Orthogonalité et distances dans l'espace

Produit scalaire dans l'espace

Exercice 1 Soit ABCD un rectangle tel que AB = 4 et AD = 1, 5.

Soit *I* le milieu de [*AB*] et *J* le point tel que $4\overrightarrow{DJ} = \overrightarrow{DC}$.

Calculer les produits scalaires suivants :

2. $\overrightarrow{AB} \cdot \overrightarrow{II}$

3. $\overrightarrow{BC} \cdot \overrightarrow{JI}$

4. $\overrightarrow{AC} \cdot \overrightarrow{JI}$

- **Exercice 2** On considère trois points A, B et C tels que AB = 7, AC = 4 et $\overrightarrow{AB} \cdot \overrightarrow{AC} = 14$. Déterminer la mesure de l'angle \widehat{BAC} .
- Exercice 3 Est-il possible d'avoir 3 points de l'espace A, B et C tels que AB = 3, BC = 6 et $\overrightarrow{AB} \cdot \overrightarrow{AC} = 20$?
- Exercice 4 Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs de l'espace. Dans cet exercice, on veut prouver que $(\overrightarrow{u} \cdot \overrightarrow{v})^2 \le \|\overrightarrow{u}\|^2 \|\overrightarrow{v}\|^2$ mais sans utiliser que $\overrightarrow{u} \cdot \overrightarrow{v} = \|\overrightarrow{u}\| \times \|\overrightarrow{v}\| \times \cos(\overrightarrow{u}, \overrightarrow{v})$, en utilisant uniquement les propriétés du produit scalaire. Pour tout réel t, on pose $P(t) = \|\overrightarrow{u} + t\overrightarrow{v}\|^2$.
 - **1.** Montrer que $P: t \mapsto P(t)$ est un polynôme du second degré.
 - **2**. Que peut-on dire sur le signe de *P* ? Et donc sur sont discriminant ?
 - 3. En déduire l'inégalité. (Elle est appelée : Inégalité de Cauchy-Schwarz)
- Exercice 5 Soient \vec{u} , \vec{v} et \vec{w} trois vecteurs tels que $\vec{u} \cdot \vec{v} = 3$, $\vec{v} \cdot \vec{w} = 5$, $\vec{u} \cdot \vec{w} = -1$ et $||\vec{u}|| = 4$.
 - 1. Que vaut $2\vec{u} \cdot (3\vec{u} 2\vec{v} + 4\vec{w})$?
 - **2**. Que vaut $(3\vec{v} 2\vec{u}) \cdot (4\vec{w} + \vec{u})$?
- **Exercice 6** On considère trois vecteurs \vec{u} , \vec{v} et \vec{w} tels que $\vec{u} \cdot \vec{v} = 3$ et $\vec{u} \cdot \vec{w} = 4$. Montrer que le vecteur \vec{u} est orthogonal au vecteur $4\vec{v} 3\vec{w}$.
- Exercice 7 Soient \vec{u} et \vec{v} deux vecteurs orthogonaux tels que $||\vec{u}|| = 3$ et $||\vec{v}|| = 7$. Que valent $||\vec{u} + \vec{v}||$ et $||\vec{u} \vec{v}||$?
- Exercice 8 Soient \vec{u} et \vec{v} deux vecteurs tels que $||\vec{u}|| = 3$, $||\vec{v}|| = 4$ et $||\vec{u} \vec{v}|| = 5$. Montrer que \vec{u} et \vec{v} sont orthogonaux.
- Exercice 9 Soit A, B et C trois points de l'espace tel que AB + BC = AC. Montrer que ces points sont alignés.

Base orthonormée

- Exercice 10 L'espace est muni d'un repère $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ orthonormé. Montrer que \overrightarrow{u} (1,5,-9) et \overrightarrow{v} (3,3,2) sont orthogonaux.
- Exercice 11 L'espace est muni d'un repère $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ orthonormé. Soit x un réel. On considère les points A(2,5,1), B(3,1,2), C(8,2,x).
 - 1. Déterminer les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC}
 - 2. Pour quelle valeur du réel x les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont-ils orthogonaux?
- **Exercice 12** L'espace est muni d'un repère $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ orthonormé. On considère les points A(-1;2;0), B(1;2;4), C(-1;1;1).
 - 1. Montrer que les points A, B et C ne sont pas alignés.
 - **2**. Calculer $\overrightarrow{AB} \cdot \overrightarrow{AC}$
 - **3**. Calculer les longueurs *AB* et *AC*.
 - **4**. En déduire une mesure de l'angle \widehat{BAC} arrondie eu degré près.

Exercice 13

1. Interpréter le script python suivant. Que renvoie la fonction norme (4,3,0).

```
1 from math import sqrt
2 def norme(x,y,z):
3 N=sqrt(x**2+y**2+z**2)
4 return N
```

2. Compléter le script python suivant afin qu'il renvoi la distance entre deux points de l'espace.

```
1 from math import sqrt
2 def distance(x1,y1,z1,x2,y2,z2):
3     D = norme(....,...)
4     return D
```

- **Exercice 14** Quelle est la distance entre deux sommets opposés d'un cube de coté a?
- Exercice 15 On se place dans un repère orthonormé $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$. On considère les vecteurs $\overrightarrow{u}(1,0,1)$, $\overrightarrow{v}(0,1,1)$ et $\overrightarrow{w}(1,1,0)$.
 - 1. Montrer que les vecteurs \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} ne sont pas coplanaires.
 - 2. Soit λ un réel et $\overrightarrow{V} = \overrightarrow{v} + \lambda \overrightarrow{u}$. Déterminer la valeur de λ pour que \overrightarrow{V} et \overrightarrow{u} soient orthogonaux.
 - 3. Soit μ_1 et μ_2 deux réels et $\overrightarrow{W} = \overrightarrow{w} + \mu_1 \overrightarrow{V} + \mu_2 \overrightarrow{u}$. Déterminer les valeurs de μ_1 et μ_2 pour que le vecteur \overrightarrow{W} soit orthogonal aux vecteurs \overrightarrow{V} et \overrightarrow{u} .
 - **4.** En déduire une base orthonormée de l'espace différente de $(\vec{i}; \vec{j}; \vec{k})$.

Ce procédé pour construire une base orthonormée à partir d'une base qui ne l'est pas est appelé procédé d'orthonormalisation de Gram-Schmidt.

Orthogonalité

- Exercice 16 On se place dans un repère orthonormé $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$. On considère A(2,5,1), B(3,2,3) et C(3,6,2).
 - 1. Calculer les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC} .
 - 2. Montrer que les droites (AB) et (AC) sont perpendiculaires.
- **Exercice 17** On se place dans un cube ABCDEFGH.
 - 1. Quelle est la nature du repère $(A; \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$?
 - 2. Déterminer les coordonnées des points *F*, *D*, *B* et *H* dans ce repère.
 - 3. En déduire les coordonnées des vecteurs \overrightarrow{DF} et \overrightarrow{BH} .
 - 4. Les droites (DF) et (BH) sont-elles perpendiculaires?
- **Exercice 18** L'espace est muni d'un repère $(O; \vec{i}, \vec{j}, \vec{k})$ orthonormé. On considère les points A(1,2,1), B(3,4,1), C(4,-1;6) et D(6,1,6). Montrer que ABDC est un rectangle.
- Exercice 19 On se place dans un repère orthonormé $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$. Soient $\overrightarrow{v_1} \begin{pmatrix} 1 \\ 4 \\ 1 \end{pmatrix}, \overrightarrow{v_2} \begin{pmatrix} 3 \\ 2 \\ -2 \end{pmatrix} et\overrightarrow{u} \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$.

On considère le plan $\mathscr P$ passant par O et dirigé par les vecteurs $\overrightarrow{v_1}$ et $\overrightarrow{v_2}$. Montrer que \overrightarrow{u} est normal au plan $\mathscr P$.

- **Exercice 20** L'espace est muni d'un repère $(O; \vec{i}, \vec{j}, \vec{k})$ orthonormé. On considère les points A(3, -2, -2), B(1, 3, -8) et C(-2, 0, 4) ainsi que le vecteur \vec{n} (2, 2, 1). Montrer que \vec{n} est un vecteur normal au plan (ABC).
- Exercice 21 L'espace est muni d'un repère $(0; \vec{i}, \vec{j}, \vec{k})$ orthonormé. On considère $\vec{u}(2,0,-1)$ et $\vec{v}(1,-1,1)$.
 - 1. Montrer que \overrightarrow{u} et \overrightarrow{v} définissent un plan de l'espace.
 - 2. Déterminer un vecteur \vec{n} normal à ce plan.