Software Quality Engineering

Testing, Quality Assurance, and Quantiable Improvement

Tian Siyuan tiansiyuan@gmail.com

Chapter 7. Testing Activities, Management, and Automation

- Major Testing Activities
- Test Management
- Testing Automation

Test Planning and Preparation

- · Major testing activities:
 - test planning and preparation
 - o execution (testing)
 - o analysis and followup
- Test planning:
 - o goal setting
 - overall strategy
- Test preparation:
 - preparing test cases & test suite(s)
 (systematic: model-based; our focus)
 - o preparing test procedure

Test Planning

- Goal setting and strategic planning.
- Goal setting
 - o quality perspectives of the customer
 - o quality expectations of the customer
 - mapping to internal goals and concrete

(quantified) measurement.

- o e.g., customer's correctness concerns
 - => specific reliability target
- Overall strategy, including:
 - o specific objects to be tested.
 - o techniques (and related models) to use.
 - measurement data to be collected.
 - o analysis and followup activities.
 - o key: plan the "whole thing"!

Test Preparation

- Procedure for test preparation
 - o preparing test cases (model-based)
 - individual test cases
 - test case allocation
 - o preparing test procedure
 - basis for test procedure
- order, flow, followupGeneral concepts
 - test run: operation instances
 - o input variable: test point
 - input space: all possible input variable values
 - test case: static object + input to enable test to start -> execute -> finish.

Individual Test Case Preparation

- Individual test cases (micro-level) vs. test suite (macro-level)
- From multiple sources:
 - o actual runs (usage-based).
 - o implementation-based (white-box).
 - o specification-based (black-box).
 - o may use similar/earlier products.
 - o (direct) record and replay (less often).
 - o (via) formal models (OP, CFT, BT, etc.)
- Defining input values (model => test cases):
 - initial/intermediate/interactive input
 - (expected output too?)
 - · exercise path/slice/track/etc
 - o in testing terminology: sensitization

Test Cases Based on Formal Models

- Most organized, systematic test cases are derived from formal testing models:
 - o directly via newly constructed models.
 - indirectly via exist test cases, etc.
- Model construction steps:
 - o information source identification and data collection
 - · analysis and initial model construction
 - model validation and improvement
- · Model usage:
 - o defining test cases.
 - (details with individual models/techniques)
 - o indirectly in analysis/followup (Part IV).

Test Suite Preparation

- Test suite (macro-level)
 - · existing suite: what and where?
 - suitability? selection/screening?
 - o construction/generation of new ones
 - o organization & management:
 - often hierarchical, e.g., sc; sn; vn.
- Adding new test cases
 - estimate # of new test cases
 - specify new (individual) test cases
 - o integrate to existing test cases
- Allocation to systems/operations
 - OP-/structure-based allocation
 - both old and new test cases in suite

Test Procedure Preparation

- Key consideration: sequencing:
 - general: simple to complex.
 - dependency among test cases.
 - defect detection related sequencing.
 - sequence to avoid accident.
 - problem diagnosis related sequencing.
 - natural grouping of test cases.
- Other considerations:
 - o effectiveness/efficiency concerns.
 - smooth transition between test runs.
 - management/resource/personnel/etc.

Test Execution

- · Major testing activities:
 - o test planning and preparation
 - execution (testing)
 - analysis and followup
- · Test execution:
 - · execution planning and management
 - o related activities: important part
 - failure identification and measurement
 - other measurement

Test Execution

- General steps
 - o allocating test time (& resources)
 - o invoking test
 - identifying system failures

(& gathering info. for followup actions)

- · Allocating test time
 - o OP-based: systems/features/operations
 - also coverage concerns for critical parts
 - coverage-based: func./struc. areas
 - o alternative: bottom-up approach
 - individual test cases => test time
 - sum-up => overall allocation
 - by OP or coverage areas

Test Execution

- Invoking test (OP-based)
 - o OP) input variables (test points)
 - o follow probabilistic distributions

(could be dynamically determined)

- sequence (what to test first?):
- COTS, product, supersystem
- Invoking test (coverage-based)
 - o organize sensitized testcases
 - sequence => coverage hierarchies
- Common part: Retest due to
 - defect fix => verify fix
 - o code-base or feature change
 - general regression test

Test Execution

- Identifying system failures (oracle problem):
 - similar for OP-/coverage-based
 - analyze test output for deviations
 - determine: deviation == failure ?handling normal vs. failed runs
 - non-blocking failure handling
- Solving oracle problem:
 - theoretically undecidable.
 - some cases obvious: crash, hang, etc.
 - o practically based on heuristics:
 - product domain knowledge
 - cross-checking with other products
 - implementation knowledge & internals
 - limited dynamic consistency checking

Test Execution

- Failure observation and measurement:
 - Determine: deviation == failure ?
 - · Establish when failure occurred
 - used in reliability and other analysis
 - o Collect failure information (e.g., ODC):
 - what/where/when/severity/etc.
- Defect handling and test measurement:
 - o defect status and change (controlled)
 - o information gathering during testing
 - · Followup activities:
 - fix-verification cycle
 - other possibilities (defer, invalid, etc.)

Test/Failure Measurement

- Example template: (Table 7.1, p.93)
 - o information collected at test execution
- rid run identification, consisting of:
 - sc scenario class.
 - o sn scenario number,
 - vn variation number with a particular scenario,
 - an attempt number for the specific scenario variation
- timing start time t0 and end time t1
- tester the tester who attempted the test run
- trans transactions handled by the test run
- result result of the test run (1 indicates success and 0 for failure)

Testing Analysis and Followup

- Major testing activities:
 - test planning and preparation
 - execution (testing)
 - analysis and followup
- Test analysis and followup:
 - o execution/other measurement analyzed
 - o analysis results as basis for followup
 - feedback and followup:
 - decision making (exit testing? etc.)
 - adjustment and improvement.

Testing Analysis and Followup

- Input to analysis
 - test execution information
 - o particularly failure cases
 - o timing and characteristics data
- Analysis and output
 - o basic individual (failure) case
 - problem identification/reporting
 - repeatable problem setup
 - o overall reliability and other analysis?

(Chapter 22 and Part IV)

- Followup activities
 - o defect analysis and removal (& re-test).
 - decision making and management.
 - o test process and quality improvement.

Testing Analysis and Followup

- For individual test runs:
 - o success: continue with normal testing.
 - failure: see below.
- Analysis and followup for failed runs:
 - understanding the problem by studying the execution record.
 - o recreating the problem (confirmation).
 - o problem diagnosis
 - may involve multiple related runs.
 - · locating the faults.
 - o defect fixing (fault removal)
 - commonly via add/remove/modify code
 - sometimes involve design changes
 - o re-run/re-test to confirm defect fixing.

Testing Analysis and Followup

- Analysis and followup for overall testing:
 - o reliability analysis and followup.
 - o coverage analysis and followup.
 - o defect analysis and followup.
 - focus of Part IV.
- · Analyses: Different focuses:
 - o overall reliability and coverage for usage-based and coverage-based testing.
 - o detailed defect analysis.
- Followup activities: Similar.
 - o decision making and management.
 - test process and quality improvement.

Test Management

- People's roles/responsibilities in formal and informal testing.
- In informal testing:
 - "run-and-observe" by testers.
 - o "plug-and-play" by users.
 - informal testing with ad-hoc knowledge
 - o deceptively "easy", but not all failures or problems easy to recognize.
- In formal testing:
 - testers, and organized in teams.
 - management/communication structure.
 - role of "code owners" (multiple roles?)
 - 3rd party (IV&V) testing.
 - o career path for testers.

Test Management

- Test team organization:
 - o vertical: project oriented
 - product domain knowledge,
 - staffing/resource management hard.
 - horizontal: task oriented
 - even distribution of staff/resources
 - lack of internal knowledge/expertise
 - Mixed models might work better.
- Users and 3rd party testers:
 - $\circ~$ user involvement in beta-testing and other variations (e.g., ECI in IBM)
 - IV&V with 3rd party testing/QA
 - impact of new technologies:

- CBSE, COTS impact
- security, dependability requirements.

Test Automation

- · Basic understanding:
 - o automation needed for large systems.
 - o fully automated: impossible.
 - o focus on specific needs/areas.
- . Key issues to consider:
 - o specific needs and potentials.
 - existing tools available/suitable?
 - related: cost/training/etc.
 - constructing specific tools?
 - o additional cost in usage & support.
 - o impact on resource/schedule/etc.

Test Automation

- · Automation by test activity areas:
 - o automated test planning&preparation.
 - · automated test execution.
 - o automated test measurement, analysis, and followup.
 - slightly different grouping due to tightly coupling for measurement & analysis.
- · Automation for test execution.
 - o many debuggers: semi-automatic.
 - task sequencing/scheduling tools.
 - o load/test generator: script) runs
 - o generally easier to obtain test scripts.

Test Automation: JUnit Example

- P. Louridas, "JUnit: Unit Testing and Coding in Tandem" IEEE Software, Vol.22, No.4., pp.12-15, July/Aug., 2005. (A nice short survey about JUnit.)
- JUnit example (Fig.1 in paper above)
 - JUnit test setup:

initialize some complex numbers

- JUnit test cases:
 - execution using "assertEquals(x, y)"
 - base test case: x, y numbers
 - general cases: "expected" = op-result?
- Sum up: test cases => test suite
- Still need:
 - o oracle/"expected" above
 - test cases <= techniques (Chapter 8-12)

Test Automation

- Automation for test planning/preparation:
 - test planning: Human intensive not much can be done (~ inspection and FV).
 - test model construction: similar to above.
 - automation possible at a small scale.
 - o test case generation: focus.
- Test case generation:
 - o from test model to test cases.
 - o specific to individual techniques
 - e.g., cover checklist items, paths, etc.
 - various specific tools.
 - o key: which specific testing technique sup-

Test Automation

- Test measurement, analysis, and followup.
 - o analyses dictate measurements needed.
 - o most common: reliability/coverage.
 - o defect measurement needed in most cases:
 - defect tracking tools.
- Reliability analysis related tools:
 - o analysis/modeling tools.
 - o collecting execution/input/etc. data.
 - o more in Chapter 22.

Test Automation

- Coverage-based testing: measuring coverage and compare to pre-set goals.
- Test coverage steps:
 - preparation: program instrumentation.
 - measurement step: run and collect data.
 - analysis step: analysis for coverage.
- Test coverage tools:
 - o different levels/definitions of coverage
 - => different tools.
 - o example tools:
 - McCabe: execution (control flow) path
 - S-TCAT: functional coverage
 - A-TAC: data flow coverage.

Test Automation: Coverage Example

- Test coverage analysis with S-TCAT (Fig 7.1, p.100).
 - S-TCAT: functional coverage
 - o results 2 reports:
 - 1. list of covered functions
 - 2. function-#times-used

Summary

- Test activities:
 - o planning&preparation: focus of Part II.
 - execution&measurement: common.
 - $\circ~$ analysis&followup: focus of Part IV.
- Test management:
 - o different roles and responsibilities.

- o good management required.
- Test automation:
 - set realistic expectations.
 - specific areas for automation, esp. in execution, measurement, and analysis.