Martin Richards

How to write a dissertation in LATEX

Computer Science Tripos – Part II

St John's College

October 13, 2015

Proforma

Name: Martin Richards
College: St John's College

Project Title: How to write a dissertation in LATEX

Examination: Computer Science Tripos – Part II, July 2001

Word Count: 1587¹ (well less than the 12000 limit)

Project Originator: Dr M. Richards Supervisor: Dr Markus Kuhn

Original Aims of the Project

To write a demonstration dissertation² using L²T_EX to save student's time when writing their own dissertations. The dissertation should illustrate how to use the more common L²T_EX constructs. It should include pictures and diagrams to show how these can be incorporated into the dissertation. It should contain the entire L²T_EX source of the dissertation and the makefile. It should explain how to construct an MSDOS disk of the dissertation in Postscript format that can be used by the book shop for printing, and, finally, it should have the prescribed layout and format of a diploma dissertation.

Work Completed

All that has been completed appears in this dissertation.

Special Difficulties

Learning how to incorporate encapulated postscript into a LATEX document on both Ubuntu Linux and OS X.

¹This word count was computed by detex diss.tex | tr -cd '0-9A-Za-z \n' | wc -w

²A normal footnote without the complication of being in a table.

Declaration

I, [Name] of [College], being a candidate for Part II of the Computer Science Tripos [or the Diploma in Computer Science], hereby declare that this dissertation and the work described in it are my own work, unaided except as may be specified below, and that the dissertation does not contain material that has already been used to any substantial extent for a comparable purpose.

Signed [signature]
Date [date]

Contents

1	Introduction					
	1.1	Overview of the files	9			
	1.2	Building the document	9			
		1.2.1 The makefile	9			
	1.3	Counting words	0			
2	Pre	paration 1	1			
3	Imp	lementation	3			
	3.1	Verbatim text	3			
	3.2	Tables	4			
	3.3	Simple diagrams	4			
	3.4	Adding more complicated graphics	4			
4	Evaluation 1					
	4.1	Printing and binding	7			
	4.2	Further information	7			
5	Con	clusion 1	9			
Bi	bliog	graphy 1	9			
\mathbf{A}	Late	ex source 2	3			
	A.1	diss.tex	3			
		proposal.tex				
В	Mal	xefile 3	3			
	B.1	makefile	3			
	B.2	refs.bib	3			
\mathbf{C}	Pro	ject Proposal 3-	5			

List of Figures

3.1	A picture composed of boxes and vectors	14
	•	
3.2	A diagram composed of circles, lines and boxes	15
3.3	Example figure using encapsulated postscript	15
3.4	Example figure where a picture can be pasted in	16
3.5	Example diagram drawn using xfig	16
C.1	The MirageOS stack with and without ORAM	37

Acknowledgements

This document owes much to an earlier version written by Simon Moore [2]. His help, encouragement and advice was greatly appreciated.

Chapter 1

Introduction

1.1 Overview of the files

This document consists of the following files:

- makefile The makefile for the dissertation and Project Proposal
- diss.tex The dissertation
- proposal.tex The project proposal
- figs A directory containing diagrams and pictures
- refs.bib The bibliography database

1.2 Building the document

This document was produced using \LaTeX 2 ε which is based upon \LaTeX [1]. To build the document you first need to generate diss.aux which, amongst other things, contains the references used. This if done by executing the command:

pdflatex diss

Then the bibliography can be generated from refs.bib using:

bibtex diss

Finally, to ensure all the page numbering is correct run pdflatex on diss.tex until the .aux files do not change. This usually takes 2 more runs.

1.2.1 The makefile

To simplify the calls to pdflatex and bibtex, a makefile has been provided, see Appendix B.1. It provides the following facilities:

make

Display help information.

make proposal.pdf

Format the proposal document as a PDF.

make view-proposal

Run make proposal.pdf and then display it with a Linux PDF viewer (preferably "okular", if that is not available fall back to "evince").

make diss.pdf

Format the dissertation document as a PDF.

make count

Display an estimate of the word count.

make all

Construct proposal.pdf and diss.pdf.

make pub

Make diss.pdf and place it in my public_html directory.

make clean

Delete all intermediate files except the source files and the resulting PDFs. All these deleted files can be reconstructed by typing make all.

1.3 Counting words

An approximate word count of the body of the dissertation may be obtained using:

```
wc diss.tex
```

Alternatively, try something like:

```
detex diss.tex | tr -cd '0-9A-Z a-z\n' | wc -w
```

Chapter 2

Preparation

This chapter is empty!

Chapter 3

Implementation

3.1 Verbatim text

Verbatim text can be included using \begin{verbatim} and \end{verbatim}. I normally use a slightly smaller font and often squeeze the lines a little closer together, as in:

```
GET "libhdr"
GLOBAL { count:200; all }
LET try(ld, row, rd) BE TEST row=all
                         THEN count := count + 1
                         ELSE { LET poss = all & ~(ld | row | rd)
                                 UNTIL poss=0 DO
                                 { LET p = poss \& -poss
                                   poss := poss - p
try(ld+p << 1, row+p, rd+p >> 1)
                               }
LET start() = VALOF
{ all := 1
  FOR i = 1 TO 12 DO
  { count := 0
    try(0, 0, 0)
    writef("Number of solutions to %i2-queens is %i5*n", i, count)
    all := 2*all + 1
  RESULTIS 0
```


Figure 3.1: A picture composed of boxes and vectors.

3.2 Tables

Here is a simple example of a table.

Left	Centred	Right
Justified		Justified
First	A	XXX
Second	AA	XX
Last	AAA	X

There is another example table in the proforma.

3.3 Simple diagrams

Simple diagrams can be written directly in LATEX. For example, see figure C.1 on page 37 and see figure 3.2 on page 15.

3.4 Adding more complicated graphics

The use of LaTeX format can be tedious and it is often better to use encapsulated postscript (EPS) or PDF to represent complicated graphics. Figure 3.3 and 3.5 on page 16 are

¹A footnote

Figure 3.2: A diagram composed of circles, lines and boxes.

examples. The second figure was drawn using xfig and exported in .eps format. This is my recommended way of drawing all diagrams.

Figure 3.3: Example figure using encapsulated postscript

Figure 3.4: Example figure where a picture can be pasted in

Figure 3.5: Example diagram drawn using xfig

Chapter 4

Evaluation

4.1 Printing and binding

Use a "duplex" laser printer that can print on both sides to print two copies of your dissertation. Then bind them, for example using the comb binder in the Computer Laboratory Library.

4.2 Further information

See the Unix Tools notes at

http://www.cl.cam.ac.uk/teaching/current-1/UnixTools/materials.html

Chapter 5

Conclusion

I hope that this rough guide to writing a dissertation is LATEX has been helpful and saved you time.

Bibliography

- [1] L. Lamport. LaTeX a document preparation system user's guide and reference manual. Addison-Wesley, 1986.
- [2] S.W. Moore. How to prepare a dissertation in latex, 1995.

22 BIBLIOGRAPHY

Appendix A

Latex source

A.1 diss.tex

```
% Template for a Computer Science Tripos Part II project dissertation
\documentclass[12pt,a4paper,twoside,openright]{report}
\usepackage[pdfborder={0 0 0}]{hyperref}
                                      % turns references into hyperlinks
\usepackage[margin=25mm]{geometry}  % adjusts page layout
\usepackage{graphicx} % allows inclusion of PDF, PNG and JPG images
\usepackage{verbatim}
\usepackage{docmute} % only needed to allow inclusion of proposal.tex
\raggedbottom
                                    \mbox{\ensuremath{\mbox{\%}}} try to avoid widows and orphans
\sloppy
\clubpenalty1000%
\widowpenalty1000%
\renewcommand{\baselinestretch}{1.1}
                                    % adjust line spacing to make
                                    % more readable
\begin{document}
\bibliographystyle{plain}
% Title
\pagestyle{empty}
\rightline{\LARGE \textbf{Martin Richards}}
\vspace*{60mm}
\begin{center}
\Huge
\textbf{How to write a dissertation in \LaTeX} \\[5mm]
Computer Science Tripos -- Part II \\[5mm]
St John's College \\[5mm]
\today % today's date
\end{center}
\ensuremath{\text{\%}} Proforma, table of contents and list of figures
\pagestyle{plain}
\chapter*{Proforma}
```

```
{\large
\begin{tabular}{11}
          & \bf Martin Richards
Name:
                                                                 //
College:
                   & \bf St John's College
                                                                 //
Project Title: & \bf How to write a dissertation in \LaTeX \\
Examination:
                  & \bf Computer Science Tripos -- Part II, July 2001 \\
Word Count:
                  & \bf 1587\footnotemark[1]
                      (well less than the 12000 limit) \\
Project Originator: & Dr M.~Richards
                                                         11
Supervisor:
                   & Dr Markus Kuhn
\end{tabular}
\footnotetext[1]{This word count was computed
by \text{diss.tex} \mid \text{tr} - \text{cd} '0-9A-Za-z } \text{tt\hatsakslash}n' \mid \text{wc} - \text{w}
}
\stepcounter{footnote}
\section*{Original Aims of the Project}
To write a demonstration dissertation footnote (A normal footnote without the
complication of being in a table.} using \LaTeX\ to save
student's time when writing their own dissertations. The dissertation
should illustrate how to use the more common \LaTeX\ constructs. It
should include pictures and diagrams to show how these can be
incorporated into the dissertation. It should contain the entire
\LaTeX\ source of the dissertation and the makefile. It should
explain how to construct an MSDOS disk of the dissertation in
Postscript format that can be used by the book shop for printing, and,
finally, it should have the prescribed layout and format of a diploma
dissertation.
\section*{Work Completed}
All that has been completed appears in this dissertation.
\section*{Special Difficulties}
Learning how to incorporate encapulated postscript into a \LaTeX\
document on both Ubuntu Linux and OS X.
\newpage
\section*{Declaration}
I, [Name] of [College], being a candidate for Part II of the Computer
Science Tripos [or the Diploma in Computer Science], hereby declare
that this dissertation and the work described in it are my own work,
unaided except as may be specified below, and that the dissertation
does not contain material that has already been used to any substantial
extent for a comparable purpose.
\bigskip
\leftline{Signed [signature]}
\medskip
\leftline{Date [date]}
\tableofcontents
\listoffigures
\newpage
\section*{Acknowledgements}
This document owes much to an earlier version written by Simon Moore
\cite{Moore95}. His help, encouragement and advice was greatly
```

appreciated. % now for the chapters \pagestyle{headings} \chapter{Introduction} \section{Overview of the files} This document consists of the following files: \begin{itemize} \item \texttt{makefile} --- The makefile for the dissertation and Project Proposal \item \texttt{diss.tex} --- The dissertation \item \texttt{proposal.tex} --- The project proposal $\verb|\texttt{figs}| -- A directory containing diagrams and pictures|\\$ \item \texttt{refs.bib} --- The bibliography database \end{itemize} \section{Building the document} This document was produced using \LaTeXe which is based upon \LaTeX\cite{Lamport86}. To build the document you first need to generate \texttt{diss.aux} which, amongst other things, contains the references used. This if done by executing the command: \texttt{pdflatex diss} \noindent Then the bibliography can be generated from \texttt{refs.bib} using: \texttt{bibtex diss} \noindent Finally, to ensure all the page numbering is correct run \texttt{pdflatex} on $\text{texttt}\{\text{diss.tex}\}\ \text{until the }\text{texttt}\{.\text{aux}\}\ \text{files do not change}.$ This usually takes 2 more runs. \subsection{The makefile} To simplify the calls to \texttt{pdflatex} and \texttt{bibtex}, a makefile has been provided, see Appendix~\ref{makefile}. It provides the following facilities: \begin{description} \item\texttt{make} \\ Display help information. \item\texttt{make proposal.pdf} \\ Format the proposal document as a PDF. \item\texttt{make view-proposal} \\ (preferably ''okular'', if that is not available fall back to ''evince''). \item\texttt{make diss.pdf} \\ Format the dissertation document as a PDF. \item\texttt{make count} \\ Display an estimate of the word count. \item\texttt{make all} \\ ${\tt Construct \setminus texttt\{proposal.pdf\} \ and \setminus texttt\{diss.pdf\}.}$

```
\item\texttt{make pub} \\ Make \texttt{diss.pdf}
and place it in my \texttt{public\_html} directory.
source files and the resulting PDFs. All these deleted files can
be reconstructed by typing \texttt{make all}.
\end{description}
\section{Counting words}
An approximate word count of the body of the dissertation may be
obtained using:
\texttt{wc diss.tex}
\noindent
Alternatively, try something like:
\ensuremath{\mbox{verb/detex diss.tex}}\ |\ \mbox{tr -cd '0-9A-Z a-z\n' | wc -w/}
\chapter{Preparation}
This chapter is empty!
\chapter{Implementation}
\section{Verbatim text}
Verbatim text can be included using \verb|\begin{verbatim}| and
\verb|\end{verbatim}|. I normally use a slightly smaller font and
often squeeze the lines a little closer together, as in:
{\renewcommand{\baselinestretch}{0.8}\small
\begin{verbatim}
GET "libhdr"
GLOBAL { count:200; all }
LET try(ld, row, rd) BE TEST row=all
                       THEN count := count + 1
                       ELSE { LET poss = all & ~(ld | row | rd)
                              UNTIL poss=0 DO
                              { LET p = poss & -poss
                                poss := poss - p
                                try(ld+p << 1, row+p, rd+p >> 1)
                            }
LET start() = VALOF
{ all := 1
  FOR i = 1 TO 12 DO
  \{ count := 0 \}
   try(0, 0, 0)
    writef("Number of solutions to %i2-queens is %i5*n", i, count)
    all := 2*all + 1
 }
 RESULTIS 0
}
\end{verbatim}
}
\section{Tables}
```

A.1. DISS.TEX

```
\begin{samepage}
Here is a simple example \footnote {A footnote} of a table.
\begin{center}
\verb|\begin{tabular}{l|c|r}|
Left
     & Centred & Right \\
Justified &
                 & Justified \\[3mm]
\hline\\[-2mm]
First & A
Second & AA
                  & XXX \\
                  & XX \\
        & AA
Second
                & X \\
Last
        & AAA
\end{tabular}
\end{center}
\noindent
There is another example table in the proforma.
\end{samepage}
\section{Simple diagrams}
Simple diagrams can be written directly in \LaTeX. For example, see
\label{latexpic1}  \  \, \mbox{ on page$^\rho$ and see} \\
figure~\ref{latexpic2} on page~\pageref{latexpic2}.
\begin{figure}
\setlength{\unitlength}{1mm}
\begin{center}
\begin{picture}(125,100)
\put(0,00){\framebox(50,10){EEE}}}
\polinimes (50,10) {XXX}}
\polinizer (75,60) {\framebox(50,10){YYY}}
\polinime{1}{put(75,40){\frac{50,10}{ZZZ}}}
\polinimes (25,80) {\vector(0,-1){10}}
\polinimes (25,60){\vector(0,-1){10}}
\put(25,50){\vector(0,1){10}}
\polinimes (25,40) {\vector(0,-1){10}}
\polinimes (25,20){\vector(0,-1){10}}
\put(100,80){\vector(0,-1){10}}
\put(100,70){\vector(0,1){10}}
\put(100,60){\vector(0,-1){10}}
\put(100,50){\vector(0,1){10}}
\put(50,65){\vector(1,0){25}}
\polinimes (75,65) {\vector(-1,0){25}}
\end{picture}
\end{center}
\caption{A picture composed of boxes and vectors.}
\label{latexpic1}
\end{figure}
\begin{figure}
\setlength{\unitlength}{1mm}
\begin{center}
\begin{picture}(100,70)
\put(47,65){\circle{10}}
\put(45,64){abc}
\put(37,45){\circle{10}}
\put(37,51){\line(1,1){7}}
```

```
\put(35,44){def}
\put(57,25){\circle{10}}
\poline{1,3}{\poline{-1,3}{9}}
\poline{157,31}{\line(-3,2){15}}
\put(55,24){ghi}
\put(32,0){\framebox(10,10){A}}
\polinimes (52,0){\framebox(10,10){B}}
\poline{1}{\text{0,1}{26}}
\put(37,12){\line(2,1){15}}
\put(57,12){\line(0,2){6}}
\end{picture}
\end{center}
\caption{A diagram composed of circles, lines and boxes.}
\label{latexpic2}
\end{figure}
\section{Adding more complicated graphics}
The use of \LaTeX\ format can be tedious and it is often better to use
encapsulated postscript (EPS) or PDF to represent complicated graphics.
Figure \  \ and \  \ on page \ pageref{xfig} are
examples. The second figure was drawn using \texttt{xfig} and exported in
{\tt.eps} format. This is my recommended way of drawing all diagrams.
\begin{figure}[tbh]
\centerline{\includegraphics{figs/cuarms.pdf}}
\caption{Example figure using encapsulated postscript}
\label{epsfig}
\end{figure}
\begin{figure}[tbh]
\vspace{4in}
\caption{Example figure where a picture can be pasted in}
\label{pastedfig}
\end{figure}
\begin{figure}[tbh]
\centerline{\includegraphics{figs/diagram.pdf}}
\caption{Example diagram drawn using \texttt{xfig}}
\label{xfig}
\end{figure}
\chapter{Evaluation}
\section{Printing and binding}
Use a ''duplex'' laser printer that can print on both sides to print
two copies of your dissertation. Then bind them, for example using the
comb binder in the Computer Laboratory Library.
\section{Further information}
See the Unix Tools notes at
\url{http://www.cl.cam.ac.uk/teaching/current-1/UnixTools/materials.html}
\chapter{Conclusion}
```

I hope that this rough guide to writing a dissertation is $\arrowvert LaTeX\$ has been helpful and saved you time.

```
% the bibliography
\addcontentsline{toc}{chapter}{Bibliography}
\bibliography{refs}
% the appendices
\appendix
\chapter{Latex source}
\section{diss.tex}
{\scriptsize\verbatiminput{diss.tex}}
\section{proposal.tex}
{\scriptsize\verbatiminput{proposal.tex}}
\chapter{Makefile}
\section{makefile}\label{makefile}
{\scriptsize\verbatiminput{makefile.txt}}
\section{refs.bib}
{\scriptsize\verbatiminput{refs.bib}}
\chapter{Project Proposal}
\input{proposal}
\end{document}
A.2
        proposal.tex
```

```
\% Note: this file can be compiled on its own, but is also included by
% diss.tex (using the docmute.sty package to ignore the preamble)
\documentclass[12pt,a4paper,twoside]{article}
\usepackage[pdfborder={0 0 0}]{hyperref}
\usepackage[margin=25mm]{geometry}
\usepackage{graphicx}
\begin{document}
\centerline{\Large Computer Science Project Proposal}
\vspace{0.4in}
\centerline{\Large Path ORAM on MirageOS}
\vspace{0.4in}
\centerline{\large R. Horlick, Homerton College}
\vspace{0.3in}
\centerline{\large Originator: Dr N. Sultana}
\vspace{0.3in}
\centerline{\large 14 October 2015}
\vfil
\n
{\bf Project Supervisors:} Dr N. Sultana \& Dr R. M. Mortier
\vspace{0.2in}
```

```
\noindent
{\bf Director of Studies:} Dr B. Roman
\vspace{0.2in}
\noindent
\noindent
{\bf Project Overseers:} Dr M. G. Kuhn \& Prof P. E. Sewell
% Main document
\section*{Introduction and Description of the Work}
\begin{itemize}
\item What is the problem (data access patterns)?
\item What is the solution (ORAM)?
\item Why Path ORAM?
\item Why apply it to MirageOS?
\item What kind of API (block, filesystem, object store, all of the aforementioned)?
\end{itemize}
As the cost of large-scale cloud storage decreases and the rate of data production grows, individuals and small businesses w
The solution to our problem is Oblivious Random Access Memory (ORAM), a cryptographic primitive that ensures that an adversa
A trivial ORAM algorithm operates by scanning over the whole ORAM and reading/updating only the relevant block, but this has
The Path ORAM protocol has three main components: a binary tree, a stash and a position map. The binary tree is the main sto
Now that we have established the algorithm we need to decide how to implement it
\section*{Starting Point}
\begin{itemize}
\item Describe current state of ORAM
\item Describe current state of MirageOS
\end{itemize}
\section*{Substance and Structure of the Project}
\subsection*{Substance}
\begin{figure}
\verb|\cline| {\bf 0.75mm}|
\begin{center}
\begin{picture}(155,60)
\put(0,30){\framebox(50,10){External Storage}}
\put(0,20){\framebox(50,10){BLOCK}}}
\put(25,10){\vector(0,1){10}}
\put(25,20){\vector(0,-1){10}}
\put(56,13.2){BLOCK Interface}
\mathsf{Multiput}(0,15)(4,0)\{14\}\{\mathsf{line}(1,0)\{2\}\}\
\mathsf{Multiput}(101,15)(4,0){14}{\mathsf{line}(1,0){2}}
\put(56,33.2){BLOCK Interface}
\mbox{\mbox{\mbox{$14$}{\line(1,0)$}}} \
\put(0,00){\framebox(50,10){MirageOS}}
\put(105,50){\framebox(50,10){External Storage}}
\put(105,40){\framebox(50,10){BLOCK}}
\put(130,40){\vector(0,-1){10}}
\put(105,20){\framebox(50,10){ORAM}}
\t(130,10){\vector(0,1){10}}
\put(130,20){\vector(0,-1){10}}
\put(105,00){\framebox(50,10){MirageOS}}
```

\section*{Resources Required}

```
\end{picture}
\end{center}
\caption{The MirageOS stack with and without ORAM}
\label{latexpic1}
\end{figure}
\subsection*{Structure}
The project breaks down into the following sub-projects:
\begin{enumerate}
\item Familiarising myself with OCaml, MirageOS and LWT
\item Implementing the basic Path ORAM functor and testing that it works in place of existing BLOCK device implementations
\item Implementing the three main optimisations to Path ORAM as extensions to the same functor, allowing for the use of diff
\item Creation of a suite of tests and experiments to evaluate the performance and latency of the implementation
\item Writing the dissertation
\end{enumerate}
\section*{Success Criterion for the Main Result}
\section*{Possible Extensions}
If I achieve my main result early I shall try the following
alternative experiment or method of evaluation \ldots
\section*{Timetable: Workplan and Milestones}
Planned starting date is 16/10/2011.
\begin{enumerate}
\item {\bf Michaelmas weeks 2--4} Learn to use X. Read book Y. Read papers Z.
\item {\bf Michaelmas weeks 5--6} Do preliminary test of Q.
<page-header> \item {\bf Michaelmas weeks 7--8} Start implementation of main task A.
\item {\bf Michaelmas vacation} Finish A and start main task B.
<page-header> \item {\bf Lent weeks 0--2} Write progress report. Generate corpus of
  test examples. Finish task B.
\item {\bf Lent weeks 3--5} Run main experiments and achieve working project.
\item {\bf Lent weeks 6--8} Second main deliverable here.
\item {\bf Easter vacation:} Extensions and writing dissertation main
  chapters.
\item {\bf Easter term 0--2:} Further evaluation and complete dissertation.
\item {\bf Easter term 3:} Proof reading and then an early submission
  so as to concentrate on examination revision.
\end{enumerate}
```

 $\verb|\end{document}|$

Appendix B

Makefile

B.1 makefile

B.2 refs.bib

```
@BOOK{Lamport86,
TITLE = "{LaTeX} --- a document preparation system --- user's guide
and reference manual",
AUTHOR = "Lamport, L.",
PUBLISHER = "Addison-Wesley",
YEAR = "1986"}
@REPORT{Moore95,
TITLE = "How to prepare a dissertation in LaTeX",
AUTHOR = "Moore, S.W.",
YEAR = "1995"}
```

Appendix C
 Project Proposal

Computer Science Project Proposal

Path ORAM on MirageOS

R. Horlick, Homerton College

Originator: Dr N. Sultana

14 October 2015

Project Supervisors: Dr N. Sultana & Dr R. M. Mortier

Director of Studies: Dr B. Roman

Project Overseers: Dr M. G. Kuhn & Prof P. E. Sewell

Introduction and Description of the Work

- What is the problem (data access patterns)?
- What is the solution (ORAM)?
- Why Path ORAM?
- Why apply it to MirageOS?
- What kind of API (block, filesystem, object store, all of the aforementioned)?

As the cost of large-scale cloud storage decreases and the rate of data production grows, individuals and small businesses will find themselves increasing reliant on the trust of cloud providers. We can, of course, use encryption and be safe in the knowledge that no adversary will be able to view the plaintext of our data, but this is not enough. It turns out that the pattern of access to the data can leak large amounts of information. In a study on an encrypted email repository, up to 80% of search queries could be inferred from the access pattern alone! So clearly this a leak worth plugging, but how can we do it?

The solution to our problem is Oblivious Random Access Memory (ORAM), a cryptographic primitive that ensures that an adversary has negligible probability of learning anything about the logical access pattern, even with full access to the physical one. We normally talk about an ORAM as a block device, with N blocks of B bits each, giving an ORAM of size $N \cdot B$. We are most interested in the asymptotic bandwidth cost of the ORAM protocol, because we are operating over the internet.

A trivial ORAM algorithm operates by scanning over the whole ORAM and reading/updating only the relevant block, but this has O(N) bandwidth cost, which is highly impractical for large-scale storage. Luckily, much better algorithms have been proposed. We choose to focus on Path ORAM, because it has only $O(\log N)$ bandwidth cost in the worst case, as well as being incredibly simply conceptually.

The Path ORAM protocol has three main components: a binary tree, a stash and a position map. The binary tree is the main storage space. Every node in the tree is a bucket, which can contain up to Z blocks. The tree has height L, where the tree of height 0 consists only of the root node, and the leaves are at level L. The stash is temporary client-side storage, consisting only of a set of blocks waiting to be put back into the tree. The position map associates, with each block ID, an integer between 0 and $2^L - 1$. The invariant that the Path ORAM algorithm maintains is that if the position of a block x is p, then x is either in some bucket along the path from the root node to the p^{th} leaf, or in the stash. On every access to the tree, a whole path is read into, the accessed block is assigned a new random position and then as many blocks as possible are written back into the same path. This means that in any two access to the same block, the paths that are read are statistically independent.

Now that we have established the algorithm we need to decide how to implement it

Figure C.1: The MirageOS stack with and without ORAM

Starting Point

- Describe current state of ORAM
- Describe current state of MirageOS

Substance and Structure of the Project

Substance

Structure

The project breaks down into the following sub-projects:

- 1. Familiarising myself with OCaml, MirageOS and LWT
- 2. Implementing the basic Path ORAM functor and testing that it works in place of existing BLOCK device implementations
- 3. Implementing the three main optimisations to Path ORAM as extensions to the same functor, allowing for the use of different combinations of optimisations
- 4. Creation of a suite of tests and experiments to evaluate the performance and latency of the implementation
- 5. Writing the dissertation

Success Criterion for the Main Result

Possible Extensions

If I achieve my main result early I shall try the following alternative experiment or method of evaluation . . .

Timetable: Workplan and Milestones

Planned starting date is 16/10/2011.

- 1. Michaelmas weeks 2–4 Learn to use X. Read book Y. Read papers Z.
- 2. Michaelmas weeks 5–6 Do preliminary test of Q.
- 3. Michaelmas weeks 7–8 Start implementation of main task A.
- 4. Michaelmas vacation Finish A and start main task B.
- 5. **Lent weeks 0–2** Write progress report. Generate corpus of test examples. Finish task B.
- 6. Lent weeks 3–5 Run main experiments and achieve working project.
- 7. Lent weeks 6–8 Second main deliverable here.
- 8. Easter vacation: Extensions and writing dissertation main chapters.
- 9. Easter term 0–2: Further evaluation and complete dissertation.
- 10. **Easter term 3:** Proof reading and then an early submission so as to concentrate on examination revision.

Resources Required