Firearm injuries I

Dr I. Kitulwatte

Objectives

- To know the mechanism of causation of missile injury
- To know the causation of injury with regards to velocity of the weapon.
- To know the 2 basic types of firearms and there features and differences

Objectives cont--

- To know the factors determining the firearm injuries
- To identify different features of rifle wounds at different ranges.
- · To know the features of bullet wounds in bones
- · To know the features of firearm exit wounds
- To know the wounding mechanisms of shot guns at different ranges.

Fire arm injuries

• The injuries are caused by a missile or projectile discharged by a firearm.

Mechanism of missile injury

To cause damage

· Needs absorption of some or all of the kinetic energy

Transfer of energy is based on:

- 1. The resistance of the tissue.
 - In a soft tissue, absorption is minimal (apart from the bullet tract)
 - ${\boldsymbol{\cdot}}$ May not be fatal unless a vital organ is affected.

2. Make of the bullet

- 1. Bullets are modified:
 - Soft headed bullets flatten on impact
 - Air cavity within the tipsplay open on impact
- 2. Trajectory or course of the bullet
 - Tumble end over end
 - Bullet yaw along axis

3. Velocity of the bullet

- Low velocity 1100 feet/second (tissue damage is limited)
- High velocity 4800 feet/second (rises the tissue pressure to extreme (temporary cavitation)

Types of firearms

- The nature of the wound varies with the type of the weapon.
 - □ 2 main types:
 - · Shot guns or smooth bore weapons
 - · Rifled weapons.

Smooth bore weapon

- 1 or more metal barrels
- · Relatively wide diameter
- · Smooth inner surface
- Slightly tapers towards the muscle (choking)
- · Variable number of pellets
 - Large number of pellets (bird shot)
 - Few large projectiles (Buck shot)
 - Single slug

Ammunition

- Cartridge: cardboard or plastic cylinder with a metal base
- Contain from bottom to top:
 - Charge of propellant (gun powder)
 - Wad (cardboard or plastic discs)
 - Pellets
- Modern devices are improved to increase efficiency

Rifled weapons

- Fire 1 projectile at a time
- A thicker barrel with spiral groves (rifling of the interior)
 - Gives rotatory movement to bullet
 - Increases the stability

There are many varieties

- Hand guns (revolvers and automatic pistols) low velocity
- **Rifles** long barreled,
- velocity varies from 1500 feet -5000 feet /second
- Submachine guns (machine pistols)
 more powered than pistol but less powered than
 rifle
- Machine guns- design to fire rifle bullets in quick succession

Ammunitions

Basically the design is:

- Bullet, a lead core covered in a steel/nickel jacket is firmly clamped into the open end
- Shell /cartridge /casing (metal cylinder closed at one end)
- 3. Inside the shell loaded with **explosive propellant**
- **4. Rim** part of casing used for loading
- **5. Primer** which ignite the propellant

The mechanism of action:

 Once detonated produce large volumes of hot gases under pressure

Expel the bullet

Fire arm injuries

The nature of the injuries is affected by:

- Type of weapon (shot gun/rifle)
- · Velocity of the weapon
- The nature of the projectile
- The nature of propellant
- Degree of choke (if any)
- The range of discharge
- · Angle of discharge

Penetrating and perforating injuries

Penetrating trauma

object does not pass through

perforating injury

 object enters and passes all the way through

Firearm damage to internal organs

• In low velocity missiles

- Lacerations
- Contusions
- Complete mechanical disruption (in mass of shot guns and gas strikes, and low velocity rifle bullets)

In high velocity missiles

- Disproportionate damage relative to diameter
- · Due to cavitation effect
- · Specially in solid organs

How to describe a gunshot/ Firearm wound?

- Gunshot wound of xxx perforating penetrating :
- Entrance:
- Path of bullet:
- Exit or
- Site of lodgment:
- Direction in body:
- Comment:

Entrance:

- · Anatomical site:
- Position: xxx cm from the top of the head and xxx cm xxx to the midline plane
- Size: ~ xxx cm
- Marginal abrasion: Concentric, eccentric (xxx)
- Marginal effects: No blackening (xxx); stippling (xxx)
- · Special features:
- Pathological range:

Path of bullet:

• Wound path: Entrance wound → xxx

 $\begin{array}{c} \rightarrow xxx \rightarrow xxx \rightarrow \\ xxx \rightarrow xxx \rightarrow \end{array}$

XXX

· Hemorrhage:

Exit:

- · Anatomical site:
- Position:
- · Size: ~ xxx cm
- · Shape, margin:

Site of lodgment:

- · Anatomical site:
- Position:
- Projectile:

Shot gun injuries

- Injuries may be contributed by:
- · Lead pellets
- Soot in the form of smoke and debris
- Unburned and burning propellant particles
- Flame and hot gases under pressure
- · Carbon monoxide
- Wads
- · Detonator constituents
- · Fragments of cartridge case

What happens once a shot is fired?

- Initially the compact mass emerges
- · Begins to disperse:
- Starts at about 2m
- Separate satellite pellet wounds and central main hole after 1-2m
- Spread of pellets increases and central wound disappear – mid to distant range

What happens once a shot is fired? Cont--

- Flame and hot gases follow the shot
- High pressure and temperature exists just outside the muzzle
- Among the gases carbon monoxide is found
- Soot from combustion of propellant and still burning propellant are expelled

What happens once a shot is fired? Cont--

- · Wads are expelled
- Traces of elements from detonator or percussion cap are expelled (can be detected from laboratory tests)
- Fragments of cartridge case may also be ejected

Range of fire in shot guns

- · Depending on the type of shot gun
- Different barrel of same shot gun and different ammunition marked variations
- Test firing is the ideal for determination of range.

Contact shotgun wounds

1. Shape

 Single circular wound with approximate diameter of bore of the weapon (only on none bony areas)

Contact wounds over bones with thin soft tissue –

- · different appearance
- large amount of discharged gas cannot dissipate
- can have disruption of the cranium due to explosive effects
- · also can see gas reflected back by the bone
- · rises a dome of skin and subcutaneous tissue
- press against muzzle produce a muzzle imprint
- · split to form a cruciate/ stellate wound

Massive disruption of skull

2. Burning and blackening

- If a tight contact minimal or none around
- Recoil taking muzzle away or none firm contact burning and blackening in the skin of immediate vicinity
- If clothing intervene- soot escape sideways found in each layer of fabric, and underlying skin, clothe singed at the edge of hole and ring of burning around skin wound

3. Muzzle impression

- Seen in a tight contact (holding the weapon firmly or when skin is lifted forcibly against)
- Most useful indicator of contact wound
- If double barreled weapon is used –muzzle mark adjacent to entry

4. Carbon monoxide

- Produces due to incomplete combustion
- When combine with haemoglobin /myoglobincherry pink colour
- Useful in distinguishing entry from exit
- 5. Wads within the wound

Close range shot gun wound

- · Muzzle is held near skin within 6 inches
- · Single circular wound
- · Singeing of hair around the wound
- Burning of skin (narrow rim of hyperaemia or blistering)
- Tissues around and in may be cherry pink from carbon monoxide

Close range shot gun wound cont--

- Blackening due to soot/smoke can get easily washed off
- Powder tattooing around the wound

 due to impact of un burnt partially burnt or burning gun powder, punctuate lesions (not washed off)
- Shape of the wound is circular (weapon held right angles) or elliptical (weapon slanted)

Close range shot gun wound cont--

- · Appearance can be modified by clothing
- · Wad within the wound
- If clothing present burning, blackening and tattooing may be absent.

Close range shot gun wound chest

Intermediate range shot gun wound

- 6 inches to 6 feet
- · Burning and singing of hair disappears first
- Soot soiling/blackening diminishes and vanishes in 8 -16 inches
- · Powder tattooing may persist further than this

Intermediate range shot gun wound

- At 6feet/upper end of this range –crenated and scalloped edges of the wound (rat hole)
- · Satellite pellet wounds around the main wound
- Wad mark associated with injury (laceration/bruise) - may be found below the main wound sometimes up to 5 meters

Intermediate range shot gun entry wounds

Wad mark

Distant or indeterminate range shot gun wound

- no burning, smoke staining or powder tattooing
- spread of pellets increases
- · central rat hole diminishes

Shotgun entry wound distant range

Shotgun entry wound distant range

Direction of shot gun injury

- Right angle-circular hole and associated other factors
 Other positions –elliptical
 Shelving and undercutting are helpful
 Track of worder in deeper tissues (radiographs are march be worder)

- much beneficial)
 - But the track is difficult to determine
 - Internal damage is diffuse and associated with
 - disruption
 - Is caused by direct mechanical disruption (by gas and shot)
 - No cavitation effect

Secondary damage

- Can occur by mass of pellets striking a bone and releasing fragments as secondary missiles
- Can emerge resulting in exist- (can be mistaken for multiple shots)

Shotgun injuries in bones

- · Usually destroys a larger area of the skull
- In a thin bone like cranium, sternum or pelvis there is usually a special pattern called beveling
- Individual pellets rarely penetrate
- Thicker bones are involved result in comminuted fractures and bony fragments can acquire a velocity causing secondary injuries.

Shot gun entry with beveling

Shot gun exit wound

- Uncommon in the trunk as energy not enough to pass through
- · Head, neck and limbs may have exit wounds
- Range of fire is a determining factor for exit wound (specially in contact and close range)
- The appearance of exit depends on the anatomical part injured

appearance of exit depend on the anatomical part injured

- Extremely ragged, irregular and large with everted edges
- $\,{}^{_{\mathrm{O}}}$ Disrupt the tissues due to large volumes of gases
- Comminuted bone fragments
- Shot gun fired into the mouth may remove a large portion of the back of the head as an exit woundburst head (gas plays a role)
- Chest or abdomen often fail to exit
- Pellets often penetrate the distal chest wall –held up beneath the skin (Bruises seen)

Mechanism of death

- · Haemothorax due to damage to pleura and lungs
- Haemopericardium
- Intracranial damage from shattering of skull and facial bone

What are elective sites for suicide?

- Temple
- · Mid forehead
- Intraoral
- · Under the chin
- · Left chest/mid chest

Rifled weapon injuries

- Depending on the velocity of the projectile wound characteristics vary.
- Common features
 - Usually single bullet from one discharge (unless defect in the weapon firing 2 at once)
 - Automatic weapons may show multiple wounds in close succession

Features due to

- Bullet
- Flame
- · Gases eliminated
- Soot
- · Burnt and un burnt gun powder
- · Muzzle mark (in close range)

Contact rifled weapon injuries

- Wound small and circular unless on a bony surface
- Over bony support can split to form a cruciate/ stellate wound
- Burning and blackening of the immediate wound edges (if the contact is lose)

Contact rifled weapon injuries cont--

- Soot deposition within the wound
- Areola of hyperaemia extend beyond muzzle imprint
- Cherry pink discolouration due to CO.
- Muzzle imprint
- There may be complex imprints due to foresights and mechanisms for self loading automatics

Back spatter or blow back in to barrel

- Contact and close range discharge can result in entering of blood and tissue fragments in to the muzzle.
- Due to the momentary suction effect as pressure of gas blast diminishes.

Close range rifle wounds

- · Circular in shape.
- Margins of the wound -inverted but sometimes due to rebounding gases may be everted
- · Abrasion collar around the margin
 - Due to the inversion of the skin with the entry of missile causing the bullet to wipe the epidermis
 - Caused by friction and heat

Close range rifle wounds

- · Burning within a few cm. with hair singeing
- · Hyperaemia around the wound
- Most propellant used now are clean however there may be blackening
- Powder tattooing around the vicinity (distribution helpful in determining the direction)
- Fouling (tiny lesions around the entry wound caused by fragments of metal expressed)

Intermediate or distant range wounds

- · No difference
- Circular central hole with inverted margins (usually smaller than bullet)
- · Abrasion collar around the central hole

Intermediate or distant range wounds cont--

- Grease ring- inner edge of the abrasion collar may be black (heating and dirt)
- There may be bruising around the wound
- No burning, blackening or tattooing around

In extreme distance:

- · Reduced velocity of the bullet
- Bullet begin to wobble and yaw or even tumble (turn end over end)
- If the bullet strikes the body sidewaysrectangular wound mimicking a laceration

Direction of discharge

- In close range rifle injuries shelving or undercutting are useful-indicates angle entry
- Burning, blackening and tattooing are less evident and therefore of little help

Direction of discharge cont--

Shape of the abrasion collar-

- More useful
- Asymmetrical in angle entry
- Join the trajectory between entrance and exit(unless bullet diverted within)
- Consider posture of the victim

Exit wounds of rifled weapon

- Many are perforating
- Again the velocity of the bullet is a determining factor
- · High velocity often pass through-

If an intact bullet emerges:

- Exit wound is a small everted defect (classically stellate could be slit like or linear)
- There is no abrasion collar
- No burning, blackening or tattooing

Exception to usual exit

- If emerges against supported skin (tight garments, floor/wall) a circular exit wound
- This is called a **shored exit**
- Has an abrasion collar as well
- Difficult to differentiate from an entrance
- (specially in distance and intermediate range)

When the bullet is deformed or emerged side ways

- Exit can be of any size or shape
- May be multiple (if fragmented/pieces of bones also exit)

Re-entry

- · Penetration of 2 parts of the body
- Commonly through and through wound of the limb re-entering the chest/abdomen

Bullet wound in bones

- In a thin bone like cranium, sternum or pelvis - beveling
- Initial contact punches a clean hole in outer table.
- When emerges internally causes a crater that is larger than the external hole / erosion of the margins of the inner table
- "cone" shape in the direction of the bullet path

Bullet wound in bones cont--

- Same pattern occurs when bullet exists the cranium / outer table shows erosion (cone shape facing outwards)
- In addition there are fissured or comminuted fractures
- Thicker bones comminuted fractures and bony fragments
- can acquire a velocity causing secondary injuries.

Entry vs exit

Key hole wounds

- A missile striking the skull tangentially produces a keyhole defect
- · Here the entrance and exit defects overlap
- One end of the perforation inner beveling , while the other end external beveling

Glancing rifled wounds

- · Can occur when bullet enters in an angle.
- · Can have a superficial course
- · Damage may be little
- In irregular surfaces can have several re-entries and exits
- May follow skull/rib curvatures without entering through

Summary

- Kinetic energy of the missile determines the extent of damage.
- Energy transfer is based on tissue resistance, and course and velocity of the bullet
- Damage from the low velocity missiles is limited only to the bullet tract while in high velocity missiles severe disruption within a wide zone around the bullet track is seen.

Summary cont--

- There are 2 basic types of firearms rifle, and shot gun.
- · Shotgun fires a variable number of pellets.
- Rifle fires 1 projectile (Bullet) at a time which has a rotatory movement due to the grooves in the barrel.
- Entrance, path of bullet, exit/site of lodgment are the key areas in describing a gunshot wound.

Summary cont.

- Entry wound of a shot gun is single and circular in contact and close range discharges while in intermediate range discharge there are satellite pellet wounds around the main wound
- Distant range shot gun entry wounds show injuries from single pellets.

Summary cont--

- Rifle bullet entry wounds are usually small and circular with abrasion collar.
- Burning, blackening and tattooing are seen in contact and close range firearm injuries.
- Presence of a muzzle imprint indicates contact firearm injury.
- Inner or outer beveling of the skull are determining factors for entry or exit wounds.
- Exit wounds are not common in shot guns while they are commonly irregular or slit like in rifled firearms.

