Optical Network Design for Connecting CS College to Central Office

NAME: KAREEM ABD ELTAWAB HAMAD ABD ELGHNY

ID / 202205181

Assumptions and Requirements

- 1. **Distance**: The central office is 10 km away from the college.
- 2. College Building:
 - Four floors.
 - o Each floor has four labs (16 labs total).
 - o Each lab needs to be connected to the network.
- 3. Power Budget: The power budget must be between 13 and 28 dB.
- 4. **Objective**: Design a cost-effective optical network.

Network Design

Components

- 1. Optical Fiber:
 - o Single-mode fiber (SMF) with an attenuation of 0.35 dB/km at 1310 nm.
 - Total fiber length = 10 km + internal building connections (~2 km estimated).
 - o Total attenuation due to fiber = (12 km) * (0.35 dB/km) = 4.2 dB.

2. Transceivers:

- Use SFP transceivers with a power budget of 20 dB (typical range 13-28 dB).
- o Operating wavelength: 1310 nm.
- Cost: Approximately \$50 per unit.

3. Optical Splitters:

- 1:16 splitter for the labs.
- o Insertion loss of 13 dB (worst case).

4. Patch Panels and Connectors:

- o 2 dB loss per connector pair (4 connector pairs total).
- Total connector loss = 4 * 2 dB = 8 dB.

5. Internal Cabling:

- Estimated length = 2 km with 0.5 dB/km attenuation.
- Total attenuation = 2 km * 0.5 dB/km = 1 dB.

6. **Optical Amplifier** (if required):

o Not required as the total losses are within the power budget.

Link Power Budget Calculation

1. Loss Budget:

- Fiber attenuation = 4.2 dB.
- Splitter loss = 13 dB.
- Connector loss = 8 dB.
- Internal cabling = 1 dB.
- Total Loss = 4.2 + 13 + 8 + 1 = 26.2 dB.

2. Power Margin:

Transceiver budget = 28 dB (max).

 \circ Remaining margin = 28 – 26.2 = **1.8 dB** (acceptable).

Topology and Architecture

- 1. **Topology**: Point-to-multipoint (P2MP) architecture.
 - o Central office connects to a single optical splitter located in the college.
 - o Each splitter output connects to individual labs.

2. Internal Network:

- o A riser cable connects each floor's labs to the splitter.
- o Horizontal cabling connects labs on the same floor.

Cost Estimation

- 1. Optical Fiber:
 - o 12 km * \$0.25/m = \$3000.
- 2. Transceivers:
 - o 16 (1 per lab) + 1 (central office) = 17 units.
 - o 17 * \$50 = \$850.
- 3. Optical Splitters:
 - 1 splitter * \$100 = \$100.
- 4. Connectors and Patch Panels:
 - Estimated cost = \$200.
- 5. Miscellaneous:
 - Installation and labor = \$1000.

Total Cost = \$3000 + \$850 + \$100 + \$200 + \$1000 = \$5150.

Conclusion

The proposed optical network satisfies the requirements with a total power budget of 26.2 dB, which is within the acceptable range of 13-28 dB. The design uses cost-effective components to connect all 16 labs to the central office at a total cost of approximately \$5150.