BIO 226, Spring 2015: Lab 3

Analysis of Response Profiles using PROC MIXED in SAS

TA: Fei Li; Professor: Brent Coull

March 3, 2015

Outline

- 1 Review of Wald test and Likelihood-Ratio test
 - Univariate and Multivariate Wald Test
 - Likelihood ratio test

2 Analysis of Response Profiles: Global/Omnibus Test

Background

- Wald test and Likelihood ratio tests are two different approaches to testing hypotheses.
- We will look at how they are defined and learn how to use SAS outputs to construct them.
- In this section, we will use the succimer treated subset of the TLC dataset, and we will use the entire dataset later.
- In this subset of the TLC dataset, we measure blood lead level $(\mu g/dL)$ on all *succimer* treated patients at four times: baseline, week 1, week 4 and week 6 (the filename on the course website is lead.txt and includes only patients in group A).

Variable notations

So we can represent an individual's outcome by

$$\mathbf{Y}_i = \left(\begin{array}{c} Y_{i1} \\ Y_{i2} \\ Y_{i3} \\ Y_{i4} \end{array} \right) = \left(\begin{array}{c} \text{individual } \textit{i's blood lead level at baseline} \\ \text{individual } \textit{i's blood lead level at week 1} \\ \text{individual } \textit{i's blood lead level at week 4} \\ \text{individual } \textit{i's blood lead level at week 6} \end{array} \right)$$

Lets consider the different covariates:

$$X_{1ij} = 1$$
 for all i and j , $X_{2ij} = \begin{cases} 1 & \text{if corresponding measure at week 1} \\ 0 & \text{otherwise}, \end{cases}$ $X_{3ij} = \begin{cases} 1 & \text{if corresponding measure at week 4} \\ 0 & \text{otherwise}, \end{cases}$ $X_{4ij} = \begin{cases} 1 & \text{if corresponding measure at week 6} \\ 0 & \text{otherwise}. \end{cases}$

Model

 We're interested in knowing whether mean blood lead level varies with time of measurement, so we can write our model as

$$Y_{ij} = \beta_1 + \beta_2 X_{2ij} + \beta_3 X_{3ij} + \beta_4 X_{4ij} + e_{ij},$$

where i = 1, ..., 50, j = 1, ..., 4.

We could alternatively write the model in matrix form:

$$\mathbf{Y}_i = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{e}_i \quad i = 1, \dots, 50$$

where

$$\mathbf{X}_i = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} \text{ and } \boldsymbol{\beta} = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \end{pmatrix}$$

■ We assume $\mathbf{e}_i \sim \mathsf{N}(\mathbf{0}, \mathbf{\Sigma})$, so $\mathbf{Y}_i \sim \mathsf{N}(\mathbf{X}_i \boldsymbol{\beta}, \mathbf{\Sigma})$

Univariate Wald Test

Simple Hypothesis: $H_0: \beta_3 = 0$ vs $H_1: \beta_3 \neq 0$

Univariate Wald statistic

$$Z = \frac{\widehat{\beta}_3}{\sqrt{\widehat{\mathsf{Var}}(\widehat{\beta}_3)}}$$

- Under H_0 , Z follows a standard normal distribution (N(0,1))
- We can also write the univariate Wald statistic in a more general way as

$$Z = \frac{L\widehat{\beta}}{\sqrt{\widehat{\mathsf{Cov}}(L\widehat{\beta})}} = \frac{L\widehat{\beta}}{\sqrt{L\widehat{\mathsf{Cov}}(\widehat{\beta})L'}}$$

- **L** is 1×4 vector of weights
- $H_0: \mathbf{L}\beta = 0$

4□→ 4両→ 4 => 4 => = 900

Univariate Wald Test

- What is L for $H_0: \beta_3 = 0$ vs $H_1: \beta_3 \neq 0$?
- $\mathbf{L}\beta = \begin{pmatrix} 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \end{pmatrix} = \beta_3$
- What is **L** for H_0 : the mean blood lead level is the same at week 4 and week 6?
- H_0 : $\beta_3 = \beta_4$

L
$$\beta = \begin{pmatrix} 0 & 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \end{pmatrix} = \beta_3 - \beta_4$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めらぐ

Multivariate Wald statistic

Multiple Hypothesis:

$$H_0: \beta_2=\beta_3=\beta_4=0$$
 vs $H_1:$ at least *one* of β_2,β_3,β_4 nonzero

- This is a global test that all the β_i 's in our model (except β_1 , the intercept term) are simultaneously equal to zero.
- The corresponding **L** matrix of weights would be

$$\mathbf{L} = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right)$$

because we want to test whether the vector

$$(\beta_2, \beta_3, \beta_4)' = (0, 0, 0)'$$

(ㅁ) (@) (돌) (돌) (돌) 연오(~

Multivariate Wald statistic

■ With such L, this translates via matrix multiplication to:

$$\mathbf{L}\beta = \left(\begin{array}{ccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right) \left(\begin{array}{c} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \end{array}\right) = \left(\begin{array}{c} \beta_2 \\ \beta_3 \\ \beta_4 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right).$$

- Thus, our hypothesis is equivalent to $\mathbf{L}\beta = 0$.
- Multivariate Wald statistic

$$W^2 = (\mathbf{L}\widehat{\boldsymbol{\beta}})'(\widehat{\mathsf{LCov}}(\widehat{\boldsymbol{\beta}})\mathbf{L}')^{-1}(\widehat{\mathsf{L}\widehat{\boldsymbol{\beta}}}) \sim \chi^2_{(3)}$$

| **イロト 4回 ト 4 恵 ト 4 恵 ト - 恵 - り**90で

SAS Code

```
**** Input data in univariate form *****;

data lead;

infile 'lead.txt';

input id y1 y2 y3 y4;

y=y1; time=11; t=1; output;

y=y2; time=1; t=2; output;

y=y3; time=4; t=3; output;

y=y4; time=6; t=4; output;

drop y1-y4;

run;

proc mixed data=lead noclprint;

class id t time;

model y = time / solution chisq covb;

repeated t / type=un subject=id;

run;
```

Explanation of Options

- model statement:
 - **solution** gives β estimates ('Solution for Fixed Effects')
 - **chisq** gives χ^2 statistics ('Type 3 Tests of Fixed Effects')
 - **covb** gives covariance matrix of $\widehat{\beta}$ ('Covariance Matrix for Fixed Effects'). Note this is different from the covariance matrix of the responses/errors.
- repeated statement:
 - type= specifies the covariance structure, type=un specifies an unstructured covariance structure
 - **subject**= tells SAS how to group the data; the data is correlated within subjects but subjects are independent

Selected SAS Output

The Mixed Procedure Model Information

Data Set
Dependent Variable
Covariance Structure
Subject Effect
Estimation Method
Residual Variance Method
Fixed Effects E Method
Degrees of Freedom Method
Between-Within

Dimensions

Covariance Parameters	10	
Columns in X	5	
Columns in Z	0	
Subjects	50	
Max Obs Per Subject	4	
Number of Observations	Read	200
Number of Observations	Used	200
Number of Observations	Not Used	0

◆ロ > ◆個 > ◆種 > ◆種 > 種 ● りゅう

Selected SAS Output

Solution for Fixed Effects Standard							
Effect	time	Estimate	Error	DF	t Value	Pr > t	
Intercept		26.5400	0.7101	49	37.38	<.0001	
time	1	-13.0180	1.0310	49	-12.63	<.0001	
time	4	-11.0260	1.0639	49	-10.36	<.0001	
time	6	-5.7780	1.1378	49	-5.08	<.0001	
time	11	0					

		Covari	ance Matrix	for Fixed	Effects		
Row	Effect	time	Col1	Col2	Col3	Col4	Col5
1	Intercept		0.5042	-0.1949	-0.2014	-0.04449	
2	time	1	-0.1949	1.0629	0.7727	0.4545	
3	time	4	-0.2014	0.7727	1.1318	0.4022	
4	time	6	-0.04449	0.4545	0.4022	1.2947	
5	time	11					

Results

From the SAS output, we can obtain

$$\widehat{\beta} = \begin{pmatrix} 26.54 \\ -13.018 \\ -11.026 \\ -5.778 \end{pmatrix} = \begin{pmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \\ \hat{\beta}_3 \\ \hat{\beta}_4 \end{pmatrix}$$

Likelihood ratio test

- A second way to test hypotheses are Likelihood Ratio Tests (LRT).
- Recall that the likelihood is a measure of belief that the data arise from a pre-specified model. It is a function $L(\beta, \Sigma | \mathbf{Y}_1, ..., \mathbf{Y}_N)$ of the parameters $\beta = (\beta_1, \beta_2, \beta_3, \beta_4)'$ and covariance structure Σ that define our model.
- To find the best fit of the data by our model we obtain estimates $(\widehat{\beta}, \widehat{\Sigma})$ that maximize the likelihood, i.e. that make our observed data most likely.
- A likelihood ratio test is a comparison of likelihoods of two models, a 'full' model and a 'reduced' model.

Recall our regression model for the lead exposure data:

$$Y_{ij}=\beta_1+\beta_2X_{2ij}+\beta_3X_{3ij}+\beta_4X_{4ij}+e_{ij},$$
 where $i=1,\ldots,50,\ \ j=1,\ldots,4$ and

$$X_{1ij} = 1$$
 for all i and j ,

 $X_{2ij} = \begin{cases} 1 & \text{if corresponding measure at week 1} \\ 0 & \text{otherwise,} \end{cases}$
 $X_{3ij} = \begin{cases} 1 & \text{if corresponding measure at week 4} \\ 0 & \text{otherwise,} \end{cases}$
 $X_{4ij} = \begin{cases} 1 & \text{if corresponding measure at week 6} \\ 0 & \text{otherwise.} \end{cases}$

Suppose we want to test the null hypothesis that there is no time effect,

$$H_0: \beta_2 = \beta_3 = \beta_4 = 0. \tag{1}$$

Under H_0 the model is

$$Y_{ij}=\beta_1+e_{ij},$$

- Thus, we have Full Model under $H_1: Y_{ij} = \beta_1 + \beta_2 X_{2ij} + \beta_3 X_{3ij} + \beta_4 X_{4ij} + e_{ij}$ Reduced Model under $H_0: Y_{ij} = \beta_1 + e_{ij}$
- The full model has more parameters, so it is more flexible to fit the data, while the reduced model imposes a structure of no time effect and has fewer parameters to estimate.
- The reduced model is NESTED in the full model: it is a special case of the full model.

- 4 ロ ト 4 昼 ト 4 夏 ト - 夏 - 夕 Q (*)

Consequently we always have

$$\begin{split} L_{red}(\widehat{\beta_{H_0}},\widehat{\Sigma}) &< L_{full}(\widehat{\beta},\widehat{\Sigma}) \\ log(L_{red}(\widehat{\beta_{H_0}},\widehat{\Sigma})) &< log(L_{full}(\widehat{\beta},\widehat{\Sigma})) \\ \widehat{\ell}_{red} &< \widehat{\ell}_{full} \end{split}$$

- The LRT statistic is $2 \times (\hat{\ell}_{full} \hat{\ell}_{red})$
 - NOTE: SAS reports $-2\hat{\ell}$ for each model so we switch the order of subtraction because:

$$\begin{split} \mathsf{LRT} &= 2 \times (\hat{\ell}_{\mathit{full}} - \hat{\ell}_{\mathit{red}}) \\ &= 2 * \hat{\ell}_{\mathit{full}} - 2 * \hat{\ell}_{\mathit{red}} \\ &= \left(-2 * \hat{\ell}_{\mathit{red}} \right) - \left(-2 * \hat{\ell}_{\mathit{full}} \right) \\ &= \left(-2 \; \mathsf{Log} \; \mathsf{Likelihood}_{\mathit{red}} \right) - \left(-2 \; \mathsf{Log} \; \mathsf{Likelihood}_{\mathit{full}} \right) \end{split}$$

■ LRT should always be POSITIVE since χ^2 variables are always positive

March 3, 2015

Under H_0 the LRT statistic is approximately distributed as $\chi^2(r)$

- where r is the difference between the number of parameters in the full model and the reduced model.
- In our example,

$$H_0: \beta_2 = \beta_3 = \beta_4 = 0. \tag{2}$$

- Full Model under $H_1: Y_{ij} = \beta_1 + \beta_2 X_{2ij} + \beta_3 X_{3ij} + \beta_4 X_{4ij} + e_{ij}$ Reduced Model under $H_0: Y_{ij} = \beta_1 + e_{ij}$
- what is r for the H_0 above?

How to do an LRT in SAS

- We need to fit the reduced and full models separately
- PROC MIXED uses REML as default: recall that REML is a better method than ML to estimate Σ (less bias).
- However it should not be used to perform LRTs for nested models for mean. Why?
- Because the penalty term in REML depends upon the regression model specification. Recall the REML maximizes the residual log-likelihood:

$$-\frac{N}{2}\ln|\Sigma| - \frac{1}{2}\sum_{i=1}^{N} (Y_i - X_i\widehat{\beta})' \Sigma^{-1} (Y_i - X_i\widehat{\beta})$$
$$- \frac{1}{2}\ln\left|\sum_{i=1}^{N} X_i' \Sigma^{-1} X_i\right|$$

■ Instead we should use ML to construct LRTs for testing nested mean models.

□ ト 4 個 ト 4 差 ト 4 差 ト 2 9 9 9 9

SAS code

```
/*Full Model*/
proc mixed data=lead noclprint method=ml;
    class id time t;
    model y = time / solution chisq;
    repeated t / type=un subject=id;
run;
/*Reduced Model*/
proc mixed data=lead noclprint method=ml;
    class id time t;
    model y = / solution chisq;
    repeated t / type=un subject=id;
run;
```

Selected SAS Output-Full Model

Fit Statistics -2 Log Likelihood 1286.5 1314.5 AIC (smaller is better) AICC (smaller is better) 1316.7 BIC (smaller is better) 1341.2 Null Model Likelihood Ratio Test Chi-Square Pr > ChiSq 88.50 <.0001 Solution for Fixed Effects Standard Estimate Error DF t Value Pr > |t| 26.5400 0.7029 49 37.76 <.0001 -13.0180 1.0206 49 -12.76 <.0001 -11.0260 1.0532 49 -10.47 <.0001 Effect time Intercept time time -5.7780 1.1264 49 -5.13 <.0001 time time Type 3 Tests of Fixed Effects Den Effect DF DF Chi-Square F Value Pr > ChiSq Pr > F 167.06 < .0001 < .0001

Selected SAS Output-Reduced Model

Fit Statistics

-2 Log Likelihood 1359.9
AIC (smaller is better) 1381.9
AICC (smaller is better) 1383.3
BIC (smaller is better) 1402.9

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq 9 89.47 <.0001

Solution for Fixed Effects

 Effect
 Estimate
 Error
 DF
 t Value
 Pr > |t|

 Intercept
 23.9900
 0.6716
 49
 35.72
 <.0001</td>

LRT statistic

■ The test to compare the effect of time on mean blood lead level (assuming unstructured covariance) is

LRT statistic =
$$(-2 * \hat{\ell}_{red}) - (-2 * \hat{\ell}_{full})$$

= $1359.9 - 1286.5$
= 73.3

- Based on the critical value $\chi^2(3,0.05) = 7.81$, is significant (p < .0001).
- We reject the null hypothesis and conclude that the blood lead level changes over time (the reduced model is NOT an adequate fit).

SAS code

■ How to get the pvalue? Use the following code:

```
/* ChiSquared p-value from LRT with 3 df*/
data pvalue;
   p=SDF('CHISQUARED',73.3,3);
PROC PRINT data=pvalue;
   title 'LRT pvalue';
run;
```

- SDF function computes the upper tail of a specified distribution.
- Other functions: CDF, PDF, LOGPDF, SDF, and LOGSDF

Outline

- 1 Review of Wald test and Likelihood-Ratio test
 - Univariate and Multivariate Wald Test
 - Likelihood ratio test

2 Analysis of Response Profiles: Global/Omnibus Test

Global test

- Now let's examine the TLC data set that includes both succimer and placebo groups. This file is called tlc.txt on the course website.
- $lue{}$ In class we performed the **global test** for no group imes time interaction in the TLC data set based on the (multivariate) Wald test.
- We asked "Are the mean response profiles for the succimer and placebo groups parallel?
- We can perform this global test in proc mixed:
 - First we examine the mean response profiles through proc means
 - and plotting with proc gplot,
 - and then we perform the test with proc mixed.

SAS Code for Global Test

```
/**** FULL TLC DATA SET ****/
data tlc:
 infile 'tlc.txt';
 input id group $ y1 y2 y3 y4;
run:
/* Univariate format */
data tlc1:
 set tlc:
 y=y1; time=0; output;
 v=v2: time=1: output:
 y=y3; time=4; output;
 y=y4; time=6; output;
 drop y1-y4;
run:
proc sort; by group descending time;
run:
proc means n mean std stderr;
 title 'Univariate y';
 var v;
 by group descending time;
 output out=meantlcdata mean=mnlead:
run:
```

SAS Code for Global Test

```
/* Plots mean by time joined by treatment */
proc gplot data=meantlcdata;
title 'Means by Time, Joined by Group':
     symbol1 color=black
        interpol=join
        value=dot;
     symbol2 color=black
        interpol=join
        value=triangle;
     plot mnlead*time=group;
run;
/*GLOBAL TEST FOR GROUPxTIME*/
proc mixed data=tlc1 order=data;
     class id group time;
     model y=group time group*time/s chisq;
     repeated time/type=un subject=id r rcorr;
run;
```

Plot of means by time

Means by Time, Joined by Group

Selected SAS Output

The Mixed Procedure
Type 3 Tests of Fixed Effects

	Num	Den				
Effect	DF	DF	Chi-Square	F Value	Pr > ChiSq	Pr > F
group	1	98	25.43	25.43	<.0001	<.0001
time	3	98	184.48	61.49	<.0001	<.0001
group*time	3	98	107.79	35.93	<.0001	<.0001

- The full output can be seen at the end of Lecture 6 class notes.
- What type of test was used?
- What is our conclusion for testing parallelism?
- You can also use LRT, which gives similar results.

Things to remember about analysis of response profile

- Allows arbitrary patterns in the mean response over time and in the covariance
- Requires balanced data (same number of observations for all subjects)
- Can accommodate missing response
- Cannot incorporate mistimed data
- Ignores the time-ordering of the data
- Number of parameters increases with number of time measurements: test for interaction of time×group might have low power.

Summary

We have talked about:

- Multivariate Wald test and Likelihood-Ratio test
- 2 Analysis of Response Profiles: Global/Omnibus Test