Lecture Notes for Comp 480 - Winter 2023

Arthur Ayestas Hilgert

January 9, 2023

Here are lecture summaries for the sections of Probability on Trees and Networks that I will present.

Contents

Course Introduction 1
Introduction to graphs... mainly notation
Branching Number 3
Electric Current 4
Random Walks 4
Percolation 5

Course Introduction

If you lose my notes please consult my web page: http://arthurayestas.xyz/comp480.html

Introduction to graphs... mainly notation

Definition 1 (Graph). A **graph** G = (V, E) is an ordered pair containing a set of vertices V and a set of edges $E \subseteq V \times V$.

Remark **2**. We may also write the vertex and edge set of G as V(G) and E(G) respectively.

Definition 3 (Edge). An **edge** is a member of *E*. We write such an edge as: $\langle x, y \rangle$ with $x, y \in V$.

Definition 4 (Oriented Edge). An **(oriented) edge** is an edge that is direction agnostic. We write such an edge as: [x, y].

Theorem 5.

$$[x,y] \iff \langle x,y \rangle \land \langle y,x \rangle \iff (x,y), (y,x) \in E$$

Remark 6. In these notes I will add the notation E_s to denote a symmetric edge set.

Definition 7 (Vertex Adjacency). Vertices x and y are **adjacent** if $(x,y) \in E \lor (y,x) \in E$. We write this as $x \sim y$. Vertex adjacency is **symmetric**.

Definition 8 (Edge Adjacency). Edges $e_1 = (x, y)$ and $e_2 = (w, z)$ are **adjacent** if y = z. We write this as $e_1 \sim e_2$. Edge adjacency is symmetric.

Definition 9 (Incident). Vertex x and edge e = (y, z) are **incident** if x = z.

Definition 10 (Degree). The **degree** of *x* is the number vertecies that are adjacent to x. We write this quantity as: deg(x).

Definition 11 (Locally Finite). The graph G = (V, E) is locally finite if $deg(x) < \infty$ for all $x \in V$.

Definition 12 (Regularity). The graph G = (V, E) is d-regular if deg(x) = d for all $x \in V$.

Definition 13 (Cartesian Product). The Cartesian product of graphs $G_1 \& G_2$ is written as: $G_1 \square G_2$, with the following vertex and edge sets:

$$V(G_1 \square G_2) := V(G_1) \times V(G_2)$$

$$E(G_1 \square G_2) := \{ ((x_1, x_2), (y_1, y_2)) : (x_1 = y_1 \land (x_2, y_2) \in E(G_2)) \lor (x_2 = y_2 \land (x_1, y_1) \in E(G_2)) \} \subseteq V(G_1 \square G_2)$$

Definition 14 (Tensor Product). The **Tensor product** of graphs G_1 & G_2 is written as: $G_1 \times G_2$, with the following vertex and edge sets:

$$V(G_1 \times G_2) := V(G_1) \times V(G_2)$$

$$E(G_1 \times G_2) := \{((x_1, x_2), (y_1, y_2)) : (x_1, y_1) \in E(G_1) \land (x_2, y_2) \in E(G_2)\} \subseteq V(G_1 \times G_2)$$

Definition 15 (Strong Product). The **Strong product** of graphs G_1 & G_2 is written as: $G_1 \boxtimes G_2$, with the following vertex and edge sets:

$$V(G_1 \boxtimes G_2) := V(G_1) \times V(G_2)$$

$$E(G_1 \boxtimes G_2) := E(G_1 \square G_2) \cup E(G_1 \times G_2)$$

Definition 16 (Vertex Simple). A path that does not visit a vertex more than once is **vertex simple**.

Definition 17 (Edge Simple). A path that does not traverse an edge more than once is **edge simple**.

Definition 18 (Distance). The **distance** between two vertices x & y is the number of edges of the shortest path between x and y, denoted d(x,y).

Definition 19 (Network). A **network** is a graph *G*, along with weight function $c : E(G) \to \mathbb{R}$.

Definition 20 (Induced Subnetwork). Given $K \subseteq V(G)$, the **induced subnetwork** $G \upharpoonright K$, is the subnetwork with vertex set K, edges $(K \times K)$ $(K) \cap E$, and weight function $c : (K \times K) \cap E \to \mathbb{R}$.

Definition 21 (Multigraph). A **multigraph** is a pair of sets *V*, *E*, and a tail function $(\cdot)^-: E \to V$ and a and head function $(\cdot)^+: E \to V$.

Definition 22 (Identifying). The **multigraph** G/K obtained by identifying *K* to vertex $z \notin V(G)$ has vertex set $(V \setminus K) \cup z$, edge set E(G), and inherit head and tail functions from *G* altered such that mappings to $x \in K$ now map to z.

Definition 23 (Contraction). Given $e \in E(G)$, the **contraction** G/e is obtained by removing e from E(G), then identifying both e^+ and e^- .

Definition 24 (Multigraph Homomorphism). A multigraph homo**morphism** ϕ : $G_1 \rightarrow G_2$ preserving incidence and edge orientation.

Definition 25 (Network Homomorphism). A network homomor**phism** is a graph homomorphism satisfying $c_1(e) = c_2(\phi(e))$ for all $e \in E(G_1)$.

Branching Number

Definition 26 (nth level). The **nth level** of tree *T* is the number of vertices of distance *n* from the root *o* of *T*. We write this quantity as: T_n .

Definition 27 (Lower Growth Rate). The **lower growth rate** of a locally finite infinite tree is defined as:

$$\underline{\operatorname{gr}} T := \underline{\lim}_{n \to \infty} \sqrt[n]{|T_n|}$$

Definition 28 (Upper Growth Rate). The upper growth rate of a locally finite infinite tree is defined as:

$$\overline{\operatorname{gr}} T := \overline{\lim}_{n \to \infty} \sqrt[n]{|T_n|}$$

Definition 29 (Growth Rate). The growth rate of a locally finite infinite tree, is defined as:

$$\operatorname{gr} T := \lim_{n \to \infty} \sqrt[n]{|T_n|}$$

Definition 30 (Flow). A **flow** function is a nonnegative function θ respecting the property that for all vertices x with parent z and children $y_1, ..., y_d, \theta((z, x)) = \sum_{i=1}^d \theta((x, y_i))$ holds.

Definition 31 (Branching Number). Let *T* be a locally finite infinite tree, and let θ be a flow function. We define the **branching number** as follows:

$$brT := \sup\{\lambda \ge 1 \in \mathbb{R} | \exists \theta \forall n \in \mathbb{N} \forall x \in T_n : \theta((x_{parent}, x)) \le \lambda^{-n}\}$$

Theorem 32. $brT \leq grT$

have:

Proof. By induction, it is clear that $\sum_{x \in T_n} \theta(e(x))$, $\forall n \in \mathbb{N}$. Therefore, given the flow constraint and choosing $\lambda > grT$, we

$$\frac{\lim_{n \to \infty} \sum_{x \in T_n} \theta(e(x)) \le \lim_{n \to \infty} \sum_{x \in T_n} \lambda^{-n}}{= \lim_{n \to \infty} |T_n| \lambda^{-n}}$$

Therefore, there is no flow from the root to infinity.

Electric Current

Definition 33 (Conductance). A conductance function is a function $c: E \to \mathbb{R}^+$. We call $c(e) \in c(E)$ conductances.

Definition 34 (Energy). The **energy** of flow θ , given conductances c(E) is defined as follows (I have added notation **E**):

$$\mathbf{E} := \sum_{e} \frac{\theta(e)^2}{c(e)}$$

Theorem 35. If $\lambda < brT$, then current flows. If $\lambda > brT$, then current does not flow.

Random Walks

Definition 36 (Voltage Function). A **voltage function** on vertices a_0 & a_1 , given conductance function c, is a function $v:V\to\mathbb{R}_0^+$ satisfying the following conditions:

$$v(a_0) = 0 \tag{1}$$

$$v(a_1) = 1 \tag{2}$$

$$v(x)\sum_{i=1}^{d} c_i = \sum_{i=1}^{d} c_i v(y_i)$$
(3)

with $y_1, ..., y_d$ being the children of x.

Theorem 37 (Voltage as Probability). *Let* $x\alpha_1...\alpha_n$ *be a random walk* starting at x, such that $a_0 = \alpha_i \& a_1 = \alpha_j$ have been reached exactly once. $v(x) = \mathbb{P}\{j < i\}$

Definition 38 (Transient). A transient random walk visits its starting vertex infinitely often.

Definition 39 (Recurrent). A transient random walk visits its starting vertex infinitely often.

Remark 40. A random walk is either transient or recurrent.

Theorem 41. If $\lambda < brT$, then RW_{λ} is **transient**. If $\lambda > brT$, then RW_{λ} is recurrent.

Percolation

Theorem 42. For any tree T, $p_c(T) = (brT)^{-1}$