# Simulación de Sistemas Práctica 9

Interacciones entre partículas 1455175: Ángel Moreno

8 de octubre de 2018

#### Resumen

La presente práctica nueve se trabaja con los fenómenos de atracción y repulsión de física. Se tienen partículas que habitan en un cuadro unitario bidimensional y que cada partícula tiene una carga eléctrica y masa, se implementa la atracción entre cargas con signos opuestos y la repulsión entre signos iguales. La magnitud de la fuerza es proporcional a la diferencia de magnitud de las cargas, y además la fuerza será inversamente proporcional al producto de la distancia euclideana entre las partículas por la masa de la partícula. Con esto se obtiene una velocidad de la partícula y se estudia el efecto de los factores de la carga y masa contra la velocidad para ver la relación entre los factores.

## 1. Introducción

Se define un conjunto N de n partículas, para cada partícula  $p_i \in N$  con  $i \in \{1, 2, ..., n\}$  coordenadas normalmente distribuidas  $(x_i, y_i) \in [0, 1] \times [0, 1]$ , una carga normalmente distribuida  $c_i \in [-1, 1]$  y una masa normalmente distribuida  $m_i \in [0.1, 1]$ . Se simula los movimientos de las partículas de tal forma que cargas opuestas se atraen y cargas iguales se repelen, además se agrega el efecto de la masa utilizando el principio de la segunda ley de Newton

$$F_i = m_i * a$$

del cual se deduce

$$v(t) = v(t_0) + \frac{F_i(t)}{m_i}$$

donde  $v(t_0)$  es la velocidad en tiempo anterior y  $F_i$  la fuerza resultante de la partícula i. Se supone que las partículas empiezan desde el reposo y los tiempos que se manejan son iteraciones de longitud 1 y se estudia la velocidad total en un tiempo máximo tmax

$$v(tmax) = \sum_{t=1}^{tmax} \frac{F_i(t)}{m_i}$$

#### 1.1. Tarea

Agrega a cada partícula una masa y haz que la masa cause fuerzas gravitacionales (atracciones) además de las fuerzas causadas por las cargas. Estudia la distribución de velocidades de las partículas y verifica gráficamente que esté presente una relación entre los tres factores: la velocidad, la magnitud de la carga, y la masa de las partículas. Toma en cuenta que la velocidad también es afectada por las posiciones.

## 2. Simulación

Se ejecutó la simulación con 300 partículas con la características mencionadas anteriormente con un tiempo máximo tmax = 100.

## 2.1. Resultados

La figura 1 muestra los resultados de las cargas de las partículas contra velocidades,



Figura 1: Resultados de las velocidades contra cargas normalmente distribuidas.

se observa que las menores velocidades están acumuladas en el punto medio del intervalo [-1,1] y en los extremos las velocidades son más grandes esto se debe a la formula que se utiliza para calcular la fuerza resultante. La figura 2 muestra los resultados de la masa de las partículas contra la velocidad,



Figura 2: Resultados de las velocidades contra masa normalmente distribuidas.

se observa que la velocidad va decreciendo conforme la masa crece, esto se debe a la proporcionalidad inversa con la masa.

## Referencias

- [1] SCHAEFFER E. R paralelo: simulación y análisis de datos, 2018. https://elisa.dyndns-web.com/teaching/comp/par/
- [2] VALDES E. Repository of Github, 2017. https://github.com/eduardovaldesga/SimulacionSistemas
- [3] SAUS L. Repository of Github, 2018. https://github.com/pejli/simulacion