Cardinalidad (parte 1)

Clase 14

IIC 1253

Prof. Miguel Romero

Outline

Introducción

Cardinalidad

Conjuntos finitos

Conjuntos infinitos y numerabilidad

Epílogo

Objetivos de la clase

- □ Comprender concepto de cardinalidad
- Demostrar equinumerosidad construyendo biyecciones
- Comprender concepto de numerabilidad
- Demostrar numerabilidad de conjuntos

Outline

Introducción

Cardinalidad

Conjuntos finitos

Conjuntos infinitos y numerabilidad

Epílogo

Queremos resolver el problema de determinar el tamaño de un conjunto.

- Es decir, la cantidad de elementos que contiene.
- ¿Cómo lo hacemos?

Ejemplo

¿Cuántos elementos tiene el conjunto $A = \{a, b, c, d, e, f\}$?

Simplemente contamos...tiene 6.

Ejemplo

¿Cuántos elementos tiene el conjunto $A = \{a, b, c, d, e, f\}$?

$$a \rightarrow 1$$

$$b \rightarrow 2$$

$$c \rightarrow 3$$

$$d \rightarrow 4$$

$$e \rightarrow 5$$

$$f \rightarrow 6$$

Estamos estableciendo una correspondencia entre los elementos de A y los números naturales. . .

Definición

Sean A y B dos conjuntos cualesquiera. Diremos que A es **equinumeroso** con B (o que A tiene el mismo tamaño que B) si existe una función biyectiva $f: A \rightarrow B$. Lo denotamos como

 $A \approx B$

A y B tienen el mismo tamaño si los elementos de A se pueden poner en correspondencia con los de B.

Notemos que \approx es una relación sobre conjuntos.

Teorema

La relación ≈ es una relación de equivalencia.

Ejercicio (propuesto ★)

Demuestre el teorema.

Teorema

La relación ≈ es una relación de equivalencia.

Demostración:

- Refleja: Para todo conjunto A existe $f: A \to A$ tal que f(a) = a, $\forall a \in A$ es una función biyectiva, por lo que $A \approx A$.
- Simétrica: Sea A, B conjuntos tal que $A \approx B \Rightarrow$ existe $f : A \rightarrow B$ biyectiva, entonces la función $f^{-1} : B \rightarrow A$ es biyectiva y por lo tanto $B \approx A$.
- Transitiva: Sea A, B, C conjuntos tal que $A \approx B$ y $B \approx C \Rightarrow$ existen $f: A \rightarrow B$ y $g: B \rightarrow C$ biyectivas, luego $f \circ g: A \rightarrow C$ es una función biyectiva, por lo que $A \approx C$.

Podemos usar conceptos de las relaciones de equivalencia para hablar sobre el tamaño de los conjuntos.

- ¿Por ejemplo?
- Podemos tomar las clases de equivalencia inducidas por ≈.

Definición

La cardinalidad de un conjunto A es su clase de equivalencia bajo \approx :

$$|A| = [A]_{\approx}$$

Ejemplo

¿Cuál es la cardinalidad del conjunto $A = \{a, b, c, d, e, f\}$?

Es fácil notar que $A \approx \{0, 1, 2, 3, 4, 5\}$.

- Entonces, $|A| = [A]_{\approx} = [\{0, 1, 2, 3, 4, 5\}]_{\approx}$.
- Pero nosotros le pusimos un nombre al último conjunto...

$$|A| = [6]_{\approx}$$

Formalizaremos esto y simplificaremos la notación.

Outline

Introducción

Cardinalidad

Conjuntos finitos

Conjuntos infinitos y numerabilidad

Epílogo

Definición

Diremos que A es un conjunto **finito** si $A \approx n$, para algún $n \in \mathbb{N}$. Es decir, si existe una función biyectiva $f : A \to n = \{0, \dots, n-1\}$.

En tal caso, se tiene que $|A| = \lceil n \rceil_{\approx}$.

- Por simplicidad, diremos que |A| = n.
- También podremos decir que *A* tiene *n* elementos.

Ejemplo

¿Cuál es la cardinalidad del conjunto $A = \{a, b, c, d, e, f\}$?

- |A| = 6
- A tiene 6 elementos.

Lema

Sean A y B dos conjuntos **finitos** tales que $A \cap B = \emptyset$. Entonces,

 $|A\cup B|=|A|+|B|.$

Ejercicio (propuesta ★)

Demuestre el lema.

Lema

Sean $A \vee B$ dos conjuntos finitos tales que $A \cap B = \emptyset$. Entonces, $|A \cup B| = |A| + |B|$.

Demostración:

Supongamos que |A|=n y que |B|=m. Sabemos entonces que $A \approx \{0,\ldots,n-1\}$ y que $B \approx \{0,\ldots,m-1\}$, luego existen funciones biyectivas $f:A \to \{0,\ldots,n-1\}$ y $g:B \to \{0,\ldots,m-1\}$. Sea $h:A \cup B \to \{0,\ldots,n,n+1,\ldots,n+m-1\}$ tal que

$$h(x) = \begin{cases} f(x) & x \in A \\ n + g(x) & x \in B \end{cases}$$

Primero se debe notar que h está bien definida como función ya que no existe un x que pertenezca simultáneamente a A y B.

Continuación:

- Sobreyectividad: Sea $k \in \{0, \dots, n, n+1, \dots, n+m-1\}$, lo demostraremos por casos. Si k < n entonces dado que f es sobreyectiva en $\{0, \dots, n+1\}$ sabemos que existe un $x \in A$ tal que k = f(x) = h(x). Si $n \le k < n+m$ entonces dado que g es sobreyectiva en $\{0, \dots, m-1\}$ sabemos que existe en $x \in B$ tal que g(x) = k-n y por lo tanto k = n + g(x) = h(x), finalmente h es sobreyectiva en $k \in \{0, \dots, n, n+1, \dots, n+m-1\}$.
- Inyectividad: Otra vez por casos, si h(x) = h(y) < n entonces necesariamente h(x) = f(x) = h(y) = f(y) de donde se concluye que f(x) = f(y) y dado que f es inyectiva obtenemos que f(x) = f(y) y dado que f es inyectiva obtenemos que f(x) = f(y) y dado que f(x) = f(y) de donde se concluye que f(x) = f(y) y dado que f(x) = f(y) y dado que f(x) = f(y) y dado que f(x) = f(y) y finalmente f(x) es inyectiva.

Teorema

Sea A un conjunto finito. Entonces, se cumple que $|\mathcal{P}(A)| = 2^{|A|}$.

Esto implica que si *A* es un conjunto finito, entonces su cardinalidad es **estrictamente menor** que la de su conjunto potencia.

Ejercicio

Demuestre el teorema.

Teorema

Sea A un conjunto finito. Entonces, se cumple que $|\mathcal{P}(A)| = 2^{|A|}$.

Demostración:

Por inducción en la cardinalidad de A.

- BI: Si |A| = 0 entonces $A = \emptyset \Rightarrow \mathcal{P}(A) = \{\emptyset\} \approx \{0\}$ por lo tanto $|\mathcal{P}(A)| = 1 = 2^0 = 2^{|A|}$.
- HI: Supongamos que para cualquier conjunto A tal que |A| = n se cumple que $|\mathcal{P}(A)| = 2^n = 2^{|A|}$
- TI: Sea A un conjunto tal que |A| = n + 1, y sea $B = A \{a\}$, con a un elemento arbitrario de A. El conjunto B cumple con |B| = n, por lo que $|\mathcal{P}(B)| = 2^n$. ¿Cómo podemos a partir de $\mathcal{P}(B)$ formar $\mathcal{P}(A)$? Si nos damos cuenta en $\mathcal{P}(B)$ están todos los subconjuntos de B, es decir, todos los subconjuntos de A que no contienen al elemento a.

Continuación:

Si llamamos S al conjunto

$$S = \{X \mid X \subseteq A \land a \in X\}$$

Es decir S está formado por todos los subconjuntos de A que contienen a a, no es difícil notar que $S \cap \mathcal{P}(B) = \emptyset$ y que $\mathcal{P}(A) = S \cup \mathcal{P}(B)$. Ahora, la siguiente función $f: \mathcal{P}(B) \to \mathcal{S}$ tal que $f(X) = X \cup \{a\}$, es una función biyectiva de $\mathcal{P}(B)$ en \mathcal{S} , por lo que concluímos que $\mathcal{P}(B) \approx \mathcal{S}$ y por lo tanto $|\mathcal{P}(B)| = |\mathcal{S}|$. Luego, dado que $\mathcal{S} \cap \mathcal{P}(B) = \emptyset$ y que $\mathcal{P}(A) = \mathcal{P}(B) \cup \mathcal{A}$ y usando el lema anterior concluímos que

$$|\mathcal{P}(A)| = |\mathcal{P}(B) \cup A| = |\mathcal{P}(B)| + |A| = |\mathcal{P}(B)| + |\mathcal{P}(B)| = 2^n + 2^n = 2^{n+1} = 2^{|A|}.$$

Outline

Introducción

Cardinalidad

Conjuntos finitos

Conjuntos infinitos y numerabilidad

Epílogo

Nuestro problema es un poco fácil cuando el conjunto es finito.

- ¿Qué pasa cuando es infinito?
- Ya no podemos contar...
- ... pero sí podemos establecer una correspondencia como la que mostramos
- ¿Cómo? ¡Con funciones!

Ejemplo

Sea $\mathbb{P} = \{2k \mid k \in \mathbb{N}\}$ el conjunto de los números naturales pares. ¿Cuál conjunto es más grande, \mathbb{N} o \mathbb{P} ?

Podemos tomar $f: \mathbb{N} \to \mathbb{P}$ dada por f(n) = 2n, la cual es claramente biyectiva, y entonces $|\mathbb{P}| = |\mathbb{N}|$.

Definición

Un conjunto A se dice enumerable si $|A| = |\mathbb{N}|$.

Ejercicio

Demuestre que \mathbb{Z} es enumerable.

Podemos tomar $f: \mathbb{N} \to \mathbb{Z}$ dada por

$$f(n) = \begin{cases} \frac{n}{2} & \text{si } n \text{ es par} \\ -\left(\frac{n+1}{2}\right) & \text{si } n \text{ es impar} \end{cases}$$

la cual es claramente biyectiva (se deja como ejercicio), y entonces $|\mathbb{Z}| = |\mathbb{N}|$.

La siguiente definición nos permite caracterizar a los conjuntos enumerables de una manera muy práctica.

Definición

Un conjunto A es enumerable si y sólo si todos sus elementos se pueden poner en una lista infinita; es decir, si existe una sucesión infinita

$$(a_0, a_1, a_2, \ldots, a_n, a_{n+1}, \ldots)$$

tal que todos los elementos de A aparecen en la sucesión una única vez cada uno.

Hay una biyección implícita entre índices y elementos de la lista:

$$f: A \to \mathbb{N} \text{ con } f(a_i) = i$$

Ejercicio

Demuestre que:

- $\mathbb{N} \times \mathbb{N}$ es enumerable.
- \square \mathbb{N}^n es enumerable.
- Q es enumerable.

¿Por qué esta definición es práctica?

■ Piense en un computador.

Ejercicio (propuesto ★)

¿Cuál es la cantidad de programas válidamente escritos en { INSERTE SU LENGUAJE FAVORITO AQUÍ }?

Ejercicio

Demuestre que:

- $\mathbb{N} \times \mathbb{N}$ es enumerable.
- Q es enumerable.

Solución: Apuntes Jorge Pérez, Sección 1.6.2, Teorema 1.6.5, página 52.

Ejercicio

Demuestre que \mathbb{N}^n es enumerable.

Por inducción sobre n:

BI: La base es n = 2, demostrado anteriormente.

<u>HI:</u> Supongamos que \mathbb{N}^n es enumerable, con $n \ge 2$.

<u>TI:</u> PD: $\mathbb{N}^{n+1} = \mathbb{N}^n \times \mathbb{N}$ es enumerable.

Como por HI sabemos que \mathbb{N}^n es enumerable, existe una lista $(a_0,a_1,\ldots,a_i,\ldots)$ que contiene a todas las tuplas de \mathbb{N}^n exactamente una vez cada una. Luego, de manera similar a la demostración de $\mathbb{N} \times \mathbb{N}$, ponemos las tuplas de $\mathbb{N}^n \times \mathbb{N}$ en una matriz, la cual recorremos por las diagonales, que son los pares en que el índice de la primera componente en la lista de \mathbb{N}^n más la segunda componente suman k.

Ejercicio

Demuestre que \mathbb{N}^n es enumerable.

TI: De esta manera, la lista sería algo como:

$$((a_0,0),(a_0,1),(a_1,0),(a_0,2),(a_1,1),(a_2,0),\ldots)$$

Concluimos entonces que \mathbb{N}^n es enumerable para todo $n \in \mathbb{N}$.

Ejercicio

¿Cuál es la cantidad de programas válidamente escritos en { INSERTE SU LENGUAJE FAVORITO AQUÍ }?

Solución: Apuntes Jorge Pérez, Sección 1.6.2, páginas 52 y 53.

Un teorema útil (sobre todo para el caso infinito):

Teorema (Cantor-Schröder-Bernstein)

 $A \approx B$ si y sólo si existen funciones inyectivas $f : A \rightarrow B$ y $g : B \rightarrow A$.

El teorema CSB es una alternativa a construir una biyección (eso puede ser muy difícil!!)

Ejemplo

Demuestre que $A = \{2^i \cdot 3^j \mid i, j \in \mathbb{N}\}$ es enumerable.

Tomamos las siguientes funciones:

- $f: A \to \mathbb{N}$ dada por f(x) = x, la cual es claramente inyectiva.
- $g: \mathbb{N} \to A$ dada por $g(x) = 2^x \cdot 3^x = 6^x$. $g(x) = g(x) \Rightarrow 6^x = 6^y \Rightarrow x = y$, y por lo tanto es inyectiva.

Por teorema de CSB, concluimos que $|A| = |\mathbb{N}|$.

Outline

Introducción

Cardinalidad

Conjuntos finitos

Conjuntos infinitos y numerabilidad

Epílogo

Objetivos de la clase

- □ Comprender concepto de cardinalidad
- Demostrar equinumerosidad construyendo biyecciones
- Comprender concepto de numerabilidad
- Demostrar numerabilidad de conjuntos