- 1. Considere a função $f: \mathbb{R}^2 \to \mathbb{R}$ dada por $f(x,y) = x^2y + x$.
 - (a) Determine a derivada direcional de f em a = (1,0) na direcção do vetor v = (1,1).
 - (b) Determine a derivada direcional de f num ponto qualquer (x, y) na direcção do vetor v = (1, 0).
- 2. Calcule as derivadas parciais das funções seguintes.

a)
$$g(x, y, z) = x^2 + y^2 \operatorname{sen}(zy)$$
 c) $f(x, y) = 2x^4 y^2 + (3x - y)^3$
b) $f(x, y) = \operatorname{arctg}(\frac{x}{y})$ d) $h(u, v, w) = \frac{u + v}{u + w}$

c)
$$f(x,y) = 2x^4y^2 + (3x - y)^3$$

b)
$$f(x,y) = \arctan\left(\frac{x}{y}\right)$$

$$d) h(u, v, w) = \frac{u + v}{u + w}$$

3. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

- a) Determine $\frac{\partial f}{\partial x}(0,0)$ e $\frac{\partial f}{\partial y}(0,0)$.
- b) Será f diferenciável em (0,0)?
- 4. Estude a diferenciabilidade das seguintes funções (no seu domínio):

$$a) f(x,y) = \operatorname{sen}\left(\frac{y}{x}\right) \quad b) f(x,y) = \sqrt{x^2 + 2x^2y^2} \quad c) f(x,y) = \begin{cases} \frac{y}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

- 5. Seja $\phi: \mathbb{R} \to \mathbb{R}$ uma função de uma variável real, derivável e tal que $\phi'(1) = 4$. Seja $g(x,y) = \phi(\frac{x}{y})$. Calcule $\frac{\partial g}{\partial x}(1,1)$ e $\frac{\partial g}{\partial y}(1,1)$.
- 6. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ a função dada por $f(x,y) = x y^2$
 - a) Determine e represente graficamente a curva de nível de f que passa pelo ponto a = (-1, 0).
 - b) Determine e represente graficamente o vetor gradiente de f em a.
 - c) Justifique que f é diferenciável em a e determine uma equação do plano tangente ao gráfico de f em a.