This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

8/5/7 DIALOG(R) File 351: Derwent WPI (c) 2001 Derwent Info Ltd. All rts. reserv.

007254693

WPI Acc No: 1987-251700/198736

XRAM Acc No: C87-106508

Prodn. of hybrid protein comprising mature human serum albumin - having

trypsin cleavable hydrophilic extension, by growing E. coli cells

transformed with new inducible plasmid

Patent Assignee: GENETICA (GENE-N)

Inventor: LATTA M; MAYAUX J F; SARMIENTOS P; MAYAUX J Number of Countries: 013 Number of Patents: 007

Patent Family:

Patent No	Kind	Date	Ap	plicat No	Kind	Date	Week	
EP 236210	Α	19870909	ΕP	87400355	Α	19870219	198736	В
FR 2594846	Α	19870828	FR	862379	Α	19860221	198745	
JP 62275695	Α	19871130	JP	8737683	Α	19870220	198802	
EP 236210	В	19911023					199143	
DE 3773963	G	19911128					199149	
US 5100784	Α	19920331	US	8716651	Α	19870219	199216	
US 5187261	Α	19930216	US	8716651	Α	19870219	199309	
			US	91653195	Α	19910208		

Priority Applications (No Type Date): FR 862379 A 19860221 Cited Patents: EP 138437; EP 200590; 1.Jnl.Ref; EP 114506; EP 1929; EP 73646

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

A F 55

Designated States (Regional): AT BE CH DE FR GB IT LI LU NL SE

EP 236210

Designated States (Regional): AT BE CH DE FR GB IT LI LU NL SE

US 5100784 Α 36

US 5187261 Α 36 C07K-015/02 Div ex application US 8716651

Div ex patent US 5100784

Abstract (Basic): EP 236210 A

Prodn. of hybrid protein (A), contg. a hydrophilic, N-terminal peptide extension terminated by a trypsin cleavage site, fused to the mature human serum albumin (HSA) sequence, comprises cultivating a strain of E. coli able to retain a plasmid which contains the nucleotide sequence coding for (A), the expression of which is controlled by an inducible bacterial promoter. Also new are (1) the plasmids pXL462; pXL641; pXL740 and pXL741 and (2) hybrid proteins expressed by these plasmids.

pXL462 contains the PL promoter; the ribosome-binding site (RBS) of the gene cII of lambda phage (lacking the tR1 transcription termination site); ATG start codon and the first 6 codons of the cII gene. It produces an (A) having the N-terminal extension of formula (Met)-Val-Arg-Ala-Asr Lys-Arg. pXL641 contains the Ptrp promoter followed by penicillin amidase (PA) promoter; the RBS of PA and the first 6 codons of the PA gene. It produces an (A) with N-terminal extension of formula Met-Lys-Asn-Arg-Asn-Arg. pXL740 and pXL741 are similar to pXL641 but the extension is modified by directed mutagenesis to Met-Lys-Asn-Arg-Lys-Arg or Met-Lys-Arg-Lys-Arg. The (A) formed is converted to denatured, insoluble form, then renatured and solubilised

to rearrange the sec. and tert. structures of the polypeptide chain. (A) is treated with trypain to give a protein having a primary structure identical to HSA.

USE/ADVANTAGE - (A) can be converted into mature HSA. 0/11

Title Terms: PRODUCE; HYBRID; PROTEIN; COMPRISE; MATURE; HUMAN; SERUM; ALBUMIN; TRYPSIN; CLEAVE; HYDROPHILIC; EXTEND; GROW; COLI; CELL; TRANSFORM; NEW; INDUCE; PLASMID

Derwent Class: B04; D16

International Patent Class (Main): C07K-015/02

International Patent Class (Additional): C07H-015/12; C07H-017/00; C07K-013/00; C07K-015/06; C12N-001/21; C12N-015/00; C12P-019/34;

C12P-021/02; C12R-001/19

File Segment: CPI

1 Numéro de publication:

0236210 A1

	•	•	

DEMANDE DE BREVET EUROPEEN

(21)	Numéro c	de dépôt:	87400355.1
-------------	----------	-----------	------------

fil int. Ct.4: C 12 N 15/00, C 07 K 13/00

Ø Date de dépôt: 19.02.87

30 Priorité: 21.02.86 FR 8602379

(f) Demandeur: GENETICA, 160 Quai de Polangis, 94340 Joinville Le Pont (FR)

Date de publication de la demande: 09.09.87
 Bulletin 87/37

(7) Inventeur: Latta, Martine, 297 Rue de Charenton-75, F-75012 Paris (FR) Inventeur: Maysux, Jean-François, 2iter, Boulevard de la République, F-92260 Fontenay aux Roses (FR) Inventeur: Sarmientos, Paolo, Via Mose Bianchi 104, Milano (IT)

Etats contractants désignés: AT BE CH DE FR GB IT LI LU,NL SE (A) Mandataire: Pilard, Jacques et al, RHONE-POULENC RECHERCHES Service Brevets Pharma 25, Qual Paul Doumer, F-92408 Courbevole Cedex (FR)

Procédé de préparation de la sérum albumine humaine mature.

Trocédé de préparation de sérum-allbumine humaine mature à partir d'une sérum-albumine humaine produite par voie microbiologique sous forme de protéine fusionnée («pseudopro-SAH»).

EP 0 236 210 A1

La présente invention concerne un procédé de préparation de la sérum-albumine humaine mature à partir d'une sérum-albumine humaine produite par voie microbiologique sous forme de protéine fusionnée.

Il existe un grand choix d'organismes hôtes, tels que les cellules mammifères modifiées ou les micro-organismes qui peuvent potentiellement être utilisés en vue de la production en quantités importantes de protéines humaines d'une grande valeur thérapeutique.

10

15

20

25

30

L'utilisation de cellules mammifères modifiées par les techniques de l'ADN recombinant présente l'avantage de conduire à des produits très proches de ceux d'origine naturelle; cependant la culture de ces cellules est délicate et ne peut être conduite que dans des volumes limités.

L'emploi de micro-organismes, tels que les bactéries, permet une fabrication à une échelle plus importante mais présente l'inconvénient de conduire à des produits qui diffèrent sensiblement des produits d'origine naturelle. Ainsi les protéines normalement glycosylées chez l'homme ne sont pas, en général, glycosylées par les bactéries [P. Berman et L.A. Laskey, Trends Biochem. Sci., (1985) 10, p.51 et suivantes]. Par ailleurs, les protéines humaines exprimées à haut niveau dans des bactéries telles que E.coli acquièrent souvent une conformation non native qui s'accompagne d'une précipitation intracellulaire [R.G. Schoner et coll., Bio. Technol. (1985), 3, p.151 et suivantes ; J.M. Schoemaker et coll., EMBO J. (1985), 4, p.775 et suivantes]. Enfin, pour qu'un gène puisse s'exprimer dans une bactérie, telle que E.coli, il est indispensable de positionner un codon initiateur méthionine devant la séquence codante de la protéine mature. Généralement, ce résidu n'est pas excisé par la méthionyl aminopeptidase de E.coli [P.H. Seeburg et coll., 1985, 2, p.37 et suivantes ; J.M. Schoner et coll., Proc. Natl. Acad. Sci. USA (1981), 81,p.5403].

٠.

La protéine obtenue présente donc un acide aminé anormal comme premier résidu qui peut provoquer l'inhibition stérique d'une activité biologique si le début de la protéine est impliqué dans cette activité. Le résidu peut également présenter un caractère immunogène néfaste à l'administration ultérieure de la protéine.

5

10

15

20

Il résulte que le choix d'une cellule-hôte dépend de la protéine spécifique que l'on veut obtenir. Dans le cas d'une protéine de valeur marchande élevée et nécessaire en quantité limitée, les cellules mammifères peuvent constituer une source particulièrement bien adaptée. Par contre dans le cas d'un produit de valeur marchande plus faible et nécessaire en quantité importante, de l'ordre de plusieurs dizaines de tonnes, telle que la sérum-albumine humaine (SAH), il paraît indispensable d'utiliser des microorganismes tout en remédiant aux inconvénients liés à leur emploi.

Lorsque la SAH est exprimée à partir d'une construction génétique du type "Promoteur-Site de démarrage de traduction-ATG-Gène de la SAH mature", la protéine obtenue conserve généralement une méthionine comme résidu N-terminal. Pour éliminer la méthionine N-terminale de protéines hétérologues exprimées chez E.coli, plusieurs méthodes peuvent être envisagées, telles que le clivage enzymatique in vivo, l'excision protéolytique pendant ou immédiatement après le transport à travers la membrane ou bien des digestions protéolytiques ou chimiques in vivo.

Il est connu, en particulier d'après J.P. Waller, J. Mol. Biol., (1963), 7, p.483 et suivantes, que E.coli possède une méthionyl aminopeptidase qui excise la méthionine N-terminale d'un certain nombre de protéines. Cependant la spécificité du mécanisme est mal connue et il est supposé que ce mécanisme dépend du ou des résidus suivant la méthionine [V.M. Vogt, J. Biol. Chem. (1970), 245, p.4760 et suivantes; H.J. George et coll., (1985) DNA, 4, p.273].

Les protéines sécrétées sont généralement initialement synthétisées sous forme d'une préprotéine comportant une "Séquencesignal" qui inclut le premier résidu. Cette séquence subit une excision protéolytique pendant ou immédiatement après le transport à travers la membrane [R. Scheckman, Trends Biochem (1985), 10, p.177]. Cependant ce système ne convient généralement pas dans le cas de protéines cytoplasmiques ou hétérologues du fait des problèmes de transport dûs soit à certaines parties de la séquence primaire de la protéine [J. Tommassen et coll, EMBO J. (1985), 4 p.1041] soit à une précipitation intra-cytoplasmique trop rapide de la protéIne. Par ailleurs les mécanismes impliqués dans la sécrétion de protéines par les cellules encaryotes, telles que la SAH sécrétée par les cellules hépatiques, sont vraisemblablement assez différents des mécanismes de sécrétion mis en jeu dans des microorganismes tels que les bactéries gram-négatives [N.Wickner et H. Lodish, Science (1985), 230 p.400].

10

15

Il a été également proposé d'employer des digestions chimiques ou enzymatiques afin de convertir in vitro la protéine synthétisée par la bactérie sous la forme d'une protéine fusionnée. Cette conversion a pour but l'excision spécifique d'une séquence peptidique étrangère à la protéine désirée, située en position N-terminale et contenant la méthionine comme premier résidu. Un exemple simple est celui d'une protéine qui ne possède pas naturellement de résidus méthionine [R.E. Chance et coll., "Peptides: Synthèses-Structure-Fonction", D.H. Rich et E. Gross, ed., Pierce Chem. Co, Rocford, Ill., (1981) p.721 et suivantes]. Dans ce cas, un traitement in vitro par le bromure de cyanogène permet l'excision de la méthionine N-terminale. Cependant ce cas ne se présente que très rarement dans le cas de protéines de poids moléculaire élevé.

Certaines protéases, comme la collagénase et le facteur X, reconnaissent une séquence de plusieurs acides aminés, ce qui les rend relativement spécifiques. [K. Nagai et H.C. Thogerson, Nature (1984), 309, p.810 et suivantes; J. Germino et D. Bastia, Proc. Natl. Acad. Sci. USA (1984), 81, p.4692 et suivantes]. Une construction génétique permet donc de positionner la séquence reconnue par la protéase en question devant le premier acide aminé de la protéine désirée. Cette protéine fusionnée devient ainsi un substrat de la protéase, le produit principal de la réaction étant la protéine possédant en position N-terminale le même acide aminé que la protéine mature. Cependant, l'inconvénient majeur de cette méthode réside dans le prix de la protéase surtout lorsqu'il s'agit de produire une protéine en grande quantité.

10

15

20

25

30

La SAH est synthétisée par les cellules humaines d'abord sous forme de prépro-SAH (figure 1). Une séquence signal de 18 acides aminés est enlevée pendant le transport de la SAH à travers le lumen du réticulum endoplasmique et il reste encore 6 acides aminés à l'extrémité N-terminale (Arg- Gly- Val- Phe- Arg- Arg-) qui ne sont pas présents dans la SAH circulante. Selon S.O. Brennan et R.W. Carrell, Biochim. Biophys. Acta (1980), 621, p.83 et suivantes, ce propeptide ne semble jouer aucun rôle dans la sécrétion de la SAH. Il est possible qu'une deuxième protéolyse spécifique s'effectue au niveau de l'appareil de Golgi ou dans la circulation sanguine, les deux résidus arginine formant le site de reconnaissance d'une protéase de spécificité analogue à celle de la trypsine. En effet, un variant, appelé "Albumine Christchurch", dû à une mutation qui transforme le dernier résidu arginine du propeptide en glutamine n'est pas converti in vivo en albumine mature mais est transformé in vitro en Glu-SAH en traitant le propeptide par une faible concentration de trypsine. Par ailleurs, la SAH mature sous forme native est résistante à la trypsine dans les même conditions [S.O. Brennan et coll., Biochim. Biophys. Acta, (1984) 802, p.24 et suivantes].

Il a maintenant été trouvé, et c'est ce qui fait l'objet de la présente invention, un procédé permettant de transformer en SAH mature une SAH produite par voie microbiologique sous forme de protéine fusionnée.

Le procédé selon la présente invention consiste :

5

10

15

20

25

30

- à modifier <u>in vitro</u> le gène de structure de la SAH de telle sorte qu'il possède 6 codons supplémentaires codant pour les 6 premiers acides aminés de la protéine cII du bactériophage lambda, puis à lier le gène de structure ainsi modifié à la séquence nucléotidique qui précéde naturellement le gène cII dans le gènome du bactériophage lambda et à un promoteur qui assure un niveau élevé de transcription,
- à produire, dans des conditions définies, au moyen d'une bactérie hôte contenant le gène modifié, une protéine hybride ("pseudo-pro-SAH") constituée par les 6 premiers acides aminés du gène cII suivis de la séquence de la SAH mature,
- à dénaturer et réduire puis renaturer la protéine hybride de façon à obtenir une protéine soluble dont la conformation est semblable à celle de la SAH d'origine naturelle, puis
- à modifier <u>in vitro</u>, au moyen de la trypsine, la protéine ainsi obtenue afin d'exciser le pseudo-pro-peptide et obtenir la SAH mature.
 - Il a également été trouvé que la SAH mature peut être obtenue en utilisant une extension peptidique N-terminale ("pseudo-pro-peptide") dont la séquence diffère de celle des 6 premiers acides aminés de la protéine cII du bactériophage lambda, à condition que cette extension permette une expression suffisante de la protéine fusionnée, présente l'hydrophilicité nécessaire et comporte un site de coupure par la trypsine. Par exemple, le "pseudo-pro-peptide" peut être constitué par les 5 premiers acides aminés de la séquence-signal de la pénicilline-amidase (6, si l'on compte le premier résidu méthionine).

÷,

Dans ce qui suit, la signification des termes techniques utilisés en biologie moléculaire est supposée connue (cf. par exemple J. Watson, "Biologie Moléculaire du Gène", édition française, Interéditions, 1978). Les méthodes couramment employées en biologie moléculaire du gène sont décrites, par exemple, par T. Maniatis et coll., Molecular Cloning, Cold Spring Harbor Laboratory Press, New-York, 1982). Dans ce qui suit seront décrits successivement la construction, les procédés d'expression du gène, la renaturation et la conversion par la trypsine de la "pseudo-pro-SAH".

10 A-CONSTRUCTION DU GENE "pseudo-pro-SAH".

15

20

25

30

1. Préparation d'ARN messager de foie

On utilise des cellules hépatiques, obtenues par exemple par biopsie, et on en extrait l'ARN messager selon la méthode décrite par exemple par V. Glisin et coll., Biochemistry (1974), 13, p. 2633 et suivantes; et par R. Deeley et coll., J. Biol. Chem. (1977), 252, p. 8310 et suivantes. On traite la biopsie par une solution de thiocyanate de guanidine 6M, et l'on purifie l'ARN total par plusieurs cycles de précipitation dans l'éthanol à -20°C, centrifugation et redissolution des culots de centrifugation.

On enrichit la préparation en ARN messager par plusieurs cycles de chromatographie d'affinité sur des colonnes d'oligo (dT)-cellulose, selon la technique décrite par H. Aviv et P. Leder, Proc. Natl. Acad. Sci. (USA) (1972), 69, p. 1408 et suivantes. L'ARN messager ainsi isolé, contenant l à 2 % de l'ARN total, est conservé en solution aqueuse à -70°C.

On peut déterminer la proportion d'ARN messager spécifique de la sérum-albumine humaine au sein de la population totale (par exemple par traduction <u>in vitro</u> d'un aliquot de la solution d'ARN dans des lysats de réticulocytes de lapin). Une méthode consiste à utiliser le lysat de réticulocytes fournis par la société Amersham, suivant le protocole préconisé par ce fournisseur. On peut ainsi déterminer la fraction de protéine néoformée immunoprécipitable par des anticorps anti-albumine au sein de l'ensemble des protéines néoformées. On obtient par exemple une fraction de l'ordre de 6 %.

2. Synthèse de cDNA et clonage dans E.coli

10

15

20

25

30

a. Synthèse du premier brin

A partir de la technique de G.N. Buell et coll., J. Biol. Chem. (1978), 253, p. 2471 et suivantes, modifiée, on utilise par exemple 5 µg d'ARN messager total dans un volume final de 50 microlitres d'une solution contenant : 100 mM Tris-HCl pH 8,3, 10 mM MgCl₂, 0,4 mM DTT, 20 mM KCl, 0,4 mM Na pyrophosphate, 1 mM de chaque nucléotide triphosphate (dNTP), 100 µg/ml de oligo(dT)₁₂₋₁₈, 0,5 U/ml d'inhibiteur de ribonucléases, 50 picomoles de traceur radioactif et 40 unités de Transcriptase réverse (Société Life Science, Inc.).

La réaction de transcription réverse de l'ARN messager en ADN complémentaire (ADNc) se poursuit pendant l heure à 42°C.

Le taux de synthèse de ADNc est calculé par mesure du taux d'incorporation du traceur radioactif en molécules acido-précipitables, selon une technique connue.

Après 1 heure, on arrête la réaction par addition d'EDTA (20 mM), et 1'on détruit 1'ARN messager par digestion alcaline dans 50 mM de NaOH, à 42°C, pendant 3 heures.

On sépare l'ADNc néoformé des dNTPs non-incorporés et des produits de dégradation alcaline des ARNs par chromatographie, par exemple, sur une colonne de Sephadex G100 (Pharmacia Fine Chemicals). On obtient 1,5 µg d'ADNc simple brin à partir de 5 µg d'ARN messager total.

b. Synthèse du deuxième brin

L'ADNc simple brin est converti en ADN double brin par action du fragment "Klenow" de l'ADN polymérase I.

Les conditions de réaction sont : 100 mM Hepes pH 7, 10 mM MgCl₂, 2,5 mM DTT, 70 mM KCl, 0,5 mM de chaque dNTP, et 50 unités du fragment "Klenow" de l'ADN polymérase I (commercialisée par exemple par la Société New England Biolabs Inc.).

La réaction est poursuivie pendant 15 heures, à 15°C, et l'on sépare l'ADN double brin des dNTPs non incorporés à nouveau par chromatographie sur colonne de Sephadex G100.

c. Clonage de l'ADN double brin

10

15

20

25

Pour supprimer les molécules d'ADN simple brin et obtenir un ADN double brin à extrémités franches, on traite les séquences non appariées par la nucléase S₁ selon la technique décrite par A. Efstradiatis et coll., Cell (1976), 7, p. 279 et suivantes. On sépare les ADNs néoformés double brin selon leur taille par centrifugation dans un gradient de saccharose. On utilise généralement un gradient de 5 % - 20 % de saccharose en 50 mM Tris-HCl pH 8,5, 10 mM EDTA, 800 mM NaCl, centrifugé à 210000 g pendant 15 heures, à 20°C, et on effectue un fractionnement du gradient en aliquots après centrifugation.

On contrôle la taille des molécules dans chaque fraction par électrophorèse d'échantillons faite en parallèle avec des étalons d'ADN de tailles connues, et l'on regroupe les fractions contenant un ADN constitué par l'enchaînement de plus de 500 paires de bases.

Pour permettre le clonage de cet ADN on allonge d'abord ses extrémités 3' avec de l'oligo(dC), et on allonge parallèlement les extrémités 3' du site PstI du plasmide vecteur pBR322 avec de l'oligo(dG) selon la technique de F. Rougeon et coll., J. Biol. Chem. (1977), 252, p. 2209 et suivantes.

On hybride alors l'ADN double brin décrit ci-dessus au plasmide vecteur, selon par exemple la technique de L. Villa Komaroff et coll., Proc. Natl. Acad. Sci. (USA) (1978), 75, p. 3727 et suivantes.

On crée une "banque" de clones d'ADNcs de foie par transformation de la bactérie <u>E.coli</u> avec l'ADN ainsi décrit selon la méthode décrite par M. Mandel et A. Higa, J. Mol. Biol. (1970), <u>53</u>, p. 154 et suivantes et M. Dagert et S.D. Erlich., Gene (1979), <u>6</u>, p. 23 et suivantes.

d. Repérage des clones d'ADNc albumine

On utilise une technique d'hybridation sur colonies à 1'aide d'oligonucléotides synthétiques dont les séquences sont déduites de la séquence protéique de 1'albumine humaine (B. Meloun et coll., FEBS Letters (1975), 58, p. 134 et suivantes;

M. Grunstein et D. Hogness, Proc. Natl. Acad. Sci. (USA) (1975), 72, p. 3961 et suivantes; R.B. Wallace et coll., Nucleic Acids Res. (1981), 9, p. 879 et suivantes).

Les clones sont cultivés par séries de 96 sur milieu de

Luria contenant 25 μg/ml de tétracycline, en boîtes carrées, directement sur des filtres de nitrocellulose. Après croissance à 37°C
puis amplification en présence de 250 μg/ml de chloramphénicol, les
colonies sont lysées par la soude puis hybridées avec les oligonucléotides radioactivés en 5' par kination, dans une solution contenant : 5 X SSC, 0,5 % NP 40, 100 μg/ml ADN de sperme de saumon
dénaturé par ébullition et refroidi rapidement dans la glace,
0,5 ng/ml d'oligonucléotide kinasé. L'hybridation est effectuée à
37°C pendant 18 heures. On lave ensuite les filtres en 5 X SSC, à
25°C, puis 37°C, puis 45°C et ce pendant quatre fois 15 minutes à
chaque étape.

Les filtres sont alors exposés sur films Kodak X-OMAT, à -70°C, avec un écran amplificateur pendant 15 à 24 heures. Les clones hybridants avec les sondes sont réisolés puis lysés. L'ADN plasmidique est purifié par centrifugation en milieu chlorure de césium-bromure d'éthidium selon une technique connue.

25

30

On séquence l'ADN de l'insertion par la technique de Maxam-Gilbert (A. Maxam et W. Gilbert, Methods Enzymol. (1980), 65, p. 499 et suivantes) pour comparer la séquence protéique dérivée de la séquence nucléotidique et celle de la sérum-albumine humaine.

On identifie ainsi une série de clones dont les insertions correspondent à l'ensemble du gène de la sérum-albumine humaine.

ŧ,

34

Dans la figure 2 est représentée la carte de restriction du gène de la sérum-albumine, ainsi que la position de trois des insertions les plus représentatives, désignées par "pTIB11", "pAA38", "p6D8".

e. Incorporation au gène de structure d'un codon d'initiation (figure 3)

a) On digère l'ADN du plasmide "pTIBII" par les enzymes PstI et PvuII, et on isole un fragment d'ADN de 125 paires de bases, correspondant à la séquence de l'extrémité 5' du gène de la sérum-albumine (acides aminés n° 1 à 62). On fixe à l'extrémité PvuII une séquence de jonction constituée du site de reconnaissance de l'enzyme BamHI. On obtient ainsi un fragment PstI-BamHI.

10

15

20

25

30

On prépare d'autre part un oligonucléotide synthétique ayant 21 bases de long, possédant un triplet "ATG" devant les nucléotides codant pour les acides aminés de la sérum-albumine humaine ainsi qu'un site de restriction NcoI, et dont la séquence est la suivante : 5'GAATCCATGGATGCACACAAG 3'.

On dénature le fragment d'ADN PstI-BamHI, et on l'hybride avec l'oligonucléotide synthétique. L'hybridation se fait par la séquence 5'...GATGCACACAAG 3', l'extrémité 3' du brin d'ADN complémentaire étant désappariée. On digère les extrémités désappariées, puis on polymérise dans le sens 5'...3' avec le fragment "Klenow" de l'ADN polymérase I, d'après les techniques de H. Jacobsen et coll., Eur. J. Biochem. (1974), 45, p. 623 et suivantes.

On obtient ainsi un fragment contenant en 5' une extrémité franche, un site NcoI puis le triplet ATG et en 3' un site BamHI.

b) On réalise la ligation de trois fragments d'ADN:

1) un fragment EcoRI-BamHI du plasmide "pLG200" (L. Guarente et coll., Cell (1980) $\underline{20}$, p. 543 et suivantes) portant un gène de résistance aux antibiotiques, l'origine de réplication et l'extrémité 3' du gène de la β -galactosidase,

2) un fragment EcoRI-PvuII du plasmide "pGL101" (G. Lauer et coll., J. Mol. Appl. Genet. (1981), <u>1</u>, p. 139 et suivantes) portant le promoteur P_{lac} et le site de fixation de ribosome (RBS) du gêne lacZ d'E.coli,

3) le fragment d'ADN mutagénisé codant pour les 62 premiers acides aminés de l'albumine humaine.

5

10

15

20

25

On isole un plasmide (pXL52) qui réalise une fusion de l'extrémité 5' du gène de la sérum-albumine humaine avec le gène de la β -galactosidase d'<u>E.coli</u>.

f. Construction du gene complet (figure 3)

On digère l'ADN du plasmide "p6D8" par EcoRI, et partiellement par BglII, selon une technique déjà décrite. On isole le grand fragment EcoRI-BglII contenant la séquence codant pour les 405 derniers acides aminés de la sérum-albumine humaine puis l'origine de replication du plasmide et le gène de résistance à la tétracycline.

On digère l'ADN du plasmide "pXL52" décrit ci-dessus par EcoRI et Sau3A, et on isole un fragment contenant 200 paires de bases.

On digère l'ADN du plasmide "pAA38" par Sau3A et on isole un fragment contenant 540 paires de bases.

On ligature les trois fragments (dans l'ordre [pXL52 EcoRI-Sau3A] - [pAA38-Sau3A] - [p6D8 BglII-EcoRI]) en tirant profit de la compatibilité entre les sites Sau3A et BglII. On obtient un plasmide appelé "pXL53", dont la qualité de la construction est contrôlée par un séquençage complet du fragment compris entre le site EcoRI et le site PstI correspondant à la jonction de l'insertion et du plasmide vecteur.

La séquence nucléotidique complète, ainsi que la séquence protéique dérivée, sont représentées dans les figures 4 et 5.

ŧ,

Les variations observées entre cette séquence et la séquence protéique publiée (B. Meloun et coll, FEBS Letters (1975), 58, p. 134 et suivantes; M. Dayhoff, Atlas of Protein sequence and structure (1978), 5, supplément 3, p. 306) sont les suivantes:

5	Position	Meloun et coll.	Sérum-albumine humaine déduite
			de la séquence de "pXL53"
	131	Glutamine	Acide glutamique
	364	Histidine	Alanine
	367	Tyrosine	Histidine
10	370	Alanine	Tyrosine
	381	Valine	Méthionine
	464	Acide glutamique	Histidine
	465	Histidine	Acide glutamique
	501	Glutamine	Acide glutamique

3. Construction de systèmes d'expression de la méthionyl-sérum--albumine humaine

20

25

30

a. Utilisation du promoteur " P_L " du bactériographe lambda

On linéarise le plasmide "pXL53" par digestion partielle par l'enzyme NcoI, en ne considérant que le site NcoI en 5' du codon d'initiation et on forme des bords francs par remplissage selon la technique de R.M. Wartell et W.S. Reznikoff, Gene (1980), 9, p. 307 et suivantes).

On synthétise un "adaptateur" contenant en 5' une séquence correspondant au site de reconnaissance d'une enzyme de restriction telle que BamHI, puis une séquence correspondant à un site de fixation de ribosomes (RBS "consensus" ou "théorique"). La séquence de l'adaptateur est : 5'GGATCCTAGGAGGAAC 3'.

La ligation de l'adaptateur en 5' d'un ADN à bords francs a été décrite, par exemple, par C.P. Bahl et coll., Gene (1976), 1, p. 81 et suivantes.

La méthode consiste à effectuer la réaction sur 20 microlitres d'une solution contenant 50 mM Tris, HCl pH = 7,5, 10 mM MgCl₂, 15 mM DTT, lmM ATP, 50 µg/ml d'adaptateur, 20 µg/ml d'ADN et l unité d'ADN-ligase (New England Biolabs Inc.). La réaction est poursuivie pendant 10 heures à 15°C. Cette ligation crée un site BamHI sans supprimer le site NcoI.

On digère le produit de ligation par BamHI et par HinDIII. Du fait de la présence d'un site HinDIII en 3' du gène de la sérum-albumine humaine, on obtient un fragment d'ADN contenant la totalité de la séquence codante.

10

15

20

25

30

On sous-clone le fragment HinDIII-BamHI ainsi obtenu par exemple dans le plasmide "pBR322" en transformant <u>E.coli</u> selon la méthode déjà décrite ci-dessus pour obtenir le plasmide "pXL61".

Le plasmide "pXL61" ne contient pas de promoteur.

Le promoteur "P_L" du bactériophage lambda est placé sur le chromosome du bactériophage entre un site BglII et un site BamHI (voir E. Szybalski et W. Szybalski, Gene (1979) 7, p. 217 et suivantes), et dont la séquence nucléotidique est connue (F. Sanger et coll., J. Mol. Biol. (1982), 162, p. 279 et suivantes). On peut cloner ce fragment et modifier ses sites de restriction selon des méthodes connues.

On note que les plasmides portant P_L doivent être propagés dans des souches de <u>E.coli</u> portant le gène répresseur cI, ceci afin d'éviter que ce promoteur ne s'exprime de façon constitutive.

Dans une première construction, P_L est disponible sous forme d'un fragment BamHI à partir du plasmide "pPL-lambda" (Pharmacia P.L. Biochemicals). L'insertion de ce fragment BamHI dans le site BamHI du plasmide "pXL61" permet d'obtenir le plasmide "pXL65", dans lequel on a vérifié que l'orientation du promoteur par rapport au gène de structure de la sérum-albumine humaine est correcte.

÷ ;

D'autres constructions peuvent être réalisées à partir de plasmides disponibles. On peut, par exemple, exciser du plasmide "pP_L-lambda" un fragment HaeIII-HaeIII contenant le promoteur P_L et l'insérer dans le site SmaI d'une séquence de clonage multisites portée sur un plasmide, tel que le plasmide "pUC8" (J. Vieira et J. Messing, Gene, (1982), 79, p. 259 et suivantes) pour obtenir "pUC8-P_I"" dans lequel le site EcoRI est en 5' du promoteur.

A partir du plasmide "pPS1" (P. Sarmientos et coll., Cell (1983), 32, p. 1337 et suivantes), on peut d'abord détruire le site HinDIII le plus proche du site NdeI (figure 3) puis remplacer le petit fragment EcoRI-HinDIII par, d'une part, le fragment EcoRI-BamHI du plasmide "pUC8-P_L" contenant le promoteur P_L, et, d'autre part, le fragment BamHI-HinDIII du plasmide "pXL61" contenant le gène de la sérum-albumine. On obtient ainsi le plasmide "pXL70" dans lequel 1'ensemble P_L-RBS "consensus"-ATG-gène de la sérum-albumine humaine est porté sur un fragment d'ADN EcoRI-HinDIII.

10

15

20

30

b. Remplacement du RBS "consensus" par celui du gêne cII du bactériophage lambda

Le gène cII du bactériophage lambda, dont la séquence et le site d'initiation sont connus, peut être traduit avec efficacité (E. Schwarz et coll., Nature (1978), 272, p. 410 et suivantes).

On construit un plasmide contenant le système d'expression "Promoteur "P," - RBS cII - ATG - gène sérum-albumine".

Par exemple, on peut après avoir détruit le site BamHI

25 de "pUC8-P_L" par action de l'enzyme S1 (A.J. Berk et P.A. Sharp,
Cell (1977), 12, p. 72) isoler un fragment EcoRI-HinDIII contenant
le promoteur P_L et ensuite lier ce fragment avec le grand fragment
EcoRI-HinDIII du plasmide "pDS20" (G. Duester et coll., Cell (1982),
30, p. 855 et suivantes), pour obtenir le plasmide "pXL73".

Le RBS du gène cII est extrait du plasmide "pPS1". On digère ce plasmide par NdeI et on insère un adaptateur BamHI après formation d'extrémités franches. On excise alors le RBS sous forme d'un fragment HinDIII-BamHI.

On construit d'abord un plasmide "pXL88" dans lequel ce fragment HinDIII-BamHI est lié au grand fragment HinDIII-BamHI du plasmide "pXL73". Dans le nouveau plasmide "pXL88", le RBS cII est inséré dans la bonne orientation par rapport au promoteur P_L , le tout dans un système multisites de telle sorte que l'ensemble P_L -RBS cII soit porté sur un fragment d'ADN EcoRI-BamHI de 578 paires de bases.

Le fragment EcoRI-BamHI de 578 paires de bases est sous-cloné entre les sites EcoRI et BamHI du plasmide "pMC1403" (M.J. Casadaban et coll., J. Bacteriol. (1980), 143, p. 971 et suivantes) qui porte le gène de la β-galactosidase (lacZ) après le site BamHI. Cette construction conduit au plasmide "pXL91" dans lequel le gène de la β-galactosidase est, exprimé sous contrôle du système "P_T-RBS cII".

10

20

25

30

On sous-clone le fragment BamHI-BglII du plasmide "pXL61" décrit précédemment dans le site BamHI du plasmide "pMC1403". (La ligation d'un site BglII dans un site BamHI est possible, mais l'excision par BamHI en BglII ne l'est plus ; il ne reste donc qu'un site BamHI).

Cette construction ("pXL71") aboutit à l'insertion d'un fragment d'ADN de 700 paires de bases comportant la séquence "BamHI-[RBS "consensus"-ATG-NcoI-gène partiel de la sérum-albumine (codant pour les acides aminés 1 à 218)-gène de la β-galactosidase].

On coupe ce plasmide par BamHI et SacI (le site SacI est présent dans le gène de la \beta-galactosidase) et on l'insère dans le plasmide "pXL91" décrit précédemment à la place du fragment préexistant BamHI-SacI.

On aboutit alors au plasmide "pXL97" dont l'insertion a la structure suivante : "Site EcoRI - P_L - RBS cII - site BamHI - RBS "consensus"- site NcoI - ATG - gène partiel de la sérum-albumine - gène de la β-galactosidase".

On digère le plasmide "pXL97" par BamHI et partiellement par NcoI en ne considérant que le site NcoI proche du codon d'initiation et on forme les bords francs par action de la nucléase S1, puis on le referme sur lui-même. Cette manipulation, d'une part, supprime la séquence d'ADN du RBS "consensus" et, d'autre part, met en phase un ATG du RBS cII avec la séquence de la sérum-albumine.

On obtient ainsi le plasmide "pXL136" qui comporte la séquence "site EcoRI-P_L-RBS cII-ATG-gène partiel de la sérum-albumine-gène de la β -galactosidase".

10

15

20 -

25

Le gène partiel de la sérum-albumine possédant un site PvuII, on digère le plasmide "pXL136" par EcoRI et PvuII et on extrait un fragment de 760 paires de bases qui est inséré entre les sites EcoRI et PvuII du plasmide "pXL70" décrit précédemment. On obtient ainsi le plasmide "pXL139" qui porte la structure "P_L-RBS cII-gène sérum-albumine complet" sur un fragment EcoRI-HinDIII, comme le plasmide "pXL70" et qui porte la substitution RBS "consensus" par celui du gène cII.

On coupe le plasmide "pXL139" décrit précédemment au site unique SalI, entre le promoteur PL et le RBS cII. On digère l'ADN par l'enzyme Bal31, de telle sorte que le site de fin de transcription tRl en 5' du RBS cII soit digéré puis on ajoute un adaptateur HinDIII et on isole le fragment HinDIII-XbaI contenant le RBS cII amputé de tRl et les 357 premiers codons du gène de la sérum-albumine humaine. On combine ce fragment HinDIII-XbaI avec d'une part le fragment XbaI-EcoRl du plasmide pXL139 contenant la fin du gène de la sérum-albumine humaine et d'autre part le fragment EcoRl-HinDIII portant le promoteur P_L obtenu à partir du plasmide pUC8-P_L après destruction du site BamHI. On obtient ainsi le plasmide pXL324.

4. Construction d'un plasmide d'expression pour la "pseudo-pro-SAH"

Un fragment d'ADN est construit par hybridation de deux oligonucléotides synthétiques ayant la structure donnée dans la figure 6A. La séquence contient un codon de démarrage "ATG" suivi par les 6 premiers codons du gène cII du bactériophage lambda. Ce fragment possède une extrémité cohésive de type HinDIII et une autre extrémité cohésive de type SalI. Ce fragment synthétique est cloné entre les sites HinDIII et SalI du vecteur M13mpl0 (J. Messing, Methods Enzymol., (1984), 101, p.20 et suivantes). Le DNA en forme réplicative purifié à partir de cellules infectées par le bactériophage résultant est utilisé dans l'étape suivante de construction.

Un fragment SalI-BglII de 765 paires de bases provenant du plasmide pXL324 contenant le début du gène (ADNc) codant pour la SAH est cloné dans ce bactériophage recombinant. La souche de E.coli JM101 est infectée par ce nouveau bactériophage et le surnageant d'une culture de 5 heures est utilisé comme source de particules phagiques contenant l'ADN simple brin caractéristique des phages filamenteux de type M13. Ce simple brin sert ensuite de matrice pour une mutagénèse dirigée par oligonucléotide permettant de supprimer la séquence comprise entre le sixième codon du gène cII et le premier codon de la SAH mature (GAT) selon les méthodes décrites, par exemple, par J.P. Adelman et coll., DNA (1983), 2, p.183. L'oligonucléotide utilisé dans cette mutagénèse dirigée est décrit dans la figure 6B. Le phage résultant contient le début d'un nouveau gène fusionné. La structure de fragment d'ADN utilisé dans les constructions ultérieures est vérifiée par la méthode de séquençage enzymatique (F. Sanger et coll., Proc. Natl. Acad. Sci. USA, (1977), 74, p.5463).

15

20

25

Une reconstruction du gene complet codant pour la fusion "pseudo-pro-SAH" est ensuite effectuée. Un vecteur contenant un gène de résistance à l'ampicilline, une origine de réplication, un terminateur de transcription et une partie de l'ADNc codant pour la SAH est préparé à partir du plasmide pXL70 en traitant ce plasmide par les enzymes de restriction EcoRI et PvuII. Le fragment de 7200 paires de bases environ est purifié par électrophorèse en gel d'agarose et électroélution. Un fragment de 430 paires de bases contenant le promoteur P, et le site d'accrochage sur le ribosome (RBS) modifié du gène cII est purifié à partir d'une digestion du plasmide "pXL324" par les enzymes EcoRI et NdeI par électrophorèse en gel de polyacrylamide et électroélution. Un fragment NdeI-PvuII de 200 paires de bases contenant le début du gène hydride cII-SAH est purifié à partir de la forme réplicative du bactériophage M13 recombiné modifié par mutagénèse in vitro décrite ci-dessus. Une réaction de ligation à trois partenaires a été effectuée. Le plasmide résultant est appelé "pXL462" (figure 7).

10

20

Le plasmide "pXL462" a été introduit dans la souche G819 par transformation. Cette souche est dérivée de la souche E103S (L. SIMON, Waksman Institute for Microbiology, Rutgers-The State University, Piscataway, N.J.,USA) par transformation avec le plasmide pRK248clts (H-U. Bernard et coll., Gene (1979), p.59 et suivantes). Ce plasmide est compatible avec "pXL462" et porte le gène cI du bactériophage lambda qui code pour un répresseur thermosensible du promoteur P_L. Ce répresseur devient en effet inactif au-dessus de 38,5°C. La souche obtenue porte le numéro G1398.

A partir du plasmide pXL462, d'autres plasmides ont été construits où le promoteur P_L contenu sur un fragment de restriction EcoRI-HinDIII a été remplacé par différents promoteurs bactériens inductibles. La construction de ces plasmides a utilisé le site XbaI unique de pXL462 et une réaction de ligation à trois partenaires du type de celle décrite ci-dessus (voir figure 7). La présente invention ne dépendant pas du type de promoteur bactérien utilisé, seul le cas du plasmide pXL462 portant le promoteur P_L sera évoqué dans ce qui suit.

10 B. PRODUCTION DE CII-SAH PAR VOIE MICROBIOLOGIQUE

1. Culture et Induction

15

20

25

A partir d'un réisolement de la souche Gl398 sur une boîte de Pétri gélosée à base de milieu LB contenant 50 microgrammes/ml d'ampicilline (LBAp) préalablement incubée à 30°C, une préculture est diluée 100 fois dans le même milieu et la culture est incubée à 30°C avec agitation. Lorsque la densité optique lue à 610 nanomètres atteint 1,0 la culture est alors portée à 42°C pendant 90 minutes avec agitation.

2. Sonication, récupération de la cII-SAH

Le culot cellulaire collecté par centrifugation est resuspendu dans 1/30 de volumes de PBS (0,2 g/1 KC1, 0,2 g/1 KH₂PO₄, 8 g/1 NaCl et 1,25 g/1 Na₂HPO₄). Après incubation pendant 15 minutes à une température voisine de 20°C en présence de lysozyme de blanc d'oeuf à 1 mg/ml, la sonication des bactéries est effectuée à 0°C, par exemple, avec un sonicateur Branson (Modèle B30) en mode continu pendant deux fois six minutes avec refroidissement. La fraction insoluble est collectée par centrifugation à 12000 g à 4°C pendant 15 minutes puis lavée par du PBS et séchée sous vide à 30°C pendant 15 minutes.

3. Dénaturation, réduction et renaturation

Le culot de sonication contenant les produits insolubles provenant de 1 litre de culture est repris dans 4 ml de solution dénaturante et réductrice (6M guanidine-HCl, 0,1M KH, PO, pH 7,5, 0,1M β-mercaptoéthanol). La suspension ainsi obtenue est agitée doucement en tube fermé à 4°C pendant 16 heures. Une solution presque limpide est alors obtenue .Un léger précipité insoluble est éliminé par centrifugation. Une dilution au 1/100 du surnageant est effectuée dans une solution de renaturation (50 mM Tris-HCl pH 8,5, 100 mM NaCl, 1 mM EDTA) et ce mélange est laissé à 4°C pendant 24 heures. La solution est ensuite centrifugée pour éliminer une opalescence blanchâtre. Le surnageant obtenu est concentré environ 100 fois par ultrafiltration (membrane à "cut-off" de 30.000 daltons; par exemple en utilisant les unités d'ultrafiltration à usage unique Millipore CS-30), de nouveau clarifié par centrifugation puis dialysé contre un tampon phosphate (Na) 20 mM pH 7,5. La protéine fusion cII-SAH (pseudo-pro-SAH) ainsi obtenue est homogène à plus de 90 % d'après une analyse par électrophorèse sur gel de polyacrylamide SDS.

20 4. Conversion de la cII-SAH en SAH mature

10

15

25

Une solution de trypsine (préparée par exemple à partir de trypsine lyophilisée pour usage analytique commercialisée par Boehringer Mannheim) est préparée dans la solution de réaction. La cII-SAH est traitée à une concentration, par exemple de l'ordre de 1 mg/ml, avec une quantité de trypsine comprise entre 1/5000 et 1/1000 (rapport massique à la SAH) à 37°C pendant 30 à 60 minutes dans un tampon phosphate (Na) 50 mM pH 7,5, 50 µM CaCl₂.

5. Vérification de la coupure

10

15

30

35

Il est possible de suivre la réaction de conversion par la trypsine sur un gel de polyacrylamide non dénaturant (figure 8). A cause de la présence de plusieurs acides aminés chargés positivement dans l'hexapeptide N-terminal, la migration électrophorétique de la cII-SAH est plus lente sur ce type de gel que celle de la SAH native. Sur la figure 4, on peut voir que la SAH commerciale n'est pas modifiée de façon appréciable par la trypsine dans la gamme de concentrations utilisée. Par contre, la cII-SAH est convertie par l'action de la trypsine en une molécule qui co-migre avec la SAH commerciale. La séquence N-terminale de cette protéine modifiée par la trypsine a été examinée par dégradation de Edman et les résultats obtenus confirment bien que le site de protéolyse est situé après le dipeptide Lys-Arg, à la fin de la partie cII de la protéine hydride. La protéine ainsi générée possède l'acide aspartique comme résidu N-terminal; elle est donc identique à la SAH d'origine naturelle.

Dans la demande de brevet européen EP 86400618.4, publiée

20 sous le numéro 200590, au nom de la demanderesse, a été décrite la
construction du plasmide "pXL288". Après introduction dans une
souche appropriée d'<u>E.coli</u>, ce plasmide (figure 9) permet l'expression à haut niveau d'une protéine hybride, non maturée <u>in vivo</u>,
constituée par la fusion entre le peptide signal de la pénicilline G

25 amidase (PAM) (EC 3.5.11; pénicilline aminohydrolase) de <u>E.coli</u> et
la SAH mature.

Le plasmide "pXL288" est caractérisé en ce qu'il contient le promoteur Ptrp de l'opéron tryptophane de <u>E.coli</u> en amont du promoteur de la PAM, le site de fixation des ribosomes du gène de la PAM, le codon d'initiation ATG et les nucléotides du peptide signal de la PAM fusionnés avec le gène de structure de la SAH.

L'extrémité N-terminale du peptide leader de la PAM contient une séquence de 5 acides aminés basiques. Cette basicité constitue une des caractéristiques générales d'un peptide signal de sécrétion (M.E.E. Watson, Nucl. Acids. Res., 12, p. 5145 et suivan-

tes). Il a maintenant été trouvé que les 6 premiers acides aminés de ce peptide signal (Met Lys Asn Arg Asn Arg-, "PAM l") peuvent jouer le rôle de séquence "pseudo-pro".

Dans ce but, les nucléotides correspondant aux acides aminés 7 à 26 du peptide leader de la PAM ont été supprimés afin de fusionner exactement la séquence "PAM1" à la séquence de la SAH mature en utilisant la technique de suppression dirigée par oligonucléotide décrite précédemment (figure 9). L'oligonucléotide permettant de réaliser cette suppression est représenté par la figure IIA. La séquence modifiée est ensuite substituée dans le plasmide "pXL288" pour donner le plasmide "pXL641" dont la structure est la suivante : "EcoR1-Ptrp-Sal1-[Promoteur PAM-RBS PAM-séquence nucléotidique codant pour PAM1]-gène SAH".

Deux dérivés de la séquence "PAM1" sont construits par mutagénèse dirigée par oligonucléotide, après sous-clonage dans le bactériophage M13mpl8amIV, selon la méthode décrite par P. CARTER et coll., Nucl. Acids Res., 1985, 13, p.4431 et suivantes. Les oligonucléotides permettant de réaliser cette mutagénèse sont représentés dans les figures 11B et 11C. Après reconstruction, deux plasmides analogues au plasmide "pXL641" contenant les séquences codant pour "PAM2" (Met Lys Asn Arg Lys Arg-; plasmide "pXL740") et "PAM3" (Met Lys Lys Arg Lys Arg-; plasmide "pXL741") sont obtenus (figure 10).

Après introduction des plasmides "pXL641", "pXL740" et "pXL741" dans une souche appropriée de <u>E.coli</u> telle que <u>E.coli</u> 54125 (Collection de l'Institut Pasteur), on obtient des souches produisant respectivement les protéines hybrides PAM1-SAH, PAM2-SAH et PAM3-SAH à des taux de l'ordre de 5 à 10 mg/l de milieu pour une absorbance de 1 à 610 nm en opérant dans les conditions décrites dans la demande de brevet européen EP 86400618.4 (200590).

La protéine hybride se trouve dans la fraction insoluble du lysat cellulaire et peut être renaturée et partiellement purifiée selon les méthodes décrites précédemment. Chaque protéine hybride obtenue après renaturation peut être convertie en SAH mature par digestion ménagée au moyen d'une concentration optimisée de trypsine dans les conditions décrites précédemment.

Conformément aux dispositions du Traité de Budapest, ont été déposés au CBS à Baarn (Pays-Bas) le 3 février 1987 :

- Un échantillon du microorganisme <u>E.coli</u> E103S (pRK 248 cl^{ts}) contenant le plasmide pXL 462 (souche G-1398) sous le numéro CBS 143-87.

5

- Un échantillon du microorganisme <u>E.coli</u> B contenant le plasmide pXL 641 (souche G-2083) sous le numéro CBS 144-87.
- Un échantillon du microorganisme <u>E.coli</u> B contenant le plasmide pXL 740 (souche G-2146) sous le numéro CBS 145-87.
- Un échantillon du microorganisme <u>E.coli</u> B contenant le plasmide pXL 741 (souche G-2147) sous le numéro CBS 146-87.

- REVENDICATIONS

1.77

10

15

20

25

I. Procédé de préparation d'une protéine hybride contenant une extension peptidique N-terminale hydrophile terminée par un site préférentiel de coupure par la trypsine fusionnée avec la séquence peptidique de la sérum-albumine humaine mature caractérisé en ce que l'on cultive une souche d'E.coli capable d'assurer le maintien d'un plasmide contenant la séquence nucléotidique codant pour l'extension peptidique N-terminale fusionnée à la séquence nucléotidique codant pour la sérum-albumine humaine mature dont l'expression est contrôlée par un promoteur bactérien inductible.

2. Procédé selon la revendication l caractérisé en ce que les codons codant pour l'extension peptidique N-terminale sont choisis parmi les sept premiers codons du gène cII du bactériophage lambda et les six premiers codons du gène de la pénicilline amidase éventuellement transformés par mutagénèse dirigée.

3. Procédé de préparation d'une protéine hybride contenant une extension peptidique N-terminale fusionnée avec la séquence peptidique de la sérum-albumine humaine mature caractérisé en ce que l'on convertit la molécule dénaturée et insoluble obtenue selon l'une des revendications l ou 2 en une molécule renaturée et soluble en utilisant une méthode de dénaturation et renaturation permettant un réarrangement des structures secondaire et tertiaire de la chaîne polypeptidique.

4. Procédé selon l'une des revendications 1, 2 ou 3 caractérisé en ce que la protéine hybride est convertie par la trypsine en une protéine identique en structure primaire à la sérum-albumine humaine mature.

- 5. Le plasmide "pXL462" caractérisé en ce qu'il contient le promoteur P_L, le site de fixation des ribosomes du gène cII privé du signal de terminaison de la transcription tRl, le codon d'initiation ATG et les six premiers codons du gène cII fusionnés avec le gène de structure de la sérum-albumine humaine mature.
- 6. La protéine hybride comprenant à l'extrémité N-terminale les sept premiers acides aminés de la protéine cII du bactério-phage lambda, (Met)-Val-Arg-Ala-Asn-Lys-Arg, fusionnés avec la séquence peptidique de la sérum-albumine humaine mature, lorsqu'elle est obtenue par culture d'une souche d'<u>E.coli</u> capable d'assurer le maintien du plasmide "pXL462".

10

15

20

25

30

- 7. Le plasmide "pXL641" caractérisé en ce qu'il contient le promoteur Ptrp suivi du promoteur de la pénicilline amidase, le site de fixation des ribosomes du gène de la pénicilline amidase et les six premiers codons du gène de la pénicilline amidase fusionnés avec le gène de structure de la sérum-albumine humaine mature.
- 8. La protéine hybride comprenant à l'extrémité N-terminale les six premiers acides aminés de la pénicilline amidase, Met-Lys-Asn-Arg-Asn-Arg, fusionnés avec la séquence peptidique de la sérum-albumine humaine mature, lorsqu'elle est obtenue par culture d'une souche d'E.coli capable d'assurer le maintien du plasmide "pXL641".
- 9. Le plasmide "pXL740" caractérisé en ce qu'il contient le promoteur Ptrp suivi du promoteur de la pénicilline amidase, le site de fixation des ribosomes du gène de la pénicilline amidase et les six premiers codons d'un gène de la pénicilline amidase modifié par mutagénèse dirigée fusionnés avec le gène de structure de la sérum-albumine humaine mature.
- 10. La protéine hybride comprenant à l'extrémité N-terminale les six premiers acides aminés d'une pénicilline amidase N-terminale modifiée par mutagénèse dirigée, Met-Lys-Asn-Arg-Lys-Arg, fusionnés à la séquence peptidique de la sérum-albumine humaine mature, lorsqu'elle est obtenue par culture d'une souche d'E.coli capable d'assurer le maintien du plasmide "pXL740".

- 11. Le plasmide "pXL741" caractérisé en ce qu'il contient le promoteur Ptrp suivi du promoteur de la pénicilline amidase, le site de fixation des ribosomes du gène de la pénicilline amidase et les six premiers codons d'un gène de la pénicilline amidase modifié par mutagénèse dirigée fusionnés avec le gène de structure de la sérum-albumine humaine mature.
- 12. La protéine hybride comprenant à l'extrémité N-terminale les six premiers acides aminés d'une pénicilline amidase modifiée par mutagénèse dirigée, Met-Lys-Arg-Lys-Arg, fusionnés avec la séquence peptidique de la sérum-albumine humaine mature, lorsqu'elle est obtenue par culture d'une souche d'E.coli capable d'assurer le maintien du plasmide "pXL741".

STUCTURE DE LA "PREPRO-SAH"

L'insertion du plasmide "pTlBll" s'étend au-delà de l'extrémité 5', Le chiffre 1 correspond au 1er acide aminé de l'albumine humaine. vers la séquence de la proalbumine.

Figure

Figure 3

Figure 3

Figure 3

FIGURE 3

SEQUENCE DE L'INSERTION DE pXL53

10	_	20	30		40	e 60	09	0 X	09
EcoRI GAATTCCTCA	CTCATT	AGGCACCC	CCAGGCTT	TTACA	SATTTATGE	TTCCGGCTC	serarerrer	Ecori Gaaticcicactcattaggcacccccaggcttttacacattratgcttccggctcgtatgttgtgtgtatgtgtgagggg	GAGGGG
CTTAAGGAGI	GAGTAA	тссвтвв	GGTCCGAA	AATGT	STAAATACC	AAGGCCBAC	SCATACAACA	CTTAAGGAGTGAGTAATCCGTGGGGGTCCGAAATGTGTGTAAATACGAAGGCCGAGCATACAACACACGTTAACACTCGCC	creece
					·				
0.6		100	110	-	120	130	140	150	1.60
ATAACAATTICACACAGGA	CACACA	GGAAACAG	GAATCCAT	GGATG	CACACAAGA	GTGAGGTTC	scrcArcGGT	AACAGGAATCCATGGATGCACACAGAGTGGGTTGCTTGGGTTTAAAGATTTGGGAGA	CCGAGA
TATIGITAAAGTGTGTCCT	GTGTGT	ccttrere	CTTAGGTA	CCTACC	stererrei	CACTCCAAC	GAGTAGCCA	TIGICCTTAGGIACCTACGIGITCICACTCCAACGAGIAGCCAAATTICTAAACCTCT	CCCTCT

AGAAAATTTCAAAGCCTTGGTGTTGATTGCCTTTGCTCAGTATCTTCAGCAGTGTCCATTTGAAGATCATGTAAAATTAG

560

540 550

530

320	CTT	GAA	400
	ATACC	TATEG	
310	TGCAAAAACATGTGTGATGAGTCAGCTGAAATTGTGACAAATCACTTCATACCCTT	ACGITITITGIACAACGACTACTCAGTCGACTTTTAACACTGTTTAGTGAAGTATGGGAA	390
_	ACAAA	TETTE	_
300	AATTGT	ITAACAC	380
290	SCTGAAA	SGACTT	370
	AGTCA	TCAGT	•
280	CTGATG	GACTAC	980
	STGTTE	засаас	
270	AAACAT(TTTGTA	350
260	TTGCAA	ААС ВТТ	. 340
64	TGAAT	ACTTA	n
250	TGAATGAAGTAACTGAATT	ACTTACTTCATTGACTTAA	330
	TGAAT	ACTTA	

TTTG	TTTGGAGACAAATTATGC/ AAACCTCTGTTTAATACG	ATGCACAGT' FACGTGTCA	TTTGGAGACAAATTATGCACAGTTGCAACTCTTCGTGAACCTATGGTGAATGGCTGACTGCTGTGTGTG	GTGAAACCTA SCACTTTGGAT	TGGTGAAATC ACCACTTTAC	SGCTGACTGC1 SCGACTGACG	IGTGCAAACA Acacgttttg1	AGAACC TCTTGC
. /	410	420	430	440	450	460	470	480
TGAG	TGAGAGAATGAATGCTTC	SCTTCTTGC	CTTGCAACACAAGATGACAATCCAAATCTCCCCCGATTGGTGAGCCAGAGGTTGATGTGA	GACAATCCAA	ATCTCCCCC	3ATTGGTGAG4	ACCAGAGGYTC	ATETEA
ACTC	ACTCTCTTACTTACGAA	GAAGAACG	GAACGTTGTGTTTCTACTGTTAGGTTTTAGAGGGGGCTAACCACTCTGGTCTCCAACIACACT	CTGTTAGGTT	TAGAGGGGG	STAACCAGTC	recteteead	TACACT

ACACGTGAGGAAAGTACTGTTACTTCTCTGTAAAACTTTTTTATGAATATACTTTAACGGTCTTCTGTAGGAATGAAA TGTGCACTGCTTTTCATGACAATGAGAGACATTTTTGAAAAATACTTATATGAAATTGCCAGAAGACATCCTTACTTT

Figure 4 (suite)

<u>GAAGTTTCCAAGTTAGTGACAGATCTTACCAAAGTCCACACGGAATGCTGCCATGGAGATCTGCTTGAATGTGGTGA</u>

<u>CTTCAAAGGTTCAATCACTGTCTAFAATGGTTTCAGGTGTGCCTTACGACGGTACCTCTAGACGAACTTACACGACTACT</u>

<u>AGGTTTTTAAACCTÖTTTCTCGAAAGTTTCGTACCCGTCATCGAGCGGACTCGGTCTCTAAAGGGTTTCGACTCAAACGT</u>

ATACGGGGCCTTGAGGAAAGAAAGGATTTTCCATATTTCGACGAAAATGTCTTACAACGGTTCGACGACTATTTCGTCG TA T G C C C C G G A A C C C T T T C C T T T G C T A A A A G C T A T A A A G C T C T T T A C A A A G C A A A G C A

Figure 4 (suite)

1.1.20

1.1.10

CAGGGGGGACCTTGCCAAGTATATCTGTGAAAATCAAGATTCGATCTGCAGTAAACTGAGGAATGCTGTGAAAACCTC GT CC C G C C T G G A A C G C A T A G A C A C T T T A G T T C T A G C T T G A C T T T C G A C A C T T T T G G A G

GTTGAAAGTAAGGATGTTTGCAAAAACTATGCTGAGGCAAAGGATGTCTTCTTGGGCATGTTTTTGTATGAATATGCAAG

Figure 4 (suite)

	1290	1300	1310	1320	1330	1340	1350	1340
Fin	CAAAATTGTGAGCTTTTT	TTTTGAGGAG	CTTGGAGAGT	TACAAATTCC#	GAATGCGCT	TGAGCAGCTTGGAGAGTACAAATTCCAGAATGCGCTATTAGTTCGTTACACCAAGAAGTACC	TACACCAAGA	AAGTACC
ure A	GTTTTAACACTEGAAAAGTEGTEGAACCTETEATGTTTAAGGTETTAEGEGATAATCAAGCAATGTGGTTETTTEATGG	AAAACTCGTC	GAACCTCTCA	ATGTTTAAGGI	rcttacccca	TAATCAAGCAA	Arereerrer	TCATGG
1 (en								

CCARGTETCAACTCCAACTCTTGTAGAGGTCTCAAGAACCTAGGAAAGTGGGGCAGCAAGTGTTGTAAACATCCTGAAG GG T T CACAGT T GAGGT T GAGACAY C T CCAGAGT T C T T T GGAT C C T T T C A C C T T T A C A C A T T T G T A G GACT T C

Figure 4 (suite)

1680 **ATACGTTCCCAAAGAGITTAATGCTGAAACATTCACCTTCCATGCAGATATATGCACACTTTCTGAGAAGGAGAGAAA** TA TECAAGGGTT TCTCAAATTACGACTTTGTAAGTGGAAGGTACGTCTATATACGTGTGAAAGACTCTTCCTCTGTGTT 1.670 1/50 1660 1650 1640 1720 1630 1710 1.620 1610

TCAAGAACAACTGCACTTGTTGAGCTTGTGAACACAGCCCAAGGCAACAAAAAAGAGCAACTGAAAGCTGTTATGGAT AG TICTTIGITI GACGIGA GA GA CITICA GA CITICA GA TICC GATA COLLA GALLA GALLA GA CA TACCIA

Figure 4 (suite)

ICTITAATCATTTTAATCATTTTGCCTCTTTTCTCTGTGCTTGAATTAATAAAAATGGAAAGAATCTAAAAAACCCCC

AGAAATTAGTAAAATTAGTAAAAGGGAGAAAAGAGACACGAAGTTAATTATTTTTTACCTTTCTTAGATTTTTTGGGGG

Figure 4 (suite)

TRADUCTION DU GENE DE L'ALBUMINE HUMAINE DANS PXL53

						<u> </u>							
170	1.10	FIE	230	CAT	H.T.8	,	290	CCT	ALA		320	ACT	THE
	AAT	NBN		GAT	ABP			rcv	BER	••		บวถ	NLA
	GAA	0.10		GAN GAT	070			gvg	G1.U			אכש פדו	VAL
	TTG GGA GAA GAA AAT	079		CCA TTT	PHE			GAT	VAL ALA ABP GLU			ACA	THR
	CCA	רבח פרג פרח		CCA	PRO			GCT	OL.A	•		16C	CYB
155	116	LEU	215	TGT	CYS		275	GTT	VAL		335	AAA TTA TGC	LEU
	GAT	LYB AGP		בים בים	GI.N			TGT	CYB			AAA	LYS
	AAA GAT	LYB	•	CAG	LEU GLN			GCA AAA ACA	PHE ALA LYS THR			TTT GGA GAC	GLY ASP
	1.1.1	PIE		CAG TAT CTT	LEU			000	L.Y5			GGA	
	593	ARG		TAT	TYR			VOO	OLA			1.1.1	ᆁ
140	CAT	11.ES	200	CAG	SL.13		260	111	PIE		320	CTT	LEU
	GCT	ALA		GCT	ALA			GAA	G1.U			ACC	TIR
	CTT	NAL.	•	TTT				GTA ACT	VAL THE			CAT	HI.8
	GAG	0.19		339	AL.A			GTA	VAI.			CTT	LEU
	AGT	SER		nrr	II.E			CAA	ern			TCA	SER
125	AAG	L.YS	185	91.1	LEU		2.45	NAT	ABN		302	AAA	LYB
	CAC	ASP ALA HIS		91.9	ALA LEU VAL			GTG	VAL			GAC	ASP
	ec.	VI'V		TTG	l.EU			TTA	LEU			TGT	c∀s
	ATG GAT GCA CAC	ASF (I)		၁၁၅	Al.A			GTA AAA TTA GTG	VAL LYS LEU VAL ABN			GAA AAT TGT	ASN
	ATG	MET		. AAA GCC TTG GTG	LYS			GTA	VAL			GAA	GLU
				•									

									•			
4 1 0	AAT	ASH	470	GAG	0T0	530	T A	LEU	5911	AAA	LYS	
	AGA	ARG		CCA	PRO		TAC	TYR		GCT	AL.A	
	GAG	079		AGA	ARG		AAA	LYS		TIT	FIE	
	CCT	PRO		GTG	VAL.		AAA	LYS	:		PHE	
	CAA GAA	GLU PRO		CGA TTG	LEU		TTG AAA AAA TAC	LEU	,	CTT TTC	LEU	
395	CAA	GLN	455	CGA	ARG	515	111	PHE	575		LEU	
	AAA	LYS		ວວວ	PRO		ACA			GAA	GLU	
	GAC TGC TGT GCA AAA	CYS ALA		CTC	LEU		GAG ACA	GLU THR	•	CCG GAA CTC	PRO GLU LEU	
	TGT			CCA AAT	ASN		GAA	GLU		ລວຍ	ALA	
	TGC	CYS		CCA	PRO		AAT	ASN		TAT	TYR	
380	GAC	ALA ASP	440	AAT	ASN	200	GAC	ASP	099	111	PHE	
	GCT			GAC	ASP		CAT	HIS		TAC	TYR	
	GAA ATG	MET		GAT	ASP ASP		111	FHE		CCT	rko	
	GAA	GLU		AAA	LYS		GCT	ALA				
	GGT	GLY		CAC	SIH		ACT	THR		AGA CAT	ARG HIS	
365	TAT	TYR	425	CAA	GLN	485	TGC	CYS	545	AGA		
	CGT GAA ACC TAI	TH.		TTG	FIIE LEU GLN	•	GTG ATG TGC	MET		229	ALA	
	GAA	01.0		TTC	PIE		GTG	VAL MET		ATT	ILE	
	CGT	LEU ARG GLU THR TYR		GAA TGC TTC TTG CAA	CYS		GAT	ASP		TAT GAA ATT GCC AGA	TYR GLU ILE ALA ARG	
	CTT	LEO		GAA	GL.U		GTT	VAL.		TAT	TYR	

Figure 5 (suite)

				209					620					983					029
AGG	AGG TAT AAA GCT	AAA	GCT	1.09	TTT	ACA	GAA	GAA TGT	TGC	CAA	GCT	GCT	GAT	AAA	GCA	ccc	TGC	CTG	TTG
ARG		LYS	AL.A	TYR LYS ALA ALA	PHE	THR	CL.U	CYS	CYS	GLN	ALA	ALA ASP	ASP	۲۸s		ALA ALA	CYS	LEU	LEU
										•									
				999					089					969					710
CCA	AAG	CTC	GAT	GAA	CCA AAG CTC GAT GAA CTT	໑໑ຉ	GAT	GAA	999	AAG	GCT	TCG	TCT	ວວຍ	AAA	CAG	AGA	CTC	AAG
PRO	LYS		LEU ASP	CLU	LEU	ARG	ASP	GLU	GLY	LYS	ALA	SER	SER	AL.A	ALA LYS	GLN ARG	ARG	LEU	LYS
				725					740					755					770
161	ງວງ	GCC AGT		CTC CAA	AAA	TTT	GGA	GAA	AGA	GCT	TTC	AAA GCA	GCA	TGG	GCA	GCA GTA	GCT	393	CTG
CYS	ALA	ALA SER LEU GLN	L.EU	GLN	LYS	카	GLY	פרא פרח		ARG ALA PHE		LYS ALA TRP	ALA		AL.A	ALA VAL	AL.A	ARG	LEU .
																-			
				785				٠	800					815					088
AGC	CAG	AGA	TIT	AGC CAG AGA TTT CCC	AAA	GCT	GAG	TTT	GCA	GAA GTT		TCC	AAG	TTA	GTG	ACA	GAT	CTT	ACC
SER	GLN	ARG	ARG PHE	FRO	LYS	AL.A	GLU PHE		ALA	GLU VAL		BER	r.ys	LEU	VAL THR		ASP	LEU	THR

Figure 5 (suite)

AAA GTC CAC ACG GAA TGC TGC CAT GGA GAT CTG CTT GAA TGT GGT GAT AGG GCG GAC ASP LEU LEU GLU CYS ALA ASP ASP ARG ALA ABP GLY CYS HIS CLU CYS TIR LYS VAL HIS

068

075

098

950	TCT	CYS	0 . 0 .
	1.60	CYS	_
	GAA	GF.U	
	AAG	LYS	
	CTG	LEU	
935	ATC TGT GAA AAT CAA GAT TCG ATC TCC AGT AAA CTG AAG GAA TGC TGT	SER LYB LEU LYS GLU CYS CYS	366
	AGT	SER	
	TCC	SER	
	ATC	ILE SER	
	TCG	SER	
920	GAT	ILE CYS GLU ASN GLN ASP SER	980
	САА	GLN	
	AAT	ASN	
	GAA	GLU	
	TGT	CYS	
902	ATC	ILE	9.65
	TAT	TYR	
	AAG	LEU ALA LYS TYR	
	່ວວຍ	ALA	
	CTT	LEU	
	.		(

LYS PRO LEU CEU GLU LYS SER HIS CYS ILE

1055

GAA AAA CCT CTG TTG GAA AAA TCC CAC TGC ATT GCC GAA GTG GAA AAT GAT GAG ATG CCT

PR0

GLU MET

ALA GLU VAL GLU ASN ASP

LYS ASN TYR GCT GAC TIG CCT TCA TTA GCG GCT GAT TTT GTT GAA AGT AAG GAT GTT TGC AAA AAC TAT CYS SER LYS ASP VAL GLU ALA ASP LEU PRO SER LEU ALA ALA ASP PHE VAL 1040

1.130	CCT	PRO	1190	AAG	LYS	1250	CCT	PRO	1310	GGA
	CAT	SIII	=	GAG	GLU	∓	AAA CCT	LYS	~	CTT
	AGG	ARG		СТА	LEU			PHE		CAG
	AGA	ARG		ACT	THR		GAA	OLU		GAG
	GCA	TYR ALA ARG		ACC	THR		GAT	ASP	•	TTT
1115	TAT		1175	GAA	GLU	1235	TTC	PHE	1295	TTO
•	GAA	GFN	∺	TAT	TYR	Ħ	918	VAL.	Ħ	GAG CTT
	TTG TAT GAA TAT GCA AGA AGG CAT	TYR		GCC AAG ACA TAT GAA ACC	THR		TAT GCC AAA GTG TTC GAT GAA TTT	LYS (TGT (
	TTG	LEU		AAG			່ວວຍ	TYR ALA LYS		
	111	PHE		່ວວຍ	ALA LYS		TAT (ryr ,		CAA AAT
1100	ATG TTT	MET	1160		ren (1220		. sko	1280	AAA (
_	299	GLY	ਜ	AGA (ARG I	Ä	GAA TGC	ern (Ħ	ATC (
	TTC TTG GGC	LEU		ere (ren (CAT (HIS (TTA (
		PHE		CTG CTG CTG AGA CTT	ren 1		CCT CAT	PRO 1		
:	GTC	VAL		STG (ren 1		GAT (ASP F		CAG AAT
1.083	GAT	ASP	1145	TA (1205			1265	
=	AAG	LYS	 -	GTC GTA	SER VAL VAL	7	GCT GCA	J'H H	==) 9 9 :
	GCA	ALA LYS		ict (SER (ILA A		HH:
	GAG GCA AAG	CL.U		ו טשו			יכד נ	3YS 4		3 91.v
	CCT	AL.A		GAT TAC TET	ASP TYR		דפכ דפד פככ	CYS CYS ALA ALA ALA		CTT ATG GAA GAG CCT

Figure 5 (suite)

LEU CYS VAL LEU HIS GLU LYS THR PRO VAL SER ASP ARG VAL THR LYS CYS CYS THR GLU

TTA TGT GTG TTG CAT GAG AAA ACG CCA GTA AGT GAC AGA GTC ACC AAA TGC TGC ACA GAA

GTC CTG AAC VAL LEU ASN	GTG VAL	TAT CTA TCC TYR LEU SER	GAC	GAA	TGT GCA CYS ALA 1520	CCC	AGA ATG ARG MET	LYS 1505	GCA ALA 1	CAT CCT GAA GCA AAA HIS PRO GLU ALA LYS 1505	CCT PRO	CAT
T GTC CTG AAC		CTA	GAC		1	CCC		AAA	GCA	GAA	T.33	CAT
1490	מו	1475			1460			1445				
LYS CYS CYS LYS	Y SER	YS VAL GLY	LEU GLY LYS		ARG ASN	VAL SER	CLU	. VAL	LEU	THE	PRO	THR
AGC AAA TGT TGT AAA	GGC AGC	AAA GTG GG	CTA GGA A		AGA AAC	GTC TCA	GAG	CTT GTA		CCA ACT	CCA	ACT
1430	ស់	1415		_	1400			1385				
PRO GLN VAL SER	S VAL	THR LYS LYS	TYR	- ARG	LEU VAL	ALA LEU	ASN	S. B	PHE	LYS	TYR	GLU
CCC CAA GTG TCA	AA GTA	CC AAG AAA GTA CCC	CGT TAC ACC		CTA TTA GTT	GCG CTA	AAT	GAC TAC AAA TTC CAG	TTC	AA6	TAC:	GAC
1370	53	1355			1340			1325				

Figure 5 (suite)

1610	ວວວ	PRO	1670	AAG	LYS		1730	GCA	ALA		1790	76C 76C	CYS
•	GTT	VAL.	.	GAG	GLU			AAG	L.YS		•	TGC	CYS
	TAC	TYR		TCT	SER			၁၁၁	PRO			AAG	LYS
٠	ÁCA	THR		CTT	LEU			AAG	LYS			GAG	CLU
	GAA ÁCA TAC	GLU	•	ACA	THR			CAC	HIS LYS		:	GTA	VAL GLU LYS CYS
. 1595	GAT		1655	TGC	CYS		1715	GTG AAA CAC AAG CCC AAG GCA	LYS		1775	TTT	PHE
디 그	crc car	VAL ASP		ATA TGC ACA CTT TCT	ILE		-	GTG	VAL LYS		7	GCT TT	ASP ASP PHE ALA M.A PHE
				GAT				CTT	r.EU				ALA
	CTG	ALA LEU GLU		GCA	ALA ASF			GTT GAG CTT	VAL GLU LEU	٠		GAT TTC GCA	PHE
	CCT	ALA	-	CAT	HIS			GTT	VAL			GAT	ASF
1580	TCA	SER	1610	ACC TTC CAT GCA GAT	PHE	•	1700	CTT	LEU		1760	GAT	ASF
~ i	TTT	PHE	. .	ACC	THR		••	GCA	THR ALA		#	ATG GAT	MET
	TGC	CYS		TTC	PHE		•	ACT	THR			GTT	VAL
	CGA CCA TGC TTT TCA GCT CTG GAA	PRO		GAA ACA TTC	THR			CAA	LYS GLN			AAA GCT GTT	ALA VAL
	CGA	ARG		GAA	0T9	•		AAA	LYS			AAA	LYS
1565	AGG		1625	;_	ALA		1685	AAG	L.YS		1745	CTG	
 :	AAC	ASM	-	AAT	ASN		•••	ATC	ILE LYS			САА	ĠĽŊ
	919	VAL.		1.1.1	PHE			CAA	GLN			GAG	CLU
	TCC TTG GTG AAC AGG	LEU VAL ASN ARG		AAA GAG TTT AAT GC	GFN			GAG AGA CAA ATC AAG AAA CAA ACT GCA CTT	GLU ARG			ACA AAA GAG CAA CT	THR LYS GLU GLN LEU
	TCC	SER		AAA	LYS			GAG	0 T D			ACA	THR

Figure 5 (suite)

_		~				
1850	AGT	3 2 3 3		ı		
_		LYS GLU THR CYS PHE ALA GLU GLY GLY LYS LYS LEU VAL ALA ALA				
	GCT	AL.A				
	AAA AAA CTT GTT GCT GCA	.		CCA		
	CTT	LEU		AAG CAT CTC AGC CTA		
1835	AAA	LYS	1895	AGC		
	AAA	LYS		стс		
	GAG GGT	GLY		CAT		
	GAG	n To		AAG		
	GAG	GLU		TAA		
1820	TTT GCC GAG	ALA	1880	ATT		
7	TTT	PHE	7-7	CAC		
	TGC	CYS		CAT		
	ACC TGC	THR		GGC TTA TAA CAT CAC ATT TAA		9
	AAG GAA	GLU		TTA	LEU	1 585 - STOP
1805	AAG	LYS	1865	ວອອ	GLY LEU	58
₩.		ASF	₹ 1	TTA	LEU	
	GAC	ASP		ວວອ	AL.A	
	GCT GAC GAT	LYS ALN ASP		CAA GCT GCC	GLN ALA ALA LEU	
	AAG	LYS		CAA	GLN	

Figure 5 (suite)

PLASMIDE D'EXPRESSION "PSEUDO-PRO-SAH"

Figure 7

 λ . Oligonucléotide codant pour les 6 premiers codons du gène c Π

Met Val Arg Ala Asn Lys Arg
5'-AGCTTCATATGGTTCGTGCAAACAACGCG-3'
3'-AGTATACCAAGCACGTTTGTTTGCGCAGCT-5'

B. Oligonucléotide utilisé pour la Mutagénèse par délétion.

OLIGONUCLEOTIDES SYNTHETIQUES
EMPLOYES DANS LA CONSTRUCTION DE
LA cII-SAH

P1. XXIV/27

a à f : SAH commerciale (sigma)

g à l : cII-SAH d'origine microbiologique ("pseudo-pro-SAH)

a , g : pas de trypsine

b , h : 0,1 µg/ml trypsine

c , i : 0,2 µg/ml trypsine

d , j : 0,4 µg/ml trypsine

e, k : 0,8 μg/ml trypsine

f , 1 : 1,6 µg/ml trypsine

[SAH] lmg/ml, I heure d'incubation 2 37°C.

analyse : gel de polyacrylamide 10 % non dénaturant.

Conversion de la cII-SAH en SAH mature

Figure 8

Plasmide d'expression de la fusion "Peptide signal PAM-SAH"

EcoR I ... GAATTCCCTGTTGACAATTAATCRTCGAACTAGTTAACTAGTACGCAGCTTGGCTGCAGGT Promoteur Tryptophane

Hindill CGACCTGCAGCCAAGCTTCGTTGCTAGTATCAATTCGCTAATTATACACCTGCCAGAGGATACA Promoteur et Site de fixation des ribosomes de PAM

ATG TAT TAT TGG AGC TTR CCT GCA CTG GCT GAT GCA CAC AAG...
Het-Tyr Tyr Trp Ser Leu Pro Ala Leu Ala Asp Ala His Lys...
SAH......

Séquence des signaux d'expression et du début de la fusion "Peptide signal PAM-SAH" de pXL288.

A. SEQUENCES DES ACIDES AMINES DES DIFFERENTS SEGMENTS "PSEUDO-PRO"

cl1-SAH:

MET VAL ARG ALA ASN LYS ARG-ASP

ATO OTT COT OCA AAC AAA COC GAT ...

aa I SAH

PAM1:

MET LYS ASN ARG ASN ARG-ASP

ATG AAA AAT AGA AAT CGT GAT

PAM2:

MET LYS ASN ARG LYS ARG-ASP

ATG AAA AAT AGA AAA CGT BAT

PAM3:

MET LYS LYS ARG LYS ARG-ASP

ATO AAA AAA AGA AAA COT BAT ...

B. MODIFICATIONS EFFECTUEES SUR PAM1

A. OLIGONUCLEOTIDE UTILISE POUR LA MUTAGENESE PAR DELETION POUR CONSTRUIRE PAM1 - SAH (pXL641)

5'-<u>ATGAAAATAGAAATCGTGATGCACACAAGAGTG</u>-3'
PAM SAH

B. OLIGONUCLEOTIDE UTILISE POUR LA MUTAGENESE DIRIGEE POUR CONSTRUIRE PAM2 - SAH (pXL740)

5'CAATGAAAATAGAAA<u>A</u>CGTGATGCACACAAGAGT-3'

nucléotide modifié .

C. OLIGONUCLEOTIDE UTILISE POUR LA MUTAGENESE DIRIGEE POUR CONSTRUIRE PAM3 - SAH (pXL741)

5'AGGATACAATGAAAAAAAGAAAACGTGATGCACACAAGAGT-3'

nucléotides modifiés

RAPPORT DE RECHERCHE EUROPEENNE

Numéro de la demande

EP 87 40 0355

DOCUMENTS CONSIDERES COMME PERTINENTS							
Catégorie	Citation du document avec indication, en cas d des parties pertinentes		esoin, R	evendication concernée			
х	THE EMBO JOURNAL juin 1984, page: Press Ltd, Oxfor STANLEY et al.: a new family of bacterial expresidentification of coding for human * Page 1430; fig	s 1429-1434 rd, GB; K.K "Construct: high effic: ssion vecto: of cDNA clor n liver pro-	, IRL ion of iency rs:	1		.2 N 7 K	15/00 13/00
X,P D	EP-A-0 200 590 * En entier *	(GENETICA)		1-4,7 12	•		
A	EP-A-0 138 437 * Exemple 2 *	 (GENEX COR	P.)	1-12			
					DOMAINES TECHNIQUES RECHERCHES (Int. Cl.4)		
						12 N 12 P	
Le	présent rapport de recherche a été é						•
	Lieu de la recherche	Date d'achèvemen				minateur	
Y : pa au A : arr O : div	LA HAYE CATEGORIE DES DOCUMEN' rticulièrement pertinent à lui seu rticulièrement pertinent en com tre document de la même catégrière-plan technologique rulgation non-écrite cument intercalaire	ul binaison avec un	T: théorie ou pr E: document de date de dépô D: cité dans la c L: cité pour d'a	incipe à la b brevet anté it ou après c lemande utres raison	rieur, m ette date s	inventio ais publi	éàla

(1) Numéro de publication: 0 236 210 B1

(12)

FASCICULE DE BREVET EUROPEEN

(45) Date de publication du fascicule du brevet : 23.10.91 Bulletin 91/43

(5) Int. Cl.⁵: **C12N 15/14,** C12N 15/62, C12N 15/70

(21) Numéro de dépôt : 87400355.1

② Date de dépôt : 19.02.87

64) Procédé de préparation de la sérum albumine humaine mature.

30 Priorité: 21.02.86 FR 8602379

Date de publication de la demande : 09.09,87 Bulletin 87/37

(45) Mention de la délivrance du brevet : 23.10.91 Bulletin 91/43

(A) Etats contractants désignés : AT BE CH DE FR GB IT LI LU NL SE

66 Documents cités : EP-A- 0 001 929 EP-A- 0 073 646

EP-A- 0 114 506

EP-A- 0 138 437

EP-A- 0 200 590

THE EMBO JOURNAL, vol. 3, no. 6, juin 1984, pages 1429-1434, IRL Press Ltd, Oxford, GB; K.K. STANLEY et al.: "Construction of a new family of high efficiency bacterial expression vectors: identification of cDNA clones coding for human liver proteins"

(3) Titulaire: GENETICA 160 Quai de Polangis 94340 Joinville Le Pont (FR)

(72) Inventeur: Latta, Martine
297 Rue de Charenton-75
F-75012 Paris (FR)
Inventeur: Mayaux, Jean-François
2lter, Boulevard de la République
F-92260 Fontenay aux Roses (FR)
Inventeur: Sarmientos, Paolo
Via Mose Bianchi 104
Milano (IT)

(4) Mandataire: Pilard, Jacques et al RHONE-POULENC INTERSERVICES Service Brevets Pharma 25, Quai Paul Doumer F-92408 Courbevoie Cédex (FR)

Il est rappelé que: Dans un délai de neuf mois à compter de la date de publication de la mention de la délivrance du brevet européen toute personne peut faire opposition au brevet européen délivré, auprès de l'Office européen des brevets. L'opposition doit être formée par écrit et motivée. Elle n'est réputée formée qu'après paiement de la taxe d'opposition (Art. 99(1) Convention sur le brevet européen).

Description

La présente invention concerne un procédé de préparation de la sérum-albumine humaine mature à partir d'une sérum-albumine humaine produite par voie microbiologique sous forme de protéine fusionnée.

Il existe un grand choix d'organismes hôtes, tels que les cellules mammifères modifiées ou les micro-organismes qui peuvent potentiellement être utilisés en vue de la production en quantités importantes de protéines humaines d'une grande valeur thérapeutique.

L'utilisation de cellules mammifères modifiées par les techniques de l'ADN recombinant présente l'avantage de conduire à des produits très proches de ceux d'origine naturelle; cependant la culture de ces cellules est délicate et ne peut être conduite que dans des volumes limités.

L'emploi de micro-organismes, tels que les bactéries, permet une fabrication à une échelle plus importante mais présente l'inconvénient de conduire à des produits qui diffèrent sensiblement des produits d'origine naturelle. Ainsi les protéines normalement glycosylées chez l'homme ne sont pas, en général, glycosylées par les bactéries [P. Berman et L.A. Laskey, Trends Biochem. Sci., (1985) 10, p.51 et suivantes]. Par ailleurs, les protéines humaines exprimées à haut niveau dans des bactéries telles que Ecoli acquièrent souvent une conformation non native qui s'accompagne d'une précipitation intracellulaire [R.G. Schoner et coli., Bio. Technol. (1985), 3, p.151 et suivantes; J.M. Schoemaker et coli., EMBO J. (1985), 4, p.775 et suivantes]. Enfin, pour qu'un gène puisse s'exprimer dans une bactérie, telle que E.coli, il est indispensable de positionner un codon initiateur méthionine devant la séquence codante de la protéine mature. Généralement, ce résidu n'est pas excisé par la méthionyl aminopeptidase de E.coli [P.H. Seeburg et coll., 1985, 2, p.37 et suivantes; J.M. Schoner et coll., Proc. Natl. Acad. Sci. USA (1981), 81, p.5403]. La protéine obtenue présente donc un acide aminé anormal comme premier résidu qui peut provoquer l'inhibition stérique d'une activité biologique si le début de la protéine est impliqué dans cette activité. Le résidu peut également présenter un caractère immunogène néfaste à l'administration ultérieure de la protéine.

Il résulte que le choix d'une cellule-hôte dépend de la protéine spécifique que l'on veut obtenir. Dans le cas d'une protéine de valeur marchande élevée et nécessaire en quantité limitée, les cellules mammifères peuvent constituer une source particulièrement bien adaptée. Par contre dans le cas d'un produit de valeur marchande plus faible et nécessaire en quantité importante, de l'ordre de plusieurs dizaines de tonnes, telle que la sérum-albumine humaine (SAH), il paraît indispensable d'utiliser des micro-organismes tout en remédiant aux inconvénients liés à leur emploi.

Lorsque la SAH est exprimée à partir d'une construction génétique du type "Promoteur-Site de démarrage de traduction-ATG-Gène de la SAH mature", la protéine obtenue conserve généralement une méthionine comme résidu N-terminal. Pour éliminer la méthionine N-terminale de protéines hétérologues exprimées chez E.coli, plusieurs méthodes peuvent être envisagées, telles que le clivage enzymatique <u>in vivo</u>, l'excision protéolytique pendant ou immédiatement après le transport à travers la membrane ou bien des digestions protéolytiques ou chimiques <u>in vivo</u>.

Il est connu, en particulier d'après J.P. Waller, J. Mol. Biol., (1963), 7, p.483 et suivantes, que E.coli possède une méthionyl aminopeptidase qui excise la méthionine N-terminale d'un certain nombre de protéines. Cependant la spécificité du mécanisme est mal connue et il est supposé que ce mécanisme dépend du ou des résidus suivant la méthionine [V.M. Vogt, J. Biol. Chem. (1970), 245, p.4760 et suivantes; H.J. George et coll., (1985) DNA, 4, p.273].

Les protéines sécrétées sont généralement initialement synthétisées sous forme d'une préprotéine comportant une "Séquence-signal" qui inclut le premier résidu. Cette séquence subit une excision protéolytique pendant ou immédiatement après le transport à travers la membrane [R. Scheckman, Trends Biochem (1985), 10, p.177]. Cependant ce système ne convient généralement pas dans le cas de protéines cytoplasmiques ou hétérologues du fait des problèmes de transport dûs soit à certaines parties de la séquence primaire de la protéine [J. Tommassen et coil, EMBO J. (1985), 4 p.1041] soit à une précipitation intra-cytoplasmique trop rapide de la protéine. Par ailleurs les mécanismes impliqués dans la sécrétion de protéines par les cellules encaryotes, telles que la SAH sécrétée par les cellules hépatiques, sont vraisemblablement assez différents des mécanismes de sécrétion mis en jeu dans des microorganismes tels que les bactéries gram-négatives [N.Wickner et _ _ H. Lodish, Science (1985), 230 p.400].

Il a été également proposé d'employer des digestions chimiques ou enzymatiques afin de convertir in vitro la protéine synthétisée par la bactérie sous la forme d'une protéine fusionnée. Cette conversion a pour but l'excision spécifique d'une séquence peptidique étrangère à la protéine désirée, située en position N-terminale et contenant la méthionine comme premier résidu. Un exemple simple est celui d'une protéine qui ne possède pas naturellement de résidus méthionine [R.E. Chance et coll., "Peptides: Synthèses-Structure-Fonction", D.H. Rich et E. Gross, ed., Pierce Chem. Co, Rocford, I11., (1981) p.721 et suivantes]. Dans ce cas, un traitement in vitro par le bromure de cyanogène permet l'excision de la méthionine N-terminale. Cependant ce

ż

cas ne se présente que très rarement dans le cas de protéines de poids moléculaire élevé.

Certaines protéases, comme la collagénase et le facteur X, reconnaissent une séquence de plusieurs acides aminés, ce qui les rend relativement spécifiques. [K. Nagai et H.C. Thogerson, Nature (1984), 309, p.810 et suivantes; J. Gercino et D. Bastia, Proc. Natl. Acad. Sci. USA (1984), 81, p.4692 et suivantes]. Une construction génétique permet donc de positionner la séquence reconnue par la protéase en question devant le premier acide aminé de la protéine désirée. Cette protéine fusionnée devient ainsi un substrat de la protéase, le produit principal de la réaction étant la protéine possédant en position N-terminale le même acide aminé que la protéine mature. Cependant, l'inconvénient majeur de cette méthode réside dans le prix de la protéase surtout lorsqu'il s'agit de produire une protéine en grande quantité.

La SAH est synthétisée par les cellules humaines d'abord sous forme de prépro-SAH (figure 1). Une séquence signal de 18 acides aminés est enlevée pendant le transport de la SAH à travers le lumen du réticulum endoplasmique et il reste encore 6 acides aminés à l'extrémité N-terminale (Arg- Gly- Val- Phe- Arg- Arg-) qui ne sont pas présents dans la SAH circulante. Selon S.O. Brennan et R.W. Carrell, Biochim. Biophys. Acta (1980), 621, p.83 et suivantes, ce propeptide ne semble jouer aucun rôle dans la sécrétion de la SAH. Il est possible qu'une deuxième protéolyse spécifique s'effectue au niveau de l'appareil de Golgi ou dans la circulation sanguine, les deux résidus arginine formant le site de reconnaissance d'une protéase de spécificité analogue à celle de la trypsine. En effet, un variant, appelé "Albumine Christchurch", dû à une mutation qui transforme le dernier résidu arginine du propeptide en glutamine n'est pas converti in vivo en albumine mature mais est transformé in vitro en Glu-SAH en traitant le propeptide par une faible concentration de trypsine. Par ailleurs, la SAH mature sous forme native est résistante à la trypsine dans les même conditions [S.O. Brennan et coll., Biochim. Biophys. Acta, (1984) 802, p.24 et suivantes].

Il a maintenant été trouvé, et c'est ce qui fait l'objet de la présente invention, un procédé permettant de transformer en SAH mature une SAH produite par voie microbiologique sous forme de protéine fusionnée.

Le procédé selon la présente invention consiste :

25

30

35

- à modifier in vitro le gène de structure de la SAH de telle sorte qu'il possède 6 codons supplémentaires codant pour les 6 premiers acides aminés de la protéine cll du bactériophage lambda, puis à lier le gène de structure ainsi modifié à la séquence nucléotidique qui précéde naturellement le gène cll dans le gènome du bactériophage lambda et à un promoteur qui assure un niveau élevé de transcription,
- à produire, dans des conditions définies, au moyen d'une bactérie hôte contenant le gène modifié, une protéine hybride ("pseudo-pro-SAH") constituée par les 6 premiers acides aminés du gène cli suivis de la séquence de la SAH mature,
- à dénaturer et réduire puis renaturer la protéine hybride de façon à obtenir une protéine soluble dont la conformation est semblable à celle de la SAH d'origine naturelle, puis
- à modifier in vitro, au moyen de la trypsine, la protéine ainsi obtenue afin d'exciser le pseudo-pro-peptide et obtenir la SAH mature.

Il a également été trouvé que la SAH mature peut être obtenue en utilisant une extension peptidique Nterminale ("pseudo-pro-peptide") dont la séquence diffère de celle des 6 premiers acides aminés de la protéine cli du bactériophage lambda, à condition que cette extension permette une expression suffisante de la protéine fusionnée, présente l'hydrophilicité nécessaire et comporte un site de coupure par la trypsine. Par exemple, le "pseudo-pro-peptide" peut être constitué par les 5 premiers acides aminés de la séquence-signal de la pénicilline-amidase (6, si l'on compte le premier résidu méthionine).

Dans ce qui suit, la signification des termes techniques utilisés en biologie moléculaire est supposée connue (cf. par exemple J. Watson, "Biologie Moléculaire du Gène", édition française, Interéditions, 1978). Les méthodes couramment employées en biologie moléculaire du gène sont décrites, par exemple, par T. Maniatis et coll., Molecular Cloning, Cold Spring Harbor Laboratory Press, New-York, 1982). Dans ce qui suit seront décrits successivement la construction, les procédés d'expression du gène, la renaturation et la conversion par la trypsine de la "pseudo-pro-SAH".

A-CONSTRUCTION DU GENE "pseudo-pro-SAH".

1. Préparation d'ARN messager de foie

On utilise des cellules hépatiques, obtenues par exemple par biopsie, et on en extrait!'ARN messager selon la méthode décrite par exemple par V. Glisin et coll., Biochemistry (1974), 13, p. 2633 et suivantes ; et par R. Deeley et coll., J. Biol. Chem. (1977), 252, p. 8310 et suivantes. On traite la biopsie par une solution de thiocyanate de guanidine 6M, et l'on purifie l'ARN total par plusieurs cycles de précipitation dans l'éthanol à -20°C, centrifugation et redissolution des culots de centrifugation.

On enrichit la préparation en ARN messager par plusieurs cycles de chromatographie d'affinité sur des

colonnes d'oligo (dT)-cellulose, selon la technique décrite par H. Aviv et P. Leder, Proc. Natl. Acad. Sci. (USA) (1972), 69, p. 1408 et suivantes. L'ARN messager ainsi isolé, contenant 1 à 2 % de l'ARN total, est conservé en solution aqueuse à -70°C.

On peut déterminer la proportion d'ARN messager spécifique de la sérum-albumine humaine au sein de la population totale (par exemple par traduction <u>in vitro</u> d'un aliquot de la solution d'ARN dans des lysats de réticulocytes de lapin). Une méthode consiste à utiliser le lysat de réticulocytes fournis par la société Amersham, suivant le protocole préconisé par ce fournisseur. On peut ainsi déterminer la fraction de protéine néoformée immunoprécipitable par des anticorps anti-albumine au sein de l'ensemble des protéines néoformées. On obtient par exemple une fraction de l'ordre de 6 %.

2. Synthèse de cDNA et clonage dans E.coli

a. Synthèse du premier brin

10

15

20

A partir de la technique de G.N. Bueil et coll., J. Biol. Chem. (1978), <u>253</u>, p. 2471 et suivantes, modifiée, on utilise par exemple 5 μg d'ARN messager total dans un volume final de 50 microlitres d'une solution contenant : 100 mM Tris-HCl pH 8,3, 10 mM MgCl₂, 0,4 mM DTT, 20 mM KCl, 0,4 mM Na pyrophosphate, 1 mM de chaque nucléotide triphosphate (dNTP), 100 μg/ml de oligo(dT)₁₂₋₁₈, 0,5 U/ml d'inhibiteur de ribonucléases, 50 picomoles de traceur radioactif et 40 unités de Transcriptase réverse (Société Life Science, Inc.).

La réaction de transcription réverse de l'ARN messager en ADN complémentaire (ADNc) se poursuit pendant 1 heure à 42°C.

Le taux de synthèse de ADNc est calculé par mesure du taux d'incorporation du traceur radioactif en molécules acido-précipitables, selon une technique connue.

Après 1 heure, on arrête la réaction par addition d'EDTA (20 mM), et l'on détruit l'ARN messager par digestion alcaline dans 50 mM de NaOH, à 42°C, pendant 3 heures.

On sépare l'ADNc néoformé des dNTPs non-incorporés et des produits de dégradation alcaline des ARNs par chromatographie, par exemple, sur une colonne de Sephadex G100 (Pharmacia Fine Chemicals). On obtient 1,5 µg d'ADNc simple brin à partir de 5 µg d'ARN messager total.

30 b. Synthèse du deuxième brin

L'ADNc simple brin est converti en ADN double brin par action du fragment "Klenow" de l'ADN polymérase I.

Les conditions de réaction sont : 100 mM Hepes pH 7, 10 mM MgCl₂, 2,5 mM DTT, 70 mM KCl, 0,5 mM de chaque dNTP, et 50 unités du fragment "Klenow" de l'ADN polymérase I (commercialisée par exemple par la Société New England Blolabs Inc.).

La réaction est poursuivie pendant 15 heures, à 15°C, et l'on sépare l'ADN double brin des dNTPs non incorporés à nouveau par chromatographie sur colonne de Sephadex G100.

c. Clonage de l'ADN double brin

Pour supprimer les molécules d'ADN simple brin et obtenir un ADN double brin à extrémités franches, on traite les séquences non appariées par la nucléase S₁ selon la technique décrite par A. Efstradiatis et coll., Cell (1976), 7, p. 279 et suivantes. On sépare les ADNs néoforcés double brin selon leur taille par centrifugation dans un gradient de saccharose. On utilise généralement un gradient de 5 % - 20 % de saccharose en 50 mM Tris-HCl pH 8,5, 10 mM EDTA, 800 mM NaCl, centrifugé à 210000 g pendant 15 heures, à 20°C, et on effectue un fractionnement du gradient en aliquots après centrifugation.

On contrôle la taille des molécules dans chaque fraction par électrophorèse d'échantillons faite en parallèle avec des étalons d'ADN de tailles connues, et l'on regroupe les fractions contenant un ADN constitué par l'enchaînement de plus de 500 paires de bases.

Pour permettre le clonage de cet ADN on allonge d'abord ses extrémités 3' avec de l'oligo(dC), et on allonge parallèlement les extrémités 3' du site Pstl du plasmide vecteur pBR322 avec de l'oligo(dG) selon la technique de F. Rougeon et coll., J. Biol. Chem. (1977), 252, p. 2209 et suivantes.

On hybride alors l'ADN double brin décrit ci-dessus au plasmide vecteur, selon par exemple la technique de L. Villa Komaroff et coll., Proc. Natl. Acad. Sci. (USA) (1978), 75, p. 3727 et suivantes.

On crée une "banque" de clones d'ADNcs de fole par transformation de la bactérie <u>E.coli</u> avec l'ADN ainsi décrit selon la méthode décrite par M. Mandel et A. Higa, J. Mol. Biol. (1970), <u>53</u>, p. 154 et suivantes et M.

Dagert et S.D. Erlich., Gene (1979), 6, p. 23 et suivantes.

d. Repérage des clones d'ADNc albumine

5

On utilise une technique d'hybridation sur colonles à l'aide d'oligonucléotides synthétiques dont les séquences sont déduites de la séquence protéique de l'albumine humaine (B. Meloun et coll., FEBS Letters (1975), <u>58</u>, p. 134 et suivantes; M. Grunstein et D. Hogness, Proc. Natl. Acad. Sci. (USA) (1975), <u>72</u>, p. 3961 et suivantes; R.B. Wallace et coll., Nucleic Acids Res. (1981), <u>9</u>, p. 879 et suivantes).

Les clones sont cultivés par séries de 96 sur milieu de Luria contenant 25 μg/ml de tétracycline, en boîtes carrées, directement sur des filtres de nitrocellulose. Après croissance à 37°C puis amplification en présence de 250 μg/ml de chloramphénicol, les colonies sont lysées par la soude puis hybridées avec les oligonucléotides radioactivés en 5′ par kination, dans une solution contenant : 5 X SSC, 0,5 % NP 40, 100 μg/ml ADN de sperme de saumon dénaturé par ébullition et refroidi rapidement dans la glace, 0,5 ng/ml d'oligonucléotide kinasé. L'hybridation est effectuée à 37°C pendant 18 heures. On lave ensuite les filtres en 5 X SSC, à 25°C, puis 37°C, puis 45°C et ce pendant quatre fois 15 minutes à chaque étape.

Les filtres sont alors exposés sur films Kodak X-OMAT, à -70°C, avec un écran amplificateur pendant 15 à 24 heures. Les clones hybridants avec les sondes sont réisolés puis lysés. L'ADN plasmidique est purifié par centrifugation en milieu chlorure de césium-bromure d'éthidium selon une technique connue.

On séquence l'ADN de l'insertion par la technique de Maxam-Gilbert (A. Maxam et W. Gilbert, Methods Enzymol. (1980), 65, p. 499 et suivantes) pour comparer la séquence protéique dérivée de la séquence nucléotidique et celle de la sérum-albumine humaine.

On identifie ainsi une série de clones dont les insertions correspondent à l'ensemble du gène de la sérumalbumine humaine.

Dans la figure 2 est représentée la carte de restriction du gène de la sérum-albumine, ainsi que la position de trois des insertions les plus représentatives, désignées par "pT1B11", "pAA38", "p6D8".

e. Incorporation au grène de structure d'un codon d'initiation (figure 3)

a) On digère l'ADN du plasmide "pT1B11" par les enzymes Psti et Pvuil, et on isole un fragment d'ADN de 125 paires de bases, correspondant à là séquence de l'extrémité 5' du gène de la sérum-albumine (acides aminés n° 1 à 62). On fixe à l'extrémité Pvuil une séquence de jonction constituée du site de reconnaissance de l'enzyme BamHI. On obtient ainsi un fragment Psti-BamHI.

On prépare d'autre part un oligonucléotide synthétique ayant 21 bases de long, possédant un triplet "ATG" devant les nucléotides codant pour les acides aminés de la sérum-albumine humaine ainsi qu'un site de restriction Ncol, et dont la séquence est la suivante : 5'GAATCCATGGATGCACACAG 3'.

On dénature le fragment d'ADN Psti-BamHI, et on l'hybride avec l'oligonucléotide synthétique. L'hybridation se fait par la séquence 5'...GATGCACAAG 3', l'extrémité 3' du brin d'ADN complémentaire étant désappariée. On digère les extrémités désappariées, puis on polymérise dans le sens 5'...3' avec le fragment "Klenow" de l'ADN polymérase I, d'après les techniques de H. Jacobsen et coll., Eur. J. Biochem. (1974), 45, p. 623 et suivantes.

On obtient ainsi un fragment contenant en 5' une extrémité franche, un site Ncol puis le triplet ATG et en 3' un site BamHi.

- b) On réalise la ligation de trois fragments d'ADN:
- 1) un fragment EcoRl-BamHl du plasmide "pLG200" (L. Guarenté et coll., Cell (1980) 20, p. 543 et suivantes) portant un gène de résistance aux antibiotiques, l'origine de réplication et l'extrécité 3' du gène de la β-galactosidase,
- 2) un fragment EcoRI-Pvull du plascide "pGL101" (G. Lauer et coll., J. Mol. Appl. Genet. (1981), 1, p. 139 et suivantes) portant le promoteur P_{lac} et le site de fixation de ribosome (RBS) du gène lacZ d'E.coli,
- 3) le fragment d'ADN mutagénisé codant pour les 62 premiers acides aminés de l'albumine humaine.
- On isole un plasmide (pXL52) qui réalise une fusion de l'extrémité 5' du gène de la sérum-albumine humaine avec le gène de la β-galactosidase d'<u>E.coli</u>.

f. Construction du gène complet (figure 3)

55

On digère l'ADN du plasmide "p6D8" par EcoRI, et partiellement par Bgill, selon une technique déjà décrite. On isole le grand fragment EcoRI-Bgill contenant la séquence codant pour les 405 derniers acides aminés de la sérum-albumine humaine puis l'origine de replication du plasmide et le gène de résistance à la tétracycline.

On digère l'ADN du plasmide "pXL52" décrit ci-dessus par EcoRI et Sau3A, et on isole un fragment conte-

nant 200 paires de bases.

On digère l'ADN du plasmide "pAA38" par Sau3A et on isole un fragment contenant 540 paires de bases. On ligature les trois fragments (dans l'ordre [pXL52 EcoRi-Sau3A] - [pAA38-Sau3A] - [p6D8 Bglil-EcoRl]) en tirant profit de la compatibilité entre les sites Sau3A et Bglil. On obtient un plasmide appelé "pXL53", dont la qualité de la construction est contrôlée par un séquençage complet du fragment compris entre le site EcoRl et le site Psti correspondant à la jonction de l'insertion et du plasmide vecteur.

La séquence nucléotidique complète, ainsi que la séquence protéique dérivée, sont représentées dans les figures 4 et 5.

Les variations observées entre cette séquence et la séquence protéique publiée (B. Meloun et coll, FEBS Letters (1975), <u>58</u>, p. 134 et suivantes; M. Dayhoff, Atlas of Protein sequence and structure (1978), <u>5</u>, supplément 3, p. 306) sont les suivantes:

	Position	Meloun et coll.	Sérum-albumine humaine déduite
15			de la séquence de "pXL53"
	131	Glutamine	Acide glutamique
	364	Histidine	Alanine
20	367	Tyrosine	Histidine
	370	Alanine	Tyrosine
	381	Valine	Méthionine
25	464	Acide glutamique	Histidine
	465	Histidine	Acide glutamique
	501	Glutamine	Acide glutamique

3. Construction de systèmes d'expression de la méthionyl-sérum-albumine humaine

a. Utilisation du promoteur "PL" du bactériographe lambda

On linéarise le plasmide "pXL53" par digestion partielle par l'enzyme Ncol, en ne considérant que le site Ncol en 5' du codon d'initiation et on forme des bords francs par remplissage selon la technique de R.M. Wartell et W.S. Reznikoff, Gene (1980), 9, p. 307 et suivantes).

On synthétise un "adaptateur" contenant en 5' une séquence correspondant au site de reconnaissance d'une enzyme de restriction telle que BamHI, puis une séquence correspondant à un site de fixation de ribosomes (RBS "consensus" ou "théorique"). La séquence de l'adaptateur est : 5'GGATCCTAGGAGGAAC 3'.

La ligation de l'adaptateur en 5' d'un ADN à bords francs a été décrite, par exemple, par C.P. Bahl et coll., Gene (1976), 1, p. 81 et suivantes.

La méthode consiste à effectuer la réaction sur 20 microlitres d'une solution contenant 50 mM Tris, HCl pH = 7,5, 10 mM MgCl₂, 15 mM DTT, 1mM ATP, 50 µg/ml d'adaptateur, 20 µg/ml d'ADN et 1 unité d'ADN-ligase (New England Biolabs Inc.). La réaction est poursuivie pendant 10 heures à 15°C. Cette ligation crée un site BamHl sans supprimer le site Ncol.

On digère le produit de ligation par BamHI et par HinDIII. Du fait de la présence d'un site HinDIII en 3' du gène de la sérum-albumine humaine, on obtient un fragment d'ADN contenant la totalité de la séquence codante.

On sous-clone le fragment HinDIII-BamHI ainsi obtenu par exemple dans le plasmide "pBR322" en transformant <u>E.coli</u> selon la méthode déjà décrite ci-dessus pour obtenir le plasmide "pXL61".

Le plasmide "pXL61" ne contient pas de promoteur.

50

Le promoteur "P_L" du bactériophage lambda est placé sur le chromosome du bactériophage entre un site Bglil et un site BamHI (voir E. Szybalski et W. Szybalski, Gene (1979) <u>7</u>, p. 217 et suivantes), et dont la séquence nucléotidique est connue (F. Sanger et coll., J. Mol. Biol. (1982), <u>162</u>, p. 279 et suivantes). On peut cloner ce fragment et modifier ses sites de restriction selon des méthodes connues.

On note que les plasmides portant P_L doivent être propagés dans des souches de <u>E.coli</u> portant le gène répresseur cl, ceci afin d'éviter que ce promoteur ne s'exprime de façon constitutive.

Dans une première construction, P_L est disponible sous forme d'un fragment BamHI à partir du plasmide "pPL-lambda" (Pharmacia P.L. Biochemicals). L'insertion de ce fragment BamHI dans le site BamHI du plas-

mide "pXL61" permet d'obtenir le plasmide "pXL65", dans lequel on a vérifié que l'orientation du promoteur par rapport au gène de structure de la sérum-albumine humaine est correcte.

D'autres constructions peuvent être réalisées à partir de plasmides disponibles. On peut, par exemple, exciser du plasmide "pP_L-lambda" un fragment HaellI-HaellI contenant le promoteur P_L et l'insérer dans le site Smal d'une séquence de clonage multisites portée sur un plasmide, tel que le plasmide "pUC8" (J. Vieira et J. Messing, Gene, (1982), <u>79</u>, p. 259 et suivantes) pour obtenir "pUC8-P_L" dans lequel le site EcoRI est en 5' du promoteur.

A partir du plasmide "pPS1" (P. Sarmientos et coll., Cell (1983), 32, p. 1337 et suivantes), on peut d'abord détruire le site HinDIII le plus proche du site Ndel (figure 3) puis remplacer le petit fragment EcoRI-HinDIII par, d'une part, le fragment EcoRI-BamHI du plasmide "pUC8-P_L" contenant le promoteur P_L, et, d'autre part, le fragment BamHI-HinDIII du plasmide "pXL61" contenant le gène de la sérum-albumine. On obtient ainsi le plasmide "pXL70" dans lequel l'ensemble P_L-RBS "consensus "-ATG-gène de la sérum-albumine humaine est porté sur un fragment d'ADN EcoRI-HinDIII.

b. Remplacement du RBS "consensus" par celui du gène cli du bactériophage lambda

Le gène cli du bactériophage lambda, dont la séquence et le site d'initiation sont connus, peut être traduit avec efficacité (E. Schwarz et coll., Nature (1978), 272, p. 410 et suivantes).

On construit un plasmide contenant le système d'expression "Promoteur "P_L" - RBS cli - ATG - gène sérum-albumine".

Par exemple, on peut après avoir détruit le site BamHI de "pUC8-P_L" par action de l'enzyme SI (A.J. Berk et P.A. Sharp, Cell (1977), <u>12</u>, p. 72) isoler un fragment EcoRI-HinDIII contenant le promoteur P_L et ensuite lier ce fragment avec le grand fragment EcoRI-HinDIII du plasmide "pDS20" (G. Duester et coll., Cell (1982), <u>30</u>, p. 855 et suivantes), pour obtenir le plasmide "pXL73".

Le RBS du gène cli est extrait du plasmide "pPS1". On digère ce plasmide par Ndel et on insère un adaptateur BamHI après formation d'extrémités franches. On excise alors le RBS sous forme d'un fragment Hin-Dill-BamHI.

On construit d'abord un plasmide "pXL88" dans lequel ce fragment HinDIII-BamHI est lié au grand fragment HinDIII-BamHI du plasmide "pXL73". Dans le nouveau plasmide "pXL88", le RBS cII est inséré dans la bonne orientation par rapport au promoteur P_L, le tout dans un système multisites de telle sorte que l'ensemble P_L-RBS cII soit porté sur un fragment d'ADN EcoRI-BamHI de 578 paires de bases.

Le fragment EcoRI-BamHI de 578 paires de bases est sous-cloné entre les sites EcoRI et BamHI du plasmide "pMC1403" (M.J. Casadaban et coll., J. Bacteriol. (1980), <u>143</u>, p. 971 et suivantes) qui porte le gène de la β-galactosidase (lacZ) après le site BamHI. Cette construction conduit au plasmide "pXL91" dans lequel le gène de la β-galactosidase est exprimé sous contrôle du système "P_L-RBS cli".

On sous-clone le fragment BamHl-Bglll du plasmide "pXL61" décrit précédemment dans le site BamHl du plasmide "pMC1403". (La ligation d'un site Bgill dans un site BamHl est possible, mais l'excision par BamHl en Bglll ne l'est plus ; il ne reste donc qu'un site BamHl).

Cette construction ("pXL71") aboutit à l'insertion d'un fragment d'ADN de 700 paires de bases comportant la séquence "BamHI-[RBS "consensus"-ATG-Ncol-gène partiel de la sérum-albumine -(codant pour les acides aminés 1 à 218)-gène de la β-galactosidase].

On coupe ce plasmide par BamHI et Sacl (le site Sacl est présent dans le gène de la β-galactosidase) et on l'insère dans le plasmide "pXL91" décrit précédemment à la place du fragment préexistant BamHI-Sacl.

On aboutit alors au plasmide "pXL97" dont l'insertion a la structure suivante : "Site EcoRI - P_L - RBS cII - site BamHI-RBS "consensus"- site NcoI - ATG - gène partiel de la sérum-albumine -gène de la β -galactosidase".

On digère le plasmide "pXL97" par BamHi et partiellement par Ncol en ne considérant que le site Ncol proche du codon d'initiation et on forme les bords francs par action de la nucléase SI, puis on le referme sur lui-même. Cette manipulation, d'une part, supprime la séquence d'ADN du RBS "consensus" et, d'autre part, met en phase un ATG du RBS cli avec la séquence de la sérum-albumine.

On obtient ainsi le plasmide "pXL136" qui comporte la séquence "site EcoRI-P_L-RBS cII-ATG-gène partiel de la sérum-albumine-gène de la β-galactosidase".

Le gène partiel de la sérum-albumine possédant un site Pvull, on digère le plasmide "pXL136" par EcoRi et Pvull et on extrait un fragment de 760 paires de bases qui est inséré entre les sites EcoRI et Pvull du plasmide "pXL70" décrit précédemment. On obtient ainsi le plasmide "pXL139" qui porte la structure "P_L-RBS cll-gène sérum-albumine complet" sur un fragment EcoRI-HinDIII, comme le plasmide "pXL70" et qui porte la substitution RBS "consensus" par celui du gène cll.

On coupe le plasmide "pXL139" décrit précédemment au site unique Sali, entre le promoteur PL et le RBS

A. SEQUENCES DES ACIDES AMINES DES DIFFERENTS SEGMENTS "PSEUDO-PRO"

cil-SAH:

MET YAL ARG ALA ASN LYS ARG-ASP ATG GTT CGT GCA AAC AAA CGC GAT...

an I SAH

PAM1:

MET LYS ASN ARG ASN ARG-ASP

ATO AMA MAT AGA MAT COT BAT

PAM2:

MET LYS ASN ARG LYS ARG-ASP

ATO AAA AAT AGA AAA COT BAT

PAM3:

MET LYS LYS ARG LYS ARG-ASP

ATG AMA AMA AGA AMA COT BAT

cli. On digère l'ADN par l'enzyme Ba131, de telle sorte que le site de fin de transcription tR1 en 5' du RBS cli soit digéré puis on ajoute un adaptateur HinDIII et on isole le fragment HinDIII-Xbal contenant le RBS cli amputé de tR1 et les 357 premiers codons du gène de la sérum-albumine humaine. On combine ce fragment HinDIII-Xbal avec d'une part le fragment Xbal-EcoRI du plasmide pXL139 contenant la fin du gène de la sérum-albumine humaine et d'autre part le fragment EcoRI-HinDIII portant le promoteur P_L obtenu à partir du plasmide pUC8-P_L après destruction du site BamHI. On obtient ainsi le plasmide pXL324.

4. Construction d'un plasmide d'expression pour la "pseudo-pro-SAH"

10

15

Un fragment d'ADN est construit par hybridation de deux oligonucléotides synthétiques ayant la structure donnée dans la figure 6A. La séquence contient un codon de démarrage "ATG" suivi par les 6 premiers codons du gène cll du bactériophage lambda. Ce fragment possède une extrémité cohésive de type HinDIII et une autre extrémité cohésive de type Sall. Ce fragment synthétique est cloné entre les sites HinDIII et Sall du vecteur M13mp10 (J. Messing, Methods Enzymol., (1984), 101, p.20 et suivantes). Le DNA en forme réplicative purifié à partir de cellules infectées par le bactériophage résultant est utilisé dans l'étape suivante de construction.

Un fragment Sall-Bgill de 765 paires de bases provenant du plasmide pXL324 contenant le début du gène (ADNc) codant pour la SAH est cloné dans ce bactériophage recombinant. La souche de <u>E.coli</u> JM101 est infectée par ce nouveau bactériophage et le sumageant d'une culture de 5 heures est utilisé comme source de particules phagiques contenant l'ADN simple brin caractéristique des phages filamenteux de type M13. Ce simple brin sert ensuite de matrice pour une mutagénèse dirigée par oligonucléotide permettant de supprimer la séquence comprise entre le sixième codon du gène cll et le premier codon de la SAH mature (GAT) selon les méthodes décrites, par exemple, par J.P. Adelman et coll., DNA (1983), 2, p.183. L'oligonucléotide utilisé dans

mettant de réaliser cette suppression est représenté par la figure 11A. La séquence modifiée est ensuite substituée dans le plasmide "pXL288" pour donner le plasmide "pXL641" dont la structure est la suivante : "EcoR1-Ptrp-Sall-[Promoteur PAM-RBS PAM-séquence nucléotidique codant pour PAM1]-gène SAH".

Deux dérivés de la séquence "PAM1" sont construits par mutagénèse dirigée par oligonucléotide, après sous-clonage dans le bactériophage M13mp18amIV, selon la méthode décrite par P. CARTER et coll., Nucl. Acids Res., 1985, 13, p.4431 et suivantes. Les oligonucléotides permettant de réaliser cette mutagénèse sont représentés dans les figures 11B et 11C. Après reconstruction, deux plasmides analogues au plasmide "pXL641" contenant les séquences codant pour "PAM2" (Met Lys Asn Arg Lys Arg-; plasmide "pXL740") et "PAM3" (Met Lys Lys Arg Lys Arg-; plasmide "pXL741") sont obtenus (figure 10).

Après introduction des plasmides "pXL641", "pXL740" et "pXL741" dans une souche appropriée de <u>E.coli</u> telle que <u>E.coli</u> 54125 (Collection de l'Institut Pasteur), on obtient des souches produisant respectivement les protéines hybrides PAM1-SAH, PAM2-SAH et PAM3-SAH à des taux de l'ordre de 5 à 10 mg/l de milieu pour une absorbance de 1 à 610 nm en opérant dans les conditions décrites dans la demande de brevet européen EP 86400618.4 (200590).

La protéine hybride se trouve dans la fraction insoluble du lysat cellulaire et peut être renaturée et partiellement purifiée selon les méthodes décrites précédemment. Chaque protéine hybride obtenue après renaturation peut être convertie en SAH mature par digestion ménagée au moyen d'une concentration optimisée de trypsine dans les conditions décrites précédemment.

Conformément aux dispositions du Traité de Budapest, ont été déposés au CBS à Baam (Pays-Bas) le 3 février 1987 :

- -- Un échantillon du microorganisme E.coll E103S (pRK 248 dla) contenant le plasmide pXL 462 (souche G-1398) sous le numéro CBS 143-87.
- Un échantillon du microorganisme <u>E.coli</u> B contenant le plasmide pXL 641 (souche G-2083) sous le numéro CBS 144-87.
- Un échantillon du microorganisme <u>E.coli</u> B contenant le plasmide pXL 740 (souche G-2146) sous le numéro CBS 145-87.
- Un échantillon du microorganisme <u>E.coli</u> B contenant le plasmide pXL 741 (souche G-2147 sous le numéro CBS 146-87.

Revendications

25

30

35

40

- 1. Procédé de préparation de la sérum-albumine humaine mature caractérisé en ce que :
- dans une première étape on prépare une protéine hybride contenant une extension peptidique N-terminale hydrophile de 5 à 8 acides aminés, et de préférence 6 à 7, terminée par un site de coupure par la trypsine, fusionnée avec la séquence peptidique de la sérum-albumine humaine mature, par culture d'une souche d'<u>E.coli</u> capable d'assurer le maintien d'un plasmide contenant la séquence nucléotidique codant pour ladite protéine hybride, dont l'expression est contrôlée par un promoteur bactérien inductible,
- dans une deuxième étape, on convertit la molécule dénaturée et insoluble ainsi obtenue en molécule renaturée et soluble, en utilisant une méthode de dénaturation et renaturation permettant un réarrangement des structures secondaire et tertiaire de la chaîne polypeptidique, et
- dans une troisième étape, on convertit cette protéine hybride par la trypsine en une protéine identique en structure primaire à la sérum-albumine humaine mature.
- 2. Procédé selon la revendication 1 caractérisé en ce que les codons codant pour l'extension peptidique N-terminale sont choisis parmi les sept premiers codons du gène cli du bactériophage lambda et les six premiers codons du gène de la pénicilline amidase éventuellement transformés par mutagénèse dirigée.
- 3. Le plasmide "pXL462" déposé sous le numéro CBS 143-87 caractérisé en ce qu'il contient le promoteur P_L, le site de fixation des ribosomes du gène cll privé du signal de terminaison de la transcription tR1, le codon d'initiation ATG et les six premiers codons du gène cll fusionnés avec le gène de structure de la sérum-albumine humaine mature.
- 4. Le plasmide "pXL641" déposé sous le numéro CBS 144-87 caractérisé en ce qu'il contient le promoteur Ptrp suivi du promoteur de la pénicilline amidase, le site de fixation des ribosomes du gène de la pénicilline amidase et les six premiers codons du gène de la pénicilline amidase fusionnés avec le gène de structure de la sérum-albumine humaine mature.
- 5. Le plasmide "pXL740" déposé sous le numéro CBS 145-87 caractérisé en ce qu'il contient le promoteur Ptrp suivi du promoteur de la pénicilline amidase, le site de fixation des ribosomes du gène de la pénicilline amidase et les six premiers codons d'un gène de la pénicilline amidase modifié par mutagénèse dirigée codant pour le polypeptide Met-Lys-Asn-Arg-Lys-Arg fusionnés avec le gène de structure de la sérum-albumine

2. Sonication, récupération de la cll-SAH

Le culot cellulaire collecté par centrifugation est resuspendu dans 1/30 de volumes de PBS (0.2 q/l KC1.

the first six codons of a penicillin amidase gene modified by directed mutagenesis coding for the Met-Lys-Lys-Arg-Lys-Arg polypeptide fused with the structural gene of mature human serum albumin.

- 7. The hybrid protein comprising a hydrophilic N-terminal peptide extension containing 5 to 8, and preferably 6 to 7, amino acids, terminated by a site for cutting with trypsin, which is fused with the peptide sequence of mature human serum albumin, when it is produced by culture of a strain of <u>E.coli</u> according to Claim 1.
- 8. The hybrid protein according to Claim 7, comprising at the N-terminal end the first seven amino acids of the lambda bacteriophage cll protein, (Met)-Val-Arg-Ala-Asn-Lys-Arg, which are fused with the peptide sequence of mature human serum albumin, when it is produced by culture of a strain of <u>E.coli</u> capable of ensuring the conservation of the plasmid "pXL462" defined in Claim 3.
- 9. The hybrid protein according to Claim 7, comprising at the N-terminal end the first six amino acids of penicillin amidase, Met-Lys-Asn-Arg-Asn-Arg, fused with the peptide sequence of mature human serum albumin, when it is produced by culture of a strain of <u>E.coli</u> capable of ensuring the conservation of the plasmid "pXL641" defined in Claim 4.
- 10. The hybrid protein according to Claim 7, comprising at the N-terminal end the first six N-terminal amino acids of a penicillin amidase modified by directed mutagenesis, Met-Lys-Asn-Arg-Lys-Arg, fused to the peptide sequence of mature human serum albumin, when it is produced by culture of a strain of <u>E.coli</u> capable of ensuring the conservation of the plasmid "pXL740" defined in Claim 5.
- 11. The hybrid protein according to Claim 7, comprising at the N-terminal end the first six amino acids of a penicilin amidase modified by directed mutagenesis, Met-Lys-Lys-Arg-Lys-Arg, fused with the peptide sequence of mature human serum albumin, when it is produced by culture of a strain of <u>E.coli</u> capable of ensuring the conservation of the plasmid "pXL741" defined in Claim 6.

Patentansprüche

10

25

30

35

50

- 1. Verfahren zur Herstellung von reifem menschlichem Serum-albumin, dadurch gekennzeichnet, daß man in einer ersten Stufe ein Hybridprotein herstellt, das eine hydrophile N-endständige Peptidverlängerung von 5 bis 8, vorzugsweise 6 bis 7 Aminosäuren, abgeschlossen durch eine Trypsinschnittstelle, fusioniert mit der Peptidsequenz des reifen menschlichen Serumalbumins, herstellt durch Züchtung eines Stammes von E.coll, der den Bestand eines Plasmids zu gewährleisten vermag, das die für das Hybridprotein, dessen Expression durch einen induzierbaren bakteriellen Promotor regelbar ist, codierende Nukleotidsequenz enthält.
- in einer zweiten Stufe das so erhaltene denaturierte und unlösliche Molekül in ein renaturiertes und lösliches Molekül umwandelt, indem man eine Denaturierungs- und Renaturierungs-methode anwendet, die eine Umlagerung sekundärer und tertiärer Strukturen der Polypeptidkette ermöglicht, und
- in einer dritten Stufe dieses Hybridprotein mit Trypsin in ein Protein umwandelt, das in der Primärstruktur dem reifen menschlichen Serumalbumin identisch ist.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die die N-endständige Peptidverlängerung codierenden Codons aus gewählt sind aus den sieben ersten Codons des Gens cII des Bakteriophagen Lambda und den sechs ersten Codons des Gens von Penicillinamidase, gegebenenfalls transformiert durch gerichtete Mutagenese.
- 3. Plasmid "pXL462", hinterlegt unter der Nummer CBS 143-87, dadurch gekennzeichnet, daß es den Promotor P_L, die Bindestelle der Ribosomen des Gens cll, abgeschlossen durch das Transkriptionsterminationssignal tR1, das Startcodon ATG und die sechs ersten Codons des Gens cll, fusioniert mit dem Strukturgen des reifen menschlichen Serumalbumins, enthält.
- 4. Plasmid "pXL641", hinterlegt unter der Nummer CBS 144-87, dadurch gekennzeichnet, daß es den Promotor Ptrp, gefolgt vom Promotor der Penicillinamidase, die Bindestelle der Ribosomen des Gens der Penicillinamidase und die sechs ersten Codons des Gens der Penicillinamidase, fusioniert mit dem Strukturgen des reifen menschlichen Serumalbumins, enthält.
- 5. Plasmid "pXL740", hinterlegt unter der Nummer CBS 145-87, dadurch gekennzeichnet, daß es den Promotor Ptrp, gefolgt vom Promotor der Penicillinamidase, die Bindestelle der Ribosomen des Gens der Penicillinamidase und die sechs ersten Codons des Gens der durch gerichtete Mutagenese modifizierten Penicillinamidase, die für das Polypeptid Met-Lys-Asn-Arg-Lys-Arg codieren, fusioniert mit dem Strukturgen des reifen menschlichen Serumalbumins, enthält.
- 6. Plasmid "pXL741", hinterlegt unter der Nummer CBS 146-87, dadurch gekennzeichnet, daß es den Promotor Ptrp, gefolgt vom Promotro der Penicillinamidase, die Bindestelle der Ribosomen des Gens der Penicillinamidase und die sechs ersten Codons eines Gens der durch gerichtete Mutagenese modifizierten Penicillinamidase, die für das Polypeptid Met-Lys-Lys-Arg-Lys-Arg codieren, fusioniert mit dem Strukturgen

des reifen menschlichen Serumalbumins, enthält.

- 7. Hybridprotein, umfassend eine hydrophile N-endständige Peptidverlängerung von 5 bis 8, vorzugsweise 6 bis 7 Aminosäuren, abgeschlossen durch eine Trypsinschnittstelle, fusioniert mit der Peptidsequenz reifen menschlichen Serum-albumins, erhalten durch Züchtung eines Stammes von E.coli nach Anspruch 1.
- 8. Hybridprotein nach Anspruch 7, umfassend am N-endständigen Ende die sieben ersten Aminosäuren des Proteins cll des Bakteriophagen Lambda, (Met)-Val-Arg-Ala-Asn-Lys-Arg, fusioniert mit der Peptidsequenz des reifen menschlichen Serumalbumins, erhalten durch Züchtung eines Stammes von E.coli, der den Bestand des im Anspruch 3 definierten Plasmids "pXL462" zu gewährleisten vermag.
- 9. Hybridprotein nach Anspruch 7, umfassend am N-endständigen Ende die sechs ersten Aminosäuren der Penicillinamidase, Met-Lys-Asn-Arg-Asn-Arg, fusioniert mit der Peptidsequenz des reifen menschlichen Serumalbumins, erhalten durch Züchtung eines Stammes von E.coli, der den Bestand des im Anspruch 4 definierten Plasmids "pXL641" zu gewährleisten vermag.
- 10. Hybridprotein nach Anspruch 7, umfassend am N-endständigen Ende die sechs ersten Aminosäuren der durch gerichtete Mutagenese modifizierten Penicillinamidase, Met-Lys-Asn-Arg-Lys-Arg, fusioniert mit der Peptidsequenz des reifen menschlichen Serumalbumins, erhalten durch Züchtung eines Stammes von E.coli, der den Bestand des im Anspruch 5 definierten Plasmids "pXL740" zu gewährleisten vermag.
- 11. Hybridprotein nach Anspruch 7, umfassend am N-enständigen Ende die sechs ersten Aminosäuren der durch gerichtete Mutagenese modifizierten Penicillinamidase, Met-Lys-Lys-Arg-Lys-Arg, fusioniert mit der Peptidsequenz des reifen menschlichen Serumalbumins, erhalten duch Züchtung eines Stammes von E.coli, der den Bestand des im Anspruch 6 definierten Plasmids "pXL741" zu gewährleisten vermag.

25

30

35

40

45

50

55

humaine mature.

- 6. Le plasmide "pXL741" déposé sous le numéro 146-87 caractérisé en ce qu'il contient le promoteur Ptrp suivi du promoteur de la pénicilline amidase, le site de fixation des ribosomes du gène de la pénicilline amidase et les six premiers codons d'un gène de la pénicilline amidase modifié par mutagénèse dirigée codant pour le polypeptide Met-Lys-Lys-Arg-Lys-Arg fusionnés avec le gène de structure de la sérum-albumine humaine mature.
- 7. La protéine hybride comprenant une extension peptidique N-terminale hydrophile de 5 à 8 acides aminés, et de préférence 6 à 7, terminée par un site de coupure par la trypsine, fusionnée avec la séquence peptidique de la sérum-albumine humaine mature lorsqu'elle est obtenue par culture d'une souche d'<u>E. Coli</u> selon la revendication 1.
- 8. La protéine hybride selon la revendication 7 comprenant à l'extrémité N-terminale les sept premiers acides aminés de la protéine cll de bactériophage lambda, (Met)-Val-Arg-Ala-Asn-Lys-Arg, fusionnés avec la séquence peptidique de la sérum-albumine humaine mature lorsqu'elle est obtenue par culture d'une souche d'<u>E.Coli</u> capable d'assurer le maintien du plasmide "pXL462" défini dans la revendication 3.
- 9. La protéine hybride selon la revendication 7 comprenant à l'extrémité N-terminale les six premiers acides aminés de la pénicilline amidase, Met-Lys-Asn-Arg-Asn-Arg, fusionnés avec la séquence peptidique de la sérum-albumine humaine mature, lorsqu'elle est obtenue par culture d'une souche d'<u>E.Coli</u> capable d'assurer le maintien du plasmide "pXL641" défini dans la revendication 4.
- 10. La protéine hybride selon la revendication 7 comprenant à l'extrémité N-terminale les six premiers acides aminés d'une pénicilline amidase N-terminale modifiée par mutagénèse dirigée, Met-Lys-Asn-Arg-Lys-Arg, fusionnés à la séquence peptidique de la sérum-albumine humaine mature, lorsqu'elle est obtenue par culture d'une souche d'<u>E.coli</u> capable d'assurer le maintien du plasmide "pXL740" défini dans la revendication 5.
- 11. La protéine hybride selon la revendication 7 comprenant à l'extrémité N-terminale les six premiers acides aminés d'une pénicilline amidase modifiée par mutagénèse dirigée, Met-Lys-Arg-Lys-Arg, fusionnés avec la séquence peptidique de la sérum-albumine humaine mature, lorsqu'elle est obtenue par culture d'une souche d'<u>E.coli</u> capable d'assurer le maintien du plasmide "pXL741" défini dans la revendication 6.

Claims

30

35

- 1. Process for the preparation of mature human serum albumin, characterised in that:
- in a first stage a hybrid protein is prepared containing a hydrophilic N-terminal peptide extension containing 5 to 8, and preferably 6 to 7, amino acids, terminated by a site for cutting with trypsin, which is fused with the peptide sequence of mature human serum albumin, by culture of a strain of E.coli capable of ensuring the conservation of a plasmid containing the nucleotide sequence coding for the said hybrid protein, whose expression is controlled by an inducible bacterial promoter,
- in a second stage the denatured and insoluble molecule thus obtained is converted into a renatured and soluble molecule by using a denaturing and renaturing method permitting a rearrangement of the secondary

L'insertion du plasmide "pTlBll" s'étend au-delà de l'extrémité 5', Le chiffre 1 correspond au ler acide aminé de l'albumine humaine. vers la séquence de la proalbumine.

Figure 3

Figure 3

Figure 3

SEQUENCE DE L'INSERTION DE PXL53

80	ອອວອ	3393
7.0	Ecori Gaaticcicactcattaggcaccccaggcttttagacatttatggcttcgggctggtatgttgtgtagagggg	CTTAAGGAGTGAGTAATCCGTGGGGGTCCGAAAATGTGTGTAATACGAAGGCCGGAGCATACAACACACCTTAACACTCGCC
09	CGTATGTTG	AGCATACAAC/
- -	GCTTCCGGCT	CGAAGGCCGA
40	ACACATTTAT	TGTGTAAATA
30	CCAGGCTTTT	GGTCCGAAAA
20	TTAGGCACCC	AATCCGTGGG
10	RIATTCCTCACTCA	TAAGGAGTGAGT
	Sco GA	CI

0.6	100	110	— <u>}</u>	120	130	140	150	1.60
ATAACAATTTCACAGAG	ACAGGAAACA	GGAATCCAT	GGATGC	ACACAAGA	STEAGETT	GCTCATCGG1	<u> nggaaacaggaatteattgcatgcacacagagtgaggttgctcatcgctttanagatttgcgaga</u>	recenda
TATTGTTAAAGTGTGTCT	rerectitet	CCTTAGGTA	CCTACG	rcrerre	CACTCCAA	ÇGAGTAGCCA	rectttgteettabbtaeetabbtetetetetecaaceaatabeeaantitetaaaeete	ACCCTCT

AGAAAATTICAAAGCCTIGGTGTTGATIGCCTTIGCTCAGTATCTICAGCAGTGTCCATTTGAAGATCATGTAAATTAG TCTTTTAAAGTTTCGGAACCACAACTAACGGAAACGAGTCATAGAAGTCGTCACAGGTAAACTTCTAGTACATTTTAATÇ

CAGGGGGGGCCTTGCCAAGTATCTGTGAAATCAAGATTCGATCTCCAGTAAACTGAAGGAATGCTGTGAAAAACCTC GT C C C G C C T G G G G T T C T A G G C T T T T A G T T C T A G C T A G G T T C C A C T T C G A C C T T T T G G A G

TTCCGTAGGACTAATGAGACAGCATGAGGACTCTGAACGGTTCTGTATACTTTGGTGAGATCTCTTCACGACACGGC AAGGCATCCTGATTACTCTGTGTGCTGCTGCTGGCTTGCCAAGACATATGAAACCACTCTAGAGAGTGCTGTGCCG 1.180 1.140

Figure 4 (suite)

540 VGC TCG TCG TCG TGA TGA VCT

029	TTG	1.EU	710		AAG	L.YS	770	CTG	LEU	830
	CTG	LEU			C 1 C	LEU		292	ARG	
	scc rsc	CYS		;	AGA	ARG		GCT	VAL. ALA	
	ວວຍ	ALA ALA CYS			CAG	GLN		GTA GCT	VAL.	
•	GCA	AL.A			AAA	I.YS		GCA	ALA	
982	GAT AAA	LYS	1907 07		ວວຍ	ALA	755	TGG	TRP	815
	GAT	ASF			TCT	SER		CCA	ALA	
	GCT	ALA			TCG	SER		AAA	LYS	
	GCT	ALA			CCT	ALA BER		TTC	∃H.d	
	CAA	GLN			AAG	L.YS		GCT	AL.A	
029	TGC	CYS		0149	999	GLY	740	AGA	ARG	008
	TGT	CYS			GAA	פרח		GAA	CLU	
	GAA	פרח			GAT	ASP		GGA	לר. פרץ	
	ACA	THR			993	ARG		* T.1	PHE	
	111	PLE			CTT	LEU		AAA	LYS	
209	CCT	A.A		665	GAA	0 TO	725	CTC CAA	GLN	785
		ALA ALA			GAT	ASP GLU		CTC	LEU	
	AAA	LYS			CTC	LEU		AGT	SER	
	AGG TAT AAA GCT	ARG TYR			CCA AAG	PRO LYS		TGT GCC AGT	CYS ALA	
	996	ARG			CCA	PR0		161	CYS	

AGC CAG AGA TIT CCC AAA GCT GAG TIT GCA GAA GIT TCC AAG TTA GTG ACA GAT CIT ACC

785

SER GLN ARG PHE FRO LYS ALA GLU PHE ALA GLU VAL BER LYS LEU VAL THR ASP LEU THR

Figure 5 (suite)

6N

585	0 1660 1870 1880 1890 1900 1910 1920	TCAAGCTGCCTTAGGCTTATAAGATGACATTTAAAAGCATCTCAGCCTAGCATGAGAATAAGAGAAAGAA	ACGACGTTCAGTTCGACGGAATCCGAATATTGTAGTGTAAATTTTCGTAGAGTCGGATGGTACTCTTATTCTCTTTTCTTT
	1850	TGCTGCAAGTCAAGCTGC	ACGACGTTCAGTTCGA

1930	1940	1950	1960	1.970	1980	1990	2000
ATGAAGATCAAAAGCTT	CTTATTCAT	attcattctgtttttcttttcgttggtgtaaagccaacacctgtctaaaaacataatt	TTTTCGTTG	GTGTAAAAGC	CAACACCCTG	TCTAAAAAC	ATAAATT
TACTTCTAGTTTTCGAATAAGTAAGAAAAAAAAAAAAAA	GAATAAGTA	AGACAAAAG	AAAAGCAAC	CACATTTCG	GTTGTGGGAC	ACATITITE	TATTTAA
2010	2020	2030	2040	2050	2060	2070	2080
TCTITAATCATTITAATCATTTTGCCTCTTTTCTGTGCTTCAATTAAAAAATGGAAAGAATCTAAAAAACCCCC	AATCATTTT	GCCTCTTTC1	rererectre	AATTAATAAA	AAATGGAAAG	AATCTAAAAA	AACCCCC
AGAAATTAGTAAAATTAGTAAAAGGGAGAAAAAGAGACACGAAGTTAATTATTTTTACCTTTCTTAGATTTTTTTGGGG	TTAGTAAAA	CGGAGAAAAGA	IGACACGAAGI	ITAATTATT	TTTACCTTTC	TTAGATITIT	TGGGGG

GGGGGGGGGGGGCGTCGTTGTTGTTGCACGCGTTTGATAATTGACGCTT

Figure 4 (suite)

00 00 7G 7T 7T 7T 7T 70 80 80 80 80 80

1280	IAATCAAA	ATTAGTTT
1270	CTCAGAATTI	GAGTCTTAA
1260	CTCTTATGGAGGCCTCAGAATTTAATCAAA	**************************************
120	CTCTT	0000

330	1340	1350	1360
recect	ATTAGTICGI	recectattaettesi i acallamana i acal	320-515
ACCCCA	TAATCAAGCA	ACCCGATAATCAACCAATGTGGTTGTTTCATGG	TTCATGG

144	AAGTGGGCAGCAATGTTGTAAACATCCTGAA	TTCACCCGTCGTTTACAACATTTGTAGGACTT
1430	TETTETAA	ACAACATT.
1420	беслеселл	CCGTCGTTT
410	AAGTG	TTCAC

1510 1520	CAGTTATGTGTGTTGCATGAGAAACGCCCAGTA	GTCAATACACACAACGTACTCTTTTGCGGTCAT
1500	Arerererrec	racacacaacs
490	CAGTTA	GTCAAT

9.	300	31.0	320
STGAAAATT	STGAAAATTGTGACAAATCACTTCATACCCTT	ACTICATACO	CTT
SACTITIA	3ACTTTTAACACTGTTTAGTGAAGTATGGGAA	TGAAGTATGG	GAA
7.0	380	390	400
BAAATGGCI	GAAATGGCTGACTGCTGTGCAAACAAGAACC	CAAAACAAGA) JOE
CTTTACCG	CTTTACCGACTGACGACGCTTTTGTTCTTGC	crrretic1	291 .
50	140	470	480
CCCCCGAT	CCCCCGATTGGTGAGCCAGAGGTTGATGTGA	GAGGTTGATO	TEA
GGGGGCTA	GGGGGCTAACCACTCTGGTCTCCAAC VACACT	CTCCAACTAC	SACT
30	540	350	960
TATATGAA	TATATGAAATTGCCAGAAGACATCCTTACTTT	SACATCCTTA	TTT
ATATACTT	ATATACTTTAACGGTCTTCTGTAGGAATGAAA	STGTAGGAAT	SAAA

1370	TCA	SER	1430	AAA	LYS	1490	CAG	מרא	1550	GAA	פרוו
-		VAI.	-	T.G.T	CYS	~	AAC	ASN	-	ACA	CYS CYS THE GLU
	CAA	GLN VAL		TGT	CYS		CTG	ren			CYS
	ວວວ	PRO		AGC AAA TGT	I.YS		GTC	VAL		AAA TGC TGC	CYS
	GTA	VAL.		AGC	SER		GTG	VAL		AAA	L.YS
1355	AAA	LYS VAL	1415	ere eec	GLY	1475	TCC	SER	1535		THÌ
~	TAC ACC AAG AAA GTA CCC CAA GTG	LYS		ឲរឲ	ARG ASN LEU GLY LYB VAL GLY BER	-	GCA GAA GAC TAT CTA TCC GTG GTC CTG			AGA GTC ACC	BER ASP ARG VAL THR LYS
	ACC	TYR THR		GGA AAA	LYS		TAT	TYR LEU		AGA	ARG
	TAC			GGA	GL.Y		GAC				ASP
	CGT	ARG		CTA	LEU		GAA	ALA GLU ASP		GTA AGT GAC	SER
1340	TTA GTT	LEU VAL	1400	AGA AAC	ABM	1.460	GCA	AL.A	1520	GTA	
••			•					CYS	~	CCA	PRO
	CTA	ALA LEU		GTC TCA	SER		ATG CCC TGT	PRO			THR
	GĊG	AL.A		GTC	GLIJ VAL		ATG	MET		AAA ACG	LYB
	AAT	SE.N. ASN		GAG			AGA	ARG		GAG	VAL LEU HIS GLU LYS THR PRO VAL
1325	GAC TAC AAA TTC CAG	SI.N	1385	GTA	VAL	1445	AAA	LY9	1505		HIE
	TTC	PHE	•	CTT	LEU	-	GCA AAA	ALA LYB	→	TTG CAT	1. EU
	AAA	TYR LYS		CCA ACT	THR		CCT GAA	0.13		GTG	VAI.
	TAC	TYR		CCA	PRO		CCT	PRO		TGT	CYS
	GAC	פרח		ACT	1 HR	•	CAT	HIS		TTA	LEU

Figure 5 (suite)

A. Oligonucléotide codant pour les 6 premiers codons du gène cII

MetVol Arg Ala Asn Lys Arg
5'-AGCTTCATATGGTTCGTGCAAACAACGCG-3'
3'-AGTATACCAAGCACGTTTGTTTGCGCAGCT-5'

B. Oligonucléotide utilisé pour la Mutagénèse par délétion.

OLIGONUCLEOTIDES SYNTHETIQUES
EMPLOYES DANS LA CONSTRUCTION DE
LA cII-SAH

ISO IGT IER

GAA GTC GAT GAA ACA TAC GTT CCC

GLU VAL ASP GLU THR TYR VAL PRO

1.655

1670

ASP ILE CYS THR LEU SER GLU LYS

GAT ATA TGC ACA CTT TCT GAG AAG

1715

ETT GTG AAA CAC AAG GCA I LEU VAL LYS HIS LYS PRO LYS ALA

1775

GCA GCT TTT GTA GAG AAG TGC TGC

ALA MIA PHE VAL GLU LYS CYS CYS

BER BER LYB LEU LYB GLU CYS CYS

TCC AGT AAA CTG AAG GAA TGC TGT

890 075 AA TGT GCT GAT GAC AGG GCG GAC

LU CYB ALA ABP ABP ARG ALA ABP

932

950

0101

995

GLU VAL GLU ASN ASP GLU MET PRO

GAA GTG GAA AAT GAT GAG ATG CCT

1055

1070

AGT AAG GAT GIT TGC AAA AAC TAT

BER LYS ASP VAL CYS LYS ASN TYR

215

35(AC.	11
	Vas	AL.A
	C.L.	אסן
	ACA	TIR
	A GAC AAA TTA TGC ACA GTT GCA AGI	Y ASP LYB LEU CYB THR VAL ALA THE
333	TTA	LEU
	PUU	LYS
	gvc	ABP
	Œ	>-

B THE CYB VAL ALA ABP GLU BER ALA A ACA TGT GTT GCT GAT GAG TCA GCT

290

275

J GLN GLN CYB PRD FUE GLU AGP NIS

r che che ter cen tit enn ent ent

pXL53

170

155

I ANA GAT TTG GGA GNA GAN ANT TTG

I LYB ABP LEU GLY GLU GLU ABN PHE

Plasmide d'expression de la fusion "Peptide signal PAM-SAH"

EcoR1 GRATTCCCTGTTGRCARTTRHTCRTCGRRCTAGTTARCTAGTACGCRGCTTGGCTGCRGGT Promoteur Tryptophone

Het-Tyr Tyr Trp Ser Leu Pro Ala Leu Ala Asp Ala His Lys...

Séquence des signaux d'expression et du début de la fusion "Peptide signal PAM-SAH" de pXL288.

STUCTURE DE LA "PREPRO-SAH"