Information Management (L3) **ER Diagrams (cont)**

LEVEL 1
COMPUTING SCIENCE 1Q

Dr Craig Macdonald

Mail - craig.macdonald@glasgow.ac.uk

Conceptual Design

- What are the *entities* and *relationships* in the enterprise?
- What information about these entities and relationships should we store in the database?
- What are the integrity constraints (business rules) that hold?
- We represent this information pictorially in E/R diagrams (and then map these to a relational schema later).

Relationship Types

- · Captures how two or more entities are related
- Can be thought of as verbs, linking two or more nouns
- Examples:
 - an owns relationship between a company and a computer
 - a supervises relationship between an employee and a department
 - a performs relationship between an artist and a song
 - a proved relationship between a mathematician and a theorem

Recap: Types & Sets?

- Entity Type:
 - Employees, Departments
- Entity Set of "Employees":
- Relationship Type:
 - O Works in
- Relationship Set of "Works In":
 - {Jane Doe works_in Accounting, Jack Willis works_in IT}

Cardinality Constraints on Relationship Types

- For example:
 - An employee can work in many departments; a department can have many employees
 - o In contrast, each department has at most one manager
- The cardinality specifies the number of entity instances that can participate from each side of the relationship of a binary relationship
 - o One to one (1:1)
 - One to many (1:N)
 - Many to Many (N:M)

 $\begin{array}{c|c}
M:N & \xrightarrow{M} & \stackrel{N}{\longrightarrow} \\
N:1 & \xrightarrow{1} & \xrightarrow{1} & \xrightarrow{1} \\
1:1 & \xrightarrow{1} & 1} & \xrightarrow{$

Note: Sometimes this is denoted using different arrowheads

Participation Constraints on Relationships

Every department must have a manager

- A double line indicates a participation constraint - totality
 - ALL entities in the entity set must participate in *at least one* relationship in the relationship set;

Cardinality + Participation Constraints = Structural Constraints

• There may be more than one relationship between entity types | Writes | Report | Presents | Report | Presents | Report | Presents | Report | Rep

Essential Reading

- 16
- After this lecture
 - O Rolland, Chapter 2
 - × 2.1, 2.3.1
- Before next lecture
 - o Rolland, Chapter 3
 - × 3.1, 3.2
 - O Rolland, Chapter 4
 - × 4.1

Information Management (L4) **ER Diagrams (cont)**

LEVEL 1
COMPUTING SCIENCE 1Q

Dr Craig Macdonald

Mail - craig.macdonald@glasgow.ac.uk

Database design lifecycle

- Requirements analysis
 - O User needs; what must database do?
- Conceptual design
 - o High-level description; often using E/R model

- Logical design
 - o Translate E/R model into (typically) relational schema
- Schema refinement
 - Check schema for redundancies and anomalies
- Physical design/tuning
 - o Consider typical workloads, and further optimise

From a written scenario to an ER Model

- Identify the Entities, their Attributes, and all Relationships involved in any given scenario
- Represent this in an Entity-Relationship Diagram
- ER Diagram (and model) can then be used to implement the actual relationship tables in the database itself (we will do this in the lab in week 3)

Constructing an ER diagram

- 1. Identify the entity types (in boxes)
- 2. Identify each entity types' properties
- 3. Decide which properties are attributes (connected to entity in oval)
- 4. Decide which attributes could be keys
- Select primary key (underlined attribute)
- 6. Determine which properties infer relationships (labelled diamond between the participating entities)
- Decide on the cardinality and participation of the relationship (numbers at entities involved in relationship; single line Vs double line at entity)

(1) Identify **Entities** in the 'Company' Scenario

Entities

22

Set up a database about movies, stars and studios. Movies have a title, and may be released many times. Releases have a year, length and film type. Stars have a name and address. Studios have a name and address. Movies can be sequels of other movies. Stars have contracts with specific studios with an associated salary, and get a cash bonus for specific releases. Stars act in releases and studios own movies.

Relationships

(26)

Set up a database about movies, stars and studios. Movies have a title, and may be released many times. Releases have a year, length and film type. Stars have a name and address. Studios have a name and address. Movies can be sequels of other movies. Stars have contracts with specific studios with an associated salary, and get a cash bonus for specific releases. Stars act in releases and studios own movies.

Relationship Attributes

Set up a database about movies, stars and studios. Movies have a title, and may be released many times. Releases have a year, length and film type. Stars have a name and address. Studios have a name and address. Movies can be sequels of other movies. Stars have contracts with specific studios with an associated salary, and get a cash bonus for specific releases. Stars act in releases and studios own movies.

Second Example Scenario

SELF STUDY

A company has *a* set of departments. Each department has a name, number, manager and possibly several locations. The manager is an employee and started managing the department on a given date. A department controls several projects, each with a name, number and location

Each employee has a name, address, salary, supervisor, department, sex, date of birth and national insurance number. An employee may work on many projects, not all in their own department, and works X hours on each of these projects. Each employee has a set of dependants, each with a name, date-of-birth, sex and familial relationship to the employee.

The Example Scenario

A company has *a* set of **departments**. Each department <u>has</u> a name, number, manager and possibly several locations. The manager <u>is an</u> employee and started <u>managing</u> the department on a given date. A department <u>controls</u> several **projects**, each with a name, number and location

Each **employee** has a name, address, salary, supervisor, department, sex, date of birth and national insurance number. An **employee** may <u>work on many projects</u>, not all in their own department, and <u>works X</u> hours on each of these projects. Each **employee** <u>has a set of **dependants**</u>, each with a name, date-of-birth, sex and familial relationship to the employee.

Entities in the Company Scenario

Departments, Employees, Projects, Dependants

Notes

- O Company is **not** an entity type it is the whole database
- Some things are relationships rather than entities themselves
 - Managers ? "The manager is an employee"

(2) Identify Attributes in Company Scenario

The Example Scenario

A company has *a* set of departments. Each department has a **name**, **number**, manager and possibly several **locations**. The manager is an employee and started managing the department on a **given date**. A department controls several projects, each with a **name**, **number** and **location**.

Each employee has a name, address, salary, supervisor, department, sex, date of birth and national insurance number. An employee may work on many projects, not all in their own department, and works X hours on each of these projects. Each employee has a set of dependants, each with a name, date-of-birth, sex and familial relationship to the employee.

Attributes in the Company Scenario

- The attributes of the company database are:
 - O Department name, number, {locations}
 - Employee <u>National Insurance Number</u>, **name**, **address**, salary, sex, birthdate,
 - O Project <u>name</u>, <u>number</u>, location
 - O Dependent name, sex, DofB, relationship

Note – again – watch out – don't simply make everything an attribute....some things are relationships, or attributes of relationships – not the entity itself

• How to represent attributes of an entity in an ER diagram: | Employee | Name | NINo |

(3) Identify Relationships in Company Scenario

The Example Scenario

A **company** has α set of **departments**. Each department has a name, number, manager and possibly several locations. The manager is an employee and started managing the department on a given date. A **department** controls several **projects**, each with a name, number and location

Each employee has a name, address, salary, supervisor, department, sex, date of birth and national insurance number. An *employee* may <u>work on</u> many *projects*, not all in their own department, and <u>works X hours</u> on each of these projects. Each employee has a set of dependants, each with a name, date-of-birth, sex and familial relationship to the employee.

Relationships in the Company Scenario

- A *company* <u>has a</u> set of **departments**
- A department <u>controls</u> several projects
- An employee may <u>work on</u> many projects, and <u>works</u> X hours on each of these projects.

Relationships in the Company Scenario

Relationships with their own attributes

- Each employee <u>has a</u> set of dependants, each with a name, date-of-birth, sex and familial relationship to the employee.
- The manager <u>is an</u> employee and <u>started managing</u> the department on a given date

The Relational Model From ER model to Tables

CS-1Q IM Lecture 5 Craig Macdonald

Database design lifecycle

- Requirements analysis
 - O User needs; what must database do?
- Conceptual design
 - o High-level description; often using E/R model
- Logical design

Today

- o Translate E/R model into (typically) relational schema
- Schema refinementCheck schema for redundancies and anomalies
- Physical design/tuning
 - o Consider typical workloads, and further optimise

Overview

- The Relational Model
- Understanding Entities & Relationships as 'Tables' in a database
- Converting your diagram into tables
- Thursday
 - Enforcing integrity
 - More on the relational model

Reminder - Data Modelling

- ER Model allowed us to establish the relationships and dependencies amongst the information
- We now need to arrange the data into a <u>logical structure</u>
- The logical structure can then be mapped into the storage objects supported by the database - for example tables

The Relational Data Model

- Introduced by E.F. Codd in 1970
- Most commonly supported form used in s/w industry
- Simple means of representing & manipulating data
- Has a good theoretical/mathematical grounding
 - More on this later (lecture 7 and 8)

Entities → Tables

A table (relation) is constructed for each item of interest in a DB

A relation equates (approximately) to an entity type or en in the ER diagram

All relations must have a HEADING and a BODY

The Heading

- All relations must have a heading
 - Name of relation
 - Student
 - Names of columns of relation (the attributes)
 - Name, student ID, exam1, exam2

STUDENT (Name, Student ID, exam1, exam2)

The number of attributes determines the DEGREE of the relation

The Body

- The rows of a relation comprise its body
 - These are referred to as TUPLES
- A tuple is an ordered list of values
- The meaning of each value is determined by it's position in the tuple
- The number of tuples in a relation determines it's CARDINALITY

Degree and Cardinality

STUDENT

name	matric	exam1	exam2
Gedge	891023	12	58
Kerr	892361	66	90
Fraser	880123	50	65

- The relation student has:
 - O Degree of 4 (number of attributes/columns)
 - Cardinality of 3 (number of rows/tuples)

Relations → Schema

- A tuple (record) is a row of a relation, i.e. a set of values which are instances of the attributes
 - o < 'Fraser', 880123, 66, 90 >

Relations → Schema

- A relation schema is a set of attributes
 - \circ written R (A₁, A_{2...}A_n) e.g.
 - Student (name: Text, matric: Number, ex1: Number, ex2: Number)
- A relational database schema is a set of these relation schemas

Summary of a Table

• The STUDENT relation may be thought of as a 2-D table

STUDENT				
SIUDLINI	name	Student	exam1	exam2
		ID		
	Gedge	891023	12	58
	Kerr	892361	66	90
	Fraser	880123	50	65

- A relation has
 - o a name STUDENT
 - o an unchanging set of **columns** which are named and typed
 - a time varying set of rows, which are the current set of records for the relation

Converting your ER Diagram to Tables

Translating E-R to relational schema

- 1. Entities and their simple attributes
- 2. Weak entities and their simple attributes
- 3. 1-1 relationships (and their attributes)
- 4. 1-M relationships (and their attribute)
- 5. M-N relationships (and their attributes)
- 6. Composite attributes
- 7. Multivalued attributes