UFRGS – INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma A - 2018/1 Prova da área IIB

1 - 6	7	8	Total

Nome:	Cartão:	

 ${\bf Regras\ Gerais:}$

- $\bullet\,$ Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas:

- Seja sucinto, completo e claro.
- $\bullet\,$ Justifique to do procedimento usado.
- $\bullet\,$ Indique identidades matemáticas usadas, em especial, itens da tabela.
- $\bullet~$ Use notação matemática consistente!

Propriedades das transformadas de Fourier: considere a notação $F(w) = \mathcal{F}\{f(t)\}$

Propri	Propriedades das transformadas de Fourier: considere a notação $F(w) = \mathcal{F}\{f(t)\}$.							
1.	Linearidade	$\mathcal{F}\left\{\alpha f(t) + \beta g(t)\right\} = \alpha \mathcal{F}\left\{f(t)\right\} + \beta \mathcal{F}\left\{g(t)\right\}$						
2.	Transformada da derivada	Se $\lim_{t \to \pm \infty} f(t) = 0$, então $\mathcal{F} \{f'(t)\} = iw \mathcal{F} \{f(t)\}$						
		Se $\lim_{t \to \pm \infty} f(t) = \lim_{t \to \pm \infty} f'(t) = 0$, então $\mathcal{F}\left\{f''(t)\right\} = -w^2 \mathcal{F}\left\{f(t)\right\}$						
3.	Deslocamento no eixo \boldsymbol{w}	$\mathcal{F}\left\{e^{at}f(t)\right\} = F(w+ia)$						
4.	Deslocamento no eixo \boldsymbol{t}	$\mathcal{F}\left\{f(t-a)\right\} = e^{-iaw}F(w)$						
5.	Transformada da integral	Se $F(0) = 0$, então $\mathcal{F}\left\{\int_{-\infty}^{t} f(\tau)d\tau\right\} = \frac{F(w)}{iw}$						
6.	Teorema da modulação	$\mathcal{F}\{f(t)\cos(w_0t)\} = \frac{1}{2}F(w - w_0) + \frac{1}{2}F(w + w_0)$						
7.	Teorema da Convolução	$\mathcal{F}\{(f*g)(t)\} = F(w)G(w), \text{onde} (f*g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau$						
		$(F*G)(w) = 2\pi \mathcal{F}\{f(t)g(t)\}$						
8.	Conjugação	$\overline{F(w)} = F(-w)$						
9.	Inversão temporal	$\mathcal{F}\{f(-t)\} = F(-w)$						
10.	Simetria ou dualidade	$f(-w) = \frac{1}{2\pi} \mathcal{F}\left\{F(t)\right\}$						
11.	Mudança de escala	$\mathcal{F}\left\{f(at)\right\} = \frac{1}{ a }F\left(\frac{w}{a}\right), \qquad a \neq 0$						
12.	Teorema da Parseval	$\int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w) ^2 dw$						
13.	Teorema da Parseval para Série de Fourier	$\frac{1}{T} \int_{0}^{T} f(t) ^{2} dt = \sum_{n=-\infty}^{\infty} C_{n} ^{2}$						

Séries e transformadas de Fourier:

	Forma trigonométrica	Forma exponencial
Série de Fourier	$f(t) = \frac{a_0}{2} + \sum_{n=1}^{N} \left[a_n \cos(w_n t) + b_n \sin(w_n t) \right]$	$f(t) = \sum_{n = -\infty}^{\infty} C_n e^{iw_n t},$
	onde $w_n = \frac{2\pi n}{T}$, T é o período de $f(t)$	onde $C_n = \frac{a_n - ib_n}{2}$
	$a_0 = \frac{2}{T} \int_0^T f(t)dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t)dt,$	
	$a_n = \frac{2}{T} \int_0^T f(t) \cos(w_n t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(w_n t) dt,$	
	$b_n = \frac{2}{T} \int_0^T f(t) \sin(w_n t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(w_n t) dt$	
Transformada de Fourier	$f(t) = \frac{1}{\pi} \int_0^\infty \left(A(w) \cos(wt) + B(w) \sin(wt) \right) dw, \text{ para } f(t) \text{ real,}$ onde $A(w) = \int_{-\infty}^\infty f(t) \cos(wt) dt \text{ e } B(w) = \int_{-\infty}^\infty f(t) \sin(wt) dt$	$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w)e^{iwt}dw,$ onde $F(w) = \int_{-\infty}^{\infty} f(t)e^{-iwt}dt$

Tabela de integrais definidas:

Tabela de integrais definidas:	
1. $\int_0^\infty e^{-ax} \cos(mx) dx = \frac{a}{a^2 + m^2} \qquad (a > 0)$	2. $\int_0^\infty e^{-ax} \sin(mx) dx = \frac{m}{a^2 + m^2} \qquad (a > 0)$
3. $\int_0^\infty \frac{\cos(mx)}{a^2 + x^2} dx = \frac{\pi}{2a} e^{-ma} \qquad (a > 0, \ m \ge 0)$	4. $\int_0^\infty \frac{x \sec(mx)}{a^2 + x^2} dx = \frac{\pi}{2} e^{-ma} \qquad (a \ge 0, \ m > 0)$
5. $ \int_0^\infty \frac{\sin(mx)\cos(nx)}{x} dx = \begin{cases} \frac{\pi}{2}, & n < m \\ \frac{\pi}{4}, & n = m, & (m > 0, \\ n > 0) \\ 0, & n > m \end{cases} $	6. $ \int_0^\infty \frac{\sin(mx)}{x} dx = \begin{cases} \frac{\pi}{2}, & m > 0 \\ 0, & m = 0 \\ -\frac{\pi}{2}, & m < 0 \end{cases} $
7. $\int_0^\infty e^{-r^2 x^2} dx = \frac{\sqrt{\pi}}{2r} \qquad (r > 0)$	8. $\int_0^\infty e^{-a^2x^2} \cos(mx) dx = \frac{\sqrt{\pi}}{2a} e^{-\frac{m^2}{4a^2}} \qquad (a > 0)$
9. $\int_0^\infty x e^{-ax} \sin(mx) dx = \frac{2am}{(a^2 + m^2)^2} \qquad (a > 0)$	10. $\int_0^\infty e^{-ax} \operatorname{sen}(mx) \cos(nx) dx =$
	$= \frac{m(a^2 + m^2 - n^2)}{(a^2 + (m-n)^2)(a^2 + (m+n)^2)} (a > 0)$
11. $\int_0^\infty x e^{-ax} \cos(mx) dx = \frac{a^2 - m^2}{(a^2 + m^2)^2} \qquad (a > 0)$	12. $\int_0^\infty \frac{\cos(mx)}{x^4 + 4a^4} dx = \frac{\pi}{8a^3} e^{-ma} (\sin(ma) + \cos(ma))$
13. $\int_0^\infty \frac{\sin^2(mx)}{x^2} dx = m \frac{\pi}{2}$	14. $erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-z^2} dz$
15. $ \int_0^\infty \frac{\sin^2(ax)\sin(mx)}{x} dx = \begin{cases} \frac{\pi}{4}, & (0 < m < 2a) \\ \frac{\pi}{8}, & (0 < 2a = m) \\ 0, & (0 < 2a < m) \end{cases} $	16. $ \int_0^\infty \frac{\sin(mx)\sin(nx)}{x^2} dx = \begin{cases} \frac{\pi m}{2}, & (0 < m \le n) \\ \frac{\pi n}{2}, & (0 < n \le m) \end{cases} $
17. $\int_0^\infty x^2 e^{-ax} \operatorname{sen}(mx) dx = \frac{2m(3a^2 - m^2)}{(a^2 + m^2)^3} \qquad (a > 0)$	18. $\int_0^\infty x^2 e^{-ax} \cos(mx) dx = \frac{2a(a^2 - 3m^2)}{(a^2 + m^2)^3} (a > 0)$
19. $\int_0^\infty \frac{\cos(mx)}{(a^2 + x^2)^2} dx = \frac{\pi}{4a^3} (1 + ma)e^{-ma} (a > 0, m \ge 0)$	20. $\int_0^\infty \frac{x \sin(mx)}{(a^2 + x^2)^2} dx = \frac{\pi m}{4a} e^{-ma} (a > 0, \ m > 0)$
21. $\int_0^\infty \frac{x^2 \cos(mx)}{(a^2 + x^2)^2} dx = \frac{\pi}{4a} (1 - ma) e^{-ma} (a > 0, m \ge 0)$	22. $\int_0^\infty x e^{-a^2 x^2} \operatorname{sen}(mx) dx = \frac{m\sqrt{\pi}}{4a^3} e^{-\frac{m^2}{4a^2}} (a > 0)$

Frequências das notas musicais em Hertz:

Nota \ Escala	1	2	3	4	5	6
Dó	65,41	130,8	261,6	523,3	1047	2093
Dó #	69,30	138,6	277,2	554,4	1109	2217
Ré	73,42	146,8	293,7	587,3	1175	2349
Ré #	77,78	155,6	311,1	622,3	1245	2489
Mi	82,41	164,8	329,6	659,3	1319	2637
Fá	87,31	174,6	349,2	698,5	1397	2794
Fá ‡	92,50	185,0	370,0	740,0	1480	2960
Sol	98,00	196,0	392,0	784,0	1568	3136
Sol #	103,8	207,7	415,3	830,6	1661	3322
Lá	110,0	220,0	440,0	880,0	1760	3520
Lá ‡	116,5	233,1	466,2	932,3	1865	3729
Si	123,5	246,9	493,9	987,8	1976	3951

Identidades Trigonométricas:

$$\cos(x)\cos(y) = \frac{\cos(x+y) + \cos(x-y)}{2}$$
$$\sin(x)\sin(y) = \frac{\cos(x-y) - \cos(x+y)}{2}$$
$$\sin(x)\cos(y) = \frac{\sin(x+y) + \sin(x-y)}{2}$$

Integraic

$$\int xe^{\lambda x} dx = \frac{e^{\lambda x}}{\lambda^2} (\lambda x - 1) + C$$

$$\int x^2 e^{\lambda x} dx = e^{\lambda x} \left(\frac{x^2}{\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3} \right) + C$$

$$\int x^n e^{\lambda x} dx = \frac{1}{\lambda} x^n e^{\lambda x} - \frac{n}{\lambda} \int x^{n-1} e^{\lambda x} dx + C$$

$$\int x \cos(\lambda x) dx = \frac{\cos(\lambda x) + \lambda x \sin(\lambda x)}{\lambda^2} + C$$

$$\int x \sin(\lambda x) dx = \frac{\sin(\lambda x) - \lambda x \cos(\lambda x)}{\lambda^2} + C$$

• Questão 1 (1.0 ponto) Considere a função $f(t) = 8\cos^4(t)$. Calcule os coeficientes da expansão em série de Fourier de f(t) e assinale na primeira coluna a representação trigonométrica e na segunda a representação exponencial.

()
$$3+8\sum_{n=1}^{\infty} \left(\frac{1}{2n+1}\cos(2nt) + \frac{n}{2n+1}\sin(2nt)\right)$$

()
$$\sum_{n=-\infty}^{\infty} \left(\frac{3}{2n+1} - \frac{in}{2n^2+1} \right) e^{2nit}$$

()
$$3 + \sum_{n=1}^{\infty} \frac{1}{2n} e^{2int}$$

()
$$3 + \sum_{n=1}^{\infty} \frac{1}{2n} \cos(2nt)$$

()
$$3 + 4\cos(t) + 2\cos(2t) + \cos(3t) + \frac{1}{2}\cos(4t)$$

()
$$\frac{i}{2}e^{-4it} + 2e^{-2it} + 3 + 2e^{2it} - \frac{i}{2}e^{4it}$$

(X)
$$3 + 4\cos(2t) + \cos(4t)$$

(X)
$$\frac{1}{2}e^{-4it} + 2e^{-2it} + 3 + 2e^{2it} + \frac{1}{2}e^{4it}$$

()
$$3 + 4 \operatorname{sen}(t) + 2 \operatorname{sen}(2t)$$

e, na segunda, a frequência angular fundamental.

()
$$\frac{i}{2}e^{-2it} + 2ie^{-it} + 3 - 2ie^{it} - \frac{i}{2}e^{2it}$$

• Questão 2 (1.0 ponto) Considere a função periódica f(t) = sen(4t) + sen(6t) + sen(8t). Marque na primeira coluna o período fundamental

() 1

() 1

() 2

(X) 2

() 4

() 4

(X) π

() 4

 $() 2\pi$

() 2π

$$()$$
 4π

() 4π

• Questão 3 (1.0 ponto) Considere os diagramas de espetro de magnitude e de fase da transformada de Fourier $F(w) = \mathcal{F}\{f(t)\}$ dados nos gráficos abaixo:

Assinale na primeira coluna F(w)e, na segunda, a correta afirmação sobre f(t).

assinale na primeira coluna
$$F(w)$$
 e, na
$$() \ F(w) = \left\{ \begin{array}{ll} 1, & -1 \leq w \leq 1 \\ w+2, & w<-1 \\ 2-w, & w>1 \end{array} \right.$$

$${\rm (X)} \ \ f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w) e^{iwt} dw$$

()
$$F(w) = \begin{cases} 1, & -1 \le w \le 1 \\ w+2, & -2 < w < -1 \\ 2-w, & 1 < w < 2 \\ 0, & |w| \ge 2 \end{cases}$$

$$(\)\ f(t) = \int_{-\infty}^{\infty} F(w)e^{-iwt}dw$$

$$(\mathbf{X}) \ F(w) = \left\{ \begin{array}{ll} e^{-iw/2}, & -1 \leq w \leq 1 \\ (w+2)e^{-iw/2}, & -2 < w < -1 \\ (2-w)e^{-iw/2}, & 1 < w < 2 \\ 0, & |w| \geq 2 \end{array} \right.$$

$$() f(t) = \left\{ \begin{array}{ll} e^{-it/2}, & -1 \leq t \leq 1 \\ (t+2)e^{-it/2}, & -2 < t < -1 \\ (2-t)e^{-it/2}, & 1 < t < 2 \\ 0, & |t| \geq 2 \end{array} \right.$$

$$() F(w) = \left\{ \begin{array}{ll} e^{-iw}, & -1 \leq w \leq 1 \\ (w+2)e^{-iw}, & -2 < w < -1 \\ (2-w)e^{-iw}, & 1 < w < 2 \\ 0, & |w| \geq 2 \end{array} \right.$$

$$() f(t) = \left\{ \begin{array}{ll} e^{-it}, & -1 \le t \le 1 \\ (t+2)e^{-it}, & -2 < t < -1 \\ (2-t)e^{-it}, & 1 < t < 2. \end{array} \right.$$

() Não há suficiente informação para conhecer F(w)

() Não há suficiente informação para conhecer f(t)

ullet Questão 5 (1.0 ponto) Considere o diagrama de espectro de magnitudes da Transformada de Fourier da funç ao f(t) dados nos gráficos abaixo. Assinale na primeira coluna a alternativa que representa o diagrama de espectro de magnitudes de $g(t) = \frac{1}{2}f'(t)$ e, na segunda, o diagrama de espectro de magnitudes de $h(t) = 2f(t)\cos\left(\frac{5}{2}t\right)$.

$$f(x) = \begin{cases} 2 & \text{se } 0 < x < 1, \\ 0 & \text{caso contrário.} \end{cases}$$

$$() \frac{2\operatorname{sen}(k)}{k}$$

$$() \frac{2\operatorname{sen}(k)}{k} + i\frac{2\cos(k)}{k}$$

$$() \frac{2\operatorname{sen}(k)}{k} + 2i\left(\frac{\cos(k)}{k} - 1\right)$$

$$(\)\ \frac{2\sin(k)-2}{k}+2i\frac{\cos(k)}{k}$$

(X)
$$\frac{2\operatorname{sen}(k)}{k} + 2i\frac{\cos(k) - 1}{k}$$

Assinale na primeira coluna
$$\mathcal{F}\{f(x)\}$$
 e, na segunda, $\mathcal{F}\{f(x)\cos(x)\}$.

(X) $\frac{2\sin(k)}{k}$ (X) $\frac{\sin(k+1)}{k+1} + \frac{\sin(k-1)}{k-1} + i\left(\frac{\cos(k+1)-1}{k+1} + \frac{\cos(k-1)-1}{k-1}\right)$

$$(\)\ \frac{\sin(k+1)}{k+1} + i\frac{\cos(k-1) - 1}{k-1}$$

$$() \frac{\sin(k+1)}{k} + \frac{\sin(k-1)}{k} + i \left(\frac{\cos(k+1) - 1}{k} + \frac{\cos(k-1) - 1}{k} \right)$$

()
$$\frac{\sin(k-1)}{k-1} + i\frac{\cos(k+1)-1}{k+1}$$

$$(\)\ \frac{\sin(k+1)}{k+1} + \frac{\sin(k+1)}{k+1} + i\left(\frac{\cos(k-1)-1}{k-1} + \frac{\cos(k-1)-1}{k-1}\right)$$

• Questão 7 (2.0 ponto) Calcule a série de Fourier para a seguinte função periódica:

Solução: Observamos que T=3 e $w_n=\frac{2\pi n}{3}$.

$$a_0 = \frac{2}{3} \int_0^3 f(t)dt = \frac{2}{3} \left(\int_0^1 1dt + \int_1^2 (2-t)dt \right) = \frac{2}{3} \left(1 + \left(2t - \frac{t^2}{2} \right) \Big|_1^2 \right) = 1$$

$$a_{n} = \frac{2}{3} \int_{0}^{3} f(t) \cos(w_{n}t) dt$$

$$= \frac{2}{3} \left(\int_{0}^{1} \cos(w_{n}t) dt + \int_{1}^{2} (2-t) \cos(w_{n}t) dt \right)$$

$$= \frac{2}{3} \left(\int_{0}^{1} \cos(w_{n}t) dt + 2 \int_{1}^{2} \cos(w_{n}t) dt - \int_{1}^{2} t \cos(w_{n}t) dt \right)$$

$$= \frac{2}{3} \left(\frac{\sin(w_{n}t)}{w_{n}} \Big|_{0}^{1} + 2 \frac{\sin(w_{n}t)}{w_{n}} \Big|_{1}^{2} - \frac{t \sin(w_{n}t)}{w_{n}} \Big|_{1}^{2} + \int_{1}^{2} \frac{\sin(w_{n}t)}{w_{n}} dt \right)$$

$$= \frac{2}{3} \left(\frac{\sin(w_{n})}{w_{n}} + 2 \frac{\sin(2w_{n})}{w_{n}} - 2 \frac{\sin(w_{n})}{w_{n}} - \frac{2 \sin(2w_{n})}{w_{n}} + \frac{\sin(w_{n})}{w_{n}} - \frac{\cos(w_{n}t)}{w_{n}^{2}} \Big|_{1}^{2} \right)$$

$$= \frac{2}{3} \left(\frac{\cos(w_{n})}{w_{n}^{2}} - \frac{\cos(2w_{n})}{w_{n}^{2}} \right)$$

$$= \frac{2}{3} \left(\frac{\cos(\frac{2\pi n}{3})}{4\pi^{2}n^{2}} - \frac{9\cos(\frac{4\pi n}{3})}{4\pi^{2}n^{2}} \right)$$

$$= \frac{3}{2} \left(\frac{\cos(\frac{2\pi n}{3})}{\pi^{2}n^{2}} - \frac{\cos(\frac{4\pi n}{3})}{\pi^{2}n^{2}} \right)$$

$$b_{n} = \frac{2}{3} \int_{0}^{3} f(t) \operatorname{sen}(w_{n}t) dt$$

$$= \frac{2}{3} \left(\int_{0}^{1} \operatorname{sen}(w_{n}t) dt + \int_{1}^{2} (2-t) \operatorname{sen}(w_{n}t) dt \right)$$

$$= \frac{2}{3} \left(\int_{0}^{1} \operatorname{sen}(w_{n}t) dt + 2 \int_{1}^{2} \operatorname{sen}(w_{n}t) dt - \int_{1}^{2} t \operatorname{sen}(w_{n}t) dt \right)$$

$$= \frac{2}{3} \left(-\frac{\cos(w_{n}t)}{w_{n}} \Big|_{0}^{1} - 2 \frac{\cos(w_{n}t)}{w_{n}} \Big|_{1}^{2} + \frac{t \cos(w_{n}t)}{w_{n}} \Big|_{1}^{2} - \int_{1}^{2} \frac{\cos(w_{n}t)}{w_{n}} dt \right)$$

$$= \frac{2}{3} \left(\frac{1 - \cos(w_{n})}{w_{n}} + 2 \frac{\cos(w_{n})}{w_{n}} - 2 \frac{\cos(2w_{n})}{w_{n}} + \frac{2 \cos(2w_{n})}{w_{n}} - \frac{\cos(w_{n}t)}{w_{n}} - \frac{\sin(w_{n}t)}{w_{n}^{2}} \Big|_{1}^{2} \right)$$

$$= \frac{2}{3} \left(\frac{1}{w_{n}} + \frac{\sin(w_{n})}{w_{n}^{2}} - \frac{\sin(2w_{n})}{w_{n}^{2}} \right)$$

$$= \frac{2}{3} \left(\frac{3}{2\pi n} + \frac{9 \sin(\frac{2\pi n}{3})}{4\pi^{2}n^{2}} - \frac{9 \sin(\frac{4\pi n}{3})}{4\pi^{2}n^{2}} \right)$$

$$= \frac{1}{\pi n} + \frac{3 \sin(\frac{2\pi n}{3})}{2\pi^{2}n^{2}} - \frac{3 \sin(\frac{4\pi n}{3})}{2\pi^{2}n^{2}}.$$

	n = 0	n = 1	n=2	n = 3	n=4	n = 5	n=6	n = 7	n = 8
a_n	1	0	0	0	0	0	0	0	0
b_n	/	$\frac{1}{\pi} + \frac{3\sqrt{3}}{2\pi^2}$	$\frac{1}{2\pi} - \frac{3\sqrt{3}}{8\pi^2}$	$\frac{1}{3\pi}$	$\frac{1}{4\pi} + \frac{3\sqrt{3}}{32\pi^2}$	$\frac{1}{5\pi} - \frac{3\sqrt{3}}{50\pi^2}$	$\frac{1}{6\pi}$	$\frac{1}{7\pi} + \frac{3\sqrt{3}}{98\pi^2}$	$\frac{1}{8\pi} - \frac{3\sqrt{3}}{128\pi^2}$

• Questão 8 (2.0 pontos) Resolva o seguinte problema de difusão de calor com velocidade:

$$u_t + 3u_x - u_{xx} = 0$$
$$u(x, 0) = 120\delta(x).$$

Solução: Usamos a notação $\mathcal{F}\{u(x,t)\}=U(k,t)$ e aplicamos a Transformada de Fourier para obter

$$U_t = -3ikU - k^2U$$

$$U(k,0) = 120.$$

A solução da equação acima é calculada por separação de variáveis:

$$U(k,t) = 120e^{-3ik-k^2} = 120e^{-3ikt}e^{-k^2t}.$$

Calculamos a transformada inversa da seguinte forma:

i) Transformada inversa da função e^{-k^2t} :

$$\mathcal{F}\left\{e^{-k^2t}\right\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-k^2t} e^{ikx} dk$$
$$= \frac{1}{\pi} \int_{0}^{\infty} e^{-k^2t} \cos(kx) dk = \frac{1}{\sqrt{4\pi t}} e^{-\frac{x^2}{4t}}$$

ii) Transformada inversa da função $120e^{-3ik}e^{-k^2}$ usando a propriedade do deslocamento:

$$u(x,t) = \mathcal{F}\left\{120e^{-3ikt}e^{-k^2t}\right\} = \frac{60}{\sqrt{\pi t}}e^{-\frac{(x-3t)^2}{4t}}$$