- (a) [3p] Consider the transition systems \mathcal{T}_1 (left), \mathcal{T}_2 (right) in Figure 1. Are they bisimilar? Justify your answer.
- (b) [3p] Find the minimal quotient transition system which is bisimilar to transition system \mathcal{T}_1 (left) in Figure 1.
- (c) [2p] Construct a transition system which is bisimilar to \mathcal{T}_3 in Fig. 2 (left) and has no self loops. Provide the bisimulation relation and justify your answer.
- (d) [1p] Draw a transition system which is bisimilar to \mathcal{T}_4 in Fig. 2 (center) and has no self loops.
- (e) [1p] Does there exist a *finite* transition system which simulates \mathcal{T}_5 in Fig. 2 (right) and has at most one outgoing transition from each state?

Figure 1: Transition systems \mathcal{T}_1 (left) and \mathcal{T}_2 (right).

Figure 2: Transition systems \mathcal{T}_3 (left), \mathcal{T}_4 (center), and \mathcal{T}_5 (right).

Answers:

(a) Yes they are bisimilar with the relation $\sim \subset S_1 \times S_2$

$$\sim = \{(s_1, s_1'), (s_2, s_2'), (s_3, s_3'), (s_3, s_5'), (s_4, s_4'), (s_5, s_4'), (s_6, s_6')\},\$$

which guarantees that both $\mathcal{T}_1 \sim \mathcal{T}_2$ and $\mathcal{T}_2 \sim' \mathcal{T}_1$, where

$$\sim' = \sim^{-1} = \{(s_1', s_1), (s_2', s_2), (s_3', s_3), (s_5', s_3), (s_4', s_4), (s_4', s_5), (s_6', s_6)\}.$$

Indeed we verify that $\mathcal{T}_1 \sim \mathcal{T}_2$ by checking the requirements of a simulation relation one by one:

- 1. Initial states. System \mathcal{T}_1 has initial state set $\{s_1\}$ and for s_1 , state s'_1 is an initial state of \mathcal{T}_2 with $s_1 \sim s'_1$.
- 2. Final states. System \mathcal{T}_1 has final state set $\{s_6\}$, and for the only related state s'_6 , i.e., with $s_6 \sim s'_6$, it holds that s'_6 is a final state of \mathcal{T}_2 .
- 3. Matching transitions. We finally check that every transition in \mathcal{T}_1 has a matching transition in \mathcal{T}_2 .
 - For $s_1 \sim s_1'$ and $s_1 \stackrel{a}{\longrightarrow} s_2$ we have that $s_1' \stackrel{a}{\longrightarrow} s_2'$ and $s_2 \sim s_2'$.
 - For $s_1 \sim s_1'$ and $s_1 \xrightarrow{b} s_3$ we have that $s_1' \xrightarrow{b} s_3'$ and $s_3 \sim s_3'$. (or $s_1' \xrightarrow{b} s_5'$ and $s_3 \sim s_5'$).
 - For $s_2 \sim s_2'$ and $s_2 \xrightarrow{b} s_4$ we have that $s_2' \xrightarrow{b} s_4'$ and $s_4 \sim s_4'$.
 - For $s_2 \sim s_2'$ and $s_2 \xrightarrow{b} s_5$ we have that $s_2' \xrightarrow{b} s_4'$ and $s_5 \sim s_4'$.
 - For $s_4 \sim s_4'$ and $s_4 \xrightarrow{a} s_6$ we have that $s_4' \xrightarrow{a} s_6'$ and $s_6 \sim s_6'$.
 - For $s_5 \sim s_4'$ and $s_5 \xrightarrow{a} s_6$ we have that $s_4' \xrightarrow{a} s_6'$ and $s_6 \sim s_6'$.

Analogously it is shown that $\mathcal{T}_2 \sim' \mathcal{T}_1$.

(b) We use the bisimulation quotient algorithm starting from the initial coarsest partition $\{P_1, P_2\}$ with $P_1 = \{s_1, s_2, s_3, s_4, s_5\}$ and $P_2 = \{s_6\}$. Finally, since $\Pr_a(P_2) = \{s_4, s_5\}$ and $\emptyset \neq \Pr_a(P_2) \neq P_1$ we split P_1 into $P_{11} = \Pr_a(P_2) = \{s_4, s_5\}$ and $P_{12} = P_1 \setminus \Pr_a(P_2) = \{s_1, s_2, s_3\}$. Next, since $\Pr_a(P_{12}) = \{s_1\}$ and $\emptyset \neq \Pr_a(P_{12}) \neq P_{12}$ we split P_{12} into $P_{121} = \Pr_a(P_{12}) = \{s_1\}$ and $P_{122} = P_{12} \setminus \Pr_a(P_{12}) = \{s_2, s_3\}$. Then, since $\Pr_b(P_{11}) = \{s_2\}$ and $\emptyset \neq \Pr_b(P_{11}) \neq P_{122}$ we split P_{122} into $P_{1221} = \Pr_b(P_{11}) = \{s_2\}$ and $P_{1222} = P_{122} \setminus \Pr_b(P_{11}) = \{s_3\}$, and obtain

$$S_{/\sim} = \{P_{11}, P_{121}, P_{1221}, P_{1222}, P_2\},\$$

with

$$P_{11} = \{s_4, s_5\}$$
 $P_{121} = \{s_1\}$ $P_{1221} = \{s_2\}$ $P_{1222} = \{s_3\}$ $P_2 = \{s_6\}.$

We next check if the algorithm is finished, i.e., that we cannot refine more. The only element which is not a singleton is P_{11} . Thus, it suffices to show that for all $P' \in S_{/\sim}$ and $\sigma \in \{a,b\}$ it holds that $P_{11} \cap \operatorname{Pre}_{\sigma}(P') = \emptyset$ or P_{11} . Since only $P_{11} \cap \operatorname{Pre}_{a}(P_{2}) \neq \emptyset$, and additionally $P_{11} \cap \operatorname{Pre}_{a}(P_{2}) = P_{11}$ we have obtained the desired quotient system shown in Figure 3, below.

Figure 3: Bisimulation quotient of \mathcal{T}_1 .

(c) One candidate bisimilar transition systems is \mathcal{T}_3' in Figure 4 (left) (or its alternative in Figure 5). We therefore exploit the relation $\sim \subset S_3 \times S_3'$

$$\sim = \{(s_1, s_1'), (s_2, s_2'), (s_2, s_2''), (s_3, s_3')\},\$$

which guarantees that both $\mathcal{T}_3 \sim \mathcal{T}_3'$ and $\mathcal{T}_3' \sim' \mathcal{T}_3$, where

$$\sim' = \sim^{-1} = \{(s_1', s_1), (s_2', s_2), (s_2'', s_2), (s_3', s_3)\}.$$

We verify that $\mathcal{T}_3 \sim \mathcal{T}_3'$ by checking the requirements of a simulation relation one by one:

- 1. Initial states. System \mathcal{T}_3 has initial state set $\{s_1\}$ and for s_1 , state s'_1 is an initial state of \mathcal{T}_3' with $s_1 \sim s_1'$.
- 2. Final states. System \mathcal{T}_3 has final state set $\{s_3\}$, and for the only related state s_3' , i.e., with $s_3 \sim s_3'$, it holds that s_3' is a final state of \mathcal{T}_3' .
- 3. Matching transitions. We finally check that every transition in \mathcal{T}_3 has a matching transition in \mathcal{T}_3' .
 - For $s_1 \sim s_1'$ and $s_1 \xrightarrow{a} s_2$ we have that $s_1' \xrightarrow{a} s_2'$ and $s_2 \sim s_2'$. (or $s_1' \xrightarrow{a} s_2''$ and $s_2 \sim s_2''$ in the case of Figure 5).
 - For $s_2 \sim s_2'$ and $s_2 \xrightarrow{c} s_2$ we have that $s_2' \xrightarrow{c} s_2''$ and $s_2 \sim s_2''$. For $s_2 \sim s_2''$ and $s_2 \xrightarrow{c} s_2$ we have that $s_2'' \xrightarrow{c} s_2'$ and $s_2 \sim s_2'$.

 - For $s_2 \sim s_2'$ and $s_2 \xrightarrow{b} s_3$ we have that $s_2' \xrightarrow{b} s_3'$ and $s_3 \sim s_2'$.
 - For $s_2 \sim s_2''$ and $s_2 \xrightarrow{b} s_3$ we have that $s_2'' \xrightarrow{b} s_3'$ and $s_3 \sim s_3'$.

Analogously it is shown that $\mathcal{T}_3' \sim' \mathcal{T}_3$.

(d) Such a transition system is \mathcal{T}_4' in Figure 4 (right) or its alternative with the same states in Figure 5.

Figure 4: Transition systems \mathcal{T}_3' (left) and \mathcal{T}_4' (right).

Figure 5: Alternatives for transition systems \mathcal{T}_3' (one with the same states) and \mathcal{T}_4' (one out of eight with the same states).

(e) No, such a system does not exist. Assuming on the contrary that such a system \mathcal{T}_5' exists, it will have $k \in \mathbb{N}$ states. Consider next the sequence of transitions

$$\underbrace{s_1 \xrightarrow{a} s_1 \xrightarrow{a} \cdots \xrightarrow{a} s_1}_{k-1 \text{ transitions}} \xrightarrow{b} s_2$$

in system \mathcal{T}_5 . Then, in order for \mathcal{T}_5' to match these transitions it needs to have at least k+1 states, as shown in Figure 6, below. (No reason for a more rigorous explanation)

Figure 6: Transition system \mathcal{T}_5' .