高显经典力学习题解答

数据风暴中的避风港

二〇二四年十月二十五日

数据风暴中的避风港 社区成员共同编写,本习题解答及其 LATEX 代码符合 MIT 许可. 链接: HTTPS://GITHUB.COM/PHIYU/GAOXIAN. 编写成员均为物理专业或非物理专业的物理爱好者,编写过程中难免有许多纰漏,欢迎指出,也欢迎加 入 数据风暴中的避风港 大家庭 (QQ 群: 832100706). 2024年10月

目录

第一章 变分法

1.1 给定 f(t) 的泛函

$$S[f] = -\int dt \, e^{-V(f(t))} \sqrt{1 - (f'(t))^2}$$

其中 V 是 f 的任意函数. 求 S[f] 取极值时, f(x) 的欧拉-拉格朗日方程.

参考解答 1.1 记 $L = e^{-V(f(t))} \sqrt{1 - (f'(t))^2}$,则

$$\frac{\partial L}{\partial f} = V \frac{\mathrm{d}V}{\mathrm{d}f} \mathrm{e}^{-V(f(t))} \sqrt{1 - (f'(t))^2}, \qquad \frac{\partial L}{\partial f'} = \mathrm{e}^{-V(f(t))} \frac{f'(t)}{\sqrt{1 - (f'(t))^2}}$$

$$\delta S = \int dt \left(V \frac{dV}{df} e^{-V(f(t))} \sqrt{1 - (f'(t))^2} \delta f + e^{-V(f(t))} \frac{f'(t)}{\sqrt{1 - (f'(t))^2}} \delta f' \right)$$

$$\simeq \int dt \left(V \frac{dV}{df} e^{-V(f(t))} \sqrt{1 - (f'(t))^2} - \frac{d}{dt} \left(e^{-V(f(t))} \frac{f'(t)}{\sqrt{1 - (f'(t))^2}} \right) \right) \delta f$$

因此, Euler-Lagrange 方程为

$$-\frac{\delta S}{\delta f} = -V \frac{\mathrm{d}V}{\mathrm{d}f} f' \mathrm{e}^{-V(f(t))} \frac{f'}{\sqrt{1 - f'^2}} + \mathrm{e}^{-V(f(t))} \frac{f'' + (1 - f')f'^2}{(1 - f'^2)^{3/2}} - V \frac{\mathrm{d}V}{\mathrm{d}f} \mathrm{e}^{-V(f(t))} \sqrt{1 - f'^2} = 0$$

- 1.2 给定 f(t) 的泛函 $S[f] = \int dt L$, 其中 $L = (f'(t))^2 + f(t)f'(t) + \frac{1}{2}f(t)f''(t)$.
- (1) 求一阶泛函导数 $\frac{\delta S}{\delta f}$;
- (2) 将 L 改写成 $L = \tilde{L} + \frac{\mathrm{d}F}{\mathrm{d}t}$ 的形式, 要求 \tilde{L} 中不包含 f''(t), 求 \tilde{L} 和 F;
- (3) 求泛函 $\tilde{S}[f]=\int \mathrm{d}t\, \tilde{L}$ 的一阶泛函导数 $\frac{\delta \tilde{S}}{\delta f}$,并比较其和 $\frac{\delta S}{\delta f}$ 的异同.

参考解答 1.2 (1)

$$\delta S = \int dt \, \delta L = \int dt \left(\left(f' + \frac{1}{2} f'' \right) \delta f + \left(2f' + f \right) \delta f' + \frac{1}{2} f \delta f'' \right)$$

$$\simeq \int dt \left(f' + \frac{1}{2} f'' - \frac{d}{dt} \left(2f' + f \right) + \frac{d^2}{dt^2} \left(\frac{1}{2} f \right) \right) \delta f$$

$$\frac{\delta S}{\delta f} = -f''$$

(2) 假设
$$F = \frac{1}{2}ff'$$
, 则 $\frac{dF}{dt} = \frac{1}{2}f'^2 + \frac{1}{2}ff''$, $\tilde{L} = ff' + \frac{1}{2}f'^2$ 满足题意.

$$\delta \tilde{S}[f] = \int dt \delta \tilde{L} = \int dt \left(f' \delta f + (f + f') \delta f' \right)$$

$$\simeq \int dt \left(f' - \frac{d}{dt} (f + f') \right) \delta f$$

$$\frac{\delta \tilde{S}}{\delta f} = -f''$$

注意到
$$\frac{\delta \tilde{S}}{\delta f} = \frac{\delta S}{\delta f}$$
.

1.3 给定两个函数 n(t) 和 a(t) 的泛函 $S[n,a] = \int_{t_1}^{t_2} \mathrm{d}t \, na^3 \left(A(n) + 3B(n) \frac{a'^2}{n^2 a^2}\right)$, 其中 A, B 是 n(t) 的任意函数. 求泛函 S[n,a] 取极值时, n(t) 和 a(t) 的欧拉-拉格朗日方程.

参考解答 1.3

$$\delta S = \int \mathrm{d}t \left(a^3 \left(A(n) + 3B(n) \frac{a'^2}{n^2 a^2} \right) + na^3 \left(\frac{\mathrm{d}A}{\mathrm{d}n} + 3 \frac{\mathrm{d}B}{\mathrm{d}n} \frac{a'^2}{n^2 a^2} - \frac{3}{2} B(n) \frac{a'^2}{n^3 a^2} \right) \right) \delta n$$

$$-\frac{\delta S}{\delta n} = -a^3 A - 3B \frac{aa'^2}{n^2} - na^3 \frac{\mathrm{d}A}{\mathrm{d}n} - 3n \frac{\mathrm{d}B}{\mathrm{d}n} \frac{aa'^2}{n^2} + \frac{3}{2} nB \frac{aa'^2}{n^3} = 0$$

$$\delta S = \int \mathrm{d}t \left(6B \frac{aa'}{n} \delta a' + \left(3nAa^2 + 3B \frac{a'^2}{n} \right) \delta a \right)$$

$$\simeq \int \mathrm{d}t \left(-\frac{\mathrm{d}}{\mathrm{d}t} \left(6B \frac{aa'}{n} \right) + 3nAa^2 + 3B \frac{a'^2}{n} \right) \delta a$$

$$-\frac{\delta S}{\delta a} = \frac{\mathrm{d}}{\mathrm{d}t} \left(6B \frac{aa'}{n} \right) - 3nAa^2 - 3B \frac{a'^2}{n} = 0$$

1.4 给定二元函数 f(t,x) 的泛函 $S[f] = \iint \mathrm{d}t \mathrm{d}x \frac{1}{2} \left[\left(\frac{\partial f(t,x)}{\partial t} \right)^2 - \left(\frac{\partial f(t,x)}{\partial x} \right)^2 - m^2 f^2(t,x) \right]$, 其中 m 是常数。求泛函 S[f] 取极值时 f(t,x) 的欧拉-拉格朗日方程。

参考解答 1.4 泛函 S[f] 的 Lagrange 函数为 $L(t,x,f,f_t,f_x) = \frac{1}{2}(f_t^2 - f_x^2 - m^2 f^2)$,则

$$\delta S = \iint dt dx \delta L$$

$$\simeq \iint dt dx \left[\frac{\partial L}{\partial f} - \frac{\partial}{\partial t} \left(\frac{\partial L}{\partial f_t} \right) - \frac{\partial}{\partial x} \left(\frac{\partial L}{\partial f_x} \right) \right]$$

$$= \iint dt dx \left(-m^2 f - f_{tt} + f_{xx} \right) \delta f$$

取极值有 $-\frac{\partial S}{\partial f} = 0$,即 $f_{tt} - f_{xx} + -m^2 f = 0$

- 1.5 考虑一条不可拉伸、质量均匀的柔软细绳,长为 l,质量为 m。细绳两端点悬挂于相同高度,水平距离为 a(a < l)。
 - (1) 选择合适的坐标,求细绳总的重力势能 V 作为细绳形状的泛函;
 - (2) 求细绳重力势能取极值时,细绳形状所满足的欧拉-拉格朗日方程。

参考解答 1.5 待施工

第二章 位形空间