Math Notation

see conventional math notation

this note describes my custom <u>math notation</u>, meant to solve inconsistencies in <u>conventional</u> <u>math notation</u>. it is not meant to be a fully formal system of <u>mathematics</u>; rather, it is built to be easy to understand and intuitive to use by mere humans.

principles

- all equality <u>operators</u> check for equality and return a <u>boolean</u>, and it is implied that an <u>expression</u> on its own must evaluate to ⊤. this allows for <u>boolean logic operators</u> to be applied on equalities explicitly as opposed informally
- <u>sets</u> are <u>functions</u> that return a <u>boolean</u> (<u>sets</u> are <u>predicates</u>). this way, <u>boolean logic</u> <u>operators</u> and <u>set operators</u> are one and the same. other <u>data structures</u> that work similarly include <u>vectors</u>, <u>matrixes</u>, <u>sequences</u>, <u>multisets</u>, <u>ordered pairs</u>...
- some <u>operators</u> are identical but have different precedence as "more brackets means more explicit, but less brackets means less complex and less confusing"
- $\lfloor a \rfloor$ returns both positive and negative square roots $(\lfloor q2 \rfloor \equiv \because q)$. the same is true for other reciprocals
- superscripts are modifiers (subscripts with special meanings). this distinction is especially useful when working with <u>forward propagation</u> and <u>backpropagation</u> in <u>neural networks</u>, for example
- <u>derivatives</u> are not to be written as y', but rather as their complete form $\delta y \delta x$. this makes <u>calculus notation</u> way more intuitive
- all indices start at 0, as they always should have

notation

also see trigonometric functions and calculus notation

operator descriptions

notation	description	notes
a:b	addition	
$a\cdot b$	subtraction	

notation	description	notes
∵ and ∴	\pm and \mp	
$a \mid b \text{ and } a \mid b$	multiplication	
a- b and a – b	division	
[a]b	exponentiation	represents a power by convention
a[b]	exponentiation	represents an exponential by convention
$\lfloor a \rfloor b$	b th root of a	b=2 if b is omitted
$\lceil a ceil b$	base- $b \underline{\text{logarithm}}$ of a	b = e if b is omitted
x o E where E is an $expression$	<u>function</u> literal	$f=x ightarrow E\equiv f{\leftarrow}x=E$
$f \leftarrow E$ where E is an $expression$	function application	uncommon, shorthand preferred
a=b	equality	numerical equality by convention
a < b and a > b	strict inequality	
$a \leq b \text{ and } a \geq b$	non-strict inequality	
$a \wedge b$	logical AND	
a ee b	logical OR	
$a \ / \ b$	logical difference	$a \wedge b = \bot$
$a\equiv b$	equality	logical equality by convention
a imes b	nonequality	also serves as logical XOR
$a \vdash b$	implication, subset	a implies b , b for all a
$a\dashv b$	reverse implication, superset	a for all b , b implies a
$x_0 \mid x_1 \mid \dots x_n$ where \mid is any $operator$	with $n=3,\ x_0 \ \ x_1 \ \ x_2 \ \ x_3$	step size is $\because 1$ if x_1 is omitted
$x_0 \dots x_n$	with $n = 3, x_0, x_1, x_2, x_3$	step size is $:: 1$ if x_1 is omitted
x_{sub}	the <u>variable</u> x with a subscript $_{sub}$	
V^n where V is a <u>vector</u>	the n th component of V	
a^i where a is a <u>sequence</u>	the i th element of a	
b^i where b is a <u>series</u>	the i th element of b	

notation	$\operatorname{description}$	notes	
$M^{\langle i,j \rangle}$ where M is a $\underline{\mathrm{matrix}}$	the i, j th element of M	uncommon, shorthand preferred	
M^{\intercal} where M is a $\underline{\text{matrix}}$	the transpose of A		
M^- where M is a $\underline{\text{matrix}}$	the multiplicative inverse of A		
P^b where P is an <u>ordered</u> <u>pair</u>	the b th element of P		
S a where S is a <u>set</u>	whether a is element of S		
M a where M is a <u>multiset</u>	the number of elements a in M		
G v where G is a graph	whether vertex v is in G		
$G^{\langle v,w angle}$ where G is a graph	the number of edges from v to w in G	uncommon, shorthand preferred	

shorthands

shorthand	definition	notes
$a ot \!$	$/(a \vdash b), \ /a = b, \ /a \leq b, \ /a < b$	
$x\omega$ where x is a <u>variable</u> and ω is a <u>number</u>	$[x]\omega$	
ax where x is a <u>variable</u>	a x	
f x where f is a function	$f {\leftarrow} x$	common, longhand discouraged
$x \ y \rightarrow E$ where E is an $expression$	x o y o E	
V^x , V^y and V^z where V is a <u>vector</u>	the x , y and z components of V	
$M^{i,j}$ where M is a matrix	$M^{\langle i,j angle}$	common, longhand discouraged
$M^{i,}$ where M is a $\underline{\text{matrix}}$	the i th row of M	
$M^{,j}$ where M is a $\underline{\text{matrix}}$	the j th column of M	
$S = \langle\langle a \dots b angle angle$	$Sx\equiv x=a\vee\ldots x=b$	see <u>set</u>
$P=\langle f,t angle$	$P^\perp = f \wedge P^\top = t$	see <u>ordered pair</u>
$M = egin{bmatrix} a & b \ c & d \end{bmatrix}$	matrix literal	see <u>matrix</u>

shorthand	definition	notes
x o (a < x < b)	the closed interval from a to b	same can be used for open intervals
$A \vdash B$ where \vdash is any $\underline{\#think}$ operator	$A x \vdash B x$ for all x	commonly $\equiv + + + + + + + + + + + + + + + + + + $
$A \cdot B$ where \cdot is any $\# think$ operator	$x o A \ x \cdot B \ x$	commonly : $\cdot \mid - \frac{\text{\#think}}{}$
$\delta y - \delta x$	the <u>derivative</u> of y with respect to x	δ should be used instead of d
$\int y \mid \delta x$	the antiderivative of y with respect to x	δ should be used instead of d

constants

constant	definition	notes
Ø	undefined	see <u>improved expression</u> <u>evaluation</u>
Т	logical true	
\perp	logical false	
au	the ratio of the circumference of a $\underline{\text{circle}}$ to its radius	using π is discouraged
e	Euler's constant	see <u>eulers constant</u>
i	$\lfloor \cdot 1 \rfloor$	see <u>imaginary</u>

operator properties

 $in\ order\ of\ high\ to\ low\ precedence$

operator	associativity	unary identity	unary description
$() \langle \rangle \left[\right] x x_a^i$			
1 -	left	1	inverse
$\delta \sin \leftarrow $	right-ish		
: • :: ::	left	0	negation
-	left	1	inverse
$\int \lim \ \dots \ o$	right		

operator	associativity	unary identity	unary description
=≠>≥<≤	AND	0	is (not) 0
/	left	Т	logical NOT
\wedge \vee	left		
⊣ ⊢	left		
\equiv \times	AND	Т	logical NOT
,			

note: above,

- x represents <u>variables</u>
- ullet x_a^i represents subscripts and superscripts
- \leftarrow represents <u>function</u> application
- \rightarrow represents <u>function</u> literals
- represents matrix literals

note: unary <u>operators</u> have identical precedence to their binary counterparts, but are right associative

definition: let = be an <u>operator</u> with AND associativity. then, $a=b=c=\ldots$ \equiv $a=b \land b=c \land c=\ldots$

variable scope

<u>variable</u> scope is currently entirely context-dependent. this is know to cause occasional issues, such as with <u>derivatives</u>: $\delta f x - \delta x$ could represent both the <u>derivative</u> of f with respect to x in the general sense, or the <u>derivative</u> of f with respect to x at the point x as $(x \to \delta f x - \delta x) x \equiv \delta f x - \delta x$.

examples

```
\underline{\text{quadratic formula}} \colon \cdot b : \lfloor b2 \cdot 4ac \rfloor - 2a
```

definition of the set of complex numbers: $\mathbb{C}x \equiv x = a: b|\cdot 1| \wedge \mathbb{R}a \wedge \mathbb{R}b$

definition of the implication / subset / superset / "for all" symbol: $a \vdash b \equiv /a \lor b$ and $a \dashv b \equiv a \lor /b$

in <u>set theory</u>, if U is a sub<u>set</u> of V and V is a sub<u>set</u> of U, then V is U. in this math notation: $(U x \vdash V x) \land (U x \dashv V x) \equiv U = V$

the probability density of the normal distribution in <u>conventional math notation</u>: $\frac{1}{\sqrt{2\sigma^2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

compared to in my math notation: $-\lfloor \tau \sigma 2 \rfloor - e [[x \cdot \mu] 2 - 2\sigma 2]$

definition of factorials: fact $n = 1 \mid \dots n$

the negation of an implication in my <u>math notation</u>: $B \vdash C \times B / C$ (B implying C equals not (B without C) or implication is the negation of set difference or the negation of "for all B, C" is "there exists a B such that not C")

compared to <u>conventional math notation</u>: $\neg(B \to C) = B \land \neg C$ or $(a \in B \to a \in C) \iff a \notin B \backslash C$ or $B \subset C \iff \forall a \in C, a \notin B$

the resonant frequency of an LC circuit in <u>conventional math notation</u>: $f = \frac{1}{2\pi\sqrt{LC}}$

compared to in my math notation: $f = -\tau \lfloor LC \rfloor$

see random math notation formulas for more examples