Základy složitosti a vyčíslitelnosti NTIN090

Petr Kučera

2021/22 (4. přednáška)

Algoritmicky vyčíslitelné funkce

Funkce — značení

Pro částečnou funkci $f: \Sigma^* \to \Sigma^*$ definujeme:

Doména f je množina vstupů, pro něž je hodnota f definovaná

$$\operatorname{dom} f = \{ x \in \Sigma^* \mid f(x) \downarrow \}$$

Totální funkce f je definovaná pro každý vstup x, tedy $\operatorname{dom} f = \Sigma^*$ Obor hodnot f je množina možných hodnot f

$$\operatorname{rng} f = \{ y \in \Sigma^* \mid (\exists x \in \Sigma^*) [f(x) \downarrow = y] \}$$

Značení používáme i pro jiné než řetězcové funkce

• například funkce $f: \mathbb{N} \to \mathbb{N}$

Algoritmicky vyčíslitelné funkce (definice)

Intuitivně

Algoritmicky vyčíslitelná funkce jsou právě ty, jejichž hodnoty lze vyčíslit nějakým algoritmem

Definice

Částečná funkce $f: \Sigma^* \to \Sigma^*$ je algoritmicky vyčíslitelná pokud existuje Turingův stroj M, který ji počítá.

Pro každý vstup $x \in \Sigma^*$ platí

- Je-li $f(x) \uparrow$, pak $M(x) \uparrow$
- Je-li $f(x) \downarrow = y$, pak
 - $M(x) \downarrow$ a
 - ullet na výstupní pásce M je po ukončení výpočtu M(x) řetězec y

Algoritmicky vyčíslitelné funkce

- Vyčíslitelné funkce = částečně rekurzivní funkce
- Totální vyčíslitelné funkce = obecně rekurzivní funkce
- Uvažujeme i funkce jiných typů, například
 - aritmetické funkce
 - funkce více parametrů

Příklad

Například funkce

$$f(x,y) = x^2 + y^2$$

může být realizována řetězcovou funkcí

$$f'(\langle x, y \rangle) = \langle x^2 + y^2 \rangle$$

Ne všechny funkce jsou vyčíslitelné

Vyčíslitelných funkcí je jen spočetně mnoho
 ne všechny funkce jsou vyčíslitelné

Příklad

Charakteristická funkce jazyka L_u

$$\chi_u(\langle M, x \rangle) = \begin{cases} 1 & x \in L(M) \\ 0 & x \notin L(M) \end{cases}$$

není algoritmicky vyčíslitelná, protože jazyk

$$L_u = \{ \langle M, x \rangle \mid x \in L(M) \}$$

je algoritmicky nerozhodnutelný

rozhodnutelných jazyků

Vlastnosti (částečně)

Charakteristická funkce rozhodnutelného jazyka

Věta

 $Jazyk\ L\subseteq \Sigma^*$ je rozhodnutelný, právě když jeho charakteristická funkce

$$\chi_L(x) = \begin{cases} 1 & x \in L \\ 0 & x \notin L \end{cases}$$

je algoritmicky vyčíslitelná.

Důkaz.

Důkaz ve dvou krocích

" \Longrightarrow " L je rozhodnutelný $\Longrightarrow \chi_L$ je algoritmicky vyčíslitelná

" \longleftarrow " χ_L je algoritmicky vyčíslitelná $\implies L$ je rozhodnutelný

Důkaz " ⇒ "

- Předpokládáme, že L je rozhodnutelný jazyk
- Existuje Turingův stroj M, který
 - přijímá L (L = L(M))
 - $M(x) \downarrow$ pro každý vstup $x \in \Sigma^*$
- Popíšeme Turingův stroj M', který počítá χ_L

Výpočet M' se vstupem x

- 1 Simuluj M(x)
- 2 if M přijal then
- з \mid Zapiš na výstup 1
- 4 else
- 5 Zapiš na výstup 0

Důkaz "← "

- Předpokládáme, že funkce χ_L je algoritmicky vyčíslitelná
- Existuje Turingův stroj M, který počítá χ_L
- M(x)↓ pro každý vstup $x \in \Sigma^*$
 - protože $\chi_L(x) \downarrow$ pro každý vstup $x \in \Sigma^*$
- M(x) vypíše na výstup hodnotu $\chi_L(x)$ (1 pokud $x \in L$, jinak 0)
- Popíšeme Turingův stroj M'(x), který
 - přijímá L (L = L(M')) a
 - $M'(x) \downarrow$ pro každý vstup $x \in \Sigma^*$

Výpočet M' se vstupem x

- 1 Simuluj M(x)
- 2 if M vypsal 1 then
- з přijmi
- 4 else
- 5 odmítni

Přijetí nebo zastavení

Věta

 $\it Jazyk \ L$ je částečně rozhodnutelný, právě když existuje Turingův stroj $\it M$ splňující

$$L = \{ x \in \Sigma^* \mid M(x) \downarrow \}$$
 (1)

Důkaz.

Ve dvou krocích

 $_{\text{\tiny M}}\Longrightarrow ^{\text{\tiny H}} L$ je částečně rozhodnutelný \implies existuje M splňující (1)

" \leftarrow " Existuje M splňující (1) $\implies L$ je částečně rozhodnutelný

Důkaz " ⇒ "

- Předpokládáme, že L je částečně rozhodnutelný
- Existuje Turingův stroj M', který přijímá L (L = L(M'))
- Popíšeme Turingův stroj M, který splňuje

$$L = \{ x \in \Sigma^* \mid M(x) \downarrow \}$$

Výpočet M se vstupem x

- 1 Simuluj M'(x)
- 2 if M'(x) odmítl then
- 3 vstup do nekonečného cyklu
 - Pro každý řetězec $x \in \Sigma^*$

$$x \in L \iff M'(x) \text{ přijme} \iff M(x) \downarrow$$

Předpokládejme, že M je Turingův stroj splňující

$$L = \{ x \in \Sigma^* \mid M(x) \downarrow \}$$

• Popíšeme Turingův stroj M', který přijímá L (L = L(M'))

Výpočet M' se vstupem x

- 1 Simuluj M(x)
- 2 Přijmi
 - Platí

$$x \in L \iff M(x) \downarrow \iff x \in L(M')$$

• Tedy L = L(M')

Domény algoritmicky vyčíslitelných funkcí

Věta

Jazyk L je částečně rozhodnutelný, právě když existuje algoritmicky vyčíslitelná funkce f splňující

$$L = \operatorname{dom} f = \{ x \in \Sigma^* \mid f(x) \downarrow \}$$
 (2)

Důkaz.

ullet L je částečně rozhodnutelný, právě když existuje TS M splňující

$$L = \{ x \in \Sigma^* \mid M(x) \downarrow \}$$
 (3)

- $(2) \implies (3) M$ počítá funkci f
- (3) \implies (2) f je funkce počítaná strojem M

Existenční kvantifikace

Věta

 $\it Jazyk \ L$ je částečně rozhodnutelný, právě když existuje rozhodnutelný jazyk $\it B$ splňující

$$L = \{ x \in \Sigma^* \mid (\exists y \in \Sigma^*) [\langle x, y \rangle \in B] \}$$
 (4)

Důkaz.

Důkaz ve dvou krocích

- " \Longrightarrow " L je částečně rozhodnutelný \Longrightarrow existuje rozhodnutelný jazyk B splňující (4)
- " = " existuje rozhodnutelný jazyk B splňující (4) $\implies L$ je částečně rozhodnutelný

Důkaz " ⇒ "

- Předpokládáme, že L je částečně rozhodnutelný
- Existuje Turingův stroj M přijímající L (L = L(M))
- Platí

$$L = \{x \mid (\exists n \in \mathbb{N})[M(x) \text{ přijme do } n \text{ kroků}]\}$$

Rozhodnutelná podmínka, stačí simulovat M(x) po n kroků

Stačí tedy definovat

$$B = \{\langle x, \langle n \rangle \rangle \mid M(x) \text{ přijme do } n \text{ kroků}\}$$

Jazyk B je rozhodnutelný a splňuje

$$L = \{x \in \Sigma^* \mid (\exists y \in \Sigma^*)[\underbrace{\langle x, y \rangle \in B}_{M(x) \text{ přijme do } n \text{ kroků}}]\}$$

Předpokládáme, že existuje rozhodnutelný jazyk B splňující

$$L = \{ x \in \Sigma^* \mid (\exists y \in \Sigma^*) [\langle x, y \rangle \in B] \}$$

• Popíšeme Turingův stroj M přijímající L (L = L(M))

Výpočet M se vstupem x

- 1 forall $y \in \Sigma^*$ v lexikografickém uspořádání do
- 2 | if $\langle x, y \rangle \in B$ then | přijmi
 - $x \in L \implies (\exists y \in \Sigma^*)[\langle x, y \rangle \in B] \implies M(x)$ přijme
 - $x \notin L \implies (\forall y \in \Sigma^*)[\langle x, y \rangle \notin B] \implies M(x) \uparrow$
 - Dohromady L = L(M)

Existenční kvantifikace (příklad)

Příklad

$$L_{u} = \{\langle M, x \rangle \mid x \in L(M)\}$$

$$= \{\langle M, x \rangle \mid (\exists n \in \mathbb{N})[\underline{M(x) \text{ p\'ijme do } n \text{ kroků}}]\}$$
Rozhodnutelná podmínka, stačí simulovat $M(x)$ po n kroků

Následující jazyk je rozhodnutelný

$$B = \{ \langle M, x, n \rangle \mid M(x) \text{ přijme do } n \text{ kroků} \}$$

Částečně rozhodnutelný jazyk L_u můžeme zapsat jako

$$L_u = \{ \langle M, x \rangle \mid (\exists n \in \mathbb{N}) [\langle M, x, n \rangle \in B] \}$$

Uzavřenost na existenční kvantifikaci

Důsledek

Je-li B částečně rozhodnutelný jazyk, pak jazyk

$$A = \{x \in \Sigma^* \mid (\exists y \in \Sigma^*)[\langle x, y \rangle \in B]\}$$

je též částečně rozhodnutelný.

Důkaz.

Existuje rozhodnutelný jazyk C splňující

$$B = \{\langle x, y \rangle \in \Sigma^* \mid (\exists z \in \Sigma^*) [\langle x, y, z \rangle \in C] \}$$

- Platí $A = \{x \in \Sigma^* \mid (\exists \langle y, z \rangle \in \Sigma^*) [\langle x, y, z \rangle \in C] \}$
- A je částečně rozhodnutelný dle předchozí věty

Uzavřenost na existenční kvantifikaci (příklad)

Příklad

```
NE = \{\langle M \rangle \mid L(M) \neq \emptyset\}
= \{\langle M \rangle \mid (\exists x \in \Sigma^*)[x \in L(M)]\}
= \{\langle M \rangle \mid (\exists x \in \Sigma^*)[\langle M, x \rangle \in L_u]\}
```

- Jazyk L_u je částečně rozhodnutelný
- NE je tedy též částečně rozhodnutelný

Vyčíslitelnost jazyků

Enumerátor

Enumerátorem pro jazyk L je Turingův stroj E, který

- ignoruje svůj vstup,
- vypisuje řetězce $w \in L$ na vyhrazenou výstupní pásku
 - například oddělené #
- každý řetězec w ∈ L je někdy vypsán TS E
- Je-li L nekonečný, E svou činnost nikdy neskončí

Enumerátor pro jazyk NE

$$NE = \{ \langle M \rangle \mid L(M) \neq \emptyset \}$$

- Enumerátor pro jazyk NE řeší následující úlohu:
 - Vypiš kódy Turingových strojů, které přijímají alespoň jedno slovo

Enumerátor pro jazyk NE

- 1 **forall** $\langle M, x, n \rangle \in \Sigma^*$ v lexikografickém uspořádání **do**
- 2 | Simuluj výpočet M(x) po nejvýš n kroků
- 3 | if M(x) přijal then
- 4 Zapiš $\langle M \rangle$ na výstup

- Každý kód ⟨M⟩ ∈ NE je vypsán nekonečný počet krát
- Stroje jsou vypisovány v neurčeném pořadí

Enumerátor pro jazyk NE

$$NE = \{ \langle M \rangle \mid L(M) \neq \emptyset \}$$

Upravíme enumerátor tak, aby každý kód stroje M s neprázdným jazykem byl vypsán právě jednou

Enumerátor jazyka NE

```
1 S \leftarrow prázdný seznam řetězců

2 forall \langle M, x, n \rangle \in \Sigma^* v lexikografickém uspořádání do

3 | Simuluj výpočet M(x) po nejvýš n kroků

4 | if M(x) přijal and \langle M \rangle \notin S then

5 | Zapiš \langle M \rangle na výstup

6 | Přidej \langle M \rangle do seznamu S
```

Vyčíslitelnost částečně rozhodnutelných jazyků

Věta

Jazyk L je částečně rozhodnutelný, právě když pro něj existuje enumerátor E.

Důkaz.

Důkaz ve dvou krocích

- " \Longrightarrow " L je částečně rozhodnutelný \Longrightarrow existuje enumerátor E pro L
- " \longleftarrow " Existuje enumerátor E pro $L \implies L$ je částečně rozhodnutelný

Důkaz " ⇒ "

- L je částečně rozhodnutelný
- Existuje rozhodnutelný jazyk B splňující

$$L = \{x \in \Sigma^* \mid (\exists y \in \Sigma^*) [\langle x, y \rangle \in B]$$

Enumerátor E jazyka L

- 1 **forall** $\langle x, y \rangle \in \Sigma^*$ v lexikografickém uspořádání **do**
- 2 | if $\langle x, y \rangle \in B$ then
- 3 Zapiš x na výstup

- Lze upravit tak, aby E vypsal každé slovo x ∈ L právě iednou.
- Prvky L jsou vypisovány v neznámém pořadí

Důkaz "← "

- Máme enumerátor E pro jazyk L
- Popíšeme Turingův stroj M přijímající L (L = L(M))

Výpočet M se vstupem x

- 1 Simuluj *E* a sleduj výstup
- 2 if E vypsal x then
- з přijmi

```
x \in L \implies E někdy vypíše x a M(x) přijme
```

 $x \notin L \implies E$ nikdy nevypíše x a M(x) nepřijme (zacyklí se)

Dohromady L = L(M)

Enumerátor pro jazyk prvočísel

$$PRIME = \{ \langle p \rangle \mid p \text{ je prvočíslo} \}$$

Úloha: vypisuj prvočísla v rostoucím pořadí

Enumerátor prvočísel

- 1 forall $p \in \mathbb{N}$ v rostoucím pořadí do
- 2 | if p je prvočíslo then
- $\mathsf{Zapi} \mathsf{S} \ \langle p \rangle \ \mathsf{na} \ \mathsf{v} \mathsf{y} \mathsf{stup}$

Lze zkonstruovat díky tomu, že jazyk PRIME je rozhodnutelný.

Vyčíslitelnost rozhodnutelných jazyků

Věta

Jazyk L je rozhodnutelný, právě když pro něj existuje enumerátor E, který navíc vypisuje prvky L v lexikografickém pořadí.

Důkaz.

Důkaz ve dvou krocích

- " L je rozhodnutelný \Longrightarrow existuje enumerátor E pro L, který vypisuje prvky L v lexikografickém pořadí
- " \leftarrow " Existuje enumerátor E pro L, který vypisuje prvky L v lexikografickém pořadí $\Longrightarrow L$ je rozhodnutelný

Důkaz " ⇒ "

- L je rozhodnutelný
- Popíšeme enumerátor E, který vypisuje slova L v lexikografickém pořadí

Enumerátor E jazyka L

```
// Podmínku lze ověřit díky rozhodnutelnosti L
```

- 1 forall $x \in \Sigma^*$ v lexikografickém uspořádání do
- $\mathbf{2} \qquad \text{if } x \in L \text{ then}$
- 3 Zapiš *x* na výstup

V případě, že L je konečný jazyk, E se po vypsání posledního slova z L zacyklí.

Důkaz "← "

- Máme enumerátor E pro jazyk L
- E vypisuje prvky L v rostoucím lexikografickém pořadí
- Rozlišíme dva případy
 - 1 I je konečný jazyk $\implies L$ je rozhodnutelný
 - Všechny konečné jazyky jsou rozhodnutelné
 - 2 L je nekonečný jazyk \implies popíšeme stroj M, který rozhoduje L

Výpočet M se vstupem x

- 1 Simuluj E a sleduj výstup
- 2 if E vypsal x then
- з | přijmi
- 4 if E vypsal řetězec y > x then
- 5 odmítni

L je nekonečný \implies vždy existuje $y > x \implies$ algoritmus skončí

Vyčíslitelnost jazyků a funkce

Důsledek

Nekonečný jazyk L je částečně rozhodnutelný, právě když je oborem hodnot nějaké totální algoritmicky vyčíslitelné funkce f (tj. $L = \operatorname{rng} f$).

- " \Longrightarrow " L částečně rozhodnutelný
 - máme enumerátor E pro L
 - Pro jednoduchost uvažujeme parametry f typu N
 - pro $i \in \mathbb{N}$ definujeme

$$f(i) = (i + 1)$$
-ní řetězec vypsaný E

- E vypisuje právě řetězce z L
- Možné hodnoty f jsou právě řetězce z L

Vyčíslitelnost jazyků a funkce

Důsledek

Nekonečný jazyk L je částečně rozhodnutelný, právě když je oborem hodnot nějaké totální algoritmicky vyčíslitelné funkce f (tj. $L = \operatorname{rng} f$).

```
" \Leftarrow " Máme funkci f
```

Popíšeme enumerátor E pro L

Výpočet E

- 1 forall $y \in \Sigma^*$ v lexikografickém pořadí do
- 2 Zapiš f(y) na výstup
- $x \in L$
 - \Leftrightarrow existuje y pro nějž f(y) = x
 - \Leftrightarrow E vypíše x

Vyčíslitelnost rozhodnutelných jazyků a funkce

Definice

Funkce $f: \Sigma^* \to \Sigma^*$ je rostoucí, pokud platí, že u < v implikuje f(u) < f(v) pro každé dva řetězce $u, v \in \Sigma^*$, kde $f(u) \downarrow$ a $f(v) \downarrow$.

Důsledek

Nekonečný jazyk L je rozhodnutelný, právě když je oborem hodnot nějaké rostoucí totální algoritmicky vyčíslitelné funkce f (tj. $L = \operatorname{rng} f$).

Vyčíslitelnost rozhodnutelných jazyků a funkce

Důsledek

Nekonečný jazyk L je rozhodnutelný, právě když je oborem hodnot nějaké rostoucí totální algoritmicky vyčíslitelné funkce f (tj. $L = \operatorname{rng} f$).

" \Longrightarrow " L je rozhodnutelný

- Máme enumerátor E, který vypisuje prvky L v rostoucím lexikografickém pořadí
- lacktriangle Pro jednoduchost uvažujeme parametry f typu ${\mathbb N}$
- Pro $i \in \mathbb{N}$ definujeme

$$f(i) = (i + 1)$$
-ní řetězec vypsaný E

- E vypisuje právě řetězce z L
- Možné hodnoty f jsou právě řetězce z L
- f je rostoucí, protože E vypisuje prvky L v rostoucím lexikografickém pořadí

Vyčíslitelnost rozhodnutelných jazyků a funkce

Důsledek

Nekonečný jazyk L je rozhodnutelný, právě když je oborem hodnot nějaké rostoucí totální algoritmicky vyčíslitelné funkce f (tj. $L = \operatorname{rng} f$).

```
" \Leftarrow " Máme funkci f
```

Popíšeme enumerátor E pro L

Výpočet E

- 1 forall $y \in \Sigma^*$ v lexikografickém pořadí do
- 2 Zapiš f(y) na výstup
- E vypisuje právě prvky L v lexikografickém pořadí, protože f je rostoucí
- E tedy ukazuje, že L je rozhodnutelný

Převoditelnost a úplnost

Jak ukazovat nerozhodnutelnost?

Intuitivní postup důkazu nerozhodnutelnosti

Chceme ukázat, že A je nerozhodnutelný jazyk.

- 1 Vybereme si jiný nerozhodnutelný jazyk B
 - například $B = L_u$
- 2 Sporem předpokládáme: Máme algoritmus D_A , který rozhoduje A
- 3 Popíšeme algoritmus D_B , který rozhoduje B
 - D_B může volat D_A jako podprogram
- Ostáváme spor s nerozhodnutelností B
- 6 Ukázali jsme, že A není rozhodnutelný

Turingovská převoditelnost

Definice (Turingovská převoditelnost, lehce neformálně)

Jazyk $B \subseteq \Sigma^*$ je Turingovsky převoditelný na jazyk $A \subseteq \Sigma^*$, pokud existuje algoritmus (Turingův stroj) D_B , pro který platí

- D_B rozhoduje B
 - $B = L(D_B)$ a
 - $D_B(x) \downarrow$ pro každý vstup $x \in \Sigma^*$
- D_B může pokládat dotazy orákulu A, tedy
 - Kdykoli se D_B může o libovolném řetězci $y \in \Sigma^*$ zeptat, jestli $y \in A$
 - Tyto dotazy jsou okamžitě správně zodpovězeny (ano/ne)
 - Dotazovat se D_B může libovolný počet krát
- Označíme pomocí $B \leq_T A$.
- Je-li B nerozhodnutelný, je nerozhodnutelný i A
- Pro každý jazyk B platí, že $B \leq_T \overline{B}$
 - Stačí jeden dotaz a znegovat odpověď

Turingovská převoditelnost (princip)

 $B \leq_T A = \text{"pomocí } A \text{ umíme rozhodnout } B$ "

Problém zastavení

Problém zastavení (Halting Problem)

Instance: Kód Turingova stroje M a vstup x.

Otázka: Zastaví se výpočet Turingova stroje M nad vstupem x, tedv M(x)...?

• Odpovídá jazyku HALT = $\{\langle M, x \rangle \mid M(x) \downarrow \}$

Věta

Jazyk HALT je částečně rozhodnutelný, ale není rozhodnutelný.

Částečná rozhodnutelnost HALT

$$HALT = \{ \langle M, x \rangle \mid M(x) \downarrow \}$$

- Jazyk HALT je částečně rozhodnutelný
- Plyne z existence univerzálního stroje ${\mathcal U}$
- Stroj \mathcal{H} přijímající HALT se vstupem $\langle M, x \rangle$
 - 1 Simuluje M(x)
 - 2 Po ukončení simulace přijme

Nerozhodnutelnost HALT

$$HALT = \{ \langle M, x \rangle \mid M(x) \downarrow \}$$

- Jazyk HALT je nerozhodnutelný
- Sporem: Nechť H je stroj rozhodující HALT
 - HALT = $L(\mathcal{H})$ a
 - $\mathcal{H}(\langle M, x \rangle) \downarrow$ pro každý Turingův stroj M a vstup x
- Popíšeme Turingův stroj M_u , který rozhoduje $L_u = \{ \langle M, x \rangle \mid x \in L(M) \}$

Stroj M_u rozhodující L_u s pomocí HALT

```
Výpočet stroje M_u se vstupem \langle M, x \rangle
```

```
1 Sestroj Turingův stroj M', který se řídí následujícím algoritmem
 begin
                              // Výpočet M' se vstupem y
     Pusť M(y)
3
     if M zamítl then
        vstup do nekonečné smyčky
5
  // HALT je podle předpokladu rozhodnutelný
6 if \langle M', x \rangle \in \text{HALT} then
     přijmi
8 else
     odmítni
```

Stroj M_u rozhoduje L_u

Nerozhodnutelnost HALT

- Za předpokladu rozhodnutelnosti HALT jsme sestavili M_u , který rozhoduje L_u
- Víme, že L_u není rozhodnutelný
- Stroj M_u nemůže existovat
- Jazyk HALT tedy není rozhodnutelný

Ukázali jsme, že $L_u \leq_T \mathrm{HALT}$

- Program M_u je velmi specifický
 - Orákula HALT se ptá jen jednou na konec
 - Odpověď dotazu HALT je přímo odpovědí M_u
- Program ukazuje, že L_u je m-převoditelný na HALT

m-převoditelnost (princip)

m-převoditelnost (definice)

Definice

Jazyk B je m-převoditelný na jazyk A, pokud existuje totální vyčíslitelná funkce f splňující

$$(\forall x \in \Sigma^*)[x \in B \Leftrightarrow f(x) \in A]$$

m-převoditelnost (definice)

Definice

Jazyk B je m-převoditelný na jazyk A, pokud existuje totální vyčíslitelná funkce f splňující

$$(\forall x \in \Sigma^*)[x \in B \Leftrightarrow f(x) \in A]$$

- Označíme pomocí $B \leq_m A$
- \leq_m je reflexivní a tranzitivní relace (kvaziuspořádání).
- Pokud $A \leq_m B$ a B je (částečně) rozhodnutelný jazyk, pak totéž lze říct o A.

m-převoditelnost (reflexivita)

Lemma (Reflexivita *m*-převoditelnosti)

Pro každý jazyk A platí $A \leq_m A$

Důkaz.

- Identita id(x) = x je totální algoritmicky vyčíslitelná funkce
- Pro každý řetězec $x \in \Sigma^*$ platí

$$x \in A \Leftrightarrow id(x) \in A$$

m-převoditelnost (tranzitivita)

Lemma (Tranzitivita *m*-převoditelnosti)

Pro každé jazyky A, B a C platí $A \leq_m B \land B \leq_m C \implies A \leq_m C$

- $A \leq_m B$ pomocí funkce g
- $B \leq_m C$ pomocí funkce h
- Definujme funkci f(x) = h(g(x))
 - f je totální algoritmicky vyčíslitelná funkce
- Pro každý řetězec $x \in \Sigma^*$ platí

$$x \in A \underset{A \leq_m B}{\longleftrightarrow} g(x) \in B \underset{B \leq_m C}{\longleftrightarrow} h(g(x)) \in C \underset{f(x)=h(g(x))}{\longleftrightarrow} f(x) \in C$$

■ $A \leq_m C$ pomocí funkce f

m-převoditelnost porovnává obtížnost

Lemma

Nechť B a A jsou dva jazyky, pro něž platí, že $B \leq_m A$.

- **1** A rozhodnutelný \implies B je rozhodnutelný
- ② A částečně rozhodnutelný ⇒ B je částečně rozhodnutelný
 - Předpokládejme, že M_A je TS, který přijímá/rozhoduje A
 - Popíšeme TS M_B, který přijímá/rozhoduje B

Výpočet stroje M_B se vstupem x

- 1 $y \leftarrow f(x)$ // f ukazuje, že $B \leq_m A$
- 2 Pusť $M_A(y)$
- $\mathbf{3}$ if M_A přijal then
- 4 přijmi
- 5 else
- 6 odmítni

m-převoditelnost a nerozhodnutelnost

Lemma

Nechť B a A jsou dva jazyky, pro něž platí, že $B \leq_m A$.

- **1** A je rozhodnutelný \implies B je rozhodnutelný
- 2 A je částečně rozhodnutelný \implies B je částečně rozhodnutelný

Důsledek

Nechť B a A jsou dva jazyky, pro něž platí, že $B \leq_m A$.

- **1** B je nerozhodnutelný \implies A je nerozhodnutelný
- 2 B není částečně rozhodnutelný $\implies A$ není částečně rozhodnutelný