Community Detection Problem Based on Polarization Measures. An application to Twitter: the COVID-19 case in Spain

Here we attach the obtained results when applying the Polarization Louvain algorithm in the polarization extended fuzzy graph $\widetilde{G} = (V, E, \mu_P)$ for several values of the balancing factor γ , considering the scenarios in which $\varphi = \max$ and $\phi = \min$ as well as $\varphi = \max$ and $\phi = \min$. We also include the performance of the Louvain algorithm considering the graph G = (V, E).

Figure 1: Partitions obtained with the Louvain algorithm in the graph G=(V,E).

Figure 2: Partitions obtained with the Polarization Louvain algorithm in the polarization extended fuzzy graph $\widetilde{G}=(V,E,\mu_P).$ $\gamma=0.1;$ $\varphi=\max;$ $\phi=\min.$

Figure 3: Partitions obtained with the Polarization Louvain algorithm in the polarization extended fuzzy graph $\widetilde{G}=(V,E,\mu_P).$ $\gamma=0.2;$ $\varphi=\max;$ $\phi=\min.$

Figure 4: Partitions obtained with the Polarization Louvain algorithm in the polarization extended fuzzy graph $\widetilde{G}=(V,E,\mu_P).$ $\gamma=0.3;$ $\varphi=\max;$ $\phi=\min.$

Figure 5: Partitions obtained with the Polarization Louvain algorithm in the polarization extended fuzzy graph $\widetilde{G}=(V,E,\mu_P).$ $\gamma=0.4;$ $\varphi=\max;$ $\phi=\min.$

Figure 6: Partitions obtained with the Polarization Louvain algorithm in the polarization extended fuzzy graph $\widetilde{G}=(V,E,\mu_P).$ $\gamma=0.5;$ $\varphi=\max;$ $\phi=\min.$

Figure 7: Partitions obtained with the Polarization Louvain algorithm in the polarization extended fuzzy graph $\widetilde{G}=(V,E,\mu_P).$ $\gamma=0.1;$ $\varphi=\max;$ $\phi=prod.$

Figure 8: Partitions obtained with the Polarization Louvain algorithm in the polarization extended fuzzy graph $\widetilde{G} = (V, E, \mu_P)$. $\gamma = 0.2$; $\varphi = \max$; $\phi = prod$.

Figure 9: Partitions obtained with the Polarization Louvain algorithm in the polarization extended fuzzy graph $\widetilde{G}=(V,E,\mu_P).$ $\gamma=0.3;$ $\varphi=\max;$ $\phi=prod.$

Figure 10: Partitions obtained with the Polarization Louvain algorithm in the polarization extended fuzzy graph $\widetilde{G}=(V,E,\mu_P).$ $\gamma=0.4;$ $\varphi=\max;$ $\phi=prod.$

Figure 11: Partitions obtained with the Polarization Louvain algorithm in the polarization extended fuzzy graph $\widetilde{G}=(V,E,\mu_P).$ $\gamma=0.5;$ $\varphi=\max;$ $\phi=prod.$