

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
29 November 2001 (29.11.2001)

PCT

(10) International Publication Number
WO 01/90358 A2

(51) International Patent Classification⁷: C12N 15/12, C07K 14/715, 16/18, G01N 33/53, C12N 5/10

(21) International Application Number: PCT/US01/16767

(22) International Filing Date: 23 May 2001 (23.05.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/206,862 24 May 2000 (24.05.2000) US

(71) Applicant: SCHERING CORPORATION [US/US];
2000 Galloping Hill Road, Kenilworth, NJ 07033-0530
(US).

(72) Inventor: GORMAN, Daniel, M.; 6371 Central Avenue,
Newark, CA 94560 (US).

(74) Agent: ZARADIC, Sandy; Schering-Plough Corporation,
Patent Department, K-6-1, 1990, 2000 Galloping Hill
Road, Kenilworth, NJ 07033-0530 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, HR, HU, ID, IL, IN, IS, JP, KG, KR, KZ, LC, LK, LR, LT, LU, LV, MA, MD, MG, MK, MN, MX, MZ, NO, NZ, PL, PT, RO, RU, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UZ, VN, YU, ZA.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

— as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for all designations

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/90358 A2

(54) Title: MAMMALIAN RECEPTOR PROTEINS; RELATED REAGENTS AND METHODS

(57) Abstract: Nucleic acids encoding mammalian, e.g., primate, receptors, purified receptor proteins and fragments thereof. Antibodies, both polyclonal and monoclonal, are also provided. Methods of using the compositions for both diagnostic and therapeutic utilities are described.

5

MAMMALIAN RECEPTOR PROTEINS; RELATED REAGENTS AND METHODS

10

FIELD OF THE INVENTION

The present invention relates to compositions and methods for affecting mammalian physiology, including immune system function. In particular, it provides methods to regulate development and/or the immune system. Diagnostic and therapeutic uses of these materials are also disclosed.

15

BACKGROUND OF THE INVENTION

Recombinant DNA technology refers generally to techniques of integrating genetic information from a donor source into vectors for subsequent processing, such as through introduction into a host, whereby the transferred genetic information is copied and/or expressed in the new environment. Commonly, the genetic information exists in the form of complementary DNA (cDNA) derived from messenger RNA (mRNA) coding for a desired protein product. The carrier is frequently a plasmid having the capacity to incorporate cDNA for later replication in a host and, in some cases, actually to control expression of the cDNA and thereby direct synthesis of the encoded product in the host.

20 See, e.g., Sambrook, et al. (1989) Molecular Cloning: A Laboratory Manual, (2d ed.) vols. 1-3, CSH Press, NY.

25 For some time, it has been known that the mammalian immune response is based on a series of complex cellular interactions, called the "immune network". Recent research has provided new insights into the inner workings of this network. While it remains clear that much of the immune response does, in fact, revolve around the network-like interactions of lymphocytes, macrophages, granulocytes, and other cells, immunologists now generally hold the opinion that soluble proteins, known as lymphokines, cytokines, or monokines, play critical roles in controlling these cellular interactions. Thus, there is considerable interest in the isolation, characterization, and 30 mechanisms of action of cell modulatory factors, an understanding of which will lead to significant advancements in the diagnosis and therapy of numerous medical abnormalities, e.g., immune system disorders.

The immune system of vertebrates consists of a number of organs and several different cell types. Two major cell types include the myeloid and lymphoid lineages. Among the lymphoid cell lineage are B cells, which were originally characterized as differentiating in fetal liver or adult bone marrow, and T cells, which were originally characterized as differentiating in the thymus. See, e.g., Paul (ed. 1998) Fundamental Immunology (4th ed.) Raven Press, New York; and Thomson (ed. 1994) The Cytokine Handbook 2d ed., Academic Press, San Diego. Lymphokines apparently mediate cellular activities in a variety of ways. They have been shown to support the proliferation, growth, and/or differentiation of cells, e.g., pluripotential hematopoietic stem cells, into vast numbers of progenitors comprising diverse cellular lineages which make up a complex immune system. Proper and balanced interactions between the cellular components are necessary for a healthy immune response. The different cellular lineages often respond in a different manner when lymphokines are administered in conjunction with other agents.

Cell lineages especially important to the immune response include two classes of lymphocytes: B-cells, which can produce and secrete immunoglobulins (proteins with the capability of recognizing and binding to foreign matter to effect its removal), and T-cells of various subsets that secrete lymphokines and induce or suppress the B-cells and various other cells (including other T-cells) making up the immune network. These lymphocytes interact with many other cell types.

Research to better understand and treat various immune disorders has been hampered by the general inability to maintain cells of the immune system in vitro. Immunologists have discovered that culturing many of these cells can be accomplished through the use of T-cell and other cell supernatants, which contain various growth factors, including many of the lymphokines.

Various growth and regulatory factors exist which modulate morphogenetic development. And many receptors for cytokines are also known. Often there are at least two critical subunits in the functional receptor. See, e.g., Gonda and D'Andrea (1997) Blood 89:355-369; Presky, et al. (1996) Proc. Nat'l Acad. Sci. USA 93:14002-14007; Drachman and Kaushansky (1995) Curr. Opin. Hematol. 2:22-28; Theze (1994) Eur. Cytokine Netw. 5:353-368; and Lemmon and Schlessinger (1994) Trends Biochem. Sci. 19:459-463.

From the foregoing, it is evident that the discovery and development of new soluble proteins and their receptors, including ones similar to lymphokines, should contribute to new therapies for a wide range of degenerative or abnormal conditions which directly or indirectly involve development, differentiation, or function, e.g., of the

immune system and/or hematopoietic cells. In particular, the discovery and understanding of novel receptors for lymphokine-like molecules which enhance or potentiate the beneficial activities of other lymphokines would be highly advantageous. However, the lack of understanding of how the immune system is regulated or 5 differentiates has blocked the ability to advantageously modulate the normal defensive mechanisms to biological challenges. Medical conditions characterized by abnormal or inappropriate regulation of the development or physiology of relevant cells thus remain unmanageable. The discovery and characterization of specific cytokines and their receptors will contribute to the development of therapies for a broad range of 10 degenerative or other conditions which affect the immune system, hematopoietic cells, as well as other cell types. The present invention provides new receptors for ligands exhibiting similarity to cytokine like compositions and related compounds, and methods for their use.

15

SUMMARY OF THE INVENTION

The present invention is directed to novel receptors related to cytokine receptors, e.g., primate, cytokine receptor like molecular structures, designated DNAX Cytokine Receptor Subunits (DCRS), and their biological activities. In particular, it provides description of various subunits, designated DCRS6, DCRS7, DCRS8, DCRS9, and 20 DCRS10. Primate, e.g., human, and rodent, e.g., mouse, embodiments of the various subunits are provided. It includes nucleic acids coding for the polypeptides themselves and methods for their production and use. The nucleic acids of the invention are characterized, in part, by their homology to cloned complementary DNA (cDNA) sequences enclosed herein.

25

The present invention provides a composition of matter selected from: a substantially pure or recombinant polypeptide comprising at least three distinct nonoverlapping segments of at least four amino acids identical to segments of SEQ ID NO: 2, 5, 8, 11, 23, or 26; a substantially pure or recombinant polypeptide comprising at least three distinct nonoverlapping segments of at least four amino acids identical to 30 segments of SEQ ID NO: 14; a substantially pure or recombinant polypeptide comprising at least two distinct nonoverlapping segments of at least five amino acids identical to segments of SEQ ID NO: 14; a natural sequence DCRS8 comprising mature SEQ ID NO: 14; a fusion polypeptide comprising DCRS8 sequence; a substantially pure or recombinant polypeptide comprising at least three distinct nonoverlapping segments of at 35 least four amino acids identical to segments of SEQ ID NO: 17 or 20; a substantially pure or recombinant polypeptide comprising at least two distinct nonoverlapping segments of at least five amino acids identical to segments of SEQ ID NO: 17 or 20; a natural

sequence DCRS9 comprising mature SEQ ID NO: 17 or 20; or a fusion polypeptide comprising DCRS9 sequence. Preferably, wherein the distinct nonoverlapping segments of identity include: one of at least eight amino acids; one of at least four amino acids and a second of at least five amino acids; at least three segments of at least four, five, and six amino acids, or one of at least twelve amino acids. In other embodiments, the: 5 polypeptide: comprises a mature sequence of Tables 1, 2, 3, 4, or 5; is an unglycosylated form of DCRS8 or DCRS9; is from a primate, such as a human; comprises at least seventeen amino acids of SEQ ID NO: 14 or 17; exhibits at least four nonoverlapping segments of at least seven amino acids of SEQ ID NO: 14 or 17; is a natural allelic 10 variant of DCRS8 or DCRS9; has a length at least about 30 amino acids; exhibits at least two non-overlapping epitopes which are specific for a primate DCRS8 or DCRS9; is glycosylated; has a molecular weight of at least 30 kD with natural glycosylation; is a synthetic polypeptide; is attached to a solid substrate; is conjugated to another chemical 15 moiety; is a 5-fold or less substitution from natural sequence; or is a deletion or insertion variant from a natural sequence.

The invention further embraces a composition comprising: a substantially pure DCRS8 or DCRS9 and another cytokine receptor family member; a sterile DCRS8 or DCRS9 polypeptide; the DCRS8 or DCRS9 polypeptide and a carrier, wherein the carrier is: an aqueous compound, including water, saline, and/or buffer; and/or formulated for 20 oral, rectal, nasal, topical, or parenteral administration. Additional embodiments include a polypeptide comprising: mature protein sequence of Tables 1, 2, 3, 4, or 5; a detection or purification tag, including a FLAG, His6, or Ig sequence; or sequence of another cytokine receptor protein. Kit embodiments include ones comprising a described 25 polypeptide, and: a compartment comprising the protein or polypeptide; or instructions for use or disposal of reagents in the kit.

Binding compositions are provided, e.g., comprising an antigen binding site from an antibody, which specifically binds to a natural DCRS8 or DCRS9 polypeptide, wherein: the binding compound is in a container; the DCRS8 or DCRS9 polypeptide is from a human; the binding compound is an Fv, Fab, or Fab2 fragment; the binding 30 compound is conjugated to another chemical moiety; or the antibody: is raised against a peptide sequence of a mature polypeptide of Table 3 or 4; is raised against a mature DCRS8 or DCRS9; is raised to a purified human DCRS8 or DCRS9; is immunoselected; is a polyclonal antibody; binds to a denatured DCRS8 or DCRS9; exhibits a Kd to antigen 35 of at least 30 μ M; is attached to a solid substrate, including a bead or plastic membrane; is in a sterile composition; or is detectably labeled, including a radioactive or fluorescent label. Kits include ones comprising such a binding compound, and: a compartment

comprising the binding compound; or instructions for use or disposal of reagents in the kit.

The invention also provides methods of producing an antigen:antibody complex, comprising contacting under appropriate conditions a primate DCRS8 or DCRS9 polypeptide with a described antibody, thereby allowing the complex to form. Preferred methods include ones wherein: the complex is purified from other cytokine receptors; the complex is purified from other antibody; the contacting is with a sample comprising an interferon; the contacting allows quantitative detection of the antigen; the contacting is with a sample comprising the antibody; or the contacting allows quantitative detection of the antibody. Further compositions include those comprising: a sterile binding compound, as described, or the binding compound and a carrier, wherein the carrier is: an aqueous compound, including water, saline, and/or buffer; and/or formulated for oral, rectal, nasal, topical, or parenteral administration.

Nucleic acid compositions include an isolated or recombinant nucleic acid encoding a described polypeptide wherein the: DCRS8 or DCRS9 is from a human; or the nucleic acid: encodes an antigenic peptide sequence of Table 3 or 4; encodes a plurality of antigenic peptide sequences of Table 3 or 4; exhibits identity over at least thirteen nucleotides to a natural cDNA encoding the segment; is an expression vector; further comprises an origin of replication; is from a natural source; comprises a detectable label; comprises synthetic nucleotide sequence; is less than 6 kb, preferably less than 3 kb; is from a primate; comprises a natural full length coding sequence; is a hybridization probe for a gene encoding the DCRS8 or DCRS9; or is a PCR primer, PCR product, or mutagenesis primer. Also provided are a cell or tissue comprising such a recombinant nucleic acid, e.g., where the cell is: a prokaryotic cell; a eukaryotic cell; a bacterial cell; a yeast cell; an insect cell; a mammalian cell; a mouse cell; a primate cell; or a human cell.

Kit embodiments include those comprising a described nucleic acid and: a compartment comprising the nucleic acid; a compartment further comprising a primate DCRS8 or DCRS9 polypeptide; or instructions for use or disposal of reagents in the kit.

Other nucleic acids provided include ones which: hybridize under wash conditions of 30 minutes at 30° C and less than 2M salt to the coding portion of SEQ ID NO: 13 or 16; or exhibit identity over a stretch of at least about 30 nucleotides to a primate DCRS8 or DCRS9. Preferably, such will be nucleic acids where: the wash conditions are: at 45° C and/or 500 mM salt; at 55° C and/or 150 mM salt; or the stretch is at least 55 or 75 nucleotides.

Also provided are methods of modulating physiology or development of a cell or tissue culture cells comprising contacting the cell with an agonist or antagonist of a

mammalian DCRS8 or DCRS9. Preferably, the cell is transformed with a nucleic acid encoding the DCRS8 or DCRS9 and another cytokine receptor subunit.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

5

OUTLINE

- I. General
- II. Activities
- III. Nucleic acids
 - 10 A. encoding fragments, sequence, probes
 - B. mutations, chimeras, fusions
 - C. making nucleic acids
 - D. vectors, cells comprising
- IV. Proteins, Peptides
 - 15 A. fragments, sequence, immunogens, antigens
 - B. muteins
 - C. agonists/antagonists, functional equivalents
 - D. making proteins
- V. Making nucleic acids, proteins
 - 20 A. synthetic
 - B. recombinant
 - C. natural sources
- VI. Antibodies
 - 25 A. polyclonals
 - B. monoclonal
 - C. fragments; Kd
 - D. anti-idiotypic antibodies
 - E. hybridoma cell lines
- VII. Kits and Methods to quantify DCRSs
 - 30 A. ELISA
 - B. assay mRNA encoding
 - C. qualitative/quantitative
 - D. kits
- VIII. Therapeutic compositions, methods
 - 35 A. combination compositions
 - B. unit dose
 - C. administration
- IX. Screening
- X. Ligands

40

- I. General
 - The present invention provides the amino acid sequence and DNA sequence of mammalian, herein primate, cytokine receptor-like subunit molecules, these designated DNAX Cytokine Receptor Subunits 6 (DCRS6), 7 (DCRS7), 8 (DCRS8), 9 (DCRS9), 45 and 10 (DCRS10) having particular defined properties, both structural and biological.

Various cDNAs encoding these molecules were obtained from primate, e.g., human, and/or rodent, e.g., mouse, cDNA sequence libraries. Other primate or other mammalian counterparts would also be desired.

Some of the standard methods applicable are described or referenced, e.g., in
5 Maniatis, et al. (1982) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor
Laboratory, Cold Spring Harbor Press; Sambrook, et al. (1989) Molecular Cloning: A
Laboratory Manual, (2d ed.), vols. 1-3, CSH Press, NY; Ausubel, et al., Biology, Greene
Publishing Associates, Brooklyn, NY; or Ausubel, et al. (1987 and periodic supplements)
10 Current Protocols in Molecular Biology, Greene/Wiley, New York; each of which is
incorporated herein by reference.

Nucleotide (SEQ ID NO: 1) and corresponding amino acid sequence (SEQ ID NO: 2) of a primate, e.g., human, DCRS6 coding segment is shown in Table 1 along with reverse translation (SEQ ID NO: 3). Rodent, e.g., mouse, counterpart sequences are provided, e.g., SEQ ID NO: 4-6.

15 Similarly, nucleotide (SEQ ID NO: 7) and corresponding amino acid sequence (SEQ ID NO: 8) of a primate, e.g., human, DCRS7 coding segment is shown in Table 2 along with reverse translation (SEQ ID NO: 9). Rodent, e.g., mouse, counterpart sequences are provided, e.g., SEQ ID NO: 10-12. Nucleotide (SEQ ID NO: 13) and corresponding amino acid sequence (SEQ ID NO: 14) of a primate, e.g., human, DCRS8 coding segment is shown in Table 3 along with reverse translation (SEQ ID NO: 15).
20

Nucleotide (SEQ ID NO: 16) and corresponding amino acid sequence (SEQ ID NO: 17) of a primate, e.g., human, DCRS9 coding segment is shown in Table 4 along with reverse translation (SEQ ID NO: 18). Rodent, e.g., mouse, counterpart sequences are provided, e.g., SEQ ID NO: 19-21. Nucleotide (SEQ ID NO: 22) and corresponding amino acid sequence (SEQ ID NO: 23) of a primate, e.g., human, DCRS10 coding segment is shown in Table 5 along with reverse translation (SEQ ID NO: 24). Rodent, e.g., mouse, counterpart sequences are provided, e.g., SEQ ID NO: 26-27.

30 Table 1: Nucleotide and polypeptide sequences of DNAX Cytokine Receptor Subunit like
 embodiments (DCRS6). Primate, e.g., human, embodiment (see SEQ ID NO: 1 and 2).
 Predicted signal sequence indicated, but may vary by a few positions and depending upon cell
 type.

35	gcg atg tcg ctc gtg ctg cta agc ctg gcc gcc ctg tgc agg agc gcc Met Ser Leu Val Leu Leu Ser Leu Ala Ala Leu Cys Arg Ser Ala -10 -5 -1 1	48
40	gta ccc cga gag ccg acc gtt caa tgt ggc tct gaa act ggg cca tct Val Pro Arg Glu Pro Thr Val Gln Cys Gly Ser Glu Thr Gly Pro Ser 5 10 15	96

	cca gag tgg atg cta caa cat gat cta atc ccg gga gac ttg agg gac	144		
	Pro Glu Trp Met Leu Gln His Asp Leu Ile Pro Gly Asp Leu Arg Asp			
20	25	30		
5	ctc cga gta gaa cct gtt aca act agt gtt gca aca ggg gac tat tca	192		
	Ieu Arg Val Glu Pro Val Thr Thr Ser Val Ala Thr Gly Asp Tyr Ser			
	35	40	45	
10	att ttg atg aat gta agc tgg gta ctc cgg gca gat gcc agc atc cgc	240		
	Ile Ieu Met Asn Val Ser Trp Val Leu Arg Ala Asp Ala Ser Ile Arg			
	50	55	60	65
15	ttg ttg aag gcc acc aag att tgt gtg acg ggc aaa agc aac ttc cag	288		
	Leu Leu Lys Ala Thr Lys Ile Cys Val Thr Gly Lys Ser Asn Phe Gln			
	70	75	80	
	tcc tac agc tgt gtg agg tgc aat tac aca gag gcc ttc cag act cag	336		
	Ser Tyr Ser Cys Val Arg Cys Asn Tyr Thr Glu Ala Phe Gln Thr Gln			
20	85	90	95	
	acc aga ccc tct ggt ggt aaa tgg aca ttt tcc tat atc ggc ttc cct	384		
	Thr Arg Pro Ser Gly Gly Lys Trp Thr Phe Ser Tyr Ile Gly Phe Pro			
	100	105	110	
25	gta gag ctg aac aca gtc tat ttc att ggg gcc cat aat att cct aat	432		
	Val Glu Leu Asn Thr Val Tyr Phe Ile Gly Ala His Asn Ile Pro Asn			
	115	120	125	
30	gca aat atg aat gaa gat ggc cct tcc atg tct gtg aat ttc acc tca	480		
	Ala Asn Met Asn Glu Asp Gly Pro Ser Met Ser Val Asn Phe Thr Ser			
	130	135	140	145
35	cca ggc tgc cta gac cac ata atg aaa tat aaa aaa aag tgt gtc aag	528		
	Pro Gly Cys Leu Asp His Ile Met Lys Tyr Lys Lys Cys Val Lys			
	150	155	160	
	gcc gga agc ctg tgg gat ccg aac atc act gct tgt aag aag aat gag	576		
	Ala Gly Ser Leu Trp Asp Pro Asn Ile Thr Ala Cys Lys Lys Asn Glu			
40	165	170	175	
	gag aca gta gaa gtg aac ttc aca acc act ccc ctg gga aac aga tac	624		
	Glu Thr Val Glu Val Asn Phe Thr Thr Pro Leu Gly Asn Arg Tyr			
	180	185	190	
45	atg gct ctt atc caa cac agc act atc atc ggg ttt tct cag gtg ttt	672		
	Met Ala Leu Ile Gln His Ser Thr Ile Ile Gly Phe Ser Gln Val Phe			
	195	200	205	
50	gag cca cac cag aag aaa caa acg cga gct tca gtg gtg att cca gtg	720		
	Glu Pro His Gln Lys Lys Gln Thr Arg Ala Ser Val Val Ile Pro Val			
	210	215	220	225
55	act ggg gat agt gaa ggt gct acg gtg cag ctg act cca tat ttt cct	768		
	Thr Gly Asp Ser Glu Gly Ala Thr Val Gln Leu Thr Pro Tyr Phe Pro			
	230	235	240	

	act tgt ggc agc gac tgc atc cga cat aaa gga aca gtt gtg ctc tgc	816
	Thr Cys Gly Ser Asp Cys Ile Arg His Lys Gly Thr Val Val Leu Cys	
	245 250 255	
5	cca caa aca ggc gtc cct ttc cct ctg gat aac aac aaa agc aag ccg	864
	Pro Gln Thr Gly Val Pro Phe Pro Leu Asp Asn Asn Lys Ser Lys Pro	
	260 265 270	
10	gga ggc tgg ctg cct ctc ctc ctg tct ctg ctg gtg gcc aca tgg	912
	Gly Gly Trp Leu Pro Leu Leu Leu Ser Leu Leu Val Ala Thr Trp	
	275 280 285	
15	gtg ctg gtg gca ggg atc tat cta atg tgg agg cac gaa agg atc aag	960
	Val Leu Val Ala Gly Ile Tyr Leu Met Trp Arg His Glu Arg Ile Lys	
	290 295 300 305	
	aag act tcc ttt tct acc acc aca cta ctg ccc ccc att aag gtt ctt	1008
	Lys Thr Ser Phe Ser Thr Thr Leu Leu Pro Pro Ile Lys Val Leu	
20	310 315 320	
	gtg gtt tac cca tct gaa ata tgt ttc cat cac aca att tgt tac ttc	1056
	Val Val Tyr Pro Ser Glu Ile Cys Phe His His Thr Ile Cys Tyr Phe	
	325 330 335	
25	act gaa ttt ctt caa aac cat tgc aga agt gag gtc atc ctt gaa aag	1104
	Thr Glu Phe Leu Gln Asn His Cys Arg Ser Glu Val Ile Leu Glu Lys	
	340 345 350	
30	tgg cag aaa aag aaa ata gca gag atg ggt cca gtg cag tgg ctt gcc	1152
	Trp Gln Lys Lys Ile Ala Glu Met Gly Pro Val Gln Trp Leu Ala	
	355 360 365	
35	act caa aag gca gca gac aaa gtc gtc ttc ctt ctt tcc aat gac	1200
	Thr Gln Lys Lys Ala Ala Asp Lys Val Val Phe Leu Leu Ser Asn Asp	
	370 375 380 385	
	gtc aac agt gtg tgc gat ggt acc tgt ggc aag agc gag ggc agt ccc	1248
	Val Asn Ser Val Cys Asp Gly Thr Cys Gly Lys Ser Glu Gly Ser Pro	
	390 395 400	
40	agt gag aac tct caa gac ctc ttc ccc ctt gcc ttt aac ctt ttc tgc	1296
	Ser Glu Asn Ser Gln Asp Leu Phe Pro Leu Ala Phe Asn Leu Phe Cys	
	405 410 415	
45	agt gat cta aga agc cag att cat ctg cac aaa tac gtg gtg gtc tac	1344
	Ser Asp Leu Arg Ser Gln Ile His Leu His Lys Tyr Val Val Val Tyr	
	420 425 430	
50	ttt aga gag att gat aca aaa gac gat tac aat gct ctc agt gtc tgc	1392
	Phe Arg Glu Ile Asp Thr Lys Asp Asp Tyr Asn Ala Leu Ser Val Cys	
	435 440 445	
55	ccc aag tac cac ctc atg aag gat gcc act gct ttc tgt gca gaa ctt	1440
	Pro Lys Tyr His Leu Met Lys Asp Ala Thr Ala Phe Cys Ala Glu Leu	
	450 455 460 465	

ctc cat gtc aag cag cag gtg tca gca gga aaa aga tca caa gcc tgc 1488
 Leu His Val Lys Gln Gln Val Ser Ala Gly Lys Arg Ser Gln Ala Cys
 470 475 480
 5 cac gat ggc tgc tgc tcc ttg tagcccaccc atgagaagca agagaccta 1539
 His Asp Gly Cys Cys Ser Leu
 485
 10 aaggcttcct atccccaccaa ttacaggaa aaaacgtgtg atgatcctga agcttactat 1599
 gcagcctaca aacagcctta gtaattaaaa cattttatac caataaaatt ttcaaataatt 1659
 gctaactaat gtagcattaa ctaacgattg gaaactacat ttacaacttc aaagctgttt 1719
 15 tatacataga aatcaattac agctttaatt gaaaactgta accatttga taatgcaaca 1779
 ataaaggcatc ttcagcc 1796
 20 MSLVLLSLAALCRSAVPREPTVQCGSETGPSPEWMLQHDLIPGDLRDLRVEPVTSVATGDYSILMNWSVWL
 RADASIRLLKATKICVTGKSNFQSYSVRCNYTEAFQTQTRPSGGKWTFSYIGFPVELNTVYFIGAHNIPNA
 NMNEDGPMNSVNFSTPGCLDHIMKYKKKCVKAGSLWDPNITACKNEETVEVNFTTPLGNRYMALIQHSTI
 IGFSQVFEPHQKKQTRASVVIPVTGDSEGATVQLTPYFPTCGSDCIRHKGTVVLCPQTGVPPFELDNNKSKPG
 GWLPLLRLSLLVATWVLVAGIYLMWRHERIKKTSFSTTLLPPIKVLVVPSEICFHHTICYFTBFLQNHCR
 25 SEVILEWKQKKKIAEMGPVQWLATQKKAADKVVFLSNDVNSVCDGTCGKSEGPSSENSQDLFPLAFNLFC
 DLRSQIHLHKVVVYFREIDTKDDYNALSVCPKYHLMKDATAFCAELLHVKQQVSAGKRSQACHDGCCSL.

Reverse translation of primate, e.g., human, DCRS6 (SEQ ID NO: 3):

30 atgwsnytng tnytnytnws nytnngcngcn ytntgymgnw sngcngtncc nmngngarccn 60
 acngtnccart gyggngsnga racnggnccn wsncncngart ggatgtnca rcaygaytn 120
 35 athccnggng ayytnmgnga yytnmgngtn garccngtna cnacnwsngt ngcnacnggn 180
 gaytaywsna thytnatgaa ygtwnsntgg gtntymgnng cngaygcnws nathmgnytn 240
 ytnaargcna cnaarathtg ygtacnggn aarwsnaayt tycarwsnta ywsntgygtn 300
 40 mgntgyaayt ayacngargc nttycaracn caracnmgncc cnwsnggng naartggacn 360
 ttywsntaya thggnttycc ngtnarytn aayacngntnt aytyathgg ngcncayaay 420
 45 athccnaayg cnaayatgaa ygargayggc cnwsnatgw sngtnaaytt yacnwsncn 480
 ggntgyytnng aycayathat gaartayaar aaraartgyc tnaargcngg nwsnytntgg 540
 gayccnaaya thacngcntg yaaraaraay gargaracng tngargtnaa yttynaacn 600
 50 acnccnytng gnaaymgnta yatggcnytn athcarcayw snacnathat hggnttywsn 660
 carginnttyg arccncayca raaraarcar acnmngncnw sngtngtnat hccngtnacn 720
 55 ggngaywsng arggngcnac ngtnarytn acnccntayt tyccnacntg yggnwsgay 780
 tgyathmgnc ayaarggnac ngtnytnws tgyccncara cngngtncc nttyccnytn 840
 gayaayaaya arwsnaarcc nggngngtgg ytnccnytny tnytnytnws nytnytngt 900

5 gcnacntggg tnytngtngc ngnathtay ytnatgtggm gncaygarmg nathaaraar 960
 acnwsnttyw snacnacnac nytnytnccn ccnathaarg tnytngtngt ntayccnwsn 1020
 garathgtgt ytcaycayac nathtgytay tyyacngart tyytncaraa ycaytgymgn 1080
 wsngargtna thytngaraa rtggcaraar aaraarathg cngaratggg nccngtnca 1140
 10 tggytngcna cncaraaraa rgcngcngay aargtngtnt tyytntnws naaygaygt 1200
 aaywsngtnt gygayggnaac ntgyggnaar wsngarggnw snccnwsnga raaywsncar 1260
 15 gayytnttgc cnytngcntt yaayytnttgc tgywsngayy tnmgmwsnca rathcayytn 1320
 cayaartayg tngtngtnta yttymngar athgayacna argaygayta yaaygcnytn 1380
 wsngtntgyc cnaartayca yytnatgaar gaygcnaacng cnttgcaygc ngarytnty 1440
 20 caygttaarc arcargtnws ngcnggnaar mgnwsncarg cngtgcayga yggntgytgy 1500
 wsnytn 1506

25 Rodent, e.g., mouse embodiment (see SEQ ID NO: 4 and 5).
 gat ttc agc agc cag acg cat ctg cac aaa tac ctg gag gtc tat ctt 48
 Asp Phe Ser Ser Gln Thr His Leu His Lys Tyr Leu Glu Val Tyr Leu
 1 5 10 15
 30 ggg gga gca gac ctc aaa ggc gac tat aat gcc ctg agt gtc tgc ccc 96
 Gly Gly Ala Asp Leu Lys Gly Asp Tyr Asn Ala Leu Ser Val Cys Pro
 20 25 30
 35 caa tat cat ctc atg aag gac gcc aca gct ttc cac aca gaa ctt ctc 144
 Gln Tyr His Leu Met Lys Asp Ala Thr Ala Phe His Thr Glu Leu Leu
 35 40 45
 40 aag gct acg cag agc atg tca gtg aag aaa cgc tca caa gcc tgc cat 192
 Lys Ala Thr Gln Ser Met Ser Val Lys Lys Arg Ser Gln Ala Cys His
 50 55 60
 45 gat agc tgt tca ccc ttg tagtccaccc gggggatag agactctgaa 240
 Asp Ser Cys Ser Pro Leu
 65 70
 50 gccttcctac tctcccttcc agtgacaaat gctgtgtgac gactctgaaa tgtgtggag 300
 aggctgtgtg gaggtagtgc tatgtacaaa cttgctttaa aactggagtt tgcaaagtca 360
 acctgagcat acacgcctga ggctagtcat tggctggatt tatgaagaca acacagttac 420
 agacaataat gagtgggacc tacatttggg atataccaa agctgggtaa tgattatcac 480
 55 tgagaaccac gcactctggc catgaggtaa tacggcactt ccctgtcagg ctgtctgtca 540
 ggttgggtct gtcttgcact gcccattgtc tatgctgcac gtagaccgtt ttgttaacatt 600
 ttaatctgtt aatgaataat ccgtttggga ggctctc 637

DFSSQTHLHKYILEVYLGGADLKGDYNALSVCPQYHLMKDATAFHTELLKATQSMSVKRQSACHDSCSPL.

5 Reverse translation of rodent, e.g., mouse, DCRS6 (SEQ ID NO: 6):
gayttywsnw sncaracnca yytncayaar tayytngarg tntayytngg nggngcngay 60
10 ytnaarggng aytayaaygc nytnwsngtn tgyccncart aycayytnat gaargaygcn 120
acngcnnttyc ayacngaryt nytnaargcn acncarwsna tgwsngtnaa raarmgnwsn 180
carqcntgyc ayygaywsntq ywsnccnytn 210

15 Table 2: Nucleotide and polypeptide sequences of DNAX Cytokine Receptor Subunit like embodiments (DCRS7). Primate, e.g., human, embodiment (see SEQ ID NO: 7 and 8). Predicted signal sequence indicated, but may vary by a few positions and depending upon cell type.

20 gagtcaggac tcccaggaca gagagtgcac aaactaccca gcacagcccc ctccgcccc 60
 tctggaggct gaagagggat tccagccctt gccaccacca gacacgggct gactgggtg 120
 25 tctgcccccc ttgggggcan ccacagggcc tcaggcctgg tgccacactg gcactagaag 180
 atg cct gtg ccc tgg ttc ttg ctg tcc ttg gca ctg ggc cga agc cag 228
 Met Pro Val Pro Trp Phe Leu Leu Ser Leu Ala Leu Gly Arg Ser Gln
 -20 -15 -10 -5
 30 tgg atc ctt tct ctg gag agg ctt gtg ggg cct cag gac gct acc cac 276
 Trp Ile Leu Ser Leu Glu Arg Leu Val Gly Pro Gln Asp Ala Thr His
 -1 1 5 10
 35 tgc tct ccg ggc ctc tcc tgc cgc ctc tgg gac agt gac ata ctc tgc 324
 Cys Ser Pro Gly Leu Ser Cys Arg Leu Trp Asp Ser Asp Ile Leu Cys
 15 20 25
 40 ctg cct ggg gac atc gtg cct gct ccg ggc ccc gtg ctg gcg cct acg 372
 Leu Pro Gly Asp Ile Val Pro Ala Pro Gly Pro Val Leu Ala Pro Thr
 30 35 40
 45 cac ctg cag aca gag ctg gtg ctg agg tgc cag aag gag acc gac tgt 420
 His Leu Gln Thr Glu Leu Val Leu Arg Cys Gln Lys Glu Thr Asp Cys
 45 50 55 60
 50 gac ctc tgt ctg cgt gtg gct gtc cac ttg gcc gtg cat ggg cac tgg 468
 Asp Leu Cys Leu Arg Val Ala Val His Leu Ala Val His Gly His Trp
 65 70 75
 55 gaa gag cct gaa gat gag gaa aag ttt gga gga gca gct gac tta ggg 516
 Glu Glu Pro Glu Asp Glu Glu Lys Phe Gly Gly Ala Ala Asp Leu Gly
 80 85 90
 55 gtg gag gag cct agg aat gcc tct ctc cag gcc caa gtc gtg ctc tcc 564
 Val Glu Glu Pro Arg Asn Ala Ser Leu Gln Ala Gln Val Val Leu Ser
 95 100 105

	ttc cag gcc tac cct act gcc cgc tgc gtc ctg gag gtg caa gtg Phe Gln Ala Tyr Pro Thr Ala Arg Cys Val Leu Leu Glu Val Gln Val 110 115 120	612
5	cct gct gcc ctt gtg cag ttt ggt cag tct gtg ggc tct gtg gta tat Pro Ala Ala Leu Val Gln Phe Gly Gln Ser Val Gly Ser Val Val Tyr 125 130 135 140	660
10	gac tgc ttc gag gct gcc cta ggg agt gag gta cga atc tgg tcc tat Asp Cys Phe Glu Ala Ala Leu Gly Ser Glu Val Arg Ile Trp Ser Tyr 145 150 155	708
15	act cag ccc agg tac gag aag gaa ctc aac cac aca cag cag ctg cct Thr Gln Pro Arg Tyr Glu Lys Glu Ileu Asn His Thr Gln Gln Ileu Pro 160 165 170	756
	gac tgc agg ggg ctc gaa gtc tgg aac agc atc ccg agc tgc tgg gcc Asp Cys Arg Gly Leu Glu Val Trp Asn Ser Ile Pro Ser Cys Trp Ala 175 180 185	804
20	ctg ccc tgg ctc aac gtg tca gca gat ggt gac aac gtg cat ctg gtt Leu Pro Trp Leu Asn Val Ser Ala Asp Gly Asp Asn Val His Leu Val 190 195 200	852
25	ctg aat gtc tct gag gag cag cac ttc ggc ctc tcc ctg tac tgg aat Leu Asn Val Ser Glu Glu Gln His Phe Gly Leu Ser Leu Tyr Trp Asn 205 210 215 220	900
30	cag gtc cag ggc ccc cca aaa ccc ccg tgg cac aaa aac ctg act gga Gln Val Gln Gly Pro Pro Lys Pro Arg Trp His Lys Asn Leu Thr Gly 225 230 235	948
35	ccg cag atc att acc ttg aac cac aca gac ctg gtt ccc tgc ctc tgt Pro Gln Ile Ile Thr Leu Asn His Thr Asp Leu Val Pro Cys Leu Cys 240 245 250	996
	att cag gtg tgg cct ctg gaa cct gac tcc gtt agg acg aac atc tgc Ile Gln Val Trp Pro Leu Glu Pro Asp Ser Val Arg Thr Asn Ile Cys 255 260 265	1044
40	ccc ttc agg gag gac ccc cgc gca cac cag aac ctc tgg caa gcc gcc Pro Phe Arg Glu Asp Pro Arg Ala His Gln Asn Leu Trp Gln Ala Ala 270 275 280	1092
45	cga ctg cga ctg ctg acc ctg cag agc tgg ctg ctg gac gca ccg tgc Arg Leu Arg Leu Leu Thr Leu Gln Ser Trp Leu Leu Asp Ala Pro Cys 285 290 295 300	1140
50	tcg ctg ccc gca gaa gcg gca ctg tgc tgg ccg gct ccg ggt ggg gac Ser Leu Pro Ala Glu Ala Ala Leu Cys Trp Arg Ala Pro Gly Gly Asp 305 310 315	1188
	ccc tgc cag cca ctg gtc cca ccg ctt tcc tgg gag aat gtc act gtg Pro Cys Gln Pro Leu Val Pro Pro Leu Ser Trp Glu Asn Val Thr Val	1236
55	320 325 330	335 340 345
	gac gtg aac agc tcg gag aag ctg cag ctg cag gag tgc ttg tgg gct Asp Val Asn Ser Ser Glu Lys Leu Gln Leu Gln Glu Cys Leu Trp Ala	1284

5	gac tcc ctg ggg cct ctc aaa gac gat gtg cta ctg ttg gag aca cga Asp Ser Leu Gly Pro Leu Lys Asp Asp Val Leu Leu Leu Glu Thr Arg 350 355 360	1332
10	ggc ccc cag gac aac aga tcc ctc tgt gcc ttg gaa ccc agt ggc tgt Gly Pro Gln Asp Asn Arg Ser Leu Cys Ala Leu Glu Pro Ser Gly Cys 365 370 375 380	1380
15	act tca cta ccc agc aaa gcc tcc acg agg gca gct cgc ctt gga gag Thr Ser Leu Pro Ser Lys Ala Ser Thr Arg Ala Ala Arg Leu Gly Glu 385 390 395	1428
20	tac tta cta caa gac ctg cag tca ggc cag tgt ctg cag cta tgg gac Tyr Leu Leu Gln Asp Leu Gln Ser Gly Gln Cys Leu Gln Leu Trp Asp 400 405 410	1476
25	gat gac ttg gga gcg cta tgg gcc tgc ccc atg gac aaa tac atc cac Asp Asp Leu Gly Ala Leu Trp Ala Cys Pro Met Asp Lys Tyr Ile His 415 420 425	1524
30	aag cgc tgg gcc ctc gtg tgg ctg gcc tgc cta ctc ttt gcc gct gcg Lys Arg Trp Ala Leu Val Trp Leu Ala Cys Leu Leu Phe Ala Ala Ala 430 435 440	1572
35	ctt tcc ctc atc ctc ctt ctc aaa aag gat cac gcg aaa ggg tgg ctg Leu Ser Leu Ile Leu Leu Lys Lys Asp His Ala Lys Gly Trp Leu 445 450 455 460	1620
40	agg ctc ttg aaa cag gac gtc cgc tcg ggg gcg gcc gcc agg ggc cgc Arg Leu Leu Lys Gln Asp Val Arg Ser Gly Ala Ala Arg Gly Arg 465 470 475	1668
45	gcg gct ctg ctc tac tca gcc gat gac tcg ggt ttc gag cgc ctg Ala Ala Leu Leu Tyr Ser Ala Asp Asp Ser Gly Phe Glu Arg Leu 480 485 490	1716
50	gtg ggc gcc ctg gcg tcg gcc ctg tgc cag ctg ccg ctg cgc gtg gcc Val Gly Ala Leu Ala Ser Ala Leu Cys Gln Leu Pro Leu Arg Val Ala 495 500 505	1764
55	gta gac ctg tgg agc cgt cgt gaa ctg agc gcg cag ggg ccc gtg gct Val Asp Leu Trp Ser Arg Arg Glu Leu Ser Ala Gln Gly Pro Val Ala 510 515 520	1812
55	tgg ttt cac gcg cag cgg cgc cag acc ctg cag gag ggc ggc gtg gtg Trp Phe His Ala Gln Arg Arg Gln Thr Leu Gln Glu Gly Gly Val Val 525 530 535 540	1860
55	gtc ttg ctc ttc tct ccc ggt gcg gtg gcg ctg tgc agc gag tgg cta Val Leu Leu Phe Ser Pro Gly Ala Val Ala Leu Cys Ser Glu Trp Leu 545 550 555	1908
55	cag gat ggg gtg tcc ggg ccc ggg gcg cac ggc ccg cac gac gcc ttc Gln Asp Gly Val Ser Gly Pro Gly Ala His Gly Pro His Asp Ala Phe 560 565 570	1956

	cgc gcc tcg ctc agc tgc gtg ccc gac ttc ttg cag ggc cg	2004
	Arg Ala Ser Leu Ser Cys Val Leu Pro Asp Phe Leu Gln Gly Arg Ala	
	575 580 585	
5	ccc ggc agc tac gtg ggg gcc tgc ttc gac agg ctg ctc cac ccg gac	2052
	Pro Gly Ser Tyr Val Gly Ala Cys Phe Asp Arg Leu Leu His Pro Asp	
	590 595 600	
10	gcc gta ccc gcc ctt ttc cgc acc gtg ccc gtc ttc aca ctg ccc tcc	2100
	Ala Val Pro Ala Leu Phe Arg Thr Val Pro Val Phe Thr Leu Pro Ser	
	605 610 615 620	
15	caa ctg cca gac ttc ctg ggg gcc ctg cag cag cct cgc gcc ccg cgt	2148
	Gln Leu Pro Asp Phe Leu Gly Ala Leu Gln Gln Pro Arg Ala Pro Arg	
	625 630 635	
20	tcc ggg cg ^g ctc caa gag aga gc ^g gag c ^a gtg tcc cg ^g gcc ctt cag	2196
	Ser Gly Arg Leu Gln Glu Arg Ala Glu Gln Val Ser Arg Ala Leu Gln	
	640 645 650	
25	cca gcc ctg gat agc tac ttc cat ccc ccg ggg acn tcc gc ^g ccg gga	2244
	Pro Ala Leu Asp Ser Tyr Phe His Pro Pro Gly Xaa Ser Ala Pro Gly	
	655 660 665	
30	cgc ggg gtg gga cca ggg gc ^g gga cct ggg gc ^g ggg gac ggg act	2289
	Arg Gly Val Gly Pro Gly Ala Gly Pro Gly Ala Gly Asp Gly Thr	
	670 675 680	
	taaataaaagg cagacgctg	2308
35	MPVPWFLLSLALGRSQWILSLERLVGPQDATHCSPGLSCLRWDSDLCLPGDIVPAPGPVLAPTHLQTELVL RCQKETDCDLCLRVAVHLAVHGHWEPEDEEKFGGAADLGVEEPRNASLQAQVVLISFQAYPTARCVILLEVQV PAALVQFGQSVGSVVYDCFEALGSEVRIWSYTOQPRYEKELNHTQQLPDCRGLEVWNSIPSCWALPWLNVSADGDGVHVLVNVSEEQHFGSLSYWNQVQGPPKPRWHKNLTGPQIITLNHTDLPVCLCIQVWPLEPDSVRTNIC	
40	PFREDPRAHQNWLWQAARLRLLTQSWLLDAPCSLPAEAALCWRAPGGDPCQPLVPPLSWENVITVDVNSSEKLQLQECLWLADSLGPLKDDVLLLETGPQDNRSLCALEPSGCTSLPSKASTRAARLGEYLLQDLQSGQCLQLWD DDLGALWACPMDKYIHKRWALVWLACLLFAAALSLILLLKDHAKGWLRLLKQDVRSGAAARGRAALLLYSA DDSGFERLGVGALASALCQLPLRVAVDLWSRRELSAQGPVAFWHAQRQTLQEGGVVVLLFSPGAVALCSEWL QDGVSGPGGAHGPHDAFRASLSCVLPDFLQGRAPGGSYVGACFDRLLPDAVPALFRTPVFTLPSQLPDFLGA LQQPRAPIRSRGLQERAEQVSRALQPALDSYFHPGTSAPGRGVGPGAGPGAGDGT.	

Reverse translation of primate, e.g., human, DCRS7 (SEQ ID NO: 9):

45	atgccngtnc c ⁿ tggtt ^y yt nytnwsnytn gcnytnggnm gnwsncartg gathytnwsn 60
	ytn ⁿ garmgny tngtnggncc ncargaygcn acncaytgyw snccnggnyt nwsntgymgn 120
50	ytn ⁿ tggyayw sngayathyt ntgyytncn ggngayathg tnccngcncc ngnccngtn 180
	ytn ⁿ gncnccna cncaytncnca racngarytn gt ⁿ tytnmgnt gycaraarga racngaytgy 240
	gayytntgyy tnmgngtngc ngtn ⁿ cayytn gcngtncayg gncaytggga rgarcnngar 300
55	gaygargara ar ^t tyggngg ngcngcngay ytn ⁿ gngtng argarcnmg naaygcnwsn 360
	ytn ⁿ cargcnc argtngtnyt nwsntt ^y car gcntayccna cngcnmgnt ygt ⁿ tytnytn 420
	gargtncarg tnccngcncc nytn ⁿ carw t ^t tyggncarw sngtnggnws ngtngtntay 480

5 gaytgyttyg argcngcnyt nggnwsngar gtnmgnatht ggwsntayac ncarrccnmgn 540
taygaraarg arytnaayca yacncarcar ytnccngayt gymnggnyt ngargtntgg 600
aaywsnathc cnwsntgytg ggcnytnccn tggynnaayg tnwsngcnga yggngayaay 660
gtncayytn gtnytnaaygt nwsngargar carcayttyg gnytnwsnyt ntaytggaaay 720
10 cargtnccarg gnccnccnaa rccnmgnntgg cayaaraaayy tnacnggncc ncarrathath 780
acnytnaayc ayacngayyt ngtncntgy ytntgyathc argtntggcc nytngarccn 840
15 gaywsngtnm gnacnaayat htgycnntty mngargayc cnmgngcnca ycaraayytn 900
tggcargcng cnmgnytnmg nytnytnacn ytncarwsnt ggytnytna ygcncntgy 960
wsnytnccng cngargcngc nytnytnytn gngcncnccng gngngaycc ntgycarccn 1020
20 ytngtncncn cnytnwsntg ggaraaygtn acngtngayg tnaaywsnws ngaraarytn 1080
carytnccarg artgyytntg ggcngaywsn ytnngnccny tnaargayga ygtnytnytn 1140
25 ytngaracnm gnggnccnca rgayaaymgn wsnytntgyg cnytngarcc nwsnggntgy 1200
acnwsnytnc cnwsnaargc nwsnacnmgn gngcnmgn tngngarta yytnytnacn 1260
gayytnacn snggnacn tgnacn tggaygayg ayytnytn gngcncnccng nytnytnytn 1320
30 tgyccnatgg ayaartayat hcayaarmgn tggcnytng tntggytngc ntgyytnytn 1380
ttygngcng cnytnwsnyt nathytnytn ytnaaraarg aycaygnna rggntggytn 1440
35 mnytnytna arcargaygt nmgnwsnggn gngcngcnm gnggnmgn gngcnytnytn 1500
ytnaywsng cngaygayws ngnntygar mnytnytn gngcnytn gwsngcnytn 1560
tgycarytnc cnytnmgn tngngtngay ytnytnytn gnmngaryt nwsngcncar 1620
40 ggnccngtng cngtggtyca ygnccarmgn mgnacnacny tncargargg ngnngtngtn 1680
gtnytnytn tywsnccnng gngtngcn ytnytnytn artggytnc rgyggngtn 1740
45 wsnggnccng gngcncaygg ncncaygay gnttymng cnwsnaytnws ntgytngtn 1800
ccngayttyy tncarggnmg ncncnccngn wsntaytng gngcntgytt ygaymgn ytnytn 1860
ytnayccng aygngtnc ncnytnytn mgnacngtnc cngtnttac nytnccnwsn 1920
50 carytnccng aytttytngg ncnytnac carccnmgn gncnmgns ngnmgn ytnytn 1980
cargarmgn cngarcargt nwsnmgngcn ytnccnccng cnytnytn carccnmgn gncnmgns 2040
55 ccnccnggna cnwsngcncc ngnmgn gngcnggn gngcnggn gngcnggn 2100
gayggnaacn 2109

Rodent, e.g., mouse, embodiment (see SEQ ID NO: 10 and 11). Predicted signal sequence indicated, but may vary by a few positions and depending upon cell type.

5	ccaaatcgaa agcacggag ctgatactgg gcctggagtc caggctcaact ggagtgggga	60		
	agcatggctg gagaggaatt ctggcccttg ctctctccca gggacacggg gctgattgtc	120		
	agcagggggcg aggggtctgc ccccccgggg gggggcagga cggggcctca ggcctgggtg	180		
10	ctgtccggca cctggaaatg cct gtg tcc tgg ttc ctg ctg tcc ttg gca	231		
	Met Pro Val Ser Trp Phe Leu Leu Ser Leu Ala			
	-20	-15	-10	
15	ctg ggc cga aac cct gtg gtc tct ctg gag aga ctg atg gag cct	279		
	Leu Gly Arg Asn Pro Val Val Val Ser Leu Glu Arg Leu Met Glu Pro			
	-5	-1	1	5
20	cag gac act gca cgc tgc tct cta ggc ctc tcc tgc cac ctc tgg gat	327		
	Gln Asp Thr Ala Arg Cys Ser Leu Gly Leu Ser Cys His Leu Trp Asp			
	10	15	20	
	ggt gac gtc ctc tgc ctg cct gga agc ctc cag tct gcc cca ggc cct	375		
	Gly Asp Val Leu Cys Leu Pro Gly Ser Leu Gln Ser Ala Pro Gly Pro			
	25	30	35	
25	gtg cta gtg cct acc cgc ctg cag acg gag ctg gtg ctg agg tgt cca	423		
	Val Leu Val Pro Thr Arg Leu Gln Thr Glu Leu Val Leu Arg Cys Pro			
	40	45	50	55
30	cag aag aca gat tgc gcc ctc tgt gtc cgt gtg gtg gtc cac ttg gcc	471		
	Gln Lys Thr Asp Cys Ala Leu Cys Val Arg Val Val Val His Leu Ala			
	60	65	70	
35	gtg cat ggg cac tgg gca gag cct gaa gaa gct gga aag tct gat tca	519		
	Val His Gly His Trp Ala Glu Pro Glu Glu Ala Gly Lys Ser Asp Ser			
	75	80	85	
40	gaa ctc cag gag tct agg aac gcc tct ctc cag gcc cag gtg gtg ctc	567		
	Glu Leu Gln Glu Ser Arg Asn Ala Ser Leu Gln Ala Gln Val Val Leu			
	90	95	100	
45	tcc ttc cag gcc tac ccc atc gcc cgc tgt gcc ctg ctg gag gtc cag	615		
	Ser Phe Gln Ala Tyr Pro Ile Ala Arg Cys Ala Leu Leu Glu Val Gln			
	105	110	115	
50	gtg ccc gct gac ctg gtg cag cct ggt cag tcc gtg ggt tct gcg gta	663		
	Val Pro Ala Asp Leu Val Gln Pro Gly Gln Ser Val Gly Ser Ala Val			
	120	125	130	135
55	ttt gac tgt ttc gag gct agt ctt ggg gct gag gta cag atc tgg tcc	711		
	Phe Asp Cys Phe Glu Ala Ser Leu Gly Ala Glu Val Gln Ile Trp Ser			
	140	145	150	
	tac acg aag ccc agg tac cag aaa gag ctc aac ctc aca cag cag ctg	759		
	Tyr Thr Lys Pro Arg Tyr Gln Lys Glu Leu Asn Leu Thr Gln Gln Leu			
	155	160	165	

	cct gac tgc agg ggt ctt gaa gtc cg	gac agc atc cag agc tgc tgg	807	
	Pro Asp Cys Arg Gly Leu Glu Val	Arg Asp Ser Ile Gln Ser Cys Trp		
	170	175	180	
5	gtc ctg ccc tgg ctc aat gtg tct aca gat ggt gac aat gtc ctt ctg	ctg	855	
	Val Leu Pro Trp Leu Asn Val Ser Thr Asp Gly Asp Asn Val Leu	Leu		
	185	190	195	
10	aca ctg gat gtc tct gag gag cag gac ttt agc ttc tta ctg tac ctg	ctg	903	
	Thr Leu Asp Val Ser Glu Glu Gln Asp Phe Ser Phe Leu Leu Tyr Leu			
	200	205	210	215
15	cgt cca gtc ccg gat gct ctc aaa tcc ttg tgg tac aaa aac ctg act	ctg	951	
	Arg Pro Val Pro Asp Ala Leu Lys Ser Leu Trp Tyr Lys Asn Leu Thr			
	220	225	230	
	gga cct cag aac att act tta aac cac aca gac ctg gtt ccc tgc ctc	ctc	999	
	Gly Pro Gln Asn Ile Thr Leu Asn His Thr Asp Leu Val Pro Cys Leu			
	235	240	245	
20	tgc att cag gtg tgg tcg cta gag cca gac tct gag agg gtc gaa ttc	ttc	1047	
	Cys Ile Gln Val Trp Ser Leu Glu Pro Asp Ser Glu Arg Val Glu Phe			
	250	255	260	
25	tgc ccc ttc ccg gaa gat ccc ggt gca cac agg aac ctc tgg cac ata	ata	1095	
	Cys Pro Phe Arg Glu Asp Pro Gly Ala His Arg Asn Leu Trp His Ile			
	265	270	275	
30	gcc agg ctg ccg gta ctg tcc cca ggg gta tgg cag cta gat gcg cct	cct	1143	
	Ala Arg Leu Arg Val Leu Ser Pro Gly Val Trp Gln Leu Asp Ala Pro			
	280	285	290	295
35	tgc tgt ctg ccg ggc aag gta aca ctg tgc tgg cag gca cca gac cag	cag	1191	
	Cys Cys Leu Pro Gly Lys Val Thr Leu Cys Trp Gln Ala Pro Asp Gln			
	300	305	310	
	agt ccc tgc cag cca ctt gtg cca cca gtg ccc cag aag aac gcc act	act	1239	
	Ser Pro Cys Gln Pro Leu Val Pro Pro Val Pro Gln Lys Asn Ala Thr			
	315	320	325	
40	gtg aat gag cca caa gat ttc cag ttg gtg gca ggc cac ccc aac ctc	ctc	1287	
	Val Asn Glu Pro Gln Asp Phe Gln Leu Val Ala Gly His Pro Asn Leu			
	330	335	340	
45	tgt gtc cag gtg agc acc tgg gag aag gtt cag ctg caa gcg tgc ttg	ttg	1335	
	Cys Val Gln Val Ser Thr Trp Glu Lys Val Gln Leu Gln Ala Cys Leu			
	345	350	355	
50	tgg gct gac tcc ttg ggg ccc ttc aag gat gat atg ctg tta gtg gag	gag	1383	
	Trp Ala Asp Ser Leu Gly Pro Phe Lys Asp Asp Met Leu Leu Val Glu			
	360	365	370	375
55	atg aaa acc ggc ctc aac aac aca tca gtc tgt gcc ttg gaa ccc agt	agt	1431	
	Met Lys Thr Gly Leu Asn Asn Thr Ser Val Cys Ala Leu Glu Pro Ser			
	380	385	390	
	ggc tgt aca cca ctg ccc agc atg gcc tcc acg aga gct gct cgc ctg	ctg	1479	
	Gly Cys Thr Pro Leu Pro Ser Met Ala Ser Thr Arg Ala Ala Arg Leu			
	395	400	405	

	gga gag gag ttg ctg caa gac ttc cga tca cac cag tgt atg cag ctg Gly Glu Leu Leu Gln Asp Phe Arg Ser His Gln Cys Met Gln Leu 410 415 420	1527
5	tgg aac gat gac aac atg gga tcg cta tgg gcc tgc ccc atg gac aag Trp Asn Asp Asp Asn Met Gly Ser Leu Trp Ala Cys Pro Met Asp Lys 425 430 435	1575
10	tac atc cac agg cgc tgg gtc cta gta tgg ctg gcc tgc cta ctc ttg Tyr Ile His Arg Arg Trp Val Leu Val Trp Leu Ala Cys Leu Leu 440 445 450 455	1623
15	gct gcg gcg ctt ttc ttc ctc ctt cta aaa aag gac cgc agg aaa Ala Ala Ala Leu Phe Phe Leu Leu Lys Lys Asp Arg Arg Lys 460 465 470	1671
20	gcg gcc cgt ggc tcc cgc acg gcc ttg ctc ctc cac tcc gcc gac gga Ala Ala Arg Gly Ser Arg Thr Ala Leu Leu Leu His Ser Ala Asp Gly 475 480 485	1719
25	gcg ggc tac gag cgc ctg gtg gga gca ctg gcg tcc gcg ttg agc cag Ala Gly Tyr Glu Arg Leu Val Gly Ala Leu Ala Ser Ala Leu Ser Gln 490 495 500	1767
30	atg cca ctg cgc gtg gcc gtg gac ctg tgg agc cgc cgc gag ctg agc Met Pro Leu Arg Val Ala Val Asp Leu Trp Ser Arg Arg Glu Leu Ser 505 510 515	1815
35	gct cac gga gcc cta gcc tgg ttc cac cac cag cga cgc cgt atc ctg Ala His Gly Ala Leu Ala Trp Phe His His Gln Arg Arg Arg Ile Leu 520 525 530 535	1863
40	cag gag ggt ggc gtg gta atc ctt ctc ttc tcg ccc gct gtc gct Gln Glu Gly Gly Val Val Ile Leu Leu Phe Ser Pro Ala Ala Val Ala 540 545 550	1911
45	cag tgt cag cag tgg ctg ctc cag aca gtg gag ccc ggg ccg cat Gln Cys Gln Gln Trp Leu Gln Leu Gln Thr Val Glu Pro Gly Pro His 555 560 565	1959
50	gac gcc ctc gcc gcc tgg ctc agc tgc gtg cta ccc gat ttc ctg caa Asp Ala Leu Ala Ala Trp Leu Ser Cys Val Leu Pro Asp Phe Leu Gln 570 575 580	2007
55	ggc cgg gcg acc ggc cgc tac gtc ggg gtc tac ttc gac ggg ctg ctg Gly Arg Ala Thr Gly Arg Tyr Val Gly Val Tyr Phe Asp Gly Leu Leu 585 590 595	2055
50	cac cca gac tct gtg ccc tcc ccg ttc cgc gtc gcc ccg ctc ttc tcc His Pro Asp Ser Val Pro Ser Pro Phe Arg Val Ala Pro Leu Phe Ser 600 605 610 615	2103
55	ctg ccc tcg cag ctg ccg gct ttc ctg gat gca ctg cag gga ggc tgc Leu Pro Ser Gln Leu Pro Ala Phe Leu Asp Ala Leu Gln Gly Gly Cys 620 625 630	2151

	tcc act tcc gcg ggg cga ccc gcg gac cgg gtc gaa cga gtc acc cag	2199
	Ser Thr Ser Ala Gly Arg Pro Ala Asp Arg Val Glu Arg Val Thr Gln	
	635	640
	645	
5	gcg ctg cgg tcc gcc ctg gac agc tgt act tct agc tcg gaa gcc cca	2247
	Ala Leu Arg Ser Ala Leu Asp Ser Cys Thr Ser Ser Glu Ala Pro	
	650	655
	660	
10	ggc tgc tgc gag gaa tgg gac ctg gga ccc tgc act aca cta gaa	2292
	Gly Cys Cys Glu Glu Trp Asp Leu Gly Pro Cys Thr Thr Leu Glu	
	665	670
	675	
	taaaaagccga tacagtattc ct	2314
15	MPVSWFLSLALGRNPPVVSLERLMEPQDTARCSLGLSCHLWDGDVLCPLPGSLQSAPGPVLVPTRLQTELVL RCPQKTDCALCVRVVVHLAVHGHWAEPPEAGKSDSELQESRNASLQAQVVLSPQAYPIARCALEVQVPADL VQPGQSVGSAVFDCFEASLGAEVQIWSYTKPRYQKELNLTQQLPDCRGLEVRDLSIQSCWVLPWLNVSTDGDN VLLTLDVSEEQDFSFLLYLRPVDPDALSKSLWYKNLTPQNIITLNHTDLVPCILCIQVWSLEPDSERVEFCPFRE DPPGAHRNLWHIARLRLVSPGVWQLDAPCCLPGKVTLCWQAPDQSPCQPLVPPVPQKNATVNEPQDFQLVAGH PNLCVQVSTWEKVQLQACLWADSLGPFKDDMLLVEMLTGLNNNTSVCALEPSGCTPLPSMASTRAARLGEELL QDFRSHQCMQLWNDDNMGSWLACPMDKYIHRRWVLVWLACLLLAAALFFFLLLKKDRRKAARGSRTALLHS ADGAGYERLVGALASALSQMPLRVAVDLWSRRELSAHGALAWFHQRRIILQEGGVVILLFSPAAVAQCQQW LQLQTVEPGPHDALAAWLSCLVPDFLQGRATGRYVGVYFDGLLHPDSVPSPFRVAPLFLSQLPAFLDALO GGCSTSAGR PADRVERVTQALRSALDSCTSSSEAPGCCEEWDLGPC TTLE.	
20		
25		

Reverse translation of rodent, e.g., mouse, DCRS7 (SEQ ID NO: 12):

30	atgccngtnw sntggtyyt nytnwsnytn gcnytnggnm gnaayccngt ngtngtnwsn 60 ytngarmgny tnatggarcc ncargayacn gcnmgnstyw snytnggnyt nwsntgycay 120 ytntggayg gngaygtnt ntgyytnccn ggnwsnytnc arwsngcncc nggnccngtn 180 ytngtnccna cnmgnytnca racngarytn gtntnmngt gyccncaraa racngaytgy 240 gcnytntgyg tnmgnngtngt ngtncayytn gcngtncayg gncaytggc ngarcnngar 300 gargcnggna arwsngayws ngarytncar garwsnmgna aygcnwsnyt ncargcncar 360 40 gtngtnytnw snttgcargc ntayccnath gcnmgnstyg cnytntngt rgtncargtn 420 ccngcngayy tngtncarcc ngncarwsn gtnggnwsng cngtnttyga ytgyttygar 480 45 gcnwsnytn gngcngargt ncarathtgg wsntayacna arccnmgnta ycaraargar 540 ytnaayytna cncarcaryt nccngaytgy mgnggnytng argtnmgngt ywsnathcar 600 50 wsntgytggg tnytnccntg gytnaaygtn wsnaacngayg gngayaaygt nytnytnacn 660 ytngaygttnw sngargarca rgayttywsn tyytntynt ayytnmgncc ngtncncngay 720 gcnytnaaw snytntggta yaaraayytn acnggnccnc araayathac nytnaaycay 780 55 acngayytng tncntgtyt ntgyathcar gtntggwsny tngarccnngt ywsngarngn 840 gtngarttyt gyccnttymg ngargayccn ggngcncaym gnaaytntg gcayathgcn 900 mgnytnmgnng tnytnwsncc ngngntntgg carytnayg cnccntgytg yytnccnggn 960
----	--

aargtnacny tntgytggca rgcnccngay carwsncnt gycarccnyt ngtncncn 1020
 5 gtnccncara araaygcac ngttaaygar ccncargayt tycarytngt ncnggnay 1080
 ccnaayytnt gygtncargt nwsnacntgg garaargtnc arytnccargc ntgyytntgg 1140
 gcnaywsny tnngnccntt yaargaygay atgytnytn gngarataa racnggnytn 1200
 10 aayaayaacnw sngtntgygc nytnigarccn wsnggntgya cnccnytncc nwsnatggcn 1260
 wsnaclmgng cngcnmgnyt ngngargar ytnytnccarg ayttymgnws ncaycartgy 1320
 15 atgcarytn ggaaygayga yaayatgggn wsnytnntgg cntgycnat ggayaartay 1380
 athcaymgm gntggtnyt ngtntggyn gcntgyytny tnytnccngc ncnytnny 1440
 ttyttyttny tnytnaaraa rgaymgnmgn aargcnm gnggnwsnmg nacngcnytn 1500
 20 ytnytnccayw sngcngaygg ncnggntay garmgnytn gngngnyt ngnwsngcn 1560
 ytnwsncara tgcnytnmg ngtngcngtn gayytntggw snmgmgnnga rytnwsngcn 1620
 25 cayggngcny tnngntggtt ycaycaycar mgnmgnmgnna thytnccarga rggngngtn 1680
 gtnathytny tnnytncc ngnccngtn gncartgyc arcartggty ncarytnca 1740
 acngtngarc cnggnccnca ygaygcnytn gngcntggy tnwsntgyt nytnccngay 1800
 30 tyytncarg gnmgnac ngnmgnntay gngngntt ayttgaygg nytnytnccay 1860
 ccngaywsng tnccnwsncc ntymgngrn gncnytnnt tywsnytncc nwsnccarytn 1920
 35 ccngcntt yngaygcnyt ncarggnggn tgywsnacnw sngcnggnmg nccngcngay 1980
 mngtngarm gngtacnca rgcnytnmgn wsngcnytn aywsntgyac nwsnwsnwsn 2040
 gngtngarm gntgytgyga rgartggay ytnngnccnt gyacnacnyt ngar 2094
 40

40 Table 3: Nucleotide and polypeptide sequences of DNAX Cytokine Receptor Subunit like
 embodiments (DCRS8). Primate, e.g., human, embodiment (see SEQ ID NO: 13 and 14).
 Predicted signal sequence indicated, but may vary by a few positions and depending upon cell
 type.

45 cccacgcntc cggccagca gcggccggcc gggcgccaga gaacggcctg gctggcgag 60
 cgcacggcc atg gcc ccg tgg ctg cag ctc tgc tcc gtc ttc ttt acg gtc 111
 Met Ala Pro Trp Leu Gln Leu Cys Ser Val Phe Phe Thr Val
 50 -15 -10 -5

aac	gcc	tgc	ctc	aac	ggc	tgc	cag	ctg	gct	gtt	gcc	gct	ggc	ggg	tcc	159
Asn	Ala	Cys	Leu	Asn	Gly	Ser	Gln	Leu	Ala	Xaa	Ala	Ala	Gly	Gly	Ser	
-1	1						5			10						

55 aac ggc cgc cng ggc gac acc tgt agc tgg ang gga gtg ggg cca 207
 Gly Arg Ala Xaa Gly Ala Asp Thr Cys Ser Trp Xaa Gly Val Gly Pro
 15 20 25 30

	gcc agc aga aac agt ggg ctg tac aac atc acc ttc aaa tat gac aat	255
	Ala Ser Arg Asn Ser Gly Leu Tyr Asn Ile Thr Phe Lys Tyr Asp Asn	
	35 40 45	
5	tgt acc acc tac ttg aat cca gtg ggg aag cat gtg att gct gac gcc	303
	Cys Thr Thr Tyr Leu Asn Pro Val Gly Lys His Val Ile Ala Asp Ala	
	50 55 60	
10	cag aat atc acc atc agc cag tat gct tgc cat gac caa gtg gca gtc	351
	Gln Asn Ile Thr Ile Ser Gln Tyr Ala Cys His Asp Gln Val Ala Val	
	65 70 75	
15	acc att ctt tgg tcc cca ggg gcc ctc ggc atc gaa ttc ctg aaa gga	399
	Thr Ile Leu Trp Ser Pro Gly Ala Leu Gly Ile Glu Phe Leu Lys Gly	
	80 85 90	
20	ttt cgg gta ata ctg gag gag ctg aag tcg gag gga aga cag ngc caa	447
	Phe Arg Val Ile Leu Glu Leu Lys Ser Glu Gly Arg Gln Xaa Gln	
	95 100 105 110	
	caa ctg att cta aag gat ccg aag cag ntc aac agt agc ttc aaa aga	495
	Gln Leu Ile Leu Lys Asp Pro Lys Gln Xaa Asn Ser Ser Phe Lys Arg	
	115 120 125	
25	act gga atg gaa tct caa cct ttn ctg aat atg aaa ttt gaa acg gat	543
	Thr Gly Met Glu Ser Gln Pro Xaa Leu Asn Met Lys Phe Glu Thr Asp	
	130 135 140	
30	tat ttc gta agg ttg tcc ttt tcc ttc att aaa aac gaa agc aat tac	591
	Tyr Phe Val Arg Leu Ser Phe Ser Phe Ile Lys Asn Glu Ser Asn Tyr	
	145 150 155	
35	cac cct ttc ttc ttt aga acc cga gcc tgt gac ctg ttg tta cag ccg	639
	His Pro Phe Phe Arg Thr Arg Ala Cys Asp Leu Leu Leu Gln Pro	
	160 165 170	
40	gac aat cta gct tgt aaa ccc ttc tgg aag cct cgg aac ctg aac atc	687
	Asp Asn Leu Ala Cys Lys Pro Phe Trp Lys Pro Arg Asn Leu Asn Ile	
	175 180 185 190	
	agc cag cat ggc tcg gac atg cag gtg tcc ttc gac cac gca ccg cac	735
	Ser Gln His Gly Ser Asp Met Gln Val Ser Phe Asp His Ala Pro His	
	195 200 205	
45	aac ttc ggc ttc cgt ttc tat ctt cac tac aag ctc aag cac gaa	783
	Asn Phe Gly Phe Arg Phe Tyr Leu His Tyr Lys Leu Lys His Glu	
	210 215 220	
50	gga cct ttc aag cga aag acc tgt aag cag gag caa act aca gag atg	831
	Gly Pro Phe Lys Arg Lys Thr Cys Lys Gln Glu Gln Thr Thr Glu Met	
	225 230 235	
55	acc agc tgc ctc ctt caa aat gtt tct cca ggg gat tat ata att gag	879
	Thr Ser Cys Leu Leu Gln Asn Val Ser Pro Gly Asp Tyr Ile Ile Glu	
	240 245 250	

	ctg gtg gat gac act aac aca aca aca aga aaa gtg atg cat tat gcc tta	927
	Ieu Val Asp Asp Thr Asn Thr Thr Arg Lys Val Met His Tyr Ala Leu	
255	260	265
260		270
5	aag cca gtg cac tcc ccg tgg gcc ggg ccc atc aga gcc gtg gcc atc	975
	Lys Pro Val His Ser Pro Trp Ala Gly Pro Ile Arg Ala Val Ala Ile	
	275	280
		285
10	aca gtg cca ctg gta gtc ata tcg gca ttc gcg acg ctc ttc act gtg	1023
	Thr Val Pro Leu Val Val Ile Ser Ala Phe Ala Thr Leu Phe Thr Val	
	290	295
		300
15	atg tgc cgc aag aag caa caa gaa aat ata tat tca cat tta gat gaa	1071
	Met Cys Arg Lys Lys Gln Gln Glu Asn Ile Tyr Ser His Leu Asp Glu	
	305	310
		315
	gag agc tct gag tct tcc aca tac act gca gca ctc cca aga gag agg	1119
	Glu Ser Ser Glu Ser Ser Thr Tyr Thr Ala Ala Leu Pro Arg Glu Arg	
	320	325
		330
20	ctc cgg ccc cgg aag gtc ttt ctc tgc tat tcc agt aaa gat ggc	1167
	Ieu Arg Pro Arg Pro Lys Val Phe Leu Cys Tyr Ser Ser Lys Asp Gly	
	335	340
		345
		350
25	cag aat cac atg aat gtc gtc cag tgt ttc gcc tac ttc ctc cag gac	1215
	Gln Asn His Met Asn Val Val Gln Cys Phe Ala Tyr Phe Leu Gln Asp	
	355	360
		365
30	ttc tgt ggc tgt gag gtg gct ctg gac ctg tgg gaa gac ttc agc ctc	1263
	Phe Cys Gly Cys Glu Val Ala Leu Asp Leu Trp Glu Asp Phe Ser Leu	
	370	375
		380
35	tgt aga gaa ggg cag aga gaa tgg gtc atc cag aag atc cac gag tcc	1311
	Cys Arg Glu Gly Gln Arg Glu Trp Val Ile Gln Lys Ile His Glu Ser	
	385	390
		395
	cag ttc atc att gtg gtt tgt tcc aaa ggt atg aag tac ttt gtg gac	1359
	Gln Phe Ile Ile Val Val Cys Ser Lys Gly Met Lys Tyr Phe Val Asp	
	400	405
		410
40	aag aag aac tac aaa cac aaa gga ggt ggc cga ggc tcg ggg aaa gga	1407
	Lys Lys Asn Tyr Lys His Lys Gly Gly Arg Gly Ser Gly Lys Gly	
	415	420
		425
		430
45	gag ctc ttc ctg gtg gcg gtg tca gcc att gcc gaa aag ctc cgc cag	1455
	Glu Leu Phe Leu Val Ala Val Ser Ala Ile Ala Glu Lys Leu Arg Gln	
	435	440
		445
50	gcc aag cag agt tcg tcc gcg gcg ctc agc aag ttt atc gcc gtc tac	1503
	Ala Lys Gln Ser Ser Ala Ala Leu Ser Lys Phe Ile Ala Val Tyr	
	450	455
		460
	ttt gat tat tcc tgc gag gga gac gtc ccc ggt atc cta gac ctg agt	1551
	Phe Asp Tyr Ser Cys Glu Gly Asp Val Pro Gly Ile Leu Asp Leu Ser	
	465	470
		475
55	acc aag tac aga ctc atg gac aat ctt cct cag ctc tgt tcc cac ctg	1599
	Thr Lys Tyr Arg Leu Met Asp Asn Leu Pro Gln Leu Cys Ser His Leu	
	480	485
		490

	cac tcc cga gac cac ggc ctc cag gag ccg ggg cag cac acg cga cag	1647
	His Ser Arg Asp His Gly Leu Gln Glu Pro Gly Gln His Thr Arg Gln	
495	500	505
5	510	
	ggc agc aga agg aac tac ttc cgg agc aag tca ggc ccg tcc cta tac	1695
	Gly Ser Arg Arg Asn Tyr Phe Arg Ser Lys Ser Gly Arg Ser Leu Tyr	
	515	520
525		
10	gtc gcc att tgc aac atg cac cag ttt att gac gag gag ccc gac tgg	1743
	Val Ala Ile Cys Asn Met His Gln Phe Ile Asp Glu Glu Pro Asp Trp	
	530	535
	540	
15	ttc gaa aag cag ttc gtt ccc ttc cat cct cct cca ctg cgc tac cgg	1791
	Phe Glu Lys Gln Phe Val Pro Phe His Pro Pro Leu Arg Tyr Arg	
	545	550
	555	
	gag cca gtc ttg gag aaa ttt gat tcg ggc ttg gtt tta aat gat gtc	1839
	Glu Pro Val Leu Glu Lys Phe Asp Ser Gly Leu Val Leu Asn Asp Val	
20	560	565
	570	
	atg tgc aaa cca ggg cct gag agt gac ttc tgc cta aag gta gag gcg	1887
	Met Cys Lys Pro Gly Pro Glu Ser Asp Phe Cys Leu Lys Val Glu Ala	
	575	580
	585	590
25	595	600
	605	
	gct gtt ctt ggg gca acc gga cca gcc gac tcc cag cac gag agt cag	1935
	Ala Val Leu Gly Ala Thr Gly Pro Ala Asp Ser Gln His Glu Ser Gln	
	595	600
	605	
30	cat ggg ggc ctg gac caa gac ggg gag gcc cgg cct gcc ctt gac ggt	1983
	His Gly Gly Leu Asp Gln Asp Gly Glu Ala Arg Pro Ala Leu Asp Gly	
	610	615
	620	
35	625	630
	635	
	agc gcc gcc ctg caa ccc ctg ctg cac acg gtg aaa gcc ggc agc ccc	2031
	Ser Ala Ala Leu Gln Pro Leu Leu His Thr Val Lys Ala Gly Ser Pro	
	625	630
	635	
	tcg gac atg ccg cgg gac tca ggc atc tat gac tcg tct gtg ccc tca	2079
	Ser Asp Met Pro Arg Asp Ser Gly Ile Tyr Asp Ser Ser Val Pro Ser	
	640	645
	650	
40	655	660
	665	670
	675	
45	680	685
	690	695
	700	
50	705	710
	715	
	gag gag gaa cct cct gcc ctt cct tcc aag ctc ctc tct tct ggg tca	2223
	Glu Glu Pro Pro Ala Leu Pro Ser Lys Leu Leu Ser Ser Gly Ser	
	690	695
	700	
	tgc aaa gca gat ctt ggt tgc cgc agc tac act gat gaa ctc cac gcg	2271
	Cys Lys Ala Asp Leu Gly Cys Arg Ser Tyr Thr Asp Glu Leu His Ala	
55	705	710
	715	
	gtc gcc cct ttg taacaaaacg aaagagtcta agcattgccat ctttagctgc	2323
	Val Ala Pro Leu	
	720	

tgcctccctc tgattcccc gctcatctcc ctgggtgcat gcccacttg gagctgaggt 2383
 5 ctcataacaag gatatttgg a gatatttggat gatatttggat gatatttggat gatatttggat 2443
 ctttaccgga tatcttgaca aactctccaa ttttctaaaa ttttctaaaa ttttctaaaa ttttctaaaa 2503
 catgtccata aggtctgaca acagcttgcc aaatttggtt agtccttgga tcagagcctg 2563
 10 ttgtggagg tagggaggaa atatgtaaag aaaaacagga agatacctgc actaatcatt 2623
 cagacttcat tgagctctgc aaactttgcc tggttgctat tggctacctt gatttgaat 2683
 15 gctttgtgaa aaaaggcact tttaacatca tagccacaga aatcaagtgc cagtctatct 2743
 ggaatccatg ttgtattgca gataatgttc tcatttattt ttg 2786

 MAPWLQLCSVFFTVNACLNGSQLAVAAGGSGRAXGADTCWSXGVGPASRNSGLYNITFKYDNCTTYLNPVGK
 20 HVIADAQNITISQYACHDQAVTILWSPGALGIEFLKGFRVILEELKSEGRQXQQLILKDPKQXNSSFKRTG
 MESQPXLNMKFETDYFVRLSFSFIKNESYHFFFFRTRACDLLLQPDNLACKPFWKPRNLNISQHGSMDQVS
 FDHAPHNFGFRFFYLYHKLKHEGPFRKTCCKQEQTTEMTSCLLQNVSPGDYIIELVDDTNTRKVMHYALKP
 VHSPWAGPIRAVAITVPLVVISAFATLFTVMCRKKQQENIYSHLDEESESSTYTAALPRERLPRPKVFLC
 25 YSSKDGQNHNMVQCFAYFLQDFCGCEVALDLWEDFSLCREGQREWVJQKIHESQFIIVVCSKGKMYFVDKK
 NYKHKGGGRGSGKGELFLVAVSAIAEKLRQAKQSSAALSKFIAVYFDYSCEGDVPGLDLSTKYRLMDNLP
 QLCSHLHSRDHGLQEPGQHTRQGSRRNYFRSKSGRSLYVAICNMHQFIDEEPDWFEKQFVPFHPPPLRYREP
 VLEKFDSDGLVLNDVMCKPGPESDFCLKVEAAVLGATGPADSQHESQHGGLDQDGGEARPALDGSALQPLLHT
 VKAGSPSDMPRDSGIYDSSVPSESLPLMEGLSTDQETSSLTESVSSSGLGEEEPALPSKLLSSGSCK
 ADLGCRSYTDELHAVAPL.

 30 Reverse translation of primate, e.g., human, DCRS8 (SEQ ID NO: 15):
 atggcnccnt ggytnraryt ntgywsngtn ttyttyacng tnaaygcntg yytnaaygg 60
 35 wsncarytnng cngtngcngc ngngngnwsn ggnmgngcnn nngngcnga yacntgywsn 120
 tggnnnggng tnngnccngc nwsnmgnaay wsnggnytnnt ayaayathac nttyaartay 180
 40 gayaaytgya cnacntayyt naayccngtn ggnaarcayg tnathgcnga ygcncaraay 240
 athacnathw sncartaygc ntgycaygay cargtngcng tnacnathyt ntggwsncn 300
 gngcnytnng gnathgar 360
 45 gngcnytnng gnathgar 360
 gngcnytnng gnathgar 360
 gngcnytnng gnathgar 360
 50 gngcnytnng gnathgar 360
 acnmngncnt gygayytnyt nytnccn gayaayytnng cngtgcncntg nttytggaa 600
 ccnmngnaayy tnaayathws ncacnccn 660
 55 ccncayaayt tyggnttymg nttyttytay ytnccn 720
 ttyaarmgna aracntgyaa rcargarcar acnacnccn 780
 aaygtnwsnc cngngayta yathathgar ytnccn 840

5 gtnatgcayt aycnytnaa rccngtncay wsncntggg cngnccnat hmgnngcngtn 900
 gcnathacng tnccnytngt ngttnathwsn gcnttygcna cnytnattyac ngttnatgtgy 960
 10 mgnaaraarc arcargaraa yathtaywsn cayytnayg argarwsnws ngarwsnwsn 1020
 acntayacng cngcnytncc nmngngarmgn ytnmgnccnm gnccnaargt nttyytntgy 1080
 15 taywsnwsna argaygnca raaycayatg aaygtngtnc artgyttygc ntayttyytn 1140
 cargayttyt gyggntgyga rgtngcnytn gayytnntggg argayttyws nytnytgmgn 1200
 20 garggnccarm gngartgggt nathcaraar athcaygarw sncarttyat hathgtngtn 1260
 tgywsnaarg gnatgaarta yttygtngay aaraaraayt ayaarcayaa rggnggnggn 1320
 25 mgnggnwsng gnaarggnng rytnntyytn gtngcngtnw sngcnathgc ngaraarytn 1380
 30 mgncargcna arcarwsnws nwsngcngcn ytnwsnaart tyathgcngt ntayttygay 1440
 taywsntgyg arggngaygt nccnggnath ytngayytnw snacnaarta ymgnytnatg 1500
 35 gayaaytnc cncarytnig ywsncayytn caywsnmngng aycayggnyt ncargarccn 1560
 ggnccarcaya cnmgncargg nwsnmgnmgn aaytayttym gnwsnaarws ngnmgnwsn 1620
 40 ytntaygtng cnathtgyaa yatgcaycar ttyathgayg argarccnga ytggttygar 1680
 aarcarttyg tnccnttyca yccnccnccn ytnmgnayt gngarccngt nytnyaraar 1740
 ttygaywsng gnytngtnyt naaygaygtn atgtgyaarc cnggnccnga rwsngayt 1800
 45 tgyytnaarg tngargcngc ngtnytnngn gnacnggncc cngcngayws ncarcaygar 1860
 wsncarcayg gnggnytnga ycargayggn gargcnmgnc cngcnytna yggnwsgn 1920
 50 cnytnarc cnytnytnca yacngtnaar gcnngnwsnc cnwsngayat gcnmgnay 1980
 wsnggnath aygaywsnws ngtnccnwsn wsngarytnw snytnccnyt natggarggn 2040
 ytnwsnacng aycaracnga racnwsnwsn ytnacngarw sngtnwsnws nwsnwsngn 2100
 55 ytnngngarg argarccncc ngcnytnccn wsnaarytny tnwsnwsngg nwsntgyaar 2160
 gcnngaytng gntgymgnws ntayacngay garytnayg cngtngcncc nytn 2214

50 Table 4: Nucleotide and polypeptide sequences of DNAX Cytokine Receptor Subunit like
 embodiments (DCRS9). Primate, e.g., human, embodiment (see SEQ ID NO: 16 and 17).
 Predicted signal sequence indicated, but may vary by a few positions and depending upon cell
 type.

55 atg ggg agc tcc aga ctg gca gcc ctg ctc ctg cct ctc ctc ctc ata 48
 Met Gly Ser Ser Arg Leu Ala Ala Leu Leu Pro Leu Leu Ile
 -20 -15 -10

1	gtc atc gac ctc tct gac tct gct ggg att ggc ttt cgc cac ctg ccc	96
	Val Ile Asp Leu Ser Asp Ser Ala Gly Ile Gly Phe Arg His Leu Pro	
-5	-1 1	5
5	cac tgg aac acc cgc tgt cct ctg gcc tcc cac acg gaa gtt ctg cct	144
	His Trp Asn Thr Arg Cys Pro Leu Ala Ser His Thr Glu Val Leu Pro	
10	15 20	25
10	ata tcc ctt gcc gca cct ggt ggg ccc tct tct cca caa agc ctt ggt	192
	Ile Ser Leu Ala Ala Pro Gly Pro Ser Ser Pro Gln Ser Leu Gly	
	30 35 40	
15	gtg tgc gag tct ggc act gtt ccc gct gtt tgt gcc agc atc tgc tgt	240
	Val Cys Glu Ser Gly Thr Val Pro Ala Val Cys Ala Ser Ile Cys Cys	
	45 50 55	
20	cag gtg gct cag gtc ttc aac ggg gcc tct tcc acc tcc tgg tgc aga	288
	Gln Val Ala Gln Val Phe Asn Gly Ala Ser Ser Thr Ser Trp Cys Arg	
	60 65 70	
20	aat cca aaa agt ctt cca cat tca agt tct ata gga gac aca aga tgc	336
	Asn Pro Lys Ser Leu Pro His Ser Ser Ser Ile Gly Asp Thr Arg Cys	
	75 80 85	
25	cag cac ctg ctc aga gga agc tgc tgc ctc gtc gtc acc tct ctg aga	384
	Gln His Leu Leu Arg Gly Ser Cys Cys Leu Val Val Thr Cys Leu Arg	
	90 95 100 105	
30	aga gcc atc aca ttt cca tcc cct ccc cag aca tct ccc aca agg gac	432
	Arg Ala Ile Thr Phe Pro Ser Pro Pro Gln Thr Ser Pro Thr Arg Asp	
	110 115 120	
35	ttc gct cta aaa gga ccc aac ctt cgg atc cag aga cat ggg aaa gtc	480
	Phe Ala Leu Lys Gly Pro Asn Leu Arg Ile Gln Arg His Gly Lys Val	
	125 130 135	
40	ttc cca gat tgg act cac aaa ggc atg gag gtg ggc act ggg tac aac	528
	Phe Pro Asp Trp Thr His Lys Gly Met Glu Val Gly Thr Gly Tyr Asn	
	140 145 150	
45	agg aga tgg gtt cag ctg agt ggt gga ccc gag ttc tcc ttt gat ttg	576
	Arg Arg Trp Val Gln Leu Ser Gly Gly Pro Glu Phe Ser Phe Asp Leu	
	155 160 165	
50	ctg cct gag gcc cgg gct att cgg gtg acc ata tct tca ggc cct gag	624
	Leu Pro Glu Ala Arg Ala Ile Arg Val Thr Ile Ser Ser Gly Pro Glu	
	170 175 180 185	
55	gtc agc gtg cgt ctt tgt cac cag tgg gca ctg gag tgt gaa gag ctg	672
	Val Ser Val Arg Leu Cys His Gln Trp Ala Leu Glu Cys Glu Leu	
	190 195 200	
55	agc agt ccc tat gat gtc cag aaa att gtg tct ggg ggc cac act gta	720
	Ser Ser Pro Tyr Asp Val Gln Lys Ile Val Ser Gly Gly His Thr Val	
	205 210 215	
55	gag ctg cct tat gaa ttc ctt ctg ccc tgt ctg tgc ata gag gca tcc	768
	Glu Leu Pro Tyr Glu Phe Leu Leu Pro Cys Leu Cys Ile Glu Ala Ser	
	220 225 230	

	tac ctg caa gag gac act gtg agg cgc aaa aaa tgt ccc ttc cag agc	816		
	Tyr Leu Gln Glu Asp Thr Val Arg Arg Lys Lys Cys Pro Phe Gln Ser			
235	240	245		
5	tgg cca gaa gcc tat ggc tcg gac ttc tgg aag tca gtg cac ttc act	864		
	Trp Pro Glu Ala Tyr Gly Ser Asp Phe Trp Lys Ser Val His Phe Thr			
250	255	260	265	
10	gac tac agc cag cac act cag atg gtc atg gcc ctg aca ctc cgc tgc	912		
	Asp Tyr Ser Gln His Thr Gln Met Val Met Ala Leu Thr Leu Arg Cys			
	270	275	280	
15	cca ctg aag ctg gaa gct gcc ctc tgc cag agg cac gac tgg cat acc	960		
	Pro Leu Lys Leu Glu Ala Ala Leu Cys Gln Arg His Asp Trp His Thr			
	285	290	295	
20	ctt tgc aaa gac ctc ccg aat gcc acg gct cga gag tca gat ggg tgg	1008		
	Leu Cys Lys Asp Leu Pro Asn Ala Thr Ala Arg Glu Ser Asp Gly Trp			
	300	305	310	
	tat gtt ttg gag aag gtg gac ctg cac ccc cag ctc tgc ttc aag gta	1056		
	Tyr Val Leu Glu Lys Val Asp Leu His Pro Gln Leu Cys Phe Lys Val			
	315	320	325	
25	caa cca tgg ttc tct ttt gga aac agc agc cat gtt gaa tgc ccc cac	1104		
	Gln Pro Trp Phe Ser Phe Gly Asn Ser Ser His Val Glu Cys Pro His			
	330	335	340	345
30	cag act ggg tct ctc aca tcc tgg aat gta agc atg gat acc caa gcc	1152		
	Gln Thr Gly Ser Leu Thr Ser Trp Asn Val Ser Met Asp Thr Gln Ala			
	350	355	360	
35	cag cag ctg att ctt cac ttc tcc tca aga atg cat gcc acc ttc agt	1200		
	Gln Gln Leu Ile Leu His Phe Ser Ser Arg Met His Ala Thr Phe Ser			
	365	370	375	
40	gct gcc tgg agc ctc cca ggc ttg ggg cag gac act ttg gtg ccc ccc	1248		
	Ala Ala Trp Ser Leu Pro Gly Leu Gly Gln Asp Thr Leu Val Pro Pro			
	380	385	390	
	gtg tac act gtc agc cag gtg tgg cgg tca gat gtc cag ttt gcc tgg	1296		
	Val Tyr Thr Val Ser Gln Val Trp Arg Ser Asp Val Gln Phe Ala Trp			
	395	400	405	
45	aag cac ctc ttg tgt cca gat gtc tct tac aga cac ctc ggg ctc ttg	1344		
	Lys His Leu Leu Cys Pro Asp Val Ser Tyr Arg His Leu Gly Leu Leu			
	410	415	420	425
50	atc ctg gca ctg ctg gcc ctc ctc acc cta ctg ggt gtt gtt ctg gcc	1392		
	Ile Leu Ala Leu Leu Ala Leu Leu Thr Leu Leu Gly Val Val Leu Ala			
	430	435	440	
55	ctc acc tgc cgg cgc cca cag tca ggc ccg ggc cca gcg cgg cca gtg	1440		
	Leu Thr Cys Arg Arg Pro Gln Ser Gly Pro Gly Pro Ala Arg Pro Val			
	445	450	455	

	ctc ctc ctg cac gcg gac tcg gag gcg cag cgg cgc ctg gtg gga	1488
	Leu Leu Leu His Ala Ala Asp Ser Glu Ala Gln Arg Arg Leu Val Gly	
	460 465 470	
5	gcg ctg gct gaa ctg cta cgg gca gcg ctg ggc ggc ggg cgc gac gtg	1536
	Ala Leu Ala Glu Leu Leu Arg Ala Ala Leu Gly Gly Arg Asp Val	
	475 480 485	
10	atc gtg gac ctg tgg gag ggg agg cac gtg gcg cgc gtg ggc cgg ctg	1584
	Ile Val Asp Leu Trp Glu Gly Arg His Val Ala Arg Val Gly Pro Leu	
	490 495 500 505	
15	ccg tgg ctc tgg gcg gcg cgg acg cgc gta gcg cgg gag cag ggc act	1632
	Pro Trp Leu Trp Ala Ala Arg Thr Arg Val Ala Arg Glu Gln Gly Thr	
	510 515 520	
20	gtg ctg ctg tgg agc ggc gcc gac ctt cgc cgg gtc agc ggc ccc	1680
	Val Leu Leu Leu Trp Ser Gly Ala Asp Leu Arg Pro Val Ser Gly Pro	
	525 530 535	
25	gac ccc cgc gcc gcg ccc ctg ctc gcc ctg ctc cac gct gcc ccc cgc	1728
	Asp Pro Arg Ala Ala Pro Leu Leu Ala Leu Leu His Ala Ala Pro Arg	
	540 545 550	
30	ccg ctg ctg ctc gct tac ttc agt cgc ctc tgc gcc aag ggc gac	1776
	Pro Leu Leu Leu Ala Tyr Phe Ser Arg Leu Cys Ala Lys Gly Asp	
	555 560 565	
35	atc ccc ccg ccg ctg cgc gcc ctg ccg cgc tac cgc ctg ctg cgc gac	1824
	Ile Pro Pro Pro Leu Arg Ala Leu Pro Arg Tyr Arg Leu Leu Arg Asp	
	570 575 580 585	
40	ctg ccg cgt ctg cgg gcg ctg gac gcg cgg cct ttc gca gag gcc	1872
	Leu Pro Arg Leu Leu Arg Ala Leu Asp Ala Arg Pro Phe Ala Glu Ala	
	590 595 600	
45	acc agc tgg ggc cgc ctt ggg gcg cgg cag cgc agg cag agc cgc cta	1920
	Thr Ser Trp Gly Arg Leu Gly Ala Arg Gln Arg Arg Gln Ser Arg Leu	
	605 610 615	
50	gag ctg tgc agc cgg ctc gaa cga gag gcc gcc cga ctt gca gac cta	1968
	Glu Leu Cys Ser Arg Leu Glu Arg Glu Ala Ala Arg Leu Ala Asp Leu	
	620 625 630	
55	ggt tgagcagagc tccaccgcag tccccgggtgt ctgcggccgc t	2012
	Gly	
	MGSSRLAALLLPLLIVIDLSAIGIGFRHLPHWNTRCPPLASHTEVLPISLAAPGGPSSPQSLGVCESGTVPAVCASICCQVAQVFNGASSTS	
	WCNPKSLPHSSSIGDTRCQHLLRGSCCLVVTCLRAITFPSPPPQTSPTRDFALKGPNLRIQRHGKVFPDWTHKGMEVGTGYNRRWVQLSGGPEFSFDLPEARAIRVTI	
	SSGPEVSVRLCHQWALECEELSSPYDVQKIVSGGHTVELPYEFLLPCLCIEASYLQEDTVRRKKCPFQSWPEAYGSDFWKSVHFTDYSQHTQMVMALTLRCPLKLEAACQRHDWHTLCKDLPNATARESDGWYVLEKVDLHPQLCFKVQPWFSFGN	
	SSHVECPHQGTGSLTSWNVSMDTQAAQQLILHFSSRMHATFSAAWSLPGLGQDTLVPPVYTVSQVWRSDVQFAWKHLLCPDVSYRHLGLLILALLLTLGVVIALTCRRPQSGPGPARPVLLLHAADSEAQRRLVGAELLA	
	ALGGGRDVIVDLWEGRHVARVGPLWLWAARTVAREQGTVLLWSGADLRPVSGPDPRAAPLLALLHAAPRPLLAYFSRLCAKGDIPPLRALPRYRLLRDLPRLLRALDARPFAEATSWGRLGARQRQRQSRL	
	ELCSRLEREAARLADLG.	

Reverse translation of primate, e.g., human, DCRS9 (SEQ ID NO: 18):

5 atgggnwsnw snmgnytngc ngcnytnytn ytnccnytnytn tnytnathgt nathgayytn 60
wsngaywsng cnggnathgg nttymgncay ytnccncayt ggaayacnmg ntgyccnytn 120
gcnwsncaya cngargtnyt nccnathwsn ytngcngcnc cnggnggncc nwsnwsncn 180
10 carwsnytng gngtntgyga rwsnggnacn gtncncngcng tntgygcnws nathtgytgy 240
cargtngcnc argtnattyaa yggngcnwsn wsnaclnwsnt ggtgymgnaa yccnaarwsn 300
15 ytnccncayw snwsnwsnat hggngayacn mgntgycarc ayytnytnmg nggnwsntgy 360
tgyytngtng tnacntgyyt nmgnmgngcn athacnttgc cnwsnccncc ncaracnwsn 420
ccnaclnmgng ayttgcnyt naarggnccn aayytnmgnthcarmgnca yggnaargtn 480
20 ttyccngayt ggacncayaa rggnatggar gtnggnacng gntayaaymg nmgnmtggtn 540
carytnwsng gnggnccnga rttywsntty gayytnytn cngargcnmg ngcnathmgn 600
25 gtnacnathw snwsnngncc ngargtnwsn gtngnytnt gycaycartg ggcnytngar 660
tgygargary tnwsnwsncc ntaygaygtn caraarathg tnwsnngnng ncayacngtn 720
garytnccnt aygarttyyt nytnccntgy ytntgyathg argcnwsnta yytncargar 780
30 gayacngtnm gnmgnaraaa rtgycntty carwsntggc cngargcna yggnsngay 840
ttytggaarw sngtncaytt yacngaytay wsncarcaya cncaracggt natggcnytn 900
35 acnytnmgn gycnytnaa rytnargcn gcnytnyngc armgncayga ytggcayacn 960
ytntgyaarg ayytnccnaa ygnacngcn mgngarwsng ayggntggta ygtnytnngar 1020
aargtngayy tncayccnca rytnyngtty aargtncarc cntggtyws nttyggnaay 1080
40 wsnsncayg tngartgycc ncaycaracn ggnwsnytna cnwsntggaa ygtnwsnatg 1140
gayacncarg cncarcaryt nathytnay ttywsnwsnm gnatgcaygc nacnttywsn 1200
45 gcnngcntggw snytnccngg nytnyngcayt gnatgcaygc nacnttywsn 1260
wsncargtnt ggmgnwsnga ygtncartty gnatgcaygc ayytnytn gnatgcaygc 1320
wsntaymgnc ayytnyngt nytnyngt gnatgcaygc nacnttywsn 1380
50 gtngtntyng cnytnacntg ymgnmgncn carwsnngncc cnggnccngc nmgnccngtn 1440
ytnytnyngt aycngcngna ywsngargcn carmgmgnayt gnatgcaygc nacnttywsn 1500
ytnytnmgn gngcnytngg nggnngnmgn gaygtntnayt gnatgcaygc nacnttywsn 1560
55 caygtngcnm gngtnggncc nytnccntgg ytnyngt gnatgcaygc nacnttywsn 1620
garcargna cngtntyngt nytnyngt gnatgcaygc nacnttywsn 1680

gayccnmgnng cngcnccnyt nytnngcnytn ytnccaygcnng cnccnmgncc nytnytnytn 1740
 ytngcntayt tywsnmgnyt ntgygcnaar ggngayathc cnccnccnyt nmgnngcnytn 1800
 5 ccnmgnaytaym gnytnytnmg ngayytnccn mgnytnytnm gngcnytna ygnmgnccn 1860
 ttygcngarg cnachwsntg gggnmgnytg ggnngcnmgnc armgmgnca rwsnmgnytg 1920
 garytnagyw snmgnytna rmgngargcn gcnmgnytng cngayytnng n 1971
 10

Rodent, e.g., mouse, embodiment (see SEQ ID NO: 19 and 20). Predicted signal sequence indicated, but may vary by a few positions and depending upon cell type.

15 cagctccggg ccagggccctg ctgcccctttt gcagacagga aagacatggt ctctgcgccc 60
 tgatcctaca gaagctc atg ggg agc ccc aga ctg gca gcc ttg ctc ctg 110
 Met Gly Ser Pro Arg Leu Ala Ala Leu Leu
 -20 -15

20 tct ctc ccg cta ctg ctc atc ggc ctc gct gtg tct gct cgg gtt gcc 158
 Ser Leu Pro Leu Leu Leu Ile Gly Leu Ala Val Ser Ala Arg Val Ala
 -10 -5 -1 1

25 tgc ccc tgc ctg cgg agt tgg acc agc cac tgt ctc ctg gcc tac cgt 206
 Cys Pro Cys Leu Arg Ser Trp Thr Ser His Cys Leu Leu Ala Tyr Arg
 5 10 15 20

30 gtg gat aaa cgt ttt gct ggc ctt cag tgg ggc tgg ttc cct ctc ttg 254
 Val Asp Lys Arg Phe Ala Gly Leu Gln Trp Gly Trp Phe Pro Leu Leu
 25 30 35

35 gtg agg aaa tct aaa agt cct cct aaa ttt gaa gac tat tgg agg cac 302
 Val Arg Lys Ser Lys Ser Pro Pro Lys Phe Glu Asp Tyr Trp Arg His
 40 45 50

40 agg aca cca gca tcc ttc cag agg aag ctg cta ggc agc cct tcc ctg 350
 Arg Thr Pro Ala Ser Phe Gln Arg Lys Leu Leu Gly Ser Pro Ser Leu
 55 60 65

45 tct gag gaa agc cat cga att tcc atc ccc tcc tca gcc atc tcc cac 398
 Ser Glu Glu Ser His Arg Ile Ser Ile Pro Ser Ser Ala Ile Ser His
 70 75 80

50 aga ggc caa cgc acc aaa agg gcc cag cct tca gct gca gaa gga aga 446
 Arg Gly Gln Arg Thr Lys Arg Ala Gln Pro Ser Ala Ala Glu Gly Arg
 85 90 95 100

55 gaa cat ctc cct gaa gca ggg tca caa aag tgt gga gga cct gaa ttc 494
 Glu His Leu Pro Glu Ala Gly Ser Gln Lys Cys Gly Gly Pro Glu Phe
 105 110 115

tcc ttt gat ttg ctg ccc gag gtg cag gct gtt cgg gtg act att cct 542
 Ser Phe Asp Leu Leu Pro Glu Val Gln Ala Val Arg Val Thr Ile Pro
 120 125 130

135	gca ggc ccc aag gca cgt gtg cgc ctt tgt tat cag tgg gca ctg gaa	590
	Ala Gly Pro Lys Ala Arg Val Arg Leu Cys Tyr Gln Trp Ala Leu Glu	
140		145
5	tgt gaa gac ttg agt agc cct ttt gat acc cag aaa att gtg tct gga	638
	Cys Glu Asp Leu Ser Ser Pro Phe Asp Thr Gln Lys Ile Val Ser Gly	
150		160
10	ggg cac act gta gac ctg cct tat gaa ttc ctt ctg ccc tgc atg tgc	686
	Gly His Thr Val Asp Leu Pro Tyr Glu Phe Leu Leu Pro Cys Met Cys	
165		175
15	ata gag gcc tcc tac ctg caa gag gac act gtg agg cgc aaa agt gtc	734
	Ile Glu Ala Ser Tyr Leu Gln Glu Asp Thr Val Arg Arg Lys Ser Val	
	185	190
	195	
20	cct tcc aga gct ggc ctg aag ctt atg gct cag act tct ggc agt caa	782
	Pro Ser Arg Ala Gly Leu Lys Leu Met Ala Gln Thr Ser Gly Ser Gln	
	200	205
	210	
25	WRHRTPASFQRKLLGSPSLSEESHRISIPSSAISHRGQRTKRAQPSAAEGREHLPEAGSQKCGGPEFSFDLL PEVQAVRVTIIPAGPKARVRLCYQWALECEDLSSPFDTQKIVSGGHTVDLPYEFLLPCMCIEASYLQEDTVRR KSVPSRAGLKLMAQTSGSQYASLTAS	
30	Reverse translation of rodent, e.g., mouse, DCRS9 (SEQ ID NO: 21):	
	atgggnwsnc cnmgnytngc ncnytnytn ytnwsnytnc cnytnytnytn nathggnytn	60
35	gcngtnwsng cnmgngtngc ntgycntgy ytnmgnwsnt ggacnwsnca ytgyytnytn	120
	gcntaymng tngayaarmg nttygcnggn ytnkartggg gntggattycc nytnytnytn	180
40	mgnaarwsna arwsnccncc naarttygar gaytaytggm gncaymgnac nccngcnwsn	240
	ttycarmgna arytnytnng nwsnccnwsn ytnwsnngarg arwsncaymg nathwsnath	300
	ccnwsnwsng cnathwsnca ymgnggncar mgnacnaarm gngcncarcc nwsngcngcn	360
45	garggnmng arcayytnc ngargcnggn wsncaraart gyggnggncc ngarttywsn	420
	ttygayytny tncncngartt ncargcngtn mngtnacna thccngcngg nccnaargcn	480
50	mngtnmgn yntgytayca rtggcnytn gartgygarg ayytnwsnws nccnttygay	540
	acncaraara thgtnwsgg ngnccayacn gtngayytn cntaygartt yytnytnccn	600
	tgyatgtgya thgargcnws ntayytnear gargayacng tnmgmgnaa rwsngtncn	660
55	wsnmngcng gnytnaaryt natggcncar acnwsnngnw sncartaygc nwsnytnacn	720
	acngcnwsn	729

Table 5: Nucleotide and polypeptide sequences of DNAX Cytokine Receptor Subunit like embodiments (DCRS10). Primate, e.g., human, embodiment (see SEQ ID NO: 22 and 23).

5	ttttgagcag aggcttccta ggctccgtag aaatttgcac acagcttcca cttctgttt 60	
	cagagcctgt tcttctactt acctggggcc ggagaagggtg gaggagacg agaagccgcc 120	
10	gagagccgac taccctccgg gcccagtctg tctgtccgtg gtggatctaa gaaaactaga 179	
	atg aac cga agc att cct gtt gat gaa tca gaa cca tac cca 227	
	Met Asn Arg Ser Ile Pro Val Glu Val Asp Glu Ser Glu Pro Tyr Pro	
	1 5 10 15	
15	agt cag ttg ctg aaa cca atc cca gaa tat tcc ccg gaa gag gaa tca 275	
	Ser Gln Leu Leu Lys Pro Ile Pro Glu Tyr Ser Pro Glu Glu Ser	
	20 25 30	
20	gaa cca cct gct cca aat ata agg aac atg gca ccc aac agc ttg tct 323	
	Glu Pro Pro Ala Pro Asn Ile Arg Asn Met Ala Pro Asn Ser Leu Ser	
	35 40 45	
25	gca ccc aca atg ctt cac aat tcc tcc gga gac ttt tct caa gct cac 371	
	Ala Pro Thr Met Leu His Asn Ser Ser Gly Asp Phe Ser Gln Ala His	
	50 55 60	
30	tca acc ctg aaa ctt gca aat cac cag cgg cct gta tcc cgg cag gtc 419	
	Ser Thr Leu Lys Leu Ala Asn His Gln Arg Pro Val Ser Arg Gln Val	
	65 70 75 80	
35	acc tgc ctg cgc act caa gtt ctg gag gac agt gaa gac agt ttc tgc 467	
	Thr Cys Leu Arg Thr Gln Val Leu Glu Asp Ser Glu Asp Ser Phe Cys	
	85 90 95	
40	agg aga cac cca ggc ctg ggc aaa gct ttc cct tct ggg tgc tct gca 515	
	Arg Arg His Pro Gly Leu Gly Lys Ala Phe Pro Ser Gly Cys Ser Ala	
	100 105 110	
45	gtc agc gag cct gcg tct gag tct gtg gtt gga gcc ctc cct gca gag 563	
	Val Ser Glu Pro Ala Ser Glu Ser Val Val Gly Ala Leu Pro Ala Glu	
	115 120 125	
50	cat cag ttt tca ttt atg gaa aaa cgt aat caa tgg ctg gta tct cag 611	
	His Gln Phe Ser Phe Met Glu Lys Arg Asn Gln Trp Leu Val Ser Gln	
	130 135 140	
55	ctt tca gcg gct tct cct gac act ggc cat gac tca gac aaa tca gac 659	
	Leu Ser Ala Ala Ser Pro Asp Thr Gly His Asp Ser Asp Lys Ser Asp	
	145 150 155 160	
60	caa agt tta cct aat gcc tca gca gac tcc ttg ggc ggt agc cag gag 707	
	Gln Ser Leu Pro Asn Ala Ser Ala Asp Ser Leu Gly Gly Ser Gln Glu	
	165 170 175	
65	atg gtg caa cgg ccc cag cct cac agg aac cga gca ggc ctg gat ctg 755	
	Met Val Gln Arg Pro Gln Pro His Arg Asn Arg Ala Gly Leu Asp Leu	
	180 185 190	

	cca acc ata gac acg gga tat gat tcc cag ccc cag gat gtc ctg ggc	803
	Pro Thr Ile Asp Thr Gly Tyr Asp Ser Gln Pro Gln Asp Val Leu Gly	
	195 200 205	
5	atc agg cag ctg gaa agg ccc ctg ccc ctc acc tcc gtg tgt tac ccc	851
	Ile Arg Gln Leu Glu Arg Pro Leu Pro Leu Thr Ser Val Cys Tyr Pro	
	210 215 220	
10	cag gac ctc ccc aga cct ctc agg tcc agg gag ttc cct cag ttt gaa	899
	Gln Asp Leu Pro Arg Pro Leu Arg Ser Arg Glu Phe Pro Gln Phe Glu	
	225 230 235 240	
15	cct cag agg tat cca gca tgt gca cag atg ctg cct ccc aat ctt tcc	947
	Pro Gln Arg Tyr Pro Ala Cys Ala Gln Met Leu Pro Pro Asn Leu Ser	
	245 250 255	
20	cca cat gct cca tgg aac tat cat tac cat tgt cct gga agt ccc gat	995
	Pro His Ala Pro Trp Asn Tyr His Tyr His Cys Pro Gly Ser Pro Asp	
	260 265 270	
25	cac cag gtg cca tat ggc cat gac tac cct cga gca gcc tac cag caa	1043
	His Gln Val Pro Tyr Gly His Asp Tyr Pro Arg Ala Ala Tyr Gln Gln	
	275 280 285	
30	gtg atc cag ccg gct ctg cct ggg cag ccc ctg cct gga gcc agt gtg	1091
	Val Ile Gln Pro Ala Leu Pro Gly Gln Pro Leu Pro Gly Ala Ser Val	
	290 295 300	
35	aga ggc ctg cac cct gtg cag aag gtt atc ctg aat tat ccc agc ccc	1139
	Arg Gly Leu His Pro Val Gln Lys Val Ile Leu Asn Tyr Pro Ser Pro	
	305 310 315 320	
40	tgg gac caa gaa gag agg ccc gca cag aga gac tgc tcc ttt ccg ggg	1187
	Trp Asp Gln Glu Glu Arg Pro Ala Gln Arg Asp Cys Ser Phe Pro Gly	
	325 330 335	
45	ctt cca agg cac cag gac cag cca cat cac cag cca cct aat aga gct	1235
	Leu Pro Arg His Gln Asp Gln Pro His His Gln Pro Pro Asn Arg Ala	
	340 345 350	
50	ggg gct cct ggg gag tcc ttg gag tgc cct gca gag ctg aga cca cag	1283
	Gly Ala Pro Gly Glu Ser Leu Glu Cys Pro Ala Glu Leu Arg Pro Gln	
	355 360 365	
55	gtt ccc cag cct ccg tcc cca gct gct gtg cct aga ccc cct agc aac	1331
	Val Pro Gln Pro Pro Ser Pro Ala Ala Val Pro Arg Pro Pro Ser Asn	
	370 375 380	
	cct cca gcc aga gga act cta aaa aca agc aat ttg cca gaa gaa ttg	1379
	Pro Pro Ala Arg Gly Thr Leu Lys Thr Ser Asn Leu Pro Glu Glu Leu	
	385 390 395 400	
	cgg aaa gtc ttt atc act tat tcg atg gac aca gct atg gag gtg gtg	1427
	Arg Lys Val Phe Ile Thr Tyr Ser Met Asp Thr Ala Met Glu Val Val	
	405 410 415	
	aaa ttc gtg aac ttt ttg ttg gta aat ggc ttc caa act gca att gac	1475
	Lys Phe Val Asn Phe Leu Leu Val Asn Gly Phe Gln Thr Ala Ile Asp	
	420 425 430	

	ata ttt gag gat aga atc cga ggc att gat atc att aaa tgg atg gag	1523
	Ile Phe Glu Asp Arg Ile Arg Gly Ile Asp Ile Ile Lys Trp Met Glu	
	435 440 445	
5	cgc tac ctt agg gat aag acc gtg atg ata atc gta gca atc agc ccc	1571
	Arg Tyr Leu Arg Asp Lys Thr Val Met Ile Ile Val Ala Ile Ser Pro	
	450 455 460	
10	aaa tac aaa cag gac gtg gaa ggc gct gag tcg cag ctg gac gag gat	1619
	Lys Tyr Lys Gln Asp Val Glu Gly Ala Glu Ser Gln Leu Asp Glu Asp	
	465 470 475 480	
15	gag cat ggc tta cat act aag tac att cat cga atg atg cag att gag	1667
	Glu His Gly Leu His Thr Lys Tyr Ile His Arg Met Met Gln Ile Glu	
	485 490 495	
20	ttc ata aaa caa gga agc atg aat ttc aga ttc atc cct gtg ctc ttc	1715
	Phe Ile Lys Gln Gly Ser Met Asn Phe Arg Phe Ile Pro Val Leu Phe	
	500 505 510	
	cca aat gct aag aag gag cat gtg ccc acc tgg ctt cag aac act cat	1763
	Pro Asn Ala Lys Lys Glu His Val Pro Thr Trp Leu Gln Asn Thr His	
	515 520 525	
25	gtc tac agc tgg ccc aag aat aaa aaa aac atc ctg ctg cgg ctg ctg	1811
	Val Tyr Ser Trp Pro Lys Asn Lys Lys Asn Ile Leu Leu Arg Leu Leu	
	530 535 540	
30	aga gag gaa gag tat gtg gct cct cca cgg ggg cct ctg ccc acc ctt	1859
	Arg Glu Glu Glu Tyr Val Ala Pro Pro Arg Gly Pro Leu Pro Thr Leu	
	545 550 555 560	
35	cag gtg gtt ccc ttg tgacaccgtt catccccaga tcactgaggc caggccatgt	1914
	Gln Val Val Pro Leu	
	565	
	ttggggcctt gttctgacag cattctggct gaggctggtc ggtgcactc ctggctggtt	1974
40	tttttctgtt cctcccccag aggccctctg gcccccaagga aacctgttgt gcagagctct	2034
	tccccggaga cctccacaca ccctggcttt gaagtggagt ctgtgactgc tctgcattct	2094
	ctgcttttaa aaaaaccatt gcaggtgcca gtgtccata tggccctcct gacagtttga	2154
45	tgtgtccatt ctgggcctct cagtgttttag caagtagata atgtaaggga tggcagca	2214
	aatggaaatg actacaaaca ctctcctata aatcacttca ggctactttt atgagttac	2274
50	cagatgctt gttatcctca gaccaaactg attcatgtac aaataataaa atgtttactc	2334
	ttttgtaaaaa aaaaaaaaaa aaaaaaaaaaag aaaaaaaaaaaa aaa	2377

5 MNRSIPVEVDESEPYPSQLLKPIPEYSPEEESEPPAPNIRNMAPNSLSAPTMHNSSGDFSQAHSTLKLАНH
QRPVSRQVTCLRTQVLEDSEDSFCCRHPGLKAFPSGCSAVSEPAESVVGALPAEHQFSFMEKRNQWLVSQ
LSAASPDGTGHDSKSDQSLPNASADSLGGSQEMVQRQPQHNRAGLDLPTIDTGYDSQPQDVGLGIQLERPL
PLTSVCYCPQDLPRLRSREFPQFEPQRYPACAOQLPPLSPHAPWNHYHCPGSPDHQVYGHDYPRAYQQ
VIQPALPGQPLPGASVRGLHPVQKVILNYPSPWDQEERPAQRDCSFPGPLRHQDQPHHQPPNRAGAPGESILE
CPAELRPQVPPQPPSPAAVPRPPSNPPARGTLKTSNLPEELRKVFITYSMDTAMEVVKFVNLLVNGFQTAID
IFEDRIRGIDIJKWMERYLRDKTVMIIVAIISPKYKQDVEGAESQLDEDEHGLHTKYIHRMMQIEFIKQGSMN
FRFIPVLFPPNAKKEHVPPTWLQNTHVYSWPKNKKNILLRLLREEEYVAPPRGPLPTLQVVPL

10 Reverse translation of primate, e.g., human, DCRS10 (SEQ ID NO: 24):

15 atgaaymgnw snathccngt ngargtngay garwsngarc cntayccnws ncarytnytn 60
aarccnathc cngartayws nccngargar garwsngarc cnccngcncc naayathmgn 120
aayatggcnc cnaaywsnyt nwsngcnccn acnatgytnc ayaaywsnws nggngaytty 180
20 wsncargcnc aywsnacnyt naarytngcn aaycaycarm gnccngtnws nmgnrcargtn 240
acntgyytnm gnacncargt nytngargay wsngargayw snttytgymg nmgnccayccn 300
25 ggnytnggma argcnattycc nwsnggntgy wsngcngtnw sngarccngc nwsngarwsn 360
gtngtnggng cnytnccngc ngarcaycar ttywsnttta tggaraarmg naaycartgg 420
ytngtnwsnc arytnwsngc ngcnwsnccn gayacnggnc ayygawsnnga yaarwsngay 480
30 carwsnytnc cnaaygcnws ngcngaywsn ytnggnggnw sncargarat ggtncarmgn 540
ccncarccnc aymgnaaymg ngcnggnytn gayytnccna cnathgayac nggnctaygay 600
35 wsncarccnc argaygtnyt nggnathmgn carytngarm gnccnytncc nytnacnwsn 660
gtntgytayc cncargayyt ncnmgnccn ytnmgnwsnm gngarttycc ncartygar 720
ccncarmgnt ayccngcntg ygcncaratg ytnccnccna ayytnwsncc ncaygcnccn 780
40 tggaaaytayc aytaycaytg yccnggnwsn ccngaycayc argtncnta yggncaygay 840
tayccnmng cngcntayca rcargtnath carccngcny tnccnggnca rccnytnccn 900
45 ggnngcnwsng tnmgnggnyt ncayccngtn caraargtna thytnaayta yccnwsnccn 960
tggaycarg argarmgncc ngcncarmgn gaytgywsnt tyccnggnyt ncnmgnccay 1020
cargaycanc cncaycayca rccnccnaay mgngcnggng cnccnggng rwsnytngar 1080
50 tgyccngcng arytnmgncc ncargtnccn carccnccnw sncngcngc ngtncnmgn 1140
ccnccnwsna ayccnccngc nmgnnggnacn ytnaaraknw snaaytncc ngargarytn 1200
55 mgnaargtnt tyathacnta ywsnatggay acngcnatgg argtngtnaa rttygttnaay 1260
ttyytnytn tnaayggntt ycaracngcn athgayath tyygargaymg nathmgngn 1320
athgayatha thaartggat ggarmgntay ytnmgnngaya aracngtnat gathathgtn 1380

gcnathwsnc cnaartayaa rcargaygtn garggngcng arwsncaryt ngaygargay 1440
 garcayggny tncayacnaa rtayathcay mgnatgatgc arathgartt yathaarcar 1500
 5 ggnwsnatga ayttymgntt yathccngtn ytnnttyccna aygcnaaraa rgarcaygtn. 1560
 ccnacntggy tncaraayac ncaygtntay wsntggccna araayaaraa raayathytn 1620
 ytnmgnytny tnmgnargaa rgartaygtn gcncnccnm gngnccnyt nccnacnytn 1680
 10 cargtngtnc cnytn 1695

Rodent, e.g., mouse, embodiment (see SEQ ID NO: 25 and 26).

15	cag gac ctc cct ggg cct ctg agg tcc agg gaa ttg cca cct cag ttt Gln Asp Leu Pro Gly Pro Leu Arg Ser Arg Glu Leu Pro Pro Gln Phe 1 5 10 15	48
20	gaa ctt gag agg tat cca atg aac gcc cag ctg ctg ccg ccc cat cct Glu Leu Glu Arg Tyr Pro Met Asn Ala Gln Leu Leu Pro Pro His Pro 20 25 30	96
25	tcc cca cag gcc cca tgg aac tgt cag tac tac tgc ccc gga ggg ccc Ser Pro Gln Ala Pro Trp Asn Cys Gln Tyr Tyr Cys Pro Gly Gly Pro 35 40 45	144
30	tac cac cac cag gtg cca cac ggc cat ggc tac cct cca gca gca gcc Tyr His His Gln Val Pro His Gly His Gly Tyr Pro Pro Ala Ala Ala 50 55 60	192
35	tac cag caa gta ctc cag cct gct ctg cct ggg cag gtc ctt cct ggg Tyr Gln Gln Val Leu Gln Pro Ala Leu Pro Gly Gln Val Leu Pro Gly 65 70 75 80	240
40	gca agg gca aga ggc cca cgc cct gtg cag aag gtc atc ctg aat gac Ala Arg Ala Arg Gly Pro Arg Pro Val Gln Lys Val Ile Leu Asn Asp 85 90 95	288
45	tcc agc ccc caa gac caa gaa gag aga cct gca cag aga gac ttc tct Ser Ser Pro Gln Asp Gln Glu Glu Arg Pro Ala Gln Arg Asp Phe Ser 100 105 110	336
50	ttc ccg agg ctc ccg agg gac cag ctc tac cgc cca cca tct aat gga Phe Pro Arg Leu Pro Arg Asp Gln Leu Tyr Arg Pro Pro Ser Asn Gly 115 120 125	384
55	gtg gaa gcc cct gag gag tcc ttg gac ctt cct gca gag ctg aga cca Val Glu Ala Pro Glu Glu Ser Leu Asp Leu Pro Ala Glu Leu Arg Pro 130 135 140	432
60	cat ggt ccc cag gct cca tcc cta gct gcc gtg cct aga ccc cct agc His Gly Pro Gln Ala Pro Ser Leu Ala Ala Val Pro Arg Pro Pro Ser 145 150 155 160	480
65	aac ccc tta gcc cga gga act cta aga acc agc aat ttg cca gaa gaa Asn Pro Leu Ala Arg Gly Thr Leu Arg Thr Ser Asn Leu Pro Glu Glu 165 170 175	528

180	185	190	576		
5	195	200	205	624	
10	210	215	220	672	
15	225	230	235	240	720
20	245	250	255	768	
25	260	265	270	816	
30	275	280	285	864	
35	290	295	300	912	
40	305	310	315	320	960
45	325	330	335	1008	
50	340			1056	
55	ctgttctcac agcattttc tagcgagct ggctggggc acccaggccc tggAACACCT 1116				
	cttctacaga gtcctctgtc tcctgagtc gagttgtcct cgctggcctt ccagagcttc 1176				
	agtgcctgga tgctgcagg gacagaaaca aacatctatg accacaaaaa ctctcatcac 1236				
	ttcagctact ttatgagtc ggtcagatgc tctgtgcct tagaccagtc taaatcatgc 1296				
	tcaaataata aaatgattat tctttgt 1323				
	QDLPGPLRSRELPPQFELERYPMNAQLLPPHPSPQAPWNQCYYCPGGPYHHQVPHGHGYPAAAYQQVLQPA				
	LPGQVLPGARARGPRPVQKVILNDSSPQDQEERPAQRDFSFPRPLPRDQLYRPPSNGVEAPEESDLPAELRP				
	HGPQAPS LAAPRPPSNPLARGTLRTSNLPEELRKVFITYSMDTAMEVVKFVNLLVNGFQTAIDIFEDRIR				
	GIDIIKWMERYLRDKTVMIIVAIISPKYKQDVEGAESQLDEDEHGLHTKYIHRMMQIEFISQGSMNFRFIPVL				
	FPNAKKEHVPTWLQNTHVYSWPKNKKNILLRLLREEEYVAPPRGPLPTLQVVPL.				

Reverse translation of rodent, e.g., mouse, DCRS6 (SEQ ID NO: 27):

5 cargayytnc cnggnccnyt nmgnwsnmgn garytnccnc cncarttyga rytngar mgn 60
tayccnatga aygcncaryt nytnccncn cayccnwsnc cncargcncc ntggaaytgy 120
cartaytayt gyccnggngg ncncntaycay caycargtnc cncaygnca yggntayccn 180
ccngcngcng cntaycarca rgtnytn car ccngcnytnc cnggnca cnggnca cnggnca 240
gcnmgngcnm gnggnccnmg ncncngtnc aargtnathy tnaaygayws nwsnccncar 300
15 gaycargarg armgnccngc ncarmgngay ttywsntt yc cnmgnytncc nmgnaycar 360
ytntaymgnc cnccnwsnaa yggngtngar cnccnngarg arwsnytna yytnccngcn 420
garytnmgnc cncaygncc ncargcnccn wsnytngcng cngtnccnmg ncncnwnsn 480
20 aayccnytng cnmgnggnac nytnmgnacn wsnaayytnc cngargaryt nmgnargtn 540
ttyathacnt aywsnatgga yacngcnatg gargtngtna arttygtnaa yttiytnytn 600
25 gtnaayggnt tycaracngc nathgayath ttygargaym gnathmgngg nathgayath 660
athaartgga tggarmgnta yytnmgnay aaracngtta tgathathgt ngcnathwsn 720
ccnaartaya arcargaygt ngarggnccn garwsncary tngaygarga ygarca ygn 780
30 ytnccayacna artayathca ymgnatgatg carathgart tyathwsnca rggmwsnatg 840
aayttymgnt tyathccngt nytnattyccn aaygcnaara argarcaygt ncncnacntgg 900
35 ytnccaraaya cncaygtnta ywsntggccn aaraayaara araayathyt nytnmgnytn 960
ytnmgnarg argartaygt ncncnccn mgnngnccny tncncnacnyt ncargtngt 1020
40 ccnyt 1026

Table 6: Alignment of the cytoplasmic portions of various cytokine receptor subunits. The IL-17R_Hu (SEQ ID NO: 28) is GenBank AAB99730.1(U58917), gi|7657230; the IL-17R_Mu (SEQ ID NO: 29) is GenBank AAC52357.1(U31993), gi|6680411; the IL-17R_Ce (SEQ ID NO: 30) is GenBank AAA811100.1(U39997), gi|1353171; and the DCRS6_Ce (SEQ ID NO: 31) is EMBCAA90543.1(Z50177), gi|7503597. Of particular interest are motifs or features corresponding, in primate DCRS8 to: R/K at 339/340; D/E at 348/349; alpha helical regions from H353-Q365, C370-S381, E389-H396, K410-D414, and D485-H495; beta sheet regions correspond to F400-V404 and F458-Y462; E at 431; E/D at 442/443; Y/F at 458; D/E at 468-470; Y/F at 481; and Q/R/F at 523.

	DCRS7_Mu	RTALLLHSADG-AGYERLVGALASALSQMP---LRVAVDLWSRRE-LSAHGALAWFHHQR
	DCRS7_Hu	RAALLLYSADD-SGFERLVGALASALCQLP---LRVAVDLWSRRE-LSAQGPVAWFHAQR
5	IL-17R_Hu	RKVWIIYSADH-PLYVDVVLKFAQFLITACG--TEVALDLLEEQA-ISEAGVMTWGRQK
	IL-17R_Mu	RKVWIVYVSADH-PLYVEVVLKFAQFLITACG--TEVALDLLEEQQ-ISEVGVMTWVSRQK
	DCRS10	RKVFITYSMD---TAMEVVKFVNFLVNG---FQTAIDIFEDR--IRGIDIICKWMERYL
	DCRS10_Mu	RKVFITYSMD---TAMEVVKFVNFLVNG---FQTAIDIFEDR--IRGIDIICKWMERYL
	DCRS9_Hu	RPVLLLHAADS-EAQRRRLVGALAEELLRAALGGGRDVIVDLWEGRH-VARVGPLPWLAAR
10	DCRS8_Hu	PKVFLCYSSKDGQNHNMVQFCAYFLQDFCG--CEVALDLWEDFS-LCREGQREWVIQKI
	IL-17R_Ce	VKVMIVYADDN-DLHTDCVKKLVENLRNCAS--CDPVFDLEKLI--TAEIVPSRWLVDQI
	DCRS6_Hu	IKVLVVPSEI--CFHHTICYTETFLQNHCR--SEVILEKWWQKK-IAEMGPVQWLATQK
	DCRS6_Ce	FKVMLVCPEVS-GRDEDFMMRIADALKKSNN--NKVVCDRWFEDSKNAEENMLHWVYEQT
		* . . . *
15	DCRS7_Mu	RRILQEGGVVILLFSPAAVAQCQ---QWLQLQTVEP---GP---HDALAAWLSCVLPDFL
	DCRS7_Hu	RQTLQEGGVVLLFSPGAVALCS---EWLQDGVSQPGAHGP---HDAFRASLSCVLPDFL
	IL-17R_Hu	QEMVESNSKIIIVLCSRGRKTRAKWQALLRGAP-VRLRCDHGKPV-GDLFTAAMNMILPDFK
	IL-17R_Mu	QEMVESNSKIIILCSRGTQAKWKAIGLWAEPAVQLRCDHWKPA-GDLFTAAMNMILPDFK
20	DCRS10	R---DKTVMIIIVAIISPKYKQDVE---GAESQLDED-EHGL---HTKYIHRM-MQIEFIK
	DCRS10_Mu	R---DKTVMIIIVAIISPKYKQDVE---GAESQLDED-EHGL---HTKYIHRM-MQIEFIS
	DCRS9_Hu	TRVAREQGTVLLLWSGADLRPVS---GPDP-RAAP-----LLA---LLHAAP
	DCRS8_Hu	H---ESQFIIVVCSKGMYFVD---KKNYKHGGGRGSGK---GELFLVAVSAIAEKL
	IL-17R_Ce	S---SLKKFIIVVSDCAEKILD---TEASETHQLVQARP---FADLFGPAMEMIIRDAT
25	DCRS6_Hu	K---AADKVFVLLSNDVNSVCD---GTCGKSEGPSENS---QDLFPLAFNLPCSDLR
	DCRS6_Ce	K---IAEKIIIVFHSAYYHPRCG---IYDVINNFPCTDPR---LAHIALT---PEAQ
		* . . . *
	DCRS7_Mu	QGRATGR---YVGVYFDGLLHPDSVPSPFRVAPLFLSP-SQLPAFLDALQ--GGCSTS
	DCRS7_Hu	QGRAPGS---YVGACFDRLLHPDAVPALFRTPVFTLP-SQLPDFLGLALQ--QPRAPR
30	IL-17R_Hu	RPACFGT---YVVCYFSEVSCDGVDPDLFGAAPRYPLM-DRFEEVYFRIQ--DLEMFQ
	IL-17R_Mu	RPACFGT---YVVCYFSGICSERDVDPDLFNITSRYPLM-DRFEEVYFRIQ--DLEMFE
	DCRS10	QGSMNFR---FIPVLFPNAK-KEHVPWLQNTTHVYSWP-KNKKNILLRLL-REEEYVA
	DCRS10_Mu	QGSMNFR---FIPVLFPNAK-KEHVPWLQNTTHVYSWP-KNKKNILLRLL-REEEYVA
	DCRS9_Hu	RPL---LLLAYFSRLCAKGDIPIPPRLRALPRYRLL-RDLPRLRALD--ARPFAE
35	DCRS8_Hu	QAKQSSAALSKFIAVYFDYSC-EGDVPGLLDLSTKYRLM-DNLPQLCSHLHSRDHGLQE
	IL-17R_Ce	HNFPEAR---KKYAVVRFNYS---HVPPNLAILNLPTFIPQFAQLTAFLHN-VEHTER
	DCRS6_Hu	SQIHLHK---YVVVVFREID-TKDDYNALSVCPKYHLM-KDATAFCAELL--HVKQQ
	DCRS6_Ce	RSVPKEV---EYVLPRDQKLL-EDAFDITIADPLVIDIPIEDVAIPENVP--IHHESC
40	DCRS7_Mu	AGRPADRVER---VT---QALRSALDSCTS-----
	DCRS7_Hu	SGRLQERAEQ---VS---RALQPALDSYFHPP-----
	IL-17R_Hu	PGRMHRVGELSGDNYLRS---PGGRQLRAALDRFRDWQVRCPDW
	IL-17R_Mu	PGRMHVRELTDNYLQS---PSGRQLKEAVLRFQEWQTQCPDW
45	DCRS10	P---PRGPL-----PTLQVVP-----
	DCRS10_Mu	P---PRGPL-----PTLQVVP-----
	DCRS9_Hu	ATSWGRLGAR-----QRRQSRLELCSR-----
	DCRS8_Hu	PGQYTRQGSR---RNYFRSKGRSLYVAICNMHQFIDEEDPW
	IL-17R_Ce	ANVTQNISEA---Q---IHEWNLCASRMMSSFFVRNPNW
50	DCRS6_Hu	VS---AGKR-----SQACHDGCCSL-----
	DCRS6_Ce	DSIDSRRNNSK-----THSTDGVSSLSS---NS--

Table 6 shows comparison of the available sequences of primate, rodent, and various other receptors. Various conserved residues are aligned and indicated. The structurally homologous cytoplasmic domains most likely signal through pathways like IL-17, e.g., through NFkB. Similar to IL-1 signalling, it is likely that these receptors are involved in innate immunity and/or development.

As used herein, the term DCRS shall be used to describe a protein comprising amino acid sequences shown in Tables 1-5, respectively. In many cases, a substantial fragment thereof will be functionally or structurally equivalent, including, e.g., an extracellular or intracellular domain. The invention also includes a protein variation of the respective DCRS allele whose sequence is provided, e.g., a mutein or soluble extracellular construct. Typically, such agonists or antagonists will exhibit less than about 10% sequence differences, and thus will often have between 1 and 11 substitutions, e.g., 2-, 3-, 5-, 7-fold, and others. It also encompasses allelic and other variants, e.g., natural polymorphic, of the protein described. Typically, it will bind to its corresponding biological ligand, perhaps in a dimerized state with an alpha receptor subunit, with high affinity, e.g., at least about 100 nM, usually better than about 30 nM, preferably better than about 10 nM, and more preferably at better than about 3 nM. The term shall also be used herein to refer to related naturally occurring forms, e.g., alleles, polymorphic variants, and metabolic variants of the mammalian protein. Preferred forms of the receptor complexes will bind the appropriate ligand with an affinity and selectivity appropriate for a ligand-receptor interaction.

This invention also encompasses combinations of proteins or peptides having substantial amino acid sequence identity with an amino acid sequence in Tables 1-5. It will include sequence variants with relatively few residue substitutions, e.g., preferably less than about 3-5.

A substantial polypeptide "fragment", or "segment", is a stretch of amino acid residues of at least about 8 amino acids, generally at least 10 amino acids, more generally at least 12 amino acids, often at least 14 amino acids, more often at least 16 amino acids, typically at least 18 amino acids, more typically at least 20 amino acids, usually at least 22 amino acids, more usually at least 24 amino acids, preferably at least 26 amino acids, more preferably at least 28 amino acids, and, in particularly preferred embodiments, at least about 30 or more amino acids. This includes, e.g., 40, 50, 60, 70, 85, 100, 115, 130, 150, and other lengths. Sequences of segments of different proteins can be compared to one another over appropriate length stretches, typically between conserved motifs. In many situations, fragments may exhibit functional properties of the intact subunits, e.g., the extracellular domain of the transmembrane receptor may retain the ligand binding features, and may be used to prepare a soluble receptor-like complex.

Amino acid sequence homology, or sequence identity, is determined by optimizing residue matches. In some comparisons, gaps may be introduced, as required. See, e.g., Needleham, et al., (1970) *J. Mol. Biol.* 48:443-453; Sankoff, et al., (1983) chapter one in Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison, Addison-Wesley, Reading, MA; and software packages from IntelliGenetics, Mountain View, CA; and the University of Wisconsin Genetics Computer Group (GCG), Madison, WI; each of which is incorporated herein by reference. This changes when considering conservative substitutions as matches. Conservative substitutions typically include substitutions within the following groups: glycine, 5 alanine; valine, isoleucine, leucine; aspartic acid, glutamic acid; asparagine, glutamine; serine, threonine; lysine, arginine; and phenylalanine, tyrosine. Homologous amino acid sequences are intended to include natural allelic and interspecies variations in the 10 cytokine sequence. Typical homologous proteins or peptides will have from 50-100% homology (if gaps can be introduced), to 60-100% homology (if conservative 15 substitutions are included) with an amino acid sequence segment of, e.g., Table 3 or 4. Homology measures will be at least about 70%, generally at least 76%, more generally at least 81%, often at least 85%, more often at least 88%, typically at least 90%, more typically at least 92%, usually at least 94%, more usually at least 95%, preferably at least 96%, and more preferably at least 97%, and in particularly preferred embodiments, at 20 least 98% or more. The degree of homology will vary with the length of the compared segments. Homologous proteins or peptides, such as the allelic variants, will share most biological activities with the embodiments described in Tables 1-5.

As used herein, the term "biological activity" is used to describe, without limitation, effects on inflammatory responses, innate immunity, and/or morphogenic 25 development by cytokine-like ligands. For example, these receptors should mediate phosphatase or phosphorylase activities, which activities are easily measured by standard procedures. See, e.g., Hardie, et al. (eds. 1995) The Protein Kinase FactBook vols. I and II, Academic Press, San Diego, CA; Hanks, et al. (1991) Meth. Enzymol. 200:38-62; Hunter, et al. (1992) Cell 70:375-388; Lewin (1990) Cell 61:743-752; Pines, et al. (1991) 30 Cold Spring Harbor Symp. Quant. Biol. 56:449-463; and Parker, et al. (1993) Nature 363:736-738. The receptors, or portions thereof, may be useful as phosphate labeling enzymes to label general or specific substrates. The subunits may also be functional immunogens to elicit recognizing antibodies, or antigens capable of binding antibodies.

The terms ligand, agonist, antagonist, and analog of, e.g., a DCRS8 or DCRS9, 35 include molecules that modulate the characteristic cellular responses to cytokine ligand proteins, as well as molecules possessing the more standard structural binding competition features of ligand-receptor interactions, e.g., where the receptor is a natural

receptor or an antibody. The cellular responses likely are typically mediated through receptor tyrosine kinase pathways.

Also, a ligand is a molecule which serves either as a natural ligand to which said receptor, or an analog thereof, binds, or a molecule which is a functional analog of the natural ligand. The functional analog may be a ligand with structural modifications, or may be a wholly unrelated molecule which has a molecular shape which interacts with the appropriate ligand binding determinants. The ligands may serve as agonists or antagonists, see, e.g., Goodman, et al. (eds. 1990) Goodman & Gilman's: The Pharmacological Bases of Therapeutics, Pergamon Press, New York.

Rational drug design may also be based upon structural studies of the molecular shapes of a receptor or antibody and other effectors or ligands. See, e.g., Herz, et al. (1997) J. Recept. Signal Transduct. Res. 17:671-776; and Chaiken, et al. (1996) Trends Biotechnol. 14:369-375. Effectors may be other proteins which mediate other functions in response to ligand binding, or other proteins which normally interact with the receptor. One means for determining which sites interact with specific other proteins is a physical structure determination, e.g., x-ray crystallography or 2 dimensional NMR techniques. These will provide guidance as to which amino acid residues form molecular contact regions. For a detailed description of protein structural determination, see, e.g., Blundell and Johnson (1976) Protein Crystallography, Academic Press, New York, which is hereby incorporated herein by reference.

II. Activities

The cytokine receptor-like proteins will have a number of different biological activities, e.g., modulating cell proliferation, or in phosphate metabolism, being added to or removed from specific substrates, typically proteins. Such will generally result in modulation of an inflammatory function, other innate immunity response, or a morphological effect. The subunit will probably have a specific low affinity binding to the ligand.

The DCRS8 and DCRS9 have characteristic motifs of receptors signaling through the JAK pathway. See, e.g., Ihle, et al. (1997) Stem Cells 15(suppl. 1):105-111; Silvennoinen, et al. (1997) APMIS 105:497-509; Levy (1997) Cytokine Growth Factor Review 8:81-90; Winston and Hunter (1996) Current Biol. 6:668-671; Barrett (1996) Baillieres Clin. Gastroenterol. 10:1-15; and Briscoe, et al. (1996) Philos. Trans. R. Soc. Lond. B. Biol. Sci. 351:167-171.

The biological activities of the cytokine receptor subunits will be related to addition or removal of phosphate moieties to substrates, typically in a specific manner, but occasionally in a non specific manner. Substrates may be identified, or conditions for

enzymatic activity may be assayed by standard methods, e.g., as described in Hardie, et al. (eds. 1995) The Protein Kinase FactBook vols. I and II, Academic Press, San Diego, CA; Hanks, et al. (1991) Meth. Enzymol. 200:38-62; Hunter, et al. (1992) Cell 70:375-388; Lewin (1990) Cell 61:743-752; Pines, et al. (1991) Cold Spring Harbor Symp. Quant. Biol. 56:449-463; and Parker, et al. (1993) Nature 363:736-738.

5 The receptor subunits may combine to form functional complexes, e.g., which may be useful for binding ligand or preparing antibodies. These will have substantial diagnostic uses, including detection or quantitation.

10 III. Nucleic Acids

This invention contemplates use of isolated nucleic acid or fragments, e.g., which encode these or closely related proteins, or fragments thereof, e.g., to encode a corresponding polypeptide, preferably one which is biologically active. In addition, this invention covers isolated or recombinant DNAs which encode combinations of such 15 proteins or polypeptides having characteristic sequences, e.g., of the DCRSs. Typically, the nucleic acid is capable of hybridizing, under appropriate conditions, with a nucleic acid sequence segment shown in Tables 1-5, but preferably not with a corresponding segment of other receptors described in Table 6. Said biologically active protein or polypeptide can be a full length protein, or fragment, and will typically have a segment of 20 amino acid sequence highly homologous, e.g., exhibiting significant stretches of identity, to one shown in Tables 1-5. Further, this invention covers the use of isolated or recombinant nucleic acid, or fragments thereof, which encode proteins having fragments which are equivalent to the DCRS8 or DCRS9 proteins. The isolated nucleic acids can have the respective regulatory sequences in the 5' and 3' flanks, e.g., promoters, 25 enhancers, poly-A addition signals, and others from the natural gene. Combinations, as described, are also provided.

An "isolated" nucleic acid is a nucleic acid, e.g., an RNA, DNA, or a mixed polymer, which is substantially pure, e.g., separated from other components which naturally accompany a native sequence, such as ribosomes, polymerases, and flanking 30 genomic sequences from the originating species. The term embraces a nucleic acid sequence which has been removed from its naturally occurring environment, and includes recombinant or cloned DNA isolates, which are thereby distinguishable from naturally occurring compositions, and chemically synthesized analogs or analogs biologically synthesized by heterologous systems. A substantially pure molecule includes isolated 35 forms of the molecule, either completely or substantially pure.

An isolated nucleic acid will generally be a homogeneous composition of molecules, but will, in some embodiments, contain heterogeneity, preferably minor. This

heterogeneity is typically found at the polymer ends or portions not critical to a desired biological function or activity.

A "recombinant" nucleic acid is typically defined either by its method of production or its structure. In reference to its method of production, e.g., a product made by a process, the process is use of recombinant nucleic acid techniques, e.g., involving human intervention in the nucleotide sequence. Typically this intervention involves in vitro manipulation, although under certain circumstances it may involve more classical animal breeding techniques. Alternatively, it can be a nucleic acid made by generating a sequence comprising fusion of two fragments which are not naturally contiguous to each other, but is meant to exclude products of nature, e.g., naturally occurring mutants as found in their natural state. Thus, for example, products made by transforming cells with an unnaturally occurring vector is encompassed, as are nucleic acids comprising sequence derived using any synthetic oligonucleotide process. Such a process is often done to replace a codon with a redundant codon encoding the same or a conservative amino acid, while typically introducing or removing a restriction enzyme sequence recognition site. Alternatively, the process is performed to join together nucleic acid segments of desired functions to generate a single genetic entity comprising a desired combination of functions not found in the commonly available natural forms, e.g., encoding a fusion protein. Restriction enzyme recognition sites are often the target of such artificial manipulations, but other site specific targets, e.g., promoters, DNA replication sites, regulation sequences, control sequences, or other useful features may be incorporated by design. A similar concept is intended for a recombinant, e.g., fusion, polypeptide. This will include a dimeric repeat. Specifically included are synthetic nucleic acids which, by genetic code redundancy, encode equivalent polypeptides to fragments of DCRSs and fusions of sequences from various different related molecules, e.g., other cytokine receptor family members.

A "fragment" in a nucleic acid context is a contiguous segment of at least about 17 nucleotides, generally at least 21 nucleotides, more generally at least 25 nucleotides, ordinarily at least 30 nucleotides, more ordinarily at least 35 nucleotides, often at least 39 nucleotides, more often at least 45 nucleotides, typically at least 50 nucleotides, more typically at least 55 nucleotides, usually at least 60 nucleotides, more usually at least 66 nucleotides, preferably at least 72 nucleotides, more preferably at least 79 nucleotides, and in particularly preferred embodiments will be at least 85 or more nucleotides. Typically, fragments of different genetic sequences can be compared to one another over appropriate length stretches, particularly defined segments such as the domains described below.

A nucleic acid which codes for the DCRS8 or DCRS9 will be particularly useful to identify genes, mRNA, and cDNA species which code for itself or closely related proteins, as well as DNAs which code for polymorphic, allelic, or other genetic variants, e.g., from different individuals or related species. Preferred probes for such screens are those regions of the interleukin which are conserved between different polymorphic variants or which contain nucleotides which lack specificity, and will preferably be full length or nearly so. In other situations, polymorphic variant specific sequences will be more useful.

This invention further covers recombinant nucleic acid molecules and fragments having a nucleic acid sequence identical to or highly homologous to the isolated DNA set forth herein. In particular, the sequences will often be operably linked to DNA segments which control transcription, translation, and DNA replication. These additional segments typically assist in expression of the desired nucleic acid segment.

Homologous, or highly identical, nucleic acid sequences, when compared to one another, e.g., DCRS8 sequences, exhibit significant similarity. The standards for homology in nucleic acids are either measures for homology generally used in the art by sequence comparison or based upon hybridization conditions. Comparative hybridization conditions are described in greater detail below.

Substantial identity in the nucleic acid sequence comparison context means either that the segments, or their complementary strands, when compared, are identical when optimally aligned, with appropriate nucleotide insertions or deletions, in at least about 60% of the nucleotides, generally at least 66%, ordinarily at least 71%, often at least 76%, more often at least 80%, usually at least 84%, more usually at least 88%, typically at least 91%, more typically at least about 93%, preferably at least about 95%, more preferably at least about 96 to 98% or more, and in particular embodiments, as high as about 99% or more of the nucleotides, including, e.g., segments encoding structural domains such as the segments described below. Alternatively, substantial identity will exist when the segments will hybridize under selective hybridization conditions, to a strand or its complement, typically using a sequence derived from Tables 1-5. Typically, selective hybridization will occur when there is at least about 55% homology over a stretch of at least about 14 nucleotides, more typically at least about 65%, preferably at least about 75%, and more preferably at least about 90%. See, Kanehisa (1984) Nucl. Acids Res. 12:203-213, which is incorporated herein by reference. The length of homology comparison, as described, may be over longer stretches, and in certain embodiments will be over a stretch of at least about 17 nucleotides, generally at least about 20 nucleotides, ordinarily at least about 24 nucleotides, usually at least about 28 nucleotides, typically at least about 32 nucleotides, more typically at least about 40 nucleotides, preferably at least

about 50 nucleotides, and more preferably at least about 75 to 100 or more nucleotides. This includes, e.g., 125, 150, 175, 200, 225, 246, 273, and other lengths.

Stringent conditions, in referring to homology in the hybridization context, will be stringent combined conditions of salt, temperature, organic solvents, and other parameters 5 typically controlled in hybridization reactions. Stringent temperature conditions will usually include temperatures in excess of about 30 C, more usually in excess of about 37 C, typically in excess of about 45 C, more typically in excess of about 55 C, preferably in excess of about 65 C, and more preferably in excess of about 70 C. Stringent salt conditions will ordinarily be less than about 500 mM, usually less than about 400 mM, 10 more usually less than about 300 mM, typically less than about 200 mM, preferably less than about 100 mM, and more preferably less than about 80 mM, even down to less than about 20 mM. However, the combination of parameters is much more important than the measure of any single parameter. See, e.g., Wetmur and Davidson (1968) J. Mol. Biol. 31:349-370, which is hereby incorporated herein by reference.

15 The isolated DNA can be readily modified by nucleotide substitutions, nucleotide deletions, nucleotide insertions, and inversions of nucleotide stretches. These modifications result in novel DNA sequences which encode this protein or its derivatives. These modified sequences can be used to produce mutant proteins (muteins) or to enhance the expression of variant species. Enhanced expression may involve gene 20 amplification, increased transcription, increased translation, and other mechanisms. Such mutant DCRS8-like derivatives include predetermined or site-specific mutations of the protein or its fragments, including silent mutations using genetic code degeneracy. "Mutant DCRS8" as used herein encompasses a polypeptide otherwise falling within the homology definition of the DCRS8 as set forth above, but having an amino acid sequence 25 which differs from that of other cytokine receptor-like proteins as found in nature, whether by way of deletion, substitution, or insertion. In particular, "site specific mutant DCRS8" encompasses a protein having substantial sequence identity with a protein of Table 3, and typically shares most of the biological activities or effects of the forms disclosed herein.

30 Although site specific mutation sites are predetermined, mutants need not be site specific. Mammalian DCRS8 mutagenesis can be achieved by making amino acid insertions or deletions in the gene, coupled with expression. Substitutions, deletions, insertions, or many combinations may be generated to arrive at a final construct. Insertions include amino- or carboxy- terminal fusions. Random mutagenesis can be 35 conducted at a target codon and the expressed mammalian DCRS mutants can then be screened for the desired activity, providing some aspect of a structure-activity relationship. Methods for making substitution mutations at predetermined sites in DNA

having a known sequence are well known in the art, e.g., by M13 primer mutagenesis. See also Sambrook, et al. (1989) and Ausubel, et al. (1987 and periodic Supplements).

5 The mutations in the DNA normally should not place coding sequences out of reading frames and preferably will not create complementary regions that could hybridize to produce secondary mRNA structure such as loops or hairpins.

The phosphoramidite method described by Beaucage and Carruthers (1981) Tetrahedron Letters, 22:1859-1862, will produce suitable synthetic DNA fragments. A double stranded fragment will often be obtained either by synthesizing the complementary strand and annealing the strand together under appropriate conditions or by adding the 10 complementary strand using DNA polymerase with an appropriate primer sequence.

Polymerase chain reaction (PCR) techniques can often be applied in mutagenesis. Alternatively, mutagenesis primers are commonly used methods for generating defined mutations at predetermined sites. See, e.g., Innis, et al. (eds. 1990) PCR Protocols: A Guide to Methods and Applications Academic Press, San Diego, CA; and Dieffenbach 15 and Dveksler (1995; eds.) PCR Primer: A Laboratory Manual Cold Spring Harbor Press, CSH, NY.

20 Certain embodiments of the invention are directed to combination compositions comprising the receptor or ligand sequences described. In other embodiments, functional portions of the sequences may be joined to encode fusion proteins. In other forms, variants of the described sequences may be substituted.

IV. Proteins, Peptides

As described above, the present invention encompasses primate DCRS6-10, e.g., 25 whose sequences are disclosed in Tables 1-5, and described above. Allelic and other variants are also contemplated, including, e.g., fusion proteins combining portions of such sequences with others, including, e.g., epitope tags and functional domains.

The present invention also provides recombinant proteins, e.g., heterologous fusion proteins using segments from these primate or rodent proteins. A heterologous 30 fusion protein is a fusion of proteins or segments which are naturally not normally fused in the same manner. Thus, the fusion product of, e.g., a DCRS8 with another cytokine receptor is a continuous protein molecule having sequences fused in a typical peptide linkage, typically made as a single translation product and exhibiting properties, e.g., sequence or antigenicity, derived from each source peptide. A similar concept applies to heterologous nucleic acid sequences. Combinations of various designated proteins into 35 complexes are also provided.

In addition, new constructs may be made from combining similar functional or structural domains from other related proteins, e.g., cytokine receptors or Toll-like

receptors, including species variants. For example, ligand-binding or other segments may be "swapped" between different new fusion polypeptides or fragments. See, e.g., Cunningham, et al. (1989) Science 243:1330-1336; and O'Dowd, et al. (1988) J. Biol. Chem. 263:15985-15992, each of which is incorporated herein by reference. Thus, new 5 chimeric polypeptides exhibiting new combinations of specificities will result from the functional linkage of receptor-binding specificities. For example, the ligand binding domains from other related receptor molecules may be added or substituted for other domains of this or related proteins. The resulting protein will often have hybrid function and properties. For example, a fusion protein may include a targeting domain which may 10 serve to provide sequestering of the fusion protein to a particular subcellular organelle.

Candidate fusion partners and sequences can be selected from various sequence data bases, e.g., GenBank, c/o IntelliGenetics, Mountain View, CA; and BCG, University of Wisconsin Biotechnology Computing Group, Madison, WI, which are each incorporated herein by reference. In particular, combinations of polypeptide sequences 15 provided in Tables 1-5 are particularly preferred. Variant forms of the proteins may be substituted in the described combinations.

The present invention particularly provides muteins which bind cytokine-like ligands, and/or which are affected in signal transduction. Structural alignment of human DCRSs with other members of the cytokine receptor family show conserved 20 features/residues. See Table 6. Alignment of the human DCRS8 sequence with other members of the cytokine receptor family indicates various structural and functionally shared features. See also, Bazan, et al. (1996) Nature 379:591; Lodi, et al. (1994) Science 263:1762-1766; Sayle and Milner-White (1995) TIBS 20:374-376; and Gronenberg, et al. (1991) Protein Engineering 4:263-269.

25 Substitutions with either mouse sequences or human sequences are particularly preferred. Conversely, conservative substitutions away from the ligand binding interaction regions will probably preserve most signaling activities; and conservative substitutions away from the intracellular domains will probably preserve most ligand binding properties.

30 "Derivatives" of the primate DCRS8 include amino acid sequence mutants, glycosylation variants, metabolic derivatives and covalent or aggregative conjugates with other chemical moieties. Covalent derivatives can be prepared by linkage of functionalities to groups which are found in the DCRS8 amino acid side chains or at the N- or C- termini, e.g., by means which are well known in the art. These derivatives can 35 include, without limitation, aliphatic esters or amides of the carboxyl terminus, or of residues containing carboxyl side chains, O-acyl derivatives of hydroxyl group-containing residues, and N-acyl derivatives of the amino terminal amino acid or amino-group

containing residues, e.g., lysine or arginine. Acyl groups are selected from the group of alkyl-moieties, including C3 to C18 normal alkyl, thereby forming alkanoyl aroyl species.

5 In particular, glycosylation alterations are included, e.g., made by modifying the glycosylation patterns of a polypeptide during its synthesis and processing, or in further processing steps. Particularly preferred means for accomplishing this are by exposing the polypeptide to glycosylating enzymes derived from cells which normally provide such processing, e.g., mammalian glycosylation enzymes. Deglycosylation enzymes are also contemplated. Also embraced are versions of the same primary amino acid sequence which have other minor modifications, including phosphorylated amino acid residues, 10 e.g., phosphotyrosine, phosphoserine, or phosphothreonine.

15 A major group of derivatives are covalent conjugates of the receptors or fragments thereof with other proteins of polypeptides. These derivatives can be synthesized in recombinant culture such as N- or C-terminal fusions or by the use of agents known in the art for their usefulness in cross-linking proteins through reactive side groups. Preferred derivatization sites with cross-linking agents are at free amino groups, carbohydrate moieties, and cysteine residues.

20 Fusion polypeptides between the receptors and other homologous or heterologous proteins are also provided. Homologous polypeptides may be fusions between different receptors, resulting in, for instance, a hybrid protein exhibiting binding specificity for multiple different cytokine ligands, or a receptor which may have broadened or weakened specificity of substrate effect. Likewise, heterologous fusions may be constructed which would exhibit a combination of properties or activities of the derivative proteins. Typical examples are fusions of a reporter polypeptide, e.g., luciferase, with a segment or domain of a receptor, e.g., a ligand-binding segment, so that the presence or location of a desired 25 ligand may be easily determined. See, e.g., Dull, et al., U.S. Patent No. 4,859,609, which is hereby incorporated herein by reference. Other gene fusion partners include glutathione-S-transferase (GST), bacterial β -galactosidase, trpE, Protein A, β -lactamase, alpha amylase, alcohol dehydrogenase, and yeast alpha mating factor. See, e.g., Godowski, et al. (1988) *Science* 241:812-816. Labeled proteins will often be substituted 30 in the described combinations of proteins.

35 The phosphoramidite method described by Beaucage and Carruthers (1981) *Tetra. Letts.* 22:1859-1862, will produce suitable synthetic DNA fragments. A double stranded fragment will often be obtained either by synthesizing the complementary strand and annealing the strand together under appropriate conditions or by adding the complementary strand using DNA polymerase with an appropriate primer sequence.

Such polypeptides may also have amino acid residues which have been chemically modified by phosphorylation, sulfonation, biotinylation, or the addition or removal of

other moieties, particularly those which have molecular shapes similar to phosphate groups. In some embodiments, the modifications will be useful labeling reagents, or serve as purification targets, e.g., affinity ligands.

5 Fusion proteins will typically be made by either recombinant nucleic acid methods or by synthetic polypeptide methods. Techniques for nucleic acid manipulation and expression are described generally, for example, in Sambrook, et al. (1989) Molecular Cloning: A Laboratory Manual (2d ed.), Vols. 1-3, Cold Spring Harbor Laboratory, and Ausubel, et al. (eds. 1987 and periodic supplements) Current Protocols in Molecular Biology, Greene/Wiley, New York, which are each incorporated herein by reference.

10 Techniques for synthesis of polypeptides are described, for example, in Merrifield (1963) J. Amer. Chem. Soc. 85:2149-2156; Merrifield (1986) Science 232: 341-347; and Atherton, et al. (1989) Solid Phase Peptide Synthesis: A Practical Approach, IRL Press, Oxford; each of which is incorporated herein by reference. See also Dawson, et al. (1994) Science 266:776-779 for methods to make larger polypeptides.

15 This invention also contemplates the use of derivatives of a DCRS8 other than variations in amino acid sequence or glycosylation. Such derivatives may involve covalent or aggregative association with chemical moieties. These derivatives generally fall into three classes: (1) salts, (2) side chain and terminal residue covalent modifications, and (3) adsorption complexes, for example with cell membranes. Such covalent or 20 aggregative derivatives are useful as immunogens, as reagents in immunoassays, or in purification methods such as for affinity purification of a receptor or other binding molecule, e.g., an antibody. For example, a cytokine ligand can be immobilized by methods which are well known in the art, or adsorbed onto polyolefin surfaces, with or 25 without glutaraldehyde cross-linking, for use in the assay or purification of a cytokine receptor, antibodies, or other similar molecules. The ligand can also be labeled with a detectable group, for example radioiodinated by the chloramine T procedure, covalently bound to rare earth chelates, or conjugated to another fluorescent moiety for use in diagnostic assays.

30 A combination, e.g., including a DCRS8, of this invention can be used as an immunogen for the production of antisera or antibodies specific, e.g., capable of distinguishing between other cytokine receptor family members, for the combinations described. The complexes can be used to screen monoclonal antibodies or antigen-binding fragments prepared by immunization with various forms of impure preparations 35 containing the protein. In particular, the term "antibodies" also encompasses antigen binding fragments of natural antibodies, e.g., Fab, Fab2, Fv, etc. The purified DCRS8 can also be used as a reagent to detect antibodies generated in response to the presence of

5 elevated levels of expression, or immunological disorders which lead to antibody production to the endogenous receptor. Additionally, DCRS8 fragments may also serve as immunogens to produce the antibodies of the present invention, as described immediately below. For example, this invention contemplates antibodies having binding affinity to or being raised against the amino acid sequences shown in Tables 1-5, fragments thereof, or various homologous peptides. In particular, this invention contemplates antibodies having binding affinity to, or having been raised against, specific fragments which are predicted to be, or actually are, exposed at the exterior protein surface of the native DCRS8 or DCRS9. Complexes of combinations of proteins will 10 also be useful, and antibody preparations thereto can be made.

15 The blocking of physiological response to the receptor ligands may result from the inhibition of binding of the ligand to the receptor, likely through competitive inhibition. Thus, *in vitro* assays of the present invention will often use antibodies or antigen binding segments of these antibodies, or fragments attached to solid phase substrates. These assays will also allow for the diagnostic determination of the effects of either ligand 20 binding region mutations and modifications, or other mutations and modifications, e.g., which affect signaling or enzymatic function.

25 This invention also contemplates the use of competitive drug screening assays, e.g., where neutralizing antibodies to the receptor complexes or fragments compete with a test compound for binding to a ligand or other antibody. In this manner, the neutralizing antibodies or fragments can be used to detect the presence of a polypeptide which shares one or more binding sites to a receptor and can also be used to occupy binding sites on a receptor that might otherwise bind a ligand.

25 V. Making Nucleic Acids and Protein

30 DNA which encodes the protein or fragments thereof can be obtained by chemical synthesis, screening cDNA libraries, or by screening genomic libraries prepared from a wide variety of cell lines or tissue samples. Natural sequences can be isolated using standard methods and the sequences provided herein, e.g., in Tables 1-5. Other species counterparts can be identified by hybridization techniques, or by various PCR techniques, combined with or by searching in sequence databases, e.g., GenBank.

35 This DNA can be expressed in a wide variety of host cells for the synthesis of a full-length receptor or fragments which can in turn, for example, be used to generate polyclonal or monoclonal antibodies; for binding studies; for construction and expression of modified ligand binding or kinase/phosphatase domains; and for structure/function studies. Variants or fragments can be expressed in host cells that are transformed or transfected with appropriate expression vectors. These molecules can be substantially

free of protein or cellular contaminants, other than those derived from the recombinant host, and therefore are particularly useful in pharmaceutical compositions when combined with a pharmaceutically acceptable carrier and/or diluent. The protein, or portions thereof, may be expressed as fusions with other proteins. Combinations of the described 5 proteins, or nucleic acids encoding them, are particularly interesting.

Expression vectors are typically self-replicating DNA or RNA constructs containing the desired receptor gene or its fragments, usually operably linked to suitable genetic control elements that are recognized in a suitable host cell. These control elements are capable of effecting expression within a suitable host. The multiple genes 10 may be coordinately expressed, and may be on a polycistronic message. The specific type of control elements necessary to effect expression will depend upon the eventual host cell used. Generally, the genetic control elements can include a prokaryotic promoter system or a eukaryotic promoter expression control system, and typically include a transcriptional promoter, an optional operator to control the onset of transcription, 15 transcription enhancers to elevate the level of mRNA expression, a sequence that encodes a suitable ribosome binding site, and sequences that terminate transcription and translation. Expression vectors also usually contain an origin of replication that allows the vector to replicate independently of the host cell.

The vectors of this invention include those which contain DNA which encodes a 20 combination of proteins, as described, or a biologically active equivalent polypeptide. The DNA can be under the control of a viral promoter and can encode a selection marker. This invention further contemplates use of such expression vectors which are capable of expressing eukaryotic cDNAs coding for such proteins in a prokaryotic or eukaryotic host, where the vector is compatible with the host and where the eukaryotic cDNAs are 25 inserted into the vector such that growth of the host containing the vector expresses the cDNAs in question. Usually, expression vectors are designed for stable replication in their host cells or for amplification to greatly increase the total number of copies of the desirable gene per cell. It is not always necessary to require that an expression vector replicate in a host cell, e.g., it is possible to effect transient expression of the protein or its 30 fragments in various hosts using vectors that do not contain a replication origin that is recognized by the host cell. It is also possible to use vectors that cause integration of the protein encoding portions into the host DNA by recombination.

Vectors, as used herein, comprise plasmids, viruses, bacteriophage, integratable 35 DNA fragments, and other vehicles which enable the integration of DNA fragments into the genome of the host. Expression vectors are specialized vectors which contain genetic control elements that effect expression of operably linked genes. Plasmids are the most commonly used form of vector but all other forms of vectors which serve an equivalent

function and which are, or become, known in the art are suitable for use herein. See, e.g., Pouwels, et al. (1985 and Supplements) Cloning Vectors: A Laboratory Manual, Elsevier, N.Y., and Rodriguez, et al. (eds. 1988) Vectors: A Survey of Molecular Cloning Vectors and Their Uses, Butterworth, Boston, which are incorporated herein by reference.

5 Transformed cells are cells, preferably mammalian, that have been transformed or transfected with vectors constructed using recombinant DNA techniques. Transformed host cells usually express the desired proteins, but for purposes of cloning, amplifying, and manipulating its DNA, do not need to express the subject proteins. This invention further contemplates culturing transformed cells in a nutrient medium, thus permitting the 10 proteins to accumulate. The proteins can be recovered, either from the culture or, in certain instances, from the culture medium.

15 For purposes of this invention, nucleic sequences are operably linked when they are functionally related to each other. For example, DNA for a presequence or secretory leader is operably linked to a polypeptide if it is expressed as a preprotein or participates in directing the polypeptide to the cell membrane or in secretion of the polypeptide. A promoter is operably linked to a coding sequence if it controls the transcription of the 20 polypeptide; a ribosome binding site is operably linked to a coding sequence if it is positioned to permit translation. Usually, operably linked means contiguous and in reading frame, however, certain genetic elements such as repressor genes are not contiguously linked but still bind to operator sequences that in turn control expression.

25 Suitable host cells include prokaryotes, lower eukaryotes, and higher eukaryotes. Prokaryotes include both gram negative and gram positive organisms, e.g., E. coli and B. subtilis. Lower eukaryotes include yeasts, e.g., S. cerevisiae and Pichia, and species of the genus Dictyostelium. Higher eukaryotes include established tissue culture cell lines from animal cells, both of non-mammalian origin, e.g., insect cells, and birds, and of mammalian origin, e.g., human, primates, and rodents.

30 Prokaryotic host-vector systems include a wide variety of vectors for many different species. As used herein, E. coli and its vectors will be used generically to include equivalent vectors used in other prokaryotes. A representative vector for amplifying DNA is pBR322 or many of its derivatives. Vectors that can be used to express the receptor or its fragments include, but are not limited to, such vectors as those containing the lac promoter (pUC-series); trp promoter (pBR322-trp); Ipp promoter (the pIN-series); lambda-pP or pR promoters (pOTS); or hybrid promoters such as ptac (pDR540). See Brosius, et al. (1988) "Expression Vectors Employing Lambda-, trp-, lac-, 35 and Ipp-derived Promoters", in Vectors: A Survey of Molecular Cloning Vectors and Their Uses, (eds. Rodriguez and Denhardt), Butterworth, Boston, Chapter 10, pp. 205-236, which is incorporated herein by reference.

Lower eukaryotes, e.g., yeasts and Dictyostelium, may be transformed with DCRS8 sequence containing vectors. For purposes of this invention, the most common lower eukaryotic host is the baker's yeast, Saccharomyces cerevisiae. It will be used to generically represent lower eukaryotes although a number of other strains and species are 5 also available. Yeast vectors typically consist of a replication origin (unless of the integrating type), a selection gene, a promoter, DNA encoding the receptor or its fragments, and sequences for translation termination, polyadenylation, and transcription termination. Suitable expression vectors for yeast include such constitutive promoters as 10 3-phosphoglycerate kinase and various other glycolytic enzyme gene promoters or such inducible promoters as the alcohol dehydrogenase 2 promoter or metallothioneine promoter. Suitable vectors include derivatives of the following types: self-replicating low copy number (such as the YRp-series), self-replicating high copy number (such as the YEpl-series); integrating types (such as the YIp-series), or mini-chromosomes (such as the YCp-series).

15 Higher eukaryotic tissue culture cells are normally the preferred host cells for expression of the functionally active interleukin or receptor proteins. In principle, many higher eukaryotic tissue culture cell lines are workable, e.g., insect baculovirus expression systems, whether from an invertebrate or vertebrate source. However, mammalian cells are preferred. Transformation or transfection and propagation of such cells has become a 20 routine procedure. Examples of useful cell lines include HeLa cells, Chinese hamster ovary (CHO) cell lines, baby rat kidney (BRK) cell lines, insect cell lines, bird cell lines, and monkey (COS) cell lines. Expression vectors for such cell lines usually include an origin of replication, a promoter, a translation initiation site, RNA splice sites (if genomic DNA is used), a polyadenylation site, and a transcription termination site. These vectors 25 also usually contain a selection gene or amplification gene. Suitable expression vectors may be plasmids, viruses, or retroviruses carrying promoters derived, e.g., from such sources as from adenovirus, SV40, parvoviruses, vaccinia virus, or cytomegalovirus. Representative examples of suitable expression vectors include pCDNA1; pCD, see Okayama, et al. (1985) Mol. Cell Biol. 5:1136-1142; pMC1neo PolyA, see Thomas, et al. 30 (1987) Cell 51:503-512; and a baculovirus vector such as pAC 373 or pAC 610.

35 For secreted proteins and some membrane proteins, an open reading frame usually encodes a polypeptide that consists of a mature or secreted product covalently linked at its N-terminus to a signal peptide. The signal peptide is cleaved prior to secretion of the mature, or active, polypeptide. The cleavage site can be predicted with a high degree of accuracy from empirical rules, e.g., von-Heijne (1986) Nucleic Acids Research 14:4683-4690; and Nielsen, et al. (1997) Protein Eng. 10:1-12, and the precise amino acid composition of the signal peptide often does not appear to be critical to its function, e.g.,

Randall, et al. (1989) Science 243:1156-1159; and Kaiser, et al. (1987) Science 235:312-317. The mature proteins of the invention can be readily determined using standard methods.

5 It will often be desired to express these polypeptides in a system which provides a specific or defined glycosylation pattern. In this case, the usual pattern will be that provided naturally by the expression system. However, the pattern will be modifiable by exposing the polypeptide, e.g., an unglycosylated form, to appropriate glycosylating proteins introduced into a heterologous expression system. For example, the receptor gene may be co-transformed with one or more genes encoding mammalian or other 10 glycosylating enzymes. Using this approach, certain mammalian glycosylation patterns will be achievable in prokaryote or other cells. Expression in prokaryote cells will typically lead to unglycosylated forms of protein.

15 The source of DCRS8 can be a eukaryotic or prokaryotic host expressing recombinant DCRS8, such as is described above. The source can also be a cell line, but other mammalian cell lines are also contemplated by this invention, with the preferred cell line being from the human species.

20 Now that the sequences are known, the primate DCRS8 or DCRS9, fragments, or derivatives thereof can be prepared by conventional processes for synthesizing peptides. These include processes such as are described in Stewart and Young (1984) Solid Phase Peptide Synthesis, Pierce Chemical Co., Rockford, IL; Bodanszky and Bodanszky (1984) The Practice of Peptide Synthesis, Springer-Verlag, New York; and Bodanszky (1984) The Principles of Peptide Synthesis, Springer-Verlag, New York; all of each which are 25 incorporated herein by reference. For example, an azide process, an acid chloride process, an acid anhydride process, a mixed anhydride process, an active ester process (for example, p-nitrophenyl ester, N-hydroxysuccinimide ester, or cyanomethyl ester), a carbodiimazole process, an oxidative-reductive process, or a dicyclohexylcarbodiimide (DCCD)/additive process can be used. Solid phase and solution phase syntheses are both applicable to the foregoing processes. Similar techniques can be used with partial 30 DCRS8 or DCRS9 sequences.

35 The DCRS8 proteins, fragments, or derivatives are suitably prepared in accordance with the above processes as typically employed in peptide synthesis, generally either by a so-called stepwise process which comprises condensing an amino acid to the terminal amino acid, one by one in sequence, or by coupling peptide fragments to the terminal amino acid. Amino groups that are not being used in the coupling reaction typically must be protected to prevent coupling at an incorrect location.

If a solid phase synthesis is adopted, the C-terminal amino acid is bound to an insoluble carrier or support through its carboxyl group. The insoluble carrier is not

particularly limited as long as it has a binding capability to a reactive carboxyl group. Examples of such insoluble carriers include halomethyl resins, such as chloromethyl resin or bromomethyl resin, hydroxymethyl resins, phenol resins, tert-alkyloxycarbonylhydrazidated resins, and the like.

5 An amino group-protected amino acid is bound in sequence through condensation of its activated carboxyl group and the reactive amino group of the previously formed peptide or chain, to synthesize the peptide step by step. After synthesizing the complete sequence, the peptide is split off from the insoluble carrier to produce the peptide. This solid-phase approach is generally described by Merrifield, et al. (1963) in J. Am. Chem. Soc. 85:2149-2156, which is incorporated herein by reference.

10 The prepared protein and fragments thereof can be isolated and purified from the reaction mixture by means of peptide separation, e.g., by extraction, precipitation, electrophoresis, various forms of chromatography, and the like. The receptors of this invention can be obtained in varying degrees of purity depending upon desired uses.

15 Purification can be accomplished by use of the protein purification techniques disclosed herein, see below, or by the use of the antibodies herein described in methods of immunoabsorbant affinity chromatography. This immunoabsorbant affinity chromatography is carried out by first linking the antibodies to a solid support and then contacting the linked antibodies with solubilized lysates of appropriate cells, lysates of 20 other cells expressing the receptor, or lysates or supernatants of cells producing the protein as a result of DNA techniques, see below.

25 Generally, the purified protein will be at least about 40% pure, ordinarily at least about 50% pure, usually at least about 60% pure, typically at least about 70% pure, more typically at least about 80% pure, preferable at least about 90% pure and more preferably at least about 95% pure, and in particular embodiments, 97%-99% or more. Purity will usually be on a weight basis, but can also be on a molar basis. Different assays will be applied as appropriate. Individual proteins may be purified and thereafter combined.

VI. Antibodies

30 Antibodies can be raised to the various mammalian, e.g., primate DCRS8 or DCRS9 proteins and fragments thereof, both in naturally occurring native forms and in their recombinant forms, the difference being that antibodies to the active receptor are more likely to recognize epitopes which are only present in the native conformations. Denatured antigen detection can also be useful in, e.g., Western analysis. Anti-idiotypic 35 antibodies are also contemplated, which would be useful as agonists or antagonists of a natural receptor or an antibody.

Antibodies, including binding fragments and single chain versions, against predetermined fragments of the protein can be raised by immunization of animals with conjugates of the fragments with immunogenic proteins. Monoclonal antibodies are prepared from cells secreting the desired antibody. These antibodies can be screened for binding to normal or defective protein, or screened for agonistic or antagonistic activity. These monoclonal antibodies will usually bind with at least a K_D of about 1 mM, more usually at least about 300 μ M, typically at least about 100 μ M, more typically at least about 30 μ M, preferably at least about 10 μ M, and more preferably at least about 3 μ M or better.

The antibodies, including antigen binding fragments, of this invention can have significant diagnostic or therapeutic value. They can be potent antagonists that bind to the receptor and inhibit binding to ligand or inhibit the ability of the receptor to elicit a biological response, e.g., act on its substrate. They also can be useful as non-neutralizing antibodies and can be coupled to toxins or radionuclides to bind producing cells, or cells localized to the source of the interleukin. Further, these antibodies can be conjugated to drugs or other therapeutic agents, either directly or indirectly by means of a linker.

The antibodies of this invention can also be useful in diagnostic applications. As capture or non-neutralizing antibodies, they might bind to the receptor without inhibiting ligand or substrate binding. As neutralizing antibodies, they can be useful in competitive binding assays. They will also be useful in detecting or quantifying ligand. They may be used as reagents for Western blot analysis, or for immunoprecipitation or immunopurification of the respective protein. Likewise, nucleic acids and proteins may be immobilized to solid substrates for affinity purification or detection methods. The substrates may be, e.g., solid resin beads or sheets of plastic.

Protein fragments may be joined to other materials, particularly polypeptides, as fused or covalently joined polypeptides to be used as immunogens. Mammalian cytokine receptors and fragments may be fused or covalently linked to a variety of immunogens, such as keyhole limpet hemocyanin, bovine serum albumin, tetanus toxoid, etc. See (1969) Microbiology, Hoeber Medical Division, Harper and Row; Landsteiner (1962) Specificity of Serological Reactions, Dover Publications, New York; and Williams, et al. (1967) Methods in Immunology and Immunochemistry, Vol. 1, Academic Press, New York; each of which is incorporated herein by reference, for descriptions of methods of preparing polyclonal antisera. A typical method involves hyperimmunization of an animal with an antigen. The blood of the animal is then collected shortly after the repeated immunizations and the gamma globulin is isolated.

In some instances, it is desirable to prepare monoclonal antibodies from various mammalian hosts, such as mice, rodents, primates, humans, etc. Description of

techniques for preparing such monoclonal antibodies may be found in, e.g., Stites, et al. (eds.) Basic and Clinical Immunology (4th ed.), Lange Medical Publications, Los Altos, CA, and references cited therein; Harlow and Lane (1988) Antibodies: A Laboratory Manual, CSH Press; Goding (1986) Monoclonal Antibodies: Principles and Practice (2d ed.) Academic Press, New York; and particularly in Kohler and Milstein (1975) Nature 256:495-497, which discusses one method of generating monoclonal antibodies. Each of these references is incorporated herein by reference. Summarized briefly, this method involves injecting an animal with an immunogen. The animal is then sacrificed and cells taken from its spleen, which are then fused with myeloma cells. The result is a hybrid cell or "hybridoma" that is capable of reproducing *in vitro*. The population of hybridomas is then screened to isolate individual clones, each of which secrete a single antibody species to the immunogen. In this manner, the individual antibody species obtained are the products of immortalized and cloned single B cells from the immune animal generated in response to a specific site recognized on the immunogenic substance.

Other suitable techniques involve *in vitro* exposure of lymphocytes to the antigenic polypeptides or alternatively to selection of libraries of antibodies in phage or similar vectors. See, Huse, et al. (1989) "Generation of a Large Combinatorial Library of the Immunoglobulin Repertoire in Phage Lambda," Science 246:1275-1281; and Ward, et al. (1989) Nature 341:544-546, each of which is incorporated herein by reference. The polypeptides and antibodies of the present invention may be used with or without modification, including chimeric or humanized antibodies. Frequently, the polypeptides and antibodies will be labeled by joining, either covalently or non-covalently, a substance which provides for a detectable signal. A wide variety of labels and conjugation techniques are known and are reported extensively in both the scientific and patent literature. Suitable labels include radionuclides, enzymes, substrates, cofactors, inhibitors, fluorescent moieties, chemiluminescent moieties, magnetic particles, and the like. Patents, teaching the use of such labels include U.S. Patent Nos. 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149; and 4,366,241. Also, recombinant or chimeric immunoglobulins may be produced, see Cabilly, U.S. Patent No. 4,816,567; or made in transgenic mice, see Mendez, et al. (1997) Nature Genetics 15:146-156; Abgenix; and Medarex. These references are incorporated herein by reference.

The antibodies of this invention can also be used for affinity chromatography in isolating the DCRS8 proteins or peptides. Columns can be prepared where the antibodies are linked to a solid support, e.g., particles, such as agarose, Sephadex, or the like, where a cell lysate may be passed through the column, the column washed, followed by increasing concentrations of a mild denaturant, whereby the purified protein will be

released. Alternatively, the protein may be used to purify antibody. Appropriate cross absorptions or depletions may be applied.

5 The antibodies may also be used to screen expression libraries for particular expression products. Usually the antibodies used in such a procedure will be labeled with a moiety allowing easy detection of presence of antigen by antibody binding.

10 Antibodies raised against a cytokine receptor will also be used to raise anti-idiotypic antibodies. These will be useful in detecting or diagnosing various immunological conditions related to expression of the protein or cells which express the protein. They also will be useful as agonists or antagonists of the ligand, which may be competitive inhibitors or substitutes for naturally occurring ligands.

15 A cytokine receptor protein that specifically binds to or that is specifically immunoreactive with an antibody generated against a defined immunogen, such as an immunogen consisting of the amino acid sequence of SEQ ID NO: 14, is typically determined in an immunoassay. The immunoassay typically uses a polyclonal antiserum which was raised, e.g., to a protein of SEQ ID NO: 14. This antiserum is selected to have low crossreactivity against other cytokine receptor family members, preferably from the same species, and any such crossreactivity is removed by immunoabsorption prior to use in the immunoassay.

20 In order to produce antisera for use in an immunoassay, the protein, e.g., of SEQ ID NO: 14, is isolated as described herein. For example, recombinant protein may be produced in a mammalian cell line. An appropriate host, e.g., an inbred strain of mice such as Balb/c, is immunized with the selected protein, typically using a standard adjuvant, such as Freund's adjuvant, and a standard mouse immunization protocol (see Harlow and Lane, *supra*). Alternatively, a synthetic peptide derived from the sequences

25 disclosed herein and conjugated to a carrier protein can be used as an immunogen.

Polyclonal sera are collected and titered against the immunogen protein in an immunoassay, e.g., a solid phase immunoassay with the immunogen immobilized on a solid support. Polyclonal antisera with a titer of 10^4 or greater are selected and tested for their cross reactivity against other cytokine receptor family members using a competitive binding immunoassay such as the one described in Harlow and Lane, *supra*, at pages 570-573. Preferably at least two cytokine receptor family members are used in this determination. These cytokine receptor family members can be produced as recombinant proteins and isolated using standard molecular biology and protein chemistry techniques as described herein.

30 35 Immunoassays in the competitive binding format can be used for the crossreactivity determinations. For example, the protein of SEQ ID NO: 14 can be immobilized to a solid support. Proteins added to the assay compete with the binding of

the antisera to the immobilized antigen. The ability of the above proteins to compete with the binding of the antisera to the immobilized protein is compared to the other proteins. The percent crossreactivity for the above proteins is calculated, using standard calculations. Those antisera with less than 10% crossreactivity with each of the proteins listed above are selected and pooled. The cross-reacting antibodies are then removed from the pooled antisera by immunoabsorption with the above-listed proteins.

5 The immunoabsorbed and pooled antisera are then used in a competitive binding immunoassay as described above to compare a second protein to the immunogen protein (e.g., the DCRS8 like protein of SEQ ID NO: 14). In order to make this comparison, the 10 two proteins are each assayed at a wide range of concentrations and the amount of each protein required to inhibit 50% of the binding of the antisera to the immobilized protein is determined. If the amount of the second protein required is less than twice the amount of the protein of the selected protein or proteins that is required, then the second protein is said to specifically bind to an antibody generated to the immunogen.

15 It is understood that these cytokine receptor proteins are members of a family of homologous proteins that comprise at least 9 so far identified members, 6 mammalian and 3 worm embodiments. For a particular gene product, such as the DCRS8, the term refers not only to the amino acid sequences disclosed herein, but also to other proteins that are allelic, non-allelic, or species variants. It is also understood that the terms include 20 nonnatural mutations introduced by deliberate mutation using conventional recombinant technology such as single site mutation, or by excising short sections of DNA encoding the respective proteins, or by substituting new amino acids, or adding new amino acids. Such minor alterations typically will substantially maintain the immunoidentity of the original molecule and/or its biological activity. Thus, these alterations include proteins 25 that are specifically immunoreactive with a designated naturally occurring DCRS8 protein. The biological properties of the altered proteins can be determined by expressing the protein in an appropriate cell line and measuring the appropriate effect, e.g., upon transfected lymphocytes. Particular protein modifications considered minor would include conservative substitution of amino acids with similar chemical properties, as 30 described above for the cytokine receptor family as a whole. By aligning a protein optimally with the protein of the cytokine receptors and by using the conventional immunoassays described herein to determine immunoidentity, one can determine the protein compositions of the invention.

35 VII. Kits and quantitation

Both naturally occurring and recombinant forms of the cytokine receptor like molecules of this invention are particularly useful in kits and assay methods. For

example, these methods would also be applied to screening for binding activity, e.g., ligands for these proteins. Several methods of automating assays have been developed in recent years so as to permit screening of tens of thousands of compounds per year. See, e.g., a BIOMEK automated workstation, Beckman Instruments, Palo Alto, California, and 5 Fodor, et al. (1991) Science 251:767-773, which is incorporated herein by reference. The latter describes means for testing binding by a plurality of defined polymers synthesized on a solid substrate. The development of suitable assays to screen for a ligand or agonist/antagonist homologous proteins can be greatly facilitated by the availability of large amounts of purified, soluble cytokine receptors in an active state such as is provided 10 by this invention.

Purified protein can be coated directly onto plates for use in the aforementioned ligand screening techniques. However, non-neutralizing antibodies to these proteins can be used as capture antibodies to immobilize the respective receptor on the solid phase, useful, e.g., in diagnostic uses.

15 This invention also contemplates use of receptor subunit, fragments thereof, peptides, and their fusion products in a variety of diagnostic kits and methods for detecting the presence of the protein or its ligand. Alternatively, or additionally, antibodies against the molecules may be incorporated into the kits and methods. Typically the kit will have a compartment containing, e.g., a DCRS8 peptide or gene 20 segment or a reagent which recognizes one or the other. Typically, recognition reagents, in the case of peptide, would be a receptor or antibody, or in the case of a gene segment, would usually be a hybridization probe.

A preferred kit for determining the concentration of DCRS8 in a sample would 25 typically comprise a labeled compound, e.g., ligand or antibody, having known binding affinity for DCRS8, a source of DCRS8 (naturally occurring or recombinant) as a positive control, and a means for separating the bound from free labeled compound, e.g., a solid phase for immobilizing the DCRS8 in the test sample. Compartments containing 30 reagents, and instructions, will normally be provided. Appropriate nucleic acid or protein containing kits are also provided.

30 Antibodies, including antigen binding fragments, specific for mammalian DCRS8 or a peptide fragment, or receptor fragments are useful in diagnostic applications to detect the presence of elevated levels of ligand and/or its fragments. Diagnostic assays may be homogeneous (without a separation step between free reagent and antibody-antigen complex) or heterogeneous (with a separation step). Various commercial assays exist, 35 such as radioimmunoassay (RIA), enzyme-linked immunosorbent assay (ELISA), enzyme immunoassay (EIA), enzyme-multiplied immunoassay technique (EMIT), substrate-labeled fluorescent immunoassay (SLFIA) and the like. For example, unlabeled

antibodies can be employed by using a second antibody which is labeled and which recognizes the antibody to a cytokine receptor or to a particular fragment thereof. These assays have also been extensively discussed in the literature. See, e.g., Harlow and Lane (1988) Antibodies: A Laboratory Manual, CSH, and Coligan (ed. 1991 and periodic supplements) Current Protocols In Immunology Greene/Wiley, New York.

5 Anti-idiotypic antibodies may have similar use to serve as agonists or antagonists of cytokine receptors. These should be useful as therapeutic reagents under appropriate circumstances.

Frequently, the reagents for diagnostic assays are supplied in kits, so as to
10 optimize the sensitivity of the assay. For the subject invention, depending upon the nature of the assay, the protocol, and the label, either labeled or unlabeled antibody, or labeled ligand is provided. This is usually in conjunction with other additives, such as buffers, stabilizers, materials necessary for signal production such as substrates for enzymes, and the like. Preferably, the kit will also contain instructions for proper use and
15 disposal of the contents after use. Typically the kit has compartments for each useful reagent, and will contain instructions for proper use and disposal of reagents. Desirably, the reagents are provided as a dry lyophilized powder, where the reagents may be reconstituted in an aqueous medium having appropriate concentrations for performing the assay.

20 The aforementioned constituents of the diagnostic assays may be used without modification or may be modified in a variety of ways. For example, labeling may be achieved by covalently or non-covalently joining a moiety which directly or indirectly provides a detectable signal. In many of these assays, a test compound, cytokine receptor, or antibodies thereto can be labeled either directly or indirectly. Possibilities for direct
25 labeling include label groups: radiolabels such as ^{125}I , enzymes (U.S. Pat. No. 3,645,090) such as peroxidase and alkaline phosphatase, and fluorescent labels (U.S. Pat. No. 3,940,475) capable of monitoring the change in fluorescence intensity, wavelength shift, or fluorescence polarization. Both of the patents are incorporated herein by reference. Possibilities for indirect labeling include biotinylation of one constituent
30 followed by binding to avidin coupled to one of the above label groups.

There are also numerous methods of separating the bound from the free ligand, or alternatively the bound from the free test compound. The cytokine receptor can be immobilized on various matrixes followed by washing. Suitable matrices include plastic such as an ELISA plate, filters, and beads. Methods of immobilizing the receptor to a
35 matrix include, without limitation, direct adhesion to plastic, use of a capture antibody, chemical coupling, and biotin-avidin. The last step in this approach involves the precipitation of antibody/antigen complex by any of several methods including those

utilizing, e.g., an organic solvent such as polyethylene glycol or a salt such as ammonium sulfate. Other suitable separation techniques include, without limitation, the fluorescein antibody magnetizable particle method described in Rattle, et al. (1984) Clin. Chem. 30(9):1457-1461, and the double antibody magnetic particle separation as described in 5 U.S. Pat. No. 4,659,678, each of which is incorporated herein by reference.

The methods for linking protein or fragments to various labels have been extensively reported in the literature and do not require detailed discussion here. Many of the techniques involve the use of activated carboxyl groups either through the use of carbodiimide or active esters to form peptide bonds, the formation of thioethers by 10 reaction of a mercapto group with an activated halogen such as chloroacetyl, or an activated olefin such as maleimide, for linkage, or the like. Fusion proteins will also find use in these applications.

Another diagnostic aspect of this invention involves use of oligonucleotide or 15 polynucleotide sequences taken from the sequence of an cytokine receptor. These sequences can be used as probes for detecting levels of the respective cytokine receptor in patients suspected of having an immunological disorder. The preparation of both RNA and DNA nucleotide sequences, the labeling of the sequences, and the preferred size of the sequences has received ample description and discussion in the literature. Normally an oligonucleotide probe should have at least about 14 nucleotides, usually at least about 20 18 nucleotides, and the polynucleotide probes may be up to several kilobases. Various labels may be employed, most commonly radionuclides, particularly ³²P. However, other techniques may also be employed, such as using biotin modified nucleotides for introduction into a polynucleotide. The biotin then serves as the site for binding to avidin or antibodies, which may be labeled with a wide variety of labels, such as radionuclides, 25 fluorescers, enzymes, or the like. Alternatively, antibodies may be employed which can recognize specific duplexes, including DNA duplexes, RNA duplexes, DNA-RNA hybrid duplexes, or DNA-protein duplexes. The antibodies in turn may be labeled and the assay carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected. The use of 30 probes to the novel RNA may be carried out in conventional techniques such as nucleic acid hybridization, plus and minus screening, recombinational probing, hybrid released translation (HRT), and hybrid arrested translation (HART). Antisense nucleic acids, which may be used to block protein expression, are also provided. See, e.g., Isis Pharmaceuticals, Sequitur, Inc., or Hybridon. This also includes amplification techniques 35 such as polymerase chain reaction (PCR).

Diagnostic kits which also test for the qualitative or quantitative presence of other markers are also contemplated. Diagnosis or prognosis may depend on the combination

of multiple indications used as markers. Thus, kits may test for combinations of markers. See, e.g., Viallet, et al. (1989) Progress in Growth Factor Res. 1:89-97.

VIII. Therapeutic Utility

5 This invention provides reagents with significant therapeutic value. See, e.g., Levitzki (1996) Curr. Opin. Cell Biol. 8:239-244. The cytokine receptors (naturally occurring or recombinant), fragments thereof, mutein receptors, and antibodies, along with compounds identified as having binding affinity to the receptors or antibodies, should be useful in the treatment of conditions exhibiting abnormal expression of the
10 receptors of their ligands. Such abnormality will typically be manifested by immunological disorders, e.g., innate immunity, or developmentally. Additionally, this invention should provide therapeutic value in various diseases or disorders associated with abnormal expression or abnormal triggering of response to the ligand. For example, the IL-1 ligands have been suggested to be involved in morphologic development, e.g.,
15 dorso-ventral polarity determination, and immune responses, particularly the primitive innate responses. See, e.g., Sun, et al. (1991) Eur. J. Biochem. 196:247-254; and Hultmark (1994) Nature 367:116-117.

20 Recombinant cytokine receptors, muteins, agonist or antagonist antibodies thereto, or antibodies can be purified and then administered to a patient. These reagents can be combined for therapeutic use with additional active ingredients, e.g., in conventional pharmaceutically acceptable carriers or diluents, along with physiologically innocuous stabilizers and excipients. These combinations can be sterile, e.g., filtered, and placed into dosage forms as by lyophilization in dosage vials or storage in stabilized aqueous preparations. This invention also contemplates use of antibodies or binding fragments
25 thereof which are not complement binding.

20 Ligand screening using cytokine receptor or fragments thereof can be performed to identify molecules having binding affinity to the receptors. Subsequent biological assays can then be utilized to determine if a putative ligand can provide competitive binding, which can block intrinsic stimulating activity. Receptor fragments can be used as a blocker or antagonist in that it blocks the activity of ligand. Likewise, a compound having intrinsic stimulating activity can activate the receptor and is thus an agonist in that it simulates the activity of ligand, e.g., inducing signaling. This invention further contemplates the therapeutic use of antibodies to cytokine receptors as antagonists.

35 The quantities of reagents necessary for effective therapy will depend upon many different factors, including means of administration, target site, reagent physiological life, pharmacological life, physiological state of the patient, and other medicants administered. Thus, treatment dosages should be titrated to optimize safety and efficacy. Typically,

dosages used in vitro may provide useful guidance in the amounts useful for in situ administration of these reagents. Animal testing of effective doses for treatment of particular disorders will provide further predictive indication of human dosage. Various considerations are described, e.g., in Gilman, et al. (eds. 1990) Goodman and Gilman's: The Pharmacological Bases of Therapeutics, 8th Ed., Pergamon Press; and Remington's Pharmaceutical Sciences, 17th ed. (1990), Mack Publishing Co., Easton, Penn.; each of which is hereby incorporated herein by reference. Methods for administration are discussed therein and below, e.g., for oral, intravenous, intraperitoneal, or intramuscular administration, transdermal diffusion, and others. Pharmaceutically acceptable carriers will include water, saline, buffers, and other compounds described, e.g., in the Merck Index, Merck & Co., Rahway, New Jersey. Because of the likely high affinity binding, or turnover numbers, between a putative ligand and its receptors, low dosages of these reagents would be initially expected to be effective. And the signaling pathway suggests extremely low amounts of ligand may have effect. Thus, dosage ranges would ordinarily be expected to be in amounts lower than 1 mM concentrations, typically less than about 10 μ M concentrations, usually less than about 100 nM, preferably less than about 10 pM (picomolar), and most preferably less than about 1 fM (femtomolar), with an appropriate carrier. Slow release formulations, or slow release apparatus will often be utilized for continuous administration.

Cytokine receptors, fragments thereof, and antibodies or its fragments, antagonists, and agonists, may be administered directly to the host to be treated or, depending on the size of the compounds, it may be desirable to conjugate them to carrier proteins such as ovalbumin or serum albumin prior to their administration. Therapeutic formulations may be administered in many conventional dosage formulations. While it is possible for the active ingredient to be administered alone, it is preferable to present it as a pharmaceutical formulation. Formulations comprise at least one active ingredient, as defined above, together with one or more acceptable carriers thereof. Each carrier must be both pharmaceutically and physiologically acceptable in the sense of being compatible with the other ingredients and not injurious to the patient. Formulations include those suitable for oral, rectal, nasal, or parenteral (including subcutaneous, intramuscular, intravenous and intradermal) administration. The formulations may conveniently be presented in unit dosage form and may be prepared by methods well known in the art of pharmacy. See, e.g., Gilman, et al. (eds. 1990) Goodman and Gilman's: The Pharmacological Bases of Therapeutics, 8th Ed., Pergamon Press; and Remington's Pharmaceutical Sciences, 17th ed. (1990), Mack Publishing Co., Easton, Penn.; Avis, et al. (eds. 1993) Pharmaceutical Dosage Forms: Parenteral Medications Dekker, NY; Lieberman, et al. (eds. 1990) Pharmaceutical Dosage Forms: Tablets Dekker, NY; and

Lieberman, et al. (eds. 1990) Pharmaceutical Dosage Forms: Disperse Systems Dekker, NY. The therapy of this invention may be combined with or used in association with other therapeutic agents, particularly agonists or antagonists of other cytokine receptor family members.

5

IX. Screening

Drug screening using DCRS8 or fragments thereof can be performed to identify compounds having binding affinity to the receptor subunit, including isolation of associated components. Subsequent biological assays can then be utilized to determine if the compound has intrinsic stimulating activity and is therefore a blocker or antagonist in that it blocks the activity of the ligand. Likewise, a compound having intrinsic stimulating activity can activate the receptor and is thus an agonist in that it simulates the activity of a cytokine ligand. This invention further contemplates the therapeutic use of antibodies to the receptor as cytokine agonists or antagonists.

15 Similarly, complexes comprising multiple proteins may be used to screen for ligands or reagents capable of recognizing the complex. Most cytokine receptors comprise at least two subunits, which may be the same, or distinct. Alternatively, the transmembrane receptor may bind to a complex comprising a cytokine-like ligand associated with another soluble protein serving, e.g., as a second receptor subunit.

20 One method of drug screening utilizes eukaryotic or prokaryotic host cells which are stably transformed with recombinant DNA molecules expressing the DCRS8 in combination with another cytokine receptor subunit. Cells may be isolated which express a receptor in isolation from other functional receptors. Such cells, either in viable or fixed form, can be used for standard antibody/antigen or ligand/receptor binding assays. See 25 also, Parce, et al. (1989) Science 246:243-247; and Owicki, et al. (1990) Proc. Nat'l Acad. Sci. USA 87:4007-4011, which describe sensitive methods to detect cellular responses. Competitive assays are particularly useful, where the cells (source of putative ligand) are contacted and incubated with a labeled receptor or antibody having known binding 30 affinity to the ligand, such as ¹²⁵I-antibody, and a test sample whose binding affinity to the binding composition is being measured. The bound and free labeled binding compositions are then separated to assess the degree of ligand binding. The amount of test compound bound is inversely proportional to the amount of labeled receptor binding to the known source. Many techniques can be used to separate bound from free ligand to 35 assess the degree of ligand binding. This separation step could typically involve a procedure such as adhesion to filters followed by washing, adhesion to plastic followed by washing, or centrifugation of the cell membranes. Viable cells could also be used to screen for the effects of drugs on cytokine mediated functions, e.g., second messenger

levels, e.g., Ca^{++} ; cell proliferation; inositol phosphate pool changes; and others. Some detection methods allow for elimination of a separation step, e.g., a proximity sensitive detection system. Calcium sensitive dyes will be useful for detecting Ca^{++} levels, with a fluorimeter or a fluorescence cell sorting apparatus.

5

X. Ligands

The descriptions of the DCRS8 herein provides means to identify ligands, as described above. Such ligand should bind specifically to the respective receptor with reasonably high affinity. Various constructs are made available which allow either 10 labeling of the receptor to detect its ligand. For example, directly labeling cytokine receptor, fusing onto it markers for secondary labeling, e.g., FLAG or other epitope tags, etc., will allow detection of receptor. This can be histological, as an affinity method for biochemical purification, or labeling or selection in an expression cloning approach. A two-hybrid selection system may also be applied making appropriate constructs with the 15 available cytokine receptor sequences. See, e.g., Fields and Song (1989) Nature 340:245-246.

Most likely candidates will be structually related to members of the IL-17 family. See, e.g., USSN 09/480,287.

20 The broad scope of this invention is best understood with reference to the following examples, which are not intended to limit the inventions to the specific embodiments.

EXAMPLES

25 I. General Methods

Some of the standard methods are described or referenced, e.g., in Maniatis, et al. (1982) Molecular Cloning. A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor Press; Sambrook, et al. (1989) Molecular Cloning: A Laboratory Manual, (2d ed.), vols. 1-3, CSH Press, NY; or Ausubel, et al. (1987 and Supplements) Current 30 Protocols in Molecular Biology, Greene/Wiley, New York. Methods for protein purification include such methods as ammonium sulfate precipitation, column chromatography, electrophoresis, centrifugation, crystallization, and others. See, e.g., Ausubel, et al. (1987 and periodic supplements); Coligan, et al. (ed. 1996) and periodic supplements, Current Protocols In Protein Science Greene/Wiley, New York; Deutscher 35 (1990) "Guide to Protein Purification" in Methods in Enzymology, vol. 182, and other volumes in this series; and manufacturer's literature on use of protein purification products, e.g., Pharmacia, Piscataway, N.J., or Bio-Rad, Richmond, CA. Combination

with recombinant techniques allow fusion to appropriate segments, e.g., to a FLAG sequence or an equivalent which can be fused via a protease-removable sequence. See, e.g., Hochuli (1990) "Purification of Recombinant Proteins with Metal Chelate Absorbent" in Setlow (ed.) Genetic Engineering, Principle and Methods 12:87-98, 5 Plenum Press, N.Y.; and Crowe, et al. (1992) QIAexpress: The High Level Expression & Protein Purification System QIAGEN, Inc., Chatsworth, CA.

Computer sequence analysis is performed, e.g., using available software programs, including those from the GCG (U. Wisconsin) and GenBank sources. Public sequence databases were also used, e.g., from GenBank and others.

10 Many techniques applicable to IL-10 receptors may be applied to the DCRSs, as described, e.g., in USSN 08/110,683 (IL-10 receptor), which is incorporated herein by reference.

15 II. Computational Analysis

Human sequences related to cytokine receptors were identified from genomic sequence database using, e.g., the BLAST server (Altschul, et al. (1994) Nature Genet. 6:119-129). Standard analysis programs may be used to evaluate structure, e.g., PHD (Rost and Sander (1994) Proteins 19:55-72) and DSC (King and Sternberg (1996) Protein Sci. 5:2298-2310). Standard comparison software includes, e.g., Altschul, et al. (1990) J. Mol. Biol. 215:403-10; Waterman (1995) Introduction to Computational Biology: Maps, Sequences, and Genomes Chapman & Hall; Lander and Waterman (eds. 1995) Calculating the Secrets of Life: Applications of the Mathematical Sciences in Molecular Biology National Academy Press; and Speed and Waterman (eds. 1996) Genetic Mapping and DNA Sequencing (IMA Volumes in Mathematics and Its Applications, Vol 81) 20 Springer Verlag. Each reference is incorporate herein by reference.

25 III. Cloning of full-length cDNAs; Chromosomal localization

30 PCR primers derived from the sequences are used to probe a human cDNA library. Sequences may be derived, e.g., from Tables 1-5, preferably those adjacent the ends of sequences. Full length cDNAs for primate, rodent, or other species DCRS8 are cloned, e.g., by DNA hybridization screening of λ gt10 phage. PCR reactions are conducted using *T. aquaticus* Taqplus DNA polymerase (Stratagene) under appropriate conditions. Extending partial length cDNA clones is typically routine.

35 Chromosome spreads are prepared. In situ hybridization is performed on chromosome preparations obtained from phytohemagglutinin-stimulated human lymphocytes cultured for 72 h. 5-bromodeoxyuridine was added for the final seven hours

of culture (60 μ g/ml of medium), to ensure a posthybridization chromosomal banding of good quality.

A PCR fragment, amplified with the help of primers, is cloned into an appropriate vector. The vector is labeled by nick-translation with 3 H. The radiolabeled probe is hybridized to metaphase spreads at final concentration of 200 ng/ml of hybridization solution as described, e.g., in Mattei, et al. (1985) Hum. Genet. 69:327-331.

5 After coating with nuclear track emulsion (KODAK NTB2), slides are exposed. To avoid any slipping of silver grains during the banding procedure, chromosome spreads are first stained with buffered Giemsa solution and metaphase photographed. R-banding 10 is then performed by the fluorochrome-photolysis-Giemsa (FPG) method and metaphases rephotographed before analysis.

Similar appropriate methods are used for other species.

IV. Localization of mRNA

15 Human multiple tissue (Cat# 1, 2) and cancer cell line blots (Cat# 7757-1), containing approximately 2 μ g of poly(A)⁺ RNA per lane, are purchased from Clontech (Palo Alto, CA). Probes are radiolabeled with [α - 3 2P] dATP, e.g., using the Amersham Rediprime random primer labeling kit (RPN1633). Prehybridization and hybridizations are performed, e.g., at 65° C in 0.5 M Na₂HPO₄, 7% SDS, 0.5 M EDTA (pH 8.0). High 20 stringency washes are conducted, e.g., at 65° C with two initial washes in 2 x SSC, 0.1% SDS for 40 min followed by a subsequent wash in 0.1 x SSC, 0.1% SDS for 20 min. Membranes are then exposed at -70° C to X-Ray film (Kodak) in the presence of 25 intensifying screens. More detailed studies by cDNA library Southern's are performed with selected appropriate human DCRS clones to examine their expression in hemopoietic or other cell subsets.

Alternatively, two appropriate primers are selected from Tables 1-5. RT-PCR is used on an appropriate mRNA sample selected for the presence of message to produce a cDNA, e.g., a sample which expresses the gene.

30 Full length clones may be isolated by hybridization of cDNA libraries from appropriate tissues pre-selected by PCR signal. Northern blots can be performed.

35 Message for genes encoding DCRS will be assayed by appropriate technology, e.g., PCR, immunoassay, hybridization, or otherwise. Tissue and organ cDNA preparations are available, e.g., from Clontech, Mountain View, CA. Identification of sources of natural expression are useful, as described. And the identification of functional receptor subunit pairings will allow for prediction of what cells express the combination of receptor subunits which will result in a physiological responsiveness to each of the cytokine ligands.

For mouse counterpart distribution, e.g., Southern Analysis can be performed: DNA (5 µg) from a primary amplified cDNA library was digested with appropriate restriction enzymes to release the inserts, run on a 1% agarose gel and transferred to a nylon membrane (Schleicher and Schuell, Keene, NH).

5 Samples for mouse mRNA isolation may include: resting mouse fibroblastic L cell line (C200); Braf:ER (Braf fusion to estrogen receptor) transfected cells, control (C201); T cells, TH1 polarized (Mell4 bright, CD4+ cells from spleen, polarized for 7 days with IFN-γ and anti IL-4; T200); T cells, TH2 polarized (Mell4 bright, CD4+ cells from spleen, polarized for 7 days with IL-4 and anti-IFN-γ; T201); T cells, highly TH1 polarized (see Openshaw, et al. (1995) J. Exp. Med. 182:1357-1367; activated with anti-CD3 for 2, 6, 16 h pooled; T202); T cells, highly TH2 polarized (see Openshaw, et al. (1995) J. Exp. Med. 182:1357-1367; activated with anti-CD3 for 2, 6, 16 h pooled; T203); CD44- CD25+ pre T cells, sorted from thymus (T204); TH1 T cell clone D1.1, resting for 3 weeks after last stimulation with antigen (T205); TH1 T cell clone D1.1, 10 µg/ml ConA stimulated 15 h (T206); TH2 T cell clone CDC35, resting for 3 weeks after last stimulation with antigen (T207); TH2 T cell clone CDC35, 10 µg/ml ConA stimulated 15 h (T208); Mell4+ naive T cells from spleen, resting (T209); Mell4+ T cells, polarized to Th1 with IFN-γ/IL-12/anti-IL-4 for 6, 12, 24 h pooled (T210); Mell4+ T cells, polarized to Th2 with IL-4/anti-IFN-γ for 6, 13, 24 h pooled (T211); unstimulated 10

10 mature B cell leukemia cell line A20 (B200); unstimulated B cell line CH12 (B201); unstimulated large B cells from spleen (B202); B cells from total spleen, LPS activated (B203); metrizamide enriched dendritic cells from spleen, resting (D200); dendritic cells from bone marrow, resting (D201); monocyte cell line RAW 264.7 activated with LPS 4 h (M200); bone-marrow macrophages derived with GM and M-CSF (M201); macrophage 15 cell line J774, resting (M202); macrophage cell line J774 + LPS + anti-IL-10 at 0.5, 1, 3, 6, 12 h pooled (M203); macrophage cell line J774 + LPS + IL-10 at 0.5, 1, 3, 5, 12 h pooled (M204); aerosol challenged mouse lung tissue, Th2 primers, aerosol OVA challenge 7, 14, 23 h pooled (see Garlisi, et al. (1995) Clinical Immunology and Immunopathology 75:75-83; X206); Nippostrongylus-infected lung tissue (see Coffman, et al. (1989) Science 245:308-310; X200); total adult lung, normal (O200); total lung, rag-1 (see Schwarz, et al. (1993) Immunodeficiency 4:249-252; O205); IL-10 K.O. spleen (see Kuhn, et al. (1991) Cell 75:263-274; X201); total adult spleen, normal (O201); total spleen, rag-1 (O207); IL-10 K.O. Peyer's patches (O202); total Peyer's patches, normal (O210); IL-10 K.O. mesenteric lymph nodes (X203); total mesenteric lymph nodes, normal (O211); IL-10 K.O. colon (X203); total colon, normal (O212); NOD mouse pancreas (see Makino, et al. (1980) Jikken Dobutsu 29:1-13; X205); total thymus, rag-1 (O208); total kidney, rag-1 (O209); total heart, rag-1 (O202); total brain, rag-1 (O203);

20

25

30

35

total testes, rag-1 (O204); total liver, rag-1 (O206); rat normal joint tissue (O300); and rat arthritic joint tissue (X300).

Samples for human mRNA isolation may include, e.g.: peripheral blood mononuclear cells (monocytes, T cells, NK cells, granulocytes, B cells), resting (T100); peripheral blood mononuclear cells, activated with anti-CD3 for 2, 6, 12 h pooled (T101); T cell, TH0 clone Mot 72, resting (T102); T cell, TH0 clone Mot 72, activated with anti-CD28 and anti-CD3 for 3, 6, 12 h pooled (T103); T cell, TH0 clone Mot 72, anergic treated with specific peptide for 2, 7, 12 h pooled (T104); T cell, TH1 clone HY06, resting (T107); T cell, TH1 clone HY06, activated with anti-CD28 and anti-CD3 for 3, 6, 12 h pooled (T108); T cell, TH1 clone HY06, anergic treated with specific peptide for 2, 6, 12 h pooled (T109); T cell, TH2 clone HY935, resting (T110); T cell, TH2 clone HY935, activated with anti-CD28 and anti-CD3 for 2, 7, 12 h pooled (T111); T cells CD4+CD45RO- T cells polarized 27 days in anti-CD28, IL-4, and anti IFN- γ , TH2 polarized, activated with anti-CD3 and anti-CD28 4 h (T116); T cell tumor lines Jurkat and Huf78, resting (T117); T cell clones, pooled AD130.2, Tc783.12, Tc783.13, Tc783.58, Tc782.69, resting (T118); T cell random $\gamma\delta$ T cell clones, resting (T119); Splenocytes, resting (B100); Splenocytes, activated with anti-CD40 and IL-4 (B101); B cell EBV lines pooled WT49, RSB, JY, CVIR, 721.221, RM3, HSY, resting (B102); B cell line JY, activated with PMA and ionomycin for 1, 6 h pooled (B103); NK 20 clones pooled, resting (K100); NK 20 clones pooled, activated with PMA and ionomycin for 6 h (K101); NKL clone, derived from peripheral blood of LGL leukemia patient, IL-2 treated (K106); NK cytotoxic clone 640-A30-1, resting (K107); hematopoietic precursor line TF1, activated with PMA and ionomycin for 1, 6 h pooled (C100); U937 premonocytic line, resting (M100); U937 premonocytic line, activated with PMA and ionomycin for 1, 6 h pooled (M101); elutriated monocytes, activated with LPS, IFN γ , anti-IL-10 for 1, 2, 6, 12, 24 h pooled (M102); elutriated monocytes, activated with LPS, IFN γ , IL-10 for 1, 2, 6, 12, 24 h pooled (M103); elutriated monocytes, activated with LPS, IFN γ , anti-IL-10 for 4, 16 h pooled (M106); elutriated monocytes, activated with LPS, IFN γ , IL-10 for 4, 16 h pooled (M107); elutriated monocytes, activated LPS for 1 h (M108); elutriated monocytes, activated LPS for 6 h (M109); DC 70% CD1a+, from CD34+ GM-CSF, TNF α 12 days, resting (D101); DC 70% CD1a+, from CD34+ GM-CSF, TNF α 12 days, activated with PMA and ionomycin for 1 hr (D102); DC 70% CD1a+, from CD34+ GM-CSF, TNF α 12 days, activated with PMA and ionomycin for 6 hr (D103); DC 95% CD1a+, from CD34+ GM-CSF, TNF α 12 days FACS sorted, activated with PMA and ionomycin for 1, 6 h pooled (D104); DC 95% CD14+, ex CD34+ GM-CSF, TNF α 12 days FACS sorted, activated with PMA and ionomycin 1, 6 hr pooled (D105); DC CD1a+ CD86+, from CD34+ GM-CSF, TNF α 12 days FACS sorted, activated with PMA and

ionomycin for 1, 6 h pooled (D106); DC from monocytes GM-CSF, IL-4 5 days, resting (D107); DC from monocytes GM-CSF, IL-4 5 days, resting (D108); DC from monocytes GM-CSF, IL-4 5 days, activated LPS 4, 16 h pooled (D109); DC from monocytes GM-CSF, IL-4 5 days, activated TNF α , monocyte supe for 4, 16 h pooled (D110); Leiomyoma L11 benign tumor (X101); normal myometrium M5 (O115); malignant leiomyosarcoma GS1 (X103); lung fibroblast sarcoma line MRC5, activated with PMA and ionomycin for 1, 6 h pooled (C101); kidney epithelial carcinoma cell line CHA, activated with PMA and ionomycin for 1, 6 h pooled (C102); kidney fetal 28 wk male (O100); lung fetal 28 wk male (O101); liver fetal 28 wk male (O102); heart fetal 28 wk male (O103); brain fetal 28 wk male (O104); gallbladder fetal 28 wk male (O106); small intestine fetal 28 wk male (O107); adipose tissue fetal 28 wk male (O108); ovary fetal 25 wk female (O109); uterus fetal 25 wk female (O110); testes fetal 28 wk male (O111); spleen fetal 28 wk male (O112); adult placenta 28 wk (O113); and tonsil inflamed, from 12 year old (X100).

TaqMan quantitative PCR techniques have shown the DCRS6, in both mouse and human, to be expressed on T cells, including thymocytes and CD4+ naive and differentiated (hDCRS6 is also expressed on dendritic cells), in gastrointestinal tissue, including stomach, intestine, colon and associated lymphoid tissue, e.g., Peyer's patches and mesenteric lymph nodes, and upregulated in inflammatory models of bowel disease, e.g., IL-10 KO mice. The hDCRS7 was detected in both resting and activated dendritic cells, epithelial cells, and mucosal tissues, including GI and reproductive tracts. These data suggest that family members are expressed in mucosal tissues and immune system cell types, and/or in gastrointestinal, airway, and reproductive tract development.

As such, therapeutic indications include, e.g., short bowel syndrome, post chemo/radio-therapy or alcoholic recovery, combinations with ulcer treatments or arthritis medication, Th2 pregnancy skewing, stomach lining/tissue regeneration, loss of adsorptive surface conditions, etc. See, e.g., Yamada, et al. (eds. 1999) Textbook of Gastroenterology; Yamada, et al. (eds. 1999) Textbook and Atlas of Gastroenterology; Gore and Levine (2000) Textbook of Gastrointestinal Radiology; and (1987) Textbook of Pediatric Gastroenterology.

Similar samples may be isolated in other species for evaluation.

Primers specific for IL-17RA were designed and used in Taqman quantitative PCR against various human libraries. IL-17RA is highly expressed in innate immune myeloid cells including dendritic cells and monocytes. Expression is also detected in T-cell libraries. These data demonstrate the receptor is expressed in immune cell types and may be regulated by activation conditions.

Table for IL-17RA

library description

CT for IL-
17RA_H

DC ex monocytes GM-CSF, IL-4, resting	16.97
U937 premonocytic line, activated	17.14
DC ex monocytes GM-CSF, IL-4, resting	17.53
DC 70% CD1a+, ex CD34+ GM-CSF, TNFa, resting	18.17
monocytes, LPS, gIFN, anti-IL-10	18.27
DC ex monocytes GM-CSF, IL-4, LPS activated 4+16 hr	18.51
DC ex monocytes GM-CSF, IL-4, monokine activated 4+16 hr	18.68
kidney epithelial carcinoma cell line CHA, activated	18.69
monocytes, LPS, 1 hr	18.72
monocytes, LPS, 6 hr	18.72
DC 70% CD1a+, ex CD34+ GM-CSF, TNFa, activated 1 hr	18.91
DC 70% CD1a+, ex CD34+ GM-CSF, TNFa, activated 6 hr	18.94
T cell, TH1 clone HY06, activated	18.99
lung fetal	19.15
T cell, TH1 clone HY06, resting	19.18
T cell, TH1 clone HY06, anergic	19.23
monocytes, LPS, gIFN, IL-10, 4+16 hr	19.3
spleen fetal	19.51
testes fetal	19.7
T cell, TH0 clone Mot 72, resting	19.71
T cell, TH0 clone Mot 72, resting	19.84
DC CD1a+ CD86+, ex CD34+ GM-CSF, TNFa, activated 1+6 hr	19.94
peripheral blood mononuclear cells, activated	20.01
hematopoietic precursor line TF1, activated	20.07
lung fibroblast sarcoma line MRC5, activated	20.18
Splenocytes, activated	20.21
T cell gd clones, resting	20.27
ovary fetal	20.45
T cells CD4+, TH2 polarized, activated	20.57
Splenocytes, resting	20.6
uterus fetal	20.62
DC 95% CD1a+, ex CD34+ GM-CSF, TNFa, activated 1+6 hr	20.94
epithelial cells, unstimulated	20.96
peripheral blood mononuclear cells, resting	20.97
adipose tissue fetal	21.13

B cell line JY, activated	21.28
monocytes, LPS, gIFN, IL-10	21.37
placenta 28 wk	21.38
NK 20 clones pooled, activated	21.55
pool of two normal human lung samples	21.63
normal human thyroid	21.65
epithelial cells, IL-1b activated	21.72
normal human skin	21.84
T cell, TH0 clone Mot 72, anergic	21.87
small intestine fetal	22.01
CD28- T cell clone in pME	22.08
T cell, TH2 clone HY935, activated	22.09
T cell clones, pooled, resting	22.29
Hashimoto's thyroiditis thyroid sample	22.3
NK 20 clones pooled, resting	22.4
B cell EBV lines, resting	22.45
T cell, TH2 clone HY935, resting	22.86
T cell, TH0 clone Mot 72, activated	23.3
monocytes, LPS, gIFN, anti-IL-10, 4+16 hr	23.39
T cell lines Jurkat and Hut78, resting	23.4
T cell, TH0 clone Mot 72, activated	23.56
Pneumocystic carnii pneumonia lung sample	24.05
U937 premonocytic line, resting	25.01
pool of rheumatoid arthritis samples, human	25.85
pool of three heavy smoker human lung samples	26.1
DC 95% CD14+, ex CD34+ GM-CSF, TNFa, activated 1+6 hr	32.69
kidney fetal	33.7
liver fetal	34.4
NK cytotoxic clone, resting	34.49
tonsil inflammed	35.02
normal w.t. monkey lung	35.45
gallbladder fetal	35.84
TR1 T cell clone	35.86
allergic lung sample	36.39
Psoriasis patient skin sample	36.44
normal human colon	37.34
brain fetal	37.35
Ascaris-challenged monkey lung, 4 hr.	37.75
Ascaris-challenged monkey lung, 24 hr.	40
heart fetal	40
normal w.t. monkey colon	40
ulcerative colitis human colon sample	40

Primers specific for DCRS6_H were designed and used in Taqman quantitative PCR against various human libraries. DCRS6_H is expressed in innate immune myeloid cells including dendritic cells and monocytes. Expression is also detected in T-cell libraries. These data demonstrate the receptor is expressed in immune cell types and may be 5 regulated by activation conditions.

library description	CT for DCRS6_H
T cell, TH0 clone Mot 72, resting	15.54
T cell, TH0 clone Mot 72, resting	15.7
DC ex monocytes GM-CSF, IL-4, resting	17.84
DC ex monocytes GM-CSF, IL-4, resting	18.19
DC ex monocytes GM-CSF, IL-4, LPS activated 4+16 hr	18.3
DC ex monocytes GM-CSF, IL-4, monokine activated 4+16 hr	18.3
T cell, TH1 clone HY06, resting	18.43
NK cytotoxic clone, resting	18.53
T cell clones, pooled, resting	18.8
T cell, TH1 clone HY06, activated	19.03
T cell, TH2 clone HY935, activated	19.1
TR1 T cell clone	19.12
T cells CD4+, TH2 polarized, activated	20.06
B cell EBV lines, resting	20.3
T cell, TH2 clone HY935, resting	20.48
kidney epithelial carcinoma cell line CHA, activated	21.07
T cell, TH1 clone HY06, anergic	21.14
normal human colon	21.29
NK 20 clones pooled, resting	21.49
T cell gd clones, resting	21.58
gallbladder fetal	22.21
kidney fetal	22.79
liver fetal	22.8
<i>Pneumocystic carni</i> pneumonia lung sample	23.06
CD28- T cell clone in pME	23.18
T cell, TH0 clone Mot 72, anergic	23.2
ovary fetal	23.51
normal human thyroid	24.03
small intestine fetal	24.13
testes fetal	24.82
epithelial cells, IL-1b activated	26.08
pool of three heavy smoker human lung samples	26.49
placenta 28 wk	26.56
normal w.t. monkey lung	28.65
peripheral blood mononuclear cells,	33.39

activated	
Ascaris-challenged monkey lung, 4 hr.	36.59
spleen fetal	38.43
peripheral blood mononuclear cells, resting	40
T cell, TH0 clone Mot 72, activated	40
T cell lines Jurkat and Hut78, resting	40
Splenocytes, resting	40
Splenocytes, activated	40
B cell line JY, activated	40
NK 20 clones pooled, activated	40
hematopoietic precursor line TF1, activated	40
U937 premonocytic line, resting	40
U937 premonocytic line, activated	40
monocytes, LPS, gIFN, anti-IL-10	40
monocytes, LPS, gIFN, IL-10	40
monocytes, LPS, gIFN, anti-IL-10, 4+16 hr	40
monocytes, LPS, gIFN, IL-10, 4+16 hr	40
monocytes, LPS, 1 hr	40
monocytes, LPS, 6 hr	40
DC 70% CD1a+, ex CD34+ GM-CSF, TNFa, resting	40
DC 70% CD1a+, ex CD34+ GM-CSF, TNFa, activated 1 hr	40
DC 70% CD1a+, ex CD34+ GM-CSF, TNFa, activated 6 hr	40
DC 95% CD1a+, ex CD34+ GM-CSF, TNFa, activated 1+6 hr	40
DC 95% CD14+, ex CD34+ GM-CSF, TNFa, activated 1+6 hr	40
DC CD1a+ CD86+, ex CD34+ GM-CSF, TNFa, activated 1+6 hr	40
epithelial cells, unstimulated	40
lung fibroblast sarcoma line MRC5, activated	40
Ascaris-challenged monkey lung, 24 hr.	40
pool of two normal human lung samples	40
allergic lung sample	40
normal w.t. monkey colon	40
ulcerative colitis human colon sample	40
Hashimoto's thyroiditis thyroid sample	40
pool of rheumatoid arthritis samples, human	40
normal human skin	40
Psoriasis patient skin sample	40
tonsil inflamed	40
lung fetal	40
heart fetal	40
brain fetal	40
adipose tissue fetal	40
uterus fetal	40

T cell, TH0 clone Mot 72, activated

40

Primers specific for DCRS7_H were designed and used in Taqman quantitative PCR against various human libraries. DCRS7_H is expressed in innate immune myeloid cells including dendritic cells and monocytes. Expression is also detected in fetal libraries. These data demonstrate the receptor is expressed in immune cell types and may be regulated by activation conditions.

Table for DCRS7_H
library description

fetal uterus	19.05
DC mix	19.34
fetal small intestine	19.46
fetal ovary	19.68
fetal testes	19.75
fetal lung	20.04
CHA	20.24
normal thyroid	20.32
DC/GM/IL-4	20.52
fetal spleen	20.86
normal lung	20.94
TF1	21
allergic lung #19	21.02
Psoriasis skin	21.07
fetal liver	21.15
MRC5	21.15
24 hr. Ascaris lung	21.17
hi dose IL-4 lung	21.23
CD1a+ 95%	21.32
Hashimotos thyroiditis	21.35
Crohns colon 4003197A	21.35
normal lung pool	21.36
70% DC resting	21.42
fetal kidney	21.58
adult placenta	21.68
lung 121897-1	21.8
Pneumocystis carnii lung	21.81
#20	
A549 unstim.	21.89
normal colon #22	21.94
18 hr. Ascaris lung	22.09
normal skin	22.1
Crohns colon 9609C144	22.13
fetal adipose tissue	22.35
D6	22.39

DC resting CD34-derived	22.45
DC TNF/TGFb act CD34-der.	22.54
fetal brain	22.9
DC CD40L activ. mono-deriv.	22.91
Crohns colon 403242A	22.91
ulcerative colitis colon	23
#26	
RA synovium pool	23.06
A549 activated	23.06
mono + IL-10	23.42
DC LPS	23.49
Mot 72 activated	23.66
CD1a+ CD86+	23.86
HY06 resting	23.87
U937 activated	23.97
inflammed tonsil	23.97
D1	24.06
M1	24.17
CD14+ 95%	24.21
lung 080698-2	24.28
4 hr. Ascaris lung	24.37
Jurkat activated pSPORT	24.42
DC resting mono-derived	24.48
HY06 activated	24.54
C+	24.64
Splenocytes resting	24.65
U937/CD004 resting	24.96
PBMC resting	25.8
Mot 72 resting	25.91
mono + anti-IL-10	26.14
NK pool	26.99
HY06 anti-peptide	27.34
mast cell pME	27.38
Tc gamma delta	28.14
TC1080 CD28- pMET7	31.05
PBMC activated	31.89
NK non cytotox.	32.3
RV-C30 TR1 pMET7	32.5
Bc	33.72
C-	33.8
Splenocytes activated	34.7
JY	35.05
NK cytotox.	36.44
NKL/IL-2	37.59
HY935 resting	37.6
NK pool activated	38.15
Mot 72 anti-peptide	38.87
fetal heart	40.92

B21 resting	42.05
Jurkat resting pSPORT	42.8
B21 activated	43.09
NKA6 pSPORT	44.85
HY935 activated	45
M6	45

5 Primers specific for DCRS9_H were designed and used in Taqman quantitative PCR against various human libraries. DCRS9_H is expressed T-cells, fetal lung, and resting monocytes. These data demonstrate the receptor is expressed in immune cell types and may be regulated by activation conditions.

Table for DCRS9_H
library description CT for
DCRS9_H

HY06 resting	22.35
fetal lung	22.63
HY06 anti-peptide	22.72
HY06 activated	22.96
U937/CD004 resting	24.16
fetal small intestine	24.94
JY	25.04
Mot 72 resting	25.12
Jurkat activated	25.2
pSPORT	
RV-C30 TR1 pMET7	26.51
fetal kidney	26.76
MRC5	27.2
Psoriasis skin	27.3
Tc gamma delta	27.37
Crohns colon	27.44
4003197A	
fetal spleen	27.72
normal lung	27.83
Hashimotos	28.03
thyroiditis	
B21 resting	28.32
TF1	28.39
NK cytotox.	28.44
TC1080 CD28- pMET7	28.61
Pneumocystis carnii	29.05
lung #20	
U937 activated	29.06
HY935 resting	29.09
CD1a+ 95%	29.13

B21 activated	29.2
Mot 72 activated	29.21
fetal testes	29.27
lung 080698-2	29.32
Jurkat resting	29.38
psPORT	
CD14+ 95%	29.38
normal thyroid	29.53
Mot 72 anti-peptide	29.65
Splenocytes resting	29.85
Crohns colon	30.28
9609C144	
lung 121897-1	30.37
24 hr. Ascaris lung	30.59
hi dose IL-4 lung	30.8
CD1a+ CD86+	31.42
normal skin	31.73
fetal uterus	31.79
PBMC activated	31.82
inflammed tonsil	31.98
fetal brain	32.21
RA synovium pool	32.77
allergic lung #19	33.18
18 hr. Ascaris lung	33.42
adult placenta	33.43
normal lung pool	33.45
Crohns colon	33.52
403242A	
NK pool	33.72
HY935 activated	33.75
DC/GM/IL-4	34.28
DC resting monod derived	34.57
fetal ovary	35.06
fetal adipose tissue	35.07
CHA	35.2
PBMC resting	35.95
Bc	36.19
A549 unstim.	36.4
fetal heart	36.87
ulcerative colitis	37.83
colon #26	
C-	38.32
4 hr. Ascaris lung	40.2
D6	40.62
C+	44.38

A549 activated	44.58
Splenocytes	45
activated	
NK pool activated	45
NKA6 pSPORT	45
NKL/IL-2	45
NK non cytotox.	45
mono + anti-IL-10	45
mono + IL-10	45
M1	45
M6	45
70% DC resting	45
D1	45
DC LPS	45
DC mix	45
fetal liver	45
mast cell pME	45
DC CD40L activ.	45
mono-deriv.	
DC resting CD34-derived	45
DC TNF/TGFb act	45
CD34-der.	
normal colon #22	45

V. Cloning of species counterparts

Various strategies are used to obtain species counterparts of the DCRSs, preferably from other primates or rodents. One method is by cross hybridization using closely related species DNA probes. It may be useful to go into evolutionarily similar species as intermediate steps. Another method is by using specific PCR primers based on the identification of blocks of similarity or difference between genes, e.g., areas of highly conserved or nonconserved polypeptide or nucleotide sequence. Sequence database searches may identify species counterparts.

10 VI. Production of mammalian protein

An appropriate, e.g., GST, fusion construct is engineered for expression, e.g., in *E. coli*. For example, a mouse IGIF pGex plasmid is constructed and transformed into *E. coli*. Freshly transformed cells are grown, e.g., in LB medium containing 50 µg/ml ampicillin and induced with IPTG (Sigma, St. Louis, MO). After overnight induction, the bacteria are harvested and the pellets containing the appropriate protein are isolated. The pellets are homogenized, e.g., in TE buffer (50 mM Tris-base pH 8.0, 10 mM EDTA and 2 mM pefabloc) in 2 liters. This material is passed through a microfluidizer (Microfluidics, Newton, MA) three times. The fluidized supernatant is spun down on a Sorvall GS-3 rotor for 1 h at 13,000 rpm. The resulting supernatant containing the cytokine receptor protein is filtered and passed over a glutathione-SEPHAROSE column equilibrated in 50 mM Tris-base pH 8.0. Fractions containing the DCRS8-GST fusion protein are pooled and cleaved, e.g., with thrombin (Enzyme Research Laboratories, Inc., South Bend, IN). The cleaved pool is then passed over a Q-SEPHAROSE column equilibrated in 50 mM Tris-base. Fractions containing DCRS8 are pooled and diluted in cold distilled H₂O, to lower the conductivity, and passed back over a fresh Q-Sepharose column, alone or in succession with an immunoaffinity antibody column. Fractions containing the DCRS8 protein are pooled, aliquoted, and stored in the -70° C freezer.

30 Comparison of the CD spectrum with cytokine receptor protein may suggest that the protein is correctly folded. See Hazuda, et al. (1969) *J. Biol. Chem.* 264:1689-1693.

35 VII. Preparation of specific antibodies

Inbred Balb/c mice are immunized intraperitoneally with recombinant forms of the protein, e.g., purified DCRS8 or stable transfected NIH-3T3 cells. Animals are boosted at appropriate time points with protein, with or without additional adjuvant, to further stimulate antibody production. Serum is collected, or hybridomas produced with harvested spleens.

Alternatively, Balb/c mice are immunized with cells transformed with the gene or fragments thereof, either endogenous or exogenous cells, or with isolated membranes enriched for expression of the antigen. Serum is collected at the appropriate time, typically after numerous further administrations. Various gene therapy techniques may 5 be useful, e.g., in producing protein in situ, for generating an immune response. Serum or antibody preparations may be cross-absorbed or immunoselected to prepare substantially purified antibodies of defined specificity and high affinity.

Monoclonal antibodies may be made. For example, splenocytes are fused with an appropriate fusion partner and hybridomas are selected in growth medium by standard 10 procedures. Hybridoma supernatants are screened for the presence of antibodies which bind to the DCRS8, e.g., by ELISA or other assay. Antibodies which specifically recognize specific DCRS8 embodiments may also be selected or prepared.

In another method, synthetic peptides or purified protein are presented to an immune system to generate monoclonal or polyclonal antibodies. See, e.g., Coligan (ed. 15 1991) Current Protocols in Immunology Wiley/Greene; and Harlow and Lane (1989) Antibodies: A Laboratory Manual Cold Spring Harbor Press. In appropriate situations, the binding reagent is either labeled as described above, e.g., fluorescence or otherwise, or immobilized to a substrate for panning methods. Nucleic acids may also be introduced into cells in an animal to produce the antigen, which serves to elicit an immune response. 20 See, e.g., Wang, et al. (1993) Proc. Nat'l. Acad. Sci. 90:4156-4160; Barry, et al. (1994) BioTechniques 16:616-619; and Xiang, et al. (1995) Immunity 2: 129-135.

VIII. Production of fusion proteins

Various fusion constructs are made with DCRS8 or DCRS9. A portion of the 25 appropriate gene is fused to an epitope tag, e.g., a FLAG tag, or to a two hybrid system construct. See, e.g., Fields and Song (1989) Nature 340:245-246.

The epitope tag may be used in an expression cloning procedure with detection with anti-FLAG antibodies to detect a binding partner, e.g., ligand for the respective 30 cytokine receptor. The two hybrid system may also be used to isolate proteins which specifically bind to the receptor subunit.

IX. Structure activity relationship

Information on the criticality of particular residues is determined using standard 35 procedures and analysis. Standard mutagenesis analysis is performed, e.g., by generating many different variants at determined positions, e.g., at the positions identified above, and evaluating biological activities of the variants. This may be performed to the extent of determining positions which modify activity, or to focus on specific positions to

determine the residues which can be substituted to either retain, block, or modulate biological activity.

5 Alternatively, analysis of natural variants can indicate what positions tolerate natural mutations. This may result from populational analysis of variation among individuals, or across strains or species. Samples from selected individuals are analyzed, e.g., by PCR analysis and sequencing. This allows evaluation of population polymorphisms.

X. Isolation of a ligand

10 A cytokine receptor can be used as a specific binding reagent to identify its binding partner, by taking advantage of its specificity of binding, much like an antibody would be used. The binding receptor may be a heterodimer of receptor subunits; or may involve, e.g., a complex of the DCRS8 with another cytokine receptor subunit. A binding reagent is either labeled as described above, e.g., fluorescence or otherwise, or 15 immobilized to a substrate for panning methods.

20 The binding composition is used to screen an expression library made from a cell line which expresses a binding partner, i.e., ligand, preferably membrane associated. Standard staining techniques are used to detect or sort surface expressed ligand, or surface expressing transformed cells are screened by panning. Screening of intracellular expression is performed by various staining or immunofluorescence procedures: See also 25 McMahan, et al. (1991) EMBO J. 10:2821-2832.

25 For example, on day 0, precoat 2-chamber permanox slides with 1 ml per chamber of fibronectin, 10 ng/ml in PBS, for 30 min at room temperature. Rinse once with PBS. Then plate COS cells at $2-3 \times 10^5$ cells per chamber in 1.5 ml of growth media. Incubate overnight at 37 C.

30 On day 1 for each sample, prepare 0.5 ml of a solution of 66 μ g/ml DEAE-dextran, 66 μ M chloroquine, and 4 μ g DNA in serum free DME. For each set, a positive control is prepared, e.g., of DCRS8-FLAG cDNA at 1 and 1/200 dilution, and a negative 35 mock. Rinse cells with serum free DME. Add the DNA solution and incubate 5 hr at 37 C. Remove the medium and add 0.5 ml 10% DMSO in DME for 2.5 min. Remove and wash once with DME. Add 1.5 ml growth medium and incubate overnight.

35 On day 2, change the medium. On days 3 or 4, the cells are fixed and stained. Rinse the cells twice with Hank's Buffered Saline Solution (HBSS) and fix in 4% paraformaldehyde (PFA)/glucose for 5 min. Wash 3X with HBSS. The slides may be stored at -80 C after all liquid is removed. For each chamber, 0.5 ml incubations are performed as follows. Add HBSS/saponin (0.1%) with 32 μ l/ml of 1 M NaN₃ for 20 min. Cells are then washed with HBSS/saponin 1X. Add appropriate DCRS8 or

DCRS8/antibody complex to cells and incubate for 30 min. Wash cells twice with HBSS/saponin. If appropriate, add first antibody for 30 min. Add second antibody, e.g., Vector anti-mouse antibody, at 1/200 dilution, and incubate for 30 min. Prepare ELISA solution, e.g., Vector Elite ABC horseradish peroxidase solution, and preincubate for 30 min. Use, e.g., 1 drop of solution A (avidin) and 1 drop solution B (biotin) per 2.5 ml HBSS/saponin. Wash cells twice with HBSS/saponin. Add ABC HRP solution and incubate for 30 min. Wash cells twice with HBSS, second wash for 2 min, which closes cells. Then add Vector diaminobenzoic acid (DAB) for 5 to 10 min. Use 2 drops of buffer plus 4 drops DAB plus 2 drops of H₂O₂ per 5 ml of glass distilled water.

5 10 Carefully remove chamber and rinse slide in water. Air dry for a few minutes, then add 1 drop of Crystal Mount and a cover slip. Bake for 5 min at 85-90 C.

Evaluate positive staining of pools and progressively subclone to isolation of single genes responsible for the binding.

15 Alternatively, receptor reagents are used to affinity purify or sort out cells expressing a putative ligand. See, e.g., Sambrook, et al. or Ausubel, et al.

Another strategy is to screen for a membrane bound receptor by panning. The receptor cDNA is constructed as described above. Immobilization may be achieved by use of appropriate antibodies which recognize, e.g., a FLAG sequence of a DCRS8 fusion construct, or by use of antibodies raised against the first antibodies. Recursive cycles of 20 selection and amplification lead to enrichment of appropriate clones and eventual isolation of receptor expressing clones.

25 Phage expression libraries can be screened by mammalian DCRS8. Appropriate label techniques, e.g., anti-FLAG antibodies, will allow specific labeling of appropriate clones.

We tested the ability of DCRS receptors to specifically bind IL-17 family cytokines. Recombinant FLAG-hIL-17 family cytokines were used in binding experiments on Baf/3 DCRS receptor transfected expressing recombinant IL-17R_H, DCRS6_H, DCRS7_H, DCRS8_H and DCRS9_H and analyzed by FACS. We can demonstrate specific binding of IL-17 family member IL-74 to DCRS6 expressing Baf/3 30 cells. In additional experiments we have shown IL-17 specific binding to IL-17R_H, DCRS7_H, DCRS8_H. Further experiments show IL-71 binding to DCRS8_Hu transfectants. These experiments demonstrate the sequence homology among IL-17 related cytokine receptors confers functional binding to IL-17 cytokines.

35 All citations herein are incorporated herein by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

Many modifications and variations of this invention can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. The specific embodiments described herein are offered by way of example only, and the invention is to be limited by the terms of the appended claims, along with the full scope of equivalents to which such claims are entitled; and the invention is not to be limited by the specific embodiments that have been presented herein by way of example.

WHAT IS CLAIMED IS:

1. A composition of matter selected from:
 - a) a substantially pure or recombinant polypeptide comprising at least three distinct nonoverlapping segments of at least four amino acids identical to segments of SEQ ID NO: 14;
 - b) a substantially pure or recombinant polypeptide comprising at least two distinct nonoverlapping segments of at least five amino acids identical to segments of SEQ ID NO: 14;
 - c) a natural sequence DCRS8 comprising mature SEQ ID NO: 14;
 - d) a fusion polypeptide comprising DCRS8 sequence;
 - e) a substantially pure or recombinant polypeptide comprising at least three distinct nonoverlapping segments of at least four amino acids identical to segments of SEQ ID NO: 17 or 20;
 - f) a substantially pure or recombinant polypeptide comprising at least two distinct nonoverlapping segments of at least five amino acids identical to segments of SEQ ID NO: 17 or 20;
 - g) a natural sequence DCRS9 comprising mature SEQ ID NO: 17 or 20; or
 - h) a fusion polypeptide comprising DCRS9 sequence.
- 20 2. The substantially pure or isolated antigenic polypeptide of Claim 1, wherein said distinct nonoverlapping segments of identity include:
 - a) one of at least eight amino acids;
 - b) one of at least four amino acids and a second of at least five amino acids;
 - c) at least three segments of at least four, five, and six amino acids, or
 - 25 d) one of at least twelve amino acids.
3. The composition of matter of Claim 1, wherein said:
 - a) polypeptide:
 - i) comprises a mature sequence of Table 3 or 4;
 - 30 ii) is an unglycosylated form of DCRS8 or DCRS9;
 - iii) is from a primate, such as a human;
 - iv) comprises at least seventeen amino acids of SEQ ID NO: 14 or 17;
 - v) exhibits at least four nonoverlapping segments of at least seven amino acids of SEQ ID NO: 14 or 17;
 - 35 vi) is a natural allelic variant of DCRS8 or DCRS9;
 - vii) has a length at least about 30 amino acids;

viii) exhibits at least two non-overlapping epitopes which are specific for a primate DCRS8 or DCRS9;

5 ix) is glycosylated;

x) has a molecular weight of at least 30 kD with natural glycosylation;

xi) is a synthetic polypeptide;

xii) is attached to a solid substrate;

xiii) is conjugated to another chemical moiety;

xiv) is a 5-fold or less substitution from natural sequence; or

xv) is a deletion or insertion variant from a natural sequence.

10

4. A composition comprising:

a) a substantially pure DCRS8 or DCRS9 and another cytokine receptor family member;

b) a sterile DCRS8 or DCRS9 polypeptide of Claim 1;

15 c) said DCRS8 or DCRS9 polypeptide of Claim 1 and a carrier, wherein said carrier is:

i) an aqueous compound, including water, saline, and/or buffer; and/or

ii) formulated for oral, rectal, nasal, topical, or parenteral administration.

20

5. The fusion polypeptide of Claim 1, comprising:

a) mature protein sequence of Table 3 or 4;

b) a detection or purification tag, including a FLAG, His6, or Ig sequence; or

c) sequence of another cytokine receptor protein.

25

6. A kit comprising a polypeptide of Claim 1, and:

a) a compartment comprising said protein or polypeptide; or

b) instructions for use or disposal of reagents in said kit.

30

7. A binding compound comprising an antigen binding site from an antibody, which specifically binds to a natural DCRS8 or DCRS9 polypeptide of Claim 1, wherein:

a) said binding compound is in a container;

b) said DCRS8 or DCRS9 polypeptide is from a human;

c) said binding compound is an Fv, Fab, or Fab2 fragment;

d) said binding compound is conjugated to another chemical moiety; or

35

e) said antibody:

i) is raised against a peptide sequence of a mature polypeptide of Table 3 or 4;

- ii) is raised against a mature DCRS8 or DCRS9;
- iii) is raised to a purified human DCRS8 or DCRS9;
- iv) is immunoselected;
- v) is a polyclonal antibody;
- 5 vi) binds to a denatured DCRS8 or DCRS9;
- vii) exhibits a Kd to antigen of at least 30 μ M;
- viii) is attached to a solid substrate, including a bead or plastic membrane;
- ix) is in a sterile composition; or
- x) is detectably labeled, including a radioactive or fluorescent label.

10

8. A kit comprising said binding compound of Claim 7, and:

- a) a compartment comprising said binding compound; or
- b) instructions for use or disposal of reagents in said kit.

15

9. A method of producing an antigen:antibody complex, comprising contacting under appropriate conditions a primate DCRS8 or DCRS9 polypeptide with an antibody of Claim 7, thereby allowing said complex to form.

20

10. The method of Claim 9, wherein:

- a) said complex is purified from other cytokine receptors;
- b) said complex is purified from other antibody;
- c) said contacting is with a sample comprising an interferon;
- d) said contacting allows quantitative detection of said antigen;
- e) said contacting is with a sample comprising said antibody; or
- 25 f) said contacting allows quantitative detection of said antibody.

25

11. A composition comprising:

- a) a sterile binding compound of Claim 7, or
- b) said binding compound of Claim 7 and a carrier, wherein said carrier is:
 - 30 i) an aqueous compound, including water, saline, and/or buffer; and/or
 - ii) formulated for oral, rectal, nasal, topical, or parenteral administration.

30

12. An isolated or recombinant nucleic acid encoding said polypeptide of Claim 1, wherein said:

35

- a) DCRS8 or DCRS9 is from a human; or
- b) said nucleic acid:
 - i) encodes an antigenic peptide sequence of Table 3 or 4;

- ii) encodes a plurality of antigenic peptide sequences of Table 3 or 4;
- iii) exhibits identity over at least thirteen nucleotides to a natural cDNA encoding said segment;
- iv) is an expression vector;
- 5 v) further comprises an origin of replication;
- vi) is from a natural source;
- vii) comprises a detectable label;
- viii) comprises synthetic nucleotide sequence;
- ix) is less than 6 kb, preferably less than 3 kb;
- 10 x) is from a primate;
- xi) comprises a natural full length coding sequence;
- xii) is a hybridization probe for a gene encoding said DCRS8 or DCRS9; or
- xiii) is a PCR primer, PCR product, or mutagenesis primer.

15 13. A cell or tissue comprising said recombinant nucleic acid of Claim 12.

14. The cell of Claim 13, wherein said cell is:

- 20 a) a prokaryotic cell;
- b) a eukaryotic cell;
- c) a bacterial cell;
- d) a yeast cell;
- e) an insect cell;
- f) a mammalian cell;
- 25 g) a mouse cell;
- h) a primate cell; or
- i) a human cell.

15. A kit comprising said nucleic acid of Claim 12, and:

- 30 a) a compartment comprising said nucleic acid;
- b) a compartment further comprising a primate DCRS8 or DCRS9 polypeptide; or
- c) instructions for use or disposal of reagents in said kit.

35 16. A nucleic acid which:

- a) hybridizes under wash conditions of 30 minutes at 30° C and less than 2M salt to the coding portion of SEQ ID NO: 13 or 16; or

b) exhibits identity over a stretch of at least about 30 nucleotides to a primate DCRS8 or DCRS9.

17. The nucleic acid of Claim 16, wherein:

5 a) said wash conditions are at 45° C and/or 500 mM salt; or
b) said stretch is at least 55 nucleotides.

18. The nucleic acid of Claim 16, wherein:

10 a) said wash conditions are at 55° C and/or 150 mM salt; or
b) said stretch is at least 75 nucleotides.

19. A method of modulating physiology or development of a cell or tissue culture cells comprising contacting said cell with an agonist or antagonist of a mammalian DCRS8 or DCRS9.

15 20. The method of Claim 19, wherein said cell is transformed with a nucleic acid encoding said DCRS8 or DCRS9 and another cytokine receptor subunit.

FIG. 1A

DCRS7_Mu
 DCRS7_Hu
 IL-17R_Hu
 IL-17R_Mu
 DCRS10_Mu
 DCRS9_Hu
 DCRS8_Hu
 IL-17R_Ce
 DCRS6_Hu
 DCRS6_Ce

QGRATGR-----YVGVYFDGLLHPDSSPVAPIFSLP-SQLPAFLDALQ--GGCSTS
 QGRAPGS-----YVGACFDRLHHPDAVPALFRTPVVFTLR-SQLPDFLGALQ--QPRAPR
 RPACFGT-----YVVCYFSEVSCDGVDPLFGAAPRYPLM-DRFEEVYFRIQ--DLEMFQ
 RPACFGT-----YVVCYFSGICSERDVPDLFENITSRYPLM-DRFEEVYFRIQ--DLEMFQ
 QGSMNFR-----FIPVLFPNAK-KEHVPTWLQNTHVVYSPW-KNKKNILLRLL-REEEYVA
 QGSMNFR-----FIPVLFPNAK-KEHVPTWLQNTHVVYSPW-KNKKNILLRLL-REEEYVA
 RPL-----LLAYFSLCAKGDTIPPLRALPRYRLL-RDLPRLLRA LD--ARPFAE
 QAKQSSSAALSKEFLAVYFDYSC-EGDVPGLDLSTKYRLL-DNLQLCSSLHSRDHGLQE
 HNFPEAR--KKYAVVRFNYSP---HVPPNAILNLPTFIPQFAQLTAFLHN-VEHTER
 SQIHLHK-----YVVVYFREID-TKDDYNALSVCPYHLM-KDATAFCAELL---HVKQQ
 RSVPKEV---EYVLPRDQKLL--EDAFDITIADPLVIDPIEDVAIPENVP--IHHESC

:

DCRS7_Mu
 DCRS7_Hu
 IL-17R_Hu
 IL-17R_Mu
 DCRS10_Mu
 DCRS9_Hu
 DCRS8_Hu
 IL-17R_Ce
 DCRS6_Hu
 DCRS6_Ce

AGRPADRVER-----VT---QALRSALDSCTS-----
 SGRLQERAEQ-----VS---RALQPALDSYFHP-----
 PGRMHRVGEGLSGDMYLRS---PGGRQLRAALDRFRDWQVRCPDW
 PGRMHHVRELTGDMYLQS---PSGSQLKEAVLRFQEWQTQCPDW
 P---PRGPL-----PTLQVVP-----
 P---PRGPL-----PTLQVVP-----
 ATSWGRLGAR-----QRQRQSRLELCSR-----
 PGQHTRQGSR-----RNYFRSKSGRSLSYVAICNMHQFIDEEDPDW
 ANVTQNISEA-----Q-----IHEWNLCA SRMMSSFFVVRNPNW
 VS---AGKR-----SQACHDGCCSL-----
 DS1DSRNNSK-----THSTDSGVSSLSS---NS--
 :

FIG. 1B

SEQUENCE SUBMISSION

SEQ ID NO: 1 is primate DCRS6 nucleotide sequence.
SEQ ID NO: 2 is primate DCRS6 polypeptide sequence.
SEQ ID NO: 3 is primate DCRS6 reverse translation.
SEQ ID NO: 4 is rodent DCRS6 nucleotide sequence.
SEQ ID NO: 5 is rodent DCRS6 polypeptide sequence.
SEQ ID NO: 6 is rodent DCRS6 reverse translation.
SEQ ID NO: 7 is primate DCRS7 nucleotide sequence.
SEQ ID NO: 8 is primate DCRS7 polypeptide sequence.
SEQ ID NO: 9 is primate DCRS7 reverse translation.
SEQ ID NO: 10 is rodent DCRS7 nucleotide sequence.
SEQ ID NO: 11 is rodent DCRS7 polypeptide sequence.
SEQ ID NO: 12 is rodent DCRS7 reverse translation.
SEQ ID NO: 13 is primate DCRS8 nucleotide sequence.
SEQ ID NO: 14 is primate DCRS8 polypeptide sequence.
SEQ ID NO: 15 is primate DCRS8 reverse translation.
SEQ ID NO: 16 is primate DCRS9 nucleotide sequence.
SEQ ID NO: 17 is primate DCRS9 polypeptide sequence.
SEQ ID NO: 18 is primate DCRS9 reverse translation.
SEQ ID NO: 19 is rodent DCRS9 nucleotide sequence.
SEQ ID NO: 20 is rodent DCRS9 polypeptide sequence.
SEQ ID NO: 21 is rodent DCRS9 reverse translation.
SEQ ID NO: 22 is primate DCRS10 nucleotide sequence.
SEQ ID NO: 23 is primate DCRS10 polypeptide sequence.
SEQ ID NO: 24 is primate DCRS10 reverse translation.
SEQ ID NO: 25 is rodent DCRS10 nucleotide sequence.
SEQ ID NO: 26 is rodent DCRS10 polypeptide sequence.
SEQ ID NO: 27 is rodent DCRS10 reverse translation.
SEQ ID NO: 28 is primate IL-17 receptor peptide sequence.
SEQ ID NO: 29 is rodent IL-17 receptor peptide sequence.
SEQ ID NO: 30 is worm IL-17 receptor peptide sequence.
SEQ ID NO: 31 is worm DCRS6 nucleotide sequence.

<110> Schering Corporation

<120> Mammalian Receptor Proteins; Related Reagents and Methods

<130> DX01170K PCT

<140>

<141>

<150> US 60/206,862
<151> 2000-05-24

<160> 31

<170> PatentIn Ver. 2.0

<210> 1
<211> 1796
<212> DNA
<213> Unknown

<220>

<223> Description of Unknown Organism:primate; surmised
Homo sapiens

<220>
 <221> CDS
 <222> (4) .. (1509)

<220>
 <221> mat_peptide
 <222> (46) .. (1509)

<400> 1
 gcg atg tcg ctc gtg ctg cta agc ctg gcc gcg ctg tgc agg agc gcc 48
 Met Ser Leu Val Leu Leu Ser Leu Ala Ala Leu Cys Arg Ser Ala
 -10 -5 -1 1

gta ccc cga gag ccg acc gtt caa tgt ggc tct gaa act ggg cca tct 96
 Val Pro Arg Glu Pro Thr Val Gln Cys Gly Ser Glu Thr Gly Pro Ser
 5 10 15

cca gag tgg atg cta caa cat gat cta atc ccg gga gac ttg agg gac 144
 Pro Glu Trp Met Leu Gln His Asp Leu Ile Pro Gly Asp Leu Arg Asp
 20 25 30

ctc cga gta gaa cct gtt aca act agt gtt gca aca ggg gac tat tca 192
 Leu Arg Val Glu Pro Val Thr Thr Ser Val Ala Thr Gly Asp Tyr Ser
 35 40 45

att ttg atg aat gta agc tgg gta ctc cgg gca gat gcc agc atc cgc 240
 Ile Leu Met Asn Val Ser Trp Val Leu Arg Ala Asp Ala Ser Ile Arg
 50 55 60 65

ttg ttg aag gcc acc aag att tgt gtc acg ggc aaa agc aac ttc cag 288
 Leu Leu Lys Ala Thr Lys Ile Cys Val Thr Gly Lys Ser Asn Phe Gln
 70 75 80

tcc tac agc tgt gtc agg tgc aat tac aca gag gcc ttc cag act cag 336
 Ser Tyr Ser Cys Val Arg Cys Asn Tyr Thr Glu Ala Phe Gln Thr Gln
 85 90 95

acc aga ccc tct ggt ggt aaa tgg aca ttt tcc tat atc ggc ttc cct 384
 Thr Arg Pro Ser Gly Gly Lys Trp Thr Phe Ser Tyr Ile Gly Phe Pro
 100 105 110

gta gag ctg aac aca gtc tat ttc att ggg gcc cat aat att cct aat 432
 Val Glu Leu Asn Thr Val Tyr Phe Ile Gly Ala His Asn Ile Pro Asn
 115 120 125

gca aat atg aat gaa gat ggc cct tcc atg tct gtc aat ttc acc tca 480
 Ala Asn Met Asn Glu Asp Gly Pro Ser Met Ser Val Asn Phe Thr Ser
 130 135 140 145

cca ggc tgc cta gac cac ata atg aaa tat aaa aaa aag tgt gtc aag 528
 Pro Gly Cys Leu Asp His Ile Met Lys Tyr Lys Lys Cys Val Lys
 150 155 160

gcc gga agc ctg tgg gat ccg aac atc act gct tgt aag aag aat gag 576
 Ala Gly Ser Leu Trp Asp Pro Asn Ile Thr Ala Cys Lys Lys Asn Glu
 165 170 175

gag aca gta gaa gtg aac ttc aca acc act ccc ctg gga aac aga tac 624
 Glu Thr Val Glu Val Asn Phe Thr Thr Pro Leu Gly Asn Arg Tyr
 180 185 190

atg gct ctt atc caa cac agc act atc atc ggg ttt tct cag gtg ttt	672
Met Ala Leu Ile Gln His Ser Thr Ile Ile Gly Phe Ser Gln Val Phe	
195 200 205	
gag cca cac cag aag aaa caa acg cga gct tca gtg gtg att cca gtg	720
Glu Pro His Gln Lys Lys Gln Thr Arg Ala Ser Val Val Ile Pro Val	
210 215 220 225	
act ggg gat agt gaa ggt gct acg gtg cag ctg act cca tat ttt cct	768
Thr Gly Asp Ser Glu Gly Ala Thr Val Gln Leu Thr Pro Tyr Phe Pro	
230 235 240	
act tgt ggc agc gac tgc atc cga cat aaa gga aca gtt gtg ctc tgc	816
Thr Cys Gly Ser Asp Cys Ile Arg His Lys Gly Thr Val Val Leu Cys	
245 250 255	
cca caa aca ggc gtc cct ttc cct ctg gat aac aac aaa agc aag ccg	864
Pro Gln Thr Gly Val Pro Phe Pro Leu Asp Asn Asn Lys Ser Lys Pro	
260 265 270	
gga ggc tgg ctg cct ctc ctg ctg tct ctg ctg gtg gcc aca tgg	912
Gly Gly Trp Leu Pro Leu Leu Leu Ser Leu Leu Val Ala Thr Trp	
275 280 285	
gtg ctg gtg gca ggg atc tat cta atg tgg agg cac gaa agg atc aag	960
Val Leu Val Ala Gly Ile Tyr Leu Met Trp Arg His Glu Arg Ile Lys	
290 295 300 305	
aag act tcc ttt tct acc acc aca cta ctg ccc ccc att aag gtt ctt	1008
Lys Thr Ser Phe Ser Thr Thr Leu Leu Pro Pro Ile Lys Val Leu	
310 315 320	
gtg gtt tac cca tct gaa ata tgt ttc cat cac aca att tgt tac ttc	1056
Val Val Tyr Pro Ser Glu Ile Cys Phe His His Thr Ile Cys Tyr Phe	
325 330 335	
act gaa ttt ctt caa aac cat tgc aga agt gag gtc atc ctt gaa aag	1104
Thr Glu Phe Leu Gln Asn His Cys Arg Ser Glu Val Ile Leu Glu Lys	
340 345 350	
tgg cag aaa aag aaa ata gca gag atg ggt cca gtg cag tgg ctt gcc	1152
Trp Gln Lys Lys Ile Ala Glu Met Gly Pro Val Gln Trp Leu Ala	
355 360 365	
act caa aag aag gca gca gac aaa gtc gtc ttc ctt ctt tcc aat gac	1200
Thr Gln Lys Lys Ala Ala Asp Lys Val Val Phe Leu Leu Ser Asn Asp	
370 375 380 385	
gtc aac agt gtg tgc gat ggt acc tct ggc aag agc gag ggc agt ccc	1248
Val Asn Ser Val Cys Asp Gly Thr Cys Gly Lys Ser Glu Gly Ser Pro	
390 395 400	
agt gag aac tct caa gac ctc ttc ccc ctt gcc ttt aac ctt ttc tgc	1296
Ser Glu Asn Ser Gln Asp Leu Phe Pro Leu Ala Phe Asn Leu Phe Cys	
405 410 415	
agt gat cta aga agc cag att cat ctg cac aaa tac gtg gtg gtc tac	1344
Ser Asp Leu Arg Ser Gln Ile His Leu His Lys Tyr Val Val Val Tyr	
420 425 430	

ttt aga gag att gat aca aaa gac gat tac aat gct ctc agt gtc tgc 1392
 Phe Arg Glu Ile Asp Thr Lys Asp Asp Tyr Asn Ala Leu Ser Val Cys
 435 440 445

ccc aag tac cac ctc atg aag gat gcc act gct ttc tgt gca gaa ctt 1440
 Pro Lys Tyr His Leu Met Lys Asp Ala Thr Ala Phe Cys Ala Glu Leu
 450 455 460 465

ctc cat gtc aag cag cag gtg tca gca gga aaa aga tca caa gcc tgc 1488
 Leu His Val Lys Gln Gln Val Ser Ala Gly Lys Arg Ser Gln Ala Cys
 470 475 480

cac gat ggc tgc tgc tcc ttg tagccaccc atgagaagca agagaccta 1539
 His Asp Gly Cys Cys Ser Leu
 485

aaggcttcct atcccaccaa ttacaggaa aaaacgtgtg atgatcctga agcttactat 1599
 gcagcctaca aacagcctta gtaattaaaa cattttatac caataaaatt ttcaaataatt 1659
 gctaactaat gtacgattaa ctaacgattg gaaaactacat ttacaacttc aaagctgttt 1719
 tatacataga aatcaattac agctttaatt gaaaactgta accatttga taatgcaaca 1779
 ataaagcatc ttcaagcc 1796

<210> 2
 <211> 502
 <212> PRT
 <213> Unknown

<400> 2
 Met Ser Leu Val Leu Leu Ser Leu Ala Ala Leu Cys Arg Ser Ala Val
 -10 -5 -1 1

Pro Arg Glu Pro Thr Val Gln Cys Gly Ser Glu Thr Gly Pro Ser Pro
 5 10 15

Glu Trp Met Leu Gln His Asp Leu Ile Pro Gly Asp Leu Arg Asp Leu
 20 25 30

Arg Val Glu Pro Val Thr Thr Ser Val Ala Thr Gly Asp Tyr Ser Ile
 35 40 45 50

Leu Met Asn Val Ser Trp Val Leu Arg Ala Asp Ala Ser Ile Arg Leu
 55 60 65

Leu Lys Ala Thr Lys Ile Cys Val Thr Gly Lys Ser Asn Phe Gln Ser
 70 75 80

Tyr Ser Cys Val Arg Cys Asn Tyr Thr Glu Ala Phe Gln Thr Gln Thr
 85 90 95

Arg Pro Ser Gly Gly Lys Trp Thr Phe Ser Tyr Ile Gly Phe Pro Val
 100 105 110

Glu Leu Asn Thr Val Tyr Phe Ile Gly Ala His Asn Ile Pro Asn Ala
 115 120 125 130

Asn Met Asn Glu Asp Gly Pro Ser Met Ser Val Asn Phe Thr Ser Pro
135 140 145

Gly Cys Leu Asp His Ile Met Lys Tyr Lys Lys Lys Cys Val Lys Ala
150 155 160

Gly Ser Leu Trp Asp Pro Asn Ile Thr Ala Cys Lys Lys Asn Glu Glu
165 170 175

Thr Val Glu Val Asn Phe Thr Thr Pro Leu Gly Asn Arg Tyr Met
180 185 190

Ala Leu Ile Gln His Ser Thr Ile Ile Gly Phe Ser Gln Val Phe Glu
195 200 205 210

Pro His Gln Lys Lys Gln Thr Arg Ala Ser Val Val Ile Pro Val Thr
215 220 225

Gly Asp Ser Glu Gly Ala Thr Val Gln Leu Thr Pro Tyr Phe Pro Thr
230 235 240

Cys Gly Ser Asp Cys Ile Arg His Lys Gly Thr Val Val Leu Cys Pro
245 250 255

Gln Thr Gly Val Pro Phe Pro Leu Asp Asn Asn Lys Ser Lys Pro Gly
260 265 270

Gly Trp Leu Pro Leu Leu Leu Ser Leu Leu Val Ala Thr Trp Val
275 280 285 290

Leu Val Ala Gly Ile Tyr Leu Met Trp Arg His Glu Arg Ile Lys Lys
295 300 305

Thr Ser Phe Ser Thr Thr Leu Leu Pro Pro Ile Lys Val Leu Val
310 315 320

Val Tyr Pro Ser Glu Ile Cys Phe His His Thr Ile Cys Tyr Phe Thr
325 330 335

Glu Phe Leu Gln Asn His Cys Arg Ser Glu Val Ile Leu Glu Lys Trp
340 345 350

Gln Lys Lys Ile Ala Glu Met Gly Pro Val Gln Trp Leu Ala Thr
355 360 365 370

Gln Lys Lys Ala Ala Asp Lys Val Val Phe Leu Leu Ser Asn Asp Val
375 380 385

Asn Ser Val Cys Asp Gly Thr Cys Gly Lys Ser Glu Gly Ser Pro Ser
390 395 400

Glu Asn Ser Gln Asp Leu Phe Pro Leu Ala Phe Asn Leu Phe Cys Ser
405 410 415

Asp Leu Arg Ser Gln Ile His Leu His Lys Tyr Val Val Val Tyr Phe
420 425 430

Arg Glu Ile Asp Thr Lys Asp Asp Tyr Asn Ala Leu Ser Val Cys Pro
435 440 445 450

Lys Tyr His Leu Met Lys Asp Ala Thr Ala Phe Cys Ala Glu Leu Leu
455 460 465

His Val Lys Gln Gln Val Ser Ala Gly Lys Arg Ser Gln Ala Cys His
470 475 480

Asp Gly Cys Cys Ser Leu
485

<210> 3

<211> 1506

<212> DNA

<213> reverse translation

<220>

<221> misc_feature

<222> (1)..(1506)

<223> n may be a, c, g, or t

<400> 3

atgwsnytng tnytnytnws nytnngcgcn ytntgymgnw sngcngtncc nmgnigarcon 60
acngtncart gyggnwsnga racngnccn wsncngart ggtatgytnca rcaygavytn 120
athccnggng ayytnmgng ayytnmgngt garccngtta cnacnwsngt ngcnaacnggn 180
gaytaywsna thytnatgaa ygtnwsntgg gttnytnmgng cngaygcnws nathmgnytn 240
yttnaargcna cnaarathtg ygtnacnggn aarwsnaayt tycarwsnta ywsntggytn 300
mgntgyaayt ayacngargc nttycaracn caracnmgnc cnwsnggng naartggacn 360
ttywsntaya thggnttycc ngtngarytn aayacngtnt ayttiyathgg ngcncayaay 420
athccnaayg cnaayatgaa ygargayggn ccnwsnatgw sngtnaaytt yacnwsnccn 480
ggntgyytnng aycayathat gaartayaar aaraartgyg tnaargcngg nwsnytntgg 540
gayccnaaya thacngcntg yaaraaraay gargaracng tngargtnaa yttyacnacn 600
acnccnytng gnaaymgnta yatggcnytn athcarcayw snacnathat hggnttywsn 660
cargtnattyg arccncayca raaraarcar acnmgngcnw sngtnatnacn 720
ggngaywsng arggngcnac ngtnrarytn acnccntayt tycnacntg yggnwsgay 780
tgyathmgnc ayaarggnac ngtnytnytg tgyccncara cngngtncc nttyccnytn 840
gayaayaaya arwsnaarcc ngngngntgg ytnccnytny tnytnytnws nytnytnytg 900
gonacntggg tnytnytngc nggnathtay ytnatgtggm gncaygarmg nathaaraar 960
acnwsnttyw snacnacnac nytnytnccn ccnathaarg tnytnytngt ntayccnwsn 1020
garathtgyt tycaycayac nathtgytay ttyacngart tyytnacaraa ycaytgymgn 1080
wsngargtna thytnytnws rtggcaraar aaraarathg cngaratggg nccngtnacn 1140

tggytngcna cncaraaraa rgcngcngay aargtngtnt tyytnytnws naaygaygtn 1200
 aaywsngtnt gygagggnaar ntgyggnaar wsngarggnw snccnwsnga raaywsncar 1260
 gayytnttgc cnytngcntt yaayytntty tgywsngayy tnmgnwsnca rathcayytn 1320
 cayaartayg tngtngtnta yttymngar athgayacna argaygayta yaaygcnytn 1380
 wsngtntgyc cnaartayca yytnatgaar gaygcnaacng cnttytgygc ngarytnytn 1440
 caygtnaarc arcargtnws ngcnggnaar mgnwsncarg cngcayga yggntgytgy 1500
 wsnytn 1506

<210> 4

<211> 637

<212> DNA

<213> Unknown

<220>

<223> Description of Unknown Organism:rodent; surmised
 Mus musculus

<220>

<221> CDS

<222> (1)..(210)

<400> 4

gat	ttc	agc	agc	cag	acg	cat	ctg	cac	aaa	tac	ctg	gag	gtc	tat	ctt	48
Asp	Phe	Ser	Ser	Gln	Thr	His	Leu	His	Lys	Tyr	Leu	Glu	Val	Tyr	Leu	
1															15	

ggg	gga	gca	gac	ctc	aaa	ggc	gac	tat	aat	gcc	ctg	agt	gtc	tgc	ccc	96
Gly	Gly	Ala	Asp	Leu	Lys	Gly	Asp	Tyr	Asn	Ala	Lys	Ser	Val	Cys	Pro	
20															30	

caa	tat	cat	ctc	atg	aag	gac	gcc	aca	gct	ttc	cac	aca	gaa	ctt	ctc	144
Gln	Tyr	His	Leu	Met	Lys	Asp	Ala	Thr	Ala	Phe	His	Thr	Glu	Leu		
35														45		

aag	gct	acg	cag	agc	atg	tca	gtg	aag	aaa	cgc	tca	caa	gcc	tgc	cat	192
Lys	Ala	Thr	Gln	Ser	Met	Ser	Val	Lys	Lys	Arg	Ser	Gln	Ala	Cys	His	
50															60	

gat	agc	tgt	tca	ccc	ttg	tagtccaccc	ggggaaatag	agactctgaa	240
Asp	Ser	Cys	Ser	Pro	Leu				
65					70				

gccttcctac	tctcccttcc	agtgacaaat	gctgtgtgac	gactctgaaa	tgtgtggag	300
aggctgtgtg	gaggttagtgc	tatgtacaaa	cttgctttaa	aactggagtt	tgcaaagtca	360
acctgagcat	acacgcctga	ggctagtcac	tggctggatt	tatgaagaca	acacagttac	420
agacaataat	gagtgggacc	tacatttggg	atataccaa	agctgggtaa	tgattatcac	480
tgagaaccac	gcactctggc	catgaggtaa	tacggcactt	ccctgtcagg	ctgtctgtca	540
ggttgggtct	gtcttgcact	gcccattgctc	tatgctgcac	gtagaccgtt	ttgtaacatt	600

ttaatctgtt aatgaataat ccgtttggga ggctctc

637

<210> 5
<211> 70
<212> PRT
<213> Unknown

<400> 5
Asp Phe Ser Ser Gln Thr His Leu His Lys Tyr Leu Glu Val Tyr Leu
1 5 10 15

Gly Gly Ala Asp Leu Lys Gly Asp Tyr Asn Ala Leu Ser Val Cys Pro
20 25 30

Gln Tyr His Leu Met Lys Asp Ala Thr Ala Phe His Thr Glu Leu Leu
35 40 45

Lys Ala Thr Gln Ser Met Ser Val Lys Lys Arg Ser Gln Ala Cys His
50 55 60

Asp Ser Cys Ser Pro Leu
65 70

<210> 6
<211> 210
<212> DNA
<213> reverse translation

<220>
<221> misc_feature
<222> (1)..(210)
<223> n may be a, c, g, or t

<400> 6
gayttywsnw sncaracnca yytncayaar tayytnarg tntayytnng ngngcngay 60
ytynaargng aytayaaygc nytnwsngtn tgyccncart aycayytnat gaargaygcn 120
acngcnttgc ayacngaryt nytnaargcn acncarwsna tgwsngtnaa raarmgnwsn 180
cargcntgyc aygaywsntg ywsncnnytn 210

<210> 7
<211> 2308
<212> DNA
<213> Unknown

<220>
<223> Description of Unknown Organism: primate; surmised
Homo sapiens

<220>
<221> CDS
<222> (181)..(2289)

<220>

```

<221> mat_peptide
<222> (241)..(2289)

<220>
<221> misc_feature
<222> (664)
<223> Xaa translation depends on genetic code

<400> 7
gagtcaggac tcccaggaca gagagtgcac aaactaccca gcacagcccc ctccgcccc 60
tctggaggct gaagagggat tccagccct gccacccaca gacacggct gactgggtg 120
tctgcccccc ttggggcan ccacaggcc tcaggcctgg gtgccacctg gcactagaag 180
atg cct gtg ccc tgg ttc ttg ctg tcc ttg gca ctg ggc cga agc cag 228
Met Pro Val Pro Trp Phe Leu Leu Ser Leu Ala Leu Gly Arg Ser Gln
-20           -15           -10           -5
tgg atc ctt tct ctg gag agg ctt gtg ggg cct cag gac gct acc cac 276
Trp Ile Leu Ser Leu Glu Arg Leu Val Gly Pro Gln Asp Ala Thr His
-1   1           5           10
tgc tct ccg ggc ctc tcc tgc cgc ctc tgg gac agt gac ata ctc tgc 324
Cys Ser Pro Gly Leu Ser Cys Arg Leu Trp Asp Ser Asp Ile Leu Cys
15           20           25
ctg cct ggg gac atc gtg cct gct ccg ggc ccc gtg ctg gcg cct acg 372
Leu Pro Gly Asp Ile Val Pro Ala Pro Gly Pro Val Leu Ala Pro Thr
30           35           40
cac ctg cag aca gag ctg gtg ctg agg tgc cag aag gag acc gac tgt 420
His Leu Gln Thr Glu Leu Val Leu Arg Cys Gln Lys Glu Thr Asp Cys
45           50           55           60
gac ctc tgt ctg cgt gtg gct gtc cac ttg gcc gtg cat ggg cac tgg 468
Asp Leu Cys Leu Arg Val Ala Val His Leu Ala Val His Gly His Trp
65           70           75
gaa gag cct gaa gat gag gaa aag ttt gga gga gca gct gac tta ggg 516
Glu Glu Pro Glu Glu Lys Phe Gly Gly Ala Ala Asp Leu Gly
80           85           90
gtg gag gag cct agg aat gcc tct ctc cag gcc caa gtc gtg ctc tcc 564
Val Glu Glu Pro Arg Asn Ala Ser Leu Gln Ala Gln Val Val Leu Ser
95           100          105
ttc cag gcc tac cct act gcc cgc tgc gtc ctg ctg gag gtg caa gtg 612
Phe Gln Ala Tyr Pro Thr Ala Arg Cys Val Leu Leu Glu Val Gln Val
110          115          120
cct gct gcc ctt gtg cag ttt ggt cag tct gtg ggc tct gtg gta tat 660
Pro Ala Ala Leu Val Gln Phe Gly Gln Ser Val Gly Ser Val Val Tyr
125          130          135          140
gac tgc ttc gag gct gcc cta ggg agt gag gta cga atc tgg tcc tat 708
Asp Cys Phe Glu Ala Ala Leu Gly Ser Glu Val Arg Ile Trp Ser Tyr
145          150          155
act cag ccc agg tac gag aag gaa ctc aac cac aca cag cag ctg cct 756

```

Thr Gln Pro Arg Tyr Glu Lys Glu Leu Asn His Thr Gln Gln Leu Pro			
160	165	170	
gac tgc agg ggg ctc gaa gtc tgg aac agc atc ccg agc tgc tgg gcc			804
Asp Cys Arg Gly Leu Glu Val Trp Asn Ser Ile Pro Ser Cys Trp Ala			
175	180	185	
ctg ccc tgg ctc aac gtg tca gca gat ggt gac aac gtg cat ctg gtt			852
Leu Pro Trp Leu Asn Val Ser Ala Asp Gly Asp Asn Val His Leu Val			
190	195	200	
ctg aat gtc tct gag gag cag cac ttc ggc ctc tcc ctg tac tgg aat			900
Leu Asn Val Ser Glu Glu Gln His Phe Gly Leu Ser Leu Tyr Trp Asn			
205	210	215	220
cag gtc cag ggc ccc cca aaa ccc cgg tgg cac aaa aac ctg act gga			948
Gln Val Gln Gly Pro Pro Lys Pro Arg Trp His Lys Asn Leu Thr Gly			
225	230	235	
ccg cag atc att acc ttg aac cac aca gac ctg gtt ccc tgc ctc tgt			996
Pro Gln Ile Ile Thr Leu Asn His Thr Asp Leu Val Pro Cys Leu Cys			
240	245	250	
att cag gtg tgg cct ctg gaa cct gac tcc gtt agg acg aac atc tgc			1044
Ile Gln Val Trp Pro Leu Glu Pro Asp Ser Val Arg Thr Asn Ile Cys			
255	260	265	
ccc ttc agg gag gac ccc cgc gca cac cag aac ctc tgg caa gcc gcc			1092
Pro Phe Arg Glu Asp Pro Arg Ala His Gln Asn Leu Trp Gln Ala Ala			
270	275	280	
cga ctg cga ctg ctg acc ctg cag agc tgg ctg ctg gac gca ccg tgc			1140
Arg Leu Arg Leu Leu Thr Leu Gln Ser Trp Leu Leu Asp Ala Pro Cys			
285	290	295	300
tgc ctg ccc gca gaa gcg gca ctg tgc tgg cgg gct ccg ggt ggg gac			1188
Ser Leu Pro Ala Glu Ala Ala Leu Cys Trp Arg Ala Pro Gly Gly Asp			
305	310	315	
ccc tgc cag cca ctg gtc cca ccg ctt tcc tgg gag aat gtc act gtg			1236
Pro Cys Gln Pro Leu Val Pro Leu Ser Trp Glu Asn Val Thr Val			
320	325	330	
gac gtg aac agc tcg gag aag ctg cag ctg cag gag tgc ttg tgg gct			1284
Asp Val Asn Ser Ser Glu Lys Leu Gln Leu Glu Cys Leu Trp Ala			
335	340	345	
gac tcc ctg ggg cct ctc aaa gac gat gtg cta ctg ttg gag aca cga			1332
Asp Ser Leu Gly Pro Leu Lys Asp Asp Val Leu Leu Glu Thr Arg			
350	355	360	
ggc ccc cag gac aac aga tcc ctc tgt gcc ttg gaa ccc agt ggc tgt			1380
Gly Pro Gln Asp Asn Arg Ser Leu Cys Ala Leu Glu Pro Ser Gly Cys			
365	370	375	380
act tca cta ccc agc aaa gcc tcc acg agg gca gct cgc ctt gga gag			1428
Thr Ser Leu Pro Ser Lys Ala Ser Thr Arg Ala Ala Arg Leu Gly Glu			
385	390	395	
tac tta cta caa gac ctg cag tca ggc cag tgt ctg cag cta tgg gac			1476

Tyr	Leu	Leu	Gln	Asp	Leu	Gln	Ser	Gly	Gln	Cys	Leu	Gln	Leu	Trp	Asp		
400																410	
gat gac ttg gga gcg cta tgg gcc tgc ccc atg gac aaa tac atc cac															1524		
Asp	Asp	Leu	Gly	Ala	Leu	Trp	Ala	Cys	Pro	Met	Asp	Lys	Tyr	Ile	His		
415																425	
aag cgc tgg gcc ctc gtg tgg ctg gcc cta ctc ttt gcc gct gcg															1572		
Lys	Arg	Trp	Ala	Leu	Val	Trp	Leu	Ala	Cys	Leu	Phe	Ala	Ala	Ala			
430																440	
ctt tcc ctc atc ctc ctt ctc aaa aag gat cac gcg aaa ggg tgg ctg															1620		
Leu	Ser	Leu	Ile	Leu	Leu	Lys	Lys	Asp	His	Ala	Lys	Gly	Trp	Leu			
445																455	
agg ctc ttg aaa cag gac gtc cgc tcg ggg gcg gcc gcc agg ggc cgc															1668		
Arg	Leu	Leu	Lys	Gln	Asp	Val	Arg	Ser	Gly	Ala	Ala	Arg	Gly	Arg			
465																470	
																475	
gcg gct ctg ctc tac tca gcc gat gac tcg ggt ttc gag cgc ctg															1716		
Ala	Ala	Leu	Leu	Tyr	Ser	Ala	Asp	Asp	Ser	Gly	Phe	Glu	Arg	Leu			
480																485	
																490	
gtg ggc gcc ctg gcg tcg gcc ctg tgc cag ctg ccg ctg cgc gtg gcc															1764		
Val	Gly	Ala	Leu	Ala	Ser	Ala	Leu	Cys	Gln	Leu	Pro	Leu	Arg	Val	Ala		
495																500	
																505	
gta gac ctg tgg agc cgt cgt gaa ctg agc gcg cag ggg ccc gtg gct															1812		
Val	Asp	Leu	Trp	Ser	Arg	Arg	Glu	Leu	Ser	Ala	Gln	Gly	Pro	Val	Ala		
510																515	
																520	
tgg ttt cac gcg cag cgg cgc cag acc ctg cag gag ggc ggc gtg gtg															1860		
Trp	Phe	His	Ala	Gln	Arg	Arg	Gln	Thr	Leu	Gln	Glu	Gly	Gly	Val	Val		
525																530	
																535	
																540	
gtc ttg ctc ttc tct ccc ggt gcg gtg gcg ctg tgc agc gag tgg cta															1908		
Val	Leu	Leu	Phe	Ser	Pro	Gly	Ala	Val	Ala	Leu	Cys	Ser	Glu	Trp	Leu		
																545	
																550	
																555	
cag gat ggg gtg tcc ggg ccc ggg gcg cac ggc ccg cac gac gcc ttc															1956		
Gln	Asp	Gly	Val	Ser	Gly	Pro	Gly	Ala	His	Gly	Pro	His	Asp	Ala	Phe		
560																565	
																570	
cgc gcc tcg ctc agc tgc gtg ctg ccc gac ttc ttg cag ggc cgg gcg															2004		
Arg	Ala	Ser	Leu	Ser	Cys	Val	Leu	Pro	Asp	Phe	Leu	Gln	Gly	Arg	Ala		
575																580	
																585	
ccc ggc agc tac gtg ggg gcc tgc ttc gac agg ctg ctc cac ccg gac															2052		
Pro	Gly	Ser	Tyr	Val	Gly	Ala	Cys	Phe	Asp	Arg	Leu	Leu	His	Pro	Asp		
590																595	
																600	
gcc gta ccc gcc ctt ttc cgc acc gtg ccc gtc ttc aca ctg ccc tcc															2100		
Ala	Val	Pro	Ala	Leu	Phe	Arg	Thr	Val	Pro	Val	Phe	Thr	Leu	Pro	Ser		
605																610	
																615	
																620	
caa ctg cca gac ttc ctg ggg gcc ctg cag cag cct cgc gcc ccg cgt															2148		
Gln	Leu	Pro	Asp	Phe	Leu	Gly	Ala	Leu	Gln	Gln	Pro	Arg	Ala	Pro	Arg		
625																630	
																635	
tcc ggg cgg ctc caa gag aga gcg gag caa gtg tcc cgg gcc ctt cag															2196		

Ser Gly Arg Leu Gln Glu Arg Ala Glu Gln Val Ser Arg Ala Leu Gln
 640 645 650
 cca gcc ctg gat agc tac ttc cat ccc ccg ggg acn tcc gcg ccg gga 2244
 Pro Ala Leu Asp Ser Tyr Phe His Pro Pro Gly Xaa Ser Ala Pro Gly
 655 660 665
 cgc ggg gtg gga cca ggg gca gga oct ggg gcg ggg gac ggg act 2289
 Arg Gly Val Gly Pro Gly Ala Gly Pro Gly Ala Gly Asp Gly Thr
 670 675 680
 taaataaagg cagacgctg 2308

 <210> 8
 <211> 703
 <212> PRT
 <213> Unknown

 <400> 8
 Met Pro Val Pro Trp Phe Leu Leu Ser Leu Ala Leu Gly Arg Ser Gln
 -20 -15 -10 -5

 Trp Ile Leu Ser Leu Glu Arg Leu Val Gly Pro Gln Asp Ala Thr His
 -1 1 5 10

 Cys Ser Pro Gly Leu Ser Cys Arg Leu Trp Asp Ser Asp Ile Leu Cys
 15 20 25

 Leu Pro Gly Asp Ile Val Pro Ala Pro Gly Pro Val Leu Ala Pro Thr
 30 35 40

 His Leu Gln Thr Glu Leu Val Leu Arg Cys Gln Lys Glu Thr Asp Cys
 45 50 55 60

 Asp Leu Cys Leu Arg Val Ala Val His Leu Ala Val His Gly His Trp
 65 70 75

 Glu Glu Pro Glu Asp Glu Glu Lys Phe Gly Gly Ala Ala Asp Leu Gly
 80 85 90

 Val Glu Glu Pro Arg Asn Ala Ser Leu Gln Ala Gln Val Val Leu Ser
 95 100 105

 Phe Gln Ala Tyr Pro Thr Ala Arg Cys Val Leu Leu Glu Val Gln Val
 110 115 120

 Pro Ala Ala Leu Val Gln Phe Gly Gln Ser Val Gly Ser Val Val Tyr
 125 130 135 140

 Asp Cys Phe Glu Ala Ala Leu Gly Ser Glu Val Arg Ile Trp Ser Tyr
 145 150 155

 Thr Gln Pro Arg Tyr Glu Lys Glu Leu Asn His Thr Gln Gln Leu Pro
 160 165 170

 Asp Cys Arg Gly Leu Glu Val Trp Asn Ser Ile Pro Ser Cys Trp Ala
 175 180 185

 Leu Pro Trp Leu Asn Val Ser Ala Asp Gly Asp Asn Val His Leu Val

190	195	200
Leu Asn Val Ser Glu Glu Gln His Phe Gly	Leu Ser Leu Tyr Trp Asn	
205 210	215	220
Gln Val Gln Gly Pro Pro Lys Pro Arg Trp His Lys Asn Leu Thr Gly		
225	230	235
Pro Gln Ile Ile Thr Leu Asn His Thr Asp Leu Val Pro Cys Leu Cys		
240	245	250
Ile Gln Val Trp Pro Leu Glu Pro Asp Ser Val Arg Thr Asn Ile Cys		
255	260	265
Pro Phe Arg Glu Asp Pro Arg Ala His Gln Asn Leu Trp Gln Ala Ala		
270	275	280
Arg Leu Arg Leu Leu Thr Leu Gln Ser Trp Leu Leu Asp Ala Pro Cys		
285 290	295	300
Ser Leu Pro Ala Glu Ala Ala Leu Cys Trp Arg Ala Pro Gly Gly Asp		
305	310	315
Pro Cys Gln Pro Leu Val Pro Pro Leu Ser Trp Glu Asn Val Thr Val		
320	325	330
Asp Val Asn Ser Ser Glu Lys Leu Gln Leu Gln Glu Cys Leu Trp Ala		
335	340	345
Asp Ser Leu Gly Pro Leu Lys Asp Asp Val Leu Leu Leu Glu Thr Arg		
350	355	360
Gly Pro Gln Asp Asn Arg Ser Leu Cys Ala Leu Glu Pro Ser Gly Cys		
365	370	380
Thr Ser Leu Pro Ser Lys Ala Ser Thr Arg Ala Ala Arg Leu Gly Glu		
385	390	395
Tyr Leu Leu Gln Asp Leu Gln Ser Gly Gln Cys Leu Gln Leu Trp Asp		
400	405	410
Asp Asp Leu Gly Ala Leu Trp Ala Cys Pro Met Asp Lys Tyr Ile His		
415	420	425
Lys Arg Trp Ala Leu Val Trp Leu Ala Cys Leu Leu Phe Ala Ala Ala		
430	435	440
Leu Ser Leu Ile Leu Leu Leu Lys Lys Asp His Ala Lys Gly Trp Leu		
445	450	460
Arg Leu Leu Lys Gln Asp Val Arg Ser Gly Ala Ala Arg Gly Arg		
465	470	475
Ala Ala Leu Leu Tyr Ser Ala Asp Asp Ser Gly Phe Glu Arg Leu		
480	485	490
Val Gly Ala Leu Ala Ser Ala Leu Cys Gln Leu Pro Leu Arg Val Ala		
495	500	505
Val Asp Leu Trp Ser Arg Arg Glu Leu Ser Ala Gln Gly Pro Val Ala		

510	515	520
Trp Phe His Ala Gln Arg Arg Gln Thr Leu Gln Glu Gly Gly Val Val		
525	530	535
Val Leu Leu Phe Ser Pro Gly Ala Val Ala Leu Cys Ser Glu Trp Leu		
545	550	555
Gln Asp Gly Val Ser Gly Pro Gly Ala His Gly Pro His Asp Ala Phe		
560	565	570
Arg Ala Ser Leu Ser Cys Val Leu Pro Asp Phe Leu Gln Gly Arg Ala		
575	580	585
Pro Gly Ser Tyr Val Gly Ala Cys Phe Asp Arg Leu Leu His Pro Asp		
590	595	600
Ala Val Pro Ala Leu Phe Arg Thr Val Pro Val Phe Thr Leu Pro Ser		
605	610	615
Gln Leu Pro Asp Phe Leu Gly Ala Leu Gln Gln Pro Arg Ala Pro Arg		
625	630	635
Ser Gly Arg Leu Gln Glu Arg Ala Glu Gln Val Ser Arg Ala Leu Gln		
640	645	650
Pro Ala Leu Asp Ser Tyr Phe His Pro Pro Gly Xaa Ser Ala Pro Gly		
655	660	665
Arg Gly Val Gly Pro Gly Ala Gly Pro Gly Ala Gly Asp Gly Thr		
670	675	680

<210> 9
 <211> 2109
 <212> DNA
 <213> reverse translation

 <220>
 <221> misc_feature
 <222> (1)..(2109)
 <223> n may be a, c, g, or t

<400> 9
 atgccngtnc cntggtyyt nytnwsnytn gcnytngnm gnwsncartg gathytnwsn 60
 ytngarmgny tngtnggncc ncargaygen acncaytgyw snccnngnyt nwsntgymgn 120
 ytntggayw sngayathyt ntgyytnccn ggngayathg tnccnccncc ngnccngtn 180
 ytngcnccna cncayytnca racngarytn gtnytnmgnt gycaraarga racngaytgy 240
 gayytntggy tnmgngtngc ngtncayytn gcngtncayg gncaytggga rgarcnngar 300
 gaygargara arttyggngg ngcngcngay ytnggngtng argarcnmg naaygcnwsn 360
 ytnccargcnc argtngtnyt nwsnttycar gcntayccna cngcnmgntg ygtnytnyt 420
 gargtncarg tnccnngcnytngtncar ttyggncarw sngtnggnws ngtngtntay 480

gaytgyttyg argcngcnyt nggnwsngar gtnmgnath t gwsntayac ncarrccnmgn 540
taygaraarg arytnaayca yacncarcar ytnccngayt gymnggnyt ngargtntgg 600
aaywsnathc cnwsntgytg ggcnytnccn tggynaayg tnwsngcnga yggngayaay 660
gtncayytng tnytnaaygt nwsgargar carcaytttg gnytnwsnyt ntaytggay 720
cargtncarg gnccnccnaa rccnmgnntgg cayaaraayy tnacnggncc ncarrathath 780
acnytnaayc ayacngayyt ngtnccntgy ytntgyathc argtntggcc nytnigarccn 840
gaywsngtnm gnacnaayat htgycntty mngargayc cnmgngcnca ycaraayyt 900
tggcargcng cnmgnytnmg nytnytnacn ytncarwsnt ggytnytna ygcncntgy 960
wsnytnccng cngargcngc nytnytgtgg mgngcnccng gnggngaycc ntgycarccn 1020
ytngtnccnc cnytnwsntg ggaraaygtn acngtngayg tnaaywsnws ngaraarytn 1080
carytncarg artgyytntg ggcnaywsn ytnggnccny tnaargayga ygtnytnytn 1140
ytngaracnm gnggnccnca rgayaaymgn wsnytntgyg cnytnigarcc nwsnggntgy 1200
acnwsnytnc cnwsnaargc nwsnacnmgn gengcnmgn ytnytnacn 1260
gayytncarw snggnartg yytnarytn tggaygag ayytnngngc nytnytnytn 1320
tgyccnatgg ayaartayat hcayaarmgn tggcnytng tntggytngc ntgyytnytn 1380
ttygcngcng cnytnwsnyt nathytnytn ytnaaraarg aycaygcnaa rggntggytn 1440
mgnytnytna arcargaygt nmgnwsnggn gengcnmgnm gnggnmgnec ncnytnytn 1500
ytntaywsng cngaygayws ngnattygar mgnytnytng gngcnytngc nwsngcnytn 1560
tgcarytnmgn tgcngtngay ytnytnytn gngcnytngc nwsngcncar 1620
ggncnctng cngtngayt ygcncarmgn mgncaracny tncargargg ngnytnytn 1680
gtnytnytn tgnccngg ngcngtngcn ytnytnytn artggytnca rggntggn 1740
wsnggnccng gngcncaygg nccncaygay gcnctymgn cnwsnytnws ntgyytnytn 1800
ccngaytayt tncarggnmg ngcncnccngn wsntaygtng gngcnytngc ygaymgnytn 1860
ytnytnytn tncarggnmg ngcncnccngn wsntaygtng gngcnytngc ygaymgnytn 1920
carytnccng aytttytngg ngcnytncar carccnmgn gncnccngn wsntaygtng gngcnytngc ygaymgnytn 1980
cargarmgn cngarcargt nwsnmgnec ytnytnytn tncarggnmg ngcncnccngn wsntaygtng gngcnytngc ygaymgnytn 2040
ccnccnggna cnwsngcncc ngnmgnngn gngcnytngc ytnytnytn tncarggnmg ngcncnccngn wsntaygtng gngcnytngc ygaymgnytn 2100
gayggnacn 2109

<210> 10
<211> 2314
<212> DNA

<213> Unknown

<220>

<223> Description of Unknown Organism: rodent; surmised
Mus musculus

<220>

<221> CDS

<222> (199) .. (2292)

<220>

<221> mat_peptide

<222> (259) .. (2292)

<400> 10

ccaaatcgaa agcacgggag ctgatactgg gcctggagtc caggctcaact ggagtgggaa 60

agcatggctg gagaggaatt ctagcccttg ctctctccca gggacacggg gctgattgtc 120

agcagggggcg aggggtctgc ccccccttgg gggggcagga cggggcctca gcctgggtg 180

ctgtccggca cctggaag atg cct gtg tcc tgg ttc ctg ctg tcc ttg gca 231
Met Pro Val Ser Trp Phe Leu Leu Ser Leu Ala
-20 -15 -10ctg ggc cga aac cct gtg gtc tct ctg gag aga ctg atg gag cct 279
Leu Gly Arg Asn Pro Val Val Ser Leu Glu Arg Leu Met Glu Pro
-5 -1 1 5cag gac act gca cgc tgc tct cta ggc ctc tcc tgc cac ctc tgg gat 327
Gln Asp Thr Ala Arg Cys Ser Leu Gly Leu Ser Cys His Leu Trp Asp
10 15 20ggg gac gtg ctc tgc ctg cct gga agc ctc cag tct gcc cca ggc cct 375
Gly Asp Val Leu Cys Leu Pro Gly Ser Leu Gln Ser Ala Pro Gly Pro
25 30 35gtg cta gtg cct acc cgc ctg cag acg gag ctg gtg ctg agg tgt cca 423
Val Leu Val Pro Thr Arg Leu Gln Thr Glu Leu Val Leu Arg Cys Pro
40 45 50 55cag aag aca gat tgc gcc ctc tgt gtc cgt gtg gtc cac ttg gcc 471
Gln Lys Thr Asp Cys Ala Leu Cys Val Arg Val Val His Leu Ala
60 65 70gtg cat ggg cac tgg gca gag cct gaa gaa gct gga aag tct gat tca 519
Val His Gly His Trp Ala Glu Pro Glu Glu Ala Gly Lys Ser Asp Ser
75 80 85gaa ctc cag gag tct agg aac gcc tct ctc cag gcc cag gtg gtg ctc 567
Glu Leu Gln Glu Ser Arg Asn Ala Ser Leu Gln Ala Gln Val Val Leu
90 95 100tcc ttc cag gcc tac ccc atc gcc cgc tgt gcc ctg ctg gag gtc cag 615
Ser Phe Gln Ala Tyr Pro Ile Ala Arg Cys Ala Leu Leu Glu Val Gln
105 110 115gtg ccc gct gac ctg gtg cag cct ggt cag tcc gtg ggt tct gcg gta 663
Val Pro Ala Asp Leu Val Gln Pro Gly Gln Ser Val Gly Ser Ala Val
120 125 130 135

ttt gac tgt ttc gag gct agt ctt ggg gct gag gta cag atc tgg tcc	711																																																																																																																		
Phe Asp Cys Phe Glu Ala Ser Leu Gly Ala Glu Val Gln Ile Trp Ser																																																																																																																			
140	145	150		tac acg aag ccc agg tac cag aaa gag ctc aac ctc aca cag cag ctg	759	Tyr Thr Lys Pro Arg Tyr Gln Lys Glu Leu Asn Leu Thr Gln Gln Leu		155	160	165		cct gac tgc agg ggt ctt gaa gtc cg ^g gac agc atc cag agc tgc tgg	807	Pro Asp Cys Arg Gly Leu Glu Val Arg Asp Ser Ile Gln Ser Cys Trp		170	175	180		gtc ctg ccc tgg ctc aat gtg tct aca gat ggt gac aat gtc ctt ctg	855	Val Leu Pro Trp Leu Asn Val Ser Thr Asp Gly Asp Asn Val Leu Leu		185	190	195		aca ctg gat gtc tct gag gag cag gac ttt agc ttc tta ctg tac ctg	903	Thr Leu Asp Val Ser Glu Glu Gln Asp Phe Ser Phe Leu Leu Tyr Leu		200	205	210	215	cgt cca gtc ccg gat gct ctc aaa tcc ttg tgg tac aaa aac ctg act	951	Arg Pro Val Pro Asp Ala Leu Lys Ser Leu Trp Tyr Lys Asn Leu Thr		220	225	230		gga cct cag aac att act tta aac cac aca gac ctg gtt ccc tgc ctc	999	Gly Pro Gln Asn Ile Thr Leu Asn His Thr Asp Leu Val Pro Cys Leu		235	240	245		tgc att cag gtg tgg tcg cta gag cca gac tct gag agg gtc gaa ttc	1047	Cys Ile Gln Val Trp Ser Leu Glu Pro Asp Ser Glu Arg Val Glu Phe		250	255	260		tgc ccc ttc ccg gaa gat ccc ggt gca cac agg aac ctc tgg cac ata	1095	Cys Pro Phe Arg Glu Asp Pro Gly Ala His Arg Asn Leu Trp His Ile		265	270	275		gcc agg ctg ccg gta ctg tcc cca ggg gta tgg cag cta gat gcg cct	1143	Ala Arg Leu Arg Val Leu Ser Pro Gly Val Trp Gln Leu Asp Ala Pro		280	285	290	295	tgc tgt ctg ccg aag gta aca ctg tgc tgg cag gca cca gac cag	1191	Cys Cys Leu Pro Gly Lys Val Thr Leu Cys Trp Gln Ala Pro Asp Gln		300	305	310		agt ccc tgc cag cca ctt gtg cca cca gtg ccc cag aag aac gcc act	1239	Ser Pro Cys Gln Pro Leu Val Pro Pro Val Pro Gln Lys Asn Ala Thr		315	320	325		gtg aat gag cca caa gat ttc cag ttg gtg gca ggc cac ccc aac ctc	1287	Val Asn Glu Pro Gln Asp Phe Gln Leu Val Ala Gly His Pro Asn Leu		330	335	340		tgt gtc cag gtg agc acc tgg gag aag gtt cag ctg caa gcg tgc ttg	1335	Cys Val Gln Val Ser Thr Trp Glu Lys Val Gln Leu Gln Ala Cys Leu		345	350	355		tgg gct gac tcc ttg ggg ccc ttc aag gat gat atg ctg tta gtg gag	1383	Trp Ala Asp Ser Leu Gly Pro Phe Lys Asp Asp Met Leu Leu Val Glu		360	365	370	375
150																																																																																																																			
tac acg aag ccc agg tac cag aaa gag ctc aac ctc aca cag cag ctg	759																																																																																																																		
Tyr Thr Lys Pro Arg Tyr Gln Lys Glu Leu Asn Leu Thr Gln Gln Leu																																																																																																																			
155	160	165		cct gac tgc agg ggt ctt gaa gtc cg ^g gac agc atc cag agc tgc tgg	807	Pro Asp Cys Arg Gly Leu Glu Val Arg Asp Ser Ile Gln Ser Cys Trp		170	175	180		gtc ctg ccc tgg ctc aat gtg tct aca gat ggt gac aat gtc ctt ctg	855	Val Leu Pro Trp Leu Asn Val Ser Thr Asp Gly Asp Asn Val Leu Leu		185	190	195		aca ctg gat gtc tct gag gag cag gac ttt agc ttc tta ctg tac ctg	903	Thr Leu Asp Val Ser Glu Glu Gln Asp Phe Ser Phe Leu Leu Tyr Leu		200	205	210	215	cgt cca gtc ccg gat gct ctc aaa tcc ttg tgg tac aaa aac ctg act	951	Arg Pro Val Pro Asp Ala Leu Lys Ser Leu Trp Tyr Lys Asn Leu Thr		220	225	230		gga cct cag aac att act tta aac cac aca gac ctg gtt ccc tgc ctc	999	Gly Pro Gln Asn Ile Thr Leu Asn His Thr Asp Leu Val Pro Cys Leu		235	240	245		tgc att cag gtg tgg tcg cta gag cca gac tct gag agg gtc gaa ttc	1047	Cys Ile Gln Val Trp Ser Leu Glu Pro Asp Ser Glu Arg Val Glu Phe		250	255	260		tgc ccc ttc ccg gaa gat ccc ggt gca cac agg aac ctc tgg cac ata	1095	Cys Pro Phe Arg Glu Asp Pro Gly Ala His Arg Asn Leu Trp His Ile		265	270	275		gcc agg ctg ccg gta ctg tcc cca ggg gta tgg cag cta gat gcg cct	1143	Ala Arg Leu Arg Val Leu Ser Pro Gly Val Trp Gln Leu Asp Ala Pro		280	285	290	295	tgc tgt ctg ccg aag gta aca ctg tgc tgg cag gca cca gac cag	1191	Cys Cys Leu Pro Gly Lys Val Thr Leu Cys Trp Gln Ala Pro Asp Gln		300	305	310		agt ccc tgc cag cca ctt gtg cca cca gtg ccc cag aag aac gcc act	1239	Ser Pro Cys Gln Pro Leu Val Pro Pro Val Pro Gln Lys Asn Ala Thr		315	320	325		gtg aat gag cca caa gat ttc cag ttg gtg gca ggc cac ccc aac ctc	1287	Val Asn Glu Pro Gln Asp Phe Gln Leu Val Ala Gly His Pro Asn Leu		330	335	340		tgt gtc cag gtg agc acc tgg gag aag gtt cag ctg caa gcg tgc ttg	1335	Cys Val Gln Val Ser Thr Trp Glu Lys Val Gln Leu Gln Ala Cys Leu		345	350	355		tgg gct gac tcc ttg ggg ccc ttc aag gat gat atg ctg tta gtg gag	1383	Trp Ala Asp Ser Leu Gly Pro Phe Lys Asp Asp Met Leu Leu Val Glu		360	365	370	375								
165																																																																																																																			
cct gac tgc agg ggt ctt gaa gtc cg ^g gac agc atc cag agc tgc tgg	807																																																																																																																		
Pro Asp Cys Arg Gly Leu Glu Val Arg Asp Ser Ile Gln Ser Cys Trp																																																																																																																			
170	175	180		gtc ctg ccc tgg ctc aat gtg tct aca gat ggt gac aat gtc ctt ctg	855	Val Leu Pro Trp Leu Asn Val Ser Thr Asp Gly Asp Asn Val Leu Leu		185	190	195		aca ctg gat gtc tct gag gag cag gac ttt agc ttc tta ctg tac ctg	903	Thr Leu Asp Val Ser Glu Glu Gln Asp Phe Ser Phe Leu Leu Tyr Leu		200	205	210	215	cgt cca gtc ccg gat gct ctc aaa tcc ttg tgg tac aaa aac ctg act	951	Arg Pro Val Pro Asp Ala Leu Lys Ser Leu Trp Tyr Lys Asn Leu Thr		220	225	230		gga cct cag aac att act tta aac cac aca gac ctg gtt ccc tgc ctc	999	Gly Pro Gln Asn Ile Thr Leu Asn His Thr Asp Leu Val Pro Cys Leu		235	240	245		tgc att cag gtg tgg tcg cta gag cca gac tct gag agg gtc gaa ttc	1047	Cys Ile Gln Val Trp Ser Leu Glu Pro Asp Ser Glu Arg Val Glu Phe		250	255	260		tgc ccc ttc ccg gaa gat ccc ggt gca cac agg aac ctc tgg cac ata	1095	Cys Pro Phe Arg Glu Asp Pro Gly Ala His Arg Asn Leu Trp His Ile		265	270	275		gcc agg ctg ccg gta ctg tcc cca ggg gta tgg cag cta gat gcg cct	1143	Ala Arg Leu Arg Val Leu Ser Pro Gly Val Trp Gln Leu Asp Ala Pro		280	285	290	295	tgc tgt ctg ccg aag gta aca ctg tgc tgg cag gca cca gac cag	1191	Cys Cys Leu Pro Gly Lys Val Thr Leu Cys Trp Gln Ala Pro Asp Gln		300	305	310		agt ccc tgc cag cca ctt gtg cca cca gtg ccc cag aag aac gcc act	1239	Ser Pro Cys Gln Pro Leu Val Pro Pro Val Pro Gln Lys Asn Ala Thr		315	320	325		gtg aat gag cca caa gat ttc cag ttg gtg gca ggc cac ccc aac ctc	1287	Val Asn Glu Pro Gln Asp Phe Gln Leu Val Ala Gly His Pro Asn Leu		330	335	340		tgt gtc cag gtg agc acc tgg gag aag gtt cag ctg caa gcg tgc ttg	1335	Cys Val Gln Val Ser Thr Trp Glu Lys Val Gln Leu Gln Ala Cys Leu		345	350	355		tgg gct gac tcc ttg ggg ccc ttc aag gat gat atg ctg tta gtg gag	1383	Trp Ala Asp Ser Leu Gly Pro Phe Lys Asp Asp Met Leu Leu Val Glu		360	365	370	375																
180																																																																																																																			
gtc ctg ccc tgg ctc aat gtg tct aca gat ggt gac aat gtc ctt ctg	855																																																																																																																		
Val Leu Pro Trp Leu Asn Val Ser Thr Asp Gly Asp Asn Val Leu Leu																																																																																																																			
185	190	195		aca ctg gat gtc tct gag gag cag gac ttt agc ttc tta ctg tac ctg	903	Thr Leu Asp Val Ser Glu Glu Gln Asp Phe Ser Phe Leu Leu Tyr Leu		200	205	210	215	cgt cca gtc ccg gat gct ctc aaa tcc ttg tgg tac aaa aac ctg act	951	Arg Pro Val Pro Asp Ala Leu Lys Ser Leu Trp Tyr Lys Asn Leu Thr		220	225	230		gga cct cag aac att act tta aac cac aca gac ctg gtt ccc tgc ctc	999	Gly Pro Gln Asn Ile Thr Leu Asn His Thr Asp Leu Val Pro Cys Leu		235	240	245		tgc att cag gtg tgg tcg cta gag cca gac tct gag agg gtc gaa ttc	1047	Cys Ile Gln Val Trp Ser Leu Glu Pro Asp Ser Glu Arg Val Glu Phe		250	255	260		tgc ccc ttc ccg gaa gat ccc ggt gca cac agg aac ctc tgg cac ata	1095	Cys Pro Phe Arg Glu Asp Pro Gly Ala His Arg Asn Leu Trp His Ile		265	270	275		gcc agg ctg ccg gta ctg tcc cca ggg gta tgg cag cta gat gcg cct	1143	Ala Arg Leu Arg Val Leu Ser Pro Gly Val Trp Gln Leu Asp Ala Pro		280	285	290	295	tgc tgt ctg ccg aag gta aca ctg tgc tgg cag gca cca gac cag	1191	Cys Cys Leu Pro Gly Lys Val Thr Leu Cys Trp Gln Ala Pro Asp Gln		300	305	310		agt ccc tgc cag cca ctt gtg cca cca gtg ccc cag aag aac gcc act	1239	Ser Pro Cys Gln Pro Leu Val Pro Pro Val Pro Gln Lys Asn Ala Thr		315	320	325		gtg aat gag cca caa gat ttc cag ttg gtg gca ggc cac ccc aac ctc	1287	Val Asn Glu Pro Gln Asp Phe Gln Leu Val Ala Gly His Pro Asn Leu		330	335	340		tgt gtc cag gtg agc acc tgg gag aag gtt cag ctg caa gcg tgc ttg	1335	Cys Val Gln Val Ser Thr Trp Glu Lys Val Gln Leu Gln Ala Cys Leu		345	350	355		tgg gct gac tcc ttg ggg ccc ttc aag gat gat atg ctg tta gtg gag	1383	Trp Ala Asp Ser Leu Gly Pro Phe Lys Asp Asp Met Leu Leu Val Glu		360	365	370	375																								
195																																																																																																																			
aca ctg gat gtc tct gag gag cag gac ttt agc ttc tta ctg tac ctg	903																																																																																																																		
Thr Leu Asp Val Ser Glu Glu Gln Asp Phe Ser Phe Leu Leu Tyr Leu																																																																																																																			
200	205	210	215	cgt cca gtc ccg gat gct ctc aaa tcc ttg tgg tac aaa aac ctg act	951	Arg Pro Val Pro Asp Ala Leu Lys Ser Leu Trp Tyr Lys Asn Leu Thr		220	225	230		gga cct cag aac att act tta aac cac aca gac ctg gtt ccc tgc ctc	999	Gly Pro Gln Asn Ile Thr Leu Asn His Thr Asp Leu Val Pro Cys Leu		235	240	245		tgc att cag gtg tgg tcg cta gag cca gac tct gag agg gtc gaa ttc	1047	Cys Ile Gln Val Trp Ser Leu Glu Pro Asp Ser Glu Arg Val Glu Phe		250	255	260		tgc ccc ttc ccg gaa gat ccc ggt gca cac agg aac ctc tgg cac ata	1095	Cys Pro Phe Arg Glu Asp Pro Gly Ala His Arg Asn Leu Trp His Ile		265	270	275		gcc agg ctg ccg gta ctg tcc cca ggg gta tgg cag cta gat gcg cct	1143	Ala Arg Leu Arg Val Leu Ser Pro Gly Val Trp Gln Leu Asp Ala Pro		280	285	290	295	tgc tgt ctg ccg aag gta aca ctg tgc tgg cag gca cca gac cag	1191	Cys Cys Leu Pro Gly Lys Val Thr Leu Cys Trp Gln Ala Pro Asp Gln		300	305	310		agt ccc tgc cag cca ctt gtg cca cca gtg ccc cag aag aac gcc act	1239	Ser Pro Cys Gln Pro Leu Val Pro Pro Val Pro Gln Lys Asn Ala Thr		315	320	325		gtg aat gag cca caa gat ttc cag ttg gtg gca ggc cac ccc aac ctc	1287	Val Asn Glu Pro Gln Asp Phe Gln Leu Val Ala Gly His Pro Asn Leu		330	335	340		tgt gtc cag gtg agc acc tgg gag aag gtt cag ctg caa gcg tgc ttg	1335	Cys Val Gln Val Ser Thr Trp Glu Lys Val Gln Leu Gln Ala Cys Leu		345	350	355		tgg gct gac tcc ttg ggg ccc ttc aag gat gat atg ctg tta gtg gag	1383	Trp Ala Asp Ser Leu Gly Pro Phe Lys Asp Asp Met Leu Leu Val Glu		360	365	370	375																																
210	215																																																																																																																		
cgt cca gtc ccg gat gct ctc aaa tcc ttg tgg tac aaa aac ctg act	951																																																																																																																		
Arg Pro Val Pro Asp Ala Leu Lys Ser Leu Trp Tyr Lys Asn Leu Thr																																																																																																																			
220	225	230		gga cct cag aac att act tta aac cac aca gac ctg gtt ccc tgc ctc	999	Gly Pro Gln Asn Ile Thr Leu Asn His Thr Asp Leu Val Pro Cys Leu		235	240	245		tgc att cag gtg tgg tcg cta gag cca gac tct gag agg gtc gaa ttc	1047	Cys Ile Gln Val Trp Ser Leu Glu Pro Asp Ser Glu Arg Val Glu Phe		250	255	260		tgc ccc ttc ccg gaa gat ccc ggt gca cac agg aac ctc tgg cac ata	1095	Cys Pro Phe Arg Glu Asp Pro Gly Ala His Arg Asn Leu Trp His Ile		265	270	275		gcc agg ctg ccg gta ctg tcc cca ggg gta tgg cag cta gat gcg cct	1143	Ala Arg Leu Arg Val Leu Ser Pro Gly Val Trp Gln Leu Asp Ala Pro		280	285	290	295	tgc tgt ctg ccg aag gta aca ctg tgc tgg cag gca cca gac cag	1191	Cys Cys Leu Pro Gly Lys Val Thr Leu Cys Trp Gln Ala Pro Asp Gln		300	305	310		agt ccc tgc cag cca ctt gtg cca cca gtg ccc cag aag aac gcc act	1239	Ser Pro Cys Gln Pro Leu Val Pro Pro Val Pro Gln Lys Asn Ala Thr		315	320	325		gtg aat gag cca caa gat ttc cag ttg gtg gca ggc cac ccc aac ctc	1287	Val Asn Glu Pro Gln Asp Phe Gln Leu Val Ala Gly His Pro Asn Leu		330	335	340		tgt gtc cag gtg agc acc tgg gag aag gtt cag ctg caa gcg tgc ttg	1335	Cys Val Gln Val Ser Thr Trp Glu Lys Val Gln Leu Gln Ala Cys Leu		345	350	355		tgg gct gac tcc ttg ggg ccc ttc aag gat gat atg ctg tta gtg gag	1383	Trp Ala Asp Ser Leu Gly Pro Phe Lys Asp Asp Met Leu Leu Val Glu		360	365	370	375																																								
230																																																																																																																			
gga cct cag aac att act tta aac cac aca gac ctg gtt ccc tgc ctc	999																																																																																																																		
Gly Pro Gln Asn Ile Thr Leu Asn His Thr Asp Leu Val Pro Cys Leu																																																																																																																			
235	240	245		tgc att cag gtg tgg tcg cta gag cca gac tct gag agg gtc gaa ttc	1047	Cys Ile Gln Val Trp Ser Leu Glu Pro Asp Ser Glu Arg Val Glu Phe		250	255	260		tgc ccc ttc ccg gaa gat ccc ggt gca cac agg aac ctc tgg cac ata	1095	Cys Pro Phe Arg Glu Asp Pro Gly Ala His Arg Asn Leu Trp His Ile		265	270	275		gcc agg ctg ccg gta ctg tcc cca ggg gta tgg cag cta gat gcg cct	1143	Ala Arg Leu Arg Val Leu Ser Pro Gly Val Trp Gln Leu Asp Ala Pro		280	285	290	295	tgc tgt ctg ccg aag gta aca ctg tgc tgg cag gca cca gac cag	1191	Cys Cys Leu Pro Gly Lys Val Thr Leu Cys Trp Gln Ala Pro Asp Gln		300	305	310		agt ccc tgc cag cca ctt gtg cca cca gtg ccc cag aag aac gcc act	1239	Ser Pro Cys Gln Pro Leu Val Pro Pro Val Pro Gln Lys Asn Ala Thr		315	320	325		gtg aat gag cca caa gat ttc cag ttg gtg gca ggc cac ccc aac ctc	1287	Val Asn Glu Pro Gln Asp Phe Gln Leu Val Ala Gly His Pro Asn Leu		330	335	340		tgt gtc cag gtg agc acc tgg gag aag gtt cag ctg caa gcg tgc ttg	1335	Cys Val Gln Val Ser Thr Trp Glu Lys Val Gln Leu Gln Ala Cys Leu		345	350	355		tgg gct gac tcc ttg ggg ccc ttc aag gat gat atg ctg tta gtg gag	1383	Trp Ala Asp Ser Leu Gly Pro Phe Lys Asp Asp Met Leu Leu Val Glu		360	365	370	375																																																
245																																																																																																																			
tgc att cag gtg tgg tcg cta gag cca gac tct gag agg gtc gaa ttc	1047																																																																																																																		
Cys Ile Gln Val Trp Ser Leu Glu Pro Asp Ser Glu Arg Val Glu Phe																																																																																																																			
250	255	260		tgc ccc ttc ccg gaa gat ccc ggt gca cac agg aac ctc tgg cac ata	1095	Cys Pro Phe Arg Glu Asp Pro Gly Ala His Arg Asn Leu Trp His Ile		265	270	275		gcc agg ctg ccg gta ctg tcc cca ggg gta tgg cag cta gat gcg cct	1143	Ala Arg Leu Arg Val Leu Ser Pro Gly Val Trp Gln Leu Asp Ala Pro		280	285	290	295	tgc tgt ctg ccg aag gta aca ctg tgc tgg cag gca cca gac cag	1191	Cys Cys Leu Pro Gly Lys Val Thr Leu Cys Trp Gln Ala Pro Asp Gln		300	305	310		agt ccc tgc cag cca ctt gtg cca cca gtg ccc cag aag aac gcc act	1239	Ser Pro Cys Gln Pro Leu Val Pro Pro Val Pro Gln Lys Asn Ala Thr		315	320	325		gtg aat gag cca caa gat ttc cag ttg gtg gca ggc cac ccc aac ctc	1287	Val Asn Glu Pro Gln Asp Phe Gln Leu Val Ala Gly His Pro Asn Leu		330	335	340		tgt gtc cag gtg agc acc tgg gag aag gtt cag ctg caa gcg tgc ttg	1335	Cys Val Gln Val Ser Thr Trp Glu Lys Val Gln Leu Gln Ala Cys Leu		345	350	355		tgg gct gac tcc ttg ggg ccc ttc aag gat gat atg ctg tta gtg gag	1383	Trp Ala Asp Ser Leu Gly Pro Phe Lys Asp Asp Met Leu Leu Val Glu		360	365	370	375																																																								
260																																																																																																																			
tgc ccc ttc ccg gaa gat ccc ggt gca cac agg aac ctc tgg cac ata	1095																																																																																																																		
Cys Pro Phe Arg Glu Asp Pro Gly Ala His Arg Asn Leu Trp His Ile																																																																																																																			
265	270	275		gcc agg ctg ccg gta ctg tcc cca ggg gta tgg cag cta gat gcg cct	1143	Ala Arg Leu Arg Val Leu Ser Pro Gly Val Trp Gln Leu Asp Ala Pro		280	285	290	295	tgc tgt ctg ccg aag gta aca ctg tgc tgg cag gca cca gac cag	1191	Cys Cys Leu Pro Gly Lys Val Thr Leu Cys Trp Gln Ala Pro Asp Gln		300	305	310		agt ccc tgc cag cca ctt gtg cca cca gtg ccc cag aag aac gcc act	1239	Ser Pro Cys Gln Pro Leu Val Pro Pro Val Pro Gln Lys Asn Ala Thr		315	320	325		gtg aat gag cca caa gat ttc cag ttg gtg gca ggc cac ccc aac ctc	1287	Val Asn Glu Pro Gln Asp Phe Gln Leu Val Ala Gly His Pro Asn Leu		330	335	340		tgt gtc cag gtg agc acc tgg gag aag gtt cag ctg caa gcg tgc ttg	1335	Cys Val Gln Val Ser Thr Trp Glu Lys Val Gln Leu Gln Ala Cys Leu		345	350	355		tgg gct gac tcc ttg ggg ccc ttc aag gat gat atg ctg tta gtg gag	1383	Trp Ala Asp Ser Leu Gly Pro Phe Lys Asp Asp Met Leu Leu Val Glu		360	365	370	375																																																																
275																																																																																																																			
gcc agg ctg ccg gta ctg tcc cca ggg gta tgg cag cta gat gcg cct	1143																																																																																																																		
Ala Arg Leu Arg Val Leu Ser Pro Gly Val Trp Gln Leu Asp Ala Pro																																																																																																																			
280	285	290	295	tgc tgt ctg ccg aag gta aca ctg tgc tgg cag gca cca gac cag	1191	Cys Cys Leu Pro Gly Lys Val Thr Leu Cys Trp Gln Ala Pro Asp Gln		300	305	310		agt ccc tgc cag cca ctt gtg cca cca gtg ccc cag aag aac gcc act	1239	Ser Pro Cys Gln Pro Leu Val Pro Pro Val Pro Gln Lys Asn Ala Thr		315	320	325		gtg aat gag cca caa gat ttc cag ttg gtg gca ggc cac ccc aac ctc	1287	Val Asn Glu Pro Gln Asp Phe Gln Leu Val Ala Gly His Pro Asn Leu		330	335	340		tgt gtc cag gtg agc acc tgg gag aag gtt cag ctg caa gcg tgc ttg	1335	Cys Val Gln Val Ser Thr Trp Glu Lys Val Gln Leu Gln Ala Cys Leu		345	350	355		tgg gct gac tcc ttg ggg ccc ttc aag gat gat atg ctg tta gtg gag	1383	Trp Ala Asp Ser Leu Gly Pro Phe Lys Asp Asp Met Leu Leu Val Glu		360	365	370	375																																																																								
290	295																																																																																																																		
tgc tgt ctg ccg aag gta aca ctg tgc tgg cag gca cca gac cag	1191																																																																																																																		
Cys Cys Leu Pro Gly Lys Val Thr Leu Cys Trp Gln Ala Pro Asp Gln																																																																																																																			
300	305	310		agt ccc tgc cag cca ctt gtg cca cca gtg ccc cag aag aac gcc act	1239	Ser Pro Cys Gln Pro Leu Val Pro Pro Val Pro Gln Lys Asn Ala Thr		315	320	325		gtg aat gag cca caa gat ttc cag ttg gtg gca ggc cac ccc aac ctc	1287	Val Asn Glu Pro Gln Asp Phe Gln Leu Val Ala Gly His Pro Asn Leu		330	335	340		tgt gtc cag gtg agc acc tgg gag aag gtt cag ctg caa gcg tgc ttg	1335	Cys Val Gln Val Ser Thr Trp Glu Lys Val Gln Leu Gln Ala Cys Leu		345	350	355		tgg gct gac tcc ttg ggg ccc ttc aag gat gat atg ctg tta gtg gag	1383	Trp Ala Asp Ser Leu Gly Pro Phe Lys Asp Asp Met Leu Leu Val Glu		360	365	370	375																																																																																
310																																																																																																																			
agt ccc tgc cag cca ctt gtg cca cca gtg ccc cag aag aac gcc act	1239																																																																																																																		
Ser Pro Cys Gln Pro Leu Val Pro Pro Val Pro Gln Lys Asn Ala Thr																																																																																																																			
315	320	325		gtg aat gag cca caa gat ttc cag ttg gtg gca ggc cac ccc aac ctc	1287	Val Asn Glu Pro Gln Asp Phe Gln Leu Val Ala Gly His Pro Asn Leu		330	335	340		tgt gtc cag gtg agc acc tgg gag aag gtt cag ctg caa gcg tgc ttg	1335	Cys Val Gln Val Ser Thr Trp Glu Lys Val Gln Leu Gln Ala Cys Leu		345	350	355		tgg gct gac tcc ttg ggg ccc ttc aag gat gat atg ctg tta gtg gag	1383	Trp Ala Asp Ser Leu Gly Pro Phe Lys Asp Asp Met Leu Leu Val Glu		360	365	370	375																																																																																								
325																																																																																																																			
gtg aat gag cca caa gat ttc cag ttg gtg gca ggc cac ccc aac ctc	1287																																																																																																																		
Val Asn Glu Pro Gln Asp Phe Gln Leu Val Ala Gly His Pro Asn Leu																																																																																																																			
330	335	340		tgt gtc cag gtg agc acc tgg gag aag gtt cag ctg caa gcg tgc ttg	1335	Cys Val Gln Val Ser Thr Trp Glu Lys Val Gln Leu Gln Ala Cys Leu		345	350	355		tgg gct gac tcc ttg ggg ccc ttc aag gat gat atg ctg tta gtg gag	1383	Trp Ala Asp Ser Leu Gly Pro Phe Lys Asp Asp Met Leu Leu Val Glu		360	365	370	375																																																																																																
340																																																																																																																			
tgt gtc cag gtg agc acc tgg gag aag gtt cag ctg caa gcg tgc ttg	1335																																																																																																																		
Cys Val Gln Val Ser Thr Trp Glu Lys Val Gln Leu Gln Ala Cys Leu																																																																																																																			
345	350	355		tgg gct gac tcc ttg ggg ccc ttc aag gat gat atg ctg tta gtg gag	1383	Trp Ala Asp Ser Leu Gly Pro Phe Lys Asp Asp Met Leu Leu Val Glu		360	365	370	375																																																																																																								
355																																																																																																																			
tgg gct gac tcc ttg ggg ccc ttc aag gat gat atg ctg tta gtg gag	1383																																																																																																																		
Trp Ala Asp Ser Leu Gly Pro Phe Lys Asp Asp Met Leu Leu Val Glu																																																																																																																			
360	365	370	375																																																																																																																
370	375																																																																																																																		

atg aaa acc ggc ctc aac aac aca tca gtc tgt gcc ttg gaa ccc agt Met Lys Thr Gly Leu Asn Asn Thr Ser Val Cys Ala Leu Glu Pro Ser 380 385 390	1431
ggc tgt aca cca ctg ccc agc atg gcc tcc acg aga gct gct cgc ctg Gly Cys Thr Pro Leu Pro Ser Met Ala Ser Thr Arg Ala Ala Arg Leu 395 400 405	1479
gga gag gag ttg ctg caa gac ttc cga tca cac cag tgt atg cag ctg Gly Glu Glu Leu Leu Gln Asp Phe Arg Ser His Gln Cys Met Gln Leu 410 415 420	1527
tgg aac gat gac aac atg gga tcg cta tgg gcc tgc ccc atg gac aag Trp Asn Asp Asp Asn Met Gly Ser Leu Trp Ala Cys Pro Met Asp Lys 425 430 435	1575
tac atc cac agg cgc tgg gtc cta gta tgg ctg gcc tgc cta ctc ttg Tyr Ile His Arg Arg Trp Val Leu Val Trp Leu Ala Cys Leu Leu 440 445 450 455	1623
gct gcg gcg ctt ttc ttc ctc ctt cta aaa aag gac cgc agg aaa Ala Ala Ala Leu Phe Phe Leu Leu Leu Lys Lys Asp Arg Arg Lys 460 465 470	1671
gcg gcc cgt ggc tcc cgc acg gcc ttg ctc ctc cac tcc gcc gac gga Ala Ala Arg Gly Ser Arg Thr Ala Leu Leu Leu His Ser Ala Asp Gly 475 480 485	1719
gcg ggc tac gag cgc ctg gtg gga gca ctg gcg tcc gcg ttg agc cag Ala Gly Tyr Glu Arg Leu Val Gly Ala Leu Ala Ser Ala Leu Ser Gln 490 495 500	1767
atg cca ctg cgc gtg gcc gtg gac ctg tgg agc cgc cgc gag ctg agc Met Pro Leu Arg Val Ala Val Asp Leu Trp Ser Arg Arg Glu Leu Ser 505 510 515	1815
gcg cac gga gcc cta gcc tgg ttc cac cac cag cga cgc cgt atc ctg Ala His Gly Ala Leu Ala Trp Phe His His Gln Arg Arg Arg Ile Leu 520 525 530 535	1863
cag gag ggt ggc gtg gta atc ctt ctc ttc tcg ccc gcg gcc gtg gcg Gln Glu Gly Gly Val Val Ile Leu Leu Phe Ser Pro Ala Ala Val Ala 540 545 550	1911
cag tgt cag cag tgg ctg cag ctc cag aca gtg gag ccc ggg ccg cat Gln Cys Gln Gln Trp Leu Gln Leu Gln Thr Val Glu Pro Gly Pro His 555 560 565	1959
gac gcc ctc gcc gcc tgg ctc agc tgc gtg cta ccc gat ttc ctg caa Asp Ala Leu Ala Ala Trp Leu Ser Cys Val Leu Pro Asp Phe Leu Gln 570 575 580	2007
ggc cgg acc ggc cgc tac gtc ggg gtc tac ttc gac ggg ctg ctg Gly Arg Ala Thr Gly Arg Tyr Val Gly Val Tyr Phe Asp Gly Leu Leu 585 590 595	2055
cac cca gac tct gtg ccc tcc ccg ttc cgc gtc gcc ccg ctc ttc tcc His Pro Asp Ser Val Pro Ser Pro Phe Arg Val Ala Pro Leu Phe Ser 600 605 610 615	2103

ctg ccc tcg cag ctg ccg gct ttc ctg gat gca ctg cag gga ggc tgc	2151																																																																																																																		
Leu Pro Ser Gln Leu Pro Ala Phe Leu Asp Ala Leu Gin Gly Gly Cys																																																																																																																			
620	625	630		tcc act tcc gcg ggg cga ccc gcg gac cgg gtg gaa cga gtg acc cag	2199	Ser Thr Ser Ala Gly Arg Pro Ala Asp Arg Val Glu Arg Val Thr Gln		635	640	645		gcg ctg cgg tcc gcc ctg gac agc tgt act tct agc tcg gaa gcc cca	2247	Ala Leu Arg Ser Ala Leu Asp Ser Cys Thr Ser Ser Glu Ala Pro		650	655	660		ggc tgc tgc gag gaa tgg gac ctg gga ccc tgc act aca cta gaa	2292	Gly Cys Cys Glu Glu Trp Asp Leu Gly Pro Cys Thr Thr Leu Glu		665	670	675		taaaagccga tacagtattc ct	2314	<210> 11		<211> 698		<212> PRT		<213> Unknown		<400> 11		Met Pro Val Ser Trp Phe Leu Leu Ser Leu Ala Leu Gly Arg Asn Pro		-20	-15		-10		-5	Val Val Val Ser Leu Glu Arg Leu Met Glu Pro Gln Asp Thr Ala Arg		-1	1		5		10	Cys Ser Leu Gly Leu Ser Cys His Leu Trp Asp Gly Asp Val Leu Cys		15	20		25	Leu Pro Gly Ser Leu Gln Ser Ala Pro Gly Pro Val Leu Val Pro Thr		30	35		40	Arg Leu Gln Thr Glu Leu Val Leu Arg Cys Pro Gln Lys Thr Asp Cys		45	50		55		60	Ala Leu Cys Val Arg Val Val His Leu Ala Val His Gly His Trp		65	70		75	Ala Glu Pro Glu Glu Ala Gly Lys Ser Asp Ser Glu Leu Gln Glu Ser		80	85		90	Arg Asn Ala Ser Leu Gln Ala Gln Val Val Leu Ser Phe Gln Ala Tyr		95	100		105	Pro Ile Ala Arg Cys Ala Leu Leu Glu Val Gln Val Pro Ala Asp Leu		110	115		120	Val Gln Pro Gly Gln Ser Val Gly Ser Ala Val Phe Asp Cys Phe Glu		125	130		135		140	Ala Ser Leu Gly Ala Glu Val Gln Ile Trp Ser Tyr Thr Lys Pro Arg		145	150		155	Tyr Gln Lys Glu Leu Asn Leu Thr Gln Gln Leu Pro Asp Cys Arg Gly	
630																																																																																																																			
tcc act tcc gcg ggg cga ccc gcg gac cgg gtg gaa cga gtg acc cag	2199																																																																																																																		
Ser Thr Ser Ala Gly Arg Pro Ala Asp Arg Val Glu Arg Val Thr Gln																																																																																																																			
635	640	645		gcg ctg cgg tcc gcc ctg gac agc tgt act tct agc tcg gaa gcc cca	2247	Ala Leu Arg Ser Ala Leu Asp Ser Cys Thr Ser Ser Glu Ala Pro		650	655	660		ggc tgc tgc gag gaa tgg gac ctg gga ccc tgc act aca cta gaa	2292	Gly Cys Cys Glu Glu Trp Asp Leu Gly Pro Cys Thr Thr Leu Glu		665	670	675		taaaagccga tacagtattc ct	2314	<210> 11		<211> 698		<212> PRT		<213> Unknown		<400> 11		Met Pro Val Ser Trp Phe Leu Leu Ser Leu Ala Leu Gly Arg Asn Pro		-20	-15		-10		-5	Val Val Val Ser Leu Glu Arg Leu Met Glu Pro Gln Asp Thr Ala Arg		-1	1		5		10	Cys Ser Leu Gly Leu Ser Cys His Leu Trp Asp Gly Asp Val Leu Cys		15	20		25	Leu Pro Gly Ser Leu Gln Ser Ala Pro Gly Pro Val Leu Val Pro Thr		30	35		40	Arg Leu Gln Thr Glu Leu Val Leu Arg Cys Pro Gln Lys Thr Asp Cys		45	50		55		60	Ala Leu Cys Val Arg Val Val His Leu Ala Val His Gly His Trp		65	70		75	Ala Glu Pro Glu Glu Ala Gly Lys Ser Asp Ser Glu Leu Gln Glu Ser		80	85		90	Arg Asn Ala Ser Leu Gln Ala Gln Val Val Leu Ser Phe Gln Ala Tyr		95	100		105	Pro Ile Ala Arg Cys Ala Leu Leu Glu Val Gln Val Pro Ala Asp Leu		110	115		120	Val Gln Pro Gly Gln Ser Val Gly Ser Ala Val Phe Asp Cys Phe Glu		125	130		135		140	Ala Ser Leu Gly Ala Glu Val Gln Ile Trp Ser Tyr Thr Lys Pro Arg		145	150		155	Tyr Gln Lys Glu Leu Asn Leu Thr Gln Gln Leu Pro Asp Cys Arg Gly									
645																																																																																																																			
gcg ctg cgg tcc gcc ctg gac agc tgt act tct agc tcg gaa gcc cca	2247																																																																																																																		
Ala Leu Arg Ser Ala Leu Asp Ser Cys Thr Ser Ser Glu Ala Pro																																																																																																																			
650	655	660		ggc tgc tgc gag gaa tgg gac ctg gga ccc tgc act aca cta gaa	2292	Gly Cys Cys Glu Glu Trp Asp Leu Gly Pro Cys Thr Thr Leu Glu		665	670	675		taaaagccga tacagtattc ct	2314	<210> 11		<211> 698		<212> PRT		<213> Unknown		<400> 11		Met Pro Val Ser Trp Phe Leu Leu Ser Leu Ala Leu Gly Arg Asn Pro		-20	-15		-10		-5	Val Val Val Ser Leu Glu Arg Leu Met Glu Pro Gln Asp Thr Ala Arg		-1	1		5		10	Cys Ser Leu Gly Leu Ser Cys His Leu Trp Asp Gly Asp Val Leu Cys		15	20		25	Leu Pro Gly Ser Leu Gln Ser Ala Pro Gly Pro Val Leu Val Pro Thr		30	35		40	Arg Leu Gln Thr Glu Leu Val Leu Arg Cys Pro Gln Lys Thr Asp Cys		45	50		55		60	Ala Leu Cys Val Arg Val Val His Leu Ala Val His Gly His Trp		65	70		75	Ala Glu Pro Glu Glu Ala Gly Lys Ser Asp Ser Glu Leu Gln Glu Ser		80	85		90	Arg Asn Ala Ser Leu Gln Ala Gln Val Val Leu Ser Phe Gln Ala Tyr		95	100		105	Pro Ile Ala Arg Cys Ala Leu Leu Glu Val Gln Val Pro Ala Asp Leu		110	115		120	Val Gln Pro Gly Gln Ser Val Gly Ser Ala Val Phe Asp Cys Phe Glu		125	130		135		140	Ala Ser Leu Gly Ala Glu Val Gln Ile Trp Ser Tyr Thr Lys Pro Arg		145	150		155	Tyr Gln Lys Glu Leu Asn Leu Thr Gln Gln Leu Pro Asp Cys Arg Gly																	
660																																																																																																																			
ggc tgc tgc gag gaa tgg gac ctg gga ccc tgc act aca cta gaa	2292																																																																																																																		
Gly Cys Cys Glu Glu Trp Asp Leu Gly Pro Cys Thr Thr Leu Glu																																																																																																																			
665	670	675		taaaagccga tacagtattc ct	2314	<210> 11		<211> 698		<212> PRT		<213> Unknown		<400> 11		Met Pro Val Ser Trp Phe Leu Leu Ser Leu Ala Leu Gly Arg Asn Pro		-20	-15		-10		-5	Val Val Val Ser Leu Glu Arg Leu Met Glu Pro Gln Asp Thr Ala Arg		-1	1		5		10	Cys Ser Leu Gly Leu Ser Cys His Leu Trp Asp Gly Asp Val Leu Cys		15	20		25	Leu Pro Gly Ser Leu Gln Ser Ala Pro Gly Pro Val Leu Val Pro Thr		30	35		40	Arg Leu Gln Thr Glu Leu Val Leu Arg Cys Pro Gln Lys Thr Asp Cys		45	50		55		60	Ala Leu Cys Val Arg Val Val His Leu Ala Val His Gly His Trp		65	70		75	Ala Glu Pro Glu Glu Ala Gly Lys Ser Asp Ser Glu Leu Gln Glu Ser		80	85		90	Arg Asn Ala Ser Leu Gln Ala Gln Val Val Leu Ser Phe Gln Ala Tyr		95	100		105	Pro Ile Ala Arg Cys Ala Leu Leu Glu Val Gln Val Pro Ala Asp Leu		110	115		120	Val Gln Pro Gly Gln Ser Val Gly Ser Ala Val Phe Asp Cys Phe Glu		125	130		135		140	Ala Ser Leu Gly Ala Glu Val Gln Ile Trp Ser Tyr Thr Lys Pro Arg		145	150		155	Tyr Gln Lys Glu Leu Asn Leu Thr Gln Gln Leu Pro Asp Cys Arg Gly																									
675																																																																																																																			
taaaagccga tacagtattc ct	2314																																																																																																																		
<210> 11																																																																																																																			
<211> 698																																																																																																																			
<212> PRT																																																																																																																			
<213> Unknown																																																																																																																			
<400> 11																																																																																																																			
Met Pro Val Ser Trp Phe Leu Leu Ser Leu Ala Leu Gly Arg Asn Pro																																																																																																																			
-20	-15		-10		-5	Val Val Val Ser Leu Glu Arg Leu Met Glu Pro Gln Asp Thr Ala Arg		-1	1		5		10	Cys Ser Leu Gly Leu Ser Cys His Leu Trp Asp Gly Asp Val Leu Cys		15	20		25	Leu Pro Gly Ser Leu Gln Ser Ala Pro Gly Pro Val Leu Val Pro Thr		30	35		40	Arg Leu Gln Thr Glu Leu Val Leu Arg Cys Pro Gln Lys Thr Asp Cys		45	50		55		60	Ala Leu Cys Val Arg Val Val His Leu Ala Val His Gly His Trp		65	70		75	Ala Glu Pro Glu Glu Ala Gly Lys Ser Asp Ser Glu Leu Gln Glu Ser		80	85		90	Arg Asn Ala Ser Leu Gln Ala Gln Val Val Leu Ser Phe Gln Ala Tyr		95	100		105	Pro Ile Ala Arg Cys Ala Leu Leu Glu Val Gln Val Pro Ala Asp Leu		110	115		120	Val Gln Pro Gly Gln Ser Val Gly Ser Ala Val Phe Asp Cys Phe Glu		125	130		135		140	Ala Ser Leu Gly Ala Glu Val Gln Ile Trp Ser Tyr Thr Lys Pro Arg		145	150		155	Tyr Gln Lys Glu Leu Asn Leu Thr Gln Gln Leu Pro Asp Cys Arg Gly																																											
	-10		-5	Val Val Val Ser Leu Glu Arg Leu Met Glu Pro Gln Asp Thr Ala Arg		-1	1		5		10	Cys Ser Leu Gly Leu Ser Cys His Leu Trp Asp Gly Asp Val Leu Cys		15	20		25	Leu Pro Gly Ser Leu Gln Ser Ala Pro Gly Pro Val Leu Val Pro Thr		30	35		40	Arg Leu Gln Thr Glu Leu Val Leu Arg Cys Pro Gln Lys Thr Asp Cys		45	50		55		60	Ala Leu Cys Val Arg Val Val His Leu Ala Val His Gly His Trp		65	70		75	Ala Glu Pro Glu Glu Ala Gly Lys Ser Asp Ser Glu Leu Gln Glu Ser		80	85		90	Arg Asn Ala Ser Leu Gln Ala Gln Val Val Leu Ser Phe Gln Ala Tyr		95	100		105	Pro Ile Ala Arg Cys Ala Leu Leu Glu Val Gln Val Pro Ala Asp Leu		110	115		120	Val Gln Pro Gly Gln Ser Val Gly Ser Ala Val Phe Asp Cys Phe Glu		125	130		135		140	Ala Ser Leu Gly Ala Glu Val Gln Ile Trp Ser Tyr Thr Lys Pro Arg		145	150		155	Tyr Gln Lys Glu Leu Asn Leu Thr Gln Gln Leu Pro Asp Cys Arg Gly																																													
	-5																																																																																																																		
Val Val Val Ser Leu Glu Arg Leu Met Glu Pro Gln Asp Thr Ala Arg																																																																																																																			
-1	1		5		10	Cys Ser Leu Gly Leu Ser Cys His Leu Trp Asp Gly Asp Val Leu Cys		15	20		25	Leu Pro Gly Ser Leu Gln Ser Ala Pro Gly Pro Val Leu Val Pro Thr		30	35		40	Arg Leu Gln Thr Glu Leu Val Leu Arg Cys Pro Gln Lys Thr Asp Cys		45	50		55		60	Ala Leu Cys Val Arg Val Val His Leu Ala Val His Gly His Trp		65	70		75	Ala Glu Pro Glu Glu Ala Gly Lys Ser Asp Ser Glu Leu Gln Glu Ser		80	85		90	Arg Asn Ala Ser Leu Gln Ala Gln Val Val Leu Ser Phe Gln Ala Tyr		95	100		105	Pro Ile Ala Arg Cys Ala Leu Leu Glu Val Gln Val Pro Ala Asp Leu		110	115		120	Val Gln Pro Gly Gln Ser Val Gly Ser Ala Val Phe Asp Cys Phe Glu		125	130		135		140	Ala Ser Leu Gly Ala Glu Val Gln Ile Trp Ser Tyr Thr Lys Pro Arg		145	150		155	Tyr Gln Lys Glu Leu Asn Leu Thr Gln Gln Leu Pro Asp Cys Arg Gly																																																			
	5		10	Cys Ser Leu Gly Leu Ser Cys His Leu Trp Asp Gly Asp Val Leu Cys		15	20		25	Leu Pro Gly Ser Leu Gln Ser Ala Pro Gly Pro Val Leu Val Pro Thr		30	35		40	Arg Leu Gln Thr Glu Leu Val Leu Arg Cys Pro Gln Lys Thr Asp Cys		45	50		55		60	Ala Leu Cys Val Arg Val Val His Leu Ala Val His Gly His Trp		65	70		75	Ala Glu Pro Glu Glu Ala Gly Lys Ser Asp Ser Glu Leu Gln Glu Ser		80	85		90	Arg Asn Ala Ser Leu Gln Ala Gln Val Val Leu Ser Phe Gln Ala Tyr		95	100		105	Pro Ile Ala Arg Cys Ala Leu Leu Glu Val Gln Val Pro Ala Asp Leu		110	115		120	Val Gln Pro Gly Gln Ser Val Gly Ser Ala Val Phe Asp Cys Phe Glu		125	130		135		140	Ala Ser Leu Gly Ala Glu Val Gln Ile Trp Ser Tyr Thr Lys Pro Arg		145	150		155	Tyr Gln Lys Glu Leu Asn Leu Thr Gln Gln Leu Pro Asp Cys Arg Gly																																																					
	10																																																																																																																		
Cys Ser Leu Gly Leu Ser Cys His Leu Trp Asp Gly Asp Val Leu Cys																																																																																																																			
15	20		25	Leu Pro Gly Ser Leu Gln Ser Ala Pro Gly Pro Val Leu Val Pro Thr		30	35		40	Arg Leu Gln Thr Glu Leu Val Leu Arg Cys Pro Gln Lys Thr Asp Cys		45	50		55		60	Ala Leu Cys Val Arg Val Val His Leu Ala Val His Gly His Trp		65	70		75	Ala Glu Pro Glu Glu Ala Gly Lys Ser Asp Ser Glu Leu Gln Glu Ser		80	85		90	Arg Asn Ala Ser Leu Gln Ala Gln Val Val Leu Ser Phe Gln Ala Tyr		95	100		105	Pro Ile Ala Arg Cys Ala Leu Leu Glu Val Gln Val Pro Ala Asp Leu		110	115		120	Val Gln Pro Gly Gln Ser Val Gly Ser Ala Val Phe Asp Cys Phe Glu		125	130		135		140	Ala Ser Leu Gly Ala Glu Val Gln Ile Trp Ser Tyr Thr Lys Pro Arg		145	150		155	Tyr Gln Lys Glu Leu Asn Leu Thr Gln Gln Leu Pro Asp Cys Arg Gly																																																											
	25																																																																																																																		
Leu Pro Gly Ser Leu Gln Ser Ala Pro Gly Pro Val Leu Val Pro Thr																																																																																																																			
30	35		40	Arg Leu Gln Thr Glu Leu Val Leu Arg Cys Pro Gln Lys Thr Asp Cys		45	50		55		60	Ala Leu Cys Val Arg Val Val His Leu Ala Val His Gly His Trp		65	70		75	Ala Glu Pro Glu Glu Ala Gly Lys Ser Asp Ser Glu Leu Gln Glu Ser		80	85		90	Arg Asn Ala Ser Leu Gln Ala Gln Val Val Leu Ser Phe Gln Ala Tyr		95	100		105	Pro Ile Ala Arg Cys Ala Leu Leu Glu Val Gln Val Pro Ala Asp Leu		110	115		120	Val Gln Pro Gly Gln Ser Val Gly Ser Ala Val Phe Asp Cys Phe Glu		125	130		135		140	Ala Ser Leu Gly Ala Glu Val Gln Ile Trp Ser Tyr Thr Lys Pro Arg		145	150		155	Tyr Gln Lys Glu Leu Asn Leu Thr Gln Gln Leu Pro Asp Cys Arg Gly																																																																	
	40																																																																																																																		
Arg Leu Gln Thr Glu Leu Val Leu Arg Cys Pro Gln Lys Thr Asp Cys																																																																																																																			
45	50		55		60	Ala Leu Cys Val Arg Val Val His Leu Ala Val His Gly His Trp		65	70		75	Ala Glu Pro Glu Glu Ala Gly Lys Ser Asp Ser Glu Leu Gln Glu Ser		80	85		90	Arg Asn Ala Ser Leu Gln Ala Gln Val Val Leu Ser Phe Gln Ala Tyr		95	100		105	Pro Ile Ala Arg Cys Ala Leu Leu Glu Val Gln Val Pro Ala Asp Leu		110	115		120	Val Gln Pro Gly Gln Ser Val Gly Ser Ala Val Phe Asp Cys Phe Glu		125	130		135		140	Ala Ser Leu Gly Ala Glu Val Gln Ile Trp Ser Tyr Thr Lys Pro Arg		145	150		155	Tyr Gln Lys Glu Leu Asn Leu Thr Gln Gln Leu Pro Asp Cys Arg Gly																																																																							
	55		60	Ala Leu Cys Val Arg Val Val His Leu Ala Val His Gly His Trp		65	70		75	Ala Glu Pro Glu Glu Ala Gly Lys Ser Asp Ser Glu Leu Gln Glu Ser		80	85		90	Arg Asn Ala Ser Leu Gln Ala Gln Val Val Leu Ser Phe Gln Ala Tyr		95	100		105	Pro Ile Ala Arg Cys Ala Leu Leu Glu Val Gln Val Pro Ala Asp Leu		110	115		120	Val Gln Pro Gly Gln Ser Val Gly Ser Ala Val Phe Asp Cys Phe Glu		125	130		135		140	Ala Ser Leu Gly Ala Glu Val Gln Ile Trp Ser Tyr Thr Lys Pro Arg		145	150		155	Tyr Gln Lys Glu Leu Asn Leu Thr Gln Gln Leu Pro Asp Cys Arg Gly																																																																									
	60																																																																																																																		
Ala Leu Cys Val Arg Val Val His Leu Ala Val His Gly His Trp																																																																																																																			
65	70		75	Ala Glu Pro Glu Glu Ala Gly Lys Ser Asp Ser Glu Leu Gln Glu Ser		80	85		90	Arg Asn Ala Ser Leu Gln Ala Gln Val Val Leu Ser Phe Gln Ala Tyr		95	100		105	Pro Ile Ala Arg Cys Ala Leu Leu Glu Val Gln Val Pro Ala Asp Leu		110	115		120	Val Gln Pro Gly Gln Ser Val Gly Ser Ala Val Phe Asp Cys Phe Glu		125	130		135		140	Ala Ser Leu Gly Ala Glu Val Gln Ile Trp Ser Tyr Thr Lys Pro Arg		145	150		155	Tyr Gln Lys Glu Leu Asn Leu Thr Gln Gln Leu Pro Asp Cys Arg Gly																																																																															
	75																																																																																																																		
Ala Glu Pro Glu Glu Ala Gly Lys Ser Asp Ser Glu Leu Gln Glu Ser																																																																																																																			
80	85		90	Arg Asn Ala Ser Leu Gln Ala Gln Val Val Leu Ser Phe Gln Ala Tyr		95	100		105	Pro Ile Ala Arg Cys Ala Leu Leu Glu Val Gln Val Pro Ala Asp Leu		110	115		120	Val Gln Pro Gly Gln Ser Val Gly Ser Ala Val Phe Asp Cys Phe Glu		125	130		135		140	Ala Ser Leu Gly Ala Glu Val Gln Ile Trp Ser Tyr Thr Lys Pro Arg		145	150		155	Tyr Gln Lys Glu Leu Asn Leu Thr Gln Gln Leu Pro Asp Cys Arg Gly																																																																																					
	90																																																																																																																		
Arg Asn Ala Ser Leu Gln Ala Gln Val Val Leu Ser Phe Gln Ala Tyr																																																																																																																			
95	100		105	Pro Ile Ala Arg Cys Ala Leu Leu Glu Val Gln Val Pro Ala Asp Leu		110	115		120	Val Gln Pro Gly Gln Ser Val Gly Ser Ala Val Phe Asp Cys Phe Glu		125	130		135		140	Ala Ser Leu Gly Ala Glu Val Gln Ile Trp Ser Tyr Thr Lys Pro Arg		145	150		155	Tyr Gln Lys Glu Leu Asn Leu Thr Gln Gln Leu Pro Asp Cys Arg Gly																																																																																											
	105																																																																																																																		
Pro Ile Ala Arg Cys Ala Leu Leu Glu Val Gln Val Pro Ala Asp Leu																																																																																																																			
110	115		120	Val Gln Pro Gly Gln Ser Val Gly Ser Ala Val Phe Asp Cys Phe Glu		125	130		135		140	Ala Ser Leu Gly Ala Glu Val Gln Ile Trp Ser Tyr Thr Lys Pro Arg		145	150		155	Tyr Gln Lys Glu Leu Asn Leu Thr Gln Gln Leu Pro Asp Cys Arg Gly																																																																																																	
	120																																																																																																																		
Val Gln Pro Gly Gln Ser Val Gly Ser Ala Val Phe Asp Cys Phe Glu																																																																																																																			
125	130		135		140	Ala Ser Leu Gly Ala Glu Val Gln Ile Trp Ser Tyr Thr Lys Pro Arg		145	150		155	Tyr Gln Lys Glu Leu Asn Leu Thr Gln Gln Leu Pro Asp Cys Arg Gly																																																																																																							
	135		140	Ala Ser Leu Gly Ala Glu Val Gln Ile Trp Ser Tyr Thr Lys Pro Arg		145	150		155	Tyr Gln Lys Glu Leu Asn Leu Thr Gln Gln Leu Pro Asp Cys Arg Gly																																																																																																									
	140																																																																																																																		
Ala Ser Leu Gly Ala Glu Val Gln Ile Trp Ser Tyr Thr Lys Pro Arg																																																																																																																			
145	150		155	Tyr Gln Lys Glu Leu Asn Leu Thr Gln Gln Leu Pro Asp Cys Arg Gly																																																																																																															
	155																																																																																																																		
Tyr Gln Lys Glu Leu Asn Leu Thr Gln Gln Leu Pro Asp Cys Arg Gly																																																																																																																			

160	165	170	
Leu Glu Val Arg Asp Ser Ile Gln Ser Cys Trp Val Leu Pro Trp Leu			
175	180	185	
Asn Val Ser Thr Asp Gly Asp Asn Val Leu Leu Thr Leu Asp Val Ser			
190	195	200	
Glu Glu Gln Asp Phe Ser Phe Leu Leu Tyr Leu Arg Pro Val Pro Asp			
205	210	215	220
Ala Leu Lys Ser Leu Trp Tyr Lys Asn Leu Thr Gly Pro Gln Asn Ile			
225	230	235	
Thr Leu Asn His Thr Asp Ile Val Pro Cys Leu Cys Ile Gln Val Trp			
240	245	250	
Ser Leu Glu Pro Asp Ser Glu Arg Val Glu Phe Cys Pro Phe Arg Glu			
255	260	265	
Asp Pro Gly Ala His Arg Asn Leu Trp His Ile Ala Arg Leu Arg Val			
270	275	280	
Leu Ser Pro Gly Val Trp Gln Leu Asp Ala Pro Cys Cys Leu Pro Gly			
285	290	295	300
Lys Val Thr Leu Cys Trp Gln Ala Pro Asp Gln Ser Pro Cys Gln Pro			
305	310	315	
Leu Val Pro Pro Val Pro Gln Lys Asn Ala Thr Val Asn Glu Pro Gln			
320	325	330	
Asp Phe Gln Leu Val Ala Gly His Pro Asn Leu Cys Val Gln Val Ser			
335	340	345	
Thr Trp Glu Lys Val Gln Leu Gln Ala Cys Leu Trp Ala Asp Ser Leu			
350	355	360	
Gly Pro Phe Lys Asp Asp Met Leu Leu Val Glu Met Lys Thr Gly Leu			
365	370	375	380
Asn Asn Thr Ser Val Cys Ala Leu Glu Pro Ser Gly Cys Thr Pro Leu			
385	390	395	
Pro Ser Met Ala Ser Thr Arg Ala Ala Arg Leu Gly Glu Glu Leu Leu			
400	405	410	
Gln Asp Phe Arg Ser His Gln Cys Met Gln Leu Trp Asn Asp Asp Asn			
415	420	425	
Met Gly Ser Leu Trp Ala Cys Pro Met Asp Lys Tyr Ile His Arg Arg			
430	435	440	
Trp Val Leu Val Trp Leu Ala Cys Leu Leu Leu Ala Ala Ala Leu Phe			
445	450	455	460
Phe Phe Leu Leu Leu Lys Lys Asp Arg Arg Lys Ala Ala Arg Gly Ser			
465	470	475	
Arg Thr Ala Leu Leu Leu His Ser Ala Asp Gly Ala Gly Tyr Glu Arg			

480	485	490
Leu Val Gly Ala Leu Ala Ser Ala Leu Ser Gln Met Pro Leu Arg Val		
495	500	505
Ala Val Asp Leu Trp Ser Arg Arg Glu Leu Ser Ala His Gly Ala Leu		
510	515	520
Ala Trp Phe His His Gln Arg Arg Arg Ile Leu Gln Glu Gly Gly Val		
525	530	535
Val Ile Leu Leu Phe Ser Pro Ala Ala Val Ala Gln Cys Gln Gln Trp		
545	550	555
Leu Gln Leu Gln Thr Val Glu Pro Gly Pro His Asp Ala Leu Ala Ala		
560	565	570
Trp Leu Ser Cys Val Leu Pro Asp Phe Leu Gln Gly Arg Ala Thr Gly		
575	580	585
Arg Tyr Val Gly Val Tyr Phe Asp Gly Leu Leu His Pro Asp Ser Val		
590	595	600
Pro Ser Pro Phe Arg Val Ala Pro Leu Phe Ser Leu Pro Ser Gln Leu		
605	610	615
620		
Pro Ala Phe Leu Asp Ala Leu Gln Gly Gly Cys Ser Thr Ser Ala Gly		
625	630	635
Arg Pro Ala Asp Arg Val Glu Arg Val Thr Gln Ala Leu Arg Ser Ala		
640	645	650
Leu Asp Ser Cys Thr Ser Ser Glu Ala Pro Gly Cys Cys Glu Glu		
655	660	665
Trp Asp Leu Gly Pro Cys Thr Thr Leu Glu		
670	675	

<210> 12
 <211> 2094
 <212> DNA
 <213> reverse translation

<220>
 <221> misc_feature
 <222> (1)..(2094)
 <223> n may be a, c, g, or t

<400> 12
 atgccngtnw sntggtyyt nytnwsnytn gcnytnggnm gnaayccngt ngtngtnwsn 60
 ytnarmgny tnatggarcc ncargayacn gcnmgntgyw snytnggnyt nwsntgycay i20
 ytnntggayg gngaygtnyt ntgyytncn ggnwsnytnc arwsngcncc ngnccngtn 180
 ytnngtnccna cnmgnytncn racngarytn gtntgnmgnt gyccncaraa racngaytgy 240
 gcnytntgyg tnmgngtngt ntncayytn gcngtncayg gncaytggc ngarcngar 300

gargcnggma arwsngayws ngarytncar garwsnmgna aycnwsnyt ncargcncar 360
gtngtnytnw snntycargc ntayccnath gcnmgnstygg cnytntngc rgtnccargtn 420
ccngcngayy tngtncarcc ngnncarwsn gtnggnwsng cngtnttyga ytgyttygar 480
gcnwsnytng gngcngargt ncarathtgw wsntayacna arccnmnta ycaraargar 540
ytntaayytnta cncarcaryt nccngaytgy mgnggnytng argtnmgnng ywsnathcar 600
wsntgytggg tnytncntg gytnaaygtn wsnaacngayg gngayaaygt nytnytnacn 660
ytngaygtnw sngargarca rgayttywsn tyytntynt ayytnmgncc ngtncngay 720
gcnytnaaw snytntggta yaaraayytnt acnggnccnc araayathac nytnaaycay 780
acngayytng tncntgyyt ntgyathcar gtntggwsny tngarccnga ywsngarmgn 840
gtngarttyt gyccnttymg ngargayccn ggngcncaym gnaayytntg gcayathgcn 900
mgnyttnmgnng tnytnwsncc ngnngntntgg carytngayg cncntgytg yytnccnggn 960
aargtnacny tntgytggca rgcnccngay carwsncnt gycarccnyt ngtncncn 1020
gtncncnara araaygcna ngtntaaygar ccncargayt tycarytngt ncnggnay 1080
ccnaayytnt gygtncargt nwsnacntgg garaargtnc arytnccargc ntgyytntgg 1140
gcngaywsny tnggnccntt yaargaygay atgytntyng tngaratgaa racnggnytn 1200
aayaayacnw sngtntgygc nytngarccn wsnggnntgya cncnytncc nwsnatggcn 1260
wsnacnmgnng cngcnmgnyt ngnngargar ytnytnccarg ayttymgnws ncaycartgy 1320
atgcarytnt ggaaygayga yaayatgggn wsnytntggg cnytgcnyt gngayartay 1380
athcaymgnm gntgggnyt ngtntgggytn gcnytgytnty tnytngcngc ncnytntty 1440
ttyttytnty tnytnaaraa rgaymgnmgn aargcngcnm gnggnwsnmg nacngcnytn 1500
ytnwsnccara tgccnytnmg ngtngcngtn gayytntggw snmgnmgnng rytnwsnccn 1560
cayggngcny tngcntgggt ycaycaycar mgnmgnmgnna thytnccarg rggnggnntn 1620
gtnathytny tnttywsncc ncngcngtn gcncartgyc arcartgggt ncarytncar 1680
acngtngarc cnggnccnca ygaygcnytn gcngcntggy tnwsntgygt nytnccngay 1740
ttytncarg gnmgngcnac ngnmgnntay gtnggnntt ayttiyaygg nytnytnay 1800
ccngaywsng tnccnwsncc nttymgnntn gcncnytnt tywsnytncc nwsnccarytn 1860
ccngcnatty tngaygcnyt ncarggnggn tgywsnacnw sngcnggnmg ncngcngay 1920
mgnngtngarm gngtnacnca rgcnytnmgn wsngcnytng aysntgyac nwsnwsnwsn 1980
gargcnccng gntgytgyga rgartggay ytnggnccnt gyacnacnyt ngar 2040
gargcnccng gntgytgyga rgartggay ytnggnccnt gyacnacnyt ngar 2094

<210> 13
 <211> 2786
 <212> DNA
 <213> Unknown

<220>
 <223> Description of Unknown Organism: primate; surmised
 Homo sapiens

<220>
 <221> CDS
 <222> (70) .. (2283)

<220>
 <221> mat_peptide
 <222> (118) .. (2283)

<220>
 <221> misc_feature
 <222> (9) .. (134)
 <223> Xaa translation (9, 18, 26, 109, 120, 134) depends
 on genetic code

<400> 13
 cccacgcntc cgggcccagca gcggggcgcc gggggcgcaga gaacggcctg gctggggcag 60
 cgcacggcc atg gcc ccg tgg ctg cag ctc tgc tcc gtc ttc ttt acg gtc 111
 Met Ala Pro Trp Leu Gln Leu Cys Ser Val Phe Phe Thr Val
 -15 -10 -5

aac gcc tgc ctc aac ggc tcg cag ctg gct gtn gcc gct ggc ggg tcc 159
 Asn Ala Cys Leu Asn Gly Ser Gln Leu Ala Xaa Ala Ala Gly Gly Ser
 -1 1 5 10

ggc cgc gcg cng ggc gac acc tgt agc tgg ang gga gtg ggg cca 207
 Gly Arg Ala Xaa Gly Ala Asp Thr Cys Ser Trp Xaa Gly Val Gly Pro
 15 20 25 30

gcc agc aga aac agt ggg ctg tac aac atc acc ttc aaa tat gac aat 255
 Ala Ser Arg Asn Ser Gly Leu Tyr Asn Ile Thr Phe Lys Tyr Asp Asn
 35 40 45

tgt acc acc tac ttg aat cca gtg ggg aag cat gtg att gct gac gcc 303
 Cys Thr Thr Tyr Leu Asn Pro Val Gly Lys His Val Ile Ala Asp Ala
 50 55 60

cag aat atc acc atc agc cag tat gct tgc cat gac caa gtg gca gtc 351
 Gln Asn Ile Thr Ser Gln Tyr Ala Cys His Asp Gln Val Ala Val
 65 70 75

acc att ctt tgg tcc cca ggg gcc ctc ggc atc gaa ttc ctg aaa gga 399
 Thr Ile Leu Trp Ser Pro Gly Ala Leu Gly Ile Glu Phe Leu Lys Gly
 80 85 90

ttt cgg gta ata ctg gag gag ctg aag tcg gag gga aga cag ngc caa 447
 Phe Arg Val Ile Leu Glu Glu Leu Lys Ser Glu Gly Arg Gln Xaa Gln
 95 100 105 110

caa ctg att cta aag gat ccg aag cag ntc aac agt agc ttc aaa aga 495

Gln	Leu	Ile	Leu	Lys	Asp	Pro	Lys	Gln	Xaa	Asn	Ser	Ser	Phe	Lys	Arg	
115								120					125			
act	gga	atg	gaa	tct	caa	cct	ttn	ctg	aat	atg	aaa	ttt	gaa	acg	gat	543
Thr	Gly	Met	Glu	Ser	Gln	Pro	Xaa	Leu	Asn	Met	Lys	Phe	Glu	Thr	Asp	
130								135				140				
tat	tcc	gta	agg	ttg	tcc	ttt	tcc	att	aaa	aac	gaa	acg	aat	tac		591
Tyr	Phe	Val	Arg	Leu	Ser	Phe	Ser	Phe	Ile	Lys	Asn	Glu	Ser	Asn	Tyr	
145								150			155					
cac	cct	tcc	ttc	ttt	aga	acc	cga	gcc	tgt	gac	ctg	ttg	tta	cag	ccg	639
His	Pro	Phe	Phe	Arg	Thr	Arg	Ala	Cys	Asp	Ile	Leu	Leu	Gln	Pro		
160								165			170					
gac	aat	cta	gct	tgt	aaa	ccc	ttc	tgg	aag	cct	cg	aat	ctg	aac	atc	687
Asp	Asn	Leu	Ala	Cys	Pro	Phe	Trp	Lys	Pro	Arg	Asn	Leu	Asn	Ile		
175						180			185			190				
agc	cag	cat	ggc	tcg	gac	atg	cag	gtg	tcc	ttc	gac	cac	gca	ccg	cac	735
Ser	Gln	His	Gly	Ser	Asp	Met	Gln	Val	Ser	Phe	Asp	His	Ala	Pro	His	
195						200			205							
aac	ttc	ggc	ttc	cgt	ttc	tcc	tat	ctt	cac	tac	aag	ctc	aag	cac	gaa	783
Asn	Phe	Gly	Phe	Arg	Phe	Phe	Tyr	Leu	His	Tyr	Lys	Leu	Lys	His	Glu	
210						215			220							
gga	cct	ttc	aag	cga	aag	acc	tgt	aag	cag	gag	caa	act	aca	gag	atg	831
Gly	Pro	Phe	Lys	Arg	Lys	Thr	Cys	Lys	Gln	Glu	Gln	Thr	Thr	Glu	Met	
225						230			235							
acc	agc	tgc	ctc	ctt	caa	aat	gtt	tct	cca	ggg	gat	tat	ata	att	gag	879
Thr	Ser	Cys	Leu	Leu	Gln	Val	Ser	Pro	Gly	Asp	Tyr	Ile	Ile	Glu		
240						245			250							
ctg	gtg	gat	gac	act	aac	aca	aca	aga	aaa	gtg	atg	cat	tat	gcc	tta	927
Leu	Val	Asp	Asp	Thr	Asn	Thr	Arg	Lys	Val	Met	His	Tyr	Ala	Leu		
255						260			265			270				
aag	cca	gtg	cac	tcc	ccg	tgg	gcc	ggg	ccc	atc	aga	gcc	gtg	gcc	atc	975
Lys	Pro	Val	His	Ser	Pro	Trp	Ala	Gly	Pro	Ile	Arg	Ala	Val	Ala	Ile	
275						280			285							
aca	gtg	cca	ctg	gta	gtc	ata	tcg	gca	tcc	ggg	acg	ctc	ttc	act	gtg	1023
Thr	Val	Pro	Ieu	Val	Val	Ile	Ser	Ala	Phe	Ala	Thr	Leu	Phe	Thr	Val	
290						295			300							
atg	tgc	cgc	aag	aag	caa	caa	gaa	aat	ata	tat	tca	cat	tta	gat	gaa	1071
Met	Cys	Arg	Lys	Lys	Gln	Gln	Glu	Asn	Ile	Tyr	Ser	His	Leu	Asp	Glu	
305						310			315							
gag	agc	tct	gag	tct	tcc	aca	tac	act	gca	gca	ctc	cca	aga	gag	agg	1119
Glu	Ser	Ser	Glu	Ser	Ser	Thr	Tyr	Thr	Ala	Ala	Leu	Pro	Arg	Glu	Arg	
320						325			330							
ctc	cg	cg	cg	cg	aag	gtc	ttt	ctc	tgc	tat	tcc	agt	aaa	gat	ggc	1167
Leu	Arg	Pro	Arg	Pro	Lys	Val	Phe	Leu	Cys	Tyr	Ser	Ser	Lys	Asp	Gly	
335						340			345			350				
cag	aat	cac	atg	aat	gtc	gtc	cag	tgt	ttc	gcc	tac	ttc	ctc	cag	gac	1215

Gln Asn His Met Asn Val Val Gln Cys Phe Ala Tyr Phe Leu Gln Asp		
355	360	365
ttc tgt ggc tgt gag gtg gct ctg gac ctg tgg gaa gac ttc agc ctc		1263
Phe Cys Gly Cys Glu Val Ala Leu Asp Leu Trp Glu Asp Phe Ser Leu		
370	375	380
tgt aga gaa ggg cag aga gaa tgg gtc atc cag aag atc cac gag tcc		1311
Cys Arg Glu Gly Gln Arg Glu Trp Val Ile Gln Lys Ile His Glu Ser		
385	390	395
cag ttc atc att gtg gtt tgt tcc aaa ggt atg aag tac ttt gtg gac		1359
Gln Phe Ile Ile Val Val Cys Ser Lys Gly Met Lys Tyr Phe Val Asp		
400	405	410
aag aag aac tac aaa cac aaa gga ggt ggc cga ggc tcg ggg aaa gga		1407
Lys Lys Asn Tyr Lys His Lys Gly Gly Arg Gly Ser Gly Lys Gly		
415	420	425
430		
gag ctc ttc ctg gtg gcg gtg tca gcc att gcc gaa aag ctc cgc cag		1455
Glu Leu Phe Leu Val Ala Val Ser Ala Ile Ala Glu Lys Leu Arg Gln		
435	440	445
gcc aag cag agt tcg tcc gcg gcg ctc agc aag ttt atc gcc gtc tac		1503
Ala Lys Gln Ser Ser Ala Ala Leu Ser Lys Phe Ile Ala Val Tyr		
450	455	460
ttt gat tat tcc tgc gag gga gac gtc ccc ggt atc cta gac ctg agt		1551
Phe Asp Tyr Ser Cys Glu Gly Asp Val Pro Gly Ile Leu Asp Leu Ser		
465	470	475
acc aag tac aga ctc atg gac aat ctt cct cag ctc tgt tcc cac ctg		1599
Thr Lys Tyr Arg Leu Met Asp Asn Leu Pro Gln Leu Cys Ser His Leu		
480	485	490
cac tcc cga gac cac ggc ctc cag gag ccg ggg cag cac acg cga cag		1647
His Ser Arg Asp His Gly Leu Gln Glu Pro Gly Gln His Thr Arg Gln		
495	500	505
510		
ggc agc aga agg aac tac ttc cgg agc aag tca ggc cgg tcc cta tac		1695
Gly Ser Arg Arg Asn Tyr Phe Arg Ser Lys Ser Gly Arg Ser Leu Tyr		
515	520	525
gtc gcc att tgc aac atg cac cag ttt att gac gag gag ccc gac tgg		1743
Val Ala Ile Cys Asn Met His Gln Phe Ile Asp Glu Glu Pro Asp Trp		
530	535	540
ttc gaa aag cag ttc gtt ccc ttc cat cct cca ctg cgc tac cgg		1791
Phe Glu Lys Gln Phe Val Pro Phe His Pro Pro Pro Leu Arg Tyr Arg		
545	550	555
gag cca gtc ttg gag aaa ttt gat tcg ggc ttg gtt tta aat gat gtc		1839
Glu Pro Val Leu Glu Lys Phe Asp Ser Gly Leu Val Leu Asn Asp Val		
560	565	570
atg tgc aaa cca ggg cct gag agt gac ttc tgc cta aag gta gag gcg		1887
Met Cys Lys Pro Gly Pro Glu Ser Asp Phe Cys Leu Lys Val Glu Ala		
575	580	585
590		
gct gtt ctt ggg gca acc gga cca gcc gac tcc cag cac gag agt cag		1935

Ala Val Leu Gly Ala Thr Gly Pro Ala Asp Ser Gln His Glu Ser Gln		
595	600	605
cat ggg ggc ctg gac caa gac ggg gag gcc cgg cct gcc ctt gac ggt		1983
His Gly Gly Leu Asp Gln Asp Gly Glu Ala Arg Pro Ala Leu Asp Gly		
610	615	620
agc gcc gcc ctg caa ccc ctg ctg cac acg gtg aaa gcc ggc agc ccc		2031
Ser Ala Ala Leu Gln Pro Leu Leu His Thr Val Lys Ala Gly Ser Pro		
625	630	635
tcg gac atg ccg cgg gac tca ggc atc tat gac tcg tct gtg ccc tca		2079
Ser Asp Met Pro Arg Asp Ser Gly Ile Tyr Asp Ser Ser Val Pro Ser		
640	645	650
tcc gag ctg tct ctg cca ctg atg gaa gga ctc tcg acg gac cag aca		2127
Ser Glu Leu Ser Leu Pro Leu Met Glu Gly Leu Ser Thr Asp Gln Thr		
655	660	665
670		
gaa acg tct tcc ctg acg gag agc gtg tcc tcc tct tca ggc ctg ggt		2175
Glu Thr Ser Ser Leu Thr Glu Ser Val Ser Ser Ser Gly Leu Gly		
675	680	685
gag gag gaa cct cct gcc ctt cct tcc aag ctc ctc tct tct ggg tca		2223
Glu Glu Glu Pro Pro Ala Leu Pro Ser Lys Leu Leu Ser Ser Gly Ser		
690	695	700
tgc aaa gca gat ctt ggt tgc cgc agc tac act gat gaa ctc cac gcg		2271
Cys Lys Ala Asp Leu Gly Cys Arg Ser Tyr Thr Asp Glu Leu His Ala		
705	710	715
gtc gcc cct ttg taacaaaaacg aaagagtcta agcattgcca ctttagctgc		2323
Val Ala Pro Leu		
720		
tgccctccctc tgattccccca gtcatctcc ctgggtgcat ggccacttg gagctgagg		2383
ctcataacaag gatatttggaa gtgaaatgct ggccagtact tggctccct tgccccaaacc		2443
ctttaccgga tatcttgaca aactctccaa ttttctaaaa tgatatggag ctctgaaagg		2503
catgtccata aggtctgaca acagcttgc aaatttggtt agtccttggaa tcagagcctg		2563
ttgtgggagg tagggaggaa atatgtaaag aaaaacagga agataacctgc actaattcatt		2623
cagacttcat tgagctctgc aaactttgcc tggctacctt gatttgaat		2683
gttttgtgaa aaaaggact tttaacatca tagccacaga aatcaagtgc cagtctatct		2743
ggaatccatg ttgtattgca gataatgttc tcatttattt ttg		2786

<210> 14
 <211> 738
 <212> PRT
 <213> Unknown

<400> 14
 Met Ala Pro Trp Leu Gln Leu Cys Ser Val Phe Phe Thr Val Asn Ala
 -15 -10 -5 -1

Cys Leu Asn Gly Ser Gln Leu Ala Xaa Ala Ala Gly Gly Ser Gly Arg
1 5 10 15

Ala Xaa Gly Ala Asp Thr Cys Ser Trp Xaa Gly Val Gly Pro Ala Ser
20 25 30

Arg Asn Ser Gly Leu Tyr Asn Ile Thr Phe Lys Tyr Asp Asn Cys Thr
35 40 45

Thr Tyr Leu Asn Pro Val Gly Lys His Val Ile Ala Asp Ala Gln Asn
50 55 60

Ile Thr Ile Ser Gln Tyr Ala Cys His Asp Gln Val Ala Val Thr Ile
65 70 75 80

Leu Trp Ser Pro Gly Ala Leu Gly Ile Glu Phe Leu Lys Gly Phe Arg
85 90 95

Val Ile Leu Glu Glu Leu Lys Ser Glu Gly Arg Gln Xaa Gln Gln Leu
100 105 110

Ile Leu Lys Asp Pro Lys Gln Xaa Asn Ser Ser Phe Lys Arg Thr Gly
115 120 125

Met Glu Ser Gln Pro Xaa Leu Asn Met Lys Phe Glu Thr Asp Tyr Phe
130 135 140

Val Arg Leu Ser Phe Ser Phe Ile Lys Asn Glu Ser Asn Tyr His Pro
145 150 155 160

Phe Phe Arg Thr Arg Ala Cys Asp Leu Leu Leu Gln Pro Asp Asn
165 170 175

Leu Ala Cys Lys Pro Phe Trp Lys Pro Arg Asn Leu Asn Ile Ser Gln
180 185 190

His Gly Ser Asp Met Gln Val Ser Phe Asp His Ala Pro His Asn Phe
195 200 205

Gly Phe Arg Phe Phe Tyr Leu His Tyr Lys Leu Lys His Glu Gly Pro
210 215 220

Phe Lys Arg Lys Thr Cys Lys Gln Glu Gln Thr Thr Glu Met Thr Ser
225 230 235 240

Cys Leu Leu Gln Asn Val Ser Pro Gly Asp Tyr Ile Ile Glu Leu Val
245 250 255

Asp Asp Thr Asn Thr Arg Lys Val Met His Tyr Ala Leu Lys Pro
260 265 270

Val His Ser Pro Trp Ala Gly Pro Ile Arg Ala Val Ala Ile Thr Val
275 280 285

Pro Leu Val Val Ile Ser Ala Phe Ala Thr Leu Phe Thr Val Met Cys
290 295 300

Arg Lys Lys Gln Gln Glu Asn Ile Tyr Ser His Leu Asp Glu Glu Ser
305 310 315 320

Ser Glu Ser Ser Thr Tyr Thr Ala Ala Leu Pro Arg Glu Arg Leu Arg
325 330 335

Pro Arg Pro Lys Val Phe Leu Cys Tyr Ser Ser Lys Asp Gly Gln Asn
340 345 350

His Met Asn Val Val Gln Cys Phe Ala Tyr Phe Leu Asp Phe Cys
355 360 365

Gly Cys Glu Val Ala Leu Asp Leu Trp Glu Asp Phe Ser Leu Cys Arg
370 375 380

Glu Gly Gln Arg Glu Trp Val Ile Gln Lys Ile His Glu Ser Gln Phe
385 390 395 400

Ile Ile Val Val Cys Ser Lys Gly Met Lys Tyr Phe Val Asp Lys Lys
405 410 415

Asn Tyr Lys His Lys Gly Gly Arg Gly Ser Gly Lys Gly Glu Leu
420 425 430

Phe Leu Val Ala Val Ser Ala Ile Ala Glu Lys Leu Arg Gln Ala Lys
435 440 445

Gln Ser Ser Ser Ala Ala Leu Ser Lys Phe Ile Ala Val Tyr Phe Asp
450 455 460

Tyr Ser Cys Glu Gly Asp Val Pro Gly Ile Leu Asp Leu Ser Thr Lys
465 470 475 480

Tyr Arg Leu Met Asp Asn Leu Pro Gln Leu Cys Ser His Leu His Ser
485 490 495

Arg Asp His Gly Leu Gln Glu Pro Gly Gln His Thr Arg Gln Gly Ser
500 505 510

Arg Arg Asn Tyr Phe Arg Ser Lys Ser Gly Arg Ser Leu Tyr Val Ala
515 520 525

Ile Cys Asn Met His Gln Phe Ile Asp Glu Glu Pro Asp Trp Phe Glu
530 535 540

Lys Gln Phe Val Pro Phe His Pro Pro Pro Leu Arg Tyr Arg Glu Pro
545 550 555 560

Val Leu Glu Lys Phe Asp Ser Gly Leu Val Leu Asn Asp Val Met Cys
565 570 575

Lys Pro Gly Pro Glu Ser Asp Phe Cys Leu Lys Val Glu Ala Ala Val
580 585 590

Leu Gly Ala Thr Gly Pro Ala Asp Ser Gln His Glu Ser Gln His Gly
595 600 605

Gly Leu Asp Gln Asp Gly Glu Ala Arg Pro Ala Leu Asp Gly Ser Ala
610 615 620

Ala Leu Gln Pro Leu Leu His Thr Val Lys Ala Gly Ser Pro Ser Asp
625 630 635 640

Met Pro Arg Asp Ser Gly Ile Tyr Asp Ser Ser Val Pro Ser Ser Glu
645 650 655

Leu Ser Leu Pro Leu Met Glu Gly Leu Ser Thr Asp Gln Thr Glu Thr
660 665 670

Ser Ser Leu Thr Glu Ser Val Ser Ser Ser Gly Leu Gly Glu Glu
675 680 685

Glu Pro Pro Ala Leu Pro Ser Lys Leu Leu Ser Ser Gly Ser Cys Lys
690 695 700

Ala Asp Leu Gly Cys Arg Ser Tyr Thr Asp Glu Leu His Ala Val Ala
705 710 715 720

Pro Leu

<210> 15

<211> 2214

<212> DNA

<213> reverse translation

<220>

<221> misc_feature

<222> (1)..(2214)

<223> n may be a, c, g, or t

<400> 15

atggcncnt ggytncaryt ntgywsngtn ttyttyacng tnaaygentg yytnaaygg 60

wsncarytng cngtngcngc nggnggnwsn ggnmgngcnn nnngngcnga yacntgywsn 120

tggnnnggng tnngncncngc nwsnmgnaay wsnggnytnt ayaayathac nttyaartay 180

gayaaytgya cnacntayyt naayccngtn ggnaarcayg tnathgcnga ygcncaraay 240

athacnathw sncartaygc ntgycaygay cargtngcng tnacnathyt ntggwsncn 300

ggngcnytng gnathgartt yytnaarggn ttymgngtta thytngarga rytnaarwsn 360

garggnmgnc arnnnnarca rytnathytn aargayccna arcarnnnnaa ywsnwsntt 420

aarmgnacng gnatggarws ncarrccnnn ytnaayatga arttygarac ngaytayt 480

gtnmgnytnw snttywsntt yathaaraay garwsnaayt aycayccntt ytttytymgn 540

acnmngngcnt gygayytnyt nytnccrcn gayaayytng cntgyaarcc nttytggar 600

ccnmgnaayy tnaayathws ncarcayggw wsngayatgc argtnwsntt ygaycaygcn 660

ccncayaayt tyggnttymg nttyttypay ytncaytaya arytnaarca ygarggnccn 720

ttyaarmgna aracntgyaa rcargarcar acnacngara tgacnwsntg yytnytnca 780

aaygtnwsnc cnggngayta yathathgar ytnctngayg ayacnaayac nacnmgnar 840

gtnatgcayt aygcnytnaa rccngtncay wsncncntggg cnggnccnat hmgngcngtn 900

gcnathacng tnccnytngt ngtathwsn gcnttygcna cnytnattyac ngtnatgtgy 960
mgnaraarc arcargaraa yathaywsn cayytnayg argarwsnws ngarwsnwsn 1020
acntayacng cngcnytncc nmngnarmgn ytnmgnccnm gnccnaargt nttyytntgy 1080
taywsnwsna argaygnca raaycayatg aaygtngtnc artgyttygc ntayttyyt 1140
cargayttyp gyggntgyga rgtnccnytn gayytntggg argayttyps nytnygymgn 1200
garggnarm gngartgggt nathcaraar athcaygarw sncarttyat hathgtngtn 1260
tgywsnaarg gnatgaarta yttygtngay aaraaraayt ayaarcayaa rggnggnggn 1320
mnggnwsng gnaarggnga rytnttyyt 1380
mngcargcna arcarwsnws nwsgcngcn ytnwsnaart tyathgcngt ntayttypg 1440
taywsntgyg arggngaygt nccngnath ytnayt 1500
gayaaytnc cncarytn 1560
ggnccarcaya cnmgncargg nwsmgnmgn aaytayttm gnwsnaarws nggnmgnwsn 1620
ytntaygtng cnathtgyaa yatgcaycar ttypathgayg argarccng 1680
aarcarttyg tnccnattyca yccnccnccn ytnmgnaym gngarccngt nytn 1740
ttypaywsng gnytngt 1800
tgyytnaarg tngargcngc ngtnytn 1860
wsncarcayg gnggnytna 1920
gcnycarcn 1980
wsnggnatht ayyaywsnws ngtncnwsn wsngarytnw snytnccnyt natggarggn 2040
ytnwsnacng aycaracng 2100
ytnyngarg argarccncc ngytncnccn wsnaarytny tnwsnwsnngg nwsntgya 2160
gngaytng gntgymgnws ntayacngay garytncayg cngtngcncc nytn 2214

<210> 16
<211> 2012
<212> DNA
<213> Unknown

<220>
<223> Description of Unknown Organism: primate; surmised
Homo sapiens

<220>
<221> CDS
<222> (1)..(1971)

<220>

<221> mat_peptide
 <222> (70)..(1971)

<400> 16
 atg ggg agc tcc aga ctg gca gcc ctg ctc ctg cct ctc ctc ctc ata 48
 Met Gly Ser Ser Arg Leu Ala Ala Leu Leu Leu Pro Leu Leu Ile
 -20 -15 -10
 gtc atc gac ctc tct gac tct gct ggg att ggc ttt cgc cac ctg ccc 96
 Val Ile Asp Leu Ser Asp Ser Ala Gly Ile Gly Phe Arg His Leu Pro
 -5 -1 1 5
 cac tgg aac acc cgc tgt cct ctg gcc tcc cac acg gaa gtt ctg cct 144
 His Trp Asn Thr Arg Cys Pro Leu Ala Ser His Thr Glu Val Leu Pro
 10 15 20 25
 ata tcc ctt gcc gca cct ggt ggg ccc tct tct cca caa agc ctt ggt 192
 Ile Ser Leu Ala Ala Pro Gly Gly Pro Ser Ser Pro Gln Ser Leu Gly
 30 35 40
 gtg tgc gag tct ggc act gtt ccc gct gtt tgt gcc agc atc tgc tgt 240
 Val Cys Glu Ser Gly Thr Val Pro Ala Val Cys Ala Ser Ile Cys Cys
 45 50 55
 cag gtg gct cag gtc ttc aac ggg gcc tct tcc acc tcc tgg tgc aga 288
 Gln Val Ala Gln Val Phe Asn Gly Ala Ser Ser Thr Ser Trp Cys Arg
 60 65 70
 aat cca aaa agt ctt cca cat tca agt tct ata gga gac aca aga tgc 336
 Asn Pro Lys Ser Leu Pro His Ser Ser Ser Ile Gly Asp Thr Arg Cys
 75 80 85
 cag cac ctg ctc aga gga agc tgc tgc ctc gtc acc tgt ctg aga 384
 Gln His Leu Leu Arg Gly Ser Cys Cys Leu Val Val Thr Cys Leu Arg
 90 95 100 105
 aga gcc atc aca ttt cca tcc cct ccc cag aca tct ccc aca agg gac 432
 Arg Ala Ile Thr Phe Pro Ser Pro Pro Gln Thr Ser Pro Thr Arg Asp
 110 115 120
 ttc gct cta aaa gga ccc aac ctt cgg atc cag aga cat ggg aaa gtc 480
 Phe Ala Leu Lys Gly Pro Asn Leu Arg Ile Gln Arg His Gly Lys Val
 125 130 135
 ttc cca gat tgg act cac aaa ggc atg gag gtg ggc act ggg tac aac 528
 Phe Pro Asp Trp Thr His Lys Gly Met Glu Val Gly Thr Gly Tyr Asn
 140 145 150
 agg aga tgg gtt cag ctg agt ggt gga ccc gag ttc tcc ttt gat ttg 576
 Arg Arg Trp Val Gln Leu Ser Gly Gly Pro Glu Phe Ser Phe Asp Leu
 155 160 165
 ctg cct gag gcc cgg gct att cgg gtg acc ata tct tca ggc cct gag 624
 Leu Pro Glu Ala Arg Ala Ile Arg Val Thr Ile Ser Ser Gly Pro Glu
 170 175 180 185
 gtc agc gtg cgt ctt tgt cac cag tgg gca ctg gag tgt gaa gag ctg 672
 Val Ser Val Arg Leu Cys His Gln Trp Ala Leu Glu Cys Glu Glu Leu
 190 195 200

agc agt ccc tat gat gtc cag aaa att gtg tct ggg ggc cac act gta	720
Ser Ser Pro Tyr Asp Val Gln Lys Ile Val Ser Gly Gly His Thr Val	
205 210 215	
gag ctg cct tat gaa ttc ctt ctg ccc tgt ctg tgc ata gag gca tcc	768
Glu Leu Pro Tyr Glu Phe Leu Leu Pro Cys Leu Cys Ile Glu Ala Ser	
220 225 230	
tac ctg caa gag gac act gtg agg cgc aaa aaa tgt ccc ttc cag agc	816
Tyr Leu Gln Glu Asp Thr Val Arg Arg Lys Lys Cys Pro Phe Gln Ser	
235 240 245	
tgg cca gaa gcc tat ggc tcg gac ttc tgg aag tca gtg cac ttc act	864
Trp Pro Glu Ala Tyr Gly Ser Asp Phe Trp Lys Ser Val His Phe Thr	
250 255 260 265	
gac tac agc cag cac act cag atg gtc atg gcc ctg aca ctc cgc tgc	912
Asp Tyr Ser Gln His Thr Gln Met Val Met Ala Leu Thr Leu Arg Cys	
270 275 280	
cca ctg aag ctg gaa gct gcc ctc tgc cag agg cac gac tgg cat acc	960
Pro Leu Lys Leu Glu Ala Ala Leu Cys Gln Arg His Asp Trp His Thr	
285 290 295	
ctt tgc aaa gac ctc ccg aat gcc acg gct cga gag tca gat ggg tgg	1008
Leu Cys Lys Asp Leu Pro Asn Ala Thr Ala Arg Glu Ser Asp Gly Trp	
300 305 310	
tat gtt ttg gag aag gtg gac ctg cac ccc cag ctc tgc ttc aag gta	1056
Tyr Val Leu Glu Lys Val Asp Leu His Pro Gln Leu Cys Phe Lys Val	
315 320 325	
caa cca tgg ttc tct ttt gga aac agc agc cat gtt gaa tgc ccc cac	1104
Gln Pro Trp Phe Ser Phe Gly Asn Ser Ser His Val Glu Cys Pro His	
330 335 340 345	
cag act ggg tct ctc aca tcc tgg aat gta agc atg gat acc caa gcc	1152
Gln Thr Gly Ser Leu Thr Ser Trp Asn Val Ser Met Asp Thr Gln Ala	
350 355 360	
cag cag ctg att ctt cac ttc tcc tca aga atg cat gcc acc ttc agt	1200
Gln Gln Leu Ile Leu His Phe Ser Ser Arg Met His Ala Thr Phe Ser	
365 370 375	
gct gcc tgg agc ctc cca ggc ttg ggg cag gac act ttg gtg ccc ccc	1248
Ala Ala Trp Ser Leu Pro Gly Leu Gly Gln Asp Thr Leu Val Pro Pro	
380 385 390	
gtg tac act gtc agc cag gtg tgg cgg tca gat gtc cag ttt gcc tgg	1296
Val Tyr Thr Val Ser Gln Val Trp Arg Ser Asp Val Gln Phe Ala Trp	
395 400 405	
aag cac ctc ttg tgt cca gat gtc tct tac aga cac ctg ggg ctc ttg	1344
Lys His Leu Leu Cys Pro Asp Val Ser Tyr Arg His Leu Gly Leu Leu	
410 415 420 425	
atc ctg gca ctg ctg gcc ctc ctc acc cta ctg ggt gtt gtt ctg gcc	1392
Ile Leu Ala Leu Leu Ala Leu Leu Thr Leu Leu Gly Val Val Leu Ala	
430 435 440	

ctc acc tgc cgg cgc cca cag tca ggc ccg ggc cca gcg cgg cca gtg	1440		
Leu Thr Cys Arg Arg Pro Gln Ser Gly Pro Gly Pro Ala Arg Pro Val			
445	450	455	
ctc ctc ctg cac gcg gcg gac tcg gag gcg cag cgg cgc ctg gtg gga	1488		
Leu Leu Leu His Ala Ala Asp Ser Glu Ala Gln Arg Arg Leu Val Gly			
460	465	470	
gcg ctg gct gaa ctg cta cgg gca gcg ctg ggc ggg cgg cgc gac gtg	1536		
Ala Leu Ala Glu Leu Leu Arg Ala Ala Leu Gly Gly Arg Asp Val			
475	480	485	
atc gtg gac ctg tgg gag ggg agg cac gtg gcg cgc gtg ggc ccg ctg	1584		
Ile Val Asp Leu Trp Glu Gly Arg His Val Ala Arg Val Gly Pro Leu			
490	495	500	505
ccg tgg ctc tgg gcg gcg cgg acg cgc gta gcg cgg gag cag ggc act	1632		
Pro Trp Leu Trp Ala Ala Arg Thr Arg Val Ala Arg Glu Gln Gly Thr			
510	515	520	
gtg ctg ctg ctg tgg agc ggc gcc gac ctt cgc ccg gtc agc ggc ccc	1680		
Val Leu Leu Leu Trp Ser Gly Ala Asp Leu Arg Pro Val Ser Gly Pro			
525	530	535	
gac ccc cgc gcc gcg ccc ctg ctc gcc ctg ctc cac gct gcc ccg cgc	1728		
Asp Pro Arg Ala Ala Pro Leu Leu Ala Leu Leu His Ala Ala Pro Arg			
540	545	550	
ccg ctg ctg ctg ctc gct tac ttc agt cgc ctc tgc gcc aag ggc gac	1776		
Pro Leu Leu Leu Leu Ala Tyr Phe Ser Arg Leu Cys Ala Lys Gly Asp			
555	560	565	
atc ccc cgc ccc ctg cgc gcc ctg ccg cgc tac cgc ctg ctg cgc gac	1824		
Ile Pro Pro Pro Leu Arg Ala Leu Pro Arg Tyr Arg Leu Leu Arg Asp			
570	575	580	585
ctg ccg cgt ctg cgg gcg ctg gac gcg cgg cct ttc gca gag gcc	1872		
Leu Pro Arg Leu Leu Arg Ala Leu Asp Ala Arg Pro Phe Ala Glu Ala			
590	595	600	
acc agc tgg ggc cgc ctt ggg gcg cgg cag cgc agg cag cgc cta	1920		
Thr Ser Trp Gly Arg Leu Gly Ala Arg Gln Arg Arg Gln Ser Arg Leu			
605	610	615	
gag ctg tgc agc cgg ctc gaa cga gag gcc gcc cga ctt gca gac cta	1968		
Glu Leu Cys Ser Arg Leu Glu Arg Glu Ala Ala Arg Leu Ala Asp Leu			
620	625	630	
ggt tgagcagagc tccacccgcag tccccgggtgt ctgcggccgc t	2012		
Gly			

<210> 17

<211> 657

<212> PRT

<213> Unknown

<400> 17

Met Gly Ser Ser Arg Leu Ala Ala Leu Leu Leu Pro Leu Leu Ile

Val Ile Asp Leu Ser Asp Ser Ala Gly Ile Gly Phe Arg His Leu Pro
-5 -1 1 5

His Trp Asn Thr Arg Cys Pro Leu Ala Ser His Thr Glu Val Leu Pro
10 15 20 25

Ile Ser Leu Ala Ala Pro Gly Gly Pro Ser Ser Pro Gln Ser Leu Gly
30 35 40

Val Cys Glu Ser Gly Thr Val Pro Ala Val Cys Ala Ser Ile Cys Cys
45 50 55

Gln Val Ala Gln Val Phe Asn Gly Ala Ser Ser Thr Ser Trp Cys Arg
60 65 70

Asn Pro Lys Ser Leu Pro His Ser Ser Ser Ile Gly Asp Thr Arg Cys
75 80 85

Gln His Leu Leu Arg Gly Ser Cys Cys Leu Val Val Thr Cys Leu Arg
90 95 100 105

Arg Ala Ile Thr Phe Pro Ser Pro Pro Gln Thr Ser Pro Thr Arg Asp
110 115 120

Phe Ala Leu Lys Gly Pro Asn Leu Arg Ile Gln Arg His Gly Lys Val
125 130 135

Phe Pro Asp Trp Thr His Lys Gly Met Glu Val Gly Thr Gly Tyr Asn
140 145 150

Arg Arg Trp Val Gln Leu Ser Gly Gly Pro Glu Phe Ser Phe Asp Leu
155 160 165

Leu Pro Glu Ala Arg Ala Ile Arg Val Thr Ile Ser Ser Gly Pro Glu
170 175 180 185

Val Ser Val Arg Leu Cys His Gln Trp Ala Leu Glu Cys Glu Leu
190 195 200

Ser Ser Pro Tyr Asp Val Gln Lys Ile Val Ser Gly Gly His Thr Val
205 210 215

Glu Leu Pro Tyr Glu Phe Leu Leu Pro Cys Leu Cys Ile Glu Ala Ser
220 225 230

Tyr Leu Gln Glu Asp Thr Val Arg Arg Lys Lys Cys Pro Phe Gln Ser
235 240 245

Trp Pro Glu Ala Tyr Gly Ser Asp Phe Trp Lys Ser Val His Phe Thr
250 255 260 265

Asp Tyr Ser Gln His Thr Gln Met Val Met Ala Leu Thr Leu Arg Cys
270 275 280

Pro Leu Lys Leu Glu Ala Ala Leu Cys Gln Arg His Asp Trp His Thr
285 290 295

Leu Cys Lys Asp Leu Pro Asn Ala Thr Ala Arg Glu Ser Asp Gly Trp
300 305 310

Tyr Val Leu Glu Lys Val Asp Leu His Pro Gln Leu Cys Phe Lys Val
315 320 325

Gln Pro Trp Phe Ser Phe Gly Asn Ser Ser His Val Glu Cys Pro His
330 335 340 345

Gln Thr Gly Ser Leu Thr Ser Trp Asn Val Ser Met Asp Thr Gln Ala
350 355 360

Gln Gln Leu Ile Leu His Phe Ser Ser Arg Met His Ala Thr Phe Ser
365 370 375

Ala Ala Trp Ser Leu Pro Gly Leu Gly Gln Asp Thr Leu Val Pro Pro
380 385 390

Val Tyr Thr Val Ser Gln Val Trp Arg Ser Asp Val Gln Phe Ala Trp
395 400 405

Lys His Leu Leu Cys Pro Asp Val Ser Tyr Arg His Leu Gly Leu Leu
410 415 420 425

Ile Leu Ala Leu Leu Ala Leu Leu Thr Leu Leu Gly Val Val Leu Ala
430 435 440

Leu Thr Cys Arg Arg Pro Gln Ser Gly Pro Gly Pro Ala Arg Pro Val
445 450 455

Leu Leu Leu His Ala Ala Asp Ser Glu Ala Gln Arg Arg Leu Val Gly
460 465 470

Ala Leu Ala Glu Leu Leu Arg Ala Ala Leu Gly Gly Gly Arg Asp Val
475 480 485

Ile Val Asp Leu Trp Glu Gly Arg His Val Ala Arg Val Gly Pro Leu
490 495 500 505

Pro Trp Leu Trp Ala Ala Arg Thr Arg Val Ala Arg Glu Gln Gly Thr
510 515 520

Val Leu Leu Leu Trp Ser Gly Ala Asp Leu Arg Pro Val Ser Gly Pro
525 530 535

Asp Pro Arg Ala Ala Pro Leu Leu Ala Leu Leu His Ala Ala Pro Arg
540 545 550

Pro Leu Leu Leu Leu Ala Tyr Phe Ser Arg Leu Cys Ala Lys Gly Asp
555 560 565

Ile Pro Pro Pro Leu Arg Ala Leu Pro Arg Tyr Arg Leu Leu Arg Asp
570 575 580 585

Leu Pro Arg Leu Leu Arg Ala Leu Asp Ala Arg Pro Phe Ala Glu Ala
590 595 600

Thr Ser Trp Gly Arg Leu Gly Ala Arg Gln Arg Arg Gln Ser Arg Leu
605 610 615

Glu Leu Cys Ser Arg Leu Glu Arg Glu Ala Ala Arg Leu Ala Asp Leu
620 625 630

Gly

<210> 18
<211> 1971
<212> DNA
<213> reverse translation

<220>
<221> misc_feature
<222> (1)..(1971)
<223> n may be a, c, g, or t

<400> 18
atgggnwsnw snmgnytngc ngcnytnytn ytnccnytny tnytnathgt' nathgayytn 60
wsngaywsng cnggnathgg ntymgnay ytnccncayt ggaayacnmg ntgyccnytn 120
gcnwsncaya cngargtnyt nccnathwsn ytnccngcnc cnggngncc nwsnwsnccn 180
carwsnytng gngtntgyga rwsnggnacn gtncengcng tntgygcnws nathgtgytgy 240
cargtngcnc argtnttyaa yggngcnwsn wsnaclnwsnt ggtgymgnna yccnaarwsn 300
ytnccncayw snwsnwsnat hggngayacn mgntgycarc ayytnytnmg ngnwsntgy 360
tgyytngtng tnacntgyyt nmgnmgngcn athacnttyc cnwsnccncc ncaracnwsn 420
ccnacnmngng aytttygcnyt naarggnccn aayytnmgnna thcarmgnca yggnaargtn 480
ttyccngayt ggacncayaa rgnatggar gtnggnacng gntayaaymg nmgnntggtn 540
carytnwsng gnggnccnga rttywsntty gayytnytn cngargcnmg ngcnathmgn 600
gtacnathw snwsnggncc ngargtnwsn gtngnytnt gycaycartg ggcnytngar 660
tgygargary tnwsnwsncc ntaygaygtn caraarathg tnwsngngg ncayacngtn 720
garytnccnt aygarttyyt nytnccntgy ytnytnathg argciwsnta yytnccargar 780
gayacngtnm gnmgnaraa rtgycntty carwsntggc cngargcnnta yggngnay 840
ttytggaaarw sngtncaytt yacngaytay wsncarcaya cncaratggt natggcnytn 900
acnytnmgnnt gycnytnaa rytnytn cnytnytn gntgnytngc armgncayga ytggcayacn 960
ytnytnytn ayytnccnaa ygnacngcn mgngarwsng ayggntggta ygtntngar 1020
aargtngayt tncayccnca rytnytnytn aargtncarc cngargcnnta nttyggnaay 1080
wsnwsnccayt tngartgycc ncaycaracn ggnwsnytna cnwsntggaa ygtntngar 1140
gayacncarg cncarcaryt nathytnay tnytnytn gnatgcaygc nacnttywsn 1200
gngcngtggw snytnccngg nytnytn gnatgcaygc nacnttywsn 1260
wsnccargtnt ggmgnwsnga ygtntytnytn gntggaarc ayytnytnytn gngaygt 1320

wsntaymgnc ayytngnyt nytnathytn gcnytnytn cnytnytnac nytnytnngn 1380
 gtnytntng cnytnacntg ymgmgnccn carwsnggnc cnggnccngc nmgnccngtn 1440
 ytnytnytn caygcngcnga ywsngargcn carmgnmgn tngtnggnnc nytnytn 1500
 ytnytnmgn cngcnytnng ggnggnmgn gaygttnathg tngayytn tngayytn 1560
 caygtngcnm gngtnggncc nytnccntgg ytnytnng cngcnytnng 1620
 garcargna cngtnytnyt nytnytn gngcngayy tngtnggncc nytnytn 1680
 gayccnmgn cngcncnyt nytnytn ytnytn ytnytn 1740
 ytnytnytn tywsnmgn ytnytn ytnytn 1800
 ccmgnntaym gnytnytnmg ngayytnccn mgnytnytn gngcnytna ygnmgnccn 1860
 ttygcnarg cnacnwsntg ggnmgn ytnytn gngcngnac armgnmgnca rwsnmgnytn 1920
 garytnytw snmgnytna rmngargcn gcnmgnytn cngayytn 1971

<210> 19
 <211> 808
 <212> DNA
 <213> Unknown

<220>
 <223> Description of Unknown Organism: rodent; surmised
 Mus musculus

<220>
 <221> CDS
 <222> (78)..(806)

<220>
 <221> mat_peptide
 <222> (147)..(806)

<400> 19
 cagctccggg ccaggccctg ctgcccctt gcagacagga aagacatgg ctctgcgccc 60
 tgatcctaca gaagctc atg ggg agc ccc aga ctg gca gcc ttg ctc ctg 110
 Met Gly Ser Pro Arg Leu Ala Leu Leu Leu
 -20 -15

tct ctc ccg cta ctg ctc atc ggc ctc gct gtg tct gct cgg gtt gcc 158
 Ser Leu Pro Leu Leu Leu Ile Gly Leu Ala Val Ser Ala Arg Val Ala
 -10 -5 -1 1

tgc ccc tgc ctg cgg agt tgg acc agc cac tgt ctc ctg gcc tac cgt 206
 Cys Pro Cys Leu Arg Ser Trp Thr Ser His Cys Leu Ala Tyr Arg
 5 10 15 20

gtg gat aaa cgt ttt gct ggc ctt cag tgg ggc tgg ttc cct ctc ttg 254
 Val Asp Lys Arg Phe Ala Gly Leu Gln Trp Gly Trp Phe Pro Leu Leu
 25 30 35

gtg agg aaa tct aaa agt cct cct aaa ttt gaa gac tat tgg agg cac 302

Val	Arg	Lys	Ser	Lys	Ser	Pro	Pro	Lys	Phe	Glu	Asp	Tyr	Trp	Arg	His		
40						45								50			
agg	aca	cca	gca	tcc	ttc	cag	agg	ctg	cta	ggc	agc	cct	tcc	ctg		350	
Arg	Thr	Pro	Ala	Ser	Phe	Gln	Arg	Lys	Leu	Leu	Gly	Ser	Pro	Ser	Leu		
55						60								65			
tct	gag	gaa	agc	cat	cga	att	tcc	atc	ccc	tcc	tca	gcc	atc	tcc	cac		398
Ser	Glu	Glu	Ser	His	Arg	Ile	Ser	Ile	Pro	Ser	Ser	Ala	Ile	Ser	His		
70						75								80			
aga	ggc	caa	cgc	acc	aaa	agg	gcc	cag	cct	tca	gct	gca	gaa	gga	aga		446
Arg	Gly	Gln	Arg	Thr	Lys	Arg	Ala	Gln	Pro	Ser	Ala	Ala	Glu	Gly	Arg		
85						90								100			
gaa	cat	ctc	cct	gaa	gca	ggg	tca	caa	aag	tgt	gga	gga	cct	gaa	ttc		494
Glu	His	Leu	Pro	Glu	Ala	Gly	Ser	Gln	Lys	Cys	Gly	Gly	Pro	Glu	Phe		
105						110								115			
tcc	ttt	gat	ttg	ctg	ccc	gag	gtg	cag	gct	gtt	cgg	gtg	act	att	cct		542
Ser	Phe	Asp	Leu	Leu	Pro	Glu	Val	Gln	Ala	Val	Arg	Val	Thr	Ile	Pro		
120						125								130			
gca	ggc	ccc	aag	gca	cgt	gtg	cgc	ctt	tgt	tat	cag	tgg	gca	ctg	gaa		590
Ala	Gly	Pro	Lys	Ala	Arg	Val	Arg	Leu	Cys	Tyr	Gln	Trp	Ala	Leu	Glu		
135						140								145			
tgt	gaa	gac	ttg	agt	agc	cct	ttt	gat	acc	cag	aaa	att	gtg	tct	gga		638
Cys	Glu	Asp	Leu	Ser	Ser	Pro	Phe	Asp	Thr	Gln	Lys	Ile	Val	Ser	Gly		
150						155								160			
ggg	cac	act	gta	gac	ctg	cct	tat	gaa	ttc	ctt	ctg	ccc	tgc	atg	tgc		686
Gly	His	Thr	Val	Asp	Leu	Pro	Tyr	Glu	Phe	Leu	Leu	Pro	Cys	Met	Cys		
165						170								180			
ata	gag	gcc	tcc	tac	ctg	caa	gag	gac	act	gtg	agg	cgc	aaa	agt	gtc		734
Ile	Glu	Ala	Ser	Tyr	Leu	Gln	Glu	Asp	Thr	Val	Arg	Arg	Lys	Ser	Val		
185						190								195			
cct	tcc	aga	gct	ggc	ctg	aag	ctt	atg	gct	cag	act	tct	ggc	agt	caa		782
Pro	Ser	Arg	Ala	Gly	Leu	Lys	Leu	Met	Ala	Gln	Thr	Ser	Gly	Ser	Gln		
200						205								210			
tac	gct	tca	ctg	act	aca	gcc	agc	ac								808	
Tyr	Ala	Ser	Leu	Thr	Thr	Ala	Ser										
215						220											

<210> 20

<211> 243

<212> PRT

<213> Unknown

<400> 20

Met Gly Ser Pro Arg Leu Ala Ala Leu Leu Leu Ser Leu Pro Leu Leu
-20 -15 -10Leu Ile Gly Leu Ala Val Ser Ala Arg Val Ala Cys Pro Cys Leu Arg
-5 -1 1 5

Ser Trp Thr Ser His Cys Leu Leu Ala Tyr Arg Val Asp Lys Arg Phe
 10 15 20 25
 Ala Gly Leu Gln Trp Gly Trp Phe Pro Leu Leu Val Arg Lys Ser Lys
 30 35 40
 Ser Pro Pro Lys Phe Glu Asp Tyr Trp Arg His Arg Thr Pro Ala Ser
 45 50 55
 Phe Gln Arg Lys Leu Leu Gly Ser Pro Ser Leu Ser Glu Glu Ser His
 60 65 70
 Arg Ile Ser Ile Pro Ser Ser Ala Ile Ser His Arg Gly Gln Arg Thr
 75 80 85
 Lys Arg Ala Gln Pro Ser Ala Ala Glu Gly Arg Glu His Leu Pro Glu
 90 95 100 105
 Ala Gly Ser Gln Lys Cys Gly Gly Pro Glu Phe Ser Phe Asp Leu Leu
 110 115 120
 Pro Glu Val Gln Ala Val Arg Val Thr Ile Pro Ala Gly Pro Lys Ala
 125 130 135
 Arg Val Arg Leu Cys Tyr Gln Trp Ala Leu Glu Cys Glu Asp Leu Ser
 140 145 150
 Ser Pro Phe Asp Thr Gln Lys Ile Val Ser Gly Gly His Thr Val Asp
 155 160 165
 Leu Pro Tyr Glu Phe Leu Leu Pro Cys Met Cys Ile Glu Ala Ser Tyr
 170 175 180 185
 Leu Gln Glu Asp Thr Val Arg Arg Lys Ser Val Pro Ser Arg Ala Gly
 190 195 200
 Leu Lys Leu Met Ala Gln Thr Ser Gly Ser Gln Tyr Ala Ser Leu Thr
 205 210 215
 Thr Ala Ser
 220

<210> 21
 <211> 729
 <212> DNA
 <213> reverse translation

<220>
 <221> misc_feature
 <222> (1)..(729)
 <223> n may be a, c, g, or t

<400> 21
 atgggnwsnc cnmgnnytngc ngcnytnytn ytnwsnytnc cnytnytnyt nathggnyn 60
 gcngtnwsng cnmgngtngc ntgycntgy ytnmgnwsnt ggacnwsnca ytgyytnytn 120
 gcntaymngc tngayaarmg nttygcnggn ytnkartggg gntggattycc nytnytnytngn 180

mgnaarwsna arwsncncc naarttygar gaytaytggm gncaymgnac nccngcnwsn 240
 ttcarmgna arytnytngg nwsnccnwsn ytnwsngarg arwsncaymg nathwsnath 300
 ccnwsnwsng cnathwsnca ymgnggncar mgnacnaarm gngcncarcc nwsngcngcn 360
 garggnmgng arcayytnc ngargcnggn wsncaraart gyggnngncc ngarttywsn 420
 ttygayytty tnccngargt ncargcngtn mgngtnacna thccngcngg nccnaargcn 480
 mgngtnmgny tntgytayca rtggcnytn gartgygarg ayytnwsnws nccnttygay 540
 acncaraara thgtnwsnng nggncayacn gtngayytnc cntaygartt yytnytnccn 600
 tgyatgtgya thgargcnws ntayytnacn gargaacng tnmgnmgnaa rwsngtncn 660
 wsnmngcng gnytnaaryt natggcncar acnwsnggnw sncartaygc nwsnytnacn 720
 acngcnwsn

729

<210> 22

<211> 2377

<212> DNA

<213> Unknown

<220>

<223> Description of Unknown Organism: primate; surmised
Homo sapiens

<220>

<221> CDS

<222> (180)..(1874)

<400> 22

tttttagcag aggcttccta ggctccgttag aaatttgcac acagttcca cttcctgctt 60
 cagagcctgt tcttctactt acctgggccc ggagaagggtg gagggagacg agaagccccc 120
 gagagccgac taccctccgg gcccagtctg tctgtccgtg gtggatctaa gaaactaga 179

atg aac cga arg att cct gtg gag gtt gat gaa tca gaa cca tac cca 227
 Met Asn Arg Ser Ile Pro Val Glu Val Asp Glu Ser Glu Pro Tyr Pro
 1 5 10 15

agt cag ttg ctg aaa cca atc cca gaa tat tcc ccg gaa gag gaa tca 275
 Ser Gln Leu Leu Lys Pro Ile Pro Glu Tyr Ser Pro Glu Glu Ser
 20 25 30

gaa cca cct gct cca aat ata agg aac atg gca ccc aac agc ttg tct 323
 Glu Pro Pro Ala Pro Asn Ile Arg Asn Met Ala Pro Asn Ser Leu Ser
 35 40 45

gca ccc aca atg ctt cac aat tcc tcc gga gac ttt tct caa gct cac 371
 Ala Pro Thr Met Leu His Asn Ser Ser Gly Asp Phe Ser Gln Ala His
 50 55 60

tca acc ctg aaa ctt gca aat cac cag cgg cct gta tcc cgg cag gtc 419
 Ser Thr Leu Lys Leu Ala Asn His Gln Arg Pro Val Ser Arg Gln Val
 65 70 75 80

acc tgc ctg cgc actcaa gtt ctg gag gac agt gaa gac agt ttc tgc	467
Thr Cys Leu Arg Thr Gln Val Leu Glu Asp Ser Glu Asp Ser Phe Cys	
85 90 95	
agg aga cac cca ggc ctg ggc aaa gct ttc cct tct ggg tgc tct gca	515
Arg Arg His Pro Gly Leu Gly Lys Ala Phe Pro Ser Gly Cys Ser Ala	
100 105 110	
gtc agc gag cct gcg tct gag tct gtg gtt gga gcc ctc cct gca gag	563
Val Ser Glu Pro Ala Ser Glu Ser Val Val Gly Ala Leu Pro Ala Glu	
115 120 125	
cat cag ttt tca ttt atg gaa aaa cgt aat caa tgg ctg gta tct cag	611
His Gln Phe Ser Phe Met Glu Lys Arg Asn Gln Trp Leu Val Ser Gln	
130 135 140	
ctt tca gcg gct tct cct gac act ggc cat gac tca gac aaa tca gac	659
Leu Ser Ala Ala Ser Pro Asp Thr Gly His Asp Ser Asp Lys Ser Asp	
145 150 155 160	
caa agt tta cct aat gcc tca gca gac tcc ttg ggc ggt agc cag gag	707
Gln Ser Leu Pro Asn Ala Ser Ala Asp Ser Leu Gly Gly Ser Gln Glu	
165 170 175	
atg gtg caa cgg ccc cag cct cac agg aac cga gca ggc ctg gat ctg	755
Met Val Gln Arg Pro Gln Pro His Arg Asn Arg Ala Gly Leu Asp Leu	
180 185 190	
cca acc ata gac acg gga tat gat tcc cag ccc cag gat gtc ctg ggc	803
Pro Thr Ile Asp Thr Gly Tyr Asp Ser Gln Pro Gln Asp Val Leu Gly	
195 200 205	
atc agg cag ctg gaa agg ccc ctg ccc ctc acc tcc gtg tgt tac ccc	851
Ile Arg Gln Leu Glu Arg Pro Leu Pro Leu Thr Ser Val Cys Tyr Pro	
210 215 220	
cag gac ctc ccc aga cct ctc agg tcc agg gag ttc cct cag ttt gaa	899
Gln Asp Leu Pro Arg Pro Leu Arg Ser Arg Glu Phe Pro Gln Phe Glu	
225 230 235 240	
cct cag agg tat cca gca tgt gca cag atg ctg cct ccc aat ctt tcc	947
Pro Gln Arg Tyr Pro Ala Cys Ala Gln Met Leu Pro Pro Asn Leu Ser	
245 250 255	
cca cat gct cca tgg aac tat cat tac cat tgt cct gga agt ccc gat	995
Pro His Ala Pro Trp Asn Tyr His Tyr His Cys Pro Gly Ser Pro Asp	
260 265 270	
cac cag gtg cca tat ggc cat gac tac cct cga gca gcc tac cag caa	1043
His Gln Val Pro Tyr Gly His Asp Tyr Pro Arg Ala Ala Tyr Gln Gln	
275 280 285	
gtg atc cag ccg gct ctg cct ggg cag ccc ctg cct gga gcc agt gtg	1091
Val Ile Gln Pro Ala Leu Pro Gly Gln Pro Leu Pro Gly Ala Ser Val	
290 295 300	
aga ggc ctg cac cct gtg cag aag gtt atc ctg aat tat ccc agc ccc	1139
Arg Gly Leu His Pro Val Gln Lys Val Ile Leu Asn Tyr Pro Ser Pro	
305 310 315 320	

tgg gac caa gaa gag agg ccc gca cag aga gac tgc tcc ttt ccg ggg	1187																																																																																																																								
Trp Asp Gln Glu Glu Arg Pro Ala Gln Arg Asp Cys Ser Phe Pro Gly																																																																																																																									
325	330		335	ctt cca agg cac cag gac cag cca cat cac cag cca cct aat aga gct	1235	Leu Pro Arg His Gln Asp Gln Pro His His Gln Pro Pro Asn Arg Ala		340	345		350	ggt gct cct ggg gag tcc ttg gag tgc cct gca gag ctg aga cca cag	1283	Gly Ala Pro Gly Glu Ser Ieu Glu Cys Pro Ala Glu Leu Arg Pro Gln		355	360		365	gtt ccc cag cct ccg tcc cca gct gct gtg cct aga ccc cct agc aac	1331	Val Pro Gln Pro Pro Ser Pro Ala Ala Val Pro Arg Pro Pro Ser Asn		370	375		380	cct cca gcc aga gga act cta aaa aca agc aat ttg cca gaa gaa ttg	1379	Pro Pro Ala Arg Gly Thr Leu Lys Thr Ser Asn Leu Pro Glu Glu Leu		385	390		395		400	cgg aaa gtc ttt atc act tat tcg atg gac aca gct atg gag gtg gtg	1427	Arg Lys Val Phe Ile Thr Tyr Ser Met Asp Thr Ala Met Glu Val Val		405	410		415	aaa ttc gtg aac ttt ttg ttg gta aat ggc ttc caa act gca att gag	1475	Lys Phe Val Asn Phe Leu Leu Val Asn Gly Phe Gln Thr Ala Ile Asp		420	425		430	ata ttt gag gat aga atc cga ggc att gat atc att aaa tgg atg gag	1523	Ile Phe Glu Asp Arg Ile Arg Gly Ile Asp Ile Ile Lys Trp Met Glu		435	440		445	cgc tac ctt agg gat aag acc gtg atg ata atc gta gca atc agc ccc	1571	Arg Tyr Leu Arg Asp Lys Thr Val Met Ile Ile Val Ala Ile Ser Pro		450	455		460	aaa tac aaa cag gac gtg gaa ggc gct gag tcg cag ctg gac gag gat	1619	Lys Tyr Lys Gln Asp Val Glu Gly Ala Glu Ser Gln Leu Asp Glu Asp		465	470		475		480	gag cat ggc tta cat act aag tac att cat cga atg atg cag att gag	1667	Glu His Gly Leu His Thr Lys Tyr Ile His Arg Met Met Gln Ile Glu		485	490		495	ttc ata aaa caa gga agc atg aat ttc aga ttc atc cct gtg ctc ttc	1715	Phe Ile Lys Gln Gly Ser Met Asn Phe Arg Phe Ile Pro Val Leu Phe		500	505		510	cca aat gct aag aag gag cat gtg ccc acc tgg ctt cag aac act cat	1763	Pro Asn Ala Lys Lys Glu His Val Pro Thr Trp Leu Gln Asn Thr His		515	520		525	gtc tac agc tgg ccc aag aat aaa aaa aac atc ctg ctg cgg ctg ctg	1811	Val Tyr Ser Trp Pro Lys Asn Lys Lys Asn Ile Leu Leu Arg Leu Leu		530	535		540	aga gag gaa gag tat gtg gct cct cca cgg ggg cct ctg ccc acc ctt	1859	Arg Glu Glu Glu Tyr Val Ala Pro Pro Arg Gly Pro Leu Pro Thr Leu		545	550		555		560
	335																																																																																																																								
ctt cca agg cac cag gac cag cca cat cac cag cca cct aat aga gct	1235																																																																																																																								
Leu Pro Arg His Gln Asp Gln Pro His His Gln Pro Pro Asn Arg Ala																																																																																																																									
340	345		350	ggt gct cct ggg gag tcc ttg gag tgc cct gca gag ctg aga cca cag	1283	Gly Ala Pro Gly Glu Ser Ieu Glu Cys Pro Ala Glu Leu Arg Pro Gln		355	360		365	gtt ccc cag cct ccg tcc cca gct gct gtg cct aga ccc cct agc aac	1331	Val Pro Gln Pro Pro Ser Pro Ala Ala Val Pro Arg Pro Pro Ser Asn		370	375		380	cct cca gcc aga gga act cta aaa aca agc aat ttg cca gaa gaa ttg	1379	Pro Pro Ala Arg Gly Thr Leu Lys Thr Ser Asn Leu Pro Glu Glu Leu		385	390		395		400	cgg aaa gtc ttt atc act tat tcg atg gac aca gct atg gag gtg gtg	1427	Arg Lys Val Phe Ile Thr Tyr Ser Met Asp Thr Ala Met Glu Val Val		405	410		415	aaa ttc gtg aac ttt ttg ttg gta aat ggc ttc caa act gca att gag	1475	Lys Phe Val Asn Phe Leu Leu Val Asn Gly Phe Gln Thr Ala Ile Asp		420	425		430	ata ttt gag gat aga atc cga ggc att gat atc att aaa tgg atg gag	1523	Ile Phe Glu Asp Arg Ile Arg Gly Ile Asp Ile Ile Lys Trp Met Glu		435	440		445	cgc tac ctt agg gat aag acc gtg atg ata atc gta gca atc agc ccc	1571	Arg Tyr Leu Arg Asp Lys Thr Val Met Ile Ile Val Ala Ile Ser Pro		450	455		460	aaa tac aaa cag gac gtg gaa ggc gct gag tcg cag ctg gac gag gat	1619	Lys Tyr Lys Gln Asp Val Glu Gly Ala Glu Ser Gln Leu Asp Glu Asp		465	470		475		480	gag cat ggc tta cat act aag tac att cat cga atg atg cag att gag	1667	Glu His Gly Leu His Thr Lys Tyr Ile His Arg Met Met Gln Ile Glu		485	490		495	ttc ata aaa caa gga agc atg aat ttc aga ttc atc cct gtg ctc ttc	1715	Phe Ile Lys Gln Gly Ser Met Asn Phe Arg Phe Ile Pro Val Leu Phe		500	505		510	cca aat gct aag aag gag cat gtg ccc acc tgg ctt cag aac act cat	1763	Pro Asn Ala Lys Lys Glu His Val Pro Thr Trp Leu Gln Asn Thr His		515	520		525	gtc tac agc tgg ccc aag aat aaa aaa aac atc ctg ctg cgg ctg ctg	1811	Val Tyr Ser Trp Pro Lys Asn Lys Lys Asn Ile Leu Leu Arg Leu Leu		530	535		540	aga gag gaa gag tat gtg gct cct cca cgg ggg cct ctg ccc acc ctt	1859	Arg Glu Glu Glu Tyr Val Ala Pro Pro Arg Gly Pro Leu Pro Thr Leu		545	550		555		560								
	350																																																																																																																								
ggt gct cct ggg gag tcc ttg gag tgc cct gca gag ctg aga cca cag	1283																																																																																																																								
Gly Ala Pro Gly Glu Ser Ieu Glu Cys Pro Ala Glu Leu Arg Pro Gln																																																																																																																									
355	360		365	gtt ccc cag cct ccg tcc cca gct gct gtg cct aga ccc cct agc aac	1331	Val Pro Gln Pro Pro Ser Pro Ala Ala Val Pro Arg Pro Pro Ser Asn		370	375		380	cct cca gcc aga gga act cta aaa aca agc aat ttg cca gaa gaa ttg	1379	Pro Pro Ala Arg Gly Thr Leu Lys Thr Ser Asn Leu Pro Glu Glu Leu		385	390		395		400	cgg aaa gtc ttt atc act tat tcg atg gac aca gct atg gag gtg gtg	1427	Arg Lys Val Phe Ile Thr Tyr Ser Met Asp Thr Ala Met Glu Val Val		405	410		415	aaa ttc gtg aac ttt ttg ttg gta aat ggc ttc caa act gca att gag	1475	Lys Phe Val Asn Phe Leu Leu Val Asn Gly Phe Gln Thr Ala Ile Asp		420	425		430	ata ttt gag gat aga atc cga ggc att gat atc att aaa tgg atg gag	1523	Ile Phe Glu Asp Arg Ile Arg Gly Ile Asp Ile Ile Lys Trp Met Glu		435	440		445	cgc tac ctt agg gat aag acc gtg atg ata atc gta gca atc agc ccc	1571	Arg Tyr Leu Arg Asp Lys Thr Val Met Ile Ile Val Ala Ile Ser Pro		450	455		460	aaa tac aaa cag gac gtg gaa ggc gct gag tcg cag ctg gac gag gat	1619	Lys Tyr Lys Gln Asp Val Glu Gly Ala Glu Ser Gln Leu Asp Glu Asp		465	470		475		480	gag cat ggc tta cat act aag tac att cat cga atg atg cag att gag	1667	Glu His Gly Leu His Thr Lys Tyr Ile His Arg Met Met Gln Ile Glu		485	490		495	ttc ata aaa caa gga agc atg aat ttc aga ttc atc cct gtg ctc ttc	1715	Phe Ile Lys Gln Gly Ser Met Asn Phe Arg Phe Ile Pro Val Leu Phe		500	505		510	cca aat gct aag aag gag cat gtg ccc acc tgg ctt cag aac act cat	1763	Pro Asn Ala Lys Lys Glu His Val Pro Thr Trp Leu Gln Asn Thr His		515	520		525	gtc tac agc tgg ccc aag aat aaa aaa aac atc ctg ctg cgg ctg ctg	1811	Val Tyr Ser Trp Pro Lys Asn Lys Lys Asn Ile Leu Leu Arg Leu Leu		530	535		540	aga gag gaa gag tat gtg gct cct cca cgg ggg cct ctg ccc acc ctt	1859	Arg Glu Glu Glu Tyr Val Ala Pro Pro Arg Gly Pro Leu Pro Thr Leu		545	550		555		560																
	365																																																																																																																								
gtt ccc cag cct ccg tcc cca gct gct gtg cct aga ccc cct agc aac	1331																																																																																																																								
Val Pro Gln Pro Pro Ser Pro Ala Ala Val Pro Arg Pro Pro Ser Asn																																																																																																																									
370	375		380	cct cca gcc aga gga act cta aaa aca agc aat ttg cca gaa gaa ttg	1379	Pro Pro Ala Arg Gly Thr Leu Lys Thr Ser Asn Leu Pro Glu Glu Leu		385	390		395		400	cgg aaa gtc ttt atc act tat tcg atg gac aca gct atg gag gtg gtg	1427	Arg Lys Val Phe Ile Thr Tyr Ser Met Asp Thr Ala Met Glu Val Val		405	410		415	aaa ttc gtg aac ttt ttg ttg gta aat ggc ttc caa act gca att gag	1475	Lys Phe Val Asn Phe Leu Leu Val Asn Gly Phe Gln Thr Ala Ile Asp		420	425		430	ata ttt gag gat aga atc cga ggc att gat atc att aaa tgg atg gag	1523	Ile Phe Glu Asp Arg Ile Arg Gly Ile Asp Ile Ile Lys Trp Met Glu		435	440		445	cgc tac ctt agg gat aag acc gtg atg ata atc gta gca atc agc ccc	1571	Arg Tyr Leu Arg Asp Lys Thr Val Met Ile Ile Val Ala Ile Ser Pro		450	455		460	aaa tac aaa cag gac gtg gaa ggc gct gag tcg cag ctg gac gag gat	1619	Lys Tyr Lys Gln Asp Val Glu Gly Ala Glu Ser Gln Leu Asp Glu Asp		465	470		475		480	gag cat ggc tta cat act aag tac att cat cga atg atg cag att gag	1667	Glu His Gly Leu His Thr Lys Tyr Ile His Arg Met Met Gln Ile Glu		485	490		495	ttc ata aaa caa gga agc atg aat ttc aga ttc atc cct gtg ctc ttc	1715	Phe Ile Lys Gln Gly Ser Met Asn Phe Arg Phe Ile Pro Val Leu Phe		500	505		510	cca aat gct aag aag gag cat gtg ccc acc tgg ctt cag aac act cat	1763	Pro Asn Ala Lys Lys Glu His Val Pro Thr Trp Leu Gln Asn Thr His		515	520		525	gtc tac agc tgg ccc aag aat aaa aaa aac atc ctg ctg cgg ctg ctg	1811	Val Tyr Ser Trp Pro Lys Asn Lys Lys Asn Ile Leu Leu Arg Leu Leu		530	535		540	aga gag gaa gag tat gtg gct cct cca cgg ggg cct ctg ccc acc ctt	1859	Arg Glu Glu Glu Tyr Val Ala Pro Pro Arg Gly Pro Leu Pro Thr Leu		545	550		555		560																								
	380																																																																																																																								
cct cca gcc aga gga act cta aaa aca agc aat ttg cca gaa gaa ttg	1379																																																																																																																								
Pro Pro Ala Arg Gly Thr Leu Lys Thr Ser Asn Leu Pro Glu Glu Leu																																																																																																																									
385	390		395		400	cgg aaa gtc ttt atc act tat tcg atg gac aca gct atg gag gtg gtg	1427	Arg Lys Val Phe Ile Thr Tyr Ser Met Asp Thr Ala Met Glu Val Val		405	410		415	aaa ttc gtg aac ttt ttg ttg gta aat ggc ttc caa act gca att gag	1475	Lys Phe Val Asn Phe Leu Leu Val Asn Gly Phe Gln Thr Ala Ile Asp		420	425		430	ata ttt gag gat aga atc cga ggc att gat atc att aaa tgg atg gag	1523	Ile Phe Glu Asp Arg Ile Arg Gly Ile Asp Ile Ile Lys Trp Met Glu		435	440		445	cgc tac ctt agg gat aag acc gtg atg ata atc gta gca atc agc ccc	1571	Arg Tyr Leu Arg Asp Lys Thr Val Met Ile Ile Val Ala Ile Ser Pro		450	455		460	aaa tac aaa cag gac gtg gaa ggc gct gag tcg cag ctg gac gag gat	1619	Lys Tyr Lys Gln Asp Val Glu Gly Ala Glu Ser Gln Leu Asp Glu Asp		465	470		475		480	gag cat ggc tta cat act aag tac att cat cga atg atg cag att gag	1667	Glu His Gly Leu His Thr Lys Tyr Ile His Arg Met Met Gln Ile Glu		485	490		495	ttc ata aaa caa gga agc atg aat ttc aga ttc atc cct gtg ctc ttc	1715	Phe Ile Lys Gln Gly Ser Met Asn Phe Arg Phe Ile Pro Val Leu Phe		500	505		510	cca aat gct aag aag gag cat gtg ccc acc tgg ctt cag aac act cat	1763	Pro Asn Ala Lys Lys Glu His Val Pro Thr Trp Leu Gln Asn Thr His		515	520		525	gtc tac agc tgg ccc aag aat aaa aaa aac atc ctg ctg cgg ctg ctg	1811	Val Tyr Ser Trp Pro Lys Asn Lys Lys Asn Ile Leu Leu Arg Leu Leu		530	535		540	aga gag gaa gag tat gtg gct cct cca cgg ggg cct ctg ccc acc ctt	1859	Arg Glu Glu Glu Tyr Val Ala Pro Pro Arg Gly Pro Leu Pro Thr Leu		545	550		555		560																																
	395		400	cgg aaa gtc ttt atc act tat tcg atg gac aca gct atg gag gtg gtg	1427	Arg Lys Val Phe Ile Thr Tyr Ser Met Asp Thr Ala Met Glu Val Val		405	410		415	aaa ttc gtg aac ttt ttg ttg gta aat ggc ttc caa act gca att gag	1475	Lys Phe Val Asn Phe Leu Leu Val Asn Gly Phe Gln Thr Ala Ile Asp		420	425		430	ata ttt gag gat aga atc cga ggc att gat atc att aaa tgg atg gag	1523	Ile Phe Glu Asp Arg Ile Arg Gly Ile Asp Ile Ile Lys Trp Met Glu		435	440		445	cgc tac ctt agg gat aag acc gtg atg ata atc gta gca atc agc ccc	1571	Arg Tyr Leu Arg Asp Lys Thr Val Met Ile Ile Val Ala Ile Ser Pro		450	455		460	aaa tac aaa cag gac gtg gaa ggc gct gag tcg cag ctg gac gag gat	1619	Lys Tyr Lys Gln Asp Val Glu Gly Ala Glu Ser Gln Leu Asp Glu Asp		465	470		475		480	gag cat ggc tta cat act aag tac att cat cga atg atg cag att gag	1667	Glu His Gly Leu His Thr Lys Tyr Ile His Arg Met Met Gln Ile Glu		485	490		495	ttc ata aaa caa gga agc atg aat ttc aga ttc atc cct gtg ctc ttc	1715	Phe Ile Lys Gln Gly Ser Met Asn Phe Arg Phe Ile Pro Val Leu Phe		500	505		510	cca aat gct aag aag gag cat gtg ccc acc tgg ctt cag aac act cat	1763	Pro Asn Ala Lys Lys Glu His Val Pro Thr Trp Leu Gln Asn Thr His		515	520		525	gtc tac agc tgg ccc aag aat aaa aaa aac atc ctg ctg cgg ctg ctg	1811	Val Tyr Ser Trp Pro Lys Asn Lys Lys Asn Ile Leu Leu Arg Leu Leu		530	535		540	aga gag gaa gag tat gtg gct cct cca cgg ggg cct ctg ccc acc ctt	1859	Arg Glu Glu Glu Tyr Val Ala Pro Pro Arg Gly Pro Leu Pro Thr Leu		545	550		555		560																																		
	400																																																																																																																								
cgg aaa gtc ttt atc act tat tcg atg gac aca gct atg gag gtg gtg	1427																																																																																																																								
Arg Lys Val Phe Ile Thr Tyr Ser Met Asp Thr Ala Met Glu Val Val																																																																																																																									
405	410		415	aaa ttc gtg aac ttt ttg ttg gta aat ggc ttc caa act gca att gag	1475	Lys Phe Val Asn Phe Leu Leu Val Asn Gly Phe Gln Thr Ala Ile Asp		420	425		430	ata ttt gag gat aga atc cga ggc att gat atc att aaa tgg atg gag	1523	Ile Phe Glu Asp Arg Ile Arg Gly Ile Asp Ile Ile Lys Trp Met Glu		435	440		445	cgc tac ctt agg gat aag acc gtg atg ata atc gta gca atc agc ccc	1571	Arg Tyr Leu Arg Asp Lys Thr Val Met Ile Ile Val Ala Ile Ser Pro		450	455		460	aaa tac aaa cag gac gtg gaa ggc gct gag tcg cag ctg gac gag gat	1619	Lys Tyr Lys Gln Asp Val Glu Gly Ala Glu Ser Gln Leu Asp Glu Asp		465	470		475		480	gag cat ggc tta cat act aag tac att cat cga atg atg cag att gag	1667	Glu His Gly Leu His Thr Lys Tyr Ile His Arg Met Met Gln Ile Glu		485	490		495	ttc ata aaa caa gga agc atg aat ttc aga ttc atc cct gtg ctc ttc	1715	Phe Ile Lys Gln Gly Ser Met Asn Phe Arg Phe Ile Pro Val Leu Phe		500	505		510	cca aat gct aag aag gag cat gtg ccc acc tgg ctt cag aac act cat	1763	Pro Asn Ala Lys Lys Glu His Val Pro Thr Trp Leu Gln Asn Thr His		515	520		525	gtc tac agc tgg ccc aag aat aaa aaa aac atc ctg ctg cgg ctg ctg	1811	Val Tyr Ser Trp Pro Lys Asn Lys Lys Asn Ile Leu Leu Arg Leu Leu		530	535		540	aga gag gaa gag tat gtg gct cct cca cgg ggg cct ctg ccc acc ctt	1859	Arg Glu Glu Glu Tyr Val Ala Pro Pro Arg Gly Pro Leu Pro Thr Leu		545	550		555		560																																										
	415																																																																																																																								
aaa ttc gtg aac ttt ttg ttg gta aat ggc ttc caa act gca att gag	1475																																																																																																																								
Lys Phe Val Asn Phe Leu Leu Val Asn Gly Phe Gln Thr Ala Ile Asp																																																																																																																									
420	425		430	ata ttt gag gat aga atc cga ggc att gat atc att aaa tgg atg gag	1523	Ile Phe Glu Asp Arg Ile Arg Gly Ile Asp Ile Ile Lys Trp Met Glu		435	440		445	cgc tac ctt agg gat aag acc gtg atg ata atc gta gca atc agc ccc	1571	Arg Tyr Leu Arg Asp Lys Thr Val Met Ile Ile Val Ala Ile Ser Pro		450	455		460	aaa tac aaa cag gac gtg gaa ggc gct gag tcg cag ctg gac gag gat	1619	Lys Tyr Lys Gln Asp Val Glu Gly Ala Glu Ser Gln Leu Asp Glu Asp		465	470		475		480	gag cat ggc tta cat act aag tac att cat cga atg atg cag att gag	1667	Glu His Gly Leu His Thr Lys Tyr Ile His Arg Met Met Gln Ile Glu		485	490		495	ttc ata aaa caa gga agc atg aat ttc aga ttc atc cct gtg ctc ttc	1715	Phe Ile Lys Gln Gly Ser Met Asn Phe Arg Phe Ile Pro Val Leu Phe		500	505		510	cca aat gct aag aag gag cat gtg ccc acc tgg ctt cag aac act cat	1763	Pro Asn Ala Lys Lys Glu His Val Pro Thr Trp Leu Gln Asn Thr His		515	520		525	gtc tac agc tgg ccc aag aat aaa aaa aac atc ctg ctg cgg ctg ctg	1811	Val Tyr Ser Trp Pro Lys Asn Lys Lys Asn Ile Leu Leu Arg Leu Leu		530	535		540	aga gag gaa gag tat gtg gct cct cca cgg ggg cct ctg ccc acc ctt	1859	Arg Glu Glu Glu Tyr Val Ala Pro Pro Arg Gly Pro Leu Pro Thr Leu		545	550		555		560																																																		
	430																																																																																																																								
ata ttt gag gat aga atc cga ggc att gat atc att aaa tgg atg gag	1523																																																																																																																								
Ile Phe Glu Asp Arg Ile Arg Gly Ile Asp Ile Ile Lys Trp Met Glu																																																																																																																									
435	440		445	cgc tac ctt agg gat aag acc gtg atg ata atc gta gca atc agc ccc	1571	Arg Tyr Leu Arg Asp Lys Thr Val Met Ile Ile Val Ala Ile Ser Pro		450	455		460	aaa tac aaa cag gac gtg gaa ggc gct gag tcg cag ctg gac gag gat	1619	Lys Tyr Lys Gln Asp Val Glu Gly Ala Glu Ser Gln Leu Asp Glu Asp		465	470		475		480	gag cat ggc tta cat act aag tac att cat cga atg atg cag att gag	1667	Glu His Gly Leu His Thr Lys Tyr Ile His Arg Met Met Gln Ile Glu		485	490		495	ttc ata aaa caa gga agc atg aat ttc aga ttc atc cct gtg ctc ttc	1715	Phe Ile Lys Gln Gly Ser Met Asn Phe Arg Phe Ile Pro Val Leu Phe		500	505		510	cca aat gct aag aag gag cat gtg ccc acc tgg ctt cag aac act cat	1763	Pro Asn Ala Lys Lys Glu His Val Pro Thr Trp Leu Gln Asn Thr His		515	520		525	gtc tac agc tgg ccc aag aat aaa aaa aac atc ctg ctg cgg ctg ctg	1811	Val Tyr Ser Trp Pro Lys Asn Lys Lys Asn Ile Leu Leu Arg Leu Leu		530	535		540	aga gag gaa gag tat gtg gct cct cca cgg ggg cct ctg ccc acc ctt	1859	Arg Glu Glu Glu Tyr Val Ala Pro Pro Arg Gly Pro Leu Pro Thr Leu		545	550		555		560																																																										
	445																																																																																																																								
cgc tac ctt agg gat aag acc gtg atg ata atc gta gca atc agc ccc	1571																																																																																																																								
Arg Tyr Leu Arg Asp Lys Thr Val Met Ile Ile Val Ala Ile Ser Pro																																																																																																																									
450	455		460	aaa tac aaa cag gac gtg gaa ggc gct gag tcg cag ctg gac gag gat	1619	Lys Tyr Lys Gln Asp Val Glu Gly Ala Glu Ser Gln Leu Asp Glu Asp		465	470		475		480	gag cat ggc tta cat act aag tac att cat cga atg atg cag att gag	1667	Glu His Gly Leu His Thr Lys Tyr Ile His Arg Met Met Gln Ile Glu		485	490		495	ttc ata aaa caa gga agc atg aat ttc aga ttc atc cct gtg ctc ttc	1715	Phe Ile Lys Gln Gly Ser Met Asn Phe Arg Phe Ile Pro Val Leu Phe		500	505		510	cca aat gct aag aag gag cat gtg ccc acc tgg ctt cag aac act cat	1763	Pro Asn Ala Lys Lys Glu His Val Pro Thr Trp Leu Gln Asn Thr His		515	520		525	gtc tac agc tgg ccc aag aat aaa aaa aac atc ctg ctg cgg ctg ctg	1811	Val Tyr Ser Trp Pro Lys Asn Lys Lys Asn Ile Leu Leu Arg Leu Leu		530	535		540	aga gag gaa gag tat gtg gct cct cca cgg ggg cct ctg ccc acc ctt	1859	Arg Glu Glu Glu Tyr Val Ala Pro Pro Arg Gly Pro Leu Pro Thr Leu		545	550		555		560																																																																		
	460																																																																																																																								
aaa tac aaa cag gac gtg gaa ggc gct gag tcg cag ctg gac gag gat	1619																																																																																																																								
Lys Tyr Lys Gln Asp Val Glu Gly Ala Glu Ser Gln Leu Asp Glu Asp																																																																																																																									
465	470		475		480	gag cat ggc tta cat act aag tac att cat cga atg atg cag att gag	1667	Glu His Gly Leu His Thr Lys Tyr Ile His Arg Met Met Gln Ile Glu		485	490		495	ttc ata aaa caa gga agc atg aat ttc aga ttc atc cct gtg ctc ttc	1715	Phe Ile Lys Gln Gly Ser Met Asn Phe Arg Phe Ile Pro Val Leu Phe		500	505		510	cca aat gct aag aag gag cat gtg ccc acc tgg ctt cag aac act cat	1763	Pro Asn Ala Lys Lys Glu His Val Pro Thr Trp Leu Gln Asn Thr His		515	520		525	gtc tac agc tgg ccc aag aat aaa aaa aac atc ctg ctg cgg ctg ctg	1811	Val Tyr Ser Trp Pro Lys Asn Lys Lys Asn Ile Leu Leu Arg Leu Leu		530	535		540	aga gag gaa gag tat gtg gct cct cca cgg ggg cct ctg ccc acc ctt	1859	Arg Glu Glu Glu Tyr Val Ala Pro Pro Arg Gly Pro Leu Pro Thr Leu		545	550		555		560																																																																										
	475		480	gag cat ggc tta cat act aag tac att cat cga atg atg cag att gag	1667	Glu His Gly Leu His Thr Lys Tyr Ile His Arg Met Met Gln Ile Glu		485	490		495	ttc ata aaa caa gga agc atg aat ttc aga ttc atc cct gtg ctc ttc	1715	Phe Ile Lys Gln Gly Ser Met Asn Phe Arg Phe Ile Pro Val Leu Phe		500	505		510	cca aat gct aag aag gag cat gtg ccc acc tgg ctt cag aac act cat	1763	Pro Asn Ala Lys Lys Glu His Val Pro Thr Trp Leu Gln Asn Thr His		515	520		525	gtc tac agc tgg ccc aag aat aaa aaa aac atc ctg ctg cgg ctg ctg	1811	Val Tyr Ser Trp Pro Lys Asn Lys Lys Asn Ile Leu Leu Arg Leu Leu		530	535		540	aga gag gaa gag tat gtg gct cct cca cgg ggg cct ctg ccc acc ctt	1859	Arg Glu Glu Glu Tyr Val Ala Pro Pro Arg Gly Pro Leu Pro Thr Leu		545	550		555		560																																																																												
	480																																																																																																																								
gag cat ggc tta cat act aag tac att cat cga atg atg cag att gag	1667																																																																																																																								
Glu His Gly Leu His Thr Lys Tyr Ile His Arg Met Met Gln Ile Glu																																																																																																																									
485	490		495	ttc ata aaa caa gga agc atg aat ttc aga ttc atc cct gtg ctc ttc	1715	Phe Ile Lys Gln Gly Ser Met Asn Phe Arg Phe Ile Pro Val Leu Phe		500	505		510	cca aat gct aag aag gag cat gtg ccc acc tgg ctt cag aac act cat	1763	Pro Asn Ala Lys Lys Glu His Val Pro Thr Trp Leu Gln Asn Thr His		515	520		525	gtc tac agc tgg ccc aag aat aaa aaa aac atc ctg ctg cgg ctg ctg	1811	Val Tyr Ser Trp Pro Lys Asn Lys Lys Asn Ile Leu Leu Arg Leu Leu		530	535		540	aga gag gaa gag tat gtg gct cct cca cgg ggg cct ctg ccc acc ctt	1859	Arg Glu Glu Glu Tyr Val Ala Pro Pro Arg Gly Pro Leu Pro Thr Leu		545	550		555		560																																																																																				
	495																																																																																																																								
ttc ata aaa caa gga agc atg aat ttc aga ttc atc cct gtg ctc ttc	1715																																																																																																																								
Phe Ile Lys Gln Gly Ser Met Asn Phe Arg Phe Ile Pro Val Leu Phe																																																																																																																									
500	505		510	cca aat gct aag aag gag cat gtg ccc acc tgg ctt cag aac act cat	1763	Pro Asn Ala Lys Lys Glu His Val Pro Thr Trp Leu Gln Asn Thr His		515	520		525	gtc tac agc tgg ccc aag aat aaa aaa aac atc ctg ctg cgg ctg ctg	1811	Val Tyr Ser Trp Pro Lys Asn Lys Lys Asn Ile Leu Leu Arg Leu Leu		530	535		540	aga gag gaa gag tat gtg gct cct cca cgg ggg cct ctg ccc acc ctt	1859	Arg Glu Glu Glu Tyr Val Ala Pro Pro Arg Gly Pro Leu Pro Thr Leu		545	550		555		560																																																																																												
	510																																																																																																																								
cca aat gct aag aag gag cat gtg ccc acc tgg ctt cag aac act cat	1763																																																																																																																								
Pro Asn Ala Lys Lys Glu His Val Pro Thr Trp Leu Gln Asn Thr His																																																																																																																									
515	520		525	gtc tac agc tgg ccc aag aat aaa aaa aac atc ctg ctg cgg ctg ctg	1811	Val Tyr Ser Trp Pro Lys Asn Lys Lys Asn Ile Leu Leu Arg Leu Leu		530	535		540	aga gag gaa gag tat gtg gct cct cca cgg ggg cct ctg ccc acc ctt	1859	Arg Glu Glu Glu Tyr Val Ala Pro Pro Arg Gly Pro Leu Pro Thr Leu		545	550		555		560																																																																																																				
	525																																																																																																																								
gtc tac agc tgg ccc aag aat aaa aaa aac atc ctg ctg cgg ctg ctg	1811																																																																																																																								
Val Tyr Ser Trp Pro Lys Asn Lys Lys Asn Ile Leu Leu Arg Leu Leu																																																																																																																									
530	535		540	aga gag gaa gag tat gtg gct cct cca cgg ggg cct ctg ccc acc ctt	1859	Arg Glu Glu Glu Tyr Val Ala Pro Pro Arg Gly Pro Leu Pro Thr Leu		545	550		555		560																																																																																																												
	540																																																																																																																								
aga gag gaa gag tat gtg gct cct cca cgg ggg cct ctg ccc acc ctt	1859																																																																																																																								
Arg Glu Glu Glu Tyr Val Ala Pro Pro Arg Gly Pro Leu Pro Thr Leu																																																																																																																									
545	550		555		560																																																																																																																				
	555		560																																																																																																																						
	560																																																																																																																								

cag gtg gtt ccc ttg tgacaccgtt catccccaga tcactgaggc caggccatgt 1914
 Gln Val Val Pro Leu
 565

ttggggcctt gttctgacag cattctggct gaggctggc ggttagcactc ctggctggtt 1974
 ttttctgtt cctccccag aggcctctg gccccca gaga aacctgttgt gcagagctct 2034
 tccccggaga cctccacaca ccctggcttt gaagtggagt ctgtgactgc tctgcattct 2094
 ctgcttttaa aaaaaccatt gcaggtgcca gtgtccata ttttcctcct gacagtttga 2154
 tgtgtccatt ctgggcctct cagtgccttag caagtagata atgtaaggga tgtggcagca 2214
 aatggaaatg actacaaaca ctctcctatc aatcaacttca ggctactttt atgagttgc 2274
 cagatgcttg tgtatcctca gaccaaactg attcatgtac aaataataaa atgtttactc 2334
 ttttgtaaaaa aaaaaaaaaa aaaaaaaaaaag aaaaaaaaaaaa aaa 2377

<210> 23
 <211> 565
 <212> PRT
 <213> Unknown

<400> 23

Met Asn Arg Ser Ile Pro Val Glu Val Asp Glu Ser Glu Pro Tyr Pro
 1 5 10 15

Ser Gln Leu Leu Lys Pro Ile Pro Glu Tyr Ser Pro Glu Glu Ser
 20 25 30

Glu Pro Pro Ala Pro Asn Ile Arg Asn Met Ala Pro Asn Ser Leu Ser
 35 40 45

Ala Pro Thr Met Leu His Asn Ser Ser Gly Asp Phe Ser Gln Ala His
 50 55 60

Ser Thr Leu Lys Leu Ala Asn His Gln Arg Pro Val Ser Arg Gln Val
 65 70 75 80

Thr Cys Leu Arg Thr Gln Val Leu Glu Asp Ser Glu Asp Ser Phe Cys
 85 90 95

Arg Arg His Pro Gly Leu Gly Lys Ala Phe Pro Ser Gly Cys Ser Ala
 100 105 110

Val Ser Glu Pro Ala Ser Glu Ser Val Val Gly Ala Leu Pro Ala Glu
 115 120 125

His Gln Phe Ser Phe Met Glu Lys Arg Asn Gln Trp Leu Val Ser Gln
 130 135 140

Leu Ser Ala Ala Ser Pro Asp Thr Gly His Asp Ser Asp Lys Ser Asp
 145 150 155 160

Gln Ser Leu Pro Asn Ala Ser Ala Asp Ser Leu Gly Gly Ser Gln Glu
 165 170 175

Met Val Gln Arg Pro Gln Pro His Arg Asn Arg Ala Gly Leu Asp Leu
180 185 190

Pro Thr Ile Asp Thr Gly Tyr Asp Ser Gln Pro Gln Asp Val Leu Gly
195 200 205

Ile Arg Gln Leu Glu Arg Pro Leu Pro Leu Thr Ser Val Cys Tyr Pro
210 215 220

Gln Asp Leu Pro Arg Pro Leu Arg Ser Arg Glu Phe Pro Gln Phe Glu
225 230 235 240

Pro Gln Arg Tyr Pro Ala Cys Ala Gln Met Leu Pro Pro Asn Leu Ser
245 250 255

Pro His Ala Pro Trp Asn Tyr His Tyr His Cys Pro Gly Ser Pro Asp
260 265 270

His Gln Val Pro Tyr Gly His Asp Tyr Pro Arg Ala Ala Tyr Gln Gln
275 280 285

Val Ile Gln Pro Ala Leu Pro Gly Gln Pro Leu Pro Gly Ala Ser Val
290 295 300

Arg Gly Leu His Pro Val Gln Lys Val Ile Leu Asn Tyr Pro Ser Pro
305 310 315 320

Trp Asp Gln Glu Glu Arg Pro Ala Gln Arg Asp Cys Ser Phe Pro Gly
325 330 335

Leu Pro Arg His Gln Asp Gln Pro His His Gln Pro Pro Asn Arg Ala
340 345 350

Gly Ala Pro Gly Glu Ser Leu Glu Cys Pro Ala Glu Leu Arg Pro Gln
355 360 365

Val Pro Gln Pro Pro Ser Pro Ala Ala Val Pro Arg Pro Pro Ser Asn
370 375 380

Pro Pro Ala Arg Gly Thr Leu Lys Thr Ser Asn Leu Pro Glu Glu Leu
385 390 395 400

Arg Lys Val Phe Ile Thr Tyr Ser Met Asp Thr Ala Met Glu Val Val
405 410 415

Lys Phe Val Asn Phe Leu Leu Val Asn Gly Phe Gln Thr Ala Ile Asp
420 425 430

Ile Phe Glu Asp Arg Ile Arg Gly Ile Asp Ile Ile Lys Trp Met Glu
435 440 445

Arg Tyr Leu Arg Asp Lys Thr Val Met Ile Ile Val Ala Ile Ser Pro
450 455 460

Lys Tyr Lys Gln Asp Val Glu Gly Ala Glu Ser Gln Leu Asp Glu Asp
465 470 475 480

Glu His Gly Leu His Thr Lys Tyr Ile His Arg Met Met Gln Ile Glu
485 490 495

Phe Ile Lys Gln Gly Ser Met Asn Phe Arg Phe Ile Pro Val Leu Phe
500 505 510

Pro Asn Ala Lys Lys Glu His Val Pro Thr Trp Leu Gln Asn Thr His
515 520 525

Val Tyr Ser Trp Pro Lys Asn Lys Lys Asn Ile Leu Leu Arg Leu Leu
530 535 540

Arg Glu Glu Glu Tyr Val Ala Pro Pro Arg Gly Pro Leu Pro Thr Leu
545 550 555 560

Gln Val Val Pro Leu
565

<210> 24

<211> 1695

<212> DNA

<213> reverse translation

<220>

<221> misc_feature

<222> (1)..(1695)

<223> n may be a, c, g, or t

<400> 24

atgaaymgnw snathccngt ngargtngay garwsngarc cntayccnws ncarytnytn 60

aarccnathc cngartayws nccngargar garwsngarc cnccngcncc naayathmgn 120

aayatggcnc cnaaywsnyt nwsngcnccn acnatgytnc ayaaywsnws nggngaytty 180

wsncargcnc aywsnacnyt naarytngcn aaycaycarm gnccngtnws nmgnrcargtn 240

acntgyytnm gnacncargt nytnargay wsngargayw snttytgymg nmgnrcayccn 300

ggnytnngna argcnttycc nwśnggntgy wsngcngtnw sngarccncc nwsngarwsn 360

gtngtnngng cnytnccncc ngarcaycar ttywsnttya tggaraarmg naaycartgg 420

ytngtnwsnc arytnwsngc ngcnwsnccn gayacngnc ayygaywsnga yaarwsngay 480

carwsnytnc cnaaygcnws ngcngaywsn ytnggngnw sncargarat ggtncarmgn 540

ccncarccncc aymgnaaymg ngcnggnytn gayytnccna cnathgayac nggntaygay 600

wsncarccncc argaygtnyt ngnathmgn carytngarm gnccnytncc nytnacnwsn 660

gtntgytayc cncargayyt nccnmgnccn ytnmgnwsnm gngarttycc ncartygar 720

ccncarmgnnt aycngcntg ygcncaratg ytnccnccna ayytnwsncc ncaygcnccn 780

tggaaytayc aytaycaytg yccnggnwsn ccngaycayc argtnccnta yggncaygay 840

tayccnmgnng cngcntayca rcargtnath carccngcny tnccnggnca rccnytnccn 900

gngcnwsng tnmgngnyt ncayccngtn caraargtna thytnaayta yccnwsnccn 960

tggaycarg argarmgncc ngncncarmgn gaytgywsnt tyccnggnyt nccnmgnay 1020
 cargaycarg cncaycayca rccnccnaay mgngcngng cnccngngna rwsnytngar 1080
 tgyccngcng arytnmgncc ncargtnccn carccnccnw snccngcngc ngtncnmgn 1140
 ccnccnwsna ayccnccngc nmgnngnach ytnaaracnw snaayytncc ngargarytn 1200
 mgnaargtnt tyathacnta ywsnatggay acngcnatgg argtngtnaa rttygttnaay 1260
 tyytntytnaay ycaracngcn athgayath tyytntytnaay tygargaymg nathmgnggn 1320
 athgayatha thaartggat ggarmgntay ytnmgnay aracngtnat gathathgtn 1380
 gcnathwsnc cnaartayaa rcargaygtn garggngcng arwsncaryt ngaygargay 1440
 garcayggny tncayacnaa rtayathcay mgnatgatgc arathgartt yathaarcar 1500
 ggnwsnatga ayttymgntt yathccngtn ytnntyccna aygcnaaraa rgarcaygtn 1560
 ccnacntggy tncaraayac ncaygtntay wsntggccna araayaaraa raayathytn 1620
 ytnmgnnytny tnmgngarga rgartaygtn gcnccnccnm gnggnccnyt nccnacnytn 1680
 cargtngtnc cnytn 1695

<210> 25
 <211> 1323
 <212> DNA
 <213> Unknown

<220>
 <223> Description of Unknown Organism: rodent; surmised
 Mus musculus

<220>
 <221> CDS
 <222> (1)..(1026)

<400> 25
 cag gac ctc cct ggg cct ctg agg tcc agg gaa ttg cca cct cag ttt 48
 Gln Asp Leu Pro Gly Pro Leu Arg Ser Arg Glu Leu Pro Pro Gln Phe
 1 5 10 15

gaa ctt gag agg tat cca atg aac gcc cag ctg ctg ccg ccc cat cct 96
 Glu Leu Glu Arg Tyr Pro Met Asn Ala Gln Leu Leu Pro Pro His Pro
 20 25 30

tcc cca cag gcc cca tgg aac tgt cag tac tac tgc ccc gga ggg ccc 144
 Ser Pro Gln Ala Pro Trp Asn Cys Gln Tyr Tyr Cys Pro Gly Gly Pro
 35 40 45

tac cac cac cag gtg cca cac ggc cat ggc tac cct cca gca gca gcc 192
 Tyr His His Gln Val Pro His Gly His Gly Tyr Pro Pro Ala Ala Ala
 50 55 60

tac cag caa gta ctc cag cct gct ctg cct ggg cag gtc ctt cct ggg 240
 Tyr Gln Gln Val Leu Gln Pro Ala Leu Pro Gly Gln Val Leu Pro Gly
 65 70 75 80

gca agg gca aga ggc cca cgc cct gtg cag aag gtc atc ctg aat gac Ala Arg Ala Arg Gly Pro Arg Pro Val Gln Lys Val Ile Leu Asn Asp	85	90	95	288	
tcc agc ccc caa gac caa gaa gag aga cct gca cag aga gac ttc tct Ser Ser Pro Gln Asp Gln Glu Glu Arg Pro Ala Gln Arg Asp Phe Ser	100	105	110	336	
ttc ccg agg ctc ccg agg gac cag ctc tac cgc cca cca tct aat gga Phe Pro Arg Leu Pro Arg Asp Gln Leu Tyr Arg Pro Pro Ser Asn Gly	115	120	125	384	
gtg gaa gcc cct gag gag tcc ttg gac ctt cct gca gag ctg aga cca Val Glu Ala Pro Glu Glu Ser Leu Asp Leu Pro Ala Glu Leu Arg Pro	130	135	140	432	
cat ggt ccc cag gct cca tcc cta gct gcc gtg cct aga ccc cct agc His Gly Pro Gln Ala Pro Ser Leu Ala Ala Val Pro Arg Pro Pro Ser	145	150	155	160	480
aac ccc tta gcc cga gga act cta aga acc agc aat ttg cca gaa gaa Asn Pro Leu Ala Arg Gly Thr Leu Arg Thr Ser Asn Leu Pro Glu Glu	165	170	175	528	
tta cgg aaa gtc ttt atc act tat tct atg gac aca gcc atg gag gtg Leu Arg Lys Val Phe Ile Thr Tyr Ser Met Asp Thr Ala Met Glu Val	180	185	190	576	
gtg aaa ttt gtg aac ttt ctg ttg gtg aac ggc ttc caa act gcg att Val Lys Phe Val Asn Phe Leu Leu Val Asn Gly Phe Gln Thr Ala Ile	195	200	205	624	
gac ata ttt gag gat aga atc cgg ggt att gat atc att aaa tgg atg Asp Ile Phe Glu Asp Arg Ile Arg Gly Ile Asp Ile Ile Lys Trp Met	210	215	220	672	
gag cgc tat ctt cga gat aag aca gtg atg ata atc gta gca atc agc Glu Arg Tyr Leu Arg Asp Lys Thr Val Met Ile Ile Val Ala Ile Ser	225	230	235	240	720
ccc aaa tac aaa cag gat gtg gaa ggc gct gag tcg cag ctg gac gag Pro Lys Tyr Lys Gln Asp Val Glu Gly Ala Glu Ser Gln Leu Asp Glu	245	250	255	768	
gac gag cat ggc tta cat act aag tac att cat cgg atg atg cag att Asp Glu His Gly Leu His Thr Lys Tyr Ile His Arg Met Met Gln Ile	260	265	270	816	
gag ttc ata agt cag gga agc atg aac ttc aga ttc atc cct gtg ctc Glu Phe Ile Ser Gln Gly Ser Met Asn Phe Arg Phe Ile Pro Val Leu	275	280	285	864	
ttc cca aat gcc aag aag gag cat gtg ccg acc tgg ctt cag aac act Phe Pro Asn Ala Lys Lys Glu His Val Pro Thr Trp Leu Gln Asn Thr	290	295	300	912	
cat gtt tac agc tgg ccc aag aat aag aaa aac atc ctg ctg cgg ctg His Val Tyr Ser Trp Pro Lys Asn Lys Lys Asn Ile Leu Leu Arg Leu	305	310	315	320	960

ctc agg gag gaa gag tat gtg gct cct ccc cga ggc cct ctg ccc acc 1008
 Leu Arg Glu Glu Glu Tyr Val Ala Pro Pro Arg Gly Pro Leu Pro Thr
 325 330 335

ctt cag gtg gta ccc ttg tgacgatggc cactccagct cagtgccagc 1056
 Leu Gln Val Val Pro Leu
 340

ctgttctcac agcattcttc tagcggagct ggctggtggc acccaggccc tggaacacct 1116
 ctctcacaga gtcctctgtc tcctgagtc gagttgtcct cgctgggctt ccagagcttc 1176
 agtgcctgga tgctgcaggt gacagaaaca aacatctatg accacaaaaa ctctcatcac 1236
 ttcaagctact tttatgagtc ggtcagatgc tctgtgtcct tagaccagtc taaatcatgc 1296
 tcaaataata aaatgattat tctttgt 1323

<210> 26
 <211> 342
 <212> PRT
 <213> Unknown

<400> 26
 Gln Asp Leu Pro Gly Pro Leu Arg Ser Arg Glu Leu Pro Pro Gln Phe
 1 5 10 15

Glu Leu Glu Arg Tyr Pro Met Asn Ala Gln Leu Leu Pro Pro His Pro
 20 25 30

Ser Pro Gln Ala Pro Trp Asn Cys Gln Tyr Tyr Cys Pro Gly Gly Pro
 35 40 45

Tyr His His Gln Val Pro His Gly His Gly Tyr Pro Pro Ala Ala Ala
 50 55 60

Tyr Gln Gln Val Leu Gln Pro Ala Leu Pro Gly Gln Val Leu Pro Gly
 65 70 75 80

Ala Arg Ala Arg Gly Pro Arg Pro Val Gln Lys Val Ile Leu Asn Asp
 85 90 95

Ser Ser Pro Gln Asp Gln Glu Glu Arg Pro Ala Gln Arg Asp Phe Ser
 100 105 110

Phe Pro Arg Leu Pro Arg Asp Gln Leu Tyr Arg Pro Pro Ser Asn Gly
 115 120 125

Val Glu Ala Pro Glu Glu Ser Leu Asp Leu Pro Ala Glu Leu Arg Pro
 130 135 140

His Gly Pro Gln Ala Pro Ser Leu Ala Ala Val Pro Arg Pro Pro Ser
 145 150 155 160

Asn Pro Leu Ala Arg Gly Thr Leu Arg Thr Ser Asn Leu Pro Glu Glu
 165 170 175

Leu Arg Lys Val Phe Ile Thr Tyr Ser Met Asp Thr Ala Met Glu Val

180	185	190
Val Lys Phe Val Asn Phe Leu Leu Val Asn Gly Phe Gln Thr Ala Ile		
195	200	205
Asp Ile Phe Glu Asp Arg Ile Arg Gly Ile Asp Ile Ile Lys Trp Met		
210	215	220
Glu Arg Tyr Leu Arg Asp Lys Thr Val Met Ile Ile Val Ala Ile Ser		
225	230	235
Pro Lys Tyr Lys Gln Asp Val Glu Gly Ala Glu Ser Gln Leu Asp Glu		
245	250	255
Asp Glu His Gly Leu His Thr Lys Tyr Ile His Arg Met Met Gln Ile		
260	265	270
Glu Phe Ile Ser Gln Gly Ser Met Asn Phe Arg Phe Ile Pro Val Leu		
275	280	285
Phe Pro Asn Ala Lys Lys Glu His Val Pro Thr Trp Leu Gln Asn Thr		
290	295	300
His Val Tyr Ser Trp Pro Lys Asn Lys Lys Asn Ile Leu Leu Arg Leu		
305	310	315
Leu Arg Glu Glu Glu Tyr Val Ala Pro Pro Arg Gly Pro Leu Pro Thr		
325	330	335
Leu Gln Val Val Pro Leu		
340		

<210> 27
 <211> 1026
 <212> DNA
 <213> reverse translation

 <220>
 <221> misc_feature
 <222> (1)..(1026)
 <223> n amy be a, c, g, or t

<400> 27
 cargayytnc cnggnccnyt nmgnwsnmgn garytnccnc cncarttyga rytnngarmgn 60
 tayccnatga aygcncaryt nytnccnccn cayccnwsnc cncargcncc ntggaaytgy 120
 cartaytayt gycngnggg nccntaycay caycargtnc cncayggnc yggntayccn 180
 ccngcngcng cntaycarca rgtnytnccr ccngcnytnc cnggncargt nytnccnggn 240
 gcnmngcncm gnggnccnmg nccngtncar aargtnathy tnaaygayws nwsnccncar 300
 gaycargarg armgnccngc ncarmgngay ttywsnttgc cnmgnytnc nmgngaycar 360
 ytntaymgnc cnccnwsnaa yggngtngar gcncngarg arwsnytngc yytnccngcn 420
 garytnmgnc cncayggnc ncargcnccn wsnytngcng cngtnccnmg nccnccnwsn 480

aayccnytng cnmgnggnac nytnmgnacn wsnaayytnc cngargaryt nmgnargtn 540
 ttyathacnt aywsnatgga yacngcnatg gargtngtta arttygtnaa yttyytnytn 600
 gtnaayggnt tycaracngc nathgayath ttygargaym gnathmgngg nathgayath 660
 athaartgga tggarmgnta yytnmgnay aaracngtta tgathathgt ngcnathwsn 720
 ccnaartaya arcargaygt ngarggngcn garwsncary tngaygarga ygarccaygg 780
 ytnccayacna artayathca ymgnatgatg carathgart tyathwsnca rggwnwsnatg 840
 aaytymgnt tyathccngt nytnattyccn aaygcnaara argarcaygt nccnacntgg 900
 ytnccaraaya cncaygtnta ywsntggccn aaraayaara araayathyt nytnmgnyn 960
 ytnmgnarg argartaygt ngcncnccn mgnggnccny tnccnacnyt ncargtngtn 1020
 ccnytn 1026

<210> 28

<211> 207

<212> PRT

<213> Unknown

<220>

<223> Description of Unknown Organism: primate; surmised
Homo sapiens

<400> 28

Arg	Lys	Val	Trp	Ile	Ile	Tyr	Ser	Ala	Asp	His	Pro	Leu	Tyr	Val	Asp
1				5						10				15	

Val	Val	Leu	Lys	Phe	Ala	Gln	Phe	Leu	Leu	Thr	Ala	Cys	Gly	Thr	Glu
								20					30		

Val	Ala	Leu	Asp	Leu	Leu	Glu	Glu	Gln	Ala	Ile	Ser	Glu	Ala	Gly	Val
							35			40			45		

Met	Thr	Trp	Val	Gly	Arg	Gln	Lys	Gln	Glu	Met	Val	Glu	Ser	Asn	Ser
							50			55			60		

Lys	Ile	Ile	Val	Leu	Cys	Ser	Arg	Gly	Thr	Arg	Ala	Lys	Trp	Gln	Ala
							65			70			75		80

Leu	Leu	Gly	Arg	Gly	Ala	Pro	Val	Arg	Leu	Arg	Cys	Asp	His	Gly	Lys
							85			90			95		

Pro	Val	Gly	Asp	Leu	Phe	Thr	Ala	Ala	Met	Asn	Met	Ile	Leu	Pro	Asp
							100			105			110		

Phe	Lys	Arg	Pro	Ala	Cys	Phe	Gly	Thr	Tyr	Val	Val	Cys	Tyr	Phe	Ser
								115			120			125	

Glu	Val	Ser	Cys	Asp	Gly	Asp	Val	Pro	Asp	Leu	Phe	Gly	Ala	Ala	Pro
								130			135			140	

Arg	Tyr	Pro	Leu	Met	Asp	Arg	Phe	Glu	Glu	Val	Tyr	Phe	Arg	Ile	Gln
								145			150			155	

Asp Leu Glu Met Phe Gln Pro Gly Arg Met His Arg Val Gly Glu Leu
165 170 175

Ser Gly Asp Asn Tyr Leu Arg Ser Pro Gly Gly Arg Gln Leu Arg Ala
180 185 190

Ala Leu Asp Arg Phe Arg Asp Trp Gln Val Arg Cys Pro Asp Trp
195 200 205

<210> 29

<211> 208

<212> PRT

<213> Unknown

<220>

<223> Description of Unknown Organism: rodent; surmised
Mus musculus

<400> 29

Arg Lys Val Trp Ile Val Tyr Ser Ala Asp His Pro Leu Tyr Val Glu
1 5 10 15

Val Val Leu Lys Phe Ala Gln Phe Leu Ile Thr Ala Cys Gly Thr Glu
20 25 30

Val Ala Leu Asp Leu Leu Glu Glu Gln Val Ile Ser Glu Val Gly Val
35 40 45

Met Thr Trp Val Ser Arg Gln Lys Gln Glu Met Val Glu Ser Asn Ser
50 55 60

Lys Ile Ile Ile Leu Cys Ser Arg Gly Thr Gln Ala Lys Trp Lys Ala
65 70 75 80

Ile Leu Gly Trp Ala Glu Pro Ala Val Gln Leu Arg Cys Asp His Trp
85 90 95

Lys Pro Ala Gly Asp Leu Phe Thr Ala Ala Met Asn Met Ile Leu Pro
100 105 110

Asp Phe Lys Arg Pro Ala Cys Phe Gly Thr Tyr Val Val Cys Tyr Phe
115 120 125

Ser Gly Ile Cys Ser Glu Arg Asp Val Pro Asp Leu Phe Asn Ile Thr
130 135 140

Ser Arg Tyr Pro Leu Met Asp Arg Phe Glu Glu Val Tyr Phe Arg Ile
145 150 155 160

Gln Asp Leu Glu Met Phe Glu Pro Gly Arg Met His His Val Arg Glu
165 170 175

Leu Thr Gly Asp Asn Tyr Leu Gln Ser Pro Ser Gly Arg Gln Leu Lys
180 185 190

Glu Ala Val Leu Arg Phe Gln Glu Trp Gln Thr Gln Cys Pro Asp Trp
195 200 205

<210> 30
<211> 190
<212> PRT
<213> Unknown

<220>
<223> Description of Unknown Organism: worm; surmised
Caenorabditis elegans

<400> 30
Val Lys Val Met Ile Val Tyr Ala Asp Asp Asn Asp Leu His Thr Asp
1 5 10 15
Cys Val Lys Lys Leu Val Glu Asn Leu Arg Asn Cys Ala Ser Cys Asp
20 25 30
Pro Val Phe Asp Leu Glu Lys Leu Ile Thr Ala Glu Ile Val Pro Ser
35 40 45
Arg Trp Leu Val Asp Gln Ile Ser Ser Leu Lys Lys Phe Ile Ile Val
50 55 60
Val Ser Asp Cys Ala Glu Lys Ile Leu Asp Thr Glu Ala Ser Glu Thr
65 70 75 80
His Gln Leu Val Gln Ala Arg Pro Phe Ala Asp Leu Phe Gly Pro Ala
85 90 95
Met Glu Met Ile Ile Arg Asp Ala Thr His Asn Phe Pro Glu Ala Arg
100 105 110
Lys Lys Tyr Ala Val Val Arg Phe Asn Tyr Ser Pro His Val Pro Pro
115 120 125
Asn Leu Ala Ile Leu Asn Leu Pro Thr Phe Ile Pro Glu Gln Phe Ala
130 135 140
Gln Leu Thr Ala Phe Leu His Asn Val Glu His Thr Glu Arg Ala Asn
145 150 155 160
Val Thr Gln Asn Ile Ser Glu Ala Gln Ile His Glu Trp Asn Leu Cys
165 170 175
Ala Ser Arg Met Met Ser Phe Phe Val Arg Asn Pro Asn Trp
180 185 190

<210> 31
<211> 178
<212> PRT
<213> Unknown

<220>
<223> Description of Unknown Organism: worm; surmised
Caenorabditis elegans

<400> 31
Phe Lys Val Met Leu Val Cys Pro Glu Val Ser Gly Arg Asp Glu Asp
1 5 10 15
Phe Met Met Arg Ile Ala Asp Ala Leu Lys Lys Ser Asn Asn Lys Val
20 25 30
Val Cys Asp Arg Trp Phe Glu Asp Ser Lys Asn Ala Glu Glu Asn Met
35 40 45
Leu His Trp Val Tyr Glu Gln Thr Lys Ile Ala Glu Lys Ile Ile Val
50 55 60
Phe His Ser Ala Tyr Tyr His Pro Arg Cys Gly Ile Tyr Asp Val Ile
65 70 75 80
Asn Asn Phe Phe Pro Cys Thr Asp Pro Arg Leu Ala His Ile Ala Leu
85 90 95
Thr Pro Glu Ala Gln Arg Ser Val Pro Lys Glu Val Glu Tyr Val Leu
100 105 110
Pro Arg Asp Gln Lys Leu Leu Glu Asp Ala Phe Asp Ile Thr Ile Ala
115 120 125
Asp Pro Leu Val Ile Asp Ile Pro Ile Glu Asp Val Ala Ile Pro Glu
130 135 140
Asn Val Pro Ile His His Glu Ser Cys Asp Ser Ile Asp Ser Arg Asn
145 150 155 160
Asn Ser Lys Thr His Ser Thr Asp Ser Gly Val Ser Ser Leu Ser Ser
165 170 175
Asn Ser

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
29 November 2001 (29.11.2001)

PCT

(10) International Publication Number
WO 01/090358 A3

(51) International Patent Classification⁷: C12N 15/12,
C07K 14/715, 16/18, G01N 33/53, C12N 5/10

DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, HR, HU,
ID, IL, IN, IS, JP, KG, KR, KZ, LC, LK, LR, LT, LU, LV,
MA, MD, MG, MK, MN, MX, MZ, NO, NZ, PL, PT, RO,
RU, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UZ, VN,
YU, ZA.

(21) International Application Number: PCT/US01/16767

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(22) International Filing Date: 23 May 2001 (23.05.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/206,862 24 May 2000 (24.05.2000) US

(71) Applicant: SCHERING CORPORATION [US/US];
2000 Galloping Hill Road, Kenilworth, NJ 07033-0530
(US).

(72) Inventor: GORMAN, Daniel, M.; 6371 Central Avenue,
Newark, CA 94560 (US).

(74) Agent: ZARADIC, Sandy; Schering-Plough Corporation,
Patent Department, K-6-1, 1990, 2000 Galloping Hill
Road, Kenilworth, NJ 07033-0530 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CZ,

Declaration under Rule 4.17:

— *as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii)) for all designations*

Published:

— *with international search report*

(88) Date of publication of the international search report:
23 January 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/090358 A3

(54) Title: MAMMALIAN RECEPTOR PROTEINS; RELATED REAGENTS AND METHODS

(57) Abstract: Nucleic acids encoding mammalian, e.g., primate, receptors, purified receptor proteins and fragments thereof. Antibodies, both polyclonal and monoclonal, are also provided. Methods of using the compositions for both diagnostic and therapeutic utilities are described.

INTERNATIONAL SEARCH REPORT

Application No
PCT/US 01/16767A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12N15/12 C07K14/715 C07K16/18 G01N33/53 C12N5/10

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

SEQUENCE SEARCH, EMBL, EPO-Internal, MEDLINE, BIOSIS, WPI Data, PAJ, CHEM ABS Data, SCISEARCH, EMBASE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 96 29408 A (IMMUNEX CORP) 26 September 1996 (1996-09-26) page 2, line 35 -page 15, line 4 ---	1-18
X	YAO Z ET AL: "MOLECULAR CHARACTERIZATION OF THE HUMAN INTERLEUKIN (IL)-17 RECEPTOR" CYTOKINE, ACADEMIC PRESS LTD, PHILADELPHIA, PA, US, vol. 9, no. 11, November 1997 (1997-11), pages 794-800, XP000867704 ISSN: 1043-4666 page 795; figure 2 ---	1-4, 6, 12-15 -/-

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the International search 12 August 2002	Date of mailing of the International search report 29.08.02
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Steffen, P

INTERNATIONAL SEARCH REPORT

Application No
PCT/US 01/16767

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DATABASE EMBL 'Online! EBI; 18 February 2000 (2000-02-18) BLOECKER ET AL.: "Homo sapiens mRNA; cDNA DKFZp434N1928" Database accession no. AL133097 XP002183453 the whole document ---	1-4,6, 12-15
A	WO 99 14240 A (HUMAN GENOME SCIENCES INC ;RUBEN STEVEN M (US); SHI YANGGU (US)) 25 March 1999 (1999-03-25) the whole document ---	
A	TIAN E ET AL: "EVI27 ENCODES A NOVEL MEMBRANE PROTEIN WITH HOMOLOGY TO THE IL17 RECEPOR" ONCOGENE, BASINGSTOKE, HANTS, GB, vol. 19, no. 17, 20 April 2000 (2000-04-20), pages 2098-2109, XP008000240 ISSN: 0950-9232 the whole document ---	
A	SHI YANGGU ET AL: "A novel cytokine receptor-ligand pair: Identification, molecular characterization, and in vivo immunomodulatory activity." JOURNAL OF BIOLOGICAL CHEMISTRY (JBC) PAPERS IN PRESS, DOI 10.1074/JBC.M910228199), vol. 275, no. 25, 3 April 2000 (2000-04-03), pages 19167-19176, XP002197927 ISSN: 0021-9258 the whole document ---	
A	FOSSIEZ F ET AL: "INTERLEUKIN-17" INTERNATIONAL REVIEWS OF IMMUNOLOGY, HARWOOD ACADEMIC PUBLISHERS, LONDON, GB, vol. 16, no. 5/6, 1998, pages 541-551, XP000867763 ISSN: 0883-0185 the whole document ---	
E	WO 01 68859 A (AMGEN INC ;JING SHUQIAN (US)) 20 September 2001 (2001-09-20) page 2, line 19 -page 10, line 27; examples 1-4 ---	1-18
E	WO 01 46420 A (GENENTECH INC) 28 June 2001 (2001-06-28) page 5, line 1 -page 16, line 17; figures 17,18 ---	1-18
		-/-

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 01/16767

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 99 55865 A (GENESIS RES & DEV CORP LTD) 4 November 1999 (1999-11-04) SEQ ID NO's 125 and 303 and corresponding cDNA's page 3 -page 17 ----	1-18
X	DATABASE EMBL 'Online' EBI; 22 July 1999 (1999-07-22) NCI-CGAP: "ty30c03.x1 NCI_CGAP_UT2 Homo sapiens cDNA clone IMAGE:2280580 3' mRNA sequence" Database accession no. AI861981 XP002209553 the whole document ----	12-18
X	DATABASE EMBL 'Online' EBI; 21 October 1999 (1999-10-21) MARRA ET AL.: "u191g04.y1 Sugano mouse kidney mkia Mus musculus cDNA clone IMAGE:2159478 5', mRNA sequence" Database accession no. AW107583 XP002209554 the whole document -----	12-18

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 01/16767

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: 19, 20 because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
see FURTHER INFORMATION sheet PCT/ISA/210

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-18 (all partly)

Compositions comprising primate DCRS8 polypeptides and nucleic acid sequences (SEQ ID NO's 14 and 13, respectively) as well as further embodiments relating to the said polypeptides and nucleic acid sequences.

2. Claims: 1-18 (all partly)

Compositions comprising primate or rodent DCRS9 polypeptides and nucleic acid sequences (SEQ ID NO's 16, 19 and 17, 20, respectively) as well as further embodiments relating to the said polypeptides and nucleic acid sequences.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 19, 20

Present claims 19 and 20 relate to a method defined by reference to a desirable characteristic or property, namely contacting a cell with an unspecified agonist or antagonist of a mammalian protein of the application (e.g. DCRS8 or DCRS9).

The claims cover all methods having this characteristic or property, whereas the application provides support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT for only a very limited number of such methods. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Independent of the above reasoning, the claims also lack clarity (Article 6 PCT). An attempt is made to define the method by reference to a result to be achieved. Again, this lack of clarity in the present case is such as to render a meaningful search over the whole of the claimed scope impossible. Consequently, no search has been carried out for claims 19 and 20.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 01/16767

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9629408	A 26-09-1996	AU 696775 B2		17-09-1998
		AU 5526396 A		08-10-1996
		CA 2215394 A1		26-09-1996
		EP 0817847 A1		14-01-1998
		JP 11503309 T		26-03-1999
		NO 974258 A		24-11-1997
		NZ 306653 A		29-03-1999
		US 6096305 A		01-08-2000
		US 6072033 A		06-06-2000
		US 6197525 B1		06-03-2001
		US 6191104 B1		20-02-2001
		US 6100235 A		08-08-2000
		US 6072037 A		06-06-2000
		WO 9629408 A1		26-09-1996
		US 5869286 A		09-02-1999
WO 9914240	A 25-03-1999	AU 9482498 A		05-04-1999
		EP 1015488 A1		05-07-2000
		WO 9914240 A1		25-03-1999
WO 0168859	A 20-09-2001	AU 4754501 A		24-09-2001
		WO 0168859 A2		20-09-2001
		US 2002045213 A1		18-04-2002
WO 0146420	A 28-06-2001	AU 2590901 A		03-07-2001
		WO 0146420 A2		28-06-2001
		AU 2055401 A		12-06-2001
		AU 2224800 A		28-09-2000
		AU 2596700 A		28-09-2000
		AU 2877900 A		28-09-2000
		AU 3514400 A		28-09-2000
		EP 1220905 A2		10-07-2002
		WO 0053754 A1		14-09-2000
		WO 0053756 A2		14-09-2000
		WO 0053758 A2		14-09-2000
		WO 0140466 A2		07-06-2001
		US 2002094416 A1		18-07-2002
		AU 3434601 A		12-06-2001
		AU 7573000 A		26-03-2001
		EP 1208202 A2		29-05-2002
		WO 0116318 A2		08-03-2001
		WO 0140465 A2		07-06-2001
		AU 2883600 A		28-09-2000
		AU 3381600 A		28-09-2000
		AU 3774300 A		18-12-2000
		AU 5152700 A		02-01-2001
		AU 5459900 A		18-12-2000
		AU 6391000 A		19-02-2001
		EP 1159419 A1		05-12-2001
		EP 1210418 A1		05-06-2002
		EP 1208195 A2		29-05-2002
		EP 1212417 A2		12-06-2002
		EP 1185648 A2		13-03-2002
		WO 0053757 A2		14-09-2000
		WO 0073454 A1		07-12-2000
		WO 0073445 A2		07-12-2000
		WO 0077037 A2		21-12-2000
		WO 0073348 A2		07-12-2000

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 01/16767

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 0146420	A	WO	0073452 A2	07-12-2000
		WO	0109327 A2	08-02-2001
		US	2002072496 A1	13-06-2002
		US	2002072067 A1	13-06-2002
		US	2002072092 A1	13-06-2002
		US	2002072497 A1	13-06-2002
		AU	1916701 A	16-07-2001
		AU	6802801 A	24-09-2001
		WO	0149715 A2	12-07-2001
		WO	0168848 A2	20-09-2001
		US	2002098505 A1	25-07-2002
		US	2002098506 A1	25-07-2002
		US	2002098507 A1	25-07-2002
		US	2002090681 A1	11-07-2002
		US	2002010137 A1	24-01-2002
		US	2002058309 A1	16-05-2002
WO 9955865	A 04-11-1999	US	6150502 A	21-11-2000
		AU	3961499 A	16-11-1999
		CA	2327317 A1	04-11-1999
		CN	1307637 T	08-08-2001
		EP	1073740 A1	07-02-2001
		JP	2002512798 T	08-05-2002
		WO	9955865 A1	04-11-1999
		NZ	507728 A	28-06-2002