Homework 11

Due: Wednesday, 1. Dec. 2021

Exercise 1. Let $C, D \in Cat$. Show that $N(C \star D) \cong N(C) \star N(D)$. Show that $\Delta^n \star \Delta^k \cong \Delta^{n+k+1}$.

Exercise 2. Note that for $K, X \in \mathsf{Set}_{\Delta}$, there is a canonical inclusion of simplicial sets $K \hookrightarrow K \star X$. Show that the assignment

$$\mathsf{Set}_{\Delta} \longrightarrow (\mathsf{Set}_{\Delta})_{K/}$$

$$X \longmapsto K \hookrightarrow K \star X$$

defines a functor, and that this functor preserves colimits.

Exercise 3. Show that for any simplicial sets $X, Y \in \mathsf{Set}_{\Delta}$, there is an isomorphism $(X \star Y)^{\mathrm{op}} \cong Y^{\mathrm{op}} \star X^{\mathrm{op}}$. Let \mathcal{C} be a quasi-category, and $f : K \to \mathcal{C}$ a morphism of simplicial sets. Show that $(\mathcal{C}_{f/})^{\mathrm{op}} \cong (\mathcal{C}^{\mathrm{op}})_{/f}$.

Exercise 4. Given a map $p: X \to Y$ of simplicial sets, define the *fibre* of p over $y \in Y_0$ to be the pullback

$$\begin{array}{ccc} X_y & \longrightarrow & X \\ \downarrow & & \downarrow \\ \Delta^0 & \xrightarrow{\{y\}} & Y \end{array}$$

Let \mathcal{C} be a quasi-category, and $x, y \in \mathcal{C}$, what information is necessary to specify a simplex in the fibre of $\mathcal{C}_{/y} \to \mathcal{C}$ over x? How would you interpret this information?