

Chapter 1

Physiology and basics

1.3 Dimensionless numbers characterizing blood flow

Navier Stokes equations

$$\overbrace{\rho \frac{\partial \boldsymbol{v}}{\partial t} + \nabla \cdot (\rho \boldsymbol{v} \otimes \boldsymbol{v})}^{\text{inertia}} - \overbrace{\nabla \cdot \boldsymbol{\sigma}}^{\text{viscous stress}} - \overbrace{\rho \boldsymbol{b}}^{\text{body forces}} = \boldsymbol{0},$$

$$\nabla \cdot (\rho \boldsymbol{v}) = 0,$$

Rescale:

$$egin{aligned} oldsymbol{v}^\star &= oldsymbol{v}/V \
abla^\star &= L
abla^\star \ t^\star &= tV/L \
abla^\star &= pL/(V\mu) \end{aligned}$$

Nondimensionalized Navier Stokes equations (momentum balance, no body forces)

$$\operatorname{Re}\left(\frac{\partial \boldsymbol{v}^{\star}}{\partial t^{\star}} + \nabla^{\star} \cdot (\boldsymbol{v}^{\star} \otimes \boldsymbol{v}^{\star})\right) - \nabla^{\star} \cdot (2\boldsymbol{D}^{\star}(\boldsymbol{u}^{\star}) - p^{\star}\boldsymbol{I}) = \boldsymbol{0},$$

(see lecture notes for details)

$$Re := \frac{\rho VL}{\mu}$$

- Reducing the parameter space dimension for experiments
- Good to get a feeling for the importance of certain effects when modelling new systems

Reynolds number

- Ratio of intertial forces to viscous forces
- Characterises flow type (laminar/turbulent)
- Tube flow stays turbulent above Re>2050
- In blood flow turbulence may occur at smaller Reynolds numbers (ca. 300-1000) depending on vessel geometry (see [1] and references therein), e.g. in aneurysms

$$\mathsf{Re} \vcentcolon= rac{
ho VL}{\mu}$$

 ρ : fluid density (kg/m³); V: characteristic fluid velocity (m/s); L: characteristic length (e.g. vessel diameter); μ : dynamic viscosity (Pa·s)

[1] Saqr, K.M., Tupin, S., Rashad, S. *et al.* **Physiologic blood flow is turbulent.** *Sci Rep* **10**, 15492 (2020). https://doi.org/10.1038/s41598-020-72309-8

Example Aneurysms

Kristian Valen-Sendstad, Kent-André Mardal, David A. Steinman, (2013) **High-resolution CFD detects high-frequency velocity fluctuations in bifurcation, but not sidewall, aneurysms**, Journal of Biomechanics, https://doi.org/10.1016/j.jbiomech.2012.10.042.

Womersley number [1,2] ("Wo", also "α")

- Ratio of (pulsatile) inertia forces to viscous forces
- Characterises influence of pulsatility
- Can be used to define microcirculation (Wo < 1)

Wo :=
$$\frac{L}{2} \left(\frac{\rho \omega}{\mu} \right)^{1/2}$$

 ρ : fluid density (kg/m³); L: Characteristic length (m; e.g. vessel diameter); μ : dynamic viscosity (Pa·s); ω : Angular frequency (s⁻¹, e.g. 2π · heart beat frequency)

[1] Womersley, J. R. (1955). **Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known**. *The Journal of physiology*, *127*(3), 553-563. https://doi.org/10.1113/jphysiol.1955.sp005276

[2] Womersley, J. R. (1957). Oscillatory Flow in Arteries: the Constrained Elastic Tube as a Model of Arterial Flow and Pulse Transmission. *Phys. Med. Biol.* 2 178 https://doi.org/10.1088/0031-9155/2/2/305

(Wo << 1): friction-dominated

(Wo >> 1): inertia-dominated

Womersley number

Poiseuille flow, no boundary layer effects, velocity and pressure gradient in sync

Wo = 1

Womersley number

Some boundary layer effects

Wo = 10

Womersley number

Strong boundary layer effects Velocity and pressure gradient peak in 90° phase shift

Wo = 100

Womersley and Reynolds numbers (estimates / overview)

Vessel type	Wall thickness in mm	Blood volume (%)	${f Re}$	Wo
Aorta	2.0	2.0	4000.0	10.5
Large arteries	1.0	5.0	2500.0	7.7
Small arteries	1.0	5.0	100.0	1.4
Arterioles	0.03	5.0	0.5	0.014
Capillaries	0.001	5.0	0.003	0.007
Venules	0.003	25.0	0.5	0.014
Large veins	0.5	50.0	1600.0	5.6

this course

Dean number [1,2] (curved pipes)

Ratio of inertial and centripetal forces to viscous forces

$$De \coloneqq Re \sqrt{\frac{L}{2R_c}}$$

L: Channel diameter (m) R_c : Radius of curvature (m)

De > ≈ 400: turbulence

[1] Dean, W. R. (1927). **Note on the motion of fluid in a curved pipe**. Phil. Mag. 4 (20): 208–223. doi:10.1080/14786440708564324.

[2] Dean, W. R. (1928). **The streamline motion of fluid in a curved pipe**. Phil. Mag. Series 7. 5 (30): 673–695. doi:10.1080/14786440408564513.

Péclet number (mass transport)

- Ratio of advective to diffusive flow/transport
- Characterises dominant transport mechanism (>> 1: advectiondominated, < 1: diffusion-dominated)

$$Pe := \frac{LV}{D}$$

L: Characteristic length (m; here: axial distance);

V: Characteristic fluid velocity (m/s);

D: Diffusion coefficient (m²/s)

Example: Oxygen (D \approx 2e-5 cm²/s) in artery (L=1cm, v=10cm/s), capillary (L=1mm, v=0.5mm/s), extra-vascular tissue (L=50 μ m, v=0.01 μ m/s):

Artery: Pe $\approx 5e5 \rightarrow$ strongly advection-dominated; **Capillary**: Pe $\approx 250 \rightarrow$ slightly advection-dominated; **extra-vascular tissue**: Pe $\approx 0.00025 \rightarrow$ diffusion-dominated

Vascular system (Summary)

Complexity:

- (Hierarchical) structure of the network
- Large number of vessels

Diversity:

- Different types of flow
- Different properties of blood vessels
- Amount/position/size of features such as vessels may vary significantly among individuals (even in the same species)
- Modelling and simulation is demanding (large data quantity, more general models to account for patient-specific data instead of simulations in simplified geometries)

Thank you!

Timo Koch (Oslo)

e-mail timokoch@uio.no

https://www.iws.unistuttgart.de/lh2/ University of Stuttgart
Pfaffenwaldring 61, 70569 Stuttgart

Institute for Modelling Hydraulic and Environmental Systems,

Department of Hydromechanics and Modelling of Hydrosystems

dumux.org

http://dune-project.org/