Transformers

https://github.com/TheHackerLlama/charlas/tree/main/riiaa 2021

Sobre mí - Omar Sanseviero

- https://www.linkedin.com/in/omarsanseviero
- https://twitter.com/osanseviero
- https://osanseviero.github.io/hackerllama/

Agenda del día

- 1. Introducción a Transformers (35 minutos)
- 2. Clasificación de Texto (35 minutos)
- 3. Tendencias y nuevas direcciones (30 minutos)

Parte 1. Introducción a Transformers

- Tareas comunes de NLP
- 2. ¿Qué son los Transformers?
- 3. Encoder, decoder y seq2seq
- 4. Limitaciones y sesgos

Ecosistema de bibliotecas Hugging Face

https://github.com/TheHackerLlama/charlas/tree/main/riiaa_2021

Pipelines

text-classification

summarization

zero-shot-answering

ner

text-generation

automatic-speech-recognition

question-answering

fill-mask

image-classification

translation

conversational

table-question-answering

Breve historia

arXiv.org > cs > arXiv:1706.03762

Computer Science > Computation and Language

[Submitted on 12 Jun 2017 (v1), last revised 6 Dec 2017 (this version, v5)]

Attention Is All You Need

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin

Breve historia

¡Los Transformers son grandes!

Digital Journal

[PangyoTechnovalley] Naver to open South Korea's first ...

Korean data which HyperCLOVA learned is 6,500 times more than that of GPT-3. The South Korea's AI model is the largest hyperscale ... 4 days ago

MarkTechPost

EleutherAl Develops GPT-3's Free Alternative: GPT-Neo

In terms of model size and computing power, the largest GPT-Neo model consists of 2.7 billion parameters. The GPT-3 API offers four models, ... 2 weeks ago

TNW

China's 'Wu Dao' AI is 10X bigger than GPT-3, and it can sing

China's going all in on deep learning. The Beijing Academy of Artificial Intelligence (BAAI) recently released details concerning its "Wu Dao" AI ... 5 days ago

...y requieren muchos datos

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset size, and amount of compute used for training. For optimal performance all three factors must be scaled up in tandem. Empirical performance has a power-law relationship with each individual factor when not bottlenecked by the other two.

...y pueden tener alto impacto ambiental

... pero funcionan muy bien!

Problemas con Transformers

- Requieren muchos datos
- Requieren mucho poder computacional
- No funcionan con documentos largos
- Muchas veces funcionan como cajas negras
- Adoptan sesgos

Transformers

Transfer Learning

Transformers

Transformers

Mecanismo de atención

Encoders

- Aprenden a representar la entrada
- Crea un conocimiento estadístico del lenguaje

Decoders

 Genera salidas a partir de una entrada y la representación del encoder

Encoders

Decoders

Clasificación de texto

Generación de texto

- NER
- POS

Encoder-decoder (seq2seq)

- Generar texto a partir de una entrada
- Traducir
- Resumir

Tareas con Transformers

Modelo	Ejemplos	Tareas
Encoder	ALBERT, BERT , DistilBERT, ELECTRA, RoBERTa	Clasificación de oraciones, NER, POS, extraer respuestas de un contexto
Decoder	CTRL, GPT, GPT-2, Transformer XL	Generación de Texto
Encoder Decoder	BART, T5, Marian, mBART	Resumir, traducción, generar respuestas a preguntas

Los Transformers están en todos lados

Parte 2. Clasificación de Texto

- 1. ¿Cómo funciona un pipeline?
- 2. ¿Qué es un tokenizer?
- 3. ¿Cómo hacer clasificación de texto con fine-tuning?

¿Cómo funciona un pipeline?

https://github.com/TheHackerLlama/charlas/tree/main/riiaa_2021

https://github.com/TheHackerLlama/charlas/tree/main/riiaa_2021

Tokenizers

- Word-based
- Character-based
- Subword-based
- muchos otros

Split on spaces

Let's		do	tol	tokenization!		
Split on punctuation						
Let	's	do	tokenization	!		

¿Qué problemas puede causar esto?

¿Qué problemas puede causar esto? Palabras similares, significados diferentes

Qخ Voc

	to	\rightarrow	4
	in	\rightarrow	5
	was	\rightarrow	6
	the	\rightarrow	7
	is	\rightarrow	8
	for	\rightarrow	9
	as	\rightarrow	10
	on	\rightarrow	11
	with	\rightarrow	12
	that	\rightarrow	13
O.,			
Qué problemas puede causar esto? ocabularios muy grandes	malapropism	\rightarrow	170,000
ocabalance may granace			

the \rightarrow 1

and \rightarrow 3

¿Qué problemas puede causar esto? Vocabularios muy grandes

¿Qué problemas puede causar esto? Vocabularios muy grandes

Word-based

¿Qué problemas puede causar esto?

Vocabularios muy grandes

Character-based

Let'sdotokenizaltion!	L	е	t	1	S	d	o	t	0	k	е	n	i	Z	а	t	i	o	n	!
-----------------------	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

Character-based

- ¡256 caracteres vs cientas de miles de palabras!
- Casi no hay OOV/UNK tokens
- Menos informativos
 - o p, e, r, r, o vs perro
 - o pero más útil para ciertos lenguajes en los que un caracter representa una palabra
- Secuencias muy largas

		Let's	do	token	ization	!
--	--	-------	----	-------	---------	---

- Palabras frecuentes no se separan
- Palabras raras se descomponen en palabras significantivas

Otros métodos

- Byte-level BPE
- WordPiece
- SentencePiece
- Unigram

Parte 3. Futuras direcciones

- 1. Escalando transformers
- Iniciativas de comunidad
- 3. Otras aplicacions

Escalando Transformers

Escalando Transformers

- Evidencia empírica que modelos grandes se desempeñan mejor en tareas downstream
- Propiedades interesantes que emergen en 10-100 mil millones de parámetros
 - Aprendizaje zero-shot
 - Aprendizaje few-shot

¿Sólo importa el número de parámetros?

Escalando Transformers

- Se estima que GPT-3 costó \$4.6 millones para entrenar (OpenAl's GPT-3 Language Model: A Technical Overview, C. Li (2020))
- Leyes de la escalabilidad (Scaling Laws for Neural Language Models, J. Kaplan et al. (2020))

Leyes de escalabilidad

Leyes de escalabilidad

- Cuantifica empíricamente el paradigma que modelos grandes son mejores
 - C: compute power
 - o D: tamaño del dataset
 - N: tamaño del modelo
- Sample efficiency:
 - Modelos grandes tienen mismo desempeño que modelos chicos con menos entrenamiento

Leyes de escalabilidad no están limitadas a texto

Retos de escalar

- Infraestructura
- Costo
- Curación de datasets
- Evaluación de modelos
- Despliegue

Infraestructura

- 100s a 1000s de nodos con GPU
- Algunos modelos no entran en GPU de consumidores
- Muchos problemas que no suelen ser parte del skillset de equipos normales de data science
- Se requieren ingenieras familiares con experimentos distribuidos de larga escala

Costo

Costo

Distributed Deep Learning in Open Collaborations (Diskin et. al., 2021)

Curación de datasets

- Garbage in, garbage out
- Se necesitan datasets grandes de "buena" calidad
- TBs de datos hacen problemas retadores
 - ¿Cómo procesar teras de datos?
 - ¿Cómo controlar sesgos como sexismo o racismo en los datos?
 - ¿Cómo se manejan temas de licenciamiento?

Iniciativas de comunidad

BigScience 🞇

Otras aplicaciones

- Visión
 - iGPT
 - o ViT
 - ¿Qué podemos hacer para videos?
 - Is Space-Time Attention All You Need for Video Understanding?, G. Bertasius et al. (2021)
- Tablas
 - TAPAS
- Multimodal
 - Speech to text

https://github.com/TheHackerLlama/charlas/tree/main/riiaa_2021

Multimodal

- Visión con texto
 - VQA
 - LayoutLM
 - o DALL-E
 - o CLIP

¡Muchas gracias!

HUGGING FACE

- https://www.linkedin.com/in/omarsanseviero
- https://twitter.com/osanseviero
- https://osanseviero.github.io/hackerllama/

Recursos adicionales

- https://huggingface.co/course
- https://jalammar.github.io/illustrated-transformer/
- https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of -seq2seq-models-with-attention/
- https://jalammar.github.io/how-gpt3-works-visualizations-animations/
- https://lena-voita.github.io/nlp_course.html
- https://bigscience.huggingface.co/en/#!index.md
- https://eleuther.ai/

