荷马史诗

【问题描述】

追逐影子的人,自己就是影子 ——荷马

Allison 最近迷上了文学。她喜欢在一个慵懒的午后,细细地品上一杯卡布奇诺,静静地阅读她爱不释手的《荷马史诗》。但是由《奥德赛》和《伊利亚特》组成的鸿篇巨制《荷马史诗》实在是太长了,Allison 想通过一种编码方式使得它变得短一些。

一部《荷马史诗》中有n个不同的单词,从1到n进行编号。其中第i个单词出现的总次数为 w_i 。Allison 想要用k进制串 s_i 来替换第i个单词,使得其满足如下要求:

对于任意的 $1 \le i,j \le n$, $i \ne j$, 都有: s_i 不是 s_i 的前缀。

现在 Allison 想要知道,如何选择 s_i ,才能使替换以后得到的新的《荷马史诗》长度最小。在确保总长度最小的情况下,Allison 还想知道最长的 s_i 的最短长度是多少?

一个字符串被称为k进制字符串,当且仅当它的每个字符属于[0,k-1]。

字符串 Str1 被称为字符串 Str2 的前缀,当且仅当:存在 $1 \le t \le m$,使得 Str1 = Str2[1..t]。其中,m 是字符串 Str2 的长度,Str2[1..t] 表示 Str2 的前 t 个字符组成的字符串。

【输入格式】

从文件 epic.in 中读入数据。

输入文件的第1行包含2个正整数n,k,中间用单个空格隔开,表示共有n个单词,需要使用k进制字符串进行替换。

接下来n行,第i+1行包含1个非负整数 w_i ,表示第i个单词的出现次数。

【输出格式】

输出到文件 epic.out 中。

输出文件包括2行。

第1行输出1个整数,为《荷马史诗》经过重新编码以后的最短长度。

第 2 行输出 1 个整数,为保证最短总长度的情况下,最长字符串 s_i 的最短长度。

【样例输入 1】

- 4 2
- 1
- 1
- 2
- 2

【样例输出 1】

12

2

【样例说明 1】

- 一种最优方案: 令 $00_{(2)}$ 替换第 1 个单词, $01_{(2)}$ 替换第 2 个单词, $10_{(2)}$ 替换第 3 个单词, $11_{(2)}$ 替换第 4 个单词(其中 $X_{(k)}$ 表示 X 是以 k 进制表示的字符串)。在这种方案下,编码以后的最短长度为: $1\times2+1\times2+2\times2+2\times2=12$ 。最长字符串 s_i 的长度为 2 。
- 一种非最优方案: 令 $000_{(2)}$ 替换第 1 个单词, $001_{(2)}$ 替换第 2 个单词, $01_{(2)}$ 替换第 3 个单词, $1_{(2)}$ 替换第 4 个单词。在这种方案下,编码以后的最短长度为: $1\times3+1\times3+2\times2+2\times1=12$ 。最长字符串 s_i 的长度为 3。以最优方案相比,文章的长度相同,但是最长字符串的长度更长一些。

【样例输入 2】

6 3

1

1

3

3

9

【样例输出 2】

36

3

【样例说明 2】

【样例输入输出3】

见选手目录下的 epic/epic.in 与 epic/epic.ans。

【数据规模与约定】

所有测试数据的范围和特点如下表所示

测试点 编号	n 的规模	k 的规模	备注	约定
1	n = 3	k = 2		
2	$2 \le n \le 5$	k = 2		
3	$2 \le n \le 6$	k = 2		
4	n = 16	k = 2	所有 w_i 均相等	
5	$2 \le n \le 1,000$	k = 2	w _i 在取值范围 内均匀随机	
6	$2 \le n \le 1,000$	k = 2		
7	$2 \le n \le 100,000$	k = 2		
8	$2 \le n \le 100,000$	k = 2	所有 w_i 均相等	
9	$2 \le n \le 100,000$	k = 2	w _i 在取值范围 内均匀随机	
10 11	$2 \le n \le 100,000$	k = 2		$0 < w_i \le 10^{11}$
12	$2 \le n \le 7$	k = 3		
13	n = 16	k = 3	所有 w_i 均相等	
14	n = 1,001	k = 3	所有 w_i 均相等	
15	n = 99,999	k = 4	所有 w_i 均相等	
16	$2 \le n \le 1,000$	k = 5		
17	$2 \le n \le 100,000$	$1 \le k \le 10$	w _i 在取值范围 内均匀随机	
18 19 20	$2 \le n \le 100,000$	$1 \le k \le 10$		

【提示】

可能需要使用 64 位整数进行输入输出、存储和计算。

【评分方式】

对于每个测试点:

若输出文件的第1行正确,得到该测试点40%的分数;若输出文件完全正确,得到该测试点100%的分数。