Social Science Inquiry II

Week 8: Inference for multivariate regression, part II

Molly Offer-Westort

Department of Political Science, University of Chicago

Winter 2023

Loading packages for this class

```
> set.seed(60637)
> # For plotting:
> library(ggplot2)
> # library(devtools)
> # devtools::install_github("wilkelab/ungeviz")
> library(ungeviz)
> library(ggridges)
```

► Housekeeping

P-hacking

P-values

Suppose $\hat{\theta}$ is the general form for an estimate produced by our estimator, and $\hat{\theta}^*$ is the value we have actually observed.

P-values

► A two-tailed p-value under the null hypothesis is

$$p = \mathrm{P}_0[|\hat{\theta}| \ge |\hat{\theta}^*|]$$

i.e., the probability under the null distribution that we would see an estimate of $\hat{\theta}$ as or more extreme as what we saw from the data.

- ▶ Suppose we have some data, $(Y, X_1, X_2, ... X_K)$.
- ► Suppose the null distribution represents the truth.
- ▶ If we test one hypothesis, what is the probability that we will find something that is statistically significant at $p \le 0.05$?
- ▶ If we test two unrelated hypotheses, what is the probability that we will find something that is statistically significant at $p \le 0.05$?

- \blacktriangleright A: event we reject hypothesis 1 at $p \le 0.05$
- ▶ B: event we reject hypothesis 2 at $p \le 0.05$
- ightharpoonup A \perp B: the two events are independent
- ▶ P[A] = 0.05
- ▶ P[B] = 0.05
- ▶ $P[A \cup B]$? The probability we see event A OR B?

$$P[A \cup B] = P[A] + P[A^C] \times P[B|A^C]$$

A and B are independent, so $P[B|A^C] = P[B]$

$$P[A \cup B] = P[A] + P[A^{C}] \times P[B]$$

 $P[A \cup B] = 0.05 + 0.95 \times 0.05$
 $P[A \cup B] = 0.0975$

If the null is true . . .

- ▶ and we conduct three independent tests, the probability that at least one of them will be statistically significant at $p \le 0.05$ is $1 0.95^3 = 0.1426$
- ▶ and we conduct four independent tests, the probability that at least one of them will be statistically significant at $p \le 0.05$ is $1 0.95^4 = 0.1855$
- ▶ and we conduct ten independent tests, the probability that at least one of them will be statistically significant at $p \le 0.05$ is $1 0.95^{10} = 0.4013$

This becomes a real problem when researchers run many tests in their papers!

Fail to reject null hypothesis Reject null hypothesis (p > 0.05) $(p \le 0.05)$

Null hypothesis true
Null hypothesis false
Type II error, false negative
Type I error, false positive
True positive

- ► Type I error: (false positive) we see an effect, where one doesn't really exist
- ► Type II error: (false negative) we didn't see an effect, but one really does exist

Multiple testing scenarios

- ► Comparisons across multiple treatments; A to B, B to C, A to C...
- ► Multiple outcomes
- ► Heterogeneous treatment effects (where is the cut point)
- ► Multiple regression specifications (specification search)

These tests aren't all fully independent, but the more tests we do, the more likely we are to uncover a false positive.

Ways to account for multiple testing

- ► Pre-specification of analyses
- ► Separating data in training and testing sets (more on this with machine learning)
- ▶ p-value adjustment

- ► Family-Wise Error Rate (FWER): the probability of falsely rejecting even one *true* null hypothesis; P[Type I error > 0]
- ► False Discovery Rate (FDR): expected proportion of false discoveries among all discoveries; E [# False discoveries/# All discoveries]

Correcting FWER

- ▶ Bonferroni correction: for m hypotheses, for significance level α , implement α/m
- four independent tests, the probability that at least one of them will be statistically significant at $p \le \alpha$ is $1 (1 \alpha)^4$
- For $\alpha = 0.05$, $1 0.95^4 = 0.1855$
- ▶ With Bonferroni correction: $1 (1 \alpha/4)^4 = 0.0491$
- ► Ten independent tests: $1 (1 \alpha/10)^{10} = 0.0489$

What if tests are not independent? Bonferroni is too aggressive.

$$\mathrm{P}[\mathsf{A} \cup \mathsf{B}] = \mathrm{P}[\mathsf{A}] + \mathrm{P}[\mathsf{A}^\mathsf{C}] \times \mathrm{P}[\mathsf{B}|\mathsf{A}^\mathsf{C}]$$

If A and B are positively correlated $\mathrm{P}[\mathsf{B}|\mathsf{A}^\mathsf{C}] \leq \mathrm{P}[\mathsf{B}]$

- Correcting FWER
 - ▶ Holm correction: for *m* hypotheses, for significance level α :
 - Order the m conventionally calculated p-values from smallest to largest
 - Find the *smallest* p-value indexed as k such that $p_k > \frac{\alpha}{m+1-k}$
 - Reject all p-values greater than or equal to pk, accept all p-values less pk

- Correcting FDR
 - ▶ Benjamini-Hochberg correction: for m hypotheses, for significance level α :
 - Order the m conventionally calculated p-values from smallest to largest
 - Find the *largest* p-value indexed as k such that $p_k \leq \frac{k}{m}\alpha$
 - Reject all p-values greater than p_k, accept all p-values less than or equal to p_k

▶ In either case, for more complex settings, try simulation.

Multiple testing

- ▶ When can you consider tests as unrelated?
- ► Exploratory vs. confirmatory hypotheses?

Some alternatives to confidence intervals (via ungeviz)

Show the underlying data.

Some alternatives to confidence intervals (via ungeviz)

Shaded confidence strips.

Some alternatives to confidence intervals (via ungeviz)

Confidence densities.

```
> ggplot(cacao_means, aes(x = estimate, y = location)) +
+ stat_confidence_density(
+ aes(moe = std.error, height = stat(density)), geom = "ridgeline",
+ confidence = 0.68, fill = "#81A7D6", alpha = 0.8, scale = 0.08, min_height = 0.1) +
+ geom_vpline(aes(x = estimate), size = 1.5, height = 0.5, color = "#D55E00")
```


References I

Clause Wilke: https://wilkelab.org/ungeviz/index.html