

Name: Amuru Likhitha Batch: COMETFWC019

Date: 06 July 2025

GATE 2009, ECE Question Number 39

Abstract

This project implements the GATE 2009 Q39 JK Flip-Flop counter using a Pico 2W, buttons, and LEDs. The system simulates a 3-state counter with the sequence $01 \rightarrow 10 \rightarrow 00 \rightarrow 01...$ Button presses act as clock signals, and LEDs represent the outputs Q1 and Q2.

Figure: JK Flip-Flop logic diagram used in simulation

1. Components

Component	Qty
Pico 2W	1
Push Button (clock in-	1
put)	
LEDs (Q1, Q2)	2
220Ω Resistors	2
Breadboard	1
Jumper Wires	8
Micro-USB Cable	1

Table 1: List of components used

2. Setup and Connections

- Button (Clock) \rightarrow GPIO 15 with a pull-down resistor.
- LED Q1 \rightarrow GPIO 16 via 220 Ω resistor.
- LED Q2 \rightarrow GPIO 17 via 220 Ω resistor.
- GND connections from Pico to breadboard.
- Button press triggers state change.

3. State Table for Q39

Press	$\mathbf{Q2}$	Q1
Initial	0	0
1st	0	1
2nd	1	0
3rd	0	0
$4 ext{th}$	0	1

Table 2: State transition sequence for 3-state counter

4. MicroPython Code for Raspberry Pi Pico W

```
from machine import Pin
import time
# Assign GPIO pins
button = Pin(15, Pin.IN, Pin.PULL_DOWN)
q1\_led = Pin(16, Pin.OUT)
q2\_led = Pin(17, Pin.OUT)
q1 = 0
q2 = 0
prev = 0
def update_leds():
   q1_led.value(q1)
    q2_led.value(q2)
while True:
    clk = button.value()
    if clk == 1 and prev == 0:
        # JK FF behavior
        next_q1 = 1 - q1
        next_q2 = (not q2 and q1) or (q2 and not q1)
        # update states
        q1 = int(next_q1)
        q2 = int(next_q2)
        update_leds()
        time.sleep(0.3) # debounce
    prev = clk
```

5. Analysis

- Flip-Flop 1 toggles on every clock (J=Q2, K=1)
- Flip-Flop 2 toggles based on Q1 (J=Q1, K=1)
- Implemented logic replicates JK Flip-Flop transitions
- LED outputs match state sequence: $01 \rightarrow 10 \rightarrow 00 \rightarrow ...$

6. Circuit Image

Figure: Real hardware setup using Pico2 W

7. Conclusion

This hardware implementation using Pico2W accurately simulates the JK flip-flop logic defined in GATE ECE 2009 Q39. The LED outputs reflect the correct 3-state sequence, and button input effectively acts as a manual clock pulse generator.