Санкт-Петербургский Политехнический Университет Петра Великого Институт компьютерных наук и технологий Высшая школа интеллектуальных систем и суперкомпьютерных технологий

ОТЧЕТ Лабораторная работа №7

По теме: «Синтез и исследование иерархической системы управления. Решение задачи координации по принципу прогнозирования взаимодействий путем модификации образов»

Дисциплина: Компьютерные системы управления

Выполнил студент гр. 3540901/02001			Ба	раев Д. Р.
J,	(подпись)			1 / 1
Руководитель			Несте	еров С. А.
	(подпись)			
		~	>>	2021 г.

Содержание

Исходные данные	3
Моделирование работы системы	
Выводы	10
	Исходные данные Задание Ход работы Формализация модели Синтез решающих органов первого уровня рвая подсистема орая подсистема Синтез решающих органов верхнего уровня Моделирование работы системы Выводы

1. Исходные данные

Объект первого порядка:

$$\begin{vmatrix} \dot{x_1} \\ \dot{x_2} \end{vmatrix} = \begin{vmatrix} -2 & 0.4 \\ -0.4 & -2 \end{vmatrix} \begin{vmatrix} x_1 \\ x_2 \end{vmatrix} + \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} \begin{vmatrix} u_1 \\ u_2 \end{vmatrix}$$

Целевые функции:

$$\begin{cases} f_1 = (x_1 - 1)^2 + (x_2 - 1)^2 \\ f_2 = (x_1 - 2)^2 + (x_2 - 2)^2 \\ \alpha_1 = 0.1, \ \alpha_2 = 0.9 \end{cases}$$

2. Задание

1) Реализовать двухуровневую иерархическую систему управления. Для координации подсистем использовать принцип прогнозирования взаимодействий путем модификации целей образов.

3. Ход работы

3.1 Формализация модели

Основным недостатком одноуровневого многоцелевого управления является необходимость ввода компромиссных решений для сведения многокритериальной задачи к однокритериальной. В случае многоуровневого управления принятие компромиссных решений производится на дополнительном вышестоящем уровне. Координатор должен иметь возможность воздействовать на действия решающих органов локальных подсистем.

Координация по принципу прогнозирования взаимодействий относится к типу координаций до принятия решений решающими органами локальных подсистем.

Рисунок 1 - Структурная схема многоуровневой системы управления по принципу согласования взаимодействий

Конфликты в иерархических системах управления могут возникать из-за несогласованного изменения связующих переменных отдельных подсистем. При координации по принципу прогнозирования взаимодействий используется идея вмешательства координатора в работу решающих органов подсистем до принятия ими решений. На верхнем уровне определяются желательные для оптимизации

глобальной целевой функции значения связующих переменных на входе z и на выходе s для каждой из подсистем.

Считается, что задача локального управления на уровне подсистем решена, поэтому требуется только организация совместного управления. В качестве реализации подсистемы с регулятором возьмем полученные в работе 2 результаты синтеза локального регулятора. В этом случае подсистемы будут иметь структуру:

Рисунок 2 - Структурная схема системы управления

Далее определим формальную постановку задачи.

Глобальная целевая функция

Локальные цели:

$$f_1 = (x_1 - 1)^2 + (x_2 - 1)^2$$

 $f_2 = (x_1 - 2)^2 + (x_2 - 2)^2$

С учётом весовых коэффициентов $f = 0.1 \cdot f_1 + 0.9 \cdot f_2$ С минимумом в точке $\{1.9, 1.9\}$

Записываем перекрёстное влияние подсистем:

$$\frac{0.4}{2}s_2 = 0.2 \cdot s_2 = z_1$$
$$\frac{-0.4}{2}s_1 = -0.2s_1 = z_2$$

Записываем уравнения для каждой подсистемы:

$$s_1 - z_1 - u_1 = 0$$

$$s_2 - z_2 - u_2 = 0$$

Найдём экстремумы с учётом записанных условий в подсистемах:

$$L_0 = 0.1((x_1 - 1)^2 + (x_2 - 1)^2) + 0.9((x_1 - 2)^2 + (x_2 - 2)^2) + \mu_1(s_1 - z_1 - u_1) + \mu_2(s_2 - z_2 - u_2) + \rho_1(z_1 - 0.2 \cdot s_2) + \rho_2(z_2 + 0.2 \cdot s_1)$$

Тогда получаем Лагранжианы подсистем:

$$L_{i}(u_{i}, z, \mu_{i}, \rho_{i}) = f_{i}(z, u_{i}) + \mu_{i}(s_{i} - \varphi_{i}(u_{i}, z_{i})) + \rho_{i}(z_{j} - c_{ij}s_{i})$$

$$L_{1} = 0.1((z_{1} + u_{1} - 1)^{2} + (5z_{1} - 1)^{2}) - \mu_{1}(u_{1} - s_{1} + z_{1}) - \rho_{1}(0.2s_{2} - z_{1})$$

$$L_{0} = 0.9((5z_{2} + 2)^{2} + (z_{2} + u_{2} - 2)^{2}) - \mu_{2}(u_{2} - s_{2} + z_{2}) + \rho_{2}(0.2s_{1} + z_{2})$$

3.2 Синтез решающих органов первого уровня

В локальных подсистемах для нахождения экстремума при заданных ограничениях необходимо найти экстремум соответствующего Лагранжиана: Для этого требуется решить следующую систему уравнений:

$$\begin{cases} \frac{dL_i}{du_i} = 0\\ \frac{dL_i}{dz_i} = 0\\ \frac{dL_i}{d\mu_i} = 0\\ \frac{dL_i}{d\rho_i} = 0 \end{cases}$$

При этом значения s_i задаются координатором.

```
1 - w=0.1;
2 - syms z1 z2 u1 u2 f1 f2 s1 s2 m1 m2 p1 p2;
3 - f1 = w*((z1+u1-1)^2+(5*z1-1)^2);
4 - f2 = (1-w)*((-5*z2-2)^2+(z2+u2-2)^2);
5 - syms L1 L2;
6 - L1 = f1 + m1*(s1-z1-u1) + p1*(z1 - 1/5*s2)
7 - L2 = f2 + m2*(s2-z2-u2) + p2*(z2 + 1/5*s1)
8 - display('Лагранжиан 1')
9 - diff(L1,u1)
10 - diff(L1,z1)
11 - diff(L1,p1)
12 - diff(L1,p1)
13 - display('Лагранжиан 2')
14 - diff(L2,u2)
15 - diff(L2,z2)
16 - diff(L2,m2)
17 - diff(L2,p2)
```

Рисунок 3 - Вычисление частных производных локальных Лагранжианов

Первая подсистема

$$\begin{cases} \frac{dL_1}{du_1} = \frac{1}{5}u_1 - \mu_1 + \frac{1}{5}z_1 - \frac{1}{5} = 0\\ \frac{dL_1}{dz_1} = -\mu_1 + \frac{1}{5}u_1 + \frac{26z_1}{5} + \rho_1 - \frac{6}{5} = 0\\ \frac{dL_1}{ds_1} = z_1 - \frac{1}{5}s_2 = 0\\ \frac{dL_1}{d\mu_1} = s_1 - z_1 - u_1 = 0\\ \begin{cases} \mu_1 = \frac{1}{5}(u_1 + z_1 - 1)\\ \rho_1 = -5z_1 + 1\\ z_1 = \frac{1}{5}s_2\\ u_1 = s_1 - z_1 \end{cases}$$

Рисунок 4 - Соответствующая схема решающего органа первого уровня

Вторая подсистема

$$\begin{cases} \frac{dL_2}{du_2} = -\mu_2 + \frac{9}{5} \cdot u_2 + \frac{9}{5} \cdot z_2 - \frac{18}{5} = 0 \\ \frac{dL_2}{dz_2} = -\mu_2 + \frac{9}{5} \cdot u_2 + \frac{234}{5} \cdot z_2 + \rho_2 + \frac{72}{5} = 0 \\ \frac{dL_2}{ds_2} = z_2 + \frac{1}{5} \cdot s_1 = 0 \\ \frac{dL_2}{d\mu_2} = s_2 - u_2 - z_2 = 0 \end{cases}$$

$$\begin{cases} \mu_2 = \frac{9}{5} (u_2 + z_2 - 2) \\ \rho_2 = -45 \cdot z_2 - 18 \\ z_2 = -0.2 s_1 \\ u_2 = s_2 - z_2 \end{cases}$$

Рисунок 5 - Соответствующая схема решающего органа первого уровня

3.3 Синтез решающих органов верхнего уровня

В локальных решающих органах для нахождения управляющего воздействия ищется экстремум локального Лагранжиана и вычисляются неопределенные множители μ и ρ . При этом на верхнем уровне для каждой из подсистем определяются желаемые для оптимизации глобальной целевой функции значения связующих переменных s_i . Эти значения передаются на нижний уровень, и локальные задачи решаются с их учетом.

Желаемое значение s_i корректируется в координаторе методом наискорейшего спуска:

$$\Delta s(k)_i = \pm \gamma \left(\hat{\mu}_i - \sum_j c_{ij} \hat{\rho}_j \right); \quad s(k)_i = s(k-1)_i + \Delta s(k)_i,$$

где γ — величина шага. Условие остановки:

$$|\Delta s_i(k) - \Delta s_i(k-1)| \le \varepsilon$$

где \mathcal{E} — порог изменения величины шага.

Когда условие согласованности локальных и глобальных целей будет выполнено, на нижний уровень будет подан сигнал разрешения управления.

```
\Box function [s1, s2, ena1, ena2] = fcn(p1, p2, m1, m2)
       persistent ds1 t;
 2 -
       persistent ds2 t;
 3 -
       persistent s1 t;
       persistent s2 t;
       persistent enal t;
       persistent ena2 t;
 7 -
       ерs = 0.02; % Величина отклонения оценки от реального значения
 8 -
       step = 0.001; % Шаг изменения множителей р
 9 -
       % Инициализация
10
11 -
       if(isempty(s1 t))
12 -
            s1 t = 1.; %-12.5;
            s2 t = 1.; %12.5;
13 -
           ds1 t = 0;
14 -
           ds2 t = 0;
15 -
           ena1 t = 0;
16 -
           ena2 t = 0;
17 -
           s1 = s1 t;
18 -
           s2 = s2 t;
19 -
           ena1 = ena1 t;
20 -
           ena2 = ena2 t;
21 -
22 -
            return;
23
       end
24 -
       if(abs((m1-p2)) > eps \mid\mid abs((m2-p1)) > eps)
          s1 t = s1 t-step*(m1-p2);%+
25 -
          ena1 t = 0;
26 -
          s2 t = s2 t-step*(m2-p1);%-
27 -
28 -
          ena2 t = 0;
29
       else
```

```
30 -
           ena1 t = 1;
           ena2 t = 1;
31 -
        end
32
33 -
        s1 = s1 t;
34 -
        s2 = s2 t;
35 -
        ena1 = ena1 t;
        ena2 = ena2 t;
36 -
37
       end
```

Рисунок 6 - Реализация решающего органа верхнего уровня

Рисунок 7 - Полная модель двухуровневой системы управления

3.4 Моделирование работы системы

Перед началом моделирования требуется задать исходные данные: ϵ и γ . Величина шага спуска γ влияет на скорость сходимости решения, ϵ влияет как на отклонение решения от исходной глобальной цели, так и на скорость сходимости. Экспериментально были подобраны следующие значения:

$$\epsilon=0.02,\,\gamma=0.001$$

Динамика изменения связующих переменных s:

Рисунок 8 - Динамика изменения связующих переменных s при $\varepsilon=0.02$, $\gamma=0.001$

Полученное решение:

Pисунок 9 - Полученное решение при $\varepsilon=0.02,\,\gamma=0.001$

$$\varepsilon = 0.0002, \, \gamma = 0.03$$

Рисунок 10 - Динамика изменения связующих переменных s при $\varepsilon=0.0002,\,\gamma=0.03$

Рисунок 11 - Полученное решение при $\varepsilon = 0.0002$, $\gamma = 0.03$

4. Выводы

Метод модификации образов позволяет задавать на уровне координатора желаемые значения связующих переменных, с учетом которых будут решаться локальные задачи управления. Условием остановки в данном случае является достижение локальными регуляторами оптимальных значений связующих переменных, наиболее близких к желаемым. Метод модификации образов позволяет задавать на уровне координатора желаемые значения связующих переменных, с учетом которых будут решаться локальные задачи управления.

К недостаткам данного подхода можно отнести существенное усложнение структуры системы и продолжительный процесс поиска решения координатором (около 2.2 секунд в первом рассмотренном случае). Метод градиентного спуска, применяемый в координаторе, требует подбора двух параметров. При увеличении шага в градиентном спуске возможно достижение более высокой скорости поиска решения (около 0.132 секунды во втором рассмотренном случае) и более быстрого переходного процесса. Также удалось достичь большей точности, уменьшив є в сто раз по сравнению с первым случаем.