Принцип минимаксного сожаления в линейно-квадратичной задаче при неопределенности

Титова Любовь Дмитриевна

Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра оптимального управления Научный руководитель: профессор, д.ф.-м.н. Жуковский В.И.

Москва, 2022

Постановка задачи

Однокритериальная задача при неопределенности

$$\Gamma^{(1)} = \langle X, Y, f(x,y) \rangle,$$

где $x \in X \subseteq \mathbb{R}^n$ - стратегии ЛПР, интервальные неопределенности $y \in Y \subseteq \mathbb{R}^m$, скалярная целевая ф-я f(x,y) определена на $X \times Y$. Наличие неопределенности приводит к появлению множества результатов $f(x,Y) = \{f(x,y) \mid \forall y \in Y\}$, порожденных $x \in X$.

Принцип минимаксного сожаления

Для однокритериальной задачи $\Gamma^{(1)}=\langle \mathtt{X},\mathtt{Y},\mathtt{f}(\mathtt{x},\mathtt{y}) \rangle$ принцип минимаксного сожаления состоит в построении пары $(x^r,R_f^r\in X\times R)$, удовлетворяющей цепочке равенств

$$R_f^r = \max_{y \in Y} R_f(x^r, y) = \min_{x \in X} \max_{y \in Y} R_f(x, y),$$

где функция риска (по Нихансу-Сэвиджу)

$$R_f(x,y) = \max_{z \in Z} f(z,y) - f(x,y).$$

Здесь гарантия риска $R_f[x] \leq \max_{y \in Y} R(x,y) \; \forall y \in Y$

Непрерывность функции риска

Утверждение

Если в $\Gamma^{(1)}$ множества X и Y суть компакты, функция выигрыша f(x,y) непрерывна на $X\times Y$, тогда сильно гарантированный выигрыш

$$f[x] = \min_{y \in Y} f(x, y)$$

и сильно гарантированный риск

$$R_f[x] = \max_{y \in Y} R_f(x, y)$$

будут непрерывными на Х скалярными функциями.

- Множество выигрышей $f(x, Y) = \{f(x, y) | \forall y \in Y\}$, порожденных стратегией $x \in X$, ограничено **снизу** сильно гарантированным выигрышем f[x].
- Множество всех рисков $R_f(x,y)$ по Нихансу-Сэвиджу, которые могут реализоваться при любых неопределенностях $y \in Y$, ограничено **сверху** сильно гарантированным риском $R_f[x]$. $R_f[x] \geqslant R f(x,y) \ \forall y \in Y$.

Переход от ОЗН к двухкритериальной задаче

Модель двухкритериальной задачи при неопределенности

$$\Gamma_2 = \langle X, Y, \{f(x, y), -R_f(x, y)\} \rangle$$

Определение

В задаче Γ_2^g стратегия x^P называется максимальной по Парето, если $\forall x \in X$ несовместна система из двух неравенств

$$f[x] \geqslant f[x^P], -R_f[x] \geqslant -R_f[x^P],$$

из которых хотя бы одно строгое.

Определение

Тройка $(x^P, f[x^P], R_f[x^P])$ называется сильно гарантированным по Парето решением задачи Γ_2^g , если

- x^P максимальна по Парето в задаче Γ_2^g ;
- $f[x^P]$ значение сильно гарантированного выигрыша $f[x] = \min_{y \in Y} f(x, y)$ при $x = x^P$ в задаче $\Gamma^{(1)}$;
- $R_f[x^P]$ значение сильно гарантированного риска $R_f[x] = \max_{y \in Y} R_f(x,y)$ при $x = x^P$.

Перейдем от задачи $\Gamma^{(1)}$ к задачам $\Gamma_1, \Gamma_2, \Gamma_3$, где

$$\Gamma_1 = \langle X, Y, \{f(x, y), -R_f(x, y)\} \rangle,$$

$$\Gamma_2 = \langle X, \{f[x], -R_f[x]\} \rangle,$$

$$\Gamma_3 = \langle X, F[x] = \alpha f[x] - \beta R_f[x] \rangle.$$

Здесь стратегии $x \in X \subseteq \mathbb{R}^n$, неопределенности $y \in Y \subseteq \mathbb{R}^m$, функция выигрыша f(x,y) и функция риска по Нихансу-Сэвиджу $R_f(x,y)$ определены на $(x,y) \in X \times Y$, числа $\alpha,\beta \in (0,1)$.

Схема построения сильно гарантированного решения

- Этап I. Для f(x,y) находим $f[y] = \max_{x \in X} f(x,y)$ и строим функцию риска по Нихансу-Сэвиджу, именно $R_f(x,y) = f[y] f(x,y)$.
- $\underline{\exists$ тап II. Находим сильную гарантию для выигрыша $f[x] = \min_{y \in Y} f(x,y)$ и для риска $R_f[x] = \max_{y \in Y} R_f(x,y)$.
- $\underline{\text{Этап III}}$. Строим x^P такой что

$$\max_{x \in X} (f[x] - R_f[x]) = f[x^P] - R_f[x^P].$$

• Этап IV. Для x^P определяем значения сильных гарантий $f[x^P]$ и $R_f[x^P]$. Построенная в результате тройка $(x^P, f[x^P], R_f[x^P])$ является решением, удовлетворяющим определению 2.

Постановка задачи

Рассмотрим линейно-квадратичную однокритериальную задачу

$$\Gamma_{Iq} = \langle \mathbb{R}^n, \mathbb{R}^m, f(x, y) \rangle$$

Здесь множество стратегий x представляет собой евклидово n-мерное пространство \mathbb{R}^n , множество неопределенностей есть \mathbb{R}^m , функция выигрыша имеет линейно-квадратичную форму:

$$f(x, y) = x'Ax + 2x'By + y'Cy + 2a'x + 2c'y + d,$$

где, $n \times n$ -матрица A и $m \times m$ -матрица C постоянны и симметричны; $n \times m$ -матрица B постоянной; n-вектор a, m-вектор c и число d постоянными, штрих сверху означает транспонирование.

Построение явного вида функции риска по Нихансу-Сэвиджу

• $\underline{\mathsf{Этап I}}$. Строим явный вид функции риска по Нихансу-Сэвиджу $R_f(x,y)$ для Γ_{Iq} .

Утверждение

Пусть в задаче Γ_{lq}

$$A < 0$$
.

Тогда функция риска по Нихансу-Сэвиджу имеет вид

$$R_f(x,y) = -(x'A + y'B' + a')A^{-1}(Ax + By + a).$$

Построение сильной гарантии для функции риска

ullet Этап II. Построим функцию $R_f[x] = \max_{y \in \mathbb{R}^m} R_f(x,y)$ для Γ_{lq} .

Утверждение

Пусть в задаче Γ_{lq}

$$A < 0$$
, $\det B \neq 0$, $n = m$.

Тогда

$$R_f[x] = \max_{y \in \mathbb{R}^m} R_f(x, y) \equiv 0 \ \forall x \in \mathbb{R}^n.$$

Построение явного вида сильно гарантированного по Парето решения Γ_{lq}

• <u>Этап III-IV</u>. Построим максимальную по Парето стратегию x^P для задачи Γ_2 и построим $f[x^P]$.

Утверждение

Пусть в задаче Γ_{lq} выполнены условия:

$$A < 0, m = n, C > 0, \det B \neq 0.$$

Тогда

$$x^{P} = -[A - BC^{-1}B']^{-1}(a - BC^{-1}c),$$

$$f[x^{P}] = -(a' - c'C^{-1}B')[A - BC^{-1}B']^{-1}(a - BC^{-1}c) + d - c'C^{-1}c,$$

Сильно гарантированное по Парето решение задачи Γ_{lq}

Рассмотрим линейно-квадратичную задачу $\Gamma_{lq} = \langle \mathbb{R}^n, \mathbb{R}^m, f(x,y) \rangle$. Если $f(x,y) = x'Ax + 2x'By + y'Cy + 2a'x + 2c'y + d, \ A < 0, C > 0, m = n, \det B \neq 0$, тогда тройка $(x^P, f[x^P], R - f[x^P])$ является сильно гарантированным по Парето решением задачи Γ_{lq} , где:

- $x^P = -[A BC^{-1}B']^{-1}(a BC^{-1}c)$
- $f[x^P] = -(a'-c'C^{-1}B')[A-BC^{-1}B']^{-1}(a-BC^{-1}c)+d-c'C^{-1}c$,
- $P_f[x^P] = 0,$

Заключение

Таким образом, решена задача выбора стратегии в ОЗН, которая учитывает, во-первых, «действия» неопределенности, во-вторых, стремление улучшить(увеличить) исход с одновременным уменьшением связанного с этим риска. Найден явный вид гарантированного по риску и исходу решения в достаточно общем линейно-квадратичном варианте ОЗН.

Список литературы

- [1] Диев В.С. Управленческие решения: неопределенность, модели, интуиция. Новосибирский государственный универстет, 2001.
- [2] Жуковский В.И., Кудрявцев К.Н. Уравновешивание конфликтов при неопределенности. І. Аналог седловой точки // Математическая теория игр и ее приложения. 2013. т. 5. №1. С. 27-44.
- [3] Жуковский В.И., Кудрявцев К.Н. Уравновешивание конфликтов при неопределенности. П. Аналог максимина // Математическая теория игр и ее приложения. 2013. т. 5. №2. С. 3-45.
- [4] Жуковский В.И., Кудрявцев К.Н., Смирнова Л.В. Гарантированные решения конфликтов и их приложения. М.: КРАСАНД/URSS, 2013.
- [5] Markovitz H.M. Portfollio Selection // The Journal of France. 1952. Vol. 7. №1. P. 77-91.
- [6] Сиразетдинов Т.К., Сиразетдинов Р.Т. Проблема риска и его моделирование // Проблемы человеческого риска. 2007. 1. С. 31-43.
- [7] Шахов В.В. Введение в страхование. Экономический аспект. М.: Финансы и статистика, 2001. 286с.
- [8] Wald A. Contribution to the theory of statistical estimation testing hypothesis // Annuals Math. Statist. 1939.Vol. 10. P. 299-326.
- [9] Wald A. Contribution to the theory of statistical estimation and testing hypothesis // Annuals Math. Statist. 1939. V. 10. P. 299-326.
- [10] Wald A. Statistical Decision Functions. N.Y.: Wiley, 1950.
- [11] Sawage I.J. The theory of statstical dividion // Journal of the American Statictical Association. 1951. Vol. 46. No. 253. P. 55-67. DOI: 10.1080/016214459.1951.10500768.
- [12] Nichans J. Zur Preisbilding bei ungewissen Erwartungen // Schwelzerische Zeitschrift fur Volkswirtschaft and Statistic. 1948. Vol. 84, No. 5. P. 433-456.
- [13] Дмитрук А.В. Выпуклый анализ. Элементарный вводный курс. М.:МАКС-ПРЕСС, 2012.
- [14] Воеводин В.В., Кузнецов Ю.А. Матрицы и вычисления, М.:НАУКА, 1984.
- [15] Zhukovskiy V.I. and Salukvadzi M.E. The Vector-Valued Maximum. N.Y. etc. Academic Press. 1994.

Дополнительные слайды

Лемма Карлини

Пусть в задаче Γ_2^g существует $x^P \in X$ и числа $\alpha, \beta \in (0,1)$, такие что x^P минимизирует скалярную функцию $F[x] = \alpha f[x] - \beta R_f[x]$, то есть

$$F[x^P] = \max_{x \in X} (\alpha f[x] - \beta R_f[x]).$$

Тогда x^P максимальна по Парето в задаче Γ_2^g .