TRY AGAN

Dhruv Madeka

Quantitative Researcher

GENERATIVE MODELLING

Goodfellow NIPS [2016]

Given a set of features x and labels y Try to learn:

$$\mathbb{P}(x,y)$$

- Learn a distribution
- Generate samples

GENERATIVE ADVERSARIAL NETWORKS

Goodfellow et al [2014]

 $\min \max V(G, D)$

$$\min_{G} \max_{D} \mathbb{E}_{\mathbb{P}} \Big[\log \big(D(x) \big) \Big] + \mathbb{E}_{\mathbb{Q}} \Big[\log \Big(1 - D \big(G(z) \big) \Big) \Big]$$

WHATS THE ISSUE?

Arjovsky et al 2017

Standard GAN objective is equivalent to minimizing the ratio of the two densities: $\frac{d\mathbb{P}}{dG(\mathbb{Q})}$

WGAN

Arjovsky et al 2017

$$W(\mathbb{P}, G(\mathbb{Q})) = \sup_{|f|_{L} \le 1} \left(\mathbb{E}_{\mathbb{P}}[f(x)] - \mathbb{E}_{G(\mathbb{Q})}[f(x)] \right)$$

- The suggestion of the paper is to clip the weights in some range [-c, c].
- Metz et al (2016) suggest unrolling GAN but each step increases computational cost.

PENALIZE GRADIENTS

$$V$$

$$= \left(\mathbb{E}_{\mathbb{P}}[\log(f)] - \mathbb{E}_{\mathbb{Q}}[\log(1-f)]\right) - \lambda \left[\mathbb{E}_{\mathbb{P}}\left[\frac{1}{\left(f(x)\right)^{2}} \left|\left|\nabla f(x)\right|\right|^{2}\right] + \mathbb{E}_{\mathbb{Q}}\left[\frac{1}{\left(1-f(x)\right)^{2}} \left|\left|\nabla (1-f(x))\right|\right|^{2}\right]$$

- Penalizing the derivative can be interpreted as a kind of weak Lipschitz constraint
- Better numerical properties than clipping, better computational cost to unrolling

GAUSSIAN MIXTURE

Metz et al 2016 propose a mixture of Gaussians with

GAUSSIAN MIXTURE

