1. (worth 9 points) Let function f be defined by the polynomial below:

$$f(x) = 6x^5 - 4x^4 + 3x^3 + 2x^2 + 8x - 9$$

Draw lines that match each function reflection with its polynomial:

Reflections Polynomials -f(-x)• $-6x^5 - 4x^4 - 3x^3 + 2x^2 - 8x - 9$ f(-x)• $6x^5 + 4x^4 + 3x^3 - 2x^2 + 8x + 9$ -f(x)• $-6x^5 + 4x^4 - 3x^3 - 2x^2 - 8x + 9$

2. (worth 20 points) In each xy plane shown below, a function is graphed with blue. Draw the indicated reflections (as a second curve, indicated in legend) with black (or with whatever you have). The x axis is horizontal and the y axis is vertical (as typical), and the scale is equal on both axes.

For all questions on this page, the functions f, g, and h are defined by the table below.

x	$\frac{f(x)}{5}$	g(x)	h(x)	
1	5	9	3	
2	8	1	9	
3	9	2	4	
4	6	8	1	
5	2	7	8	
6	7	3	5	
7	3	4	2	
8	1	5	6	
9	4	6	7	

3. (worth 3 points) Evaluate f(1).

4. (worth 3 points) Evaluate $g^{-1}(2)$.

5. (worth 3 points) Assuming h is an **odd** function, evaluate h(-9).

6. (worth 3 points) Assuming f is an **even** function, evaluate f(-6).

7. (worth 15 points) A function, f, is **even** if f(x) = f(-x) for all x in the domain. A function, g, is **odd** if g(x) = -g(-x) for all x in the domain. Let polynomial p be defined with the following equation:

$$p(x) = x^3 + 1$$

a. Express p(-x) as a polynomial in standard form.

b. Express -p(-x) as a polynomial in standard form.

c. Is polynomial p even, odd, or neither?

d. Explain how you know the answer to part c.

8. (worth 10 points) I have drawn half of a function. Draw the other half to make it even or odd.

9. (worth 10 points) Let function f be defined with the equation below.

$$f(x) = \frac{x}{5} + 4$$

a. Evaluate f(25).

b. Evaluate $f^{-1}(16)$.

10. (worth 6 points) The function b is represented by the curve y = b(x) graphed below.

a. Evaluate b(3).

b. Evaluate $b^{-1}(7)$.

- 11. (worth 18 points) Function f is defined by the table below.
 - a. Complete the columns for -f(x) and f(-x) and -f(-x).

x	f(x)	-f(x)	f(-x)	-f(-x)
-2	9			
-1	-7			
0	0			
1	7			
2	-9			

b. Is function f even, odd, or neither?

c. How do you know the answer to part b?