Circuitos Combinacionais

Circuito combinacional:

- Possui portas lógicas conectadas para produzir valor dos sinais de saída
- Não possui armazenamento de valores no circuito
- Valor dos sinais de saída depende apenas dos valores dos sinais de entrada

Circuitos Combinacionais Básicos

- Habilitação / Desabilitação
- Multiplexador / Demultiplexador
- Codificador / Decodificador
- Gerador de paridade / Verificador de paridade
- Circuitos aritméticos:
 - Shifter (deslocador)
 - Comparador
 - Somador / subtrator

Comparador de Igualdade de Dados de n bits

Sinais de entrada:

• Dado A de n bits: $A_{n-1} \dots A_2 A_1 A_0$

• Dado B de n bits: $B_{n-1} \dots B_2 B_1 B_0$

Sinal de saída:

AeqB: indica se A = B (AeqB = 1) ou não (AeqB = 0)

Comparador de Igualdade de Dados de 1 bit

- Sinais de entrada:
 - Dado A de 1 bit
 - Dado B de 1 bit
- Sinal de saída: AeqB

Porta XOR

Entradas		Saída	
\boldsymbol{A}	B	$A\oplus B$	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Comparador de Igualdade de Dados de 2 bits

• Sinais de entrada:

Dado A de 2 bits: A₁ A₀

Dado B de 2 bits: B₁ B₀

Sinal de saída: AeqB

Comparador de Igualdade de Dados de n bits

Sinais de entrada:

 $A_{n-1} ... A_2 A_1 A_0$ Dado A de n bits:

 $B_{n-1} \dots B_2 B_1 B_0$ Dado B de n bits:

Sinal de saída: AeqB

Sinais de entrada:

• Dado A de n bits: $A_{n-1} \dots A_2 A_1 A_0$

• Dado B de n bits: $B_{n-1} \dots B_2 B_1 B_0$

Sinais de saída:

AltB: indica se A < B (AltB = 1) ou não (AltB = 0)

AeqB: indica se A = B (AeqB = 1) ou não (AeqB = 0)

AgtB: indica se A > B (AgtB = 1) ou não (AgtB = 0)

Sinais de entrada:

• Dado A de n bits: $A_{n-1} \dots A_2 A_1 A_0$

• Dado B de n bits: $B_{n-1} \dots B_2 B_1 B_0$

• Sinais de saída: AltB, AeqB, AgtB

• Ideia:

Comparar a partir do bit mais significativo para menos significativo

\mathbf{A}_{n-1}	$ \mathbf{B}_{n-1} $	Significado		
0	0	$A_{n-1} = B_{n-1} \Rightarrow Compara bit seguinte (n-2)$		
0	1	A < B		
1	0	A > B		
1	1	$A_{n-1} = B_{n-1} \Rightarrow Compara bit seguinte (n-2)$		

Sinais de entrada:

- Dado A de 1 bit
- Dado B de 1 bit

Sinais de saída:

- AltB: indica se A < B ou não
- AeqB: indica se A = B ou não
- AgtB: indica se A > B ou não

- $AeqB = \overline{A \oplus B}$
- $AgtB = A \bullet \overline{B}$
- $AltB = \overline{A} \bullet B$

- Sinais de entrada:
 - Dado A de 4 bits: $A_3A_2A_1A_0$
 - Dado B de 4 bits: $B_3B_2B_1B_0$
- Sinais de saída: AltB, AeqB, AgtB

- Ideia:
 - $eq_i = \overline{A_i \oplus B_i}$
 - $AeqB = eq_3 \bullet eq_2 \bullet eq_1 \bullet eq_0$
 - $AgtB = A_3 \bullet \overline{B_3} + eq_3 \bullet A_2 \bullet \overline{B_2} +$ $eq_3 \bullet eq_2 \bullet A_1 \bullet \overline{B_1} + eq_3 \bullet eq_2 \bullet eq_1 \bullet A_0 \bullet \overline{B_0}$
 - $AltB = \overline{AeqB + AgtB}$

Sinais de entrada:

• Dado A de n bits: $A_{n-1} \dots A_2 A_1 A_0$

• Dado B de n bits: $B_{n-1} \dots B_2 B_1 B_0$

• Sinais de saída: AltB, AeqB, AgtB

- Ideias:
 - Comparar a partir do bit mais significativo para menos significativo
 - Usar técnica de replicação

Sinais de entrada:

- Dado A de 1 bit
- Dado B de 1 bit
- AeqBin:

 Modificação
 - Se AeqBin = 0, já determinou que A > B ou A < B
 - Se AeqBin = 1, ainda não determinou que A > B ou A < B

Sinais de saída

- AltB: indica se A < B ou não
- AeqB: indica se A = B ou não
- AgtB: indica se A > B ou não

Apenas se AeqBin for 1.

Se AeqBin for 0, saídas ficam em 0.

- Sinais de entrada:
 - Dado A de 1 bit
 - Dado B de 1 bit
 - AeqBin

Sinais de saída: AltB, AeqB, AgtB

Entradas			Saídas			
AeqBin	A	В	AgtB	AeqB	AltB	
0	0	0	0	0	0	
0	0	1	0	0	0	
0	1	0	0	0	0	
0	1	1	0	0	0	
1	0	0	0	1	0	
1	0	1	0	0	1	
1	1	0	1	0	0	
1	1	1	0	1	0	

- $AeqB = (\overline{A \oplus B}) \bullet AeqBin$
- $AgtB = (A \bullet \overline{B}) \bullet AeqBin$
- $AltB = (\overline{A} \bullet B) \bullet AeqBin$

• Sinais de entrada: Dados A e B de 4 bits

• Sinais de saída: AltB, AeqB, AgtB

Usando 4 comparadores de 1 bit

Somador de Dados de n bits

Sinais de entrada:

• Dado A de n bits: $A_{n-1} \dots A_2 A_1 A_0$

• Dado B de n bits: $B_{n-1} \dots B_2 B_1 B_0$

Sinais de saída

• Soma S de n bits: $S_{n-1} \dots S_2 S_1 S_0$

CarryOut

Somador de Dados de n bits

- Como construir?
- Ideia:
 - Construir circuito somador de dados de 1 bit
 - Construir somador de n bits usando n somadores de 1 bit
- Técnica: Replicação ou bit-slice
- Somadores simples de 1 bit:
 - Meio somador (half-adder)
 - Somador completo (full-adder)

Meio Somador (Half-Adder)

- Sinais de entrada:
 - Dado A de 1 bit
 - Dado B de 1 bit
- Sinais de saída:
 - Soma S de 1 bit
 - CarryOut

• Sinais de entrada:

- Dado A de 1 bit
- Dado B de 1 bit
- CarryIn
- Sinais de saída:
 - Soma S de 1 bit
 - CarryOut

Inputs			Outputs		
Α	В	C_{ln}	C_{out}	S	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

Inp	Inputs			Outputs		
Α	В	C_{ln}	C_{out}	S		
0	0	0	0	0		
0	0	1	0	1		
0	1	0	0	1		
0	1	1	1	0		
1	0	0	0	1		
1	0	1	1	0		
1	1	0	1	0		
1	1	1	1	1		

$$Cout = A \bullet B + B \bullet Cin + A \bullet Cin$$

$$S = \overline{A} \bullet \overline{B} \bullet Cin + A \bullet B \bullet Cin + \overline{A} \bullet B \bullet \overline{Cin} + A \bullet \overline{B} \bullet \overline{Cin}$$

$$= (\overline{A} \bullet \overline{B} + A \bullet B) \bullet Cin + (\overline{A} \bullet B + A \bullet \overline{B}) \bullet \overline{Cin}$$

$$= (\overline{A} \oplus \overline{B}) \bullet Cin + (A \oplus B) \bullet \overline{Cin}$$

$$= (A \oplus B) \oplus Cin$$

Implementado usando 2 half-adders:

Somador de Dados de 4 bits

Sinais de entrada:

Dado A de 4 bits: A₃ A₂ A₁ A₀

Dado B de 4 bits: B₃ B₂ B₁ B₀

Sinais de saída:

• Soma S de 4 bits: $S_3 S_2 S_1 S_0$

CarryOut

Replicação:

Construído usando 4 somadores completos de 1 bit

- Somador de 4 bits com ripple carry (carry "em cascata"):
 - 4 somadores completos de 1 bit conectados,
 do bit menos significativo para bit mais significativo

Somador de Dados de 4 bits

- Somador de 4 bits com ripple carry:
 - Valor fornecido em C_0 ?

Subtração de Dados de n bits

- Como implementar subtração S = A − B ?
 - Dados A e B de n bits
 - Resultado S de n bits
- Ideia:

- Realizar subtração através de uma soma
- Usar inversores na entrada B
- Como somar 1 no resultado S ?

Subtrador de Dados de 4 bits

Usando 4 somadores completos:

Somador/Subtrador de Dados de n bits

Sinais de entrada:

- Dado A de n bits: $A_{n-1} \dots A_2 A_1 A_0$
- Dado B de n bits: $B_{n-1} \dots B_2 B_1 B_0$
- Op: Op = 0 ⇒ Soma
 Op = 1 ⇒ Subtração

Sinais de saída:

Resultado S de n bits:

$$S_{n-1} \dots S_2 S_1 S_0$$

- Se Op = 0, S = A + B
- Se Op = 1, S = A B
- CarryOut

Somador/Subtrador de Dados de 4 bits

Sinais de entrada:

- Dado A de 4 bits: A₃ A₂ A₁ A₀
- Dado B de 4 bits: B₃ B₂ B₁ B₀
- Op: Op = 0 ⇒ Soma
 Op = 1 ⇒ Subtração

Sinais de saída

Resultado S de 4 bits:

$$S_3 S_2 S_1 S_0$$

- Se Op = 0, S = A + B
- Se Op = 1, S = A B
- CarryOut

Como selecionar operação soma ou subtração ?

Somador/Subtrador de Dados de 4 bits

