Definition: Multi-index

For $\alpha_1,...,\alpha_n\geq 0$, we call $\alpha=(\alpha_1,...,\alpha_n)$ a **multi-index**. Then define the following:

- 1. We let $\alpha! = \alpha_1! \cdots \alpha_n!$
- 2. For $x \in \mathbb{R}^n$, define $x^\alpha = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ if $x_i \neq 0 \ \forall i$; otherwise $x^\alpha = 0$ if there exists j such that $x_j = 0$
- 3. Let $|\alpha|=\alpha_1+\cdots+\alpha_n$ be the order of α 4. Let $D^{\alpha}f(x)=\frac{\partial^{|\alpha|}f(x)}{\partial x_1^{\alpha_1}\cdots\partial x_n^{\alpha_n}}$

Theorem: Taylor's Formula over \mathbb{R}^n

Let $E \subseteq \mathbb{R}^n$ be open and let $\overline{B_r(a)} \subseteq E$. Suppose $f \in \mathcal{C}^k(E)$. Then

$$f(x) = \sum_{|\alpha| \leq k} \frac{D^{\alpha} f(a)}{\alpha!} (x-a)^{\alpha} + \sum_{|\alpha| = k} h_{\alpha}(x) (x-a)^{\alpha}$$

for any $x \in B_r(a)$, where α is a multi-index, and $h_\alpha : B_r(a) \to \mathbb{R}$ such that $h_\alpha(x) \to 0$ when $x \to a$ for all $|\alpha| = k$.

Proof:

Remark

Observe

$$|(x-a)^\alpha| = \left|\prod_{i=1}^n \left(x_i - a_i\right)_i^\alpha\right| = \prod_{i=1}^n |x_i - a_i|_i^\alpha \leq |x-a|^{|\alpha|}.$$

Therefore we have that

$$\left| \sum_{|\alpha|=k} h_{\alpha}(x) (x-a)^{\alpha} \right| \leq |x-a|^k \sum_{|\alpha|=k} |h_{\alpha}(x)|.$$

Let $x \in B_r(a)$ and define $[a,x] = \{\varphi(t) \mid t \in [0,1]\}$, where $\varphi: [-1,1] \to \mathbb{R}^n$ is defined by $\varphi(t) = a +$ t(x-a). Now let $g(t)=f(\varphi(t))$ so that g(0)=f(a) and g(1)=f(x). Thus $g\in\mathcal{C}^k([-1,1])$, meaning

$$g(1) = g(0) + \frac{1}{1!}g'(0) + \dots + \frac{1}{(k-1)!}g^{(k-1)}(0) + \frac{1}{k!}g^{(k)}(c)$$

for some $c \in [0, 1]$. As shown previously, we have

$$g^{(m)}(t) = \sum_{|\alpha|=m} D^{\alpha} f(\varphi(t)) \cdot (x-a)^{\alpha}$$

for m = 1, ..., k by the Mixed Derivative Theorem. This implies

$$f(x) = \sum_{|\alpha| \le k-1} \frac{D^{\alpha} f(a)}{\alpha!} (x-a)^{\alpha} + \sum_{|\alpha| = k} \frac{D^{\alpha} f(y)}{\alpha!} (x-a)^{\alpha}$$

for some $y \in [a,x]$. Now observe $D^{\alpha}f(y) = D^{\alpha}f(a) + (D^{\alpha}(y) - D^{\alpha}f(a))$, where $D^{\alpha}f(y) - D^{\alpha}f(a) \to 0$ as $y \to a$. Lastly define $h_{\alpha}(x) = \frac{D^{\alpha}f(y) - D^{\alpha}f(a)}{\alpha!} \to 0$ as $x \to a$, where y is a function of x.