

STx25NM60ND

N-channel 600 V, 0.13 Ω 21 A FDmesh™ II Power MOSFET (with fast diode) in D²PAK, TO-220FP, TO-220, TO-247

Features

Туре	V _{DSS} @ T _{JMAX}	R _{DS(on)} max	I _D
STB25NM60ND			21 A
STF25NM60ND	CEO V	0.40	21 A ⁽¹⁾
STP25NM60ND	650 V	0.16 Ω	21 A
STW25NM60ND			21 A

- 1. Limited only by maximum temperature allowed
- The worldwide best R_{DS(on)}*area amongst the fast recovery diode devices
- 100% avalanche tested
- Low input capacitance and gate charge
- Low gate input resistance
- Extremely high dv/dt and avalanche capabilities

Application

■ Switching applications

Description

These FDmesh™ II Power MOSFETs with intrinsic fast-recovery body diode are produced using the second generation of MDmesh™ technology. Utilizing a new strip-layout vertical structure, these revolutionary devices feature extremely low on-resistance and superior switching performance. They are ideal for bridge topologies and ZVS phase-shift converters.

Figure 1. Internal schematic diagram

Table 1. Device summary

Order codes	odes Marking Package		Packaging		
STB25NM60ND	25NM60ND	D²PAK	Tape and reel		
STF25NM60ND	25NM60ND	TO-220FP	Tube		
STP25NM60ND	25NM60ND	TO-220	Tube		
STW25NM60ND	25NM60ND	TO-247	Tube		

November 2011 Doc ID 14167 Rev 5 1/21

Contents STx25NM60ND

Contents

1	Electrical ratings	3
2	Electrical characteristics	
3	Test circuits	9
4	Package mechanical data	. 10
5	Packing mechanical data	. 18
6	Revision history	20

STx25NM60ND Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

		Value	•	
Symbol	Parameter	D ² PAK, TO-220, TO-247	TO-220FP	Unit
V _{DS}	Drain-source voltage	600		V
V_{GS}	Gate-source voltage	±25		V
I _D	Drain current (continuous) at T _C = 25 °C	21	21 ⁽¹⁾	Α
I _D	Drain current (continuous) at T _C = 100 °C	13	13 ⁽¹⁾	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	84	84(1)	Α
P _{TOT}	Total dissipation at T _C = 25 °C	160	40	W
dv/dt ⁽³⁾	Peak diode recovery voltage slope	40		V/ns
Viso	Insulation withstand voltage (RMS) from all three leads to external heat sink (t=1 s;T _C =25 °C)	· 1		V
T _{stg}	Storage temperature	-55 to 150		°C
T _J	Max. operating junction temperature	150		°C

^{1.} Limited only by maximum temperature allowed

Table 3. Thermal data

Symbol	Parameter	D ² PAK	TO-220FP	TO-220	TO-247	Unit
R _{thj-case}	Thermal resistance junction- case max	0.78	3.1	0.7	78	°C/W
R _{thj-amb}	Thermal resistance junction- ambient max		62	2.5	50	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction- ambient max	30				°C/W

^{1.} When mounted on 1inch² FR-4 board, 2 oz Cu

Table 4. Avalanche characteristics

Symbol	Parameter	Max value	Unit
I _{AS}	Avalanche current, repetitive or not-repetitive (pulse width limited by T_J max)	10	Α
E _{AS}	Single pulse avalanche energy (starting $T_J = 25$ °C, $I_D = I_{AS}$, $V_{DD} = 50$ V)	850	mJ

^{2.} Pulse width limited by safe operating area

^{3.} $I_{SD} \leq$ 21 A, di/dt \leq 600 A/ μ s, V_{DD} = 80% $V_{(BR)DSS}$

Electrical characteristics STx25NM60ND

2 Electrical characteristics

(T_{CASE}=25 °C unless otherwise specified).

Table 5. On/off states

Cymbol	Parameter	Test conditions		Value		Unit
Symbol	Farameter	rest conditions	Min.	Тур.	Max.	Oilit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 1 mA, V _{GS} = 0	600			V
dv/dt ⁽¹⁾	Drain source voltage slope	V _{DD} = 480 V, I _D = 21 A, V _{GS} = 10 V		48		V/ns
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = 600 V V _{DS} = 600 V @T _C = 125 °C			1 100	μ Α μ Α
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 20 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 10 V, I _D = 10.5 A		0.13	0.16	Ω

^{1.} Characteristic value at turn off on inductive load.

Table 6. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
9 _{fs} ⁽¹⁾	Forward transconductance	$V_{DS} = 15 V_{,} I_{D} = 10.5 A$	-	17	-	S
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{DS} = 50 \text{ V, f} = 1 \text{ MHz,}$ $V_{GS} = 0$	1	2400 150 15	1	pF pF pF
C _{oss eq.} ⁽²⁾	Equivalent output capacitance	$V_{GS} = 0$, $V_{DS} = 0$ to 480 V	-	320	-	pF
t _{d(on)} t _r t _{d(off)} t _f	Turn-on delay time Rise time Turn-off delay time Fall time	V_{DD} = 300 V, I_{D} = 10.5 A R_{G} = 4.7 Ω V_{GS} = 10 V (see Figure 23), (see Figure 18)	-	60 30 50 40	-	ns ns ns
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	V_{DD} = 480 V, I_D = 21 A, V_{GS} = 10 V, (see Figure 19)	•	80 15 40	ı	nC nC nC
R _g	Gate input resistance	f=1 MHz gate DC bias=0 Test signal level = 20 mV open drain	-	1.6	-	Ω

^{1.} Pulsed: pulse duration=300µs, duty cycle 1.5%

4/21 Doc ID 14167 Rev 5

^{2.} $C_{oss\ eq}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Table 7. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current Source-drain current (pulsed)		-		21 84	A A
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 21 A, V _{GS} = 0	-		1.3	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I_{SD} = 21 A, V_{DD} = 60 V di/dt=100 A/ μ s (see Figure 20)	-	160 1 15		ns µC A
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I_{SD} = 21 A,V _{DD} = 60 V di/dt=100 A/ μ s, T_{J} = 150 °C (see Figure 20)	-	230 2 19		ns µC A

^{1.} Pulse width limited by safe operating area

^{2.} Pulsed: Pulse duration = 300 μ s, duty cycle 1.5%.

Electrical characteristics STx25NM60ND

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area for D²PAK and Figure 3. Thermal impedance for D²PAK and TO-220

Figure 4. Safe operating area for TO-220FP Figure 5. Thermal impedance for TO-220FP

Figure 6. Safe operating area for TO-247

Figure 7. Thermal impedance for TO-247

Figure 8. Output characteristics

Figure 9. Transfer characteristics

Figure 10. Transconductance

Figure 11. Static drain-source on resistance

Figure 12. Gate charge vs gate-source voltage Figure 13. Capacitance variations

Electrical characteristics STx25NM60ND

Figure 14. Normalized gate threshold voltage Figure 15. Normalized on resistance vs vs temperature temperature

Figure 16. Source-drain diode forward characteristics

Figure 17. Normalized B_{VDSS} vs temperature

STx25NM60ND Test circuits

3 Test circuits

Figure 18. Switching times test circuit for resistive load

Figure 19. Gate charge test circuit

Figure 20. Test circuit for inductive load switching and diode recovery times

Figure 21. Unclamped inductive load test circuit

Figure 22. Unclamped inductive waveform

Figure 23. Switching time waveform

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

10/21 Doc ID 14167 Rev 5

Table 8. D²PAK (TO-263) mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	4.40		4.60
A1	0.03		0.23
b	0.70		0.93
b2	1.14		1.70
С	0.45		0.60
c2	1.23		1.36
D	8.95		9.35
D1	7.50		
E	10		10.40
E1	8.50		
е		2.54	
e1	4.88		5.28
Н	15		15.85
J1	2.49		2.69
L	2.29		2.79
L1	1.27		1.40
L2	1.30		1.75
R		0.4	
V2	0°		8°

SEATING PLANE

COPLANARITY AT

AUGUS PLANE

VZ

0079457_S

Figure 24. D²PAK (TO-263) drawing

a. All dimension are in millimeters

Table 9. TO-220FP mechanical data

D:		mm			
Dim.	Min.	Тур.	Max.		
Α	4.4		4.6		
В	2.5		2.7		
D	2.5		2.75		
Е	0.45		0.7		
F	0.75		1		
F1	1.15		1.70		
F2	1.15		1.70		
G	4.95		5.2		
G1	2.4		2.7		
Н	10		10.4		
L2		16			
L3	28.6		30.6		
L4	9.8		10.6		
L5	2.9		3.6		
L6	15.9		16.4		
L7	9		9.3		
Dia	3		3.2		

TO-220FP drawing

5/

Table 10. TO-220 type A mechanical data

Dim.		mm	
Diiii.	Min.	Тур.	Max.
Α	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
D1		1.27	
E	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
ØP	3.75		3.85
Q	2.65		2.95

Figure 26. TO-220 type A drawing

Table 11. TO-247 mechanical data

Dim.	mm.				
	Min.	Тур.	Max.		
А	4.85		5.15		
A1	2.20		2.60		
b	1.0		1.40		
b1	2.0		2.40		
b2	3.0		3.40		
С	0.40		0.80		
D	19.85		20.15		
E	15.45		15.75		
е	5.30	5.45	5.60		
L	14.20		14.80		
L1	3.70		4.30		
L2		18.50			
ØP	3.55		3.65		
ØR	4.50		5.50		
S	5.30	5.50	5.70		

Figure 27. TO-247 drawing

5 Packing mechanical data

Table 12. D²PAK (TO-263) tape and reel mechanical data

Tape				Reel		
Dim.	m	m	Dim.	mm		
	Min.	Max.		Min.	Max.	
A0	10.5	10.7	Α		330	
В0	15.7	15.9	В	1.5		
D	1.5	1.6	С	12.8	13.2	
D1	1.59	1.61	D	20.2		
Е	1.65	1.85	G	24.4	26.4	
F	11.4	11.6	N	100		
K0	4.8	5.0	Т		30.4	
P0	3.9	4.1				
P1	11.9	12.1	Base qty 1000		1000	
P2	1.9	2.1		Bulk qty	1000	
R	50					
Т	0.25	0.35				
W	23.7	24.3				

Figure 28. Tape

Figure 29. Reel

5/

Revision history STx25NM60ND

6 Revision history

Table 13. Document revision history

Date	Revision	Changes
15-Nov-2007	1	First release.
22-Jan-2008	2	Document status promoted from target specification to preliminary data.
08-Apr-2008	3	 Updated <i>Table 3: Thermal data on page 3</i>; Document status promoted from preliminary data to datasheet.
03-Mar-2009	4	Q _g value has been updated.
28-Nov-2011	5	Updated Section 4: Package mechanical data and Section 5: Packing mechanical data. Minor text changes.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics:

<u>STB25NM60N-1</u> <u>STP25NM60ND</u> <u>STW25NM60ND</u> <u>STB25NM60ND</u> <u>STF25NM60ND</u> <u>STB25NM60ND</u> <u>STB25NM60ND</u> <u>STF25NM60ND</u> <u></u>