Summary of the Transformer in **Attention Is**All You Need

Huaqing Mao

1 Paper Information

• Title: Attention Is All You Need

• Authors: Ashish Vaswani et al.

• Journal/Conference: 31st NIPS

• Year of Publication: 2017

2 Summary

2.1 Embedding and positional encoding

We use a single sentence as input for illustration. Suppose we have a sentence S, 'This is an sentence.', we tokenize S and get a sequence of tokens 'This', 'is', 'a', 'sentence', \langle EOS \rangle , \langle PAD \rangle ,..., \langle PAD \rangle , where \langle EOS \rangle is the end-of-sentence token, and \langle PAD \rangle the padding to make the sequence have the fixed size L we specify, assuming the input and output both have fixed length L. Apply a dictionary mapping tokens to indices, so now we have a sequence of integers that represents the sentence S. We convert the sequence of shape (L) to $(L, d_{\rm model})$ by learned/learnable embeddings of dimension $d_{\rm model}$.

To encode the information of relative positions, positional encoding is used

$$PE_{(pos,2i)} = \sin(pos/10000^{2i/d_{\text{model}}})$$

 $PE_{(pos,2i+1)} = \cos(pos/10000^{2i/d_{\text{model}}})$ (1)

Then we add the 'positional encodings' Eq. 1 to the input embeddings to get Q, K and V of size (L, d_{model}) and pass them into the encoder and decoder stacks.

2.2 Multi-head attention

For the i_{th} head of a multi-head attention specified by $W_i^Q \in \mathbb{R}^{d_{\text{model}} \times d_k}$, $W_i^K \in \mathbb{R}^{d_{\text{model}} \times d_k}$ and $W_i^V \in \mathbb{R}^{d_{\text{model}} \times d_v}$, we pass QW_i^Q , KW_i^K and VW_i^V , in attention

Eq. 2, Q,K,V are the same tensor of size (L,d_{model}) . Hence, QW_i^Q,KW_i^K and VW_V^Q are of shape $(L,d_k),\,(L,d_k)$ and (L,d_v) .

$$Attention(A, B, C) = softmax(\frac{AB^{T}}{\sqrt{d_{b}}})C$$
 (2)

We concatenate all attention head Attention(QW_i^Q, KW_i^K, VW_i^V) of shape (L, d_v) , and multiply with $W^O \in \mathbb{R}^{hd_v \times d_{\text{model}}}$, Concat(head₁, ..., head_h)W^O. The resulting multi-head attention has the shape of (L, d_{model})

2.3 Position-wise Feed-Forward Networks

After the Add&Norm sublayers, we feed the tensor of shape (L, d_{model}) to the fully connected layer,

$$FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2 \tag{3}$$

The first dimension is not touched. Tensors of size $d_{\rm model}$ in all positions go through the same linear transformations and Relu activation $(d_{\rm model}) \rightarrow (d_{\rm ff}) \stackrel{\rm Relu}{\rightarrow} (d_{\rm model})$