 10. 10. 0.2401 1.8639 0.2401 1.8639 0.2401 1.8639 1. 1. 0. 0. 0. 0. 'PRIFT'	-0.5572 0.390 -0.5572 0.390 -0.5572 0.390	4 0. 0. 4 0. 0. 4 0. 0.	ERTICAL WIEN FILTER	
'DRIFT' 50.0 'WIENFILT' 0 2.16 55.E5 20. 10. 10. 0.2401 1.8639 0.2401 1.8639 0.2401 1.8639 0.2401 1.8639 1. 1. 0. 0. 0. 'DRIFT' 30. 'QUADRUPO' 0	-0.5572 0.390 -0.5572 0.390 -0.5572 0.390 -0.5572 0.390	4 0. 0. 4 0. 0. 4 0. 0.	FILTER FILTER	15
'DRIFT' 50.0 'WIENFILT' 0 2.16 55.E5 20. 10. 10. 0.2401 1.8639 0.2401 1.8639 0.2401 1.8639 0.2401 1.8639 1. 1. 0. 0. 0. 'DRIFT' 30. 'QUADRUPO' 0 45.72 15.24 30. 30.	-0.5572 0.390 -0.5572 0.390 -0.5572 0.390 -0.5572 0.390	4 0. 0. 4 0. 0. 4 0. 0. 4 0. 0.		15
'DRIFT' 50.0 'WIENFILT' 0 2.16 55.E5 20.10.10. 0.2401 1.8639 0.2401 1.8639 0.2401 1.8639 0.2401 1.8639 1. 1. 0. 0. 0. 'DRIFT' 30. 'QUADRUPO' 0 45.72 15.24 30.30. 4 0.2490 30.30.	-0.5572 0.390 -0.5572 0.390 -0.5572 0.390 -0.5572 0.390 -0.5572 0.390 -6.34	4 0. 0. 4 0. 0. 4 0. 0. 4 0. 0. Q3	0.	15
'DRIFT' 50.0 'WIENFILT' 0 2.16 55.E5 20.10.10. 0.2401 1.8639 20.10.10. 0.2401 1.8639 0.2401 1.8639 1. 0.0.0. 'DRIFT' 30. 'QUADRUPO' 0 45.72 15.24 30.30. 4 0.2490 1.1	-0.5572 0.390 -0.5572 0.390 -0.5572 0.390 -0.5572 0.390	4 0. 0. 4 0. 0. 4 0. 0. 4 0. 0. Q3		15
'DRIFT' 50.0 'WIENFILT' 0 2.16 55.E5 20. 10. 10. 0.2401 1.8639 0.2401 1.8639 0.2401 1.8639 0.2401 1.8639 1. 1. 0. 0. 0. 'DRIFT' 30. 'QUADRUPO' 0 45.72 15.24 30. 30. 4 0.2490 30. 30. 4 0.2490	-0.5572 0.390 -0.5572 0.390 -0.5572 0.390 -0.5572 0.390 -0.5572 0.390 -6.34	4 0. 0. 4 0. 0. 4 0. 0. 4 0. 0. Q3 0.9870 0.	O. O.	15
'DRIFT' 50.0 'WIENFILT' 0 2.16 55.E5 20. 10. 10. 0.2401 1.8639 0.2401 1.8639 0.2401 1.8639 1. 1. 0. 0. 0. 'ORIFT' 30. 'QUADRUPO' 0 45.72 15.24 30. 30. 4 0.2490 30. 30. 4 0.2490 1.1 1 0. 0. 0. 'DRIFT' 10. 0 0. 'DRIFT'	-0.5572 0.390 -0.5572 0.390 -0.5572 0.390 -0.5572 0.390 -0.5572 0.390 -6.34 5.3630 -2.4100	4 0. 0. 4 0. 0. 4 0. 0. 4 0. 0. 0.9870 0. 0.9870 0. SX2 + OC OF THE	0. 0. ETU, COMPENSATION D.Phi AND D2.Phi	15 16 17 18 19
'DRIFT' 50.0 'WIENFILT' 0 2.16 55.E5 20. 10.10. 0.2401 1.8639 20. 10. 10. 0.2401 1.8639 0.2401 1.8639 1. 1. 0. 0. 0. 'DRIFT' 30. 4 0.2490 30. 30. 4 0.2490 30. 30. 1 0. 0. 0. 'DRIFT' 10. 0. 0. 'MULTIPOL' 0 10. 15.24 0.	-0.5572 0.390 -0.5572 0.390 -0.5572 0.390 -0.5572 0.390 -0.5572 0.390 -6.34 5.3630 -2.4100 08. 1.2 0 0. 0. 0. 0. 0. 0.	4 0. 0. 4 0. 0. 4 0. 0. 4 0. 0. 9870 0. 0.9870 0. \$X2 + OC OF THE	0. 0. STU, COMPENSATION D.Phi AND D2.Phi 0. ABERRATIONS AT VF1	15 16 17 18 19
'DRIFT' 50.0 'WIENFILT' 0 2.16 55.E5 20. 10. 10. 0.2401 1.8639 20. 10. 10. 0.2401 1.8639 0.2401 1.8639 1. 1. 0. 0. 0. 'DRIFT' 30. 4 0.2490 30. 30. 4 0.2490 1.1 1 0. 0. 0. 'DRIFT' 10. 0. 'MULTIPOL' 0 15.24 0. 0. 0. 0. 0. 4 0.2490 0. 0. 0. 0. 0.	-0.5572 0.390 -0.5572 0.390 -0.5572 0.390 -0.5572 0.390 -0.5572 0.390 -6.34 5.3630 -2.4100 08. 1.2 0 0. 0. 0. 0. 0. 5.3630 -2.4100	4 0. 0. 4 0. 0. 4 0. 0. 4 0. 0. 9870 0. 0.9870 0. SX2 + OC OF THE 0. 0. 0. 0. 0. 0.9870 0.	O. O. TU, COMPENSATION D.Phi AND D2.Phi O. ABERRATIONS AT VF1	15 16 17 18 19
'DRIFT' 50.0 'WIENFILT' 0 'L16 55.E5 20.10.10. 0.2401 1.8639 0.2401 1.8639 0.2401 1.8639 0.2401 1.8639 1. 1. 0. 0. 0. 'QUADRUPO' 0 45.72 15.24 30. 30. 4 0.2490 30. 30. 4 0.2490 1.1 1 0. 0. 0. 'DRIFT' 10.0 'MULTIPOL' 0 10. 15.24 0. 0. 0. 0. 0. 4 0.2490 0. 0. 0. 0. 0. 4 0.2490 0. 0. 0. 0. 0. 4 0.2490 0. 0. 0. 0. 0.	-0.5572 0.390 -0.5572 0.390 -0.5572 0.390 -0.5572 0.390 -0.5572 0.390 -6.34 5.3630 -2.4100 08. 1.2 0 0. 0. 0. 0. 0. 5.3630 -2.4100	4 0. 0. 4 0. 0. 4 0. 0. 4 0. 0. 9870 0. 0.9870 0. SX2 + OC OF THE 0. 0. 0. 0. 0. 0.9870 0.	0. 0. STU, COMPENSATION D.Phi AND D2.Phi 0. ABERRATIONS AT VF1	15 16 17 18 19
'DRIFT' 50.0 'WIENFILT' 0 2.16 55.E5 20. 10. 10. 0.2401 1.8639 20. 10. 10. 0.2401 1.8639 0.2401 1.8639 1. 1. 0. 0. 0. 'MRIFT' 30. 4 0.2490 30. 30. 4 0.2490 1.1 1 0. 0. 0. 'DRIFT' 10. 0 10. 15.24 0. 0.0. 0.0. 4 0.2490 0.0. 0. 0. 4 0.2490 0.0. 0. 0. 4 0.2490 0.0. 0. 0. 0. 4 0.2490 0.0. 0. 0. 0. 4 0.2490 0.0. 0. 0. 0. 4 0.2490 0.0. 0. 0. 0. 4 0.2490 0.0. 0. 0. 0. 4 0.2490 0.0. 0. 0. 0. 5 0. 0. 0. 0. 4 0.2490 0. 0. 0. 0. 0. 0.	-0.5572 0.390 -0.5572 0.390 -0.5572 0.390 -0.5572 0.390 -0.5572 0.390 -6.34 5.3630 -2.4100 08. 1.2 0 0. 0. 0. 0. 0. 5.3630 -2.4100	4 0. 0. 4 0. 0. 4 0. 0. 4 0. 0. 9870 0. 0.9870 0. SX2 + OC OF THE 0. 0. 0. 0. 0. 0.9870 0.	O. O. TU, COMPENSATION D.Phi AND D2.Phi O. ABERRATIONS AT VF1	15 16 17 18 19
'DRIFT' 50.0 'WIENFILT' 0 2.16 55.E5 20. 10. 10. 0.2401 1.8639 0.2401 1.8639 0.2401 1.8639 0.2401 1.8639 1. 1. 0. 0. 0. 'DRIFT' 30. 40.2400 45.72 15.24 30. 30. 4 0.2490 30. 30. 4 0.2490 1.1 1 0. 0. 0. 'PRIFT' 10.0 'MULTIPOL' 0 10. 15.24 0. 0. 0. 0. 0. 0. 4 0.2490 0. 0. 0. 0. 0. 4 0.2490 0. 0. 0. 0. 0.	-0.5572 0.390 -0.5572 0.390 -0.5572 0.390 -0.5572 0.390 -0.5572 0.390 -6.34 5.3630 -2.4100 08. 1.2 0 0. 0. 0. 0. 0. 5.3630 -2.4100	4 0. 0. 4 0. 0. 4 0. 0. 4 0. 0. 4 0. 0. 0.9870 0. 0.9870 0. SX2 + OC OF THE 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	O. O. TU, COMPENSATION D.Phi AND D2.Phi O. ABERRATIONS AT VF1	15 16 17 18 19

```
'COLLIMA'
                                                       FIRST VERTICAL FOCUS,
MASS SLIT
 2
2 14.6 .15E10 0.0.
    20.0
 'QUADRUPO'
                                                           05
                                                                                                                 24
   45.72 15.24 10.93
 45.72 15.24 10.93
30.30.
4 0.2490 5.3630 -2.4100 0.9870 0. 0.
30.30.
4 0.2490 5.3630 -2.4100 0.9870 0. 0.
1.1
1 0.0.0.0.
                                                                                                                25
'MULTIPOL'

COMPENSATION OF
ABERRATIONS AT VF2

10. 15.24 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
4 0.2490 5.3630 -2.4100 0.9870 0. 0.
4 0.2490 5.3630 -2.4100 0.9870 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
1 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
1 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 .4
1 0.0.0.
    10.0
 'QUADRUPO'
                                                           0.6
                                                                                                                 28
   45.72 15.24 -11.18
   30. 30.
4 0.2490 5.3630 -2.4100 0.9870 0. 0.
   4 0.2490 5.3630 -2.4100 0.9870 0. 0.

4 0.2490 5.3630 -2.4100 0.9870 0. 0.

1.1
 1.1
1 0.0.0.
                                                                                                                 29
   50.0
'WIENFILT'
                                                      SECOND VERTICAL WIEN FILTER
 0
2.16 -55.E5 .0215576 2
20.10.10.
0.2401 1.8639 -0.5572 0.3904 0. 0.
0.2401 1.8639 -0.5572 0.3904 0. 0.
 0.2401 1.8639 -0.5572 0.3904 0. 0.

0.2401 1.8639 -0.5572 0.3904 0. 0.

0.2401 1.8639 -0.5572 0.3904 0. 0.
1.
1. 0. 0. 0.
'DRIFT'
                                                                                                                 31
    30.0
 'QUADRUPO'
                                                          07
                                                                                                                 32
   30. 30.

0.2490 5.3630 -2.4100 0.9870 0. 0.
   4 0.2490 5.3630 2.....
30. 30.
4 0.2490 5.3630 -2.4100 0.9870 0. 0.
 4 0.2490 5.36
1.1
1 0.0.0.
'DRIFT'
25.00000
'QUADRUPO'
                                                                                                                 33
                                                                                                                 34
   45.72 15.24 8.085
  45.72 15.2. 30. 30. 30. 4 0.2490 5.3630 -2.4100 0.9870 0. 0.
 4 0.2490 5.3630 -2.4100 0.9870 0. 0.
30. 30.
4 0.2490 5.3630 -2.4100 0.9870 0. 0.
1.1
1 0.0.0.
'DRIFT'
    40.0
 'COLLIMA'
                                                         SECOND VERTICAL FOCUS,
                                                                                                                 36
  COLLIMA' SECOND VERTICAL FOCUS,

MASS SLIT

1 17. .2E10 0.0.

MATRIX' TRANSFER COEFFICIENTS
 2
1 17.
                                                                                                                 37
 2 0
'DRIFT'
  -25.0
'DIPOLE-M'
                                                        SIMULATION OF THE MAP
OF THE SECOND BENDING MAGNET
(UPGRADED VERSION OF 'AIMANT')
                                                                                                                39
  OF THE :
150 60 (UPGRADED
18.999 0.0.0.
79.3329 17.7656 140.4480 110. 170.
15. -1.
4 .1455 2.2670 -.6395 1.1558 0.0.0.
15. -1.
4 .1455 0.007
  2.5
   147.48099 -0.31007 147.48099 0.31007
                                                                                                                 40
   35.56 12.7 -13.69 -13.91
   30. 25.4

4 0.2490 5.3630 -2.4100 0.9870 0. 0.

30. 25.4

4 0.2490 5.3630 -2.4100 0.9870 0. 0.
  .5
```

Excerpt of zgoubi.res: first and second order transfer matrices and higher order coefficients at the end of the line

```
FIRST ORDER COEFFICIENTS ( MKSA ):
                                                                              -3.049728E-04 -1.165832E-04
4.700517E-05 1.763910E-05
-3.60817 -1.731805E-02
-2.05043 -0.286991
-2.264218E-05 -8.0]5?**
                                                                                                                                                          0.00000
0.00000
0.00000
                                               -4.453265E-02 -3.049728E-04
                -2.05368 0.270335
2.240965E-05 -8.687757E-07
1.185290E-05 -4.356398E-07
                                                                                                                                                                                      -9.561918E-02
-7.815367E-02
-3.983392E-02
                                                                                                                                                          0.00000
               -0.387557
                                                  2.313953E-02
                                                                                                                                                                                         0.374917
                                                    0.00000
                                         -0.1170246601, DetZ-1 =
               R12=0 at 0.1647 m,
                                                                               R34=0 at -0.6034E-01 m
        First order sympletic conditions (expected values = 0):
-0.1170 3.4614E-06 -1.8207E-04 3.0973E-05 4.6007E-04 -8.0561E-05
                       SECOND ORDER COEFFICIENTS ( MKSA ):
            7.34 1 21 -1.78 1 31 1.399E-02 1 41 1.456E-02 -1.78 1 22 -530. 1 32 -1.308E-03 1 42 -1.743E-03 1.399E-02 1 23 -1.308E-03 1 33 -0.611 1 43 -0.522 1.456E-02 1 24 -1.743E-03 1 34 -0.522 1 44 0.163 0.00 1 25 0.00 1 35 0.00 1 45 0.00 36.3 1 26 12.3 1 36 -2.771E-02 1 46 -2.211E-02
                                                                                                                                                       1 51
1 52
1 53
1 54
1 55
1 56
                                                                                                                                                                                               1 61 36.3
1 62 12.3
1 63 -2.771E-02
1 64 -2.21E-02
                                                                                                                                                                        0.00
0.00
0.00
0.00
  1 13
1 14
             -303. 2 21 3.81 2 31 3.684E-02
3.81 2 22 -62.9 2 32 -5.821E-04
3.684E-02 2 23 -5.821E-04 2 33 1.05
3.581E-02 2 24 -1.638E-04 2 34 1.94
0.00 2 25 0.00 2 35 0.00
                                                                                                                  2 41 3.581E-02
2 42 -1.638E-04
2 43 1.94
2 44 6.70
                                                                                                                                                                         0.00
  2 12
2 13
                                                                                                                                                         2 52
2 53
                                                                                                                                                                                                2 62 -0.759
2 63 -1.031E-02
                                                                                                                                                          2 54
                                                                                                                                                                         0.00
                                                                                                                                                                                                2 64 -4.285E-02
                                       3 21 2.158E-02
3 22 64.6
3 23 1.61
3 24 0.496
                                                                            3 31 20.6
3 32 1.61
3 33 0.710
3 34 0.128
                                                                                                                   3 41 86.0
3 42 0.496
3 43 0.128
3 44 64.8
                                                                                                                                                         3 51
3 52
3 53
3 54
3 55
3 56
                                                                                                                                                                        0.00
0.00
0.00
0.00
  3 11 -0.145
3 12 2.158E-02
                                                                                                                                                                                                3 61 -0.201
3 62 8.793E-02
  3 13
             20.6
86.0
                                                                                                                                                                                                3 63
3 64
                                                                                                                                                                                                               39.1
7.17
                                    4 21 1.146E-02
4 22 33.0
4 23 0.787
4 24 0.157
4 25 0.00
4 26 3.566E-02
                                                                             4 31
4 32
4 33
4 34
4 35
4 36
                                                                                                                   4 41 47.3
4 42 0.157
4 43 6.774E-02
4 44 33.1
4 45 0.00
4 46 1.05
                                                                                                                                                         4 51
4 52
4 53
4 54
4 55
4 56
                                                                                                                                                                                                4 61 -0.127
4 62 3.566E-02
                                                                                         0.787
0.365
6.774E-02
0.00
17.5
                                                                                                                                                                         0.00
0.00
0.00
0.00
  4 12 1.146E-02
  4 13 10.7
4 14 47.3
4 15 0.00
                                                                                                                                                                                                4 63
4 64
5 11 568.

5 12 -7.67

5 13 -5.970E-02

5 14 -5.682E-02

5 15 0.00

5 16 -25
                                                                                                                   5 41 -5.682E-02
5 42 6.947E-04
5 43 10.2
5 44 1.59
5 45 0.00
5 46 0.129
                                        5 21 -7.67
                                                                              5 31 -5.970E-02
                                                                                                                                                          5 51
                                                                                                                                                                                                5 61
                                      5 21 -7.67
5 22 225.
5 23 1.283E-03
5 24 6.947E-04
5 25 0.00
5 26 2.77
                                                                           5 31 -5.970E-02
5 32 1.283E-03
5 33 19.2
5 34 10.2
5 35 0.00
5 36 0.215
                                                                                                                                                         5 52
5 53
5 54
5 55
5 56
                                                                                                                                                                         0.00
                                                                                                                                                                                                5 62 2.77
5 63 0.215
                       HIGHER ORDER COEFFICIENTS ( MKSA ):
                   Y/Y3
                                                    5784.8
                                               9.40037E+05
0.70673
0.42104
                                                  -18607.
1.04607E+05
                    T/Z3
                                                -0.10234
                                                  5.25793E-02
                   T/P3
                   2/V3
                   P/Y3
                                                15.460
                                                     7.5264
                                                  -409 98
                                                  -389.15
```

3 IN-FLIGHT DECAY IN SPES 3

Figure 50: Layout of SPES 3 spectrometer.

zgoubi data file

	CAY IN SPES3 SPECTROMETER	1
'MCOBJET' 3360. 1 200	REFERENCE RIGIDITY (PION). DISTRIBUTION IN WINDOW. BUNCHES OF 200 PARTICLES.	1
1 1 1 1 1 1 1 1 0. 0. 0. 1.	UNIFORM DISTRIBUTION CENTRAL VALUES OF BARS.	
.5e-2 50.e-3 .5e-2 50.e-3 0. 0.4 1 1 1 1 1	WIDTH OF BARS.	
9 9. 9. 9. 9. 186387 548728 472874	UNUSED. SEEDS.	
'PARTICUL' 139.6000 0. 0. 26.03E-9 0.	PION MASS AND LIFE TIME	2
	PION -> MUON + NEUTRINODECAY	3
136928 768370 548375 'ESL'		4
	STOPS ABERRANT MUONS.	5
1 1 100.10.245.0.		6
2	TOTAL ANGLE AT, CENTRAL RADIUS RN	
33. 30. 0. 0. 0. 461.	CENTRAL ANGLE, FIELD, INDICES ENTRANCE EFB	4
414552 5.21405 -3.38307 14.0629 15. 065. 0. 065.	0. 0. 0.	
461. 414552 5.21405 -3.38307 14.0629	EXIT EFB 0. 0. 0.	
-15. 69. 85. 0. 1.E6 1.		
	LATERAL EFB (INHIBITED)	
0. 0. 414552 5.21405 -3.38307 14.0629		
414552 5.21405 -3.38307 14.0629 -15. 69. 85. 0. 1.E6 1.	0. 0. 0. E6 1E6	
414552 5.21405 -3.38307 14.0629 -15. 69. 85. 0. 1.E6 1. 2 10.0 4.	0. 0. 0.	
414552 5.21405 -3.38307 14.0629 -15. 69. 85. 0. 1.E6 1. 2 10.0 4. 2 164.755 .479966 233.554057963	0. 0. 0. E6 1E6 2ND DEGREE INTERP., MESH 0.4 CM	
414552 5.21405 -3.38307 14.0629 -15. 69. 85. 0. 1.E6 1. 2 10.0 4. 2 164.755 .479966 233.554057963 'CHAMBR' 2	0. 0. 0. E6 1E6 2ND DEGREE INTERP., MESH 0.4 CM	7
414552 5.21405 -3.38307 14.0629 -15. 69. 85. 0. 1.E6 1. 2 10.0 4. 2 164.755 .479966 233.554057963 'CHAMBR' 2 1 100. 10. 245. 0. 'CHANGREF'	0. 0. 0. E6 1E6 2ND DEGREE INTERP., MESH 0.4 CM STEP SIZE TILT ANGLE OF	7
414552 5.21405 -3.38307 14.0629 -15. 69. 85. 0. 1.E6 1. 2 10.0 4. 2 164.755 .479966 233.554057963 'CHAMBR' 2 1 100. 10. 245. 0. 'CHANGREF' 0. 049. 'HISTO'	0. 0. 0. E6 1E6 2ND DEGREE INTERP., MESH 0.4 CM STEP SIZE	8
414552 5.21405 -3.38307 14.0629 -15. 69. 85. 0. 1.E6 1. 2 10.0 4. 2 164.755 .479966 233.554057963 'CHAMBR' 2 1 100. 10. 245. 0. 'CHANGREF' 0. 049. 'HISTO' 2 -170. 130. 60 1 20 'Y' 1 'Q'	0. 0. 0. E6 1E6 2ND DEGREE INTERP., MESH 0.4 CM STEP SIZE TILT ANGLE OF FOCAL PLANE. TOTAL SPECTRUM (PION + MUON).	8
414552 5.21405 -3.38307 14.0629 -15. 69. 85. 0. 1.E6 1. 2 10.0 4. 2 164.755 .479966 233.554057963 'CHAMBR' 2 1 100. 10. 245. 0. 'CHANGREF' 0. 049. 'HISTO' 2 -170. 130. 60 1 20 'Y' 1 'Q' 'HISTO' 2 -170. 130. 60 2	0. 0. 0. E6 1E6 2ND DEGREE INTERP., MESH 0.4 CM STEP SIZE TILT ANGLE OF FOCAL PLANE. TOTAL SPECTRUM (PION + MUON).	8
414552 5.21405 -3.38307 14.0629 -15. 69. 85. 0. 1.E6 1. 2 10.0 4. 2 164.755 .479966 233.554057963 'CHAMBR' 2 1 100. 10. 245. 0. 'CHANGREF' 0. 049. 'HISTO' 2 -170. 130. 60 1 20 'Y' 1 'Q' 'HISTO' 2 -170. 130. 60 2 20 'P' 1 'P' 'HISTO'	0. 0. 0. E6 1E6 2ND DEGREE INTERP., MESH 0.4 CM STEP SIZE TILT ANGLE OF FOCAL PLANE. TOTAL SPECTRUM (PION + MUON).	8
414552 5.21405 -3.38307 14.0629 -15. 69. 85. 0. 1.E6 1. 2 10.0 4. 2 164.755 .479966 233.554057963 'CHAMBR' 2 1 100. 10. 245. 0. 'CHANGREF' 0. 049. 'HISTO' 2 -170. 130. 60 1 20 'Y' 1 'Q' 'HISTO' 2 -170. 130. 60 2 20 'P' 1 'P'	0. 0. 0. E6 1E6 2ND DEGREE INTERP., MESH 0.4 CM STEP SIZE TILT ANGLE OF FOCAL PLANE. TOTAL SPECTRUM (PION + MUON). PION SPATIAL SPECTRUM AT FOCAL PLANE. MUON SPATIAL SPECTRUM	8 9 10
414552 5.21405 -3.38307 14.0629 -15. 69. 85. 0. 1.E6 1. 2 10.0 4. 2 164.755 .479966 233.554057963 'CHAMBR' 2 1 100. 10. 245. 0. 'CHANGREF' 0. 049. 'HISTO' 2 -170. 130. 60 1 20 'Y' 1 'Q' 'HISTO' 2 -170. 130. 60 2 20 'P' 1 'P' 'HISTO' 2 -170. 130. 60 3 20 'Y' 1 'S'	0. 0. 0. E6 1E6 2ND DEGREE INTERP., MESH 0.4 CM STEP SIZE TILT ANGLE OF FOCAL PLANE. TOTAL SPECTRUM (PION + MUON). PION SPATIAL SPECTRUM AT FOCAL PLANE. MUON SPATIAL SPECTRUM AT FOCAL PLANE.	8 9 10
414552 5.21405 -3.38307 14.0629 -15. 69. 85. 0. 1.E6 1. 2 10.0 4. 2 164.755 .479966 233.554057963 'CHAMBR' 2 1 100. 10. 245. 0. 'CHANGREF' 0. 049. 'HISTO' 2 -170. 130. 60 1 20 'Y' 1 'Q' 'HISTO' 2 -170. 130. 60 2 20 'P' 1 'P' 'HISTO' 2 -170. 130. 60 3 20 'Y' 1 'S' 'HISTO' 1 .2 1.7 60 3	0. 0. 0. E6 1E6 2ND DEGREE INTERP., MESH 0.4 CM STEP SIZE TILT ANGLE OF FOCAL PLANE. TOTAL SPECTRUM (PION + MUON). PION SPATIAL SPECTRUM AT FOCAL PLANE. MUON SPATIAL SPECTRUM AT FOCAL PLANE. MUON MOMENTUM SPECTRUM AT FOCAL PLANE.	8 9 10

Excerpt of zgoubi.res: histograms of primary and secondary particles at focal surface of SPES3.

```
9 HISTO TOTAL SPECTRUM
                                                                                                                                                                        **************************
                                                                                                                                                                              11 HISTO
                                                                                                                                                                                                                             SPATTAL.
                                               HISTOGRAMME DE LA COORDONNEE Y
PARTICULES PRIMAIRES ET SECONDAIRES
DANS LA FENETRE : -1.7000E+02 / 1.
NORMALISE
                                                                                                                                                                                                                               HISTOGRAMME DE LA COORDONNEE Y
PARTICULES SECONDAIRES
DANS LA FENETRE: -1.7000E+02 / 1.3000E+02 (CM)
                                                                                                                       1.3000E+02 (CM)
                                                                                                                                                                                                                               NORMALISE
                                                                                                                                                                                                                                     YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
                                                                               YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
                                                                               YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
                                                                              YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
                                                                             YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
                                                1234567890123456789012345678901234567890123456789012345678901
                                                                                                                                                                                                                         123456789012345678901234567890123456789012345678901234567890
                                                                                           : 9887 SUR 10000
: 55
: 281
                               TOTAL COMPTAGE
                                                                                                                                                                                                      TOTAL COMPTAGE : 605 SUR 1
NUMERO DU CANAL MOYEN : 50
COMPTAGE AU " : 14
VAL. PHYS. AU " : -2.500E+01 (CM)
RESOLUTION PAR CANAL : 5.000E+00 (CM)
                               NUMERO DU CANAL MOYEN
COMPTAGE AU " "
                                                                                                                                                                                                                                                                                 605 SUR 10000
50
14
                               COMPTAGE AU " "
VAL. PHYS. AU " "
RESOLUTION PAR CANAL
                              PARAMETRES PHYSIQUES DE LA DISTRIBUTION:

COMPTAGE = 9887 PARTICULES

MIN = -1.6687E+02, MAX = 9.4131E+01, MAX-MIN = 2.6100E+02 (CM)

MOYENNE = -9.2496E-01 (CM)

SIGMA = 5.3583E+01 (CM)
                                                                                                                                                                                                      PARAMETRES PHYSIQUES DE LA DISTRIBUTION:

COMPTAGE = 605 PARTICULES

MIN= -1.6687E+02, MAX = 9.4131E+01, MAX-MIN = 2.6100E+02 (CM)

MOYENNE = -2.2782E+01 (CM)

SIGMA = 5.4452E+01 (CM)
        10 HISTO
                                                                                                                                                                       *************************
                                                HISTOGRAMME DE LA COORDONNEE Y
PARTICULES PRIMAIRES
DANS LA FENETRE: -1.7000E+02 / 1.3000E+02 (CM)
NORMALISE
                                                                                                                                                                                  12 HISTO MUON MOMENTUM
                                                                                                                                                                                                                         HISTOGRAMME DE LA COORDONNEE D
PARTICULES SECONDAIRES
DANS LA FENETRE: 2.0000E-01 / 1.7000E+00
NORMALISE
     20
19
18
17
16
15
14
13
12
                                                                              ddddddddddddddddddd ddd
                                                                                                                                                                                                                                           ddddddddddddddddddddddddddddd
                                                                                                                                                                                                                                       1234567890123456789012345678901234567890123456789012345678901
                                                                                                                                                                                                                        12345678901234567890123456789012345678901234567890123456789
                              TOTAL COMPTAGE

NUMERO DU CANAL MOYEN
COMPTAGE AU " "
VAL. PHYS. AU " "
RESOLUTION PAR CANAL
                                                                                           : 9282 SUR 10000
: 55
: 264
                                                                                                                                                                                                       TOTAL COMPTAGE : 605 SUR 10000 NUMERO DU CANAL MOYEN : 46 COMPTAGE AU " : 16 TOTAL T
                                                                                      : 0.000E+00 (CM)
: 5.000E+00 (CM)
                              PARAMETRES PHYSIQUES DE LA DISTRIBUTION:

COMPTAGE = 9282 PARTICULES

MIN- -9.5838E+01, MAX = 9.3504E+01, MAX-MIN = 1.8934E+02 (CM)

MOYENNE = 4.9971E-01 (CM)

SIGMA = 5.3215E+01 (CM)
                                                                                                                                                                                                      PARAMETRES PHYSIQUES DE LA DISTRIBUTION:

COMPTAGE = 605 PARTICULES

MIN = 3.7184E-01, MAX = 1.3837E+00, MAX-MIN = 1.0119E+00

MOYENNE = 8.1693B-01

SIGMA = 2.2849E-01
*******************
```

4 USE OF THE FITTING PROCEDURE

Figure 51: Vary B in all quadrupoles, for fitting of the transfer coefficients R_{12} and R_{34} at the end of the line. The first and last quadrupoles are coupled so as to present the same value of B

zgoubi data file.

```
MATCHING A SYMMETRIC QUADRUPOLE TRIPLET
 'OBJET'
                                                                                                                         1
2501.73
                     RIGIDITY (kG.cm)
                    11 PARTICLES GENERATED FOR USE OF MATRIX
2. 2. 2. 2. 0. .001
0. 0. 0. 0. 0. 1.
 'ESL
                                                                                                                         2
200.
 'QUADRUPO'
                                                                                                                         3
40. 15. -7.
0. 0.
  .1122 6.2671 -1.4982 3.5882 -2.1209 1.723
0.
0. 0.
6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723
1 0. 0. 0.
 'ESL'
30.
 'QUADRUPO'
0
40. 15. 3.
  .1122 6.2671 -1.4982 3.5882 -2.1209 1.723
0.
6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723
1 0. 0. 0.
'ESL'
                                                                                                                         6
30.
 'QUADRUPO'
                  7
0
40. 15. -7.
0. 0.
6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723
6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723
1 0. 0. 0. 'ESL'
                                                                                                                         8
200.
 'MATRIX'
 'FIT2'
                    VARY B IN QUADS FOR FIT OF R12 AND R34
                                                                                                                        10
2
                     # OF VARIABLES
                    SYMMETRIC TRIPLET => QUADS #1 AND #3 ARE COUPLED PRMTR #12 OF ELEMENTS #3, 5 AND 7 IS FIELD VALUE
3 12 7.12 2.
5 12 0. 2.
  1.E-10
                    # OF CONSTRAINTS, PENALTY
   1 2 8 16.6 1.
                    CNSTRNT #1 : R12=16.6 AFTER LAST DRIFT (LMNT #8)
1 3 4 8 -.88 1.
                    CNSTRNT #2 : R34=-.88 AFTER LAST DRIFT
 'END'
                                                                                                                        11
```

Excerpt of zgoubi.res: first order transfer matrices prior to and after fitting.

**************************************			*****	*****	*****	*****	*	
	MATRICE DE	TRANSFERT ORDRE	1 (MKSA)					
5.43427 1.67580 0.00000 0.00000 0.00000 0.00000	17.0254 5.43425 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 -1.27003 -0.629171 0.00000 0.00000	0.00000 0.00000 -0.974288 -1.27004 0.00000 0.00000	0.00 0.00 0.00 0.00 1.00 0.00	000 000 000 000	0.0000 0.0000 0.0000 0.0000 0.0000 1.0000	0 0 0 0	
******			******	*****	*****	* * * * * * * *	*	
STATE OF VARIABLE	S AFTER MATO	CHING :						
LMNT VAR PARAM 3 1 12 7 1 120	-21.0	-7.00 -6.	FINAL 972765137 972765137	MAXIMUM 7.00 7.00	STEP 1.707E-04 1.707E-04	NAME QUADRUP	LBL1	LBL2 *
TYPE I J LMN 1 1 2	AINTS (Target T# DESIN 8 1.66000 8 -8.80000	penalty = 1.00 RED WEI 000E+01 1.000 000E-01 1.000	GHT R 00E+00 1.65	9.00 EACHED 99981E+01 00964E-01	1.266E-04 KI2	* 1	Parameter(s)	*
*****	*****	******	*****	*****	*****	****	*	
MATRIX, WITH NEW	VARIABLES :							
5.27056 1.61443 0.00000 0.00000 0.00000	16.6000 5.27450 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 -1.24205 -0.622553 0.00000 0.00000	0.00000 0.00000 -0.880010 -1.24620 0.00000 0.00000	0.00 0.00 0.00 0.00 1.00 0.00	000 000 000 000	0.00000 0.00000 0.00000 0.00000 1.00000	0 0 0 0	

MULTITURN SPIN TRACKING IN SATURNE 3 GeV SYNCHROTRON

Figure 52: Tracking over 3000 turns. These simulations exhibit the first order parameters and motions as produced by the multi-turn ray-

- (A) Horizontal phase-space: the particle has been launched near to the closed orbit (the fine structure is due to Y-Z coupling induced by bends fringe fields, also responsible of the off-centering of the local closed orbit - at ellipse center).
- (B) Vertical phase-space: the particle has been launched with $Z_0=4.58\ 10^{-3}$ m, $Z_0'=0$. A least-square fit by $\gamma_Z Z^2 + 2\alpha_Z Z Z' + \beta_Z Z'^2 = \varepsilon_Z/\pi$ yields $\beta_Z=2.055$ m, $\alpha_Z=0.444$, $\gamma_Z=0.582$ m⁻¹, $\varepsilon_Z/\pi=12\ 10^{-6}$ m.rad in agreement with matrix calculations. (C) Fractional tune numbers obtained by Fourier analysis for $\varepsilon_Y/\pi=\varepsilon_Z/\pi\simeq 12\ 10^{-6}$ m.rad: $\nu_Y=0.63795$, $\nu_Z=0.60912$ (the integer
- (D) Longitudinal phase-space ("(DP, phase)" in Zgoubi notations): particles with initial momentum dispersion of 5 10^{-4} (1), 10^{-3} (2), $1.65 \cdot 10^{-3}$ (3) (out of acceptance), are accelerated at 1405 eV/turn ($\dot{B}=2.1$ T/s); analytical calculations give accordingly momentum acceptance of $1.65 \ 10^{-3}$.

Figure 53: Crossing of $\gamma G = 7 - \nu_Z$, at $\dot{B} = 2.1$ T/s.

- (A) $\varepsilon_Z/\pi = 12.2 \cdot 10^{-6}$ m.rad. The strength of the resonance is $|\varepsilon| = 3.3 \cdot 10^{-4}$. As expected from the Froissart-Stora formula [68] the asymptotic polarization is about 0.44.
- (B) The emittance is now $\varepsilon_Z/\pi = 1.2 \ 10^{-6}$ m.rad; comparison with (A) shows that $|\varepsilon|$ is proportional to $\sqrt{\varepsilon_Z}$.
- (C) Crossing of this resonance for a particle having a momentum dispersion of 10^{-3} .

zgoubi data file (beginning and end).

SATURNE. C 'OBJET' 5015.388 2	ROSSING Ga	ammaG=7-N	Uz, N	Uz=3.608	77 (pert	surbed) 834.04 MeV,	proto	n	
4 1 5.2E-02 0.356 0.647 1.024 1 1 1 1 SCALING'	6.5E-02 0.379 0.689 1.09	.458 0 .458 0 .458 0 .458 0	. 0.	1.0005	'1'	EpsilonY/pi	- 0.	(Closed	orbit
MULTIPOL 2				CROS	SSING (GammaG=7-Nuz+	-/-14E,	E=3.3E-	-4
	-3 5034.3 3442	391E-3		AT 2	2.1 T/s	s, IN 3442 MA 041 TO 838.8	CHINE	TURNS,	•
QUADRUPO 2									
5015.388E 1 BEND 2	3442 3442	391E-3							
5015.388E 1 CAVITE	5034.3 3442	391E-3							
1. 1 PARTICUL'	1.003 3442	78894		REL	ATIVE (CHANGE OF SYN	ICHRONO	US RIGII	YTIC
938.2723 SPNTRK'	1.6021892	E-19 1.7	92847	4 0. 0.					
MARKER' #S	tartRing	OP	1					5	
0	763695	~	-	.763	3695 =	= FIELD FOR E	BORO=1		
0. 0.	.2671 -1.4		82 -2						
0. 0. 6 .1122 6		1982 3.58	82 -2	.1209 1.	723				
#30 50 30 1 0. 0. 0. 'ESL'									
71.6256 'BEND'		S	D 2	1 3				6 7	
0	0. 1.5		11 5	1 3				,	
20. 8. 4 .2401 20. 8. 4 .2401	.042760566 1.8639 .042760566 1.8639 0 bend	567 .5572 .3 567 .5572 .3	20 904 0	. 8. . 0. 0.	400				
#30 120 3 'ESL' 71.6256	o bend	3 0. 0 S		1963493	0408			8	
'MULTIPOL'		Q	P 5					9	
48.6273 1 0. 0. 0. 6 .1122 6 0. 0. 0. 6 .1122 6 0. 0. 0. 0 #30 50 30 1 0. 0. 0.	0. 00 .0 .0 .2671 -1.4 0. 0. 0. 00 0 Quad	.0 0. 0. 1982 3.58 0. 0. 1982 3.58 0. 0. 0.	0. 0 82 -2 0. 0. 82 -2 0.	.1209 1.	0. 0. 723 723	0.			
ESL' 71.6256 'BEND'		SD	2 IP 3	4 3				10	
0	0. 1.5		IP 3	4 3				11	
20. 8. 4 .2401 20. 8.	.042760566 1.8639 .042760566	567 .5572 .3	20	. 0. 0.					
	0 bend		. 0.		5408			12	
71.6256 'QUADRUPO'		Q	P 1					13	
	763695	5							
0. 0. 6 .1122 6 0. 0.	.2671 -1.4	1982 3.58	82 -2	.1209 1.	723				
6 .1122 6 #30 50 30 1 0. 0. 0.	Quad	1982 3.58	82 -2	.1209 1.	723				
'ESL' 71.6256		S						14	
'BEND'			IP 3	4 3				15	
20. 8. 4 .2401 20. 8. 4 .2401	0. 1.5 .042760566 1.8639 .042760566 1.8639 0 bend	567 .5572 .3 567 .5572 .3	20 904 0		5408			16	
71.6256 'MULTIPOL'		Q	P 5					17	
0 48.6273 1 0. 0. 0. 6 .1122 6 0. 0. 0. 6 .1122 6 0. 0. 0. 0 #30 50 30 1 0. 0. 0.	0. 0. 0. 0. 2671 -1.4 0. 0. 0. 0.2671 -1.4 0. 0. 0. Quad	0. 0. 1982 3.58 0. 0. 1982 3.58	0.0 82 -2 0.0 82 -2	. 0. .1209 1.		0. 0.			

'ESL'	SD 2	18
71.6256 'BEND'	DIP 3 4 3	19
0 247.30039 0. 1.57776		
20. 804276056667		
20 0 04276056667	.3904 0. 0. 0. 20. 8.	
4 .2401 1.86395572 #30 120 30 bend 3 0.	.3904 0. 0. 0.	
#30 120 30 bend 3 0.	SD 2	21
71.6256 'QUADRUPO'	QP 1	2
0	X- 1	
46.723 10763695 0. 0.		
6 .1122 6.2671 -1.4982 3.	5882 -2.1209 1.723	
0. 0. 6 .1122 6.2671 -1.4982 3.	5882 -2.1209 1.723	
#30 50 30 Quad 1 0. 0. 0.		
'ESL'		22
392.148 'MULTIPOL'	QP 5	2:
0 48.6273 10. 0765533	3 0. 0. 0. 0. 0. 0. 0.	
0. 0. 0. 0. 0. 0. 0	0. 0. 0. 0.	
6 .1122 6.2671 -1.4982 3. 0. 0. 0. 0. 0. 0. 0). 0. 0. 0.	
6 .1122 6.2671 -1.4982 3. 0. 0. 0. 0. 0. 0. 0. 0. 0.	.5882 -2.1209 1.723	
#30 50 30 Quad	. 0. 0.	
1 0. 0. 0. 'ESL'		24
392.148		
'QUADRUPO'	QP 1	25
46.723 10763695		
0. 0. 6 .1122 6.2671 -1.4982 3.	.5882 -2.1209 1.723	
0. 0. 6 .1122 6.2671 -1.4982 3.	.5882 -2.1209 1.723	
#30 50 30 Quad		
1 0. 0. 0. 'ESL'	SD 2	2
71.6256 'BEND'	DIP 3 4 3	2
0	DII 3 4 3	_
247.30039 0. 1.57776 20. 804276056667		
4 .2401 1.86395572	.3904 0. 0. 0.	
20. 804276056667 4 .2401 1.86395572	.3904 0. 0. 0.	
#30 120 30 bend 3 0. 'ESL'	. 0. 01963495408 SD 2	28
71.6256		
'MULTIPOL' 0	QP 5	29
48.6273 10. 0765533 0. 0. 0. 0. 0. 0. 0.		
6 .1122 6.2671 -1.4982 3.	.5882 -2.1209 1.723	
0. 0. 0. 0. 0. 0. 0. 0 6 .1122 6.2671 -1.4982 3.). 0. 0. 0. .5882 -2.1209 1.723	
0. 0. 0. 0. 0. 0. 0. 0. 430 50 30 Quad	. 0. 0.	
1 0. 0. 0.		
'ESL' 71.6256	SD 2	31
'BEND'	DIP 3 4 3	3
0 247.30039 0. 1.57776		
20. 804276056667 4 .2401 1.86395572	.3904 0. 0. 0.	
20. 804276056667	20. 8.	
	.3904 0. 0. 0. . 0. 01963495408	
'ESL' 392.148		84
'MARKER' #EndRing	8	86
'CAVITE'	8	87
1 105.5556848673 3.		
6000. 0.	SIN(phis) = .234162, dE=1.40497 keV/Tur	
'FAISCNL' b_zgoubi.fai		88
'SPNPRNL' zgoubi.spn		89
'SPNPRT'		90
'REBELOTE' 2999 0.1 99	TOTAL NUMBER OF TURNS = 3000	9:
'END'		92

6 MICRO-BEAM FOCUSING WITH $ec{E} imes ec{B}$ QUADRUPOLES

Figure 54: Upper plot: 50-particle beam tube ray-traced through a double focusing quadrupole doublet typical of the front end design of micro-beam lines. Initial conditions are : $Y_0 = Z_0 = 0$, angles T_0 and P_0 random uniform within ± 0.2 mrad, and momentum dispersion $\delta p/p$ uniform in $\pm 3\,10^{-4}$.

Lower plot: (D) sub-micronic cross-section at the image plane of a 4000-particle beam with initial conditions as above, obtained thanks to the second-order achromatic magneto-electrostatic quadrupole doublet (the image size would be $\Delta Y \approx \Delta Z \approx \pm 50 \mu m$ with regular magnetic quadrupoles, due to the momentum dispersion). Note the high resolution of the ray-tracing which still reveals image structure of nanometric size.

zgoubi data file.

```
MICROBEAM LINE, WITH A MAGNETO-ELECTROSTATIC QUADRUPOLE DOUBLET.
                                                                               QUADRUPCLE DOUBLET.
RANDOM OBJECT DEFINITION
RIGIDITY (20keV PROTONS).
DISTRIBUTION IN WINDOW.
NUMBER OF PARTICLES.
UNIFORM DISTRIBUTION.
 20.435
 1
200
1 1 1 1 1 1 1 1 1 1 0. 0. 0. 0. 0. 0. 1. 0. 0. 2e-3 0. 0.0003 10. 10. 10. 10. 10. 10. 9 9. 9. 9. 9. 9. 9. 186387 548728 472874

'PARTICUL'
938.2723 1.60217733E-19 0. 0. 0. 'DRITI'
500.
                                                                              UNIFORM DISTRIBUTION.
CENTRAL VALUE, AND
HALF WIDTH OF DISTRIBUTION.
CUT-OFFS (UNUSED).
FOR P(D) - UNUSED.
SEEDS.
PARTICLE MASS AND CHARGE
FOR INTEGRATION IN E-FIELD.
DRIFT.
  'DRIFT'
                                                                              DRIFT.
  59.
'EBMULT'
                                                                              FIRST MAGNETO-ELECTROSTATIC 5
 FIRST MAGNETO-ELECTROSTATIC SQUADRUPOLE.

10.2 10.0.-9272.986 0.0.0.0.0.0.0 ELECTRIC Q-POLE COMPONENT.
0.0.0.0.0.0.0.0.0.0.0.0 ENTRANCE EFB, SHARP EDGE.
6 .1122 6.2671 -1.4982 3.5882 2-1.209 1.723
0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 EXIT EFB, SHARP EDGE.
6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723
0.0.0.0.0.0.0.0.0.0.0.0.0
1 0. 0. 0.
'DRIFT'
                                                                               DRIFT.
 4.9
'EBMULT'
                                                                              SECOND MAGNETO-ELECTROSTATIC
                                                                                                            QUADRUPOLE.
 .8
1 0. 0. 0.
'DRIFT'
 25.
'HISTO'
                                                                               HISTOGRAM
 2 -5E-6 5E-6
20 'Y' 1 'Q'
'HISTO'
                                                                               OF THE Y COORDINATE.
                               60 2
  'HISTO'
4 -5E-6 5E-6
20 'Z' 1 'Q'
'FAISCNL'
                               60 2
                                                                               OF THE Z COORDINATE.
                                                             FOR FURTHER PLOTTING.
RUN AGAIN, FOR RAY-TRACING
A TOTAL OF 200*(19+1) PARTICLES.
 rays.out
'REBELOTE'
                                                                                                                                    12
 19 0.1 0
                                                                                                                                    13
```

zgoubi.res file.

```
Multiple pass,
       from element # 1 : MCOBJET /label1=RANDOM /label2=OBJECT to REBELOTE /label1=RANDOM /label2=OBJECT ending at pass # 20 at element # 12 : REBELOTE /label1=RUN /label2=AGAIN
   End of pass # 19 through the optical structure
               Total of 3800 particles have been launched
.....
    Next pass is # 20 and last pass through the optical structure
RANDOM OBJECT
Reference magnetic rigidity =
         Object built up of 200 particles
Distribution in a Window
Central values (MKSA units):
Yo, To, Zo, Po, Xo, BR/BoRO: 0.000 0.00
Width (+/-, MKSA units):
DY, DT, DZ, DP, DX, DBR/BORO: 0.00 2.00
Cut-offs (*+/-Width):
NY, NT, NZ, NP, NX, NBR/BORO: 1.00
Type of sorting:
Y, T, Z, P, X, D: Uniform Unit
                                        0.000 0.000 0.000 0.000 0.000
                                                                                       1.000
                                        0.00 2.000E-04 0.00 2.000E-04 0.00 3.000E-04
                                        1.00 1.00 1.00 1.00 1.00 1.00
                                         Uniform Uniform Uniform Uniform Uniform Uniform
2 PARTICUL PARTICLE MASS
   Particle properties :
                               938.272
                           = 938.272
= 1.602177E-19
                                            MeV/c2
                Charge
          Reference data:

mag.rigidity (kG.cm) : 20.435000
mass (MeV/c2) : 938.27230
momentum (MeV/c) : 6.1262621
202702.total (MeV) : 938.29230
                                                  =p/q, such that dev.=B*L/rigidity
               energy, total (MeV)
energy, kinetic (MeV)
beta = v/c
gamma
                                  : 1.99998909E-02
: 6.5291616518E-03
```

```
Drift, length = 500.00000 cm
TRAJ #1 IEX.D.Y.T.Z.P.S.time: 1 2.999865E-04 -2.027052E-02 -4.054104E-02 -9.359114E-02 -1.871823E-01 5.0000001E+02 2.55365E+00
 Cumulative length of optical axis = 5.00000000 m at ; Time (for ref. rigidity & particle) = 2.554417E-06 s
Drift, length = 59.00000 cm
TRAJ #1 IEX,D,Y,T,Z,P,S,time: 1 2.999865E-04 -2.266244E-02 -4.054104E-02 -1.046349E-01 -1.871823E-01 5.5900001E+02 2.85498E+00
 Cumulative length of optical axis = 5.59000000 m at ; Time (for ref. rigidity & particle) = 2.855839E-06 s
        5 EBMULT
                             FIRST
                                               ELECTRO-MA
        ---- MULTIPOLE
                     ULTIPOLE :
Length of element = 10.200000
Bore radius RO = 10.000
E-DIPOLE = 0.0000000E+00 V/m
E-QUADRUPOLE = -9.2729860E+30 V/m
E-SEXTUPOLE = 0.0000000E+00 V/m
E-OCTUPOLE = 0.0000000E+00 V/m
E-DECAPOLE = 0.0000000E+00 V/m
                      E-DECAPOLE
                                         = 0.0000000E+00 V/m
                      E-DODECAPOLE = 0.00000000E+00 V/n
                                      = 0.0000000E+00 V/m
= 0.000000E+00 V/m
= 0.0000000E+00 V/m
= 0.0000000E+00 V/m
                     E-20-POLE
                     Entrance/exit field models are sharp edge FINTE. FINTS, qap: 0.0000E+00 0.0000E+00 5.0000E+00
       ---- MULTIPOLE :

Length of element = 10.200000
Bore radius RO = 10.000
B-DIPOLE = 0.000000E+00 kG
B-QUADRUPOLE = 1.8949300E+00 kG
B-SEXTUPOLE = 0.0000000E+00 kG
B-OCTUPOLE = 0.0000000E+00 kG
R-DECAPOLE = 0.0000000E+00 kG
                     B-DECAPOLE = 0.0000000E+00 kG
B-DODECAPOLE = 0.0000000E+00 kG
B-14-POLE = 0.0000000E+00 kG
B-16-POLE = 0.0000000E+0 kG
B-20-POLE = 0.0000000E+0 kG
B-20-POLE = 0.0000000E+0 kG
                     B-20-POLE
                     Entrance/exit field models are sharp edge FINTE, FINTS, gap: 0.0000E+00 0.0000E+00 5.0000E+00
  *** Warning : sharp edge model, vertical wedge focusing approximated with first order kick. FINT at entrance = 0.000
  *** Warning : sharp edge model, vertical wedge focusing approximated with first order kick. FINT at exit = 0.000
                           Integration step : 0.8000 cm
 Cumulative length of optical axis = 5.69200000 m ; Time (for ref. rigidity & particle) = 2.907949E-06 s
                                         Drift, length =
                                                                      4.90000 cm
TRAJ #1 IEX,D,Y,T,Z,P,S,time : 1 2.839285E-04 -1.310701E-02 9.564949E-01 -1.603604E-01 -5.590035E+00 5.7410014E+02 2.93210E+00
  \text{Cumulative length of optical axis = } \quad 5.74100000 \qquad \text{m} \quad \text{at} \quad \text{; Time} \quad \text{(for ref. rigidity \& particle) = } \quad 2.932982E-06 \text{ s} 
         7 EBMULT
                            SECOND
                                              ELECTRO-MA
                    ULTIPOLE :
Length of element = 10.200000
Bore radius RO = 10.000
E-DIPOLE = 0.0000000E+00 V/m
E-QUADRUEOLE = 1.3779900E+04 V/m
E-SEXTUPOLE = 0.0000000E+00 V/m
E-OCTUPOLE = 0.0000000E+00 V/m
E-DADECAPOLE = 0.0000000E+00 V/m
E-14-POLE = 0.0000000E+00 V/m
E-14-POLE = 0.0000000E+00 V/m
E-18-POLE = 0.0000000E+00 V/m
E-18-POLE = 0.0000000E+00 V/m
E-20-POLE = 0.0000000E+00 V/m
         ---- MULTIPOLE
                     FINTE, FINTS, gap : 0.0000E+00
                    ULTIPOLE :
Length of element = 10.200000
BODIC radius RO = 10.000
B-DIPOLE = 0.0000000E+00 kG
B-QUADRUPOLE = -2.8159200E+00 kG
B-SEXTUPOLE = 0.0000000E+00 kG
B-OCTUPOLE = 0.0000000E+00 kG
B-DECAPOLE = 0.0000000E+00 kG
B-DECAPOLE = 0.0000000E+00 kG
B-14-POLE = 0.0000000E+00 kG
B-18-POLE = 0.0000000E+00 kG
B-18-POLE = 0.0000000E+00 kG
B-20-POLE = 0.0000000E+00 kG
                     Entrance/exit field models are sharp edge FINTE. FINTS, gap: 0.0000E+00 0.0000E+00 5.0000E+00
   *** Warning : sharp edge model, vertical wedge focusing approximated with first order kick. FINT at entrance =
  *** Warning: sharp edge model, vertical wedge focusing approximated with first order kick. FINT at exit =
                           Integration step : 0.8000 cm
 Cumulative length of optical axis = 5.84300000 m ; Time (for ref. rigidity & particle) = 2.985092E-06 s
```

```
9 HISTO
                      HISTOGRA
                                     HISTOGRAMME DE LA COORDONNEE Y PARTICULES PRIMAIRES ET SECONDAIRES DANS LA FENETRE : -5.0000E-06 / 5 NORMALISE
                                                                                  5.0000E-06 (CM)
                                                 123456789012345678901234567890123456789012345678901
                                                        : 4000 SUR 4000
: 51
: 109
: 0.000E+00 (CM)
: 1.667E-07 (CM)
                   TOTAL COMPTAGE

NUMERO DU CANAL MOYEN
COMPTAGE AU " "
VAL. PHYS. AU " "
RESOLUTION PAR CANAL
                   PARAMETRES PHYSIQUES DE LA DISTRIBUTION:

COMPTAGE = 4000 PARTICULES

MIN = -3.4326E-06, MAX = 3.4347E-06, MAX-MIN = 6.8674E-06 (CM)

MOYENNE = -2.8531E-08 (CM)

SIGMA = 1.8619E-06 (CM)
  TRAJ #1 D,Y,T,Z,P,S,IEX: 1.0002E+00 9.0257E-07 -2.3996E-01 -1.0770E-06 1.7947E+00
                                                                                                                   6.09300E+02 1
10 HISTO HISTOGRA
                                    HISTOGRAMME DE LA COORDONNEE Z
PARTICULES PRIMATRES ET SECONDAIRES
DANS LA FENETRE: -5.0000E-06 / 5.0000E-06 (CM)
NORMALISE
    19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
                                                               ZZ
                                                              2Z
2Z
2Z
2Z
00
2Z2Z
                                                                                  ZZ
ZZ
ZZZ
000
ZZZ
                                                             2222222 Z Z 222222
2222222 Z Z 22222222
                                                             2222222222222222222
                                                            22222222222222222222222222
                                                            1234567890123456789012345678901234567890123456789012345678901
                   TOTAL COMPTAGE

NUMERO DU CANAL MOYEN
COMPTAGE AU " "
VAL. PHYS. AU " "
RESOLUTION PAR CANAL
                                                                 4000 SUR 4000
                                                          : 51
: 169
: 0.000E+00 (CM)
: 1.667E-07 (CM)
                   PARAMETRES PHYSIQUES DE LA DISTRIBUTION:

COMPTAGE = 4000 PARTICULES

MIN = -1.9150E-06, MAX = 1.9110E-06, MAX-MIN = 3.8260E-06 (CM)

MOYENNE = -3.8539E-09 (CM)

SIGMA = 1.1232E-06 (CM)
TRAJ #1 D,Y,T,Z,P,S,IEX: 1.0002E+00 9.0257E-07 -2.3996E-01 -1.0770E-06 1.7947E+00 6.09300E+02 1
  11 FAISCNL RAYS
Print[s] occur at
                                 ARE
      **** FIN D'EFFET DE 'REBELOTE' ****
IL Y A EU 20 PASSAGES DANS LA STRUCTURE
# PARTICULES ENVOYEES : 4000
```

PGM PRINCIPAL : ARRET SUR CLE REBELOTE

PART D

Running zgoubi and its post-processor/graphic interface zpop

INTRODUCTION

The **zgoubi** package, including this guide, examples, the **zpop** graphic/analysis post-processor, is available on web [5]. The **zgoubi** *FORTRAN* package is transportable; it has been compiled, linked and executed over the years on several types of systems (e.g. CDC, CRAY, IBM, DEC, HP, SUN, VAX, UNIX, LINUX).

An additional *FORTRAN* code, **zpop**, allows the post-processing and graphic treatment of **zgoubi** output files. **zpop** has been routinely used on DEC, HP, SUN stations, and is now on UNIX and LINUX systems.

1 GETTING TO RUN zgoubi AND zpop

1.1 Making the Executable Files zgoubi and zpop

1.1.1 The transportable package zgoubi

Compile and link the FORTRAN source files (normally, just run the Makefile), to create the executable zgoubi.

zgoubi is written in standard *FORTRAN*, mostly 77, therefore it does not require linking to any library.

1.1.2 The post-processor and graphic interface package zpop

Compile the FORTRAN source files (normally, just run the Makefile).

zpop links to the graphic library, libminigraf.a [69]. This creates the executable **zpop**.

zpop is to be run on an xterm window.

1.2 Running zgoubi

The principles are the following:

- Fill up zgoubi.dat with the input data that describe the problem (see examples, Part C).
- Run **zgoubi** no argument needed, by default the input file is assumed to be zgoubi.dat. Specific arguments allow specifying a different input data file name, see below.
- Results of the execution will be printed by default into zgoubi.res and, upon options as appearing in zgoubi.dat, into various additional output files, for instance zgoubi.fai, zgoubi.plt (see section 2 below).
- The command **zgoubi** accepts the following arguments (see zgoubi_main.f source file):
 - -in or -fileIn, followed by an the input file name,
 - -out or -fileOut, followed by an output file name,
 - -fileLog, followed by a log file name,
 - -rank, followed by an integer number, this causes the seed in MCOBJET to be overriden, replaced by reading the current time instead,
 - -saveExec, this will cause saving a copy of **zgoubi** exec in the local directory,
 - -saveZpop, this will cause saving a copy of **zpop** exec in the local directory.

1.3 Running zpop

- Run **zpop** on an xterm window. This will open a graphic window.
- To access the data plotting sub-menu, select option 7.
- To access the data treatment sub-menu, select option 8.
- An on-line Help provides some information regarding the available post-processing procedures (Fourier transform, elliptical fit, synchrotron radiation spectral brightness, field map contours, tune diagram, etc.).

2 STORAGE FILES

When explicitly requested by means of the adequate keywords, options, or dedicated *LABEL*'s, extra storage files are opened by **zgoubi** (*FORTRAN "OPEN*" statement) and filled.

330 2 STORAGE FILES

Their content can be post-processed using the interactive program **zpop** and its dedicated graphic and analysis procedures.

Most of these files are formmatted in columns, plotting their content using 'gnuplot' [73] is straightforward. A library of 'gnuplot' command files can be found in **zgoubi** sourceForge repository [5].

The **zgoubi** procedures that create and fill these extra output files are the following (refer to Part A and Part B of the guide):

- Keywords *FAISCNL*, *FAISTORE*: fill a '.fai' type file (normally named [b_]zgoubi.fai) with particle and spin coordinates and a lot of other informations.
- Keywords SPNPRNL, SPNSTORE: fill a '.spn' type file (normally named [b_]zgoubi.spn) with spin coordinates and other informations.
- Option IC = 2, with field map keywords (e.g. CARTEMES, TOSCA): fill zgoubi.map with 2-D field map.
- Option IL = 2, with magnetic and electric element keywords: fill zgoubi.plt with the particle coordinates and experienced fields, step after step, all along the optical element.
- Using the keyword MARKER with '.plt' as a second LABEL will cause storage of current coordinates into zgoubi.plt.

Typical examples of graphics that one can expect from the post-processing of these files by **zpop** are the following (see examples, Part C):

• '.fai' type files

Phase-space plots (transverse and longitudinal), aberration curves, at the position where FAISTORE or FAISCNL appears in the optical structure. Histograms of coordinates. Fourier analysis (e.g. , spin motion, tunes, in case of multi-turn tracking), calculation of Twiss parameters from phase-space ellipse matching.

zgoubi.map
 Isomagnetic field lines of 2-D map. Superimposing trajectories read from zgoubi.plt is possible.

• zgoubi.plt

Trajectories inside magnets and other lenses (these can be superimposed over field lines obtained from zgoubi.map). Fields experienced by the particles at the traversal of optical elements. Spectral-angular distribution of synchrotron radiation.

• zgoubi.spn

Spin coordinates and histograms, at the position where *SPNPRNL* appears in the structure. Resonance crossing when performing multi-turn tracking.

In addition, many routines will deliver execution outcomes in individual output files if requested, usually by initroducing a 'PRINT' command under the keyword of concern. Instances are zgoubi.MATRIX.out (keyword MATRIX), zgoubi.TWISS.out (keyword OPTICS), zgoubi.PICKUP.out (keyword PICKUPS), zgoubi.TWISS.out (keyword TWISS), etc.

References

- [1] F. Méot et S. Valéro, Manuel d'utilisation de Zgoubi, Rapport IRF/LNS/88-13, CEA Saclay, 1988.
- [2] F. Méot and S. Valéro, Zgoubi users' guide, Int. Rep. CEA/DSM/LNS/GT/90-05, CEA Saclay (1990) & TRIUMF report TRI/CD/90-02 (1990).
- [3] F. Méot and S. Valéro, Zgoubi users' guide Version 3, Int. Rep. DSM/LNS/GT/93-12, CEA Saclay (1993).
- [4] F. Méot and S. Valero, Zgoubi users' guide Version 4, FNAL Tech. Rep. FERMILAB-TM-2010 (Aug. 1997), & Int. Rep. CEA DSM DAPNIA/SEA-97-13, Saclay (Oct. 1997).
- [5] http://zgoubi.sourceforge.net/
- [6] F. Méot, The electrification of Zgoubi, SATURNE report DSM/LNS/GT/93-09, CEA Saclay (1993);
 F. Méot, Generalization of the Zgoubi method for ray-tracing to include electric fields, NIM A 340 (1994) 594-604.
- [7] D. Carvounas, Suivi numérique de particules chargées dans un solénoïde, rapport de stage, CEA/LNS/GT, 1991.
- [8] F. Méot, Raytracing in 3-D field maps with Zgoubi, report DSM/LNS/GT/90-01, CEA Saclay, 1990.
- [9] G. Leleux, Compléments sur la physique des accélérateurs, cours du DEA Grands-Instruments, Univ. Paris-VI, report IRF/LNS/86-101, CEA Saclay, March 1986.
- [10] F. Méot, A numerical method for combined spin tracking and raytracing of charged particles, NIM A313 (1992) 492, and proc. EPAC (1992) p.747.
- [11] D. J. Kelliher et al., Muon decay ring study, Procs. EPAC08 Conf., Genoa, Italy (2008).
- [12] F. Méot, N. Monseu, Lattice Design and Study Tools Regarding the Super-B Project, Procs. IPAC10 Conf., Kyoto, Japan (2010).
- [13] F. Méot, Spin tracking simulations in AGS based on ray-tracing methods, Tech. Note C-AD/AP/452, BNL C-AD (2009); F. Méot, Zgoubi-ing AGS: spin motion with snakes and jump-quads, Tech. Note C-AD/AP/453, BNL C-AD (2009).
- [14] F. Méot, M. Bai, V. Ptitsyn, V. Ranjbar, Spin Code Benchmarking at RHIC, Procs. PAC11 Conf., New York (2011).
- [15] F. Méot, *Raytracing Based Spin Tracking*, EDM Searches at Storage Rings Workshop, ECT Center for Studies in Nuclear Physics and related Areas, Trento, Italy (Oct. 1-5, 2012).
- [16] F. éot, An ergodic approach to polarization in eRHIC electron storage ring, eRHIC Tech Note 59, BNL, 2018; https://public.bnl.gov/docs/cad/Documents/An%20ergodic%20approach%20to %20polarization%20in%20eRHIC%20electron%20storage%20ring.pdf
- [17] V. Bargmann, L. Michel, V.L. Telegdi, *Precession of the polarization of particles moving in a homogeneous electromagnetic field*, Phys. Rev. Lett. 2 (1959) 435.
- [18] S.Y. Lee, Spin dynamics and snakes in synchrotrons, World Scientific, 1997.
- [19] S.Y. Lee, private communication, April 2017.
- [20] F. Méot and J. Payet, Numerical tools for the simulation of synchrotron radiation loss and induced dynamical effects in high energy transport lines, Report DSM/DAPNIA/SEA-00-01, CEA Saclay (2000).
- [21] G. Leleux et al., SR perturbations in long transport lines, IEEE 1991 Part Acc. Conf., San Francisco (May 1991).
- [22] P. Lapostolle, F. Méot, S. Valero, A new dynamics code DYNAC for electrons, protons and heavy ions in LINACS with long accelerating elements, 1990 LINAC Conf., Albuquerque, NM, USA.
- [23] Electron Lab for Europe, Blue Book, CNRS-IN2P3 (1994).
- [24] F. Méot, Benchmarking stepwise ray-tracing in rings in presence of radiation damping, Procs. PAC11 Conf., New York (2011).
- [25] F. Méot, Simulation of radiation damping in rings, using stepwise ray-tracing methods, 2015 JINST 10 T06006.
- [26] V. O. Kostroun, Simple numerical evaluation of modified Bessel functions and integrals [...], NIM 172 (1980) 371-374.
- [27] F. Méot, Synchrotron radiation interferences at the LEP miniwiggler, Report CERN SL/94-22 (AP), 1994.
- [28] L. Ponce, R. Jung, F. Méot, LHC proton beam diagnostics using synchrotron radiation, Yellow Report CERN-2004-007.
- [29] F. Méot, A theory of low frequency far-field synchrotron radiation, Particle Accelerators Vol 62, pp. 215-239 (1999).
- [30] Albert Hofmann, The Physics of Synchrotron Radiation, Cambridge University Press, May 13, 2004.
- [31] Malek Haj Tahar, Fixed Field Ring Accelerators and ADS-Reactor Application, PhD dissertation, Brookhaven National Laboratory and Grenoble-Alpes University (2016).
- [32] B. Mayer, personal communication, CEA Saclay, Laboratoire National SATURNE, 1990.

- [33] L. Farvacque et al., Beta user's guide, Note ESRF-COMP-87-01, 1987;
 J. Payet, IRF/LNS, CEA Saclay, private communication;
 J.M. Lagniel, Recherche d'un optimum, Note IRF/LNS/SM 87/48, CEA Saclay 1987.
- [34] Installed by J. S. Berg, BNL (2007). *Cf. Detection and remediation of stagnation in the Nelder-Mead algorithm using a sufficient decrease condition*, C. T. Kelley, Siam J. Optim., Vol. 10, No. 1, pp. 43-55.
- [35] F. Desforges, *Implementation of a coupled treatment of the one-turn mapping in the ray-tracing code* **zgoubi**, C-AD Note C-A/AP/461, Brookhaven National Laboratory, Sept 2012.
- [36] F. Méot and N. Willis, Raytrace computation with Monte Carlo simulation of particle decay, internal report CEA/LNS/88-18 CEA Saclay, 1988.
- [37] E.J. Bleser, The parameters of the bare AGS, Tech. Note AGS/AD?Tech. Note 430, March 15, 1996.
- [38] These transfer functions have been copied from the MADX model of the AGS.
- [39] H.A. Enge, Deflecting magnets, in Focusing of Charged Particles, ed. A. Septier, Vol. II, pp 203-264, Academic Press Inc., 1967.
- [40] P. Birien et S. Valéro, Projet de spectromètre magnétique à haute résolution pour ions lourds, Section IV p.62, Note CEA-N-2215, CEA Saclay, mai 1981.
- [41] Files developed by Simon White, January 2012. Including beam-beam spin kick after Ref. [42].
- [42] Y. K. Batygin, Spin depolarization due to beam-beam collisions, Phys. Rev. E, Vol. 58, 1, July 1998.
- [43] A. Hofmann, S. Myers, Beam Dynamics in a Double RF System, CERN ISR-TH-RF/80-26 (July 1980).
- [44] F. Lemuet, F. Méot, Developements in the ray-tracing code Zgoubi for 6-D multiturn tracking in FFAG rings, NIM A 547 (2005) 638-651.
- [45] F. Méot, 6-D beam dynamics simulations in FFAGs using the ray-tracing code Zgoubi, ICFA Beam Dyn.Newslett.43:44-50 (2007).
- [46] Franck Lemuet, Collection and muon acceleration in the neutrino factory project, PhD thesis, Paris KI University, April 2007.
- [47] V. M. Kel'man and S. Ya. Yavor, Achromatic quadrupole electron lenses, Soviet Physics Technical Physics, vol. 6, No 12, June 1962;
 S. Ya. Yavor et al., Achromatic quadrupole lenses, NIM 26 (1964) 13-17.
- [48] A. Septier, Cours du DEA de physique des particules, optique corpusculaire, Université d'Orsay, 1966-67, pp. 38-39.
- [49] S. P. Karetskaya et al., *Mirror-bank energy analyzers, in Advances in electronics and electron physics*, Vol. 89, Acad. Press (1994) 391-491.
- [50] A. Septier et J. van Acker, Les lentilles quadrupolaires électriques, NIM **13** (1961) 335-355; Y. Fujita and H. Matsuda, Third order transfer matrices for an electrostatic quadrupole lens, NIM **123** (1975) 495-504.
- [51] J. Fourrier, F. Martinache, F. Méot, J. Pasternak, Spiral FFAG lattice design tools, application to 6-D tracking in a proton-therapy class lattice, NIM A 589 (2008).
- [52] F. Méot, Tracking studies regarding EMMA FFAG project, Internal report CEA DAPNIA-06-04 (2006).
- [53] J. S. Berg et al., Recent developments on the EMMA on-line commissioning software, Procs. IPAC10 Conf., Kyoto, Japan (2010).
- [54] S. Machida et al., Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA, Nature Physics, vol. 8, March 2012.
- [55] Installed by Pavel Akishin, JINR, Dubna, 1992.
- [56] M.W. Garrett, Calculation of fields [...] by elliptic integrals, J. Appl. Phys., 34, 9, sept. 1963.
- [57] P.F. Byrd and M.D. Friedman, *Handbook of elliptic integrals for engineers and scientists*, pp. 282-283, Springer-Verlag, Berlin, 1954.
- [58] Installation by M. Bai, BNL, 2009.
- [59] A. Tkatchenko, Computer program UNIPOT, SATURNE, CEA Saclay, 1982.
- [60] S.B. Kowalski, H.A. Enge, The ion-optical program raytrace, NIM A258 Vol. 3 (1987) 407.
- [61] N. Tsoupas, private communication, Brookhaven National Laboratory, Oct 2015.
- [62] J.L. Chuma, PLOTDATA, TRIUMF Design Note TRI-CO-87-03a.

- [63] F. Méot et la., A model of the AGS in the ray-tracing code Zgoubi, Tech. Note C-A/AP/***, 2013.
- [64] J. Thirion et P. Birien, Le spectromètre II, Internal Report DPh-N/ME, CEA Saclay, 23 Déc. 1975;
 H. Catz, Le spectromètre SPES II, Internal Report DPh-N/ME, CEA Saclay, 1980;
 A. Moalem, F. Méot, G. Leleux, J.P. Penicaud, A. Tkatchenko, P. Birien, A modified QDD spectrometer for η meson decay measurements, NIM A289 (1990) 168-175
- [65] P. Pile, I-H. Chiang, K. K. Li, C. J. Kost, J. Doornbos, F. Méot et al., A two-stage separated 800-MeV/c Kaon beamline, TRIUMF and BNL Preprint (1997).
- [66] F. Méot, *The raytracing code Zgoubi*, CERN SL/94-82 (AP) (1994), 3rd Intern. Workshop on Optimization and Inverse Problems in Electromagnetism, CERN, Geneva, Switzerland, 19-21 Sept. 1994.
- [67] E. Grorud, J.L. Laclare, G. Leleux, *Résonances de dépolarisation dans SATURNE 2*, Int. report GOC-GERMA 75-48/TP-28, CEA Saclay (1975), and, Home Computer Codes POLAR and POPOL, IRF/LNS/GT, CEA Saclay (1975).
- [68] M. Froissart et R. Stora, Dépolarisation d'un faisceau de protons polarisés dans un synchrotron, NIM 7 (1960) 297-305.
- [69] J.L. Hamel, mini graphic library LIBMINIGRAF, CEA-DSM, Saclay, 1996.
- [70] F. Méot and A. París, Concerning effects of fringe fields and longitudinal distribution of b10 in low-β regions on dynamics in LHC, report FERMILAB-TM-2017, August 23, 1997.
- [71] A white paper: The Cornell-BNL FFAG-ERL Test Accelerator, I. Ben-Zvi et al., Dec. 16, 2014.
- [72] F. Méot, End-to-end 9-D polarized bunch transport in FFAG eRHIC, EIC14 workshop, http://www.jlab.org/conferences/eic2014/ (2014).
- [73] http://www.gnuplot.info/

Index .plt, 14, 75, 115, 116, 145, **184**, 184, 185 ELMULT, 25, 76, 129, 133, 229 ALE, 186 - parameter numbering, 63 ELREVOL, 23, 135, 185, 230 acceleration, 78, 110, 212, 275, 278 EMMA, 136, 231 AGSMM, 95, 186, 197 END, 58, 60, 177, 236 AGSQUAD, 96, 198 ERRORS, 61, 232 AIMANT, 97, 122, 199 ESL, 73, 128, 223 - parameter numbering, 63 alignment (mis-) of optical elements, 186 FAISCEAU, 169, 233 AUTOREF, 102, 203 FAISCNL, 169, 185, 233, 330 FAISTORE, 169, 185, 233, 330 backward ray-tracing, 184 - binary storage, 170 BEAMBEAM, 103, 204 - in presence of *FIT*[2], 68, 170 - spin kick, 103, 204 FFAG, 110, 112, 124, 136, 137, 137, 139, 234 BEND, 24, 104, 205 FFAG magnet BETATRON, 106, 207 - radial, 124, 137, 234 BINARY, 59, 208 - spiral, 139, 235 BORO, **50**, **53**, **57**, 110, 215, **254**, **258**, **261** FFAG-SPI, 139, 235 $BORO \times D_{ref}$, 85, 95, **110**, **112**, **184**, 239 Field maps, 188 $B\rho_{ref}$, 85, 95, **110**, 112, 184, 239 - HEADER, 158, 188 BREVOL, 23, 107, 209 FIN, 60, 236 FIT[2], 58, **62**, 62, 65, **237**, 275 CARTEMES, 23, 107, 108, 135, 143, 144, 148, 149, 158, 185, - combined with REBELOTE, 68, 80 **210**, 231, 293, 330 - constraint, 65, 66, 238 cartesian coordinates, 186 - coupled variables, 65 CAVITE, 82, 110, 111, 186, 212 - coupling FIT variables using SCALING, 65 - double RF system, 111, 212 - in presence of FAISTORE, 68 - particle path length reset, 78, 185 - max. number of iterations, 69, 237 - recovering from a crash, 113 - no final run, 68 CHAMBR, 79, 81, 114, 114, 213, 277 - numbering, keywords, 62 CHANGREF, 73, 102, 114, 115, 115, 117, 214 - numbering, parameters, 62 checking field, 184 - options, 68, 71 checking trajectories, 184 - penalty, 69, 237 chromaticity, 175, 176, 298 - variable values CIBLE, 72, 117, 215 - get, 71, 243 circular accelerators, 78, 104, 185 - range, 65, 237 closed orbit, 14, 67, 110, 182 - save, **68** - computation, 113 fit[2] COLLIMA, 79, 81, 118, 216, 277 - coupling FIT variables using SCALING, 65, 85 CONSTY: constant radius - see OPTIONS, 264 FOCALE, 171, 241 coupling, 176, 182 FOCALEZ, 172, 241 cyclotron, 110, 112, 124 fringe fields overlapping, 124 DECAPOLE, 76, 119, 217, 274 GASCAT, 70, 242 DIPOLE, 62, 97, 114, **120**, 124, 186, **218**, 307 GETFITVAL, 58, 71, 243 - parameter numbering, 63 gnuplot, 330 DIPOLE-M, 97, 122, 149, 188, 219, 269 GOTO, 141, 244 - parameter numbering, 63 DIPOLES, 97, 124, 221 HISTO, 51, 73, 81, 118, **173**, 173, 188, **245**, 277 DODECAPO, 24, 76, 127, 222, 274 double RF system, 111 IC, 185 DRIFT, 73, 128, 223 ID, 108, 210, 235 - split, 128, 185, 223 IDMAX, 53, 53 droite de coupure: see integration boundary, 108

- parameter numbering, 63 EL2TUB, 23, **130**, **226** ELMIR, **131**, **227**

EBMULT, 24, 25, 76, 129, 224

ELMIR, **131**, **227** ELMIRC, **132**, **228**

IMAGEZ, 172, 246

IMAGESZ, 172, 246

IEX, 28, **54**, 54, 92, 108, 114, 118, 169, 179, **188**

IL, 63, 64, 75, 114, **184**, 184, 185

IMAGE, 102, 171, 171, 246

IMAGES, 53, **171**, 171, **246**

parameter numbering (in FIT[2], REBELOTE[IOPT=1], etc.), *IMAX*, **50**, **53**, 57, 73, 78, 87, 110, 111, 169, 180, 185, 188 INCLUDE, 142, 247 INTEG, 81, 277 particle path length reset by CAVITE, 78, 185 integration boundary, 107, 108, 135, 143, 144, 158, 209-211, PARTICUL, 57, 58, 72, 77, 86, 87, 89, 92, 118, 129–133, 135, 293 154, 164, 166, 253, **266** PICKUPS, 177, 185, 267 integration step size, 188 - coded, 188 PLOTDATA, 178, 268 POISSON, 148, 269 - negative, **73**, 184 IORDRE, 24, 25, 76, 101, 108, 123, 143, 144, 158 polar coordinates, 188 POLARMES, 149, 188, 270 keyword numbering (in FIT[2], REBELOTE[IOPT=1], etc.), positioning of optical elements, 186 **PRINT KPOS. 186** - CAVITE, 113 - MATRIX, 176 LABEL, 267 - OPTICS, 74 LABEL, 82, 145, 170, 177, 179, **185**, 233, 251, 267, 285, 330 - SPNPRT, 180 PS170, 150, 271 MAP2D, 24, **143**, 158, **249** MAP2D-E, 24, 144, 250 QUADISEX, 23, 24, 151, 272 maps, summing, 209 QUADRUPO, 24, 62, 63, 76, 114, 119, 133, 146, 147, 152, MARKER, 145, 251, 330 155, 186, 273, 274 MATRIX, 55, 56, 62, 65, 102, 161, **175**, 176, 203, **252**, 259 - parameter numbering, 63 - 1st, 2nd, 3rd order transport coefficients, 175, 252 REBELOTE, 50, 55, 58, 62, 78, 78, 82, 110, 169, 170, 173, - beam matrix, 74, 175 177, 179, 185, 186, 188, 233, 258, **275**, 285, 307 - periodic beam matrix, 182 - circular accelerators, 78, 185 - spin rotation matrix, 180 MCDESINT, 51, 53, 58, **72**, 73, 78, 79, 81, 173, **253**, 277, 307 - combined with FIT[2], 68, 80 MCOBJET, 50, 51, 67, 72, 78, 188, 254, 275 - recovering from a crash, 80 misalignment, 186 recovering from a crash, 55, 80, 85, 113, 260 reference rigidity, 50, 53, 85, 110, 184 momentum compaction, 298 RESET, 81, 277 Monte Carlo, 50, 57, 72, 78, 188, 254, 261 multi-particle, 78, 188, 275 SCALING, 81, 82, 82, 110, 111, 185, 186, 212, 277, 278 multi-turn tracking, 50, 58, **78**, 78, 82, 110, 184, **185**, **275**, 307, - coupling FIT variables using SCALING, 65, 85 320, 330 - parameter numbering, 64 MULTIPOL, 24, 76, 82, 129, 133, 146, 257, 274 - recovering from a crash, 85 - parameter numbering, 63 - scaling an arbitrary parameter, 82 - scaling fields in optical elements, 82 negative charge, 50, 53, 188, 254, 258 negative momentum, 50, 53, 188, 254, 258 SEPARA, 154, 279 SEXQUAD, 23, 151, 280 negative rigidity, 188 SEXTUPOL, 24, 76, 155, 274, 281 NPASS, 78, 110, 170, 173, 179, 185, 188, 233, 275, 285 SOLENOID, 156, 282 SPACECHARG, 43, 86, 283 - of keywords (in FIT[2], REBELOTE[IOPT=1], etc.), 62 - of parameters (in FIT[2], REBELOTE[IOPT=1], etc.), SPIN - \vec{n}_0 vector, 67 62 - beam-beam kick, 103, 204 OBJET, **53**, 65, 72, 102, 110, 114, 171, 182, 186, 188, **258** - rotation matrix, 180 - for 1st, 2nd, 3rd order MATRIX computation, 55, 56, - tracking, 33, 79, 87, 115, 162, 168, 173, 179, 188, 245, 258 275, **286**, 307 - recovering from a crash, 55, 260 SPINR, 157, 284 OBJETA, 57, 57, 78, 261 SPNPRNL, 179, 285, 330 OCTUPOLE, 76, 147, 262, 274 SPNPRT, 89, 180, 285 OPTICS, 74, 263 SPNSTORE, 179, 285, 330 **OPTIONS. 75. 264** SPNTRK, 58, 78, 79, 81, 87, 188, 277, 286 - CONSTY, 75, 264 SRLOSS, 89, 287, 288 - WRITE, 264 SRPRNT, 181, 288 Orbit correction, 45 stopped particles, 79, 114, 118, 169, **188**, 213, 216 - FIT[2], 45 storage files, 329 SVDOC, 90, 289 - SVDOC, 45 - SVDOC, 90 - SVD matrix, 90 ORDRE, 76, 265 - iterate orbit defect & correction, 90

- multiple reference orbits, 90

outpoi.lis, 148

INDEX 339

- zgoubi.SVD.out, 90

synchrotron motion, 78, 82, 110, 212, 275, 278 synchrotron radiation, **37**

- energy loss, **37**, 89, 111, 181, 276, **287**
- energy loss treatment in CAVITE, 112, 113
- spectral angular brightness, 39, 92, 290

SYNRAD, 92, 290

SYSTEM, 93, 291

system call, 93, 291

tag, symmetry index, 53

tag, tag character, 51, 53, 54, 73, 92, 169, 173, 179

TARGET, 117, 215

time varying fields, 184

TOSCA, 23, 63, 76, **158**, 185, 186, **293**, 307, 330

- parameter numbering, 63

TRANSMAT, 161, 295

transport coefficients, 175, 252

- 1st, 2nd or 3rd order, 175, 252

TRAROT, 105, 162, 296

TWISS, 55, 182, 297

- find orbit, 182, 297

UNDULATOR, 163, 299

UNIPOT, 23, 164, 300

Units in zgoubi, 183

variable (FIT, FIT2), 62, 62, 237

VENUS, 23, 24, 165, 301

WIENFILT, 24, 166, 302

WRITE: allow/inhibit - see OPTIONS, 264

XCE, 186

XPAS

- negative, 73

XPAS, coded, 188

XPAS, negative, 184

YCE, 186

YMY, 105, 167, 303

zgoubi, 329

- running the code, 329

zgoubi.CAVITE.out, 113

zgoubi.dat, 170, 179, 329

zgoubi.f, 329

zgoubi.fai, 169, 179, 233, 258, 330

zgoubi.impdev.out, 185, 185

zgoubi.map, 185, 330

zgoubi.MATRIX.out, 176

zgoubi.OPTICS.out, 74

zgoubi.PICKUP.out, 177

zgoubi.plt, 145, 184, 185, 251, 330

zgoubi.res, 184, 185, 329

zgoubi.spn, 179, 285, 330

zgoubi.SPNPRT.Out, 239, 248, 276

zgoubi.sre, 92

zgoubi.TWISS.out, 182

zpop, 40, 169, 179, 184, 329

- running the code, 329