

Triangles and Its Angles Ex 9.2 Q8 **Answer:**

In the given $\triangle ABC$, $AM \perp BC$, AN is the bisector of $\angle A$, $\angle B=65^\circ$ and $\angle C=33^\circ$ We need to find $\angle MAN$

Now, using the angle sum property of the triangle

In ΔAMC , we get,

$$\angle MAC + \angle AMC + \angle ACM = 180^{\circ}$$

 $\angle MAC + 90^{\circ} + 33^{\circ} = 180^{\circ}$
 $\angle MAC + 123^{\circ} = 180^{\circ}$
 $\angle MAC = 180^{\circ} - 123^{\circ}$

 $\angle MAC = 57^{\circ} \dots (1)$

Similarly,

In $\triangle ABM$, we get,

$$\angle ABM + \angle AMB + \angle BAM = 180^{\circ}$$

 $\angle BAM + 90^{\circ} + 65^{\circ} = 180^{\circ}$
 $\angle BAM + 155^{\circ} = 180^{\circ}$
 $\angle BAM = 180^{\circ} - 155^{\circ}$
 $\angle BAM = 25^{\circ} \cdot \dots \cdot (2)$
So, adding (1) and (2)

$$\angle BAM + \angle MAC = 25^{\circ} + 57^{\circ}$$

$$\angle BAM + \angle MAC = 82^{\circ}$$

Now, since AN is the bisector of $\angle A$

$$\angle BAN = \angle NAC$$

Thus,

$$\angle BAN + \angle NAC = 82^{\circ}$$

$$2\angle BAN = 82^{\circ}$$

$$\angle BAN = \frac{82^{\circ}}{2}$$

$$= 41^{\circ}$$

Now,

$$\angle MAN = \angle BAN - \angle BAM$$

= $41^{\circ} - 25^{\circ}$
= 16°
Therefore, $\angle MAN = 16^{\circ}$.

Triangles and Its Angles Ex 9.2 Q9

Answer:

In the given $\triangle ABC$, AD bisects $\angle A$ and $\angle C > \angle B$. We need to prove $\angle ADB > \angle ADC$.

Let,

 $\angle BAD = \angle 1$

 $\angle DAC = \angle 2$

 $\angle ADB = \angle 3$

 $\angle ADC = \angle 4$

Also,

As AD bisects $\angle A$,

 $\angle 1 = \angle 2 \dots (1)$

Now, in ΔABD , using exterior angle theorem, we get,

$$\angle 4 = \angle B + \angle 1$$

Similarly,

$$\angle 3 = \angle 2 + \angle C$$

$$\angle 3 = \angle 1 + \angle C$$
 [using (1)]

Further, it is given,

$$\angle C > \angle B$$

Adding ∠1 to both the sides

$$\angle C + \angle 1 > \angle B + \angle 1$$

$$\angle 3 > \angle 4$$

Thus,
$$\angle 3 > \angle 4$$

Hence proved.

Triangles and Its Angles Ex 9.2 Q10

Answer:

In the given $\triangle ABC$, $BD \perp AC$ and $CE \perp AB$.

We need prove $\angle BOC = 180^{\circ} - \angle A$

Here, in $\triangle BDC$, using the exterior angle theorem, we get,

$$\angle BDA = \angle DBC + \angle DCB$$

Similarly, in $\triangle EBC$, we get,

$$\angle AEC = \angle EBC + \angle ECB$$

$$90^{\circ} = \angle EBC + \angle ECB \qquad \dots (2)$$

Adding (1) and (2), we get,

$$90^{\circ} + 90^{\circ} = \angle DBC + \angle DCB + \angle EBC + \angle ECB$$

$$180^{\circ} = (\angle DCB + \angle EBC) + (\angle DBC + \angle ECB) \qquad \dots \dots \dots (3)$$

Now, on using angle sum property,

In $\triangle ABC$, we get,

$$\angle BAC + \angle ABC + \angle ACB = 180^{\circ}$$

$$\angle ABC + \angle ACB = 180^{\circ} - \angle BAC$$

This can be written as.

$$\angle EBC + \angle DCB = 180^{\circ} - \angle A$$
(4)

Similarly, using angle sum property in $\triangle OBC$, we get,

$$\angle BOC + \angle OBC + \angle OCB = 180^{\circ}$$

$$\angle OBC + \angle OCB = 180^{\circ} - \angle BOC$$

This can be written as.

$$\angle DBC + \angle ECB = 180^{\circ} - \angle BOC$$
(5)

Now, using the values of (4) and (5) in (3), we get,

$$180^{\circ} = 180^{\circ} - \angle A + 180^{\circ} - \angle BOC$$

$$180^{\circ} = 360^{\circ} - \angle A - \angle BOC$$

$$\angle BOC = 360^{\circ} - 180^{\circ} - \angle A$$

$$\angle BOC = 180^{\circ} - \angle A$$

Therefore,
$$\angle BOC = 180^{\circ} - \angle A$$

Hence proved