Assignment 13, Linear Algebra 1

Oleg Sivokon

<2016-04-16 Sat>

Contents

1	Prol	blems	2
	1.1	Problem 1	2
	1.2	Problem 2	2
	1.3	Problem 3	2
	1.4	Problem 4	2
	1.5	Problem 5	3
	1.6	Problem 6	3

1 Problems

1.1 Problem 1

- 1. Find all solutions of $z^3 + 3i\overline{z} = 0$.
- 2. Let z_1, z_2 be complex numbers. Prove that unless $z_1z_2=1$ and $|z_1|=|z_2|=1$, then $\frac{z_1+z_2}{1+z_1z_2}$ is a real number.

1.2 Problem 2

Let \mathbb{Q} denote the field of rational numbers. And K defined as follows:

$$K = \left\{ \begin{bmatrix} a & 2b \\ b & a \end{bmatrix} \mid a, b \in \mathbb{Q} \right\} .$$

Is K a field under matrix addition and multiplication?

1.3 Problem 3

Verify that V is a vectors space over field \mathbf{F} :

- 1. $\mathbf{F} = \mathbb{C}, V = \mathbb{M}_{n \times n}^{\mathbb{C}}$ and addition defined to be the rational addition, while multiplication is defined to be $\lambda \times A = |\lambda| \times A$.
- 2. $\mathbf{F} = \mathbb{R}, V = \{(x,y) \in \mathbb{R}^2 \mid y = 2x\}$, with addition being the addition of \mathbb{R}^2 and multiplication $\lambda \times (x,y) = (\lambda x,0)$.

1.4 Problem 4

Given sets:

- 1. $K = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y z + t = 0 \land 2x + y + z 3t = 0\}.$
- 2. $L = \{f \in V \mid f\left(\frac{1}{2}\right) > f(2)\}, V \text{ is the vector space of all real-valued functions.}$
- 3. $M = \{p(x) \in \mathbb{R}^4[x] \mid p(-3) = 0\}.$

4.
$$R = \{(x, y) \in \mathbb{R}^3 \mid x^2 + y^2 = 0\}.$$

5.
$$R = \{(x, y) \in \mathbb{R}^3 \mid x^2 - y^2 = 0\}.$$

Fore each of sets given, assert them being vector spaces. In case they are, prove this in two different ways.

1.5 Problem 5

Given vector space V and $\vec{v}_1, \vec{v}_2, \vec{v}_3$ distinct vectors prove or disprove:

- 1. If $\operatorname{Sp}\{\vec{v}_1, \vec{v}_2\} = \operatorname{Sp}\{\vec{v}_1, \vec{v}_3\}$, then \vec{v}_2 is a multiple of \vec{v}_3 .
- 2. If $\vec{v}_1 2\vec{v}_2 + \vec{v}_3 = \vec{0}$, then $\operatorname{Sp}\{\vec{v}_1, \vec{v}_2\} = \operatorname{Sp}\{\vec{v}_1, \vec{v}_3\}$.
- 3. If $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is linearly dependent, then $\text{Sp}\{\vec{v}_1, \vec{v}_2\} = \text{Sp}\{\vec{v}_1 + \vec{v}_3, \vec{v}_3 + \vec{v}_3\}$.

1.6 Problem 6

Given following subspaces of \mathbb{R}^4 : $U = \text{Sp}\{(1,1,2),(2,2,1)\}$ and $W = \text{Sp}\{(1,3,4),(2,5,1)\}$, find spanning set of $U \cap W$.