MA0505 - Análisis I

Lección XV: Funciones Medibles

Pedro Méndez¹

¹ Departmento de Matemática Pura y Ciencias Actuariales Universidad de Costa Rica

Semestre I, 2021

Agenda

Funciones Lebesgue Medibles

Definición

Definición

Sea $f: E \to \overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$. Decimos que f es medible si para todo $a \in \mathbb{R}$ vale que

$$\{x \in E : f(x) > a\} \in \mathcal{M}.$$

De ahora en adelante

$$\{f > a\} = \{x \in E : f(x) > a\}.$$

Note que

$$E = \bigcup_{k=1}^{\infty} \{f > -k\} \cup \{f = -\infty\}.$$

Entonces E es medible si y sólo si $\{f = -\infty\}$ es medible. Por el resto de esta sección asumimos que E es medible.

Ejemplos

- (I) Sea $f : \mathbb{R}^d \to \mathbb{R}$ continua. Entonces $\{f > a\}$ es abierto.
- (II) Si $f = \mathbf{1}_A$, entonces

$$\{f > a\} = \begin{cases} E & \text{si } a < 0 \\ A & \text{si } 0 \leqslant a < 1 \\ \emptyset & \text{si } a \geqslant 1 \end{cases}$$

Equivalencias

Teorema

Sea $f: E \to \mathbb{R}$ con E medible. Entonces f es medible si se cumple cualquiera de los siguientes postulados para todo $a \in \mathbb{R}$.

- (I) $\{f > a\}$ es medible.
- (II) $\{f < a\}$ es medible.
- (III) $\{f \leqslant a\}$ es medible.
- (IV) $\{f \geqslant a\}$ es medible.

Prueba del Teorema

Note que

$$\{f > a\} = \bigcup_{n=1}^{\infty} \left\{ f \geqslant a + \frac{1}{n} \right\} = \{f \leqslant a\}^{c}$$
$$\{f \geqslant a\} = \bigcap_{n=1}^{\infty} \left\{ f > a - \frac{1}{n} \right\} = \{f < a\}^{c}$$

Si $f: E \to \mathbb{R}$ es medible, entonces los conjuntos

$$\{f > -\infty\} = \bigcup_{k=1}^{\infty} \{f > -k\}, \ \{f < \infty\} = \bigcup_{k=1}^{\infty} \{f \leqslant k\},$$
$$\{f = \infty\}, \ \{a \leqslant f \leqslant b\}, \ \{a \leqslant f < b\}$$

son medibles.

Resumen

Ejercicios

Lista 15

Lecturas adicionales I

- S.Cambronero. Notas MA0505. 20XX.
- I.Rojas Notas MA0505. 2018.