MATH 2418: Linear Algebra

Assignment# 2

Due: 09/07 Wednesday Term Fall, 2016

[First Name] [Last Name] [Net ID]

Recommended Text Book Problems (do not turn in): [Sec 1.3: # 3, 5, 6, 8, 9]; [Sec 2.1: # 1, 2, 3, 9, 10, 16, 17, 19, 29, 31];

1. Given
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 3 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$
, $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$

- (a) Write the linear system corresponding to $A\mathbf{x} = \mathbf{b}$.
- (b) Solve the linear system.
- (c) Find A^{-1} , the inverse of matrix A.

- 2. (a) Prove that the vectors $\mathbf{u}=(1,1,0),\ \mathbf{v}=(2,0,-1),\ \mathbf{w}=(0,1,1)$ are linearly independent.
 - (b) Prove that the vectors $\mathbf{u}=(1,2,1),\ \mathbf{v}=(3,-2,1),\ \mathbf{w}=(5,2,3)$ are linearly dependent.

3. Given linear system
$$\begin{cases} 2x + 3y = 1 \\ 5x + 2y = 8 \end{cases}$$

- (a) Write down the matrix equation $A\mathbf{x} = \mathbf{b}$
- (b) Draw the row picture and the column picture
- (c) Write ${\bf b}$ as a linear combination of columns of A.

- 4. Find the matrix of following transformations:
 - (a) Rotation of vectors in \mathbb{R}^2 by 60° counterclockwise.
 - (b) Reflection of points in \mathbb{R}^2 across the line y = -x
 - (c) Multiplication of the point (x, y, z) in \mathbb{R}^3 to give the point (x + y, y, x + z)

5. Given
$$A = \begin{bmatrix} 1 & 2 & 4 \\ -5 & 3 & 6 \\ 2 & 3 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & -3 & 6 \\ 2 & 4 & -2 \\ 4 & 2 & -3 \end{bmatrix}$, $\mathbf{u} = \begin{bmatrix} 7 \\ -3 \\ 2 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 9 \\ 2 \\ -3 \end{bmatrix}$

- (a) Calculate $A\mathbf{u}$ as a linear combination of columns of A
- (b) Calculate $B\mathbf{v}$ as a dot products of rows of B and \mathbf{v} .

- 6. True or False. Circle your answer.
 - (a) **T F**: If the equations in a linear system are multiplied by scalars, the row picture and the column picture both change.
 - (b) **T F**: The set $\{(3,5,7),(2,2,9),(0,0,0)\}$ is linearly independent in \mathbb{R}^3 .
 - (c) **T F**: If matrix A is invertible, then $A\mathbf{x} = \mathbf{b}$ need not to have a unique solution.
 - (d) **T F**: The matrix that projects the vector (x, y) onto x-axis to produce (x, 0) is $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$.
 - (e) **T F**: If A**u** = **0**, then **u** is orthogonal to each column of A.