SEED: Self-supervised Distillation For Visual Representation

Zhiyuan Fang, Jianfeng Wang, Lijuan Wang, Lei Zhang, Yezhou Yang, Zicheng Liu

ICLR 2021

발표자: 김태성

Motivation

The widely used contrastive self-supervised learning method does not work well for small models.

- ex) MOCO-v2(He *et al.*, 2020) achieves only 36.3% top-1 accuracy on ImageNet-1k dataset.
- Contrastive self-supervised learning?
 - Contrastive learning

Self-supervised learning

Motivation

The widely used contrastive self-supervised learning method does not work well for small models.

The contrastive self-supervised learning works well for large models.

Knowledge distillation into a small network **SElf-SupErvised Distillation (SEED)**

Knowledge distillation

$$\hat{\theta}_S = \operatorname*{arg\,min}_{\theta_S} \sum_{i}^{N} \mathcal{L}_{\sup}(\mathbf{x}_i, \theta_S, y_i) + \mathcal{L}_{\operatorname{distill}}(\mathbf{x}_i, \theta_S, \theta_T),$$

• Self-supervised distillation for visual representation

Self-supervised distillation for visual representation

- 1. Training of the teacher network
 - self-supervised contrastive learning(e.g. SimCLR, MOCO, SimSiam, ...)
- 2. Knowledge distillation into the student network

Self-supervised distillation for visual representation

- 1. Training of the teacher network
 - self-supervised contrastive learning(e.g. SimCLR, MOCO, SimSiam, ...)
- 2. Knowledge distillation into the student network

Self-supervised distillation for visual representation

Cross-Entropy loss with temperature

$$\hat{\theta}_{S} = \underset{\theta_{S}}{\operatorname{arg\,min}} \sum_{i}^{N} -\mathbf{p}^{T}(\mathbf{x}_{i}; \theta_{T}, \mathbf{D}^{+}) \cdot \log \mathbf{p}^{S}(\mathbf{x}_{i}; \theta_{S}, \mathbf{D}^{+})$$

$$= \underset{\theta_{S}}{\operatorname{arg\,min}} \sum_{i}^{N} \sum_{j}^{K+1} - \frac{\exp(\mathbf{z}_{i}^{T} \cdot \mathbf{d}_{j} / \tau^{T})}{\sum_{\mathbf{d} \sim \mathbf{D}^{+}} \exp(\mathbf{z}_{i}^{T} \cdot \mathbf{d} / \tau^{T})} \cdot \log \frac{\exp(\mathbf{z}_{i}^{S} \cdot \mathbf{d}_{j} / \tau^{S})}{\sum_{\mathbf{d} \sim \mathbf{D}^{+}} \exp(\mathbf{z}_{i}^{S} \cdot \mathbf{d} / \tau^{S})}.$$

- Implementation details
 - Teacher pre-training
 - MOCO-v2, SWAV, SimCLR
 - ResNet backbone
 - Self-supervised distillation on student network
 - MobileNet-v3-Large, EfficientNet-B0, smaller ResNet(18, 34 layers)
 - SGD with momentum 0.9
- Experiments
 - Classification
 - Linear and k-NN evaluation on ImageNet
 - Semi-supervised learning (ImageNet 1%, 10%)
 - Domain transfer (CIFAR-10, CIFAR-100, SUN-397)
 - Detection and segmentation
 - Faster R-CNN for the object detection on VOC-07+12 dataset
 - MASK R-CNN for the object detection and instance segmentation on COCO 2017 dataset
 - Ablation study

Classification - Linear and k-NN evaluation on ImageNet

S T-1		Eff-b0		Eff-b1		Mob-v3		R-18		R-34						
		K	T-1	T-5	K	T-1	T-5	K	T-1	T-5	K	T-1	T-5	K	T-1	T-5
Supervised Acc.			77.3			79.2			75.2			72.1			75.0	
MOC	D-v2	30.0	42.2	68.5	34.4	50.7	74.6	27.5	36.3	62.2	36.7	52.5	77.0	41.5	57.4	81.6
R-50 △	67.4	46.0	61.3	82.7 +14.2	46.1 +16.1	61.4	83.1	44.8 +17.3	55.2 +18.9	80.3	43.4	57.6 +5.1	81.8	45.2 +3.7	58.5 +1.1	82.6 +1.0
R-101 △	70.3	50.1	63.0	83.8 +15.3	50.3 +15.9	63.4	84.6	48.8 +21.3	59.9 +23.6	83.5 +21.3	48.6 +11.9	58.9 +6.4	82.5 +5.5	50.5	61.6	84.9
R-152 △	74.2	50.7 +20.7	65.3 +23.1	86.0 +17.5	52.4 +18.0	67.3 +16.6	86.9 +12.3	49.5	61.4	84.6	49.1	59.5 +7.0	83.3	51.4	62.7	85.8 +4.2
$\mathbf{R50}_{\Delta}^{\times 2^*}$	77.3	57.4 +27.4	67.6 +25.4	87.4 +18.9	60.3	68.0 +17.3	87.6 +13.0	55.9 +18.9	68.2	88.2 +26.0	55.3 +18.6	63.0	84.9 +7.9	58.2 +16.7	65.7 +8.3	86.8

Classification – Semi-supervised learning

Classification – Domain transfer

Object detection and instance segmentation

		F	aster R-Cl	NN			Mask R	R-CNN		
S	Т	V	OC Obj. D	et.	CO	CO Obj. l	Det.	COCO Inst. Segm.		
	•	APbb	$\mathrm{AP_{50}^{bb}}$	$\mathrm{AP^{bb}_{75}}$	AP^{bb}	$\mathrm{AP_{50}^{bb}}$	$\mathrm{AP^{bb}_{75}}$	AP^{mk}	$\mathrm{AP}^{\mathrm{mk}}_{50}$	$\mathrm{AP^{mk}_{75}}$
	MOCO-v	2 46.1	74.5	48.6	35.0	53.9	37.7	31.0	51.1	33.1
	R-50	46.1(0.0)	74.8(+0.3)	49.1 (+0.5)	35.3(+0.3)	54.2 (+0.3)	37.8(+0.1)	31.1 (+0.1)	51.1(0.0)	33.2(+0.1)
R- 3	8 R-101	46.8(+0.7)	75.8(+1.3)	49.3 (+0.7)	35.3(+0.3)	54.3(+0.4)	37.9(+0.2)	31.3(+0.3)	51.3(+0.2)	33.4(+0.3)
	R-152	46.8(+0.7)	75.9(+1.4)	50.2 (+1.6)	35.4(+0.4)	54.4 (+0.5)	38.0 (+0.3)	31.3(+0.3)	51.4(+0.3)	33.4(+0.3)

Ablation study

Training algorithm

Teacher	Р-Е	D-E	T. Top-1	S. Top-1	S. Top-5
X	X	X	X	52.5	77.0
МоСо	200	200	60.6	52.1	77.0
SimCLR	200	200	65.6	57.5	81.7
MoCo-v2	200	200	67.4	57.6	81.8
	800	200	71.1	60.5	83.5
SWAV	800	100	75.3	61.1	83.8
	800	200	75.3	61.7	84.2
	800	400	75.3	62.0	84.4
SWAV*	800	200	75.3	62.6	84.8

Teacher network

Ablation study

Distillation strategy

Method	Top-1 Acc.	Top-5 Acc.
l2-Distance	55.3	80.3
<i>K</i> -Means	51.0	75.8
Online Clustering	56.4	81.2
Binary Contr. Loss		81.5
SEED + MoCo-V2	57.6	81.8
SEED	57.9	82.0

Loss temperature

τ^T	Imag	geNet	CIFAR-10	CIFAR-100		
,	Top-1	Top-5	Top-1	Top-1		
0.3	54.8	80.0	78.7	46.6		
0.1	54.9	80.1	83.0	50.1		
0.05	56.5	81.3	84.4	56.2		
0.01	57.9	82.0	87.5	60.6		
1e-3	57.6	81.8	86.9	60.8		

ResNet-50(Teacher) -> ResNet-18(Student)

- Other experiment results are shown in Appendix.
 - Ablation study
 - Learning rate
 - Weight decay
 - Queue size
 - Distillation phase
 - Different student networks
 - Small patch(multi-view / multi-crop) learning
 - Deeper projection head

Thank you

발표자: 김태성