EKSAMEN

Algoritmer og Datastrukturer

Torsdag 27. maj 2021, 9:00-11:00

Institut for Datalogi, Naturvidenskabelige Fakultet, Aarhus Universitet

Antal sider i opgavesættet (incl. forsiden): 14

Tilladte medbragte hjælpemidler:

Alle, inklusive internet.

Det er ikke tilladt at kommunikere med andre under eksamen.

Studienummer:

Navn:

Dokumentet skal udfyldes med Adobe Acrobat, som kan hentes fra https://get.adobe.com/reader/

Vejledning og pointgivning

Dette eksamenssæt består af en mængde multiple-choice-opgaver.

Opgaverne besvares på opgaveformuleringen som afleveres.

For hver opgave er angivet opgavens andel af det samlede eksamenssæt.

Hvert delspørgsmål har præcist et rigtigt svar.

For hvert delspørgsmål må du vælge **max ét svar** ved at afkrydse den tilsvarende rubrik.

Et delspørgsmål bedømmes som følgende:

- Hvis du sætter kryds ved det rigtige svar, får du 1 point.
- Hvis du ikke sætter nogen krydser, får du 0 point.
- Hvis du sætter kryds ved et forkert svar, får du $-\frac{1}{k-1}$ point, hvor k er antal svarmuligheder.

For en opgave med vægt v% og med n delspørgsmål, hvor du opnår samlet s point, beregnes din besvarelse af opgaven som:

$$\frac{s}{n} \cdot v \%$$

Bemærk at det er muligt at få negative point for en opgave.

Opgave 1 (Asymptotisk notation, 6%)

check

I det følgende angiver $\log n$ 2-tals-logaritmen af n.

Opgave 2 (Analyse af løkker, $6\,\%)$

loop1

loop2

loop3

loop4

check

```
Algoritme loop1(n) Algoritme loop2(n)
 s = 1
 for i = 1 to n * n
                       while i \leq n * n
                          i = 2 * i
    for j = 1 to n
       s = s + 1
Algoritme loop3(n) Algoritme loop4(n)
 i = 1
                       i = 1
 j = n * n
                       while i \leq n
 while i \leq j
                          j = i
                           while j > 0
    i = 2 * i
                             j = |j/2|
    j = j - 1
                           i = i + i
```

Angiv for hver af ovenstående algoritmer udførselstiden som funktion af n i Θ -notation.

$$\Theta(\sqrt{n})$$
 $\Theta(n^3)$ $\Theta(n)$ $\Theta(\sqrt[3]{n})$ $\Theta(n^2)$ $\Theta(\log n)$ $\Theta((\log n)^2)$ $\Theta(n\log n)$

Fra de hurtigste til de langsomste funktioner: $\log(n)$, $\sqrt[3]{n}$, \sqrt{n} , n, $n*\log(n)$, n^2 , n^3

Opgave 3 (Max-Heap-Insert, 4%)

check

Angiv den binære max-heap efter indsættelse af elementerne 6, 12, 13, 4, 8, 14 og 5 i den givne rækkefølge med MAX-HEAP-INSERT, startende med den tomme heap.

1	2	3	4	5	6	7
14	12	13	4	8	6	5
1	2	3	4	5	6	7
6	12	13	4	8	14	5
1	2	3	4	5	6	7
14	8	13	4	6	12	5
1	2	3	4	5	6	7
14	13	12	8	6	5	4
1	2	3	4	5	6	7
13	12	14	4	8	6	5

Opgave 4 (Heap-Extract-Max, 4%)

check

												13
25	24	20	13	23	16	15	1	9	4	3	12	14

Hvad er resultat af HEAP-EXTRACT-MAX på ovenstående max-heap?

1	2	3	4	5	6	7	8	9	10	11	12	13
24	23	20	13	4	16	15	1	9		3	12	14
1	2	3	4	5	6	7	8	9	10	11	12	
24	23	20	13	4	16	15	1	9	3	12	14	
1	2	3	4	5	6	7	8	9	10	11	12	
24	23	20	13	4	16	15	1	9	14	3	12	
1	2	3	4	5	6	7	8	9	10	11	12	
24	23	20	13	14	16	15	1	9	4	3	12	
1	2	3	4	5	6	7	8	9	10	11	12	
24	23	15	20	16	14	1	9	4	3	12	13	

Opgave 5 (Sorteringsalgoritmer, 4%)

check

Givet et array af størrelse n indeholdende tallene $1, 2, \ldots, n$ i voksende rækkefølge, hvad er worst-cast tiden for følgende sorteringsalgoritmer, når de anvendes på arrayet?

$$\Theta(n)$$
 $\Theta(n \log n)$ $\Theta(n^2)$

InsertionSort

HeapSort

MergeSort

QuickSort

Opgave 6 (Partition, 4%)

check

_	_	-	_	-	6		-	-							
21	17	28	14	9	18	6	1	26	15	30	7	13	19	2	

Angiv resultatet af at anvende Partition(A, 4, 13) på ovenstående array A.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
21	17	28	1	6	7	9	13	14	15	18	26	30	19	2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	2	6	7	9	13	14	15	17	18	19	21	26	28	30
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
21	17	28	9	6	1	7	13	14	18	26	15	30	19	2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
21	17	28	9	6	1	7	13	26	15	30	14	18	19	2

Opgave 7 (Indsættelser i søgetræer, $4\,\%)$

check

Angiv i hvilke blade A–K i ovenstående ubalancerede binære søgetræ elementerne 24, 18, 21, 17 og 8 skal indsættes (det antages at før hver indsættelse indeholder træet kun ovenstående ti elementer).

A B C D E F G H I J K

Insert(24)

INSERT(18)

Insert(21)

INSERT(17)

Insert(8)

Opgave 8 (Rød-sort træ, 4%)

check

For hver af nedenstående delmængder, angiv om nedenstående binære træ er et lovligt rød-sort træ hvis netop disse knuder farves røde.

Ja Nej

- 1, 3, 6, 8, 9
- 1, 8
- 1, 2, 4, 7, 8
- 1, 5, 8
- 1, 3, 7, 8

Opgave 9 (Indsættelse i rød-sort træer, 4%)

check

Angiv det resulterende rød-sorte træ når man indsætter 21 i ovenstående rød-sorte træ (dobbeltcirkler angiver røde knuder).

Opgave 10 (Lineær probing, 4%)

check

0	1	2	3	4	5	6	7	8	9	10
0			18		19	8				16

I ovenstående hashtabel af størrelse 11 er anvendt linear probing med hashfunktionen $h(k) = 2k \mod 11$.

Angiv positionerne de fem elementer 2, 3, 5, 7 og 11 vil blive indsat på i hashtabellen (for hver af indsættelserne antager vi at hashtabellen kun indeholder elementerne 0, 8, 16, 18 og 19).

 $0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10$

Insert(2)

Insert(3)

Insert(5)

INSERT(7)

Insert(11)

Opgave 11 (Union-find, 4%)

check

Angiv den resulterende union-find struktur efter nedenstående sekvens af operationer, når der anvendes union-by-rank og stikomprimering.

MAKESET(a)

MAKESET(b)MAKESET(c)MAKESET(d)MAKESET(e)MAKESET(f)UNION(e, a)UNION(a, f)

UNION(d, b)UNION(e, b)

UNION(c, f)

 ${\tt FIND\text{-}Set}(b)$

Opgave 12 (BFS, 4%)

check

For et bredde først gennemløb (BFS) af ovenstående graf **startende i knuden A**, angiv rækkefølgen knuderne bliver indsat i køen Q i BFS-algoritmen. Det antages, at grafen er givet ved incidenslister, hvor incidenslisterne er sorteret alfabetisk.

AGCHDIJEBF AGCJHDEIFB AGJCHDEIFB AGCJHDEIBF

Opgave 13 (DFS, 4%)

check

Betragt et dybde først gennemløb (DFS) af ovenstående graf, hvor DFS-gennemløbet starter i **knuden A**, hvor de udgående kanter til en knude besøges i alfabetisk rækkefølge. Angiv i hvilken rækkefølge knuderne får tildelt **discovery time**.

AGBCFHDEI ADEGBCFHI ADGEBHICF ADGIHBCFE

Angiv for hver af nedenstånde kanter hvilken type kanten bliver i DFS gennemløbet.

Tree edge Back edge Cross edge Forward edge

- (H, D)
- (A, G)
- (G, B)
- (H, F)

Opgave 14 (Dijkstras algoritme, 4%)

check

Antag Dijkstras algoritme anvendes til at finde korteste afstande fra **knuden A** til alle knuder i ovenstående graf. Angiv hvilken rækkefølge knuderne bliver taget ud af prioritetskøen i Dijkstra's algoritme.

ABCDGFE ABCDFEG ABGCDEF ABCFEDG

Opgave 15 (Prims algoritme, 4%)

check

Antag Prims algoritme anvendes til at finde et minimum udspændende træ for ovenstående graf, og algoritmen starter i **knuden A**. Angiv hvilken rækkefølge knuderne bliver inkluderet i det minimum udspændende træ (taget ud af prioritetskøen i Prims algoritme).

ACDBGEFH ACDEFBGH ACDBGHFE ACDEFGBH

Opgave 16 (Rekursionsligninger, 4%)

check

Angiv løsningen for hver af nedenstående rekursionsligninger, hvor T(n) = 1 for $n \leq 1$.

$$\Theta(\log n)$$
 $\Theta(\sqrt{n})$ $\Theta(n)$ $\Theta(n \log n)$ $\Theta(n^2)$ $\Theta(n^2 \log n)$ $\Theta(n^3)$

$$T(n) = 4 \cdot T(n/2) + n^2$$

$$T(n) = 2 \cdot T(n/5) + n$$

$$T(n) = T(n-1) + \log n$$

$$T(n) = T(n/4) + 5$$

$$T(n) = 4 \cdot T(n/2) + 1$$

Opgave 17 (Topologisk sortering, 4%)

check

Angiv for hver af nedenstående ordninger af knuderne i ovenstående graf om det er en lovlig topologisk sortering.

Ja Nej

DCBA

BCDA

ACBD

DCAB

CDBA

Opgave 18 (Amortiseret analyse)

check

En binær max-heap understøtter Insert og Heap-Extract-Max på en heap med n elementer i worst-case $O(\log n)$ tid. Bemærk den samme værdi kan være indsat flere gange i en max-heap. Vi ønsker nu at ændre Heap-Extract-Max, således at den fjerner alle forekomster af maximum værdien fra heapen, d.v.s. den oprindelige Heap-Extract-Max operation gentages indtil roden indeholder en mindre værdi eller at heapen er tom. Hvis maximum forekommer m gange i heapen, så vil Heap-Extract-Max operationen tage worst-case $O(m\log n)$ tid.

Angiv for hver af nedenstående funktioner om de er en potentialefunktion, hvormed man kan argumentere for at operationerne INSERT og HEAP-EXTRACT-MAX tager amortiseret $O(\log n)$ tid. Antal elementer i heapen betegnes n og antallet af forskellige elementer i heapen N, hvor $N \leq n$.

Ja Nej

n

N

n-N

 $n \cdot \log n$

 $N \cdot \log n$

 $(n-N) \cdot \log n$

Opgave 19 (Invarianter, 4%)

check

Givet et ikke-negativt heltal x og et positive heltal y, så beregner nedenstående algoritme |x/y|.

Algoritme Division(x,y)Inputbetingelse : Heltal $x \ge 0$ og $y \ge 1$ Outputkrav : $r = \lfloor x/y \rfloor$ Metode : $r \leftarrow 0$ $\{I\}$ while $x \ge y$ do $x \leftarrow x - y$ $r \leftarrow r + 1$

For hvert af følgende udsagn, angiv om de er en invariant I for algoritmen Division, hvor x_0 og y_0 angiver værdierne for henholdsvis x og y i starten.

Opgave 20 (Udvidede søgetræer, 4%)

check

For en sorteret liste af tal $x_1 \leq x_2 \leq \cdots \leq x_n$ definerer vi sum of square gaps (ssg) som $\sum_{i=2..n} (x_i - x_{i-1})^2$. Betragt et rød-sort træ hvor hver knude v gemmer et heltal v.x, og knuderne er ordnet venstre-mod-højre efter stigende v.x. Desuden gemmer v værdierne v.min, v.max og v.ssg, som er hhv. det mindste, største og sum of square gaps af elementerne i undertræet rodet i v.

Angiv hvorledes v.ssg kan beregnes når v.min, v.max og v.ssg er kendt ved de to børn v.l og v.r (det kan antages at disse begge eksisterer).

$$\begin{split} v.ssg &= v.l.ssg + v.r.ssg \\ v.ssg &= v.l.ssg + (v.r.min - v.l.max)^2 + v.r.ssg \\ v.ssg &= v.l.ssg + (v.x - v.l.max)^2 + (v.x - v.r.min)^2 + v.r.ssg \\ v.ssg &= v.l.ssg + (v.r.x - v.l.x)^2 + v.r.ssg \\ v.ssg &= v.l.ssg + (v.x - v.l.x)^2 + (v.x - v.r.x)^2 + v.r.ssg \end{split}$$

Dynamisk programmering

De næste fire opgaver vedrører at løse forbindelses problemet ved hjælp af dynamisk programmering. Vi er givet to mængder af knuder $U = \{u_1, \ldots, u_m\}$ og $V = \{v_1, \ldots, v_n\}$, som ligger på to parallelle linjer fra venstre-mod-højre. Vi ønsker at forbinde par af knuder (u_i, v_i) med rette linjer, således at ingen linjer overlapper på nær i endepunkter.

Hver mulig forbindelse (u_i, v_j) har en reel værdi w(i, j), muligvis negativ. Vi ønsker at finde en mængde af ikke-overlappende forbindelse med maksimal samlet værdi. For $0 \le i \le m$ og $0 \le j \le n$ lader vi W(i, j) angive den maksimale værdi man kan opnå ved at forbinde $\{u_1, \ldots, u_i\}$ med $\{v_1, \ldots, v_j\}$ med ikke-overlappende forbindelse

W(i,j) kan bestemmes ved følgende rekursionsformel.

$$W(i,j) = \begin{cases} 0 & i = 0 \text{ eller } j = 0 \\ \max\{0, w(i,j)\} + \max\{W(i-1,j), W(i,j-1)\} & \text{ellers} \end{cases}$$

De følgende 4 opgaver består i at udfylde 4 blokke i følgende algoritmeskabelon.

Algoritme Connect(w)

Opret tom tabel W[0..m,0..n]

Opgave 21 (4%)

check

For hver af nedenstående stykker kode, angiv om det vil kunne føre til en korrekt løsning.

for
$$i=0$$
 to m
for $j=0$ to n

for $j=0$ to n

for $i=0$ to m

for $i=m$ to 0 step -1
for $j=n$ to 0 step -1
for $i=0$ to m step -1

Opgave 22 (4%)

check

For hver af nedenstående stykker kode, angiv om det vil kunne føre til en korrekt løsning.

Ja Nej

$$\begin{aligned} \overline{W[i,j]} &= 0 \\ \textbf{if } i > 0 \textbf{ and } j > 0 \textbf{ then} \\ W[i,j] &= \max(0,w[i,j]) + \max(W[i-1,j],W[i,j-1]) \end{aligned}$$

```
\begin{aligned} & \textbf{if } i = 0 \textbf{ or } j = 0 \textbf{ then} \\ & W[i,j] = 0 \\ & \textbf{else} \\ & \textbf{if } w[i,j] > 0 \textbf{ then} \\ & W[i,j] = w[i,j] \\ & \textbf{else} \\ & W[i,j] = 0 \\ & W[i,j] = W[i,j] + \max(W[i-1,j],W[i,j-1]) \end{aligned}
```

 $W[i,j] = \max(0, w[i,j] + \max(W[i-1,j], W[i,j-1]))$

Opgave 23 (4%)

check

For hver af nedenstående stykker kode, angiv om det vil kunne føre til en korrekt løsning.

```
Solution = W[0,0] Solution = W[m,n] Solution = 0 for \ i = 0 \ to \ m for \ j = 0 \ to \ n Solution = \max\{solution, W[i,j]\}
```

Opgave 24 (4%)

check

For hver af nedenstående stykker kode, angiv om det vil kunne føre til en korrekt løsning.

```
Ja Nej
i = m
j = n
while i > 0 and j > 0 do
  if i = j then
    print (i, j)
  if i > j then
    i = i - 1
  else
    j = j - 1
i = m
j = n
while i > 0 and j > 0 do
  if w[i,j] > 0 then
    print (i, j)
  if W[i-1,j] > W[i,j-1] then
    i = i - 1
  else
    j = j - 1
i = 1
j=1
while i < m and j < n do
  if w[i,j] > 0 then
    print (i, j)
  if W[i+1,j] > W[i,j+1] then
    i = i + 1
```

else

j = j + 1