Package 'fastai'

April 11, 2024

Type Package
Title Interface to 'fastai'
Version 2.2.2
Maintainer Turgut Abdullayev <turqut.a.314@gmail.com></turqut.a.314@gmail.com>
Description The 'fastai' https://docs.fast.ai/index.html library simplifies training fast and accurate neural networks using modern best practices. It is based on research in to deep learning best practices undertaken at 'fast.ai', including 'out of the box' support for vision, text, tabular, audio, time series, and collaborative filtering models. License Apache License 2.0
<pre>URL https://github.com/EagerAI/fastai</pre>
BugReports https://github.com/EagerAI/fastai/issues
Encoding UTF-8
RoxygenNote 7.3.1
Imports reticulate, generics, png, ggplot2, ggpubr, glue
Suggests knitr, testthat, rmarkdown, curl, magrittr, data.table, vctrs, stats, utils, R.utils, viridis, zeallot
VignetteBuilder knitr
NeedsCompilation no
Author Turgut Abdullayev [ctb, cre, cph, aut]
Repository CRAN
Date/Publication 2024-04-11 14:40:07 UTC
R topics documented:
*.fastai.torch_core.TensorMask

2

/.fastai.torch_core.TensorMask	. 23
<.fastai.torch_core.TensorMask	. 24
<=.fastai.torch_core.TensorMask	. 24
==.fastai.torch_core.TensorImage	
==.fastai.torch_core.TensorMask	
==.torch.Tensor	
>.fastai.torch_core.TensorMask	
>=.fastai.torch_core.TensorMask	
abs	
abs.fastai.torch_core.TensorMask	
AccumMetric	
accuracy	
accuracy_multi	
· · · · · · · · · · · · · · · · · · ·	
accuracy_thresh_expand	
Adam	
adam_step	
AdaptiveAvgPool	
AdaptiveConcatPool1d	
AdaptiveConcatPool2d	
AdaptiveGANSwitcher	
AdaptiveLoss	
adaptive_pool	
add	
AddChannels	. 35
AddNoise	. 36
add_cyclic_datepart	. 36
add_datepart	. 37
AffineCoordTfm	
affine_coord	. 38
affine_mat	
alexnet	
apply_perspective	
APScoreBinary	
APScoreMulti	
aspect	
as_array	
AudioBlock	
AudioBlock_from_folder	
AudioGetter	. 44
* *	
AudioSpectrogram	
AudioTensor	
AudioTensor_create	
AudioToMFCC	
AudioToMFCC_from_cfg	
AudioToSpec_from_cfg	
audio_extensions	
aug transforms	. 49

average_grad 51 average_sqr_grad 51 AvgEoss 52 AvgPool 52 AvgPool 53 AvgPool 53 awd_lstm_clas_split 53 awd_lstm_clas_split 54 awd_lstm_lm_split 55 AWD_QRNN 55 BalancedAccuracy 56 BaseLoss 57 BasicMelSpectrogram 57 BasicMelSpectrogram 60 basic_gritic 61 basic_generator 61 BatchNorm 62 BatchNorm 62 BatchNorm 63 BatchNormIdFlat 63 BBoxLabeler 64 BBoxLabeler 64 BBoxLabeler 64 BBoxLabeler 64 BBoxLabeler 64 BBoxLabeler 65 BECEWithLogitsLossFlat 66 BUIT 67 BrierScore 67 BrierScoreMulti 68 bs_finde 68 bs_finder 69 bt 69 calculate_rouge 70 Callback 70 Cat 61 Cat 71 catalyst 71 catalyst 71 catalyst 72 catalyst 72 catalyst 73 catiling_Arameters 73 ClassificationInterpretation_from_learner 74 children_and_parameters 75 ClassificationInterpretation_from_learner 75 clean_raw_keys 76 clein_raw_keys 76 clein_raw_keys 76 clein_raw_keys 76	AutoConfig	. 50
AvgLoss 52 AvgPool 52 AvgSmoothLoss 53 awd_stm_LsTM 53 awd_lstm_clas_split 54 awd_lstm_lm_split 55 AWD_QRNN 55 BalancedAccuracy 56 BaseLoss 57 BaseCloss 57 BasicMelSpectrogram 58 BasicMPCC 59 BasicSpectrogram 60 basic_petrator 61 BatchNorm 62 BatchNormIdFlat 63 BBoxBlock 63 BBoxLable 64 BBoxLbiBlock 64 bb_pad 65 BCELossFlat 66 BCEWithLogitsLossFlat 66 blurr 67 BrierScore 67 BrierScoreMulti 68 bs_finder 69 bt 68 bc_finder 69 bt 68 bc_finder 70 <tr< td=""><td>average_grad</td><td>. 51</td></tr<>	average_grad	. 51
AvgPool 52 AvgSmoothLoss 53 AWD_LSTM 53 awd_lstm_elas_split 54 awd_lstm_lm_split 55 AWD_QRNN 55 BalancedAccuracy 56 BaseLoss 57 Base Tokenizer 57 BasicMelSpectrogram 58 BasicMerCC 59 BasicSpectrogram 60 basic_generator 61 BatchNorm 62 BatchNormldFlat 63 BBoxBlock 63 BBoxLabeler 64 BboxLblBlock 64 bb_pad 65 BCELossFlat 66 BCEWithLogitsLossFlat 66 blurr 67 BrierScore 67 BrierScoreMulti 68 bs_find 68 bs_finder 69 bt 69 td 69 td 69 td 69	average_sqr_grad	. 51
AvgSmoothLoss 53 AWD_LSTM 53 awd_lstm_leas_split 54 awd_lstm_lm_split 55 AWD_QRNN 55 BalancedAccuracy 56 BaseLoss 57 Basc Rokenizer 57 BasicMelSpectrogram 58 BasicMFCC 59 BasicSpectrogram 60 basic_generator 61 BatchNorm 62 BatchNormIdFlat 63 BBOxBlock 63 BBoxLabeler 64 Bb-pad 65 BCELossFlat 66 BCEVithLogitsLossFlat 66 blurr 67 BrierScore 67 BrierScoreMulti 68 bs_find 68 bs_finder 69 bt 69 catalyst 70 Callback 70 Categorify 72 CategoryBlock 73 ceiling_fastai.torch_core.TensorMask <td>AvgLoss</td> <td>. 52</td>	AvgLoss	. 52
AWD_LSTM 53 awd_lstm_clas_split 54 awd_lstm_lm_split 55 AWD_QRNN 55 BalancedAccuracy 56 BaseLoss 57 BasicMelSpectrogram 58 BasicMFCC 59 BasicSpectrogram 60 basic_generator 61 BatchNorm 62 BatchNorml dFlat 63 BBoxBlock 63 BBoxLabeler 64 BBoxLblBlock 64 bb_pad 65 BCELossFlat 66 BCEWithLogitsLossFlat 66 blurr 67 BrierScore 67 BrierScoreMulti 68 bs_find 68 bs_finder 69 bt 60 calculate_rouge 70 Callback 70 Cat 71 catalyst 71 catalyst 72 Categorify 72 CategoryBlock 73 ceiling_fatai.torch_core.Tens	AvgPool	. 52
AWD_LSTM 53 awd_lstm_clas_split 54 awd_lstm_lm_split 55 AWD_QRNN 55 BalancedAccuracy 56 BaseLoss 57 BasicMelSpectrogram 58 BasicMFCC 59 BasicSpectrogram 60 basic_generator 61 BatchNorm 62 BatchNorml dFlat 63 BBoxBlock 63 BBoxLabeler 64 BBoxLblBlock 64 bb_pad 65 BCELossFlat 66 BCEWithLogitsLossFlat 66 blurr 67 BrierScore 67 BrierScoreMulti 68 bs_find 68 bs_finder 69 bt 60 calculate_rouge 70 Callback 70 Cat 71 catalyst 71 catalyst 72 Categorify 72 CategoryBlock 73 ceiling_fatai.torch_core.Tens	AvgSmoothLoss	. 53
awd_lstm_clas_split 54 awd_lstm_lm_split 55 AWD_QRNN 55 BalancedAccuracy 56 BaseLoss 57 BasicMelSpectrogram 58 BasicMelSpectrogram 59 BasicSpectrogram 60 basic_generator 61 basic_generator 61 BatchNorm 62 BatchNormldFlat 63 BBoxBlock 63 BBoxLabeler 64 BBoxLblBlock 64 bb_pad 65 BCELossFlat 66 BCEWithLogitsLossFlat 66 blurr 67 BrierScore 67 BrierScoreMulti 68 bs_find 68 bs_finder 69 bt 69 catalyst 70 Catlo		
awd_lstm_lm_split 55 AWD_QRNN 55 BalancedAccuracy 56 BaseLoss 57 BaseTokenizer 57 BasicMelSpectrogram 58 BasicMFCC 59 BasicSpectrogram 60 basic_generator 61 BatchNorm 62 BatchNormldFlat 63 BBoxBlock 63 BBoxLabler 64 BBoxLabler 64 BBoxLblBlock 64 bb_pad 65 BCELossFlat 66 BCEWithLogitsLossFlat 66 blurr 67 BrierScore 67 BrierScoreMulti 68 bs_find 68 bs_finder 69 bt 69 callback 70 Cat 71 catalyst 71 catalyst 72 Categorify 72 CategoryBlock 73 ceiling_fastai.torch_core.TensorMask 73 ceiling_fastai	awd lstm clas split	. 54
AWD_QRNN 55 BalancedAccuracy 56 BaseLoss 57 BascTokenizer 57 BasicMelSpectrogram 58 BasicSpectrogram 60 basic_generator 61 batchNorm 62 BatchNorm1dFlat 63 BBoxBlock 63 BBoxLblete 64 BboxLblBlock 64 bb_pad 65 BCELossFlat 66 BCEWithLogitsLossFlat 66 blurr 67 BrierScore 67 BrierScoreMulti 68 bs_find 68 bs_finder 69 callback 70 Callback 70 Cat 71 catalyst 71 catalyst_model 72 Categorify 72 Categorify 72 Categorify 72 CategoryBlock 73 ceiling_fastai.torch_core.TensorMask 73 ceiling_fastai.torch_core.TensorMask 73	1	
BalancedAccuracy 56 BaseLoss 57 BaseTokenizer 57 BasicMelSpectrogram 58 BasicMelSpectrogram 60 basic_petric 61 basic_generator 61 BatchNorm 62 BatchNormIdFlat 63 BboxBlock 63 BboxLabeler 64 BboxLablBlock 64 bb_pad 65 BCELossFlat 66 BCEWithLogitsLossFlat 66 blurr 67 BrierScore 67 BrierScoreMulti 68 bs_find 68 bs_finder 69 bt 69 calculate_rouge 70 Callback 70 Cat 71 catalyst_model 72 CategoryBlock 73 ceiling_fastai.torch_core.TensorMask 73 ceiling_ 74 ChangeVolume 74 children_and_par	<u> •</u>	
BaseLoss 57 BaseTokenizer 57 BasicMelSpectrogram 58 BasicMFCC 59 BasicSpectrogram 60 basic_generator 61 BatchNorm 62 BatchNormIdFlat 63 BBoxBlock 63 BBoxLblock 64 BboxLbiBlock 64 bpad 65 BCEUsthLogitsLossFlat 66 BCEWithLogitsLossFlat 66 BCEWithLogitsLossFlat 66 BrierScore 67 BrierScoreMulti 68 bs_find 68 bs_finder 68 bs_finder 69 bt 69 calculate_rouge 70 Callback 70 Cat 71 catalyst_model 72 Categorify 72 CategoryBlock 73 ceiling_fastai.torch_core.TensorMask 73 ceiling_fastai.torch_core.TensorMask 73	_ ·	
BaseTokenizer 57 BasicMelSpectrogram 58 BasicMFCC 59 BasicSpectrogram 60 basic_ritic 61 basic_generator 61 BatchNorm 62 BatchNormldFlat 63 BBoxBlock 63 BBoxLabeler 64 BBoxLabeler 64 BBoxLablBlock 64 bb_pad 65 BCEWithLogitsLossFlat 66 BCEWithLogitsLossFlat 66 blurr 67 BrierScore 67 BrierScore Multi 68 bs_find 68 bs_finder 69 bt 69 calculate_rouge 70 Callback 70 Cat. 71 catalyst 71 catalyst_model 72 CategoryBlock 73 ceiling,fastai.torch_core.TensorMask 73 ceiling,fastai.tord_parameters 74	·	
BasicMelSpectrogram 58 BasicMFCC 59 BasicSpectrogram 60 basic_critic 61 basic_generator 61 BatchNorm 62 BatchNormIdFlat 63 BBoxBlock 63 BBoxLabeler 64 BBoxLblBlock 64 bb_pad 65 BCELossFlat 66 BCEWithLogitsLossFlat 66 blurr 67 BrierScore 67 BrierScoreMulti 68 bs_find 68 bs_finder 69 bt 69 calculate_rouge 70 Callback 70 Cat 71 catalyst 71 catalyst_model 72 Categorify 72 CategoryBlock 73 ceiling_fastai.torch_core.TensorMask 73 ceiling_fastai.torch_core.TensorMask 73 ceiling_and_parameters 75		
BasicMFCC 59 BasicSpectrogram 60 basic_critic 61 basic_generator 61 BatchNorm 62 BatchNormIdFlat 63 BBoxBlock 63 BBoxLabeler 64 BBoxLblBlock 64 bb_pad 65 BCELossFlat 66 BCEWithLogitsLossFlat 66 blurr 67 BrierScore 67 BrierScoreMulti 68 bs_find 68 bs_finder 69 bt 69 calculate_rouge 70 Callback 70 Cat 71 catalyst 71 catalyst_model 72 Categorify 72 CategoryBlock 73 ceiling_fastai.torch_core.TensorMask 73 ceiling_fastai.torch_core.TensorMask 73 ceiling_nand_parameters 75 ClassificationInterpretation_from_learner 75		
BasicSpectrogram 60 basic_critic 61 basic_generator 61 BatchNorm 62 BatchNormldFlat 63 BBoxBlock 63 BBoxLblecr 64 BboxLblBlock 64 bb_pad 65 BCELossFlat 66 BCEWithLogitsLossFlat 66 blurr 67 BrierScore 67 BrierScoreMulti 68 bs_find 68 bs_finder 69 bt 69 calculate_rouge 70 Callback 70 Catlogatlyst 71 catalyst_model 72 CategoryBlock 73 ceiling_fastai.torch_core.TensorMask 73 ceiling_statai.torch_core.TensorMask 73 ceiling_abratai.torch_core.TensorMask 73 ceiling_abratai.torch_core.TensorMask 73 ceiling_abratai.torch_core.TensorMask 73 ceiling_abratai.torch_core.TensorMask 73 ceiling_arad_parameters 75	· · ·	
basic_critic 61 basic_generator 61 BatchNorm 62 BatchNorm1dFlat 63 BBoxBlock 63 BBoxLabeler 64 BBoxLblBlock 64 bb_pad 65 BCELossFlat 66 BCEWithLogitsLossFlat 66 blurr 67 BrierScore 67 BrierScoreMulti 68 bs_find 68 bs_finder 69 bt 69 calculate_rouge 70 Callback 70 Cat 71 catalyst 71 catalyst_model 72 Categorify 72 CategoryBlock 73 ceiling_fastai.torch_core.TensorMask 73 ceiling_ 74 Change Volume 74 children_and_parameters 75 ClassificationInterpretation_from_learner 75 clean_raw_keys 76		
basic_generator 61 BatchNorm 62 BatchNorm1dFlat 63 BBoxBlock 63 BBoxLabeler 64 BBoxLblBlock 64 bb_pad 65 BCELossFlat 66 BCEWithLogitsLossFlat 66 blurr 67 BrierScore 67 BrierScoreMulti 68 bs_find 68 bs_finder 69 bt 69 calculate_rouge 70 Callback 70 Cat 71 catalyst 71 catalyst_model 72 Categorify 72 CategoryBlock 73 ceiling_fastai.torch_core.TensorMask 73 ceiling_Lost.icore_core.TensorMask 73 ceiling_Lost.icore_lost.gen.TensorMask 73 ceiling_Lost.icore.TensorMask 73 ceiling_Lost.icore.TensorMask 73 ceiling_Lost.icore.TensorMask 73 ceil	1 6	
BatchNorm 62 BatchNorm1dFlat 63 BBoxBlock 63 BBoxLabeler 64 BBoxLblBlock 64 bb_pad 65 BCEUssFlat 66 BCEWithLogitsLossFlat 66 blurr 67 BrierScore 67 BrierScore Multi 68 bs_find 68 bs_finder 69 bt 69 calculate_rouge 70 Callback 70 Cat 71 catalyst 71 catalyst_model 72 Categorify 72 CategoryBlock 73 ceiling_fastai.torch_core.TensorMask 73 ceiling_lastai.torch_core.TensorMask 73 </td <td>-</td> <td></td>	-	
BatchNorm1dFlat 63 BBoxBlock 63 BBoxLabeler 64 BBoxLblBlock 64 bb_pad 65 BCELossFlat 66 BCEWithLogitsLossFlat 66 blurr 67 BrierScore 67 BrierScoreMulti 68 bs_find 68 bs_finder 69 bt 69 calculate_rouge 70 Callback 70 Cat 71 catalyst 71 catalyst_model 72 Categorify 72 CategoryBlock 73 ceiling_fastai.torch_core.TensorMask 73 ceiling_fastai.torch_core.TensorMask 73 ceiling_boulume 74 children_and_parameters 75 ClassificationInterpretation_from_learner 75 clean_raw_keys 76	_ _	
BBoxBlock 63 BBoxLabeler 64 BBoxLblBlock 64 bb_pad 65 BCELossFlat 66 BCEWithLogitsLossFlat 66 blurr 67 BrierScore 67 BrierScoreMulti 68 bs_find 68 bs_finder 69 bt 69 calculate_rouge 70 Callback 70 Cat 71 catalyst 71 catalyst_model 72 Categorify 72 CategoryBlock 73 ceiling_fastai.torch_core.TensorMask 73 ceiling_ 74 ChangeVolume 74 children_and_parameters 75 ClassificationInterpretation_from_learner 75 clean_raw_keys 76		
BBoxLabeler 64 BBoxLblBlock 64 bb_pad 65 BCELossFlat 66 BCEWithLogitsLossFlat 66 blurr 67 BrierScore 67 BrierScoreMulti 68 bs_find 68 bs_finder 69 t 69 calculate_rouge 70 Callback 70 Cat 71 catalyst 71 catalyst_model 72 Categorify 72 CategoryBlock 73 ceiling_fastai.torch_core.TensorMask 73 ceiling_ 74 ChangeVolume 74 children_and_parameters 75 ClassificationInterpretation_from_learner 75 clean_raw_keys 76		
BBoxLblBlock 64 bb_pad 65 BCELossFlat 66 BCEWithLogitsLossFlat 66 blurr 67 BrierScore 67 BrierScoreMulti 68 bs_find 68 bs_finder 69 bt 69 calculate_rouge 70 Cat 71 catalyst 71 catalyst 71 catalyst_model 72 Categorify 72 CategoryBlock 73 ceiling_fastai.torch_core.TensorMask 73 ceiling_ 74 Change Volume 74 children_and_parameters 75 ClassificationInterpretation_from_learner 75 clean_raw_keys 76		
bb_pad 65 BCELossFlat 66 BCEWithLogitsLossFlat 66 blurr 67 BrierScore 67 BrierScoreMulti 68 bs_find 68 bs_finder 69 bt 69 calculate_rouge 70 Callback 70 Cat 71 catalyst 71 catalyst_model 72 Categorify 72 CategoryBlock 73 ceiling_fastai.torch_core.TensorMask 73 ceiling_ 74 ChangeVolume 74 children_and_parameters 75 ClassificationInterpretation_from_learner 75 clean_raw_keys 76		
BCELossFlat 66 BCEWithLogitsLossFlat 66 blurr 67 BrierScore 67 BrierScoreMulti 68 bs_find 68 bs_finder 69 bt 69 calculate_rouge 70 Callback 70 Cat 71 catalyst 71 catalyst_model 72 Categorify 72 CategoryBlock 73 ceiling_fastai.torch_core.TensorMask 73 ceiling_ 74 Change Volume 74 children_and_parameters 75 ClassificationInterpretation_from_learner 75 clean_raw_keys 76		
BCEWithLogitsLossFlat 66 blurr 67 BrierScore 67 BrierScoreMulti 68 bs_find 68 bs_finder 69 bt 69 calculate_rouge 70 Callback 70 Cat 71 catalyst 71 catalyst_model 72 Categorify 72 CategoryBlock 73 ceiling_fastai.torch_core.TensorMask 73 ceiling_ 74 ChangeVolume 74 children_and_parameters 75 ClassificationInterpretation_from_learner 75 clean_raw_keys 76	=	
blurr 67 BrierScore 67 BrierScoreMulti 68 bs_find 68 bs_finder 69 bt 69 calculate_rouge 70 Callback 70 Cat 71 catalyst 71 catalyst_model 72 Categorify 72 CategoryBlock 73 ceiling_fastai.torch_core.TensorMask 73 ceiling_ 74 Change Volume 74 children_and_parameters 75 ClassificationInterpretation_from_learner 75 clean_raw_keys 76		
BrierScore 67 BrierScoreMulti 68 bs_find 68 bs_finder 69 bt 69 calculate_rouge 70 Callback 70 Cat 71 catalyst 71 catalyst_model 72 Categorify 72 CategoryBlock 73 ceiling_fastai.torch_core.TensorMask 73 ceiling_ 74 ChangeVolume 74 children_and_parameters 75 ClassificationInterpretation_from_learner 75 clean_raw_keys 76	· · · · · · · · · · · · · · · · · · ·	
BrierScoreMulti 68 bs_find 68 bs_finder 69 bt 69 calculate_rouge 70 Callback 70 Cat 71 catalyst 71 catalyst_model 72 Categorify 72 CategoryBlock 73 ceiling_fastai.torch_core.TensorMask 73 ceiling_ 74 ChangeVolume 74 children_and_parameters 75 ClassificationInterpretation_from_learner 75 clean_raw_keys 76		
bs_find. 68 bs_finder 69 bt 69 calculate_rouge 70 Callback 70 Cat 71 catalyst 71 catalyst_model 72 Categorify 72 CategoryBlock 73 ceiling.fastai.torch_core.TensorMask 73 ceiling_ 74 ChangeVolume 74 children_and_parameters 75 ClassificationInterpretation_from_learner 75 clean_raw_keys 76		
bs_finder 69 bt 69 calculate_rouge 70 Callback 70 Cat 71 catalyst 71 catalyst_model 72 Categorify 72 CategoryBlock 73 ceiling_fastai.torch_core.TensorMask 73 ceiling_ 74 ChangeVolume 74 children_and_parameters 75 ClassificationInterpretation_from_learner 75 clean_raw_keys 76		
bt 69 calculate_rouge 70 Callback 70 Cat 71 catalyst 71 catalyst_model 72 Categorify 72 CategoryBlock 73 ceiling_fastai.torch_core.TensorMask 73 ceiling_ 74 ChangeVolume 74 children_and_parameters 75 ClassificationInterpretation_from_learner 75 clean_raw_keys 76		
calculate_rouge 70 Callback 70 Cat 71 catalyst 71 catalyst_model 72 Categorify 72 CategoryBlock 73 ceiling_fastai.torch_core.TensorMask 73 ceiling_ 74 ChangeVolume 74 children_and_parameters 75 ClassificationInterpretation_from_learner 75 clean_raw_keys 76		
Callback 70 Cat 71 catalyst 71 catalyst_model 72 Categorify 72 CategoryBlock 73 ceiling_fastai.torch_core.TensorMask 73 ceiling_ 74 ChangeVolume 74 children_and_parameters 75 ClassificationInterpretation_from_learner 75 clean_raw_keys 76		
Cat 71 catalyst 71 catalyst_model 72 Categorify 72 CategoryBlock 73 ceiling_fastai.torch_core.TensorMask 73 ceiling_ 74 ChangeVolume 74 children_and_parameters 75 ClassificationInterpretation_from_learner 75 clean_raw_keys 76	<u> </u>	
catalyst 71 catalyst_model 72 Categorify 72 CategoryBlock 73 ceiling.fastai.torch_core.TensorMask 73 ceiling_ 74 ChangeVolume 74 children_and_parameters 75 ClassificationInterpretation_from_learner 75 clean_raw_keys 76		
catalyst_model 72 Categorify 72 CategoryBlock 73 ceiling.fastai.torch_core.TensorMask 73 ceiling_ 74 ChangeVolume 74 children_and_parameters 75 ClassificationInterpretation_from_learner 75 clean_raw_keys 76		
Categorify 72 CategoryBlock 73 ceiling.fastai.torch_core.TensorMask 73 ceiling_ 74 ChangeVolume 74 children_and_parameters 75 ClassificationInterpretation_from_learner 75 clean_raw_keys 76	·	
Categorify 72 CategoryBlock 73 ceiling.fastai.torch_core.TensorMask 73 ceiling_ 74 ChangeVolume 74 children_and_parameters 75 ClassificationInterpretation_from_learner 75 clean_raw_keys 76	catalyst_model	. 72
ceiling.fastai.torch_core.TensorMask73ceiling_74ChangeVolume74children_and_parameters75ClassificationInterpretation_from_learner75clean_raw_keys76		
ceiling_74ChangeVolume74children_and_parameters75ClassificationInterpretation_from_learner75clean_raw_keys76	CategoryBlock	. 73
Change Volume74children_and_parameters75ClassificationInterpretation_from_learner75clean_raw_keys76	ceiling.fastai.torch_core.TensorMask	. 73
children_and_parametersClassificationInterpretation_from_learnerclean_raw_keys	ceiling	. 74
ClassificationInterpretation_from_learner	ChangeVolume	. 74
clean_raw_keys	children_and_parameters	. 75
clean_raw_keys	ClassificationInterpretation from learner	. 75
,	•	
	clip_remove_empty	. 76
cm		
cnn_config		

cnn_learner								
COCOMetric	 	 	 	 	 			. 80
COCOMetricType	 	 	 	 	 	 		. 81
CohenKappa	 	 	 	 	 	 		. 81
collab	 	 	 	 	 	 		. 82
CollabDataLoaders_from_dblock	 	 	 	 	 			. 82
CollabDataLoaders_from_df	 	 	 	 	 			. 83
collab_learner	 	 	 	 	 	 		. 84
CollectDataCallback	 	 	 	 	 	 		. 86
colors	 	 	 	 	 	 		. 86
ColReader	 	 	 	 	 	 		. 87
ColSplitter	 	 	 	 	 			. 87
combined_flat_anneal	 	 	 	 	 			. 88
competitions_list	 	 	 	 	 	 		. 88
competition_download_file								
competition_download_files	 	 	 	 	 	 		. 90
competition_leaderboard_download	 	 	 	 	 	 		. 91
competition_list_files								
competition_submit								
Contrast								
ConvLayer								
convT_norm_relu								
conv_norm_lr								
CorpusBLEUMetric	 	 	 	 	 	 		. 96
cos.fastai.torch_core.TensorMask								
cosh.fastai.torch_core.TensorMask .								
cosh								
crap								
crappifier								
create_body								
create_cnn_model								
create_fcn								
create_head								
create_inception								
create_mlp								
create resnet								
create_unet_model	 	 	 	 	 	 		. 105
 CropPad								
CropTime								
CrossEntropyLossFlat								
CSVLogger								
CudaCallback								
custom loss								
CutMix								
cutout_gaussian								
CycleGAN								
CycleGANLoss								

CycleGANTrainer	112
cycle_learner	112
DataBlock	113
dataloaders	114
Datasets	115
Data_Loaders	116
dcmread	117
debias	117
Debugger	118
decision_plot	
decode spec tokens	
default_split	119
Delta	
denormalize_imagenet	
densenet121	
densenet161	
densenet169	
densenet201	
DenseResBlock	
dependence_plot	
DeterministicDihedral	
DeterministicDraw	
DeterministicFlip	
detuplify_pg	
Dice	
Dicom	
dicom_windows	
Dihedral	
DihedralItem	
dihedral mat	
dim	
dim.fastai.torch core.TensorMask	
discriminator	
div	
DownmixMono	
dropout mask	
I =	
dummy_eval	
DynamicUnet	
EarlyStoppingCallback	
efficientdet_infer_dl	
efficientdet_learner	
efficientdet_model	
efficientdet_predict_dl	
efficientdet_train_dl	
efficientdet_valid_dl	
Embedding	
EmbeddingDropout	
emb sz rule	139

error_rate	139
exp	
exp.fastai.torch_core.TensorMask	140
Explained Variance	141
expm1	
expm1.fastai.torch_core.TensorMask	142
export_generator	142
exp_rmspe	
F1Score	
F1ScoreMulti	144
fastai_version	145
fastaudio	145
faster_rcnn_infer_dl	145
faster_rcnn_learner	
faster_rcnn_model	
faster_rcnn_predict_dl	
faster_rcnn_train_dl	
faster_rcnn_valid_dl	
fastinf	
fa_collate	
fa_convert	
FBeta	
FBetaMulti	
FetchPredsCallback	
FileSplitter	
FillMissing	
FillStrategy_COMMON	
FillStrategy_CONSTANT	
FillStrategy_MEDIAN	
find_coeffs	
fine_tune	
fit.fastai.learner.Learner	
fit.fastai.tabular.learner.TabularLearner	
fit.fastai.vision.gan.GANLearner	
fit_flat_cos	
fit flat lin	
fit_one_cycle	
fit_sgdr	
FixedGANSwitcher	
fix fit	
fix_html	
Flatten	
flatten_check	
flatten model	
Flip	
FlipItem	
flip_mat	
float	
11/41	100

floor.fastai.torch_core.TensorMask	67
floor	
$floor_div \ldots \ldots$	68
floor_mod	68
fmodule	69
FolderDataset	69
force_plot	70
foreground_acc	70
ForgetMultGPU	71
forget_mult_CPU	71
freeze	72
FuncSplitter	72
fView	
GANDiscriminativeLR	73
GANLearner_from_learners	
GANLearner_wgan	
GANLoss	
GANModule	
GANTrainer	
gan_critic	
gan_loss_from_func	
GatherPredsCallback	
gauss_blur2d	
generate_noise	
get_annotations	
get_audio_files	
get_bias	
get_c	
get_confusion_matrix	
get_data_loaders	
get_dcm_matrix	
get_dicom_files	
get_dls	
·	
get_emb_sz	
get_files	
get_grid	
get_hf_objects	
get_image_files	
get_language_model	
get_preds_cyclegan	
get_text_classifier	
get_text_files	
get_weights	
GradientAccumulation	
GrandparentSplitter	
grayscale	
greater	
greater_or_equal	97

8

HammingLoss	
HammingLossMulti	. 198
has_params	. 198
has_pool_type	. 199
helper	. 199
HF_ARCHITECTURES	. 199
HF_BaseInput	. 200
HF_BaseModelCallback	. 200
HF_BaseModelWrapper	. 201
HF_BeforeBatchTransform	. 201
HF_CausalLMBeforeBatchTransform	. 202
HF_load_dataset	. 203
HF_QABatchTransform	
HF_QABeforeBatchTransform	. 206
HF_QstAndAnsModelCallback	
HF_QuestionAnswerInput	
hf_splitter	
HF_SummarizationBeforeBatchTransform	
HF_SummarizationInput	
HF_SummarizationModelCallback	
HF_TASKS_ALL	
HF_TASKS_AUTO	
HF Text2TextAfterBatchTransform	
HF_Text2TextBlock	
HF TextBlock	
HF_TokenCategorize	
HF_TokenCategoryBlock	
HF_TokenClassBeforeBatchTransform	
HF_TokenClassInput	
HF_TokenTensorCategory	
Hook	
HookCallback	
Hooks	
hook_output	
hook_outputs	
hsv2rgb	
Hue	
hug	
icevision	
icevision_Adapter	
icevision aug tfms	
icevision_BasicIAATransform	
icevision_BasicTransform	
icevision_Blur	
- 1	
icevision_ChannelShuffle	
icevision_CLAHE	
icevision_ClassMap	. 225

icevision_CoarseDropout	226
icevision_ColorJitter	227
icevision_Compose	228
icevision_Crop	
icevision_CropNonEmptyMaskIfExists	
icevision_Cutout	
icevision_Dataset	
icevision_Dataset_from_images	
icevision_Downscale	
icevision_DualIAATransform	
icevision_DualTransform	
icevision_ElasticTransform	
icevision_Equalize	
icevision_Equalize	
icevision_FDA	
icevision_FixedSplitter	
icevision_Flip	
_ •	
icevision_FromFloat	
icevision_GaussianBlur	
icevision_GaussNoise	
icevision_GlassBlur	
icevision_GridDistortion	
icevision_GridDropout	
icevision_HistogramMatching	
icevision_HorizontalFlip	
icevision_HueSaturationValue	
icevision_IAAAdditiveGaussianNoise	
icevision_IAAAffine	
icevision_IAACropAndPad	
icevision_IAAEmboss	
icevision_IAAFliplr	
icevision_IAAFlipud	
icevision_IAAPerspective	
icevision_IAAPiecewiseAffine	
icevision_IAASharpen	
icevision_IAASuperpixels	
icevision_ImageCompression	
icevision_ImageOnlyIAATransform	
icevision_ImageOnlyTransform	258
icevision_InvertImg	259
icevision_ISONoise	259
icevision_JpegCompression	260
icevision_LongestMaxSize	261
icevision_MaskDropout	
icevision_MedianBlur	
icevision_MotionBlur	
icevision_MultiplicativeNoise	
icavision Normaliza	265

icevision_OpticalDistortion	
icevision_PadIfNeeded	
icevision_parse	
icevision_Posterize	
icevision_RandomBrightnessContrast	
icevision_RandomContrast	
icevision_RandomCrop	
icevision_RandomCropNearBBox	
icevision_RandomFog	
icevision_RandomGamma	
icevision_RandomGridShuffle	
icevision_RandomRain	
icevision_RandomResizedCrop	
icevision_RandomRotate90	
icevision_RandomScale	
icevision_RandomShadow	
icevision_RandomSizedBBoxSafeCrop	
icevision_RandomSizedCrop	
_	
icevision_RandomSplitter	
icevision_RandomSunFlare	
icevision_read_bgr_image	
icevision_read_rgb_image	
icevision_Resize	
icevision_resize_and_pad	
icevision_RGBShift	
icevision_Rotate	
icevision_ShiftScaleRotate	
icevision_SingleSplitSplitter	
icevision_SmallestMaxSize	
icevision_Solarize	
icevision_ToFloat	
icevision_ToGray	
icevision_ToSepia	
icevision_Transpose	
icevision_VerticalFlip	
icnr_init	
IDMap	
Image	
image2tensor	
ImageBlock	
ImageBW_create	
ImageDataLoaders_from_csv	
ImageDataLoaders_from_dblock	
ImageDataLoaders_from_df	
ImageDataLoaders_from_folder	
ImageDataLoaders_from_lists	
ImageDataLoaders_from_name_re	

ImageDataLoaders_from_path_func	05
ImageDataLoaders_from_path_re	06
imagenet_stats	
Image_create	
Image_open	
Image_resize	
InceptionModule	
IndexSplitter	
init	
init default	
init_linear	
install_fastai	
InstanceNorm	
IntToFloatTensor	
InvisibleTensor	
in channels	
is rmarkdown	
Jaccard	
Jaccard Coeff	
JaccardMulti	
kg	
L	
L1LossFlat	
12_reg	
LabeledBBox	
LabelSmoothingCrossEntropy	
LabelSmoothingCrossEntropyFlat	
Lamb	
Lambda	
lamb_step	
language_model_learner	
Larc	
larc_layer_lr	
larc_step	
layer_info	
Learner	
length	
length.fastai.torch_core.TensorMask	
less	
less_or_equal	
LightingTfm	
LinBnDrop	
LinearDecoder	
LitModel	
LMDataLoader	
LMLearner	
LMLearner_predict	32
londers 2	22

12

load_dataset	334
load_ignore_keys	334
load_image	335
load_learner	335
load_model_text	336
load_pre_models	
load_tokenized_csv	
log	
log.fastai.torch_core.TensorMask	
log1p	
log1p.fastai.torch core.TensorMask	
logical_and	
logical_not	
login	
Lookahead	
LossMetric	
lr find	
mae	
make_vocab	
mask2bbox	
MaskBlock	
masked_concat_pool	
MaskFreq	
MaskTime	
Mask_create	
mask_from_blur	
mask_rcnn_infer_dl	
mask_rcnn_learner	
mask_rcnn_model	
mask_rcnn_predict_dl	
mask_rcnn_train_dl	
mask_rcnn_valid_dl	
mask_tensor	
match_embeds	
MatthewsCorrCoef	
MatthewsCorrCoefMulti	352
max	353
max.fastai.torch_core.TensorMask	353
MaxPool	354
maybe_unsqueeze	354
MCDropoutCallback	355
mean.fastai.torch_core.TensorMask	355
mean.torch.Tensor	
medical	
MergeLayer	
metrics	
migrating_ignite	

migrating_lightning	. 358
migrating_pytorch	. 358
min	. 358
min.fastai.torch_core.TensorMask	. 359
mish	. 359
MishJitAutoFn	. 360
Mish	. 360
MixHandler	. 361
MixUp	. 361
ModelResetter	. 362
model_sizes	. 362
Module	. 363
Module_test	. 363
momentum_step	. 363
most_confused	
mse	
MSELossFlat	
msle	
MultiCategorize	
MultiCategoryBlock	
multiplygit add -A && git commit -m 'staging all files'	
MultiTargetLoss	
narrow	
Net	
nn	
nn loss	
nn module	
NoiseColor	
NoneReduce	
noop	
Normalize	
NormalizeTS	
Normalize_from_stats	
norm_apply_denorm	
not_equal_to	
not_equal_to_mask	
not mask	
Numericalize	
num features model	
n_px	
OldRandomCrop	
one_batch	
OpenAudio	
Optimizer	
OptimWrapper	
optim_metric	
or mask	
or_mask	381
	10 1

os_environ_tpu	
pad_conv_norm_relu	. 382
pad_input	. 383
pad_input_chunk	. 383
parallel	. 384
parallel_tokenize	. 384
params	. 385
ParamScheduler	. 385
parent_label	. 386
parsers_AreasMixin	. 386
parsers_BBoxesMixin	. 387
parsers_FasterRCNN	. 387
parsers_FilepathMixin	. 388
parsers_ImageidMixin	. 388
parsers_IsCrowdsMixin	. 389
parsers_LabelsMixin	. 389
parsers_MaskRCNN	. 390
parsers_MasksMixin	. 390
parsers_SizeMixin	. 391
parsers_voc	. 391
partial	. 392
PartialDL	. 392
PartialLambda	. 393
pca	. 394
PearsonCorrCoef	. 394
Perplexity	. 395
Pipeline	. 396
PixelShuffle_ICNR	. 396
plot	. 397
plot_bs_find	. 397
plot_confusion_matrix	. 398
plot_loss	. 399
plot_lr_find	
plot_top_losses	. 400
PointBlock	
PointScaler	. 401
PooledSelfAttention2d	
PoolFlatten	. 402
PoolingLinearClassifier	
pow	
Precision	
PrecisionMulti	
predict.fastai.learner.Learner	
predict.fastai.tabular.learner.TabularLearner	
preplexity	
PreprocessAudio	
preprocess_audio_folder	
pre process squad	

print.fastai.learner.Learner	. 409
print.fastai.tabular.learner.TabularLearner	
print.pydicom.dataset.FileDataset	
python_path	
py_apply	
QHAdam	
qhadam_step	
QRNN	
QRNNLayer	
R2Score	
RAdam	
radam_step	
RandomCrop	
RandomErasing	
RandomResizedCrop	
RandomResizedCropGPU	
RandomSplitter	
RandPair	
RandTransform	
ranger	
RatioResize	
ReadTSBatch	
Recall	
RecallMulti	
ReduceLROnPlateau	
RegressionBlock	
RemoveSilence	
RemoveType	
replace_all_caps	
replace_maj	
replace_rep	
replace_wrep	
Resample	
ResBlock	
reshape	
Resize	
ResizeBatch	
ResizeSignal	
resize max	
ResNet	
resnet101	
resnet152	
resnet18	
resnet34	
resnet50	
ResnetBlock	
resnet generator	
res_block_1d	
1Co_UIOCK_1U	. +50

RetinaNet	437
RetinaNetFocalLoss	437
retinanet	438
reverse_text	438
rgb2hsv	439
rmse	439
RMSProp	440
rms_prop_step	440
rm_useless_spaces	441
RNNDropout	442
RNNRegularizer	
RocAuc	443
RocAucBinary	443
RocAucMulti	
Rotate	
rotate_mat	
round	
round.fastai.torch_core.TensorMask	
Saturation	
SaveModelCallback	
SchedCos	
SchedExp	
SchedLin	
SchedNo	
SchedPoly	
SEBlock	
SegmentationDataLoaders_from_label_func	
SelfAttention	
SEModule	
SentenceEncoder	
SentencePieceTokenizer	
SeparableBlock	
sequential	
SequentialEx	
SequentialRNN	
SEResNeXtBlock	
setup aug tfms	
1 – 6 –	
set_freeze_model	
set_item_pg	
SGD	
sgd_step	
SGRoll	
shap	
shape	
ShapInterpretation	
Shortcut	
ShortEpochCallback	
show	464

ShowCycleGANImgsCallback	. 464
ShowGraphCallback	. 465
show_array	. 465
show_batch	. 466
show_image	. 467
show_images	. 468
show_preds	. 469
show_results	
show_samples	. 470
sigmoid	. 471
SigmoidRange	. 472
sigmoid	. 472
sigmoid_range	
SignalCutout	
SignalLoss	
SignalShifter	
SimpleCNN	
SimpleSelfAttention	
sin.fastai.torch core.TensorMask	
sinh.fastai.torch_core.TensorMask	
sin	
skm_to_fastai	
slice	
sort	
sort.fastai.torch_core.TensorMask	
SortedDL	
SpacyTokenizer	
SpearmanCorrCoef	
SpectrogramTransformer	
spec_add_spaces	
sqrd	
sqrt.fastai.torch_core.TensorMask	
SqueezeNet	
squeezenet1_0	
squeezenet1_1	
stack train valid	
500P=5000	
sub	
1	
sub_mask	
summarization_splitter	
summary.fastai.learner.Learner	
summary.fastai.tabular.learner.TabularLearner	
summary_plot	
swish	
Swish	
tabular	
TabularDataTable	492

TabularModel	93
TabularTS	94
TabularTSDataloader	95
tabular_config	96
tabular_learner	
tar_extract_at_filename	98
tensor	99
TensorBBox	99
TensorBBox_create	00
TensorImage	00
TensorImageBW	
TensorMultiCategory	01
TensorPoint	02
TensorPoint_create	02
TerminateOnNaNCallback	03
test_loader	03
text	04
TextBlock	04
TextBlock_from_df	05
TextBlock_from_folder	06
TextDataLoaders from csv	07
TextDataLoaders from df	08
TextDataLoaders_from_folder	10
TextLearner	
TextLearner_load_encoder	
TextLearner_load_pretrained	
TextLearner_save_encoder	
text classifier learner	
TfmdDL	
TfmdLists	
TfmResize	
timm	
timm learner	
timm list models	
tms	
tokenize1	
	20
Tokenizer_from_df	
TokenizeWithRules	
tokenize csv	
tokenize df	
tokenize_files	
tokenize_folder	
tokenize_texts	
top_k_accuracy	
torch	
total_params	
ToTensor	
17/15/16/77	(۱) ب

to_bytes_format	
to_image	
to_matrix	
to_thumb	
to_xla	. 530
TrackerCallback	
trainable_params	. 531
TrainEvalCallback	
train_loader	
Transform	
TransformBlock	
transformers	
TransformersDropOutput	
TransformersTokenizer	. 535
trunc_normal	
TSBlock	. 536
TSDataLoaders_from_dfs	. 536
TSDataTable	. 537
TSeries	. 538
TSeries_create	. 539
UnetBlock	. 539
unet_config	. 541
unet_learner	. 542
unfreeze	. 542
uniform_blur2d	. 543
upit	. 543
URLs_ADULT_SAMPLE	. 544
URLs_AG_NEWS	. 544
URLs_AMAZON_REVIEWSAMAZON_REVIEWS	. 545
URLs_AMAZON_REVIEWS_POLARITY	. 546
URLs_BIWI_HEAD_POSE	. 546
URLs_CALTECH_101	. 547
URLs_CAMVID	. 547
URLs_CAMVID_TINY	. 548
URLs_CARS	. 548
URLs_CIFAR	. 549
URLs_CIFAR_100	
URLs_COCO_TINY	. 550
URLs_CUB_200_2011	. 550
URLs_DBPEDIA	. 551
URLs_DOGS	. 551
URLs_FLOWERS	. 552
URLs_FOOD	. 552
URLs_HORSE_2_ZEBRA	. 553
URLs_HUMAN_NUMBERS	. 553
URLs_IMAGENETTE	
URLs_IMAGENETTE_160	. 554
URLs_IMAGENETTE_320	. 555

URLs_IMAGEWOOF	555
URLs_IMAGEWOOF_160	556
URLs_IMAGEWOOF_320	556
URLs_IMDB	
URLs_IMDB_SAMPLE	
URLs_LSUN_BEDROOMS	
URLs_ML_SAMPLE	
URLs_MNIST	
URLs_MNIST_SAMPLE	
URLs_MNIST_TINY	
URLs_MNIST_VAR_SIZE_TINY	
URLs_MOVIE_LENS_ML_100k	
URLs_MT_ENG_FRA	
URLs_OPENAI_TRANSFORMER	
URLs_PASCAL_2007	
URLs PASCAL 2012	
URLs_PETS	
URLs_PLANET_SAMPLE	
URLs_PLANET_TINY	
URLs_S3_COCO	
URLs_S3_IMAGE	
URLs_S3_IMAGELOC	
URLs_S3_MODEL	
URLs_S3_NLP	
URLs_SIIM_SMALL	
URLs_SKIN_LESION	
URLs_SOGOU_NEWS	
URLs_SPEAKERS10	
URLs_SPEECHCOMMANDS	
URLs_WIKITEXT	
URLs_WIKITEXT_TINY	
URLs_WT103_BWD	571
URLs_WT103_FWD	571
URLs_YAHOO_ANSWERS	572
URLs_YELP_REVIEWS	572
URLs_YELP_REVIEWS_POLARITY	573
vgg11_bn	
vgg13_bn	
vgg16_bn	
vgg19_bn	
vision	
vleaky_relu	
Voice	
wandb	
WandbCallback	
Warp	
waterfall_plot	
WeightDropout	580

WeightedDL	
weight_decay	
win_abdoment_soft	
win_brain	. 583
win_brain_bone	. 583
win_brain_soft	. 584
win liver	. 584
win_lungs	. 584
win_mediastinum	
win_spine_bone	
win_spine_soft	
win_stroke	
win_subdural	
xla	
XResNet	
xresnet101	
xresnet152	
xresnet18	
xresnet18_deep	
xresnet18 deeper	
— I	
xresnet34	
xresnet34_deep	
xresnet34_deeper	
xresnet50	
xresnet50_deep	
xresnet50_deeper	
xresnext101	
xresnext18	
xresnext34	. 594
xresnext50	. 594
xsenet154	. 595
xse_resnet101	. 595
xse_resnet152	. 596
xse_resnet18	. 596
xse_resnet34	. 597
xse resnet50	. 597
xse resnext101	
xse_resnext18	. 598
xse_resnext18_deep	
xse_resnext18_deeper	
xse_resnext34	
xse_resnext34_deep	
xse_resnext34_deeper	
xse_resnext50	
xse_resnext50_deep	
<u> •</u>	
xse_resnext50_deeper	
zoom	603
Zoom	nU3

Index	608
	^.fastai.torch_core.TensorMask
	%/%.fastai.torch_core.TensorMask
	%%.fastai.torch_core.TensorMask
	%f%
	&.fastai.torch_core.TensorMask
	zoom_mat

 \star .fastai.torch_core.TensorMask Multiply

Description

Multiply

Usage

```
## S3 method for class 'fastai.torch_core.TensorMask' a * b
```

Arguments

a tensor b tensor

Value

tensor

+.fastai.torch_core.TensorMask Add

Description

Add

```
## S3 method for class 'fastai.torch_core.TensorMask'
a + b
```

a tensorb tensor

Value

tensor

+.torch.nn.modules.container.Sequential $\begin{tabular}{l} Add\ layers\ to\ Sequential \end{tabular}$

Description

Add layers to Sequential

Usage

```
## S3 method for class 'torch.nn.modules.container.Sequential' a + b \,
```

Arguments

- a sequential model
- b layer

Value

model

```
/.fastai.torch_core.TensorMask Div
```

Description

Div

```
## S3 method for class 'fastai.torch_core.TensorMask'
a / b
```

a tensorb tensor

Value

tensor

```
<. fastai.torch\_core.TensorMask\\ Less
```

Description

Less

Usage

```
## S3 method for class 'fastai.torch_core.TensorMask' a < b
```

Arguments

a tensorb tensor

Value

tensor

Description

Less or equal

```
## S3 method for class 'fastai.torch_core.TensorMask'
a <= b</pre>
```

a tensor b tensor

Value

tensor

```
==.\, {\tt fastai.torch\_core.TensorImage} \\ Equal
```

Description

Equal

Usage

```
## S3 method for class 'fastai.torch_core.TensorImage'
a == b
```

Arguments

a tensor b tensor

Value

tensor

```
==.fastai.torch_core.TensorMask \label{eq:equal} Equal
```

Description

Equal

```
## S3 method for class 'fastai.torch_core.TensorMask'
a == b
```

a tensor b tensor

Value

tensor

==.torch.Tensor

Equal

Description

Equal

Usage

```
## S3 method for class 'torch.Tensor'
a == b
```

Arguments

a tensor b tensor

Value

tensor

```
>.fastai.torch_core.TensorMask Greater
```

Description

Greater

Usage

```
## S3 method for class 'fastai.torch_core.TensorMask' a > b
```

Arguments

a tensor b tensor

Value

tensor

```
>=.fastai.torch_core.TensorMask

**Greater or equal**
```

Description

Greater or equal

Usage

```
## S3 method for class 'fastai.torch_core.TensorMask'
a >= b
```

Arguments

a tensor b tensor

Value

tensor

abs Abs

Description

Abs

Usage

```
## S3 method for class 'torch.Tensor'
abs(x)
```

Arguments

x tensor

Value

tensor

28 AccumMetric

```
abs.fastai.torch_core.TensorMaskAbs
```

Description

Abs

Usage

```
## S3 method for class 'fastai.torch_core.TensorMask'
abs(x)
```

Arguments

```
x tensor, e.g.: tensor(-1:-10)
```

Value

tensor

AccumMetric

AccumMetric

Description

Stores predictions and targets on CPU in accumulate to perform final calculations with 'func'.

```
AccumMetric(
  func,
  dim_argmax = NULL,
  activation = "no",
  thresh = NULL,
  to_np = FALSE,
  invert_arg = FALSE,
  flatten = TRUE,
  ...
)
```

accuracy 29

Arguments

func function

dim_argmax dimension argmax

activation activation

thresh threshold point
to_np to matrix or not
invert_arg invert arguments

flatten flatten

... additional arguments to pass

Value

None

accuracy Accuracy

Description

Compute accuracy with 'targ' when 'pred' is bs * n_classes

Usage

```
accuracy(inp, targ, axis = -1)
```

Arguments

inp predictions targ targets axis axis

Value

accuracy_multi

Accuracy_multi

Description

Compute accuracy when 'inp' and 'targ' are the same size.

Usage

```
accuracy_multi(inp, targ, thresh = 0.5, sigmoid = TRUE)
```

Arguments

inp predictions targ targets

thresh threshold point

sigmoid sigmoid

Value

None

accuracy_thresh_expand

Accuracy threshold expand

Description

Compute accuracy after expanding 'y_true' to the size of 'y_pred'.

Usage

```
accuracy_thresh_expand(y_pred, y_true, thresh = 0.5, sigmoid = TRUE)
```

Arguments

y_pred predictionsy_true actuals

thresh threshold point sigmoid sigmoid function

Value

Adam 31

Adam Adam

Description

Adam

Usage

Adam(...)

Arguments

... parameters to pass

Value

None

adam_step Adam_step

Description

Step for Adam with 'lr' on 'p'

Usage

```
adam_step(p, lr, mom, step, sqr_mom, grad_avg, sqr_avg, eps, ...)
```

Arguments

p p

1rlearning ratemommomentum

step step

sqr_momsqr momentumgrad_avggrad averagesqr_avgsqr averageepsepsilon

... additional arguments to pass

Value

AdaptiveAvgPool

Adaptive Avg Pool

Description

 $nn() \$ A daptive Avg Pool\ layer\ for\ `ndim`$

Usage

```
AdaptiveAvgPool(sz = 1, ndim = 2)
```

Arguments

sz size

ndim dimension size

 ${\tt AdaptiveConcatPool1d} \quad \textit{AdaptiveConcatPool1d}$

Description

Layer that concats 'AdaptiveAvgPool1d' and 'AdaptiveMaxPool1d'

Usage

```
AdaptiveConcatPool1d(size = NULL)
```

Arguments

size

output size

Value

AdaptiveConcatPool2d

33

 ${\tt AdaptiveConcatPool2d} \quad \textit{AdaptiveConcatPool2d}$

Description

Layer that concats 'AdaptiveAvgPool2d' and 'AdaptiveMaxPool2d'

Usage

```
AdaptiveConcatPool2d(size = NULL)
```

Arguments

size

output size

Value

None

AdaptiveGANSwitcher

Adaptive GAN Switcher

Description

Switcher that goes back to generator/critic when the loss goes below 'gen_thresh'/'crit_thresh'.

Usage

```
AdaptiveGANSwitcher(gen_thresh = NULL, critic_thresh = NULL)
```

Arguments

```
gen_thresh generator threshold critic_thresh discriminator threshold
```

Value

34 adaptive_pool

AdaptiveLoss

AdaptiveLoss

Description

Expand the 'target' to match the 'output' size before applying 'crit'.

Usage

```
AdaptiveLoss(crit)
```

Arguments

crit

critic

Value

Loss object

adaptive_pool

Adaptive_pool

Description

Adaptive_pool

Usage

```
adaptive_pool(pool_type)
```

Arguments

pool_type

pooling type

Value

Nonee

add 35

add Add

Description

Add

Sinh

Usage

```
## S3 method for class 'torch.Tensor'
a + b
## S3 method for class 'torch.Tensor'
sinh(x)
```

Arguments

a tensorb tensorx tensor

Value

tensor

tensor

AddChannels

Add Channels

Description

Add 'n_dim' channels at the end of the input.

Usage

```
AddChannels(n_dim)
```

Arguments

n_dim

number of dimensions

36 add_cyclic_datepart

AddNoise

Add Noise

Description

Adds noise of specified color and level to the audio signal

Usage

```
AddNoise(noise_level = 0.05, color = 0)
```

Arguments

```
noise_level noise level color int, color
```

Value

None

```
add_cyclic_datepart Add cyclic datepart
```

Description

Helper function that adds trigonometric date/time features to a date in the column 'field_name' of 'df'.

Usage

```
add_cyclic_datepart(
   df,
   field_name,
   prefix = NULL,
   drop = TRUE,
   time = FALSE,
   add_linear = FALSE
)
```

Arguments

```
df df
field_name field_name
prefix prefix
drop drop
time time
add_linear add_linear
```

add_datepart 37

Value

data frame

add_datepart

Add datepart

Description

Helper function that adds columns relevant to a date in the column 'field_name' of 'df'.

Usage

```
add_datepart(df, field_name, prefix = NULL, drop = TRUE, time = FALSE)
```

Arguments

```
df field_name field_name
prefix prefix
drop drop
time time
```

Value

data frame

Affine Coord Tfm

Affine Coord Tfm

Description

Combine and apply affine and coord transforms

```
AffineCoordTfm(
   aff_fs = NULL,
   coord_fs = NULL,
   size = NULL,
   mode = "bilinear",
   pad_mode = "reflection",
   mode_mask = "nearest",
   align_corners = NULL
)
```

38 affine_coord

Arguments

aff_fs aff fs
coord_fs coordinate fs
size size
mode mode
pad_mode padding mode
mode_mask mode mask
align_corners align corners

Value

None

affine_coord

Aaffine_coord

Description

Aaffine_coord

Usage

```
affine_coord(
    X,
    mat = NULL,
    coord_tfm = NULL,
    sz = NULL,
    mode = "bilinear",
    pad_mode = "reflection",
    align_corners = TRUE,
    ...
)
```

Arguments ×

```
mat mat

coord_tfm coordinate tfm

sz sz

mode mode

pad_mode padding mode

align_corners align corners

... additional arguments
```

tensor

affine_mat 39

Value

None

affine_mat

Affline mat

Description

Affline mat

Usage

```
affine_mat(...)
```

Arguments

... parameters to pass

Value

None

alexnet

Alexnet

Description

AlexNet model architecture

Usage

```
alexnet(pretrained = FALSE, progress)
```

Arguments

pretrained

pretrained or not

progress

to see progress bar or not

Details

"One weird trick..." https://arxiv.org/abs/1404.5997

Value

model

40 APScoreBinary

Examples

```
## Not run:
alexnet(pretrained = FALSE, progress = TRUE)
## End(Not run)
```

apply_perspective

Apply_perspective

Description

Apply perspective tranfom on 'coords' with 'coeffs'

Usage

```
apply_perspective(coords, coeffs)
```

Arguments

coords coordinates coeffs coefficient

Value

None

APScoreBinary

APScoreBinary

Description

Average Precision for single-label binary classification problems

```
APScoreBinary(
  axis = -1,
  average = "macro",
  pos_label = 1,
  sample_weight = NULL
)
```

APScoreMulti 41

Arguments

```
axis axis
average average
pos_label pos_label
sample_weight sample_weight
```

Value

None

APScoreMulti

APS core Multi

Description

Average Precision for multi-label classification problems

Usage

```
APScoreMulti(
  sigmoid = TRUE,
  average = "macro",
  pos_label = 1,
  sample_weight = NULL
)
```

Arguments

```
sigmoid sigmoid

average average

pos_label pos_label

sample_weight sample_weight
```

Value

42 as_array

aspect

Aspect

Description

Aspect

Usage

aspect(img)

Arguments

img

image

Value

None

as_array

As_array

Description

As_array

Usage

as_array(tensor)

Arguments

tensor

tensor object

Value

array

AudioBlock 43

AudioBlock

AudioBlock

Description

A 'TransformBlock' for audios

Usage

```
AudioBlock(
  cache_folder = NULL,
  sample_rate = 16000,
  force_mono = TRUE,
  crop_signal_to = NULL
)
```

Arguments

```
cache_folder cache folder
sample_rate sample rate
force_mono force mono or not
crop_signal_to int, crop signal
```

Value

None

```
AudioBlock_from_folder
```

AudioBlock from folder

Description

Build a 'AudioBlock' from a 'path' and caches some intermediary results

```
AudioBlock_from_folder(
  path,
  sample_rate = 16000,
  force_mono = TRUE,
  crop_signal_to = NULL
)
```

AudioGetter AudioGetter

Arguments

path directory, path sample_rate sample rate

force_mono force mono or not crop_signal_to int, crop signal

Value

None

AudioGetter

AudioGetter

Description

Create 'get_audio_files' partial function that searches path suffix 'suf'

Usage

```
AudioGetter(suf = "", recurse = TRUE, folders = NULL)
```

Arguments

suf suffix

recurse recursive or not folders vector, folders

Details

and passes along 'kwargs', only in 'folders', if specified.

Value

AudioPadType 45

 ${\bf Audio Pad Type}$

AudioPadType module

Description

AudioPadType module

Usage

AudioPadType()

Value

None

AudioSpectrogram

 $Audio Spectrogram\ module$

Description

AudioSpectrogram module

Usage

AudioSpectrogram()

Value

None

AudioTensor

Audio Tensor

Description

Semantic torch tensor that represents an audio.

Usage

```
AudioTensor(x, sr = NULL)
```

Arguments

x tensor

sr

sr

46 AudioTensor_create

Value

tensor

AudioTensor_create

AudioTensor create

Description

Creates audio tensor from file

Usage

```
AudioTensor_create(
  fn,
  cache_folder = NULL,
  frame_offset = 0,
  num_frames = -1,
  normalize = TRUE,
  channels_first = TRUE
)
```

Arguments

```
fn function

cache_folder cache folder

frame_offset offset

num_frames number of frames

normalize apply normalization or not

channels_first channels first/last
```

Value

AudioToMFCC 47

AudioToMFCC

AudioToMFCC

Description

Transform to create MFCC features from audio tensors.

Usage

```
AudioToMFCC(
  sample_rate = 16000,
  n_mfcc = 40,
  dct_type = 2,
  norm = "ortho",
  log_mels = FALSE,
  melkwargs = NULL
)
```

Arguments

sample_rate sample rate

n_mfcc number of mel-frequency cepstral coefficients

dct_type dct type

norm normalization type log_mels apply log to mels

melkwargs additional arguments for mels

Value

None

```
{\tt AudioToMFCC\_from\_cfg} \quad \textit{AudioToMFCC from cfg}
```

Description

Creates AudioToMFCC from configuration file

Usage

```
AudioToMFCC_from_cfg(audio_cfg)
```

Arguments

```
audio_cfg audio configuration
```

48 audio_extensions

Value

None

```
{\tt AudioToSpec\_from\_cfg} \quad \textit{AudioToSpec from cfg}
```

Description

Creates AudioToSpec from configuration file

Usage

```
AudioToSpec_from_cfg(audio_cfg)
```

Arguments

audio_cfg

audio configuration

Value

None

 $\verb"audio_extensions"$

Audio_extensions

Description

get all allowed audio extensions

Usage

```
audio_extensions()
```

Value

vector

aug_transforms 49

aug_transforms

Augmentation

Description

Utility func to easily create a list of flip, rotate, zoom, warp, lighting transforms.

Usage

```
aug_transforms(
 mult = 1,
  do_flip = TRUE,
  flip_vert = FALSE,
 max_rotate = 10,
 min_zoom = 1,
 max\_zoom = 1.1,
 max_lighting = 0.2,
 max_warp = 0.2,
  p_affine = 0.75,
  p_{lighting} = 0.75,
  xtra_tfms = NULL,
  size = NULL,
 mode = "bilinear",
  pad_mode = "reflection",
  align_corners = TRUE,
 batch = FALSE,
 min_scale = 1
)
```

Arguments

```
mult
                 ratio
do_flip
                 to do flip
                 flip vertical or not
flip_vert
                 maximum rotation
max_rotate
min_zoom
                 minimum zoom
max_zoom
                 maximum zoom
max_lighting
                 maximum lighting
max_warp
                 maximum warp
p_affine
                 probability affine
p_lighting
                 probability lighting
                 extra transformations
xtra_tfms
                 size of image
size
```

50 AutoConfig

minimum scale

Value

None

min_scale

Examples

AutoConfig

Auto configuration

Description

Auto configuration

Usage

AutoConfig()

Value

average_grad 51

average_grad

Average_grad

Description

Keeps track of the avg grads of 'p' in 'state' with 'mom'.

Usage

```
average_grad(p, mom, dampening = FALSE, grad_avg = NULL, ...)
```

Arguments

p p

mom momentum
dampening dampening
grad_avg grad average

... additional args to pass

Value

None

average_sqr_grad

Average_sqr_grad

Description

```
Average_sqr_grad
```

Usage

```
average_sqr_grad(p, sqr_mom, dampening = TRUE, sqr_avg = NULL, ...)
```

Arguments

```
p p
```

sqr_momsqr momentumdampeningdampeningsqr_avgsqr average

... additional args to pass

Value

52 AvgPool

AvgLoss

Description

Flattens input and output, same as nn\$AvgLoss

AvgLoss

Usage

```
AvgLoss(...)
```

Arguments

... parameters to pass

Value

Loss object

AvgPool AvgPool

Description

nn\$AvgPool layer for 'ndim'

Usage

```
AvgPool(ks = 2, stride = NULL, padding = 0, ndim = 2, ceil_mode = FALSE)
```

Arguments

ks kernel size

stride the stride of the window. Default value is kernel_size padding implicit zero padding to be added on both sides

ndim dimension number

ceil_mode when True, will use ceil instead of floor to compute the output shape

Value

AvgSmoothLoss 53

AvgSmoothLoss

AvgSmoothLoss

Description

Smooth average of the losses (exponentially weighted with 'beta')

Usage

```
AvgSmoothLoss(beta = 0.98)
```

Arguments

beta

beta, defaults to 0.98

Value

Loss object

AWD_LSTM

 AWD_LSTM

Description

AWD-LSTM inspired by https://arxiv.org/abs/1708.02182

```
AWD_LSTM(
vocab_sz,
emb_sz,
n_hid,
n_layers,
pad_token = 1,
hidden_p = 0.2,
input_p = 0.6,
embed_p = 0.1,
weight_p = 0.5,
bidir = FALSE
)
```

54 awd_lstm_clas_split

Arguments

vocab_sz vocab_sz emb_sz emb_sz n_hid n_hid n_layers n_layers pad_token pad_token hidden_p hidden_p input_p input_p embed_p $embed_p$ $weight_p$ weight_p bidir bidir

Value

None

awd_lstm_clas_split Awd_lstm_clas_split

Description

Split a RNN 'model' in groups for differential learning rates.

Usage

```
awd_lstm_clas_split(model)
```

Arguments

model model

Value

awd_lstm_lm_split 55

```
awd_lstm_lm_split
```

Awd_lstm_lm_split

Description

Split a RNN 'model' in groups for differential learning rates.

Usage

```
awd_lstm_lm_split(model)
```

Arguments

model

model

Value

None

AWD_QRNN

 AWD_QRNN

Description

Same as an AWD-LSTM, but using QRNNs instead of LSTMs

```
AWD_QRNN(
vocab_sz,
emb_sz,
n_hid,
n_layers,
pad_token = 1,
hidden_p = 0.2,
input_p = 0.6,
embed_p = 0.1,
weight_p = 0.5,
bidir = FALSE
)
```

56 BalancedAccuracy

Arguments

vocab_sz
emb_sz
n_hid
n_layers
pad_token
hidden_p
input_p
embed_p
weight_p
bidir

Value

None

BalancedAccuracy	BalancedAccuracy

Description

Balanced Accuracy for single-label binary classification problems

Usage

```
BalancedAccuracy(axis = -1, sample_weight = NULL, adjusted = FALSE)
```

Arguments

```
axis axis
sample_weight sample_weight
adjusted adjusted
```

References

BaseLoss 57

BaseLoss

BaseLoss

Description

Flattens input and output, same as nn\$BaseLoss

Usage

```
BaseLoss(...)
```

Arguments

... parameters to pass

Value

Loss object

BaseTokenizer

BaseTokenizer

Description

Basic tokenizer that just splits on spaces

Usage

```
BaseTokenizer(split_char = " ")
```

Arguments

```
split_char separator
```

Value

BasicMelSpectrogram

BasicMelSpectrogram

Description

BasicMelSpectrogram

Usage

```
BasicMelSpectrogram(
  sample_rate = 16000,
  n_fft = 400,
 win_length = NULL,
  hop_length = NULL,
  f_{\min} = 0,
  f_{max} = NULL,
  pad = 0,
  n_{mels} = 128,
 window_fn = torch()$hann_window,
  power = 2,
  normalized = FALSE,
 wkwargs = NULL,
 mel = TRUE,
  to_db = TRUE
)
```

Arguments

sample_rate

n_fft number of fast fourier transforms windowing length win_length hop_length hopping length f_min minimum frequency f_max maximum frequency padding pad number of mel-spectrograms n_mels window function window_fn power power normalized normalized or not wkwargs additional arguments mel mel-spectrogram or not to_db to decibels

sample rate

BasicMFCC 59

Value

None

 ${\tt BasicMFCC}$

Basic MFCC

Description

Basic MFCC

Usage

```
BasicMFCC(
  sample_rate = 16000,
  n_mfcc = 40,
  dct_type = 2,
  norm = "ortho",
  log_mels = FALSE,
  melkwargs = NULL
)
```

Arguments

```
sample_rate sample rate

n_mfcc number of mel-frequency cepstral coefficients

dct_type dct type

norm normalization type

log_mels apply log to mels

melkwargs additional arguments for mels
```

Value

60 BasicSpectrogram

BasicSpectrogram

BasicSpectrogram

Description

BasicSpectrogram

Usage

```
BasicSpectrogram(
   n_fft = 400,
   win_length = NULL,
   hop_length = NULL,
   pad = 0,
   window_fn = torch()$hann_window,
   power = 2,
   normalized = FALSE,
   wkwargs = NULL,
   mel = FALSE,
   to_db = TRUE
)
```

Arguments

n_fft number of fast fourier transforms windowing length win_length hopping length hop_length padding mode pad $window_fn$ window function power power normalized normalized or not additional arguments wkwargs mel mel-spectrogram or not to_db to decibels

Value

basic_critic 61

basic_critic

Basic critic

Description

A basic critic for images 'n_channels' x 'in_size' x 'in_size'.

Usage

```
basic_critic(in_size, n_channels, ...)
```

Arguments

```
in_size input sizen_channels The number of channels... additional parameters to pass
```

Value

None

Examples

basic_generator

Basic generator

Description

A basic generator from 'in_sz' to images 'n_channels' x 'out_size' x 'out_size'.

```
basic_generator(out_size, n_channels, ...)
```

62 BatchNorm

Arguments

```
out_size out_size
n_channels n_channels
... additional params to pass
```

Value

generator object

Examples

```
## Not run:
generator = basic_generator(out_size = 64, n_channels = 3, n_extra_layers = 1)
## End(Not run)
```

BatchNorm

BatchNorm

Description

BatchNorm layer with 'nf' features and 'ndim' initialized depending on 'norm_type'.

Usage

```
BatchNorm(
  nf,
  ndim = 2,
  norm_type = 1,
  eps = 1e-05,
  momentum = 0.1,
  affine = TRUE,
  track_running_stats = TRUE
)
```

Arguments

```
nf input shape

ndim dimension number

norm_type normalization type

eps epsilon

momentum momentum

affine affine

track_running_stats

track running statistics
```

BatchNorm1dFlat 63

Value

None

BatchNorm1dFlat

BatchNorm1dFlat

Description

'nn.BatchNorm1d', but first flattens leading dimensions

Usage

```
BatchNorm1dFlat(
  num_features,
  eps = 1e-05,
  momentum = 0.1,
  affine = TRUE,
  track_running_stats = TRUE
)
```

Arguments

```
num_features number of features
eps epsilon
momentum momentum
affine affine
track_running_stats
track running statistics
```

Value

None

BBoxBlock

BBoxBlock

Description

A 'TransformBlock' for bounding boxes in an image

Usage

```
BBoxBlock()
```

Value

64 BBoxLblBlock

BBoxLabeler

BBoxLabeler

Description

```
Delegates ('__call__', 'decode', 'setup') to ('encodes', 'decodes', 'setups') if 'split_idx' matches
```

Usage

```
BBoxLabeler(enc = NULL, dec = NULL, split_idx = NULL, order = NULL)
```

Arguments

enc encoder

dec decoder

split_idx split by index

order order

Value

None

BBoxLblBlock

BBoxLblBlock

Description

A 'TransformBlock' for labeled bounding boxes, potentially with 'vocab'

Usage

```
BBoxLblBlock(vocab = NULL, add_na = TRUE)
```

Arguments

vocab vocabulary add_na add NA

Value

None'

bb_pad 65

Examples

```
## Not run:
URLs_COCO_TINY()
c(images, lbl_bbox) %<-% get_annotations('coco_tiny/train.json')</pre>
timg = Transform(ImageBW_create)
idx = 49
c(coco_fn,bbox) %<-% list(paste('coco_tiny/train',images[[idx]],sep = '/'),</pre>
                           lbl_bbox[[idx]])
coco_img = timg(coco_fn)
tbbox = LabeledBBox(TensorBBox(bbox[[1]]), bbox[[2]])
coco_bb = function(x) {
TensorBBox_create(bbox[[1]])
}
coco_lbl = function(x) {
  bbox[[2]]
}
coco_dsrc = Datasets(c(rep(coco_fn,10)),
                     list(Image_create(), list(coco_bb),
                           list( coco_lbl, MultiCategorize(add_na = TRUE) )
                     ), n_{inp} = 1
coco_tdl = TfmdDL(coco_dsrc, bs = 9,
                  after_item = list(BBoxLabeler(), PointScaler(),
                                     ToTensor()),
                  after_batch = list(IntToFloatTensor(), aug_transforms())
)
coco_tdl %>% show_batch(dpi = 200)
## End(Not run)
```

bb_pad

Bb_pad

Description

Function that collect 'samples' of labelled bboxes and adds padding with 'pad_idx'.

```
bb_pad(samples, pad_idx = 0)
```

Arguments

samples samples pad_idx pad index

Value

None

BCELossFlat

BCELossFlat

Description

Flattens input and output, same as nn\$BCELoss

Usage

```
BCELossFlat(...)
```

Arguments

... parameters to pass

Value

Loss object

 ${\tt BCEWithLogitsLossFlat} \ \ \textit{BCEWithLogitsLossFlat}$

Description

BCEWith Logits Loss Flat

Usage

```
BCEWithLogitsLossFlat(...)
```

Arguments

... parameters to pass

Value

Loss object

blurr 67

blurr

Hugging Face module

Description

```
Hugging Face module
Blurr module
```

Usage

```
blurr()
```

blurr()

Value

None

None

BrierScore

BrierScore

Description

Brier score for single-label classification problems

Usage

```
BrierScore(axis = -1, sample_weight = NULL, pos_label = NULL)
```

Arguments

```
axis axis
```

sample_weight sample_weight
pos_label pos_label

Value

68 bs_find

 ${\tt BrierScoreMulti}$

BrierScoreMulti

Description

Brier score for multi-label classification problems

Usage

```
BrierScoreMulti(
  thresh = 0.5,
  sigmoid = TRUE,
  sample_weight = NULL,
  pos_label = NULL
)
```

Arguments

```
thresh thresh sigmoid sample_weight pos_label pos_label thresh sigmoid sample_weight
```

Value

None

bs_find

Bs_find

Description

Launch a mock training to find a good batch size to minimize training time.

```
bs_find(
  object,
  lr,
  num_it = NULL,
  n_batch = 5,
  simulate_multi_gpus = TRUE,
  show_plot = TRUE
)
```

bs_finder 69

Arguments

object model/learner lr learning rate

num_it number of iterations
n_batch number of batches

simulate_multi_gpus

simulate on multi gpus or not

show_plot show plot or not

Details

However, it may not be a good batch size to minimize the validation loss. A good batch size is where the Simple Noise Scale converge ignoring the small growing trend with the number of iterations if exists. The optimal batch size is about an order the magnitud where Simple Noise scale converge. Typically, the optimal batch size in image classification problems will be 2-3 times lower where

bs_finder

Bs finder

Description

Bs finder

Usage

bs_finder()

Value

None

bt

Builtins module

Description

Builtins module

Usage

bt()

Value

70 Callback

calculate_rouge

Calculate_rouge

Description

Calculate_rouge

Usage

```
calculate_rouge(
  predicted_txts,
  reference_txts,
  rouge_keys = c("rouge1", "rouge2", "rougeL"),
  use_stemmer = TRUE
)
```

Arguments

```
predicted_txts predicted texts
reference_txts reference texts
rouge_keys rouge keys
use_stemmer use stemmer or not
```

Value

None

Callback

Callback module

Description

Callback module

Usage

Callback()

Value

Cat 71

Cat

Cat

Description

Concatenate layers outputs over a given dim

Usage

```
Cat(layers, dim = 1)
```

Arguments

layers

layers

dim

dimension size

Value

None

catalyst

Catalyst module

Description

Catalyst module

Usage

catalyst()

Value

72 Categorify

catalyst_model

Catalyst model

Description

Catalyst model

Usage

```
catalyst_model()
```

Value

model

 ${\tt Categorify}$

 ${\it Categorify}$

Description

Transform the categorical variables to that type.

Usage

```
Categorify(cat_names, cont_names)
```

Arguments

cat_names The names of the categorical variables cont_names The names of the continuous variables

Value

CategoryBlock 73

 ${\tt CategoryBlock}$

Category Block

Description

'TransformBlock' for single-label categorical targets

Usage

```
CategoryBlock(vocab = NULL, sort = TRUE, add_na = FALSE)
```

Arguments

vocab vocabulary sort sort or not add_na add NA

Value

Block object

```
{\it ceiling.fastai.torch\_core.TensorMask} \\ {\it Ceil}
```

Description

Ceil

Usage

```
## S3 method for class 'fastai.torch_core.TensorMask'
ceiling(x)
```

Arguments

x tensor

Value

tensor

74 Change Volume

ceiling_

Ceil

Description

Ceil

Usage

```
## S3 method for class 'torch.Tensor'
ceiling(x)
```

Arguments

Х

tensor

Value

tensor

ChangeVolume

Change Volume

Description

Changes the volume of the signal

Usage

```
ChangeVolume(p = 0.5, lower = 0.5, upper = 1.5)
```

Arguments

p probabilitylower boundupper upper bound

Value

```
children_and_parameters
```

Children_and_parameters

Description

Return the children of 'm' and its direct parameters not registered in modules.

Usage

```
children_and_parameters(m)
```

Arguments

m parameters

Value

None

```
{\it ClassificationInterpretation\_from\_learner} \\ {\it ClassificationInterpretation\_from\_learner}
```

Description

Construct interpretation object from a learner

Usage

```
ClassificationInterpretation_from_learner(
  learn,
  ds_idx = 1,
  dl = NULL,
  act = NULL
)
```

Arguments

```
learn learner/model ds_idx ds by index d1 dataloader act activation
```

Value

interpretation object

76 clip_remove_empty

clean_raw_keys

Clean_raw_keys

Description

Clean_raw_keys

Usage

```
clean_raw_keys(wgts)
```

Arguments

wgts wgts

Value

None

clip_remove_empty

Clip_remove_empty

Description

Clip bounding boxes with image border and label background the empty ones

Usage

```
clip_remove_empty(bbox, label)
```

Arguments

bbox bbox label

Value

77 cm

 cm

Cm module

Description

Cm module

Usage

cm()

Value

None

cnn_config

Cnn config

Description

Convenience function to easily create a config for 'create_cnn_model'

Usage

```
cnn_config(
  cut = NULL,
  pretrained = TRUE,
 n_in = 3,
  init = nn()$init$kaiming_normal_,
  custom_head = NULL,
  concat_pool = TRUE,
  lin_ftrs = NULL,
  ps = 0.5,
 bn_final = FALSE,
 lin_first = FALSE,
 y_range = NULL
)
```

Arguments

init

```
cut
                  cut
pretrained
                  pre-trained or not
                  input shape
n_in
                  initializer
```

78 cnn_learner

custom_head custom head
concat_pool concatenate pooling
lin_ftrs linear filters
ps parameter server
bn_final batch normalization final
lin_first linear first
y_range y_range

Value

None

cnn_learner

Cnn_learner

Description

Build a convnet style learner from 'dls' and 'arch'

Usage

```
cnn_learner(
  dls,
  arch,
 loss_func = NULL,
 pretrained = TRUE,
  cut = NULL,
  splitter = NULL,
 y_range = NULL,
  config = NULL,
 n_{out} = NULL,
 normalize = TRUE,
 opt_func = Adam(),
  lr = 0.001,
  cbs = NULL,
 metrics = NULL,
 path = NULL,
 model_dir = "models",
 wd = NULL,
 wd_bn_bias = FALSE,
 train_bn = TRUE,
 moms = list(0.95, 0.85, 0.95)
)
```

cnn_learner 79

Arguments

dls data loader object arch a model architecture

loss_func loss function
pretrained pre-trained or not

cut cut

splitter It is a function that takes self.model and returns a list of parameter groups (or

just one parameter group if there are no different parameter groups).

y_range y_range
config configuration
n_out the number of out

normalize normalize

opt_func The function used to create the optimizer

1r learning rate

cbs Cbs is one or a list of Callbacks to pass to the Learner.

metrics It is an optional list of metrics, that can be either functions or Metrics.

path The folder where to work

model_dir Path and model_dir are used to save and/or load models.

wd It is the default weight decay used when training the model.

train_bn It controls if BatchNorm layers are trained even when they are supposed to be

frozen according to the splitter.

moms The default momentums used in Learner.fit_one_cycle.

Value

learner object

Examples

```
## Not run:

URLs_MNIST_SAMPLE()
# transformations
tfms = aug_transforms(do_flip = FALSE)
path = 'mnist_sample'
bs = 20

#load into memory
data = ImageDataLoaders_from_folder(path, batch_tfms = tfms, size = 26, bs = bs)

learn = cnn_learner(data, resnet18(), metrics = accuracy, path = getwd())
```

80 COCOMetric

```
## End(Not run)
```

COCOMetric

COCOMetric

Description

Wrapper around [cocoapi evaluator](https://github.com/cocodataset/cocoapi)

Usage

```
COCOMetric(
  metric_type = COCOMetricType()$bbox,
  print_summary = FALSE,
  show_pbar = FALSE
)
```

Arguments

```
metric_type Dependent on the task you're solving.

print_summary If 'TRUE', prints a table with statistics.

show_pbar If 'TRUE' shows pbar when preparing the data for evaluation.
```

Details

Calculates average precision. # Arguments metric_type: Dependent on the task you're solving. print_summary: If 'TRUE', prints a table with statistics. show_pbar: If 'TRUE' shows pbar when preparing the data for evaluation.

Value

COCOMetricType 81

 ${\tt COCOMetricType}$

COCOMetricType

Description

Available options for 'COCOMetric'

Usage

```
COCOMetricType()
```

Value

None

CohenKappa

Cohen Kappa

Description

Cohen kappa for single-label classification problems

Usage

```
CohenKappa(axis = -1, labels = NULL, weights = NULL, sample_weight = NULL)
```

Arguments

axis axis
labels labels
weights weights

sample_weight sample_weight

Value

collab

Collab module

Description

Collab module

Usage

collab()

Value

None

```
{\tt CollabDataLoaders\_from\_dblock} \\ {\tt CollabDataLoaders\_from\_dblock}
```

Description

Create a dataloaders from a given 'dblock'

Usage

```
CollabDataLoaders_from_dblock(
  dblock,
  source,
  path = ".",
  bs = 64,
  val_bs = NULL,
  shuffle_train = TRUE,
  device = NULL
)
```

Arguments

dblock dblock source

path The folder where to work

bs The batch size

val_bs The batch size for the validation DataLoader (defaults to bs)

shuffle_train If we shuffle the training DataLoader or not

device device

Value

None

```
CollabDataLoaders_from_df 
 CollabDataLoaders_from_df
```

Description

Create a 'DataLoaders' suitable for collaborative filtering from 'ratings'.

Usage

```
CollabDataLoaders_from_df(
  ratings,
  valid_pct = 0.2,
  user_name = NULL,
  item_name = NULL,
  rating_name = NULL,
  seed = NULL,
  path = ".",
  bs = 64,
  val_bs = NULL,
  shuffle_train = TRUE,
  device = NULL
)
```

Arguments

ratings ratings The random percentage of the dataset to set aside for validation (with an optional valid_pct The name of the column containing the user (defaults to the first column) user_name The name of the column containing the item (defaults to the second column) item_name The name of the column containing the rating (defaults to the third column) rating_name seed random seed The folder where to work path bs The batch size val_bs The batch size for the validation DataLoader (defaults to bs) If we shuffle the training DataLoader or not shuffle_train device the device, e.g. cpu, cuda, and etc.

Value

84 collab_learner

Examples

collab_learner

Collab_learner

Description

Create a Learner for collaborative filtering on 'dls'.

Usage

```
collab_learner(
  dls,
  n_factors = 50,
  use_nn = FALSE,
  emb_szs = NULL,
  layers = NULL,
  config = NULL,
  y_range = NULL,
  loss_func = NULL,
  opt_func = Adam(),
  lr = 0.001,
  splitter = trainable_params(),
  cbs = NULL,
  metrics = NULL,
  path = NULL,
  model_dir = "models",
  wd = NULL,
  wd_bn_bias = FALSE,
  train_bn = TRUE,
  moms = list(0.95, 0.85, 0.95)
)
```

collab_learner 85

Arguments

dls a data loader object n_factors The number of factors

use_nn use_nn

emb_szs embedding size
layers list of layers
config configuration

y_range y_range

loss_func It can be any loss function you like. It needs to be one of fastai's if you want

to use Learn.predict or Learn.get_preds, or you will have to implement special

methods (see more details after the BaseLoss documentation).

opt_func The function used to create the optimizer

lr learning rate

splitter It is a function that takes self.model and returns a list of parameter groups (or

just one parameter group if there are no different parameter groups).

cbs Cbs is one or a list of Callbacks to pass to the Learner.

metrics It is an optional list of metrics, that can be either functions or Metrics.

path The folder where to work

model_dir Path and model_dir are used to save and/or load models.

Wd It is the default weight decay used when training the model.

wd_bn_bias It controls if weight decay is applied to BatchNorm layers and bias.

train_bn It controls if BatchNorm layers are trained even when they are supposed to be

frozen according to the splitter.

moms The default momentums used in Learner.fit_one_cycle.

Value

learner object

Examples

86 colors

```
learn %>% fit_one_cycle(1, 5e-3, wd = 1e-1)
## End(Not run)
```

CollectDataCallback

CollectDataCallback

Description

Collect all batches, along with pred and loss, into self.data. Mainly for testing

Usage

```
CollectDataCallback(...)
CollectDataCallback(...)
```

Arguments

... arguments to pass

Value

None

None

colors

Colors module

Description

Colors module

Usage

colors()

Value

ColReader 87

ColReader

ColReader

Description

Read 'cols' in 'row' with potential 'pref' and 'suff'

Usage

```
ColReader(cols, pref = "", suff = "", label_delim = NULL)
```

Arguments

cols columns
pref pref
suffi suffix

label_delim label separator

Value

None

ColSplitter

ColSplitter

Description

Split 'items' (supposed to be a dataframe) by value in 'col'

Usage

```
ColSplitter(col = "is_valid")
```

Arguments

col

column

Value

88 competitions_list

```
combined_flat_anneal Combined_flat_anneal
```

Description

Create a schedule with constant learning rate 'start_lr' for 'pct' proportion of the training, and a 'curve_type' learning rate (till 'end_lr') for remaining portion of training.

Usage

```
combined_flat_anneal(pct, start_lr, end_lr = 0, curve_type = "linear")
```

Arguments

pct Proportion of training with a constant learning rate.

start_lr Desired starting learning rate, used for beginning pct of training.

end_lr Desired end learning rate, training will conclude at this learning rate.

ponential'.

competitions_list

Competitions list

Description

Competitions list

Usage

```
competitions_list(
  group = NULL,
  category = NULL,
  sort_by = NULL,
  page = 1,
  search = NULL
)
```

Arguments

group group to filter result to category category to filter result to

sort_by how to sort the result, see valid_competition_sort_by for options

page the page to return (default is 1)

search a search term to use (default is empty string)

Value

list of competitions

```
competition_download_file
```

Competition download file

Description

download a competition file to a designated location, or use

Usage

```
competition_download_file(
  competition,
  file_name,
  path = NULL,
  force = FALSE,
  quiet = FALSE
)
```

Arguments

```
competition the name of the competition file_name the configuration file name a path to download the file to
```

force force the download if the file already exists (default FALSE)

quiet suppress verbose output (default is FALSE)

Value

None

Examples

```
dir.create(com_nm)
}
# download via api
competition_download_files(competition = com_nm, path = com_nm, unzip = TRUE)
## End(Not run)
```

 ${\tt competition_download_files}$

Competition download files

Description

Competition download files

Usage

```
competition_download_files(
  competition,
  path = NULL,
  force = FALSE,
  quiet = FALSE,
  unzip = FALSE
)
```

Arguments

competition the name of the competition path a path to download the file to

force force the download if the file already exists (default FALSE)

quiet suppress verbose output (default is TRUE)

unzip unzip downloaded files

Value

 $competition_leaderboard_download$

Competition leaderboard download

Description

Download competition leaderboards

Usage

```
competition_leaderboard_download(competition, path, quiet = TRUE)
```

Arguments

competition the name of the competition path a path to download the file to

quiet suppress verbose output (default is TRUE)

Value

data frame

```
competition\_list\_files
```

Competition list files

Description

list files for competition

Usage

```
competition_list_files(competition)
```

Arguments

competition the name of the competition

Value

list of files

92 Contrast

Examples

```
## Not run:
com_nm = 'titanic'
titanic_files = competition_list_files(com_nm)
## End(Not run)
```

competition_submit

Competition submit

Description

Competition submit

Usage

```
competition_submit(file_name, message, competition, quiet = FALSE)
```

Arguments

file_name the competition metadata file
message the submission description
competition the competition name

quiet suppress verbose output (default is FALSE)

Value

None

Contrast

Contrast

Description

Apply change in contrast of 'max_lighting' to batch of images with probability 'p'.

Usage

```
Contrast(max_lighting = 0.2, p = 0.75, draw = NULL, batch = FALSE)
```

ConvLayer 93

Arguments

```
max_lighting maximum lighting
p probability
draw draw
batch batch
```

Value

None

ConvLayer

ConvLayer

Description

Create a sequence of convolutional ('ni' to 'nf'), ReLU (if 'use_activ') and 'norm_type' layers.

Usage

```
ConvLayer(
 ni,
  nf,
  ks = 3,
  stride = 1,
  padding = NULL,
 bias = NULL,
  ndim = 2,
  norm\_type = 1,
 bn_1st = TRUE,
  act_cls = nn()$ReLU,
  transpose = FALSE,
  init = "auto",
  xtra = NULL,
 bias_std = 0.01,
  dilation = 1,
  groups = 1,
  padding_mode = "zeros"
)
```

Arguments

```
ni number of inputs

nf outputs/ number of features

ks kernel size

stride stride
```

94 convT_norm_relu

padding padding bias bias

ndim dimension number
norm_type normalization type
bn_1st batch normalization 1st

act_cls activation transpose transpose init initializer xtra xtra

bias_std bias standard deviation

dilation specify the dilation rate to use for dilated convolution

groups groups size

padding_mode padding mode, e.g 'zeros'

Value

None

Description

ConvT_norm_relu

Usage

```
convT_norm_relu(ch_in, ch_out, norm_layer, ks = 3, stride = 2, bias = TRUE)
```

Arguments

ch_in input ch_out output

norm_layer normalziation layer

ks kernel size
stride stride size
bias bias true or not

Value

conv_norm_lr 95

conv_norm_lr

 $Conv_norm_lr$

Description

```
Conv_norm_lr
```

Usage

```
conv_norm_lr(
  ch_in,
  ch_out,
  norm_layer = NULL,
  ks = 3,
  bias = TRUE,
  pad = 1,
  stride = 1,
  activ = TRUE,
  slope = 0.2,
  init = nn()$init$normal_,
  init_gain = 0.02
)
```

Arguments

ch_in input ch_out output norm_layer normalziation layer ks kernel size bias bias pad pad stride stride activ activation slope slope inititializer init init_gain initializer gain

Value

 ${\tt CorpusBLEUMetric}$

Corpus BLEU Metric

Description

Blueprint for defining a metric

Usage

```
CorpusBLEUMetric(vocab_sz = 5000, axis = -1)
```

Arguments

```
vocab_sz
axis
vocab_sz
axis
```

Value

None

```
\cos. fastai.torch_core.TensorMask \cos.
```

Description

Cos

Usage

```
## S3 method for class 'fastai.torch_core.TensorMask'
cos(x)
```

Arguments

x tensor

Value

tensor

```
{\color{red} {\rm cosh.fastai.torch\_core.TensorMask} \atop {\color{red} {\it Cosh}}}
```

Description

Cosh

Usage

```
## S3 method for class 'fastai.torch_core.TensorMask' cosh(x)
```

Arguments

x tensor

Value

tensor

cosh_

Cosh

Description

Cosh

Usage

```
## S3 method for class 'torch.Tensor'
cosh(x)
```

Arguments

Х

tensor

Value

tensor

98 crap

cos_

Cos

Description

Cos

Usage

```
## S3 method for class 'torch.Tensor'
cos(x)
```

Arguments

Х

tensor

Value

tensor

crap

Crappify module

Description

Crappify module

Usage

crap()

Value

crappifier 99

crappifier

Crappifier

Description

Crappifier

Usage

```
crappifier(path_lr, path_hr)
```

Arguments

```
path_lr path from (origin)
path_hr path to (destination)
```

Value

None

Examples

```
## Not run:
items = get_image_files(path_hr)
parallel(crappifier(path_lr, path_hr), items)
## End(Not run)
```

create_body

Create_body

Description

Cut off the body of a typically pretrained 'arch' as determined by 'cut'

Usage

```
create_body(...)
```

Arguments

... parameters to pass

100 create_cnn_model

Value

None

Examples

```
## Not run:
encoder = create_body(resnet34(), pretrained = TRUE)
## End(Not run)
```

create_cnn_model

 $Create_cnn_model$

Description

Create custom convnet architecture using 'arch', 'n_in' and 'n_out'

Usage

```
create_cnn_model(
    arch,
    n_out,
    cut = NULL,
    pretrained = TRUE,
    n_in = 3,
    init = nn()$init$kaiming_normal_,
    custom_head = NULL,
    concat_pool = TRUE,
    lin_ftrs = NULL,
    ps = 0.5,
    bn_final = FALSE,
    lin_first = FALSE,
    y_range = NULL
)
```

Arguments

```
\begin{array}{lll} \text{arch} & \text{a model architecture} \\ \text{n\_out} & \text{number of outs} \\ \text{cut} & \text{cut} \\ \\ \text{pretrained} & \text{pretrained model or not} \\ \text{n\_in} & \text{input shape} \\ \end{array}
```

create_fcn 101

init initializer custom_head custom_head

concat_pool concatenate pooling

lin_ftrs linear fiters

ps parameter server

bn_final batch normalization final

lin_first linear first
y_range y_range

Value

None

Description

A bunch of convolutions stacked together.

Usage

```
create_fcn(ni, nout, ks = 9, conv_sizes = c(128, 256, 128), stride = 1)
```

Arguments

ni number of input channels

nout output shape ks kernel size

conv_sizes convolution sizes

stride stride

Value

model

102 create_head

create_head

Create_head

Description

Model head that takes 'nf' features, runs through 'lin_ftrs', and out 'n_out' classes.

Usage

```
create_head(
  nf,
  n_out,
  lin_ftrs = NULL,
  ps = 0.5,
  concat_pool = TRUE,
  bn_final = FALSE,
  lin_first = FALSE,
  y_range = NULL
)
```

Arguments

number of features nf number of out features n_out lin_ftrs linear features parameter server ps concat_pool concatenate pooling bn_final batch normalization final lin_first linear first y_range y_range

Value

create_inception 103

create_inception

Create_inception

Description

Creates an InceptionTime arch from 'ni' channels to 'nout' outputs.

Usage

```
create_inception(
  ni,
  nout,
  kss = c(39, 19, 9),
  depth = 6,
  bottleneck_size = 32,
  nb_filters = 32,
  head = TRUE
)
```

Arguments

ni number of input channels

nout number of outputs, should be equal to the number of classes for classification

tasks.

kss kernel sizes for the inception Block.

depth depth

bottleneck_size

The number of channels on the convolution bottleneck.

nb_filters Channels on the convolution of each kernel.

head TRUE if we want a head attached.

Value

model

create_mlp

Create_mlp

Description

A simple model builder to create a bunch of BatchNorm1d, Dropout and Linear layers, with "act_fn" activations.

104 create_resnet

Usage

```
create_mlp(ni, nout, linear_sizes = c(500, 500, 500))
```

Arguments

ni number of input channels

nout output shape
linear_sizes linear output sizes

Value

model

create_resnet

Create_resnet

Description

Basic 11 Layer - 1D resnet builder

Usage

```
create_resnet(
    ni,
    nout,
    kss = c(9, 5, 3),
    conv_sizes = c(64, 128, 128),
    stride = 1
)
```

Arguments

ni number of input channels

nout output shape kss kernel size

conv_sizes convolution sizes

stride stride

Value

model

create_unet_model 105

create_unet_model

Create_unet_model

Description

Create custom unet architecture

Usage

```
create_unet_model(
  arch,
  n_out,
  img_size,
  pretrained = TRUE,
  cut = NULL,
  n_in = 3,
  blur = FALSE,
  blur_final = TRUE,
  self_attention = FALSE,
  y_range = NULL,
  last_cross = TRUE,
  bottle = FALSE,
  act_cls = nn()$ReLU,
  init = nn()$init$kaiming_normal_,
  norm\_type = NULL
)
```

Arguments

arch architecture

n_out number of out features

img_size imgage shape
pretrained pretrained or not

cut cut

n_in number of input

blur is used to avoid checkerboard artifacts at each layer.

blur_final blur final is specific to the last layer.

self_attention self_attention determines if we use a self attention layer at the third block before

the end.

y_range If y_range is passed, the last activations go through a sigmoid rescaled to that

range.

last_cross last_cross bottle bottle

106 CropTime

act_cls activation init initialzier

norm_type normalization type

Value

None

CropPad CropPad

Description

Center crop or pad an image to 'size'

Usage

```
CropPad(size, pad_mode = "zeros", ...)
```

Arguments

size size

pad_modepadding modeadditional arguments

Value

None

CropTime Crop Time

Description

Random crops full spectrogram to be length specified in ms by crop_duration

Usage

```
CropTime(duration, pad_mode = AudioPadType()$Zeros)
```

Arguments

 $\quad \text{duration} \qquad \quad \text{int, duration} \quad$

pad_mode padding mode, by default 'AudioPadType\$Zeros'

Value

CrossEntropyLossFlat 107

 ${\tt CrossEntropyLossFlat} \quad {\tt CrossEntropyLossFlat}$

Description

Same as 'nn\$Module', but no need for subclasses to call 'super().__init__'

Usage

```
CrossEntropyLossFlat(...)
```

Arguments

parameters to pass

Value

Loss object

CSVLogger

CSVLogger

Description

Basic class handling tweaks of the training loop by changing a 'Learner' in various events

Usage

```
CSVLogger(fname = "history.csv", append = FALSE)
```

Arguments

fname file name append or not

Value

108 CudaCallback

Examples

```
## Not run:

URLs_MNIST_SAMPLE()
# transformations
tfms = aug_transforms(do_flip = FALSE)
path = 'mnist_sample'
bs = 20

#load into memory
data = ImageDataLoaders_from_folder(path, batch_tfms = tfms, size = 26, bs = bs)

learn = cnn_learner(data, resnet18(), metrics = accuracy, path = getwd())

learn %>% fit_one_cycle(2, cbs = CSVLogger())

## End(Not run)
```

CudaCallback

CudaCallback

Description

Move data to CUDA device

Usage

```
CudaCallback(device = NULL)
```

Arguments

device

device name

Value

custom_loss 109

custom_loss

Loss NN module

Description

Loss NN module

Usage

```
custom_loss()
```

Value

None

CutMix

CutMix

Description

Implementation of 'https://arxiv.org/abs/1905.04899'

Usage

```
CutMix(alpha = 1)
```

Arguments

alpha

alpha

Value

110 CycleGAN

 $\verb"cutout_gaussian"$

Cutout_gaussian

Description

```
Replace all 'areas' in 'x' with N(0,1) noise
```

Usage

```
cutout_gaussian(x, areas)
```

Arguments

x tensor areas

Value

None

CycleGAN

CycleGAN

Description

CycleGAN model.

Usage

```
CycleGAN(
  ch_in = 3,
  ch_out = 3,
  n_features = 64,
  disc_layers = 3,
  gen_blocks = 9,
  lsgan = TRUE,
  drop = 0,
  norm_layer = NULL
)
```

CycleGANLoss 111

Arguments

ch_in input ch_out output

n_features number of features disc_layers discriminator layers gen_blocks generator blocks

lsgan ls gan

drop dropout rate

norm_layer normalziation layer

Details

When called, takes in input batch of real images from both domains and outputs fake images for the opposite domains (with the generators). Also outputs identity images after passing the images into generators that outputs its domain type (needed for identity loss). Attributes: 'G_A' ('nn.Module'): takes real input B and generates fake input A 'G_B' ('nn.Module'): takes real input A and generates fake input B 'D_A' ('nn.Module'): trained to make the difference between real input B and fake input B

Value

None

CycleGANLoss	CycleGANLoss	

Description

CycleGAN loss function. The individual loss terms are also attributes of this class that are accessed by fastai for recording during training.

Usage

```
CycleGANLoss(cgan, l_A = 10, l_B = 10, l_idt = 0.5, lsgan = TRUE)
```

Arguments

cgan	The CycleGAN model.
1_A	lambda_A, weight of domain A losses. (default=10)
1_B	lambda_B, weight of domain B losses. (default=10)
l_idt	lambda_idt, weight of identity lossees. (default=0.5)
lsgan	Whether or not to use LSGAN objective (default=True)

112 cycle_learner

Details

Attributes: 'self.cgan' ('nn.Module'): The CycleGAN model. 'self.l_A' ('float'): lambda_A, weight of domain A losses. 'self.l_B' ('float'): lambda_B, weight of domain B losses. 'self.l_idt' ('float'): lambda_idt, weight of identity lossees. 'self.crit' ('AdaptiveLoss'): The adversarial loss function (either a BCE or MSE loss depending on 'lsgan' argument) 'self.real_A' and 'self.real_B' ('fastai.torch_core.TensorImage'): Real images from domain A and B. 'self.id_loss_A' ('torch.FloatTensor'): The identity loss for domain A calculated in the forward function 'self.id_loss_B' ('torch.FloatTensor'): The identity loss for domain B calculated in the forward function 'self.gen_loss' ('torch.FloatTensor'): The generator loss calculated in the forward function 'self.cyc_loss' ('torch.FloatTensor'): The cyclic loss calculated in the forward function

CycleGANTrainer

CycleGANTrainer

Description

Learner Callback for training a CycleGAN model.

Usage

```
CycleGANTrainer(...)
```

Arguments

... parameters to pass

Value

None

cycle_learner

Cycle_learner

Description

Initialize and return a 'Learner' object with the data in 'dls', CycleGAN model 'm', optimizer function 'opt_func', metrics 'metrics',

DataBlock 113

Usage

```
cycle_learner(
  dls,
  m,
  opt_func = Adam(),
  show_imgs = TRUE,
  imgA = TRUE,
  imgB = TRUE,
  show_img_interval = 10,
  ...
)
```

Arguments

```
dls dataloader

m CycleGAN model

opt_func optimizer

show_imgs show images

imgA image a (from)

imgB image B (to)

show_img_interval

show images interval rafe

... additional arguments
```

Details

and callbacks 'cbs'. Additionally, if 'show_imgs' is TRUE, it will show intermediate predictions during training. It will show domain B-to-A predictions if 'imgA' is TRUE and/or domain A-to-B predictions if 'imgB' is TRUE. Additionally, it will show images every 'show_img_interval' epochs. 'Other 'Learner' arguments can be passed as well.

Value

None

DataBlock DataBlock

Description

Generic container to quickly build 'Datasets' and 'DataLoaders'

114 dataloaders

Usage

```
DataBlock(
  blocks = NULL,
  dl_type = NULL,
  getters = NULL,
  n_inp = NULL,
  item_tfms = NULL,
  batch_tfms = NULL,
  ...
)
```

Arguments

blocks	input blocks
dl_type	DL application
getters	how to get dataet
n_inp	n_inp is the number of elements in the tuples that should be considered part of the input and will default to 1 if tfms consists of one set of transforms $\frac{1}{2}$
item_tfms	One or several transforms applied to the items before batching them
batch_tfms	One or several transforms applied to the batches once they are formed
	additional parameters to pass

Value

Block object

dataloaders

Dataloaders from dls object

Description

```
Create a 'DataLoaders' object from 'source'
```

Usage

```
dataloaders(object, ...)
```

Arguments

```
object model
```

... additional parameters to pass

Datasets 115

Examples

```
## Not run:

dls = TabularDataTable(df, procs, cat_names, cont_names,
y_names = dep_var, splits = list(tr_idx, ts_idx) ) %>%
    dataloaders(bs = 50)

## End(Not run)
```

Datasets

Datasets

Description

A dataset that creates a list from each 'tfms', passed thru 'item_tfms'

Usage

```
Datasets(
  items = NULL,
  tfms = NULL,
  tls = NULL,
  n_inp = NULL,
  dl_type = NULL,
  use_list = NULL,
  do_setup = TRUE,
  split_idx = NULL,
  train_setup = TRUE,
  splits = NULL,
  types = NULL,
  verbose = FALSE
)
```

Arguments

```
items
                 items
tfms
                 transformations
tls
                 tls
n_inp
                 n_inp
                 DL type
dl_type
use_list
                 use list
do_setup
                 do setup
split_idx
                 split by index
```

Data_Loaders

Value

None

Data_Loaders

Data Loaders

Description

Data Loaders

Usage

```
Data_Loaders(...)
```

Arguments

... parameters to pass

Value

loader object

Examples

dcmread 117

dcmread

Read dicom

Description

```
Open a 'DICOM' file
```

Usage

```
dcmread(fn, force = FALSE)
```

Arguments

fn file name force logical, force

Value

dicom object

Examples

```
## Not run:
img = dcmread('hemorrhage.dcm')
## End(Not run)
```

debias

Debias

Description

Debias

Usage

```
debias(mom, damp, step)
```

Arguments

mom	mom
damp	damp
step	step

118 decision_plot

Value

None

Debugger Debugger

Description

A module to debug inside a model

Usage

```
Debugger(...)
```

Arguments

... parameters to pass

Value

None

decision_plot

Decision_plot

Description

Visualizes a model's decisions using cumulative SHAP values.

Usage

```
decision_plot(object, class_id = 0, row_idx = -1, dpi = 200, ...)
```

Arguments

object	ShapInterpretation object
class_id	is used to indicate the class of interest for a classification model. It can either be an int or str representation for a class of choice. Each colored line in the plot represents the model's prediction for a single observation.
row_idx	If no index is passed in to use from the data, it will default to the first ten samples on the test set. Note:plotting too many samples at once can make the plot illegible.
dpi	dots per inch
	additional arguments

Value

decode_spec_tokens 119

decode_spec_tokens

Decode_spec_tokens

Description

Decode the special tokens in 'tokens'

Usage

```
decode_spec_tokens(tokens)
```

Arguments

tokens

tokens

Value

None

default_split

Default_split

Description

Default split of a model between body and head

Usage

```
default_split(m)
```

Arguments

m

parameters

Value

Delta

Delta

Description

Creates delta with order 1 and 2 from spectrogram and concatenate with the original

Usage

```
Delta(width = 9)
```

Arguments

width

int, width

Value

None

Description

Denormalize_imagenet

Usage

```
denormalize_imagenet(img)
```

Arguments

img

img

Value

densenet121 121

densenet121

Densenet121

Description

Densenet121

Usage

```
densenet121(pretrained = FALSE, progress)
```

Arguments

 ${\tt pretrained}$

pretrained or not

progress

to see progress bar or not

Details

"Densely Connected Convolutional Networks" https://arxiv.org/pdf/1608.06993.pdf

Value

model

densenet161

Densenet161

Description

Densenet161

Usage

```
densenet161(pretrained = FALSE, progress)
```

Arguments

pretrained

pretrained or not

progress

to see progress bar or not

Details

"Densely Connected Convolutional Networks" https://arxiv.org/pdf/1608.06993.pdf

Value

model

122 densenet201

densenet169

Densenet169

Description

Densenet169

Usage

```
densenet169(pretrained = FALSE, progress)
```

Arguments

pretrained

pretrained or not

progress

to see progress bar or not

Details

"Densely Connected Convolutional Networks" https://arxiv.org/pdf/1608.06993.pdf

Value

model

densenet201

Densenet201

Description

Densenet201

Usage

```
densenet201(pretrained = FALSE, progress)
```

Arguments

pretrained

pretrained or not

progress

to see progress bar or not

Details

"Densely Connected Convolutional Networks" https://arxiv.org/pdf/1608.06993.pdf

Value

model

DenseResBlock 123

DenseResBlock

Dense Res Block

Description

Resnet block of 'nf' features. 'conv_kwargs' are passed to 'conv_layer'.

Usage

```
DenseResBlock(
  nf,
 norm\_type = 1,
 ks = 3,
 stride = 1,
  padding = NULL,
 bias = NULL,
 ndim = 2,
 bn_1st = TRUE,
  act_cls = nn()$ReLU,
  transpose = FALSE,
  init = "auto",
  xtra = NULL,
 bias_std = 0.01,
 dilation = 1,
 groups = 1,
 padding_mode = "zeros"
)
```

Arguments

nf	number of features
norm_type	normalization type
ks	kernel size
stride	stride
padding	padding
bias	bias
ndim	number of dimensions
bn_1st	batch normalization 1st
act_cls	activation
transpose	transpose
init	initizalier
xtra	xtra
bias_std	bias standard deviation

124 dependence_plot

dilation dilation number groups groups number padding_mode padding mode

Value

block

dependence_plot

Dependence_plot

Description

Plots the value of a variable on the x-axis and the SHAP value of the same variable on the y-axis. Accepts a class_id and variable_name.

Usage

```
dependence_plot(object, variable_name = "", class_id = 0, dpi = 200, ...)
```

Arguments

object ShapInterpretation object variable_name the name of the column

class_id is used to indicate the class of interest for a classification model. It can either be

an int or str representation for a class of choice. This plot shows how the model depends on the given variable. Vertical dispersion of the datapoints represent interaction effects. Gray ticks along the y-axis are datapoints where the variable's

values were NaN.

dpi dots per inch

... additional arguments

Value

DeterministicDihedral 125

DeterministicDihedral DeterministicDihedral

Description

Apply a random dihedral transformation to a batch of images with a probability 'p'

Usage

```
DeterministicDihedral(
  size = NULL,
  mode = "bilinear",
  pad_mode = "reflection",
  align_corners = NULL
)
```

Arguments

```
size size mode
```

pad_mode padding mode align_corners align corners

Value

None

DeterministicDraw

DeterministicDraw

Description

DeterministicDraw

Usage

```
DeterministicDraw(vals)
```

Arguments

vals values

Value

126 detuplify_pg

DeterministicFlip

DeterministicFlip

Description

Flip the batch every other call

Usage

```
DeterministicFlip(
    size = NULL,
    mode = "bilinear",
    pad_mode = "reflection",
    align_corners = TRUE,
    ...
)
```

Arguments

```
size size
mode mode
pad_mode paddir
```

pad_mode padding mode
align_corners align corners
... parameters to pass

Value

None

detuplify_pg

Detuplify_pg

Description

```
Detuplify_pg
```

Usage

```
detuplify_pg(d)
```

Arguments

d d

Value

Dice 127

Dice

Dice coefficient

Description

Dice coefficient metric for binary target in segmentation

Usage

```
Dice(axis = 1)
```

Arguments

axis

axis

Value

None

Dicom

Dicom class

Description

Dicom class

Usage

Dicom()

Value

None

dicom_windows

Dicom_windows module

Description

Dicom_windows module

Usage

dicom_windows()

Value

128 Dihedral

Dihedral

Dihedral

Description

Apply a random dihedral transformation to a batch of images with a probability 'p'
Apply a random dihedral transformation to a batch of images with a probability 'p'

Usage

```
Dihedral(
  p = 0.5,
  draw = NULL,
  size = NULL,
  mode = "bilinear",
  pad_mode = "reflection",
  align_corners = NULL,
  batch = FALSE
)
Dihedral(
  p = 0.5,
  draw = NULL,
  size = NULL,
  mode = "bilinear",
  pad_mode = "reflection",
  align_corners = NULL,
  batch = FALSE
)
```

Arguments

p	probability
draw	draw
size	size
mode	mode
pad_mode	padding mode
align_corners	align corners
batch	batch

Value

None

DihedralItem 129

 ${\tt DihedralItem}$

DihedralItem

Description

Randomly flip with probability 'p'

Usage

```
DihedralItem(p = 1, nm = NULL, before_call = NULL)
```

Arguments

p probability

 $nm \hspace{1cm} nm \\$

before_call before call

Value

None

dihedral_mat

 $Dihedral_mat$

Description

Return a random dihedral matrix

Usage

```
dihedral_mat(x, p = 0.5, draw = NULL, batch = FALSE)
```

Arguments

x tensor

p probability

draw draw batch batch

Value

dim

Dim

Description

Dim

Usage

```
## S3 method for class 'torch.Tensor'
dim(x)
```

Arguments

Χ

tensor

Value

tensor

```
\label{limit} \begin{array}{c} {\sf dim.fastai.torch\_core.TensorMask} \\ {\it Dim.} \end{array}
```

Description

Dim

Usage

```
## S3 method for class 'fastai.torch_core.TensorMask' \dim(x)
```

Arguments

Х

tensor

Value

tensor

discriminator 131

discriminator

Discriminator

Description

Discriminator

Usage

```
discriminator(
  ch_in,
  n_ftrs = 64,
  n_layers = 3,
  norm_layer = NULL,
  sigmoid = FALSE
)
```

Arguments

ch_in input

sigmoid apply sigmoid function or not

div

Div

Description

Div

Usage

```
## S3 method for class 'torch.Tensor'
a / b
```

Arguments

a tensor b tensor

Value

tensor

dropout_mask

DownmixMono

Downmix Mono

Description

Transform multichannel audios into single channel

Usage

```
DownmixMono(enc = NULL, dec = NULL, split_idx = NULL, order = NULL)
```

Arguments

enc encoder
dec decoder
split_idx split by index

order order, by default is NULL

Value

None

dropout_mask

Dropout_mask

Description

Return a dropout mask of the same type as 'x', size 'sz', with probability 'p' to cancel an element.

Usage

```
dropout_mask(x, sz, p)
```

Arguments

Value

dummy_eval 133

dummy_eval

Dummy_eval

Description

Evaluate 'm' on a dummy input of a certain 'size'

Usage

```
dummy_eval(m, size = list(64, 64))
```

Arguments

m m parameter size size

Value

None

DynamicUnet

DynamicUnet

Description

Create a U-Net from a given architecture.

Usage

```
DynamicUnet(
  encoder,
  n_classes,
  img_size,
  blur = FALSE,
  blur_final = TRUE,
  self_attention = FALSE,
  y_range = NULL,
  last_cross = TRUE,
  bottle = FALSE,
  act_cls = nn()$ReLU,
  init = nn()$init$kaiming_normal_,
  norm_type = NULL
)
```

Arguments

encoder encoder

n_classes number of classes

img_size image size

blur is used to avoid checkerboard artifacts at each layer.

blur_final blur final is specific to the last layer.

self_attention self_attention determines if we use a self attention layer at the third block before

the end.

y_range If y_range is passed, the last activations go through a sigmoid rescaled to that

range.

last_cross last cross
bottle bottle
act_cls activation
init initializer

norm_type normalization type

Value

None

 ${\tt EarlyStoppingCallback} \ \ \textit{EarlyStoppingCallback}$

Description

EarlyStoppingCallback

Usage

```
EarlyStoppingCallback(...)
```

Arguments

... parameters to pass

Value

efficientdet_infer_dl

```
efficientdet_infer_dl Efficientdet infer dataloader
```

Description

A 'DataLoader' with a custom 'collate_fn' that batches items as required for inferring the model.

Usage

```
efficientdet_infer_dl(dataset, batch_tfms = NULL, ...)
```

Arguments

dataset Possibly a 'Dataset' object, but more generally, any 'Sequence' that returns

records.

batch_tfms Transforms to be applied at the batch level. **dataloader_kwargs: Keyword ar-

guments that will be internally passed to a Pytorch 'DataLoader'. The parameter

'collate_fn' is already defined internally and cannot be passed here.

... additional arguments

Value

None

Description

Fastai 'Learner' adapted for MaskRCNN.

Usage

```
efficientdet_learner(dls, model, cbs = NULL, ...)
```

Arguments

dls	'Sequence' of 'DataLoaders'	passed to the 'Learner'.	The first one will be used

for training and the second for validation.

model The model to train.

cbs Optional 'Sequence' of callbacks.

... learner_kwargs: Keyword arguments that will be internally passed to 'Learner'.

Value

model

Description

Creates the efficientdet model specified by 'model_name'.

Usage

```
efficientdet_model(model_name, num_classes, img_size, pretrained = TRUE)
```

Arguments

model_name Specifies the model to create. For pretrained models, check [this](https://github.com/rwightman/efficientd

pytorch#models) table.

img_size Image size that will be fed to the model. Must be squared and divisible by 128.

pretrained If TRUE, use a pretrained backbone (on COCO).

Value

model

```
efficientdet_predict_dl
```

Efficientdet predict dataloader

Description

Efficientdet predict dataloader

Usage

```
efficientdet_predict_dl(model, infer_dl, show_pbar = TRUE)
```

Arguments

model model
infer_dl infer_dl
show_pbar show_pbar

Value

efficientdet_train_dl 137

```
efficientdet_train_dl Efficientdet train dataloader
```

Description

A 'DataLoader' with a custom 'collate_fn' that batches items as required for training the model.

Usage

```
efficientdet_train_dl(dataset, batch_tfms = NULL, ...)
```

Arguments

dataset Possibly a 'Dataset' object, but more generally, any 'Sequence' that returns

records.

batch_tfms Transforms to be applied at the batch level.

.. dataloader_kwargs: Keyword arguments that will be internally passed to a Py-

torch 'DataLoader'. The parameter 'collate_fn' is already defined internally and

cannot be passed here.

Value

None

```
efficientdet_valid_dl Efficientdet valid dataloader
```

Description

A 'DataLoader' with a custom 'collate_fn' that batches items as required for training the model.

Usage

```
efficientdet_valid_dl(dataset, batch_tfms = NULL, ...)
```

Arguments

dataset Possibly a 'Dataset' object, but more generally, any 'Sequence' that returns

records.

batch_tfms Transforms to be applied at the batch level.

.. dataloader_kwargs: Keyword arguments that will be internally passed to a Py-

torch 'DataLoader'. The parameter 'collate_fn' is already defined internally and

cannot be passed here.

Value

EmbeddingDropout

Embedding

Embedding

Description

Embedding layer with truncated normal initialization

Usage

```
Embedding(ni, nf)
```

Arguments

ni inputs

nf outputs / number of features

Value

None

 ${\tt EmbeddingDropout}$

Embedding Dropout

Description

Apply dropout with probability 'embed_p' to an embedding layer 'emb'.

Usage

```
EmbeddingDropout(emb, embed_p)
```

Arguments

 $\begin{array}{ll} \mbox{emb} & \mbox{emb} \\ \mbox{embed_p} & \mbox{embed_p} \end{array}$

Value

emb_sz_rule 139

emb_sz_rule

Emb_sz_rule

Description

Rule of thumb to pick embedding size corresponding to 'n_cat'

Usage

```
emb_sz_rule(n_cat)
```

Arguments

n_cat

n_cat

Value

None

error_rate

Error rate

Description

```
1 - 'accuracy'
```

Usage

```
error_rate(inp, targ, axis = -1)
```

Arguments

inp The predictions of the model

targ The corresponding labels

axis Axis

Value

tensor

Examples

```
## Not run:
learn = cnn_learner(dls, resnet34(), metrics = error_rate)
## End(Not run)
```

exp

Exp

Description

Exp

Usage

```
## S3 method for class 'torch. Tensor' exp(x)
```

Arguments

Х

tensor

Value

tensor

```
{\it exp.} \ {\it fastai.torch\_core.TensorMask} \\ {\it Exp}
```

Description

Exp

Usage

```
## S3 method for class 'fastai.torch_core.TensorMask'
exp(x)
```

ExplainedVariance 141

Arguments

x tensor

Value

tensor

ExplainedVariance

Explained Variance

Description

Explained variance between predictions and targets

Usage

```
ExplainedVariance(sample_weight = NULL)
```

Arguments

```
sample_weight sample_weight
```

Value

None

expm1

Expm1

Description

Expm1

Usage

```
## S3 method for class 'torch.Tensor'
expm1(x)
```

Arguments

Χ

tensor

Value

tensor

142 export_generator

```
{\it expm1.fastai.torch\_core.TensorMask} \\ {\it Expm1}
```

Description

Expm1

Usage

```
## S3 method for class 'fastai.torch_core.TensorMask'
expm1(x)
```

Arguments

x tensor

Value

tensor

 ${\tt export_generator}$

 $Export_generator$

Description

Export_generator

Usage

```
export_generator(
  learn,
  generator_name = "generator",
  path = ".",
  convert_to = "B"
)
```

Arguments

Value

exp_rmspe 143

exp_rmspe

Exp_rmspe

Description

Root mean square percentage error of the exponential of predictions and targets

Usage

```
exp_rmspe(preds, targs)
```

Arguments

preds predicitons targs targets

Value

None

F1Score

F1Score

Description

F1 score for single-label classification problems

Usage

```
F1Score(
  axis = -1,
  labels = NULL,
  pos_label = 1,
  average = "binary",
  sample_weight = NULL
)
```

Arguments

```
axis axis
labels labels
pos_label pos_label
average average
sample_weight sample_weight
```

F1ScoreMulti

Value

None

F1ScoreMulti

F1ScoreMulti

Description

F1 score for multi-label classification problems

Usage

```
F1ScoreMulti(
  thresh = 0.5,
  sigmoid = TRUE,
  labels = NULL,
  pos_label = 1,
  average = "macro",
  sample_weight = NULL
)
```

Arguments

```
thresh thresh
sigmoid sigmoid
labels labels
pos_label pos_label
average average
sample_weight sample_weight
```

Value

fastai_version 145

fastai_version

Fastai version

Description

Fastai version

Usage

```
fastai_version()
```

Value

None

fastaudio

Fastaudio module

Description

Fastaudio module

Usage

fastaudio()

Value

None

 ${\tt faster_rcnn_infer_dl} \quad \textit{Faster RCNN infer dataloader}$

Description

A 'DataLoader' with a custom 'collate_fn' that batches items as required for inferring the model.

```
faster_rcnn_infer_dl(dataset, batch_tfms = NULL, ...)
```

faster_rcnn_learner

Arguments

dataset Possibly a 'Dataset' object, but more generally, any 'Sequence' that returns

records.

batch_tfms Transforms to be applied at the batch level. **dataloader_kwargs: Keyword ar-

guments that will be internally passed to a Pytorch 'DataLoader'. The parameter

'collate_fn' is already defined internally and cannot be passed here.

... additional arguments

Value

None

faster_rcnn_learner Faster R

Faster RSNN learner

Description

Fastai 'Learner' adapted for Faster RCNN.

Usage

```
faster_rcnn_learner(dls, model, cbs = NULL, ...)
```

Arguments

dls 'Sequence' of 'DataLoaders' passed to the 'Learner'. The first one will be used

for training and the second for validation.

model The model to train.

cbs Optional 'Sequence' of callbacks.

... learner_kwargs: Keyword arguments that will be internally passed to 'Learner'.

Value

model

faster_rcnn_model 147

faster_rcnn_model

Faster RSNN model

Description

FasterRCNN model implemented by torchvision.

Usage

```
faster_rcnn_model(
  num_classes,
  backbone = NULL,
  remove_internal_transforms = TRUE,
  pretrained = TRUE
)
```

Arguments

num_classes Ni

Number of classes.

backbone

Backbone model to use. Defaults to a resnet50_fpn model.

remove_internal_transforms

The torchvision model internally applies transforms like resizing and normalization, but we already do this at the 'Dataset' level, so it's safe to remove those

internal transforms.

pretrained

Argument passed to 'fastercnn_resnet50_fpn' if 'backbone is NULL'. By default it is set to TRUE: this is generally used when training a new model (transfer learning). 'pretrained = FALSE' is used during inference (prediction) for cases where the users have their own pretrained weights. **faster_rcnn_kwargs: Key-

word arguments that internally are going to be passed to 'torchvision.models.detection.faster_rcnn.FastRC

Value

model

```
faster_rcnn_predict_dl
```

Faster RCNN predict dataloader

Description

Faster RCNN predict dataloader

```
faster_rcnn_predict_dl(model, infer_dl, show_pbar = TRUE)
```

faster_rcnn_train_dl

Arguments

model model
infer_dl infer_dl
show_pbar show_pbar

Value

None

faster_rcnn_train_dl Faster RSNN train dataloader

Description

A 'DataLoader' with a custom 'collate_fn' that batches items as required for training the model.

Usage

```
faster_rcnn_train_dl(dataset, batch_tfms = NULL, ...)
```

Arguments

dataset Possibly a 'Dataset' object, but more generally, any 'Sequence' that returns

records.

batch_tfms Transforms to be applied at the batch level.

... dataloader_kwargs: Keyword arguments that will be internally passed to a Py-

torch 'DataLoader'. The parameter 'collate_fn' is already defined internally and

cannot be passed here.

Value

faster_rcnn_valid_dl 149

faster_rcnn_valid_dl Faster RSNN valid dataloader

Description

A 'DataLoader' with a custom 'collate_fn' that batches items as required for training the model.

Usage

```
faster_rcnn_valid_dl(dataset, batch_tfms = NULL, ...)
```

Arguments

dataset Possibly a 'Dataset' object, but more generally, any 'Sequence' that returns

records.

batch_tfms Transforms to be applied at the batch level.

dataloader_kwargs: Keyword arguments that will be internally passed to a Py-. . .

torch 'DataLoader'. The parameter 'collate_fn' is already defined internally and

cannot be passed here.

Value

None

fastinf

Wandb module

Description

Wandb module

Usage

fastinf()

Value

fa_convert

fa_collate

 $Fa_collate$

Description

Fa_collate

Usage

fa_collate(t)

Arguments

t

text

Value

None

fa_convert

Da_convert

Description

Da_convert

Usage

fa_convert(t)

Arguments

t

text

Value

FBeta 151

FBeta FBeta

Description

FBeta score with 'beta' for single-label classification problems

Usage

```
FBeta(
  beta,
  axis = -1,
  labels = NULL,
  pos_label = 1,
  average = "binary",
  sample_weight = NULL
)
```

Arguments

```
beta beta
axis axis
labels labels
pos_label pos_label
average average
sample_weight sample_weight
```

Value

None

FBetaMulti FBetaMulti

Description

FBeta score with 'beta' for multi-label classification problems

FetchPredsCallback

Usage

```
FBetaMulti(
  beta,
  thresh = 0.5,
  sigmoid = TRUE,
  labels = NULL,
  pos_label = 1,
  average = "macro",
  sample_weight = NULL
)
```

Arguments

```
beta beta
thresh thresh
sigmoid sigmoid
labels labels
pos_label pos_label
average average
sample_weight sample_weight
```

Value

None

FetchPredsCallback

FetchPredsCallback

Description

A callback to fetch predictions during the training loop

```
FetchPredsCallback(
  ds_idx = 1,
  dl = NULL,
  with_input = FALSE,
  with_decoded = FALSE,
  cbs = NULL,
  reorder = TRUE
)
```

FileSplitter 153

Arguments

ds_idx dataset index
dl DL application
with_input with input or not
with_decoded with decoded or not

cbs callbacks reorder or not

Value

None

FileSplitter

File Splitter

Description

Split 'items' by providing file 'fname' (contains names of valid items separated by newline).

Usage

```
FileSplitter(fname)
```

Arguments

fname

file name

Value

None

FillMissing

Fill Missing

Description

Fill the missing values in continuous columns.

```
FillMissing(
  cat_names,
  cont_names,
  fill_strategy = FillStrategy_MEDIAN(),
  add_col = TRUE,
  fill_val = 0
)
```

Arguments

cat_names The names of the categorical variables cont_names The names of the continuous variables

fill_strategy The strategy of filling

add_col add_col fill_val

Value

None

Examples

```
## Not run:
procs = list(FillMissing(),Categorify(),Normalize())
## End(Not run)
```

 ${\tt FillStrategy_COMMON} \qquad COMMON$

Description

An enumeration.

Usage

```
FillStrategy_COMMON()
```

Value

FillStrategy_CONSTANT CONSTANT

Description

An enumeration.

Usage

FillStrategy_CONSTANT()

Value

None

FillStrategy_MEDIAN MEDIAN

Description

An enumeration.

Usage

FillStrategy_MEDIAN()

Value

None

find_coeffs

Find_coeffs

Description

Find coefficients for warp tfm from 'p1' to 'p2'

Usage

```
find_coeffs(p1, p2)
```

Arguments

p1 coefficient p1 p2 coefficient p2 fine_tune

Value

None

fine_tune

Fine_tune

Description

Fine tune with 'freeze' for 'freeze_epochs' then with 'unfreeze' from 'epochs' using discriminative LR

Usage

```
fine_tune(
  object,
  epochs,
  base_lr = 0.002,
  freeze_epochs = 1,
  lr_mult = 100,
  pct_start = 0.3,
  div = 5,
  ...
)
```

Arguments

```
object learner/model
epochs epoch number
base_lr base learning rate
freeze_epochs freeze epochs number
lr_mult learning rate multiply
pct_start start percentage
div divide
... additional arguments
```

Value

fit.fastai.learner.Learner 157

```
fit. fastai.learner.Learner \\ \textit{Fit}
```

Description

Fit the model on this learner with 'lr' learning rate, 'wd' weight decay for 'epochs' with 'callbacks' as cbs argument.

Usage

```
## S3 method for class 'fastai.learner.Learner'
fit(object, ...)
```

Arguments

```
object a learner object ... parameters to pass
```

Value

train history

```
fit. fastai.tabular.learner. Tabular Learner \\ Fit
```

Description

Fit the model on this learner with 'lr' learning rate, 'wd' weight decay for 'epochs' with 'callbacks'.

Usage

```
## S3 method for class 'fastai.tabular.learner.TabularLearner' fit(object, ...)
```

Arguments

```
object model ... additional arguments
```

Value

data frame

fit_flat_cos

Description

Fit the model on this learner with 'lr' learning rate, 'wd' weight decay for 'epochs' with 'callbacks'.

Usage

```
## S3 method for class 'fastai.vision.gan.GANLearner' fit(object, \dots)
```

Arguments

object model
... additonal parameters to pass

Value

train history

Examples

```
## Not run:
learn %>% fit(1, 2e-4, wd = 0)
## End(Not run)
```

fit_flat_cos

Fit_flat_cos

Description

Fit_flat_cos

fit_flat_lin 159

Usage

```
fit_flat_cos(
  object,
  n_epoch,
  lr = NULL,
  div_final = 1e+05,
  pct_start = 0.75,
  wd = NULL,
  cbs = NULL,
  reset_opt = FALSE
)
```

Arguments

object learner/model n_epoch number of epochs lr learning rate div_final divide final value pct_start start percentage weight decay wd callbacks cbs reset_opt reset optimizer

Value

None

fit_flat_lin

Fit_flat_lin

Description

Fit 'self.model' for 'n_epoch' at flat 'start_lr' before 'curve_type' annealing to 'end_lr' with weight decay of 'wd' and callbacks 'cbs'.

```
fit_flat_lin(
  object,
  n_epochs = 100,
  n_epochs_decay = 100,
  start_lr = NULL,
  end_lr = 0,
  curve_type = "linear",
  wd = NULL,
```

fit_one_cycle

```
cbs = NULL,
reset_opt = FALSE
)
```

Arguments

 $\begin{array}{ll} \text{object} & \text{model/learner} \\ \text{n_epochs} & \text{number of epochs} \end{array}$

n_epochs_decay number of epochs with decay

start_lr Desired starting learning rate, used for beginning pct of training.

end_lr Desired end learning rate, training will conclude at this learning rate.

curve_type Curve type for learning rate annealing. Options are 'linear', 'cosine', and 'ex-

ponential'.

wd weight decay
cbs callbacks
reset_opt reset optimizer

Value

None

fit_one_cycle Fit one cycle

Description

Fit one cycle

Usage

```
fit_one_cycle(object, ...)
```

Arguments

object model

... parameters to pass, e.g. lr, n_epoch, wd, and etc.

Value

fit_sgdr 161

fit_sgdr

 Fit_sgdr

Description

Fit_sgdr

Usage

```
fit_sgdr(
  object,
  n_cycles,
  cycle_len,
  lr_max = NULL,
  cycle_mult = 2,
  cbs = NULL,
  reset_opt = FALSE,
  wd = NULL
)
```

Arguments

learner/model object n_cycles number of cycles cycle_len length of cycle lr_max maximum learning rate cycle_mult cycle mult callbacks cbs reset optimizer reset_opt weight decay wd

Value

162 fix_fit

FixedGANSwitcher

Fixed GAN Switcher

Description

Switcher to do 'n_crit' iterations of the critic then 'n_gen' iterations of the generator.

Usage

```
FixedGANSwitcher(n_crit = 1, n_gen = 1)
```

Arguments

 n_crit number of discriminator n_gen number of generator

Value

None

fix_fit

Fix fit

Description

Fix fit

Usage

```
fix_fit(disable_graph = FALSE)
```

Arguments

disable_graph to remove dynamic plot, by default is FALSE

Value

fix_html

 ${\tt fix_html}$

 Fix_html

Description

Various messy things we've seen in documents

Usage

```
fix_html(x)
```

Arguments

Х

text

Value

string

Flatten

Flatten

Description

Flatten 'x' to a single dimension, e.g. at end of a model. 'full' for rank-1 tensor

Usage

```
Flatten(full = FALSE)
```

Arguments

full

bool, full or not

164 flatten_model

flatten_check

Flatten check

Description

Check that 'out' and 'targ' have the same number of elements and flatten them.

Usage

```
flatten_check(inp, targ)
```

Arguments

inp predictions targ targets

Value

tensor

flatten_model

Flatten_model

Description

Return the list of all submodules and parameters of 'm'

Usage

```
flatten_model(m)
```

Arguments

m

parameters

Value

Flip 165

Flip Flip

Description

Randomly flip a batch of images with a probability 'p'

Usage

```
Flip(
  p = 0.5,
  draw = NULL,
  size = NULL,
  mode = "bilinear",
  pad_mode = "reflection",
  align_corners = TRUE,
  batch = FALSE
)
```

Arguments

p probability
draw draw
size size of image
mode mode
pad_mode reflection, zeros, border as string parameter
align_corners align corners ot not
batch batch or not

Value

None

FlipItem FlipItem

Description

Randomly flip with probability 'p'

```
FlipItem(p = 0.5)
```

166 float

Arguments

p probability

Value

None

 $flip_mat$

 $Flip_mat$

Description

Return a random flip matrix

Usage

```
flip_mat(x, p = 0.5, draw = NULL, batch = FALSE)
```

Arguments

x tensor
p probability
draw draw
batch batch

Value

None

float

Tensor to float

Description

Tensor to float

Usage

float(tensor)

Arguments

tensor tensor

Value

tensor

```
{\it floor.} {\it fastai.torch\_core.TensorMask} \\ {\it Floor}
```

Description

Floor

Usage

```
## S3 method for class 'fastai.torch_core.TensorMask'
floor(x)
```

Arguments

x tensor

Value

tensor

floor_ Floor

Description

Floor

Usage

```
## S3 method for class 'torch.Tensor'
floor(x)
```

Arguments

x tensor

Value

tensor

168 floor_mod

floor_div

Floor divide

Description

Floor divide

Usage

```
## S3 method for class 'torch.
Tensor' x %/% y
```

Arguments

x tensor y tensor

Value

tensor

floor_mod

 $Floor\ mod$

Description

Floor mod

Usage

```
## S3 method for class 'torch.
Tensor' x \% y
```

Arguments

x tensor y tensor

Value

tensor

fmodule 169

fmodule

Module

Description

Module

Usage

```
fmodule(...)
```

Arguments

...

parameters to pass

Details

Decorator to create an nn()\$Module using f as forward method

Value

None

FolderDataset

FolderDataset

Description

A PyTorch Dataset class that can be created from a folder 'path' of images, for the sole purpose of inference. Optional 'transforms'

Usage

```
FolderDataset(path, transforms = NULL)
```

Arguments

path path to dir transforms transformations

Details

can be provided. Attributes: 'self.files': A list of the filenames in the folder. 'self.totensor': 'torchvision.transforms.ToTensor' transform. 'self.transform': The transforms passed in as 'transforms' to the constructor.

Value

foreground_acc

Description

Visualizes the SHAP values with an added force layout. Accepts a class_id which is used to indicate the class of interest for a classification model.

Usage

```
force_plot(object, class_id = 0, ...)
```

Arguments

object ShapInterpretation object

class_id Accepts a class_id which is used to indicate the class of interest for a classifica-

tion model. It can either be an int or str representation for a class of choice.

... additional arguments

Value

None

foreground_acc	Foreground accuracy	
----------------	---------------------	--

Description

Computes non-background accuracy for multiclass segmentation

Usage

```
foreground_acc(inp, targ, bkg_idx = 0, axis = 1)
```

Arguments

inp	predictions
targ	targets
bkg_idx	bkg_idx
axis	axis

Value

ForgetMultGPU 171

 ${\tt ForgetMultGPU}$

ForgetMultGPU

Description

Wrapper around the CUDA kernels for the ForgetMult gate.

Usage

```
ForgetMultGPU(...)
```

Arguments

... parameters to pass

Value

None

forget_mult_CPU

 $Forget_mult_CPU$

Description

ForgetMult gate applied to 'x' and 'f' on the CPU.

Usage

```
forget_mult_CPU(x, f, first_h = NULL, batch_first = TRUE, backward = FALSE)
```

Arguments

```
\begin{array}{ccc} x & & x \\ f & & f \end{array}
```

first_h first_h
batch_first batch_first
backward backward

Value

FuncSplitter

freeze

Freeze a model

Description

Freeze a model

Usage

```
freeze(object, ...)
```

Arguments

object

A model

. . .

Additional parameters

Value

None

Examples

```
## Not run:
learnR %>% freeze()
## End(Not run)
```

FuncSplitter

Func Splitter

Description

```
Split 'items' by result of 'func' ('TRUE' for validation, 'FALSE' for training set).
```

Usage

```
FuncSplitter(func)
```

Arguments

func

function

Value

fView 173

fView

View

Description

Reshape x to size

Usage

```
fView(...)
```

Arguments

... parameters to pass

Value

None

GANDiscriminativeLR

GAN Discriminative LR

Description

'Callback' that handles multiplying the learning rate by 'mult_lr' for the critic.

Usage

```
GANDiscriminativeLR(mult_lr = 5)
```

Arguments

mult_lr

mult learning rate

```
GANLearner_from_learners
```

GAN Learner from learners

Description

Create a GAN from 'learn_gen' and 'learn_crit'.

Usage

```
GANLearner_from_learners(
  gen_learn,
  crit_learn,
  switcher = NULL,
  weights_gen = NULL,
  gen_first = FALSE,
  switch_eval = TRUE,
  show_img = TRUE,
  clip = NULL,
  cbs = NULL,
 metrics = NULL,
  loss_func = NULL,
  opt_func = Adam(),
  lr = 0.001,
  splitter = trainable_params(),
  path = NULL,
 model_dir = "models",
  wd = NULL,
 wd_bn_bias = FALSE,
  train_bn = TRUE,
  moms = list(0.95, 0.85, 0.95)
)
```

Arguments

```
gen_learn
                  generator learner
crit_learn
                  discriminator learner
switcher
                  switcher
weights_gen
                  weights generator
gen_first
                  generator first
switch_eval
                  switch evaluation
show_img
                  show image or not
                  clip value
clip
cbs
                  Cbs is one or a list of Callbacks to pass to the Learner.
```

GANLearner_wgan 175

metrics It is an optional list of metrics, that can be either functions or Metrics.

loss_func loss function

opt_func The function used to create the optimizer

1r learning rate

splitter It is a function that takes self.model and returns a list of parameter groups (or

just one parameter group if there are no different parameter groups).

path The folder where to work

model_dir Path and model_dir are used to save and/or load models.

Wd It is the default weight decay used when training the model.

wd_bn_bias It controls if weight decay is applied to BatchNorm layers and bias.

train_bn It controls if BatchNorm layers are trained even when they are supposed to be

frozen according to the splitter.

moms The default momentums used in Learner\$fit_one_cycle.

Value

None

GANLearner_wgan Wgan

Description

Create a WGAN from 'data', 'generator' and 'critic'.

```
GANLearner_wgan(
  dls,
  generator,
  critic,
  switcher = NULL,
  clip = 0.01,
  switch_eval = FALSE,
  gen_first = FALSE,
  show_img = TRUE,
  cbs = NULL,
  metrics = NULL,
  opt_func = Adam(),
  lr = 0.001,
  splitter = trainable_params,
  path = NULL,
  model_dir = "models",
  wd = NULL,
```

GANLearner_wgan

```
wd_bn_bias = FALSE,
  train_bn = TRUE,
  moms = list(0.95, 0.85, 0.95)
)
```

Arguments

dls dataloader
generator generator
critic critic
switcher switcher
clip clip value

switch_eval switch evaluation
gen_first generator first

show_img show image or not

cbs callbacks metrics metrics

opt_func optimization function

lr learning rate splitter splitter

path path

model_dir model directory
wd weight decay

wd_bn_bias weight decay bn bias

train_bn It controls if BatchNorm layers are trained even when they are supposed to be

frozen according to the splitter.

moms momentums

Value

None

Examples

```
## Not run:
learn = GANLearner_wgan(dls, generator, critic, opt_func = partial(Adam(), mom=0.))
## End(Not run)
```

GANLoss 177

GANLoss

GAN Loss

Description

Wrapper around 'crit_loss_func' and 'gen_loss_func'

Usage

```
GANLoss(gen_loss_func, crit_loss_func, gan_model)
```

Arguments

```
gen_loss_func generator loss funcion
crit_loss_func discriminator loss function
gan_model GAN model
```

Value

None

 ${\tt GANModule}$

GAN Module

Description

Wrapper around a 'generator' and a 'critic' to create a GAN.

Usage

```
GANModule(generator = NULL, critic = NULL, gen_mode = FALSE)
```

Arguments

generator generator critic critic

gen_mode generator mode or not

Value

gan_critic

GANTrainer

GAN Trainer

Description

Handles GAN Training.

Usage

```
GANTrainer(
  switch_eval = FALSE,
  clip = NULL,
  beta = 0.98,
  gen_first = FALSE,
  show_img = TRUE
)
```

Arguments

switch_eval switch evaluation

clip clip value

beta beta parameter

gen_first generator first

show_img show image or not

Value

None

gan_critic

Gan critic

Description

Critic to train a 'GAN'.

Usage

```
gan\_critic(n\_channels = 3, nf = 128, n\_blocks = 3, p = 0.15)
```

Arguments

```
n_channels number of channels
nf number of features
n_blocks number of blocks
p probability
```

gan_loss_from_func 179

Value

GAN object

```
gan_loss_from_func
GAN loss from function
```

Description

Define loss functions for a GAN from 'loss_gen' and 'loss_crit'.

Usage

```
gan_loss_from_func(loss_gen, loss_crit, weights_gen = NULL)
```

Arguments

Value

None

GatherPredsCallback GatherPredsCallback

Description

'Callback' that saves the predictions and targets, optionally 'with_loss'

```
GatherPredsCallback(
  with_input = FALSE,
  with_loss = FALSE,
  save_preds = NULL,
  save_targs = NULL,
  concat_dim = 0
)
```

generate_noise

Arguments

with_input include inputs or not
with_loss include loss or not
save_preds save predictions
save_targs save targets/actuals
concat_dim concatenate dimensions

Value

None

gauss_blur2d

 $Gauss_blur2d$

Description

Apply gaussian_blur2d kornia filter

Usage

```
gauss_blur2d(x, s)
```

Arguments

x image s effect

Value

None

generate_noise

Generate noise

Description

Generate noise

```
generate_noise(fn, size = 100)
```

get_annotations 181

Arguments

fn path size the size

Value

None

Examples

```
## Not run:
generate_noise()
## End(Not run)
```

get_annotations

 $Get_annotations$

Description

Open a COCO style json in 'fname' and returns the lists of filenames (with maybe 'prefix') and labelled bboxes.

Usage

```
get_annotations(fname, prefix = NULL)
```

Arguments

fname folder name prefix prefix

Value

182 get_bias

get_audio_files

Get_audio_files

Description

Get audio files in 'path' recursively, only in 'folders', if specified.

Usage

```
get_audio_files(path, recurse = TRUE, folders = NULL)
```

Arguments

path path

recurse recursive or not folders vector, folders

Value

None

get_bias

Get bias

Description

Bias for item or user (based on 'is_item') for all in 'arr'

Usage

```
get_bias(object, arr, is_item = TRUE, convert = TRUE)
```

Arguments

object extract bias
arr R data frame
is_item logical, is item
convert to R matrix

Value

tensor

get_c 183

Examples

```
## Not run:
movie_bias = learn %>% get_bias(top_movies, is_item = TRUE)
## End(Not run)
```

get_c

 Get_c

Description

 Get_c

Usage

get_c(dls)

Arguments

dls

dataloader object

Value

number of layers

Examples

```
## Not run:
get_c(dls)
## End(Not run)
```

184 get_data_loaders

Description

Extract confusion matrix

Usage

```
get_confusion_matrix(object)
```

Arguments

object

model

Value

matrix

Examples

```
## Not run:
model %>% get_confusion_matrix()
## End(Not run)
```

get_data_loaders

Get data loaders

Description

Get data loaders

Usage

```
get_data_loaders(train_batch_size, val_batch_size)
```

Arguments

```
train_batch_size
train dataset batch size
val_batch_size validation dataset batch size
```

get_dcm_matrix 185

Value

None

 ${\tt get_dcm_matrix}$

Get image matrix

Description

Get image matrix

Usage

```
get_dcm_matrix(img, type = "raw", scan = "", size = 50, convert = TRUE)
```

Arguments

img dicom file

type img transformation

scan apply uniform or gaussian blur effects

size size of image

convert to R matrix or keep tensor

Value

tensor

Examples

```
## Not run:
img = dcmread('hemorrhage.dcm')
img %>% get_dcm_matrix(type = 'raw')
## End(Not run)
```

get_dls

get_dicom_files

get_dicom_files

Description

Get dicom files in 'path' recursively, only in 'folders', if specified.

Usage

```
get_dicom_files(path, recurse = TRUE, folders = NULL)
```

Arguments

path path to files
recurse recursive or not
folders folder names

Value

lsit of files

Examples

```
## Not run:
items = get_dicom_files("siim_small/train/")
## End(Not run)
```

get_dls

Get dls

Description

Given image files from two domains ('pathA', 'pathB'), create 'DataLoaders' object.

get_emb_sz 187

Usage

```
get_dls(
  pathA,
  pathB,
  num_A = NULL,
  num_B = NULL,
  load_size = 512,
  crop_size = 256,
  bs = 4,
  num_workers = 2
)
```

Arguments

pathA path A (from domain) pathB path B (to domain) num_A subset of A data subset of B data num_B load_size load size crop_size crop size bathc size bs num_workers number of workers

Details

Loading and randomly cropped sizes of 'load_size' and 'crop_size' are set to defaults of 512 and 256. Batch size is specified by 'bs' (default=4).

Value

None

Description

Get default embedding size from 'TabularPreprocessor' 'proc' or the ones in 'sz_dict'

Usage

```
get_emb_sz(to, sz_dict = NULL)
```

get_files

Arguments

to to

sz_dict dictionary size

Value

None

get_files

Get_files

Description

Get all the files in 'path' with optional 'extensions', optionally with 'recurse', only in 'folders', if specified.

Usage

```
get_files(
  path,
  extensions = NULL,
  recurse = TRUE,
  folders = NULL,
  followlinks = TRUE
)
```

Arguments

path path
extensions extensions
recurse recurse
folders folders
followlinks followlinks

Value

list

get_grid 189

get_grid

 Get_grid

Description

Return a grid of 'n' axes, 'rows' by 'cols'

Usage

```
get_grid(
    n,
    nrows = NULL,
    ncols = NULL,
    add_vert = 0,
    figsize = NULL,
    double = FALSE,
    title = NULL,
    return_fig = FALSE,
    imsize = 3
)
```

Arguments

n n number of rows nrows number of columns ncols add_vert add vertical figsize figure size double double title title return figure or not return_fig imsize image size

Value

190 get_image_files

get_hf_objects

Get_hf_objects

Description

Returns the architecture (str), config (obj), tokenizer (obj), and model (obj) given at minimum a

Usage

```
get_hf_objects(...)
```

Arguments

... parameters to pass

Details

'pre-trained model name or path'. Specify a 'task' to ensure the right "AutoModelFor<task>" is used to create the model. Optionally, you can pass a config (obj), tokenizer (class), and/or model (class) (along with any related kwargs for each) to get as specific as you want w/r/t what huggingface objects are returned.

Value

None

get_image_files

Get image files

Description

Get image files in 'path' recursively, only in 'folders', if specified.

Usage

```
get_image_files(path, recurse = TRUE, folders = NULL)
```

Arguments

path The folder where to work

recurse recursive path folders folder names

Value

get_language_model 191

Examples

```
## Not run:
URLs_PETS()
path = 'oxford-iiit-pet'
path_img = 'oxford-iiit-pet/images'
fnames = get_image_files(path_img)
## End(Not run)
```

 ${\tt get_language_model}$

Get_language_model

Description

Create a language model from 'arch' and its 'config'.

Usage

```
get_language_model(arch, vocab_sz, config = NULL, drop_mult = 1)
```

Arguments

arch arch
vocab_sz vocab_sz
config config
drop_mult drop_mult

Value

model

192 get_text_classifier

get_preds_cyclegan Get_preds_cyclegan

Description

A prediction function that takes the Learner object 'learn' with the trained model, the 'test_path' folder with the images to perform

Usage

```
get_preds_cyclegan(
  learn,
  test_path,
  pred_path,
  bs = 4,
  num_workers = 4,
  suffix = "tif"
)
```

Arguments

learn learner/model
test_path testdat path
pred_path predict data path
bs batch size
num_workers number of workers
suffix suffix

Details

batch inference on, and the output folder 'pred_path' where the predictions will be saved, with a batch size 'bs', 'num_workers', and suffix of the prediction images 'suffix' (default='png').

get_text_classifier Get_text_classifier

Description

Create a text classifier from 'arch' and its 'config', maybe 'pretrained'

get_text_files 193

Usage

```
get_text_classifier(
   arch,
   vocab_sz,
   n_class,
   seq_len = 72,
   config = NULL,
   drop_mult = 1,
   lin_ftrs = NULL,
   ps = NULL,
   pad_idx = 1,
   max_len = 1440,
   y_range = NULL
)
```

Arguments

arch	arch
vocab_sz	vocab_sz
n_class	n_class
seq_len	seq_len
config	config
drop_mult	drop_mult
lin_ftrs	lin_ftrs
ps	ps
pad_idx	pad_idx
max_len	max_len
y_range	y_range

Value

None

```
get_text_files Get_text_files
```

Description

Get text files in 'path' recursively, only in 'folders', if specified.

Usage

```
get_text_files(path, recurse = TRUE, folders = NULL)
```

194 get_weights

Arguments

path path recurse folders folders

Value

None

get_weights

Get weights

Description

Weight for item or user (based on 'is_item') for all in 'arr'

Usage

```
get_weights(object, arr, is_item = TRUE, convert = FALSE)
```

Arguments

object extract weights
arr R data frame
is_item logical, is item
convert to R matrix

Value

tensor

Examples

```
## Not run:
movie_w = learn %>% get_weights(top_movies, is_item = TRUE, convert = TRUE)
## End(Not run)
```

GradientAccumulation 195

GradientAccumulation GradientAccumulation

Description

Accumulate gradients before updating weights

Usage

```
GradientAccumulation(n_acc = 32)
```

Arguments

n_acc

number of acc

Value

None

GrandparentSplitter

GrandparentSplitter

Description

Split 'items' from the grand parent folder names ('train_name' and 'valid_name').

Usage

```
GrandparentSplitter(train_name = "train", valid_name = "valid")
```

Arguments

train_name train folder name

valid_name validation folder name

Value

196 greater

grayscale

Grayscale

Description

Tensor to grayscale tensor. Uses the ITU-R 601-2 luma transform.

Usage

```
grayscale(x)
```

Arguments

Χ

tensor

Value

None

greater

Greater

Description

Greater

Usage

```
## S3 method for class 'torch.
Tensor' a > b
```

Arguments

a tensorb tensor

Value

tensor

greater_or_equal 197

greater_or_equal

Greater or equal

Description

Greater or equal

Usage

```
## S3 method for class 'torch.Tensor'
a >= b
```

Arguments

a tensor b tensor

Value

tensor

HammingLoss

HammingLoss

Description

Hamming loss for single-label classification problems Hamming loss for single-label classification problems

Usage

```
HammingLoss(axis = -1, sample_weight = NULL)
HammingLoss(axis = -1, sample_weight = NULL)
```

Arguments

```
axis axis
sample_weight sample_weight
```

Value

Loss object

has_params

 ${\it HammingLossMulti}$

Hamming Loss Multi

Description

Hamming loss for multi-label classification problems

Usage

```
HammingLossMulti(
  thresh = 0.5,
  sigmoid = TRUE,
  labels = NULL,
  sample_weight = NULL)
```

Arguments

thresh threshold sigmoid sigmoid labels labels

sample_weight sample_weight

Value

Loss object

has_params

Has_params

Description

Check if 'm' has at least one parameter

Usage

```
has_params(m)
```

Arguments

m

m parameter

Value

has_pool_type 199

has_pool_type

Has_pool_type

Description

Return 'TRUE' if 'm' is a pooling layer or has one in its children

Usage

has_pool_type(m)

Arguments

m

parameters

Value

None

helper

 $BLURR_MODEL_HELPER$

Description

BLURR_MODEL_HELPER

Usage

helper()

Value

None

HF_ARCHITECTURES

HF_ARCHITECTURES

Description

An enumeration.

Usage

HF_ARCHITECTURES()

Value

HF_BaseInput

HF_BaseInput

Description

A HF_BaseInput object is returned from the decodes method of HF_BatchTransform as a mean to customize '@typedispatched' functions like DataLoaders.show_batch and Learner.show_results. It represents the "input_ids" of a huggingface sequence as a tensor with a show method that requires a huggingface tokenizer for proper display.

Usage

```
HF_BaseInput(...)
```

Arguments

parameters to pass

Value

None

 $HF_BaseModelCallback$ $HF_BaseModelCallback$

Description

```
HF_BaseModelCallback
```

Usage

```
HF_BaseModelCallback(...)
```

Arguments

parameters to pass

Value

```
HF_BaseModelWrapper
HF_BaseModelWrapper
```

Description

Same as 'nn.Module', but no need for subclasses to call 'super().__init__'

Usage

```
HF_BaseModelWrapper(
  hf_model,
  output_hidden_states = FALSE,
  output_attentions = FALSE,
  ...
)
```

Arguments

```
hf_model model
output_hidden_states
output hidden states
output_attentions
output attentions
... additional arguments to pass
```

Value

None

```
{\it HF\_BeforeBatchTransform}
```

 $HF_BeforeBatchTransform$

Description

Handles everything you need to assemble a mini-batch of inputs and targets, as well as decode the dictionary produced as a byproduct of the tokenization process in the 'encodes' method.

Usage

```
HF_BeforeBatchTransform(
  hf_arch,
  hf_tokenizer,
  max_length = NULL,
  padding = TRUE,
  truncation = TRUE,
  is_split_into_words = FALSE,
  n_tok_inps = 1,
  ...
)
```

Arguments

```
hf_arch
                 architecture
hf_tokenizer
                 tokenizer
                 maximum length
max_length
padding
                 padding or not
truncation
                 truncation or not
is\_split\_into\_words
                 to split into words
                 number tok inputs
n_tok_inps
                  additional arguments
. . .
```

Value

None

```
\label{lem:hf_causallmbefore} HF\_CausalLMBeforeBatchTransform \\ HF\_CausalLMBeforeBatchTransform
```

Description

Handles everything you need to assemble a mini-batch of inputs and targets, as well as decode the dictionary produced

Usage

```
HF_CausalLMBeforeBatchTransform(
  hf_arch,
  hf_tokenizer,
  max_length = NULL,
  padding = TRUE,
  truncation = TRUE,
```

HF_load_dataset 203

```
is_split_into_words = FALSE,
n_tok_inps = 1,
ignore_token_id = -100,
...
)
```

Arguments

```
hf_arch
                  architecture
hf_tokenizer
                 tokenizer
max_length
                 maximum length
padding
                 padding or not
                 truncation or not
truncation
is\_split\_into\_words
                 to split into words
n_tok_inps
                 number tok inputs
ignore_token_id
                 ignore token id
                  additional arguments
. . .
```

Details

as a byproduct of the tokenization process in the 'encodes' method.

Value

None

HF_load_dataset

Load_dataset

Description

Load a dataset

Usage

```
HF_load_dataset(
  path,
  name = NULL,
  data_dir = NULL,
  data_files = NULL,
  split = NULL,
  cache_dir = NULL,
  features = NULL,
  download_config = NULL,
```

204 HF_load_dataset

```
download_mode = NULL,
ignore_verifications = FALSE,
save_infos = FALSE,
script_version = NULL,
...
)
```

Arguments

path path name name data_dir dataset dir dataset files data_files split split cache_dir cache directory features features download_config download configuration download_mode download mode ignore_verifications ignore verifications or not save_infos save information or not script_version script version additional arguments

Details

This method does the following under the hood: 1. Download and import in the library the dataset loading script from "path" if it's not already cached inside the library. Processing scripts are small python scripts that define the citation, info and format of the dataset, contain the URL to the original data files and the code to load examples from the original data files. You can find some of the scripts here: https://github.com/huggingface/datasets/datasets and easily upload yours to share them using the CLI "datasets-cli". 2. Run the dataset loading script which will: * Download the dataset file from the original URL (see the script) if it's not already downloaded and cached. * Process and cache the dataset in typed Arrow tables for caching. Arrow table are arbitrarily long, typed tables which can store nested objects and be mapped to numpy/pandas/python standard types. They can be directly access from drive, loaded in RAM or even streamed over the web. 3. Return a dataset build from the requested splits in "split" (default: all).

Value

data frame

```
HF\_QABatchTransform HF\_QABatchTransform
```

Description

Handles everything you need to assemble a mini-batch of inputs and targets, as well as decode the dictionary produced

Usage

```
HF_QABatchTransform(
   hf_arch,
   hf_tokenizer,
   max_length = NULL,
   padding = TRUE,
   truncation = TRUE,
   is_split_into_words = FALSE,
   n_tok_inps = 1,
   hf_input_return_type = HF_QuestionAnswerInput(),
   ...
)
```

Arguments

```
hf_arch
                  architecture
hf_tokenizer
                  tokenizer
{\tt max\_length}
                  maximum length
padding
                  padding
truncation
                  truncation
is\_split\_into\_words
                  to split into words or not
                  number of tok inputs
n_tok_inps
hf_input_return_type
                  input return type
                  additional arguments
```

Details

as a byproduct of the tokenization process in the 'encodes' method.

Value

```
HF_QABeforeBatchTransform
```

HF_QABeforeBatchTransform

Description

Handles everything you need to assemble a mini-batch of inputs and targets, as well as decode the dictionary produced

Usage

```
HF_QABeforeBatchTransform(
   hf_arch,
   hf_tokenizer,
   max_length = NULL,
   padding = TRUE,
   truncation = TRUE,
   is_split_into_words = FALSE,
   n_tok_inps = 1,
   ...
)
```

Arguments

Details

as a byproduct of the tokenization process in the 'encodes' method.

Value

 ${\it HF_QstAndAnsModelCallback}$

 $HF_QstAndAnsModelCallback$

Description

 $HF_QstAndAnsModelCallback$

Usage

```
HF_QstAndAnsModelCallback(...)
```

Arguments

... parameters to pass

Value

None

HF_QuestionAnswerInput

 $HF_QuestionAnswerInput$

Description

HF_QuestionAnswerInput

Usage

```
HF_QuestionAnswerInput(...)
```

Arguments

parameters to apss

Value

hf_splitter

Hf_splitter

Description

Splits the huggingface model based on various model architecture conventions

Usage

```
hf_splitter(m)
```

Arguments

m

parameters

Value

None

HF_SummarizationBeforeBatchTransform

 $HF_SummarizationBeforeBatchTransform$

Description

Handles everything you need to assemble a mini-batch of inputs and targets, as well as decode the dictionary produced as a byproduct of the tokenization process in the 'encodes' method.

Usage

```
HF_SummarizationBeforeBatchTransform(
    hf_arch,
    hf_tokenizer,
    max_length = NULL,
    padding = TRUE,
    truncation = TRUE,
    is_split_into_words = FALSE,
    n_tok_inps = 2,
    ignore_token_id = -100,
    ...
)
```

Arguments

hf_arch architecture

hf_tokenizer tokenizer

max_length maximum length
padding padding or not

truncation truncation or not

is_split_into_words

to split into words

n_tok_inps number tok inputs

ignore_token_id

ignore token id

... additional arguments

Value

None

 ${\tt HF_SummarizationInput} \ \ \mathit{HF_SummarizationInput}$

Description

 $HF_SummarizationInput$

Usage

HF_SummarizationInput()

Value

210 HF_TASKS_ALL

```
HF\_Summarization Model Callback
```

 $HF_SummarizationModelCallback$

Description

Basic class handling tweaks of the training loop by changing a 'Learner' in various events

Usage

```
HF_SummarizationModelCallback(
  rouge_metrics = c("rouge1", "rouge2", "rougeL"),
  ignore_token_id = -100,
  ...
)
```

Arguments

```
rouge_metrics rouge metrics
ignore_token_id
integer, ignore token id
... additional arguments
```

Value

None

HF_TASKS_ALL

 HF_TASKS_ALL

Description

An enumeration.

Usage

```
HF_TASKS_ALL()
```

Value

HF_TASKS_AUTO 211

HF_TASKS_AUTO

HF_TASKS_AUTO

Description

An enumeration.

Usage

```
HF_TASKS_AUTO()
```

Value

None

```
HF\_Text2TextAfterBatchTransform
```

 $HF_Text2TextAfterBatchTransform$

Description

```
Delegates \ (`\_call\_\_`, `decode`, `setup`) \ to \ (<code>encodes</code>, <code>decodes</code>, <code>setups</code>) \ if `split\_idx` matches
```

Usage

```
HF_Text2TextAfterBatchTransform(
  hf_tokenizer,
  input_return_type = HF_BaseInput()
)
```

Arguments

```
hf_tokenizer tokenizer
input_return_type
input return type
```

Value

212 HF_TextBlock

HF_Text2TextBlock

HF_Text2TextBlock

Description

A basic wrapper that links defaults transforms for the data block API

Usage

```
HF_Text2TextBlock(...)
```

Arguments

... parameters to pass

Value

None

HF_TextBlock

HF_TextBlock

Description

A basic wrapper that links defaults transforms for the data block API

Usage

```
HF_TextBlock(...)
```

Arguments

arguments to pass

Value

HF_TokenCategorize 213

```
HF_TokenCategorize
HF_TokenCategorize
```

Description

Reversible transform of a list of category string to 'vocab' id

Usage

```
HF_TokenCategorize(vocab = NULL, ignore_token = NULL, ignore_token_id = NULL)
```

Arguments

```
vocab vocabulary
ignore_token ignore token
ignore_token_id ignore token id
```

Value

None

```
{\it HF\_TokenCategoryBlock} \ \ {\it HF\_TokenCategoryBlock}
```

Description

'TransformBlock' for single-label categorical targets

Usage

```
HF_TokenCategoryBlock(
  vocab = NULL,
  ignore_token = NULL,
  ignore_token_id = NULL)
```

Arguments

```
vocab vocabulary
ignore_token ignore token
ignore_token_id
ignore token id
```

Value

```
\label{eq:hf_TokenClassBeforeBatchTransform} HF\_TokenClassBeforeBatchTransform
```

Description

Handles everything you need to assemble a mini-batch of inputs and targets, as well as decode the dictionary produced

Usage

```
HF_TokenClassBeforeBatchTransform(
   hf_arch,
   hf_tokenizer,
   ignore_token_id = -100,
   max_length = NULL,
   padding = TRUE,
   truncation = TRUE,
   is_split_into_words = TRUE,
   n_tok_inps = 1,
   ...
)
```

Arguments

```
hf_arch
                 architecture
                 tokenizer
hf_tokenizer
ignore_token_id
                 ignore token id
max_length
                 maximum length
padding
                 padding or not
truncation
                 truncation or not
is_split_into_words
                 to split into_words
                 number tok inputs
n_tok_inps
                 additional arguments
```

Details

as a byproduct of the tokenization process in the 'encodes' method.

Value

HF_TokenClassInput 215

HF_TokenClassInput HF_TokenClassInput Description HF_TokenClassInput Usage HF_TokenClassInput() Value None ${\it HF_TokenTensorCategory}$ HF_TokenTensorCategory Description HF_TokenTensorCategory Usage HF_TokenTensorCategory() Value None

Description

Hook

Create a hook on 'm' with 'hook_func'.

Hook

216 HookCallback

Usage

```
Hook(
   m,
   hook_func,
   is_forward = TRUE,
   detach = TRUE,
   cpu = FALSE,
   gather = FALSE
)
```

Arguments

m m aprameter
hook_func hook function
is_forward is_forward or not
detach detach or not
cpu cpu or not
gather gather or not

Details

Hooks are functions you can attach to a particular layer in your model and that will be executed in the forward pass (for forward hooks) or backward pass (for backward hooks).

Value

None

HookCallback

HookCallback

Description

'Callback' that can be used to register hooks on 'modules'

'Callback' that can be used to register hooks on 'modules'

Usage

```
HookCallback(
  modules = NULL,
  every = NULL,
  remove_end = TRUE,
  is_forward = TRUE,
  detach = TRUE,
  cpu = TRUE
```

Hooks 217

```
HookCallback(
modules = NULL,
every = NULL,
remove_end = TRUE,
is_forward = TRUE,
detach = TRUE,
cpu = TRUE
)
```

Arguments

modules modules every every

remove_end remove_end or not is_forward is_forward or not detach or not cpu cpu or not

Value

None

None

Hooks Hooks

Description

Create several hooks on the modules in 'ms' with 'hook_func'.

Usage

```
Hooks(ms, hook_func, is_forward = TRUE, detach = TRUE, cpu = FALSE)
```

Arguments

ms ms parameter
hook_func hook function
is_forward is_forward or not
detach detach or not
cpu cpu or not

Value

218 hook_outputs

hook_output Hook_output

Description

Return a 'Hook' that stores activations of 'module' in 'self\$stored'

Usage

```
hook_output(module, detach = TRUE, cpu = FALSE, grad = FALSE)
```

Arguments

module module

detach detach or not

cpu cpu or not

grad grad or not

Value

None

hook_outputs Hook_outputs

Description

Return 'Hooks' that store activations of all 'modules' in 'self.stored'

Usage

```
hook_outputs(modules, detach = TRUE, cpu = FALSE, grad = FALSE)
```

Arguments

modules modules

detach detach or not

cpu cpu or not

grad grad or not

Value

hsv2rgb

hsv2rgb

Hsv2rgb

Description

Converts a HSV image to an RGB image.

Usage

hsv2rgb(img)

Arguments

img

image object

Value

None

Hue

Ние

Description

Apply change in hue of 'max_hue' to batch of images with probability 'p'.

Usage

```
Hue(max_hue = 0.1, p = 0.75, draw = NULL, batch = FALSE)
```

Arguments

max_hue maximum hue
p probability
draw draw
batch batch

Value

220 icevision_Adapter

hug

Transformer module

Description

Transformer module

Usage

hug()

Value

None

icevision

Icevision module

Description

Icevision module

Usage

icevision()

Value

None

icevision_Adapter

Adapter

Description

Adapter that enables the use of albumentations transforms.

Usage

```
icevision_Adapter(tfms)
```

Arguments

tfms

'Sequence' of albumentation transforms.

Value

icevision_aug_tfms 221

Description

Collection of useful augmentation transforms.

Usage

```
icevision_aug_tfms(
  size,
  presize = NULL,
  horizontal_flip = icevision_HorizontalFlip(always_apply = FALSE, p = 0.5),
 shift_scale_rotate = icevision_ShiftScaleRotate(always_apply = FALSE, p = 0.5,
  shift_limit_x = c(-0.0625, 0.0625), shift_limit_y = c(-0.0625, 0.0625), scale_limit =
  c(-0.1, 0.1), rotate_limit = c(-45, 45), interpolation = 1, border_mode = 4, value =
    NULL, mask_value = NULL),
 rgb_shift = icevision_RGBShift(always_apply = FALSE, p = 0.5, r_shift_limit = c(-20,
    20), g_shift_limit = c(-20, 20), b_shift_limit = c(-20, 20)),
  lightning = icevision_RandomBrightnessContrast(always_apply = FALSE, p = 0.5,
  brightness_limit = c(-0.2, 0.2), contrast_limit = c(-0.2, 0.2), brightness_by_max =
 blur = icevision_Blur(always_apply = FALSE, p = 0.5, blur_limit = c(1, 3)),
 crop_fn = partial(icevision_RandomSizedBBoxSafeCrop, p = 0.5),
 pad = partial(icevision_PadIfNeeded, border_mode = 0, value = list(124, 116, 104))
)
```

Arguments

size The final size of the image. If an 'int' is given, the maximum size of the image

is rescaled, maintaing aspect ratio. If a 'list' is given, the image is rescaled to

have that exact size (height, width).

presize presize

 $horizontal_flip$

Flip around the y-axis. If 'NULL' this transform is not applied.

shift_scale_rotate

Randomly shift, scale, and rotate. If 'NULL' this transform is not applied.

rgb_shift Randomly shift values for each channel of RGB image. If 'NULL' this trans-

form is not applied.

lightning Randomly changes Brightness and Contrast. If 'NULL' this transform is not

applied.

blur Randomly blur the image. If 'NULL' this transform is not applied.

crop_fn Randomly crop the image. If 'NULL' this transform is not applied. Use 'partial'

to saturate other parameters of the class.

pad Pad the image to 'size', squaring the image if 'size' is an 'int'. If 'NULL' this

transform is not applied. Use 'partial' to sature other parameters of the class.

Value

None

```
{\tt icevision\_BasicIAATransform}
```

 ${\it Basic IAAT rans form}$

Description

BasicIAATransform

Usage

```
icevision_BasicIAATransform(always_apply = FALSE, p = 0.5)
```

Arguments

Value

None

```
{\tt icevision\_BasicTransform}
```

Basic Transform

Description

BasicTransform

Usage

```
icevision_BasicTransform(always_apply = FALSE, p = 0.5)
```

Arguments

```
\begin{array}{ll} {\tt always\_apply} & {\tt always\_apply} \\ {\tt p} & {\tt p} \end{array}
```

Value

icevision_Blur 223

 $icevision_Blur$

Blur

Description

Blur the input image using a random-sized kernel.

Usage

```
icevision_Blur(blur_limit = 7, always_apply = FALSE, p = 0.5)
```

Arguments

```
blur_limit blur_limit
always_apply
p p
```

Value

None

Targets

image

Image types

uint8, float32

icevision_ChannelDropout

Channel Dropout

Description

Randomly Drop Channels in the input Image.

Usage

```
icevision_ChannelDropout(
  channel_drop_range = list(1, 1),
  fill_value = 0,
  always_apply = FALSE,
  p = 0.5
)
```

Arguments

```
channel_drop_range
```

channel_drop_range

fill_value fill_value always_apply

p p

Targets

image

Image types

uint8, uint16, unit32, float32

icevision_ChannelShuffle

Channel Shuffle

Description

Randomly rearrange channels of the input RGB image.

Usage

```
icevision_ChannelShuffle(always_apply = FALSE, p = 0.5)
```

Arguments

```
always_apply
p p
```

Value

None

Targets

image

Image types

uint8, float32

icevision_CLAHE 225

icevision_CLAHE

CLAHE

Description

Apply Contrast Limited Adaptive Histogram Equalization to the input image.

Usage

```
icevision_CLAHE(
  clip_limit = 4,
  tile_grid_size = list(8, 8),
  always_apply = FALSE,
  p = 0.5
)
```

Arguments

```
clip_limit clip_limit
tile_grid_size tile_grid_size
always_apply
p p
```

Value

None

Targets

image

Image types

uint8

 $icevision_ClassMap$

ClassMap

Description

Utility class for mapping between class name and id.

Usage

```
icevision_ClassMap(classes, background = 0)
```

Arguments

classes classes background background

Value

Python dictionary

```
{\tt icevision\_CoarseDropout}
```

CoarseDropout

Description

CoarseDropout of the rectangular regions in the image.

Usage

```
icevision_CoarseDropout(
  max_holes = 8,
  max_height = 8,
  max_width = 8,
  min_holes = NULL,
  min_height = NULL,
  min_width = NULL,
  fill_value = 0,
  mask_fill_value = NULL,
  always_apply = FALSE,
  p = 0.5
)
```

Arguments

```
max_holes
                max_holes
max_height
                max_height
max_width
                max_width
min_holes
                min_holes
min_height
                min_height
min_width
                min_width
fill_value
                fill_value
mask_fill_value
                mask_fill_value
always_apply
                always_apply
                p
```

icevision_ColorJitter 227

Value

None

Targets

image, mask

Image types

uint8, float32

Reference

| https://arxiv.org/abs/1708.04552 | https://github.com/uoguelph-mlrg/Cutout/blob/master/util/cutout.py | https://github.com/aleju/imgaug/blob/master/imgaug/augmenters/arithmetic.py

```
icevision_ColorJitter ColorJitter
```

Description

Randomly changes the brightness, contrast, and saturation of an image. Compared to ColorJitter from torchvision,

Usage

```
icevision_ColorJitter(
  brightness = 0.2,
  contrast = 0.2,
  saturation = 0.2,
  hue = 0.2,
  always_apply = FALSE,
  p = 0.5
)
```

Arguments

```
brightness brightness
contrast contrast
saturation saturation
hue hue
always_apply always_apply
p p
```

228 icevision_Compose

Details

this transform gives a little bit different results because Pillow (used in torchvision) and OpenCV (used in Albumentations) transform an image to HSV format by different formulas. Another difference - Pillow uses uint8 overflow, but we use value saturation.

Value

None

icevision_Compose

Compose

Description

Compose transforms and handle all transformations regrading bounding boxes

Usage

```
icevision_Compose(
  transforms,
  bbox_params = NULL,
  keypoint_params = NULL,
  additional_targets = NULL,
  p = 1
)
```

Arguments

```
transforms transforms
bbox_params bbox_params
keypoint_params
keypoint_params
additional_targets
additional_targets
p
```

Value

icevision_Crop 229

icevision_Crop Crop

Description

Crop region from image.

Usage

```
icevision_Crop(
   x_min = 0,
   y_min = 0,
   x_max = 1024,
   y_max = 1024,
   always_apply = FALSE,
   p = 1
)
```

Arguments

```
        x_min
        x_min

        y_min
        y_min

        x_max
        x_max

        y_max
        y_max

        always_apply
        always_apply

        p
        p
```

Targets

image, mask, bboxes, keypoints

Image types

uint8, float32

```
{\it CropNonEmptyMaskIfExists} \\ {\it CropNonEmptyMaskIfExists}
```

Description

Crop area with mask if mask is non-empty, else make random crop.

230 icevision_Cutout

Usage

```
icevision_CropNonEmptyMaskIfExists(
  height,
  width,
  ignore_values = NULL,
  ignore_channels = NULL,
  always_apply = FALSE,
  p = 1
)
```

Arguments

```
height height
width width
ignore_values ignore_values
ignore_channels
ignore_channels
always_apply always_apply
p
```

Value

None

Targets

image, mask, bboxes, keypoints

Image types

uint8, float32

icevision_Cutout Cutout

Description

CoarseDropout of the square regions in the image.

icevision_Dataset 231

Usage

```
icevision_Cutout(
  num_holes = 8,
  max_h_size = 8,
  max_w_size = 8,
  fill_value = 0,
  always_apply = FALSE,
  p = 0.5
)
```

Arguments

```
num_holes
max_h_size
max_h_size
max_w_size
fill_value
always_apply
p
num_holes
max_h_size
max_w_size
fill_value
fill_value
always_apply
p
```

Value

None

Targets

image

Image types

uint8, float32

Reference

icevision_Dataset Dataset

Description

Container for a list of records and transforms.

Usage

```
icevision_Dataset(records, tfm = NULL)
```

Arguments

records A list of records.

tfm Transforms to be applied to each item.

Details

Steps each time an item is requested (normally via directly indexing the 'Dataset'): Grab a record from the internal list of records. Prepare the record (open the image, open the mask, add metadata). Apply transforms to the record.

Value

None

```
{\tt icevision\_Dataset\_from\_images}
```

Icevision Dataset from images

Description

Creates a 'Dataset' from a list of images.

Usage

```
icevision_Dataset_from_images(images, tfm = NULL, ...)
```

Arguments

images 'Sequence' of images in memory (numpy arrays).

tfm Transforms to be applied to each item.

... additional arguments

Value

icevision_Downscale 233

Description

Decreases image quality by downscaling and upscaling back.

Usage

```
icevision_Downscale(
  scale_min = 0.25,
  scale_max = 0.25,
  interpolation = 0,
  always_apply = FALSE,
  p = 0.5
)
```

Arguments

```
scale_min scale_min
scale_max scale_max
interpolation cv2 interpolation method. cv2.INTER_NEAREST by default
always_apply always_apply
p p
```

Value

None

Targets

image

Image types

uint8, float32

icevision_DualIAATransform

DualIAATransform

Description

Transform for segmentation task.

Usage

234

```
icevision_DualIAATransform(always_apply = FALSE, p = 0.5)
```

Arguments

```
always_apply
p p
```

Value

None

 ${\tt icevision_DualTransform}$

Dual Transform

Description

Transform for segmentation task.

Usage

```
icevision_DualTransform(always_apply = FALSE, p = 0.5)
```

Arguments

Value

```
icevision\_ElasticTransform \\ {\it ElasticTransform}
```

Description

Elastic deformation of images as described in [Simard2003]_ (with modifications).

Usage

```
icevision_ElasticTransform(
  alpha = 1,
  sigma = 50,
  alpha_affine = 50,
  interpolation = 1,
  border_mode = 4,
  value = NULL,
  mask_value = NULL,
  always_apply = FALSE,
  approximate = FALSE,
  p = 0.5
)
```

Arguments

```
alpha
                 alpha
sigma
                 sigma
alpha_affine
                 alpha_affine
interpolation
                interpolation
border_mode
                border_mode
value
                 value
mask_value
                 mask_value
always_apply
                 always_apply
approximate
                approximate
р
                 p
```

Details

Based on https://gist.github.com/erniejunior/601cdf56d2b424757de5 .. [Simard2003] Simard, Steinkraus and Platt, "Best Practices for Convolutional Neural Networks applied to Visual Document Analysis", in Proc. of the International Conference on Document Analysis and Recognition, 2003.

Value

236 icevision_Equalize

Targets

image, mask

Image types

uint8, float32

Description

Equalize the image histogram.

Usage

```
icevision_Equalize(mode = "cv", by_channels = TRUE, mask = NULL, ...)
```

Arguments

mode mode

by_channels by_channels

mask mask

... additional arguments

Value

None

Targets

image

Image types

uint8

icevision_FancyPCA 237

icevision_FancyPCA

FancyPCA

Description

Augment RGB image using FancyPCA from Krizhevsky's paper

Usage

```
icevision_FancyPCA(alpha = 0.1, always_apply = FALSE, p = 0.5)
```

Arguments

```
alpha alpha
always_apply
p p
```

Details

"ImageNet Classification with Deep Convolutional Neural Networks"

Value

None

Targets

image

Image types

3-channel uint8 images only

Credit

 $http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf https://deshanadesai.github.io/notes/Fancy-PCA-with-Scikit-Image https://pixelatedbrian.github.io/2018-04-29-fancy_pca/ \\$

238 icevision_FDA

icevision_FDA FDA

Description

Fourier Domain Adaptation from https://github.com/YanchaoYang/FDA

Usage

```
icevision_FDA(
  reference_images,
  beta_limit = 0.1,
  read_fn = icevision_read_rgb_image(),
  always_apply = FALSE,
  p = 0.5
)
```

Arguments

```
reference_images
reference_images
beta_limit beta_limit
read_fn read_fn
always_apply always_apply
p
```

Details

Simple "style transfer".

Value

None

Fourier Domain Adaptation from https

//github.com/YanchaoYang/FDA: Simple "style transfer".

Targets

image

Image types

uint8, float32

Reference

https://github.com/YanchaoYang/FDA https://openaccess.thecvf.com/content_CVPR_2020/papers/Yang_FDA_Fourier_Dor

Example

```
»> import numpy as np »> import albumentations as A »> image = np.random.randint(0, 256, [100, 100, 3], dtype=np.uint8) »> target_image = np.random.randint(0, 256, [100, 100, 3], dtype=np.uint8) »> aug = A.Compose([A.FDA([target_image], p=1, read_fn=lambda x: x)]) »> result = aug(image=image)
```

```
icevision_FixedSplitter
```

FixedSplitter

Description

Split 'ids' based on predefined splits.

Usage

```
icevision_FixedSplitter(splits)
```

Arguments

splits

The predefined splits.

Value

None

```
icevision_Flip Flip
```

Description

Flip the input either horizontally, vertically or both horizontally and vertically.

Usage

```
icevision_Flip(always_apply = FALSE, p = 0.5)
```

Arguments

```
always_apply always_apply
```

240 icevision_FromFloat

Value

None

Targets

```
image, mask, bboxes, keypoints
```

Image types

uint8, float32

```
icevision_FromFloat FromFloat
```

Description

Take an input array where all values should lie in the range [0, 1.0], multiply them by 'max_value' and then

Usage

```
icevision_FromFloat(
  dtype = "uint16",
  max_value = NULL,
  always_apply = FALSE,
  p = 1
)
```

Arguments

```
dtype dtype max_value max_value always_apply p p
```

Details

cast the resulted value to a type specified by 'dtype'. If 'max_value' is NULL the transform will try to infer the maximum value for the data type from the 'dtype' argument. This is the inverse transform for :class:'~albumentations.augmentations.transforms.ToFloat'.

Value

None

Targets

image

icevision_GaussianBlur

241

Image types

float32

```
icevision\_Gaussian Blur
```

GaussianBlur

Description

Blur the input image using a Gaussian filter with a random kernel size.

Usage

```
icevision_GaussianBlur(
  blur_limit = list(3, 7),
  sigma_limit = 0,
  always_apply = FALSE,
  p = 0.5
)
```

Arguments

```
blur_limit blur_limit
sigma_limit sigma_limit
always_apply always_apply
p p
```

Value

None

Targets

image

Image types

uint8, float32

242 icevision_GlassBlur

Description

Apply gaussian noise to the input image.

Usage

```
icevision_GaussNoise(
  var_limit = list(10, 50),
  mean = 0,
  always_apply = FALSE,
  p = 0.5
)
```

Arguments

```
var_limit var_limit
mean mean
always_apply always_apply
p p
```

Value

None

Targets

image

Image types

uint8, float32

```
icevision_GlassBlur GlassBlur
```

Description

Apply glass noise to the input image.

Usage

```
icevision_GlassBlur(
   sigma = 0.7,
   max_delta = 4,
   iterations = 2,
   always_apply = FALSE,
   mode = "fast",
   p = 0.5
)
```

Arguments

```
sigma sigma
max_delta max_delta
iterations iterations
always_apply always_apply
mode mode
p p
```

Value

None

Targets

image

Image types

uint8, float32

Reference

```
icevision_GridDistortion
```

GridDistortion

Description

Args:

Usage

```
icevision_GridDistortion(
  num_steps = 5,
  distort_limit = 0.3,
  interpolation = 1,
  border_mode = 4,
  value = NULL,
  mask_value = NULL,
  always_apply = FALSE,
  p = 0.5
)
```

Arguments

```
num_steps
                 num_steps
distort_limit
                 distort_limit
interpolation
                 interpolation
border_mode
                 border_mode
value
                 value
mask_value
                 mask_value
always_apply
                 always_apply
р
                 p
```

Details

num_steps (int): count of grid cells on each side. distort_limit (float, (float, float)): If distort_limit is a single float, the range will be (-distort_limit, distort_limit). Default: (-0.03, 0.03). interpolation (OpenCV flag): flag that is used to specify the interpolation algorithm. Should be one of: cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4. Default: cv2.INTER_LINEAR. border_mode (OpenCV flag): flag that is used to specify the pixel extrapolation method. Should be one of: cv2.BORDER_CONSTANT, cv2.BORDER_REPLICATE, cv2.BORDER_REFLECT, cv2.BORDER_WRAP, cv2.BORDER_REFLECT_101. Default: cv2.BORDER_REFLECT_101 value (int, float, list of ints, list of float): padding value if border_mode is cv2.BORDER_CONSTANT. mask_value (int, float, list of ints, list of float): padding value if border_mode is cv2.BORDER_CONSTANT applied for masks. Targets: image, mask Image types: uint8, float32

Value

None

Targets

image, mask

Image types

uint8, float32

 $icevision_GridDropout$ GridDropout

Description

GridDropout, drops out rectangular regions of an image and the corresponding mask in a grid fashion.

Usage

```
icevision_GridDropout(
  ratio = 0.5,
  unit_size_min = NULL,
  unit_size_max = NULL,
  holes_number_x = NULL,
  holes_number_y = NULL,
  shift_x = 0,
  shift_y = 0,
  random_offset = FALSE,
  fill_value = 0,
  mask_fill_value = NULL,
  always_apply = FALSE,
  p = 0.5
)
```

Arguments

```
ratio
                ratio
unit_size_min
                unit_size_min
unit_size_max
                unit_size_max
holes_number_x holes_number_x
holes_number_y holes_number_y
shift_x
                shift_x
shift_y
                shift_y
random_offset
                random_offset
fill_value
                fill_value
mask_fill_value
                mask_fill_value
always_apply
                always_apply
```

Value

Targets

image, mask

Image types

uint8, float32

References

https://arxiv.org/abs/2001.04086

Description

Apply histogram matching. It manipulates the pixels of an input image so that its histogram matches

Usage

```
icevision_HistogramMatching(
  reference_images,
  blend_ratio = list(0.5, 1),
  read_fn = icevision_read_rgb_image(),
  always_apply = FALSE,
  p = 0.5
)
```

Arguments

```
reference_images
reference_images
blend_ratio blend_ratio
read_fn read_fn
always_apply always_apply
p
```

Details

the histogram of the reference image. If the images have multiple channels, the matching is done independently for each channel, as long as the number of channels is equal in the input image and the reference. Histogram matching can be used as a lightweight normalisation for image processing, such as feature matching, especially in circumstances where the images have been taken from different sources or in different conditions (i.e. lighting). See: https://scikitimage.org/docs/dev/auto_examples/color_exposure/plot_histogram_matching.html

Value

None

See

https://scikit-image.org/docs/dev/auto_examples/color_exposure/plot_histogram_matching.html

Targets

image

Image types

uint8, uint16, float32

```
icevision_HorizontalFlip
```

Horizontal Flip

Description

Flip the input horizontally around the y-axis.

Usage

```
icevision_HorizontalFlip(always_apply = FALSE, p = 0.5)
```

Arguments

Value

None

Targets

image, mask, bboxes, keypoints

Image types

uint8, float32

```
icevision_HueSaturationValue
```

HueSaturationValue

Description

Randomly change hue, saturation and value of the input image.

Usage

```
icevision_HueSaturationValue(
  hue_shift_limit = 20,
  sat_shift_limit = 30,
  val_shift_limit = 20,
  always_apply = FALSE,
  p = 0.5
)
```

Arguments

Value

None

Targets

image

Image types

uint8, float32

```
icevision\_IAAAdditive Gaussian Noise\\IAAAdditive Gaussian Noise
```

Description

Add gaussian noise to the input image.

Usage

```
icevision_IAAAdditiveGaussianNoise(
  loc = 0,
  scale = list(2.55, 12.75),
  per_channel = FALSE,
  always_apply = FALSE,
  p = 0.5
)
```

Arguments

```
loc loc scale scale per_channel per_channel always_apply always_apply p
```

Value

None

Targets

image

Description

Place a regular grid of points on the input and randomly move the neighbourhood of these point around

250 icevision_IAAAffine

Usage

```
icevision_IAAAffine(
    scale = 1,
    translate_percent = NULL,
    translate_px = NULL,
    rotate = 0,
    shear = 0,
    order = 1,
    cval = 0,
    mode = "reflect",
    always_apply = FALSE,
    p = 0.5
)
```

Arguments

```
scale
                 scale
translate_percent
                 translate_percent
translate_px
                 translate_px
rotate
                 rotate
shear
                 shear
order
                 order
cval
                 cval
mode
                 mode
                 always_apply
always_apply
                 p
```

Details

via affine transformations. Note: This class introduce interpolation artifacts to mask if it has values other than (0;1)

Value

None

None

Targets

image, mask

```
icevision_IAACropAndPad
```

IAACropAndPad

Description

Transform for segmentation task.

Usage

```
icevision_IAACropAndPad(
  px = NULL,
  percent = NULL,
  pad_mode = "constant",
  pad_cval = 0,
  keep_size = TRUE,
  always_apply = FALSE,
  p = 1
)
```

Arguments

 $icevision_IAAEmboss$ IAAEmboss

Description

Emboss the input image and overlays the result with the original image.

Usage

```
icevision_IAAEmboss(
  alpha = list(0.2, 0.5),
  strength = list(0.2, 0.7),
  always_apply = FALSE,
  p = 0.5
)
```

252 icevision_IAAFlipIr

Arguments

alpha alpha strength

always_apply always_apply

p p

Value

None

Targets

image

 ${\tt icevision_IAAFliplr} \quad \textit{IAAFliplr}$

Description

Transform for segmentation task.

Usage

```
icevision_IAAFliplr(always_apply = FALSE, p = 0.5)
```

Arguments

Value

icevision_IAAFlipud 253

```
{\tt icevision\_IAAFlipud} \qquad \textit{IAAFlipud}
```

Description

Transform for segmentation task.

Usage

```
icevision_IAAFlipud(always_apply = FALSE, p = 0.5)
```

Arguments

Value

None

```
icevision_IAAPerspective
```

IAAPerspective

Description

Perform a random four point perspective transform of the input.

Usage

```
icevision_IAAPerspective(
   scale = list(0.05, 0.1),
   keep_size = TRUE,
   always_apply = FALSE,
   p = 0.5
)
```

```
scale scale
keep_size keep_size
always_apply always_apply
p p
```

Details

Note: This class introduce interpolation artifacts to mask if it has values other than (0;1)

Value

None

Targets

image, mask

```
\label{localized} icevision\_IAAPiecewiseAffine \\ \textit{IAAPiecewiseAffine}
```

Description

Place a regular grid of points on the input and randomly move the neighbourhood of these point around

Usage

```
icevision_IAAPiecewiseAffine(
  scale = list(0.03, 0.05),
  nb_rows = 4,
  nb_cols = 4,
  order = 1,
  cval = 0,
  mode = "constant",
  always_apply = FALSE,
  p = 0.5
)
```

```
scale scale

nb_rows nb_rows

nb_cols nb_cols

order order

cval cval

mode mode

always_apply always_apply

p
```

Details

via affine transformations. Note: This class introduce interpolation artifacts to mask if it has values other than (0;1)

Value

None

Targets

image, mask

Description

Sharpen the input image and overlays the result with the original image.

Usage

```
icevision_IAASharpen(
  alpha = list(0.2, 0.5),
  lightness = list(0.5, 1),
  always_apply = FALSE,
  p = 0.5
)
```

Arguments

```
alpha alpha
lightness lightness
always_apply
p p
```

Value

None

Targets

image

```
icevision\_IAA Superpixels \\ IAA Superpixels
```

Completely or partially transform the input image to its superpixel representation. Uses skimage's version

Usage

```
icevision_IAASuperpixels(
  p_replace = 0.1,
  n_segments = 100,
  always_apply = FALSE,
  p = 0.5
)
```

Arguments

Details

```
of the SLIC algorithm. May be slow.
```

Value

None

Targets

image

```
{\it Image Compression} \\ Image Compression
```

Decrease Jpeg, WebP compression of an image.

Usage

```
icevision_ImageCompression(
  quality_lower = 99,
  quality_upper = 100,
  compression_type = 0,
  always_apply = FALSE,
  p = 0.5
)
```

Arguments

Value

None

Targets

image

Image types

uint8, float32

```
ice vision\_Image Only IAAT rans form \\ Image Only IAAT rans form
```

Transform applied to image only.

Usage

```
icevision_ImageOnlyIAATransform(always_apply = FALSE, p = 0.5)
```

Arguments

```
always_apply
p p
```

Value

None

```
icevision\_ImageOnlyTransform \\ ImageOnlyTransform
```

Description

Transform applied to image only.

Usage

```
icevision_ImageOnlyTransform(always_apply = FALSE, p = 0.5)
```

Arguments

Value

icevision_InvertImg 259

```
icevision_InvertImg InvertImg
```

Description

Invert the input image by subtracting pixel values from 255.

Usage

```
icevision_InvertImg(always_apply = FALSE, p = 0.5)
```

Arguments

```
always_apply
p p
```

Value

None

Targets

image

Image types

uint8

Description

Apply camera sensor noise.

Usage

```
icevision_ISONoise(
  color_shift = list(0.01, 0.05),
  intensity = list(0.1, 0.5),
  always_apply = FALSE,
  p = 0.5
)
```

Arguments

```
color_shift color_shift
intensity intensity
always_apply
p p
```

Value

None

Targets

image

Image types

uint8

```
{\tt icevision\_JpegCompression}
```

JpegCompression

Description

Decrease Jpeg compression of an image.

Usage

```
icevision_JpegCompression(
  quality_lower = 99,
  quality_upper = 100,
  always_apply = FALSE,
  p = 0.5
)
```

Arguments

```
quality_lower
quality_upper
quality_upper
always_apply
p
p
quality_lower
quality_upper
quality_apper
p
```

Value

Targets

image

Image types

uint8, float32

```
icevision_LongestMaxSize
```

LongestMaxSize

Description

Rescale an image so that maximum side is equal to max_size, keeping the aspect ratio of the initial image.

Usage

```
icevision_LongestMaxSize(
  max_size = 1024,
  interpolation = 1,
  always_apply = FALSE,
  p = 1
)
```

Arguments

```
max_size max_size
interpolation interpolation
always_apply
p p
```

Value

None

Targets

image, mask, bboxes, keypoints

Image types

uint8, float32

 $icevision_MaskDropout$ MaskDropout

Description

Image & mask augmentation that zero out mask and image regions corresponding

Usage

```
icevision_MaskDropout(
  max_objects = 1,
  image_fill_value = 0,
  mask_fill_value = 0,
  always_apply = FALSE,
  p = 0.5
)
```

Arguments

Details

to randomly chosen object instance from mask. Mask must be single-channel image, zero values treated as background. Image can be any number of channels. Inspired by https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/114254

Value

icevision_MedianBlur 263

```
icevision_MedianBlur MedianBlur
```

Description

Blur the input image using a median filter with a random aperture linear size.

Usage

```
icevision_MedianBlur(blur_limit = 7, always_apply = FALSE, p = 0.5)
```

Arguments

```
blur_limit blur_limit
always_apply always_apply
p p
```

Value

None

Targets

image

Image types

uint8, float32

```
{\tt icevision\_MotionBlur} \quad {\tt \it MotionBlur}
```

Description

Apply motion blur to the input image using a random-sized kernel.

Usage

```
icevision_MotionBlur(blur_limit = 7, always_apply = FALSE, p = 0.5)
```

```
blur_limit blur_limit
always_apply always_apply
p p
```

Value

None

Targets

image

Image types

uint8, float32

```
icevision\_MultiplicativeNoise\\ {\it MultiplicativeNoise}
```

Description

Multiply image to random number or array of numbers.

Usage

```
icevision_MultiplicativeNoise(
  multiplier = list(0.9, 1.1),
  per_channel = FALSE,
  elementwise = FALSE,
  always_apply = FALSE,
  p = 0.5
)
```

Arguments

```
multiplier multiplier
per_channel per_channel
elementwise elementwise
always_apply
p p
```

Value

None

Targets

image

Image types

Any

icevision_Normalize 265

```
icevision_Normalize Normalize
```

Description

Divide pixel values by 255 = 2**8 - 1, subtract mean per channel and divide by std per channel.

Usage

```
icevision_Normalize(
  mean = list(0.485, 0.456, 0.406),
  std = list(0.229, 0.224, 0.225),
  max_pixel_value = 255,
  always_apply = FALSE,
  p = 1
)
```

Arguments

Value

None

Targets

image

Image types

uint8, float32

```
icevision\_Optical Distortion\\ Optical Distortion
```

OpticalDistortion

Usage

```
icevision_OpticalDistortion(
  distort_limit = 0.05,
  shift_limit = 0.05,
  interpolation = 1,
  border_mode = 4,
  value = NULL,
  mask_value = NULL,
  always_apply = FALSE,
  p = 0.5
)
```

Arguments

```
distort_limit
                 distort_limit
shift_limit
                 shift_limit
interpolation
                 interpolation
border_mode
                 border_mode
value
                 value
mask_value
                 mask value
always_apply
                 always_apply
р
                 p
```

Details

distort_limit (float, (float, float)): If distort_limit is a single float, the range will be (-distort_limit, distort_limit). Default: (-0.05, 0.05). shift_limit (float, (float, float))): If shift_limit is a single float, the range will be (-shift_limit, shift_limit). Default: (-0.05, 0.05). interpolation (OpenCV flag): flag that is used to specify the interpolation algorithm. Should be one of: cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4. Default: cv2.INTER_LINEAR. border_mode (OpenCV flag): flag that is used to specify the pixel extrapolation method. Should be one of: cv2.BORDER_CONSTANT, cv2.BORDER_REPLICATE, cv2.BORDER_REFLECT_101. Default: cv2.BORDER_REFLECT_101 value (int, float, list of ints, list of float): padding value if border_mode is cv2.BORDER_CONSTANT. mask_value (int, float, list of ints, list of float): padding value if border_mode is cv2.BORDER_CONSTANT applied for masks. Targets: image, mask Image types: uint8, float32

Value

None

Targets

image, mask

Image types

uint8, float32

icevision_PadIfNeeded PadIfNeeded

Description

Pad side of the image / max if side is less than desired number.

Usage

```
icevision_PadIfNeeded(
   min_height = 1024,
   min_width = 1024,
   pad_height_divisor = NULL,
   pad_width_divisor = NULL,
   border_mode = 4,
   value = NULL,
   mask_value = NULL,
   always_apply = FALSE,
   p = 1
)
```

```
min_height
                min_height
min_width
                min_width
pad_height_divisor
                pad_height_divisor
pad_width_divisor
                pad_width_divisor
border_mode
                border_mode
value
                value
mask_value
                mask_value
always_apply
                always_apply
```

268 icevision_parse

Targets

```
image, mask, bbox, keypoints
```

Image types

uint8, float32

icevision_parse

Parse

Description

Loops through all data points parsing the required fields.

Usage

```
icevision_parse(
  data_splitter = NULL,
  idmap = NULL,
  autofix = TRUE,
  show_pbar = TRUE,
  cache_filepath = NULL)
```

Arguments

data_splitter How to split the parsed data, defaults to a [0.8, 0.2] random split.

idmap Maps from filenames to unique ids, pass an 'IDMap()' if you need this informa-

tion.

autofix autofix

show_pbar Whether or not to show a progress bar while parsing the data.

cache_filepath Path to save records in pickle format. Defaults to NULL, e.g. if the user does

not specify a path, no saving nor loading happens.

Value

A list of records for each split defined by data_splitter.

icevision_Posterize 269

Description

Reduce the number of bits for each color channel.

Usage

```
icevision_Posterize(num_bits = 4, always_apply = FALSE, p = 0.5)
```

Arguments

```
num_bits num_bits
always_apply
p p
```

Value

None

Targets

image

Image types

uint8

```
icevision\_RandomBrightnessContrast\\ RandomBrightnessContrast
```

Description

Randomly change brightness and contrast of the input image.

Usage

```
icevision_RandomBrightnessContrast(
  brightness_limit = 0.2,
  contrast_limit = 0.2,
  brightness_by_max = TRUE,
  always_apply = FALSE,
  p = 0.5
)
```

Arguments

Value

None

Targets

image

Image types

uint8, float32

 ${\tt icevision_RandomContrast}$

RandomContrast

Description

Randomly change contrast of the input image.

Usage

```
icevision_RandomContrast(limit = 0.2, always_apply = FALSE, p = 0.5)
```

Arguments

Value

None

Targets

image

icevision_RandomCrop 271

Image types

uint8, float32

RandomCrop icevision_RandomCrop

Description

Crop a random part of the input.

Usage

```
icevision_RandomCrop(height, width, always_apply = FALSE, p = 1)
```

Arguments

height height width width always_apply

always_apply

p

Value

None

Targets

image, mask, bboxes, keypoints

Image types

uint8, float32

```
{\it icevision\_RandomCropNearBBox} \\ {\it RandomCropNearBBox}
```

Crop bbox from image with random shift by x,y coordinates

Usage

```
icevision_RandomCropNearBBox(max_part_shift = 0.3, always_apply = FALSE, p = 1)
```

Arguments

Value

None

Targets

image, mask, bboxes, keypoints

Image types

uint8, float32

icevision_RandomFog

RandomFog

Description

Simulates fog for the image

Usage

```
icevision_RandomFog(
  fog_coef_lower = 0.3,
  fog_coef_upper = 1,
  alpha_coef = 0.08,
  always_apply = FALSE,
  p = 0.5
)
```

Arguments

```
fog_coef_lower
fog_coef_upper
fog_coef_upper
alpha_coef
always_apply
p

fog_coef_lower
fog_coef_lower
alpha_coef_upper
alpha_coef
always_apply
p
```

Details

From https://github.com/UjjwalSaxena/Automold-Road-Augmentation-Library

Value

None

Targets

image

Image types

uint8, float32

icevision_RandomGamma RandomGamma

Description

RandomGamma

Usage

```
icevision_RandomGamma(
  gamma_limit = list(80, 120),
  eps = NULL,
  always_apply = FALSE,
  p = 0.5
)
```

```
gamma_limit gamma_limit
eps Deprecated.
always_apply always_apply
p p
```

Details

gamma_limit (float or (float, float)): If gamma_limit is a single float value, the range will be (-gamma_limit, gamma_limit). Default: (80, 120). eps: Deprecated. Targets: image Image types: uint8, float32

Value

None

Targets

image

Image types

uint8, float32

 $icevision_Random Grid Shuffle$

Random Grid Shuffle

Description

Random shuffle grid's cells on image.

Usage

```
icevision_RandomGridShuffle(grid = list(3, 3), always_apply = FALSE, p = 0.5)
```

Arguments

```
grid grid
always_apply
p p
```

Value

None

Targets

image, mask

Image types

uint8, float32

icevision_RandomRain 275

```
icevision_RandomRain RandomRain
```

Description

Adds rain effects.

Usage

```
icevision_RandomRain(
    slant_lower = -10,
    slant_upper = 10,
    drop_length = 20,
    drop_width = 1,
    drop_color = list(200, 200, 200),
    blur_value = 7,
    brightness_coefficient = 0.7,
    rain_type = NULL,
    always_apply = FALSE,
    p = 0.5
)
```

Arguments

slant_lower

```
slant_upper
                  should be in range [-20, 20].
drop_length
                  should be in range [0, 100].
                  should be in range [1, 5]. drop_color (list of (r, g, b)): rain lines color. blur_value
drop_width
                  (int): rainy view are blurry brightness_coefficient (float): rainy days are usually
                   shady. Should be in range [0, 1].
drop_color
                  drop_color
blur_value
                  blur_value
brightness_coefficient
                  brightness_coefficient
rain_type
                  One of [NULL, "drizzle", "heavy", "torrestial"]
always_apply
                  always_apply
р
                  p
```

should be in range [-20, 20].

Details

From https://github.com/UjjwalSaxena/Automold-Road-Augmentation-Library

Value

Targets

image

Image types

uint8, float32

```
{\it icevision\_RandomResizedCrop} \\ {\it RandomResizedCrop}
```

Description

Torchvision's variant of crop a random part of the input and rescale it to some size.

Usage

```
icevision_RandomResizedCrop(
  height,
  width,
  scale = list(0.08, 1),
  ratio = list(0.75, 1.333333333333333),
  interpolation = 1,
  always_apply = FALSE,
  p = 1
)
```

Arguments

```
height height
width width
scale scale
ratio ratio
interpolation interpolation
always_apply
p p
```

Value

None

Targets

image, mask, bboxes, keypoints

Image types

```
uint8, float32
```

```
icevision_RandomRotate90
```

RandomRotate90

Description

Randomly rotate the input by 90 degrees zero or more times.

Usage

```
icevision_RandomRotate90(always_apply = FALSE, p = 0.5)
```

Arguments

Value

None

Targets

```
image, mask, bboxes, keypoints
```

Image types

```
uint8, float32
```

```
{\tt icevision\_RandomScale} \ \ \textit{RandomScale}
```

Description

Randomly resize the input. Output image size is different from the input image size.

Usage

```
icevision_RandomScale(
   scale_limit = 0.1,
   interpolation = 1L,
   always_apply = FALSE,
   p = 0.5
)
```

Arguments

```
scale_limit scale_limit interpolation always_apply p p
```

Value

None

Targets

image, mask, bboxes, keypoints

Image types

uint8, float32

icevision_RandomShadow

RandomShadow

Description

Simulates shadows for the image

Usage

```
icevision_RandomShadow(
   shadow_roi = list(0, 0.5, 1, 1),
   num_shadows_lower = 1,
   num_shadows_upper = 2,
   shadow_dimension = 5,
   always_apply = FALSE,
   p = 0.5
)
```

```
shadow_roi shadow_roi
num_shadows_lower
num_shadows_lower
num_shadows_upper
num_shadows_upper
shadow_dimension
shadow_dimension
always_apply
n
```

Details

From https://github.com/UjjwalSaxena/Automold-Road-Augmentation-Library

Value

None

Targets

image

Image types

uint8, float32

```
{\it icevision\_RandomSizedBBoxSafeCrop} \\ {\it RandomSizedBBoxSafeCrop}
```

Description

Crop a random part of the input and rescale it to some size without loss of bboxes.

Crop a random part of the input and rescale it to some size without loss of bboxes.

Usage

```
icevision_RandomSizedBBoxSafeCrop(
  height,
  width,
  erosion_rate = 0,
  interpolation = 1,
  always_apply = FALSE,
  p = 1
)

icevision_RandomSizedBBoxSafeCrop(
  height,
  width,
  erosion_rate = 0,
  interpolation = 1,
  always_apply = FALSE,
  p = 1
)
```

Arguments

```
height height
width width
erosion_rate erosion_rate
interpolation interpolation
always_apply
p
p
```

Value

None

None

Targets

```
image, mask, bboxes image, mask, bboxes
```

Image types

```
uint8, float32
uint8, float32
```

Description

Crop a random part of the input and rescale it to some size.

Usage

```
icevision_RandomSizedCrop(
   min_max_height,
   height,
   width,
   w2h_ratio = 1,
   interpolation = 1,
   always_apply = FALSE,
   p = 1
)
```

Arguments

```
min_max_height min_max_height
height height
width width
w2h_ratio w2h_ratio
interpolation interpolation
always_apply
p
p
```

Value

None

Targets

image, mask, bboxes, keypoints

Image types

uint8, float32

icevision_RandomSnow

Description

Bleach out some pixel values simulating snow.

Usage

```
icevision_RandomSnow(
   snow_point_lower = 0.1,
   snow_point_upper = 0.3,
   brightness_coeff = 2.5,
   always_apply = FALSE,
   p = 0.5
)
```

Details

From https://github.com/UjjwalSaxena/Automold-Road-Augmentation-Library

Value

None

Targets

image

Image types

uint8, float32

 ${\tt icevision_RandomSplitter}$

Random Splitter

Description

Randomly splits items.

Usage

```
icevision_RandomSplitter(probs, seed = NULL)
```

Arguments

probs 'Sequence' of probabilities that must sum to one. The length of the 'Sequence'

is the number of groups to to split the items into.

seed Internal seed used for shuffling the items. Define this if you need reproducible

results.

Value

```
icevision_RandomSunFlare
```

RandomSunFlare

Description

Simulates Sun Flare for the image

Usage

```
icevision_RandomSunFlare(
  flare_roi = list(0, 0, 1, 0.5),
  angle_lower = 0,
  angle_upper = 1,
  num_flare_circles_lower = 6,
  num_flare_circles_upper = 10,
  src_radius = 400,
  src_color = list(255, 255, 255),
  always_apply = FALSE,
  p = 0.5
)
```

Arguments

```
flare_roi
                flare_roi
angle_lower
                angle_lower
angle_upper
                angle_upper
num_flare_circles_lower
                num_flare_circles_lower
num_flare_circles_upper
                num_flare_circles_upper
src_radius
                src_radius
src_color
                src_color
always_apply
                always_apply
                p
```

Details

From https://github.com/UjjwalSaxena/Automold-Road-Augmentation-Library

Value

Targets

image

Image types

uint8, float32

icevision_read_bgr_image

Read_bgr_image

Description

Read_bgr_image

Usage

icevision_read_bgr_image(path)

Arguments

path path

Value

None

icevision_read_rgb_image

Read_rgb_image

Description

Read_rgb_image

Usage

icevision_read_rgb_image(path)

Arguments

path path

Value

icevision_Resize 285

icevision_Resize Resize

Description

Resize the input to the given height and width.

Usage

```
icevision_Resize(height, width, interpolation = 1, always_apply = FALSE, p = 1)
```

Arguments

```
height height
width width
interpolation interpolation
always_apply
p p
```

Value

None

Targets

```
image, mask, bboxes, keypoints
```

Image types

```
uint8, float32
```

Description

```
Resize_and_pad
```

Usage

```
icevision_resize_and_pad(
    size,
    pad = partial(icevision_PadIfNeeded, border_mode = 0, value = c(124L, 116L, 104L))
```

286 icevision_RGBShift

Arguments

```
size size pad pad
```

Value

None

```
icevision_RGBShift RGBShift
```

Description

Randomly shift values for each channel of the input RGB image. Randomly shift values for each channel of the input RGB image.

Usage

```
icevision_RGBShift(
   r_shift_limit = 20,
   g_shift_limit = 20,
   b_shift_limit = 20,
   always_apply = FALSE,
   p = 0.5
)

icevision_RGBShift(
   r_shift_limit = 20,
   g_shift_limit = 20,
   b_shift_limit = 20,
   always_apply = FALSE,
   p = 0.5
)
```

Arguments

```
r_shift_limit r_shift_limit
g_shift_limit g_shift_limit
b_shift_limit b_shift_limit
always_apply always_apply
p p
```

Value

None

icevision_Rotate 287

Targets

image image

Image types

uint8, float32 uint8, float32

icevision_Rotate

Rotate

Description

Rotate the input by an angle selected randomly from the uniform distribution.

Usage

```
icevision_Rotate(
   limit = 90,
   interpolation = 1,
   border_mode = 4,
   value = NULL,
   mask_value = NULL,
   always_apply = FALSE,
   p = 0.5
)
```

Arguments

```
limit limit
interpolation interpolation
border_mode border_mode
value value
mask_value mask_value
always_apply
p p
```

Value

None

Targets

image, mask, bboxes, keypoints

Image types

uint8, float32

```
icevision\_ShiftScaleRotate \\ ShiftScaleRotate
```

Description

Randomly apply affine transforms: translate, scale and rotate the input. Randomly apply affine transforms: translate, scale and rotate the input.

Usage

```
icevision_ShiftScaleRotate(
  shift_limit = 0.0625,
  scale_limit = 0.1,
  rotate_limit = 45,
  interpolation = 1,
  border_mode = 4,
  value = NULL,
 mask_value = NULL,
  shift_limit_x = NULL,
  shift_limit_y = NULL,
  always_apply = FALSE,
  p = 0.5
)
icevision_ShiftScaleRotate(
  shift_limit = 0.0625,
  scale_limit = 0.1,
  rotate_limit = 45,
  interpolation = 1,
  border_mode = 4,
  value = NULL,
 mask_value = NULL,
  shift_limit_x = NULL,
  shift_limit_y = NULL,
  always_apply = FALSE,
  p = 0.5
)
```

```
shift_limit shift_limit
scale_limit scale_limit
```

```
rotate_limit
                rotate_limit
interpolation
                interpolation
border_mode
                border_mode
value
                value
mask_value
                mask_value
shift_limit_x
                shift_limit_x
shift_limit_y
                shift_limit_y
always_apply
                always_apply
р
                p
```

Value

None

None

Targets

```
image, mask, keypoints image, mask, keypoints
```

Image types

uint8, float32 uint8, float32

```
icevision\_SingleSplitSplitter\\ SingleSplitSplitter
```

Description

SingleSplitSplitter

Usage

```
icevision_SingleSplitSplitter(...)
```

Arguments

... arguments to pass

Value

all items in a single group, without shuffling.

Description

Rescale an image so that minimum side is equal to max_size, keeping the aspect ratio of the initial image.

Usage

```
icevision_SmallestMaxSize(
  max_size = 1024,
  interpolation = 1,
  always_apply = FALSE,
  p = 1
)
```

Arguments

Value

None

Targets

image, mask, bboxes, keypoints

Image types

uint8, float32

icevision_Solarize 291

icevision_Solarize Solarize

Description

Invert all pixel values above a threshold.

Usage

```
icevision_Solarize(threshold = 128, always_apply = FALSE, p = 0.5)
```

Arguments

```
threshold threshold
always_apply
p p
```

Value

None

Targets

image

Image types

any

icevision_ToFloat ToFloat

Description

Divide pixel values by 'max_value' to get a float32 output array where all values lie in the range [0, 1.0].

Usage

```
icevision_ToFloat(max_value = NULL, always_apply = FALSE, p = 1)
```

Arguments

```
max_value max_value
always_apply
p p
```

292 icevision_ToGray

Details

If 'max_value' is NULL the transform will try to infer the maximum value by inspecting the data type of the input image. See Also: :class:'~albumentations.augmentations.transforms.FromFloat'

Value

None

See Also

: class: ``-albumentations. augmentations. transforms. From Float`'

Targets

image

Image types

any type

```
{\it icevision\_ToGray} {\it ToGray}
```

Description

Convert the input RGB image to grayscale. If the mean pixel value for the resulting image is greater than 127, invert the resulting grayscale image.

Usage

```
icevision_ToGray(always_apply = FALSE, p = 0.5)
```

Arguments

Value

None

Targets

image

Image types

uint8, float32

icevision_ToSepia 293

icevision_ToSepia

To Sepia

Description

Applies sepia filter to the input RGB image

Usage

```
icevision_ToSepia(always_apply = FALSE, p = 0.5)
```

Arguments

Value

None

Targets

image

Image types

uint8, float32

icevision_Transpose

Transpose

Description

Transpose the input by swapping rows and columns.

Usage

```
icevision_Transpose(always_apply = FALSE, p = 0.5)
```

Arguments

Value

None

Targets

```
image, mask, bboxes, keypoints
```

Image types

uint8, float32

```
icevision_VerticalFlip
```

VerticalFlip

Description

Flip the input vertically around the x-axis.

Usage

```
icevision_VerticalFlip(always_apply = FALSE, p = 0.5)
```

Arguments

```
always_apply
p p
```

Value

None

Targets

image, mask, bboxes, keypoints

Image types

uint8, float32

icnr_init 295

icnr_init

Icnr_init

Description

ICNR init of 'x', with 'scale' and 'init' function

Usage

```
icnr_init(x, scale = 2, init = nn()$init$kaiming_normal_)
```

Arguments

x tensor
scale int, scale
init initializer

Value

None

IDMap

IDMap

Description

Works like a dictionary that automatically assign values for new keys.

Usage

```
IDMap(initial_names = NULL)
```

Arguments

```
initial_names
```

Value

296 image2tensor

Image

Image

parameters to pass

Description

Image

Usage

```
Image(...)
```

Arguments

...

Value

None

image2tensor

Image2tensor

Description

Transform image to byte tensor in 'c*h*w' dim order.

Usage

```
image2tensor(img)
```

Arguments

img

image

Value

ImageBlock 297

ImageBlock

ImageBlock

Description

A 'TransformBlock' for images of 'cls'

Usage

```
ImageBlock(...)
```

Arguments

... parameters to pass

Value

block

ImageBW_create

ImageBW_create

Description

```
Open an 'Image' from path 'fn'
```

Usage

```
ImageBW_create(fn)
```

Arguments

fn

file name

Value

```
ImageDataLoaders_from_csv
```

ImageDataLoaders from csv

Description

Create from 'path/csv_fname' using 'fn_col' and 'label_col'

Usage

```
ImageDataLoaders_from_csv(
  path,
  csv_fname = "labels.csv",
 header = "infer",
 delimiter = NULL,
  valid_pct = 0.2,
  seed = NULL,
  fn_{col} = 0,
  folder = NULL,
  suff = "",
 label_col = 1,
 label_delim = NULL,
 y_block = NULL,
  valid_col = NULL,
  item_tfms = NULL,
  batch_tfms = NULL,
 bs = 64,
  val_bs = NULL,
  size = NULL,
  shuffle_train = TRUE,
 device = NULL,
)
```

Arguments

```
path
                 The folder where to work
                 csv file name
csv_fname
header
                 header
delimiter
                 delimiter
valid_pct
                 validation percentage
seed
                 random seed
fn_col
                 column name
folder
                 folder name
```

suff suff label_col label column label_delim label delimiter y_block y_block valid_col validation column item_tfms One or several transforms applied to the items before batching them batch_tfms One or several transforms applied to the batches once they are formed bs batch size val_bs The batch size for the validation DataLoader (defaults to bs) size image size If we shuffle the training DataLoader or not shuffle_train device device name additional parameters to pass

Value

None

 $ImageDataLoaders_from_dblock$

ImageDataLoaders from dblock

Description

Create a dataloaders from a given 'dblock'

```
ImageDataLoaders_from_dblock(
  dblock,
  source,
  path = ".",
  bs = 64,
  val_bs = NULL,
  shuffle_train = TRUE,
  device = NULL,
  ...
)
```

dblock dblock source folder source path The folder where to work bs batch size val_bs The batch size for the validation DataLoader (defaults to bs) shuffle_train If we shuffle the training DataLoader or not device name device additional parameters to pass . . .

Value

None

 ${\tt ImageDataLoaders_from_df}$

ImageDataLoaders from df

Description

Create from 'df' using 'fn_col' and 'label_col'

```
ImageDataLoaders_from_df(
  df,
  path = ".",
  valid_pct = 0.2,
  seed = NULL,
  fn_{col} = 0,
  folder = NULL,
  suff = "",
  label_col = 1,
  label_delim = NULL,
 y_block = NULL,
  valid_col = NULL,
  item_tfms = NULL,
  batch_tfms = NULL,
  bs = 64,
 val_bs = NULL,
  shuffle_train = TRUE,
 device = NULL,
)
```

df data frame

path The folder where to work valid_pct validation percentage

seed random seed

fn_col column name

folder folder name

suff suff

label_col label column label_delim label separator

y_block y_block

valid_col validation column

item_tfms One or several transforms applied to the items before batching them
batch_tfms One or several transforms applied to the batches once they are formed

bs batch size

val_bs The batch size for the validation DataLoader (defaults to bs)

shuffle_train shuffle_train device device

... additional parameters to pass

Value

None

ImageDataLoaders_from_folder

ImageDataLoaders from folder

Description

Create from imagenet style dataset in 'path' with 'train' and 'valid' subfolders (or provide 'valid_pct')

```
ImageDataLoaders_from_folder(
  path,
  train = "train",
  valid = "valid",
  valid_pct = NULL,
  seed = NULL,
  vocab = NULL,
```

```
item_tfms = NULL,
batch_tfms = NULL,
bs = 64,
val_bs = NULL,
shuffle_train = TRUE,
device = NULL,
size = NULL,
...
)
```

path The folder where to work

train train data

valid validation data

valid_pct validion percentage

seed random seed vocabulary

item_tfms One or several transforms applied to the items before batching them
batch_tfms One or several transforms applied to the batches once they are formed

bs batch size

val_bs The batch size for the validation DataLoader (defaults to bs)

shuffle_train If we shuffle the training DataLoader or not

device device name size image size

... additional parameters to pass

 ${\tt ImageDataLoaders_from_lists}$

ImageDataLoaders from lists

Description

Create from list of 'fnames' and 'labels' in 'path'

```
ImageDataLoaders_from_lists(
  path,
  fnames,
  labels,
  valid_pct = 0.2,
  seed = NULL,
```

```
y_block = NULL,
item_tfms = NULL,
batch_tfms = NULL,
bs = 64,
val_bs = NULL,
shuffle_train = TRUE,
device = NULL,
...
)
```

path The folder where to work

fnames file names labels labels

valid_pct validation percentage

seed random seed y_block y_block

item_tfms One or several transforms applied to the items before batching them
batch_tfms One or several transforms applied to the batches once they are formed

bs batch size

val_bs The batch size for the validation DataLoader (defaults to bs)

shuffle_train If we shuffle the training DataLoader or not

device device name

... additional parameters to pass

Value

None

ImageDataLoaders_from_name_re

ImageDataLoaders from name regex

Description

Create from the name attrs of 'fnames' in 'path's with re expression 'pat'

Usage

```
ImageDataLoaders_from_name_re(
  path,
  fnames,
  pat,
  bs = 64,
  val_bs = NULL,
  shuffle_train = TRUE,
  device = NULL,
  item_tfms = NULL,
  batch_tfms = NULL,
  ...
)
```

Arguments

path The folder where to work

fnames folder names

pat an argument that requires regex

bs The batch size

val_bs The batch size for the validation DataLoader (defaults to bs)

shuffle_train If we shuffle the training DataLoader or not

device device name

item_tfms One or several transforms applied to the items before batching them
batch_tfms One or several transforms applied to the batches once they are formed

... additional parameters to pass

Value

None

Examples

```
ImageDataLoaders_from_path_func
```

```
305
```

```
)
## End(Not run)
```

ImageDataLoaders_from_path_func

ImageDataLoaders from path function

Description

Create from list of 'fnames' in 'path's with 'label_func'

Usage

```
ImageDataLoaders_from_path_func(
  path,
  fnames,
  label_func,
  valid_pct = 0.2,
  seed = NULL,
  item_tfms = NULL,
  batch_tfms = NULL,
  bs = 64,
  val_bs = NULL,
  shuffle_train = TRUE,
  device = NULL,
  ...
)
```

Arguments

path The folder where to work

fnames file names label_func label function

valid_pct The random percentage of the dataset to set aside for validation (with an optional

seed)

seed random seed

item_tfms One or several transforms applied to the items before batching them batch_tfms One or several transforms applied to the batches once they are formed

bs batch size

val_bs The batch size for the validation DataLoader (defaults to bs)

shuffle_train If we shuffle the training DataLoader or not

device device name

... additional parameters to pass

Value

None

Description

Create from list of 'fnames' in 'path's with re expression 'pat'

Usage

```
ImageDataLoaders_from_path_re(
  path,
  fnames,
  pat,
  valid_pct = 0.2,
  seed = NULL,
  item_tfms = NULL,
  batch_tfms = NULL,
  bs = 64,
  val_bs = NULL,
  shuffle_train = TRUE,
  device = NULL,
  ...
)
```

Arguments

path The folder where to work

fnames file names

pat an argument that requires regex

valid_pct The random percentage of the dataset to set aside for validation (with an optional

seed)

seed random seed

item_tfms One or several transforms applied to the items before batching them batch_tfms One or several transforms applied to the batches once they are formed

bs batch size

val_bs The batch size for the validation DataLoader (defaults to bs)

device device name

... additional parameters to pass

imagenet_stats 307

Value

None

 $imagenet_stats$

Imagenet statistics

Description

Imagenet statistics

Usage

```
imagenet_stats()
```

Value

vector

Examples

```
## Not run:
imagenet_stats()
## End(Not run)
```

Image_create

Image_create

Description

```
Open an 'Image' from path 'fn'
```

Usage

```
Image_create(fn)
```

Arguments

fn

file name

Value

308 Image_resize

Image_open

Image_open

Description

Opens and identifies the given image file.

Usage

```
Image_open(fp, mode = "r")
```

Arguments

 $\begin{array}{ccc} \text{fp} & & \text{fp} \\ \text{mode} & & \text{mode} \end{array}$

Value

None

Image_resize

Resize

Description

Returns a resized copy of this image.

Usage

```
Image_resize(img, size, resample = 3, box = NULL, reducing_gap = NULL)
```

Arguments

img image
size size
resample resample
box box

reducing_gap reducing_gap

Value

InceptionModule 309

 ${\tt Inception Module}$

Inception Module

Description

The inception Module from 'ni' inputs to len('kss')*'nb_filters'+'bottleneck_size'

Usage

```
InceptionModule(
   ni,
   nb_filters = 32,
   kss = c(39, 19, 9),
   bottleneck_size = 32,
   stride = 1
)
```

Arguments

```
ni number of input channels
nb_filters the number of filters
kss kernel size
bottleneck_size
bottleneck size
stride stride
```

Value

module

 ${\tt IndexSplitter}$

Index Splitter

Description

Split 'items' so that 'val_idx' are in the validation set and the others in the training set

Usage

```
IndexSplitter(valid_idx)
```

Arguments

valid_idx

The indices to use for the validation set (defaults to a random split otherwise)

init_default

Value

None

init

Wandb init

Description

Initialize a wandb Run.

Usage

```
init(...)
```

Arguments

... parameters to pass

Value

wandb Run object

None

see https

//docs.wandb.com/library/init

 $init_default$

Init_default

Description

Initialize 'm' weights with 'func' and set 'bias' to 0.

Usage

```
init_default(m, func = nn()$init$kaiming_normal_)
```

Arguments

m parameters func function

Value

init_linear 311

init_linear

Init_linear

Description

Init_linear

Usage

```
init_linear(m, act_func = NULL, init = "auto", bias_std = 0.01)
```

Arguments

m parameter

act_func activation function

init initializer

bias_std bias standard deviation

Value

None

install_fastai

Install fastai

Description

Install fastai

```
install_fastai(
  version,
  gpu = FALSE,
  cuda_version = "11.8",
  overwrite = FALSE,
  extra_pkgs = c("timm", "fastinference[interp]"),
  TPU = FALSE
)
```

312 InstanceNorm

Arguments

version specify version gpu installation of gpu

cuda_version if gpu true, then cuda version is required. By default it is 11.6

overwrite will install all the dependencies

extra_pkgs character vector of additional packages
TPU official way to install Pytorch-XLA 1.13

Value

None

Description

InstanceNorm layer with 'nf' features and 'ndim' initialized depending on 'norm_type'.

Usage

```
InstanceNorm(
  nf,
  ndim = 2,
  norm_type = 5,
  affine = TRUE,
  eps = 1e-05,
  momentum = 0.1,
  track_running_stats = FALSE
)
```

Arguments

nf input shape

ndim dimension number

norm_type normalization type

affine affine

eps epsilon

momentum momentum

track_running_stats

track running statistics

Value

IntToFloatTensor 313

 ${\tt IntToFloatTensor}$

IntToFloatTensor

Description

Transform image to float tensor, optionally dividing by 255 (e.g. for images).

Usage

```
IntToFloatTensor(div = 255, div_mask = 1)
```

Arguments

div divide value div_mask divide mask

Value

None

InvisibleTensor

Invisible Tensor

Description

Invisible Tensor

Usage

InvisibleTensor(x)

Arguments

(

tensor

Value

314 is_rmarkdown

Description

Return the shape of the first weight layer in 'm'.

Usage

in_channels(m)

Arguments

m

parameters

Value

None

is_rmarkdown

Is Rmarkdown?

Description

Is Rmarkdown?

Usage

is_rmarkdown()

Value

logical True/False

Jaccard 315

Jaccard

Jaccard

Description

Jaccard score for single-label classification problems

Usage

```
Jaccard(
  axis = -1,
  labels = NULL,
  pos_label = 1,
  average = "binary",
  sample_weight = NULL
)
```

Arguments

```
axis axis
labels labels
pos_label pos_label
average average
sample_weight sample_weight
```

Value

None

 ${\sf JaccardCoeff}$

JaccardCoeff

Description

Implementation of the Jaccard coefficient that is lighter in RAM

Usage

```
JaccardCoeff(axis = 1)
```

Arguments

axis axis

Value

316 kg

JaccardMulti

JaccardMulti

Description

Jaccard score for multi-label classification problems

Usage

```
JaccardMulti(
  thresh = 0.5,
  sigmoid = TRUE,
  labels = NULL,
  pos_label = 1,
  average = "macro",
  sample_weight = NULL
)
```

Arguments

```
thresh thresh
sigmoid sigmoid
labels labels
pos_label pos_label
average average
sample_weight sample_weight
```

Value

None

kg

Kaggle module

Description

Kaggle module

Usage

kg()

Value

L 317

 L

Description

Behaves like a list of 'items' but can also index with list of indices or masks

Usage

L(...)

Arguments

... arguments to pass

L1LossFlat

L1LossFlat

Description

Flattens input and output, same as nn\$L1LossFlat

Usage

```
L1LossFlat(...)
```

Arguments

... parameters to pass

Value

Loss object

318 12_reg

 12_reg $L2_reg$

Description

L2 regularization as adding 'wd*p' to 'p\$grad'

Usage

```
12_reg(p, lr, wd, do_wd = TRUE, ...)
```

Arguments

```
p p learning rate wd weight decay do_wd do_wd additional arguments to pass
```

Value

None

Examples

```
## Not run:

tst_param = function(val, grad = NULL) {
    "Create a tensor with `val` and a gradient of `grad` for testing"
    res = tensor(val) %>% float()

if(is.null(grad)) {
    grad = tensor(val / 10)
} else {
    grad = tensor(grad)
}

res$grad = grad %>% float()
    res
}
p = tst_param(1., 0.1)

12_reg(p, 1., 0.1)

## End(Not run)
```

LabeledBBox 319

LabeledBBox

LabeledBBox

Description

Basic type for a list of bounding boxes in an image

Usage

```
LabeledBBox(...)
```

Arguments

... parameters to pass

Value

None

 ${\tt LabelSmoothingCrossEntropy}$

Label Smoothing Cross Entropy

Description

Same as 'nn\$Module', but no need for subclasses to call 'super()\$__init__'

Usage

```
LabelSmoothingCrossEntropy(eps = 0.1, reduction = "mean")
```

Arguments

eps epsilon

reduction reduction, defaults to mean

Value

Loss object

320 Lamb

```
{\tt LabelSmoothingCrossEntropyFlat}
                            Label Smoothing Cross Entropy Flat\\
Description
    Same as 'nn$Module', but no need for subclasses to call 'super().__init__'
Usage
   LabelSmoothingCrossEntropyFlat(...)
Arguments
                     parameters to pass
    . . .
Value
   Loss object
  Lamb
                            Lamb
Description
   Lamb
Usage
   Lamb(...)
Arguments
                     parameters to pass
Value
   None
```

Lambda 321

Lambda Lambda

Description

An easy way to create a pytorch layer for a simple 'func'

Usage

```
Lambda(func)
```

Arguments

func function

Value

None

Description

Step for LAMB with 'lr' on 'p'

Usage

```
lamb_step(p, lr, mom, step, sqr_mom, grad_avg, sqr_avg, eps, ...)
```

Arguments

p p

1rlearning ratemommomentum

step step

sqr_momsqr momentumgrad_avggradient averagesqr_avgsqr averageepsepsilon

... additional arguments to pass

Value

```
language_model_learner
```

Language_model_learner

Description

Create a 'Learner' with a language model from 'dls' and 'arch'.

Usage

```
language_model_learner(
  dls,
  arch,
  config = NULL,
  drop_mult = 1,
  backwards = FALSE,
  pretrained = TRUE,
  pretrained_fnames = NULL,
  opt_func = Adam(),
  1r = 0.001,
  cbs = NULL,
 metrics = NULL,
  path = NULL,
 model_dir = "models",
 wd = NULL,
 wd_bn_bias = FALSE,
  train_bn = TRUE,
 moms = list(0.95, 0.85, 0.95),
)
```

Arguments

```
dls
                 dls
arch
                 arch
config
                config
drop_mult
                 drop_mult
backwards
                 backwards
pretrained
                pretrained
pretrained_fnames
                pretrained_fnames
opt_func
                opt_func
lr
                lr
cbs
                cbs
```

Larc 323

metrics metrics

path path

model_dir model_dir

 $wd \hspace{3.5cm} wd \hspace{3.5cm}$

 $wd_bn_bias \\ wd_bn_bias$

train_bn train_bn moms

... additional arguments

Value

None

Larc Larc

Description

Larc

Usage

Larc(...)

Arguments

... parameters to pass

Value

324 larc_step

```
larc_layer_lr
```

Larc_layer_lr

Description

Computes the local lr before weight decay is applied

Usage

```
larc_layer_lr(p, lr, trust_coeff, wd, eps, clip = TRUE, ...)
```

Arguments

```
p p learning rate trust_coeff trust_coeff wd weight decay eps epsilon
```

clip clip

... additional arguments to pass

Value

None

```
larc_step
```

Larc_step

Description

```
Step for LARC 'local_lr' on 'p'
```

Usage

```
larc_step(p, local_lr, grad_avg = NULL, ...)
```

Arguments

```
p p local_lr local learning rate grad_avg gradient average ... additional args to pass
```

Value

layer_info 325

layer_info

Layer_info

Description

Return layer infos of 'model' on 'xb' (only support batch first inputs)

Usage

```
layer_info(learn, ...)
```

Arguments

learn learner/model

... additional arguments

Value

None

Learner

Learner

Description

Learner

Usage

```
Learner(...)
```

Arguments

... parameters to pass

Value

Examples

length

Length

Description

Length

Usage

```
## S3 method for class 'torch.Tensor'
length(x)
```

Arguments

Χ

tensor

Value

tensor

```
{\it length.fastai.torch\_core.TensorMask} \\ {\it Length}
```

Description

Length

Usage

```
## S3 method for class 'fastai.torch_core.TensorMask'
length(x)
```

less 327

Arguments

x tensor

Value

tensor

less Less

Description

Less

Usage

```
## S3 method for class 'torch.
Tensor' a < b
```

Arguments

a tensor b tensor

Value

tensor

less_or_equal

Less or equal

Description

Less or equal

Usage

```
## S3 method for class 'torch.
Tensor' a <= b
```

Arguments

a tensor b tensor

Value

328 LinBnDrop

 ${\tt LightingTfm}$

Lighting Tfm

Description

Apply 'fs' to the logits

Usage

```
LightingTfm(fs, ...)
```

Arguments

fs fs

... parameters to pass

Value

None

LinBnDrop

LinBnDrop

Description

Module grouping 'BatchNorm1d', 'Dropout' and 'Linear' layers

Usage

```
LinBnDrop(n_in, n_out, bn = TRUE, p = 0, act = NULL, lin_first = FALSE)
```

Arguments

 n_i n input shape n_i out output shape

bn bn

p probability
act activation
lin_first linear first

Value

LinearDecoder 329

LinearDecoder

LinearDecoder

Description

To go on top of a RNNCore module and create a Language Model.

Usage

```
LinearDecoder(n_out, n_hid, output_p = 0.1, tie_encoder = NULL, bias = TRUE)
```

Arguments

Value

None

Lit Model Lit Model

Description

Lit Model

Usage

LitModel()

Value

model

330 LMDataLoader

LMDataLoader

LMDataLoader

Description

A 'DataLoader' suitable for language modeling

Usage

```
LMDataLoader(
  dataset,
  lens = NULL,
  cache = 2,
  bs = 64,
  seq_len = 72,
  num\_workers = 0,
  shuffle = FALSE,
  verbose = FALSE,
  do_setup = TRUE,
  pin_memory = FALSE,
  timeout = 0L,
  batch_size = NULL,
  drop_last = FALSE,
  indexed = NULL,
  n = NULL,
  device = NULL
)
```

Arguments

```
dataset
                dataset
lens
                lens
cache
                cache
bs
                bs
seq_len
                 seq_len
                num_workers
num_workers
shuffle
                shuffle
                verbose
verbose
do_setup
                do_setup
pin_memory
                pin_memory
timeout
                timeout
batch_size
                batch_size
drop_last
                drop_last
```

LMLearner 331

```
indexed indexed n n device device
```

Value

text loader

LMLearner

LMLearner

Description

Add functionality to 'TextLearner' when dealing with a language model Add functionality to 'TextLearner' when dealing with a language model

Usage

```
LMLearner(
  dls,
  model,
  alpha = 2,
  beta = 1,
  moms = list(0.8, 0.7, 0.8),
  loss_func = NULL,
  opt_func = Adam(),
  lr = 0.001,
  splitter = trainable_params(),
  cbs = NULL,
  metrics = NULL,
  path = NULL,
  model_dir = "models",
  wd = NULL,
  wd_bn_bias = FALSE,
  train_bn = TRUE
)
LMLearner(
  dls,
  model,
  alpha = 2,
  beta = 1,
  moms = list(0.8, 0.7, 0.8),
  loss_func = NULL,
  opt_func = Adam(),
  1r = 0.001,
```

332 LMLearner_predict

```
splitter = trainable_params(),
cbs = NULL,
metrics = NULL,
path = NULL,
model_dir = "models",
wd = NULL,
wd_bn_bias = FALSE,
train_bn = TRUE
)
```

Arguments

dls dls model model alpha alpha beta beta moms moms loss_func loss_func opt_func opt_func lr splitter splitter cbs cbs metrics metrics path path model_dir model_dir wd wd wd_bn_bias wd_bn_bias train_bn train_bn

Value

text loader

None

LMLearner_predict

 $LMLearner_predict$

Description

Return 'text' and the 'n_words' that come after

loaders 333

Usage

```
LMLearner_predict(
  text,
  n_words = 1,
  no_unk = TRUE,
  temperature = 1,
  min_p = NULL,
  no_bar = FALSE,
  decoder = decode_spec_tokens(),
  only_last_word = FALSE
)
```

Arguments

text text

n_words

no_unk

no_unk

temperature

min_p

mo_bar

decoder

only_last_word

no_words

no_words

no_unk

temperature

min_p

no_bar

decoder

Value

None

loaders Loaders

Description

a loader from Catalyst

Usage

loaders()

Value

334 load_ignore_keys

Examples

```
## Not run:
# trigger download
loaders()
## End(Not run)
```

load_dataset

Load_dataset

Description

A helper function for getting a DataLoader for images in the folder 'test_path', with batch size 'bs', and number of workers 'num_workers'

Usage

```
load_dataset(test_path, bs = 4, num_workers = 4)
```

Arguments

test_path test path (directory)

bs batch size

num_workers number of workers

Value

None

load_ignore_keys

Load_ignore_keys

Description

Load 'wgts' in 'model' ignoring the names of the keys, just taking parameters in order

Usage

```
load_ignore_keys(model, wgts)
```

load_image 335

Arguments

 $\begin{array}{ll} \text{model} & \text{model} \\ \text{wgts} & \text{wgts} \end{array}$

Value

None

load_image Load_image

Description

Open and load a 'PIL.Image' and convert to 'mode'

Usage

```
load_image(fn, mode = NULL)
```

Arguments

fn file name mode mode

Value

None

load_learner
Load_learner

Description

Load a 'Learner' object in 'fname', optionally putting it on the 'cpu'

Usage

```
load_learner(fname, cpu = TRUE)
```

Arguments

fname fname cpu cpu or not

Value

learner object

load_pre_models

load_model_text

Load_model_text

Description

Load 'model' from 'file' along with 'opt' (if available, and if 'with_opt')

Usage

```
load_model_text(
    file,
    model,
    opt,
    with_opt = NULL,
    device = NULL,
    strict = TRUE
)
```

Arguments

```
file file model model opt opt with_opt with_opt device strict strict
```

Value

None

load_pre_models

Timm models

Description

Timm models

Usage

```
load_pre_models()
```

Value

load_tokenized_csv 337

load_tokenized_csv

Load_tokenized_csv

Description

Utility function to quickly load a tokenized csv and the corresponding counter

Usage

```
load_tokenized_csv(fname)
```

Arguments

fname

file name

Value

None

log

Log

Description

Log

Usage

```
## S3 method for class 'torch.Tensor'
log(x, base = exp(1))
```

Arguments

x tensor

base base parameter

Value

338 log1p

```
{\color{red} \log. \, \text{fastai.torch\_core.TensorMask} } \\ {\color{red} \textit{Log}}
```

Description

Log

Usage

```
## S3 method for class 'fastai.torch_core.TensorMask'
log(x, base = exp(1))
```

Arguments

x tensor

base base parameter

Value

tensor

log1p

Log1p

Description

Log1p

Usage

```
## S3 method for class 'torch.Tensor' log1p(x)
```

Arguments

Х

tensor

Value

```
{\color{red} \log \text{1p.fastai.torch\_core.TensorMask} } \\ {\color{red} Log1p}
```

Description

Log1p

Usage

```
## S3 method for class 'fastai.torch_core.TensorMask' log1p(x)
```

Arguments

x tensor

Value

tensor

logical_and

Logical_and

Description

Logical_and

Usage

```
## S3 method for class 'torch.
Tensor' x & y
```

Arguments

x tensory tensor

Value

340 logical_or

logical_not_

 $Logical_not$

Description

```
Logical_not
```

Usage

```
## S3 method for class 'torch.Tensor' !x
```

Arguments

Х

tensor

Value

tensor

logical_or

Logical_or

Description

```
Logical_or
```

Usage

```
## S3 method for class 'torch.
Tensor' x | y
```

Arguments

```
x tensor
y tensor
```

Value

login 341

login

Wandb login

Description

Log in to W&B.

Usage

```
login(anonymous = NULL, key = NULL, relogin = NULL, host = NULL, force = NULL)
```

Arguments

anonymous must,never,allow,false,true

key API key (secret)
relogin relogin or not
host host address

force whether to force a user to be logged into wandb when running a script

Value

None

Lookahead

Lookahead

Description

Lookahead

Usage

```
Lookahead(...)
```

Arguments

... parameters to pass

Value

lr_find

LossMetric

LossMetric

Description

Create a metric from 'loss_func.attr' named 'nm'

Usage

```
LossMetric(attr, nm = NULL)
```

Arguments

```
attr attr
```

Value

None

lr_find

Lr_find

Description

Launch a mock training to find a good learning rate, return lr_min, lr_steep if 'suggestions' is TRUE

Usage

```
lr_find(
  object,
  start_lr = 1e-07,
  end_lr = 10,
  num_it = 100,
  stop_div = TRUE,
  ...
)
```

Arguments

```
object learner
start_lr starting learning rate
end_lr end learning rate
num_it number of iterations
stop_div stop div or not
... additional arguments to pass
```

mae 343

Value

data frame

Examples

```
## Not run:
model %>% lr_find()
model %>% plot_lr_find(dpi = 200)
## End(Not run)
```

mae

MAE

Description

Mean absolute error between 'inp' and 'targ'.

Usage

```
mae(inp, targ)
```

Arguments

inp predictions targ targets

Value

None

make_vocab

Make_vocab

Description

Create a vocab of 'max_vocab' size from 'Counter' 'count' with items present more than 'min_freq'

Usage

```
make_vocab(count, min_freq = 3, max_vocab = 60000, special_toks = NULL)
```

344 MaskBlock

Arguments

count count
min_freq min_freq
max_vocab max_vocab
special_toks special_toks

Value

None

mask2bbox Mask2bbox

Description

Mask2bbox

Usage

```
mask2bbox(mask, convert = TRUE)
```

Arguments

mask mask convert to R matrix

Value

tensor

MaskBlock MaskBlock

Description

A 'TransformBlock' for segmentation masks, potentially with 'codes'

Usage

MaskBlock(codes = NULL)

Arguments

codes codes

Value

block

masked_concat_pool 345

masked_concat_pool Ma.

Masked_concat_pool

Description

Pool 'MultiBatchEncoder' outputs into one vector [last_hidden, max_pool, avg_pool]

Usage

```
masked_concat_pool(output, mask, bptt)
```

Arguments

output output mask mask bptt bptt

Value

None

MaskFreq

Mask Freq

Description

Google SpecAugment frequency masking from https://arxiv.org/abs/1904.08779.

Usage

```
MaskFreq(num_masks = 1, size = 20, start = NULL, val = NULL)
```

Arguments

num_masks number of masks

size size

start starting point

val value

Value

346 Mask_create

MaskTime

MaskTime

Description

Google SpecAugment time masking from https://arxiv.org/abs/1904.08779.

Usage

```
MaskTime(num_masks = 1, size = 20, start = NULL, val = NULL)
```

Arguments

num_masks number of masks

size size

start starting point

val value

Value

None

Mask_create

Mask_create

Description

```
Delegates ('__call__', 'decode', 'setup') to ('encodes', 'decodes', 'setups') if 'split_idx' matches
```

Usage

```
Mask_create(enc = NULL, dec = NULL, split_idx = NULL, order = NULL)
```

Arguments

enc encoder

dec decoder

split_idx split by index

order order

Value

mask_from_blur 347

Description

Mask from blur

Usage

```
mask_from_blur(img, window, sigma = 0.3, thresh = 0.05, remove_max = TRUE)
```

Arguments

img image

window windowing effect

sigma sigma

thresh thresholf point

remove_max remove maximum or not

Description

A 'DataLoader' with a custom 'collate_fn' that batches items as required for inferring the model.

Usage

```
mask_rcnn_infer_dl(dataset, batch_tfms = NULL, ...)
```

Arguments

dataset Possibly a 'Dataset' object, but more generally, any 'Sequence' that returns

records.

guments that will be internally passed to a Pytorch 'DataLoader'. The parameter

'collate_fn' is already defined internally and cannot be passed here.

... additional arguments

Value

348 mask_rcnn_model

mask_rcnn_learner

MaskRCNN learner

Description

Fastai 'Learner' adapted for MaskRCNN.

Usage

```
mask_rcnn_learner(dls, model, cbs = NULL, ...)
```

Arguments

dls 'Sequence' of 'DataLoaders' passed to the 'Learner'. The first one will be used

for training and the second for validation.

model The model to train.

cbs Optional 'Sequence' of callbacks.

... learner_kwargs: Keyword arguments that will be internally passed to 'Learner'.

Value

model

mask_rcnn_model

MaskRCNN model

Description

MaskRCNN model implemented by torchvision.

Usage

```
mask_rcnn_model(
  num_classes,
  backbone = NULL,
  remove_internal_transforms = TRUE,
  pretrained = TRUE
)
```

mask_rcnn_predict_dl

Arguments

num_classes Number of classes.

backbone Backbone model to use. Defaults to a resnet50_fpn model.

remove_internal_transforms

The torchvision model internally applies transforms like resizing and normalization, but we already do this at the 'Dataset' level, so it's safe to remove those

internal transforms.

pretrained Argument passed to 'maskrcnn_resnet50_fpn' if 'backbone is NULL'. By de-

fault it is set to TRUE: this is generally used when training a new model (transfer learning). 'pretrained = FALSE' is used during inference (prediction) for cases where the users have their own pretrained weights. **mask_rcnn_kwargs: Key-

word arguments that internally are going to be passed to 'torchvision.models.detection.mask_rcnn.MaskR

349

Value

model

Description

Mask RCNN predict dataloader

Usage

```
mask_rcnn_predict_dl(model, infer_dl, show_pbar = TRUE)
```

Arguments

model model
infer_dl infer_dl
show_pbar show_pbar

Value

350 mask_rcnn_valid_dl

Description

A 'DataLoader' with a custom 'collate_fn' that batches items as required for training the model.

Usage

```
mask_rcnn_train_dl(dataset, batch_tfms = NULL, ...)
```

Arguments

dataset Possibly a 'Dataset' object, but more generally, any 'Sequence' that returns

records.

batch_tfms Transforms to be applied at the batch level.

.. dataloader_kwargs: Keyword arguments that will be internally passed to a Py-

torch 'DataLoader'. The parameter 'collate_fn' is already defined internally and

cannot be passed here.

Value

None

Description

A 'DataLoader' with a custom 'collate_fn' that batches items as required for training the model.

Usage

```
mask_rcnn_valid_dl(dataset, batch_tfms = NULL, ...)
```

Arguments

dataset Possibly a 'Dataset' object, but more generally, any 'Sequence' that returns

records.

batch_tfms Transforms to be applied at the batch level.

.. dataloader_kwargs: Keyword arguments that will be internally passed to a Py-

torch 'DataLoader'. The parameter 'collate_fn' is already defined internally and

cannot be passed here.

Value

mask_tensor 351

mask_tensor

Mask_tensor

Description

Mask elements of 'x' with 'neutral' with probability '1-p'

Usage

```
mask\_tensor(x, p = 0.5, neutral = 0, batch = FALSE)
```

Arguments

x tensor
p probability
neutral neutral
batch batch

Value

None

 ${\tt match_embeds}$

Match_embeds

Description

Convert the embedding in 'old_wgts' to go from 'old_vocab' to 'new_vocab'.

Usage

```
match_embeds(old_wgts, old_vocab, new_vocab)
```

Arguments

old_wgts old_wgts
old_vocab old_vocab
new_vocab new_vocab

Value

352 MatthewsCorrCoefMulti

MatthewsCorrCoef MatthewsCorrCoef

Description

Matthews correlation coefficient for single-label classification problems

Usage

```
MatthewsCorrCoef(...)
```

Arguments

... parameters to pass

Value

None

 ${\tt MatthewsCorrCoefMulti} \ \ \textit{MatthewsCorrCoefMulti}$

Description

Matthews correlation coefficient for multi-label classification problems

Usage

```
MatthewsCorrCoefMulti(thresh = 0.5, sigmoid = TRUE, sample_weight = NULL)
```

Arguments

thresh thresh sigmoid

sample_weight sample_weight

Value

max 353

max

Max

Description

Max

Usage

```
## S3 method for class 'torch.Tensor'
max(a, ..., na.rm = FALSE)
```

Arguments

a tensor

... additional parameters

na.rm remove NAs

Value

tensor

```
\max. fastai.torch\_core.TensorMask
Max
```

Description

Max

Usage

```
## S3 method for class 'fastai.torch_core.TensorMask'
max(a, ..., na.rm = FALSE)
```

Arguments

a tensor

... additional parameters

na.rm remove NAs

Value

354 maybe_unsqueeze

MaxPool

Description

nn.MaxPool layer for 'ndim'

Usage

```
MaxPool(ks = 2, stride = NULL, padding = 0, ndim = 2, ceil_mode = FALSE)
```

Arguments

ks kernel size

stride the stride of the window. Default value is kernel_size padding implicit zero padding to be added on both sides

MaxPool

ndim dimension number

ceil_mode when True, will use ceil instead of floor to compute the output shape

Value

None

maybe_unsqueeze

Maybe_unsqueeze

Description

Add empty dimension if it is a rank 1 tensor/array

Usage

```
maybe_unsqueeze(x)
```

Arguments

Х

R array/matrix/tensor

Value

array

MCDropoutCallback 355

 ${\tt MCDropoutCallback}$

MCDropoutCallback

Description

Turns on dropout during inference, allowing you to call Learner\$get_preds multiple times to approximate your model uncertainty using Monte Carlo Dropout. https://arxiv.org/pdf/1506.02142.pdf

Usage

```
MCDropoutCallback(...)
```

Arguments

... arguments to pass

Value

None

```
mean.fastai.torch_core.TensorMask

*Mean of tensor*
```

Description

Mean of tensor

Usage

```
## S3 method for class 'fastai.torch_core.TensorMask' mean(x, ...)
```

Arguments

```
x tensor
```

... additional parameters to pass

Value

356 medical

mean.torch.Tensor

Mean of tensor

Description

Mean of tensor

Usage

```
## S3 method for class 'torch.Tensor' mean(x, ...)
```

Arguments

x tensor

... additional parameters to pass

Value

tensor

medical

Medical module

Description

Medical module

Usage

medical()

Value

MergeLayer 357

MergeLayer

MergeLayer

Description

Merge a shortcut with the result of the module by adding them or concatenating them if 'dense=TRUE'.

Usage

```
MergeLayer(dense = FALSE)
```

Arguments

dense

dense

Value

None

metrics

Metrics module

Description

Metrics module

Usage

metrics()

Value

None

migrating_ignite

Ignite module

Description

Ignite module

Usage

```
migrating_ignite()
```

Value

358 min

migrating_lightning Lightning module

Description

Lightning module

Usage

```
migrating_lightning()
```

Value

None

migrating_pytorch

Pytorch module

Description

Pytorch module

Usage

```
migrating_pytorch()
```

Value

None

min

Min

Description

Min

Usage

```
## S3 method for class 'torch.Tensor'
min(a, ..., na.rm = FALSE)
```

Arguments

a tensor

.. additional parameters

na.rm remove NAs

Value

tensor

```
\min. fastai.torch\_core.TensorMask
Min
```

Description

Min

Usage

```
## S3 method for class 'fastai.torch_core.TensorMask'
min(a, ..., na.rm = FALSE)
```

Arguments

a tensor

... additional parameters

na.rm remove NAs

Value

tensor

mish Mish

Description

Mish

Usage

mish(x)

360		Mish_
Arguments		
x	tensor	
Value		
None		
MishJitAutoFn	MishJitAutoFn	
Description		
Records operation	on history and defines formulas for differentiating op-	S.
Usage		
MishJitAutoFr	n()	
Arguments		
	parameters to pass	
Value		
None		
Mish_	Class Mish	
Description		

Class Mish

Usage

Mish_(...)

Arguments

parameters to pass

Value

MixHandler 361

MixHandler

MixHandler

Description

A handler class for implementing 'MixUp' style scheduling

Usage

```
MixHandler(alpha = 0.5)
```

Arguments

alpha

alpha

Value

None

MixUp

MixUp

Description

Implementation of https://arxiv.org/abs/1710.09412

Usage

```
MixUp(alpha = 0.4)
```

Arguments

alpha

alpha

Value

362 model_sizes

ModelResetter

ModelResetter

Description

Callback that resets the model at each validation/training step

Usage

```
ModelResetter(...)
```

Arguments

... arguments to pass

Value

None

model_sizes

Model_sizes

Description

Pass a dummy input through the model 'm' to get the various sizes of activations.

Usage

```
model_sizes(m, size = list(64, 64))
```

Arguments

m m parameter

size size

Value

Module 363

Module

Module module

Description

Module module

Usage

Module()

Value

None

Module_test

NN module

Description

NN module

Usage

Module_test()

Value

None

momentum_step

Momentum_step

Description

Step for SGD with momentum with 'lr'

Usage

```
momentum_step(p, lr, grad_avg, ...)
```

364 mse

Arguments

p p

1r learning rate
grad_avg grad average

... additional arguments to pass

Value

None

most_confused

Most_confused

Description

Sorted descending list of largest non-diagonal entries of confusion matrix, presented as actual, predicted, number of occurrences.

Usage

```
most_confused(interp, min_val = 1)
```

Arguments

interp interpretation object min_val minimum value

Value

data frame

mse

MSE

Description

Mean squared error between 'inp' and 'targ'.

Usage

```
mse(inp, targ)
```

MSELossFlat 365

Arguments

inp predictions targ targets

Value

None

Examples

```
## Not run:
model = dls %>% tabular_learner(layers=c(200,100,100,200),
metrics = list(mse(),rmse()) )
## End(Not run)
```

MSELossFlat

MSELossFlat

Description

Flattens input and output, same as nn\$MSELoss

Usage

```
MSELossFlat(...)
```

Arguments

... parameters to pass

Value

Loss object

366 MultiCategorize

msle

MSLE

Description

Mean squared logarithmic error between 'inp' and 'targ'.

Usage

```
msle(inp, targ)
```

Arguments

inp predictions targ targets

Value

None

MultiCategorize

Multi Categorize

Description

Reversible transform of multi-category strings to 'vocab' id

Usage

```
MultiCategorize(vocab = NULL, add_na = FALSE)
```

Arguments

vocab vocabulary add_na add NA

Value

MultiCategoryBlock 367

MultiCategoryBlock

MultiCategoryBlock

Description

'TransformBlock' for multi-label categorical targets

Usage

```
MultiCategoryBlock(encoded = FALSE, vocab = NULL, add_na = FALSE)
```

Arguments

encoded encoded or not vocab vocabulary add_na add NA

Value

Block object

```
multiplygit add -A && git commit -m 'staging all files' {\it Multiply}
```

Description

Multiply

Usage

```
## S3 method for class 'torch.
Tensor' a \star b
```

Arguments

a tensor b tensor

Value

tensor

368 narrow

MultiTargetLoss

MultiTargetLoss

Description

Provides the ability to apply different loss functions to multi-modal targets/predictions

Usage

```
MultiTargetLoss(...)
```

Arguments

... additional arguments

Value

None

narrow

Modify tensor

Description

Modify tensor

Usage

```
narrow(tensor, slice)
```

Arguments

tensor torch tensor slice dimension

Value

tensor

Net 369

Net Net

Description

Net model from Migrating_Pytorch

Usage

Net()

Value

model

Examples

```
## Not run:
Net()
## End(Not run)
```

nn

NN module

Description

NN module

Usage

nn()

Value

nn_module

nn_loss

Fastai custom loss

Description

Fastai custom loss

Usage

```
nn_loss(loss_fn, name = "Custom_Loss")
```

Arguments

loss_fn pass custom model function name set name for nn_module

Value

None

nn_module

Fastai NN module

Description

Fastai NN module

Usage

```
nn_module(model_fn, name = "Custom_Model", gpu = TRUE)
```

Arguments

model_fn pass custom model function
name set name for nn_module
gpu move model to GPU

Value

NoiseColor 371

NoiseColor

NoiseColor module

Description

NoiseColor module

Usage

NoiseColor()

Value

None

NoneReduce

NoneReduce

Description

A context manager to evaluate 'loss_func' with none reduce.

Usage

NoneReduce(loss_func)

Arguments

loss_func

loss function

Value

Normalize Normalize

noop

Noop

Description

Noop

Usage

```
noop(...)
```

Arguments

... parameters to pass

Value

None

 ${\tt Normalize}$

Normalize

Description

Normalize the continuous variables.

Usage

```
Normalize(cat_names, cont_names)
```

Arguments

cat_names cat_names
cont_names cont_names

Value

NormalizeTS 373

NormalizeTS

Description

Normalize the x variables.

Usage

```
NormalizeTS(enc = NULL, dec = NULL, split_idx = NULL, order = NULL)
```

NormalizeTS

Arguments

enc encoder

dec decoder

split_idx split by index

order order

Value

None

 $Normalize_from_stats \quad \textit{Normalize from stats}$

Description

Normalize from stats

Usage

```
Normalize_from_stats(mean, std, dim = 1, ndim = 4, cuda = TRUE)
```

Arguments

mean mean

std standard deviation

dim dimension

ndim number of dimensions

cuda cuda or not

Value

list

not_equal_to

norm_apply_denorm

Norm_apply_denorm

Description

Normalize 'x' with 'nrm', then apply 'f', then denormalize

Usage

```
norm_apply_denorm(x, f, nrm)
```

Arguments

x tensor function nrm nrm

Value

None

not_equal_to

Not equal

Description

Not equal

Usage

```
## S3 method for class 'torch.Tensor'
a != b
```

Arguments

a tensorb tensor

Value

tensor

not_equal_to_mask_ 375

not_equal_to_mask_

Not equal

Description

Not equal

Usage

```
## S3 method for class 'fastai.torch_core.TensorMask'
a != b
```

Arguments

a tensor b tensor

Value

tensor

not__mask

 $Logical_not$

Description

Logical_not

Usage

```
## S3 method for class 'fastai.torch_core.TensorMask'
!x
```

Arguments

Х

tensor

Value

tensor

num_features_model

Numericalize

Numericalize

Description

Reversible transform of tokenized texts to numericalized ids

Usage

```
Numericalize(
  vocab = NULL,
  min_freq = 3,
  max_vocab = 60000,
  special_toks = NULL,
  pad_tok = NULL
)
```

Arguments

```
vocab vocab
min_freq min_freq
max_vocab max_vocab
special_toks
pad_tok pad_tok
```

Value

None

num_features_model

Num_features_model

Description

Return the number of output features for 'm'.

Usage

```
num_features_model(m)
```

Arguments

m

m parameter

Value

n_px 377

n_px

 N_px

Description

```
int(x=0) \rightarrow integer
```

Usage

```
n_px(img)
```

Arguments

img

image

Value

None

OldRandomCrop

Old Random Crop

Description

Randomly crop an image to 'size'

Usage

```
OldRandomCrop(size, pad_mode = "zeros", ...)
```

Arguments

size size

pad_mode padding mode

... additional arguments

Value

OpenAudio OpenAudio

one_batch

One batch

Description

One batch

Usage

```
one_batch(object, convert = FALSE, ...)
```

Arguments

object data loader convert to R matrix

.. additional parameters to pass

Value

tensor

Examples

```
## Not run:
# get batch from data loader
batch = dls %>% one_batch()
## End(Not run)
```

OpenAudio

OpenAudio

Description

Transform that creates AudioTensors from a list of files.

Usage

```
OpenAudio(items)
```

Arguments

items

vector, items

Optimizer		379
Value		
None		
Optimizer	Optimizer	
Description		
Optimizer		
Usage		
Optimizer()	
Arguments		
	parameters to pass	
Value		
None		
OptimWrapper	OptimWrapper	
Description		
OptimWrapper		
Usage		
OptimWrapper()	
Arguments		
	parameters to pass	
Value		

or_mask

optim_metric

Optim metric

Description

Replace metric 'f' with a version that optimizes argument 'argname'

Usage

```
optim_metric(f, argname, bounds, tol = 0.01, do_neg = TRUE, get_x = FALSE)
```

Arguments

f f argname argname bounds bounds tol tol do_neg get_x get_x f

Value

None

or_mask

 $Logical_or$

Description

```
Logical_or
```

Usage

```
## S3 method for class 'fastai.torch_core.TensorMask' x \mid y
```

Arguments

Χ	tensor
У	tensor

Value

tensor

os 381

os

Operating system

Description

Operating system

Usage

os()

Value

vector

os_environ_tpu

An environment supporting TPUs

Description

An environment supporting TPUs

Usage

```
os_environ_tpu(text = "COLAB_TPU_ADDR")
```

Arguments

text

string to pass to environment

Value

382 pad_conv_norm_relu

pad_conv_norm_relu

Pad_conv_norm_relu

Description

```
Pad_conv_norm_relu
```

Usage

```
pad_conv_norm_relu(
   ch_in,
   ch_out,
   pad_mode,
   norm_layer,
   ks = 3,
   bias = TRUE,
   pad = 1,
   stride = 1,
   activ = TRUE,
   init = nn()$init$kaiming_normal_,
   init_gain = 0.02
)
```

Arguments

ch_in input ch_out output pad_mode padding mode norm_layer normalization layer ks kernel size bias bias pad padding stride stride activ activation initializer init init_gain init gain

Value

pad_input 383

pad_input Pad_input

Description

Function that collect 'samples' and adds padding

Usage

```
pad_input(
  samples,
  pad_idx = 1,
  pad_fields = 0,
  pad_first = FALSE,
  backwards = FALSE
)
```

Arguments

```
samples samples
pad_idx pad_idx
pad_fields pad_fields
pad_first pad_first
backwards backwards
```

Value

None

pad_input_chunk
Pad_input_chunk

Description

Pad 'samples' by adding padding by chunks of size 'seq_len'

Usage

```
pad_input_chunk(samples, pad_idx = 1, pad_first = TRUE, seq_len = 72)
```

Arguments

```
samples samples
pad_idx pad_idx
pad_first pad_first
seq_len seq_len
```

384 parallel_tokenize

Value

None

parallel

Parallel

Description

Applies 'func' in parallel to 'items', using 'n_workers'

Usage

```
parallel(f, items, ...)
```

Arguments

f file names items

... additional arguments

Value

None

parallel_tokenize

Parallel_tokenize

Description

Calls optional 'setup' on 'tok' before launching 'TokenizeWithRules' using 'parallel_gen

Usage

```
parallel_tokenize(items, tok = NULL, rules = NULL, n_workers = 6)
```

Arguments

items
tok
tokenizer
rules
n_workers
n_workers

Value

params 385

params

Params

Description

Return all parameters of 'm'

Usage

params(m)

Arguments

m

parameters

Value

None

ParamScheduler

ParamScheduler

Description

Schedule hyper-parameters according to 'scheds'

Usage

ParamScheduler(scheds)

Arguments

scheds

scheds

Value

386 parsers_AreasMixin

parent_label

Parent_label

Description

Label 'item' with the parent folder name.

Usage

```
parent_label(o)
```

Arguments

0

string, dir path

Value

vector

parsers_AreasMixin

AreasMixin

Description

Adds areas method to parser

Usage

```
\verb|parsers_AreasMixin(...)|
```

Arguments

... arguments to pass

Value

parsers_BBoxesMixin 387

parsers_BBoxesMixin B

BBoxesMixin

Description

Adds bboxes method to parser

Usage

```
parsers_BBoxesMixin(...)
```

Arguments

... arguments to pass

Value

None

parsers_FasterRCNN

Faster RCNN

Description

Parser with required mixins for Faster RCNN.

Usage

```
parsers_FasterRCNN(...)
```

Arguments

... arguments to pass

Value

```
\verb"parsers_FilepathMixin" FilepathMixin"
```

Description

Adds filepath method to parser

Usage

```
parsers_FilepathMixin(...)
```

Arguments

.. arguments to pass

Value

None

Description

Adds imageid method to parser

Usage

```
parsers_ImageidMixin(...)
```

Arguments

... arguments to pass

Value

parsers_IsCrowdsMixin 389

```
parsers_IsCrowdsMixin IsCrowdsMixin
```

Description

Adds iscrowds method to parser

Usage

```
parsers_IsCrowdsMixin(...)
```

Arguments

arguments to pass

Value

None

```
parsers_LabelsMixin LabelsMixin
```

Description

Adds labels method to parser

Usage

```
parsers_LabelsMixin(...)
```

Arguments

... arguments to pass

Value

390 parsers_MasksMixin

parsers_MaskRCNN Mask RCNN

Description

Parser with required mixins for Mask RCNN.

Usage

```
parsers_MaskRCNN(...)
```

Arguments

... arguments to pass

Value

None

parsers_MasksMixin MasksMixin

Description

Adds masks method to parser

Usage

```
parsers_MasksMixin(...)
```

Arguments

... arguments to pass

Value

parsers_SizeMixin 391

parsers_SizeMixin

SizeMixin

Description

Adds image_width_height method to parser

Usage

```
parsers_SizeMixin(...)
```

Arguments

... arguments to pass

Value

None

parsers_voc

Voc parser

Description

Voc parser

Usage

```
parsers_voc(annotations_dir, images_dir, class_map, masks_dir = NULL)
```

Arguments

```
annotations\_dir
```

annotations_dir

images_dir images_dir
class_map class_map
masks_dir masks_dir

Value

392 PartiaIDL

partial

Partial

Description

```
partial(func, *args, **keywords) - new function with partial application
```

Usage

```
partial(...)
```

Arguments

... additional arguments

Value

None

Examples

PartialDL

PartialDL

Description

Select randomly partial quantity of data at each epoch

Usage

```
PartialDL(
  dataset = NULL,
  bs = NULL,
  partial_n = NULL,
  shuffle = FALSE,
  num_workers = NULL,
```

PartialLambda 393

```
verbose = FALSE,
do_setup = TRUE,
pin_memory = FALSE,
timeout = 0,
batch_size = NULL,
drop_last = FALSE,
indexed = NULL,
n = NULL,
device = NULL,
persistent_workers = FALSE
```

Arguments

dataset dataset bs bs partial_n partial_n shuffle shuffle num_workers num_workers verbose verbose do_setup do_setup pin_memory pin_memory timeout timeout batch_size batch_size drop_last drop_last indexed indexed device device persistent_workers persistent_workers

Value

None

PartialLambda PartialLambda

Description

Layer that applies 'partial(func, ...)'

394 PearsonCorrCoef

Usage

PartialLambda(func)

Arguments

func function

Value

None

pca PCA

Description

Compute PCA of 'x' with 'k' dimensions.

Usage

```
pca(object, k = 3, convert = TRUE)
```

Arguments

object an object to apply PCA k number of dimensions

convert to R matrix

Value

tensor

PearsonCorrCoef PearsonCorrCoef

Description

Pearson correlation coefficient for regression problem

Perplexity 395

Usage

```
PearsonCorrCoef(
  dim_argmax = NULL,
  activation = "no",
  thresh = NULL,
  to_np = FALSE,
  invert_arg = FALSE,
  flatten = TRUE
)
```

Arguments

dim_argmax dim_argmax activation activation thresh thresh to_np to_np invert_arg flatten dim_argmax

Value

None

Perplexity

Perplexity

Description

Perplexity

Usage

```
Perplexity(...)
```

Arguments

... parameters to pass

Value

396 PixelShuffle_ICNR

Pipeline

Pipeline

Description

A pipeline of composed (for encode/decode) transforms, setup with types

Usage

```
Pipeline(funcs = NULL, split_idx = NULL)
```

Arguments

```
funcs functions split_idx split by index
```

Value

None

PixelShuffle_ICNR

 $PixelShuffle_ICNR$

Description

Upsample by 'scale' from 'ni' filters to 'nf' (default 'ni'), using 'nn.PixelShuffle'.

Usage

```
PixelShuffle_ICNR(
    ni,
    nf = NULL,
    scale = 2,
    blur = FALSE,
    norm_type = 3,
    act_cls = nn()$ReLU
)
```

Arguments

```
ni input shape
nf number of features / outputs
scale scale
```

blur blur

norm_type normalziation type

act_cls activation

plot 397

Value

None

plot

Plot dicom

Description

Plot dicom

Usage

```
plot(x, y, ..., dpi = 100)
```

Arguments

x modely y axis

parameters to passdpidots per inch

Value

None

plot_bs_find

Plot_bs_find

Description

Plot_bs_find

Usage

Arguments

object model

... additional arguments

dpi dots per inch

Value

398 plot_confusion_matrix

```
plot_confusion_matrix Plot_confusion_matrix
```

Description

Plot the confusion matrix, with 'title' and using 'cmap'.

Usage

```
plot_confusion_matrix(
   interp,
   normalize = FALSE,
   title = "Confusion matrix",
   cmap = "Blues",
   norm_dec = 2,
   plot_txt = TRUE,
   figsize = c(4, 4),
   ...,
   dpi = 120
)
```

Arguments

```
interpretation object
interp
normalize
                  normalize
title
                  title
                  color map
cmap
norm_dec
                  norm dec
plot_txt
                  plot text
figsize
                  plot size
                  additional parameters to pass
                  dots per inch
dpi
```

Value

None

Examples

```
## Not run:
interp = ClassificationInterpretation_from_learner(model)
interp %>% plot_confusion_matrix(dpi = 90,figsize = c(6,6))
```

plot_loss 399

```
## End(Not run)
```

plot_loss

Plot_loss

Description

Plot the losses from 'skip_start' and onward

Usage

```
plot_loss(object, skip_start = 5, with_valid = TRUE, dpi = 200)
```

Arguments

object model

 ${\tt skip_start} \qquad \quad n \ points \ to \ skip \ the \ start$

with_valid with validation dpi dots per inch

Value

None

plot_lr_find

Plot_lr_find

Description

Plot the result of an LR Finder test (won't work if you didn't do 'lr_find(learn)' before)

Usage

```
plot_lr_find(object, skip_end = 5, dpi = 250)
```

Arguments

object model

skip_end n points to skip the end

dpi dots per inch

Value

400 plot_top_losses

plot_top_losses

Plot_top_losses

Description

```
Plot_top_losses
```

Usage

```
plot_top_losses(interp, k, largest = TRUE, figsize = c(7, 5), ..., dpi = 90)
```

Arguments

interp interpretation object

k number of images

largest largest figsize plot size

... additional parameters to pass

dpi dots per inch

Value

None

Examples

```
## Not run:

# get interperetation from learn object, the model.
interp = ClassificationInterpretation_from_learner(learn)
interp %>% plot_top_losses(k = 9, figsize = c(15,11))

## End(Not run)
```

PointBlock 401

PointBlock

PointBlock

Description

A 'TransformBlock' for points in an image

Usage

```
PointBlock()
```

Value

None

PointScaler

PointScaler

Description

Scale a tensor representing points

Usage

```
PointScaler(do_scale = TRUE, y_first = FALSE)
```

Arguments

Value

402 PoolFlatten

 ${\tt PooledSelfAttention2d} \ \ \textit{PooledSelfAttention2d}$

Description

Pooled self attention layer for 2d.

Usage

PooledSelfAttention2d(n_channels)

Arguments

n_channels

number of channels

Value

None

PoolFlatten

PoolFlatten

Description

Combine 'nn.AdaptiveAvgPool2d' and 'Flatten'.

Usage

```
PoolFlatten(pool_type = "Avg")
```

Arguments

pool_type

pooling type

Value

 ${\tt PoolingLinearClassifier}$

Pooling Linear Classifier

Description

Create a linear classifier with pooling

Usage

```
PoolingLinearClassifier(dims, ps, bptt, y_range = NULL)
```

Arguments

```
dims dims
ps ps
bptt bptt
y_range y_range
```

Value

None

pow Pow

Description

Pow

Usage

```
## S3 method for class 'torch.Tensor'
a ^ b
```

Arguments

a tensorb tensor

Value

tensor

404 PrecisionMulti

Precision

Precision

Description

Precision for single-label classification problems

Usage

```
Precision(
  axis = -1,
  labels = NULL,
  pos_label = 1,
  average = "binary",
  sample_weight = NULL
)
```

Arguments

```
axis axis
labels labels
pos_label pos_label
average average
sample_weight sample_weight
```

Value

None

PrecisionMulti

PrecisionMulti

Description

Precision for multi-label classification problems

Usage

```
PrecisionMulti(
  thresh = 0.5,
  sigmoid = TRUE,
  labels = NULL,
  pos_label = 1,
  average = "macro",
  sample_weight = NULL
)
```

Arguments

thresh thresh
sigmoid sigmoid
labels labels
pos_label pos_label
average average
sample_weight sample_weight

Value

None

```
predict.fastai.learner.Learner

**Predict**
```

Description

Prediction on 'item', fully decoded, loss function decoded and probabilities

Usage

```
## S3 method for class 'fastai.learner.Learner'
predict(object, row, ...)
```

Arguments

object the model row

... additional arguments to pass

Value

data frame

406 preplexity

```
predict.fastai.tabular.learner.TabularLearner\\ Predict
```

Description

Prediction on 'item', fully decoded, loss function decoded and probabilities

Usage

```
## S3 method for class 'fastai.tabular.learner.TabularLearner'
predict(object, row, ...)
```

Arguments

object the model row row

... additional arguments to pass

Value

data frame

preplexity

Perplexity

Description

Perplexity (exponential of cross-entropy loss) for Language Models

Usage

```
preplexity(...)
```

Arguments

... parameters to pass

Value

PreprocessAudio 407

PreprocessAudio

Preprocess Audio

Description

Creates an audio tensor and run the basic preprocessing transforms on it.

Usage

```
PreprocessAudio(sample_rate = 16000, force_mono = TRUE, crop_signal_to = NULL)
```

Arguments

```
sample_rate sample rate
force_mono force mono or not
crop_signal_to int, crop signal
```

Details

Used while preprocessing the audios, this is not a 'Transform'.

Value

None

```
preprocess_audio_folder
```

Preprocess audio folder

Description

Preprocess audio files in 'path' in parallel using 'n_workers'

Usage

```
preprocess_audio_folder(
  path,
  folders = NULL,
  output_dir = NULL,
  sample_rate = 16000,
  force_mono = TRUE,
   crop_signal_to = NULL
)
```

408 pre_process_squad

Arguments

path directory, path

folders folders

output_dir output directory
sample_rate sample rate

force_mono force mono or not

crop_signal_to int, crop signal

Value

None

pre_process_squad

Pre_process_squad

Description

Pre_process_squad

Usage

```
pre_process_squad(row, hf_arch, hf_tokenizer)
```

Arguments

row in dataframe

hf_arch architecture hf_tokenizer tokenizer

Value

```
 \begin{array}{c} {\tt print.fastai.learner.Learner} \\ {\tt \it Print\ model} \end{array}
```

Description

Print model

Usage

```
## S3 method for class 'fastai.learner.Learner' print(x, \ldots)
```

Arguments

x object

... additional parameters to pass

Value

None

```
\label{eq:print.fastai.tabular.learner.TabularLearner} Print\ tabular\ model
```

Description

Print tabular model

Usage

```
## S3 method for class 'fastai.tabular.learner.TabularLearner' print(x, \ldots)
```

Arguments

x model

... additional parameters to pass

Value

410 python_path

Description

prints dicom file

Usage

```
## S3 method for class 'pydicom.dataset.FileDataset' print(x, \ldots)
```

Arguments

x dicom file

... additional parameters to pass

Value

None

python_path

Python path

Description

Python path

Usage

```
python_path()
```

Value

py_apply 411

py_apply

Py_apply

Description

Pandas apply

Usage

```
py_apply(df, ...)
```

Arguments

df dataframe

... additional arguments

Value

dataframe

QHAdam

QHAdam

Description

QHAdam

Usage

QHAdam(...)

Arguments

... parameters to pass

Value

QRNN QRNN

Description

Qhadam_step

Usage

```
qhadam_step(p, 1r, mom, sqr_mom, sqr_avg, nu_1, nu_2, step, grad_avg, eps, ...)
```

Arguments

р lr learning rate momentum mom sqr_mom sqr momentum sqr_avg sqr average nu_1 nu_1 nu_2 nu_2 step step grad_avg gradient average epsilon eps additional arguments to pass

Value

None

QRNN QRNN

Description

Apply a multiple layer Quasi-Recurrent Neural Network (QRNN) to an input sequence.

QRNNLayer 413

Usage

```
QRNN(
  input_size,
  hidden_size,
  n_layers = 1,
  batch_first = TRUE,
  dropout = 0,
  bidirectional = FALSE,
  save_prev_x = FALSE,
  zoneout = 0,
  window = NULL,
  output_gate = TRUE
)
```

Arguments

input_size input_size hidden_size hidden_size n_layers n_layers batch_first batch_first dropout dropout bidirectional bidirectional save_prev_x save_prev_x zoneout zoneout window window output_gate output_gate

Value

None

QRNNLayer QRNNLayer

Description

Apply a single layer Quasi-Recurrent Neural Network (QRNN) to an input sequence.

414 R2Score

Usage

```
QRNNLayer(
  input_size,
  hidden_size = NULL,
  save_prev_x = FALSE,
  zoneout = 0,
  window = 1,
  output_gate = TRUE,
  batch_first = TRUE,
  backward = FALSE
)
```

Arguments

input_size input_size hidden_size hidden_size save_prev_x save_prev_x zoneout zoneout window window output_gate output_gate batch_first batch_first backward backward

Value

None

R2Score

R2Score

Description

R2 score between predictions and targets

Usage

```
R2Score(sample_weight = NULL)
```

Arguments

```
sample_weight sample_weight
```

Value

RAdam 415

RAdam RAdam

Description

RAdam

Usage

RAdam(...)

Arguments

... parameters to pass

Value

None

 $radam_step$

Radam_step

Description

Step for RAdam with 'lr' on 'p'

Usage

```
radam_step(p, lr, mom, step, sqr_mom, grad_avg, sqr_avg, eps, beta, ...)
```

Arguments

 $\mathsf{p} \qquad \qquad \mathsf{p}$

1rlearning ratemommomentumstepstep

sqr_mom sqr momentum
grad_avg grad average
sqr_avg sqr average
eps epsilon
beta beta

... additional arguments to pass

Value

416 RandomErasing

RandomCrop

RandomCrop

Description

Randomly crop an image to 'size'

Usage

```
RandomCrop(size, ...)
```

Arguments

size size

... additional arguments

Value

None

RandomErasing

RandomErasing

Description

Randomly selects a rectangle region in an image and randomizes its pixels.

Usage

```
RandomErasing(p = 0.5, sl = 0, sh = 0.3, min_aspect = 0.3, max_count = 1)
```

Arguments

p probability

 $rac{sl}{sh}$ $rac{sl}{sh}$

min_aspect minimum aspect max_count maximum count

Value

RandomResizedCrop 417

RandomResizedCrop

RandomResizedCrop

Description

Picks a random scaled crop of an image and resize it to 'size'

Usage

```
RandomResizedCrop(
    size,
    min_scale = 0.08,
    ratio = list(0.75, 1.33333333333333),
    resamples = list(2, 0),
    val_xtra = 0.14
)
```

Arguments

```
size size
min_scale minimum scale
ratio ratio
resamples resamples
val_xtra validation xtra
```

Value

None

RandomResizedCropGPU

RandomResizedCropGPU

Description

Picks a random scaled crop of an image and resize it to 'size'

Usage

```
RandomResizedCropGPU(
    size,
    min_scale = 0.08,
    ratio = list(0.75, 1.3333333333333),
    mode = "bilinear",
    valid_scale = 1
)
```

418 RandPair

Arguments

size size

min_scale minimum scale

ratio ratio mode mode

valid_scale validation scale

Value

None

 ${\tt RandomSplitter}$

Random Splitter

Description

Create function that splits 'items' between train/val with 'valid_pct' randomly.

Usage

```
RandomSplitter(valid_pct = 0.2, seed = NULL)
```

Arguments

valid_pct validation percenatge split

seed random seed

Value

None

RandPair RandPair

Description

a random image from domain B, resulting in a random pair of images from domain A and B.

Usage

RandPair(itemsB)

Arguments

itemsB a random image from domain B

RandTransform 419

Value

None

RandTransform

RandTransform

Description

A transform that before_call its state at each '__call__'

Usage

```
RandTransform(p = 1, nm = NULL, before_call = NULL, ...)
```

Arguments

```
p probability
nm nm
before_call before call
```

.. additional arguments to pass

Value

None

ranger

Ranger

Description

Convenience method for 'Lookahead' with 'RAdam'

Usage

```
ranger(
   p,
   lr,
   mom = 0.95,
   wd = 0.01,
   eps = 1e-06,
   sqr_mom = 0.99,
   beta = 0,
   decouple_wd = TRUE
)
```

420 RatioResize

Arguments

p p

1rlearning ratemommomentumwdweight decay

eps epsilon

sqr_mom sqr momentum

beta beta

decouple_wd decouple weight decay

Value

None

RatioResize RatioResize

Description

Resizes the biggest dimension of an image to 'max_sz' maintaining the aspect ratio

Usage

```
RatioResize(max_sz, resamples = list(2, 0), ...)
```

Arguments

max_sz maximum sz resamples resamples

... additional arguments

Value

ReadTSBatch 421

ReadTSBatch

ReadTSBatch

Description

A transform that always take lists as items

Usage

```
ReadTSBatch(to)
```

Arguments

to

output from TSDataTable function

Value

None

Recall

Recall

Description

Recall for single-label classification problems

Usage

```
Recall(
  axis = -1,
  labels = NULL,
  pos_label = 1,
  average = "binary",
  sample_weight = NULL
)
```

Arguments

```
axis axis
labels labels
pos_label pos_label
average average
sample_weight sample_weight
```

Value

422 ReduceLROnPlateau

RecallMulti

RecallMulti

Description

Recall for multi-label classification problems

Usage

```
RecallMulti(
  thresh = 0.5,
  sigmoid = TRUE,
  labels = NULL,
  pos_label = 1,
  average = "macro",
  sample_weight = NULL
)
```

Arguments

```
thresh thresh
sigmoid sigmoid
labels labels
pos_label pos_label
average average
sample_weight sample_weight
```

Value

None

ReduceLROnPlateau

ReduceLROnPlateau

Description

ReduceLROnPlateau

Usage

```
ReduceLROnPlateau(...)
```

Arguments

... parameters to pass

RegressionBlock 423

Value

None

Examples

```
## Not run:

URLs_MNIST_SAMPLE()
# transformations
tfms = aug_transforms(do_flip = FALSE)
path = 'mnist_sample'
bs = 20

#load into memory
data = ImageDataLoaders_from_folder(path, batch_tfms = tfms, size = 26, bs = bs)

learn = cnn_learner(data, resnet18(), metrics = accuracy, path = getwd())
learn %>% fit_one_cycle(10, 1e-2, cbs = ReduceLROnPlateau(monitor='valid_loss', patience = 1))
## End(Not run)
```

 ${\tt RegressionBlock}$

RegressionBlock

Description

'TransformBlock' for float targets

Usage

```
RegressionBlock(n_out = NULL)
```

Arguments

n_out

number of out features

Value

Block object

424 RemoveType

RemoveSilence

Remove Silence

Description

Split signal at points of silence greater than 2*pad_ms

Usage

```
RemoveSilence(
  remove_type = RemoveType()$Trim$value,
  threshold = 20,
  pad_ms = 20
)
```

Arguments

remove_type remove type from RemoveType module

threshold threshold point pad_ms pad milliseconds

Value

None

 ${\tt RemoveType}$

RemoveType module

Description

RemoveType module

Usage

RemoveType()

Value

replace_all_caps 425

replace_all_caps

Replace_all_caps

Description

Replace tokens in ALL CAPS by their lower version and add 'TK_UP' before.

Usage

```
replace_all_caps(t)
```

Arguments

t

text

Value

string

replace_maj

Replace_maj

Description

Replace tokens in ALL CAPS by their lower version and add 'TK_UP' before.

Usage

```
replace_maj(t)
```

Arguments

t

text

Value

string

426 replace_wrep

replace_rep

Replace_rep

Description

Replace repetitions at the character level: cccc – TK_REP 4 c

Usage

```
replace_rep(t)
```

Arguments

t

text

Value

string

replace_wrep

Replace_wrep

Description

Replace word repetitions: word word word word - TK_WREP 4 word

Usage

```
replace_wrep(t)
```

Arguments

t

text

Value

string

Resample 427

Resample

Resample

Description

Resample using faster polyphase technique and avoiding FFT computation

Usage

```
Resample(sr_new)
```

Arguments

sr_new

input

Value

None

ResBlock

ResBlock

Description

Resnet block from 'ni' to 'nh' with 'stride'

Usage

```
ResBlock(
  expansion,
  ni,
  nf,
  stride = 1,
  groups = 1,
  reduction = NULL,
  nh1 = NULL,
  nh2 = NULL,
  dw = FALSE,
  g2 = 1,
  sa = FALSE,
  sym = FALSE,
  norm\_type = 1,
  act_cls = nn$ReLU,
  ndim = 2,
  ks = 3,
  pool = AvgPool(),
```

428 ResBlock

```
pool_first = TRUE,
padding = NULL,
bias = NULL,
bn_1st = TRUE,
transpose = FALSE,
init = "auto",
xtra = NULL,
bias_std = 0.01,
dilation = 1,
padding_mode = "zeros"
)
```

Arguments

expansion decoder ni number of linear inputs nf number of features stride number stride groups number groups reduction reduction nh1 out channels 1 out channels 2 nh2 dw paramer dw g2 g2 block sa sa parameter symmetric sym norm_type normalization type activation act_cls dimension number ndim ks kernel size pooling type, Average, Max pool pool_first pooling first padding padding bias bias bn_1st batch normalization 1st transpose transpose init initializer xtra xtra bias standard deviation bias_std dilation number dilation

padding mode

padding_mode

reshape 429

Value

Block object

reshape Reshape

Description

```
resize x to (w,h)
```

Usage

```
reshape(x, h, w, resample = 0)
```

Arguments

x tensor
h height
w width

resample resample value

Value

None

Resize Resize

Description

A transform that before_call its state at each '__call__'

Usage

```
Resize(size, method = "crop", pad_mode = "reflection", resamples = list(2, 0))
```

Arguments

size size of image method method

pad_mode reflection, zeros, border as string parameter

resamples list of integers

Value

430 ResizeSignal

ResizeBatch

ResizeBatch

Description

Reshape x to size, keeping batch dim the same size

Usage

```
ResizeBatch(...)
```

Arguments

... parameters to pass

Value

None

ResizeSignal

Resize Signal

Description

Crops signal to be length specified in ms by duration, padding if needed

Usage

```
ResizeSignal(duration, pad_mode = AudioPadType()$Zeros)
```

Arguments

duration int, duration pad_mode padding mode

Value

resize_max 431

resize_max

Resize_max

Description

```
'resize' 'x' to 'max_px', or 'max_h', or 'max_w'
```

Usage

```
resize_max(img, resample = 0, max_px = NULL, max_h = NULL, max_w = NULL)
```

Arguments

img image
resample resample value
max_px max px
max_h max height
max_w max width

Value

None

ResNet

ResNet

Description

Base class for all neural network modules.

Usage

```
ResNet(
  block,
  layers,
  num_classes = 1000,
  zero_init_residual = FALSE,
  groups = 1,
  width_per_group = 64,
  replace_stride_with_dilation = NULL,
  norm_layer = NULL
)
```

resnet101

Arguments

block the blocks that need to passed to ResNet

layers the layers to pass to ResNet

num_classes the number of classes

zero_init_residual

logical, initializer

groups the groups

width_per_group

the width per group

replace_stride_with_dilation

logical, replace stride with dilation

norm_layer norm_layer

resnet101 Resnet101

Description

ResNet-101 model from

Usage

```
resnet101(pretrained = FALSE, progress)
```

Arguments

pretrained pretrained or not

progress to see progress bar or not

Details

"Deep Residual Learning for Image Recognition" https://arxiv.org/pdf/1512.03385.pdf

Value

model

resnet152 433

resnet152

Resnet152

Description

Resnet152

Usage

```
resnet152(pretrained = FALSE, progress)
```

Arguments

pretrained

pretrained or not

progress

to see progress bar or not

Details

"Deep Residual Learning for Image Recognition" https://arxiv.org/pdf/1512.03385.pdf

Value

model

resnet18

Resnet18

Description

Resnet18

Usage

```
resnet18(pretrained = FALSE, progress)
```

Arguments

pretrained

pretrained or not

progress

to see progress bar or not

Details

"Deep Residual Learning for Image Recognition" https://arxiv.org/pdf/1512.03385.pdf

Value

model

434 resnet50

resnet34

Resnet34

Description

ResNet-34 model from

Usage

```
resnet34(pretrained = FALSE, progress)
```

Arguments

pretrained

pretrained or not

progress

to see progress bar or not

Details

"Deep Residual Learning for Image Recognition" https://arxiv.org/pdf/1512.03385.pdf

Value

model

resnet50

Resnet50

Description

Resnet50

Usage

```
resnet50(pretrained = FALSE, progress)
```

Arguments

pretrained

pretrained or not

progress

to see progress bar or not

Details

"Deep Residual Learning for Image Recognition" https://arxiv.org/pdf/1512.03385.pdf

Value

model

ResnetBlock 435

ResnetBlock

ResnetBlock

Description

nn()\$Module for the ResNet Block

Usage

```
ResnetBlock(
   dim,
   pad_mode = "reflection",
   norm_layer = NULL,
   dropout = 0,
   bias = TRUE
)
```

Arguments

```
dim dimension
pad_mode padding mode
norm_layer normalization layer
dropout dropout rate
bias bias or not
```

Value

None

 $resnet_generator$

Resnet_generator

Description

Resnet_generator

Usage

```
resnet_generator(
  ch_in,
  ch_out,
  n_ftrs = 64,
  norm_layer = NULL,
  dropout = 0,
  n_blocks = 9,
  pad_mode = "reflection"
)
```

res_block_1d

Arguments

ch_in input
ch_out output
n_ftrs filter

norm_layer normalziation layer

dropout dropout rate

n_blocks
pad_mode
paddoing mode

Value

None

res_block_1d

Res_block_1d

Description

Resnet block as described in the paper.

Usage

$$res_block_1d(nf, ks = c(5, 3))$$

Arguments

nf number of features

ks kernel size

Value

block

RetinaNet 437

RetinaNet

RetinaNet

Description

Implements RetinaNet from https://arxiv.org/abs/1708.02002

Usage

```
RetinaNet(...)
```

Arguments

... arguments to pass

Value

model

Examples

```
## Not run:
encoder = create_body(resnet34(), pretrained = TRUE)
arch = RetinaNet(encoder, get_c(dls), final_bias=-4)
## End(Not run)
```

RetinaNetFocalLoss

RetinaNetFocalLoss

Description

Base class for all neural network modules.

Usage

```
RetinaNetFocalLoss(...)
```

Arguments

... parameters to pass

438 reverse_text

Details

Your models should also subclass this class. Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:: import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x)) Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth: 'to', etc.

Value

None

retinanet_

Retinanet module

Description

Retinanet module

Usage

retinanet_()

Value

None

reverse_text

Reverse_text

Description

Reverse_text

Usage

reverse_text(x)

Arguments

Χ

text

Value

string

rgb2hsv 439

rgb2hsv

Rgb2hsv

Description

Converts a RGB image to an HSV image.

Usage

rgb2hsv(img)

Arguments

img

image object

Details

Note: Will not work on logit space images.

Value

None

rmse

RMSE

Description

Root mean squared error

Usage

```
rmse(preds, targs)
```

Arguments

preds predictions

targs targets

Value

rms_prop_step

Examples

```
## Not run:
model = dls %>% tabular_learner(layers=c(200,100,100,200),
metrics = list(mse(),rmse()) )
## End(Not run)
```

RMSProp

RMSProp

Description

RMSProp

Usage

```
RMSProp(...)
```

Arguments

... parameters to pass

Value

None

rms_prop_step

 Rms_prop_step

Description

Step for SGD with momentum with 'lr'

Usage

```
rms_prop_step(p, lr, sqr_avg, eps, grad_avg = NULL, ...)
```

rm_useless_spaces 441

Arguments

p p

1rlearning ratesqr_avgsqr averageepsepsilon

grad_avg grad average

... additional arguments to pass

Value

None

rm_useless_spaces

Rm_useless_spaces

Description

Remove multiple spaces

Usage

```
rm_useless_spaces(t)
```

Arguments

t text

Value

string

Examples

```
## Not run:
rm_useless_spaces('hello, Sir!')
## End(Not run)
```

442 RNNRegularizer

RNNDropout

RNNDropout

Description

Dropout with probability 'p' that is consistent on the seq_len dimension.

Usage

```
RNNDropout(p = 0.5)
```

p

Arguments

p

Value

None

RNNRegularizer

RNNRegularizer

Description

'Callback' that adds AR and TAR regularization in RNN training

Usage

```
RNNRegularizer(alpha = 0, beta = 0)
```

Arguments

alpha alpha beta beta

Value

RocAuc 443

RocAuc RocAuc

Description

Area Under the Receiver Operating Characteristic Curve for single-label multiclass classification problems

Usage

```
RocAuc(
  axis = -1,
  average = "macro",
  sample_weight = NULL,
  max_fpr = NULL,
  multi_class = "ovr"
)
```

Arguments

```
axis axis
average average
sample_weight sample_weight
max_fpr multi_class
multi_class
```

Value

None

RocAucBinary

RocAucBinary

Description

Area Under the Receiver Operating Characteristic Curve for single-label binary classification problems

Usage

```
RocAucBinary(
  axis = -1,
  average = "macro",
  sample_weight = NULL,
  max_fpr = NULL,
  multi_class = "raise"
)
```

444 RocAucMulti

Arguments

```
axis axis
average average
sample_weight sample_weight
max_fpr max_fpr
multi_class multi_class
```

Value

None

Examples

RocAucMulti

RocAucMulti

Description

Area Under the Receiver Operating Characteristic Curve for multi-label binary classification problems

Usage

```
RocAucMulti(
  sigmoid = TRUE,
  average = "macro",
  sample_weight = NULL,
  max_fpr = NULL
)
```

Rotate 445

Arguments

```
sigmoid sigmoid
average average
sample_weight sample_weight
max_fpr max_fpr
```

Value

None

Rotate Rotate

Description

Apply a random rotation of at most 'max_deg' with probability 'p' to a batch of images

Usage

```
Rotate(
  max_deg = 10,
  p = 0.5,
  draw = NULL,
  size = NULL,
  mode = "bilinear",
  pad_mode = "reflection",
  align_corners = TRUE,
  batch = FALSE
)
```

Arguments

```
maximum degrees
max_deg
                 probability
р
                 draw
draw
                 size of image
size
mode
                 mode
pad_mode
                 reflection, zeros, border as string parameter
align_corners
                 align corners or not
                 batch or not
batch
```

Value

round round

rotate_mat

Rotate_mat

Description

Return a random rotation matrix with 'max_deg' and 'p'

Usage

```
rotate_mat(x, max_deg = 10, p = 0.5, draw = NULL, batch = FALSE)
```

Arguments

x tensor
max_deg max_deg
p probability
draw draw
batch batch

Value

None

round

Round

Description

Round

Usage

```
## S3 method for class 'torch.Tensor' round(x, digits = 0)
```

Arguments

x tensor digits decimal

Value

tensor

```
round. \, fastai.torch\_core. TensorMask \\ Round
```

Description

Round

Usage

```
## S3 method for class 'fastai.torch_core.TensorMask'
round(x, digits = 0)
```

Arguments

x tensor digits decimal

Value

tensor

Saturation

Saturation

Description

Apply change in saturation of 'max_lighting' to batch of images with probability 'p'.

Usage

```
Saturation(max_lighting = 0.2, p = 0.75, draw = NULL, batch = FALSE)
```

Arguments

max_lighting maximum lighting
p probability
draw draw
batch batch

Value

SchedCos SchedCos

SaveModelCallback

Save Model Callback

Description

SaveModelCallback

Usage

```
SaveModelCallback(...)
```

Arguments

... parameters to pass

Value

None

SchedCos

SchedCos

Description

Cosine schedule function from 'start' to 'end'

Usage

```
SchedCos(start, end)
```

Arguments

start start end end

Value

SchedExp 449

SchedExp

SchedExp

Description

Exponential schedule function from 'start' to 'end'

Usage

```
SchedExp(start, end)
```

Arguments

start start end end

Value

None

 ${\sf SchedLin}$

SchedLin

Description

Linear schedule function from 'start' to 'end'

Usage

```
SchedLin(start, end)
```

Arguments

start start end end

Value

450 SchedPoly

SchedNo

SchedNo

Description

Constant schedule function with 'start' value

Usage

```
SchedNo(start, end)
```

Arguments

start start end end

Value

None

SchedPoly

SchedPoly

Description

Polynomial schedule (of 'power') function from 'start' to 'end'

Usage

```
SchedPoly(start, end, power)
```

Arguments

start start end end power power

Value

SEBlock 451

SEBlock SEBlock

Description

SEBlock

Usage

```
SEBlock(expansion, ni, nf, groups = 1, reduction = 16, stride = 1)
```

Arguments

expansion decoder

ni number of inputs

nf number of features

groups number of groups

reduction number of reduction

stride number of strides

Value

Block object

```
Segmentation Data Loaders\_from\_label\_func \\ Segmentation Data Loaders\_from\_label\_func
```

Description

Create from list of 'fnames' in 'path's with 'label_func'.

Usage

```
SegmentationDataLoaders_from_label_func(
  path,
  fnames,
  label_func,
  valid_pct = 0.2,
  seed = NULL,
  codes = NULL,
  item_tfms = NULL,
  batch_tfms = NULL,
  bs = 64,
```

452 SelfAttention

```
val_bs = NULL,
shuffle_train = TRUE,
device = NULL
)
```

Arguments

path path file names

label_func label function

valid_pct validation percentage

seed seed codes

item_tfms item transformations
batch_tfms batch transformations

bs batch size

val_bs validation batch size

shuffle_train shuffle train device device name

Value

None

SelfAttention SelfAttention

Description

Self attention layer for 'n_channels'.

Usage

```
SelfAttention(n_channels)
```

Arguments

n_channels number of channels

Value

SEModule 453

SEModule SEModule

Description

SEModule

Usage

```
SEModule(ch, reduction, act_cls = nn()$ReLU)
```

Arguments

ch ch

reduction reduction act_cls activation

Value

None

SentenceEncoder SentenceEncoder

Description

Create an encoder over 'module' that can process a full sentence.

Usage

```
SentenceEncoder(bptt, module, pad_idx = 1, max_len = NULL)
```

Arguments

bptt bptt
module module
pad_idx pad_idx
max_len max_len

Value

454 SentencePieceTokenizer

SentencePieceTokenizer

SentencePieceTokenizer

Description

SentencePiece tokenizer for 'lang'

Usage

```
SentencePieceTokenizer(
  lang = "en",
  special_toks = NULL,
  sp_model = NULL,
  vocab_sz = NULL,
  max_vocab_sz = 30000,
  model_type = "unigram",
  char_coverage = NULL,
  cache_dir = "tmp"
)
```

Arguments

```
lang
                lang
special_toks
                special_toks
sp_model
                sp_model
vocab_sz
                vocab_sz
max_vocab_sz
                max_vocab_sz
model_type
                model_type
char_coverage
                char_coverage
cache_dir
                cache_dir
```

Value

SeparableBlock 455

SeparableBlock

Separable Block

Description

SeparableBlock

Usage

```
SeparableBlock(expansion, ni, nf, reduction = 16, stride = 1, base_width = 4)
```

Arguments

expansion decoder

ni number of inputs

nf number of features

reduction number of reduction

stride number of stride

base_width base width

Value

Block object

sequential

Sequential

Description

Sequential

Usage

```
sequential(...)
```

Arguments

... parameters to pass

Value

456 SequentialRNN

Sequential Ex ${\tt SequentialEx}$ Description SequentialEx Usage SequentialEx(...) Arguments parameters to pass Value None SequentialRNN Sequential RNN Description Sequential RNN Usage SequentialRNN(...) Arguments parameters to pass . . .

Value

layer

SEResNeXtBlock 457

 ${\tt SEResNeXtBlock}$

SEResNeXtBlock

Description

SEResNeXtBlock

Usage

```
SEResNeXtBlock(
  expansion,
  ni,
  nf,
  groups = 32,
  reduction = 16,
  stride = 1,
  base_width = 4
)
```

Arguments

expansion decoder

ni number of linear inputs

nf number of features

groups groups number

reduction reduction number

stride stride number

base_width int, base width

Value

Block object

 ${\tt setup_aug_tfms}$

Setup_aug_tfms

Description

Go through 'tfms' and combines together affine/coord or lighting transforms

Usage

```
setup_aug_tfms(tfms)
```

set_item_pg

Arguments

tfms transformations

Value

None

set_freeze_model

 $Set\,freeze\,model$

Description

Set freeze model

Usage

```
set_freeze_model(m, rg)
```

Arguments

m parameters

rg rg

Value

None

 set_item_pg

 Set_item_pg

Description

Set_item_pg

Usage

```
set_item_pg(pg, k, v)
```

Arguments

 $\begin{array}{ccc} pg & & pg \\ k & & k \\ v & & v \end{array}$

Value

SGD 459

SGD

SGD

Description

SGD

Usage

SGD(...)

Arguments

... parameters to pass

Value

None

sgd_step

Sgd_step

Description

Sgd_step

Usage

```
sgd_step(p, lr, ...)
```

Arguments

p p

1r learning rate

... additional arguments to pass

Value

460 SGRoll

Examples

```
## Not run:

tst_param = function(val, grad = NULL) {
    "Create a tensor with `val` and a gradient of `grad` for testing"
    res = tensor(val) %>% float()

if(is.null(grad)) {
        grad = tensor(val / 10)
    } else {
        grad = tensor(grad)
    }

    res$grad = grad %>% float()
    res
}

p = tst_param(1., 0.1)
sgd_step(p, 1.)

## End(Not run)
```

SGRol1

SGRoll

Description

Shifts spectrogram along x-axis wrapping around to other side

Usage

```
SGRoll(max_shift_pct = 0.5, direction = 0)
```

Arguments

```
max_shift_pct maximum shift percentage
direction direction
```

Value

shap 461

Shap module shap Description Shap module Usage shap() Value None Shapeshape Description Shape Usage shape(img) Arguments img image Value None

ShapInterpretation

 ${\tt ShapInterpretation} \qquad {\tt ShapInterpretation}$

Description

Base interpereter to use the 'SHAP' interpretation library

Usage

```
ShapInterpretation(
  learn,
  test_data = NULL,
  link = "identity",
  l1_reg = "auto",
  n_samples = 128
)
```

Arguments

learn	learner/model
test_data	should be either a Pandas dataframe or a TabularDataLoader. If not, 100 random rows of the training data will be used instead.
link	link can either be "identity" or "logit". A generalized linear model link to connect the feature importance values to the model output. Since the feature importance values, phi, sum up to the model output, it often makes sense to connect them to the ouput with a link function where link(outout) = sum(phi). If the model output is a probability then the LogitLink link function makes the feature importance values have log-odds units.
l1_reg	can be an integer value representing the number of features, "auto", "aic", "bic", or a float value. The 11 regularization to use for feature selection (the estimation procedure is based on a debiased lasso). The auto option currently uses "aic" when less that 20 space is enumerated, otherwise it uses no regularization.
n_samples	can either be "auto" or an integer value. This is the number of times to re- evaluate the model when explaining each predictions. More samples leads to lower variance estimations of the SHAP values

Value

Shortcut 463

Shortcut

Shortcut

Description

Merge a shortcut with the result of the module by adding them. Adds Conv, BN and ReLU

Usage

```
Shortcut(ni, nf, act_fn = nn$ReLU(inplace = TRUE))
```

Arguments

ni number of input channels

nf number of features

act_fn activation

Value

None

ShortEpochCallback

ShortEpochCallback

Description

```
Fit just 'pct' of an epoch, then stop
```

Usage

```
ShortEpochCallback(pct = 0.01, short_valid = TRUE)
```

Arguments

pct percentage

short_valid short_valid or not

Value

show Show

Description

Adds functionality to view dicom images where each file may have more than 1 frame

Usage

```
show(img, frames = 1, scale = TRUE, ...)
```

Arguments

img image object frames number of frames

scale scale

... additional arguments

Value

None

ShowCycleGANImgsCallback

Show Cycle GAN Imgs Callback

Description

Update the progress bar with input and prediction images

Usage

```
ShowCycleGANImgsCallback(imgA = FALSE, imgB = TRUE, show_img_interval = 10)
```

Arguments

 $\begin{array}{ll} \text{imgA} & \text{img from A domain} \\ \text{imgB} & \text{img from B domain} \end{array}$

show_img_interval

show image interval

Value

ShowGraphCallback 465

ShowGraphCallback

Show Graph Callback

Description

Show Graph Callback

Usage

```
ShowGraphCallback(...)
```

Arguments

... parameters to pass

Value

None

show_array

 $Show_array$

Description

Show an array on 'ax'.

Usage

```
show_array(
  array,
  ax = NULL,
  figsize = NULL,
  title = NULL,
  ctx = NULL,
  tx = NULL
)
```

Arguments

```
array R array
ax axis
figsize figure size
title title, text
ctx ctx
tx
```

show_batch

Value

None

Examples

```
## Not run:
arr = as.array(1:10)
show_array(arr,title = 'My R array') %>% plot(dpi = 200)
## End(Not run)
```

show_batch

 $Show_batch$

Description

Show_batch

Usage

```
show_batch(
  dls,
  b = NULL,
  max_n = 9,
  ctxs = NULL,
  figsize = c(6, 6),
  show = TRUE,
  unique = FALSE,
  dpi = 120,
  ...
)
```

Arguments

```
dls dataloader object
b defaults to one_batch
max_n maximum images
ctxs ctxs parameter
figsize figure size
show show or not
```

show_image 467

```
unique unique imagesdpi dots per inch... additional arguments to pass
```

Value

None

Examples

```
## Not run:
dls %>% show_batch()
## End(Not run)
```

 ${\sf show_image}$

Show_image

Description

Show a PIL or PyTorch image on 'ax'.

Usage

```
show_image(
  im,
 ax = NULL,
 figsize = NULL,
  title = NULL,
  ctx = NULL,
  cmap = NULL,
 norm = NULL,
 aspect = NULL,
  interpolation = NULL,
  alpha = NULL,
 vmin = NULL,
 vmax = NULL,
 origin = NULL,
  extent = NULL
)
```

show_images

Arguments

im	im
ax	axis
figsize	figure size
title	title
ctx	ctx
стар	color maps
norm	normalization
aspect	aspect
interpolation	interpolation
alpha	alpha value
vmin	value min
vmax	value max
origin	origin
extent	extent

show_images

 $Show_images$

Description

Show all images 'ims' as subplots with 'rows' using 'titles'

Usage

```
show_images(
  ims,
  nrows = 1,
  ncols = NULL,
  titles = NULL,
  figsize = NULL,
  imsize = 3,
  add_vert = 0
)
```

Arguments

ims images
nrows number of rows
ncols number of columns
titles titles
figsize figure size
imsize image size
add_vert add vertical

show_preds 469

Value

None

show_preds

Show_preds

Description

```
Show_preds
```

Usage

```
show_preds(
  predictions,
  idx,
  class_map = NULL,
  denormalize_fn = denormalize_imagenet(),
  display_label = TRUE,
  display_bbox = TRUE,
  display_mask = TRUE,
  ncols = 1,
  figsize = NULL,
  show = FALSE,
  dpi = 100
)
```

Arguments

```
predictions
                 provide list of raw predictions
idx
                 image indices
class_map
                 class_map
denormalize_fn denormalize_fn
display_label
                 display_label
display_bbox
                 display_bbox
display_mask
                 display_mask
ncols
                 ncols
figsize
                 figsize
show
                 show
dpi
                 dots per inch
```

Value

show_samples

show_results

Show_results

Description

Show some predictions on 'ds_idx'-th dataset or 'dl'

Usage

```
show_results(
  object,
  ds_idx = 1,
  dl = NULL,
  max_n = 9,
  shuffle = TRUE,
  dpi = 90,
  ...
)
```

Arguments

```
object model

ds_idx ds by index

dl dataloader

max_n maximum number of images

shuffle shuffle or not

dpi dots per inch

... additional arguments
```

Value

None

 ${\sf show_samples}$

Show_samples

Description

Show_samples

sigmoid 471

Usage

```
show_samples(
   dls,
   idx,
   class_map = NULL,
   denormalize_fn = denormalize_imagenet(),
   display_label = TRUE,
   display_bbox = TRUE,
   display_mask = TRUE,
   ncols = 1,
   figsize = NULL,
   show = FALSE,
   dpi = 100
)
```

Arguments

dls dataloader idx image indices class_map class_map denormalize_fn denormalize_fn display_label display_label display_bbox display_bbox display_mask display_mask ncols ncols figsize figsize show show dpi dots per inch

Value

None

sigmoid Sigmoid

Description

Same as 'torch\$sigmoid', plus clamping to '(eps,1-eps)

Usage

```
sigmoid(input, eps = 1e-07)
```

sigmoid_

Arguments

input inputs eps epsilon

Value

None

SigmoidRange

SigmoidRange

Description

Sigmoid module with range '(low, high)'

Usage

```
SigmoidRange(low, high)
```

Arguments

low value high high value

Value

None

 $sigmoid_{-}$

 $Sigmoid_$

Description

Same as 'torch\$sigmoid_', plus clamping to '(eps,1-eps)

Usage

```
sigmoid_(input, eps = 1e-07)
```

Arguments

input input eps eps

Value

sigmoid_range 473

sigmoid_range

 $Sigmoid_range$

Description

Sigmoid function with range '(low, high)'

Usage

```
sigmoid_range(x, low, high)
```

Arguments

x tensorlow valuehigh high value

Value

None

SignalCutout

Signal Cutout

Description

Randomly zeros some portion of the signal

Usage

```
SignalCutout(p = 0.5, max_cut_pct = 0.15)
```

Arguments

p probability

max_cut_pct max cut percentage

Value

474 SignalShifter

SignalLoss

Signal Loss

Description

Randomly loses some portion of the signal

Usage

```
SignalLoss(p = 0.5, max_loss_pct = 0.15)
```

Arguments

```
p probability
max_loss_pct max loss percentage
```

Value

None

SignalShifter

Signal Shifter

Description

Randomly shifts the audio signal by 'max_pct'

Usage

```
SignalShifter(
  p = 0.5,
  max_pct = 0.2,
  max_time = NULL,
  direction = 0,
  roll = FALSE
)
```

Arguments

```
p probability
max_pct max percentage
max_time maximum time
direction direction
roll roll or not
```

SimpleCNN 475

Details

direction must be -1(left) 0(bidirectional) or 1(right).

Value

None

SimpleCNN

Simple CNN

Description

Create a simple CNN with 'filters'.

Usage

```
SimpleCNN(filters, kernel_szs = NULL, strides = NULL, bn = TRUE)
```

Arguments

filters filters number
kernel_szs kernel size
strides strides

bn batch normalization

Value

None

 ${\tt Simple Self Attention}$

Simple Self Attention

Description

Same as 'nn()\$Module', but no need for subclasses to call 'super()\$__init__'

Usage

```
SimpleSelfAttention(n_in, ks = 1, sym = FALSE)
```

Arguments

 n_i n inputs ks kernel size sym sym

Value

None

```
sin.fastai.torch_core.TensorMask
```

Description

Sin

Usage

```
## S3 method for class 'fastai.torch_core.TensorMask' sin(x)
```

Arguments

Χ

tensor

Value

tensor

```
sinh.fastai.torch\_core.TensorMask Sinh
```

Description

Sinh

Usage

```
## S3 method for class 'fastai.torch_core.TensorMask' sinh(x)
```

Arguments

Χ

tensor

Value

tensor

sin_ 477

sin_ Sin

Description

Sin

Usage

```
## S3 method for class 'torch.Tensor'
sin(x)
```

Arguments

x tensor

Value

tensor

skm_to_fastai

Skm to fastai

Description

Convert 'func' from sklearn\$metrics to a fastai metric

Usage

```
skm_to_fastai(
  func,
  is_class = TRUE,
  thresh = NULL,
  axis = -1,
  activation = NULL,
  ...
)
```

Arguments

func function

is_class is classification or not

thresh threshold point axis axis

activation activation

... additional arguments to pass

478 sort

Value

None

slice

Slice

Description

Slice

Usage

```
slice(...)
```

Arguments

... additional arguments

Details

slice(start, stop[, step]) Create a slice object. This is used for extended slicing (e.g. a[0:10:2]).

Value

sliced object

sort

Sort

Description

Sort

Usage

```
## S3 method for class 'torch.Tensor'
sort(x, decreasing = FALSE, ...)
```

Arguments

```
x tensordecreasing the order
```

... additional parameters to pass

```
sort.fastai.torch_core.TensorMask
Sort
```

Description

Sort

Usage

```
## S3 method for class 'fastai.torch_core.TensorMask'
sort(x, decreasing = FALSE, ...)
```

Arguments

x tensor decreasing the order

... additional parameters to pass

Value

tensor

SortedDL

SortedDL

Description

A 'DataLoader' that goes throught the item in the order given by 'sort_func'

Usage

```
SortedDL(
  dataset,
  sort_func = NULL,
  res = NULL,
  bs = 64,
  shuffle = FALSE,
  num_workers = NULL,
  verbose = FALSE,
  do_setup = TRUE,
  pin_memory = FALSE,
  timeout = 0,
  batch_size = NULL,
  drop_last = FALSE,
```

480 SpacyTokenizer

```
indexed = NULL,
n = NULL,
device = NULL
)
```

Arguments

dataset dataset
sort_func sort_func
res res
bs bs
shuffle shuffle

num_workers num_workers verbose verbose do_setup do_setup pin_memory pin_memory timeout timeout batch_size batch_size drop_last drop_last indexed indexed n

device

Value

None

device

SpacyTokenizer

SpacyTokenizer

Description

Spacy tokenizer for 'lang'

Usage

```
SpacyTokenizer(lang = "en", special_toks = NULL, buf_sz = 5000)
```

Arguments

lang language

special_toks special tokenizers

buf_sz buffer size

SpearmanCorrCoef 481

Value

none

 ${\tt SpearmanCorrCoef}$

Spearman Corr Coef

Description

Spearman correlation coefficient for regression problem

Usage

```
SpearmanCorrCoef(
  dim_argmax = NULL,
  axis = 0,
  nan_policy = "propagate",
  activation = "no",
  thresh = NULL,
  to_np = FALSE,
  invert_arg = FALSE,
  flatten = TRUE
)
```

Arguments

```
dim_argmax
                 dim_argmax
axis
                 axis
nan_policy
                 nan_policy
activation
                 activation
thresh
                 thresh
to_np
                 to_np
                 invert_arg
invert_arg
                 flatten
flatten
```

Value

482 spec_add_spaces

 ${\tt SpectrogramTransformer}$

Spectrogram Transformer

Description

Creates a factory for creating AudioToSpec

Usage

```
SpectrogramTransformer(mel = TRUE, to_db = TRUE)
```

Arguments

mel mel-spectrogram or not

to_db to decibels

Details

transforms with different parameters

Value

None

spec_add_spaces

Spec_add_spaces

Description

Add spaces around / and #

Usage

```
spec_add_spaces(t)
```

Arguments

t text

Value

string

sqrd 483

sqrd

Sqrt

Description

Sqrt

Usage

```
## S3 method for class 'torch.Tensor'
sqrt(x)
```

Arguments

Х

tensor

Value

tensor

```
{\it sqrt.fastai.torch\_core.TensorMask} \\ {\it Sqrt}
```

Description

Sqrt

Usage

```
## S3 method for class 'fastai.torch_core.TensorMask'
sqrt(x)
```

Arguments

Х

tensor

Value

tensor

484 squeezenet1_0

SqueezeNet SqueezeNet

Description

Base class for all neural network modules.

Usage

```
SqueezeNet(version = "1_0", num_classes = 1000)
```

Arguments

version version of SqueezeNet num_classes the number of classes

Details

Your models should also subclass this class. Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:: import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x)) Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth: 'to', etc.

Value

model

squeezenet1_0 Squeezenet1_0

Description

SqueezeNet model architecture from the "SqueezeNet: AlexNet-level

Usage

```
squeezenet1_0(pretrained = FALSE, progress)
```

Arguments

pretrained pretrained or not

progress to see progress bar or not

squeezenet1_1 485

Details

accuracy with 50x fewer parameters and <0.5MB model size" https://arxiv.org/abs/1602.07360, paper.

Value

model

 $squeezenet1_1$

Squeezenet1_1

Description

SqueezeNet 1.1 model from the 'official SqueezeNet repo

Usage

```
squeezenet1_1(pretrained = FALSE, progress)
```

Arguments

pretrained pretrained or not

progress to see progress bar or not

Details

https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.1> . SqueezeNet 1.1 has 2.4x less computation and slightly fewer parameters than SqueezeNet 1.0, without sacrificing accuracy.

Value

model

step_stat

stack_train_valid

 $Stack_train_valid$

Description

 $Stack\ df_train\ and\ df_valid,\ adds\ `valid_col`=TRUE/FALSE\ for\ df_valid/df_train$

Usage

```
stack_train_valid(df_train, df_valid)
```

Arguments

 df_train

train data

df_valid

validation data

Value

data frame

step_stat

Step_stat

Description

Register the number of steps done in 'state' for 'p'

Usage

```
step_stat(p, step = 0, ...)
```

Arguments

 $\begin{array}{cc} p & & p \\ step & step \end{array}$

... additional args to pass

Value

sub 487

sub Sub

Description

Sub

Usage

```
## S3 method for class 'torch.Tensor'
a - b
```

Arguments

a tensorb tensor

Value

tensor

subplots

Subplots

Description

Subplots

Usage

```
subplots(nrows = 2, ncols = 2, figsize = NULL, imsize = 4)
```

Arguments

nrows number of rows ncols number of columns

figsize figure size imsize image size

Value

plot object

sub_mask

Sub

Description

Sub

Usage

```
## S3 method for class 'fastai.torch_core.TensorMask'
a - b
```

Arguments

a tensor b tensor

Value

tensor

```
{\tt summarization\_splitter}
```

 $Summarization_splitter$

Description

Custom param splitter for summarization models

Usage

```
summarization_splitter(m, arch)
```

Arguments

m splitter parameter arch architecture

Value

```
{\it summary.} {\it fastai.learner.Learner} \\ {\it Summary}
```

Description

Summary

Usage

```
## S3 method for class 'fastai.learner.Learner'
summary(object, ...)
```

Arguments

```
object model ... additional arguments to pass
```

Value

None

Examples

```
## Not run:
summary(model)
## End(Not run)
```

```
summary. fastai.tabular.learner. Tabular Learner\\ Summary
```

Description

Print a summary of 'm' using a output text width of 'n' chars

Usage

```
## S3 method for class 'fastai.tabular.learner.TabularLearner'
summary(object, ...)
```

490 swish

Arguments

object model

... additional parameters to pass

Value

None

summary_plot

Summary_plot

Description

Displays the SHAP values (which can be interpreted for feature importance)

Usage

```
summary_plot(object, dpi = 200, ...)
```

Arguments

object ShapInterpretation object

dpi dots per inch

... additional arguments

Value

None

swish Swish

Description

Swish

Usage

```
swish(x, inplace = FALSE)
```

Arguments

x tensor

inplace inplace or not

Value

Swish_		491
Swish_	Swish	
Description		
Same as nn	()\$Module, but no need for subclasses to call super()\$init	
Usage		
Swish_(.)	
Arguments		
• • •	parameters to pass	
Value		
None		
tabular	Tabular	
Description		
Tabular		
Usage		

tabular()

Value

492 TabularDataTable

 ${\tt TabularDataTable}$

TabularDataTable

Description

A 'Tabular' object with transforms

Usage

```
TabularDataTable(
  df,
  procs = NULL,
  cat_names = NULL,
  cont_names = NULL,
  y_names = NULL,
  y_block = NULL,
  splits = NULL,
  do_setup = TRUE,
  device = NULL,
  inplace = FALSE,
  reduce_memory = TRUE,
  ...
)
```

Arguments

df	A DataFrame of your data
procs	list of preprocess functions
cat_names	the names of the categorical variables
cont_names	the names of the continuous variables
y_names	the names of the dependent variables
y_block	the TransformBlock to use for the target
splits	How to split your data
do_setup	A parameter for if Tabular will run the data through the procs upon initialization
device	cuda or cpu
inplace	If True, Tabular will not keep a separate copy of your original DataFrame in memory
reduce_memory	fastai will attempt to reduce the overall memory usage
	additional parameters to pass

Value

TabularModel 493

TabularModel

Tabular Model

Description

Basic model for tabular data.

Usage

```
TabularModel(
  emb_szs,
  n_cont,
  out_sz,
  layers,
  ps = NULL,
  embed_p = 0,
  y_range = NULL,
  use_bn = TRUE,
  bn_final = FALSE,
  bn_cont = TRUE,
  act_cls = nn()$ReLU(inplace = TRUE)
)
```

Arguments

 emb_szs

n_cont	number of cont
out_sz	output size
layers	layers
ps	ps
embed_p	embed proportion
y_range	y range
use_bn	use batch normalization
bn_final	batch normalization final
bn_cont	batch normalization cont
act_cls	activation

embedding size

Value

TabularTS

Description

A 'DataFrame' wrapper that knows which cols are x/y, and returns rows in '__getitem__'

Usage

```
TabularTS(
  df,
  procs = NULL,
  x_names = NULL,
  y_names = NULL,
  block_y = NULL,
  splits = NULL,
  do_setup = TRUE,
  device = NULL,
  inplace = FALSE
)
```

Arguments

df	A DataFrame of your data
procs	list of preprocess functions
x_names	predictors names
y_names	the names of the dependent variables
block_y	the TransformBlock to use for the target
splits	How to split your data
do_setup	A parameter for if Tabular will run the data through the procs upon initialization
device	device name
inplace	If True, Tabular will not keep a separate copy of your original DataFrame in memory

Value

TabularTSDataloader 495

TabularTSDataloader

TabularTSDataloader

Description

Transformed 'DataLoader'

Usage

```
TabularTSDataloader(
  dataset,
 bs = 16,
  shuffle = FALSE,
  after_batch = NULL,
  num_workers = 0,
  verbose = FALSE,
  do_setup = TRUE,
  pin_memory = FALSE,
  timeout = 0,
  batch_size = NULL,
  drop_last = FALSE,
  indexed = NULL,
  n = NULL,
  device = NULL
)
```

Arguments

dataset data set
bs batch size
shuffle shuffle or not
after_batch after batch

num_workers the number of workers

verbose verbose

do_setup A parameter for if Tabular will run the data through the procs upon initialization

pin_memory pin memory or not

timeout timeout
batch_size batch size
drop_last drop last
indexed indexed
n n

device device name

496 tabular_config

Value

None

tabular_config

Tabular_config

Description

Convenience function to easily create a config for 'TabularModel'

Usage

```
tabular_config(
  ps = NULL,
  embed_p = 0,
  y_range = NULL,
  use_bn = TRUE,
  bn_final = FALSE,
  bn_cont = TRUE,
  act_cls = nn()$ReLU(inplace = TRUE)
)
```

Arguments

ps ps
embed_p embed proportion

y_range y_range

use_bn use batch normalization

bn_final batch normalization final

bn_cont batch normalization

act_cls activation

Value

tabular_learner 497

tabular_learner

Tabular learner

Description

Get a 'Learner' using 'dls', with 'metrics', including a 'TabularModel' created using the remaining params.

Usage

```
tabular_learner(
  dls,
  layers = NULL,
  emb_szs = NULL,
 config = NULL,
 n_{out} = NULL,
 y_range = NULL,
 loss_func = NULL,
 opt_func = Adam(),
 lr = 0.001,
  splitter = trainable_params(),
  cbs = NULL,
 metrics = NULL,
 path = NULL,
 model_dir = "models",
 wd = NULL,
 wd_bn_bias = FALSE,
 train_bn = TRUE,
 moms = list(0.95, 0.85, 0.95)
)
```

Arguments

dls	It is a DataLoaders object.
layers	layers
emb_szs	emb_szs
config	config
n_out	n_out
y_range	y_range
loss_func	It can be any loss function you like.
opt_func	It will be used to create an optimizer when Learner.fit is called.
lr	It is learning rate.
splitter	It is a function that takes self.model and returns a list of parameter groups (or just one parameter group if there are no different parameter groups)

498 tar_extract_at_filename

cbs It is one or a list of Callbacks to pass to the Learner.

metrics It is an optional list of metrics, that can be either functions or Metrics.

path It is used to save and/or load models. Often path will be inferred from dls, but

you can override it or pass a Path object to model_dir. Make sure you can write

in path/model_dir!

model_dir It is used to save and/or load models.Often path will be inferred from dls, but

you can override it or pass a Path object to model_dir. Make sure you can write

in path/model_dir!

wd It is the default weight decay used when training the model.

train_bn It controls if BatchNorm layers are trained even when they are supposed to be

frozen according to the splitter.

moms The default momentums used in Learner.fit_one_cycle.

Value

learner object

tar_extract_at_filename

Tar_extract_at_filename

Description

Extract 'fname' to 'dest'/'fname.name' folder using 'tarfile'

Usage

```
tar_extract_at_filename(fname, dest)
```

Arguments

fname folder name dest destination

Value

tensor 499

tensor Tensor

Description

Like 'torch()\$as_tensor', but handle lists too, and can pass multiple vector elements directly.

Usage

```
tensor(...)
```

Arguments

... image

Value

None

TensorBBox

TensorBBox

Description

Basic type for a tensor of bounding boxes in an image

Usage

TensorBBox(x)

Arguments

X

tensor

Value

TensorImage

TensorBBox_create

TensorBBox_create

Description

TensorBBox_create

Usage

```
TensorBBox_create(x, img_size = NULL)
```

Arguments

x tensor

img_size image size

Value

None

TensorImage

TensorImage

Description

TensorImage

Usage

TensorImage(x)

Arguments

tensor

Value

TensorImageBW 501

TensorImageBW

TensorImageBW

Description

TensorImageBW

Usage

TensorImageBW(x)

Arguments

Х

tensor

Value

None

TensorMultiCategory

TensorMultiCategory

Description

Tensor Multi Category

Usage

TensorMultiCategory(x)

Arguments

Χ

tensor

Value

502 TensorPoint_create

TensorPoint

TensorPoint

Description

Basic type for points in an image

Usage

TensorPoint(x)

Arguments

Χ

tensor

Value

None

TensorPoint_create

 ${\it TensorPoint_create}$

Description

```
Delegates ('__call__', 'decode', 'setup') to ('encodes', 'decodes', 'setups') if 'split_idx' matches
```

Usage

```
TensorPoint_create(...)
```

Arguments

... arguments to pass

Value

TerminateOnNaNCallback 503

TerminateOnNaNCallback

TerminateOnNaNCallback

Description

TerminateOnNaNCallback

Usage

```
TerminateOnNaNCallback(...)
```

Arguments

... parameters to pass

Value

None

test_loader

Test_loader

Description

Data loader. Combines a dataset and a sampler, and provides an iterable over

Usage

```
test_loader()
```

Details

the given dataset. The :class: '~torch.utils.data.DataLoader' supports both map-style and iterable-style datasets with single- or multi-process loading, customizing loading order and optional automatic batching (collation) and memory pinning. See :py:mod: 'torch.utils.data' documentation page for more details.

Value

loader

504 TextBlock

text

Text module

Description

Text module

Usage

text()

Value

None

TextBlock

TextBlock

Description

A 'TransformBlock' for texts

Usage

```
TextBlock(
  tok_tfm,
  vocab = NULL,
  is_lm = FALSE,
  seq_len = 72,
  backwards = FALSE,
  min_freq = 3,
  max_vocab = 60000,
  special_toks = NULL,
  pad_tok = NULL
)
```

Arguments

```
tok\_tfm
                tok_tfm
                vocab
vocab
is_lm
                is_lm
seq_len
                seq_len
backwards
                backwards
min_freq
                min_freq
max_vocab
                max_vocab
special_toks
                special_toks
pad_tok
                pad_tok
```

TextBlock_from_df 505

Value

block object

TextBlock_from_df TextBlock_from_df

 $TextBlock_from_df$

Description

Build a 'TextBlock' from a dataframe using 'text_cols'

Usage

```
TextBlock_from_df(
  text_cols,
  vocab = NULL,
  is_lm = FALSE,
  seq_len = 72,
  backwards = FALSE,
  min_freq = 3,
  max_vocab = 60000,
  tok = NULL,
  rules = NULL,
  sep = " ",
  n_workers = 6,
  mark_fields = NULL,
  tok_text_col = "text"
)
```

Arguments

text_cols text columns vocabulary vocab is_lm is_lm seq_len sequence length backwards backwards min_freq minimum frequency max vocabulary max_vocab tok tokenizer

rules rules sep separator

n_workers number workers mark_fields mark_fields

tok_text_col result column name

Value

None

```
{\tt TextBlock\_from\_folder} \ \ \textit{TextBlock\_from\_folder}
```

Description

```
Build a 'TextBlock' from a 'path'
```

Usage

```
TextBlock_from_folder(
  path,
  vocab = NULL,
  is_lm = FALSE,
  seq_len = 72,
  backwards = FALSE,
 min\_freq = 3,
 max\_vocab = 60000,
  tok = NULL,
  rules = NULL,
  extensions = NULL,
  folders = NULL,
  output_dir = NULL,
  skip_if_exists = TRUE,
  output_names = NULL,
  n_{workers} = 6,
  encoding = "utf8"
)
```

```
path
                path
vocab
                 vocabualry
is_lm
                is_lm
seq_len
                 sequence length
backwards
                backwards
min_freq
                minimum frequency
max_vocab
                max vocabulary
tok
                tokenizer
rules
                rules
                extensions
extensions
```

```
folders folders
output_dir output_dir
skip_if_exists skip_if_exists
output_names output_names
n_workers number of workers
encoding encoding
```

Value

None

```
TextDataLoaders_from_csv
```

 $TextDataLoaders_from_csv$

Description

Create from 'csv' file in 'path/csv_fname'

Usage

```
TextDataLoaders_from_csv(
  path,
  csv_fname = "labels.csv",
 header = "infer",
  delimiter = NULL,
  valid_pct = 0.2,
  seed = NULL,
  text_col = 0,
  label_col = 1,
  label_delim = NULL,
 y_block = NULL,
  text_vocab = NULL,
  is_lm = FALSE,
  valid_col = NULL,
  tok_tfm = NULL,
  seq_len = 72,
  backwards = FALSE,
  bs = 64,
  val_bs = NULL,
  shuffle_train = TRUE,
  device = NULL
)
```

Arguments

path path

csv_fname csv file name

header header delimiter delimiter

valid_pct valid_ation percentage

text_col text column
label_col label column
label_delim label separator

y_block y_block

text_vocab text vocabulary

is_lm is_lm

valid_col valid column

tok_tfm tok_tfm
seq_len seq_len
backwards backwards
bs batch size

val_bs validation batch size

shuffle_train shuffle train data

device device

Value

text loader

TextDataLoaders_from_df

TextDataLoaders_from_df

Description

Create from 'df' in 'path' with 'valid_pct' '

Usage

```
TextDataLoaders_from_df(
  df,
  path = ".",
  valid_pct = 0.2,
  seed = NULL,
  text_col = 0,
  label_col = 1,
  label_delim = NULL,
  y_block = NULL,
  text_vocab = NULL,
  is_lm = FALSE,
  valid_col = NULL,
  tok\_tfm = NULL,
  seq_len = 72,
  backwards = FALSE,
  bs = 64,
  val_bs = NULL,
  shuffle_train = TRUE,
  device = NULL
)
```

```
df
                 df
path
                 path
valid_pct
                 validation percentage
seed
                 seed
text_col
                 text_col
label_col
                 label_col
label_delim
                 label_delim
y_block
                 y_block
text_vocab
                 text_vocab
is_lm
                 is_lm
valid_col
                 valid_col
tok_tfm
                 tok_tfm
seq_len
                 seq_len
backwards
                 backwards
bs
                 batch size
                 validation batch size, if not specified then val_bs is the same as bs.
val_bs
shuffle_train
                 shuffle_train
device
                 device
```

Value

text loader

```
TextDataLoaders_from_folder

TextDataLoaders_from_folder
```

Description

Create from imagenet style dataset in 'path' with 'train' and 'valid' subfolders (or provide 'valid_pct')

Usage

```
TextDataLoaders_from_folder(
  path,
  train = "train",
  valid = "valid",
  valid_pct = NULL,
  seed = NULL,
  vocab = NULL,
  text_vocab = NULL,
  is_lm = FALSE,
  tok_tfm = NULL,
  seq_len = 72,
  backwards = FALSE,
  bs = 64,
  val_bs = NULL,
  shuffle_train = TRUE,
  device = NULL
)
```

```
path
                 path
                 train data
train
valid
                 validation data
                 validation percentage
valid_pct
seed
                 random seed
vocab
                 vocabulary
text_vocab
                 text_vocab
is_lm
                 is_lm
tok_tfm
                 tok\_tfm
seq_len
                 seq_len
```

TextLearner 511

backwards
bs batch size
val_bs validation batch size
shuffle_train shuffle train data
device device

Value

text loader

TextLearner

TextLearner

Description

Basic class for a 'Learner' in NLP.

Usage

```
TextLearner(
  dls,
 model,
  alpha = 2,
  beta = 1,
 moms = list(0.8, 0.7, 0.8),
  loss_func = NULL,
  opt_func = Adam(),
  lr = 0.001,
  splitter = trainable_params(),
  cbs = NULL,
 metrics = NULL,
  path = NULL,
 model_dir = "models",
 wd = NULL,
 wd_bn_bias = FALSE,
  train_bn = TRUE
)
```

```
dls dls model model alpha alpha beta beta moms moms
```

loss_func loss_func opt_func opt_func

lr lr

splitter splitter cbs cbs

metrics metrics path

model_dir model_dir

 $wd \hspace{3.5cm} wd \hspace{3.5cm}$

Value

None

TextLearner_load_encoder

Load_encoder

Description

Load the encoder 'file' from the model directory, optionally ensuring it's on 'device'

Usage

TextLearner_load_encoder(file, device = NULL)

Arguments

file file device

Value

 ${\tt TextLearner_load_pretrained}$

Load_pretrained

Description

Load a pretrained model and adapt it to the data vocabulary.

Usage

```
TextLearner_load_pretrained(wgts_fname, vocab_fname, model = NULL)
```

Arguments

Value

None

```
TextLearner_save_encoder
```

 $Save_encoder$

Description

Save the encoder to 'file' in the model directory

Usage

TextLearner_save_encoder(file)

Arguments

file file

Value

514 text_classifier_learner

```
text_classifier_learner
```

Text_classifier_learner

Description

Create a 'Learner' with a text classifier from 'dls' and 'arch'.

Usage

```
text_classifier_learner(
  dls,
  arch,
  seq_len = 72,
  config = NULL,
  backwards = FALSE,
  pretrained = TRUE,
  drop_mult = 0.5,
  n_out = NULL,
  lin_ftrs = NULL,
 ps = NULL,
 max_len = 1440,
 y_range = NULL,
  loss_func = NULL,
  opt_func = Adam(),
  1r = 0.001,
  splitter = trainable_params,
  cbs = NULL,
 metrics = NULL,
 path = NULL,
 model_dir = "models",
 wd = NULL,
 wd_bn_bias = FALSE,
 train_bn = TRUE,
 moms = list(0.95, 0.85, 0.95)
)
```

```
dls dls
arch arch
seq_len seq_len
config config
backwards backwards
pretrained pretrained
```

TfmdDL 515

drop_mult drop_mult n_out n_out lin_ftrs lin_ftrs ps ps max_len max_len y_range y_range loss_func loss_func opt_func opt_func lr lr splitter splitter cbs cbs metrics metrics path path model_dir model_dir wd wd wd_bn_bias wd_bn_bias train_bn train_bn moms moms

Value

None

 TfmdDL

T fm dDL

Description

Transformed 'DataLoader'

Usage

```
TfmdDL(
  dataset,
  bs = 64,
  shuffle = FALSE,
  num_workers = NULL,
  verbose = FALSE,
  do_setup = TRUE,
  pin_memory = FALSE,
  timeout = 0,
  batch_size = NULL,
```

516 TfmdLists

```
drop_last = FALSE,
  indexed = NULL,
  n = NULL,
  device = NULL,
  after_batch = NULL,
  ...
)
```

Arguments

dataset dataset
bs batch size
shuffle shuffle

num_workers number of workers

verbose verbose do setup do_setup pin_memory pin memory timeout timeout batch_size batch size drop_last drop last indexed indexed int, n n device device after_batch after_batch

... additional arguments to pass

Value

None

TfmdLists TfmdLists

Description

A 'Pipeline' of 'tfms' applied to a collection of 'items'

Usage

```
TfmdLists(...)
```

Arguments

... parameters to pass

TfmResize 517

TfmResize

TfmResize

Description

Temporary fix to allow image resizing transform

Usage

```
TfmResize(size, interp_mode = "bilinear")
```

Arguments

size

size

 $\verb"interp_mode"$

interpolation mode

Value

None

timm

Timm module

Description

Timm module

Usage

timm()

Value

518 timm_list_models

timm_learner

 $Timm_learner$

Description

Build a convnet style learner from 'dls' and 'arch' using the 'timm' library

Usage

```
timm_learner(dls, arch, ...)
```

Arguments

dls dataloader

arch model architecture
... additional arguments

Value

None

 $timm_list_models$

Timm models

Description

Timm models

Usage

```
timm\_list\_models(\dots)
```

Arguments

... parameters to pass

Value

vector

tms 519

tms

Timeseries module

Description

Timeseries module

Usage

tms()

Value

None

tokenize1

Tokenize1

Description

Call 'TokenizeWithRules' with a single text

Usage

```
tokenize1(text, tok, rules = NULL, post_rules = NULL)
```

Arguments

text text
tok tok
rules rules
post_rules post_rules

Value

520 Tokenizer_from_df

Tokenizer

Tokenizer

Description

Provides a consistent 'Transform' interface to tokenizers operating on 'DataFrame's and folders

Usage

```
Tokenizer(
  tok,
  rules = NULL,
  counter = NULL,
  lengths = NULL,
  mode = NULL,
  sep = " "
)
```

Arguments

tok	tokenizer
rules	rules
counter	counter
lengths	lengths
mode	mode
sep	separator

Value

None

Tokenizer_from_df

Tokenizer_from_df

Description

 $Tokenizer_from_df$

Tokenize With Rules 521

Usage

```
Tokenizer_from_df(
  text_cols,
  tok = NULL,
  rules = NULL,
  sep = " ",
  n_workers = 6,
  mark_fields = NULL,
  tok_text_col = "text"
)
```

Arguments

text_cols text columns
tok tokenizer
rules special rules
sep separator

n_workers number of workers

mark_fields mark fields

tok_text_col output column name

Value

None

TokenizeWithRules

TokenizeWithRules

Description

A wrapper around 'tok' which applies 'rules', then tokenizes, then applies 'post_rules'

Usage

```
TokenizeWithRules(tok, rules = NULL, post_rules = NULL)
```

Arguments

tok tokenizer
rules rules
post_rules post_rules

Value

522 tokenize_csv

tokenize_csv

Tokenize_csv

Description

Tokenize texts in the 'text_cols' of the csv 'fname' in parallel using 'n_workers'

Usage

```
tokenize_csv(
  fname,
  text_cols,
  outname = NULL,
  n_workers = 4,
  rules = NULL,
  mark_fields = NULL,
  tok = NULL,
  header = "infer",
  chunksize = 50000
)
```

Arguments

fname file name text_cols text columns outname outname n_workers numeber of workers rules rules mark_fields mark fields tok tokenizer header header

chunk size

Value

None

chunksize

tokenize_df 523

tokenize_df

Tokenize_df

Description

Tokenize texts in 'df[text_cols]' in parallel using 'n_workers'

Usage

```
tokenize_df(
  df,
  text_cols,
  n_workers = 6,
  rules = NULL,
  mark_fields = NULL,
  tok = NULL,
  tok_text_col = "text"
)
```

Arguments

```
df data frame

text_cols text columns

n_workers number of workers

rules rules

mark_fields mark_fields

tok tokenizer

tok_text_col tok_text_col
```

Value

None

 ${\tt tokenize_files}$

 $To kenize_files$

Description

Tokenize text 'files' in parallel using 'n_workers'

524 tokenize_folder

Usage

```
tokenize_files(
  files,
  path,
  output_dir,
  output_names = NULL,
  n_workers = 6,
  rules = NULL,
  tok = NULL,
  encoding = "utf8",
  skip_if_exists = FALSE
)
```

Arguments

files files path path output_dir output_dir output_names output_names n_workers n_workers rules rules tok tokenizer encoding encoding skip_if_exists skip_if_exists

Value

None

tokenize_folder

Tokenize_folder

Description

Tokenize text files in 'path' in parallel using 'n_workers'

Usage

```
tokenize_folder(
  path,
  extensions = NULL,
  folders = NULL,
  output_dir = NULL,
  skip_if_exists = TRUE,
```

tokenize_texts 525

```
output_names = NULL,
n_workers = 6,
rules = NULL,
tok = NULL,
encoding = "utf8"
)
```

Arguments

path path extensions extensions folders folders output_dir output_dir skip_if_exists skip_if_exists output_names output_names n_workers number of workers rules rules tok tokenizer encoding encoding

Value

None

tokenize_texts

Tokenize_texts

Description

Tokenize 'texts' in parallel using 'n_workers'

Usage

```
tokenize_texts(texts, n_workers = 6, rules = NULL, tok = NULL)
```

Arguments

texts texts
n_workers n_workers
rules rules
tok tok

Value

526 top_k_accuracy

top_k_accuracy To

Top_k_accuracy

Description

Computes the Top-k accuracy ('targ' is in the top 'k' predictions of 'inp')

Usage

```
top_k=curacy(inp, targ, k = 5, axis = -1)
```

Arguments

inp predictions
targ targets
k k
axis axis

Value

None

Examples

torch 527

torch

Builtins module

Description

Builtins module

Usage

torch()

Value

None

total_params

Total_params

Description

Give the number of parameters of a module and if it's trainable or not

Usage

```
total_params(m)
```

Arguments

m

m parameter

Value

528 to_bytes_format

ToTensor

To Tensor

Description

Convert item to appropriate tensor class

Usage

```
ToTensor(enc = NULL, dec = NULL, split_idx = NULL, order = NULL)
```

Arguments

enc encoder dec decoder

split_idx int, split by index

order order

Value

None

to_bytes_format

To_bytes_format

Description

Convert to bytes, default to PNG format

Usage

```
to_bytes_format(img, format = "png")
```

Arguments

img image
format format

Value

to_image 529

to_image

 To_image

Description

Convert a tensor or array to a PIL int8 Image

Usage

```
to_image(x)
```

Arguments

Х

tensor

Value

None

to_matrix

To matrix

Description

To matrix

Usage

```
to_matrix(obj, matrix = TRUE)
```

Arguments

obj learner/model matrix bool, to R matrix

530 to_xla

to_thumb

 To_thumb

Description

Same as 'thumbnail', but uses a copy

Usage

```
to_thumb(img, h, w = NULL)
```

Arguments

img image
h height
w width

Value

None

to_xla

Learn to XLA

Description

Distribute the training across TPUs

Usage

```
to_xla(object)
```

Arguments

object

learner / model

Value

TrackerCallback 531

TrackerCallback

TrackerCallback

Description

A 'Callback' that keeps track of the best value in 'monitor'.

Usage

```
TrackerCallback(monitor = "valid_loss", comp = NULL, min_delta = 0)
```

Arguments

monitor monitor the loss

comp comp

min_delta minimum delta

Value

None

 $trainable_params$

 $Trainable_params$

Description

Return all trainable parameters of 'm'

Usage

```
trainable_params(m)
```

Arguments

m

trainable parameters

Value

train_loader

TrainEvalCallback

TrainEvalCallback

Description

TrainEvalCallback

Usage

```
TrainEvalCallback(...)
```

Arguments

... parameters to pass

Value

None

train_loader

Train_loader

Description

Data loader. Combines a dataset and a sampler, and provides an iterable over

Usage

```
train_loader()
```

Details

the given dataset. The :class:'~torch.utils.data.DataLoader' supports both map-style and iterable-style datasets with single- or multi-process loading, customizing loading order and optional automatic batching (collation) and memory pinning.

Value

loader

Transform 533

Transform Transform

Description

```
Delegates ('__call__', 'decode', 'setup') to ('encodes', 'decodes', 'setups') if 'split_idx' matches
```

Usage

```
Transform(enc = NULL, dec = NULL, split_idx = NULL, order = NULL)
```

Arguments

enc encoder

dec decoder

split_idx split by index

order order

Value

None

TransformBlock

TransformBlock

Description

A basic wrapper that links defaults transforms for the data block API

Usage

```
TransformBlock(
  type_tfms = NULL,
  item_tfms = NULL,
  batch_tfms = NULL,
  dl_type = NULL,
  dls_kwargs = NULL)
```

Arguments

```
type_tfms transformation type item_tfms item transformation type
```

batch_tfms one or several transforms applied to the batches once they are formed

dl_type DL application
dls_kwargs additional arguments

Value	
block	
transformers	Transformers
Description	
Transformers	
Usage	
transformers()	
Value	
None	
TransformersDropOutput	
	TransformersDropOutput
Description	

Transformers Drop Output

Usage

TransformersDropOutput()

Value

TransformersTokenizer 535

 ${\tt TransformersTokenizer} \ \ \textit{TransformersTokenizer}$

Description

TransformersTokenizer

Usage

TransformersTokenizer(tokenizer)

Arguments

tokenizer

tokenizer object

Value

None

trunc_normal_

 $Trunc_normal_$

Description

Truncated normal initialization (approximation)

Usage

```
trunc_normal_(x, mean = 0, std = 1)
```

Arguments

x tensor mean mean

std standard deviation

Value

tensor

TSBlock

TSBlock

Description

A TimeSeries Block to process one timeseries

Usage

```
TSBlock(...)
```

Arguments

... parameters to pass

Value

None

 ${\tt TSDataLoaders_from_dfs}$

TSDataLoaders_from_dfs

Description

Create a DataLoader from a df_train and df_valid

Usage

```
TSDataLoaders_from_dfs(
    df_train,
    df_valid,
    path = ".",
    x_cols = NULL,
    label_col = NULL,
    y_block = NULL,
    item_tfms = NULL,
    batch_tfms = NULL,
    bs = 64,
    val_bs = NULL,
    shuffle_train = TRUE,
    device = NULL
)
```

TSDataTable 537

Arguments

df_train train data df_valid validation data path path (optional) x_cols predictors label_col label/output column y_block y_block item_tfms item transformations batch_tfms batch transformations batch size bs val_bs validation batch size shuffle_train shuffle train data

device name

Value

None

device

TSDataTable

TSDataTable

Description

A 'DataFrame' wrapper that knows which cols are x/y, and returns rows in '__getitem__'

Usage

```
TSDataTable(
  df,
  procs = NULL,
  x_names = NULL,
  y_names = NULL,
  block_y = NULL,
  splits = NULL,
  do_setup = TRUE,
  device = NULL,
  inplace = FALSE
)
```

TSeries TSeries

Arguments

df A DataFrame of your data
procs list of preprocess functions

x_names predictors names

y_names the names of the dependent variables

block_y the TransformBlock to use for the target

splits How to split your data

do_setup A parameter for if Tabular will run the data through the procs upon initialization

device device name

inplace If True, Tabular will not keep a separate copy of your original DataFrame in

memory

Value

None

TSeries TSeries

Description

Basic Time series wrapper

Usage

TSeries(...)

Arguments

... parameters to pass

Value

TSeries_create 539

 $TSeries_create$

 $TSeries_create$

Description

TSeries_create

Usage

```
TSeries_create(x, ...)
```

Arguments

```
x tensor
```

... additional parameters

Value

tensor

Examples

```
## Not run:
res = TSeries_create(as.array(runif(100)))
res %>% show(title = 'R array') %>% plot(dpi = 200)
## End(Not run)
```

UnetBlock

UnetBlock

Description

A quasi-UNet block, using 'PixelShuffle_ICNR upsampling'.

540 UnetBlock

Usage

```
UnetBlock(
  up_in_c,
  x_in_c,
  hook,
  final_div = TRUE,
  blur = FALSE,
  act_cls = nn()$ReLU,
  self_attention = FALSE,
  init = nn()$init$kaiming_normal_,
  norm_type = NULL,
  ks = 3,
  stride = 1,
  padding = NULL,
  bias = NULL,
  ndim = 2,
  bn_1st = TRUE,
  transpose = FALSE,
  xtra = NULL,
  bias_std = 0.01,
  dilation = 1,
  groups = 1,
 padding_mode = "zeros"
)
```

Arguments

up_in_c up_in_c parameter x_in_c x_in_c parameter

hook The hook is set to this intermediate layer to store the output needed for this

block.

final_div final div

blur is used to avoid checkerboard artifacts at each layer.

act_cls activation

self_attention self_attention determines if we use a self-attention layer

init initializer

norm_type normalization type

ks kernel size stride stride

padding padding mode

bias bias

ndim number of dimensions bn_1st batch normalization 1st

transpose transpose

unet_config 541

xtra xtra

bias_std bias standard deviation

dilation dilation groups groups

padding_mode The mode of padding

Value

None

unet_config

Unet_config

Description

Convenience function to easily create a config for 'DynamicUnet'

Usage

```
unet_config(
  blur = FALSE,
  blur_final = TRUE,
  self_attention = FALSE,
  y_range = NULL,
  last_cross = TRUE,
  bottle = FALSE,
  act_cls = nn()$ReLU,
  init = nn()$init$kaiming_normal_,
  norm_type = NULL
)
```

Arguments

blur is used to avoid checkerboard artifacts at each layer.

blur_final blur final is specific to the last layer.

self_attention self_attention determines if we use a self attention layer at the third block before

the end.

y_range If y_range is passed, the last activations go through a sigmoid rescaled to that

range.

last_cross last cros bottle bottle act_cls activation init initializer

norm_type normalization type

542 unfreeze

Value

None

unet_learner

Unet_learner

Description

Build a unet learner from 'dls' and 'arch'

Usage

```
unet_learner(dls, arch, ...)
```

Arguments

dls dataloader arch architecture

... additional arguments

Value

None

unfreeze

Unfreeze a model

Description

Unfreeze a model

Usage

```
unfreeze(object, ...)
```

Arguments

object A model

... Additional parameters

Value

uniform_blur2d 543

Examples

```
## Not run:
learnR %>% unfreeze()
## End(Not run)
```

uniform_blur2d

Uniform_blur2d

Description

Uniformly apply blurring

Usage

```
uniform_blur2d(x, s)
```

Arguments

x image s effect

Value

None

upit

Upit module

Description

Upit module

Usage

upit()

Value

544 URLs_AG_NEWS

URLs_ADULT_SAMPLE

ADULT_SAMPLE dataset

Description

```
download ADULT_SAMPLE dataset
```

Usage

```
URLs_ADULT_SAMPLE(filename = "ADULT_SAMPLE", untar = TRUE)
```

Arguments

filename the name of the file

untar logical, whether to untar the '.tgz' file

Value

None

Examples

```
## Not run:
URLs_ADULT_SAMPLE()
## End(Not run)
```

URLs_AG_NEWS

AG_NEWS dataset

Description

download AG_NEWS dataset

Usage

```
URLs_AG_NEWS(filename = "AG_NEWS", untar = TRUE)
```

Arguments

filename the name of the file

untar logical, whether to untar the '.tgz' file

Value

None

Examples

```
## Not run:
URLs_AG_NEWS()
## End(Not run)
```

 $\label{lem:urls_amazon_reviews} \\ AMAZON_REVIEWS \\ AMAZON_REVIEWS \\ dataset$

Description

download AMAZON_REVIEWSAMAZON_REVIEWS dataset

Usage

```
URLs_AMAZON_REVIEWSAMAZON_REVIEWS(
  filename = "AMAZON_REVIEWSAMAZON_REVIEWS",
  untar = TRUE
)
```

Arguments

filename the name of the file

untar logical, whether to untar the '.tgz' file

Value

 $\label{lem:urls_amazon_reviews_polarity} AMAZON_REVIEWS_POLARITY\ dataset$

Description

download AMAZON_REVIEWS_POLARITY dataset

Usage

```
URLs_AMAZON_REVIEWS_POLARITY(
  filename = "AMAZON_REVIEWS_POLARITY",
  untar = TRUE
)
```

Arguments

filename the name of the file

untar logical, whether to untar the '.tgz' file

Value

None

URLs_BIWI_HEAD_POSE BIWI_HEAD_POSE dataset

Description

download BIWI_HEAD_POSE dataset

Usage

```
URLs_BIWI_HEAD_POSE(filename = "BIWI_HEAD_POSE", untar = TRUE)
```

Arguments

filename the name of the file

untar logical, whether to untar the '.tgz' file

Value

URLs_CALTECH_101

CALTECH_101 dataset

Description

download CALTECH_101 dataset

Usage

```
URLs_CALTECH_101(filename = "CALTECH_101", untar = TRUE)
```

Arguments

filename

the name of the file

untar

logical, whether to untar the '.tgz' file

Value

None

URLs_CAMVID

CAMVID dataset

Description

download CAMVID dataset

Usage

```
URLs_CAMVID(filename = "CAMVID", untar = TRUE)
```

Arguments

filename

the name of the file

untar

logical, whether to untar the '.tgz' file

Value

548 URLs_CARS

URLs_CAMVID_TINY

CAMVID_TINY dataset

Description

download CAMVID_TINY dataset

Usage

```
URLs_CAMVID_TINY(filename = "CAMVID_TINY", untar = TRUE)
```

Arguments

filename

the name of the file

untar

logical, whether to untar the '.tgz' file

Value

None

URLs_CARS

CARS dataset

Description

download CARS dataset

Usage

```
URLs_CARS(filename = "CARS", untar = TRUE)
```

Arguments

filename

the name of the file

untar

logical, whether to untar the '.tgz' file

Value

URLs_CIFAR 549

URLs_CIFAR

CIFAR dataset

Description

download CIFAR dataset

Usage

```
URLs_CIFAR(filename = "CIFAR", untar = TRUE)
```

Arguments

filename

the name of the file

untar

logical, whether to untar the '.tgz' file

Value

None

URLs_CIFAR_100

CIFAR_100 dataset

Description

download CIFAR_100 dataset

Usage

```
URLs_CIFAR_100(filename = "CIFAR_100", untar = TRUE)
```

Arguments

filename

the name of the file

untar

logical, whether to untar the '.tgz' file

Value

URLs_COCO_TINY

COCO_TINY dataset

Description

download COCO_TINY dataset

Usage

```
URLs_COCO_TINY(filename = "COCO_TINY", untar = TRUE)
```

Arguments

filename

the name of the file

untar

logical, whether to untar the '.tgz' file

Value

None

URLs_CUB_200_2011

CUB_200_2011 dataset

Description

download CUB_200_2011 dataset

Usage

```
URLs_CUB_200_2011(filename = "CUB_200_2011", untar = TRUE)
```

Arguments

filename

the name of the file

untar

logical, whether to untar the '.tgz' file

Value

URLs_DBPEDIA 551

URLs_DBPEDIA

DBPEDIA dataset

Description

download DBPEDIA dataset

Usage

```
URLs_DBPEDIA(filename = "DBPEDIA", untar = TRUE)
```

Arguments

filename

the name of the file

untar

logical, whether to untar the '.tgz' file

Value

None

URLs_DOGS

DOGS dataset

Description

download DOGS dataset

Usage

```
URLs_DOGS(filename = "DOGS", untar = TRUE)
```

Arguments

filename

the name of the file

untar

logical, whether to untar the '.tgz' file

Value

552 URLs_FOOD

URLs_FLOWERS

FLOWERS dataset

Description

download FLOWERS dataset

Usage

```
URLs_FLOWERS(filename = "FLOWERS", untar = TRUE)
```

Arguments

filename the name of the file

untar logical, whether to untar the '.tgz' file

Value

None

URLs_FOOD

FOOD dataset

Description

download FOOD dataset

Usage

```
URLs_FOOD(filename = "FOOD", untar = TRUE)
```

Arguments

filename the name of the file

untar logical, whether to untar the '.tgz' file

Value

URLs_HORSE_2_ZEBRA

HORSE_2_ZEBRA dataset

Description

download HORSE_2_ZEBRA dataset

Usage

```
URLs_HORSE_2_ZEBRA(filename = "horse2zebra", unzip = TRUE)
```

Arguments

filename the name of the file

unzip logical, whether to unzip the '.zip' file

Value

None

URLs_HUMAN_NUMBERS

HUMAN_NUMBERS dataset

Description

download HUMAN_NUMBERS dataset

Usage

```
URLs_HUMAN_NUMBERS(filename = "HUMAN_NUMBERS", untar = TRUE)
```

Arguments

filename the name of the file

untar logical, whether to untar the '.tgz' file

Value

URLs_IMAGENETTE

IMAGENETTE dataset

Description

download IMAGENETTE dataset

Usage

```
URLs_IMAGENETTE(filename = "IMAGENETTE", untar = TRUE)
```

Arguments

filename the name of the file

untar logical, whether to untar the '.tgz' file

Value

None

Description

download IMAGENETTE_160 dataset

Usage

```
URLs_IMAGENETTE_160(filename = "IMAGENETTE_160", untar = TRUE)
```

Arguments

filename the name of the file

untar logical, whether to untar the '.tgz' file

Value

URLs_IMAGENETTE_320

IMAGENETTE_320 dataset

Description

download IMAGENETTE_320 dataset

Usage

```
URLs_IMAGENETTE_320(filename = "IMAGENETTE_320", untar = TRUE)
```

Arguments

filename

the name of the file

untar

logical, whether to untar the '.tgz' file

Value

None

URLs_IMAGEWOOF

IMAGEWOOF dataset

Description

download IMAGEWOOF dataset

Usage

```
URLs_IMAGEWOOF(filename = "IMAGEWOOF", untar = TRUE)
```

Arguments

filename

the name of the file

untar

logical, whether to untar the '.tgz' file

Value

URLs_IMAGEWOOF_160

IMAGEWOOF_160 dataset

Description

download IMAGEWOOF_160 dataset

Usage

```
URLs_IMAGEWOOF_160(filename = "IMAGEWOOF_160", untar = TRUE)
```

Arguments

filename the name of the file

untar logical, whether to untar the '.tgz' file

Value

None

URLs_IMAGEWOOF_320

IMAGEWOOF_320 dataset

Description

download IMAGEWOOF_320 dataset

Usage

```
URLs_IMAGEWOOF_320(filename = "IMAGEWOOF_320", untar = TRUE)
```

Arguments

filename the name of the file

untar logical, whether to untar the '.tgz' file

Value

URLs_IMDB 557

URLs_IMDB

IMDB dataset

Description

download IMDB dataset

Usage

```
URLs_IMDB(filename = "IMDB", untar = TRUE)
```

Arguments

filename

the name of the file

untar

logical, whether to untar the '.tgz' file

Value

None

URLs_IMDB_SAMPLE

IMDB_SAMPLE dataset

Description

download IMDB_SAMPLE dataset

Usage

```
URLs_IMDB_SAMPLE(filename = "IMDB_SAMPLE", untar = TRUE)
```

Arguments

filename

the name of the file

untar

logical, whether to untar the '.tgz' file

Value

558 URLs_ML_SAMPLE

URLs_LSUN_BEDROOMS

LSUN_BEDROOMS dataset

Description

download LSUN_BEDROOMS dataset

Usage

```
URLs_LSUN_BEDROOMS(filename = "LSUN_BEDROOMS", untar = TRUE)
```

Arguments

filename the name of the file

untar logical, whether to untar the '.tgz' file

Value

None

URLs_ML_SAMPLE

ML_SAMPLE dataset

Description

download ML_SAMPLE dataset

Usage

```
URLs_ML_SAMPLE(filename = "ML_SAMPLE", untar = TRUE)
```

Arguments

filename the name of the file

untar logical, whether to untar the '.tgz' file

Value

URLs_MNIST 559

URLs_MNIST

MNIST dataset

Description

download MNIST dataset

Usage

```
URLs_MNIST(filename = "MNIST", untar = TRUE)
```

Arguments

filename

the name of the file

untar

logical, whether to untar the '.tgz' file

Value

None

URLs_MNIST_SAMPLE

MNIST_SAMPLE dataset

Description

download MNIST_SAMPLE dataset

Usage

```
URLs_MNIST_SAMPLE(filename = "MNIST_SAMPLE", untar = TRUE)
```

Arguments

filename

the name of the file

untar

logical, whether to untar the '.tgz' file

Value

URLs_MNIST_TINY

MNIST_TINY dataset

Description

download MNIST_TINY dataset

Usage

```
URLs_MNIST_TINY(filename = "MNIST_TINY", untar = TRUE)
```

Arguments

filename

the name of the file

untar

logical, whether to untar the '.tgz' file

Value

None

```
URLs_MNIST_VAR_SIZE_TINY
```

 $MNIST_VAR_SIZE_TINY\ dataset$

Description

```
download MNIST_VAR_SIZE_TINY dataset
```

Usage

```
URLs_MNIST_VAR_SIZE_TINY(filename = "MNIST_VAR_SIZE_TINY", untar = TRUE)
```

Arguments

filename

the name of the file

untar

logical, whether to untar the '.tgz' file

Value

```
URLs_MOVIE_LENS_ML_100k
```

MOVIE_LENS_ML_100k dataset

Description

```
download MOVIE_LENS_ML_100k dataset
```

Usage

```
URLs_MOVIE_LENS_ML_100k(filename = "ml-100k", unzip = TRUE)
```

Arguments

filename the name of the file

unzip logical, whether to unzip the '.zip' file

Value

None

URLs_MT_ENG_FRA

MT_ENG_FRA dataset

Description

```
download MT_ENG_FRA dataset
```

Usage

```
URLs_MT_ENG_FRA(filename = "MT_ENG_FRA", untar = TRUE)
```

Arguments

filename the name of the file

untar logical, whether to untar the '.tgz' file

Value

URLs_OPENAI_TRANSFORMER

OPENAI_TRANSFORMER dataset

Description

download OPENAI_TRANSFORMER dataset

Usage

```
URLs_OPENAI_TRANSFORMER(filename = "OPENAI_TRANSFORMER", untar = TRUE)
```

Arguments

filename the name of the file

untar logical, whether to untar the '.tgz' file

Value

None

URLs_PASCAL_2007

PASCAL_2007 dataset

Description

download PASCAL_2007 dataset

Usage

```
URLs_PASCAL_2007(filename = "PASCAL_2007", untar = TRUE)
```

Arguments

filename the name of the file

untar logical, whether to untar the '.tgz' file

Value

URLs_PASCAL_2012

PASCAL_2012 dataset

Description

download PASCAL_2012 dataset

Usage

```
URLs_PASCAL_2012(filename = "PASCAL_2012", untar = TRUE)
```

Arguments

filename

the name of the file

untar

logical, whether to untar the '.tgz' file

Value

None

URLs_PETS

PETS dataset

Description

download PETS dataset

Usage

```
URLs_PETS(filename = "PETS", untar = TRUE)
```

Arguments

filename

the name of the file

untar

logical, whether to untar the '.tgz' file

Value

URLs_PLANET_SAMPLE

PLANET_SAMPLE dataset

Description

download PLANET_SAMPLE dataset

Usage

```
URLs_PLANET_SAMPLE(filename = "PLANET_SAMPLE", untar = TRUE)
```

Arguments

filename the name of the file

untar logical, whether to untar the '.tgz' file

Value

None

URLs_PLANET_TINY

PLANET_TINY dataset

Description

download PLANET_TINY dataset

Usage

```
URLs_PLANET_TINY(filename = "PLANET_TINY", untar = TRUE)
```

Arguments

filename the name of the file

untar logical, whether to untar the '.tgz' file

Value

URLs_S3_COCO 565

URLs_S3_COCO

S3_COCO dataset

Description

download S3_COCO dataset

Usage

```
URLs_S3_COCO(filename = "S3_COCO", untar = TRUE)
```

Arguments

filename

the name of the file

untar

logical, whether to untar the '.tgz' file

Value

None

URLs_S3_IMAGE

S3_IMAGE dataset

Description

download S3_IMAGE dataset

Usage

```
URLs_S3_IMAGE(filename = "S3_IMAGE", untar = TRUE)
```

Arguments

filename

the name of the file

untar

logical, whether to untar the '.tgz' file

Value

566 URLs_S3_MODEL

URLs_S3_IMAGELOC

S3_IMAGELOC dataset

Description

download S3_IMAGELOC dataset

Usage

```
URLs_S3_IMAGELOC(filename = "S3_IMAGELOC", untar = TRUE)
```

Arguments

filename

the name of the file

untar

logical, whether to untar the '.tgz' file

Value

None

URLs_S3_MODEL

S3_MODEL dataset

Description

download S3_MODEL dataset

Usage

```
URLs_S3_MODEL(filename = "S3_MODEL", untar = TRUE)
```

Arguments

filename

the name of the file

untar

logical, whether to untar the '.tgz' file

Value

URLs_S3_NLP 567

URLs_S3_NLP

S3_NLP dataset

Description

download S3_NLP dataset

Usage

```
URLs_S3_NLP(filename = "S3_NLP", untar = TRUE)
```

Arguments

filename

the name of the file

untar

logical, whether to untar the '.tgz' file

Value

None

URLs_SIIM_SMALL

 $SIIM_SMALL$

Description

download YELP_REVIEWS_POLARITY dataset

Usage

```
URLs_SIIM_SMALL(filename = "SIIM_SMALL", untar = TRUE)
```

Arguments

filename

the name of the file

untar

logical, whether to untar the '.tgz' file

Value

URLs_SKIN_LESION

SKIN_LESION dataset

Description

download SKIN_LESION dataset

Usage

```
URLs_SKIN_LESION(filename = "SKIN_LESION", untar = TRUE)
```

Arguments

filename the name of the file

untar logical, whether to untar the '.tgz' file

Value

None

URLs_SOGOU_NEWS

SOGOU_NEWS dataset

Description

download SOGOU_NEWS dataset

Usage

```
URLs_SOGOU_NEWS(filename = "SOGOU_NEWS", untar = TRUE)
```

Arguments

filename the name of the file

untar logical, whether to untar the '.tgz' file

Value

URLs_SPEAKERS10 569

URLs_SPEAKERS10

SPEAKERS10 dataset

Description

download SPEAKERS10 dataset

Usage

```
URLs_SPEAKERS10(filename = "SPEAKERS10", untar = TRUE)
```

Arguments

filename the name of the file

untar logical, whether to untar the '.tgz' file

Value

None

Examples

```
## Not run:
URLs_SPEAKERS10()
## End(Not run)
```

URLs_SPEECHCOMMANDS

SPEECHCOMMANDS dataset

Description

download SPEECHCOMMANDS dataset

Usage

```
URLs_SPEECHCOMMANDS(filename = "SPEECHCOMMANDS", untar = TRUE)
```

Arguments

filename the name of the file

untar logical, whether to untar the '.tgz' file

Value

None

Examples

```
## Not run:
URLs_SPEECHCOMMANDS()
## End(Not run)
```

URLs_WIKITEXT

WIKITEXT dataset

Description

download WIKITEXT dataset

Usage

```
URLs_WIKITEXT(filename = "WIKITEXT", untar = TRUE)
```

Arguments

filename

the name of the file

untar

logical, whether to untar the '.tgz' file

Value

None

URLs_WIKITEXT_TINY

WIKITEXT_TINY dataset

Description

```
download WIKITEXT_TINY dataset
```

Usage

```
URLs_WIKITEXT_TINY(filename = "WIKITEXT_TINY", untar = TRUE)
```

URLs_WT103_BWD 571

Arguments

filename the name of the file

untar logical, whether to untar the '.tgz' file

Value

None

URLs_WT103_BWD

WT103_BWD dataset

Description

download WT103_BWD dataset

Usage

```
URLs_WT103_BWD(filename = "WT103_BWD", untar = TRUE)
```

Arguments

filename the name of the file

untar logical, whether to untar the '.tgz' file

Value

None

URLs_WT103_FWD

WT103_FWD dataset

Description

download WT103_FWD dataset

Usage

```
URLs_WT103_FWD(filename = "WT103_FWD", untar = TRUE)
```

Arguments

filename the name of the file

untar logical, whether to untar the '.tgz' file

Value

URLs_YAHOO_ANSWERS

YAHOO_ANSWERS dataset

Description

download YAHOO_ANSWERS dataset

Usage

```
URLs_YAHOO_ANSWERS(filename = "YAHOO_ANSWERS", untar = TRUE)
```

Arguments

filename the name of the file

untar logical, whether to untar the '.tgz' file

Value

None

URLs_YELP_REVIEWS

YELP_REVIEWS dataset

Description

download YELP_REVIEWS dataset

Usage

```
URLs_YELP_REVIEWS(filename = "YELP_REVIEWS", untar = TRUE)
```

Arguments

filename the name of the file

untar logical, whether to untar the '.tgz' file

Value

URLs_YELP_REVIEWS_POLARITY

YELP_REVIEWS_POLARITY dataset

Description

download YELP_REVIEWS_POLARITY dataset

Usage

```
URLs_YELP_REVIEWS_POLARITY(filename = "YELP_REVIEWS_POLARITY", untar = TRUE)
```

Arguments

filename the name of the file

untar logical, whether to untar the '.tgz' file

Value

None

vgg11_bn $Vgg11_bn$

Description

VGG 11-layer model (configuration "A") with batch normalization

Usage

```
vgg11_bn(pretrained = FALSE, progress)
```

Arguments

pretrained pretrained or not

progress to see progress bar or not

Details

"Very Deep Convolutional Networks For Large-Scale Image Recognition" https://arxiv.org/pdf/1409.1556.pdf

Value

model

574 vgg16_bn

vgg13_bn

 $Vgg13_bn$

Description

VGG 13-layer model (configuration "B") with batch normalization

Usage

```
vgg13_bn(pretrained = FALSE, progress)
```

Arguments

pretrained

pretrained or not

progress

to see progress bar or not

Details

"Very Deep Convolutional Networks For Large-Scale Image Recognition" https://arxiv.org/pdf/1409.1556.pdf

Value

model

vgg16_bn

Vgg16_bn

Description

VGG 16-layer model (configuration "D") with batch normalization

Usage

```
vgg16_bn(pretrained = FALSE, progress)
```

Arguments

pretrained

pretrained or not

progress

to see progress bar or not

Details

"Very Deep Convolutional Networks For Large-Scale Image Recognition" https://arxiv.org/pdf/1409.1556.pdf

Value

model

vgg19_bn 575

vgg19_bn

 $Vgg19_bn$

Description

VGG 19-layer model (configuration 'E') with batch normalization

Usage

```
vgg19_bn(pretrained = FALSE, progress)
```

Arguments

pretrained

pretrained or not

progress

to see progress bar or not

Details

"Very Deep Convolutional Networks For Large-Scale Image Recognition" https://arxiv.org/pdf/1409.1556.pdf

Value

model

vision

Vision module

Description

Vision module

Usage

vision()

Value

576 Voice

vleaky_relu

Vleaky_relu

Description

```
'F$leaky_relu' with 0.3 slope
```

Usage

```
vleaky_relu(input, inplace = TRUE)
```

Arguments

input

inputs

inplace

inplace or not

Value

None

Voice

Voice

Description

Voice

Usage

```
Voice(
  sample_rate = 16000,
  n_{fft} = 1024,
 win_length = NULL,
 hop_length = 128,
  f_{\min} = 50,
  f_{max} = 8000,
  pad = 0,
  n_mels = 128,
 window_fn = torch()$hann_window,
  power = 2,
 normalized = FALSE,
 wkwargs = NULL,
 mel = TRUE,
  to_db = TRUE
)
```

wandb 577

Arguments

sample_rate sample rate

n_fft number of fast fourier transforms

win_length windowing length hop_length hopping length

f_min minimum frequency f_max maximum frequency

pad padding mode

n_mels number of mel-spectrograms

window_fn window function

power power

normalized normalized or not
wkwargs additional arguments
mel mel-spectrogram or not

to_db to decibels

Value

None

wandb Wandb module

Description

Wandb module

Usage

wandb()

Value

578 WandbCallback

WandbCallback

WandbCallback

Description

Saves model topology, losses & metrics

Usage

```
WandbCallback(
  log = "gradients",
  log_preds = TRUE,
  log_model = TRUE,
  log_dataset = FALSE,
  dataset_name = NULL,
  valid_dl = NULL,
  n_preds = 36,
  seed = 12345,
  reorder = TRUE
)
```

Arguments

log "gradients" (default), "parameters", "all" or None. Losses & metrics are	are aiwavs
--	------------

logged.

log_preds whether we want to log prediction samples (default to True).

log_model whether we want to log our model (default to True). This also requires Save-

ModelCallback.

log_dataset Options: - False (default) - True will log folder referenced by learn.dls.path. - a

path can be defined explicitly to reference which folder to log. Note: subfolder

"models" is always ignored.

dataset_name name of logged dataset (default to folder name).

valid_dl DataLoaders containing items used for prediction samples (default to random

items from learn.dls.valid.

n_preds number of logged predictions (default to 36).

seed used for defining random samples.

reorder reorder or not

Value

Warp 579

Warp Warp

Description

Apply perspective warping with 'magnitude' and 'p' on a batch of matrices

Usage

```
Warp(
  magnitude = 0.2,
  p = 0.5,
  draw_x = NULL,
  draw_y = NULL,
  size = NULL,
  mode = "bilinear",
  pad_mode = "reflection",
  batch = FALSE,
  align_corners = TRUE
)
```

Arguments

 ${\tt magnitude}$ magnitude probability $draw\ x$ draw_x draw_y draw y size size mode mode pad_mode padding mode batch batch align_corners align corners

Value

580 WeightDropout

waterfall_plot	Waterfall_plot
waterrall_plut	waterjan_pioi

Description

Plots an explanation of a single prediction as a waterfall plot. Accepts a row_index and class_id.

Usage

```
waterfall_plot(object, row_idx = NULL, class_id = 0, dpi = 200, ...)
```

Arguments

object	ShapInterpretation object
row_idx	is the index of the row chosen in test_data to be analyzed, which defaults to zero.
class_id	Accepts a class_id which is used to indicate the class of interest for a classification model. It can either be an int or str representation for a class of choice.
dpi	dots per inch
	additional arguments

Value

None

WeightDropout	WeightDropout	

Description

A module that wraps another layer in which some weights will be replaced by 0 during training.

Usage

```
WeightDropout(module, weight_p, layer_names = "weight_hh_l0")
```

Arguments

```
module module
weight_p weight_p
layer_names layer_names
```

Value

WeightedDL 581

WeightedDL

WeightedDL

Description

Transformed 'DataLoader'

Usage

```
WeightedDL(
  dataset = NULL,
  bs = NULL,
  wgts = NULL,
  shuffle = FALSE,
  num_workers = NULL,
  verbose = FALSE,
  do_setup = TRUE,
  pin_memory = FALSE,
  timeout = 0,
  batch_size = NULL,
  drop_last = FALSE,
  indexed = NULL,
  n = NULL,
  device = NULL,
  persistent_workers = FALSE
)
```

Arguments

dataset

```
bs
bs
                 weights
wgts
                 shuffle
shuffle
                 number of workers
num_workers
                 verbose
verbose
                 do_setup
do_setup
pin_memory
                pin_memory
timeout
                 timeout
batch_size
                batch_size
drop_last
                drop_last
indexed
                indexed
n
                n
                 device
device
persistent_workers
                persistent_workers
```

dataset

582 weight_decay

Value

None

weight_decay

Weight_decay

Description

Weight decay as decaying 'p' with 'lr*wd'

Usage

```
weight_decay(p, lr, wd, do_wd = TRUE, ...)
```

Arguments

```
p p
lr learning rate
wd weight decay
do_wd do_wd
... additional args to pass
```

Value

None

Examples

```
## Not run:

tst_param = function(val, grad = NULL) {
    "Create a tensor with `val` and a gradient of `grad` for testing"
    res = tensor(val) %>% float()

if(is.null(grad)) {
    grad = tensor(val / 10)
} else {
    grad = tensor(grad)
}

res$grad = grad %>% float()
    res
}

p = tst_param(1., 0.1)
weight_decay(p, 1., 0.1)
```

win_abdoment_soft 583

```
## End(Not run)
```

 $win_abdoment_soft$

Abdomen soft

Description

Abdomen soft

Usage

```
win_abdoment_soft()
```

Value

list

win_brain

Brain

Description

Brain

Usage

win_brain()

Value

list

win_brain_bone

Brain bone

Description

Brain bone

Usage

```
win_brain_bone()
```

Value

list

584 win_lungs

win_brain_soft $Brain\ soft$ Description Brain soft Usage win_brain_soft() Value list win_liver LiverDescription Liver Usage win_liver() Value list

Description

Lungs

win_lungs

Lungs

Usage

win_lungs()

Value

list

win_mediastinum 585

win_mediastinum

Mediastinum

Description

Mediastinum

Usage

win_mediastinum()

Value

list

win_spine_bone

Spine bone

Description

Spine bone

Usage

win_spine_bone()

Value

list

win_spine_soft

Spine soft

Description

Spine soft

Usage

win_spine_soft()

Value

list

586 xla

win_stroke Stroke

Description

Stroke

Usage

win_stroke()

Value

list

win_subdural

Subdural

Description

Subdural

Usage

win_subdural()

Value

list

xla

XLA

Description

XLA

Usage

xla()

Value

XResNet 587

XResNet XResNet

Description

A sequential container.

Usage

```
XResNet(block, expansion, layers, c_in = 3, c_out = 1000, ...)
```

Arguments

block the blocks to pass to XResNet
expansion argument for inputs and filters
layers the layers to pass to XResNet

c_in number of inputsc_out number of outputs... additional arguments

xresnet101

Xresnet101

Description

Load model architecture

Usage

```
xresnet101(...)
```

Arguments

... parameters to pass

Value

588 xresnet18

xresnet152

Xresnet152

Description

Load model architecture

Usage

```
xresnet152(...)
```

Arguments

... parameters to pass

Value

model

xresnet18

Xresnet18

Description

Load model architecture

Usage

```
xresnet18(...)
```

Arguments

... parameters to pass

Value

xresnet18_deep 589

xresnet18_deep

Xresnet18_deep

Description

Load model architecture

Usage

```
xresnet18_deep(...)
```

Arguments

... parameters to pass

Value

model

xresnet18_deeper

Xresnet18_deeper

Description

Load model architecture

Usage

```
xresnet18_deeper(...)
```

Arguments

... parameters to pass

Value

590 xresnet34_deep

xresnet34

Xresnet34

Description

Load model architecture

Usage

```
xresnet34(...)
```

Arguments

... parameters to pass

Value

model

xresnet34_deep

Xresnet34_deep

Description

Load model architecture

Usage

```
xresnet34_deep(...)
```

Arguments

... parameters to pass

Value

xresnet34_deeper 591

xresnet34_deeper

Xresnet34_deeper

Description

Load model architecture

Usage

```
xresnet34_deeper(...)
```

Arguments

... parameters to pass

Value

model

xresnet50

Xresnet50

Description

Load model architecture

Usage

```
xresnet50(...)
```

Arguments

... parameters to pass

Value

592 xresnet50_deeper

xresnet50_deep

Xresnet50_deep

Description

Load model architecture

Usage

```
xresnet50_deep(...)
```

Arguments

... parameters to pass

Value

model

xresnet50_deeper

Xresnet50_deeper

Description

Load model architecture

Usage

```
xresnet50_deeper(...)
```

Arguments

... parameters to pass

Value

xresnext101 593

xresnext101

xresnext101

Description

Load model architecture

Usage

```
xresnext101(...)
```

Arguments

... parameters to pass

Value

model

xresnext18

xresnext18

Description

Load model architecture

Usage

```
xresnext18(...)
```

Arguments

... parameters to pass

Value

594 xresnext50

xresnext34 xresnext34

Description
Load model architecture

Usage
xresnext34(...)

Arguments
... parameters to pass

Value

xresnext50

xresnext50

Description

model

Load model architecture

Usage

```
xresnext50(...)
```

Arguments

... parameters to pass

Value

xsenet154 595

xsenet154

xsenet154

Description

Load model architecture

Usage

```
xsenet154(...)
```

Arguments

... parameters to pass

Value

model

xse_resnet101

xse_resnet101

Description

Load model architecture

Usage

```
xse_resnet101(...)
```

Arguments

... parameters to pass

Value

596 xse_resnet18

xse_resnet152

xse_resnet152

Description

Load model architecture

Usage

```
xse_resnet152(...)
```

Arguments

... parameters to pass

Value

model

xse_resnet18

xse_resnet18

Description

Load model architecture

Usage

```
xse_resnet18(...)
```

Arguments

... parameters to pass

Value

xse_resnet34 597

xse_resnet34

xse_resnet34

Description

Load model architecture

Usage

```
xse_resnet34(...)
```

Arguments

... parameters to pass

Value

model

xse_resnet50

xse_resnet50

Description

Load model architecture

Usage

```
xse_resnet50(...)
```

Arguments

... parameters to pass

Value

598 xse_resnext18

xse_resnext101

xse_resnext101

Description

Load model architecture

Usage

```
xse_resnext101(...)
```

Arguments

.. parameters to pass

Value

model

xse_resnext18

xse_resnext18

Description

Load model architecture

Usage

```
xse_resnext18(...)
```

Arguments

... parameters to pass

Value

xse_resnext18_deep 599

```
xse_resnext18_deep
```

Description

Load model architecture

Usage

```
xse_resnext18_deep(...)
```

Arguments

```
... parameters to pass
```

Value

model

Description

Load model architecture

Usage

```
xse_resnext18_deeper(...)
```

Arguments

```
... parameters to pass
```

Value

600 xse_resnext34_deep

xse_resnext34

xse_resnext34

Description

Load model architecture

Usage

```
xse_resnext34(...)
```

Arguments

... parameters to pass

Value

model

xse_resnext34_deep

xse_resnext34_deep

Description

Load model architecture

Usage

```
xse_resnext34_deep(...)
```

Arguments

... parameters to pass

Value

xse_resnext34_deeper 601

```
xse_resnext34_deeper
```

Description

Load model architecture

Usage

```
xse_resnext34_deeper(...)
```

Arguments

... parameters to pass

Value

model

xse_resnext50

xse_resnext50

Description

Load model architecture

Usage

```
xse_resnext50(...)
```

Arguments

... parameters to pass

Value

xse_resnext50_deep

xse_resnext50_deep

Description

Load model architecture

Usage

```
xse_resnext50_deep(...)
```

Arguments

... parameters to pass

Value

model

```
xse_resnext50_deeper xse_resnext50_deeper
```

Description

Load model architecture

Usage

```
xse_resnext50_deeper(...)
```

Arguments

... parameters to pass

Value

zoom 603

zoom

Zoom

Description

Zoom

Usage

```
zoom(img, ratio)
```

Arguments

img image files ratio

Value

image

Zoom_

Zoom

Description

Apply a random zoom of at most 'max_zoom' with probability 'p' to a batch of images

Usage

```
Zoom_(
  min_zoom = 1,
  max_zoom = 1.1,
  p = 0.5,
  draw = NULL,
  draw_x = NULL,
  draw_y = NULL,
  size = NULL,
  mode = "bilinear",
  pad_mode = "reflection",
  batch = FALSE,
  align_corners = TRUE
)
```

604 zoom_mat

Arguments

```
minimum zoom
\min\_zoom
                maximum zoom
max_zoom
                probability
р
draw
                draw
draw_x
                draw x
draw_y
                draw y
size
                size
                mode
mode
pad_mode
                pad mode
batch
                batch
                align corners or not
align_corners
```

Value

None

zoom_mat Zoom_mat

Description

Return a random zoom matrix with 'max_zoom' and 'p'

Usage

```
zoom_mat(
    x,
    min_zoom = 1,
    max_zoom = 1.1,
    p = 0.5,
    draw = NULL,
    draw_x = NULL,
    draw_y = NULL,
    batch = FALSE
)
```

Arguments

```
x tensor
min_zoom minimum zoom
max_zoom maximum zoom
p probability
```

605

```
draw draw x draw y draw_y batch draw draw
```

Value

None

```
\&. fastai.torch_core.TensorMask Logical\_and
```

Description

Logical_and

Usage

```
## S3 method for class 'fastai.torch_core.TensorMask' x & y
```

Arguments

x tensor y tensor

Value

tensor

%f%	Fastai assignment

Description

The assignment has to be used for safe modification of the values inside tensors/layers

Usage

```
left %f% right
```

Arguments

```
left left side object
right right side object
```

Value

None

```
\label{lem:core.TensorMask} % \textit{M.fastai.torch\_core.TensorMask} \\ Floor \textit{mod}
```

Description

Floor mod

Usage

```
## S3 method for class 'fastai.torch_core.TensorMask' x \% y
```

Arguments

x tensor y tensor

Value

tensor

```
\%/%.fastai.torch_core.TensorMask Floor divide
```

Description

Floor divide

Usage

```
## S3 method for class 'fastai.torch_core.TensorMask' x %/% y
```

Arguments

x tensor y tensor

Value

tensor

```
^.fastai.torch_core.TensorMask

Pow
```

Description

Pow

Usage

```
## S3 method for class 'fastai.torch_core.TensorMask'
a ^ b
```

Arguments

a tensor b tensor

Value

tensor

Index

```
!.fastai.torch_core.TensorMask
                                                abs. 27
        (not__mask), 375
                                                abs.fastai.torch_core.TensorMask, 28
!.torch.Tensor(logical_not_), 340
                                                AccumMetric, 28
!=.fastai.torch_core.TensorMask
                                                accuracy, 29
        (not_equal_to_mask_), 375
                                                accuracy_multi, 30
!=.torch.Tensor(not_equal_to), 374
                                                accuracy_thresh_expand, 30
*.fastai.torch_core.TensorMask, 22
                                                Adam, 31
*.torch.Tensor(multiplygit add -A &&
                                                adam_step, 31
        git commit -m 'staging all
                                                adaptive_pool, 34
        files'), 367
                                                AdaptiveAvgPool, 32
+.fastai.torch_core.TensorMask, 22
                                                AdaptiveConcatPool1d, 32
+. torch. Tensor (add), 35
                                                AdaptiveConcatPool2d, 33
+.torch.nn.modules.container.Sequential,
                                                AdaptiveGANSwitcher, 33
                                                AdaptiveLoss, 34
-.fastai.torch_core.TensorMask
                                                add, 35
        (sub_mask), 488
                                                add_cyclic_datepart, 36
-. torch. Tensor (sub), 487
                                                add_datepart, 37
/.fastai.torch_core.TensorMask, 23
                                                AddChannels, 35
/.torch.Tensor(div), 131
                                                AddNoise, 36
<.fastai.torch_core.TensorMask, 24
                                                affine_coord, 38
<.torch.Tensor (less), 327</pre>
                                                affine_mat, 39
<=.fastai.torch_core.TensorMask, 24
                                                AffineCoordTfm, 37
<=.torch.Tensor(less_or_equal), 327
                                                alexnet, 39
==.fastai.torch_core.TensorImage, 25
                                                apply_perspective, 40
==.fastai.torch_core.TensorMask, 25
                                                APScoreBinary, 40
==.torch.Tensor, 26
                                                APScoreMulti, 41
>.fastai.torch_core.TensorMask, 26
                                                as_array, 42
>. torch. Tensor (greater), 196
                                                aspect, 42
>=.fastai.torch_core.TensorMask, 27
                                                audio_extensions, 48
>=.torch.Tensor(greater_or_equal), 197
                                                AudioBlock, 43
%/%.torch.Tensor(floor_div), 168
                                                AudioBlock_from_folder, 43
%%. torch. Tensor (floor_mod), 168
                                                AudioGetter, 44
&.fastai.torch_core.TensorMask, 605
                                                AudioPadType, 45
&.torch.Tensor(logical_and), 339
                                                AudioSpectrogram, 45
%/%.fastai.torch_core.TensorMask, 606
                                                AudioTensor, 45
%%.fastai.torch_core.TensorMask, 606
                                                AudioTensor_create, 46
%f%, 605
                                                AudioToMFCC, 47
^.fastai.torch_core.TensorMask, 607
                                                AudioToMFCC_from_cfg, 47
^.torch.Tensor(pow), 403
                                                AudioToSpec_from_cfg, 48
```

aug_transforms, 49	ClassificationInterpretation_from_learner
AutoConfig, 50	75
average_grad, 51	clean_raw_keys,76
average_sqr_grad, 51	clip_remove_empty, 76
AvgLoss, 52	cm, 77
AvgPool, 52	cnn_config, 77
AvgSmoothLoss, 53	cnn_learner, 78
AWD_LSTM, 53	COCOMetric, 80
<pre>awd_lstm_clas_split, 54</pre>	COCOMetricType, 81
awd_lstm_lm_split, 55	CohenKappa, 81
AWD_QRNN, 55	collab, 82
_•	collab_learner, 84
BalancedAccuracy, 56	CollabDataLoaders_from_dblock, 82
BaseLoss, 57	CollabDataLoaders_from_df, 83
BaseTokenizer, 57	CollectDataCallback, 86
basic_critic, 61	colors, 86
basic_generator, 61	ColReader, 87
BasicMelSpectrogram, 58	ColSplitter, 87
BasicMFCC, 59	combined_flat_anneal, 88
BasicSpectrogram, 60	competition_download_file, 89
BatchNorm, 62	competition_download_files, 90
BatchNorm1dFlat, 63	competition_leaderboard_download, 91
bb_pad, 65	competition_list_files, 91
BBoxBlock, 63	competition_submit, 92
BBoxLabeler, 64	competitions_list, 88
BBoxLblBlock, 64	Contrast, 92
BCELossFlat, 66	conv_norm_1r, 95
BCEWithLogitsLossFlat, 66	ConvLayer, 93
blurr, 67	convT_norm_relu, 94
BrierScore, 67	CorpusBLEUMetric, 96
BrierScoreMulti, 68	cos.fastai.torch_core.TensorMask, 96
bs_find, 68	cos.torch.Tensor(cos_), 98
bs_finder, 69	cos_, 98
bt, 69	cosh.fastai.torch_core.TensorMask,97
bt, 67	cosh.torch.Tensor(cosh_), 97
calculate_rouge, 70	cosh_, 97
<u>-</u> .	crap, 98
Callback, 70	crappifier, 99
Cat, 71	create_body, 99
catalyst, 71	create_cnn_model, 100
catalyst_model, 72	create_crin_index, 100
Categorify, 72	create_head, 102
CategoryBlock, 73	
ceiling.fastai.torch_core.TensorMask,	create_inception, 103
73	create_mlp, 103
ceiling.torch.Tensor(ceiling_),74	create_resnet, 104
ceiling_, 74	create_unet_model, 105
ChangeVolume, 74	CropPad, 106
children_and_parameters, 75	CropTime, 106

CrossEntropyLossFlat, 107	efficientdet_infer_dl, 135
CSVLogger, 107	efficientdet_learner, 135
CudaCallback, 108	efficientdet_model, 136
custom_loss, 109	efficientdet_predict_dl, 136
CutMix, 109	efficientdet_train_dl, 137
cutout_gaussian, 110	efficientdet_valid_dl, 137
cycle_learner, 112	emb_sz_rule, 139
CycleGAN, 110	Embedding, 138
CycleGANLoss, 111	EmbeddingDropout, 138
CycleGANTrainer, 112	error_rate, 139
	exp, 140
Data_Loaders, 116	exp.fastai.torch_core.TensorMask, 140
DataBlock, 113	exp_rmspe, 143
dataloaders, 114	ExplainedVariance, 141
Datasets, 115	expm1, 141
dcmread, 117	<pre>expm1.fastai.torch_core.TensorMask,</pre>
debias, 117	142
Debugger, 118	export_generator, 142
decision_plot, 118	
decode_spec_tokens, 119	F1Score, 143
default_split, 119	F1ScoreMulti, 144
Delta, 120	fa_collate, 150
denormalize_imagenet, 120	fa_convert, 150
densenet121, 121	fastai_version, 145
densenet161, 121	fastaudio, 145
densenet169, <u>122</u>	faster_rcnn_infer_dl, 145
densenet201, 122	faster_rcnn_learner, 146
DenseResBlock, 123	faster_rcnn_model, 147
dependence_plot, 124	<pre>faster_rcnn_predict_dl, 147</pre>
DeterministicDihedral, 125	faster_rcnn_train_dl, 148
DeterministicDraw, 125	faster_rcnn_valid_dl, 149
DeterministicFlip, 126	fastinf, 149
detuplify_pg, 126	FBeta, 151
Dice, 127	FBetaMulti, 151
Dicom, 127	FetchPredsCallback, 152
dicom_windows, 127	FileSplitter, 153
Dihedral, 128	FillMissing, 153
dihedral_mat, 129	FillStrategy_COMMON, 154
DihedralItem, 129	FillStrategy_CONSTANT, 155
dim, 130	FillStrategy_MEDIAN, 155
dim.fastai.torch_core.TensorMask, 130	find_coeffs, 155
discriminator, 131	fine_tune, 156
div, 131	fit.fastai.learner.Learner,157
DownmixMono, 132	fit.fastai.tabular.learner.TabularLearner
dropout_mask, 132	157
dummy_eval, 133	fit.fastai.vision.gan.GANLearner, 158
DynamicUnet, 133	fit_flat_cos, 158
	fit_flat_lin, 159
EarlyStoppingCallback, 134	fit_one_cycle, 160

fit_sgdr, 161	get_grid, 189
fix_fit, 162	get_hf_objects, 190
fix_html, 163	<pre>get_image_files, 190</pre>
FixedGANSwitcher, 162	get_language_model, 191
Flatten, 163	get_preds_cyclegan, 192
flatten_check, 164	get_text_classifier, 192
flatten_model, 164	get_text_files, 193
Flip, 165	get_weights, 194
flip_mat, 166	GradientAccumulation, 195
FlipItem, 165	GrandparentSplitter, 195
float, 166	grayscale, 196
floor.fastai.torch_core.TensorMask,	greater, 196
167	greater_or_equal, 197
floor.torch.Tensor(floor_), 167	greater_or_equal, 197
floor_, 167	HammingLoss, 197
floor_div, 168	HammingLossMulti, 198
floor_mod, 168	has_params, 198
fmodule, 169	has_pool_type, 199
FolderDataset, 169	helper, 199
force_plot, 170	HF_ARCHITECTURES, 199
	HF_BaseInput, 200
foreground_acc, 170	HF_BaseModelCallback, 200
forget_mult_CPU, 171	HF_BaseModelWrapper, 201
ForgetMultGPU, 171	HF_BeforeBatchTransform, 201
freeze, 172	
FuncSplitter, 172	HF_CausalLMBeforeBatchTransform, 202
fView, 173	HF_load_dataset, 203
	HF_QABatchTransform, 205
gan_critic, 178	HF_QABeforeBatchTransform, 206
gan_loss_from_func, 179	HF_QstAndAnsModelCallback, 207
GANDiscriminativeLR, 173	HF_QuestionAnswerInput, 207
GANLearner_from_learners, 174	hf_splitter, 208
GANLearner_wgan, 175	HF_SummarizationBeforeBatchTransform,
GANLoss, 177	208
GANModule, 177	HF_SummarizationInput, 209
GANTrainer, 178	HF_SummarizationModelCallback, 210
GatherPredsCallback, 179	HF_TASKS_ALL, 210
gauss_blur2d, 180	HF_TASKS_AUTO, 211
generate_noise, 180	HF_Text2TextAfterBatchTransform, 211
get_annotations, 181	HF_Text2TextBlock, 212
<pre>get_audio_files, 182</pre>	HF_TextBlock, 212
get_bias, 182	HF_TokenCategorize, 213
get_c, 183	HF_TokenCategoryBlock, 213
<pre>get_confusion_matrix, 184</pre>	HF_TokenClassBeforeBatchTransform, 214
get_data_loaders, 184	HF_TokenClassInput, 215
<pre>get_dcm_matrix, 185</pre>	HF_TokenTensorCategory, 215
<pre>get_dicom_files, 186</pre>	Hook, 215
get_dls, 186	hook_output, 218
<pre>get_emb_sz, 187</pre>	hook_outputs, 218
get_files, 188	HookCallback, 216

Hooks, 217	icevision_IAAPerspective, 253
hsv2rgb, 219	icevision_IAAPiecewiseAffine, 254
Hue, 219	icevision_IAASharpen, 255
hug, 220	<pre>icevision_IAASuperpixels, 256</pre>
	<pre>icevision_ImageCompression, 257</pre>
icevision, 220	icevision_ImageOnlyIAATransform, 258
icevision_Adapter, 220	icevision_ImageOnlyTransform, 258
icevision_aug_tfms, 221	<pre>icevision_InvertImg, 259</pre>
icevision_BasicIAATransform, 222	icevision_ISONoise, 259
icevision_BasicTransform, 222	icevision_JpegCompression, 260
icevision_Blur, 223	icevision_LongestMaxSize, 261
icevision_ChannelDropout, 223	icevision_MaskDropout, 262
icevision_ChannelShuffle, 224	icevision_MedianBlur, 263
icevision_CLAHE, 225	icevision_MotionBlur, 263
icevision_ClassMap, 225	icevision_MultiplicativeNoise, 264
icevision_CoarseDropout, 226	icevision_Normalize, 265
icevision_ColorJitter, 227	icevision_OpticalDistortion, 266
icevision_Compose, 228	icevision_PadIfNeeded, 267
icevision_Crop, 229	icevision_parse, 268
<pre>icevision_CropNonEmptyMaskIfExists,</pre>	icevision_Posterize, 269
229	icevision_RandomBrightnessContrast,
icevision_Cutout, 230	269
icevision_Dataset, 231	icevision_RandomContrast, 270
<pre>icevision_Dataset_from_images, 232</pre>	icevision_RandomCrop, 271
icevision_Downscale, 233	icevision_RandomCropNearBBox, 272
icevision_DualIAATransform, 234	icevision_RandomFog, 272
icevision_DualTransform, 234	
icevision_ElasticTransform, 235	icevision_RandomGamma, 273
icevision_Equalize, 236	icevision_RandomGridShuffle, 274
icevision_FancyPCA, 237	icevision_RandomRain, 275
icevision_FDA, 238	icevision_RandomResizedCrop, 276
icevision_FixedSplitter, 239	icevision_RandomRotate90,277
icevision_Flip, 239	icevision_RandomScale, 277
icevision_FromFloat, 240	icevision_RandomShadow, 278
icevision_GaussianBlur, 241	icevision_RandomSizedBBoxSafeCrop, 279
icevision_GaussNoise, 242	icevision_RandomSizedCrop, 280
icevision_GlassBlur, 242	icevision_RandomSnow, 281
icevision_GridDistortion, 243	icevision_RandomSplitter, 282
icevision_GridDropout, 245	icevision_RandomSunFlare, 283
icevision_HistogramMatching, 246	icevision_read_bgr_image, 284
icevision_HorizontalFlip, 247	icevision_read_rgb_image, 284
icevision_HueSaturationValue, 248	icevision_Resize, 285
icevision_IAAAdditiveGaussianNoise,	icevision_resize_and_pad, 285
249	icevision_RGBShift, 286
icevision_IAAAffine, 249	icevision_Rotate, 287
<pre>icevision_IAACropAndPad, 251</pre>	icevision_ShiftScaleRotate, 288
icevision_IAAEmboss, 251	icevision_SingleSplitSplitter, 289
icevision_IAAFliplr, 252	icevision_SmallestMaxSize, 290
icevision_IAAFlipud, 253	icevision_Solarize, 291

icevision_ToFloat, 291	Lambda, 321
icevision_ToGray, 292	<pre>language_model_learner, 322</pre>
icevision_ToSepia, 293	Larc, 323
icevision_Transpose, 293	larc_layer_lr,324
icevision_VerticalFlip, 294	larc_step, 324
icnr_init, 295	layer_info, 325
IDMap, 295	Learner, 325
Image, 296	length, 326
image2tensor, 296	length.fastai.torch_core.TensorMask,
Image_create, 307	326
Image_open, 308	less, 327
<pre>Image_resize, 308</pre>	less_or_equal, 327
ImageBlock, 297	LightingTfm, 328
<pre>ImageBW_create, 297</pre>	LinBnDrop, 328
<pre>ImageDataLoaders_from_csv, 298</pre>	LinearDecoder, 329
<pre>ImageDataLoaders_from_dblock, 299</pre>	LitModel, 329
${\tt ImageDataLoaders_from_df, 300}$	LMDataLoader, 330
<pre>ImageDataLoaders_from_folder, 301</pre>	LMLearner, 331
<pre>ImageDataLoaders_from_lists, 302</pre>	LMLearner_predict, 332
<pre>ImageDataLoaders_from_name_re, 303</pre>	load_dataset, 334
<pre>ImageDataLoaders_from_path_func, 305</pre>	<pre>load_ignore_keys, 334</pre>
<pre>ImageDataLoaders_from_path_re, 306</pre>	<pre>load_image, 335</pre>
<pre>imagenet_stats, 307</pre>	load_learner, 335
in_channels, 314	<pre>load_model_text, 336</pre>
InceptionModule, 309	<pre>load_pre_models, 336</pre>
IndexSplitter, 309	<pre>load_tokenized_csv, 337</pre>
init, 310	loaders, 333
<pre>init_default, 310</pre>	log, 337
init_linear, 311	log.fastai.torch_core.TensorMask,338
install_fastai, 311	log1p, 338
InstanceNorm, 312	log1p.fastai.torch_core.TensorMask,
IntToFloatTensor, 313	339
InvisibleTensor, 313	logical_and, 339
is_rmarkdown, 314	logical_not_, 340
	logical_or, 340
Jaccard, 315	login, 341
JaccardCoeff, 315	Lookahead, 341
JaccardMulti,316	LossMetric, 342
	lr_find, 342
kg, 316	242
1 217	mae, 343
L, 317	make_vocab, 343
L1LossFlat, 317	mask2bbox, 344
12_reg, 318	Mask_create, 346
LabeledBBox, 319	mask_from_blur, 347
LabelSmoothingCrossEntropy, 319	mask_rcnn_infer_dl, 347
LabelSmoothingCrossEntropyFlat, 320	mask_rcnn_learner, 348
Lamb, 320	mask_rcnn_model, 348
lamb_step, 321	mask_rcnn_predict_dl, 349

mask_rcnn_train_dl, 350	nn_loss, 370
mask_rcnn_valid_dl, 350	nn_module, 370
mask_tensor, 351	NoiseColor, 371
MaskBlock, 344	NoneReduce, 371
masked_concat_pool, 345	noop, 372
MaskFreq, 345	norm_apply_denorm, 374
MaskTime, 346	Normalize, 372
match_embeds, 351	Normalize_from_stats, 373
MatthewsCorrCoef, 352	NormalizeTS, 373
MatthewsCorrCoefMulti, 352	notmask, 375
max, 353	not_equal_to, 374
max.fastai.torch_core.TensorMask,353	<pre>not_equal_to_mask_, 375</pre>
MaxPool, 354	<pre>num_features_model, 376</pre>
maybe_unsqueeze, 354	Numericalize, 376
MCDropoutCallback, 355	
mean.fastai.torch_core.TensorMask,355	OldRandomCrop, 377
mean.torch.Tensor, 356	one_batch, 378
medical, 356	OpenAudio, 378
MergeLayer, 357	optim_metric, 380
metrics, 357	Optimizer, 379
migrating_ignite, 357	OptimWrapper, 379
migrating_lightning, 358	or_mask, 380
migrating_pytorch, 358	os, 381
min, 358	os_environ_tpu,381
min.fastai.torch_core.TensorMask, 359	
mish, 359	pad_conv_norm_relu,382
Mish_, 360	pad_input, 383
MishJitAutoFn, 360	pad_input_chunk, 383
MixHandler, 361	parallel,384
MixUp, 361	parallel_tokenize, 384
model_sizes, 362	params, 385
ModelResetter, 362	ParamScheduler, 385
Module, 363	parent_label, 386
Module_test, 363	parsers_AreasMixin, 386
momentum_step, 363	parsers_BBoxesMixin, 387
most_confused, 364	parsers_FasterRCNN, 387
mse, 364	parsers_FilepathMixin, 388
MSELossFlat, 365	parsers_ImageidMixin, 388
msle, 366	parsers_IsCrowdsMixin, 389
MultiCategorize, 366	parsers_LabelsMixin, 389
MultiCategoryBlock, 367	parsers_MaskRCNN, 390
multiplygit add -A && git commit -m	parsers_MasksMixin, 390
'staging all files', 367	parsers_SizeMixin, 391
MultiTargetLoss, 368	parsers_voc, 391
Fiditifal gettoss, 500	partial, 392
n_px, 377	PartialDL, 392
narrow, 368	PartialLambda, 393
Net, 369	pca, 394
nn, 369	•
nn 309	PearsonCorrCoef, 394

Perplexity, 395	Recall, 421
Pipeline, 396	RecallMulti, 422
PixelShuffle_ICNR, 396	ReduceLROnPlateau, 422
plot, 397	RegressionBlock, 423
plot_bs_find, 397	RemoveSilence, 424
plot_confusion_matrix, 398	RemoveType, 424
plot_loss, 399	replace_all_caps, 425
plot_lr_find, 399	replace_maj, 425
plot_top_losses, 400	replace_rep, 426
PointBlock, 401	replace_wrep, 426
PointScaler, 401	res_block_1d, 436
PooledSelfAttention2d, 402	Resample, 427
PoolFlatten, 402	ResBlock, 427
PoolingLinearClassifier, 403	reshape, 429
pow, 403	Resize, 429
pre_process_squad, 408	resize_max, 431
Precision, 404	ResizeBatch, 430
PrecisionMulti, 404	ResizeSignal, 430
predict.fastai.learner.Learner, 405	ResNet, 431
predict.fastai.tabular.learner.TabularLearne	
406	resnet152, 433
preplexity, 406	resnet18, 433
preprocess_audio_folder, 407	resnet34, 434
PreprocessAudio, 407	resnet50, 434
print.fastai.learner.Learner, 409	resnet_generator, 435
print.fastai.tabular.learner.TabularLearner,	ResnetBlock, 435
409	RetinaNet, 437
<pre>print.pydicom.dataset.FileDataset, 410</pre>	retinanet_, 438
py_apply, 411	RetinaNetFocalLoss, 437
python_path, 410	reverse_text, 438
	rgb2hsv, 439
QHAdam, 411	rm_useless_spaces, 441
qhadam_step, 412	rms_prop_step, 440
QRNN, 412	rmse, 439
QRNNLayer, 413	RMSProp, 440
	RNNDropout, 442
R2Score, 414	RNNRegularizer, 442
RAdam, 415	RocAuc, 443
radam_step, 415	RocAucBinary, 443
RandomCrop, 416	RocAucMulti, 444
RandomErasing, 416	Rotate, 445
RandomResizedCrop, 417	rotate_mat, 446
RandomResizedCropGPU, 417	round, 446
RandomSplitter, 418	<pre>round.fastai.torch_core.TensorMask,</pre>
RandPair, 418	447
RandTransform, 419	
ranger, 419	Saturation, 447
RatioResize, 420	SaveModelCallback, 448
ReadTSBatch, 421	SchedCos, 448

SchedExp, 449	sin_,477
SchedLin, 449	sinh.fastai.torch_core.TensorMask,476
SchedNo, 450	sinh.torch.Tensor(add),35
SchedPoly, 450	skm_to_fastai,477
SEBlock, 451	slice, 478
SegmentationDataLoaders_from_label_func,	sort, 478
451	sort.fastai.torch_core.TensorMask,479
SelfAttention, 452	SortedDL, 479
SEModule, 453	SpacyTokenizer, 480
SentenceEncoder, 453	SpearmanCorrCoef, 481
SentencePieceTokenizer, 454	spec_add_spaces, 482
SeparableBlock, 455	SpectrogramTransformer, 482
sequential, 455	sqrd, 483
SequentialEx, 456	sqrt.fastai.torch_core.TensorMask,483
SequentialRNN, 456	sqrt.torch.Tensor(sqrd),483
SEResNeXtBlock, 457	SqueezeNet, 484
set_freeze_model, 458	squeezenet1_0,484
set_item_pg, 458	squeezenet1_1, 485
setup_aug_tfms, 457	stack_train_valid,486
SGD, 459	step_stat, 486
sgd_step, 459	sub, 487
SGRo11, 460	sub_mask, 488
shap, 461	subplots, 487
shape, 461	summarization_splitter, 488
ShapInterpretation, 462	summary.fastai.learner.Learner,489
Shortcut, 463	summary.fastai.tabular.learner.TabularLearner,
ShortEpochCallback, 463	489
show, 464	summary_plot, 490
show_array, 465	swish, 490
show_batch, 466	Swish_, 491
show_image, 467	tabular, 491
show_images, 468	tabular_config, 496
show_preds, 469	tabular_learner, 497
show_results, 470	TabularDataTable, 492
show_samples, 470	TabularModel, 493
ShowCycleGANImgsCallback, 464	TabularTS, 494
ShowGraphCallback, 465	TabularTSDataloader, 495
sigmoid, 471	tar_extract_at_filename, 498
sigmoid_, 472	tensor, 499
sigmoid_range, 473	TensorBBox, 499
SigmoidRange, 472	TensorBBox_create, 500
SignalCutout, 473	TensorImage, 500
SignalLoss, 474	TensorImageBW, 501
SignalShifter, 474	TensorMultiCategory, 501
SimpleCNN, 475	TensorPoint, 502
SimpleSelfAttention, 475	TensorPoint_create, 502
sin.fastai.torch_core.TensorMask, 476	TerminateOnNaNCallback, 503
sin.torch.Tensor(sin_), 477	test_loader, 503

text, 504	TSDataLoaders_from_dfs, 536
text_classifier_learner, 514	TSDataTable, 537
TextBlock, 504	TSeries, 538
TextBlock_from_df, 505	TSeries_create, 539
TextBlock_from_folder, 506	
TextDataLoaders_from_csv, 507	unet_config, 541
TextDataLoaders_from_df, 508	unet_learner, 542
TextDataLoaders_from_folder, 510	UnetBlock, 539
TextLearner, 511	unfreeze, 542
TextLearner_load_encoder, 512	uniform_blur2d, 543
TextLearner_load_pretrained, 513	upit, 543
TextLearner_save_encoder, 513	URLs_ADULT_SAMPLE, 544
TfmdDL, 515	URLs_AG_NEWS, 544
TfmdLists, 516	URLs_AMAZON_REVIEWS_POLARITY, 546
TfmResize, 517	URLs_AMAZON_REVIEWSAMAZON_REVIEWS, 545
timm, 517	URLs_BIWI_HEAD_POSE, 546
timm_learner, 518	URLs_CALTECH_101, 547
timm_list_models, 518	URLs_CAMVID, 547
tms, 519	URLs_CAMVID_TINY, 548
to_bytes_format, 528	URLs_CARS, 548
to_image, 529	URLs_CIFAR, 549
to_matrix, 529	URLs_CIFAR_100, 549
to_thumb, 530	URLs_COCO_TINY, 550
	URLs_CUB_200_2011, 550
to_xla, 530 tokenize1, 519	URLs_DBPEDIA, 551
	URLs_DOGS, 551
tokenize_csv, 522 tokenize_df, 523	URLs_FLOWERS, 552
	URLs_F00D, 552
tokenize_files, 523	URLs_HORSE_2_ZEBRA, 553
tokenize_folder, 524	URLs_HUMAN_NUMBERS, 553
tokenize_texts, 525	URLs_IMAGENETTE, 554
Tokenizer, 520	URLs_IMAGENETTE_160, 554
Tokenizer_from_df, 520	URLs_IMAGENETTE_320, 555
TokenizeWithRules, 521	URLs_IMAGEWOOF, 555
top_k_accuracy, 526	URLs_IMAGEWOOF_160, 556
torch, 527	URLs_IMAGEWOOF_320, 556
total_params, 527	URLs_IMDB, 557
ToTensor, 528	URLs_IMDB_SAMPLE, 557
TrackerCallback, 531	URLs_LSUN_BEDROOMS, 558
train_loader, 532	URLs_ML_SAMPLE, 558
trainable_params, 531	URLs_MNIST, 559
TrainEvalCallback, 532	URLs_MNIST_SAMPLE, 559
Transform, 533	URLs_MNIST_TINY, 560
TransformBlock, 533	URLs_MNIST_VAR_SIZE_TINY, 560
transformers, 534	URLs_MOVIE_LENS_ML_100k, 561
TransformersDropOutput, 534	URLs_MT_ENG_FRA, 561
TransformersTokenizer, 535	URLs_OPENAI_TRANSFORMER, 562
trunc_normal_, 535	URLs_PASCAL_2007, 562
TSBlock, 536	URLs_PASCAL_2012, 563

URLs_PETS, 563	XResNet, 587
URLs_PLANET_SAMPLE, 564	xresnet101, 587
URLs_PLANET_TINY, 564	xresnet152, 588
URLs_S3_COCO, 565	xresnet18, 588
URLs_S3_IMAGE, 565	xresnet18_deep, 589
URLs_S3_IMAGELOC, 566	xresnet18_deeper, 589
URLs_S3_MODEL, 566	xresnet34, 590
URLs_S3_NLP, 567	xresnet34_deep, 590
URLs_SIIM_SMALL, 567	xresnet34_deeper, 591
URLs_SKIN_LESION, 568	xresnet50,591
URLs_SOGOU_NEWS, 568	xresnet50_deep, 592
URLs_SPEAKERS10, 569	xresnet50_deeper, 592
URLs_SPEECHCOMMANDS, 569	xresnext101, 593
URLs_WIKITEXT, 570	xresnext18, 593
URLs_WIKITEXT_TINY, 570	xresnext34, 594
URLs_WT103_BWD, 571	xresnext50, 594
URLs_WT103_FWD, 571	xse_resnet101, 595
URLs_YAHOO_ANSWERS, 572	xse_resnet152, 596
URLs_YELP_REVIEWS, 572	xse_resnet18, 596
URLs_YELP_REVIEWS_POLARITY, 573	xse_resnet34, 597
URLS_TELF_REVIEWS_FOLARITT, 373	xse_resnet50, 597
vgg11_bn, 573	xse_resnext101, 598
vgg13_bn, 574	
vgg16_bn, 574	xse_resnext18,598 xse_resnext18_deep,599
vgg19_bn, 575	•
	xse_resnext18_deeper, 599
vision, 575	xse_resnext34,600
vleaky_relu, 576	xse_resnext34_deep, 600
Voice, 576	xse_resnext34_deeper, 601
wondb 577	xse_resnext50,601
wandb, 577	xse_resnext50_deep, 602
WandbCallback, 578	xse_resnext50_deeper, 602
Warp, 579	xsenet154, 595
waterfall_plot, 580	(02
weight_decay, 582	zoom, 603
WeightDropout, 580	Zoom_, 603
WeightedDL, 581	zoom_mat, 604
win_abdoment_soft, 583	
win_brain, 583	
win_brain_bone, 583	
win_brain_soft,584	
win_liver, 584	
win_lungs, 584	
win_mediastinum, 585	
win_spine_bone, 585	
win_spine_soft, 585	
win_stroke, 586	
win_subdural, 586	
xla, 586	