

CA3260, CA3260A

4MHz, BiMOS Operational Amplifier with MOSFET Input/CMOS Output

November 1996

Features

- . MOSFET Input Stage provides
 - Very High $Z_1 = 1.5T\Omega$ (1.5 x $10^{12}\Omega$) (Typ)
 - Very Low I₁ = 5pA (Typ) at 15V Operation = 2pA (Typ) at 5V Operation
- Ideal for Single Supply Applications
- Common Mode Input Voltage Range Includes Negative Supply Rail; Input Terminals Can be Swung 0.5V Below Negative Supply Rail
- CMOS Output Stage Permits Signal Swing to Either (Or Both) Supply Rails

Applications

- Ground Referenced Single Supply Amplifiers
- Fast Sample-Hold Amplifiers
- Long Duration Timers/Monostables
- Ideal Interface with Digital CMOS
- High Input Impedance Wideband Amplifiers
- Voltage Followers (e.g. Follower for Single Supply D/A Converter)
- Voltage Regulators (Permits Control of Output Voltage Down to 0V)
- · Wien Bridge Oscillators
- Voltage Controlled Oscillators
- Photo Diode Sensor Amplifiers

Description

CA3260A and CA3260 are integrated circuit operational amplifiers that combine the advantage of both CMOS and bipolar transistors on a monolithic chip. The CA3260 series circuits are dual versions of the popular CA3160 series.

Gate protected P-Channel MOSFET (PMOS) transistors are used in the input circuit to provide very high input impedance, very low input current, and exceptional speed performance. The use of PMOS field effect transistors in the input stage results in common mode input voltage capability down to 0.5V below the negative supply terminal, an important attribute in single supply applications.

A complementary symmetry MOS (CMOS) transistor pair, capable of swinging the output voltage to within 10mV of either supply voltage terminal (at very high values of load impedance), is employed as the output circuit.

The CA3260 Series circuits operate at supply voltages ranging from 4V to 16V, or \pm 2V to \pm 8V when using split supplies. The CA3260A offers superior input characteristics over those of the CA3260.

Ordering Information

PART NUMBER	TEMP. RANGE (°C)	PACKAGE	PKG. NO.
CA3260E	-55 to 125	8 Ld PDIP	E8.3
CA3260T	-55 to 125	8 Pin Metal Can	T8.C
CA3260AE	-55 to 125	8 Ld PDIP	E8.3
CA3260AT	-55 to 125	8 Pin Metal Can	T8.C

Pinouts

CA3260, CA3260A (PDIP) TOP VIEW

CA3260, CA3260A (METAL CAN)
TOP VIEW

3-129

CA3260, CA3260A

Absolute Maximum Ratings

DC Supply Voltage (V+ to V-)	16V
DC Input Voltage (V+ +8V) to (v0.5V)
Differential Input Voltage	8
Input Terminal Current	1mA
Output Short Circuit Duration (Note 1)	ndefinite

Thermal Information

Thermal Resistance (Typical, Note 2)	θ_{JA} (°C/W)	θ _{JC} (°C/W)
PDIP Package	100	N/A
Metal Can Package	165	75
Maximum Junction Temperature (Metal Car		175 ^o C
Maximum Junction Temperature (Plastic F	Package)	150 ^o C
Maximum Storage Temperature Range	65	5°C to 150°C
Maximum Lead Temperature (Soldering 1	0s)	300°C

Operating Conditions

Temperature Range -55°C to 125°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

- 1. Short circuit may be applied to ground or to either supply.
- 2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

$\begin{tabular}{ll} \textbf{Electrical Specifications} & T_A = 25^{o}\text{C}, \ Typical \ Values \ Intended \ Only for \ Design \ Guidance \ \end{tabular}$

				TYPICAL VALUES			
PARAME	TER	SYMBOL	TEST CONDITIONS	CA3260A CA3260		UNITS	
Input Resistance		R _I	$V_S = \pm 7.5 V$	1.5	1.5 T		
Input Capacitance		C _I	$f = 1MHz, V_S = \pm 7.5V$	4.3	4.3	pF	
Unity Gain Crossover F	requency	f _T	$V_S = \pm 7.5 V$	4	4	MHz	
Slew Rate		SR	$V_S = \pm 7.5 V$	10	10 V/μs		
Transient Response	Rise Time	t _r	$C_L = 25pF, R_L = 2k\Omega, A_V = +1,$	0.09	0.09	μs	
	Overshoot	os	$V_{S} = \pm 7.5 V$	10	10	%	
Settling Time (to <0.1%, $V_{IN} = 4V_{P-P}$)		t _S	C_L = 25pF, R_L = 2k Ω , A_V = +1, V_S = ±7.5V	1.8	1.8	μs	
Input Offset Voltage		V _{IO}	V+ = 5V, V- = 0V	2	6	mV	
Input Offset Current	I _{IO} V+ = 5V, V- = 0V		V+ = 5V, V- = 0V	0.1	0.1	pA	
Input Current		lį	V+ = 5V, V- = 0V	2	2	pA	
Common Mode Rejection	Common Mode Rejection Ratio		V+ = 5V, V- = 0V	70	60	dB	
Large Signal Voltage Gain		A _{OL}	$V_O = 4V_{P-P}, R_L = 20k\Omega,$	100	100	kV/V	
			V+ = 5V, V- = 0V	100	100	dB	
Common Mode Input Voltage Range		V _{ICR}	V+ = 5V, V- = 0V	0 to 2.5	0 to 2.5	V	
Supply Current		l+	$V_{O} = 5V, R_{L} = \infty, V+ = 5V, V- = 0V$	1	1	mA	
			$V_0 = 2.5V, R_1 = \infty, V = 5V, V = 0V$	1.2	1.2	mA	
Power Supply Rejection Ratio		PSRR	$\Delta V_{1O}/\Delta V+$, $V+=5V$, $V-=0V$	200	200	μV/V	

Electrical Specifications For Each Amplifier at $T_A = 25^{\circ}C$, $V_{+} = 15V$, $V_{-} = 0V$, Unless Otherwise Specified

		TEST	CA3260A			CA3260			
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	V _{IO}	$V_S = \pm 7.5 V$	-	2	5	-	6	15	mV
Input Offset Current	I _{IO}	$V_S = \pm 7.5 V$	-	0.5	20	-	0.5	30	рА
Input Current	lį	$V_S = \pm 7.5 V$	-	5	30	-	5	50	рА
Large Signal Voltage Gain	A _{OL}	$V_O = 10V_{P-P},$ $R_I = 10k\Omega$	50	320	-	50	320	-	kV/V
		$R_L = 10k\Omega$	94	110	-	94	110	-	dB
Common Mode Rejection Ratio	CMRR		80	95	-	70	90	-	dB

		TEST	CA3260A			CA3260			
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Common Mode Input Voltage Range	V _{ICR}		0	-0.5 to 12	10	0	-0.5 to 12	10	V
Power Supply Rejection Ratio	PSRR	$\Delta V_{IO}/\Delta V + $ $V + = 17.5V$	-	32	150	-	32	320	μV/V
Maximum Output Voltage									
	V _{OM} +	$R_L = 10k\Omega$	11	13.3	-	11	13.3	-	V
	V _{OM} -		-	0.002	0.01	-	0.002	0.01	V
	V _{OM} +	R _L = ∞	14.99	15	-	14.99	15	-	V
	V _{OM} -		-	0	0.01	-	0	0.01	V
Maximum Output Current		V _O = 7.5V							
	I _{OM} + Source		12	22	45	12	22	45	mA
	I _{OM} - Sink	1	12	20	45	12	20	45	mA
Total Supply Current V _O (Amplifier A) = 7.5V V _O (Amplifier B) = 7.5V	l+	R _L = ∞	-	9	15.5	-	9	15.5	mA
V_O (Amplifier A) = 0V V_O (Amplifier B) = 0V			-	1.2	3	-	1.2	3	mA
V_O (Amplifier A) = 0V V_O (Amplifier B) = 7.5V			-	5	8.5	-	5	8.5	mA
Input Offset Voltage Temperature Drift	ΔV _{IO} /ΔΤ		-	6	-	-	8	-	μV/ ^o C
Crosstalk		f = 1kHz	-	120	-	-	120	-	dB

Schematic Diagram

