2014 TAIWAN

International Olympiad in Informatics 2014

13-20th July 2014 Taipei, Taiwan Day-1 tasks

wall

Language: sl-SVN

Zid

Jian-Jia (Janez) gradi zid, tako da zlaga enako velike zidake enega na drugega. Zid sestavlja n stolpcev zidakov, ki so z leve proti desni oštevilčeni od 0 do n-1.

Stolpci so lahko različnih višin. Višino stolpca predstavlja število zidakov v njem.

Jian-Jia gradi zid, kot sledi. Na začetku v nobnem stolpcu ni nobenega zidaka. Nato gre Jian-Jia skozi k korakov gradnje, kjer je en korak bodisi korak dodajanja bodisi korak odvzemanja zidakov. Gradnja je zaključena, ko je zaključenih vseh k korakov.

Na vsakem koraku Jian-Jia dobi obseg zaporednih stolpcev zidakov in višino h, izvede pa naslednji postopek:

- V koraku dodajanja, Jian-Jia dodaja zidake tistim stolpcem v podanem obsegu, ki imajo manj kot h zidakov, tako da imajo ti stolpci natanko h zidakov. Pri stolpcih s h ali več zidaki ne naredi ničesar.
- V koraku *odstranjevanja*, Jian-Jia odstranjuje zidake tistim stolpcem v podanem obsegu, ki imajo več kot *h* zidakov, tako da imajo ti stolpci natanko *h* zidakov. Pri stolpcih s *h* ali manj zidaki ne naredi ničesar.

Tvoja naloga je ugotoviti končno obliko zidu.

Primer

Predpostavimo da imamo 10 stolpcev zidakov in 6 korakov gradnje. Podani obsegi vedno vsebujejo tudi robne stolpce. Diagrami stanja zidu, po vsakem koraku gradnje, so prikazani spodaj.

korak	tip	obseg	višina
0	dodajanje	stolpci 1 do 8	4
1	odstranjevanje	stolpci 4 do 9	1
2	odstranjevanje	stolpci 3 do 6	5
3	dodajanje	stolpci 0 do 5	3
4	dodajanje	stolpec 2	5
5	odstranjevanje	stolpci 6 do 7	0

Sprva so vsi stolpci prazni, zato bodo po koraku 0 stolpci od 1 do 8 vsebovali po 4 zidake; stolpec 0 in 9 ostaneta prazna. V koraku 1 se odstranjuje zidake iz stolpcev od 4 do 8, vse dokler niso vsi stolpci višine 1. Stolpec 9 ostaja prazen, stolpci od 0 do 3 so izven podanega obsega, zato ostanejo nespremenjeni. Korak 2 ne povzroči sprememb, saj stolpci od 3 do 6 ne vsebujejo več kot 5 zidakov. Po koraku 3 se število zidakov v stolpcih 0, 4 in 5 poveča na 3. Po koraku 4 je v stolpcu 2 natanko 5 zidakov. Korak 5 odstrani vse zidake iz stolpcev 6 in 7.

Naloga

S podanimi opisi k korakov gradnje, izračunaj število zidakov vsakega stolpca po zaključeni gradnji. Implementirati moraš funkcijo buildWall.

- buildWall(n, k, tip, levi, desni, visina, koncneVisine)
 - n: število stolpcev zidu.
 - k: število korakov gradnje.
 - lacktriangledown tip: tabela dolžine k; tip[i] je tip koraka i: 1 predstavlja korak dodajanja in 2 korak odstranjevanja (za $0 \le i \le k-1$).
 - levi in desni: tabeli dolžine k; obseg stolpcev vključenih v korak i se prične s stolpcem levi[i] in zaključi s stolpcem desni[i] (vsebujoč levi[i] in desni[i]), za $0 \le i \le k-1$. Vedno velja levi[i] \le desni[i].
 - lacktriangledown visina: tabela dolžine $m{k}$; visina[i] je parameter višine pri $m{i}$ -tem koraku, za $0 \leq m{i} \leq m{k} 1$.
 - lacktriangledown koncneVisine: tabela dolžine n; svojo rešitev vračaš preko te tabele -- končno število zidakov v stolpcu i zapiši v koncneVisine[i], za $0 \le i \le n-1$.

Podnaloge

Pri vseh podnalogah velja, da je parameter višine za vse korake nenegativno celo število in je manjše ali enako 100,000.

podnaloga	točke	n	k	opomba
1	8	$1 \leq n \leq 10,000$	$1 \leq k \leq 5,000$	ni dodatnih omejitev
2	24	$1 \leq n \leq 100,000$	$1 \le k \le 500,000$	vsi koraki dodajanja so pred koraki odstranjevanja
3	29	$1 \leq n \leq 100,000$	$1 \leq k \leq 500,000$	ni dodatnih omejitev
4	39	$1 \leq n \leq 2,000,000$	$1 \le k \le 500,000$	ni dodatnih omejitev

Podrobnosti implementacije

Oddati moraš natanko eno datoteko, imenovano wall.c, wall.cpp ali wall.pas. V tej datoteki implementiraj zgoraj opisano funkcijo, z naslednjimi podpisi. V C/C++ morate obvezno vključiti tudi header datoteko wall.h.

V programskem jeziku C/C++

```
void buildWall(int n, int k, int tip[], int levi[], int desni[],
int visina[], int koncneVisine[]);
```

V programskem jeziku Pascal

```
procedure buildWall(n, k : longint; tip, levi, desni, visina :
array of longint; var koncneVisine : array of longint);
```

Vzorčni ocenjevalnik

Vzorčni ocenjevalnik bere vhod v sledečem formatu:

- vrstica 1: n, k.
- vrstice 2 + i ($0 \le i \le k 1$): tip[i], levi[i], desni[i], visina[i].