Above and Beyond: Clustering Stars

Erica Lee, Jaclyn Nguyen, Kimberly Siegler

Motivation

Have you ever wondered how constellations are defined?

Approaches

Supervised: Two-Step Process

- Logistic Regression
 - Binary
 - Multi-Class
- K-Nearest Neighbors

Unsupervised

- k-means++
- Hierarchical clustering
- Affinity Propagation
- Mean Shift

Data

- Tycho-2
 - 2.5 million stars
 - 37 features
 - Galactic Latitude/Longitude
 - Right Ascension/Declination
 - Luminosity
- AstroNexus
 - 120,000 stars
 - Ground truth constellation labels

Python Packages: numpy, pandas, astropy, matplotlib

Supervised Approach

- Two Step Classification Process
 - Logistic Regression {0,1}
 - K-NN {Multi-class}

- Weights
 - Class-Weight for Unbalanced Data
 - Different Scale
 - x, y, z, Vmag

Results - Supervised

- An ensemble method
 - Logistic Regression {0, 1}
 - Weighted-class
 - Accuracy: 84%

- K-Nearest Neighbors
 - Weighted variable (V-mag)
 - \blacksquare k = 1 performed the best

Results - Unsupervised

Current Constellation Membership

K-means++ Constellation Membership

Results - Unsupervised

K-means++

Affinity Propagation

Mean Shift

Conclusion

- Best compact and separated clusters
 - o k-means++
- Best clustered stars compared to current constellation labels
 - Affinity Propagation
- Best classifications
 - Ensemble method of weighted-class logistic regression + weighted -Knn