#DeepTech
#Industry4.0
#NDT
#QA/QC

Transforming industrial quality control

Revealing the invisible: in-line control of 100% of the production

Smart Revolution

Industry 4.0 needs new sensors to help industries to improve decision making in real time, to optimise their production processes and to provide predictive maintenance.

Global Trends

Lightweight Revolution

Regulatory and social pressures push toward CO2 reduction and resource efficiency, accelerating the need for new materials and processes.

Confidential

01 Problem

02 Solution

03 Market

04 Business model

05 Company

06 Financials

PROBLEM

The cost of producing defective parts represents 5% of revenue*.

Hidden costs can be up to 4 times the visible costs.

And the later the detection, the higher the costs!

*Source: AFNOR 2017

PROBLEM

Common technologies present major limitations for in-line control.

NON-PENETRATING

Machine vision or visual inspection do not reveal internal defects

CONTACT

Typical Ultrasound solutions need to be in contact with the object: accessibility issues, risk of scratches, water/gel continuity medium

HARMFUL

X-Rays require stringent measures and procedures to protect personnel

SLOW

Tomography scans parts in tens of minutes or even hours

02 Solution

Teratonics STRIPP Control Ultrafast Non-Destructive Testing Solution

Teratonics uses ultrashort Terahertz pulses to reveal the invisible inside plastics, composites, assemblies, and coatings

Dimensional control

Defect detection

Contactless

Harmless

Fast

Fully automated

→ In-line deployment

TERAHERTZ RADIATION

A new frequency for Non-Destructive Testing (NDT)

Industrial THz sources and detectors were hardly available until the 90s as lying in the gap between photonics and electronics. Motivated by its unique properties, industry now exploits the last unused part of the electromagnetic spectrum.

HIGH PENETRATION OF DIELECTRIC MATERIALS

Testing of volumes

HIGH REFLECTION ON METALS

Inspection of hidden, coated surfaces

HIGH SENSIBILITY TO INTERMOLECULAR INTERACTIONS

Polymorphism and polymerisation

SENSIBILITY TO POLAR LIQUIDS

NOT IONISING

Confidential

In-line control of 100% of the production

CONTINUOUS WAVE THZ TECHNOLOGY

2D image

- ✓ Safe (no X-Rays)
- ✓ Contactless (no ultrasounds)
- Penetrating in electrically insulating materials

Limitations:

- × Low probability for defect detection
- × Overlap of structures
- × Overlap with diffraction pattern

PULSED THZ TECHNOLOGY

3D image

- ✓ Identification of substructures
- Dimensional analysis with micrometric depth resolution

Limitations:

- In-line control just on points, no imaging, no defect detection, no XY dimensional control
- × Slow: imaging only off-line

TERATONICS SINGLE-SHOT PULSED TECHNOLOGY

10Mio time faster than the state-of-the-art

- Imaging in the cycle time of several industries like automotive: 500cm² in <30s (typ.)
- ✓ Highly automated analysis
- ✓ Robotised scan of complex 3D shapes based on their CAD file
- ✓ Immune to heat, light, WiFi, vibrations

PRODUCT ARCHITECTURE

STRIPP Control

THz source

THz detector

Controller

Proprietary software for:

- 3D scan motion based on the part CAD drawing
- image generation
- dimensional control
- defect detection by differential imaging

VALUE PROPOSITION

Lower cost of quality

Product and process control

Cover cost of poor quality Quality differenciation.

100% control of production:

- no bad parts delivered/integrated
- protection of brand image
- asked by OEM

PROCESS CONTROL FOR LOWER COST OF GOOD QUALITY Optimised process.

Reduced faults, waste, raw material consumption, energy thanks to real time production feedback

Our current **Applications**

Based on industrial demand

Confidential Glued assembly

Ceramics

Composites

Plastic welding

Use cases

01

100% control of produced parts.

In-line control by STRIPP enables a switch from a Statistical Control Process to a 100% in-line control for a reduction in poor-quality costs.

02

Light weighting enabler.

STRIPP enables the adoption of lighter materials and processes for a reduction in CO₂ emissions.

100% Control

AUTO TIER 1 LIGHTING BUSINESS UNIT

From PPM to PPB of defective parts

Objective: lower indirect costs of poor quality (image, customer dissatisfaction...): on average 3x direct costs

- 2018 revenues: ~6.000M€ incl. ~3.000M€ for car lights
- 200 production lines i.e. ~15M€/year/line
- Cost of poor quality (COPQ): ~5% of revenues i.e. 750k€/year/line
- Indirect cost of poor quality (ICOPQ): ³/₄ x COPQ = 562,5k€/year/line
- → The payback is 6,4 months

COMPARISON WITH XR-CT* OFF-LINE

1 STRIPP Control against 6 XR-CT

If 100.000 parts are to be tested/year
(1 production line with only 1 shift, cycle time of 1 minute)

- STRIPP Control controls each part in the cycle time
- \rightarrow Only 1 unit needed
 - XR-CT scans a part in 30 min i.e. 17.520 parts/year
- → XR-CT requires 6 units instead of 1 STRIPP Control and is much more expensive for medium-sized parts and almost impossible for big-sized parts.

Product application: welding here auto light, international Tier 1 (FR branch)

Our know-how

More than 7 PoCs on welded polymers

• m

To check the welding line (50-150cm) for:

- mechanical integrity
- tightness
- aspect of the welding line

Operational parameters

Aim

- Material: PMMA (lens), PC (mask, light guide), PC+ABS (housing)
- Part weight < 2kg
- Part dimensions < 50 x 20 x 20 cm³
- Cycle time: 1-2 min
- Robot speed: typ 3cm/sec (vector scan; 20cm/sec possible)
- Scanning speed: 180cm²/min

Benefits for the Producer

- for lowest defect level, on the ppb scale required by the OEMs
- 100% control of the production
- for a singular offer / stay the technology leader

Light weight

Saving of more than 3M tons of CO₂ per year

Plastics account for 8% of car weight i.e. ~150kg

If 2/3 of this plastic is foamed, the weight reduction is 10kg/car

- 90 M cars are produced each year
- → ~1M tons of plastic saved by the auto industry per year
 - The production of 1kg of plastic creates ~1,5kg of CO₂
- \rightarrow ~1,35M tons of CO₂ saved during the manufacturing process
 - 10kg less saves 0,039L of fuel/100km/car
- → 702M L of fuel saved per year (assuming 20.000km/car/year)
 - 1L of gasoline creates 2,4kg of CO₂
- \rightarrow ~1,7M tons of CO₂ saved per year

INDUSTRY VIEW

Reducing fuel consumption and CO₂ fines

Auto industry example:

- Reduced CO₂ fine thanks to lighter vehicle (corresponding to 5.6€/kg) for example by enabling more foamed plastic parts instead of compact plastics (~10% weight saving)
- 1kg saved on every Peugeot 5008 (~100.000 units produced/year):
- → Fine reduced by 560.000€ and STRIPP (300.000€) payback: 6,4 months

Aero industry example:

- Ready to pay 2000-4000€/kg for fuel savings
- 10 kg saved on 10 A320 planes, for example with a tighter control of the paint thickness (7% weight reduction)
- Assumption: time to control one airplane: 6 days (same as painting)
- → STRIPP payback: 3 months

Product application: foamed plastic here central console, auto OEM (EU branch)

Our know-how

More than 7 PoCs on foamed polymer; Technology and singularity validated by a german consortium

- To visualize the spatial foam density distribution
- To detect, visualize and measure defects:

Swelling

Surface defects

Voids

Operational parameters

• Material: PP

• Part dimensions: 70 x 30 x 30 cm3

• Part weight: <2kg

• Cycle time: <2'

• Robot speed: 18cm/sec

• Scanning speed: 1050cm²/min

Benefits for the Producer

- Direct product control: No bad parts integrated
- Enables new process and product introduction
- Shorter cycle time
- Smaller injection press
- Lower raw material consumption
- Lower molding machine energy consumption

01 Problem

02 Solution

03 Market

04 Business model

05 Company

06 Financials

TERATONICS Adressable market

Main drivers:

- Growing use of technical materials: composites, coatings, ceramics, assemblies...
- Industry 4.0 for the reduction of the cost of poor quality
- Stringent government regulations regarding public safety & product quality and continuous advances in electronics, automation, and robotics

Teratonics:

- Bottom-up: production of automotive headlights with ~670 lines worldwide
- Top-down: investment in NDT equipments is ~1% of sales for composites + ceramics
- Significantly larger than XR-CT market (immobile, expensive, slow etc.)

Competition landscape

Confidential

01 Problem

02 Solution

03 Market

04 Business model

Focus on sectors using **high-end materials** and/or with **CO₂ reduction targets Product lifecycle**: production, quality, maintenance, R&D

05 Company

06 Financials

Confidential 19

3 complementary commercial offers

Lab Service

1.680€

/engineer + instrument/day

To support our clients' development of new products and optimisation of processes.

Today, the first step to sell a product.

On-site Inspection

1.680€

/engineer + instrument/day + related costs

Service for maintenance.

Installation of new prod. lines, product proving.

Demonstration close to the field.

Sale of Equipment

From 220k€

Unit Price

Available through channels for a worldwide coverage and support.

Go-to-market strategy

In-lab and On-site Analysis Services

- Direct sales via prospection, conferences and trade shows, website, multipliers
- Local EU

Sales of Equipment Maintenance

channels

- Indirect sales / direct marketing through
 - Integrators: by applications of our technology (injection molding, other plastic processes, welding, gluing, composites, ceramics, coatings)
 - Distributors: by geography
- International footprint
- Distribution agreement for plastic injection moulding with **TREXEL**

INDUSTRIAL PARTNERS

Lean product development

Quali Control (2017)

German consortium led by KIMW (multiplier)

Contract value: 30k€

SAM: 110M€

Product Control of (foamed) injection molding: confirmation of USP + robotised analysis for enabling/extension of foamed plastics

Innov'up (2018-2019)

Auto Tier 1

Contract value: 100k€

SAM: 110M€

Automated in-line control of plastic welded parts.

Feasibility demonstrated.

Q3DP (2021-22)

French-German project

Contract value: 195k€

SAM: 62M€

Among the 3 members, a future distributor for control of 3D printing in D A CH region

In situ quality control of 3D printing, fiber coupled THz Head to decrease raw material and production time

CORAC, DGAC* (2021-23)

Consortium project with a key end-user of aerospace sector

Contract value: 120k€

SAM: 55M€

Sealant in aerospace, fiber coupled THz head and high energy to scale up production and control speed (x4-10)

* French Civil Aviation Authority

TERATONICS

CNRS "THz" patent with the broadest international protection

Exclusive patent granted to Teratonics

Inventors and authors:

De Waele Vincent, Schmidhammer Ulrich

Patent owners: CNRS, Université Paris-Saclay (former Paris-Sud)

- 2007: Patent filed in France N°07/60296
 Procédé et dispositif de mesure monocoup de la biréfringence transitoire induite par une perturbation appartenant au domaine des fréquences térahertz
- 2008: PCT patent filed, PCT/FR2008/001783
- 2010: Extension to China, Europe, India, Japan, South Korea, USA
- 2018: Nationalisation to 12 European countries

COMPANY TALENTS

Our management team

<u>Uli Schmidhammer, PhD</u> CEO

Ludwig-Maximilians Uni. Munich Incuballiance, Wilco

- Co-inventor of THz patent, technical and business development, setting up of THz team, BM in interplay with externals, responsible for 4 engineers and equipment at LCP, CNRS – Uni Paris Saclay
- Free Lance (Clark-MXR, HORIBA, Patev)
- Leader of interdisciplinary projects on photonic instrumentation and application at LMU Munich

Xavier Neiers
CTO

Ecole Centrale Marseille Incuballiance, Wilco

- Conversion of a lab prototype into an industrial product, management of a 3 persons team
- THz lab applications and technical development in response to the industrial needs, LCP, CNRS – Uni Paris Saclay

Marco Cavallari, PhD CCO

Politecnico di Milano & Ecole Polytechnique

Strong track record of multimillion EUR of sales contracts in the deep tech sector:

- Optical sales engineering manager at Nortel
- EMEA market development director at Opnext
- Operations and business development director at Bertin Technologies

Towards an industry 4.0 leader

2006-16

Tech+Team Dev, Bus Plan

Lab de Chimie Physique CNRS – Uni Paris-Saclay International patent

2017

Company Foundation

2018

First Distributor

Non-exclusive distribution agreement for injection molding with

Prizes:

DeepTechyGood

2019

First transportable STRIPP Control Seed Round

Invested by:

socomore

Identified as high potential Deep Tech start-up by:

2020

Highly automated STRIPP Control

For parts held by robots or moving on conveyors

Prizes:

DEVELOPMENT PLAN

2021-25 Scale-up

	2021	2022	2023	2024	2025
Employees*	10	18	26	35	53
Units sold	3	8	18	34	55
Product release		HW: Fiber coupled THz Head (coatings, 3D print)	HW: High power fiber coupled THz Head SW: Update on Automatic defect detection, release 2 with Machine Learning (AI) applied to 3D THz data		
Marketing strategy	Public demos in show rooms, injection molding 10 (virtual) trade shows / workshops	Public demos in show rooms, e.g. plastic welding 12 trade shows / workshops	Partnership with a distributor for 3D printing control following the French-German project 14 trade shows	15 trade shows/ workshops	15 trade shows/ workshops

*Average over the fiscal year

Business growth projections

Confidential

We are raising € 2,0 Mio to support our growth

€940k

SALES & MARKETING

€620k

PRODUCT DEV.

2nd product line based on a robot-mounted THz head

Artificial Intelligence for automated analysis upgrade

STRIPP Control systems for demos, loan and spare

Commercial recruitments

Offices and production facility

€320k

R&D

€120k

ADMIN + REAL ESTATE

Teratonics shareholders

	Current shareholder	Actions	Valeur nominale	%
1	Ulrich SCHMIDHAMMER	3 800	38 000,00 €	85,72%
2	Xavier NEIERS	211	2 110,00 €	4,76%
3	Marco CAVALLARI	211	2 110,00 €	4,76%
4	SOCOMORE VENTURES	208	2 080,00 €	4,69%
5	Bernard LE TURDU	1	10,00€	0,02%
6	Daniel JAVED	1	10,00€	0,02%
7	Alain MORETTI CARTAILLAC	1	10,00€	0,02%
	Total	4 433	44 330,00 €	100,00%

We would like **Industrya** to be a shareholder thanks to:

- the unique fit with your foci on energy transition and sustainable transport, new materials and industry 4.0
- the direct **support by Thibaud** whose international experience in managing high tech companies is impressive
- possible synergies with John Cockrill

Thank you

Contact us

Advanced Terahertz Photonics for Enhanced Productivity and Reliability

CONTACT

+33 7 51 45 55 16 uli.schmidhammer@teratonics.com www.teratonics.com

ADDRESS

TERATONICS S.A.S. 15, avenue Jean PERRIN Bâtiment 350 91400 ORSAY – France