Probabilités Numériques (G. Pagès & V. Lemaire) M2 Probabilités & Finance M2 Probabilités & Modèles Aléatoires SU-X 3 janvier 2023

3 h

Polycopié, notes de cours, livres, téléphones mobiles et montres connectées non autorisés

Handouts, course notes, books, mobile phones and smart watches not allowed

Exercise (Quasi-Monte Carlo). Let $n \in \mathbb{N}$ and $\xi_1, \dots, \xi_n \in]0, 1[$ such that $\xi_1 < \dots < \xi_n$. **1.a.** Show that the function $\varphi_n : x \mapsto \frac{1}{n} \sum_{k=1}^n \mathbf{1}_{\{\xi_k \le x\}} - x$ is right continuous with left limits everywhere it has a sense on the unit interval [0,1] and $\varphi_n(0) = \varphi_n(1) = \mathbb{Q}$. **1.b.** Prove that

$$\sup_{x \in [0,1]} \varphi_n(x) = \max_{1 \le k \le n} \varphi_n(\xi_k) \quad \text{ and } \quad \inf_{x \in [0,1]} \varphi_n(x) = \max_{1 \le k \le n} \varphi_n(\xi_k - 1)$$

where $\varphi_n(u-)$ denotes the left limit of φ_n at $u \in]0, 1]$.

1.c. Deduce (with the notations from the course) that

$$D_n^{\star}(\xi_1,\ldots,\xi_n) = \max_{1 \leq k \leq n} \left(\left| \xi_k - \frac{k}{n} \right|, \left| \xi_k - \frac{k-1}{n} \right| \right) = \frac{1}{2n} + \max_{1 \leq k \leq n} \left| \xi_k - \frac{2k-1}{2n} \right|$$

2. Let $f:[0,1] \to \mathbb{R}$ be an α -Hölder-continuous function, $\alpha \in]0,1]$ (i.e. $[f]_{\alpha} := \sup_{u \neq v, u, v \in [0,1]} \frac{|f(v) - f(u)|}{|v - u|^{\alpha}} < +\infty$).

2.a. Prove that

$$\left|\frac{1}{n}\sum_{k=1}^n f(\xi_k) - \int_0^1 f(u)du\right| \leq \underbrace{\int_{\mathcal{M}}^{f} \int_{k=1}^n \int_{\frac{k-1}{n}}^{\frac{k}{n}} |\xi_k - x|^\alpha dx}.$$

2.b. Deduce that

$$\left|\frac{1}{n}\sum_{t=1}^n f(\xi_k) - \int_0^1 f(u)du\right| \le [f]_\alpha D_n^*(\xi_1,\ldots,\xi_n)^\alpha.$$

Problem I (Multi-asset (pseudo-)risk measure). We introduce the function $V: \mathbb{R}^d \to \mathbb{R}$ $(d \geq 1)$ – a (pseudo-)risk measure – associated to an integrable d-dimensional random vector $X = (X^1, \dots, X^d)$ defined on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ and a confidence/risk level $\alpha \in (0,1)$ defined by

$$\forall\,\xi=(\xi^1,\dots,\xi^d)\!\in\mathbb{R}^d,\quad V(\xi)=\sqrt{1+|\xi|^2}-1+\frac{1}{1-\alpha}\sum_{i=1}^d\mathbb{E}(X^i-\xi^i)^+$$

where $u^+ = \max(u, 0)$. The variable X^i is representative of the loss induced by a traded asset i in a portfolio made up from d assets $1, \ldots, d$, in the sense that $X^i \ge 0$ means a loss of X^i euros. We assume for simplicity that the distribution of the vector X has no atom.

- 1.a. Prove that V is non-negative, differentiable on \mathbb{R}^d , compute its gradient at every $\xi \in \mathbb{R}^d$.
- 1.b. Prove that $\lim_{|\xi| \to +\infty} V(\xi) = +\infty$ and that V is strictly convex.
- 1.c. Deduce that $\operatorname{argmin}_{\mathbb{R}^d} = \{\xi^*\}$ where ξ^* is solution to a system of non-linear equations to be specified.
- 1.d. Briefly interpret the equation in terms of risk of loss.
- 2. Devise a recursive stochastic algorithm based on the simulation of an i.i.d. sequence $(X_n)_{n\geq 1}$ of random vectors with the distribution of X that converges to ξ^* \mathbb{P} -a.s. We denote by $(\xi_n)_{n\geq 0}$ this recursive stochastic procedure which reads

$$\xi_{n+1} = \xi_n - \gamma_{n+1} H(\xi_n, X_{n+1}),$$

supposed to be initialized at some deterministic \mathbb{R}^d -valued vector $\xi_0 \in \mathbb{R}^d$, where $H: \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}_+$ is a Borel function to be specified and $(\gamma_n)_{n \geq 1}$ is a step sequence satisfying a condition to be specified as well.

3. We assume that $X \in L^2(\mathbb{P})$. We define the stochastic recursive procedure $(V_n)_{n\geq 0}$ by

$$V_{n+1} = V_n - \frac{1}{n+1} (V_n - v(\xi_n, X_{n+1})), \quad n \ge 0$$

where $V(\xi) = \mathbb{E} v(\xi, x)$ in the above definition and $V_0 = 0$.

3.a. Prove that for every $n \ge 1$,

$$V_n = \frac{1}{n} \sum_{k=1}^n v(\xi_{k-1}, X_k) = \frac{1}{n} \sum_{k=1}^n V(\xi_{k-1}) + \frac{S_n}{n}$$

where

$$S_n := \sum_{k=1}^n v(\xi_{k-1}, X_k) - V(\xi_{k-1}), \ n \ge 1,$$

is a square integrable martingale with respect to the filtration $\mathcal{F}_n^X = \sigma(X_1, \dots, X_n), n \ge 0$. 3.b. Show that for every $k \ge 1$,

$$\left|v(\xi_{k-1}, X_k) - V(\xi_{k-1})\right| \le \frac{1}{1-\alpha} \sum_{i=1}^d \int |X_k^i - x^i| \mu_i(dx^i)$$

where μ_i denotes the distribution of the marginal X^i of X, $i=1,\ldots,d$. 3.c. Show that

$$\mathbb{E} \left| \sum_{k=1}^{n} v(\xi_{k-1}, X_k) - V(\xi_{k-1}) \right|^2 \le \frac{2dn}{(1-\alpha)^2} \sum_{i=1}^{d} \text{Var}(X^i)$$

and deduce that $V_n \to V(\xi^*)$ in probability.

BONUS QUESTION. Now we consider

$$\widetilde{S}_n = \sum_{k=1}^n \frac{v(\xi_{k-1}, X_k) - V(\xi_{k-1})}{k}, \quad n \ge 1.$$

Show that $(\widetilde{S}_n)_{n\geq 1}$ is a square integrable martingale with respect to the filtration $(\mathcal{F}_n^X)_{n\geq 1}$ and that its bracket process $\langle S \rangle_n$ satisfies

$$\mathbb{E}\langle \widetilde{S}\rangle_{\infty}<+\infty$$

Deduce that $V_n \to V(\xi^*)$ P-a.s.

Problem II (Flow of an SDE and applications). We consider a Stochastic Differential Equation (SDE)

 $X_t = X_0 + \int_0^t b(X_t)dt + \int_0^t \sigma(X_t)dW_t,$

where $b,\,\sigma:\mathbb{R}\to\mathbb{R}$ are two Lipschitz continuous functions with respective Lipschitz coefficientss $[b]_{\text{Lip}}$ and $[\sigma]_{\text{Lip}}$ and $(W_t)_{t\geq 0}$ is a standard Brownian motion defined on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ and X_0 defined on the same probability space, independent of W. We denote par $(X_t)_{t\geq 0}$ the unique $(\mathcal{F}_t^{X_0,W})_{t\geq 0}$ -adapted solution to the above SDE where $\mathcal{F}_t^{X_0,W} = \sigma(\mathcal{N}_{\mathbb{P}}, X_0, W_s, 0 \leq s \leq t)$, $t \geq 0$. All the notations are those used during the

We denote by T>0 a terminal time (or maturity). For every integer $n\geq 1$, we define step $h = h_n = \frac{T}{n}$. We set $t_k = t_k^n = \frac{kT}{n}$, $k = 0, \dots, n$.

1.a. Recall the definitions of the three Euler schemes with step $h=\frac{T}{n}$: the discrete time, the stepwise constant and the "genuine" (continuous) Euler schemes, denoted $(\bar{X}^n_{t_k})_{k=0,\dots,n}$, $(\bar{X}_t^n)_{t\in[0,T]}$ and $(\bar{X}_t^n)_{t\in[0,T]}$ respectively.

1.b. Let $p \geq 1$. Recall the uniform L^p -moment control results for both the diffusion $(X_t^x)_{t\in[0,T]}$ and the above Euler scheme(s). [No proof requested here.]

1.c. State the L^p -convergence theorems for the above three Euler schemes in an as synthetic way as possible. [No proof requested here.]

The result of 1.b. and 1.c. may be used without proof in what follows.

2. In what follows we denote by $(X_t^x)_{t\in [0,T]}$ the unique solution of the above SDE starting from $X_0 = x$ and by $(\bar{X}_{t_k}^{n,x})_{k=0,\dots,n}$, etc., the related Euler schemes.

2.a. Prove that, for every $x, y \in \mathbb{R}$,

$$\begin{aligned} \textbf{2.a. Prove that, for every } x, \ y \in \mathbb{R}, \\ \sup_{0 \leq s \leq t} |\bar{X}_s^{n,x} - \bar{X}_s^{n,y}| &\leq |x-y| + \int_0^t \left| b(\bar{X}_{\underline{u}}^{n,x}) - b(\bar{X}_{\underline{u}}^{n,y}) \right| du + \sup_{s \in [0,t]} \left| \int_0^t \left(\sigma(\bar{X}_{\underline{u}}^{n,x}) - \sigma(\bar{X}_{\underline{u}}^{n,y}) \right) dW_u \right|. \end{aligned}$$

2.b. We set, for every $t \in [0,T]$, $g(t) = \mathbb{E} \sup_{s \in \mathbb{R}} |\bar{X}_s^{n,s} - \bar{X}_s^{n,y}|^2$. Prove that (g is non-decreasing f(s))and) $g(T) < +\infty$.

2.c. Prove that for every $a, b, c \ge 0$, $(a+b+c)^2 \le 3(a^2+b^2+c^2)$.

2.d. Deduce that, for every $t \in [0,T]$

$$g(t) \leq 3 \Big(|x-y|^2 + t[b]_{\mathrm{Lip}}^2 \int_0^t \mathbb{E}\left|\bar{X}_{\underline{u}}^{n,x} - \bar{X}_{\underline{u}}^{n,y}|^2 du + \mathbb{E}\sup_{s \in [0,t]} \left|\int_0^s \left(\sigma(\bar{X}_{\underline{u}}^{n,x}) - \sigma(\bar{X}_{\underline{u}}^{n,y})\right)^{2} dW_{\underline{u}}\right|^2 \Big)$$

3.a. Prove that, for every $t \in [0, T]$,

$$g(t) \leq 3\Big(|x-y|^2 + \left(T[b]_{\mathrm{Lip}}^2 + 4[\sigma]_{\mathrm{Lip}}^2\right)\int_0^t g(s)ds\Big).$$

3.b. Conclude that, for every $n \ge 1$,

$$\big\|\sup_{t\in[0,T]}|\bar{X}^{n,x}_t-\bar{X}^{n,y}_t|\big\|_2\leq \sqrt{3}\,|x-y|e^{C_{k\sigma,T}T}$$

where $C_{b,\sigma,T}$ is a positive real constant to be specified and that

$$\Big\|\sup_{t\in[0,T]}|X_t^x-X_t^y|\Big\|_2\leq \sqrt{3}\,|x-y|e^{C_{b,\sigma,T}T}.$$

4. Assume that b and σ are differentiable with bounded derivatives. We admit that $P(d\omega)$ a.s., for every time $t \in [0,T], x \mapsto X_t^x(\omega)$ is differentiable, so that we may define the tangent

$$\forall \omega \in \Omega \setminus N_0, \ \forall t \in [0,T], \quad Y_t^{(x)}(\omega) := \frac{d}{dx} X_t^x(\omega)$$

(and $Y_t^{(x)}(\omega)=0$ if $\omega\in N_0$) where N_0 is a P-negligeable event of the σ -field A.

4.a. Justify heuristically why $(Y_t^{(x)})_{t \in [0,T]}$ satisfies an SDE to be specified. Deduce, this time rigorously that, as a solution of this SDE, $Y_t^{(x)}$ satisfies

$$Y_{t}^{(x)} = \exp\left(\int_{0}^{t} \left(b'(X_{s}^{x}) - \frac{1}{2}(\sigma')^{2}(X_{s}^{x})\right) ds + \int_{0}^{t} \sigma'(X_{s}^{x}) dW_{s}\right)$$

4.b. Prove that, $\mathbb{P}(d\omega)$ -a.s, for every time $t \in [0,T], x \mapsto X_t^x(\omega)$ is non-decreasing.

4.c. Prove that

$$\mathbb{E} \sup_{t \in [0,T]} \left(Y_t^{(x)} \right)^2 < +\infty.$$

5. Let $h:\mathbb{R} \to \mathbb{R}$ be a differentiable Lipschitz function. Prove rigorously that the function defined by

$$P(x) = \mathbb{E}\,h(X_{\scriptscriptstyle T}^x).$$

is differentiable on the real line with

$$P'(x) = \mathbb{E} h'(X_T^x) Y_T^{(x)}$$

```
Exercice GMC
                       1a) l_{m} \propto -\infty \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{1} \sum_{n=1}^{\infty} -\infty
                                                                                                                                                                                                                                                              Continue à divituer & et limit à gauche ar 3 E Jan C
                                                                                                           => Pm Cadlag
                             Sor (3, 3, 1) \frac{1}{2} \frac{1}{2}
                                                                                                                                   D'où Sop (m/x) = max (m/3)
                                                                                     D'antre part, c'mg (falx) = ing (Falx)-x) = lim (falx) = (falx)-1

NE(5;5,5) = REBISINE

NEST STATE

N
                                                                                                                      Douc in (ha) - min y ($ 3k-)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Q(3-)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      P. (3/2)
1.C) D'agrès le cours, D* (3) = Sep (4,6) = max (1max (4,6)), 1min (4,6))))
                                                                                                                                                                                                                                                                                                                                                                                                             = \max_{1 \leq k \leq m} \left( \left| \frac{k}{m} - \frac{1}{2k} \right| \left| \frac{k \cdot n}{m} - \frac{1}{2k} \right| \right)
                                                                                                                                                                                                                                                                                                                                                                                                      = \max_{1 \le k \le m} \left( \left| \frac{3}{2k} - \frac{k}{m} \right|, \left| \frac{3}{2k} - \frac{2k-1}{m} \right| \right) = \frac{1}{2m} + \max_{1 \le k \le m} \left( \left| \frac{3}{2k} - \frac{2k-1}{2m} \right|, \left| \frac{3}{2k} - \frac{2k-1}{2m} \right| \right)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            = 1 + max 3 - 2k.1
          2) Suit f: G13-2 R we a- Hölder fot a G 30, D are ( ) = Sop | [101-9(a)] <0
                           => \frac{1}{m} \frac{\infty}{\infty} \left[ (3) - \infty) \frac{\infty}{\infty} \right] \left[ \frac{\infty}{\infty} \right] \
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           2.b) max | 3, 21 = max (13, - 2, 1, 15, - 2, 1)
                                                                                                                                                                                      = D* (3, -, 3, 1
                                                                                                                              => 11 = 8(3,1-1) fh) dul < ( } ] , Dm (3,, -, 3,1)
```



```
2) Om vent resoudre h(3) = 0 où h(3) = (1 x) = - EC1/(1/23/3)
                                               Danc H(X, 3) = (1-2) 3 - (1) Xi = 0 | 1 - 1 - 1 | 1 - 1 - 1 |
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Pour Robbins - Monto il fant aussi
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        * 40 = 0*, < h(3, 3-3*)>>0
                                                 3/1 = 3/m - /mex H(3/m, Xmex) -> /m >0, 2/m /m 2/ 400 ch 2/m = 00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        * VOER", 11 H(3, 2) 1/2 < C (1+13-3*12)1/2
3) X € Z (P)
                                        Vm = 0, Vmg = Vm - 1 (Vm - V(3, Xmg)) M>0
                                                                                                                                                                                                                                                                                                                         avec V(3)= [F[v(3,x)] of 6=0
                                                                                                                                                                                                                                                                                                                                                                             = E[ St+1312-1+ 1 2 (xi-31)]
         3-a) Por rec, Vm = M Vm + 1 v (3m, Xma)
                                                                                                                = \frac{1}{2} \frac{1}{2} \sqrt{(\xi_{k-1})} + \frac{1}{2} (\frac{1}{2} v(\xi_{k-1}, \chi_{k}) - \sqrt{(\xi_{k-1})})
                                         \mathbb{E}\left[V_{ma}\mid\mathcal{F}_{m}^{x}\right] = \frac{1}{mer}\sum_{k=1}^{mer}V(\mathcal{F}_{k-1}) + \frac{1}{m}\mathbb{E}\left[\sum_{k=1}^{mer}V(\mathcal{F}_{k-1}\mid\mathcal{F}_{m}) - V(\mathcal{F}_{k-1}\mid\mathcal{F}_{m})\right]
\mathbb{F}\left[V_{ma}\mid\mathcal{F}_{m}\right] = \frac{1}{mer}\sum_{k=1}^{mer}V(\mathcal{F}_{k-1}\mid\mathcal{F}_{m})
\mathbb{F}\left[V_{ma}\mid\mathcal{F}_{m}\right] = \frac{1}{mer}\sum_{k=1}^{mer}V(\mathcal{F}_{k-1}\mid\mathcal{F}_{m})
\mathbb{F}\left[V_{ma}\mid\mathcal{F}_{m}\right] = \frac{1}{mer}\sum_{k=1}^{mer}V(\mathcal{F}_{k-1}\mid\mathcal{F}_{m})
                                             E(Sme 15x) = = (v($\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksign(\varksi
                                                                                 => Sm must
                                           Smear integrable = v ear de carre intégrable (XEX2)
          3.b) v(s_{k_1}, k_1) - v(s_{k_1}) = (\sqrt{1+k_1})^2 - \sqrt{1+k_1} = \sqrt{1+k_1} = \sqrt{1+k_1}
                                                                                                                                = \frac{1}{1-x} \sum_{i=1}^{n} \left( \left( X^{i} \cdot \mathbf{g}^{i} \right)^{+} - \mathbb{E}\left( X^{i} \cdot \mathbf{g}^{i} \right)^{+} \right)
                                                                                                                                                             \int (x^i, \overline{x}^i) \mu(dx^i) = \int (\overline{x}^i, \overline{x}^i)^{\frac{1}{2}} \mu(dx^i)
                                                    24 Gr-K) est lipschitzierme
                                                                                                                             => |v($\var_x\) - V($\var_x\) \ \ \frac{1}{2} | \( \frac{1}{2} \cdot \) | \( \frac{1} \cdot \) | \( \frac{1}{2} \cdot \) | \( \frac{1}{2} \cdot \) |
               3-c) Por 3-6 ana VR, 15(5, X)-V(5, 1) & 1 & |Xi x'| M. (dx)
                                                                 V[X'] = \[ [x' - E[X']]2 \mu_{i}(dxi) = \[ [] [x' - \( \infty \) \mu_{i}(d\( x') \) \\ \mu_{i}(dxi)
                                                                    \mathbb{E}(|\xi_{k+1}^m \nabla(\xi_{k+1} X_k) - \nabla(\xi_{k+1})|^2) = ?
                                                                             -> X 11 5 => E[(v($, X) - V($, 1)(v($, X) - V($, 1] = E[E[...(5^*) (v($, X) - V($, 1]] = c
                                                                                            = \mathbb{E}\left(\sum_{k=1}^{n} v(3_{k-1}, X_{k}) - V(3_{k-1})^{2}\right) = m \mathbb{E}\left(\frac{1}{2} \sum_{k=1}^{d} \int |X^{i} - x^{i}| \mu_{i}(dx^{i})^{2}\right)^{2} + 
                                                                                                                O_{\Gamma} \left(\sum_{i=1}^{d} a_{i}\right)^{1} \leq d \frac{d}{2} a_{i}^{2}
                                                                                                                                                49, 112 < 1012 · 1112 = 1012 d
```

On pert considérer cela comme une ginviraliser de Var.

