RIGIDITY AND RECONSTRUCTION OF CONVEX POLYTOPES

- AN APPLICATION OF WACHSPRESS GEOMETRY

Martin Winter

Dirichlet Fellow, TU Berlin

20. November, 2024

POLYHEDRA

= polygons glued edge to edge to form a closed surface.

Martin Winter $1 \ / \ 18$

POLYHEDRA

= polygons glued edge to edge to form a closed <u>convex</u> surface.

Martin Winter $1 \ / \ 18$

POLYHEDRAL COMBINATORICS AND GEOMETRY

Steinitz' Theorem: (1922)

G is the edge graph of a polyhedron $\iff G$ is 3-connected and planar

Cauchy's rigidity theorem: (1813)

A polyhedron is determined by the shape of its faces.

POLYHEDRAL COMBINATORICS AND GEOMETRY

Steinitz' Theorem: (1922)

G is the edge graph of a polyhedron $\iff G$ is 3-connected and planar

Cauchy's rigidity theorem: (1813)

A polyhedron is determined by the shape of its faces.

POLYTOPES

$$\{(lpha_1,...,lpha_n)\in\mathbb{R}^n_{\geq 0}\midlpha_1+\cdots+lpha_n=1\}\ P=\operatorname{conv}\{p_1,...,p_n\}=\left\{\sum_ilpha_ip_i\midlpha\in\Delta_n
ight\}\subset\mathbb{R}^d$$

POLYTOPES

$$P = \operatorname{conv}\{p_1, ..., p_n\} = \left\{ \sum_{i} \alpha_i p_i \mid \alpha \in \Delta_n \right\} \subset \mathbb{R}^d$$

$d=0$ point 1 line segment 2 polygon 3 polyhedron 4 polychoron \vdots \vdots	pe
--	----

HIGHER DIMENSIONAL POLYTOPES

FACES OF A POLYTOPE

:= intersections with supporting hyperplanes

Note: for technical reasons \varnothing and P are also considered as faces.

THE COMBINATORICS OF A POLYTOPE

COMBINATORIAL EQUIVALENCE

RECONSTRUCTION OF POLYTOPES

RECONSTRUCTION OF POLYTOPES

"In how far is a polytope determined by partial combinatorial and geometric data, up to isometry, affine transformation or combinatorial equivalence?"

Question I: Is this the edge graph of a polyhedron? (Steinitz problem)

Question I: Is this the edge graph of a polyhedron? (Steinitz problem) \longrightarrow planar

Martin Winter $9 \mid 18$

Question I: Is this the edge graph of a polyhedron? (Steinitz problem) \longrightarrow planar \checkmark

Martin Winter $9 \mid 18$

Question I: Is this the edge graph of a polyhedron? (Steinitz problem) \longrightarrow planar \checkmark 3-connected

Question I: Is this the edge graph of a polyhedron? (Steinitz problem) \longrightarrow planar \checkmark 3-connected \checkmark (Steinitz' theorem)

Question I: Is this the edge graph of a polyhedron? (Steinitz problem) \longrightarrow planar \checkmark 3-connected \checkmark (Steinitz' theorem)

Question II: If yes, what is the polyhedron's full combinatorics?

Question I: Is this the edge graph of a polyhedron? (Steinitz problem)

→ planar ✓ 3-connected ✓ (Steinitz' theorem)

Question II: If yes, what is the polyhedron's full combinatorics?
→ faces are non-separating induced cycles

Question I: Is this the edge graph of a polyhedron? (Steinitz problem) \longrightarrow planar \checkmark 3-connected \checkmark (Steinitz' theorem)

Question II: If yes, what is the polyhedron's full combinatorics?
→ faces are non-separating induced cycles

Question I: Is this the edge graph of a polyhedron? (Steinitz problem) \longrightarrow planar \checkmark 3-connected \checkmark (Steinitz' theorem)

Question II: If yes, what is the polyhedron's full combinatorics?

→ faces are non-separating induced cycles

Question I: Is this the edge graph of a polytope?

Question II: If yes, what is the polytope's dimension and full combinatorics?

Question I: Is this the edge graph of a polytope?

→ no useful criteria known X

Question II: If yes, what is the polytope's dimension and full combinatorics?

Question I: Is this the edge graph of a polytope?

→ no useful criteria known X

Question II: If yes, what is the polytope's dimension and full combinatorics?

Question I: Is this the edge graph of a polytope?

→ no useful criteria known X

Question II: If yes, what is the polytope's dimension and full combinatorics?

→ polytope might not be unique X

Question I: Is this the edge graph of a polytope?

→ no useful criteria known X

Question II: If yes, what is the polytope's dimension and full combinatorics?

 \longrightarrow polytope might not be unique X

RECONSTRUCTING GEOMETRY

Given the full combinatorics, can we reconstruct from ...

- edge lengths X
- dihedral angles X

Martin Winter $11 \ / \ 18$

RECONSTRUCTING GEOMETRY

Given the full combinatorics, can we reconstruct from ...

- edge lengths Xdihedral angles X

 $\begin{tabular}{ll} \verb& edge lengths + dihedral angles \checkmark (Stoker) \\ \end{tabular}$

Martin Winter

RECONSTRUCTING GEOMETRY

Given the full combinatorics, can we reconstruct from ...

- ▶ edge lengths X
 ▶ dihedral angles X
 dihedral angles X

Cauchy's rigidity theorem (CAUCHY, 1813)

A polytope is uniquely determined (up to isometry) by its combinatorics and the shapes of its 2-faces.

RECONSTRUCTION OF POINTED POLYTOPES

 $:= \mathsf{polytope}\ P \subset \mathbb{R}^d + \mathsf{point}\ x_P \in \mathbb{R}^d$

 $:= \mathsf{polytope}\ P \subset \mathbb{R}^d + \mathsf{point}\ x_P \in \mathbb{R}^d$

Martin Winter $12 \ / \ 18$

 $:= \mathsf{polytope}\ P \subset \mathbb{R}^d + \mathsf{point}\ x_P \in \mathbb{R}^d$

Questions:

Is a pointed polytope determined by the graph, edge lengths and radii?

 $:= \mathsf{polytope}\ P \subset \mathbb{R}^d + \mathsf{point}\ x_P \in \mathbb{R}^d$

Questions:

Is a pointed polytope determined by the graph, edge lengths and radii?

... also as a framework?

POINTED POLYTOPES

 $:= \mathsf{polytope}\ P \subset \mathbb{R}^d + \mathsf{point}\ x_P \in \mathbb{R}^d$

Questions:

Is a pointed polytope determined by the graph, edge lengths and radii?

... also as a framework?

Martin Winter $12 \ / \ 1$

POINTED POLYTOPES AND FRAMEWORKS

Martin Winter 13 / 18

CENTRAL CONJECTURES

Conjecture. (W., 2023)

A pointed polytope P with $x_P \in \operatorname{int}(P)$ is uniquely determined (up to isometry) by its edge graph, edge lengths and radii.

... across all dimensions and all combinatorial types!

Martin Winter 14 / 18

CENTRAL CONJECTURES

Conjecture. (W., 2023)

A pointed polytope P with $x_P \in \operatorname{int}(P)$ is uniquely determined (up to isometry) by its edge graph, edge lengths and radii.

... across all dimensions and all combinatorial types!

Conjecture. (W., 2023)

If $P \subset \mathbb{R}^d$ and $Q \subset \mathbb{R}^e$ are pointed polytopes with the same edge graph and

- (i) $x_Q \in int(Q)$
- (ii) edges in Q are at most as long as in P,
- (iii) radii in Q are <u>at least</u> as large as in P, then P and Q are isometric.

"A polytope cannot become larger if all its edges become shorter."

Martin Winter 14 / 18

CENTRAL CONJECTURES

Conjecture. (W., 2023)

If $P \subset \mathbb{R}^d$ and $Q \subset \mathbb{R}^e$ are pointed polytopes with the same edge graph and

- (i) $x_Q \in \operatorname{int}(Q)$
- (ii) edges in Q are at most as long as in P,
- (iii) radii in Q are <u>at least</u> as large as in P,

then P and Q are isometric.

"A polytope cannot become larger if all its edges become shorter."

Martin Winter 14 / 18

- I. P and Q are centrally symmetric
- II. P and Q are "close"
- III. P and Q are combinatorially equivalent

- I. P and $q: G_P \to \mathbb{R}^e$ are centrally symmetric
 - ≅ universally rigid as a centrally symmetric framework
- II. P and $q: G_P \to \mathbb{R}^e$ are "close"
 - ≅ locally rigid as a framework
- III. P and Q are combinatorially equivalent

Why is this surprising?

II. P and $q\colon G_P o \mathbb{R}^e$ are "close"

 \cong locally rigid as a framework

$$\# \mathsf{DOFs} - \# \mathsf{constraints} = ({\overset{V}{8}} + 1) \times {\overset{d}{3}} - ({\overset{E}{12}} + {\overset{V}{8}}) = 7 = 6 + 1.$$

Martin Winter 16 / 18

How to prove it ...

Two step plan:

- 1. prove theorem using "better" coordinates in place of radii.
- 2. infer the radii version from the "better" coordinates version.

Key theorem (W., 2023)

A pointed polytope is uniquely determined (up to affine transformations) by its edge graph, edge lengths and Wachspress coordinates.

Martin Winter 17 / 18

Wachspress coordinates are ...

I. ... the unique rational GBCs of lowest possible degree (WARREN, 2003)

$$lpha_i(x) = rac{\mathrm{p}_i(x)}{\mathrm{q}(x)}$$
 where $\mathrm{q}(x) = \sum_i \mathrm{p}_i(x)$... adjoint polynomial

Theorem. (WARREN)

Wachspress coordinates are the unique rational GBCs of lowest possible degree.

Martin Winter 18 / 18

Wachspress coordinates are ...

I. ... the unique rational GBCs of lowest possible degree (WARREN, 2003)

$$lpha_i(x) = rac{\mathrm{p}_i(x)}{\mathrm{q}(x)}$$
 where $\mathrm{q}(x) = \sum_i \mathrm{p}_i(x)$... adjoint polynomial

Theorem. (WARREN)

Wachspress coordinates are the unique rational GBCs of lowest possible degree.

II. ... a "shadow" of a higher rank objects

Theorem. (Lovász, d = 3; Izmestiev, d > 3)

A polytope framework is a spectral embedding of the edge graph using suitable weights on vertices and edges

weight matrix $M \in \mathbb{R}^{n \times n}$... Lovász-Izmestiev matrix of P

$$lpha_i(x) = \sum_i M_{ij}(x)$$
 (W., 2023)

Martin Winter 18 / 18

Thank you.

M. Winter, "Rigidity, Tensegrity and Reconstruction of Polytopes under Metric Constraints" (2023)