VLSI (Stick Diagram)

CMOS NAND gate

NAND GATE

Truth Table				
INPUT		OUTPUT		
Α	В	A NAND B		
0	0	1		
0	1	1		
1	0	1		
1	1	0		

ProjectIoT123.com

Va	Vb	Q1	Q2	Q3	Q4	Vout
0	0	ON	ON	OFF	OFF	1
0	1	ON	OFF	OFF	ON	1
1	0	OFF	ON	ON	OFF	1
1	1	OFF	OFF	ON	ON	0

CMOS NOR gate?

NOR GATE

TRUTH TABLE				
INPUT		OUTPUT		
Α	В	A NOR B		
0	0	1		
0	1	0		
1	0	0		
1	1	0		

ProjectIoT123.com

А	В	NMOS-V1	NMOS-V2	PMOS-V1	PMOS-V2	Vout
0	0	off	off	on	on	1
0	1	off	on	on	off	0
1	0	on	off	off	on	0
1	1	on	on	off	off	0

CMOS-2 Input NAND & NOR GATE

Behavior of MOS Transistor

Color Code

Color codes used in stick diagrams:

Metal: Blue

Polysilicon: Red

Metal contact: Black

P-type Doping: Yellow

N-type Doping: Green

Steps followed to draw a Stick Diagram

- Draw the Schematic Diagram.
- Understand the nature devices used (E.g PMOS or NMOS).
- Use the Exact Color Code.

- Stick diagrams are a means of capturing topography and layer information using simple diagrams.
- **Stick diagrams** convey layer information through color codes (or monochrome encoding). **CMOS Inverter**

▶ 16

Stick Diagram of CMOS NAND Gate-Euler's Path

kalyan5.blogspot.in 2/19/2017

Expressions F=X(Y+Z)+WX

Final Schematic for F = X(Y+Z)+WX

Summary of Steps to be followed:

- 1. Always start from the NMOS section.(i.e Bottom to top approach)
- 2. Draw the transistors as per the convention Which means "•" or "+" convention as per the transistor.
- 3. Label each transistor with the variables mentioned in the function.
- 4. Label the Power Supply V_{DD} and ground connection

Gajski-Kuhn Y-chart

- The Gajski-Kuhn Y-chart is a model which captures the considerations in designing semiconductor devices.
- The three domains of the Gajski-Kuhn Y-chart are on radial axes.

VLSI Design Flow

- Specifications comes first, they describe abstractly, the functionality, interface, and the architecture of the digital IC circuit to be designed.
- Behavioral description is then created to analyze the design in terms of functionality, performance, compliance to given standards, and other specifications.

