4ICT9

Cells and Cell Design Issues

Outline

- Cell Shape
- Actual cell/Ideal cell
- Signal Strength
- Handoff Region
 - Cell Capacity
- Traffic theoryErlang B and Erlang C
 - Cell Structure
- Frequency Reuse
 - Reuse Distance
- Cochannel Interference
- Cell Splitting
- Cell Sectoring

Cell Shape

Impact of Cell Shape and Radius on Service Characteristics

	+		1			
Shape of	Area	Boundary	Boundary	Channels/Unit	Channels/Unit	Channels/Unit
the Cell			Length/	Area with	Area when	Area when
			Unit	NChannels/	Number of	Size of Cell
		С	Area	Cells	Channels	Is Reduced
		-			Increased by	by a factor
					a Factor K	M
Square	R^2	4R	4 2	$\frac{N}{R^2}$	$rac{KN}{R^2}$	$rac{K^2N}{R^2}$
cell (side						
=R)						
Hexagonal	$\frac{3\sqrt{3}}{2}R^2$	6R	4 √3B	$\frac{N}{1.5\sqrt{3}R^2}$	$\frac{KN}{1.5\sqrt{3}R^2}$	$\frac{K^2N}{1.5\sqrt{3}R^2}$
cell (side=				•		
R)						
Circular	πR^2	$2\pi R$	2 R	$ rac{N}{\pi R^2} $	$rac{KN}{\pi R^2}$	$\frac{K^2N}{\pi R^2}$
cell (ra-					,	
dius =						
$ R\rangle$						
Triangular	$rac{\sqrt{3}}{4}R^2$	3R	$\frac{4\sqrt{3}}{R}$	$\frac{4\sqrt{3}N}{3R^2}$	$\frac{4\sqrt{3}KN}{3R^2}$	$\frac{4\sqrt{3}K^2M^2N}{3R^2}$
cell (side						
=R)						

Signal Strength

Signal Strength

Handoff Region

• By looking at the variation of signal strength from either base station it is possible to decide on the optimum area where handoff can take place.

Handoff Rate in a Rectangular

 $\lambda_{_{\!H}} = R_{_{\!1}}(X_{_{\!1}}\cos\theta + X_{_{\!2}}\sin\theta) + R_{_{\!2}}(X_{_{\!1}}\sin\theta + X_{_{\!2}}\cos\theta)$ Since handoff can occur at sides R 1 and R 2 of a cell

where $A=R_1$ R₂ is the area and assuming it constant, differentiate with respect to R₁ (or R 2) gives

 $R_{1}^{2} = A \frac{X_{1} \sin \theta + X_{2} \cos \theta}{X_{1} \cos \theta + X_{2} \sin \theta}$

 $R_2^2 = A \frac{X_1 \cos \theta + X_2 \sin \theta}{X_1 \sin \theta + X_2 \cos \theta}$

Total handoff rate is

$$\lambda_{H} = 2\sqrt{A(X_{1}\cos\theta + X_{2}\sin\theta)(X_{1}\sin\theta + X_{2}\cos\theta)}$$

 λ_H is minimized when θ =0, giving $\lambda_H = 2\sqrt{AX_1X_2}$ and $\frac{R_1}{R_2} = \frac{X_1}{X_2}$

Cell Capacity

- Average number of MSs requesting service (Average arrival rate): λ
- Average length of time MS requires service (Average holding time): T
- Offered load: $a = \lambda T$
- generated during an hour, with average holding time T=360e.g., in a cell with 100 MSs, on an average 30 requests are seconds.

Then, arrival rate $\lambda = 30/3600$ requests/sec.

A channel kept busy for one hour is defined as one Erlang (a),

$$a = \frac{30 \text{ Calls}}{3600 \text{ Sec}} \cdot \frac{360 \text{ Sec}}{\text{call}} = 3 \text{ Erlangs}$$

Cell Capacity

- Average arrival rate during a short interval t is given by λt
- probability P(n, t) for n calls to arrive in an interval of Assuming Poisson distribution of service requests, the length t is given by

$$P(n,t) = \frac{(\lambda t)^n}{n!} e^{-\lambda t}$$

Assuming μ to be the service rate, probability of each call to terminate during interval t is given by μ t. Thus, probability of a given call requires service for time t or less is given by

$$S\left(t\right) = 1 - e^{-\mu t}$$

Erlang B and Erlang C

Probability of an arriving call being blocked is

Probability of an arriving call being blocked is
$$B(S,a) = \frac{a^{S}}{S!} \cdot \frac{1}{\sum_{k=0}^{S} \frac{a^{k}}{k!}}, \qquad \underbrace{Erlang\ B\ formula}_{f=0}$$

where S is the number of channels in a group.

Probability of an arriving call being delayed is

$$C(S,a) = \frac{(S-1)!(S-a)}{a^{S}}, \qquad \underbrace{Erlang\ C\ formula}_{i=0}$$

$$\overline{(S-1)!(S-a)} + \sum_{i=0}^{S-1} \frac{a^{i}}{i!},$$

where C(S, a) is the probability of an arriving call being delayed with a load and S channels.

Efficiency (Utilization)

$$fficiency = \frac{Traffic \ nonblocked}{Capacity}$$

Erlangs × portions of nonrouted traffic

Number of trunks (channels)

Example: for previous example, if S=2,

then

$$B(S, a) = 0.6,$$
 ---- Blocking probability,

i.e., 60% calls are blocked.

Total number of rerouted calls = $30 \times 0.6 = 18$

Efficiency =
$$3(1-0.6)/2 = 0.6$$

Cell Structure

Note: Fx is set of frequency, i.e., frequency group.

Frequency Reuse

Reuse Distance

• For hexagonal cells, the reuse distance is given by

$$D = \sqrt{3NR}$$

where *R* is cell radius and *N* is the reuse pattern (the cluster size or the number of cells per cluster).

• Reuse factor is

$$q = \frac{D}{R} = \sqrt{3N}$$

Reuse Distance (Cont'd)

■ The cluster size or the number of cells per cluster is given by

$$N = i^2 + ij + j^2$$

where i and j are integers.

 $N = 1, 3, 4, 7, 9, 12, 13, 16, 19, 21, 28, \dots$, etc.

The popular value of N being 4 and 7.

Reuse Distance (Cont'd)

(a) Finding the center of an adjacent cluster using integers i and j (direction of i and j can be interchanged).

(b) Formation of a cluster for N = 7 with i=2 and j=1

18

Reuse Distance (Cont'd)

(c) A cluster with N = 12 with i=2 and j=2

(d) A Cluster with N=19 cells with i=3 and j=2

Cochannel Interference

Worst Case of Cochannel Interference

Cochannel Interference

Cochannel interference ratio is given by

$$\frac{C}{I} = \frac{Carrier}{Interference} = \frac{C}{\sum_{k=1}^{M} I_k}$$

where I is co-channel interference and M is the maximum number of co-channel interfering cells.

For
$$M = 6$$
, C/I is given by

$$\frac{C}{I} = \frac{C}{\sum_{k=1}^{M} \left(\frac{D_k}{R}\right)^{-\gamma}}$$

where γ is the propagation path loss slope and $\gamma = 2 \sim 5$.

Cell Splitting

Cell Sectoring by Antenna Design

Cell Sectoring by Antenna Design

 Placing directional transmitters at corners where three adjacent cells meet

Worst Case for Forward Channel Interference in Three-sectors

Interference in Three-sectors (Cont'd) Worst Case for Forward Channel

Worst Case for Forward Channel Interference in Six-sectors

