(again) Please signup to this canvas

https://canvas.instructure.com/enroll/GH6XJ7

Or using the canvas join code: **GH6XJ7**

Recap: Relational Model

Tables → Relations Columns → Attributes Rows → Tuples

branch	acct_no	balance
Downtown	A-101	500
Brighton	A-201	900
Brighton	A-217	500

Schema → e.g., Account(branch: Branches, acct_no: GenAccounts, balance: Balances)

Domain \rightarrow set of all possible values for an attribute.

```
e.g., Branches = dom(branch) = { Downtown, Brighton, ... }

GenAccounts = dom(acct_no) = { A-101, A-201, A-217, ... }

Balances = \mathbb{R} = real numbers
```

Recap: 3 Parts of Relational Model

• **Structure**: The definition of relations and their contents.

• Integrity: Ensure the database's contents satisfy constraints.

• Manipulation: How to access and modify a database's contents.

Recap: Relational Algebra

• Selection: $\sigma_C(R) = \{t \mid t \in R, C(t)\}$

• Projection: $\Pi_{f_1(A_1),\dots,f_n(A_n)}(R) = \{(f_1(t[A_1]),\dots,f_n(t[A_n])) \mid t \in R\}$ where $t[A_i]$ is the value of t for attribute A_i

A(a_id	, b_id))	$B = \sigma_{a}$	_id='a2	(A)	π_{b_id} -	-100,a_i	d(B)
a_id	b_id		a_id	b_id		b_id	a_id	
a1	101		a2	102		2	a2	
a2	102		a2	103		3	a2	
a2	103							
a3	104		SELECT	_		, a_id	from	А
		•	where	$a_id =$	= 'a2'			

ICCS240 Database Management

Relational Algebra (cont.)

But which representation then?

Students(sid,sname,gpa)

SELECT DISTINCT

sname, gpa FROM Students WHERE gpa > 3.5;

How do we represent this query in RA?

 $\sigma_{gpa>3.5}(\Pi_{sname,gpa}(Students))$

Are these (always) logically equivalent?

Some algebraic properties (for queries optimization)

Selection commutes with projection

if and only if

the attributes referenced in the selection condition are a subset of the attributes in the projection

$$\pi_{A_1,\dots,A_n}(\sigma_C(R)) = \sigma_C(\pi_{A_1,\dots,A_n}(R))$$

where attributes in $C \subseteq \{A_1, ..., A_n\}$

ID	пате	dept_name	salary
22222	Einstein	Physics	10000
12121	Wu	Finance	5000
32343	El Said	History	200
45565	Katz	Comp. Sci.	30000
98345	Kim	Elec. Eng.	1000
76766	Crick	Biology	2000
10101	Srinivasan	Comp. Sci.	30000
58583	Califieri	History	200
83821	Brandt	Comp. Sci.	35000
15151	Mozart	Music	1000
33456	Gold	Physics	5000
76543	Singh	Finance	5000

Assume cost of projection for each tuple is much less than cost of testing for the given condition in a selection operation of each tuple.

$$\pi_{deptname,salary}\left(\sigma_{deptname="Comp.Sci."}(T)\right)$$
 or
$$\sigma_{deptname="Comp.Sci."}\left(\pi_{deptname,salary}(T)\right)$$

Assume cost of projection for each tuple is much less than cost of testing for the given condition in a selection operation of each tuple.

Case 1: select then project

$$\pi_{deptname,salary}\left(\sigma_{deptname="Comp.Sci."}(T)\right)$$

ID	пате	dept_name	salary
22222	Einstein	Physics	10000
12121	Wu	Finance	5000
32343	El Said	History	200
45565	Katz	Comp. Sci.	30000
98345	Kim	Elec. Eng.	1000
76766	Crick	Biology	2000
10101	Srinivasan	Comp. Sci.	30000
58583	Califieri	History	200
83821	Brandt	Comp. Sci.	35000
15151	Mozart	Music	1000
33456	Gold	Physics	5000
76543	Singh	Finance	5000

Case 2: project then select

$$\sigma_{deptname = "Comp.Sci."} \left(\pi_{deptname,salary}(T) \right)$$

ID	name	dept_name	salary
22222	Einstein	Physics	10000
12121	Wu	Finance	5000
32343	El Said	History	200
45565	Katz	Comp. Sci.	30000
98345	Kim	Elec. Eng.	1000
76766	Crick	Biology	2000
10101	Srinivasan	Comp. Sci.	30000
58583	Califieri	History	200
83821	Brandt	Comp. Sci.	35000
15151	Mozart	Music	1000
33456	Gold	Physics	5000
76543	Singh	Finance	5000

Assume cost of projection for each tuple (X) is much less than cost of testing for the given condition in a selection operation of each tuple (Y).

Case 1: select then project

Case 2: project then select

$$\sigma_{deptname = "Comp.Sci."} \left(\pi_{deptname,salary}(T) \right)$$

ID	name	dept_name	salary
22222	Einstein	Physics	10000
12121	Wu	Finance	5000
32343	El Said	History	200
45565	Katz	Comp. Sci.	30000
98345	Kim	Elec. Eng.	1000
76766	Crick	Biology	2000
10101	Srinivasan	Comp. Sci.	30000
58583	Califieri	History	200
83821	Brandt	Comp. Sci.	35000
15151	Mozart	Music	1000
33456	Gold	Physics	5000
76543	Singh	Finance	5000

Assume cost of projection for each tuple (X) is much less than cost of testing for the given condition in a selection operation of each tuple (Y).

Case 2: project then select

$$\sigma_{deptname = "Comp.Sci."} \left(\pi_{deptname,salary}(T) \right)$$

ID	name	dept_name	salary
22222	Einstein	Physics	10000
12121	Wu	Finance	5000
32343	El Said	History	200
45565	Katz	Comp. Sci.	30000
98345	Kim	Elec. Eng.	1000
76766	Crick	Biology	2000
10101	Srinivasan	Comp. Sci.	30000
58583	Califieri	History	200
83821	Brandt	Comp. Sci.	35000
15151	Mozart	Music	1000
33456	Gold	Physics	5000
76543	Singh	Finance	5000

Assume cost of projection for each tuple (X) is much less than cost of testing for the given condition in a selection operation of each tuple (Y).

Case 1: select then project

$$\pi_{deptname,salary}\left(\sigma_{deptname="Comp.Sci."}(T)\right)$$

Total cost of Case 1 is $|T| \cdot Y + |T'| \cdot Y$

83821	Brandt	Comp. Sci.	35000
12-60-00-00-10-6		50-74-700-700-00-0M	_

Case 2: project then select

$$\sigma_{deptname = "Comp.Sci."} \left(\pi_{deptname,salary}(T) \right)$$

ID	пате	dept_name	salary
22222	Einstein	Physics	10000
12121	Wu	Finance	5000
32343	El Said	History	200
45565	Katz	Comp. Sci.	30000
98345	Kim	Elec. Eng.	1000
76766	Crick	Biology	2000
10101	Srinivasan	Comp. Sci.	30000
58583	Califieri	History	200
83821	Brandt	Comp. Sci.	35000
15151	Mozart	Music	1000
33456	Gold	Physics	5000
76543	Singh	Finance	5000

Assume cost of projection for each tuple (X) is much less than cost of testing for the given condition in a selection operation of each tuple (Y).

Case 1: select then project

 $\pi_{deptname,salary}\left(\sigma_{deptname "Comp.Sci."}(T)\right)$

Total cost of Case 1 is $|T| \cdot Y + |T'| \cdot Y$

83821	Brandt	Comp. Sci.	35000

Case 2: project then select

 $\sigma_{deptname = "Comp.Sci."} \left(\pi_{deptname,salary}(T) \right)$ Run |T| operations of π Outputs |T''| = |T| - 1 (duplicates eliminate)

Outputs $ T'' = T $		ates elimi	nated
	Physics	10000	
	Finance	5000	
	History	200	
	Comp. Sci.	30000	
	Elec. Eng.	1000	
	Biology	2000	
	History	200	
	Comp. Sci.	35000	
	Music	1000	
	Physics	5000	
	Finance	5000	

Assume cost of projection for each tuple (X) is much less than cost of testing for the given condition in a selection operation of each tuple (Y).

Case 1: select then project

 $\pi_{deptname,salary}\left(\sigma_{deptname="Comp.Sci."}(T)\right)$

Total cost of Case 1 is $|T| \cdot Y + |T'| \cdot X$

Case 2: project then select

 $\sigma_{deptname = "Comp.Sci."} \left(\pi_{deptname,salary}(T) \right)$

Run $ T'' $ operati	ons of σ		
	Physics Finance	10000 5000	Ī

Total cost of Case 2 is $|T| \cdot X + |T''| \cdot Y$

Comp. Sci.	35000
Music	1000
Physics	5000
Finance	5000

Assume cost of projection for each tuple (X) is much less than cost of testing for the given condition in a selection operation of each tuple (Y).

Case 1: select then project

$$\pi_{deptname,salary}\left(\sigma_{deptname "Comp.Sci."}(T)\right)$$

$$|T| \cdot Y + |T'| \cdot X$$

= 3 \cdot X + |T| \cdot Y

Case 2: project then select

$$\sigma_{deptname = "Comp.Sci."} \left(\pi_{deptname,salary}(T) \right)$$

$$|T| \cdot X + |T''| \cdot Y$$

= $|T| \cdot X + (|T| - 1) \cdot Y$

If X is very very small, Case 2 seems to be a better option? If $X \approx Y$, Case 1 seems to be a better option? Or maybe any other assumption on |T|, ???

Will cover "optimization plan" later in the course...

So far in Relational Algebra ...

- Selection: $\sigma_C(R) = \{t \mid t \in R, C(t)\}$
- Projection: $\Pi_{f_1(A_1),\dots,f_n(A_n)}(R)=\{(f_1(t[A_1]),\dots,f_n(t[A_n]))\mid t\in R\}$ where $t[A_i]$ is the value of t for attribute A_i

What's more on today plate?

- Rename
- Product (selection from two or more relations)
- Union, Intersection, Difference
- Join
- Views

Renaming $(\boldsymbol{\rho})$

• Changes the schema, not the instance

• Notation: $\rho_{R'(B_1,...,B_n)}(R)$

• Note: this is shorthand for the proper form (since names, not order matters!): $\rho_{A_1/B_1}(R)$ or $\rho_{A_1\to B_1}(R)$

Students(sid,sname,gpa)

SQL:

SELECT

sid AS studId, sname AS name, gpa AS gradePtAvg FROM Students;

RA:

We care about this operator *because* we are working in a *named perspective!*

Another example:

Students

sid	sname	gpa
001	John	3.4
002	Bob	1.3

$\rho_{studId,name,gradePtAvg}(Students)$

Students

studId	name	gradePtAvg
001	John	3.4
002	Bob	1.3

Cross-Product (×)

 Generates a relation that contains all possible combinations of tuples from the input relations

• Notation: $R_1 \times R_2$

• Example:

• Employee × Dependents

Students(sid,sname,gpa) People(ssn,pname,address)

SQL:

SELECT * FROM Students, People;

or

FROM Students CROSS JOIN People;

RA:

 $Students \times People$

Another example:

People

ssn	pname	address
1234545	John	216 Rosse
5423341	Bob	217 Rosse

Students

sid	sname	gpa
001	John	3.4
002	Bob	1.3

$Students \times People$

ssn	pname	address	sid	sname	gpa
1234545	John	216 Rosse	001	John	3.4
5423341	Bob	217 Rosse	001	John	3.4
1234545	John	216 Rosse	002	Bob	1.3
5423341	Bob	216 Rosse	002	Bob	1.3

Reminder: Union (∪) and Difference (-)

- R1 ∪ R2
- Example: ActiveEmployees ∪ RetiredEmployees
- R1 R2
- Example: AllEmployees -- RetiredEmployees

Union (U)

 Generate a relation that contains all tuples that appear in at least one of the input relations.

• Notation: $R \cup S$

• *Compatible* only if (1) they have the same attributes and (2) the domain of each attribute matches.

SQL:

(SELECT * FROM R)
UNION
(SELECT * FROM S)

RUS

а	b
a1	11
a2	12
a3	13
a4	14
a5	15

Intersection (U)

 Generate a relation that contains all tuples that appear in **both** the input relations.

• Notation: $R \cup S$

• *Compatible* only if (1) they have the same attributes and (2) the domain of each attribute matches.

SQL:

(SELECT * FROM R)
INTERSECT
(SELECT * FROM S)

R(a,	b)
а	b
a1	11
a2	12
a3	13

DIFFERENCE (—)

 Generate a relation that contains all tuples that appear in the first input relation but not in the second one.

• Notation: R - S

• *Compatible* only if (1) they have the same attributes and (2) the domain of each attribute matches.

SQL:

(SELECT * FROM R) EXCEPT (SELECT * FROM S)

R(a,	b)
а	b
a1	11
a2	12

13

a3

S(a,	b)
а	ь
a4	14
a3	13
a5	15

R - S

a	Ь
a1	11
a2	12

INTERSECTION is a luxury

• It is a derived operator e.g., convenient but **redundant**

• $R1 \cap R2 = R1 - (R1 - R2)$

Quick summary:

Relational Algebra: Theoretical Query Language

- 1. Select (σ)
- 2. Project (π)
- 3. Union (U)
- 4. Intersect (\cap)

- 5. (Set) Difference (—)
- 6. (Cartesian/Cross) Product (—)
- 7. Rename (ρ)

Together, they give semantics to practical query languages such as SQL.

EXCERCISE

```
Schema:
    Customer(cid, cname, cstreet, ccity)
    Borrower(cid, loan_no)
    Depositor(cid, acct_no)
```

Find the names of customers who have both a (deposit) account and a loan (account).

- Write a relational algebra expressing this query
- *Write a corresponding SQL query?