

EP1000 Computer Controlled Cutting

Computer Controlled Cutting

- Perform Cutting operations based on digital data.
- Also known as CNC (Computer Numerical Control)
- Data is provided from:
 - CADD operations
 - Digital 2D drawings
- Provides accurate and precise cutting operations
- Used in:
 - Laser cutting & engraving
 - Flatbed cutters & 2D routers
 - Milling machines

2D profile

- All cutting systems work on a 2D profile which provides an outline of the cut.
- Advantages:
 - The cut is precise with little wastage of material.
 - Allows positioning to prevent wastage.
 - Repeatability
- Vector File formats:
 - DXF (Data eXchange Format)
 - PDF (Portable Document Format)
 - SVG (Scalable Vector Graphics)

Vector Software

- 2D Vector drawing programs: Inkscape, AutoCAD, Adobe Illustrator, CorelDraw
- CAD Software Fusion 360, Rhino3D

Don't forget InkScape!

Software Tools

- Fusion 360
 - Full CAD/CAM software to obtain profiles
 - Lots of modelling tools to help
- Vector Drawing software
 - Inkscape
 - <u>LibreCAD</u> (for DXF files)
 - CorelDraw (licensed software)
 - <u>Illustrator</u> (licensed software)
- Output Vector formats
 - DXF (outdated, but still used, text editable)
 - PDF, EPS
 - SVG (may have different variants)
 - AI (Adobe Illustrator format)

Exercise 1: Keychain for cutting

- Let's make a keychain for the fablab with logo
- Size: 30mm x 70mm x Thickness (dependent on material)

What happens when cut

- Islands may form, these drop out after cutting
- Need to edit the Vector file before cutting
- Placement of causeways to prevent drop-outs
- Post production (i.e. edit DXF exported file)

Post Production Editing

- Use a Vector Drawing program to create the causeways
- May need knowledge of vector drawing program
- Suggest CorelDraw

Fusion 360 Explode Text

- Use the Explode Text function to separate each letter in the word.
- Add causeways in Fusion 360 before extrusion for cut surface

Fusion 360: Export Cut Profile -1

Create your design

• Extrude surfaces to create object

Fusion 360: Export Cut Profile -2

 New sketch on object profile to cut

 Click again on profile to verify/ select

Fusion 360: Export Cut Profile -3

- New sketch created
- Should rename to avoid confusion (design_dxf)

- R-Click on sketch name
- Save As DXF

DXF format

- A simple text format that defines the coordinates of the profile.
- Can come in different versions
- Backward compatible only

Fusion 360: Modelling

- Modelling allows us to simulate the actual object using CAD
- We can use CAD tools to help us in the design
- Most common tools are:
 - Combine
 - Joints
 - Cross-sectional views
 - Clearances

Let's make a joint

- We will use the CADD features to assist us
- We would like to join 2 pieces of wood

Drawing Parameters

Draw the 2 components

The cuts will be very precise. (The joint is exaggerated to show the effect)

Use CADD to effect the joint

Blue = Target
Body Red = Tool
Body Operation =
Cut Keep tools

- Modify > Combine
- Creates the joint and necessary cuts without further drawing

Laptop Stand

• Let's quickly design a laptop stand that can be lasercut.

4 components

- legs (x2)
- top
- front support
- rear support

Legs

• Set your own parameters

Create the body and a copy of the leg

- Extrude the profile using thickness
- Move/Copy the body
- Length of laptop

Add Component - Top

- Create component Top
- Enable the component!
- Create new sketch, select <u>slope</u> surface
- Top should line up with the top edge of the legs
- Bottom should line up with the slip support stop
- Sides extend 20mm on each side
- Extrude the top

..so far .. so good!

- You should have 2 components.
- Use Inspect > Component Color Cycling

Fusion 360 History / Timeline bar

 We can use the History/Playback bar to walk through and edit (sometimes) changes

Roll History Marker Here
Convert to DM Feature
Suppress Features
Find in Browser
Find in Window

Create Selection Set

■ Edit Feature

Edit Profile Sketch

Rename

Let's add supports for our top so that it does not move while we use it

Edit/Add flanges to the legs

- Use the history bar to add the flange
- The rest of the design will auto-correct itself to accommodate the change

Modify > Combine

- Use the combine function to cut the slots into the top
- Remember to "keep tools" after cutting

Add front support

- The front support adds strength to the frame
- Offset the spar from the front e.g. 40mm
- Protrude the side for support
- Use Combine to cut the slots on the legs

Add back support

- Create new component
- Create offset plane from back leg
- Create new sketch
- Draw structure, ensure constraints
- Modify > Combine to cut out the slots

Completed Model

- Move the bodies and examine the result
- Check for clearances and cuts

Finishing touches

- Fillet (smooth) the edges
- Fillet/Chamfer the joints for easy insertion

Export & check the DXF for cutting

- For each body
 - Turn off other components/bodies
 - Create new sketch for cut profile
 - Rename the sketch for reference
 - Export to DXF
- Use LibreCAD to check or layout the cuts
- Or use CorelDraw to check your files

Task: Draw your laptop stand

- Draw your own laptop stand (measure your laptop)
- Add features (i.e ventilation holes, slots for cable?)
- Ref: https://youtu.be/7riGolu7BpA

EP1000 Computer Controlled Cutting End