

<u>Unit 4 Unsupervised Learning (2</u>

Course > weeks)

> Lecture 15. Generative Models > 4. Likelihood function

4. Likelihood function Likelihood function

Start of transcript. Skip to the end.

So now, given that, how can I compute the likelihood of generating a second set of documents?

So let's say somebody gave me all this theta W's.

I have them.

How do I compute the likelihood of generating a document?

So we would assume that we have our document--

and this is the capital D, and I will use it

Video

<u>Download video file</u>

Transcripts

<u>Download SubRip (.srt) file</u>

<u>Download Text (.txt) file</u>

Likelihood of the first model

1/1 point (graded)

Note that a multinomial distribution is a generalization of a binomial distribution (vocabulary consists of just two classes). As a simple exercise for the following set of problems, we consider generating documents using a multinomial distributions with only two parameters

As an example for such a multinomial generative model, let us assume that our vocabulary W consists of just two symbols 0 and 1. So, $W = \{0,1\}$.

We want to estimate a multinomial model to generate a document D=0101".

For this task, we consider two multinomial models M_1 and M_2 with parameters, $\theta^{(1)}$ and $\theta^{(2)}$ respectively. First consider a multinomial model M_1 with parameters $\theta^{(1)}$ given as follows:

$$heta_0^{(1)} = rac{1}{2}, heta_1^{(1)} = rac{1}{2}$$

Let the probability of model M_1 generating the document D be denoted by $P\left(D|\theta^{(1)}\right)$.

Enter the value of $P(D|\theta^{(1)})$ given that $\theta^{(1)}$ takes the values as described above. Enter your answer below as a numerical expression or round it off to four decimal places.

1/16

Answer: 0.0625

Recall from the lecture that,

$$P\left(D| heta
ight) = \Pi_{w \in W} heta_w^{count(w)}$$

$$P(D| heta^{(1)}) = .5^2 * .5^2 = .0625$$

Hence, the probability of model M_1 generating the document D is 0.0625.

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

Likelihood of the second model

1/1 point (graded)

Now consider another multinomial model M_2 with different parameters $heta_2$ given as follows:

$$heta_0^{(2)} = rac{1}{5}, heta_1^{(2)} = rac{4}{5}$$

The document D=0101" remains the same as that from the previous problem.

Enter the value of $P(D|\theta^{(2)})$ given that $\theta^{(2)}$ takes the values above. Enter below your answer as a numerical expression or round it off to four decimal places.

16/625

✓ Answer: 0.0256

Solution:

Recall from the lecture that,

$$P\left(D| heta
ight) = \Pi_{w \in W} heta_w^{count(w)}$$

$$P(D| heta^{(2)}) = .2^2 * .8^2 = .0256$$

Hence, the probability of model M_2 generating the document D is 0.0256

Submit

You have used 2 of 3 attempts

1 Answers are displayed within the problem

Better fitting model

1/1 point (graded)

Based on your answers for the above two questions, which model between M_1 and M_2 is more likely to generate the document D?

 \bullet $M_1 \checkmark$

 \circ M_2

From the above two questions it is clear that,
$P(D heta^{(1)}) > P(D heta^{(2)})$
Therefore, model M_1 is more likely to generate the document D than M_2 .
Submit You have used 1 of 1 attempt
Answers are displayed within the problem

Discussion

Topic: Unit 4 Unsupervised Learning (2 weeks) :Lecture 15. Generative Models / 4. Likelihood function

© All Rights Reserved

Show Discussion