Лекция 1 Высокопроизводительные вычислительные системы

Курносов Михаил Георгиевич

E-mail: mkurnosov@gmail.com WWW: www.mkurnosov.net

Курс «Параллельные вычислительные технологии» Сибирский государственный университет телекоммуникаций и информатики (г. Новосибирск) Осенний семестр

Классификация архитектур вычислительных систем (по числу потоков команд и данных)

Классификация М. Флинна (М. J. Flynn, 1966)				
	Single instruction stream	Multiple instruction stream		
Single data stream	SISD	MISD		
Multiple data stream	<u>SIMD</u>	MIMD		

- SISD последовательная ВС; одно устройство управления работает с одним потоком инструкций в памяти, выполняя их на последовательном процессоре (работает с одним потоком данных): первые процессоры
- **SIMD** вычислительная систем, в которой множество процессоров выполняют одну инструкцию над своими локальными данными: векторные BC Cray, NEC; наборы векторных инструкций AVX, AltiVec, NEON SIMD; GPU
- **MISD** вычислительная система типа "много потоков команд один поток данных": конвейерные BC (частично) и систолические BC (systolic arrays, частично)
- **MIMD** совокупность процессорных элементов, работающих со своими локальными потоками команд и данных: вычислительные кластеры, MPP-системы

К какому классу можно отнести процессор Intel Xeon Core i5 6200U (Skylake)?

Классификация архитектур вычислительных систем

(структурно-функциональная – по способу организации оперативной памяти)

Класс 1. Системы с разделяемой процессорами оперативной памятью (shared memory systems)

- Симметричные мультипроцессоры (symmetric multiprocessor, SMP) множество процессоров имеют одинаковые возможности по доступу к разделяемой оперативной памяти и функционируют под управлением одной операционной системы
 - \checkmark Относительно простое создание параллельных программ (POSIX threads, OpenMP, ...)
 - ✓ Контроллер памяти узкое место, число процессоров <= 32</p>
- **NUMA-системы** (non-uniform memory architecture) множество процессоров имеют *неодинаковые* возможности по доступу к разделяемой оперативной памяти и функционируют под управлением одной операционной системы
 - ✓ Относительно простое создание параллельных программ (POSIX threads, OpenMP, libnuma, thread affinity, ...)
 - ✓ Контроллер памяти и внутрисистемная шина (Intel QPI, HyperTransport) узкое место, число процессоров <= 128

Классификация архитектур вычислительных систем

(структурно-функциональная – по способу организации оперативной памяти)

Класс 2. Системы с распределенной оперативной памятью (distributed memory systems)

- Распределенная вычислительная система –
 совокупность вычислительных узлов (элементарных машин,
 процессорных элементов), взаимодействующих через
 коммуникационную сеть (среду); каждый узел имеет свою оперативную
 память и функционирует под управлением свой операционной системы
 - память и функционирует под управлением свой операционной системы

 ✓ Вычислительный кластер (computer cluster) распределенная ВС,
 построенная на базе *серийно* выпускаемого промышленностью оборудования

Память

Процессор

Память

Процессор

Память

Процессор

✓ **Массово параллельная система** (massively parallel system, MPP-system) – большемасштабная распределенная ВС; как правило, MPP-системы строятся на базе проприетарного (фирменного) оборудования и значительно эффективнее кластерных ВС (системы IBM BlueGene, Cray XK/XC и др.)

К какому классу можно отнести ноутбук на базе двухъядерного процессора Intel Xeon Core i5 6200U?

К какому классу можно отнести два связанных в сеть ноутбука на базе процессора Intel Xeon Core i5 6200U?

Рейтинги мощнейших вычислительных систем

- Суперкомпьютер (суперВС, supercomputer) вычислительная система, обладающая рекордными для текущего уровня развития вычислительной техники, показателями производительности и/или надежности, технико-экономической эффективности
- <u>www.top500.org</u> решение системы линейных алгебраических уравнений методом LU-факторизации (High-Performance Linpack, FLOPS Floating-point Operations Per Seconds)
- www.graph500.org алгоритмы на графах (построение графа, обход в ширину, TEPS – Traversed Edges Per Second)
- www.green500.org главный критерий энергоэффективность (объем потребляемой электроэнергии, kW)
- http://top50.supercomputers.ru рейтинг мощнейших вычислительных систем СНГ (тест High-Performance Linpack)
- Как создать свой тест производительности?

Архитектурные свойства высокопроизводительных ВС

Тор500 (2022, июнь)

Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
1	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE D0E/SC/Oak Ridge National Laboratory United States	8,730,112	1,102.00	1,685.65	21,100
2	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	537.21	29,899
3	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland	1,110,144	151.90	214.35	2,942

Архитектурные свойства высокопроизводительных ВС

Тор500 (#53, июнь 2019)

#	Система	Rmax, PFLOPS	HPCG / Rpeak, %	Уровни коммуникационной среды ВС				
1	Summit IBM Power System AC922 2 414 592 ядер	148.60	1.46	non-blocking fat t	nfiniBand tree, Mellanox EDI 608 узлов + 2 211 840 ядер		на ядро Р9	Общая память DDR4 256GB HBM 16GB
2	Sierra IBM Power System S922LC 1 572 480 ядер	94.64	1.43	InfiniBand fat tree, Mellanox EDR 100G 4 320 узлов (190 080 ядер POWER9 + 1 382 400 ядер NVIDIA Volta)		на ядро Р9 (22 ядра)	Общая память DDR4 128GB HBM 16GB	
3	Sunway Twilight 10 649 600 ядер	93.0	0.38	Switch network Mellanox 40 стоек (40 960 узло в)	Supernode network fully connected 256 supernodes	Sunway Network PCle 3.0 40 960 узлов	Network on Chip 4 core groups 260 ядер	Общая память 8 GiB DDR3 1 MPE + 64 CPE (mesh 8x8, RISC)
4	Tianhe-2A MilkWay-2 4 981 760 ядер	61.44		TH Express-2 fat tree 17 792 узлов (Intel Xeon IVB + Matrix-2000)		Intel QPI 2 x Intel Xeon	Общая память 12 ядер Intel Xeon	
6	Piz Daint Cray XC50 387 872 ядер	21.23	1.83	Dragor 5 2	Aries network nfly (3 уровня) 272 узлов · NVIDIA Tesla P10		<mark>на ядро Хео</mark> г 4 узла	Общая память 12 ядер Intel Xeon Tesla P100

Архитектурные свойства современных ВС

- Иерархическая организация коммуникационной среды
- Мультиархитектура вычислительных узлов
- Большемасштабность

Системы Тор500 (#46, 2015): 2, 3 уровня иерархии

		Коммуникационная среда			
Nº	Система	Уровень 1 Уровень 2		Уровень 3	
1	Tianhe-2 MilkWay-2 3 120 000 ядер	TH Express-2 fat tree 16 000 узлов	Intel QPI 2 x Intel Xeon 3 x Xeon Phi	Общая память DDR3 16 ядер Intel Xeon	
2	Titan Cray XK7 560 640 ядер	Cray Gemini 3D-тор 18 688 узлов	Общая память DDR3 16 ядер AMD Opteron	NUMA INTERPRETATION OF THE PROPERTY OF THE PRO	
3	Sequoia IBM BlueGene/Q 1 572 864 ядер	5D-тор 98 304 узлов	Общая память DDR3 16 ядер IBM PowerPC A2	(4) + 1 22 22 23 24 24 25 25 25 25 25 25	
8	Hazel Hen Cray XC40 185 088 ядер	Cray Aries Dragonfly 7 712 узлов	Intel QPI 2 x Intel Xeon (NUMA-узел)	Общая память DDR4 12 ядер Intel Xeon	
23	SuperMUC кластер 147 456 ядер	InfiniBand FDR fat tree 3 072 узлов	Intel QPI 2 x Intel Xeon (NUMA-узел)	Общая память DDR 10 ядер Intel Xeon	

Система Cray XK7 Titan (#3 Тор500, июнь 2016)

- **Titan Cray XK7** (MPP-система, https://www.olcf.ornl.gov/titan)
 - вычислительные узлы: 18 688 (NUMA 2 AMD Opteron, 560 640 ядер)
 - коммуникационная сеть: Cray Gemini (3D-тор)
 - гибридная ВС: x86-64 AMD Opteron + NVIDIA GPU
- Internode communications:
 MPI, Shmem, Unified Parallel C,
 Coarray Fortran, Global Arrays, Cray Chapel
- Multithreading: OpenMP, Intel TBB/Cilk
- GPU: NVIDA CUDA, OpenCL, OpenACC, OpenMP 4.0
- Vectorization (SIMD): SSE/AVX

Система Cray XK7 Titan (#3 Тор500, июнь 2016)

- **Titan Cray XK7** (MPP-система, https://www.olcf.ornl.gov/titan)
 - вычислительные узлы: 18 688 (NUMA 2 AMD Opteron, 560 640 ядер)
 - коммуникационная сеть: Cray Gemini (3D-тор)
 - гибридная ВС: x86-64 AMD Opteron + NVIDIA GPU
- Internode communications:
 MPI, Shmem, Unified Parallel C,
 Coarray Fortran, Global Arrays, Cray Chapel
- Multithreading: OpenMP, Intel TBB/Cilk
- GPU: NVIDA CUDA, OpenCL, OpenACC, OpenMP 4.0
- Vectorization (SIMD): SSE/AVX

AMD Opteron

Interlagos (16 cores)

MPI, Cray Chapel, Shmem, Coarray Fortran, Unified Parallel C

Гибридные вычислительные узлы и ВС

Коммуникационные сети ВС

■ 3aµ	цачи коммуникационных сетей BC (communication network, interconnect)
	Реализация обменов информацией между ветвями параллельных программ: односторонние обмены (one-sided, RDMA: put/get), двусторонние (индивидуальные, дифференцированные, point-to-point: send/recv), коллективные операции (collectives: one-to-all broadcast, all-to-one gather/reduce, all-to-all)
	Реализация обменов служебной информацией: контроль и диагностика состояния вычислительных узлов барьерная синхронизация
	Функционирования сетевых и параллельных файловых систем (доступ к дисковым массивам)
Тр	ебования к коммуникационной сети
	Высокая производительность реализации всех видов обменов (двусторонних, коллективных) – адекватность структуры ВС широкому классу параллельных алгоритмов
	Масштабируемость (простое увеличение и уменьшение числа ЭМ в системе)
	Живучесть и отказоустойчивость (функционирование при отказах отдельных подсистем)
	Высокая технико-экономическая эффективность (цена/эффективность)

Виды коммуникационных сетей ВС

- С фиксированной структурой межмашинных связей (direct network)
 - □ Каждый вычислительный узел имеет сетевой интерфейс (системное устройство, маршрутизатор) с несколькими портами, через который он напрямую соединён с другими узлами
- С динамической структурой (indirect network, switch-based) на базе коммутаторов
 - □ Каждый вычислительный узел имеет сетевой интерфейс с несколькими портами
 - □ Порты интерфейсов подключены к коммутаторам (switches), через которые происходит взаимодействие узлов

Выбор структуры коммуникационной сети (топологии)

- Структура ВС (структура коммуникационной сети, topology) граф, в котором вершинам соответствуют вычислительные узлы, а ребрам межмашинные связи
- Требования к структуре ВС (графу)
- Минимизация времени выполнения межмашинных обменов и максимизация числа возможных одновременных обменов

 Максимизация вероятности сохранения связности структуры ВС при отказах ЭМ (вершин) и каналов связи (ребер)

Показатели эффективности структуры ВС

- **Диаметр графа** длина максимального из кратчайших путей в графе (характеристика числа транзитных передач между ЭМ, hops)
- Средний диаметр графа математическое ожидание расстояния между вершинами при их равновероятном выборе
- Вектор-функция структурной живучести
- Бисекционная пропускная способность (bisection bandwidth) суммарная пропускная способность каналов связи между двумя непересекающимися подмножествами машин системы (для худшего разбиения, минимальное значение)
- **Аппаратная сложность** число простейших коммутаторов (2 x 2, *n* x *n*) и каналов связи, необходимых для построения составного коммутатора сети
- **Метрическая сложность** максимальная длина линии связи, требуемая для реализации выбранной топологии в трехмерном пространстве

A) бисекционная пропускная способность 5B) бисекционная пропускная способность 3

Структуры ВС с прямым соединением узлов

- В *n*-мерной регулярной структуре каждая ЭМ связана с 2*n* соседями
- Тороидальные структуры
 - □ Кольцо (1D-тор), тороидальная решетка (2D-тор), тороидальный куб (3D-тор)
 - □ Cray XK7 Titan (3D-тор), IBM BlueGene/Q (5D-тор), Fijitsu K Computer (6D-тор)
- Гиперкубические структуры
 - □ Линейка (1D-гиперкуб), решетка (2D-гиперкуб), 3D-гиперкуб
 - □ Intel Paragon, ASCI Red (2D-куб), SGI Origin 2000 (3D-куб), МП-X-Y (РФЯЦ-ВНИИЭФ)

Гиперкубы: 1D, 2D, 3D

4D-гиперкуб

Структуры ВС с прямым соединением узлов (2)

- Dragonfly
- HyperX/Hamming Graph
- D_n -графы, циркулянтные структуры (системы МИКРОС)
- Графы Кауца (Kautz network): система SiCortex SC5832 972 узла, диаметр 6, линков 2916
- Data Vortex Interconnect

- ...

Структуры ВС на базе коммутаторов (indirect nets)

Деревья

- Толстое дерево (fat tree)
- k-арные n-деревья (k-ary n-tree)
- Extended generalized fat tree (XGFT)

Fat tree (толстое дерево)

- Топология «толстое дерево» (fat tree)
 Charles E. Leiserson. Fat-trees: universal networks for hardware-efficient supercomputing //
 IEEE Transactions on Computers, Vol. 34, No. 10, 1985
- Структура на базе коммутаторов (indirect network)
- Constant bisectional bandwidth (CBB)
- Сеть строится из коммутаторов с одинаковым числом R портов (линков, constant radix)
- Линки (каналы) коммутаторов уровня і производительнее линков коммутаторов уровня і 1 в R раз (по числу портов)
- Пример: сети на базе InfiniBand, IBM RoadRunner

Fat tree (толстое дерево)

- Одинаковое число портов в коммутаторах
- Линки имеют <u>разную</u> производительность

- Одинаковое число портов в коммутаторах
- Линки имеют одинаковую производительность

Fat tree (толстое дерево)

- Одинаковое число портов в коммутаторах
- Линки имеют <u>разную</u> производительность

- Одинаковое число портов в коммутаторах
- Линки имеют <u>одинаковую</u> производительность

Spine-Leaf Topology (folded Clos, fat tree)

Что осталось «за кадром»?

- Выбор структуры для проблемно-ориентированной ВС (для определенного класса задач)
- **Алгоритмы маршрутизации** (как доставить сообщение от узла А до узла В? Как учитывать загрузку каналов, отказы узлов и линков?)
- Вопросы технико-экономической эффективности (учет длин кабелей, числа коммутаторов)

Вычислительные кластеры (computer cluster)

- Вычислительные кластеры строятся на базе серийно выпускаемых компонентов
- Вычислительные узлы: 2/4-процессорные узлы, 1 8 GiB оперативной памяти на ядро (поток)
- Коммуникационная сеть (сервисная NFS/DNS/NIS и для обмена сообщениями MPI/SHMEM)
- Подсистема хранения данных (дисковый массивы, параллельные и сетевые файловые системы)
- Система бесперебойного электропитания
- Система охлаждения
- Программное обеспечение: GNU/Linux (NFS, NIS, DNS, ...), MPI (MPICH2, Open MPI), TORQUE/SLURM

Программное обеспечение вычислительных кластеров

Параллельные вычисления – введение

Разработка параллельного алгоритма

- Поиск параллелизма в известном последовательном алгоритме, его модификация или создание нового алгоритма: определения уровня распараллеливания уровень инструкций (мелкозернистый параллелизм, fine grained), потоков/процессов (крупнозернистый параллелизм, coarse grained)
- **Выбор класса целевой ВС**: с общей или распределенной памятью
- Разработка алгоритма в терминах одной из моделей программирования целевой ВС:
 - □ Системы с общей памятью (SMP/NUMA): fork/join model, CSP, Actor model, передача сообщений
 - □ Системы с распределенной памятью (кластеры, MPP): явная передача сообщений (message passing: односторонние/двусторонние/коллективные обмены), BSP Bulk synchronous parallel, MapReduce
- Параллельная версия самого эффективного последовательного алгоритма решения задачи необязательно будет самой эффективной параллельной реализацией

Реализация параллельного алгоритма (программы)

- Выбор инструментальных средств (MPI, OpenSHMEM; OpenMP, POSIX Threads, Cilk)
- Распределение подзадач между процессорами (task mapping, load balancing)
- Организация взаимодействия подзадач (message passing, shared data structures)
- Учет архитектуры целевой вычислительной системы
- Запуск, измерение и анализ показателей эффективности параллельной программы
- Оптимизация программы

Показатели эффективности параллельных алгоритмов

- Коэффициент ускорения (Speedup)
- Коэффициент эффективности (Efficiency)
- Коэффициент накладных расходов
- Показатель равномерности загруженности параллельных ветвей (процессов, потоков)

- Введем обозначения:
 - \square T(n) время выполнения последовательной программы (sequential/serial program)
 - \square $T_p(n)$ время выполнения параллельной программы (parallel program) на p процессорах
- Коэффициент $S_p(n)$ ускорения параллельной программ (Speedup):

$$S_p(n) = \frac{T(n)}{T_p(n)}$$

- Коэффициент ускорения $S_p(n)$ показывает во сколько раз параллельная программа выполняется на p процессорах быстрее последовательной программы при обработке одних и тех же входных данных размера n
- Как правило

$$S_p(n) \leq p$$

- Введем обозначения:
 - \square T(n) время выполнения последовательной программы (sequential program)
 - \square $T_p(n)$ время выполнения параллельной программы (parallel program) на p процессорах
- Коэффициент $S_p(n)$ ускорения параллельной программ (Speedup):

$$S_p(n) = \frac{T(n)}{T_p(n)}$$

Цель распараллеливания – достичь линейного ускорения на максимально большом числе процессоров

$$S_p\left(n
ight)pprox p$$
 или $S_p\left(n
ight)=\Omega(p)$ при $p
ightarrow\infty$

- Какое время брать за время выполнения последовательной программы?
 - Время лучшего известного алгоритма (в смысле вычислительной сложности)?
 - Время лучшего теоретически возможного алгоритма?
- lacktriangle Что считать временем выполнения $T_p\left(n
 ight)$ параллельной программы?
 - Среднее время выполнения потоков программы?
 - Время выполнения потока, завершившего работу первым?
 - Время выполнения потока, завершившего работу последним?

- Какое время брать за время выполнения последовательной программы?
 - Время лучшего известного алгоритма или время алгоритма, который подвергается распараллеливанию
- Что считать временем выполнения $T_p\left(n\right)$ параллельной программы?
 - Время выполнения потока, завершившего работу последним

Коэффициент относительного ускорения (Rel. speedup)

■ Коэффициент относительного ускорения (Relative speedup) – отношения времени выполнения параллельной программы на k процессорах к времени её выполнения на p процессорах (k < p)</p>

$$S_{Relative}(k, p, n) = \frac{T_k(n)}{T_p(n)}$$

■ Коэффициент эффективности (Efficiency) параллельной программы

$$E_p(n) = \frac{S_p(n)}{p} = \frac{T(n)}{pT_p(n)} \in [0,1]$$

Коэффициент накладных расходов (Overhead)

$$\varepsilon(p,n) = \frac{T_{Sync}(p,n)}{T_{Comp}(p,n)} = \frac{T_{Total}(p,n) - T_{Comp}(p,n)}{T_{Comp}(p,n)}$$

- $lacktriangledown T_{Sync}(p,n)$ время создания, синхронизации и взаимодействия p потоков
- lacktriangledown $T_{Comp}(p,n)$ время вычислений в каждом из p потоков

Виды масштабируемости программ

- Масштабируемость параллельной программы (scalability) характеристика программы, показывающая как изменяются ее показатели производительности при варьировании числа параллельных процессов на конкретной ВС
- Строгая/сильная масштабируемость (strong scaling) зависимость коэффициента ускорения от числа p процессов при фиксированном размере n входных данных (n = const)
 - □ Показывает как растут накладные расходы с увеличением р
 - □ Цель минимизировать время решения задачи фиксированного размера
- Слабая масштабируемость (weak scaling) зависимость коэффициента ускорения параллельной программы от числа процессов при фиксированном размере входных данных на один процессор (n / p = const)
 - Цель решить задачу наибольшего размера на ВС
- Параллельная программа (алгоритм) коэффициент ускорения, которой линейной растет с увеличением *р* называется линейно масштабируемой или просто *масштабируемой* (scalable)

параллельного алгоритма X от количества *р* процессоров

- Ускорение программы может расти с увеличением размера входных данных
- Время вычислений превосходит накладные расходы на взаимодействия потоков (управление потоками, синхронизацию, обмен сообщениями, ...)

Коэффициент ускорения (Speedup)

- Ускорение программы может расти с увеличением размера входных данных
- Время вычислений превосходит накладные расходы на взаимодействия потоков (управление потоками, синхронизацию, обмен сообщениями, ...)

Коэффициент ускорения (Speedup)

Зависимость коэффициента ускорения *S* параллельных алгоритмов Y и Z от количества *p* процессоров

Суперлинейное ускорение (superlinear speedup)

■ Параллельная программа может характеризоваться суперлинейным ускорением (superlinear speedup) – коэффициент ускорения $S_p(n)$ принимает значение больше p

$$S_p(n) > p$$

- Причина: иерархическая организация памяти:
 Cache RAM Local disk (HDD/SSD) Network storage
- Последовательная программ выполняется на одном процессоре и обрабатывает данные размера *n*
- Параллельная программа имеет *p* потоков на *p* процессорах, каждый поток работает со своей частью данных, большая часть которых может попасть в кеш-память, в результате в каждом потоке сокращается время доступа к данным
- Тот же самый эффект можно наблюдать имея два уровня иерархической памяти: диск память (Минск-222, 1967-1970 гг, «парадокс параллелизма»)

Суперлинейное ускорение (superlinear speedup)

Parallel Molecular Dynamic Simulation

MPI, Spatial decomposition; Cluster nodes: 2 x AMD Opteron Dual Core; InfiniBand network

http://phycomp.technion.ac.il/~pavelba/Comp_Phys/Project/Project.html

Равномерность распределения вычислений

- По какому показателю оценивать равномерность времени выполнения потоков/процессов параллельной программы?
- Известно время выполнения потоков $t_0, t_1, ..., t_p$
- Коэффициент V вариации

$$V = \frac{\sigma[t_i]}{\mu[t_i]}$$

Отношение min/max

$$M = \frac{\min\{t_i\}}{\max\{t_i\}}$$

Jain's fairness index

$$f = \frac{\left(\sum_{i=0}^{p-1} t_i\right)^2}{n\sum_{i=0}^{p-1} t_i^2} \in [0,1]$$

- Пусть имеется последовательная программа с временем выполнения *T*(*n*)
- Обозначим:
 - $r \in [0,1]$ часть программы, которая может быть распараллелена (perfectly parallelized)
 - s = 1 r часть программы, которая не может быть распараллелена (purely sequential)
- Время выполнения параллельной программы на р процессорах
 (время каждого потока) складывается из последовательной части s и параллельной r:

$$T_p(n) = T(n)s + \frac{T(n)}{p}r$$

Вычислим значение коэффициент ускорения (по определению)

$$S_p(n) = \frac{T(n)}{T_p(n)} = \frac{T(n)}{T(n)s + \frac{T(n)}{p}r} = \frac{1}{s + \frac{r}{p}} = \frac{1}{(1-r) + \frac{r}{p}}$$

■ Полученная формула по значениям r и s позволяет оценить максимальное ускорение

- Пусть имеется последовательная программа с временем выполнения *T*(*n*)
- Обозначим:
 - $r \in [0,1]$ часть программы, которая может быть распараллелена (perfectly parallelized)
 - s = 1 r часть программы, которая не может быть распараллелена (purely sequential)
- Закон Дж. Амдала (Gene Amdahl, 1967) [1]:

Максимальное ускорение S_p программы на p процессорах равняется

$$S_{p} = \frac{1}{(1-r) + \frac{r}{p}}$$

$$S_{\infty} = \lim_{p \to \infty} S_{p} = \lim_{p \to \infty} \frac{1}{(1-r) + \frac{r}{p}} = \frac{1}{1-r} = \frac{1}{s}$$

Amdahl Gene. Validity of the Single Processor Approach to Achieving Large-Scale Computing Capabilities // AFIPS Conference Proceedings, 1967, pp. 483-485, http://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf

Зависимость коэффициента S_p ускорения параллельной программы от количества p процессоров

Допущения закона Дж. Амдала (Amdahl's law)

- Последовательный алгоритм является наиболее оптимальным способом решения задачи
- Возможны ситуации когда параллельная программа (алгоритм) эффективнее решает задачу (может эффективнее использовать кеш-память, конвейер, SIMD-инструкции, ...)
- Время выполнения параллельной программы оценивается через время выполнения последовательной, однако потоки параллельной программы могут выполнятся эффективнее

$$T_p\left(n
ight) = T(n)\,s + rac{T(n)}{p}r, \;\;\;$$
 на практике возможна ситуация $rac{T(n)}{p} > T_p\left(n
ight)$

- Ускорение $S_p(n)$ оценивается для фиксированного размера n данных при любых значениях p
- В реальности при увеличении числа используемых процессоров размер *п* входных данных также увеличивают, так как может быть доступно больше памяти

■ На что потратить ресурсы – на увеличение доли *r* параллельной части в программе или увеличение числа процессоров, на которых запускается программа?

Зависимость времени $T_p(n)$ выполнения параллельной программы от количества p процессоров и доли r распараллеленного кода (время в % от времени $T_1(n)$)

■ На что потратить ресурсы – на увеличение доли *r* параллельной части в программе или увеличение числа процессоров, на которых запускается программа?

r = 30%

r = 60%

r = 90%

D

32

Увеличили число процессоров с 2-х до 4-х (программу не меняли)
Время выполнения сократилось с 85% до 77,5%

2

10

 $T_p(n), \%$

Зависимость времени $T_p(n)$ выполнения параллельной программы от количества p процессоров и доли r распараллеленного кода (время в % от времени $T_1(n)$)

16

■ На что потратить ресурсы – на увеличение доли r параллельной части в программе или увеличение числа процессоров, на которых запускается программа?

Зависимость времени $T_p(n)$ выполнения параллельной программы от количества p процессоров и доли r распараллеленного кода (время в % от времени $T_1(n)$)

Закон Густафсона-Барсиса

- Пусть имеется последовательная программа с временем выполнения *T*(*n*)
- Обозначим s ∈ [0,1] часть параллельной программы, которая выполняется последовательно (purely sequential)
- Закон Густафсона-Барсиса (Gustafson-Barsis' law) [1]:

Масштабируемое ускорение S_p программы на p процессорах равняется

$$S_p = p - s(p - 1)$$

■ Обоснование: пусть *а* – время последовательной части, *b* – время параллельной части

$$T_p(n) = a + b,$$
 $T(n) = a + pb$
 $s = a/(a + b),$ $S_p(n) = s + p(1-s) = p-s(p-1)$

- Время выполнения последовательной программы выражается через время выполнения параллельной
- Reevaluating Amdahl's Law, John L. Gustafson, Communications of the ACM 31(5), 1988. pp. 532-533 // http://www.scl.ameslab.gov/Publications/Gus/AmdahlsLaw/Amdahls.html

Литература

- Хорошевский В.Г. **Архитектура вычислительных систем**. М.: МГТУ им. Н.Э. Баумана, 2008. 520 с.
- Корнеев В.В. Вычислительные системы. М.: Гелиос АРВ, 2004. 512 с.
- Степаненко С.А. **Мультипроцессорные среды суперЭВМ. Масштабирование эффективности**. М.: ФИЗМАТЛИТ, 2016. 312 с.
- Эндрюс Г. Основы многопоточного, параллельного и распределенного программирования. М.: Вильямс, 2003.