

From Dirichlet to Rubin: Optimistic Exploration in RL without Bonuses

Daniil Tiapkin^{1,2}, Denis Belomestny^{3,1}, Éric Moulines^{4,1}, Alexey Naumov¹, Sergey Samsonov¹, Yunhao Tang⁵, Michal Valko⁵, Pierre Ménard⁶

¹HSE University, ²Artificial Intelligence Research Institute, ³Duisburg-Essen University, ⁴École Polytechnique, ⁵DeepMind, ⁶Otto von Guericke University

Overview

- Bayes-UCBVI is Bayes-inspired algorithm with nearly minimax regret bound for large enough T;
- Novel anti-concentration inequality for weighted sums of Dirichlet random vector;
- Extension of exploration mechanism of Bayes-UCBVI in Deep RL setting;

Setting

- Tabular MDP: H horizon, S states, A actions, $p_h(s'|s,a)$ unknown transitions, deterministic reward $r_h(s,a) \in [0,1]$.
- Regret: $\sum_{t=1}^{T} V_1^{\star}(s_1) V_1^{\pi^t}(s_1)$

Bayes-UCBVI

- Bonus-based exploration (theoretically near optimal, poor empirical performance, not scalable) $\overline{Q}_h^t(s,a) = r_h(s,a) + \widehat{p}_h^t \overline{V}_{h+1}^t(s,a) + B_h^t(s,a), \qquad \overline{V}_h^t(s) = \max_a \overline{Q}_h^t(s,a),$ where $\widehat{p}_h^t(s,a)$ is empirical transition probabilities, and $\widehat{p}_h^t f(s,a) \triangleq \sum_{s' \in \mathcal{S}} \widehat{p}_h^t(s'|s,a) f(s')$.
- Bayes-UCBVI exploration (theoretically near optimal, great empirical performance, scalable) $\overline{Q}_h^t(s,a) = r_h(s,a) + \text{Quantile}_{p \sim \rho_h^t(s,a)}(p\overline{V}_{h+1}^t,\kappa), \qquad \overline{V}_h^t(s) = \max_a \overline{Q}_h^t(s,a),$ where $\rho_h^t(s,a) = \mathcal{D}\text{ir}\left(\mathbf{n}_0, n_h^t(s_1,s,a), \ldots, n_h^t(s_S,s,a)\right)$ is a posterior distribution of transition probabilities.

Optimistic prior for Bayes-UCBVI:

- Add an artificial isolated state s_0 with $r_h(s_0, a) > 1$;
- \blacksquare Add n_0 pseudo-transitions from each state s to s_0 into the history of visits.

Algorithm	Upper bound (non-stationary)
UCBVI [Azar et al., 2017]	
UCB-Advantage [Zhang et al., 2020]	$\widetilde{\mathcal{O}}(\sqrt{H^3SAT})$
RLSVI [Xiong et al., 2021]	
PSRL [Agrawal and Jia, 2017]	$\widetilde{O}(112C/\Lambda T)$
BootNARL [Pacchiano et al., 2021]	$\widetilde{\mathcal{O}}(H^2S\sqrt{AT})$
Bayes-UCBVI (this paper)	$\widetilde{\mathcal{O}}(\sqrt{H^3SAT})$
Lower bound [Jin et al., 2018, Domingues	et al., 2021] $\Omega(\sqrt{H^3SAT})$

Non-tabular extension: Bayes-UCBDQN

Figure 1:Left: Regret of Bayes-UCBVI and Incr-Bayes-UCBVI compared to baselines. Environment: grid-world with 5 rooms of size 5×5 (S = 129, A = 4).

Right: Evaluating deep RL algorithms with median human normalized scores across Atari-57 games.

- targets for Q-function estimation $y^n = r_h(s, a) + \overline{V}_{h+1}^t(s_{h+1}^n), n = 1, \dots, n_h^t(s, a);$
- targets from prior transitions $y^n = r_h(s, a) + \overline{V}_h^t(s_0), n = -n_0 + 1, \dots, 0.$

Reformulate and approximate Bayes-UCBVI using B Bayesian bootstrap samples

$$\overline{Q}_{h}^{t}(s, a) = \text{Quantile}_{w \sim \mathcal{D}ir(\underbrace{1, \dots, 1}_{n_{h}^{t}(s, a) + n_{0}})} \left(\sum_{n = -n_{0} + 1}^{n_{h}^{t}(s, a)} w^{n} y^{n}, \kappa \right)$$

$$\approx \text{Quantile}_{b \sim \mathcal{U}nif([1, B])} \left(\overline{Q}_{h}^{t, b}(s, a), \kappa \right),$$
where $\overline{Q}_{h}^{t, b}(s, a) = \sum_{n = -n_{0} + 1}^{n_{h}^{t}(s, a)} w^{n, b} y^{n}$ Bayesian bootstrap sample with $w^{n, b} \sim \mathcal{D}ir(\underbrace{1, \dots, 1}_{n^{t}(s, a) + n_{0}}).$

Since $w^{n,b}$ is a vector of normalized $z^{n,b} \sim \mathcal{E}(1)$ random variables

$$\overline{Q}_h^{t,b}(s,a) = \underset{x}{\operatorname{argmin}} \sum_{n=-n_0+1}^{n_h^t(s,a)} z^{n,b} (x - y^n)^2.$$

Anti-concentration inequality for Dirichlet distribution

For any $\alpha = (\alpha_0, \alpha_1, \dots, \alpha_m) \in \mathbb{N}^{m+1}$ define $\overline{p} \in \Delta_m$ with $\overline{p}(\ell) = \alpha_l/\overline{\alpha}, \ell = 0, \dots, m$, where $\overline{\alpha} = \sum_{j=0}^m \alpha_j$. Under technical assumptions, for $f : \{0, \dots, m\} \to [0, b_0]$ and $\mu \in (\overline{p}f, b_0)$

$$\overline{\alpha}^{-3/2} \exp\left(-\overline{\alpha} \mathcal{K}_{\inf}(\overline{p}, \mu, f)\right) \leq \mathbb{P}_{w \sim \mathcal{D}_{\text{ir}(\alpha)}}[wf \geq \mu] \leq \exp\left(-\overline{\alpha} \mathcal{K}_{\inf}(\overline{p}, \mu, f)\right),$$

where $\mathcal{K}_{inf}(p, u, f)$ is given by

$$\mathcal{K}_{\inf}(p, u, f) \triangleq \max_{\lambda \in [0, 1]} \mathbb{E}_{X \sim p} \left[\log \left(1 - \lambda \frac{f(X) - u}{b_0 - u} \right) \right].$$

- Lower bound is an essential part for optimism;
- Upper bound is important for the reduction to UCBVI.