ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ПРУЖИНЫ ВИНТОВЫЕ ЦИЛИНДРИЧЕСКИЕ СЖАТИЯ И РАСТЯЖЕНИЯ ИЗ СТАЛИ КРУГЛОГО СЕЧЕНИЯ.

Обозначение параметров, методика определения размеров

ΓΟCT 13765—86

Cylindrical helical compression (tension) springs made of round steel.

Design tion of parameters, methods for de ermination of dimensions

Срок действия с 01.07.88 до 01.07.98

1. Обозначения параметров пружин, расчетные формулы и значения должны соответствовать указанным в табл. 1 и 2 и на черт. 1—7, основные параметры витков пружин — указанным в ГОСТ 13766-86 — ГОСТ 13776-86.

Таблица 1

Наимснование парамстра	Обознач ения	Расчетные формулы и значения
1. Сила пружины при пред- варительной деформации, н	F_1	
2. Сила пружины при рабочей деформации (соответствует наибольшему принудительному перемещению подвижного звена в механизме), Н	F ₂	Принимаются в зависимости от
3. Рабочий ход пружины, мм	h	Принимаются в зависи мости от нагрузки пружины
4. Наибольшая скорость перемещения подвижного конца пружины при нагружении или разгрузке, м/с	v _{max}	
5. Выносливость пружины — число циклов до разрушения	N_F	
6. Наружный диаметр пружины, мм	D_1	Предварительно принимаются с учетом конструкции узла. Уточняются по таблицам ГОСТ 13766-86—ГОСТ 13776-86

Издание официальное

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен без разрешения Госстандарта СССР

Наименование параметра	Обозначения	Расчетные формулы и значения
7. Относительный инерционный зазор пружины сжатия. Для пружин растяжения служит ограничением максимальной деформации	δ	$\delta=1-\frac{F_2}{F_3}$ (1) Для пружин сжатия I и II классов $\delta=0.05$ до 0.25 Для пружин растяжения $\delta=0.05$ до 0.10 Для одножильных пружин III класса $\delta=0.10$ до 0.40 Для трехжильных III класса $\delta=0.15$ до 0.40
8. Сила пружины при макси- мальной деформации, Н	F_3	$F_3 = \frac{F_2}{1-\delta}$ (2) Уточняется по таблицам ГОСТ 13766-86— ГОСТ 13776-86
9. Сила предварительного на- пряжения (при навивке из хо- лоднотянутой и термообрабо- танной проволоки), Н	F_0	$(0,1-0,25)F_3$
10. Диаметр проволоки, мм	d	
11. Диаметр трехжильного троса, мм	d_1	Выбирается по таблицам ГОСТ 13764-86— ГОСТ 13776-86
12. Жесткость одного витка пружины, Н/мм	c_1	
13. Максимальная деформация одного витка пружины мм	s_3 (при $F_0 = 0$ s_3 (при $F_0 > 0$)	Выбирается по таблицам ГОСТ 13764-86— ГОСТ 13776-86 $s_3''=s_3' \frac{(F_3-F_0)}{F_3} \tag{3}$
14. Максимальное касательное напряжение пружины, МПа	τ ₃	Назначается по табл. 2 ГОСТ 13764—86 При проверке $\tau_3 = K \frac{8F_3 \cdot D}{\pi d^3} \tag{4}$ Для трехжильных пружин
		$\tau_3 = 1,82 \frac{F_3 \cdot i}{d^2}$ (4a)

		11 poodsidental 140%. I
Наименование параметра	Обозначения	Расчетные формулы н значения
15. Критическая скорость пружины сжатия, м/с	UK	$v_{\rm K} = \frac{\tau_3(1 - \frac{F_2}{F_3})}{\sqrt{2G}\rho 10^{-3}} $ (5) Для трехжильных пружин $v_{\rm K} = \frac{\tau_3(1 - \frac{F_2}{F_3})}{\sqrt{1,7G}\rho 10^{-3}} $ (5a)
16. Модуль сдвига, МПа	G	Для пружинной стали $G = 7.85 \cdot 10^4$
17. Динамическая (гравита- ционная) плотность материа- ла, Нс ² /м ⁴	ρ	$ ho=rac{\gamma}{g}$ где g — ускорение свободного падения, м/с² γ — удельный вес, H/м³ Для пружинной стали $ ho=8\cdot10^3$
18. Жесткость пружины, Н/мм	C	$c = \frac{F_2 - F_1}{h} = \frac{F_2}{s_2} =$ $= \frac{F_3}{s_3} = \frac{Gd^4}{8D^3n} \qquad (6)$ Для пружин с. предварительным напряжением $c = \frac{F_3 - F_0}{s_3} \qquad (6a)$ Для трехжильных пружин $c = \frac{F_1}{s_1} = \frac{F_2}{s_2} = \frac{F_3}{s_3} =$ $= \frac{3Gd^4}{8D^3n} k \qquad (66)$
19. Число рабочих витков пружины	n	$n = \frac{c_1}{c} \tag{7}$
20. Полное число витков пружины	n_1	$n_1 = n + n_2$ (8) где n_2 — число опорных витков
21. Средний диаметр пружи- ны	D	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Наименование парам е тр а	Обозначение	Расчетные формулы и значения
22. Индекс пружины	i	$i = \frac{D}{d} \tag{10}$
		Для трехжильных пружин
		$i = \frac{D}{d_1} \tag{10a}$
		Рекомендуется назначать от 4 до 12
23. Коэффициент расплющивания троса в трехжильной пружине учитывающий увеличение сечения витка вдоль оси пружины после навивки	Δ	Для трехжильного троса с углом свивки $\beta = 24^\circ$ определяется по табл. 2
24. Предварительная дефор- мация пружины, мм	S ₁	$s_1 = \frac{F_1}{c} \tag{11}$
25. Рабочая деформация пружины, мм	S ₂	$s_2 = \frac{F_2}{c} \tag{12}$
26. Максимальная деформа- ция, пружины, мм	s_3	$rs_3 = \frac{F_3}{c} \tag{13}$
27. Длина пружины при максимальной деформации, мм	<i>l</i> ₃	$l_3 = (n_1 + 1 - n_3)d$ (14) где n_3 — число обработанных витков Для трехжильных пружин $l_3 = (n+1)d_1\Delta$ (14a) Для пружин растяжения с заце-
	:	пами $l_3 = l_0 + s_3$ (146)
28. Длина пружины в свободном состоянии, мм	l_0	$l_0 = l_3 + s_3 \tag{15}$
29. Длина пружины растя- жения без зацепов в свободном состоянии, мм	<i>t</i> ₀	$l_0' = (n_1 + 1)d \tag{15a}$
30. Длина пружины при	$l_{\rm 1}$	
предварительной деформации, мм		
31. Длина пружины при ра-	l_2	
бочей деформации, мм		

Наименование параметра	Эбозн ачение	Расчетные ф о рмулы и зн а чения
32. Шаг пружины в свобод- ном состоянии, мм	t	$t = s_3^{'} + d$ (18) Для трехжильных пружин
		$t = s_3' + d_1 \Delta \tag{18a}$
		Для пружин растяжения $t=d$ (186)
33. Напряжение в пружине ри предварительной дефор-мации, МПа	τι	$\tau_1 = \frac{F_1}{F_3} \tau_3 \tag{19}$
34. Напряжение в пружине при рабочей деформации, МПа	τ ₂	$\tau_2 = \frac{F_2}{F_3} \cdot \tau_3 \tag{20}$
35. Коэффициент учитыва- ощий кривизну витка пружи-	k	$k = \frac{4i - 1}{4i - 4} + \frac{0.615}{i} (21)$
НЫ		Для трехжильных пружин $k = \frac{1+0,333 \sin^2 2\beta}{\cos \beta} (21a)$
		где β =arctg $\frac{0.445 \cdot i}{i+1}$
36. Длина развернутой пру- кины (без пружин, растяже- ния— без зацепов), мм	l	$l \cong 3,2Dn_1 \tag{22}$
37. Масса пружины (для пружин растяжения— без за-цепов), кг	in	$m \approx 19,25 \cdot 10^{-6} Dd^2 n_1$ (23)
38. Объем, занимаемый пру- киной (без учета зацепов пру- кины), мм ³	V	$V = 0.785 \cdot D_{1}^{2} \cdot l_{1} $ (24)
39. Зазор между концом опорного витка и соседним ра- бочим витком пружины сжа-	λ	Устанавливаются в зависимости от формы опорного витка (черт. 3—7)
40. Внутренний днаметр пру- кины, мм	D_2	$D_2 = D_1 - 2d \tag{25}$
41. Временное сопротивление проволоки при растяжении, ИПа	R_m	Устанавливается при испытаниях проволоки или по ГОСТ 9389—75 и ГОСТ 1071—81

				
Наименование параметра	Обозначение	Расчетные формулы и значения		
42. Максимальная энергия, накапливаемая пружиной или работа деформации, мДж	\overline{U}^-	Для пружин сжатия и растяжения без предварительного напряжения		
		$\overline{U} = \frac{F_3 \cdot s_3}{2} \tag{26}$		
		для пружин растяжения с пред- варительным напряжением		
		$\overline{U} = \frac{(F_3 + F_0)s_3}{2} \qquad (26a)$		

Таблица 2 Значения коэффициента расплющивания трехжильного троса

Индекс пружины	4,0	4,5	5,0	5,5	6,0	7,0 и более
Коэффициент расплющивания для трехжильного троса с углом свивки 24° ∆		1,021	1 ,015	1,010	1,005	1,000

Пружина сжатия

Черт, 1

Пружина растяжения

Черт. 2

Крайний виток пружины сжатия, полностью поджатый, нешлифованный

Черт. 3

Крайний виток пружины сжатия, полностью поджатый, вашлифованный на ³/4 дуги окружности

Черт. 4

Крайний виток пружины сжатия, поджатый на $^{1}/_{2}$ и зашлифованный на $^{1}/_{2}$ дуги окружности

(Измененная редакция, Изм. № 1).

Крайний виток пружины сжатия, поджатый на ³/₄ и зашлифованный на ³/₄ дуги окружности

Черт. 5

Крайний виток трехжильной пружины сжатия

Черт. 7

2. Для пружин I и II классов, а также в тех случаях, когда поджатию подвергают более чем по одному витку с одного или обоих концов пружины, форма опорных витков должна соответствовать указанной на черт. З и 4.

Для пружин III класса форма опорных витков должна соответствовать указанной на черт. 5—7.

При мечание. При выборе формы витков по черт. 5 и 6 следует учитывать преимущества меньшей массы и длины пружины в предельно сжатом состоянии, а также повышенной прочности опорных витков при динамических режимах нагружения.

- 3. Методика определения размеров пружин
- 3.1. Исходными величинами для определения размеров пружин являются силы F_1 и F_2 , рабочий ход h, наибольшая скорость перемещения подвижного конца пружины при нагружении или при разгрузке v_{\max} , выносливость N_F и наружный диаметр пружины D_1 (предварительный).

Если задана только одна сила F_2 , то вместо рабочего хода h для подсчета берут величину рабочей деформации s_2 , соответствующую заданной силе.

- 3.2. По величине заданной выносливости N_F предварительно определяют принадлежность пружины к соответствующему классу по ГОСТ 13764—86.
- 3.3. По заданной силе F_2 и крайним значениям инерционного зазора δ вычисляют по формуле (2) значение силы F_3 .
- 3.4. По значению F_3 , пользуясь табл. 2 ГОСТ 13764—86, предварительно определяют разряд пружины.
- 3.5. По ГОСТ 13766-86 ГОСТ 13776-86 находят строку, в которой наружный диаметр витка пружины наиболее близок к предварительно заданному значению D_1 . В этой же строке находят соответствующие значения силы F_3 и диаметра проволоки d.
- 3.6. Для пружин из закаливаемых марок сталей максимальное касательное напряжение τ_3 находят по табл. 2 ГОСТ 13764—86, для пружин из холоднотянутой и термообработанной τ_3 вычисляют с учетом значений временного сопротивления R_m . Для холоднотянутой проволожи R_m определяют по ГОСТ 9389—75, для термообработанной по ГОСТ 1071—81.
- 3.7. По полученным значениям F_3 и τ_3 , а также по заданному значению F_2 по формулам 5 и 5а вычисляют критическую скорость v_k и отношение v_{\max}/v_k , подтверждающее или отрицающее принадлежность пружины к предварительно установленному классу.

При несоблюдении условий $v_{\rm max}/v_{\it k} < 1$ пружины I и II классов относят к последующему классу или повторяют расчеты, изменив исходные условия. Если невозможно изменение исходных условий, работоспособность обеспечивается комплектом запасных пружин

3.8. По окончательно установленному классу и разряду в соответствующей таблице на параметры витков пружин, помимо ранее найденных величин F_3 , D_1 и d, находят величины c_1 и s_3 , после чего остальные размеры пружины и габариты узла вычисляют по соответствующим формулам 6-25.

Дополнительные пояснения и примеры определения размеров пружин приведены в приложениях 1—3 к ГОСТ 13764—86 и в приложении к ГОСТ 13765—86.

Примечание. При проверочных расчетах установленные табл. 2 в ГОСТ 13764-86 нормативы допускаемых максимальных напряжений пружин τ_3 должны совпадать с расчетными в пределах ± 10 %.

ПРИЛОЖЕНИ**Ё** Справочн**ое**

примеры определения размеров пружин

Пример 1.

Пружина сжатия

Дано: F_1 =20H; F_2 =80H; h=30 мм; D_1 =10—12 мм; v_{max} =5 м/с; $N_F \geqslant 1.10^7$ Пользуясь ГОСТ 13764—86, убеждаемся, что при заданной выносливости пружину следует отнести к 1 классу.

По формуле (2), пользуясь интервалом значений δ от 0,05 до 0,25 (формуле 1) изуати продукция смения F а имение.

мула 1), находим граничные значения силы F_3 , а именно:

$$F_3 = \frac{F_2}{1 - 0.05} \div \frac{F_2}{1 - 0.25} = 81 \div 107 \text{ H}.$$

В интервале от 84 до 107 Н в ГОСТ 13766—86 пружин I класса, разряда 1 имеются следующие силы F_3 : 85; 90; 95; 100 и 106 Н.

Исходя из заданных размеров диаметра и стремления обеспечить наибольшую критическую скорость, останавливаемся на витке со следующими данными (номер позиции 355):

$$F_3 = 106 \text{ H}; \quad d = 1,80 \text{ mm}; \quad D_1 = 12 \text{ mm};$$
 $c_1 = 97,05 \quad \text{H/mm}; \quad s_3^{'} = 1,092 \text{ mm}.$

Учитывая, что для пружин I класса норма напряжений $\tau_3 = 0.3 \ R_m$ (ГОСТ 13764—86), находим, что для найденного диаметра проволоки из углеродистой холоднотянутой стали расчетное напряжение $\tau_3 \simeq 0.3 \cdot 2100 = 630 \ H/mm^2$.

Принадлежность к I классу проверяем путем определения отношения v_{\max}/v_k , для чего предварительно определяем критическую скорость по формуле (5) при $\delta = 0.25$.

$$v_{\rm K} = \frac{\tau_3 \left(1 - \frac{F_2}{F_3}\right)}{\sqrt{2G\rho}10^{-3}} = \frac{630 \cdot 0.25}{35.1} = 4.5 \text{ M/c},$$

$$\frac{v_{\rm max}}{v_{k}} = \frac{5.0}{4.5} = 1.11 > 1.$$

Полученная величина свидетельствует о наличии соударения витков в данной пружине и, следовательно, требуемая выносливость может быть не обеспечена. Легко убедиться что при меньших значениях силы F_3 отношение v_{max}/v_k будет еще больше отличаться от единицы и указывать на еще большую интенсивность соударения витков.

Используем пружины II класса. Заданному наружному диаметру и найденным выше силам F_3 соответствует виток со следующими данными по ГОСТ 13770—86 (позиция 303):

$$F_3$$
=95,0 H; d =1,4 mm; D_1 =11,5 mm; c_1 =36,58 H/mm; s_3 '=2,597 mm.

Учитывая норму напряжений для пружин II класса $\tau^3 = 0.5 \ R_m$ находим $\tau_3 = 0.5 \cdot 2300 = 1150 \ \text{H/mm}^2$.

По формуле (2) вычисляем $\delta = 1 - \frac{F_2}{F_3} = 1 - \frac{80}{95} = 0,16$, и находим v_k и v_{max}/v_k с помощью которых определяем принадлежность пружин ко II классу.

$$v_k = \frac{1150 \cdot 0,16}{35,1} = 5,57 \text{ M/c},$$

$$u_{\text{max}} = \frac{5,0}{5,57} = 0,89 < 1.$$

Полученная величина указывает на отсутствие соударения витков и, следовательно, выбранная пружина удовлетворяет заданным условиям, но так как пружины II класса относятся к разряду ограниченной выносливости, то следует учитывать комплектацию машины запасными пружинами с учетом опытных данных.

Определение остальных размеров производим по формулам табл. 1. По формуле (6) находим жесткость пружины:

$$c = \frac{F_2 - F_1}{n} = \frac{80 - 20}{30} = 2.0 \text{ H/mm}.$$

Число рабочих витков пружины определяем по формуле (7):

$$n = \frac{c_1}{c} = \frac{36,58}{2,0} = 18,29 \approx 18,5.$$

Уточненная жесткость имеет значение:

$$c = \frac{c_1}{n} = \frac{36,58}{18.5} = 1,977 \approx 2,0 \text{ H/MM}.$$

При полутора нерабочих витков полное число витков находим по формуле (8):

$$n_1 = n + n_2 = 18.5 + 1.5 = 20.$$

По формуле (9) определяем средний диаметр пружины:

$$D=11,5-1,49=10,1$$
 MM.

Деформации, длины и шаг пружины вычисляем по формулам, номера которых указаны в скобках:

$$s_1 = \frac{F_1}{c} = \frac{20}{2.0} = 10.0 \text{ MM} \tag{11}$$

$$s_2 = \frac{F_2}{c} = \frac{80}{2.0} = 40.0 \text{ MM} \tag{12}$$

$$s_3 = \frac{F_3}{c} = \frac{95}{2.0} = 47,5 \text{ MM} \tag{13}$$

$$l_3 = (n_1 + 1 - n_3)d = (20 + 1 - 1, 5) \cdot 1,40 = 27,3 \text{ MM}$$
 (14)

$$l_0 = l_3 + s_3 = 27,3 + 47,5 = 74,8 \text{ MM}$$
 (15)

$$l_1 = l_0 - s_1 = 74.8 - 10.0 = 64.8 \text{ MM}$$
 (16)

$$l_2 = l_0 - s_2 = 74.8 - 40.0 = 34.8 \text{ MM}$$
 (17)

$$t = s_3' + d = 2,6 + 1,49 = 4,0 \text{ MM}$$
 (18)

На этом определение размеров пружины и габарита узла (размер l_1) заканчивается.

Следует отметить, что некоторое увеличение выносливости может быть достигнуто при использовании пружины с большей величиной силы F_3 , чем найденная в настоящем примере. С целью выяснения габаритов, занимаемых такой пружиной, проделаем добавочный анализ:

остановимся, например, на витке со следующими данными по ГОСТ 13770—86 (позиция 313).

$$F_3 = 106 \text{ H}$$
; $d = 1.4 \text{ mM}$; $D_1 = 10.5 \text{ MM}$
 $c_1 = 50.01 \text{ H/MM}$; $s_3^{'} = 2.119 \text{ MM}$.

Находим $\tau_3 = 1150$ Н/мм² и производим расчет в той же последовательности:

$$\delta = 1 - \frac{F_2}{F_3} = 1 - \frac{80}{106} = 0,245;$$

$$v_k = \frac{1150 \cdot 0,245}{35,1} = 8,05 \text{ m/c}$$

$$\frac{v_{\text{max}}}{v_b} = \frac{5,0}{8,05} = 0,622.$$

Очевидно, что у этой пружины создается большой запас на несоударяемость витков.

Далее в рассмотренном ранее порядке находим:

$$n = \frac{50,01}{2,0} = 25,01 \approx 25,0.$$

Уточненная жесткость

$$c = \frac{50.01}{25.0} \approx 2.0 \text{ H/mm}$$

$$n_1 = 25,0+1,5=26,5$$
;

$$D=10,5-1,4=9,1$$
 MM;

$$s_1 = \frac{20}{2.0} = 10 \text{ mm};$$

$$s_2 = \frac{80}{2,0} = 40 \text{ MM};$$

$$s_3 = \frac{106}{2.0} = 53 \text{ mm};$$

$$l_3 = (26.5 + 1 - 1.5) \cdot 1.4 = 36.4 \text{ mm};$$

$$l_0 = 36.4 + 53 = 89.4 \text{ mm};$$

$$l_1 = 80.4 - 10 = 79.4 \text{ mm};$$

$$l_2 = 89.4 - 40 = 49.4 \text{ mm};$$

$$t = 2.1 + 1.4 = 3.5 \text{ mm}.$$

Таким образом, устанавливаем, что применение пружины с более высокой силой F_3 хотя и привело к большему запасу на несоударяемость витков, но оно сопровождается увеличением габарита узла (размер l_1) на 15,3 мм. Можно по-казать, что если был бы выбран виток с большим диаметром, например, $D_1 = 16$ мм (ГОСТ 13770—86, номер позиции 314), то тогда потребовалось бы расширить узел по диаметру, но при этом соответственно уменьшился бы размер l_1 .

Пример 2.

Пружина сжатия

Дано: $F_1 = 100$ H; $F_2 = 250$ H; h = 100 мм; $D_1 = 15 \div 25$ мм; $v_{\text{max}} = 10$ м/с.

Независимо от заданной выносливости на основании формулы (5) можно убедиться, что при значениях δ меньших 0,25 (формула 1) все одножильные пружины, нагружаемые со скоростью v_{\max} более 9,4 м/с, относятся к III классу.

По формуле (2) с учетом диапазона значений δ для пружин III класса от 0,1 до 0,4 (формула 1) находим границы сил F_3 :

$$F_3 = \frac{F_2}{1 - 0.1} \div \frac{F_2}{1 - 0.4} = \frac{250}{0.9} \div \frac{250}{0.6} = 278 \div 417 \text{ H}.$$

Верхние значения силы F_3 , как видно из табл. 2 ГОСТ 13764—86 не могут быть получены из числа одножильных конструкций, поэтому, учитывая коэффициенты $\delta = 0.15 \div 0.40$ (формула 1) для трехжильных пружин, устанавливаем новые пределы F_3 по формуле (2):

$$F_3 = 294 \div 417 \text{ H}.$$

Для указанного интервала в ГОСТ 13774—86 имеются витки со следующими силами F_3 : 300; 315; 335; 375 и 400.

Исходя из заданных размеров диаметра и наименьших габаритов узла, предварительно останавливаемся на витке со следующими данными (номер позиции 252):

$$F_3$$
=300 H; d =1,4 mm; d_1 =3,10 mm; D_1 =17 mm; c_1 =50,93 H/mm; $s_3^{'}$ =5,900 mm.

Согласно ГОСТ 13764—86 для пружин III класса τ_3 = 0,6 R_m . Используя ГОСТ 9389—75 определяем напряжение для найденного диаметра проволоки:

$$\tau_2 = 0.6.2300 = 1380 \text{ M}\Pi a$$

Принадлежность к классу проверяем путем определения величины отношения v_{\max}/v_h , для чего предварительно находим δ и критическую скорость по формулам (1), (2) и (5a):

$$\delta = 1 - \frac{F_2}{F_3} = 1 - \frac{250}{300} = 0,167;$$

$$v_k = \frac{1380 \cdot 0,167}{32,4} = 7 \text{ m/c};$$

$$\frac{v_{\text{max}}}{v_k} = \frac{10.0}{7.0} = 1.43 > 1.$$

Полученное неравенство свидетельствует о наличии соударения витков и о принадлежности пружины к III классу.

Определение остальных параметров производится по формулам табл. 1. По формуле 6 находим жесткость:

$$c = \frac{F_2 - F_1}{h} = \frac{250 - 100}{100} = 1.5 \text{ H/MM}.$$

Число рабочих витков пружины вычисляют по формуле (7):

$$n = \frac{c_1}{c} = \frac{50.9}{1.5} = 33.9 \approx 34.0.$$

Уточненная жесткость имеет значение

$$c = \frac{c_1}{n} = \frac{50.9}{34.0} = 1.49 \approx 1.5 \text{ H/MM}.$$

Полное число витков находят по формуле (8):

$$n_1 = n+1, 5=34, 0+1, 5=35, 5.$$

По формуле (7а) определяют средний диаметр пружины:

$$D=D_1-d=17-3,10=13,90 \text{ MM}.$$

Деформации, длины и шаг пружины находят по формулам в табл. 1 номера которых указаны в скобках:

$$s_1 = \frac{F_1}{c} = \frac{100}{1.5} = 66,7 \text{ mm};$$
 (11)

$$s_2 = \frac{F_2}{c} = \frac{250}{1.5} = 166,7 \text{ mm};$$
 (12)

$$s_3 = \frac{F_3}{c} = \frac{300}{1.5} = 200 \text{ MM};$$
 (13)

$$i = \frac{D}{d} = \frac{13,90}{3,10} = 4,5$$
 (10a)

$$l_3 = (n_1 + 1 - 0)d_1\Delta = (35, 5 + 1) \cdot 3, 10 \cdot 1, 021 = 115, 5 \text{ MM}$$
 (14a)

$$l_0 = l_3 + s_2 = 115.5 + 200 = 315.5 \text{ MM}$$
 (15)

$$l_1 = l_0 - s_1 = 315, 5 - 66, 7 = 248, 8 \text{ MM}$$
 (16)

$$l_2 = l_0 - s_2 = 315, 5 - 166, 7 = 148, 8 \text{ MM}$$
 (17)

$$t = s_3' + d_1 \Delta = 5,9 + 3,10 \cdot 1,021 = 9,19 \text{ MM}.$$
 (18)

Проанализируем пружины, соответствующие трем ближайшим значениям F₃, взятым из ГОСТ 13774—86, на пружины III класса, разряда 1, для рассмотренного случая.

Вычисления, проделанные в аналогичном порядке, показывают, что для трех соседних сил F_3 образуется шесть размеров пружин, удовлетворяющих требованиям по величине наружного диаметра.

Сведения о таких пружинах помещены в таблице.

Из данных таблицы следует, что с возрастанием F_3 уменьшается отношение v_{\max}/v_k и, в частности, может быть устранено соударение витков, но вместе с этим возрастают габариты по размерам l_1 .

F ₃ , H	30)	315		335	
d , MM d_1 , MM D_1 , MM v_{max}/v_k l_0 , MM l_1 , MM l_2 , MM n_1 V , MM ³	1,4	1,6	1,4	1,6	1,4	1,6
	3,10	3,50	3,10	3,50	3,10	3,50
	17,0	24,0	16,0	22,0	15,0	21,0
	1,43	1,50	1,16	1,21	0,942	0,984
	317,0	273,9	355,1	309,0	405,1	337,0
	250,4	207,2	288,4	242,3	338,4	270,3
	150,4	107,2	188,4	142,3	238,4	170,3
	36,0	20,0	44,5	27,0	56,0	31,0
	57000	93000	58000	92000	60000	93000

С возрастанием диаметров пружин габариты по размерам l_i , уменьшаются, однако существенно возрастают объемы пространств, занимаемые пружинами.

Следует отметить, что если бы для рассматриваемого примера, в соответствии с требованиями распространенных классификаций, была бы выбрана пружина I класса, то при одинаковом диаметре гнезда ($D_1 \approx 18$ мм) даже самая экономная из них потребовала бы длину гнезда $l_1 = 546$ мм, т. е. в 2,2 раза больше, чем рассмотренная выше. При этом она была бы в 11,5 раза тяжелее и, вследствие малой критической скорости ($v_k = 0.7$ м/с), практически неработоспособной при заданной скорости нагружения 10 м/с.

Пример 3.

Пружина растяжения

Дано: $F_1 = 250$ H; $F_2 = 800$ H; h = 100 мм; $D_1 = 28 \div 32$ мм; $N_F = 1.10^5$

На основании ГОСТ 13764—86 по величине N_F устанавливаем, что пружина относится ко II классу. По формуле (2) находим силы F_3 , соответствующие предельной информации:

$$F_3 = \frac{F_2}{1 - 0.05} \div \frac{F_2}{1 - 0.10} = 842 \div 889 \text{ H}.$$

В интервале сил 842÷889 Н в ГОСТ 13770—86 для пружин II класса, разряда 1 (номер позиции 494) имеется виток со следующими параметрами:

$$F_3$$
=850 H; D_1 =30 MM; d =4,5 MM c_1 =242,2 H/MM; $s_3^{'}$ =3,510 MM.

По заданным параметрам с помощью формулы (4) определяем жесткость пружины:

$$c = \frac{F_2 - F_1}{h} = \frac{800 - 250}{100} = 5.5 \text{ H/MM}.$$

Число рабочих витков находим по формуле (7):

$$n = \frac{c_1}{c} = \frac{242,2}{5,5} \approx 44.$$

Деформации и длины пружины вычисляют по формулам, номера которых указаны в скобках:

$$s_1 = \frac{F_1}{c} = \frac{250}{5.5} = 45.5 \text{ mM};$$
 (11)

$$s_2 = \frac{F_2}{c} = \frac{800}{5.5} = 145.5 \text{ mm};$$
 (12)

$$s_3 = \frac{F_3}{c} = \frac{850}{5.5} = 154,5 \text{ mm};$$
 (13)

$$l_0' = (n_1 + 1)d;$$
 (15a)

$$l_1 = l_0 + s_1 = 202, 5 + 45, 5 = 248, 0 \text{ MM};$$
 (16a)

$$l_2 = l_0 + s_2 = 202,5 + 145,5 = 348,0 \text{ MM};$$
 (17a)

$$l_3 = l_0 + s_3 = 202, 5 + 154, 5 = 357, 0 \text{ MM}.$$
 (146)

Размер l_2 с учетом конструкций зацепов определяет длину гнезда для размещения пружины растяжения в узле.

мещения пружины растяжения в узле. Размер l_3 с учетом конструкций зацепов ограничивает деформацию пружины растяжения при заневоливании.

Трехжильные пружины (угол свивки 24°)

Жесткость

$$c=rac{F_1}{s_1}=rac{F_2}{s_2}=rac{F_3}{s_3}=rac{30000d^4k}{D^3n}$$
 H/мм, где $k=rac{1+0\,,333\sin^2\!2eta}{\coseta}$, где $\beta=rctg\,rac{0\,,445i}{i+1}$, где $i=rac{D}{d_1}$.

Напряжение $\tau_s = 1.82 \frac{F_3 i}{d^2}$ МПа.

Полученные значения жесткости должны совпадать с вычисленными величинами по формуле (6).

Полученные значения с напряжений должны совпадать с указанными в ГОСТ 13764—86 для соответствующих разрядов с отклонениями не более ± 10 %.

(Измененная редакция, Изм. № 1).

информационные данные

1. РАЗРАБОТЧИКИ

- Б. А. Станкевич (руководитель темы); О. Н. Магницкий, д-р техн. наук; А. А. Косилов; Б. Н. Крюков; Е. А. Караштин, канд. техн. наук
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 19.12.86 № 4008
- 3. Срок проверки 1997 г., периодичность проверки 10 лет.
- 4. Стандарт полностью соответствует СТ СЭВ 5616-86
- 5. B3AMEH FOCT 13765-68

6. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУ-

Обозначение НТД, на который дана ссылка	Номер пункта	Обозначение НТД, на который дана ссылка	Номер пункта
FOCT 9389—75 FOCT 1071—81 FOCT 13764—86 FOCT 13766—86 FOCT 13767—86 FOCT 13768—86 FOCT 13769—86	3.6 3.6 3.2, 3.4; 3.6; 3.8 1 1 1	FOCT 13770—86 ΓΟCT 13771—86 ΓΟCT 13772—85 ΓΟCT 18773—86 ΓΟCT 13774—86 ΓΟCT 13775—86 ΓΟCT 13776—86	1 1 1 1 1 1

7. Переиздание (май 1991 г.) с Изменением № 1, утвержденным в ноябре 1988г. (ИУС 2—89).