- BJT biasing and Amplifier
- <u>Unit-1 and 2</u>

Prepared by
S. Vijayakumar, AP/ECE
Ramco Institute of Technology
Academic year
(2018-2019 odd sem)

Chap. 4 BJT transistors

- •Widely used in amplifier circuits
- •Formed by junction of 3 materials
- •npn or pnp structure

Photodiode or Solar all Light Caras device (chisel) biasco. be fore recombination takes places

pnp transistor

Operation of npn transistor

Modes of operation of a BJT transistor

Mode	BE junction	BC junction
cutoff	reverse biased	reverse biased
linear(active)	forward biased	reverse biased
saturation	forward biased	forward biased

Summary of npn transistor behavior

Summary of pnp transistor behavior

Summary of equations for a BJT

$$I_E \approx I_C$$

$$I_C = \beta I_B$$

 β is the current gain of the transistor ≈ 100

$$V_{\text{BE}} = 0.7V(npn)$$

$$V_{BE} = -0.7V(pnp)$$

4.5 Graphical representation of transistor characteristics

Input characteristics

- •Acts as a diode
- •Vbe $\approx 0.7V$

Output characteristics

- •At a fixed IB, Ic is not dependent on Vce
- •Slope of output characteristics in linear region is near 0 (scale exaggerated)

Biasing a transistor

- •We must operate the transistor in the linear region.
- •A transistor's operating point (Q-point) is defined by I_C , V_{CE} , and I_B .

4.6 Analysis of transistor circuits at DC

For all circuits:

assume transistor operates in linear region write B-E voltage loop write C-E voltage loop

Example 4.2

B-E junction acts like a diode

$$V_{\rm E} = V_{\rm B} - V_{\rm BE} = 4V - 0.7V = 3.3V$$

$$I_E = (V_E - 0)/R_E = 3.3/3.3K = 1mA$$

$$I_C \approx I_E = 1mA$$

$$V_C = 10 - I_C R_C = 10 - 1(4.7) = 5.3 V$$

B-E Voltage loop

$$5 = I_B R_B + V_{BE}$$
, solve for I_B
 $I_B = (5 - V_{BE})/R_B = (5-.7)/100k = 0.043mA$

$$I_C = \beta I_B = (100)0.043 \text{mA} = 4.3 \text{mA}$$

$$Vc = 10 - IcRc = 10 - 4.3(2) = 1.4V$$

Exercise 4.8

$$V_{\rm E} = 0 - .7 = -0.7 \rm V$$

$$I_E = (V_E - -10)/R_E = (-.7 +10)/10K = 0.93mA$$

$$I_C \approx I_E = 0.93 \text{mA}$$

$$I_B = I_C/\beta = .93 \text{mA}/50 = 18.6 \mu\text{A}$$

$$V_C = 10 - I_C R_C = 10 - .93(5) = 5.35 V$$

$$V_{CE} = 5.35 - -0.7 = 6.05V$$

Summary of npn transistor behavior

Summary of equations for a BJT

$$I_E \approx I_C$$

$$I_C = \beta I_B$$

 β is the current gain of the transistor ≈ 100

$$V_{\text{BE}} = 0.7V(npn)$$

$$V_{\text{BE}} = -0.7V(pnp)$$

Prob. 4.32

- •Use a voltage divider, R_{B1} and R_{B2} to bias V_B to avoid two power supplies.
- •Make the current in the voltage divider about 10 times I_B to simplify the analysis. Use $V_B = 3V$ and I = 0.2mA.
 - (a) R_{B1} and R_{B2} form a voltage divider.

Assume I >> I_B I =
$$V_{CC}/(R_{B1} + R_{B2})$$

.2mA = 9 /(R_{B1} + R_{B2})

AND

$$V_B = V_{CC}[R_{B2}/(R_{B1} + R_{B2})]$$

$$3 = 9 [R_{B2}/(R_{B1} + R_{B2})]$$
, Solve for R_{B1} and R_{B2} .

$$R_{B1} = 30K\Omega$$
, and $R_{B2} = 15K\Omega$.

Prob. 4.32

Find the operating point

- •Use the Thevenin equivalent circuit for the base
- •Makes the circuit simpler

$$\bullet V_{BB} = V_B = 3V$$

- •RBB is measured with voltage sources grounded
- •R_{BB} = R_{B1}|| R_{B2} = 30K Ω || 15K Ω = .10K Ω

Prob. 4.32

Write B-E loop and C-E loop

$$V_{BB} = I_B R_{BB} + V_{BE} + I_E R_E$$

C-E loop

$$V_{CC} = I_{C}R_{C} + V_{CE} + I_{E}R_{E}$$

Solve for, Ic, VcE, and IB.

This is how all DC circuits are analyzed and designed!

•2-stage amplifier, 1st stage has an npn transistor; 2nd stage has an pnp transistor.

$$I_C = \beta I_B$$

$$I_{\rm C} \approx I_{\rm E}$$

$$V_{\rm BE} = 0.7_{(npn)} = -0.7_{(pnp)}$$

$$\beta = 100$$

Find Ic1, Ic2, Vce1, Vce2

•Use Thevenin circuits.

- $R_{BB1} = R_{B1} || R_{B2} = 33K$
- $\bullet V_{BB1} = V_{CC}[R_{B2}/(R_{B1}+R_{B2})]$

$$V_{BB1} = 15[50K/150K] = 5V$$

Stage 1

•B-E loop

Vbb1 = Ib1Rbb1 + Vbe +Ie1Re1
Use Ib1 \approx Ie1/ β

$$5 = I_{E1}33K / 100 + .7 + I_{E1}3K$$

 $I_{E1} = 1.3 \text{mA}$

C-E loop

neglect IB2 because it is IB2 << IC1

$$V_{CC} = I_{C1}R_{C1} + V_{CE1} + I_{E1}R_{E1}$$

$$15 = 1.3(5) + V_{CE1} + 1.3(3)$$

$$V_{CE1} = 4.87V$$

Stage 2

•B-E loop

$$V_{CC} = I_{E2}R_{E2} + V_{EB} + I_{B2}R_{BB2} + V_{BB2}$$

$$15 = I_{E2}(2K) + .7 + I_{B2}(5K) + 4.87 + 1.3(3)$$

Use $I_{B2} \approx I_{E2}/\beta$, solve for I_{E2}

$$I_{E2} = 2.8 \text{mA}$$

Stage 2

•C-E loop

$$V_{CC} = I_{E2}R_{E2} + V_{EC2} + I_{C2}R_{C2}$$

$$15 = 2.8(2) + V_{EC2} + 2.8(2.7)$$
 solve for V_{EC2}

$$V_{CE2} = 1.84V$$

Summary of DC problem

•Bias transistors so that they operate in the linear region B-E junction forward biased, C-E junction reversed biased

•Use
$$V_{BE} = 0.7$$
 (npn), $I_C \approx I_E$, $I_C = \beta I_B$

- •Represent base portion of circuit by the Thevenin circuit
- •Write B-E, and C-E voltage loops.
- •For analysis, solve for Ic, and Vce.
- •For design, solve for resistor values (Ic and Vce specified).

4.7 Transistor as an amplifier

- •Transistor circuits are analyzed and designed in terms of DC and ac versions of the same circuit.
- •An ac signal is usually superimposed on the DC circuit.
- •The location of the operating point (values of Ic and Vce) of the transistor affects the ac operation of the circuit.
- •There are at least two ac parameters determined from DC quantities.

Transconductance

A small ac signal vbe is superimposed on the DC voltage VBE. It gives rise to a collector signal current ic, superimposed on the dc current Ic.

The slope of the ic - VBE curve at the bias point Q is the

transconductance g_m: the amount of ac current produced by an ac voltage.

Transconductance

Transconductance = slope at Q point

$$g_m = di_c/dv_{BE}/i_c = ICQ$$

where $I_C = I_S[exp(-V_{BE}/V_T)-1]$; the equation for a diode.

$$g_m = I_{SEXP}(-V_{BE}/V_T) (1/V_T)$$

 $g_m \approx I_C/V_T (A/V)$

ac input resistance of transistor

4.8 Small-signal equivalent circuit models

- •ac model
- •Hybrid- π model
- •They are equivalent
- •Works in linear region only

Steps to analyze a transistor circuit

- DC problem
 Set ac sources to zero, solve for DC quantities, Ic and Vce.
- Determine ac quantities from DC parameters Find g_m , r_{π} , and r_e .
- 3 <u>ac problem</u> Set DC sources to zero, replace transistor by hybrid- π model, find ac quantites, Rin, Rout, Av, and Ai.

Find vout/vin, $(\beta = 100)$

DC problem

Short vi, determine Ic and VcE

B-E voltage loop

$$3 = I_B R_B + V_{BE}$$

$$I_B = (3 - .7)/R_B = 0.023 \text{mA}$$

C-E voltage loop

$$V_{CE} = 10 - I_{C}R_{C}$$

$$V_{CE} = 10 - (2.3)(3)$$

$$V_{CE} = 3.1V$$

Q point: $V_{CE} = 3.1 \text{ V}$, $I_{C} = 2.3 \text{ mA}$

Example 4.9

ac problem

Short DC sources, input and output circuits are separate, only coupled mathematically

$$g_m = I_C/V_T = 2.3 mA/25 mV = 92 mA/V$$

 $r_\pi = V_T/I_B = 25 mV/.023 mA = 1.1 K$

$$V_{be} = V_i [r_{\pi} / (100K + r_{\pi})] = 0.011V_i$$

$$v_{\text{out}} =$$
 - $g_{\text{m}} v_{\text{be}} R_{\text{C}}$

$$v_{out} = -92 (0.011v_i)3K$$

$$v_{out}/v_i = -3.04$$

Exercise 4.24

(a) Find Vc, VB, and VE, given: $\beta = 100$, VA = 100V

$$I_E = 1 \text{ mA}$$

$$I_B \approx I_E/\beta = 0.01 \text{mA}$$

$$V_B = 0 - I_B 10 K = -0.1 V$$

$$V_E = V_B - V_{BE} = -0.1 - 0.7 = -0.8V$$

$$V_C = 10V - I_C 8K = 10 - 1(8) = 2V$$

Exercise 4.24

(b) Find g_m , r_π , and r_0 , given: $\beta = 100$, $V_A = 100V$

$$g_m = I_C/V_T = 1 \text{ mA}/25 \text{mV} = 40 \text{ mA/V}$$

$$r_{\pi} = V_T / I_B = 25 \text{mV} / .01 \text{mA} = 2.5 \text{K}$$

 r_0 = output resistance of transistor

 $r_0 = 1/\text{slope}$ of transistor output characteristics

$$r_0 = |V_A|/I_C = 100K$$

Summary of transistor analysis

- •Transistor circuits are analyzed and designed in terms of DC and ac versions of the same circuit.
- •An ac signal is usually superimposed on the DC circuit.
- •The location of the operating point (values of Ic and Vce) of the transistor affects the ac operation of the circuit.
- •There are at least two ac parameters determined from DC quantities.

Steps to analyze a transistor circuit

1 <u>DC problem</u>

Set ac sources to zero, solve for DC quantities, Ic and Vce.

- Determine ac quantities from DC parameters Find g_m , r_{π} , and r_o .
- 3 <u>ac problem</u>

Set DC sources to zero, replace transistor by hybrid- π model, find ac quantites, Rin, Rout, Av, and Ai.

Circuit from Exercise 4.24

$$I_{E} = 1 \text{ mA}$$

$$I_{B} \approx I_{E}/\beta = 0.01 \text{mA}$$

$$V_{B} = 0 - I_{B}10K = -0.1V$$

$$V_{E} = V_{B} - V_{BE} = -0.1 - 0.7 = -0.8V$$

$$V_C = 10V - I_C 8K = 10 - 1(8) = 2V$$

$$g_m = I_C / V_T = 1 \ mA / 25 mV = 40 \ mA / V$$

$$r_\pi = V_T / I_B = 25 mV / .01 mA = 2.5 K$$

ac equivalent circuit

$$\begin{split} v_{\text{be}} &= (R_{\text{b}}||R_{\text{pi}}) / \left[(R_{\text{b}}||R_{\text{pi}}) + R_{\text{s}} \right] v_{\text{i}} \\ v_{\text{be}} &= 0.5 v_{\text{i}} \end{split}$$

$$v_{out} = -(g_m v_{be})(R_o || R_c || R_L)$$

$$v_{out} = -154 v_{be}$$

$$A_v = v_{out}/v_i = -77$$

Neglecting Ro

$$v_{\text{out}} = -(g_{\text{m}}v_{\text{be}})(R_{\text{c}} || R_{\text{L}})$$
$$A_{\text{v}} = v_{\text{out}}/v_{\text{i}} = -80$$

$$R_{in} = R_{pi} = V_T/I_B = (25mV)100/.1 = 2.5K\Omega$$

(c) Find Rout

$$R_{out} = R_c = 47 K\Omega$$

(b) Find
$$A_v = v_{out}/v_{in}$$

$$\begin{aligned} v_{out} &= -\beta i_b \, R_c \\ v_{in} &= i_b \, (R + R_{pi}) \\ A_v &= v_{out} / v_{in} = -\beta i_b \, R_c / \, i_b \, (R + R_{pi}) \\ &= -\beta R_c / (R + R_{pi}) \\ &= -100 (47 \, K) / (100 \, K + 2.5 \, K) \\ &= -37.6 \end{aligned}$$

4.9 Graphical analysis

Input circuit

B-E voltage loop

$$V_{BB} = I_B R_B + V_{BE}$$

$$I_B = (V_{BB} - V_{BE})/R_B$$

Graphical construction of IB and VBE

$$I_B = (V_{BB} - V_{BE})/R_B$$

If
$$V_{BE} = 0$$
, $I_B = V_{BB}/R_B$

If
$$I_B = 0$$
, $V_{BE} = V_{BB}$

Load line

Output circuit

C-E voltage loop

$$V_{CC} = I_{C}R_{C} + V_{CE}$$

$$I_C = (V_{CC} - V_{CE})/R_C$$

Graphical construction of Ic and VCE

Graphical analysis

Bias point location effects

- •Load-line A results in bias point Q_A which is too close to V_{CC} and thus limits the positive swing of V_{CE} .
- •Load-line B results in an operating point too close to the saturation region, thus limiting the negative swing of v_{CE} .

4.11 Basic single-stage BJT amplifier configurations

We will study 3 types of BJT amplifiers

- •CE common emitter, used for Av, Ai, and general purpose
- •CE with R_E common emitter with R_E, same as CE but more stable
- •CC common collector, used for A_i, low output resistance, used as an output stage

CB common base (not covered)

Common emitter amplifier

ac equivalent circuit

Common emitter amplifier

Rin

(Does not include source)

 $R_{\text{in}} \!=\! R_{\text{pi}}$

Rout

(Does not include load)

$$R_{out} = R_C$$

$\begin{aligned} & \mathbf{A}v \\ &= V_{out}/V_{in} \\ & V_{out} = \textbf{-} \; \beta i_b R_C \\ & V_{in} = i_b (R_s + R_{pi}) \end{aligned}$

$$Av = -\beta Rc/(R_s + R_{pi})$$

$$A_i$$

$$= i_{out}/i_{in}$$

$$i_{out} = -\beta i_b$$

$$i_{in} = i_b$$

$$A_i = -\beta$$

Common emitter with RE amplifier

ac equivalent circuit

Common emitter with RE amplifier

Rin

$$R_{in} = V/i_b$$

$$V = i_b R_{pi} + (i_b + \beta i_b) R_E$$

$$R_{in} = R_{pi} + (1 + \beta)R_E$$
 (usually large)

$$R_{out} = R_C$$

$$\mathbf{A}\mathbf{v}$$

$$=V_{out}/V_{in}$$

$$V_{\text{out}} = -\beta i_{\text{b}} R_{\text{C}}$$

$$V_{in} = i_b R_s + i_b R_{pi} + (i_b + \beta i_b) R_E$$

$$Av = -\beta Rc/(R_s + R_{pi} + (1 + \beta)R_E)$$

(less than CE, but less sensitive to β variations)

$\mathbf{A}_{\mathbf{i}}$

$$=i_{out}/i_{in}$$

$$i_{out} = -\beta i_b$$

$$i_{in} = i_b$$

$$A_i = -\beta$$

Common collector (emitter follower) amplifier

Rs

(vout at emitter)

ac equivalent circuit

Common collector amplifier

Rin

$$R_{in} = V/i_b$$

$$V = i_b R_{pi} + (i_b + \beta i_b) R_L$$

$$R_{in} = R_{pi} + (1 + \beta)R_L$$

$\mathbf{A}\mathbf{v}$

$$= V_{out}/V_{s}$$

$$v_{\text{out}} = (i_b + \beta i_b) R_L$$

$$v_s = i_b R_s + i_b R_{pi} + (i_b + \beta i_b) R_L$$

$$Av = (1+\beta)RL/(R_s + R_{pi} + (1 + \beta)RL)$$

$$(always \le 1)$$

Common collector amplifier

$$\begin{aligned} &\mathbf{A}\mathbf{i} \\ &= \mathbf{i}_{out}/\mathbf{i}_{in} \\ &\mathbf{i}_{out} = \mathbf{i}_{b} + \beta \mathbf{i}_{b} \\ &\mathbf{i}_{in} = \mathbf{i}_{b} \\ &\mathbf{A}_{i} = \beta + 1 \end{aligned}$$

$$\begin{aligned} & \textbf{Rout} \\ & (\text{don't include RL, set Vs} = 0) \\ & R_{\text{out}} = v_{\text{out}} / - (i_b + \beta i_b) \\ & v_{\text{out}} = -i_b R_{\text{pi}} + -i_b R_s \\ & R_{\text{out}} = (R_{\text{pi}} + R_s) / (1 + \beta) \\ & (\text{usually low}) \end{aligned}$$

$$R_{\text{in}} \!=\! V/i_b$$

$$V=i_{\text{b}}\,R_{\text{pi}}+(i_{\text{b}}\,+\,\beta i_{\text{b}})R_{\text{E}}$$

$$R_{in} = R_{pi} + (1 + \beta)R_E$$

$$R_{in} = 6.6K + (1 + 50)125$$

$$R_{\text{in}} \approx 13 K$$

(b) Find
$$Av = V_{out}/V_s$$

 $V_{out} = -\beta i_b (R_C || R_L)$
 $V_s = i_b R_s + i_b R_{pi} + (i_b + \beta i_b) R_E$
 $Av = -\beta (R_C || R_L) / (R_s + R_{pi} + (1 + \beta) R_E)$
 $Av = -50 (10K || 10K) / (10K + 6.6K_i + (1 + 50)125)$
 $Av \approx -11$

(c) If v_{be} is limited to 5mV, what is the largest signal at input and output? $v_{be} = i_b R_{pi} = 5mV$

$$i_b = v_{be}/R_{pi} = 5mV/6.6K = 0.76\mu A \text{ (ac value)}$$

$$\begin{split} v_s &= i_b\,R_s + i_b\,R_{pi} + (i_b\,+\,\beta i_b)R_E \\ v_s &= (0.76\mu A)10K + (0.76\mu A)\,6.6K + (0.76\mu A + (50)0.76\mu A\,)125 \\ v_s &\approx 17.4mV \end{split}$$

(c) If v_{be} is limited to 5mV, what is the largest signal at input and output?

$$v_{out} = v_s \, Av$$

$$v_{out} = 17.4 \text{mV}(-11)$$

 $v_{out} \approx -191 \text{mV} \text{ (ac value)}$

Using this circuit, design an amp with:

$$I_E = 2mA$$
 $A_V = -8$
current in voltage divider $I = 0.2mA$

(CE amp because RE is not in ac circuit)

Voltage divider

$$Vcc/I = 9/0.2mA = 45K$$

 $45K = R_1 + R_2$

Choose $V_B \approx 1/3$ Vcc to put operating point near the center of the transistor characteristics

$$R_2/(R_1+R_2)=3V$$

Combining gives, $R_1 = 30K$, $R_2 = 15K$

Find RE (input circuit)

Use Thevenin equivalent

 $V_{BB}=I_BR_{BB}+V_{BE}+I_ER_E$

using $I_B \approx I_E/\beta$

$$R_E = [V_{BB} - V_{BE} - (I_E/\beta)R_{BB}]/I_E$$

$$R_E = [3 - .7 - (2mA/100)10K]/2mA$$

 $R_E = 1.05 K\Omega$

Find Rc (ac circuit)

$$Rpi = V_T/I_B = 25mV(100)/2mA = 1.25K$$

$$Ro = V_A/I_C = 100/2mA = 50K$$

 $Av = v_{out}/v_{in}$

 $V_{\text{out}} = -g_{\text{m}}V_{\text{be}}\left(\text{Ro}||\text{Rc}||\text{RL}\right)$

 $v_{be} = 10K||1.2K / [10K + 10K||1.2K]v_i$

 $Av = -g_m(Ro||Rc||RL)(10K||1.2K) / [10K||1.2K + Rs]$

Set Av = -8, and solve for Rc, $Rc \approx 2K$

CE amplifier

CE amplifier

 $Av \approx -12.2$

CE amplifier

FOURIER COMPONENTS OF TRANSIENT RESPONSE V(\$N_0009)

DC COMPONENT = -1.226074E-01

HARMONIC NO			NORMALIZED COMPONENT		NORMALIZED PHASE (DEG)
1	1.000E+03	1.581E+00	1.000E+00	-1.795E+02	0.000E+00
2	2.000E+03	1.992E-01	1.260E-01	9.111E+01	2.706E+02
3	3.000E+03	2.171E-02	1.374E-02	-1.778E+02	1.668E+00
4	4.000E+03	3.376E-03	2.136E-03	-1.441E+02	3.533E+01

TOTAL HARMONIC DISTORTION = 1.267478E+01 PERCENT

CE amplifier with RE

CE amplifier with RE

 $Av \approx -7.5$

FOURIER COMPONENTS OF TRANSIENT RESPONSE V(\$N_0009)

DC COMPONENT = -1.353568E-02

HARMONIC	FREQUENCY	FOURIER	NORMALIZED	PHASE	NORMALIZED
NO	(HZ)	COMPONENT	COMPONENT	(DEG)	PHASE (DEG)
1	1.000E+03	7.879E-01	1.000E+00	-1.794E+02	0.000E+00
2	2.000E+03	1.604E-02	2.036E-02	9.400E+01	2.734E+02
3	3.000E+03	5.210E-03	6.612E-03	-1.389E+02	4.056E+01
4	4.000E+03	3.824E-03	4.854E-03	-1.171E+02	6.231E+01

TOTAL HARMONIC DISTORTION = 2.194882E+00 PERCENT

Summary

CE w/Re (Re =
$$100$$
) -7.5 2.19%

- •2 stage amplifier
- •Both stages are the same
- Capacitively coupled

(a) Find Ic and Vc of each transistor (same for each stage)

(a) Find Ic and Vc of each transistor (same for each stage)

B-E voltage loop

$$V_{BB} = I_B R_{BB} + V_{BE} + I_E R_E$$

where
$$R_{BB}=R_1||R_2=32K$$

$$V_{BB}=V_{CC}R_2/(R_1+R_2)=4.8V\mbox{, and}$$

$$I_B\thickapprox I_E/\beta$$

$$I_E = [V_{BB} - V_{BE}]/[R_{BB}/\beta + R_E]$$

$$I_E = 0.97 \text{mA}$$

$$V_{c} = V_{cc} - I_{c}R_{c}$$

 $V_{c} = 15 - .97(6.8)$
 $V_{c} = 8.39V$

(b) find ac circuit

$$\begin{split} R_{BB} &= R_1 || R_2 = 100 K || 47 K = 32 K \Omega \\ Rpi &= V_T / I_B = 25 m V (100) /.97 mA \approx 2.6 K \Omega \\ g_m &= I_C / V_T = .97 mA / 25 m V \approx 39 mA / V \end{split}$$


```
(c) find Rin<sub>1</sub>
```

$$Rin_1 = R_{BB} || Rpi$$

= 32K||2.6K|

 $= 2.4 \text{K}\Omega$

find Vb1/Vi

 $= Rin_1/[Rin_1 + R_s]$

= 2.4K/[2.4K + 5K]

= 0.32

(d) find Rin₂

$$Rin_2 = R_{BB} || Rpi$$

 $= 2.4 \mathrm{K}\Omega$

$$V_{b2} = -g_m V_{be1}[R_C || R_{BB} || Rpi]$$

$$V_{b2}/V_{be1} = -g_m[R_C||R_{BB}||R_{pi}]$$

$$v_{b2}/v_{b1} = -(39\text{mA/V})[6.8||32\text{K}||2.6\text{K}]$$

$$v_{out} = -g_m v_{be2}[R_C || R_L]$$

$$v_{\text{out}}/v_{\text{be}2} = -g_{\text{m}}[R_{\text{C}}||R_{\text{L}}]$$

$$V_{b2}/V_{b1} = -(39\text{mA/V})[6.8\text{K}||2\text{K}]$$

= -60.3

(f) find overall voltage gain

$$V_{out}/V_{i} = (V_{b1}/V_{i}) (V_{b2}/V_{b1}) (V_{out}/V_{b2})$$

$$V_{out}/V_i = (0.32) (-69.1) (-60.3)$$

$$v_{out}/v_i = 1332$$

Find Ie1, Ie2, VB1, and VB2

$$I_{E2} = 2mA$$

$$I_{E1} = I_{20\mu A} + I_{B2}$$

$$I_{E1} = I_{20\mu A} + I_{E2}/\beta_2$$

$$I_{E1}=20\mu A+10\mu A$$

$$I_{E1}=30\mu A$$

Find V_{B1}, and V_{B2} Use Thevenin equivalent

$$V_{B1} = V_{BB1} - I_{B1}(R_{BB1})$$

= 4.5 - $(30\mu A/20)500K$
= 3.8V

$$V_{B2} = V_{B1} - V_{BE}$$

= 3.8V - 0.7
= 3.1V

$$\begin{split} Rpi_2 &= V_T/I_{B2} \\ &= V_T \; \beta_2/I_{E2} \\ &= 25mV(200)/2mA \\ &= 2.5K\Omega \end{split}$$

$$\begin{aligned} v_{\text{out}} &= (i_{b2} + \beta_2 i_{b2}) R_L \\ v_{b2} &= (i_{b2} + \beta_2 i_{b2}) R_L + i_{b2} R p i_2 \\ v_{\text{out}} / v_{b2} &= (1 + \beta_2) R_L / [(1 + \beta_2) R_L + R p i_2] \\ &= (1 + 200) 1 K / [(1 + 200) 1 K + 2.5 K] \end{aligned}$$

(b) find
$$R_{in2} = v_{b2}/i_{b2}$$

 $v_{b2} = (i_{b2} + \beta_2 i_{b2})R_L + i_{b2}Rpi_2$

$$\begin{aligned} R_{\text{in2}} &= v_{\text{b2}}/i_{\text{b2}} = (1+\beta_2)R_L + Rpi_2 \\ &= (1+200)1K + 2.5K \\ &\approx 204K \end{aligned}$$


```
(c) find R_{in1} = R_{BB1} || (V_{b1}/i_{b1}) |

= R_{BB1} || [i_{b1}Rpi_1 + (i_{b1} + \beta_1i_{b1})R_{in2}]/i_{b1} |

= R_{BB1} || [Rpi_1 + (1 + \beta_1)R_{in2}],

where Rpi_1 = V_T \beta_1/I_{E1} = 25mV(20)/30\mu A = 16.7K

= 500K || [16.7K + (1 + 20)204K] |

\approx 500K || \Omega
```


$$\begin{aligned} v_{\text{e}1} &= (i_{\text{b}1} + \beta_1 i_{\text{b}1}) R_{\text{i}n2} \\ v_{\text{b}1} &= (i_{\text{b}1} + \beta_1 i_{\text{b}1}) R_{\text{i}n2} + i_{\text{b}1} R p i_1 \end{aligned}$$

$$\begin{aligned} v_{\text{el}}/v_{\text{bl}} &= (1+\beta_1) \; R_{\text{in}2}/[(1+\beta_1) \; R_{\text{in}2} + Rpi_1] \\ &= (1+20)204 K/[(1+20)204 K + 16.7 K] \\ &\approx 0.996 \end{aligned}$$

(d) find
$$v_{b1}/v_i$$

 $v_{b1}/v_i = R_{in1}/[R_S + R_{in1}]$
 $= 0.82$

(e) find overall voltage gain
$$v_{out}/v_i = (v_{b1}/v_i) (v_{e1}/v_{b1}) (v_{out}/v_{e1})$$

$$v_{out}/v_i = (0.82) (0.99) (0.99)$$

$$v_{out}/v_i = 0.81$$

(Prob. 4.96) Voltage outputs at each stage

Output of Output of Input stage 2 stage 1

(Prob. 4.96) Current

Input to stage 2 (ib2)

Input current

(Prob. 4.96) Current

Input to output stage 2 (ib2) current

(Prob. 4.96) Current

Input to stage 2 (ib2) Input current

output current

(Prob. 4.96) Power and current gain

Input current =
$$(Vi)/R_{in} = 1/500K = 2.0\mu A$$
 output current= $(Vout)/R_L = (0.81V)/1K = 0.81m A$ current gain = $0.81mA/2.0\mu A = 405$

Input power = (Vi) (Vi)/
$$R_{in}$$
 = 1 x 1/500K = 2.0 μ W output power = (Vout) (Vout)/ R_L = (0.81V) (0.81V)/1K= 656 μ W power gain = 656 μ W/2 μ W = 329

BJT Output Characteristics

- •Plot Ic vs. Vce for multiple values of Vce and Ib
- •From Analysis menu use DC Sweep
- •Use Nested sweep in DC Sweep section

Probe: BJT Output Characteristics

BJT Output Characteristics: current gain

BJT Output Characteristics: transistor output resistance

CE Amplifier: Measurements with Spice

Input Resistance Measurement Using SPICE

- •Replace source, Vs and Rs with Vin, measure Rin = Vin/Iin
- •Do not change DC problem: keep capacitive coupling if present
- •Source (Vin) should be a high enough frequency so that capacitors act as shorts: Rcap = $|1/\omega C|$. For $C = 100\mu F$, $\omega = 1 \text{KHz}$, Rcap = $1/2\pi(1\text{K})(100\text{E-6}) \cong 1.6\Omega$
- •Vin should have a small value so operating point does not change $Vin \cong 1mV$

Rin Measurement

Probe results

Output Resistance Measurement Using SPICE

- •Replace load, RL with Vin, measure Rin = Vin/Iin
- •Set Vs = 0
- •Do not change DC problem: keep capacitive coupling if present
- •Source (Vin) should be a high enough frequency so that capacitors act as shorts: Rcap = $|1/\omega C|$. For $C = 100\mu F$, $\omega = 1 \text{KHz}$, Rcap = $1/2\pi(1\text{K})(100\text{E-6}) \cong 1.6\Omega$
- •Vin should have a small value so operating point does not change $Vin \simeq 1mV$

Rout Measurement

Probe results

-I(C1) is current in Vin flowing out of + terminal

DC Power measurements

Power delivered by ± 10 sources: $(10)(872\mu\text{A}) + (10)(877\mu\text{A}) = 8.72\text{mW} + 8.77\text{mW} = 17.4\text{mW}$

ac Power Measurements of Load

Reference

• <u>www.electronics.teipir.gr/personalpages/.../1/..</u> ./ECE3111BJTTransistors.