

Localized crystallization of Germanium nanowires

- Travaux pratiques IVa, Applied Physics - Master

Supervisors: Anna Fontcuberta i Morral, Santhanu Panikar Ramanandan

Laboratory of Semiconductor Materials

Motivations

Goal: Investigating which are the best rapid thermal annealing (RTA) parameters for crystallizing Germanium NWs

What we look for:

- Good quality and defects free crystal structure
- **Epitaxy** with the Silicon substrate
- Simple way to grow nanowires networks
- Possibility of mass production

What for: Ge-Si core-shell nanowires quantum dots

NWs fabrication

evaporator Leybold optics Lab 600H (Ge 99,99%)

Evaporation and lift-off

- Simple way to grow **nanowires networks**
- Possibility of mass production

■ TP IV presentation, 12/01/2021

NWs fabrication

Pitch distance (P)
Length of NWs (L)
Width of NWs
Height of NWs
Orientation

1μm, 3μm, 5μm 1μm, 5μm, 10μm, 25μm, 50μm 45nm, 65nm, 95nm,135nm 20nm 100, 110, 010

EPFL

Crystallization

Rapid Theremal Annealing (RTA)

Solid Phase Epitaxy approach

JETFIRST 200

Performed series:

- 500°C for 10 sec
- 650°C for 10, 60, 120 sec
- 800°C for 10 sec

Analysis

Raman spectroscopy

- Renishaw confocal Raman (PH dept.)
- Raman spectrometer (MX dept.)

SEM and TEM (with EDX analysis)

Zeiss Merlin SEM

Talos F200S TEM

Talos™ F200S TEM for Materials Science (thermofisher.com)
 Metrology – Center of MicroNanotechnology CMi - EPFL
 inVia™ confocal Raman microscope (renishaw.com)

Variations in crystal quality as a function of NWs morphology and orientation

No significant differences

1

presence of an **oxide layer**

Variation in crystal quality as a function of annealing temperature

We observed:

- 650°C presented cracks and holes
- 800°C showed the presence of intermixing
- 800°C exhibited peak
 shift and peak
 broadening

Variation in crystal quality as a function of annealing time (Sample 650°C-120 sec)

No significant differences

TEM assessed:

- Polycrystallinity
- Presence of microtwins

oxide layer at the interface

- Ichiro Mizushima et al. "Oxide-Mediated Solid Phase Epitaxy (OMSPE) of Silicon: A New Low-Temperature Epitaxy Technique Using Intentionally Grown Native Oxide". In: Japanese Journal of Applied Physics 39 (Apr. 2000)
- I. Mizushima et al. "Effect of interfacial oxide on solid-phase epitaxy of Si films deposited on Si substrates". In: Journal of Applied Physics 63, 1065 (1988)

Chemical characterization

presence of Oxygen at the interface

TP IV presentation, 12/01/2021

Conclusion

Best RTA parameters: 500°C - 10 seconds

Future goal:

improving **fabrication process**:

- avoid the formation of an oxyde layer
- Achieve strain induced mobility enhancement
- Obtain monocrystalline and defect free crystal structures