12. Zadania do wykładu analiza 2B

- 1. Funkcja f(x,y) o ciągłych pochodnych cząstkowych spełnia warunki $f(x,0)=\sin x$ oraz $f(x,1)=\pi^{-1}+x^3$. Pokazać, że w pewnym punkcie pochodna cząstkowa $\frac{\partial f}{\partial y}$ zeruje się. Wskazówka: Skorzystać z twierdzenia Lagrange'a.
- 2. Funkcja g(x,y) ma dodatnie pochodne cząstkowe. Pokazać, że g(x,y) < g(s,t) jeśli x < s i y < t.
- **3.** Funkcja h(x,y) ma ciągłe pochodne cząstkowe i spełnia warunki $\frac{\partial h}{\partial x} + \frac{\partial h}{\partial y} > 0$ i $\frac{\partial h}{\partial x} \frac{\partial h}{\partial y} > 0$. Pokazać, że $h(0,0) < h(\pi,e)$.
- **4.** Funkcja s(u,v) posiada ciągłe pochodne cząstkowe w każdym punkcie i spełnia s(0,0)=s(3,4). Pokazać, że istnieje punkt płaszczyzny, w którym $3\frac{\partial s}{\partial u}+4\frac{\partial s}{\partial v}=0$.
- 5. Pokazać, że funkcja f(x,y) mająca ograniczone pochodne cząstkowe w pewnym wypukłym obszarze płaszczyzny jest jednostajnie ciągła w tym obszarze, tzn. wartości funkcji leżą blisko siebie, jeśli argumenty funkcji leżą blisko siebie.
 - * Czy założenie o wypukłości obszaru jest istotne?
- 6. Wyrazić pochodne cząstkowe funkcji f w punkcie (1,2,3) przy pomocy pochodnych cząstkowych funkcji g jeśli f(x,y,z) = g(y,z,x). Użyć oznaczenia $D_i f$ na pochodną cząstkową względem i-tej współrzędnej, aby uniknąć pomieszania oznaczeń.
- 7. Niech z = f(x y). Pokazać, że $\frac{\partial z}{\partial x} = -\frac{\partial z}{\partial y}$.
- 8. Dla w = f(x y, y z, z x) pokazać, że $\frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} + \frac{\partial w}{\partial z} = 0$.
- 9. Niech $z = f(x, y), x = r \cos \theta$ i $y = r \sin \theta$. Pokazać, że $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial r} \cos \theta \frac{\partial z}{\partial \theta} \frac{\sin \theta}{r}$ oraz $\frac{\partial z}{\partial y} = \frac{\partial z}{\partial r} \sin \theta + \frac{\partial z}{\partial \theta} \frac{\cos \theta}{r}$.
- 10. Funkcja f(x,y) jest jednorodna stopnia n jeśli dla dowolnej liczby rzeczywistej t spełniony jest warunek

$$f(tx, ty) = t^n f(x, y). (1)$$

Pokazać, że dla takiej funkcji zachodzi wzór

$$x\frac{\partial f}{\partial x}(x,y) + y\frac{\partial f}{\partial y}(x,y) = n f(x,y).$$

Wskazówka: Zróżniczkować obie strony (1) względem t i podstawić t=1.

- 11. Korzystając z poprzedniego zadania pokazać, że funkcja f(x,y)=tg $\frac{x^2+y^2}{xy}$ spełnia $x\frac{\partial f}{\partial x}+y\frac{\partial f}{\partial y}=0$.
- 12. Samochód zbliża się do przejazdu kolejowego przebiegającego pod kątem prostym do drogi, z prędkością 30 km/h. Pociąg zbliża się z prędkością 160 km/h. Znaleźć tempo zmiany odległości pomiędzy samochodem i pociągiem, gdy samochód znajduje się 1 km a pociąg 2 km od przejazdu.
- 13. Wielkość z jest funkcją zmiennych x i y i spełnia równanie

$$x^2z^2 - 2xyz + z^3y^2 = 3.$$

Obliczyć $\partial z/\partial x$ i $\partial z/\partial y$ stosując różniczkowanie niejawne.

14. Wykonać polecenie poprzedniego zadania dla

$$\frac{1}{z} + \frac{1}{y+z} + \frac{1}{x+y+z} = \frac{1}{2}.$$

- 15. Znaleźć równanie płaszczyzny stycznej do wykresu funkcji z = f(x, y) w punkcie (x_0, y_0) .
 - (a) $f(x,y) = x^2 + y^2 xy$; $(x_0, y_0) = (1, 2)$.
 - (b) $f(x,y) = \sin xy$; $(x_0, y_0) = (-\pi/2, 1)$.
- 16. Czy istnieje płaszczy
zna styczna do wykresu funkcji $z = x^2 y^2 + 2x + 2y$
 - (a) równoległa do płaszczyzny z = x + y;
 - (b) prostopadła do wektora $(1,2,3)^T$.
- 17. Znaleźć pochodną odwzorowania $(x, y, z)^T \mapsto (x^2 + \sin zy, y^2 \arctan xy, e^{x+y+z})^T$ w punkcie $(1, 0, 0)^T$.
- **18.** Znaleźć pochodną odwzorowania $(x, y, z)^T \mapsto (xyz^2, x^2 z^2)^T$ w dowolnym punkcie $(x, y, z)^T$.
- 19. Pokazać, że pochodna w dowolnym punkcie odwzorowania liniowego związanego z macierzą A wymiaru m na n jest równa macierzy A.
- **20.** Znaleźć pochodną w punkcie (a,b) odwzorowania z $\mathbb{R}^3 \times \mathbb{R}^3$ w \mathbb{R} zadanego wzorem $\mathbb{R}^3 \times \mathbb{R}^3 \ni (x,y) \mapsto x \circ y \in \mathbb{R}$.