Examen Final 09-07-2021 Problema 1 (T1)

QuizAmbApartats

1. **FEM 1D**

DESCRIPTION

The vertical column in the figure above, embedded between the floor and the ceiling, is made of two block pieces. The lower one with section area $A_1 = 15 \text{ cm}^2$, length $h_1 = 4 \text{ m}$, Young modulus $E_1 = 8 \text{ N/m}^2$ and specific weight $w_1 = 0.001 \text{ N/m}^3$; the upper piece with section area $A_2 = 10 \text{ cm}^2$, length $h_2 = 2 \text{ m}$, Young modulus $E_2 = 6 \text{ N/m}^2$ and specific weight $w_2 = 0.003 \text{ N/m}^3$. Attached at the centre of each block, there are two springs, both initially at rest, with constants $k_1 = 0.001 \text{ N/m}$ (for the one fixed at the floor in the figure) and k_2 (for the other one, the fixed at the ceiling). Next, at the point where the two blocks join, we add a load $P = 2 \cdot 10^{-5} \text{ N}$ acting downwards.

Take two quadratic elements, Ω^1 and Ω^2 , to modelise the lower and the upper blocs respectively, and list the global nodes in ascending order (as shown in the figure). This having said, apply the FEM to compute,

2. Question 1

CLOZE 1 point 0.10 penalty

(a) for $k_2 = 2.00e-03$ N/m, the displacement, U_3 , of the joint between the two blocks when the struture is loaded with the weight P

MULTI 1 point Single Shuffle

- $U_3 = -3.84149 e + 00 \text{ mm} \checkmark$
- $U_3 = -3.84020e + 00 \text{ mm } (-25\%)$
- $U_3 = -3.84277e + 00 \text{ mm } (-25\%)$
- $U_3 = -3.83892e + 00 \text{ mm } (-25\%)$
- $U_3 = -3.84406e + 00 \text{ mm } (-25\%)$
- $U_3 = -3.83765e + 00 \text{ mm } (-25\%)$
- $U_3 = -3.84535e + 00 \text{ mm } (-25\%)$
- $U_3 = -3.83637e + 00 \text{ mm } (-25\%)$
- $U_3 = -3.84664 + 00 \text{ mm } (-25\%)$
- $U_3 = -3.83510e + 00 \text{ mm } (-25\%)$
- None of the given the answers (-25%)
- Blank (no penalty)

Hint: the lower bolck's mid point's diplacement is $U_2 = -2.04305 e + 00$

(b) For the same value of k_2 , the reaction force, R, made by the floor

MULTI 1 point Single Shuffle

- $R = 1.35029e-05 \text{ N } \checkmark$
- R = 1.34994e-05 N (-25%)
- R = 1.35065 e-05 N (-25%)
- R = 1.34958e-05 N (-25%)
- R = 1.35100e-05 N (-25%)
- R = 1.34923e-05 N (-25%)
- R = 1.35136e-05 N (-25%)
- R = 1.34888e-05 N (-25%)
- R = 1.35172 e-05 N (-25%)
- R = 1.34853e-05 N (-25%)
- None of the given the answers (-25%)
- Blank (no penalty)
- (c) Still for the same value of k_2 , the force acting on the spring fixed to the ceiling

MULTI 1 point Single Shuffle

• $F = 3.85910e-06 \text{ N} \checkmark$

A_ = 15 cm = 15x103 mm 2 E1 = 8 N/m2 = 8.10 6 N/mm2 $M_1 = 4m = 4.10^3$ $W_1 = 0.001 \frac{N}{m^3} = 16^{12} N_{cm^3}$ A, =10 cm2 = 10 mm2 Bz = 0.002 Nm $E_2 = 6 N_{m^2} = 6 \times 10^{-6} N_{mm^2}$ $42 = 2m = 2 \times 10^3 \text{ mm}$ $\frac{E_1A_1}{3h_1} = \frac{8.10^{\circ} \times 15 \times 10^{7}}{12.10^{3}} = \frac{120 \times 10^{4}}{12.10^{3}} = 10 \times 10^{7} = 10^{6}$ $W_1A_1b_1 = 10^{-12} \times 15 \times 10^2 \times 4 \times 10^3 = 60 \times 10^{-7} = 10^{-6}$ $K^{4} = \frac{E_{1}A_{1}}{3h_{1}} \begin{pmatrix} 7-8 & 1 \\ -8 & 16 & -8 \end{pmatrix} = 10^{6} \begin{pmatrix} 7-8 & 1 \\ -8 & 16 & -8 \end{pmatrix}$ $F^{-1} = \frac{W_1 A_1 h_1}{6} \begin{pmatrix} 4 \\ 1 \end{pmatrix} = -10^6 \begin{pmatrix} 4 \\ 4 \end{pmatrix}$ $\frac{E_2 A_2}{3h_2} = \frac{6 \times 10^6 \times 10 \times 10^2}{3 \times 7 \times 10^3} = 10^{-6}$

 $H_1 = 0.001 N_1$ = $10^3 N_1 \cdot \frac{1m}{10^3 mm} = 10^5 N_1$

= 2103 N 1M 103 mm.

$$\frac{3h_{2}}{3h_{2}} = \frac{3\times7\times10^{3}}{3\times7\times10^{3}} = 10$$

$$W_{2}A_{2}h_{2} = \frac{3\times16^{12}\times10\times10^{2}\times10^{3}}{6} = 10\cdot10^{7} \cdot 10^{-6}$$

$$K^{2} = \frac{E_{2}A_{2}}{3h_{2}} \begin{pmatrix} 7 & -8 & 1 \\ -8 & 16 & -8 \\ 1 & -8 & 7 \end{pmatrix} = 10^{-6} \begin{pmatrix} 7 & -8 & 1 \\ -8 & 16 & -8 \\ 1 & -8 & 7 \end{pmatrix}$$

$$F^{2} = W_{2}A_{2}h_{2} \begin{pmatrix} 7 & -8 & 1 \\ -8 & 16 & -8 \\ 1 & -8 & 7 \end{pmatrix}$$

Reduced System:

$$Q_1 = 10^6 (7. U_1 - 8U_2 + V_3) - \bar{F}_1 = 1.35029 \times 10^5 \text{N} \left(\frac{15^{t}}{\text{component of peach forces}}\right)$$
Force acting on the spring with constant K_2 : $R = -K_2 U_4 = 3.85910 \times 10^6 \text{N}$