10/530,904

Filed

•

December 23, 2005

AMENDMENTS TO THE CLAIMS

1. (Currently amended) A compound of the formula I or a pharmaceutically acceptable salt thereof,

formula I

$$R_4$$
 R_5
 R_2
 R_1
 R_3

wherein R¹ is selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkyloxy, alkyloxyalkyl, alkylthioalkyl, alkyloxycarbonyl, alkylthiocarbonyl, alkanoyl, cycloalkylalkyl, cycloalkylcarbonyl, cycloalkylalkanoyl, cycloalkylthiocarbonyl, cycloalkylalkoxycarbonyl, cycloalkylalkoxythiocarbonyl, cycloalkylthioalkyl, alkylcarbonyloxyalkyl, arylcarbonyloxyalkyl, cycloalkylcarbonyloxyalkyl, silyloxyalkyl, aralkyl, arylalkenyl, arylcarbonyl, aryloxycarbonyl, arylthiocarbonyl, aralkoxycarbonyl, arylalkylthiocarbonyl, aryloxyalkyl, arylthioalkyl, haloalkyl, hydroxyalkyl, aralkanoyl, aroyl, aryloxycarbonylalkyl, aryloxyalkanoyl, carboxyl, formyl, alkenylcarbonyl, alkynylcarbonyl, Het¹, Het¹alkyl, Het¹oxyalkyl, Het¹aryl, Het¹aralkyl, Het carbonyl, Het alkoxycarbonyl, Het alkylthiocarbonyl, Het oxycarbonyl, Het¹thiocarbonyl, Het¹alkanoyl, Het¹aralkanoyl, Het¹aryloxyalkyl, Het¹alkyloxyalkyl, Het¹arylthioalkyl, Het¹aryloxycarbonyl, Het¹aralkoxycarbonyl, Het¹aroyl, Het¹oxyalkylcarbonyl, Het¹alkyloxyalkylcarbonyl, Het¹aryloxyalkylcarbonyl, Het¹carbonyloxyalkyl, Het¹alkylcarbonyloxyalkyl, Het²aralkylcarbonyloxyalkyl, Het²alkyl; Het²oxyalkyl, Het²alkyloxyalkyl, Het²aralkyl, Het²carbonyl, Het²oxycarbonyl, Het²thiocarbonyl, Het²alkanoyl, Het²alkylthiocarbonyl, Het²alkoxycarbonyl, Het²aralkanoyl, Het²aralkoxycarbonyl, Het²aryloxycarbonyl, Het²aroyl, Het²aryloxyalkyl, Het²arylthioalkyl, Het²oxyalkylcarbonyl, Het²alkyloxyalkylcarbonyl, Het²aryloxyalkylcarbonyl, Het²carbonyloxyalkyl, Het²alkylcarbonyloxyalkyl, Het²aralkylcarbonyloxyalkyl, cyano, aminocarbonyl, aminoalkanoyl, aminoalkyl, CR⁶=NR⁷ and CR⁶=N(OR⁷), with R⁶ and R⁷ being independently selected from the group consisting of hydrogen, hydroxyl, alkyl, aryl, Het¹ alkyl, Het¹ aryl, alkenyl, alkynyl,

-2-

: 10/530,904

Filed

December 23, 2005

aminoalkyl, aminoaryl, alkylcarbonylamino, arylcarbonylamino, alkylthiocarbonylamino and arylthiocarbonylamino;

wherein R² and R³ are independently selected from the group consisting of hydroxyl, alkyloxy, alkyloxy, alkyloxy, cycloalkyloxy cycloalkylakyloxy, aralkyloxy, aralkyloxy, aryloxyalkyloxy, silyloxy, alkylcarbonyloxy, arylcarbonyloxy, cycloalkylcarbonyloxy, haloalkyloxy, hydroxyalkyloxy, aralkanoyloxy, aroyloxy, aryloxycarbonylalkyloxy, formyloxy, Hetlalkyloxy, Hetloxy, Hetlaryloxy, Hetlary

wherein R¹ R² and R³ are unsubstituted or substituted by one or more substituents independently selected from the group consisting of alkyl, aralkyl, aryl, Het¹, Het², cycloalkyl, alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di(alkyl)aminocarbonyl, aminosulfonyl, alkylS(=O)t, hydroxy, cyano, halogen and amino, unsubstituted, mono- or disubstituted wherein the substituents are independently selected from the group consisting of alkyl, aryl, aralkyl, aryloxy, arylamino, arylthio, aryloxyalkyl, arylaminoalkyl, aralkoxy, alkylthio, alkoxy, aryloxyalkoxy, arylaminoalkoxy, aralkylamino, aryloxyalkylamino, arylaminoalkylamino, arylthioalkoxy, arylthioalkylamino, aralkylthio, aryloxyalkylthio, arylaminoalkylthio, arylthioalkylthio, alkylamino, cycloalkyl, cycloalkylalkyl, Het¹, Het², Het¹alkyl, Het²alkyl, Het¹amino, Het²amino, Het¹alkylamino, Het²alkylamino, Het¹thio, Het²thio, Het¹alkylthio, Het²alkylthio, Het¹oxy and Het²oxy, OR⁸, SR⁸, SO₂NR⁸R⁹, SO₂N(OH)R⁸, CN, CR⁸=NR⁹, $S(O)R^8$, SO_2R^8 , $CR^8=N(OR^9)$, N_3 , NO_2 , NR^8R^9 , $N(OH)R^8$, $C(O)R^8$, $C(S)R^8$, CO_2R^8 , $C(O) = RC(O) = R^8$, $C(O) = R^9$, $C(S) = R^9$, C(S) =NR⁸C(S)R⁹, N(OH)C(O)R⁹, N(OH)C(S)R⁸, NR⁸CO₂R⁹, NR⁸C(O)NR⁹R¹⁰, NR⁸C(S)NR⁹R¹⁰, $N(OH)CO_2R^8$, $NR^8C(O)SR^9$, $N(OH)C(O)NR^8R^9$, $N(OH)C(S)NR^8R^9$, $NR^8C(O)N(OH)R^9$, NR⁸C(S)N(OH)R⁹, NR⁸SO₂R⁹, NHSO₂NR⁸R⁹, NR⁸SO₂NHR⁹, and P(O)(OR⁸)(OR⁹), with t being an integer between 1 and 2, and R⁸ R⁹ and R¹⁰ being each independently selected from the group consisting of hydrogen, hydroxyl, alkyl, aryl, Het¹, Het¹ alkyl, Het¹ aryl, alkenyl,

10/530,904

Filed

December 23, 2005

alkynyl, aminoalkyl, aminoaryl, alkylcarbonylamino, arylcarbonylamino, alkylthiocarbonylamino and arylthiocarbonylamino;

wherein R⁴ is selected from the group consisting of oxo, hydroxyl, alkyl, alkenyl, alkynyl, alkanediyl, alkyloxy, alklylthio, alkylamino, alkyloxyalkyl, arylcarbonylalkyl, alkylcarbonylalkyl, alkanoyl, cycloalkylcarbonylalkyl,

cycloalkyl, cycloalkyloxy, cycloalkylthio, cycloalkylamino, cycloalkylalkyl, cycloalkylalkanoyl, aryl, aralkyl, arylalkenyl, arylcarbonyloxy, aryloxycarbonyloxy, aralkoxycarbonyloxy, aryloxyalkyl, haloalkyloxy, haloalkylthio, haloalkylamino, hydroxyalkyl, aralkanoyl, aryloxycarbonylalkyl, aryloxyalkanoyl, Het¹, Het¹alkyl, Het¹oxy, Het¹oxyalkyl, Het¹aryl, Het¹aralkyl, Het¹cycloalkyl, Het¹aryloxyalkyl, Het¹aroyl, Het², Het²oxy, Het²alkyl; Het²oxyalkyl, Het²aralkyl, Het²cycloalkyl, Het²aryl, Het²alkanoyl, Het²aralkanoyl, Het²aroyl, Het²aryloxyalkyl, aminocarbonyl, aminoalkanoyl, and aminoalkyl, unsubstituted or substituted by one or more substituents independently selected from the group consisting of alkyl, aralkyl, aryl, Het¹, Het², cycloalkyl, alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di(alkyl)aminocarbonyl, aminosulfonyl, alkylS(=O)t, hydroxy, cyano, halogen and amino, unsubstituted, mono- or disubstituted wherein the substituents are independently selected from the group consisting of alkyl, aryl, aralkyl, aryloxy, arylamino, arylthio, aryloxyalkyl, arylaminoalkyl, aralkoxy, alkylthio, alkoxy, aryloxyalkoxy, arylaminoalkoxy, aralkylamino, aryloxyalkylamino, arylaminoalkylamino, arylthioalkoxy, arylthioalkylamino, aralkylthio, aryloxyalkylthio, arylaminoalkylthio, arylthioalkylthio, alkylamino, cycloalkyl, cycloalkylalkyl, Het¹, Het², Het¹alkyl, Het²alkyl, Het¹amino, Het²amino, Het¹alkylamino, Het²alkylamino, Het¹thio, Het²thio, Het¹alkylthio, Het²alkylthio, Het¹oxy and Het²oxy, OR¹¹, SR¹¹, SO₂NR¹¹R¹², SO₂N(OH)R¹¹, $CN, CR^{11}=NR^{12}, S(O)R^{11}, SO_2R^{11}, CR^{11}=N(OR^{12}), N_3, NO_2, NR^{11}R^{12}, N(OH)R^{11}, C(O)R^{11},$ $C(S)R^{11}, CO_2R^{11}, \frac{C(O)sRC(O)SR}{1}, C(O)NR^{11}R^{12}, C(S)NR^{11}R^{12}, C(O)N(OH)R^{12},$ $C(S)N(OH)R^{11}$, $NR^{11}C(O)R^{12}$, $NR^{11}C(S)R^{12}$, $N(OH)C(O)R^{12}$, $N(OH)C(S)R^{11}$, $NR^{11}CO_2R^{12}$, NR¹¹C(O)NR¹²R¹³, and NR¹¹C(S)NR¹²R¹³, N(OH)CO₂R¹¹, NR¹¹C(O)SR¹², N(OH)C(O)NR¹¹R¹², N(OH)C(S)NR¹¹R¹², NR¹¹C(O)N(OH)R¹², NR¹¹C(S)N(OH)R¹², NR¹¹SO₂R¹², NHSO₂NR¹¹R¹², NR¹¹SO₂NHR¹², P(O)(OR¹¹)(OR¹²), wherein t is an integer between 1 and 2, R¹¹, R¹² and R¹³ are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, and alkynyl; and

: 10/530,904

Filed

December 23, 2005

wherein R⁵ is selected from the group consisting of hydrogen, oxo, hydroxyl, alkyl, alkenyl, alkynyl, alkanediyl, alkyloxy, alkyloxyalkyl, arylcarbonylalkyl, alkylcarbonylalkyl, alkanoyl, cycloalkylcarbonylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkanoyl, aryl, aralkyl, arylalkenyl, arylcarbonyloxy, aryloxycarbonyloxy, aralkoxycarbonyloxy, aryloxyalkyl, haloalkyl, hydroxyalkyl, aralkanoyl, aryloxycarbonylalkyl, aryloxyalkanoyl, Het¹, Het¹alkyl, Het¹oxy, Het¹oxyalkyl, Het¹aryl, Het¹aralkyl, Het¹cycloalkyl, Het¹aryloxyalkyl, Het¹aroyl, Het²oxy, Het²alkyl; Het²oxyalkyl, Het²aralkyl, Het²cycloalkyl, Het²aryl, Het²alkanoyl, Het²aralkanoyl, Het²aroyl, Het²aryloxyalkyl, aminocarbonyl, aminoalkanoyl, and aminoalkyl, unsubstituted or substituted by one or more substituents independently selected from the group consisting of alkyl, aralkyl, aryl, Het¹, Het², cycloalkyl, alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di(alkyl)aminocarbonyl, aminosulfonyl, alkylS(=O)t, hydroxy, cyano, halogen and amino, unsubstituted, mono- or disubstituted wherein the substituents are independently selected from the group consisting of alkyl, aryl, aralkyl, aryloxy, arylamino, arylthio, aryloxyalkyl, arylaminoalkyl, aralkoxy, alkylthio, alkoxy, aryloxyalkoxy, aylaminoalkoxy, aralkylamino, aryloxyalkylamino, arylaminoalkylamino, arylthioalkoxy, arylthioalkylamino, aralkylthio, aryloxyalkylthio, arylaminoalkylthio, arylthioalkylthio, alkylamino, cycloalkyl, cycloalkylalkyl, Het¹, Het², Het¹alkyl, Het²alkyl, Het¹amino, Het²amino, Het²alkylamino, Het¹thio, Het²thio, Het¹alkylthio, Het²alkylthio, Het¹oxy and Het²oxy, OR¹¹, SR¹¹, SO₂NR¹¹R¹², $SO_2N(OH)R^{11}$, CN, $CR^{11}=NR^{12}$, $S(O)R^{11}$, SO_2R^{11} , $CR^{11}=N(OR^{12})$, N_3 , NO_2 , $NR^{11}R^{12}$, $N(OH)R^{11}$, $C(O)R^{11}$, $C(S)R^{11}$, CO_2R^{11} , $C(O)sRC(O)SR^{11}$, $C(O)NR^{11}R^{12}$, $C(S)NR^{11}R^{12}$, $C(O)N(OH)R^{12}$, $C(S)N(OH)R^{11}$, $NR^{11}C(O)R^{12}$, $NR^{11}C(S)R^{12}$, $N(OH)C(O)R^{12}$, $N(OH)C(S)R^{11}$, $NR^{11}CO_2R^{12}$, $NR^{11}C(O)NR^{12}R^{13}$, and $NR^{11}C(S)NR^{12}R^{13}$, $N(OH)CO_2R^{11}$, $NR^{11}C(O)SR^{12}$, N(OH)C(O)NR¹¹R¹², N(OH)C(S)NR¹¹R¹², NR¹¹C(O)N(OH)R¹², NR¹¹C(S)N(OH)R¹², NR¹¹SO₂R¹², NHSO₂NR¹¹R¹², NR¹¹SO₂NHR¹², and P(O)(OR¹¹)(OR¹²), wherein t is an integer between 1 and 2, R¹¹, R¹² and R¹³ are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, and alkynyl; wherein Het is defined as a saturated or partially unsaturated monocyclic, bicyclic or polycyclic heterocycle consisting of 3 to 12 ring members which comprise one or more heteroatom ring members selected from nitrogen, oxygen or sulfur, optionally substituted on one or more carbon atoms by alkyl, alkyloxy, halogen, hydroxyl, oxo, optionally mono- or disubstituted amino, nitro,

: 10/530,904

Filed

December 23, 2005

eyano, haloalkyl, carboxyl, alkoxycarbonyl cycloalkyl, optionally mono-or disubstituted aminocarbonyl, methylthio, methylsulfonyl, aryl and a saturated or partially unsaturated monocyclic, bicyclic or tricyclic heterocycle consisting of 3 to 12 ring members which contain one or more heteroatom ring members selected from nitrogen, oxygen or sulfur and whereby the optional substituents on any amino function are independently selected from alkyl, alkyloxy, Het², Het²alkyl, Het²oxy, Het²oxyalkyl, aryl, aryloxy, aryloxyalkyl, aralkyl, alkyloxycarbonylamino, amino and aminoalkyl whereby each of the amino groups may optionally be mono-or disubstituted with alkyl;

wherein Het² is defined as an aromatic monocyclic, bicyclic or tricyclic heterocycle consisting of 3 to 12 ring members comprising one or more heteroatom ring members selected from nitrogen, oxygen or sulfur and optionally substituted on one or more carbon atoms by alkyl, alkyloxy, halogen, hydroxyl, optionally mono-or disubstituted amino, nitro, cyano, haloalkyl, carboxyl, alkoxycarbonyl, cycloalkyl, optionally mono-or disubstituted aminocarbonyl, methylthio, methylsulfonyl, aryl, Het¹ and an aromatic monocyclic, bicyclic, or tricyclic heterocycle consisting of 3 to 12 ring members, whereby the optional substituents on any amino function are independently selected from alkyl, alkyloxy, Het¹, Het¹alkyl, Het¹oxy, Het¹oxyalkyl, aryl, aryloxy, aryloxyalkyl, aralkyl, alkyloxycarbonylamino, amino, and amionalkyl whereby each of the amino groups may optionally be mono- or disubstituted with alkyl.

2. (Currently amended) A compound according to claim 1, having the formula I or a pharmaceutically acceptable salt thereof, formula I

$$R_4$$
 R_5
 R_2
 R_1
 R_3
 R_3

wherein R¹ is selected from the group consisting of alkyl, alkenyl, alkynyl, alkyloxy, alkyloxyalkyl, alkyloxycarbonyl, alkylthiocarbonyl, alkanoyl, cycloalkylalkyl,

10/530,904

December 23, 2005

Filed

cycloalkylcarbonyl, cycloalkylalkanoyl, cycloalkylthiocarbonyl, cycloalkylalkoxycarbonyl, cycloalkylalkoxythiocarbonyl, cycloalkylthioalkyl, alkylcarbonyloxyalkyl, arylcarbonyloxyalkyl, cycloalkylcarbonyloxyalkyl, silyloxyalkyl, aralkyl, arylalkenyl, arylcarbonyl, aryloxycarbonyl, arvlthiocarbonyl, aralkoxycarbonyl, arylalkylthiocarbonyl, aryloxyalkyl, arylthioalkyl, haloalkyl, hydroxyalkyl, aralkanoyl, aroyl, aryloxycarbonylalkyl, aryloxyalkanoyl, carboxyl, formyl, alkenylcarbonyl, alkynylcarbonyl, Het¹, Het¹alkyl, Het¹oxyalkyl, Het¹aryl, Het¹aralkyl, Het¹cycloalkyl, Het¹carbonyl, Het¹alkoxycarbonyl, Het¹alkylthiocarbonyl, Het¹oxycarbonyl, Het thiocarbonyl, Het alkanoyl, Het aralkanoyl, Het aryloxyalkyl, Het alkyloxyalkyl, Het¹arylthioalkyl, Het¹aryloxycarbonyl, Het¹aralkoxycarbonyl, Het¹aroyl, Het¹oxyalkylcarbonyl, Het alkyloxyalkylcarbonyl, Het aryloxyalkylcarbonyl, Het carbonyloxyalkyl, Het¹alkylcarbonyloxyalkyl, Het¹aralkylcarbonyloxyalkyl, Het²alkyl; Het²oxyalkyl, Het²alkyloxyalkyl, Het²aralkyl, Het²carbonyl, Het²oxycarbonyl, Het²thiocarbonyl, Het²alkanoyl, Het²alkylthiocarbonyl, Het²alkoxycarbonyl, Het²aralkanoyl, Het²aralkoxycarbonyl, Het²aryloxycarbonyl, Het²aroyl, Het²aryloxyalkyl, Het²arylthioalkyl, Het²oxyalkylcarbonyl, Het²alkyloxyalkylcarbonyl, Het²aryloxyalkylcarbonyl, Het²carbonyloxyalkyl, Het²alkylcarbonyloxyalkyl, Het²aralkylcarbonyloxyalkyl, cyano, aminocarbonyl, aminoalkanoyl, aminoalkyl, CR⁶=NR⁷ and CR⁶=N(OR⁷), with R⁶ and R⁷ being independently selected from the group consisting of hydrogen, hydroxyl, alkyl, aryl, Het¹ alkyl, Het¹ aryl, alkenyl, alkynyl, aminoalkyl, aminoaryl, alkylcarbonylamino, arylcarbonylamino, alkylthiocarbonylamino and arylthiocarbonylamino; wherein R² and R³ are independently selected from the group consisting of hydroxyl, alkyloxy, alkylsilyloxy, arylsilyloxy, alkyloxyalkyloxy, cycloalkyloxy cycloalkylalkyloxy, aralkyloxy, aryloxyalkyloxy, silyloxy, alkylcarbonyloxy, arylcarbonyloxy, cycloalkylcarbonyloxy, haloalkyloxy, hydroxyalkyloxy, aralkanoyloxy, aroyloxy, aryloxycarbonylalkyloxy, formyloxy, Het¹alkyloxy, Het¹oxy, Het¹oxyalkyloxy, Het¹aryloxy, Het¹aralkyloxy, Het¹cycloalkyloxy, Het¹carbonyloxy, Het¹oxycarbonyloxy, Het¹alkanoyloxy, Het¹aralkanoyloxy, Het aryloxyalkyloxy, Het aroyl, Het oxy, Het alkyloxy; Het oxyalkyloxy, Het aralkyloxy, Het²cycloalkyloxy, Het²alkanoyloxy, Het²aralkanoyloxy, Het²carbonyloxyl, Het²aryloxy, and Het²aryloxyalkyloxy,

: 10/530,904

Filed

December 23, 2005

wherein R¹ R² and R³ are unsubstituted or substituted by one or more substituents independently selected from the group consisting of alkyl, aralkyl, aryl, Het¹, Het², cycloalkyl, alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di(alkyl)aminocarbonyl, aminosulfonyl, alkylS(=O)t, hydroxy, cyano, halogen and amino, unsubstituted, mono- or disubstituted wherein the substituents are independently selected from the group consisting of alkyl, aryl, aralkyl, aryloxy, arylamino, arylthio, aryloxyalkyl, arylaminoalkyl, aralkoxy, alkylthio, alkoxy, aryloxyalkoxy, arylaminoalkoxy, aralkylamino, aryloxyalkylamino, arylaminoalkylamino, arylthioalkoxy, arylthioalkylamino, aralkylthio, aryloxyalkylthio, arylaminoalkylthio, arylthioalkylthio, alkylamino, cycloalkyl, cycloalkylalkyl, Het¹, Het², Het¹alkyl, Het²alkyl, Het¹amino, Het²amino, Het¹alkylamino, Het²alkylamino, Het¹thio, Het²thio, Het¹alkylthio, Het²alkylthio, Het¹oxy and Het²oxy, OR⁸, SR⁸, SO₂NR⁸R⁹, SO₂N(OH)R⁸, CN, CR⁸=NR⁹, $S(O)R^8$, SO_2R^8 , $CR^8=N(OR^9)$, N_3 , NO_2 , NR^8R^9 , $N(OH)R^8$, $C(O)R^8$, $C(S)R^8$, CO_2R^8 , $\frac{C(O)sRC(O)SR^{8}}{C(O)SR^{8}}, C(O)NR^{8}R^{9}, C(S)NR^{8}R^{9}, C(O)N(OH)R^{9}, C(S)N(OH)R^{8}, NR^{8}C(O)R^{9}, C(O)R^{9}, C(O$ $NR^8C(S)R^9$, $N(OH)C(O)R^9$, $N(OH)C(S)R^8$, $NR^8CO_2R^9$, $NR^8C(O)NR^9R^{10}$, $NR^8C(S)NR^9R^{10}$, N(OH)CO₂R⁸, NR⁸C(O)SR⁹, N(OH)C(O)NR⁸R⁹, N(OH)C(S)NR⁸R⁹, NR⁸C(O)N(OH)R⁹, NR8C(S)N(OH)R9, NR8SO2R9, NHSO2NR8R9, NR8SO2NHR9, and P(O)(OR8)(OR9), with t being an integer between 1 and 2, and R⁸ R⁹ and R¹⁰ being each independently selected from the group consisting of hydrogen, hydroxyl, alkyl, aryl, Het¹ alkyl, Het¹ aryl, alkenyl, alkynyl, aminoalkyl, aminoaryl, alkylcarbonylamino, arylcarbonylamino, alkylthiocarbonylamino and arylthiocarbonylamino;

wherein R^4 is oxo and R^5 is hydrogen or alkyl.

3. (Currently amended) A compound according to claim 1, wherein R¹ is selected from the group consisting of hydrogen, alkyl, hydroxyalkyl, alkenyl, alkynyl, alkyloxyalkyl, alkyloxycarbonyl, alkanoyl, cycloalkylalkyl, cycloalkylalkyl, cycloalkylalkoxycarbonyl, cycloalkylalkyl, cycloalkylalkoxycarbonyl, cycloalkylthioalkyl, alkylcarbonyloxyalkyl, arylcarbonyloxyalkyl, cycloalkylcarbonyloxyalkyl, silyloxyalkyl, aralkyl, arylalkenyl, arylcarbonyl, aryloxycarbonyl, aralkoxycarbonyl, arylthioalkyl, aralkanoyl, aroyl, carboxyl, formyl, alkenylcarbonyl, alkynylcarbonyl, Het¹axyloxyalkyl, Het¹aryloxycarbonyl, Het¹aryloxycarbonyl,

10/530,904

Filed

•

December 23, 2005

Het¹aralkoxycarbonyl, Het¹oxyalkylcarbonyl, Het¹alkyloxyalkylcarbonyl, Het¹aryloxyalkylcarbonyl, Het¹aryloxyalkyl, Het¹aryloxyalkyl, Het²aryloxyalkyl, Het²aryloxyalkyl, Het²aryloxyalkyl, Het²aryloxyarbonyl, Het²aryloxyarbonyl, Het²aryloxyalkyl, Het²aryloxyalkyl, Het²aryloxyalkyl, Het²aryloxyalkyl, Het²aryloxyalkyl, Het²aryloxyalkylcarbonyl, Het²aryloxyalkylcarbonyl, Het²aryloxyalkylcarbonyl, Het²aryloxyalkylcarbonyl, Het²aryloxyalkylcarbonyl, Het²aryloxyalkyl, CR⁶=NR⁷, and CR⁶=N(OR⁷),

with R⁶ and R⁷ being independently selected from the group consisting of hydrogen, hydroxyl, alkyl, aryl, Het¹, Het¹alkyl, Het¹aryl, alkenyl, alkynyl, aminoalkyl, aminoaryl, alkylcarbonylamino, arylcarbonylamino, alkylthiocarbonylamino and arylthiocarbonylamino; wherein R² and R³ are independently selected from the group consisting of hydroxyl, alkyloxy, alkyloxyalkyloxy, cycloalkylakyloxy, aralkyloxy, aryloxyalkyloxy, silyloxy, alkylcarbonyloxy, arylcarbonyloxy, cycloalkylcarbonyloxy, aryloxycarbonylalkyloxy, formyloxy, Het¹alkyloxy, Het¹oxy, Het¹oxyalkyloxy, Het¹aryloxy, Het¹aralkyloxy, Het¹cycloalkyloxy, Het²oxy, Het²aralkanoyloxy, Het²aralkyloxy, Het²aralkyloxy, Het²alkanoyloxy, Het²aralkyloxy, Het²aralkyloxy, Het²aralkyloxy, Het²aryloxyalkyloxy, Het²aryloxyalkyloxy, Het²aryloxyalkyloxy, Het²aryloxyalkyloxy,

wherein R¹ R² and R³ are unsubstituted or substituted by one or more substituents independently selected from the group consisting of alkyl, aralkyl, aryl, Het¹, Het², cycloalkyl, alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di(alkyl)aminocarbonyl, aminosulfonyl, alkylS(=O)_t, hydroxy, cyano, halogen and amino, unsubstituted, mono- or disubstituted wherein the substituents are independently selected from the group consisting of alkyl, aryl, aralkyl, aryloxy, arylamino, arylthio, aryloxyalkyl, arylaminoalkyl, aralkoxy, alkylthio, alkoxy, aryloxyalkoxy, arylaminoalkoxy, aralkylamino, aryloxyalkylamino, arylaminoalkylamino, arylthioalkylthio, arylthioalkylamino, cycloalkyl, cycloalkylalkyl, Het¹, Het², Het¹alkyl, Het²alkyl, Het¹amino, Het²alkylamino, Het²alkylamino, Het²thio, Het¹thio, Het¹thio, Het¹alkylthio, Het²alkylthio, Het²alkylthio, Het³oxy, OR⁸, SR⁸, SO₂NR⁸R⁹, SO₂N(OH)R⁸, CN, CR⁸=NR⁹, S(O)R⁸, SO₂R⁸, CR⁸=N(OR⁹), N₃, NO₂, NR⁸R⁹, N(OH)R⁸, C(O)R⁸, C(S)R⁸, CO₂R⁸, CO₂R⁸, C(O)NR⁸R⁹, C(S)NR⁸R⁹, C(O)N(OH)R⁹, NR⁸C(O)R⁹,

10/530,904

Filed

December 23, 2005

 $NR^8C(S)R^9$, $N(OH)C(O)R^9$, $N(OH)C(S)R^8$, $NR^8CO_2R^9$, $NR^8C(O)NR^9R^{10}$, $NR^8C(S)NR^9R^{10}$, $N(OH)CO_2R^8$, $NR^8C(O)SR^9$, $N(OH)C(O)NR^8R^9$, $N(OH)C(S)NR^8R^9$, $NR^8C(O)N(OH)R^9$, $NR^8C(S)N(OH)R^9$, $NR^8SO_2R^9$, $NHSO_2NR^8R^9$, $NR^8SO_2NHR^9$, and $P(O)(OR^8)(OR^9)$, with t being an integer between 1 and 2, and R^8R^9 and R^{10} being each independently selected from the group consisting of hydrogen, hydroxyl, alkyl, aryl, Het^1 , Het^1 alkyl, Het^1 aryl, alkenyl, alkynyl, aminoalkyl, aminoaryl, alkylcarbonylamino, arylcarbonylamino, alkylthiocarbonylamino and arylthiocarbonylamino; and wherein R^4 is selected from the group consisting of, oxo, hydroxyalkyl, alkyl, alkenyl, alkylcarbonylalkyl, arylcarbonylalkyl and R^5 is hydrogen, oxo, hydroxyl, hydroxyalkyl, alkyl, alkenyl, alkenyl, alkylcarbonylalkyl, arylcarbonylalkyl.

(Currently amended) A compound according to claim 1 or 2, 4. wherein R¹ is selected from the group consisting of alkyl, alkenyl, alkynyl, alkyloxyalkyl, alkylthioalkyl, alkyloxycarbonyl, alkanoyl, cycloalkylalkyl, cycloalkylcarbonyl, cycloalkylalkanoyl, cycloalkylalkoxycarbonyl, cycloalkylthioalkyl, alkylcarbonyloxyalkyl, arylcarbonyloxyalkyl, cycloalkylcarbonyloxyalkyl, silyloxyalkyl, aralkyl, arylalkenyl, arylcarbonyl, aryloxycarbonyl, aralkoxycarbonyl, arylthioalkyl, aralkanoyl, aroyl, carboxyl, formyl, alkenylcarbonyl, alkynylcarbonyl, Het¹oxyalkyl, Het¹alkoxycarbonyl, Het¹oxycarbonyl, Het¹aryloxyalkyl, Het¹alkyloxyalkyl, Het¹arylthioalkyl, Het¹aryloxycarbonyl, Het¹aralkoxycarbonyl, Het¹oxyalkylcarbonyl, Het¹alkyloxyalkylcarbonyl, Het¹aryloxyalkylcarbonyl, Het¹carbonyloxyalkyl, Het¹alkylcarbonyloxyalkyl, Het¹aralkylcarbonyloxyalkyl, Het²oxyalkyl, Het²alkyloxyalkyl, Het²oxycarbonyl, Het²alkoxycarbonyl, Het²aralkoxycarbonyl, Het²aryloxycarbonyl, Het²aryloxyalkyl, Het²arylthioalkyl, Het²oxyalkylcarbonyl, Het²alkyloxyalkylcarbonyl, Het²aryloxyalkylcarbonyl, Het²carbonyloxyalkyl, Het²alkylcarbonyloxyalkyl, Het²aralkylcarbonyloxyalkyl, CR⁶=NR⁷, and $CR^6=N(OR^7)$,

with R⁶ and R⁷ being independently selected from the group consisting of hydrogen, hydroxyl, alkyl, aryl, Het¹, Het¹ alkyl, Het¹ aryl, alkenyl, alkynyl, aminoalkyl, aminoaryl, alkylcarbonylamino, arylcarbonylamino, alkylthiocarbonylamino and arylthiocarbonylamino;

10/530,904

Filed

December 23, 2005

wherein R² and R³ are independently selected from the group consisting of hydroxyl, alkyloxy, alkyloxy, cycloalkyloxy cycloalkylalkyloxy, aralkyloxy, aryloxyalkyloxy, silyloxy, alkylcarbonyloxy, aryloxyalkyloxy, silyloxy, alkylcarbonyloxy, aryloxycarbonylalkyloxy, formyloxy, Het¹alkyloxy, Het¹oxy, Het¹aryloxy, Het¹aralkyloxy, Het¹cycloalkyloxy, Het¹aralkanoyloxy, Het¹aralkanoyloxy, Het²aryloxyalkyloxy, Het²oxy, Het²aralkyloxy, Het²aralkyloxy, Het²aralkyloxy, Het²aryloxyalkyloxy, Het²aryloxyalkyloxy, Het²aryloxyalkyloxy, Het²aryloxyalkyloxy, Het²aryloxyalkyloxy, Het²aryloxyalkyloxy,

wherein R¹ R² and R³ are unsubstituted or substituted by one or more substituents independently selected from the group consisting of alkyl, aralkyl, aryl, Het¹, Het², cycloalkyl, alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di(alkyl)aminocarbonyl, aminosulfonyl, alkylS(=O)t, hydroxy, cyano, halogen and amino, unsubstituted, mono- or disubstituted wherein the substituents are independently selected from the group consisting of alkyl, aryl, aralkyl, aryloxy, arylamino, arylthio, aryloxyalkyl, arylaminoalkyl, aralkoxy, alkylthio, alkoxy, aryloxyalkoxy, arylaminoalkoxy, aralkylamino, aryloxyalkylamino, arylaminoalkylamino, arylthioalkoxy, arylthioalkylamino, aralkylthio, aryloxyalkylthio, arylaminoalkylthio, arylthioalkylthio, alkylamino, cycloalkyl, cycloalkylalkyl, Het¹, Het², Het¹alkyl, Het²alkyl, Het¹amino, Het²amino, Het¹alkylamino, Het²alkylamino, Het¹thio, Het²thio, Het¹alkylthio, Het²alkylthio, Het¹oxy and Het²oxy, OR⁸, SR⁸, SO₂NR⁸R⁹, SO₂N(OH)R⁸, CN, CR⁸=NR⁹, S(O)R⁸, SO₂R⁸, CR⁸=N(OR⁹), N₃, NO₂, NR⁸R⁹, N(OH)R⁸, C(O)R⁸, C(S)R⁸, CO₂R⁸, $C(O) = RC(O) = R^8$, $C(O) = R^9$, $C(S) = R^9$, $C(O) = R^9$, C(O) = $NR^{8}C(S)R^{9}, N(OH)C(O)R^{9}, N(OH)C(S)R^{8}, NR^{8}CO_{2}R^{9}, NR^{8}C(O)NR^{9}R^{10}, NR^{8}C(S)NR^{9}R^{10}, NR^{10}R^{10}, NR^{10}R^{10}R^{10}, NR^{10}R$ $N(OH)CO_2R^8$, $NR^8C(O)SR^9$, $N(OH)C(O)NR^8R^9$, $N(OH)C(S)NR^8R^9$, $NR^8C(O)N(OH)R^9$, NR⁸C(S)N(OH)R⁹, NR⁸SO₂R⁹, NHSO₂NR⁸R⁹, NR⁸SO₂NHR⁹, and P(O)(OR⁸)(OR⁹), with t being an integer between 1 and 2, and R⁸ R⁹ and R¹⁰ being each independently selected from the group consisting of hydrogen, hydroxyl, alkyl, aryl, Het¹, Het¹ alkyl, Het¹ aryl, alkenyl, alkynyl, aminoalkyl, aminoaryl, alkylcarbonylamino, arylcarbonylamino, alkylthiocarbonylamino and arylthiocarbonylamino;; and

wherein R⁴ is oxo and R⁵ is hydrogen or alkyl.

5. (Currently amended) A compound according to claim 1 or 2,

10/530,904

Filed

December 23, 2005

wherein R¹ is selected from the group consisting of alkyl, alkenyl, alkynyl, alkyloxyalkyl, alkylthioalkyl, alkanoyl, cycloalkylalkyl, cycloalkylcarbonyl, cycloalkylalkanoyl, cycloalkylthioalkyl, silyloxyalkyl, aralkyl, arylalkenyl, arylcarbonyl, arylthioalkyl, aralkanoyl, aroyl, carboxyl, formyl, alkenylcarbonyl, alkynylcarbonyl, Het¹oxyalkyl, Het¹aryloxyalkyl, Het¹arylthioalkyl, Het¹oxyalkylcarbonyl, Het¹alkyloxyalkyl, Het¹arylthioalkyl, Het¹oxyalkylcarbonyl,

Het alkyloxyalkyl, Het arylthioalkyl, Het oxyalkylcarbonyl, Het alkyloxyalkylcarbonyl, Het alkyloxyalkyl, Het alkyloxyalkyl, Het aryloxyalkyl, Het aryloxyal

with R⁶ and R⁷ being independently selected from the group consisting of hydrogen, hydroxyl, alkyl, aryl, Het¹, Het¹ alkyl, Het¹ aryl, alkenyl, alkynyl, aminoalkyl, aminoaryl, alkylcarbonylamino, arylcarbonylamino, alkylthiocarbonylamino and arylthiocarbonylamino; wherein R² and R³ are independently selected from the group consisting of hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, cycloalkylcarbonyloxy, formyloxy, Het¹ carbonyloxy, Het¹ aralkanoyloxy, Het² aralkanoyloxy, and Het² aralkanoyloxy,

wherein R¹ R² and R³ are unsubstituted or substituted by one or more substituents independently selected from the group consisting of alkyl, aralkyl, aryl, Het¹, Het², cycloalkyl, alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di(alkyl)aminocarbonyl, aminosulfonyl, alkylS(=O)_t, hydroxy, cyano, halogen and amino, unsubstituted, mono- or disubstituted wherein the substituents are independently selected from the group consisting of alkyl, aryl, aralkyl, aryloxy, arylamino, arylthio, aryloxyalkyl, arylaminoalkyl, aralkoxy, alkylthio, alkoxy, aryloxyalkoxy, arylaminoalkoxy, aralkylamino, aryloxyalkylamino, arylaminoalkylamino, arylthioalkoxy, arylthioalkylamino, aralkylthio, aryloxyalkylthio, arylaminoalkylthio, arylthioalkylthio, alkylamino, cycloalkyl, cycloalkylalkyl, Het¹, Het², Het¹alkyl, Het²alkyl, Het¹amino, Het²amino, Het¹alkylamino, Het²alkylamino, Het¹thio, Het²thio, Het¹alkylthio, Het²alkylthio, Het²oxy, OR⁸, SR⁸, SO₂NR⁸R⁹, SO₂N(OH)R⁸, CN, CR⁸=NR⁹, S(O)R⁸, SO₂R⁸, CR⁸=N(OR⁹), N₃, NO₂, NR⁸R⁹, N(OH)R⁸, C(O)R⁸, C(S)R⁸, CO₂R⁸, CO)R⁸, CO)R⁸, CO)R⁸, NR⁸C(O)R⁹, N(OH)C(O)R⁹, N(OH)C(S)R⁸, NR⁸CO₂R⁹, NR⁸C(O)NR⁹R¹⁰, NR⁸C(S)NR⁹R¹⁰,

: 10/530,904

Filed

December 23, 2005

N(OH)CO₂R⁸, NR⁸C(O)SR⁹, N(OH)C(O)NR⁸R⁹, N(OH)C(S)NR⁸R⁹, NR⁸C(O)N(OH)R⁹, NR⁸C(S)N(OH)R⁹, NR⁸SO₂R⁹, NHSO₂NR⁸R⁹, NR⁸SO₂NHR⁹, and P(O)(OR⁸)(OR⁹), with t being an integer between 1 and 2, and R⁸ R⁹ and R¹⁰ being each independently selected from the group consisting of hydrogen, hydroxyl, alkyl, aryl, Het¹, Het¹alkyl, Het¹aryl, alkenyl, alkynyl, aminoalkyl, aminoaryl, alkylcarbonylamino, arylcarbonylamino, alkylthiocarbonylamino and arylthiocarbonylamino;; and

wherein R⁴ is oxo and R⁵ is hydrogen or alkyl.

(Currently amended) A compound according to claims 1 or 2 wherein R¹ is selected from 6. the group consisting of alkyl, alkenyl, alkynyl, alkyloxyalkyl, alkylthioalkyl, cycloalkylalkyl, cycloalkylthioalkyl, silyloxyalkyl, aralkyl, arylalkenyl, arylthioalkyl, carboxyl, formyl, Het¹oxyalkyl, Het¹aryloxyalkyl, Het¹alkyloxyalkyl, Het¹arylthioalkyl, Het²oxyalkyl, Het²alkyloxyalkyl, Het²aryloxyalkyl, and Het²arylthioalkyl, unsubstituted or substituted by one or more substituents independently selected from the group consisting of alkyl, aralkyl, aryl, Het¹, Het², cycloalkyl, alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di(alkyl)aminocarbonyl, aminosulfonyl, alkylS(=O)t, hydroxy, cyano, halogen and amino, unsubstituted, mono- or disubstituted wherein the substituents are independently selected from the group consisting of alkyl, aryl, aralkyl, aryloxy, arylamino, arylthio, aryloxyalkyl, arylaminoalkyl, aralkoxy, alkylthio, alkoxy, aryloxyalkoxy, arylaminoalkoxy, aralkylamino, aryloxyalkylamino, arylaminoalkylamino, arylthioalkoxy, arylthioalkylamino, aralkylthio, aryloxyalkylthio, arylaminoalkylthio, arylthioalkylthio, alkylamino, cycloalkyl, cycloalkylalkyl, Het¹, Het², Het¹alkyl, Het²alkyl, Het¹amino, Het²amino, Het¹alkylamino, Het²alkylamino, Het¹thio, Het alkylthio, Het alkylthio, Het oxy and Het oxy, OR8, SR8, SO₂NR8R⁹, SO₂N(OH)R⁸, CN, $CR^8=NR^9$, $S(O)R^8$, SO_2R^8 , $CR^8=N(OR^9)$, N_3 , NO_2 , NR^8R^9 , $N(OH)R^8$, $C(O)R^8$, $C(S)R^8$, CO_2R^8 , $C(O) = RC(O) = R^8$, $C(O) = R^8$, $C(O) = R^8$, $C(O) = R^8$, $C(O) = R^9$, C(O) =NR⁸C(S)R⁹, N(OH)C(O)R⁹, N(OH)C(S)R⁸, NR⁸CO₂R⁹, NR⁸C(O)NR⁹R¹⁰, NR⁸C(S)NR⁹R¹⁰, N(OH)CO₂R⁸, NR⁸C(O)SR⁹, N(OH)C(O)NR⁸R⁹, N(OH)C(S)NR⁸R⁹, NR⁸C(O)N(OH)R⁹, $NR^8C(S)N(OH)R^9$, $NR^8SO_2R^9$, $NHSO_2NR^8R^9$, $NR^8SO_2NHR^9$, and $P(O)(OR^8)(OR^9)$, with t being an integer between 1 and 2, and R⁸ R⁹ and R¹⁰ being each independently selected from the group consisting of hydrogen, hydroxyl, alkyl, aryl, Het¹, Het¹alkyl, Het¹aryl, alkenyl,

: 10/530,904

Filed

December 23, 2005

alkynyl, aminoalkyl, aminoaryl, alkylcarbonylamino, arylcarbonylamino, alkylthiocarbonylamino and arylthiocarbonylamino; wherein R^2 and R^3 are hydroxyl and wherein R^4 is oxo and R^5 is hydrogen.

- (Currently amended) A compound according to claims 1 or 2, wherein R¹ is selected from 7. the group consisting of alkyl, alkenyl, alkynyl, alkyloxyalkyl, cycloalkylalkyl, silyloxyalkyl, aralkyl, arylalkenyl, carboxyl, formyl, Het¹oxyalkyl, Het¹aryloxyalkyl, Het¹alkyloxyalkyl, Het²oxyalkyl, Het²alkyloxyalkyl, and Het²aryloxyalkyl, unsubstituted or substituted by one or more substituents independently selected from the group consisting of alkyl, aralkyl, aryl, Het¹, Het², cycloalkyl, alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di(alkyl)aminocarbonyl, aminosulfonyl, alkylS(=O)t, hydroxy, cyano, halogen and amino, unsubstituted, mono- or disubstituted wherein the substituents are independently selected from the group consisting of alkyl, aryl, aralkyl, aryloxy, arylamino, arylthio, aryloxyalkyl, arylaminoalkyl, aralkoxy, alkylthio, alkoxy, aryloxyalkoxy, arylaminoalkoxy, aralkylamino, aryloxyalkylamino, arylaminoalkylamino, arylthioalkoxy, arylthioalkylamino, aralkylthio, aryloxyalkylthio, arylaminoalkylthio, arylthioalkylthio, alkylamino, cycloalkyl, cycloalkylalkyl, Het¹, Het², Het¹alkyl, Het²alkyl, Het¹amino, Het²amino, Het¹alkylamino, Het²alkylamino, Het¹thio, Het¹alkylthio, Het²alkylthio, Het¹oxy and Het²oxy, OR⁸, SR⁸, SO₂NR⁸R⁹, SO₂N(OH)R⁸, CN, $CR^8 = NR^9$, $S(O)R^8$, SO_2R^8 , $CR^8 = N(OR^9)$, N_3 , NO_2 , NR^8R^9 , $N(OH)R^8$, $C(O)R^8$, $C(S)R^8$, CO_2R^8 , $\underline{C(O)SRC(O)sR^{8}}, C(O)NR^{8}R^{9}, C(S)NR^{8}R^{9}, C(O)N(OH)R^{9}, C(S)N(OH)R^{8}, NR^{8}C(O)R^{9},$ $NR^8C(S)R^9$, $N(OH)C(O)R^9$, $N(OH)C(S)R^8$, $NR^8CO_2R^9$, $NR^8C(O)NR^9R^{10}$, $NR^8C(S)NR^9R^{10}$, N(OH)CO₂R⁸, NR⁸C(O)SR⁹, N(OH)C(O)NR⁸R⁹, N(OH)C(S)NR⁸R⁹, NR⁸C(O)N(OH)R⁹, NR8C(S)N(OH)R9, NR8SO2R9, NHSO2NR8R9, NR8SO2NHR9, and P(O)(OR8)(OR9), with t being an integer between 1 and 2, and R⁸ R⁹ and R¹⁰ being each independently selected from the group consisting of hydrogen, hydroxyl, alkyl, aryl, Het¹ alkyl, Het¹ aryl, alkenyl, alkynyl, aminoalkyl, aminoaryl, alkylcarbonylamino, arylcarbonylamino, alkylthiocarbonylamino and arylthiocarbonylamino; wherein R² and R³ are hydroxyl, R⁴ is oxo and R⁵ is hydrogen.
- 8. (Previously presented) A compound according to claims 1 or 2, wherein R^1 is selected from the group consisting of alkyl, carboxyl, formyl; wherein R^2 and R^3 are hydroxyl, and wherein R^4 is oxo and R^5 is hydrogen.

: 10/530,904

Filed

December 23, 2005

9. (Original) A compound according to claim 8, wherein R¹ is formyl, R² and R³ are hydroxyl R⁴ is oxo and R⁵ is hydrogen.

10. (Currently amended) A compound according to claim 1 or 3, wherein R¹ is selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, alkyloxyalkyl, hydroxyalkyl, alkylthioalkyl, alkanoyl, cycloalkylalkyl, cycloalkylcarbonyl, cycloalkylalkanoyl, cycloalkylthioalkyl, silyloxyalkyl, aralkyl, arylalkenyl, arylcarbonyl, arylthioalkyl, aralkanoyl, aroyl, carboxyl, formyl, alkenylcarbonyl, alkynylcarbonyl, Het¹oxyalkyl, Het¹aryloxyalkyl, Het¹arylthioalkyl, Het¹oxyalkylcarbonyl, Het¹aryloxyalkylcarbonyl, Het²aryloxyalkylcarbonyl, Het²aryloxyalkyl, Het²aryloxyalkyl, Het²aryloxyalkyl, Het²aryloxyalkyl, Het²aryloxyalkylcarbonyl, Het²aryloxyalkylcarbonyl, CR6=NR7, and CR6=N(OR7), with R6 and R7 being independently selected from the group consisting of hydrogen, hydroxyl, alkyl, aryl, Het¹, Het¹alkyl, Het¹aryl, alkenyl, alkynyl, aminoalkyl, aminoaryl,

with R° and R′ being independently selected from the group consisting of hydrogen, hydroxyl alkyl, aryl, Het¹ alkyl, Het¹ aryl, alkenyl, alkynyl, aminoalkyl, aminoaryl, alkylcarbonylamino, arylcarbonylamino, alkylthiocarbonylamino and arylthiocarbonylamino; wherein R² and R³ are independently selected from the group consisting of hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, cycloalkylcarbonyloxy, formyloxy, Het¹ carbonyloxy, Het¹ aralkanoyloxy, Het² aralkanoyloxy, and Het² aralkanoyloxy,

wherein R¹ R² and R³ are unsubstituted or substituted by one or more substituents independently selected from the group consisting of alkyl, aralkyl, aryl, Het¹, Het², cycloalkyl, alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di(alkyl)aminocarbonyl, aminosulfonyl, alkylS(=O)_t, hydroxy, cyano, halogen and amino, unsubstituted, mono- or disubstituted wherein the substituents are independently selected from the group consisting of alkyl, aryl, aralkyl, aryloxy, arylamino, arylthio, aryloxyalkyl, arylaminoalkyl, aralkoxy, alkylthio, alkoxy, aryloxyalkoxy, arylaminoalkoxy, aralkylamino, aryloxyalkylamino, arylaminoalkylamino, arylthioalkoxy, arylthioalkylamino, aralkylthio, aryloxyalkylthio, arylaminoalkylthio, arylthioalkylthio, alkylamino, cycloalkyl, cycloalkylalkyl, Het¹, Het², Het¹alkyl, Het²alkyl, Het¹amino, Het²alkylamino, Het²alkylamino, Het¹alkylamino, Het¹alk

: 10/530,904

Filed

: December 23, 2005

Het²alkylthio, Het¹oxy and Het²oxy, OR⁸, SR⁸, SO₂NR⁸R⁹, SO₂N(OH)R⁸, CN, CR⁸=NR⁹, S(O)R⁸, SO₂R⁸, CR⁸=N(OR⁹), N₃, NO₂, NR⁸R⁹, N(OH)R⁸, C(O)R⁸, C(S)R⁸, CO₂R⁸, C(O)SR^C(O)SR⁸, C(O)NR⁸R⁹, C(S)NR⁸R⁹, C(O)N(OH)R⁹, C(S)N(OH)R⁸, NR⁸C(O)R⁹, NR⁸C(S)R⁹, N(OH)C(O)R⁹, N(OH)C(S)R⁸, NR⁸CO₂R⁹, NR⁸C(O)NR⁹R¹⁰, NR⁸C(S)NR⁹R¹⁰, NR⁸C(O)SR⁹, N(OH)C(O)NR⁸R⁹, N(OH)C(S)NR⁸R⁹, NR⁸C(O)N(OH)R⁹, NR⁸C(S)N(OH)R⁹, NR⁸SO₂R⁹, NHSO₂NR⁸R⁹, NR⁸SO₂NHR⁹, and P(O)(OR⁸)(OR⁹), with t being an integer between 1 and 2, and R⁸ R⁹ and R¹⁰ being each independently selected from the group consisting of hydrogen, hydroxyl, alkyl, aryl, Het¹, Het¹alkyl, Het¹aryl, alkenyl, alkynyl, aminoalkyl, aminoaryl, alkylcarbonylamino, arylcarbonylamino, alkylthiocarbonylamino and arylthiocarbonylamino;; and

wherein R⁴ is oxo, hydroxyalkyl, alkyl, alkenyl, arylcarbonylaryl, or alkylcarbonylalkyl and R⁵ is hydrogen or alkyl.

- 11. (Previously presented) A compound according to claim 1 or 3, wherein R¹ is hydroxyalkyl, R² and R³ are hydroxyl, R⁴ is oxo and R⁵ is hydrogen.
- 12. (Currently amended) A compound according to claim 1 or 3, wherein R¹ is selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, hydroxyalkyl, alkyloxyalkyl, alkylthioalkyl, cycloalkylalkyl, cycloalkylthioalkyl, silyloxyalkyl, aralkyl, arylalkenyl, arylthioalkyl, carboxyl, formyl, Het¹oxyalkyl, Het¹aryloxyalkyl, Het¹alkyloxyalkyl, Het¹arylthioalkyl, Het²arylthioalkyl, Het²arylthioalkyl, and Het²arylthioalkyl, unsubstituted or substituted by one or more substituents independently selected from the group consisting of alkyl, aralkyl, aryl, Het¹, Het², cycloalkyl, alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di(alkyl)aminocarbonyl, aminosulfonyl, alkylS(=O)t, hydroxy, cyano, halogen and amino, unsubstituted, mono- or disubstituted wherein the substituents are independently selected from the group consisting of alkyl, aryl, aralkyl, aryloxy, arylamino, arylthio, aryloxyalkyl, aralkoxy, alkylthio, alkoxy, aryloxyalkoxy, arylaminoalkoxy, aralkylamino, aryloxyalkylamino, arylaminoalkylamino, arylthioalkylthio, alkylamino, arylthioalkylthio, aryloxyalkylthio, arylaminoalkylthio, arylthioalkylthio, alkylamino, cycloalkyl, cycloalkylalkyl, Het¹, Het², Het¹alkyl, Het²alkyl, Het¹amino, Het²amino,

10/530,904

Filed

December 23, 2005

Het¹alkylamino, Het²alkylamino, Het¹thio, Het²thio, Het¹alkylthio, Het²alkylthio, Het¹oxy and Het²oxy, OR⁸, SR⁸, SO₂NR⁸R⁹, SO₂N(OH)R⁸, CN, CR⁸=NR⁹, S(O)R⁸, SO₂R⁸, CR⁸=N(OR⁹), N₃, NO₂, NR⁸R⁹, N(OH)R⁸, C(O)R⁸, C(S)R⁸, CO₂R⁸, C(O)SRC(O)sR⁸, C(O)NR⁸R⁹, C(S)NR⁸R⁹, C(O)N(OH)R⁹, C(S)N(OH)R⁸, NR⁸C(O)R⁹, NR⁸C(S)R⁹, N(OH)C(O)R⁹, N(OH)C(S)R⁸, NR⁸CO₂R⁹, NR⁸C(O)NR⁹R¹⁰, NR⁸C(S)NR⁹R¹⁰, N(OH)CO₂R⁸, NR⁸C(O)SR⁹, N(OH)C(O)NR⁸R⁹, N(OH)C(S)NR⁸R⁹, NR⁸C(O)N(OH)R⁹, NR⁸C(S)N(OH)R⁹, NR⁸SO₂R⁹, NHSO₂NR⁸R⁹, NR⁸SO₂NHR⁹, and P(O)(OR⁸)(OR⁹), with t being an integer between 1 and 2, and R⁸ R⁹ and R¹⁰ being each independently selected from the group consisting of hydrogen, hydroxyl, alkyl, aryl, Het¹, Het¹alkyl, Het¹aryl, alkenyl, alkynyl, aminoalkyl, aminoaryl, alkylcarbonylamino, arylcarbonylamino, alkylthiocarbonylamino and arylthiocarbonylamino; wherein R² and R³ are hydroxyl and wherein R⁴ is hydroxyalkyl, arylcarbonylalkyl, or alkylcarbonylalkyl and R⁵ is hydrogen.

(Currently amended) A compound according to claim 1 or 3, wherein R¹ is selected from 13. the group consisting of hydrogen, alkyl, alkenyl, alkynyl, hydroxyalkyl, alkyloxyalkyl, cycloalkylalkyl, silyloxyalkyl, aralkyl, arylalkenyl, carboxyl, formyl, Het¹oxyalkyl, Het¹aryloxyalkyl, Het²alkyloxyalkyl, Het²oxyalkyl, Het²alkyloxyalkyl, and Het²aryloxyalkyl, unsubstituted or substituted by one or more substituents independently selected from the group consisting of alkyl, aralkyl, aryl, Het¹, Het², cycloalkyl, alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di(alkyl)aminocarbonyl, aminosulfonyl, alkylS(=O)t, hydroxy, cyano, halogen and amino, unsubstituted, mono- or disubstituted wherein the substituents are independently selected from the group consisting of alkyl, aryl, aralkyl, aryloxy, arylamino, arylthio, aryloxyalkyl, arylaminoalkyl, aralkoxy, alkylthio, alkoxy, aryloxyalkoxy, arylaminoalkoxy, aralkylamino, aryloxyalkylamino, arylaminoalkylamino, arylthioalkoxy, arylthioalkylamino, aralkylthio, aryloxyalkylthio, arylaminoalkylthio, arylthioalkylthio, alkylamino, cycloalkyl, cycloalkylalkyl, Het¹, Het², Het¹alkyl, Het²alkyl, Het¹amino, Het²amino, Het¹alkylamino, Het²alkylamino, Het¹thio, Het²thio, Het¹alkylthio, Het²alkylthio, Het¹oxy and Het²oxy, OR⁸, SR⁸, SO₂NR⁸R⁹, SO₂N(OH)R⁸, CN, CR⁸=NR⁹, S(O)R⁸, SO₂R⁸, CR⁸=N(OR⁹), N₃, $NO_{2},NR^{8}R^{9},N(OH)R^{8},C(O)R^{8},C(S)R^{8},CO_{2}R^{8},\underline{C(O)SRC(O)sR^{8}},C(O)NR^{8}R^{9},C(S)NR^{8}R^{9},\\$ $C(O)N(OH)R^9$, $C(S)N(OH)R^8$, $NR^8C(O)R^9$, $NR^8C(S)R^9$, $N(OH)C(O)R^9$, $N(OH)C(S)R^8$,

: 10/530,904

Filed

December 23, 2005

 $NR^{8}CO_{2}R^{9}, NR^{8}C(O)NR^{9}R^{10}, NR^{8}C(S)NR^{9}R^{10}, N(OH)CO_{2}R^{8}, NR^{8}C(O)SR^{9}, \\ N(OH)C(O)NR^{8}R^{9}, N(OH)C(S)NR^{8}R^{9}, NR^{8}C(O)N(OH)R^{9}, NR^{8}C(S)N(OH)R^{9}, NR^{8}SO_{2}R^{9}, \\ NHSO_{2}NR^{8}R^{9}, NR^{8}SO_{2}NHR^{9}, and P(O)(OR^{8})(OR^{9}), \\$

with t being an integer between 1 and 2, and R⁸ R⁹ and R¹⁰ being each independently selected from the group consisting of hydrogen, hydroxyl, alkyl, aryl, Het¹, Het¹alkyl, Het¹aryl, alkenyl, alkynyl, aminoalkyl, aminoaryl, alkylcarbonylamino, arylcarbonylamino, alkylthiocarbonylamino and arylthiocarbonylamino; wherein R² and R³ are hydroxyl, R⁴ is hydroxyalkyl, arylcarbonylalkyl, or alkylcarbonylalkyl and R⁵ is hydrogen.

- 14. (Previously presented) A compound according to claim 1 or 3, wherein R¹ is selected from the group consisting of alkyl, hydroxyalkyl, carboxyl, and formyl; wherein R² and R³ are hydroxyl, and wherein R⁴ is arylcarbonylalkyl and R⁵ is hydrogen.
- 15. (Original) A compound according to claim 14, wherein R¹ is hydroxyalkyl, R² and R³ are hydroxyl, R⁴ is arylcarbonylalkyl and R⁵ is hydrogen.
- 16. (Original) A compound according to claim 15, wherein R^1 is hydroxymethylene, R^2 and R^3 are hydroxyl, R^4 is phenylcarbonylmethylene and R^5 is hydrogen.
- 17. (Currently amended) A compound having the formula Ia or a pharmaceutically acceptable salt or ester thereof,

formula Ia

$$R_4$$
 R_5
 R_2
 R_1
 R_3

wherein R¹ is selected from the group consisting of alkyl, alkenyl, alkynyl, alkyloxyalkyl, alkylthioalkyl, alkyloxycarbonyl, alkanoyl, cycloalkylalkyl, cycloalkylcarbonyl,

10/530,904

Filed

December 23, 2005

cycloalkylalkanoyl, cycloalkylalkoxycarbonyl, cycloalkylthioalkyl, alkylcarbonyloxyalkyl, arylcarbonyloxyalkyl, cycloalkylcarbonyloxyalkyl, silyloxyalkyl, aralkyl, arylalkenyl, arylcarbonyl, aryloxycarbonyl, aralkoxycarbonyl, arylthioalkyl, aralkanoyl, aroyl, silyloxyalkyl, carboxyl, alkenylcarbonyl, alkynylcarbonyl, Het¹oxyalkyl, Het¹alkoxycarbonyl, Het¹oxycarbonyl, Het¹aryloxyalkyl, Het¹alkyloxyalkyl, Het¹aryloxycarbonyl, Het¹aryloxyalkyl, Het¹aryloxyalkyl, Het¹aryloxyalkylcarbonyl, Het¹aryloxyalkylcarbonyl, Het¹aryloxyalkylcarbonyl, Het¹aryloxyalkylcarbonyl, Het¹arlkylcarbonyloxyalkyl, Het²alkyloxyalkyl, Het²oxycarbonyl, Het²alkyloxyalkyl, Het²aryloxyalkyl, Het²arylo

with R⁶ and R⁷ being independently selected from the group consisting of hydrogen, hydroxyl, alkyl, aryl, Het¹, Het¹ alkyl, Het¹ aryl, alkenyl, alkynyl, aminoalkyl, aminoaryl, alkylcarbonylamino, arylcarbonylamino, alkylthiocarbonylamino and arylthiocarbonylamino;

wherein R² and R³ are independently selected from the group consisting of hydroxyl, alkyloxy, alkyloxy, aryloxyalkyloxy, aryloxyalkyloxy, aryloxyalkyloxy, alkyloxyalkyloxy, cycloalkyloxy cycloalkylalkyloxy, aralkanoyloxy, aryloxyalkyloxy, haloalkyloxy, hydroxyalkyloxy, aralkanoyloxy, aroyloxy, aryloxycarbonylalkyloxy, formyloxy, Het¹alkyloxy, Het¹oxy, Het¹oxyalkyloxy, Het¹aryloxy, Het¹aralkyloxy, Het¹carbonyloxy, Het¹aryloxy, Het¹aryloxy, Het¹aryloxyalkyloxy, Het²aryloxyalkyloxy, Het²aryloxy, Het²aryloxyalkyloxy, Het²aralkanoyloxy, Het²aralkanoyloxy, Het²aralkanoyloxy, Het²aryloxyalkyloxy, Het²aryloxyalkyloxy, Het²aryloxyalkyloxy, Het²aryloxyalkyloxy, Het²aryloxyalkyloxy, Het²aryloxyalkyloxy, Het²aryloxyalkyloxy, Het²aryloxyalkyloxy,

wherein R¹ R² and R³ are unsubstituted or substituted by one or more substituents independently selected from the group consisting of alkyl, aralkyl, aryl, Het¹, Het², cycloalkyl, alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di(alkyl)aminocarbonyl, aminosulfonyl, alkylS(=O)_t, hydroxy, cyano, halogen and amino, unsubstituted, mono- or disubstituted wherein the substituents are independently selected from the group consisting of alkyl, aryl, aralkyl,

: 10/530,904

Filed

.

December 23, 2005

aryloxy, arylamino, arylthio, aryloxyalkyl, arylaminoalkyl, aralkoxy, alkylthio, alkoxy, aryloxyalkoxy, arylaminoalkoxy, aralkylamino, aryloxyalkylamino, arylaminoalkylamino, arylthioalkoxy, arylthioalkylamino, aralkylthio, aryloxyalkylthio, arylaminoalkylthio, arylthioalkylthio, alkylamino, cycloalkyl, cycloalkylalkyl, Het¹, Het², Het¹alkyl, Het²alkyl, Het¹amino, Het²amino, Het¹alkylamino, Het²alkylamino, Het¹thio, Het²thio, Het¹alkylthio, Het²alkylthio, Het¹oxy and Het²oxy, OR⁸, SR⁸, SO₂NR⁸R⁹, SO₂N(OH)R⁸, CN, CR⁸=NR⁹, S(O)R⁸, SO₂R⁸, CR⁸=N(OR⁹), N₃, NO₂, NR⁸R⁹, N(OH)R⁸, C(O)R⁸, C(S)R⁸, CO₂R⁸, $C(O)SRC(O)SR^{8}$, $C(O)NR^{8}R^{9}$, $C(S)NR^{8}R^{9}$, $C(O)N(OH)R^{9}$, $C(S)N(OH)R^{8}$, $NR^{8}C(O)R^{9}$, NR⁸C(S)R⁹, N(OH)C(O)R⁹, N(OH)C(S)R⁸, NR⁸CO₂R⁹, NR⁸C(O)NR⁹R¹⁰, NR⁸C(S)NR⁹R¹⁰, N(OH)CO₂R⁸, NR⁸C(O)SR⁹, N(OH)C(O)NR⁸R⁹, N(OH)C(S)NR⁸R⁹, NR⁸C(O)N(OH)R⁹, NR8C(S)N(OH)R9, NR8SO₂R9, NHSO₂NR8R9, NR8SO₂NHR9, and P(O)(OR8)(OR9), with t being an integer between 1 and 2, and R⁸ R⁹ and R¹⁰ being each independently selected from the group consisting of hydrogen, hydroxyl, alkyl, aryl, Het¹ alkyl, Het¹ aryl, alkenyl, alkynyl, aminoalkyl, aminoaryl, alkylcarbonylamino, arylcarbonylamino, alkylthiocarbonylamino and arylthiocarbonylamino; and wherein R⁴ and R⁵ are hydrogen or alkyl:

wherein Het¹ is defined as a saturated or partially unsaturated monocyclic, bicyclic or polycyclic heterocycle consisting of 3 to 12 ring members which comprise one or more heteroatom ring members selected from nitrogen, oxygen or sulfur, optionally substituted on one or more carbon atoms by alkyl, alkyloxy, halogen, hydroxyl, oxo, optionally mono- or disubstituted amino, nitro, cyano, haloalkyl, carboxyl, alkoxycarbonyl cycloalkyl, optionally mono- or disubstituted aminocarbonyl, methylthio, methylsulfonyl, aryl and a saturated or partially unsaturated monocyclic, bicyclic or tricyclic heterocycle consisting of 3 to 12 ring members which contain one or more heteroatom ring members selected from nitrogen, oxygen or sulfur and whereby the optional substituents on any amino function are independently selected from alkyl, alkyloxy, Het² , Het²alkyl, Het²oxy, Het²oxyalkyl, aryl, aryloxy, aryloxyalkyl, aralkyl, alkyloxycarbonylamino, amino and aminoalkyl whereby each of the amino groups may optionally be mono-or disubstituted with alkyl;

wherein Het² is defined as an aromatic monocyclic, bicyclic or tricyclic heterocycle consisting of 3 to 12 ring members comprising one or more heteroatom ring members selected from nitrogen,

10/530,904

Filed

December 23, 2005

oxygen or sulfur and optionally substituted on one or more carbon atoms by alkyl, alkyloxy, halogen, hydroxyl, optionally mono-or disubstituted amino, nitro, cyano, haloalkyl, carboxyl, alkoxycarbonyl, cycloalkyl, optionally mono-or disubstituted aminocarbonyl, methylthio, methylsulfonyl, aryl, Het¹ and an aromatic monocyclic, bicyclic, or tricyclic heterocycle consisting of 3 to 12 ring members, whereby the optional substituents on any amino function are independently selected from alkyl, alkyloxy, Het¹, Het¹alkyl, Het¹oxy, Het¹oxyalkyl, aryl, aryloxyalkyl, aralkyl, alkyloxycarbonylamino, amino, and amionalkyl whereby each of the amino groups may optionally be mono- or disubstituted with alkyl.

18. (Currently amended) A compound according to claim 17, wherein R¹ is selected from the group consisting of alkyl, alkenyl, alkynyl, alkyloxyalkyl, alkylthioalkyl, alkanoyl, cycloalkylalkyl, cycloalkylcarbonyl, cycloalkylalkanoyl, cycloalkylthioalkyl, silyloxyalkyl, aralkyl, arylalkenyl, arylcarbonyl, arylthioalkyl, aralkanoyl, aroyl, silyloxyalkyl, carboxyl, alkenylcarbonyl, alkynylcarbonyl, Het¹oxyalkyl, Het¹aryloxyalkyl, Het¹aryloxyalkyl, Het¹aryloxyalkyl, Het¹aryloxyalkyl, Het¹aryloxyalkyl, Het²aryloxyalkyl, Het²aryl, and CR6=N(OR³), with R6 and R³ being independently selected from the group consisting of hydrogen, hydroxyl, alkyl, aryl, Het¹, Het¹alkyl, Het¹aryl, alkenyl, alkynyl, aminoalkyl, aminoaryl, alkylcarbonylamino, arylcarbonylamino, alkylthiocarbonylamino and arylthiocarbonylamino;

wherein R² and R³ are independently selected from the group consisting of hydroxyl, alkyloxy, alkyloxy, alkyloxy, cycloalkyloxy cycloalkylalkyloxy, aralkyloxy, aralkyloxy, aryloxyalkyloxy, silyloxy, alkylcarbonyloxy, arylcarbonyloxy, cycloalkylcarbonyloxy, haloalkyloxy, silyloxy, aralkanoyloxy, aryloxycarbonylakyloxy, formyloxy, haloalkyloxy, hydroxyalkyloxy, aralkanoyloxy, aroyloxy, aryloxycarbonylalkyloxy, formyloxy, Het¹alkyloxy, Het¹aryloxy, Het¹aryloxy, Het¹aryloxy, Het¹cycloalkyloxy, Het¹aryloxy, Het¹aryloxy, Het¹aryloxy, Het¹aryloxy, Het¹aryloxy, Het²aryloxy, Het²aryloxy, Het²aryloxy, Het²aryloxy, Het²aryloxy, Het²aryloxy, Het²aryloxy, Het²aryloxy, and Het²aryloxyalkyloxy,

Appl. No. : 10/530,904

Filed: December 23, 2005

wherein R¹ R² and R³ are unsubstituted or substituted by one or more substituents independently selected from the group consisting of alkyl, aralkyl, aryl, Het¹, Het², cycloalkyl, alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di(alkyl)aminocarbonyl, aminosulfonyl, alkylS(=O)t, hydroxy, cyano, halogen and amino, unsubstituted, mono- or disubstituted wherein the substituents are independently selected from the group consisting of alkyl, aryl, aralkyl, aryloxy, arylamino, arylthio, aryloxyalkyl, arylaminoalkyl, aralkoxy, alkylthio, alkoxy, aryloxyalkoxy, arylaminoalkoxy, aralkylamino, aryloxyalkylamino, arylaminoalkylamino, arylthioalkoxy, arylthioalkylamino, aralkylthio, aryloxyalkylthio, arylaminoalkylthio, arylthioalkylthio, alkylamino, cycloalkyl, cycloalkylalkyl, Het¹, Het², Het¹alkyl, Het²alkyl, Het¹amino, Het²amino, Het¹alkylamino, Het²alkylamino, Het¹thio, Het²thio, Het¹alkylthio, Het²alkylthio, Het¹oxy and Het²oxy, OR⁸, SR⁸, SO₂NR⁸R⁹, SO₂N(OH)R⁸, CN, CR⁸=NR⁹, $S(O)R^8$, SO_2R^8 , $CR^8=N(OR^9)$, N_3 , NO_2 , NR^8R^9 , $N(OH)R^8$, $C(O)R^8$, $C(S)R^8$, CO_2R^8 , $C(O)SRC(O)SR^{8}$, $C(O)NR^{8}R^{9}$, $C(S)NR^{8}R^{9}$, $C(O)N(OH)R^{9}$, $C(S)N(OH)R^{8}$, $NR^{8}C(O)R^{9}$, $NR^8C(S)R^9$, $N(OH)C(O)R^9$, $N(OH)C(S)R^8$, $NR^8CO_2R^9$, $NR^8C(O)NR^9R^{10}$, $NR^8C(S)NR^9R^{10}$, $N(OH)CO_2R^8$, $NR^8C(O)SR^9$, $N(OH)C(O)NR^8R^9$, $N(OH)C(S)NR^8R^9$, $NR^8C(O)N(OH)R^9$, NR⁸C(S)N(OH)R⁹, NR⁸SO₂R⁹, NHSO₂NR⁸R⁹, NR⁸SO₂NHR⁹, and P(O)(OR⁸)(OR⁹), with t being an integer between 1 and 2, and R⁸ R⁹ and R¹⁰ being each independently selected from the group consisting of hydrogen, hydroxyl, alkyl, aryl, Het¹, Het¹ alkyl, Het¹ aryl, alkenyl, alkynyl, aminoalkyl, aminoaryl, alkylcarbonylamino, arylcarbonylamino, alkylthiocarbonylamino and arylthiocarbonylamino;, and wherein R⁴ and R⁵ are hydrogen or alkyl.

19. (Currently amended) A compound according to claim 17 or 18, wherein R¹ is selected from the group consisting of alkyl, alkenyl, alkynyl, alkyloxyalkyl, alkylthioalkyl, cycloalkylalkyl, cycloalkylthioalkyl, silyloxyalkyl, aralkyl, arylalkenyl, arylthioalkyl, silyloxyalkyl, carboxyl, Het¹oxyalkyl, Het¹aryloxyalkyl, Het¹alkyloxyalkyl, Het¹arylthioalkyl, Het²oxyalkyl, Het²aryloxyalkyl, and Het²arylthioalkyl, unsubstituted or substituted by one or more substituents independently selected from the group consisting of alkyl, aralkyl, aryl, Het¹, Het², cycloalkyl, alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or

10/530,904

Filed

December 23, 2005

di(alkyl)aminocarbonyl, aminosulfonyl, alkylS(=O)t, hydroxy, cyano, halogen and amino, unsubstituted, mono- or disubstituted wherein the substituents are independently selected from the group consisting of alkyl, aryl, aralkyl, aryloxy, arylamino, arylthio, aryloxyalkyl, arylaminoalkyl, aralkoxy, alkylthio, alkoxy, aryloxyalkoxy, arylaminoalkoxy, aralkylamino, aryloxyalkylamino, arylaminoalkylamino, arylthioalkoxy, arylthioalkylamino, aralkylthio, aryloxyalkylthio, arylaminoalkylthio, arylthioalkylthio, alkylamino, cycloalkyl, cycloalkylalkyl, Het¹, Het², Het¹alkyl, Het²alkyl, Het¹amino, Het²amino, Het²alkylamino, Het¹thio, Het²thio, Het¹alkylthio, Het²alkylthio, Het¹oxy and Het²oxy, OR⁸, SR⁸, SO₂NR⁸R⁹, $SO_2N(OH)R^8$, CN, $CR^8=NR^9$, $S(O)R^8$, SO_2R^8 , $CR^8=N(OR^9)$, N_3 , NO_2 , NR^8R^9 , $N(OH)R^8$, $C(O)R^{8}, C(S)R^{8}, CO_{2}R^{8}, C(O)SRC(O)sR^{8}, C(O)NR^{8}R^{9}, C(S)NR^{8}R^{9}, C(O)N(OH)R^{9},$ $C(S)N(OH)R^{8}, NR^{8}C(O)R^{9}, NR^{8}C(S)R^{9}, N(OH)C(O)R^{9}, N(OH)C(S)R^{8}, NR^{8}CO_{2}R^{9},$ $NR^{8}C(O)NR^{9}R^{10}$, $NR^{8}C(S)NR^{9}R^{10}$, $N(OH)CO_{2}R^{8}$, $NR^{8}C(O)SR^{9}$, $N(OH)C(O)NR^{8}R^{9}$, $N(OH)C(S)NR^8R^9$, $NR^8C(O)N(OH)R^9$, $NR^8C(S)N(OH)R^9$, $NR^8SO_2R^9$, $NHSO_2NR^8R^9$, NR⁸SO₂NHR⁹, and P(O)(OR⁸)(OR⁹), with t being an integer between 1 and 2, and R⁸ R⁹ and R¹⁰ being each independently selected from the group consisting of hydrogen, hydroxyl, alkyl, aryl, Het¹ alkyl, Het¹ aryl, alkenyl, alkynyl, aminoalkyl, aminoaryl, alkylcarbonylamino, arylcarbonylamino, alkylthiocarbonylamino and arylthiocarbonylamino; wherein R² and R³ are hydroxyl and wherein R⁴ and R⁵ are hydrogen or alkyl.

20. (Currently amended) A compound according to claim 17 or 18, wherein R¹ is selected from the group consisting of alkyl, alkenyl, alkynyl, alkyloxyalkyl, cycloalkylalkyl, silyloxyalkyl, aralkyl, arylalkenyl, carboxyl, Het¹oxyalkyl, Het¹aryloxyalkyl, Het¹alkyloxyalkyl, Het²oxyalkyl, Het²alkyloxyalkyl, and Het²aryloxyalkyl, unsubstituted or substituted by one or more substituents independently selected from the group consisting of alkyl, aralkyl, aryl, Het¹, Het², cycloalkyl, alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di(alkyl)aminocarbonyl, aminosulfonyl, alkylS(=O)_t, hydroxy, cyano, halogen and amino, unsubstituted, mono- or disubstituted wherein the substituents are independently selected from the group consisting of alkyl, aryl, aralkyl, aryloxy, arylamino, arylthio, aryloxyalkyl, arylaminoalkyl, aralkoxy, alkylthio, alkoxy, aryloxyalkoxy, arylaminoalkoxy, aralkylamino, aryloxyalkylamino, arylaminoalkylamino,

Filed

10/530,904 December 23, 2005

arylthioalkoxy, arylthioalkylamino, aralkylthio, aryloxyalkylthio, arylaminoalkylthio, arylthioalkylthio, alkylamino, cycloalkyl, cycloalkylalkyl, Het¹, Het², Het¹alkyl, Het²alkyl, Het¹amino, Het²amino, Het¹alkylamino, Het²alkylamino, Het¹thio, Het²thio, Het¹alkylthio, Het²alkylthio, Het¹oxy and Het²oxy, OR⁸, SR⁸, SO₂NR⁸R⁹, SO₂N(OH)R⁸, CN, CR⁸=NR⁹, $S(O)R^8$, SO_2R^8 , $CR^8=N(OR^9)$, N_3 , NO_2 , NR^8R^9 , $N(OH)R^8$, $C(O)R^8$, $C(S)R^8$, CO_2R^8 , $C(O)SRC(O)SR^{8}$, $C(O)NR^{8}R^{9}$, $C(S)NR^{8}R^{9}$, $C(O)N(OH)R^{9}$, $C(S)N(OH)R^{8}$, $NR^{8}C(O)R^{9}$, $NR^{8}C(S)R^{9}$, $N(OH)C(O)R^{9}$, $N(OH)C(S)R^{8}$, $NR^{8}CO_{2}R^{9}$, $NR^{8}C(O)NR^{9}R^{10}$, $NR^{8}C(S)NR^{9}R^{10}$, $N(OH)CO_2R^8$, $NR^8C(O)SR^9$, $N(OH)C(O)NR^8R^9$, $N(OH)C(S)NR^8R^9$, $NR^8C(O)N(OH)R^9$, NR8C(S)N(OH)R9, NR8SO2R9, NHSO2NR8R9, NR8SO2NHR9, and P(O)(OR8)(OR9), with t being an integer between 1 and 2, and R⁸ R⁹ and R¹⁰ being each independently selected from the group consisting of hydrogen, hydroxyl, alkyl, aryl, Het¹, Het¹alkyl, Het¹aryl, alkenyl, alkynyl, aminoalkyl, aminoaryl, alkylcarbonylamino, arylcarbonylamino, alkylthiocarbonylamino and arylthiocarbonylamino; wherein R² and R³ are hydroxyl and wherein R⁴ and R⁵ are hydrogen.

(Currently amended) A compound having the formula Ib or a pharmaceutically acceptable 21. salt or ester thereof,

formula Ib

$$R_4$$
 R_5
 R_2
 R_1
 R_3

wherein R¹ is selected from the group consisting of alkenyl, alkynyl, alkyloxyalkyl, alkylthioalkyl, alkyloxycarbonyl, alkanoyl, cycloalkylalkyl, cycloalkylcarbonyl, cycloalkylalkanoyl, cycloalkylalkoxycarbonyl, cycloalkylthioalkyl, alkylcarbonyloxyalkyl, arylcarbonyloxyalkyl, cycloalkylcarbonyloxyalkyl, silyloxyalkyl, aralkyl, arylalkenyl, arylcarbonyl, aryloxycarbonyl, aralkoxycarbonyl, arylthioalkyl, aralkanoyl, aroyl, silyloxyalkyl, carboxyl, alkenylcarbonyl, alkynylcarbonyl, Hetloxyalkyl, Hetlalkoxycarbonyl, Hetloxycarbonyl,

10/530,904

Filed

December 23, 2005

Het¹aryloxyalkyl, Het¹alkyloxyalkyl, Het¹arylthioalkyl, Het¹aryloxycarbonyl, Het¹aralkoxycarbonyl, Het¹oxyalkylcarbonyl, Het¹alkyloxyalkylcarbonyl, Het¹aryloxyalkylcarbonyl, Het¹carbonyloxyalkyl, Het¹alkylcarbonyloxyalkyl, Het¹aralkylcarbonyloxyalkyl, Het²oxyalkyl, Het²alkyloxyalkyl, Het²oxycarbonyl, Het²alkoxycarbonyl, Het²aralkoxycarbonyl, Het²aryloxycarbonyl, Het²aryloxyalkyl, Het²arylthioalkyl, Het²oxyalkylcarbonyl, Het²alkyloxyalkylcarbonyl, Het²aryloxyalkylcarbonyl, $Het^2 carbonyloxyalkyl, Het^2 alkylcarbonyloxyalkyl, Het^2 aralkylcarbonyloxyalkyl, CR^6 = NR^7, and RR^2 aralkylcarbonyloxyalkyl, RR^4 = NR^7, and RR^4 = NR^7, a$ $CR^6=N(OR^7)$,

with R⁶ and R⁷ being independently selected from the group consisting of hydrogen, hydroxyl, alkyl, aryl, Het¹, Het¹alkyl, Het¹aryl, alkenyl, alkynyl, aminoalkyl, aminoaryl, alkylcarbonylamino, arylcarbonylamino, alkylthiocarbonylamino and arylthiocarbonylamino;

wherein R¹ is unsubstituted or substituted by one or more substituents independently selected from the group consisting of alkyl, aralkyl, aryl, Het¹, Het², cycloalkyl, alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di(alkyl)aminocarbonyl, aminosulfonyl, alkylS(=O)t, hydroxy, cyano, halogen and amino, unsubstituted, mono- or disubstituted wherein the substituents are independently selected from the group consisting of alkyl, aryl, aralkyl, aryloxy, arylamino, arylthio, aryloxyalkyl, arylaminoalkyl, aralkoxy, alkylthio, alkoxy, aryloxyalkoxy, arylaminoalkoxy, aralkylamino, aryloxyalkylamino, arylaminoalkylamino, arylthioalkoxy, arylthioalkylamino, aralkylthio, aryloxyalkylthio, arylaminoalkylthio, arylthioalkylthio, alkylamino, cycloalkyl, cycloalkylalkyl, Het¹, Het², Het¹alkyl, Het²alkyl, Het¹amino, Het²amino, Het¹alkylamino, Het²alkylamino, Het¹thio, Het²thio, Het¹alkylthio, Het²alkylthio, Het¹oxy and Het²oxy, OR⁸, SR⁸, SO₂NR⁸R⁹, SO₂N(OH)R⁸, CN, CR⁸=NR⁹, $S(O)R^8$, SO_2R^8 , $CR^8=N(OR^9)$, N_3 , NO_2 , NR^8R^9 , $N(OH)R^8$, $C(O)R^8$, $C(S)R^8$, CO_2R^8 , <u>C(O)SRC(O)sR</u>⁸, C(O)NR⁸R⁹, C(S)NR⁸R⁹, C(O)N(OH)R⁹, C(S)N(OH)R⁸, NR⁸C(O)R⁹, $NR^8C(S)R^9$, $N(OH)C(O)R^9$, $N(OH)C(S)R^8$, $NR^8CO_2R^9$, $NR^8C(O)NR^9R^{10}$, $NR^8C(S)NR^9R^{10}$, N(OH)CO₂R⁸, NR⁸C(O)SR⁹, N(OH)C(O)NR⁸R⁹, N(OH)C(S)NR⁸R⁹, NR⁸C(O)N(OH)R⁹, NR⁸C(S)N(OH)R⁹, NR⁸SO₂R⁹, NHSO₂NR⁸R⁹, NR⁸SO₂NHR⁹, and P(O)(OR⁸)(OR⁹), with t being an integer between 1 and 2, and R⁸ R⁹ and R¹⁰ being each independently selected from the group consisting of hydrogen, hydroxyl, alkyl, aryl, Het¹, Het¹ alkyl, Het¹ aryl, alkenyl,

: 10/530,904

Filed

December 23, 2005

alkynyl, aminoalkyl, aminoaryl, alkylcarbonylamino, arylcarbonylamino, alkylthiocarbonylamino and arylthiocarbonylamino, and

wherein R² and R³ are hydroxyl and wherein R⁴ is replaced by a double bond between the N atom and the C carbon atom of the N-containing heterocyclic ring of formula Ib; and wherein R⁵ is hydrogen;

wherein Het¹ is defined as a saturated or partially unsaturated monocyclic, bicyclic or polycyclic heterocycle consisting of 3 to 12 ring members which comprise one or more heteroatom ring members selected from nitrogen, oxygen or sulfur, optionally substituted on one or more carbon atoms by alkyl, alkyloxy, halogen, hydroxyl, oxo, optionally mono- or disubstituted amino, nitro, cyano, haloalkyl, carboxyl, alkoxycarbonyl cycloalkyl, optionally mono- or disubstituted aminocarbonyl, methylthio, methylsulfonyl, aryl and a saturated or partially unsaturated monocyclic, bicyclic or tricyclic heterocycle consisting of 3 to 12 ring members which contain one or more heteroatom ring members selected from nitrogen, oxygen or sulfur and whereby the optional substituents on any amino function are independently selected from alkyl, alkyloxy, Het², Het²alkyl, Het²oxy, Het²oxyalkyl, aryl, aryloxy, aryloxyalkyl, aralkyl, alkyloxycarbonylamino, amino and aminoalkyl whereby each of the amino groups may optionally be mono-or disubstituted with alkyl;

wherein Het² is defined as an aromatic monocyclic, bicyclic or tricyclic heterocycle consisting of 3 to 12 ring members comprising one or more heteroatom ring members selected from nitrogen, oxygen or sulfur and optionally substituted on one or more carbon atoms by alkyl, alkyloxy, halogen, hydroxyl, optionally mono-or disubstituted amino, nitro, cyano, haloalkyl, carboxyl, alkoxycarbonyl, cycloalkyl, optionally mono-or disubstituted aminocarbonyl, methylthio, methylsulfonyl, aryl, Het¹ and an aromatic monocyclic, bicyclic, or tricyclic heterocycle consisting of 3 to 12 ring members, whereby the optional substituents on any amino function are independently selected from alkyl, alkyloxy, Het¹, Het¹alkyl, Het¹oxy, Het¹oxyalkyl, aryl, aryloxy, aryloxyalkyl, aralkyl, alkyloxycarbonylamino, amino, and amionalkyl whereby each of the amino groups may optionally be mono- or disubstituted with alkyl.

22. (Currently amended) A compound according to claim 21, wherein R¹ is selected from the group consisting of alkenyl, alkynyl, alkyloxyalkyl, cycloalkylalkyl, silyloxyalkyl, aralkyl,

: 10/530,904

Filed

.

December 23, 2005

arylalkenyl, carboxyl, Het¹oxyalkyl, Het¹aryloxyalkyl, Het¹alkyloxyalkyl, Het²oxyalkyl, Het²alkyloxyalkyl, and Het²aryloxyalkyl, unsubstituted or substituted by one or more substituents independently selected from the group consisting of alkyl, aralkyl, aryl, Het¹, Het², cycloalkyl, alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di(alkyl)aminocarbonyl, aminosulfonyl, alkylS(=O), hydroxy, cyano, halogen and amino, unsubstituted, mono- or disubstituted wherein the substituents are independently selected from the group consisting of alkyl, aryl, aralkyl, aryloxy, arylamino, arylthio, aryloxyalkyl, arylaminoalkyl, aralkoxy, alkylthio, alkoxy, aryloxyalkoxy, arylaminoalkoxy, aralkylamino, aryloxyalkylamino, arylaminoalkylamino, arylthioalkoxy, arylthioalkylamino, aralkylthio, aryloxyalkylthio, arylaminoalkylthio, arylthioalkylthio, alkylamino, cycloalkyl, cycloalkylalkyl, Het¹, Het², Het¹alkyl, Het²alkyl, Het¹amino, Het²amino, Het¹alkylamino, Het²alkylamino, Het¹thio, Het²thio, Het¹alkylthio, Het²alkylthio, Het¹oxy and Het²oxy, OR⁸, SR⁸, SO₂NR⁸R⁹, SO₂N(OH)R⁸, CN, CR⁸=NR⁹, $S(O)R^8$, SO_2R^8 , $CR^8=N(OR^9)$, N_3 , NO_2 , NR^8R^9 , $N(OH)R^8$, $C(O)R^8$, $C(S)R^8$, CO_2R^8 , $C(O)SRC(O)SR^{8}$, $C(O)NR^{8}R^{9}$, $C(S)NR^{8}R^{9}$, $C(O)N(OH)R^{9}$, $C(S)N(OH)R^{8}$, $NR^{8}C(O)R^{9}$, NR⁸C(S)R⁹, N(OH)C(O)R⁹, N(OH)C(S)R⁸, NR⁸CO₂R⁹, NR⁸C(O)NR⁹R¹⁰, NR⁸C(S)NR⁹R¹⁰, $N(OH)CO_2R^8, NR^8C(O)SR^9, N(OH)C(O)NR^8R^9, N(OH)C(S)NR^8R^9, NR^8C(O)N(OH)R^9, \\$ NR8C(S)N(OH)R9, NR8SO2R9, NHSO2NR8R9, NR8SO2NHR9, and P(O)(OR8)(OR9), with t being an integer between 1 and 2, and R⁸ R⁹ and R¹⁰ being each independently selected from the group consisting of hydrogen, hydroxyl, alkyl, aryl, Het¹, Het¹ alkyl, Het¹ aryl, alkenyl, alkynyl, aminoalkyl, aminoaryl, alkylcarbonylamino, arylcarbonylamino, alkylthiocarbonylamino and arylthiocarbonylamino; wherein R² and R³ are hydroxyl and wherein R⁴ and R⁵ are hydrogen.

23. (Currently amended) A compound according to claim 22, wherein R¹ is selected from the group consisting of alkyl, alkenyl, alkynyl, alkyloxyalkyl, cycloalkylalkyl, silyloxyalkyl, aralkyl, arylalkenyl, carboxyl, Het¹oxyalkyl, Het¹aryloxyalkyl, Het¹alkyloxyalkyl, Het²oxyalkyl, Het²alkyloxyalkyl, and Het²aryloxyalkyl, unsubstituted or substituted by one or more substituents independently selected from the group consisting of alkyl, aralkyl, aryl, Het¹, Het², cycloalkyl, alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di(alkyl)aminocarbonyl, aminosulfonyl, alkylS(=O)t, hydroxy, cyano, halogen and amino, unsubstituted, mono- or disubstituted wherein

10/530,904

Filed

December 23, 2005

the substituents are independently selected from the group consisting of alkyl, aryl, aralkyl, aryloxy, arylamino, arylthio, aryloxyalkyl, arylaminoalkyl, aralkoxy, alkylthio, alkoxy, aryloxyalkoxy, arylaminoalkoxy, aralkylamino, aryloxyalkylamino, arylaminoalkylamino, arylthioalkoxy, arylthioalkylamino, aralkylthio, aryloxyalkylthio, arylaminoalkylthio, arylthioalkylthio, alkylamino, cycloalkyl, cycloalkylalkyl, Het¹, Het², Het¹alkyl, Het²alkyl, Het¹amino, Het²amino, Het¹alkylamino, Het²alkylamino, Het¹thio, Het²thio, Het¹alkylthio, Het²alkylthio, Het¹oxy and Het²oxy, OR⁸, SR⁸, SO₂NR⁸R⁹, SO₂N(OH)R⁸, CN, CR⁸=NR⁹, $S(O)R^8$, SO_2R^8 , $CR^8=N(OR^9)$, N_3 , NO_2 , NR^8R^9 , $N(OH)R^8$, $C(O)R^8$, $C(S)R^8$, CO_2R^8 , $C(O)SRC(O)SR^{8}$, $C(O)NR^{8}R^{9}$, $C(S)NR^{8}R^{9}$, $C(O)N(OH)R^{9}$, $C(S)N(OH)R^{8}$, $NR^{8}C(O)R^{9}$, $NR^{8}C(S)R^{9}$, $N(OH)C(O)R^{9}$, $N(OH)C(S)R^{8}$, $NR^{8}CO_{2}R^{9}$, $NR^{8}C(O)NR^{9}R^{10}$, $NR^{8}C(S)NR^{9}R^{10}$, $NR^{8}C(S)NR^{9}R^$ N(OH)CO₂R⁸, NR⁸C(O)SR⁹, N(OH)C(O)NR⁸R⁹, N(OH)C(S)NR⁸R⁹, NR⁸C(O)N(OH)R⁹, NR8C(S)N(OH)R9, NR8SO2R9, NHSO2NR8R9, NR8SO2NHR9, and P(O)(OR8)(OR9), with t being an integer between 1 and 2, and R⁸ R⁹ and R¹⁰ being each independently selected from the group consisting of hydrogen, hydroxyl, alkyl, aryl, Het¹ alkyl, Het¹ aryl, alkenyl, alkynyl, aminoalkyl, aminoaryl, alkylcarbonylamino, arylcarbonylamino, alkylthiocarbonylamino and arylthiocarbonylamino, wherein R² and R³ are hydroxyl; wherein R⁴ is replaced by a double bond between the N atom and the C carbon atom of the N-containing heterocyclic ring of formula Ib; and wherein R⁵ is hydrogen.

24. (Currently amended) A compound of formula I,

$$R_4$$
 R_5
 R_5
 R_1
 R_3
 R_4
 R_5
 R_4
 R_5
 R_4
 R_4
 R_5
 R_4
 R_5

10/530,904

Filed

December 23, 2005

wherein R¹ is hydroxyalkyl, wherein R² and R³ are hydroxyl; wherein R⁴ is replaced by a double bond between the N atom and the C carbon atom of the N-containing heterocyclic ring of formula I; and wherein R⁵ is hydrogen.

25. (Currently amended) A compound of formula I or a pharmaceutically acceptable salt or ester thereof,

$$R_4$$
 R_5
 R_2
 R_1
 R_3

wherein R¹, R², R³, R⁴ and R⁵ are selected as in Table A.

26. (Previously presented) A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a therapeutically effective amount of a compound according to any one of claims 1, 17 and 21.

- 27. (Original) A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a therapeutically effective amount of a compound according to claim 9.
- 28. (Original) A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a therapeutically effective amount of a compound according to claim 11.
- 29. (Cancelled)
- 30. (Currently amended) A method of treating cancer comprising administering a compound according to any one of claims 1, 17, and 21 to an individual in need of such treatment, wherein

10/530,904

Filed

: December 23, 2005

the cancer is selected from the group consisting of lung cancer, breast cancer, melanoma cancer, glioma, colon cancer, bladder cancer, prostate cancer and pancreatic cancer.

31. (Cancelled)

32. (Currently amended) A method of treating cancer comprising administrating to an individual in need of such treatment a pharmaceutical composition according to claim 26, wherein the cancer is selected from the group consisting of lung cancer, breast cancer, melanoma cancer, glioma, colon cancer, bladder cancer, prostate cancer and pancreatic cancer.