Bayesian Inference: Principles and Practice

3. Sparse Bayesian Models and the "Relevance Vector Machine"

Mike Tipping

Lecture 3: Overview*

- A hierarchical prior for 'sparse' linear models
- Sparse regression: (approximate) inference procedure
- Insight into sparsity
- Sparse classification: a further approximation
- Contrast with the support vector machine

^{*}We won't cover all the material in the notes in this lecture . . .

Bayes and Contemporary Machine Learning

- We've seen that marginalisation is a valuable component of the Bayesian data modelling paradigm
- We also saw that full Bayesian inference is often analytically intractable, although approximations for simple linear models could be very effective
- Historically, interest in Bayesian "machine learning" (but not statistics!) has focussed on approximations for *non-linear* models, *e.g.* neural networks:
 - The "evidence procedure" [MacKay]
 - Hybrid Monte Carlo sampling [Neal]
- Good news! flexible linear kernel methods have become very fashionable, thanks mainly to the "support vector machine"

Linear Models and Sparsity

■ Much interest in linear models has focused on *sparse* learning algorithms, which set many weights w_m to zero in the function $y(x) = \sum_m w_m \phi_m(x)$

- Sparsity offers:
 - Elegant complexity control
 - Feature extraction
 - Elucidation

Speed and compactness...

How To Encode Sparsity?

- In the algorithm:
 - Heuristic, 'greedy', sequential techniques (e.g. "matching pursuit")
- In the objective function:

$$\hat{E}(\mathbf{w}) = E_{\mathcal{D}}(\mathbf{w}) + \lambda E_{\mathcal{W}}(\mathbf{w})$$

- I usually via the penalty term $E_W(\mathbf{w})$
- I but can be via the data error term $E_{\mathcal{D}}(\mathbf{w})$ (e.g. the SVM)
- In the prior:

$$p(\mathbf{w}|\mathcal{D}) = \frac{p(\mathcal{D}|\mathbf{w}) \, p(\mathbf{w})}{p(\mathcal{D})}$$

Recall: correspondence between $E_W(\mathbf{w})$ and $-\log p(\mathbf{w})$

Penalty Terms & Priors

- Most common regularisation term: $E_W(\mathbf{w}) = \sum_{m=1}^{M} |w_m|^2$
 - I Corresponds to a Gaussian prior $p(\mathbf{w}) \propto \exp\left(-\sum_{m}|w_{m}|^{2}\right)$
 - Easy to work with & an effective regulariser, but no sparsity pressure
- 'Correct' term would be $E_W(\mathbf{w}) = \sum_m |w_m|^0$, but this is very ugly to work with!
- Instead, $E_W(\mathbf{w}) = \sum_m |w_m|^1$ is a workable compromise which gives reasonable sparsity and reasonable tractability:
 - "LP-machines"
 - "Basis pursuit"
 - "Bayesian Pruning", as a Laplace prior $p(\mathbf{w}) \propto \exp(-\sum_m |w_m|)$

A Sparse Bayesian Prior

- In fact, we can obtain sparsity by retaining the traditional Gaussian prior
 - I This is great news for tractability
 - I Furthermore, this approach leads to scale invariance

The modification to our earlier Gaussian prior is subtle:

$$p(\mathbf{w}|\alpha_1, \dots, \alpha_M) = (2\pi)^{-M/2} \prod_{m=1}^{M} \alpha_m^{1/2} \exp \left\{ -\frac{1}{2} \sum_{m=1}^{M} \alpha_m w_m^2 \right\}$$

What's new? We now have M hyperparameters $\alpha = (\alpha_1, \dots, \alpha_M)$, one α_m independently controlling the (inverse) variance of each weight w_m

Hierarchical Priors

- In the prior $p(\mathbf{w}|\alpha)$ is Gaussian, but conditioned on α
- We should now define hyperpriors over all α_m
- Previously, we utilised a log-uniform hyperprior this is a special case of a more general Gamma hyperprior
- This gives a hierarchical prior: we must marginalise to see its 'true' form

$$p(w_m) = \int p(w_m | \alpha_m) \ p(\alpha_m) \ d\alpha_m$$

- For a Gamma $p(\alpha_m)$, $p(w_m)$ is a Student-t distribution
- Its equivalent as a penalty function would be: $\sum_{m} \log |w_{m}|$

Priors Compared

- Specifying independent hyperparameters α_m is the key to sparsity
- **Example** marginal priors $p(w_1, w_2)$ illustrated below:

Gaussian prior

Marginal prior: single α

Independent α

A Sparse Bayesian Model for Regression

- As before: independent Gaussian noise: $t_n \sim N(y(\mathbf{x}_n; \mathbf{w}), \sigma^2)$
- This gives a corresponding likelihood:

$$p(\mathbf{t}|\mathbf{w}, \sigma^2) = (2\pi\sigma^2)^{-N/2} \exp\left\{-\frac{1}{2\sigma^2} ||\mathbf{t} - \Phi \mathbf{w}||^2\right\}$$

- $\mathbf{t} = (t_1 \dots t_N)^{\mathsf{T}}$
- $\mathbf{w} = (w_1 \dots w_M)^{\mathsf{T}}$
- $lack \Phi$ is the $N \times M$ 'design' matrix with $\Phi_{nm} = \phi_m(\mathbf{x}_n)$

Approximate Inference

Desire posterior over all unknowns:

$$p(\mathbf{w}, \alpha, \sigma^2 | \mathbf{t}) = \frac{p(\mathbf{t} | \mathbf{w}, \alpha, \sigma^2) p(\mathbf{w}, \alpha, \sigma^2)}{p(\mathbf{t})}$$

Can't compute analytically! So as previously, decompose as:

$$p(\mathbf{w}, \alpha, \sigma^2 | \mathbf{t}) \equiv p(\mathbf{w} | \mathbf{t}, \alpha, \sigma^2) p(\alpha, \sigma^2 | \mathbf{t})$$

- $p(\mathbf{w}|\mathbf{t},\alpha,\sigma^2)$, the 'weight posterior' distribution, is tractable
- I $p(\alpha, \sigma^2 | \mathbf{t})$ must be approximated

The Weight Posterior Term

Given the data, the posterior distribution over weights is Gaussian:

$$p(\mathbf{w}|\mathbf{t}, \alpha, \sigma^2) = \frac{p(\mathbf{t}|\mathbf{w}, \sigma^2) p(\mathbf{w}|\alpha)}{p(\mathbf{t}|\alpha, \sigma^2)}$$
$$= (2\pi)^{-(N+1)/2} |\Sigma|^{-1/2} \exp\left\{-\frac{1}{2}(\mathbf{w} - \mu)^{\mathsf{T}} \Sigma^{-1} (\mathbf{w} - \mu)\right\}$$

with

$$\Sigma = (\sigma^{-2}\Phi^{\mathsf{T}}\Phi + \mathbf{A})^{-1}$$

$$\mu = \sigma^{-2} \Sigma \Phi^{\mathsf{T}} \mathbf{t}$$

Key point: if $\alpha_m = \infty$, the corresponding $\mu_m = 0$

The Hyperparameter Posterior Term

- As before, for uniform hyperpriors over $\log \alpha$ and $\log \sigma$, $p(\alpha, \sigma^2 | \mathbf{t}) \propto p(\mathbf{t} | \alpha, \sigma^2)$
- Integrate out weights to obtain the *marginal likelihood*:

$$\begin{split} \rho(\mathbf{t}|\alpha,\sigma^2) &= \int \rho(\mathbf{t}|\mathbf{w},\sigma^2) \, \rho(\mathbf{w}|\alpha) \, d\mathbf{w}, \\ &= (2\pi)^{-N/2} |\sigma^2 \mathbf{I} + \Phi \mathbf{A}^{-1} \Phi^{\mathsf{T}}|^{-1/2} \exp \left\{ -\frac{1}{2} \mathbf{t}^{\mathsf{T}} (\sigma^2 \mathbf{I} + \Phi \mathbf{A}^{-1} \Phi^{\mathsf{T}})^{-1} \mathbf{t} \right\} \end{split}$$

- We maximise $p(\mathbf{t}|\alpha, \sigma^2)$ to find α_{MP} and σ^2_{MP} ("type-II maximum likelihood")
- In Lecture 2, we found the single α_{MP} empirically
- For multiple hyperparameters, we must optimise $p(\mathbf{t}|\alpha, \sigma^2)$ directly

Hyperparameter Re-estimation

Differentiating $\log p(\mathbf{t}|\alpha, \sigma^2)$ gives iterative re-estimation formulae:

$$\alpha_i^{\text{new}} = \frac{\gamma_i}{\mu_i^2}$$
$$(\sigma^2)^{\text{new}} = \frac{\|\mathbf{t} - \Phi\boldsymbol{\mu}\|^2}{N - \sum_{i=1}^{M} \gamma_i}$$

For convenience we have defined the quantities

$$\gamma_i = 1 - \alpha_i \Sigma_{ii}$$

 $\gamma_i \in [0, 1]$ is a measure of 'well-determinedness' of parameter w_i

Summary of Inference Procedure

- Initialise $\{\alpha_i\}$ and σ^2 (or fix latter if known)
- $oldsymbol{arrho}$ Compute weight posterior sufficient statistics μ and Σ
- **3** Compute all $\{\gamma_i\}$, then re-estimate $\{\alpha_i\}$ (and σ^2 if desired)
- Repeat from 2 until convergence
- Make predictions for new data via the predictive distribution:

$$p(t_*|\mathbf{t}) = \int p(t_*|\mathbf{w}, \sigma_{\text{MP}}^2) \; p(\mathbf{w}|\mathbf{t}, \alpha_{\text{MP}}, \sigma_{\text{MP}}^2) \; d\mathbf{w}$$
 the mean of which is $y(\mathbf{x}_*; \mu)$

6 Can 'delete' basis functions for which optimal $\alpha_i = \infty$, since $\mu_i = 0$

Sparsity: Algorithmic Insight

- ML(w): conventional maximum likelihood (or least-squares)
 - I optimises M+1 parameters, w and σ^2
 - I Since $\sigma^2 \to 0$, $p(\mathbf{t}|\mathbf{w})$ is a δ -function located at \mathbf{t}
 - No "Ockham penalty"!
- \blacksquare ML(α): maximising the marginal likelihood
 - I optimises M+1 parameters, α and σ^2
 - $p(\mathbf{t}|\alpha,\sigma^2)$ is a zero-mean Gaussian process with covariance

$$\mathbf{C} = \sum_{m=1}^{M} \alpha_m^{-1} \phi_m \phi_m^{\mathsf{T}} + \sigma^2 \mathbf{I}$$

where $\phi_m = [\phi_m(\mathbf{x}_1), \dots, \phi_m(\mathbf{x}_N)]^T$

Support Vector Regression

Relevance Vector Regression

Sparse Bayesian Classification

■ The likelihood is now Bernoulli, rather than Gaussian:

$$P(\mathbf{t}|\mathbf{w}) = \prod_{n=1}^{N} g\{y(\mathbf{x}_n; \mathbf{w})\}^{t_n} [1 - g\{y(\mathbf{x}_n; \mathbf{w})\}]^{1-t_n}$$

with $g(y) = 1/(1 + e^{-y})$ the 'logistic sigmoid' function

- Note: no noise variance σ^2
- Same sparse prior $p(\mathbf{w}|\alpha)$ as for regression
- Unlike for regression and the Gaussian likelihood model, $p(\mathbf{w}|\mathbf{t}, \alpha)$ cannot be obtained analytically, we so utilise a Laplace (Gaussian) approximation

Classification: Gaussian Posterior Approximation

- For the current values of α , find the posterior mode \mathbf{w}_{MP} via optimisation
- Compute the Hessian at w_{MP}:

$$\nabla_{\mathbf{W}}\nabla_{\mathbf{W}}\log p(\mathbf{w}|\mathbf{t},\alpha)|_{\mathbf{W}_{\mathsf{MP}}} = -(\Phi^{\mathsf{T}}\mathbf{B}\Phi + \mathbf{A})$$
 where $\mathbf{B}_{nn} = g\{y(\mathbf{x}_n;\mathbf{w}_{\mathsf{MP}})\} [1 - g\{y(\mathbf{x}_n;\mathbf{w}_{\mathsf{MP}})\}]$

- Negate and invert to give the covariance Σ for a Gaussian approximation $p(\mathbf{w}|\mathbf{t},\alpha) \approx N(\mathbf{w}_{\mathsf{MP}},\Sigma)$
- I Hyperparameters lpha are updated as before using the approximated μ and Σ
- Note that $p(\mathbf{w}|\mathbf{t}, \alpha)$ is log-concave

Support Vector Machines

- A state-of-the-art method for classification and regression
- Given data set comprising N input vectors \mathbf{x}_n , model has form

$$y(\mathbf{x}; \mathbf{w}) = \sum_{n=1}^{N} w_n K(\mathbf{x}, \mathbf{x}_n) + w_0$$

- As many *kernel* functions $K(\cdot, \mathbf{x}_n)$ as examples $\Rightarrow M = N + 1$ parameters
- Support vector learning: minimise objective function of form:

$$\widehat{E}(\mathbf{w}) = E_{\mathcal{D}}(\mathbf{w}) - \lambda \times \text{(size of margin)}$$

- I gives excellent accuracy (particularly in classification)
- I as a side-effect, many w_n get set to zero the model is sparse

The "Relevance Vector Machine" (RVM)

■ The RVM is simply a sparse Bayesian model utilising the same data-dependent kernel basis as the SVM:

$$y(\mathbf{x}; \mathbf{w}) = \sum_{n=1}^{N} w_n K(\mathbf{x}, \mathbf{x}_n) + w_0$$

Demonstration of RVM classification . . .

SVM: error=**9.48%** vectors=**44**

RVM: error=9.32% vectors=3

SVM: error=**10.97%** vectors=**38**

RVM: error=10.43% vectors=3

Comparison with the SVM

- General observations:
 - RVM gives better generalisation in regression (?)
 - SVM gives better generalisation in classification (?)
 - RVM is much sparser (but the SVM is not designed to be sparse)
- There are other advantages of a Bayesian approach:
 - I no 'nuisance' parameters to set
 - posterior probabilities in classification
 - error bars in regression
 - principled method for more than two classes
 - I not limited to Mercer kernels
 - potential to estimate input scale parameters and compare kernels

Choosing the Kernel

- As in the SVM, we must choose the kernel and set any associated parameter(s)
- A Bayesian could compare alternative kernels by computing the fully marginalised probabilities of the data under candidate models. *e.g.*:

$$p(\mathbf{t}|\mathcal{K}_1) = \int p(\mathbf{t}|\alpha, \mathcal{K}_1) \ p(\alpha|\mathcal{K}_1) \ d\alpha$$

- We already know this integral isn't analytically tractable
- Approximation via sampling (as in Lecture 2) is not feasible for multiple α
- Deterministic approximations to this integral have proved inaccurate
- But $p(\mathbf{t}|\alpha_{MP}, \mathcal{K})$ is a 'reasonable' criterion for choosing kernels

Kernel 'Input Scale' Parameters

- For example, consider choice of η in $K(\mathbf{x}, \mathbf{x}_n) = \exp \left\{ -\eta ||\mathbf{x} \mathbf{x}_n||^2 \right\}$
- \blacksquare SVM: cross-validation can be used to set scale parameter η
- \blacksquare RVM: we can *optimise* the marginal likelihood function with respect to η
- Furthermore, we can optimise multiple scale parameters η , one for each of the d input dimensions:

$$K(\mathbf{x}, \mathbf{x}_n) = \exp \left\{ -\sum_{k=1}^d \eta_k (x_k - x_{nk})^2 \right\}$$

Implementing sparsity of *input* variables (q.v. Gaussian process models)

Impact on Regression Benchmarks

 $\ \ \ \ \eta$ -RVR: optimisation over both lpha and η

	Test error			# kernels			
Dataset	SVR	RVR	η -RVR	SVR	RVR	η -RVR	
Friedman #1		2.80	0.27	116.6	59.4	11.5	
Friedman #2	4140	3505	2593	110.3	6.9	3.9	
Friedman #3	0.0202	0.0164	0.0119	106.5	11.5	6.4	

Friedman #1: 10-dimensional input space, but function depends only on variables 1–5. Final η-values shown on right:

Ockham's Razor and Kernel Width

Observation Space R^N

Summary

- Experience appears to show that the sparse Bayesian learning procedure works highly effectively:
 - generalisation performance is typically very good
 - I models are typically extremely (near-optimally?) sparse
- In Challenge: obtain a reliable approximation to integrating out α (for model comparison)
- In Lecture 4, we'll look at:
 - Properties of the marginal likelihood function
 - I An efficient algorithm for optimising lpha
 - Extensions and applications of sparse Bayesian models

Regression Performance Illustration

			errors		_ vectors _	
Data set	N	d	SVM	RVM	SVM	RVM
Sinc (Gaussian noise)	100	1	0.378	0.326	45.2	6.7
Sinc (Uniform noise)	100	1	0.215	0.187	44.3	7.0
Friedman #1	240	10	2.92	2.80	116.6	59.4
Friedman #2	240	4	4140	3505	110.3	6.9
Friedman #3	240	4	0.0202	0.0164	106.5	11.5
Boston Housing	481	13	8.04	7.46	142.8	39.0
Normalised Mean			1.00	0.86	1.00	0.15

Classification Performance Illustration

			errors		_ vectors _	
Data set	N	d	SVM	RVM	SVM	RVM
Pima Diabetes	200	8	20.1%	19.6%	109	4
U.S.P.S.	7291	256	4.4%	5.1%	2540	316
Banana	400	2	10.9%	10.8%	135.2	11.4
Breast Cancer	200	9	26.9%	29.9%	116.7	6.3
Titanic	150	3	22.1%	23.0%	93.7	65.3
Waveform	400	21	10.3%	10.9%	146.4	14.6
German	700	20	22.6%	22.2%	411.2	12.5
Image	1300	18	3.0%	3.9 %	166.6	34.6
Normalised Mean			1.00	1.08	1.00	0.17