#### **Lecture 15: Sound Waves**



- Sound frequency and sound level
- Speed of sound waves
- The physics of piano
- •The Doppler effect
- Shock waves



## **Categories of Sound Waves**





•We define the intensity *I* of a wave, or the power per unit area, to be the rate at which the energy being transported by the wave flows through a unit area *A* perpendicular to the direction of travel of the wave.



## **Definition of Sound Level**

•Because the range of sound intensities is so wide, it is convenient to use a logarithmic scale, where the sound level is defined by the equation

$$\beta = 10 \log \left( \frac{I}{I_0} \right)$$
 in **decibels** (dB)

$$I_0 = 1.00 \times 10^{-12} \text{ W/m}^2$$
 (threshold of hearing)

•Threshold of pain:

$$10 \log[(1 \text{ W/m}^2)/(10^{-12} \text{ W/m}^2)] = 10 \log(10^{12}) = 120 \text{ dB}$$



#### COMMON INDOOR/OUTDOOR NOISE LEVELS



## Speed of Sound in a Solid

•If a solid bar is struck at one end with a hammer, a longitudinal pulse propagates down the bar with a speed

$$v = \sqrt{Y/\rho}$$

•where Y is the Young's modulus for the material and  $\rho$  the density of material.



## Elasticity in Length

#### •Young's Modulus:

$$Y = \frac{\text{tensile stress}}{\text{tensile strain}} = \frac{F/A}{\Delta L/L_i}$$







#### The Speed of Sound Wave

#### •In the continuous limit (in a solid),

$$\frac{\partial^2 u}{\partial t^2} = v^2 \frac{\partial^2 u}{\partial x^2}$$

where  $v = a \sqrt{\frac{K}{M}}$ 





direction of propagation



Figure: Transverse waves- particles move perpendicular to direction of propagation

#### **Speed of Sound for Several Common Solids**

| Solid     | Structure<br>Type | Nearest<br>Neighbor<br>Distance<br>(A°) | Density<br>ρ<br>(kg/m³) | Elastic bulk<br>modulus<br>Y<br>(10 <sup>10</sup> N/m <sup>2</sup> ) | Calculate<br>d Wave<br>Speed<br>(m/s) | Observed speed of sound (m/s) |
|-----------|-------------------|-----------------------------------------|-------------------------|----------------------------------------------------------------------|---------------------------------------|-------------------------------|
| Sodium    | B.C.C             | 3.71                                    | 970                     | 0.52                                                                 | 2320                                  | 2250                          |
| Copper    | F.C.C             | 2.55                                    | 8966                    | 13.4                                                                 | 3880                                  | 3830                          |
| Aluminum  | F.C.C             | 2.86                                    | 2700                    | 7.35                                                                 | 5200                                  | 5110                          |
| Lead      | F.C.C             | 3.49                                    | 11340                   | 4.34                                                                 | 1960                                  | 1320                          |
| Silicon   | Diamond           | 2.35                                    | 2330                    | 10.1                                                                 | 6600                                  | 9150                          |
| Germanium | Diamond           | 2.44                                    | 5360                    | 7.9                                                                  | 3830                                  | 5400                          |
| NaCl      | Rocksalt          | 2.82                                    | 2170                    | 2.5                                                                  | 3400                                  | 4730                          |

Most calculated  $V_L$  values are in reasonable agreement with measurements. Sound speeds are of the order of 5000 m/s in typical metallic, covalent & ionic solids:



#### Can you show that

$$v = \sqrt{Y/\rho}$$
  $v = a\sqrt{\frac{K}{M}}$  (macroscopic) (microscopic)

•are two equivalent forms of the speed of sound in the solid?

# Speed of Sound in a Fluid

•The speed of all mechanical waves follows an expression of the general form

$$v = \sqrt{\frac{\text{elastic property}}{\text{inertial property}}}$$

•We will, hopefully, come back to this issue in the part of thermodynamics for a complete understanding.

声速 
$$c=\sqrt{rac{dp}{d
ho}}=\sqrt{\kappa RT}$$



# **Physics of the Piano**





# Octave (8 Notes)





#### **Tone and Pitch**





time





time

A musical tone is a steady periodic sound. A musical tone is characterized by its duration, pitch, intensity (or loudness), and timbre (or quality).



A pitch is a particular frequency of sound.



## Harmonic Spectrum





# Musical Scale (Pythagoras)



# Musical Scale

- A4, fundamental frequency of 440 Hz
- $2^{1/12} = 1.05946...$  (equal temperament)
- Perfect  $5^{th}$ ,  $2^{7/12} = 1.4983... \approx 1.5$









 $f_{red}: f_{blue}$  is 37:20





Physics in piano when making music.

#### Vibrating Strings



$$f = v/\lambda$$

$$\lambda = L/n$$

$$f \propto v/L$$

Can you determine frequency by dimension analysis?

$$f \mu f(T, r, L)$$

#### **Vibrating Strings**



#### Hammers that Hit the Strings



#### Hammers that Hit the Strings



#### Hammers That Hit the Strings





#### Soundboard Producing Sound





Forced oscillations

#### Soundboard Producing Sound



Generalization of the 1D cases









# Galilean Transformation

$$\frac{d\mathbf{r}'}{dt} = \frac{d\mathbf{r}}{dt} - \mathbf{v}_0$$

$$\mathbf{v}' = \mathbf{v} - \mathbf{v}_0$$

$$\frac{d\mathbf{v}'}{dt} = \frac{d\mathbf{v}}{dt} - \frac{d\mathbf{v}_0}{dt}$$

$$\mathbf{a}' = \mathbf{a}$$

The two inertial observers agree on measurements of acceleration.

# Moving Observer



We take the frequency of the source to be f, the wavelength to be  $\lambda$ , and the speed of sound to be  $\nu$ .

## **Analyze the Moving Observer**

•The speed of the waves relative to the observer is

$$v' = v + v_O$$

•The wavelength  $\lambda$  is unchanged.

$$f' = \frac{v'}{\lambda} = \frac{v + v_O}{\lambda} = \left(1 + \frac{v_O}{v}\right)f$$

Positive  $v_o$  for observer moving toward source, and negative  $v_o$  for observer moving away from source.

# **Moving Source**



During each vibration, which lasts for a time T (the period), the source moves a distance  $v_S T = v_S / f$ 

# **Analyze Moving Source**

•For observer A, the wavelength is shortened to

$$\lambda' = \lambda - \Delta\lambda = \lambda - \frac{v_S}{f}$$

•The frequency heard by observer A is

$$f' = \frac{v}{\lambda'} = \frac{v}{\lambda - \frac{v_S}{f}} = \left(\frac{1}{1 - \frac{v_S}{v}}\right) f$$

•For observer B, simply use a negative  $v_S$ .

•Finally, if both source and observer are in motion, we find the following general relationship for the observed frequency:

$$f' = \frac{v + v_O}{v - v_S} f$$

The word toward is associated with an increase in observed frequency. The words away from are associated with a decrease in observed frequency.

Example: During a train passed a station, an observer on the station hear the frequency of the siren of the train varied from 1200Hz to 1000Hz. Find the speed of the train.(the speed of sound in air is 330 m/s)

Solution:

$$f_1' = f \frac{v}{v - v_s} \qquad f_2' = f \frac{v}{v + v_s}$$

$$v_s = \frac{f_1' - f_2'}{f_1' + f_2'}v = \frac{1200 - 1000}{1200 + 1000} \cdot 330 = 30 \text{m/s}$$

Video—MIT Doppler effect

## **Spherical Waves**

•The wave intensity at a distance *r* from the source is

$$I = \frac{\mathcal{P}_{av}}{A} = \frac{\mathcal{P}_{av}}{4\pi r^2}$$

•The intensity is proportional to the square of the amplitude. Hence,

$$\psi(r, t) = \frac{s_0}{r} \sin(kr - \omega t)$$





# Echocardiogram (ECG)



https://baike.baidu.com/item/%E8%B6%85%E5%A3%B0%E5%BF%83%E5%8A%A8%E5%9B%BE

http://en.volupedia.org/wiki/Doppler\_echocardiography

#### **Shock Waves** $(v_S > v)$



Mach number:  $v_S/v$ 

$$\sin \theta = \frac{vt}{v_S t} = \frac{v}{v_S}$$





### Doppler effect







