Coursera – Coding the Matrix notes

Alejandro Anzola Ávila

February 15, 2020

Week 0: The function and the field

0.1 The function and other preliminaries

0.1.1 Set terminology and notation

Definition 0.1.1 (Set). A set is an unordered collection of objects.

- \in : indicates that an object belongs to a set. (e.g. $a \in \{a, b, \ldots\}$)
- $\mathbb{A}\subseteq\mathbb{B}$: "A is a **subset** of B". Every element of A is also an element of \mathbb{B} "
- A = B: two sets are equal if they contain exactly the same elements.

Set expressions

 $\{x \in \mathbb{R} : x \ge 0\}$ is the set of nonnegative numbers. First part specifies where the elements of the set comes from and introduces variables. The second part gives a rule that restricts which elements specified in the first part actually get to make it into the set.

Definition 0.1.2 (Cardinality). *If a set* \mathbb{S} *is not infinite, we use* $|\mathbb{S}|$ *to denote the number of elements or cardinality of the set.*

Definition 0.1.3. $\mathbb{A} \times \mathbb{B}$ *is the set of all pairs* (a, b) *where* $a \in \mathbb{A}$ *and* $b \in \mathbb{B}$

0.1.2 The function

Informally, for each input element in a set \mathbb{A} , a function assigns a single output element from another set \mathbb{B}

- A is called the **domain** of the function
- B is called the **co-domain**

Definition 0.1.4 (Function). A function is a set of pairs (a, b) no two of which have the same first element.

Definition 0.1.5 (Image). The output of a given input is called the image of that input. The image of q under a function f is denoted f(q)

If f(q) = r, we say q maps to r under f. In Mathese, we write this as $q \mapsto r$.

The set from which all the outputs are chosen is called the co-domain. We write:

$$f: \mathbb{D} \to \mathbb{F}$$

when we want to say that f is a function with domain \mathbb{D} and co-domain \mathbb{F} .

Definition 0.1.6 (Image of a function). *The image of a function is the set of all images of inputs. Mathese:* Im f

Example. $\cos : \mathbb{R} \to \mathbb{R}$, which means the domain is \mathbb{R} , and the co-domain is \mathbb{R} . The image of $\cos(x)$, $\operatorname{Im} \cos$ is $\{x \in \mathbb{R} : -1 \le x \le 1\}$.

Definition 0.1.7. For sets \mathbb{F} and \mathbb{D} , $\mathbb{F}^{\mathbb{D}}$ denotes all functions from \mathbb{D} to \mathbb{F} .

Proposition 0.1.7.1. *For finite sets,* $|\mathbb{F}^{\mathbb{D}}| = |\mathbb{F}|^{|\mathbb{D}|}$.

Definition 0.1.8 (Identity function). *For any domain* \mathbb{D} . $id_{\mathbb{D}} : \mathbb{D} \to \mathbb{D}$ *maps each domain element d to itself.*

Definition 0.1.9 (Functional composition). For functions $f: \mathbb{A} \to \mathbb{B}$ and $g: \mathbb{B} \to \mathbb{C}$, the functional composition of f and g is the function $(g \circ f): \mathbb{A} \to \mathbb{C}$ defined by $(g \circ f)(x) = g(f(x))$.

Proposition 0.1.9.1. $h \circ (g \circ f) = (h \circ g) \circ f$

Definition 0.1.10 (Functional inverses). Functions f and g are functional inverses if $f \circ g$ and $g \circ f$ are defined and are identity functions. A function that has an inverse is invertible.

Definition 0.1.11. $f: \mathbb{D} \to \mathbb{F}$ is one-to-one if f(x) = f(y) implies x = y.

Definition 0.1.12. $f: \mathbb{D} \to \mathbb{F}$ is **ontox** if for every $z \in \mathbb{F}$ there exists an a such that f(a) = z.

Proposition 0.1.12.1. *Invertible functions are one-to-one.*

Theorem 0.1.1 (Function Invertibility Theorem). A function f is invertible if and only if it is one-to-one and onto.

0.2 The Field: Introduction to complex numbers

 $i = \sqrt{-1}$ is an imaginary number, this is a solution to an equation such as $x^2 = -1$. For $(x - 1)^2 = 9$, the solution is x = 1 + 3i.

A **complex number** has a real part and an imaginary part.

0.2.1 Field notation

When we want to refer to a field without specifying which field we will use the notation \mathcal{F} .

We study three fields;

- The field \mathbb{R} of real numbers.
- The field \mathbb{C} of complex numbers.
- The finite field GF(2), which consists of 0 and 1 under $\mod 2$ arithmetic.

0.3 The Field of playing with \mathbb{C}

We can interpret real and imaginary parts of a complex number as x and y coordinates. Assume that $z \in \mathbb{C}$.

- Translation $f(z) = z + z_0, z_0 \in \mathbb{C}$. A translation can "move" a picture anywhere in the complex plane.
- Scaling $f(z) = mz, m \in \mathbb{R}$.
- Invert f(z) = (-1)z.
- Rotate counterclockwise by 90 degreesx f(z) = iz.
- Rotating by an angle $f(z) = z \cdot e^{\tau i}$, does rotation by angle τ .

0.4 The Field of playing with GF(2)

GF(2) =Galois Field 2, has just two elements: 0 and 1.

- Addition is like exclusive-or. (e.g. $XOR(a, b) = a \not\equiv b; a, b \in GF(2)$)
- Multiplication is just like normal multiplication.

Week 1: The vector

1.1 What is a vector?

A vector is an array of d numbers, and also can be thought as functions that maps from $\{0, 1, \dots, d-1\}$ to \mathcal{F} with \mathcal{F}^d as the notation.

A vector most of whose values are zero is called a *sparse* vector. If no more than k of the entries are nonzero, we say the vector is k-sparse. A k-sparce vector can be represented using space proportional to k.

1.2 Vector addition and scalar-vector multiplication

Definition 1.2.1 (Vector addition).

$$[u_1, u_2, \dots, u_n] + [v_1, v_2, \dots, v_n] = [u_1 + v_1, u_2 + v_2, \dots, u_n + v_n]$$

Definition 1.2.2 (Zero vector). The *D*-vector whose entries are all zero is the zero vector, written $\mathbf{0}_D$ or just $\mathbf{0}$.

$$v + 0 = v$$

Definition 1.2.3 (Associativity).

$$(x + y) + z = x + (y + z)$$

Definition 1.2.4 (Commutativity).

$$x + y = y + x$$

For vectors, we refer to field elements as scalars, we use them to scale vectors: αv . Greek letters (e.g. α, β, γ) denote scalars.

Definition 1.2.5. *Multiplying a vector* v *by a scalar* α *is defined as multiplying each entry of* v *by* α .

$$\alpha[\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n]=[\alpha\boldsymbol{v}_1,\ldots,\alpha\boldsymbol{v}_n]$$

The set of points $\{\alpha \boldsymbol{v} : \alpha \in \mathbb{R}\}$ forms the line through the origin and \boldsymbol{v} . An expression of the form $\alpha \boldsymbol{u} + \beta \boldsymbol{v}$ where $0 \le \alpha \le 1, 0 \le \beta \le 1$, and $\alpha + \beta = 1$ is called a *convex combination* of \boldsymbol{u} and \boldsymbol{v} . An expression of the form $\alpha \boldsymbol{u} + \beta \boldsymbol{v}$ where $\alpha + \beta = 1$ is called and *affine combination* of \boldsymbol{u} and \boldsymbol{v} .

1.3 Dot-product

Definition 1.3.1 (Dot-product of two *D*-vectors). *Dot-product of two D-vectors is the sum of product of corresponding entries:*

$$oldsymbol{u}\cdotoldsymbol{v}=\sum_{k\in\{1,...,D\}}oldsymbol{u}_koldsymbol{v}_k$$

1.3.1 Linear equations

Definition 1.3.2. A linear equation is an equation of the form

$$\boldsymbol{a} \cdot \boldsymbol{x} = \beta$$

where a is a vector, β is a scalar, and x is a vector of variables.

Algebraic properties of dot-product:

- Commutativity $oldsymbol{v} \cdot oldsymbol{x} = oldsymbol{x} \cdot oldsymbol{v}$
- Homogeneity $(\alpha \mathbf{u}) \cdot \mathbf{v} = \alpha (\mathbf{u} \cdot \mathbf{v})$
- Distributive law $(v_1 + v_2) \cdot x = v_1 \cdot x + v_2 \cdot x$

Week 2: The vector space

2.1 Linear combinations

Definition 2.1.1. An expression

$$\alpha_1 \boldsymbol{v}_1 + \cdots + \alpha_n \boldsymbol{v}_n$$

is a linear combination of the vectors v_1, \ldots, v_n . The scalars $\alpha_1, \ldots, \alpha_n$ are the coefficients of the linear combination.

2.2 Span

Definition 2.2.1 (Span). The set of all linear combinations of some vectors v_1, \ldots, v_n is called the span of these vectors. Written $\text{Span}\{v_1, \ldots, v_n\}$.

Definition 2.2.2. Let V be a set of vectors. If v_1, \ldots, v_n are vectors such that $V = \operatorname{Span}\{v_1, \ldots, v_n\}$, then

- We say $\{v_1, \ldots, v_n\}$ is a generating set for \mathbb{V} .
- We refer to the vectors v_1, \ldots, v_n as generators for \mathbb{V} .

If we use the vectors [1,0,0], [0,1,0], and [0,0,1]:

$$[x,y,z] = x[1,0,0] + y[0,1,0] + z[0,0,1] \\$$

These are called *standard generators* for \mathbb{R}^3 .

2.3 Geometry of sets of vectors

Span of a single nonzero vector v:

$$\mathrm{Span}\{\boldsymbol{v}\} = \{\alpha\boldsymbol{v} : \alpha \in \mathbb{R}\}\$$

This is the line through the origin and v, One-dimensional. The span of the empty set: just the origin, Zero-dimensional.

One way to specify a plane can be with:

$$\{(x, y, z) : ax + by + cz = 0\}$$

Using dot-product, we could rewrite as

$$\{[x, y, z] : [a, b, c] \cdot [x, y, z] = 0\}$$

We can specify a line in three dimensions:

$$\{[x, y, z] : \boldsymbol{a}_1 \cdot [x, y, z] = 0, \boldsymbol{a}_2 \cdot [x, y, z] = 0\}$$

Two ways to represent a geometric object (line, plane, etc.) containing the origin:

- Span of some vectors.
- Solution set of some system of linear equations with zero right hand sides

What is common with these two representations? R: Subset \mathcal{F}^{D} satisfies three properties:

- 1. Subset contains the zero vector **0**.
- 2. If subset contains v then it contains αv for every scalar α .
- 3. If subset contains u and v then it contains u + v.

Definition 2.3.1 (Vector space). Any subset V of \mathcal{F}^D satisfying the three properties is called a vector space.

Definition 2.3.2. *If* \mathbb{U} *is also a vector space and* \mathbb{U} *is a subset of* \mathbb{V} *then* \mathbb{U} *is called a subspace of* \mathbb{V} .

11

2.3.1 Convex hull

Definition 2.3.3. For vectors v_1, \ldots, v_n over \mathbb{R} , a linear combination

$$\alpha_1 \boldsymbol{v}_1, \dots, \alpha_n \boldsymbol{v}_n$$

is a convex combination if the coefficients are all nonnegative and they sum to 1.

2.4 Vector spaces

To represent an object that doesn't contain the origin we sum a vector \boldsymbol{c} and redefine the definition as:

$$\{c + v : v \in \mathbb{V}\}$$

It can also be abbreviated as $\{c + \mathbb{V}\}$.

Definition 2.4.1. A linear combination

$$\alpha_1 \boldsymbol{u}_1 + \alpha_2 \boldsymbol{u}_2 + \cdots + \alpha_n \boldsymbol{u}_n$$

where

$$\alpha_1 + \alpha_2 + \dots + \alpha_n = 1$$

is an affine combination.

Definition 2.4.2. The set of all affine combinations of vectors u_1, u_2, \ldots, u_n is called the affine hull of those vectors.

Affine hull of $u_1, u_2, \dots, u_n = \{u_1 + \text{Span}\{u_2 - u_1, \dots, u_n - u_1\}\}$. This shows that the affine hull is an affine space.

In general, a geometric object can be expressed as the solution set of a system of linear equations.

$$\{\boldsymbol{x}: \boldsymbol{a}_1 \cdot \boldsymbol{x} = \beta_1, \cdots, \boldsymbol{a}_m \cdot \boldsymbol{x} = \beta_m\}$$

Conversely, is the solution set an affine space? Consider solution set of a contradictory system of equations, e.g. 1x = 1, 2x = 1:

- Solution set is empty
- but a vector space V always contains the zero vector,
- so an affine space $u_1 + \mathbb{V}$ always contains at least one vector.

Turns out this is the only exception:

Theorem 2.4.1. The solution set of a linear system is either empty or an affine space.

Definition 2.4.3. A linear equation $\mathbf{a} \cdot \mathbf{x} = 0$ with zero right-hand side is a homogeneous linear equation. A system of homogeneous linear equations is called a homogeneous linear system.

Lemma 2.4.2. Let u_1 be a solution to a linear system. Then, for any other vector u_2 , u_2 is also a solution if and only if $u_2 - u_1$ is a solution to the corresponding homogeneous linear system.

Week 3: The matrix

3.1 What is a matrix

The traditional notion of a matrix: a two dimensional array

$$\boldsymbol{A} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$$

where A is a 2×3 matrix.

For a matrix A, the i, j element of A is the element in row i, column j. It is traditionally written as $A_{i,j}$

Definition 3.1.1. For finite sets \mathbb{R} and \mathbb{C} , and $\mathbb{R} \times \mathbb{C}$ matrix over field \mathcal{F} is a function from $\mathbb{R} \times \mathbb{C}$ to \mathcal{F} .

Definition 3.1.2. $D \times D$ identity matrix is the matrix $\mathbb{1}_D$ such that $\mathbb{1}_D[k,k] = 1$ for all $k \in \{1, \ldots, D\}$ and zero elsewhere.

Usually we omit the subscript when D is clear from the context. Often letter $\textbf{\textit{I}}$ is used instead of $\mathbbm{1}$

3.1.1 Column space and row space

One simple role for a matrix: packing together a bunch of columns or rows.

Definition 3.1.3. Two vectors associated with a matrix M:

- Column space of $M = \text{Span}\{\text{columns of } M\}$. Written Col M.
- Row space of $M = \text{Span}\{rows \text{ of } M\}$. Written RowM.

14

3.1.2 Transpose

Transpose swaps rows and columns. It is written as \mathbf{A}^{\top} .

$$\boldsymbol{A} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$$

$$oldsymbol{A}^ op = egin{bmatrix} a & d \ b & e \ c & f \end{bmatrix}$$

3.1.3 Matrices as vectors

A matrix can be interpreted as a vector:

- an $\mathbb{R} \times \mathbb{S}$ matrix is a function from $\mathbb{R} \times \mathbb{S}$ to \mathcal{F} ,
- it can be interpreted as and $\mathbb{R} \times \mathbb{S}$ -vector:
 - scalar-vector multiplication
 - vector addition