Automated Prediction of Defect Severity Based on Codifying Design Knowledge Using Ontologies

Martin Iliev, Bilal Karasneh, Michel R.V. Chaudron, Edwin Essenius LIACS, Leiden University; Logica Nederland B.V.

Overview

- Introduction
- Background information
 - Ontologies
 - Case study
- Case study approach
 - Data collection
 - Data analysis and conversion
 - Data classification
- Results
- Current research
- Conclusion

Introduction

- Software testing and software defects.
- What is defect severity?
- Who assigns severity levels to defects and how?

Background Information

- Ontologies explicit formal specifications of the terms in a domain and the relations among them.
- Industrial case study
 - Conducted at Logica, the Netherlands.
 - Logica has developed the front-end software for an embedded traffic control system.

Data Collection

- The data represent defect reports from the testing phase of the project.
- 33 out of 439 defects were selected in a representative sample from the defect tracking system.

	Number of Fixed Defects			
Severity Level	In all versions of the system	In the latest version of the system	Selected for the case study	
Minor	85	12	5	
Medium	301	93	17	
Severe	47	10	10	
Showstopper	6	1	1	
Total	439	116	33	

Data Analysis

- The selected defect reports contain *project-specific* information.
- Convert the project-specific information into *project-independent* defect attributes and their values as defined in the IEEE standard.
- Used attributes from the standard:
 - severity, effect, type, insertion activity, detection activity.

Data Conversion

Example of the information in the defect reports

Defect ID	Severity	Description	Causes	Туре	Reasons for Severity	Found during?
342	Medium	The buttons for directions are reversed. When the left button is pressed	I/O exception	Value defect	Wrong data is displayed	System testing
•••						

Examples after the conversion of the defects' information

Defect ID	Attributes				
	Severity	Effect	Туре	Insertion Activity	Detection Activity
101	Blocking	Functionality; security; performance; serviceability	Data; interface	Design	Supplier testing
102	Critical	Usability; performance	Logic	Coding	Supplier testing
•••					

Data Classification

- Develop the ontology and input the converted information about the defects in it.
- Define the reasoning rules for classifying the defects into the categories
 - Major severity level Rule 1
 - Medium severity level Rule 2
 - Minor severity level Rule 3

Rule 1:

...<u>(R1.2)</u> (isInserted only (InDesign or InRequirements)) or ((isInserted only (InCoding or InConfiguration)) and (hasEffectOnNumber min 3)) or ...

(R1.3) hasEffectOnNumber min 2

(R1.4) hasType only (Data or Interface or Logic)

(R1.5) isDetected only (FromSupplierTesting or FromCoding)

Case Study Results

	Attributes					
Defect ID	Effect	Туре	Insertion Activity	Detection Activity		
101	Functionality; security; performance; serviceability	Data; interface	Design	Supplier testing		
102	Usability; performance	Logic	Coding	Supplier testing		
103	Functionality; performance	Logic	Design	Supplier testing		
•••						

developed for Classification rules →

protégé

outputs

Defect ID	Predicted Severity Level	
101	Major	
102	Medium	
103	Major	
• • •	•••	

Comparison of the Results

		Automatic (Ontology) Classification			
		MajorSL	MediumSL	MinorSL	
Manual	MajorSL	8	3	0	
(Original)	MediumSL	7	6	4	
Classification	MinorSL	0	0	5	

- Out of all defects:

- 58% classified in the same SLs by both classifications.
- 42% classified differently (21% higher, 21% lower).
- Reasons for the differences.

Current Research

- Achieved more promising results:
 - 2nd case study showed better results.
- In the process of:
 - validating the results and testing the genericity of the classification rules.
 - comparing the ontology classification results with the results obtained by an existing machine learning workbench the Weka workbench.

Conclusion

- The presented method:
 - automates the process of assigning severity levels to defects.
 - could be useful for large software systems with many defects.
 - could aid in the testing phase by decreasing the workload of the test analysts.

