CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CELSO SUCKOW DA FONSECA – CEFET/RJ UNIDADE PETRÓPOLIS

ENGENHARIA DE COMPUTAÇÃO

Vitor Vasconcellos Dias João Pedro Chagas Brandão

ESTUDO DA PRESSÃO DE UM GÁS IDEAL EM UM PISTÃO MÓVEL

Trabalho apresentado ao curso de Engenharia de Computação do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ, Unidade Petrópolis, como parte dos requisitos para aprovação na disciplina de Termodinâmica.

Orientador: Felipe Mondaini

 $\begin{array}{c} {\rm PETR\acute{O}POLIS} \\ 2025 \end{array}$

RESUMO

Neste trabalho, utilizamos simulações computacionais em Python para analisar o comportamento de um gás ideal confinado em um pistão móvel. As relações fundamentais da termodinâmica, como a equação de estado dos gases ideais (PV=nRT), foram verificadas, juntamente com a influência de forças estocásticas e de parâmetros macroscópicos, como massa, área e velocidade das partículas. Os gráficos e simulações realizadas reforçam a compreensão do sistema e demonstram a eficiência do Python como ferramenta para o estudo de sistemas físicos.

Palavras-chave: gás ideal, pistão móvel, simulação em Python, força estocástica, termodinâmica.

Sumário

1	INTRODUÇÃO	4
2	DESENVOLVIMENTO	5
3	CONCLUSÃO	8

Capítulo 1

INTRODUÇÃO

Os gases ideais representam um dos modelos mais importantes na física, descritos através da equação PV = nRT, onde P é a pressão, V é o volume, n o número de mols, R a constante universal dos gases, e T a temperatura. Este modelo fornece uma compreensão essencial para sistemas macroscópicos e, através da sua simulação, podemos explorar o impacto de variáveis como massa, área e energia cinética.

Neste contexto, este trabalho apresenta uma simulação do comportamento de um gás ideal confinado em um pistão móvel. O estudo abrange a verificação da relação PV = nRT, o impacto de uma força estocástica (ruído branco) no sistema e a influência de parâmetros como massa e área na pressão exercida. O uso do Python possibilitou a criação de códigos e visualizações gráficas, fortalecendo a compreensão dos fenômenos investigados.

Capítulo 2

DESENVOLVIMENTO

A simulação foi implementada em Python utilizando bibliotecas como NumPy e Matplotlib. A classe SimulacaoPistao foi desenvolvida para modelar o comportamento do sistema com os seguintes componentes principais:

Resultados da Simulação

A seguir, apresentamos os resultados da simulação realizada. Foi representado tanto a visualização da simulação do pistão móvel, quanto a análise da variação da pressão ao longo do tempo.

No simulação da Figura 2.1, observa-se a distribuição das partículas e o movimento do pistão (linha vermelha) que se ajusta conforme a pressão interna do gás e as forças externas. As partículas colidem de forma perfeitamente elástica com as paredes e o pistão, respeitando a conservação de energia.

Figura 2.1: Visualização da simulação do pistão móvel e das partículas. O pistão (linha vermelha e bloco cinza) ajusta sua posição com base nas forças exercidas pelas partículas (pontos azuis) e pela força gravitacional.

Gráfico da Pressão em função do Tempo

A Figura 2.2 apresenta a variação da pressão ao longo do tempo. Inicialmente, a pressão aumenta rapidamente devido à compressão causada pelas partículas no pistão. Após um breve intervalo, o sistema estabiliza-se, atingindo um equilíbrio dinâmico com pequenas flutuações decorrentes da força estocástica aplicada no sistema.

Figura 2.2: Gráfico da pressão em função do tempo durante a simulação. O sistema atinge o equilíbrio em aproximadamente 2 segundos, com pequenas flutuações devido à força estocástica.

Força Estocástica

A Figura 2.3 apresenta o efeito da força estocástica na variação da pressão ao longo do tempo. Essa força, modelada como um ruído branco gaussiano, gera flutuações aleatórias no sistema que afetam a posição e a velocidade das partículas, sem comprometer o equilíbrio geral do pistão.

Figura 2.3: Gráfico com Zoom da pressão em função do tempo, destacando as flutuações geradas pela força estocástica.

Análise dos Resultados

Os resultados obtidos confirmam a relação PV = nRT, demonstrando que o volume do sistema (determinado pela posição do pistão) ajusta-se de forma consistente com a variação de pressão e temperatura. A força estocástica introduz flutuações no sistema, mas não altera o comportamento geral de equilíbrio.

Capítulo 3

CONCLUSÃO

As simulações realizadas em Python permitiram confirmar conceitos fundamentais da termodinâmica, como a equação PV = nRT, e explorar a influência de forças estocásticas no sistema. Os gráficos e análises realizados demonstraram relações esperadas entre pressão, massa, área e velocidade das partículas, destacando a eficiência da linguagem Python como ferramenta de simulação e análise.

Este estudo destaca a importância da modelagem computacional na compreensão de fenômenos físicos e sugere que futuras pesquisas incorporem interações entre partículas ou distribuições de forças mais complexas para ampliar a compreensão do sistema.