

Арифметичні дії з натуральними числами та їх властивості. Квадрат і куб числа. Порядок виконання арифметичних дій у виразах. Ділення з остачею





# Повідомлення теми уроку та мотивація навчально-пізнавальної діяльності учнів

### Мета уроку:

повторити, узагальнити і систематизувати знання з тем: арифметичні дії з натуральними числами та їх властивості; квадрат і куб числа; порядок виконання арифметичних дій у виразах; ділення з остачею. Закріпити вміння застосовувати набуті знання у практичній діяльності.





### Властивості додавання

Переставна властивість додавання - від перестановки доданків сума не змінюється.

$$a + b = b + a$$

Наприклад: 20+2=2+20.

Коли один із доданків дорівнює нулю, то сума дорівнює іншому доданку  $\mathbf{a} + \mathbf{0} = \mathbf{0} + \mathbf{a}$ .

Сполучна властивість додавання — числа можуть додаватися в любому порядку.

$$(a + b) + c = a + (b + c)$$

Наприклад: (20+2)+11=20+(2+11)



# Властивості віднімання

Щоб відняти суму від числа, можна від числа відняти один з доданків, а потім від результату відняти другий доданок.

$$a - (b + c) = (a - b) - c = (a - c) - b$$

Окремі випадки віднімання

$$a - 0 = a$$
  $a - a = 0$ 

Щоб відняти число від суми, можна відняти його від одного з доданків, а потім до результату додати другий доданок.

$$(a + b) - c = (a - c) + b = (b - c) + a$$

- 1) якщо від зменшуваного відняти різницю, то отримаємо від'ємник;
- 2) якщо до різниці додати від'ємник, то отримаємо зменшуване.

До особливих випадків множення слід віднести ті, коли множник b дорівнює нулю або одиниці:

$$a \cdot 1 = a$$
;  $a \cdot 0 = 0$ .

При множенні будь-якого числа на одиницю одержуємо те саме число, яке множили. При множенні будь-якого числа на нуль одержуємо нуль.

Якщо множник **b** більший за 1, то від множення натурального числа на **b** це число збільшується в **b** разів.

Наприклад,  $26 \cdot 5 = 130$ , тому 130 в 5 разів більше за число 26.

Перед буквеним множником і перед дужками знак множення можна не писати. Так, наприклад, замість  $7 \cdot a$  пишуть 7a, замість  $4 \cdot (a + 2)$  пишуть 4(a + 2).

### Письмове множення

Натуральні числа множать усно або письмово (у стовпчик)







Чи зміниться добуток, якщо поміняти місцями множники? Спираючись на зміст дії множення, спробуйте пояснити рівність  $3 \cdot 2 = 2 \cdot 3 = 6$ .

Така властивість множення справджується для будь-яких чисел а і b. Вона називається переставним законом множення.

Переставний закон множення.

Від перестановки множників добуток не змінюється.

$$a \cdot b = b \cdot a$$



Ви вже знаєте, що результат множення кількох множників не залежить від порядку виконання множення. Наприклад, щоб знайти добуток чисел 10, 2 і 15, можна спочатку помножити числа 10 і 2, а потім їх добуток помножити на число 15. Але зручніше спочатку помножити числа 2 і 15, а потім на їх добуток помножити число 10. Порядок множення чисел указують за допомогою дужок. Для розглянутого прикладу дістанемо:  $(10\cdot2)\cdot15 = 10\cdot(2\cdot15)$ .

Така властивість множення справджується для будь-яких чисел a, b і с. Вона називаються сполучним законом множення.

Сполучний закон множення.

Від порядку групування множників добуток не змінюється.  $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ .





 $(33 + 27) \cdot 5$  або  $33 \cdot 5 + 27 \cdot 5$ . В обох випадках вираз дорівнюватиме 300. Отже,  $(33 + 27) \cdot 5 = 33 \cdot 5 + 27 \cdot 5$ .

У цьому полягає **розподільна властивість** множення

відносно додавання. Така властивість справджується для будь-якої кількості доданків у дужках. Також справджується вона і для різниці:

 $(33 - 27) \cdot 5 = 33 \cdot 5 - 27 \cdot 5.$ 

### Відносно додавання:

щоб помножити суму на число, можна помножити на це число кожний доданок і ці добутки додати.

$$(a-b)\cdot c = a\cdot c - b\cdot c$$

$$(a+b)\cdot c = a\cdot c + b\cdot c$$

### Відносно віднімання:

щоб помножити різницю на число, можна зменшуване і від'ємник помножити на це число і від першого добутку відняти другий.

Використовуючи розподільну властивість множення для виразів (a + b)c, (a – b)c, c(a + b) і c(a – b), отримаємо вираз, що не містить дужок.

Таке застосування властивості ще називають розкриттям дужок. Наприклад: Розкрити дужки: (x + 4) · 7

Розв'язання:  $(x + 4) \cdot 7 = 7 \cdot x + 4 \cdot 7 = 7x + 28$ 

Щоб помножити натуральне число на розрядну одиницю (10, 100, 1000...), треба приписати справа до цього числа стільки нулів, скільки їх в розрядній одиниці.

# Степінь з натуральним показником

Ми вже знаємо, що суму однакових доданків можна записати коротше

— у вигляді добутку. Наприклад, 
$$3 + 3 + 3 + 3 + 3 = 3 \cdot 5$$
.

Як можна подати суму коротшим способом?

$$1)8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 = 8 \cdot 10$$

2) 
$$3 + 3 + 3 + 3 + 3 = 3.5$$

3) 
$$a + a + a + a + a + a = a \cdot 7$$

Коротше можна записувати і добуток однакових множників.

1)8 
$$\cdot$$
 8  $\cdot$  8

2) 
$$3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 = 3^5$$

3) 
$$a \cdot a \cdot a \cdot a \cdot a \cdot a = a^7$$







# Степінь з натуральним показником

Вираз 3<sup>5</sup> називають степенем і читають так: «три в п'ятому степені» або «п'ятий степінь числа 3».

Добуток двох однакових чисел  $a \cdot a$ 

називають **квадратом числа а** та позначають так:  $a^2$ .



Вираз **a**<sup>2</sup> читають так: **«квадрат числа а»**, **«а в квадраті»**, або **«а в другому степені»**.





# Степінь з натуральним показником

Добуток трьох однако-вих чисел  $\boldsymbol{a} \cdot \boldsymbol{a} \cdot \boldsymbol{a}$  нази-вають кубом числа  $\boldsymbol{a}$  та позначають так:  $\boldsymbol{a}^3$ .



Вираз *a*<sup>3</sup> читають так: «куб числа *a*», «*a* в кубі», або «*a* у тре-тьому степені».

Обчислення степеня числа називають піднесен-ням до степеня, зокрема обчислення квадрата (куба) числа — піднесенням числа до квадрата (куба). Якщо числовий вираз містить дію піднесення до степеня (зокрема, квадрат чи куб числа), то спочатку виконують піднесення до степеня (зокрема, до квадрата чи до куба), а після цього інші дії.



# Ділення натурального числа на розрядну одиницю



Щоб поділити натуральне число, що закінчується нулями, на розрядну одиницю, треба відкинути справа в цьому числі стільки нулів, скільки їх в розрядній одиниці.

Наприклад:

580 : 10 = 58

88 000 : 100 = 880.

### Письмове ділення

Натуральні числа ділити усно або письмово (у стовпчик)

| 2        | 7        | 8 | 3 | 2 | 3   |   |  |
|----------|----------|---|---|---|-----|---|--|
| <u>2</u> | 3        |   |   | 1 | _ 2 | 1 |  |
| _        | 4        | 8 |   |   |     |   |  |
|          | <u>4</u> | 6 |   |   |     |   |  |
|          |          | 2 | 3 |   |     |   |  |
|          |          | 2 | 3 |   |     |   |  |
|          |          |   | 0 |   |     |   |  |

| _ | 1 8 | 3 4 | 4 | 8 | 8 |   |   |   |  |
|---|-----|-----|---|---|---|---|---|---|--|
|   | 1 ( | 5   | _ |   | 2 | 3 | 0 | 6 |  |
|   | _ 2 | 4   |   |   |   |   |   |   |  |
|   | 2   | 4   |   |   |   |   |   |   |  |
|   |     | _   |   | 8 |   |   |   |   |  |
|   |     | _   | 4 | 8 |   |   |   |   |  |
|   |     |     |   | 0 |   |   |   |   |  |



### Окремі випадки ділення

a: a = 1

a:1=a

0: a = 0



Правильність виконання ділення можна перевірити множенням. Справді, 45:5=9, оскільки  $5\cdot 9=45$ . Тому дія ділення є оберненою до дії множення.

### На нуль ділити не можна!

Припустимо, що 8:0 дорівнює деякому числу b. Тоді b  $\cdot$  0=8. Але ця рівність неправильна. Якщо припустити, що с — певне число і 0:0=c, то отримаємо, що  $c\cdot 0=0$ , але ця рівність правильна для безлічі різних значень c. Отже, ділення на нуль не має смислу



# Проблематика ділення

Якщо в задачі 1 спробувати розкласти 46 яблук на 7 рівних купок, то в кожній купці буде по 6 яблук і ще 4 яблука залишиться. Якщо ж зібрати всі 7 отриманих купок, то в них буде яблук менше, ніж 46 (на 4). Тому, щоб отримати 46, треба до добутку 7·6 додати 4 яблука, що залишилися. Тобто  $46 = 7 \cdot 6 + 4$ .

Записують це так: 46 : 7 = 6 (ост. 4).



Остача, яку отримуємо під час ділення, завжди менша від дільника





### Ділення з остачею

При діленні з остачею правильна рівність:

$$a = b \cdot c + r$$

де а — ділене, b— дільник, с — неповна частка, r — остача.



Щоб знайти ділене у діленні з остачею, треба помножити неповну частку на дільник і до отриманого добутку додати остачу.

Щоб знайти неповну частку і остачу від ділення, треба ділене поділити на дільник у стовпчик.







- 1. Які ви знаєте властивості арифметичних дій з натуральними числами?
- 2. Що означає піднести число до степеня?
- 3. Як знайти ділене у діленні з остачею?

### Домашне завдання

### Завдання № 1.

Знайдіть значення виразу:

 $890: (873 - 695) + 18 \cdot 125$ 







#### Домашне завдання



### Завдання № 2.

Павло спочатку їхав 2 години на велосипеді зі швидкістю 8 км/год, а потім 2 години електричкою зі швидкістю 56 км/год. Який шлях подолав хлопець?