Introduction
Description of tools / dataset
TF-IDF approach
Reccurent Neural Network approach
Application

### Documents classifier

Tomasz Kulik

2019

# Next chapter

- Introduction
- Description of tools / dataset
- TF-IDF approach
- 4 Reccurent Neural Network approach
- 5 Application

### Who am I

### Tomasz Kulik

- Software Developer in Nokia
- MSc in Computer Science, graduated from University of Science and Technology in Wrocław
- Interested in programming, algorithms, machine learning

## Scope of the presentation

#### Documents classifier

- Information about the dataset
- Text preparation
- TF-IDF method desciption
- Reccurent Neural Network method desciption
- Application

# Next chapter

- Introduction
- Description of tools / dataset
- 3 TF-IDF approach
- 4 Reccurent Neural Network approach
- 6 Application

### Dataset

- 18846 documents
- 20 subjects
- 83% of data used as training set

### Dataset

### Distribution of the dataset:



### Tools

- Python 3 Keras, SciKit learn, NLTK, (...)
- Jupyter notebook

# Next chapter

- Introduction
- Description of tools / dataset
- 3 TF-IDF approach
- 4 Reccurent Neural Network approach
- 6 Application

### Stop words

- Ignore words that can be used in every context (most likely meaningless in problem of classification)
- In english for e.g. ('ourselves', 'hers', 'between', 'yourself', 'but', 'again', ... )

# Stemming

In linguistic morphology and information retrieval, stemming is the process of reducing inflected (or sometimes derived) words to their word stem, base or root form—generally a written word form.

#### Human readable:

 Keep only the root of the word, despite the form used in the processed text.

# Stemming

### Example:

- ullet Going, goes, gone o go
- ullet Went o went
- $\bullet \ \, \mathsf{Change}, \, \mathsf{changing} \to \mathsf{chang}$

### Lemmatization

Lemmatization in linguistics is the process of grouping together the inflected forms of a word so they can be analysed as a single item, identified by the word's lemma, or dictionary form.

#### Human readable:

- Use a basic word (dictionary form) instead of inflected one.
- It helps to track the basic meaning of a processed text (not the whole context/meaning).

### Lemmatization

### Example:

- ullet Go, goes, went o go
- Buy, bought, buying → buy

# Stemming/Lemmatization

- Lower dimensionality (less different words to focus on)
- Better generalization effect in case of categorization

Introduction
Description of tools / dataset
TF-IDF approach
Reccurent Neural Network approach
Application

# Term Frequency - Inverse Document Frequency - (TF-IDF)

Numerical statistic that is intended to reflect how important a word is to a document in a collection or corpus.

# Term Frequency - (TF)

For every document calculate a percentage occurence of every word.

$$tf(t,d) = \frac{freq_{t,d}}{N_d}$$

|      | 80  | Start | exam | (word) | () |
|------|-----|-------|------|--------|----|
| Doc1 | 0.3 | 0.14  | 0.12 | 0.07   |    |
| Doc2 | 0.2 | 0.4   | 0.02 | 0.01   |    |
|      |     |       |      |        |    |

# Inverse Document Frequency - (IDF)

Calculate the importance of each word in document by computing the measure:

$$idf(t,D) = \frac{|D|}{|\{d \in D: t \in d\}|}$$

The higher is the IDF coefficient, the more "original" is the word.

# Term Frequency - Inverse Document Frequency - (TF-IDF)

$$tfidf(t, d, D) = tf(t, d) \cdot idf(t, D)$$

With equation above we can compute the TF-IDF measure for each word in every document.

Result:

One document = one vector

### Results after training

Accuracy: 93,5%, F1-Score (weighted): 98,4%



# Next chapter

- Introduction
- Description of tools / dataset
- 3 TF-IDF approach
- 4 Reccurent Neural Network approach
- 6 Application

## **Embedding**

Popular method in recommendation algorithms (e.g. YouTube) Words or phrases from the vocabulary are mapped to vectors of real numbers. E. g.

'word' = 
$$[2.23, 33., 0.2, ...]$$

Used also as a dimensionality reduction technique.

- $f(w) = [x_1, x_2, ..., x_n]$
- Problem: Minimize a distance between similar/interchangeable words in n-dimensional space (and increase distance between unconnected words).

### Convolutional Neural Network

The Conv Net is a composition of two types of layers:

- Convolutional layers
- Pooling layers

Convolutional NN are able to automated feature extraction from input data (in case of text for e.g. sentece order, words co-occurence; in image processing edges, parts of face etc.)

### Recurrent Neural Network

- Recurrent cells instead of simple neurons (e.g. Long Short Term Memory).
- Hidden state handled between timesteps processing.

RNN can "remember" the context of the text, for instance a gender of a subject.

They are good in predicting time series and generating text based on input words (text generators, machine translators, etc.).

## Knowledge transfer

- Use pre-trained embedding layer as an input for classifier.
- Pre-trained Conv layers as input for further layers in Deep NN (popular in image processing).

## Results after training

Accuracy: 80,3%, F1-Score (weighted): 93,3%



# Next chapter

- Introduction
- Description of tools / dataset
- 3 TF-IDF approach
- 4 Reccurent Neural Network approach
- 6 Application

### Application

- Script written in Python3
- Model and parameters exported from Jupiter to external files and loaded during script execution
- Simple user interface: ./classifier.py path/to/article.txt
- Result printed in terminal after few seconds
- Further steps:
  - Run script as a service to prevent loading model per each document.
  - Implement REST API to let other services communicate with the script on demand.

Introduction
Description of tools / dataset
TF-IDF approach
Reccurent Neural Network approach
Application

### Thank you!

