18.100A Assignment 8

Octavio Vega

May 20, 2023

Problem 1

Proof. Suppose $\lim_{x\to c} f(x) = \lim_{x\to c} h(x)$. Then since c is a cluster point of S and $\forall x\in S,\, f(x)\leq g(x)\leq h(x),$ we have

$$\lim_{x \to c} f(x) \le \lim_{x \to c} g(x) \le \lim_{x \to c} h(x) = \lim_{x \to c} f(x). \tag{1}$$

Thus by the squeeze theorem,

$$\lim_{x \to c} g(x) = \lim_{x \to c} f(x) = \lim_{x \to c} h(x), \tag{2}$$

as desired. \Box

Problem 2

Proof. (1) Let $\epsilon > 0$. Choose $\delta = \frac{\epsilon}{2}$. Then if $|x| < \delta$, we have

$$|f(x) - f(0)| = |f(x)| \tag{3}$$

$$\leq 2|x|\tag{4}$$

$$<2\delta$$
 (5)

$$=\epsilon$$
. (6)

Therefore, f is continuous at x = 0.

(2) Let $\delta > 0$, $\epsilon_0 > 0$. Suppose $|x - 1| < \delta$. Let

$$x_0 = \begin{cases} \epsilon_0 \sqrt{2}, & \epsilon_0 \in \mathbb{Q} \\ \epsilon_0, & \epsilon_0 \notin \mathbb{Q}. \end{cases}$$
 (7)

Then $x_0 \notin \mathbb{Q} \ \forall \epsilon_0 > 0$.

Choose $x = \frac{x_0}{2}$. Then

$$|f(x) - f(1)| = |f(x)|$$
 (8)

$$=2|x|\tag{9}$$

$$=x_0\tag{10}$$

$$\geq \epsilon_0.$$
 (11)

Therefore, f is discontinuous at x = 1.

Problem 3

Proof. Since f is continuous at c, then $\forall \epsilon > 0$, $\exists \delta > 0$ such that if $|x - c| < \delta$, then $|f(x) - f(c)| < \epsilon$, i.e.

$$f(c) - \epsilon < f(x) < f(c) + \epsilon. \tag{12}$$

Let $\epsilon = \frac{f(c)}{2}$. Then for some $\delta > 0$,

$$0 < \frac{f(c)}{2} < f(x) < \frac{3f(c)}{2}. (13)$$

Simply choose $\alpha = \delta$, and we are done.

Problem 4

Proof. Since h = f on [-1,0] and f(x) is continuous, then h is continuous on [-1,0]. Similarly, since h = g on (0,1] and g is continuous, then h is continuous on (0,1].

It remains only to show that h is continuous at x = 0.

Let $\epsilon_0 > 0$. By continuity of f, $\exists \delta_0$ such that if $|x| < \delta_0$, then $|f(x) - f(0)| < \epsilon_0$. Similarly, let $\epsilon_1 > 0$. Then by continuity of g, $\exists \delta_1 > 0$ such that if $|x| < \delta_1$, then $|g(x) - g(0)| < \epsilon_1$.

Let $x \in [-1, 1]$ and let $\epsilon = \min\{\epsilon_0, \epsilon_1\}$. Choose $\delta = \min\{\delta_0, \delta_1\}$. If $|x| < \delta$, then $|x| < \delta_0$ and $|x| < \delta_1$. If $x \le 0$, then we have

$$|h(x) - h(0)| = |f(x) - f(0)| < \epsilon_0 \le \epsilon. \tag{14}$$

Similarly if x > 0, then we have

$$|h(x) - h(0)| = |q(x) - q(0)| < \epsilon_1 < \epsilon. \tag{15}$$

Thus, h(x) is continuous at x = 0, so we conclude h is continuous.

Problem 5

Proof. (\Rightarrow) Suppose $f: \mathbb{R} \to \mathbb{R}$ is continuous, and let $U \subset \mathbb{R}$ be open.

Let $f(c) \in U$. Then $c = f^{-1}(f(c)) \in f^{-1}(U)$. Since f is continuous at c, then $\forall \epsilon > 0 \; \exists \delta > 0$ such that if $|x - c| < \delta$, then $|f(x) - f(c)| < \epsilon$. Since this must hold for every $c \in f^{-1}(U)$, and the subset $(c - \delta, c + \delta)$ is open, then $f^{-1}(U)$ is also open.

(\Leftarrow) Suppose for every $U \subset \mathbb{R}$ open, $f^{-1}(U)$ is also open.

Let $c \in f^{-1}(U)$. Then $f(c) \in U$. Since U is open, then $\exists \epsilon > 0$ such that $(f(c) - \epsilon, f(c) + \epsilon)$. Let $A = (f(c) - \epsilon, f(c) + \epsilon)$. Then since A is open, $f^{-1}(A)$ is open by assumption. Then $\exists \delta > 0$ such that $(c - \delta, c + \delta) \subset f^{-1}(A)$, i.e. if $x \in (c - \delta, c + \delta)$, then $f(x) \in A$.

Thus for every $\epsilon > 0$, $\exists \delta > 0$ such that if $|x - c| < \delta$, then $|f(x) - f(c)| < \epsilon$. Therefore f is continuous at c. This holds for every c in every open subset of \mathbb{R} . Hence f is continuous. \Box