not ciculaine		I
	12 on on don I wont	
o wit	a don with a state we can	
Spirale on	For the don' comb - at link - \$\frac{1}{2}(f) + \omega \frac{1}{2} \tag{1}	m .
don de R	$\frac{1}{2} \left(\frac{e'}{k} \right) = \frac{e'}{k} \left(\frac{e}{k} \right) = \frac{e'}{k} \left(\frac{e'}{k} \right)$	
	Da R', on n desplee le log de R', mot reelly e uniforme don! don! dr R'	
Spirale creelères	on = t'comb don = 2t comb - wh' into don = 2t ex(t) + w = ~ on(t)	0
= 1 cm wh	d'on 2 2 (h) + 2 t d 2 1 + WR/ 3 ~ don 1	
1-1	2 + = + W// = ~ (= ~ on) on an (I nc) = (a.c) = -(a.c) =	.r) c
	2 = = + \(\omega_{\ell} / \(\omega_{\ell} \) = \(\omega_{\ell} / \) = \(\o	ر قِدرِ مِن

世

don = = (d + well an) (d R + well an) on = don + 2 w, 1 on don + win on (gron) Soit me mane ht un painse à un fore ent F m d'on to d'on + 2 wright and to to to ga on = F hi don = o dro on seul. F -mwa// on (grom) = o n F gt da e flan dry alor on aum, la condition denish F + mwai/ on = 3 Hyp wai/ = ct a du carle Terre - Solis la jeude de révolution de la Tene autour du bleil it donné par: T' = 4T2 as où a 11 le dem-pard are $\omega_{R/R}^2 = \frac{h\pi^2}{2} = 6 \frac{\pi_s}{3}$ Systère à 3 corps Tene- Soleil - solelle repérés par in 12 ct à $\overline{F} = -G m \frac{\pi}{3} \frac{\overline{\lambda} - \overline{\lambda}_1}{|\overline{\lambda} - \overline{\lambda}_1|^3} - G m \frac{m}{2} \frac{\overline{\lambda} - \overline{\lambda}_1}{|\overline{\lambda} - \overline{\lambda}_1|^3} = 0$

Poirt de Lapage.	
Il et de in hel que:	
3. 1. 24 3. 10).	
- Gmm - Gmme 1-1/2 + WR1/R	7 = 7
1 7 - 7 1 7 - 7 1	
15 0 5 0	
Ex treum de l'agric Jahertielle	
V = - Gu Ths Gu Lu Im Wall	
V = - Gu Ms _ Gu Me _ 1m W 1/2 ~	
1~ ~~	
ou encore	
16 V C C C C C C C C C C C C C C C C C C	
$\frac{1}{2} = \frac{V}{u} = -\frac{G n_s}{2} - \frac{G u_z}{2} - \frac{1}{2} \frac{u_{k'k}^2}{2} $	and $W_{k/k} = \frac{G \pi_s}{a^3}$
1 1 - 12 2 KR	/\ a3
	× ×
A.U. Mz = 1.98P4 10 lq	
m2 = 5.9724 10th kg	
a = 149 597 870 700 m	
G = 6.67430 10" 113 lg 52	
4 ' 4	
mi) 2	
mul y'	
71s	
2/2 = 2	n'
My V Ms M2 1 Ms 22	
$\frac{1}{mG} = -\frac{n_s}{n} - \frac{n_s}{ \bar{n} - \bar{n} } - \frac{1}{2} \frac{n_s}{a^3} x^2$	
mG ~ \\\[\bar{1}\bar{1}\bar{-2}\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
J = V = - 1 - 2 - 1 1 2 2 3	on of = 12 = 3.003 10
J = V = - 1	$\alpha = \frac{\mu_z}{\eta_s} = 3.003 lo$

lois de Keplen

d'(12-14) =	[1 6 1] G	n, wz 2	7 = 12-0
olr	L My Mz		
h dei	- G 91, Me 7	on p= n, m	
/ dr	A3	91, + M	<u> </u>
		_ M, = H_	(n,+me) = m (1+ar)
		- ML	
u d' = -	G (1+2) ML K -	= - G'n1 K =	Pour certiale
1 dr = -	"G / 13	h'	
T' = hT' d	$= \frac{h^2}{4+4} \frac{a^3}{6\pi_1}$	A évii	W = ht = (1+4) GM
	M ₁ ,	<u> </u>	1° ar
de de		~ po octon o	- d-
n in di	•	A LO L COU J	dr
n unt circulair	ungene 5 = i	nt one is =e	-
T = 1 ~	· ~ (w ~ ~) = y (w ~	$(\vec{\omega},\vec{z})$	بد م م
		o"o	
	1.0	di CMu.	
M ₂ = 8 m	2	dri = G M, M,	nou n=Tr-Ta
¥.G	a. Mz	dru = - G Mine	^
,M ₂			
-2 <u>7</u>			
D'pis mijedia W	= G (na+uz) on	X = 12-14	
	*		
	o // nour obtanis y	ne orbite circulaire	
A. V. a=1, G=1	pour obtenir u	ne orone circulant	
1		2	

```
clc
clear all
close all
% prelimaries
G=1;
M1=2; m2=1;
r=3;
omega2 = G*(M1+m2)/r^3;
disp('HYP orbite circulaire r=3')
T=2*pi/sqrt(omega2)
t range=[0 T];
v0=0.333333; % adapter pour orbite circulaire
x1 = 0; y1 = 1; x2 = 0;
                         y2 = -2;
vx1=v0; vy1=0; vx2=-2*v0; vy2=0;
u0 = [x1 y1 x2 y2 vx1 vy1 vx2 vy2]';
options = odeset('RelTol',1e-8,'AbsTol',1e-10);
[t, u] = ode45(@binar, t range, u0, options);
x1 = u(:, 1); y1 = u(:, 2); x2 = u(:, 3); y2 = u(:, 4);
vx1=u(:, 5); vy1=u(:, 6); vx2=u(:, 7); vy2=u(:, 8);
r = hypot(x2-x1, y2-y1);
e = min(r)/max(r);
disp(['min(r)='num2str(min(r))'max(r)='
num2str(max(r)) ' e= ' num2str(e)])
plot(x2-x1, y2-y1, 'r')
daspect([1 1 1])
title('Trajectory r2-r1');
grid on
figure
plot(x1, y1, 'r')
hold on
plot(x2, y2, 'b')
grid on
daspect([1 1 1])
figure
teta1=atan2(y1, x1);
teta2=atan2(y2, x2);
plot(t, teta1, 'r')
hold on
plot(t, teta2, 'b')
grid on
```