ACE Tutorial 4

Question 1: Stacks and Queues

Consider an array-based queue, where the underlying array of size N is used in a circular fashion. We keep track of two variables: f referring to the index of the front element and sz referring to the number of stored elements. When the queue has f elements, the array index $r = (f + sz) \mod N$ is the first empty slot past the rear of the queue.

Consider a queue that has an underlying array A of size 5. Fill in the following f, sz and r values, and show the state of the array A after each operation.

- Initial State of A

Index	0	1	2	3	4
Element					

	value
f	
SZ	
r	

- Enqueue 4

Index	0	1	2	3	4
Element					

	value
f	
SZ	
r	

- Dequeue

Index	0	1	2	3	4
Element					

	value
f	
SZ	
r	

- Enqueue 7

Index	0	1	2	3	4
Element					

	value
f	
SZ	
r	

- Enqueue 10

Index	0	1	2	3	4
Element					

	value
f	
SZ	
r	

- Enqueue 13

Index	0	1	2	3	4
Element					

	value
f	
SZ	
r	

- Enqueue 16

Index	0	1	2	3	4
Element					

	value
f	
SZ	
r	

- Dequeue

Index	0	1	2	3	4
Element					

	value
f	
SZ	
r	

- Dequeue

Index	0	1	2	3	4
Element					

	value
f	
SZ	
r	

- Enqueue 19

Index	0	1	2	3	4
Element					

	value
f	
SZ	
r	

- Enqueue 22

Index	0	1	2	3	4
Element					

	value
f	
SZ	
r	

- Enqueue 25

Index	0	1	2	3	4
Element					

	value
f	
SZ	
r	

What happens here? Is r referring to an empty cell? Can we add more elements to the array?

Question 2: Lists

Consider a growable array-based array list. Let push(o) be the operation that adds an element o at the end of the list. For the pseudocode of the push(o) algorithm, see Slide 13 in Lists.pdf. When the array is full, we replace the array with a larger one. There are two commonly used strategies which determine the size of the new array.

Incremental strategy: when an array of size n is full, we replace it with a new array of size (n+c), where c is a constant.

Doubling strategy: when an array of size n is full, we replace it with a new array of size 2n.

Assume that when the array is not full, adding an element into it takes a constant time 1. Fill in the two tables below, which illustrate the process of performing a series of $n \ push(o)$ operations over an initial array which is empty and of size 1, using the incremental strategy and the doubling strategy, respectively. For the incremental strategy, we set c=3.

Incremental strategy, c=3

Array size	Push <i>i</i> -th element	Time for adding elements	Time for copying elements
	1		
	2		
	3		
	4		
	5		
	6		
	7		
	8		
	9		
	10		
	11		
	12		

Let m denote the total number of push operations in the series, k denote the number of times of increasing the array size. Can you express the relationship between m and k using c?

Let T(m) denote the total time for performing these m push operations. How to express T(m) using m, k and c? Which big-Oh class does T(m) belong to? Which big-Oh class does T(m)/m belong to?

Doubling strategy

Array size	Push <i>i</i> -th element	Time for adding elements	Time for copying elements
1	1	1	0
	2		
	3		
	4		
	5		
	6		
	7		
	8		
	9		
	10		
	11		
	12		
	13		
	14		
	15		
	16		

Let m denote the total number of push operations in the series, k denote the number of times of increasing the array size. Can you express the relationship between m and k?

Let T(m) denote the total time for performing these m push operations. How to express T(m) using m and k? Which big-Oh class does T(m) belong to? Which big-Oh class does T(m)/m belong to?