ALGORITHM ANALYSIS

2.1 Order the following functions by growth rate: N, \sqrt{N} , $N^{1.5}$, N^2 , $N \log N$, $N \log \log N$, $N \log^2 N$, $N \log(N^2)$, 2/N, 2^N , $2^{N/2}$, 37, $N^2 \log N$, N^3 . Indicate which functions grow at the same rate.

Ans 2/N, 37, \sqrt{N} , N, $N \log \log N$, $N \log N$, $N \log(N^2)$, $N \log^2 N$, $N^{1.5}$, N^2 , $N^2 \log N$, N^3 , $2^{N/2}$, 2^N . $N \log N$ and $N \log(N^2)$ grow at the same rate.

- **2.2** Suppose $T_1(N) = O(f(N))$ and $T_2(N) = O(f(N))$. Which of the following are true?
 - (a) $T_1(N) + T_2(N) = O(f(N))$
 - (b) $T_1(N) T_2(N) = o(f(N))$
 - (c) $\frac{T_1(N)}{T_2(N)} = O(1)$
 - (d) $T_1(N) = O(T_2(N))$

Ans (a) True.

- (b) False. A counterexample is $T_1(N) = 2N$, $T_2(N) = N$, and f(N) = N.
- (c) False. A counterexample is $T_1(N) = N^2$, $T_2(N) = N$, and $f(N) = N^2$.
- (d) False. The same counterexample as in part (c) applies.
- **2.4** Prove that for any constant k, $\log^k N = o(N)$.

Ans Clearly, $\log^{k_1} N = o(\log^{k_2} N)$ if $k_1 < k_2$, so we need to worry only about positive integers. The claim is clearly true for k = 0 and k = 1. Suppose it is true for k < i. Then, by L'Hôpital's rule,

$$\lim_{N \to \infty} \frac{\log^t N}{N} = \lim_{N \to \infty} \frac{\log^{t-1} N}{N}$$

The second limit is zero by the inductive hypothesis, proving the claim.

- **2.10** Determine, for the typical algorithms that you use to perform calculations by hand, the running time to do the following:
 - (a) Add two N-digit integers.
 - (b) Multiply tow N-digit integers.
 - (c) Divide two N-digit integers.

Ans

- (a) O(N)
- (b) $O(N^2)$
- (c) The answer depends on how many digits past the decimal point are computed. Each digit costs O(N).
- **3.37** Suppose that a singly linked list is implemented with both a header and a tail node. Describe constant-time algorithms to
 - (a) Insert item x before position p (given by an iterator).
 - (b) Remove the item stored at position p (given by an iterator).

Ans

(a) Add a copy of the node in position p after position p; then change the value stored in position p to x.

(b) Set p.data = p.next.data and set p.next = p.next.next. Note that the tail node guarantees that there is always a next node.