0.1 **Problem Set 2**

Suppose $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$, $(c_n)_{n\in\mathbb{N}}\in\mathfrak{c}(\mathbb{R})$ and $\lim_{n\to\infty}(c_n)\neq 0$ and for any $n\in\mathbb{N}$, $c_n\neq 0$.

1.) Prove $\lim (c) = c$:

Observe that
$$(c)_{n\in\mathbb{N}} = c(1)_{n\in\mathbb{N}}$$
. By Theorem 4, $\lim_{n\to\infty} (c) = \lim_{n\to\infty} (c*1) = c \lim_{n\to\infty} (1)$. Since $\lim_{n\to\infty} (1) = 1$, $\lim_{n\to\infty} (c) = c*1 = c$.

2.) Prove $\lim_{n \to \infty} (|a_n|) = |\lim_{n \to \infty} (a_n)|$:

Let $\epsilon > 0$. By the hypotheses, $(a_n)_{n \in \mathbb{N}}$ converges to some $a \in \mathbb{R}$. Furthermore, there exists an $N \in \mathbb{N}$ such that for any $n \ge N$, $|a_n - a| < \epsilon$. This with the reverse triangle inequality yields $||a_n| - |a|| \le |a_n - a| < \epsilon$, for any $n \ge N$. By transitivity of the order relation on \mathbb{R} , $||a_n| - |a|| < \epsilon$, for any $n \ge N$. Therefore, $\lim_{n \to \infty} (|a_n|) = |a| = \lim_{n \to \infty} (a_n)$.

3.) Prove $\lim_{n\to\infty} (a_n - b_n) = \lim_{n\to\infty} (a_n) - \lim_{n\to\infty} (b_n)$:

Observe that
$$(a_n - b_n)_{n \in \mathbb{N}} = (a_n)_{n \in \mathbb{N}} + (-1)(b_n)_{n \in \mathbb{N}}$$
. By Theorem 4, $(-1)(b_n)_{n \in \mathbb{N}} \in \mathfrak{c}(\mathbb{R})$ and $\lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} (a_n + (-1)b_n) = \lim_{n \to \infty} (a_n) + (-1)\lim_{n \to \infty} (b_n) = \lim_{n \to \infty} (a_n) - \lim_{n \to \infty} (b_n)$

4.) Prove $\lim_{n\to\infty} \left(\frac{a_n}{c_n}\right) = \frac{\lim_{n\to\infty} (a_n)}{\lim_{n\to\infty} (c_n)}$:

Observe that $\left(\frac{a_n}{c_n}\right)_{n\in\mathbb{N}}=(a_n)_{n\in\mathbb{N}}*\left(\frac{1}{c_n}\right)_{n\in\mathbb{N}}$. By the hypotheses, $(a_n)_{n\in\mathbb{N}}$ converges to some $a\in\mathbb{R}$ and $(c_n)_{n\in\mathbb{N}}$ converges to some $c\in\mathbb{R}$. We can apply Theorem 8 on $(c_n)_{n\in\mathbb{N}}$ since it satisfies the necessary assumptions. Thus, $\left(\frac{1}{c_n}\right)_{n\in\mathbb{N}}\in\mathfrak{c}(\mathbb{R})$ and $\lim_{n\to\infty}\left(\frac{1}{c_n}\right)=\frac{1}{c}$. We can now apply Theorem 6 to get $\lim_{n\to\infty}\left(\frac{a_n}{c_n}\right)=\lim_{n\to\infty}\left(a_n*\frac{1}{c_n}\right)=\lim_{n\to\infty}\left(a_n\right)*\lim_{n\to\infty}\left(\frac{1}{c_n}\right)=a*\lim_{n\to\infty}\left(\frac{1}{c_n}\right)=a*\lim_{n\to\infty}\left(\frac{1}{c_n}\right)$.

5.) Prove $\lim_{n\to\infty} (a_n \vee b_n) = \lim_{n\to\infty} (a_n) \vee \lim_{n\to\infty} (b_n)$:

By the definition of the lattice operations,

$$(a_n \vee b_n)_{n \in \mathbb{N}} = \frac{1}{2} (a_n)_{n \in \mathbb{N}} + \frac{1}{2} (b_n)_{n \in \mathbb{N}} + \frac{1}{2} (|a_n - b_n|)_{n \in \mathbb{N}}$$
 (1)

By the hypotheses, $(a_n)_{n\in\mathbb{N}}$ converges to some $a\in\mathbb{R}$ and $(b_n)_{n\in\mathbb{N}}$ converges to some $b\in\mathbb{R}$. Using Item 3, Item 2, and Theorem 4, we can say that the RHS of (1) must also be convergent, and we apply them on (1)

$$\lim_{n \to \infty} (a_n \vee b_n) = \frac{1}{2} \lim_{n \to \infty} (a_n) + \frac{1}{2} \lim_{n \to \infty} (b_n) + \frac{1}{2} \lim_{n \to \infty} (|a_n - b_n|) = \frac{1}{2} (a + b + |a - b|) = a \vee b = \lim_{n \to \infty} (a_n) \vee \lim_{n \to \infty} (b_n)$$
 (2)

6.) Prove $\lim_{n\to\infty} (a_n \wedge b_n) = \lim_{n\to\infty} (a_n) \wedge \lim_{n\to\infty} (b_n)$: By the definition of the lattice operations,

$$(a_n \wedge b_n)_{n \in \mathbb{N}} = \frac{1}{2} (a_n)_{n \in \mathbb{N}} + \frac{1}{2} (b_n)_{n \in \mathbb{N}} + \frac{-1}{2} (|a_n - b_n|)_{n \in \mathbb{N}}$$
(3)

By the hypotheses, $(a_n)_{n\in\mathbb{N}}$ converges to some $a\in\mathbb{R}$ and $(b_n)_{n\in\mathbb{N}}$ converges to some $b\in\mathbb{R}$. Using Item 3, Item 2, and Theorem 4, we can say that the RHS of (3) must also be convergent, and we apply them on (3)

$$\lim_{n \to \infty} (a_n \wedge b_n) = \frac{1}{2} \lim_{n \to \infty} (a_n) + \frac{1}{2} \lim_{n \to \infty} (b_n) + \frac{-1}{2} \lim_{n \to \infty} (|a_n - b_n|) = \frac{1}{2} (a + b - |a - b|) = a \wedge b = \lim_{n \to \infty} (a_n) \wedge \lim_{n \to \infty} (b_n)$$
(4)