mpi* - lycée montaigne informatique

DM7 (éléments de réponses)

Question 1. Le mot vide n'est l'étiquette d'aucun chemin acceptant et donc : $Pr(\varepsilon) = 0$.

Puisque $q_0 \stackrel{0}{\longrightarrow} q_1$ est le seul chemin acceptant d'étiquette 0 et que sa probabilité vaut 1/4, on a : $Pr(0) = \frac{1}{4}$. Il existe deux chemins acceptants d'étiquette 010 qui sont :

$$q_0 \overset{0}{\longrightarrow} q_0 \overset{1}{\longrightarrow} q_0 \overset{0}{\longrightarrow} q_1 \quad \text{ et } \quad q_0 \overset{0}{\longrightarrow} q_1 \overset{1}{\longrightarrow} q_0 \overset{0}{\longrightarrow} q_1$$

 $\mathrm{Ainsi}: Pr(010) = \tfrac{3}{4} \times 1 \times \tfrac{1}{4} + \tfrac{1}{4} \times 1 \times \tfrac{1}{4} = \tfrac{1}{4}.$

Question 2. Prouvons le résultat plus général suivant. Si $q \in Q$, notons q-chemin pour u un chemin d'étiquette u d'état initial q. On parle aussi de q-chemin acceptant (ou non-acceptant) pour u selon que l'état final du chemin est (ou n'est pas) dans F. Posons ensuite :

 $Pr_q(u) = \sum_{\rho \text{ q-chemin acceptant pour } u} Pr(\rho)$

Alors, par récurrence sur la taille de u, on a :

$$\forall q \in Q, \ Pr_q(u) = 1 - \sum_{\rho \ q\text{-chemin non-acceptant pour } u} Pr(\rho)$$

• Initialisation : ε est l'unique mot vide. Soit $q \in Q$. Le seul q-chemin pour ε est le chemin de longueur nulle q. Si ce chemin est q-acceptant ($q \in F$) on a $Pr_q(u) = 1$ et la somme des probabilités des q-chemin non-acceptant pour ε est bien nulle (il n'y a pas de tel chemin).

Sinon, $Pr_q(u) = 0$ et la somme des probabilités des q-chemin non-acceptant pour ε est vaut 1 (probabilité du chemin q).

Dans les deux cas, on a la formule demandée.

• Hérédité : supposons le résultat vrai pour les mot de longueur $n \geq 0$ donné. Considérons un mot u de longueur n+1. On peut l'écrire u=xv avec v mot de longueur n et $x\in\{0,1\}$. Soit $q\in Q$; les q-chemins pour u sont du type

 $q \xrightarrow{x} q' \xrightarrow{v} q''$

et on a donc

$$Pr_q(u) = \sum_{q' \in Q} Pr(q \xrightarrow{\ x \ } q') Pr_{q'}(v)$$

Par hypothèse de récurrence, on a :

$$\forall q' \in Q, \; Pr_{q'}(v) = 1 - \sum_{\rho \; q' \text{-chemin non-acceptant pour } v} Pr(\rho)$$

On en déduit que :

$$\begin{array}{lcl} Pr_q(u) & = & \displaystyle \sum_{q' \in Q} Pr(q \stackrel{x}{\longrightarrow} q') - \sum_{q' \in Q} \left(Pr(q \stackrel{x}{\longrightarrow} q') \sum_{\substack{\rho \ q' \text{-chemin non-acceptant pour } v} Pr(\rho) \right) \\ & = & 1 - \sum_{\substack{q' \in Q \\ \rho \ q' \text{-chemin non-acceptant pour } v}} \left(Pr(q \stackrel{x}{\longrightarrow} q') Pr(\rho) \right) \\ & = & 1 - \sum_{\substack{\rho \ q' \text{-chemin non-acceptant pour } u}} Pr(\rho) \end{array}$$

Ceci prouve le résultat au rang n+1.

Il suffit d'appliquer le résultat avec $q = q_0$.

Question 3. Si u est un mot se terminant par 1 alors un chemin dans \mathcal{A}_0 de q_0 à q_1 et d'étiquette u a une dernière transition de probabilité nulle et donc une probabilité nulle. Ainsi, Pr(u)=0. Si u est un mot se terminant par 0 alors un chemin bouclant sur q_0 et passant en q_1 lors de la lecture de la dernière lettre est composé de transitions de probabilités toutes non nulles et a donc une probabilité non nulle. On a alors Pr(u)>0. Quant au mot vide, il est de probabilité nulle dans \mathcal{A}_0 . Ainsi, les mots u tels que Pr(u)=0 pour \mathcal{A}_0 sont ceux de $\{\varepsilon\}\cup\Sigma^*1$.

Pour tout mot u, il existe un chemin non-acceptant pour u et de probabilité >0 (celui qui boucle sur q_0). Ainsi, la somme des longueur de ces chemins est >0. Avec la question précédente, Pr(u)<1 et il n'existe pas de mot u tels que Pr(u)=1 pour \mathcal{A}_0 .

mpi* - lycée montaigne informatique

Question 4. La question précédente montre que le langage cherché est Σ^*0 .

Question 5. Notons $\mathcal{A}'=(Q,q_0,F,\gamma)$ où $\gamma\subset Q\times\Sigma\times Q$ est défini par :

$$\gamma = \{ (q, \alpha, q') / \Pr(q, \alpha, q') > 0 \}$$

On a un automate non déterministe dont on va montrer qu'il reconnaît exactement les mots u dont la probabilité Pr(u) pour $\mathcal A$ est non nulle.

- Soit u un mot reconnu par \mathcal{A}' . Il existe alors un chemin dans \mathcal{A}' d'origine q_0 et d'extrémité dans F d'étiquette u. Par définition de γ , le chemin similaire dans \mathcal{A} est composé de transitions de probabilités > 0 et a donc une probabilité > 0. Ainsi Pr(u) > 0 (c'est la somme de quantités ≥ 0 dont une au moins est > 0).
- Réciproquement, soit u tel que Pr(u) > 0. Il y a alors au moins un chemin acceptant pour u dans \mathcal{A} et de probabilité > 0 et donc composé de transitions de probabilités > 0. Par définition de γ , le même chemin existe dans \mathcal{A}' et va de q_0 à un élément de F. Ainsi, $u \in \mathcal{A}'$.

Question 6. Dans le cas de A_0 , on obtient :

La table du déterminisé de cet automate est :

$$\begin{array}{c|cccc} & q_0 & q_0, q_1 \\ \hline 0 & q_0, q_1 & q_0, q_1 \\ 1 & q_0 & q_0 \\ \end{array}$$

et sa représentation graphique est :

Question 7. Soit L un langage rationnel. Il existe un automate déterministe complet $\mathcal{A}=(Q,q_0,F,\delta)$ qui reconnaît ce langage. Considérons la fonction Pr définie par :

$$\forall q \in Q, \ \forall \alpha \in \Sigma, \ Pr(q,\alpha,\delta(q,\alpha)) = 1$$

les autres valeurs prises par Pr étant nulles. Ceci revient à donner à chaque transition qui existe dans \mathcal{A} la probabilité 1. Notons $\mathcal{A}'=(Q,q_0,F,Pr)$. Le fait que \mathcal{A} est déterministe nous permet de voir que \mathcal{A}' est déterministe (la somme des probabilités des transitions issues d'un état donné q et étiquetée par une lettre donnée α vaut 1).

Par construction, les chemins dans \mathcal{A}' sont tous de probabilité 1. Pr(u) > 0 équivaut à l'existence d'un chemin acceptant pour u dans \mathcal{A}' et donc au fait que le chemin dans \mathcal{A} d'origine q_0 et d'étiquette u se termine dans un élément de F, c'est à dire au fait que u est reconnu par \mathcal{A} . On a ainsi $L = \mathcal{L}_0(\mathcal{A}')$ et L est stochastique.

Question 8.

$$Pr(q_0 \xrightarrow{1} q_0 \xrightarrow{1} q_1 \xrightarrow{1} q_1 \xrightarrow{0} q_0 \xrightarrow{1} q_1) = \frac{1}{2} \times \frac{1}{2} \times 1 \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{16} = \underline{0,0001} = \underline{$$

Question 9. $q_0 \xrightarrow{1} q_1 \xrightarrow{0} q_1$ est le seul chemin acceptant pour 10 et sa probabilité est $\frac{1}{4}$. Ainsi :

$$Pr(10) = \frac{1}{4} = \underline{0.01}_2$$

Question 10. On peut représenter de manière arborescente les différents chemins acceptants pour 1101 dans A_1 : On a alors:

$$Pr(1101) = \frac{1}{8} + \frac{1}{16} + \frac{1}{8} + \frac{1}{8} + \frac{1}{4} = \frac{1}{2} + \frac{1}{8} + \frac{1}{16} = \underline{0,1011}_{2}$$

Question 11. On a $Pr(\varepsilon) = 0$ dont une écriture finie en base 2 est 0. Montrons maintenant que :

$$\forall u=\alpha_1\dots\alpha_n\in\Sigma^n,\; Pr(u)=\underline{0,\alpha_n\dots\alpha_1}_2$$

On procède pour cela par récurrence sur n. Si $u=\alpha_1\dots\alpha_n$, je note $N_u=\underline{0,\alpha_n\dots\alpha_1}_2$.

mpi* - lycée montaigne informatique

- On a $Pr(0)=0=\underline{0,0}_2$ et $Pr(1)=\frac{1}{2}=\underline{0,1}_2$ ce qui montre le résultat pour n=1.
- Supposons le résultat vrai jusqu'à un rang $n \geq 1$. Soit $v = \alpha_1 \dots \alpha_n \alpha_{n+1}$; on pose $u = \alpha_1 \dots \alpha_n$. Par hypothèse de récurrence, la lecture de u depuis q_0 amène en q_1 avec probabilité N_u et donc en q_0 avec probabilité $1 N_u$. On distingue deux cas.
 - \diamond Si $\alpha_{n+1}=0$, la lecture de v mènera en q_1 si et seulement celle de u à amené en q_1 et qu'on emprunte la transition de q_1 vers lui même pour la dernière lettre. La probabilité est alors de $\frac{1}{2}N_u=N_v$ (multiplier par 1/2 décale toutes les « décimales »).
 - \diamond Si $lpha_{n+1}=1$, les bon chemins sont ceux qui mènent par v à q_0 puis passent à q_1 ou qui mènent par v à q_1 et y restent. Ceci advient avec probabilité $\frac{1}{2}(1-N_u)+N_u=\frac{1}{2}+\frac{1}{2}N_u=N_v$ (on décale les "décimales" par le facteur 1/2 et on ajoute une première « décimale » égale à 1 par l'ajout de 1/2).

On obtient ainsi le résultat au rang n+1.

Question 12. Le mot vide est de probabilité nulle et donc n'est pas dans $\mathcal{L}_{\eta}(\mathcal{A}_1)$. Soit $u=\alpha_1,\dots\alpha_n$ un mot non vide. Il est dans $\mathcal{L}_{\eta}(\mathcal{A}_1)$ si $Pr(u)>\eta$ et la question précédente montre que ceci équivaut à $0,\alpha_n\dots\alpha_{1,2}>\eta$.

Question 13. Pour conclure, il reste à montrer qu'il existe $\eta \in [0,1[$ tel que $\mathcal{L}_{\eta}(\mathcal{A}_1)$ n'est pas rationnel. Or, le nombre de langages rationnels sur Σ est dénombrable (en effet, $Rat(\Sigma)$ est défini par récurrence à partir d'un

nombre fini de cas de base et par application de trois règles; l'ensemble R_n des langages rationnels obtenus par application d'au plus n fois une règle est fini; $Rat(\Sigma)$ est la réunion, dénombrable, des R_n).

On pourra conclure si on montre qu'il existe un nombre infini non dénombrable de $\mathcal{L}_{\eta}(\mathcal{A}_1)$. Ceci est vrai car si $\eta < \eta'$ alors $\mathcal{L}_{\eta'}(\mathcal{A}_1) \subset \mathcal{L}_{\eta}(\mathcal{A}_1)$ et ceci est une inclusion stricte puisque l'ensemble des nombres ayant une écriture finie en base 2 est dense dans [0,1] (même preuve que dans le cs décimal) et qu'on peut donc trouver un nombre ayant une écriture finie en base 2 dans $[\eta,\eta']$.