Peyrin Kao Fall 2022

CS 161 Computer Security

Exam Prep 4

Q1 AES-GROOT (30 points)

Tony Stark develops a new block cipher mode of operation as follows:

$$C_0 = IV$$

$$C_1 = E_K(K) \oplus C_0 \oplus M_1$$

$$C_i = E_K(C_{i-1}) \oplus M_i$$

$$C = C_0 \|C_1\| \cdots \|C_n$$

For all parts, assume that IV is randomly generated per encryption unless otherwise stated.

Q1.1 (3 points) Write the decryption formula for M_i using AES-GROOT. You don't new formula for M_1 .				
Q1.2	(3 points) AES-GROOT is not IND-CPA secure. Which of the following most accurately describes a way to break IND-CPA for this scheme?			
	O It is possible to compute a deterministic value from each ciphertext that is the same if the first blocks of the corresponding plaintexts are the same.			
	\bigcirc C_1 is deterministic. Two ciphertexts will have the same C_1 if the first blocks of the corresponding plaintexts are the same.			
	igcup It is possible to learn the value of K , which can be used to decrypt the ciphertext.			
	O It is possible to tamper with the value of IV such that the decrypted plaintext block M_1 is mutated in a predictable manner.			
Q1.3	(5 points) AES-GROOT is vulnerable to plaintext recovery of the first block of plaintext. Given a ciphertext C of an unknown plaintext M and different plaintext-ciphertext pair (M',C') , provide a formula to recover M_1 in terms of C_i , M_i' , and C_i' (for any i , e.g. C_0 , M_2' , C_6').			
	Recall that the IV for some ciphertext C can be referred to as C_0 .			

-	ntext block M_4 . (5 points) First, the adversary sends a value M'' to the challenger. Express your answer in terms of in terms of C_i , M'_i , and C'_i (for any i).							
Q1.5	_	nts) The challenger sends ba of C_i , M_i' , C_i' , M_i'' , and C_i'' (of $M^{\prime\prime}$ as $C^{\prime\prime}$. V	Write an expression for M_4 in		
Q1.6	(4 points) Which of the following methods of choosing IV allows an adversary under CPA to fully recover an arbitrary plaintext (not necessarily using your attack from above)? Select all that apply \square IV is randomly generated per encryption							
	\square $IV = 1^b$ (the bit 1 repeated b times)							
	\square IV is a counter starting at 0 and incremented per encryption							
		IV is a counter starting a incremented per encryption	tar	andomly value	e chosen once	during key generation and		
Q1.7	\square None of the above (2 points) Let C be the encryption of some plaintext M . If Mallory flips with the last bit of C_3 which of the following blocks of plaintext no longer decrypt to its original value? Select all that apply.							
		M_1		M_3		☐ None of the above		
		M_2		M_4				

If AES-GROOT is implemented with a fixed $IV=0^b$ (a fixed block of b 0's), the scheme is vulnerable to full plaintext recovery under the chosen-plaintext attack (CPA) model. Given a ciphertext C of an unknown plaintext and different plaintext-ciphertext pair (M',C'), describe a method to recover

Q1.8 ((3 poi	nts) Which of the following statements are true for AES-GROOT? Select all that apply.
		Encryption can be parallelized
		Decryption can be parallelized
		AES-GROOT requires padding
		None of the above