Universidade de Évora

Engenharia Informática

Teoria da Informação

Trabalho Prático

Discente:

Marcelo Bábau - 30372 José Medeiro - 31174 Docente:
Luis RATO

9 de Janeiro de 2016

Conteúdo

\mathbf{D}	esenv	lvin	nento	do Pr	ogram	a										
2.	1 Mo	lelo	probab	ilístico	da for	ite .										
	2.1.	1 (Cálculo	das pr	robabili	dade	s .									
	2.1.	2 (Cálculo	da En	tropia											
	2.1.	3 (Compre	essão d	e dados	s Sha	nnc	n-F	ar	no-l	Elia	$\iota_{\mathbf{S}}$				
2.	2 Mo	lelo	probab	ilístico	do car	nal .										
2.	3 Coo	ifica	dor .													
2.	4 Des	codi	ficador													

1 Introdução

No âmbito da disciplina de Teoria da Informação foi proposto o desnvolvimento de uma amplicação de técnicas de compressão a uma sequência de ADN(sequências de pares base), que tem um alfabeto com 4 símbolos: "A", "C", "T", "G". Para tal implementámos um sistema para a transmissão de informação de uma fonte para um receptor através de um canal ruidoso.

Iremos utilizar um codificador e um descodificador, ligados à fonte e ao canal. O codificador vai consistir em compressão e codificação de dados. Na compressão de dados calculam-se as probabilidades de cada caractere, utilizando a compressão com Shannon-Fano-Elias.

Na descodificação fazemos o oposto da codificação e corrigimos os erros, se existirem.

2 Desenvolvimento do Programa

Durante a realização deste trabalho, foi necessário modelar a fonte: Alfabeto, suas probabilidades, cadeia de Markov. Foi também necessário, modelar o canal: probabilidades de transição.

2.1 Modelo probabilístico da fonte

2.1.1 Cálculo das probabilidades

$$P(x=A) = \frac{2374}{11008} = 0.2157$$

$$P(x=C) = \frac{2874}{11008} = 0.2611$$

$$P(x=G) = \frac{3088}{11008} = 0.2805$$

$$P(x=T) = \frac{2672}{11008} = 0.2427$$

2.1.2 Cálculo da Entropia

Entropia da fonte:

$$H(x) = -\sum p(x)\log(p(x))$$

$$H(x) = -[(0.2157 \log(0.2157)) + (0.2611 \log(0.2611)) + (0.2805 \log(0.2805)) + (0.2427 \log(0.2427))] = 1.9934 bits$$

${\bf 2.1.3}\quad {\bf Compress\~ao}\ {\bf de}\ {\bf dados}\ {\bf Shannon\text{-}Fano\text{-}Elias}$

Х	p(x)	F(x)	F'(x)	l(x)	C(x)
Α	0.2157	0.2157	0.1079	4	0001
C	0.2611	0.4768	0.3463	3	010
G	0.2805	0.7573	0.6072	3	100
Т	0.2427	1	0.8688	4	1110

Figura 1: Compressão de dados Shannon-Fano-Elias

2.2 Modelo probabilístico do canal

 ${\rm O}$ canal que nos foi proposto, é um Canal em Z, ou seja um canal assimétrico.

Figura 2: Canal Assimétrico

2.3 Codificador

Para criar o codificador (Code.java) tivemos de inicializar dois objetos fundamentais para a codificação. As classes Shannon Fano Elias.java e Hamming.java, são utilizadas respetivamente para nos gerar um código Shannon Fano Elias para comprimir a mensagem e depois utilizamos a codificação de Hamming (7,4) para conseguirmos detectar os erros na descodificação.

2.4 Descodificador

O descodificador (Decode.java) é o processo inverso do codificador. Depois de recebermos o input, que é a mensagem codificada, voltamos a usar classes Shannon Fano Elias. java e Hamming. java, mas por ordem contrária e a função de descodificar. Em primeiro lugar, detectam-se os erros utilizando a classe Hamming. java e retiram-se os bits de paridade. De seguida, utilizando a classe Shannon Fano Elias. java, fazemos a conversão dos códigos (0001,010,100,1110) de volta para os símbolos ("A", "C", "G", "T").

3 Conclusão

Neste trabalho, achamos que não tivemos a totalidade dos objetivos cumpridos, pois tivemos alguns problemas no canal, e o nosso ficheiro com a codificação com os caracteres "0"e "1", não foi gerado como um ficheiro binário, o que nos leva a pensar que o número de erros seja maior.