SINTEZE DE BACALAUREAT - MECANICA

1. MĂRIMI ȘI UNITĂȚI DE MĂSURĂ FUNDAMENTALE, ÎN SISTEMUL INTERNAȚIONAL

NR.	DENUMIREA MĂRIMII FIZICE (SIMBOLUL)	UNITATEA DE MĂSURĂ (SIMBOLUL)
1.	Lngimea (I)	metrul (m)
2.	Masa (m)	kilogramul (kg)
3.	Timpul (t)	secunda (s)
4.	Temperatura (T)	Kelvinul (K)
5.	Intensitatea curentului electric (I) Amperul (A)	
6.	Intensitatea luminoasă (I)	candela (cd)
7.	Cantitatea de substanţă(μ)	kmolul (kmol)

MECANICA

2. MĂRIMI ȘI UNITĂȚI DE MĂSURĂ DERIVATE, ÎN SISTEMUL INTERNAȚIONAL

NR.	DENUMIREA MĂRIMII FIZICE	UNITATEA DE	FORMULA DE DEFINIȚIE	VALOAREA	
	(SIMBOLUL)	MĂSURĂ		ECHIVALENTĂ ÎN	
		(SIMBOLUL)		UNITĂȚI S.I.	
1.	Viteza ($\vec{ m v}$)	metru·secundă ⁻¹ (m·s ⁻¹⁾	$ec{v} = rac{\Delta ec{r}}{\Delta t}$	1 m·s ⁻¹	
		2 2	Δt	2	
2.	Accelerația ($ec{a}$)	metru·secundă ⁻² (m·s ⁻²)	$\vec{a} = \frac{\Delta \vec{v}}{\Delta t}$	1 m·s ⁻²	
				2	
3.	Forța ($ec{F}$)	Newton (N)	$ec{F}=m\cdot ec{a}$	1N = 1kg·m·s ⁻²	
4.	Forța de greutate ($ec{G}$)	Newton (N)	$ec{G} = m \cdot ec{g}$	1N = 1kg·m·s ⁻²	
5.	Forța elastică ($ec{F}_e$)	Newton (N)	$F_e = -k \cdot x$	1N = 1kg·m·s ⁻²	
6.	Forța de frecare ($ec{F}_f$)	Newton (N)	$F_f = \mu \cdot N$	1N = 1kg·m·s ⁻²	
7.	Lucrul mecanic (L)	Joule (J)	$L = \vec{F} \cdot \vec{d} = F \cdot d \cdot \cos \alpha$	$1J = 1kg \cdot m^2 \cdot s^{-2}$	
8.	Lucrul mecanic al forței de greutate	Joule (J)	$L_G = m \cdot g \cdot h$	$1J = 1kg \cdot m^2 \cdot s^{-2}$	
9.	Lucrul mecanic al forței elastice	Joule (J)	$L_e = -\frac{kx^2}{2}$	$1J = 1kg \cdot m^2 \cdot s^{-2}$	
10.	Lucrul mecanic al forței de frecare	Joule (J)	$L_f = -\mu \cdot N \cdot d$	$1J = 1 \text{kg·m}^2 \cdot \text{s}^{-2}$	
11.	Puterea mecanică (P)	Watt (W)	$P = \frac{\Delta L}{\Delta t}$, sau $P = \frac{L}{\Delta t}$ pentru L = const.	1W= 1kg⋅m ² ⋅s ⁻³	
12.	Energia cinetică (E _c)	Joule (J)	$E_{\rm c} = \frac{\rm mv^2}{2}$	$1J = 1kg \cdot m^2 \cdot s^{-2}$	
13.	Energia potențială gravitațională	Joule (J)	$E_G = m \cdot g \cdot h$	1J = 1kg·m ² ·s ⁻²	
14.	Energia potențială elastică	Joule (J)	$E_e = \frac{kx^2}{2}$	$1J = 1kg \cdot m^2 \cdot s^{-2}$	
15.	Impulsul mecanic al $ punctului $ material $ ec{p} $	Newton-secundă (N-s)	$\vec{p} = m \cdot \vec{v}$	1N·s=1kg·m·s ⁻¹	
16.	Impulsul mecanic al unui sistem de $\bf n$ puncte materiale, impulsul total $(\vec P)$	Newton-secundă (N-s)	$\vec{P} = \sum_{i=1}^{n} \vec{p}_i$	1N·s=1kg·m·s ⁻¹	
17.	Constanta de elasticitate (k)	Newton·metru ⁻¹	$k = \frac{E \cdot l_0}{S_0}$	1N·m ⁻¹ = 1kg·s ⁻²	
18.	Alungirea absolută (∆I)	metru	$\Delta l = l - l_0$	1m	
19.	Alungirea relativă (ϵ)	Nu are	$\varepsilon = \frac{\Delta l}{l_0}$		
20.	Efortul unitar (σ)	Newton·metru ⁻²	$\sigma = \frac{F}{S_0}$	$1 \text{N} \cdot \text{m}^{-2} = 1 \text{kg} \cdot \text{m}^{-1} \cdot \text{s}^{-2}$	
21.	Randamentul planului înclinat	Nu are	$\eta = \frac{1}{1 + \mu \cdot ctg\alpha}$		
PRINCIPII ȘI LEGI ÎN MECANICĂ					
1.	Principiul I al dinamicii, sau	Un corp se mișcă rectiliniu și uniform, sau se află în repaus, atâta timp cât asupra lui nu			
	Principiul inerției.	acționează alte corpuri din exterior, care să-i schimbe starea de mișcare.			
2.	Principiul al II-lea al dinamicii, sau	Forța este mărimea fizică vectorială egală cu produsul dintre masă și vectorul accelerație:			
	Principiul fundamental.	$\vec{F} = m \cdot \vec{a}.$			

3.	Principiul al III-lea al dinamicii,	Dacă un corp acționează asupra altui corp cu o forță, numită acțiune, cel de-al doilea			
	sau Principiul acțiunilor reciproce.	răspunde cu o forță egală și de sens contrar, numită reacțiune: $\vec{F} = -\vec{F'}$.			
4.	Legea I a frecării de alunecare	Forța de frecare de alunecare dintre două corpuri nu depinde de aria suprafețelor în			
		contact.			
5.	Legea a II-a a frecării de	Forța de frecare de alunecare dintre două corpuri este direct proporțională cu forța de			
	alunecare	apăsare normală pe suprafața de contact: $\vec{F}_f = \mu . \vec{N}$, unde μ este coeficientul de frecare.			
6.	Legea lui Hooke	E – modulul de elasticitate longitudinal, sau modulul lui Young			
		$\Delta l = \frac{1}{E} \cdot \frac{F}{S_0} \cdot l_0$ F – forța deformatoare			
		S_0 , l_0 — secțiunea, respectiv lungimea inițială materialului solicitat			
TEOREME DE VARIAȚIE ȘI LEGI DE CONSERVARE ÎN MECANICĂ					
1.	Teorema de variație a energiei	Variația energiei cinetice a unui punct material, care se deplasează în raport cu un sistem			
	cinetice a punctului material	de referință inerțial, este egală cu lucrul mecanic al rezultantei forțelor externe ce			
		acționează asupra punctului material, în timpul acestei variații: $\Delta E_c = L$			
2.	Variația energiei potențiale	Variația energiei potențiale a unui sistem este egală și de semn opus cu lucrul mecanic al			
		forțelor conservative care acționează asupra sistemului: $arDelta E_p = -L$			
3.	Legea conservării energiei	$E=E_c+E_p=const.$ Energia mecanică a unui sistem izolat în care acționează forțe			
	mecanice	conservative este constantă în timp, adică se conservă.			
4.	*Teorema de variație a impulsului	Impulsul forțelor externe ce acționează asupra unui sistem este egal cu impulsul total al			
		sistemului: $\vec{F} \cdot \Delta t = \Delta \vec{P}$			
5.	*Legea conservării impulsului	Dacă rezultanta forțelor externe care acționează asupra sistemului este egală cu zero,			
٦.	Legea conservanti impuisului	impulsul total se conservă.			
1		ווויףעוטעו נטנמו שב נטוושבו עם.			

ACCELERAȚIA PE PLANUL ÎNCLINAT CU FRECARE

ACCELERAȚIA PE PLANUL ORIZONTAL CU FRECARE

SCRIPETELE

Urcare pe plan: $a_u = -g(\sin \alpha + \mu \cdot \cos \alpha)$

Coborâre pe plan: $a_c = g(\sin \alpha - \mu \cdot \cos \alpha)$

- De regulă, forța de frecare acționează în sens invers mișcării.
- Deci, pentru a deduce sensul mișcării este suficient să sesizăm sensul forței de frecare.

