LIGHT REFLECTION AND REFRACTION

Reflection of light

The Bounching back of light when it hits a polished surface like mirror.

Laws of Reflection

- (i) < i = < xAngle of incidence = Angle of Reflection.
- (ii) The incident ray, the reflected ray and the normal, all lie in the same plane.

Spherical Mirrors :-

- · Pole(P)
- •centre of Curvature(c)
- · Principal Axis (PA)
- Radius of Curvature(R)

Principle Focus (F) and Focal length (f):

Image formation and characteristics:

(1) Atleast two rays of light meet → Image
(2) if rays of light actually meet → Real

(3) if trays of light appear to meet -- Virtual

Image Formation - Concave Mirror

object at ∞

Characteristics :- • Image at Focus

· Real, Inverted, Highly dimnished

Real Pointsize
Humesha
Inverted

Raallel rang
At infinity
B

object Beyond C

characteristics:-. Image between

C and F

· Real, Inverted, Dimnised

object at C

· Image at C

· Real, Inverted, same

Object between C & F

characteristics:

Image beyond C Real, Inverted, Magnified

object at F

characteristics :-

Image at ∞ Real, Inverted, Highly Magnified

object between Fand P

characteristics:-

Tmage behind the mission virtual, Exect, Magnified (Upright)

Summary For Concave Mirror ?-

Position of the object	Position of the image	Size of the image	Nature of the image
At infinity	At the focus F	Highly diminished, point-sized	Real and inverted
Beyond C	Between F and C	Diminished	Real and inverted
At C	At C	Same size	Real and inverted
Between C and F	Beyond C	Enlarged	Real and inverted
At F	At infinity	Highly enlarged	Real and inverted
Between P and F	Behind the mirror	Enlarged	Virtual and erect

Uses of Concave Mirror

Image Formation: convex Mirror

object at finite distance (anywhere except∞)

Image between F and P Virtual, Erect, Dimnished, Upright

Concave Minnoy

Use of Convex Mirror

A Rear- View mirrors

(UUpright/Erect Image
(2) wider field of View

summary - convex and Concave Mirror ?-

characteristics:_

• Image at F

Virtual, Erect, Highly Dimnished
 Point Size

Leasn Convex

Position of the object	Position of the image	Size of the image	Nature of the image
At infinity	At the focus F, behind the mirror	Highly diminished, point-sized	Virtual and erect
Between infinity and the pole P of the mirror	Between P and F. behind the mirror	Diminished	Virtual and erect

Sign Convention

(1) All distances are measured from pole.

h=-ve

Magnification (m)

Missos formula

Note

M = object distance V = Image distance

JJ → -ve Always

Magnification(m) and Nature of image :-

$m = \frac{hi}{ho}$ $hi = mx ho$ $m = 2$ $hi = 2x ho$ $m = 3$ $hi = 3x ho$	$m = -4$ $h_i = -4 \times h_o$ $m_{\text{value}} > 1$ $m_{\text{magnified}}$	T t	$m = \frac{1}{2} (0.5)$ $h_i = \frac{1}{2} h_o$ $m_{\text{value}} < 1$ $Dimnished$ $m = -\frac{1}{3} (-0.3)$ $h_i = -\frac{1}{3} h_o$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$m=-2$ $h_i = -2 h_o$ $f_o \downarrow I$ Inverted $m=+3$ $h_i = +3 h_o$ $f_o \uparrow I$ Exect
--	--	-----	---	---	--

spherical lenses ?-

Principal axis Optical Centre[0]

convex lens (Thick in middle)

Concavelens (Thin in middle)

Principal Focus (F) and Focal length (f)

(1) convex lens

Note: They have two F fi and F2 due to curved surfaces

(2) Concave lens

converginglens

Diverging lens

image formation -> convex lens

<u>object at</u> ∞

characteristics of image :-

, Pointsize • Image at F2

· Real, Inverted, Highly Dimnished

object at 2F1 characteristics of image: -

Image at 2F₂
Real, Inverted, samesize

Object at Fi characteristics of image:-

Image at ∞

· Real, Inverted, Highly magnified

object Beyond 2F characteristicsof image:

Image between F2 and 2F2
Real, Inverted, Dimnished

object Between 2Fi & Fi characteristics of image:

Image Beyond 2F2
 Real , Inverted , Magnified

object Between Fix O characteristic image:-

· Image on same side of object. · Virtual, exect, Magnified.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F ₂ 2F ₂
---	--------------------------------

Position of the object	Position of the image	Relative size of the image	Nature of the image
At infinity	At focus F ₂	Highly diminished, point-sized	Real and inverted
Beyond 2F,	Between F ₂ and 2F ₂	Diminished	Real and inverted
At 2F,	At 2F ₂	Same size	Real and inverted
Between F, and 2F	Beyond 2F ₂	Enlarged	Real and inverted
At focus F ₁	At infinity	Infinitely large or highly enlarged	Real and inverted
Between focus F _i and optical centre O	On the same side of the lens as the object	Enlarged	Virtual and erect

Image Formation → Concave lens

(ii)

object at infinite distance (anywhere except ∞)

characteristics of image

- Image between Fi & O Virtual, Exect, Dimnished

object at ∞

characteristics of image

- Image at Fi
 Virtual, Exect, Highly Dimnished pointsize

Position of the object	Position of the image	Relative size of the image	Nature of the image
At infinity	At focus F ₁	Highly diminished, point-sized	Virtual and erect
Between infinity and optical centre O of the lens	Between focus F ₁ and optical centre O	Diminished	Virtual and erect

summary of convex and concave lens

Concave lens

Erect/Upright Dimnished (seedhi+ chotti)

Sign Convention, Lens formula and Magnification

(1) Here all distances are measured from O [optical Centre]

12) Rest all same rule for sign.

$$\begin{array}{c}
\mathcal{U} \longrightarrow -ve \\
\text{convex} \longrightarrow +ve \\
f = +ve \\
\text{same rule}
\end{array}$$

Power of a lens :-

- · Ability of a lens to converge or Diverge Rays of light.
- · it is defined as Reciprocal of focal length.

Refraction of light &-

The bending of light ray when it travels from one medium to another cause of refraction?

Refraction occurs because light travel with different speed in different medium

 Denser → Jisme speed of light

 कम हो।

No change in medium No Bending

Refractive Index (R·I) (n)→kitna

R·I of
$$\frac{1}{2}$$
 w·r·t $\frac{1}{1}$
 $m_{12} = \frac{m_2}{m_1} = \frac{V_1}{V_2}$

$$\eta_{\omega q} = \frac{\eta_q}{\eta_{\omega}} = \frac{v_{\omega}}{v_q}$$

Absolute Refractive Index (R.I) &-

When 1st medium is Air, 2nd medium is any medium.

R.I of glass wirt air ! R.I of water wirt air

$$nag = \frac{ng}{nq} = \frac{Vq}{Vq}$$

$$n_{g} = \frac{V_{q}}{V_{g}}$$

$$n_{g} = \frac{C}{C}$$

$$\eta_{q\omega} = \frac{\eta_{\omega}}{\eta_{q}} = \frac{V_{q}}{V_{\omega}}$$

$$\gamma_{AGI} = \frac{\gamma_{GI}}{\gamma_{AGI}} = \frac{V_A}{V_{GI}}$$

Concept building 6

R.I of glass is 1.5 Which is more dense 2 Glass

R.I of water is 1.33 In which light travels faster-water Ifind relation between Vg and Vw.

$$\sqrt{\eta \omega g} = \frac{\eta g}{\eta \omega} = \frac{V\omega}{Vg}$$

Refraction through a glass slab 2-

To remember

Demergent ray is parallel to incident ray.

Laws of Refraction :-

OThe incident ray, Normal and the repracted ray lies on the same plane.

The ratio of sine of Angle of incidence to the sine of angle of refraction remains for a given pair of media.

$$\frac{\sin i_1}{\sin x_1} = \frac{\sin i_2}{\sin x_2}$$

$$\frac{\sin i}{\sin x}$$
 = constant

$$i \longrightarrow change$$
 $i_1 \Upsilon_1$
 $r \longrightarrow change$ $i_2 \Upsilon_2$

$$\frac{\sin i}{\sin x} = \text{constant} = n_{12}$$

$$i_{1}x \longrightarrow \text{change}$$

$$\frac{\sin i}{\sin x} = n_{12}$$

$$m_1 \sin i = n_2 \sin \gamma$$

$$\frac{\sin i}{\sin \gamma} = \frac{n_2}{n_1} = n_{12}$$