# INTRODUCTION TO FEDERATED LEARNING

Aurélien Bellet (Inria)

Federated Learning Winter School November 24, 2020

#### **OUTLINE OF THE TALK**

- 1. What is Federated Learning?
- 2. A baseline algorithm: FedAvg
- 3. Some challenges in Federated Learning
- 4. Wrapping up

WHAT IS FEDERATED LEARNING?

#### A SHIFT OF PARADIGM: FROM CENTRALIZED TO DECENTRALIZED DATA

- The standard setting in Machine Learning (ML) considers a centralized dataset processed in a tightly integrated system
- But in the real world data is often decentralized across many parties



# WHY CAN'T WE JUST CENTRALIZE THE DATA?

# 1. Sending the data may be too costly



- · Self-driving cars are expected to generate several TBs of data a day
- Some wireless devices have limited bandwidth/power
- 2. Data may be considered too sensitive



- We see a growing public awareness and regulations on data privacy
- Keeping control of data can give a competitive advantage in business and research



#### HOW ABOUT EACH PARTY LEARNING ON ITS OWN?

- 1. The local dataset may be too small
  - · Sub-par predictive performance (e.g., due to overfitting)
  - · Non-statistically significant results (e.g., medical studies)



- 2. The local dataset may be biased
  - · Not representative of the target distribution



• Federated Learning (FL) aims to collaboratively train a ML model while keeping the data decentralized











 Federated Learning (FL) aims to collaboratively train a ML model while keeping the data decentralized

initialize model











• Federated Learning (FL) aims to collaboratively train a ML model while keeping the data decentralized

each party makes an update using its local dataset











 Federated Learning (FL) aims to collaboratively train a ML model while keeping the data decentralized



• Federated Learning (FL) aims to collaboratively train a ML model while keeping the data decentralized



 Federated Learning (FL) aims to collaboratively train a ML model while keeping the data decentralized

parties update their copy of the model and iterate











• We would like the final model to be as good as the centralized solution (ideally), or at least better than what each party can learn on its own

#### KEY DIFFERENCES WITH DISTRIBUTED LEARNING

#### Data distribution

- In distributed learning, data is centrally stored (e.g., in a data center)
  - · The main goal is just to train faster
  - We control how data is distributed across workers: usually, it is distributed uniformly at random across workers
- In FL, data is naturally distributed and generated locally
  - · Data is **not** independent and identically distributed (non-i.i.d.), and it is imbalanced

# Additional challenges that arise in FL

- Enforcing privacy constraints
- · Dealing with the possibly limited reliability/availability of participants
- Achieving robustness against malicious parties

• ...

#### CROSS-DEVICE VS. CROSS-SILO FL

# Cross-device FL



- Massive number of parties (up to 10<sup>10</sup>)
- · Small dataset per party (could be size 1)
- Limited availability and reliability
- Some parties may be malicious

#### Cross-silo FL



- · 2-100 parties
- · Medium to large dataset per party
- · Reliable parties, almost always available
- Parties are typically honest

#### SERVER ORCHESTRATED VS. FULLY DECENTRALIZED FL

# Server-orchestrated FL



- · Server-client communication
- · Global coordination, global aggregation
- Server is a single point of failure and may become a bottleneck

# Fully decentralized FL



- Device-to-device communication
- · No global coordination, local aggregation
- Naturally scales to a large number of devices

#### FEDERATED LEARNING IS A BOOMING TOPIC

- 2016: the term FL is first coined by Google researchers; 2020: more than 1,000 papers on FL in the first half of the year (compared to just 180 in 2018)<sup>1</sup>
- We have already seen some real-world deployments by companies and researchers
- Several open-source libraries are under development: PySyft, TensorFlow Federated, FATE, Flower, Substra...
- FL is highly multidisciplinary: it involves machine learning, numerical optimization, privacy & security, networks, systems, hardware...

# This is all a bit hard to keep up with!

https://www.forbes.com/sites/robtoews/2020/10/12/the-next-generation-of-artificial-intelligence/

A BASELINE ALGORITHM: FEDAVG

#### **BASIC NOTATIONS**

- We consider a set of K parties (clients)
- Each party k holds a dataset  $\mathcal{D}_k$  of  $n_k$  points
- · Let  $\mathcal{D} = \mathcal{D}_1 \cup \cdots \cup \mathcal{D}_K$  be the joint dataset and  $n = \sum_k n_k$  the total number of points
- We want to solve problems of the form  $\min_{\theta \in \mathbb{R}^p} F(\theta; \mathcal{D})$  where:

$$F(\theta; \mathcal{D}) = \sum_{k=1}^{K} \frac{n_k}{n} F_k(\theta; \mathcal{D}_k)$$
 and  $F_k(\theta; \mathcal{D}_k) = \sum_{d \in \mathcal{D}_k} f(\theta; d)$ 

- $\theta \in \mathbb{R}^p$  are model parameters (e.g., weights of a logistic regression or neural network)
- This covers a broad class of ML problems formulated as empirical risk minimization

# FEDAVG (AKA LOCAL SGD) [McMahan et al., 2017]

# Algorithm FedAvg (server-side)

**Parameters:** client sampling rate  $\rho$ 

initialize  $\theta$ 

**for** each round  $t = 0, 1, \dots$  **do** 

 $S_t \leftarrow \text{random set of } m = \lceil \rho K \rceil \text{ clients}$ 

for each client  $k \in S_t$  in parallel do

 $\theta_k \leftarrow \mathsf{ClientUpdate}(k, \theta)$ 

$$\theta \leftarrow \sum_{k \in \mathcal{S}_t} \frac{n_k}{n} \theta_k$$

Algorithm ClientUpdate( $k, \theta$ )

Parameters: batch size B, number of local steps L, learning rate  $\eta$ 

for each local step  $1, \ldots, L$  do

 $\mathcal{B} \leftarrow \text{mini-batch}$  of B examples from  $\mathcal{D}_k$ 

 $\theta \leftarrow \theta - \frac{n_k}{B} \eta \sum_{d \in \mathcal{B}} \nabla f(\theta; d)$ 

send  $\theta$  to server

- For L=1 and  $\rho=1$ , it is equivalent to classic parallel SGD: updates are aggregated and the model synchronized at each step
- For L > 1: leach client performs multiple local SGD steps before communicating

# FEDAVG (AKA LOCAL SGD) [McMahan et al., 2017]



- FedAvg with L > 1 allows to reduce the number of communication rounds, which is often the bottleneck in FL (especially in the cross-device setting)
- It empirically achieves better generalization than parallel SGD with large mini-batch
- Convergence to the optimal model can be guaranteed for i.i.d. data [Stich, 2019] [Woodworth et al., 2020] but issues arise in strongly non-i.i.d. case (more on this later)

#### **FULLY DECENTRALIZED SETTING**

- We can derive algorithms similar to FedAvg for the fully decentralized setting, where parties do not rely on a server for aggregating updates
- Let  $G = (\{1, ..., K\}, E)$  be a connected undirected graph where nodes are parties and an edge  $\{k, l\} \in E$  indicates that k and l can exchange messages
- Let  $W \in [0,1]^{K \times K}$  be a symmetric, doubly stochastic matrix such that  $W_{k,l} = 0$  if and only if  $\{k,l\} \notin E$
- Given models  $\Theta = [\theta_1, \dots, \theta_K]$  for each party,  $W\Theta$  corresponds to a weighted aggregation among neighboring nodes in G:

$$[W\Theta]_k = \sum_{l \in \mathcal{N}_k} W_{k,l} \theta_l, \quad \text{where } \mathcal{N}_k = \{l : \{k,l\} \in E\}$$

# FULLY DECENTRALIZED (LOCAL) SGD [LIAN ET AL., 2017, KOLOSKOVA ET AL., 2020B]

# **Algorithm** (Fully decentralized SGD (run by party *k*)

Parameters: batch size B, learning rate  $\eta$ , sequence of matrices  $W^{(t)}$  initialize  $\theta_k^{(0)}$  for each round  $t=0,1,\ldots$  do  $\mathcal{B} \leftarrow \text{mini-batch of } B \text{ examples from } \mathcal{D}_k$   $\theta_k^{(t+\frac{1}{2})} \leftarrow \theta_k^{(t)} - \frac{\eta_k}{B} \eta \sum_{d \in \mathcal{B}} \nabla f(\theta_k^{(t)}; d)$   $\theta_k^{(t+1)} \leftarrow \sum_{l \in \mathcal{N}_k^{(t)}} W_{k,l}^{(t)} \theta_l^{(t+\frac{1}{2})}$ 

- Decentralized SGD alternates between local updates and local aggregation
- Doing multiple local steps is equivalent to choosing  $W^{(t)} = I_n$  in some of the rounds
- The convergence rate depends on the topology (the more connected, the faster)

# IN FEDERATED LEARNING 1. DEALING WITH NON-I.I.D. DATA

SOME CHALLENGES

#### **CLIENT DRIFT IN FEDAVG**



- · When local datasets are non-i.i.d., FedAvg suffers from client drift
- To avoid this drift, one must use fewer local updates and/or smaller learning rates, which hurts convergence

#### THEORETICAL CONVERGENCE RATES FOR FEDAVG

- Analyzing the convergence rate of FL algorithms on non-i.i.d. data involves some assumption about how the local cost functions  $F_1, \ldots, F_k$  are related
- For instance, one can assume that there exists constants  $G \ge 0$  and  $B \ge 1$  such that

$$\forall \theta: \quad \frac{1}{K} \sum_{k=1}^{K} \|\nabla F_k(\theta; \mathcal{D}_k)\|^2 \leq \frac{G^2}{4} + \frac{B^2}{4} \|\nabla F(\theta; \mathcal{D})\|^2$$

• FedAvg without client sampling reaches  $\epsilon$  accuracy with  $O(\frac{1}{KL\epsilon^2} + \frac{G}{\epsilon^3/2} + \frac{B^2}{\epsilon})$ , which is slower than the  $O(\frac{1}{KL\epsilon^2} + \frac{1}{\epsilon})$  of parallel SGD with large batch [Karimireddy et al., 2020]

#### SCAFFOLD: CORRECTING LOCAL UPDATES [KARIMIREDDY et al., 2020]

# Algorithm Scaffold (server-side)

Parameters: client sampling rate  $\rho$ , global learning rate  $\eta_g$ 

initialize 
$$\theta$$
,  $c = c_1, \dots, c_K = 0$ 

**for** each round  $t = 0, 1, \dots$  **do** 

 $S_t \leftarrow \text{random set of } m = \lceil \rho K \rceil \text{ clients}$  **for** each client  $k \in S_t$  in parallel **do**  $(\Delta \theta_k, \Delta c_k) \leftarrow \text{ClientUpdate}(k, \theta, c)$ 

$$\theta \leftarrow \theta + \frac{\eta_g}{m} \sum_{k \in \mathcal{S}_t} \Delta \theta_k$$

$$c \leftarrow c + \frac{1}{K} \sum_{k \in \mathcal{S}_t} \Delta c_k$$

# Algorithm ClientUpdate( $k, \theta, c$ )

Parameters: batch size B, # of local steps L, local learning rate  $\eta_l$ 

Initialize 
$$\theta_k \leftarrow \theta$$

for each local step 1, . . . , L do

 $\mathcal{B} \leftarrow \text{mini-batch of } \mathcal{B} \text{ examples from } \mathcal{D}_k$ 

$$\theta_k \leftarrow \theta_k - \eta_l(\frac{n_k}{B} \sum_{d \in \mathcal{B}} \nabla f(\theta; d) - c_k + c)$$

$$c_k^+ \leftarrow c_k - c + \frac{1}{\ln}(\theta - \theta_k)$$

send 
$$(\theta_k - \theta, c_h^+ - c_k)$$
 to server

$$c_k \leftarrow c_k^+$$

- Correction terms  $c_1, \ldots, c_K$  approximate an ideal unbiased update
- · Can show convergence rates which beat parallel SGD

#### SCAFFOLD: CORRECTING LOCAL UPDATES [Karimired by et al., 2020]



- FedAvg becomes slower than parallel SGD for strongly non-i.i.d. data (large G)
- · Scaffold can often do better in such settings
- · Other relevant approach: FedProx [Li et al., 2020b]

#### FEDERATED LEARNING OF PERSONALIZED MODELS

- Learning from non-i.i.d. data is difficult/slow because each party wants the model to go in a particular direction
- If data distributions are very different, learning a single model which performs well for all parties may require a very large number of parameters
- Another direction to deal with non-i.i.d. data is thus to lift the requirement that the learned model should be the same for all parties ("one size fits all")
- Instead, we can allow each party k to learn a (potentially simpler) personalized model  $\theta_k$  but design the objective so as to enforce some kind of collaboration

# PERSONALIZED MODELS FROM A "META" MODEL

• [Hanzely et al., 2020] propose to regularize personalized models to their mean:

$$F(\theta_1,\ldots,\theta_K;\mathcal{D}) = \frac{1}{K} \sum_{k=1}^K F_k(\theta_k;\mathcal{D}_k) + \frac{\lambda}{2K} \sum_{k=1}^K \left\| \theta_k - \frac{1}{K} \sum_{l=1}^K \theta_l \right\|^2$$

• Inspired by meta-learning, [Fallah et al., 2020] propose to learn a global model which easily adapts to each party:

$$F(\theta; \mathcal{D}) = \frac{1}{K} \sum_{k=1}^{K} F_k(\theta - \alpha \nabla F_k(\theta); \mathcal{D}_k)$$

- These formulations are actually related to each other (and to the FedAvg algorithm)
- · Other formulations exist, see e.g., the bilevel approach of [Dinh et al., 2020]

#### PERSONALIZED MODELS VIA TASK RELATIONSHIPS

• Inspired by multi-task learning, [Smith et al., 2017, Vanhaesebrouck et al., 2017] propose to regularize personalized models using (learned) relationships between tasks:

$$F(\theta_1, \dots, \theta_K, W; \mathcal{D}) = \frac{1}{K} \sum_{k=1}^K F_k(\theta_k; \mathcal{D}_k) + \sum_{k < l} W_{k,l} \|\theta_k - \theta_l\|^2$$

- This formulation naturally lends itself to alternating optimization schemes
- It is also well suited to the fully decentralized setting, since W can be seen as a graph of relationships over parties [Vanhaesebrouck et al., 2017]
- [Zantedeschi et al., 2020] propose to learn W to be a sparse graph of relationships and exchange messages only between pairs of related parties when updating the models

# SOME CHALLENGES IN FEDERATED LEARNING 2. PRESERVING PRIVACY

# PRIVACY ISSUES IN (FEDERATED) ML

- ML models are susceptible to various attacks on data privacy
- Membership inference attacks try to infer the presence of a known individual in the training set, e.g., by exploiting the confidence in model predictions [Shokri et al., 2017]



- Reconstruction attacks try to infer some of the points used to train the model, e.g., by differencing attacks [Paige et al., 2020]
- Federated Learning offers an additional attack surface because the server and/or other clients observe model updates (not only the final model) [Nasr et al., 2019]

#### DIFFERENTIAL PRIVACY IN A NUTSHELL







## Definition ([Dwork et al., 2006], informal)

 $\mathcal{A}$  is  $\varepsilon$ -differentially private (DP) if for all neighboring datasets  $\mathcal{D} = \{x_1, x_2, \dots, x_n\}$  and  $\mathcal{D}' = \{x_1, x_2', x_3, \dots, x_n\}$  and all sets S:

$$\Pr[\mathcal{A}(\mathcal{D}) \in S] \leq e^{\varepsilon} \Pr[\mathcal{A}(\mathcal{D}') \in S].$$

#### TWO SETTINGS: CENTRALIZED VS DECENTRALIZED

Centralized setting (also called global setting or trusted curator setting):  $\mathcal{A}$  is differentially private wrt dataset  $\mathcal{D}$ 

Decentralized/federated setting (also called local setting or untrusted curator setting): each  $\mathcal{R}_k$  is DP wrt record  $x_k$  (or local dataset  $\mathcal{D}_k$ )





#### A KEY FUNCTIONALITY: DP AGGREGATION

• Most (server-orchestrated) FL algorithms follow the same high-level pattern:

```
for t=1 to T do
At each party k: compute \theta_k \leftarrow \mathsf{LOCALUPDATE}(\theta,\theta_k), send \theta_k to server At server: compute \theta \leftarrow \frac{1}{K} \sum_k \theta_k, send \theta back to the parties
```

- Differentially private federated learning algorithms can thus be designed from a differentially private aggregation primitive and the composition property of DP
- In other words, given a private value  $x_k$  for each party k, we want to accurately estimate  $x^{avg} = \frac{1}{K} \sum_k x_k$  under a DP constraint

#### APPROACHES TO DP AGGREGATION

- A standard approach in DP to add Gaussian noise calibrated to the sensitivity of the private value (and to the strength of the desired DP guarantee)
- In the decentralized setting, a baseline approach is to have each party k add the noise directly to  $x_k$  [Duchi et al., 2013]
- Unfortunately, the resulting average has poor accuracy unless K is very large: for a fixed privacy guarantee, the gap with the centralized setting is of  $O(\sqrt{K})$
- Cryptographic primitives such as secure aggregation [Bonawitz et al., 2017] and secure shuffling [Balle et al., 2019] can be used to close this gap
- $\cdot$  However their practical implementation poses important challenges when  $\emph{K}$  is large

### A SIMPLER PROTOCOL FOR DP AGGREGATION: GOPA [SABATER ET AL., 2020]

# Algorithm GOPA protocol

Parameters: graph G, variances  $\sigma_{\Delta}^2, \sigma_{\eta}^2 \in \mathbb{R}^+$ 

for all neighboring parties  $\{k, l\}$  in G do k and l draw  $y \sim \mathcal{N}(0, \sigma_{\Delta}^2)$  set  $\Delta_{k,l} \leftarrow y$ ,  $\Delta_{l,k} \leftarrow -y$ 

for each party k do

$$k$$
 draws  $\eta_k \sim \mathcal{N}(0, \sigma_{\eta}^2)$   
 $k$  reveals  $\hat{\mathbf{x}}_k \leftarrow \mathbf{x}_k + \sum_{l \sim k} \Delta_{k,l} + \eta_k$ 

- 1. All neighbors  $\{k,l\}$  in G generate pairwise-canceling Gaussian noise
- 2. Each party *k* generate independent Gaussian noise
- 3. Party *k* reveals the sum of private value, pairwise and independent noise terms
- $\hat{\chi}^{avg} = \frac{1}{K} \sum_k \hat{\chi}_k$  can match the accuracy of the centralized setting (for sufficient  $\sigma_{\Delta}^2$ )
- By choosing an appropriate graph G, each party communicates with only  $O(\log K)$  other parties
- The approach is robust to collusions and drop outs (to some extent)



WRAPPING UP

#### SOME OTHER INTERESTING TOPICS IN FL

- Going beyond empirical risk minimization formulations: tree-based methods [Li et al., 2020a], online learning [Dubey and Pentland, 2020], Bayesian learning...
- Vertical data partitioning, where parties have access to different features about the same examples [Patrini et al., 2016]
- Compressing updates to reduce communication [Koloskova et al., 2020a]
- Fairness in FL [Mohri et al., 2020, Li et al., 2020c, Laguel et al., 2020]
- Security in FL: how to mitigate poisoning attacks [Bagdasaryan et al., 2020] [Blanchard et al., 2017], how to make local computation verifiable [Sabater et al., 2020]

#### KEEPING UP WITH ADVANCES IN FEDERATED LEARNING

Survey paper: Advances and Open Problems in FL [Kairouz et al., 2019]

- A large collaborative effort (50+ authors!)
- · Should be updated by the end of the year

Online seminar: Federated Learning One World (FLOW)

https://sites.google.com/view/one-world-seminar-series-flow/

- · Co-organized with D. Alistarh, V. Smith and P. Richtárik, started in May 2020
- · Weekly talks (usually on Wednesdays, 1pm UTC) covering all aspects of FL
- · The videos and slides of all previous talks are available online

#### REFERENCES I

[Bagdasaryan et al., 2020] Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., and Shmatikov, V. (2020).

How To Backdoor Federated Learning.
In AISTATS

[Balle et al., 2019] Balle, B., Bell, J., Gascón, A., and Nissim, K. (2019).

The Privacy Blanket of the Shuffle Model.

In CRYPTO.

[Blanchard et al., 2017] Blanchard, P., Mhamdi, E. M. E., Guerraoui, R., and Stainer, J. (2017).

Machine learning with adversaries: Byzantine tolerant gradient descent.

In NIPS.

[Bonawitz et al., 2017] Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H. B., Patel, S., Ramage, D., Segal, A., and Seth, K. (2017).

Practical Secure Aggregation for Privacy-Preserving Machine Learning.

In CCS.

[Dinh et al., 2020] Dinh, C. T., Tran, N. H., and Nguyen, T. D. (2020).

Personalized Federated Learning with Moreau Envelopes.

In NeurIPS.

#### REFERENCES II

[Dubey and Pentland, 2020] Dubey, A. and Pentland, A. S. (2020). Differentially-Private Federated Linear Bandits. In NeurIPS.

[Duchi et al., 2013] Duchi, J. C., Jordan, M. I., and Wainwright, M. J. (2013). Local privacy and statistical minimax rates.

[Dwork et al., 2006] Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006).

Calibrating noise to sensitivity in private data analysis.

In Theory of Cryptography (TCC).

[Fallah et al., 2020] Fallah, A., Mokhtari, A., and Ozdaglar, A. (2020). Personalized Federated Learning with Theoretical Guarantees: A Model-Agnostic Meta-Learning Approach. In NeurIPS

[Hanzely et al., 2020] Hanzely, F., Hanzely, S., Horváth, S., and Richtarik, P. (2020). Lower Bounds and Optimal Algorithms for Personalized Federated Learning. In NeurIPS

#### REFERENCES III

[Kairouz et al., 2019] Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode, G., Cummings, R., D'Oliveira, R. G. L., Rouayheb, S. E., Evans, D., Gardner, J., Garrett, Z., Gascón, A., Ghazi, B., Gibbons, P. B., Gruteser, M., Harchaoui, Z., He, C., He, L., Huo, Z., Hutchinson, B., Hsu, J., Jaggi, M., Javidi, T., Joshi, G., Khodak, M., Konečný, J., Korolova, A., Koushanfar, F., Koyejo, S., Lepoint, T., Liu, Y., Mittal, P., Mohri, M., Nock, R., Özgür, A., Pagh, R., Raykova, M., Qi, H., Ramage, D., Raskar, R., Song, D., Song, W., Stich, S. U., Sun, Z., Suresh, A. T., Tramèr, F., Vepakomma, P., Wang, J., Xiong, L., Xu, Z., Yang, Q., Yu, F. X., Yu, H., and Zhao, S. (2019).

Advances and Open Problems in Federated Learning.

Technical report, arXiv:1912.04977.

[Karimireddy et al., 2020] Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S. J., Stich, S. U., and Suresh, A. T. (2020). SCAFFOLD: Stochastic Controlled Averaging for On-Device Federated Learning.

Je ICAN

In ICML.

[Koloskova et al., 2020a] Koloskova, A., Lin, T., Stich, S. U., and Jaggi, M. (2020a).

Decentralized Deep Learning with Arbitrary Communication Compression.

In ICLR.

[Koloskova et al., 2020b] Koloskova, A., Loizou, N., Boreiri, S., Jaggi, M., and Stich, S. U. (2020b).

A Unified Theory of Decentralized SGD with Changing Topology and Local Updates.

In ICML.

#### REFERENCES IV

[Laguel et al., 2020] Laguel, Y., Pillutla, K., Malick, J., and Harchaoui, Z. (2020). Device Heterogeneity in Federated Learning: A Superquantile Approach.

Technical report, arXiv:2002.11223.

[Li et al., 2020a] Li, Q., Wen, Z., and He, B. (2020a).

Practical Federated Gradient Boosting Decision Trees.

In AAAI.

[Li et al., 2020b] Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A., and Smith, V. (2020b).

 $\label{lem:pederated optimization} \ \ \text{In Heterogeneous Networks.}$ 

In MLSys.

[Li et al., 2020c] Li, T., Sanjabi, M., Beirami, A., and Smith, V. (2020c).

Fair Resource Allocation in Federated Learning.

In ICLR.

[Lian et al., 2017] Lian, X., Zhang, C., Zhang, H., Hsieh, C.-J., Zhang, W., and Liu, J. (2017).

Can Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized Parallel Stochastic Gradient Descent.

In NIPS.

#### REFERENCES V

[McMahan et al., 2017] McMahan, H. B., Moore, E., Ramage, D., Hampson, S., and Agüera y Arcas, B. (2017). Communication-efficient learning of deep networks from decentralized data.

In AISTATS.

[Mohri et al., 2020] Mohri, M., Sivek, G., and Suresh, A. T. (2020).

Agnostic Federated Learning.

In ICML.

[Nasr et al., 2019] Nasr, M., Shokri, R., and Houmansadr, A. (2019).

Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks against Centralized and Federated Learning.

In IEEE Symposium on Security and Privacy.

[Paige et al., 2020] Paige, B., Bell, J., Bellet, A., Gascón, A., and Ezer, D. (2020).

Reconstructing Genotypes in Private Genomic Databases from Genetic Risk Scores.

In International Conference on Research in Computational Molecular Biology RECOMB.

[Patrini et al., 2016] Patrini, G., Nock, R., Hardy, S., and Caetano, T. S. (2016).

Fast Learning from Distributed Datasets without Entity Matching.

In *IJCAI*.

#### REFERENCES VI

[Sabater et al., 2020] Sabater, C., Bellet, A., and Ramon, J. (2020).

Distributed Differentially Private Averaging with Improved Utility and Robustness to Malicious Parties.

Technical report, arXiv:2006.07218.

[Shokri et al., 2017] Shokri, R., Stronati, M., Song, C., and Shmatikov, V. (2017).

Membership Inference Attacks Against Machine Learning Models.

In IEEE Symposium on Security and Privacy (S&P).

[Smith et al., 2017] Smith, V., Chiang, C.-K., Sanjabi, M., and Talwalkar, A. S. (2017).

Federated Multi-Task Learning.

In NIPS.

[Stich, 2019] Stich, S. U. (2019).

Local SGD Converges Fast and Communicates Little.

In ICLR.

[Vanhaesebrouck et al., 2017] Vanhaesebrouck, P., Bellet, A., and Tommasi, M. (2017).

Decentralized collaborative learning of personalized models over networks.

In AISTATS.

#### REFERENCES VII

[Woodworth et al., 2020] Woodworth, B., Patel, K. K., Stich, S. U., Dai, Z., Bullins, B., McMahan, H. B., Shamir, O., and Srebro, N. (2020).

Is Local SGD Better than Minibatch SGD?

In ICML.

[Zantedeschi et al., 2020] Zantedeschi, V., Bellet, A., and Tommasi, M. (2020).

Fully Decentralized Joint Learning of Personalized Models and Collaboration Graphs.

In AISTATS.