ELETRÓNICA DIGITAL E CIRCUITOS 2018

Folha de Exercícios #8

[Codificadores | Comparadores | Memórias | Somadores | ALUs | Multiplicadores]

- 1. O código Excess-3 é um código de 4 bits relacionado com o código BCD. Para converter um número decimal na forma Excess-3, soma-se 3 a cada dígito decimal e converte-se a soma para BCD.
 - a. Obtenha a tabela do código Excess-3 para os dígitos decimais 0:9.
 - b. Desenhe um circuito codificador decimal-Excess-3.
- 2. Desenhe um circuito lógico que tem como saída o máximo de dois números inteiros de n bits, a partir de um comparador de n bits e portas AND e OR.
- 3. Desenhe um circuito ROM construído com díodos com a capacidade de armazenar a informação da tabela abaixo, em que os endereços são selecionados com um descodificador 1-de-8. Especifique as funções Booleanas geradas pela ROM.

Address	0	1	2	3	4	5	6	7
Word	0110	0011	1010	1101	0101	1110	1111	0001

4. Desenhe um circuito ROM que gera as seguintes funções Booleanas.

$$Y_0=ar{A}ar{B}\mathcal{C}+Aar{B}ar{\mathcal{C}}+ar{A}Bar{\mathcal{C}},Y_1=ar{A}B\mathcal{C},Y_2=AB\mathcal{C}+ar{A}ar{B}ar{\mathcal{C}}+ar{A}Bar{\mathcal{C}},Y_3=ar{A}ar{B}\mathcal{C}+ABar{\mathcal{C}}+ar{A}Bar{\mathcal{C}}$$
 Determine a informação armazenada na ROM.

- 5. Considere um circuito somador completo de 1 bit, com entradas (A, B, C_{in}) e saídas (S, C_{out}).
 - a. Escreva as expressões Booleanas de S e C_{out} como somas de mintermos.
 - b. Desenhe um circuito lógico baseado nas expressões anteriores usando portas NOT, AND e OR.
 - c. Simplifique as expressões de S e C_{out} e construa o circuito lógico com portas AND, OR e XOR.
 - d. Identifique, nas expressões de S e C_{out}, blocos semi somadores e desenhe o circuito somador com base nestes blocos.
- 6. Configure o seguinte circuito somador-subtrator binário para realizar as seguintes operações aritméticas:

- a. 23 + 61
- b. 97 58
- c. 36 + (-68)
- d. 48 (-3)
- 7. Considere a Unidade Aritmética Lógica e a respetiva tabela de verdade mostradas abaixo. Especifique as configurações deste dispositivo para a realização das seguintes operações:

$S_3 S_2 S_1 S_0$	M=1 (Logic Function)	M = 0 (Arithmetic Function) $C_{in} = 1$ (For $C_{in} = 0$, add 1 to F
0 0 0 0	F = A'	F = A
0 0 0 1	F = (A+B)'	F = A + B
0 0 1 0	F = A'B	F = A + B'
0 0 1 1	F=0	F = minus 1
0 1 0 0	F = (AB)'	F = A plus (AB')
0 1 0 1	F = B'	$F = (A + B)$ plus (AB^{\prime})
0 1 1 0	$F = A \oplus B$	F = A minus B minus 1
0 1 1 1	F = AB'	F = AB' minus 1
1 0 0 0	F = A' + B	F = A plus (AB)
1 0 0 1	$F = (A \oplus B)'$	F = A plus B
1 0 1 0	F = B	F = (A + B') plus (AB)
1 0 1 1	F = AB	F = AB minus 1
1 1 0 0	F=1	F = A plus A
1 1 0 1	F = A + B'	F = (A + B) plus A
1 1 1 0	F = A + B	F = (A + B') plus A
1111	F = A	F = A minus 1

- a. $F = A \oplus B$, A = 1101, B = 0110;
- b. F = A plus B, A = 1110, B = 0101.
- 8. Desenhe um circuito multiplicador binário 2×2 usando somadores completos e portas AND.