PRAKTIKUM 9 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Seidel

Tujuan:

Mempelajari metode Eliminasi Gauss Seidel untuk penyelesaian persamaan linier simultan

Dasar Teori:

Metode interasi Gauss-Seidel adalah metode yang menggunakan proses iterasi hingga diperoleh nilai-nilai yang berubah. Bila diketahui persamaan linier simultan:

Berikan nilai awal dari setiap x_i (i=1 s/d n) kemudian persamaan linier simultan diatas dituliskan menjadi:

Dengan menghitung nilai-nilai x_i (i=1 s/d n) menggunakan persamaan-persamaan di atas secara terus-menerus hingga nilai untuk setiap x_i (i=1 s/d n) sudah sama dengan nilai x_i pada iterasi sebelumnya maka diperoleh penyelesaian dari persamaan linier simultan tersebut. Atau dengan kata lain proses iterasi dihentikan bila selisih nilai x_i (i=1 s/d n) dengan nilai x_i pada iterasi sebelumnya kurang dari nilai tolerasi error yang ditentukan.

Catatan:

Hati-hati dalam menyusun sistem persamaan linier ketika menggunakan metode iterasi Gauss-Seidel ini. Perhatikan setiap koefisien dari masing-masing x_i pada semua persamaan di diagonal utama (a_{ii}). Letakkan nilai-nilai terbesar dari koefisien untuk setiap x_i pada diagonal utama. Masalah ini adalah '**masalah pivoting**' yang harus benarbenar diperhatikan, karena penyusun yang salah akan menyebabkan iterasi menjadi divergen dan tidak diperoleh hasil yang benar.

Algoritma Metode Iterasi Gauss-Seidel adalah sebagai berikut:

- (1) Masukkan matrik \mathbf{A} , dan vektor \mathbf{B} beserta ukurannya n
- (2) Tentukan batas maksimum iterasi *max_iter*
- (3) Tentukan toleransi error ε
- (4) Tentukan nilai awal dari x_i , untuk i=1 s/d n
- (5) Simpan x_i dalam s_i , untuk i=1 s/d n
- (6) Untuk i=1 s/d n hitung:

$$x_i = \frac{1}{a_{i,i}} \left(b_i - \sum_{j \neq i} a_{i,j} x_j \right)$$

$$e_i = |x_i - s_i|$$

- (7) iterasi ← iterasi+1
- (8) Bila iterasi lebih dari max_iter atau tidak terdapat $e_i < \varepsilon$ untuk i=1 s/d n maka proses dihentikan dari penyelesaiannya adalah x_i untuk i=1 s/d n. Bila tidak maka ulangi langkah (5)

Tugas Pendahuluan

Tuliskan dasar-dasar komputasi dari metode Eliminasi Gauss Seidel untuk menyelesaikan persamaan linier simultan, sebagai berikut :

- 1. Judul: METODE ELIMINASI GAUSS SEIDEL
- 2. Dasar teori dari metode Eliminasi Gauss Seidel
- 3. Algoritma dan Flowchart

Prosedur Percobaan

1. Selesaikan sistem persamaan linier berikut :

$$x_1 + x_2 + x_3 = 6$$

$$x_1 + 2x_2 - x_3 = 2$$

$$2x_1 + x_2 + 2x_3 = 10$$

- 2. Implementasikan algoritma dan flowchart yang sudah diberikan dan dikerjakan pada laporan pendahuluan, lalu isi lembaran laporan akhir seperti form laporan akhir yang ditentukan
- 3. Jalankan program dengan memasukkan berbagai macam nilai awal, kemudian tampilkan, tuliskan augmented matrik dan hasil akhir penyelesaian persamaan linier simultan prosedur no 1 untuk semua hasil yang telah dicoba.
- 4. Lakukan penukaran baris matrik persamaan linier simultan: baris II dengan baris III pada matrik awal yang diketahui. Jalankan program kemudian tampilkan, tuliskan augmented matrik dan hasil akhir penyelesaian persamaan linier simultan dari matrik yang telah ditukar barisnya. Lakukan hal yang sama dengan menukar kolom matrik I dengan matrik II.
- 5. Apa pengaruh dari masing-masing penukaran baris dan penukaran kolom pada matrik prosedur 4.

FORM LAPORAN AKHIR Nama dan NRP mahasiswa
Judul Percobaan: METODE ELIMINASI GAUSS SEIDEL
Algoritma:
Listing program yang sudah benar :
Hasil percobaan : 1. Augmented matrik asal : 2. Percobaan dilakukan dengan : MAX_ITER= dan e= 3. Untuk nilai awal = (,,)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Dilakukan minimal 4 kali dengan 4 nilai awal yang berbeda
4. Penyelesaian akhir persamaan linier simultan :
 x1 = x2 =
 x3 = 5. Ulangi langkah 2 s/d 4 untuk matrik penukaran baris, kemudian lakukan untuk matrik penukaran kolom
Apa pengaruh dari :
 Penentuan nilai awal tiap variabel bebas dengan jumlah iterasi akhir Penentuan nilai error dengan jumlah iterasi akhir
 Penukaran baris matrik persamaan linier simultan
 Penukaran kolom matrik persamaan linier simultan