Sistema Pericial para deteção e recomendação de tratamentos em âmbito urológico SIBAC

Preparado por: Tiago Nora (1201050) João Figueiredo (1230189)

Instituto Superior de Engenharia do Porto, Porto Sistemas de Informação e Conhecimento Sistemas Baseados em Conhecimento Luiz Felipe Rocha de Faria (LEF) João Miguel Ribeiro Carneiro (JRC)

Porto, 29 de abril de 2024

Conteúdo

Li	Lista de Figuras i				
Li	sta d	le Tab	elas	iv	
1	Intr	oduçã	ю	1	
	1.1	Conte	xtualização	. 1	
	1.2	Objeti	ivos	. 1	
	1.3	Estrut	tura do documento	. 2	
2	Intr	oduçã	o do Perito	3	
	2.1	Perito)	. 3	
3	Aqı	uisição	de conhecimento	5	
	3.1	Forma	as de obtenção de conhecimento	. 5	
	3.2	Descri	ição da obtenção de conhecimento	. 5	
	3.3	Apres	entação teórica	. 6	
		3.3.1	Cistoscopia	. 7	
		3.3.2	Urotac	. 7	
		3.3.3	Ecografia Basic Prostática	. 7	
		3.3.4	HBP	. 8	
		3.3.5	Tomografia	. 8	
		3.3.6	Biopsia	. 8	
		3.3.7	Aquablação	. 8	

		3.3.8	Tratamento paliativo	8
		3.3.9	Quimioterapia	8
		3.3.10	Radioterapia	9
		3.3.11	Imunoterapia	9
		3.3.12	Terapia alvo	9
		3.3.13	Prostatectomia	9
		3.3.14	Deprivação hormonal	9
		3.3.15	Braquiterapia baixa dosagem	9
		3.3.16	Braquiterapia alta dosagem	10
	3.4	Causas	s que podem ser encontradas que podem criar a doença	10
	3.5	Métric	as que podem ser avaliadas	10
		3.5.1	PSA	11
		3.5.2	GG	11
		3.5.3	$cT \ \dots $	11
		3.5.4	$cT2b\dots$	11
		3.5.5	$cT2c \ldots \ldots \ldots \ldots \ldots \ldots$	11
		3.5.6	Tamanho das pedras nos rins	12
	3.6	Base d	le conhecimento	12
		3.6.1	Urotac - Pedras nos rins	14
		3.6.2	Urotac - Presença de HBP	15
		3.6.3	Urotac - Presença de cancro nas vias urinárias e cancro na próstata	16
		3.6.4	Cistoscopia	19
4	Con	ıclusão		21
=	4.1		ilidades de desenvolvimento futuro	21
	4.2		ções	
			3	

Lista de Figuras

3.1	Diagrama nao iormai da base de connecimento	13
3.2	Representação do conhecimento quanto à premissa inicial $\ \ldots \ \ldots \ \ldots$	14
3.3	Representação de conhecimento quanto à presença de pedras nos rins e tratamentos recomendados	15
3.4	Representação de conhecimento quanto à presença de HBP e tratamentos recomendados	15
3.5	Representação de conhecimento quanto á averiguação da condição do paciente	16
3.6	Representação de conhecimento quanto à avaliação de risco do cancro $$	17
3.7	Representação de conhecimento quanto à presença de cancro de risco intermédio	18
3.8	Representação de conhecimento quanto à presença de cancro de risco alto	18
3.9	Representação de conhecimento quanto à presença de cancro de risco avançado localmente	18
3.10	Representação do conhecimento quanto à realização da cistoscopia, causas identificadas e tratamentos recomendados	20

Lista de Tabelas

3.1	Representação do conhecimento quanto ao tamanho das pedras nos rins	
	e tratamento adequado	14
3.2	Representação do conhecimento quanto ao risco associado ao cancro e	
	tratamento recomendado	17

Capítulo 1

Introdução

Neste capitulo é feita uma contextualização da área que o sistema se insere, no qual, o trabalho se insere, também são descritos os objetivos identificados e como foi feita a divisão do documento.

1.1 Contextualização

Na área da medicina e em específico na área da urologia, área que este trabalho se foca, é um desafio clínico significativo a descoberta das causas dos problemas reportados pelos utentes e por sua vez proceder-se à resolução e tratamento dos mesmos. A presença de sangue na urina sem manifestações óbvias de outros sistemas pode ser indicativa de uma variedade de condições subjacentes, desde benignas até malignas. A hematúria assintomática pode ser tanto transitória como persistente, e a sua etiologia pode variar desde causas benignas, como infeções do trato urinário, até condições graves, como cancros da próstata e nas vias urinárias. O desafio reside na distinção entre essas diferentes causas, uma vez que a hematúria pode ser o único sinal de uma condição subjacente, especialmente em estágios iniciais.

Com este trabalho pretende-se investigar sobre o assunto com a ajuda de um perito especializado na área para posteriormente se realizar a construção da base de conhecimento e por fim construir o sistema pericial recorrendo às regras registadas na base de conhecimento para auxiliar o clínico a identificar as causas da existência de sangue na urina e por sua vez no tratamento eficaz para a causa específica da hematúria.

1.2 Objetivos

No que toca a objetivos desta parte do trabalho foram identificados os seguintes:

- Análise da área de negócio
- Familiarização relativamente aos conteúdos abordados e mencionados pelo perito
- Aquisição de conhecimento para a realização do trabalho
- Desenho da árvore de conhecimento

1.3 Estrutura do documento

O presente documento está divido nos seguintes capítulos:

• Capítulo 1: Introdução

• Capítulo 2: Introdução do perito

• Capítulo 3: Aquisição de conhecimento

• Capítulo 4: Conclusão

No Capítulo 1 ocorre a contextualização do tema, onde é incluída uma especificação e uma breve introdução ao assunto. Já no Capítulo 2 é apresentado o perito, tal como, a sua experiência profissional, que comprova a sua vasta experiência e conhecimento na área. De seguida, no Capítulo 3 são apresentadas as formas de obtenção de conhecimento e por sua vez é explicada a base de conhecimento construída com as regras identificadas e obtidas através do perito. E por fim, no Capítulo 4 é apresentado as possibilidades de desenvolvimento futuro que pode ser realizado para valorizar o trabalho no seu todo, tal como, as suas limitações.

Capítulo 2

Introdução do Perito

Neste capitulo é identifica o perito, o porquê de ser um perito e o seu percurso profissional que o levou a ter um conhecimento extenso na área.

2.1 Perito

O perito chama-se Francisco Botelho, atualmente é um médico especialista em urologista no Centro Hospitalar Universitário São João, no Hospital CUF Trindade Porto e no Centro Médico Avenida Braga. O perito apresenta um grande percurso profissional, como se pode identificar através das seguintes informações:

- 2003 Licenciatura em Medicina pela Faculdade de Medicina da Universidade do Porto
- 2006 2015 Assistente da Faculdade de Medicina da Universidade do Porto na área de Epidemiologia
- 2010 Concluiu Tese de Mestrado na Faculdade de Medicina da Universidade do Porto, com o tema Vascular Endothelial Growth Factor and Prostate Cancer
- 2010 Estágio no estrangeiro: Glickman Urological & Kidney Institute da Cleveland Clinic (EUA)
- 2011 Estágio no estrangeiro: Department of Urology at the University Hospital Gasthuisberg of the Katholieke Universiteit Leuven (Bélgica)
- 2012 Concluiu Internato Complementar de Urologia no Serviço de Urologia do Hospital de S. João
- Desde 2012 Assistente Hospitalar no Serviço de Urologia do Hospital de Braga

- Desde 2012 Fellow do European Board of Urology
- 2013 Revisor de 4 revistas internacionais na área da Urologia; Autor de 19 artigos integrais em revistas indexadas à MEDLINE (http://orcid.org/0000-0002-6666-0883) e 98 trabalhos de investigação apresentados em congressos científicos
- Desde 2015 Docente de Urologia da Escola de Ciências da Saúde da Universidade do Minho; Associate Member of EAU Section of Oncological Urology

Com este percurso profissional, o Dr. Francisco Botelho demonstra uma sólida formação académica, tanto em Portugal como no estrangeiro e uma vasta experiência no que diz respeito a pesquisa e prática clínica na área da urologia. Em resumo, o Dr. Francisco Botelho é um profissional altamente qualificado e tem uma grande bagagem de experiências, tendo passado por vários ambientes diferentes.

Capítulo 3

Aquisição de conhecimento

Neste capitulo são identificados os meios de obtenção de conhecimento tal como é realizada a descrição da obtenção desse mesmo conhecimento. Também são mencionados os termos usados, as causas que podem provocar a doença, as soluções e as métricas utilizadas que auxiliam tanto na descoberta da causa como no tratamento.

3.1 Formas de obtenção de conhecimento

O conhecimento foi obtido por meio de várias fontes tais como:

- Entrevistas presenciais e remotas ao perito
- Pedidos de esclarecimento ao perito (email ou por outros meios digitais)
- Pesquisa gerais online
- Leitura de artigos

Sendo que o perito, foi a parte mais crucial do processo, pois foi deste que surgiu maior parte da informação e a sugestão do sistema pericial se focar na identificação da causa da hematúria assintomática e potenciais maneiras de proceder visando a resolução do problema mencionado anteriormente.

3.2 Descrição da obtenção de conhecimento

No dia 2 de abril foi iniciada a comunicação por meio de uma chamada telefónica com o perito para se agendar uma conversa inicial, visando o esclarecimento teórico do trabalho,

os objetivos definidos e aquilo que pretendíamos deste mesmo. Nesta etapa foi esclarecido que era pretendido realizar-se um sistema pericial na área da urologia com objetivo de auxiliar os clínicos e possivelmente alunos de medicina na deteção de doenças e o seu tratamento. No final da conversa foi marcada outra reunião no qual se iria discutir em mais detalhe os caminhos que o trabalho iria tomar e qual o ponto que nos iríamos focar.

No dia 11 de abril, como esperado, a reunião realizou-se como prevista, onde foi feita uma contextualização no que toca ao tema em concreto e por sua vez foi realizado um esclarecimento mais teórico sobre os sistemas periciais, nomeadamente o que são, as suas etapas e que problemas pretendem resolver. Para melhor entendimento por parte do perito foi mostrado um dos exemplos das aulas práticas, no qual, este ficou a perceber com uma maior precisão o que era pretendido. Após a visualização do documento por parte do perito, foi discutido em concreto aquilo que iria ser abordado e dado o vasto número de doenças, tal como, possíveis tratamentos foi sugerida a realização um sistema cujo objetivo era identificar a causa do problema e visto isto realizar sugestões de tratamento para um caso de deteção de sangue na urina e sem outros problemas descrito pelo utente. Foi também fornecido um site de caráter mais especializado, ou seja, as informações do site são apresentadas de uma forma mais técnica e que deve ser lido por especialistas dessa área, mas apesar disso tornou se numa grande ajuda no esclarecimento de termos mais específicos e técnicos nos quais não estávamos familiarizados. Dado a breve abertura de espaço por parte do perito, em questão de disponibilidade, a reunião ficou concluída por aí e, por sua vez, foi agendada outra entrevista para se validar a obtenção do conhecimento que era necessário ao sucesso do trabalho e à realização da representação do conhecimento adquirido.

No dia 18 de abril realizou-se a reunião com o perito onde foi apresentada a árvore de conhecimento realizada. Por sua vez foi recebido feedback e procedeu-se à clarificação de algumas informações recebidas, tal como informações relativas a alguns caminhos possíveis que podiam ser explorados relativamente à mesma. E para além deste feedback, foram detalhados alguns tratamentos que poderiam ser recomendados ao paciente, consoante a doença apresentada/identificada.

3.3 Apresentação teórica

Como introduzido anteriormente, o sistema pericial a ser desenvolvido incide sobre a identificação da causa da hematúria assintomática e as suas respetivas sugestões de tratamento. Para contextualizar-se, a hematúria assintomática é caraterizada pela presença de sangue na urina e por não existir outros sintomas reportados pelos pacientes.

Outro dos termos que são importantes serem mencionados e explicados, dado que são referidos no diagrama da base de conhecimento, são os seguintes:

Cistoscopia

- Urotac
- Ecografia Basic Prostática
- HBP
- Tomografia
- Biopsia
- Aquablação
- Tratamento paleativo
- Quimioterapia
- Radioterapia
- Imunoterapia
- Terapia alvo
- Prostatectomia
- Deprivação hormonal
- Braquiterapia baixa dosagem
- Braquiterapia alta dosagem

3.3.1 Cistoscopia

Um procedimento que permite a um médico/clínico observar o interior da bexiga e da uretra recorrendo a um tubo fino, flexível e que na ponta tem uma luz e uma câmara.

3.3.2 Urotac

Também conhecida como urografia, é um tipo de técnica de imagem que permite a obtenção de imagens mais detalhadas dos rins, ureteres e bexiga. Pode ser utilizado para diagnosticar algumas condições como, por exemplo, pedras nos rins, tumores e a presença de HBP.

3.3.3 Ecografia Basic Prostática

A ecografia basic próstática é uma técnica utilizada para criar imagens da glândula da próstata. É comum ser utilizada na avaliação do tamanho, forma e estrutura da próstata, tal como na avaliação no que diz respeito à deteção de anormalidades como tumores ou aumento da próstata (hiperplasia prostática benigna, HPB).

3.3.4 HBP

HBP é uma sigla para "Hiperplasia Prostática Benigna" é normalmente usada para se fazer referência ao aumento não canceroso da próstata, que pode causar sintomas urinários como micção frequente, dificuldade em iniciar ou manter a micção e fluxo urinário fraco.

3.3.5 Tomografia

A tomografia é uma técnica que utiliza raios-x e recorre ao processamento computacional para criar imagens detalhadas em secção transversal do corpo. Fornece informações mais detalhadas do que os raios-x tradicionais, sendo esta usada para diagnosticar tumores, fraturas e lesões internas.

3.3.6 Biopsia

Um procedimento médico no qual é retirada uma pequena amostra de tecido suspeito e mandado para o laboratório como o objetivo de ser examinada ao microscópio para diagnosticar ou descartar doenças como o cancro. Uma biopsia é normalmente realizada para confirmar a presença de células malignas e por sua vez determinar o seu tipo, tal como, a sua agressividade.

3.3.7 Aquablação

A aquablação é caraterizado por um tratamento minimamente invasivo usado no tratamento do HBP que utiliza uma combinação de água e calor para remover precisamente o tecido prostático em excesso.

3.3.8 Tratamento paliativo

O tratamento paliativo ou cuidado de fim de vida, foca-se em aliviar sintomas e melhorar a qualidade de vida dos pacientes que têm doenças graves, como cancro, entre outros.

3.3.9 Quimioterapia

A quimioterapia é um tratamento destinado ao tratamento de um cancro que utiliza medicamentos específicos para matar as células cancerígenas e impedir a divisão e cresçam das mesmas. Estes medicamentos podem ser administrados oralmente ou por via intravenosa. Este tratamento pode ser aplicado singularmente ou em conjunto com outros medicamentos.

3.3.10 Radioterapia

Neste tratamento é utilizada radiação de alta energia para aniquilar as células cancerígenas ou reduzir o tamanho dos tumores. Pode ser administrado em conjunto com outros tratamentos.

3.3.11 Imunoterapia

Um tipo de tratamento contra o cancro que estimula as defesas naturais do corpo para reconhecer e atacar as células cancerígenas.

3.3.12 Terapia alvo

A terapia alvo é um tratamento focado em atacar em específico nas células cancerígenas. O seu funcionamento é caraterizado pelo bloqueio do crescimento e disseminação das células cancerígenas ao interferir com as moléculas específicas envolvidas no crescimento e progressão do tumor.

3.3.13 Prostatectomia

A prostatectomia é um procedimento cirúrgico para remover a glândula da próstata. Pode ser realizada por diferentes métodos, incluindo cirurgia aberta ou cirurgia minimamente invasiva. É frequentemente realizada para tratar o cancro da próstata, mas também pode ser indicada para tratar casos graves de HPB.

3.3.14 Deprivação hormonal

A deprivação hormonal é uma terapia para o cancro da próstata que visa reduzir os níveis de hormonas masculinas no corpo, que podem alimentar o crescimento das células cancerígenas.

3.3.15 Braquiterapia baixa dosagem

A braquiterapia de baixa dosagem é um tipo de radioterapia que envolve a colocação de fontes radioativas diretamente no tumor ou próximo dele. Fornece uma dose alta de radiação ao tumor enquanto minimiza os danos ao tecido saudável circundante.

3.3.16 Braquiterapia alta dosagem

A braquiterapia de alta dosagem é um tipo de radioterapia que fornece uma dose mais alta de radiação ao tumor num curto período. Frequentemente usado para tratar cancros localizados, como o cancro da próstata, e pode ser administrado como um único tratamento ou várias sessões.

3.4 Causas que podem ser encontradas que podem criar a doença

No caso em estudo, algumas causas que podem ser encontradas que podem criar a presença de sangue na urina são nomeadamente as seguintes:

- Pedras nos rins
- Presença de cancro nas vias urinárias
- Presença de HBP
- Presença de cancro da próstata

3.5 Métricas que podem ser avaliadas

No caso de métricas, estas podem ser avaliadas e obtidas de forma a ajudar o diagnóstico e por sua vez o tratamento. As métricas consideradas são as seguintes:

- PSA
- GG
- cT
- cT2b
- cT2c
- Tamanho das pedras encontradas nos rins

3.5.1 PSA

O PSA (antigénio específico da próstata) é uma proteína produzida pela glândula da próstata, cujos níveis no sangue podem ser medidos mediante um exame de sangue. Esta proteína é utilizada como um marcador para o cancro da próstata e outras condições relacionadas com a próstata. Caso sejam detetados, níveis elevados de PSA este pode indicar a presença de cancro da próstata, mas também podem ser causados por outras condições benignas da próstata, como a hiperplasia prostática benigna (HPB).

3.5.2 GG

A métrica GG (Gleason Grade) é um sistema de classificação histológica utilizado para avaliar o grau de agressividade do cancro da próstata com base na aparência das células cancerígenas sob o microscópio. Quanto mais alto o GG, mais agressivo é considerado o cancro. O sistema de pontuação Gleason é composto por duas pontuações, cada uma variando de 1 a 5, e a soma dessas pontuações determina o GG final, variando geralmente de 6 a 10.

3.5.3 cT

cT é uma parte do sistema de classificação TNM (Tumor-Nodes-Metastasis) usado para descrever a extensão do cancro da próstata com base na avaliação clínica. A letra "c" em cT indica que a classificação é baseada na avaliação clínica, em vez de ser confirmada por exames de imagem ou cirurgia. O cT descreve o tamanho e extensão do tumor primário na próstata.

3.5.4 cT2b

A classificação cT2b faz parte do sistema TNM para descrever o cancro da próstata. Indica que o tumor primário está presente apenas em metade de um dos lóbulos da próstata. A letra "c" indica que esta classificação é baseada na avaliação clínica, e o "T2b" indica a extensão do tumor na próstata.

3.5.5 cT2c

A classificação cT2c é uma parte do sistema TNM para descrever o cancro da próstata. Indica que o tumor primário está presente em ambos os lóbulos da próstata. A letra "c" indica que esta classificação é baseada na avaliação clínica, e o "T2c" indica a extensão do tumor na próstata.

3.5.6 Tamanho das pedras nos rins

- Leve: Pedras nos rins de tamanho leve são geralmente pequenas, com diâmetro inferior a 5 mm. Essas pedras podem ser passadas naturalmente através das tarefas urinárias, normalmente sem causar sintomas significativos. Embora possam causar desconforto ou dor durante a passagem, muitas vezes não requerem tratamento invasivo e podem ser geridas com medidas como aumento da ingestão de líquidos e analgésicos para alívio da dor.
- Médio: Pedras nos rins de tamanho médio têm um diâmetro geralmente entre 5 mm e 10 mm. Estas pedras podem causar sintomas mais graves, incluindo dor intensa nas costas ou no abdómen, sangue na urina, micção frequente e dor ao urinar. Dependendo da localização e da composição das pedras, o tratamento pode incluir a observação cuidadosa, intervenções médicas para facilitar a passagem da pedra ou procedimentos cirúrgicos minimamente invasivos para remoção da pedra.
- Grande: Pedras nos rins de tamanho grande têm um diâmetro superior a 10 mm. Estas pedras são menos propensas a serem passadas naturalmente e podem causar sintomas significativos, incluindo dor severa, bloqueio das tarefas urinárias, infeções urinárias recorrentes e danos aos rins se não forem tratadas. O tratamento para pedras grandes nos rins pode envolver procedimentos invasivos como cirurgia aberta para remoção da respetiva pedra ou das respetivas pedras.

3.6 Base de conhecimento

As bases de conhecimento são pilares fundamentais para a construção de sistemas periciais nas quais são captadas as regras e os caminhos que devem ser tomadas numa certa situação. O seu principal objetivo é fornecer orientação, *insights* e soluções para uma variedade de questões e desafios relacionados também com uma variedade de áreas de negócio e atividades. A Figura 3.1 representa uma visão global da nossa base de conhecimento.

Figura 3.1: Diagrama não formal da base de conhecimento

O ponto de partida desta base de conhecimento começa com o aparecimento de sangue na urina, no qual, o utente não apresenta mais sintomas além da notar a presença de sangue de urina. Na Figura 3.2 é representado esse acontecimento.

Figura 3.2: Representação do conhecimento quanto à premissa inicial

Inicialmente para se realizar a descoberta da causa que efetivamente causou o aparecimento de sangue são realizados dois exames, uma cistoscopia (endoscopia à bexiga) e um urotac (tac que avalia as vias urinárias). No caso do urotac, deste podem surgir os seguintes resultados:

- Presença de pedras nos rins
- Presença de cancro nas vias urinarias
- Presença de HBP
- Presença de cancro da próstata

3.6.1 Urotac - Pedras nos rins

No caso de ser detetada a presença de pedras nos rins, o sistema recomendará um tratamento adequando, consoante o seu tamanho. Conforme o tamanho, são recomendados os tratamentos da Tabela 3.1.

Tabela 3.1: Representação do conhecimento quanto ao tamanho das pedras nos rins e tratamento adequado

Tamanho	Tratamento
Pequeno (x<5mm)	Beber água
Médio (5mm <x<10mm)< th=""><th>Uso de medicamentos para aliviar a dor e relaxar sistema urinário</th></x<10mm)<>	Uso de medicamentos para aliviar a dor e relaxar sistema urinário
Grande (10mm <x)< th=""><th>Realização de cirurgia</th></x)<>	Realização de cirurgia

A Figura 3.3 é demonstrado o fluxo do caso apresentado em cima.

Figura 3.3: Representação de conhecimento quanto à presença de pedras nos rins e tratamentos recomendados

3.6.2 Urotac - Presença de HBP

No caso de ser detetada a presença de HBP, o tamanho da próstata tem de ser averiguado. Para tal, é realizada uma ultrassonografia e o volume prostático é avaliado. Se este variar entre 20ml e 30ml, estamos em condições saudáveis, caso seja maior que 30ml, teremos uma situação anormal. No caso de uma situação anormal serão recomendados 4 opções de tratamento, sendo o que utente só prosseguirá com uma. A Figura 3.4 demonstra este fluxo.

Figura 3.4: Representação de conhecimento quanto à presença de HBP e tratamentos recomendados

3.6.3 Urotac - Presença de cancro nas vias urinárias e cancro na próstata

Através do mesmo exame, também é possível identificar a presença de cancro, tanto nas vias urinárias como na próstata. Em ambos casos, antes de se avançar com algum tratamento, é necessário averiguar se o tratamento aumentará a expetativa média de vida do paciente e se o paciente estará apto para o fazer, ou seja, se tem capacidade de resistir ao mesmo. Existem 2 fatores para ter em consideração, a idade do paciente e a sua condição física.

A Figura 3.5 demonstra este fluxo.

Figura 3.5: Representação de conhecimento quanto á averiguação da condição do paciente

Caso o paciente esteja apto para ser submetido tratamento, passaremos à fase de identificação da gravidade do cancro. O cancro possui 3 níveis de gravidade:

- Médio
- Alto localizado
- Avançado localmente

O nível de gravidade é identificado consoante os valores do PSA, GG ou ct2b. A seguinte Tabela 3.2 demonstra as três situações.

Tabela 3.2: Representação do conhecimento quanto ao risco associado ao cancro e tratamento recomendado

Risco	Condição
Intermédio	PSA 10-20 ou GG 2-3 ou ct2b
Alto localizado	PSA > 20 ou $GG > 3$ ou $ct2c$
Avançado localmente	CT3-4 ou CNO

A Figura 3.6 demonstra este fluxo de identificação.

Figura 3.6: Representação de conhecimento quanto à avaliação de risco do cancro

Tendo o risco sido identificado, o sistema irá sugerir 4 tratamentos, sendo que o médico recomendará ao paciente o que achar mais adequado.

As Figuras 3.7 3.8 3.9 demonstram este fluxo de recomendação de tratamentos.

Figura 3.7: Representação de conhecimento quanto à presença de cancro de risco intermédio

Figura 3.8: Representação de conhecimento quanto à presença de cancro de risco alto

Figura 3.9: Representação de conhecimento quanto à presença de cancro de risco avançado localmente

3.6.4 Cistoscopia

No caso da cistoscopia, neste é realizado teste PSA que pode retornar um valor baixo ou alto. Caso este valor seja elevado, é realizada uma tomografia e caso esta indique a presença de cancro, realiza-se uma biópisa. No caso de não haver cancro, o paciente não tem tratamento a realizar e desta forma é colocado em estado de vigilância. E por fim, se não for detetado nenhum problema nem num nem no outro exame, é realizado outro teste denominado Ecografia Basic Prostatica. Deste podem surgir os seguintes resultados:

- Presença de HBP
- Presença de cancro da próstata

Este prognostico à semelhança do urotac também é realizado visualmente através da observação detalhada das imagens obtidas durante o exame.

Figura 3.10: Representação do conhecimento quanto à realização da cistoscopia, causas identificadas e tratamentos recomendados

Capítulo 4

Conclusão

O sistema pericial desenvolvido neste trabalho demonstrou uma notável capacidade de analisar bastantes informações clínicas, para oferecer uma avaliação precisa das possíveis causas da hematúria assintomática. Além disso, a sua habilidade de recomendar tratamentos baseados em evidências científicas e diretrizes clínicas proporciona um apoio valioso aos profissionais de saúde na tomada de decisões. Por último são mencionadas as limitações encontradas.

4.1 Possibilidades de desenvolvimento futuro

Considerando o desenvolvimento do sistema pericial para a hematúria assintomática e as entrevistas realizadas com o perito, entendeu-se que existem diversas oportunidades para expandir a sua aplicação para além desse cenário específico. Nesta secção, delineamos algumas áreas potenciais para futuras investigações e desenvolvimentos:

- Outras condições urológicas: O sistema pericial pode ser adaptado para lidar com uma variedade de distúrbios urológicos, como disúria, hematúria macroscópica, incontinência urinária, entre outros. Ao integrar algoritmos específicos para cada condição e ajustar os critérios de avaliação, podemos oferecer suporte abrangente para o diagnóstico e tratamento dessas patologias.
- Doenças Renais: Expandir a capacidade do sistema para identificar e gerir doenças renais, como glomerulonefrite, nefropatia diabética e insuficiência renal, seria extremamente benéfico. Isso envolveria a incorporação de algoritmos especializados que consideram marcadores renais, função renal e características histopatológicas.
- Oncologia Urológica: Uma extensão importante seria incluir a deteção precoce e o tratamento de outros tipos de cancro, como o cancro de bexiga, rins. Isso exigiria a

integração de algoritmos de triagem baseados em biomarcadores, imagens médicas e dados genéticos, com diretrizes de tratamento atualizadas.

- Interface de utilizador Aprimorada: Investir na melhoria da interface do utilizador para torná-la mais intuitiva e amigável seria crucial para facilitar a adoção e o uso eficaz do sistema pelos profissionais de saúde. Recursos como visualizações gráficas de dados, sugestões interativas e feedback personalizado podem melhorar significativamente a experiência do utilizador.
- Integração com Sistemas de Saúde: Integrar o sistema pericial com os sistemas de saúde existentes, como registos eletrónicos de saúde (EHRs), permitirá uma troca eficiente de informações clínicas e uma coordenação mais eficaz do cuidado entre os profissionais de saúde.
- Validação Clínica e Implementação: Realizar estudos clínicos para validar a precisão e eficácia do sistema em contextos reais é essencial antes da implementação em larga escala. Isso envolveria colaborações com instituições de saúde e órgãos reguladores para garantir a conformidade e segurança.

Em suma, o trabalho futuro envolverá a expansão do alcance do sistema pericial para abranger uma variedade de condições urológicas, melhorando a sua interface e integração com sistemas de saúde. Estes esforços têm o potencial de revolucionar a maneira como abordamos o diagnóstico e tratamento de doenças urológicas.

4.2 Limitações

Uma das limitações significativas na avaliação da aptidão de um paciente para prosseguir com um tratamento é a ausência de intervalos ou conjuntos de valores definidos para chegar a uma conclusão. Em muitos casos, a decisão sobre a adequação de um paciente para um tratamento não pode ser determinada apenas por critérios binários ou simplesmente pela presença, ou ausência de determinadas condições de saúde.

A falta de estruturas definidas para avaliação pode tornar o processo mais desafiador e subjetivo, exigindo uma abordagem mais individualizada e holística para a tomada de decisão clínica. Além disso, a complexidade e a interação de múltiplos fatores podem aumentar a incerteza e a ambiguidade associadas à determinação da aptidão de um paciente para um tratamento específico.

Portanto, a ausência de intervalos ou conjuntos de valores pré-definidos é uma limitação importante a ser considerada ao avaliar a aptidão de um paciente para prosseguir com um tratamento médico.