

INFERENCE

Part 1: Distributions in sampling

Part 2: Inference about one population

Comparison of populations

Part 3: ANOVA (Analysis of Variance)

Part 4: Regression

UD 5 part 1

Distributions in sampling

Set of objects that we are interested in obtaining conclusions.

Example: All pieces that are to be manufactured in a certain process.

SAMPLE

Subset formed by part of objects of one population. <u>Example</u>: 10 pieces taken from the process.

The sample must be "representative" of the population.

Only way to guarantee "representativity": random sampling.

OBJECT OF SAMPLING

To obtain precise and reliable conclusions about the population characteristics (at the minimum cost), based on the sample analysis.

STATISTICAL INFERENCE

Process of reasoning to obtain conclusions (with a known margin of error) about the population, based on the analysis of samples taken from it.

GOLDEN RULE OF SAMPLING

THE SAMPLE MUST BE REPRESENTATIVE OF THE WHOLE SET

EXAMPLE OF A VERY BAD SAMPLING

Sampling procedure to estimate TV audience share:

CHARACTERISTICS OF SAMPLING

- RANDOM
 - Any unit of the population must have the same probability to be chosen as part of the sample.
- ADEQUATE SAMPLE SIZE according to:
- Size of the population under study
- Variability of the evaluated characteristic
- Maximum errors allowed in the estimation

EXAMPLE: How would you select 100 people for the TV program: "I have a question for you, Mr. President"?

Difference between: Simple random sampling (s.r.s.) stratified random sampling (e.g. social strata)

EXAMPLE:

In order to study if the manufacturing process of a certain piece works correctly, 10 pieces have been randomly taken, being the length (in mm) the following:

348.3 378.9 329.6 379.3 348.8 367.7 358.4 378.2 377.9 341.8

The sample mean is:

$$\bar{x} = 360.89 \text{ mm}$$

The sample standard deviation is:

$$s = 18.11 \text{ mm}$$

Can we consider that the population mean of the pieces' length is = 350 mm, which is the nominal value?

Can we consider that the population standard deviation of the pieces' length is 15 mm?

Depends on ...

To what extent the average (\overline{X}) and the standard deviation (s) of one sample can differ from the average (m) and the standard deviation (σ) of the population, respectively.

We want to know what is the average length of pieces manufactured in a certain process. For that purpose, a sample of 4 pieces is taken, and the length if each one is measured (x_i)

What is the best estimator of the population mean, m?

 θ^* (estimator of θ) is unbiased if: $E(\theta^*) = \theta$

$$\mathbf{m}^* = \frac{\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4}{4}$$

$$\mathbf{m}^* = \frac{\mathbf{x}_{\min} + \mathbf{x}_{\max}}{2}$$

$$\mathbf{m}^* = \operatorname{median}\left\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4\right\}$$

$$\mathbf{m}^* = \left(\mathbf{x}_1 \cdot \mathbf{x}_2 \cdot \mathbf{x}_3 \cdot \mathbf{x}_4\right)^{1/4}$$

$$\mathbf{m}^* = \min\left\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4\right\}$$

Bias
$$(\theta^*, \theta) = E(\theta^*) - \theta$$

How to assess the goodness of one estimator θ^* for the estimation of θ ?

If
$$\theta^*_1$$
 and θ^*_2 are 2 estimators of θ

$$\theta^*_1$$

$$\theta^*_1$$
WHICH IS BETTER?
$$\theta^*_2$$

$$\theta^*_1$$

The best, is the estimator unbiased, of minimum variance and consistent $\lim_{n\to\infty} \frac{n\to\infty}{\sigma^2(\hat{\theta})=0}$

- the sample variance is the best estimator of σ^2

$$\hat{m} = \overline{X}$$
 $\hat{\sigma}^2 = S_{n-1}^2$ $\hat{P} = p$

DISTRIBUTION OF X

THE SAMPLE MEAN IS CALCULATED AS:

$$\overline{X} = \frac{X_1 + X_2 + ... + X_N}{N} = \frac{\sum X_i}{N}$$

EACH ONE OF THESE X_i THAT CONSTITUTES THE SAMPLE, WILL BE THE OBSERVED VALUE OF A RANDOM VARIABLE WITH MEAN m AND VARIANCE σ^2 .

$$E(\overline{X}) = E\left(\frac{X_1 + X_2 + ... + X_N}{N}\right) = \frac{m + m + ... + m}{N} = m$$

THE AVERAGE OF SAMPLE MEAN IS THE POPULATION MEAN

(for any kind of distribution of X)

$$\sigma^{2}(\overline{X}) = \sigma^{2}\left(\frac{X_{1} + X_{2} + \dots + X_{N}}{N}\right) = \frac{1}{N^{2}}(\sigma^{2}(X_{1}) + \dots + \sigma^{2}(X_{N})) = \frac{N\sigma^{2}}{N^{2}} = \frac{\sigma^{2}}{N}$$

independence

THE VARIANCE OF THE SAMPLE MEAN IS THE POPULATION VARIANCE DIVIDED BY THE SAMPLE SIZE (for any distribution)

 \overline{X} is sum of independent random vars. with the same distribution

EXERCISE:

In the process of car painting, the thickness of the paint layer follows a normal distribution with average 100 μm and standard deviation 5 μm . The quality control of this process is conducted by obtaining the average of 4 measurements from 4 cars randomly selected. The process is considered as correct if the mean obtained is > 95 μm . What is the probability to reject the process?

SOLUTION: Mean of the 4 measurements:

$$\overline{X} \equiv N\left(100, \frac{5}{\sqrt{4}}\right) \equiv N(100, 2.5)$$

Probability to reject the process:

$$P = P(\overline{X} \le 95) = \phi(\frac{95-100}{2.5}) = \phi(-2) = 0.0228$$

EXERCISE:

In order to know the average expenses of Spanish families in summer holidays, N families are randomly chosen and asked about their expenses. The population standard deviation is assumed to be $\sigma = 200 \in$

What should be the value N so that the difference (in absolute value) between the sample mean obtained and the unknown population mean is < 50 € with a 95% probability?

$$P(|(\bar{x} - m)| \le 50) \ge 0.95 \equiv P(\bar{x} \le m - 50) \le 0.025 = \phi \left(\frac{(m - 50) - m}{\frac{200}{\sqrt{n}}}\right) \le 0.025$$

$$\left(\frac{(m-50)-m}{\frac{200}{\sqrt{n}}}\right) = -1,96 \implies \frac{-50\sqrt{n}}{200} = -1,96 \implies n = 62,14 \approx 63 \quad \text{families}$$

DISTRIBUTION OF s²

$$s_{n-1}^{2} = \frac{(X_{1} - \overline{X})^{2} + \dots + (X_{N} - \overline{X})^{2}}{N-1} = \frac{\sum (X_{i} - \overline{X})^{2}}{N-1}$$

$$E(s_{n-1}^{2}) = E\left(\frac{\sum (X_{i} - \overline{X})^{2}}{N - 1}\right) = \frac{1}{N - 1}E\left[\sum [(X_{i} - m) - (\overline{X} - m)]^{2}\right] = \dots = \sigma^{2}$$

$$E(s_n^2) = \frac{n-1}{n} \cdot \sigma^2$$

 $E(s_n^2) = \frac{n-1}{n} \cdot \sigma^2$ Unbiased estimator
Asymptotically unbiased estimator

THE AVERAGE OF THE SAMPLE VARIANCE IS THE POPULATION VARIANCE

$$\sigma^{2}(s_{n-1}^{2}) = \frac{2\sigma^{4}}{n-1} \xrightarrow{N \to \infty} 0$$

Consistent estimator

SUM OF NORMAL VARIABLES

If X_1 , X_2 ,, X_n are random variables Normally distributed with average m, and standard deviation o equal for all of them, then:

$$\sum_{i=1}^{n} \mathbf{X}_{i} \sim \mathbf{N} \left(\mathbf{n} \cdot \mathbf{m}_{x}, \sqrt{\mathbf{n}} \cdot \sigma \right)$$

(for any value n)

Consequently:
$$\overline{X}_n \sim N\left(m_x, \frac{\sigma}{\sqrt{n}}\right) \frac{\overline{x} - m}{\sigma / \sqrt{n}_n} \sim N(0; 1)$$

$$\frac{\overline{x}-m}{\sigma/\sqrt{n}_{\rm n}} \sim N(0; 1)$$

If X is not Normally distributed:

$$\overline{X} \underset{(CLT)}{\approx} N \left(m, \frac{\sigma}{\sqrt{N}} \right)$$

To study the pattern of variability of statistical parameters that appear in the sampling of normal variables,

it is necessary to know three new probability distributions:

- χ^2 (Pearson's chi-square distribution)
- Student's t
- Fisher's F (or F of Snedecor)

IMPORTANT NOTE:

THESE DISTRIBUTIONS DO NOT MODEL THE PATTERN OF VARIABILITY OF ANY REAL VARIABLE; THEY APPEAR IN THE PROCESS OF STATISTICAL INFERENCE.

DISTRIBUTION χ^2

$$\chi_n^2 = \sum_{i=1}^n X_i^2$$
; $X_i \sim N(0,1)$ independent

$$E(\chi_n^2) = n$$

$$\sigma^2(\chi_n^2) = 2n$$

$$\frac{\chi_n^2 - n}{\sqrt{2n}} \xrightarrow{n \to \infty} N(0,1)$$

(for n>50, good approximation)

n=5

(formula table, up to n = 600)

PEARSON'S χ² DISTRIBUTION

		$\mathcal{L}_{\mathbf{n}}$													
n	0.9995	0.999	0.995	0.99	0.975	0.95	0.90	0.50	0.10	0.050	0.025	0.01	0.005	0.001	0.0005
1	0.000	0.000	0.000	0.000	0.001	0.004	0.016	0.455	2.706	3.842	5.024	6.635		10.827	12.115
2	0.001	0.002	0.010	0.020	0.051	0.103		1.386	4.605	5.992	7.378		10.597		15.201
3	0.015	0.024	0.072	0.115	0.216	0.352	0.584	2.366	6.251	7.815		11.345			17.731
4 5	0.064	0.091	0.207	0.297	0.484	0.711	1.064	3.357	7.779		11.143	-			19.998
5	0.158	0.210	0.412	0.554	0.831	1.146	1.610	4.352	9.236	11.071	12.833	15.086	16.750	20.515	22.106
6	0.299	0.381	0.676	0.872	1.237	1.635	2.204	5 3/18	10 645	12 502	14.449	16 812	18 5/8	22 457	24.102
7	0.485	0.599	0.070	1.239	1.690	2.167	2.833				16.013				26.018
8	0.710	0.857	1.344	1.647	2.180	2.733					17.535				27.867
9	0.972	1.152	1.735	2.088	2.700	3.325	4.168				19.023				29.667
10	1.265	1.479	2.156	2.558	3.247	3.940	4.865				20.483				31.419
11	1.587	1.834	2.603	3.054	3.816	4.575	5.578	10.341	17.275	19.675	21.920	24.725	26.757	31.264	33.138
12	1.935	2.214	3.074	3.571	4.404	5.226	6.304	11.340	18.549	21.026	23.337	26.217	28.300	32.909	34.821
13	2.305	2.617	3.565	4.107	5.009	5.892					24.736				36.477
14	2.697	3.041	4.075	4.660	5.629	6.571					26.119				38.109
15	3.107	3.483	4.601	5.229	6.262	7.261	8.547	14.339	22.307	24.996	27.488	30.578	32.802	37.698	39.717
16	3.536	3.942	5.142	5.812	6.908	7.962					28.845				41.308
17	3.980	4.416	5.697	6.408	7.564		10.085								42.881
18	4.439	4.905	6.265	7.015	8.231		10.865								44.434
19 20	4.913 5.398	5.407 5.921	6.844 7.434	7.633 8.260	9.591	10.117	12.443								45.974 47.498
20	5.596	5.921	7.434	0.200	9.591	10.651	12.443	19.337	20.412	31.410	34.170	37.500	39.997	45.514	47.490
21	5.895	6.447	8.034	8 897	10 283	11.591	13 240	20 337	29 615	32 671	35 479	38 932	41 401	46 796	49.010
22	6.404	6.983	8.643			12.338									50.510
23	6.924	7.529	9.260			13.091									51.999
24	7.453	8.085		10.856											53.478
25	7.991	8.649		11.524											54.948
26				12.198											56.407
27	9.093			12.879											57.856
28				13.565											59.299
29				14.256											60.734
30	10.804	11.588	13.787	14.954	16.791	18.493	20.599	29.336	40.256	43.773	46.979	50.892	53.672	59.702	62.160
40	16 006	17 017	20 707	22.464	24 422	26 500	20.051	20 225	E1 00E	<i>EE 7E</i> 0	EO 242	62 604	66.766	72 402	76.096
				22.164 29.707											89.560
				37.485											
00	50.558	51.730	33.334	57.403	70.402	75.100	40.438	J9.JJJ	74.597	7 9.002	JJ.290	50.578	91.902	33.000	7
70	37.467	39.036	43.275	45.442	48.758	51.739	55.329	69.335	85.527	90.531	95.023	100.43	104.22	112.32	115.58
				53.540											128.26
				61.754											140.78
				70.065											153.16
				51550											

EXERCISES:

- 1) Demonstrate that $E(\chi^2_n)=n$
- 2) Calculate the median of a χ^2_5 and of a χ^2_{50}

3) Justify intuitively that:

$$(N-1)\frac{s'^2}{\sigma^2} \sim \chi^2_{N-1}$$

4) What is the probability to obtain a sample variance > 10 when taking a sample of size 20 from a Normal population of $\sigma^2 = 5$?

t-STUDENT DISTRIBUTION

$$t_n = \frac{N(0,1)}{\sqrt{\frac{\chi_n^2}{n}}}$$
 independent

$$E(t_n) = 0$$

$$\sigma^{2}(t_{n}) = \frac{n}{n-2} \quad (n > 2)$$

$$t_n \xrightarrow{n \to \infty} N(0,1)$$

(for n>30, good approximation)

Prob. Density Fcn. Student's t

— n=5

-⋅ n=50

Student's t distribution

n 0	0.001 0.005 0.01 0.025 318.289 63.656 31.821 12.706 22.328 9.925 6.965 4.303 10.214 5.841 4.541 3.182 7.173 4.604 3.747 2.776 5.894 4.032 3.365 2.571	6 6.314 3.078 1.376 2.920 1.886 1.061 2.353 1.638 0.978	0.25 0.3 0.4 1.000 0.727 0.325 0.816 0.617 0.289 0.765 0.584 0.277 0.741 0.569 0.271	0.45 0.475 0.158 0.079 0.142 0.071
2 3 4 5	22.328 9.925 6.965 4.303 10.214 5.841 4.541 3.182 7.173 4.604 3.747 2.776	2.920 1.886 1.061 2.353 1.638 0.978	0.816 0.617 0.289 0.765 0.584 0.277	0.142 0.071
6	3.034 4.032 3.303 2.371	2.015 1.476 0.920	0.727 0.559 0.271 0.727 0.559 0.267	0.137 0.068 0.134 0.067 0.132 0.066
7 8 9 10	5.208 3.707 3.143 2.447 4.785 3.499 2.998 2.365 4.501 3.355 2.896 2.306 4.297 3.250 2.821 2.262 4.144 3.169 2.764 2.228	1.895 1.415 0.896 1.860 1.397 0.889 1.833 1.383 0.883	0.718 0.553 0.265 0.711 0.549 0.263 0.706 0.546 0.262 0.703 0.543 0.261 0.700 0.542 0.260	0.131 0.065 0.130 0.065 0.130 0.065 0.129 0.064 0.129 0.064
11 12 13 14 15	4.025 3.106 2.718 2.201 3.930 3.055 2.681 2.179 3.852 3.012 2.650 2.160 3.787 2.977 2.624 2.145 3.733 2.947 2.602 2.131	1.782 1.356 0.873 1.771 1.350 0.870 1.761 1.345 0.868	0.697 0.540 0.260 0.695 0.539 0.259 0.694 0.538 0.259 0.692 0.537 0.258 0.691 0.536 0.258	0.129 0.064 0.128 0.064 0.128 0.064 0.128 0.064 0.128 0.064
16 17 18 19 20	3.686 2.921 2.583 2.120 3.646 2.898 2.567 2.110 3.610 2.878 2.552 2.101 3.579 2.861 2.539 2.093 3.552 2.845 2.528 2.086	1.740 1.333 0.863 1.734 1.330 0.862 1.729 1.328 0.861	0.690 0.535 0.258 0.689 0.534 0.257 0.688 0.534 0.257 0.688 0.533 0.257 0.687 0.533 0.257	0.128
21 22 23 24 25	3.527 2.831 2.518 2.080 3.505 2.819 2.508 2.074 3.485 2.807 2.500 2.069 3.467 2.797 2.492 2.064 3.450 2.787 2.485 2.060	1.717 1.321 0.858 1.714 1.319 0.858 1.711 1.318 0.857	0.686 0.532 0.257 0.686 0.532 0.256 0.685 0.532 0.256 0.685 0.531 0.256 0.684 0.531 0.256	0.127 0.063 0.127 0.063 0.127 0.063 0.127 0.063 0.127 0.063
26 27 28 29 30	3.435 2.779 2.479 2.056 3.421 2.771 2.473 2.052 3.408 2.763 2.467 2.048 3.396 2.756 2.462 2.045 3.385 2.750 2.457 2.042	1.703 1.314 0.855 1.701 1.313 0.855 1.699 1.311 0.854	0.684 0.531 0.256 0.684 0.531 0.256 0.683 0.530 0.256 0.683 0.530 0.256 0.683 0.530 0.256 0.683 0.530 0.256	0.127 0.063 0.127 0.063 0.127 0.063 0.127 0.063 0.127 0.063
40 60 120 ∞	3.307 2.704 2.423 2.021 3.232 2.660 2.390 2.000 3.160 2.617 2.358 1.980 3.090 2.576 2.326 1.960	1.671 1.296 0.848 1.658 1.289 0.845 1.645 1.282 0.842	0.681 0.529 0.255 0.679 0.527 0.254 0.677 0.526 0.254 0.674 0.524 0.253	0.126 0.063 0.126 0.063 0.126 0.063 0.126 0.063
24 25 26 27 28 29 30 40 60 120	3.467 2.797 2.492 2.064 3.450 2.787 2.485 2.060 3.435 2.779 2.479 2.056 3.421 2.771 2.473 2.052 3.408 2.763 2.467 2.048 3.396 2.756 2.462 2.045 3.385 2.750 2.457 2.042 3.307 2.704 2.423 2.021 3.232 2.660 2.390 2.000 3.160 2.617 2.358 1.980	1.711 1.318 0.857 1.708 1.316 0.856 1.706 1.315 0.856 1.703 1.314 0.855 1.701 1.313 0.855 1.699 1.311 0.854 1.697 1.310 0.854 1.684 1.303 0.851 1.671 1.296 0.848 1.658 1.289 0.845	0.685 0.531 0.25 0.684 0.531 0.25 0.684 0.531 0.25 0.684 0.531 0.25 0.683 0.530 0.25 0.683 0.530 0.25 0.683 0.530 0.25 0.681 0.529 0.25 0.679 0.527 0.25 0.677 0.526 0.25	56 56 56 56 56 56 56 54 54 54

EXERCISE

Obtain a value x so that:

$$P(t_{10} > |x|) = 0.05$$

IMPORTANCE OF THIS DISTRIBUTION:

If \overline{X} and s are the mean and standard deviation of a sample with size N taken from a Normal population (m , σ), the statistic:

$$\frac{\overline{\overline{X}} - m}{s / \sqrt{N}} \sim t$$

IMPORTANT NOTE:

SEE THE ANALOGY BETWEEN:

$$\frac{\overline{X} - m}{\sigma / \sqrt{N}} \sim N(0,1)$$

AND

$$\frac{\overline{X} - m}{s / \sqrt{N}} \sim t_{N-1}$$

Fisher's F distribution

$$F_{n_1,n_2} = \frac{\chi_{n_1}^2}{\chi_{n_2}^2}$$
 independient
$$n_2$$

$$E(F_{n_1,n_2}) = \frac{n_2}{n_2 - 2} \quad (n_2 > 2)$$

- $n_1 = 5 n_2 = 10$
- -10° $n_1=15$ $n_2=11$
- $n_1=50 n_2=100$

Prob. Density Fcn.

Fisher's F distribution

							Grados de libertad de la varianza mayor										
		1			2 3		4 5		5	6			7		3		
	p→	0.05	0.01	0.05	0.01	0.05	0.01	0.05	0.01	0.05	0.01	0.05	0.01	0.05	0.01	0.05	0.01
ı			40=00				- 400 -	001 =0		000.40							
ı	1	161.45	4052.2	199.50	4999.3	215.71	5403.5	224.58	5624.3	230.16 19.30	5763.9	233.99	5858.9	236.77	5928.3	238.88	5980.9
ı	2 3	18.51 10.13	98.50 34.12	19.00 9.55	99.00 30.82	19.16 9.28	99.16 29.46	19.25 9.12	99.25 28.71	9.01	99.30 28.24	19.33 8.94	99.33 27.91	19.35 8.89	99.36 27.67	19.37 8.85	99.38 27.49
ı	4	7.71	21.20	6.94	18.00	6.59	16.69	6.39	15.98	6.26	15.52	6.16	15.21	6.09	14.98	6.04	14.80
ı	5	6.61	16.26	5.79	13.27	5.41	12.06	5.19	11.39	5.05	10.97	4.95	10.67	4.88	10.46	4.82	10.29
ı	6	5.99	13.75	5.14	10.92	4.76	9.78	4.53	9.15	4.39	8.75	4.28	8.47	4.21	8.26	4.15	8.10
ı	7	5.59	12.25	4.74	9.55	4.35	8.45	4.12	7.85	3.97	7.46	3.87	7.19	3.79	6.99	3.73	6.84
ı	8	5.32	11.26	4.46	8.65	4.07	7.59	3.84	7.01	3.69	6.63	3.58	6.37	3.50	6.18	3.44	6.03
ı	9	5.12	10.56	4.26	8.02	3.86	6.99	3.63	6.42	3.48	6.06	3.37	5.80	3.29	5.61	3.23	5.47
ı	10	4.96	10.04	4.10	7.56	3.71	6.55	3.48	5.99	3.33	5.64	3.22	5.39	3.14	5.20	3.07	5.06
ı	11	4.84	9.65	3.98	7.21	3.59	6.22	3.36	5.67	3.20	5.32	3.09	5.07	3.01	4.89	2.95	4.74
ı	12	4.75	9.33	3.89	6.93	3.49	5.95	3.26	5.41	3.11	5.06	3.00	4.82	2.91	4.64	2.85	4.50
ı	13	4.67	9.07	3.81	6.70	3.41	5.74	3.18	5.21	3.03	4.86	2.92	4.62	2.83	4.44	2.77	4.30
ı	14	4.60	8.86	3.74	6.51	3.34	5.56	3.11	5.04	2.96	4.69	2.85	4.46	2.76	4.28	2.70	4.14 4.00
ı	15 16	4.54 4.49	8.68 8.53	3.68 3.63	6.36 6.23	3.29 3.24	5.42 5.29	3.06 3.01	4.89 4.77	2.90 2.85	4.56 4.44	2.79 2.74	4.32 4.20	2.71 2.66	4.14 4.03	2.64 2.59	3.89
ı	17	4.45	8.40	3.59	6.11	3.20	5.19	2.96	4.67	2.81	4.34	2.74	4.10	2.61	3.93	2.55	3.79
ı	18	4.41	8.29	3.55	6.01	3.16	5.09	2.93	4.58	2.77	4.25	2.66	4.01	2.58	3.84	2.51	3.71
ı	19	4.38	8.18	3.52	5.93	3.13	5.01	2.90	4.50	2.74	4.17	2.63	3.94	2.54	3.77	2.48	3.63
ı	20	4.35	8.10	3.49	5.85	3.10	4.94	2.87	4.43	2.71	4.10	2.60	3.87	2.51	3.70	2.45	3.56
ı	21	4.32	8.02	3.43	5.78	3.07	4.87	2.84	4.37	2.68	4.04	2.57	3.81	2.49	3.64	2.42	3.51
ı	22	4.30	7.95	3.44	5.72	3.05	4.82	2.82	4.31	2.66	3.99	2.55	3.76	2.46	3.59	2.40	3.45
ı	23	4.28	7.88	3.42	5.66	3.03	4.76	2.80	4.26	2.64	3.94	2.53	3.71	2.44	3.54	2.37	3.41
ı	24	4.26	7.82	3.40	5.61	3.01	4.72	2.78	4.22	2.62	3.90	2.51	3.67	2.42	3.50	2.36	3.36
ı	25	4.24	7.77	3.39	5.57	2.99	4.68	2.76	4.18	2.60	3.85	2.49	3.63	2.40	3.46	2.34	3.32
ı	26	4.23	7.72	3.37	5.53	2.98	4.64	2.74	4.14	2.59	3.82	2.47	3.59	2.39	3.42	2.32	3.29
ı	27 28	4.21 4.20	7.68	3.35	5.49	2.96	4.60	2.73	4.11	2.57	3.78	2.46	3.56	2.37	3.39	2.31	3.26
ı	29	4.20	7.64 7.60	3.34 3.33	5.45 5.42	2.95 2.93	4.57 4.54	2.71 2.70	4.07 4.04	2.56 2.55	3.75 3.73	2.45 2.43	3.53 3.50	2.36 2.35	3.36 3.33	2.29 2.28	3.23 3.20
ı	23	1.10	7.00	0.00	3.42	2.33	4.54	2.70	4.04	2.00	5.75	2.40	3.30	2.00	0.00	2.20	5.20
ı	30	4.17	7.56	3.32	5.39	2.92	4.51	2.69	4.02	2.53	3.70	2.42	3.47	2.33	3.30	2.27	3.17
ı	31	4.16	7.53	3.30	5.36	2.91	4.48	2.68	3.99	2.52	3.67	2.41	3.45	2.32	3.28	2.25	3.15
ı	32	4.15	7.50	3.29	5.34	2.90	4.46	2.67	3.97	2.51	3.65	2.40	3.43	2.31	3.26	2.24	3.13
ı	33	4.14 4.13	7.47 7.44	3.28 3.28	5.31 5.29	2.89 2.88	4.44 4.42	2.66 2.65	3.95 3.93	2.50 2.49	3.63	2.39 2.38	3.41 3.39	2.30 2.29	3.24 3.22	2.23 2.23	3.11 3.09
ı	34 38	4.13	7.44	3.24	5.29	2.85	4.42	2.63	3.86	2.49	3.61 3.54	2.35	3.32	2.29	3.15	2.23	3.09
ı	42	4.07	7.33	3.22	5.15	2.83	4.29	2.59	3.80	2.44	3.49	2.32	3.27	2.24	3.10	2.13	2.97
ı	46	4.05	7.22	3.20	5.10	2.81	4.24	2.57	3.76	2.42	3.44	2.30	3.22	2.22	3.06	2.15	2.93
ı	50	4.03	7.17	3.18	5.06	2.79	4.20	2.56	3.72	2.40	3.41	2.29	3.19	2.20	3.02	2.13	2.89
١	60	4.00	7.08	3.15	4.98	2.76	4.13	2.53	3.65	2.37	3.34	2.25	3.12	2.17	2.95	2.10	2.82
	80	3.96	6.96	3.11	4.88	2.72	4.04	2.49	3.56	2.33	3.26	2.21	3.04	2.13	2.87	2.06	2.74
ı	100	3.94	6.90	3.09	4.82	2.70	3.98	2.46	3.51	2.31	3.21	2.19	2.99	2.10	2.82	2.03	2.69
J	200	3.89	6.76	3.04	4.71	2.65	3.88	2.42	3.41	2.26	3.11	2.14	2.89	2.06	2.73	1.98	2.60
J	1000	3.85	6.66	3.00	4.63	2.61	3.80	2.38	3.34	2.22	3.04	2.11	2.82	2.02	2.66	1.95	2.53
1	∞	3.84	6.63	3.00	4.61	2.60	3.78	2.37	3.32	2.21	3.02	2.10	2.80	2.01	2.64	1.94	2.51

EXERCISE:

1) Justify intuitively that

$$E(F_{N_1,N_2}) \cong 1$$

2) Calculate a value k so that: $P(F_{4.8} > k) = 0.05$

IMPORTANCE OF THIS DISTRIBUTION:

To compare the variability due to different sources:

If s_1^2 is the variance of a sample with size N_1 extracted from a Normal population (σ_1^2)

and s_2^2 is the variance of a sample with size N_2 extracted from a Normal population (σ_2^2)

and both samples are independent:

$$\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim \mathbf{F}_{N_1-1,N_2-1}$$

3) if two samples with size 10 are taken from the same Normal population, what is the probability to get the second sample variance double or higher than the first one?

- 4) We want to know if the accuracy of 2 machines filling bottles is the same. For this purpose:
- 9 bottles from machine 1 are weighted, being $s_1^2 = 180$
- 9 bottles from machine 2 are weighted, being $s_2^2 = 250$ Can we conclude that their accuracy is different?

UD5 part 2

Inference about one population

HYPOTHESIS TESTS

Are used to decide if certain assumptions established a priori about the population are reasonable or not.

- If the assumptions are about the parameter values of the distribution: Parametric tests
- If assumptions are about other aspects, like type of distribution, independence, etc.: nonparametric tests
- Null hypothesis (H₀): the one that we want to test (usually associated to the situation considered as correct, usual or desirable).
- Alternative hypothesis (H₁): the opposite to H₀ (usually associated to the situation considered as incorrect, unusual or undesirable).

HYPOTHESIS TESTS

Can we consider that the average population length of pieces is 350 mm, which is the nominal value?

TYPES OF HYPOTHESES

SIMPLE HYPOTHESIS H_0 : m = 350

Corresponds to a single point $\theta = \theta_0$ of the parametric space C_θ

Assuming that this hypothesis is true, the population distribution is completely specified. $\chi \sim N$ (350, σ)

COMPOUND HYPOTHESIS

Corresponds to a region $\subset C_\theta$, containing more than one possible value of the parameter.

This type of hypothesis does not specify completely the population distribution. H_0 : $m \le 350$

 H_1 : m > 350

In this subject we will only consider the following tests:

 H_0 : m = 100

 H_0 : $\sigma^2 = 5$

 H_0 : $\sigma^2_1 = \sigma^2_2$

 H_1 : m ≠ 100

 H_1 : $\sigma^2 \neq 5$

 $H_1: m_1 \neq m_2$

 $H_0: m_1 = m_2$

 $H_1: \sigma^2_1 \neq \sigma^2_2$

Inference about one Normal population

Comparison of 2
Normal populations

How to study compound hypothesis tests:

 $H_0: m \le 100$

 H_1 : m > 100

1) Test the hypothesis:

 H_0 : m = 100 H_1 : m \neq 100

2) Think with logic

E.g. $\overline{x} = 104 \longrightarrow \text{accept H}_0$: m=100 $\longrightarrow \text{accept H}_0$: m ≤ 100

E.g. $\overline{x} = 109 \longrightarrow \text{reject H}_0$: m=100 $\longrightarrow \text{accept H}_1$: m > 100

E.g. $\overline{x} = 92$ \longrightarrow reject H₀: m=100 \longrightarrow accept H₀: m \leq 100

CONSTRUCTION OF HYPOTHESIS TESTS

One statistical hypothesis tests implies establishing one partition of the sample space $E_{\rm x}$ (i.e. the set of all samples than can be obtained) in two regions:

- Region R of rejection: if the sample $(x_1, x_2, ..., x_n) \in R$, the null hypothesis H_0 is rejected.
- Region A of acceptance: if the sample $(x_1, x_2, ..., x_n) \in A$ the null hypothesis H_0 is accepted.

being A the complementary region of R in the sample space E_X

One hypothesis test is determined by:

- Sample size

E.g.: n = 5

- Sample type

- E.g.: simple random sampling
- Statistical parameter θ^* used E.g.: \overline{x}
- Region of acceptance / rejection

E.g.: if
$$\overline{x} \in [2.8, 3.2] \longrightarrow \text{accept H}_0$$
: m=3

How would we test the following hypothesis? Is there a relationship X - Y or are they independent?

$$Y = a + b \cdot X$$

$$H_0$$
: b = 0

$$H_1$$
: $b \neq 0$

TYPE I, TYPE II ERRORS

When conducting a hypothesis TEST, there are two possible erroneous decisions that can be made, called:

- Type I error: To reject H_0 when it is true (error of the 1st kind, α error, false positive).
- Type II error: To accept H_0 when it is false (being true H_1) (error of the 2^{nd} kind, β error, false negative).

Definitions:

- Type I risk (α): probability to make a type I error (significance level of the test)
- Type II risk (β): probability to make a type II error.

Observed significance level: p-value (probability of having obtained a computed statistical parameter more unfavorable, being true H_0)

EXERCISE

Random var. X: No. of defects in one piece

 $X \sim Ps(\lambda)$

 λ = Average number of defects in one piece

From a sample of size 10, we want to test the null hypothesis that the parameter λ of a Poisson distribution is 2 versus the alternative that is > 2. We will accept H₀ if the sample mean is \leq 2.5 and will reject H₀ otherwise.

- A) What is the type I risk of this test?
- B) What is the type II risk if λ actually is 3 ?
- C) What is the type II risk if λ actually is 4?

INFERENCE ABOUT ONE NORMAL POPULATION

EXAMPLE:

One machine that fills 2-liter soft drink bottles is adjusted to fill in average 2000 ml. In order to control its performance, a sample of 15 bottles is randomly taken, resulting the following data (ml filled):

1989 2015 1962 2013 1983 1989 1992 2011 1958 2023 1980 1977 1994 2017 2001

- 1) Estimate from the sample, the mean m and the standard deviation σ of the population under study.
- 2) Is there enough evidence to say that m differs significantly from 2000 and that, consequently, the machine should be readjusted?
- 3) Between what limits is comprised the value of m, with a reasonable confidence?
- 4) Between what limits is comprised the value of σ , with a reasonable confidence?

STEPS IN THE INFERENCE ABOUT A NORMAL POPULATION

- 1) Descriptive analysis of the sample (parameters of position and dispersion).
- 2) Normality of the data and detection of outliers (Histograms, Normal Probability Plot).
- 3) Hypothesis test: m=2000 (Student's t test).
- 4) Confidence interval for m (Student's t).
- 5) Confidence interval for σ (Chi²).
- 6) Analysis with Statgraphics (Describe ⇒ Numeric Data ⇒ One-Variable Analysis).

1) DESCRIPTIVE ANALYSIS OF THE SAMPLE:

Variable:	Volume	
Sample size	15	
Average	1993.6	
Median	1992	
Mode	1989	
Geometric mean	1993.51	
Variance	391.971	
Standard deviation	19.7983	
Standard error	5.11189	
Minimum	1958	
Maximum	2023	
Range	65	
Lowequartile	1980	
Uppequartile	2013	
Interquartile range	33	
Skewness	-0.256502	ľ
Standardized skewness	-0.405564	
Kurtosis (CC-3)	-0.750953	
Standardized kurtosis	-0.593681	

Since x = 1993.6 which is different from 2000, should we readjust the machine?

NOT NECESSARILY!

The difference between $\bar{\chi}$ and 2000 can be by chance (due to the random sampling)

Actually, \bar{x} will never be exactly 2000

2) NORMALITY OF DATA:

Most techniques of statistical inference for continuous variables assume that sampled populations are Normal.

How can we check if this previous hypothesis is acceptable in our case?

3 ways:

- To use formal statistical tests (they require many data in general. Not very useful in practice).
- To plot a Histogram (requires at least 40-50 data).
- To plot data on a Normal Probability Plot.

It is also convenient to check the values of the skewness and kurtosis coefficients.

CAN THE DATA BE REGARDED AS NORMAL?

Normal Probability Plot

NO OUTLIERS ARE OBSERVED

3) HYPOTHESIS TEST m=2000:

It is called Null Hypothesis because it reflects the previous knowledge of the situation (the machine should fill in average 2000 ml)

Intuitive reasoning: if m=2000 (H_0 true), x will be "similar" to 2000 and, hence, (x - 2000) will be similar to zero. Consequently:

- If (χ 2000) "is similar" to zero, H₀ will be accepted (and the machine will not be readjusted).
- If (x- 2000) is "quite different" from zero, H_0 will be rejected: it will be admitted that m differs from 2000 (and the machine will be readjusted).

But ... what should we consider as "being similar"?

The "distance" in statistics has to be measured taking into account the variability: $\overline{X} - 2000$ $\overline{X} - 2000$

Y OF THE TEST:

$$H_0: m = m_0$$

 $H_1: m \neq m_0$
 $t_{N-1}(\alpha/2)$
Reject H_0

$$\frac{\mathbf{X} - \mathbf{m_0}}{\mathbf{s}} > \mathbf{t_{N-1}}(\alpha/2)$$
critical value

If
$$\frac{X-m_0}{s/N} \le t_{N-1}(\alpha/2)$$
 Accept H_0

Being $t_{N-1}^{\alpha/2}$ a value in Student's t table so that:

$$P(|\mathbf{t_{N-1}}| > \mathbf{t_{N-1}^{\alpha/2}}) = \alpha$$

If σ is known: use the N(0; 1) table (last row in t table)

If H_0 is accepted it does not imply that it is necessarily true, it is just that we don't have enough evidence to reject it.

If σ is known:

- When H_0 is true, we select a region where it is quite likely (probability 1- α) to find that statistical parameter. This is the test acceptance region, and the complementary, the critical region.

being $z_{\alpha/2}$ the critical value of N(0;1)

Although in fact $m \neq m_0$ we will still accept H_0 because the sample mean falls in the acceptance region with a probability β_1 (probability of type II error for $m = m_1 \neq m_0$)

 α should be low, but if α decreases, β increases (and vice versa)

In order to decrease α and β we should increase the sample size (having more information about the population allows us to reduce the probability of choosing the wrong decision).

 α : usually set at 0.05 or 0.01 (never, α > 0.1)

4) CONFIDENCE INTERVAL FOR m:

Is it possible, from the sample, to calculate an interval containing with a high probability $(1-\alpha)$ the unknown value m of the population mean?

$$\frac{X-m}{s/\sqrt{N}} \sim t_{N-1}$$

Since:
$$\frac{X-m}{s/N} \sim t_{N-1}$$
 $P(-t_{N-1}(\alpha/2) < t_{N-1} < +t_{N-1}(\alpha/2)) = 1-\alpha$

$$P(-t_{N-1}(\alpha/2) < \frac{\overline{X} - m}{s/\sqrt{N}} < +t_{N-1}(\alpha/2)) = 1 - \alpha$$

Therefore:

$$P(\overline{X} - t_{N-1}(\alpha/2) \frac{s}{\sqrt{N}} < m < \overline{X} + t_{N-1}(\alpha/2) \frac{s}{\sqrt{N}}) = 1 - \alpha$$

This confidence interval has a probability (1- α) of containing m.

1-α: confidence level

If σ is known: use $z_{\alpha/2}$ instead of $t_{\alpha/2}$

EXAMPLE:

CONFIDENCE INTERVAL FOR m (95%) (1982.7, 2004.5)

QUESTION:

What practical interpretation has this probability 1- α associated to a certain confidence interval?

What kind of interval can we assume in this case for the computed interval (1982.7, 2004.5)?

HYPOTHESIS TEST for m USING CONFIDENCE INTERVALS:

$$H_0: m = m_0$$
 $H_1: m \neq m_0$

If $m_0 \in C$ Interval \longrightarrow Accept H_0

If $m_0 \notin C.I.$ Reject H_0 Accept H_1

Accept H_0 \longrightarrow Is reasonable that m=2000

Is reasonable that m=1990

Is reasonable that m=2003

Have we demonstrated that m=2000?

The confidence interval contains all null hypotheses consistent with the obtained sample

Do not readjust the machine

Readjust the machine because fills <2000

Readjust the machine because fills >2000

P-VALUE (OBSERVED SIGNIFICANCE LEVEL)

p-value: probability of having obtained a computed statistical parameter more unfavorable, being true H₀

5) CONFIDENCE INTERVAL FOR σ^2 :

$$(N-1)\frac{s^2}{\sigma^2} \sim \chi_{N-1}^2$$

$$(\mathbf{N} - \mathbf{1}) \frac{\mathbf{s}^2}{\sigma^2} \sim \chi_{\mathbf{N} - \mathbf{1}}^2 \qquad (\mathbf{n} - \mathbf{1}) \frac{\mathbf{s}^2}{\sigma^2} \in \left[\mathbf{g}_1, \ \mathbf{g}_2 \right]$$

In the χ^2 table it is possible to find two values g_1 , g_2 so that:

$$P(g_1 < \chi_{N-1}^2 < g_2) = 1 - \alpha$$
 (1)

For example: P(5.63< χ^2_{14} <26.1)=1-0.05 = 0.95

From (1) we obtain:
$$P\left(\frac{(N-1)\cdot s^2}{g_2} < \sigma^2 < \frac{(N-1)\cdot s^2}{g_1}\right) = 1 - \alpha$$

$$\sigma^2 \in \left[\frac{(N-1) \cdot s^2}{g_2}, \frac{(N-1) \cdot s^2}{g_1} \right]$$

Therefore:
$$\sigma^2 \in \left[\frac{(N-1) \cdot s^2}{g_2}, \frac{(N-1) \cdot s^2}{g_1}\right] \qquad \sigma \in \left[\sqrt{\frac{(N-1) \cdot s^2}{g_2}}, \sqrt{\frac{(N-1) \cdot s^2}{g_1}}\right]$$

In this example:

$$\sqrt{\frac{14 \cdot 392}{5.63}} = 31.2$$

$$\sqrt{\frac{14 \cdot 392}{5.63}} = 31.2 \sqrt{\frac{14 \cdot 392}{26.1}} = 14.5$$

[14.5 , 31.2] is a confidence interval for σ

6) ANALYSIS WITH STATGRAPHICS

OPTION: "ONE-VARIABLE ANALYSIS"

Confidence Intervals for VOLUME

```
95% confidence interval for mean:
1993.6 +/- 10.9639 [1982.64; 2004.56]
95% confidence interval for standard deviation:
[14.4948; 31.2238]
```


COMPARISON OF 2 NORMAL POPULATIONS

Two computer programs (A, B) are available to search files in a hard disk. In order to determine which one works faster, 10 files are searched with each program, and the time required to find the each file is recorded.

OBJECT OF THE STUDY, to compare two populations:

- Files to be searched by program A
- Files to be searched by program B

20 trials are conducted:

10 with program A
10 with program B

What is measured in each experimental trial?

RESULTS:

									X			
prog. A.	3.4	3.7	2.9	2.5	1.6	2.8	3.7	5.9	4.8	4.3	3.56	1.23
prog. B	2.7	3.2	1.8	1.9	1.1	2.2	2.8	4.8	4.3	3.4	2.82	1.15

HOW SHOULD THESE DATA BE STATISTICALLY ANALYZED?

FUNDAMENTALS OF THE STATISTICAL ANALYSIS:

2 Populations studied: files in the hard disk that can be searched by program A or B.

Random variable: time required to search a file.

It is assumed that the variable is normally distributed:

Sampling:

Statistical parameters calculated from the samples:

COMPARISON OF VARIANCES

$$H_0: \sigma_1^2 = \sigma_2^2$$
 $H_1: \sigma_1^2 \neq \sigma_2^2$

If the null hypothesis is true:

- s₁² will be "similar" to s₂²
- The ratio s_1^2 / s_2^2 will be similar to 1. The null hypothesis will be rejected if this ratio is clearly different to 1.

But... what should be considered as being "similar" or not?

If
$$H_0$$
 is true: $S_1^2/S_2^2 \sim F_{N_1-1,N_2-1}$

- STEPS: 1) If $s_1 > s_2$: divide s_1^2 / s_2^2 . If $s_2 > s_1$: divide s_2^2 / s_1^2
 - 2) Test if the obtained ratio is "too high" to be a $F_{n1-1,n2-1}$

ALTERNATIVE PROCEDURE:

- 1) Obtain a confidence interval for σ_1^2/σ_2^2 (see formula)
- 2) if 1 belongs to this interval: accept H₀

EXAMPLE:

$$P(F_{9.9} > f) = 0.05 \longrightarrow f = 3.18$$

IF THE NULL HYPOTHESIS IS TRUE: $\sigma_1^2 = \sigma_2^2$

THERE IS NOT ENOUGH EVIDENCE TO AFFIRM THAT THE VARIANCE OF TIME TO SEARCH A FILE WITH PROGRAMS A or B IS DIFFERENT.

If $\sigma_1^2 \neq \sigma_2^2$ the subsequent test for mean comparison is approximate, though it is quite "robust" if the number of observations in both samples is similar.

COMPARISON OF MEANS

$$H_1: m_1 \neq m_2$$

If H₀ is true:

- \overline{X}_1 will be "similar" to \overline{X}_2
- $\overline{x}_1 \overline{x}_2$ will be "similar" to zero.

What should be considered as "being similar"?

We know that:
$$\frac{x_1 - x_2 - (m_1 - m_2)}{S_{(x_1 - x_2)}} \sim t_{N_1 + N_2 - 2}$$
 (considering that $\sigma_1^2 = \sigma_2^2$)

If
$$m_1 = m_2$$
:

$$\frac{x_1-x_2}{S_{(x_1-x_2)}} \sim t_{N_1+N_2-2}$$

$$S_{(\overline{x}_1 - \overline{x}_2)} = S \cdot \sqrt{\frac{1}{N_1} + \frac{1}{N_2}} = \sqrt{\frac{(N_1 - 1) \cdot s_1^2 + (N_2 - 1) \cdot s_2^2}{N_1 + N_2 - 2}} \cdot \sqrt{\frac{1}{N_1} + \frac{1}{N_2}}$$

If
$$N_1 = N_2$$
:

$$\mathbf{S}_{(\overline{x}_1 - \overline{x}_2)} = \sqrt{\frac{\mathbf{s}_1^2 + \mathbf{s}_2^2}{2}} \cdot \sqrt{\frac{2}{N}}$$

EXAMPLE:

$$\overline{x}_1 - \overline{x}_2 = 3.56 - 2.82 = 0.74$$

$$S_{(x_1-x_2)} = \sqrt{\frac{1.23^2 + 1.15^2}{2}} \cdot \sqrt{\frac{2}{10}} = 0.53$$

And since $t_{18}(5\%)=2.101 > 1.39$

RESULTS ARE CONSISTENT WITH THE HYPOTHESIS m₁=m₂

CONFIDENCE INTERVAL FOR m₁-m₂

Alternative equivalent way (though more informative) of analyzing the results of this experiment:

Interval for m_1 - m_2 with a confidence level (1- α) x 100 :

$$\mathbf{m_1} - \mathbf{m_2} \in \left[(\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2) \pm \mathbf{t}_{\mathbf{N_1} + \mathbf{N_2} - 2}^{\alpha/2} \mathbf{S}_{(\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2)} \right]$$

In the example:
$$(3.56 - 2.82) \pm 2.101 \cdot 0.53 = [-0.37, 1.85]$$

being 2.101 = t_{18} (2.5%) from the t-table.

$$\mathbf{0} \in [\mathbf{-0.37, 1.85}] \Rightarrow \mathbf{m}_1 - \mathbf{m}_2 = 0 \Rightarrow \mathbf{m}_1 = \mathbf{m}_2$$

We can affirm with quite confidence (95% of confidence) that the difference m_1 - m_2 is comprised between -0.37 and 1.85

ANALYSIS OF RESIDUALS

General definition:

Residual= value observed - value estimated by a model

Residual is the part of the observed value due to the variability caused by factors not controlled in the experiment.

residual = value observed — value estimated

AVERAGE

EXAMPLE: First observation from program A:

residual = 3.4 - 3.56 = -0.16

UTILITY OF RESIDUALS ANALYSIS (GRAPHICAL METHODS)

NORMAL PROBABILITY PLOT OF RESIDUALS:

- * CHECK FOR NORMALITY
- * DETECTION OF OUTLIERS

The average of all residuals is zero

cumulative percent

The average is <u>statistically</u> <u>different</u> from 100

The difference between both sample means is statistically significant

- the population average is not 100.

- the population means are different.

Differences statistically significant ≠ differences important

Doing N high enough, we can detect as significant ANY difference of means, though in practice they might be irrelevant.

Actually, if $n\rightarrow \infty$ we are comparing the whole populations.

ANALYSIS WITH STATGRAPHICS:

COMPARE => 2 SAMPLES => TWO-SAMPLE COMPARISON

```
Comparison of Means
95,0% confidence interval for mean of time A: 3,56 + /- 0,8795
95,0% confidence interval for mean of time B: 2,82 + /- 0,82036
95,0% confidence interval for the difference between the means
  assuming equal variances: 0.74 + - 1.117 = [-0.377, 1.857]
t test to compare means:
  Null hyp.: mean1 = mean2 Alt. hypothesis: mean1 NE mean2
  assuming equal variances: t = 1,39186 P-value = 0,180927
Comparison of Standard Deviations
```

```
Variance time A: 1,51156 Variance time B: 1,31511
Ratio of Variances = 1,14937
95,0% Confidence Intervals
    Ratio of Variances: [0,285488; 4,62738]
F-test to Compare Standard Deviations:
  H0: sigma1 = sigma2 Alt. hypothesis: sigma1 NE sigma2
  F = 1,14937 P-value = 0,839105
```

Conclusion of the test: accept $m_A = m_B BUT...$

For all trials: time_A > time_B

prog. A.	3.4	3.7	2.9	2.5(1.6	2.8	3.7	5.9	4.8	4.3
prog. B	2.7	3.2	1.8	1.9	1.1	2.2	2.8	4.8	4.3	3.4

Lowest value from A and B:

Highest value from A and B:

Is it a coincidence?

For some reason this file was more difficult to be found by both programs

In this case (one two-dimensional variable), better to apply another test

STATGRAPHICS: Compare => 2 samples => Two-sample comparison

Compare => 2 samples => Paired-sample comparison

To compare the population mean of two characteristics measured in the <u>same</u> individuals, a paired-sample comparison is more powerful than a two-sample comparison.

With a paired-sample test: reject H_0 : $m_A > m_B$ (makes sense!)