ESERCIZI TUTORATO ALGEBRA 2 16 DICEMBRE 2019 - LEZIONE 9

MARCO ABBADINI

Di seguito si trovano le soluzioni degli esercizi svolti in classe. Non sono soluzioni complete, ma solo dei veloci riassunti.

Esercizio 1 (Seconda prova intermedia, 17 Dicembre 2014, eserc. 1).

Sia G un gruppo di ordine 2015, e sia data una azione di G su un insieme S con |S| = 20.

- (a) Qual è il minimo numero di orbite in cui S viene ripartito dall'azione di G?
- (b) Si può stabilire esattamente il numero di orbite in cui S viene ripartito da G nel caso in cui l'azione sia priva di punti fissi?

Soluzione. (a) 4. (20 = 13 + 5 + 1 + 1, oppure 20 = 5 + 5 + 5 + 5.)

(b) Sì, 4. (20 = 5 + 5 + 5 + 5.)

Esercizio 2 (Seconda prova intermedia, 21 Dicembre 2017, eserc. 1).

Classificare tutti i gruppi G di ordine 44. Dire in quali casi esistono elementi di ordine 4 e 22. Calcolare il derivato e il centro di G in tutti i casi.

Soluzione. $44 = 2^2 \cdot 11$.

$$|Syl_{11}(G)| = 1. |Syl_2(G)| \in \{1, 11\}.$$

Siano P_2 e P_1 1 rispettivamente un 2-sottogruppo di Sylow e l'unico 11-sottogruppo di Sylow.

$$G = P_{11} \rtimes P_2.$$

La struttura di gruppo di G è determinata da come gli elementi di P_2 moltiplicano gli elementi di P_{11} , e ciò è determinato da come gli elementi di P_2 coniugano gli elementi di P_{11} . In sotanza, la struttura di gruppo di G è determinata dalla seguente mappa (che è un omomorfismo).

(1)
$$t \colon P_2 \longrightarrow \operatorname{Aut}(P_{11}) \\ x \longmapsto t_x \colon P_{11} \to P_{11}, h \mapsto x^{-1}hx$$

In effetti, per ogni omomorfismo $\varphi \colon P_2 \to \operatorname{Aut}(P_{11})$ esiste un prodotto semidiretto $G = P_{11} \rtimes P_2$ tale che φ è proprio la mappa di coniugio in (1).

Cerchiamo perciò gli omomorfismi $\varphi \colon P_2 \to \operatorname{Aut}(P_{11})$. $\operatorname{Aut}(P_{11}) \simeq U_{11} \simeq C_{10}$. C_{10} ha un unico elemento di ordine 2, che denotiamo con \overline{y} .

Caso $P_2 = C_4$: Ci sono esattamente due omomorfismi da C_4 a Aut (P_11) . L'omomorfismo banale, che corrisponde a $C_{11} \times C_4 \simeq C_{44}$. Inoltre c'è un omomorfismo non banale, che manda un generatore di C_4 in \overline{y} .

Caso $P_2 = C_2 \times C_2$: Ci sono esattamente 4 omomorfismi da $C_2 \times C_2$ a C_{10} . Uno di questi omomorfismi è l'omomorfismo banale, che corrisponde al gruppo $C_2 \times C_2 \times C_{11} \simeq C_{22} \times C_2$. I tre omomorfismi non banali danno luogo a gruppi isomorfi, in virtù del seguente fatto.

Ultimo aggiornamento: 16 dicembre 2019. Non esitate a segnalare eventuali errori a marco.abbadini@unimi.it.

Fatto. Siano H, K, H', K' gruppi, siano $\varphi \colon H \to \operatorname{Aut}(K)$ e $\varphi' \colon H' \to \operatorname{Aut}(K')$ omomorfismi. Supponiamo che esistano $\beta \colon H \to H'$ e $\alpha \colon K \to K'$ isomorfismi tali che il seguente diagramma commuti,

$$H \xrightarrow{\varphi} \operatorname{Aut}(K)$$

$$\downarrow^{\beta} \qquad \qquad \downarrow^{\alpha^{-1}[-]\alpha}$$

$$H' \xrightarrow{\varphi'} \operatorname{Aut}(K')$$

dove $\alpha^{-1}[-]\alpha$: Aut $(K) \to \text{Aut}(K')$ è la funzione che associa a $f \in \text{Aut}(K)$ la composizione $\alpha^{-1}f\alpha$ (da sinistra verso destra).

$$K \xrightarrow{f} K$$

$$\alpha^{-1} \uparrow \qquad \downarrow \alpha$$

$$K' \xrightarrow{\alpha^{-1} f \alpha} K'$$

Allora $K \rtimes_{\varphi} H \simeq K' \rtimes_{\varphi'} H'$.

In classe è stata fatta questa osservazione nel caso specifico H = H', K = K', in cui quindi $\beta \in \operatorname{Aut}(H)$ e $\alpha \in \operatorname{Aut}(K)$.

Del Fatto sopra utilizziamo un caso particolare:

Fatto. Siano H, K gruppi, siano $\varphi \colon H \to \operatorname{Aut}(K)$ e $\varphi' \colon H \to \operatorname{Aut}(K)$ omomorfismi. Supponiamo che esista $\beta \in \operatorname{Aut}(H)$ tale che il seguente diagramma commuti,

$$\begin{array}{ccc} H & \stackrel{\varphi}{\longrightarrow} \operatorname{Aut}(K) \\ \downarrow^{\beta} & & \downarrow_{\operatorname{Id}} \\ H & \stackrel{\varphi'}{\longrightarrow} \operatorname{Aut}(K) \end{array}$$

Allora $K \rtimes_{\varphi} H \simeq K \rtimes_{\varphi'} H$.

Ricapitolando, abbiamo quattro gruppi di ordine 44, a meno di isomorfismo.

- (1) Il prodotto diretto $C_4 \times C_{11}$.
- (2) Un prodotto semidiretto non diretto $H = C_4 \rtimes C_{11}$.
- (3) Il prodotto diretto $C_2 \times C_2 \times C_{11}$.
- (4) Un prodotto semidiretto non diretto $K = (C_2 \times C_2) \rtimes C_{11}$. Dove compaiono D_{44} e $C_2 \times D_{22}$ in questa lista? Per esclusione, essi sono entrambi (4). Elementi di ordine 4 e 22?
- (1) Il prodotto diretto $C_4 \times C_{11}$ ha elementi di ordine 4 e di ordine 22.
- (2) Il prodotto semidiretto non diretto $H=C_4\rtimes C_{11}$ ha elementi di ordine 4 e di ordine 22.
- (3) Il prodotto diretto $C_2 \times C_2 \times C_{11}$ non ha elementi di ordine 4 e ha elementi di ordine 22.
- (4) $C_2 \times D_{22}$ non ha elementi di ordine 4 e ha elementi di ordine 22. Derivato e centro?
- (1) Il derivato del prodotto diretto $C_4 \times C_{11}$ è banale. Il centro è tutto il gruppo.
- (2) Il derivato del prodotto semidiretto non diretto $H=C_4\rtimes C_{11}$ è C_{11} . Il centro è il sottogruppo di ordine 2 di C_4
- (3) Il derivato del prodotto diretto $C_2 \times C_2 \times C_{11}$ è banale. Il centro è tutto il gruppo.
- (4) Il derivato di $C_2 \times D_{22}$ è il sottogruppo di ordine 11. Il centro è $C_2 \times \{1\}$.