Statistical Learning-Classification STAT 441 / 841, CM 763

Assignment 4

Department of Statistics and Actuarial Science University of Waterloo

Due: Monday Dec 3, at 1 pm

Policy on Lateness: Late assignments are NOT accepted.

1. In a binary classification problem where $y \in \{0, 1\}$

- a) Assume $\mathbf{x} = (x_1, \dots, x_d)^T$, and $x_j \in \{0, 1\}$, for $j = 1 \dots d$. Define P(y = 1) = p, $P(x_i = 1|y = 1) = p_{i1}$, and $P(x_i = 1|y = 0) = p_{i0}$. Show that the Naive Bayes classifier is equivalent to a linear classification rule in the form of $\hat{y} = sign(\mathbf{w}.\mathbf{x} - b)$. Write **w** and b in terms of p, p_{i1} , and p_{i0} .
- b) Now suppose $x_j \in \mathbb{R}$. Assume $P(y=1)=p, x_j|y=1 \sim N(\mu_{j1}, \sigma_j^2)$, and $x_i|y=0 \sim N(\mu_{i0},\sigma_i^2)$. Show that the Naive Bayes classifier is equivalent to a linear classification rule in the form of $\hat{y} = sign(\mathbf{w}.\mathbf{x} - b)$. Write \mathbf{w} and b in term of p, μ_{i1}, μ_{i0} , and σ_i .
- 2. Suppose $X_{1:}, \ldots X_{10:}$ are standard independent Gaussian, and the target y is defined by

$$y = \begin{cases} 1 & if \sum_{j=1}^{10} X_{j:}^2 > 9.34 \\ -1 & otherwise \end{cases}$$

Sample 2000 training cases, with approximately 1000 points in each class, and 10,000 test observations.

- a) Write a program implementing AdaBoost with stumps.
- b) Plot the training error as well as test error, and discuss its behavior.
- c) Investigate the number of iterations needed to make the test error finally start to rise.

3. In the maximum-margin hyperplane problem, let's τ denotes the value of the margin. Show that

$$\frac{1}{\tau^2} = 2\sum_{i=1}^n \alpha_i - \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j k(\mathbf{x}_i, \mathbf{x}_j)$$

where $k(\mathbf{x}_i, \mathbf{x}_j)$ is a valid kernel.

Only for Grad Students

- 4. Kernel functions can be defined over objects as diverse as graphs, sets, and text documents. For instance consider the space of all possible subsets A of a given fixed set D. Show that the kernel function $k(A_1, A_2) = 2^{|A_1 \cap A_2|}$ corresponds to an inner product in a feature space of dimensionality $2^{|D|}$ defined by the mapping $\phi(A)$. Here A is a subset of D, $A_1 \cap A_2$ denotes the intersection of sets A_1 and A_2 , and |A| denotes the number of elements in A. Find mapping $\phi(A)$ such that $k(A_1, A_2) = \phi(A_1)^T \phi(A_2)$.
- 5. We learned the effect of L_2 norm in class. To show the effect of L_2 norm, we started by a quadratic approximation to the objective function.

$$\hat{J}(\theta) = J(w^*) + \frac{1}{2}(w - w^*)^T H(w - w^*)$$

We used singular value decomposition of $H = Q\Lambda Q^T$ and concluded that the effect of weight decay is to rescale the coefficients of eigenvectors.

$$\tilde{w} = Q(\Lambda + \alpha I)^{-1} \Lambda Q^T w^*$$

The *i*th component is rescaled by a factor of $\frac{\lambda_i}{\lambda_i + \alpha}$.

Do a similar analysis for *Early Stopping*, and show its effect.

Early Stopping can be used as a form of Regularization. In Early Stopping, Instead of running our optimization algorithm until we reach a (local) minimum of validation error, we run it until the error on the validation set has not improved for some amount of time.

Similar to L_2 norm analysis, start by taking a quadratic approximation to the objective function J in the neighborhood of the empirically optimal value of the weights w^* .

$$\hat{J}(\theta) = J(w^*) + \frac{1}{2}(w - w^*)^T H(w - w^*)$$

Consider updating the parameters via gradient descent.

$$w^{(\tau)} = w^{(\tau-1)} - \eta \nabla_w J(w^{(\tau-1)})$$

Show that after τ training updates,

$$w^{(\tau)} = Q[I - (I - \eta \Lambda)^{\tau}]Q^T w^*.$$

Assume $w^{(0)} = 0$, and $|1 - \eta \lambda_i| < 1$, where η is the learning rate.