

A-Z Machine Learning using Azure Machine Learning (AzureML)

Hands on AzureML: From Azure Machine Learning Introduction to Advance Machine Learning Algorithms. No Coding Required.

★★★★ 4.3 (215 ratings) 1,597 students enrolled

Created by Jitesh Khurkhuriya Last updated 3/2018 Denglish English

TIME COURSE

Feature Selection

© litesh khun

Loan Approval Data

- Personal Information Name, Gender, Marital Status, Age etc
- Financial Information Monthly Income,
 Additional Income, Credit History, Any other Ioan
- Demographic Information Address, Race, Address type, Type of customer
- Loan Provider Information Product type, existing customer, Group based on past behaviour

- Application Details Date of Application,
 Advisor information, Campaign Information
- Educational Details Level of education, Type of education, Institute
- Employment Information Type of employment, employer category, Designation, Years of experience
- Coapplicant Details all the above

Importance of Feature Selection

Why to Use Feature Selection?

Simplification of models to make them easier to interpret by researchers/users

Shorter training times

Improves Accuracy

To avoid the curse of dimensionality,

Enhanced generalization by reducing overfitting

Methods of Feature Selection

• Filter Based Methods – Uses Correlection with the outcome variables

• Wrapper Methods – Uses a subset of features by selecting the best set

Embedded Methods

Filter Based Feature Selection

Wrapper Method

X2

Performance

Root-Mean-Squared

X4

Wrapper Method

Forward Selection

Backward Elimination

Recursive Feature Elimination

AzureML Feature Selection Methods

• Filter Based Feature Selection

• Fisher Linear Discriminant Analysis

Permutation Feature Importance

-Urse

Filter Based Feature Selection

© litesh Kno

Types of Feature Scoring Methods

- Pearson Correlation
- Mutual Information
- Kendall Correlation
- Spearman Correlation
- Chi Squared
- Fisher Score
- Count Based

Wise

Pearson Correlation

© litesh Kms

Standard Deviation
$$\sigma_{x} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x_{i}})^{2} n_{i}^{n}} e^{course}$$

$$\sigma_{x} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x_{i}})^{2} n_{i}^{n}} e^{course}$$

Pearson Correlation Coefficient

 Measure of linear correlation between two variables

$$r = \frac{\sum_{i=1}^{n} (xi - \overline{x})(yi - \overline{y})}{(N-1) \sigma_{x} \sigma_{y}}$$

Pearson Correlation Coefficient

Engine-size	Horsepower	Price
130	111	13495
130	111	16500
152	154	16500
109	102	13950
136	115	17450
136	110	15250
136	110	17710
136	110	18920
131	140	23875
108	101	16430
108	101	16925
164	121	20970
164	121	21105
164	121	24565

$$\sigma_{x} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$$
Engine Size $\sigma_{x} = 18.9$

$$\sigma_{x} = 18.9$$

$$\sigma_{x} = 14.39$$

Price

$$\sigma_{\rm y} = 3267.78$$

Engine Size – r

engine-size	horsepower	price
130	111	13495
130	111	16500
152	154	16500
109	102	13950
136	115	17450
136	110	15250
136	110	17710
136	110	18920
131	140	23875
108	101	16430
108	101	16925
164	121	20970
164	121	21105
164	121	24565

Engine Size,
$$\sigma_x = 18.9$$

Price,
$$\sigma_y = 3267.78$$

$$r = \frac{\sum_{i=1}^{n} (xi - \overline{x})(yi - \overline{y})}{(N-1) \sigma_{x} \sigma_{y}}$$

Horsepower – r

engine-size	horsepower	price
130	111	13495
130	111	16500
152	154	16500
109	102	13950
136	115	17450
136	110	15250
136	110	17710
136	110	18920
131	140	23875
108	101	16430
108	101	16925
164	121	20970
164	121	21105
164	121	24565

HP,
$$\sigma_x = 14.39$$

Price,
$$\sigma_y = 3267.78$$

$$r = \frac{\sum_{i=1}^{n} (xi - \overline{x})(yi - \overline{y})}{(N-1) \sigma_{x} \sigma_{y}}$$

$$= \frac{286,400}{13 * 14.39 * 3267.78} = 0.47$$

Feature Selection

engine-size	horsepower	price
130	111	13495
130	111	16500
152	154	16500
109	102	13950
136	115	17450
136	110	15250
136	110	17710
136	110	18920
131	140	23875
108	101	16430
108	101	16925
164	121	20970
164	121	21105
164	121	24565

$$r = \frac{\sum_{i=1}^{n} (xi - \overline{x})(yi - \overline{y})}{(N+1) \sigma_{x} \sigma_{y}}$$

Horsepower
$$r = 0.47$$

Horsepower
$$r = 0.47$$

Engine Size $r = 0.65$

Pearson Correlation Coefficient

- Advantages
 - Identifies the correlation as well as the extent
 - Identifies the positive or negative correlation
 - Easiest to apply and understand among all the other correlation techniques
- Disadvantages
 - Outliers affect the value of "r"
 - Not good for non-linear relationship
 - Might not be good to find out causal

Engine	HP	Price
130	111	13495
130	111	16500
152	154	16500
109	102	13950

Chi-Square

© litesh Kno

- Developed by Karl Pearson
- Evaluates the relationship between two categorical variables
- Steps to Evaluate the Independence
 - Define Hypothesis Null and Alternate
 - Define Alpha
 - Calculate the Degrees of Freedom
 - State Decision Rule
 - Calculate Test Statistics
 - Results
 - Conclusion

Flight Status	Weather
Delayed	Rainy
Delayed	Rainy
Delayed	Rainy
Ontime	Rainy
Delayed	Rainy
Ontime	Sunny
Delayed	Rainy
Delayed	Rainy
Ontime	Sunny
Delayed	Rainy
Delayed	Overcast

Step 1

Null Hypothesis – There is no relationship between Flight Status and Weather

Alternate Hypothesis - There is relationship between Flight Status and Weather and Weather whom who will be a second to the s

Step 2

alpha = 0.05

	Rainy	Sunny	Overcast	
Delayed	36	16	13	65
On time	11	84	40	135
	47	100	53	- 1

Step 3

Calculate the degrees of freedom

(no of Rows - 1) (2-1)*(3-1) (2-1)*(3-1) (2-1)*(3-1) (2-1)*(3-1) (2-1)*(3-1) (2-1)*(3-1) (2-1)*(3-1) (2-1)*(3-1) (2-1)*(3-1) (2-1)*(3-1)*(3-1) (2-1)*(3-1)*(

Step 4

State Decision Rule using chi square degrees of freedom table

Tabl	Table 3-1 Critical Values of the χ^2 Distribution						
					P		11
df	0.995	0.975	0.9	0.5	0.1	0.05	0.025
1	.000	.000	0.016	0.455	2.706	2.041	5.024
2	0.010	0.051	0.211	1.386	4.605	5.991	7.378
3	0.072	0.216	0.584	2.366	6.251	7.815	9.348
4	0.207	0.484	1.064	3.357	7.779	9.488	11.143
5	0.412	0.831	1.610	4.351	9.236	11.070	12.832
6	0.676	1.237	2.204	5.348	10.645	12.592	14.449
7	0.989	1.690	2.833	6.346	12.017	14.067	16.013
8	1.344	2.180	3.490	7.344	13.362	15.507	17.535
9	1.735	2.700	4.168	8.343	14.684	16.919	19.023

Reject the Null Hypothesis if the X square value is greater than 5.991

Step 5 Calculate Test Statistics

$$f_{\rm e} = \frac{f_{\rm c} f_{\rm r}}{n}$$

(Delayed, Rainy) = (47*65)/200sh = 15.275

$$= (47*65)/200$$

$$= 15.275$$

Actual

	Rainy	Sunny	Overcast	
Delayed	36	16	13	65
On time	11	84	40	135
ZUIE	47	100	53	

Expected

	Rainy	Sunny	Overcast	
Delayed	15	33	17	65
On time	32	67	36	135
	47	100	53	

Step 6 Calculate Results

Calculate Results
$$\frac{\left(f_{o} - f_{e}\right)^{2}}{f_{e}} = 55.6e^{-10.000} \text{ e - Expected}$$

work	Rainy	Sunny	Overcast
Delayed	28.12	8.38	1.04
On time	13.54	4.03	0.5

Step 7

Conclusion

Reject the null hypothesis as X-Squared value (55.6) is greater than 5.991

The weather and Flight Status are correlated

Kendall Correlation

© litesh Kno

Named after Maurice Kendall

Measure of Rank Correlation

© Jitesh Khurkhuriya _ Azure ML

	engine-size	horsepower	price
	130	111	13495
	130	111	16500
	152	154	16500
	109	102	13950
	136	115	17450
	136	110	15250
	136	110	17710
	136	110	18920
	131	140	23875
	108	101	16430
CY	108	101	16925
	164	121	20970
	164	121	21105
	164	121	24565

© Jitesh Khurkhuriya – Azure ML Online Course

	engine-size	price
i	108	16430
	108	16925
	109	13950
k	130	13495
	130	16500
j	131	23875
	136	17450
	136	15250
	136	17710
	136	18920
	152	16500
	164	20970
	164	21105
	164	24565

$$x_{j} = 131$$

$$5,430$$

$$y_{j} = 23,875$$

$$Concordant Pain$$

$$X_i < X_j$$
 $Y_i < Y_j$

Concordant Pair

$$X_i > X_k$$

 $V_i < V_k$

MA

Discordant Pair

$$x_i < x_k$$

 $y_i > y_k$

Kendall Coefficient Tau,
$$T = \frac{\text{Number of Concordant Pairs}}{\text{n * (n-1)/2}}$$

- 1. T is always in the range of +1 to -1
- 2. Positive value indicates positive correlation
- 3. Negative value indicates negative correlation
- 4. If X and Y are independent, T will be zero

Wise

Spearman's Rank Correlation

© litesh Kno

Spearman's Rank Correlation

Named after Charles Spearman

Measure of Rank Correlation

Relationship through monotonic function

© litesh Khurkhur

Spearman's Rank Correlation

X	Y (X^5)
1	1
2	32
3	243
4	1024
5	3125
6	7776
7	16807
8	32768
9	59049
10	100000
11	161051
12	248832
13	371293
14	537824

$$X1 < X2$$

$$f(X1) < f(X2)$$

Best used for non-linear correlation

$$\frac{1}{1-\frac{6}{n^3-n}} = \frac{5}{n^3-n}$$

engine-size	price
108	16430
108	16925
109	13950
130	13495
130	16500
131	23875
136	17450
136	15250
136	17710
136	18920
152	16500
164	20970
164	21105
164	24565

105) Jitesh Khurkhuriya - Azure M. Online Course

engine-size	Rank-x	price
108	1	16430
108	1	16925
109	2	13950
130	3	13495
130	3	16500
131	4	23875
136	5	17450
136	5	15250
136	5	17710
136	5	18920
152	6	16500
164	7	20970
164	7	21105
164	7	24565

1. Calculate the rank of the feature w.r.t. other values in the column

engine-size	Rank-x	price	Rank-y
108	1	16430	4
108	1	16925	6
109	2	13950	2
130	3	13495	1
130	3	16500	5
131	4	23875	12
136	5	17450	7
136	5	15250	3
136	5	17710	8
136	5	18920	9
152	6	16500	5
164	7	20970	10
164	7	21105	11
164	7	24565	13

2. Calculate the rank of the predicted feature w.r.t. other values in the column

engine-size	Rank-x	price	Rank-y	D	D^2
108	1	16430	4	-3	9
108	1	16925	6	-5	25
109	2	13950	2	0	0
130	3	13495	1	2	4
130	3	16500	5	-2	4
131	4	23875	12	-8	64
136	5	17450	7	-2	4
136	5	15250	3	2	4
136	5	17710	8	-3	9
136	5	18920	9	-4	16
152	6	16500	5	1	1
164	7	20970	10	-3	9
164	7	21105	11	-4	16
164	7	24565	13	-4	16

3. Calculate the Rank-difference (RankX and RankY) between price and engine-size and its square

engine-size	Rank-x	price	Rank-y	D	D^2
108	1	16430	4	-3	9
108	1	16925	6	-5	25
109	2	13950	2	0	0
130	3	13495	1	2	4
130	3	16500	5	-2	4
131	4	23875	12	-8	64
136	5	17450	7	-2	4
136	5	15250	3	2	4
136	5	17710	8	-3	9
136	5	18920	9	-4	16
152	6	16500	5	1	1
164	7	20970	10	-3	9
164	7	21105	11	-4	16
164	7	24565	13	-4	16

$$\frac{1}{n} = \frac{1}{n} \frac{1}{n^3 - n}$$

$$= 0.6$$

Calculate rho for HP

НР	Rank-x	price	Rank-y	D	D^2
101	1	16430	4	-3	9
101	1	16925	6	-5	25
102	2	13950	2	0	0
110	3	15250	3	0	0
110	3	17710	8	-5	25
110	3	18920	9	-6	36
111	4	13495	1	3	9
111	4	16500	5	-1	1
115	5	17450	7	-2	4
121	6	20970	10	-4	16
121	6	21105	11	-5	25
121	6	24565	13	-7	49
140	7	23875	12	-5	25
154	8	16500	5	3	9

$$rho = 1 \frac{course}{m^3 - n}$$

$$= 0.49 < 0.6$$

Select Engine Size Over HP

Correlation Coefficients

Pearson Correlation

$$r = \frac{\sum_{i=1}^{N} (xi - \overline{x})(yi - \overline{y})}{(N-1) \sigma_{x} \sigma_{y}}$$

Kandell's Correlation

$$T = \frac{C - D}{C + D}$$

Spearman's Correlation

rho = 1 -
$$\frac{6\sum d^2}{n^3 - n}$$

Fisher Linear Discriminant Analysis

@ litesh Khu.

Loan Approval Dataset

Linear Discriminant Analysis

Linear Discriminant Analysis

Sir Ronald Fisher

• British statistician and biologist who used mathematics to combine Mendelian genetics and natural selection.

Developed Analysis of Variance or ANOVA

How LDA is Created?

How LDA is Created?

Fisher LDA

Variation Between Classes

Total Variation Within Classes

rine Conlige

Permutation Feature Importance

@ litesh khu

Wrapper Method

X2

Performance

Root-Mean-Squared

X4

rine Conlige

Permutation Feature Importance

@ litesh khu

Example using a dataset

Engine Size	HP	Colour	Price
130	111	Black	13495
130	111	Red	16500
152	154	Red	16500
109	102	Black	13950
136	115	Grey	17450
136	110	Black	15250
136	110	Black	17710
136	110	Grey	18920
131	140	Red	23875
108	101	Grey	16430
108	101	Red	16925
164	121	Black	20970
164	121	Red	21105
164	121	Red	24565

Shuffle and Compare

Trained Model

Fu ein	· Ci	LID	Colour	Price 13495 16500 16500 17710 18920
Engine	e Size	HP	Colour	Price
13	0	111	Black	13495
13	0	111	Red	16500
15	2	154	Red	16500
13	6	110	Black	17710
13	6	110	Grey	18920
13	1	140	Red	23875
10		101	Grey	16430
16	4	121	Red	24565
		KES.		
	4 © ^y			

Shuffle and Compare

Trained Model

Engine Size	HP	Colour	Price
130	111	Black	13495
130	154	Red	16500
152	111	Red	16500
136	110	Black	17710
136	110	Grey	18920
131	101	Red	23875
108	140	Grey	16430
164	121	Red	24565

Engine Size	HP	Colour	Price	Price Predicted
130	111	Black	13495	
130	154	Red	16500	
152	111	Red	16500	
136	110	Black	17710	
136	110	Grey	18920	
131	101	Red	23875	
108	140	Grey	16430	
164	121	Red	24565	

Performance Measure

Classification

- Accuracy
- Precision
- Average Log-Loss
 Nerage Log-Loss

Regression

- Mean Absolute Error
- Root Mean Squared Error
- Relative Absolute Error
- Co-Efficient of Determination
- Relative Squared Error

-Wise

Thank You and have a Great Time.!!

© litesh Km