Le sujet comprend 9 pages, numérotées de 1 à 9

Début du sujet

Définitions et notations

- Si A est un ensemble fini, on note Card A son cardinal.
- Pour $n \in \mathbb{N}^*$, on note $\Delta_n = \{1, \dots, n\}$. Si A est une partie de \mathbb{R} de cardinal n, on note β_A l'unique bijection croissante de A sur Δ_n .
- On note Σ_n le groupe des bijections de Δ_n sur Δ_n . Si $n \geq 2$, on note $\mathrm{MD}(n)$ l'ensemble des éléments $\sigma \in \Sigma_n$ qui vérifient la condition (de montée-descente) :

pour $1 \le k \le n-1$: $\sigma(k) < \sigma(k+1)$ si k est impair, $\sigma(k) > \sigma(k+1)$ si k est pair; et on note $\mathrm{DM}(n)$ l'ensemble des éléments $\sigma \in \Sigma_n$ qui vérifient la condition (de descentementée):

pour $1 \le k \le n-1$: $\sigma(k) > \sigma(k+1)$ si k est impair, $\sigma(k) < \sigma(k+1)$ si k est pair.

- Soit f une fonction de \mathbb{R} dans \mathbb{R} . Un maximum (resp. minimum) relatif de f est un réel x tel qu'il existe $\varepsilon > 0$ tel que $f(y) \leq f(x)$ (resp. $f(y) \geq f(x)$) pour tout $y \in]x \varepsilon, x + \varepsilon[$. Un maximum (resp. minimum) relatif strict de f est un réel x tel qu'il existe $\varepsilon > 0$ tel que f(y) < f(x) (resp. f(y) > f(x)) pour tout $y \in]x \varepsilon, x + \varepsilon[\setminus \{x\}]$. Un extremum relatif est un point de \mathbb{R} qui est soit un maximum relatif, soit un minimum relatif. Un extremum relatif strict est un point de \mathbb{R} qui est soit un maximum relatif strict, soit un minimum relatif strict.
- La droite réelle sera toujours munie de la norme associée à la valeur absolue.
- Une fonction f de \mathbb{R} dans \mathbb{R} est dite *simple* si elle est continue, si l'ensemble E(f) des extremums relatifs de f est fini et si la restriction de f à E(f) est injective.
- On note S l'ensemble des fonctions simples de \mathbb{R} dans \mathbb{R} , et, pour $n \in \mathbb{N}$, on note S_n l'ensemble des fonctions $f \in S$ telles que Card E(f) = n. On note enfin $S_* = \bigcup_{n \geq 2} S_n$.
- Les composantes connexes par arcs d'une partie d'un espace normé seront simplement appelées les composantes de cette partie.
- On note $\mathbb{R}[X]$ l'espace des polynômes à coefficients réels. Si $P = \sum_{i=0}^{n} a_i X^i \in \mathbb{R}[X]$ et si \mathscr{A} est une algèbre sur \mathbb{R} , pour $x \in \mathscr{A}$ on pose $P(x) = \sum_{i=0}^{n} a_i x^i$.

Les parties II, III, IV, V sont indépendantes.

Partie I

- a. Vérifier que les extremums relatifs des fonctions de S sont stricts.
- b. Soit $f \in S$. Montrer que la restriction de f à l'adhérence de chaque composante de $\mathbb{R} \setminus E(f)$ est strictement monotone. En déduire que si $x \in E(f) \setminus \{\text{Max } E(f)\}$ est un maximum (resp. minimum) relatif, le plus petit élément y de E(f) vérifiant y > x est un minimum (resp. maximum) relatif.
 - c. Soit $f \in S_n$ avec $n \ge 2$. On pose $\mathscr{E}(f) = f(E(f))$. Soit σ_f l'élément de Σ_n défini par

$$\sigma_f = \beta_{\mathcal{E}(f)} \circ f \circ \beta_{E(f)}^{-1}$$
.

Montrer que $\sigma_f \in \mathrm{MD}(n) \cup \mathrm{DM}(n)$.

- 2. On définit une relation \sim sur S de la manière suivante : pour tout couple (f,g) de S^2 , $f \sim g$ si et seulement si il existe deux bijections continues $\varphi : \mathbb{R} \to \mathbb{R}$ et $\psi : \mathbb{R} \to \mathbb{R}$, strictement croissantes, qui vérifient $f = \psi \circ g \circ \varphi$.
- a. Vérifier que ~ est une relation d'équivalence sur S et montrer que chaque classe d'équivalence de ~ est contenue dans l'un des ensembles S_n, n ∈ N.
- b. Soient $n \in \mathbb{N}^*$ et $\{u_1, \ldots, u_n\}$, $\{v_1, \ldots, v_n\}$ des parties de \mathbb{R} qui vérifient $u_1 < \cdots < u_n$ et $v_1 < \cdots < v_n$. Vérifier qu'il existe une bijection continue $\chi : \mathbb{R} \to \mathbb{R}$ strictement croissante telle que $\chi(u_k) = v_k$ pour $1 \le k \le n$.
 - c. On suppose que f et g sont dans S_* et que

$$\lim_{x \to \pm \infty} |f(x)| = +\infty, \quad \lim_{x \to \pm \infty} |g(x)| = +\infty.$$

Démontrer que $f \sim g$ si et seulement si $\sigma_f = \sigma_g$.

- d. L'équivalence précédente subsiste-t-elle pour deux fonctions f et g quelconques de S_{\star} ?
- 3. On note C_b^0 l'espace des fonctions continues bornées de $\mathbb R$ dans $\mathbb R$, que l'on munit de la norme uniforme : $\|f\| = \sup_{x \in \mathbb R} |f(x)|$ pour $f \in C_b^0$.
- a. Soient $n \in \mathbb{N}^*$, $\{u_1, \ldots, u_n\} \subset \mathbb{R}$ et $\{v_1, \ldots, v_n\} \subset \mathbb{R}$ avec $u_1 < \cdots < u_n$ et $v_1 < \cdots < v_n$. Montrer qu'il existe une application continue $\zeta : [0,1] \times \mathbb{R} \to \mathbb{R}$ telle que :
 - pour $s \in [0, 1]$, la fonction $x \mapsto \zeta(s, x)$ est une bijection strictement croissante de \mathbb{R} sur \mathbb{R} ,
 - $-\zeta(0,x) = x$ pour $x \in \mathbb{R}$ et $\zeta(1,u_k) = v_k$, $1 \le k \le n$.
- b. Démontrer que les classes d'équivalence de la restriction de \sim à $S_* \cap C_b^0$ sont connexes par arcs.
 - c. Donner un exemple d'arc continu $\gamma:[0,1]\to S\cap C_b^0$ tel que $\gamma(0)\in S_0$ et $\gamma(1)\in S_2$.

Partie II

Dans cette partie, pour $n \in \mathbb{N}$, on note \mathscr{P}_n l'espace des fonctions polynômiales de \mathbb{R} dans \mathbb{R} de degré au plus n.

1. Soit $n \in \mathbb{N}^*$. On note Id l'application identique de \mathbb{R}^n . On munit \mathbb{R}^n d'une norme notée $\| \ \|$ et l'espace des applications linéaires de \mathbb{R}^n dans \mathbb{R}^n de la norme associée, encore notée $\| \ \|$. Pour $x \in \mathbb{R}^n$ et $r \in \mathbb{R}^+$, on note B(x,r) (resp. B(x,r]) la boule ouverte (resp. fermée) de centre x et de rayon r. Soit \mathcal{O} un ouvert de \mathbb{R}^n contenant 0 et soit $f:\mathcal{O}\to\mathbb{R}^n$ une application de classe C^1 telle que f(0) = 0 et dont la différentielle φ en 0 est inversible.

$$g = \mathrm{Id} - \varphi^{-1} \circ f.$$

Montrer que g est de classe C^1 sur \mathcal{O} et qu'il existe $\varepsilon > 0$ tel que $B(0,\varepsilon) \subset \mathcal{O}$ et $\|Dg(x)\| \leq \frac{1}{2}$ pour $x \in B(0, \varepsilon)$. En déduire que f est injective dans $B(0, \varepsilon)$.

b. Soit $0 < r < \varepsilon$ et soit $z_0 \in B(0, r/2)$. On pose $h(x) = g(x) + z_0$ pour $x \in \mathcal{O}$. Montrer que $h(B(0,r]) \subset B(0,r].$

- c. Montrer qu'il existe $a \in B(0,r]$ tel que $f(a) = \varphi(z_0)$.
- d. Soient $W = \varphi(B(0, r/2))$ et $V = f^{-1}(W) \cap B(0, \varepsilon)$. Montrer que V et W sont ouverts et que $f_{|V|}$ est un homéomorphisme de V sur W.
- 2. Soit \mathcal{O} un ouvert de \mathbb{R}^n et soit $f: \mathcal{O} \to \mathbb{R}^n$ une application de classe C^1 dont la différentielle en x est inversible pour tout $x \in \mathcal{O}$. Démontrer que l'image par f d'un ouvert de \mathcal{O} est un ouvert de \mathbb{R}^n .
- 3. Pour $n \ge 2$, soit $O_{n-1} = \{(x_1, \dots, x_{n-1}) \in \mathbb{R}^{n-1} \mid 0 < x_1 < x_2 < \dots < x_{n-1}\}$ et soit U_{n-1} l'ensemble des (n-1)-uples $(y_1, \dots, y_{n-1}) \in \mathbb{R}^{n-1}$ tels que

 $y_i > y_{i+1}$ si $i \in \{1, ..., n-2\}$ est impair, $y_i < y_{i+1}$ si $i \in \{1, ..., n-2\}$ est pair.

Pour $x \in O_{n-1}$, on définit la fonction $\pi_x \in \mathscr{P}_n$ par $\pi_x(t) = t(x_1 - t) \cdots (x_{n-1} - t)$. On définit Papplication $Y = (Y_1, \dots, Y_{n-1}) : O_{n-1} \to \mathbb{R}^{n-1}$ par

$$Y_i(x) = \int_0^{x_i} \pi_x(u) du, \qquad x = (x_1, \dots, x_{n-1}) \in O_{n-1}.$$

a. Soient $j \in \{1, ..., n-1\}$ et $x \in O_{n-1}$. Montrer que

$$d_{x,j}: t \mapsto \int_0^t u \prod_{1 \le \ell \le n-1, \ \ell \ne j} (x_\ell - u) du$$

est dans \mathscr{P}_n et s'annule avec sa dérivée en 0. En déduire l'existence de $\chi_{x,j} \in \mathscr{P}_{n-2}$ vérifiant

$$\forall t \in \mathbb{R}, \qquad d_{x,j}(t) = t^2 \chi_{x,j}(t).$$

b. Pour $x \in O_{n-1}$ et $(i,j) \in \{1,\ldots,n-1\}^2$, montrer l'existence de $\frac{\partial Y_i}{\partial x_j}(x)$ et vérifier que

$$rac{\partial Y_i}{\partial x_j}(x) = d_{x,j}(x_i).$$

En déduire que Y est une application de classe C^1 sur l'ouvert O_{n-1} , à valeurs dans U_{n-1} .

- c. Démontrer que pour $x \in O_{n-1}$, la partie $\{\chi_{x,j} \mid j \in \{1, \dots, n-1\}\}$ est une base de \mathscr{P}_{n-2} .
- d. En déduire que la différentielle de Y au point x est inversible.
- **4.** Pour $n \in \mathbb{N}$, une fonction de \mathscr{P}_n est dite unitaire lorsque le coefficient de son terme de degré n est 1. On note \mathscr{P}_n^u l'ensemble de ces fonctions. On note $C_n = \text{Inf } \left\{ \int_0^1 |f(t)| \ dt \ | \ f \in \mathscr{P}_n^u \right\}$.
 - a. Montrer que $C_n > 0$.
 - b. Pour $n \geq 2$, démontrer que si $x \in O_{n-1}$

$$(x_{n-1})^{n+1} \le \frac{1}{C_n} \Big[Y_1(x) + \sum_{i=1}^{n-2} (-1)^i \big(Y_{i+1}(x) - Y_i(x) \big) \Big].$$

- c. Vérifier que l'application Y se prolonge continûment à l'adhérence de O_{n-1} .
- d. Montrer que si K est un compact de \mathbb{R}^{n-1} contenu dans U_{n-1} , $Y^{-1}(K)$ est compact.
- 5. Montrer que $Y(O_{n-1})$ est ouverte et fermée dans U_{n-1} et en déduire que Y est surjective.
- **6.** Montrer que pour tout $n \in \mathbb{N}$, pour toute fonction f de S_n vérifiant $\lim_{x \to \pm \infty} |f(x)| = \pm \infty$, il existe un élément $g \in \mathscr{P}_{n+1}$ tel que $f \sim g$ (où \sim est la relation définie en I.2).

Partie III

Soit $n \in \mathbb{N}^*$. Pour $k \in \mathbb{N}$, on note $\mathcal{B}(n,k)$ l'ensemble des applications $\sigma \in \mathrm{MD}(n+1)$ telles que

$$\sigma(2) - \sigma(1) = k + 1$$

Pour $k \in \mathbb{N}$ et $s \in \mathbb{N}$, on note $\mathcal{C}(n, s, k)$ l'ensemble des éléments σ de $\mathrm{MD}(n+2)$ tels que

$$\sigma(2) - \sigma(1) = s + 1, \qquad n + 2 - \sigma(2) = k.$$

1. Pour $m \geq 2$ vérifier que l'application $\mathrm{Opp}: \Sigma_m \to \Sigma_m$, qui à $\sigma \in \Sigma_m$ associe $\eta \in \Sigma_m$ défini par

$$\eta(i) = m + 1 - \sigma(i),$$

est une bijection vérifiant $\mathrm{Opp}\big(\mathrm{MD}(m)\big) = \mathrm{DM}(m)$ et $\mathrm{Opp}\big(\mathrm{DM}(m)\big) = \mathrm{MD}(m)$. Vérifier que si $\sigma \in \Sigma_m$ et si i, j sont des éléments de $\{1, \ldots, m\}$ vérifiant $\sigma(j) > \sigma(i)$,

$$\sigma(j) - \sigma(i) = 1 + \operatorname{Card} \{ k \in \Delta_m \mid \sigma(i) < \sigma(k) < \sigma(j) \}.$$

- 2. À quelle condition (nécessaire et suffisante) sur n et k l'ensemble $\mathcal{B}(n,k)$ est-il non vide? À quelle condition (nécessaire et suffisante) sur n, s et k l'ensemble $\mathcal{C}(n,s,k)$ est-il non vide?
- **3.** Dans cette question et la suivante, on fixe $n \ge 2$, $1 \le k \le n-1$ et $1 \le s \le n-k$. On se propose de construire une bijection de $\mathcal{C}(n,s,k)$ sur $\mathcal{B}(n,k)$. Soit $\sigma \in \mathcal{C}(n,s,k)$.
- a. Vérifier que le nombre m d'entiers $j \geq 4$ tels que $\sigma(j) > \sigma(3)$ vérifie $m \geq k$. On note j_1, \ldots, j_m ces entiers, que l'on ordonne de telle manière que $\sigma(j_1) < \sigma(j_2) < \cdots < \sigma(j_m)$.

b. On considère la fonction $\xi:\Delta_{n+1}\to \mathbb{N}\cup\{\sigma(j_k)+\frac{1}{2}\}$ définie par

$$\xi(1) = \sigma(j_k) + \frac{1}{2}, \quad \xi(2) = \sigma(3), \dots, \xi(n+1) = \sigma(n+2)$$
fie

Montrer que ξ vérifie

$$\xi(p) > \xi(p+1)$$
 pour p impair, $\xi(p) < \xi(p+1)$ pour p pair, valle $]\xi(2), \xi(1)[$ contient exactement h as

et que l'intervalle $]\xi(2), \xi(1)[$ contient exactement k éléments de $\{\xi(3), \dots, \xi(n+1)\}.$ c. On note $A = \xi(\Delta_{n+1})$ et on pose $\overline{\xi} = \beta_A \circ \xi$ (on rappelle que β_A désigne l'unique bijection croissante de A sur Δ_{n+1}). Montrer que $\bar{\xi} \in \mathrm{DM}(n+1)$

d. Soit $\eta = \text{Opp}(\overline{\xi})$. Vérifier que $\eta \in \mathcal{B}(n, k)$.

On note $\Psi_{n,s,k}$ l'application de C(n,s,k) dans $\mathcal{B}(n,k)$ définie par $\Psi_{n,s,k}(\sigma) = \eta$.

- 4. Soit $\eta \in \mathcal{B}(n,k)$ et soit $\xi = \mathrm{Opp}(\eta)$.
- a. Vérifier que le nombre m d'entiers $j \geq 3$ tels que $\xi(j) > \xi(2)$ vérifie $m \geq k$. On note j_1,\ldots,j_m ces entiers, avec $\xi(j_1) > \xi(j_2) \cdots > \xi(j_m)$.
- b. On pose $u_2 = \xi(j_k) \frac{1}{2} > \xi(2)$. Montrer que le nombre m' d'entiers $i \ge 2$ tels que $\xi(i) < u_2$ vérifie $m' \geq s$. On les note $i_1, \ldots, i_{m'}$, avec $\xi(i_1) > \cdots > \xi(i_{m'})$ et on pose $u_1 = \xi(i_s) - \frac{1}{2}$.
 - c. En considérant l'application θ définie par

$$\theta(1) = u_1, \ \theta(2) = u_2, \ \theta(3) = \xi(2), \dots, \theta(n+2) = \xi(n+1),$$

montrer l'existence de $\sigma \in C(n, s, k)$ vérifiant $\Psi_{n,s,k}(\sigma) = \eta$.

- d. Montrer que $\Psi_{n,s,k}$ est bijective.
- Donner un procédé de calcul de Card MD(n) par récurrence.

Partie IV

- 1. On note $E_n = \operatorname{Card} MD(n)$ et \mathcal{I}_n l'ensemble des nombres impairs de Δ_n
 - a. Démontrer que pour $n \ge 1$: $E_{n+1} = \sum_{i \in I} {n \choose i-1} E_{i-1} E_{n+1-i}$
 - b. En déduire que pour $n \ge 1$: $2E_{n+1} = \sum_{i=0}^{n} {n \choose i} E_i E_{n-i}$
- 2. a. Montrer que le rayon de convergence de la série entière $\sum \frac{E_n}{n!} x^n$ est ≥ 1 .
 - b. Pour |x| < 1, on note f(x) la somme de la série entière précédente. Démontrer que

$$2f'(x) = f^2(x) + 1, \quad \forall x \in]-1,1[.$$

c. En déduire que
$$f(x) = \tan\left(\frac{x}{2} + \frac{\pi}{4}\right) = \frac{1}{\cos x} + \tan x, \ \forall x \in]-1,1[$$
, puis que

$$\frac{1}{\cos x} = \sum_{n=0}^{\infty} \frac{E_{2n}}{(2n)!} x^{2n}, \qquad \tan x = \sum_{n=0}^{\infty} \frac{E_{2n+1}}{(2n+1)!} x^{2n+1}, \qquad \forall x \in]-1,1[.$$

3. Pour une fonction $f: \mathbb{R} \to \mathbb{R}$ de classe C^{∞} et $n \in \mathbb{N}$, on note $f^{(n)}$ la dérivée d'ordre n de f avec la convention $f^{(0)} = f$. On note $D: \mathbb{R}[X] \to \mathbb{R}[X]$ l'unique application linéaire telle que

$$D(X^0) = 0,$$
 $D(X^k) = k(X^{k-1} + X^{k+1}), \quad \forall k \in \mathbb{N}^*.$

Pour $n \in \mathbb{N}^*$, on note D^n la composée d'ordre n de D, avec la convention $D^0 = \mathrm{Id}$.

- a. Soit $P_n = D^n(X)$. Démontrer que pour $n \in \mathbb{N}$, $\tan^{(n)}(x) = P_n(\tan x)$ pour $x \in]-\frac{\pi}{2}, \frac{\pi}{2}[$.
- b. Pour $m \in \mathbb{N}^*$, soit V_m le sous-espace de $\mathbb{R}[X]$ engendré par $\{X, \ldots, X^m\}$. Soit ι_m l'injection canonique de V_m dans $\mathbb{R}[X]$ et soit $\tau_m : \mathbb{R}[X] \to V_m$ la projection linéaire définie par $\tau_m(X^k) = X^k$ si $k \in \{1, \ldots, m\}$ et $\tau_m(X^k) = 0$ sinon. On pose enfin $\delta_m = \tau_m \circ D \circ \iota_m$. Vérifier que δ_m est une application linéaire de V_m dans V_m et écrire sa matrice M_m dans la base (X, \ldots, X^m) .
- **4.** Soit $C_m \in \mathbb{R}[Y]$ le polynôme caractéristique de M_m .
 - a. Vérifier que $C_1 = Y$, $C_2 = Y^2 2$ et

$$C_m = YC_{m-1} - m(m-1)C_{m-2}, \qquad m \ge 3.$$

- b. Calculer le déterminant de M_m .
- c. Démontrer que, si e_m désigne la partie entière de m/2,

$$C_m = \sum_{k=0}^{e_m} (-1)^k c_{m,k} Y^{m-2k},$$

avec

$$c_{m,0} = 1;$$
 $c_{m,k} = \sum_{(a_1,\dots,a_k)\in J_k(m)} a_1(a_1+1)a_2(a_2+1)\cdots a_k(a_k+1), \quad 1 \le k \le e_m;$

où $J_k(m)$ désigne l'ensemble des k-uples d'entiers de $\{1,\ldots,m-1\}$ tels que $a_i+2\leq a_{i+1}$ pour $1\leq i\leq k-1$.

5. Dans la suite de cette partie, p désigne un entier premier impair fixé. On pourra utiliser sans démonstration le théorème de Wilson :

$$(p-1)! + 1 \equiv 0$$
 [p].

On note \mathbb{Z}_p le corps $\mathbb{Z}/p\mathbb{Z}$ et si $a \in \mathbb{Z}$, on note \overline{a} sa classe dans \mathbb{Z}_p . Pour $1 \le k \le e_p$, on note \mathcal{P}_k l'ensemble des parties P à k éléments de \mathbb{Z}_p vérifiant la condition

$$\forall \alpha \in P, \qquad \alpha + 1 \notin P.$$

a. Pour $P = \{\alpha_1, \dots, \alpha_k\} \in \mathcal{P}_k$ et $\alpha \in \mathbb{Z}_p$, on pose $\tau_{\alpha}(P) = \{\alpha_1 + \alpha_1, \dots, \alpha_k + \alpha\}$. Montrer que l'application $\alpha \mapsto \tau_{\alpha}$ est un morphisme de $(\mathbb{Z}_p, +)$ dans le groupe des bijections de \mathcal{P}_k

b. On définit une relation \mathcal{R} entre éléments de \mathcal{P}_k de la manière suivante : si A,B sont dans \mathcal{P}_k , $A\mathscr{R}B$ si et seulement si il existe $\alpha \in \mathbb{Z}_p$ tel que $B = \tau_\alpha(A)$. Montrer que \mathscr{R} est une relation d'équivalence sur \mathcal{P}_k , et que chaque classe d'équivalence est de cardinal p et admet un représentant de la forme $\{\overline{0},\overline{a}_2,\ldots,\overline{a}_k\}$ avec $0< a_2<\cdots< a_k< p$. On choisit un tel représentant pour chaque classe et on note R l'ensemble des représentants ainsi choisis.

$$\overline{c_{p-1,k}} = \sum_{\{0,\dots,a_k\} \in R} \sum_{1 \le \ell \le p-1} \overline{\ell} \ \overline{\ell+1} \ \overline{a_2+\ell} \ \overline{a_2+\ell+1} \cdots \overline{a_k+\ell} \ \overline{a_k+\ell+1}.$$

6. a. Pour $q \in \mathbb{N}$, on pose $S_q = \sum_{\ell=0}^{p-1} \ell^q$. Observer que p divise $\sum_{\ell=0}^{p-1} \left((\ell+1)^{q+1} - \ell^{q+1} \right)$ et en déduire par récurrence que p divise S_q pour $0 \le q \le p-2$.

b. Soient $Z=[z_{ij}]$ et $Z'=[z'_{ij}]$ deux matrices carrées d'ordre N à éléments dans $\mathbb Z$. On définit la relation $Z \equiv Z'[p]$ par $z_{ij} \equiv z'_{ij}[p]$ pour $1 \le i, j \le N$. Démontrer que

$$(M_{p-1})^{(p-1)} \equiv (-1)^{(p-1)/2} \text{Id} [p].$$

c. Que peut-on dire d'un polynôme Q à coefficients entiers tel que $Q(M_{p-1}) \equiv 0$ [p]?

7. On rappelle que \overline{E}_n désigne la classe de $E_n = \operatorname{Card} MD(n)$ dans \mathbb{Z}_p .

a. Montrer que $E_{2n+1} \equiv u_{2n} [p]$, où u_m est le coefficient sur le terme X de la décomposition de $\delta_{p-1}^m(X)$ dans la base (X,\ldots,X^{p-1}) .

b. Démontrer que la suite $(\overline{E}_{2n+1})_{n\in\mathbb{N}}$ est périodique, de période minimale (p-1)/2 si $p \equiv 1$ [4] et de période minimale (p-1) si $p \equiv 3$ [4].

c. Indiquer les modifications à apporter aux questions précédentes pour montrer un résultat analogue pour la suite $(\overline{E}_{2n})_{n\in\mathbb{N}}$.

Partie V

On note \widehat{S} l'ensemble des $f \in S_*$ vérifiant $\lim_{x \to -\infty} f(x) = -\infty$ et $\lim_{x \to +\infty} f(x) = +\infty$. Dans cette partie, on dira simplement « minimum » pour « minimum relatif » et « maxi- $\text{mum} \gg \text{pour} \ll \text{maximum relatif} \gg$. On note Mi(f) l'ensemble des minimums de f et Ma(f)l'ensemble des maximums de f, donc $E(f) = \text{Mi}(f) \cup \text{Ma}(f)$.

1. Soit $f \in \widehat{S}$.

a. Vérifier que Card Mi(f) = Card Ma(f) et que pour $y \in \mathbb{R}$, $f^{-1}(]-\infty,y[)$ est la réunion d'intervalles ouverts non vides et deux à deux disjoints. On note $\mathcal{I}(y)$ leur ensemble.

b. Montrer que pour tout élément M de Ma(f), il existe un unique couple $(I_{-}(M),I_{+}(M))$ d'éléments de $\mathscr{I}(f(M))$ tels que $M=\operatorname{Sup}\,I_-(M)=\operatorname{Inf}\,I_+(M)$.

c. Montrer que $I_+(M)$ est de la forme]M,b[avec $b\in]M,+\infty[$ vérifiant f(b)=f(M). Que peut-on dire de $I_{-}(M)$?

2. Soit $f \in \widehat{S}$. On note $\operatorname{Ma}(f) = \{M_1, \dots, M_{\mu}\}$ avec $f(M_1) < f(M_2) < \dots < f(M_{\mu})$. Montrer qu'il est possible de définir une bijection Φ de $\operatorname{Ma}(f)$ dans $\operatorname{Mi}(f)$ par récurrence de la manière suivante :

ante : $-\Phi(M_1) \text{ est le minimum de } f \text{ contenu dans } I_-(M_1) \cup I_+(M_1) \text{ dont l'image par } f \text{ est la}$ plus grande des images par f des minimums contenus dans $I_-(M_1) \cup I_+(M_1)$;

— pour $2 \le k \le \mu$, $\Phi(M_k)$ est le minimum de f contenu dans $I_-(M_k) \cup I_+(M_k)$ dont l'image par f est la plus grande des images par f des minimums contenus dans $I_-(M_k) \cup I_+(M_k)$ et n'appartenant pas à $\Phi(\{M_1, \ldots, M_{k-1}\})$.

On dira que Φ est la bijection associée à f.

3. Soit $f \in \widehat{S}$. On fixe $R \in \mathbb{R}^{*+}$ tel que $E(f) \subset]-R, R[$ et on note $\widehat{S}(f,R)$ l'ensemble des fonctions g de \widehat{S} qui coïncident avec f sur le complémentaire de]-R, R[. Pour $g \in \widehat{S}(f,R)$, on pose

$$||g - f||_R = \sup_{x \in \mathbb{R}} |g(x) - f(x)|.$$

a. Montrer qu'il existe $\varepsilon_0 > 0$ tel que si $g \in \widehat{S}(f, R)$ vérifie $||g - f||_R < \varepsilon_0$,

$$\operatorname{Card} E(g) \geq \operatorname{Card} E(f).$$

b. Montrer que pour tout $\varepsilon > 0$ et tout entier pair $\mu \geq E(f)$, il existe $g \in \widehat{S}(f,R)$ vérifiant $\|g - f\|_R < \varepsilon$ et telle que Card $E(g) = \mu$.

4. Soit $f \in \widehat{S}$ et soit Φ sa bijection associée. Le code de f est l'ensemble

$$C(f) = \{f(M) - f(\Phi(M)) \mid M \in \operatorname{Ma}(f)\} \cup \{0\}.$$

On se propose dans la suite de cette partie de montrer que le code varie continûment avec la fonction, dans un sens approprié.

On fixe $f \in \widehat{S}$ et un réel R > 0 comme dans la question précédente, dont on conserve les notations. On fixe $\varepsilon > 0$.

a. On pose

$$\gamma_0(f,R) = \frac{1}{2} \operatorname{Min} \left(\min_{(x,x') \in E(f)^2, \ x \neq x'} |x - x'|, \ R - \operatorname{Max} E(f), \ \operatorname{Min} E(f) + R \right).$$

Vérifier que $\gamma_0(f, R) > 0$ et vérifier qu'il existe

$$\gamma \in]0, \gamma_0(f, R)[\tag{1}$$

el que

$$\forall x \in E(f), \quad |f(x) - f(x - \gamma)| < \varepsilon/4, \quad |f(x) - f(x + \gamma)| < \varepsilon/4.$$
 (2)

Dans la suite de cette question on suppose que γ est ainsi choisi.

Pour une fonction $h \in S$ et pour tout élément $x \in E(h) \setminus \{\text{Max } E(h)\}$, on appellera uccesseur de x pour h le plus petit élément de E(h) qui est strictement supérieur à x.

b. Soit $\overline{m} \in \text{Mi}(f) \setminus \{\text{Max } E(f)\}$ et soit $\overline{M} \in \text{Ma}(f)$ le successeur de \overline{m} pour f. Montrer existence de $\alpha_0 > 0$ tel que pour $g \in \widehat{S}(f,R)$ vérifiant $\|g - f\|_R < \alpha_0$, pour tout maximum M e g dans $[\overline{m} - \gamma, \overline{M} - \gamma]$, le successeur de M pour g est dans $[\overline{m} - \gamma, \overline{M}]$.

c. On conserve les hypothèses de la question précédente sur \overline{m} et \overline{M} . Montrer l'existence de $\alpha_1 \in]0, \alpha_0[$ tel que pour $g \in \widehat{S}(f,R)$ vérifiant $||g-f||_R < \alpha_1$, pour tout maximum M de g dans $[\overline{m} - \gamma, \overline{M} - \gamma]$, le successeur m de M pour g vérifie $g(M) - g(m) < \varepsilon$.

d. Soit $\overline{M} \in \operatorname{Ma}(f) \setminus \{\operatorname{Max} E(f)\}$ et soit $\overline{m} \in \operatorname{Mi}(f)$ le successeur de \overline{M} pour f. Montrer brièvement l'existence de $\alpha_2 > 0$ tel que pour $g \in \widehat{S}(f,R)$ vérifiant $\|g - f\|_R < \alpha_2$, pour tout minimum m de g dans $[\overline{M} - \gamma, \overline{m} - \gamma]$, le successeur M de m pour g vérifie $g(M) - g(m) < \varepsilon$.

e. Étudier sans démonstration le cas des maximums et minimums contenus dans les intervalles $[-R, \operatorname{Min} E(f) - \gamma]$ ou de la forme $[\operatorname{Max} E(f) - \gamma, R]$.

5. On fixe $f \in \hat{S}$, de bijection associée Φ , et un réel R > 0 comme dans la question précédente.

a. Montrer qu'il existe ε_0 tel que si $0 < \varepsilon < \varepsilon_0$ et si $\gamma > 0$ vérifie (1) et (2), il existe $\alpha > 0$ tel que pour toute fonction $g \in \widehat{S}(f,R)$ vérifiant $||g - f||_R < \alpha$, pour tout couple $(m,M) \in \operatorname{Mi}(f) \times \operatorname{Ma}(f)$ vérifiant $m = \Phi(M)$, alors

$$m_g = \Phi_g(M_g)$$

où

$$g(m_g) = \min_{x \in [m-\gamma, m+\gamma]} g(x), \qquad g(M_g) = \max_{x \in [M-\gamma, M+\gamma]} g(x),$$

et où Φ_g est la bijection associée à g.

b. Pour une partie finie C de \mathbb{R} et un réel x, on pose $d_C(x) = \text{Min } \{|x-y| \mid y \in C\}$. Si C et C' sont deux parties finies de \mathbb{R} , on pose

$$\mathcal{H}(C,C') = \operatorname{Max}\left(\operatorname{Max}_{x' \in C'} d_C(x'), \operatorname{Max}_{x \in C} d_{C'}(x)\right).$$

 $\text{Montrer qu'il existe } \alpha > 0 \text{ tel que si } g \in \widehat{S}(f,R) \text{ v\'erifie } \|g-f\|_R < \alpha \text{, alors } \mathcal{H}\big(C(g),C(f)\big) < \varepsilon.$

Fin du sujet