Curso de aprendizaje profundo

PCIC, UNAM

Tarea 1: Redes densas*

1. Red de unidades de umbral lineal

Programa y evalúa una red de neuronas con funciones de activación escalón unitario que aproxime la operación XNOR (\odot) dada por

x_1	x_2	y
0	0	1
0	1	0
1	0	0
1	1	1

2. Retropropagación en red densa

Programa el algoritmo de retropropagación usando NumPy para una tarea de clasificación binaria presuponiendo una red densa con dos capas ocultas y la función de pérdida de entropía cruzada binaria. Describe las fórmulas y reglas de actualización de los pesos y sesgos de cada capa y entrena y evalúa la red en algún conjunto de datos.

3. Regresión lineal con PyTorch

Entrena y evalúa un modelo de regresión lineal para el conjunto de datos de calificaciones que considere los dos atributos de entrada.

- Especificaciones
 - Grafica los datos en 3D.
 - Realiza la definición de la arquitectura usando tanto la interfaz de alto como la de medio nivel.
 - Prueba distintos valores para los hiperparámetros.

^{*}Todos los ejercicios tienen el mismo peso

- Realiza una predicción con tu modelo entrenado para la calificación que tendría un alumno si sabemos que estudió durante 12 horas para el examen y en un examen previo obtuvo 3 de calificación.
- Discute las modificaciones que realizaste y las distintas configuraciones para los hiperparámetros que probaste.

4. Red completamente conectada con PyTorch

Implementa una red completamente conectada para la tarea de clasificación de imágenes sobre el conjunto de Fashion-MNIST, tomando en cuenta las siguiente especificaciones:

- Explora con diferentes número de neuronas, capas, funciones de activación e hiperparámetros.
- Discute tus resultados con las distintas configuraciones.