a) $T(n) = T\left(\left|\frac{n}{2}\right|\right) + 1$ là $O(\log n)$ (NOTE : Đề bài nhằm)

Giả sử đúng với $\left\lfloor \frac{n}{2} \right\rfloor$ tức là $T\left(\left\lfloor \frac{n}{2} \right\rfloor \right) \leq c \log \left\lfloor \frac{n}{2} \right\rfloor \leq c \log \frac{n}{2}$

Ta cần chứng minh $T(n) \le c \log n$

Thay vào T(n) ta có

$$T(n) = T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 1 \le c\log \frac{n}{2} + 1 = c\log n - (c-1) \le c\log n$$
 với mọi $c \ge 1$

Vậy chọn c=2 thì $T(n) \le c \log n$ tức là $T(n) = O(\log n)$

b)
$$(n) = T\left(\left|\frac{n}{2}\right| + 12\right) + 1$$
 là $O(\log n)$ (NOTE : Đề bài nhằm)

Giả sử đúng với
$$\left|\frac{n}{2}\right| + 12$$
 tức là $T\left(\left|\frac{n}{2}\right| + 12\right) \le c\log\left(\left|\frac{n}{2}\right| + 12\right) \le c\log\left(\frac{n}{2} + 12\right)$

Ta cần chứng minh $T(n) \le c \log n$ với một hằng số c > 0 nào đó

Thay vào T(n) ta có

$$T(n) = T\left(\left\lfloor \frac{n}{2} \right\rfloor + 12\right) + 1 \le c \log\left(\frac{n}{2} + 12\right) + 1 = c \log(n + 24) - (c - 1) \le c \log n$$

 $c\log\frac{n+24}{n} \le c-1$ khi n đủ lớn thì $\frac{n+24}{n} \to 1$ tức là vế phải $c\log\frac{n+24}{n} \to 0$ do đó bất đẳng thức xảy ra khi $c \ge 1$ với n đủ lớn.

Ta chọn c=2 thì với $n \ge 24$ thì $T(n) \le c \log n$ luôn đúng

$$V_{q}^{2} Y(n) = O(\log n)$$

c) Giải công thức đệ quy $T(n) = 2T(\sqrt{n}) + 1$

C1: Ta dự đoán $T(n) = O(\log n)$

Giả sử đúng với \sqrt{n} tức là $T\left(\sqrt{n}\right) \leq c \log \sqrt{n} = \frac{c}{2} \log n$

Ta cần chứng minh $T(n) \le c \log n$

Ta có
$$T(n) = 2T(\sqrt{n}) + 1 \le 2\frac{c}{2}\log n + 1 = c\log n + 1 \le c\log n$$

Ta thấy điều này không xảy ra vì c là hằng số nên $c \log n + 1 > c \log n$

Liệu ta có cần tăng độ phức tạp của tiệm cận lên là $\mathcal{O}(n)$?

Ta thấy giữa vế trái và vế phải của bất đẳng thức chỉ sai khác nhau một hằng số (là 1). Vì vậy thay vì giả sử ta giả sử $T(n) \le c \log n$ to $C \log n$ to C

$$T(\sqrt{n}) \le c \log \sqrt{n} - d = \frac{c}{2} \log n - d$$

$$T(n) = 2T(\sqrt{n}) + 1 \le 2\left(\frac{c}{2}\log n - d\right) + 1 = c\log n - 2d + 1 = c\log n - d - (d-1) \le c\log n - d$$

Đúng với mọi hằng số $d \ge 1$. Ta chọn c = 1 và d = 2

$$T(n) \le \log n - 2 \text{ Vậy } T(n) = O(\log n)$$

Kết luận: Khi sai khác chỉ 1 lượng nhỏ thì ta có thể dùng phương pháp trừ một hệ số có bậc nhỏ hơn vào hàm số dự đoán

C2:Ta dùng phương pháp đặt biến phụ

Đặt $m = \log n$ tức là $n = 2^m$

$$T(n) = T(2^m) = 2T(2^{m/2}) + 1$$

 $\operatorname{D\check{a}t} S(m) = T(2^m)$

$$S(m) = 2S\left(\frac{m}{2}\right) + 1 = O(m)$$

Chú ý: để chứng minh S(m) = O(m) thì ở đây ta cũng dự đoán $S(m) \le cm - d$

Giả sử đúng với
$$\frac{m}{2}$$
 tức là $S\left(\frac{m}{2}\right) \le c\frac{m}{2} - d$

Thay vào S(m)

$$S(m) = 2S\left(\frac{m}{2}\right) + 1 \le 2\left(c\frac{m}{2} - d\right) + 1 = cm - d - (d - 1) \le cm - d$$

Đúng với mọi giá trị của $d \geq 1$

Chon
$$c = 1$$
 và $d = 2S(m) \le m - 2 = O(m)$

 $V_{q}^{2} T(n) = O(\log n)$

- d) Tìm dạng hàm g(n) đơn giản mà $f(n) = \Theta(g(n))$ cho các hàm f(n) sau đây
 - $f(n) = \sum_{i=1}^{n} \log i$

Ta có đẳng thức sau $\log n! = \Theta(n \log n)$

$$n! = \prod_{i=1}^{n} i$$

Lấy logarithm hai vế ta có

$$\log n! = \log \left(\prod_{i=1}^{n} i \right) = \sum_{i=1}^{n} \log i = \Theta(n \log n)$$

•
$$f(n) = \sum_{i=1}^{n} \frac{1}{i} = \Theta(\log n)$$

Đây là một dạng của chuối số Harmonic (http://en.wikipedia.org/wiki/Harmonic number)

$$f(n) = \sum_{i=1}^{n} \frac{1}{i} = H(n, -1)$$

 $\lim_{n \to \infty} H_n - \ln(n) = \gamma = 0.5772156649$.. (Hằng số <u>Euler-Mascheroni</u>)

Một số công thức hay dùng

- $n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right)$
- $a^0 + a^1 + \ldots + a^n = \frac{a^{n+1}-1}{a-1}$
- $\qquad \qquad \sum_{i=1}^n ic^i = c + 2c^2 + 3c^3 + \ldots + nc^3 = \frac{\left((n-1)c^{n+1} nc^n + c\right)}{(c-1)^2} \, \text{V\'ol} \, \, n \geq 0, \, \text{v\'a} \, \, c \neq 1$
- $\sum_{i=1}^{\infty} x^i = \frac{1}{1-x} \text{N\'eu} |x| < 1$

Source code danh sách liên kết đơn

```
p->item = x;
   p \rightarrow pNext = 1;
1 = p;
}
//ham chen phan tu moi vao cuoi danh sach
void insert last(LIST *&l, DATA TYPE x)
   LIST *p, *ptr;
                             /* temporary pointer */
    p = (LIST*)malloc( sizeof(LIST) );
   p->item = x;
//Tim phan tu cuoi danh sach
   ptr=1;
//neu danh sach rong
if (ptr==NULL)
   {
        p->pNext=NULL;
       l=p;
else//tim phan tu cuoi cung (co con tro pNext la NULL)
while(ptr->pNext !=NULL) ptr=ptr->pNext;
       ptr->pNext=p;
       p->pNext=NULL;
}
LIST *search_list(LIST *1, DATA_TYPE x)
      if (1 == NULL) return(NULL);
      if (1->item == x)
            return(1);
      else
            return( search list(l->pNext, x) );
}
//tra ve phan tu truoc phan tu can xoa
LIST *predecessor list(LIST *1, DATA TYPE x)
if ((1 == NULL) || (1->pNext == NULL)) {
    printf("Error: Danh sach rong hoac co 1 phan tu.\n");
return (NULL);
   }
if ((1->pNext)->item == x)
     return(1);
else
     return( predecessor_list(l->pNext, x) );
}
void delete list(LIST *&1, DATA TYPE x)
   LIST *p;
                /* item pointer */
   LIST *pred; /* predecessor pointer */
   p = search list(l, x);
if (p != NULL) {
```

```
pred = predecessor list(1, x);
if (pred == NULL) /* splice out out list */
          1 = p->pNext;
else
           pred->pNext = p->pNext;
        free(p);
                 /* free memory used by node */
//Ham dung de in danh sach
void display(LIST *Head)
while (Head!=NULL)
    {
        printf("%i-->", Head->item);
        Head = Head->pNext;
    printf("X\n");
//Ham dung de them cac phan tu vao cuoi day
void input list(LIST *&Head)
   DATA TYPE x;
   printf("Nhap gia tri can them : ");
   scanf("%d",&x);
   insert_last(Head,x);
}
int main()
    LIST *Head=NULL;
   display(Head);
//them mot so phan tu vao dau danh sach
    insert_list(Head,5);
    insert list(Head, 3);
    insert list(Head, 7);
    insert last(Head, 12);
    insert last(Head, 19);
    insert_last(Head, 14);
    input list(Head);
    input list(Head);
   display(Head);
   system("pause");
return 0;
```