

Paper to be Presented

> Paper Title:

LinearFold: linear-time approximate RNA folding by 5'-to-3' dynamic programming and beam search

Authors:

Liang Huang, He Zhang, Dezhong Deng, Kai Zhao, Kaibo Liu, David A. Hendrix, David H. Mathews

> Published on: Bioinformatics Journal, July 2019

Brief Idea on RNA Folding

- A linear RNA folds to acquire secondary structure
- In Secondary structure they form stacks (more than one base-pair) and loops (unpaired bases)

Problem Statement

- Applications of RNA secondary structures: Predicting RNA function, similarity, evolution, sequence conservation
- Various techniques for predicting RNA secondary structure –
 maximum base-pairs, minimum free energy (Vienna RNAfold),
 stochastic context-free grammars (CONTRAfold), generalized
 centroid estimator (CentroidFold); Runtime O(n3)
- Faster linear time algorithms such as Rfold, Vienna RNAplfold, LocalFold, but they have some constraints
- The paper proposed a Linear time algorithm O(nblogb) named LinearFold which can predict RNA secondary structures without imposing any constraints and also has high accuracy

Interesting Facts

- Functions of RNAs are deeply related to their secondary structures
- Predicting RNA secondary structure in linear time using Dynamic Programming concept of well known Zuker's Algorithm while runtime of Zuker's Algorithm is O(n³); space complexity reduced to O(n) from O(n²)
- **Doesn't impose any constraints** (local folding, fixed length of basepair) on the output to achieve this linear runtime
- Still have a high accuracy compared to the state-of-art tools
- Works even better for longest sequence families and sequences with long-range base pairs!!!

Steps taken to Address the problem

- Used left-to-right method instead of traditional bottom-up for dynamic programming
- Merges states with identical condition (similar number of unpaired opening brackets till now) to reduce the number of considered states
- Uses the concept of packing from computational linguistics to reduce runtime even further

Finally, uses beam search to make the runtime linear

Dataset Used

The Archivell dataset:

- A set of 3847 RNA sequences with known secondary structures
- The set includes small subunit ribosomal RNA (22s), large subunit ribosomal RNA (6s), 5S ribosomal RNA (1283s), group I introns (98s), signal recognition particle RNA (928s), RNase P (454s), tRNA (557s), tmRNA (462s), and telomerase RNA (37s)
- contains sequences of 3000nt or less

A sampled subset of RNAcentral:

- A database of non-coding RNA (ncRNA) sequences
- currently holds 10.2 million distinct ncRNA sequences
- Has many longer sequences, with the longest being 244296nt

- Uses Dynamic Programming
- Implemented in C++
- Two versions of LinearFold Algorithm
- i. LinearFold-V: uses minimum free energy model (similar to Vienna RNAfold)
- ii. LinearFold-C: uses machine learned model (similar to CONTRAfold)

Four stages of Algorithm:

Initially stack empty, score 0

1. Brute force search O(3ⁿ):

- Scans RNA sequence from left-to-right
- Perform one of the three operations- push, pop skip
- If push, then pushes opening bracket inside stack, adds 0 to score
- If skip, add -0.1 to score
- If nucleotide (with top bracket in stack) complementary to current nucleotide add +1 to score, pop '(' from stack

- 2. Merge Stacks with Identical stacks O(2ⁿ):
- States having same stacks are merged, in this case state with the higher score is kept

- 3. Pack Temporarily Equivalent Stacks O(n³):
- Different states with same stack top can be packed as they are equivalent until top open bracket is closed

- **4.** Beam Pruning, O(nblogb) ≈ O(n):
- If beam size, b = 2, then only top 2 states will be considered, others will be pruned

Result Analysis

- Compared with two state-of-the-art tools: CONTRAfold (Version 2.02) and Vienna RNAfold (Version 2.4.10)
- Compared Space complexity, Time Complexity and Accuracy (based on PPV (positive predictive value) and sensitivity)
- ☐ Space Complexity Comparison:

Result Analysis

☐ Time Complexity Comparison:

■ Accuracy Analysis:

$$PPV = \frac{Total\ No.\ of\ Pairs\ (TP)}{No.\ of\ Predicted\ Pairs\ (TP+FP)}$$

$$\textbf{Sensitivity} = \frac{\textit{No. of Known Predicted Pairs}}{\textit{No. of Total Predicted Pairs}}$$

Result Analysis

В	Overall	PPV	Sensitivity	
	CONTRAfold MFE	54.51	55.36	
	LinearFold-C	55.84 (+1.3)	56.24 (+0.9)	
		50.22	58.74	
	LinearFold-V	50.51 (+0.3)	58.97 (+0.2)	

Summary:

- LinearFold-C outperforms CONTRAfold, PPV 1.3% greater and sensitivity +0.9% greater
- LinearFold-V outperforms RNAfold, PPV 0.3% greater and sensitivity 0.2% greater

Why is this Solution Beneficial

- Runs in linear time O(nblog b), so use of longer sequences will become less time consuming
- Uses linear space, so will be able to handle larger and longer sequence sets
- In spite of using linear time and memory, accuracy is almost as high as CONTRAfold and Vienna RNAfold
- For longer sequences, performs even better compared to those two tools
- Long-range base pairs are harder to predict. Local folding algorithms can not predict structure for longer base pairs. In case of long-range base pairs (>500bp), It is more accurate than the baselines
- Search quality (average search error per nucleotide) doesn't degrade with longer sequences
- Accuracy is stable for a beam size b in between 100 to 200, default value used is 100

Limitations

- The implemented code requires specific compiler and library support; so still not easily accessible by everyone
- Input sequence length has to be less than 100,000 nt
- ➤ **Beam Search assumes** that at any stage, the phases with highest scores are probable solution. It might not always be the case. Example:

	Α	U	С	Α	U
State1	()		()
Energy	0.0	1	0.9	0.9	1.9
State2	(())
Energy	0.0	0.0	-0.1	0.9	1.9
j	1	2	3	4	5

➤ If b =1 & j=2, it will consider State1 as best solution (max energy) and discard State2. But better solution here is State2 (larger size of stacking pair is more stable)

Some Ideas for further Improvement

Improving Beam Search:

- For beam search, at each stage, only the b number of states with maximum energy are considered which might compromise optimal solution. To overcome this, I propose to do beam search based on two factors:
 - i) maximum score
 - ii) structure with longer base pair possibilities
- Implementing the concept of LinearFold in case of Alignment
- Current alignment algorithms are O(n²)
- At each stage, this proposed algorithm will perform one of four operations: Insert, delete, replace, match

Any Questions?

Quiz Question

As we know the **runtime** of **LinearFold** algorithm is linear, **O(nblog b)**. What does **'b'** represent and what's the default value for **'b'**?

- a) Base pair, 100
- b) Beam size, 100
- c) Base pair, 150
- d) Beam size, 150

