

DLI Accelerated Data Science Teaching Kit

Lecture 17.1 - How to Represent and Store Graphs

The Accelerated Data Science Teaching Kit is licensed by NVIDIA, Georgia Institute of Technology, and Prairie View A&M University under the <u>Creative Commons Attribution-NonCommercial 4.0 International License.</u>

Many More

Twitter

Who-follows-whom (500 million users)

Amazon

Who-buys-what (120 million users)

Cellphone network

Who-calls-whom (100 million users)

Protein-protein interactions

200 million possible interactions in human genome

How to Represent a Graph?

Conceptually.
Visually.
Programmatically.

How to Represent a Graph?

Adjacency matrix

	Target node			
	1	2	3	4
1	0	1	3	0
2	0	0	0	2
3	0	1	0	0
4	0	0	0	0
		1 1 0 2 0	1 2 1 0 1 2 0 0	1 2 3 1 0 1 3 2 0 0 0

Adjacency list

1: 2, 3

2:4

3: 2

Edge list

- 1, 2, 1
- Most common distribution format
- 1, 3, 3 2, 4, 2
- 3, 2, 1
- Can be painful to parse when edges/nodes have many attributes/columns (e.g., text with quotes)

How to Represent a Graph?

Adjacency matrix

Target node

1 2 3 4

1 0 1 3 0

Source 2 0 0 0 2

node 3 0 1 0 0

4 0 0 0 0

Adjacency list

1: 2, 3

2: 4

3: 2

Edge list

1, 2, 1

1, 3, 3

2, 4, 2

3, 2, 1

Each node is often identified by a numeric ID. Why?

Assigning an ID to a Node

- Use a "map" (Java) / "dictionary" (Python) / SQLite
- Same concept: given an entity/node (e.g., "Tom") not seen before, assign a number to it

Assigning Node IDs using SQLite

Create an index for "name". Then write a join query.

	·
rowid	name
1	Tom
2	Sandy
3	Richard
4	Polo
<u> </u>	

Rowid is a hidden column automatically created by SQLite

source	target
1	2
4	3

How to Store (Large) Graph?

On your laptop computer

- SQLite
- Neo4j (GPL license)
 http://neo4j.com/licensing/

On a server

- MySQL, PostgreSQL, etc.
- Neo4j (?)

With a cluster of machines

- Titan (on top of HBase),
 S2Graph if you need real time read and write
- Hadoop (generic framework) if batch processing is fine
- Hama, Giraph, inspired by Google's Pregel
- FlockDB, by Twitter

Storing Large Graphs

My research group like to use SQLite. Why? Great for our use cases.

- Easily handle up to gigabytes ~ tens of millions of nodes/edges!
- Very easy to maintain: one cross-platform file (even works on iPad)
- APIs in many languages
- Queries are easy! e.g., find all nodes' degrees = 1 SQL statement
- Bonus: SQLite supports full-text search

SQLite Graph Database Schema

Simplest schema:

```
edges(source id, target id)
```

More sophisticated (flexible; lets you store more things):

```
CREATE TABLE nodes (
   id INTEGER PRIMARY KEY,
   type INTEGER DEFAULT 0,
   name VARCHAR DEFAULT '');

CREATE TABLE edges (
   source_id INTEGER,
   target_id INTEGER,
   type INTEGER DEFAULT 0,
   weight FLOAT DEFAULT 1,
   timestamp INTEGER DEFAULT 0,
   PRIMARY KEY(source_id, target_id, timestamp));
```


DLI Accelerated Data Science Teaching Kit

Thank You