Machine Learning Internship Report

Task 1: Predict Restaurant Ratings

Objective

Build a machine learning model to predict the aggregate rating of a restaurant based on features like cuisine type, pricing, services, and more.

Data Overview

Total Records: 9,551

Total Features: 21

Missing Values: 9 (in 'Cuisines' column)

Data Preprocessing

- Filled missing 'Cuisines' with 'Unknown'
- Created new feature: Cuisine_Count
- One-hot encoded popular cuisines: Italian, Indian, Chinese, etc.
- Converted table booking and online delivery into numeric (binary) format

Exploratory Data Analysis

Visualizations:

• Histogram of rating distribution

- Average rating by price range
- Average rating by cuisine
- Correlation matrix

Model Performance

 Model
 RMSE
 MAE
 R²

 Linear
 1.2905
 1.0733
 0.2684

 Regression

 Random Forest
 1.2438
 0.9835
 0.3203

 Gradient
 1.2080
 0.9694
 0.3589

 Boosting

☑ Best Model: Gradient Boosting Regressor

Feature Importance

Feature	Importance
Price range	0.5393
Average cost for two	0.2378
Has_Online_deliver y	0.1352
Cuisine_Count	0.0427
Has_Indian	0.0206
Table booking	0.0045
Has_Chinese	0.0185
Has_Japanese	0.0092

Insights

- Price and cost are the strongest predictors
- Online delivery positively impacts ratings
- Cuisine diversity influences rating
- Table booking has minimal effect
- Indian and Chinese cuisines contribute more than Japanese

Limitations & Improvements

- $R^2 \approx 0.36 \rightarrow \text{indicates limited predictive power}$
- Suggested enhancements:
 - Add location data (e.g., proximity to landmarks)
 - o Incorporate review text sentiment
 - Include operating hours
 - Explore hybrid and deep learning models

Task 2: Recommendation System

Goal

Build a content-based recommender system to suggest restaurants based on user preferences.

Example 1: High-End Italian Restaurant Lover

Restaurant	City	Cost	Rating
Ristorante Prego	Noida	₹1200	3.1
San Gimignano - The Imperial	New Delhi	₹5000	3.7

The Krib New Delhi ₹2500 3.2

Prego - The Westin Gurgaon ₹3000 3.8

Bella Cucina Gurgaon ₹4000 4.1

Diversity Metrics:

• Cities: 3

• Cuisine Entropy: 0.000

• Price Range Entropy: 0.7219

Example 2: Budget Asian Food Lover

Restaurant City Cost Rating

Red Gurgaon ₹1200 3.0

Soi Thai New Delhi ₹1500 3.6

Noshi New Delhi ₹1000 4.2

China New Delhi ₹800 3.9

Bowl

Shagun New Delhi ₹800 3.9

Diversity Metrics:

• Cities: 2

• Cuisine Entropy: 1.5774

• Price Range Entropy: 0.9710

Example 3: Food Quality Enthusiast

Restaurant City Cost Rating

Keventers New Delhi ₹400 3.9

RollsKing Noida ₹300 3.8

Tonico Cafe Kochi ₹400 4.0

Atul Chaat New Delhi ₹100 3.8

Corner

Novelty Dairy New Delhi ₹200 4.1

Diversity Metrics:

• Cities: 3

• Cuisine Entropy: 0.0000

• Price Range Entropy: 0.0000

Implementation Highlights

• Preprocessing: filled missing values, binary cuisine indicators

• Feature engineering: extracted key cuisines

• Similarity metric: Cosine similarity

• Evaluation: Entropy and uniqueness of results

Future Improvements

- Add location-based filtering
- Implement hybrid recommender systems
- Consider restaurant operating hours
- Integrate user feedback loops

Task 3: Rating Classification

Goal

Classify restaurant ratings into categories:

• Low, Medium, High, Excellent

Model Results

Model	Accuracy	Macro F1-score
Logistic Regression	0.5568	0.42
Random Forest	0.5835	0.48
SVM	0.5667	0.43
Gradient Boosting	0.6112	0.47

☑ Best Classifier: Gradient Boosting Classifier

Task 4: Geographic Analysis

Dataset Stats

• Unique cities: 141

• Unique localities: 1,208

• Unique countries: 15

• Final Dataset Size: (9,551, 24)

Geographic Range

• Latitude: -41.330 to 55.976

• Longitude: -157.948 to 174.832

• Map File: global_restaurant_distribution.html

Top 10 Cities by Restaurant Count

- 1. New Delhi 5473
- 2. Gurgaon 1118
- 3. Noida 1080
- 4. Faridabad 251
- 5. Ghaziabad 25

Top Cities by Average Rating

- 1. Inner City 4.90
- 2. Quezon City 4.80
- 3. Makati City 4.65
- 4. Pasig City 4.63
- 5. Mandaluyong 4.63

Top Cities by Cuisine Type (Example: New Delhi)

• North Indian: 2425

• Chinese: 1638

• South Indian: 411

• Fast Food: 1304

• Italian: 376

Conclusion

This project successfully addressed key machine learning challenges in the restaurant domain:

- Pricing and delivery options are critical for predicting ratings
- Content-based recommendation aligns well with user profiles
- Gradient Boosting models achieved best regression & classification performance
- Geographic visualizations reveal cuisine preferences and restaurant clustering