Steps in a ChIP-seq analysis

Jeff Leek

@jtleek

www.jtleek.com

Background on ChIP-seq

DNA

ACTGACCTAGATCAGTGTAGCGATCGTATACGAGACCGATTCATCGGCAT

transcription

RNA

AUCAGU<mark>CGAUC</mark>ACCGAU

translation

protein

protein

GGAACCATGGGAATTCACGAATTCCTAACCATTA

CATTA GGAA CCATGGGAATTCACGAATTCCTAAC Fragment DNA

CATTAG GGAA CCATGGGAATTCACGAATTCCTAAC

CCATGGGAATTCACGAATTCCTAAC

- Steps
 - 1. Align
 - 2. Peak detection
 - 3. Counting
 - 4. Normalization
 - 5. Statistical tests
 - 6. Annotation/Motif analysis

Step 1: Align

Software:

- Bowtie2
- BWA

Genome

Step 2: Peak detection

Software:

- CisGenome
- MACS
- PICS

Genome

Step 3: Counting

Software:

- CisGenome
- MACS
- diffbind

Genome

Step 4: Normalization

Software:

- <u>diffbind</u>
- MAnorm

Step 5: Statistical tests

Software:

- CisGenome
- MACS
- diffbind

Step 6: Sequence motifs & Annotation

Software:

- CisGenome
- meme-suite
- BioC Annotation Workflow

DNA motif:

