

Desarrollo de Aplicaciones y Sistemas Inteligentes (DASI) Clasificación

Juan Pavón Mestras

Dep. Ingeniería del Software e Inteligencia Artificial UCM

Clasificación

- Una de las aplicaciones comunes del aprendizaje supervisado
 - Observaciones ⇒ Categorías
 - Observaciones son las características (features) o variables predictivas
 - Las categorías con etiquetas o clases
 - El modelo de clasificación se genera con entrenamiento para que aprenda de las características y los objetivos de las muestras de entrenamiento
 - Posteriormente, con nuevos datos, el modelo entrenado será capaz de determinar las clases a las que pertenecen

Tipos de clasificación

Binaria

- Dos clases (mutuamente excluyentes)
- o Ejemplo: clasificador de correo spam

Multi-clase

- Más de dos clases posibles (mutuamente excluyentes)
- Ejemplo: reconocimiento de dígitos (0 a 9)

Multi-etiqueta

- Varias etiquetas posibles a la vez
- Ejemplo: una película que se puede considerar de varios géneros (acción, aventura, ciencia ficción)
- A veces se puede tratar como un conjunto de clasificaciones binarias, una por cada posible clase

CC J D J Pavón (UCM)

DASI - Clasificación

3

DASI

Clasificación con Naïve-Bayes

Naïve-Bayes

- En aprendizaje supervisado, se dispone de una muestra (x_i, y_i) con i=1..n, y el objetivo es aprender la función que relaciona el vector de características x_i con la clase a la que pertenece pertenece y_i∈ 1..m siendo m el número de clases posibles
- Un clasificador **probabilístico** proporciona una forma de relacionar las entradas con las salidas, pero, además, permite determinar las probabilidades p(y|x) a tenor de las observaciones disponibles
- Pueden ser
 - o Modelos discriminativos: tratan de aprender directamente las
 - \circ probabilidades p(y|x)
 - Ejemplo: regresión logística
 - Modelos generativos: tratan de aprender las probabilidades condicionales para cada clase de y, p(y/x), y las probabilidades a priori de cada clase p(y), aplicando la regla de Bayes
 ⇒ Se llaman generativos porque a partir de ellos podemos generar vectores de características x para cada clase y
 - Ejemplo: Naïve-Bayes

J Pavón (UCM)

DASI - Clasificación

5

Naïve-Bayes

- Clasificador probabilístico
 - Bayes: mapea la probabilidad de las características de entrada observadas dada una clase posible con la probabilidad de la clase dada teniendo en cuenta las evidencias usando el Teorema de Bayes
 - Teorema de Bayes:

$$p(y|\mathbf{x}) = \frac{p(\mathbf{x} \wedge y)}{p(\mathbf{x})} = \frac{p(\mathbf{x}|y)p(y)}{\sum_{y'=1}^{m} p(\mathbf{x}|\mathbf{y}')p(y')}$$

 Naïve: Simplifica el cálculo de la probabilidad asumiendo que las características predictivas son mutuamente independientes

Teorema de Bayes

Ejemplo: Se han obtenido los siguientes datos en un estudio sobre los tests del covid con 10.000 personas:

	Covid	No covid	Total
Test positivo	80	900	980
Test negativo	20	9000	9200
Total	100	9900	10000

La probabilidad de tener Covid (C) siendo el test positivo (TP) es:

$$= (0.8 * 0.01) / 0.098 = 8.16\%$$
 (esto es mucho más que P(C)=1%, sin hacer el test)

@ 🛈 🧿

J Pavón (UCM)

Naïve Bayes

Si se tienen múltiples características (variables $x_1, x_2, ..., x_n$), entonces $P(y_k \mid x) = \frac{P(x \mid y_k) P(y_k)}{P(x)}$ se tendría:

siendo:

- $P(y_{\nu})$ la distribución de probabilidad de las clases (esto es, sin tener en cuenta las características) ⇒ probabilidad a priori (*prior*)
- $P(y_{\nu}|x)$ la probabilidad dada la observación de las características $x \Rightarrow posterior$
- $P(x|y_{\kappa})$, o $P(x_1, x_2, ..., x_n|y_{\kappa})$ la distribución conjunta de las n características cuando un elemento pertenece a la clase y_K ⇒ *likelihood*
 - ⇒ Esto es costoso de calcular cuando n aumenta (si xi son n variables binarias, habría que calcular 2ⁿ⁺¹-1 probabilidades para todas las combinaciones de valores de x e y, es decir, $P(y \land x_1 \land \cdots \land x_n)$
 - \Rightarrow Naïve Bayes asume que las variables $x_1, x_2, ..., x_n$ son **independientes**, entonces se hace más fácilmente:

$$P(x_1 \wedge \cdots \wedge x_n | y) = P(x_1 | y) *P(x_2 | y) * \cdots *P(x_n | y)$$

P(x) la evidencia, depende solo de la distribución de las características x_i , que no es específica de las clases, luego es una constante normalizada. Por tanto:

$$P(y_k | x) \propto P(x | y_k) P(y_k) = P(x_1 | y_k) * P(x_2 | y_k) * ... * P(x_n | y_k)$$

Clasificador Naïve Bayes

Ejemplo

- Considérese un ejemplo de recomendación de películas
 - Entrenado con 4 usuarios
 - peli1, peli2, peli3 son características (features)
 - pelix es la clase objetivo
 - 0: no gusta, 1: sí gusta
 - Se trata de ver para un quinto usuario si le gustará la pelix

	Usuario	peli1	peli2	peli3	pelix ?
Datos de entrenamiento	usuario1	0	1	1	Y
citionalmento		0	1	N	
	usuario3	0	0	0	Y
	usuario4	1	1	0	Y
Caso de prueba	usuario5	1	1	0	?

Ejemplo adaptado del capítulo 2, del libro Yuxi (Hayden) Liu: *Python Machine Learning By Example, Third Edition*. Packt Publishing, 2020

Ejemplo

Las probabilidades serán las frecuencias relativas que se obtienen contando las observaciones del conjunto de entrenamiento

$$P(x_k = x_{ki} | y = y_i) = \frac{\#(x_k = x_{ki} \land y = y_i)}{\#(y = y_i)}$$

- Calcular la probabilidad de que le guste la pelix al usuario5, P(Y), será calcular:
 - P(Y|x) siendo x = (1, 1, 0)
 - p₁, p₂, p₃ indican si al usuario le gusta o no la película correspondiente En este caso (1, 1, 0)
 - Habrá que calcular el likelihood: $P(p_1=1|S), P(p_2=1|S), P(p_3=0|S), y P(p_1=1|N), P(p_2=1|N), P(p_3=0|N)$
 - Como en el conjunto de entrenamiento $P(p_1=1|N) = 0$ se tiene que $P(N|x) \sim P(p_1=1|N)*P(p_2=1|N) = 0 \Rightarrow$ Siempre saldrá que le gustará la peli

Ejemplo

- Para evitar el factor de multiplicación por 0 como en este caso se puede aplicar el alisado de Laplace
 - Se incrementar la probabilidad de 0 a algún valor positivo (el factor de alisado, I, normalmente 1) a todas las características

$$P(x_k = x_{ki} | y = y_i) = \frac{\#(x_k = x_{ki} \land y = y_i) + l}{\#(y = y_i) + l | x_k|}$$

Así se tendría entonces:

0 veces que gusta la peli1 dada la clase N, y 1 vez

$$P(p_1=1|N) = (0+1)/(1+2) = 1/3$$
 Hay una vez que no gusta la pelix, y son 2 las opciones posibles $P(p_4=1|Y) = (1+1)/(3+2) = 2/5$

$$P(p_2=1|N) = (0+1) / (1+2) = 1/3$$

$$P(p_2=1|Y) = (2+1) / (3+2) = 3/5$$

$$P(p_3=1|N) = (0+1) / (1+2) = 1/3$$

$$P(p_3=1|Y) = (2+1) / (3+2) = 3/5$$

Ahora el cálculo sale mejor:

$$\frac{P(N \mid x)}{P(Y \mid x)} \propto \frac{P(N) * P(f_1 = 1 \mid N) * P(f_2 = 1 \mid N) * P(f_3 = 0 \mid N)}{P(Y) * P(f_1 = 1 \mid Y) * P(f_2 = 1 \mid Y) * P(f_3 = 0 \mid Y)} = \frac{125}{1458}$$

Se tiene finalmente que

$$P(Y|x) = 1458*100 / 1583 = 92%$$

Implementación

Con Python, en Google Colab:

https://colab.research.google.com/drive/1PC_nVmqgyeS1xbmaZMJN8RH Hv36lrgza?usp=sharing

CC 1 9 J Pavón (UCM)

DASI - Clasificación

Evaluación del rendimiento

• Matriz de confusión (Confusion matrix): resume cómo han sido los resultados obtenidos con los ejemplos de prueba

		Predicted	
		Negative	Positive
Actual	Negative	TN	FP
	Positive	FN	TP

TN = True Negative FP = False Positive

FN = False Negative TP =True Positive

La **exactitud** de la clasificación (**accuracy**) es la tasa de aciertos:

$$\frac{TN + TP}{TN + TP + FP + FN}$$

Evaluación del rendimiento

• Precisión: mide la fracción de ejemplos positivos correctos

$$\frac{TP}{TP + FP}$$

• Exhaustividad (*Recall*) o sensibilidad: mide la fracción de ejemplos positivos que se han detectado sobre el total de casos

$$\frac{TP}{TP + FN}$$

• F1 score: media armónica de los dos anteriores:

$$f_1 = 2 * \frac{precision * recall}{precision + recall}$$

 Más adecuada que las anteriores porque es más sensible a que uno de los valores sea muy pequeño

DASI - Clasificación

41

Evaluación del rendimiento

- Dependerá del problema que nos interese más una medida u otra
- Ejemplo: clasificador binario para determinar si una persona está enferma (Sí | No)
 - Si se tienen tres clasificadores con las siguientes medidas:

- > ¿Cuál es más útil para detectar una enfermedad letal y contagiosa?
- > ¿Cuál será el más indicado para una leve que se cura con un medicamento?
- ¿Y para otro problema de clasificación como "buen-pagador/moroso" para concederle un préstamo?
- ⇒ Al entrenar el modelo (fase de aprendizaje) habrá que tener en cuenta la medida que más nos interese (precisión, *recall*, F1)

Área bajo la curva

- Area under the curve (AUC) of the receiver operating characteristic
 (ROC)
 - ROC es una curva de la tasa de TP vs. la tasa de FP con varios umbrales de probabilidad entre 0 y 1
 - La TP es equivalente al recall, y la FP a la fracción de negativos que se han identificado incorrectamente como positivos
 - ⇒ Ver código

DASI - Clasificación

17

Ajuste del modelo con validación cruzada

- Usaremos *k-fold cross validation* (visto en el tema anterior)
 - Se dividen los datos originales en subconjuntos de k elementos, preservando la proporción entre clases objetivo
 - Si el conjunto de entrenamiento es pequeño se suele tomar k = 5 o 10
 - Si el conjunto de entrenamiento es grande se suele tomar k = 3 o 4
 - Cada uno de estos conjuntos se utilizará de prueba para evaluar el modelo, y en cada vuelta el resto se utilizarán para entrenamiento
 - o Al final se toma la media para generar el resultado global

 $\bigcirc \bigcirc \bigcirc \bigcirc$

J Pavón (UCM)

DASI - Clasificación

<u>Joan.domenech91</u> - Trabajo propio, Wikimedia commons

DASI Bibliografía

Bibliografía

- Sridhar Alla & Suman Kalyan Adari: Beginning MLOps with MLFlow. Deploy Models in AWS SageMaker, Google Cloud, and Microsoft Azure. Apress, 2021.
- Stuart Russell, Peter Norvig: Artificial Intelligence: A Modern Approach, 3rd edition. Prentice Hall, 2016. Teik Toe Teoh & Zheng Rong: Artificial Intelligence with Python. Springer Nature, 2022.
- Yuxi (Hayden) Liu: *Python Machine Learning By Example, Third Edition*. Packt Publishing, 2020.
- Documentación en línea de las distintas herramientas