Introduction to ANN and Perceptron

Pavlos Protopapas

Outline

Introduction

- Review of basic concepts
- Perceptron Single neuron network
- Multi-Layer Perceptron (MLP)

Outline

Introduction

- Review of basic concepts
- Perceptron Single neuron network
- Multi-Layer Perceptron (MLP)

Historical Trends

Disease prediction

Game strategy

Natural Language Processing

2011

2017

Protein folding

AlphaFold, a DeepMind Al, revolutionized biochemistry by solving the long-standing protein folding problem.

Autonomous cars

Al Detecting objects to assist with autonomous driving.

Image Reconstruction from Sparse Frequency Measurements

Katie Bouman's CHIRP produces the first-ever image of a black hole.

Text to Image Generation

Personalized Customer Assistance

Computer Code Generation

Al Conversational Assistant

Disease Prediction

Google, 2023

Complex Object Detection

2024, YOLOv5

The potential challenges in Data Science

Gender Bias

Some DS models for evaluate job applications show bias in favor of male candidate

Racial Bias

Risk models used in US courts have shown to be biased against non-white defendants

Outline

- Introduction
- Review of basic concepts
- Perceptron Single neuron network
- Multi-Layer Perceptron (MLP)

Supervised v/s Unsupervised Machine Learning

Supervised Learning: Learns with "labeled" data Uns

Unsupervised Learning: Learns by clustering or association

Outline

- Introduction
- Review of basic concepts
- Perceptron Single neuron network
- Multi-Layer Perceptron (MLP)

Before we understand what, a perceptron is, let's look at a machine learning model which we had talked about in a previous lecture.

Logistic Regression

Pred

$$x_1 \longrightarrow \text{Affine} \longrightarrow h_1 = \beta_0 + \beta_1 x_1 \longrightarrow \text{Activation} \longrightarrow p_1 = \frac{1}{1 + e^{-h_1}} \longrightarrow \text{Loss} \\ \text{Func} \longrightarrow \mathcal{L}_1(\beta) = -y_1 \ln(p_1) - (1 - y_1) \ln(1 - p_1)$$

$$x_2 \longrightarrow \text{Affine} \longrightarrow h_2 = \beta_0 + \beta_1 x_2 \longrightarrow \text{Activation} \longrightarrow p_2 = \frac{1}{1 + e^{-h_2}} \longrightarrow \text{Loss} \\ \text{Func} \longrightarrow \mathcal{L}_2(\beta) = -y_2 \ln(p_1) - (1 - y_2) \ln(1 - p_2)$$

$$x_1 \longrightarrow \text{Affine} \longrightarrow h_1 = \beta_0 + \beta_1 x_1 \longrightarrow \text{Activation} \longrightarrow p_1 = \frac{1}{1 + e^{-h_1}} \longrightarrow \text{Loss} \\ \text{Func} \longrightarrow \mathcal{L}_1(\beta) = -y_1 \ln(p_1) - (1 - y_1) \ln(1 - p_1)$$

$$x_2 \longrightarrow \text{Affine} \longrightarrow h_2 = \beta_0 + \beta_1 x_2 \longrightarrow \text{Activation} \longrightarrow p_2 = \frac{1}{1 + e^{-h_2}} \longrightarrow \text{Loss} \\ \text{Func} \longrightarrow \mathcal{L}_2(\beta) = -y_2 \ln(p_1) - (1 - y_2) \ln(1 - p_2)$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$x_1 \longrightarrow \text{ Affine } \longrightarrow h_1 = \beta_0 + \beta_1 x_1 \longrightarrow \text{ Activation } \longrightarrow p_1 = \frac{1}{1 + e^{-h_1}} \longrightarrow \text{ Loss } \\ \text{Func } \longrightarrow \mathcal{L}_1(\beta) = -y_1 \ln(p_1) - (1 - y_1) \ln(1 - p_1)$$

$$x_2 \longrightarrow \text{ Affine } \longrightarrow h_2 = \beta_0 + \beta_1 x_2 \longrightarrow \text{ Activation } \longrightarrow p_2 = \frac{1}{1 + e^{-h_2}} \longrightarrow \text{ Loss } \\ \text{Func } \longrightarrow \mathcal{L}_2(\beta) = -y_2 \ln(p_1) - (1 - y_2) \ln(1 - p_2)$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$x_n \longrightarrow \text{ Affine } \longrightarrow h_n = \beta_0 + \beta_1 x_n \longrightarrow \text{ Activation } \longrightarrow p_n = \frac{1}{1 + e^{-h_n}} \longrightarrow \text{ Loss } \\ \text{Func } \longrightarrow \mathcal{L}_n(\beta) = -y_n \ln(p_n) - (1 - y_n) \ln(1 - p_{1n})$$

$$x_1 \longrightarrow \text{Affine} \longrightarrow h_1 = \beta_0 + \beta_1 x_1 \longrightarrow \text{Activation} \longrightarrow p_1 = \frac{1}{1 + e^{-h_1}} \longrightarrow \text{Loss} \\ \text{Func} \longrightarrow \mathcal{L}_1(\beta) = -y_1 \ln(p_1) - (1 - y_1) \ln(1 - p_1)$$

$$x_2 \longrightarrow \text{Affine} \longrightarrow h_2 = \beta_0 + \beta_1 x_2 \longrightarrow \text{Activation} \longrightarrow p_2 = \frac{1}{1 + e^{-h_2}} \longrightarrow \text{Loss} \\ \text{Func} \longrightarrow \mathcal{L}_2(\beta) = -y_2 \ln(p_1) - (1 - y_2) \ln(1 - p_2)$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$x_n \longrightarrow \text{Affine} \longrightarrow h_n = \beta_0 + \beta_1 x_n \longrightarrow \text{Activation} \longrightarrow p_n = \frac{1}{1 + e^{-h_n}} \longrightarrow \text{Loss} \\ \text{Func} \longrightarrow \mathcal{L}_n(\beta) = -y_n \ln(p_n) - (1 - y_n) \ln(1 - p_{1n})$$

 $\mathcal{L}(\beta) = \sum_{i}^{n} \mathcal{L}_{i}(\beta)$

 n_p : number of predictors

 n_o : number of observations

$$X \longrightarrow \text{Affine} \longrightarrow h = \beta_0 I + X \beta_1 \longrightarrow \text{Activation} \longrightarrow p = \frac{1}{1 + e^{-h}} \longrightarrow \text{Loss} \quad \longrightarrow \mathcal{L}(\beta) = \sum_i^n \mathcal{L}_i(\beta)$$

$$X \longrightarrow \text{Affine} \longrightarrow h = XW + b \longrightarrow \text{Activation} \longrightarrow \hat{y} = \frac{1}{1 + e^{-h}} \longrightarrow \text{Loss} \quad \longrightarrow \mathcal{L}(\beta) = \sum_i^n \mathcal{L}_i(\beta)$$

$$\text{Weights}$$

$$X \longrightarrow \text{Affine} \longrightarrow h = \beta_0 I + X \beta_1 \longrightarrow \text{Activation} \longrightarrow p = \frac{1}{1 + e^{-h}} \longrightarrow \text{Loss} \quad \longrightarrow \mathcal{L}(\beta) = \sum_i^n \mathcal{L}_i(\beta)$$

$$X \longrightarrow \text{Affine} \longrightarrow h = XW + b \longrightarrow \text{Activation} \longrightarrow \hat{y} = \frac{1}{1 + e^{-h}} \longrightarrow \text{Loss} \quad \longrightarrow \mathcal{L}(\beta) = \sum_i^n \mathcal{L}_i(\beta)$$

"Sigmoid activation" σ

Single Neuron Neural "Network"

A single neuron

Up to this point we just re-branded logistic regression to look like a neuron.

Where I is the identity function