Unit 2

Index

- Symmetric Cipher
- Asymmetric Cipher
- Digital Signature
- Hash

Cryptography

Why? To achieve the CIA triad i.e. Confidentiality, Integrity, Availability and Non - Repudiation.

2 basic types of ciphers. Symmetric and non symmetric.

Symmetric Cipher

Common problem is scaling. We need nC2 keys for n participants.

- Transposition Cipher
 - Plain Text: MEET ME AFTER PARTY
 - Key: 421635

- Cipher Text= TEMEEMEFAPTRYRAT
- Substitution Cipher

• Plain Text: Data Encryption

UNIVERSITY

• Key word: 4

Ciphertext

byte stream

C

• Stream Ciphers

Bit by bit conversion

Key

Encryption

Decryption

Ex: OTP/ RC4

Plain

byte stream

ONLI

• Block Cipher

Plain

byte stream

Μ

Ex. Feistel Cipher

DES

This is a block cipher. A 64-bit key but effectively 56 bits. Not used as it weak as fuck.

Asymmetric Cipher

This is the private and public keys.

RSA

Diffie Hellman

dunno

Digital Signature

This is a digital fingerprint. They use the standard Public Key Infrastructure. We add the digital signature to the file after encryption. This does all the CIA and non repudiation.

Hash

The usual. MD-5, SHA-1, SHA-256 (bitcoin), Keccak-256 (Ethereum).