Spoerri Raphael

I will neither give not receive manthalized assistance on this exam. I will use only one computing device to perform this exam. I will use only one test. Regular Aparticular

1.

	Unsigned	Signed	Unsigned Fixed Point	Signed Fixed Point
10000000	128	-128	32+0/4=32	-32+0/4 = -32
10000011	131	-125	32 + ³ / ₄ = (128+3)/4= 131/4	-31 -½=(-124-1)/4= -125/4
10000001	129	-127	32 + ½ = (128+1)/4= 129/4	-31-3/4 = -127/4
01000001	65	+65	16+½=(64+1)/4 = 65/4	16+1/4=+65/4
01111111	127	+127	31+ ³ / ₄ =(124+3)/ 4= 127/4	31+3/4=+127/4
11111111	255	-1	63+ ³ / ₄ = (252 + 3)/4 = 255/4	-1+3/4=-1/4
11111100	252	-4	63+0/4 = 63	-1 + 0/4 = -1
00000000	0	+0	0 + 0 = 0	+0 + 0 = +0
01111110	126	+126	31 + ½ = (62 +1)/2 = 63/2	+31 + ½ = +63/2
10001110	142	-114	35 + ½ = (70+1)/2 = 71/2	-28 - ½ = (-56-1)/2=-57/2
00010011	19	+19	4+ ³ / ₄ =(16+3)/4 = 19/4	4+3/4=+19/4

1. NONE. Given 16 bits of representation, minus 6 bits for the fractional part, leaves us with 10 bits for the integer part, but since it's signed, the integer range is -2^9 to $+2^9$ - 1. -2^9 = -512, but since all of the answers are less than -512, none are correct.

Spoerri Raphael

2.

	0x0.E	0000.1110	14/16
	-		
	0x0.F	0000.1111	-15/16
	~(0x0.F) + .1 = 0xF.0 + .1 = 0xF.1 0x0.E + 0xF.1 = 0xF.F	-00001111= ~(00001111) + 1= 11110000 + 1= 11110001 0000.1110 + 1111.0001= 1111.1111	
Result	0xF.F	0b1111 1111	-1/16

3.

-127.75 requires two bits to represent the fractional part, and 8 to represent the integer part. To prove this, if we take 127.75 represented in binary:

0111 1111.11 and negate it by inverting and adding 1: \sim (01111111.11) + 1 we get 1000,0000.01, which has 8 + 2 = 10 bits, so it takes 10 bits:

- 1) 100000001
- 2) 10 bits
- 4. 1000 0000.01 << 4 = 100000000100.
 - 4.1. $\sim 100000000100 + 1 = 011111111011 + 1 = 011111111100 = -1020$