OCTOBER 1972

ANALYSIS AND DESIGN OF THREE DIMENSIONAL SUPERSONIC NOZZLES

ATL TR 166 - VOLUME II NUMERICAL PROGRAM FOR ANALYSIS OF NOZZLE-EXHAUST FLOW FIELDS

Ву

P. Kalben

PREPARED FOR
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

HAMPTON, VIRGINIA

UNDER

CONTRACT NO. NAS1-10327

Ву

ADVANCED TECHNOLOGY LABORATORIES, INC.

Merrick and Stewart Avenues

Westbury, New York 11590

INDEX

		Page
I.	INTRODUCTION	1
II.	DESCRIPTION OF INPUT	10
	A. INITIAL INPUT DATA	10
e	B. COWL INPUT DATA	17
·	C. RESTARTING PROGRAM	20
III.	DESCRIPTION OF OUTPUT	22
u.	A. OUTPUT FORMAT	22
	B. IDENTIFICATION OF VARIABLES	23
. IV.	SUBROUTINES AND FUNCTIONS	27
	A. SUBROUTINES	27
ه کور میرو کورد در د	B. FUNCTIONS	31
٧.	MACHINE CONTROL CONSIDERATIONS	32
VI	FLOW CHART	33
VII.	PROGRAM LISTING	38

LIST OF FIGURES

•			Page
FIG.	la.	NUMERICAL GRID-CARTESIAN OR LINE SOURCE	2
FIG.	1b.	NUMERICAL GRID-CYLINDRICAL	3
FIG.	2.	INTERNAL SIDEWALL GRID	5
FIG.	3.	EXTERNAL FLOW-REFERENCE PLANE J	7
FIG.	4.	EXTERNAL FLOW-END MODULE	9

ABSTRACT

整点只有型的变成的特殊的现在分分点的效应的效应的

This manual describes the FORTRAN IV Program developed to analyze the flow field associated with scramjet exhaust systems. The instructions for preparing input and interpreting output are described. The program analyzes steady three dimensional supersonic flow by the reference plane characteristic technique. The governing equations and numerical techniques employed are presented in Volume I of this report.

I. INTRODUCTION

The FORTRAN IV program described herein analyzes inviscid three dimensional supersonic flow in scramjet exhaust systems by use of a reference plane characteristic procedure. The governing equations and numerical techniques employed are described in detail in Volume I of this report.

The numerical grid employed in Figures (1a) and (1b) follows streamline projections in each reference plane (R,Z) or (X,Z) or (X,0). The grid is described by a matrix of points (I,J) where "I" denotes the streamline projection being traced in a reference plane and "J" denotes the reference plane considered. The number of streamline points (I) may not vary from reference plane to reference plane, and the addition or deletion of streamline points in accordance with step size considerations is provided for in subroutine "SPACE".

For internal flow calculations the program may use either Cartesian (X, Y, Z), line source (R, θ, Z) or cylindrical (X, θ, R) coordinates depending upon the internal geometry considered. For the external flow calculation the Cartesian system or cylindrical system is used and the switch-over is performed automatically in subroutine INTER. The marching direction is either R or X and the direction normal to the reference plane is either

A G G

NUMERICAL GRID-CARTESIAN OR LINE SOURCE FIGURE 1a.

FIGURE 1b. NUMERICAL GRID-CYLINDRICAL

Specifying XJ = 0 or 1 with XJ1 = 0 in the input determines whether a Cartesian or line source system is used. ∞ For the cylindrical system XJ1 = 1 and XJ = 0.

For the program described herein, the following stipulations apply: A

- (1)The internal flow is underexpanded.
- (2) The cowl and sidewalls end on a plane X =The sidewall edges at the cowl constant. lip plane are assumed to be straight lines for external central module configuration (Figure 2).
- (3)The program is dimensioned such that ten (10) reference planes may be used with forty (40) streamline points in each reference plane (40, 10). This, of course, may be changed depending on storage availability and the number of grid points needed to complete a problem.
- . (4) The flow deflection at the sidewall exit is

PLANE - R,X = CONST.

龜數學是不為主義為德德之子表於為亦於後與德國帝之政政義。

FIGURE 2. INTERNAL SIDEWALL GRID

(5) For the cylindrical coordinate system only central module flows are possible.

盎克尔尔巴克的自由 在自己的人的现在分词的现在分词

In general, doubly curved upper, lower and sidewalls can be assumed, the only limitations being those given above. Sub-routines TWALL, BWALL and SWALL describe the shape of these walls using parabolas defined in the Input Section.

Thermodynamic curve fits are contained in functions FT, FGAM and RHEQ, for temperature, equilibrium exponent and density.

These are multi-variate fits obtained from data in Reference

(1) and are described in Volume I.

The external flow calculation requires specifying the shape of an internal stream surface described by a two parameter parabola as in TWALL. Subroutine COWL computes the underexpansion interaction between the internal and external flows at the cowl edge station. This data, the internal flow data and external flow data provide the necessary initial data surface and boundary conditions to calculate the external flow interaction (Figure 3). The strength of the underexpansion shock is calculated in HSHOCK and the properties on the contact surface are calculated in CSURF. The crosswise shape of the discontinuities is calculated in ALSHOCK.

EXTERNAL FLOW-REFERENCE PLANE

For end modules (Figure 4) WRAP calculates the property variations as a function of a local reference plane orientation in the wrap around region of the flow.

The program computes derivatives for each flow field point on the initial value surface in DERIV while derivatives on the new data surface $(r + \Delta r \text{ or } x + \Delta \hat{x})$ are computed in DERIVN. Integral correction factors for mass flow and total energy are computed in MOTHER. The flow field properties are corrected in UNOWAT based on these correction factors. The user choses the frequency of application of these corrections by an input variable described in Section II, "Description of Input."

The main program executes the characteristic calculations and provides the control necessary to execute boundary calculations, compute thermodynamic data etc., and provides for other peripheral computations or instructions necessary to complete the overall calculation.

FIGURE 4. EXTERNAL FLOW-END MODULE

II. <u>DESCRIPTION OF INPUT</u>

A. <u>Initial Input Data</u>

Card	_		
Number	Format	<u>Columns</u>	Description
1	15	1-5	final marching step
म ≁	15	6-10	print interval (in number of steps)
-	15	11-15	restart indicator (0-initial run; 1-restart)
	15	16-20	<pre>indicator for second order accuracy in characteristic calculations (0-first order; 1-second order)</pre>
	15	21-25	indicator for second order accuracy in crosswise derivatives (0-first order; 1-second order) NOTE: if this input equals 1, the characteristic calculations are also second order
	15	26-30	mass flow and energy correction interval (in number of steps)
a.	.15	31-35	number of reference planes allowed for in dimension statement (now is 10)
	I5 I5 I5 E10.0	36-40 41-45 46-50 51-60	intermediate punched output may be obtained at a maximum of three stations (input station numbers desired, if any) stepsize factor (presently 2)
2	15	1-5	JMAX number of reference planes excluding sidewall but including planes of symmetry - maximum is 9. NOTE: if run termination is in an external end module configuration, the maximum and module configuration.
e e e e e e e e e e e e e e e e e e e		green were and a contract of the contract of t	mum number of initial reference planes JMAX=9-NUMEXP; where NUMEXP is input #5 on card #2.

E I

2 2

<u>. - 1</u>20

			••
Card Number	Format	Columns	Description
2 .	15	6-10	<pre>internal symmetry indicator (0-one plane of symmetry; 1-two planes of symmetry)</pre>
	15	11-15	external symmetry indicator (0-one plane of symmetry)
	15	16-20	external flow indicator (0-end module, 1-central module)
: -	15	21-25	number of rotated reference planes for wraparound calculation (max is number of data points in z direction between vehicle undersurface and ZSAV, described on card 3) - external vehicle undersurface is a plane
	I 5	26-30	sweepback indicator (0-no sweepback; 1-sweepback). If this equals one, the number of initial data points in each reference plane and sidewall must be the same.
ingen gr	I-5	31-35 -	IMAX(1) number of initial data points in first reference plane (J=1)
	15	36-40	IMAX(2) number of initial data points in second reference plane (J=2).
چو در مان مان	and the second s	garaga naprana naginari s giyo alini anin	$(\mathcal{G}^{-2})_{\mathcal{G}} \qquad $

IMAX(JMAX) number of initial data points in last reference plane (J=JMAX)

Number of data points on each reference plane are equal (i.e., IMAX(1) =IMAX(2) = ... = IMAX(JMAX))

Card <u>Number</u>	Format	Columns	Description
₩ 3	E10.3	1-10	origin of (r,0,z) coordinate sys- tem of initial station (ft)
	E10.3	11-20	<pre>XJ-(0-Cartesian; 1-cylindrical)</pre>
	E10.3	21-30	XJI-(0-Vehicle I; 1-Vehicle II)
ę. v	E10.3	31-40	X coordinate of cowl at end of sidewall (ft)
	E10.3	41-50	radial distance to intersection of cowl lip with sidewall or last reference plane if no sidewall (ft)
	E10.3	51-60	final X coordinate of run (ft)
τς .a.	E10.3	61-70	ZSAV-Z direction point of JMAX internal reference plane which defines origin of sweep around coordinate system
	E10.3	71-80	static pressure at vehicle infinity conditions (lb_f/ft^2)

* If input 6 on card 2 is zero; leave this card out of deck:

3 a	E10.3	1-10	X coordinate of sweepback plane
			in first reference plane

E10.3		11-20	X coordinate of sweepback plane
يغ نه	**•	•	in second reference plane

E10.3	X coordinate of sweepback plane in
•	last reference plane or sidewall
	if it exists

3 b	E10.3	1-10	initial	lift
	F10.3	11-20	initial	thrust

Card Number	Format	Columns	Description
3b]	E10.3	21-30	initial pitching moment
	E10.3	31-40	z moment axis
	E10.3	41-50	x moment axis
. 4a	E10.3	1-10	angular coordinates (XJ=1) (degrees) or y (XJ=0) coordinate (ft) or first reference plane
	E10.3	11-20	<pre>z coordinate of first data point (I=1) on first (J=1) reference plane (ft)</pre>
у-	E10.3	21-30	z coordinate of second data point (I=2) on first (J=1) reference plane (ft)
	E10.3		<pre>z coordinate of last data point (I=IMAX(1)) on first (J=1) refer- ence plane (ft)</pre>

(If there are more than 46 data points on a reference plane continue on the next data card in Column #1 with same format)

4b-4m Same as 4a for each of the reference planes.

Leave this card out of input deck if input 2 on card 2 equals 1:

			15		1-5		number of initial data points on
•	***	-	Tr. 75	₩. •	• , •		sidewall
÷.	.24	.	E10.0		-6-15	•	z coordinate of first data point on sidewall (ft)

Card <u>Number</u>	Format	Columns	Description
5	E10.0	16-25	z coordinate of second data point on sidewall (ft)
	E10.0		<pre>z coordinate of last data point on sidewall (ft)</pre>
6	15	1-5	number of parabolas used to de- fine lower wall (max is 3)
7 a	E10.3	1-10	distance R defining starting location of first parabola (ft) (input equals input 1 on card 3)
	E10.3	11-20	coordinates for first parabola defining lower wall (for T=THETA or Y, and X = marching distance) Z=A11X ² T ² +A12X ² T+A13XT ² +A14X ² + A15T ² +A16XT+A17X+A18T+A19 inputs A11 - A17
part of the parties o	E10.3	71-80-	المراجع
8 a	E10.3	1-10	A18
	E10.3	11-20	A19
	Number 5	Number Format 5 E10.0 6 I5 7a E10.3 E10.3 E10.3	Number Format Columns 5 E10.0 16-25 E10.0 1-5 7a E10.3 1-10 E10.3 11-20 10 E10.3 71-80 10 8a E10.3 1-10

7b,8b Give starting locations and coordinates of the second 7c,8c and third parabolas defining lower wall (if used).

Format

Columns

12 13a - 13c 14a-14c

Card Number

> Same format as cards 6, 7a-7c and 8a-8c except coordinates for equation of sidewall (these cards are only necessary if input 2 on card 2 is 0), where parabola is $T = A31X^2Z^2 + A32X^2Z + A33XZ^2 + A34X^2 + A35Z^2 + A36XZ + A37X +$ A38Z+A39.

Description

The following is the input format for properties at data points in the flow field. There is a set of 6 properties for each reference plane. They are read from 1 to the number of data points for that reference plane (IMAX(J)) (inputs 7,8,... on card 2). If there are more than 7 data points on a reference plane the remaining data points are continued on the next card with the same format.

15a E10.3 1-10 pressure at first data point in first reference plane (lb_f/ft²)

> E10.3 pressure at second data point in 11-20 first reference plane (lb_f/ft^2)

E10.3 pressure at last data point in first reference plane (lb_f/ft^2) Cardrd Number En Formatik Columns Description

16a - Same as 15a except values of PHE* (degrees) 35n-20n are the same as 15a-20s except proporties are in the

17a Same sats r1.5a except, values of Q* (ft/sec)

18a Same as 15a except values of SI* (degrees)

19a $_{inf}$ Same nasc15a except svalues of Histatic enthalpy (ft $_{inf}^{2}$ /sec $_{inf}^{2}$)

20a $_{i,j+1}$ Same as 15a except values of Φ fuel to air equivalence ratio

 $\frac{\Phi}{2} = \frac{5}{1.5} \cdot \frac{1}{100} = \frac{4}{100} \cdot \frac{1}{100} \cdot \frac{1}{1$

22 • O Bat2. Tethylene you at a dewall.

*PHE is the angle associated with the direction cosine of the projection for the wellocity rector in the reference, plane and the manching direction R or X.

Same as 15a except velocity component in Z sirection at sadewall (ft/sec):

Q is the projection of the velocity vector in the reference plane.

SI is the angle associated with the direction cosine of the velocity vector, and its projection in the reference plane.

Number format Columns Description

15b-20b are the same as 15a-20a except properties rame in the second reference plane of a result of the second reference plane of the second reference plane

15, 3, 5, 10

nucline of prints of the over fee to distribute 7; which is shock (sensations 7; whiteom is

ting say at all the

11.11 No. 2 + 1712

Card
Nümber Format Columns Description

15n-20n, are the same as 15a-20a except properties are in the The Tollow in the Table of the The Tollow in the Table of th

in the face of em. There is a sec of the 2 locations and 5

If input 2 on card 2 equals 1, there are no more input cards the purisher of pass parents in the free stream (input 1, dark in for initial input.

This is note the start to other the 200 to 18a-20a in the initial

Imput dens firsts n except the librarians and added. If the end 21 Same as 15a except at sidewall. moders to vis. (at his heign computed the number of external

re22rence Sameaas:19anexgept:attsidewallspat / on card 2)

cplanes ross recommences appealed what discuss a checasist 23 Same as 20a except at sidewall.

Subtraction of juxternal centrale endors of add is a wall rather

τη 24 a ρη Same, asyd5a except velocity component in Cartesian X direction at sidewall (ft/sec).

25 Same as 15a except velocity component in Z direction at sidewall (ft/sec). (fuput equal) 2 coordinate the coval

Bio. Cowl Input: Data Z location of second data point in first valerance plane (f)

Card
Number Format Columns Description

1 21453 1-5 number of external flow points (minimum is 3, 2 cowlalip point, limiting external stream surface point and one dummy point)

For uniform external flow alrew sufficiency to restion spect

Lbstween now 15 pass | 6-10 page number of points in Prandtl-Meyer fan including data downstream of shock procession shock (recommend 7; maximum 9)

Cardi Number Format Columns Description

The following is the input format for properties at data points in the free stream. There is a set of the Z locations and 6 properties for each reference plane. They are read from 1 to the number of data points in the free stream (input 1, card 1). This is done the same as cards 15a-20a to 15n-20n in the initial Input Data Section except the Z locations are added. If an end module configuration is being computed the number of external reference planes is the original JMAX (input 1 on card 2) planes plus the number of external planes (input 5 on card 2). Subtract one if external vehicle undersurface is a wall rather than a plane of symmetry.

	£10.3		L location of first data point
nger		v 2a-Sa oxn. November	in first reference plane (ft) "(input equals Z coordinate of
<u>.</u>	ian ex	de de la deservación dela deservación de la deservación dela deservación de la deser	ithe cowl)
21.3	E10.3	11-20	Z location of second data point
	•	•	in first reference plane (ft)
•	à	•	
	•	•	
	•	•	
J.	But But	The think there	and the same of th
	<u>≥</u>	E10.3	E10.3 11-20

For uniform external flow allow sufficient Z direction space between cowl lip and limiting external stream surface point for shock propagation.

Card Number	Format Columns Description
^{1.3} 3a	Same as 2a except values of pressure (1bf/ft2).
A a	Same as 2a except values of DHE (degrees)
_{].} 4a	Same as 2a except values of PHE (degrees). Z line til r clorg vehicle undersurface.
5 a	Same as 2a except values of Q (ft/sec).
15	ESC 3 - 1-30 sangles in each reference plane .
6 a	Same as 2a except values of SI (degrees) association
	the interactions of the cowl inc
7 a	Same as 2a except values of Histatic enthalpy constant (ft ² /sec ²).
	6.10.3 31-20
8 a	Same as $2a$ except values of Φ fuel to air equivalence ratio.
	510.0
2b-8b	Same as 2a-8a except properties are in the second
15	reference plane. number of parabolas for equation
•	of limiting excental stress suc- Same as 2a-8a except properties are in the last re-
2n-8n	ference plane.
17 & 18	Same as cares 198-100 and 112-119 of testical input
	Data Socion except coordinates for equals not
If input	3 on card 2 of Initial Input Section is one, cards 9-14
are omiti	ted: pame as cards 12, 13e-13c and 14e-14c of Initial input
	. Mala Section Exclet corporately on the edge of the over
	Same as 2a except along vehicle undersurface.
9	same as 2a except along venicle undersurface.
10	Same as 3a except along vehicle undersurface.
	C. Restanting Property
	Same as 7a except along vehicle undersurface.
	an de la composition della com
12	Same as 8a except along vehicle undersurface.

sweepback if this option was

Card

Number Columns Description Format

Whenever a punch deck is received printed output at that station is all stime ction allong wehicle junders unface that Input boun

deck with the exception that is may be designable to change in
14 Same as 2a except velocity component in Cartesian put variaz directional ong wehicle andersunface fit interval

(i) number of special) on punction condidit. If the cowl has h 15 E10.3 1-10 angles in each reference plane If the cowl has been re constructed equals a constant), as sociated; passed all reits with the direction cosines of 1. I have blice about the sintemactions of the cowl kip and the plane X equals a constant COMPACT

> E10.3 11-20

E10.3

I 5 1-516 number of parabolas for equation of limiting external stream surface (maximum of 3)

- 17 & 18 Same as cards 10a-10c and 11a-11c of Initial Input Data Section except coordinates for equation of limiting external stream surface.
- Same as cards 12, 13a-13c and 14a-14c of Initial Input 19-21 Data Section except coordinates for equations of external vehicle undersurface (only use these cards if external vehicle undersurface is not a wall of symmetry).

Restarting Program

The program may be restarted using the final punch deck or any intermediate punch deck at any point outside of the initial

sweepback if this option was used.

Whenever a punch deck is received printed output at that station is also given. This deck neplaces the Initial Input Data deck with the exception that it may be desirable to change input variables, #1 [final marching step] and #2 [print interval (in number of steps;) lo on punched card #1. ... If the cowl has been passed all inputs are completed. It I fithe cowlines not been passed, the Cowl Input Data deck is appended and the data deck is complete ree system) or in the x direction (cartesian and Cylindrical systems) uncil has intersection of the towl adge and the last plane of symmetry or microvall immediach. At this tipe: the propert is are interpolated path the plant $\lambda = \lambda_{COM}$ then the sno kland contact surfaces, the "pand?"-Heyen Yan and the free stream points are princed. The program trea continues mainching in the Cantesion system with the same onint scheme as before with the addition of FLP, ALPBA, BETA, IS and flow yersables in the external wranaroughd region at hidle measured from the "ZSAV" point. The program prince a statement when an en-Ledged shock is encountered. This statement includes ital type (2 - downrounding shock: 7 - unlabling shoot) IS, fully POTA in each pristines play; . The promote to mirebes , pr the imput values of fixely committee on fixed (ROBNIC is not)

III. aDESCRIPTION OF LOUTPUT Var ables.

(Output Format: Fine program prints a narrative describing the inputy data that what observe ada steps taken

自身态化设计系统现态产品指定类点系统系统系统 在最后的 医二乙基

since initial input accepted

At every "KOUNT" which is a multiple of the print interval radius (cylindrical system) starting with KOUNT=0 the properties are printed at each grid (degrees) on χ coordinate point in the flow field. This includes sidewall output if Cartesian system) (fm) applicable. Marching steps are taken in successive radii (line source system) or in the x direction (Cartesian and Cylindrical systems) until the intersection of the cowl edge and the THELP's angular compounted in degrees last plane of symmetry or sidewall is reached. At this time (Lylindrinal system) or " cothe properties are interpolated onto the plane $X = X_{COWL}$ then ordinate in ft. (Cartesing) the shock and contact surfaces, the Prandtl-Meyer fan and the of laference planes free stream points are printed. The program then continues marching in the Cartesian system with the same print scheme as before with the addition of ALP's ALPHA, BETA, IS and flow variables in the external wraparound region at radii measured from I coordinate (ft) the "ZSAV" point. The program prints a statement when an embedded shock is encountered.orThisrstatement includes its! type (2 - downrunning shock; 7 - uprunning shock) IS, ALP, ALPHA, $\frac{1}{2} = \frac{1}{2} \frac{$ reference plane (ft/sec) the input values of final X coordinate or final "KOUNT" is reach-- annie ascocrated wigh the cirectors ed. FH 8

cosing of & goo whe marching &

tion R or A (iggrees)

7

Identification of Variables. В.

- (1)Reference plane output KOUNT - number of marching steps taken since initial input accepted
 - radius (cylindrical system) (degrees) or X coordinate (Cartesian system) (ft)

÷. នៃ មន្តស័ក

- reference plane number
- THETA angular coordinate in degrees (cylindrical system) or Y coordinate in ft. (Cartesian system) of reference planes
- data point index within a reference plane
- Z coordinate (ft) Z
- projection of velocity vector in reference plane (ft/sec)
- angle associated with the direction cosine of Q and the marching direction R or X (degrees)

SI - angle associated with the direc
ALD digle of intersection between distinguished the velocity

continuous and place X or R equals a constant

M - Mach number

ALPMA - anole associated with the direc-

H = $-\frac{2}{3}$ sec², $\frac{2}{3}$ sec², $\frac{2}{3}$ sec², $\frac{2}{3}$ sec².

PHI - fuel to air equivalence ratio

RHO - density (slugs/ft 3)

BETA - angle associated with the direc-

GAM - isentropic exponent the intersec-

tion of discoptinuity and sample temperature (R)

- (2) Sidewall noutput (extracvariables printed)
 - X Cantesian (Xecoordinate of idata, a Peintence place where a discoordinate)
 - Y Cartesian Y coordinate of data

 point
 Column 1 first upon him should
 - U component of velocity vector in X direction
 - Y direction
 - W component of velocity vector in Z direction

- (3) Discontinuities second contact discon-
 - ALP angle of intersection between discontinuity and plane X or R equals Column 6 third downsuming shock a constant
 - ALPHA angle associated with the direccolumn / second upranaing shock
 tion cosine between the normal to
 wave
 the reference plane and the tangent to the discontinuity
 - BETA angle associated with the direction cosine between the intersection of discontinuity and marching direction
 - IS matrix whose non-zero elements indicate the data points in each reference plane where a discontinuity exists
 - Column 1 first uprunning shock wave
 - Column 2 first downrunning shock wave
 - Column 3 first contact discontinuity
 - Column 4 second downrunning shock wave

在意外的人的复数在我的现在分词是不可能的

IV. SUBPOURLIES AND FUNCTIONS - second contact discontinuity

A. Subroutines Column 6 - third downrunning shock wave

Name - Discrim for Column 7 - second uprunning shock

- 1. THIER Interpolates interpal fill fill properties onto eline X equals / coordinate of covi
- 2. IB: single table lincom intempolation and extrapolation of flow properties to be used for deriversives not main correspond places.
- 3. STEP computer marching step based on characteristic criteria
- 4. INDATA accepts initial input data and program re
- 5. INDA(2 accepts interior innerpolated data in plane x equal to X coordinate of powl and free streated at same X
- 6. CSURF computes properties upsare mand course. Computes properties upsare mand course.
- 7. BSHOCK computer properties cowned the of obligation discontinuation on the same.

IV. Name SUBROUTINESSANDOFUNCTIONS

g. MOTHIA. Subroutines integral correction factors for mais flow and total energy

Name Description Compute shock surface scrength, contact sur interpolates internal flow properties onto example X equals X coordinate of cowling expenses

- 2. TBL single table linear interpolation and

 extrapolation of flow properties to be used

 for derivatives normal to reference planes
- 3. STEP computes marching step based on characteristic criteria
- 4. INDATA accepts initial input data and program re
 12. FSHOCK start data

 12. FSHOCK computes unstream a second
- 5. INDAT2

 accepts interior interpolated data in plane X

 equal to X coordinate of cowl and free stream

 data at same X
- 6. CSURF computes properties upstream and downstream of all contact surfaces
- 7. HSHOCK computes properties downstream of all shock

 14b. SWALLI

 becas size time con res et different for cyling crical events.

Name	Description
15. CURBER MOTHER	computes flow properties in corrers of flow
16. BWALL	mass flow and total energy locates lower wall at new marching step and
9. COWL	computes shock surface strength, contact sur-
17. TWALL.	face strength and extent of Prandtl-Meyer ex- invalue upper wall at new manching step and pansion normal to cowl edge for under-expanded computes direction costnes of upper wall internal flow
18. CREEK 10. ALSHOC	prines error statement and program line num- computes angles associated with the direction ber he rest iteration appays
	cosine of a tangent to each discontinuity in
12, ALGOLB	dthe Crosswise direction for each reference
20. ADISC	plane computes properties apposs discontinuity at
11. RHEQ	e computes equal abraum densaty
12: FSHOCK	Computes Flow properties upstream of shock at
	Thew mainth ing stathon calculations for end
13. WALL 22. PGGLV	module calculation computes flow properties associated with side- s a four point leads souther routine wall
23. WSAK 14a. SWALL	locates sidewall at new marching step and com- continuity entire cosines of sidewall for
24. PNCH	giCantesianmon Line, source, system ted and
14b. SWALL1	locates sidewall at new marching step and com-
	putes direction cosines of sidewall for cylin-
	drical system

Name Description

- 15. CORNER computes flow properties in corners of flow field
- 16. BWALL locates lower wall at new marching step and computes direction cosines of lower wall
- 17. TWALL locates upper wall at new marching step and computes direction cosines of upper wall
- . 18. ERROR prints error statement and program line number nearest iteration error
 - 19. ADDSUB add or subtracts reference planes
- 20. WDISC computes properties across discontinuity at external vehicle undersurface
- 21. PLANES - inserts a pseudo reference plane in flow to facilitate derivative calculations for end module calculation
 - 22. **PSOLV** is a four point least squares routine . .
 - 23. WSHK computes line of intersection between discontinuity and vehicle undersurface
 - 24. PNCH gives intermediate and final printed and punched output used to restart the program

Name Description

- 25. SPACE adds or subtracts data points to facilitate maximum allowable marching step
 - 26. SWEEP interpolates data points along throat sweep-back plane
 - 27. EMBED locates embedded shocks
 - 28. WRAP computes derivatives at all data points except discontinuities on two reference planes bounding 90° wraparound area
 - 29. SOLVE solves the determinant of 3x3 matrix
 - 30. TBLDUM single table linear interpolation used for derivatives on reference planes bounding wrap-around area
 - 31. ALWRAP computes angles associated with the direction cosines of a tangent to each discontinuity in crosswise direction for planes bounding wrap-
 - 32. L TH M computes lift, thrust and moment
 - 33. SETN sets flow variables and crosswise derivatives

 at the new station equal to these quantities at

 old station prior to the new station being calcu
 lated

4.

FT

field.

Name Description 34. UNOWAT corrects flow field properties based on correction factors computed in MOTHER 35. DERIV computes crosswise derivatives on initial value surface (old station) 36. DERIVN computes crosswise derivatives on new data surface (new station) В. **Functions** Name ~ Description 1. XLAM computes bi-characteristic directions in each reference plane computes the terms associated with derivatives normal to reference plane used by bi-characteristic calculation

--- computes isentropic exponent and associated

thermodynamic data at each point in flow field

computes temperature at any point in flow field

computes static enthalpy at any point in flow

۷.

MACHINE CONTROL CONSIDERATIONS

- Computer program is written in FORTRAN IV for CDC 6600.
- 2. Time and core estimates.
 - (a) Field length
 - (1) compile 60,000 octal
 - (2) execution 177,000 octal
 - (b) CP time variable depending on mesh size and number of steps to be run.
 - (c) I/O: less than 100 octal seconds.
- _(d) Tape or disk storage necessary.
 - (1) tape 5 card input
 - (2) tape 6 printed output
 - (3) tape 7 punched output
- 7 To tape 55 used temporarily during run to store primary flow properties interpolated along cowl edge
- (e) Printed output: variable depending on print interval and length of run.

Li la sai de sa de la sa de la

TR 166 - Vol. II

Page 33

VI. FLOW CHART

The following is a flow chart of program CHAR3D.

TR 166 - Vol. II

Page 38

The second of th

VII. PROGRAM LISTING

The following is a listing of the program.

```
PROGRAM CHARSD INPUT. OUTPUT.
                                      TAPF5=INPUT, TAPE6=OUTPUT,
ITAPET TAPESS)
 COMMON /A/ X1+THMAX+TH(10)+R +Z(40+10)+P(40+10)+PHF(40+10)+
1 Q(40,10) •SI(40,10) •H(40,10) •PUT(40,10) •RHO(40,10) •GAM(40,10)
 COMMON 78/ PN(40,10) . PHIN(40,10) , RHON(40,10) , HN(40,10) , ZN(40,10)
 COMMON /C/ IMAX(10) JMAX , ISTART , KOUNTF , KOUNTP
 COMMON /D/ UW (40) . VW (40) . WW (40) . XW (40) . YW (40) . THW (40)
 COMMON /E/ UWN(40) . VWN(40) . WWN(40) . XWN(40) . YWN(40) . THWN(40)
 COMMON/F/ XPW(40)
 COMMON /H/ ISIM
 COMMON VIV XJ
 COMMON /SCLTM/ ZLIFTC+XTHRC+YMCMC+ZLIFTS+XTHRS+YMOMS
 COMMON /J/ QN(40+10) +PHEN(40+10) +SINN(40+10) +XPLAM(40+10) +
1XMLAM(40.10),FP(40),FM(40),A(40.10)
 COMMON /K/ RN. DELR
 COMMON /L/ ALPHAN(7,10) + ALPHA(7,10) + BETAN(7,10) + BETA(7,10)
 COMMON/M/ IS(7.10)
 COMMON/N/ SIQ(40,10),PQ(40,10),PHEQ(40,10),HQ(40,10),PHIQ(40,10),
100(40.10) . RHOQ(40.10) . GAMQ(40.10)
COMMON /O/ ALP(7,10), ALPN(7,10)
 COMMON /ALLR1/ AN(40+10)+TN(40+10)+GAMN(40+10)+XPLAMN(40+10)+
1YMLAMN(40.10)
 COMMON /ALLRZ/ PON(40+10) +HQN(40+10) +QQN(40+10) +SIQN(40+10) +
1PHEQN (40,10), PHIQN (40,10), RHOQN (40,10), GAMQN (40,10)
 COMMON /IVY/ IVY.KCORR.IAV
 COMMON /FN/ FPN(40+10) +FMN(40+10)
 COMMON /AV/ AAV, BAV
 COMMON/P/ KC1, KC2, KS1, KS2
 COMMON / Q/ XCOWL
 COMMON /P/ J.XCN,XC,XXI,JW,INT,ICOWL,PCOWL
 COMMON /S/ RI.KOUNT.KOUNTS.ICOWLT
 COMMON /U/ ERZZZ
 COMMON /V/ XJ1
 COMMON /W/ ISIMEX.IDUMMY.JINT. TOUMMY (40) .THWW (2) .JD1.JD2
 COMMON /Z/ ISTOP
 COMMON /TB/ IMAXJ.IS1.IS2.ISLT.ISL2
 COMMON/EX/ KTPUN(3)
 COMMON /XF/ XFTN
 COMMON /IQ/ NUMEXP, ZSAV
 COMMON /THR/ PINF, ZLIFT, XTHR, YMOM, JJI, ZSHIFT, XSHIFT
 COMMON /FWA/ ISOP
 COMMON /SA/ XJIS
 COMMON /ISW/ JCALC. ISWEEP. XINSP(10). X2
 COMMON /ISWI/ IFR
 COMMON /PL/ DE TH
 COMMON /SPE/ KOUNTC
 COMMON /WR/ IWRAP
 COMMON /TEM/ T(40.10)
COMMON /JF/ JFINAL
 COMMON /STREAM/ XMAST, XENT, FSX, FSZ
 COMMON/PS/ZR(40+2)+PR(40+2)+QR(40+2)+HR(40+2)+SIR(40+2)+RHOR(40-2)
1.PHIR(40,2).PHER(40,2).THR(2).THWR(40)
 COMMON/PSS/GAMPR (40)
 DIMENSION HE(10)
DATA HE/5H Y
                 *5HTHETA *5H Z
                                  _{\bullet}3H = _{\bullet}1HZ_{\bullet}1HR_{\bullet}1HY_{\bullet}3HTHW_{\bullet}3H Y _{\bullet}
13H Z /
```

```
DATA TCOWL/0/
     ILOCAL=15
     KOUNTC=10000
     ICOWLT=0
     FRZZZ=1.E-04
     ISTOP=0
     ZLIFT=0.
     XTHR=0.
     YMOM=0.
     ISL1=n
     TFS=0
     MM=0
     KC1=n
     KCS=0
     JD1=100
     JD2=100
     JINT=100
     AAV=1.
     BAVEO.
 101 FORMAT (7E10.3)
     INT=0
     CALL INDATA
     IF (IAV-EQ-1) IVY=1
     CALL SETN(0)
     XJ15=xJ1
     XXI=XCOM
     JJI=0
     JWEJMAX+1
     IF (ISIM.EQ.1) JW=JMAX
   1 CONTINUE
     IF (KOLINT . EQ. 0
                        ) CALL MOTHER
     IF (KOUNT, EQ. 0)
    IWRITE (6, 1066) XMAST, XENT, FSX, FSZ
1066 FORMAT(///10x. #INITIAL MASS FLOW IS+, E13.5//10x. #INITIAL ENERGY IS
    THEETS.57710X94INITIAL STREAM THRUST IS #/20x+4X DIRECTION - 4+
    1F13.5/20X,*Z DIRECTION - *,E33.5)
     IF (X1.GE.XFIN) KOUNTF=KOUNT
     IF (KOUNT.EQ. KOUNTS) GO TO 73
     IF (KOUNT. EQ. KOUNTF) CALL PNCH
     IF (KOUNT.EQ.KTPUN(1).OR.KOUNT.FQ.KTPUN(2).OR.KOUNT.EQ.KTPUN(3))
    ICALL PNCH
     IF (KOUNT.GE.KOUNTF) CALL EXIT
     IF (((KOUNT/KOUNTP) *KOUNTP) .NE . KOUNT) GO TO 3002
     IF (ICOWL.EQ.1.AND.ICOWLT.EQ.0) GO TO 3002
  73 CONTINUE
     IF(XJ.EQ.0.) GO TO 513
     WRITE (6.70) KOUNT.X1
  70 FORMAT(1H1+10x+*KOUNT = ++14+18x+*R =: ++E13.5//)
     60 TO 503
513 WRITE (6,504) KOUNT, X1
 504 FORMAT(1H1+10X+*KOUNT = ++14+1ex+*X =: *+E13.5//)
 503 CONTINUE
     WRITE (6,610) ZSHIFT - XSHIFT - XTHP - ZLIFT - YMOM
 610 FORMAT(10X+4Z MOMENT AXIS = 4+F11.3+5x+4X MOMENT AXIS = 4+F11.3/
                           10X, *THRUST = *, E11.3, 5X, *LIFT = *, E11.3, 5X
    1. *PITCHING MOMENT = *,E11.3)
```

```
TF (IS(3).NE.0.AND.KOUNT.NE.D.AND.ISIM.EQ.0) WRITE(6.621) XTHRC.ZLI
    1FTC . YMOMC
 621 FORMAT(# CONTACT #
                              1. *PITCHING MOMENT = *.E11.3)
     TF (IS(1) . NE. 0. AND . KOUNT . NE. 0. AND . ISIM . EQ. 0 ) WRITE (6.622) XTHRS . ZL
    lifts.yMoms
 622 FORMAT(#
                SHOCK *
                              **THRUST = **F11.3.5X.*LIFT = **E11.3.5X
    1, *PITCHING MOMENT # *, E11.3)
     WRITE (6,623)
 623 FORMAT(/)
     DO 71 JEIOJMAX
     IF (J.GT. JCALC) GO TO 71
     IF (J.GT.JINT ) GO TO 2260
     IF (XJ. NE. 0 . OR . XJI . NE. 0 . ) GO TO 505
     WRITE(6,506) J, HE(1), HE(4), TH(1), HE(5)
 506 FORMAT (//10X+4) = ++12+24X+45+43
                                           •E13.5./4X.#I+.6x.A1 .10X.
    14P##10X+#Q## 9X+#PHE## 8X+#SI#+10X+#M##10X+#H#+ 9X+#PHI#
    1.8x, 4RH04, 8X, 4GAM4, 9X, 4T4)
     GO TO 510
 505 IF (XJ1 . EQ. 0.) GO TO 507
     WRITE(6,506) J.HE(2).HE(4).TH(J).HE(6)
     GO TO 510
 507 CONTINUE
     WRITE (6,506) J. HE (2) . HE (4) . TH (1) . HE (5)
     GO TO 510
2260 Z15=ZSAV-TH(J)
     WRITE(6,506) J.HE(3),HE(4),Z15,HE(7)
 510 CONTINUE
     (L) XAMI=LXAMI
     TF (R.GT. (XCOWL-1.E-06).AND.ICOWLT.EG.1) IMAXJ=IMAXJ+1
     DO 710 I=1, IMAXJ
     EM=Q([,J)/COS(SI([,J))/A([,J)
     215=Z(I,J)
     WRITE(6,79) 1,715
                          *P(I+J) *Q(T+J) *PHF(I+J) *SI(I+J) *EM+H(I+J) *
    1PHI(I,J),RHO(I,J),GAM(I,J),T(I,J)
  79 FORMAT (15.11E11.3)
 710 CONTINUE
  71 CONTINUE
     IF (ISIM.EQ.1) GO TO 211
     JEJW
     IF (J. GT. JCALC) GO TO 211
     IF (J.LT.JINT.OR.ICOWLT.EQ.0) Gn TO 2270
     WRITE(6,2300) JW, HE(10), HE(7)
2300 FORMAT (/// 40x+#SIDEWALL#/ 10x+#J = #,12/11x+#x+,9x.43
    1.9X .*U*,10X,*W*,10X,*V*/
    14X, # T # 96X, Al + 10X.
    1+P++10X++Q++ 9x++PHE++ 8x++SI++10X++M++10X++H++ 9x++PHI+
    1.8X. *PHO*,8X. *GAM*.9X. *T#)
     GO TO 6885
2270 CONTINUE
     IF(XJ1.E0.1.) GO TO 6884
     WRITE(6+2300) JW.HE(9 ),HE(5)
     GO TO 6885
6884 WRITE(6+2300) JW+HE(8 )+HE(6)
6885 CONTINUE
     (U) XAMI=LXAMI
```

```
IF(R.GT.(XCOWL-1.E-06).AND.ICOWLT.EG.1) IMAXJ=IMAXJ+1
     DO 301 I=1. IMAXJ
     EM=SQRT (UW(I) ##2+VW(I) ##2+WW(T) ##2) /A (I+J)
     LX#(I)WHT=XWHT
     XW(I)=R+COS(THWX)
     YW(I)=R#SIN(THWX)+(I_{\bullet}=XJ)#THW(T)
     Z15=YW(I)
     IF (J.GT.JINT.AND.ICOWLT.EQ.1) Z15=ZSAV-THW(T)
     WRITE(6,302) XW(I),Z15 ,UW(I),WW(I),VW(I)
 302 FORMAT (5x,5E11.3)
     715=Z(I.J)
 301 WRITE (6,79) 1,715
                           *P(I*J)*O(T*J)*PHF(I*J)*SI(I*J)*EM*H(I*J)*
    1PHI (I, J) , RHO (I, J) , GAM (I, J) , T (I, J)
 211 CONTINUE
     DO 3000 M=1.7
     IF(IS(M+1)+NE+0) GO TO 3001
3000 CONTINUE
     GO TO 3002
3001 CONTINUE
     WRITE (6,4005)
     DO 4006 J=1,JW
     IF (J.GT. JCALC) GO TO 4006
     WRITE(6,79) J, (ALP(M,J),M=1,7)
4006 CONTINUE
4005 FORMAT(//10X, #ALP#/4X, #J#)
     WRITE (6,4000)
     no 3003 J=1.Jw
     IF (J.GT. JCALC) GO TO 3003
     WRITE (6,79) J, (ALPHA (M, J), M=1,7)
3003 CONTINUE
     WRITE (6,4001)
     DO 3008 J=1,JW
     IF (J.GT.JCALC) GO TO 3008
     WRITE (6,79) J, (BETA (M,J), M=1,7)
3008 CONTINUE
     WRITE (6,4002)
     DO 3009 J#11JW
     IF (J.GT. JCALC) GO TO 3009
     WRITE(6.4004) J.(IS(M.J).M=1.7)
3009 CONTINUE
4000 FORMAT(//10X+*ALPHA*/4X+*J*)
4001 FORMAT (//10X+#RETA */4X+#J#)
4002 FORMAT (//10X, #TS
                         #/4X.#J#1
4004 FORMAT(15,7(14,7X))
3002 CONTINUE
     IF (ICOWL, EQ. 1) CALL COWL (MM, IFR, OPT)
     IF (ICOWL.NE.1) GO TO 5023
     ICOWLT=1
     IF (IWRAP_EQ.1)60 TO 5622
     (TNIL) XAMI = LXAMI
     DO 5621 L=1.IMAXJ
     IF (Z(L+JINT).LT.ZSAV) GO TO 5621
     IF (Z(L+1.JINT)=Z(L.JINT).LT.1.5-06) GO TO 5622
     DO 5623 JE1.JINT
     DO 5624 I=L, IMAXJ
           (I.J)=Z
                      (I+1+J)
```

```
(I,J)=P
                       (I+1+J)
     O
           (I \cdot J) = Q
                       (T+1.J)
     Н
           H=(U,I)
                       (I+1,J)
           A = (U \cdot I)
                       (I+1+J)
     51
           (I .J) =SI "
                       (T+1;J)
     PHI
           IHP=(L,I)
                       (I+1,J)
     PHF
           (I,J) = PHE
                       (I+I+J)
     RHO
           (I,J)=RHO
                       (I+1,J)
           (I,J) = GAM
     GAM
                       (I+l+J)
     XPLAM(I + J) = XPLAM(I + 1 + J)
     XMLAM(I.J) = XMLAM(I+1.J)
5624 CONTINUE
     I-(U)XAMI=(U)XAMI
     IF(L.LT.IS(3,J)) IS(3,J)=IS(3,J)=1
     IF(L.LT.IS(1,J)) IS(1,J) = IS(1,J) = 1
5623 CONTINUE
5621 CONTINUE
5622 CONTINUE
     CALL SETN(1)
     KOUNTC=KOUNT
     WRITE (6,5020) KOUNT
5020 FORMAT (1H1+10X++COWL AND FREE STREAM DATA AT KOUNT & +,15//)
     DO 3939 J=1.JW
     ISS=IMAX(J)-MM+1-IFS
     I+(U)XAMI=XXAMI
     IF (XJ1 . EQ. 0.) GO TO 509
     WRITE (6,511) J
 511 FORMAT(//10x,+j = +,12
                                                      /4X,414,6x,4R4,10X,
     1#P#+1nX+#Q#+ 9x+#PHE#+ 8x+#SI#+10x+#M#+10X+#H#+ 9x+#PHI#
    1.8x, #PHO#, 8X, #G x M#, 9x, #T#)
     GO TO 512
 509 CONTINUE
     WRITE (6,5021) J
5021 FORMAT(//10X,+) = +,12
                                                     /4X9#T#96x9#Z#910X9
    14Pa, 10X, 4Qa, 9x, 4PHEA, 8x, 4SIA, 10X, 4Ma, 10X, 4Ha, 9X, 4PHIA
    1.8X, #RHO#, 8X, #GAM#, 9X, #T#)
 512 CONTINUE
     DO 5022 I=1
                    , TMAXX
     EM=Q(T+J)/COS(SI(I+J))/A(I+J)
     T(I+J)=FT(P(I+J)+PHI(I+J)+H(I+J))
     WRITE (6,79) I.7(I.J) .P(I.J) .Q(T.J) .PHF(I.J) .SI(I.J) .EM.H(I.J) .
    1PHI(I,J),RHO(I,J),GAM(I,J),T(I,J)
5022 CONTINUE
3939 CONTINUE
     DO 5000 M#1.7
     IF(IS(M.1).NE.0) GO TO 5001
5000 CONTINUE
     GO TO 5002
5001 CONTINUE
     WRITE (6,4000)
     DO 5003 J=1,JW
     DO 5004 M=1.7
     ALPHA (M.J) =ALPHAN (M.J)
5004 BETA(M+J)=BETAN(M+J)
     WRITE (6,79) J, (ALPHA (M,J), M=1,7)
5003 CONTINUE
```

```
WRITE (6.4001)
      00 5008 J=1.JW
      WRITE (6,79) J. (BETA (M,J), M=1,7)
5008 CONTINUE
      WRITE (6,4002)
      DO 5009 J=1.JW
      WRITE (6,4004) J. (IS (M,J), M=1,7)
5009 CONTINUE
5002 CONTINUE
5023 CONTINUE
   74 CONTINUE
      IF (KOUNT.GE.KOUNTC+20) CALL SPACE
      IF (KOUNT.EQ.KOUNTC+20.AND.ICOWLT.EQ.1.AND.IWRAP.EQ.O) CALL WRAP(0)
      IF (KOUNT. EQ. KOUNTC+20) CALL MOTHER
      KOUNT=KOUNT+1
      IF (ICOWLT.EQ.1.AND.IWRAP.EQ.O) CALL PLANES (0)
      CALL
                 STEP (IFS. MM.
                                    DFLX.X2.KOUNT)
      IF (ISTOP.EQ.1) KOUNT=KOUNT=1
      IF(ISTOP.EQ.1) WRITE(6,1000)
1000 FORMAT (* I INDEX GREATER THAN MAXIMUM DIMENSION. CONTACT AT LOWER
     1WALL#/# OR SHOCK DOES NOT HAVE 2 FREE STREAM POINTS#)
      IF (ISTOP.EQ.1) CALL PNCH
      TF (KOUNT. NE. 1. OR. ISWEEP. EQ. 0) GO TO 1313
      CALL SWEEPT(1)
      GO TO 620
1313 CONTINUE
      CALL DERIV(MM)
 620 IF (((KOUNT-1) / KOUNTP) *KOUNTP. NE. (KOUNT-1)) GO TO 7744
      IF (ICOWL, EQ. 1) GO TO 7744
      IF (ICOWLT.EQ.1.AND.IWRAP.EQ.0) CALL WRAP(1)
7744 CONTINUE
      CALL SETN(1)
      KS=0
 961 CONTINUE
7678 CONTINUE
      DO 707 J=1.JMAX
      IF (J.GT.JCALC) GO TO 707
     IF (J.GT.JINT) XJ1=0.
      IIT=IMAX(J)-IFC+>
     IITT=TIT-MM-2
     DELREDELX
     (L) XAMIELXAMT
     IF (R.GE. (XCOWL=1.E=06).AND.INT.EQ.2) IMAXJ=IMAXJ+1
     DO 8 I=1.IMAXJ
     CALL F(RHO(I+J)+Q(I+J)+R+Z(I+J)+PHE(I+J)+XPLAM(I+J)+XMLAM(I+J)+
     1 SI(I.J) + A(I.J) + SIQ(I.J) + PQ(I.J) + PHEQ(I.J) + FP(I) + FM(I) )
   8 CONTINUE
     (U)XAMIBUXAMI
     DO 7 I=1.IMAXJ
     IF (I.NE.1. OR. J. LT. (JINT+1)) GO TO 735
     IF (J.GT. (JINT+1)) GO TO 7
     IMP=IDUMMY+1
     ZDUMMY (1)=ZN (1.JINT)
     DO 736 I10=1.IMP
      7 R(110,1)=Z
                      (I10+JFINAL)
     P R(IlO,1)=P (IlO,JFINAL)
```

```
R(Tln.1)=Q
                      (I10, JFINAL)
         R(T10,1)=H (T10,JFINAL)
      SI R(IlO,1)=SI (IlO,JFINAL)
      PHIR (110+1)=PHT (110+JFINAL)
      PHER (110.1) = PHF (110.JFINAL)
      RHOR(IlO.1) = RHO(IlO.JFINAL)
      GAMPR(I10) = GAM(I10, JFINAL)
         (I)O.JFINAL)=Z
                          N(IIO.JINT)
         (IIO, JFINAL) =P
                          N(IIO.JINT)
         (IiO+JFINAL) =Q
                          N(I10.JINT)
         (I10, JFINAL) =H N(I10. JINT)
      SI (I10, JFINAL) = SINN(I10, JINT)
     PHI(I10.JFINAL) = PHIN(I10.JINT)
      PHE(110.JFINAL) = PHEN(110.JINT)
      GAM(I10, JFINAL) = GAMN(I10, JINT)
 736 RHO(I10, JFINAL) = RHON(I10, JINT)
      THSVR=TH (JFINAL)
      TH (JFTNAL) =0.
     DO 737 19=1.NUMEXP
      J9=JW_I9+1
      CALL TBL (ZDUMMY (19) .PN (1.J9) .STNN (1.J9) .HN (1.J9) .PHIN (1.J9) .
     10N(1,J9),PHEN(1,J9),RHON(1,J9),GAMN(1,J9),THX,JFINAL,IMP,19)
     U1=QN(1,J9) +COS(PHEN(1,J9))
      V1=QN(1,J9) +TAN(SINN(1,J9))
     W1=QN(1,J9) #SIN(PHEN(1,J9))
     VT==W1
     WTEV1
     IF(I9.NE.1) GO TO 8697
     UWN(1)=U1
     VWN(1)=VT
     WWN(1) FWT
     XWN(1)#RN
     THWN(1)=ZSAV=ZN(1.JINT)
     YWN(1) = THWN(1)
8697 CONTINUE
      ON (1 . . 19) = SQRT (U1 +U1 +WT+WT)
      PHEN(1+J9) = ATAN(WT/U1)
      SINN(1,J9) = ATAN(VT/QN(1,J9))
 737 ZN(1.J9)=0.
      TH(JFINAL) =THSVR
     00 1743 T10=1.TMP
      7.
         (I10, JFINAL) = 7
                          R(I10,1)
         (I10.JFINAL)=P
                          R(I10.1)
         (I10, JFINAL) = Q R(I10,1)
     0
         (IĵO,JFINAL)=H
                          R(I10.1)
     SI (110, JFINAL) = SI R(110.1)
     PHI(I10.JFINAL) = PHIR(I10.1)
     PHE(I10,JFINAL)=PHER(I10,1)
      RHO(Iĵ0,JFINAL)#RHOR(I10,1)
1743 GAM(I10.JFINAL) =GAMRR(I10)
     GO TO 7
 735 CONTINUE
     IF (ICOWL.EQ. 1. AND. I. GT. IITT. AND. I. LT. IIT) GO TO 7
     IF (ICOWL.EQ.1.AND.IS(1.J).EQ.IMAX(J)-1.AND.T.EQ.IMAX(J)) GO TO 7
     DO 89 Mm1.7
     TF(IS(M.1) . EQ. n) GO TO 89
```

```
ITESTEIS (M.J) = i
     IF((M/2) #2.EQ.M) ITEST=IS(M.J)
     IF (I.GE.ITEST.AND.I.LE. (ITEST+1)) GO TO 7
  89 CONTINUE
     PT=PN(I,J)
     PHET=PHEN(I+J)
     SIT=SINN(I,J)
     KALL=1
     ALL=1.
     BALLED.
     IF (BAV.EQ.0.) GO TO 1482
     ALL=.5
     BALL=.5
1482 CONTINUE
     DUM=DELR+ (TAN (PHE (I.J)) +ALL+BALL+TAN (PHEN (I.J)))
     ZN(I_{\bullet,J}) = Z(I_{\bullet,J}) + DUM
     IF(I.FQ.1) 60 TO 13
     7A = .5 + (7 (I - 1 - J) + 7 (I - J)
     ] T=1
  10 RATA=(ZA-Z(I-1.J))/(Z(I.J)-Z(I-1.J))
     IT=IT-1
     ALAM=xPLAM(I=1.J)+RATA+(XPLAM(T.J)-XPLAM(I=T.J))
     DUMP=ALL+ALAM+BALL+XPLAMN(I.J)
     ZATEZN(I,J)-DUMP+DELR
     FR=ABS((ZAT-ZA)/(Z(I+J)-Z(I-1+j)))
     IF (ER LT ERZZZ) GO TO 9
     ZAZZAT
     IF(IT_LT.20) GO TO 10
     WRITE (6,200)
 200 FORMAT (* ERROR IN A POINT ITERATION*)
     CALL PNCH
   9 IF (1.FQ. IMAX (J) ) GO TO 11
  13 ZB=+&#(Z(I+J)+Z(I+1+J))
     IT=1
  12 RATB=(ZB=Z(I+J))/(Z(I+1+J)=Z(I+J))
     TT=ITal
     RLAM = x MLAM (I+J) + RATB + (XMLAM (I+T, J) - XMLAM (I, J))
     DUMP=ALL+BLAM+BALL+XMLAMN(I.J)
     ZBT#ZN(I.J)-DUMP+DELR
     ER=ABS((ZBT-ZB)/(Z(I+1+J)-Z([+1)))
     IF (EP.LT.ERZZZ) GO TO 11
     78=ZRT
     IF(IT.LT.20) GO TO 12
     WRITE (6,201)
 201 FORMAT (* ERROR IN B POINT ITERATION*)
     CALL PNCH
  11 CONTINUE
     RO2=ON(I \cdot J)*QN(I \cdot J)*RHON(I \cdot J)
     IF(I.FQ.1) GO TO 14
     TIEI-1
     FP A=FP (II)
                     +RATA#(FP (I)
                                     -EP (II)
     RHOA=RHO(II+J)+RATA+(RHO(I+J)-PHO(II+J))
        ARO
              (II+J)+RATA+(Q
                                (I \cdot J) = 0
                                          (II•J))
        AEĀ
              (II+J)+RATA+(A
     Δ
                                (I \cdot J) - \tilde{A}
                                          (II,J)
     PHEAmpHE(II,J)+RATA+(PHE(I,J)-PHE(II,J))
       AEP (II+J)+RATA+(P (I+J)=D
                                          (II+.))
```

```
QAZ=QA#QA
    Al=FPA/(RHOA#QA2
    A1=AAV#A1+BAV#FPN(I,J)/RQ2
    AC=BALL#SQRT((QN(I+J)/AN(I+J))##2=1.)/RQ2
    AZ=SORT((QAYAA)##2-1.)/(RHOA+QAZ )#ALL+AC
 14 IF (I.EQ.IMAX(J)
                                              ) Gn TO 15
    I I = I + 1
    FP BEFM (I) +RATB#(FM (II) -FM (I) )
    RHOB=RHO(I+J)+RATB+(RHO(II+J)-RHO(I+J))
       B≖n
            (I+J)+RATB+(Q
                            (II.J)-0
                                       ((L•I)
       B=A
             (I)J)+RATB*(A
                            (II,J)-A
                                       ((L•I)
       B=p
            (I + J) +RATB# (P
                            (II,J)=D
    PHEB=PHE(I,J)+RATB+(PHE(II,J)-PHE(I,J))
    OBS=OB#OB
    B1=FPA/(RHOB#QR2
    B1=AAV#B1+BAV#FMN(I+J)/RQ2
    AC=BALL#SQRT((QN(I,J)/AN(I,J))##2-1.)/RQ2
    RZ=SQRT((QB/AB)*#2-1.)/(RHOB#QR2 )#ALL+AC
 15 IF (I.NE.1) GO TO 16
    TTEI
    VOUETAN(SI(1,J))/COS(PHE(1,J))
115 CALL BWALL (RN.TH(J).ZN(1.J).FRR.FTB)
    PHEN(T+J) =ATAN(VOU*FTB +FRB)
    PN(I.J) =PB+(PHEN(I.J) =PHEB=B) *hELR)/B>
    GO TO 17
 16 IF (I.EQ. IMAX (J)
                                              ) GO TO 18
    PN(I+J)=(A2*PA+B2*PB+(A1-B1)*DFLR+PHEA-PHEB)/(A2+B2)
    PHEN(I,J)=PHEA_A2+(PN(I,J)=PA)+A1+DELR
    60 TO 17
 18 CONTINUE
    [T=1
    VOU=TAN(SI(IMAXJ,J))/COS(PHE(IMAXJ,J))
118 CALL TWALL (RN+TH(J)+ZN(IMAXJ .J)+FRT+FTT)
    PHEN(I)J)=ATAN(VOU#FTT
                                  +FRT)
    PN(I+J) =PA+(PHEA-PHEN(I+J)+A1*DELR)/A2
 17 CONTINUE
    SPHE = SIN (PHE (I.J))
    TSI=TAN(SI(I.J))
    CSI=CoS(SI(I+J))
    CPHE=COS (PHE (I.J))
    VD=Q([+J)#TSI
    T1=DELR/CPHE
    IF (XJ1 •E0 •1 •) T1 = T1/Z(I • J)
    IF (XJ .EQ.1.) T1=T1/R
    T2=PQ(I.J)/RHO(I.J)/Q(I.J)
    T3=TST
                   (L,I)90#
    T4=0(1.J) #510(1.J)/CSI
                                    **2
    T5=Q(T+J) +CPHE+XJ
   1+Q(I,J)#SPHE#XJ1
    VC=VD=T1+(T2+TSI
                             #(T3+T4+T5))#AAV
    SPHEN=SIN(PHEN(I.J))
    TSIN=TAN(SINN(T+J))
    CSIN=COS(SINN(I+J))
    CPHEN=COS (PHEN(I+J))
    TT1=DFLR/CPHEN
    IF(XJ1.GT.O.) TT1=TT1/ZN(I.J)
```

```
IF(XJ_GT.O.) TT1=TT1/RN
     T22=PON(I.J)/RHON(I.J)/QN(I.J)
     T33=TcIN+QQN(I.J)
     T44=QN(I,J) #SION(I,J)/CSIN
     T55=QN(I+J) + (CPHEN+XJ+SPHEN+XJT)
     DVC=TT1+(T22+TSIN+(T33+T44+T55))+BAV
     AC=AC-DAC
     T11=OFLR#TAN(STT)/COS(PHFT)
     IF (XJ1 • GT • 0 • ) T11=T11/ZN(I • J)
     IF(XJ_GT.0.) T11=T11/RN
     TI=TI#TSI
     T1=T1+ALL+T11+BALL
     RHOZ≈RHO(I+J)-RHOQ(I+J)+T1
     PZ=P(T+J)-PQ(I+J)+T1
     GAMZ=GAM(I,J)-GAMQ(I,J)+T1
     PHON (1+J) = RHOZ+ (PN(I+J)/PZ) ++ (1./GAMZ)
     T2=Q0(I,J)/CSI
                              +Q(I,J)#TST
                                                                 #SIQ(I+J)
                                                   /CSI
     VVZ=Q;I.J)/CSI
                              -T2+T1
     VVZ2≈VVZ#VVZ
     VVC=SORT (VVZ2
                      +2. *GAMZ/(GAMZ-1.) * (PZ/RHOZ-PN(I.J)/RHON(I.J)))
     VVC2≈VVC#VVC
     ON(I,J)=SQRT(VVC2
                          -VC#VC)
     SINN(Y)J)=ATAN(VC/QN(I)J))
     SZVV) #2.+([.4]) H=([.4]) NH
                                         )-Ho(I+J)#T1
                                 -VVC2
     PHIN(I,J)=PHI(I,J)-PHIQ(I,J)+Ti
     TN(I+J)=FT(PN(I+J)+PHIN(I+J)+HN(I+J))
     GAMN(I.J) =FGAM(TN(I.J).PN(I.J).PHIN(I.J))
     AN(I+J) =SQRT(GAMN(I+J) +PN(I+J) /RHON(I+J))
     CALL XLAM (QN(I,J).AN(I,J).PHEN(I,J).XPLAMN(T,J).XMLAMN(I,J))
     JF (I.NE.1.AND.I.NE.IMAXJ) GO TO 1642
     TT=IT.1
     VOUTSTAN(SINN(I.J))/COS(PHEN(I.J))
     FRR=(VOU=VOUT)
     IF (ABS(ERR).LT.1.E-10) GO TO 1642
     IF (IT GT 2) GO TO 21
     ER1=ERR
     V∩U1≈VOU
     VOUEVOUT
     GO TO 171
  21 VOUNEVOU1-ER1+(VOU-VOU1)/(ERR-FR1)
     FR1=ERR
     V0U1 = V0U
     VOU=VOUNI
 171 IF (IT.GT.10) CALL ERROR (171)
     IF (I.EQ.1) GO TO 115
     GO TO 118
1642 CONTINUE
     EC=ABS(1.-PT/PN(I.J))
     IF(EC.LT.1.E-04.OR.IVY.EQ.O) GO TO 7
     SIT=SINN(I,J)
     PHETERHEN(I.J)
     PT=PN(I.J)
     KALL=KALL+1
     IF (KALL.GT.ILOCAL) GO TO 1493
     ALLE.5
     BALLE 5
```

```
GO TO 1482
1493 WRITE (6.1393)
1393 FORMAT (# AVERAGING PROCESS DOES NOT CONVERGE IN CHAR3D#)
     STOP
   7 CONTINUE
 707 CONTINUE
7070 CONTINUE
     XJ1=XJ1S
     IF(ICOWL.EQ.1) GO TO 430
     DO 97 M=1.7
     TF(IS(M+1) . EQ. n) GO TO 97
     WL=WWL
     IF (KS.EQ.1) JWW=JMAX
     00 96 J=1,JWW
     IF (J.GT.JINT) XJ1=0.
     I=IS(M+J)
     IF ( (M/2) #2.EQ.M) [=1+1
     IF (BAV.EQ.O.) RETAN(M.J) BETA(M.J)
     ZN(I+J)=.5*(TAN(BETA(M+J))+TAN(BETAN(M+J)))+DELR+Z(I+J)
     ZN(I-1+J)=ZN(I.J)
  96 CONTINUE
     XJ1=XJ1S
  97 CONTINUE
 430 CONTINUE
     IF (JW. GT. JCALC) GO TO 7500
     IF (ICOWL.EQ.1) GO TO 1875
     no 431 Mml,3
     IF (IS (M.1) . EQ.0) GO TO 431
     SHC=0.
     IF (BAV.GT.O.) SHC=1.
     CALL ALSHOC (M)
     MC=MMC
     IF (KS.EQ.1) JWW#JMAX
     IF (M.NE.KC1.AND.M.NE.KC2) CALL FSHOCK (M.1.JWW)
     IF (M.NE.KC1.AND.M.NE.KC2) CALL HSHOCK (M.1.JWW.0)
     IF (M.EQ.KC1.OR.M.EQ.KC2) CALL CSURF (M.JWW)
     IF(ISIM.EQ.1) GO TO 431
     IF (KS.EQ.O) CALL WSHK (M.1.)
 431 CONTINUE
1875 CONTINUE
     IF(ISIM.EQ.1) GO TO 2241
     ISOP=0
     TF (ICOWL.EQ.1.AND.IIT.EQ.IMAX()MAX)) TSOP=1
                 CALL WALL (RN. ICOWL, TIT. IITT)
     IF(ICOWL.EQ.1) GO TO 4483
     IF (ICOWLT.EQ.0) GO TO 8892
     DO 5631 J=1.JW
     (L) XAMIRGLXAMI
     T+QUXAMI=QUXAMI
        N(TMAXJP,J)=ZN(IMAXJQ,J)
        N(TMAXJP+J) =P
                        (L.DLXAMI)N
        N(IMAXUP, J) =Q
                        (L. QLXAMI) N
        (L.DLXAMI)N HE (L. PLXAMI)N
     (L.DLXAMI) NNIS=(L.TLXAMI) NNIS
     PHEN (TMAXJP.J) =PHEN (IMAXJQ.J)
     PHIN (IMAXJP.J) =PHIN (IMAXJQ.J)
```

```
RHON (IMAXJP+J) =RHON (IMAXJQ+J)
      IF (J.NE. JMAX+1) GO TO 5631
     (DUXAMI) NW U= (PUXAMI) NW U
     (DUXAMI) NW V=(PUXAMI) NW V
     WWW(IMAXJP) =W WW(IMAXJQ)
      (QUXAMI) NW X = (QUXAMI) NW X
      (DUXAMI) NW Y=(GUXAMI) NW Y
     THWN(IMAXJP)=THWN(IMAXJQ)
5631 CONTINUE
     IF (KS.GT.0) GO TO 2241
     DO 2346 M=1.3
     IF(IS(M.1).EQ.0) GO TO 2346
     CALL WDISC(M)
2346 CONTINUE
2241 CONTINUE
     IF (ICOWL.EQ.0) GO TO 8892
4483 00 788 J=1.JW
IF(J.GT.JINT) xJ1=0.
     ISAVE=0
     IIT=IMAX(J)-IFS+1
     TITT=TIT-MM
     IMAXUQ#IMAX(J)+1
     DO 8890 JETITT. IMAXJO
     IF (I.EQ. ISAVE) GO TO 8891
     DO 8893 M=1.7
     IF(IS(M, J), EQ. 0) GO TO 8893
     ITEST=IS(M+J)-1
     IF ((M/2) #2.EQ.M) ITEST#IS (M.J)
     IF (I.NE. ITEST) GO TO 8893
     ZN(I+J)=Z(I+J)+TAN(BETA(M+J))+(RN-R)
     ZN(I+1+J)=ZN(I+J)
     ISAVE=ITEST+1
     GO TO 8891
8893 CONTINUE
     ZLAMEXPLAM(I.J)
     IF(OPT+LT+0+) ZLAM=XMLAM(I+J)
     IF (I.EQ. IIT. AND. ISOP. NE. 0) ZLAM PHE (IIT, JW)
     ZN(I+J)=Z(I+J)+ZLAM*(RN-R)
8891 P
         Q = \{ U \in I \} M
                    (İ+J)
         N(T \circ T) = Q = (U \circ T)N
         (L \cdot I) H = (L \cdot I) N
     (L \cdot T)OHS = (L \cdot T)NOHS
     PHIN(I+J)=PHI(I+J)
     PHEN(T+J)=PHE(T+J)
     (L+I) IZ=(L+I) NNIZ
     TF(J.NE.JMAX+1) GO TO 8890
     ZN(I,J)=ZN(I,JMAX)
     U WN(T)=U W(I)
     W WN(\tilde{I}) = W W(\tilde{I})
     X WN(T)=RN
     IF (XJ1 • EQ • 1 • ) GO TO 8696
     CALL SWALL (RN, ZN(I, J), XWN(I), YHN(I), FX+FZ)
     THUN(T)=YWN(I)
     IF (XJ.EQ.1.) THWN(I) = ATAN(YWN(I)/XWN(I))
8696 IF (XUI . EQ. 1.) CALL SWALLI (THWN (I) , RN, ZN (I, J) , FX, FZ)
     VWN(I)=(UWN(I)+FX+WWN(I)+FZ)
```

```
IF(XJ_1 \circ GT \circ O \circ) \lor WN(I) = \lor WN(I) + ZN(2 \circ J)
8890 CONTINUE
 788 CONTINUE
     XJ1=XJ1S
8892 CONTINUE
     KS≈KS.1
     DO 9999 J=1,JW
     (U) XAMI=[LXAMI
     DO 9999 I=1, IMAXJ1
     TN(I,J) =FT(PN(I,J),PHIN(I,J),HA((I,J))
     GAMN(I,J)=FGAM(TN(I,J),PN(I,j),PHIN(I,J))
     AN(I,J)=SQRT(GAMN(I,J)+PN(I,J)/RHON(I,J))
9999 CALL XLAM(QN(I.J).AN(I.J).PHEN(I.J).XPLAMN(I.J).XMLAMN(I.J))
     IF (IAV-EQ-0.0R.BAV-GT.0.) GO TO 8898
     AAV= 5
     BAV=.5
     IF (ICOWLT.EQ. 1. AND. IWRAP. EQ. 0) CALL PLANES (1)
     CALL DERIVN (MM)
     DO 9998 J=1,JW
     IMAXJ=IMAX(J)
     DO 9998 I=1+IMAXJ
     CALL F (RHON (I, J), QN (I, J), RN, ZN (I, J), PHEN (I, J), XPLAMN (T, J), XMLAMN (
    11.J) .SINN(I.J) .AN(I.J) .SIQN(I.J) .PQN(I.J) .PHEQN(I.J) .FPN(I.J) .
    1FMN(T.J))
9998 CONTINUE
     IF (KS.EQ.1) GO TO 961
8898 CONTINUE
     ICOWL=0
     AAV=1.
     BAVEO.
     DO 1645 M=1,3
     IF (M.FQ.2) GO TO 1645
     IF(IS(M+1) • EQ+0) GO TO 1645
     CALL ALSHOC (M)
1645 CONTINUE
 212 CONTINUE
     IF (RN.LT.XXI) GO TO 7500
     IF (INT.EQ.2) GO TO 7500
     INTEL
     J=JJI+1
7501 THJJETH(J) #XJ
     XCN=RN*COS(THJJ)
     XC=R#COS(THJJ)
     IF (XCN+GE+ (XXI-5+E-04) + AND+XC+LT+ (XXI-5+E-04)) CALL INTER
     IF (XCN+LT+(XXI-5+E-04)) GO TO 7500
     JJI=J
     J=J+1
     IF (J.GT.JW) GO TO 7500
     IF (ISIM.EQ.O.AND.J.EQ.JW) TH (J) =THWN (IMAXJ)
     GO TO 7501
7500 CONTINUE
     CALL L TH M
     IF (ISWEEP.EQ.O) CALL EMBED
     DO 1941 J=1.JW
     IF (J.GT. JCALC) GO TO 1941
     IMAXJ1=IMAX(J)+1
```

```
IF (ICOWLT.EQ.O) IMAXJ1=IMAX(J)
      DO 20 I=1. IMAX 11
      Z(I,J)=ZN(I,J)
      P(I,J) #PN(I,J)
      PHE (I.J) =PHEN (T.J)
      (L \cdot I) N\Omega = (L \cdot I) \Omega
      SI(I \bullet J) = SINN(I \bullet J)
      H(I,J) = HN(I,J)
      (L.T) NIHq=(L.I) IHq
      RHO(I.J) =RHON(I.J)
      T(I,J)=FT(P(I,J),PHI(I,J),H(I,J))
      GAM(I_{\bullet}J) = FGAM(T(I_{\bullet}J) \cdot P(I_{\bullet}J) \cdot PHT(I_{\bullet}J))
      A(I \cdot J) = SQRT(GAM(I \cdot J) + P(I \cdot J) / RHA(I \cdot J)
      CALL XLAM(Q(I,J),A(I,J),PHE(I,J),XPLAM(I,J),XMLAM(I,J))
  SO CONTINUE
      DO 3004 M=1.7
      ALPHA (M, J) =ALPHAN (M, J)
      ALP(M.J) =ALPN(M.J)
3004 BETA (M.J) =BETAN (M.J)
1941 CONTINUE
      IF (JW.GT.JCALC) GO TO 214
      IF(ISIM.EQ.1) GO TO 214
      IMAXU_IMAX(UW) +1
      IF (ICOWLT.EG.O) IMAXJ = IMAX(J)
      DO 401 I=1 + IMAXJ
      U W(I)=U WN(I)
      A M(I) = A MN(I)
      W W(I)=W WN(I)
      THW())=THWN(I)
      R=RN
      LX#(I)WHT=XWHT
      XW(1)=R*COS(THWX)
 401 YW(I)=R#SIN(THWX)+(1.-XJ)#THW(T)
      TH(JW)=THW(1)
 214 X1=X2
      TEREN
      IF (JW.GT.JCALC) CALL SWEEPT (2)
      RSRN
      IF (JW.GT.JCALC) GO TO 8759
      TF(
                         ISIM.EG.O) CALL ADDSUR
8759 IF ((KOUNT/KCORR) *KCORR NE . KOUNT) GO TO 1
      IF (ICOWLT.EQ.1.AND.IWRAP.EQ.0) CALL WRAP(0)
      CALL MOTHER
      60 TO 1
      FND
```

```
SUBROUTINE SPACE
     COMMON /A/ X1+THMAX+TH(10)+R +Z(40+10)+P(40+10)+PHE(40+10)+
    1 Q(40,10),SI(40,10),H(40,10),PHI(40,10),RHO(40,10),GAM(40,10)
     COMMON /C/ IMA (10) , JMAX, ISTART, KOUNTF, KOUNTP
     COMMON /D/ UW (40) . VW (40) . WW (40) . XW (40) . YW (40) . THW (40)
     COMMON /H/ ISIM
     COMMON /J/ QN(40+10)+PHEN(40+10)+SINN(40+10)+XPLAM(40+10)+
    1xMLAM(40,10),FP(40),FM(40),A(40,10)
     COMMON/M/ IS(7.10)
     COMMON /S/ RI+KOUNT+KOUNTS+ICOWLT
     COMMON /W/ ISIMEX.IDUMMY.JINT.JOUMMY(40).THWW(2).JD1.JD2
     COMMON /IQ/ NUMEXP.ZSAV
     COMMON /WR/ IWRAP
     COMMON /SPE/ KOUNTO
     COMMON /TEM/ T(40,10)
     COMMON /PL/ DE TH
     DIMENSION LADR (100) LOROR (100)
     DIMENSION LDROP(100) +LADD(100)
     DATA 1942/0/
     IF(1942.EG.O.AND.IWRAP.EQ.O)DETH=TH(JINT)-TH(JINT-1)
     1942=1
     ICON=IS(3,1)-1
     IS3=IS(3.1)
     DZT=(Z(IS3+1)-Z(1+1))/FLOAT(IS3-2)
     XAMU=UUI
1300 KSAE1
     MSA=1
     KSASET
     MSAS=1
     IREDO:0
     DO 400 I=1:100
     LDROP(I)=0
     LDROR (I) = 0
     LADR(T)=0
400 LADD(T)=0
 402 CONTINUE
     DO 2 L = IJL . IJU
     JEL
     JS=J
     1CON= (S(3,J)-1
     IH=1
     1L=2
     IU=ICON
     IF (LDROP(1) .EQ. 0. AND . IREDO . EQ. T. AND . LDROR(1) . EQ. 0) GO TO 7
     KP=0
   4 CONTINUE
     KP=KP+1
4121 CONTINUE
     DO 3 K=IL, IU
     KP=KP+1
     T≡K
     DZ=Z(K+J)-Z(K-1+J)
     IF (IREDO.EQ.0) GO TO 2600
     DO 440 KR=1.KSAS
     TF (J. GT. JINT. AND. KP. EQ. LDROR (KP)) GO TO 441
```

```
TF(J.LE.JINT.AND.KP.EQ.LDROP(KP)) GO TO 441
 440 CONTINUE
     GO TO 3
2600 CONTINUE
     IF (DZ/DZT.GE..333) GO TO 3
     IF (IT.NE.IU) GO TO 1500
     IT=IT-1
     IF (KOUNT.LT.KOUNTC+40) GO TO 3
1500 CONTINUE
     LDROP(KSA)=IT
     IF (J.GT.JINT) LDROP(KSA)=IT+IS(3.JINT)=IS(3.J)
     IF (J.GT.JINT.AND.IU.EQ.IS(3.J)-1.AND.KOUNT.GT.KOUNTC+21)LDROP(KSA)
    l=0
     IF (J.GT.JINT) | DROR(KSA) = IT
     KSA=KSA+1
     GO TO 3
 442 TT=TT=1
 441 CONTINUE
     (U)XAMI⊐MI
     TOV=0
     IF (J.EQ.JINT.AND.Z(IT.J).LT.ZSAV) IDUMMY=IDUMMY+1
  32 DO 21 I=IT+IM
     7([+J)=Z([+1+J)
         (].J)=P
                   (I_{\bullet}I_{\bullet}J)
         (I \cdot J) = Q
                   (I+1+J)
         H=(L.I)
                   (I+I+J)
     SI (I.J) =SI (I.1.J)
     PHE(I,J)=PHE(I+1+J)
     PHI(I+J)=PHI(I+1+J)
     PHO (I.J) = RHO (I.1.J)
     GAM
           (I+J)=GAM (I+I+J)
     T(I \bullet J) = T(I \bullet I) T
           A = \{ U, I \}
                       (I+I+J)
     XPLAM(I,J)=XPLAM(I+1,J)
     (L.I+I) MAJMX=(L.I) MAJMX
     IF (IOV. EQ. 0) GO TO 21
     U W(I)=U W(I+1)
     V W(T)=V W(I+1)
     W W(I)=W W(I+1)
     X W(I) = X W(I+I)
     Y W(T) = Y W(I+1)
     THW(I)=THW(I+1)
 21 CONTINUE
     IF (ISTM.EQ.1. OR.L. NE. JMAX) GO TO 30
     IF (Inv.EQ.1) Go to 31
     IOVm1
     J=J+1
     GO TO 32
  31 J=JS
  30 CONTINUE
     I=(U) \times AMI=(U) \times AMI
     IF(IT,LT.IS(3,J)) IS(3,J)=IS(3,J)=1
     IF(IT,LT.IS(1,J)) IS(1,J)=IS(1,J)=1
     IF (K.GE.IU) GO TO 3
     TL=IT
     IU=IU-1
```

```
GO TO 4121
   3 CONTINUE
     GO TO (6,5,7), TH
   6 IF(IS(3.J)+2.E0.IS(1.J)) GO TO 530
     IL=IS(3,J)+1
     IU=IS(1,J)-1
     IH=2
     IF (J.NE. JMAX. OP. ISIMEX. EQ. 1) GO TO 4
     DZ10=Z(IL+J+1)-Z(IL-1+J+1)
     DZ2Q=Z(IL+1,J+1)-Z(IL-1,J+1)
     IF (DZ1Q/DZ2Q.GE..2) GO TO 4
     LDROP (KSA) = IL
     IF (J.GT.JINT) LDROP(KSA)=IL+IS(3.JINT)=IS(3.J)
     IF (J.GT.JINT) LDROR (KSA) = IL
     KSA=KSA+1
     GO TO 4
 530 KP=KP+2
   5 IL=IS(1,J)+1
     IU=IMAX(J)
     1H=3
     GO TO 4
   7 IL=2
     IF (LADD(1) . EQ. 0. AND . MSAS. EQ. 1. AND . IREDO. EQ. 1) GO TO 2
     IU=Ic(3.J)-1
     KPEO
     IH=1
   B CONTINUE
     KP=KP+1
8484 CONTINUE
     DO 9 K=IL+IU
     KP=KP+1
     TTEK
     DZ=Z(K+J)-Z(K-1+J)
     IF (IREDO.EQ.0) GO TO 601
     DO 444 KR=1.MSAS
     IF (IMAX (J) . GE . 37) GO TO 9
     IF (J.GT.JINT.AND.KP.EQ.LADR(KR)) GO TO 445
     IF (J.LE.JINT.AND.KP.EG.LADD (KR).AND. (IU.NE.IS (3.J)-1.0R.IWRAP.EQ.
    11)) GO TO 445
444 CONTINUE
     GO TO 9
 601 CONTINUE
     JF (DZ/DZT-LT-1.5) GO TO 9
1501 CONTINUE
     IF (J.NE.JMAX.OR.ISIMEX.EQ.1) GO TO 5021
     ZQQ=Z(K-1,J)+,E+(Z(K,J)-Z(K-1,J))
     DZ10=ZQQ-Z(K-1.J+1)
     DZ20=7(K_{1}J+1)-7(K-1_{1}J+1)
     IF (DZ1Q/DZ2Q.LT..4 ) GO TO 9
5021 CONTINUE
     LADD (MSA) = IT
     IF (J.GT.JINT) LADD (MSA) = IT+IS(3.JINT) = IS(3.J)
     IF (J.GT.JINT) LADR (MSA) #IT
     MSA=MSA+1
     GO TO 9
445 CONTINUE
```

```
T+(L)XAMI=XXAMI
   TOVEO
33 DO 18 Imit.IMAXX
   TI=IMAXX+1+IT=T
   12=11-1
   Z(I1,J) = Z(I2,J)
   P(I1,J)=P(I2,J)
   O (11.J)=Q
                (12·J)
      (Tî » J) =H
                 (T2.J)
   (L.SI) IH9=(L.II) IH9
   PHE (11.J) =PHE (12.J)
   (L.Sİ) OHR= (L. [I) OHR
   SI (I1+J) =SI (12+J)
   GAM (I1,J)=GAM
                     (I2.J)
   T(I1.J)=T(I2.J)
        (I_1,J)=A
                     (L.SI)
   (L+SI)MA IGX=(L+II)MAJGX
   (L.SI, MAJMX=(L.II, MAJMX
   IF(IOV.EQ.0) GO TO 18
   U W(I])=U W(I2)
   V W(II) = V W(I2)
   W W(Ij)=W W(I2)
   X W(T1)=X W(12)
   Y W(II) = Y W(IZ)
   THW(Ii) =THW(I2)
18 CONTINUE
   IF (ISIM.EQ.1.OP.L.NE.JMAX) GO TO 34
   IF(IOV-EQ-1) Gn TO 35
   IOV=1
   J=J+1
   60 TO 33
35. J=J$
34 CONTINUE
   I+(U)XAMI=(L)XAMI
   IP=IT+1
   TM=IT_1
   IOV≈n
   RATE,5
   Z(IT \bullet J) = \bullet 5 + (Z(TP \bullet J) + Z(IM \bullet J))
38 p
      (TT+J)=P (IM+J)+RAT+(P (IP+J)=P (IM+J)
      (IT.J)=Q
                 (IM, J) +RAT+(Q
                                Q=(L,QI)
                                            ((LeMI)
                 H-(L. QI) H) +TAS+(L. MT)
      H=(Left)
                                           ((LeMI)
   SI (IT+J)=SI (TM+J)+RAT+(SI (IP+J)+SI (IM+J))
   PHE(IT)J)=PHE(IM)J)+RAT*(PHE(IP,J)=PHE(IM)J))
   PHI (IT+J) =PHI (IM+J) +RAT+ (PHI (ID+J) =PHI (IM+J))
   PHO(IT+J)=RHO(IM+J)+RAT+(RHO(IP+J)=RHO(IM+J))
   TETT
   T(I+J)=FT(P(I+J)+PHI(I+J)+H(İ+j))
   GAM(I.J) =FGAM(T(I.J).P(I.J).PHT(I.J))
   A(I,J)=SQRT(GAM(I,J)+P(I,J)/RHo(I,J))
   CALL XLAM(Q(I+j))*A(I+j)*PHE(I+j)*XPLAM(I+J)*XMLAM(I+J)
   IF(ISTM.EQ.1.OR.L.NE.JMAX) GO TO 36
   IF (IOV.EQ.1) GO TO 37
   10V=1
   J=U+1
   7(1T,J)=7(IT,J=1)
```

```
RAT = (Z(IT \bullet J) - Z(IM \bullet J)) / (Z(IP \bullet J) - Z(IM \bullet J))
     GO TO 3A
  37 J=JS
     U W(IT)=U W(IM)+PAT+(U W(IP)=U W(IM))
     W W(IT)=W W(IM)+RAT+(W W(IP)-W W(IM))
     XW(IT)=R
     CALL SWALL (R.Z(IT.J),XW(IT),YW(IT),FX.FZ)
     THW(IT) =YW(IT)
     VW(IT) =UW(IT) +FX+WW(IT) +FZ
  36 CONTINUE
     IF(IT,LT,IS(1,J)) IS(1,J)=IS(1,J)+1
     IF(IT.LT.IS(3,j)) IS(3,J)=IS(3,J)+1
     IL=IT+2
     IU=IU-1
     IF(IL.GT.IU) GO TO 10
     GO TO 8484
   9 CONTINUE
  10 CONTINUE
     IF (IH.EQ.2) GO TO 2
     IH=S
     IL=IS(3,J)+1
     IU=IS(1.J)=1
     GO TO B
   2 CONTINUE
     IF (IREDO, EQ. 1) GO TO 600
     IF (KSA • EQ • 1 • AND • MSA • EQ • 1) GO TO 600
     KSASEKSA-1
     IF (KSAS.EQ.O) KSAS=1
     MSAS=MSA-1
     IF (MSAS.EQ.O) MSAS=1
     DO 500 K=1+KSAS
     DO 500 M=1.MSAS
 500 IF (LDROP(K) .EQ.LADD(M) LADD (M)=0
     DO 321 J=IJL+IJU
     IF (J. E. JINT) GO TO 321
     1F(Z(2.J).GT.2. *DETH) GO TO 327
     DO 322 M=1 MSAS
 322 IF (LADD (M) .EQ. 2) LADD (M) =0
     60 TO 320
 321 CONTINUE
 320 CONTINUE
     IREDO-1
     IF (MSAS.GE.JMAX) GO TO 3000
     DO 3001 ME1.MSAS
3001 \text{ LADD (M)} = 0
     GO TO 3005
3000 DO 3002 M=1.MSAS
     IF (LADD (M) . EQ.O) GO TO 3005
     IN=0
     DO 3004 MM=1, MSAS
3004 IF (LADD (MM) . EQ. LADD (M)) IN=IN+T
     IF (IN.LT.JMAX) LADD (M)=0
3002 CONTINUE
3005 IF (IWRAP.EQ.1) GO TO 402
     DO 3006 M=1.MSAS
     IN=0
```

	DO 3007 MM=1.MSAS	
3007	IF (LADR (MM) .EQ.LADR (M)) IN=IN+1	
	IF(IN.LT.JMAX-JINT) LADR(M)=0	
	IF(LADR(M).LT. 15(3, JINT+1)) 60 TO 3006	
	IN=0	
	DO 2931 MM=1.MSAS	
2931	IF(LADD(MM) EQ.LADR(M) +IS(3,JINT) = IS(3,JINT,1)) IN=IN+1	
	IF(IN.LT.JINT) LADR(M)=0	
3006	CONTINUE	
	GO TO 402	
600	IF(IJU.EQ.JMAX) GO TO 1301	
	IJL=JINT+1	
	XAMC=ULI	
	GO TO 1300	
1301	CONTINUE	
	IF(ISIM.EQ.1) RETURN	
	TMAX(JMAX+1)=IMAX(JMAX)	
	IS(3, JMAX+1) = IS(3, JMAX)	
	IS(1,JMAX+1)=IS(1,JMAX)	
	RETURN	
	ENŪ	
		•
		and the second s
•		
*		
		· · · · · · · · · · · · · · · · · · ·
****	**************************************	
		<u> </u>

```
SUBROUTINE DERTY (MM)
 COMMON /IQ/ NUMEXP, ZSAV
 COMMON /WR/ IWPAP
 COMMON /A/ X1. THMAX. TH(10) . R
                                   *Z(40,10)*P(40,10)*PHF(40,10)*
1 9(40,10), SI(40,10), H(40,10), PUI(40,10), RHO(40,10), GAM(40,10)
 COMMON /C/ IMAX(10) *JMAX *ISTART *KOUNTF *KOUNTP
 COMMON /D/ UW (40) + VW (40) + WW (40) + XW (40) + YW (40) + THW (40)
 COMMON /H/ ISIM
COMMON /I/ XJ
 COMMON/M/ IS (7.10)
 COMMON/N/ SIG(40,10),PG(40,10),PHEG(40,10),HG(40,10),PHIG(40,10),
100(40,10) .RHOQ(40,10) .GAMQ(40,10)
 COMMON / Q/ XCOWL
 COMMON /R/ J.XCN.XC.XXI.JW.INT.ICOWL.RCOWL
COMMON /W/ ISIMEX.IDUMMY.JINT.JDUMMY(40).THWW(2).JD1.JD2
COMMON /TB/ IMAXJ, IS1, IS2, ISL7, ISL2
COMMON /ISW/ JCALC+ISWEEP+XINSP(10)+X2
COMMON /ISW1/ TER
COMMON /JF/ JFINAL
COMMON /S/ RI, KOUNT, KOUNTS, ICOWLT
COMMON /PL/ DE TH
COMMON /V/ XJ1
COMMON/PS/ZR(40,2), PR(40,2), QR(40,2), HR(40,2), SIR(40,2), RHOR(40,2)
1.PHIR(40.2).PHER(40.2).THR(2).THWR(40)
COMMON/PSS/GAMRR (40)
no lo Jel, JMAX
JSHOC=0
IF (J.GT.JCALC) GO TO 10
 IF (J.EQ. JCALC. AND. IFR. EQ. 1) GO TO 10
JM=J=7
JP=J+1
IF (J.FQ.JCALC) JP=J
 IF (J.FQ.1) JM=JP
IF (ISIM.EQ.1.AND.J.EQ.JMAX) JPLJM
(L) XAMI= L XAMI
DO 20 I=1+IMAX'
THUILTHW(I)
IF (JP.NE.JW) THJ1=TH(JP)
IF (ISTM.EQ.1.AND.JP.EQ.JMAX) THJ1=TH (JMAX)
IF (J.EQ.JIN] . AND . I . LE . I DUMMY) GO TO 20
DZ=Z(T*J)-Z(T*JM)
(ML)HT=(U)HT#HTA
DUMZ=1.
IF (XJ1.GT.0.) DUMZ=.5*(Z(I.J)+7(I.JM))
DUMR=1.
IF (XJ.GT.0.) DUMRER
DS1*SORT (DZ*DZ+(DTH*DUMZ*DUMR )**2)
IF (J.EQ.JINT.AND.I.GT.IDUMMY) GO TO 901
DZ=Z(1+JP)-Z(I.J)
DTHETHUL-TH(U)
DUMZ=1.
IF(XJ1.GT.0.) DUMZ=.5+(Z(I.J)+7(I.JP))
DS2*SORT (DZ*DZ+(DTH*DUMZ*DUMR ) **2)
IF (J_EQ_JINT+1) GO TO 900
D1=DS1/DS2
D2=D52/D51
```

```
D3=D1-D2
    GO TO 902
901 D1=0.
    JP=J
    D2=1.
    IF(I.LT.IS(3,J)-1) GO TO 909
    JSHOC=1
    JP=J+1
    IA=IS(1,JP)+I=IS(1,J)
    PAV=(Z(I+J)-ZSAV+Z(IA+JP))/2.
    DS2=PAV+3.142/2.
    D1=DS1/DS2
    n2=DS2/DS1
    D3=D1-D2
909 CONTINUE
    GO TO 902
900 D1=1.
    D2=0.
    D3=1.
    IF(I.LT.IS(3,J)=1) GO TO 910
    JSHOC=2
    TB=IS(1,JM)+I=TS(1,J)
    RAV=(Z(I+J)+Z(IB+JM)-ZSAV)/2.
    DS1=RAV+3.142/2.
    D1=D51/D52
    n2=DS2/DS1
    D3=D1-D2
910 CONTINUE
902 CONTINUE
    MmT
    N=I
    IF (JSHOC.EQ.1) M=IA
    IF (JSHOC.EQ.2) NaIB
    DTHS=D1+THJ1-D3+TH(J)-D2+TH(JM)
    IF (J.FQ.1) DTHS=TH(2)
    IF (ISJM.EQ.1.AND.J.EQ.JMAX) DTHS=TH(JMAX)-TH(JMAX-1)
    IF (JSHOC.EQ.1) DTHS=(Z(I,J)-ZSAV )+3.142/2.+D1+(TH(J)-TH(JM))+D2
    IF (JSHOC.EQ.2) DTHS=(TH(JP)=TH(J))+D1+Z(I.J)+3.142/2.+D2
                (M,JP)=D3+Z (I,J)=D2+Z (N,JM)
        5=D1+Z
    DZ
    IF (JSHOC.EQ.1) DZS=(Z(I,J)-Z(I.JM))*D>+(Z(M.JP)-Z(I.J)+ZSAV)*D)
    IF(JSHOC.EQ.2) DZS=(Z(I.J)-Z(IR.JM)+Z$AV)+D2+(Z(I.JP)-Z(I.J))+D1
    DP
        S=D1*P
                 (M.JP) -D3*P
                             (I.J)_D2+P
                                          (No JM)
                 (M,JP)-D34H
    DH
        S=D1+H
                             (I.J)-D2*H
                                           (N.JM)
    DØ
        S=D1*Q
                 (M.JP) -D3#Q
                              (I+J)-n2*Q
                                           (ML eN)
    DPHES_D1 &PHE (M, JP) -D3 &PHE (I, J) -D2 &PHE (N, JM)
    DPHIS=D1*PHI(M.JP) =D3*PHI(I.J) =D2*PHI(N.JM)
    nRHOS=D1*RHO(M.JP) -D3*RHO(I.J) -D2*RHO(N.JM)
    DGAMS_D1 +GAM(M, JP) -D3+GAM(I, J) _D2+GAM(N, JM)
    DSI S=D1*SI (M,JP)-D3*SI (I,J)-D2*SI (N,JM)
    IF(J.FQ.1) DSI S=SI(I.2)
    IF (ISIM.EQ.1.AND.J.EQ.JMAX) DST S==SI(I.JMAX=1)
 40 IF(I.EQ.1) GO TO 50
    IF(I.FQ.IMAXJ) GO TO 50
    IF (ICOWL, NE.1) GO TO 400
    IF (I.LT. IS (1.J) -MM. OR. I.GT. IS (1.J)) GO TO 400
```

```
NP
                      7=0.
            DH
                      7=0.
                      7=0.
            ÜÜ
            DSI
                      7=0.
            PPHEZEO.
            DPHI7=0.
            DRHOZEO.
            DGAMZ=0.
            GO TO 60
   400 CONTINUE
             IF(I.FQ.IS(1.J).OR.I.EQ.IS(1.J).1) GO TO 50
             IF(I.EQ.IS(3.J).OR.I.EQ.IS(3.J)-1) GO TO 50
             TP=I+1
             IMEI-1
            DZ1=Z(IP +J)-Z(I+J)
            DZ2=Z(I+J)=Z(IM +J)
            D1=DZ1/D72
            D2=DZ2/DZ1
            D3=D1-D2
            D1PD2=D1+D2
                                     = (D1#P
            DP
                      Z
                                                          (IP ,J) -D3*P
                                                                                            (I+J)-D2*P
                                                                                                                          SGGIOV(IN MI)
            DH
                      Z
                                     =:(D1+H
                                                         (IP +J)=D3+H
                                                                                            (I.J)-D2*H
                                                                                                                          SDGIOV((L. MI)
            DQ
                                     = (D1+Q
                                                          (IP ,J)-D3+Q
                                                                                            (I,J)_D2#0
                                                                                                                          (IM .J))/D1PD2
            DPHEZ
                                     =(D1*PHE(IP ,J)=D3*PHE(I,J)=D2*PHF(IM ,J))/n1PD2
            DPHIZ
                                     #(D1+PHI(IP +J)=D3+PHI(I+J)=D2+PHI(IM +J))/D1PD2
                                     =(D1+RHO(IP ,J)=D3+RHO(I,J)=D2+RHO(IM ,J))/D1PD2
            DRHOZ
            DGAMZ
                                     FOR CONTRACTOR OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY
                                     =(D1+SI (IP +J)=D3+S+ (I+J)=D2+SI (IM +J))/D1PD2
            DSI Z
            60 TO 60
     50 CONTINUE
            | ==1
            IF(I.FQ.IMAXJ) GO TO 100
            DO 421 Mml +7
            IF ((M/2) +2.NE.M.AND.I.EQ.IS(M.j)-1) GO TO 100
            IF ((M/2) +2 . EQ. M. AND . I . EQ. IS (M. 1)) GO TO 100
  421 CONTINUE
            L=1
  100 TL=I+L
            12L=1.2*L
            DZ=Z(T+J)-Z(IL +J)
            DZL=7(IL +J)-Z(IZL
                                                              • 1)
            IF (ARS(DZL).GT_1.E-10) GO TO 5000
            DEL=0.
GO TO 5001
5000 DEL=DZ/DZL
5001 DELLF=DEL +DEL
            DELQ=1.+DEL
            DELL=DELQ#DELQ
            DELE= (1.+2. +DEL)
                      Z= (DELLE#P
                                                    (ISL
            DP
                                                                   +J) -DELL&P
                                                                                                  (IL' +J) +DELE#P
                                                                                                                                         (I,J))/DZ/DELQ
                                                    (ISL
            DH
                      7 (DELLEAH
                                                                                                 (IL +J)+DELE+H
                                                                   • J) -DELL&H
                                                                                                                                         (I,J))/DZ/DELQ
            DQ
                      Z= (DELLE*Q
                                                     (IZL
                                                                   J) -DELL&Q
                                                                                                 (IL +J)+DFLE#Q
                                                                                                                                         (I+J))/DZ/DELQ
            DPHEZ= (DELLE*PHE (IZL
                                                                   •J) -DELL PHE (IL •J) +DELE PHE (I•J))/DZ/DELQ
            DPHIZE (DELLE +PHI ( IZL
                                                                   , J) = DELL&PHI(IL: , J) + DELE&PHI(I, J))/DZ/DELQ
            DRHOZ= (DELLE*RHO(12L
                                                                   *J) =DELL*RHO(IL *J) +DFLE*RHO((*)J))/DZ/DELQ
            DGAMZ= (DELLE +GAM (IZL
                                                                   *J) -DELL#GAM(IL *J) +DELE#GAM(I*J))/DZ/DELQ
```

```
DST Z= (DELLE+ST (T2L
                              *J) *DELL#SI (IL *J) *DELE#SI ([*j))/DZ/DELO
  60 CONTINUE
         Q(1)J)=(DP
                      S-DP
                             7
                                   *DZS)/DTHS
         O(1 \cdot J) = (DH S - DH)
                                   #DZS)/DTHS
         Q(T*J)=(DQ S+DQ
                                   #DZS)/DTHS
     SI Q(I+J)=(DSI S=DSI Z
                                   #DZS)/DTHS
     PHEQ(I+J) = (DPHES=DPHEZ
                                   #DZS)/DTHS
     PHIQ(T+J) = (DPHTS-DPHIZ
                                   *DZS)/DTHS
     RHOQ (I + J) = (DRHOS=DRHOZ
                                   #DZS)/DTHS
     GAMQ(I+J)=(DGAMS-DGAMZ
                                   *DZS)/DTHS
  20 CONTINUE
  10 CONTINUE
     TF (IWRAP.EQ.1)60 TO 955
     IF (ICOWL.EQ.1.OR.ICOWLT.EQ.0) GO TO 955
     TMICESL
     J3=JINT+1
     J4=JINT+2
     IDU=IDUMMY+1
     A1=ZSAV-Z(IDU,J2)
     Δ2=TH(J4)-TH(J3)
     A1A2=A1/A2
     AZA1 =AZ/A1
     A1PA2=A1.AZ
     A12=A1A2-A2A1
     UT=Q(IDU.J2)*COS(PHE(IDU.J2))
     VT==Q(IDU,J2) #SIN(PHE(IDU,J2))
     WT=Q(IDU.J2) #TAN(SI(IDU.J2))
     OT=SORT (UT#ÚT+WTAWT)
     PHET=ATAN(WT/UT)
     SITEATAN (VT/QT)
        Q(1 \cdot J3) = (P (1 \cdot J4) + A1A2 - P
                                       (1,J3) #A12-P
                                                      (IDU, J2) #AZA1)/A1PA2
        Q(1,J3)=(H
                      (),J4)#A1A2=H
                                       (1,J3) +A12-H
                                                      (IDU.JZ) #AZA1)/A1PAZ
        Q(1+J3)=:(Q
                      (1.J4) #A1A2-Q
                                      (1.J3) # \12-Q
                                                               *A2A1)/A1PA2
     SI Q(1,J3)=(SI (1,J4)+A1A2-SI (1,J3)+A12-SI T
                                                               #A2A1)/A1PA2
     PHEQ (1 . J3) = (PHE (1 . J4) *A1A2-PHE (1 . J3) *A12-PHET
                                                              *A2A1)/A1PA2
     SAPIA (101, 13) = (PHI (1, J4) +A1A2-PHI (1, J3) +A12-PHI (IDU, J2) +A2A1) /A1PA2
     RHOQ(1,J3)=(RHO(1,J4) #A1A2-RHO(1,J3) #A12-RHO(IDU,J2) #A2A1)/A1PA2
     GAMQ(1,J3)=(GAM(1,J4)+A1A2-GAM(1,J3)+A12-GAM(IDU,J2)+A2A1)/A1PA2
     (1-SL) XAMI#SLXAMI
     DO 7979 I=1. IMAXJ2
        R(T)1)=Z
                     (I • J2=1)
        R(\uparrow \bullet 1) = P
                     (1-2(-1))
        R(1,1)=Q
                     (I, J2-1)
        R([ ) ] ) #H
                     (I+J2-1)
     SIR(I)=SI
                     (I - J2 - 1)
     PHIR(1,1)=PHI (1,J2=1)
     PHER([ + 1) = PHE ( I + J2 - 1 )
     RHOR(1+1)=RHO(1+J2=1)
7979 CONTINUE
     DO 7878 I=1. IDUMMY
     10 3535 IJ=1. IMAXJ2
     GAMRR(IJ)=THWR(IJ)
3535 THWR(1J) =GAM (1J.J2-1)
     CALL TBLDUM(Z (I.J2),P1,SI1,H1,PHI1,Q1,PHE1,RH01,GAM1.
                                                                     1.IMAX(
    132) +21
     DO 3536 IJ=1.IMAXJ2
```

```
3536 THWR(TJ) =GAMRR(IJ)
     CALL TBLDUM(Z (I.J2),P2,SI2,H2,PHI2,Q2,PHE2,RH02,GAM2,
                                                                 2.IMAX(
    1321.21
     D1=TH(J2)-TH(J2-1)
     D2=THP(2)
                 -TH(J2)
     D1D2=D1/D2
     D2D1=D2/D1
     D12=D1D2-D2D1
     D1PD2=D1+D2
        Q(1,J2)=(D1D2*P
                         2-D12*P
                                   (†.J2)=D2D1#P
                                                  1)/D1PD2
        G(I+JS) = (D1D2+H 2-D12+H
                                   (1,J2)-D2D1*H 1)/D1PD2
        Q(1)J2)=(D1D2+Q
                         2-012#0
                                   (f.J2)-D2D1#Q
                                                 1)/D1PD2
     SI Q(I+J2)=(D1D2+SI 2-D12+SI (f.J2)-D2D1+SI 1)/D1PD2
     PHIQ(1.J2) = (D1D2*PHI2-D12*PHI(1.J2)-D2D1*PHI1)/D1PD2
     PHEQ(1.J2) = (D1D2*PHE2-D12*PHE(1,J2)-D2D1*PHE1) /D1PD2
     RHOQ (1.J2) = (D1D2*RHO2-D12*RHO (1.J2)-D2D1*RHO1) /D1PD2
     GAMQ(1.J2) = (D1D2+GAM2-D12+GAM(1.J2)-D2D1+GAM1)/D1PD2
7878 CONTINUE
955 CONTINUE
     RETURN
     END
```

```
SUBROUTINE CSURF (K,JMW)
 COMMON /FN/ FPN(40+10) +FMN(40+10)
 COMMON /ALLR2/ PQN(40+10)+HQN(40+10)+QQN(40+10)+SIQN(40+10)+
1PHEQN (40+10) +PHIQN (40+10) +RHOQN (40+10) +GAMQN (40+10)
  COMMON /AV/ AAV, BAV
 COMMON /ALLR1/ AN(40+10), TN(40+10), GAMN(40+10), XPLAMN(40+10),
1XMLAMN(40,10)
 COMMON /IVY/ IVY.KCORR.IAV
 COMMON /A/ X1+THMAX+TH(10)+R
                                   +Z(40+10)+P(40+10)+PHF(40+10)+
1 0(40,10) *SI(40,10) *H(40,10) *PHI(40,10) *RHO(40,10) *GAM(40,10)
 COMMON /B/ PN(40+10) + PHIN(40+10) + RHON(40+10) + HN(40+10) + ZN(40+10)
 COMMON /C/ IMAY(10)+JMAX+ISTART+KOUNTF+KOUNTP
 COMMON /H/ ISIM
  COMMON /J/ QN(40.10).PHEN(40.10).SINN(40.10).XPLAM(40.10).
1XMLAM(40,10).FP(40).FM(40).A(40,10)
  COMMON /K/ RN. DELR
 COMMON /L/ ALPHAN(7:10) +ALPHA (7:10) +BFTAN(7:10) +BETA (7:10)
 COMMON/M/ IS(7.10)
  COMMON/N/ SIG(40+10) +PG(40+10) +PHEG(40+10) +HG(40+10) +PHIG(40+10) +
1QQ(40,10) .RHQQ(40.10) .GAMQ(40.10)
 COMMON /O/ ALP(7,10), ALPN(7,10)
  COMMON JUJ ERZZZ
 COMMON /V/ XJ1
 COMMON /W/ ISIMEX, IDUMMY, JINT, TOUMMY (40) . THWW (2) . JD1 . JD2
 COMMON /SA/ XJTS
 DIMENSION PIS(2) . PHEIS(2) . RHOZS(2) . PZS(2) . GAMZS(2) . QDQS(2) . QDS(2) .
1SIDS(2) +SIDQS(2) +T1S(2) +VCS(2) .HDS(2) .HDQS(2) .PHIZS(2)
1 no lo Jel. JMW
  IF(J.GT.JINT) XJI=0.
  I=IS(K+J)
 KILEI
  A93m1.
 B93=0,
 IF (BAV.GT.0.) A93=.5
 IF (BAV.GT.0.) B93=.5
 TF (BAV-EQ-0.) BETAN (K.J) =BETA (K.J)
 BT=BETAN(K+J)
 IF (J.NE.JMAX+1) GO TO 893
 CALL SWALL (R,Z(I,JMW),XT,YT,GX1,GZ1)
 GG=ATAN(GX1)
 ZDOT=Z(J.JMW)+TAN(BETA(K.JMW)) #DELR/COS(GG)/COS(GG)
 CALL SWALL (RN. ZDOT, XT, YDU, GX. G7)
 XA=GX#SIN(BETA(K.JMW))
 RATC=(TH(JMW)-YDU)/(TH(
                            JMAX) - YDU)
 11=15(K,J)=2
 I2=I5(K,J)+1
 DO 892 II=I1.I2
    (XAML+II)Q P=(L+II)D
    H=([.1])
                C(TT+JMAX)
 (XAML.II) & O=(L.II) O
 (XAML+II)Q IZ=(L+II)D IZ
 PHEO(TI.J)=PHEO(II.JMAX)
 PHIQ(II,J)=PHIQ(II,JMAX)
```

```
RHOQ(II,J)=RHOQ(II,JMAX)
      GAMQ (TI.J) = GAMQ (IT.JMAX)
  892 CONTINUE
  893 CONTINUE
 2525 ZA=Z(I-1.J)
C
      ZA=(Z(I-2,J)+Z(I-1,J))/2.
   25 TT=1
    5 RAT= (7A-Z(1-2,J))/(Z(1-1,J)-7(1-2,J))
      ALAM=xPLAM(I-2.J)+RAT+(XPLAM(I-1.J)-XPLAM(I-2.J))
      DUMPEA93#ALAM+B93#XPLAMN(I=1.J)
      ZATEZN(I-1.J)-DUMP*DELR
      ER=ARS((ZAT-ZA)/(Z(I-1.J)-Z(1-2.J)))
      IF (ER LT ERZZZ) GO TO 6
      TTEIT+1
      7A=ZAT
      TF (IT.LE.10) GO TO 5
      WRITE (6.200)
 200 FORMAT (* ERROR IN A POINT ITERATION IN CSURF#)
      CALL PNCH
    5 MEI-1
      BLAM=XMLAM(I-2.J)+RAT+(XMLAM(I-1.J)-XMLAM(I-2.J))
      7 T = Z A
      PA=P(T-2,J)+RAT+(P(I-1,J)-P(T-2,J))
      PIEPA
      QA=Q(I-2+J)+RAT+(Q(I-1+J)-Q(I-2+J))
      ADEIO
      HA=H(I=2+J)+RAT+(H(I=1+J)+H(I=5+J))
      HIBHA
      RHA=RHO(I-2,J)+RAT+(RHO(I-1,J)-RHO(I-2,J))
      RHI=RHA
      SIA=SI(I-2+J)+RAT+(SI(I-1+J)-ST(I-2+J))
      SII=STA
      PHIA=PHI(I-2,J)+RAT+(PHI(I-1,J)-PHI(I-2,J))
      PHILEPHIA
      PHEA=PHE(I-2+J)+RAT*(PHE(I-1+J)-PHE(I-2+J))
      RGZ=QN(M.J)+QN(M.J)+RHON(M.J)
      PHEIPHEA
      TAMFT (PA, PHIA, HA)
      GAMAREGAM (TA.PA.PHIA)
      AA=SORT (GAMA#PA/RHA)
      PQI=PQ(I-2+J)+RAT+(PQ(I-1+J)-PQ(I-2+J))
      QQI = QQ(I - 2 + J) + RAT + (QQ(I - 1 + J) - QQ(I - 2 + J))
      ((LeS-1)@H=(Le[-1.9])#TAR+(LeS-1)@H=IDH
      RHQI=RHOQ(I-2,J)+RAT+(RHOQ(I-1,j)-RHOQ(I-2,J))
      PHEQI = PHEQ (I - 2 - J) + RAT# (PHEQ (I - 1 - J) - PHEQ (I - 2 - J))
      PHIQI=PHIQ(I-2.J)+RAT*(PHIQ(I-1.J)-PHIQ(I-2.J))
      SIQI=SIQ(I=2,J)+RAT*(SIQ(I=1,J)=SIQ(I=2,J))
      CALL F(RHA, QA, P., ZA, PHEA, ALAM, BIAM, SIA, AA, SIQI, PQI, PHEQI, FPA, FMA)
      A1=FPA/RHA/QA/QA
      Al = AAV AAI + BAV + FPN (M+J) / RQ2
      AZ=SQRT((QA/AA) ++2+1.)/RHA/QA/QA
      A2=A93*A2+B93*SQRT((QN(I-1.J)/AN(I-1.J))**2-1.)/RQ2
      TT=1
      78=2(1+J)
      ZB=(Z(I+1+J)+Z(I+J))/2.
    B RAT=(7B-Z(I+J))/(Z(I+1+J)-Z(I+J))
```

```
PLAM=XMLAM(I.J)+RAT*(XMLAM(I+1.J)-XMLAM(I.J))
      DUMP=A93+BLAM+B93+XMLAMN(I.J)
      ZAT=ZN(I+J)-DUMP#DELR
      ER#ABS ((ZB-ZAT) / (Z(I+1+J)-Z(I+J)))
      IF (ER. LT. ERZZZ) GO TO 9
      TT=IT+1
      7B=ZAT
      IF (IT.LE. 10) GO TO 8
      WRITE (6,201)
  201 FORMAT (* ERROR IN B POINT ITERATION IN CSURF*)
      CALL PNCH
    9 PB=P(I+J)+RAT+(P(I+1+J)=P(I+J))
      (L.I) NOHR# (L.I) NO# (L.I) NO=SOR
      ALAM=xPLAM(I,J)+RAT+(XPLAM(I+1,J)-XPLAM(I,J))
      ((L \cdot I) Q = (L \cdot I + I) Q) + TAS + ((L \cdot I) Q = SQ)
      (U \bullet I) H = (U \bullet I \bullet I) + TAS + (U \bullet I) H = BH
      RHB=RHO([,J)+RAT+(RHO(I+1,J)=RHO(I,J))
      SIB=SI(J.J)+RAT+(SI(I+1.J)=SI(f.J))
      PHIR=PHI(I+J)+PAT+(PHI(I+1+J)=PHI(I+J))
      PHEBEPHE (I.J) + RATH (PHE (I+1.J) = PHE (I.J))
      TB=FT(PB.PHIB.HB)
      GAMBEFGAM (TB, PB, PHIB)
      AB=SQRT (GAMB*PB/PHB)
      PQREPO([+J)+RAT*(PQ([+1+J)=PQ(+,J))
      QQB=QQ(I,J)+RAT*(QQ(I+1,J)=QQ(f,J))
      HQB=HQ(I,J)+RAT+(HQ(I+1,J)-HQ(I,J))
      RHQR=RHOQ(I \cdot J) + RAT*(RHOQ(I + I \cdot J) - RHOQ(I \cdot J))
      SIQB=SIQ(I.J) +PAT+(SIQ(I.1.J)=SIQ(I.J))
      PHEQR=PHEQ(I,J)+RAT+(PHEQ(I+1,1)-PHEQ(I,J))
      PHIQB=PHIQ(I,J)+RAT*(PHIQ(I+1,J)=PHIQ(I,J))
      CALL F(RHB, QB, R, ZB, PHEB, ALAM, BLAM, SIB, AB, SIOB, PQB, PHEQB, FPB, FMB)
      Bl=FMB/RHB/QB/08
      R1=AAV#B1+BAV#FMN(I+J)/RQ2
      R2=SORT ( (QB/AB) 442-1.) /RHB/QB/QB
      AC=893 *SORT ((QN(I,J)/AN(I,J)) **2-1.)/RQ2
      B2=A93#B2+AC
   13 ZD=Z(M+J)
C 13 ZD=(ZI+Z(M+J))/2.
   18 PAT=(ZD-Z(M+J))/(ZI-Z(M+J))
      DLAMETAN (PHE (M.J)) + RAT* (TAN (PHFI) - TAN (PHE (M.J)))
      DUMP =A93+DLAM+B93+TAN(PHEN(M+()))
      ZAT=ZN(M+J)-DUMP+DELR
      FREABS ((ZAT-ZD)/(ZI-Z(M+J)))
      IF (ER.LT.ERZZZ) GO TO 19
      IT=IT+1
      IF (IT.GT.10) CALL ERROR (18)
      ZD=ZAT
      go to la
   19 CONTINUE
      PD#P(M+J)+RAT+(PI=P(M+J))
      OD=O(M + J) + RAT + (QI=Q(M + J))
      HD=H(M,J)+RAT+(HI=H(M,J))
      RHD=RHO(M+J)+RAT+(RHI-RHO(M+J))
      SID=SI(M,J)+RAT+(SII-SI(M,J))
      PHID=PHI(MOJ)+PAT+(PHII-PHI(MOJ))
```

```
PHED = PHE (M.J) + RATH (PHEI = PHE (M. I))
 TD=FT(PD.PHID.HD)
GAMD=FGAM (TD.PD.PHID)
 AD=SORT (GAMD*PD/RHD)
PDQ=PQ(M.J)+RAT+(PQI-PQ(M.J))
HDQ=HQ(M.J)+RAT+(HQI-HQ(M.J))
ODO=OO(M+J)+RAT+(QQI-QQ(M+J))
RHDG=RHOQ (M.J) +RAT+ (RHQI-RHOQ (M.J))
 SIDQ=SIQ(M+J)+pAT+(SIQI-SIQ(M+J))
PHIDO=PHIG(M+J)+RAT*(PHIGI-PHIO(M+J))
PHEDO=PHEQ(M.J) +RAT* (PHEQI-PHEO(M.J))
VD=QD#TAN(SID)
 T1=DELR/COS(PHED)
IF (XJ1.EQ.1.) T1=T1/ZD
IF(XJ.EQ.1.)T1=T1/R
TZ=PDQ/RHD/QD
T3=TAN(SID) +QDO
T4=QD#SIDQ/COS(SID )##2
T5=Qn+Cns(PHED) +XJ
1.QD*STN(PHED) *XJ1
VC=VD=T1+(T2+TAN(SID)+(T3+T4+T5))+AAV
SPHEN=SIN (PHEN (M.J))
TSIN=TAN(SINN(M,J))
CSIN=COS(SINN(M.J))
CPHEN#COS (PHEN (M.J))
 TT1=DFLR/CPHEN
IF (XJ] +GT+0+) TT1=TT1/ZN(M+J)
IF(XJ.GT.O.) TT1=TT1/RN
T22=PQN (M+J) /RHON (M+J) /QN (M+J)
T33=TcIN+QQN(M.J)
T44=ON(M,J) +SION(M,J)/CSIN
T55=QN (M.J) + (CPHEN+XJ+SPHEN+XJ))
DVC=TT1#(T22+TSIN#(T33+T44+T55)) *BAV
VC=VC-DVC
T11=DFLR+TAN(STNN(M+J))/COS(PHFN(M+J))
IF (XJ1.GT.0.) T11=T11/ZN(M.J)
IF(XJ.GT.0.) Til=T11/RN
T1=T1+TAN(SID)
T1=T1+A93+T11+B93
RHOZ=RHD=RHDQ#T1
PZ=PD-PDQ*T1
HZ=HD=HDO#T1
PHIZ=PHID=PHIDO#T1
TZ=FT(PZ.PHIZ.HZ)
GAMZ=FGAM(TZ,PZ,PHIZ)
16=1
IF (M, EQ, I) 16=2
PI S(I6) = PI
PHEIS(16) = PHEI
RHOZS(16)=RHOZ
    S(16)=PZ
PΖ
GAMZS (16) = GAMZ
ODG S(16)=QDQ
QD
    S(16)=QD
SID S(I6)=SID
SIDQS(16)=SIDQ
```

```
T1
         5(16) = T1
         S(16)=VC
     VC
     HD
         S(16) = HD
     HDQ S(16)=HDQ
     PHIZS(16)=PHIZ
     TF(16.EQ.2) GO TO 1690
  35 M=1
     71=Z8
     PI=PR
     HI=HR
     OI=GR
     RHI=RHB
     PHII=PHIB
     GAMI=GAMB
     PHEISPHER
     SII=SIB
     PQI=PQB
     QQI=QQB
     HQI=HOB
     RHQI=RHQR
     SIQIESIOR
     PHEQISPHEQB
     PHIOI=PHIOB
     60 TO 13
1690 CONTINUE
     TTTET
     M=T-1
     NEI
     PN(M, J) = (A2+PA+B2+PB+(A1-B1)+DFLR+PHEA-PHEB)/(A2+B2)
  16 PN(N.J) =PN(M.J)
     PHEN(N+J) =PHEIS(2)+B1+DELR-B2+(PIS(2)-PN(N+J))
     PHEN(M+J)=PHEIS(1)+A1+DELR-A2+(PN(M+J)-PIS(1))
1600 RHON(M+J)=RHOZS(I6)+(PN(M+J)/PJS(I6))++(1./GAMZS(I6))
     T2=(0DQS(16)+QDS(16)+TAN(SIDS(16))+SIDQS(16))/COS(SIDS(16))
     VVZ=QDS(16)/COS(SIDS(16))-T2*TTS(16)
     VVC=VVZ+VVZ+2. +GAMZS(16)/(GAMZS(16)-1.)+(PZS(16)/RHOZS(16)
    1-PN(M.J)/RHON(M.J))
     QN(M+J)=SQRT(VVC=VCS(I6)+VCS(I4))
     SINN(M.J) =ATAN(VCS(I6)/QN(M.J))
     HN (M, J) =HDS (16) + (VVZ*VVZ=VVC) /> -HDQS (16) +Tis (16)
     PHIN(M+J)=PHIZS(16)
     IF ( (PHIN (M+J) .LT.0.) .AND. (PHIN (M+J) .GT.-.01) ) PHIN (M.J) =0.
     TN(M+J)=FT(PN(M+J)+PHIN(M+J)+HN(M+J))
     GAMN(M+J)=FGAM(TN(M+J)+PN(M+J).PHIN(M+J))
     AN(M.J) = SQRT (GAMN(M.J) +PN(M.J) /RHON(M.J))
     CALL XLAM (QN (M.J) . AN (M.J) . PHEN (M.J) . XPLAMN (M.J) . XMLAMN (M.J) )
     IF(I6.EQ.2) GO TO 1601
     16=2
     MEJ
     GO TO 1600
1601 CONTINUE
     M= 1 - 1
     16=1
     IF (J.EQ. 1) BETAN (K.J) =PHEN (M.J)
     IF (J.EQ.JMAX.AND.ISIM.EQ.1) BETAN(K.J)=PHEN(M.J)
```

```
TK=1
  26 TN(1.J) = Z(1.J) + (TAN(BETA(K.J)) + TAN(BETAN(K.J))) +DELR/2.
     ZN(I=1*J)=ZN(I*J)
     IF (J.NE.JMAX+1) GO TO 4392
     BDU=(BETAN(K.J)-RATC*BETAN(K.JMAX))/(1.-RATC)
     ADUMATAN (GX#SIN (BDU))
     ALPHAN(K.J) = ADU+RATC+(ALPHAN(K.JMAX) = ADU)
     GO TO 4483
4392 CONTINUE
     IF (J.NE.JINT.AND.J.NE.JINT+1) CALL PSOLV (J.TALP+I)
     ALPHAN (K.J) = ATAN (TALP + COS (BETAN (K.J)))
4483 CONTINUE
     RPHE BETAN (K, J) -PHEN (M, J)
     ERPETAN(SINN(M.J)) +SIN(ALPHAN(K.J))+COS(ALPHAN(K.J))+SIN(BPHE)
     IF(ARS(ERP).LT.1.E-10) GO TO 1602
     TK=IK-1
     IF (IK.GT.10)GO TO 100
     IF (IK.GT.2)GO TO 28
     E1=ERP
     BT1=BETAN(K,J)
     BETAN (K+J) =1.01+BETAN (K+J)+1.E-5
     GO TO 26
1680 WRITE (6.1681)
1681 FORMAT (* ERROR IN PRESSURE ITERATION IN CSURF*)
     CALL PNCH
 100 WRITE (6.202)
 202 FORMAT (* ERROR IN BETA ITERATION IN CSURF*)
     CALL PNCH
  28 DUMZ=RT1-E1+(BETAN(K+J)-BT1)/(ERP-E1)
     El=ERP
     BT1=BETAN(K,J)
     BETAN (K.J) =DUM2
     GO TO 26
1602 RETEST=PHEN(N,J) LASIN(TAN(SINN(N,J)) #TAN(ALPHAN(K,J)))
     ERS=RFTAN(K+J)-BFTEST
     IF (ABS (ERS) .LT. 1.E-10) GO TO 1403
     ITT=ITT+1
     IF (ITT - GT - 15) GO TO 1680
     IF (ITT - GT - 2) GO TO 22
     ER1=ERS
     PH1=PN(M.J)
        N(M+J)=1.2 #P
                        (L \cdot M) M
     GO TO 16
  22 DUM1=PH1-ER1+(P N(M.J)-PH1)/(FRS-ER1)
     FR1 = ERS
     PH1=P N(M+J)
        N(M+J)=DUM1
     60 TO 16
1603 IF(J.NE.JINT.AND.J.NE.JINT+1) ÄLPN(K.J):#ATAN(TALP)
     IF (J.EQ.JMAX+1) ALPN (K.J) =ATAN (TAN (ALPHAN (K.J))/COS (BETAN (K.J)))
1010 ZN(I+J)=Z(I+J)+(TAN(BETA(K+J))+TAN(BETAN(K+J)))+DELR/2.
     ZN(I-1+J)=ZN(I-J)
     FT=ABS(1.-BT/BETAN(K.J))
     IF(IVY.EQ.0.OR.ET.LT.1.E-05) Gn TO 10
     KILEKTL+1
     IF (KI L.GT.10)GO TO 1493
```

	A93=,5							
	BT=BETAN	25	- 1		-mindle entities -minimum etc - cc ++			
1493	WRITE 6, FORMAT (# STOP	1393) AVERAGI	NG PROCESS	DOES N	OT CONVERGE	IN ČSURF	· *)	
10	CONTINUE XJ1=XJ1S RETURN							
	END							
				endertain and a second of the second				
,		•						
-						· · · · · · · · · · · · · · · · · · ·		
			, 					
					Andrea of the second			

```
SUBROUTINE HSHOCK (K+JL+JM+IFLG)
     COMMON /FN/ FPN(40+10) +FMN(40+10)
     COMMON /AV/ AAV+BAV
     COMMON /ALLR1/ TN(40+10) + TN(40+10) + GAMN(40+10) + XPLAMN(40+10) +
    1 YMLAMN (40.10)
     COMMON /J/ QN(40+10) +PHEN(40+10) +SINN(40+10) +XPLAM(40+10) +
    1XMLAM(40.10).FP(40).FM(40).A(4ñ.10)
     COMMON /IVY/ IVY, KCORR, IAV
     COMMON /A/ X1.THMAX.TH(10).R
                                       +Z(40+10)+P(40+10)+PHF(40+10)+
    1 Q(40,10),SI(40,10),H(40,10),PHI(40,10),RHO(40,10),GAM(40,10)
     COMMON /B/ PN(40,10), PHIN(40,10), RHON(40,10), HN(40,10), ZN(40,10)
     COMMON /C/ IMAX(10) + JMAX + ISTART + KOUNTF + KOUNTP
     COMMON /E/ UWN(40) . VWN(40) . WWN(40) . XWN(40) . YWN(40) . THWN(40)
     COMMON /I/ XJ
     COMMON /K/ RN.DELR
     COMMON /L/ ALPHAN(7,10), ALPHA(7,10), BETAN(7,10), BETA(7,10)
     COMMON/M/ IS(7.10)
     COMMON/N/ SIQ(40+10)+PQ(40+10)+PHEQ(40+10)+HQ(40+10)+PHIQ(40+10)+
    100 (40,10) . RHOQ (40,10) . GAMQ (40, 10)
     COMMON /S/ RI.KOUNT.KOUNTS.ICOWLT
     COMMON /U/ ERZZZ
     ZVV NOMMOŠ
     COMMON /W/ ISIMEX, IDUMMY, JINT, TOUMMY (40), THWW (2), JD1, JD2
     COMMON /SA/ XJTS
   1 no lo Jeuleum
     IF (J.GT.JINT) XJ1=0.
     T=IS(K+J)
     IF (JM.NE.JMAX+j.OR.IFLG.EQ.1) GO TO 3985
     YTER
     CALL SWALL (R+Z(I+J)+XT+YT+GX+G7)
     ZDOT=Z(I+J)+TAN(BETA(K+J))+DELA/(COS(ATAN(GX)))++2
     YTERN
     CALL SWALL (RN.ZDOT.XT.YDU.GX.G7)
3995 CONTINUE
     IT1=1
     KIL=1
     A93=1.
     B93=0.
     IF (BAV.GT.0.) A93=.5
     IF(BAV.GT.0.) B93=.5
     TF (BAV.EQ.O. AND. JL. NE. JMAX+1) BETAN (K.J) =BFTA (K.J)
     BET=BETAN(K,J)
     IF (J.EQ.JMAX+1.AND.IFLG.EQ.1) BET=BETAN(K,JM)
     RTERET
   4 IT=1
     IF(J.NE.JMAX+1.OR.IFLG.EQ.O) GO TO 7999
     RATS=(TH(JM)-YDU)/(TH(JMAX)-YDU)
     RDU=(RET-RATS+RETAN(K.JMAX))/(T.=RATS)
     ADUMATAN (GX#SIN (BDU))
     ALPHAN (K.J) = ADU+RATS + (ALPHAN (K.JMAX) = ADU)
7999 CONTINUE
     CA=COS (ALPHAN (K+J))
     SAESIN (ALPHAN (K.J))
     VT=QN(I+J) *COS(BET-PHEN(I+J))
     VL=QN(I+J)*(CA+TAN(SINN(I+J))-SA+SIN(BET-PHEN(I+J)))
     U1=QN(I+J)*(SA+TAN(SINN(I+J))+CA+SIN(BET-PHFN(I+J)))
```

```
U1=A85(U1)
    XMS=RHON(I,J)+U1
    TN=FT(PN(I,J),PHIN(I,J),HN(I,J))
    GN=FGAM(TN+PN(I+J)+PHIN(I+J))
    GP1=(GN+1.)
    GM1=GN-1.
    XM1=U_1^*U_1/GN/PN(I_*J)*RHON(I_*J)
    U2=U1+(GM1+XM1+2.)/GP1/XM1
  5 RH2P=XMS/U2
    P2H=XMS*(U1=U2)*PN(I*J)
    V2=VT+#2+VL##2
    V1=V2+U1##2
    V2=V2+U2+#2
    H2=HN(I,J)+(V1-V2)/2.
    RH2=RHEQ(H2+P2H+PHIN(I+J))
    FR=(RH2=RH2P)/RH0 (I,J)
    IF (ARS (ER) .LT. ] .E-4) GO TO 7
    IT=IT+1
    IF (IT.GT.10)GO TO 100
    1F(1T, GT, 2) GO TO 6
    ER2=ER
    NSS=NS
    112= - 99 + 112
    GO TO 5
100 WRITE (6,200)
200 FORMAT (* ERROR IN HUGONIOT LOOP IN HSHOCK*)
    CALL PNCH
  6 DUM=U22-ER2+(U2-U22)/(ER-ER2)
    FR2=ER
    1125=05
    112=DUM
    GO TO 5
  7 CONTINUE
    CB=COS(BET)
    SB=SIN(BET)
    IF ((K/2) #2.EQ.K) U2=-U2
    ON2P==U2+CA+VL+SA
    IIV=VT+CB-QN2P+SB
    VV=VL+CA+U2+SA
    WV=VT#SB+QN2P#CB
    PHE2=ATAN(WV/UV)
    @2=SQRT (UV#UV+WV#WV)
    VZ=VV
    SI2=ATAN(V2/Q2)
    [=1
    IF ((K/2) +2 • NE • K) L==1
    M=IS(K+J)+L
    IF(
                        IFLG.EQ.1) GO TO 46
    N=M+L
    ZA=(Z(M,J)+Z(N,J))/2.
40 RAT=(ZA-Z(M,J))/(Z(N,J)-Z(M,J))
    ALAM=XPLAM(M.J) +RAT+(XPLAM(N.J)-XPLAM(M.J))
    DUMP=A93+ALAM+B93+XPLAMN(M,J)
    SLAMEDUMP
    PLAM=XMLAM(M.J) +RAT+(XMLAM(N.J)-XMLAM(M.J))
```

```
DUM1 = A93 #BLAM+B93 #XMLAMN (M, J)
    IF (K.FO.2) DUMP=DUM1
    ZAT=ZN(M.J)-DUMP#DELR
    EPHABS ((ZATHZA)/(Z(N+J)+Z(M+J)))
    IF (EP.LT. ERZZZ) GO TO 9
    ZA=ZAT
    IK=IK+1
    IF (IK, LE, 10) GO TO 40
    WRITE (6 . 101)
101 FORMAT (* ERROR IN A POINT LOOP IN HSHOCK*)
    CALL PNCH
  9 PA=P(M+J)+RAT+(P(N+J)-P(M+J))
    ((L+M)D-(L+M)D+TAS+(L+M)D=AO
    ((LeM)H=(LeN)H+TAS+(LeM)H=AH
    RHAMRHO(M,J)+RATA(RHO(N,J)=RHO(M,J))
    SIA=SI(M,J)+RAT#(SI(N,J)-SI(M,J))
    PHEASPHE (M.J) +DAT* (PHE (N.J) -PHE (M.J))
    PHIA=PHI(M+J)+RAT+(PHI(N+J)-PHI(M+J))
    TAMET (PA.PHIA.HA)
    GAMA = FGAM (TA, PA, PHIA)
    AA=SQRT (GAMA#PA/RHA)
    IF(J.NE.JMAX+1) GO TO 783
    SI Q(M,J=SI Q(M,J=1)
    P Q(M+J)=P Q(M+J-1)
    PHFQ(M+J)=PHEQ(M+J+1)
    SI Q(N+J)=SI Q(N+J-1)
       Q = (L \cdot N) Q
                 Q(N.J=1)
    PHEQ(N*J) = PHEQ(N*J-1)
783 CONTINUE
    CALL F (RHO(M+J)+Q(M+J)+R+Z(M+J)+PHE(M+J)+XPLAM(M+J)+XMLAM(M+J)+SI
   1 (M, J).
   1A (M, J) , SIQ (M, J) , PQ (M, J) , PHEQ (M, J) , FP1, FM1)
    CALL F (RHO(N+1)+Q(N+J)+R+Z(N+J)+PHE(N+J)+XPLAM(N+J)+XMLAM(N+J)+SI
   1 (N.J).
   1A(N, J), SIQ(N, J), PQ(N, J), PHEQ(N, J), FP2, FM2)
    FPA=FD1
                              -FP1)
                +RAT+(FP2
    FMA=FM1
                +RAT# (FM2
                              -FM1)
    ROZERN (M.J) +RHON (M.J)
    A1=FPA/RHA/QA/QA+AAV+FPN(M.J)+AAV/RQ2
    IF((K/2)+2.EQ.K) Al=FMA/RHA/QA/QA+AAV+FMN(M.J)+BAV/RQZ
    AZ=SORT ((QA/AA) ++2-1.)/RHA/QA/QA
    AC=B9: #SQRT ((QN(M.J)/AN(M.J)) #42=1.)/RQ2
    A2=A93#A2+
                   ΔC
    DELRERN-R
    OPT=-1.
    IF ((K/2) #2.EQ.K) OPT=1.
    PSH=PA+ OPT+ (PHE2-PHEA -A1+DFLD) /A2
    FR3=(PSH-P2H)/p(M.J)
    IF (ABS(ER3).LT.1.E-4)GO TO 19
    ITI=ITI+1
    IF(IT1.GT.15)Gn TO 103
    IF (IT1 • GT • 2) GO TO 14
    ER1=ER3
    BET1=RET
    RET=1_01+BET
    60 To 15
```

```
103 WRITE (6,220)
 220 FORMAT ( # ERROR IN SHOCK ANGLE IN HSHOCK #)
     CALL PNCH
  14 DUM=BET1-ER1+(BET-BET1)/(ER3-ED1)
     FR1=FR3
     RETIERET
     RET=DUM
  15 7N(M+J)=Z(M+J)++5+(TAN(BETA(K+,1))+TAN(BET)) +DELR
     15=15(K,J)
     ZN(I5.J) = ZN(M.J)
     CALL FSHOCK (K,J,J)
     60 TO 4
  19 RETAN(K.J) =BET
     ZN(M.J)=.5*(TAN(BETA(K.J))+TAN(BETAN(K.J)))+DELR+Z(M.J)
     15=15(K.J)
     ZN(I5.J) = ZN(M.J)
     GO TO 29
  46 CONTINUE
     UWN (M) =UV
     WWN (M) =WV
     VWN(M)=VV
  29 CONTINUE
     HSq=(L,M) NQ
     QN(M.J)=Q2
     SH=(L+M)NH
     PHEN (M. J) = PHE2
     PHON (M.J) =RH2
     SINN(M)J)=SI2
     (L.I)NIH9=(L.M)NIH9
     TN(M,J)=FT(PN(M,J),PHIN(M,J),HN(M,J))
     GAMN(M+J)=FGAM(TN(M+J)+PN(M+j)+PHIN(M+J))
     AN(M.J)=SQRT(GAMN(M.J) +PN(M.J)/RHON(M.J))
     CALL XLAM (ON (M.J) .AN (M.J) .PHEN (M.J) .XPLAMN (M.J) .XMLAMN (M.J) )
     ET=ABS(1.-BT/BFTAN(K.J))
     IF (IVY.EQ. 0. OR. ET. LT. 1. E-05) GO TO 10
     KIL=KIL+1
     IF (KI L.GT.5) GO TO 1493
     A93=.5
     B93=.5
     RT#BETAN(K+J)
     GO TO 4
1493 WRITE (6, 1393)
1393 FORMAT (* AVERAGING PROCESS DOES NOT CONVERGE IN HSHOCK*)
     STOP
  10 CONTINUE
     XJ1=XJ1S
     RETURN
     END
```

```
SUBROUTINE PNCH
      COMMON /IVY/ IVY, KCORR, IAV
      COMMON /JF/ JFTNAL
      COMMON /G/ A1 (3+9) +A2 (3+9) +A3 (3+9) +RFT (3) +RF2 (3) +RR3 (3)
     1.NUMLWS.NUMUWS.NUMSWS
     COMMON / Q/ XCOWI
     COMMON /XF/ XFIN
      COMMON /A/ X1+THMAX+TH(10)+R
                                      •Z(40,10) •P(40•10) •PHF(40,10) •
     1 Q(40,10),SI(40,10),H(40,10),PMI(40,10),RHO(40,10),GAM(40,10)
     COMMON /SCLTM/ ZLIFTC+XTHRC+YMOMC, ZLIFTS+XTHRS+YMOMS
      COMMON /C/ IMAX(10) JMAX, ISTART, KOUNTF , KOUNTP
     COMMON /D/ UW (40) . VW (40) . WW (40) . XW (40) . YW (40) . THW (40)
     COMMON /H/ ISIM
      COMMON /I/ XJ
      COMMON /J/ QN(40+10)+PHEN(40+10)+SINN(40+10)+XPLAM(40+10)+
    1xMLAM(40,10),FP(40),FM(40),A(40,10)
     COMMON /L/ ALPHAN(7,10) + ALPHA(7,10) + BFTAN(7,10) + BETA(7,10)
     COMMON/M/ IS(7.10)
     COMMON/N/ SIG(40,10),PG(40,10),PHEG(40,10),HG(40,10),PHIG(40,10),
    100(40,10),RH0Q(40,10),GAMQ(40,10)
     COMMON /O/ ALP(7,10) + ALPN(7,10)
     COMMON /R/ J.XCN, XC, XXI, JW, INT, ICOWL, RCOWL
     COMMON /S/ RI, KOUNT, KOUNTS, ICOWIT
     COMMON /V/ XJ1
     COMMON /W/ ISIMEX, IDUMMY, JINT, FDUMMY (40), THWW (2), JD1, JD2
     COMMON/EX/ KTPUN(3)
     COMMON /THR/ PINF.ZLIFT.XTHR.YMOM.JJI.ZSHIFT.XSHIFT
     COMMON /IQ/ NUMEXP.ZSAV
     COMMON /SPE/ KOUNTO
     COMMON /WR/ IWRAP
     COMMON /TEM/ T(40,10)
     COMMON /STREAM/ XMAST, XENT, FSX, FSZ
     COMMON/XSTP/XSTP
     DIMENSION HE (10)
     DATA HE/5H Y +5HTHETA+5H 7 .3H = .1HZ+1HP+1HY+3HTHW+3H Y +
    13H Z /
     BACKSPACE 7
  73 CONTINUE
     IF (XJ.EQ.0.) GO TO 513
     WRITE (6.70) KOUNT.X1
  70 FORMAT(1H1+10X, *KOUNT = ++14.18X, +R = ++E13.5//)
     60 To 503
 513 WRITE (6,504) KOUNT, X1
 504 FORMAT (1H1+10X++KOUNT = ++14+10X++X = ++E13.5//)
 503 CONTINUE
     ISWEEP=0
     TSTART=1
     WRITE (7.2929) KOUNTF. KOUNTP. ISTART. IVY. IAV. KCORR, JFINAL.
    1 (KTPUN(I), I=1,3) . XSTP
2929 FORMAT (1015, E10.2)
     WRITE(7+2) JMAX+ISIM+ISIMEX+IWDAP+NUMFXP+ISWEEP+(IMAX(J)+J=1+JMAX)
     WRITE(7,310) R,XJ,XJ1,XCOWL+RCOWL+XFIN+ZSAV,PINF
 310 FORMAT (BE10.3)
     WRITE (7,79) KOUNT,R
     WRITE (7,2) NUMLWS
     DO 311 I=1, NUMLWS
```

```
311 WRITE(7,310) RR1(1) + (A1(1,J),J=1,9)
     WRITE (7.2) NUMUWS
     DO 312 I=1 NUMUWS
 312 WRITE(7,310) RR2(I),(A2(I,J),J=1,9)
     IF (ISTM.EQ.1) GO TO 314
     WRITE (7,2) NUMSWS
     DO 313 I=1.NUMSWS
 313 WRITE(7,310) RR3(1), (A3(1,J),J=1,9)
 314 CONTINUE
     WRITE (7.2) JINT . KOUNTO
     WRITE (6,610) ZSHIFT, XSHIFT, XTHP, ZLIFT, YMOM
 610 FORMAT(10X)#Z MOMENT AXIS = #+F11.3,5x+#X MOMENT AXIS = #+F11.3/
                            10X, #THRUST = #, F11.3,5x, #LIFT = #, E11.3,5x
    1. *PITCHING MOMENT = *,E11.3)
     IF (IS(3).NE.O.AND.ISIM.EQ.O) WPITE (6.621) XTHRC.ZLIFTC.YMOMC
 621 FORMAT(# CONTACT #
                               , #THRUST = #, Ell. 3, 5x, #LIFT = #, Ell. 3, 5x
    1. *PITCHING MOMENT = *,E11.3)
     IF(IS(1).NE.O.AND.ISIM.EQ.O) WRITE(6.622) XTHRS.ZLIFTS.YMOMS
 622 FORMAT(#
                 SHOCK #
                              1. *PITCHING MOMENT = *.E11.3)
     WRITE (6,623)
 623 FORMAT(/)
     WRITE (7.9) XMAST. XENT, FSX. FSZ
   9 FORMAT (4F13.5)
     WRITE(7.1) ZLIFT. XTHR. YMOM. 7SHTFT. XSHTFT
     00 71 J=1.JW
     IF(ISTM.EQ.O.AND.J.EQ.JW) GO TO 500
     IF (J. GT. JINT ) GO TO 2260
     IF (XJ. NE. 0 . . OR . XJ1 . NE . 0 . ) GO TO 505
     WRITE (6.506) J. HE (1) . HE (4) . TH (1) . HE (5)
 506 FORMAT(//10x,+) = +,12,24x,45,43
                                             ,E13,5,/4X,+I+,6x,A1 ,10X,
    14P4+10X+4Q4+ 9X+4PHE++ 8X+4SI4+10X+4M4+10X+4H4+ 9X+4PHI4
    1.8X, #RHO#.8X, #GAM#, 9X, #T#)
     GO TO 510
 505 IF (XJ1 . EQ. 0.) GO TO 507
     WRITE (6,506) J.HE (2), HE (4), TH (1), HE (6)
     GO TO 510
 507 CONTINUE
     WRITE (6.506) J. HE (2) . HE (4) . TH (1) . HE (5)
     GO TO 510
     Z15=ZSAV-TH(J)
     WRITE (6,506) J. HE (3) . HE (4) . Z15. HE (7)
 510 CONTINUE
     WRITE(7.1) TH(J)
     GO TO 501
     CONTINUE
     TF (J.LT.JINT) GO TO 2270
     WRITE(6,2300) JW, HE(10), HE(7)
2300 FORMAT(/// 40x+#SIDEWALL#/ 10x+#J = #, 12/11x+#x#,9x,43
    1 + 9X + #U# + 1 0 X + #W# + 1 0 X + #V#/
    14X,474,6X,Al ,10X,
    14P4+10X+4Q4+ 9X+4PHE++ 8X+4SI++10X+4M4+10X+4H4+ 9X+4PHI+
    1 . 8 X . 4 RHO 4 . 8 X . 4 GAM 4 . 9 X . 4 T #)
     GO TO 6885
2270 CONTINUE
     IF (XJ1 . EQ. 1.) GO TO 6884
```

```
WRITE(6,2300) JW, HE(9 ), HE(5)
     GO TO 6885
6884 WRITE (6,2300) JW, HE(8), HE(6)
6885 CONTINUE
     WRITE (7.2) IMAX (J)
 501 CONTINUE
     (U)XAMI_LXAMI
     IF (ICOWLT.EQ.1) IMAXJ=IMAXJ+1
     DO 172 I=1.IMAXJ
            =SQRT (GAM (I, J) +P (I, J) /RHA(I, J))
     FM=Q([,J)/COS(SI([,J))/8
     IF(ISIM.EQ.1.OR.J.NE.JW) GO TO 502
     EM=SORT (UW(I) ++2+VW(I) ++2+WW(T) ++2)/R
     LX*(I)WHT=XWHT
     XW(I)=R+COS(THWX)
     YW(I)=R#SIN(THWX)+(1.-XJ)#THW(T)
     715=YW(I)
     IF (J.GT.JINT) 715=ZSAV=THW(T)
     WRITE(6,302) XW(I),Z15 .UW(I).WW(I),VW(I)
 302 FORMAT (5x,5E11.3)
     WRITE (7,1)
                              UW(I), WW(I), VW(I), THW(I)
 502 CONTINUE
     715=7(I.J)
     WRITE (6,79) I,715 .P(I,J),0(T,J),PHF(I,J),SI(I,J),EM+H(I,J),
    1PHI(I,J),RHO(I,J),GAM(I,J),T(I,J)
     WRITE(7.3010) Z(I.J).P(I.J).Q(I.J).PHF(I.J).SI(I.J).EM.H(I.J).
    1PHI(I.J), RHO(I.J), GAM(I.J), T(I.J)
3010 FORMAT (7E11.3)
 172 CONTINUE
     IF (ICOWLT.EQ.O) GO TO 71
     WRITE(7.1) (ALP
                        (M+J)+M=1+7)
     WRITE(7,1) (ALPHA(M.J), M=1,7)
     WRITE(7,1) (BETA (M,J),M=1,7)
     WRITF (7,2) (IS
                       (M \bullet J) \bullet M = 1 \bullet 7
     IF(IS(3).NE.O.AND.ISIM.EQ.O) WRITE(7.1) ZLIFTC.XTHRC. YMOMC
     IF (IS(1) . NE . O . AND . ISIM . EQ . O) WPITE (7 . 1) ZLIFTS . XTHRS . YMOMS
   1 FORMAT (7F11.3)
   2 FORMAT(1615)
  79 FORMAT(15,11E11.3)
  71 CONTINUE
     IF (ICOWLT.EQ.O) GO TO 100
     WRITE (6,4005)
     no 4006 J=1.JW
     WRITE (6,79) J, (ALP (M,J) ,M=1,7)
4006 CONTINUE
4005 FORMAT(//10X++ALP+/4X++J+)
     WRITE (6,4000)
     DO 3003 J=1.JW
     WRITE (6.79) J. (ALPHA (M.J) , M=1.7)
3003 CONTINUE
     WRITE (6.4001)
     DO 3008 J=1+JW
WRITE(6,79) J+(BETA (M+J)+M=1+7)
3008 CONTINUE
     WRITE (6+4002)
     DO 3009 J=1.JW
```

	MOTTERS ADDAY A ARCHA IN MAR TO
3000	WRITE (6,4004) J. (IS (M.J), M=1.7) CONTINUE
3007	IF (IWRAP.EQ.1) GO TO 1532
	WRITE(7.2) IDUMMY
	WRITE(7.1) (ZDUMMY(I), I=1, NUMEYP)
1522	CONTINUE
	FORMAT(//10X++ALPHA+/4X++J+)
	FORMAT (//10X, *AETA */4X, *J#)
4002	FORMAT(//10x, +IS +/4x, +J+)
	FORMAT(15.7(14.7X))
100	CONTINUE IF (KOUNT.NE.KOUNTF) GO TO 7744
7766	IF (ICOWLT.EQ.1.AND.IWRAP.EQ.0) CALL WRAP(1)
1147	ENDFILE 7
	IF (KOUNT.EQ.KTPUN(1).OR.KOUNT.FQ.KTPUN(2).OR.KOUNT.EQ.KTPUN(3))
	1 RETURN
	CALL EXIT
	END
	· · · · · · · · · · · · · · · · · · ·
	· .
	<u> </u>
	·

```
SUBROUTINE FSHOCK (K.JL.JM)
     COMMON /C/ IMAX(10) .JMAX, ISTART. KOUNTF . KOUNTP
     COMMON /FN/ FPN(40,10),FMN(40,10)
     COMMON /ALLR2/ PQN(40,10) . HQN(40,10) . QQN(40,10) . SIQN(40,10) .
    1PHEQN (40 - 10) - PHIQN (40 - 10) - PHOQN (40 - 10) - GAMON (40 - 10)
     COMMON /AV/ AAV+RAV
     COMMON /ALLR1/ %N(40+10)+TN(40+10)+GAMN(40+10)+XPLAMN(40+10)+
    1 XMLAMN (40.10)
     COMMON /IVY/ IVY.KCORR, IAV
     COMMON /A/ X1+THMAX+TH(10)+R
                                        *Z(40,10)*P(40,10)*PHF(40,10)*
    1 Q(40,10), SI(40,10), H(40,10), PHY(40,10), RHO(40,10), GAM(40,10)
     COMMON /B/ PN(40+10) +PHIN(40+10) +RHON(40+10) +HN(40+10) +ZN(40+10)
     COMMON /T/ XJ
     COMMON /J/ QN(40.10) . PHEN(40.10) . SINN(40.10) . XPLAM(40.10) .
    1XMLAM(40.10),FP(40),FM(40).A(4ñ.10)
     COMMON /K/ RN+DELR
     COMMONIMI IS (7.10)
     COMMON/N/ SIG(40.10).PG(40,10).PHEQ(40,10).HQ(40,10).PHIQ(40,10).
    100 (40 + 10) + RHOQ (40 + 10) + GAMQ (40 + 10)
     COMMON /U/ ERZZZ
     COMMON /V/ XJ1
     COMMON /W/ ISIMEX, IDUMMY, JINT . 7DUMMY (40) , THWW (2) , JD1 + JD2
     COMMON /SA/ XJTS
     DO 6 J=JL.•JM
     KIL=1
     A93=1.
     B93=0.
     IF (BAV.GT.0.) A93=.5
     IF (BAV.GT.0.) 893=.5
     I=IS(K+J)
     SIT=SINN(I.J)
     PHET=PHFN(I.J)
     PT=PN(I.J)
     IF(J.gT.JINT) XJ1=0.
     l = I + 1
     IF((K/2)#2.EQ.K) L=I-1
     73=ZN(I,J)
     IF (J.NE. JMAX+1) GO TO 3947
        (XAML.I)O 9=(ML.I)O
        H=(MLet)D
                    Q(I,JMAX)
     (XAML.I)O D=(ML.I)O O
     SI Q(I+JM)=SI Q(I+JMAX)
     PHEG(I+JM)=PHEG(I+JMAX)
     (XAML.I) OIHG=(ML.I) OIHG
     (XAML,I) OOHS=(ML,I) OOHS
     GAMQ(T+JM)=GAMQ(I.JMAX)
        Q ( | + JM) =P
                    O(L.JMAX)
        H = (MC ( ]) Ø
                    (L.JMAX)
        (XAML_{\bullet}J)Q Q=(ML_{\bullet}J)Q
     (XAML.) D IS=(ML.) D IS
     PHEQ (L +JM) =PHEQ (L +JMAX)
     PHIQ(L+JM)=PHIQ(L.JMAX)
     RHOQ([ +JM) =RHOQ([ +JMAX)
     (XAMQ(L,JM)=GAMQ(L,JMAX)
3947 CONTINUE
   8 7A= (Z(I,J)+Z(L,J))/2.
```

```
TT=1
 10 RAT=(7A-Z(I+J))/(Z(L+J)-Z(I+J))
    ALAM=xPLAM(T+J)+RAT+(XPLAM(L+J)-XPLAM(I+J))
    DUMP=A93#ALAM+B93#XPLAMN(I.J)
    ZAT=Z3-DUMP*DELR
    ERREABS((ZAT-ZA)/(Z(L,J)-Z(I,J)))
    IF (EPR.LT. ERZZZ) GO TO 9
    7A=ZAT
    IT=IT+1
    IF(IT_LE,10)GO TO 10
    WRITE (6,200)
200 FORMAT (* ERROR IN A POINT ITERATION IN FSHOCK*)
    CALL PNCH
  9 CONTINUE
    PA=P(1+J)+RAT+(P(L+J)-P(1+J))
    QA=Q(I+J)+RAT+(Q(L+J)-Q(I+J))
    HA=H(T,J)+RAT+(H(L,J)-H(T,J))
    RHA=RHO(I,J)+RAT+(RHO(L,J)-RHO(T,J))
    SIA=SI(I,J)+RAT+(SI(L,J)-SI(I,J))
    PHIAmpHI(I.J)+PATA(PHI(L.J)-PHT(I.J))
    PHEA=PHE(I+J)+RAT+(PHE(L+J)=PHE(I+J))
    TA=FT(PA,PHIA,HA)
    GAMA=FGAM(TA,PA,PHIA)
    AA=SORT (GAMA+PA/RHA)
    CALL F (RHO(I+J)+Q(I+J)+R+Z(I+J)+PHE(T+J)+XPLAM(I+J)+XMLAM(I+J)+SI
   1(I+J).
   1A(I,J), SIQ(I,J), PQ(I,J), PHEQ(I,J), FP1, FM1)
    CALL F (RHO(L+J)+Q(L+J)+R+Z(L+J)+PHE(L+J)+XPLAM(L+J)+XMLAM(L+J)+SI
   1 (L.J).
   1A(L+J)+SIQ(L+J)+PQ(L+J)+PHEQ(L.J)+FP2+FM2)
    RQ2=QN(I,J)#QN(I,J)#RHON(I,J)
    FMA=FD1+RAT+(FP2=FP1)
    Q2=QA+QA
    A1=FMA/RHA/Q2
    Al=AAV#AI+BAV#FPN(I+J)/RQ2
    AC=B93*SQRT((QN(I,J)/AN(I,J))*#2=1.)/RQ2
    A2=SQRT((QA/AA) ++2-1.)/RHA/Q2
    A2=A93*A2+AC
    TT=1
    ZB=(Z(I+J)+Z(L+J))/2.
 12 RAT= (ZB-Z(I+J))/(Z(L+J)-Z(I+J))
    BLAM=xMLAM(I,J)+RAT+(xMLAM(L,J)=xMLAM(I,J))
    DUMP=A93+BLAM+B93+XMLAMN(I.J)
    ZATEZ3-DUMP#DELR
    ERR = ABS ( (ZAT - ZR) / (Z(L, J) - Z(I, J)))
    TF (ERR+LT+ERZZZ)GO TO 14
    ZB=ZAT
    T=1T+1
    IF(IT.LE.10)GO TO 12
    WRITE (6.201)
201 FORMAT (* ERROR IN B POINT ITERATION IN FSHOCK*)
    CALL PNCH
 14 PB=P(1,J)+RAT*(P(L,J)-P(1,J))
    OB=O(I+J)+RAT+(O(L+J)-O(I+J))
    HB=H(T+J)+RAT+(H(L+J)-H(T+J))
    RHR=RHO(I,J)+RAT+(RHO(L,J)=RHO(T,J))
```

```
SIR=SI(I,J)+RAT+(SI(L,J)=SI(I,i))
    PHIR=PHI(I,J)+PAT*(PHI(L,J)+PH1(I,J))
    PHEB=PHE(I+J)+RAT+(PHE(L+J)-PHF(I+J))
    TREFT (PROPHIROHR)
    GAMB=FGAM (TB.PR.PHIB)
    AB=SORT (GAMB#PB/RHB)
    FMB=FM1+RAT+(FM2=FM1)
    02=08+0B
    B1 =FMB/RHB/Q2
    B1=AAV#B1+BAV#FMN(I+J)/RQ2
    R2=50RT((QB/AB) ++2-1.)/RHB/Q2
    B2=A93#B2+AC
    TT=1
    ZD=(ZA+ZB)/2.
 16 RAT=(7D-7A)/(ZP-7A)
    ALAMD=TAN(PHEA) +RAT#(TAN(PHEB) _TAN(PHEA))
    DUMP=A93*ALAMD+B93*TAN(PHEN(J, J))
    ZAT=Z3-DUMP #DFLR
    ERR=ABS((ZAT-ZD)/(ZB-ZA))
    IF (ERR.LT.ERZZZ) GO TO 18
    7D=ZAT
    TT=IT+1
    IF(IT.LE.10)GO TO 16
    WRITE (6,202)
202 FORMAT (* ERROR IN D POINT ITERATION IN FSHOCK#)
    CALL PNCH
 18 PD=PA+RAT#(PB=PA)
    OD=QA+RAT+(QB-OA)
    HD=HA+RAT+ (HB-HA)
    PHD=RHA+RAT+(RHB-RHA)
    SID=SIA+RAT+(SIB=SIA)
    PHID=PHIA+RAT+(PHIB-PHIA)
    PHED=PHEA+RAT+(PHEB-PHEA)
    TD=FT(PD.PHID.HD)
    GAMDEFGAM (TD.PD.PHID)
    AD=SORT (GAMD*PD/RHD)
    PAT=(7D-Z(I+J))/(Z(L+J)-Z(I+J))
    PDQ=PQ(I+J)+RAT+(PQ(L+J)-PQ(I+J))
    QDQ=QQ(I+J)+RAT*(QQ(L+J)-QQ(I+J))
    HDQ=H0(I+J)+RAT+(HQ(L+J)-HQ(I+J))
    RHDQ=RHOQ(I,J)+RAT*(RHOQ(L,J)-RHOQ(I,J))
    SIDQ=SIQ(I+J)+PAT+(SIQ(L+J)-SIQ(I+J))
    PHIDO=PHIQ(I.J) +RAT*(PHIQ(L.J) =PHIQ(I.J))
    PHEDO=PHEQ(I.J) +RAT# (PHEQ(L.J) -PHEQ(I.J))
    GAMDQ=GAMQ(I.J)+RAT+(GAMQ(L.J)-GAMQ(I.J))
    PN(I, J) = (A2*PA+B2*PB+(A1-B1)*DELR+PHE4-PHEB)/(A2+B2)
    PHEN(I.J) = PHEA_A2+ (PN(I.J) -PA) +A1+DELP
    VD=QD+TAN(SID)
    T1=DELR/COS (PHED)
    IF (XJ1 .EQ. 1 .) T1=T1/ZD
    IF (XJ.EQ.1.) T1=T1/R
    T2=PDQ/RHD/QD
    T3=TAN (SID) #QDO
    T4=QD#SIDQ/COS(SID)##2
    T5=QD+COS (PHED) +XJ
   1+QD#SIN(PHED) #XJ1
```

```
VC=VD-T1+(T2+TAN(SID)+(T3+T4+TE))+AAV
     SPHEN=SIN(PHEN(I,J))
     TSINETAN(SINN(T+J))
     CSIN=COS(SINN(I.J))
     CPHEN=COS (PHEN(I,J))
     TT1=DFLR/CPHEN
     IF(XJ1.GT.O.) TT1=TT1/ZN(I.J)
     IF(XJ.GT.O.) TT1=TT1/RN
     (L.I) NO\(L.I) NOUNS\(L.I) NOQ=SST
     T33=TSIN#QQN(I.J)
     T44=QN(I,J)#SION(I,J)/CSIN
     T55=QN(I+J)+(CPHEN+XJ+SPHEN+XJ))
     DVC=TT1+(T22+TSIN+(T33+T44+T55))+BAV
     VC=VC-DVC
     T11=DELR#TAN(STT)/COS(PHET)
     IF(XJ1.GT.0.) T11=T11/ZN(I.J)
IF(XJ.GT.0.) T11=T11/RN
     T1=T1+TAN(SID)
     T1=T1#A93+T11#893
     RHOZ=RHD-RHDQ#T1
     PZ=PD-PDQ+T1
     GAMZ=GAMD-GAMDO#T1
     RHON (19J) = RHOZ+ (PN(19J) /PZ) ++ (7./GAMZ)
     T2=(QDQ+QD*TAN(SID)*SIDQ)/COS(SID)
     VVZ=QD/COS(SID) -T2+T1
     VVC=VVZ*VVZ+2.*GAMZ/(GAMZ-1.)*(PZ/RHOZ-PN(I.J)/RHON(I.J))
     DN(I+J)=SQRT(VVC-VC+VC)
     SINN(I.J) = ATAN(VC/QN(I.J))
     HN(I+J)=HD-HDQ+T1+(VVZ+VVZ-VVC)/2.
     PHIN(I.J)=PHID=PHIDQ#T1
     EC=ABS(1.-PT/PN(1.J))
     TN(I,J) =FT(PN(I,J),PHIN(I,J),+N(I,J))
     GAMN(I+J)=FGAM(TN(I+J)+PN(I+J).PHIN(I+J))
     AN(I+J) =SQRT(GAMN(I+J) *PN(I+J) /RHON(I+J))
     CALL XLAM (QN(I,J),AN(I,J),PHEN(I,J),XPLAMN(T,J),XMLAMN(I,J))
     IF (EC.LT.1.E-04.OR.IVY.EQ.O) GO TO 6
     SIT=SINN(I,J)
     PHET=PHEN(I,J)
     PT=PN(I,J)
     KIL=KTL+1
     IF (KI L.GT.5) GO TO 1493
     A93=.5
     B93=.5
     60 TO 8
1493 WRITE (6 . 1393)
1393 FORMAT (* AVERAGING PROCESS DOES NOT CONVERGE IN FSHOCK*)
     STOP
   6 CONTINUE
     XJ1=XJ1S
     RETURN
     END
```

```
SUBROUTINE WSHK (M.B)
   COMMON /A/XX1.THMAX.TH(10).R .Z(40.10).P(40.10).PHF(40.10).
  1 Q(40,10) +SI(40,10) +H(40,10) +Put(40,10) +RHO(40,10) +GAM(40,10)
   COMMON /B/ PN(40+10) +PHIN(40+10) +RHON(40+10) +HN(40+10) +ZN(40+10)
   COMMON /C/ IMAX(10) , JMAX, ISTART, KOUNTF , KOUNTP
   COMMON /D/ UW (40) . VW (40) . WW (40) . XW (40) . YW (40) . THW (40)
   COMMON /E/ UWN(40) . VWN(40) . WWN(40) . XWN(40) . YWN(40) . THWN(40)
   COMMON /I/ XJ
   COMMON /K/ RN.DELR
   COMMON /L/ ALPHAN(7,10), ALPHA(7,10), BETA(7,10), COMMON/M/ IS(7,10)
   COMMON /O/ ALP(7.10) . ALPN(7.10)
   COMMON /V/ XJ1
   COMMON /W/ ISIMEX.IDUMMY.JINT.7DUMMY(40).THWW(2),JD1.JD2
   COMMON /SA/ XJTS
   JW=JMAX+1
   IF (JW GT JINT) XJ1=0.
   (WL+M) ZI=T
   K=IS(M+JMAX)
   | == l
   IF((M/2) #2.EQ.M) L=1
   73=ZN(K.JMAX)
   71=7(T+JW)
   LX4(I)WHT=XWHT
   Y1=YW(I)
   X1=XW(I)
   LX# (XAMU) HT=XHT
   Ÿ3=RN#SIN(THX)+TH(JMAX)#(1.-XJ)
   X3=RN+COS(THX)
   X2=X3
   FX1=TAN(BETA(M.JW))
   FY1=TAN(ALP(M.JW))
   FX2=TAN(BETAN(M.JW))
   FY22=TAN(ALPHAN(M.JW))/COS(BETAN(M.JW))
   DR=RN-R
11 ZS=ZN(I.JW)
   TT=1
10 IF (XJ] .EQ. 0.)
  1CALL SWALL (RN. 72. X2. Y2. GX2. GZ2)
   IF (XJ) • GT • 0 • ) CALL SWALL1 (TH2 • PN • Z2 • GX2 • GZ2)
   IF (XJ1.E0.0.)
  1TH2=ATAN(Y2/X2)
   IF(XJ.EQ.0.) TH2=Y2
   TH2X=TH2+XJ
   IF (XJ1 • GT • 0 • ) Y2=RN+SIN(TH2X) + TH2+(1 • - XJ)
   FY2#FX2#GX2-G72
   72=ZN(I.JW)+(F-22+FY2)+(Y2-Y1)/2.
   TT=IT+1
   IF (IT.GT.2) GO TO 22
   GO TO 10
22 CONTINUE
   iF(IT.GT.3) GO TO 25
   RAT= (Y1-Y2)/(Y3-Y2)
   RDU=(BETAN(M.JW)-RAT+BETAN(M.JMAX))/(T.-RAT)
   FX2=TAN(ADU)
   60 TO 10
```

25	FR2=Fx2	
	IF (ABS(FY2).LT.1.E-06) FY2=0.	
14	ALP2=FY2 THWN(I)=TH2	
1.4	ZN(I,JW)=Z2	
	7N(I+L+JW)=Z2	
	XMN(1)=X5	
	ŤHWN (Í+L)=TH2	
	XWN(I+L)=X2	
	YWN(I+L)=Y2 ALPN(M+JW)=ATAN(ALP2)	
	R2=FR2	
	BETAN (M, JW) =ATAN (B2)	
	ALPHAN(M.JW) =ATAN(ALP2*COS(BETÄN(M.JW))) XJ1=XJ1S	
	RETURN	
•	END	
	•	-
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 		
		•

```
SUBROUTINE COWL (MM. IFS. OPT)
    COMMON /A/ X1.THMAX.TH(10).R
                                     ,Z(40,10),P(40,10),PHE(40,10),
   1 Q(40.10) +SI(40.10) +H(40.10) +PúI(40.10) +RHO(40.10) +GAM(40.10)
    COMMON /B/ PN(40+10) + PHIN(40+10) + RHON(40+10) + HN(40+10) + ZN(40+10)
    COMMON /C/ IMAX(10) JMAX, ISTART, KOUNTE, KOUNTE
    COMMON /D/ UW (40), VW (40), WW (40), XW (40), YW (40), THW (40)
    COMMON /H/ ISIM
    COMMON /J/ QN(40,10) .PHEN(40,10) .SINN(40,10) .XPLAM(40,10) .
   1xMLAM(40,10),FP(40),FM(40),E(40,10)
    COMMON /L/ ALPHAN (7+10) +ALPHA (7+10) +BETAN (7+10) +BETA (7+10)
    COMMON/M/ IS(7.10)
    COMMON /O/ ALP(7.10), ALPN(7,10)
    COMMON/P/ KC1.KC2.KS1.KS2
    COMMON/Q/ XCOWL
    COMMON /V/ XJ1
    COMMON /W/ ISIMEX, IDUMMY, JINT, TOUMMY (40), THWW(2), JD1, JD2
    COMMON /SA/ XJIS
    COMMON/WR/IWRAP
    DIMENSION VL(9) .VT(9) .PM(9) .UM(9) .PHM(9) .ZM(9) .HM(9) .RHM(9) .BM( 9)
   1.GM(9).QM(9).AI (10).SIGNVL(9)
    CALL INDAT2 (MM. IFS, AL)
    XAMUEWL
    DO 89 I=1.9
 89 SIGNVL(I)=1.
    IF(ISIM.EQ.0) JW=JMAX+1
    DO 666 J=1.JW
    IS(1,J)=IMAX(J)
    (L) YAMI=I
    ZN(I \bullet J) = Z(I \bullet J)
    RETAN(1,J)=0.
666 CONTINUE
    IF (IWRAP.EQ.O) CALL ALWRAP(1)
    XW1=XCOMF
    IF (ISIM. EQ. 0) CALL SWALL (XCOWL +7 (2 + JW) + XW1 + YW1 + GX + GZ)
    DO 6 J=1,JW
    IF (J.GT.JINT) XJ1=0.
    (L) XAMI=T
 1 IF(P(I+MM+J)-P(I+J)) 4+39+5
 39 WRITF (6,300)
300 FORMAT (# 2 SHOCKS NECESSARY FROM COWL: LIP#)
    CALL PNCH
                                                                                       H
  5 OPT=1.
    KC1=3
    KS2=2
    K=KS2
    (L) XAMIEJ
    M=L+MM
    GO TO 8
  4 OPT==ï•
    KC1=3
    KS1=1
    K=KS1
    (L) XAMI=M
    L=M+MM
  B VTT=0(L.J) *SQRT(1.+TAN(SI(L.J)) ++2)
                  SORT (GAM (L.J) +P (L.J) /RHO(L,J))/VTT)
```

```
TTT=1
    IF(J.EQ.JINT.OR.J.EQ.JINT+1) AL (J)=ALPN(K,J)
    ALPHA(K,J)=AL(J)
    CA=COS (ALPHA (K.J))
    RET=+0PT+(XMU+5./57.3+PHE(L.J))/CA
    SA=SIN(ALPHA(K.J))
    TSI=TAN(SI(L.J))
    SPE=SIN(PHE(L, i))
    CPE=COS (PHE (L,J))
    IFAN1 = MM
    IFAN=IFAN1-3
    KP=1
    JJ=1
    IF(KP.EQ.1) JJ=0
    II=IFAN1
    ĬF((K/2)+2.EQ.K) II=1
    Il=II-1
    IF((K/2) #2.EQ.K) I1=II+1
    VL(II) = (Q(L+J) + (TSI+CA+SA+SPE))
    IF (J.NE.JMAX+1) GO TO 5000
    PE=ATAN(GX)
    WB=Q([+J) +SPE
    UB=0(L+J) * (COS(PE) *CPE+SIN(PE) +TSI)
    VB=Q((+J)+(TSI+COS(PE)-CPE+SIN(PE))
   PHEB = ATAN (WB/UP)
    QB=UB/COS (PHEB)
    TSI=VA/QB
   CA=1.
    SAEO.
    SPE=SIN(PHEB)
   CPE=COS (PHEB)
    VL(II)=VB
100 CONTINUE
    SIGNVL(II)=SIGN(1.,VL(II))
    VL(II)=VL(II)++2
    ISAVEEII
   ISAVE1=I1
 3 TT=1
    II=ISAVE
    II=ISAVE1
   VT(II)=(Q(L+J)+(COS(BET)+CPE-STN(BET)+(SA+TSI-SPE+CA)))++2
   U1= Q(L+J) # (SIN(BET) #CPE+COS(BFT) # (SA#TSI-CA#SPE))
   JF(J.NE.JMAX+1) GO TO 5001
   U1=QB+SIN(BET-PHEB)
   VT(II)=(QB*COS(BET-PHEB))++2
101 CONTINUE
   U1=ABS(U1)
   GM1=GAM(L.J)-1.
   GP1=GAM(L+J)+1.
   XM1=U1/SORT (GAM (L,J) +P (L,J)/PHO (L,J))
   XMS=RHO(L+J)+UT
   IF (IT.EQ.1) UM (TI) = U1+ (GM1+XM1+XM1+2.)/GP1/XM1/XM1
   RH2=XMS/UM(II)
   PM(II) = XMS + (U1 = UM(II)) + P(L_1)
   V2=VT(II)+VL(II)
    V1=V2+U1#U1
```

```
V2=V2+UM(II)##>
     PHM([[]=PHI(L,j)
     ZM(II) = Z(L + J)
     HM(II)=H(L+J)+(V1-V2)/2.
     RHM(IT)=RHEQ(HM(II),PM(II),PHM(II))
     FR=(RH2=RHM(II))/RHO(L,J)
     IF (ABS(ER) . LT. 1 . E - 04) GO TO 0
     TTEITAI
     IF(IT.GT.10) GO TO 100
     IF(IT.GT.2) GO TO 11
     ER2=ER
     U2=UM(II)
     UM(II) = UM(II) +.99
     GO TO 7
 100 WRITE (6,200)
 200 FORMAT (* ERROR IN HUGONIOT LOOP IN COWL#)
     CALL PNCH
 101 WRITE (6.201)
 201 FORMAT (# SUBSONIC EDGE IN COWL AROUND STATEMENT NUMBER 13#)
     CALL PNCH
  11 DUM2=U2=ER2+(UM(II)=U2)/(ER-ER2)
6020 ER2=ER
     UZ=UM(II)
     UM(II)=DUM2
     GO TO 7
   9 PM (I1) = PM (II)
     HM (II) HHM (II)
     ZM(II) = ZM(II)
     RHM(II) =RHM(II)
     PHM(II) = PHM(II)
     VL (I])=VL (II)
     SIGNVL(I1) = SIGNVL(II)
     VT (11)=VT (11)
     BM(II) =BET
     RM(I1)=BET
     UM(II) ==OPT#UM(II)
     US2=SQRT(VT(II)) +COS(BM(II))+UM(II)+SIN(BM(II))
     WS2=SQRT(VT(II)) *SIN(BM(II)) *UM(II) *COS(BM(TI))
     PHES=ATAN (WS2/US2)
     UM(II) = UM(II)
     DP=(P(M.J)-PM(II))/FLOAT(IFAN-I)
     VTT=(0(M+J)++2)+(1.+TAN(SI(M,J))++2)
     TI=1
     IF ((K/2) +2.EQ.K) II=IFAN1
     ZM(II) = Z(M \cdot J)
     (U \cdot M) H = (II) MH
     PM(IT)=P(M+J)
     RHM(II) = RHO(M_{\bullet}J)
     GM(II)=GAM(M,J)
     PHM(IT)=PHI(M+(i)
     UM(II)=GM(II)+PM(II)/RHM(II)
     VL(II) = (Q(M \bullet J) + (CA^TAN(SI(M \bullet J)) + SA^TSIN(PHE(M \bullet J))))
     TF(J.NE.JMAX+1) GO TO 5002
     WB=Q(M.J) #SIN(PHE(M.J))
     UB=0 (M+J) + (COS (PE) +COS (PHE (M+J)) +SIN (PE) +TAN (SI (M+J)))
     VB=Q(M+J)+(TAN(SI(M+J))+COS(PE)-COS(PHE(M+J))+SIN(PF))
```

```
PHEB = ATAN (WB/UR)
     QB=UB/COS (PHEB)
     VL(II)=VB
SOOP CONTINUE
     SIGNVL(II)=SIGN(1. VL(II))
     VL(II)=VL(II)##2
     VT(II) = VTT=VL(II) = UM(II)
     OM(II)=VTT-VL(II)
 13 XMM=QM(II)/UM(II)
     IF (XMM+LT+1+) GO TO 101
     B==SA+TAN(SI(M.J))+CA+SIN(PHE(M.J))
     A=COS (PHE (M+J))
     C=SQRT(VT(II))/Q(M+J)
     D=SQRT (A#A+B#B)
     BM(II) =OPT ASIN(SQRT(1./XMM)) +ATAN(B/A)
     IF (J_EQ_JMAX+1)BM(II) =OPT#ASIN(SQRT(1_/XMM))+PHEB
     HTL=HM(II)+(VTT-VL(II))/2.
     IFF=IFAN+1
     IF1=IFF
     IF ((K/2) +2 . EQ.K) IFF=IFAN1
    no 12 LL=2+IF1
    NeLL
    IF ( (K/2) #2 . EQ . K) N= IFF-LL +1
    KK=N-1
     IF((K/2) #2.EQ.K) KK=N+1
     IF ((K/2) +2 . NE . K . AND . N . EQ . IFF) DP=0 .
     TF((K/2) #2 . EQ . K . AND . N . EQ . 3 ) DP=0 .
     7M(N) = ZM(KK)
    PM(N) =PM(KK) -DP
     ALNR=ALOG (PM(N)/PM(KK))/GM(KK)
     RHM(N) = ALOG (RHM(KK)) + ALNR
    RHM(N) = EXP(RHM(N))
    G1=SORT((GM(KK)+1.)/(GM(KK)+1.))
    G=2.#GM(KK)/(GM(KK)-1.)
    OM(N) = QM(KK) - G*(PM(N)/RHM(N) - PM(KK)/RHM(KK))
    HM(N)=HTL+(
                        -QM(N))/2.
    C1=UM(KK) #G1#G1+VT(KK)
    PHM(N) =PHM(KK)
    TM=FT(PM(N) +PHM(N) +HM(N))
    GM(N)=FGAM(TM,PM(N),PHM(N))
    UM(N) = GM(N) + PM(N) / RHM(N)
    VL(N)=VL(KK)
    SIGNVL(N)=SIGNVL(KK)
    VT(N) = QM(N) - UM(N)
    BM(N) = -OPT^{*G1*}(ASIN(SQRT(VT(N)/C1)) - ASIN(SQRT(VT(KK)/C1))) + BM(KK)
 12 CONTINUE
     XMU=SORT (UM(N)/QM(N))
    XMU=ASIN(XMU)
    PHEP=RM(N) TOPTAXMU
    FRR=PHES-PHEP
    IF (ARS (ERR) . LT. 1.E-04) GO TO 15
    TTT=ITT+1
     IF (ITT . GT . 15) GO TO 102
    IF(ITT.GT.2) GO TO 14
    ER1=ERR
     RETIERET
```

```
BET=1.01#BET
    CO TO 3
102 WRITE (6,203)
203 FORMAT (# ERROR IN BETA SHOCK IN COWL#)
    CALL PNCH
 14 DUM1=RET1-ER1+(BET-BET1)/(ERR-FR1)
    ER1=ERR
    RETIERET
    BET=DUM1
    GO TO 3
 15 CONTINUE
    DO 16 LL=1+IF1
    N=LL
    IF ( (K/2) #2.EQ.K) N= IFF-LL+1
    UM(N)=OPT#SQRT(UM(N))
 16 CONTINUE
    ALP(K.J) =AL(J)
    TB=TAN(BET) +COS(ALP(K.J))
    IF (J.EQ.JMAX+1) TB=TAN(BET) +COS(PE)
    RETAN(K.J) #ATAN(TB)
    BETA(K+J)=BETAN(K+J)
    TF (J.EQ.JMAX+1) ALP (K.J) =ATAN (TAN (BET) &GX)
    ALPN(K,J)=ALP(K,J)
    IF (J.EQ.JMAX+1) ALPHA (K.J) = ATAN (GX+SIN (BETA (K.J)))
    ALPHAN (K.J) = ALPHA (K.J)
    VFB(KCJ+A) #VF(A)
    TP=TAN (PHEP) +COS (ALP (KCI.J))
    IF (J.EQ.JMAX+1) TP=TAN (PHEP) +COS (PE)
    RETAN(KC1+J) =ATAN(TP)
    RETA(KC1.J) =BETAN(KC1.J)
    TF (J.EQ.JMAX+1) ALP (KC1.J) =ATAN (TAN (PHEP) #GX)
    ALPHA (KC1+J) =ALPHA (K+J)
    IF (J.EQ.JMAX+1) ALPHA (KC1+J) =ATAN (GX+SIN (BETA (KC1+J)))
    ALPHAN(KC1+J) =ALPHA(KC1+J)
    ISS=IMAX(J)
    I = MM + (U) \times AMI = (U) \times AMI
    TS(K_{\bullet,J}) = IMAX(J) + 1
    IF ((K/2) +2.EQ.K) IS (K.J) = IMAX((i) -MM+1
    TS(KC1+J)=IS(K.J)-2
    IF((K/2) #2.EQ.K) IS(KC1.J) = IS(K,J) +3
    IK=ISS
    JF((K/2) +2.EQ.K) | IK=ISS+1
    DO 29 KK=1+IFAN1
    IF ((K/2) +2 . NE . K . AND . KK . GE . (IFAN1 -2)) GO TO 19
    IF((K/2) #2 . EQ. K . AND . KK . GE . 3) GO TO 19
    IF (((KK/KP) +KP+JJ) NE KK) GO TO 29
 19 P (IK.J)=PM(KK)
    VTT=SoRT (UM(KK) #UM(KK) +VT(KK) +ÜL(KK))
    CB=COS(BM(KK))
    SB#SIN(BM(KK))
    VV=+SA+CB+
                    (UM(KK))=SB#SA#SORT(VT(KK))+CA#SQRT(VL(KK))#SIGNVL(
   1KK)
    IF (J.NE. JMAX+1) GO TO 5003
    UB=UM(KK) #SB+SORT(VT(KK)) #CB
    VB=SORT(VL(KK)) #SIGNVL(KK)
    VV=UR#SIN (PE
                           ) + VB + COS (PF
                                                1
```

```
5003 CONTINUE
         (TK_{\bullet}J) = VV/VTT
     SI (IK,J)=ASIN(SI
                           (IK,J))
     WV==CR#CA#
                    (UM(KK))+SB*CA*SORT(VT(KK))+SA*SQRT(VL(KK))*SIGNVL(
    1KK)
     IIV=SP#
                (UM(KK))+CB#SQRT(VT(KK))
     IF (J.EQ.JMAX+1) UV=UB+COS (PE
                                           )-VB#SIN(PE
     O(IK,J)=SQRT(UV#UV+WV+WV)
     PHE (IK, J) =ASIN(WV/Q (IK, J))
     PHI (TK+J)=PHM(KK)
     7 (IK.J)=ZM(KK)
     RHO (TK.J)=RHM(KK)
     H (IK \cdot J) = HM(KK)
     T=FT(PM(KK)+PHM(KK)+HM(KK))
     GAM(IK+J)=FGAM(T.PM(KK).PHM(KK))
     E(IK+J)=SQRT(GAM(IK+J)+P(IK+J)/RHO(IK+J))
     CALL XLAM(Q(IK,J),E(IK,J),PHE(TK,J),XPLAM(IK,J),XMLAM(IK,J))
     IF (J.NE.JMAX+1) GO TO 210
     HW(IK)=0(IK,J)+COS(PHE(IK,J))
     WW(IK)=Q(IK,J)+SIN(PHE(IK,J))
     XW(IK)=R
     IF (XJ] . EQ. 0.)
    1CALL SWALL (R.Z(IK.J).XW(IK).YW(IK).FX.FZ)
     IF (XJ1.GT.O.) CALL SWALL1 (THX.P.Z(IK.J).FX,FZ)
     VW(IK)=UW(IK)+FX+WW(IK)+FZ
     VW(IK) #VW(IK) #Z(IK+JW) ##XJ1
     IF (XJI . EQ. 0.)
    1THW(IK)=YW(IK)
     IF (XJ) + GT + 0 + ) THW (IK) = THX
     SI(IK, J) = ATAN(VW(IK)/Q(IK, J))
210 CONTINUE
     TK=IK+1
 29 CONTINUE
     IMAX(J)=IMAX(J)+IFS
   6 CONTINUE
     XJ1=XJ1S
     RETURN
     END
                                                                                      1
```

```
SUBROUTINE WDICC(M)
   COMMON /A/ X1.THMAX.TH(10).R .Z(40.10).P(40.10).PHF(40.10).
  1 Q(40,10) +SI(40,10) +H(40,10) +PHT(40,10) +RHO(40,10) +GAM(40,10)
   COMMON /B/ PN(40+10) +PHIN(40+10) +RHON(40+10) +HN(40+10) +ZN(40+10)
   COMMON /C/ IMAX(10) , JMAX, ISTART, KOUNTF, KOUNTP
   COMMON /D/ UW (40) . VW (40) . WW (40) . XW (40) . YW (40) . THW (40)
   COMMON /E/ UWN(40) . VWN(40) . WWN(40) . XWN(40) . YWN(40) . THWN(40)
   COMMON /I/ XJ
   COMMON /J/ QN(40,10) +PHEN(40,10) +SINN(40,10) +XPLAM(40,10) +
  1xMLAM(40,10),FP(40),FM(40),A(40,10)
   COMMON /K/ RN. DELR
   COMMON /L/ ALPHAN(7+10)+ALPHA(7+10)+BETAN(7+10)+BETA(7+10)
   COMMON/M/ IS(7.10)
   COMMON /O/ ALP(7,10) + ALPN(7,10)
   COMMON/P/ KC1+KC2+KS1+KS2
   COMMON /R/ J.XCN.XC.XXI.JW.INT.ICOWL.RCOWL
   COMMON /U/ ERZZZ
   COMMON /V/ XJ1
   COMMON /W/ ISIMEX, IDUMMY, JINT, JDUMMY (40), THWW (2), JD1, JD2
   COMMON /SA/ XJTS
   IF (JW.GT.JINT) XJ1=0.
   I=IS(M+JW)
   TIEI
   =1
   TTT=1
   IF ((M/2) +2 . EQ. M) L==1
   K=I-L
   LL=2#L
   PATEO.
   MOUZ=r.
   PNK=0.
   IF (I.EQ. IMAX (JW) -1) GO TO 41
   IF (M.EQ.3) GO TO 42
   PAT = (\overline{Z}N(I+UL+JW) - \overline{Z}N(I+UL+JW)) / (\overline{Z}N(\overline{I}+U+JW) - \overline{Z}N(\underline{I}+UL+JW))
   PNK=PN(T+LL+JW)
41 PN(I.JW)=PN(I+LL.JW)+RAT*(PN(I+L.JW)-PNK)
   WOUZEWWN(I+LL)/UWN(I+LL)
   WOU1=WWN(I+L)/HWN(I+L)
   WOU#WOUZ+RAT+(WOU1+WOU2)
   GO TO 10
42 PAT1=(THWN(I)-TH(JMAX))/(THW(I)-TH(JMAX))
   15=15(3, JMAX-1)
   PN(I,JW)=PN(I5,JMAX )+RAT1+(PN(I,JW )=PN(I5,JMAX ))
   PN(K.JW)=PN(I.JW)
10 CONTINUE
   THX=THWN(II) #Xi
   THOUM THWN (II)
   YWN(IT)=RN*SIN(THX)+THWN(II)+(T.=XJ)
   XWN(II)=RN*COS(THX)
   IF (XJj . EQ.0.)
  1CALL SWALL (RN.ZN(II.JW).XWN(II).YWN(II).FX.FZ)
   IF (XJI . GT. 0.) CALL SWALLI (THDUM, RN. ZN(II. JW) .FX.FZ)
   IF (M.NE.KC1.AND.M.NE.KC2) GO TO 11
   C1=TAN(BETAN(M.JW)) +COS(THX)+TAN(ALPN(M.JW)) +SIN(THX)
   CZ=-TAN(BETAN(M.JW)) #SIN(THX) + TAN(ALPN(M.JW)) #COS(THX)
   ZNXJ=1.
```

```
IF(XJ1.GT.O.) ZNXJ=ZN(II,JW)
    MOU=(C1+FX+C2+ZNX)
                                )/(1.=FZ#C2#ZNXJ
 11 VOU=FX+WOU#FZ
    IF(XJ1.GT.O.) VOU=VOU+ZN(II,JW)
    ZSL=Z(II,JW)
    USL=UW(II)
    VSL=VW(II)
    WSL=WW(II)
    XSL=XW(II)
    TAUCEVOU
    TT=1
    IF (M.EQ.KC1.OR.M.EQ.KC2) GO TO 40
 60 CONTINUE
    IF (XJ] . EQ. 0.)
   1CALL SWALL (R.ZSL.XSL.YSL.FXSL.FZSL)
    IF (XJ1.GT.0.) CALL SWALL1 (THSL.R.ZSL.FXSL.FZSL)
    DUM= (WOU+WSL/USL)/2.
    ZSLT#ZN(I . JW) - hUM# (XWN(I) - XSL)
    RAT= (7SLT-Z(I+, W))/(Z(I+L+JW)-7(I+JW))
    WUSL=TAN(PHE(I.JW))+RAT+(TAN(PHE(I+L.JW))-TAN(PHE(I.JW)))
    U1=Q(I+JW) +COS(PHE(I+JW))
    UZ=Q(I+L.JW) +COS(PHE(I+L.JW))
    USL=U1+RAT+(U2=U1)
    WSL=USL+WUSL
    VU]=TAN(SI(I+JH))/COS(PHE(I+JH))
    VUZ=TAN(SI(I+L.JW))/COS(PHE(I+1.JW))
   VUSL=VU1+RAT#(VU2=VU1)
   VSL=VUSL#USL
   EREARS ((ZSLT-ZSL)/(Z([+L,JW)-Z([,JW)))
    IF (ER.LT.ERZZZ) GO TO 40
   7SL=7SLT
    TT=IT+1
    IF(IT.LT.10) GO TO 60
    WRITE (6, 1000)
000 FORMAT (* ERROR IN ITERATION LOOP IN WDISC*)
    CALL PNCH
40 CONTINUE
    IF (M.EQ.KC1.OR.M.EQ.KC2) RAT=0.
    PSL=P(II+JW)+RAT+(P(II+L+JW)+P(II+JW))
   HSL=H(II+JW)+RAT+(H(II+L+JW)=H(TI+JW))
   RHOSL=RHO(II.JW)+RAT+(RHO(II+L.JW)-RHO(II.JW))
   PHISL=PHI(II+JW)+RAT*(PHI(II+L+JW)-PHI(II+JW))
   TSL=F+(PSL+PHISL+HSL)
   GAMSL=FGAM (TSL.PSL.PHISL)
   PHIN(II.JW) = PHISL
   RHON (TI, JW) =RHOSL + (PN(II, JW) /PSL) ++ (1./GAMSL)
   VVSL=USL+USL+VSL+VSL+WSL+WSL
   VVC=VVSL+2.*GAMSL/(GAMSL-1.)*(PSL/RHOSL-PN(II.JW)/RHON(II.JW))
   HTSL=HSL+.5#VVSL
   HN(II.JW)=HTSL-.5+VVC
   UWN(II) = SQRT(VVC/(1.+TAUC+TAUC+WOU+WOU))
    VWN(II)=UWN(II) #TAUC
   WWW(]I)=UWN(II) #WOU
   PHEN(II, JW) = WOU/(COS(THX) + VOU#SIN(THX))
   PHEN(II, JW) = ATAN(PHEN(II, JW))
    VB=VWN(II) *COS(THX) *UWN(II) *SIN(THX)
```

	UB=VWN(II) *SIN(THX) +UWN(II) *COC(THX) WB=WWN(II) ON(II.JW) = SQRT(WB * WB + UB * UB) SINN(II.JW) = ATAN(VB/QN(II.JW)) ITT=ITT+1 II=I-1 IF(ITT.GT.2) GO TO BO IF(M.NE.KCl.AND.M.NE.KC2) CALL HSHOCK(M.JW.JW.I) IF(M.EQ.KCl.OR.M.EQ.KC2) GO TO 10 XJ1=XJ1S						
							
	RETURN						
	· · · · · · · · · · · · · · · · · · ·						
· · · · · · · · · · · · · · · · · · ·							
·····							
	· · · · · · · · · · · · · · · · · · ·						
-							
	<u> </u>						

```
SUBROUTINE PLANES (IND)
     COMMON /ALLRI/ AN(40,10), TN(40,10), GAMN(40,10), XPLAMN(40,10),
    1XMLAMN(40+10)
     COMMON /B/ PN(40+10) +PHIN(40+10) +RHON(40+10) +HN(40+10) +ZN(40+10)
     COMMON /JF/ JFTNAL
     COMMON /A/ X1, THMAX, TH(10) .R .Z(40.10), P(40.10), PHE(40.10).
    1 Q(40,10),SI(40,10),H(40,10),Phy(40,10),RHO(40,10),GAM(40,10)
     COMMON /C/ IMA; (10) , JMAX, ISTART, KOUNTF, KOUNTP
     COMMON /H/ ISIM
     COMMON /J/ QN(40+10) +PHEN(40+10) +SINN(40+10) +XPLAM(40,10) +
    1xMLAM(40,10),FP(40),FM(40),A(40,10)
     COMMON/M/ IS(7.10)
     COMMON /R/ J.XCN.XC.XXI.JW.INT.ICOWL.RCOWL
     COMMON /S/ RI+KOUNT+KOUNTS+ICOWLT
     COMMON /V/ XJI
    COMMON /W/ ISIMEX.IDUMMY.JINT.JDUMMY(40).THWW(2).JD1.JD2
     COMMON /IQ/ NUMEXP. ZSAV
     COMMON/PS/ZR(40+2)+PR(40+2)+QR(40+2)+HR(40+2)+SIR(40+2)+RHOR(40+2)
   1.PHIR(40,2),PHER(40,2),THR(2),THWR(40)
     COMMON /SPE/ KOUNTO
     COMMON /PL/ DELTH
     IF (IND . EQ. 0) ZDUMMY (1) = Z(1. JINT)
     IF (IND.EQ.1) ZOUMMY (1) = ZN(1, JINT)
     JI=JINT
     J2=JINT+1
     IMAXJ=IMAX(J1)+1
    DO 461 I=NUMEXP, IMAXJ
    L=I
     TX=Z(T+JINT)
     IF (IND • EQ • 1) Zx=ZN(I • JINT)
     TF (7x
                 .GT.ZSAV) GO TO 465
461 CONTINUE
462 IDUMMY=L-1
     IF (IND . EQ . 1) GO TO 34
     DELTH=1000.
    DO 1000 J=J2.JMAX
    L=S+XAML=T
    IF (JMAX, EQ.JW) I=1-1
    DEL=7(2,J)
    IF (XJ) •GT • 0 • ) DEL=ATAN (DEL/ZDUMMY (I))
    IF (DEL . LT . DELTH=DEL
1000 CONTINUE
    DELTH 9 + DELTH
     IF (DELTH.GT.TH(JINT)-TH(JINT-1)) DELTH=TH(JINT)-TH(JINT-1)
 34 CONTINUE
     7DUM EDELTH
     ZDUMS=ZDUM
     ]=1
    DO 26 I=1. NUME XP
    IF (XJj . GT . D . ) ZDUM=ZDUMMY (I) +TAN (ZDUMS)
     I+I-WL=MI.
    CALL TBL (ZDUM, PR(I, J), SIR(I, J), HR(I, J), PHIR(I, J), QR(I, J), PHER(I, J)
   1.RH.GA.THX.JM.IMAX(JM).2)
    RHOR(\tilde{I} *J) = RHEQ(HR(I*J)*PR(I*J)*PHIR(I*J))
     TEFT (PR(I.J) .PHIR(I.J) .HR(I.J)
     THWR(T) =FGAM(T.PR(I.J).PHIR(T.J))
```

```
7R(I,J) = 7DUMMY(I)
     IF (XJ] • GT • 0 • ) ZR (I • J) = ZR (I • J) / ros (ZDUMS)
     IF (I.NE.1) GO TO 1500
     IF (ISIM.EQ.1) GO TO 1500
     XTER
     IF (XJ) • EQ. 0.) CALL SWALL (R. ZDUM, XT. YT. FX. FZ)
     IF (XJI .GT.O.) CALL SWALL1 (THX, 5, ZDUM, FX, FZ)
     TSI=COS(PHER(I.J)) *FX+SIN(PHFR(T.J)) *FZ
     SIR(I.J) = ATAN(TST)
1500 CONTINUE
     U1=QR(I.J) +COS(PHER(I.J))
     IF (XJ1.GT.O.) GO TO 2001
     V1=QP(I.J) #SIN(PHER(I.J))
     W1=-QR(I,J)+TAN(SIR(I,J))
     GO TO 2002
2001 WT=QR(I,J) #SIN(PHER(I,J))
     VT=QR(I,J) TAN(STR(I,J))
     V1=WT+COS(ZDUMS)+VT+SIN(ZDUMS)
     W1==VT*COS(ZDUMS) +WT*SIN(ZDUMS)
2002 CONTINUE
     OR(I_*J) = SQRT(U_1^*+U_1+W_1+W_1)
     PHER (T+J) =ATAN (WI/UI)
     SIR(I.J) MATAN(VI/QR(I.J))
  26 CONTINUE
     J=2
     DO 1001 Iml IDUMMY
     IF (IND.EQ.0) CALL TBLDUM(Z (I.JINT).PR(I.J).SIR(I.J).AR(I.J).PHIR
    1(I,J).QR(I,J).PHER(I,J).RHOR(I,J).THWR(I).1.IDUMMY.I)
     IF (IND . EQ. 1) CALL TBLDUM (ZN (I . JINT) . PR (I . J) . SIR (I . J) . HR (I . J) . PHIR
    1(I.J), QR(I.J), PHER(I.J), RHOR(I.J), THWR(I), 1, IDUMMY, I)
     IF (IND . EQ. 0) ZR(I.2)=Z (I.JINT)
     IF (IND . EQ. 1) ZR (I.2) = ZN (I.JINT)
1001 CONTINUE
     THR (>) =TH (JINT) +DELTH
     RETURM
     END
```

```
SUBROUTINE ALWRAP (M)
COMMON /A/ X1+THMAX+TH(10)+R +Z(40,10)+P(40+10)+PHE(40+10)+
1 Q(40,10),SI(40,10),H(40,10),PHI(40,10),RHO(40,10),GAM(40,10)
COMMON /B/ PN(40+10)+PHIN(40+10)+RHON(40+10)+HN(40+10)+ZN(40+10)
COMMON /L/ ALPHAN(7.10) + ALPHA (7.10) + BETAN(7.10) + BETA (7.10)
COMMON/M/ IS(7.10)
COMMON /O/ ALP(7.10) ALPN(7.10)
COMMON /W/ ISIMEX, IDUMMY, JINT, TOUMMY (40), THWW (2), JD1, JD2
COMMON /IQ/ NUMEXP, ZSAV
COMMON /V/ XJ1
JI=JIMT-1
TMIL=SU
1+TMIL=EL
 J4=JINT+2
Il=IS(M,J1)
I2=I5(M, J2)
 [3=[5(M.J3)
 14=15(M.J4)
R2=ZN(I2.J2)-ZSAV
P3=ZN(13.J3)
        (ZN(I2,J2)=ZN(I1,J1))/(+H(J2)=+H(J1))
PQ2=
PQ3=
        (ZN(14,J4)-ZN(13,J3))/(TH(J4)-TH(J3))
F1=1.5707963
F2=F]#F]
AL3=RO3
AL2=ROZ
(SJA) MATA=(SL+M) M9JA
ALPN(M+J3) #ATAN(AL3)
ALPHAN (M. J2) = ATAN (AL2+COS (BETAN (M. J2)))
ALPHAN (M.J3) =ATAN (AL3+COS (BETAN (M.J3)))
RETURN
END
```

```
SUBROUTINE ADDSUR
      COMMON /ALLRI/ AN (40.10) . TN (40.10) . GAMN (40.10) . XPLAMN (40.10) .
     1XMLAMN(40,10)
      COMMON /TEM/ T(40.10)
      COMMON /A/ X1.THMAX.TH(10).R .Z(40.10).P(40.10).PHF(40.10).
     1 0(40.10) +SI(40.10) +H(40.10) +PHT(40.10) +RHO(40.10) +GAM(40.10)
      COMMON /B/ PN(40+10) +PHIN(40+10) +RHON(40+10) +HN(40+10) +ZN(40+10)
      COMMON /C/ IMAX(10) JUMAX, ISTART, KOUNTE, KOUNTE
      COMMON /D/ UW (40) . VW (40) . WW (40) . XW (40) . YW (40) . THW (40)
      COMMON /J/ QN(40,10), PHEN(40,10), SINN(40,10), XPLAM(40,10),
     1XMLAM (40 • 10) • FP (40) • FM (40) • A (40 • 10)
      COMMON /R/ J.XCN.XC.XXI.JW.INT.ICOWL.RCOWL
      COMMON /L/ ALPHAN(7+10) + ALPHA(7+10) + BETAN(7+10) + BETA(7+10)
      COMMON/M/ IS(7,10)
      COMMON /O/ ALP(7+10)+ALPN(7+10)
      COMMON /S/ RI.KOUNT.KOUNTS.ICOWLT
      COMMON /W/ ISIMEX . IDUMMY . JINT . 7DUMMY (40) . THWW (2) . JD1 . JD2
      COMMON /IQ/ NUMEXP.ZSAV
      COMMON /JF/ JFTNAL
      DELTHETH (JMAX) -TH (JMAX-1)
      IT=0
      (WL) XAMI = LXAMI
      DO 510 I=1. IMAXJ
      TEST THW(I) - TH(JMAX)
      TEST=TEST/DELTH
      IF (TEST.GT.2.0) GO TO 520
      IF (TEST.LT.0.5) GO TO 100
      60 TO 510
  520 TT=IT+1
  510 CONTINUE
      IF (IT EQ IMAX (JW)) GO TO 502
      GO TO 600
  100 JMAX=JMAX=1
      JW=JW_1
      JZ=Jul-1
      JF (ICOWLT.EQ.0) GO TO 505
      DO 30 I=3.NUMEXP
   30 ZDUMMY (I=1) = ZDIMMY (I)
      NUMEXP=NUMEXP=T
      60 TO 505
  502 IF (JW LT JFINAL) GO TO 36
      WRITE (6.37)
   37 FORMAT (* PROGRAM ATTEMPTING TO ADD REFERENCE PLANE - DIMENSION TOO
     1 SMALL #)
      CALL PNCH
C
      STOP
      GO TO 600
   36 CONTINUE
      I+XAMU=XAML
      JW=JW+1
      (I=WL)XAMI=(WL)XAMI
      JZ=JW_1
      IF (ICOWLT.EQ.O) GO TO 505
      DO 40 I=2. NUMEXP
      II=NUMEXP=I+2
      111=11+1
```

```
40 ZDUMMY(III)=ZDUMMY(II)
    NUMEXP=NUMEXP+1
505 CONTINUE
    TH(JW) = TH(JZ)
    IF (ICOWLT.EQ.1) TMAXJ=IMAXJ+1
    DO 535 I=1+IMAXJ
    Z(I \bullet JW) = Z(I \bullet JZ)
    P(I,JW)=P(I,JZ)
    PHE(I.JW)=PHE(I.JZ)
    SI(I,iW) = SI(I,JZ)
    H(I + JW) = H(I + JZ)
    O(I \cdot JW) = O(I \cdot JZ)
    PHI(I.JW)=PūI(I.JZ)
    RHO(T.JW) =RHO(I.JZ)
    I = JW
    T(I+L)=FT(P(I+L)+PHI(I+L)+H(I+i))
    GAM(I.L)=FGAM(T(I.L).P(I.L).PHT(I.L))
    A(I+L)=SQRT(GAM(I+L)+P(I+L)/RHA(I+L))
    CALL XLAM(Q(I+L)+A(I+L)+PHE(I+L)+XPLAM(I+L)+XMLAM(I+L))
535 CONTINUE
    IF (ICOWLT.EQ. 0) GO TO 20
    DO 10 I12=1.7
    ALP(I)2.JW)=ALP(I12.JZ)
    ALPHA, I12, JW) = ALPHA (I12, JZ)
    RETA(I12.JW) =BETA(I12.JZ)
 10 TS(112+JW)=15(T12+JZ)
 20 CONTINUE
    IF (JZ.GT.JW) GO TO 601
    TH (JMAX) =TH (JMAX=1) +DELTH
    IF (ICOWLT.EQ.1) ZDUMMY (2) = ZDUMMY (3) - DELTH
    YAMLEL.
    J1=J=7
    DO 540 I=1.IMAXJ
    フ(I・J) =Z(I・JW)
    JF (ICOWLT.EQ.1) GO TO 31
    IF (I.EQ.1) CALL BWALL (R.TH (J) + 7 (I.J) + DUM + DUMI)
    TF(I.EQ.IMAX(JW)) CALL TWALL(R.TH(J).Z(I.J).DUM.DUM1)
    GO TO 32
31 IF (I.NE.1) GO TO 32
    7([*J)=0.
    CALL TBL (ZDUMMY(2) +P(I+J)+SI(I+J)+H(I+J)+PHI(I+J)+Q(I+J)+PHE(I+J)
   1.RHO(1.J),GAMX,THX,JINT,IDUMMY.2)
    U1=Q(T*J)*COS(PHF(I*J))
    V1=Q(T,J) TAN(SI(I,J))
    WI=Q(I+J) #SIN(PHE(I+J))
    VT==W1
    WT=V1
    O(I \bullet J) = SORT(U1 \bullet U1 \bullet WT \bullet WT)
    PHE(J.J) =ATAN(WT/U1)
    SI(I.J) = ATAN(VT/Q(I.J))
    60 TO 33
32 CONTINUE
    PATEDFLTH/(THW(I)-TH(JMAX-1))
        (I \cdot J) = P (I \cdot J) + RAT + (P
                                                (I,J1))
                                    (I \bullet , j W) = P
    SI (I.J) = SI (I.J1) + RAT+(SI (I.W) - SI (I.J1))
        (\uparrow,J)=Q (\downarrow,J)+RAT+(Q
                                                (I,J1))
                                    (I \bullet . W) = Q
```

```
(I.J)=H (I.JT)+RAT#(H
                                    (I \circ JW) = H
     PHE(J.J)=PHE(I.J1)+RAT+(PHE(J.JW)-PHE(I.J1))
     PHI(I, J) = PHI(I, J1) + RAT# (PHI(I, JW) = PHI(I, J1);
     RHO(I.J) =RHO(I.J1) +RAT*(RHO(I.JW) =RHO(I.J1))
  33 CONTINUE
     l_=J
     T(I+L)=FT(P(I+L)+PHI(I+L)+H(I+i))
     GAM(I.L)=FGAM(T(I,L),P(I,L),PHT(I,L))
     \Delta(I + L) = SORT(GAM(I + L) + P(I + L) / RHO(I + L))
     CALL XLAM(Q(I)(), A(I)(), PHE(I); ), XPLAM(I)(), XMLAM(I,L))
     TF (I.NE.IS(1.J)) . AND . I. NE . IS (3. J1)) GO TO 540
     M=1
     IF(I_{EQ},IS(3,J_{1})) M=3
     TANALP=TAN(ALP(M.J1))+RAT*(TAN(ALP(M.JW))-TAN(ALP(M.J1)))
     Z(I * J) = Z(I * J1) + (TAN(ALP(M*J1)) + TAN ALP
                                                        ) *DELTH/2.
     ア(エーデ・リ) = ア(エ・リ)
     RETA (MOJ) =ATAN (TAN (BETA (MOJ1)) + RATO (TAN (BETA (MOJW)) - TAN (BETA (MOJ1
    1))))
     IS(M,J)=IS(M,Ji)
     ALP(M.J)=TANALP
     ALPHA (M. J) = ATAN (ALP (M. J) + COS (BFTA (M. J)))
     ALP(M.J) =ATAN(ALP(M.J))
     [F(M.FQ.3) GO TO 4021
     CALL HSHOCK (M,J,J,1)
           (I-1,J)=P
                         N(I-1+J)
     0
           (I-1,J)=Q
                         N(I-1*J)
           \{I-1,J\}=H
     H
                         N(I-1,J)
           (I-1.J)=T
                         N(I-1\cdot J)
           (I-1+J)=A
                         N(I-1+J)
     SI
           (I-1,J)=STN
                         N(I=1+J)
     PHF
           (I-],J)=PHE
                         N(I-1+J)
     PHI
           [I-1,J)=PHI
                         N(I=1,J)
     RHO
           (I-1,J)=RHO
                         N(I=1,J)
     GAM
           (I-1 \cdot J) = GAM
                         N(I-1.J)
     XPLAM(I-1.J) = XPLAMN(I-1.J)
     (L.I-I) NMAJMX=(L.I-I, MAJMX
     GO TO 540
4021 CONTINUE
 540 CONTINUE
     GO TO 600
 601 IF (IMAX (JMAX) . EQ. IMAX (JW)) GO TO 600
     DO 602 I=1 IMAXJ
     CALL TBL (Z(I)JW), PN(I,JMAX), SINN(I,JMAX), HN(I,JMAX), PHIN(I,JMAX),
    10N(I.JMAX).PHEN(I.JMAX).RHON(I.JMAX).GA.THX.JMAX,IMAX(JMAX).I)
 602 CONTINUE
     DO 603 I=1.IMAXJ
     7
         (T.JMAX)=Z
                       (WLeI)
         (T.JMAX)=PN
                       (XAMLeI)
         NH=(XAML.T)
                       (XAML,I)
         (I.JMAX)=QN
                       (XAMLeI)
     SI (I.JMAX)=SINN(I.JMAX)
     PHE (I. JMAX) = PHEN (I. JMAX)
     (XAML.I) NTHO= (XAML.I) IHO
     RHO(I.JMAX)=RHON(I.JMAX)
     LEJMAX
     T(I+L)=FT(P(I+L)+PHI(I+L)+H(I+i))
```

60	GAM(I.L)=FGAM(T(I.L).P(I.L).PHŤ(I.L)) A(I.L)=SQRT(GAM(I.L).PP(I.L)./RHO(I.L)) CALL xLAM(Q(I.L).A(I.L).PHE(I.L).XPLAM(I.L).XMLAM(I.L)) CONTINUE	
600	IMAX(JMAX)=IMAX(JW) CONTINUE RETURN	
	END	
	<u> </u>	
		- * ****
	·	
-		
·		
		_
• • • • • • • • • • • • • • • • • • • •		
-		

```
SURROUTINE EMBED
    COMMON /A/ X1. THMAX. TH(1c) .R .Z(40.10) .P(40.10) .PHE(40.10) .
   1 0(40,10) +SI(40+10) +H(40+10) +PHI(40+10) +RHO(40+10) +GAM(40+10)
    COMMON /C/ IMAU(10), JMAX, ISTART, KOUNTF, KOUNTP
    COMMON /J/ QN(40+10) + PHEN(40+10) + SINN(40+10) + XPLAM(40+10) +
   1XMLAM(40,10).FP(40).FM(40).A(40,10)
    COMMON /L/ ALPHAN(7,10) +ALPHA(7,10) +BETAN(7,10) +BETA(7,10)
    COMMON/M/ IS(7.10)
    COMMON /O/ ALP(7.10).ALPN(7.10)
    COMMON /R/ J.XCN.XC.XXI.JW.INT.ICOWL.RCOWL
    COMMON /W/ ISIMEX.IDUMMY.JINT.TOUMMY (40) . THWW (2) . JD1 . JD2
    COMMON /5/ RI+KOUNT+KOUNTS+ICOWLT
    DATA TM2/0/IM7/0/
    DPHES=7.5/57.3
    no 500 M=1.7
    TF (M.NE. 2. AND. M.NE. 7) GO TO 500
    TF (IM2.EQ.1.AND.M.EQ.2) GO TO 500
    IF (IM7.EQ.1.AND.M.EQ.7) GO TO 500
    DELJ=1 .E+06
    00 6 J=1.JW
    DELRR=1.E+06
    IMEIMAX(J)-1
    DO 1 I=1.IM
    DZ=Z(T+1+J)-Z(T+J)
    IF (DZ.LT.1.E-04) GO TO 1
    DZLAM=XPLAM(I.J)-XPLAM(I.J)
    IF(M.EQ.2) DZLAM=XMLAM(I,J)-XMLAM(I+1.J)
    IF (DZLAM.LT.1.F-10) GO TO 1
    DI=D7/D7LAM
    IF(DI) 1.1.7
  7 JF (DI-DELRR) 17.17.1
 17 DELRREDI
    ]S(M.J)=[+1
    IF (M.FO.2) IS (M.J) =I
  1 CONTINUE
    DJ=DFI RR
    IF (DJ-DELJ) 5:5:6
  5 DELJEDJ
    JS=J
  6 CONTINUE
    TF (DFI J.GT.10.
                      ) GO TO 502
    K=IS(M+JS)
    | =-1
    IF (M.EQ.2) L=1
    PHET=XPLAM(K+JS)=XPLAM(K+L+JS)
    IF (M.EQ.2) PHET=XMLAM (K+L.JS) =XMLAM (K.JS)
    IF (ABS (PHET/DPHES) .GT.1.) GO TO 501
    GO TO 502
501 J=JS
    WRITE (6.503)
503 FORMAT(1H1)
    IF (M.EQ.7) GO TO 506
    WRITE (6,505) IS (M,J),J
505 FORMAT(10X; #DOWNRUNNING EMBEDDED SHOCK FOUND AT I = 4.13.6x.
   1#J = #+17)
    60 TO 11
```

 508	FORMAT (10X	8) Is(M,J),J ,+UPRUNNING	EMBEDDED	SHOCK FOU	ND AT I = #. In.6	X •		
	508 FORMAT (10X, #UPRUNNING EMBEDDED SHOCK FOUND AT I = #, 13,6X, 1#J = #,12)							
 11	CONTINUE							
	TF (M.FQ.2)	IM2=1						
	IF (M.EQ.7)	IM7=1						
	no 5ng J=1	• JW						
	15 (M, J) =0							
500	CONTINUE							
	RETURN							
	END							
 					<u> </u>			
 					-			
					•			
 	· · · · · · · · · · · · · · · · · · ·							
 	***		····					
				•				
 						- •		
•								
 					· · · ·	. =		
 		•			- ·			
 						i i		
•								
•								
 						-		

```
SUBROUTINE DERIVN(MM)
 COMMON /IQ/ NUMEXP, ZSAV
 COMMON /WR/ IWRAP
 COMMON /ALLR1/ AN(40,10), TN(40,10), GAMN(40,10), XPLAMN(40,10),
1 yML AMN (40,10)
 COMMON /ALLR2/ PON(40+10)+HQN(40+10)+DQN(40+10)+SIQN(40+10)+
1PHEQN (40.10) .PHION (40.10) .RHOQN (40.10) .GAMON (40.10)
COMMON /A/ X1, THMAX, TH(10) . R , Z(40,10), P(40,10), PHE(40,10),
1 Q(40+10) +SI(40+10) +H(40+10) +PHI(40+10) +RHO(40+10) +GAM(40+10)
 COMMON /B/ PN(40+10) +PHIN(40+10) +RHON(40+10) +HN(40+10) +ZN(40+10)
 COMMON /C/ IMAX(10) , JMAX , ISTART , KOUNTF , KOUNTP
COMMON /D/ UW (40) . VW (40) . WW (40) . XW (40) . YW (40) . THW (40)
 COMMON /E/ UWN(40) . VWN(40) . WWN(40) . XWN(40) . YWN(40) . THWN(40)
 COMMON /H/ ISIM
 COMMON /I/ XJ
 COMMON /J/ QN(40+10) +PHEN(40+10) +SINN(40+10) +XPLAM(40+10) +
1XMLAM(40,10),FP(40),FM(40),A(40,10)
COMMON /K/ RN+DELR
COMMON/M/ IS(7.10)
COMMON/N/ SIG(40,10),PG(40,10),PHEG(40,10),HQ(40,10),PHIG(40,10),
100(40.10),RH00(40.10),GAMQ(40.10)
COMMON / Q/ XCOWL
 COMMON /R/ J.XCN.XC.XXI.JW.INT.ICOWL.RCOWL
COMMON /W/ ISIMEX.IDUMMY.JINT.TOUMMY(40).THWW(2).JD1.JD2
COMMON /TB/ IMAXJ. IS1. IS2. ISLT. ISL2
COMMON /ISW/ JCALC . ISWEEP . XINSP(10) . X2
COMMON /ISW1/ TFR
COMMON /ZNDERV/ DPZN(40) , DUZN(40) . DVZN(40) . DWZN(40)
COMMON /JF/ JFINAL
COMMON /S/ RI+KOUNT+KOUNTS+ICOWIT
COMMON /PL/ DE TH
COMMON /V/ XJ1
COMMON/PS/ZR(40,2), PR(40,2), QR(40,2), HR(40,2), SIR(40,2), RHOR(40,2)
1.PHIR(40.2).PHER(40.2).THR(2).THWR(40)
COMMON/PSS/GAMRR (40)
DO 10 J=1, JMAX
JSHOC=0
IF (J.GT.JCALC) GO TO 10
IF (J.EQ.JCALC.AND.IFR.EQ.1) GO TO 10
JM=J=T
JP=J+1
IF (J.EQ.JCALC) JP=J
IF(J.FQ.1) JM=JP
IF (ISIM.EQ. 1. AND. J.EQ. JMAX) JP ... IM
(U) XAMI= U XAMI
DO 20 I=1 IMAX.
THUI=THWN(I)
IF (UP_NE.JW) THU1=TH(UP)
IF (ISIM.EQ+1.AND.JP.EQ.JMAX) THJ1=TH(JMAX)
IF (J.EQ.JINT. AND. I.LE. IDUMMY) GO TO 20
DZ=ZN(I,J)-ZN(I,JM)
(MU) HT-(U) HT=HTC
DUMZ=1.
IF (XJ1 . GT. 0.) DUMZ=.5*(ZN(I.J).7N(I.JM))
DUMR=1.
IF (XJ.GT.0.) DUMR=R
```

```
nS1=SaRT(DZ#DZ+(DTH#DUMZ#DUMR )##2)
    IF (J.EQ. JINT. AND. I.GT. IDUMMY) RO TO 901
    DZ=ZN(I,JP)-ZN(I,J)
    DTH=THU1-TH(U)
    numZ=1.
    IF(XJ1.GT.0.) DUMZ=.5*(ZN(I,J).ZN(I,JP))
    DS2=SQRT(DZ#DZ+(DTH#DUMZ#DUMR )##2)
    TF(J.EQ.JINT+1) GO TO 900
    D1=DS1/DS2
    D2=D52/DS1
    D3=D1-D2
    GO TO 902
901 D1=0.
    JP=J
    D2=1.
    03 = -1.
    IF(I. [T. [S(3, J) = 1) GO TO 909
    JSHOC=1
    JP=J+T
    IA=IS(1,JP)+I-TS(1,J)
    PAV=(ZN(I+J)-ZSAV+ZN(IA+JP))/2.
    DS2=RAV#3.142/2.
    D1=D51/D52
    n2=DS2/DS1
    D3=D1-D2
909 CONTINUE
    GO TO 902
900 D1=1.
    D2=0.
    D3=1.
    IF (I.LT. IS (3. J) -1) GO TO 910
    JSHOC=2
    TB=IS(1,JM)+I-IS(1,J)
    PAV=(ZN(I+J)+ZN(IB+JM)-ZSAV)/2.
    DS1=PAV#3.142/2.
    D1=D51/D52
    DS=DS2/DS1
    D3=D1-D2
910 CONTINUE
902 CONTINUE
    MmT
    N = T
    IF (JSHOC.EQ.1) M=IA
    TF (JSHOC EQ.2) N=IB
    DTHS=D1+THJ1-D3+TH(J)-D2+TH(JM)
    IF (J.EQ.1) DTHS=TH(2)
    IF (ISIM, EQ. 1. AND, J. EQ. JMAX) DTHS=TH (JMAX) -TH (JMAX-1)
    IF (JSHOC.EQ.1) DTHS=(ZN(I.J)-ZCAV )+3.142/2.+D1+(TH(J)-TH(JM))+D2
    IF (JSHOC.EQ.2) DTHS=(TH(JP)-TH(J))+D1+ZN(I,1)+3.142/2.+D2
    DZ S=D1+Z N(M+JP)-D3+Z N(I+J)-D2+Z N(N+JM)
    IF (JSHOC.EQ.1) DZS=(ZN(I.J)-ZN(I.JM))+D2+(ZN(M.JP)-ZN(I.J)+ZSAV)+D
    TF (JSHOC. EQ. 2) DZS=(ZN(I.J)-ZN(IB,JM).ZSAV) +D2+(ZN(I.JP)-ZN(I.J))+
   101
        S=D1#P
                N(M,JP)-D3#P
    DP
                               N(I,J)-D2+P
                                             N(N,JM)
    DH S=D1#H N(M,JP)-D3#H
                                             (ML.N)N
                               N(I.J)-D2+H
```

```
S=D1#Q N(M+JP) =D3#Q N(I+J) =D2#Q
                                              N(N_{\bullet},JM)
    DPHES=D1 *PHEN (M+JP) -D3 *PHEN (I+J) -D2 *PHEN (N+ jm)
    DPHIS=D1*PHIN(M+JP)=D3*PHIN(I+J)=D2*PHIN(N+JM)
    DRHOS=D1+RHON(M, JP) -D3+RHON(I, J) -D2+RHON(N, JM)
    DGAMS=D1 +GAMN (M. JP) -D3+GAMN (I, J) -D2+GAMN (N. JM)
    DSI S=D1*SINN(M+JP)=D3*SINN(I+J)=D2*SINN(N+JM)
    TF(J_EQ.1) DSI SESINN(I.2)
    JF(ISTM.EQ.1.AND.J.EQ.JMAX) DST S==SINN(I.JMAX=1)
 40 IF(I.EQ.1) GO TO 50
    IF (I.EQ.IMAXJ) GO TO 50
    IF (ICOWL.NE.1) GO TO 400
    IF(I.LT.IS(1.J)=MM.OR. I.GT.IS(1.J)) GO TO 400
    DP ZZN=0.
    DH ZN=0.
        ZN=0.
    DQ
    DSI ZN=0.
    DPHEZN=0.
    DPHIZN=0.
    DRHOZN=0.
    DGAMZN=0.
    GO TO 60
400 CONTINUE
    IF(I.EQ.IS(1.J).OR.I.EQ.IS(1.J)-1) GO TO 50
    IF(I.EQ.IS(3,J).OR.I.EQ.IS(3,J)-1) GO TO 50
    TP= I+1
    TM=I-1
    DZ1=ZN(IP +J)-ZN(I+J)
    DZ2=ZN(I+J)-ZN(IM +J)
    D1=DZ1/DZ2
    D2=DZ2/DZ1
    D3=D1_D2
    DIPD2=D1+D2
               = (DÎ#P N(IP .J)-D34P
    DP ZZN
                                        N(I,J)-D2+P
                                                      N(IM +J))/DIPD2
    DH
               ≔ (Dĵ#H
                        N(IP ,J)-n34H
        ZN
                                        N(I.J)-D2+H N(IM .J))/D1PD2
                       N(IP , J) -D340
    DQ
                = (D1 #Q
        7N
                                        N(I,J)-DZ#Q N(IM ,J))/D1PD2
    DPHEZN
                =(Di*PHEN(IP .J)-D3&PHEN(I.J)-D2&PHEN(IM .J))/DiPD2
                SQCIO\((U. MI)NIHQ#SQ-(U.I)NIHQ#EQ-(U.))/DIPD2
    DPHIZN
    DRHOZN
                =(D1+RHON(IP ,J)-D3+RHON(I,J)-D2+RHON(IM ,J))/D1PD2
               = (D1+GAMN(IP +J)-D3+GAMN(I.J)-D2+GAMN(IM +J))/D1PD2
    DGAMZN
    DSI ZN
               ==(D1*SINN(IP ,J)=D36SINN(I.J)=D26SINN(IM , i))/D1PD2
    GO TO 60
 50 CONTINUE
    I = -1
    IF(I.FQ.IMAXJ) GO TO 100
    DO 421 M=1.7
    TF ( (M/2) +2 . NE . M . AND . I . EQ . IS (M . J) -1) GO TO 100
    TF((M/2) #2.EQ.M.AND.I.EQ.IS(M, 1)) GO TO 100
421 CONTINUE
    ( = 1
100 TL=I+L
    I2L=I+2*L
    DZ=ZN(I,J)-ZN(TL ,J)
    DZL=ZN(IL +J)-ZN(IZL
    IF (ABS (DZL) .GT.1.E-10) GO TO 5000
    DEL=0.
    60 TO 5001
```

```
5000 DEL=D7/DZL
5001 DELLE-DEL #DEL
     DELQ=1.+DEL
    DELL=DELO#DELQ
     DELE=(1.+2. +DE()
     DPZZN
               =:(DELLE*P
                          N(I2L
                                  J) -DELL#P
                                              N(IL ,J) +DELE#P
                                                               N(I,J))D
    17/DELO
    DH ZN
               # (DELLE +H
                          N(I2L
                                  JI-DELLOH N(IL J)+DELEHH
                                                               N(I+J))/D
    17/DELO
     DQ ZN
               = (DELLE#Q
                          N(I2L
                                  .J) = DELL#O N(IL .J) + DELE#O
                                                               N(I+J))/D
    17/DELO
    DPHEZN
                =(DELLE#PHEN(I2L +J)=DELL#PHEN(IL +J)+DELE#PHEN(I+J))/D
    17/DELO
     DPHIZN
                =(DELLE*PHIN(I2L +J)=DELL*PHIN(IL +J)+DELE*PHIN(I+J))/D
    17/DELO
                = (DELLE*RHON(IZL ,J) = DELL*#HON(IL ,J) + DELE#RHON(I,J))/D
     DRHOZN
    17/DEL O
    DGAMTN
                =(DELLE#GAMN(IZL .J)_DELL#GAMN(IL .J)+DELE#GAMN(I.J))/D
    17/DELO
               = (DELLE+SINN(I2L ,J) _DELL+SINN(IL ,J) +DELE+SINN(I,J))/D
     DSIZN
    17/DELO
  60 CONTINUE
        QN(I,J)=(DP
                     S-DP ZZN
                                   #P75) /DTHS
        HQ) = (L.I) NQ
                     S-DH
                           ŽΝ
                                   *nzs)/DTHS
        Qq (I.J)=(DQ
                     S-DQ
                           ZN
                                   #HZS)/DTHS
     SI QN(I+J) = (DST S-DSI ZN
                                   #n7S)/DTHS
     PHEQN(I+J) = (DPHES+DPHEZN
                                   #n7S)/DTHS
     PHIQN(I,J)=(DPHIS-DPHIZN
                                   #D7S) /DTHS
    RHOON (I.J) = (DRHOS-DRHOZN
                                  ANZS) /DTHS
     GAMON (I . J) = (DGAMS-DGAMZN
                                   #nZS)/DTHS
  20 CONTINUE
  10 CONTINUE
     TF (IWRAP.EQ.1) 00 TO 955
     IF (ICOWL.EQ. 1. OR. ICOWLT.EQ. 0) GO TO 955
     J2=JINT
     I+TMIL=EL
     J4=JINT+2
     IDU=IDUMMY+1
     A1=ZSAV-ZN(IDU.J2)
     A2=TH(J4)=TH(J3)
     A1A2=A1/A2
     12/50=1454
     A1PAZEA1+A2
    412=41A2-A2A1
    UT=QN(IDU+J2) #COS(PHEN(IDU+J2))
     VT==QM (IDU+J2) #SIN (PHEN (IDU,J2))
     ((SL.UGI) NNIZ) WTAN (SINN (IDU.JZ))
     QTESORT (UT#UT+WT+WT)
    PHETSATAN (WT/UT)
     SIT=ATAN(VT/QT)
        QN(1,J3)=(PN (1,J4)*A1A2-PN (1,J3)*A12-PN (IDU,J2)*A2A1)/A1PA2
       4A2A1)/A1PA2
     SI QN(1,J3)=(SINN(1,J4)*A1A2+SINN(1,J3)*A12-SI T
                                                            #AZA1)/Alpaz
     PHEQN(1, J3) = (PHEN(1, J4) #A1A2-PHEN(1, J3) #A12-PHET
                                                            #A2A1)/A1PA2
    PHIQN(1,J3)=(PHIN(1,J4) #A1A2-PHIN(1,J3) #A12-PHIN(IDU,J2) #A2A1)/A1P
```

```
142
     RHOGN (1, J3) = (RHON (1, J4) + A1A2-RHON (1, J3) + A12-RHON (IDU, J2) + A2A1) / A1P
    142
     GAMON(1,J3)=(GAMN(1,J4) #A1A2-GAMN(1,J3) #A12-GAMN(IDU,J2) #A2A1)/A1P
    142
     (I_SL)XAMI=SLXAMI
     DO 7979 I=1. IMAXJ2
         R(\uparrow \bullet 1) = Z \qquad N(I \bullet J 2 - 1)
         R(T \cdot 1) = P
                    N(I \cdot J2 - 1)
         R(T + 1) = Q
                    N(I+J2-1)
         R(\tau \cdot 1) = H
                    N(I,J2-1)
     SI R(I+1) = SINN(I+J2-1)
     PHIR(T+1)=PHIN(I+J2-1)
     PHER ([ +1) = PHEN ( 1 + J2-1 )
     RHOR(T+1)=RHON(I+J)=1)
7979 CONTINUE
     DO 7878 T=1.IDUMMY
     DO 3535 IJ=1.IMAXJ2
     GAMRR(IJ)=THWR(IJ)
3535 THWR (TJ) = GAMN (TJ. J2-1)
     CALL TBLDUM(ZN(I.J2),Pl,SI1,H1,PHI1,QT,PHE1,RH01,GAM1,
                                                                         1.IMAX(
    1.121.23
     DO 3536 1J=1.1MAXJ2
3536 THWR(TJ)=GAMRR(IJ)
     CALL TBLDUM(ZN(I.J2),P2,SI2,H2,PHI2,Q2,PHE2,RH02,GAM2,
                                                                         2. IMAX(
    1,12) ,2)
     \mathsf{D1} = \mathsf{TH}(\mathsf{J2}) + \mathsf{TH}(\mathsf{J2} - \mathsf{I})
                    -]H(J2)
     D2=THR(2)
     D1D2=D1/D2
     n201=n2/p1
     D12=D1D2-D2D1
     D1PD2=D1+D2
         QN(I,J2) = (D\overline{I}D2*P
                              2-D12+P
                                        N(I+J2)-D2D1+p
                                                          1)/D1PD2
         H + SOID = (SL, I) ND
                              2-D12#H
                                        M(I+J2)-D2D1+H 1)/D1PD2
         QN(I.J2) = (D1D2+Q
                                        M(I.J2)_D2D1#0 1)/D1PD2
                              2-D12+Q
     SI ON(I.J2) = (D1D2*SI 2-D12*SINN(I.J2) -D2D1*SI 1)/D1PD2
     SQ4IQV(I:13)=(D1DS+PHIS-D1S+PHIN(I:3S)-D2D1+PHI1)/D1PD2
     PHEQN(I, J2) = (D1D2+PHE2-D12+PHEN(I, J2) -D2D1+PHE1) /D1PD2
     RHOGN (I, J2) = (DjD2*RHO2-D12*RHON (I, J2) -D2D1*RHO1)/D1PD2
     GAMON(I, J2) = (D1D2+GAM2-D12+GAMN(I, J2) -D2D1+GAM1)/D1pD2
7878 CONTINUE
 955 CONTINUE
     IF (ISIM.EQ.1) RETURN
     IMX1=TMAX(JW)-1
     DO 1234 I=2, IMV1
     IF (I.EQ.IS(3.JW)=1.0R.I.EQ.IS(3.JW).OP.I.EQ.IS(1.JW)=1.0R.I.EQ.
    175(1,JW)) GO TO 1234
     TSI=TAN(SINN(I.JMAX))
     CX# (XAMU) HT=UHT
     STH=STN(THJ)
     CTH=COS(THJ)
     CPHEP=COS (PHEN (I.JMAX))
     UP1=QN(I+JMAX) + (CPHEP+CTH-TSI+STH)
     VP1=QN(I.JMAX) + (CPHEP+STH+TSI+TH)
     WP1=QN(T+JMAX)+SIN(PHEN(I+JMAX))
     YDUM=THWN(I)-THWN(I-1)
```

```
ZDUM=1.
     IF (XJ1 . GT. 0.) 7DUM= (ZN(I.JW)+ZN(I-1,JW))/2.
     IF (XJ1.EQ.O.) YDUM=YWN(I)-YWN(f-1)
     DS1=(ZN(I,JW)-ZN(I-1,JW)) ##2+(VDUM+ZDUM) ##2
     DS1=SORT (DS1)
     YDUM=THWN(I+1)=THWN(I)
     70UM=1 .
     IF (XJ] • GT • 0 • ) ZDUM= (ZN (I+1 • JW) • ZN (I • JW) ) /2.
     IF (XJ1 . EQ. 0.) YDUM=YWN(I+1) -YWN(I)
     DS2=(ZN(I+1+JW)-ZN(I+JW))++2+(VDUM+ZDUM)++2
     DS2=50RT (DS2)
     D1=DS1/DS2
     D2=D52/D51
     D3=D1-D2
     (XAML) HT-(I) NWHT=YO
     Y1=TH(J)
     IF (XJ.GT.O.) YI=PN*SIN(Y1)
     IF (XJ.GT.O.) DY=YWN(I)-Y1
     DUY=(UWN(I)=UPI)/DY
     DVY=(VWN(I)-VP1)/DY
     DWY=(WWN(I)-WPI)/DY
        Y=(P N(I+JW)=P N(I+JMAX))/DY
     Y3=THWN(I+1)
     IF (XJ_GT.0.) Y3=YWN(I+1)
     YZ=THWN(I)
     IF (XJ.GT.O.) YZ=YWN(I)
     Y1=THWN(T=1)
     IF (XJ.GT.0.) Yj=YWN(I-1)
     DYS=D1 *Y3-D3*Y2-D2*Y1
         S=D1+Z
     DZ
                  N(I+1.JW) = D3#Z
                                   N(T.JW)-D2#Z
                                                  N(I-1.JW)
     nP
         S=D1 #P
                  N(I+1,JW)-D3#P
                                   N(T, JW) -D2#P
                                                  N(I-1+JW)
     DUS=D1*UWN(I+1)-D3*UWN(I)-D2*UWN(I-1)
     DVS=D1*VWN(I+1)-D3*VWN(I)-D2*VWN(I-1)
     DWS=D; +WWN(I+1)=D3+WWN(I)=D2+WWN(I=1)
         ZN(I)
                 =(DP S=DP
                              Y*DYS) /DZS
     DUZN(T)=(DUS-DUY+DYS)/DZS
     DVZN(I)=(DVS-DVY+DYS)/DZS
     DWZN(I)=(DWS-DWY+DYS)/DZS
1234 CONTINUE
     RETURN
     END
```

```
SUBPOUTINE WALL (RN+ICOWL+IIT+TITT)
    COMMON /AV/ AAV+BAV
    COMMON /ALLR1/ YN(40+10)+TN(40+10)+GAMN(40+10)+XPLAMN(40+10)+
   1xMLAMN(40,10)
    COMMON /ZNDERV/ DPZN(40) DUZN(40) DVZN(40) DVZN(40)
    COMMON /J/ QN(40+10) +PHEN(40+16)+SINN(40+10)+XPLAM(40+10)+
   1XMLAM(40,10),FP(40),FM(40),A(40,10)
    COMMON /IVY/ IVY.KCORR, IAV
    COMMON /TEM/ T(40,10)
   COMMON /A/ X1.THMAX.TH(10).R .Z(40.10).P(40.10).PHE(40.10).
1 Q(40.10).SI(40.10).H(40.10).PHI(40.10).RHO(40.10).GAM(40.10).
    COMMON /B/ PN(40+10)+PHIN(40+1n)+RHON(40+10)+HN(40+10)+ZN(40+10)
    COMMON /C/ IMAX(10) + JMAX, ISTART, KOUNTF + KOUNTP
    COMMON /D/ UW (40) . VW (40) . WW (40) . XW (40) . YW (40) . THW (40)
    COMMON /E/ UWN(40) . VWN(40) . WWN(40) . XWN(40) . YWN(40) . THWN(40)
    COMMON/F/ XPW(40)
    COMMON /I/ XJ
    COMMON/M/ IS(7.10)
    COMMON /S/ RI, KOUNT, KOUNTS, ICOWLT
    COMMON/T/ PP(40.2).ZP(40.2).QP(40.2).SIP(40.2).PHEP(40.2).
   1HP(40,2),RHOP(40,2),PHIP(40,2),GAMP(40,2),AP(40,2),THP(40,2),
   2UP (40.2) . VP (40.2) . WP (40.2)
    COMMON /U/ ERZ7Z
    COMMON/V/XJI
    COMMON /W/ ISIMEX, IDUMMY, JINT, TOUMMY (40), THWW (2), JD1, JD2
    COMMON /SA/ XJTS
    COMMON /FWA/ ISOP
    DIMENSION XPLN(40) BN(40)
    JW=JMAX+1
    IF (JW.GT.JINT) XJ1=0.
    MMAX=TMAX (JMAX)
    DO 5 J=JMAX.JW
    1≖لل
    IF (J.FQ.JW) JJES
    I I = 2
    no lo I=1, MMAX
    IF (ICOWL.EQ. 1. AND. I.GT. IITT. AND. I.LT. IIT) GO TO 10
    DO 89 M=1.7
    IF(IS(M.JMAX).EQ.O) GO TO 89
    TTEST=IS(M+J) -1
    IF ((M/2) +2 . EQ.M) ITEST=IS (M.J)
 92 IF (I.NE.ITEST. AND.I.NE.ITEST+1) GO TO 89
    TI=I
    PATE1.
    GO TO 200
89 CONTINUE
    IF (I.FQ.1.OR.I.EQ.MMAX)GO TO TO
    IF(J.EQ.JW) ZN(I,J)=ZN(I,JMAX)
 12 IF(ZN(I,J).LE.Z(II.J)) GO TO 15
    II=II.1
    GO TO 12
15 RAT=(ZN(I+J)-Z(II-1+J))/(Z(II+J)-Z(II-1+J))
 16 IF (I.FQ.1) RAT=0.
    IF (I.EQ.MMAX) RAT=1.
    TF(I.FQ.MMAX) TI=I
200 IF (XJ1.EQ.0.)
```

```
1\times PW(I) = XW(II-I) + RAT*(XW(II) - XW(II-I))
     P P(T+JJ)=P (II-1+J)+RAT+(P
                                       (II \bullet J) = P
                                                  (IT-1.J)
        P(++JJ)=Z
                    (II-1+J)+RAT+(7
                                       (II \cdot J) - Z
                                                  (TT-1-J))
        P(T*JJ)=Q
                    (II-II) +TAT+(a
                                       (II * J) = Q
                                                  (IT=1,J))
     SI P(I+JJ)=SI (II-1+J)+RAT+(SI (II+J)_SI (II-1+J))
     PHEP(T+JJ)=PHE(II=1+J)+RAT+(PHF(II+J)=PHE(IT=1+J))
        P(I*JJ)=H (II*I*J)+RAT*(H (II*J)=H
                                                  (IT=1.J))
     RHOP([+JJ] =RHO(II=1+J)+RAT+(RHO(II+J)=RHO(II-1+J))
     PHIP(TOJJ) =PHI(II-10J) +RATH(PHT(II0J) -PHI(IT-10J))
              =FT(PP(I,JJ),PHIP(I,JJ),PP(I,JJ))
     GAMP (T+JJ) = GAM (TP+PP(I+JJ) +PHTP(I+JJ))
     AP(I,J)=SQRT(PP(I,JJ)#GAMP(I,J)/RHOP(I,JJ))
     iF(JJ.Eo.1) THP(J.JJ)=TH(J)
     IF (JJ.EQ.2) THP(I.JJ)=THW(II-1)+RAT+(THW(II)-THW(II-1))
     IF(XJį̃•EQ•1••AND•JJ•EQ•2) CALL SWALLį(THP(I•JJ)•R•ZP(į̃•JJ)•FX•FŽ)
     TSIP=TAN(SIP(I.JJ))
     LX# (LC, I) 9HT=LHT
     STH=STN(THJ
     CTH=CnS(THJ
     CPHEP=COS (PHEP (I,JJ))
     UP(I.JJ) =QP(I.JJ) + (CPHEP+CTH-TSIP+STH)
     VP(I+JJ)=QP(I+JJ)*(CPHEP*STH+TSIP*CTH)
     WP(I.JJ)=QP(I.JJ)+SIN(PHEP(I.Jj))
  10 CONTINUE
   5 CONTINUE
6262 CONTINUE
     IQ=MMAX-1
     DO 50 I=5.10
     KIL=1
     A93=1.
     B93=0.
     IF (BAV. GT. 0.) A93=.5
     IF (BAV+GT.0.) R93m.5
     (WL. I) NG=TG
     TF(BO3.EQ. 0.) XPLN(I) = XPLAMN(I .JW)
     IF (ICOWL_EQ.1.AND.I.GT.IITT.AND.I.LT.JIT) GO TO 20
     DO 189 M=1.7
     IF (IS (M.JMAX). FQ.O) GO TO 189
     ITEST=IS(M.J)=1
     IF((M/2) #2 • EQ • M) ITEST=IS(M • J)
 192 IF (I.FQ. ITEST. OR. I.EQ. ITEST+1) GO TO 20
 189 CONTINUE
     IF (XJ] .EQ.0.)
    1CALL SWALL (R.ZN(I.JW).XPW(I).YPW.FX.F7)
     IF (XJI . EQ. 1.) CALL SWALLI (THWN (I) . RN. ZN (I . JW) . FX. FZ)
     IF (XJ.EQ.0.) GO TO 2
     THWQ=ATAN(FX)
     THPW=YPW/XPW(I)
     XWN(I)=XPW(I)+(RN-R)+COS(THWQ)/COS(THWQ-THPW)
     GO TO 4
   2 IF (XJ] .EQ.1.) 60 TO 9
     XWN(I) = XPW(I) + (RN-R)
   4 CONTINUE
     CALL SWALL (RN+ZN(I+JW)+XWN(I)+VWN(I)+FX+FZ)
     IF (XJ.EQ.0.) GO TO 8
     THWN(T)=ATAN(YWN(I)/XWN(I))
```

```
60 TO 9
 B THWN(T)=YWN(I)
 9 CONTINUE
   PATE.E
   T=1
   THA=TH(JMAX)+RAT+(THP(I,2)=TH(JMAX))
      A=()
           P(I+1)+RAT#(U
                           P(I \bullet 2) = ii P(I \bullet \overline{1})
           P(I+1)+RAT#(V
      ABV
                            P(1.2)-V
                                      P([+1))
           P(I+1)+RAT+(H
      A=H
                            P(1,2)-4
                                      P([,1))
   Þ
      AEP
           P(I+1)+RAT#(P
                            P(1.2)-P
                                      P([.])
           P(I+1)+RAT#(W
      A=W
                            P(1,2)-W
                                      P([,1))
   RHOA = RHOP(I + I) + RAT + (RHOP(I + Z) - RHOP(I + \overline{I}))
   LX4AHTEXAHT
   XA=R+COS (THAX)
   YAER#SIN(THAX)+THA#(1.-XJ)
   PHIAmpHIP(I+1)+RAT*(PHIP(I+2)-PHIP(I+1))
   TA=FT(PA,PHIA,HA)
   GAMA=FGAM(TA,PA,PHIA)
   AA=SORT (GAMA*PA/RHOA)
   TAUA=VA/UA
   UA2=UA#UA
   AA2=AA#AA
   VA2=VA#VA
   RETA=SQRT((UA2
                    SAA)/( SAV+
                                   )-1.)
   ALAM=(UA+VA+AA2 +BETA)/(UA2 -AA2 )
   DUMP=A93+ALAM+B93+XPLN(I)
   IF (XJ.EQ.0.) Gn TO 32
   THAT=YWN(I)=(XWN(I)=XA)+DUMP
   THAT = ASIN (THAT /R)
   60 TO 33
32 IF (XJ1 .EQ.0.)
  1THAT=YWN(I)-(XWN(I)-XA)+DUMP
   IF (XJ] •EQ •1 •) THAT#THWN(I) =DUMP + (RN=R)/ZN(I •JW)
33 CONTINUE
   EP=ARS(1.-THAT/THA)
   IF (EP_LT.1.E-04) GO TO 30
   THATTHAT
   ((XAML)HT-(S.I) 9HT)/((XAML)HT-AHT)=TAR
   TT=IT+1
   TF(IT.GT.15)CALL ERROR(33)
   GO TO 25
30 RATZ=(THA-TH(JMAX))/(THP(I+1.2)-TH(JMAX))
   RATI=(THA-TH(JMAX))/(THP(I-1,2)-TH(JMAX))
   D2=ZP(I+1+1)-ZP(I+1)
   D1=ZP(I,1)=ZP(I-1,1)
   UZ=UP(I+1+1)+RAT2+(UP(I+1+2)-UP(I+1+1))
   V2=VP(I+1+1)+RAT2+(VP(I+1+2)-VP(I+1+1))
   W2=WP(I+1+1)+RAT2*(WP(I+1+2)-Wp(I+1+1))
   P2=PP(I+1,1)+RAT2+(PP(I+1,2)=Pp(I+1,1))
   U1=UP(I=1+1)+RAT1*(UP(I=1+2)=UP(I=1+1))
   V1=VP(I=1+1)+RAT1*(VP(I=1+2)=VP(I=1+1))
   W1=WP(I-1+1)+RAT1+(WP(I-1+2)-WP(I-1+1))
   P1=PP(I=1,1)+RAT1*(PP(I=1,2)=PP(I=1,1))
   D1D2=D1/D2
   D2D1=D2/D1
   D1PD2=D1+D2
```

```
D12=D1D2-D2D1
                                                                                                    -!11 +D2 D1)/(D1PD2)
            DU=(U2*D1 D2-U4+D12
            DV=(V2#D1 D2-VA+D12
                                                                                                    -V1#02 D1)/(D1PD2)
           DM=(MS+DI DS-MV+DIS
                                                                                                    -W14D2 D1)/(D1PD2)
           DP=(P2*D1 D2-PA+D12
                                                                                                    -P1#D2 D1)/(D1PD2)
            IF (B93.EQ.0.) BN(I) =BETA
            422=49<sup>3</sup>4(RHOA)4878ETA)48934(RHON(I + JW)4UWA(I)482/BN(I))
            FPA=ALAM#RHOA#WA#DU-RHOA#WA#DV_
         1 (ALAM-VA/UA) # (WA#DP+AA2 #RHDA#DW) #UA/(AA2
            FPA=FPA/BETA
            IF (BAV.EQ. 0.) FPNN=FPA
            IF (BAV.EQ.0.) GO TO 362
           RN(I) = SORT((UWN(I) ++2+VWN(I) ++2)/AN(I.JW) ++2-1.)
            (S^{++}(WL \cdot I) \wedge A = S^{++}(I) \wedge W(I)) \setminus ((I) \wedge B + (I) \wedge A + (I) \wedge A + (I) \wedge W(I) = (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A + (I) \wedge A 
           FPNN=xPLN(I) #RHON(I,JW) #WWN(I) #DUZN(I) -RHON(I,JW) #WWN(I) #DVZN(I) -(
         1XPLN(T)-VWN
         1(I)/UWN(I)) + (WWN(I) + DPZN(I)
                                                                                                        NWU# ((I) NZWO# (WL.I) NOHO#S## (WL.I) NA.
         1(I)/AN(I.JW)/AN(I.JW)/BN(I)
362 CONTINUE
            A] =AAV#FPA+BAV#FPNN
            TT=1
            WOU=WP(I.2)/UP(I.2)
   35 VOU=FX+WOU#FZ
            IF (XJI +EQ+1+) VOU=VOU#ZN(I+JW)
            ZSL=ZP(I.2)
           USL=UP(1.2)
           VSL=VP([,2)
            WSL=WP(I.2)
            TAUC=VOU
            TTT=1
  60 II=I
            IF(XJ1.EQ.1.) GO TO 64
            IF (XJ.EQ.0.) GO TO 62
            THWQ=ATAN(FX)
            XSL=XWN(I) = (RN=R) +COS(THWQ)/COS(THWQ-THWN(I))
            GO TO 63
  62 XSL=XW(I)
  63 CONTINUE
            CALL SWALL (R.ZSL.XSL.YSL.FXSL.FZSL)
  64 IF (XJI . EQ. 1.) CALL SWALLI (THSL.R.ZSL.FXSL.FZSL)
            DUM=.5*(WOU+WSL/USL)
            IF (DUM+GT+0+) | TI#II+1
            IF (XJ] . EQ. 0.)
         17SLT=7N(I,JW)-DUM+(XWN(I)-XSL)
            IF (XJ1 ·GT · O · ) ZSLT=ZN(I · JW) - (RN-R) +DUM
           PAT=(ZSLT-ZP(II-1.2))/(ZP(II.2)-ZP(II-1.2))
            USL=UP(II=1,2),RAT+(UP(II,2)=UP(II=1,2))
            VSL=VP(II=1+2)+RAT#(VP(II+2)+VP(II=1+2 ))
           WSL=Wp(II-1.2)+RAT+(WP(II.2)-Wp(II-1.2 ))
           EP=ABS((ZSLT-ZSL)/(ZP(II,2)-ZP(II-1,2)))
            IF (EP.LT.ERZZZ) GO TO 40
            ZSL=ZSLT
            TTT=ITT+1
            IF (ITT.GT.10) CALL ERROR (40)
           GO TO 60
  40 IF (XJ1 . EQ. 0.) PN(I.JW) =PA+A1 +(XWN(I)-XA)-A22+(TAUC-TAUA)
```

```
IF (XJ1 • GT • 0 • ) PN (I • JW) = PA + (A1 + (RN=R) +
                                             422A
                                                     (TAUC-TAUA))
   PSL = PP (II-1.2) + RAT + (PP (II.2) = PP (II-1.2))
   HSL=HP(II-1,2),RAT+(HP(II,2)_HP(II-1,2))
   RHOSL=RHOP(II-1.2)+RAT+(RHOP(II.2)-RHOP(II-1.2))
   PHISE=PHIP(II-1.2)+RAT+(PHIP(II.2)-PHIP(II-1.2))
   TSL=FT(PSL,PHISL,HSL)
   GAMSL=FGAM(TSL.PSL,PHISL)
   PHIN(I) WIHE
   RHON(T+JW)=RHOSL+(PN(I+JW)/PSL)++(1./GAMSL)
   VVSL=USL##2+VSL##2+WSL##2
   VVC= VVSL+2.+GAMSL/(GAMSL-1.)+(PSL/RHOSL-PN(I.JW)/RHON(I.JW))
   HTSL=HSL+.54VVCL
   HN(I,JW)=HTSL-_5+VVC
   UWN(I)=SORT(VVC/(I.+TAUC++2+WOH++2))
   VWN(T)=UWN(1)+TAUC
   WWN(I) =UWN(I) +WOU
   IF (XJ1 . GT . 0 . ) THD=THSL
   IF (XJ.EQ.0..AND.XJ1.EQ.0.) THD=YSL
   IF (XJ.GT.O.) THD=ATAN(YSL/XSL)
   RAT=(THD=TH(JMAX))/(THP(1,2)+TH(JMAX))
   PD=PP(I_{1})+RAT+(PP(I_{2})-PP(I_{1}))
           P(I+1)+RAT+(W P(I+2)-W
      D≖₩
           P(I,1)+RAT*(U P(I,2)-11
      D=II
                                      P([,1))
      Dev
           P([.1))
   RHOD=RHOP(I+1)+RAT*(RHOP(I+2)=DHOP(I+1))
   OD=SORT (UD+UD+VD+VD)
   (X_{\Delta}MU)HT=(S_{\bullet}I+I)QHT)/(X_{\Delta}MU)HT=QHT)=STAQ
   RATI=(THD=TH(JMAX))/(THP(I=1.2)-TH(JMAX))
   W2=WP(I+1+1)+RAT2*(WP(I+1+2)-WP(I+1+1))
   P2=PP(I+1+1)+RAT2#(PP(I+1+2)-PP(I+1+1))
   W1=WP(I=1+1)+RAT1+(WP(I=1+2)-WP(I=1+1))
   P1=PP(I=1+1)+RAT1*(PP(I=1+2)=PP(I=1+1))
   DM=(MS+D1 DS-MD+D1S
                                 -- w1 +D2 D1)/(D1 PD2)
   DP=(P2*D1 D2-P0*D12
                               -P1+D2 D1)/(D1PD2)
   IF (XJ1.EQ.0.)
  1nels=5QRT((XWN(I)-XSL) ++2+(YWN(I)-YSL) ++2)
   IF (XJ1.6T.0.) DELS=SQRT(ZN(I.JW) ##2#(THWN(I) =THD) ##2+(RN=R) ##2)
   VDZN=n.
   ONW=50RT (UWN (I) ##2+VWN (I) ##2)
   IF (XJ1 • GT • 0 • ) VDZN= (VD*+2*A93+VWN(I) **2*B93) *DELS/ZN(j • JW)
   WTEST=WD+VDZN
   DWT=-((DP/RHOD/QD+WD*DW/QD)*AAV+(DPZN(I)
                                                /RHON(I.JW)/QNW)
  1#BAV) #DELS
   WTEST=WTEST+DWT
  ERR=WWN(I)-WTEST
   TTEITAL
   EP=ABS(WWN(I)-WTEST)/UW(I)
   IF (EP.LT.1.E-10) GO TO 3611
   IF(IT_GT.2) GO TO 80
   WOU1 = WOU
   WOU=1.01 #WOU
   IF (WOU-LT-1-E-6) WOU=,001
   FR1=ERR
   60 TO 35
BO WOUN=WOU1-ER1+(WOU-WOU1)/(ERR-FR1)
   FR]=FRR
```

```
WOU1=WOU
     WOU=WOUN
     TF(IT_GT.10) CALL ERROR(80)
     GO TO 35
3611 CONTINUE
     ET=ABS(1.-PT/PN(I .JW))
     ((WL. I)NH.(WL. I)NIHA.(WL. I)NA)TAE(WL. I)NT
     GAMN(I .JW)=FGAM(TN(I .JW),PN(I .JW),PHIN(I .JW))
     AN(I .JW)=SQRT(GAMN(I .JW)*PN(T .JW)/RHON(I .JW))
     UWS=UWN(I) #UWN(I)
     VW2=VWN(I) #VWN(I)
     BN=SQRT((UW2+VW2)/ AN(I.JW) ++2-1.)
     (C++ (WL.I) NA-SWU) \ (N8+c++ (WL.I) NA+(I) NWV+(I) NWU) = NJAX
     IF (IVY.EQ. 0. OR. ET. LT. 1. E-04) GO TO 20
     KIL=KTL+1
     IF (KI L.GT.10) GO TO 1493
     A93=.5
     B93=.5
     PT=PN(I ,JW)
     60 TO 9
1493 WRITE (6.1393)
1393 FORMAT (* AVERAGING PROCESS DOES NOT CONVERGE IN WALL *)
     WRITE (6, 4949) KOUNT, I, AAV, A93
4949 FORMAT (+ KOUNT=+15.5X+1=+15.5X+AAV=+E13.5.5x+A93=+E13.5)
     STOP
  20 CONTINUE
     IDUM=MMAX=1
     ZDUMI = ZN(1+JMAX)
     ZDUM2=ZN (MMAX, JMAX)
     TF (ICOWLT.EQ.O)
    1CALL CORNER (1, RN, THWN (2), ZDUM1)
     IF (ISOP. NE. 0) GO TO 250
     IF (ICOWL.NE.1) THOUM=THWN (IDUM)
     IF (ICOWL.EQ.1) THOUM=TH (JMAX)
     CALL CORNER (IMAX (JW) , RN, THOUM
                                          .ZDIIM2)
 250 CONTINUE
     XJ1=XJ1S
     IMAXJ=IMAX(JW)
     DO 7502 I=1.IMAXJ
     LX4(I)NWHTEVNWHT
                 PHEN (I . JW) =ATAN (WWN (I) / (UWN (I) +COS (THWNX ) +VWN (I) +
    1SIN(THWNX
                  VDUM=VWN(I) +COS(THWNX ) +UWN(I) +SIN(THWNX
                 QN(T+JW) = SQRT(UWN(I) ++2+VWN(I) ++3+WWN(I) ++3+VDUM++2)
                 ((WL+I)MQ\mUDV)MATA=(WL+I)MNIZ
7502 CONTINUE
     RETURN
     END
```

```
SUBPOUTINE SWALLI (TH, X1, Z1, FX, FZ)
 COMMON /G/ AT (3.9) . AZ (3.9) . A3 (3.9) . RRT (3) . RRZ (3) . RR3 (3)
1.NUML WS.NUMUWS.NUMSWS
 L = 1
 XTT=1.E+6
 IF(L.LT.NUMSWS) XTT=RR3(L+1)
 IF(X1.GF.XTT) L=L+1
IF(L.LT.NUMSWS) XTT=RR3(L+1)
 IF (X) .GE .XTT . AND .L .LT . NUMSWS) | =L+1
 7=71
 77=747
 XX=XXX
 Y=A3(L+1) *XX*ZZ+A3(L+2) *XX*Z+A3(L+3) *X*ZZ+A3(L+4) *XX+A3(L+5) *ZZ+
1A3(L,6) +x+Z+A3(L,7) +X+A3(L,8) +7+A3(L,9)
 THEY
FX=2. #A3(L+1) #x+ZZ+2. #A3(L+2) #y+Z+A3(L+3) #Z7+2. #A3(L+4) #X+A3(L+6)
1+Z+A3(L+7)
FZ=2. #A3(L+1) #XX#Z+A3(L+2) #XX+5. #A3(L,3) #X#7+2. #A3(L+5) #Z
1+A3(L,6) *X+A3(|,8)
RETURN
 END
```

```
SUBPOUTINE BWALL (R1+TH1+Z+FR1+FT1)
 COMMON /G/ A1(3.9), A2(3,9), A3(3,9), RRI(3), RR2(3), RR3(3)
1.NUMLWS.NUMUWS.NUMSWS
 COMMON /I/ XJ
 COMMON /R/ J,XCN,XC,XXI,JW,INT,ICOWL,PCOWL
 COMMON /V/ XJ1
 COMMON /ISW/ JCALC. ISWEEP. XINSP(10) . X2
 1 = 1
 RTT=1.E+06
 LX#1HT=XHT
 RERI # COS (THX)
 R=R-XTNSP(J)
 IF(XJ.EQ.0.) T=TH1
 IF (XJ.EQ.1.) T=R1+SIN(TH1)
 JF(L.LT.NUMLWS) RTT=RR1(L+1)
 IF(R .GE.RTT) L=L+1
 TF(L.LT.NUMLWS) RTT=RR1(L+1)
 IF (R.GE.RTT.AND.L.LT.NUMLWS) L=L+1
 RR=R4P
 TT=T#T
 7=A1(L+1) #RR#TT+A1(L+2) #RR#T+A1(L+3) #P#TT+A1(L+4) #RR+A1(L+5) #TT+
141(L.6) #R#T+A1(L.7) #R+A1(L.8) #T+A1(L.9)
FR =2. 4A1 (L+1) 4R4TT+2. 4A1 (L+2) 4R4T+A1 (L+3) 4TT+2. 4A1 (L+4) 4R+A1 (L+6)
14T+A1 (L.7)
 FT =2. +A1(L,1) +RR+T+A1(L,2)+RR+2.+A1(L,3)+R+T+2.+A1(L,5)+T+A1(L,6)
14R+A1(L+8)
 FR1=FR*COS(THX)+FT*SIN(THX)
FT] == FR+SIN(THX)+FT+COS(THX)
 IF(XJ.EQ.1.)FT1=FT1/R1
 IF(XJ1.EQ.1.)FT1=FT1/Z
 RETURN
 END
```

```
SUBROUTINE TBLDUM(ZX.PX.SIX.HX.PHIX.QX.PHEX.RHOX.GAMX.L.IMAX.I)
   COMMON/PS/Z(40,2),P(40,2),Q(40,2),H(40,2),ST(40,2),RH0(40,2)
  1. PHI (40.2) , PHE (40.2) , THR (2) , GAM (40)
   K=L
   DO 10 J7=1 . IMAY
   J5=J7
   IF(Zx=Z(J5+L)) 8+9+12
 8 J6=J5=1
 7 TF(I _EQ.1) J6=J5+1
   RAT=(ZX-Z(J6+K))/(Z(J5+L)-Z(J6+K))
          (J6+K)+(P (J5+L)=P
      Xzp
                                  (IKOK)) PPAT
      X=H
            (J6,K)+(H
                        (J5,L)-H
                                   ((i6.K)) #RAT
            (J6+K)+(Q
      X=0
                        (J5 \cdot L) = Q
                                  ( IAOK)) HOAT
   SI X=SI (J6,K)+(SI (J5,L)-SI (16,K))+RAT
   PHIX=PHI (J6,K) + (PHI (J5,L) - PHI (J6,K) ) *RAT
   PHEX=PHE(J6+K)+(PHE(J5+L)-PHE(IA+K))*PAT
   RHOXERHO (J6,K) + (RHO (J5,L) -RHO (J6,K)) *PAT
   GAMX=GAM(J6 )+(GAM(J5 )-GAM(J6 ))*RAT
   60 To 11
 9 CONTINUE
     X=P
           (J5+L)
           (J5,L)
     X=H
      X=O
           (J5,L)
   SI X=SI (J5+L)
   PHIX=PHI(J5+L)
   PHEXEPHE (J5,L)
   PHOX=PHO(J5.L)
   GAMX=GAM(J5 )
   GO TO 11
12 JF (J5.EQ.IMAX) GO TO 8
10 CONTINUE
11 RETURN
   END
```

```
SUBROUTINE ALSHOC(K)
    COMMON /A/ X1.THMAX.TH(10).R .Z(40.10).P(40.10).PHE(40.10).
   1 Q(40,10),SI(40,10),H(40,10),PHI(40,10),RHO(40,10),GAM(40,10)
    COMMON /B/ PN(40+10)+PHIN(40+10)+RHON(40+10)+HN(40+10)+ZN(40+10)
    COMMON /C/ IMAX(10) JMAX, ISTART, KOUNTF, KOUNTP
    COMMON /D/ UW (40) . VW (40) . WW (40) . XW (40) . YW (40) . THW (40)
    COMMON /E/ UWN(40) . VWN(40) . WWN(40) . XWN(40) . YWN(40) . THWN(40)
    COMMON /H/ ISIM
    COMMON /I/ XJ
    COMMON /K/ RN.DELR
    COMMON /L/ ALPHAN(7,10), ALPHA(7,10), BETAN(7,10), BETA(7,10)
    COMMON/M/ IS(7.10)
    COMMON /O/ ALP(7-10) +ALPN(7-10)____
    COMMON /V/ XJ1
    COMMON /W/ ISIMEX, IDUMMY, JINT, JDUMMY (40), THWW (2), JD1, JD2
    COMMON /SA/ XJTS
    COMMON /WR/ IWRAP
    DO 13 J=1.JMAX
    IF (JTEQ.JINT.OR.J.EQ.JINT+1) Gn TO 13
    IF (J.GT.JINT) XJ1=0.
    T=IS(K+J)
    IF (ISIM.EG.1.AND.J.EQ.JMAX) GO TO 100
    IF (J.GT.1) GO TO 15
100 ALPN(K+J)=0.
    \Delta LPH_{\Lambda N}(K_{\bullet}J)=0.
    GO TO 16
15 JP=J+1
    JM=J-j
    IF (JP.NE.JMAX+1) THP=TH (JP)
    IF (JP_EQ_JMAX+1) THP=THWN(I)
    D2=THP -TH(J)
    nl=TH(U) -TH(UM)
    D1=ABs(D1)
    D2=ABS(D2)
    D1D2=D1/D2
    DSD1=D2/D1
    D1PD2=D1+D2
   D12=D1D2-D2D1
    12=IS(K,JP)
   11=15(K, jM)
    IF (XJ1.EQ.O.)
   1ALPN(K+J) = (ZN(12+JP) +D1D2-ZN(I.J) +D12-ZN(I1+JM) +D2D1) /D1PD2/RN++XJ
   IF (XJ1 . EQ. 1.) ALPN (K. J) = (ALOG (7N(12.JP)) +D1D2-ALOG (7N(1.J)) +D12
   1_ALOG (ZN(11,JM)) +D2D1)/D1PD2
    ALPHAN (K.J) = ATAN (ALPN (K.J) + COS (RETAN (K.J)))
    ALPN(K+J)=ATAN(ALPN(K+J))
16 CONTINUE
13 CONTINUE
    IF (IWRAP.EQ.O) CALL ALWRAP(K)
    XJ1=XJ1S
    RETURN
    FND
```

```
FUNCTION RHEQ(H.P1.F)
     TI=FT(PI+F+H)
     T=T145./9.
     P=P1#1.01325E+05/2116.
     IF (F. IT. n.) GO TO 2260
     FNM=1.53#F#F=5.895#F+28.965
     FNN=1 6#F#F-10 6#F+33 6
     IF (T.GT.2000.) GO TO 2030
     XM=FNM
     IF(F.LT.1.) GO TO 2160
     XM=FNN
     GO TO 2160
2030 FF=F#F
     A==2.34FF+4.014F+1.736
     B=8.61 #FF-15.42#F-6.66
     C==16.88#FF+33.21#F+14.58
     XN==.4375#F! +.0625#F+2.08
     D=A+ (ALOG(P)/2.3) +1.5+B+ (ALOG(P)/2.3)+C
     XM=FNM=D+((T-2000.)/1000.)++xN
     IF (F.LT.1.) GO TO 2160
     A==.822#FF+2.363#F+1.905
     B=2.76*FF-7.56*F-8.68
     C=-3.6*FF+7.36#F+27.15
     YN=-.47#FF+1.825#F+.35
     D=A+(ALOG(P)/2.3)++1.5+B+(ALOG(P)/2.3)+C
     XM=FNN=D+((T-2000.)/1000.)++XN
     GO TO 2160
2260 KF=F-.5
     JF (KF.EQ.-1) XM=16.043
     IF (KF_EQ_=2) XM=28_054
2160 RHEQ=P*XM/T/8314.3*6.2428E-02/32.174
     RETURN
     END
```

```
FUNCTION FGAM(T1.P1.F)
    COMMON /THE/ A1 . A2 . A3 . A4 . A5 . A6 . XMM1
    T=5.471/9.
    T2=T#T
    P=P1#1.01325E5/2116.
    XM=0.
    IF(F.LT.0.) GO TO 550
IF(T.LE.1000.) GO TO 440
    XM=-2.15E-08+T2 +.000091+T-.0695
440 XN=4.F-09*T2 -.00002*T-.019
IF(F.LE.1.) GO TO 470
    XN=-0339#SQRT(T)--000391#T--681
470 G=-1.833E-07+T2 +.000075+T+1.367
    IF (T. [ T. 500 . ) GO TO 520
    G=2.E-08*T2 -.000138*T+1.423
    IF (T. LT. 2000.) GO TO 520
    G=7.267E-084T2 -.0004574T+1.85
520 G=G+XM+(ALOG(P)/2.3-5.)+XN+(F=T.)
    GO TO 530
550 T3=T2#T
    T4=T3#T
    CP=A1+A2+T+A3+T2+A4+T3+A5+T4
    G=CP+(CP-1.)
530 CONTINUE
    FGAM=G
    RETURN
    END
```

```
SUBROUTINE ERROR(I)
   TF (1.EQ. 171) GO TO 2
   IF(I,EQ,20 ) GO TO 3 -
   IF(I.FQ.30 ) GO TO 6
   IF (1.FQ.50 ) GO TO 8
   IF(I.EQ.18 ) GO TO 10
   IF(I.EQ.16 ) GO TO 12
   WRITE (6.1) 1
 1 FORMAT (* ERROR IN ITERATION LOOP IN WALL ROUTINE AT STATEMENT NUMB
  1FR#+15)
   CALL PNCH
 2 WRITE (6,4 ) I
 4 FORMAT (* ERROR IN V/U ITERATION IN MAIN - STATEMENT NUMBER *+15)
   CALL PNCH
 3 WRITF (6.5 ) I
 5 FORMAT (* ERROR IN SIDE WALL LOCATION IN CORNER - STATEMENT NUMBER
  14,15)
   CALL PNCH
 6 WRITE (6.7 ) I
 7 FORMAT (* ERROR IN THETA A PLANE IN CORNER - STATEMENT NUMBER +, 15)
   CALL PNCH
 8 WRITE (6,9 ) I
 9 FORMAT (* ERROR IN A POINT ITERATION IN CORNER - STATEMENT NUMBER *
  1.15)
   CALL PNCH
10 WRITE (6,11) I
11 FORMAT (* ERROR IN D POINT ITERATION IN CSURF - STATEMENT NUMBER *
  1.15)
CALL PNCH
12 WRITE (6,13) I
13 FORMAT (* ERROR IN NORMAL TO CONTACT SURFACE IN COURF - STATEMENT N
  1UMBER 4,15)
   CALL PNCH
   END
```

	SUBROUTINE XLAM(Q.A.PHE.XPLAM.XMLAM) CPHE=COS(PHE) DUM1=(Q/A)**2 DUM=DUM1*CPHE *SIN(PHE)	
	DUM2=SQRT(DUM1=1.) DUM3=DUM14CPHE #42=1. XPLAM=(DUM+DUM2)/DUM3	
	XMLAM=(DUM-DUM2)/DUM3 RETURN END	
		-
	·	
~		

```
SUBROUTINE F (RHO.O.R.Z.PHE.XPLAM.XMLAM.SI.A.SIQ.PQ.PHEQ.FP.FM)
 CX VIV NOMMOD
 COMMON /V/ XJ1
 CPHE COS (PHE)
 SPHE=SIN (PHE)
 TSI=TAN(SI)
 TSI2=TSI#TSI
 DUM1=RHO+Q+Q
 IF (XJ] .EQ.1.) DUM1=DUM1/Z
 IF (XJ .EO.1.) DUM1=DUM1/R
 NUM2P#SPHE-CPHE
                         #XPL AM
 DUM2M=SPHE=CPHF
                         WAMLAM
 DUM3=510/COS(ST) ##2+TSI
                             #PQ/RHO/A/A+CPHE#XJ
1+SPHE#XJ1
 DUM4=TSI
             #PHEQ
DUM5P#SPHE
               #XPLAM+CPHE
DUM5M=SPHE
             #XMLAM+CPHE
 DUM6P=XPLAM+TST2+XJ
1-TSI24XJ1
DUM6M=XMLAM#TST2#XJ
1-TSI2#XJ1
FP=DUM1 + (DUM2P+DUM3-DUM4+DUM5P-DUM6P)
FM=DUM1+(DUM2M+DUM3-DUM4+DUM5M-DUM6M)
RETURN
END
```

```
SUBROUTINE INTER
     COMMON /TEM/ T(40.10)
     COMMON /JF/ JFTNAL
     COMMON /A/ X1+THMAX+TH(10)+R +Z(40,10)+P(40+10)+PHE(40+10)+
    1 Q(40,10),SI(40,10),H(40,10),PUT(40,10),RHO(40,10),GAM(40,10)
     COMMON /B/ PN(40+10)+PHIN(40+10)+RHON(40+10)+HN(40+10)+ZN(40+10)
     COMMON /C/ IMAX(10) JMAX. ISTART. KOUNTE KOUNTE
     COMMON /D/ UW (40) , VW (40) , WW (40) , XW (40) , YW (40) , THW (40)
     COMMON /E/ UWN(40) . VWN(40) . WWN(40) . XWN(40) . YWN(40) . THWN(40)
     COMMON /H/ ISIM
     COMMON /T/ XJ
     COMMON /J/ QN(40+10)+PHEN(40+10)+SINN(40+10)+XPLAM(40+10)+
    1xMLAM(40.10),FP(40),FM(40),A(40.10)
     COMMON / Q/ XCOWL
     COMMON /R/ J,XCN,XC,XXI,JW,INT,ICOWL,RCOWL
     COMMON /V/ XJ1
     COMMON /W/ ISIMEX, IDUMMY, JINT, TOUMMY (40), THWW (2), JD1, JD2
     COMMON /TQ/ NUMEXP.ZSAV
     COMMON /WR/ IWDAP
     COMMON/PS/ZR(40.2).PR(40.2).OR(40.2).HR(40.2).SIR(40.2).RHOR(40.2)
    1.PHIR(40.2).PHER(40.2).THR(2).THWR(40)
     (U) XAMI=UXAMI
     THI=TH(J)
     IF (XJ. NE. 0.) THI=XXI+TAN(THI)
     RATE(XXI=XC)/(xCN=XC)
     DO 3698 I=1. IMAXJ
     7
        I=7
             (I+J)+PAT+(Z
                             N(T \bullet J) = Z
                                        ((Let)
        I=P
              (I+J)+R\DeltaT+(P)
                             N(T \bullet J) = P
                                        ([•J))
            (I+J)+RAT+(Q
        I =0
                             Q = (L \cdot T) N
                                       ((LeI)
        I=H
             (I+J)+RAT+(H
                             H=\{U\in I\}N
                                        (I+J))
     SI I=SI (I+J)+RAT*(SINN(I+J)=ST (I+J))
     RHOI=RHO(I+J)+RAT+(RHON(I+J)=RHO(I+J))
     PHII=PHI(I+J)+RAT+(PHIN(T+J)=PHT(T+J))
     PHEI = PHE (I + J) + RAT + (PHEN (I + J) - PHE (I + J) )
     IF (XJ.E0.0.) GO TO 3697
     UI=QI+COS(TH(J))+(COS(PHEI)=TAN(SII)+TAN(TH(J)))
     VI=QT+COS(TH(J))+(COS(PHEI)+TAM(TH(J))+TAM(SII))
     WI=QT#STN(PHEI)
     QI=SQRT(UI#UI+WI#WI)
     SII=ATAN(VI/QI)
     PHEI=ATAN(WI/UI)
3697 WRITE (55) ZI.PI.OI.HI.SII.RHOI.PHII.PHEI.THI
     IF (J.LT.JMAX.OR.IWRAP.EQ.1) GO TO 3698
     | = 1
     IF (J.FQ.JW) L=2
        R(T)[) =Z
        R(T)1)=P
        R(\hat{\tau}_{f}) = Q
     C
        R(TOL)=H
     SI R(J+L)=SI I
     RHOR (T+1)=RHOI
     PHIR (T+L) #PHII
     PHER ( T . L ) = PHEI
     THR (L) =THI
     IF(L.EQ.2) THWR(I)=THWN(I)
     IF (L.EQ.Z.AND.XJ.NE.O.) THWR (I) = XXI+TAN (THWN (I))
```

```
3698 CONTINUE
     IF (J. IT. JW) RETURN
     xJ=0.
     INTER
     ICOWL=1
     IF (IWRAP .EQ. 1) GO TO 4
     (XAML)XAMI=ULXAMI
     00 500 L=1.2
     LUXAMI + I=1 002 00
     X APC= 9L
     TF(L.EQ.2) JP=JW
        (\uparrow,JP)=Z
                   R(I.L)
        (T, JP)=P
                   R(I.L)
        (T.JP)=Q R(I.L)
        (T.JP)=H
                  R(I.L)
     SI (T.JP)=SI R(I.I)
     PHO(I.JP)=RHOR(I.L)
     PHI(I.JP)=PHIR(I.L)
     PHE(I.JP)=PHER(I.L)
     TH(JP)=THR(L)
     IF(L.EQ.2) THW(I)=THWR(I)
500 CONTINUE
     JINT= JMAX
     JWW=JW+NUMEXP=1
     TMAXXEIMAX (JINT)
     DO 461 I=1 , IMAXX
     IF(Z(I)JINT).GT.ZSAV) GO TO 465
461 CONTINUE
462 IDUMMY=L_1
     IF (IDUMMY.LT.NUMEXP) IDUMMY=NUMEXP
     TM=IDIMMY
     T=1
  2 JS=JMAX
     TF(IT.EQ.2) JS=JW
     DEZEZSAV-Z(1.JMAX)
     DO 3 T=1.NUMEXP
     ZDUMMY(I)=Z(1+JMAX)+DEZ*FLOAT(1-1)/FLOAT(NUMEXP-1)
     J=JWW-I+1
     IF (J.EQ.JW) JEUFINAL
     7D=ZDUMMY(I)
     IF(I.EQ.1.AND.JS.EQ.JW) ZD=Z(1.JW)
     IF (XJ) • EQ • 0 • ) GO TO 301
     JR=1
302 CALL SWALL1 (THG.R.ZD.FX.FZ)
     ZDT=ZD/COS(THG_TH(JMAX))
     CALL SWALL ! (THGG . R . ZDT . FX . FZ)
     EP=THGG-THG
     TR=IR+1
     IF (ABS (EP) .LT.1.E-10) GO TO 301
     IF (IR.GT.2) GO TO 303
    DUM=j.01+ZD
     ZD1=ZD
    EP1=EP
    ZD=DUM
     GO TO 302
```

```
303 DUM=ZD1-EP1+(ZD1-ZD)/(EP1-EP)
    701=7D
    FP1 = Fp
    ZD=DUM
    IF (IR LE. 10) GO TO 302
    WRITE (6.304)
304 FORMAT (* ERROR IN ITERATION LOOP IN SUBROUTINE INTER*)
    CALL PNCH
301 CONTINUE
    CALL TBL (ZD
                       • (L.TI) 0. (L.TI) IHQ. (L.TI) H. (L.T.) IS. (L.TI) Q.
   1PHE(TT.J) ,RHO(TT.J) ,GAM(IT.J) ,THX.JS, TMAX(Je),I)
    Z(IT.,)=0.
    IF (XJj.GT.O..AND.JS.EG.JW) THX THG
    IF(IT_EQ.2) Z(TT.J)=THX =TH(IMAX)
    IF(IT_EQ.2.AND.XJ1.GT.O.) Z(TT.J) =SIN(Z(IT.J) +ZD
    TH(J)=ZSAV-ZDUMMY(I)
    IF (I.FQ. 1. AND. IS. FQ. JMAX) THWW(1)=ZSAV-Z(1, JMAX)
    THDUME (THW(1) HTH(JMAX)) EMUCHT
    IF (I.FQ.1.AND.JS.EQ.JW) THWW(2)=ZSAV-Z(1.JW)+COS(THDUM)
    UT=Q(TT.J) #COS(PHE(IT.J))
    IF (XJ1.EQ.0) GO TO 306
    WI=Q;TT.J) #SIN(PHE(IT.J))
    V1=Q(TT,J) +TAN(ST(IT,J))
    (XXML) HT-XHT=HHTO
    WT=V) +COS(DTHH) +W1+SIN(DTHH)
    VT=V1+SIN(DTHH) = W1+COS(DTHH)
    GO TO 307
306 CONTINUE
    VT=-0(IT,J) +SIN(PHE(IT,J))
    WT=Q(TT.) TAN(SI(IT.J))
307 CONTINUE
    IF (I NE. 1) GO TO 300
    UW(IT)=UT
    TV=(TI)WV
    WW (TT) = WT
    XW(IT)=XCOWL
    YW (IT) =THWW (IT)
300 CONTINUE
    O(IT.J)=SQRT(UT+UT+WTHWT)
    PHE(IT+J)=ATAN(WT/UT)
    SI(IT.J)=ATAN(VT/Q(IT.J))
    T(IT+J)=FT(P(IT+J)+PHI(IT+J)+HitT+J))
    GAM([+,J)=FGAM(T([T,J),P([T,]),PHI([T,J))
    A(IT, J) = SQRT(GAM(IT, J) PP(IT, J) /RHO(IT, J))
    CALL XLAM(Q(IT.J).A(IT.J).PHE(TT.J).XQLAM(IT.J).XMLAM(TT.J))
    TMAX())=2
  3 CONTINUE
    TF (IT_EQ.2) GO TO 4
    TT=2
    50 TO 2
  4 CONTINUE
    RETURN
    FND
```

```
SUPROUTINE L TH M
   COMMON /A/ X1, THMAX, TH(10), R .Z(40,10), P(40,10), PHE(40,10),
  1 Q(40.10),SI(40.10),H(40.10),PHI(40.10),RHO(40.10),GAM(40.10)
   COMMON /B/ PN(40,10), PHIN(40,10), RHON(40,10), HN(40,10), ZN(40,10)
   COMMON /SCLTM/ ZLIFTC, XTHRC, YMOMC, ZLIFTS, XTHRS, YMOMS
   COMMON/M/IS(7.10)
   COMMON /C/ IMAx(10) + JMAX + ISTART + KOUNTE + KOUNTE
   COMMON /D/ UW (40) . VW (40) . WW (40) . XW (40) . YW (40) . THW (40)
   COMMON /E/ UWN(40) . VWN(40) . WWN(40) . XWN(40) . YWN(40) . THWN(40)
   COMMON /I/ XJ
   COMMON /J/ GN(40+10) +PHEN(40+10) +SINN(40+10) +XPLAM(40+10) +
  1XMLAM(40,10),FP(40),FM(40),A(40,10)
   COMMON /K/ RN, DELR
   COMMON /R/ J.XCN,XC,XXI,JW,INT,JCOWL,RCOWL
   COMMON /S/ RI+KOUNT+KOUNTS+ICOWLT
   LLX VVV NOMMOD
   COMMON /W/ ISIMEX, IDUMMY, JINT, 70UMMY (40) , THWW (2) , JD1 , JD2
   COMMON /IQ/ NUMEXP, ZSAV
   COMMON /WR/ IWRAP
   COMMON /ISW/ JCALC+ISWEEP+XINSP(10)+X2
   COMMON /THR/ PINF.ZLIFT.XTHR.YMOM.JJI.ZSHIFT.XSHIFT
   COMMON /WO/ XJSS
   IF (ICOWL.EQ.1.AND.XJSS.GT.O.) RETURN
   JJK=2
   IF (XJ.EQ.0..OR.JJI.LT.2) GO TO 11
   JJK=JJI+1
   IF (JJI.GE.JW) RETURN
11 CONTINUE
   WL=WWL
   DUMRER
   IF(XJ.EQ.0.) DUMR=1.
   DUMRN_RN
   IF(XJ.EQ.O.) DUMRN=1.
   \mathsf{DUMX} = (1.-XJ) + (\tilde{1}.-XJ1)
   OPT=1.
   K=1
   SUMXU= (X 11+XJ)
12 CONTINUE
   IF (K .GT 1) OPT=-1.
   IF (ICOWLT.EQ.1.AND.IWRAP.EQ.O) JWW=JINT
   DO 1 J≂JJK•JWW
   IF (J.GT. JCALC) GO TO 1
   IF(J.NE.JMAX+1) THJ=TH(J )
   IF (J.NE.JMAX+1) THUI=THU
   (L) XAMI=II
   III=IMAX(J-1)
   IF (K.GT.1) GO TO 50
   Tî=1
   TII=1
50 CONTINUE
   IF (J.EQ.JMAX+1) THJ=THW(II)
   IF (J.EQ.JMAX+1) THJI=THWN(II)
   LXMU24CHT=XHT
   THX1=THJ1+SUMXJ
   THXX=TH(J=1) +SUMXJ
   DUM1=Z(II.J)
```

```
DUM2=ZN(II.J)
   DUM3=7N(TI1+J-1)
   DUM4=Z(II1+J-1)
   IF (XJ1 . GT . 0 . ) GO TO 51
   DUM1=1 .
   DUM2=1.
   DUM3=j.
   DUM4m1 .
51 CONTINUE
   Y1=DUMR*DUM1*STN(THX)+DUMX*THJ
   Y2=DUMRN#DUM2#SIN(THX1)+DUMX#THJ1
   Y3=DUMRN#DUM3#SIN(THXX)+DUMX#TA(J-1)
   Y4=DUMR#DUM4#SIN(THXX)+DUMX#TH(J=1)
   Z1=Z(TI.J)
   72=ZN(II.J)
   73=ZN(II1.J-1)
   74=Z([I],J-1)
   IF (XJ1 . FQ . 0 . ) GO TO 6
   71=Z] #COS (THJ)
   Z2=Z2+COS(THJ1)
   73=Z3+Cos(TH(J=1))
   74=74+COS(TH(J-1))
 6 CONTINUE
   PI=P(TI.J)=PINF
   P2=PN(II.J)-PINF
   P3=PN(I11,J=1)_PINF
   P4=P([11,J-1)-PINF
   XX1=Xī
   XXS=X2
   XX3=X2
   XX4=XT
   IF (XJ.EQ.O.) GO TO 3
   XX1=R&COS(THJ)
   XXZ=RN+COS(THJI)
   XX3=RN#COS(TH(J=1))
   XX4=R&COS(TH(J=1))
 3 CONTINUE
   TERMI = Y4-Y2
   TERM3#Y3-Y1
   DAX= ((Z1=Z3) +TERM1+(Z4-Z2) +TERM3)/2.
   DAZ= ((XX1-XX3) +TERM1+(XX4-XX2) +TERM3)/2.
   DAX=ARS(DAX)
   DAZ=ARS(DAZ)
   DAZ=-DAZ#OPT
   PH1=PHE(II+J)
   PH2=PHEN(II,J)
   PH 3mpHEN(II1.J=1)
   PH4=PHE(IIl,J-1)
   PHAV=(PH1+PH2+PH3+PH4)/4.
   OPT1=SIGN(1...PHAV)
   DAX=OPT1*DAX*OPT
   PAVE (P1+P2+P3+P4)/4.
   DL=PAV*DAZ
   DT=PAV*DAX
   XAV = (XX1 + XX2 + XX3 + XX4)/4
   7AV=(71+72+43+74)/4.
```

```
DL=-DL
   DT=-DT
   ZAV=ZAV-ZSHIFT
   XAV=XAV=XSHIFT
   YAV==YAV
   ZAV=-ZAV
   DM==DL#XAV+DT#ZAV
ZLIFT=ZLIFT+DL
   XTHR=XTHR+DT
   YMOM=YMOM+DM
 1 CONTINUE
   K=K+1
   IF (ICOWLT.EQ.1) K=3
   IF (K.EQ.2) GO TO 12
   IF (JW EQ JMAX) RETURN
   J=JMAX+1
   IF (J.GT. JCALC) RETURN
   (U) XAMI=XXAMT
   DO 2 I=2.IMAXX
   THX=THW(I) #SUMXJ
   LXMU2#(I) NWHT=NXHT
   LXMU2#(I-I) WHT=1XHT
   THXN] = THWN (I-1) #SUMXJ
   DUM1=7(I.J)
   DUM2=7N(I.J)
   DUM3=7N(I-1,J)
   DUM4=2(I-1+J)
   IF (XJ1.GT.0.) GO TO 8
   DUM1=1.
   DUM2=1 .
   DUM3=1.
   DUM4=1 .
 B YSI=nUMR+DUMI+SIN(THX)+DUMX+THW(I)
   YSZ=DUMRN+DUMZ4SIN(THXN)+DUMX++HWN(I)
   YS3=DUMRN*DUM3*SIN(THXN1)+DUMX*THWN(I=1)
   YS4=DIMR#DUM4#SIN(THX1)+DUMX#THW(I=1)
   xx1=x\bar{1}
   XXS=XS
   XX3=X2
   XX4=X1
   IF (XJ.EQ.0.) GO TO 10
   XX1=R#COS (THX)
   XXZ=RN#COS (THXN)
   XX3=RN+COS(THXN1)
   XX4=R+COS(THX1)
10 Pl=P(j.J)-PINF
   PZ=PN(I.J) -PINF
   P3=PN(I-1.J)-PINF
   P4=P(I-1.J)-PINF
   751=7(I.J)
   ZSZ=ZN(I.J)
   ZS3=ZN(I-1,J)
   754=Z(I-1,J)
   IF (XJ1.GT.0.) GO TO 7
   CALL SWALL (R.ZSI.
                          XX1,YZ,FX1,FZ1)
   CALL SWALL (RN, 752,
                           XX2.YZ.FX2.FZ2)
```

```
CALL SWALL (RN. ZS3.
                            XX3,YZ,FX3,FZ3)
    CALL SWALL (R. ZS4.
                           XX4.YZ.FX4.FZ4)
    GO TO 9
  7 CALL SWALL1 (THZ . R. ZS1 . FX1 . FZ1)
    CALL SWALLI (THZ.RN. ZS2. FX2. FZ2)
    CALL SWALLI (THZ+RN+ZS3+FX3+FZ3)
    CALL SWALLI (THZ, R, ZS4, FX4, FZ4)
    ZS1=ZS1+COS(THX)
    ZSZ=ZsZ#COS(THXN)
    ZS3=ZS34COS (THXN1)
    ZS4=ZS4#COS(THX1)
  9 FX=(FX1+FX2+FX3+FX4)/4.
    FZ=(FZ1+FZ2+FZ3+FZ4)/4.
    TIWRAP=1
    IF (IWRAP.EQ.O.AND.ICOWLT.EQ.I) TTWRAP=0
    TH1=0.
IF(IIWRAP.EQ.O)TH1=TH(JINT)
    7 1=Zs1+FLOAT(TIWRAP)+(ZSAV-YST)+FLOAT(1-IIWRAP)
    Z 2=Z52*FLOAT(YIWRAP) + (ZSAV-YS2) *FLOAT(1=IIWRAP)
    Z 3=ZS3+FLOAT(IIWRAP) + (ZSAV-YS2) +FLOAT(1-IIWRAP)
    Z 4=ZS4+FLOAT(IIWRAP)+(ZSAV=YS4)+FLOAT(1-IIWRAP)
    Y 4=YS4+FLOAT(IIWRAP)+(TH1 +ZS4)+FLOAT(1=IIWRAP)
    Y 3=YS3+FLOAT(IIWRAP)+(TH1 +ZSa)+FLOAT(1-IIWRAP)
    Y2=Y52*FLOAT(IIWRAP) + (TH1+Z52) #FLOAT(]-IIWRAP)
    Y 1=YS1+FLOAT(TIWRAP)+(TH1 +ZST)+FLOAT(1=IIWRAP)
    TERM1 = Y2 - Y4
    TERM3=Y3-Y1
    DAX=((Z1-Z3) +TFRM1+(Z2-Z4)+TERM3)/2.
    DAZ= ((XX1-XX3) +TFRM1+ (XX2-XX4) +TERM3) /2.
    DAX=ARS(DAX)
    DAZ=ARS(DAZ)
    OPT3=1.
    OPT4=1.
    IF (ICOWLT.EQ.0) OPT3=SIGN(1..FX)
    TF (ICOWLT.EQ. 0) OPT4=SIGN(1.,FZ)
    DAZ==OPT4#DAZ
    DAX==OPT3#DAX
    PAV= (p1+p2+p3+p4)/4.
    DL=PAV+DAZ
    DT=PAV*DAX
    XAV=(XX1+XX2+XX3+XX4)/4.
    7AV=(71+Z2+23+Z4)/4.
    DL==DL
    DT==DT
    ZAV=ZAV-ZSHIFT
    XAV=XAV-XSHIFT
    XAV=-XAV
    ZAV=-7AV
    DM==DL #XAV+DT#ZAV
    7LIFT=ZLIFT+DL
    XTHR=XTHR+DT
    YMOMEYMOM+DM
    IF (I.FQ. IS (3, J) -1) GO TO 132
    IF(1,EQ,IS(1,J)=1) GO TO 92
    60 TO 2
132 ZLIFTC=ZLIFT
```

	XTHR C = XTHR		
0.2	YMOMC=YMOM GO TO 2 ZLIFTS=ZLIFT		
	XTHRS=XTHR YMOMS=YMOM		
5	CONTINUE RETURN END		
			٠
•			
	•		
			-
			
		·	
	•		
			-

```
SUBROUTINE MOTHER
    COMMON /STREAM/ XMAST, XENT, FSX, FSZ
    COMMON /H/ ISIM
    COMMON/M/ IS(7.10)
    COMMON /THR/ PINF, ZLIFT, XTHR, YMOM, JJI, ZSHIFT, XSHIFT
    COMMON /S/ RI.KOUNT.KOUNTS.ICOWLT
    COMMON /A/ Q1.THMAX.TH(10).R
                                       ,Z(40,10),P(40,10),PHE(40,10),
   1 Q(40,10),SI(40,10),H(40,10),PHI(40,10),RHO(40,10),GAM(40,10)
    COMMON /C/ IMAX(10) + JMAX + ISTART + KOUNTF + KOUNTP
    COMMON /D/ UW (40) . VW (40) . WW (40) . XW (40) . YW (40) . THW (40)
    COMMON /I/ XJ
    COMMON /V/ XJ1
    COMMON /WRTOMO/ XO(3), X1(3), P1W(20), Q1W(20), H1W(20), ST1W(20),
   1PHI1W(20), PHE1W(20), RHO1W(20)
    COMMON/PS/ZR(4ñ+2)+PR(40+2)+OR(40+2)+HR(40+2)+SIR(40+2)+RHOR(40+2)
   1.PHIR(40.2).PHFR(40.2).THR(2).THWR(40)
    COMMON /R/ J.XCN.XC.XXI.JW.INT.ICOWL.RCOWL
    COMMON /W/ ISIMEX.IDUMMY.JINT.TOUMMY(40).THWW(2).JD1.JD2
    COMMON /IQ/ NUMEXP. ZSAV
    COMMON /WR/ IWRAP
    LX=: [=SLX
    X73=1 -X71
    TF (IWRAP.EQ. 1. OR. ICOWLT. EQ. 0) GO TO 50
    TMAS=TMAX (JTNT) +1
    DO 51 I=1. IMAS
       R ( T . ] ) = Z
    7
                  (TNIL (I)
       R(T+1)=P
                   (TAJINT)
       R(\uparrow \bullet 1) = Q
                   (INIL.I)
    H R(++1)=H
                  (TOJINT)
    SI R(1+1)=SI (I+JINT)
    PHIR (T+1) = PHI (T+JINT)
    PHER(I+1)=PHE(I+JINT)
    RHOR (j +1) = RHO (j + JINT)
       R(J+2)=Z
                  (T+JINT+1)
       R(1.2)=P
                  (I+JINT+1)
    @ R(T+2)=0
                  (I+JINT+1)
       R(T)2)=H
                  (T.JINT+1)
    SI R(1.2)=SI (1.JINT+1)
    (I+TNIL+I)IH9=(S+T) RIH9
    PHER(1+2)=PHE(1+JINT+1)
    RHOR (T+2)=RHO(I+JINT+1)
 51 CONTINUE
    XU1S=XU1
    XJ2S=XJ2
    XJ3S=XJ3
    XJS=XJ
50 CONTINUE
300 XMASS=0.
    ICHECK=1
  S CONTINUE
    JO=JMAX-1
    IF(ISTM.EQ.O) JQ=JMAX
    DO 1 J=1.JQ
    T=n
    DUMZ=1 .
    IF(XJ] • GT • 0 • ) DUMZ= • 5 * (Z(I+1 • J) + Z(I+1 • J+1))
```

```
DZ = Z(I+1,J) - Z(I+1,J+1)
   IF (ISTM.NE.O.OR .J.NE.JMAX) THE3=TH(J.1)
   IF (ISTM.EQ.O.AND.J.EQ.JMAX) THE3=THW(T+1)
   DTH=THP3-TH(J)
   IF (J.EQ.JINT.AND.ICOWLT.EQ.1) DTH=3.1415926/18.
   IF (XJ.GT.O.) DUMRER
   S3=DZ#DZ+(DTH+DUMZ+DUMR )++>
   $3=50RT ($3)
   [_(U)XAMI_[XAMI
   IF (ICOWLT.EQ.1) IMAX1=IS(3,J)=>
   IF (J.EQ.JINT.AND.ICOWLT.EQ.1) IMAX1=IS(3.J)-IDUMMY-1
   IF (J_NE.JINT.OR.ICOWLT.EQ.O) Gn TO 53
   XJ1=1.
   XJ=0.
   .1=5Lx
   XJ3=0.
   \tilde{I}S3J=\tilde{I}S(3\cdot J)-1
   IDUMMI = IDUMMY + 1
   00 55 I=IDUMM1. IS3J
   L=I-IDUMMY+1
   7(L+J)=Z(I+J)-ZSAV
      (L \cdot J) = P \quad (I \cdot J)
       (L,J)=Q
                 (I \cdot J)
       (L.J)=H
                 (I.J)
   SI (L.J) =SI (I.J)
   (L.I) IH9=(L.J)
   PHE(L.J) =PHE(I.J)
   RHO([,J)=RHO(I,J)
55 CONTINUE
                R(1,2)
      (1.J)=Z
       (1.J)=P
                R(1,2)
      (1.J)=Q
                R(1,2)
      (1, J) =H
                R(1.2)
   SI (1.J)=SI R(1.2)
   PHI (1,J) = PHIR (1,2)
   PHE (1.J) =PHER (1.2)
   RHO (1.J) =RHOR (1.2)
   KK=1
56 KK=KK.1
   THT=DTH#FLOAT(KK=1)
   no 54 I=IDUMM1.IS3J
   L=I-InUMMY+1
   C=(ZR(I+1)-ZSAV)/XO(1)
   D=C+x1(1)
   DS=D+D
   RDUM=x0(1) +C
   DUM=RDUM+SQRT (RDUM+RDUM+D2)
   R3=C*(XO(1)+XI(1)+THT)
   5=.5/D+(R3+5QRT(R3+R3+D2)=DUM)
      (L,J+1)=P
                  R(I+1)+P
                             1W(L)*5
      (L,J+1)=Q
                  R(1.1)+Q
                              1W(L) #5
      (L.J+1)=H
                  R(I+1)+H
                              1W(L)#5
   SI (L.J+1)=SI R(I.1)+SI 1W(L)+c
   PHI(L.J+1) =PHIR(I.1) +PHIIW(L) #c
   PHE (L. J+1) = PHER (I.1) + PHE1W(L) + C
```

```
PHO(L, J+1) = RHOR(I, 1) + RHO1W(L) #6
   7(L+J+1)=R3
54 CONTINUE
   7(1 \cdot J + 1) = Z(1 \cdot J)
      (),J+1)=P
                  (1 \cdot J)
      (1,J+1)=H
                  (1.1)
      (1,J+1)=0
                  (1 \cdot J)
   SI (1,J+1)=SI (1,J)
   PHI(1,J+1)=PHI(1,J)
   PHE(1,J+1)=PHE(1,J)
   RHO(1.J+1) = RHO(1.J)
53 CONTINUE
   DO 6 1=1. IMAX1
   IF(J.FQ.1) S2=7(I+1+J)-Z(I+J)
   S1=53
   S4=52
   DUMZ=1.
   IF(XJ) \circ GT \circ 0 \circ 0 \circ DUMZ = \circ 5 \circ (Z(I+1 \circ J) + Z(I+1 \circ J+1))
   DZ = Z(1+1,J) = Z(1+1,J+1)
   IF (ISTM.NE.O.OR .J.NE.JMAX) THE3=TH (J+1)
   IF (ISTM.EQ.O.AND.J.EQ.JMAX) THE3=THW(T+1)
   IF (XJ] .GT. 0 .AND. ISIM .EQ. 0.AND. J. EQ. JMAX) THP3 = (THW(I+1)+THW(I))/2.
   DTH=THP3-TH(J)
   IF (J.FQ.JINT.AND.ICOWLT.EQ.1) DTH=3.1415926/18.
   $3=DZ#DZ+ (DTH+DUMZ+DUMR ) ++2
   S3=SQRT (53)
   IF (ISIM.NE.0.OR .J.NE.JMAX) THE2=TH(J+1)
   IF (ISTM, EQ. 0. AND, J. EQ. JMAX) THP2=THW(I )
   XX2=(XJ2+XJ+COS(THP2+XJ))+R
   . (1,x459HT)NT2+(1+U+T)S41UX+(LX459HT)NI24A4UX+59HT45LX=5YY
   ZZ2=(xJ3+XJ1+COS(THP2+XJ1))+Z(7.J+1)
   XX3=(XJ>+XJ*COS(THP3*XJ))*R
   (1UX#E9HT) NIZ#(1+1+1) X#(UX#E9HT) NIZ#A#UX+E9HT#SUX=EYY
   723=(xJ3+XJ1+CnS(THP3+XJ1))+2(++1,J+1)
   DZ=ZZ3-ZZ2
   DY=YY3-YY2
   DX=XX3-XX5
   SZ=DZ#DZ+DY#DY+DX#DX
   SZ=SOPT(SZ)
   ST=S1+S2+S3+S4
   U1=Q(++J) *COS(PHE(I+J))
   IF (XJ.GT.0.) U1=U1+COS(TH(J))-0(I.J)+TAN(SI(I.J))+SIN(TH(J))
   RU1=RHO(I,J) +U1
   U2=0(1+J+1) +COS(PHE(1+J+1))
   IF (XJ.GT.0.) U2=U2+COS(THP2)-Q(I.J+1)+TAN(SI(I.J+1))+SIN(THP2)
   RU2=RHO(I.J+1)#U2
   U3=Q(T+1,J+1) +COS(PHE(I+1+J+1))
   IF (XJ.GT.0.) U3=U3+COS(THP3)-Q(I+1.J+1)+TAN(SI(I+1.J+1))+SIN(THP3)
   RU3=RHO(I+1+J+1)+U3
   U4=Q([+1.J) +COS(PHE([+1.J))
   IF(XJ,GT,0.) U4=U4+COS(TH(J))=0(I+1.J)+TAN(SI(I+1.J))+SIN(TH(J))
   RU4=RHO(I+1+J)#U4
   PU=((RU1+RU2)+$1+(RU2+RU3)+$2+(RU3+RU4)+$3+(RU4+RU1)+$4)/2./ST
   ZZ1=(xJ3+XJ1+CnS(TH(J)+XJ1))+Z(T+J)
   7Z4=(xJ3+XJ1+COS(TH(J)+XJ1))+Z(I+1+J)
   YY1= XJ2+TH(J)+XJ+R+SIN(TH(J)+XJ)+XJ1+Z(I+J)+SIN(TH(J)+XJ1)
```

```
DAX=((ZZ1-ZZ3)+(YY2-YY4)+(ZZ2-ZZ4)+(YY3-YY1))/2.
  DAX=ARS (DAX)
   IF (XJi .EQ.O.
                            ) GO TO 60
   ZL=(Z(I,J)+Z(I,J+1))/2.
  ZU=(Z(I+1,J)+Z(I+1,J+1))/2.
  DAX=(7U+ZU=ZL+7L)+DTH/2.
60 CONTINUE
  GO TO (3.4.5) . TCHECK
3 DM=RU&DAX
  XMASS=XMASS+DM
  GO TO 6
4 V1=(Q(I,J)/COS(ST(I,J)))##2
  H1=(H(I,J)+V1/2.)+RU1
  V2=(0,1,J+1)/COS(SI(I,J+1))) 445
  H2=(H(I,J+1)+V5/2.)#RU2
  V3=(Q(I+1,J+1)/COS(SI(I+1,J+1)))##2
  H3=(H(I+1+J+1)+V3/2+)+RU3
  V4=(Q(I+1+J)/COS(SI(I+1+J)))++>
  H4=(H(I+1+J)+V4/2.)*RU4
  HT=C1+((H1+H2)+S1+(H2+H3)+S2+(H3+H4)+S3+(H4+H1)+S4)/2 /ST
  DHT=HT#DAX
  XEN=XEN+DHT
  GO TO 6
5 RUU1 = RU1 + U1
  WI=Q(T+J) #SIN(PHE(I+J))
  IF(XJ1.GT.0.) WI=WI#COS(TH(J))._Q(I.J).ATAN(Si(I.J)).#SIN(TH(J))
  PUW1=PU1+W1
  PUU2=PU2#U2
  W2=Q(1+J+1)*SIN(PHE(1+J+1))
  IF (XJ1.GT.0.) W2=W2*COS(TH(J))=Q(I+J+1)*TAN(SI(I+J+1))*SIN(TH(J))
  PUWS=PU2+W2
  PUU3=PU3+U3
  W3=Q(T+1.J+1)+SIN(PHE(I+1.J+1))
  IF (XJ1.GT.0.) W3=W3+COS(TH(J))_Q(I+1.J+1)+TAN(SI(I+1.J+1))+SIN(TH
 1 (J))
  PUW3=PU3+W3
  PUU4=pU4#U4
  W4=Q(I+1,J)#SIN(PHE(I+1,J))
  IF (XJ1 • GT • 0 • ) W4=W4 COS (TH (J)) + Q (I+1 • J) + TAN (SI (I+1 • J)) + SIN (TH
 1(J))
  RUW4=RU4#W4
  PUU= ((RUU]+RUU)) #51+(RUU2+RUU3) #52+(RUU3+RUU4) #53+(RUU4+RUU1) #54)
  RUW=((RUW1+RUW2) #51+(RUW2+RUW3) #52+(RUW3+RUW4) #53+(RUW4+RUW1) #54)
 1/2./ST
  PAV=((P(I+J)+P(I+J+1))*S1+(P(I+J+1)+P(I+1+J+1))*S2+(P(I+1+J+1)+
 1P(I+1,J)) *S3+(P(I+1,J)+P(I,J)) +S4)
 1/2./ST
  PAV=PAV-PINF
  XX1 = (XJZ + XJ + COS(TH(J) + XJ)) + R
  XX4=XX1
  DAX=((ZZ1-ZZ3)+(YY2-YY4)+(ZZ2-ZZ4)+(YY3-YY1))/2.
  DAX=ARS (DAX)
  IF (XJ] . EQ. 0.
                            ) GO TO 61
  7L=(Z(I,J)+Z(I,J+1))/2.
```

```
7U=(Z(I+1+J)+Z(I+1+J+1))/2.
   DAX=(ZU#ZU-ZL#ZL)#DTH/2.
61 CONTINUE
   DAZ=((XX1-XX3)+(YY2-YY4)+(XX2-XX4)+(YY3-YY1))/2.
   DAZ=ARS (DAZ)
   DMVX=PUU+DAX+PAV+DAX
   DMVZ=PUW+DAX+PAV+DAZ
   FSX=FSX+DMVX
   FSZ=FSZ+DMVZ
 6 CONTINUE
   IF (J.NE.JINT.OR.ICOWLT.EQ.D) GO TO 1
   IF (KK.GE.9 ) Gn TO 64
   IMAX] T= IMAX1+1
   DO 62 I=1, IMAX11
       (T,J)=Z
                 (I + J + 1)
       (J,J)=P
                 (I+J+I)
       (T,J)=Q
                 (I \cdot J + 1)
   H
       H=(L,T)
                 (I \bullet J + 1)
   SI
       (I.J)=SI (I.J+1)
   PHI(I,J) = PHI(I,J+1)
   PHE (I.J) = PHE (I.J+1)
   RHO(I.J) = RHO(I.J+1)
62 CONTINUE
   60 TO 56
64 DO 65 I=1. IMAS
       (\uparrow,J)=Z R(\uparrow,1)
       (I, J) =P
                 R(1,1)
       Q = (U, T)
   O
                 R(T+1)
       H=(L.T)
                 R(T+1)
   SI(I,J)=SIR(I+1)
   PHI (I.J) = PHIR (I.1)
   PHE(I.J) =PHER(I.1)
   PHO([,J) = RHOR([,])
       (I.J+1)=Z R(I.2)
       (T.J+1)=P
                   R(1.2)
   0
       (1.J_{+}1)=0
                   R(J.2)
       H= ( [+ L.])
                   R(1.2)
   SI ([,J+1)=SI R([,2)
   PHI(1, J+1) = PHIR(1,2)
   PHE (1.J+1) = PHER (1.2)
   RHO([,J+1)=RHOR([,2)
65 CONTINUE
   XJ=XJS
   XJ1=XJ1S
   XJ2=XJ25
   XJ3=XJ35
 1 CONTINUE
   60 TO (10,11,12), ICHECK
10 IF (KOUNT.EQ.O
                     ) XMAST=XMASS
   C1=XMAST/XMASS
   XEN=0.
   ICHECK=2
   GO TO 2
11 JF (KOUNT.EQ.O.
                        ) XENT=XEN
   C2=XENT/XEN
   IF (KOUNT.NE. 0
                                      ) CALL: UNOWAT (C1.C2)
```

FSX=0.	
FSZ=n. TCHECK=3	
GO TO 2 CONTINUE	· · · · · · · · · · · · · · · · · · ·
END	
	•
•	
	FSZ=0. ICHECK=3 GO TO 2 CONTINUE RETURN END

t

```
SUBROUTINE SETN(10)
     COMMON /WR/ IWRAP
     COMMON /ZNDERV/ DPZN(40), DUZN(40), DVZN(40), DWZN(40)
     COMMON /R/ J.XCN.XC.XXI.JW.INT.ICOWL.RCOWL
     COMMON /ALLRI/ AN(40+10)+TN(40+10)+GAMN(40+10)+XPLAMN(40+10)+
    1XMLAMN(40.10)
     COMMON /ALLRZ/ PQN(40.10).HQN(40.10).QQN(40.10).SIQN(40.10).
    1PHEQN (40 + 10) + PHIQN (40 + 10) + RHOQN (40 + 10) + GAMQN (40 + 10)
     COMMON /A/ X1+THMAX+TH(10)+R +Z(40.10)+P(40+10)+PHF(40+10)+
    1 Q(40,10),SI(40,10),H(40,10),PUI(40,10),RHO(40,10),GAM(40,10)
     COMMON /B/ PN(40,10), PHIN(40,10), RHON(40,10), HN(40,10), ZN(40,10)
     COMMON /C/ IMAX(10) JMAX, ISTART. KOUNTF . KOUNTP
     COMMON /D/ UW (40) . VW (40) . WW (40) . XW (40) . YW (40) . THW (40)
     COMMON /E/ UWN (40) . VWN (40) . WWN (40) . XWN (40) . YWN (40) . THWN (40)
     COMMON /H/ ISIM
     COMMON /J/ QN(40+10)+PHEN(40+10)+SINN(40+10)+XPLAM(40-10)+
    1xMLAM(40.10),FP(40),FM(40),A(40.10)
     COMMON /L/ ALPHAN(7:10) +ALPHA(7:10) +BETAN(7:10) +BETA(7:10)
     COMMON/M/ IS(7.10)
     COMMON/N/ SIQ(40,10),PQ(40,10),PHEQ(40,10),HQ(40,10),PHIQ(40,10),
    100(40,10),RH00(40,10),GAMQ(40,10)
     COMMON /O/ ALP(7+10)+ALPN(7+10)
     COMMON / Q/ XCOWL
     COMMON /S/ RI+KOUNT+KOUNTS+ICOWIT
     COMMON /TEM/ T(40.10)
     COMMON /FN/ FPN(40,10), FMN(40,10)
     IF (In Eq. 1) GO To 1
     IF (R.GE.RCOWL) GO TO 100
     DO 7615 M=1.7
     DO 7677 J=1+10
     ALP (M.J) =0.
     ALPN(M+J)=0.
     ALPHAN (M.J)=0.
     RETAN(M.J)=0.
     ALPHA (M.J) =0.
     RETA (M+J) =0.
7677 js(M, 1)=0
7615 CONTINUE
100 no 3535 M=1.40
     no 3536 J≡1,10
     FPN(M'J)=0.
     FMN(M.J)=0.
       Q(M \cdot J) = 0
     H 0(M+J)=0.
     0 = (L • M) D O
     SI Q(M+J)#0.
     0=(L (M) 0 THQ
     PHFQ(M*J)=0.
     RHOO(M*J)=0.
     GAMQ(M.J)=0.
3536 CONTINUE
     DPZN(M)=n.
     DUZN(M)=0.
     DVZN(M)=0.
     DWZN(M)=n.
3535 CONTINUE
```

```
1 CONTINUE
  JWEJMAX+1
  TF (JSTM.EQ.1) JW=JMAX
  DO 2 J=1.JW
  (U) XAMI=UXAMT
  IF (R. GT. XCOWL-1.E-06.AND.ICOWLT.EQ.1) IMAXJ=IMAXJ+1
  DO 3 I=1.IMAXJ
     N(T)J)=Z
                 (T.J)
  Þ
     N(T+J)=P
                 (T+J)
     N(\uparrow \bullet J) = Q
                 (tet)
     H=(L+T)N
                 (T+J)
     A = (U + \dot{\uparrow}) M
                 ([+J)
     T = (U \cdot T) N
                 ([+J)
  SINN(I)J)=SI (I+J)
  PHEN(T+J)=PHE(T+J)
  (Let) IH9=(Let) MIH9
  RHON(T+J)=RHO(T+J)
  GAMN (T+J) =GAM (T+J)
  (LeI) MXJ9X=(LeI) MMAJ9X
  (LeI) MAJMX=(LeI) NMAJMX
  (L+T) PQ=(L+T)N DA
  (L.I) DH=(L.I)N DH
  QQ N(T+J)=QQ (T+J)
  SIQN(T+J)=SIQ(T+J)
  PHIQ N(I.J) =PHIQ (I.J)
  PHEON(I,J)=PHEO(I,J)
  RHOO N(I.J) =RHOO (I.J)
  GAMQ N(I+J)=GAMQ (I+J)
  TF (J.NE.JMAX+1) GO TO 3
  U WN(T)=U W(I)
  V WN(T)=V W(I)
  W WN(T)=W W(I)
  X WN(\tilde{T}) = X W(I)
  Y WN(T) = Y W(I)
  THWN(T)=THW(I)
3 CONTINUE
  DO 4 Mm1.7
  ALP N(M.J)=ALP
  RETA N(M.J)=BETA (M.J)
  (L+M) AHQJA=(L+M) NAHQJA
4 CONTINUE
2 CONTINUE
  RETURN
  FND
```

```
SUBROUTINE INDATA
     COMMON /STREAM/ XMAST, XENT, FSX. FSZ
     COMMON /JF/ JFINAL
     COMMON /J/ QN(40+10)+PHEN(40+10)+SINN(40+10)+XPLAM(40+10)+
    1xMLAM(40,10).FP(40).FM(40),A(40,10)
     COMMON /TEM/ T(40.10)
     COMMON /IVY/ IVY.KCORR.IAV
     COMMON /A/ X1+THMAX+TH(10)+R +Z(40,10)+P(40+10)+PHF(40+10)+
    1 Q(40.10) •SI(40.10) •H(40.10) •PüI(40.10) •RHO(40.10) •GAM(40.10)
     COMMON /C/ IMAX(10) + JMAX + ISTART + KOUNTF + KOUNTP
     COMMON /D/ UW (40) . VW (40) . WW (40) . XW (40) . YW (40) . THW (40)
     COMMON /G/ A1(3+9)+A2(3+9)+A3(3+9)+RRT(3)+RRZ(3)+RR3(3)
    1.NUMI WS.NUMUWS.NUMSWS
     COMMON /H/ ISIM
     COMMON /I/ XJ
     COMMON /L/ ALPHAN(7+10)+ALPHA(7+10)+BETAN(7+10)+BETA(7+10)
     COMMON/M/ IS(7.10)
     COMMON /O/ ALP(7+10)+ALPN(7+10)
     COMMON/P/ KC1+KC2+K51+KS2
     COMMON / Q/ XCOWL
     COMMON /R/ J.XCN.XC.XXI.JW.INT.ICOWL.RCOWL
     COMMON /S/ RI.KOUNT.KOUNTS.ICOWLT
     COMMON /V/ XJ1
    COMMON /W/ ISIMEX.IDUMMY.JINT.TDUMMY(40).THWW(2).JD1.JD2
     COMMON/EX/ KTPUN(3)
     COMMON /THR/ PINF.ZLIFT.XTHR.YMOM.JJI.ZSHIFT.XSHIFT
     COMMON /XF/ XFIN
     COMMON /IQ/ NUMEXP.ZSAV
     COMMON /WR/ IWRAP
     COMMON /ISW/ JCALC . ISWEEP . XINSD (10) . X2
     COMMON /SPE/ KOUNTO
     COMMON /ISE/ KOUNSP
     COMMON /WO/ XJSS
     COMMON /SCLTM/ ZLIFTC.XTHRC.YMOMC.ZLIFTS.XTHRS.YMOMS
     COMMON/XSTP/XSTP
    DATA XINSP/10+0./.KOUNSP/0/
    DATA THW/4040.
100 FORMAT (1615)
101 FORMAT (7F10.3)
102 FORMAT(BE10.3)
     KOUNT=0
     JCALC-100
     READ (5,9100) KOUNTF, KOUNTP, ISTART, IVY, IAV, KCORR, JFINAL.
    1 (KTPUN(I) , I=1,3) . XSTP
9100 FORMAT(1015,E10.0)
     READ (5.100) JMAX.ISIM.ISIMEX.IWRAP.NUMEXP.ISWEEP.(IMAX.J).JE1.JMAX
    1)
     READ ($102) R.XJ.XJI.XCOWL.RCOWL.XFIN.ZSAV.PINF
     LYZZZLX
     RI=R.
     IF (ISTART . EQ. 1) READ (5,210) KOUNT, R
210 FORMAT(15,E11.3)
     IF (R.GT.RCOWL) ISIM=ISIMFX
     I+XAML=WL
     IF (ISTM.EQ.1) JW=JMAX
     TF(ISWEEP.EQ.1) READ(5.101) (XTNSP(U).J=1.JW)
```

```
IF (ISWEEP.EQ.1) KOUNSP=10000
     KOUNTSEKOUNT
     X1 = P
     IF (ISTART.EQ.1) GO TO 211
     IF (ISWEEP.NE.1) GO TO 1900
     JCALC=1
     JMAX#JMAX+1
     JW=JW+1
     (I-XAML) XAMI=(XAML) XAMI
1900 CONTINUE
     READ (5 101) ZLTFT , XTHR , YMOM , 7 SHTFT , XSHIFT
     no 5 J=1.JMAX
     IF (ISWEEP.EQ.1.AND.J.EQ.2) GO TO 5
     MMAX=TMAX(J)
     READ (5,101) TH(J), (Z(I,J), I=1,MMAX)
     IF (XJ_EQ.0..AND.XJ1.EQ.0.) GO TO 5
     TH(J)=TH(J)/57.3
   5 CONTINUE
     IF (ISTM.EQ.0)
    1READ (5 ) 106) MMAX
                          + (Z(I+JW)+T=1+MMAX)
 106 FORMAT(15, (7E10.3))
     XAMM=(WU)XAMI
 211 CONTINUE
     WRITE (6.400)
 400 FORMAT (1H1 + 24X + #T H R E E D T M E N S I O N A L C H A R A C T
    1E R I S T I C S*///)
     IF(XJ.EQ.O.) WRITE(6.401) RI.R
     IF(XJ.NE.0.) WRITE(6,402) RI.R
 401 FORMAT (10X+*THE INITIAL CARTESTAN X COORDINATE IS+,E13.5//10X+
    1#THIS RUN STARTED AT X COORDINATE#, E13.5/)
 402 FORMAT (10X++THE INITIAL RADIUS OF CURVATURE IS++E13.5//10X+
    14THIS RUN STARTED WITH A RADIUS OF + E13.5/)
     WRITE (6.403) KOUNT . KOUNTF . KOUNTP
 403 FORMAT (10X++THIS RUN WAS STARTED AT KOUNT #4.15.4 WILL RUN TO KOU
    1NT =+.15. AND WILL PRINT EVERY +. 15. KOUNTS +/)
     TSIMP=ISIM+1
     WRITE (6,404) ISIMP
 404 FORMAT (10X + THERE ARE + , 15 + WALLS OF SYMMETRY IN THE INTERNAL FLO
    1W#/)
     WRITE (6.405) XCOWL
 405 FORMAT (10X + THE X COORDINATE OF THE COWL IS + E13.5/)
     TF(XJ.NE.0.) WRITE(6.406) RCOW
406 FORMAT (10X++THE RADIAL DISTANCE TO INTERSECTION OF COWL LIP AND SI
    1DE WALL IS+,E13.5/)
     WRITE(6,2072) XFIN
2072 FORMAT (10X THE X COORDINATE OF THE END OF THE VEHICLE UNDERSURFACE
    1F IS#.E13.5)
     LOWER WALL GEOMETRY
     READ ($ 100) NUMLWS
     no 250 I=1.NUMI WS
     READ (5,102) RRT (I), (A1 (I, J), JET, 9)
250 CONTINUE
     UPPER WALL GEOMETRY
     READ(5+100) NUMUWS
     DO 251 I=1 NUMUWS
     READ (5,102) RR2(I), (A2(I,J),J=1.9)
```

```
251 CONTINUE
      IF (ISTM.EQ.1) GO TO 53
Ċ
      SIDE WALL GEOMFTRY
      READ (5+100) NUMSWS
      00 252 I=1.NUMSWS
      READ (5.102) RR3(I), (A3(I,J),J=1.9)
  252 CONTINUE
   53 CONTINUE
      WRITE (6,2010)
2010 FORMAT (// +35X, *LOWER WALL COORDINATES*)
      WRITE (6,2071)
      DO 20Ã0 I=1.NUMLWS
      IF ((I+1).GT.NUMLWS) GO TO 2041
      WRITE (6,2042) RR1(I), RR1(I+1), (A1(I,J),J=1,9)
      60 TO 2040
2041 WRITE (6,2043) RR1 (I) + (A1 (I, J) + J=1,9)
2040 CONTINUE
      WRITE 6.2020)
2020 FORMAT (// 35X, *UPPER WALL COORDINATES*)
      WRITE (6,2071)
      DO 2050 I=1.NUMUWS
      IF ((I+1).GT.NUMUWS) GO TO 2051
      WRITE(6,2042) RR2(1), RR2(1+1), (A2(1+J),J=1+0)
      GO TO 2050
2051 WRITE(6,2043) RR2(I),(A2(I,J),(±1,9)
2050 CONTINUE
      IF(ISIM.EQ.1) GO TO 54
      WRITE (6.2030)
2030 FORMAT (// 35x. +SIDE WALL COORDINATES+)
      JF(XJ_EQ.0.) WRITE(6,2071)
      IF (XJ_GT.0.) WRITE (6.2070)
      DO 2060 I=1.NUMSWS
      IF ((I+1).GT.NUMSWS) GO TO 2061
     WRITE(6,2042) RR3(I) +RR3(I+1) + (A3(I+J) +J=1+9)
      GO TO 2060
2061 WRITE(6,2043) RR3(I),(A3(I,J),J=1,9)
2060 CONTINUE
2042 FORMAT (10X+11E11.3)
2043 FORMAT (10X+E11.3,4X+*END+,4X,9F11.3)
2070 FORMAT(15X++R+,4X,+TO+,4X,+R+,45X,+COORDINATES+)
2071 FORMAT (15X+*X++4X+*TO++4X+*X++45X+*COORDINATES+)
  54 CONTINUE
     JF(ISTART.EQ.1) GO TO 212
     TEMP=0.
     TTEMP=0.
     DO 6 J=1, JMAX
     IF (ISWEEP.EQ.1.AND.J.EQ.2) GO TO 6
     (L) XAMT=XAMM
     READ(5:101) (P
                      (I+J)+I=1+MMAX)
     READ (5,101) (PHE (I, J), I=1, MMAX)
     READ (5.101) (Q (I.J), I=1.MMAX)
    READ (5 + 101) (ST (I+J) + I=1 + MMAX)
      READ (5,101) (H (I,J), I=1, MMAX)
     READ(5.101) (PHI(I.J).Imi.MMAX)
     DO 531 I=1+MMAX
     PHE (1.J) = PHE (1.J) /57.3
```

```
SI(I_{\bullet,J}) = SI(I_{\bullet,J}) / 57_{\bullet,3}
    IF (H(T,J).LT.10000.) TEMP=1.
    IF (H(1,J).LT.10000.) TTEMP=H(I,J)
    T(1+J)=FT(P(1+J)+HI(1+J)+H(1+J))
    IF (TEMP.EQ.1.) H(I.J) =T (I.J)
    IF (TEMP_EQ.1.) T(I.J)=TTEMP
    TEMPEN.
    TTEMPEO.
    RHO(1.J) = RHEQ(H(I.J) .P (I.J) .PHT(I.J))
    GAM(I,J)=FGAM(T(I,J),P(I,J),PHT(I,J))
    A(I,J) =SQRT(GAM(I,J) +P(I,J)/RHO(I,J))
    CALL YLAM(Q(I,J),A(I,J),PHE(I,J),XPLAM(I,J),XMLAM(I,J))
531 CONTINUE
  6 CONTINUE
    TF (ISTM.FQ.1) RETURN
    U=JW
    (L) XAMT=XAMM
    PEAD (5,101) (P
                        (I + J) + I = 1 + MM \triangle X
    READ(5,101) (H
                       (I \bullet J) \bullet I = 1 \bullet MMAX
    READ (S. 101) (PHI (I.J) , I=1 , MMAX)
    READ (5+101) (UW(I) + I=1 + MMAX)
    PEAD (5+101) (WW(I) + I=1 + MMAX)
    DO 7 T=1.MMAX
    THG=TH(JMAX) +Xj
    XW(I)=R*COS(THG)
    IF (XJ1.E0.0.)
   1CALL SWALL (R.Z(I.J), XW(I), YW(I), FX.FZ)
    IF (XJT.EQ.1.)
   1CALL SWALL1 (YW(I),R+Z(I+J),FX+FZ)
    IF (XJ_EQ.0.) GO TO 200
    THW(I) = \Delta TAN(YW(I)/XW(I))
    GO TO 201
200 THW(I) =YW(I)
201 CONTINUE
    VW(I)=UW(I)*FX+WW(I)*FZ
    IF (XJ1.EQ.1.) VW(I) = VW(I) +Z(I.J)
    THWG=THW(I) +XJ
    UT=UW(I) +COS(THWG) +VW(I) +SIN(THWG)
    VT=VW(I) *COS(THWG) =UW(I) *SIN(THWG)
    O(I)J)=SQRT(UT+UT+WW(I)+WW(I))
    PHE(I.J) =ATAN(WW(I)/UT)
    SI(I.j) = ATAN(VT/Q(I.J))
    IF (H(T+J).LT.10000.) TEMP=1.
    IF (H (1.J) .LT.10000.) TTEMP=H (1.J)
    T(I, J) = FT(P(I, J), PHI(I, J), H(T, J))
    IF (TEMP.EQ.1.) H(I.J) =T(I.J)
    IF (TEMP.EQ.1.) T (I.J) =TTEMP
    TEMP=0.
    TTEMP_0.
    RHO([.J) = RHEQ(H([.J) .P([.J) ,PHT([.J))
    GAM(I.J) = FGAM(T(I.J).P(I.J).PHT(I.J))
    \Delta(I \cdot J) = SQRT(GAM(I \cdot J) \cdot P(I \cdot J) / PHo(I \cdot J))
    CALL XLAM(Q(I,)),A(I,J),PHE(I,J),XPLAM(I,J),XMLAM(I,J))
  7 CONTINUE
    TH(J)=THW(1)
    RETURN
```

```
212 IF(R.GT.(RCOWL-1.E-05)) ISIM=ICIMEX
    PEAD (5.100) JINT . KOUNTC
    READ (5,9) XMAST . XENT . FSX . FSZ
  9 FORMAT (4E13.5)
    READ (5,216) ZLIFT, XTHR, YMOM, ZSHIFT, XSHIFT
    DO 213 J=1.JW
    IF(ISJM.EQ.1.OR.J.NE.JW) GO TO 300
    READ (5 100) IMAX (J)
    60 To 301
300 CONTINUE
    READ (5:216) TH(J)
301 CONTINUE
    IF (R.GT.RCOWL) IMAX(J) = IMAX(J) 1
    (U) XAMIELXAMI
    LYAMI . I=1 . IMAYJ
    IF (ISTM.EQ.1.OR.J.NE.JW) GO TO 303
    PEAD (5.302)
                              UW(I) + WW(I) + VW(I) + THW(I)
302 FORMAT (6E11.3)
303 CONTINUE
    READ (5+215) Z([+J)+P([+J)+Q([+J)+PHE([+J)+S]([+J)+H([+J)+
   1PHI([,J)+RHO([,J)
631 CONTINUE
    T(I+J)=FT(P(I+J)+PHI(I+J)+H(I+J))
    GAM(I.J) = FGAM(T(I.J) + P(I.J) + PHT(I.J))
    A(I+J) =SORT(GAM(I+J) +P(I+J)/RHA(I+J))
    CALL XLAM(Q(I+J)+A(I+J)+PHE(I+J)+XPLAM(I+J)+XMLAM(I+J))
215 FORMAT (5E11.3,11x,E11.3/2E11.3)
214 CONTINUE
    TF (R.LT.RCOWL) GO TO 213
    I = (L) XAMI = (L) XAMI
    PEAD (5+216) (ALP (M,J),M=1,7)
    READ (5.216) (ALPHA (M.J) . ME1.7)
    READ (5+216) (BETA (M+J)+M#1+7)
    READ (5.217) (IS
                       (M.J),M=1.7)
    IF (IS(3) . NE . O . AND . ISIM . EQ . O) READ (5 . 216) ZLIFTC . XTHRC . YMOMC
    TF(IS(1).NE.0.AND.ISIM.EQ.0) RFAD(5.216) ZLIFTS.XTHRS.YMOMS
213 CONTINUE
    TF (R.I T.RCOWL) RETURN
    TCOWLT=1
    TNT=>
    KC1=3
    JF (JWRAP .EQ.1) RETURN
    READ (5+217) IDUMMY
    READ (5 216) (Zhummy (I) , I=1 , NumexP)
216 FORMAT (7E11.3)
217 FORMAT (715)
    RETURN
    FND
```

```
SUBROUTINE TBL (ZX,PX,SIX,HX,PHTX,QX,PHEX,RHAX,GAMX,THX,L,IMAX,I)
   COMMON /A/ X1+THMAX+TH(10)+R +Z(40+10)+P(40+10)+PHF(40+10)+
  1 Q(40,10),SI(40,10),H(40,10),PHI(40,10),RHO(40,10),GAM(40,10)
   COMMON /D/ UW (40) . VW (40) . WW (40) . XW (40) . YW (40) . THW (40)
   COMMON /DER/ JE
   COMMON /H/ ISIM
   COMMON /R/ J.XCN.XC.XXI.JW.INT.ICOWL.RCOWL
   COMMON /TB/ IMAXJ. ISI. ISZ. ISLI. ISLZ
   THL=0.
   K=L:
   TF (L.NE.JW.OR.TSIM.EQ. 1) THL TH (L)
   DO 10 J7=1 . IMAX
   J5=J7
   IF (ZX=Z(J5+L)) 8.9.10
 8 J6=J5-1
 7 IF(I _EQ_1) J6=J5+1
12 CONTINUE
   RAT=(7X-7(J6+K))/(Z(J5+L)-Z(J6+K))
           (J6*K)*(P
                      (J5,L)-P
                                  (IA+K)) #RAT
      XEH
            (J6,K)+(H
                       (J5,L)-H
                                  (J6,K)) #RAT
      X≡Q
           (J6*K)*(0
                       (J5,L)-Q
                                  (J6+K)) #PAT
   SI X=SI (J6+K)+(SI (J5+L)-SI (16+K))*RAT
   PHIX=PHI(J6,K)+(PHI(J5,L)-PHI(J6,K))+PAT
   PHEXEPHE (J6 . K) + (PHE (J5 . L) - PHE (J6 . K) ) *RAT
   RHOX=RHO(J6+K)+(RHO(J5+L)=RHO(J6+K))#RAT
   GAMX=GAM(J6+K)+(GAM(J5+L)-GAM(J6+K))+RAT
   IF (K.NE.JW.OR .ISIM.EQ.1)
  1THX=TH(K )+RAT+(THL+TH(K ))
   IF (K.NE.JW.OR. ISIM. EQ. 1) GO TO 11
   THX=THW(J6)+RAT+(THW(J5)-THW(J4))
   GO TO 11
 9 TF(ICOWL.EQ.1) J5=I
      XED
          (J5+L)
      Xeu
           (J5 .L)
      XEO
           (J5,L)
   SI XESI (J5+L)
   PHIX=PHI(J5+L)
   PHEXEPHE (J5.L)
   RHOX=RHO(J5+L)
   GAMXEGAM (J5.L)
   THX=THL
   IF (L.NE.JW.OR.TSIM.EQ.1) GO TO 11
   THX=THW(J5)
   GO TO 11
10 CONTINUE
11 RETURN
   FND
```

```
SUBPOUTINE WRAP (M)
     COMMON /4/ Q1, THMAX, TH(10), R .Z(40,10), P(40,10), PHF(40,10),
    1 Q(40,10),SI(40,10),H(40,10),PHT(40,10),RHO(40,10),GAM(40,10)
     COMMON /C/ IMA$(10) .JMAX, ISTART, KOUNTF, KOUNTP
     COMMON/M/ IS(7.10)
     COMMON /S/ RI.KOUNT.KOUNTS.ICOWLT
     COMMON /W/ ISIMEX.IDUMMY.JINT.TOUMMY(40).THWW(2).JDI.JD2
     COMMON /IQ/ NUMEXP, ZSAV
     COMMON /WRTOMO/ XO(3).X1(3).P1W(20).Q1W(20).H1W(20).S11W(20).
    1PHI1W(20) . PHE1W(20) . RHO1W(20)
     IF (M.EQ.0) GO TO 321
     WRITE (6, 1201)
1201 FORMAT (1H1+30X+#EXTERNAL WRAP AROUND REGION#)
321 CONTINUE
     J2=JINT
     J3=J2+1
     PI2=2./3.1415926
     PI1=3.1415926/18.
     (SL)XAMI=SXAMT
     IMAX1 = IMAX (J3)
     [$$=[$(1,J2)
     fSS1=fS(1.J3)
     TC=15(3,J2)
     IC1=IS(3,J3)
     XO(1)=Z(TC+J2)=ZSAV
     Y1(1) = (Z(IC1.J3) - XO(1)) +PI2
     XO(2)=Z(ISS.J2)=Z(IC.J2)
     x1(2) = (Z(ISS1, 3) -Z(IC1, 3) -x0(2)) +PI2
     x0(3)=Z(IMAx2,J2)=Z(ISS,J2)
     X1(3) = (Z(IMAX1,J3) - Z(ISS1,J3) - x0(3)) + pI2
     il=IDUMMY+1
     IF (M.EQ.O) IMAX2=IC-1
     DO 100 I=I1.IMAX2
     IF(I.GT.IC) GO TO 1
     7L=ZSAV
     XN0=XO(1)
     XN1=X1(1)
     G1=0
     C=(Z(I,J2)-ZL)/XNO
     D=C+xi(1)+G1
     T1=X0(1) +C
     T2=X1(1)+C
     60 TO 2
   1 IF (I GT ISS) GO TO 3
     ZL=Z(TC,J2)
     XN0=XU(S)
     xN1=x1(2)
     G1=X1(1)
     C=(Z(I+J2)-ZL)/XNO
     D=C#X1(2)+G1
     T1 = X_0(1) + X_0(2) + C
     T2mX1(1)+X1(2)+C
     GO TO 2
  3 7L=Z(155.J2)
     XN0=XO(3)
     xN1=x1(3)
```

```
G1=X1/1)+X1(2)
     C= (Z (T+J2)-ZL)/XNO
     D = C + x_1(3) + G1
     T1=X0(1)+X0(2)+X0(3)+C
     T2=X1(1)+X1(2)+X1(3)*C
   2 CONTINUE
     P3=T1+T2/PI2
     P2=T1
     D2=D#D
     DUM=R2#SQRT (R2#R2+D2)
     ST=.5/D*(R3*SQRT(R3*R3+D2)=DIIM)
     CALL TBL (R3.PS.SIS.HS.PHIS.QS.PHES.RHOS.GAMS.THX.J3.IMAX(J3)+1.2)
              S-P
                    (I.J2))/ST
                    (I,J2))/ST
     0 S= (Q 5-Q
       S=/H S-H
                    (I.J2))/ST
     SI SE(SI S=SI (I,J2))/ST
     PHIS=(PHIS=PHI(I.J2))/ST
     PHES=(PHES=PHE(I.J2))/ST
     RHOS=(RHOS=PHO(I,J2))/ST
     GAMS=(GAMS-GAM(I.J2))/ST
     IF (I.GE.IC.OR.M.NE.O) GO TO 322
     T2=I-TDUMMY+1
       1w(12)=P S
       1W(I_2)=Q
        1w(12)=H
                   S
     SI lw(I2)=SI S
     PHI1W(I2) = PHIS
     PHEIW(I2) = PHES
     RHO1W/I2)=RHOS
 322 IF (M.FQ.n) GO TO 100
     WRITE (6, 1200) T
1200 FORMAT(//10X, #7 = #, 12/6x, #R#, 9x, #TH#, 10x, #P#, 10x, #Q#, 8x, #PHE#, 9x,
    1#SI#,9X,#H#,9X,#PHI#,8X,
    1 #RHO# BX . #GAM#5
     DO 101 K=1.10
     THT=PT1+FLOAT(K-1)
     D3=T1+T2+THT
     S=.5/D+(R3+SQRT(R3+R3+D2)=DUM)
        BEP
             (I + J2) +P S#S
              (1, J2) + 0
                        5#5
        REA
     H B=H (I+J2)+H S#S
     SI B=SI (I+J2)+SI S#S
     PHIBmpHI(I+J2)+PHIS#S
     PHEB=PHE (1, J2) +PHES+S
     RHOB=PHO(I+J2)+RHOS*S.
     GAMB=GAM(I,J2)+GAMS+S
     WRITE (6.1202) R3.THT.PB.QB.PHER.SIB.HR.PHIB.RHOB.GAMB
1202 FORMAT (10F11.3)
101 CONTINUE
 100 CONTINUE
     RETURN
     FND
```

```
SUBROUTINE INDATP (MM. IFS. BM)
     COMMON /TEM/ T(40.10)
     COMMON /JF/ JFINAL
     COMMON /A/ X1+THMAX+TH(10)+R +Z(40+10)+P(40+10)+PHE(40+10)+
    1 Q(40,10) •SI(40,10) •H(40,10) •PHI(40,10) •RHO(40,10) •GAM(40,10)
     COMMON /C/ IMAV(10) JMAX, ISTART, KOUNTF . KOUNTP
     COMMON /D/ UW (40) . VW (40) . WW (40) . XW (40) . YW (40) . THW (40)
     COMMON /G/ A1 (3.9) , A2 (3.9) , A3 (3.9) , RRI (3) , RR2 (3) , RR3 (3)
    1.NUMLWS.NUMUWS.NUMSWS
     COMMON /H/ ISIM
     CX VIV NOMMOD
     COMMON /J/ QN(40+10)+PHEN(40+10)+SINN(40+10)+XPLAM(40-10)+
    1 XML AM (40.10) . FP (40) . FM (40) . A (40.10)
     COMMON /R/ J.XCN.XC.XXI.JW.INT.ICOWL.RCOWL
     COMMON /V/ XJ1
     COMMON /W/ ISIMEX.IDUMMY.JINT.JDUMMY(40).THWW(2).JD1.JD2
     COMMON /SA/ XJTS
     COMMON /IQ/ NUMEXP, ZSAV
     COMMON /WR/ IWPAP
     DIMENSION BM (10)
 102 FORMAT(8E10.3)
     PEWIND 55
     DO 5333 J=1.JW
     TMAXJEIMAX(J)
     DO 5333 Iml, IMAXJ
                 Z(I,J),P(I,J),Q(I,J),H(I,J),SI(I,J),RHO(I,J),PHI(I,J),P
     PEAD (55)
    1HE(I,j),TH(J)
     T(I,J) =FT(P(I,J),PHI(I,J),H(J,J))
     GAM([.J)=FGAM(T([.J).P([.J).PHT([.J))
     A(I \cdot J) = SQRT(GAM(I \cdot J) + P(I \cdot J) / RHO(I \cdot J))
     CALL XLAM(Q(I,)) +A(I+J) +PHE(I+J) +XPLAM(I+J) +XMLAM(I+J))
5333 CONTINUE
     CALL MOTHER
     READ (E+104) IFSS.MM
 104 FORMAT (815)
     IFS=IFSS-1
     IF (IWRAP .EQ.1) GO TO 2
     I =JFTNAL
     DO 1600 I=1.2
     T(I,JG) aT(I,L)
           (I,JW)=Z
                        (ToL)
     D
           Q=(WL.I)
                        (I+L)
     н
           H=(WL,I)
                        (I+L)
           (I.JW)=Q
     O
                        (IPL)
           A = (W \cup I)
     ٨
                        (IIL)
     SI
           (I.JW)=SI
                        (I+L)
     PHT
           (I,JW)=PHT
                        (IIL)
     PHE
           (I.JW)=PHE
                        (I,L)
     RHO
           (I,JW) = RHO
                        (I+L)
     GAM
           (I,JW)=GAM
                        (I,L)
     XPLAM(I+JW)=XPLAM(I+L)
1600 XMLAM(I+JW)=XMLAM(I+L)
     IMAX(JW)=IMAX(L)
     TH(JW)=TH(L)
     THW(1) = THWW(1)
     THW(2)=THWW(2)
```

```
JW=JW+NUMEXP=1
   2 CONTINUE
     ISIMETSIMEX
     JMAX=JW
     TF (ISTM.EQ.O) JMAX=JW-1
     DO 5nn J=1,JMAy
     TMMM=TMAX (J) +MM
     IMMMM=IMMM+IFSS-1
     READ(5,103) (Z
                     (I,J), I=IMMM.IMMMM)
     READ (#+103) (P
                     (MMMMI.MMMI=I.(L.I)
     READ(5.103) (PHE(1.J), I=IMMM, IMMMM)
     READ (5,103) (Q (I,J), I=IMMM, IMMMM)
     READ (5.103) (ST (I.J), I=IMMM, IMMMM)
     READ (5+103) (H
                      (I,J),I=IMMM.IMMMM)
     READ (F. 103) (PHI (I.J). I = IMMM. IMMMM)
103 FORMAT (7E10.3)
     no 1 t=IMMM.IMMMM
     IF(J_GT_JINT.AND.I.LT.IMMMM-1) Z(I.J)=Z(2.J)
     PHO (I.J) = RHEQ (H(I.J) .P(I.J) .PHT(I.J))
     PHE (1.J) =PHE (1.J) /57.3
     SI(I,J) = SI(I,J)/57.3
     T(I+J)#FT(P(I+J)+PHI(I+J)+H(I+J))
     GAM (I.J) = FGAM (T (I,J) + P (I,J) , PHT (I,J))
     A(I,J) =SORT(GAM(I,J) +P(I,J)/RHA(I,J))
     CALL XLAM(Q(I+J)+A(I+J)+PHE(I+J)+XPLAM(I+J),XMLAM(I+J))
   CONTINUE
500 CONTINUE
     TF(ISIMEX.EQ.1) GO TO 600
     I=JW
     MM+(U)XAMT=MMMI
     IMMMM=IMMM+IFSS-1
     READ (5.103) (Z
                      (I,J),ImIMMM.IMMMM)
     PEAD (5103) (P
                      (MMMMI.MMMI=I.(L.I)
     READ (5:103) (H
                      (MMMMI.MMMI=I.(C.I)
     READ (5,103)
                  (PHI(I,J), I=IMMM, IMMMM)
     READ (5+103) (UW(I) . I = IMMM . IMMMM)
     READ(5:103) (WW(I):I=IMMM:IMMMM)
600 CONTINUE
     READ (5+103) (BM(J10)+J10=1+JW)
     no 7639 Jll=1,jW
7639 BM(J]j)=BM(J]1)/57.3
     READ (E+104) NUMUWS
     DO 251 I=1.NUMUWS
251 READ (5,102) RR2(I), (A2(I,J),J=1,9)
     IF (ISIMEX.EQ.1) GO TO 3
     READ (5+104) NUMSWS
     DO 252 I=1.NUMSWS
252 READ (5+102) RR3(I) + (A3(I,J) + J=1,9)
     لال⇔ل
     xJl=0.
     DO 7 THIMMM.IMMMM
     IF(I. T. IMMMM-T) Z(I.J)=Z(2,J)
     RHO (I.J) = RHEO (H(I.J) , P(I.J) , PHT (I.J))
     THG=TH(JMAX)+XJ
     XW(I) =R+COS(THg)
     IF (XJ1 . EQ. 0.)
```

```
1CALL SWALL (R.Z(I.J) .XW(I) .YW(I) .FX.FZ)
    IF (XJ1 . GT . 0 . )
   1CALL SWALLI (YW(I) .R.Z(I.J) .FX.F7)
    IF(XJ.EQ.0.) GO TO 200
    THW(I) = ATAN(YW(I) /XW(I))
    GO TO 201
200 THW(T) =YW(I)
201 CONTINUE
    VW(I)=UW(I)#FX+WW(I)#FZ
    IF (XJ) . EQ. 1.) VW(I) = VW(I) + Z(I. J)
    THWG=THW(I) +XJ
    UT=UW(I) *COS(THWG) + VW(I) *SIN(THWG)
    VT=VW(I) *COS(THWG) -UW(I) *SIN(THWG)
    O(I)J)=SORT(UT+UT+WW(I)+WW(I))
    PHE(T.J) = ATAN(WW(I)/UT)
    SI(I.j)=ATAN(VŤ/R(I.J))
    T([,J)=FT(P([,J),PHI([,J),H([,1))
    GAM(I.J) = FGAM(T(I.J).P(I.J).PHT(I.J))
    A(I+J) =SQRT(GAM(I+J) +P(I+J)/RHA(I+J))
    CALL XLAM(Q(I+J)+A(I+J)+PHE(I+I)+XPLAM(I+J)+XMLAM(I+J))
  7 CONTINUE
    XJ1=XJ1S
  3 CONTINUE
    RETURN
    END
```

```
FUNCTION FH(P1.F.T1)
    COMMON /THE/ A1, A2, A3, A4, A5, A6, XMM1
    P=P1+1.01325E5/2116.
    T=T1#5./9.
    FZ=F#F
    JF(F, LT.O.) GO TO 400
    JF (T.GT.2000.) GO TO 190
    IF (F.GT.1.) GO TO 191
120 A=1.E-07*(-.1042*F2 +.8242*F+.987)
    B=.00j*(.01167#F2 +.1503#F..93A)
    C==.0284#F2 +.6731#F+.4293
    60 TO 290
191 A=1.E_07+(1.787+F2 -5.48+F+5.4)
    B=.001*(-.1867*F2 +1.11*F+.176)
    C==.0933#F2 +3.975#F=2.808
    GO TO 290
190 TF (F.GT.1.) GO TO 192
    A=.000001*(1.792*F2 +.3983*F+.71)
    B = .001 + (-9.05 + F2 - .07917 + F + .245)
    C=10.86#F2 -.1183#F+.97
    60 TO 290
192 Am. 000001 + (4.8] +F2 -13.9 +F+11.59)
    R=.001*(-23.08#F2 +66.82#F-52.61)
    C=27.05#F2 -73.73#F+58.39
290 H1=A+T+T+B+T+C
    JF (T.LE.2000.) GO TO 370
    A10=ALOG(P)/2.3-5.
    79=.125#A10#A10
                                 -.275#A10
    H1=H1_{+}(1.+(1.+F)+(T/2000.-1.)+79)
370 H1=H141.E+06
    GO TO 340
400 T2=T#T
    T3=T>+T
    T4mT34T
    T5ET44T
    H1=A1+T+A2+T2/2.+A3+T3/3.+A4+T4/4.+A5+T5+A6
    H1=H1+8314./XMM1
340 CONTINUE
    FH=H1+10.7639
    RETURN
    FND
```

	SUBROUTINE SOLVE(A11+A12+A DET=A11+(A22+A33-A32+A23)= 131) RETURN	A12# (A)	21 * 833-83	31#A23)	+A13#(A2)	1 *432-422	₽¢A
	END						
			um ngagar gamandah salaman P PA	400-4 W -	- .		
						· velocities dispusance see s	
						•	

	· · · · · · · · · · · · · · · · · · ·						
			4				
	·					AND A STOCK MAN IN AN ADMINISTRA	
					a camera species a camera e e e		

	RETURN								
	END						 		
	<u> </u>						 		
÷ =					*			·	
	•								
								<u> </u>	
						•			
							 		
			·						
					•		 		
				·····			 ·		
		•							
			·- <u></u>		-		 		
							 	······	
									′
							 		

```
SUBROUTINE SWALL (R1,Z1,X1,Y1,FY,FZ)
   COMMON /G/ A1 (3,9), A2 (3,9), A3 (3,9), RR1 (3), RR2 (3), RR3 (3)
  1. NUML WS. NUMUWS. NUMSWS.
   LX \I\ NOMMON
   ı = 1
   FTTm1 E+06
   IF (L.LT.NUMSWS) RTT=RR3 (L+1)
   IF (R1 GE . RTT) L=L+1
   IF (L. T. NUMSWS) RTT=RR3(L+1)
   TF (R) .GE .RTT . AND .L .LT . NUMSWS) | =L+1
   x = x1
   7=71
   72=247
   TTEI
21 xx=x+x
   ~=A3(L+1)*XX#Z7+A3(L+2)*XX#Z+A3(L+3)*Y#ZZ+A3(L+4)*XX+Ã3(L+5)*ZZ+
  143(L+4) *x*Z+43(L+7) *x+43(L+8) *7+43(L+9)
   ÍF (XJ.EQ.0.) GO TO 20
   RT=SQRT(X##2+Y##2)
   FRR=(RT=R1)/R1
   IF (ABS (ERR) . LT. 1.E-10) GO TO 27
   TTmIT_1
   TF (IT. GT. 2) GO TO 22
   FR1=FRR
   X11=X
   Y=1.01*X+1.E-5
   GO TO 21
22 DUM=X11-ER1+(X-X11)/(ERR-ER1)
   FR1=FRR
   x11=x
   Y=DUM
   IF (IT.GT.10) CALL ERROR (22)
   60 TO 21
20 CONTINUE
   X1=X
   Yl=Y
   Fx=2.+A3(L+1)+x+ZZ+2.+A3(L+2)+x+Z+A3(L+3)+ZZ+2.+A3(L+4)+x+A3(L+6)
  1 * Z + A 3 (L , 7)
   F7=2. 4A3(L+1) 4XX4Z+A3(L+2) 4XX+2. 4A3(L+3) 4X47+2.4A3(1+5) 4Z
  1+A3 (L,6) #X+A3 (L,8)
   RETURN
   END
```

```
SUBROUTINE TWALL (R1+TH1+Z+FR1+FT1)
 COMMON /G/ Al (3,9) +A2(3,9) +A3(3,9) +RR1(3) +RR2(3) +RR3(3)
1.NUML WS.NUMUWS.NUMSWS
 COMMON /I/ XJ
 COMMON /R/ J.XCN,XC,XXI,JW,INT,ICOWL,RCOWL
 COMMON /V/ XJ1
 COMMON /ISW/ JCALC, ISWEEP, XINSP(10), X2
 | = ]
 RTT=1.E+06
 THX=FH1+xJ
 P=R1#COS(THX)
 R=R-XTNSP(J)
 IF (XJ.EQ.O.) TETH1
 IF(XJ.EQ.1.) T=R1+SIN(TH1)
 IF (L. T. NUMUWS) RTT=RR2(L+1)
 TF (R.GE.RTT) L=L+1
 TF(L. T. NUMUWS) RTT=RR2(L+1)
 TF(R .GE.RTT.AND.L.LT.NUMUWS) [ =L+1
RRER#R
 TT=T#T
 7=A2([+1)*RR*TT+A2(L+2)*RR*T+A2(L+3)*R*TT+A2(L+4)*RR+A2(L+5)*TT+
1A2(L,6)+R+T+A2(L,7)+R+A2(L,8)++A2(L,9)
FR =2. *A2(L,1)*R*TT+2. *A2(L,2)*R*T+A2(L,3)*TT+2. *A2(L,4)*R+A2(L,6)
14T+A2(L.7)
FT =2. #A2(L,1) #RR#T+A2(L,2) #RR,2. #A2(L,3) #R#T,2. #A2(L,5) #T,A2(L,6)
1 #R+A2 (L. A)
FRI=FR*COS(THX)+FT*SIN(THX)
FT1mmFR#SIN(THX)+FT#COS(THX)
 IF (XJ.EQ.1.) FT1=FT1/R1
 IF (XJI . EQ. 1.) FT1=FT1/Z
 RETURN
FND
```

```
SUBROUTINE SWEFPT(1135)
  COMMON /TEM/ T/40.10)
  COMMON /J/ QN(40+10)+PHEN(40+16)+SINN(40+10)+XPLAM(40,10)+
 1XML ΔM (40,10), FP (40), FM (40), Δ (40,10)
  COMMON /A/ X1, THMAX, TH(10), R
                                    ,Z(40,10),P(40,10),PHE(40,10),
 1 Q(40.10),SI(40.10),H(40.10),PNI(40.10),RHO(40.10),GAM(40.10)
  COMMON /C/ IMAX(10) JMAX, ISTART, KOUNTF + KOUNTP
  COMMON /H/ ISIM
  COMMON/N/ SIQ(40+10)+PQ(40+10)+PHEQ(40+10)+QQ(40+10)+PHIQ(40+10)+
 100 (40.10) , RHOQ (40,10) , GAMQ (40.10)
  COMMON /R/ J.XCN.XC.XXI.JW.INT.ICOWL, RCOWL
  COMMON /S/ RI.KOUNT.KOUNTS.ICOWLT
  COMMON /ISW/ JCALC+ISWEEP+XINSP(10)+X2
  COMMON /ISWI/ TER
  COMMON/PS/ZR (40+2) +PR (40+2) +OR (40+2) +HR (40+2) +SIR (40+2) +RHOR (40+2)
 1.PHIR (40.2) .PHFR (40.2) .THR (2) .THWR (40)
  COMMON /ISE/ KOUNSP
  IF(II35.E0.1) GO TO 1
  JK=Jc⊼Lc+2
  JC=JCALC+1
  X6mX2=Rt
  PAT=(x6-XINSP(JCALC))/(XINSP(JC)-XINSP(JCALC))
  TF (RAT.GT.1.-1.E-10) RAT=1.
  TH (JC) #THR (1
                   ) ARATH (TH (JK) ATHR (1
                                             ))
  IM=IMAX(JCALC)
  00 3 I=1.IM
     (1.JC)=P
                R(I.1) + RAT# (P
                                 (I,JK)=P
                                            R(I,1))
     (T.JC)=H
                R(I+1)+RAT#(H
                                 H=\{\lambda \cup I\}
                                            R(I,1))
     (T.JC)=Q
                                 (I,JK)-Q
                R(I \bullet I) + RAT#(Q
                                            R(I+1))
     (I \cdot JC) = Z
               R(I \bullet 1) + RAT + (Z)
                                 (I,JK)-Z
                                            R(I.1)
  SI (1.JC)=SI R(I.1)+RAT*(SI (I.JK)=SI R(I.1))
  PHI(I.JC)=PHIR(I.1)+RAT*(PHI(I.JK)-PHTR(I.1))
  PHE(I.JC) =PHER(I.1) +RAT#(PHE(I.JK) =PHER(I.1))
  RHO(1.JC) =RHOR(1.1) +RAT* (RHO(1.JK) =RHOR(1.1))
  I =JC
  T(I+L)=FT(P(I+L)+PHI(I+L)+H(I+i))
  GAM(I.L)=FGAM(T(I.L),P(I.L),PHT(I.L))
  A(I,L)=SQRT(GAM(I,L)+P(I,L)/RHO(I,L))
  CALL XLAM(Q(I,L) +A(I+L) +PHE(I+L) +XPLAM(I+L) +XMLAM(I+L))
3 CONTINUE
  IF (RAT.LT.1.-1.E-10) RETURN
  JCALCEJCALC+1
  IFR=1
  IF (JCALC.LT.JW-1) GO TO 1
  IFR=0
  JCALC=100
  JW=JW_1
  WCZXAMU
  TF(ISTM.EQ.0) JMAX=JW-1
  KOUNSPEKOUNT
  ISWEEP=0
  RETURN
1 IMAXJ=IMAX(1)
  LXAMI.I=I S OG
     Q(T, JCALC) = n.
     G(T+JCALC)=0.
```

	0 0(1.10	ALC)=ñ.				
	SI Q(I+JC/	ALC)=0.		 		
	PHEG(I+JCA	ALC)=0.				
	RHOG (T+JCA	ALC)=0.		 	 	
2	GAMQ (T.JC)	ALC) = ñ •				
	CONTINUE		***************************************	 		
	END					
				 - 	 	
					^	
			- 	 	 	
		•				
			· · · · · · · · · · · · · · · · · · ·		 	
···				 	 	
		· · · · · · · · · · · · · · · · · · ·		 	 -	

H.						
		•				

				 ***************************************	 ***	
	-					
					 NATE OF THE PARTY	
			,		 	

-

```
FUNCTION FT (P1,F,H5)
     COMMON /C/ IMAX(21) + JMAX + ISTART + KOUNTF + KOUNTP
     COMMON /S/ RI, KOUNT, KOUNTS, ICOWLT
     COMMON /THE/ A1+A2+A3+A4+A5+A6.XMM1
     DATA 163/0/
     P=P1#1.01325E5/2116.
     H=H5/10.7639/1.E+06
     F2=F4F
     A10=ALOG(P)/2.3-5.
     79=.125#A10#A10
                                 -. 275 #A10
     TT=1
     IF(163.EQ.1) GO TO 1000
     163=1
     T=1500.
     T0=1500.
     IF(F.GE.O.) GO TO 120
     T=600.
     T0=T
1000 IF(F.LT.n.) GO TO 400
     GO TO 120
  50 E0=(H_H1)/H
     IF (ABS(E0) . LT. 1 . E-04) GO TO 345
     T =T0+1.1
     TT=2
     IF(F.LT.0.) GO TO 400
     GO TO 120
 100 E1=(H_H1)/H
     IF (AB¢(E1).LT.1.E-04) GO TO 345
     IT=IT+1
     IF(IT_LT.21) GO TO 10
     WRITE (6,11)
 11 FORMAT (* ERROR IN TEMPERATURE TTERATION IN FT*)
     STOP
 10 T9=T0=E0+(T -T0)/(E1-E0)
     F0=E1
     TO=T
     T=T9
     IF(F.LT.0.) GO TO 400
120 A=1.E-07+(-.1042+F2 +.8242+F+.987)
     B=.00]*(.01167*F2 +.1503*F+.93*)
     C=-.0284#F2 +.6731#F+.4293
     IF (F.LE.1.) GO TO 190
     A=1.E=07*(1.787*F2 -5.48*F+5.4)
     B=.001*(-.1867*F2 +1.11*F+.176)
     C=-.0933*F2 +3.975*F-2.808
190 [F(T. | E. 2000.) GO TO 290
     A=.000001*(1.792*F2 +.3983*F+.31)
     B=.001+(-9.05+F2 -.07917+F+.245)
     C=10.864F2 -.11834F+.97
     IF (F.LE.1.) GO TO 290
     A=.000001#(4.81#F2 =13.9#F+11.59)
     B=.001+(-23.08+F2.+66.82+F-52.41)
     C=27.05#F2 -73.73#F+58.39
290 H1=A+T+T+B+T+C
     IF(T.LE.2000.) GO TO 370
     H]=H]+(1,+(1,+F)+(T/2000,-1,)+79)
```

```
370 CONTINUE
    GO TO 350
400 T2=T#T
    T#ST=ET
    T4=T3#T
    T5=T4#T
    IF (F.LT.=1.5) GO TO 450
    XMM1=16.043
    A1=4.2497678
    A2==6.9126562E=03
    A3=3.1602134E-05
    A4=-2.9715432E-08
    A5=9.5103580E-12
    A6=-1.0186632E+04
    GO TO 460
450 CONTINUE
    A1=1,1202436
    A2=1.3905716E-02
    A3=2.6568374E-06
    A4=-1.1560272E-08
    A5=5.2386929E-12
    A6=5.3328896E+03
    XMM1=28.054
460 H1=A1+T+A2+T2/2.+A3+T3/3.+A4+T4/4.+A5+T5+A6
    H1=H1+8314./XMM1/1.E+06
350 IF (IT.EQ.1) GO TO 50
    GO TO 100
340 T0=T
    FT=9.41/5.
    RETURN
    END
```

```
SUBROUTINE STEP (JFS + MM +
                                    DFLX,X2,KOUNT)
     COMMON /XF/ XFIN
     COMMON /A/ X1, THMAX, TH(10), R ...., Z(40,10), P(40,10), PHE(40,10),
    1 Q(40.10) .SI(40.10) .H(40.10) .PHI(40.10) .RHO(40.10) .GAM(40.10)
     COMMON /B/ PN(40+10) *PHIN(40+10) *RHON(40+10) *HN(40+10) *ZN(40+10)
     COMMON /C/ IMAX(10) +JMAX+ISTART+KOUNTF+KOUNTP
     COMMON /D/ UW (40) . VW (40) . WW (40) . XW (40) . YW (40) . THW (40)
     COMMON /H/ ISIM
     COMMON /I/ XJ
     COMMON /J/ QN(40+10)+PHEN(40+10)+SINN(40+10)+XPLAM(40+10)+
    1 XML AM (40, 10), FP (40), FM (40), A (40, 10)
     COMMON /K/ RNINELR
     COMMON /L/ ALPHAN(7+10)+ALPHA(7+10)+BFTAN(7+10)+BETA(7+10)
     COMMON/M/ IS(7.10)
     COMMON/P/ KC1.KC2.KS1.KS2
     COMMON / Q/ XCOWL
     COMMON /R/ J.XcN.XC.XXI.JW.INT.ICOWL.RCOWL
     COMMON /S/ RI.KO NT.KOUNTS.TOWIT
     COMMON /V/ XJ1
     COMMON /W/ ISIMEX. IDUMMY, JINT, TOUMMY (40), THWW (2), JD1, JD2
     COMMON /SA/ XJTS
     COMMON /Z/ ISTOP
     COMMON /TB/ IMAXJ. IS1. IS2. ISLT. ISLZ
     COMMON /ISW/ JCALC, ISWEEP, XINSD(10), X9
     COMMON /SPE/ KOUNTC
     COMMON /ISE/ KOUNSP
     COMMON /PL/ DE TH
     COMMON/XSTP/XSTP
     DY=1000.
     TOUTET
     TFLAG=0
   1 DELX=1.E+06
     DELR=1.E+06
     IF (IF AG. EQ. 1) IOUT=0
     DO 3 J=1.JMAX
     IF (J_GT.JCALC) 60 TO 3
     IF (J.GT.JINT) XJ1=0.
     (L)XAMI=LXAMT
     IF (IMAXJ.LT.39) GO TO 1111
1112 TSTOP=1
     RETURN
1111 CONTINUE
     JM=J=T
     IF (ISWEEP.EQ.1.AND.J.EQ.JCALC) JP=J+2
     IF(J_EQ.1) JM=JP
     TF (ISTM.EQ.T.AND.J.EQ.JMAX) JPLIM
     JF(IS(1,1) \cdot EQ \cdot 0) GO TO 5777
     IS1=IS(3.J)
     ISS=IS(1.J)
5777 CONTINUE
     IIT=IMAX(J)-IFS+1
     TITT=TIT-MM-1
     DO 4 TES-IMAXU
     TF (ICOWL.EQ.1.AND.I.GT.IITT.AND.I.LE.IIT) GO TO 4
     DO 5 M=1.7
```

```
IF (IS (M. 1) . EQ. 0) GO TO 5
  TTESTEIS (MOU)
  TF((M/2) +2.EQ.M) | TEST= | S(M.J) + T
  IF(Is(M.J).LE.2.OR.IS(M.J).GT./IMAX(J)-1)) GO TO 1112
  TF (I.FQ. ITEST) GO TO 4
5 CONTINUE
  DZ=Z(T+J)-Z(I-i+J)
  TF(J. T. JMAX) DY1=TH(JP ) -TH(J)
  TF (ISTM.EQ.O.AND.J.EQ.JMAX) DYTETHW(I) =TH (JMAX)
  TF(ISTM.EQ.1.AND.J.EQ.JMAX) DYT=TH(JMAX)-TH(JM
  IF (J.6T.1) DYZ=TH(J) =TH(JM)
  IF(J.EQ.1) DY2=TH(JP)=TH(1)
  TF(J.FQ.JINT) DYJ=DETH
  IF (J.EQ.JINT.AND.I.GT.IDUMMY) DYIEDY2
  TF(J_FQ.JINT.AND.XJ1.GT.O.) DY1=DY1+Z(I.J)
  IDU=IDUMMY+1
  IF(J_FQ_JIN +1) DY2=DY1
  PY=DY1
  TF (DY2.LT.DY1) DY=DY2
  TF(J.LT.JMAX.OR.ISIM.EQ.1) GO TO 6
  TF(IS(1.1).EQ.0) GO TO 6
  TF(I.FQ.IS1.OR.I.FQ.(IS1=1))60 TO 6
  TF(I,EQ. ISZ.OR, I, EQ. (ISZ., 1)) 60 TO 6
  (ML) XAMT=MLXAMT
  TSL1=TS(3.JM)
  TSLZETS(1.JM)
  TF(ICOWL.EQ.1) ISL1=0
  CALL TBL (Z(I+J)+P1+SI1+H1+PHI1+Q1+PHET+RHO1+GAM1+THY+JM+IMAX JM +I
  (AC) XAMI=QUXAMI
  TSL1=TS(3+JP)
  TSL2=15(1.JP)
  IF (ICOWL_EQ.1) ISL1=0
  CALL TBL (Z(I+J)+P2+S12+H2+PH12.Q2+PHE2+RH02+GAM2+THX+JP+IMAX JP +I
  D2=THY-TH(J)
  PHT=(U)+THY
  D1=ARS(D1)
  D2=ARC(D2)
  TF (JP EQ JMAX+1) TH (JP)=THX
  TF(D2.LT.ABS(TH(JP)=TH(J))=1.E=05) D2=D2/2.
  TF(D).LT.ABS(TH(JM)=TH(J))=1.E=05) D1=D1/2.
  DY=AMINI (DY.D1.D2)
  DY=DY++75
6 CONTINUE
  IF (XJj.GT.1..AND.J.LT.JINT) DY=nY+Z(I.J)
  IF (X) .EQ.1.) DY=DY+R
  TF(DZ.GT.DY) DZ=DY
                      )/(XPLAM(I-T+J)-XMLAM(I
  DR=(D7
  IF (DR.LT.DELR) DELREDR
4 CONTINUE
  DX=DFI R
  TF (DX LT DELX) DF X=DX
3 CONTINUE
  XJ1=XJ1S
  DELXEDEI X#XSTP
```

		•	
	DELX=.9#DELX		
	XS=X1+DELX	AND MAKES IN THE PARTY OF THE P	
	IF (X2.GT.XFIN) DELX=XFIN-X1		
	TF(X2.GT.XFIN) X2=XFIN TF(INT.ER.2) GO TO 340		
	IF (ISWEEP.EQ.0) GO TO 341		
	TF (X2.LE.XINSP(JCALC+1)+RI=1.E=05)G	0 70 344	
	X2=XINSP(JCALC+1)+RI	70 10 340	
	DELX=XINSP(JCALC+1)=X1+RI		
	GO TO 340		
341	CONTINUE		
	JF(X2.LE.(RCOWL-1.E-05)) GO TO 340		
	X2=RCOWL-X1		
340) CONTINUE		
340	RN=X2	•	
	RETURN		•
	END		
	•		
	•		
			· · · · · · · · · · · · · · · · · · ·
	,		
. 4000 4000000 100 100000000000000000000			

```
SUBROUTINE CORNER (IC. R1. TH1. Z1)
   COMMON /AV/ AAV-BAV
   COMMON /ALLR1/ "N(40+10)+TN(40+10)+GAMN(40+10)+XPLAMN(40+10)+
  1 YML AMN (40.10)
   COMMON /J/ QN(40,10),PHEN(40,10),SINN(40,10),XPLAM(40,10),
  1xMLAM(40.10),FP(40).FM(40).A(40.10)
   COMMON /IVY/ IVY.KCORR.IAV
   COMMON /A/ X1+THMAX+TH(10)+R +Z(40+10)+P(40+10)+PHF(40+10)+
  1 Q(40,10) +SI(40,10) +H(40,10) +PAT(40,10) +RHO(40,10) +GAM(40,10)
   COMMON /B/ PN(40,10), PHIN(40,10), RHON(40,10), HN(40,10), ZN(40,10)
   COMMON /C/ IMAX (10) JMAX, ISTART, KOUNTE, KOUNTE
   COMMON /D/ UW (40) . VW (40) . WW (40) . XW (40) . YW (40) . THW (40)
   COMMON /E/ UWN(40) . VWN(40) . WWN(40) . XWN(40) . YWN(40) . THWN(40)
   COMMON /I/ XJ
   COMMON /K/ RN+hELR
   COMMON/T/ PP(40.2).ZP(40,2).QP(40,2).SIP(40.2).PHEP(40.2).
  1HP(40.2), RHOP(40,2), PHIP(40,2), GAMP(40,2), AP(40,2), THP(40,2),
  2UP (40.2) . VP (40.2) . WP (40.2)
   COMMON JU/ ERZZZ
   COMMONIVIXAL
   DIMENSION YPLAM(2) YMLAM(2)
   KIL=1
   493=1.
   R93=0.
   IF (BAV.GT.0.) A93=.5
   TF (BAV.GT.0.) B93=.5
   I+XAML=WL
   PT=PN(IC.JW)
   XPLN=XPLAMN(IC.JW)
   TI=10-1
   IF(Ic_Eo_1) II=Ic+1
   TF (XJ1 . E0.0.)
  I \times MN(I \subseteq) = \times MN(II)
   IT=1
   THG=TH1
 5 CONTINUE
   THGX=THc#XJ
   X=R1#cOS(THGX)
   Y=R1+SIN(THGX)+THG+(1.-XJ)
   TF(IC.EQ.1) CALL BWALL(R1.THG.7].FR.FTH)
   TF(IC.NE.1) CALL TWALL (R1.THG.71.FR.FTH)
   IF (XJ) • EQ. 0.)
  1CALL SWALL (R1, Z1, X, YT, FX, FZ)
   IF (XJ) • GT • 0 • ) CALL SWALL1 (YT • R] • Z1 • FX • FZ)
   ERR=(V-YT)/R144XJ
   JF (ABS (ERR) .LT. 1.E-10) GO TO 16
   TT=1T+1
   TF(IT.GT.2) GO TO 20
   TH2=THG
   ER?=ERR
   THG=1.01+THG+1.E-4
   GO TO 5
20 DUM=TH2=FR2# (THG-TH2)/(ERR-FR2)
   ER2=ERR
   THRETHG
   THEFOUM
```

```
IF (IT.GT.10) CALL ERROR (20)
      GO TO 5
   10 CONTINUE
      THGX=THG#XJ
       THWN (TC) = THG
       IF (XJ) .EQ.0.)
     1XWN(TC)=X
       TF (XJ1 . EQ. 0.)
     1YWN(IC)=Y
       7N(Ic.Jw)=Z1
      ZDUM=1 .
      IF (XJ1.EQ.1.) ZDUM=Z1
      WOU= (FR# (COS (THGX) +FX#SIN (THGX))+FTH#ZDUM#
     1 (FX#COS(THGX)-STN(THGX
     2)))/(1.=FZ*(FR*SIN(THGX)+FTH*Cns(THGX))*ZDUM)
      VOU=FX+WOU#FZ
      VOU=VOU#ZDUM
Ċ
      COPNER PRESSURF (Z=CONST)
      (YAML) XAMI = LXAMI
      I+LXAMI=OT
      7D=ZN/IC.JW)
      no 3 JJ=1.2
      RAT=(7D-ZP(II,JJ))/(ZP(IC,JJ)=7P(II,JJ))
      UP (ID.JJ) =UP (II.JJ) +RAT+ (UP (IC.JJ) =UP (II.JJ))
      VP(In.JJ)=VP(IT.JJ)+RAT+(VP(IC.JJ)=VP(II.JJ))
      WP(In.JJ)=WP(IT.JJ)+RAT*(WP(IC.JJ)=WP(II.JJ))
      PP(ID.JJ)=PP(II.JJ)+RAT#(PP(TC.JJ)=PP(II.JJ))
      HP(In.JJ) =HP(II.JJ) +RAT+(HP(IC.JJ) =HP(II.JJ))
      RHOP (ID.JJ) =RHOP (II.JJ) +RAT* (RHOP (IC.JJ) =RHOP (II.JJ))
      PHIP(ID, JJ) =PHIP(II, JJ) +RAT+(PHIP(IC, JJ) =PHIP(II, JJ))
      THP(In+JJ)=THP(II+JJ)+RAT+(THP(IC+JJ)=THP(IT+JJ))
      IF (JJ.EQ.1) THP (ID.JJ)=TH (JMAX)
      ZP(ID.JJ)=ZD
      D1=ZD=ZP(II.JJ)
      TF (JJ.EQ. 2) 60 TO 4
      IOV((UP(II)QU=(UP(II)J))=IUO
      DV1 = (VP(ID*JJ) = VP(II*JJ)) / D1
      TOV((LC+II) AMP(LC+OI) AM) = [Mu
      DP1=(PP(ID:JJ)=PP(II:JJ))/D1
      60 Tn 3
    4 DU2=(UP(ID+JJ)=UP(II+JJ))/D1
      IOV((UU+II)QV=(UU+ID+JJ))=VO
      IDV((LL,II) AW=(LL,dI) AW) =SWO
      nPz=(PP(ID+JJ)-PP(II+JJ))/n1
    3 CONTINUE
      PATE 5
      T=ID
      TT=1
      TH\Delta = TH(JM\Delta X) + R_{\Delta}T+(THW(IC) + TH(JM\Delta X))
   25
      U
          ABU
               P(I+1)+RATH(U
                                P(1.2)-11
                                            P([.1))
      V
          AEV
               P(I,1) +RAT#(V
                                P(1,2)-V
                                            P(I.1))
               P(I))+RAT#(H
          AEH
                                P(I.2)-4
                                            P([,1))
          AEP
               P(I,1)+RAT#(P
                                P(1.2)-P
                                            P([:1))
               P(I,1)+RAT#(W
                                P(I,2)-W
                                            P(I,1))
      RHOA=RHOP(I \bullet I) + RAT*(RHOP(I \bullet Z) = RHOP(I \bullet \overline{I}))
      LX#AHT=XAHT
```

```
XA=R#COS (THAX)
      YA=R#SIN(THAX)+THA#(1.-XJ)
      PSV=PA
      PHIA=PHIP(I,1)+RAT*(PHIP(I,2)=PHIP(I,\bar{1}))
      TA=FT (PA , PHIA , HA)
      GAMA=FGAM(TA,PA,PHIA)
      AA=SORT (GAMA#PA/RHOA)
      TAUAEVA/UA
      UA2=UA#UA
      ΔΑΡΞΑΔΦΔΔ
      VAZEVA#VA
      PETA=SQRT ( UA2
                      +VA2
                             )/(AA2
                                      )-1.)
      ALAM= (UA#VA+AA2
                        *BETA)/(UA2
                                      -442
      DUMP=A93#ALAM+B93#XPLN
      IF (XJ.EQ.0.) GO TO 32
      THAT=YWN(IC)-(XWN(IC)-XA)+DUMP
      THATEASIN (THAT/R)
      GO TO 33
   32 IF(XJj.EQ.0.)
     1THAT=YWN(IC)-(XWN(IC)-XA) +DUMP
      IF (XJI .GT.0.) THAT=THWN(IC) -DUMP+(R1-R)/ZN(TC.JW)
   33 CONTINUE
      EPEARS (1.-THAT/THA)
      TF (EP_LT.1.E-04) GO TO 30
      THAMTHAT
      TATE (THA-TH (JMAX))/(THP(I+2)-TH(JMAX))
      IT=IT+1
      IF (IT GT 15) CALL ERROR (30)
      GO TO 25
   30 DU=DUT+RAT#(DU>=DU1)
      DV=DVj+RAT+(DV2-DV1)
      DW=DW1+RAT+(DW2-DW1)
      DP=DPT+RAT+(DP>=DP1)
      TF(B93.EQ.0.) BN=BETA
      A22=A93+(RHOA+UA2/BETA)+B93+(RHON(IC, JW)+UWN(IC)++2/BN)
      FPA=ALAM#RHOA#WA#DU=RHOA#WA#DV=
     1 (ALAM-VA/UA) * (WA*DP+AA2 *RHOA*DW) *UA/(AA2 )
      FPA=FPA/BETA
      TAUC=VOU
      LX+(DI) NWHT=XNWHT
      LX#AHT=XAHT
                             ))/(1.+Vou#TAN(THWNX
      TSV1=(VOU=TAN(THWNX
      TSV2=(VA/UA=TAN(THAX))/(1.+VA/HA+TAN(THAX))
      DVOU=TSV1-TSV2
      JF(XJ] .EQ. 0.) DRRR=XWN(IC) -XA
      IF (XJI.EQ.1.) DRRR=RN-R
      PC1=PA+FPA+DRRR-422+(TAUC-TAUA)
C
             CORNER PRESSURE (THETA = CONSTANT)
      THT=THWN(IC)
      DTH=THT-TH(JMAX)
      no 40 IK=1.2
      TEIK
      TF(IC.EQ.IMAXJ) J=IMAXJ-IK+1
      RATEDTH/(THP(I.2)=THP(I.1))
                                              P(I,1))
      HP (I.2) = H P(I.1) + RAT + (H.1)
                                   P(1.2)-H
      PP (1.2 )=P P(1.1)+RAT*(P P(1.2)=P
                                              P([+1))
```

```
PHOP(1+2)=PHOP(1+1)+PAT*(PHOP(1+2)=PHOP(1+1))
   ZP([+2 )=ZP([+1)+RAT+(ZP([+2)-7P([+1))
   QP(T_1^2)=QP(T_1)+RAT+(QP(T_2)-QP(T_1))
   SIP(T.2 )=SI P(I.1)+RAT#(SI P(T.2)=SI P(I.1))
   PHEP(1.2 ) = PHEP(1.1) + RAT + (PHFP(1.2) = PHEP(1.1))
   PHIP (1.2) = PHIP (I.1) + RAT# (PHIP (1.2) = PHIP (I.1))
   .1=2
         =FT(PP(I.J).PHIP(I.J).HP(T.J))
   GAMP (TOJ) #FGAM (T
                         ,PP(I,J),pHIP(I,J))
         SORT (GAMP(I.J) *PP(I.J) / PHOP(I.J))
   CALL XLAM(QP(I.J).AP
                            .PHEP(T.J).YPLAM(IK ).YMLAM(IK ))
40 CONTINUE
   LXATHT=THT
   PHENI
              =ATAN(WOU/(COS(THT) + VOU*SIN(THT)))
   T=JC
   ZA=\bullet5+(ZP(II+2)+ZP(I•2))
   JTml
50 RATA=(ZA-ZP(II.2))/(ZP(I.2)=ZP(II.2))
   TT=IT+1
                   ) + RATA# (YPLAM()
   ALAMEYPLAM (2
                                       )-YPLAM(2
                                                    ))
   PLAMEYMLAM (2
                    ) +RATA# (YMLAM (T
                                       )-YMLAM(2
                                                    "
   CLAMEALAM#A93+R93#XPLAMN(IC+JW)
   IF (IC EQ.1) CLAMEBLAM#A93+B93# VMLAMN (TC.JW)
   7AT=ZN(I+JW)-CLAM+DELR
   ER=ABS ((ZAT-ZA)/(ZP(I+2 )-ZP(I+2 )))
   IF (ER.LT.ERZZZ) GO TO 55
   ZAFZAT
   IF (IT.LT.10) GO TO 50
   CALL ERROR (50)
55 RATZ=(ZA-Z(II+JMAX))/(Z(I+JMAX)-Z(II+JMAX))
      A=0 P(II+2)+RATA+(Q P(I+2)+Q P(II+2))
           P(II,2 )+RATA+(P P(I,2 )-P
                                          P(II.2 ))
   GAMA=GAMP(II+2 )+RATA+(GAMP(T+5 )=GAMP(II+2 ))
   SI A#SI P(II+2 )+RATA*(SI P(I+2) =SI P(II+2 ))
   PHEA=PHEP(II,2 )+RATA#(PHEP(I,2 )-PHEP(II,2 ))
   RHOAmpHop(II+2 )+RATA+(RHOP(I+2 )-RHOP(II+2 ))
   AAESORT (GAMA#PA/RHOA)
   P Al=P (II.JMAX )+RATZ+(P (7.JMAX)-P (17.JMAX))
   SI AlmSI (II.JMAX )+RATZ*(SI (T.JMAX)-SI (II.JMAX))
   PHEAT=PHE(II+JMAX )+RATZ+(PHE(T+JMAX)=PHE(T+JMAX))
       E(P A-P A1)/DTH
   DSI = SI A-SI ALI DTH
   DPHE = (PHEA = PHEA1) /DTH
   CALL F (RHOA, QA, R, ZA, PHEA, ALAM, RLAM, SIA, AA, DSI, DP, DPHE, FPC, FMC)
   ROS=ON(IC.JW) +ON(IC.JW) +RHON(IC.JW)
   AD#AD=SAD
   A1=FPC/(RHOA#QA2)
   Pl=FMc/(RHOA#QA2)
   AZ=SORT ((QA/AA) ++2-1.)/(RHOA+0AZ)
   A2=A2+A93+SQRT((QN(IC+JW)/AN(IC+JW))++2-1.)+B93/RQ2
   IF (IC.EQ.IMAXJ) PC2=PA+(PHEA=PHEN1
                                           +A1+DELR)/A2
   TF (IC EQ 1) PC2=PA+ (PHEN1
                                 _PHEA-BI +DELRI /A2
                        ) - TAN (PHEA)
   DWOU=TAN (PHEN)
   DVU=ARS (DVOU)
   DWU=ARS (DWOU)
   DANGED VU+DWU
```

```
IF (DANG.EQ.O.) GO TO 60
       RATIED VU/DANG
       PATZ=DWU/DANG
      GO TO 70
   60 PAT1=.5
      RATE,5
   70 PI=PSV#RATI+PA#RAT2
      DP1=(PC1-P1
                        1/P1
      DPZ=(PCZ-P1
                        )/P1
      DPC=RAT1+DP1+RAT2+DP2
      PN(I.JW)=Pl
                        # (1.+DPC)
      RHON (TC+JW) =RHO (IC+JW) + (PN(IC+JW) /P(IC+JW)) ++ (1+/GAM(TC+JW))
                 UW (IT) ##2+VW (IC) ##2+WW (IC) ##2
      VVC=VVSL+2. +GAM(IC, JW)/(GAM(IC, JW)-1.) +(P(IC, JW)/RHO(IC, JW)-
     1PN(IC.JW)/RHON(IC.JW))
      HWN(IX) = SQRT(VVC
                            /(1.+VOU#VOU+WOU#WOU))
      VWN(IC)=VOU+UWN(IC)
      WWN (IC) =WOU#UWN (IC)
      HN(IC.JW)=H(IC.JW)+.5+(VVSL
                                        -vvc
      PHIN(TC.JW) =PHT(IC.JW)
      THWNY=THWN(IC) +XJ
      PHEDE = WWN (IC) / (UWN (IC) #COS (THWMX) + VWN (IC) #SIN (THWNX))
      PHEN (TC.JW) = ATAN (PHEDE)
      VDUMEVWN (IC) #COS (THWNX) =UWN (IC) #SIN (THWNX)
      ON (Ir.JW) = SQRT (VVC=VDUM++2)
      SINN(IC.JW) = ATAN(VDUM/QN(IC.JW))
      TN(IC.JW)=FT(PN(IC.JW).PHIN(IC.JW).HN(IC.JW))
      GAMN(IC.JW)=FGAM(TN(IC.JW).PN(TC.JW).PHIN(IC.JW))
      AN(IC.JW) = SQRT (GAMN (IC.JW) +PN (TC.JW) /RHON (IC.JW))
      CALL XLAM(QN(IC+JW)+AN(IC+JW)+PHEN(IC+JW)+XPLAMN(IC+JW)+XMLAMN(TC
     1.JW))
      ET=ABS((PT-PN(TC.JW))/P(IC.JW))
      TF (IVY . ER. 0. OR . ET. LT. 1. E-04) Gn TO 2648
      KILEKTL+1
      IF (KIL.GT.5) GO TO 2648
      493=.5
      B93=.5
      PT=PN(IC.JW)
      UNAS=HWN(IC) +UWN(IC)
      VNAS=VWN(IC) +VWN(IC)
      ANAZEAN(IC.JW) +AN(IC.JW)
      RETTH-SQRT ((UNA2+VNA2)/ANA2-1.)
      XPLN=(UWN (IC) +VHN (IC) +ANA2+BETTN)/(UNA2-ANA2)
      GO TO 3
 1493 WRITE (6,1393)
 1393 FORMAT (* AVERAGING PROCESS DOES NOT CONVERGE IN CORNER*)
      STOP
2648 CONTINUE
      RETURN
      FND
```

	VW(I)=U1#SSI+V1#CSI	
	WW(1)=W1 GO TO 1	
88	UW(I)=U1 VW(I)=V1	 -
1	WW(I)=W1 CONTINUE	
	RETURN END	
	END	
		outs trouver the party and the same of the
		· · ·
	·	
· .		
	•	
		 ·
<u> </u>		
.1		

```
SUBROUTINE UNOWAT(C1.C2)
   COMMON/M/ IS(7,10)
   COMMON /D/ UW (40) • VW (40) • WW (40) • XW (40) • YW (40) • THW (40)
   COMMON /V/ XJ1
   COMMON /S/ RI, KOUNT, KOUNTS, ICOWLT
   COMMON /A/ X1.THMAX.TH(10).R
                                    •Z(40.10) •P(40.10) •PHE(40.10) •
  1 0(40,10) ,SI(40,10) ,H(40,10) ,PHI(40,10) ,RHO(40,10) ,GAM(40,10)
   COMMON /C/ IMAV(10) , JMAX, ISTART, KOUNTF, KOUNTP
   COMMON /R/ JQ.XCN,XC.XXI,JW.INT,ICOWL.RCOWL
   COMMON /TEM/ T(40.10)
   00 1 J=1,JW
   IMAXI=IMAX(J)
   TF(ICOWLT.EQ.1) IMAX1=IS(3.J)
   DO 1 I=1.IMAX1
   KITET
   HI=H(Ť)J)
   C4=C2+(H(I+J)+(Q(I+J)/COS(SI(I+J)))++2/2+)
   C3=C14RHO(I,J)+Q(I,J)/COS(SI(I,J))
   C5=P(1+J)/RHO(1+J)/T(I+J)
   C6=P(T+J)/RHO(T+J)##GAM(T+J)
 2 V1=50RT(2.+(C4-H1))
   RH1=C3/Vi
   Pl=CA+RH1++GAM(I+J)
   T1=P1/RH1/C5
   H2=FH(P1.PHI(I.J).T1)
   FRR=(H2-H1)/H(I,J)
   IF (ARS (ERR) .LT. 1.E-05) GO TO 4
   KIT=KTT+1
   IF (KIT . GT . 5) GO TO 4
   IF (KIT+GT+2) GO TO 6
   ERR1 = ERR
   H11=H1
  H1=1.01+H1
   GO TO 2
10 WRITE (6,11)
11 FORMAT (* ERROR IN ENTHALPY ITERATION IN SUBROUTINE UNOWAT*)
 6 numm+11-ERR1+(H1-H11)/(ERR-ERRT)
   FRRIEFRR
   H11=H1
   H1=DUM
   SO TO 2
 4 CONTINUE
   P(I+J)=P1
   H(I+J)=H1
   T = (U \cdot I)T
   RHO (1.J) =RH1
   0(I+J)=V1+COS(SI(I+J))
   IF (J.NE.JMAX+1) GO TO 1
   U1=Q([+J) #COS(PHF([+J))
   ((Let) I2) MATA (Let) DmIV
   W1=Q([,J)ASIN(PHE([,J))
   TF (XJ1 . GT . 0 . ) GO TO 88
   CSI=COS(THW(I))
   SSI=STN(THW(I))
   (W(I)=U1+C51-V1+SSI
```