# 第九讲排序(上)

浙江大学 陈 越



# 9.2 希尔排序 (by Donald Shell)





#### 举个例子

希尔排序不是稳定的。



- 定义增量序列  $D_M > D_{M-1} > ... > D_1 = 1$ (最后一步必须是1间隔的)
- 对每个 $D_k$ 进行" $D_k$ -间隔"排序(k=M,M-1,...1)
- **注意:** " $D_k$ -间隔"有序的序列,在执行" $D_{k-1}$ -间隔"排序后,仍然是" $D_k$ -间隔"有序的(更小间隔的排序没有把上一步的结果变坏)



#### 希尔增量序列

■ 原始希尔排序  $D_M = \lfloor N/2 \rfloor$ ,  $D_k = \lfloor D_{k+1}/2 \rfloor$ 

```
void Shell_sort( ElementType A[], int N )
{ for ( D=N/2; D>0; D/=2 ) { /* 希尔增量序列 */
    for ( P=D; P<N; P++ ) { /* 插入排序(把所有的1换成D) */
        Tmp = A[P];
        for ( i=P; i>=D && A[i-D]>Tmp; i-=D )
              A[i] = A[i-D];
        A[i] = Tmp;
        }
    }
}
```

最坏情况:  $T = \mathcal{O}(N^2)$ 





## 举个坏例子

|      | 1 | 9 | 2 | 10 | 3 | 11 | 4 | 12 | 5 | 13 | 6  | 14 | 7  | 15 | 8  | 16 |
|------|---|---|---|----|---|----|---|----|---|----|----|----|----|----|----|----|
| 8-间隔 | 1 | 9 | 2 | 10 | 3 | 11 | 4 | 12 | 5 | 13 | 6  | 14 | 7  | 15 | 8  | 16 |
| 4-间隔 | 1 | 9 | 2 | 10 | 3 | 11 | 4 | 12 | 5 | 13 | 6  | 14 | 7  | 15 | 8  | 16 |
| 2-间隔 | 1 | 9 | 2 | 10 | 3 | 11 | 4 | 12 | 5 | 13 | 6  | 14 | 7  | 15 | 8  | 16 |
| 1-间隔 | 1 | 2 | 3 | 4  | 5 | 6  | 7 | 8  | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |



增量元素不互质,则小增量可能根本不起作用。



### 更多增量序列

- Hibbard 增量序列
  - $D_k = 2^k 1$  相邻元素互质
  - □ 最坏情况:  $T = \Theta(N^{3/2})$
  - $\Box$  猜想:  $T_{avg} = O(N^{5/4})$
- Sedgewick 增量序列 大数据量加上Sedgewick 增量序列效果是很好的
  - □  $\{1, 5, 19, 41, 109, \dots \}$ —  $9 \times 4^{i} - 9 \times 2^{i} + 1$  或  $4^{i} - 3 \times 2^{i} + 1$
  - □ 猜想:  $T_{avg} = O(N^{7/6})$ ,  $T_{worst} = O(N^{4/3})$

