1_Chaotic Diode Circuit

https://www.researchgate.net/publication/309351711 A simple chaotic circuit with a light-emitting diode

$$C \cdot \frac{dv_1}{dt} = -\frac{v_2}{R}$$

$$C \cdot \frac{dv_2}{dt} = -\frac{v_3}{R}$$

$$C \cdot \frac{dv_3}{dt} = -\frac{v_1}{R} - \frac{v_3}{R_b} - \frac{v_4}{R}$$

$$\frac{v_4}{R_a} = -I_{ds} \cdot \left(e^{\frac{v_2}{nV_t}} - 1\right)$$

$$\tau = R \cdot C$$

$$\tau \cdot \frac{dv_1}{dt} = -v_2$$

$$\tau \cdot \frac{dv_2}{dt} = -v_3$$

$$\tau \cdot \frac{dv_3}{dt} = -v_1 - \frac{R}{R_h} \cdot v_3 + R_a \cdot I_{ds} \cdot \left(e^{\frac{v_2}{nV_t}} - 1\right)$$

$$a = \frac{R_a \cdot I_{ds}}{nV_t}$$

$$b = \frac{R}{R_b}$$

$$\tau \cdot \dot{x}_1 = -x_2$$

$$\tau \cdot \dot{x}_2 = -x_3$$

$$\tau \cdot \dot{x}_3 = -x_1 + a \cdot (e^{x_2} - 1) - b \cdot x_3$$

2_Chua's Circuit

https://link.springer.com/book/10.1007/978-3-319-05900-6 (1.1)

https://nonlinear.eecs.berkeley.edu/chaos/chaos.html# Working With Chaos Simulation

$$L \cdot \frac{di_L}{dt} = v_2 - R_L \cdot i_L$$

$$C_2 \cdot \frac{dv_2}{dt} = -i_L - \frac{v_2 - v_1}{R}$$

$$C_1 \cdot \frac{dv_1}{dt} = -i_{NL} + \frac{v_2 - v_1}{R}$$

$$-i_{NL}(v_1) = \begin{cases} -\infty < v_1 < -V_e \to G_b \cdot (v_1 + V_e) - G_a \cdot V_e \\ -V_e < v_1 < +V_e \to G_a \cdot v_1 \\ +V_e < v_1 < +\infty \to G_b \cdot (v_1 - V_e) + G_a \cdot V_e \end{cases}$$

$$-\frac{i_{NL}}{v_1} = \begin{cases} -\infty < v_1 < -V_e \to G_b - (G_a - G_b) \cdot \frac{V_e}{v_1} \\ -V_e < v_1 < +V_e \to G_a \\ +V_e < v_1 < +\infty \to G_b + (G_a - G_b) \cdot \frac{V_e}{v_1} \end{cases}$$

$$-\frac{di_{NL}}{dv_1} = \begin{cases} -\infty < v_1 < -V_e \to G_b \\ -V_e < v_1 < +V_e \to G_a \\ +V_e < v_1 < +V_e \to G_a \end{cases}$$

$$\begin{split} \tau_L \cdot \dot{v}_{RL} &= v_2 - v_{RL} \\ \tau_2 \cdot \dot{v}_2 &= +v_1 - v_2 - \frac{R}{R_L} \cdot v_{RL} \\ \tau_1 \cdot \dot{v}_1 &= -v_1 + v_2 + R \cdot g \cdot v_1 \\ g(v_1) &= \begin{cases} |v_1| > V_e \to G_b + (G_a - G_b) \cdot \frac{V_e}{|v_1|} \\ |v_1| < V_e \to G_a \end{cases} \end{split}$$

parameter SI.Resistance R=1.5e3 "Resistor";
parameter SI.Inductance L=18e-3 "Inductor";
parameter SI.Resistance RL=14 "Resistance of Inductor";
parameter SI.Capacitance C1=10.e-9 "Capacitor 1";
parameter SI.Capacitance C2=100e-9 "Capacitor 2";
//parameter of Chua's diode
parameter Real k0=15000.0 "No-load amplification ";
parameter SI.Voltage Vs=9 "Supply voltage of opAmps";
parameter SI.Resistance R12=220 "R1 and R2";
parameter SI.Resistance R3=2200 "R3";
parameter SI.Resistance R45=22e3 "R4 and R5";
parameter SI.Resistance R6=3300 "R6";

Chua's Circuit: Inductor Replacement

$$R_7 = 100 \Omega$$

$$R_8 = 1 k\Omega$$

$$R_9 = 1 k\Omega$$

$$R_{10} = 1.8 k\Omega$$

$$C_9 = 100 nF$$

$$R_7 \cdot i + R_8 \cdot (i + i_{OA4}) = 0$$

$$R_9 \cdot (i + i_{OA4}) + v_{C9} = 0$$

$$i + i_{OA4} + i_{OA3} = i_{C9}$$

$$i_{C9} = C_9 \cdot \frac{dv_{C9}}{dt}$$

$$v = R_{10} \cdot i_{C9}$$

$$(i + i_{OA4}) = -\frac{R_7}{R_8} \cdot i$$

$$v_{c9} = \frac{R_7 \cdot R_9}{R_8} \cdot i$$

$$i_{C9} = C_9 \cdot \frac{R_7 \cdot R_9}{R_8} \cdot \frac{di}{dt}$$

$$v = C_9 \cdot \frac{R_7 \cdot R_9 \cdot R_{10}}{R_8} \cdot \frac{di}{dt}$$

$$L = C_9 \cdot \frac{R_7 \cdot R_9 \cdot R_{10}}{R_8} = 18 \text{ mH}$$

$$L = C_9 \cdot \frac{R_7 \cdot R_9 \cdot R_{10}}{R_8} = 18 \, mF$$

3_Chaotic Oscillator

https://www.researchgate.net/publication/230925506_A_simple_chaotic_oscillator_for_educational_purposes
https://www.researchgate.net/publication/259216097_NUMERICAL_TREATMENT_OF_EDUCATIONAL_CHAOS_OSCILLATOR

$$\begin{split} i_L &= C \cdot \frac{dv_C}{dt} \\ L \cdot \frac{di_L}{dt} &= \left(k - 1 - \frac{R_L}{R}\right) \cdot R \cdot i_L - v_C - v_{C^*} \\ k &= 1 + \frac{R_2}{R_1} \\ C^* \cdot \frac{dv_{C^*}}{dt} &= I_0 + i_L - I_{DS} \cdot \left(e^{\frac{v_{C^*}}{nV_t}} - 1\right) \\ I_0 &\approx \frac{V_b}{R_0} \end{split}$$

$$\tau = \sqrt{L \cdot C}$$

$$Z = \sqrt{\frac{L}{C}}$$

$$a = \left(k - 1 - \frac{R_L}{R}\right) \cdot \frac{R}{Z}$$

$$b = \frac{Z \cdot I_0}{nV_t}$$

$$c = \frac{Z \cdot I_{DS}}{nV_t}$$

$$e = \frac{C^*}{C}$$

$$\begin{split} \tau \cdot \frac{\dot{v}_C}{nV_t} &= \frac{Z \cdot i_L}{nV_t} \\ \tau \cdot \frac{Z \cdot i_L}{nV_t} &= \left(k - 1 - \frac{R_L}{R}\right) \cdot \frac{R}{Z} \cdot \frac{Z \cdot i_L}{nV_t} - \frac{v_C}{nV_t} - \frac{v_{C^*}}{nV_t} \\ \tau \cdot e \cdot \frac{\dot{v}_{C^*}}{nV_t} &= \frac{Z \cdot I_0}{nV_t} + \frac{Z \cdot i_L}{nV_t} - \frac{Z \cdot I_{DS}}{nV_t} \cdot \left(e^{\frac{v_{C^*}}{nV_t}} - 1\right) \end{split}$$

4_Colpitts Oscillator

https://link.springer.com/book/10.1007/978-3-319-05900-6 (1.3)

parameter SI.Resistance R1=35. "Resistor 1";
parameter SI.Resistance R2=500 "Resistor 2";
parameter SI.Capacitance C1=54.e-9 "Capacitor 1";
parameter SI.Capacitance C2=54.e-9 "Capacitor 2";
parameter SI.Inductance L=98.5e-6 "Inductor";
parameter SI.Voltage Vs=5 "Source Voltage";