TEOREMA CHINEZĂ A RESTURILOR

Fie $n_1, n_2 \geq 2$ două numere întregi prime între ele. Fie a_1, a_2 numere întregi fixate. Considerăm sistemul de congruențe

$$\begin{cases} x \equiv a_1 \bmod n_1 \\ x \equiv a_2 \bmod n_2 \end{cases}$$

Vom arăta că sistemul dat are soluții și vom determina cea mai mică soluție pozitivă a acestuia.

Deoarece $(n_1, n_2) = 1$ avem că \widehat{n}_1 este inversabil în $\mathbb{Z}/n_2\mathbb{Z}$, respectiv \widehat{n}_2 este inversabil în $\mathbb{Z}/n_1\mathbb{Z}$. Aşadar există $y_1, y_2 \in \mathbb{Z}$ cu proprietatea că $n_1y_1 \equiv 1 \mod n_2$, respectiv $n_2y_2 \equiv 1 \mod n_1$. Fie acum $x = a_1n_2y_2 + a_2n_1y_1$. Este evident că x este o soluție a sistemului de congruențe dat. Mai mult, sistemul are o infinitate de soluții, deoarece $x + kn_1n_2$ este de asemenea soluție, oricare ar fi $k \in \mathbb{Z}$.

Ne propunem acum să determinăm cea mai mică soluție pozitivă a sistemului. Scriem $x = n_1 n_2 q + r$ cu $0 \le r < n_1 n_2$. Dacă r = 0, atunci cea mai mică soluție pozitivă este $n_1 n_2$. În caz contrar, r este cea mai mică soluție pozitivă. Este evident că r este o soluție a sistemului. Să arătăm că este cea mai mică. Fie 0 < r' < r o altă soluție. Atunci $r \equiv r' \mod n_1$ și $r \equiv r' \mod n_2$, deci $n_1 \mid r - r'$ și $n_2 \mid r - r'$. Cum $(n_1, n_2) = 1$ deducem că $n_1 n_2 \mid r - r'$. Pe de altă parte, $0 < r - r' < n_1 n_2$, contradicție.

Rezultatul de mai sus se numește Teorema~Chineză~a~Resturilor. Acesta poate fi interpretat astfel: funcția $f: \mathbb{Z}/(n_1n_2)\mathbb{Z} \to \mathbb{Z}/n_1\mathbb{Z} \times \mathbb{Z}/n_2\mathbb{Z}$ definită prin $f(\widehat{x}) = (\overline{x}, \overline{\overline{x}})$ este un izomorfism de inele. Este ușor de văzut că f este morfism de inele, iar teorema chineză a resturilor este echivalentă cu faptul că f este surjectivă. Dar cum $|\mathbb{Z}/(n_1n_2)\mathbb{Z}| = |\mathbb{Z}/n_1\mathbb{Z} \times \mathbb{Z}/n_2\mathbb{Z}| = n_1n_2$ rezultă că f este și injectivă. Această interpretare a teoremei chineze a resturilor ne sugerează următoarea generalizare:

Fie R un inel comutativ unitar și I_1 , I_2 ideale ale lui R cu proprietatea că $I_1+I_2=R$. Atunci morfismul

$$f: R/I_1 \cap I_2 \to R/I_1 \times R/I_2$$

definit prin $f(\widehat{x}) = (\overline{x}, \overline{\overline{x}})$ este un izomorfism de inele. Mai mult, $I_1 \cap I_2 = I_1 I_2$.

Demonstrația este similară celei de mai sus în care $R = \mathbb{Z}$. Se arată mai întâi că $(\overline{1}, \overline{\overline{0}})$ şi $(\overline{0}, \overline{\overline{1}})$ sunt în imaginea lui f. Deoarece $I_1 + I_2 = R$ există $x_1 \in I_1$ şi $x_2 \in I_2$ astfel încât $x_1 + x_2 = 1$. Atunci $f(\widehat{x}_2) = (\overline{1}, \overline{\overline{0}})$ şi $f(\widehat{x}_1) = (\overline{0}, \overline{\overline{1}})$ şi de aici se obţine $f(a_1x_2 + a_2x_1) = (\overline{a}_1, \overline{a}_2)$, deci f este surjectivă.

Să remarcăm că $(n_1, n_2) = 1$ este, în general, o condiție necesară: de exemplu, sistemul de congruențe

$$\begin{cases} x \equiv 1 \bmod 4 \\ x \equiv 2 \bmod 6 \end{cases}$$

nu are soluții.

Rezultatele de mai sus se pot generaliza la mai mult de două numere/ideale.

Temă.

1. Să se afle cea mai mică soluție pozitivă a sistemului de congruențe

$$\begin{cases} x \equiv 5 \bmod 18 \\ x \equiv 27 \bmod 35 \end{cases}$$

2. Rezolvați sistemul de congruențe

$$\begin{cases} 6x \equiv 2 \bmod 8 \\ 5x \equiv 5 \bmod 6 \end{cases}$$

3. Arătați că $\mathbb{Q}[X]/(X^2-1)\simeq\mathbb{Q}\times\mathbb{Q},$ dar $\mathbb{Z}[X]/(X^2-1)\not\simeq\mathbb{Z}\times\mathbb{Z}.$