ETUDE DE PRODUITS INDUSTRIELS

SOUS EPREUVE E52

ANALYSE ET SPECIFICATION DE PRODUITS

Durée : 4 heures

Aucun document n'est autorisé

Calculatrice autorisée (conformément à la circulaire n°99-186 du 16 novembre 1999)

Le sujet comporte trois dossiers :

- un dossier technique
- un dossier travail
- un dossier réponse

Le dossier réponse est à joindre aux feuilles de copie.

CPE5AS

Sommaire

Dossier technique

Présentation	Page 1 et 2			
Documents	DT01 : FAST partiel de la roue de chariot			
	DT02 : Dessin d'ensemble de la roue de chariot			
	DT03 : Nomenclature de la roue de chariot			
	DT04 : Graphe de contact de la roue de chariot			
	DT05 : Tableau d'analyse des antériorités fonctionnelles			
	et/ou de position axe 10.			
	DT06 : Répartition des contraintes équivalentes sur l'axe			
	10 – Classification des matériaux			
	DT07 : Données technico-économiques sur l'axe 10			

Dossier travail

Présentation Page 1 à 3

Dossier Réponse

Documents	DRep01 : Chaîne de cotes unidirectionnelle du jeu ja						
	DRep02 : Graphe de contact hiérarchisé : Axe 10						
	DRep03 : Dessin de définition partiel de l'axe 10						
	DRep04 : Analyse de la spécification de perpendicularité						
	de la fonction technique : assemblage de la roue dentée						
	conique 7 sur l'axe 10						
	DRep05 : Implication de la tolérance de perpendicularité						
	de SC4/GC1 sur le positionnement radial du sommet du						
	cône						
	DRep06: Dessin de définition partiel du chapeau						
	roulement 6						
	DRep07 : Tableau d'analyse des antériorités						
	fonctionnelles et/ou de position chapeau roulement 6						
	DRep08 : Choix d'un processus						

SOUS EPREUVE E52 ANALYSE ET SPECIFICATION DE PRODUITS

DOSSIER TECHNIQUE

ROUE MOTRICE DE CHARIOT ELEVATEUR

Ce dossier comporte 9 pages.

CPE5AS

CHARIOT ELEVATEUR – Roue motrice

PRESENTATION

Le chariot élévateur (figure 1), objet de cette étude, est utilisé pour la manutention et le stockage des marchandises dans des entrepôts. Il comporte trois roues : deux situées à l'avant sont dites porteuses et la troisième, située à l'arrière, est à la fois motrice et directrice.

La propulsion est obtenue à partir d'un moteur électrique alimenté par des batteries d'accumulateurs. La puissance du moteur est transmise à la roue motrice par l'intermédiaire (figure 2) :

- d'un réducteur R_1 à roues cylindriques de rapport de transmission r_1 = 0,4 et de rendement η_1 = 0,98 ;
- d'un renvoi d'angle réducteur R_2 à engrenage conique de rapport de transmission r_2 = 0,2 (denture droite, m = 2,5) et de rendement η_2 = 0,98.

Caractéristiques mécaniques du moteur électrique :

- puissance : P_m = 2,1 kW ; fréquence de rotation : N_m = 1500 tr/min.

L'ensemble {moteur ; R_1 ; R_2 } est en liaison pivot avec le châssis du chariot et est animé d'un mouvement de rotation autour de l'axe Y par action du cariste sur le volant.

L'étude proposée se limite à la partie {Roue motrice ; R₂} définie par le dessin d'ensemble de la roue de chariot (document DT02) ainsi que les vues 3D ci-dessous.

MIP : MIse en Position MAP : MAintien en Position

TAM : Transmission des Actions Mécaniques

NOMENCLATURE

26	1	Roue + jante	GE360	
25	1	Cales de réglage		
24	1	Rondelle d'appui	S235	
23	1	Ecrou à encoches type KM, M20 × 1		
22	1	Rondelle frein type MB, M20		
21	1	Clavette parallèle, forme A, $4 \times 4 \times 25$		
20	1	Joint à lèvre, type A, $35 \times 52 \times 7$		
19	1	Chapeau gauche	E360	
18	1	Roulement à rouleaux coniques		FAG: 30207A
17	1	Goupille élastique ISO 8752 – 15 × 20		
16	1	Joint circulaire, type A, 12		
15	1	Bouchon de fermeture G1/4		
14	1	Cales de réglage		Précision du réglage 0,05 mm
13	17	Rondelle – W8		
12	14	Vis à tête hexagonale ISO 4014 - M 8×20 - 8-8		
11	1	Chapeau droit	E360	
10	1	Axe (arbre de sortie)	35 Cr Mo 4	
9	1	Roulement à rouleaux coniques		FAG: 30206A
8	3	Vis à tête hexagonale ISO 4014 - M 8×25 - 8-8		
7	1	Roue dentée conique	35 Cr Mo 4	
6	1	Chapeau roulement	E360	
5	1	Cales de réglage		Précision du réglage 0,05 mm
4	1	Roulement à rouleaux cylindriques		FAG : NJ205E.TVP2 + HJ205E
3	1	Anneau élastique pour arbre, 25×1,2		
2	1	Carter	GE360	
1	1	Arbre d'entrée	35 Cr Mo 4	
Rep	Nbr	DESIGNATION	MATIERE	OBSERVATIONS

LEGENDE:

CL: centrage long BU: butée

AL: alignement CH: contact hélicoïdal

CO: centrage conique

BTS Conception de Produits industriels

CPE5AS

Sous épreuve E52

Analyse des antériorités fonctionnelles et/ou de position de l'axe 10						
IDENTIFICATION DES SURFACES DU MODELE Fonction Technique Assurée Surfaces ou groupes de surfaces fonctionnelles						
Première vue isométrique du modèle	Guider l'axe 10 dans le carter 2 • MIP 10 - CL	GC1	Portées de centrage roulements 9 et 18	X1		
	- BU	SC2 – SC3	Arrêts axiaux	X2		
GC1	Lier la roue conique 7 à l'axe 10 (Ft121) • MIP Roue conique 7 - APP	SC4	Appui roue conique 7	X3		
	- CC	SC5	Centrage roue conique 7	X4		
GC16 SC2	MAP Roue conique 7	GC6	Fixation Roue conique 7	X5		
SC15	Entraîner en rotation Roue conique 7 / Arbre 10	SC7	Centrage goupille 17	X6		
S10	Lier la jante 26 à l'axe 10 • MIP Jante 26	SC8	Portée conique	X7		
	• MAP Jante 26 Garantir serrage Jante 26	S9	Dégagement appui jante 26	X8		
SC8	Garantii Stifage Jante 20	S10	Fin de filetage	X9		
$S_{12} \longrightarrow \bigcup_{S_9} \bigcup_{GC_6} \bigcup$		SC11	Portée de filetage	X10		
SC11		S12	Serrage Ecrou 23	X11		
Deuxième vue isométrique du modèle	Arrêter écrou 23	GC13	Flancs de rainure d'arrêts	X12		
SC7	Garantir Passage languette rondelle frein 22	S14	Fond de rainure	X13		
SC4	Entraîner en rotation Jante 26 / Arbre 10 - APP Clavette 21	SC15	Fond de rainure	X14		
SC5	- AL Clavette 21	GC16	Flancs de rainure	X15		
GC13 SC3						

<u>Classification des familles de matériaux en fonction de leurs résistances élastiques et de leur prix (EUR/kg)</u>

Données technico-économiques sur l'axe 10

Processus 1: Usinage dans la masse.

Brut: lopin Ø 95 mm, longueur 200 mm

Le coût de sciage du lopin est estimé à 0,80 €.

Le coût matière est de 0,7 € par kilogramme.

Matériau : 35 Cr Mo 4, masse volumique : 7,85 kg/dm³.

Usinage sur machines outils à commande numérique avec des conditions de coupes

donnant un débit de copeaux moyen de : 10 000 mm³/s ;

Le taux horaire des machines utilisées est de 55 € / heure.

Processus 2: Usinage à partir d'un brut forgé.

Brut: forgé,

Volume: 453818 mm³ environ.

Les bruts forgés sont obtenus chez un sous-traitant.

Coût prévisionnel des bruts :

- 3000 € pour l'outillage ;
- 8 € par brut matière comprise.

Remarque: Les deux processus ont les mêmes phases d'usinage.

SOUS EPREUVE E52 ANALYSE ET SPECIFICATION DE PRODUITS

DOSSIER TRAVAIL

ROUE MOTRICE DE CHARIOT ELEVATEUR

Ce dossier comporte 3 pages.

Temps conseillé :

1- Lecture du sujet, Introduction : 20 minutes2- Analyses et réglages de la transmission : 20 minutes

3- Etude de l'axe 10 : 1 heure 20 minutes

4- Etude du chapeau de roulement 6 : 1 heure

5- Industrialisation de l'axe 10 : 1 heure

CPE5AS

1- Introduction (voir DT 02)

L'axe 10 (arbre de sortie) permet la transmission et l'adaptation de la puissance de l'arbre d'entrée à la roue. Cette pièce est en liaison pivot avec le carter 2 et positionne la roue dentée conique 7 dans son engrènement avec le pignon 1.

La liaison pivot est réalisée par l'intermédiaire de deux roulements à rouleaux coniques. Afin de garantir un bon fonctionnement du guidage, il faut mettre en place une précharge axiale permettant le réglage du jeu de fonctionnement. Ce réglage est effectué en agissant sur les bagues coulissantes des roulements (les bagues extérieures dans notre cas) grâce aux cales de réglages 5.

Les roues assurant la transmission entre l'arbre d'entrée 1 et l'axe 10 sont coniques. Afin d'assurer une transmission sans glissement, les sommets des roues de l'engrenage concourant doivent être confondus.

2- Analyse des réglages de la transmission par engrenage conique

Objectif: Assurer les fonctions techniques:

- Ft132 : Régler la précharge axiale du montage ;
- Ft1222 : Régler la position des sommets des cônes du pignon et de la roue dentée conique 7.

Le réglage de la précharge du montage de roulement est assuré par les cales de réglages 5. La cote a₆ correspond à la cote fonctionnelle permettant le positionnement de l'appui plan du montage du chapeau 11 sur le chapeau roulement 6, par rapport à l'appui plan du montage du chapeau roulement 6 sur le carter 2.

Question 1 : Compléter, sur le document DRep01, la chaîne unidimensionnelle de cotes, correspondent à la condition la correspondant à la condition Ja. DRep01

Question 2 : Sur feuille de copie, expliquer comment est réalisé le réglage de la position DT01 DT02 axiale du sommet du cône de la roue dentée 7. Feuille de copie

3- Fonctions techniques et antériorités fonctionnelles associées à l'axe 10

Objectif: Assurer la fonction technique Ft121: Lier la roue dentée conique 7 sur l'axe 10.

Question 3 : Le document DT04 présente le graphe de contact entre les composants de la procéder à l'angle de chariot. Afin de procéder à l'angle de chariot. roue de chariot. Afin de procéder à l'analyse détaillée des spécifications de l'axe 10, compléter le document DRep02 : DRep02

- par la définition des composants parents et enfants de l'arbre ;
- par l'indication des types de contacts associés, selon la terminologie définie au bas du document DRep02.

DT01 DT02 DT04 DT05 DRep03

Question 4: Mettre en évidence les renseignements liés à la fonction technique Ft121: Lier la roue dentée conique 7 sur l'arbre 10 en reportant le(s) repère(s) de la feuille d'analyse (Document DT05) sur la ou les cotes et sur le(s) tolérancement(s) géométrique(s) associés du dessin de définition (Document DRep03). Prendre modèle sur l'exemple qui illustre la fonction « Guider l'axe 10 dans le carter 2 ».

Question 5 : Interpréter la spécification de perpendicularité sur le document DT01 DT02 réponse DRep04.

DT04 DT05 DRep03 DRep04

<u>Objectif</u>: Détermination de l'implication de la tolérance de perpendicularité dans le positionnement radial du sommet du cône de la roue dentée 7.

A partir des documents DT02 et DT05, et sur le document DRep05 :

Question 6 : À partir de la zone de tolérance de perpendicularité de SC4 par rapport à GC1 représentée sur le document DRep05, tracer (en rouge) les deux positions angulaires extrêmes du plan d'appui SC4 (en projection dans le plan de la feuille du document réponse) par rapport à GC1.

 $\begin{array}{l} \underline{Question~9} : Calculer~la~valeur~de~la~tolérance~de~perpendicularité~t_0~pour~une~valeur~de~\\ \underline{DT01~DT02}_{DT04~DT05}\\ \underline{DRep05} \end{array} \\ \begin{array}{l} déplacement~radial~suivant~y~du~point~S~de~0,01~mm.\\ Compléter~le~document~DRep~05. \end{array}$

<u>4- Fonctions techniques et antériorités fonctionnelles associées au chapeau de roulement 6</u>

Objectifs: Assurer les fonctions techniques:

- Ft131 : Utiliser des roulements à contact oblique ;
- Ft132 : Régler la précharge axiale du montage ainsi que la position du sommet du cône de la roue dentée conique 7 ;
- Ft1222 : Régler la position des sommets des cônes du pignon et de la roue.

Le chapeau de roulement 6 est impliqué dans le positionnement radial du roulement 9, participe au réglage de la précharge du montage de roulements et intervient dans le réglage de la transmission par engrenage.

Question 10 : Reporter sur le dessin de définition partiel du chapeau roulement (document DT01 DT02 DT04 DRep06), les spécifications relatives aux fonctions techniques correspondantes à la fonction : lier le chapeau roulement 6 sur le carter 2 définie sur le document DRep07.

Question 11: Compléter le tableau d'analyse des antériorités fonctionnelles et/ou de position chapeau roulement 6 (document DRep07), pour les fonctions techniques correspondantes à l'assemblage du chapeau 11 sur le chapeau roulement 6 suivantes :

- Lier le chapeau 11 au chapeau roulement 6 ;
- Assurer la position radiale du roulement 9 ;
- Assurer le réglage de la précharge du montage de roulement correspondant à la cote fonctionnelle a₆ de la chaîne de cotes unidirectionnelle du jeu j_a.

5- Industrialisation de l'axe 10

Objectifs: Assurer la fonction technique Ft2: Supporter les efforts, pour l'axe 10.

- Les contraintes de Von Mises sur l'axe 10 sont données sur document DT06;
- On prend pour cette pièce un cœfficient de sécurité de 8, pour englober les contraintes maxi qui pourraient apparaître en cas de chocs (passage sur un obstacle par exemple) et les contraintes alternées dues au phénomène de fatigue.

Question 12 : À partir de la classification des familles de matériaux en fonction de leur DT01 DT02 résistance élastique et de leur prix (EUR/kg) (document DT06), et en prenant **DT03 DT06** comme critère la limite élastique et une recherche du prix minimum, choisir un Feuille de copie famille de matériau pour l'axe 10.

Question 13 : À partir de la désignation de l'axe 10 (document DT03), donner sur feuille de copie, la famille de ce matériau, et justifier ce choix. **DT03 DT06** Feuille de copie

Objectifs: Choisir un procédé d'obtention de l'axe 10.

Actuellement l'axe 10 est usiné dans la masse (processus 1, document DT07). En vue d'une augmentation de la production, on envisage un deuxième procédé pour l'obtention du brut : le forgeage. Le but de cette partie est de déterminer à partir de quel nombre de pièces produites le processus 2 découlant du nouveau procédé est rentable.

DT01 DT02 DT07 DRep08

Question 14: A partir des documents DT07, déterminer sur le document DRep08:

- le volume du lopin du processus 1 ;
- le volume supplémentaire de copeaux à usiner dans le cas du processus 1 par rapport au processus 2.

DT07 DRep08

Question 15 : A l'aide des données économiques fournies (document DT07), déterminer sur le document DRep08, le coût d'obtention de l'ébauche du processus 1 par rapport au processus 2, du fait de la différence de brut (quantité de matière, sciage, usinage supplémentaire).

DT01 DT02 DT07 DRep08

Question 16: Déterminer graphiquement à partir du graphique Coût/Quantité, sur le document DRep08, le seuil de rentabilité, en nombre de pièces, du processus 2 par rapport au processus 1.

SOUS EPREUVE E52 ANALYSE ET SPECIFICATION DE PRODUITS

DOSSIER REPONSE

ROUE MOTRICE DE CHARIOT ELEVATEUR

Ce dossier comporte 8 pages.

Graphe de contact hiérarchisé Référence (s) Types de contact Référence (s) Types de contact Composant(s) parents(s) Composant(s) enfant(s) **AXE (10)**

APP : contact plan – CL : centrage long – CC : centrage court – AL : alignement BU : butée – CH : Contact hélicoïdal – PA : passage libre – CO : centrage conique

RAPPEL:

- Composants parents : composants qui participent directement à la mise en position du composant étudié (ils l'orientent et le positionnent dans le mécanisme).
- Composants enfants : composants positionnés et/ou orientés directement par le composant étudié.

BTS Conception de Produits industriels

CPE5AS

Sous épreuve E52

TOLERANCEMENT NORMALISE	Analyse d'une spécification par zone de tolérance							
Symbole de la spécification	Eléments	s non Idéaux	Eléments Idéaux					
Type de spécification Forme Orientation Position Battement	Elément(s) tolérancé(s)	Elément(s) de référence	Référence(s) spécifiée(s)	Zor	ne de tolérance			
Condition de conformité : L'élément tolérancé doit se situer tout entier dans la zone de tolérance.	unique groupe	unique multiples	simple commune système	simple composée	Contraintes orientation et/ou position par rapport à la référence spécifiée			
Schéma extrait du dessin de définition								
1p A-B C								

Analyse des antériorités fonctionnelles et/ou de position du chapeau roulement 6		ulement 6	Antériorités				Caractéristiques		Rep.		
IDENTIFICATION DES SURFACES DU MODELE	Fonction Technique Assurée	Surface	es ou groupes de es fonctionnelles	Primaire		Secondaire		Tertiaire	Intrinsèques	De Contact	_ Kep.
Première vue isométrique du modèle SC1	Lier le chapeau roulement 6 au carter 2 • MIP Chapeau roulement 6										
Sci	- APP - CC	SC1 SC2	Appui carter 2 Centrage carter 2	SC1	<u> </u>				planéité Ø portée		
SC2	MAP Chapeau roulement 6	G3 SC4	Passage vis de fixation12 Appui rondelle 13	SC1	⊥ distance	SC2	distance		Ø de répartitions, nombre, Ø alésages		
G3	Lier le chapeau droit 11 au chapeau roulement 6										
SC7 SC6											
	Assurer la position radiale du roulement 9										
GC5 SC4	Assurer le réglage de la précharge du montage de roulements										

Feuille d'analyse préparatoire à la spécification de composants

Fonction technique assurée : MIP, MAP, passage d'autres pièces, rigidité de la pièce etc. S = surface libre SC = surface de contact SB = surface brute MIP = Mise en position G = groupe des surfaces libres GC = groupe des surfaces de contact GB = groupe des surfaces brutes MAP = Maintien en position

Caractéristiques intrinsèques : caractéristiques spécifications de forme, voir tableau traitements distance interne dans le groupe de surface

Caractéristiques de contact : Voir tableau rugosité, traitements

CHOIX D'UN PROCESSUS D'OBTENTION DE L'AXE 10

Question 14

Volume du lopin du processus 1 :						

Volume de copeaux supplémentaires à usiner dans le cas du processus 1 par rapport au processus 2 :

Question 15

Coût d'obtention de l'ébauche du processus 1 par rapport au processus 2 :

Question 16

Seuil de rentabilité en nombre de pièces du processus 2 par rapport au processus 1 :