Risk and Portfolio Management Spring 2010

Option portfolios with several underlying assets

Option trades and portfolios: Many different styles

- -- Carry trades using options (implied dividend vs. actual dividend, HTB)
- -- <u>Volatility surface trades (non-directional)</u>: trading different strikes on the same underlying asset
- -- historical vol vs implied vol
- -- Relative-value trades across names (non-directional)
 - -- single-name option versus fair-value
 - -- <u>dispersion trading</u> (index option versus components)
- -- <u>Directional</u> volatility trades (long vol/ short vol, etc)

Delta-neutral option position

- -- Open position (long or short) and simultaneously trade the stock so as to be delta-neutral.
- -- Adjust the Delta of the option as the stock/option prices move

$$dC = \frac{\partial C}{\partial t}dt + \frac{\partial C}{\partial S}dS + \frac{\partial C}{\partial \sigma}d\sigma + \frac{1}{2}\frac{\partial^{2} C}{\partial S^{2}}dS^{2} + \dots$$

$$P \& L \approx dC - \Delta dS + \Delta S r dt - \Delta S d dt - r C dt$$

$$= \left(\frac{\partial C}{\partial S} - \Delta\right) dS + \frac{\partial C}{\partial \sigma} d\sigma + \frac{S^2}{2} \frac{\partial^2 C}{\partial S^2} \left(\frac{dS^2}{S^2} - \sigma^2 dt\right)$$

$$- \left(\frac{\partial C}{\partial S} - \Delta\right) S (r - d) dt$$

$$+ \left(\frac{\partial C}{\partial t} + \frac{S^2 \sigma^2}{2} \frac{\partial^2 C}{\partial S^2} + (r - d) S \frac{\partial C}{\partial S} - r C\right) dt$$

$$\approx \frac{\partial C}{\partial \sigma} d\sigma + \frac{S^2}{2} \frac{\partial^2 C}{\partial S^2} \left(\frac{dS^2}{S^2} - \sigma^2 dt\right)$$

Book-keeping: profit/loss from a delta-hedged option position

$$P/L = \theta \cdot (n^2 - 1) + V \cdot d\sigma \qquad \left(n = \frac{1}{\sigma \sqrt{dt}} \frac{dI}{I} \right)$$

or

$$P/L = \frac{1}{2}\Gamma \cdot \left(\frac{(dI)^2}{I^2} - \sigma^2 dt\right) + V \cdot d\sigma$$
Gamma-Theta
exposure

Vega
exposure

1-day P/L for Long Call/Short Stock

(Constant volatility=16%)

$$P/L \approx \theta \cdot (n^2 - 1)$$

$$\theta$$
 = daily time - decay, $n = \frac{\text{percent index change}}{\text{expected daily volatility}}$

Assuming an implied volatility drop of 1%

Vol=15%

3.80 loss if stock does not move and volatility drops 1%

A closer look at the profit-loss due to a change in volatility

1% move in vol => 8% move in premium for a 6m ATM option

Measuring the Risk of a Portfolio (assuming delta neutrality)

Portfolio of options on N stocks n_{ij} contracts of option with underlying stock i, expiration T_i , volatility σ_{ij}

$$\Delta\Pi = \sum_{ij} n_{ij} \left(C(S_i + \Delta S_i, T_j, K_{ij}, \sigma_{ij} + \Delta \sigma_{ij}) - C(S_i, T_j, K_{ij}, \sigma_{ij}) - \frac{\partial C_{ij}}{\partial S_i} \Delta S_i \right)$$

$$= \sum_{ij} n_{ij} \left(C(S_i (1 + R^{S_i}), T_j, K_{ij}, \sigma_{ij} (1 + R^{\sigma_{ij}})) - C(S_i, T_j, K_{ij}, \sigma_{ij}) - \frac{\partial C_{ij}}{\partial S_i} S_i R^{S_i} \right)$$

Need to define a <u>joint distribution</u> of stock returns and volatility returns to calculate statistics of PNL

Factor Models for Price/Vols

Consider only parallel vol shifts and use 30-day ATM volatilities

$$R^{S_i} = \sum_{k=1}^m \beta_{ik} F_k + \mathcal{E}_i$$

$$R^{\sigma_i} = \sum_{k=1}^m \gamma_{ik} F_k + \varsigma_i$$

Extract factors from PCA of augmented matrix

$$C_{ij} = \left\langle R^{S_i} R^{S_j} \right\rangle, \quad D_{ij} = \left\langle R^{S_i} R^{\sigma_j} \right\rangle, \quad E_{ij} = \left\langle R^{\sigma_i} R^{\sigma_j} \right\rangle$$

$$\mathbf{M} = \begin{pmatrix} \mathbf{C} & \mathbf{D} \\ \mathbf{D'} & \mathbf{E} \end{pmatrix} \qquad \mathbf{M} \in R^{2N \times 2N}$$

Multivariate Analysis of Implied Vols

-- ATM constant maturity vols can be built using interpolation of variances

$$\sigma_{30d}^2 = \frac{30 - T_1}{T_2 - T_1} \sigma_{T_1}^2 + \frac{T_2 - 30}{T_2 - T_1} \sigma_{T_2}^2$$

- -- WRDS has historical data on CM volatility surfaces parameterized by Deltas for standard maturities (*Option Metrics*)
- -- Compute extreme values of standardized vol returns
- -- Perform <u>factor</u> analysis (PCA) to explore the dimensionality of the cross-section
- -- Dataset: 98 constituents of Nasdaq 100, from 9/4/2008 to 10/30/2009

Excerpt of the data used for the calculations

DATES	AAPL	ADBE	ADSK	AKAM	ALTR	AMAT	AMG	N AMLN	I AMZN	APOL
20070	904 45.	2% 30.9	9% 32.7	% 42.9	% 30.	4% 27	.9% 29).4% 44	1.9% 37.	.9% 38.8%
20070	905 48.	0% 29.5	5% 32.3	% 44.7	% 31.	0% 29	.1% 31	.3% 44	1.8% 41.	.1% 39.2%
20070	906 45.	7% 29.6	31.9	% 46.6	% 30.	9% 28	.7% 31	.6% 45	5.6% 39.	.6% 39.5%
20070	907 46.	2% 32.2	2% 33.8	% 46.7	% 32.	0% 33	.1% 32	2.9% 47	7.1% 40.	.4% 40.3%
20070	910 45.	6% 33.6	34.3	% 45.0	% 32.	7% 33	.2% 33	3.5% 47	7.7% 41.	.8% 43.0%
20070	911 45.	9% 32.5	33.3	% 42.8	% 31.	3% 32	.1% 27	'.8% 47	7.6% 41.	.0% 41.9%
20070	912 44.	5% 32.7	' % 34.0	% 42.5	% 31.	9% 33	.4% 26	6.7% 46	6.5% 41.	.3% 42.8%
20070	913 43.	1% 34.6	33.6	% 41.8	% 31.	3% 32	.7% 25	5.1% 49	9.5% 42.	.3% 43.0%
20070	914 42.	1% 34.0	32.6	% 43.0	% 31.	4% 32	.9% 27	'.6% 46	6.6% 42.	.2% 42.7%
20070	917 44.	2% 36.0)% 33.9	% 45.8	% 34.	2% 32	.3% 27	.9% 49	9.7% 43.	.9% 45.1%
20070	918 40.	1% 26.8	30.3	% 44.3	% 29.	1% 31	.3% 25	5.7% 49	9.8% 42.	.2% 44.4%
20070	919 39.	8% 26.1	% 31.9	% 44.3	% 29.	7% 29	.7% 28	3.2% 48	3.4% 41.	.0% 42.5%
20070	920 38.	5% 27.5	5% 31.3	% 43.2	% 29.	6% 30	.4% 27	.5% 47	7.8% 42.	.5% 43.4%

Average Implied Volatility vs. QQV (Implied Vol of NDX-100)

QQ-plot: AAPL 30D vol shocks

QQ-plot: LLTC vol returns

LLTC vs Student with df=1000 (just to see that tails are indeed fat!)

PCA Calculations

- -- There are 98 stocks (implied volatilities)
- -- We perform a dynamic PCA with window of 180 days
- -- 365 successive calculations (spectrum, eigenvectors)

Spectrum on 5/22/2008

Eigenvalues on 12/1/2008

Evolution of 1st and 2nd eigenvalues from May 2008 to Oct 2009

Factor Model

$$\frac{d\sigma_{ATM,i}}{\sigma_{ATM,i}} = \kappa_i \left(\sum_{k=1}^m \gamma_{i,k} F_k + \sqrt{1 - \sum_{i=1}^m \gamma_{i,k}^2} G_k \right)$$

$$\frac{d\sigma_i(x)}{\sigma_i(x)} = \frac{d\sigma_{ATM,i}}{\sigma_{ATM,i}} + \delta_i dx \qquad x = \ln\left(\frac{K}{S}\right), \ dx = -\frac{dS}{S}$$

The motivation for the second equation is that we assume a parametric skew model

$$\sigma(x) = \sigma_{ATM} \left(1 + \delta x + \gamma x^2 + \dots \right)$$

Alternative Approach using ETFs

$$\frac{d\sigma_{i}}{\sigma_{i}} = \beta_{i} \frac{dS_{i}}{S_{i}} + \gamma_{i} \frac{d\sigma_{ETF(i)}}{\sigma_{ETF(i)}} + \varsigma_{i},$$

ETF(i) = ETF associated with stock i

Model the ATM volatility returns as a function of the stock return and changes in the volatility of the sector.

Conjecture: there are fewer systematic factors that explain volatility returns than in the case of stock returns. (m<20)

Volatility skew of stocks and volatility skew of indexes

- -- For equities, the implied volatility curve is decreasing in the strike price around ATM
- -- The effect is more pronounced for indices and ETFs than for single names
- -- Indexes are more skewed than single stocks, presumably due to "correlation risk"
- -- <u>Indexes implied vol curves have less convexity</u> than single-stock implied volatility curves

AAPL 30D Vol 9/2/2008

BS Call Delta

DIA 30D Vol 9/2/2008

BS Call Delta

AAPL 30D Skew vs. DIA 30D Skew 2/9/2008

Modeling the Volatility Skew

$$x = \ln(K/S)$$

$$\sigma_{imp}(x,t) = \sigma_{imp}(0,t) \cdot \left(1 + \gamma x + \delta x^2 + \ldots\right)$$

Proposition: Under reasonable assumptions on model (stoch. vol),

If
$$\frac{d\sigma_{atm}}{\sigma_{atm}} = \beta \frac{dS}{S} + \varepsilon$$
Then
$$\gamma = \frac{\beta}{2}$$

Then
$$\gamma = \frac{\beta}{2}$$

Can also check this directly on data

Evolution of the slope of the 30-day implied volatility curve, 1996-2004

Evolution of ratio [slope/leverage coefficient] The ``roaring 90's''!

