Balanced Binary Search Tree (AVL Tree)

Outline

This topic covers balanced binary search trees (AVL Tree):

- Background
- Definition and examples
- Implementation details of AVL operations

Background

From previous lectures:

- Binary search trees store linearly ordered data
- Best case height: $\Theta(\ln(n))$
- Worst case height: O(n)

Requirement:

– Define and maintain a *balance* to ensure $\Theta(\ln(n))$ height

These two examples demonstrate how we can correct for imbalances: starting with this tree, add 1:

This is more like a linked list; however, we can fix this...

Promote 2 to the root, demote 3 to be 2's right child, and 1 remains the left child of 2

The result is a perfect, though trivial tree

We will focus on the: AVL trees

Named after Adelson-Velskii and Landis

Balance is defined by comparing the height of the two sub-trees

Recall:

- An empty tree has height −1
- A tree with a single node has height 0

A binary search tree is said to be AVL balanced if:

- The difference in the heights between the left and right sub-trees is at most 1, and
- Both sub-trees are themselves AVL trees

AVL trees with 1, 2, 3, and 4 nodes:

Here is a larger AVL tree (42 nodes):

To maintain AVL balance, observe that:

- Inserting a node can increase the height of a tree by at most 1
- Removing a node can decrease the height of a tree by at most 1

Consider this AVL tree

Consider inserting 15 into this tree

In this case, the heights of none of the trees change

The tree remains balanced

Consider inserting 42 into this tree

In this case, the heights of none of the trees change

Consider inserting 42 into this tree

- Now we see the heights of two sub-trees have increased by one
- The tree is still balanced

Only insert and erase may change the height

- This is the only place we need to update the height
- These algorithms are already recursive

Types of Imbalance

- Left-Left Imbalance
- Right-Right Imbalance
- Left-Right Imbalance
- Right-Left Imbalance

Rotations for Maintaining Balance

- Left-Left Imbalance perform Right Rotation
- Right-Right Imbalance perform Left Rotation
- Left-Right Imbalance
 - First perform Left Rotation on left->right
 - Then perform Right Rotation
- Right-left Rotation
 - First perform Right Rotation on right->left
 - Then perform Left Rotation

AVL Tree Operations

Examples and Code discussed in class

Summary

In this topic we have covered:

- AVL balance is defined by ensuring the difference in heights is 0 or 1
- Insertions and erases are like binary search trees
- Each insertion requires at least one correction to maintain AVL balance
- Erases may require O(h) corrections
- These corrections require $\Theta(1)$ time
- Depth is $\Theta(\ln(n))$
 - \therefore all $\mathbf{O}(h)$ operations are $\mathbf{O}(\ln(n))$