- 1. For i = 1, 2, ..., n, suppose that the conditional distribution of Y_i given $X = x_i$ is normal with mean $E(Y_i|X = x_i) = \alpha + \beta x_i$ and with variance $V(Y_i|X = x_i) = \sigma^2$, where σ^2 has a known value. Assume that (x_i, Y_i) , i = 1, 2, ..., n, constitute a set of mutually independent pairs of data (i.e., given the fixed x_i , the Y_i constitutes a set of mutually independent random variables).
 - (a) With β fixed, show that the maximum likelihood estimator (MLE) of α is $\tilde{\alpha} = \bar{Y} \beta \bar{x}$, where $\bar{Y} = n^{-1} \sum_{i=1}^{n} Y_i$ and $\bar{x} = n^{-1} \sum_{i=1}^{n} x_i$, and that $\tilde{\alpha}$ is also a method of moment estimator.
 - (b) With α fixed at $\tilde{\alpha} = \bar{Y} \beta \bar{x}$, show that the maximum likelihood estimator (MLE) of β is

$$\hat{\beta} = \sum_{i=1}^{n} (x_i - \bar{x}) Y_i / \sum_{i=1}^{n} (x_i - \bar{x})^2.$$

- (c) Show that $\hat{\beta}$ is an unbiased estimator of β , and derive an explicit expression for $V(\hat{\beta})$.
- (d) Using the fact that $\hat{\alpha} = \bar{Y} \hat{\beta}\bar{x}$ and $\hat{\beta}$ simultaneously maximize the likelihood function, find the maximum likelihood estimator (MLE) of $\theta = \alpha + \beta x_0$, where x_0 is a known fixed constant.
- (e) Let $\hat{\theta} = \bar{Y} + \hat{\beta}(x_0 \bar{x})$. Show that $\hat{\theta}$ is an unbiased estimator of θ , and derive an explicit expression for $V(\hat{\theta})$.
- 2. Let X_1, \ldots, X_n be a random sample from the probability density function

$$f_X(x|\theta) = \theta x^{\theta-1}, \quad 0 < x < 1, \quad \theta > 0.$$

- (a) Show that the expectation of score function is 0, i.e., $E(\frac{\partial}{\partial \theta} \log f(X|\theta)) = 0$.
- (b) Derive the explicit expression for the Cramer-Rao lower bound (CRLB) for unbiased estimators of $\tau(\theta) = \theta^{-1}$.
- (c) Find the uniformly minimum variance unbiased estimator (UMVUE) for $\tau(\theta) = \theta^{-1}$, and justify whether its variance achieves the CRLB.

(d) Derive the likelihood ratio test (LRT) statistic $\lambda(x)$ for $H_0: \theta = \theta_0$ against $H_1: \theta \neq \theta_0$, and show that the rejection region $R = \{x: \lambda(x) \leq c\}$ is equivalent to $R = \{x: T \geq c_1^* \text{ or } T \leq c_2^*\}$, where $T = -\sum_{i=1}^n \log(X_i)$.

[Hint: $t^n e^{-ct}$ is a concave function of t if the constant c > 0.]

(e) Find c_1^* and c_2^* in (d) with test size α .