Logical Syntax, Semantics & Rules of Inference

Comprehensive reference: symbols, quantifiers, precedence, WFFs, truth tables, semantics (tautology, contradiction, entailment, etc.), and key rules of inference.

1. Basic Logical Symbols

¬P	legation			
P∧Q	Conjunction			
P v Q	isjunction (inclusive)			
$P \rightarrow Q$	Implication			
$P \leftrightarrow Q$	Biconditional			

2. Quantifiers

∀x P(x)	Universal quantifier: for all x, P(x)			
∃x P(x)	Existential quantifier: there exists x such that P(x)			
∃!x P(x)	Unique existence quantifier: exactly one x with P(x)			

3. Order of Precedence

1	Parentheses ()
2	Negation ¬
3	Quantifiers ∀, ∃, ∃!
4	Conjunction ^
5	Disjunction ∨
6	$Implication \to$
7	$Biconditional \leftrightarrow$

4. Well-Formed Formulas (WFFs)

Terms: variables, constants, or functions of terms. **Atomic formulas**: predicate applied to terms.

Formulas: built from atomic formulas, connectives, quantifiers.

Free variable: not bound by a quantifier. **Bound variable**: inside scope of quantifier. **Sentence**: formula with no free variables.

5. Truth Tables

Р	Q	¬P	P∧Q	P∨Q	$P \rightarrow Q$	$P \leftrightarrow Q$
Т	Т	F	Т	Т	Т	Т
Т	F	F	F	Т	F	F

F	Т	Т	F	Т	Т	F	
F	F	Т	F	F	Т	Т	

6. Semantic Notions

Tautology: true under every assignment.
Contradiction: false under every assignment.
Contingent: true sometimes, false sometimes.
Satisfiable: true under some assignment.
Unsatisfiable: false under all assignments.

Logical equivalence: $\phi \equiv \psi$ if $\phi \leftrightarrow \psi$ is a tautology.

Entailment: $\Gamma \blacksquare \phi$ if every assignment making Γ true also makes ϕ true.

Valid argument: premises ■ conclusion.

7. Rules of Inference

Modus Ponens	From P, P \rightarrow Q, infer Q
Modus Tollens	From $\neg Q$, $P \rightarrow Q$, infer $\neg P$
Hypothetical Syllogism	From $P \rightarrow Q$, $Q \rightarrow R$, infer $P \rightarrow R$
Disjunctive Syllogism	From P ∨ Q, ¬P, infer Q
Addition	From P, infer P v Q
Simplification	From P ∧ Q, infer P
Conjunction	From P, Q, infer P \(\times \)Q
Resolution	From $P \lor Q$, $\neg P \lor R$, infer $Q \lor R$

8. Rules with Quantifiers

Universal Instantiation (UI)	From $\forall x \phi(x)$, infer $\phi(c)$ for any constant c
Universal Generalization (UG)	From $\phi(x)$ (arbitrary x), infer $\forall x \phi(x)$
Existential Instantiation (EI)	From $\exists x \ \phi(x)$, infer $\phi(c)$ for some fresh constant c
Existential Generalization (EG)	From $\phi(c)$, infer $\exists x \ \phi(x)$