Linear Algebra I Problem Set 7: Linear Transformations

Dr Nicholas Sedlmayr

Friday March 4th 2016

Due: In class, March 18th 2016

1. Let $f(\mathbf{u}) = \mathbf{A}\mathbf{u}$ be a linear transformation from \mathbb{R}^4 to \mathbb{R}^3 with $\mathbf{u} \in \mathbb{R}^4$ and \mathbf{A} the 3×4 matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 2 & 3 \\ 1 & 2 & -1 & 1 \\ 1 & 3 & -4 & -1 \end{pmatrix} .$$

By converting **A** into echelon form, **B**, calculate the rank and nullity of **A**. If $\mathbf{R}\mathbf{A} = \mathbf{B}$ what is the matrix **R**? By constructing a basis which spans $\operatorname{im}(\mathbf{B})$ find a basis which spans $\operatorname{im}(\mathbf{A})$. Note that if $\mathbf{u}_1, \mathbf{u}_2, \ldots$ is a basis for $\operatorname{im}(\mathbf{A})$ then $\mathbf{R}^{-1}\mathbf{u}_1, \mathbf{R}^{-1}\mathbf{u}_2, \ldots$ is a basis for $\operatorname{im}(\mathbf{A})$. (8)

- 2. For the set of vectors $S = \{(1,2,0)^T, (1,0,-1)^T\}$ in \mathbb{R}^3 find a linear map $f: \mathbb{R}^n \to \mathbb{R}^3$ whose kernel is spanned by S. (3)
- 3. Let $f: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by

$$f((x, y, z)^T) = (-x + y - z, x + 2y, -y - 2z)^T$$
.

Calculate the images of the vectors (i.e. $f(\mathbf{v}_1)$, etc.)

$$\mathbf{v}_1 = (0, 1, 1)^T$$
, $\mathbf{v}_2 = (1, -1, 1)^T$, and $\mathbf{v}_3 = (2, 1, 0)^T$.

Verify that $f(\mathbf{v}_1) = -\mathbf{v}_1 - 2\mathbf{v}_2 + \mathbf{v}_3$, and derive similar expressions for $f(\mathbf{v}_2)$ and $f(\mathbf{v}_3)$. Hence write down the matrix of f with respect to the basis $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ of \mathbb{R}^3 . (7)

4. Let $f(u) = \frac{du}{dx}$ be a linear transformation $f: V \to V$ where V is the space of polynomials of order 3 or less over \mathbb{R} . What is the kernel of f? What is the nullity of f? (2)

Total available marks: 20