MAD Decision Making

Learning Complexe Behavior

Guillaume Lozenguez
omenges.com

IMT Nord Europe

École Mines-Télécom IMT-Université de Lille

- 1. Back to Q-Learning on 421
- 2. Converging
- 3. Risky Game
- 4. Curse of Dimensionality

- 1. Back to Q-Learning on 421
- 2. Converging
- 3. Risky Game
- 4. Curse of Dimensionality

Hypotesis: it's Markovian

The system to control matches a Markov Decision Process

MDP: $\langle S, A, T, R \rangle$:

S: set of system's states

A : set of possible actions

 $T: S \times A \times S \rightarrow [0, 1]:$ transitions

 $R: S \times A \rightarrow R: cost/rewards$

We do have *S* and *A* but not *t* and *r*

- ► Iterative update on (**state**, **action**) evaluation
- Q-Value equation:

$$Q(s^t, a) = (1 - lpha)Q(s^t, a) + lpha \left(r + \gamma \max_{a' \in A} Q(s^{t+1}, a')
ight)$$

- Few parameters:
 - α learning rate; ϵ Exploration-Exploitation ratio and γ discount factor.

Q-Learning: for instance

▶ Reaching 4-2-1 at h-1 from 6-2-1 at h-2 by doing roll-keep-keep.

$$Q(ext{2-6-2-1, r-k-k}) = (1-lpha)Q(ext{2-6-2-1, r-k-k}) + lpha \left(r + \gamma \max_{a' \in A} Q(ext{1-4-2-1, } a')
ight)$$
 $Q(ext{2-6-2-1, r-k-k}) = (1-lpha) \ 40.0 + lpha \left(0.0 + 80.0
ight) \ \left(a' = ext{keep}^3
ight)$

With α learning rate at 0.1, Q(2-6-2-1, r-k-k) is now equals to 44

► With 500 steps of 500 games:

 $\sim \alpha$: 0.1; ϵ : 0.1; γ : 0.99;

Drawing plot in Python: pyplot

```
Codes:

import matplotlib.pyplot as plt

..

plt.plot( values )
plt.ylabel( "mean of the y value" )
plt.show()
```

 \triangleright Where values is a list of values in \mathbb{R}

► With 500 steps of 500 games:

With optimal threshold

► With 500 steps of 500 games:

 $\sim \alpha$: 0.01; ϵ : 0.1; γ : 0.99;

► With 500 steps of 500 games:

 $\sim \alpha$: 0.01; ϵ : 0.6; γ : 0.99;

Playing with the parameters:

- Generate rapidly "good" policies
- Converge on a maximal and stable Q-Values (an indicator for optimal policy)
- ▶ Potentially: be reactive to system modification (recovery)

Ideally: implement dynamic parameters

- 1. Back to Q-Learning on 421
- 2. Converging
- 3. Risky Game
- 4. Curse of Dimensionality

- 1. Back to Q-Learning on 421
- 2. Converging
- 3. Risky Game
- 4. Curse of Dimensionality

Converging

Cf. tutorial:

bitbucket.org/imt-mobisyst/hackagames/src/master/doc/index.md

- 1. Back to Q-Learning on 421
- 2. Converging
- 3. Risky Game
- 4. Curse of Dimensionality

- 1. Back to Q-Learning on 421
- 2. Converging
- 3. Risky Game
- 4. Curse of Dimensionality

The Curse of Dimensionality

- 1. The Curse
- 2. Geometric Reduction
- 3. State Decomposition

- 1. The Curse of Dimensionality
 - Example With 2 player 421
- 2. Geometric Reduction
- 3. State Decomposition

System Difficulty

Directly correlated to the state space:

The number of states: the Cartesian product of variable domains |S| (minus some unreachable states)

▶ **421 game:** 3 dice-6 at the horizon 3: $(3 \times 6^3 = 648)$ but 168 effectives.

Then the branching:

Finally, the number of games:

System Difficulty

Directly correlated to the state space

Then the branching:

The number of possible actions and actions' outcomes.

▶ **421 game:** 2^3 actions, 6^r action outcomes (r, the number of rolled dice - max. 3).

Finally, the number of games:

The number of all possible succession of states until reaching an end.

 $|Branching|^h$ (h the horizon) - Potentially $|S|^h$. 421 game: $(6^3)^3$ games

Reminder over Combinatorics

With a Classical 32-card game: Possible distribution $32! = 2.6 \times 10^{35}$

Human life: around 5×10^7 seconds

Probability to play 2 times the same distribution in a human life is very close to 0

Learning 2-players-421

State space?

Branching?

First results...

Learning in Combinatorics Context

The root problem: handle large systems

- $lackbox{ iny Evaluate states} \quad V:S o\mathbb{R} \quad ext{or} \quad Q:S imes A o\mathbb{R}$
- ightharpoonup Build a policy $\pi:S o A$

A first basic solution:

▶ Reduce the state space definition

State reduction in QLearning

Project the states in a smallest space (dimension and size)

By mitigate the negative impact on the resulting built policy.

- 1. The Curse of Dimensionality
- 2. Geometric Reduction
 - Reduce the dimension (PCA)
 - Clustering (K-means)
- 3. State Decomposition

Geometry Reduction

- Consider that close states are similar.
- ▶ Based on the assumption that: *it is possible to define a distance between States*
- By using regular discretization or adaptative clustering

Reduce the dimension - (Principal Component Analysis)

Searching the hyper-plan that better separate the data, in a given dimension.

Clustering - (K-means)

regroup the states in coherent sets

K-means:

Searching the optimal *k* center positions that better group/separate the data

Basic 'simple' classification method

Principal Component Analysis (PCA)

Searching the hyper-plan that better separate the data, in a given dimension.

Python scikit-learn module: sklearn.decomposition.PCA

K-means

Searching the optimal *k* center positions that better group the data together.

Python scikit-learn module: sklearn.cluster.KMeans

- Work well with 'linear state transitions' and different states density.
- ► Suppose a data set (trace) ideally with proper values

- 1. The Curse of Dimensionality
- 2. Geometric Reduction
- 3. State-Space Decomposition
 - Decision Tree
 - Example With 421

State-Space Decomposition

Factorized method: Based on state variable prevalence

▶ Decision tree (Again) **Nodes:** variables ; **Edges:** assignment ; **leaf:** group of states

Decision Tree On 421 Q-Learning

Decision Tree On 421 Q-Learning

Simply reduce the state definition to 7 states...

```
def state(self):
   if self.turn == 0 :
      return 'end'
   if self.dices[2] == 1 :
      if self.dices[1] == 2 :
            if self.dices[0] == 4 :
               return "4-2-1"
            return "X-2-1"
      if self.dices[1] == 1 :
            return "X-1-1"
      return "X-X-1"
   return "X-X-X"
```

Decision Tree On 421 Q-Learning

Results:

Decision Tree Conclusion...

Conclusion:

It is all about defining the appropriate variable prevalence (Decision Tree Structure)

Learn the structure:

- Expert based Decision Trees or learned (<u>ID3 algorithm</u>)
- Again on python scikit learn: (module tree)

But..

The evaluation of the structure of the tree is performed by deadly execution of Q-Learning!