

DEPARTAMENTO DE ANTIOQUIA MUNICIPIO DE APARTADO INSTITUCION EDUCATIVA RURAL EL REPOSO CODIGO DANE 205045000134 RESOLUCION 4665 DEL 27 DE ABRIL DE 2005

MATEMÁTICAS GRADO OCTAVO DOCENTE: JULIO MORENO VALDERRAMA PERIODO 2/2024

Julio 2 DE 2024

Objetivos:

- Reconocer las convenciones algebraicas y las aplicar en la lectura y escritura de expresiones algebraicas y en el cálculo de áreas y perímetros de figuras planas.
- Calcular el valor numérico de expresiones algebraicas

Explicación del taller: La siguiente guía es para desarrollar los 3 talleres que están planteados en la misma no van a copiar la explicación solo van a desarrollar los talleres, la explicación es para que la tengan en cuenta si tienen alguna duda para realizar los talleres.

VALOR NUMÉRICO DE UN TÉRMINO ALGEBRAICO

Valor numérico de una expresión algebraica es el resultado que se obtiene al sustituir las letras por números dados y efectuar después las operaciones indicadas.

Ejemplo 1:

Hallar el valor numérico de **5ab** si para este ejemplo **a=1 y b=2**.

Solución:

Analizamos y al no tener ningún signo de operación sabemos que se trata de multiplicación, es así como:

Sustituimos la a por su valor 1, y la b por 2 y tendremos:

$$5ab = 5 * 1 * 2 = 10$$

Eiemplo 2:

Valor numérico de $a^2b^3c^4$ si para este ejemplo. a=2, b=3, c=1/2

Solución:

$$a^{2}b^{3}c^{4} = 2^{2} \times 3^{3} \times (\underline{1})^{4} = 4 \times 27 \times (\underline{1}) = \underline{27}$$

TALLER N°1

1. Hallar el valor numérico de las expresiones siguientes para:

$$a = 1$$
, $b = 2$, $c = 3$, $m = \frac{1}{2}$, $n = \frac{1}{3}$, $p = \frac{1}{4}$

- a. 3ab
- b. 5a²b³c
- c. b²mn
- $d.\ 24m^2n^3p$
- 2. Realizar las siguientes operaciones considerando que: a= 2, b=4 y c=1

Ejemplo:
$$a + b = 2 + 4 = 6$$

- a. a+b
- b. $a \times b + c + 5b 8a$
- c. 5a + 3c
- d. abc x bc
- e. b-a-c

TÉRMINOS SEMEJANTES

Dos o más términos son semejantes cuando tienen la **misma parte literal**, o sea, cuando tienen iguales letras y esas letras tienen **iguales exponentes**.

Ejemplo:

 $2z^5$ es semejante con $-4z^5$ \leftarrow Porque en ambos términos el factor literal es z^5 $17p^4x^2$ es semejante con $73p^4x^2$ \leftarrow Porque en ambos términos el factor literal es p^4x^2

Cuando NO son semejantes.

Los términos 4ab y $6a^2b$ **no son semejantes**, porque aunque ambas tiene ab; si revisamos la a en un término tiene exponente uno (por eso no se pone) y en el otro tiene exponente 2, es decir son diferentes.

Los términos $-bx^4yab^4$ no son semejantes, porque el primer factor es bx^4y el segundo ab^4 es decir son diferentes.

REDUCCIÓN DE TÉRMINOS SEMEJANTES

Operación que consiste en sumar o restar términos con la misma parte literal. Para reducir términos semejantes, se suman o restan los números y la parte literal queda igual. En la reducción de términos semejantes pueden ocurrir los casos siguientes:

Reducción de dos o más términos semejantes mismo signo

Suma

Se suman los coeficientes, poniendo delante de esta suma el mismo signo que tienen todosy a continuación se escribe la parte literal.

Ejemplos:

$$3a + 2a = 5a$$
 $\rightarrow 3 + 2 = 5$ y se conserva la .
 $-5b - 7b = -12b$ $\rightarrow -5 - 7 = -12$ y se conserva la b
 $-a^2 - 3a^2 = -4a^2$ $\rightarrow -1 - 3 = -4$ y se conserva el a^2

Resta

Se restan los coeficientes, poniendo delante de esta diferencia el signo del mayor acontinuación se escribe la parte literal.

Ejemplos:

$$2a - 3a = -1a = -a$$
 $\rightarrow 2 - 3 = -1$ y se conserva la a
 $18x - 11x = 7x$ $\rightarrow 18 - 11 = 7$ y se conserva la x

TALLER N°2

1. De acuerdo a lo explicado en términos semejantes, escriba tres términos semejantes para cada uno de los siguientes términos:

50mx	-10mx	2mx
4a ⁵		
3mx		
X ²		

2. Según las reglas de la reducción de términos semejantes, reduce los siguientes términos:

Ejemplo:

x + 2x = 1 + 2 = 3 (Como ambos números están acompañados de la x, esta se conserva) yqueda así:

x + 2x = 3x

- 1) x + 2x =
- 2) 8a 9a =
- 3) 11b + 9b =
- 4) -b 5b =
- 5) -8m m =
- 6) -9m 7m =
- 7) 8a 6a =
- 8) 6a 8a =
- 9) 9ab 15ab =
- 10)2a 2a =

TALLER N°3

Determinar el valor numérico de cada una de las expresiones algebraicas para el valor indicado de la variable.

1.
$$9x^4 + 13x^2 - 23x + 49 para x = -5$$

2.
$$11x^7 + 9x^5 - 3x^4 + 5x^2 - 13x + 9 para x = 2$$

3.
$$29m^6 - 15m^5 + 7m^4 - 13m^2 + 9m - 71$$
 para $m = -3$

4.
$$3x^8 + 11x^6 - 13x^5 + 9x^3 - 7x^2 + 13$$
 para $x = 3$

5.
$$6x^4 + 17x^3 - 27x^2 + 9x - 31$$
 para $x = 7$

6.
$$6m^5 - 18m^4 + 5m^2 + 6m + 4$$
 para $m = -6$

7.
$$19m^4 + 13m^3 - 7m^2 + 15m$$
 para $m = -9$

8.
$$12x^7 + 15x^6 - 7x^4 + 3x^3 - 8x^2 + 5x - 46$$
 para $x = 4$

NOTA: Dicho taller será entregado el día jueves de la misma semana, bien presentado en hojas aparte, ya sea en hojas de block o en hojas del cuaderno. Se tendrá en cuenta, para definir el segundo periodo en la nota final. El representante del salón me hace el favor de recogerlos y me los hace llegar muchas gracias y éxitos en dicho taller.