Logical Templates

Felipe Salvatore, Marcelo Finger, Hirata Jr

The template language is a formal language used to generate instances of contradictions and non-contradictions in a natural language. This language is composed of two basic entities: people, $Pe = \{x_1, x_2, ..., x_n\}$ and places, $Pl = \{p_1, p_2, ..., p_m\}$. We also define three binary relations: V(x,y), x>y, $x\geq y$. It is a simplistic universe with the intended meaning for binary relations such as "x has visited y", "x is taller than y" and "x is as tall as y", respectively. For a collection of objects a_1, \ldots, a_n , we will say " a^* is

new" to denote the fact that $a^* \notin \{a_1, \ldots, a_n\}$.

Simple Negation

The negation operator \neg corresponds to the word "not".

1.1 **Contradiction Templates**

$$P := V(x_1, p_1), \dots, V(x_n, p_n)$$
$$H := \neg V(x_i, p_i)$$

1.2 Non-contradiction Templates

- $P := V(x_1, p_1), \dots, V(x_n, p_n)$ $H := \neg V(x_i, p^*)$ where p^* is new.
- $P := V(x_1, p_1), \dots, V(x_n, p_n)$ $H := \neg V(x^*, p_i)$ where x^* is new.

Boolean Coordination

The connectives \wedge and \vee correspond to "and" and "or", respectively.

2.1 **Contradiction Templates**

- $P := V(x_1, p) \wedge V(x_2, p) \wedge \cdots \wedge V(x_n, p)$ $H := \neg V(x_i, p)$
- $P := V(x, p_1) \wedge V(x, p_2) \wedge \cdots \wedge V(x, p_n)$ $H := \neg V(x, p_i)$

2.2 Non-contradiction Templates

- $P := V(x_1, p) \wedge V(x_2, p) \wedge \cdots \wedge V(x_n, p)$ $H := \neg V(x^*, p^*)$ where either $x^* = x_i$ and $p^* \neq p$, or x^* is new and $p^* = p$.
- $P := V(x, p_1) \wedge V(x, p_2) \wedge \cdots \wedge V(x, p_n)$ $H := \neg V(x^*, p^*)$ where either $x^* \neq x$ and $p^* = p_i$, or $x^* = x$ and p^* is new.

Quantification

The quantifiers \forall and \exists should be read as "for every" and "some", respectively. We will add also quantifiers restricted to the sets Pe and Pl. Hence, $(\forall x \in Pe)$ should be read as "every person", and $(\forall x \in Pl)$ should be read as "every *place*". A similar interpretation holds for \exists .

3.1 Contradiction Templates

- $P := (\forall x \in Pe) \ V(x, p_1) \land \cdots \land V(x, p_n)$ $H := \neg V(x_i, p_i)$
- $P := (\forall x \in Pe)(\forall p \in Pl) \ V(x, p)$ $H := \neg V(x_i, p_i)$
- $P := (\forall x \in Pe)(\forall y \in Pe) \ V(x,y)$ $H := \neg V(x_i, y_i)$
- $P := (\forall x \in Pe)(\forall y \in Pe)(\forall p \in Pl) \ V(x, y) \land$ $H := \neg V(x_i, y_i) \text{ or } H := \neg V(x_i, p_i)$

3.2 Non-contradiction Templates

•
$$P := (\forall x \in Pe) \ V(x, p_1) \land \dots \land V(x, p_n)$$

 $H := \neg V(x_i, p^*)$

where p^* is new.

- $P := (\forall x \in Pe)(\forall p \in Pl) \ V(x, p)$ $H := \neg V(x_i, y_i)$ $\text{where } x_i, y_i \in Pe.$
- $P := (\forall x \in Pe)(\forall y \in Pe) \ V(x, y)$ $H := \neg V(x_i, p_i)$ $where \ p_i \in Pl.$
- $P := (\exists x \in Pe)(\forall y \in Pe)(\forall p \in Pl) \ V(x,y) \land V(x,p)$ $H := \neg V(x_i,y_i) \text{ or } H := \neg V(x_i,p_i)$

4 Definite Description

Here we will add the operator ι to perform description and the equality relation =. Hence, $x = \iota y Q(y)$ is to be read as "x is the one that has property Q".

4.1 Contradiction Templates

- $P := x = \iota y (\forall p \in Pl) \ V(y, p)$ $H := \neg V(x, p_i)$
- $P := x = \iota y (\forall z \in Pe) \ V(y, z)$ $H := \neg V(x, x_i)$

4.2 Non-contradiction Templates

- $\begin{array}{ll} \bullet & P := x = \iota y (\forall p \in Pl) \ V(y,p) \\ H := \neg V(x^*,p_i) \\ \text{where } x^* \neq x. \end{array}$
- $\begin{aligned} \bullet & P := x = \iota y (\forall z \in Pe) \; V(y,z) \\ H := \neg V(x^*,x_i) \\ \text{where } x^* \neq x. \end{aligned}$

5 Comparatives

For a set $\{x_1,\ldots,x_n\}$ and a binary relation R, we will use $chain(\{x_1,\ldots,x_n\},R)$ to denote the facts $x_1Rx_2,\ x_2Rx_3,\ \ldots,\ x_{n-1}Rx_n$. We will also use $yR\{x_1,\ldots,x_n\}$ to denote $yRx_1,\ yRx_2,\ \ldots,\ yRx_n$.

5.1 Contradiction Templates

- $P := chain(\{x_1, \dots, x_n\}, >)$ $H := x_j > x_i$ where i < j
- $P := chain(\{x_1, \dots, x_n\}, \geq), x_n > y$

$$H := y > x_i$$

 $P := xR\{x_1, \dots, x_n\}, \ y \ge x$ $H := x_i > y$

5.2 Non-contradiction Templates

- $P := chain(\{x_1, \dots, x_n\}, >)$ $H := x_j > x_i$ where j < i
- $P := chain(\{x_1, \dots, x_n\}, \geq), x_n > y$ $H := x_i > y$
- $P := xR\{x_1, \dots, x_n\}, \ y \ge x$ $H := y > x_i$

6 Counting

We introduce the counting quantifier $\exists_{=n}$ ("exactly n"). It will be also restricted to the sets Pe and Pl. For example, $(\exists_{=3}p \in Pl)$ Q should be read as "exists only three places such that Q").

6.1 Contradiction Templates

- $P := \exists_{=n} a \ V(x,a)$ $H := V(x,p_1) \wedge \cdots \wedge V(x,p_{n+1}) \text{ or } H := V(x,y_1) \wedge \cdots \wedge V(x,y_{n+1})$
- $P := (\exists_{=n}p \in Pl)(\exists_{=m}y \in Pe) \ V(x,p) \land V(x,y)$ $H := V(x,p_1) \land \cdots \land V(x,p_{n+1}) \text{ or } H := V(x,y_1) \land \cdots \land V(x,y_{m+1})$

6.2 Non-contradiction Templates

- $P := \exists_{=n} a \ V(x, a)$ $H := V(x, p_1) \land \cdots \land V(x, p_k) \text{ or } H := V(x, y_1) \land \cdots \land V(x, y_k)$ where k < n.
- $P := (\exists_{=n} p \in Pl)(\exists_{=m} y \in Pe) \ V(x, p) \land V(x, y)$ $H := V(x, p_1) \land \cdots \land V(x, p_k) \text{ or } H := V(x, y_1) \land \cdots \land V(x, y_k)$ where k < n (or k < m).