

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO CEARÁ PRÓ-REITORIA DE ENSINO COORDENADORIA DE TELEMÁTICA DO CAMPUS MARACANAÚ BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

AJALMAR RÊGO DA ROCHA NETO

TÍTULO DO TRABALHO

MARACANAÚ 2013

NOME DO ALUNO

TÍTULO DO TRABALHO

Monografia submetida à Coordenadoria de Telemática e à Coordenadoria do Curso de Bacharelado em Ciência da Computação do Instituto Federal do Ceará - Campus Maracanaú, como requisito parcial para obtenção do grau de Bacharel em Ciência da Computação.

Área de pesquisa: xxxxxxxxxxxxxxxx

INSTITUTO FEDERLA DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO CEARÁ COORDENAÇÃO DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TELECOMUNICAÇÕES

Nome do Aluno

Esta Monografia foi julgada adequada para a obtenção do Grau de Bacharel em Ciência da Computação, sendo aprovada pela Coordenadoria de Telemática e pela Coordenadoria do curso de Bacharelado em Ciência da Computação do Campus Maracanaú do Instituto Federal de Educação, Ciência e Tecnologia do Ceará e pela banca examinadora:

Orientador: Prof. Dr. Fulano
Instituto Federal do Ceará - IFCE

Prof. Dr. Huguinho
Instituto Federal do Ceará - IFCE

Prof. Dr. Zezinho
Instituto Federal do Ceará - IFCE

Prof. Dr. Luizinho Instituto Federal do Ceará - IFCE

Fortaleza, 06 de Abril de 2013

Agradecimentos

"A mente que se abre a uma nova idéia jamais voltará ao seu tamanho original". Albert Einstein

Resumo

Este trabalho apresenta...

Abstract

This work presents...

Sumário

Lista de Figuras

Lista de Tabelas

Lista de Símbolos

Lista de Abreviações

1	Introdução						
	1.1	Motivação e objetivos	14				
	1.2	Contribuições	14				
	1.3	Produção científica	14				
	1.4	Organização da tese	14				
2	2 Equações, Tabelas e Figuras						
	2.1	Equações	16				
		2.1.1 Exemplo de uma equação mais complexa	16				
	2.2	Tabelas	17				
3	B Método Proposto						
4	Resultados Experimentais						
5	5 Conclusão e Trabalhos Futuros						
Αŗ	Apêndice A – Título do Apêndice						

Lista de Figuras

1 Curvas de funções de probabilidade: (a) exemplo 1, (b) exemplo 2. . . . 18

Lista de Tabelas

1	Modelos estatísticos e suas relações.	s	7
---	---------------------------------------	---	---

Lista de Símbolos

Z variável aleatória

 ${\mathbb R}$ conjunto dos números reais

t tempo contínuo

n tempo discreto

f(z) função densidade de probabilidade

F(z) função de distribuição acumulada

 σ desvio padrão

 μ média ou esperança matemática

|·| operador magnitude

 ∇ operador gradiente

Lista de Abreviações

fdp Função densidade de probabilidade

fda Função de distribuição acumulada

EMQ Erro médio quadrático

Introdução

Este documento consiste de um modelo básico para a produção de documentos acadêmicos, seguindo as normas ABNT.

Não é abordado o estudo do LaTex neste template. Sugerimos a leitura do texto em ??). O uso do LaTex é aconselhável evido a sua qualidade gráfica, fácil referenciação, criação de listas, índices, referências bibliográficas e escrita matemática profissional. Porém, não é obrigatório o uso deste template, apenas as orientaçõess de formatação segundo as normas ABNT devem ser obrigatoriamente seguidas.

Uma observação em particular é a de que, no pacote ABNTex, as referências diretas devem utilizar o comando "citeonline". Referências indiretas utilizam o comando "cite".

Exemplo de citação direta: Uma ótima fonte de estudo para compreender o LaTex é apresentada por ??).

Exemplo de citação indireta: Existem boas fontes de pesquisa para entendimento do LaTex (??), estas incluem documentação online disponível na web.

1.1 Motivação e objetivos

1.2 Contribuições

1.3 Produção científica

1.4 Organização da tese

Capítulo 2: descrição...

Capítulo 3: descrição...

Capítulo 4: descrição...

Capítulo 5: descrição...

EQUAÇÕES, TABELAS E FIGURAS

São apresentados neste capítulo exemplos do uso de equações, tabelas e figuras.

2.1 Equações

No uso do LaTex devemos associar aos elementos referenciáveis (Equações, Figuras, Tabelas, Capítulos, seções e subseções) rótulos utilizando o comando "label". É importante lembrar que equações fazem parte do texto, diferentemente de figuras e tabelas. Logo, não devemos referência-las antes que apareçam. Como é o caso do produto

$$Z = X \cdot Y, \tag{2.1}$$

em que Z, X e Y são variáveis complexas. A referenciação à Equação (2.1) é feita por meio do comando "ref". O mesmo vale para outros tipos de elementos.

2.1.1 Exemplo de uma equação mais complexa

Equações mais complexas podem ser mais facilmente escritas com uso do programa TexAide. Como, por exemplo,

$$f_{\Gamma^{1/2}}(x;\alpha,\lambda) = \frac{2\lambda^{\alpha}}{\Gamma(\alpha)} x^{2\alpha-1} \exp\left(-\lambda x^2\right).$$

$$\alpha,\lambda > 0.$$
(2.2)

em que $\Gamma(\cdot)$ é a função Gama. O programa TexAide é semelhante ao *MathType* do Office, porém ao copiar e colar a equação em um arquivo tex, é gerado o código em LaTex referente a esta equação.

2.2 Tabelas 17

2.2 Tabelas

Tabelas são essenciais na apresentação de dados. A Tabela 1 mostra um exemplo do uso deste tipo de elemento. Vale ressaltar que não é aconselhável o uso de linhas verticais em trabalhos acadêmicos e de pesquisa.

Tabela 1: Modelos estatísticos e suas relações.

	$lpha, \lambda > 0$ $\gamma \to 0$	Heterogêneo	$egin{array}{l} lpha, \lambda ightarrow \infty \ lpha/\lambda ightarrow eta \end{array}$	Homogêneo
$\mathcal{N}^{-1/2}(x;\alpha,\gamma,\lambda)$	$\stackrel{f}{\rightarrow}$	$\sqrt{\Gamma}(lpha,\lambda)$	$\stackrel{\mathcal{U}}{\rightarrow} \stackrel{\mathcal{V}}{\rightarrow}$	\sqrt{eta}
$\mathcal{F} = (x, \alpha, \gamma, \lambda)$	$\lambda \to 0 \ -\alpha, \gamma > 0$	$\Gamma^{-1/2}(lpha,\gamma)$ Extremamente Heterogêneo	$egin{array}{c} rac{P}{ ightarrow} \ -lpha/\gamma ightarrow \zeta^{-1} \ -lpha,\gamma ightarrow \infty \end{array}$	$\sqrt{\zeta^{-1}}$ Homogêneo
	$lpha, \lambda > 0$ $\gamma \to 0$	Heterogêneo	$egin{array}{l} lpha,\lambda ightarrow\infty\ lpha/\lambda ightarroweta\ \end{array}$	Homogêneo
$\mathscr{G}_A(z; \alpha, \gamma, \lambda, n)$	$\overset{D}{\rightarrow}$ $\overset{D}{\rightarrow}$	$\mathscr{K}_{A}(lpha,\lambda,n)$ $\mathscr{G}^{0}_{A}(lpha,\gamma,n)$	$\overset{P}{\longrightarrow}$ $\overset{P}{\longrightarrow}$	$\sqrt{\Gamma}(n,n/eta)$ $\sqrt{\Gamma}(n,n\zeta)$
	$\lambda \to 0 \\ -\alpha, \gamma > 0$	Extremamente Heterogêneo	$-lpha/\gamma ightarrow \zeta \ -lpha, \gamma ightarrow \infty$	Homogêneo

A Figura 1 mostra o exemplo do uso do comando "subfigure". Apesar de aceitar diferentes tipos de imagens. É preferível que as imagens estejam no formato .eps. Isso garante que a imagem impressa seja exatamente aquela visualizada, como acontece com arquivos pdf.

2.2 Tabelas 18

Figura 1: Curvas de funções de probabilidade: (a) exemplo 1, (b) exemplo 2.

(b)

Capítulo 3

MÉTODO PROPOSTO

Capítulo 4

RESULTADOS EXPERIMENTAIS

CONCLUSÃO E TRABALHOS FUTUROS

APÊNDICE A - Título do Apêndice

APÊNDICE B – Exemplo do pacote Algorithm

Algoritmo 1 Estimador ML otimizado.

```
1: Inicializar o contador: j \leftarrow 1;

2: Fixar o limiar de variação das estimativas: e_{\text{out}} \leftarrow 10^{-4};

3: Fixar o número máximo de iterações: N \leftarrow 1000;

4: Computar o ponto inicial: \hat{\gamma}(0);

5: Determinar o limiar inicial: e_1 \leftarrow 1000;

6: Estabelecer o valor inicial de \alpha: \hat{\alpha}(0) \leftarrow -10^{-6};

7: enquanto e_j \geq e_{\text{out}} e j \leq M fazer

8: Solucionar \hat{\alpha}_j \leftarrow \arg\max_{\alpha} l_1(\alpha; \gamma_{j-1}, \mathbf{z}, n);

9: Solucionar \hat{\gamma}_j \leftarrow \arg\max_{\gamma} l_2(\gamma; \alpha_j, \mathbf{z}, n);

10: j \leftarrow j + 1

11: Computar o critério de convergência: e_j;

12: fim enquanto
```