

Trabajo Práctico I

Métodos Numéricos Segundo Cuatrimestre de 2015

Integrante	LU	Correo electrónico					
Iván Arcuschin	678/13	iarcuschin@gmail.com					
Martín Jedwabny	885/13	martiniedva@gmail.com					
José Massigoge	954/12	jmmassigoge@gmail.com					
Iván Pondal	???/??	ivan.pondal@gmail.com					

Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2160 - C1428EGA

Ciudad Autónoma de Buenos Aires - Rep. Argentina

Tel/Fax: (54 11) 4576-3359 http://www.fcen.uba.ar

Índice

1.	Introducción	3
	Modelo2.1. Descripción2.2. Representación del sistema	
3.	Ejercicio 2	6
4.	Ejercicio 3	7
5.	Conclusión	8

1. Introducción

El objetivo de este Trabajo Práctico es implmentar diferentes algoritmos de resolución de sistemas de ecuaciones lineales y experimentar con dichas implementaciones en el contexto de un problema de la vida real.

El problema a resolver es hallar la isoterma 500C en la pared de un Alto Horno. Para tal fin, deberemos particionar la pared del horno en puntos finitos, y luego resolver un sistema de ecuaciones lineales, en el cual cada punto de la pared interior y exterior del Horno es un dato, y las ecuaciones para los puntos internos satisfacen la ecuación del calor.

Los experimentos realizados se dividen en dos partes: Comportamiento del sistema y Evaluación de los métodos. En la primera parte, analizaremos con los distintas instancias de prueba y se estudiará la proximidad de la isoterma buscada respecto de la pared exterior del horno. En la segunda parte, analizaremos el tiempo de computo requerido para la resolución del sistema en función de la granularidad de la discretización y analizaremos el escenario en el cual las temperaturas de los bordes varian a lo largo del tiempo.

2. Modelo

2.1. Descripción

El Alto Horno está definido por las siguientes variables:

- El radio de la pared exterior: $r_e \in \mathbb{R}$
- El radio de la pared interior: $r_i \in \mathbb{R}$
- La temperatura en cada punto de la pared: $T(r, \theta)$, donde (r, θ) se encuentra expresado en coordenadas polares, siendo r el radio y θ el ángulo polar de dicho punto.

Son datos del problema, las temperaturas de la pared interior y exterior:

- $T(r_i, \theta) = T_i$ para todo punto (r, θ) con $r \le r_i$
- $T(r_e, \theta) = T_e(\theta)$ para todo punto (r_e, θ)

La Figura 1 muestra las variables al tomar una sección circular del horno.

Figura 1: Sección circular del horno

En el estado estacionario, cada punto de la pared satisface la ecuación del calor:

$$\frac{\partial^2 T(r,\theta)}{\partial r^2} + \frac{1}{r} \frac{\partial T(r,\theta)}{\partial r} + \frac{1}{r^2} \frac{\partial^2 T(r,\theta)}{\partial \theta^2} = 0 \tag{1}$$

Para resolver este problema computacionalmente, discretizamos el dominio del problema (el sector A) en coordenadas polares. Consideramos una partición $0=\theta_0<\theta_1<\ldots<\theta_n=2\pi$ en n ángulos discretos con $\theta_k-\theta_{k-1}=\Delta\theta$ para $k=1,\ldots,n$, y una partición $r_i=r_0< r_1<\ldots< r_m=r_e$ en m+1 radios discretos con $r_j-r_{j-1}=\Delta r$ para $j=1,\ldots,m$.

El problema ahora consiste en determinar el valor de la función T en los puntos de la discretización (r_j, θ_k) que se encuentren dentro del sector A. Llamemos $t_{jk} = T(r_j, \theta_k)$ al valor (desconocido) de la función T en el punto (r_i, θ_k) .

Para encontrar estos valores, transformamos la ecuación (1) en un conjunto de ecuaciones lineales sobre las incógnitas t_{jk} , evaluando (1) en todos los puntos de la discretización que se encuentren dentro del sector A. Al hacer esta evaluación, aproximamos las derivadas parciales de T en (1) por medio de las siguientes fórmulas de diferencias finitas:

$$\frac{\partial^2 T(r,\theta)}{\partial r^2}(r_j,\theta_k) \cong \frac{t_{j-1,k} - 2t_{jk} + t_{j+1,k}}{(\Delta r)^2}$$
 (2)

$$\frac{\partial T(r,\theta)}{\partial r}(r_j,\theta_k) \cong \frac{t_{j,k} - t_{j-1,k}}{\Delta r} \tag{3}$$

$$\frac{\partial^2 T(r,\theta)}{\partial \theta^2}(r_j,\theta_k) \cong \frac{t_{j,k-1} - 2t_{jk} + t_{j,k+1}}{(\Delta \theta)^2} \tag{4}$$

2.2. Representación del sistema

Para representar el sistema de ecuaciones presentado, se utilizará una matriz simple, implementada como un vector de vectores.

	T(0,0)	 $T(0,n\!-\!1)$	 T(i,0)	 T(i,j)	 $T(i,\!n\!-\!1)$	 T(m,0)	 $T(m,\!n\!-\!1)$	b	
T(0,0)	T 1	 0	 0	 0	 0	 0	 0	T_i	
:	:	:	:	:	:	:	:		
$T(0,\!n\!-\!1)$	1	 0	 0	 0	 0	 0	 0	T_i	
:	:	:	:	:	:	:	:		
T(i,0)	1	 0	 0	 0	 0	 0	 0	0	
:	:	÷	:	:	÷	:	:		
T(i,j)	1	 0	 0	 0	 0	 0	 0	0	
:	:	÷	:	:	÷	:	:		
$T(i, n\!-\!1)$	1	 0	 0	 0	 0	 0	 0	0	
÷	:	÷	:	:	÷	:	÷		
T(m,0)	1	 0	 0	 0	 0	 0	 0	T_e	
÷	:	÷	:	:	÷	:	÷		
T(m,n-1)	_ 1	 0	 0	 0	 0	 0	 0	T_e	

3. Ejercicio 2

4. Ejercicio 3

5. Conclusión