Álgebra lineal

Taller 9

Combinaciones lineales; independencia lineal.

Fecha de entrega: 03 de abril de 2025

0. Recuerda escribir el número del grupo y los nombres de todos los integrantes bien visible y legible en la primera hoja de la entrega e indicar claramente si un integrante no aportó a la elaboración de la solución. Si estos datos faltan, el taller no será calificado y tendrá la nota 0.

2 pts.

1. (a) Sean $\vec{v}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\vec{v}_2 = \begin{pmatrix} -2 \\ 5 \end{pmatrix} \in \mathbb{R}^2$. Escriba $v = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$ como combinación lineal de \vec{v}_1 y \vec{v}_2 .

2 pts.

(b) ¿Es $\vec{v} = \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix}$ combinación lineal de $\vec{v}_1 = \begin{pmatrix} 1 \\ 7 \\ 2 \end{pmatrix}$, $\vec{v}_2 = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix}$?

2 pts.

(c) ¿Es $\vec{q} = -X^2 + 4X - 12$ combinación lineal de $p_1 = 2X^2 - 3X + 5$, $p_2 = X^2 + 2X - 4$, $p_3 = 3X^2 - X + 2$?

2 pts.

(d) ¿Es $A = \begin{pmatrix} 13 & -5 \\ 50 & 8 \end{pmatrix}$ combinación lineal de

$$A_1 = \begin{pmatrix} 1 & 0 \\ 2 & 2 \end{pmatrix}, \ A_2 = \begin{pmatrix} 0 & 1 \\ -2 & 2 \end{pmatrix}, \ A_3 = \begin{pmatrix} 2 & 1 \\ 5 & 0 \end{pmatrix}, \ A_4 = \begin{pmatrix} 1 & -1 \\ 5 & 2 \end{pmatrix}$$

2 pts.

- 2. Sean $\vec{v}_1 = \begin{pmatrix} 1 \\ 7 \\ 3 \end{pmatrix}$, $\vec{v}_2 = \begin{pmatrix} -5 \\ 1 \\ 2 \end{pmatrix} \in \mathbb{R}^3$. Sea E el plano $E = \text{gen}\{\vec{v}_1, \vec{v}_2\}$.
 - (a) Escriba E en la forma E: ax + by + cz = d.
 - (b) Encuentre un vector $w \in \mathbb{R}^3$, distinto de \vec{v}_1 y \vec{v}_2 , tal que gen $\{\vec{v}_1, \vec{v}_2, w\} = E$.
 - (c) Encuentre un vector $\vec{v}_3 \in \mathbb{R}^3$ tal que gen $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\} = \mathbb{R}^3$.

2 pts.

- 3. Sea F el plano dado por F: 2x 5y + 3z = 0 y sea P el plano dado por P: 2x 5y + 3z = 3.
 - (a) Demuestre que F es subespacio de \mathbb{R}^3 y encuentre vectores \vec{u} y $\vec{w} \in \mathbb{R}^3$ tal que $F = \text{gen}\{\vec{u}, \vec{w}\}$.
 - (b) ¿Es P un subespacio de \mathbb{R}^3 ? ¿Es un subespacio afín? Si su respuesta es "sí", encuentre $\vec{v}_0 \in \mathbb{R}^3$ y un subespacio P_0 tal que $P = \vec{v}_0 + P_0$. Diga geométricamente qué es P_0 .

3 pts.

4. (a) ¿El siguiente conjunto genera las matrices simétricas 2×2 ?

$$A_1 = \begin{pmatrix} 2 & 0 \\ 0 & 7 \end{pmatrix}, \qquad A_2 = \begin{pmatrix} 13 & 0 \\ 0 & 5 \end{pmatrix}, \qquad A_3 = \begin{pmatrix} 0 & 3 \\ 3 & 0 \end{pmatrix}$$

Si no lo hace encuentre una matriz $T \in M_{\text{sym}}(2 \times 2) \setminus \text{span}\{A_1, A_2, A_3\}$.

2 pts.

(b) ¿El siguiente conjunto genera las matrices simétricas 2×2 ?

$$B_1 = \begin{pmatrix} 2 & 0 \\ 0 & 7 \end{pmatrix}, \qquad B_2 = \begin{pmatrix} 13 & 0 \\ 0 & 5 \end{pmatrix}, \qquad B_3 = \begin{pmatrix} 0 & 3 \\ -3 & 0 \end{pmatrix},$$

Si no lo hace encuentre una matriz $T \in M_{\text{sym}}(2 \times 2) \setminus \text{span}\{B_1, B_2, B_3\}$.

3 pts.

(c) El siguiente conjunto genera las matrices triangulares superiores 2×2 ?

$$C_1 = \begin{pmatrix} 1 & 3 \\ 0 & 4 \end{pmatrix}, \qquad C_2 = \begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}, \qquad C_3 = \begin{pmatrix} 4 & 3 \\ 0 & 5 \end{pmatrix}.$$

Si no lo hace encuentre una matriz $T \in M(2 \times 2)$ que es triangular superior pero que no pertenece a span $\{C_1, C_2, C_3\}$,

Ejercicios voluntarios¹

- 5. (a) ¿Es \mathbb{C}^n un espacio vectorial sobre \mathbb{R} ?
 - (b) Es \mathbb{C}^n un espacio vectorial sobre \mathbb{Q} ?
 - (c) ¿Es \mathbb{R}^n un espacio vectorial sobre \mathbb{C} ?
 - (d) Es \mathbb{R}^n un espacio vectorial sobre \mathbb{Q} ?
 - (e) Es \mathbb{Q}^n un espacio vectorial sobre \mathbb{R} ?
 - (f) Es \mathbb{Q}^n un espacio vectorial sobre \mathbb{C} ?
- 6. Sean $\vec{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $\vec{v}_2 = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}$, $\vec{a} = \begin{pmatrix} 4 \\ 2 \\ -6 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} \in \mathbb{R}^3$ y sea $U = \text{span}\{\vec{v}_1, \ \vec{v}_2\}$.
 - (a) Diga qué es U geométricamente.
 - (b) Encuentre tres vectores diferentes en U.
 - (c) Encuentre tres vectores diferentes en \mathbb{R}^3 que no pertenecen a U.
 - (d) ¿Los vectores $\vec{v}_1, \vec{v}_2, \vec{a}, \vec{b}$ pertenecen a U?
- 7. Sea $n \in \mathbb{N}$ y sea V el conjunto de las matrices simétricas $n \times n$ con la suma y producto con $\lambda \in \mathbb{R}$ usual.
 - (a) Demuestre que V es un espacio vectorial sobre \mathbb{R} .
 - (b) Encuentre matrices que generan V. ¿Cual es el número mínimo de matrices que se necesitan para generar V?
- 8. Sean V y W espacios vectoriales.
 - (a) Sea $U \subset V$ un subspacio y sean $u_1, \ldots, u_k \in U$. Demuestre que gen $\{u_1, \ldots u_k\} \subset U$.
 - (b) Sean $u_1, \ldots, u_k, w_1, \ldots, w_m \in V$. Demuestre que lo siguiente es equivalente:
 - (I) $gen\{u_1, \ldots, u_k\} = gen\{w_1, \ldots, w_m\}.$
 - (II) Para todo $j=1,\ldots,k$ tenemos $u_j\in\operatorname{gen}\{w_1,\ldots,w_m\}$ y para todo $\ell=1,\ldots,m$ tenemos $w_\ell\in\operatorname{gen}\{u_1,\ldots,u_k\}.$
 - (c) Sean $v_1, v_2, v_3, \ldots, v_m \in V$ y sea $c \in \mathbb{R}$. Demuestre que

$$gen\{v_1, v_2, v_3, \dots, v_m\} = gen\{v_1 + cv_2, v_2, v_3, \dots, v_m\}.$$

(d) Sean $v_1, \ldots, v_k \in V$ y sea $A: V \to W$ una función lineal invertible. Demuestre que dim gen $\{v_1, \ldots, v_k\}$ dim gen $\{Av_1, \ldots, Av_k\}$. ¿Es verdad si A no es invertible?

¹Los ejercicios voluntarios no aportan a la nota de niguna forma. Si los entregan de forma ordenada y bien legibles, intentaremos calificarlos para fines de retroalimentación.