

03

염기서열분석 (시퀀싱; Sequencing) II

1. 1세대 염기서열 분석법

🚺 1세대 염기서열 분석법

선별된 세포로부터 genomic DNA(gDNA) 수집

DNA 클로닝(cloning) & DNA 증폭(PCR)

염기서열 분석

🚺 1세대 염기서열 분석법

1) 선별된 세포로부터 genomic DNA(gDNA) 수집

◆ 혈액 등의 체액이나 상피세포 또는 조직으로부터 gDNA를 추출해 냄

- 03. 염기서열분석(시퀀싱; Sequencing) II
 - 🚺 1세대 염기서열 분석법
 - 2) DNA 클로닝(cloning) & DNA 증폭(PCR)
 - ◆ DNA 클로닝(cloning)

🚺 1세대 염기서열 분석법

2) DNA 클로닝(cloning) & DNA 증폭(PCR)

- ◆ Polymerase Chain Reaction(PCR: 중합효소연쇄반응)
 - DNA 또는 RNA의 특정영역을 시험관 내에 대량으로 증폭하는 획기적인 기술
 - 아주 적은 양의 DNA라도 많은 양의 DNA합성이 가능
 - 그 원리가 극히 단순하고, 쉽게 응용할 수 있기 때문에 이미 오래전부터 다양한 분야에서 적용
- ◆ PCR 반응요소
 - 주형(template) DNA
 - 프라이머(Primer)
 - dNTP
 - 「DNA 중합효소 (DNA polymerase)
 - 완충용액(Buffer)

🚺 1세대 염기서열 분석법

2) DNA 클로닝(cloning) & DNA 증폭(PCR)

PCR 모식도

🚺 1세대 염기서열 분석법

2) DNA 클로닝(cloning) & DNA 증폭(PCR)

- ◆ Polymerase Chain Reaction(PCR: 중합효소연쇄반응)
 - PCR의 과정: 3 단계

1	DNA의 변성 (Denaturation)	90°C ~ 96°C로 가열하여 double strand DNA를 single strand DNA로 분리
	Primer의 결합 (Annealing)	50°C ~ 65°C에서 진행, primer 가 주형 DNA에 결합하여 합성의 시작점을 알려줌
3	DNA의 합성 (Polymerization)	70°C ~ 74°C에서 시행, 원하는 PCR 산물의 크기가 크거나 반응요소의 농도가 낮을 때에는 시간을 연장

🚺 1세대 염기서열 분석법

3) DNA 염기서열분석법

- Sanger sequencing(Chain-terminating reaction)
 - 주형(template) DNA (GTAGGCTTCAAGCT~):
 DNA polymeras + dNTPs(dATP, dTTP, dCTP, dGTP)
 - ⇒ 상보적인 DNA를 만들어 냄
 - 이 때 dNTP + 소량의 ddNTP(32P 표지) → 합성 종결 → 전기영동 시 길이에 따라 분리
 - T 에서 종결 -2 bp, 7 bp, 8 bp, 14 bp

🚺 1세대 염기서열 분석법

3) DNA 염기서열분석법

- ◆ 맥삼-길버트 염기서열 분석법(Maxam-Gilbert Sequencing)
 - DNA의 핵염기 특이적 부분 화학적 변형
 - 변형된 뉴클레오타이드에 인접한 부위에서 DNA 골격의 후속 절단을 기반
 - 퓨린(A + G): 폼산을 사용하여 정화
 - 구아닌 (G): 황산 다이메틸에 의해 메틸화
 - 피리미딘(C + T): 하이드라진을 사용하여 가수분해
 - 하이드라진 반응 + 염(염화 나트륨): C 단독 반응
 - 변형된 DNA는 피페리딘에 의해 절단

