Integer Programming ISE 418

Lecture 26

Dr. Ted Ralphs

Reading for This Lecture

- N&W Sections I.5.3-I.5.6
- Wolsey Chapter 6
- CCZ Chapter 1
- "Computers and Intractability: A Guide to the Theory of NP-Completeness," Garey and Johnson

Complexity Classes

- In the last lecture, we discussed the concept of a running time function, as a way of comparing both algorithms and problems.
- The running time function can be used to separate problems into equivalence classes, but this classification is too fine-grained.
- We typically want to know something simpler than the exact running time function, e.g., whether the problem is solvable in polynomial time.
- In this lecture, we'll describe the classes into which problems are divided in the classical theory of NP-completeness.
- This is the scheme used in the vast majority of the literature on mathematical optimization.
- We'll also see that placing problems into classes can be done not only by determining the running time function, but also by reduction.

Decision Problems and Optimization Problems

• A decision problem or feasibility problem is a problem for which the answer is either yes or no.

- For primarily historical reasons, complexity theory is defined in terms of decision problems.
- Any optimization problem can be solved by a sequence of decision problems (why?).
- Example: The Bin Packing Problem
 - We are given a set S of items, each with a specified integral size, and a specified constant C, the size of a bin.
 - Optimization problem: Determine the smallest number of subsets into which one can partition S such that the total size of the items in each subset is at most C.
 - Decision problem: For a given constant K, determine whether S can be partitioned into K subsets such that that the total size of the items in each subset is at most C.

Certificates

• A *certificate* is a "proof" we can check that certifies the output of a given computation is correct.

- It is often possible to check the validity of such a certificate more efficiently than to solve the original problem.
- Suppose you had the optimal solution to an LP and wanted to prove to someone else it was optimal.
- You could simply produce the primal and dual solutions.
- Can optimality be verified in polynomial time?
 - In O(mn) operations, one could verify optimality.
 - However, what is the magnitude of the numbers?
 - They are the ratio of two integers, each of which can be represented in a size that is polynomially bounded.
- The information that can be used to check the results of a computation is called a *certificate*.

Certificate and Algorithms

- A certificate that can be checked in polynomial time is said to be short.
- One way of producing a certificate is just to record the sequence of steps that resulted in the answer.
- Thus, every polynomially solvable problem has a short certificate.
- It is not known whether every problem with a short certificate is polynomially solvable.
- Until 1979, linear programming was one problem with a short certificate that was not known to be polynomially solvable.
- The Perfect Matching Problem
 - Recall we derived a complete description of the perfect matching polytope.
 - Although the formulation has an exponential number of constraints, this yields a polynomial certificate.
 - This problem can in fact be solved in polynomial time.

Certificates for Decision Problems

• For many decision problems, there is a short certificate only in the case of one of the two possible answers.

- Typically, the problem is formulated such that the answer with a short certificate is YES).
- <u>(Imperfect) Example</u>: The meeting room problem
 - Decision: Is there anyone in this room that I don't know?
 - There is a short certificate for the YES answer. What is it?
- Example: General integer programming
 - What is the decision version of this problem?
 - Is there a short certificate?

Problem Reduction

- Recall that mixed integer linear optimization is a *special case* of general mathematical optimization.
- If we had a fast algorithm for solving general mathematical optimization problems, we would be able to solve MILPs as well.
- Similarly, the Traveling Salesman Problem is a special case of pure integer linear optimization.
- Hence, general integer programming is, in some sense, at least as difficult
 as the TSP.
- Starting from a few problems that we analyze from first principles, we can divide problems into classes using the concept of *reduction*.

Polynomial Reduction

- Suppose we are given two problems X_1 and X_2 .
- We want to show that if we solve one, we can also solve the other.
- We say X_1 is polynomially reducible to X_2 if
 - 1. there is an algorithm for X_1 that uses the algorithm for X_2 as a subroutine, and
 - 2. the algorithm runs in polynomial time under the assumption that the subroutine runs in constant time.
- This implies immediately that if X_2 is polynomially solvable and X_1 is polynomially reducible to X_2 , then X_1 is polynomially solvable.
- A subroutine that we assume runs in constant time for the purpose of doing a reduction is called an *oracle*.
- Using polynomial reduction to divide problems has pros and cons.
 - One one hand, "equivalence" can be determined without knowing the precise running time functions.
 - On the other hand, the classes obtained in this way are much less "fine-grained."

More Formally

• The formal model of computation underlying the analysis of decision problems is referred to as a *deterministic Turing machine* (DTM).

- A DTM specifies an algorithm computing the value of a Boolean function.
- The DTM executes a program, reading the input from a tape.
- We equate a given DTM with the program it executes.
- The output is YES or NO.
- A YES answer is returned if the machine reaches an accepting state.
- A problem is specified in the form of a language.
- The language is the subset of the possible inputs over a given *alphabet* (Γ) that are expected to output YES.
- A DTM that produces the correct output for inputs w.r.t. a given language is said to *recognize the language*.
- Informally, we can then say that the DTM represents an "algorithm that solves the given problem correctly."

Non-deterministic Turing Machines

• A *non-deterministic Turing machine* (NDTM) can be thought of as a Turing machine with an infinite number of parallel processors.

- An NDTM follows all possible execution paths simultaneously.
- It returns YES if an accepting state is reached on any path.
- The running time of an NDTM is the *minimum* running time (length) of any execution paths that end in an accepting state.
- The running time is the minimum time required to verify that some path (given as input) leads to an accepting state.

Complexity Classes

 As described previously, languages are grouped into classes based on the best worst-case running time function of any TM that recognizes the language.

- The running time function is as described previously.
 - The class P is the set of all languages for which there exists a DTM that recognizes the language in time polynomial in the length of the input.
 - The class NP is the set of all languages for which there exists an NDTM that recognizes the language in time polynomial in the length of the input.
 - The class coNP is the set of languages whose complements are in NP.
- Additional classes are formed hierarchically by the use of oracles.

Reduction

ullet A problem specified by a language L_1 can be *reduced* to a problem specified by a language L_2 if there is a polynomial time transformation of strings that maps

- each string in L_1 to a string in L_2 , and
- each string not in L_1 to a string not in L_2 .
- ullet A problem specified by a language L is said to be *complete* for a class if all problems in the class can be reduced to it.

Another Way to Think About It

- A nondeterministic algorithm is an algorithm that corresponds to an NDTM.
- The input to the algorithm is a string $s \in \Gamma^*$.
- Conceptually we can think of the algorithm as having two stages
 - Guessing Stage: Randomly guess a string q (the certificate).
 - Checking Stage: Check whether q can be used to verify that $d \in L$. If so, output YES. If not, there is no output.
- There are two properties required.
 - We require that if $d \in L$, then there must exist a certificate that verifies the feasibility of d.
 - The running time of the algorithm is the maximum time it takes to check a certificate that verifies $d \in L$.

NDTMs and Certificates

- Non-deterministic algorithms are so called because the guessing stage is random.
- We can use the description of the path that eventually leads to an accepting state as the certificate.
- If the running time of the NDTM is polynomial, then the certificate for the YES answer is therefore short.
- If no accepting path is found, there is no short certificate in general.
 - The YES answer is an "existential" statement $(?\exists x \text{s.t.}...)$.
 - The *NO* answer is a "universal" statement $(\forall x \dots)$
- Another way of describing the class NP is the class for which there exists a certificate for the YES answer that can be checked in polynomial time.
- Examples of problems in NP.
 - General integer programming feasibility.
 - The decision version of bin packing.

P, NP, and coNP

- The class of problem for which *deterministic* polynomial-time algorithms exist is denoted P.
- Obviously, P is a subset of NP.
- It is not known whether P = NP (the million dollar question).
- coNP is the class of problems for which the complement is in NP.
- In other words, it is the class of decision problem for which there is a certificate verifying a no answer.
- P is also a subset of coNP.
- If the decision version of an optimization problem is in $NP \cap coNP$, then there exists a certificate of optimality.
- It is unlikely that there exist many problems in $NP \cap coNP$ that are not also in P.

The Class NP-complete

- It is interesting to ask what are the hardest problems in NP?
- We say that a problem X is *complete* for NP if every problem in NP is polynomially reducible to X.
- Surprisingly, such problems exist!
- Even more surprisingly, this class contains almost every interesting integer programming problem that is not known to be in P!
 - **Proposition 1.** If $X \in NPC$, then $X \in P \Leftrightarrow P = NP$.

Proposition 2. If $X_1 \in NPC$ and X_1 is polynomially reducible to X_2 , then $X_2 \in NPC$.

The Satisfiability Problem

- This is the first problem proven to be NP-complete.
- The problem is described by
 - 1. a finite set $N = \{1, \dots, n\}$ (the *literals*), and
 - 2. m pairs of subsets of N, $C_i = (C_i^+, C_i^-)$ (the *clauses*).
- An instance is feasible if the set

$$\left\{ x \in \mathbb{B}^n \| \sum_{j \in C_i^+} x_j + \sum_{j \in C_i^-} (1 - x_j) \ge 1 \text{ for } i = 1, \dots, m \right\}$$

is nonempty.

- This problem is obviously in NP (why?).
- In 1971, Cook defined the class NP and showed that satisfiability was NP-complete, even if each clause only contains three literals.
- The proof is beyond the scope of this course.

Proving NP-completeness

- After satisfiability was proven to be NP-complete, it was easy to prove many other problems NP-complete.
- This is done by polynomial reduction.
- Example: The k-Clique Problem
 - Does a given graph have a clique of size k?
 - Although it seems simple, this problem is \mathcal{NP} -complete.
 - This problem is easily shown to be in NP.
 - To prove it is in NP-complete, we reduce 3-satisfiability to it.

The Line Between P and NP-complete

 Generally speaking, most interesting problems are either known to be in P or are NP-complete.

- The problems known to be in P are generally "easy" to solve.
- The problems in NPC are generally "hard" to solve.
- This is very intriguing!
- The line between these two classes is also very thin!
 - Consider a 0-1 matrix A, an cost vector $c \in \mathbb{Z}^n$, $z \in \mathbb{Z}$ defining the decision problem

$$\{x \in \mathbb{B}^n | | Ax \le 1, cx \ge z\}$$

- If we limit the number of nonzero entries in each column to 2, then this problem is known to be in P (what is it?).
- If we allow the number of nonzero entries in each column to be three, then this problem is NP-complete!

NP-hard Problems

- The class NP-hard extends NP-complete to include problems that are not in NP.
- If $X_1 \in NPC$ and X_1 reduces to X_2 , then X_2 is said to be NP-hard.
- Thus, all NP-complete problems are NP-hard.
- The primary reason for this definition is so we can classify optimization problems that are not in NP.
- It is common for people to refer to optimization problems as being NP-complete, but this is technically incorrect.

Theory versus Practice

- In practice, it is true that most problem known to be in P are "easy" to solve.
- This is because most known polynomial time algorithms are of relatively low order.
- It seems very unlikely that P = NP.
- If so, the reduction is likely to be prohibitively expensive.
- For similar reasons, although all NP-complete problems are "equivalent" in theory, they are not in practice.
- TSP vs. QAP

Wrap-up

- There are many other possible ways of analyzing complexity.
- Others have been discussed, but this one seems to be the best anyone has come up with.
- If someone resolves whether P = NP, we will have to come up with something new.