MBA 753 : Causal Inference Methods for Business Analytics

Dr. Nivedita Bhaktha

12.09.2024

Agenda

• Instrumental Variable

Instrumental Variables

Instrumental Variables

- Three important threats to internal validity are:
 - **omitted variable bias** from a variable that is correlated with X but is unobserved, so cannot be included in the regression;
 - simultaneous causality bias (X causes Y, Y causes X);
 - errors-in-variables bias (X is measured with error)
- Instrumental variables: provides a solution by introducing a third variable that is correlated with the endogenous variable (X) but not correlated with the error term (ϵ_i)

Instrumental variables scenarios

- Example: X is schooling; Y is wage;
 - "ability" drives both Y and X
- Example: X is number of children; Y is labor force participation;
 - "inclination to remain outside the formal labor force" drives Y down and X up
- Example: X is medical treatment; Y is health;
 - "prior illness" drives Y down and X up
- Problem: biased measure of the causal effect of X on Y
 - Inconsistency of least-squares methods

IV Regression

2

One regressor and one instrument

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

- IV regression breaks X into two parts:
 - a part that might be correlated with ϵ_i , and
 - a part that is not.
 - By isolating the part that is not correlated with ϵ_i , it is possible to estimate β_1
- Done using instrumental variable Z_i which is uncorrelated with ϵ_i
 - Z_i detects portion of X_i that is uncorrelated with ϵ_i

$$cov(x_{2i}, \varepsilon_i) = 0 \qquad cov(x_{2i}, \varepsilon_i) \neq 0$$
Terminology
$$y_i = \beta_0 + \beta_2 \times \frac{1}{2} + \beta_2 \times \frac{1}{2} + \varepsilon_i$$

- Endogenous variable: correlated with ϵ_i \times 1
 - Determined within the system jointly determined with Y
 - Simultaneous causality
- Exogenous variable: uncorrelated with ϵ_i
- Instrument relevance: $cor(Z_i, X_i) \neq 0$
- Instrument exogeneity: $cor(Z_i, \epsilon_i) = 0$
 - Instrument relevance and exogeneity are two necessary conditions for a valid instrument

IV Regression - Estimation

- Two Stage Least Squares (TSLS)
- First Stage: regress X on Z using OLS

$$X_{i} = \alpha_{0} + \alpha_{1}Z_{i} + \delta_{i}$$

$$X_i = \alpha_0 + \alpha_1 Z_i + \delta_i \qquad \text{order framework}$$
• Estimate $\alpha_0 \& \alpha_1$ using OLS
• $\alpha_0 + \alpha_1 Z_i$ is uncorrelated with α_i because ...
• Compute the predicted values of X_i

$$\hat{X}_i = \hat{\alpha}_0 + \hat{\alpha}_1 Z_i$$

MBA 753: CIMBA - Nivedita Bhaktha

IV Regression - Estimation

- Two Stage Least Squares (TSLS)
- Second Stage: regress Y_i on \hat{X}_i using OLS, i.e. replace X_i with \hat{X}_i

$$Y_i = \beta_0 + \beta_1 \hat{X}_i + \epsilon_i \qquad \qquad \forall i = \beta_0 + \beta_2 (\mathcal{A}_i)$$

- Estimate β_0 & β_1 using OLS as assumptions hold
- $cor(\hat{X}_i, \epsilon_i) = 0$ because ... $cor(\hat{X}_i, \epsilon_i) = 0$
- Requires large sample
- The resulting β_1 estimator is called the "Two Stage Least Squares" (TSLS) estimator $\widehat{\beta_1}^{TSLS}$

IV Regression Estimation Summary

• Suppose Z_i is a valid Instrument

• Stage 1: Regress X_i on Z_i , obtain predicted values of \hat{X}_i

• Stage 2: Regress Y_i on \hat{X}_i , the coefficient of \hat{X}_i is the TSLS estimator $\hat{\beta}_1^{TSLS}$

• \hat{eta}_1^{TSLS} is a consistent estimator of eta_1

TSLS Algebra

IVR - General

- IVR can be extended to
 - multiple endogenous regressors $(X_1,...,X_k)$
 - multiple included exogenous variables $(W_1,...,W_r)$
 - multiple instrumental variables $(Z_1,...,Z_m)$
- Relevant instruments can produce a smaller variance of TSLS

IVR Estimation

- If the IV regression assumptions hold, then the TSLS estimator is normally distributed, and inference (testing, confidence intervals) proceeds as usual
- Notes about standard errors:
 - The second stage SEs are incorrect because they don't take into account estimation in the first stage; to get correct SEs, run TSLS in a single command
 - Use heteroskedasticity-robust SEs, for the usual reason

Example

- Causal effect of education on wages
- Ability could have been an instrumental variable
 - Use nearc4 instead
- First Stage: Educ = $\alpha_0 + \alpha_1$ nearc4 + α_{2-6} Covariates
- Second Stage: Iwage = β_0 + β_1 Educ + β_{2-6} Covariates

Variable	Description
lwage	Annual wage (log form)
educ	Years of education
nearc4	Living close to college (=1) or far from college (=0)
smsa	Living in metropolitan area (=1) or not (=0)
exper	Years of experience
expersq	Years of experience (squared term)
black	Black (=1), not black (=0)
south	Living in the south (=1) or not (=0)

Checking Instrument Validity

- Instrument relevance:
 - Weak instruments if $\alpha_1, \dots, \alpha_m$ are either zero or nearly zero
 - If cov(X,Z)=0, then $s_{\chi Z}$ will be small and $\hat{\beta}_1^{TSLS}$ will be very large
 - Sampling distribution of \hat{eta}_1^{TSLS} will not hold
- Instrument exogeneity:
 - If the instruments are N correlated with the error term, so \hat{X}_i will be correlated with ϵ_i and TSLS will not be a consistent estimator of β_1
- Functional form misspecification

Recap

Summary

- |V
 - Setup: IV Z is correlated with X but uncorrelated with error term
 - Two stage least squares estimation is used

- Objectives achieved:
 - Can understand the set up of instrumental variables
 - Can estimate coefficients and SE using 2SLS
 - Can interpret the results of IV regression

References

- Scott Cunningham, Causal Inference: The Mix Tape, Yale University Press.
- Cook, T. D., & Campbell, D. T. (2007). Experimental and quasiexperimental designs for generalized causal inference.
- Angrist, J. D., & Pischke, J. S. (2009). *Mostly harmless* econometrics: *An empiricist's companion*. Princeton university press.
- Pearl, J., Glymour, M., & Jewell, N. P. (2016). Causal inference in statistics: A primer. John Wiley & Sons.

Thank You ©

RESEARCHERS HATE IT WHEN YOU DO PLACEBO CONTROLLED TRIALS OF THEIR METHODOLOGY.