Population, Sample, Parameter

- 1. In statistics, the population is any subject (not necessarily a group) which a researcher try to analyze.
- The sample is a collection of data related to the population. In a typical situation, the sample is assumed to be randomly and independently extracted from the population.
- 3. The parameter represents a property of the population to be analyzed. The parameter is unknown to the researcher.
- 4. The goal of statistics is to obtain useful insights about the parameter of the population with the sample extracted from it.

Population Distribution

We regard the population as a probability distribution and call it the population distribution. Then we can interpret the sample as a set of random variables following the population distribution, and the parameters as variables which determine the "shape" of the population distribution.

Let $D = (x_1, \ldots, x_n)$ denote the sample, and θ denote the parameter of the population distribution. To indicate that the shape of the population distribution depends on θ , the population p.f. or p.d.f. is denoted by $p(x_i|\theta)$ where each x_i $(i = 1, \ldots, n)$ is called an observation and supposed to be a realized value of the random variable following the population distribution. n is often called the sample size.

Likelihood

Suppose that the sample $D = (x_1, \ldots, x_n)$ are taken from a population distribution f where the parameter θ is a set of unknown parameters. The joint p.f. or the joint p.d.f of D is denoted by

$$p(D|\theta) = p(x_1,\ldots,x_n|\theta).$$

In particular, if observations are independent of each other,

$$p(D|\theta) = p(x_1|\theta) \times \cdots \times p(x_n|\theta) = \prod_{i=1}^n p(x_i|\theta).$$

When we regard $p(D|\theta)$ as a function of θ , it is called the likelihood or likelihood function.

Example: Bernoulli Distribution i

Let us define a random variable X_i ($i=1,\ldots,n$) corresponding to tossing a coin such that

$$X_i = egin{cases} 1, & ext{Head is obtained;} \ 0, & ext{Tail is obtained,} \end{cases}$$

and

$$Pr(X_i = 1) = \theta$$
, $Pr(X_i = 0) = 1 - \theta$.

Then X_i follows the Bernoulli distribution and its p.f. is given by

$$p(x_i|\theta) = \theta^{x_i}(1-\theta)^{1-x_i}, \quad x_i = 0, 1.$$

Example: Bernoulli Distribution ii

Then the joint p.f. of $D = (x_1, \dots, x_n)$ is

$$p(D|\theta) = \prod_{i=1}^{n} p(x_i|\theta) = \prod_{i=1}^{n} \theta^{x_i} (1-\theta)^{1-x_i}$$
$$= \theta^{y} (1-\theta)^{n-y}, \quad y = \sum_{i=1}^{n} x_i.$$

Suppose that we have $(x_1, x_2, x_3, x_4, x_5) = (1, 0, 1, 1, 1)$. The value of $p(D|\theta)$ depends on the value of θ .

θ	0.1000	0.2000	0.3000	0.4000	0.5000
$p(D \theta)$	0.0001	0.0013	0.0057	0.0154	0.0312
θ	0.6000	0.7000	0.8000	0.9000	
$p(D \theta)$	0.0518	0.0720	0.0819	0.0656	

Figure 1: The likelihood of heta in the Bernoulli distribution

Interpretation Of The Likelihood

Given the sample D, the likelihood $p(D|\theta)$ is regarded as a kind of "plausibility" of a specific value of θ .

For example, the likelihood of $\theta=0.9$ is 0.656 while that of $\theta=0.4$ in the previous example is 0.0154. We may say that 0.9 is about 4 times more plausible than 0.4 as the true value of θ .

To make comparison between two competing values of θ , say θ_0 and θ_1 , we introduce the likelihood ratio:

likelihood ratio
$$= \frac{
ho(D| heta_0)}{
ho(D| heta_1)}.$$

Prior Knowledge On Parameters

In practice, researchers often have information on unknown parameters before they start analysis. For example,

- θ must take a value between 0 and 1 because it is probability;
- in case of tossing a coin, θ is supposed to be 50% if the coin is fair.

In Bayesian statistics, we construct a distribution of unknown parameters that reflect our prior knowledge on their true values. This is call the prior distribution.

Figure 2: Prior distributions of θ in the Bernoulli distribution