Домашняя работа №3 Болорболд Аригуун, Р3111 Вариант 121

Путь с наибольшей пропускной способностью

Пусть вершина e_6 = s, а вершина e_9 = t.

- 1. Проведем разрез К₁.
- 2. Найдём $Q_1 = \max[q_{ij}] = 5$
- 3. Закорачиваем все ребра с $q_{ij} \ge Q_1$, это ребра: (s, e_2), (e_2, e_3) , (e_2, e_{11}) , (e_2, e_{12}) , (e_3, e_{11}) , (e_1, e_4) , (e_5, e_8) .
- 4. Получаем граф G₁:

- 6. Найдём $Q_1 = \max[q_{ij}] = 4$
- 7. Закорачиваем все ребра с q_{ij} ≥ Q₂, это ребра: (s, e₂, e₃, e₁₁, e₁₂, e₁, e₄), (s, e₂, e₃, e₁₁, e₁₂, e₁, e₄, e₅, e₈), (e₁, e₄, t), (e_5, e_8, t) , (t, e_{10}) .
- 8. Получаем граф G₂:

9. Вершины s-t объединены. Пропускная способность искомого пути Q(P) = 4.

Строим граф, вершины которого – вершины исходного графа G, а ребра с пропускной способностью q_{ij} ≥ Q(P) = 4:

Теперь, на построенном графе, каждый путь s-t будет иметь наибольшую пропускную способность Q(P) = 4.

