Predicting Flight Delays

Lighthouse Labs Mid-term Project

Ruslan and Christian

Objective

- The task of the project is to create a
 Machine Learning model that predicts flight
 delays one week in advance.
- This is a regression problem, in which we wish to predict the continuous variable "arrival delay" for each flight.
- We are supplied with a PostgreSQL
 Database hosted on an AWS server with around 15 million rows of information on US flights for 2018 and 2019.

Extract, Transform, Load


```
def import_flights( dateFrom, dateTill, filename, chunksize=100000, carrier='%' ):
   Connects to the database and saves csv file.
       carrier as string - if omitted wildcard is set by default
       dateFrom as string in format YYYY-mm-dd
       dateTill as string in format YYYY-mm-dd
       chunksize as integer is used in LIMIT and OFFSET parts of SQL to query database. Helps avoiding freezing during query.
       filename as string
   dateFrom = datetime.strptime(dateFrom, '%Y-%m-%d')
   dateTill = datetime.strptime(dateTill, '%Y-%m-%d')
   #Establishing connection
   conn = psycopg2.connect(
                                                       import_flights('2019-01-01', '2019-12-31', 'All flights 2019', chunksize=200000, carrier='%')
   host="",
   database="",
   password="")
   list_of_columns = ('fl_date', 'mkt_carrier',
       'mkt_carrier_fl_num', 'tail_num',
       'op_carrier_fl_num', 'origin_airport_id', 'origin', 'origin_city_name',
       'dest_airport_id', 'dest', 'dest_city_name', 'crs_dep_time', 'dep_time', 'dep_delay', 'taxi_out', 'wheels_off', 'wheels_on', 'taxi_in',
       'crs_arr_time', 'arr_time', 'arr_delay', 'cancelled',
      'cancellation_code', 'diverted', 'dup', 'crs_elapsed_time',
       'actual_elapsed_time', 'air_time', 'flights', 'distance',
       'carrier_delay', 'weather_delay', 'nas_delay', 'security_delay',
       'late_aircraft_delay', 'first_dep_time', 'total_add_gtime',
       'longest_add_gtime', 'no_name']
   #Concatenating columns into one string for SQL Query
   for col in list_of_columns:
       if cols:
           cols=cols + ", " + col
       else:
           cols=col
   offset = 0
   while True:
       sql="""SELECT """ + cols + """ FROM flights
       WHERE fl_date >='""" + dateFrom.strftime('%Y%m%d') + """' and fl_date <'""" + dateTill.strftime('%Y%m%d') + """"</pre>
           and mkt_carrier LIKE '""" + carrier + """' ORDER BY fl_date LIMIT """ + str(chunksize) + """ OFFSET """ + str(offset) +""";"""
       #Ouering data from database
       df = pd.read_sql(sql, conn)
       if df.shape[0] == 0:
           break #No more data. Quiting the loop.
       if path.exists(filename + ".csv"):
           df.to_csv(filename + ".csv", mode='a', header=False, index=False)
       else:
           df.to_csv(filename + ".csv", index=False)
       offset +=chunksize
   conn.close()
```

Built python function to easily pull from the PostgreSQL Database

First Approach

- Our EDA did not find any real correlation between our target delay and our features.
- Decided to use a "Naive" first approach.
- Attempted Linear Regression on default settings, with no feature engineering.
- Baseline model to compare our efforts to: Mk 0.

metrics.r2_score(y_test,y_pred)

0.00863460962832796

Second Approach

Focusing on Feature Engineering

Mk I Model

Taxi Rolling Average

Traffic Rolling Average

Month Dummies

Weather API

Ordinal Dates

Departure Delay Rolling Average

Linear Regression

R2 score: 0.0900

Mk II Model Selection

MkII Model

Taxi Rolling Average

Traffic Rolling Average

Month Dummies

Weather API

Ordinal Dates

Departure Delay Rolling Average

Stochastic Gradient
Descent

R2 score: 0.0892

Mk III Model

Taxi Rolling Average

Holidays

Traffic Rolling Average

Departure Delay
Per Tail Number (rolling average)

Month Dummies

Departure Delay per
Origin Airport ID (rolling average)

Weather API

Taxi out/in per Carrier (Rolling average)

Ordinal Dates

Arrival delay per: airport, tail number, carrier
(Rolling average)

Departure Delay Rolling Average Polynomial Features (Trial and Error)

XGBoost (Manual Tuning)

R2 score: 0.1112

Note: 7 Day rolling averages were offset 7 days back.

Feature Correlation

7 days roll arr_delay_per_dest_airport_id	0.05427
origin_visibility	0.05381
7 days roll arr_delay_per_mkt_carrier_fl_nι	0.05322
dest_cond_Rain	0.05288
dest_visibility	0.05071
7 days roll arr_delay_per_origin_airport_id	0.05002
origin_cond_Rain	0.04988
7 days roll dep_time	0.047
7 days roll arr_delay_per_tail_num	0.04225
7d taxi_out by origin_airport_id	0.04033
7d roll taxi_out X tail_num	0.04033
7 days roll dep_delay_per_tail_num	0.03694
month_6	0.03663
7d taxi_out by mkt_carrier_fl_num	0.03607
origin_cond_Snow	0.03516
dest_city_wspd	0.0324
origin_city_wspd	0.03135
month_9	0.02959
month_11	0.02901
7d roll taxi_in X tail_num	0.02756
7d taxi_in by dest_airport_id	0.02756
dest_cond_Snow	0.02745
mkt_carrier_fl_num X date	0.02245

Binary Classification (YES/NO)

· ACCURACY: 0.7360

• PRECISION: 0.6833

· RECALL: 0.4082

ACTUAL

PREDICTED