# CS 611: Theory of Computation

### Hongmin Li

Department of Computer Science California State University, East Bay

### Part I

Closure Properties of Turing Machines

#### Proposition

Decidable languages are closed under union, intersection, and complementation.

### Proposition

Decidable languages are closed under union, intersection, and complementation.

#### Proof.

Given TMs  $M_1$ ,  $M_2$  that decide languages  $L_1$ , and  $L_2$ 

• A TM that decides  $L_1 \cup L_2$ : on input x, run  $M_1$  and  $M_2$  on x, and accept iff either accepts.

### Proposition

Decidable languages are closed under union, intersection, and complementation.

#### Proof.

Given TMs  $M_1$ ,  $M_2$  that decide languages  $L_1$ , and  $L_2$ 

• A TM that decides  $L_1 \cup L_2$ : on input x, run  $M_1$  and  $M_2$  on x, and accept iff either accepts. (Similarly for intersection.)

### Proposition

Decidable languages are closed under union, intersection, and complementation.

#### Proof.

Given TMs  $M_1$ ,  $M_2$  that decide languages  $L_1$ , and  $L_2$ 

- A TM that decides  $L_1 \cup L_2$ : on input x, run  $M_1$  and  $M_2$  on x, and accept iff either accepts. (Similarly for intersection.)
- A TM that decides  $L_1$ : On input x, run  $M_1$  on x, and accept if  $M_1$  rejects, and reject if  $M_1$  accepts.

### Proposition

Decidable languages are closed under concatenation and Kleene Closure.

#### Proof.

Given TMs  $M_1$  and  $M_2$  that decide languages  $L_1$  and  $L_2$ .

• A TM to decide  $L_1L_2$ :

### Proposition

Decidable languages are closed under concatenation and Kleene Closure.

#### Proof.

Given TMs  $M_1$  and  $M_2$  that decide languages  $L_1$  and  $L_2$ .

• A TM to decide  $L_1L_2$ : On input x, for each of the |x|+1 ways to divide x as yz: run  $M_1$  on y and  $M_2$  on z, and accept if both accept. Else reject.

### Proposition

Decidable languages are closed under concatenation and Kleene Closure.

#### Proof.

Given TMs  $M_1$  and  $M_2$  that decide languages  $L_1$  and  $L_2$ .

- A TM to decide  $L_1L_2$ : On input x, for each of the |x|+1 ways to divide x as yz: run  $M_1$  on y and  $M_2$  on z, and accept if both accept. Else reject.
- A TM to decide  $L_1^*$ :

### Proposition

Decidable languages are closed under concatenation and Kleene Closure.

#### Proof.

Given TMs  $M_1$  and  $M_2$  that decide languages  $L_1$  and  $L_2$ .

- A TM to decide  $L_1L_2$ : On input x, for each of the |x|+1 ways to divide x as yz: run  $M_1$  on y and  $M_2$  on z, and accept if both accept. Else reject.
- A TM to decide  $L_1^*$ : On input x, if  $x = \epsilon$  accept. Else, for each of the  $2^{|x|-1}$  ways to divide x as  $w_1 \dots w_k$  ( $w_i \neq \epsilon$ ): run  $M_1$  on each  $w_i$  and accept if  $M_1$  accepts all. Else reject.

## Inverse Homomorphisms

### Proposition

Decidable languages are closed under inverse homomorphisms.

## Inverse Homomorphisms

#### **Proposition**

Decidable languages are closed under inverse homomorphisms.

#### Proof.

Given TM  $M_1$  that decides  $L_1$ , a TM to decide  $h^{-1}(L_1)$  is:

## Inverse Homomorphisms

#### **Proposition**

Decidable languages are closed under inverse homomorphisms.

#### Proof.

Given TM  $M_1$  that decides  $L_1$ , a TM to decide  $h^{-1}(L_1)$  is: On input x, compute h(x) and run  $M_1$  on h(x); accept iff  $M_1$  accepts.



### Proposition

Decidable languages are not closed under homomorphism

### Proposition

Decidable languages are not closed under homomorphism

#### Proof.

### Proposition

Decidable languages are not closed under homomorphism

#### Proof.

We will show a decidable language L and a homomorphism h such that h(L) is undecidable

• Let  $L = \{xy \mid x \in \{0,1\}^*, y \in \{a,b\}^*, x = \langle M,w \rangle$ , and y encodes an integer n such that the TM M on input w will halt in n steps  $\}$ 

### Proposition

Decidable languages are not closed under homomorphism

#### Proof.

- Let  $L = \{xy \mid x \in \{0,1\}^*, y \in \{a,b\}^*, x = \langle M,w \rangle$ , and y encodes an integer n such that the TM M on input w will halt in n steps  $\}$
- L is decidable: can simply simulate M on input w for n steps

### Proposition

Decidable languages are not closed under homomorphism

#### Proof.

- Let  $L = \{xy \mid x \in \{0,1\}^*, y \in \{a,b\}^*, x = \langle M,w \rangle$ , and y encodes an integer n such that the TM M on input w will halt in n steps  $\}$
- L is decidable: can simply simulate M on input w for n steps
- Consider homomorphism h: h(0) = 0, h(1) = 1,  $h(a) = h(b) = \epsilon$ .

### Proposition

Decidable languages are not closed under homomorphism

#### Proof.

- Let  $L = \{xy \mid x \in \{0,1\}^*, y \in \{a,b\}^*, x = \langle M,w \rangle$ , and y encodes an integer n such that the TM M on input w will halt in n steps  $\}$
- *L* is decidable: can simply simulate *M* on input *w* for *n* steps
- Consider homomorphism h: h(0) = 0, h(1) = 1,  $h(a) = h(b) = \epsilon$ .
- $\bullet$  h(L) =



### Proposition

Decidable languages are not closed under homomorphism

#### Proof.

- Let  $L = \{xy \mid x \in \{0,1\}^*, y \in \{a,b\}^*, x = \langle M,w \rangle$ , and y encodes an integer n such that the TM M on input w will halt in n steps  $\}$
- L is decidable: can simply simulate M on input w for n steps
- Consider homomorphism h: h(0) = 0, h(1) = 1,  $h(a) = h(b) = \epsilon$ .
- h(L) = HALT which is undecidable.



### Proposition

R.E. languages are closed under union, and intersection.

### Proposition

R.E. languages are closed under union, and intersection.

#### Proof.

Given TMs  $M_1$ ,  $M_2$  that recognize languages  $L_1$ ,  $L_2$ 

### Proposition

R.E. languages are closed under union, and intersection.

#### Proof.

Given TMs  $M_1$ ,  $M_2$  that recognize languages  $L_1$ ,  $L_2$ 

• A TM that recognizes  $L_1 \cup L_2$ : on input x, run  $M_1$  and  $M_2$  on x in parallel, and accept iff either accepts.

### Proposition

R.E. languages are closed under union, and intersection.

#### Proof.

Given TMs  $M_1$ ,  $M_2$  that recognize languages  $L_1$ ,  $L_2$ 

• A TM that recognizes  $L_1 \cup L_2$ : on input x, run  $M_1$  and  $M_2$  on x in parallel, and accept iff either accepts. (Similarly for intersection; but no need for parallel simulation)

# Complementation

### Proposition

R.E. languages are not closed under complementation.

#### Proof.

 $A_{\rm TM}$  is r.e. but  $\overline{A_{\rm TM}}$  is not.

### Proposition

If L and  $\overline{L}$  are recognizable, then L is decidable

#### Proof.

### Proposition

If L and  $\overline{L}$  are recognizable, then L is decidable

#### Proof.

Program P for deciding L, given programs  $P_L$  and  $P_{\overline{L}}$  for recognizing L and  $\overline{L}$ :

• On input x, simulate  $P_L$  and  $P_{\overline{L}}$  on input x.

#### Proposition

If L and  $\overline{L}$  are recognizable, then L is decidable

#### Proof.

- On input x, simulate  $P_L$  and  $P_{\overline{L}}$  on input x. Whether  $x \in L$  or  $x \notin L$ , one of  $P_L$  and  $P_{\overline{L}}$  will halt in finite number of steps.
- Which one to simulate first?

#### Proposition

If L and  $\overline{L}$  are recognizable, then L is decidable

#### Proof.

- On input x, simulate  $P_L$  and  $P_{\overline{L}}$  on input x. Whether  $x \in L$  or  $x \notin L$ , one of  $P_L$  and  $P_{\overline{L}}$  will halt in finite number of steps.
- Which one to simulate first? Either could go on forever.

#### Proposition

If L and  $\overline{L}$  are recognizable, then L is decidable

#### Proof.

- On input x, simulate  $P_L$  and  $P_{\overline{L}}$  on input x. Whether  $x \in L$  or  $x \notin L$ , one of  $P_L$  and  $P_{\overline{L}}$  will halt in finite number of steps.
- Which one to simulate first? Either could go on forever.
- On input x, simulate in parallel  $P_L$  and  $P_{\overline{L}}$  on input x until either  $P_L$  or  $P_{\overline{L}}$  accepts

### Proposition

If L and  $\overline{L}$  are recognizable, then L is decidable

#### Proof.

- On input x, simulate  $P_L$  and  $P_{\overline{L}}$  on input x. Whether  $x \in L$  or  $x \notin L$ , one of  $P_L$  and  $P_{\overline{L}}$  will halt in finite number of steps.
- Which one to simulate first? Either could go on forever.
- On input x, simulate in parallel  $P_L$  and  $P_{\overline{L}}$  on input x until either  $P_L$  or  $P_{\overline{L}}$  accepts
- If  $P_L$  accepts, accept x and halt. If  $P_{\overline{L}}$  accepts, reject x and halt.  $\cdots \rightarrow$

### Proof (contd).

In more detail, P works as follows:

```
On input x for i=1,2,3,\ldots simulate P_L on input x for i steps simulate P_{\overline{L}} on input x for i steps if either simulation accepts, break if P_L accepted, accept x (and halt) if P_{\overline{L}} accepted, reject x (and halt)
```

### Proof (contd).

In more detail, P works as follows:

```
On input x for i=1,2,3,\ldots simulate P_L on input x for i steps simulate P_{\overline{L}} on input x for i steps if either simulation accepts, break if P_L accepted, accept x (and halt) if P_{\overline{L}} accepted, reject x (and halt)
```

(Alternately, maintain configurations of  $P_L$  and  $P_{\overline{L}}$ , and in each iteration of the loop advance both their simulations by one step.)



### Proposition

R.E languages are closed under concatenation and Kleene closure.

#### Proof.

Given TMs  $M_1$  and  $M_2$  recognizing  $L_1$  and  $L_2$ 

• A TM to recognize  $L_1L_2$ :

### Proposition

R.E languages are closed under concatenation and Kleene closure.

#### Proof.

Given TMs  $M_1$  and  $M_2$  recognizing  $L_1$  and  $L_2$ 

• A TM to recognize  $L_1L_2$ : On input x, do in parallel, for each of the |x|+1 ways to divide x as yz: run  $M_1$  on y and  $M_2$  on z, and accept if both accept. Else reject.

### Proposition

R.E languages are closed under concatenation and Kleene closure.

#### Proof.

Given TMs  $M_1$  and  $M_2$  recognizing  $L_1$  and  $L_2$ 

- A TM to recognize  $L_1L_2$ : On input x, do in parallel, for each of the |x|+1 ways to divide x as yz: run  $M_1$  on y and  $M_2$  on z, and accept if both accept. Else reject.
- A TM to recognize  $L_1^*$ :

### Proposition

R.E languages are closed under concatenation and Kleene closure.

#### Proof.

Given TMs  $M_1$  and  $M_2$  recognizing  $L_1$  and  $L_2$ 

- A TM to recognize  $L_1L_2$ : On input x, do in parallel, for each of the |x|+1 ways to divide x as yz: run  $M_1$  on y and  $M_2$  on z, and accept if both accept. Else reject.
- A TM to recognize L<sub>1</sub>\*: On input x, if x = ε accept. Else, do in parallel, for each of the 2<sup>|x|-1</sup> ways to divide x as w<sub>1</sub>...w<sub>k</sub> (w<sub>i</sub> ≠ ε): run M<sub>1</sub> on each w<sub>i</sub> and accept if M<sub>1</sub> accepts all. Else reject.

### Proposition

R.E. languages are closed under both inverse homomorphisms and homomorphisms.

#### Proof.

Let TM  $M_1$  recognize  $L_1$ .

• A TM to recognize  $h^{-1}(L_1)$ :

### Proposition

R.E. languages are closed under both inverse homomorphisms and homomorphisms.

#### Proof.

Let TM  $M_1$  recognize  $L_1$ .

• A TM to recognize  $h^{-1}(L_1)$ :On input x, compute h(x) and run  $M_1$  on h(x); accept iff  $M_1$  accepts.

### Proposition

R.E. languages are closed under both inverse homomorphisms and homomorphisms.

#### Proof.

- A TM to recognize  $h^{-1}(L_1)$ :On input x, compute h(x) and run  $M_1$  on h(x); accept iff  $M_1$  accepts.
- A TM to recognize  $h(L_1)$ :

### Proposition

R.E. languages are closed under both inverse homomorphisms and homomorphisms.

#### Proof.

- A TM to recognize  $h^{-1}(L_1)$ :On input x, compute h(x) and run  $M_1$  on h(x); accept iff  $M_1$  accepts.
- A TM to recognize  $h(L_1)$ : On input x, start going through all strings w, and if h(w) = x, start executing  $M_1$  on w

### Proposition

R.E. languages are closed under both inverse homomorphisms and homomorphisms.

#### Proof.

- A TM to recognize  $h^{-1}(L_1)$ :On input x, compute h(x) and run  $M_1$  on h(x); accept iff  $M_1$  accepts.
- A TM to recognize  $h(L_1)$ : On input x, start going through all strings w, and if h(w) = x, start executing  $M_1$  on w, using dovetailing to interleave with other executions of  $M_1$ .

### Proposition

R.E. languages are closed under both inverse homomorphisms and homomorphisms.

#### Proof.

- A TM to recognize  $h^{-1}(L_1)$ :On input x, compute h(x) and run  $M_1$  on h(x); accept iff  $M_1$  accepts.
- A TM to recognize  $h(L_1)$ : On input x, start going through all strings w, and if h(w) = x, start executing  $M_1$  on w, using dovetailing to interleave with other executions of  $M_1$ . Accept if any of the executions accepts.