2.8. Приближенный поиск ОМП

Метод Ньютона: Пусть $f:\mathbb{R} o\mathbb{R}$ — функция. Нужно решить уравнение f(x)=0.

 x_0 — начальное приближение

Формула касательной в точке $x_k: y = f(x_k) + f'(x_k)(x-x_k)$. Получим соотношение

$$x_{k+1}=x_k-rac{f(x_k)}{f'(x_k)}.$$

Пусть $X=(X_1,\dots,X_n)$ — выборка из неизвестного распределения $P\in\{P_\theta\mid \theta\in\Theta\},\Theta\subset\mathbb{R}^d$. Пусть $\theta^{\setminus *}$ — ОМП. Хотим приблизить оценку θ^* .

Уравнение правдоподобия: $\dfrac{\partial l_X(heta)}{\partial heta}=0.$ Применим метод Ньютона для функции $l_X'(heta).$ $\widehat{ heta}_0$ — начальное приближение. Шаг метода:

$$\hat{ heta}_{k+1} = \hat{ heta}_k - \underbrace{(l_X''(\hat{ heta}_k))^{-1}}_{ ext{MATDULLA}} \cdot \underbrace{l_X'(\hat{ heta}_k)}_{ ext{BEKTOD}}.$$

Теорема: В условиях регулярности L1-L9, если $\widehat{ heta}_0$ — а.н.о, то

- 1. $\hat{ heta}_1$ а.н.о с асимт. дисперсией $(i(heta))^{-1}$. 2. $\hat{ heta}_1$ асимптотически эквивалентна ОМП $heta^*$, т.е

$$\sqrt{n}(\widehat{ heta}_1 - heta^*) \stackrel{P_{ heta}}{\longrightarrow} 0.$$

Доказательство: (для d=1, идея)

Утв. (б/д): $\hat{ heta}_1- heta^*=(\hat{ heta}_0- heta^*)arepsilon_n(heta)$, где $arepsilon_n(heta)\stackrel{P_{ heta}}{\longrightarrow}0.$

(2).
$$\sqrt{n}(\hat{\theta}_1 - \theta^*) = \sqrt{n}(\hat{\theta}_0 - \theta^*)\varepsilon_n(\theta) =$$

$$=\underbrace{\sqrt{n}(\widehat{ heta}_0- heta)}_{\stackrel{d_{ heta}}{\longrightarrow}\mathcal{N}(0,\dots)} + \underbrace{\sqrt{n}(heta- heta^*)}_{\stackrel{d_{ heta}}{\longrightarrow}\mathcal{N}(0,\dots)} \underbrace{\stackrel{d_{ heta}}{\longrightarrow}0}_{\stackrel{d_{ heta}}{\longrightarrow}0}.$$

По лемме Слуцкого первое слагаемое $\stackrel{d_{ heta}}{\longrightarrow} 0$, второе слагаемое $\stackrel{d_{ heta}}{\longrightarrow} 0$. Применяя еще раз лемму Слуцкого для их суммы, получим $\sqrt{n}(\hat{ heta}_1 - heta^*) \xrightarrow{d_{ heta}(\iff P_{ heta, \mathrm{T.K}} \stackrel{\cdot}{\mathrm{const}})} 0.$

(1).
$$\sqrt{n}(\hat{\theta}_1-\theta)=\underbrace{\sqrt{n}(\hat{\theta}_1-\theta^*)}_{\stackrel{P_{\theta}}{\longrightarrow}0(\text{\tiny H3}\ (2))}-\underbrace{\sqrt{n}(\hat{\theta}_0-\theta)}_{\stackrel{d_{\theta}}{\longrightarrow}\mathcal{N}(0,\frac{1}{i(\theta)})\ (\text{OMII})}$$
 . По лемме Слуцкого

$$\sqrt{n}(\widehat{ heta}_1 - heta) \stackrel{d_{ heta}}{\longrightarrow} \mathcal{N}\left(0, rac{1}{i(heta)}
ight) \qquad \Box.$$

Замечание: Утверждение теоремы не изменится, если заменить $l_X''(heta)$ на $E_ heta l_X''(heta) =$ $-ni(\theta)$, т.е.

$$\hat{ heta}_{k+1} = \hat{ heta}_k + rac{i(heta)^{-1}}{n} l_X'(heta).$$

Оценка $\hat{ heta}_1$ называется одношаговой оценкой.

Смысл:

Отклонение $\hat{ heta}_1$ от $heta^*$ на порядок менььше, чем отклонение $heta^*$ от heta. Значит отклонение $\hat{ heta}_1$ от heta тоже имеет порядок $\sqrt{rac{1/i(heta)}{n}}$.

Пример (γ -котики):

 $\widehat{\mu}$ — а.н.о. с асимпт. дисперсией $\pi^2/4pprox 2.47$. При этом i(heta)=1/2, т.е наименьшая возможная асимпт. дисперсия равна 2. Запишем одношаговую оценку:

$$\widehat{ heta}_1 = \widehat{\mu} + rac{\sum\limits_{i=1}^n rac{X_i - \widehat{\mu}}{1 + (X_i - \widehat{\mu})^2}}{\sum\limits_{i=1}^n rac{1 - (X_i - \widehat{\mu})^2}{(1 + (X_i - \widehat{\mu})^2)^2}}.$$

 $\hat{ heta}_1$ — наиболее асимптотически эффективная оценка.

2.9. Робастность и симметричные распределения

Пусть $X=(X_1,\ldots,X_n)$ — выборка из $\mathcal{N}(heta,\sigma^2)$, σ известна.

Оценка $\widehat{ heta} = \overline{X}$ обладает всеми хорошими свойствами (сильная состоятельность, асимптотическая нормальность, ОМП и т. д.). Однако если в данных есть выбросы, то все свойства теряются.

Для того, чтобы визуализировать выбросы в данных, можно использовать ящик с усами (box plot).

Будем рассматривать только одномерный случай.

Определение: Робастная оценка — оценка, допускающая отклонение от заданной модели.

Определение: Пусть оценка имеет вид $\widehat{ heta} = f(X_{(1)}, \dots, X_{(n)}).$ Пусть k_n^st — наименьшее число k, т. ч. выполнено одно из условий:

- 1. Если $x_1,\dots,x_{k+1} o -\infty$, а x_{k+2},\dots,x_n фиксированы,то $f(x_1,\ldots,x_n) o -\infty.$
- 2. Если $x_{n-k},\dots,x_n o +\infty$, а x_1,\dots,x_{n-k+1} фиксированы, то $f(x_1,\dots,x_n) o +\infty.$

Тогда число $au_{\widehat{ heta}} = \lim_{n o \infty} rac{k_n^*}{n}$ называется *асимптотической толерантностью* оценки

Смысл: au(heta) — наибольшая доля выбросов, которые способна выдержать оценка, не смещаясь на $\pm \infty$.

Примеры:

- $\begin{array}{ll} \bullet & \overline{X}: k_n^* = 0, \tau_{\overline{X}} = 0 \\ \bullet & \widehat{\mu}: k_n^* = \lceil n/2 \rceil 1, \tau_{\widehat{\mu}} = 1/2. \end{array}$

Далее будем рассматривать класс распределений $\mathcal{P} = \{P_{ heta} | heta \in \Theta\}$, т. ч.

- P_0 имеет плотность $p_0(x)$ симметричная, непрерывная, носитель плотности имеет вид $(-c,c), \ 0 < c \leqslant +\infty$.
- θ параметр сдвига, т. е. $p_{t} = p_0(x-t)$

Будем искать оценки, которые:

- 1. Достаточно эффективные в классе ${\cal P}$ (в асимптотическом подходе).
- 2. Робастные допускают отклонение от \mathcal{P} .

1. Усеченное среднее

Определение: Пусть $\alpha \in (0,1/2), \ k = \lceil \alpha n \rceil$. Тогда усеченным средним по *выборке* X_1,\ldots,X_n называется оценка

$$\overline{X}_lpha = rac{1}{n-2k}(X_{(k-1)}+\cdots+X_{(n-k)}).$$

- $\alpha = 0$: $\overline{X}_{\alpha} = \overline{X}$ $\alpha = 1/2$: $\overline{X}_{\alpha} = \widehat{\mu}$.

Асимптотическая толерантность: $au_{\overline{X}_{lpha}}=lpha.$

Теорема (б/д): Пусть $X=(X_1,\ldots,X_n)$ — выборка из распределения $P\in\mathcal{P}.$

$$\sqrt{n}(\overline{X}_lpha- heta)\stackrel{d_ heta}{\longrightarrow} \mathcal{N}(0,\sigma_lpha^2)$$
, где $\sigma_lpha^2=rac{2}{(1-2lpha)^2}\left(\int\limits_0^ heta x^2p_0(x)dx+lpha u_{1-lpha}^2
ight),$

 $u_{1-\alpha}$ — $(1-\alpha)$ -квантиль распределения P_0 .

Пример: для $\mathcal{N}(0,1)$

При lpha=1/8 достигается защита от 12.5% загрязнения выборки, но эффективность теряется на 6%.

Утв: Если $D_{ heta}X_1<+\infty$, то $\mathrm{ARE}_{\overline{X}_{lpha},\overline{X}}\geqslant (1-2lpha)^2.$

riangle \overline{X}_{lpha} — а.н.о heta с асимпт. дисперсией σ_{lpha}^2 .

Из ЦПТ: \overline{X} — а.н.о heta с асимпт. дисперсией $D_{ heta}X_1$. Так как дисперсия не зависит от сдвига, посчитаем дисперсию при heta=0:

$$rac{1}{2}D_{ heta}X_{1}=rac{1}{2}\int\limits_{\mathbb{R}}x^{2}p_{0}(x)dx=\int\limits_{0}^{+\infty}x^{2}p_{0}(x)dx=$$

$$=\int\limits_{0}^{u_{1-lpha}}x^{2}p_{0}(x)dx+\int\limits_{u_{1-lpha}}^{+\infty}x^{2}p_{0}(x)dx\geqslant \ \geqslant\int\limits_{0}^{u_{1-lpha}}x^{2}p_{0}(x)dx+u_{1-lpha}^{2}\int\limits_{u_{1-lpha}}^{+\infty}p_{0}(x)dx=\int\limits_{0}^{u_{1-lpha}}x^{2}p_{0}(x)dx+lpha u_{1-lpha}^{2}=rac{\sigma_{lpha}^{2}(1-2lpha)^{2}}{2}.$$

Отсюда
$$ext{ARE}_{\overline{X}_lpha,\overline{X}} = rac{D_ heta X_1}{\sigma_lpha^2} \geqslant (1-2lpha)^2$$
 \Box

При lpha=1/8 возможна потеря эффективности до 44%.

2. Медиана средних Уолша

Определение: $Y_{ij} = rac{X_i + X_j}{2}$ — среднее Уолша.

 $W=\mathrm{med}\{Y_{ij},\ 1\leqslant i\leqslant j\leqslant n\}$ — медиана средних Уолша.

Теорема: Пусть $X=(X_1,\ldots,X_n)$ — выборка из распределения $P\in\mathcal{P}$. Тогда

$$\sqrt{n}(W- heta) \stackrel{d_ heta}{\longrightarrow} \mathcal{N}(0,\sigma^2),$$
 где $\sigma^2 = rac{1}{12\left(\int p_0^2(x)dx
ight)^2}.$

Пример: $\mathcal{N}(0,1): \mathrm{ARE}_{W,\overline{X}} pprox 0.955$ (потеря эффективности на 4.5%).

Утверждение: Для $P_{\theta}\in\mathcal{P}$ $\mathrm{ARE}_{W,\overline{X}}\geqslant\frac{108}{125}=0.864$ (в худшем случае теряем 14% эффективности). Равенство достигается при

$$p_0(x) = rac{3\sqrt{5}}{100}(5-x^2)I\{|x| < \sqrt{5}\}.$$

Утверждение: $au_W pprox 0.293$ (доказательство см. в ДЗ).

Глава 3. Сложные оценки параметров

3.1. Доверительные интервалы

Определение: Пусть $X=(X_1,\dots,X_n)$ — выборка из неизвестного распределения $P\in\{P_\theta\mid \theta\in\Theta\}.$

ullet Если $\Theta\subset\mathbb{R}$, то пара статистик $(T_1(X),T_2(X))$ называется доверительным интервалом для heta уровня доверия lpha, если

$$orall heta \in \Theta \quad P_{ heta}(T_1(X) \leqslant heta \leqslant T_2(X)) \geqslant lpha.$$

ullet Если $\Theta\subset\mathbb{R}^d$, то статистика $S(X)\subset\Theta$ называется доверительной областью для heta уровня доверия lpha, если

$$\forall \theta \in \Theta \quad P_{\theta}(\theta \in S(X)) \geqslant \alpha.$$

• Если равенство точное, то интервал называтся точным.

Замечание:

- 1. Если $X=(X_1,\dots,X_n)$ выборка, то утверждение $P_{\theta}(T_1(X)\leqslant \theta\leqslant T_2(X))=lpha$ имеет смысл ($(T_1(X),T_2(X))$ доверительный интервал).
- 2. Если $x=(x_1,\dots,x_n)$ реализация выборки, то утверждение $P_{\theta}(T_1(x)\leqslant \theta\leqslant T_2(x))=lpha$ некорректно.

 $(T_1(x), T_2(x))$ — реализация доверительного интервала.

Первая магическая константа статистики: $\alpha = 0.95 ($ она же 0.05).