

Departamento de Matemáticas 4º Académicas

Examen de final de trimestre

Nombre:	Fecha:			
Tiempo: 50 minutos	Tipo: C			

Esta prueba tiene 6 ejercicios. La puntuación máxima es de 11. La nota final de la prueba será la parte proporcional de la puntuación obtenida sobre la puntuación máxima.

Ejercicio:	1	2	3	4	5	6	Total
Puntos:	3	1	1	3	1	2	11

- 1. Resuelve las siguientes inecuaciones de manera justificada:
 - (a) $x < x^3$

Solución: $(-1,0) \cup (1,\infty)$

(b)
$$\frac{x-1}{x^2+x} \geqslant 0 \tag{2 puntos}$$

Solución: $(-1,0) \cup [1,\infty)$

2. Comprueba, usando el teorema de Pitágoras, que el triángulo de lados (1 punto) 6 cm, 8 cm y 10 cm es rectángulo y calcula las razones trigonométricas de sus dos ángulos agudos.

Solución: $10^2 = 8^2 + 6^2$ $\sin \alpha = \frac{8}{10} \cos \alpha = \frac{6}{10} \operatorname{tg} \alpha = \frac{8}{6}$ $\cos \beta = \frac{6}{10} \operatorname{sen} \beta = \frac{8}{10} \operatorname{tg} \beta = \frac{6}{8}$

3. Completa la siguiente tabla:

(1 punto)

Grados	Radianes	Cuadrante	Signo del	Signo del	Signo de la
			seno	coseno	tangente
	π				
	$\frac{\overline{3}}{3}$				
330°					
	$\frac{7\pi}{6}$				
60°					

(2 puntos)

Solución:						
Grados	Radianes	Cuadrante	Signo del	Signo del	Signo de	la
			seno	coseno	tangente	
30°	$\frac{\pi}{6}$	I	+	+	+	
330°	$\frac{11\pi}{6}$	IV	-	+	-	
210°	$\frac{7\pi}{6}$	III	-	-	+	
60°	$\frac{\pi}{3}$	I	+	+	+	

- 4. Si $\cos \alpha = \frac{1}{2}$, calcula usando radicales:
 - (a) El resto de las razones trigonométricas principales usando las relaciones trigonométricas fundamenteles y sabiendo que $\alpha \in I$ (primer cuadrante)

Solución: sen
$$\alpha = \sqrt{1 - \left(\frac{1}{2}\right)^2} = \frac{\sqrt{3}}{2} \, \operatorname{tg} \alpha = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \sqrt{3}$$

(b) El resto de las razones trigonométricas principales usando el apartado anterior y sabiendo que $\alpha \in IV$ (cuarto cuadrante)

Solución:
$$\sin \alpha = -\frac{\sqrt{3}}{2} \operatorname{tg} \alpha = -\sqrt{3}$$

5. Calcula la altura de una torre sabiendo que su sombra mide 13 m cuando (1 punto) los rayos del sol forman un ángulo de 50° con el suelo.

Solución:
$$tg \, 50 = \frac{x}{13} \rightarrow x = 13 \cdot tg \, 50 \approx 15,4927967037247m$$

6. Desde el lugar donde me encuentro la visual de la torre forma un ángulo de 32° con la horizontal. Si me acerco 15 m, el ángulo es de 50°. ¿Cuál es la altura de la torre?