第 3 节 代数式的恒等变形 (★★★☆)

强化训练

- 1. (2022・滨州期末・★★) 在 $\triangle ABC$ 中,若 $\cos C = \frac{b}{2a}$,则此三角形一定是()

- (A) 等腰三角形 (B) 直角三角形 (C) 等腰直角三角形 (D) 既非等腰也非直角三角形

答案: A

解法 1: 所给等式右侧有边的齐次分式,可边化角,

因为
$$\cos C = \frac{b}{2a}$$
,所以 $\cos C = \frac{\sin B}{2\sin A}$,故 $2\sin A\cos C = \sin B$ ①,

左侧有 $\sin A \cos C$, 可拆右侧的 $\sin B$, 进一步化简,

因为 $\sin B = \sin[\pi - (A+C)] = \sin(A+C) = \sin A \cos C + \cos A \sin C$,

代入式①得: $2\sin A\cos C = \sin A\cos C + \cos A\sin C$,所以 $\sin A\cos C - \cos A\sin C = 0$,故 $\sin(A-C) = 0$,

因为 $A,C \in (0,\pi)$,所以 $A-C \in (-\pi,\pi)$,从而A-C=0,故A=C,所以 ΔABC 一定是等腰三角形.

解法 2: 也可将所给等式左侧的 $\cos C$ 角化边,

因为
$$\cos C = \frac{b}{2a}$$
,所以 $\frac{a^2 + b^2 - c^2}{2ab} = \frac{b}{2a}$,化简得: $a^2 - c^2 = 0$,所以 $a = c$,故 ΔABC 一定是等腰三角形.

2. (2022 •安阳模拟 •★★)在 △ABC 中,角 $A \setminus B \setminus C$ 的对边分别为 $a \setminus b \setminus c$,且 $2b^2 - 3c^2 - ac = 0$, $\sin C = 2\sin A$, 则 $\cos C =$ ____.

答案: $\frac{2\sqrt{7}}{7}$

解析: 若将 $\sin C = 2 \sin A$ 角化边,结合 $2b^2 - 3c^2 - ac = 0$ 可将边统一起来,由余弦定理推论求 $\cos C$,

因为 $\sin C = 2\sin A$,所以 c = 2a,代入 $2b^2 - 3c^2 - ac = 0$ 可得: $2b^2 - 3\cdot(2a)^2 - a\cdot 2a = 0$,所以 $b = \sqrt{7}a$,

故
$$\cos C = \frac{a^2 + b^2 - c^2}{2ab} = \frac{a^2 + 7a^2 - 4a^2}{2a \cdot \sqrt{7}a} = \frac{2\sqrt{7}}{7}.$$

3.(2022•濮阳模拟•★★)设 $\triangle ABC$ 的内角 $A \setminus B \setminus C$ 的对边分别为 $a \setminus b \setminus c$,且 (a+b+c)(a+b-c)=3ab,

 $2\cos A\sin B = \sin C$,则 ΔABC 是 ()

- (A) 直角三角形 (B) 等边三角形 (C) 钝角三角形 (D) 等腰直角三角形

答案: B

解法 1: 因为(a+b+c)(a+b-c)=3ab,所以 $(a+b)^2-c^2=3ab$,整理得: $a^2+b^2-c^2=ab$,

故
$$\cos C = \frac{a^2 + b^2 - c^2}{2ab} = \frac{ab}{2ab} = \frac{1}{2}$$
, 结合 $0 < C < \pi$ 可得 $C = \frac{\pi}{3}$;

等式 $2\cos A\sin B = \sin C$ 左侧有 $\cos A\sin B$,故可拆右侧的 $\sin C$,进一步化简,

因为 $\sin C = \sin[\pi - (A+B)] = \sin(A+B) = \sin A \cos B + \cos A \sin B$,

代入 $2\cos A\sin B = \sin C$ 可得: $2\cos A\sin B = \sin A\cos B + \cos A\sin B$,

所以 $\sin A \cos B - \cos A \sin B = 0$,故 $\sin(A-B) = 0$,又 $A, B \in (0,\pi)$,所以 $A-B \in (-\pi,\pi)$,故 A-B = 0,

从而 A = B ,结合 $C = \frac{\pi}{3}$ 可得 ΔABC 是等边三角形.

解法 2: 得到 $C = \frac{\pi}{2}$ 的过程同解法 1, $2\cos A \sin B = \sin C$ 这个式子也可以角化边分析,

因为 $2\cos A\sin B = \sin C$,所以 $2\cdot \frac{b^2+c^2-a^2}{2bc}\cdot b = c$,整理得: $b^2-a^2=0$,故 b=a,

结合 $C = \frac{\pi}{3}$ 知 $\triangle ABC$ 是等边三角形.

4. $(\bigstar \star \star \star)$ 在 ΔABC 中,角 $A \setminus B \setminus C$ 的对边分别为 $a \setminus b \setminus c$,已知 $ac = \frac{3\sqrt{2}}{4}$, $\sin A \sin C = \frac{\sqrt{2}}{3}$, $\sin B = \frac{1}{3}$,

则 $b = ____$.

答案: $\frac{1}{2}$

解析: 题干涉及两边与三内角正弦,要求第三边,考虑正弦定理. 若不知道怎么求,就都写出来再看,

由正弦定理, $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$,

为了凑出条件的形式,我们想到把 $\frac{a}{\sin A}$ 与 $\frac{c}{\sin C}$ 相乘,

所以
$$\frac{a}{\sin A} \cdot \frac{c}{\sin C} = \frac{b^2}{\sin^2 B}$$
, 从而 $b^2 = \frac{ac\sin^2 B}{\sin A \sin C} = \frac{\frac{3\sqrt{2}}{4} \times (\frac{1}{3})^2}{\frac{\sqrt{2}}{3}} = \frac{1}{4}$, 故 $b = \frac{1}{2}$.

5. (2022 •绵阳期末 •★★★★)在 $\triangle ABC$ 中,角 $A \setminus B \setminus C$ 的对边分别为 $a \setminus b \setminus c$,已知 $\sin(C - B) = 2\sin B\cos C$,

且 $2\sin A + b\sin B = c\sin C$,则 a = ()

- (A) 2 (B) 4 (C) 6

- (D) 8

答案: B

解析: 因为 $\sin(C-B) = 2\sin B\cos C$,所以 $\sin C\cos B - \cos C\sin B = 2\sin B\cos C$,

故 $\sin C \cos B = 3 \sin B \cos C$ ①,

 $2\sin A + b\sin B = c\sin C$ 的边不齐次,不能边化角,故只能角化边,于是把式①也角化边,联合分析,

因为 $2\sin A + b\sin B = c\sin C$,所以 $2a + b^2 = c^2$,故 $c^2 - b^2 = 2a$ ②,

由式①可得:
$$c \cdot \frac{a^2 + c^2 - b^2}{2ac} = 3b \cdot \frac{a^2 + b^2 - c^2}{2ab}$$
, 整理得: $a^2 = 2(c^2 - b^2)$ ③,

将式②代入式③消去 c^2-b^2 可得: $a^2=4a$, 所以a=4或0(舍去).

- 6. $(2022 \cdot 长沙期末 \cdot ★★★★)(多选)在锐角 △ABC中,内角 A、B、C 的对边分别为 a、b、c,则下列$ 结论正确的是()
 - (A) 若 A > B ,则 $\sin A > \sin B$
- (B) 若 $A = \frac{\pi}{2}$,则 B 的取值范围是 $(0, \frac{\pi}{2})$

- (C) $\sin A + \sin B > \cos A + \cos B$
- (D) $\tan B \tan C > 1$

答案: ACD

解析: A项, $A > B \Rightarrow a > b \Rightarrow \sin A > \sin B$, 故A项正确;

B 项, 若
$$A = \frac{\pi}{3}$$
, 则 $C = \pi - A - B = \frac{2\pi}{3} - B$,

因为
$$\Delta ABC$$
 是锐角三角形,所以 $\begin{cases} 0 < B < \frac{\pi}{2} \\ 0 < C = \frac{2\pi}{3} - B < \frac{\pi}{2} \end{cases}$,解得: $\frac{\pi}{6} < B < \frac{\pi}{2}$,故 B 项错误;

C 项, 锐角三角形满足 $A+B>\frac{\pi}{2}$, 可尝试由此比较 $\sin A$ 和 $\cos B$,以及 $\sin B$ 和 $\cos A$ 的大小,

$$\triangle ABC$$
 为锐角三角形 \Rightarrow $A+B=\pi-C>\frac{\pi}{2}$,所以 $A>\frac{\pi}{2}-B$ 且 A 和 $\frac{\pi}{2}-B$ 均为锐角,

故 $\sin A > \sin(\frac{\pi}{2} - B) = \cos B$, 同理可得 $\sin B > \cos A$, 所以 $\sin A + \sin B > \cos A + \cos B$, 故 C 项正确;

D项, $\tan B \tan C > 1 \Leftrightarrow 1 - \tan B \tan C < 0$,在 $\tan(B+C)$ 的展开式中会出现 $1 - \tan B \tan C$,故先将其展开,

$$\tan(B+C) = \frac{\tan B + \tan C}{1 - \tan B \tan C}, \quad \text{因为} \Delta ABC$$
是锐角三角形,所以 $A,B,C \in (0,\frac{\pi}{2})$,故 $B+C = \pi - A \in (\frac{\pi}{2},\pi)$,

从而 tan(B+C)<0,又 tan B>0, tan C>0, 所以 tan B+tan C>0,

故 $1-\tan B \tan C < 0$,所以 $\tan B \tan C > 1$,故 D 项正确.

【反思】C 选项分析过程虽短但并不好想,但涉及一个有趣的结论,值得熟悉.

- 7. (2022 江西开学 ★★★) 在 $\triangle ABC$ 中,角 A 、B 、C 的对边分别为 a 、b 、c ,且 $\sin A + \sin C = \sqrt{3 \sin A \sin C + \sin^2 B}$.
 - (1) 证明: A+C=2B;
- (2) 记 $\triangle ABC$ 的面积为 S,若 $S = \sqrt{3}b = 4\sqrt{3}$,求 a+c 的值.

解: (1) (所给等式带根号, 先将其平方去根号) 因为 $\sin A + \sin C = \sqrt{3}\sin A\sin C + \sin^2 B$,

所以 $(\sin A + \sin C)^2 = 3\sin A\sin C + \sin^2 B$, 整理得: $\sin^2 A + \sin^2 C - \sin^2 B = \sin A\sin C$,

故
$$a^2 + c^2 - b^2 = ac$$
 ,所以 $\cos B = \frac{a^2 + c^2 - b^2}{2ac} = \frac{ac}{2ac} = \frac{1}{2}$,结合 $0 < B < \pi$ 可得 $B = \frac{\pi}{3}$,

所以
$$A+C=\pi-B=\frac{2\pi}{3}=2B$$
.

(2) (第1问求出了 B, 于是用 B 来算面积) 由 (1) 可得 $S = \frac{1}{2}ac\sin B = \frac{\sqrt{3}}{4}ac$,

由题意,
$$S = 4\sqrt{3}$$
,所以 $\frac{\sqrt{3}}{4}ac = 4\sqrt{3}$,故 $ac = 16$,

(从题干可求得边b,又已知角B,可用余弦定理沟通a+c和ac,求出a+c)

因为
$$\sqrt{3}b = 4\sqrt{3}$$
,所以 $b = 4$,由余弦定理, $b^2 = a^2 + c^2 - 2ac\cos B$,所以 $16 = a^2 + c^2 - ac = (a+c)^2 - 3ac$,

将 ac = 16 代入上式可得: $16 = (a+c)^2 - 48$, 故 a+c=8.

- 8. (2022・河南模拟・★★★) 在 $\triangle ABC$ 中,角 A、B、C 的对边分别为 a、b、c,已知 $A = \frac{\pi}{3}$.
- (1) 若 $a = \sqrt{13}$, $\sin A = \sqrt{13}(\sin B \sin C)$, 求 ΔABC 的面积;
- (2) 若 $a = \sqrt{21}$, 且 $\sin(\pi A) + \sin(B C) = 5\sin 2C$, 求 b, c.

解: (1) 因为 $\sin A = \sqrt{13}(\sin B - \sin C)$,所以 $a = \sqrt{13}(b-c)$,又 $a = \sqrt{13}$,所以 b-c=1,

(求得了b-c,可对角A用余弦定理,配方沟通b-c和bc,求得bc,再求面积)

由余弦定理, $a^2 = b^2 + c^2 - 2bc \cos A$,将 $a = \sqrt{13}$ 和 $A = \frac{\pi}{3}$ 代入可得: $13 = b^2 + c^2 - bc = (b - c)^2 + bc$,

将 b-c=1代入可得: $13=1^2+bc$,从而 bc=12,故 $S_{\Delta ABC}=\frac{1}{2}bc\sin A=\frac{1}{2}\times 12\times \sin\frac{\pi}{3}=3\sqrt{3}$.

(2) 因为 $\sin(\pi - A) + \sin(B - C) = 5\sin 2C$,所以 $\sin A + \sin(B - C) = 5\sin 2C$ ①,

(要进一步化简,可先减少变量个数,显然将 $\sin A$ 换成 $\sin(B+C)$ 最方便实现消元,然后将左侧全展开)

因为 $\sin A = \sin[\pi - (B+C)] = \sin(B+C)$,代入式①可得: $\sin(B+C) + \sin(B-C) = 5\sin 2C$,

所以 $\sin B \cos C + \cos B \sin C + \sin B \cos C - \cos B \sin C = 10 \sin C \cos C$, 整理得: $(\sin B - 5 \sin C) \cos C = 0$,

故 $\sin B - 5\sin C = 0$ 或 $\cos C = 0$,

当 $\sin B - 5\sin C = 0$ 时, $\sin B = 5\sin C$, 所以 b = 5c ,

(接下来只需由余弦定理再建立一个关于边的方程,就能求出b,c)

由余弦定理, $a^2 = b^2 + c^2 - 2bc \cos A$,将 $a = \sqrt{21}$ 和 $A = \frac{\pi}{3}$ 代入可得 $21 = b^2 + c^2 - bc$,

结合b=5c可解得: c=1, b=5;

当 $\cos C = 0$ 时,结合 $0 < C < \pi$ 可得 $C = \frac{\pi}{2}$,所以 $B = \pi - A - C = \frac{\pi}{6}$,如图,

由图可知, $c = \frac{a}{\cos B} = 2\sqrt{7}$, $b = c\sin B = \sqrt{7}$.

【反思】可以发现,余弦定理不仅能沟通b+c与bc,还可沟通b-c与bc.

- 9. (2022 •油头模拟 •★★★★) 在 $\triangle ABC$ 中,角 $A \setminus B \setminus C$ 的对边分别为 $a \setminus b \setminus c$,边长均为正整数,且 b = 4.
 - (1) 若 B 为钝角,求 ΔABC 的面积;
 - (2) 若A = 2B, 求a.

解: (1) (因为边长均为正整数,所以可将a和c满足的条件翻译出来,再逐个筛选排查)

因为 B 为钝角,且 b=4,所以 $\cos B = \frac{a^2 + c^2 - b^2}{2ac} = \frac{a^2 + c^2 - 16}{2ac} < 0$,故 $a^2 + c^2 < 16$,

又a+c>b=4,结合a和c均为正整数知a和c可能的取值为 $\begin{cases} a=3\\ c=2 \end{cases}$,

所以
$$\cos B = \frac{a^2 + c^2 - b^2}{2ac} = -\frac{1}{4}$$
, 从而 $\sin B = \sqrt{1 - \cos^2 B} = \frac{\sqrt{15}}{4}$, 故 $S_{\Delta ABC} = \frac{1}{2}ac\sin B = \frac{3\sqrt{15}}{4}$.

(2) (像 A = 2B 这类条件,一般两端取正弦,再角化边分析)

因为A=2B,所以 $\sin A=\sin 2B$,从而 $\sin A=2\sin B\cos B$,故 $a=2b\cdot \frac{a^2+c^2-b^2}{2ac}$,

将
$$b = 4$$
 代入可得: $a = \frac{4(a^2 + c^2 - 16)}{ac}$, 两端同乘以 ac 可得: $a^2c = 4a^2 + 4(c^2 - 16)$,

从而
$$a^2(c-4)-4(c+4)(c-4)=0$$
, 故 $(c-4)[a^2-4(c+4)]=0$, 所以 $c-4=0$ 或 $a^2-4(c+4)=0$,

若
$$c-4=0$$
,则 $c=4$,所以 $c=b$,故 $C=B$,又 $A=2B$,所以 $A+B+C=4B=\pi$,

从而 $B = \frac{\pi}{4}$, $C = \frac{\pi}{4}$, $A = \frac{\pi}{2}$, 故 ΔABC 是等腰直角三角形,所以 $a = 4\sqrt{2} \notin \mathbb{N}^*$,与题意不符,

所以
$$a^2-4(c+4)=0$$
,故 $c=\frac{a^2}{4}-4$,

(要求 a,可先由两边之和大于第三边求 a 的范围,再结合 $c \in \mathbb{N}^*$ 来取值)

因为
$$\begin{cases} a+b>c \\ a+c>b \end{cases}$$
 所以 $\begin{cases} a+4>\frac{a^2}{4}-4 \\ a+\frac{a^2}{4}-4>4 \end{cases}$ 解得: $4 < a < 8$,结合 $a \in \mathbb{N}^*$ 知 $a = 5$,6 或 7, $4 + \frac{a^2}{4}-4>a$

又当a=5或7时, $c=\frac{a^2}{4}-4$ \notin **N***,所以a=6.