Induction – chapitre 4

# Conversion électromécanique

On a vu précédemment quelques exemples où un mouvement mécanique créé un champ électrique, mais également l'inverse. Un peu de vocabulaire :

- ♦ On parle de circuit **moteur** lorsqu'il convertit une puissance de **électrique à mécanique**;
- ♦ On parle de circuit **générateur** lorsqu'il convertit une puissance de **mécanique à électrique**.



FIGURE 4.1 – Schématisation des fonctionnements moteur et générateur.

## Conversion de puissance électrique en puissance mécanique

## Exemple des rails de LAPLACE moteurs



#### **Définition**

Les rails de LAPLACE **moteurs** sont deux conducteurs rectilignes parallèles reliés par une tige mobile conductrice rendant le circuit **déformable**, plongé dans un champ magnétique constant perpendiculaire au circuit et alimenté par une f.é.m. constante  $U_0$ .

Le générateur étant dans un circuit fermé, il impose un courant i > 0. On néglige l'auto-induction, et on appelle R la résistance totale du circuit. Nous avons déjà constaté expérimentalement la mise en mouvement de la barre à l'aide de la force de LAPLACE. Quelle vitesse atteint-elle?



FIGURE 4.2 – Rails de LAPLACE moteurs.

### I.A.1 Analyse qualitative



Figure 4.3 – Schéma de causalité des conséquences de l'induction.

Avant de se lancer dans les calculs, on peut déterminer le comportement du système avec la loi de Lenz. À l'origine de l'induction est la présence d'un champ extérieur  $\overrightarrow{B}_{\rm ext}$  et d'un courant dans le circuit. Combinés ensemble, ils appliquent une action de Laplace sur le barreau, le mettant en mouvement et **déformant** le circuit. Il y a donc **variation du flux**, et d'après la loi de Faraday une f.é.m. induite y apparaît. Le circuit étant toujours fermé, il y a également un courant induit.

L'induction modérant, par ses conséquences, les causes qui lui ont donné naissance, on en conclut que ce **courant induit s'oppose au courant initial**, ce qui générera une force de LAPLACE opposée tendant à freiner l'accélération du barreau. On veut étudier ce comportement et notamment connaître la vitesse finale : est-elle infinie ? nulle ? constante ?



#### Attention

🛕 Une étude de causalité doit comparer une conséquence et une cause de mêmes natures! 🛕



On étudie le mouvement de la barre de masse m dans le référentiel de la salle de classe. Avec un bilan des forces :

- $\diamond \mathbf{Poids} \ \overrightarrow{P} = m \overrightarrow{g} = -mg\overrightarrow{u_z};$
- $\diamond$  Réaction normale  $\vec{N} = N\vec{u_z}$ ;
- $\diamond$  Force de Laplace  $\overrightarrow{F_{\mathrm{Lap}}} = i\overrightarrow{\mathrm{MN}} \wedge \overrightarrow{B} = i\ell B\overrightarrow{u_x};$
- $\diamond$  Frottements  $\overrightarrow{F_f} = -F_f \overrightarrow{u_x}$  avec  $F_f > 0$ .

Ainsi,

$$m\frac{\mathrm{d}\overrightarrow{v}}{\mathrm{d}t} = \overrightarrow{P} + \overrightarrow{F_{\mathrm{Lap}}} + \overrightarrow{N} + \overrightarrow{F_f}$$

D'où, en projetant sur  $\overrightarrow{u_x}$ :



### Équation mécanique

$$m\frac{\mathrm{d}v}{\mathrm{d}t} = i\ell B - F_f \tag{4.1}$$

### I.A.3 Analyse électrique

La déformation du circuit entraîne une variation de sa surface. Ainsi, même avec un champ magnétique constant, le flux magnétique varie, impliquant l'apparition d'une f.é.m. induite.

Avec  $\overrightarrow{S} = S\overrightarrow{u_z}$  pris dans le sens de *i*, on trouve pour  $\phi$ :

$$\phi = B\overrightarrow{u_z} \cdot S\overrightarrow{u_z} = BS = B\ell x$$

D'où, avec la loi de FARADAY:

$$e = -\frac{\mathrm{d}\phi}{\mathrm{d}t} = -B\ell\dot{x}$$

Placée en convention générateur. Donc, avec la loi des mailles :

$$e + U_0 = Ri \implies U_0 = Ri + B\ell\dot{x}$$

Ainsi,



#### Équation électrique

$$U_0 = Ri + B\ell v \tag{4.2}$$

On cherche à éliminer i pour obtenir une équation différentielle sur v. On l'isole dans (4.2):

$$i = \frac{U_0}{R} - \frac{B\ell}{R}v$$

Et on substitue i dans l'équation mécanique (4.1) en l'absence de frottements :

$$m\frac{\mathrm{d}v}{\mathrm{d}t} = \left(\frac{U_0}{R} - \frac{B\ell}{R}\right)\ell B$$

$$\Leftrightarrow m\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{U_0\ell B}{R} - \frac{B^2\ell^2}{R}v$$

$$\Leftrightarrow \frac{\mathrm{d}v}{\mathrm{d}t} + \frac{B^2\ell^2}{Rm}v = \frac{U_0\ell B}{Rm}$$

On obtient donc une équation différentielle de la forme :

$$\boxed{\frac{\mathrm{d}v}{\mathrm{d}t} + \frac{v}{\tau} = \frac{v_{\mathrm{lim}}}{\tau}} \quad \text{avec} \quad \boxed{\tau = \frac{Rm}{B^2 \ell^2}} \quad \text{et} \quad \boxed{v_{\mathrm{lim}} = \frac{U_0}{B\ell}}$$

Qui se résout en

$$v(t) = v_{\text{lim}} \left(1 - e^{-t/\tau}\right) \Leftrightarrow i(t) = \frac{U_0}{R} e^{-t/\tau}$$

Ainsi, l'intensité finit par être nulle et la vitesse du rail finit par atteindre une valeur limite.

I.A.5 Résumé méthode



#### Méthode

- 1) Obtenir l'équation mécanique :
  - ♦ PFD si translation
  - ♦ TMC si rotation
- 2) Obtenir l'équation électrique :
  - a Définir un sens pour le courant, avoir  $\overrightarrow{S}$ , calculer  $\phi$ ;
  - b Utiliser la loi de FARADAY pour avoir la f.é.m. induite;
  - c L'ajouter dans le circuit en convention générateur;
  - d Appliquer la loi des mailles
- 3) Résoudre les équations couplées

I.A.6 Bilan énergétique

 $\diamond$  Bilan électrique : On multiplie la LdM par i :

$$U_0 i = Ri^2 + B\ell vi$$

On identifie:

 $\triangleright$  puissance du générateur :  $\mathcal{P}_g = U_0 i$ 

 $\triangleright$  puissance dissipée par effet Joule :  $\mathcal{P}_J = Ri^2$ 

 $\,\triangleright\,$ puissance reçue par la f.é.m. :  $\mathcal{P}_e = -ei = B\ell vi$ 

Ainsi,

$$\overline{\mathcal{P}_g = \mathcal{P}_J + \mathcal{P}_e}$$

 $\diamond$  Bilan mécanique : On multiplie le PFD par v :

$$mv\frac{\mathrm{d}v}{\mathrm{d}t} = i\ell Bv - F_f v$$

On identifie:

 $\,\triangleright\,$  dérivée de l'énergie cinétique :  $\frac{\mathrm{d}\mathcal{E}_c}{\mathrm{d}t}=mv\frac{\mathrm{d}v}{\mathrm{d}t}$ 

 $\triangleright$  puissance des forces de LAPLACE :  $\mathcal{P}_{\text{Lap}} = i\ell Bv$ 

 $\triangleright$  puissance perdue par frottements :  $\mathcal{P}_f = -(-F_f v) = F_f v$ 

Ainsi,

$$\frac{\mathrm{d}\mathcal{E}_c}{\mathrm{d}t} + \mathcal{P}_f = \mathcal{P}_{\mathrm{Lap}}$$

On remarque notamment que

$$\mathcal{P}_e = \mathcal{P}_{\mathrm{Lap}}$$

C'est-à-dire que le **couplage électromécanique est parfait** : la puissance électrique reçue par la force électromotrice induite est égale à la puissance mécanique (motrice) des forces de LAPLACE. Ainsi, en définissant le rendement par

$$\eta = \left| \frac{\text{puissance utile}}{\text{puissance fournie}} \right|$$

on voit que **contrairement à la thermodynamique**, le **rendement théorique** de conversion électromécanique est de 1! En effet, seules les **pertes limitent le transfert**.

I.A.7 Bilan global

En combinant les résultats de puissance, on a mathématiquement puis schématiquement :

$$\mathcal{P}_g = \mathcal{P}_J + \mathcal{P}_f + \frac{\mathrm{d}\mathcal{E}_c}{\mathrm{d}t}$$

