SSIE 660: Stochastic Systems Dr. Sung H. Chung Note 4 Chapter 2. Random Variables

2.5 Jointly Distributed Random Variables

Probability Distribution (Density) Function of the Sum of Two Independent Random Variables

Discrete Random Variables

Example 1. Given that:

X	1	2	3	4	5	6	7
$p_X(x)$	1/8	1/16	1/4	3/16	1/32	3/32	1/4
y	2	3	4	5	6	7	8
$p_Y(y)$	2/24	4/24	6/24	5/24	4/24	2/24	1/24

Let Z = X + Y, then what is the probability distribution of Z?

Let us first consider P[Z = 5].

Writing the right hand side as a summation, P[Z = 5] =

In general: P[Z = z] =

Determining LL and UL

Let us consider all combinations of Y and X which yield Z = 5.

From the previous page

$$P[Z=5] = \sum_{y=2}^{4} P[Y=y] * P[X=5-y]$$

In this, LL of Y = 2, which is

Let us consider another example.

Example 2. Given that:

X	-2	-1	0	1	2	3	4
$p_X(x)$	1/10	1/10	2/10	2/10	2/10	1/10	1/10
y	0	1	2	3	4	5	6
$p_Y(y)$	2/24	4/24	6/24	5/24	4/24	2/24	1/24

In this example, find P[Z = 5], where Z = X + Y.

$$P[Z = 5] = (P[Y = 1] * P[X = 5 - 1]) + (P[Y = 2] * P[X = 5 - 2]) + (P[Y = 3] * P[X = 5 - 3]) + (P[Y = 4] * P[X = 5 - 4]) + (P[Y = 5] * P[X = 5 - 5]) + (P[Y = 6] * P[X = 5 - 6])$$

In this example, LL of *Y* is:

Therefore, in general we have two candidates for LL:

How do we select the LL to be used in any problem?

The general formula for the LL is:

$$LL = \max($$
 ,)

Using the same approach, we will devise a general formula for UL.

The general formula for the UL is:

$$LL = \min($$
 ,)

Now we can write the general formula for P[Z = z] as:

$$P[Z=z]=$$

<u>Continuous Random Variables</u> The formula for the density function Z = X + Y can be written as

$$X \sim f_X(x), X_{min} < X < X_{max}$$

 $Y \sim f_Y(y), Y_{min} < Y < Y_{max}$
 $Z \sim f_Z(z), Z_{min} < Z < Z_{max}$
 $Z_{max} = X_{max} + Y_{max}, Z_{min} = X_{min} + Y_{min}$

Then,

$$f_Z(z) = \int_{LL}^{UL} f_Y(y) f_X(z - y) dy$$

Example 3. Find the probability density function Z = X + Y, where X and Y follow the density functions given below:

$$f_X(x) = 1/4, \ 6 < X < 10$$

 $f_Y(y) = \lambda e^{-\lambda y}, \ y > 0$

Range of *Z*:

$$f_Z(z) =$$

$$LL = max(Y_{min}, z - X_{max})$$

$$UL = min(Y_{max}, z - X_{min})$$

2.6 Moment Generating Function	2.6	Moment	Generating	Functions
--------------------------------	-----	--------	------------	------------------

Definition:	The r-th	moment	about th	ne origin	of the	random	variable	X is:
Deminion.	TIC I III	moment	about u	ic origin	or tric	Tariaoni	variable	Z1 13.

Special cases (which we have studied so far):

Mean of X is E(X)

$$E(X^2) =$$

Hence Var(X) =

<u>Definition</u>: The Moment-Generating Function (MGF) of the random variable X, denoted by $\phi(t)$ is the expected value of e^{tx} .

(the sum of the integral has to converge; otherwise, the moment generating function does not exist.)

If the MGF of a random variable *X* exists, then it can be used to generate all the moments of *X*.

Example 4. Find the Moment Generating Function of the Exponential Density Function with mean $1/\lambda$. Using the MGF, find the mean and the variance of the exponential density function. The exponential density function is as follows:

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \ge 0\\ 0, & \text{if } x < 0 \end{cases}$$

Example 5. The MGF of the Binomial Distribution with parameters n and p is:

$$\phi(t) = (pe^t + q)^n$$

where q = 1 = p. Using this MGF, find the mean and variance of binomial distribution.

Some results related to MGF:

1. Let phi(t) be the MGF of X and Y = X + a, where a is a constant, then MGF of Y is:

Example 6. The MGF of the binomial distribution with parameters n and p is

$$\phi(t) = (pe^t + q)^n$$

where q = 1 - p. What is the MGF of Y = X + 5?

2. $Y = X_1 + X_2 + \cdots + X_n$ where X_1, \cdots, X_n are independent random variables with MGFs $\phi_{X_1}(t), \cdots, \phi_{X_n}(t)$, respectively. Then the MGF of Y is:

Example 7. Let X be the binomial random variable with parameters n_1 and p_1 and U be a binomial random variable with parameters n_2 and p_2 . Find the MGF of Y where Y = X + U.