Maturitní otázky z počítačových sítí

21. Základní pojmy počítačových sítí

topologie

- hvězdicová
 - vlastnosti (výhody/nevýhody)
- stromová
 - z čeho sestává
 - vlastnosti (výhody/nevýhody)
- kruhová
 - vlastnosti (výhody/nevýhody)
- sběrnicová
 - vlastnosti (výhody/nevýhody)
- topologie používané v dnešní době v Ethernetu

taxonomie sítí

- dělení podle dosahu
- dělení podle přenosového média
- dělení podle vlastnictví

Internet (vývoj a autority)

- ARPANET
 - důvod vzniku
- komercializace internetu
 - rozmach internet v ČR
- IANA
 - účel
 - přidělování IP adres
 - správa TLD

příklady zařízení pracujících na jednotlivých vrstvách

- fyzická vrstva
- linková vrstva

- síťová vrstva
- aplikační vrstva

modely ISO/OSI a TCP/IP, princip zapouzdření, pojem užitečný náklad

- důvod zavedení
- porovnání modelů
 - vrstvy
- zapouzdření
- užitečný náklad

standardy používané v počítačových sítích

- RFC
 - příklad
- IEEE
 - příklad

22. Fyzická vrstva

veličiny

- přenosová rychlost
 - o rychlosti Ethernetu
 - rychlosti bezdrátových spojů
- zpoždění
- rychlost šíření signálu
 - metalické vedení
 - optické vlákno
- zisk/útlum
 - jednotky
 - příklad

metalická přenosová média a jejich vlastnosti

- koaxiální kabel
 - popis
 - použití
- kroucená dvoulinka
 - popis
 - typy kroucené dvoulinky
- konektory

kategorie kroucené dvoulinky

- přehled kategorií
- přenosové rychlosti

kódování, modulace

- baseband
- broadband
- kódování
 - příklad
- modulace
 - důvod použití
 - příklad

media konvertory

- důvod použití
- příklad

PoE

- využití
 - příklady zařízení
- aktivní/pasivní
 - popis
- dodávaný výkon
 - parametry napájení
 - max. příkon zařízení
- vyjednávání napájení

23. Optická vlákna

typy optických vláken a jejich vlastnosti

- typy vláken
- průměr
- útlum
- dosah

používané vlnové délky

- důvody pro různé vlnové délky
- citlivost na ohyby vlákna
- příklady vlnových délek

stavba optického vlákna

- jádro
- plášť
- ochrany

způsoby spojování opt. vláken

- svařování
 - způsob
- spojky
- konektory
 - ° typy
 - použití

optické transcievery

- používané rychlosti
- typy
- velikosti
- konektory

WDM, CWDM, DWDM

- důvod použití
- princip

24. Linková vrstva

typická struktura rámce

- typy rámce
- popis hlavičky
- min. a max. velikost rámce

chybovost, efektivita přenosu

- adresování
 - MAC adresa
 - složení
 - speciální adresy

typy vysílání

- unicast
 - o popis
- broadcast
 - o popis
 - příklad využití
- multicast
 - popis
 - příklad využití

kolizní a bezkolizní přístupové metody

- TDMA
 - o princip
- CSMA/CA
 - princip
 - uplatnění
- CSMA/CD
 - princip
 - detekce kolize
 - uplatnění

Ethernet

základní typy

- přenosová média
- používané rychlosti

25. Aktivní prvky fyzické a linkové vrstvy

popis a jejich funkce

- most
 - o popis
 - o na které vrstvě pracuje
- switch
 - popis
 - na které vrstvě pracuje
 - příklad parametrů
- opakovač
 - na které vrstvě pracuje
- hub
 - o na které vrstvě pracuje

řízení přístupu k médiu

- kolizní doména
- broadcast doména
- mikrosegmentace
- plně duplexní provoz

management přepínačů

- nastavitelné parametry
- rozhraní pro správu

VLAN

- důvod použití
- identifikace
- začlenění do Ethernetového rámce
- access port
 - použití
 - vlastnosti
- trunk port
 - použití
 - vlastnosti

paměti CAM/TCAM

- princip
- použití
- vlastnosti

26. Síťová vrstva a směrování

služby a základní pojmy

- transportní vrstva
- IP adresa
- maska
- adresa sítě

nehomogenní prostředí, inter-networking

- rozdílné linkové protokoly
 - Ethernet
 - Token Ring
- propojování sítí

logická adresa

• rozdíl mezi logickou a fyzickou adresou

síťové protokoly

- IPv4
- IPv6

přímé/nepřímé směrování

- rozdíly
- přímé směrování
 - princip
 - použití
- nepřímé směrování
 - princip
 - použití
- routovací tabulka
 - další skok
 - výchozí směrování
 - výběr vhodného směru
- metrika

dynamické směrování (RIPv2, RIPng, OSPFv2, OSPFv3)

- RIPv2
 - získávání informací o síti
 - dostupné informace o síti
 - metrika
 - o omezení
- RIPng
 - rozdíl oproti RIPv2
- OSPFv2
 - získávání informací o síti
 - o dostupné informace o síti
 - o metrika
- OSPFv3
 - rozdíl oproti OSPFv2

protokol ARP/NDP, DHCP/DHCPv6, RA (Router Advertisement)

- ARP
 - k čemu slouží
 - o popis činnosti
- NDP
 - k čemu slouží
 - o popis činnosti
- DHCP
 - k čemu slouží
- DHCPv6
 - k čemu slouží
- RA
 - k čemu slouží

router, L3 switch

- použití
- rozdíly (schopnosti, výkon)

27. IP adresa a způsoby řešení nedostatku IP adres

složení, syntaxe zápisu (IPv4, IPv6), rozdělení do tříd

- způsob zápisu
- třídy IPv4 adres
- max. hodnoty jednotlivých čísel u IPv4 + důvod
- zkracování zápisu IPv6 adres

rozdíly mezi IPv4 a IPv6

- délka adresy
- velikosti adresniho prostoru u IPv4 a IPv6
- min. přidělovaná velikost IPv6 sítě
- broadcast a multicast na IPv4 a IPv6
- veřejné, privátní a link-local adresy
- ARP a NDP

způsoby získání adresy (DHCP, DHCPv6, SLAAC)

- DHCP
 - základní předávané parametry
 - identifikace koncového zařízení
 - komunikace s DHCP serverem (vrstva, cílové adresy)
 - obnova IP adresy
 - příklad DHCP serveru
 - dynamická a statická alokace
- SLAAC (RA)
 - předávané parametry
 - předávání adres DNS serverů
 - komunikace routeru s koncovými zařízeními a opačně (vrstva, cílové adresy)
- DHCPv6
 - předávané parametry
 - identifikace koncového zařízení
 - spolupráce s RA
- statická konfigurace IP adres

základní údaje nutné pro směrování, maska a její použití

- určení adresy sítě a broadcastu (IPv4)
- vliv masky, resp. délky prefixu na velikost sítě
- rozpoznání rozdílných sítí

řešení nedostatku IPv4 adres (CIDR, subnetting, privátní adresy, NAT, proxy)

- CIDR
 - důvod zavedení
 - způsob použití
- dělení sítě na podsítě (subnetting)
 - způsob rozdělení
 - \circ VLSM
- privátní adresy
 - důvod použití a vlastnosti
 - příklady privátních rozsahů
- NAT
 - účel použití, princip, vrstva
 - omezení komunikace do vnitřní sítě
 - přesměrování portů
- proxy
 - účel použití, princip, vrstva
 - porovnání s NAT
 - reverzní proxy

IP datagram (hlavička), fragmentace

- popis základních částí IPv4 a IPv6 hlavičky, velikost hlavičky
 - o verze
 - adresy
 - TTL, hop limit
 - délka
 - o protokol, next header
- popis TTL, resp. hop limit
- fragmentace
 - důvod
 - parametr fragment offset

28. Transportní vrstva

porty, jejich účel, rozsah

- důvod použití
- rozsah hodnot

protokoly TCP, UDP a jejich použití

- TCP
 - hlavička
 - výhody
 - nevýhody
 - příklad použití
- UDP
 - hlavička
 - výhody
 - nevýhody
 - příklad použití

nejznámější porty a jejich služby

- porty 21, 22, 23, 25, 53, 80, 110, 143, 443, 993, 995, 3389
 - webový server (vč. šifrování)
 - e-mailový server (vč. šifrování)
 - FTP server
 - SSH server
 - DNS server

TCP

- navázání spojení
- příznaky
- potvrzování přijetí dat
- segmentace
- okénkové potvrzovací schéma

ICMP, ICMPv6

- rozdíly mezi ICMP a ICMPv6
- použití ICMP
 - příklady
- použití ICMPv6
 - příklady

multicast (IGMP, MLD)

- princip multicastu
- využití multicastu
- přihlášení do skupiny
- rozdíl mezi IGMP a MLD

29. Bezdrátové sítě

bezdrátové spoje a její vlastnosti

- Wi-Fi
 - použití
- P2P spoje na >10 GHz
 - použití
- optická pojítka
 - použití

vlastnosti Wi-Fi

- používané frekvence
- kategorie
- max. rychlost
- režimy provozu
 - infrastrukturní
 - o ad-hoc
- zabezpečení
 - WPA2, WPA3
 - ° 802.1x

řízení přístupu k médiu u Wi-Fi

- metoda řízení přístupu
- problém skrytého uzlu
- RTS, CTS

legislativní omezení provozu Wi-Fi

- povolený výkon
 - o pro 2,4 GHz
 - pro 5 GHz
- frekvenční pásma

P2P rádiové spoje

- vlastnosti
- rozdíly proti Wi-Fi
 - výhody

- nevýhody
- používané frekvence
- rychlosti

P2P optické spoje

- vlastnosti
- rychlosti

antény

- zisk
 - jednotky
 - výpočet
- polarizace
 - vliv na příjem/vysílání
- typy

30. DNS a zabezpečení

systém DNS

- důvod nasazení
- úplné doménové jméno
 - řády doménového jména
 - pravidla pro doménové jméno
 - TLD
- princip
 - postup při překladu na IP
 - stromová struktura
- autority
 - registrace
 - IANA, CZ.NIC

DNS resolver

- cachující
 - využití, způsob práce
 - výhody
 - příklad SW
- rekurzivní
 - využití, způsob práce
 - výhody
 - příklad SW
- autoritativní
 - využití, způsob práce
 - příklad SW

základní typy záznamů (A, AAAA, MX, PTR)

- A
- AAAA
- MX

• PTR

DNSSEC

- princip
 - záznamy pro DNSSEC
 - kořen důvěry
- přínos nasazení
 - ověřování záznamů

princip firewallu

- na kterých vrstvách TCP/IP pracuje
- použití, důvod nasazení
- stavový a bezstavový firewallu
 - výhody a nevýhody
 - Příklady

ACL (L2)

- princip
- použití
- možnosti

rozdíl mezi NAT a firewall z hlediska zabezpečení

• navázání spojení do LAN