Sierra Bonilla

Computational Scientist, UCLH Incoming Computer Vision PhD Candidate, UCL

 ${\it sierrabonilla.com}$ ${\it github.com/smbonilla}$ ${\it linkedin.com/in/sierra-bonilla}$

SUMMARY

Incoming computer vision PhD candidate starting September 2023 and currently working as a computational scientist with previous experience in academic and industrial research environments at the Medical Physics Department at University College London, the R&D group at Otonexus Medical Technologies, the Bioengineering Department at the University of Washington, and the Mechanical Engineering Research Group at Intellectual Ventures.

EDUCATION

Degree	Institute	Field of Study	Classification/Grade	Year
MPhil/PhD	AI Centre at	Foundational Artificial Intelligence	N/A	2023-2027
	University College London	Nueral Rendering Frameworks		
MSc	University College London	Biomedical Engineering and Medical Imaging	Distinction/A	2021-2022
BSc	University of Washington	Biomedical Engineering and Mathematics	Honors/B+	2016-2020

EXPERIENCE

• University College London Hospitals NHS Foundation Trust

Band 7 Clinical Scientist (Computational Scientist - Pre-Registered)

2022 - Present London

- Primary purpose to support clinical computer systems
- Responsibilities include: medical device IT systems design, cybersecurity of connected medical devices, programming and computer support for clinical research, SQL database management, and integration of AI systems in clinical settings

• Otonexus Medical Technologies

2020 - 2021

 $Medical\ Device\ Design\ Engineer/Acoustic\ Engineer$

Seattle

- Engineer at a start-up company in the research group using MATLAB, Python, acoustic and electrical technology
- Helped streamline transducer calibration process from 3 hours to 2 minutes per device

• University of Washington

2018 - 2020

Research Assistant & Teaching Assistant

Seattle

- Paid research assistant in the Bioengineering Department focused on image optimization, CAD, and MATLAB simulations
- Teaching assistant for BIOEN 327 2019: Fluids & Materials Laboratory and BIOEN 420 2020: Medical Imaging

• University of Washington Medical Center

2019

Full Stack Development Consultant

Seattle

- Created a web application using Python to track and rate disease progression for Cerebral Palsy patients

• Intellectual Ventures

2016

Mechanical Engineer Intern

Seattle

 lead research on cheap alternative cold-chain vaccine transportation devices with a specific focus on CO2 technologies intended for usage in developing nations

PROJECTS

• Ultrasound-based Skull Registration for Transcranial Ultrasound Stimulation

2021 - 2022

Master's Thesis

Github

- Developed algorithms to generate an ultrasound-derived point cloud of object outer surface from measured data
- Developed acquisition scripts and gathered ultrasound measurements from skull models and subjects using a transcranial ultrasound array
- Determined the transformation required to co-align the ultrasound-derived point cloud with a mesh-derived point cloud using tailored ICP registration techniques

\bullet In-vitro Bubble-Enhanced Heating for Focused Ultrasound Treatments in the Brain

2018 - 2020 Publication

 $Bachelor's\ Thesis$

- Developed and evaluated a tissue-mimicking phantom with similar acoustic properties to human tissue
- Designed an appropriate experimental setup to perform in-vitro HIFU heating experiments

TECHNICAL SKILLS

- Programming Languages: Python, MATLAB, PowerShell, SQL, HTML & CSS
- Tools and Frameworks: Jupyter, PyTorch, Scikit-learn, VS Code, Microsoft SQL Server, SQLite
- Operating Systems: Windows, macOS, Ubuntu

Publications & Contributed Talks

- Peer-reviewed Journal Article 2021: Clark, Alicia, Bonilla, Sierra, Suo, Dingjie, Shapira, Yeruham, and Averkiou, Michalakis. 2021. "Microbubble-Enhanced Heating: Exploring the Effect of Microbubble Concentration and Pressure Amplitude on High-Intensity Focused Ultrasound Treatments." doi:10.1016/j.ultrasmedbio.2021.03.035. Ultrasound in Medicine & Biology. England: Elsevier Inc.
- Ultrasound Symposium Contributed Talk 2020: A. Clark, S. Bonilla, D. Suo, M. Averkiou (2020) Enhanced Heating with Microbubbles in High Intensity Focused Ultrasound Applications,

 The 25th European Symposium on Ultrasound Contrast Imaging, Rotterdam, The Netherlands.
- Ultrasound Symposium Contributed Talk 2019: D. Suo, A. Clark, S. Bonilla, S. Keller, M. Averkiou (2019) Controlled bubble-enhanced heating with added microbubbles, International Society for Therapeutic Ultrasound, Barcelona, Spain.

Positions of Responsibility

• WASLA Merit Award, University of Washington

• Lead Organizer, AI Journal Club, University College London Hospitals	$2022 ext{-}Present$
• Academic Representative, Biomedical Engineering MSc, University College London	2021-2022
• Team Member, Bioengineers Without Borders: Hydration Monitor Team, University of Washington	2019
• President, Research & Innovation Club, LWIT	2015-2016
Awards	
• Dean's List, University of Washington	2017-2020
, , , , , , , , , , , , , , , , , , , ,	700 = 1 700700
• Certificate of High Scholarship, University of Washington	2018 - 2019

2018

Last updated: March 1, 2023