Bresenham's Line Drawing Algorithm Quick Reference

1. For |m| < 1 i.e. |dy| < |dx|

 X_{k+1} =Increment or decrement by 1

 Y_{k+1} = According to decision parameter (P_k) looped till |dx|.

$$P_0 = 2 \times |dy| - |dx|$$

Case	Condition		X_{k+1}	$If P_K < 0$ $P_{k+1} = P_k + 2 \times dy $	Else $(P_K >= 0)$ $P_{k+1} = P_k + 2 \times dy - 2 \times dx $	Example Coordinate
	dx	dy		\mathbf{Y}_{k+1}	Y_{k+1}	
I	Positive	Positive (+ve)	X_k+1	\mathbf{Y}_{k}	Y_k+1	(10, 10) and (18, 17)
II	(+ve)	Negative (-ve)			Y_k -1	(10, 10) and (14, 7)
III	Negative (-ve)	Positive (+ve)	X _k -1		Y_k+1	(10, 10) and (6, 13)
IV		Negative (-ve)			Y _k -1	(10, 10) and (6, 7)

2. For |m| > 1 i.e. |dy| > |dx|

 X_{k+1} = According to decision parameter (P_k) looped till |dy|.

 Y_{k+1} = Increment or decrement by 1

 $P_0 = 2 \times |dx| - |dy|$

	Condition dx dy		$If P_{K} < 0 \qquad Else (P_{K} >= 0)$			
Case			$P_{k+1}=P_k+2\times dx $ X_{k+1}	$P_{k+1}=P_k+2\times dx -2\times dy $ X_{k+1}	\mathbf{Y}_{k+1}	Example Coordinate
		uy	1 1 1 1 1 1 1 1 1 1	AK+1		
I	Positive	Positive		X_k+1	Y_k+1	(10, 10) and (16, 17)
	(+ve)					
	Negative	(+ve)		X_{k} -1		(10, 10) and (4, 17)
	(-ve)		X_k			
III	Positive			X_k+1	Y _k -1	(6, 12) and (10, 5)
	(+ve)	Negative		21,11		(0, 12) and (10, 5)
IV	Negative	(-ve)		X_{k} -1		(10, 10) and (7, 5)
	(-ve)					(10, 10) and (7, 3)