

Bruce M. Boghosian

Introduction to estimation

Confidence intervals

Properties of estimators

Bayesian estimation

Hypothesis testing

GLR and GLRT

Small-sample statistics

Midterm Exam Review

Bruce M. Boghosian

Department of Mathematics

Tufts University

- Introduction to estimation
- Confidence intervals
- Properties of estimators
- Bayesian estimation
- 5 Hypothesis testing
- GLR and GLRT
- Small-sample statistics

Likelihood and maximum likelihood

Bruce M. Boghosian

Introduction to estimation

Confidenc intervals

Properties of estimators

Bayesian estimatior

Hypothesi testing

GLR and GLRT

- Definition of *likelihood* $L(\lambda) = \prod_{j=1}^{n} f_X(x_j; \lambda)$
- Maximum likelihood estimator $\hat{\lambda}(\vec{x})$ gives most likely value for parameter λ .
- Estimation of parameters if form of pdf is known a priori
- Can be used for discrete or continuous pdfs, discrete or continuous parameters
- The log likelihood log $L(\lambda)$ is often useful
- Gives only a single result, no confidence interval

Method of moments

Bruce M. Boghosian

Introduction to estimation

Confidenc intervals

Properties of estimators

Bayesian estimation

Hypothesis testing

GLR and GLRT

Small-sample statistics

- *Method of moments* is another way to creating estimators
- Equate *s* theoretical moments to *s* sample moments

$$E(Y) = \int dy \ f_Y(y; \theta_1, \dots, \theta_s) y = \frac{1}{n} \sum_{j=1}^n y_j$$
$$E(Y^2) = \int dy \ f_Y(y; \theta_1, \dots, \theta_s) y^2 = \frac{1}{n} \sum_{j=1}^n y_j^2$$

:

$$E(Y^s) = \int dy \ f_Y(y; \theta_1, \dots, \theta_s) y^s = \frac{1}{n} \sum_{i=1}^n y_i^s$$

- Yields *s* simultaneous equations for the *s* parameters.
- May be different from MLE (e.g., the uniform distribution)
- May be used in combination with MLE.

Confidence intervals and interval estimation

Bruce M. Boghosiar

Introduction to estimation

Confidence intervals

Properties of estimators

Bayesian estimation

Hypothesis testing

GLR and GLRT Small-sam Moment-generating functions for proof of CLT

■ Say $\overline{y} = \frac{1}{n} \sum_{j=1}^{n} y_j$ is normally distributed with known σ

■ Form standardized random variables $z_j = \frac{y_j - \overline{y}_j}{\sigma/\sqrt{n}}$

■ Standardized r.v.s distributed like standard normal $f_Z(z)$

Z tables defined so $\int_{z_{\alpha}}^{\infty} dz \ f_{Z}(z) = \alpha$

Confidence intervals can be symmetric or asymmetric

$$\qquad \text{Prob}\left(Y \in \left[\mu - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \mu + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right]\right) = 1 - \alpha$$

- Margin of error: Half maximum width of a (usually 95%) confidence interval
- How large does a trial have to be to achieve a certain confidence?

Properties of estimators: Unbiasedness

Bruce M. Boghosian

Introduction to estimation

Confidence intervals

Properties of estimators

Bayesian estimation

Hypothesis testing

GLR and GLRT

- If MLE and MM estimators different, which is "correct"?
- Estimators themselves are random variables.
- Estimators as functions of random variables have means and variances.
- For $f_X(x;\theta)$, an *unbiased* estimator has $E(\hat{\theta}(\vec{X})) = \theta$.
- If an estimator is biased, but the bias vanishes as $n \to \infty$, we say that it is asymptotically unbiased.
- Sometimes you can fix biased estimators by applying a correction for finite n.

Properties of estimators: Efficiency

Bruce M. Boghosiar

Introduction to estimatio

Confidenc intervals

Properties of estimators

Bayesian estimation

Hypothesis testing

GLR and GLRT

- Cumulative distribution functions
- Order statistics for distribution of max and min
- **Efficiency** of estimators: Let $\hat{\theta}_1$ and $\hat{\theta}_2$ be two unbiased estimators for parameter θ . If $Var(\hat{\theta}_1) < Var(\hat{\theta}_2)$, we say that $\hat{\theta}_1$ is *more efficient* than $\hat{\theta}_2$.
- Relative efficiency of estimators: The relative efficiency of $\hat{\theta}_1$ with respect to $\hat{\theta}_2$ is $\frac{\mathsf{Var}(\hat{\theta}_2)}{\mathsf{Var}(\hat{\theta}_1)}$.
- Cramér-Rao bound: Absolute efficiency for estimators

Properties of estimators: Cramér-Rao bound

Bruce M. Boghosian

Introduction to estimation

intervals

Properties o estimators

Bayesian estimation

Hypothesi testing

GLR and GLRT

- Proof of the Cramér-Rao bound
- Cauchy-Schwarz inequality
- Pearson correlation coefficient
- Two forms of Cramér-Rao bound
 - First-derivative form
 - Second-derivative form

Properties of estimators: Sufficiency and consistency

Bruce M. Boghosian

Introduction to estimation

Confidenc intervals

Properties of estimators

Bayesian estimatio

Hypothesi testing

GLR and GLRT

- Sufficiency and consistency
- Sufficiency defined by factorization theorem
- Later we learned a second factorization theorem
- Consistency of estmators
- Chebyshev's Theorem for establishing consistency

Bayesian estimation

Bruce M. Boghosian

Introduction to estimation

Confidenc intervals

Properties of estimators

Bayesian estimation

Hypothesi testing

GLR and GLRT

Small-sample statistics Bayes Theorem and examples

$$P(A_j | B) = \frac{P(B | A_j)P(A_j)}{\sum_{k=1}^{n} P(B | A_k)P(A_k)}.$$

- Updating priors to create new posterior distributions
- Bayesian search strategy
- Bayesian estimation

$$g_{\Lambda}(\lambda \mid W = w_{s}) = \frac{f_{W}(w_{s} \mid \lambda)f_{\Lambda}(\lambda)}{\int_{-\infty}^{+\infty} d\xi f_{W}(w_{s} \mid \xi)f_{\Lambda}(\xi)}$$

Hypothesis testing

Bruce M. Boghosian

Introduction to estimation

Confidence intervals

Properties of estimators

Bayesian estimatior

Hypothesis testing

GLR and GLRT

- State in terms of $z := \frac{\overline{y} \mu_0}{\sigma/\sqrt{n}}$
- Let y_1, \ldots, y_n be a random sample from a normal distribution for which σ is known.
- To test H_0 : $\mu = \mu_0$ versus H_1 : $\mu > \mu_0$ at the α level of significance, reject H_0 if $z \ge z_\alpha$.
- To test H_0 : $\mu = \mu_0$ versus H_1 : $\mu < \mu_0$ at the α level of significance, reject H_0 if $z \le -z_\alpha$.
- To test H_0 : $\mu = \mu_0$ versus H_1 : $\mu \neq \mu_0$ at the α level of significance, reject H_0 if either $z \leq -z_{\alpha/2}$ or $z \geq +z_{\alpha/2}$.

Tufts Testing binomial data

Large-sample test if

$$0 < np_0 - 3\sqrt{np_0(1-p_0)} < np_0 + 3\sqrt{np_0(1-p_0)} < n$$

- Otherwise, small-sample test is necessary
- Type I versus Type II errors
- Power curves

Generalized likelihood ratio

Bruce M. Boghosian

Introduction to estimation

intervals

Properties of estimators

Bayesian estimatior

Hypothesis testing

GLR and GLRT

- lacksquare Sets of parameters ω and Ω
- Generalized Likelihood Ratio (GLR) is then defined to be

$$\lambda = \frac{\max_{\theta \in \omega} L(\theta)}{\max_{\theta \in \Omega} L(\theta)}$$

- Generalization to many parameters is straightforward.
- Hypothesis testing with the GLR the GLRT
- Reject H_0 if λ is below a certain threshold.

Tufts χ^2 distribution

- Using the sample variance for estimation
- Reviewed gamma and beta functions
- Reviewed gamma and beta distributions
- Sums of gamma distributed r.v.s are gamma distributed
- Sums of squares of normally distributed r.v.s are χ^2 distributed
- Orthogonal matrices \overline{Y} and S_V^2 are independent
- Showed that $\frac{(n-1)S^2}{\sigma^2}$ is chi square distributed

F and T distributions

Bruce M. Boghosian

Introduction to estimation

Confidence

Properties of estimators

Bayesian estimatioı

Hypothesis testing

GLR and GLRT

Small-sample

- Finding pdf of quotient
- Quotient of two χ^2 r.v.s is F distributed.
- **Def.:** Suppose that U and V are independent chi squared r.v.s with n and m degrees of freedom, respectively. A random variable of the form $\frac{V/m}{U/n}$ is said to have an F distribution with m and n degrees of freedom.
- Student T distribution $T_n = \frac{Z}{\sqrt{U/n}}$
- Derived pdf of T_n fat tails for small samples.
- Learned about T tables in appendices

Normally distributed data – μ and σ^2 both unknown

Bruce M. Boghosia

Introduction to estimatio

Confidence intervals

Properties of estimators

Bayesian estimatior

testing
GLR and

- Interval estimation of μ using Z ratio
- Interval estimation of μ using T ratio
- Hypothesis testing using Z ratio
- Hypothesis testing using *T* ratio: One-sample *T* test
- Let s^2 denote the sample variance from n observations drawn from a normal distribution with unknown mean μ and unknown variance σ^2 . Let $\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$.
 - To test $H_0: \sigma^2 = \sigma_0^2$ versus $H_1: \sigma^2 > \sigma_0^2$ at the α level of significance, reject H_0 if $\chi^2 \geq \chi^2_{1-\alpha,n-1}$.
 - To test $H_0: \sigma^2 = \sigma_0^2$ versus $H_1: \sigma^2 < \sigma_0^2$ at the α level of significance, reject H_0 if $\chi^2 \leq \chi^2_{\alpha,n-1}$.
 - To test $H_0: \sigma^2 = \sigma_0^2$ versus $H_1: \sigma^2 \neq \sigma_0^2$ at the α level of significance, reject H_0 if χ^2 is either (a) $\leq \chi^2_{\alpha/2,n-1}$ or (b) $\geq \chi^2_{1-\alpha/2,n-1}$.

Tufts Summary

We reviewed the following topics:

- Introduction to estimation
- Confidence intervals
- Properties of estimators
- Bayesian estimation
- Hypothesis testing
- GLR and GLRT
- Small-sample statistics