Stat 343, Tue 24-Nov-2020 -- Tue 24-Nov-2020 Probability and Statistics
Fall 2020

Tuesday, November 24th 2020

Exam:: Exam #3

Tuesday, November 24th 2020

Wk 13, Tu

Topic:: RMarkdown practice

1. In RStudio, write DeMorgan's Laws as displayed in Exercise 2.13, p. 114. Or try to produce the extension of these laws to *n* sets:

$$\left(\bigcup_{i=1}^{n} A_i\right)^c = \bigcap_{i=1}^{n} A_i^c, \quad \text{and} \quad \left(\bigcap_{i=1}^{n} A_i\right)^c = \bigcup_{i=1}^{n} A_i^c.$$

- 2. In RStudio, reproduce Bayes' Theorem, as displayed in Exercise 2.26, p. 117.
- 3. The pmf for a multinomial random vector $\mathbf{X} \sim \mathsf{Multinom}(n, \boldsymbol{\pi})$ in \mathbb{R}^k is given on p. 104. In RStudio reproduce the formula

$$\Pr(\mathbf{X} = \mathbf{x}) = \binom{n}{x_1} \binom{n - x_1}{x_2} \binom{n - x_1 - x_2}{x_3} \cdots \binom{x_k}{x_k} \pi_1^{x_1} \pi_2^{x_2} \cdots \pi_k^{x_k}.$$

- 4. Look over the variables in the BodyTemp50 data frame found in the Lock5WithR package.
 - (a) Produce a scatterplot with Pulse on the vertical axis and BodyTemp on the horizontal.
 - (b) Produce side-by-side scatterplots like in part (a), with one plot devoted to the female cases in the data frame, the other to the male cases.
 - (c) Merge the side-by-side scatterplots of part (b) into one, with different-colored dots to differentiate the female cases from the male ones.
- 5. Consider a variable whose cdf is $F(x) = [x \in [2, \infty)]$.
 - (a) Is the variable discrete or continuous? What is its pmf/pdf?
 - (b) Make a graph of F(x) in the region $-2 \le x \le 5$ in RStudio.
- 6. A health insurance company covers visits to a doctor's office. Each visit costs \$100. The annual deductible is \$250. For a policy, the number of visits per year has the following probability distribution:

Number of visits	0	1	2	3	4	5	6 or more
Portion of clients	0.60	0.15	0.1	0.08	0.04	0.02	0.01

- (a) Assume that every client must exhaust his deductible before the insurance company pays anything, after which insurance pays 100% of the cost of each visit. Let *X* represent the annual payout for a randomly-selected client. Make a probability table that reflects the pmf for *X*.
- (b) Make a graph of this pmf.
- (c) Use notation that demonstrates the calculation of the expected value of X and its variance.
- 7. Write $\Phi(a) = \dots$ and give the formula for the cdf of the standard normal variable Z. Also, write the appropriate symbols to indicate the type of variable Z is, as in $X \sim \mathsf{Binom}(n, \pi)$, or $X \sim \mathsf{Exp}(2)$.
- 8. Make a plot of the discrete distribution for the sample proportion $\hat{\pi}$ of heads in 100 flips of a fair coin, and color as red the rejection region corresponding to

$$H_0$$
: $\pi = 0.5$ vs. H_a : $\neq 0.5$

when $\alpha = 0.05$.

- 9. (a) What exactly does the rbinom() command do?
 - (b) How can you achieve the same thing as rbinom(30, 20, .25) using alternate commands?