Московский Физико-Технический Институт (государственный университет)

Дополнение к лабораторной работе 5.2.1

Автор:

Овсянников Михаил Б01-008

Долгопрудный, 2022

В работе 5.2.1 воспроизвелся опыт Франка-Герца, подтверждающий наличие дискретных уровней возбуждения атомов. В частности, исследовался инертный газ — гелий. По статическому методу было определено значение энергии возбуждения первого уровня атома гелия: $E=(21,6\pm0,3)$ эВ. Однако оно было определено по расстояниям между максимумами (минимумами) на ВАХ, которые хоть и были выражены, но недостаточно. В данном дополнении предлагается улучшить методику.

Представим общий коллекторный ток I_{κ} в виде вот такой вот суммы:

$$I_{\scriptscriptstyle \mathrm{K}} = I_0 + I_{\scriptscriptstyle \sim},$$

где I_0 – это ток, предсказанный классической теорией, то есть сначала возрастающий по закону 3/2, а затем выходящий на плато – насыщение; а I_{\sim} – это ток, который и дает осцилляцию истинному значению коллекторного тока.

Сделав это, мы сможем наблюдать более выраженные максимумы и минимумы на зависимости $I_{\sim}(V_a)$, поэтому будет легче посчитать ΔV , и, что еще лучше, это будет гораздо точнее!

Чтобы найти зависимость $I_0(V_a)$, пройдемся по «средним» точкам графиков для каждого из значений задерживающего напряжения. После этого аппроксимируем полученные точки кривой насыщения.

Чтобы найти зависимость $I_{\sim}(V_a)$, просто вычтем из $I_{\scriptscriptstyle
m K}$ значение I_0 :

$$I_{\sim}(V_a) = I_{\kappa}(V_a) - I_0(V_a)$$

Не будем здесь описывать всю процедуру с технической стороны, а сразу приведем полученные графики для $I_{\sim}(V_a)$ при различных значениях задерживающего напряжения.

Рис. 1. $I_{\sim}(V_a)$ при задерживающем напряжении 4 В

По графику получаем:

$$\Delta V = (21,79 \pm 0,07) \text{ B}$$

Рис. 2. $I_{\sim}(V_a)$ при задерживающем напряжении 6 В

По этому графику получаем:

$$\Delta V = (21,71 \pm 0,06) \text{ B}$$

Рис. 3. $I_{\sim}(V_a)$ при задерживающем напряжении 8 В

А здесь выходит:

$$\Delta V = (21.7 \pm 0.1) \text{ B}$$

В среднем

$$\Delta V^{\Sigma} = (21.7 \pm 0.2) \text{ B}$$

Как видим, точность действительно увеличилась, хоть и не на порядки. И даже получившийся интервал почти полностью лежит в интервале, полученном ранее.