

Midterm Sample

MATH203 Section 01 2010 Fall

 $(2x)(2+x) = \frac{1}{\sqrt{4-x^2}}, \quad (2) \quad g(t) = \cos(e^{-t}). \quad t \in \mathbb{R} \quad t \in (-\infty, \infty)$

(1)
$$f(x) = \frac{1}{\sqrt{4-x^2}}$$

(2)
$$g(t) = \cos(e^{-t})$$

 \times $\left\{ (2,2) \right\}$ 2. If $f(x) = \sqrt{x}$, $g(x) = \frac{x^2}{4}$, find formulas for the following:

- (1) f(g(x)),
- (2) g(f(x)).

3. Find the exact value of each expression:

- (1) $\arcsin(\frac{1}{2})$,
- (2) $\arccos(-\frac{\sqrt{2}}{2})$.

4. If $f(x) = x^2$, $x \le 0$, find the formula for f^{-1} .

5. Find the limits:

(1)
$$\lim_{x\to 1} \frac{-1}{3x-1}$$

(1)
$$\lim_{x \to 1} \frac{-1}{3x - 1}$$
, (2) $\lim_{x \to -1} \frac{\sqrt{x^2 + 8} - 3}{x + 1}$, (3) $\lim_{x \to -3} \frac{x + 3}{x^2 + 4x + 3}$,

(3)
$$\lim_{x \to -3} \frac{x+3}{x^2 + 4x + 3}$$

$$\lim_{x\to 0} \frac{\sin 5x}{\sin 4x},$$

(4)
$$\lim_{x\to 0} \frac{\sin 5x}{\sin 4x}$$
, (5) $\lim_{x\to \infty} \frac{2x^3 + 7}{x^3 - x^2 + x + 7}$, (6) $\lim_{x\to 0^-} \frac{2}{3x}$

6. If
$$f(x) = \begin{cases} 2x, & 0 < x < 1 \\ 1, & x = 1 \\ -2x + 4, & 1 < x < 2 \end{cases}$$

(1) Does f(1) exist? (2) Does $\lim_{x\to 1} f(x)$ exist? (3) Does $\lim_{x\to 1} f(x) = f(1)$?

(4) Is f(x) continuous at x = 1?

7. Using the definition of derivative, i.e. $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$, find the slope of the function's graph at the given point, then find the equation for the line tangent to the graph there: $f(x) = x^2$, (2,4).

8. Find the first and second derivatives: $y = x^2 e^x$

9. Find y'' if $y = 2x + \sin x$.

10. Find y' if $y = \cos(x^2 + 7x)$.

11. Find $\frac{dy}{dx}$ by implicit differentiation if $2x^3 + x^2y - xy^3 = 1$.

$$8 y' = 2xe^{x} + x^{2}e^{x} = (2x + x^{2})e^{x}$$

$$y'' = (2+2x)e^{x} + (2x + x^{2})e^{x}$$

$$= (2+2x+2x+2x+x^{2})e^{x}$$

$$= (2+4x+2x+2)e^{x}$$

$$9'=2+\cos x$$

$$y''=-\sin x$$

$$(0)y' = -\sin(x^2+7)(2x+7)$$

$$6x^{2} + 2xy + x^{2}y' - y^{3} - 3xy^{2}y' = 6$$

$$x^{2}y' - 3xy^{2}y' = -6x^{2} - 2xy + y^{3}$$

$$x^{2}y' - 3xy^{2}y' = -6x^{2} - 2xy + y^{3}$$

$$x^{2}y' - 3xy^{2}y' = -6x^{2} - 2xy + y^{3}$$

$$y'(x^{2} - 3xy^{2}) = -6x^{2} - 2xy + y^{3}$$

$$y'(x^{2} - 3xy^{2}) = -6x^{2} - 2xy + y^{3}$$

$$y'' = -6x^{2} - 2xy + y^{3}$$

1 204 Chov. + 180 Det/ATT 4 SAC + 5, b

1156

Det + 10.5 Mwil + 8.5

Houst

$$\frac{(3 + h)^{2} - x^{2}}{h} = \lim_{h \to 0} \frac{(x+h)^{2} - x^{2}}{h} = \lim_{h \to 0} \frac{x^{2} + 2xh + h^{2} - x^{2}}{h} = \lim_{h \to 0} \frac{h(2x+h)}{h} = 2x$$

$$F'(x)=2x$$

 $F'(z)=4$
 $Y=mx+6$
 $Y=4x-4$
 $Y=6$