Doble Grado Matemáticas-Informática

ÁLGEBRA LINEAL

Hoja 2: Aplicaciones Matriciales

En esta hoja, por Aplicación lineal $F: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ se entenderá una aplicación de \mathbb{R}^n en \mathbb{R}^m determinada por la regla $F(v) = A \cdot v^t$ para cierta matriz $A \in \mathcal{M}_{m \times n}(\mathbb{R})$.

Si $v = (a_1, \ldots, a_n)$ es un vector de \mathbb{R}^n y G una aplicación lineal, escribiremos, por abreviar, $G(a_1,\ldots,a_n)$ en lugar de $G((a_1,\ldots,a_n))$, para la imagen G(v).

- 1.- (VERDADERO/FALSO) i) Si $\{v_1,\ldots,v_k\}\subset\mathbb{R}^n$ es un subconjunto linealmente dependiente de vectores, existe una aplicación lineal $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ con $\{T(v_1), \dots, T(v_k)\} \subset \mathbb{R}^n$ linealmente independiente.
- ii) Si $\{v_1,\ldots,v_k\}\subset\mathbb{R}^n$ es un subconjunto linealmente independiente de vectores, existe una aplicación lineal $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n \text{ con } \{T(v_1), \dots, T(v_k)\} \subset \mathbb{R}^n \text{ linealmente dependiente.}$
- iii) Si $T:\mathbb{R}^n\longrightarrow\mathbb{R}^m$ es una aplicación lineal inyectiva y $V\subset\mathbb{R}^n$ es un subconjunto de vectores linealmente independiente, entonces $W = \{T(v) : v \in V\} \subset \mathbb{R}^m$ es un subconjunto de vectores linealmente independiente.
- iv) Existe una aplicación lineal invectiva $T: \mathbb{R}^n \longrightarrow \mathbb{R}^{n-1}$.
- 2.- En cada uno de los siguientes casos, determinar si existe una aplicación lineal, al menos, con las imágenes dadas. Si la respuesta es afirmativa, describirla matricialmente.

- i) $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ con T(2,1) = (1,-3), T(1,1) = (-1,-1).ii) $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ con T(1,-2,4) = (1,4,16), T(-2,1,1) = (4,1,1), T(0,0,-1) = (0,0,1).iii) $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ con T(1,-2,4) = (1,4,16), T(-2,1,1) = (4,1,1), T(1,1,5) = (1,1,25).
- iv) $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ con $T(1, -1) = (-1, 1), T(2, 3) = (3, 2), T(\sqrt{5}, 1) = (1, \sqrt{5}).$
- v) $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ con T(2, -2, 1) = (0, 2, 3), T(0, 2, 3) = (4, -4, 2), T(4, -2, 5) = (4, -2, 5).
- vi*) $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3 \text{ con } T(2, -2, 1) = (0, 2, 3), T(0, 2, 3) = (4, -4, 2), T(4, -2, 5) = (4, 0, 8).$
- 3.- Para cada una de las siguientes aplicaciones lineales describir las preimágenes indicadas.
- i) Dada $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ determinada por $(x, y, z) \longmapsto (2x y 3z, -3x + 2y z, -x 3y + 2z)$, calcular (x, y, z) tal que T(x, y, z) = (2, 2, 2).
- ii) Dada $T: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$, $T(x_1, x_2, x_3, x_4) = A \cdot (x_1 x_2 x_3 x_4)^t$ con

$$A = \left(\begin{array}{cccc} 1 & 3 & 7 & 4 \\ 6 & -5 & -1 & 2 \\ 7 & -2 & 6 & 1 \end{array}\right)$$

calcular $\{v \in \mathbb{R}^4 \mid T(v) = (0,0,0)\}\ y \ \{v \in \mathbb{R}^4 \mid T(v) = (1,1,2)\}.$

4.- Obsérvese que si $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ es la aplicación lineal determinada por la matriz $A = (a_{ij}) \in \mathcal{M}_{m \times n}(\mathbb{R})$, y $e_k \in \mathbb{R}^n$ es la *n*-upla con un 1 en la posición k y 0 en todas las demás, entonces $T(e_k) = (a_{1k}, a_{2k}, \dots, a_{mk})$ (la k-ésima columna de A).

Determinar la matriz de las siguientes operaciones lineales y, en cada caso, dibujar las imágenes de las figuras que se indican.

- i) Giro en el plano (en sentido antihorario), de centro el origen y ángulo* $\pi/3$. Imagen del rectángulo de vértices los **puntos** (1,1), (1,2), (-2,2), (-2,1).
- ii) Giro en el plano (en sentido antihorario), de centro el origen y ángulo $\frac{2\pi}{5}$. Imagen del pentágono regular de centro el origen y uno de sus vértices en el punto (0,2).
- iii) La simetría, en el plano, respecto a la recta que pasa por el origen y forma ángulo $\pi/6$ con el eje OX. Imagen del hexágono regular con centro en el origen y uno de sus vértices en el punto $(\frac{1}{2},0)$.
- iv) Rotación (o giro), en el espacio, con eje OZ y ángulo $\pi/4$ (en sentido antihorario). Imagen del rectángulo de vértices (1,1,0), (1,-1,0), (-1,-1,2), (-1,1,2).

^{*}Los ángulos se dan medidos en radianes.