6.	Wavelet based smoke detection method with RGB contrastimage and shape constrain	J. Chen, Y.Wang, Y. Tian, and T. Huang	2013	Smoke detection in video surveillance is very important for early fire detection. A general viewpoint assumes that smoke is a low frequency signal which may smoothen the background. However, some pure-colour objects also have this characteristic, and smoke also produces high frequency signal because the rich edge information of its contour. In order to solve these problems, an improved smoke detection method with RGB Contrast-image and shape constrain is proposed. In this method, wavelet transformation is implemented based on the RGB	Detecting smoke in video surveillance is very important for early fire detection and wavelet based methods are widely used, however, they can't distinguish smoke with general pure color objects and ignore the high frequency produced by smoke. In this paper we introduce the concept of contrast image and on the basis of contrast-image, background frame's wavelet transformation and current frame's wavelet transformation are obtained respectively. Since edges correspond to high frequency and smoke corresponds to low frequency, we calculate the rate of high frequency and low

				Contrast-image to distinguish smoke from other low frequency signals, and the existence of smoke is determined by analysing the combination of the shape and the energy change of the region. Experimental results show us method outperforms the conventional methods remarkably.	frequency in order to decide whether the motion area is smoke or not.
7	Anisotropic LBP descriptors for robust smoke detection	H. Maruta, Y. Iida, and F. Kurokawa	2013	Image based smoke detection is a difficult problem especially in open areas since it is heavily affected from its environmental objects. This comes from the transparent property of smoke itself. Therefore, to realize robust smoke detection in such situation, it needs to take into account the effect of the	This paper presents a novel smoke detection method based on anisotropic LBP descriptors and AdaBoost. Anisotropic LBP descriptors are designed to have good properties to handle smoke information. That is, anisotropic LBP descriptors are considered to be effective to illumination variations and it can handle the deformation of

degree of transparency, the change of background objects and so forth. To describe smoke information by image features, they are affected from degree of transparency of smoke, background objects, and other environmental conditions such as the direction and the speed of wind. To address such problems, a novel image feature is applied and named anisotropic LBP descriptors, which is considered as an extended variant of LBP. The anisotropic LBP descriptors are simply extended from LBP, which are defined as texture operator using anisotropic neighbourhood pixel values. Therefore, they can describe anisotropic deformed image

smoke by environmental conditions. These properties suggest that they are suitable for our purpose and possibility to provide the robust detection method. The adoption of AdaBoost method to improve the accuracy of detection results in varying conditions.

	1	<u> </u>	ı		T
				information,	
				which are caused	
				from	
				environmental	
				conditions.	
8	An early	Y. Zhao, W. Lu,	2012	In this paper, an	this paper
	smoke	Y. Zheng, and		early smoke	proposes an early
	detection	J.Wang		detecting system	smoke detection
	system			that can	system. Firstly,
	based on			efficiently extract	the existence of
	increment of			dense smoke	smoke by the
	optical flow			regions is	increment of
	residual			proposed. Firstly,	optical flow
				since the	residual, which
				brightness in the	can distinguish
				areas that have	smoke from other
				dynamic texture	kinds of dynamic
				is	texture
				not constant, the	effectively.
				residuals of	Secondly, the
				optical flow are	dense suspected
				calculated to	smoke regions are
				locate suspected	located
				smoke regions. A	precisely with a
				certain threshold	threshold of the
				of the	optical flow
				increment of	residual.
				optical flow	Finally, five
				residuals is also	features of smoke
				used to	are chosen and
				distinguish	summed up
				smoke from other	with different
				dynamic texture.	weights to make
				Secondly, five	final decision.
				features	
				that can jointly	
				represent a smoke	
				area, including	
				greyish	
				colour,	
				chrominance	
				decrease, edge	
				energy decrease,	
<u> </u>	<u> </u>	l		onergy decrease,	<u> </u>

	T	Т	ı		
				optical	
				flow orientation	
				diffusion and	
				circularity, are	
				chosen by	
				thorough	
				experiments.	
9	A novel	H. Tian, W. Li,	2012	In the state-of-	To conclude, in
	video-based	L. Wang, and		the-art video-	order to eliminate
	smoke	P. Ogunbona		based smoke	the adverse
	detection			detection	effects of
	method			methods, the	background on
	using image			representation of	smoke
	separation			smoke mainly	characterization, a
	separation			depends on the	novel image
				visual	separation-based
				information in the	method is
				current image frame. In the case	proposed to
					perform smoke detection in
				of light smoke,	
				the original	videos. The
				background can	introduced smoke
				be still seen and	opacity and
				may deteriorate	smoke component
				the	are used together
				characterization	to serve this
				of smoke. The	purpose. The
				core idea of this	effectiveness of
				paper is to	the proposed
				demonstrate the	method is
				superiority of	validated by
				using smoke	experimental
				component for	results.
				smoke detection.	
				In order to obtain	To our best
				smoke	knowledge, this is
				component, a	the first
				blended image	exploration on
				model is	vision-based
				constructed,	smoke detection
				which basically is	which tries to
				a linear	extract features
				combination of	from smoke
	<u> </u>	<u> </u>	<u> </u>		110111 01110110

				Τ	
				background and	component. In
				smoke	general, this paper
				components.	presents ideas
				Smoke opacity	pioneering a new
				which represents	direction for
				a weighting of	vision-based
				the smoke	smoke detection
				component is also	and some related
				defined. Based on	topics are still
				this model, an	open. Under this
				optimization	framework, three
				problem is posed.	issues are worth
				An algorithm is	further attention.
				The resulting	Firstly, in image
				smoke opacity	separation part,
				and smoke	only "local
				component are	smooth"
				then used to	constraint is
				perform the	considered for
				smoke detection	smoke.
				task. The	
				experimental	
				results on both	
				synthesized and	
				real image data	
				verify the	
				effectiveness of	
				the proposed	
				method.	
10	The design	L. Jinghong, Z.	2012	This paper uses	This paper
	and	Xiaohui, and		modular method	designed and
	implementati	W. Lu,		to design smoke	realized the fire
	on			detection system.	smoke detection
	of fire			On the basis of	system, realized
	smoke			the requirement	the real-time
	detection			analysis, the	smoke extraction
	system based			paper designs and	to video
	on FPGA			implements all	images, and
				the modules,	realized regional
				including image	stability
				capture module,	algorithms of
				SDRAM data	smoke diffusion
					

				buffer module,	characteristics and
				image display	smoke moving
				module and	characteristics
				smoke detection	with hardware
				module. Among	description
				them the smoke	language
				detection module	programming
				is the core of the	applying to
				system, which	suspected area
				decides the	with the help of
				performance of	Altera companies
				the system. Using	which provided
				a synergistic	Cyclone II
				manner through	EP2C35
				software and	development
				hardware, the	board.
				smoke detection	
				module is	
				realized.	
11	FPGA based	G. P. Rashmi	2014	The main	The paper
	FNN for	and L Nirmala		objective of the	proposes an
	accidental			paper is to design	FPGA based
	fire			and develop the	Fuzzy neural
	alarming			Fuzzy Neural	network
	system in a			Network for	architecture using
	smart room			increasing the	Takagi Hayashi
				efficiency of an	method for a
				application which	smart room was
				is controlled by	implemented
				optimizing the	successfully. The
				area and power	hardware
				parameters based	architecture
				on FPGA. Fuzzy	proposed allows
				reasoning can	FNN T-H on
				express the	FPGA devices to
				qualitative aspect	be embedded and
				of human logic. It	can be used for
				realizes the	applications in the
				flexible reasoning	control area,
				corresponding to	prediction
				human logical	problems,
				reasoning,	interpolation and
				extensive	other problems.
	-	•			

	1				
				research has been conducted into fuzzy reasoning. This paper describes the design and implementation of FNN for an embedded system for enhancing the performance using cognitive knowledge where in the proposed system a smoke sensor and a fire sensor are used to maintain the safety of a smart room driven by an FNN.	The MLP networks provide a soft computation to generate the parametric equations of membership functions and consequents equations. The training method proved to be efficient, including the Self-Organizing Map for data clustering and back propagation to train all MLP networks. The proposed architecture will be used to develop a system with online training to embed control problems using FNN T-H.
12	Real-time image smoke detection using staircase searching-based dual threshold AdaBoost and dynamic analysis	F. Yuan, Z. Fang, S. Wu, Y. Yang, and Y. Fang,	2015	It is very challenging to accurately detect smoke from images because of large variances of smoke colour, textures, shapes and occlusions. To improve performance, the authors combine	When smoke emerges, the quality of videos will greatly decrease, resulting in inaccurate, unreliable features. Up to now, most of video smoke detection methods

dual threshold AdaBoost with staircase searching technique to propose and implement an image smoke detection method. First, extended Haar-like features and statistical features are efficiently extracted from integral images from both intensity and saturation components of RGB images. Then, a dual threshold AdaBoost algorithm with a staircase searching technique is proposed to classify the features of smoke for smoke detection. The staircase searching technique aims at keeping consistency of training and classifying as far as possible. Finally, dynamic analysis is

suffer from high false alarm rates and low detection rates. To enhance the robustness of image smoke detection, extended Haarlike features are used and statistical features extracted from both intensity and saturation images. the features are computed via integral images, the speed is very fast. Then, a dual threshold AdaBoost algorithm with a staircase searching technique is proposed for video smoke detection. This method avoids inconsistency of training and classifying, and greatly improves generalisation in comparison with the standard AdaBoost algorithm. To reduce false alarm rates, the dynamic analysis is proposed to

further validate the e smok	er validate existence of
the	victorica of
	AISICIICE OI
aviatance of laces	ke by
existence of comp	puting the
smoke. smok	ke possibility
Experimental of ca	ındidate
results region	ons from
demonstrate that seque	ential images.
the proposed Expe	eriments show
system has a that of	our algorithm
good robustness has a	a good
in terms of robus	stness for
early smoke smok	ke detection
detection and low at int	teractive
false alarm rate, fram	e rates.
and it can detect	
smoke from	
videos with size	
of 320 × 240 in	
real time.	
13 SuBSENSE: P. L. St- 2015 Foreground/back Expe	eriments on
A universal Charles, G. A. ground the la	argest change
change Bilodeau, and segmentation via detec	ction dataset
detection R. Bergevin, change detection avail	lable yet have
method with in video show	n that, in
local sequences is terms	s of average
adaptive often used as a F-Me	easure, all
sensitivity stepping stone in previous	iously tested
high-level meth	ods were
analytics and surpa	assed in nine
applications. out of	of eleven
Despite the wide scena	ario
variety of categ	gories as well
methods that as ov	verall.
have been Cate	gories where
	segmentation
	ts were still
has been able to inacc	curate can be
fully address the const	idered the
complex nature next	major
of dynamic chall	lenge in
scenes in real chan	ge detection:
surveillance in the	ose cases, the

tasks. In this paper, a universal pixel-level segmentation method is presented that relies on spatiotemporal binary features as well as colour information to detect changes. This allows camouflaged foreground objects to be detected more easily while most illumination variations are ignored. Besides, instead of using manually set, frame-wide constants to dictate model sensitivity and adaptation speed, pixel-level feedback loops were used to dynamically adjust our method's internal parameters without user intervention. These adjustments are based on the continuous monitoring of model fidelity

assumptions that have been commonly followed since the late 1990s no longer hold (e.g. the camera no more static). These experiments have also confirmed the benefit of using LBSP features in our pixel models as well as the benefit of using our continuous parameter adjustment scheme based on model fidelity and segmentation noise.

		T	I	Τ	
				and local	
				segmentation	
				noise levels. This	
				new approach	
				enables us to	
				outperform all 32	
				previously tested	
				state-of-the-art	
				methods on the	
				2012 and 2014	
				versions of the	
				ChangeDetection.	
				net dataset in	
				terms of overall	
				F-Measure.	
14	Visual	A. B.	2012	For a responsive	This paper
* '	tracking of	Godbehere, A.	2012	audio art	presents a single-
	human	Matsukawa,		installation in a	camera statistical
	visitors	and K.		skylit	tracking
	under	Goldberg,		atrium, a single-	algorithm and
	variable-	Goldberg,		camera statistical	results from our
	lighting			segmentation	implementation at
	conditions			and tracking	the
	for a			_	
				algorithm is introduced. The	Contemporary Jewish Museum
	responsive				
	audio			algorithm	installation.
	art			combines	This system
	installation			statistical	worked reliably
				background	during museum
				image estimation,	hours (5-8 hours a
				per-pixel	day) over the
				Bayesian	four-month
				segmentation,	duration of the
				and an	exhibition under
				approximate	highly variable
				solution to the	lighting
				multi-target	conditions.
				tracking problem	
				using a bank of	
				Kalman filters	
				and Gale-Shapley	
				matching.	
1					

15	Connected	O. Kalentev, A.	2010	Connected	Two type of
13		Rai, S.Kemnitz,	2010		Two type of iterative
	component	and R.		component	
	labelling on			labelling is an	algorithms for
	a 2D grid	Schneider		important but	labelling
	using CUDA			computationally	connected
				expensive	components on a
				operation	2D binary grid
				required in	were described.
				many fields of	The first one is
				research. The	a "Row–Col
				goal in the	Unify" algorithm
				present work is to	which implements
				label connected	the directional
				components on a	propagation
				2D binary	labelling
				map. Two	technique into
				different iterative	CUDA.
				algorithms for	It was shown that
				doing this task	there are two
				are presented.	major advantages
				The first	of the "Label
				algorithm (Row-	Equivalence''
				Col	algorithm over the
				Unify) is based	"Row-Col
				upon the	Unify" one. The
				directional	first
				propagation	advantage is the
				labelling,	simpler
				whereas the	implementation
				second algorithm	which leads to
				uses the Label	much less
				Equivalence	instructions. The
				technique. The	second one is
				Row–Col Unify	concerned with a
				algorithm uses a	reduced number
				local array of	of iterations
				references and	needed for the
				the reduction	procedure to
				technique	expand the
				_	smallest
				intrinsically. The	
				usage of shared	label on a whole
				memory	connected
				extensively	component. In the

makes the code efficient. The Label Equivalence algorithm is an extended version of the one presented by Hawick et al. (2010) [3]. At the end the comparison depending on the performances of both of the algorithms is presented.

case of a spiral distribution of occupied cells for a 1024×1024 grid the number of iterations needed was 514 for the "Row-Col Unify" algorithm and 3 for "Label Equivalence''. This demonstrates that the productivity of the second algorithm depends on the topology weaker than the productivity of the first one. In general, the second algorithm is $15 \sim 35$ times faster compared with the first one. Another advantage of the "Label Equivalence" algorithm is its capability to be easily extended to calculate additional integral characteristics of each connected component, like size, perimeter or area.