Simple t-designs with $v \leq 30$

Yeow Meng Chee

Department of Computer Science University of Waterloo Waterloo, Ontario N2L 3G1 CANADA

Charles J. Colbourn

Department of Combinatorics and Optimization University of Waterloo Waterloo, Ontario N2L 3G1 CANADA

Donald L. Kreher

Department of Mathematics University of Wyoming Laramie, Wyoming 82071 U.S.A.

1. Introduction

In this paper, a set of tables is presented surveying existence and nonexistence results for t-designs of small order having no repeated blocks. This introduction is a guide to understanding the tables. Our intent is to be comprehensive, and hence we include every admissible parameter situations on at most thirty elements.

First, we give some basic definitions. A t- (v,k,λ) design, or simply t-design of order v, blocksize k and index λ is a pair (V,B). V is a set of v elements, and B is a collection of k-subsets of V called blocks. Every t-subset appears in precisely λ of the blocks. When B contains no repeated blocks, the t-design is simple. We are concerned here only with simple t-designs.

One trivial t-design is obtained by taking B to be all of the k-subsets of V. This is the complete design, and it has index $\lambda = \lambda_{\max} = \begin{pmatrix} v - t \\ k - t \end{pmatrix}$. A second trivial design is the empty design having $B = \emptyset$ and $\lambda = 0$. Now when k = v or t = k, the only simple t-designs are either empty or complete. Hence, nontrivial t-designs have $0 < \lambda < \lambda_{\max}$ and t < k < v. We further require that $t \ge 2$.

Given integers t, v, k and λ , the existence of a t- (v,k,λ) design necessitates that the following divisibility conditions hold:

$$\begin{pmatrix} k-i \\ t-i \end{pmatrix} \mid \lambda \begin{pmatrix} v-i \\ t-i \end{pmatrix}$$
 for $i=0,\ldots,t-1$. (1)

A parameter set t- (v,k,λ) is admissible if it satisfies (1).

We can limit the number of parameter sets further by making two simple observations. First, the complement of a t- (v,k,λ) design is a t- $(v,k,\lambda_{\max}-\lambda)$ design; hence

ARS COMBINATORIA 29(1990), pp.193-258.

we need only consider cases when $\lambda \leq \lambda_{\max}/2$. Second, complementing each block of **3** (with respect to V) from a t- (v,k,λ) design, we obtain a t- $(v,v-k,\lambda) \begin{pmatrix} v-t \\ t \end{pmatrix} / \begin{pmatrix} k \\ t \end{pmatrix}$) design and hence we need only consider $k \leq v/2$.

Our tables include every admissible parameter set with $2 \le t < k \le v/2$, $v \le 30$ and $0 < \lambda \le \lambda_{\max}/2$. In each case that is settled, we report the existence or nonexistence of such a design, along with a reference or explanation.

2. Existence

We introduce first an outline of the techniques used to establish existence. Every $t-(v,k,\lambda)$ design (V,B) is also a (t-1)-design with parameters (t-1)- $(v,k,\lambda(v-t+1)/(k+t+1))$. For a fixed element $x \in V$, we can partition B into two sets, those blocks B_d containing x and those blocks B_t not containing x. It is easily verified that $(V \setminus \{x\}, B_t)$ is a $(t-1)-(v-1,k,\lambda(v-k)/(k-t+1))$ design; this is termed the residual design of (V,B). Moreover, removing x from each block of B_d to form B_d^x yields a $(t-1)-(v-1,k-1,\lambda)$ design $(V \setminus \{x\}, B_d^x)$ called the derived design of (V,B). The design (V,B) is the extension of $(V \setminus \{x\}, B_d^x)$. Alltop [Alltop75] has shown that a t- $(2k+1,k,\lambda)$ design has an extension to a (t+1)- $(2k+2,k+1,\lambda)$ design if t is even, or if t is odd and $\lambda = \lambda_{\max}/2$. When (t-1)-designs exist with the correct parameters to be the derived and residual designs of a t- (v,k,λ) design, one can combine them to form a simple $(t-1)-(v,k,\lambda(v-t+1)/(k-t+1))$ design (this is not in general a t-design, however). We can apply this observation to known t-designs to produce further t-designs. We call this observation "note (1)" in the tables. Van Trung [vanTrung86] presents a more general formulation which is equivalent.

Van Trung [vanTrung86] also observes that the complement of a $t-(2k+1,k,\lambda)$ design is a $t-(2k+1,k,\lambda(k+1)/(k+1-t))$ design, and hence they can be combined by the observations above to form a $t-(2k+2,k+1,\lambda(2k+2-t)/(k+1-t))$ design. We call this "note (2)" in the tables.

There is a second notion of derived and residual designs. Let (V,B) be a symmetric 2-design (i.e., |V| = |B|). Fix a block $b'' \in B$ and define $B_d = \{b \cap b'' : b \in B \setminus \{b''\}\}$ and $B_r = \{b \setminus b'' : b \in B \setminus \{b''\}\}$. Then (b'',B_d) and $(V \setminus b'',B_r)$ are the derived and residual designs of (V,B), respectively. If (V,B) is a 2- (v,k,λ) design, the derived design is a 2- $(v,k,\lambda-1)$ design and the residual design is a 2- $(v-k,k-\lambda,\lambda)$ design. The derived design may be trivial (for example, when $\lambda = 1$). Hall [Hall54] showed that if a design exists with parameters 2- $(v-k,k-\lambda,\lambda)$ and $\lambda \in \{1,2\}$, this design is the residual design of some 2- (v,k,λ) . We call this result "note (4)" in the tables.

Another useful tool in establishing existence is the following lemma of Ganter. Pelikán and Teirlinck [Ganter77].

Permutation Lemma. If a $t-(v,k,\lambda)$ design (X,B) exists, then it can be chosen to be disjoint from D, a given collection of k-subsets of X, when $v! > |B| |D| k! \cdot (v-k)!$.

With the exception of this last lemma, all of the techniques reviewed here apply to specific values of λ . It is readily apparent, however, that while t, v and k are all

severely constrained by our restriction to $v \le 30$, the range of possible indices remains very large indeed. We are therefore interested in methods which settle all (or most) values of λ in a single construction. We review one such method next.

For given parameters t, v and k, denote by λ_{\min} the smallest positive integer λ satisfying the divisibility conditions. It is easy to verify that if a t- (v,k,λ) design exists, $\lambda_{\min} \mid \lambda$. A (t,k,v)-partition with index vector $(\lambda_1,\ldots,\lambda_n)$ is a v-set X together with a partition of all $\begin{pmatrix} v \\ k \end{pmatrix}$ k-subsets on X into classes $\{ \boldsymbol{B}_1,\ldots,\boldsymbol{B}_n \}$ so that (X,\boldsymbol{B}_1) is a t- (v,k,λ_1) design. If $\lambda_1=\lambda_2=\cdots=\lambda_n$, the (t,k,v)-partition is uniform. If we further require that $\lambda_1=\lambda_{\min}$, the partition is a (t,k,v)-large set. Observe that the existence of a (t,k,v)-large set establishes the existence of designs for all admissible parameter sets t- (v,k,λ) (that is, for all admissible λ values for the fixed parameters t. k and v). Since the existence of a (t,k,v)-large set is a particularly elegant method for settling many existence questions, in the Existence column, we report on the existence or (proved) nonexistence of a (t,k,v)-large set by writing LS or NLS respectively.

Often the explanation or reference we give is not the first reference; typically we choose a reference giving the strongest or most general result.

3. Nonexistence

Next we turn to authorities for nonexistence results. The main basic observation is Fisher's inequality : $|\mathbf{B}| \ge |V|$ is necessary for a 2-design $(V.\mathbf{B})$ to exist [Fisher-40]. Ray-Chaudhuri and Wilson [Ray-Chaudhuri75] generalized this to prove that for a t- $(v.k.\lambda)$ design $(V.\mathbf{B})$ with even t to exist, we require $|\mathbf{B}| \ge \begin{pmatrix} v \\ t/2 \end{pmatrix}$.

Naturally, we can also use the relations discussed earlier to establish nonexistence as well. If a design does not exist, the extension of that design does not exist. Similarly, if the required residual of a design does not exist, the design does not exist. These eliminate a number of parameter sets.

A classic nonexistence result for symmetric 2-designs is also useful. If a symmetric $2-(v,n+\lambda,\lambda)$ design exists, then n must be a square if v is even; if v is odd, $z^2=nx^2+(-1)^{(v-1)/2}\lambda y^2$ must have a solution in integers x, y and z not all zero. See [Chowla50]. We refer to this as "note (3)" in the tables.

Finally, nonexistence for many parameter sets has been established in various references; these are cited in the tables.

4. Supplement

After the tables, we provide a quick summary of known infinite families of simple t-designs for $t \ge 4$. We also provide a table of known exact enumerations for simple t-designs. In many further cases, lower bounds on the number of solutions are available; see the tables of Mathon and Rosa [Mathon85] for the case when repeated blocks are permitted.

Disclaimer

While every effort has been made to make these tables accurate and complete, in a tabulation of this size it would be naive to think that no errors have crept in. Please report any omissions or errors to one of the authors. Furthermore, we do not suggest that simply because a case remains open in the tables, it is by definition interesting. Millions of open cases remain!

Acknowledgements

The tables of Brouwer ([Brouwer77] and [Brouwer86]) proved invaluable in our compilation; the tables in [Southern81] also provided many useful designs. Thanks also to Dom de Caen, Earl Kramer, Spyros Magliveras, Rudi Mathon, Kevin Phelps, Alex Rosa, Luc Teirlinck and Tran van Trung for assistance in locating results. Research of the second author is supported by NSERC Canada Grant A0579; research of the third author is supported by NSF Grant CCR-8711229.

$t=(v, k, \lambda)$	Exie	tence	Remarks
2-(6,3,2)	Yes	LS	Bhattacharya43
2-(7,3,s), 1≤s≤2	Yes	NLS	[Cayley50]
2-(8,4,3≠), 1≤≠≤2	Yes	 	3-(8.4,s) as a 2-design
2-(9,3.¢). 1≤¢≤3	Yes	LS	Kirkman50
2-(9,4,3¢), 1≤¢≤3	Yes	· · · · ·	Derived design of 3-(10,5,3a)
2-(10.3.2s). 1≤s≤2	Yes	LS	Teirlinck75
2-(10.4.2)	Yes	·	Fisher43
2-(10.4.2s), 2≤s≤7	Yes	-	Derived design of 3-(11,5,2s)
2-(10.5.40), 1≤0≤7	Yes		Brouwer86
2-(11.3,3)	Yes	LS .	Derived design of 3-(12,4,3)
2-(11.4.8*), 1≤*≤3	Yes	LS	Chee89
2-(11,5,2e), 1≤e≤21	. Yes		Brouwer86
2-(12,3.20), 1≤0≤2	Yes	LS	Schreiber74
2-(12.4,3¢), 1≤¢≤7	Yes		Brouwer86)
2-(12,5,20≠). 1≤≠≤3	Yes		Derived design of 3-(13.6.20a)
2-(12.8.5*), 1≤*≤21	Yes		3-(12.5.2e) as a 2-design
2-(13,3,∗), 1≤∗≤5	Yes	LS	Denniston74
2-(13,4.¢), 1≤¢≤27	Yes	LS	Chouinard83
2-(13,5.5¢), 1≤¢≤16	Yes		Derived design of 3-(14,6,5a)
2-(13,6.5¢), 1≤¢≤33	Yes		Brouwer86
2-(14,3,6)	Yes	LS.	Hanani75
2-(14,4,8a), 1≤a≤5	Yes	LS	See note (1) with 2-(13,3,s) and 2-(13,4,5s)
2-(14.5.20a), 1≤a≤5	Yes		Derived design of 3-(15,8,20a)
2-(14,6,15∉), 1≤∉≤16	Yes		Derived design of 3-(15,7,15a)
2-(14.7.6a), 1≤a≤66	Yes		Brouwer86
2-(15,3,s), 1≤s≤6	Yes	LS	Denniston74
2-(15,4,6s), 1≤s≤6	Yes		Derived design of 3-(16,5,6s)
2-(15,5.2)	No		See note (4) with 2-(22,7,2)
2-(15.5.2*), 2≤*≤71	Yes		Derived design of 3-(16,6,2a)
2-(15,6.5¢), 1≤¢≤71	Yes		(Brouwer88)
2-(15,7,3e), 1≤e≤214	Yes		Brouwer86)
2-(16.3.2*), 1≤*≤3	Yes	LS	Schreiber74
2-(16.4.a), 1≤a≤2	Yes		Derived design of 3-(17,5,e)
2-(16,4,3)	Yes		Kramer76
2-(18,4,≠), 4≤≠≤45	Yes		Derived design of 3-(17,5,e)
2-(16,5,4s), 1≤s≤45	Yes		Derived design of 3-(17,5,4e)
2-(16.6.1)	No		Violates Fisher's inequality
2-(16,6,2)	Yes		Husain45
2-(16,6,3)	Yes		Residual of 2-(25,9,3)
2-(16,6,≠), 4≤≠≤500	Yes		Brouwer86
2-(16,7,140), 1<0<71	Yes		See note (1) with 2-(15,6,5s) and 2-(15,7,9s)
2-(16.8,7¢), 1≤¢≤214	Yes		3-(15,8,3s) as a 2-design
2-(17,3,3a), 1≤e≤2	Yes	LS	Kramer77
			· · · · · · · · · · · · · · · · · · ·

$t=(v, k, \lambda)$	Existence		Remarks		
2-(17.4.3e), 1≤e≤17	Yes		Brouwer86		
2-(17.5,5a), 1≤a≤45	Yes		Brouwer86		
2-(17,6.15a), 1≤a≤45	Yes	T	Brouwer86		
2-(17,7,21a), 1≤e≤71	Yes		Brouwer86		
2-(17.8.7⊕), 1≤⊕≤357	Yes	 	Brouwer86		
2-{18,3,2e}, 1 <e<4< td=""><td>Yes</td><td>LS</td><td>Terrinck75</td></e<4<>	Yes	LS	Terrinck75		
2-(18,4,5s), 1≤s≤10	Yes		Brouwer88		
2-(18,5,20¢), 1≤¢≤14	Yes		Derived design of 3-(19.6.20a)		
2-(18,6,5)	Yes		Takeuchi62		
2-(18.6.5a), 2≤a≤8	Yes		See Permutation Lemma with 2-(18.6.5)		
2-(18.6,5s), s=0 (mod 2)	Yes		Brouwer86		
2-(18,6.5a), s=0 (mod 7)	Yes		Derived design of 3-(19.7.5s)		
2-(18,8.5a), e=11,13,15,19,21,23,25 etc	Yes	1	Brouwer86		
2-(18.6.5s), all other s	,	 	<u> </u>		
2-(18.7.42s), s=0 (mod 8)	Yes		Kreher89		
2-(18.7.42s), all other s	, .				
2-(18.8.28)	Yes		Assmus??		
2-(18.8,28¢). ≠=0 (mod 2)	Yes	<u> </u>	See note (1) with 2-(17.7.21s 2) and 2-(17.8,35s 2)		
2-(18.8.28s), all other s	•		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
2-(18.9.8¢), 1≤¢≤715	Yes		Dehon78		
2-(19.3.∗), 1≤∗≤8	Yes	LS	Denniston74		
2-(19.4.2¢), 1≤¢≤34	Yes		Brouwer88		
2-(19,5,10≠), 1≤≠≤34	Yes	LS	Brouwer88		
2-(19,6.5¢), 1≤¢≤238	Yes		Brouwer86		
2-(19,7.7¢), 1≤¢≤442	Yes		Brouwer86		
2-(19,8,28¢), 1≤¢≤221	Yes	LS	Brouwer86		
2-(19,9,4¢), 1≤¢≤2431	Yes		Brouwer86		
2-(20,3,6)	Yes	LS	Teirlinck75		
2-{20.4.3≠}, 1≤≠≤25	Yes		Kreher89		
2-(20,5,4)	Yes		Takeuchi62		
2-(20,5,4≠), 2≤≠≤3	Yes		See Permutation Lemma with 2-(20,5.4)		
2-(20.5,4a), a=4.20.40.44,52,64.92,100	Yes		Residual design of 3-(21.5.3s/4)		
2-(20.5,4a), a=10.17.32.34.37.55.	Yes		Derived design of 3-(21.6.4e)		
59 62,67,70,74,80,82,85,89,94	L				
2-(20.5.4s), s=0 (mod 3)	Yes		See note (1) with 2-(19.4.2s 3) and 2-(19.5,10s/3)		
2-(20.5.4s), all other s	•				
2-(20.6,15s), s≡0 (mod 3)	Yes		Derived design of 3-(21.7.15a)		
2-(20.6.15a), a=28,40,52,56.64.68.80.91	Yes		Derived design of 3-(21,7.15s)		
2-(20.6.15s), s=10,17,34,37,44,55, 59.62,67,70.74,82,85,89,94,100	Yes		Residual design of 3-(21,8.4s)		
2-(20.6.15s), all other s			<u> </u>		

t-(v, k, \lambda)	Exis	ence	Remarks		
2-(20.7.42s), s=0 (mod 3)	0.7.42s), s≡0 (mod 3) Yes		3-(20.7,35s) as a 2-design		
2-(20,7,424), 4=16.28.32,44.64.76,80.92	Yes		Derived design of 3-(21.8.42s)		
2-(20.7,42s), all other s	,				
2-(20,8.14a), a=0 (mod 3)	Yes		3-(20.8.14*) as a 2-design		
2-(20.8.14#),	Yes		Residual design of 3-(21.8.84# 13)		
a=194.182.208.286.416.494.520.598					
2-(20.8.14#), all other #	,				
2-(20,9.72s), 1≤s≤221	Yes		See note (1) with 2-(19.8,28s) and 2-(19.9,44s)		
2-(20.10,9s), 1≤s≤2431	Yes		See note (2) with 2-(19,9.4e)		
2-(21,3,s), 1≤s≤9	Yes	ĻS	Denniston74		
2-{21,4,3¢}, 1≤¢≤28	Yes		Derived design of 3-(22,5.3s)		
2-(21.5,e), 1≤e≤60) es		Derived design of 3-(22.5.s)		
2-(21,5,s), s≡0 (mod 17)	Yes		Derived design of 3-(22.6.4)		
2-(21,5,s), s=96,97,112,113,128,129	Yes		Derived design of 3-(22.6.4)		
2-(21.5.s), s=19.95.114.152.171.190.	Yes		3-(21,5,3e, 19) as a 2-design		
209,247,285,304,342,399,437,458,475	,				
2-(21.5.s), all other s	No		Violates Fisher's inequality		
2-(21,6,1)	No		<u> </u>		
2-(21,6.2)			See note (4) with 2-(29.8.2)		
2-(21,6,3)	Yes		1		
2-(21.6.a), a=5.7	Yes Yes		Southern81		
$2-(21,5,s)$, $s=0 \pmod{4}$ and $4 \le s \le 240$			Residual design of 3-(22.5 s/4)		
2-(21.8.e), e=384,388.448,452,512,516	Yes		Residual design of 3-(22,6.s. 4)		
2-(21.5.s), s=0 (mod 58)	Yes		Residual design of 3-(22.5.#/4)		
2-(21.5,s), s=5.1386.1890	Yes		Derived design of 3-(22.7.s)		
2-(21.6.s), e=190,323.608.646.703, 836.1045.1121.1178.1273.1330.	Yes	•	3-(21.6.4s/19) as a 2-design		
1406.1558.1615.1691.1748.1786.1900		-			
2-(21,6.s), s≡0 (mod 57)	Yes	<u> </u>	See note (1) with 2-(20.5.4s/19) and 2-(20.5,15s 19)		
2-(21.6.s), all other s	7		200 200 (1) 1101 2 (2010) 200 2 (2010) 200 10)		
2-(21,7,3)	Yes		Takeuchi62		
2-(21,7,3¢), 2≤¢≤130	Yes		See Permutation Lemma with 2-(21.7.3)		
2-(21.7.30).	Yes		Derived design of 3-(22,8.3e)		
s=144,180.336,360.512.516,					
1580,1712,1716	}		•		
2-(21.7.3s), s=0 (mod 57)	Yes		3-(21.7.15s/19) as a 2-design		
2-(21.7,3*),	Yes		3-(21,7,15s/19) as a 2-design		
s=532.760.988,1064.1216.1292.1520,1729	1		<u> </u>		
2-(21,7.3s),	Yes		Residual design of 3-(22,7,s)		
a=448.452.1260.1288.1386,1860,1890					
$2-(21.7.3s)$, $s=0 \pmod{4}$ and $4 \le s \le 98$	Yes		Residual design of 3-(22,7.s)		
2-(21.7.3s), s≡0 (mod 58)	Yes		Residual design of 3-(22,7,e)		
2-(21.7.3s), all other s	,		•		

$t-(v, k, \lambda)$	Existen	C.	Remarks
2-(21,8.14a),	Yes		Derived design of 3-(22.9,14s)
a=3,18,72,90,180,240,330,			
504,840,858			
2-(21.8.14a),	Yes		Residual design of 3-(22.8.6s)
a=2.4.6,8,10.12,14.16.56.			
180.258.258.856			
2-(21.8.14s), s=0 (mod 57)	Yes		See note (1) with 2-(20,7.84s 19) and 2-(20.8.182s 19)
2-(21,8,14s), s=152,265,304,418,	Yes		See note (1) with 2-(20,7,84s/19) and
808.722,760,874		<u>. </u>	2-(20.8,182#,/19)
2-(21,8.14s), all other s	?		
2-(21.9.6)	Yes		Takeuchi62
2-(21,9,6≠), 2≤≠≤240	Yes		See Permutation Lemma with 2-(21,9,6)
2-(21,9.6s), $s=390.1040.1430$, $2584,3876$	Yes		Derived design of 3-(22,10.6s)
2-(21,9.6a), a=312,780,2184, 3640,3718	Yes		Residual design of 3-(22,9.42¢,13)
2-(21.9.5s), s=0 (mod 19)	Yes		See note (1) with 2-(20,8,42s/19) and 2-(20,9,72s/19)
0 (01 0 0) -11 -15	, ,		2-(20.8.728 18)
2-(21.9.6s), all other s	Yes		Derived design of 3-(22.11.9)
2-(21.10.9)	Yes		See Permutation Lemma with 2-(21.10.9)
2-(21.10,9s). 2≤s≤200			Derived design of 3-(22.11.94)
2-(21.10.9*), *=1430.2584.3876	Yes		1
2-(21.10.9a), a=390.1040	Yes		Residual design of 3-(22.10.6s)
2-(21.10.9a), a=0 (mod 19)	Yes		See note (1) with 2-(20.9.72s 19) and 2-(20.10.99s /19)
2-(21.10.9s), all other s	?		
2-(22.3,2a), 1≤a≤5	Yes	LS	Teirlinck84
2-(22.4.2)	Yes		Takeuchi62
2-(22.4.2s), s=0 (mod 5)	Yes		Derived design of 3-(23.5,2s)
2-(22,4.2s), s=0 (mod 19)	Yes		Residual design of 3-(23,4.4s/19)
2-(22.4.2s), all other s	?		
2-(22,5,20a), 1 <a<28< td=""><td>Yes</td><td></td><td>Derived design of 3-(23,5,20s)</td></a<28<>	Yes		Derived design of 3-(23,5,20s)
2-{22.6.5a}, 1≤a≤60	Yes		3-(22.6,s) as a 2-design
2-(22.6.5s), s=96.97.112.113.128.129	Yes		3-(22.6.s) as a 2-design
2-(22.8.5s), s=0 (mod 17)	Yes		3-(22.5,s) as a 2-design
2-(22,8,5e), all other e	,		<u> </u>
2-(22.7.2)	No		See note (3)
2-(22.7.4)	Yes		Southern81
2-(22.7.6)	Yes		Hanani75
2-(22.7,2s), s≡0 (mod 4), s≥8	Yes		Derived design of 3-(23,8,8s)
	,		Service design of defending)
2-(22.7.2s), all other s		-	Southern81
2-(22.8.8)	Yes		
2-(22.8.4s). s≡0 (mod 5). s≥10	Yes		Residual design of 3-(23,8,8#)
2-(22.8.4s), s = 0 (mod 6), s ≥ 12	Yes		Derived design of 3-(23,9.24e)
2-(22.8.4*), all other s	,		

$(-(v, k, \lambda))$	Existence		Remarks
2-(22,9,120)	Yes		Residual design of 3-(23,9,120)
2-(22.9,24s), s≡0 (mod 2), s≥4	Yes		Residual design of 3-(23,9,24s)
2-(22.9.24s), all other s	•		
2-(22,10.15s), s=0 (mod 19)	Yes		See note (1) with 2-(21,9.8s) and 2-(21,10.9s)
2-(22,10,15*), *=8,13,78,96,390,	Yes		See note (1) with 2-(21.9,5s) and 2-(21.10.9s)
1040,1430,2584,3876			<u> </u>
2-(22.10.15s), all other s	?"		
2-(22.11,10)	Yes		Hall56 Takeuchi62 Kageyama72
2-(22.11.10a), 2≤a≤400	Yes		See Permutation Lemma with 2-(22.11.10)
2-(22,11,10*), *=2880.5168.7752	Yes		Residual design of 3-(23.11.9s/2)
2-(22,11,10s), s=780,2080	Yes		See note (2) with 2-(21,10.9s/2)
2-(22.11,10a), aw0 (mod 38)	Yes		See note (2) with 2-(21.10.9s/2)
2-(22,11,10s), all other s	•		
2-(23.3,34), 1≤e≤3	Yes	LS	Kramer77
2-(23,4.6 €), 1≤€≤17	Yes	LS	Chee89
2-(23,5,10s), 1≤s≤66	Yes	LS	(Chee89)
2-(23.6,15a), 1≤a≤199	Yes	LS	Chee89
2-(23,7,21≠), 1≤≠≤484	Yes	LS	Chee89
2-(23.8.28¢), 1≤¢≤969	Yes	LS	(Chee89)
2-(23,9,36+), 1≤+≤1615	Yes	LS	Chee89
2-(23.10.454). 1≤4≤2261	Yes	LS	Chee89
2-(23.11.5)	Yes		Derived design of 3-(24.12.5)
2-(23,11.5a). 2≤a≤2556	Yes		See Permutation Lemma with 2-(23.11.5)
2-(23,11.5#),	Yes	ſ	Derived design of 3-(24.12.5s)
a=4004,4356,4357,4500,4501		<u> </u>	
2-(23,11,50),	Yes	1	Residual design of 3-(24.11,45e/13)
#=10010,15730,15743.16588.16601	ļ.,-		See note (1) with 2-(22.10,15s/7) and 2-(22.11.20s/7)
2-(23,11,5#),	Yes		See note (1) With 2-(22.10,150.1) and 2-(22.11.200.1)
e=2730,7280,18088,27132	Yes		See note (1) with 2-(22.10,15s/7) and 2-(22.11.20s/7)
2-(23.11.5s), s=0 (mod 133)	1 23		See 1002 (1) 1111 2 (22:10:1007.1) 5112 5 (45:11:10-7.1)
2-(23,11.5s), all other s	Yes	LS	Schreiber74
2-(24.3,20), 1≤0≤5	Yes	L.3	Hanani61
2-(24,4.3)	Yes	 	Derived design of 3-(25.5.3e)
2-(24.4,3s), s=0 (mod 11)	Yes	-	Residual design of 3-(25.4.2#/7)
2-(24,4,3*), **7,28,35	1 es	 	recorded ricords of o-(no.4'pa/,)
2-(24.4,3s), all other s	Yes	-	Hanani72
2-(24,5,20)	Yes	-	Derived design of 3-(25.8.20s)
2-(24,5,20s), s=0 (mod 11)	Yes		Detired design of a-(20.0.200)
2-(24.5,20s), all other s		-	Hanani75
2-(24,8,5)	Yes		See Permutation Lemma with 2-(24.6.5)
2-(24.6.5s), 2≤s≤16	Yes		
2-(24.8,5s), s=0 (mod 11)	Yes		3-(24,5.10e · 11) as a 2-design
2-(24.6.5s), all other s	7	<u>Ľ.</u>	<u></u>

t-(v, t, λ) Existence		tence	Remarks
2-(24.7.42a), a #0 (mod 11)	Yes	_	Derived design of 3-(25.8.42a)
2-{24.7.42e}, all other e	,		
2-(24.8.7)	Yes		Hanani75
2-(24.8.7∗), 2≤∗≤155	Yes		See Permutation Lemma with 2-(24.8.7)
2-(24,8.7s), s=0 (mod 11)	Yes		3-(24.8.21s 11) as a 2-design
2-(24.8.7s) all other s	•	· · ·	
2-(24.9.24e), s=0 (mod 11)	Yes		See note (1) with 2-(23.8.84s 1i) and 2-(23.9.180s 11)
2-(24.9.24s), all other s	7	•	
2-(24.10.45e), em0 (mod 11)	Yes		See note (1) with 2-(23.9.180s 11) and 2-(23.9.315s 11)
2-(24.10.45a), all other a			
2-(24.11.110)	Yes		Derived design of 3-(25.12.110)
2-(24.11.110a). 2≤a≤9	Yes		See Permutation Lemma with 2-(24.11.110)
2- $(24.11.110s)$, $s=42.86.67.210.308$, 560.770.1210.1211.1276.1277	Yes		See note (1) with 2-(23,10.45s) and 2-(23,11.65s)
2-(24.11.110e) all other e	,		
2-(24.12.11)	Yes		Takeuchi62
2-(24.12.11e), 2≤e≤1278	Yes		See Permutation Lemma with 2-(24.12.11)
2-(24,12.11a).	Yes		See note (2) with 2-(23.11.5e)
e=2730.4004.4356.4357. 4500.4501.7280.10010.15730.	'		
15743.16588.16601.18088.27132			
2-(24.12.11s), s=0 (mod 133)	Yes		See note (2) with 2-(23 11.5s)
2-(24.12.11a), all other a	,		
2-(25.3.a). 1≤a≤11	Yes	LS	Denniston74
2-(25.4.1)	Yes		Derived design of 3-(26.5.1)
2-(25.4,0), 2≤0≤6) es		See Permutation Lemma with 2-(25.4.1)
2-(25.4.s), s=23.92.115	Yes		3-(25.4.2s 23) as a 2-design
2-(25.4,e), e=0 (mod 11)	Yes		Residual design of 3-(26.4.s. 11)
2-(25.4.e), all other e	•		
2-(25,5.1)	Yes		Takeuchi62
2-(25.5.a), 2≤a≤60	Yes		See Permutation Lemma with 2-(25.5.1)
2-(25.5.s), s=253.506.759	Yes		Derived design of 3-(28.6.0)
2-(25.5.s). s=0 (mod 77) and s≥154	Yes		Derived design of 3-(26.6.e)
2-(25.5.s), all other s	,		, , , , , , , , , , , , , , , , , , , ,
2-(25.6.5)	Yes		Southern81
2-(25.6.5s). 2≤s≤18	Yes		See Permutation Lemma with 2-(25.6.5)
2-(25,6.5a), s=253,506,759	Yes		Residual design of 3-(26.6.s)
2-(25.8,5s), s≡0 (mod 77) and s≥154	Yes		Residual design of 3-(25.6.s)
2-(25.8.5s), all other s		·	

$t=(v,k,\lambda)$	λ) Existence		Remarks
2-(25,7,7)	Yes		Southern81
2-(25,7,7¢), 2≤¢≤49	Yes		See Permutation Lemma with 2-(25.7.7)
2-(25,7,7*), *=0 (mod 253)	Yes		Derived design of 3-(26.8.7s)
2-(25,7,7s), all other s	?		
2-(25.8,7)	Yes		Wilson75
2-{25.8.7a}, 2≤a≤193	Yes		See Permutation Lemma with 2-(25.8.7)
2-(25.8.7s), s=0 (mod 253)	Yes	 	3-{25.8.424/23} as a 2-design
2-(25.8,7s), all other s	? .		
2-{25,9.3}	Yes		Hall67
2-(25.9,3≠), 2≤≠≤3269	Yes		See Permutation Lemma with 2-(25,9,3)
2-(25.9.3e), e=0 (mod 253)	Yes		See note (1) with 2-(24,8,21s,'23) and 2-(24,9,48s/23)
2-(25.9.3s), all other s	1		
2-(25,10,3)	No		Violates Fisher's inequality
2-(25.10.3a), a=2.3	Yes		Southern81
2-(25,10,3s), s=0 (mod 253)	Yes		See note (1) with 2-(24.9.24e-23) and 2-(24.10.45e-23)
2-(25.10.3*), all other #	,		
2-(25.11.55*).	Yea		See note (1) with 2-(24,10,495a;23) and
a=23,138,690,1012,1840,2530,3979			2-(24.11,770e/23)
2-(25.11.55s), all other s	!		
2-(25.12.11)	Yes		Takeuchi62, [Wilson75]
2-(25.12.114), 2≤4≤2081	Yes		See Permutation Lemma with 2-(25,12.11)
2-(25.12.11*),	Yes		See note (1) with 2-(24,11,110s/23) and
e = 4830.7064.12880.17710.			2-(24,12,143#/23)
27830.27853.29348.29371	<u> </u>		
2-(25.12.11s), all other s			
2-(26,3.5¢), 1≤¢≤2	Yes	LS	Teirlinck75
2-(26.4.6)	Yes		Hanani61
2-(26.4.6s), s=0 (mod 2)	Yes		3-(26.4,s/2) as a 2-design
2-(26.4.138)	Yes		Derived design of 3-(27,5.138)
2-(25.4.6s), all other s			
2-(26.5.4)	Yes		Hanani72
2-(26.5.4#), 2≤#≤4	Yes		See Permutation Lemma with 2-(28,5.4)
2-(26.5.1012)	Yes		Derived design of 3-(27,8,1012)
2-(26,5,4s), s≡0 (mod 22) and s≥44	Yes		Derived design of 3-(27,6.4s)
2-(26,5,4s), all other s			
2-(26.6.3)	Yes		Takeuchi62
2-(26.6.3.), 2≤.≥55	Yes		See Permutation Lemma with 2-(26,6,3)
2-(26,6.5313)	Yes		Derived design of 3-(27,7,5313)
2-(28.8.3a). *=3542.70814.10628	Yes		3-(26.6,s/2) as a 2-design
2-(28.6.3s), s≡0 (mod 154) and s≥308	Yes		Residual design of 3-(27,5,4e-7)
2-(26,6.3s), all other s	· 1		

$t-(v, k, \lambda)$	Existence		Remarks
2-(26.7.42e), a=4.506	Yes		Residual design of 3-(27.7.21s 2)
2-(26,7,336)	Yes		See note (1) with 2-(25.8.70) and 2-(25.7.266)
2-(26.7.42s), all other s	,	1.	7,000
2-(25.8.28a), 1≤a≤49	Yes		See note (1) with 2-(25.7.7s) and 2-(25.8.21s)
2-(25.8.28s). s=0 (mod 253)	Yes		3-(28.8.7e) as a 2-design
2-(26.8.28*). all other *	7	†	
2-(26.9.72s), 1≤s≤64	Yes	1 -	See note (1) with 2-(25.8.21s) and 2-(25.9.51s)
2-(28.9.72*), 65≤*≤2403	•	†	(-) (-) (-) (-) (-) (-) (-) (-) (-) (-)
2-(26.10.9)	Yes	 	Southern81
2-(26.10.9a), 2≤a≤1258	Yes		See Permutation Lemma with 2-(26.10.9)
2-(26.10.9s), s=0 (mod 253)	Yes		See note (1) with 2-(25.9.3s) and 2-(25.10.6s)
2-(26.10.9s), all other s	,	1	, , , , , , , , , , , , , , , , , , , ,
2-(26.11.22s), e=92.552.2760.4048, 7360.10120.15916	Yes		See note (1) with 2-(25.10.33s/4) and 2-(25.11.55s 4)
2-(26.11.22s), all other s	?		
2-(26.12.66*),	Yes		See note (1) with 2-(25.11.55# 2) and 2-(25.12.77# 2)
2-(26.12.66s), all other s	•	 	
2-(26.13.12)	Yes		Takeuchi62 Kageyama72
2-(26.13.124). 2<6<4161	Yes	├─-	See Permutation Lemma with 2-(26.13.12)
2-(26.13.12*).	Yes		See note (2) with 2-(25,12,11s 2)
s=4162,9660,14168,25760,			2,
35420.55660.55706.58969.58742		<u> </u>	•
2-(26:13.12s), all other s	?		
2-(27.3.*), 1≤*≤12	Yes	LS	Rosa75
2-(27,4.6)	Yes		Hansai61
2-(27,4.150)) es		Derived design of 3-(28.5,150)
2-(27.4.5s), s=0 (mod 2)	Yes		Residual design of 2-(28.4.#/2)
2-(27.4.6a), all other a	•		
2-(27.5.10)	Yes		Hanani72
2-(27.5.480)	Yes		Residual design of 3-(28,5,50)
2-(27,5,10s), s≡0 (mod 5) and s≥20	Yes		Derived design of 3-(28,6,10e)
2-(27,5.1150)	Yes		Derived design of 3-(28.6.1150)
2-(27,5,10s), all other s	_ ' _		
2-(27.6.5)	Yes		Southern81
2-(27.8,5±), 2≤≠≤22	Yes		See Permutation Lemma with 2-(27,6.5)
2-(27,5.5s), s≡0 (mod 55) and s≥220	Yes		Residual design of 3-(28.6,10s/11)
2-(27.6,6325)	Yes		Derived design of 3-(28.7.6325)
2-(27.6.5s), all other s	•		
2-(27.7.21s), s=10.1265	Yes		Residual design of 3-(28,7,5a)
2-(27.7.21s), all other s	•		,,

$t = (v, k, \lambda)$	Existence		Remarke			
2-(27.8.28s), s=25.50	Yes	Τ	See note (1) 2-(26,8,532e/25)		2-(26.7,168, 25)	and
2-(27,8,28s), all other s	- ,	+	2-(20,8,5328.725)			
2-(27.9.4)	Yes	+	Takeuchi62			
2-(27.9.4s). 2≤s≤3082	Yes	┼╾─				
2-(27.9.4s), 3083≤s≤50087	, ,	┼	See Permutation Lem	ma wit	b 2-(27.9.4)	
2-(27.10.495)	Yes	+	Decide 4	·		
2-(27.10.45s), s≡0 (mod 5) and s≤320	Yes	+	Derived design of 3-(2	8.11.49	5)	
2-(27.10,45a). all other a	7	+	See note (1) with 2-(2	6.9,72s	5) and 2-(26.10.153	8 5)
2 - (27.11.55s), s = 17.98.1025	Yes	 	Desired desired			
2-(27.11.550).	Yes	 	Derived design of 3-(2	8,12.55	*)	
s=345,1725,2530,4600,6325	1		See note (1) with 2-(2)	5.10,994	5) and 2-(26.11.17	6e 3j
2-(27.11,55s), all other s	1	 			<u> </u>	
2-(27.12.22s), s=68.392.4100	Yes	 	Residual design of 3-(2	9 10 55		
$2 \cdot (27.12.22e)$. $e = 230.1380.8900.10120$.	Yes		See note (1) much 0 /00	8.12,55	# 4)	
18400.25300.39790		l	See note (1) with 2-(26	.11,440	/5) and 2-(28.12.66	- 51
2-(27,12,22s), all other s	,					
2-(27.13.6)	Yes	 	Takeuchi62			
2-(27.13.6≥). 2≤≥≤27515	Yes		See Permutation Lemn		0 (07 45 4)	
2-(27.13,6a), a=34500.50600.92000.	Yes		See note (1)			
126500.198950		_	2-(26.13,84# /25)	- 160	2-(26.12.66, 25)	and
2-(27.13.6e), all other s	?					
2-(28.3.2s), 1≤s≤6 3-(28.4.1)	Yes	LS	Schreiber74			
11	Yes		Hanani61			—
2-(28.4.e). 2≤e≤6	Yes		See Permutation Lemm	a with	2-(28 4 1)	—Ì.
-(28.4.s). s =0 (mod 25)	Yes		Residual design of 3-(29	4 24 /2	5)	
-(28.4.s), s=0 (mod 13)	Yes		3-(28.4,s. 13) as a 2-desi	#D	<u> </u>	
-(28.4.s), s=55.80,85,95,110. 20.125,135,150	Yes	- 4	Kreher89	-		
-(28.4.s), all other s						
(28.5.20)	•					∤ :
	Yes		Hanani72.			
(28,5,20e), e=26,65	Yes		3-(28.5.30s / 13) as a 2-de	sim		∤
(28.5.20s), all other s (28.6.5)	!					
	Yes		Southern81			
(28.6.5≠), 2≤≠≤24	Yes		See Permutation Lemma	with 2	(20 6 4)	_
(28.6,5s), s = 0 (mod 65) and s≥260	Yes		3-{28.5.10e/13} as a 2-de	eien	(6,0,0,3)	-
28.6.5e), all other a	•				 	_
28,7,2)	Yes		Hall67			
28,7.2≠), 2≤≠≤914	Yes		See Permutation Lemma	with 0	(00.7.0)	
28,7,32890)	Yes	- 1 i	Residual design of 3-(29,7	74781	(46,7,2)	
28.7.2s). all other s	7			, 213)] .

t-(υ, ±, λ)	Existen	ce Aemarks	
2-(28,8,14¢), 1≤¢≤64	!		
2-(28.8.910)	Yes	See note (1) with 2-(27.7.210) and 2-(27.8.700)	
2-(28.8.14a), 66≤a≤8222	,		
2-(28,9,8)	Yes	Southern81	
2-(28.9.8≠), 2≤≠≤979	Yes	See Permutation Lemma with 2-(28.9.8)	
2-(28.9.8s), 980≤s≤41112	•		
2-(28.10.10)	Yes	Southern81	
$2-(28.10.5s)$, $s = 0 \pmod{2}$ and $4 \le s \le 3720$	Yes	See Permutation Lemma with 2-(28,10,10)	_
2-(28.10.715)	Yes	Derived design of 3-(29.11.715)	
2-(28.10.54), all other s	,		
2-(28.11.110+), 1≤+≤12	?		
2-(28.11.1430)	Yes	Derived design of 3-(29.12 1430)	_
2-(28,11,110a), 14≤a≤14202	?		
2-(28.12.11)	Yes	Shrikhande62	
2-(28,12,11∗), 2≤∗≤7685	Yes	See Permutation Lemma with 2-(28,12,11)	
2-(28.12.11s), s=13325.22425.32890, 59800.82225	Yes	See note (1) with 2-(27,11,55s/13) : 2-(27,12,88s/13)	and
2-(28.12.11#), all other #	,		_
2-(28,13,52s), s=68.230.392,1380.4100, 6900.10120,18400.25300,39790	Yes	See note (1) with 2-(27,12,22s) and 2-(27,13,30s)	
2-(28.13,52s), all other s	?		_
2-(28.14,13¢). 1≤¢≤27515	Yes	See note (2) with 2-(27.13.5a)	
2-(28.14,13s), s=34500,50600,92000, 126500.198950	Yes	See note (2) with 2-(27,13.6s)	
2-(28.14,13s), all other s	,		-
2-(29.3,3±), 1≤±≤4	Yes	LS Kramer77	
2-(29.4.3¢), 1≤¢≤58	Yes	Kreher89	
2-(29,5,5≠), 1≤≠≤292	Yes	Kreher89	
2-(29.6.15a), 1≤a≤584	1		_
2-(29,6,8775)	Yes	3-(29.5,1300) as a 2-design	
2-(29.7.3)	Yes	Bose 39	_
2-(29.7.3₅), 2≤₅≤484	Yes	See Permutation Lemma with 2-(29,7,3)	
2-(29.7,3e). 465≤e≤13454	,		_
2-(29.7,40365)	Yes	Residual design of 3-(30,7,8775)	_
2-(29.8.2)	No	Shrikhande50	_
2-(29,8,4)	Yes	Takeuchi62	
2-(29,8,2s), s=0 (mod 2) and s≤2552	Yes	See Permutation Lemma with 2-(22,8,4)	
2-(29,8:1170)	Yes	See note (1) with 2-(28,7,260) and 2-(28,8,910)	_
2-(29,8.2s), all other s	?		
2-(29.9.18¢), 1≤¢≤194	,		
2-(29.9.3510)	Yes	See note (1) with 2-(28,8.910) and 2-(28,9.2600)	_
2-(29.9,18a), 196≤a≤24667	?		
2-(29.10.45a), 1≤a≤24667	,		

t-(υ, k, λ)			Remarks
2-(29.11.55e), 1≤e≤38	7		THE REAL PROPERTY OF THE PERTY
2-(29.11,2145)	Yes		Derived design of 3-(30.12.2145)
2-(29.11.55s), 40 <s<42607< td=""><td></td><td></td><td></td></s<42607<>			
2-(29.12.33¢). 1≤¢≤116	- - 		
2-(29.12.3861)	Yes		Residual design of 3-(30.12.2145)
2-(29.12,33¢). 118≤¢≤127822	+ + + +		Accardual design of 3-(30.12,2145).
2-(29.13,39a).	Yes		See note (1) with 2-(28.12.1434.9) and
= 153.882.3105.9225.			See note (1) with 2-(28,12,143, 9) and 2-(28,13,208, 9)
15525,22770,41400,56925			- (,,,
2-(29,13,39s), all other s	?		
2-(29.14.13)	Yes	-	Wilson72
2-(29.14.13a). 2≤a≤23056	Yes		See Permutation Lemma with 2-(29.14.13)
2-(29.14.134).	Yes		See note (1) with 2-(28.13,52s 9) and 2-(28.14,65s 9)
a=36900,62100.91080.	1 1		y and 2-(10.14,038 8)
165600,227700.358110			
2-(29.14.13e), all other e	,		
2-(30.3.2*), 1≤*≤7	Yes	LS	Teirlinck75
2-(30.4.6)	Yes		Hanani61
2-(30.4.6s), s=0 (mod 7)	Yes		3-(30.5.30 7) as a 2-design
2-(30,4,8s), all other s	1		
2-(30,5.4)	Yes		Hanani72
2-(30,5,4∉), 2≤ε≤5	Yes		See Permutation Lemma with 2-(30.5.4)
2-(30.5.4a), e≡0 (mod 7)	Yes		See note (1) with 2-(29,4.3s/7) and 2-(29,5.25s 7)
2-(30.5.4s), all other s	,		(30.0.000 1)
2-(30.6,5)	Yes		Southern81
2-(30.6.5¢), 2≤¢≤29	Yes		See Permutation Lemma with 2-(30,6,5)
2-(30.8.5≠), 30≤≠≤2047	,		
2-(30.7.42e), 1≤e≤1189	7		
2-{30.7.49140}	Yes		3-(30,7,8775) as a 2-design
2-(30.8.28s), 1≤s≤6727	,		(The state of the
-(30.9,24s). 1≤s≤194	1 ,		
-(30.9,4680)	Yes		See note (1) with 2-(29.8.1170) and 2-(29.8.3510)
-(30,9.24a). 196≤a≤24667	•		2-1 more (1) while 2-(19.0.11/0) and 2-(19.9.3510)
-(30.10,9¢), 1≤¢≤172572	 	- 1.	
-(30.11,110a). 1≤a≤31395	 	- f	
-(30.12.22¢). 1≤¢≤272	-	-	
(30.12.5006)	Yes		3/30 10 0145) 0 4
(30.12.22≠). 274≤≠≤298252	7		3-(30.12,2145) as a 2-design

t(υ, ἐ, λ)	Existence	Remarks
2-(30.13,156≠), 1≤≠≤62	?	
2-(30,13,9828)	Yes	See note (1) with 2-(29.12,3861) and 2-(29.13,5967)
2-{30,13,156a}, 64≤a≤68827	?	
2-(30,14,91a), a=153,882,3105,9225, 15525,22770,165600,56925	Yes	See note (1) with 2-(29,13,39s) and 2-(29,14.52s)
2-(30,14.91s), all other s	•	
2-(30,15,14)	Yes	Kageyama72, Wilson72
2-(30.15.140), 2≤0≤46112	Yes	See Permutation Lemma with 2-(30.15,14)
2-(30,15,14s), s=73800,124200,182160, 331200,455400,716220	Yes	See note (2) with 2-(29.14.13s)
2-(30.15.14s), all other s	?	

$\begin{array}{c} t - (v, k, \lambda) \\ 3 - (8, 4, s), 1 \le s \le 2 \end{array}$	Existence		Remarks	
	Yes	NLS	Extension of 2-(7.3,s)	
3-(10.4.a), 1≤a≤3	Yes	NLS	Derived design of 4-(11.5,s)	
3-(10,5,3¢). 1≤¢≤3	Yes	,	Residual design of 4-(11.5,s)	
3-(11,4,4)	Yes	LS	Teirlinck88	
3-(11.5.2)	.No		Oberschelp72 Dehon76	
3-(11,5,2a). 2≤s≤7	Yes		Brouwer86	
3-(12.4,3)	Yes	LS	Teirlinek84	
3-(12.5.6)	Yes		Brouwer86	
3-(12.5.12)	Yes		Derived design of 4-(13.6.12)	
3-(12.5,18)	Yes		Brouwer88	
3-(12.8.2s), 1≤s≤21	Yes		Extension of 2-(11,5.2s)	
3-(13.4.2a), 1≤a≤2	Yes		Brouwer86	
3-(13.5.15)	Yes	LS	Chee89	
3-(13,6,20≠), 1≤≠≤3	Yes		Kramer76	
3-(14,4.¢), 1 <u><</u> ¢≤2	Yes		Bays35	
3-(14.4.¢), 3 <u><</u> ¢≤5	Yes		Brouwer86	
3-(14.5.5)	Yes		Kramer88b	
3-(14.5,5≠), 2≤≠≤3	Yes		Brouwer86	
3-(14.5,20)	Yes		Residual design of 4-(15.5.4)	
3-(14.5.25)	Yes		Brouwer88	
3-(14,6.5≠), 1≤≠≤16	Yes		Brouwer88	
3-(14.7.5¢), 1≤¢≤ 33	Yes		Extension of 2-(13,6,5s)	

!(υ, k, λ)	Existend	e Remarks
3-(15,5,6)	Yes .	Brouwer86
3-(15,5,60), 2≤0≤5	Yes	Derived design of 4-(18,6,6s)
3-(15,6,20≠), 1≤≠≤5	Yes	Derived design of 4-(16,7,20s)
3-(15,7,15¢), 1≤¢≤5	Yes	Brouwer86
3-(15.7.15a), 6≤a≤16	Yes	4-(15.7,5a) as a 3-design
3-(16.4.¢), 1≤¢≤6	Yes	Lindner77
3-(16,5,8≥), 1≤≥≤6	Yes	Derived design of 4-(17,6.6a)
3-(16.6,2)	No	Extend 2-(15,5,2)
3-(16.6.2a), 2≤a≤5	Yes	Brouwer86
3-(16.6,2≠), 6≤≠≤71	Yes	Derived design of 4-(17,7,2e)
3-(18.7,5)	?	
3-(16,7,10)	Yes	[Kreher89]
3-(16,7,5a), 3≤a≤71	Yes	[Brouwer86]
3-(16,8,3≠), 1≤≠≤214	Yes	Extension of 2-(15.7.3s)
3-(17,4,20), 1≤0≤3	Yes	Derived design of 4-(18,5,2e)
3-(17,5,s), 1≤s≤2	Yes	[Skolem27]
3-(17,5,3)	!	
3-(17.5,s), 4 <u><</u> s <u>≤</u> 45	Yes	Brouwer86
3-(17,8,4s), 1≤s≤45	Yes	Brouwer86)
3-(17.7,7)	. ?	
3-(17.7,7±), 2≤±≤71	Yes	Brouwer88
3-(17,8,14a), 1≤a≤71	Yes	Brouwer86
3-(18,4,3e), 1≤e≤2	Yes L	S (Teirlinck84)
3-(18,5,15±), 1≤±≤3	Yes	Derived design of 4-(19.6,15a)
3-(18,6.5a), 1≤a≤45	Yes	Brouwer86
3-(18,7,105≠), 1≤≠≤6	Yes	Derived design of 4-(19,8,105a)
3-(18,8,21∗), 1≤∗≤13	Yes	Brouwer86
3-(18,8,21s), 14≤s≤71	Yes	4-(18,8,7s) as a 3-design
3-(18,9,7¢), 1≤¢≤357	Yes	Extension of 2-(17,8,7a)
3-(19,4,40), 1≤0≤2	Yes	Derived design of 4-(20,5,4s)
3-(19,5,30⊕), 1≤∞≤2	Yes L	
3-(19,6,20≠), 1≤≠≤14	Yes	[Brouwer86]
3-(19,7,35¢), 1≤¢≤26	Yes	[Kreher89]
3-(19,8,168≠), 1≤≠≤13	Yes	Residual design of 4-(20,8,70s)
3-(19.9,28)	Yes	[Kreher89]
3-(19,9,56)	?	
3-(19,9,84)	Yes	[Kreher89]
3-(19,9,28¢), 4≤¢≤5	?	
3-(19,9,168)	Yes	Derived design of 4-(20,10,168)
3-(19,9,28¢). 7≤¢≤8	7	

$t=(v, k, \lambda)$	Existence	Remarks
3-(19,9,252)	Yes	Derived design of 4-(20.10.252)
3-(19,9,280)	7	
3-(19,9.28a), 11≤a≤12	Yes	Derived design of 4-(20,10,28s)
3-(19.9.364)		[50,10220]
3-(19,9,28+), 14≤+≤22	Yes	Derived design of 4-(20:10:28s)
3-(19.9,644)	1 :	(10.00.00)
3-(19,9,28+), 24≤+≤32	Yes	Derived design of 4-(20.10.28e)
3-(19.9,924)	1 :	
3-(19,9,28≠), 34≤≠≤42	Yes	Derived design of 4-(20,10,28a)
3-(19,9,1204)	, ,	
3-(19,9.28¢), 44≤¢≤52	Yes	Derived design of 4-(20.10,28s)
3-(19,9,1484)	,	
3-(19,9,28≠), 54≤≠≤52	Yes	Derived design of 4-(20,10,28s)
3-(19.9,1764)	1	, , , , , , , , , , , , , , , , , , , ,
3-(19.9,28±), 64≤±≤72	Yes	Derived design of 4-(20.10.28s)
3-(19,9,2044)	,	
3-(19.9,28a), 74≤a≤82	Yes	Derived design of 4-(20,10,28#)
\$-(19.9.2324)	•	
3-(19,9,28±), 84≤±≤92	Yes	Derived design of 4-(20,10,28s)
3-(19.9.2604)	,	
3-(19.9.28¢). 94≤¢≤102	Yes	Derived design of 4-(20.10.28a)
3-(19,9,2884)	7	
3-(19.9.28¢), 104≤¢≤112	Yes	Derived design of 4-(20.10.28a)
3-(19.9,3164)	?	
3-(19.9.28a), 114≤a≤122	Yes	Derived design of 4-(20,10,28s)
3-(19,9,3444)	,	
3-(19,9,28a), 124≤a≤132	Yes	Derived design of 4-(20.10.28s)
3-(19.9,3724).	,	
3-(19,9,28a), 134≤a≤143	Yes	Derived design of 4-(20,10,28s)
3-(20.4,a), 1≤a≤8	Yes	Kramer85
3-(20,5.2a), a=0,3.5.8 (mod15)	Yes	Kramer85
3-(20,5,2+),	Yes	Kreher89
s=6,9,11,12,14,17,21,24,25,26,27,	1 1	
28.29,32,33,34		
3-(20.5,2a), a=1,2.4.7.10.13.16.19.22.31	,	
3-(20.6.10±), 1≤±≤34 3-(20.7.35±), 1≤±≤34	Yes	Kramer85
	Yes	Kramer85
3-(20.8,14e), 1≤e≤221	Yes	Kramer85
F(20.9.28s), s≡0,1 (mod 3).	Yes	Kramer85
-(20.9,28s), s≡2 (mod 3)		
-(20.10.4s), 1≤s≤2431	Yes	Extension of 2-(19,9.4e)
L(21.4.6)	Yes LS	Teirlinck84

$t=(v,k,\lambda)$	Existence	Remarks	
3-(21,5,3)	Yes	Kramer88a	
3-(21,5,3¢), 2≤¢≤4	1.		
3-(21,5,15)	Yes	Kreher89	
3-(21,5,18)	Yes	See note (1) with 3-(20,4,2) and 3-(20,5,16)	
3-(21,5.21)		(3.1.1.)	
3-(21,5,24)	Yes	Kramer84	
3-(21.5,27)	Yes	See note (1) with 3-(20,4,3) and 3-(20,5,24)	
3-(21.5,3a), 10≤a≤11	Yes	Kreher89	
3-(21,5,36)	!		
3-(21,5,39)	Yes	Kreher89	
3-(21,5,42)	!		
3-(21,5,45)	Yes	See note (1) with 3-(20.4.5) and 3-(20.5.40)	
3-(21,5,48)	Yes	Kreher89	
3-(21.5.51)	1		
3-(21,5,54)	Yes	See note (1) with 3-(20.4.8) and 3-(20.5.48)	
3-(21,5,3¢), 19≤¢≤20	- 	, , (
3-(21,5,63)	Yes	See note (1) with 3-(20,4,7) and 3-(20,5,56)	
3-(21,5.66)	,	(-), (-), (-), (-), (-), (-), (-), (-),	
3-(21,5,69)	Yes	Kreher89	
3-(21,5,72)	Yes	See note (1) with 3-(20,4,8) and 3-(20,5,64)	
3-(21,5,75)	Yes	[Kreber89]	
3-(21,8,4≠), 1≤≠≤8	7		
3-(21,6,36)	Yes	See note (1) with 3-(20,5,5) and 3-(20,5,30)	
3-(21,6,40)	Yes	Kreher89	
3-(21,8,4e), 11 <e<14< td=""><td>,</td><td></td></e<14<>	,		
3-(21.8,60)	Yes	See note (1) with 3-(20,5,10) and 3-(20,5,50)	
3-(21,6,64)	, ,	(5) (5) (5)	
3-(21,6,68)	Yes	Kreher89	
3-(21,5,72)	Yes	4-(21.6.12) as a 3-design	
3-(21,8,4¢), 19≤¢≤23	7		
3-(21,6,96)	Yes	Kramer84	
I-(21,6,4¢), 25≤¢≤26	7	<u> </u>	
J-(21.5,108)	Yes	See note (1) with 3-(20,5,18) and 3-(20,6,90)	
I-(21,5,4a), 28≤a≤39	1 , 1	(2010)	
3-(21.6,120)	Yes	Kreher89	
-{21,6,124}	1 7	V	
I-(21,6,128)	Yes	Kramer84	
-(21,5,132)	Yes	See note (1) with 3-(20,5,22) and 3-(20,6,110)	
I-(21.6,136)	Yes	Kreher89	
I-(21,6,140)	1 7 1		
I-(21,6,144)	Yes	Kramer84	
-(21,6.148)	Yes	Kreher89	
-(21,5,4s), 38≤s≤39	?	issuence as	

i-(υ, k, λ)	Existence	Remarks
3-(21,6,160)	Yes	Kreher89
3-(21,6,164)	,	
3-(21,6,168)	Yea	See note (1) with 3-(20,5.28) and 3-(20,6.140)
3-(21.6,172)	?	(30,0,110)
3-(21,6,176)	Yes	Kreher89
3-(21,5,180)	Yes	See note (1) with 3-(20.5,30) and 3-(20.6,150)
3-(21,6,4¢), 45≤¢≤50	?	(-1.75) 224 0 (20.0.100)
3-(21,5,204)	Yes	4-(21,8,34) as a 3-design
3-(21,6,208)	Yes	Kreher89
3-(21.6,212)	!	
3-(21,6,216)	Yes	4-(21,5.36) as a 3-design
3-(21,6,220)	Yes	Kreher89
3-(21,8,4¢), 56≤¢≤58		
3-(21,5,236)	Yes	Kreber89
3-(21,6,240)	Yes	4-(21.8.40) as a 3-design
3-(21,5,244)		<u> </u>
3-(21,6,248)	Yes	Kreher89
3-(21,6,252)	Yes	See note (1) with 3-(20,5,42) and 3-(20,5,210)
3-(21,6,4¢), 64 <u>≤</u> ¢≤66	7	(20,0,210)
3-(21,6,268)	Yes	Kreher89
3-(21,6,272)	• •	
3-(21,8,276)	Yes	See note (1) with 3-(20.5,46) and 3-(20,6,230)
F(21,6,280)	Yes	Kreher89
F-(21,5,284)	7	
F(21,6,288)	Yes	See note (1) with 3-(20,5,48) and 3-(20,6,240)
-(21,6,292)	1 1	(0,0,0,140)
-(21,6,2 96)	Yes	Kreher89
-(21,6,300)	Yes	See note (1) with 3-(20.5.50) and 3-(20.6,250)
-(21,8,4s), 76≤s≤77	7	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)
-(21,5,312)	Yes	See note (1) with 3-(20,5,52) and 3-(20,6,260)
-(21,6,316)	•	(=) ************************************
-(21,6,320)	Yes	Kreber89
-(21,8,324)	Yes	See note (1) with 3-(20.5,54) and 3-(20,6,270)
-(21.6,328)	Yes	Kreher89
(21,6.332)	1 1	
(21,6,336)	Yes	Kramer84
(21,6,340)	Yes	Kreber89
(21,6,344)	- , - 	F
(21,5,348)	Yes	See note (1) with 3-(20,5,58) and 3-(20,6,290)
(21,6,352)	- • - 	(-) with 5-(20,5,36) and 3-(20,5,290)
(21,6,356)	Yes	Kreher89
(21.6.360)	Yes	4-(21.6.60) as a 3-design

f-(v, k, λ)	Existence	Remarks
3-(21.6,364)	1 1	
3-(21,6,368)	Yes	Kramer84
3-(21.6,372)	1 7	
3-(21.6,376)	Yes	Kreher89
3-(21.6,380)	1 , 1	
3-(21.6,384)	Yes	See note (1) with 3-(20,5.64) and 3-(20,6.320)
3-(21,5,4¢), 97≤¢≤98	1 7 1	100 (1) 110 (100,0.01) and 0 (20.0.020)
3-(21,6.396)	Yes	See note (1) with 3-(20,5,66) and 3-(20,6,330)
3-(21.8,400)	Yes	Kreher89
3-(21.5.404)	 	
3-(21,6.408)	Yes	Derived design of 4-(22.7.408)
3-(21.7.15s), s=0 (mod 3)	Yes	See note (1) with 3-(20.6.10e 3) and 3-(20.7.35e 3)
$3-\{21.7.15s\}$, $s=28.40.52.56.64.68.80.91$	Yes	Kramer84.
3-(21,7.15s), all other s	 	
3-(21.8.84e), 1 <e<2< td=""><td> </td><td></td></e<2<>	 	
3-(21,8,252)	Yes	See note (1) with 3-(20,7.70) and 3-(20.8.182)
3-{21,8.84#}, 4<#<5	1	544 1546 (17 412 5-(25.1.10) and 5-(25.5.152)
3-(21,8,504)	Yes	See note (1) with 3-(20.7.140) and 3-(20.8.364)
3-(21,8.588)	 	(10.6.54) - tota (10.1.1.0.10) and 3-(10.6.504)
3-(21.8.672)	Yes	Kramer84
3-(21.8.756)	Yes	See note (1) with 3-(20.7.210) and 3-(20.8.546)
3-{21.8.84a}, 10<<<11	7	
3-(21.8.1008)	Yes	See note (1) with 3-(20.7.280) and 3-(20.8.728)
3-(21.8.1092)	• <u> </u>	(or 1 and o (or
3-(21.8.1176)	Yes	Kramer84
3-(21.8.1260)	Yes	See note (1) with 3-(20,7,350) and 3-(20,8,910)
3-(21.8.1344)	Yes	Kramer84
3-(21.8,1428)	•	
3-(21.8.1512)	Yes	See note (1) with 3-(20.7.420) and 3-(20.8.1092)
3-(21.8.84≠), 19≤≠≤20	,	(20.0.1002)
3-(21.8,1764)	Yes	See note (1) with 3-(20.7,490) and 3-(20.8,1274)
3-(21.8.1848)	Yes	Kramer84
3-(21.8.1932)	. ?	
3-(21,8,2016)	Yes	See note (1) with 3-(20.7.560) and 3-(20.8.1456)
3-(21,8.84+), 25≤+≤26	,	(1, 112 (111 (111 (111 (111 (111 (111 (1
3-(21.8.2268)	Yes	See note (1) with 3-(20.7.630) and 3-(20.8.1638)
3-(21.8.84#). 28≤#≤29	•	(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
3-(21.8.2520)	Yes	See note (1) with 3-(20.7,700) and 3-(20.8,1820)
3-(21.8,2604)	,	
3-(21.8.2688)	Yes	Kramer84
3-(21.8,2772)	Yes	See note (1) with 3-(20.7.770) and 3-(20.8.2002)
3-(21.8.84s), 34≤s≤35	,	(4) a familial and a favorage)
3-(21.8,3024)	Yes	See note (1) with 3-(20.7.840) and 3-(20.8.2184)
		ness (a) = (60.7.070) 4110 3-(20.8.2154)

t(σ, k, λ)	Existen	ce Remarks
3-(21,8.3108)	?]	
3-(21.8.3192)	Yes	Kramer84
3-(21.8.3276)	Yes	See note (1) with 3-(20.7.910) and 3-(20,8.2386)
3-(21.8.3380)	Yes	Kramer84
3-(21.8,3444)	 , 	
3-(21.8,3528)	Yes	See note (1) with 3-(20,7.980) and 3-(20,8.2548)
3-(21.8.84a), 43 <u><a< u="">≤44</a<></u>	 	200 200 (27 min 0-(20,7,200) and 3-(20,8,2048)
3-(21.8.3780)	Yes	See note (1) with 3-(20.7.1050) and 3-(20.8,2730)
3-(21.8.3864)	Yes	Kramer84'
3-(21.8.3948)	7	
3-(21.8,4032)	Yes	See note (1) with 3-(20,7.1120) and 3-(20,8,2912)
3-(21.8.84≠), 49≤≠≤50	1 1	30(20,8,2912)
3-(21.8,4284)	Yes	See note (1) with 3-(20.7.1190) and 3-(20.8,3094)
3-(21,9,42e), em0,1 (mod 3)	Yes	See note (1) with 3-(20,8.14s) and 3-(20,9.28s)
3-(21,9.42s), sm2 (mod 3)	,	20,9,288
3-(21.10.72s), s=0,1 (mod 3)	Yes	See note (1) with 3-(20,9.28s) and 3-(20,10,44s)
3-(21.10,72a), a=2 (mod 3)	7	occ socc (1) with 0-(20,9.208) and 3-(20,10,448)
3-{22.4.e}, 1≤e≤9	Yes	Derived design of 4-(23.5.e)
+(22.5.3a), 1 <a<28< td=""><td>Yes</td><td>Derived design of 4-(23.6.3a)</td></a<28<>	Yes	Derived design of 4-(23.6.3a)
F(22.6,a), 1≤a≤60	Yes	Kramer74b
-(22.6.s), s=96,97	Yes	Driessen78
-(22.6.s), s=112.113.128.129	Yes	Derived design of 4-(23.7.a)
-(22.6.s.), s≡0 (mod 17)	Yes	Derived design of 4-(23.7.4)
-(22.6.s), all other s	,	Derived design of 4-(25.7.8)
÷(22.7.1)	No.	Haemers74
-(22.7.2)	No	Driesen78
-(22.7.a).	Yes	
=4.6,8,12.16,20,24,28,32.36,360,512,	163	Derived design of 4-(23.8,s)
16.1680.1712.1716		
-(22.7.s), s=1260,1288,1386,1860,1890	Yes	Driessen 78
·(22.7.a), a=448,452	Yes	Residual design of 4-(23.7,4/4)
(22.7.s), s =0 (mod 4) and 4≤s≤96	Yes	Residual design of 4-(23,7,e/4)
-(22.7.s), a =0 (mod 68)	Yes	Residual design of 4-(23.7.# '4)
-[22.7.s], all other s	•	and a state of a
-{22.8,6s}, 2≤s≤4.	Yes	Residual design of 4-(23.8,2s)
=6.8.10.12.14,16,18,180,256,258,840,		
56.858	_	
(22.8.336)	Yes	Driemen78
(22.8.6s), s=72,90	Yes	Derived design of +(23,9,6s)
(22.8.6s), all other s	•	
(22.9,42s), s=1,6,24,60,280,286	Yes	Residual design of 4-(23,9,18s)
(22.9,168)	Yes	Driessen 78
(22.9.42a), a=30.80.110	Yes	Derived design of 4-(23.10.42s)

$t-(v, k, \lambda)$			Remarke		
3-(22.9.42s), all other s	1				
3-(22.10.6s), e=8,96,1430,2584,3876	Yes	 	Derived design of 4-(23.11.6s)		
3-(22.10.6s), s=390.1040	Yes	+-	Residual design of 4-(23.10.42e 13)		
3-(22.10.6s), all other s	•	†	10)		
3-(22.11,9)	Yes	 	Driessen78		
3-(22.11.9≠), 2≤≠≤100	Yes	 	See Permutation Lemma with 3-(22,11.9)		
3-(22.11.9s), s=1430.2584.3876	Yes	1	Residual design of 4-(23.11.5e)		
3-(22.11.9a), a =0.19 (mod 57)	Yes		See note (2) with 3-(21,10.72+ 19)		
3-(22.11.9a), all other a	•		1		
3-(23.4.4a), 1≤a≤2	Yes	LS	Chee89		
3-(23.5.10s), 1≤s≤9	Yes		4-(23.5.s) as a 3-design		
3-(23.8.20≠), 1≤≠≤28	Yes	1	Derived design of 4-(24.7.20a)		
3-(23.7.5s), 1≤s≤24	Yes		See note (1) with 3-(22.6.e) and 3-(22.7.4e)		
3-(23.7.5e), e=112.113.128.129	Yes		4-(23.7.s) as a 3-design		
3-(23.7.5s). s≡0 (mod 17)	Yes		4-(23.7.s) as a 3-design		
3-(23.7.5#), all other #	,				
3-(23.8.8)	,				
3-(23.8.8≠), 2≤≠≤969	Yes		Kreher89		
3-(23.9.60)	Yes		4-(23.9.18) as a 3-design		
3-(23.9.12a). s≡0 (mod 2). s≥4	Yes		Kreher89		
3-(23.9.12s). all other s	,				
3-(23.10.120e), e=30.80.110	Yes		4-(23.10.42e) as a 3-design		
3-(23,10,120s), all other s	•				
3-(23.11.154), 4=8.96.1430.2584.3678	Yes		4-(23.11.6s) as a 3-design		
3-(23.11.15s), all other s	1				
3-(24.4.3¢), 1≤¢≤3	Yes	LS	Teirlinck84		
3-(24.5.30a), 1≤a≤3	Yes	LS	'Chee89		
3-{24.6.10e}. 1≤e≤66	Yes		Kreher89'		
3-(24.7.105#), 1≤#≤28	Yes	LS	Chee89		
I-(24.8.21¢), 1≤¢≤484	Yes		Kreber89		
-{24.9.84e}, e=1.6.50.280.286	Yes		4-(24.9.24s) as a 3-design		
-{24.9.84s}, s=5.135.140	Yes		Driessen78		
-(24.9.84s), all other s	,				
-{24.10.180s}, s=1.40.41	Yes		Driessen78		
-(24.10.5400)	Yes		4-(24.10.1800) as a 3-design		
-(24.10.180s), all other s			,		
(24.11.454),	Yes		Driessen 78		
=1.68.67.1210.1211.1276.1277	1	1			
(24.11.34650)	Yes		4-(24.11.13200) as a 3-design		
(24.11.45s), all other s	•				

t-(v, k, λ)	Existence	Remarks
3-(24,12,5a), a=1,2,144,145,4356,4357, 4500,4501	Yes	Driessen 78
3-(24.12.120)	Yes	Hughes65.
3-(24,12,5a), a=56,672,4004,10010.18088	Yes	4-(24,12,15e 7) as a 3-design
3-(24.12.5s), all other s	,	
3-(25,4.2s), s=1.4,5	Yes	Kreher89
3-(25,4.2s), s=2,3	,	
3-(25.5.3a), s=11.22,33	Yes	See note (1) with 3-(24.4.3e) and 3-(24.5.30e)
3-(25.5.3a), all other a	•	
3-(25,6,20s), s=11,22,33	Yes	See note (1) with 3-(24,5,30s,11) and 3-(24,6,190s/11)
3-(25,6.20s), all other s	?	
3-(25,7,35s), s=0 (mod 11)	Yes	See note (1) with 3-(24.8.70#,11) and 3-(24.7.315#/11)
3-(25,7,35s), all other s	7	
3-(25.8,42s), s=0 (mod 11)	Yes	See note (1) with 3-(24,7.105s;[lii]; and 3-(24,8,357s/11)
3-(25.8.42s), all other s	7	
3-(25.9.21s), s=33,330.770.1540.1573	Yes	See note (1) with 3-(24.8,63#/iiii) and 3-(24.9,188#/11)
3-(25,9.21s), all other s	?	
3-(25.10,24a), 1≤a≤10	2	
3-(25,10,264)	Yes	See note (1) with 3-(24.9,84) and 3-(24.10,180)
3-(25.10,24≠). 12≤≠≤3553		
3-(25,11,495)	Yes	See note (1) with 3-(24.10.180) and 3-(24,11.315)
3-(25.11.495∉). 2≤≠≤323		
3-(25.12,110)	Yes	See note (1) with 3-(24.11.45) and 3-(24,12.65)
3-(25.12.110∉), 2≤∉≤4	Yes	See Permutation Lemma with 3-(25,12,110)
3-(25.12.110a), 5≤a≤2261		1.1
3-(26.4.1)	Yes	[Hanani60]
3-(26.4.*), 2≤*≤11	Yes	Derived design of 4-(27,5,4)
3-(26.5.1)	Yes Yes	Derived design of 4-(27,8,1) Derived design of 4-(27,8,e)
3-(26.5.s), s≡0 (mod 11) and s≥22 3-(26.5.s), all other s	161	Derived design of 4-(21,0.8)
3-(26,6,7)	Yes	Derived design of 4-(27.7.7)
3-(26.6.a), a=253,506.759	Yes	See note (1) with 3-(25,5,3e/23) and 3-(25,6,20e 23)
3-(26,6,s), s=253,506,739 3-(26,6,s), s=0 (mod 77) and s>154	Yes	Residual design of 4-(27,6,s/7)
3-(26,6,s), all other s	1.00	stender coaling of Adams (.)
3-(26:7,35)	Yes	Residual design of 4-(27,7.7)
3-(26,7,35a), 2 <a≤128< td=""><td>100</td><td>and the state of t</td></a≤128<>	100	and the state of t
3-(25.8.7*), *=0 (mod 253)	Yes	See note (1) with 3-(25.7,35e/23) and 3-(25.8,126e/23)
3-(26.8,7s), all other s	,	
3-(26.9.21*), 1<*<2403	•	

$t-(v, k, \lambda)$	Exis	tence	Remarks
3-{26,10,3}	No		Cameron73
3-(26,10.3a), 2≤a≤40859			
3-(26.11.33a). 1≤a≤22	•		
3-(26.11.759)	Yes		See note (1) with 3-(25.10.264) and 3-(25,11,495)
3-(26.11.33±), 24≤±≤7429	7		
3-(26.12.55a), 1≤a≤7429	•		
3-(26.13.11s), s=23,45.89.92	Yes		See note (2) with 3-(25,12,110+ 23)
3-(26.13.11s), all other s	•		
3-(27.4,12)	Yes	LS	Teirlinck84
3-(27,5,8s), s≡0 (mod 2) and s≥4	Yes		4-(27.5.e/2) as a 3-design
3-(27.5,138)	Yes		Residual design of 4-(28,5,12)
3-(27,5.6s), all other #	'		
3-{27.6.4s}, s=2,253	Yes		Derived design of 4-(28.7.4a)
3-(27,6.4s), s=0 (mod 22) and s≥44	Yes		4-(27.6,s/2) as a 3-design
3-(27.6.4s), all other s	•		
3-(27,7.21s), s=2,253	Yes		Residual design of 4-(28.7.4s)
3-(27,7,21s), all other s			
3-(27.8.168a), 1≤a≤126	•		
3-(27.9.28¢), 1≤¢≤2403	•		
3-(27,10,72*). 1≤*≤2403	,		
3-(27.11,99e), 1≤e≤3714	,		
3-(27:12:44#), 1≤#≤14858	•		
3-(27.13.66≠), 1≤≠≤14858	•		
3-(28.4.a), 1≤a≤12	Yes		Lindner77
3-(28,5,30)	•		
3-(28.5.60)	Yes		Residual design of 4-(29,5.5)
3-(28.5.30≠), 3≤≠≤4			
3-(28.5.150)	Yes		Derived design of 4-(29,6,150)
$3-(28.6.10s)$, $s \equiv 0 \pmod{5}$ and $s \geq 20$	Yes		4-(28.5,5e/5) as a 3-design
3-(28.6 1150)	Yes		Derived design of 4-(29,7,1150)
3-(28,6.10s), all other s	•		
3-(28.7.5¢). 1≤¢≤9			
3-(28,7,50)	Yes		4-(28.7.8) as a 3-design
3-(28.7.5a), 10≤a≤1264			
3-(28.7.6325)	Yes		Residual design of 4-(29.7,1150)
3-(28.8.42a), 1≤a≤832			
3-(28.9.28≠), 1≤≠≤3162	•		
3-(28,10,20∉), 1≤∉≤10	•		
3-(28.10.220)	Yes		Derived design of 4-{29,11,220}
3-(28.10,20s), 12≤s≤12017	•		
3-(28.11.495)	Yes		Derived design of 4-(29,12 495)
3-(28.11,495a), 2≤a≤1092	•		
3-(28.12,55+). 1≤+≤16	•		
3-(28.12.935)	Yes		Residual design of 4-(29.12.195)

$t=(v, k, \lambda)$	Ex	ristance	Remarks
3-(28.12.55¢), 18≤¢≤97	1 ,		nemark.
3-(28,12,5390)	Yes	<u> </u>	Derived design of 4-(29,13,5390)
3-(28,12,55¢), 99≤¢≤1024	—		- 11110 GENERA OF T-(28,13,3390)
3-(28.12.56375)	Yes		Derived design of 4-(29.13,56375)
3-(28.12.554), 1026≤4≤18572			
3-(28.13.22€). 1≤€≤391	1		
3-(28.13.8624)	Yes		Derived design of 4-(29.14,8624)
3-(28.13.220), 393≤0≤4099		+	7 (28.14.8024)
3-(28,13,90200)	Yes	 	Derived design of +(29.14.90200)
3-(28,13,22€). 4101≤€≤74290	7	1 -	7. 1 (25.11.30200)
3-(28.14.8≠), 1≤≠≤1959		_	
3-(28.14.11760)	Yes	1. —	Residual design of 4-(29,14,8624)
3-(28.14.64), 1961≤4≤20499	,		17-51 0. (20.17,0021)
3-(28.14.123000)	Yes	1	Residual design of 4-(29.14,90200)
3-(28,14.6s), 20502≤s≤371450	1		
3-(29,4.2a), 1≤a≤6	Yes		Kreher89
3-(29,5,5s), 1≤s≤12	7		
3-(29.5,65)	Yes	1	4-(29.5,5) as a 3-design
3-(29.5.50), 14≤0≤32	?		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3-{29.6.20€}, 1≤€≤64	?	 	
3-(29.6,1300)	Yes	 	Derived design of 4-(30.7.1300)
3-(29:7.50), 1≤0≤1494	?		1 (00.7.300)
3-(29,7,7475)	Yes	1	4-(29.7,1150) as a 3-design
3-(29.8.4s), 1≤s≤8222	?		7
3-(29.9.14s). 1≤s≤8222	?		
3-(29.10.40≠), 1≤≠≤8222	•	 	
3-(29.11.55¢), 1≤¢≤12	*	1	
3-(29.11,715)	Yes	1	Derived design of 4-(30,12,715)
3-(29.11.55a), 14≤a≤14202	,		(40,18,710)
3-(29,12,110¢), 1≤¢≤12	,	 	
3-(29.12,1430)	Yes		4-(29,12,495) as a 3-design
3-(29.12,110a), 14≤a≤14202	,		- V-design
I-(29,13,143a), 1≤e≤97	1	-	
F(29,13,14014)	Yes		Derived design of 4-(30,14,14014)
5-(29,13,14 3 e), 99≤e≤1024			
-(29.13,146575)	Yes		Derived design of 4-(30,14,148575)
-(29,13.143¢), 1026≤¢≤18572			
-(29.14.52a). 1≤a≤391			
-(29.14.20384)	Yes		4-(29.14,8624) as a 3-design
-(29.14.52a), 393≤a≤4099	7		- (thenes) as a orderien
-(29.14.213200)	Yes		4-(29.14.90200) as a 3-desiga
(29.14.52a). 4101≤a≤74290	?	 	- (
(30.4.3≠), 1≤≠≤4	Yes	LS	Teirlinck84
(30.5,3¢). 1≤¢≤58	-,-		's count to 4

$t=(v, k, \lambda)$	Existence		Remarks	
3-(30,8,5¢), 1≤¢≤292	?	1		
3-(30.7.15#), 1≤#≤584	?			
3-(30,7,8775)	Yes		4-(30.7,1300) as a 3-design	
3-(30.8.8*), 1≤*≤5727	? .			
3-(30.9.64), 1≤4≤24667	?	1		
3-(30,10;18≠), 1≤≠≤24687	,			
3-(30.11.495e), 1≤e≤2242	?			
3-(30.12.55¢), 1≤¢≤38	?			
3-(30.12.2145)	Yes		4-(30,12.715) as a 3-design	
3-(30.12,55s), 40≤s≤42607	,		,	
3-(30,13,429a), 1≤a≤9832	?			
3-(30,14,39≠), 1≤≠≤881	!			
3-(30,14,34398)	Yes		4-(30.14,14014) as a 3-design	
3-(30.14,39¢), 883≤ĕ≤9224	,			
3-(30,14,359775)	Yes		4-(30.14.146575) as a 3-design	
3-(30.14,39a), 9226≤a≤167152	,			
3-(30,15,13e), 1≤e≤3527	,			
3-(30.15.45864)	Yes		See note (2) with 3-(29.14.20384)	
3-(30,15,13a), 3529≤s≤36899	7		3,7 (32 () () () () () ()	
-(30.15,479700)	Yes		See note (2) with 3-(29.14.213200)	
3-(30,15,13e), 36901≤e≤668610	- 1		,	

$t-(v, k, \lambda)$	Exie	tence	Remarks
4-(11,5,1)	Yes		Witt38
4-(11,5,2)	Yes	NLS	Kramer74a
4-(11.5.3)	Yes		Brouwer86
4-(12,5,4)	Yes	LS	Denniston83
4-(12.6.2)	No		Extend 3-(11,5,2)
4-(12.6.4)	Yes	1	5-(12,6,1) as a 4-design
4-(12.6.6)	7		
4-(12.6.8)	Yes		5-(12,6,2) as a 4-design
4-(12.6.10)	Yes		Kreher87b
4-(12,5,12)	Yes		5-(12,6,3) as a 4-design
4-(12,6,14)	Yes		Extension of 3-(11,5,14)
4-(13,5.3)	Yes		Derived design of 5-(14.8.3)
4-(13,6.6)	,		
4-(13.6.12)	Yes		Kramer78
4-(13.6.18)	Yes	-	5-(13,5.4) as a 4-design
+ (14,6.15)	Yes	LS	Chee89
(-(14.7,20)	Yes		Brouwer86
l-(14.7,40)	Yes		5-(14.7.12) as a 4-design.
H(14.7.60)	Yes		Extension of 3-(13.6.60)

$t-(v, k, \lambda)$	Existence	Remarks
4-(15,5.1)	No	Mendelsohn72
4-(15,5,2)	1 ,	
4-(15,5.≠), 3≤≠≤4	Yes	Brouwer86
4 -(15.5,5)	Yes	Kreher88
4-(15,6,5)	, ,	
4-(15.6.5¢), 2≤¢≤3	Yes	Brouwer86
4-(15.8.20)	, , ,	
4-(15.6.25)	Yes	Residual design of 5-(18.6.5)
4-(15,7,5¢), 1≤¢≤5	,	
4-(15.7.5s), 6≤s≤16	Yes	Brouwer86
4-(16,6.6)	,	
4-(16.6.6a), 2≤a≤4	Yes	Derived design of 5-(17.7.8s)
4-(16.6.30)	Yes	Brouwer86
4-(16.7.20e), 1≤e≤3	Yes	Brouwer86
4-(16.7.80)	Yes	Derived design of 5-(17.8.80)
4-(16.7.100)	Yes	Brouwer86
4-(16.8,15s), 1≤s≤4	7	
4-(16,8.75)	Yes	Brouwer86
4-(16.8.15a), 6≤a≤15	Yes	5-(16,8,5e) as a 4-design
4-(16.8.240)	Yes	Brouwer86
4-(17,5,s), 1 <u><</u> s≤3	1	
4-(17,5.e), 4≤e≤5	Yes	Kramer75
4-(17.5.6)		
4-(17.6.6s), 1≤s≤6	Yes	Derived design of 5-(18.7.8s)
4-(17.7.2)	No	Extend 3-(16,6.2)
4-(17,7,4)	?	·
4-(17,7,6)	Yes	Derived design of 5-(18.8.6)
4-(17,7,2a), 4≤a≤5	•	,
4-(17,7,2¢), 6≤¢≤71	Yes	Brouwer86
(- (17.8,5)	No	Haemers74
((17.8,10)	. !	
1- (17.8.15)	Yes	[Hubaus74]
t-(17,8,5¢), 4≤¢≤5	,	
F(17.8.5a), 6≤a≤31	Yes	Brouwer86
l-(17.8,1 60)	Yes	Kramer75
H(17.8.165)	Yes	Residual design of 5-(18,8,66)
⊢(17.8,170)	1	and Arciates)
-(17.8,175)	Yes	Kramer75
-(17,8,5¢), 36≤¢≤39	Yes	Derived design of 5-(18.9,5a)
-(17.8,200)	Yes	Kramer75
-(17.8.5a), 41≤a≤45	Yes	Derived design of 5-(18.9.5a)
(17.8.230)	Yes	Residual design of 5-(18.8.92)

t-(v, k, λ)	Existence	Remarks
4-(17,8.5s). 47≤s≤54	Yes	Derived design of 5-(18.9,5s)
4-(17,8,5¢), 55≤¢≤56	Yes	Kramer75
4-(17,8,285)	Yes	Derived design of 5-(18,9,285)
4-(17,8,290)	?	
4-(17,8,295)	Yes	Kramer75
4-(17,8,5≠), 60≤≠≤63	Yes '	Derived design of 5-(18.9.5e)
4-(17.8,320)	Yea	[Kramer75]
4-(17,8,5s), 65≤s≤66	Yes	Derived design of 5-(18.9.5a)
4-(17.8.5a), 67≤a≤68	Yes	Kramer75
4-(17.8,345)	Yes	Derived design of 5-(18,9,345)
4-(17,8,350)	Yes	Residual design of 5-(18,8,140)
4-(17,8,355)	Yes	Kramer75
4-(18,5,2a), 1≤a≤3	Yes	Brouwer86
4-(18.6,1)	No	[Witt38]
4-(18,6,s), 2≤s≤4	?	
4-(18.6.∗), 5≤∗≤33	Yes	Brouwer88
4-(18,6,34)	?	
4-(18,6,a), 35 <u><a≤37< u=""></a≤37<></u>	Yes	Brouwer88
4-(18,6,38)	7	
4-(18,6,≠), 39≤≠≤40	Yes	Kramer75
4-(18,5,41)	•	
4-(18,6,42)	Yes	Kramer75:
4-(18,6,43)	Yes	Brouwer86
4-(18,6,a), 44≤a≤45	7	
4-(18,7,28s), 1≤s≤6	Yes	5-(18,7,5e) as a 4-design
4-(18,8.7¢), 1≤¢≤2	•	
4-(18.8,21)	Yes	See note (1) with 4(17.7.5) and 4-(17.8.15)
4-(18,8.28)	· · · · · · · · · · · · · · · · · · ·	
4-(18,8,7¢), 5≤¢≤8	Yes	Kramer75
4-(18,8,7a), 9≤a≤10	Yes	See note (1) with 4-(17.7.2s) and 4-(17.8.5s)
4-(18,8,77)	Yes	Kramer75
4-(18,8,84)	Yes	Brouwer86
4-(18,8.7s), 13 <u>≤</u> s≤19	Yes	Kramer75
4-(18,8,140)	Yes	See note (1) with 4-(17,7,40) and 4-(17,8,100)
4-(18,8.7¢), 21≤¢≤71	Yes	Kramer75
4-(18,9,14¢), 1≤¢≤2	!	
← (18.9.42)	Yes	See note (2) with 4-(17,8,15)
4-(18,9,14¢), 4≤¢≤5	•	
4- (18,9,14¢), 6≤¢≤13	Yes	See note (2) with 4-(17,8,5a)
4- (18,9,14¢), 14 ≤ ¢≤19	Yes	Kramer75
4-(18,9,280)	Yes	See note (2) with 4-(17,8,100)
4-(18.9.14a), 21≤a≤71	Yes	Kramer75

t_(υ, k, λ)	Existence	Remarks
4- (19,8,15a), 1≤a≤2	Yes	Brouwer86
4-(19,6,45)	Yes	See note (1) with 4-(18,5,8) and 4-(18,6,39)
4 (19,7,35a), 1≤a≤8	Yes	Derived design of 5-(20,8,35a)
4-(19.8,105s), 1≤s≤6	Yes	See note (1) with 4-(18,7,28s) and 4-(18,8,77s)
4-(19,9,21s), 1≤s≤2	. ?	
4-(19,9,63)	Yes	See note (1) with 4-(18.8.21) and 4-(18.9.42)
4-(19.9.21a), 4≤a≤5	7	
4 -(19.9,21s), 6≤s≤11	Yes	See note (1) with 4(18.8.7s) and 4-(18,9,14s)
4-(19,9.21e), 12≤e≤13	Yes	Derived design of 5-(20.10,21s)
4-(19,9,21¢), 14≤¢≤71	Yes	See note (1) with 4-(18.8,7s) and 4-(18.9,14s)
4-(20,5,4)	Yes	Kreher89
4-(20.5.8)	Yes	Derived design of 5-(21.6.8)
4-(20,6,30)	Yes	Kreher89
4-(20,5,60)	Yes	Kramer85
4-(20,7,140)	,	
4-(20.7,280)	Yes	Kramer85
4-(20.8,70s), 1≤s≤13	Yes	Kramer85
4-(20,9,168)	,	
4-(20.9,168a), 2≤a≤3	Yes	(Kramer85)
4-(20,9,672)	Yes	See note (1) with 4-(19.8,210) and 4-(19.9,462)
4-(20,9,168¢), 5≤¢≤6	Yes	(Kramer85)
4-(20,9,1176)		
+(20,9,168¢), 8≤¢≤9	Yes	Kramer85
4-(20,9.1680)	Yes	See note (1) with 4-(19.8,525) and 4-(19.9,1155)
4-(20,9,168¢), 11≤¢≤12	Yes	Kramer85
4-(20.9,2184)	'	
4-(20,10,28s) , 1≤s≤5	7	
4-(20,10,168)	Yes	See note (2) with 4-(19,9,63)
4-(20,10,28¢), 7≤¢≤8	7	
4-(20,10,252)	Yes	Kramer85
+ (20,10,280)	•	
4-(20,10,28a), 11≤a≤12	Yes	Kramer85
4-(20,10,364)	* .	
4-(20,10,28¢), 14≤¢≤17	Yes	Kramer85i
4-(20,10,504)	Yes	See note (2) with 4-(19.9,168)
4-(20,10,28s), 19≤s≤22	Yes	Kramer85
4-(20,10,844)	7	
4-(20.10,28¢), 24≤¢≤27	Yes	Kramer85
4-(20.10,784)	Yes	See note (2) with 4-(19,9,294)
4-(20,10,28¢), 29≤¢≤32	Yes	Kramer85
4-(20,10,924)	?	1
4-(20,10,28a), 34≤a≤37	Yes	(Kramer85)
(-(20.10,1084)	Yes	See note (2) with 4-(19,9,399)
. ,,		(=) =(12 3-12-2-055)

$t-(v, k, \lambda)$	Existence	Remarks
4-(20,10,28s), 39≤s≤42	Yes	Kramer85
4-(20,10,1204)		
4- (20,10,28a), 44≤a≤47	Yes	Kramer85
4-(20,10.1344)	Yes	See note (2) with 4-(19.9.504)
4-(20.10,28*), 49<*<52	Yes	Kramer85
+(20,10.1484)	?	
4-(20.10.28s), 54≤s≤57	Yes	Kramer85
4-(20,10,1624)	Yes	See note (2) with 4-(19,9,609)
4-(20,10,28s), 59 <s<52< td=""><td>Yes</td><td>Kramer85i</td></s<52<>	Yes	Kramer85i
4-(20,10,1764)	,	
4-(20,10,28s), 64≤s≤67	Yes	[Kramer85]
4-(20,10,1904)	Yes	See note (2) with 4-(19,9.714)
4-(20.10,28s), 69≤s≤72	Yes	Kramer85
4-(20,10,2044)	, ,	1
4-(20.10,28a), 74≤a≤77	Yes	Kramer85
4-(20,10,2184)	Yes	See note (2) with 4-(19,9.819)
4-(20,10,28s), 79≤s≤82	Yes	Kramer85
4-(20,10,2324)	?	
4-(20,10,28a), 84≤a≤87	Yes	Kramer85
4-(20,10,2464)	Yes	See note (2) with 4-(19,9,924)
4-(20,10,28¢), 89≤¢≤92	Yes	Kramer85
4-(20,10,2604)	? .	
4-(20,10,28s), 94≤s≤97	Yes	[Kramer85]
4-(20,10,2744)	Yes	Sec note (2) with 4-(19,9,1029)
4-(20,10,28s), 99≤s≤102	Yes	Kramer85
4-(20,10,2884)	?	
4-(20,10,28s), 104≤s≤107	Yes	Kramer85
4-(20.10,3024)	Yes	See note (2) with 4-(19,9,1008)
4-(20,10,28s), 109≤s≤112	Yes	[Kramer85]
4-(20,10,3164)	,	
4-(20,10,28¢), 114≤¢≤117	Yes	[Kramer85]
4-(20,10,3304)	Yes	See note (2) with 4-(19.9,1239)
4-(20,10,28s), 119≤s≤122	Yes	Kramer85
4-(20,10,3444)	,	•
4-(20,10,28s), 124≤s≤127	Yes	[Kramer85]
4-(20,10,3584)	Yes	See note (2) with 4-(19.9,1344)
+(20,10,28¢), 129≤¢≤132	Yes	[Kramer85]
4-(20,10,3724)	!	
4-(20,10,28¢), 134≤¢≤137	Yes	[Kramer85]
4-(20,10,3864)	Yes	See note (2) with 4-(19,9,1449)
4-(20,10,28s), 139 <s<142< td=""><td>Yes</td><td>Kramer85</td></s<142<>	Yes	Kramer85
4-(20,10,4004)	Yes	Extension of 3-(19,9,4004)
4-(21,5,s), 1 <s<8< td=""><td>7</td><td></td></s<8<>	7	
(ž

$I=(v, k, \lambda)$	Existence	Remarks
4-(21.6,2a), 1≤a≤5	?	
4-(21,8,12)	Yes	Kreher89
4-(21,6,14)	,	<u></u>
4-(21,6,16)	Yes	Kramer84
4-(21,5,2a), 9≤a≤16	?	
4-(21,6,34)	Yes	See note (1) with 4-(20,5.4) and 4-(20,5.30)
4-(21,6,36)	Yes	Kreher89
4-(21,6,38)	*	
4-(21,5,40)	Yes	Kreher89
4-(21.6,2s), 21≤s≤29	?	
4-(21.6,60)	Yes	Kreber89
4-(21,6,2¢), 31≤¢≤33	?	
4-(21,6.68)	Yes	Derived design of 5-(22,7,88)
4-(21,7,10¢), 1≤¢≤11	,	
4-(21,7,120)	Yes	Kramer84
4-(21,7,10¢), 13≤¢≤33	,	
4-(21,7.340)	Yes	5-(21.7,60) as a 4-design
4-(21,8,70a), 1≤a≤17	?	
4-(21.9.14+), 1≤+≤129	,	
4-(21,9.1820)	Yes	Kramer84:
4-(21,9,14s), 131≤s≤135	?	
4-(21,9,1904)	Yes	See note (1) with 4-(20,8,560) and 4-(20,9,1344)
4-(21,9,14¢), 137≤¢≤153	,	
4-(21,9.2156)	Yes	Kramer84:
4-(21,9.14s), 155≤s≤191	1	<u> </u>
4-(21.9,2688)	Yes	Kramer84
4-(21,9,14a), 193≤a≤293	7	
4-(21,9,2856)	Yes	See note (1) with 4-(20.8,840) and 4-(20,9,2016)
4-(21,9,14a), 205≤a≤215	,	(3)
4-(21,9,3024)	Yes	(Kramer84)
4-(21,9,14a), 217≤a≤221	•	
$4-(21,10,28a), 1 \le a \le 11$?	
4-(21,10,336)	Yes	'Kramer84'
4-(21.10,28¢), 13≤¢≤15	?	
4-(21,10,448)	Yes	Kramer84
4-(21,10,28e), 17≤e≤23	7	
+(21.10,672)	Yes	Kramer84
4-(21,10,28s). 25≤s≤33	,	
4-(21,10.952)	Yes	Kramer84
4-(21,10,980)	•	(
4-(21,10,1008)	Yes	Kramer84
4-(21.10,28¢), 37≤¢≤39	 , 	
+(21.10.1120)	Yes	Kramer84

4-(21.10,28e), 41≤e≤45 4-(21.10,1288) 4-(21.10,28e), 47≤e≤51 4-(21.10,1458) 4-(21.10,1484)	Yes	Kramer84
4-(21.10,1288) 4-(21.10,28s), 47≤s≤51 4-(21.10,1458) 4-(21.10,1484)	<u> </u>	(1/2
4-(21,10,1456) 4-(21,10,1484)		Nramere4
4-(21.10.1484)	?	
	Yes	'Kramer84'
	1	† · · · · · · · · · · · · · · · · · · ·
4-(21.10.1512)	Yes	Kramer84
4-(21.10.28s), 55≤s≤59	?	<u> </u>
4-(21,10,1680)	Yes	Kramer84
4-(21,10.28a). 61≤a≤63	7	1
4-{21.10,1792}	Yes	'Kramer84
4-(21.10.1820)	,	
4-(21.10.1848)	Yes	Kramer84
4-(21,10,1876)	7	
4-(21.10.1904)	Yes	See note (1) with 4-(20.9.672) and 4-(20.10.1232)
4-(21.10,1932)	,	
4-{21,10,1960}	Yes	Kramer84
4-(21.10,1988)	,	
4-(21.10,2016)	Yes	Kramer84
4-(21,10,28¢), 73≤¢≤77	•	
4-(21,10,2184)	Yes	Kramer84
4-(21,10.28a), 79≤a≤81	,	
4-(21.10.2296)	Yes	Kramer84
4-(21,10.2324)	?	
4-(21.10.2352)	Yes	'Kramer84'
4-(21,10.2380)	Yes	See note (1) with 4-(20.9.840) and 4-(20.10.1540)
4-(21.10,28¢), 86≤¢≤89	,	
4-(21.10.2520)	Yes	Kramer84
4-(21.10,28¢), 91≤¢≤93	;	
4-(21,10,2632)	Yes	Kramer84
4-(21,10,2660)	<u>.</u>	
4-(21.10,2688)	Yes	Kramer84
4-(21.10,28¢), 97≤¢≤101	,	
4-(21,10,2856)	Yes	See note (1) with 4-(20.9,1008) and 4-(20,10,1848)
4-(21.10,28e), 103≤e≤119	!	
← (21.10,3360)	Yes	Kramer84
4-(21,10,28e), 121≤e≤131	?	
4-(21.10,3696)	Yes	Kramer84
4-(21.10,28¢), 133≤¢≤135	?	
⊢(21,10,380ë)	Yes	See note (1) with 4-(20.9.1344) and 4-(20,10,2464)
F(21,10,28¢), 137≤¢≤143	?	
F(21,10,4032)	Yes	Kramer84
F(21,10,28a), 145≤a≤152	,	
I-(21.10.4284)	Yes	See note (1) with 4-(20.9.1512) and 4-(20.10.2772)

t-(υ, ±, λ)	Existence	Remarks
4-(21,10,28¢), 154≤¢≤169	1	
t-(21,10,4780)	Yes	See note (1) with 4-(20.9.1680) and 4-(20.10,3080)
4-(21.10.28¢), 171≤¢≤186	?	
4-(21,10,5236)	Yes	See note (1) with 4-(20,9.1848) and 4-(20,10.3388)
4-(21,10,28s), 188≤s≤201	!	
4-(21,10,5656)	Yes	Kramer84
4-(21,10,5684)	,	
4-(21,10,5712)	Yes	See note (1) with 4-(20.9,2016) and 4-(20,10,3696)
4-(21.10.28¢). 205≤¢≤221		
4-(22,5.6)	,	
4-(22,6,3a), 1≤a≤25	?	
4-(22.7.4a), 1≤a≤101	1	
4-(22.7,408)	Yes	5-(22,7,68) as a 4-design
4-(22,8.30e), 1≤e≤51	' '	
4-(22.9.252*), 1≤*≤17	· · · · · · · · · · · · · · · · · · ·	
4-(22.10,42e), 1≤e≤135	. ?	
4-(22.10.5712)	Yes	See note (1) with 4-(21,9.1904) and 4-(21,10.3808)
4-(22.10.42s), 137≤s≤203	•	
4-(22,10,8568)	Yes	See note (1) with 4-(21.9,2856) and 4-(21.10.5712)
4-(22.10.42*), 205≤*≤221	?	
+(22.11.72e). 1≤e≤11	•	
4-(22,11.864)	Yes	See note (2) with 4-(21,10,336)
4-(22.11.72s), 13≤s≤15	,	
4-(22,11,1152)	Yes	See note (2) with 4-(21,10,448)
4-(22.11.72¢), 17≤¢≤23	?	
4-(22.11,1728)	Yes	See note (2) with 4-(21,10,672)
4-(22.11,72a), 25≤a≤33	1	
4-(22.11,2448)	Yes	See note (2) with 4-(21,10,952)
4-(22,11,2520)	!	
4-(22,11,2592)	Yes	See note (2) with 4-(21,10,1008)
4-(22.11.72s), 37≤s≤39	7	
4-(22.11,2880)	Yes	See note (2) with 4-(21,10,1120)
4-(22.11,72s), 41≤s≤45	,	
4-(22,11,3312)	Yes	See note (2) with 4-(21,10,1288)
4-(22,11,72¢), 47≤¢≤51	7	,
4-(22.11,3744)	Yes	See note (2) with 4-(21,10,1456)
4-(22,11,3816)	1	
4-(22,11,3888)	Yes	See note (2) with 4-(21,10,1512)
4-(22,11,72±), 55≤±≤59	•	
4-(22,11,4320)	Yes	See note (2) with 4-(21,10,1690)
4-(22,11,72s), 61≤s≤63	,	
4-(22,11,4608)	Yes	See note (2) with 4-(21.10.1792)
4-(22,11,4680)	- -, 	

$t-(v, k, \lambda)$	Existence	Remarks
4-(22.11.4752)	Yes	See note (2) with 4-(21,10,1848)
4-(22.11;4824)	1	
4-(22.11.4896)	Yes	See note (2) with 4-(21.10.1904)
4-(22.11.4968)	,	
4-(22.11.5040)	Yes	See note (2) with 4-(21.10,1960)
4-(22.11.5112)	?	
4-(22.11,5184)	Yes	See note (2) with 4-(21.10.2016)
4-(22.11.72s), 73 <s<77< td=""><td>,</td><td></td></s<77<>	,	
4-(22,11,5616)	Yes	See note (2) with 4-(21.10.2184)
4-(22.11,72a), 79≤a≤81	• • •	
4-(22,11,5904)	Yes	See note (2) with 4-(21,10,2296)
+(22,11.5976)	1 1	
4-(22,11,72s), 84≤s≤85	Yes	See note (2) with 4-(21.10,28s)
4-(22.11,72a). 86≤a≤89	•	
4-(22.11-6480)	Yes	See note (2) with 4-(21.10.2520)
4-(22,11,72¢), 91≤¢≤93	1,	
4-(22.11,8768)	Yes	See note (2) with 4-(21.10.2632)
4-(22,11,8840)	7.	
4-(22,11,8912)	Yes	See note (2) with 4-(21.10.2688)
4-(22,11,72a), 97 <a<101< td=""><td></td><td></td></a<101<>		
4-(22.11.7344)	Yes	See note (2) with 4-(21,10.2858)
4-(22.11,72e), 103≤e≤119	•	
4-(22,11.8640)	Yes	See note (2) with 4-(21.10.3360)
4-(22,11,72s), 121≤s≤131	!	
4-(22.11,9504)	Yes	See note (2) with 4-(21.10.3696)
4-(22.11.72s), 133≤s≤135	7.	
4-(22.11.9792)	Yes	See note (2) with 4-(21,10,3808)
4-(22,11,72¢), 137≤¢≤143	?	
+(22.11.10368)	Yes	See note (2) with 4-(21,10,4032)
4-(22.11,72s), 145≤s≤169	?	
4-(22.11,12240)	Yes	See note (2) with 4-(21,10,4760)
4-(22.11.72a), 171≤a≤196	1 ?	
4-(22.11,13464)	Yes	See note (2) with 4-(21.10,5236)
4-(22.11,72¢), 188≤¢≤201	, ,	
4-(22.11,14544) .	Yes	See note (2) with 4-(21.10,5656)
4-(22,11,14616)		
4-(22.11,14688)	Yes	See note (2) with 4-(21,10,5712)
4-(22.11.72a), 205≤a≤221	:	
4-(23.5,1)	Yes	Derived design of 5-(24.6,1)
4-(23,5.2)	Yes	Kreher89
4-(23,5,3)	Yes	Derived design of 5-(24.6,3)
4-(23.5.e), 4≤e≤9	Yes	Kreher89
4-(23.6,3¢), 1≤¢≤28	Yes	Derived design of 5-(24,7.3s)
<u>, , , , , , , , , , , , , , , , , , , </u>		1

$t-(v, k, \lambda)$	Existence	Remarks
4-(23.7,1)	Yes	[Witt38]
4-(23.7.#), 2≤#≤24	Yes	Kramer74b
4-(23.7.a), a=112.113	Yes	Driessen78
4-(23.7.s), s=128,129	Yes	Derived design of 5-(24.8.s)
4-(23.7.s), s=0 (mod 17)	Yes	Residual design of 5-(24.7.3s/17)
4-(23,7.s), all other s	,	
4-(23.8.2)	No	[Ray-Chaudhuri75]
4-(23,8,4)	Yes	Residual design of 5-(24.8,1)
4-(23,8,5)	Yes	Derived design of 5-(24,9,8)
4-(23,8,8)	Yes	Residual design of 5-(24,8.2)
4-(23,8.10)	1	
4-(23,8.12)	Yes	Residual design of 5-(24,8,3)
4-(23.8.14)		
4-(23.8.16)	Yes	Residual design of 5-(24.8.4)
4-(23,8,18)	7	
4-(23,8,20)	Yes	Residual design of 5-(24,8,5)
4-(23,8,22)	7	
4-(23,8.24)	Yes	Residual design of 5-(24.8,6)
4-(23,8,25)		
4-(23.8.28)	Yes	Residual design of 5-(24.8.7)
4-(23,8,30)	?	
4-(23,8,32)	Yes	Residual design of 5-(24.8,8)
4-(23.8,34)	7	
4-(23.8,36)	Yes	Residual design of 5-(24,8.9)
4-(23,8,2s), 19 <s<179< td=""><td></td><td></td></s<179<>		
4-(23,8,380)	Yes	Derived design of 5-(24,9,360)
4-(23,8.2¢), 18t≤¢≤255	1	
4-(23,8,512)	Yes	Residual design of 5-(24,8,128)
4-(23,8,514)	 	
4-(23,8,516)	Yes	Residual design of 5-(24,8,129)
4-(23.8.24), 259≤4≤839	?.	
4-(23,8,1680)	Yes	Derived design of 5-(24,9,1680)
4-(23,8,2¢), 841≤¢≤855	7	
4-(23,8,1712)	Yes	Union of 4-(23,8,32) and 4-(23,8,1680)
4-(23,8,1714)	•	
4-(23.8,1716)	Yes.	Derived design of 5-(24,9,1716)
4-(23.8,2a), 859≤a≤969	1 1	
4-(23.9,18)	Yes	Residual design of 5-(24,9,6)
4-(23,9.18s), 2≤s≤5	7	
4-(23,9,108)	Yes	Residual design of 5-(24,9,36)
4-(23.9.18¢), 7≤¢≤23	7	
4-(23.9.432)	Yes	Driessen78
1	+	

t-(v, k, λ)	Existence	Remarks
4-(23.9,540)	Yes	Derived design of 5-(24,10,540)
4-(23,9.18s), 31 <s<59< td=""><td>7</td><td></td></s<59<>	7	
4-(23,9,1080)	Yes	Residual design of 5-(24,9,380)
4-(23.9.18¢), 61≤¢≤279	7	
4-(23.9,5040)	Yes	Residual design of 5-(24,9.1680)
4-(23.9.18a). 281≤e≤285	•	
4-(23,9,5148)	Yes	Residual design of 5-(24.9,1718)
4-(23.9.18s), 287≤s≤323	1 1	
4-(23.10.42s), 1≤s≤29	 	
4-(23,10,1260)	Yes	Residual design of 5-(24,10,540)
4-(23,10,42a), 31≤a≤79	1	
4-(23,10,3360)	Yes	Driessen78
4-(23.10,42s), 81≤s≤109	 	
4-(23,10,4620)	Yes	Derived design of 5-(24.11.4620)
4-(23,10,42s), 111≤s≤323	7	
4-(23.11.6s), 1≤s≤2	No	Haemers74.
4-(23.11.8s), 3≤s≤7	1	
4-(23.11.48)	Yes	Derived design of 5-(24,12,48)
4-(23,11.6a), 9≤a≤95	7	
4-(23,11,576)	Yes	Derived design of 5-(24.12,578)
4-(23,11.5s), 97≤s≤1429	7	
4-(23.11.8580)	Yes	Residual design of 5-(24.11,4620)
4-(23.11.6¢). 1431≤¢≤2583	7	
4-(23.11,15504)	Yes	See note (1) with 4-(22.10,5712) and 4-(22.11,9792)
4-(23.11.6¢), 2585≤¢≤3875	. ?	
4-(23,11,23256)	Yes	See note (1) with 4-(22.10,8568) and 4-(22.11.14688)
4-(23,11,6s), 3877≤s≤4199	,	
4-(24,6,10s), 1≤s≤9	Yes	5-(24.6,a) as a 4-design
4-(24,7,20s), 1≤s≤28	Yes	5-(24.7,3a) as a 4-design
4-(24,8,5¢), 1≤¢≤9	Yes	5-(24.8,s) as a 4-design
4-(24.8,5¢), 10≤¢≤127	7	
4-(24.8.5¢), 128≤¢≤129	Yes	5-(24.8.s) as a 4-design
4-(24,8,5s), 130≤s≤484	?	
4-(24,9,24)	Yes	5-(24,9,8) as a 4-design
4-(24.9.24¢), 2 <u><</u> ¢ <u>≤</u> 5	7	
4-(24,9,144)	Yes	5-(24,9,36) as a 4-design
4-(24.9,24¢), 7≤¢≤59	1 7	
4-(24,9,1440)	Yes	5-(24.9.380) as a 4-design
4-(24.9.24a), 61≤a≤279	7	
	Yes	5-(24.9,1680) as a 4-design
4-(24,9,6720)	Tes	3-(21.5,1000) as 4 4-design
4-(24.9.6720) 4-(24.9.24¢), 281≤¢≤285	1 es	2-(41.9,1000) 25.1 4- Gesign
		5-(24.9.1716) as a 4-design

t-(υ, ±, λ)	Existence	Remarks
4-(24.10.60s), 1≤s≤29	7	
4-(24.10,1800)	Yes	5-(24.10.540) as a 4-design
4-(24,10,60a), 31≤a≤323	?	
4-(24.11.120s), 1≤s≤109	7	
4-(24,11,13200)	Yes	5-(24.11.4620) as a 4-design
4-(24.11.120s), 111≤s≤323	1	
4-(24,12,15)	No	Haemers74
4-(24.12.15a). 2≤a≤7	1 .	
4-(24.12.120)	Yes	5-(24.12.48) as a 4-design
4-(24.12.15s), 9\left\(95	,	• • •
4-(24.12.1440)	Yes	5-(24.12.576) as a 4-design
4-(24.12.15a), 97≤a≤571	1 7 1	
4-(24.12,21450)	Yes	5-(24.12.8580) as a 4-design
4-(24.12.15s), 573≤s≤1429	1	
4-(24.12.21450)	Yes	See note (2) with 4-(23.11,8580)
4-(24.12.15¢), 1431≤¢≤2583	1 '	
4-(24,12,38760)	Yes	5-(24.12.15504) as a 4-design
4-(24.12.15¢), 2585≤¢≤4199	1	
+(25.5.3e), 1≤e≤3		
4-(25.6.30e). 1≤e≤3	1	
4-(25.7:70ø), 1≤ø≤6	,	
4-(25.7.490)	Yes	5-(25.7.70) as a 4-design
4-(25,7.70e). 8≤e≤9	1 1	
4-(25.8,105¢), 1≤¢≤28		
4-(25.9.63a), 1≤a≤2		
4-(25,9.189)	Yes	See note (1) with 4-(24.8,45) and 4-(24.9.144)
4-(25,9,63≠), 4≤≠≤161	1	
4-(25,10.84s), 1≤s≤323	1	
4-(25.11.180s), 1≤s≤323	?	
4-(25.12.45a), 1≤a≤769	?	
4-(25.12,34650)	Yes	See note (1) with 4-(24,11,13200) and 4-(24,12,21450)
4-(25.12.45e), 771≤e≤2261		
4-(26.5.2a), 1≤a≤5		
4-(26.6,3e), 1≤e≤38	,	
4-(26.7.140¢). 1≤¢≤5	1	
4-(26,8.35¢). 1≤¢≤104	7	
4-(26.9.126a), 1≤a≤104	?	
4-(26.10,21a). 1≤a≤1776	?	
4-(26.11.264s), 1≤s≤323	?	
4-(26.12.495s), 1≤s≤323	,	
4-(26:13:110a). 1≤a≤769	,	
4-(26.13.84700)	Yes	See note (2) with 4-(25.12.34650)
4-(26.13.110s), 771≤s≤2261	1	

4-(27.5.1) 7	$t=(v, k, \lambda)$	Exis	tence	Remarka	
4-(27,6.1) Yes Denniston76; 4-(27.8.e), em0 (mod 11) and e≥22 Yes Residual design of 5-(28.6.e 11) 4-(27.7.7) Yes Residual design of 5-(28.7.1) 4-(27.7.7) Yes Residual design of 5-(28.7.1) 4-(27.7.7.2) ≤≤≤126 ? 4-(27.13.36.1) ≤≤≤2403 ? 4-(27.10.21.e) 1≤≤≤2403 ? 4-(27.13.35.e) 1≤√≤2429 ? 4-(27.13.35.e) 1≤√≤7429 ? 4-(27.13.35.e) 1≤√≤7429 ? 4-(28.138) Yes Derived design of 5-(29.6.12) 4-(28.5.12) Yes Derived design of 5-(29.7.138) 4-(28.6.5a) and Omod 2) e≥4 Yes 4-(28.7.4) ? F 4-(28.7.8) Yes S-(28.7.2) as a 4-design 4-(28.7.8) Yes S-(28.7.1) as a 4-design 4-(28.7.10.2) Yes Residual design of 5-(29.7.138) 4-(28.7.10.2) Yes Residual design of 5-(29.7.138) 4-(28.10.29e) 1≤√≤4203 ?	4-(27,5.1)	,			_
+(27.5.e) = m0 (mod 11) and e≥22 Yes Residual design of 5-(28.5.e 11) +(27.7.e.e) = design of 5-(28.7.1) +(27.7.7) Yes Residual design of 5-(28.7.1) +(27.7.2.) ≤ e≤126 ? +(27.8.5.e). 1≤ e≤2403 ? +(27.1.3.5.e). 1≤ e≤2403 ? +(27.1.3.3.e). 1≤ e≤2403 ? +(27.1.3.3.e). 1≤ e≤7429 ? +(27.1.3.5.e). 1≤ e≤7429 ? +(27.1.3.5.e). 1≤ e≤7429 ? +(28.5.6.e). am0 (mod 2). e≥4 Yes LS Derived design of 5-(29.7.138) +(28.6.6.e). am0 (mod 2). e≥4 Yes 5-(28.7.2) as a 4-design +(28.7.4.e). 3≤ e≤352 ? +(28.7.4.e). 3≤ e≤352 ? +(28.7.4.e). 3≤ e≤352 ? +(28.7.4.e). 3≤ e≤352 ? +(28.7.2.e). 1≤ e≤403 ? +(28.8.2.e). 1≤ e≤126 ? +(28.1.2.e). 1≤ e≤403 ? +(28.1.2.e). 1≤ e≤403 ? +(28.1.2.e). 1≤ e≤41858 ? +(28.1.2.e). 1≤ e≤14858 ? +(28.1.3.4.e). 1≤ e≤14858 ? +(28.1.3.6.e). 1≤ e≤14858 ? +(29.5.10) ? +(29.5.10) ? +(29.5.10) ? +(29.5.10) ? +(29.5.10) ? +(29.5.10) ? +(29.7.138) as a 4-design Free design of 5-(29.7.138) -(29.7.138) as a 4-design -(28.1.2.e). 1≤ e≤218 ? +(28.1.3.4.e). 1≤ e≤14858 ? +(28.1.3.6.e). 1≤ e≤14858 ? +(29.1.1.90.). 1≤ e≤14858 ? +(29.1.1.90.). 1≤ e≤332 ? +(29.7.138) as a 4-design -(29.7.138) as a 4-design	4-{27,5,e}, 2≤e≤11	Yes	-	Derived design of 5-(28.6,s)	
4-(27.5.a), all other a 4-(27.7.7a). 2≤a≤126 4-(27.77a). 1≤a≤126 4-(27.9.7a). 1≤a≤126 4-(27.9.7a). 1≤a≤126 4-(27.9.7a). 1≤a≤2403 4-(27.10.21a). 1≤a≤2403 4-(27.11.3.5a). 1≤a≤2403 4-(27.11.3.5a). 1≤a≤2403 4-(27.11.3.5a). 1≤a≤2403 4-(27.11.3.5a). 1≤a≤2403 4-(27.11.3.5a). 1≤a≤7429 4-(27.11.3.5a). 1≤a≤7429 4-(28.5.12) 4-(28.5.12) 4-(28.5.12) 4-(28.5.3a). a m0 (mod 2). a≥4 4-(28.6.5a). a m0 (mod 2). a≥4 4-(28.6.5a). a m0 (mod 2). a≥4 4-(28.7.4a) 4-(28.7.4a) 4-(28.7.4a) 4-(28.7.4a) 4-(28.7.4a) 4-(28.7.4a) 4-(28.7.4a) 4-(28.8.2a). 1≤a≤125 4-(28.1.02a) 4-(28.1.2a). 1≤a≤125 4-(28.1.02a). 1≤a≤125 4-(28.1.02a). 1≤a≤2403 4-(28.1.192a). 1≤a≤2403 4-(28.1.3.44a). 1≤a≤14858 4-(28.1.3.44a). 1≤a≤14858 4-(28.1.3.4a). 1≤a≤14858 4-(28.1.3.4a). 1≤a≤14858 4-(29.5.10) 4-(29.5.10) 4-(29.5.10) 4-(29.5.10) 4-(29.5.10) 4-(29.5.10) 4-(29.5.10) 4-(29.6.30a). 1≤a≤532 4-(29.5.150) 4-(29.7.10a). 1≤a≤532 4-(29.7.10a). 1≤a≤532 4-(29.7.10a). 1≤a≤532 4-(29.7.10a). 1≤a≤532 4-(29.7.10a). 1≤a≤532 4-(29.1.1200) 4-(29.1.1200). 1≤a≤632 4-(29.1.1220) 4-(29.1.1220) 4-(29.1.1220) 4-(29.1.220) 4-(29.1.220) 4-(29.1.1220) 4-(29.1.3.55a). 1≤a≤192 4-(29.1.3.55a). 1≤a	4-(27,6,1)	Yes		[Denniston76]	\neg
4-(27.7.7) Yes Residual design of S-(28.7.1) 4-(27.7.7*) 2≤≤126 ? 4-(27.8.35*) 1≤≤126 ? 4-(27.10.21*) 1≤≤2403 ? 4-(27.10.21*) 1≤≤2403 ? 4-(27.11.33*) 1≤≤3714 ? 4-(27.12.33*) 1≤≤3714 ? 4-(27.12.33*) 1≤≤37429 ? 4-(28.5.12) Yes LS Derived design of S-(29.6.12) 4-(28.5.12) Yes Derived design of S-(29.6.12) 4-(28.5.13) Yes Derived design of S-(29.7.138) 4-(28.5.5*) **m0 (mod 2) **e≥ 4 Yes S-(28.5.8.72) **a** a 4-design (42.8.7.8) 4-(28.7.8) Yes S-(28.7.1) **s* a 4-design (42.8.7.8) 4-(28.7.4*) ? 4-(28.7.4*) ? 4-(28.7.4*) ? 4-(28.7.4*) ! 4-(28.7.4*) ! 4-(28.7.4*) ! 4-(28.8.2*) ! 4-(28.1.2*) ! 4-(28.9.18*) ! 4-(28.9.18*) ! 4-(28.9.18*) ! 4-(28.9.18*) ! 4-(28.1.29*) ! 4-(28.1.29*) ! 4-(28.1.29*) ! 4-(28.1.29*) ! 4-(28.1.29*) ! 4-(29.5.10) ? 4-(29.5.10) ? 4-(29.5.10) Yes Derived design of S-(30.7.150) 4-(29.7.1150) Yes Derived design of S-(30.7.1220) 4-(29.11.220) Yes Derived design of S-(30.12.220) 4-(29.11.220) Yes Derived design of S-(30.12.220) 4-(29.11.2495*) ! 4-(29.13.55*)	$+(27.8.s)$, $s=0 \pmod{11}$ and $s\geq 22$			Residual design of 5-(28.6.a 11)	⊣
4-(27.7.7 s). 2≤ s≤ 126 4-(27.8.35 s). 1≤ s≤ 126 4-(27.9.7 s). 1≤ s≤ 2403 7-(4-(27.11.33 s). 1≤ s≤ 2402 7-(4-(27.11.33 s). 1≤ s≤ 2422 7-(4-(27.11.33 s). 1≤ s≤ 2422 7-(4-(28.5.12) 7-(28	4-(27.8.s), all other s	,			_
+(27.8.35a), 1≤a≤126 +(27.9.7a), 1≤a≤2403 ? +(27.10.21a), 1≤a≤2403 ? +(27.11.33a), 1≤e≤7429 ? +(27.13.55a), 1≤e≤7429 ? +(28.5.12) Yes LS Derived design of 5-(29.6.12) +(28.5.3a) +(28.6.5a), amO (mod 2), a≥4 Yes 5-(28.5.a²) as a 4-design +(28.6.5a), amO (mod 2), a≥4 Yes 5-(28.7.1) as a 4-design +(28.6.5a), amO (mod 2), a≥4 Yes 5-(28.7.1) as a 4-design +(28.6.5a), amO (mod 2), a≥4 Yes 5-(28.7.1) as a 4-design +(28.6.5a), amO (mod 2), a≥4 Yes 5-(28.7.1) as a 4-design +(28.7.4a), 3≤a≤252 ? +(28.7.1012) Yes Residual design of 5-(29.7.138) +(28.1.7a), 1≤a≤126 ? +(28.1.7a), 1≤a≤126 ? +(28.1.7a), 1≤a≤126 ? +(28.1.7a), 1≤a≤126 ? +(28.1.7a), 1≤a≤128 ? +(28.1.6a), 1≤a≤14858 ? +(28.1.6a), 1≤a≤14858 ? +(28.1.6a), 1≤a≤14858 ? +(29.5.10) ? +(29.5.10) ? +(29.5.10) Yes Derived design of 5-(30.7.150) +(29.7.10a), 1≤a≤114 ? +(29.7.150) Yes Derived design of 5-(30.7.150) +(29.7.10a), 1≤a≤332 ? +(29.10.14a), 1≤a≤332 ? +(29.10.14a), 1≤a≤332 ? +(29.10.14a), 1≤a≤322 ? +(29.10.120a), 2≤a≤32 ? +(29.10.120a), 2≤a≤1092 ? +(29.11.220a), 2≤a≤1092 ? +(29.12.495a), 2≤a≤1092 ? +(29.13.55a), 1≤a≤115 Yes Residual design of 5-(30.12.220) +(29.13.55a), 1≤a≤97 ?	4-(27,7.7)	Yes		Residual design of 5-(28.7.1)	\neg
+(27.9.7a). 1≤a≤2403 ? -(27.10.21a). 1≤a≤2403 ? -(27.10.31a). 1≤a≤3714 ? -(27.12.33a). 1≤a≤3714 ? -(27.12.33a). 1≤a≤7429 ? -(28.5.12) Yes LS Derived design of 5-(29.6.12) -(28.6.5a). amO (mod 2). a≥4 Yes Derived design of 5-(29.7.138) -(28.6.5a). amO (mod 2). a≥4 Yes Derived design of 5-(29.7.138) -(28.7.4a) A= (28.7.4a) -(28.7.4a) 7 -(28.7.4a) 7 -(28.7.4a) 7 -(28.7.4a) 8-a≤252 ? -(28.7.4a) 8-a≤252 ? -(28.7.4a) 8-a≤252 ? -(28.7.4a) 8-a≤252 ? -(28.7.4a) 1≤a≤2403 ? -(28.10.29a). 1≤a≤2403 ? -(28.10.29a). 1≤a≤2403 ? -(28.10.29a). 1≤a≤2403 ? -(28.10.29a). 1≤a≤3714 ? -(28.13.44a). 1≤a≤3714 ? -(28.13.44a). 1≤a≤3714 ? -(28.13.44a). 1≤a≤3714 ? -(28.13.5a). 1≤a≤41858 ? -(28.13.5a). 1≤a≤41858 ? -(29.13.150) Yes Derived design of 5-(30.7.150) -(29.7.10a). 1≤a≤314 ? -(29.7.10a). 1≤a≤312 ? -(29.7.10a). 1≤a≤32 ? -(29.7.10a). 12a20 ? -(4-(27.7.7±), 2≤±≤126	?			\neg
+(27,10,21a), 1≤<2403 ? +(27,11,33a), 1≤o≤3714 ? +(27,11,33a), 1≤o≤7429 ? +(27,13,55a), 1≤o≤7429 ? +(28,5,13) Yes Derived design of 5-(29,6,12) +(28,5,13) Yes Derived design of 5-(29,7,138) +(28,5,0a), a m0 (mod 2), o≥4 Yes 5-(28,5,s/2) as a 4-design +(28,7,4) ? +(28,7,4) ? +(28,7,4) ? +(28,7,4) Yes S-(28,7,1) as a 4-design +(28,7,10,12) Yes Residual design of 5-(29,7,138) +(28,7,10,12) Yes Residual design of 5-(29,7,138) +(28,10,2a), 1≤o≤126 ? +(28,10,2a), 1≤o≤126 ? +(28,10,2a), 1≤o≤146 ? +(28,11,792a), 1≤o≤218 ? +(28,12,99a), 1≤o≤3714 ? +(28,13,44a), 1≤o≤14858 ? +(28,13,6a), 1≤o≤14858 ? +(29,5,5) Yes [Kreher89] +(29,5,10) Yes Derived design of 5-(30,7,150) +(29,7,10a), 1≤o≤314 ? +(29,7,10a), 1≤o≤314 ? +(29,11,20a), 1≤o≤332 ? +(29,11,20a), 1≤o≤632 ? +(29,11,20a), 1≤o≤6102 ? +(29,13,55a), 1≤o≤97 ? +(29,13,55a), 1≤o≤97	4-{27.8.35s}, 1≤s≤126	,			\neg
4-(27.11.33a). 1 ≤ s ≤ 3714 ? 4-(27.12.33a). 1 ≤ s ≤ 7429 ? 4-(27.13.55a). 1 ≤ s ≤ 7429 ? 4-(28.5.12) Yes Derived design of 5-(29.6.12) 4-(28.6.5a). s m0 (mod 2). s ≥ 4 Yes Derived design of 5-(29.7.138) 4-(28.6.5a). all other s ? 4-(28.7.4) ? 4-(28.7.4) ? 4-(28.7.4) 3 ≤ s ≤ 252 ? 4-(28.7.1012) Yes Residual design of 5-(29.7.138) 4-(28.7.1012) Yes Residual design of 5-(29.7.138) 4-(28.8.42a). 1 ≤ s ≤ 128 ? 4-(28.1.92a). 1 ≤ s ≤ 128 ? 4-(28.1.92a). 1 ≤ s ≤ 2403 ? 4-(28.11.92a). 1 ≤ s ≤ 218 ? 4-(28.11.93a). 1 ≤ s ≤ 2414 ? 4-(28.11.93a). 1 ≤ s ≤ 4458 ? 4-(29.5.10) ? 4-(29.5.10) ? 4-(29.5.10) Yes Derived design of 5-(30.7.150) 4-(29.7.10a). 1 ≤ s ≤ 532 ? 4-(29.11.220). 1 ≤ s ≤ 532 ? 4-(29.11.220). 1 ≤ s ≤ 1092 ? 4-(29.12.495s). 2 ≤ s ≤ 1092 ? 4-(29.13.55a). 1 ≤ s ≤ 6 ≤ 2 ? 4-(29.13.55a). 1 ≤ s ≤ 6 ≤ 2 ? 4-(29.13.55a). 1 ≤ s ≤ 6 ≤ 2 ? 4-(29.13.55a). 1 ≤ s ≤ 6 ≤ 2 ? 4-(29.13.55a). 1 ≤ s ≤ 6 ≤ 2 ? 4-(29.12.495s). 2 ≤ s ≤ 1092 ? 4-(29.13.55a). 1 ≤ s ≤ 6 ≤ 2 ? 4-(29.13.55a). 1 ≤ s ≤ 6 ≤ 2 ? 4-(29.13.55a). 1 ≤ s ≤ 6 ≤ 6 ≤ 2 ? 4-(29.13.55a). 1 ≤ s ≤ 6 ≤ 6 ≤ 2 ? 4-(29.13.55a). 1 ≤ s ≤ 6 ≤ 6 ≤ 2 ? 4-(29.13.55a). 1 ≤ s ≤ 6 ≤ 6 ≤ 2 ? 4-(29.13.55a). 1 ≤ s ≤ 6 ≤ 6 ≤ 2 ? 4-(29.13.55a). 1 ≤ s ≤ 6 ≤ 6 ≤ 2 ? 4-(29.13.55a). 1 ≤ s ≤ 6 ≤ 6 ≤ 2 ? 4-(29.13.55a). 1 ≤ s ≤ 6 ≤ 6 ≤ 2 ? 4-(29.13.55a). 1 ≤ s ≤ 6 ≤ 6 ≤ 2 ? 4-(29.13.55a). 1 ≤ s ≤ 6 ≤ 6 ≤ 2 ? 4-(29.13.55a). 1 ≤ s ≤ 6 ≤ 6 ≤ 2 ? 4-(29.13.55a). 1 ≤ s ≤ 6 ≤ 6 ≤ 2 ? 4-(29.13.55a). 1 ≤ s ≤ 6 ≤ 6 ≤ 2 ? 4-(29.13.55a). 1 ≤ s ≤ 6 ≤ 6 ≤ 2 ? 4-(29.13.55a). 1 ≤ s ≤ 6 ≤ 6 ≤ 6 ≤ 2 ? 4-(29.13.55a). 1 ≤ s ≤ 6 ≤ 6 ≤ 6 ≤ 6 ≤ 2 ? 4-(29.13.55a). 1 ≤ s ≤ 6 ≤ 6 ≤ 6 ≤ 6 ≤ 6 ≤ 6 ≤ 6 ≤ 6 ≤ 6	4-(27.9.7¢). 1≤¢≤2403	•			
4-(27.12.33a). 1 ≤ s ≤ 7429 ? 4-(27.13.55a). 1 ≤ s ≤ 7429 ? 4-(28.5.12) Yes LS Derived design of 5-(29.6.12) 4-(28.5.138) Yes Derived design of 5-(29.7.138) 4-(28.5.6a). a m0 (mod 2). s ≥ 4 Yes 5-(28.6.a/2) as a 4-design 4-(28.6.a). all other s ? 4-(28.7.4) ? 4-(28.7.4) ? 4-(28.7.4). 3 ≤ s ≤ 252 ? 4-(28.7.1012) Yes Residual design of 5-(29.7.138) 4-(28.8.42a). 1 ≤ s ≤ 126 ? 4-(28.11.792a). 1 ≤ s ≤ 126 ? 4-(28.11.792a). 1 ≤ s ≤ 218 ? 4-(28.11.792a). 1 ≤ s ≤ 218 ? 4-(28.13.44a). 1 ≤ s ≤ 14858 ? 4-(29.5.5) Yes [Kreher89] 4-(29.5.5) Yes [Kreher89] 4-(29.5.10) ? 4-(29.5.10) ? 4-(29.5.10) Yes Derived design of 5-(30.7.150) 4-(29.7.10a). 1 ≤ s ≤ 114 ? 4-(29.7.10a). 1 ≤ s ≤ 114 ? 4-(29.7.10a). 1 ≤ s ≤ 126 ? 4-(29.8.10a). 1 ≤ s ≤ 14858 ? 4-(29.8.10a). 1	4-(27,10.21s), 1≤s≤2403	*			▔
4-(27.13.55s), 1≤s≤7429 ? 4-(28.5.12) Yes LS Derived design of 5-(29.6.12) 4-(28.5.138) Yes Derived design of 5-(29.7.138) 4-(28.5.6s), s=0 (mod 2), s≥4 Yes 5-(28.6,s/2) as a 4-design 4-(28.7.4s) 7 4-(28.7.8) Yes S-(28.7.1) as a 4-design 4-(28.7.4s), 3≤s≤252 ? 4-(28.7.10:2) Yes Residual design of 5-(29.7.138) 4-(28.8,42s), 1≤s≤126 ? 4-(28.10.28s), 1≤s≤126 ? 4-(28.11.792s), 1≤s≤2403 ? 4-(28.11.792s), 1≤s≤3714 ? 4-(28.13.44s), 1≤s≤44858 ? 4-(28.13.44s), 1≤s≤14858 ? 4-(29.5.10) Yes Derived design of 5-(30.7.150) 4-(29.7.10s), 1≤s≤632 ? 4-(29.1.20c), 1≤s≤632 ? 4-(29.1.20c), 1≤s≤632 ? 4-(29.11.220) Yes Derived design of 5-(30.12.220) 4-(29.11.220), 2≤s≤1092 ? 4-(29.12.495s), 1≤s≤97 ? 4-(29.13.55s), 1≤s≤97 ?	4-(27,11,33¢), 1≤¢≤3714	?			
4-(28.5.12) 4-(28.5.138) Yes Derived design of 5-(29.7.138) 4-(28.5.6.a), a=0 (mod 2), a≥4 Yes 5-(28.5.a), a=0 4-design 4-(28.5.6.a), all other a 7 4-(28.7.4) 7 4-(28.7.4), 3≤e≤52 7 4-(28.7.1012) Yes Residual design of 5-(29.7.138) 4-(28.7.1012) Yes Residual design of 5-(29.7.138) 4-(28.8.42a), 1≤e≤126 4-(28.9.168a), 1≤e≤126 7 4-(28.10.28a), 1≤e≤2403 7 4-(28.11.792a), 1≤e≤2403 7 4-(28.11.792a), 1≤e≤3714 7 4-(28.13.44a), 1≤e≤14858 7 4-(28.13.45a), 1≤e≤14858 7 4-(29.5.10) 7 4-(29.5.10) 7 4-(29.5.10) Yes Derived design of 5-(30.7.150) 4-(29.7.138) 5-(29.7.138)	4-(27.12.33¢), 1≤¢≤7429	?			-
4-(28.6.138) 4-(28.6.8), sm0 (mod 2), s≥4 4-(28.6.8), sm0 (mod 2), s≥4 4-(28.6.8), sm0 (mod 2), s≥4 4-(28.7.8) 4-(28.7.8) 4-(28.7.8) 4-(28.7.4s), 3≤s≤252 4-(28.7.1012) Yes Residual design of 5-(29.7.138) 4-(28.8.42s), 1≤s≤126 4-(28.9.188s), 1≤s≤126 4-(28.10.28s), 1≤s≤2403 4-(28.11.792s), 1≤s≤218 4-(28.13.44s), i≤s≤3144 4-(28.13.44s), i≤s≤14858 4-(28.13.44s), i≤s≤14858 4-(29.5.5) 4-(29.5.5) 4-(29.5.100) 7-(29.7.10s), 1≤s≤114 4-(29.7.1150) Yes Derived design of 5-(29.7.138) Derived design of 5-(29.7.138) Residual design of 5-(29.7.138)	4-(27.13,55¢), 1≤¢≤7429				_
4-(28.8.8a), a m0 (mod 2), a≥4 Yes 5-(28.8.a/2) as a 4-design 4-(28.8.9a), all other a ? 4-(28.7.4) ? 4-(28.7.8) Yes 5-(28.7.1) as a 4-design 4-(28.7.1012) Yes Residual design of 5-(29.7.138) 4-(28.8.42a), 1≤a≤126 ? 4-(28.9.188a), 1≤a≤126 ? 4-(28.10.28a), 1≤a≤2403 ? 4-(28.11.792a), 1≤a≤218 ? 4-(28.13.44a), 1≤a≤14858 ? 4-(28.13.44a), 1≤a≤14858 ? 4-(29.5.5) Yes [Kreher89] 4-(29.5.5) Yes [Kreher89] 4-(29.8.30a), 1≤a≤4 ? 4-(29.8.100) ? 4-(29.8.100) 1≤a≤4 ? 4-(29.8.100) Yes Derived design of 5-(30.7.150) 4-(29.7.10a), 1≤a≤632 ? 4-(29.9.42a), 1≤a≤632 ? 4-(29.10.20a), 2≤a≤1092 ? 4-(29.12.495a), 2≤a≤1092 ? 4-(29.13.55a), 1≤a≤21092 ? 4-(29.13.55a), 1≤a≤97 ? Residual design of 5-(30.12.220) 4-(29.11.20a), 2≤a≤1092 ? 4-(29.11.295a), 2≤a≤1092 ? 4-(29.13.55a), 1≤a≤97 ?	4-(28.5.12)	Yes	LS	Derived design of 5-(29,6,12)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4-(28,6.138)	Yes		Derived design of 5-(29.7,138)	
	4-(28.6,6a), a≡0 (mod 2), a≥4	Yes		5-(28.5,s/2) as a 4-design	_
$\begin{array}{llllllllllllllllllllllllllllllllllll$	4-(28,6,6s), all other s				_
4-{28.7.4e}. 3≤e≤252 ? 4-{28.7.1012} Yes Residual design of 5-{29.7.138} 4-{28.8,42e}. 1≤e≤126 ? 4-{28.9.188e}. 1≤e≤126 ? 4-{28.10.28e}. 1≤e≤2403 ? 4-{28.11.792e}. 1≤e≤218 ? 4-{28.13.44e}. 1≤e≤3714 ? 4-{28.13.44e}. 1≤e≤14858 ? 4-{28.13.46e}. 1≤e≤14858 ? 4-{29.5.30} Yes [Kreher89] 4-{29.5.10} ? 4-{29.5.10} ? 4-{29.7.10e}. 1≤e≤114 ? 4-{29.7.1150} Yes Derived design of 5-{30.7.150} 4-{29.7.13e}. 1≤e≤632 ? 4-{29.9.2e}. 1≤e≤632 ? 4-{29.10.140e}. 1≤e≤632 ? 4-{29.11.220} Yes Derived design of 5-{30.12.220} 4-{29.11.220}. 2≤e≤1092 ? 4-{29.12.495e}. 2≤e≤1092 ? 4-{29.12.495e}. 2≤e≤1092 ? 4-{29.13.55e}. 1≤e≤97 ?	4-(28.7.4)	?			
4-(28.7.1012) Yes Residual design of 5-(29.7.138) 4-(28.8,42\$), 1≤\$\ellipse\$≤126 ? 4-(28.8,0.28\$\ellipse\$, 1≤\$\ellipse\$≤2403 ? 4-(28.11.792\$\ellipse\$, 1≤\$\ellipse\$≤218 ? 4-(28.11.792\$\ellipse\$, 1≤\$\ellipse\$≤218 ? 4-(28.12.99\$\ellipse\$, 1≤\$\ellipse\$≤3714 ? 4-(28.13.44\$\ellipse\$, 1≤\$\ellipse\$≤14858 ? 4-(28.13.44\$\ellipse\$, 1≤\$\ellipse\$≤14858 ? 4-(29.5.5) Yes [Kreher89] 4-(29.5.10) ? 4-(29.5.10) ? 4-(29.5.10) ? 4-(29.5.150) Yes Derived design of 5-(30.7.150) 4-(29.7.10\$\ellipse\$, 1≤\$\ellipse\$≤4 ? 4-(29.7.10\$\ellipse\$, 1≤\$\ellipse\$≤4 ? 4-(29.7.10\$\ellipse\$, 1≤\$\ellipse\$≤52 ? 4-(29.7.10\$\ellipse\$, 1≤\$\ellipse\$≤532 ? 4-(29.9.42\$\ellipse\$, 1≤\$\ellipse\$≤632 ? 4-(29.1.200), 1≤\$\ellipse\$≤632 ? 4-(29.11.220), 1≤\$\ellipse\$≤632 ? 4-(29.11.220), 2≤\$\ellipse\$≤1092 ? 4-(29.12.495\$\ellipse\$, 2≤\$\ellipse\$≤1092 ? 4-(29.12.495\$\ellipse\$, 1≤\$\ellipse\$≤\$\ellipse\$? 4-(29.13.55\$\ellipse\$, 1≤\$\ellipse\$≤97 ?	4-(28.7.8)	Yes		5-(28,7,1) as a 4-design	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4-(28.7.4≠). 3≤≠≤252	1			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4-(28.7.1012)	Yes		Residual design of 5-(29.7,138)	
4-(28.10.28s). 1≤s≤2403 ? 4-(28.11.792s). 1≤s≤218 ? 4-(28.12.99s). 1≤s≤3714 ? 4-(28.13.44s). 1≤s≤14858 ? 4-(28.14.86s). 1≤s≤14858 ? 4-(29.5.5) Yes [Kreher89] 4-(29.5.10) ? 4-(29.5.10) Yes Derived design of 5-(30.7.150) 4-(29.5.150) Yes Derived design of 5-(30.7.150) 4-(29.7.10s). 1≤s≤114 ? 4-(29.7.1150) Yes 5-(29.7.138) as a 4-design 4-(29.8.10s). 1≤s≤632 ? 4-(29.8.2s). 1≤s≤632 ? 4-(29.10.140s). 1≤s≤632 ? 4-(29.11.220) Yes Derived design of 5-(30.12.220) 4-(29.11.220) Yes Perived design of 5-(30.12.220) 4-(29.11.220s). 2≤s≤1092 ? 4-(29.11.2495s) Yes Residual design of 5-(30.12.220) 4-(29.11.2495s). 2≤s≤1092 ? 4-(29.13.55s). 1≤s≤97 ?	4-(28.8,42s), 1≤s≤126	,			_
4-(38.11.792a), 1≤e≤218 4-(28.12.99a), 1≤e≤218 4-(28.13.44a), 1≤e≤14858 4-(28.14.86a), 1≤e≤14858 7 4-(29.5.5) 4-(29.5.5) 4-(29.5.10) 7 4-(29.5.100) 7 4-(29.5.150) 7 4-(29.7.10a), 1≤e≤4 7 4-(29.7.10a), 1≤e≤114 7 4-(29.7.1150) 7 4-(29.7.1150) 7 4-(29.7.1150) 7 4-(29.7.1150) 7 4-(29.7.1150) 7 4-(29.7.1150) 7 4-(29.7.1150) 7 4-(29.7.1150) 7 4-(29.7.1150) 7 4-(29.7.1150) 7 4-(29.11.220a), 1≤e≤632 8 4-(29.11.220a), 1≤e≤632 8 4-(29.11.220a), 1≤e≤632 8 4-(29.11.2	4-(28.9,168¢). 1≤¢≤126	?			_
4-(28.12.99s), 1≤s≤3714 ? 4-(28.13.44s), 1≤s≤14858 ? 4-(29.5.5) Yes [Kreher89] 4-(29.5.10) ? 4-(29.6.30s), 1≤s≤4 ? 4-(29.5.150) Yes Derived design of 5-(30.7.150) 4-(29.7.1150) Yes 5-(29.7.138) as a 4-design 4-(29.7.1150) Yes 5-(29.7.138) as a 4-design 4-(29.8.10s), 1≤s≤632 ? 4-(29.8.10s), 1≤s≤632 ? 4-(29.10.140s), 1≤s≤632 ? 4-(29.10.140s), 1≤s≤632 ? 4-(29.11.220) Yes Derived design of 5-(30.12.220) 4-(29.11.220s), 2≤s≤1092 ? 4-(29.12.495s), 2≤s≤1092 ? 4-(29.12.495s), 2≤s≤1092 ? 4-(29.13.55s), 1≤s≤97 ?	4-(28.10.28¢). 1≤¢≤2403	?			
+(28,13,44a), 1≤a≤14858 ? +(28,14,66a), 1≤a≤14858 ? +(29,5,5) Yes [Kreher89] +(29,5,10) ? +(29,6,30a), 1≤a≤4 ? +(29,6,150) Yes Derived design of 5-(30,7,150) +(29,7,10a), 1≤a≤114 ? +(29,7,1150) Yes 5-(29,7,138) as a 4-design +(29,8,10a), 1≤a≤632 ? +(29,9,42a), 1≤a≤632 ? +(29,10,140a), 1≤a≤632 ? +(29,10,140b), 1≤a≤632 ? +(29,11,220) Yes Derived design of 5-(30,12,220) +(29,11,220a), 2≤a≤1092 ? +(29,12,495a), 2≤a≤1092 ? +(29,12,495a), 2≤a≤1092 ? +(29,12,495a), 2≤a≤1092 ? +(29,13,55a), 1≤a≤97 ?	4-(28,11,792s), 1≤s≤218	•			_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4-(28.12.99s), 1≤s≤3714	?			
4-(29.5.5) Yes [Kreher89] 4-(29.5.10) ? 4-(29.6.30s), 1≤s≤4 ? 4-(29.6.150) Yes Derived design of 5-(30.7.150) 4-(29.7.1150) Yes 5-(29.7.138) as a 4-design 4-(29.7.1150), 1≤s≤632 ? 4-(29.6.10s), 1≤s≤632 ? 4-(29.10.140s), 1≤s≤632 ? 4-(29.10.140s), 1≤s≤632 ? 4-(29.10.140s), 1≤s≤632 ? 4-(29.11.220) Yes Derived design of 5-(30.12.220) 4-(29.11.220s), 2≤s≤1092 ? 4-(29.12.495s), 2≤s≤1092 ? 4-(29.12.495s), 2≤s≤1092 ? 4-(29.13.55s), 1≤s≤97 ?	4-(28,13,44s), 1≤s≤14858	?			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4-(28.14.66¢), 1≤¢≤14858	?			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4-(29.5.5)	Yes		Kreher89	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	4-(29.5.10)	?			_
$\begin{array}{llllllllllllllllllllllllllllllllllll$	4-(29,6,30e), 1≤e≤4	?			-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4-(29.6,150)	Yes		Derived design of 5-(30.7.150)	ヿ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4-(29.7,10≠), 1≤≠≤114	?			╗
4-(29,9.42s), 1≤s≤632 ? 4-(29,10,140s), 1≤s≤532 ? 4-(29,11,220) Yes Derived design of 5-(30,12,220) 4-(29,11,220s), 2≤s≤1092 ? 4-(29,12,495s) Yes Residual design of 5-(30,12,220) 4-(29,12,495s), 2≤s≤1092 ? 4-(29,13,55s), 1≤s≤97 ?	4-(29,7.1150)	Yes		5-(29,7,138) as a 4-design	_
4-(28.10.140a). 1≤e≤532 ? 4-(29.11.220) Yes Derived design of 5-(30.12.220) 4-(29.11.220a). 2≤e≤1092 ? 4-(29.12.495a). 2≤e≤1092 ? 4-(29.12.495a). 2≤e≤1092 ? 4-(29.13.55a). 1≤e≤97 ?	4-(29.8.10a), 1≤a≤632	?			ヿ
4-(29.11.220) Yes Derived design of 5-(30.12.220) 4-(29.11.220a). 2≤s≤1092 ? +(29.12.495) Yes Residual design of 5-(30.12.220) 4-(29.12.495a). 2≤s≤1092 ? 4-(29.13.55a). 1≤s≤97 ?	4-(29,9.42a), 1≤a≤632	,			ヿ
4-(29,11,220s), 2≤s≤1092 ? 4-(29,12,495) Yes Residual design of 5-(30,12,220) 4-(29,12,495s), 2≤s≤1092 ? 4-(29,13,55s), 1≤s≤97 ?	4-(29,10,140s), 1≤s≤532	?			┪
+(29.12,495) Yes Residual design of 5-(30.12,220) +(29.12,495s). 2≤s≤1092 ? +(29,13.55s), 1≤s≤97 ?	4-(29.11,220)	Yes		Derived design of 5-(30,12,220)	ヿ
+(29.12,495¢). 2≤¢≤1092	4-(29,11,220s), 2≤s≤1092	?			ヿ
4-(29,13.55¢), 1≤¢≤97 ?	+(29.12,495)	Yes		Residual design of 5-(30.12,220)	ヿ
1 (10,10,000); 12,020	4-(29.12,495a). 2≤a≤1092				┪
	4-(29,13.55s), 1≤s≤97	?			ᅥ
4-(29.13,5390) Yes Derived design of 5-(30,14.5390)	4-(29.13,5390)	Yes		Derived design of 5-(30,14,5390)	┪

t-(υ, k, λ)	Existence	Remarks		
4-(29.13.55a). 99≤a≤1024	,			
4-(29.13,56375)	Yes	Derived design of 5-(30.14.56375)		
4-(29.13,55s). 1026≤s≤18572	, ,			
4-(29.14,22a), 1≤a≤391	,			
4-(29,14,8624)	Yes	Residual design of 5-(30.14.5390)		
4-(29.14.22¢), 393≤¢≤4099	7			
4-(29.14.90200)	Yes	Residual design of 5-(30.14,56375)		
4-(29.14.22¢), 4101≤¢≤74290	1 1			
4-(30,5,2e), 1≤e≤6	7			
4-(30,6.5e), 1≤e≤32	,			
4-(30.7.20a). 1≤a≤64	!			
4-(30.7,1300)	Yes	5-(30.7,150) as a 4-design		
4-(30.8.10s), 1≤s≤747	!			
4-(30,9,4a). 1≤a≤8222	!			
4-(30,10.14¢), 1≤¢≤8222				
4-(30.11,440s), 1≤s≤747	!			
4-(30,12.55¢), 1≤¢≤12	'			
4-(30,12,715)	Yes	5-(30,12,220) as a 4-design		
4-(30.12.55¢), 14≤¢≤14202	!			
4-(30.13,1430¢). 1≤¢≤1092	,	·		
4-{30.14,143¢}, 1≤¢≤97	?			
4-(30.14,14014)	Yes	5-(30,14,5390) as a 4-design		
+(30.14.143s), 99≤s≤1024	!			
4-(30.14,146575)	Yes	5-(30,14.56375) as a 4-design		
4-(30.14.143s), 1026≤s≤18572				
4-(30,15,52e), 1≤e≤74290	1 .			

t-(υ, ±, λ)	Exis	ence	Remarks
5-(12,6.e), 1≤e≤3	Yes	NLS	Extension of 4-(11.5.s)
5-(13.6.4)	Yes	LS	Kreher88a
5-(14.6.3)	Yes		Brouwer86
5-(14.7.6)			
5-(14.7,12)	Yes		Extension of 4-(13,6.12)
5-(14,7,18)	Yes		6-(14,7.4) as a 5-design
5-(15,7.15)	Yes		vanTrung86;
5-(16,6,1)	No .		Extend 4-(15.5.1)
5-(16.6.2)	?		
5-(16.6,3)	Yes		Brouwer86
5-(16,6.4)	?		
5-(16,8.5)	Yes		Brouwer86
5-(16,7.5s), 1≤s≤2	7		
5-(16.7.15)	Yes	<u> </u>	Brouwer86
5-(16.7,5a), 4≤a≤5	,		
5-(16,8,5¢), 1≤¢≤5	?		
5-(16.8.5s), 6 <s≤16< td=""><td>Yes</td><td></td><td>Extension of 4-(15.7.5s)</td></s≤16<>	Yes		Extension of 4-(15.7.5s)
5-(17.7.6)	•		
5-(17.7,12)	Yes		Brouwer86
5-(17.7,18)	Yes		vanTrung86
5-(17,7,24)	Yes		Brouwer86
5-(17,7,30)	+		
5-(17.8.20a). 1≤a≤2	+ +	-	
5-(17,8.60)	Yes	† · · · · ·	vanTrung86
5-(17,8.80)	Yes	- :	Kramer75
5-(17.8,100)		 	
5-(18,8,≠), 1≤≠≤3	- ;	 	
5-(18,6,4)	Yes		Kramer75
5-(18.6.5)	Yes	 	Brouwer86
5-(18.6,6)	7	† –	
5-(18,7,5a), 1≤a≤5	Yes	1	Kramer75
5-(18,8,2)	No	1	Extend 4-(17.7.2)
5-(18,8,4)	•		
5-(18,8,6)	Yes	<u> </u>	Mac Williams 78
5-(18,8,2¢), 4≤¢≤6	1	1	
5-(18,8,2¢), 7≤¢≤8	Yes		Kramer75
5-(18,8,2e), 9 <e<14< td=""><td>7</td><td> </td><td></td></e<14<>	7	 	
5-(18,8,2¢), 15≤¢≤16	Yes	1	Kramer75
5-(18,8,2a), 17 \(\leq a \leq 21	+	1	
5-(18,8,40)	Yes	 	MacWilliams78
5-(18,8,2¢), 22≤¢≤24	Yes	 	Kramer75
5-(18,8.2¢), 25≤¢≤29	1 7	+	
5-(18,8,2±), 30≤±≤33	Yea		Kramer75
J-(10,0,4#), JU∑#∑#	1 . 64	·	F

t-(υ, Ε, λ) Existence		. Aemarks	
5-(18.8.2a), 34 <a≤37< th=""><th>,</th><th></th></a≤37<>	,		
5-(18.8.2a), 38 <a≤41< td=""><td>Yes</td><td>Kramer75</td></a≤41<>	Yes	Kramer75	
5-(18.8.2s), 42 <s<45< td=""><td>7</td><td></td></s<45<>	7		
5-(18.8.2e), 46 <a<49< td=""><td>Yes</td><td>Kramer75</td></a<49<>	Yes	Kramer75	
5-(18.8.2s), 50 <s<51< td=""><td>- , </td><td></td></s<51<>	- , 		
5-(18,8.104)	Yes	See note (1) with 5-(17.7.24) and 5-(17.8.80)	
5-(18.8.106)	•		
5-{18.8.2a}, 54≤a≤57	Yes	Kramer75	
5-(18.8.2s), 58≤s≤81	,		
5-{18.8.2s}, 62 <s<65< td=""><td>Yes</td><td>Kramer75</td></s<65<>	Yes	Kramer75	
5-(18.8.2a). 66≤a≤69	•		
5-(18,8.2s), 70≤s≤71	Yes	Kramer75	
5-(18.9.5)	No .	Extend 4-(17,8.5)	
5-(18,9.10)	· ·		
5-(18,9,15)	Yes	Extension of +(17.8.15)	
5-(18.9.5a), 4≤a≤5	- ; - - 		
5-(18.9.5e), 6≤e≤27	Yes	Extension of 4-(17.8.5a)	
5-(18.9.140)	Yes	Kramer75	
5-(18.9.5a). 29≤a≤30	Yes	Extension of +(17.8.5a)	
5-(18.9.155)	Yes	Kramer75	
5-(18.9.5a), 32≤a≤33	Yes	Extension of 4-(17.8.54)	
5-(18.9.170)			
5-(18.9.175)	Yes	Extension of 4-(17.8.175)	
5-(18.9.5a). 36≤a≤38	Yes	Brouwer86	
5-(18.9.195)	Yes	Kramer75	
5-(18,9,200) -	Yes	Extension of 4-(17.8.5e)	
5-(18.9.205)	Yes	Kramer75	
5-(18,9.5s), 42≤s≤44	Yes	Brouwer86	
5-(18.9.225)	Yes	Kramer75	
5-(18.9,230)	Yes	Extension of 4-(17,8,230)	
5-(18,9.235)	Yes	Kramer75	
5-(18,9.5a). 48≤a≤49	Yes	Brouwer86	
5-(18,9,5¢), 50<¢<51	Yes	Kramer75	
5-(18.9.260)	Yes	Brouwer86!	
5-(18.9,5a), 53≤a≤54	Yes	Kramer75	
5-(18.9,275)	Yes	Extension of 4-(17,8.275)	
5-(18.9.5a), 56≤a≤57	Yes	Kramer75	
5-(18,9,290)	+ 103	,	
5-(18.9.5a), 59 <a<60< td=""><td>Yes</td><td>Kramer75</td></a<60<>	Yes	Kramer75	
5-(18.9.305)	Yes	Brouwer86	
5-(18.9.5¢), 62≤¢≤63	Yes	Kramer75	
5-(18.9.320)	Yes	Extension of 4-(17,8.5s)	

$t-(v, k, \lambda)$	Existence	Remarks
5-(18.9.5a), 67 <a<58< td=""><td>Yes</td><td>Extension of 4-(17.8.5s)</td></a<58<>	Yes	Extension of 4-(17.8.5s)
5-(18,9,345)	Yes	Kramer75
5-(18.9.5a), 70≤a≤71	Yes	Extension of 4-(17.8.5s)
5-(19.6.2e), 1≤e≤3	!	
5-(19.7.7a). 1≤a≤3	1	
5-(19,7,28)	Yes	van Trung86
5-(19.7.35)	Yes	See note (1) with 5-(18.6.5) and 5-(18.7.30)
5-(19.7,42)	Yes	Brouwer86
5-(19.8,28)	•	
5-(19.8,28a), 2≤a≤3	Yes	van Trung66
5-(19.8,112)	Yes	Derived design of 6-(20.9.112)
5-(19.8.140)	. Yes	vanTrung86
5-(19.8,168)	2.	
5-(19.9.7)	No .	Kohler85
5-(19,9.14)		
5-(19,9.21)	Yes	Brouwer86
5-(19.9,7a). 4≤a≤6	7 7	
5-(19.9.7a). 7≤a≤8	Yes	van Trung86
5-(19.9.7¢). 9≤¢≤14	?	
5-(19,9.7¢). 15≤¢≤16	Yes	vanTrung86
5-(19.9.7s), 17≤s≤19	1	
5-(19.9.140)	Yes	Brouwer86
5-(19.9.147)	?	
5-(19.9.7 s), 22≤s≤24	Yes	van Trung86
5-(19.9.7∗), 25≤∗≤29		
5-(19.9.7±), 30≤±≤33	Yes	van Trung88
5-(19.9.7∉). 34≤∉≤37	!	
5-(19.9.7¢), 38≤¢≤41	Yes	(vanTrung88)
5-(19,9,7¢), 42≤¢≤43	?	
5-(19,9,308)	Yes	Residual design of 6-(20.9.112)
5-(19,9.315)	?	
5-(19.9,7¢), 45 <u>≤</u> ¢≤49	Yes	van Trung86
5-(19.9,7¢), 50 <u>≤</u> ¢≤51		
5-(19,9,364)	Yes	(van Trung86)
5-(19,9,371)	'	
5-(19,9,7±), 54≤±≤57	Yes	van Trung86
5-(19.9.7a), \$8 <u>≤a≤61</u>	,	'
5-(19,9.7¢), 62≤¢≤65	Yes	(van Trung86)
5-(19,9,7a), 66≤a≤69	<u>'</u>	
5-(19,9.7a), 70≤a≤71	Yes	(vanTrung86)
5-(20.8.35¢), 1≤¢≤6	Yes	Kramer85
5-(20,9,105)	Yes	[Kramer85]
5-(20.9,210)	Yes	van Trung86

t-(υ, k, λ)	Existence	Remarks
5-(20.9.105s), 3≤s≤4	Yes	Kramer85
5-(20.9,525)	Yes	vanTrung86
5-(20,9,630)	Yes	Kramer85
5-(20.10.21s), 1≤s≤2	,	
5-(20.10.63)	Yes	Extension of 4-(19.9.63)
5-(20.10.21a), 4≤a≤5	•	
5-(20.10.21∉), 6≤∉≤8	Yes	Kramer85
5-(20,10,189)	Yes	Extension of 4-(19.9.189)
5-(20.10.21s), 10≤s≤13	Yes	Kramer85
5-(20.10.21*), 14<*<71	Yes	Extension of 4-(19.9,21s)
5-(21.6.4)	,	
5-(21.6,8)	Yes	Derived design of 6-(22.7.8)
5-(21.7.30)	7	
5-(21,7.60)	Yes	Residual design of 6-(22.7.8)
5-(21.8,280)	7	
5-(21.9.70)	•	
5-(21.9.140)	Yes	van Trung86
5-(21.9,210)	1 . 1	
5-(21.9.280)	Yes	vanTrung86
5-(21.9.350)	† •	
5-{21.9.420}	Yes	vanTrung86
5-(21.9.490)	?	
5-(21,9,560)	Yes	'vanTrung86'
5-(21.9,630)	,	
5-(21.9.700)	Yes	vanTrung86
5-(21,9.770)	•	
5-(21.9,840)	Yes	vanTrung86
5-(21.9.910)	7	
5-(21.10.168)	7	
5-(21,10,336)	Yes	Kramer84
5-(21,10.504)	?	
5-{21,10,672}	Yes	vanTrung86
5-(21,10,840)	1	
5-(21.10,1008)	Yes	vanTrung86
5-(21.10.1176)		
5-(21.10,1344)	Yes	See note (1) with 5-(20.9,420) and 5-(20,10,924)
5-(21,10,1512)	1	
5-(21,10,1680)	Yes	van Trung86
5-(21.10,168¢), 11≤¢≤13		
5-(22.5,a), 1≤a≤8	,	
5-(22,7,2¢), 1≤¢≤33	,	
5-(22,7,68)	Yes	6-(22.7.8) as a 5-design
5-(22.8.20s), 1≤s≤17	,	

Existence	Remerks
7	
Yes	See note (1) with 5-(21,9.280) and 5-(21,10.672)
1 7	
Yes	See note (1) with 5-(21,9.420) and 5-(21.10.1008)
,	
Yes	See note (1) with 5-(21,9.560) and 5-(21,10,1344)
,	
Yes	See note (1) with 5-(21.9.700) and 5-(21.10.1680)
1 1	
!	
Yes	Extension of 4-(21.10.336)
† ' 	
· Yes	Extension of 4-(21.10.448)
1	
Yes	Extension of 4-(21.10.672)
,	
Yes	Extension of 4-(21.10.952)
1	
Yes	Extension of 4-(21,10,1008)
1 1	
Yes	Extension of 4-(21,10,1120)
•	
Yes	Extension of 4-(21,10,1288)
1 9	
Yes	Extension of 4-(21,10,1456)
7	
Yes	Extension of 4-(21,10,1512)
1 1	
Yes	Extension of 4-(21,10,1680)
 •	
Yes	Extension of 4-(21.10,1792)
1	
Yes	Extension of 4-(21,10,1848)
7 1	
Yes .	See note (2) with 5-(21,10.672)
7	
Yes	Extension of 4-(21,10.1960)
 	
Yes	Extension of 4-(21,10,2015)
 	
Yes	Extension of 4-(21,10.2184)
+ • +	
	?

t-(v, ±, λ)	Existence	Remarks
5-(22,11,2296)	Yes	Extension of 4-(21,10,2296)
5-(22.11,2324)	?	
5-(22.11.28¢), 84≤¢≤85	Yes	Extension of 4-(21,10.28s)
5-(22.11.28s), 86 <s<89< td=""><td>?</td><td></td></s<89<>	?	
5-(22.11.2520)	Yes	Extension of 4-(21,10,2520)
5-(22.11.28¢). 91≤¢≤93	?	
5-(22.11.2632)	Yes	Extension of 4-(21,10,2632)
5-(22.11.2660)	?	
5-(22.11.2688)	Yes	Extension of 4-(21.10,2888)
5-(22.11,28¢), 97≤¢≤101	?	
5-(22,11,2856)	Yes	See note (2) with 5-(21.10.1008)
5-(22.11.28s), 103≤s≤119	7	
5-(22.11.3360)	Yes	Extension of 4(21,10,3360)
5-(22,11,28≠), 121≤≠≤131	7	
5-(22.11.3896)	Yes	Extension of 4-(21.10.3696)
5-(22.11.28¢), 133≤¢≤135		
5-(22.11.3808)	Yes	See note (2) with 5-(21,10,1344)
5-(22.11.28s), 137≤s≤143	•	
5-(22.11.4032)	Yes	Extension of 4-(21,10,4032)
5-(22.11.28¢), 145≤¢≤152	7	
5-(22.11,4284)	Yes	Extension of 4-(21.10.4284)
5-(22.11.28¢), 154≤¢≤169	:	
5-(22.11,4760)	Yes	See note (2) with 5-(21,10,1680)
5-(22,11,28a), 171≤s≤186	,	
5-(22.11,5236)	Yes	Extension of 4-(21,10,5236)
5-(22.11.28¢), 188≤¢≤201	?	
5-(22.11.5856)	Yes	Extension of 4-(21,10,5856)
5-(22.11,5684)	?	
5-(22,11,5712)	Yes	Extension of 4-(21,10,5712)
5-(22.11,28¢), 205≤¢≤221	1	
5-(23.6,6)	7	
5-(23.7,3¢), 1≤¢≤25	1	
5-(23,8,8¢), 1≤¢≤51	, ,	
5-(23.9,90a), 1≤a≤17	1	
5-(23,10,252¢), 1≤¢≤17	 	
5-(23,11,42¢), 1≤¢≤67	1	
5-(23.11.2856)	Yes	See note (1) with 5-(22,10,952) and 5-(22,11,1904)
5-(23.11.42a), 69 <u><a< u=""><101</a<></u>	 	1-, (,,,(,11.1304)
5-(23,11,4284)	Yes	See note (1) with 5-(22,10,1428) and 5-(22,11,2858)
5-(23.11,42±), 103≤±≤135	 	() (
5-(23,11,5712)	Yes	See note (1) with 5-(22,10,1904) and 5-(22,11,3808)
5-(23.11,42a), 137≤a≤169	1	(-) (,,) and (-(44,11,3608)
5-(23.11,7140)	Yes	See note (1) with 5-(22,10,2380) and 5-(22,11,4760)
	1	(-) ****** 0-(22,11,4700)

\$\{23.11.42a\}. \text{171\leqs\colored}{\sigma\colored}{\sigm	$t-(v, k, \lambda)$	Existence	Remarks
5-(24.5.1) 5-(24.5.2) 5-(24.5.3) 5-(24.5.3) 5-(24.5.3) 5-(24.5.3) 5-(24.5.3) 5-(24.7.3) 5-(24.8.3) 5-(24.8.1) 7-(24.8.1) 7-(24.8.1) 7-(24.8.1) 7-(24.8.1) 7-(24.8.1) 7-(24.8.2) 7-(24.8.2) 7-(24.8.2) 7-(24.8.2) 7-(24.8.3)		4	Nemarke
S-(24.6.2) Yes		1 '	Denniston 18
\$\(\frac{24.6.3}{\} \) \ \ \{\sigma} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			<u> </u>
S-(24.6.a), 4≤s≤9 Yes Kreber89			
5-(24.7.3) Yes Driesen78 5-(24.7.3s) 2≤s≤20 Yes Kreher89 5-(24.7.3s) 2≤s≤28 Yes Driesen78 5-(24.7.3s) 2≤s≤28 Yes Kreher89 5-(24.8.1) Yes Witt38 5-(24.8.s) 10≤s≤127 Yes Kramer74b 5-(24.8.s) 130≤s≤129 Yes Driessen78 5-(24.8.s) 130≤s≤484 ? Assmus69 5-(24.9.8) Yes Assmus69 5-(24.9.8) Yes Driessen78 5-(24.9.8) Yes Assmus69 5-(24.9.8) Yes Assmus69 5-(24.9.8) Yes Driessen78 5-(24.9.380) Yes Driessen78 5-(24.9.8) 15≤s≤279 ? 5-(24.9.8) 15≤s≤285 ? 5-(24.9.716) Yes Driessen78 5-(24.9.719) Yes Driessen78 5-(24.10.18s) 1≤s≤22 Yes 5-(24.11.42s) 1≤s≤2 No			
5-(24.7.3s). 2≤s≤20 Yes Driessen78 5-(24.7.3s). 2≤s≤28 Yes Nreher89 5-(24.8.1) Yes Witt38 5-(24.8.s). 10≤s≤127 ? Witt38 5-(24.8.s). 10≤s≤127 ? Driessen78 5-(24.8.s). 10≤s≤127 ? Driessen78 5-(24.8.s). 10≤s≤129 Yes Driessen78 5-(24.8.s). 10≤s≤484 ? Driessen78 5-(24.9.6) Yes Driessen78 5-(24.9.6) Sriessen78 5-(24.9.7) Sriessen78 5-(24.9			(1000)
5-(24.7.63) Yes Driessen78 5-(24.8.7.3*) 22≤≤28 Yes Kreher89 5-(24.8.9.) 2≤≤9 Yes Witt38 5-(24.8.a) 10≤≤127 ? 5-(24.8.a) 128≤≤129 Yes Driessen78 5-(24.8.a) 130≤≤484 ? Assmus69 5-(24.9.6*) Yes Assmus69 5-(24.9.6*) 2≤≤5 ? 5-(24.9.6*) Yes Driessen78 5-(24.9.36) Yes Assmus69 5-(24.9.36) Yes Driessen78 5-(24.9.5*) ? Assmus69 5-(24.9.6*) ? Assmus69 5-(24.9.6*) ? Assmus69 5-(24.9.6*) ? Assmus69 5-(24.9.6*) ? Driessen78 5-(24.10.18*) 1≤<≤29			
5-(24.7.3a). 22≤σ≥8 Yes Kreher89 5-(24.8.a). 25σ≥9 Yes Witt38 5-(24.8.a). 10≤σ≤127			
5-(24.8.a), 2≤o≤9 5-(24.8.a), 10≤o≤127 7 5-(24.8.a), 10≤o≤129 7es 5-(24.8.a), 130≤o≤484 7 5-(24.9.b) 5-(24.10.540) 5-(24.11.42a) 5-(24.11.42b) 5-(24.11.42b) 5-(24.12.6a) 5-(24.12.6a) 5-(24.12.5a)			<u> </u>
5-(24.8.s), 2≤s≤9 5-(24.8.s), 10≤s≤127 5-(24.8.s), 128≤s≤129 Yes Driessen78 5-(24.8.s), 130≤s≤484 ? 5-(24.9.6s), 2≤s≤5 ? 5-(24.9.36) Yes Driessen78 5-(24.9.18s) Yes Driessen78 Driessen78 5-(24.9.17s) Telessen78 Driessen78 5-(24.9.17s) Driessen78 5-(24.9.17s) Telessen78 5-(24.9.18s), 1≤s≤29 Telessen78 5-(24.10.18s), 1≤s≤29 Telessen78 5-(24.10.18s), 1≤s≤29 Telessen78 5-(24.10.18s), 11≤s≤29 Telessen78 5-(24.10.18s), 11≤s≤20 Telessen78 5-(24.11.42s), 11≤s≤109 Telessen78 5-(24.11.42s), 11≤s≤323 Telessen78 5-(24.12.6s), 3≤s≤7 Telessen78 F-(24.12.6s), 11≤s≤20 No Extend 4-(23.11.6s) F-(24.12.6s), 3≤s≤7 Telessen78 F-(24.12.6s), 3≤s≤7 Telessen78 F-(24.12.6s), 3≤s≤7 Telessen78 F-(24.12.6s), 3≤s≤7 Telessen78 F-(24.12.6s), 11≤s≤20 No Extend 4-(23.11.6s) F-(24.12.6s), 3≤s≤7 Telessen78 F-(24.12.6s), 1293≤s≤1429 Telessen78 F-(24.12.6s), 1393≤s≤2583 Teles			
5-(24.8.a), 10≤a≤127 5-(24.8.a), 128≤≤129 Yes Driessen78 5-(24.9.a) 7-(24.9.a) 5-(24.9.a) 7-(24.9.a) 5-(24.9.a) 7-(24.9.a) 5-(24.9.a) 7-(24.9.a) 5-(24.9.a) 7-(24.9.a) 5-(24.9.a) 7-(24.9.a) 7-(24.10.a) 7-(24.			
5-(24.8.a). 128≤a≤129 Yes Driessen78 5-(24.8.a). 130≤a≤484 ? Asamus69 5-(24.9.6a). 2≤a≤5 ? Driessen78 5-(24.9.6a). 366 Yes Driessen78 5-(24.9.8a). 7≤a≤59 ? Asamus69 5-(24.9.8a). 61≤a≤279 ? Asamus69 5-(24.9.1880) Yes Difference of 5-(24.9.1718) and 5-(24.9.36) 5-(24.9.178b) Yes Driessen78 5-(24.9.6a). 287≤a≤323 ? Priessen78 5-(24.10.18a). 1≤a≤29 ? Driessen78 5-(24.10.18a). 1≤a≤23 ? Priessen78 5-(24.10.18a). 31≤a≤323 ? Priessen78 5-(24.11.42a). 1≤a≤109 ? Priessen78 5-(24.11.42a). 11≤a≤209 ? Priessen78 5-(24.11.42a). 11≤a≤323 ? Priessen78 5-(24.12.6a). 1≤a≤2 No Extend 4-(23.11.6a) 5-(24.12.6a). 1≤a≤2 No Extend 4-(23.11.6a) 5-(24.12.6a). 9≤a≤95 ? Priessen78 5-(24.12.6a). 9≤a≤95 ? Priessen78 5-(24.12.6a). 9≤a≤95 ? Priessen78 5-(2		1 1	iviamet 140
5-(24.9.6) 130≤e≤484 ? 5-(24.9.6) Yes Asamus69 5-(24.9.36) Yes Driessen78 5-(24.9.6) Yes Driessen78 5-(24.9.6) 15≤e≤59 ? 5-(24.9.6) 15≤e≤279 ? 5-(24.9.6) 15≤e≤279 ? 5-(24.9.6) 281≤e≤285 ? 5-(24.9.1716) Yes Difference of 5-(24.9.1716) and 5-(24.9.36) 5-(24.9.6) 281≤e≤285 ? 5-(24.9.1716) Yes Driessen78 5-(24.9.1716) Yes Driessen78 5-(24.9.1716) Yes Driessen78 5-(24.9.18) 15≤e≤29 ? 5-(24.10.18e) 15≤e≤29 ? 5-(24.10.40) Yes Driessen78 5-(24.10.40) Yes Driessen78 5-(24.11.42e) 15≤e≤109 ? 5-(24.11.42e) 11≤e≤323 ? 5-(24.11.42e) 11≤e≤2 No Extend 4-(23.11.6e) 5-(24.12.6e) 3≤e≤7 ? 5-(24.12.6e) 3≤e≤7 ? 5-(24.12.6e) 9≤e≤95 ? 5-(24.12.6e) 9≤e≤95 ? 5-(24.12.7752) Yes See note (2) with 5-(23.11.2856) 5-(24.12.6e) 1293≤e≤1429 ? 5-(24.12.6e) 1431≤e≤1937 ? 5-(24.12.6e) 1431≤e≤1937 ? 5-(24.12.6e) 1939≤e≤2583 ?		- Vet	Driesen78
5-(24.9.6) Yes Assmus69 5-(24.9.8) 2≤s≤5 ? 5-(24.9.8) Yes Driessen78 5-(24.9.8) Yes Assmus69 5-(24.9.8) 15≤s≤59 ? 5-(24.9.8) 15≤s≤279 ? 5-(24.9.8) 15≤s≤279 ? 5-(24.9.8) 281≤s≤285 ? 5-(24.9.8) 281≤s≤285 ? 5-(24.9.1718) Yes Driessen78 5-(24.9.1718) Yes Driessen78 5-(24.9.1718) Yes Driessen78 5-(24.9.1718) Yes Driessen78 5-(24.9.18) 15≤s≤29 ? 5-(24.10.18) 15≤s≤29 ? 5-(24.10.18) 15≤s≤29 ? 5-(24.10.40) Yes Driessen78 5-(24.10.40) Yes Driessen78 5-(24.10.40) Yes Driessen78 5-(24.11.42s) 15≤s≤323 ? 5-(24.11.42s) 11≤s≤323 ? 5-(24.11.42s) 11≤s≤323 ? 5-(24.11.42s) 11≤s≤323 ? 5-(24.12.8) 15≤s≤2 No Extend 4-(23.11.6s) 5-(24.12.8) Yes Assmus69 5-(24.12.8) Yes Assmus69 5-(24.12.6s) 9≤s≤95 ? 5-(24.12.6s) 9≤s≤95 ? 5-(24.12.6s) 95≤s≤1429 ? 5-(24.12.6s) 1431≤s≤1429 ? 5-(24.12.6s) 1431≤s≤1937 ? 5-(24.12.6s) 1431≤s≤2583 ?		+ ;;	Art reserves of
5-(24.9.8a). 2≤e≤5 ? 5-(24.9.8a). 7≤e≤59 ? 5-(24.9.8a). 61≤e≤279 ? 5-(24.9.8a). 61≤e≤279 ? 5-(24.9.8a). 281≤e≤285 ? 5-(24.9.8a). 281≤e≤285 ? 5-(24.9.8a). 281≤e≤285 ? 5-(24.9.8a). 287≤e≤285 ? 5-(24.9.8a). 287≤e≤285 ? 5-(24.9.8a). 287≤e≤285 ? 5-(24.9.8a). 387≤e≤323 ? 5-(24.10.18a). 1≤e≤29 ? 5-(24.10.18a). 1≤e≤29 ? 5-(24.10.18a). 31≤e≤323 ? 5-(24.11.42a). 1≤e≤109 ? 5-(24.11.42a). 11≤e≤323 ? 5-(24.11.42a). 11≤e≤323 ? 5-(24.11.42a). 11≤e≤323 ? 5-(24.12.8a). 11≤e≤32 No Extend 4-(23.11.8a) 5-(24.12.8a). 3≤e≤7 ? 5-(24.12.8a). 3≤e≤95 ? 5-(24.12.6a). 9≤e≤95 ? 5-(24.12.6a). 9≤e≤1291 ? 5-(24.12.5a). 1293≤e≤1429 ? 5-(24.12.5a). 1293≤e≤1429 ? 5-(24.12.5a). 1343≤e≤1937 ? 5-(24.12.5a). 1431≤e≤1937 ? 5-(24.12.5a). 1939≤e≤2583 ?		+ v	AsemusAQ
5-(24.9.36) Yes Driessen78 5-(24.9.36), 7≤e≤59 5-(24.9.360) Yes Asmus69 5-(24.9.36) 15≤e≤279 7 5-(24.9.180) Yes Difference of 5-(24.9.1718) and 5-(24.9.38) 5-(24.9.5e), 281≤e≤285 7 5-(24.9.718) Yes Driessen78 5-(24.9.1718) 5-(24.9.6e), 287≤e≤323 7 5-(24.10.18e), 1≤e≤29 7 5-(24.10.18e), 31≤e≤323 7 5-(24.10.18e), 31≤e≤323 7 5-(24.11.42e), 12e≤109 7 5-(24.11.42e), 11≤e≤323 7 5-(24.11.42e), 11≤e≤323 7 5-(24.11.42e), 11≤e≤29 No Extend 4-(23.11.6e) 5-(24.12.6e), 3≤e≤7 7 5-(24.12.6e), 9≤e≤95 7 5-(24.12.6e), 9≤e≤1291 7 5-(24.12.7752) Yes See note (2) with 5-(23.11.2856) 5-(24.12.68e), 1293≤e≤1429 7 5-(24.12.68e), 1431≤e≤1937 7 5-(24.12.68e), 1939≤e≤2583			, Assistant
5-(24.9.6a), 7≤e≤59 5-(24.9.360) Yes Assmus69 5-(24.9.8a), 51≤e≤279 7 5-(24.9.1680) Yes Difference of 5-(24.9.1716) and 5-(24.9.36) 5-(24.9.6a), 281≤e≤285 7 5-(24.9.1716) Yes Driessen78 5-(24.9.8a), 287≤e≤323 ? 5-(24.10.18a), 1≤e≤29 ? 5-(24.10.540) Yes Driessen78 5-(24.10.8a), 31≤e≤323 ? 5-(24.10.8a), 1≤e≤323 ? 5-(24.11.42a), 1≤e≤109 ? 5-(24.11.42a), 11≤e≤22 No Extend 4-(23.11.6a) 5-(24.12.6a), 3≤e≤7 ? 5-(24.12.6a), 9≤e≤95 ? 5-(24.12.6a), 9 <e≤95 1293≤e≤1429="" 129≤e≤1429="" 1431≤e≤1937="" 1939≤e≤2583="" 5-(24.12.5a),="" 5-(24.12.6a),="" 9<e≤1291="" 9<e≤95="" ?="" ?<="" td=""><td></td><td></td><td>Drieman 78</td></e≤95>			Drieman 78
5-(24.9.360) Yes Assmus69 5-(24.9.6a). 51≤a≤279 ? 5-(24.9.1880) Yes Difference of 5-(24.9.1718) and 5-(24.9.36) 5-(24.9.5a). 281≤a≤285 ? 5-(24.9.1716) Yes Driessen78 5-(24.9.18a). 1≤a≤233 ? 5-(24.10.18a). 1≤a≤29 ? 5-(24.10.540) Yes Driessen78 5-(24.10.18a). 31≤a≤233 ? 5-(24.11.42a). 1≤a≤109 ? . 5-(24.11.42a). 11≤a≤323 ? . 5-(24.11.42a). 11≤a≤2 No Extend 4-(23.11.6a) 5-(24.12.6a). 3≤a≤7 ? . 5-(24.12.6a). 9≤≤95 ? . 5-(24.12.6a). 9≤a≤95 ? . 5-(24.12.6a). 9≤a≤1291 ? . 5-(24.12.6a). 9.95a≤1291 ? . 5-(24.12.6a). 1293≤a≤1429 ? . 5-(24.12.6a). 1431≤a≤1937 ? . 5-(24.12.6a). 1431≤a≤1937 ? . 5-(24.12.6a). 1939≤a≤2583 ? .			Direseuro
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		- V	Asemusão
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			712046304
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	Difference of 5-124 9 1716) and 5-124 9 36)
5-(24.9.1716) Yes Driessen78 5-(24.9.8a), 287≤a≤323 ? 5-(24.10.18a), 1≤a≤29 ? 5-(24.10.540) Yes Driessen78 5-(24.10.18a), 31≤a≤323 ? 5-(24.10.18a), 31≤a≤323 ? 5-(24.11.42a), 15a≤109 ? 5-(24.11.42a), 111≤a≤323 ? 5-(24.11.42a), 111≤a≤323 ? 5-(24.11.42a), 111≤a≤323 ? 5-(24.12.6a), 1≤a≤2 No Extend 4-(23.11.6a) 5-(24.12.6a), 3≤a≤7 ? 5-(24.12.6a), 3≤a≤7 ? 5-(24.12.6a), 9≤a≤95 ? 5-(24.12.6a), 9≤a≤95 ? 5-(24.12.6a), 9≤a≤95 ? 5-(24.12.6a), 9 <a≤95 (assmus69)="" 1293≤a≤1429="" 1431≤a≤1937="" 1939≤a≤2583="" 5-(24.12.6a),="" 97≤a≤1291="" 9<a≤95="" ?="" ?<="" pes="" td=""><td></td><td></td><td></td></a≤95>			
5-(24.9.6a), 287≤s≤323 ? 5-(24.10.18a), 1≤s≤29 ? 5-(24.10.18a), 31≤s≤323 ? 5-(24.10.18a), 31≤s≤323 ? 5-(24.11.42a), 1≤s≤109 ? 5-(24.11.42a), 111≤s≤323 ? 5-(24.11.42a), 111≤s≤323 ? 5-(24.11.42a), 111≤s≤323 ? 5-(24.12.6a), 1≤s≤2 No Extend 4-(23.11.6a) 5-(24.12.6a), 3≤s≤7 ? 5-(24.12.6a), 9≤s≤57 ? 5-(24.12.6a), 9≤s≤95 ? 5-(24.12.6a), 9≤s≤95 ? 5-(24.12.6a), 9≤s≤1291 ? 5-(24.12.6a), 9≤s≤1291 ? 5-(24.12.6a), 1293≤s≤1429 ? 5-(24.12.6a), 1293≤s≤1429 ? 5-(24.12.6a), 1431≤s≤1937 ? 5-(24.12.6a), 1431≤s≤1937 ? 5-(24.12.6a), 1939≤s≤2583 ?		Yes	Driesen78
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		7	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5-(24.10,540)	Yes	Driesten78
5-(24.11.42a). 1≤a≤109 ? 5-(24.11.4620) Yes iDriessen78 5-(24.11.42a). 111≤a≤323 ? 5-(24.12.6a). 1≤e≤2 No Extend 4-(23.11.6a) 5-(24.12.6a). 3≤e≤7 ? 5-(24.12.6a). 9≤a≤95 ? 5-(24.12.6a). 9≤a≤95 ? 5-(24.12.6a). 97≤a≤1291 ? 5-(24.12.6a). 97≤a≤1291 ? 5-(24.12.6a). 1293≤e≤1429 ? 5-(24.12.6a). 1293≤e≤1429 ? 5-(24.12.6a). 1293≤e≤1429 ? 5-(24.12.6a). 1431≤a≤1937 ? 5-(24.12.6a). 1431≤a≤1937 ? 5-(24.12.6a). 1431≤a≤1937 ? 5-(24.12.6a). 1939≤a≤2583 ?	5-(24.10.18s), 31 <s<323< td=""><td></td><td></td></s<323<>		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		 	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Yes	Driessen78
$\begin{array}{llllllllllllllllllllllllllllllllllll$	5-(24.11.42a), 11i≤a≤323	 	
5-(24.12.6s), 3≤s≤7 7 5-(24.12.48) Yes Assmus69 5-(24.12.6s), 9≤s≤95 ? 5-(24.12.576) Yes [Assmus69 5-(24.12.576) Yes See note (2) with 5-(23.11,2856) 5-(24.12.7752) Yes See note (2) with 5-(23.11,2856) 5-(24.12.8s), 1293≤s≤1429 ? 5-(24.12.8s) Yes Extension of 4-(23.11,8580) 5-(24.12.6s), 1431≤s≤1937 ? 5-(24.12.1628) Yes See note (2) with 5-(23.11.4284) 5-(24.12.6s), 1939≤s≤2583 ?		No	Extend 4-(23.11.6a)
5-(24.12.48) Yes Assmus69 5-(24.12.6s), 9≤s≤95 ? 5-(24.12.576) Yes [Assmus69 5-(24.12.576) Yes See note (2) with 5-(23.11,2856) 5-(24.12.7752) Yes See note (2) with 5-(23.11,2856) 5-(24.12.8s), 1293≤s≤1429 ? 5-(24.12.8s) Yes Extension of 4-(23.11,8580) 5-(24.12.6s), 1431≤s≤1937 ? 5-(24.12.1628) Yes See note (2) with 5-(23.11.4284) 5-(24.12.6s), 1939≤s≤2583 ?		1 .	
5-(24.12.576) Yes [Assmus69 5-(24.12.6s), 97≤s≤1291 ? 5-(24.12.7752) Yes See note (2) with 5-(23.11,2856) 5-(24.12.8s), 1293≤s≤1429 ? 5-(24.12.8s) Yes Extension of 4-(23.11,8580) 5-(24.12.8s), 1431≤s≤1937 ? 5-(24.12.1628) Yes See note (2) with 5-(23.11.4284) 5-(24.12.6s), 1939≤s≤2583 ?	5-(24,12,48)	Yes	Assmus69
5-(24.12.576) Yes [Assmus69 5-(24.12.6s), 97≤s≤1291 ? 5-(24.12.7752) Yes See note (2) with 5-(23.11,2856) 5-(24.12.8s), 1293≤s≤1429 ? 5-(24.12.8s) Yes Extension of 4-(23.11,8580) 5-(24.12.8s), 1431≤s≤1937 ? 5-(24.12.1628) Yes See note (2) with 5-(23.11.4284) 5-(24.12.6s), 1939≤s≤2583 ?	5-(24.12,6¢), 9≤¢≤95	7 7	
5-(24.12.6s), 97≤s≤1291 ? 5-(24.12.7752) Yes See note (2) with 5-(23.11.2858) 5-(24.12.6s), 1293≤s≤1429 ? 5-(24.12.8580) Yes Extension of 4-(23.11.8580) 5-(24.12.8s), 1431≤s≤1937 ? 5-(24.12.11628) Yes See note (2) with 5-(23.11.4284) 5-(24.12.6s), 1939≤s≤2583 ?	5-(24,12,576)	Yes	Assmus69
5-(24.12.7752) Yes See note (2) with 5-(23.11.2858) 5-(24.12.6a), 1293≤a≤1429 ? 5-(24.12.8580) Yes Extension of 4-(23.11.8580) 5-(24.12.6a), 1431≤a≤1937 ? 5-(24.12.11628) Yes See note (2) with 5-(23.11.4284) 5-(24.12.6a), 1939≤a≤2583 ?	5-(24.12,6a), 97≤a≤1291	?	
5-(24.12.6a), 1293≤a≤1429 ? 5-(24.12.8580) Yes Extension of 4-(23.11.8580) 5-(24.12.8a), 1431≤a≤1937 ? 5-(24.12.11628) Yes See note (2) with 5-(23.11.4284) 5-(24.12.6a), 1939≤a≤2583 ?	5-(24.12,7752)	Yes	See note (2) with 5-(23.11,2856)
5-(24.12.8580) Yes Extension of 4-(23.11,8580) 5-(24.12.8s), 1431≤s≤1937 ? 5-(24.12.11628) Yes See note (2) with 5-(23.11.4284) 5-(24.12.6s), 1939≤s≤2583 ?	5-(24,12,5±), 1293≤±≤1429	,	
5-(24.12.8s), 1431≤s≤1937 ? 5-(24.12.11628) Yes See note (2) with 5-(23.11.4284) 5-(24.12.6s), 1939≤s≤2583 ?	5-(24.12.8580)	Yes	Extension of 4-(23,11,8580)
5-{24,12,6a}, 1939≤a≤2583 ?	5-(24.12,8s), 1431≤s≤1937	, ,	,
5-{24,12,6a}, 1939≤a≤2583 ?	5-(24,12,11628)	Yes	See note (2) with 5-(23.11.4284)
5-(24.12.15504) Yes See note (2) with 5-(22.11.5710)	5-(24.12.6a), 1939≤a≤2583	,	
- 1	5-(24.12.15504)	Yes	See note (2) with 5-(23.11,5712)

$t-(v,k,\lambda)$	Existe	nce	Remarks
5-(24.12.8±), 2585≤±≤3229	,		
5-(24.12.19380)	Yes		See note (2) with 5-(23,11,7140)
5-(24.12.6s), 3231≤s≤4199	,		
5-(25.7.10s), 1≤s≤9	?		
5-(25.8,20€), 2≲€≤28	,		
5-(25,9,15s), 1≤s≤2	7		
5-(25.9,45)	Yes		See note (1) with 5-(24.8.9) and 5-(24.9.86)
5-(25,9,15¢), 4≤¢≤161	,		
5-(25,10.24a), 1≤a≤323	.2	•	
5-(25.11,60s), 1≤s≤323	?		
5-(25,12,120s), 1≤s≤109	7		
5-(25,12,13200)	Yes		See note (1) with 5-(24.11.4620) and 5-(24.12.8580)
5-(25,12.120s), 111≤s≤323	,		
5-(26,6,3¢), 1≤¢≤3	,		
5-(26.8,70s), 1≤s≤9	,		
5-(26.9.315¢), 1≤¢≤9	7		
5-(26.10.63s), 1≤s≤161	7		
5-(26.11,84s), i≤s≤323	7		
5-(26,12,180¢), 1≤¢≤323	?		
5-(26.13,45e), 1≤e≤769			
5-(26.13,34650)	Yes		See note (2) with 5-(25,12,13200)
5-(26.13,45s), 771≤s≤2261	? }		
5-(27,6,2¢), 1≤¢≤5	7		
5-(27.7,21s), 1≤s≤5	7		
5-(27.8,14 0 e), 1≤e≤5	7		
5-(27,9,35¢), 1≤¢≤104	?		
5-(27,10,126s), 1≤s≤104	?		
5-(27,11,231s), 1≤s≤161	7		
5-(27,12,264e), 1≤e≤323	?		
5-(27,13,495e), 1≤e≤323	!		
5-(28,6,1)	7		
5-(28.5,s), 2≤s≤11	Yes		Kreher87a
5-(28,7,1)	Yes		Denniston76:
5-(28,7,s), 2 <s 126<="" <="" td=""><td>,</td><td></td><td></td></s>	,		
5-(28.8,7a), 1≤a≤126	?		
5-(28,9,35¢), 1≤¢≤126	,		
5-(28.10,7±), 1≤±≤2403	7		
5-(28.11,231s), 1\left\(s \left\) 218	1 7		<u> </u>
5-(28,12,33¢), 1≤¢≤3714	1 , 1		
5-(28,13,33a), 1 <u><a< u=""><7429</a<></u>	1 1		
5-(28.14,55e), 1≤e≤7429	+ -		
5-(29.6.12)	Yes	LS	Derived design of 6-(30,7,12)
5-(29,7,8a), 1≤a≤22	+ + +	 -	and a facility)

1-(υ, k, λ)	Existence	Remarks
5-(29,7,138)	Yes	Residual design of 6-(30.7,12)
5-(29.8,8¢), 1≤¢≤126	7	
5-(29,9.42s), 1≤s≤126	7	
5-(29,10,188s), 1≤s≤126	7	
5-(29.11,308¢), 1≤¢≤218	1	
5-(29.12,792s), 1≤s≤218	7	
5-(29,13,99¢), 1≤¢≤3714	1 1	
5-(29.14.44a), 1≤e≤14858	7	
5-(30,6,5¢), 1≤¢≤2		
5-(30,7,30e), 1≤e≤4	1	
5-(30,7,150)	Yes	6-(30.7,12) as a 5-design
5-(30,8,20≠), 1≤≠≤57	1	
5-(30.9.10¢), 1≤¢≤632	7	
5-(30.10,42≠), 1≤≠≤ 6 32	!	
5-(30.11,1540e)), 1≤e≤57	7	
5-(30.12.220)	Yes	MacWilliams78
5-(30,12.220s), 2≤s≤1092	?	
5-(30.13.495¢), 1≤¢≤1092	7	
5-(30,14.55±), 1≤≠≤97	?	
5-(30,14.5390)	Yes	MacWilliams78
5-(30,14.55≠), 99≤≠≤1024	7	
5-(30.14,56375)	Yes	[MacWilliams78]
5-(30,14.55≠), 1026≤≠≤18572	?	
5-(30.15,22a). 1 <a 74290<="" <="" td=""><td>7</td><td></td>	7	

$t-(v, k, \lambda)$	Exis	ence	Remarks
6-(14,7,4)	Yes	LS	Extension of 5-(13,6,4)
6-(15.7,3)	,		
8-(16,8,15)	7		
6-(17,7,1)	No		Extend 5-(16,6,1)
6-(17.7.a), 2≤a≤5	?		
6-(17,8,5a), 1≤a≤5			
6-(18.8.5∗), 1≤∗≤5	,		
8-(18.9.20a), 1≤a≤5	,		
6-(19.7,a), 1≤a≤6	? "	-	
6-(19,8,6a), 1≤a≤6	?		
6-(19.9,2s), 1≤s≤5	No		Haemers74
6-(19.9,2≠), 6≤≠≤71			
6-(20,8,74), 1≤4≤6	1 1		
6-(20.9,28s), 1≤s≤3			
6-(20.9.112)	Yes		Kramer85
6-(20,9.28¢), 5≤¢≤6	,		
6-{20.10,7). 1≤≤2	No		Haemers74
6-(20.10.7s), 3≤s≤71	,	-	
6-(21.9.35.). 1≤.≤6	•		
6-(21.10.105s), 1≤s≤6	 		
6-(22,7.4)	9		
6-(22,7,8)	Yes		Teirlinck88
6-(22,8.60)	,		
6-(22,9,280)	,		
6-(22.10.70¢), 1≤¢≤13	7		
6-(22,11,168a), 1≤a≤13	7		
5-(23,7.s), 1≤s≤8	,		
6-(23.8,4¢), 1≤¢≤17	7	- 	
6-(23.9.20e), 1≤e≤17	,		
6-(23.10,70¢), 1≤¢≤17	7		
6-(23.11.14e), 1≤e≤221	7	- +	
6-(24.7.6)	7		
6-(24,8,3s), 1 <s<25< td=""><td> </td><td></td><td></td></s<25<>	 		
6-(24.9,24a), 1≤a≤17	 		
6-(24.10,90e), 1 <e<17< td=""><td>++</td><td></td><td></td></e<17<>	++		
6-(24,11,252¢), 1≤¢≤17	 	+	
6-(24.12.42a), 1≤a≤221	+ + +		
6-(25,7,a), 1≤a≤9	- - - - - - - - - - 		
6-(25.8.3¢), 1≤¢≤28	 		
6-(25,9,3¢), 1≤¢≤161	 ; 	\dashv	
6-(25.10.6s), 1 < s < 323	- - -		
6-(25,11,18e), 1≤e≤323	 		
6-(25.12,42a), 1≤a≤323	+ + +		

$t-(v, k, \lambda)$	Exic	tence	Remarks
6-(26,8.10≠), 1≤≠≤9		T	
6-(26.9.60≠), 1≤≠≤9	,	1	
6-(26,10,15¢), 1≤¢≤161	7		
6-(26.11.24s), 1≤s≤323	7	1	
6-(26,12,60a), 1≤a≤323	7	1	
6-(26.13,120≠), 1≤≠≤323	*	T	
6-(27.9,70≠), [≤≠≤9	?		
6-(27,10,315¢), 1≤¢≤9	?	T	
6-(27,11.63¢), 1≤¢≤161	?	1	
6-(27.12.84s), 1≤s≤323	?		
6-(27.13,180a), 1≤a≤323	?		
6-(28,7.2s), 1≤s≤5	1		
6-(28,8,21a), 1≤a≤5	1		
6-(28.9.140≠), 1≤≠≤5	?		
6-(28,10,35±), 1≤±≤104	,		
6-(28.11,1386a), 1≤a≤9	7		
6-(28.12.231s), 1≤s≤161	7	1	
6-(28,13.264a), 1≤a≤323	7		
6-(28,14,495s), 1≤s≤323	?		
6-(29,7.a), 1≤e≤i1	7		
6-(29,8,s), 1≤s≤126	7		
6-(29,9,7¢), 1≤¢≤126	?		
5-(29,10,35a), 1≤a≤126	1		
6-(29.11,77¢), 1≤¢≤218	?		
6-(29.12,231¢), 1≤¢≤218	?		
6-(29,13,33a), 1≤a≤3714	?	<u> </u>	•
6-(29.14,33s), 1≤s≤7429	?		
6-(30.7,12)	Yes	LS	[Teirlinck88]
6-(30,8.12s), 1≤s≤11	,		
6-(30.9.8s), 1≤s≤126	,		
6-(30.10.42a), 1≤a≤126	?		
6-(30,11,1848≠), 1≤≠≤11	,		
6-(30,12,308≠), 1≤≠≤218	?		
6-(30.13,792≠), 1≤≠≤218	?		
6-(30,14,99±). 1≤≠≤3714	?		
8-(30.15,44)	No		Hacmers74
6-(30,15.44¢), 2 <u><¢≤</u> 14858	?		

T-(10.8.3) T-(18.8.1) No Extend 6-(17.7.1) T-(18.9.1) 2 < 5	t-(υ, ±, λ)	Existence	Remarks
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		· · ·	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7-(18,8.1)	No	Extend 8-(17.7.1)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7-(18,8.a), 2 <a≤5< td=""><td>7</td><td></td></a≤5<>	7	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7-(18,9.5¢) 1≤¢≤5	7	<u> </u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7-{19.9.8¢}, 1≤¢≤5	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7-(20,8,s), 1≤s≤6	•	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7-(20,9,6a). 1≤a≤6		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7-(20.10.20), 1≤0≤5	No	Extend 6-(19.9.2s)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7-(21,9,7¢), 1≤¢≤6	,	<u> </u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7-(21,10,28a), 1≤a≤6		
7-{22.11.105e}, $1 \le e \le 6$ 7-{23.8.8} 7-{23.9.60} 7-{23.10.280} 7-{23.11.70e}, $1 \le e \le 13$ 7-{24.8.e}, $1 \le e \le 8$ 7-{24.9.4e}, $1 \le e \le 8$ 7-{24.9.4e}, $1 \le e \le 8$ 7-{24.11.70e}, $1 \le e \le 17$ 7-{24.12.14e}, $1 \le e \le 17$ 7-{25.9.9e}, $1 \le e \le 8$ 9 7-{25.9.9e}, $1 \le e \le 8$ 9 7-{25.19.24e}, $1 \le e \le 17$ 7-{25.11.90e}, $1 \le e \le 17$ 7-{26.8.1.90e}, $1 \le e \le 17$ 7-{26.8.9}, $1 \le e \le 9$ 7-{26.10.3e}, $1 \le e \le 9$ 7-{26.11.6}, $1 \le e \le 9$ 7-{26.11.6}, $1 \le e \le 323$ 9 7-{26.12.18e}, $1 \le e \le 323$ 9 7-{27.10.80e}, $1 \le e \le 9$ 7 7-{27.9.10e}, $1 \le e \le 9$ 9 7-{27.10.80e}, $1 \le e \le 9$ 9 7-{28.11.315e}, $1 \le e \le 9$ 9	7-(22,10,35s), 1 <s<6< td=""><td>- , </td><td></td></s<6<>	- , 	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7-(22.11.105a), 1≤a≤6	,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7-(23,8,8)	- 	
7-(23.11.70e). $1 \le e \le 13$? 7-(24.8.e). $1 \le e \le 8$? 7-(24.9.4e). $1 \le e \le 17$? 7. (24.10.20e). $1 \le e \le 17$? 7. (24.10.20e). $1 \le e \le 17$? 7. (24.11.70e). $1 \le e \le 17$? 7. (24.12.14e). $1 \le e \le 17$? 7. (24.12.14e). $1 \le e \le 221$? 7. (25.9.8e). $1 \le e \le 8$? 7. (25.9.8e). $1 \le e \le 8$? 7. (25.9.8e). $1 \le e \le 8$? 7. (25.10.24e). $1 \le e \le 17$? 7. (25.11.90e). $1 \le e \le 17$? 7. (25.12.252e). $1 \le e \le 17$? 7. (26.8.e). $1 \le e \le 17$? 7. (26.8.e). $1 \le e \le 17$? 7. (26.9.9.e). $1 \le e \le 17$? 7. (26.10.3.e). $1 \le e \le 17$? 7. (26.10.3.e). $1 \le e \le 17$? 7. (26.11.6.e). $1 \le e \le 17$? 7. (27.11.6.e). $1 \le e \le 17$? 7. (27.11.6.e). $1 \le e \le 17$? 7. (27.11.15.e). $1 \le e \le 17$? 7. (27.11.15.e). $1 \le e \le 17$? 7. (27.11.15.e). $1 \le e \le 18$? 7. (27.11.30.e). $1 \le e \le 323$? 7. (27.11.30.e). $1 \le e \le 18$? 7. (27.11.30.e). $1 \le e \le 18$? 7. (27.11.35.e). $1 \le e \le 323$? 7. (28.11.315.e). $1 \le e \le 18$? 7. (28.1		1 .	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7-{23,10,280)	7	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7-(23.11.70¢). 1≤¢≤13		
7-(24.10.20e). $1 \le e \le 17$ 7-(24.11.70e). $1 \le e \le 17$ 7-(24.12.14e). $1 \le e \le 221$ 7-(25.8.6) 7-(25.8.6) 7-(25.9.9e). $1 \le e \le 8$ 7-(25.10.24e). $1 \le e \le 17$ 7-(25.11.90e). $1 \le e \le 17$ 7-(25.11.90e). $1 \le e \le 17$ 7-(25.12.24e). $1 \le e \le 17$ 7-(25.12.30e). $1 \le e \le 17$ 7-(26.13.6). $1 \le e \le 17$ 7-(26.13.6). $1 \le e \le 17$ 7-(26.10.3e). $1 \le e \le 17$ 7-(26.11.6) No [Haemers74] 7-(26.11.6s). $1 \le e \le 17$ 7-(27.11.8e). $1 \le e \le 17$ 7-(27.11.15e). $1 \le e \le 17$ 7-(27.11.15e). $1 \le e \le 17$ 7-(27.11.30e). $1 \le e \le 17$ 7-(27.12.24e). $1 \le e \le 17$ 7-(28.13.42e). $1 \le e \le 17$ 7-(27.13.30e). $1 \le e \le 17$ 7-(28.13.42e). $1 \le e \le 17$ 7-(27.13.30e). $1 \le e \le 17$ 7-(28.13.22e). $1 \le e \le 17$ 7-(28.13.30e). $1 \le e \le 17$		- , 	
7-(24.10.20e). $1 \le e \le 17$ 7-(24.11.70e). $1 \le e \le 17$ 7-(24.12.14e). $1 \le e \le 221$ 7-(25.8.6) 7-(25.8.6) 7-(25.9.9e). $1 \le e \le 8$ 7-(25.10.24e). $1 \le e \le 17$ 7-(25.11.90e). $1 \le e \le 17$ 7-(25.11.90e). $1 \le e \le 17$ 7-(25.12.24e). $1 \le e \le 17$ 7-(25.12.30e). $1 \le e \le 17$ 7-(26.13.6). $1 \le e \le 17$ 7-(26.13.6). $1 \le e \le 17$ 7-(26.10.3e). $1 \le e \le 17$ 7-(26.11.6) No [Haemers74] 7-(26.11.6s). $1 \le e \le 17$ 7-(27.11.8e). $1 \le e \le 17$ 7-(27.11.15e). $1 \le e \le 17$ 7-(27.11.15e). $1 \le e \le 17$ 7-(27.11.30e). $1 \le e \le 17$ 7-(27.12.24e). $1 \le e \le 17$ 7-(28.13.42e). $1 \le e \le 17$ 7-(27.13.30e). $1 \le e \le 17$ 7-(28.13.42e). $1 \le e \le 17$ 7-(27.13.30e). $1 \le e \le 17$ 7-(28.13.22e). $1 \le e \le 17$ 7-(28.13.30e). $1 \le e \le 17$	7-(24,9,40), 1<6<17	- , 	
7-(24.11.70s), $1 \le s \le 17$ 7-(24.12.14s), $1 \le s \le 221$ 7-(25.8.6) 7-(25.9.9s), $1 \le s \le 8$ 7-(25.10.24s), $1 \le s \le 8$ 7-(25.10.24s), $1 \le s \le 17$ 7-(25.11.90s), $1 \le s \le 17$ 7-(25.12.252s), $1 \le s \le 17$ 7-(25.12.252s), $1 \le s \le 17$ 7-(26.12.18s), $1 \le s \le 9$ 7-(26.10.3s), $1 \le s \le 161$ 7-(26.11.6s), $2 \le s \le 323$ 7-(26.12.18s), $1 \le s \le 6$ 7-(27.10.80s), $1 \le s \le 9$ 7-(27.10.80s), $1 \le s \le 323$ 7-(27.13.30s), $1 \le s \le 323$ 7-(28.10.70s), $1 \le s \le 9$ 7-(28.10.70s), $1 \le s \le 9$ 7-(28.11.35s), $1 \le s \le 9$ 7-(28.12.36s), $1 \le s \le 9$ 7-(28.11.35s), $1 \le s \le 9$ 7-(28.11.35s), $1 \le s \le 9$ 7-(28.12.36s), $1 \le s \le 9$		- • 	
7-(24.12.14e), $1 \le e \le 221$? 7-(25.8.6) ? 7-(25.9.9e), $1 \le e \le 8$? 7-(25.10.24e), $1 \le e \le 17$? 7-(25.11.90e), $1 \le e \le 17$? 7-(25.11.90e), $1 \le e \le 17$? 7-(25.12.252e), $1 \le e \le 17$? 7-(26.8.e), $1 \le e \le 17$? 7-(28.9.e), $1 \le e \le 9$? 7-(26.10.3e), $1 \le e \le 9$? 7-(26.11.6b) No [Haemers74] 7-(26.11.6c), $2 \le e \le 323$? 7-(26.12.18e), $1 \le e \le 323$? 7-(26.12.18e), $1 \le e \le 323$? 7-(27.10.60e), $1 \le e \le 9$? 7-(27.10.60e), $1 \le e \le 323$? 7-(27.10.60e), $1 \le e \le 9$? 7-(27.10.60e), $1 \le e \le 323$? 7-(28.10.70e), $1 \le e \le 9$? 7-(28.11.315e), $1 \le e \le 9$?		- , 	
7-(25.8.6) ? ?		- , 	
7-(25.9.9a), $1 \le a \le 8$? 7-(25.10.24a), $1 \le a \le 17$? 7-(25.11.90a), $1 \le a \le 17$? 7-(25.11.90a), $1 \le a \le 17$? 7-(25.12.252a), $1 \le a \le 17$? 7-(26.8a), $1 \le a \le 9$? 7-(26.9.9a), $1 \le a \le 9$? 7-(26.10.3a), $1 \le a \le 161$? 7-(26.11.6a), $2 \le a \le 323$? 7-(26.11.6a), $2 \le a \le 323$? 7-(26.12.18a), $1 \le a \le 323$? 7-(26.13.42a), $1 \le a \le 323$? 7-(27.9.10a), $1 \le a \le 9$? 7-(27.10.80a), $1 \le a \le 9$? 7-(27.11.5a), $1 \le a \le 9$? 7-(27.11.5a), $1 \le a \le 161$? 7-(27.12.24a), $1 \le a \le 323$? 7-(28.13.80a), $1 \le a \le 323$? 7-(28.13.80a), $1 \le a \le 323$? 7-(28.10.70a), $1 \le a \le 9$? 7-(28.11.35a), $1 \le a \le 9$?		7	
7-(25,11.90 e), $1 \le e \le 17$? 7-(25,12.252 e), $1 \le e \le 17$? 7-(28,8 e), $1 \le e \le 9$? 7-(28,9,9 e), $1 \le e \le 9$? 7-(26,10.3 e), $1 \le e \le 9$? 7-(26,11.6 e) No [Haemers74] 7-(26,11.6 e), $2 \le e \le 323$? 7-(26,11.8 e), $1 \le e \le 323$? 7-(26,11.8 e), $1 \le e \le 323$? 7-(26,13.42 e), $1 \le e \le 323$? 7-(27,10.80 e), $1 \le e \le 9$? 7-(27,10.80 e), $1 \le e \le 9$? 7-(27,10.80 e), $1 \le e \le 161$? 7-(27,12.16 e), $1 \le e \le 161$? 7-(27,12.16 e), $1 \le e \le 161$? 7-(27,13.80 e), $1 \le e \le 323$? 7-(28,10,70 e), $1 \le e \le 323$? 7-(28,10,70 e), $1 \le e \le 323$? 7-(28,11,315 e), $1 \le e \le 9$?	7-(25.9.9a), 1≤a≤8	•	,
7-(25,11.90 e), $1 \le e \le 17$? 7-(25,12.252 e), $1 \le e \le 17$? 7-(28,8 e), $1 \le e \le 9$? 7-(28,9,9 e), $1 \le e \le 9$? 7-(26,10.3 e), $1 \le e \le 9$? 7-(26,11.6 e) No [Haemers74] 7-(26,11.6 e), $2 \le e \le 323$? 7-(26,11.8 e), $1 \le e \le 323$? 7-(26,11.8 e), $1 \le e \le 323$? 7-(26,13.42 e), $1 \le e \le 323$? 7-(27,10.80 e), $1 \le e \le 9$? 7-(27,10.80 e), $1 \le e \le 9$? 7-(27,10.80 e), $1 \le e \le 161$? 7-(27,12.16 e), $1 \le e \le 161$? 7-(27,12.16 e), $1 \le e \le 161$? 7-(27,13.80 e), $1 \le e \le 323$? 7-(28,10,70 e), $1 \le e \le 323$? 7-(28,10,70 e), $1 \le e \le 323$? 7-(28,11,315 e), $1 \le e \le 9$?	7-(25,10,24e), 1≤e≤17	 	
7-(25,12,252s), $1 \le s \le 17$? 7-(28,8,s), $1 \le s \le 9$? 7-(28,9,9s), $1 \le s \le 9$? 7-(26,10,3s), $1 \le s \le 161$? 7-(26,11,6) No [Haemers74] 7-(28,11,5s), $2 \le s \le 323$? 7-(28,11,8s), $1 \le s \le 323$? 7-(28,12,18s), $1 \le s \le 323$? 7-(28,13,42s), $1 \le s \le 323$? 7-(27,10,80s), $1 \le s \le 9$? 7-(27,10,80s), $1 \le s \le 9$? 7-(27,11,15s), $1 \le s \le 161$? 7-(27,12,24s), $1 \le s \le 323$? 7-(28,10,70s), $1 \le s \le 323$? 7-(28,11,315s), $1 \le s \le 9$? 7-(28,11,315s), $1 \le s \le 9$?		-	
7-(28.8.a), $1 \le a \le 9$? 7-(28.9.9.a), $1 \le a \le 9$? 7-(28.10.3.a), $1 \le a \le 161$? 7-(28.11.6.b), $1 \le a \le 161$? 7-(28.11.6.a), $1 \le a \le 323$? 7-(28.11.8.a), $1 \le a \le 323$? 7-(28.12.18.a), $1 \le a \le 323$? 7-(27.10.8.a), $1 \le a \le 323$? 7-(27.10.8.a), $1 \le a \le 9$? 7-(27.10.8.a), $1 \le a \le 9$? 7-(27.10.8.a), $1 \le a \le 161$? 7-(27.12.24.a), $1 \le a \le 161$? 7-(27.13.80.a), $1 \le a \le 323$? 7-(28.10.70.a), $1 \le a \le 9$? 7-(28.11.315.a), $1 \le a \le 9$? 7-(28.11.315.a), $1 \le a \le 9$?	7-(25,12,252a), 1 <a<17< td=""><td>7</td><td></td></a<17<>	7	
7-(25.9.9a), $1 \le a \le 9$? 7-(26.10.3a), $1 \le a \le 161$? 7-(26.11.6) No [Haemers74] 7-(26.11.6a), $2 \le a \le 323$? 7-(26.12.18a), $1 \le a \le 323$? 7-(26.12.18a), $1 \le a \le 323$? 7-(27.10.80a), $1 \le a \le 9$? 7-(27.13.30a), $1 \le a \le 9$? 7-(27.13.30a), $1 \le a \le 323$? 7-(28.10.70a), $1 \le a \le 9$? 7-(28.11.315a), $1 \le a \le 9$? 7-(28.11.315a), $1 \le a \le 9$?		 	
7-(26.10.3e), $1 \le a \le 161$ 7-(28.11.6) No [Haemers74] 7-(26.11.8e), $2 \le a \le 323$ 7-(26.12.18e), $1 \le a \le 323$ 7-(26.13.42e), $1 \le a \le 323$ 7-(27.10.80e), $1 \le a \le 9$ 7-(27.10.80e), $1 \le a \le 9$ 7-(27.10.80e), $1 \le a \le 161$ 7-(27.12.24e), $1 \le a \le 161$ 7-(27.13.30e), $1 \le a \le 323$ 7-(28.10.70e), $1 \le a \le 9$ 7-(28.11.315e), $1 \le a \le 9$ 7-(28.12.33e), $1 \le a \le 9$ 7-(28.12.33e), $1 \le a \le 9$		7	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		7	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7-(26,11,6)	No	Haemera74
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7-(28,11,6s), 2 <s<323< td=""><td> </td><td></td></s<323<>	 	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7-(26,12,18a), 1 <a<323< td=""><td>- </td><td></td></a<323<>	- 	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
7-(27.12,24 σ), $1 \le \sigma \le 323$? 7-(27.13,80 σ), $1 \le \sigma \le 323$? 7-(28.10,70 σ), $1 \le \sigma \le 323$? 7-(28.10,70 σ), $1 \le \sigma \le 9$? 7-(28.11,315 σ), $1 \le \sigma \le 9$? 7-(28.12,83 σ), $1 \le \sigma \le 9$? 7-(28,12,83 σ), $1 \le \sigma \le 161$?	7-(27,11,154), 1<4<161		
7-(27.13.80•), 1≤e≤323 ? 7-(28.10,70•), 1≤e≤9 ? 7-(28.11,315e), 1≤e≤9 ? 7-(28.11,315e), 1≤e≤161 ?			
7-(28.10,70ø), 1≤ø≤9 ? 7-(28.11,315ø), 1≤ø≤9 ? 7-(28.12,83ø), 1≤ø≤161 ?			
7-(28.11,315e), 1≤e≤9 ? 7-(28.12.63e), 1≤e≤161 ?		·	
7-(28,12,63¢), 1≤¢≤161 ?			
1/06 (0.0)			
/* ZB 1A BEST 15. SC 373	'-(28.13.84¢), 1≤¢≤323		·

$t-(v, k, \lambda)$	Existence	Remarks
7-(28,14,180a), 1≤a≤323	7	
7-(29,8,2¢), 1≤¢≤5	!	
7-(29,9.21s), 1≤s≤5	1	<u> </u>
7-(29,10,140s), 1≤s≤5	?	· · · · · · · · · · · · · · · · · · ·
7-(29.11.385a), 1≤a≤9	!.	
7-(29.13.231a), 1≤a≤161	?	
7-(29.14.264s), 1≤s≤323	7	
7-(30,8,s), 1≤s≤11	?	
7-(30,9.a). 1≤a≤126	?	
7-(30,10.7¢), 1≤¢≤126	?	
7-(30,11,385a), 1≤a≤11	?	
7-(30,12,77¢), 1≤¢≤218	?	
7-(30,13,231s), 1≤s≤218	?	
7-(30,14.33s). 1≤s≤3714	? .	
7-(30,15.33s), 1≤s≤7429		
8-(19,9,1)	No	Extend 7-(18,8.1)
8-(19,9.s). 2 <s 5<="" <="" td=""><td>?</td><td></td></s>	?	
8-(20.10,6e), 1≤e≤5	,	
8-(21.9.¢). 1≤¢≤6	,	
8-(21,10.8s), 1≤s≤8	,	
8-(22,10.7s). 1≤s≤6	,	
8-(22.11.28s), 1≤s≤6	•	
8-(23.11.35≠), 1≤≠≤6	•	
8-(24,9.8)	. ?	
8-(24.10,60)		
8-(24.11.280)	?	
8-(24.12.70s), i≤s≤13	7	
8-(25,9,≠), 1≤≠≤8		
8-(25,10.4a), 1≤a≤17	?	
8-(25,11.20s), 1≤s≤17	!	
8-(25.12.70s), 1≤s≤17	?	
8-(26.10.9s). 1≤s≤8	,	
8-(26.11.24¢), 1≤¢≤17	7	
8-(26,12.90¢), 1≤s≤17	,	
8-(26.13.252a), 1≤a≤17	7	
8-(27.9.e), 1≤e≤9	 	
8-(27,10.9¢), 1≤¢≤9	<u> </u>	<u> </u>
8-(27,11,3)	No	Hacmers74
8-(27,11,3s), 2\left\(2\)	7	<u> </u>
8-(27,12.5s), 1 <s<2< td=""><td>No</td><td>Haemers74</td></s<2<>	No	Haemers74
8-(27.12.6a), 3 <a 323<="" <="" td=""><td>7</td><td></td>	7	
8-(27,13,18)	No	Haemers74
8-(27.13.18s), 2 <s<323< td=""><td>•</td><td></td></s<323<>	•	

t-(ν, έ, λ)	Existence	9 Remarks
8-(28,10,10s), 1 <s<9< th=""><th>!</th><th></th></s<9<>	!	
8-(28.11.60a), 1≤a≤9		
8-(28.12.15a), 1≤a≤161	,	
8-(28.13.24)	No	Haemers74
8-(28.13.24s), 2≤s≤323	,	
8-(28.14.60a), 1≤a≤323	1.0	
8-(29.11.70a), 1≤a≤9	!	
8-(29.12.315¢), 1≤¢≤9	?	
8-(29.13,63s), 1≤s≤161	,	
8-(29,14.84e), 1 <u><e≤323< u=""></e≤323<></u>	,	
8-(30,9,2¢), 1≤¢≤5	,	
8-(30,10.21¢), 1≤¢≤5	,	
8-(30.14.231a), 1≤a≤161	?	
8-(30,15,264a), 1≤a≤323	1 !	
9-(20,10,1)	No	Extend 8-(19,9.1)
9-(20.10,4), 2≤4≤5	,	
9-(22.10.∉), 1≤∉≤6	, ,	
9-(22.11.6e), 1≤e≤6	,	
9-(23.11,7s), 1≤s≤6	•	
9-(24,12,350), 1≤0≤6	7	
9-(25.10.8)	,	
9-(25,11.60)	,	
9-{25,12,280}		
9-(26,10.€), 1≤≥≤8	?	
9-(26.11,4s), 1≤s≤17	!	
9-(26.12.20s), 1≤s≤17	!	
9-(26,13,70¢), 1≤¢≤17	7	
9-(27.11.90), 1≤0≤8	?	
9-(27.12.24a), 1≤a≤17	?	
9-(27.13,90¢), 1≤¢≤17	?	
9-(28.10.0), 1≤0≤9	?	
9-(28,11,9≠). 1≤≠≤9	7	
9-(28,12,3)	No ·	Haemers74
9-(28,12,3¢), 2≤¢≤161	. !	
9-(28,13,6a), 1≤e≤2	No	Haemers74
9-(28,13.64), 3≤4≤323	,	
9-(28,14,18)	No	Haemers74
9-(28.14.18¢), 2≤¢≤323		
9-(29.11.10≠), 1≤≠≤9	?	
9-(29.12,60+), 1≤+≤9	7	
9-(29,13,15¢), 1≤¢≤161	7	
9-(29.14.24)	No.	Haemers74
9-(29.14.24s), 2\left\(2323	- 	<u> </u>

t(υ, ±, λ)	Existence	Remarks
9-(30,12,70≠), 1≤≠≤9	7	
9-(30.14.63a), 1≤a≤161	·	
9-(30,15,84¢), 1≤¢≤323	- 	
10-(23,11,0), 1≤0≤6	<u> </u>	
10-(24.12.70), 1≤0≤6	, ,	
10-(26.11,8)	•	
10-(26,12,60)	7	
10-(26.13.280)	?	
10-(27,11.4), 1≤4≤8	7 7	
10-(27,12.4)	No	Haemers74
10-{27.12,4¢}, 2≤¢≤17	,	
10-(27.13.20)	No	Haemers74
10-(27.13,20¢), 2≤¢≤17		
10-(28.12.9a), 1≤a≤8	1	
10-(28,13,24¢), 1≤¢≤17	?-	
10-(28,14.90s), 1≤s≤17	,	
10-(29.11.s), 1≤s≤9	1	
10-(29,12,9a), 1≤a≤9	?	
10-(29.13.3¢), 1≤¢≤3	No	Haemers74
10-(29,13,3¢), 4≤¢≤161		
10-(29.14.8s), 1≤s≤8	No	Haemers74
10-(29.14.6¢), 9≤¢≤323	,	
10-(30,12,10s), 1≤s≤9		
10-(30,13,60≠), 1≤≠≤9		
10-(30,14,15)	No	Haemers74
10-(30.14,15a), 2≤a≤161	7	
10-(30.15,24¢), 1≤¢≤4	No.	Haemers74
10-(30.15,24≠), 5≤≠≤323	1	
11-(24.12.¢). 1≤¢≤8	2	
11-(27,12.8)	?	
11-(27,13.60)	;	
11-(28,12,s), 1≤s≤8	?	
11-(28.13.4)	No	[Haemers74]
11-(28,13,40), 2≤0≤17	7	
11-(28,14,20)	No	Haemers74
11-(28,14,20¢), 2≤¢≤17	?	·
11-(29.13.94), 1≤4≤8	7	
11-(29.14.24s), 1≤s≤17	?	
11-(30.12,s), 1≤s≤9	,	,
11-(30.13.9a), 1≤a≤9	?	
11-(30,14.3¢), 1≤¢≤5	No	Haemers74
11-(30.14.3s), 6≤s≤161	7	
11-(30,15.6≠), 1≤≠≤8	No	Haemers74
11-(30.15.6≥), 9≤≥≤323	1	

t-(v, k, \lambda)	Existence	Remarks
12-(28.13,8)	•	
12-(28,14,60)	- • -	
12-(29,13,0), 1≤6≤8	?	
12-(29,14,4)	No	Haemers74
12-(29,14.4¢), 2≤¢≤17		
12-(30,14,9¢), i≤4≤8	?	
12-(30,15,24)	No	Haemers74
12-(30,15,240), 2≤0≤17	,	
13-(29,14,8)	!	
13-{30,14,0}, 1≤0≤8		
13-(30,15,4)	No	Extend 12-(29.14.4)
13-(30.15.40), 2≤0≤17	?	
14-(30,15,8)	•	

Notes

(1) Let $(X, B^{(j)})$ be a $t-(v, k^{(j)}, \lambda^{(j)})$ design for $j=1,\ldots,s$ and $2 \le s \le t$ such that the following conditions hold:

$$k^{(j)} = k^{(j-1)} + 1, \quad 2 \le j \le s,$$
 (i)

$$\sum_{l=1}^{s-m} {s-m-1 \brack s-m-1} \lambda^{(l)}_{\{t-m\}} = \lambda^{(1)}_{\{t-s+1\}}, \quad 0 \le m \le s-2.$$
 (ii)
Then there exists a $t-(v+s-1, k^{(s)}, \lambda^{(1)}_{\{t-s+1\}})$ design. See [vanTrung86].

- (2) If there exists a $t-(2k+1,k,\lambda)$ design, then there exists a $t-(2k+2,k+1,\lambda)\frac{2k+2-t}{k+1-t}$ design. See [vanTrung86].
- (3) If a symmetric block design exists with parameters v, k, λ , then writing $n = k \lambda$: 1. If v is even, n is a square. 2. If v is odd, $z^2 = nz^2 + (-1)^{(v-1)/2} \lambda y^2$ has a solution in integers z, y, z not all zero. See [Chowla50].
- (4) Let v, k, λ satisfy $k(k-1) = \lambda(v-1)$ and suppose we are given a block design D with parameters $v' = v k, \, k' = k \lambda, \, \lambda' = \lambda$, and that $\lambda = 1$ or 2. Then D can be embedded as a residual design in a symmetric design with parameters v, k, \(\lambda\). See [Hall54].

Infinite Families of t-designs , $t \ge 4$

 $4-(2^n+1, 2^m, (2^m-3)\prod_{i=2}^{m-1} \frac{2^{n-i}-1}{2^{m-i}-1})$ designs exist provided 2 < m < n. See [Hubaut74].

 $4-(2^n+1, 2^{n-1}+1, (2^{n-1}-3)(2^{n-2}-1)(2^{n-1}-4))$ designs exist provided $n \ge 4$. See [Driessen78].

 $4-(2^{m}+1, 2^{m}+1, (2^{m}+1)\prod_{i=2}^{m-1}\frac{2^{m-i}-1}{2^{m-i}-1})$ designs exist provided 2 < m < n and m does not divide n. See [Hubaut74].

 $4-(2^{n}+1+s,2^{n-1}-1,\begin{bmatrix}2^{n}+s-3\\s\end{bmatrix}(2^{n-1}-1)(2^{n-2}-1)(2^{n-1}-4)) \text{ designs exist for each } s\geq 2 \text{ such that } n\geq 6 \text{ is large enough so that } \frac{2^{n-1}-2}{n-1}>s+6. \text{ See [Magliveras87]}.$

 $4-(2^n+1+s,2^m,\binom{2^n+s-3}{s})(2^m-3)\mu)$ designs exist for m sufficiently close to n, with m large enough so that $\binom{v}{k} / \binom{v+s}{s} > \lambda_0(\lambda_0-\lambda_1)$ where $\mu = \prod_{i=2}^{m-1} \frac{2^{n-i}-1}{2^{m-i}-1}$ and λ_0, λ_1 are the number of blocks and replication number respectively. See [Magliveras87].

 $4-(2^n+1+s,2^m+1,\binom{2^n+s-3}{s}(2^m+1)\mu)$ designs exist for m sufficiently close to n, with m large enough so that $\binom{v}{k} / \binom{v+s}{s} > \lambda_0(\lambda_0 - \lambda_1)$ where $\mu = \prod_{i=2}^{m-1} \frac{2^{n-i}-1}{2^{m-i}-1}$ and λ_0, λ_1 are the number of blocks and replication number respectively. See [Magliveras87].

 $5+(2^{n}+2, 2^{n-1}+1, (2^{n-1}-3)(2^{n-2}+1))$ designs exist provided $n \ge 4$. See [Alltop72].

 $5-(2^n+3, 2^{n-1}+1, (2^n-2)(2^{n-1}-3)(2^{n-2}+1))$ designs exist provided $n \ge 5$. See [vanTrung84].

 $5-(2^n+4,2^{n-1}+2,(2^n-1)(2^n-2)(2^{n-2}-1))$ designs exist provided $n \ge 5$. See [vanTrung86].

 $5-(2^n+5, 2^{n-1}+2, 2^n(2^n-1)(2^n-2)(2^{n-2}-1))$ designs exist provided $n \ge 6$. See [vanTrung86].

 $5-(2^n+6,2^{n-1}+3,2^{n-1}(2^n+1)(2^n-1)(2^n-2))$ designs exist provided $n \ge 6$. See [vanTrung86].

 $5-(2^n+2+s,2^n+1,\binom{2^n+s-3}{s}(2^{n-1}-3)(2^{n-2}-1))$ designs exist for each $n \ge N$ such that s > 0, $N \ge 4$ and $\frac{2^N-N}{N+1} > s+4$. See Magliveras87.

 $t-(v, t+1, (t+1)!^{2t+1})$ designs exist provided $v \equiv t \pmod{(t+1)!^{2t+1}}$ and $v \ge t+1$. See [Teir-linek87].

Results on the Explicit Enumeration of t-Designs

The following table contains t-designs without repeated blocks for which explicit enumeration had been done. $N(\lambda; t, k, v)$ denotes the number of pairwise non-isomorphic $t - (v, k, \lambda)$ designs.

t(v, k, λ):	$N(\lambda; t, k,$, v)	Remarks
2-(6,3,2)	1		[Nandi46a]
2-(7.3,1)	1		Hall67
2-(7.3,2)	. 1		Gibbons76
2-(7.3.3)	i		Gibbons76
2-(8.4,3)	4		Nandi46b
2-(9,3,1)	1	,	Hall67
2-(9,3,2)	13		Gibbons76
2-(9,3,3)	. 332		Harms87
2-(9,4;3)	11		Stanton76
2-(10.3.2)	394		Colbourn83
2-(10,4.2)	3		[Nandi46a]
2-(10,5,4)	21		[vanLint77]
2-(11,5,2)	1		[Husain45]
2-(13.3.1)	2	•	[DePasquale99]
2-(13,4,1)	. 1		Gibbons76
2-(15,3,1)	. 80	4	(Cole25)
2-(15.7,3)	5		Nandi46bi
2-(16,4,1)	1.		Witt38
2-(16,6.2)	3,		[Husain45]
2-(19.9.4)	8		Gibbons76
2-(21,5,1)	1		Witt38]
2-(25,5,1)	1		MacInnes07
2-(25,9,3)	78	• •	Denniston82
3-(8,4.1)	. 1	•	Barrau08
3-(8,4.2)	1		[Gibbons76]
3-(8.4.3)	1		Gibbons76
3-(10.4.1)	1	•	Barrau08
3-(10.5,3)	7		Breach79
3-(14.4.1)	4		[Mendelsohn72]
3-(17.5.1)	1		Witt38
3-(22.6.1)	- 1		Witc38
3-(26,6.1)	i		
4-(11,5,1)			[Chen72]
4-(23.7.1)			[Barrau08]
5-(12.6.1)	1		[Witt38]
5-(24.8.1)	1		[Barrau08]
	. 1		[Witt38]

Bibliography

[Alltop69]	W.O. Alltop, "An infinite class of 4-designs", Journal of Combinatorial Theory 8 (1969) 320-322.
[Alltop71a]	W.O. Alltop, "Some 3-designs and a 4-design", Journal of Combinatorial Theory (A) 11 (1971) 190-195.
[Alltop71b]	W.O. Alltop, "5-designs in affine spaces", Pacific Journal of Mathematics 39 (1971) 547-551.
[Alltop72]	W.O. Alltop, "An infinite class of 5-designs", Journal of Combinatorial Theory (A) 12 (1972) 390-395.
[Alltop75]	W.O. Alltop, "Extending t-designs", Journal of Combinatorial Theory (A) 18 (1975) 177-186.
[Assmus67]	E.F. Assmus, Jr. and H.F. Mattson, Jr., "On tactical configura- tions and error-correcting codes", Journal of Combinatorial Theory 2 (1967) 243-257.
[Assmus69]	E.F. Assmus, Jr. and H.F. Mattson, Jr., "New 5-designs", Journal of Combinatorial Theory 6 (1969) 122-151.
[Assmus72]	E.F. Assmus, Jr. and H.F. Mattson, Jr., "On weights in quadratic residue codes", Discrete Math. 3 (1972) 1-20.
(Assmus86)	E.F. Assmus, Jr. and J.D. Key, "On an infinite class of Steiner systems with $t=3$ and $k=6$ ", Journal of Combinatorial Theory (A) 42 (1986) 55-60.
[Barrau08]	J.A. Barrau, "Over de combinatorische opgave van Steiner", Kon. Akad. Wetensch. Amst. Verslag Wisen Natuurk. Afd. 17 (1908) 318-326. (=On the combinatory problem of Steiner, Kon. Akad. Wetensch. Amst. Proc. Sect. Sci. 11 (1908) 352-360).
[Bays17]	S. Bays, "Une question de Cayley relative au problème des triades de Steiner", Enseignement Math. 19 (1917) 57-67.
[Bays35]	S. Bays and E. de Weck, "Sur les systèmes de quadruples", Comment. Math. Helvet. 7 (1985) 222-241.
[Bhattacharya43]	K.N. Bhattacharya, "A note on two-fold triple systems", Sankhya 6 (1943) 313-314.
[Beth85]	T. Beth. D. Jungnickel and H. Lenz, Design Theory, Bibiliographisches Institut Mannheim (1985).
[Bose39]	R.C. Bose. "On the construction of balanced incomplete block designs", Ann. Eugenics 9 (1939) 353-399.
[Breach79]	D.R. Breach, "The 2-(9.4.3) and 3-(10.5.3) designs", Journal of Combinatorial Theory (A) 27 (1979) 50-68.
[Breach85]	D.R. Breach. "A family of 3-designs". Are Combinatoria 19 (1985) 5-16.
	·

	•
[Brouwer77]	A.E. Brouwer, "The t-designs with $v < 18$ ", Stichting Mathematisch Centrum zn 76/77.
[Brouwer86]	A.E. Brouwer, "Table of t-designs without repeated blocks, $2 \le t \le k \le v/2$, $\lambda \le \lambda^+/2$ ", unpublished manuscript (1986).
[Cameron73]	P.J. Cameron, "Extending symmetric designs", Journal of Combinatorial Theory (A) 14 (1973) 215-220.
[Carmony78]	L.A. Carmony, "Tight (2t+1)-designs", Utilitae Math. 14 (1978) 59-47.
[Cayley50]	A. Cayley, "On the triadic arrangements of seven and fifteen things", London, Edinburgh and Dublin Philos. Mag. and J. Sci. (8) 37 (1850) 50-53.
[Chee89]	Y.M. Chee, C.J. Colbourn, S.C. Furino and D.L. Kreher, "Large Sets of Disjoint t-Designs", in preparation.
[Chen72]	Y. Chen, "The Steiner systems $S(3,6,26)$ ", Journal of Geometry 2 (1972) 7-28.
[Chouinard83]	L.G. Chouinard II, "Partitions of the 4-subsets of a 13-set into disjoint projective planes", Discrete Math. 45 (1983) 297-300.
[Chowla50]	S. Chowla and H.J. Ryser, "Combinatorial problems", Canadian Journal of Math. 2 (1950) 98-99.
[Clatworthy68]	W.H. Clatworthy and R.J. Lewyckyj, "Comments on Takeuchi's table of difference sets generating balanced incomplete block designs", Review of Int. Stat. Inst. 36 (1968) 12-18.
[Colbourn83]	C.J. Colbourn, M.J. Colbourn, J.J. Harms and A. Rosa, triple systems of order ten. III. (10,3,2) block designs without repeated blocks", Congressus Numerantium 37 (1983) 211-234.
[Cole25]	F.N. Cole, A.S. White and L.D. Cummings, Jr., "Complete classification of triad systems on fifteen elements", Mem. Nat. Acad. Sci. 14 (1925) Second Memoir 89.
[Dehon76]	M. Dehon, "Non-existence d'un 3-design de parameters $\lambda=2$, $k=5$ et $v=11$ ", Discrete Math. 15 (1976) 23-25.
[Dehon83]	M. Dehon, "On the existence of 2-designs $S_{\lambda}(2,3,v)$ without repeated blocks", Discrete Math. 43 (1983) 155-171.
[Delsarte73]	P. Delsarte, "An algebraic approach to the association schemes of coding theory", <i>Philips Res. Repts. Suppl. 10 (1973)</i> .
[Dembowski68]	P. Dembowski, Finite Geometries, Springer-Verlag, Berlin (1988).
[Denniston74]	R.H.F. Denniston, "Some packings with Steiner triple systems", Discrete Math. 9 (1974) 213-227.
[Denniston76]	R.H.F. Denniston, "Some new 5-designs", Bull. London Math. Soc. 8 (1976) 263-267.
[Denniston78]	R.H.F. Denniston, "Non-existence of the Steiner system $S(4,10,66)$ ", $Utilitas\ Math.\ 13\ (1978)\ 303-309$.

R.H.F. Denniston, "The problem of the higher values of t", Ann. [Denniston80] Discrete Math. Vol. 7, North-Holland, Amsterdam (1980) 65-70. R.H.F. Denniston, "Enumeration of symmetric designs (25,9,3)". Denniston82 Ann. Discrete Math. Vol. 15, North-Holland, Amsterdam (1982) R.H.F. Denniston, "A small 4-design", Ann. Discrete Math. Vol. [Denniston83] 18, North-Holland, Amsterdam (1983) 291-294. V. De Pasquale, "Sui sistemi ternari di 13 elementi", Rend. R. [DePasquale99] Ist. Lombardo Sci. e Lett. (2) 32 (1899) 213-221. J.W. DiPaola, J.S. Wallis and W.D. Wallis, "A list of (v,b,r,k,λ) [DiPaola73] designs for r \le 30", Proc. 4th S-E Conf. on Combinatorics, Graph Theory and Computing (1973) 249-258. [Doyen80] J. Doyen and A. Rosa, "An updated bibliography and survey of Steiner systems", Ann. Discrete Math. Vol. 7, North-Holland, Amsterdam (1980) 317-349. Driessen78 L.H.M.E. Driessen, "t-designs, $t \geq 3$ ", Tech. Report (1978), Department of Mathematics, Eindhover University of Technology, Holland. R.A. Fisher, "An examination of the different possible solutions of [Fisher40] a problem in incomplete blocks", Annals of Eugenics 10 (1940) R.A. Fisher and F. Yates, Statistical Tables for Biological, Agri-[Fisher43] cultural and Medical Research, 2nd edition, London, Oliver and Boyd Ltd. (1943). [Ganter77] B. Ganter, J. Pelikan and L. Teirlinck, "Small sprawling systems of equicardinal sets", Ars Combinatoria 4 (1977) 183-142. [Gibbons76] P.B. Gibbons, "Computing techniques for the construction and analysis of block designs", Ph.D. Thesis, Department of Computer Science, University of Toronto (1976). [Gibbons77] P.B. Gibbons, R.A. Mathon and D.G. Corneil, "Computing techniques for the construction and analysis of block designs", Utilitas Math. 11 (1977) 161-192. [Gronau85] H.-D.O.F. Gronau, "A survey of results on the number of t-(v,k,λ) designs", Ann. Discrete Math. Vol. 26, North-Holland, Amsterdam (1985) 209-220. W. Haemers, C. Weug and P. Delsarte, M.B.L.E. Lab. de Haemers74 Recherches, Brussels, Belgium. M. Hall, Jr. and W.S. Connor, "An embedding theorem for balanced incomplete block designs", Canadian Journal of Math. 6 [Hall54] (1954) 35-41.

Soc. 7 (1956) 975-986.

[Hall56]

M. Hall, Jr., "A survey of difference sets", Proc. Amer. Math.

[Hali67]	M. Hall, Jr., Combinatorial Theory, Blaisdell Pub. Co. (1967).
[Hanani60]	H. Hanani, "On quadruple systems", Canadian Journal of Math. 12 (1960) 145-157.
(Hanani61)	H. Hanani, "The existence and construction of balanced incomplete block designs", Ann. Math. Statist. 32 (1961) 361-386.
[Hanani63]	H. Hanani, "On some tactical configurations", Canadian Journal of Math. 15 (1963) 702-722.
[Hanani72]	H. Hanani, "On balanced incomplete block designs with blocks having five elements", Journal of Combinatorial Theory 12 (1972) 184-201.
[Hanani75]	H. Hanani, "Balanced incomplete block designs and related designs", Discrete Math. 11 (1975) 255-369.
[Hanani83]	H. Hanani, A. Hartman and E.S. Kramer, "On three-designs of small order", Discrete Math. 45 (1983) 75-97.
[Harms87]	J.J. Harms, C.J. Colbourn and A.V. Ivanov, "A census of (9,3,3) block designs without repeated blocks", Congressus Numerantium 57 (1987) 147-170.
[Hedayat80]	A. Hedayat and S. Kageyama, "The family of t-designs - part I", Journal Statist. Plann. Inference 4 (1980) 173-212.
[Hubaut74]	X. Hubaut, "Two new families of 4-designs", Discrete Math. 9 (1974) 247-249.
[Hughes62]	D.R. Hughes, "Combinatorial analysis, t-designs and permutation groups", Proc. Symp. Pure Math. Vol. VI (1962) 39-41.
[Hughes65]	D.R. Hughes, "On t-designs and groups", American Journal of Math. 87 (1965) 761-778.
[Husain45]	Q.M. Husain, "On the totality of solutions for the symmetrical incomplete block designs: $\lambda = 2$, $k = 5$ or 8", Sankhya 7 (1945) 204-208.
[Kageyama72]	S. Kageyama, "A survey of resolvable solutions of balanced incomplete block designs", Review Inst. Int. Stat. 30 (1972) 269-278.
[Kageyama83]	S. Kageyama and A. Hedayat, "The family of t-designs - part II", Journal Statist. Plann. Inference 7 (1983) 257-287.
[Kirkman47]	T.P. Kirkman, "On a problem in combinations", Cambridge and Dublin Math. J. 2 (1847) 191-204.
[Kirkman50]	T.P. Kirkman, "Note on an unanswered prize question", Cambridge and Dublin Math. J. 5 (1850) 255-262.
[Kōhler85]	E. Köhler, "Über den allgemeinen Gray-Code und die Nichtexistenz einiger t-designs", Graphen in Forschung und Unterricht, Festschrift K. Wagner (1985) 102-111.

E.S. Kramer and D.M. Mesner, "Intersections among Steiner sys-[Kramer74a] tems", Journal of Combinatorial Theory (A) 16 (1974) 278-285. E.S. Kramer and S.S. Magliveras, "Some mutually disjoint Steiner [Kramer74b] systems", Journal of Combinatorial Theory (A) 17 (1974) 39-48. E.S. Kramer, "Some t-designs for $t \ge 4$ and v = 17.18", Proceed-[Kramer75] ings, 6th Southeastern Conference on Graph Theory, Combinatorics and Computing (1975) 443-459. E.S. Kramer and D. Mesner, "t-designs on hypergraphs", Discrete [Kramer76] Math. 15 (1976) 263-296. E.S. Kramer, "Some triple system partitions for prime powers", [Kramer77] Utilitas Math. 12 (1977) 113-116. E.S. Kramer, "The t-designs using $M_{21} \simeq PSL_3(4)$ on 21 points", [Kramer84] Ars Combinatoria 17 (1984) 191-208. [Kramer85] E.S. Kramer, D.W. Leavitt and S.S. Magiiveras, "Construction procedures for t-designs and the existence of new simple B-designs", Ann. Discrete Math. Vol. 26, North-Holland, Amsterdam (1985) 247-274. [Kramer88a] E.S. Kramer, "Note: An $S_3(3,5,21)$ using graphs", preprint (1988).[Kramer88b] E.S. Kramer and D.L. Kreher, private communications (1988). D.L. Kreher and S.P. Radziszowski, "The existence of simple [Kreher86a] 6-(14,7,4) designs", Journal of Combinatorial Theory (A) 43 (1986) 237-248. [Kreher86b] D.L. Kreher and S.P. Radziszowski, "Finding simple t-designs by using basis reduction", Congressus Numerantium 55 (1986) 235-244. D.L. Kreher and S.P. Radziszowski, "Simple 5-(28,6,λ) designs [Kreher87a] from PSL₂(27)", Ann. Discrete Math. Vol. 34, North-Holland, Amsterdam (1987) 315-318. D.L. Kreher and S.P. Radziszowski, "New t-designs found by [Kreher87b] basis reduction", Congressus Numerantium 59 (1987) 155-164. D.L. Kreher, "A 4-(15,5,5) design", preprint (1988). [Kreher88] D.L. Kreher, Y.M. Chee, D. de Caen, C.J. Colbourn and E.S. Kra-[Kreher89] mer, "Some New Simple t-Designs", J. Comb. Math. Comb. Computing, to appear. C.C. Lindner, "A note on disjoint Steiner quadruple systems", [Lindner77] Ars Combinatoria 8 (1977) 271-276. C.C. Lindner and A. Rosa, "Steiner quadruple systems - a sur-[Lindner78] vey", Discrete Math. 21 (1978) 147-181. C.R. MacInnes, "Finite planes with less than eight points on a [MacInnes07] line", Amer. Math. Monthly 14 (1907) 171-174.

F.J. MacWilliams, A.M. Odlyzko, N.J.A. Sloane and H.N. Ward, [MacWilliams78] 25 (1978) 288-318. [Magliveras84] S.S. Magliveras and D.W. Leavitt, "Simple 6-(33,8,36) designs from PTL2(32)", Computational Group Theory, Proceedings, London Math. Soc. Sympos. Comput. Group Theory, Academic Press. New York (1984) 337-352. [Magliveras87] S.S. Magliveras and T.E. Plambeck, "New infinite families of simple 5-designs", Journal of Combinatorial Theory (A) 44 (1987) 1-5. [Mendelsohn72] N.S. Mendelsohn and S.H.Y. Hung, Utilitas Math. 1 (1972) 5-95. [Mills78] W.H. Mills, "A new 5-design", Are Combinatoria 6 (1978) 193-195. W.H. Mills, "Balanced incomplete block designs with k = 6 and Mills84 $\lambda = 1$ ". Enumeration and Design (ed. D.M. jackson and S.A. Vanstone), Academic Press (1984) 239-244. [Moore93] E.H. Moore, "Concerning triple systems", Math. Ann. 43 (1893) 271-285. [Morgan77] E.J. Morgan, "Isomorphism classes of some small block designs", Ars Combinatoria 4 (1977) 25-85. [Nandi46a] H.K. Nandi, "Enumeration of nonisomorphic solutions of balanced incomplete block designs", Sankhya 7 (1946) 305-312. [Nandi46b] H.K. Nandi, "A further note on nonisomorphic solutions of incomplete block designs", Sankhya 7 (1946) 313-316. W. Oberschelp, "Lotto-Garantiesysteme und Block-Pläne", Oberschelp72 Mathematisch-Phys. Semesterberichte, XIX (1972) 55-67. G. Pellegrino, "t-designs associated with nondegenerate conics in Pellegrino78 a Galois plane of odd order", J. Statist. Planning and Inference 2 (1978) 307-312. V. Pless, "Symmetry codes over GF(3) and new 5-designs", Jour-Pless72 nal of Combinatorial Theory (A) 12 (1972) 116-125. [Ray-Chaudhuri75] D.K. Ray-Chaudhuri and R.M. Wilson, "On t-designs", Osaka J. Moth. 12 (1975) 787-744. M. Reiss, "Uber eine Steinersche Kombinatorische Aufgabe, [Reiss59] welche im 45 sten Bande dieses Journals, Seite 181, gestellt worden ist", J. Reine Angew. Math. 56 (1859) 326-344. A. Rosa, "A theorem on the maximum number of disjoint Steiner Rosa75 triple systems", J. Combinatorial Theory (A) 18 (1975) 305-312. [Sarvate86] D.G. Sarvate, "Block designs without repeated blocks", Ars Combinatoria 21 (1986) 71-87.

Math. 18 (1974) 31-37.

Schreiber74

S. Schreiber, "Some balanced complete block designs", Israel J.

S.S. Shrikhande, "The impossibility of certain symmetrical balanced incomplete block designs", Ann. Math. Statist. 21 (1950) 106-111. S.S. Shrikhande, "On a two-parameter family of balanced incom-[Shrikhande62] plete block designs", Sankhya (A) 24 (1962) 38-40. [Skolem27] T. Skolem, "Note 16", E. Netto, Kombinatorik. 2. Auflage, Teubner, Leipzig. (VII.4) (1927). G.W. Southern, "Constructions for balanced incomplete block [Southern81] designs", Ph.D. Thesis, University of Newcastle (1981). D.A. Sprott, "Some series of balanced incomplete block designs", [Sprott56] Sankhya 17 (1956) 185-192. R.G. Stanton, R.C. Mullin and J.A. Bate, "Isomorphism classes of [Stanton76] a set of prime BIBD parameters", Ars Combinatoria 2 (1976) 251-264. R.G. Stanton and I.P. Goulden, "Graph factorization, general tri-[Stanton81] ple systems and cyclic triple systems", Aequationes Mathematicae 22 (1981) 1-28. [Street80] A.P. Street, "Some designs with block size three". Combinatorial Mathematics vii, Lecture Notes in Mathematics 829, Springer-Verlag (1980) 224-237. K. Takeuchi, "A table of difference sets generating balanced [Takeuchi62] incomplete block designs", Review of Int. Stat. Inst. 30 (1962) 361-366. [Teirlinck75] L. Teirlinck, "On the maximum number of disjoint triple systems", J. Geometry 12 (1975) 93-96. L. Teirlinck, "On large sets of disjoint quadruple systems", Ars Teirlinck84 Combinatoria 12 (1984) 173-176. L. Teirlinck, "Non-trivial t-designs without repeated blocks exist Teirlinck87 for all t", Discrete Math. 65 (1987) 301-311. L. Teirlinck, "Locally trivial t-designs and t-designs without Teirlinck88 repeated blocks", preprint (1988). [vanBuggenhaut74a] J. van Buggenhaut, "On the existence of 2-designs $S_2(2,3,v)$ without repeated blocks", Discrete Math. 8 (1974) 105-109. [vanBuggenhaut74b] J. van Buggenhaut, "Existence and construction of 2-designs S₃(2,3,v) without repeated blocks", Journal of Goemetry 4 (1974) 1-10. J.H. van Lint, H.C.A. van Tilborg and J.R. Wiekema, "Block [vanLint77] designs with v=5, k=5, and $\lambda=4$ ", Journal of Combinatorial Theory (A) 23 (1977) 105-115. Tran van Trung, "On the existence of an infinite family of simple [van Trung84] 5-designs", Mathematische Zeitschrift 187 (1984) 285-287.

[Shrikhande50]

[vanTrung88] Tran van Trung, "On the construction of t-designs and the existence of some new infinite families of simple 5-designs", Arch. Math. Vol. 47 (1986) 187-192.
 [Wilson72] R.M. Wilson, "Cyclotomy and difference families in elementary abelian groups", Journal of Number Theory 4 (1972) 17-47.
 [Wilson73] R.M. Wilson, "The necessary conditions for t-designs are sufficient for something", Utilitas Math. 4 (1978) 207-215.
 [Wilson84] R.M. Wilson, "On the theory of t-designs", Enumeration and Design (ed. D.M. Jackson and S.A. Vanstone), Academic Press (1984) 19-49.
 [Witt38] E. Witt, "Cher Steinersche Systeme", Abh. Math. Sem. Hamburg 12 (1938) 265-275.