

WHAT IS CLAIMED IS:

1. A transparent laminate for pen-input image display device, having, laminated in the following order,
 - a surface-treated layer;
 - a transparent rigid layer; and
 - a transparent relaxing layer having a thickness of from 0.2 to 2 mm.
2. The transparent laminate according to claim 1, wherein the transparent relaxing layer is an adhesive.
3. The transparent laminate according to claim 1, wherein the transparent relaxing layer has a thickness of from 0.2 to 1.5 mm.
4. The transparent laminate according to claim 1, wherein the dynamic storage modulus G' of the transparent rigid layer at 20°C is not lower than 2×10^8 Pa.

5. The transparent laminate according to claim 4,
wherein the dynamic storage modulus G' of the
transparent rigid layer at 20°C is not lower than 5×10^8
Pa.

6. The transparent laminate according to claim 1,
wherein the dynamic storage modulus G' of the
transparent relaxing layer at 20°C is not higher than 1×10^7 Pa.

7. The transparent laminate according to claim 6,
wherein the dynamic storage modulus G' of the
transparent relaxing layer at 20°C is from 1×10^3 to 7×10^6 Pa.

8. The transparent laminate according to claim 1,
wherein the transparent rigid layer has a thickness
of from 0.15 to 2 mm.

9. The transparent laminate according to claim 8,
wherein the transparent rigid layer has a thickness
of from 0.2 to 1 mm.

10. The transparent laminate according to claim 1,
wherein the surface-treated layer comprises at least
one selected from the group consisting of an anti-
reflection layer, an anti-mirroring layer and a hard coated
layer.

11. The transparent laminate according to claim 1,
wherein the transparent relaxing layer is formed
from a polymer composite material including organic
lamellar clay minerals,
wherein the transparent relaxing layer has a dynamic
storage modulus at 20°C of not higher than 6×10^6 Pa.

12. The transparent laminate according to claim 11,
wherein the polymer composite material has a dynamic
storage modulus at 20°C of from 1×10^3 to 1×10^5 Pa.

13. The transparent laminate according to claim 1,
further comprising a pair of transparent
electrically conductive layers,
wherein the transparent electrically conductive
layers are provided between the surface-treated layer and
the transparent rigid layer or between the transparent
rigid layer and the transparent relaxing layer so as to
face each other with separation of a predetermined distance.

14. A pen-input image display device comprising:
an image display panel; and
a transparent laminate having, laminated in the
following order,

a surface-treated layer;
a transparent rigid layer; and
a transparent relaxing layer having a thickness of
from 0.2 to 2 mm,

wherein the transparent laminate is directly
laminated onto a visual surface side of the image display
panel, so that the transparent relaxing layer is placed
inward.

15. The pen-input image display device according to claim 14,

which has such elastic deformability when an input pen touches a surface of the display device under a load of 300 g that a contact portion of the display device sinks inward to a depth of from 20 to 100 μm , but the contact portion of the display device is restored to its original state when the load is removed.

16. A pen-input image display method comprising:
laminating a transparent laminate having, laminated in the following order, a surface-treated layer, a transparent rigid layer and a transparent relaxing layer having a thickness of from 0.2 to 2 mm, directly onto a visual surface side of a image display panel, so that the transparent relaxing layer is placed inward; and
inputting with a input pen.

17. The pen-input image display method according to
claim 16,

wherein, when the input pen touches a surface of the
image display panel under a load of 300 g, a contact
portion sinks inward to a depth of from 20 to 200 μm , but
the contact portion is restored to its original state when
the load is removed.