MAT8021, Algebraic Topology

Assignment 13

Due in-class on Tuesday, May 25

- 1. Show that if a principal bundle $P \to B$ has a section, then there is a homeomorphism to the trivial principal bundle: $P \cong B \times G$ as right G-spaces.
- 2. Let G and H be topological groups. Suppose $P_1 \to B$ is a principal G-bundle and $P_2 \to B$ is a principal H-bundle. Show that the pullback $P_1 \times_B P_2$ is a principal $G \times H$ -bundle.
- 3. Suppose $G \to H$ is a homomorphism of topological groups, and $P \to B$ is a principal G-bundle. Show that the mixing construction gives a *principal* H-bundle $P \times_G H \to B$.
- 4. We identified \mathbb{CP}^1 with the space of lines in \mathbb{C}^2 . Associated to this, there is a vector bundle $\xi \to \mathbb{CP}^1$:

$$\xi = \{(L, v) | L \in \mathbb{CP}^1, v \in L\}$$

Find an open cover $\{U_{\alpha}\}$ together with transition functions $\{h_{\alpha,\beta}: U_{\alpha} \cap U_{\beta} \to \operatorname{GL}_1(\mathbb{C})\}$ to reconstruct the associated principal $\operatorname{GL}_1(\mathbb{C})$ -bundle.