Raymarching

Raymarching

Step along a ray until hit or max distance

Surfaces that can be described by a function

$$y = f(x, z)$$

Examples: terrain, measurements sampled on a plane, 2D scalar field

1	2	1	2	2	1
2	1	2	1	10	1
3	1	2	6	9	0
4	1	2	5	0	0
5	1	2	3	0	0
6	1	2	2	1	0

Grid that stores a height at each position

1	2	1	2	2	1
2	1	2	1	10	1
3	1	2	6	9	0
4	1	2	5	0	0
5	1	2	3	0	0
6	1	2	2	1	0

Can use mathematical function to create grid values

Can use texture to store grid

Can render with different methods

Raymarching Height Field

Step with small increments along ray

Raymarching Height Field

- Step with small increments along Interval bisection ray

Shadowing

Send shadow feeler ray

Accelerating Heightfield Rendering

- Help texture
 - Each texel stores cone of empty space above
 - Only store opening angle (1 additional value per texel)

Calculating Height Field Normals

•
$$\mathbf{d}x = \begin{pmatrix} f(P_x + \varepsilon, P_z) - f(P_x, P_z) \end{pmatrix} y$$

$$f(P_x, P_z)$$

$$f(P_x + \varepsilon, P_z)$$

$$f(P_x + \varepsilon, P_z)$$

Calculating Height Field Normals

Calculating Height Field Normals

$$\mathbf{d}x = \begin{pmatrix} \varepsilon \\ f(P_x + \varepsilon, P_z) - f(P_x, P_z) \\ 0 \end{pmatrix}$$

$$dz = \begin{pmatrix} 0 \\ f(P_x, P_z + \varepsilon) - f(P_x, P_z) \\ \varepsilon \end{pmatrix}$$

$$\mathbf{n} = \|\mathbf{d}z \times \mathbf{d}x\| = \begin{vmatrix} f(P_x, P_z) - f(P_x + \varepsilon, P_z) \\ \varepsilon \\ f(P_x, P_z) - f(P_x, P_z + \varepsilon) \end{vmatrix}$$