Data Structures

15. Tree Data Structure

Trees

- A rooted tree data structure stores information in nodes
- Similar to linked lists:
 - There is a first node, or root
 - Each node has variable number of references to successors
 - Each node, other than the root, has exactly one node pointing to it

Terminology: Parent Child Relations

- All nodes have zero or more child nodes or children
 - I has three children: J, K and L
- For all nodes other than the root node, there is one parent node
 - H is the parent I

Terminology: Degree

- The degree of a node is defined as the number of its children
 - deg(I) = 3
- Nodes with the same parent are siblings
 - J, K, and L are siblings

Terminology: Leaf And Internal Nodes

- Nodes with degree zero are also called leaf nodes
- All other nodes are said to be internal nodes, that is, they are internal to the tree

Terminology: Leaf Nodes Examples

Leaf nodes

Wesley-Hunt, G. D.; Flynn, J. J. "Phylogeny of the Carnivora: basal relationships among the Carnivoramorphans, and assessment of the position of 'Miacoidea'

Terminology: Internal Nodes Example

Internal nodes

Wesley-Hunt, G. D.; Flynn, J. J. "Phylogeny of the Carnivora: basal relationships among the Carnivoramorphans, and assessment of the position of 'Miacoidea'

Terminology: Path

- A path is a sequence of nodes (a₀, a₁, ..., a_n)
 - Where $a_k + 1$ is a child of a_k is
- The length of this path is: n = |nodes in the path| 1
 - For example, the path (B, E, G) has length 2

Terminology: Path Example

Paths of length 10 (11 nodes) and 4 (5 nodes)

Wesley-Hunt, G. D.; Flynn, J. J. "Phylogeny of the Carnivora: basal relationships among the Carnivoramorphans, and assessment of the position of 'Miacoidea'

Terminology: Depth (or Level)

- For each node in a tree, there exists a unique path from the root node to that node
- The length of this path is the depth of the node, e.g.,
 - E has depth 2
 - L has depth 3

Terminology: Depth Example

• Nodes of depth up to 17

Wesley-Hunt, G. D.; Flynn, J. J. "Phylogeny of the Carnivora: basal relationships among the Carnivoramorphans, and assessment of the position of 'Miacoidea'

Terminology: Height

- The height of a tree is defined as the maximum depth of any node within the tree
- The height of a tree with one node is 0
 - Just the root node
- For convenience, we define the height of the empty tree to be -1

Terminology: Height Example

• Height of this tree is 17

Wesley-Hunt, G. D.; Flynn, J. J. "Phylogeny of the Carnivora: basal relationships among the Carnivoramorphans, and assessment of the position of 'Miacoidea'

Terminology: Ancestors And Descendants

- If a path exists from node a to node b
 - a is an ancestor of b
 - b is a descendent of a
- Thus, a node is both an ancestor and a descendant of itself
 - We can add the adjective strict to exclude equality
 - a is a strict descendent of b if a is a descendant of b but a ≠ b

The root node is an ancestor of all nodes

Terminology: Ancestors And Descendants Example

• The descendants of node B are C, D, E, F, and G

The ancestors of node I are H and A

Terminology: Descendants Example

• All descendants (including itself) of the indicated node

Wesley-Hunt, G. D.; Flynn, J. J. "Phylogeny of the Carnivora: basal relationships among the Carnivoramorphans, and assessment of the position of 'Miacoidea'

Terminology: Ancestors Example

• All ancestors (including itself) of the indicated node

Wesley-Hunt, G. D.; Flynn, J. J. "Phylogeny of the Carnivora: basal relationships among the Carnivoramorphans, and assessment of the position of 'Miacoidea'

Terminology: Subtree

- Another approach to a tree is to define the tree recursively
 - A degree-0 node is a tree
- A node with degree n is a tree if it has n children
 - All of its children are disjoint trees (i.e., with no intersecting nodes)
- Given any node a within a tree with root r, the collection of a and all of its descendants is said to be a subtree of the tree with root a

Tree Properties

Property

Number of nodes

Height

Root Node

Leaves

Ancestors of H

Descendants of B

Siblings of E

Left subtree

Value

Example: HTML (1)

HTML document has a tree structure

```
<html>
    <head>
        <title>Hello World!</title>
    </head>
    <body>
        <h1>This is a <u>Heading</u></h1>

    This is a paragraph with some <u>underlined</u> text.
    </body>
</html>
```

Example: HTML (2)

HTML document has a tree structure

Example: HTML (3)

The nested tags define a tree rooted at the HTML tag

```
<html>
   <head>
      <title>Hello World!</title>
   </head>
   <body>
      <h1>This is a <u>Heading</u></h1>
      This is a paragraph with some
      <u>underlined</u> text.
   </body>
                              html
</html>
                head
                                            body
                title
           "Hello World!"
                           "This is a "
                                     "Heading"
                                                                  " text."
                                    "This is a paragraph with "
                                                          "underlined"
```

Binary Tree

Binary Tree

- In a binary tree each node has at most two children
 - Allows to label the children as left and right

- Likewise, the two sub-trees are referred as
 - Left-hand subtree
 - Right-hand subtree

Binary Tree: Example

• Some variations on binary trees with five nodes

Binary Tree: Full Node

 A full node is a node where both the left and right sub-trees are non-empty trees

Full Binary Tree

- A full binary tree is where each node is:
 - A full node, or
 - A leaf node
- Full binary tree is also called proper binary tree, strictly binary tree or 2-tree

Complete (Or Perfect) Binary Tree

- A complete binary tree of height h is a binary tree where
 - All leaf nodes have the same depth h
 - All other nodes are full

Complete Binary Tree: Recursive Definition

- A binary tree of height h = 0 is perfect
- A binary tree with height h > 0 is perfect
 - If both sub-trees are prefect binary trees of height h-1

Complete Binary Tree: Example

Complete binary trees of height h = 0, 1, 2, 3 and 4

30

Binary Tree: Properties (1)

A complete binary tree with height h has 2^h leaf nodes

Binary Tree: Properties (2)

- A complete binary tree with height h has 2^h leaf nodes
- A complete binary tree of height h has 2^{h + 1} 1 nodes

$$n = 2^{0} + 2^{1} + 2^{2} + ... + 2^{h} = \sum_{j=0}^{h} 2^{j} = 2^{h+1} - 1$$

Binary Tree: Properties (3)

- A complete binary tree with height h has 2^h leaf nodes
- A complete binary tree of height h has 2^{h + 1} 1 nodes
 - Number of leaf nodes: L = 2^h
 - Number of internal nodes: 2^h 1
 - Total number of nodes: $2L-1 = 2^{h+1} 1$

Binary Tree: Properties (4)

- A complete binary tree with height h has 2^h leaf nodes
- A complete binary tree of height h has 2^{h + 1} 1 nodes
 - Number of leaf nodes: L = 2^h
 - Number of internal nodes: 2^h 1
 - Total number of nodes: $2L-1 = 2^{h+1} 1$
- A complete binary tree with n nodes has height log₂(n + 1) 1

$$n = 2^{h+1} - 1$$

 $2^{h+1} = n + 1$
 $h + 1 = \log_2(n + 1)$
 $\Rightarrow h = \log_2(n + 1) - 1$

Binary Tree: Properties (4)

- A complete binary tree with height h has 2^h leaf nodes
- A complete binary tree of height h has 2^{h + 1} 1 nodes
 - Number of leaf nodes: L = 2^h
 - Number of internal nodes: 2^h 1
 - Total number of nodes: $2L-1 = 2^{h+1} 1$
- A complete binary tree with n nodes has height log₂(n + 1) 1
- Number n of nodes in a binary tree of height h is at least h+1 and at most 2^{h + 1} - 1

Almost (or Nearly) Complete Binary Tree

- Almost complete binary tree of height h is a binary tree in which
 - 1. There are 2^d nodes at depth d for d = 1, 2, ..., h-1
 - > Each leaf in the tree is either at level h or at level h- 1
 - 2. The nodes at depth hare as far left as possible

Missing node towards the right

Almost (or Nearly) Complete Binary Tree

- Almost complete binary tree of height h is a binary tree in which
 - There are 2^d nodes at depth d for d = 1,2,...,h-1
 ➤ Each leaf in the tree is either at level h or at level h- 1
 - 2. The nodes at depth h are as far left as possible (Formal?)

Missing node towards the right

Almost (or Nearly) Complete Binary Tree

Condition 2: The nodes at depth h are as far left as possible

- If a node p at depth h−1 has a left child
 - Every node at depth h−1 to the left of p has 2 children
- If a node at depth h−1 has a right child
 - It also has a left child

Tree `

38

Full vs. Almost Complete Binary Tree

Almost Complete Binary Tree: Properties

- Total number of nodes n are between
 - Complete binary tree of height h-1, i.e., 2^h nodes
 - Complete binary tree of height h, i.e., 2^{h+1} -1 nodes
- Height h is the largest integer less than or equal to log₂(n)

(Completely) Balanced Binary Tree

- Balanced binary tree
 - For each node, the difference in height of the right and left sub-trees is no more than one
- Completely balance binary tree
 - Left and right sub-trees of every node have the same height

Balanced Binary Tree: Example

A balanced binary tree

An unbalanced binary tree

Any Question So Far?

