

AN ANALYSIS OF THE IMPACT OF SMELTER EMISSIONS ON PRECIPITATION QUALITY AND WET DEPOSITION IN THE SUDBURY AREA: SUDBURY ENVIRONMENTAL STUDY EVENT PRECIPITATION NETWORK RESULTS.

SES 006/82

TN 400 .A5 S83 1982

FALL 1982

Ministry of the Environment

The Honourable Keith C. Norton, Q.C., Minister

Gérard J. M. Raymond Deputy Minister

SUDBURY ENVIRONMENTAL STUDY

AN ANALYSIS OF THE IMPACT OF SMELTER EMISSIONS ON PRECIPITATION QUALITY AND WET DEPOSITION IN THE SUDURY AREA: SUDBURY ENVIRONMENTAL STUDY EVENT PRECIPITATION NETWORK RESULTS.

SES 006/82

by

Walter H. Chan, Al J.S. Tang and Maris A. Lusis
Special Studies Unit
Atmospheric Research and Special Programs Section
Air Resources Branch
Ontario Ministry of the Environment
880 Bay Street, 4th Floor
Toronto, Ontario, Canada, M5S 128

and

Robert J. Vet
Concord Scientific Corporation
2 Tippett Road
Downsview, Ontario, Canada, M3H 2V2

and

Chul-Un Ro
Petro-Canada, Engineering/Drilling Division
P.O. Box 2844
Calgary, Alberta, Canada, T2P 2M7

October 1982

S.E.S. Coordination Office Ontario Ministry of Environment 6th Floor, 40 St. Clair Ave. W. Toronto, Ontario, Canada, M4V 1M2 Project Coordinator: E. Piché

> SES 006/82 ISBN 0-7743-7101-3 ARB-05-82-ARSP

Copyright Provisions and Restrictions on Copying:

This Ontario Ministry of the Environment work is protected by Crown copyright (unless otherwise indicated), which is held by the Queen's Printer for Ontario. It may be reproduced for non-commercial purposes if credit is given and Crown copyright is acknowledged.

It may not be reproduced, in all or in part, part, for any commercial purpose except under a licence from the Queen's Printer for Ontario.

For information on reproducing Government of Ontario works, please contact Service Ontario Publications at copyright@ontario.ca

SYNOPSIS

This report extends an earlier analysis of the impact of the Sudbury smelter emissions on the Sudbury area to a larger set of event precipitation data. Included are approximately 180 rain and snow events during the period mid-1978 to mid-1980, with precipitation samples collected upwind and downwind of both the INCO and Falconbridge Nickel Smelters in Sudbury, Ontario 2. Of primary interest were two questions 3:

- (1) What is the fate of the smelter emissions during precipitation events i.e., how efficiently are they, on average, removed from the atmosphere, and how far from the source can the smelter effect be detected during storms in the Sudbury area?
- (2) What is the impact of the smelter sources on the local precipitation quality and deposition pattern?

The results of the present analysis were in basic agreement with the earlier work¹ (of course, the use of a larger data base modified some of the earlier numerical values of concentration, deposition and smelter impact), and may be summarized as follows:

2. A companion report, ARB-04-82-ARSP, "Precipitation Quality and Wet Deposition in the Sudbury Basin: Sudbury Environmental Study Cumulative Precipitation Network Results", considers the effect of the smelters on the long-term wet deposition in the Sudbury area.

^{1.} Ministry of the Environment Report No. ARB-TDA-35-80, "An Analysis of the Impact of INCO Emissions on Precipitation Quality in the Sudbury Area", May, 1980.

^{3.} Note that the report also includes other analyses of the data, such as statistical summaries of the observations (Table 4), correlation analysis, estimates of sulfur dioxide conversion rates in the INCO plume under "wet" conditions, and comparisons of rain and snow scavenging rates for the various emitted substances.

- (1) With the exception of copper and nickel, most of the wet deposition in the Sudbury area (within a radius of 40 Km) can be attributed to sources other than the local smelters 4. Long-range transport from sources to the south is implicated for many parameters, notably acidity and the acid-precursors, sulfate and nitrate, because significantly higher background precipitation concentrations occur in warm, than in cold, frontal storms. The former usually enter the study area from south of Sudbury.
- downwind precipitation quality can be detected for almost all the substances known to be emitted, the contribution due to INCO being considerably larger than that due to Falconbridge (in qualitative agreement with their respective emission rates). For example, average downwind precipitation copper and nickel concentrations were found to be an order of magnitude higher than background values in INCO's case⁵. In many cases, the INCO smelter influence can be detected at distances of more than 40 Km from the source.
- (3) Most particulate constituents (acids, sulfates, trace metals) are scavenged quite efficiently, typically more than 30%, from the smelter plumes during both rain and snow storms, with almost total removal occurring within the Sudbury area (r = 40 km) for some trace metals (e.g. copper)⁴. The percentage of total emitted sulfur scavenged by precipitation locally is much lower, mainly because this

Refer to tables 22 and 23 of the report for details.

^{5.} See tables 13 and 14 in the report, which compare the mean plume sector and background precipitation concentrations for INCO and Falconbridge.

sulfur is largely in the form of sulfur dioxide, which is subject to a low precipitation scavenging efficiency.

- (4) During precipitation events, the INCO smelter contributes, on average, 70% of the total copper and nickel wet deposition within 40 Km, and less than 20% of the total for other trace metals and sulfur.
- (5) Table S1 summarizes the results, for wet depositon during precipitation events for some of the substances emitted by the INCO smelter. Although similar information is derived for Falconbridge in the report, it is thought to be considerably less accurate, (due to much poorer network coverage around the Falconbridge smelter, and possible interferences from the larger INCO smelter's emissions), and will not be presented here.

In connection with the above results, two facts should be pointed out. Firstly, the smelter contribution to total on deposition, indicated in column 5 of Table S1, applies only to the level of smelter emissions (column 2) that occured during the study period. Any change in emission rates is expected to cause a corresponding change in the smelter contribution. Secondly, the percentage of smelter emissions removed (column 4) is computed only for periods when precipitation was actually occurring. These constitute about 10% of the total time; various dry deposition and transport processes providing the only removal pathway during the remainder. The effect of the smelters on dry deposition in the Sudbury basin is discussed in Report ARB-012-81-ARSP, "An Analysis of the Impact of Smelter Emissions on Atmospheric Dry Deposition in the Sudbury Area: Sudbury Environmental Study Airborne Particulate Matter Network Results".

TABLE S1: AVERAGE WET DEPOSITON OF INCO EMISSIONS WITHIN A 40 KM RADIUS OF THE SMELTER DURING A PRECIPITATION EVENT

	Emitted (Kg)	Deposited (Kg)	% Emissions Removed	% INCO Contribution to Total Wet Deposition ⁺
H _f *	4.5×10^2	1.4×10^2	32	6
so _u	2.2×10^4	1.0×10^4	48	8
Total-S	5.2 x 10 ⁵	3.4×10^3	0.7	8
Fe	7.1×10^2	4.8×10^2	68	20
Cu	2.6×10^2	2.7×10^2	100	69
Ni	3.5×10^2	1.3×10^2	36	67
Pb	2.1×10^2	0.7×10^2	33	14
Zn	0.55×10^2	0.5×10^2	93	12
Al	3.9×10^2	1.8×10^2	80	8
Cd	0.16×10^2	0.04×10^2	23	28
Cr	0.52×10^2	0.01×10^2	2.3	8

^{*} Free hydrogen

⁺ (INCO Deposition)/(INCO Deposition + Background Deposition) x 100%

TABLE OF CONTENTS

				Page
List	of Ta	bles		i
List	of Fig	gures		iii
Ack	nowle	dgements		iv
1.	Intro	oduction		1
2.	The	Network		3
	2.1.	Objecti	ve	3
	2.2	Networ	k Design and Operation	3
3.	SES	Precipitat	ion Network Results	5
	3.1	Data Pre	esentation	5
	3.2	Statistic	al Profiling	6
		3.2.1.	Concentration Data	6
		3.2.2.	Deposition Data	7
		3.2.3.	Interelemental Relationship	8
4.	Impa	ct of the	Local Sources on Precipitation Quality	10
	4.1	Data Ar	nalysis Approach	10
	4.2	Data In	terpretation	11
		4.2.1	Precipitation Concentration in Background Samples	12
		4.2.2	Relative Contributions to Precipitation	
			Concentration due to Local and Distant Sources	14
		4.2.3.	Dependence of Plume Concentrations on Distance	
			from The Source	16
		4.2.4.	Percentage of Local Emissions Wet Deposited	19
		4.2.5.	Relative Contribution of Local vs. Long-Range	
			Transport Components to the Local Wet Deposition	22
		4.2.6.	Oxidation Rate of SO ₂ to SO ₄ Under Wet Conditions	23
		4.2.7.	Scavenging by Rain as Compared to Snow	24

TABLE OF CONTENTS

		Page
5 Constrains		26
5. Conclusions		26
References		29
Tables		
Figures		64
Appendix 1:	SES Event Network Operations	65
CONTENTS OF SUPP	LEMENTARY VOLUME	
Section 1	SES Event Precipitation Tabulated Results	
Section 2	Statistical Summary of Station Precipitation	
	Concentration Data.	
Section 3	Statistical Summary of Station Precipitation	
	Deposition Data.	
Section 4	Summary of Station Correlation Analysis	

Summary of Station Regression Analysis

Summay of SO_2 and Particulate Emissions Data

Meteorological Summary

Section 5

Section 6

Section 7

LIST OF TABLES

Nur	<u>nber</u>	Page
1.	SES Event Precipitation Network Stations - June 1978 -	
	May 1980	32
2.	Summary of Network Operations	36
3.	Details of Precipitation Sample Analyses	37
4.	SES Event Precipitation Concentraton Data Statistical Summary	38
5.	Summary of Acid-Related Parameter Data	40
6.	SES Event Precipitation Deposition Data Statistical Summary	41
7.	Correlation Coefficients of SES Event Concentration Data	43
8.	Linear Regression Coefficients of SES Concentration Data	44
9.	Event Precipitation Background Contaminants Concentration	
	Data Associated with Warm and Cold Frontal Passages	45
10.	Event Precipitation Background Contaminants Concentration	
	Data Associated with Summer and Winter Seasons	46
11.	Sector Mean Concentrations Based on a 24-hour	
	Backward Air Parcel Trajectory Classification	47
12.	Sector Mean Concentration Based on a	
	48-hour Background Air Parcel Trajectory Classification	48
13.	Comparison of INCO Plume Sector and	
	Background Precipitation Concentrations	49
14.	Comparison of Falconbridge Plume Sector and	
	Background Precipitation Concentrations	50
15.	Mean Additional Concentration (mg/l) due to INCO as	
	a Function of Distance from the Source	51
16.	Mean Additional Concentration (mg/l) due to Falconbridge	
	as a Function of Distance from the Source.	52

LIST OF TABLES

Nun	<u>nber</u>	Page
17.	Dependence of INCO Additional Concentration on	
	Distance from Source Using Individual Data Points	53
18.	Dependence of INCO Additional Concentration on	
	Distance from Source Using Grouped Data Points	54
19.	Dependence of Falconbridge Additional Concentration on	
	Distance from Source Using Individual Data Points	55
20.	Dependence of Falconbridge Additional Concentration on	
	Distance from Source Using Grouped Data Points	56
21.	Summary of Particulate-to-SO ₂ (M/SO ₂) Emissions Ratios	57
22.	Wet Deposition of INCO Emissions (r = 40 Km)	58
23.	Wet Deposition of Falconbridge Emissions (r = 40 Km)	59
24.	Seasonal Variation of Scavenging Properties of INCO	
	Emissions (r = 40 Km)	60
25.	Seasonal Variation of INCO Wet Deposition Relative	
	to the Total Deposition ($r = 40 \text{ Km}$)	61
26.	Estimated Scavenging Coefficient (S ⁻¹) in INCO plume	62
Al.	Sample Handling Criteria for Limited Volume Precipitation Samples.	63

LIST OF FIGURES

Num	Page	
1.	SES Event Sampling Network	64

ACKNOWLEDGEMENTS

The authors would like to thank the following key personnel for making this work possible: Mr. K.D. Hawley, now with the Northeastern Region and Mr. S. Linauskas, now with Atomic Energy Canada Limited, who were both involved in the field coordination of the network, Messrs. W. Bardswick, M. Dutka, S. Elliot, and R. Wright as well as Ms. M. Brideau, N. Keller and C. Mentrycki all of whom participated directly in the sampling program; Mr. R. Chiu who was in charge of the data base management and Mr. C. Hui for compiling the statistics; Messrs J. Kurtz and F. De Rango for the air parcel trajectory analysis.

Thanks are also due to our colleagues in the MOE - Laboratory Services Branch for their analytical support. Among these people, special thanks are due to Mr. F. Tomassini and Dr. B. Loescher for coordinating the laboratory efforts. Critical review and comments of the report by Drs. D. Balsillie, L. Barrie, P. K. Misra and Mr. L. Fitz are gratefully acknowledged.

1. INTRODUCTION

As part of the overall effort of the Sudbury Environmental Study (SES) in understanding the fate of pollutants emitted from the local sources in Sudbury, the Air Resources Branch operated two precipitation sampling networks to study wet deposition in the area. One network - the cumulative network - was designed to measure the long term wet deposition pattern in the greater Sudbury area. The other network - the event network - was designed to identify the relative contributions of the smelter emissions and "background" material to the local precipitation quality.

The event network was in operation for two years from June, 1978 to May, 1980. During part of 1978 and 1979, the two major local sources of pollutant emissions, the INCO and Falconbridge nickel smelters, were not operating, either due to scheduled shutdowns or labor disputes. Results pertaining to the long term loading pattern of the various pollutants, i.e. from the cumulative network, are described in another report(1). This present report is focussed on the two years data obtained from the event network only and is a sequel to two other reports (2, 3) published previously, based on partial data set.

Because of the unavailability of suitable sites for precipitation sampling, the network primarily yielded useful information on INCO. Network coverage in the vicinity of the Falconbridge smelter was relatively poor and the results discussed in this report on that source should be regarded with considerable caution.

The tables in this report summarize only the most relevant results. Readers interested in more details are referred to the Supplementary Volume, which is available on request from the Air Resources Branch. Contents of this Volume are given at the end of the Table of Contents of the present report.

2. THE NETWORK

The SES Event Precipitation Monitoring Network began operation in June 1978 and continued until May 1980. It was operated concurrently with, but independently of, the SES Cumulative Precipitation Monitoring Network. This latter network and the history of the Air Resources Branch participation in precipitation monitoring in the Sudbury area are described in detail in another document (1). It is mentioned here only to indicate that the Air Resources Branch has been involved in several areas of precipitation monitoring.

2.1 Objective

The objective of the SES Event Network was to quantify the relative contribution of the local smelter emissions from INCO and Falconbridge to precipitation quality and wet deposition in the Sudbury area.

2.2. Network Design and Operation

In order to fulfill the above objective, a precipitation network was operated from mid-1978 to mid-1980 within primarily a radius of 50 Km from Sudbury. The number of sites varied from summer to winter, typically 25 in the summer and less than 15 in the winter. Stringent siting criteria were followed in the sampler placement. Due to constraints of suitable sites and operators, the final network was designed primarily to assess the impact of the INCO source on the local environment. It should be noted that some sampling sites were also in the vicinity of the

Falconbridge source and could be used to estimate its contribution to wet deposition. Figure 1 is a map of all of the sites used (except for the distant locations - Charlton Station, Ramsay, Thessalon and Blind River) during the two-year period and the site locations are defined in Table 1. These stations were operated for different lengths of time and these are summarized in Table 2.

Two designs of sampler/bag inserts (see Appendix 1) were used in the daily sampling which typically operated from 0800-0800 hours. These consisted of large diameter open polyethylene collectors with a collection area of 1,410 cm².

Collected samples were analyzed for acids, major ions and trace metals using conventional techniques, e.g. Dionex ion chromatography and atomic absorption spectroscopy. An outline of the methods used is given in Table 3. Efficiency of collection for rain was quite high, over 80% on the average, whereas that for snow was lower and quite variable. The number of samples collected at each station with volume and pH measurements made is given in Table 2.

Detailed descriptions of the network design, instrumentation, sampling procedures, chemical analysis and network performance can be found in Appendix 1.

3. SES PRECIPITATION NETWORK RESULTS

3.1 Data Presentation

Data obtained at all the sites over the lifetime of the network are tabulated in Section 1 of the Supplementary Volume according to sampling station and sampling date. Sampling time usually was from 0800-0800 hours (+2 hour). Precipitation time was recorded whenever it was feasible. The type of precipitation is designated as 1,2, or 12 to represent rain, snow or mixed rain and snow respectively. Taking into account the size of the collector opening, the collected sample volumes were converted to precipitation depth in cm. In most cases where sufficient volumes were available, both field and laboratory pH measurements were made. general, the laboratory pH value is higher than that of the field value due to neutralization of the acid content by alkaline materials in the sample subsequent to collection. By examining the ionic balance and data consistency, a final pH was chosen (usually the laboratory value) and it is from this value that the free hydrogen ion concentration (H_f) was To obtain total hydrogen ion (H_+) , one must divide the tabulated acidity value which is expressed in CaCO₃ equivalent, by a factor All concentration values are expressed in mg l-1. Not all parameters are reported for all samples due to sample contamination and/or insufficient volume for complete chemical analysis.

It should be pointed out that not all the data reported in Section 1 of the Supplementary Volume are used in the Section 4 data analysis after data screening (see Section 4.1). For completeness, they are all included in the

Supplementary Volume. In this report, these data are analyzed to yield: (i) statistics on sample concentration and deposition, and (ii) correlation and regression relationships using concentration data for the various parameters.

3.2. Statistical Profiling

3.2.1. Concentration Data

During the two year period, there were altogether 2839 samples collected in the network. Some of these had only trace amounts which were not sufficient for chemical analysis. Since top priority was given to pH measurements, there are 2515 reported values. $S0_4$ and $N0_3$ belong to the next most frequently measured parameters.

In Table 4, the concentration ranges and means for all data collected from the network have been listed. Both arithmetic and geometric means are given. In general, the latter values are smaller than the former. Volume-weighted mean concentrations are given also for comparison purposes. When a sample was at the detection limit (see Table 3), concentration values corresponding to one-half of the detection limit for the parameter under consideration were used in the calculations.

The average amount of precipitation during a single event over the two year period of network operation was 4.0 mm with a mean pH of 4.3. The most precipitation falling in one event was 66.1 mm. The most acidic event had a pH value of 3.4. Events with pH's above the generally accepted "clean" precipitation value (pH = 5.6) were also observed, and the

most alkaline pH reading was 7.2 As shown by other workers and also discussed later in this report, most of the acidity can be attributed to H_2SO_4 and HNO_3 . In this study, maximum SO_4 and $N-NO_3$ concentrations were 29.3 and 14.1 mg I^{-1} respectively. Average SO_4 and $N-NO_3$ values were 2.8 and 0.5 mg I^{-1} . Trace metals are of interest from the effects aspect. Maximum values (in mg I^{-1}) observed were: Fe = 3.9.; Cu = 2.5; Ni = 0.9; Pb = 0.5; Zn = 1.7; Al = 2.3; Cr = 0.1 and Cd = 0.03 with most mean values less than or equal to 0.01 mg I^{-1} .

Data for individual stations are also given in Section 2 of the Supplementary Volume for reference. A summary of the acid-related parameter data is given as Table 5. It is seen that the sample with the highest pH value (7.18) was collected at Verner while the most acidic one (3.36) was collected from Capreol. The samples with maximum SO₄ and NO₃ concentrations were collected respectively from Kelly Lake (II) and Coniston.

3.2.2. Deposition Data

A statistical summary of deposition for each event at all stations over the two year period is given in Table 6.

Deposition is calculated by multiplying the concentration (mg l⁻¹) and the precipitation depth (mm) of the sample. All results are expressed in mg m⁻². It can be seen that the maximum loading due to some events could be as high as 70 times the mean value (e.g. Ca⁺⁺). This points to the importance of the concept of episodicity, i.e. a significant portion of the

total loading during a given period may be attributed to a relatively small number of events.

Details of the data from individual stations are given in Section 3 of the Supplementary Volume.

3.2.3. Inter-elemental Relationships

All concentration data from all sites collected over the two-year period were cross-correlated and the results are shown in Table 7. Only those correlation coefficients which are statistically significant at the 99% confidence level are tabulated. The top and bottom values of each entry correspond respectively to the correlation coefficient and the number of data pairs used in the calculation. Fitting the data to a linear relationship Y = A + BX (with X and Y in mg I^{-1} unit), the regression coefficients A and B are obtained and are given in Table 8 as the top and bottom values of the entries.

The data indicate a negative correlation between concentration of most parameters and volume, as has been found by other workers (- see, for example, Granat-reference 4). H_f , H_t , SO_4 , NO_3 and NH_4 are in general quite highly correlated. This suggests that H_f (free hydrogen ions) is primarily due to contributions of H_2SO_4 and HNO_3 . The fact that a relatively high correlation is found between NH_4 and SO_4 , and NH_4 and NO_3 suggests that these three species are in chemical equilibrium, and that the acids collected have been neutralized by ammonia. The high correlation between NA and CL may indicate the presence of winter road salt. That

Ca, Mg, K and Si correlate well with each other, but not with Na, is a result of the fact that they are all soil-related and that Na has an additional contribution from road salt. The high correlation between Fe, Cu, Ni, Pb and Cd is not surprising in view of the fact that these are good tracers for smelter emissions.

The high correlation between Fe and Al concentrations reflects the fact that both elements have significant soil contributions. The low correlation between Zn and any trace metal is somewhat surprising but could be due to the fact that samples are prone to contamination of Zn, for instance by insects.

A detailed correlation and regression analysis for each station is given in Sections 4 and 5 of the Supplementary Volume.

4. IMPACT OF THE LOCAL SOURCES ON PRECIPITATION QUALITY

4.1 Data Analysis Approach

The approach taken in this report is quite similar to that employed in an earlier publication (3). Basically a two-stage process was used to classify the events, based on a meteorological stratification according to air mass origin and a sector analysis to define the area with potential and observed impact of the local source. Only days for which at least three samples with more than 1 mm precipitation depth were collected were considered. A distinction was made between warm and cold-frontal events, using synoptic weather maps. In most cases, classification was quite straightforward, though occasionally difficulties were encountered because of multiple or occluded fronts. In this report, there are altogether 89 events associated with a warm frontal passage and 96 events associated with a cold frontal passage. Geostrophic trajectories were also calculated to establish air parcel origins on days of interest. Further stratification of samples into those under the "shadow" of the plume and those "background" samples not in the plume shadow was based primarily on local meteorological data. Hourly wind information obtained at both the airport (ground level) and the MOE meteorological tower (114 m level) at Frood Road in Sudbury was compiled and stored in a computer. Plots were generated for each event, showing the Sudbury basin and sampler locations, with the origin centered at INCO. These plots also included upper and lower wind information, as well as chemical concentrations of certain parameters. A plume sector was generated according to the wind sector constructed by the upper and lower hourly mean wind direction for each event. This plume sector should not be confused with the plume width. The

former is an estimate made from the available wind information and is expected to be wider than the latter because it also includes the total area covered by the meandering of the plume. This meteorologically-derived plume sector information was further substantiated by inspecting the SO_{μ} , Cu and Ni concentrations in the precipitation samples. If there were elevated concentrations outside of the sector defined by winds, the sector was expanded to also include the samplers with elevated values. Typically the plume sector is less than 70°. This value differs from the one reported earlier(3) based on a smaller data set, because in the present work, a particular sampler had to be downwind of the source for at least two of the hourly observations during the event in order to be included within the plume sector, whereas in the earlier work there was no such restriction. This changes the average plume sector concentration, but should not affect the deposition calculations. The latter corresponds to the product of concentration and sector area. The narrowing of the plume sector and the corresponding elevation of concentration compensate each other. summary of the meteorological data is given in Section 6 of the Supplementary Volume.

4.2 Data Interpretation

In the following sections, seven topics will be addressed.

- 1. Background concentration in precipitation.
- Relative contribution of local and long-distance transport components to precipitation quality.
- Dependence of plume constituent concentrations on distance from the local sources.

- 4. Percentage of local emissions wet-deposited in the Sudbury area.
- Relative contribution of local and long-distance sources to local wet deposition.
- Oxidation rate of SO₂ to sulfate under precipitating conditions.
- 7. Scavenging properties of pollutants by rain as compared to snow.

4.2.1. Precipitation Concentration in Background Samples

Based on weather maps, precipitation events were classified as to whether they were associated with cold or warm frontal passages. Using the sector analysis method described earlier, on a daily basis, all the background samples, i.e. samples collected outside of the plume shadow, were averaged to obtain a daily mean concentration. These daily areal averages were further averaged to yield the results shown in Tables 9 and 10 according to whether the events were associated with warm or cold frontal passages and summer or winter seasons.

In these tables, both the mean concentrations together with the standard deviations are given to indicate the variability of the results. The number of data points (events) is designated as NN. It is seen that, during the study period, the distribution of events into warm and cold frontal passages and winter and summer incidents was quite even. For comparison purposes, the relative concentration ratios are shown as either B/A or A/B in the tables and if the Students - t statistics are significant at the 95% confidence level, the T-T value is marked by an asterisk.

From the relative concentration ratios in Table 9, it is seen that

concentrations associated with cold fronts are usually lower and if they are higher, the increase is not statistically significant. This is not difficult to rationalize, as southerly flows carrying pollutants from large emission sources are usually associated with warm fronts. H_f , H_t (acidity), SO_4 , NO_3 , NH_4 , Pb, Zn are in the fine-particle size range(5,6) and seem to have a long-range transport contribution. The concentration differences of Ca, Mg, K, Fe and Al, which have an important and more local soil source, are also statistically different. This may be a result of different wind-blown dust contributions associated with the two types of frontal passage.

From Table 10, it is seen that, as expected, the concentrations of the soil-derived constituents in winter precipitation are generally lower than those in summer precipitation. The lower winter Ca, Mg and K concentrations reflect the presence of snow cover. The higher Na and Cl concentrations are undoubtedly a result of road salt used in the winter time. It is of interest to note, over the year, that concentrations of SO_4 are higher in the summertime, but those of NO_3 are higher in the wintertime. This observation may be a consequence of different emissions conditions and oxidation and scavenging properties of SO_X and NO_X in the two seasons. This also has a significant implication on control strategy, since the acidity in precipitation may originate from different species in the two seasons. Because of the compensating contribution of SO_4 and NO_3 to acidity, it is noted that the resultant H_f concentration is comparable in the summer and winter seasons.

A detailed backward air parcel trajectory analysis was done for each event to determine the location of the 24 and 48 hours preceeding the

event near Sudbury. The results are expressed in terms of sector of the location of the air 24 and 48 hours prior to the event and are summarized in Tables 11 and 12 respectively. Over the two-year period, air masses associated with the observed precipitation events originated predominantly from the S and SW sectors. The concentration of species such as SO_{μ} , NO₃, H⁺ and trace metals that occur in the atmospheric particulate as submicron particles, which have a contribution due to long range transport, are in general higher for the S and SW sectors, which supports the earlier observations regarding warm and cold frontal passages. It should be stressed that because an air parcel does not travel along a straight line to the receptor area (Sudbury), the sector designation refers only to the origin of the air mass 24 hours and 48 hours before and the sector information does not yield any information regarding the immediate or intermediate history of the air mass. It should also be noted that there are problems in predicting back trajectories during frontal passages and therefore there is some uncertainty in the sector of origin calculations for individual events. Because of the averaging over a large number of events in this report, these uncertainties should not change the general conclusion.

4.2.2. Relative Contributions to Precipitation Concentrations due to Local and Distant Sources

A comparison was made of the average precipitation concentrations observed under and outside the plume sector during the smelter operational period. Despite the fact that the background contribution was quite large, with careful sector stratification, it was possible to single out the local source contribution which is compared to the background value in Tables 13

and 14 for the INCO and Falconbridge sources respectively. In these tables, only sampling days when there was a clear assignment to each of the INCO and Falconbridge plumes (i.e., when there was no plume overlap) were considered. The first column lists the parameters of interest. The and third columns summarize the average second concentrations and plume sector concentrations obtained from the daily means. The fourth and fifth columns give the standard deviations of the corresponding concentrations. The relative ratios of the mean plume to mean background concentrations are summarized as column six for comparison purposes. The total number of data points used in the paired t - test is given as NN in the seventh column with the statistics summarized in the last column. It is seen that for all parameters the difference between plume sector concentrations and background concentrations are statistically significant at the 95% confidence level in the case of INCO. Except for parameters Mg and Na, this is also true for Falconbridge. For most of the smelter-related materials, plume sector to background concentrations ratios are larger than unity. For Ni and Cu, they are an order of magnitude higher in INCO's case. As can be seen, the contribution due to INCO is considerably higher than that of Falconbridge, in qualitative agreement with their respective emission rates. One should also bear in mind the relative locations of the two sources with respect to the network samplers. The network stations surrounded the INCO source relatively uniformly, but coverage was not nearly as good for Falconbridge, most of the sites being south of the source. Because of this, northerly flows tended to be favored in the data analysis for Falconbridge (e.g., for an event with southerly flows, in many cases there was no sampler in the meteorologically-defined plume sector), and so one would expect the

"background" concentrations associated with the Falconbridge and INCO events to be different. Also it should be noted that in the Falconbridge case, data used corresponded to data collected over the two-year study period whereas in INCO's case, due to a strike, samples collected from mid-September, 1978 to early June, 1979 were not used in the analysis reported here due to no plume influence.

4.2.3. Dependence of Plume Concentrations on Distance from the Source

The additional precipitation concentratrion due to plume contribution was correlated with distance from the source using four different expressions:

$$(Conc) = A + BxR \tag{1}$$

$$(Conc) = A + B/R$$
 (2)

$$In (Conc) = A + BxR$$
 (3)

$$ln (R \times Conc) = A + B \times R$$
 (4)

where (Conc)= additional concentration at distance R

R = distance from the source

A and B are constants

Equation (3) is purely empirical. The others are suggested by mathematical modelling (7) (either directly, or by a rearrangement of terms). The reason behind this type of fitting is to establish an empirical relationship between the additional concentration and the distance from the source, so that wet deposition of the plume constituents can be calculated.

Attempts were made to fit both the individual data points and grouped data. The former procedure is quite straightforward, but in the latter cases (for the INCO and Falconbridge sources respectively) the additional concentration data were grouped over different distance intervals from the source. Because of the limitations imposed by the network station distribution, in the case of INCO, mean distances were selected at 5 Km (representing the interval 3-6 Km), 10 Km (9-11 Km), 15 Km (14-16 Km), 20 Km (17-24 Km), 30 Km (27-32 Km), and 40 Km; (35-50 Km) and in the case of Falconbridge, 8 Km (6-11 Km), 17 Km (17-19 Km), 23 Km (21-24 Km), 32 Km (28-33 Km), 40 Km (38-41 Km) and 50 Km. In the present case, every value of the additional concentration, be it positive or negative, was used in the averaging step to obtain the average additional concentration for the corresponding interval. This takes into account the "noise" (random errors) associated with sampling and may be more appropriate. The approach taken in this report was slightly different from that used in the previous analysis (3), in which negative additional concentrations were replaced by zero before averaging. The mean concentration results are given in Tables 15 and 16.

Tables 17 to 20 summarize the correlation (COR) and regression (A and B) coefficients of the eight combinations (individual data points vs. grouped data using the four formulae) for the two sources. Examining the results in Tables 17 to 20 more closely, it is seen that the data from the INCO source fit the expressions better than those from the Falconbridge source. This is partially due to the fact that there are more data points for the former source and the magnitude of the source strength is larger. This point should be borne in mind when one comes to the deposition

calculations in Section 4.2.4. Note that there is a great deal of scatter in the data due to a number of factors -sampling errors, the inherent variability in precipitation data (see, for example, references 2 and 4), and the fact that the plume sector only includes a <u>potential</u> plume effect (i.e., a particular sampler downwind of the source for part of the storm may not necessarily have been noticeably affected by the source).

It is shown later from the deposition calculations that within a 40 Km limit from the source where the data were collected, the fits with grouped data and individual points yield comparable results. It is seen that expression (2) yielded best regression for trace metals which are originated from local sources. The high correlation using expression (4) for the major ions, which are greatly affected by long range transport, may be fortuitous. It is an artifact because the concentration change as a function of distances is small for these parameters and essentially what was fitted was ln R + ln constant versus R. Therefore, regression coefficients determined from expression (2) with grouped data were used later in the subsequent calculations.

The results can be broadly classified into three categories:

- 1) acid-base related species, e.g., H_f , H_f , SO_u , NO_3 and NH_u ;
- soil-originated species, e.g., Ca, K, Mg, and Na;
 and
- smelter-originated trace metals, e.g., Fe, Cu, Ni, Pb, Zn, Al, Cr, and
 Cd.

Note that there is some overlap. For example, Fe and Al are contributed by both the smelter and soil.

Parameters that originate from soil are of secondary interest compared to those which originate primarily from the smelter source. The species related to acid-base equilibria yield less satisfactory relationships compared to those of the trace metals. This is consistent with similar observations reported earlier (3).

4.2.4. Percentage of Local Emissions Wet Deposited

Wet deposition results were related to emissions from the local sources. Emission data on ${\rm SO}_2$ were obtained from INCO and Falconbridge based on either in-stack SO₂ continuous monitor data or mass balance The INCO smelter and Iron Ore Recovery Plant data were available on a daily basis, but those from Falconbridge were only reported on a monthly basis. Because of occasional malfunctioning of the SO₂ monitor, the INCO daily data were sometimes incomplete. Low level emissions data were not available and were estimated as comprising 2% of the smelter stack values from the best currently available information (8). In Section 7 of the Supplementary Volume daily SO2 emissions (in metric tons per day) from the two sources are summarized for all event days (from 0800-0800 hours) whenever they are available. These SO2 data were also used, with the particulate-to-SO2 ratios determined in previous studies for these two sources (5,6), to obtain the corresponding particulate emissions rates* (9) which are also given in Section 7 of the Supplementary Volume. A list of the particulate-to-SO₂ ratios is given in Table 21. The hydrogen ion emission rates were estimated by assuming that all sulfates were emitted as sulfuric acid.

^{*} There are limited particulate emission measurements made at the INCO two 45 m stacks, and also estimates of the INCO smelter low level emissions, which suggest that emissions of particulate Fe and Cu might be significant compared to those from the 381 m chimney at these two sources respectively (21). However, due to the unknown quality of these mesurements, these values were not included in the current calculations.

Using the above expressions relating the additional concentration and distance, wet deposition patterns of the plume constituents of the two sources were calculated for INCO and Falconbridge respectively according to:

where DEP_{av} = average areal deposition through wet scavenging

Day = average precipitation depth (mm)

C_{add} = average additional concentration due to interaction of plume and precipitation (in mg l⁻¹ unit)

Aplum = area encompassed by the plume sector

Similar calculations were carried out using each of the relationships reported in Section 4.2.3., with grouped as well as individual data. It was found that they all yielded comparable results. Deposition calculations were made by use of expression (2) relating the concentration and distance as 1/R, together with grouped data. The average precipitation depths of all INCO and Falconbridge events used in the deposition calculations were 7.4 and 8.9 mm respectively. Average plume sector angles varied slightly for the two sources and were 64.0° and 67.9° respectively.

The wet deposition results are summarized in Tables 22 and 23 for INCO and Falconbridge. Based on average precipitation durations, daily emission data were prorated to yield average emissions during the precipitation period for comparison purposes and are listed under column 4. The average event durations for the two sources with all data were: INCO

events - 10.5 hours; and Falconbridge events - 10.8 hours. The percentage of local emissions which were wet-scavenged within 40 Km are tabulated in column 6.

It is seen in Table 22 that, up to a distance of 40 Km from the source, except for total sulfur, 23 to 100% of the INCO emissions appear to be scavenged during precipitation events. The results for H_f and SO_{ij} should however be interpreted bearing in mind that the materials deposited may correspond not only to the primary emissions but also to secondary production of sulfuric acid due to oxidation of SO_2 . Therefore, more appropriately, the percentage of total emitted sulfur that is scavenged is reported, and this corresponds to a small percentage only. The percentage of metals scavenged is quite high and approaches total washout for Cu. Similar results to the above have been reported by other workers (10,11).

Table 23 summarizes the Falconbridge results. The percentage of the emissions scavenged in the Falconbridge case was higher than that for INCO, and in almost all cases the wet deposition was greater than the emission rate. This improbable result is due to the relatively poor fit of the additional concentration with distance data and due to the poor network coverage - the network was designed to study primarily the INCO source. It is also suspected that some of the observations in the Falconbridge case were influenced by INCO emissions. Therefore, these results should be regarded with considerable caution.

4.2.5. Relative Contribution of Local vs. Long-Range Transport Components to the Local Wet Deposition.

In Tables 22 and 23, the contribution to wet deposition due to INCO and Falconbridge, as compared to the background deposition, within a 40 Km radius of Sudbury, is also given. The background deposition was calculated by using the mean background concentration and an average precipitation depth of 7.4 and 8.9 mm respectively for the two sources. It is seen that on average, all of the deposition due to the INCO source corresponds to 5 to 20% of the total with the exception of Cu, Ni, and Cd, with the first two species contributing as much as 70%. The Cu and Ni result are not surprising considering the fact that plume concentrations of these species have been observed to be very high with respect to the background (See Table 13).

An upper limit for the Falconbridge contribution was established by assuming that except for S and Cd all pollutants are scavenged within 40 Km from the source (i.e., column 4 rather than column 5 in Table 23 was used in the calculations). The results are shown in the final column, and indicate that the contribution due to this smelter to the total deposition is in general smaller than that from the INCO smelter.

It is worthwhile pointing out that, farther downwind from the source, the plume sector concentration will be lower, and the relative contribution to the total deposition due to the smelter sources will be even smaller than the above values.

4.2.6. Oxidation Rate of SO₂ to SO₄ under Wet Conditions

Using the information on the fraction of SO₁₁ scavenged by precipitation, one can attempt to estimate the wet oxidation rate of sulfur dioxide to sulfate. This can be done knowing the emission rates of SO2 and SO_{μ} , and the scavenging efficiency of SO_{μ} . It has been recognized that particles of the same size range have similar scavenging properties. From the particle sizing work carried out at the INCO 381 m chimney plume, it was found that both SO_{μ} and Pb fall into the same size category. both have an average mass median diameter of approximately 1 um (6). This suggests that Pb could be used as a reference material to infer sulfate scavenging efficiency. Results in Table 22, indicate that the percentages of Pb and SO_{μ} scavenged corresponded to 33% and 48% respectively. Assuming that the primary and secondary sulfates are scavenged equally efficiently by precipitation, we can attribute the difference of the two values, i.e., 48% -33% = 15% secondary sulfate scavenged. Knowing that the sulfate scavenging efficiency is equal to that of Pb, i.e., 33%, we can then infer that the amount of secondary sulfate formed is equal to 15% x 100/33 = 45% of that of the primary sulfate. Relating this information to that of the SO_{μ} emissions with respect to SO_{2} , (i.e., $SO_{\mu}/SO_{2} = 1.8\%$), we can determine the percentage of SO2 converted to SO4 under wet conditions within a distance of 40 Km. Using an average wind speed of 5 m s⁻¹, the 40 Km is calculated to correspond to a plume age of 2.2 h. With the above assumptions, it was found that the percentage of SO_2 converted to SO_{μ} under wet conditions over 2.2 h is 0.8%. In other words, the oxidation rate is less than 0.5% h⁻¹.

The same procedure can be repeated for the rain and snow using results in Table 26. It is found that the oxidation process is faster in the summer/rain than the winter/rain-snow conditions with rates of approximately 1% h⁻¹ and close to zero respectively.

The relatively low inferred oxidation rate is of particular interest as it is inconsistent with the high oxidation rates under wet conditions suggested by some other researchers (12-16).

4.2.7 Scavenging by Rain as Compared to Snow

Using the expressions given in Section 4.2.4 summer and winter deposition rates were calculated separately for INCO and are shown in Tables 24 and 25. For the summer (rain only), the average INCO plume sector was 57.4°; precipitation duration was 7.7 h; and precipitation depth was 8.6 mm. For the winter (mixed rain and snow), the average INCO - plume sector was 68.0°; precipitation duration was 12.2 h and precipitation depth was 6.4 mm. Because of the uncertainty in the Falconbridge results, no corresponding calculations are included for this smelter.

In Table 24, the percentage of the INCO emissions removed within 40 Km of the source was compared for winter and summer events. The scavenging of plume constituents by precipitation was not uniform throughout the year. For acid and sulfur, the scavenging seems to be more efficient in the summertime, whereas in the case of trace metals (except Pb, Cr and Zn which are in the fine-particle size range), the reverse seems to be true. The sulfur results are consistent with what was reported by Summers and Hitchon (17). The results for trace metals suggest more

efficient removal by snow than by rain. This was especially true for metals (e.g. Fe, Al, etc.) in the coarse size range. However, it is difficult to determine if these differences are significant.

For mathematical model input, scavenging coefficients can be calculated by using the following simple relation:

$$C_t = C_o e^{-\lambda t}$$

Where

C₊ = concentration at time t

 C_0 = initial concentration

 λ = scavenging coefficient

t = time

The fraction of emissions removed from the plume, which can be obtained from the experimental data, is then related to by the equation:

fraction removed = $1 - e^{-\lambda t}$

Using an average wind speed of 5 m s⁻¹, a 40 Km radius corresponds to a plume age of 8,000 seconds. The scavenging coefficients (in units of s⁻¹) calculated using information given in Table 24 for the INCO 381 m chimney plume constituents for the summer (May to October) and winter (November to April) are compared with those for all year round and these results are summarized in Table 26. As can be seen, the values are typically on the order of 10^{-4} and 10^{-5} s⁻¹ and are quite comparable to those reported in the literature (18).

5. CONCLUSIONS

An event precipitation network was operated in the Sudbury area from June, 1978 to May, 1980 by the Air Resources Branch to quantify the relative contribution of local smelter emissions from INCO and Falconbridge to precipitation quality and pollutant deposition in the local area. Statistical analysis of the two-year data base has been performed. Further, the data have been stratified meteorologically and according to whether or not the samples have been influenced by the plumes. From the analysis of data, the following conclusions are reached.

- The geometric mean pH of the 2515 precipitation samples was 4.3. The
 most acidic sample had a pH value of 3.4 and the most alkaline one had a
 pH of 7.2
- Most of the precipitation acidity can be attributed to H₂SO₄ and HNO₃. In this study, maximum SO₄ and N-NO₃ concentrations were 29.3 and 14.1 mg I⁻¹ respectively. Geometric mean SO₄ and N-NO₃ concentrations were 2.8 and 0.5 mg I⁻¹ respectively, suggesting that sulfuric acid is 1.6 times more important than nitric acid to acidity.
- Maximum concentrations (in mg l⁻¹) of trace metals observed were: Fe = 3.9, Cu = 2.5, Ni = 0.9, Pb = 0.5, Zn = 1.7, Al = 2.3, Cr = 0.1, and Cd = 0.03.
 Most of the mean values were less than or equal to 0.01 mg l⁻¹.
- Background precipitation concentrations were usually lower during cold frontal precipitation than during warm frontal storms.

- The concentration of the soil-derived constituents (eg. Al, Fe, Si) in winter precipitation was generally lower than that in summer precipitation.
- The concentrations of SO_4 in precipitation were higher in the summertime than in the wintertime. NO_3^- concentrations had the opposite seasonal variation. This observation may be a consequence of different emission conditions, and oxidation and scavenging properties of SO_X and NO_X in the two seasons. Because of the compensating contribution of SO_4 and NO_3 to acidity, it was found that the resultant acid concentrations were comparable in the two seasons.
- Precipitation concentrations of species such as H_f, SO₄, NO₃, and trace metals in the small-particle size range, which had a contribution due to long range transport, were in general higher from the S and SW sectors This supports the observations regarding relative concentrations during warm and cold frontal passages.
- It was possible to single out the local source contribution from that of the background. The downwind precipitation concentrations of smelter-related constituents were significantly higher than those upwind. Those of Ni and Cu were on average a factor of 30 higher. The contribution due to INCO is considerably greater than that of Falconbridge, in qualitative agreement with their respective emission rates.
- Elevated concentrations relative to background were observed in sectors
 downwind of the local smelter sources. Up to a distance of 40 Km from
 the source, except for total sulfur, 23 to 100% of the INCO emissions
 appear to be scavenged during precipitation events. The percentage of the

emissions scavenged was higher for Falconbridge than that for INCO, and in almost all cases the wet deposition was greater than the emission rate. This reflects the relatively poor network coverage and the possibility of interferences due to INCO emissions.

- On average, the deposition within 40 Km of Sudbury due to the INCO source corresponded to 5 to 20% of the total, with the exception of Cu, Ni and Cd. The first two species contributed as much as 70%.
- Wet oxidation rate of SO₂ to SO₄ under wet conditions was found to be less than 0.5% h⁻¹ assuming both SO₄ (primary and secondary) and Pb are scavenged equally efficiently because they are of similar size range.
- Scavenging of plume constituents was not uniform throughout the year. For the acid and sulfur compounds, the scavenging seems to be more efficient in the summertime, whereas in the case of trace metals (except Pb, Cr and Zn which are in fine-particle size range), the reverse seems to be true. All scavenging coefficients were typically in the order of 10^{-4} to 10^{-5} s⁻¹.

REFERENCES

- Chan, W.H., R.J. Vet, C.U. Ro, M.A. Lusis and A.J.S. Tang, "Precipitation Quality and Wet Deposition in the Sudbury Basin: Sudbury Environmental Study Cumulative Precipitation Network Results", Ontario Ministry of the Environment, Air Resources Branch Report # ARB-04-82-ARSP (1982).
- "An Analysis of the Sudbury Environment Study Network Precipitation Acidity Data. June-September, 1978", Ontario Ministry of the Environment, Air Resources Branch Report, February, (1979).
- Chan, W.H., C.U. Ro, M.A. Lusis and R.J. Vet., "An Analysis of the Impact
 of INCO Emissions on Precipitation Quality in the Sudbury Area" Ontario
 Ministry of the Environment, Air Resources Branch Report #ARB-TDA-3580, May (1980).
- 4. Granat, L., Atmos. Environ., 12, 413, (1978).
- 5. Chan, W.H., R.J. Vet, G.B. Skelton and M.A. Lusis, "Size Distribution and Emission Rate Measurements of Particulates in the 93 m Falconbridge Smelter Stack Plume, 1979", Ontario Ministry of the Environment, Air Resources Branch Report #ARB-TDA-57-80 (1982).
- 6. Chan, W.H., R.J. Vet, M.A. Lusis and G.B. Skelton, "Size Distribution and Emission Rate Measurements of Particulates in the INCO 381 m Chimney and Iron Ore Recovery Plant Stack Plumes, 1979-80", Ontario Ministry of the Environment, Air Resources Branch Report #ARB-TDA-62-80 (1982).

REFERENCES (CONT'D)

- 7. Venkatram, A., B.E. Ley and S.Y. Wong., "A Statistical Model to Estimate Long-Term Concentrations of Pollutants Associated with Long-Ragne Transport and Its Application to Emissions from the Sudbury Region."
 Ontario Ministry of the Environment, Air Resources Branch Report (1982).
- 8. Fitz, L. and R. Potvin, MOE, Northeastern Region, Personal Communication (1981).
- Chan, W.H., R.J. Vet, M.A. Lusis, J.E. Hunt and R.D.S. Stevens, Atmos. Environ., 14, 1201 (1980).
- 10. Wiebe, A. and D.M. Whelpdale, Precipitation Scavenging from a Tall Stack Plume, Proceedings of the 1974 Precipitation Scavenging Symposium, Champaign, Illinois, October 14-18 (1974).
- 11. Muller, E.F. and J.R. Kramer, Precipitation Scavenging in Central and Northern Ontario, Proceedings of the 1974 Precipitation Scavenging Symposium, Champaign, Illinois, October 14-18 (1974).
- 12. Hegg, D.A. and P.V. Hobbs, Atmos. Environ., 12, 241 (1978)
- Newman, L. "General Considerations on How Rainwater Must Obtain Sulfate, Nitrate and Acid", Internat. Symp. on Sulfur Emissions and the Environment, London, May 8-10. (1979).
- 14. Hales, J.M. and M.T. Dana J. Appl. Meteorol., 18, 294 (1979).

REFERENCE (CONT'D)

- 15. McNaugton, D.J. and B.C. Scott, J. Air Poll. Control Assoc., 30, 272 (1980).
- 16. Scott, B.C., "Predicitons of In-Cloud Conversion Rates of SO₂ and SO₄ Based on a Simple Chemical and Dynamical Model", 2nd Joint Conf. on Applications of Air Pollut. Meteorol. and 2nd Conf. on Industrial Meteorol., New Orleans, March 24-28 (1980).
- 17. Summers, P.W. and B. Hitchon, JAPCA 23, 194 (1973).
- 18. McMahon, T.A. and P.J. Denison, Atmos. Environ., 13, 571 (1979).
- 19. Chan, W.H., F. Tomassini and B. Loescher, to be published (1982).
- 20. Loescher, B., personal communication (1981).
- Ozvacic, V., "Emissions of Sulphur Oxides, Particulates and Trace Elements in Sudbury Basin", Report #ARB-ETRD-09-82, Air Resources Branch, Ontario Ministry of the Environment (1982).

			·		U	TM
TATION NO.	STATION	ELEVATION	LATITUDE	LONGITUDE -	EASTING	NORTHING
TATION NO.	BINITON	ELEVATION	LATTIODE	LONGTIODE	NOF	RMAL.
	DAMORY	1400			399400	5255100
1	RAMSEY	1400'	47 26'33"	82 20'15"	LC 9	955
					51460ó	5123000
2	BURWASH	750'	46 15'46"	80 48'48"	NB, 1	422
2	NEG CHODUNA	0251	46 334558	20 551258	506400	5153300
3	NEW SUDBURY	925'	46 31'55"	80 55'05"	NB (653
P 3	LONG LAKE	0501	46 041338	00 50126#	500500	513940σ
4/5	LONG LAKE	850'	46 24'37"	80 59'36"	NB (039
	MANUE	7001	46 241268		511700	5138400
6	WANUP	780'	46 24'06"	80 50'53"	NB]	138
1	LIVELY	2001	46 261224	0) 00105#	489600	5143000
7	LIVELY	800,	46 26'09"	81 08'05"	мв 8	1943 .
0.40	AZILDA	905'	46 301408		490400	5154400
8/9	AZILUA	905	46 32'40"	81 07'35"	MB 9	054
	SKEAD	9251	46 40'08"	80 45'00"	519200	516800 0
10	SKEAD	923	46 40 08	80 45 00	NB 1	968
501					480500	5136300
11	McCHARLES LAKE	850'	46 22'43"	80 15'20"	MB 8	1036
	WINDY TAKE	12001	46 321367	01 27120	465000	5163000
12	WINDY LAKE	1200'	46 37'16"	81 27'20"	мв (563

32

SES EVENT PRECIPITATION STATIONS - JUNE 1978 - MAY 1980

r M	
NORTHING	
MAL	
5182600	
983	
5139800	
740	
5118550	
618	
5095700	
996	
5297300	
7297	
5150200	
150	
5124400	
324	
5125600	
325	
5145700	
246	
5085350	
3485	

1 34 1

SES EVENT PRECIPITATION STATIONS - JUNE 1978 - MAY 1980

			*		U	T M	
	*	1			EASTING	NORTHING	
TATION NO.	STATION	BLEVATION	LATITUDE	LONGITUDE	NOR	MAL	
			*		505800	5172100	
24	CAPREOL	1175'	46 42'10"	80 55'25"	NB 0	672	
			5		486200	5144500	
25	CREIGHTON	950	46 27'10"	81 10'46"	мв 8	644	
-		1			497700	5143900	
26	KELLY LAKE	850'	46 27'05"	81 02'30"	мв 9	844	
					493600	5141300	
27	KELLY LAKE	900'	46 25'40"	81 05'00"	MB 9	441	
					473150	5159450	
28	DOWLING	900'	46 35'28"	80 21'05"	MB 7359		
			 		482800	5155950	
29	CHELMSFORD	900'	46 33'32"	81 13'25"	MB 8	356 .	
					511400	5148500	
30	CONISTON	850'	46 29'29"	80 51'08"	NB 1	185	
					356200	5117600	
31	BLIND RIVER	650'	46 11'45"	82 55'50"	LB S	5176	
					460700	5130700	
32	WORTHINGTON	850'	46 20'25"	81 30'38"	мв (6131	
					499250	5149200	
33	FROOD ROAD	950	46 30'05"	81 00'36"	MB S	9949	

SES EVENT PRECIPITATION STATIONS - JUNE 1978 - MAY 1980

STATION NO.	STATION	ELEVATION	LATITUDE		EASTING	NORTHING
34	8		C19(0)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)	LONGITUDE		
34					NOP	MAL
	NORTH BAY	7251	46 19'45"	79 28'55"	617900	5131500
				73 20 55	PB 1	832
35	NOELVILLE	650'	46 08'00"	80 25'20"	545000	5108800
				00 23 20	NB 4	509
36	ST. CHARLES	7501	46 21'56"	80 25'04"	544950	5134550
36				00 23 04	NB 4	534
37	GARSON	950	46 32'50"	80 53'25" -	508600	5154600
				50 33 23	NB 0	955
38	HWY 144.	1000'	46 31'45"	81 04'35"	494100	5152600
				01 04 55	MB 9	453
39 в	LACK LAKE ROAD	825'	46 22'30"	81 07'04"	490900	5135550
					MB 9	136
40	VAL CARON	950'	46 36'45"	81 01'45" -	498300	5162000
40					MB 9	862
	BLEZARD VALLEY	950'	46 35'35"	81 03'55"	495150	5161500
41			10 33 33	01 03 33	MB 9	562
42	HANMER	950'	46 38'25"	81 00'50"	500370	5165000
				01 00 30	NB 00	065

. ყვ

TABLE 2 Summary of Network Operations

Statio	on	Number of Samples with Volume Measured	Number of Samples with pH Measured	First and Last Sampling dates
1	Ramsey	58	54	June 21/78 - Oct. 23/79
2	Burwash	213	208	June 27/78 - May 18/80
3	New Sudbury	31	25	June 26/78 - Apr. 14/79
4/5	Long Lake I and II	122	105	June 26/78 - May 30/80
6	Wanup	234	216	June 22/78 - May 19/80
7	Lively	14	10	July 12/78 - Oct. 1/78
8/9	Azilda I and II	66	52	Aug. 18/78 - Oct. 29/79
10	Skead	18	17	July 22/78 - Oct. 1/78
11	McCharles Lake	44	42	June 26/78 - Apr. 15/79
12	Windy Lake	15	7	July 7/78 - Aug. 28/78
13	Lake Wanapatei	13	5	July 7/78 - Aug. 17/78
14	Verner	186	160	July 8/78 - May 19/80
15	Callander	2	1.	Aug. 16/78 - Aug. 24/78
16	Killarney	17	10	July 11/78 - Aug. 24/78
17	Charlton Station	2	2	July 15/78 - Aug. 17/78
18/19	Markstay I and II	57	53	July 8/78 - Oct. 28/79
20	Lake Panache	131	114	June 6/78 - May 30/80
21	Thessalon	24	18	July 18/78 - Jan. 5/79
22	Laurentian University	179	160	July 21.78 - May 30/80
23	Grundy Park	20	16	July 13/78 - Oct. 17/78
24	Capreol	68	59	Aug. 29/78 - Oct. 29/79
25	Creighton	182	170	Oct. 17/78 - May 19/80
26	Kelly Lake I	118	109	May 28/79 - May 18/80
27	Kelly Lake II	121	114	June 20/79 - May 30/80
28	Dowling	140	117	May 13/79 - May 19/80
29	Chelmsford	21	17	May 17/79 - Oct. 21/79
30	Coniston	105	95	June 9/79 - May 19/80
31	Blind River	46	40	May 18/79 - Oct. 28/79
32	Worthington	50	46	May 11/79 - Oct. 28/79
33	Frood Road	0	0	July 1/79 - July 15/79
34	North Bay	43	36	May 11/79 - Sept. 14/79
35	Noelville	122	107	May 10/79 - May 31/80
36	St. Charles	49	38	May 19/79 - Oct. 29/79
37	Garson	110	91	June 1/79 - May 19/80
38	Highway 144	116	105	June 20/79 - May 30/80
39	Black Lake	38	33	June 21/79 - Nov. 2/79
40	Val Caron	23	22	March 23/80 - May 19/80
41	Blezard Valley	23	23	April 3/80 - May 19/90
42	Hanmer	20	17	April 3 - May 30/80

TABLE 3

Details of Precipitation Sample Analyses

Parameter	Analysis Method	Detection Limit (mg 1-1)
pH (for H _f determination)	Radiometer	0.1 pH unit
Total Acidity	NaOH titration to pH 8.3;	
(for H ₊	results presented as	
determination)	mg CaCO ₃ 1 ⁻¹	0.08
so ₄	Ion Chromatography	0.04*
N-NO ₃	Ion Chromatography	0.01*
CI	Ion Chromatography	0.04*
F	Ion Chromatography	0.04*
N-NH ₄	Automated phenate-hypochlorite	
2"	method	*800.0
Ca	Flame atomic absorption	0.02*
Na	Flame atomic absorption	0.02*
K	Flame atomic absorpiton	0.02*
Mg	Flame atomic absorption	0.02*
Zn**	Flame atomic absorption	0.001
Fe	Flameless atomic absorption	0.001
Ni**	Flameless atomic absorption	0.001
Cu ^{**}	Flameless atomic absorption	0.001
Pb * *	Flameless atomic absorption	0.001
AI	Flameless atomic absorption	0.005
Cr**	Flameless atomic absorption	0.0005
Cd**	Flameless atomic absorption	0.0001

^{*} Values correspond to lowest values reported.

^{**} Analysed by ICP in 1980

SES EVENT PRECIPITATION CONCENTRATION DATA STATISTICAL SUMMARY

EVENT SAMPLING ANALYSIS RESULTS

SUDBURY ENVIROMENTAL STUDY

THE STATISTICAL TABLE - ALL DATA (CONCENTRATION)

ALL STATIONS											32	u a k .8	PAGE : 1
STATISTICAL PER	RIOD :	780501-80	10531	ž *				LMGZL	.1				
		VOL.	РН	ACIDITY	HF	нт	504	N-N03	N-NH4	CL	CA	MG	NA
SAMPLE SIZE	:	2839.	2515.	1708.	2515.	1708.	2372.	2382.	2209.	2322.	1977.	1996.	1971.
MAX I MUM	:	9335.	7.18	25.85	0.437	0.517	29.25	14.09	6.180	13.80	4.00	0.77	4.40
MUMINIM		7.	3.36	1.09	0.000	0.022	0.10	0.01	0.003	0.005	0.005	0.002	0.005
RANGE	:	9328.	3.82	24.76	0.436	0.495	29.15	14.08	6.177	13.80	3.99	0.77	4.39
ARITH. MEAN	:	981.	••••	5.86	0.072	0.117	3.95	0.67	0.468	0.414	0.299	0.052	0.164
ARITH. STD. DE	y :	1085.	••••	3.15	0.058	0.063	3.38	0.69	0.457	0.795	0.360	0.077	0.312
GEOM. MEAN	:	563.	4.27	5.16	0.051	0.103	2.84	0.47	0.304	0.21	0.17	0.03	0.09
GEOM. STD. DEV	. :	1.13	0.10	0.50	1.002	0.502	0.86	0.89	0.999	1.08	1.10	1.13	1.17
1ST QUARTILE	:	260.	4.03	3.64	0.033	0.073	1.65	0.28	0.162	0.11	0.08	0.01	0.04
2ND QUARTILE	•	617.	4.22	5.14	0.060	0.103	3.10	0.49	0.320	0.20	0.18	0.03	0.08
3RD QUARTILE	:	1292.	4.48	7.17	0.093	0.143	5.15	0.84	0.630	0.38	0.37	0.06	0.16
VOI . WGT. MEAN			4.28	5.57	0.068	0.111	3.52	0.51	0.392	0.21	0.25	0.04	0.10

.... INSUFFICIENT DATA

**** : NOT CALCULATED

CALCULATED FROM THE CORRESPONDING HF VALUE

TABLE 4 continued...

EVENT SAMPLING ANALYSIS RESULTS

SUDBURY ENVIROMENTAL STUDY

THE STATISTICAL TABLE - ALL DATA (CONCENTRATION)

								TW@SFT		'		- ' '-'!
		K	SI	F	FE	CU	NI	PB	7N	AL	CR	CD
AMPLE SIZE	:	1992.	420.	2253.	2046.	2046.	2046.	2046.	2042.	2012.	2044.	2042.
MUMJXA	:	1.85	0.35	0.79	3.940	2.410	0.932	0.500	1.670	2.310	0.0810	0.0300
INIMUM	:	0.005	0.020	0.001	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0003	0.0001
ANGE	:	1.85	0.33	0.79	3.939	2.469	0.931	0.499	1.669	2.309	0.0807	0.0300
TITH. MEAN	:	0.09	0.05	0.04	0.103	0.035	0.016	0.019	0.021	0.054	0.0007	0.0007
RITH. STD. DEV	:	0.15	0.04	0.05	0.220	0.132	0.059	0.027	0.065	0.108	0.0028	0.0019
OM. MEAN	•	0.04	0.04	0.02	0.043	0.005	0.002	0.012	0.010	150.0	0.0004	0.0003
OM. STD. DEV.	:	1.20	0.58	0.93	1.291	1.777	1.725	0.902	1.089	1.518	0.7888	1.3167
ST QUARTILE	÷	0.02	0.02	0.02	0.019	0.001	0.000	0.007	0.006	0.008	0.0003	0.0001
ILTRAUD (I	:	0.04	0.05	0.02	0.042	0.003	0.001	0.012	0.011	0.024	0.0003	0.0002
D QUARTII E	:	0.09	0.05	0.04	0.093	0.013	0.006	0.021	0.019	0.064	0.0005	0.0006
L. WGT. MEAN	:	0.06	0.05	0.03	0.075	0.020	0.010	0.014	0.015	0.045	0.0006	0.0005

***** : INSUFFICIENT DATA
**** : NOT CALCULATED

TABLE 5: SUMMARY OF ACID-RELATED PARAMETER DATA

Concentration (mg l^{-1})

			рΗ			504		N-N0 ₃			
Station	n*	Max.	Min.	Geom. Mean	Max.	Min.	Geom. Mean	Max.	Min.	Geom. Mean	
ΑШ	2515	7.18	3.36	4.27	29.25	0.10	2.84	14.09	0.01	0.47	
Ramsey	54	5.97	3.53	4.34	17.5	0.28	1.76	1.42	0.04	0.23	
Burwash	208	5.45	3.45	4.20	16.75	0.20	2.45	3.55	0.04	0.49	
New Sudbury	25	4.91	3.64	4.20	10.30	0.35	2.42	1.80	0.06	0.41	
Long Lake	105	6.02	3.47	4.26	13.75	0.25	2.78	2.90	0.04	0.48	
Wanup	216	6.27	3.51	4.31	16.25	0.20	2.65	4.00	0.02	0.49	
Lively	10	4.64	3.60	4.10	7.20	1.10	3.03	0.84	0.10	0.34	
Azilda	52	5.82	3.53	4.29	13.0	0.20	2.99	6.50	0.01	0.43	
Skead	17	5.03	3.86	4.25	10.10	0.60	2.63	1.00	0.04	0.27	
McCharles L.	42	6.30	3.48	4.28	10.80	0.20	2.65	3.80	0.02	0.39	
Windy L.	7	4.63	3.77	4.13	11.20	1.00	3.61	0.87	0.14	• 0.34	
L. Wanipatei	5	4.85	3.54	4.35	3.90	1.45	2.47	0.84	0.15	0.32	
Verner	160	7.18	3.52	4.30	12.85	0.25	2.31	5.50	0.03	0.47	
Callandar	1	4.28	4.28	8 4	1.60	1.60	-	0.08	0.08	7	
Killarney	10	5.55	3.73	4.23	6.90	1.30	3.53	1.18	0.30	0.55	
Charleton Stn	2	5.36	4.87	5.11	0.90	0.40	0.60	0.09	0.06	0.07	
Markstay	53	5.27	3.44	4.22	13.35	0.40	3.52	1.90	0.03	0.36	
L. Panache	114	6.65	3.47	4.24	19.01	0.20	2.30	4.35	0.03	0.46	
Thessalon	18	5.28	3.82	4.37	10.40	0.66	2.52	1.34	0.18	0.45	
Laurentian U.	160	6.29	3.44	4.21	20.00	0.40	3.19	6.00	0.05	0.51	
Grundy Pk	16	4.75	3.59	4.00	7.15	1.20	4.20	1.17	0.15	0.59	
Capreol	59	6.85	3.36	4.18	15.00	0.30	3.71	5.05	0.01	0.42	
Creighton	170	6.31	3.41	4.30	27.70	0.10	2.71	4.40	0.04	0.48	
Kelly L (D)	109	6.44	3.51	4.26	24.00	0.70	3.67	3.70	0.04	0.53	
Kelly L. (II)	114	6.42	3.56	4.25	29.55	0.34	3.67	3.55	0.04	0.54	
Dowling	117	6.58	3.45	4.33	15.75	0.15	2.18	5.70	0.01	0.44	
Cheimsford	17	7.15	3.73	4.60	15.65	1.20	4.27	0.95	0.04	0.32	
Coniston	95	5.99	3.59	4.28	18.45	0.30	2.79	14.09	0.03	0.51	
Blind River	40	6.83	3.51	4.41	28.00	0.90	3.78	2.60	0.05	0.48	
Worthington	46	6.66	3.43	4.24	19.50	0.45	4.01	3.60	0.06	0.53	
North Bay	36	6.58	3.52	4.31	19.10	1.50	4.21	2.06	0.05	0.45	
Noelville	107	5.90	3.61	4.32	19.40	0.20	2.22	3.85	0.01	0.49	
St. Charles	38	5.06	3.60	4.22	14.05	0.50	3.72	1.60	0.07	0.46	
Garson	91	6.44	3.55	4.30	17.25	0.25	3.36	4.40	0.06	0.59	
Hwy 144	105	6.47	3.48	4.28	28.35	0.40	3.41	3.52	0.06	0.49	
Black L. Rd.	33	6.44	3.51	4.18	10.40	1.30	3.98	1.46	0.08	0.53	
Val Caron	22	5.02	3.85	4.30	6.60	0.70	2.70	2.02	0.08	. 0.38	
Blezard Valley	23	5.49	3.84	4.35	7.65	0.65	2.63	2.20	0.06	0.32	
Hanmer	17	4.97	3.87	4.29	6.20	050	2.53	3.19	0.05	0.34	

The number of samples with pH measurements. This could be larger than that with $\rm SO_4$ and/or $\rm NO_3$ analysis.

TABLE 6
SES EVENT PRECIPITATION DEPOSITION DATA STATISTICAL SUMMARY

EVENT SAMPLING ANALYSIS RESULTS

SUDBJRY ENVIROMENTAL STUDY

THE STATISTICAL TABLE - ALL DATA (DEPOSITION)

ALL STATIONS STATISTICAL PERI	00 :	780501-8	00531	群 章	16	2		/MC /UA		a 8			PAGE : 1
		VOL.	РН	ACIDITY	HF	нг	504	N-NO3	N-NH4	CL	CA	MG	NA -
SAMPLE SIZE	1	2839.	2515.	1708.	2501.	1702.	2364.	2373.	2201.	2314.	1970.	1989.	1964.
MAXIMUM	:	9335.	7.18	25.85	7.446	9.998	343.36	40.06	36.331	31.97	69.51	A.77	22.13
MINIMUM	•	. 7.	3.36	1.09	0.000	0.026	0.18	0.02	0.002	0.006	0.010	0.003	0.015
RANGE		9328.	3.82	24.76	7.446	9.971	343.18	40.03	36.329	31.97	69.50	8.77	22.11
ARITH. MEAN	:	981.	••••	5.86	0.484	1.063	25.54	3.68	3.030	1.572	2.103	0.349	0.894
ARITH. STU. DEV	•	1085.	••••	3.15	0.673	1.009	32.07	4.04	3.531	2.160	3.479	0.584	1.412
GEOM. MEAN	:	563.	4.27	5.16	0.210	0.745	12.24	2.00	1.508	0.94	0.99	0.15	0.46
GEOM. STU. DEV.		1.13	0.10	0.50	1.518	0.857	1.35	1.23	1.341	1.04	1.28	1.32	1.16
IST QUARTLIE	:	260.	4.03	3.64	0.089	0.409	4.95	0.91	0.635	0.52	0.40	0.06	0.22
2ND QUARTILE	:	617.	4.22	5.14	0.254	0.757	13.82	2.28	1.728	0.98	1.03	0.16	0.44
3RD QUARTILE	:	1292.	4.48	7.17	0.607	1.384	33.13	5.04	4.196	1.85	2.59	0.41	1.01

***** : INSUFFICIENT DATA
**** : NOT CALCULATED

TABLE 6 continued...

EVENT SAMPLING ANALYSIS RESULTS

SUBBURY ENVIROMENTAL STUDY

THE STATISTICAL TABLE - ALL DATA (DEPOSITION)

ALL STATIONS STATISTICAL PERI	OD :	780501 - 80	0531	. 302 	PAGE :										
		K	SI	F	FE	CU		PB	ZN	AL	CR	CD -			
SAMPLE SIZE	•	1985.	419.	2244.	2035.	2035.	2035.	2035.	2033.	2003.	2034.	2033.			
MAXIMUM	:	13.30	6.10	8.62	41.490	12.622	12.325	2.614	5.100	46.078	0.3495	0.1914			
MINIMUM	:	0.004	0.007	0.001	0.0009	0.0002	0.0001	0.0006	0.0010	0.0010	0.0001	0.0000			
RANGE	:	13.29	6.09	8.62	41.489	12.621	12.325	2.614	5.099	46.077	0.3495	0.1914			
ARITH. MEAN	:	0.54	0.49	0.21	0.606	0.163	0.084	0.116	0.122	0.362	0.0048	0.0037			
ARITH. STD. DEV	:	0.95	0.64	0.34	1.674	0.607	0.423	0.155	0.283	1.219	0.0152	0.0097			
GEOM. MEAN	:	0.24	0.29	0.11	0.231	0.026	0.012	0.067	0.056	0.114	0.0021	0.0014			
GEOM. STD. DEV.		1.33	1.03	1.20	1.361	1.747	1.736	1.119	1.217	1.607	1.1149	1.3506			
IST QUARTILE	:	0.10	0.14	0.05	0.094	0.008	0.003	0.034	0.024	0.037	0.0009	0.0005			
END QUARTILE	:	0.26	0.28	0.11	0.230	0.019	0.009	0.071	0.060	0.124	0.0020	0.0014			
3RD QUARTILE	:	0.59	0.56	0.25	0.556	0.075	0.032	0.147	0.122	0.365	0.0039	0.0033			

**** : INSUFFICIENT DATA

**** : NOT CALCULATED

- 42

TABLE 7

CORRELATION COEFFICIENTS OF SES EVENT CONCENTRATION DATA

								LIN	99%	CONF	ION CO DENCE EVATION	FFAFF	16.41	Market States							
			844				ore 8	.,	N 2132 13							PEHI	UL 1 00	N 6.78	-MĄY 30	. 40	
	ALL ST	11045																• •			
	VOL	16	113	50+	но)	nHe	(L	CA	n 4	MA	ĸ	sı	ŕ	fŧ	Cu	HI	P8.	2N .	AL (CH CD	
	1-999																				
	-0.07 2501	2515	020					/4								7965	W 20			0	
Ğ	1702	1708	1708							S - 100					0.000 m em						
14	2364	2363	1696	2372					:::::::::::::::::::::::::::::::::::					11/81		2.0		60 1.89			
0.1	2373	2373	1697	2366	1.000 2382 0.557 2168 9.193 2316 8.450 1961	1.000			NS.					848							
144	2201	2201	1701	2164	2168	2209						·									
	2314	2312	1687	2306	2316	2138	2322	1.000			U#6							ā			
	1970	1971	1657	1957	1963	1922	1943	0.800	1.000				•								
iA.	-0.18	1988	1662	1977	0.400 1981 0.125 1959 0.154	1928	0.226	1405	9.060	1 : 000										15.0	-
(1965	0.086	0.186	0.295	0.154	0.338	4.086	0.366	1946	0.074	1.000)	¥.						27	
11	1985	0.166	0.14	0.241	3.9	0.224		0.316	393		4.227	420				1000		118			17 S 18 S
Pil	-0.18	0,11	0,09	0.149	0.141 2248	2,100	9,113		<u>-</u> -		1890		2254								
E	-0.13	8	0.09	196	0.111	1942	1955	1/92	1404	1191		3/9	1880	2046	1.000						
Cu	-0.11		0.10	0 196	7 B	1942	1955			1797	10 12 5 3		1888	2046	2046	1.000			enne una		
41	-0.09	2	0.09	6 1.54] -	1942	1955	0.150	1804	1791	0.093	0.155	1880	2046	2046	0.685	1.000		386 065		
PO			162	176	2 0 171	0 089	0.126	7,47,651.0	X 100 TO 100		81 101 14	0.228)	0.115	4.414	0.07	0.120	3043			
211	203	200	0.10	9 196	0.173 7 1969	1941	1959	0.194	0.144	0.10	1	379 0.25		2042 	9.10	.0.14	2042	0.075	1,999		
4 L	200	3	159	6 193	1 1939	1913	1924	1767	17/9	177	2	356	•	0,239	0.074	0.10	2044	2042	2012	1.000 2044 0.086 1	
CH	A 180	200	2 161	9 196	7 1969	0.177	0.312	ŧΧ	0.479	0.24	6 0.080	0.19	0.165	0.52	0.08	0.65	6 0.655 2 2042	4.156	2011	0.086 I 2042	2042
O	201	200	0 16	8 196	6	1940	1951	•	1802	119	5, 1797	319	, 10/0	204							40-14-96

43

TABLE 8

LINEAR REGRESSION COEFFICIENTS OF SES CONCENTRATION DATA

EVENT SAMPLING ANALYSIS RESULTS - SES TWO VARIABLES OF THE LINEAR REGRESSION (A & B)

٨	LL ŠT	AT LONS	Š	*99.80	Sec (2006)	2 43	***						1.065	3000000	3 5	PER	100 i .	NN 6.7	8-HÀY	1.60	
	AOT	HF	нт	504	NO 3	NH4	CL	CA	нG	NA	K	SI	F	FE	CU	NI	PB	ZN	AL	CR	co
	.000																				
· '		0.0		250.00	1777	STATE LATER	81 - 21 - 1 2 2							** **	3	Sec. 10 1					
9		1.000																			
T.		0.037	4.4																		
100			1.000																		
04			597	0.0																	
		42.73	16,54	1.000		TOPS OF								-100/09/04/25/04		(PASS)					
03				0.278		10.00															
		7.464	4.847	4.899	1.000																
114		0.174	0.014	0.060	0.214	0.0															
		4.025	3.612	0.105	0.381	1.000															
L		0.336	0.142	0.268	0.263	4.290	0.0														
		1.040	9.896	6.636	9.219	1.152	1.000	- 1440						66 (4 1)							
A		0.177	0.100	0.073	0.111	0.112	0.272	0.0													
					0.304																
16					0.016																
		0.274	0.235	0.011	0.058	0.075		0.161		161 17424											
IA.					0.114		018		0.149												
		500 #0 67 20	31 32088	20220	0.005	20022	0.595	20002		1,999.			80 a 4		11-						
•									0.042												
							0.020		0.832	0.029		2.72									
51				0.039		0.041			0.040		0.045										
			0.093			0.024			0.217			1.000									
ř.					150.0						0.027		0.0								
-	= 1	0.211			150.0						4.052		1.666								
E									0.435				0.100								
.u				013			0.011	9.000	W. 733	0.014				006							
. 0				0.013			0.070			0.117					1.000						
11				005		1700 1707	0.007			0.009					0.002						
				0.006			9.026			9.041					0.409						
8		0.007							0.015		0.016	0.011				0.014	0.0				
(S)(A)																0.311	1.000				
l N					0.009							0.011		0.017			0.015	0.0			
67.50					0.015							0.215					0.306				
AL									0.042	0.049		0.017		0.025	0.051	0.049	0.041	0.052	0.0		
_									0.234			0.202		0,282	0.08	0.345	0.705	4.125	1.000		
CH						77.5	8.00	(81)84	100000000000000000000000000000000000000			the second		100			0.001		8	0.0	
5780															0.007	0.005	0.010			1.000	
CO									0.001		0.001		0.001						0.001	0.001	0.0
									0.002		0.001		0.002					0.004	0.002	0.85A	1.00

- 44 .

TARLE 9: EVENT PRECIPITATION BACKGROUND CONTAMINANTS CONCENTRATION ASSOCIATED WITH WARM AND COLD FRONTAL PASSAGES

MEAN BA	CKGROUND	CONCENTRATION	(MG/L)
---------	----------	---------------	--------

	WARM	FRONT (A)		COLD	FRONT (B)			w ==	
	ME AN	STUV	NN	MEAN	STDV	NN .	B/A	T-T	
HF	0.0883	0.0431	88.	0.0418	0.0283	96.	0.47	8.72	
PH +	4.05		88.	4.38		96.			
ACID	6.8417	2.5441	86.	3.8201	1.6817	83.	0.56	9.07-	
504	4.4632		89.	1.5748	1.1578	96.	0.35	11.92.	
NNO3	0.8137		89.	0.3569	0.3022	96.	0.44	7.36*	
NNH4	0.5981		88.	0.1995	0.1467	95.	0.33	9.50*	
CL	0.2633		89.	0.2249	0.3439	944	0.85	0.91	
CA	0.3606		83.	0.1556		914	0.43	6.02*	٠
MG	0.0578		86.	0.0276	0.0333	914	0.48	4.33*	
NA	0.1222		86.	0.1420	0.2364	90.	1.16	-0.71	
K	0.0762		86.	0.0519	0.0547	87.	0.68	2.41*	
F	0.0387		86.	0.0237		94.	0.61	2.87*	
FE	0.0599		89.	0.0342		94.	0.57	3.90*	
CU	0.0028		89.	0.0028	0.0039	94.	0.99	0.09	
NI	0.0014		89.	0.0014		93.	1.06	-0.35	
PB	0.0161		88.	0.0079		94.	0.49	6.51*	
ZN	0.0156		89.	0.0091	0.0071	93.	0.58	4.76*	
AL	0.0506		89.	0.0235	0.0357	884	0.46	3.97*	
CR	0.0004		89.			91.	0.95	0.64	
CD	0.0004		89.	0.0003		924	0.78	1.22	

[.] IN PH UNITS

MEAN : MEAN CONCENTRATION OF DAILY AREA MEANS

STDV : STANDARD DEVIATION
NN : NUMBER OF DATA POINTS

T-T : STUDENT-T STATISTICS

STATISTICALLY SIGNIFICANT AT 95 % CONFIDENCE LEVEL

TABLE 10: EVENT PRECIPITATION BACKGROUND CONTAMINANTS CONCENTRATION . ASSOCIATED WITH SUMMER AND WINTER SEASONS

		MEAN BA	CKGROU	ND CONCEN	TRATION	(MG/L)	390	
	SUMME	R (A)		WINTE	R (8)	90	
	MEAN	STOV	NN	MEAN	STOV	NN	A/B	Ť-T
HF	0.0659	0.0455	93.	0.0622	0.0403	91.	1.06	0.59
PH +	4.18		93.	4.21		914	* DOM:	
ACID	5.5207	2.7745	91.	5.1675	2.4696	78.	1.07	0.87
504	3.4896	2.4469	94.	2.4218	1.7374	914	1.44	3.41*
KONN	0.4908	0.3572	94.	0.6654	0.5670	91.	0.74	-2.51.
NNH4	0.4316	0.3229	93.	0.3494	0.3659	904	1.24	1.61
CL	0.1650	0.1099	92.	0.3231	0.3728	91.	0.51	-3.900
CA	0.3267	0.2659	90.	0.1748	0.1960	84:	1187	4.27.
MG	0.0566	0.0552	934	0.0264	0.0337	841	2.15	4.35*
NA	0.0824	0.0667	93.	0.1883	0.2502	831	0.44	-3.93*
K	0.0801	0.0708	93.	0.0453	0.0573	80.	1.77	3.52*
F	0.0281	0.0160	90.	0.0337	0.0480	90.	0.83	-1.04
FE	0.0452	0.0452	93.	0.0482	0.0475	904	0.94	-0.45
CU	0.0025	0.0021	93.	0.0031	0.0038	901 .	0.79	-1.41
NI	0.0012	0.0014	93.	0.0016	0:0018	89.	0.75	-1.63
PB	0.0107	0.0072	92.	0.0130	0.0111	901	0.82	-1.70
ZN	0.0125	0.0103	93.	0.0120	0.0093	894	1.05	0.39
AL	0.0304	0.0325	93.	0.0445	0.0590	841	0.68	-2.00+
CR	0.0004	0.0002	92.	0.0003	0.0001	88.	1.22	2.38*
CD	0.0002	0.0003	92.	0.0004	0.0006	894	0.56	-2.82.

. IN PH UNITS

MEAN : MEAN CONCENTRATION OF DAILY AREA MEANS

STDV 1 STANDARD DEVIATION

NN : NUMBER OF DATA POINTS
T-T : STUDENT-T STATISTICS

STATISTICALLY SIGNIFICANT AT 95 % CONFIDENCE LEVEL

Table 11: Sector Mean Concentrations Based on a 24-Hour Backward Air Parcel Trajectory Classification

	M 450	TOR ZAM		NE SEC	TOR 24H		E SEC	TOR 24HE	•	SE SEC	TOR 24H	
	MEAN	STDV	NM	HEAN	\$10V	MM	MEAN	STOV	NN	MEAN	STOV	MA
•	0.0364	0.0233	9.	0.0689	0.0475	13.	0.0555	0.0267	19.	0.0793	0.0526	22
н .	4.44		9.	4.16		13.	4.26		19.	4.10		22
CID	4.0196	1.2605	6.	5.6527	3.5700	11.	5.1872	1.9888	15.	6-1036	3-1470	22
04	1.3586	1.7185	9.		3.2614	13.	2.5398	1.3616	19.	3.5779		5.5
LON	0.4280	0.3203	9.	0.4052	0.3076	13.	0.4511	0.3678	19.	0.5730	0.4183	21
NH4		0.3731	1.	0.2916	0.3136	13.	6.5153	0.1376	18.	0.4372	0.5128	2
	0.4757		9.	0.1647	0.1305	13.	0.2167	0.2231	19.	0.2566	0.2423	2
•	0.1819	0.2001	8.	0.2283	0.1976	134	0.1712		17.	0.2069	1922.0	2
3	0.0382	0.0330	8.	9.0892	0.0377	13.	0.0237	0.0249	17.	0.0372	0.0482	5
	0.3267	0.5110		0.0752	0.0031	12.	0.1556	0.3163	17		0-1409	S
	0.0514	0.0343	8.	0.0416	0.0361	12.	0.0290	0.0218	17.	0.0509	0.0490	S
	0.0159	0.0134	8.	0.0278	0.0227	134	010525	0.0211	10.	0.0240	0.0103	5
	0.0505	0.0498	9.	6.0521	0.0449	131	0.0463	0.0515	19.	0.0379		2
	0.0027	0.0020	9.	8.0042	0.0046	13.	0.0034	0.0674	19.	0.0023		s
		0.0012	9.	0.0022	0.0032	13.	0.0016	4500.0	10.	0.0011	0.0006	S
	4.4066	0.0038	9.	0.0167	0.0146	13.	0.0092	0.0052	19.	0.0134	0.0116	
	0.0105	0.0061	9.	0.0116	0.0077	131	0.0097	0.0082	19.	0.0113	0.0083	2
	0.0322	0.0318	8.	9.0362	0.0326	134	0.0355	0.0433	19.	0.0295	0.0344	2
•	0.0004	0.0002	8.	0.0003	0.0001	13.	0.0003	0.0001	19.	0.0003	0.0001	2
)	0.0001	0.0001	9.	010009	0.0007	134	0.0004	0.0006	19.	0.0006	0.0007	5

		TOR 24H			HAS ROT			TOR 24H	MN	ME AM	TOR 24H	· N
	MEAN	5104	NIN	me an	STOV	NM	HEAN	3104			3.00	
	0.0760	0.0444	46.	0.0637	0.0432	52.		0.0218	14.	0.0481	0.0479	
	4.12		46.	4.19	8 74/03/20	52.	4.40	10000	14.	4.32		
10	5.9590	2.5639	46.	5.2545		49.	3.7761	1.4668	11.	3.9088	1.9129	
	3.4145		46.	3.0743		53.		1.1151	14.	1.5792		
103	0.6731	0.5515	46.	0.6702		53.	0.5363		14.	0.1824	0.1398	
14	0.4299	0.J542	46.	0.4542		53.	0.3942	0.3566	14.	0.1737		
	0.2363	0.2600	45.	0.2184		53.	0.2756	0.3116	13.	0.1226	0.0554	
	0.2323	0.2607	46.	0.3604	0.2777	47.	0.2646	0.2439	13.	0.1650	0.0521	
•	0.0322	0.0327	46.	0.0662	0.0667	50.	0.0423	0.0423	13.	0.0319		
	0.1127	0.1238	45.	0.1073	0.0809	51.	0.1593	0.1344	13.	0.0661	0.0268	
	0.0648		45.	0.0817	0.0746	49.	0.0709	0.0566	12.	0.0534	5010.0	
	0.0331	0.0446	45.	0.0315	0.0211	25.	0.0296	0.0168	13.	0.0327	0.0196	
	0.0434	0.0532	46.	0.0540	0.0469	52.	0.0442	0.0350	13.	0.0340		
	0.0023	0.0019	46.	0.0027	0.0015	52.	0.0032	1500.0	13.	0.0022		
	0.0012	0.0017	46.	0.0014	0.0011	52.	0.0017	0.0016	13.	0.0010		
	0.0127	0.0109	46.	0.0117		51.	0.0110	0.0047	13.	0.0053		
•	0.0123	0.0094	46.	0.0141	0.0114	52.	0.0126	0.0138	12.	0.0121		
	0.0261	0.0247	45.	0.0537	0.0690	52.	0.0394	0.0436	13.	0.0123	0.0063	
į	\$000.0	5000.0	46.	0.0004	0.0002	51.	0.0004	0.0002	12.	0.0007	0.0006	

HEAN LAMEAN CUNCENTRATION OF DAILY AREA MEANS
STOV ! STANDARD DEVIATION
NN ! MIMMER OF DATA PUINTS

Table 12. Sector Mean Concentrations Based on a 48-Hour Backward Air Parcel Trajectory Classification

	N SEC	TOR 48H		NE SEC	TOR . 48H	R	E SEC	TOR 48H	•		TOR 48H	R
	HE AN	STOV	NN	MEAN	STOV	NM	MEAN	STDV	NN	MEAN	STOV	MN
ıF.	0.0437	0.0304	16.	0.0658	0.0466	17.		.0.0595	15.	0.0823	0.0467	11.
* H	4.36		16.	4.18		17.	4.08		15.	4.08		11.
CID	4.0618	1.8021	15.	5.6180	3.2672	14.	6.6701	3.1691	13.	6.0039	2.9046	10.
104	1.8204	1.6321	16.	2.9849	3.0194	17.	3.8775	2.6378	15.	3.0369	1.7603	11.
LOM	0.3712	0.3073	16.	0.3976	0.2902	17.	0.6154	0.5405	15.	0.6943	0.8017	11.
NHA	0.2684	0.3030	15.	0.2389	0.2562	174	0.3674	0.3344	14.	0.3563	0.3542	11.
L	0.3278	0.6322	16.	0.1884	0.1330	174	0.3022	0.2859	15.	0.3031	0.4293	11.
A	0.1852	0.1821	16.	0.2194	0.1735	17.	0.2912	0.3760	14.	0.2066	0.1682	11.
G	0.0357	0.0313	16.	0.0287	0.0352	174	0.0488	0.0763	14.	0.0332	0.0270	114
A	0.2074	0.3747	16.	0.0779	0.0721	174	0.2053	0.3487	14.	- 0.1648	0.2096	10.
	0.0461	0.0307	16.	0.0386	0.0349	174	0.0651	0.0955	14.	0.0471	0.0351	10.
	0.0196	0.0166	16.	0.0247	0.0222	16.	0.0302	0.0230	15.	0.0310	0.0261	11.
E	0.0495	0.0578	16.	0.0506	0.0477	17.	0.0465	0.0359	15.	0.0283	0.0324	11.
ū	0.0024	0.0022	16.	0.0053	0.0084	17.	0.0027	0.0017	15.	0.0021	1500.0	111
ĭ	0.0015	0.0010	15.	0.0023	0.0036	171	. 0.0014	0.0009	15.	0.0010	0.0008	11.
ė	0.0073	0.0049	16.	0.0118	0.0110	17.	0.0171	0.0156	15.	0.0174	0.0194	11
N	0.0089	0.0059	16.	0.0105	0.0070	17.	0.0147	0.0153	15.	0.0136	0.0143	11
	0.0401	0.0466	14.	0.0323	0.0361	17.	0.0351	0.0270	15.	0.0201	0.0233	11.
R	0.0003	0.0002	15.	0.0003	0.0001	174	0.0004	0.0001	15.	0.0003	0.0001	11.
Ö	0.0003	0.0002	16.	0.0006	0.0006	17.	0.0006	0.0008	15.	0.000,7	0.0007	11.
	5 SEC	TOR 48H			TOR LAM		w sec	TOR 48HF		NW SEC	TOR 48H	
	MEAN	STOV	NN	MEAN	STOV	NN	MEAN	STOV	NN	MEAN	STOV	NN
250	70 0202	20.000	22				0.0467	0.0278	17.	0.0444	0.0237	15.
e e	0.0807	0.0464	36.	0.0622	0.0385	52.	4.33	0.0210	17.	4.35	0.023.	15
	4.09	2	36.	4.20		52.	4.9317	2.2092	14.	3.5309	1.0521	15.
CIU	6.2767	2.6404	35.	5.3926	2.5190	48.				1.8737	1.0446	16.
104	3.7919	2.4146	36.	3.1003	1.9993	52.	2.3179	1.6003	17.	0.4753	0.4318	16.
No.3	0.6275	0.4297	36.	0.7050	0.5354	25.	0.5055	0.3410	17.	0.3239	0.3236	16.
NH4	0.4637	0.3348	36.	0.4845	0.4136	52.				0.1829	0.1748	16.
ı	0.1915	0.1176	35.	0.2490	0.2033	52.	0.2238	0.2528	16.		0.1462	14
A	0.5580	0.2499	35.	0.3034	0.2706	47.	0.3338	0.2681	16.	0.2113	0.0615	15
IG	0.0357	0.0429	35.	0.0490	0.0493	49.	0.0565	0.0584	16.	0.0479		15
A	0.0831	0.0490	34.	0.1304	0.1165	50.	0.1086	0.0928	16.	0.1134	0.1170	14
	0.0609	0.0470	34.	0.0745	0.0806	49.	0.0760	0.0629	15.	0.0479	0.0242	15
	0.0355	0.0485	35.	0.0301	0.0212	52.	0.0264	0.0150	15.	0.0240	0.0155	
E	0.0405	0.0449	36.	0.0526	0.0535	51.	0.0530	0.0413	16.	0.0442	0.0231	16
U	0.0023	0.0013	36.	0.0027	0.0018	51.	0.005+	0.0014	16.	0.0028	0.0019	16
1	0.0011	0.0012	36.	0.0014	0.0017	51.	0.0011	0.0006	16.	0.0016	0.0014	16
H	0.0129	0.0005	36.	0.0112	0.0057	50.	0.0113	0.0062	16.	0.0081	0.0047	16
	0.0119	0.0087	36.	0.0124	0.0054	51.	0.0152	0.0174	16.	0.0121	0.0079	15
N												
L	0.0274	0.0245	36.	0.0512	0.0717	49.	0.0448	0.0454	16.	0.0284	0.0230	16.
N R		0.0245	36. 36.	0.0012	0.0717	49. 51. 51.	0.0448	0.0454	15.	0.0005	0.0230	15

[.] I IN PH UNITS
MEAN I MEAN CONCENTRATION OF DAILY AREA MEANS
STOY I "STANDAMO DEVIATION
NN I MIMMER OF DATA PUINTS

- 49

Table 13: Comparison of Inco Plume Sector and Background Precipitation Concentrations.

INCO	CONTRIBUTE	UN CALL	2 17		# # # # # # # # # # # # # # # # # # #		
PARA	HK MN	PM MN (B)	#K SD	PM 50	RATIO (B/A)	NN	T-T.
HF	0.06032	0,07847	0.04109	0.95184	1.30087	. 113	6,27290
PH	4.22	4.11		F		113	. •
ACID	5,29.364	6,59712	2.49608	3.98509	1.24624	94	7,03630
504	2,48607	5,04205	5.50614	2,85790	1,68853	115	13,53223
EONN	0,58238	0,64339	9.48000	0.54320	1.10477	115	3,46611
NNH4	0.34788	0,58319	0,32229	0,37298	1,48025	113	6,96337
CL	4,22432	9,45314	0.21495	0.05547	11040.5	114	4,31988
CA	4.24179	0,29686	0,23406	0.29168	1,22777	. 106	3,47836
HG	0.04060	0,05343	0.04883	0.05517	1,31614	109	3,44715
NA	0.10814	0,18846	0,15809	. 0.32117	1,74274	109	3,81732
K	0,45592	0,07342	0,46143	0.06773	1,33446	. 106	3,31672
F	4,02549	0.04312	0.01877	9.94146	1,69140	113	5,63667
FE	0,05167	0.18996	0,04904	0.20789	3,66197	113	7,51954
CII	0.00324	0.11106	0,00362	0.19310	34.23209	113	5,96272
NI	4,00164	0.05015	0,00191	0.08559	30,64052	113	6,23876
PB	0,01154	0,02783	0.00957	0.05050	- 2,41206	112.	7,60424
ZN	0.01018	0,01962	0,00788	0.01006	1,92789	. 112	5,93876
AL	0:04374	0,07209	0,05431	0.11099	1,64055	115	3,60335
CR	86000,0	0.00975	0,00022	9.00106	1.97062	110	3,91621
CD	0.00026	0.00119	0,00035	0:00159	4.54638	111	8,12341
XX (J)	· ALICO I	PAIR OF B	ACKGROUND (PLUME CO	M	90	awn.

BACKGROUND MEAN (SUM XX(J))/N
PLUME MEAN (SUM YY(J))/N
BACKGROUND STANDARD DEVIATION
PLUME STANDARD DEVIATION
(PM MN)/(BK MN)
PAINED T TEST VALUE

PM MN BK SD

50

Table 14: Comparison of Falconbridge Plume Sector and Background Precipitation Concentrations

		,		· , ,			
PARA	HK MN	PH HN	RK 2D	PH SD	RATIO	NN	7-7
•	(A)	(B)	*		(B/A)	4.	
HF	0,05334	0.07065	0,03610	0.04345	1,32449	85	6,33910
PH	4.27	4.15	•			85	
ACID	4,76437	5,83179	2,43392	2,98414	1,22404	67	5,21164
504	2,44310	3,48956	2,01688	2.42542	1,42833	46 -	7,65606
LONN	0.44607	0,56536	0.42189	0,62693	1.26515	86	3,39246
NNH4	0,24079	U.36845	0.23313	0.33377	1.31260	83	3,24683
CL	0,20887	0.28560	0,30434	0,30391	1.36736	85	2,03608
CA	9,19205	9.24470	0.18237	0.29260	1.27414	79	2609224
MG	0.02946	0,03703	0,02993	0.04407	1.25699	79	1,94279
NA	0,12848	0,13225	0.23466	0.15321	1.02931	76	0.14718
K	0.04716	0.05907	9.04122	0.05349	1,25253	75	2,13802
F	9.02165	0.02899	0,01619	17050.0	1,33916	81	3.15659
FE	0.04261	0,09873	0.04958	0.16344	2.31723	82	3,23354
CU	0.00298	0,01709	0.00416	0.03086	5.72827	88	4,50343
NI	0,00145	0,00643	0,00188	0.00902	4,43212	βĵ	5.30034
PB	0.01018	0,01638	0.00776	0.01340	1.60888	83	5,37063
ZN	0.00960	0,01754	0.00735	0.02474	1.82741	82	2.87815
ĀL	0.03010	0,06651	0,04111	0,13460	2.20967	79	2,49832
CR	0.00032	0.00057	0.00013	0.00064	1,78156	82	3.60199
CD	0,00036	0.00057	0,00050	0.00052	1,56725	82	4,52449

XX(J), YY(J) PAIR OF BACKGROUND & PLUME CON
NN FRANCE OF PAIRS
BK MN FRANCE OF PLUME STANDARD DEVIATION
FATIO FRANCE OF TEST VALUE

FALCONBRIDGE CONTRIBUTION CALL?

TABLE 151 MEAN ADDITIONAL CONCENTRATION (MG/L) DUE TO INCO AS A FUNCTION OF DISTANCE FROM THE SOURCE

PH NN CONC STDV NN CONC STDV NN CONC; \$TDV N	(3 6.) KM (911.) KM			4 ((1416.) KM	(17,-24,) KM	(274-32.) KH	(3550.) KM
HF 173 0.0172 0.0392 71 0.0162 0.0309 29 0.0117 0.0876 70 0.0145 0.0353 55 0.0208 0.0407 5 0.0 PH 173 4.76 71 4.79 71 5.780 26 1.0330 2.2436 56 1.1868 2.2272 47 0.9304 2.9199 3 1.6 SO4 176 2.1810 2.3127 70 1.4980 1.7661 29 1.01850 1.3317 71 1.6655 1.9870 54 1.4989 2.4741 5 1.5 SO4 176 2.1810 2.3127 70 0.0761 0.2376 29 0.0821 0.2503 71 0.0646 0.3268 56 0.0694 0.3553 5 0.2 NNO3178 0.0561 0.2701 70 0.0761 0.2376 29 0.0821 0.2503 71 0.0646 0.3268 56 0.0694 0.3553 5 0.2 NNH4170 0.2640 0.4001 67 0.2192 0.3742 29 0.0779 0.2806 70 0.1709 0.3573 55 0.0229 0.2680 4 0.2 CL 174 0.1425 0.5256 69 0.1271 0.5446 29 0.0234 0.1951 69 0.4020 1.3439 56 0.0567 0.2070 5 0.1 CL 174 0.0425 0.2556 63 0.0465 0.2164 28 0.8899 0.2606 62 0.0488 0.1792 46 0.0193 0.1408 4 0.0 MG 164 0.0178 0.0566 62 0.0149 0.0690 28 0.0899 0.2600 62 0.0881 0.4594 51 0.0233 0.1037 5 0.0 MG 164 0.0178 0.0566 62 0.0149 0.0690 28 0.0162 0.0386 62 0.0881 0.4594 51 0.0233 0.1037 5 0.0 MK 159 0.1000 0.1001 0.1001 63 0.0374 0.1399 28 0.0115 0.0886 62 0.0881 0.4594 51 0.0233 0.1037 5 0.0 K 154 0.0095 0.0354 68 0.0088 0.0203 27 0.0050 0.0207 73 0.1011 0.2356 54 0.0122 0.0346 50 0.0 K 154 0.0095 0.0354 68 0.0088 0.0203 27 0.0050 0.0207 73 0.1011 0.2356 54 0.0122 0.0346 50 0.0 K 158 0.0060 0.0297 68 0.0088 0.0203 27 0.0050 0.0207 73 0.0111 0.2356 54 0.0072 0.0144 50 0.0 K 168 0.0069 0.0052 68 0.0057 0.0058 0.0057 73 0.0059 0.0232 53 0.0056 0.0131 50 0.0 K 168 0.0069 0.00297 68 0.0075 0.0176 28 0.0057 0.0157 0.0232 53 0.0056 0.0134 50 0.0 K 168 0.0069 0.0224 68 0.0333 0.0714 28 0.0313 0.0314 73 0.0031 0.0703 54 0.0009 0.0009 0.0007	A NN CONC STUV	DM:	IC STDV	STUV NN	NN. CONC. STOV	NN CONC STDY	AND	NN CONC STDV
AL 131 01007 47 04004 VIVILO 37 A AAAA 71 A.AAAA 71 A.AAAA 72 A.AAAA 73 A.AAAAA 73 A.AAAA 73 A.AAAAA 73 A.AAAA 73 A.AAAAA 73 A.AAAA 73 A.AAAA 73 A.AAAA 73 A	F 173 0,0172 0,0392 H 173 4.76 CID134 1.1304 1.4272 04 176 2.1810 2.3127 N03178 0.0561 0,2701 NH4170 0.2640 0.4601 L 174 0.1925 0.5250 A 158 0.0625 0.2055 G 164 0.0178 0.0560 A 159 0.1000 0.1001 154 0.0095 0.0550 L 174 0.0205 0.0354 E 166 0.1953 0.2758 U 168 0.1552 0.2758 U 168 0.1552 0.2758 U 168 0.0691 0.1059 R 168 0.0206 0.0297 N 167 0.0120 0.0223 L 167 0.0294 0.0764	HF PH ACII S04 NNO NNH CL CA MG NA K F ECU NI PR ZN AL	27 1,5740 80 1,7661 61 0,2376 92 0,3742 71 0,5446 85 0,2164 49 0,0690 74 0,1399 23 0,1034 88 0,0203 59 0,2280 74 0,0916 33 0,0716 02 0,0176 75 0,0150 24 0,0731	0392 71 71 7272 57 3127 70 3127 70 4001 67 5250 69 3050 62 1001 63 0500 62 1001 63 0550 68 1059 68 1059 68 1059 68 1059 68	29 0.0117 0.0276 29 1.0330 2.2436 29 1.1050 1.3317 29 0.0021 0.2503 29 0.0779 0.2446 29 0.0234 0.1961 28 0.0899 0.2400 28 0.015 0.068 28 0.015 0.068 28 0.015 0.068 4 28 0.015 0.068 4 28 0.015 0.068 6 28 0.015 0.069 6 28 0.015 0.069 6 28 0.015 0.069 6 28 0.015 0.069 6 28 0.015 0.0159 7 0.000 0.0136 8 0.015 0.0159 8 0.015 0.0159	70 0.0145 0.0353 70 4.84 56 1.1068 2.2272 71 1.6655 1.9870 71 0.0646 0.3268 70 0.1709 0.3573 69 0.4020 1.3439 62 0.0488 0.1792 63 0.0097 0.0258 62 0.0881 0.4594 65 0.0315 0.1081 69 0.0096 0.0314 73 0.1111 0.2364 73 0.0698 0.1259 73 0.0157 0.0232 73 0.0157 0.0232 73 0.0092 0.0309 72 0.0280 0.1019 71 0.0001 0.0004	55	3 1.6531 1,1962 5 1.5700 1.9006 5 0.2292 0.4000 4 0.2118 0.3428 5 0.1360 0.1962 4 0.1092 0.3541 4 0.0348 0.0659 5 0.0352 0.0539 5 0.0174 0.0757 5 0.0076 0.0168 5 0.0086 0.0165 5 0.0051 0.0038 5 0.0010 0.0010 4 0.0069 0.0073 5 0.0034 0.0095 5 0.0065 0.0174 5 0.0001 0.0001

Nii = Humber of Data Points COHC = Hean Concentration STDV = Standard Deviation

TABLE 16: MEAN ADDITIONAL CONCENTRATION DUE TO FALCONBRIDGE AS & FUNCTION OF DISTANCE FROM THE SOURCE

				17,-19,				2124.) KM		(28,-33,)		(38,-41,	KM	(5050.)		KM	
PH	NN	CONC	STDY	HH	CONC	STDV	. NN	CONC	STDY	NN	CONC	STDY	NN	CONC	STOY	. NN	CONC	STDV
HF.	47	0.0148	0,0326	35	0.0251	0,0366	78	0.0176	0.0349	51	0.0144	0.0335	22	0.0293	0.0275	6	0.0191	0.0203
PH	47	4.83	** → *,	35	4.60	•	78	4.75		18 51 51			. 55					
ACTD	38	1,2588	2,3575	31	1.1293	1,8154	61	1.0063	2,3591	19	6:6859	1.8626	16	1.8354	1,4153	5	1.1930	1.5446
504	47	1,12/7	1,5071	37	1.0119	1.9608	79	1.1296	1,6574	. 21	0,9733		22	1.5998	1,4469	6	0.7525	0.4910
NN03	47	0.1577	0,4253	-36	0,1685	0,5333	79	0.1253	0,3036	51	0.1019		. 22		0.1893	6	0.0967	0.1073
HNH4	47	0.0787	6015,0	36	0.0674	0,3384	76	0,1376	013111	20	0,0951		55	0.1532	0.2180	6		0.1198
CL	47	0,1225	0,3461	35	0,0501	0.1413	7.7	9.0802		51	-0.0873		. 22	:0,1092		6		0.3084
CA	45	0.1004	0.2958	34	0,0382	0,1884	68	0.0139	162816	. 18	0.0264		19		0.2516	5	-0.0340	
MG	45	0,0194	0.0552	34	-0.0006	0.0309	68		0.0255	. 18	0.0054		19		0.0410	5	-0.0015	
PIA.	43	0.0317	0.2130	32	0.0169	0,0772	68		0,2913	18	-9.0916		20	0.0269		5		0.2048
K	41	0.0094	0.0375	31	9-0043	0,0415	65		0.9628	. 18	. 0.0065		50	0.0159		5		0.0166
F	45	0.0074	0.0251	35,	0,0117	0.0235	73	0.0045	0.0175	19	0.0151		19		0.0156	4		0.0104
FE	46	0.0885	0.1863	35		0,1016	73		0.1726	. 50	-0.0025		18	-0.0021		6		0.0400
CU	47	8550.0	0,0394	36		0,0144	. 73	0.0128	010274	19	0,0071	DAY AND PROPERTY OF A	19	0.0011		6		0.0036
NI	47	0.0089	0.0140	35		0.0057	72	0.0040		19	0.0048		277.0.1	-0.0000		5	-0.0001	
PA	47	0,0097	0.0158	34		9,0150	74	0.0045		ŽO	0.0036		19	0.0069		6	0.0058	
7N	46		0,0576	15	0.0079		72	0.0050		0.000		0.0067	19	-0.0024		6		0.0305
AL.	47	0.0732	0.1757	35	0.0226		. 72	0.0141		17	-0.0135		18		0.0588	5		0.0129
CR	45		0.0008	35		0.0005	73	0.0002		50	0.0000		19		0.0003	- 6		0.0003
CD	46	0.0003	0.0000	35			72	0.0002		50	0.0001		19		0,0002	6		

NN = Number of Data Points CONC = Hean Concentration STDV = Standard Deviation

TABLE 17: DEPENDENCE OF INCO ADDITIONAL CONCENTRATION ON DISTANCE FROM SOURCE USING INDIVIDUAL DATA POINTS

CONC = A1 + B1 * R (1) CONC = A2 + B2 / R (2) LN(CONC) = A3 + B3 * R (3) LN(R * CONC) = A4 + B4 * R (4)

(46)	CORPE	LATION	COLFF	ICLENT	REGRESSION COEFFICIENT							
PARAMETER	CORI	CUBS	COH3	CUR4	A)	B]	A2	B2	A3	В3	A4	В4
HF AC1D SO4 NNO3 NNH4 CL CA MG NA K F CU NI PB ZN AL	-0.13 0.03 -0.17 -0.04 -0.05 -0.07 -0.09 0.07 -0.10 -0.23 -0.24 -0.25 -0.18 -0.03 -0.08	0.00 -0.01 0.11 0.02 0.13 -0.00 0.07 0.06 -0.07 0.13 0.16 0.24 0.21	-0.04 -0.17 0.05 -0.12 -0.05 0.01 0.00 -0.08 0.01 0.01 -0.32 -0.43	0.24 0.42 0.21 0.38 0.26 0.26 0.37 0.00 -0.02 -0.02 0.24 0.33	0.01516 1.17559 2.23047 0.04876 0.28498 0.22295 0.06943 0.01843 0.10471 0.01047 0.01056 0.16095 0.072148 0.02148 0.03531 0.00054	0.00014 -0.00457 -0.02802 0.00096 -0.00719 -0.00291 -0.00115 -0.00040 -0.00255 0.00062 -0.00033 -0.00576 -0.0047 -0.00073 -0.00073	0.01681 1.14997 1.54563 0.05222 0.11640 0.18791 0.03365 0.00736 0.004614 0.02789 0.00857 0.07254 0.02717 0.01929 0.00987 0.00987	0.00138 -0.26225 2.40978 0.06569 0.56415 -0.01832 0.15506 0.04379 0.18903 -0.07051 0.04394 0.47068 0.51710 0.18784 0.04119 0.01192 0.04706	-5.08353 -0.71137 0.15978 -3.83281 -2.67763 -2.81840 -3.67031 -4.72948 -3.64797 -4.28762 -4.49482 -2.58071 -2.58605 -3.26306 -4.82873 -5.47644 -4.72417 -7.91928	0.00957 -0.00709 -0.03079 0.00992 -0.02648 -0.00752 0.00133 0.00002 -0.01638 0.00270 -0.07457 -0.07875 -0.07875 -0.08644 -0.03034 -0.00981 -0.00444	-3.78185 0.58748 1.45542 -2.53710 -1.38094 -1.52057 -2.37744 -3.43959 -2.34868 -2.98351 -3.20218 -1.27931 -1.28540 -1.96243 -3.53212 -4.17696 -3.42404 -6.61833	0.0849H 0.06899 0.04509 0.08561 0.04941 0.06806 0.07730 0.0761H 0.0589H 0.07854 0.07854 0.0093 -0.00322 -0.01091 0.04563 0.06591 0.06795
CR CD	-0.08 -0.13	n.13	-0.14	2022	0.00125	-0.00005	0.00061	0.00241	-7.82653	-0.03304	-6.52487	0.0425

TABLE 18: DEPENDENCE OF INCO ADDITIONAL CONCENTRATION ON DISTANCE FROM SOURCE USING GROUPED DATA POINTS

```
CONC = A1 + B1 * R (1)

CONC = A2 + B2 / R (2)

LN(CONC) = A3 + B3 * R (3)

LN(R * CONC) = A4 + B4 * R (4)
```

•	COUNT	ELATION	COFFF	CLENT	. 		HEGRES	STON COEFF	ICIENT			*
PARAMETER	CORP	COPS	COR3		A)	B)	A2	B2	A3	B3	A4	В4
HF	0.79	-0.39	0.77	0.99	0.00653	0.000/0	0.02606	-0.06869	-4.51678	0.02688	-2.84029	0.08227
ACID	0.52	-0.23	0.45		0.98397	0.01002	1.25461	-0.88687	0.01768	0.00675	1.69418	0.06214
504	-0.50	0.77	-0.43		1.93068	-0.01321	1.34354	4.07821	0.63118	-0.00692	2.30768	0.04847
พพก3	0.74	-0.37		0.72	-0.00330	0.00431	0.11728	-0.43390	-4.10876	0.05132	-2.43226	0.10671
			-0.34		0.21000	-0.00244	0.09356	0.85346	-1.59135	-0.02456	0.08515	0.030R3
NVH4	-0.35		-0.07		0.17958	-0.00116	0.14154	0.18646	-2.10126	-0.00528	-0.42475	0.05011
CL	-0.11	0.09	0.00		0.05115	0.00059	0.06598	-0.03737	-2.90141	0.00016	-1.22490	0.05555
CA	0.24	-0.08			0.00775	0.00034	0.01435	0.00205	-4.60022	0.00577	-2.92373	0.06116
MG	0.39	0.01	0.09		0.07575	-0.00128	0.02057	0:37484	-2.88727	-0.01841	-1.21077	0.03698
NA	-0.44		-0-29		0.01580	0.00015	0.02284	-0.05170	-6.15727	. 0.05074	-2.51682	0.06549
K	0.15	-0.25			0:01404	-0.00017	0.0055A	0.06366	-4.41946	-0.01108	-2.74297	0.04432
F	-0.41		-0.31			-0.00513	0.02738	0.90914	-0.94456	-0.09036	0.73194	-0.03497
FE	-0.42			-0.63	0.20196		0.00313	0.75641	-1.41698	-0.09039	0.25952	-0.03500
cu	-0.86			-0.67	0.13355	-0.00353		0.734688	-1.85801	-0.11404	-0.18151	-0.05865
NI	-0.91			-0.76	0.06294	-0.00169	0.00170		-3.86439	-0:03127	-2.18789	0.02412
PB	-0.78	0.75	-0.79	0.64	0.01941	-0.00035	0.00713	0.06716			-2.73858	0.03327
ZN	-0.54	1.54	-0.62	0.69	0.01100	-0.00013	0.00631	0.02629	-4.41507	-0.02212	스타일 전 시간 중요시민 소개입었다.	
ÄL	-0.62	0.31	-0.67	-0.24	0.04355	-0.00096	0.01549	0.09842	-2.74751	-0.07788	-1.07101	-0.02249
CP	-0.53	0.40	-0.46	0.46	54000.0	-0:00001	0.00006	0.00247	-7.96881	-0.02960	-6.2923?	0.02579
cn	-0.78			-0.06	0.00117	-0.00002	0.00034	0.00444	-6.36236	-0.05863	-4.68586	-0.00324

54

TABLE 19: DEPENDENCE OF FALCONBRIDGE ADDITIONAL CONCENTRATION ON DISTANCE FROM SOURCE USING INDIVIDUAL DATA POINTS

CONC	=	Al	+	81		R			(1)
CONC	=	A2	٠	82	1	R			(2)
LNIC									(3)
LNIR								R	(4)

	COUP			ICIENT			REGRES	SION COEFF	ICIENT			
PARAMETER	CORI			COR4	A)	B)	A2	B2	A3	В3	A4	B4
нF	0.07	-0.06	0.12	0.40	0.01437	0.00022	0.02235	-0.05369	-5.16594	0.01887	-3.25690	0.06729
		-0.01	0.03	0.29	1.05477	0.00358	1.17733	-0.75006	-0:94893	0.00608	0.96602	0.05433
ACID			0.05	0.29	1.03161	0.00456	1.17802	-0.78917	-1.09855	0.00932	0.81295	9.05769
504	0.03			0.24	0.16694	-0.00128	0.12348	0.26137	-3.22299	-0.00014	-1.31251	0.04826
NNO3	-0.03		-0.00		0.08254	0.00110	0.14447	-0.63903	-4.00939	0.02424	-2.09297	0.07236
NNH4	0.04	-0.08	0.11	0.31	0.10734	-0.00148	-0.00013	1.26320		0.01183	-1.53401	0.06024
CL	-0.05	0.15	1.7	0.36	0.10280	-0.00285	-0.01048	0.85583	-3.59524	-0.01428	-1.70514	0.03491
CA	-0.12		-0.06	0.14	0.01626	-0.00039	-0.00191	0.16200	-4.23043	-0.00934	-2.34065	0.03986
MG	-0.10		-0.12	100 Per 100 Pe		-0.00073	-0.00400	0.48199	-3.83289	-0.01396	-1.93367	0.03482
NA	-0.03	0.08	-0.07		0.04090			-0.02138	-4.36124	0.00420		0.05260
K	0.04	-0.02	0.03	0.36	0.00631	0.00019	0.01166					
F ·	-0.03	0.01	-0.08	0.15	0.00869	-0.00007	0.00686	0.00473		-0.01737		0.03270
FE	-0:19	0.25	-0.22	-0.00	0.10393	-0.00293	-0.02025	1:00937	-3.87898	-0.04900		-0.00038
CU	-0.21		-0:19		0.02441	-0.00057	0.00268	0.15692		-0.03851		0.01011
NI	-0.23		-0.36		0.00962	-0.00024	0.00038	0.06800	-5.43397		-3.54327	-0.00184
pВ	-0.12		-0.04		0.01020	-0.00015	0.00395	0.05059	-5.70818	-0.00776	-3.80584	0.04090
	-0.08	0.09			0.01353	-0:00025	0.00343	0:07649	-5.56836	-0.01690	-3.65729	0.03142
ZN		2 2 2	200.3		0.07619	-0.00230	-0.02133	0.79549		-0.04591	-1.93324	0.00347
AL	-0.23	0.30	5 Per (400) 400 (100)		0.00045	-0.00001	0.00005	0.00291	-8.08459	-0.00300	-6.17218	0.04530
CR	-0.16		-0.02		0.00055		0.00012	0.00118		0.00921	-8.11513	0.05755
cn	-0.03	n . n q	0.02	0.15	0.00066	0.0000	013001C					로 제작된 기존기

- 56

TABLE 20: DEPENDENCE OF FALCONHRIDGE ADDITIONAL CONCENTRATION ON DISTANCE FROM SOURCE USING GROUPED DATA POINTS

CONC	=	AI	٠	81	٠	R	•		(1)
CONC	=	SA		BZ	1	R			121
LNIC	M	:)	= /	43	+ (33	* R		131
LNIR		CO	NC:) =	A		B4	R	141

	CORPELATIO	N COEF	FICIENT			REGRES	SION COEFF	ICIENT -			*
PARAMETER	COM! COMS	CUR3	COR4	ÀJ	B)	À2	· B2 ·	À3	В3	A4	B4
HF	n.28 -n.37	0.29	0.90	n.0169H	0.00011	0.02289	-0.05628	-4.09878	0.00543	-2.08962	0.04696
ACID	0.21 -0.01	0.14	0.92	1.04152	0.00506	1.19097	-0.12219	0.04567	0.00289	2.05484	0.04441
504	-0.09 0.03		9.87	1.14407	-0.00159	1.08970	0.18630	0.16418	-0.00337	2.17336	0.03816
NNO3		-0.71	0.89	0.17111	-0.00135	0.10912	0.46707	-1.74069	-0.01060	0.26848	0.03093
NNH4	-0.05 -0.17		0.64	0.09879	-0.00014	0.10436	-0.19010	-2.23671	-0.00790	-0.22754	0.03363
cL		-0.04		0.02867	0.00191	0.07563	0.14063	-3.55519	-0.00893	-0.94315	0.05603
CA		-0.74	0.13	0.09590	-0.00229	-0.01673	0.94540	-0.08342	-0.16277	-0.48849	0.00460
MG ·	-0.49 0.69		0.83	0.01357	-0.00025	-0.00048	0.13848	-5.03643	-0.06899	-2.42516	0.03255
NA	0.28 -0.03		0.82	-0.00937	15100.0	0.02741	-0:04813	-4.68365	0.00159	-2.12658	0.06441
ĸ	0.75 -0.44		0.94	0.00252	0.00033	0.01557	-0.07470	-5.32102	0.02593		0.05746
2	-0.43 0.19	400	0.13	0.01137	-0.00015	0.00577	0.02673	-4.25060	-0.03465	-2.24142	0.00688
FE		-0.45		0.07456	-0.00156	-0.00862	0.77551	-2.36670	-0.12639	-0.48254	-0.03442
CÜ		-0.78		0.02076	-0.00041	-0.00010	0.18121	-3.59242	-0.05227	-1.58326	-0.01074
NI		-0.86		0.00854	-0.00018	-0.00038	0.07421	-2.39473	-0.17741	-2.18807	-0.02624
P9		-0.48	0.80	0.00988	-0.00010	0.00455	0.04672	-4.67242	-0.01331	-2.66327	
				0.00696	0.00008	0.00618	0.06159	-5.27899			0.02822
ZN	1000	-0.12		0.05704	-0.00133	-0.01538	0.68845	-3.23171	-0.02241	-2.90456	0.03331
AL		-0.15							-0.07191	-0.78460	-0.01326
CB	-0.76 n.91		0.01	0.00037	-0.00001	0.00001	0.00327	-7.94462	-0.04106	-5.93547	0.00047
CD	0.41 -0.01	0.29	0.93	0.00013	0.00000	0.00023	-0:00003	-8.76077	9.00900	-6.75159	0.05053

Table 21: Summary of Particulate-to-S0₂ (M/S0₂) Ratios

Parameter (M)	INCO 381 m Chimney	N	INCO IORP Stack ⁰	Falconbridge Stack	N	Low Level ⁺⁺
Fe	(3.55 + 2.41) x 10 ⁻⁴	23	4.14 x 10 ⁻³	(3.44 <u>+</u> 2.67) × 10 ⁻⁴	23	-
Cu	$(1.81 \pm 1.64) \times 10^{-4}$	30	9.85×10^{-4}	$(7.86 \pm 6.39) \times 10^{-5}$	28	-
Ni	$(1.04 \pm .66) \times 10^{-4}$	28	2.74×10^{-3}	$(4.82 \pm 4.82) \times 10^{-5}$	28	-
Pb	$(2.06 + .63) \times 10^{-4}$	22	2.04×10^{-4}	$(1.26 \pm .55) \times 10^{-4}$	28	-
Zn	$(4.48 + 4.40) \times 10^{-5}$	26	1.47×10^{-4}	$(1.96 \pm .42) \times 10^{-5}$	2	-
Al	$(1.74 \pm 1.26) \times 10^{-4}$	5	**	$(1.10 \pm .09) \times 10^{-4}$	3	-
Cr	$(4.6 \pm 4.5) \times 10^{-5}$	6	1.00×10^{-4}	3.59 x 10 ⁻⁶	1	-
Cd	$(1.63 \pm 1.87) \times 10^{-5}$	17	1.30×10^{-5} +	$(4.08 \pm 5.06) \times 10^{-5}$	19	3
SO,	$(1.83 \pm .94) \times 10^{-2}$	43	4.85×10^{-2}	$(1.62 \pm .48) \times 10^{-2}$	28	
SО ₄ н*	$(3.81 \pm 1.96) \times 10^{-4}$	43	1.01×10^{-3}	$(3.37 \pm 1.0) \times 10^{-4}$	28	

OSingle measurement

^{*}Based on incomplete cycle data, i.e. individual or combination of background flue, blow, charge and reduction phases.

^{*}Based on assumption that all SO_4 are associated with H_2SO_4 which gives rise to H^+

^{**}Assumed to be the same as that of the INCO 381 m chimney

⁺⁺ Assumed to be the same as that of the smelter stack

TABLE 22: WET DEPOSITION OF INCO EMISSIONS (r=40Km)

Parameter	NN*	N*	Emissions (Kg)	Wet Deposition (Kg)	% Scavenged	Background Deposition (Kg)	% Total Deposition
н _f	113	403	449	142	31.6	2,254	5.9
S0 ₄	115	405	21,549	10,277	47.7	111,579	8.4
S	115	405	519,683	3,426	0.66	37,193	8.4
Fe	113	396	714	484	67.8	1,938	20.0
Cu	113	396	260	272	104.6	121	69.2
Ni	113	401	351	126	35.9	61	67.4
Pb	112	394	211	70	33.2	431	14.0
Zn	112	393	55	51	92.7	380	11.8
Al	112	393	178	142.2	79.9	1,642	8.0
Cr	110	382	52	1.2	2.3	14.2	7.8
Cd	111	402	16.4	3.7	22.6	9.7	27.6

υ α

^{*} NN = Number of sampling days; N = number of samples

TABLE 23: WET DEPOSITION OF FALCONBRIDGE EMISSIONS (r=40km)

Parameter	NN ⁺	N ⁺	Emissions (Kg)	Wet Deposition (Kg)	% Scavenged	Background Deposition (Kg)	% Total Deposition*	ŧ
H _f	85	214	48.3	169	350	2,381	6.6	
SO ₄	86	217	2,318	9,252	399	109,045	7.8	
S	86	217	72,323	3,084	4.3	36,348	7.8	1
Fe	82	204	49.2	254	516	1,902	11.8	. 59
Cu	82	204	11.3	75	664	133	36.1	1
Ni	81	202	6.9	28	406	65	30.1	
Pb	83	205	18.0	58	322	454	11.3	
Zn	82	203	2.8	78	2,786	428	15.4	
Al	79	199	15.7	160	1,019	1,343	10.6	
Cr	82	203	0.51	1.4	275	14.3	8.9	
Cd	82	203	5.8	1.9	33	16.1	10.6	

^{*} Assuming 100% of emissions scavenged except in the cases of S and Cd for estimation of the maximum depositon contribution

TABLE 24: SEASONAL VARIATION OF SCAVENGING PROPERTIES OF INCO EMISSIONS (r=40km)

Summer

Winter

Parameter	Emissions (Kg)	Wet Deposition (Kg)	% Scavenged	Emissions (Kg)	Wet Deposition (Kg)	% Scavenged
н _f	323	181	56.0	521	83	15.9
so ₄	15,522	11,796	77.5	25,050	7,850	31.3
S	369,774	3,932	1.1	607,850	2,617	0.43
Fe	531	274	51.6	815	728	89.3
Cu	190	161	84.7	300	300	128
Ni	266	75	28.2	396	183	46.2
Pb	150	54	36.0	247	86	34.8
Zn	40	51	127.5	64	50	78.1
Al	117	22	18.8	209	264	126
Cr	37	1.2	3.2	61	0.7	1.1
Cd	12.7	2.6	20.5	19	5.3	27.9

20

TABLE 25: SEASONAL VARIATION OF INCO WET DEPOSITION RELATIVE TO THE TOTAL DEPOSITION* (r=40Km)

Summer

Winter

Parameter	INCO Deposition (Kg)	Background Deposition (Kg)	%**	INCO Deposition (Kg)	Background Depsosition (Kg)	%
H _f	181	2,559	6.6	83	1,952	4.1
SO ₄	11,796	156,035	7.0	7,850	74,181	9.6
s	3,932	52,012	7.0	2,617	24,727	9.6
Fe	274	2,133	11.4	728	1,763	29.2
Cu	161	119	57.5	385	120	76.2
Ni	75	54	58.1	183	64	74.1
Рь	54	430	11.2	86	422	16.9
Zn	51	402	11.3	50	356	12.3
Al	22	1365	1.6	264	1,829	12.6
Cr	1.2	17.6	6.4	0.7	11	6.0
Cd	2.6	7.7	25.2	5.3	ų.	32.5

^{*} Kg during an average precipitation period

^{**} INCO /(INCO + Background)

TABLE 26: ESTIMATED SCAVENGING COEFFICIENTS (S⁻¹) IN INCO PLUME

Parameter	All Season x10 ⁴	Summer (S) x 10 ⁴	Winter (W) x 10 ⁴	S/W	
н _f	0.47	1.0	0.22	4.5	
so ₄	0.81	1.9	0.47	4.0	
s	$.83 \times 10^{-2}$	1.4×10^{-2}	0.54×10^{-2}	2.6	
Fe	1.4	0.91	2.8	0.33	
Cu	-	2.3	-	=	
Ni	0.56	0.41	0.77	0.53	
Pb	0.50	0.56	0.53	1.06	
Zn	-	-	1.9	i=,	
Al	2.0	0.26	· - %	-	
Cr	2.9×10^{-2}	4.1×10^{-2}	1.4×10^{-2}	2.9	
Cd	0.32	0.36	0.41	0.88	

^{*} Using an average wind speed of 5 ms^{-1} ; t = 8,000s, r = 40 Km

TABLE AL

Sample Handling Criteria for Limited Volume Precipitation Samples

Volume Collected (ml)	Handling Method	
Less than 50	 pH measured at the field office no sample submitted for chemical analysis 	
50 to 150	 no field pH measured no metals analyses submitted - total volume submitted for laboratory analysis of major ions and pH 	
150 to 250	 no field pH measured 25 ml placed in metals bottle balance of volume submitted to laboratory for major ions, pH and acidity analysis. 	
250 to 500	 field pH measured 25 ml transferred to metals bottle balance submitted to laboratory for major ions, pH, acidity and conductivity analysis. 	
greater than 500	 field pH measured metals bottle filled with 50 ml balance submitted for major ions, pH, acidinand conductivity analysis. 	ty

Fig. 1. SES event sampling network.

.

APPENDIX 1

SES EVENT NETWORK OPERATIONS

Al.1 Network Design and Operations

The network consisted of approximately 20 samplers located within a 50 Km radius of Sudbury. The distribution of sites was roughly equivalent in all directions but the total number and location of sites varied considerably. In general, 20 to 25 sampling were operated in the summer and 10 to 15 in the winter. The configuration of the network at any time reflected the availability of suitable sites and sampling operators. Because of these unavoidable constraints, this network can be viewed as a network designed primarily for the assessment of the INCO source.

The locations of the sampling sites used (except for the distant locations - Charlton Station, Ramsay, Thessalon and Blind River) in the Event Network are shown in Figure 1 and the co-ordinates of the sites are given in Table 1. The operation period of each site is summarized in Table 2.

Prior to the installation of a precipitation sampler, each sampling site was carefully inspected to ensure that it satisfied a specific set of site selection criteria. These criteria were designed to eliminate sources of sample contamination and interference (e.g. roads, trees) and are summarized elsewhere (1). Although most sites fulfilled the criteria, some compromises were necessary at some of the sites.

The sampling was carried out on a 24 hour basis using large diameter open collectors. As such, it was not true wet only event sampling. The assumption was made that, with stringent siting criteria, dry deposition did not significantly affect the collected precipitation over the 24 hour period.

Most samplers were located on privately owned property and were operated by individuals contracted to carry out the sampling. Sudbury Environmental Study field staff oversaw the training and organization of the network as well as the collection and field analysis of the samples.

A1.2 Instrumentation

The precipitation collector used in this network consisted of a large diameter polyethylene bucket with a polyethylene bag insert. Two models of the sampler were used and the transition took place in May, 1979. The former (called the 1978 sampler) consisted of a black high density polyethylene bucket, 42 cm OD by 47 cm high, and a standard, food-grade, linear polyethylene bag insert. The latter sampler (called the 1979 sampler) consisted of a 44.5 cm OD 56.6 cm high, green polyethylene bucket with a custom-made polyethylene bag insert. This bag had an extra seal running from the mid-point of one side diagonally towards the bottom of the other side. At the end of the seal was an opening which allowed precipitation to funnel into the compartment below the seal. This design was implemented to reduce the effect of evaporation on the collected sample. It was used in the summer and autumn periods only while the standard bag without the seal was used in the winter and spring.

Extensive laboratory testing was carried out on the bags prior to their use. It was confirmed that no detectable adsorption or desorption of ions or metals took place on the bag walls over a 24 hour period (19).

The effective collection area of both the 1978 and 1979 samplers was 1410 cm². This was somewhat smaller than the actual size of the bucket

openings and was due to folding of the bag at the upper edges of the bucket.

The precision of both types of collectors for sampled volume was measured in a special study carried out between November 1979 and May 1980. In this study, two 1978 collectors and three 1979 collectors were operated concurrently at the Kelly Lake 1 site. It was found that the average coefficient of variation (C of V = standard deviation/mean) for all 80 events was 8.7% for the 1978 collector and 10.6% for the 1979 collector. In general, both samplers were less precise for snow collection than for rain collection.

It was assumed that both samplers were at least as efficient for the collection of rain as the standard Canadian rain gauge. However, the collection efficiency of these samplers for snow was unknown and thought to be highly variable. Another special study was carried out from November 1979 to March 1980 at the Kelly Lake I site to test this. The results showed that over 27 snow events, the average collection efficiency of the 1979 sampler when compared to the Canadian standard nipher snow gauge was $84.4 \pm 48.3\%$. The magnitude of the standard deviation indicates that the collection efficiencies were quite variable from event to event and this is confirmed by the range of efficiencies -from 8% at minimum to 230% at maximum. Variations in wind speed and type of snow were the principal factors in the efficiency variations.

A1.3. Sample Collection and Handling Procedures

Sample collection took place typically from 0800 hours to 0800 hours local

time every day of the week (\pm 2 hours). The field protocol required that operators visit the sites even if precipitation did not occur in the previous 24 hours. In such cases, the exposed polyethylene bag was discarded and a clean one was inserted in the collector. Disposable plastic gloves were used whenever bags were handled.

In cases when precipitation was collected, the bag was removed, a bottom corner was cut and the sample was transferred to two 450 ml. polystyrene bottles (given enough volume) and one 60 ml polyethylene bottle. All bottles were then stored in a refrigerator on-site and a sample submission form was completed. Included on the form was information on the date and time of collection as well as the quality of the sample. For snow events, the samples were allowed to melt at room temperature before being transferred.

In 1979 and 1980, five sampling sites were operated by SES technical staff. For these samplers, the sample transfer took place at the SES field laboratory on the day the sample was collected. For the other samplers, the stored samples were collected at least once per week and transported to the SES field laboratory. At this time, a 50 ml aliquot was taken from the polystyrene bottles and the pH was measured. This pH was designated as the "field pH" throughout the program to distinguish it from the laboratory pH taken later in Toronto. Also at this time, the 60 ml bottle was spiked with 0.5 ml of 5% nitric acid for later trace metal analysis. All bottles were then stored in a refrigerator before being shipped by courier to the Laboratory Services Branch in Toronto.

In the event that the amount of precipitation collected was less than 0.05 litre, specific sample handling criteria were followed to obtain the most useful information from the limited sample. These criteria are summarized in Table A1.

A1.4 Chemical Analysis

Chemical analysis of the samples was carried out by the Laboratory Services Branch of the Ontario Ministry of the Environment in Toronto. Samples stored in the polystyrene bottles were analyzed for: pH, acidity, SO₄, NO₃, NH₄, Ca, Na, K, Mg, Cl, F; samples stored in the acidified polyethylene bottles were analysed for Fe, Ni, Cu, Pb, Zn, Al, Cr and Cd. The samples were not filtered prior to analysis. Conductivity was also measured to check the ionic balance.

The analysis methods used by the Laboratory are summarized in Table 3 together with their corresponding detection limits. Concentrations of NO₃ and NH₄ were expressed as N-NO₃ and N-NH₄. In the beginning of the sampling program, samples were also analyzed for Br and Si; however these were later deleted from the parameter list because they were consistently below detection limits. Note also that in many of the samples identified in the present report as "background", Cu and Ni occurred at concentrations below the detection limits of the analysis method used. In these cases, the data in Section 1 of the Supplementary Volume are given as being at the detection limit (0.001 mg per liter).

In 1980, the method of analysis for all trace metals except Fe and Al

changed from atomic absorption spectroscopy (AA) to inductively coupled plasma spectroscopy (ICP). However, those samples with metal concentrations near the detection limits of ICP were re-analysed by flameless AA.

Prior to the adoption of ICP as the metals analysis method, a comprehensive study was carried out at the Laboratory Services Branch to ensure that ICP and AA produced compatible results. The results of the study were favourable (except for Fe and Al) and are described elsewhere (20).

It is useful to point out here that pH is a measure of the free acidic component of precipitation due to strong mineral acids (mainly sulfuric and nitric). It is equal to the negative logarithm of the free hydrogen ion concentration (in moles per litre). Total acidity, on the other hand, which is related to the total hydrogen ion concentration, is a measure of the capacity of the precipitation sample to neutralize a base, and is made up of the contribution due to strong and weak acids (carbonic acid, organic acids, hydrolyzable metallic salts, etc).

Free hydrogen ion H_f and total hydrogen ion H_t concentrations (in mg per liter) can be calculated according to the following expressions:

$$H_f^+ = 10^{-pH} \times 10^3$$

and

 H_t^+ = Acidity (in mg Ca CO₃ per liter) /50

A1.5 Network Performance.

Samplers were operated at a total of thirty-nine stations throughout the course of the program. Of these, only five stations were in operation throughout the entire study period. These were Burwash, Wanup, Verner, Lake Panache and Laurentian University. The operation of the remaining stations depended on the time of year, the location and the availability of on-site personnel.

Table 2 summarizes the operating period and the number of samples from each station for which volume and pH were measured and included in the final SES event precipitation database. It should be pointed out that this summary does not show the total number of samples taken at each site since some samples were rejected from the database. The criteria for the rejection of data are given elsewhere (3). It should also be pointed out that the number of analyses of major ions and metals was smaller than those shown for pH in Table 2 because of limited sample volumes.

It is obvious from Table 2 that some stations operated more consistently than others and that the smoothest operation occurred from mid-July, 1979 to the end of the program. This should be borne in mind, since all samplers did not provide data for all events.

Z861 E85

00t

NI.