AD-A104 860 RICE UNIV HOUSTON TEX DEPT OF MATHEMATICAL SCIENCES F/G 12/1
AN ALGORITHM FOR NONPARAMETRIC DENSITY ESTIMATION, (U)
MAY 76 D W SCOTT, R A TAPIA, J R THOMPSON E-(40-1)-5046
NL

END ONE

LEVEL

For: Computer Science and Statistics: Ainth Annual Symposium on the interface

2

AN ALGORITHM FOR NONPARAMETRIC DENSITY ESTIMATION ?

pavid W. Scott Dept. of Biostatistics Baylor College of Medicine Houston, Texas 77030

Richard A. Tapia Dept. of Mathematical Sciences Rice University Houston, Texas 77001 James R. Thompson Dept. of Mathematical Sciences Rice University Houston, Texas 77001

J. 17/8 ...
J. 17/8 ...
ABSTRACT

4

A numerical algorithm is given for implementing a nonparametric maximum penalized likelihood estimator similar to those proposed by Good and Gaskins and those proposed by de Montricher, Tapia and Thompson. It is shown how the resulting nonlinear constrained optimization problem may be effectively solved by using Tapia's approach to Newton's method for constrained problems.

1. Introduction. de Montricher, Tapia and Thompson demonstrated that the standard histogram was an unstable maximum likelihood density estimator and considered maximum penalized likelihood estimators similar to those previously considered by Good and Gaskins (1971). Specifically suppose we are given the random sample $x_1,\ldots,x_N\in(a,b)$. Let $H_0(a,b)$ consist of the functions f defined on (a,b) with the property that f(a)=f(b)=0 and f' is a member of $L^2(a,b)$. Estimate the density function which gave ries to the random sample x_1,\ldots,x_N by the solution of the constrained optimization problem

(1.1) max L(f); $f \in H_0^1(a,b)$, $f \ge 0$ and

$$\int_{a}^{b} f(x) dx = 1,$$

Ehoro

(1.2) $L(f) = \prod_{i=1}^{K} f(x_i) \exp(-\alpha \int_a^b |f'(x)|^2 dx), (\alpha > 0).$

The functional L in (1.2) is called the penalized likelihood and the solution of (1.1) is called the maximum penalized likelihood estimator based on the random sample x_1, \dots, x_N . de Montricher, Tapia and Thompson (1975) proved that problem (1.1) has a unique solution and is a monospline of degree two,

i.e., a polynomial of degree two plus a spline of degree one. We now give a numerical algorithm for approximating this monospline.

2. The Discrete Problem. For given n, consider the mesh t_0,\ldots,t_{n+1} where $t_i=a+ih$, $i=0,\ldots,n+1$ with h=(b-a)/(n+1). Let \widehat{H}_0^1 denote the vector space of all continuous piecewise linear functions which have knots at t_1,\ldots,t_n and vanish at a and b. For $p\in H_0^1$ let $y_i=p(t_i)$, $i=0,\ldots,n+1$. Then $y_0=y_{n+1}=0$ and

(2.1) $p(x) \ge 0 \Leftrightarrow y_i \ge 0$, i = 1,...,n

(2.2)
$$\int_{a}^{b} p(x) dx = h \sum_{i=0}^{n} y_{i}$$

(2.3)
$$\int_{a}^{b} p'(x)^{2} dx = \frac{1}{h} \sum_{i=0}^{n} (y_{i+1} - y_{i})^{2}.$$

Let

(2.4)
$$v_1 = \# \text{ of } x_1 \text{ in } (a, t_1 + \frac{h}{2})$$

(2.5)
$$v_i = \emptyset$$
 of x_i in $\{t_{i-1} + \frac{h}{2}, t_i + \frac{h}{2}\}$,

(2.6)
$$v_n = \text{fof } x_i \text{ in } \{t_{n-1} + \frac{h}{2}, b\}$$
.

We shall assume that we have enough data so that $|\nu_1>0\,\text{V}$ i . Our finite dimensional

linis work was supported in part by ONR grant CNR-042-283 and ERDA contract E-(40-1)-5046

81 9 30 078

4.513

This document has been approved for public release and sale; its distribution is unlimited.

(2.8) $\hat{L}(y) = \prod_{i=1}^{n} y_i^{v_i} \exp(-ch^{-1} \sum_{i=1}^{n} (y_{i+1} - y_i)^2).$

Clearly (2.7) is a constrained optimization problem in \mathbb{R}^{n} .

<u>Proposition 2.1.</u> The constraints $y_i \ge 0$ of problem (2.7) are not active at the solution. <u>Proof.</u> If $y^* = (hN)^{-1}(1,...,l)$, then y^* satisfies all the constraints of problem

satisfies all the constraints of problem (2.7) and $\hat{L}(y) > 0$. Moreover, if $y = (y_1, \dots, y_n)$ is such that $y_i = 0$ for some i, then $\hat{L}(y) = 0$. This proves the proposition.

It follows that we can obtain the solution of problem (2.7) by solving

(2.9) min(-log
$$\hat{L}(y)$$
); $\sum_{i=1}^{n} y_i = h^{-1}$

where from (2.8) we see that

(2.10)
$$-\log(\hat{L}(y)) = -\sum_{i=1}^{n} v_i \log(y_i)$$

+ $\cosh^{-1}\sum_{i=1}^{n} (y_{i+1} - y_i)^2$.

3. The Algorithm. The Lagrangian for problem (2.9) is

(3.1)
$$l(y, \lambda) = -\frac{n}{2} v_i \log(y_i)$$

 $i=1$
 $+oh^{-1} \frac{n}{2} (y_{i+1} - y_i)^2$
 $+\lambda (\frac{n}{2} y_i - h^{-1})$.

The gradient of the Lagrangian is (3.2) $\nabla \ell(y,\lambda) = (\dots,-\nu_1y_1^{-1})$

+
$$20h^{-1}(-y_{i+1} + 2y_i - y_{i-1})$$

+ $\lambda_{1}...)^{T}$

and the Hessian of the Lagrangian is the diagonally dominant tridiagonal matrix

(3.3)
$$\nabla^2 \ell(y, \lambda) = \begin{pmatrix} d_0^1 & d_1 & & \\ d_{-1} & d_0^2 & d_1 & & \\ & & & d_{-1} & d_0^{n-1} & d_1 \\ & & & & d_{-1} & d_0^n \end{pmatrix}$$

where $d_{-1} = d_1 = -2 ch^{-1}$ and $d_0^1 = 4 ch^{-1} + v_1 (y_1^{-1})^2$.

It therefore follows that Tapia's (1974), (1976) approach to Newton's method for constrained problems is a natural one for this problem and the operation count will be

O(n) per iteration instead of the usual $O(n^3)$ expected from Newton's method.

Let
$$g(y) = \sum_{i=1}^{n} y_i - h^{-1}$$
. Then

 $U = \nabla g(y) = (1, ..., 1)^{T}$. We use \langle , \rangle to denote the inner product in \mathbb{R}^{n} .

The Newton-like Algorithm.

Step 1. Determine $\alpha > 0$, $\epsilon > 0$, y° , λ° and set $k : \approx 0$.

 $\frac{\text{Step 2}}{\lambda^{k+1}} = \langle \mathbf{U}, \nabla^2 \mathcal{L}(\mathbf{y}^k, \lambda^k)^{-1} \mathbf{U} \rangle (\mathbf{g}(\mathbf{y}^k) - \langle \mathbf{U}, \nabla^2 \mathbf{L}(\mathbf{y}^k, \lambda^k)^{-1} \mathbf{U} \rangle)$ and $\mathbf{y}^{k+1} = \mathbf{y}^k - \nabla^2 \mathcal{L}(\mathbf{y}^k, \lambda^k)^{-1} \nabla \mathcal{L}(\mathbf{y}^k, \lambda^{k+1})$

Step 3. If $\|\nabla \ell(x^k, \lambda^k)\| \le \varepsilon$, then stop. If not, then set k:=k+1 and go to Step 2.

Initialization values could be

$$\alpha = 5.0$$

$$y^{0} = (nh)^{-1}(1,...,1)$$

$$\lambda^{0} = -2(nh)^{-1}(y_{1} + y_{n}) + \sum_{i=1}^{n} v_{i}(ny_{i})^{-1}$$

This λ^{O} is given by the projection formula in Tapia (1976).

For a complete description of this algorithm and related quasi-Newton methods for constrained optimization the reader is referred to Tapia (1976).

<u>Proposition 3.1</u>. The above algorithm is locally quadratically convergent and requires only O(n) operations per iteration.

4. Some Numerical Examples. Although for reasons of conciseness it was appropriate to develop the above discrete maximum penalized likelihood algorithm using the integral of the square of the first derivative in the penalty team, we have found by experience that the slightly more complicated second derivative approach gives less locally "rough" estimators. Namely we consider the problem

(4.1) Max
$$L(f)$$
; $f \in H_0^2(a,b)$, $f \ge 0$ and

$$\int_{0}^{b} f(x) dx = 1$$

where $(4.2) L(f) = \prod_{i=1}^{n} f(x_i) \exp[-\alpha \int_{a}^{b} |f^{i}(x)|^2 dx], (\alpha > 0).$

The details of the algorithm to approximate the solution to this problem are omitted, since they are very similar to the argument in Section 2. The operation count is still O(n) per iteration.

In Figure 1, we demonstrate the solution to (4.1) using a random sample of size 20 from the standard normal distribution with mean 0 and variance 1. In Figure 2, we show the

estimator based on a sample of size 100. In Figures 3 and 4 we show the D.M.P.L.E.estimators for the 50-50 mixture of two normal distributions, both having variance 1 and with means at -1.5 and +1.5 for samples of size 25 and 100 respectively.

One comforting feature of the maximum penalized likelihood procedure is the relatively robust quality of the estimator in that changes of the optimal α with N and from distribution to distribution tend not to be traumatic, and that a rough and ready guess for α (e.g., 10) is frequently satisfactory. In Figures 5 and 6 we show an estimate for the Gaussian mexture mentioned above for a sample size of 300 and α values of 10 and .1.

If the density to be estimated is denoted by $f(\cdot)$ and the D.M.P.L.E. is denoted by $f(\cdot)$, then we consider as one measure of estimate quality the average integrated mean square error

(4.3) IMSE = $\int (\hat{f}(x) - f(x))^2 f(x) dx$.

I.M.S.E.'s for various α and N are given in Table 1 for the standard normal, the 50-50 normal mixture mentioned above, the t distribution with 5 degrees of freedom and the F distribution with (10,10) degrees of freedom.

REFERENCES

- Good, I.J. and Gaskins, R.A. (1971).
 "Nonparametric roughness penalties for
 probability densities," <u>Biometrika</u> 58,
 pp. 255-277.
- de Montricher, G., Tapia, R.A., and Thompson, J.R. (1975). "Nonparametric maximimum likelihood estimation of probability densities by penalty function methods," <u>Annals of Statistics</u> 3, pp. 1329-1348.
- Tapia, R.A. (1974). "A stable approach
 to Newton's method for general mathematical programming problems in Rⁿ,"
 <u>Journal of Optimization Theory and
 Applications</u> 14, pp. 453-476.
- Tapia, R.A. (1976), "Diagonalized multiplier methods and quasi-Newton methods for constrained optimization," to appear in <u>Journal of Optimization Theory and</u> <u>Applications</u>.

TABLE 1 Average I.M.S.E. of the D.M.P.L.E. for α Perturbed by a Factor of Two. Divide α by 10 for the F_{10,10} Samples.

I.M.S.E. for

Sample	α = 5	α = 10	$\alpha = 20$
N(0.1) N = 25	.00242	.00267	.00427
N(0.1) N = 100	.00093	.00079	.00089
N(0,1) N = 400	.00037	.00033	.00035
N(0.1) N = 800	.00028	.00022	.00019
Bimodal $N = 25$.00197	.00159	.00152
Bimodal N = 100	.00070	.00054	.00171
Bimodal N = 400	.00030	.00024	.00022
t ₅ N = 25	.00297	.00282	.00350
t ₅ N = 100	.00092	.00084	.00101
t ₅ N = 400	.00039	.00032	.00030
F _{10,10} N = 25	.03208	.03865	.05519
$F_{10,10} N = 100$.00996	.01390	.02411
$F_{10,10} N = 400$.00292	.00450	.00740

¥.

M MANUF SIZE A THE METER OF SIZE WAS MANUF SIZE A THE METER OF A PARK DEACH SIZED MAS HOW & SPECIAL SHAPEN WEST MASSESSES OF SIZED SIZED SIZED BE ACCOUNT OF SIZED MASSESSES SIZED S Figure N = 300 D.M.P.L.E. ~= 10 .5N(-1.5,1) + .5N(1.5,1)| Company | Comp Figure 6. N = 300 ... SN(-1.5,1) + .SN(1.5,1)D.M.P.L.E. $\alpha = .1$

-

7

¥(<u>.</u>€

END

DATE FILMED Output Discourse of the content of th

DTIC