values and eigenfunctions one has to solve the ordinary differential equation f' = mf - λf . Any solution has (up to a constant) the following form

(2.9)
$$g_{\lambda}(x) = \exp\{\int_{0}^{x} (m(y) - \lambda) dy\} = e^{-\lambda x} \cdot \exp\{\int_{0}^{x} m(y) dy\}$$
.

We assume that $m(\infty) < 0$ and $r \ge 0$. Then g_r is differentiable with g_r , $g_r' \in C_O(X)$. Thus $g_r \in D(A)$ if and only if $g_r'(0) = \alpha g(0) - \int_0^\infty g_r(y) \, d\nu(y)$. Inserting (2.9) this condition becomes

 $g_r'(0) = \alpha g(0) - \int_0^\infty g_r(y) dv(y)$. Inserting (2.9) this condition becomes $m(0) - r = \alpha - \int_0^\infty e^{-ry} \cdot \exp\{\int_0^y m(z) dz\} dv(y)$.

(2.10)
$$m(0) + \int_{0}^{\infty} \exp\{\int_{0}^{y} m(z) dz\} dv(y) \ge \alpha$$
.

In case α , ν and m satisfy (2.10) and $m(\infty) < 0$ then g_r is a strictly positive eigenfunction of A corresponding to $r \ge 0$. Thus all assumptions of Cor.2.11(a) are satisfied. In addition, the semigroup is irreducible if (and only if) the support of ν is an unbounded subset of $[0,\infty)$.

Similar examples will be discussed in B-IV,Sec.3 and C-IV,Sec.3. We finally give a criterion for quasi-compactness of positive semigroups on spaces C(K). It is based on a criterion given by Doeblin for operators on spaces of bounded measurable functions and can be easily deduced from [Lotz (1981), Prop.3].

<u>Proposition</u> 2.13. Let $T = (T(t))_{t \ge 0}$ be a semigroup of Markov operators on C(K), K compact satisfying the following condition.

(2.12) There exist $t_0 > 0$, $0 < \mu \in M(K)$ and $\gamma \in \mathbb{R}$, $0 < \gamma < 1$ such that $T(t_0)f - \mu(f)1_K \le \gamma \cdot 1_K$ for all $0 \le f \le 1_K$.

Then T is quasi-compact.