Propositional Logic

January 11, 2019

1 Propositions

- ullet A Proposition is an atomic statement that either has the truth value true or false
- For example:
 - -1+1=2
 - -1+2=4
 - The Earth is closer to the Sun than Mars
 - My eyes are green

2 Boolean Operators

- Negation
 - **Negation** is a unary boolean operator
 - This means it only takes one arugment
 - The truth table for negation is:

x	$\neg x$
true	false
false	true

• Conjunction

- Conjunction is a binary boolean operator
- This means it takes two arguments
- The truth table for conjunction is:

x	y	$x \wedge y$
false	false	false
false	true	false
true	false	false
true	true	true

• Disjunction

- **Disjunction** is a binary boolean operator
- This is the truth table for disjunction:

x	y	$x \vee y$
false	false	false
false	true	true
true	false	true
true	true	true

• Exclusive-Or

- Exclusive-or is a binary boolean operator
- This is the truth table for exclusive-or

x	y	$x \oplus y$
false	false	false
false	true	true
true	false	true
true	true	false

• Implication

- *Impication* is a binary boolean operator
- $-x \Rightarrow y$ means that when x when is true, y is true, but y can be true when x is false
- This is the truth table for implication

x	y	$x \Rightarrow y$
false	false	true
false	true	true
true	false	false
true	true	true

• Equivalence

- **Equivalence** is a binary boolean operator
- This is the truth table for equivalence

x	y	$x \Leftrightarrow y$
false	false	true
false	true	false
true	false	false
true	true	true

• Nand

- Nand is a binary boolean operator
- It is the negation of conjunction
- This is the truth table for nand

x	y	$x \uparrow y$
false	false	true
false	true	true
true	false	true
true	true	false

• Nor

- Nor is a binary boolean operator
- It is the negation of disjunction
- This is the truth table for nor

x	y	$x \downarrow y$
false	false	true
false	true	true
true	false	true
true	true	false

3 Boolean Formulae

ullet if P is the set of atomic propositions, a boolean formula bf can be derived from the following rules:

$$-\ bf::=p\ where\ p\in P$$

$$-bf ::= \neg bf$$

$$-bf := bf \ op \ bf$$

$$-\ op ::= \land |\lor| \oplus |\Rightarrow| \Leftarrow |\Leftrightarrow| \Uparrow |\Downarrow$$

ullet We will denote the set of boolean formulae defined by the above rule as F

Ambiguity, Precendence and Associativity

• The previous rules by themselves are not sufficient to assign a single meaning to the following formula

$$p \Rightarrow q \Leftrightarrow \neg p \Leftrightarrow \neg q$$

We can represent this formula by at least two different trees

 \bullet When the same formula can have more than one meaning, the formula is ambiguous

4

- Ambiguity can be addressed by:
 - Using parentheses
 - Assigning *precedence* to the operators
 - assuming that operators associate from left to right
- The order of *precedence* from highest to lowest it:

So, now we have only one meaning for each of the following formulae

