

Enrico Ribiani 5AUB

Macchina per foratura

Relazione n°3

Indice

1	Intr	Introduzione											1															
	1.1	Soluzio	ne da	a no	i ut	lizz	zata	a		•			•	•	 •	•	•	•	 •	•	•		•	•	•	•		1
2	Fun	Funzionamento12.1 Diagramma funzionale2																										
	2.1	Diagran	nma	funz	zior	ale								•				•		•			•	•	•	•		2
3	Con	ponenti																										2
		aponenti 3.0.1	Cilir	ndro											 													2
		3.0.2	Valv	ole											 													2
		3.0.3	Fine	cors	sa .																							2
		3.0.4	Plc												 													2
	3.1	Preventi	vo .																				•	•	•			3
4	Alle	gati																										4
	4.1	Norme (di rif	erin	nen	to									 													4
		4.1.1	Tabe	ella I	Inpi	ıt/C)ut	put							 													4
	4.2	Pneuma																										

1. Introduzione

In questa esercitazione laboratoriale è stata richiesta la gestione completa di una macchina automatica con il compito di forare e immagazzinare dei pezzi.

La macchina è di tipo pneumatico infatti il suo principio di funzionamento è basato su tre cilindri pneumatici a doppio effetto, il nostro incarico è quello di progettare e programmare il sistema di controllo e di potenza segliendo le valvole più idonee alla soluzione da noi utilizzata.

1.1 Soluzione da noi utilizzata

Per comandare i cilindri abbiamo scelto di utilizzare tre valvole 5/2 con azionamento elettrico in apertura e chiusura, poichè rappresentano la soluzione più efficente e semplice per azionare un cilindro a doppio effetto tramite un plc.

Abbiamo scelto di gestire il ciclo tramite un ple programmato con il linguaggio a contatti ladder, questa soluzione è stata simulata in laboratorio tramite il programma *PneumaticStudio*.

Figura 1: Valvola 5/2

2. Funzionamento

La macchina inizia a lavorare alla pressione del pulsante di start, dopodichè il cilindro **A** ossia quello incaricato di posionare e bloccare i pezzi sotto al trapano a colonna si estrae.

Una volta estrato completamente rimane in posizione e il cilindro **B** si estrae forando tramite il trapano attaccato a esso il pezzo, una volta estratto completamente il pezzo sarà forato e quindi si ritrarrà.

Con il cilindro B ritratto il cilindro A tornerà alla posizione iniziale in modo da consentire al cilindro C di spingere nel magazzino il pezzo forato.

Queste due ultime azioni avvengono contemporaneamente.

2.1 Diagramma funzionale

Fase	1	Z	3	4	5	
Moto	A +	B +	B -	A-, C+	۲-	
Segnale	<u>bo</u> +(0	Q1	b1	bo	20,61	١.,
Α -						a0 b1
В _						
C [†]						60

3. Componenti

3.0.1 Cilindro

È stato scelto il cilindro *DSBC 2102632* prodotto da Festo poichè rappresenta uno standard per i cilindri a doppio effetto, ne vengono prodotti di molte dimensioni (1-2800 mm), rispettano la norma ISO15552 e sono fornite di dichiarazione di conformità oltre che il marchio CE

3.0.2 Valvole

Per controllare questo cilindro scelto la casa produttrice consiglia la valvola universale *VUVS-LK20-B52-D-G18-1C1-S* con funzione 5/2 e azionamento elettrico con il controllo standardizzato a 24V.

Il prodotto presenta dichiarazione di conformità e marchio CE.

3.0.3 Finecorsa

Tramite il configuratore Festo andiamo a scegliere i sensori di finecorsa *SMT-8M-A-PS-24V-E-2,5-OE* che rispettano lo standard EN 60947-5-2 funzionanti a 24V e quindi compatibili con lo standard infine il tubo *PEN-8X1,25-BL* con cui collegare cilindri e valvole.

Il prodotto presenta dichiarazione di conformità e marchio CE.

3.0.4 Plc

Per la scelta del plc i parametri da rispettare sono la tensione di funzionamento standard 24V e la disposizione di almeno 7 ingressi e 10 uscite.

Il plc Schneider Electric *TM241CEC24T* risulta idoneo, ma visto che sarà a programmato tramite il linguaggio ladder si può utilizzare il plc Zelio logic*SR3B261BD*.

Tutti i prodotti presentano dichiarazione di conformità e marchio CE.

3.1 Preventivo

Codice prodotto	Dispositivo	Quantità	Prezzo	Totale
DSBC 2102632	cilindro	3	190	570
VUVS-LK20-B52-D-G18-1C1-S	valvola 5/2	3	70	210
SR3B261BD	plc	1	300	300
PEN-8X1,25-BL	tubo	1	40	40
SMT-8M-A-PS-24V-E-2,5-OE	finecorsa	6	30	180
82-5551.1133L	pulsante NO	1	20	20
				1320

Prezzi compresi di IVA.

4. Allegati

4.1 Norme di riferimento

ISO15552 - Normativa sui cilindri pneumatici

ISO8573 - Normativa sull'aria compressa e il filtraggio

CEI 3-34 - Nomenclatura

IEC 1131-3 - Normativa linguaggi PLC

IEC 947.4.1 - CEI EN 60947.41 - Apparecchiature in bassa tensione

4.1.1 Tabella Input/Output

Sigla Input	Componente	Ingresso
a0	FC A-	I1
a1	FC A+	I2
b0	FC B-	I3
b1	FC B+	I4
c0	FC C-	I5
c1	FC C+	I6
start	pulsante NO	I7

Table 1: Tabella Input

Sigla Output	Componente	Uscita
A_dx	pos. A valvola 1	Q2
A_sx	pos. B valvola 1	Q1
B_dx	pos. A valvola 2	Q4
B_sx	pos. B valvola 2	Q3
C_dx	pos. A valvola 3	Q6
C_sx	pos. B valvola 3	Q5

Table 2: Tabella Output

4.2 PneumaticStudio

