ASSIGNMENT 6

1

EE24BTECH11034 - K Teja Vardhan

I. JEE PYQ JAN 20, SHIFT 1

b) 24

in $(\frac{3}{2}, \infty)$. Then $x = \frac{3}{2}$ is a) a point of local maxima b) a point of local minima c) a point of inflection d) None of these

find $\arg\left(\frac{1-2z\omega}{1+3z\omega}\right)$

a) 16

a) $\frac{\pi}{4}$

a) $\frac{x-8}{3}$

1) Let $y=mx+c, \ m>0$ be the focal chord of $y^2=-64x$ which is tangent to $(x+10)^2+y^2=4$. Then the value of $4\sqrt{2}\,(m+c)$ is equal to

2) A continuous differentiable function f(x) is increasing in $\left(-\infty, \frac{3}{2}\right)$ and decreasing

3) If z and w are complex numbers such that $|z\omega|=1$, $\arg(z)-\arg(w)=\frac{3\pi}{2}$, then

4) If an invertible function f(x) is defined as f(x) = 3x - 2, and g(x) is also an

c) $\frac{x-3}{8}$

invertible function such that $f^{-1}(g^{-1}(x)) = x - 2$, then g(x) is

b) $\frac{x+8}{3}$

, $\mu \in \mathbb{R}$ is 9, then the value of α' is:

c) 34

b) $-\frac{\pi}{4}$ c) $\frac{3\pi}{4}$ d) $-\frac{3\pi}{4}$

d) 40

d) $\frac{x+3}{8}$

5) The probability of selecting integers $a \in [-5, 30]$, such that $x^2 + 2$ $(a+4)$ $64 > 0$ for all $x \in \mathbb{R}$ is:								a +
	a) $\frac{1}{2}$	b) $\frac{1}{3}$	c) $\frac{1}{4}$		d) $\frac{1}{5}$			
6)		= 10e -atestinteger function		the	value	of	a	is
	a) $9 + \ln 2$	b) $10 + \ln 2$	c) 10		d) 9			
7)	If the shortest distance $\mathbf{r_1} = \alpha \hat{i} + 2\hat{j} + 2\hat{k}$, $\lambda \in \mathbb{R}$, $\alpha > 0$ and $\mathbf{r_2} = -4\hat{i} - \hat{k} + \mu$,	5					

a) 2	b) 4		c) 6
8) Let $a_{ij} = c$	(1,	i = j	
8) Let $a_{ij} = \epsilon$	$\begin{cases} -x, \end{cases}$	i-j =1	
	1 2 m ± 1	othomyica	

2x+1, otherwise , $A=[a_{ij}]_{3\times 3}=\det{(A)}$. Then find the sum of local maximum and minimum values

- b) $-\frac{20}{27}$ c) $\frac{88}{27}$

d) $-\frac{88}{27}$

d) $\sqrt{6}$

- 9) Find the coefficient of $a^3b^4c^5$ in $(ab+bc+ca)^6$.
 - a) 60

- b) 45
- c) 40

- d) 90
- 10) $x\left(\frac{dy}{dx}\right)\tan\left(\frac{y}{x}\right)=y\tan\left(\frac{y}{x}\right)+x,\ y\left(\frac{1}{2}\right)=\frac{\pi}{6}.$ The area bounded by $x=0,\ x=\frac{1}{\sqrt{2}},$ and $y=y\left(x\right)$ is:

 - a) $\frac{\pi-1}{8}$ b) $\frac{\pi-2}{16}$ c) $\frac{\pi-3}{32}$
- d) $\frac{\pi 4}{64}$