Differentiable simulators: a bridge between machine learning and scientific computing

Dr Aidan Crilly

Eric and Wendy Schmidt AI in Science postdoctoral fellow
Centre for Inertial Fusion Studies

Outline

- Differential equations
 - Adjoint state problem
- Differentiable programming
 - For ODEs
 - For PDEs
- Gradient based optimisation
- Neural differential equations

https://github.com/ aidancrilly/MiniCourse-DifferentiableSimulation

Data-driven and physics-based models

Physical "guarantees" (extrapolation, conservation, etc.)

Proximity to data

Context

- Multi-physics code in 3D:
 - Magneto-hydrodynamics, radiation transport, thermal conduction, split electron-ion energy equations, laser ray trace, alpha particle transport, non-ideal equation of state, extended Ohm's law, material strength...

Context

- Multi-physics code in 3D:
 - Magneto-hydrodynamics, radiation transport, thermal conduction, split electron-ion energy equations, laser ray trace, alpha particle transport, non-ideal equation of state, extended Ohm's law, material strength...

$$\partial_{t}\rho + \nabla \cdot (\rho \vec{u}) = 0$$

$$\partial_{t} (\rho \vec{u}) + \nabla \cdot (\rho \vec{u} \vec{u}) = -\nabla P + J \times B$$

$$\partial_{t} (\rho e_{tot}) + \nabla \cdot (\rho e_{tot} \vec{u}) = -\nabla \cdot (P \vec{u}) + \text{Sources}$$

$$\frac{\partial B}{\partial t} = \nabla \times \underline{v}_{B} \times \underline{B} - \nabla \times \eta_{\parallel} \nabla \times \underline{B} + \nabla \times \frac{\nabla P_{e}}{e n_{e}}$$

$$\left[\frac{\partial}{\partial t} + \kappa_{\nu} c\right] E_{\nu} = 4\pi j_{\nu} - \nabla \cdot \vec{F}_{\nu} ,$$

$$\left[\frac{\partial}{\partial t} + \kappa_{\nu} c\right] \vec{F}_{\nu} = -c^{2} \nabla \cdot \mathbf{P}_{\nu} ,$$

$$C_{e} \frac{\partial T_{e}}{\partial t} = \kappa_{e} \nabla^{2} T_{e} + S_{e} + \omega_{ie} (T_{i} - T_{e})$$

$$C_{i} \frac{\partial T_{i}}{\partial t} = \kappa_{i} \nabla^{2} T_{i} + S_{i} + \omega_{ie} (T_{e} - T_{i})$$

$$\begin{split} \frac{\partial \underline{v}_{ray}}{\partial t} &= \nabla \left(\frac{-c^2}{2} \frac{n_e}{n_c} \right) \\ \left[\frac{1}{v} \frac{\partial}{\partial t} + \hat{\Omega} \cdot \nabla \vec{\nabla} + n(\vec{r}, t) \sigma(E) \right] \psi(\vec{r}, \hat{\Omega}, E, t) \\ &= S_{ex}(\vec{r}, \hat{\Omega}, E, t) \\ &+ \int_0^\infty dE' \int d\hat{\Omega}' n(\vec{r}, t) \sigma_s(\hat{\Omega}' \cdot \hat{\Omega}, E' \to E) \psi(\vec{r}, \hat{\Omega}', E', t), \\ \frac{\partial f_\alpha(\nu_\alpha, t)}{\partial t} &= C(f_\alpha(\nu_\alpha, t)) + \frac{S_0 \delta(\nu_\alpha - \nu_b)}{4\pi \nu_\alpha^2} \\ &= \frac{1}{\tau_S \nu_\alpha^2} \frac{\partial}{\partial \nu_\alpha} \left\{ \frac{v_\alpha^3 T_e + v_c^3 T_i \Phi(x_i)}{m_\alpha \nu_\alpha} \frac{\partial f_\alpha}{\partial \nu_\alpha} \right. \\ &+ \left[v_\alpha^3 + v_c^3 \Phi(x_i) \right] f_\alpha \right\} + \frac{S_0 \delta(\nu_\alpha - \nu_b)}{4\pi \nu_\alpha^2}, \quad \text{And the list goes on...} \end{split}$$

The transport equation

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f + \frac{1}{m} \mathbf{F} \cdot \nabla_v f = \left(\frac{\partial f}{\partial t}\right)_{coll.} + \left(\frac{\partial f}{\partial t}\right)_{src}$$
Advection Forcing Collisions Sources

- Encodes conservation laws on particle number, momenta and energy
- 7-dimensional (3-space, 3-velocity, 1-time), $f(x, y, z, v_x, v_y, v_z, t)$

The closure problem

• Nth moment equation depends on the N+1th moment (or more) For example:

Integrating out velocity space:

$$\frac{\partial n}{\partial t} + \frac{\partial}{\partial x} (n\mathbf{V}) = 0$$

Multiply by velocity, and integrate out velocity space:

$$\frac{\partial n\mathbf{V}}{\partial t} + \frac{\partial}{\partial x} \left(n\mathbf{V}\mathbf{V} + \frac{1}{m} \mathbf{P} \right) = 0$$

Traditional approaches

- Moment 'ordering' argument
 - "The N+1'th (and higher orders) are negligibly small"

- Proximity to equilibrium
 - "The steady state distribution can be used to compute the closure"
- Limiting behaviour
 - "I expect this limiting behaviour, I invent a closure which respects this"

- Asymptotic expansion
 - "I will expand in terms of a small parameter and neglect higher order terms"

The King of Transport

• Flux limited diffusion is ubiquitous

• In general, this looks like:

Diffusion equation:
$$\frac{\partial E}{\partial t} + \nabla \cdot F = Q$$
 Diffusivity Flux closure:
$$F = -\lambda \ D \ \nabla E$$
 Flux limiter

 Flux limiters can be incredibly ad-hoc – ruins the predictive power of simulation codes

Numerical modelling

Physics-based models - Handcrafted parameters + Learned - Sim-to-reality parameters gap + Interpretable **Data-driven** + Better capture models data - Poor extrapolation - Lack physical insight

Concerned with the accurate

solution of physical models

Physical "guarantees" (extrapolation, conservation, etc.)

Proximity to data

- Ordinary differential equations (ODEs) dependent on only a single independent variable
 - For the most part, this variable is time
- Example: the path of a laser in a plasma (geometric optics)

$$\frac{d\underline{v}_{ray}}{dt} = \nabla \left(\frac{-c^2}{2} \frac{n_e}{n_c} \right)$$

• Numerical solutions to ODEs use finite steps (h or dt) to approximate derivatives

$$\frac{dy}{dt} = f(t, y)$$

We use finite differencing to approximate derivatives

Forward differencing:

$$\frac{dy}{dx} \approx \frac{\Delta y}{\Delta x} = \frac{y^{n+1} - y^n}{x^{n+1} - x^n}$$

Backward differencing:

$$\frac{dy}{dx} \approx \frac{\Delta y}{\Delta x} = \frac{y^n - y^{n-1}}{x^n - x^{n-1}}$$

First order in accuracy

Centred differencing:

$$\frac{dy}{dx} \approx \frac{\Delta y}{\Delta x} = \frac{y^{n+1} - y^{n-1}}{x^{n+1} - x^{n-1}} \longrightarrow$$

Second order in accuracy

• Numerical solutions to ODEs use finite steps (h or dt) to approximate derivatives

$$\frac{dy}{dt} = f(t, y)$$

• Simplest = Forward Euler:

$$y_{n+1} = y_n + h f(t_n, y_n)$$

• Numerical solutions to ODEs use finite steps (h or dt) to approximate derivatives

$$\frac{dy}{dt} = f(t, y)$$

Simplest = Forward Euler:

$$y_{n+1} = y_n + h f(t_n, y_n)$$

Very common = 4th order Runge-Kutta (RK4) with adaptive stepping

$$y_{n+1} = y_n + rac{h}{6} \left(k_1 + 2k_2 + 2k_3 + k_4
ight), \qquad egin{aligned} k_1 &= f(t_n, y_n), \ k_2 &= f igg(t_n + rac{h}{2}, y_n + h rac{k_1}{2} igg), \ k_3 &= f igg(t_n + rac{h}{2}, y_n + h rac{k_2}{2} igg), \ k_4 &= f(t_n + h, y_n + h k_3). \end{aligned}$$

Forward vs Inverse problems

• Solutions to differential equations are often concerned with the forward problem

Differential equation: Initial condition:

$$h(x, p, t) = 0$$
$$g(x(0), p) = 0$$

x = state variablesp = parameters

t = time

*Initial conditions:*Densities, temperatures, etc.

Differential equations: Hydrodynamics ++

Other parameters: Laser power vs time

Forward vs Inverse problems

Solutions to differential equations are often concerned with the forward problem

```
Differential equation: h(x, p, t) = 0 p = parameters
Initial condition: g(x(0), p) = 0 t = time
```

• However, if we want to minimize some other scalar function at the same time = *inverse problem*

Figure of merit: Minimise w. r. t. p: f(x, p)

Forward vs Inverse problems

Solutions to differential equations are often concerned with the forward problem

```
Differential equation: h(x, p, t) = 0 p = parameters
Initial condition: g(x(0), p) = 0 t = time
```

• However, if we want to minimize some other scalar function at the same time = *inverse problem*

Figure of merit: Minimise w. r. t. p: f(x, p)

Optimisation

Optimisation

- Minimisation = optimisation = root-finding of gradient
- Gradient-based vs gradient-free optimisation
- Gradient-free:

Bayesian optimisation

Optimisation

- Minimisation = optimisation
- Gradient-based:
 - Simple idea, roll down-hill (to minimize)
- We will visit the mathematics later...

The adjoint state problem

 How do we solve the inverse problem in differential equations efficiently?

 We could run additional forward solutions to get finite difference gradients – very inefficient

 Instead of predicting how a single design change influences every aspect of the flow, the adjoint method predicts how every design change influences a single aspect of the flow.

Constrained Optimisation

• Inverse problem in simplified form: Maximise w. r. t. p: f(p)g(p) = 0

- Intuitive example: Reach highest point (f) while sticking to path (g)
 - When path falls below you both in front and behind you
 - Or the path is tangent with contour
 - Or the path of steepest ascent (gradient) is 90 degree to path

In this example:

- f(p) gives the height given your position, p, i.e. x and y coordinates.
- g(p) parameterises the path you take, such that if you are on the path g(p) = 0

Constrained Optimisation – the maths

• Combine target and constraint using "Lagrange multipliers"

$$L(p,\lambda) = f(p) + \lambda g(p)$$

Find optima of this function:

$$\partial_p L = 0 \rightarrow \partial_p f = -\lambda \partial_p g$$

 $\partial_\lambda L = g(p) = 0$

• In other words, at the optima the gradients are parallel

Let's consider p = [x, y] and: $f(x,y) = e^{-x^2 - y^2}$ $g(x,y) = y - (x-1)^2 = 0$ 2.0 1.5 1.0 -0.5 -0.0 -0.5 --1.0 --1.5-2.0-1.5 -1.0 -0.50.5 0.0

The adjoint state problem

• Inverse problem in simplified form:

Minimise w. r. t.
$$p$$
: $f(x,p)$ $g(x,p) = 0$

Constrained optimisation → Lagrange multipliers:

$$L(x, p, \lambda) = f(x, p) + \lambda^{T} g(x, p)$$

• Gives adjoint equation and gradient w.r.t. parameters, p:

$$\frac{\partial f}{\partial x} + \lambda^T \frac{\partial g}{\partial x} = 0, \qquad \frac{\frac{df}{dp}}{\frac{dp}{dp}} = \frac{\partial L}{\partial p} = \frac{\partial f}{\partial p} + \lambda^T \frac{\partial g}{\partial p}$$

The adjoint state problem – for ODEs

• A simple example ODE, with parameters y_0 and au

$$\frac{dy}{dt} = -\frac{1}{\tau}y, \qquad f = L(y(T))$$

- What are the formal adjoint equations?
 - There will be differential equations for
 - 1. Adjoint process (Lagrange multiplier)
 - 2. Parameter gradients (df/dp)

The adjoint state problem – for ODEs

• To the whiteboard!

What if our function is a solution to an ODE?

• A simple example ODE, with parameters y_0 and τ

$$\frac{dy}{dt} = -\frac{1}{\tau}y, \qquad f = L(y(T))$$

• What are the formal adjoint equations?

Adjoint process:
$$\frac{d\alpha}{dt} = \frac{1}{\tau}\alpha$$
, $\alpha(T) = \frac{dL}{dy(T)}$ Exponential growth

Parameter gradients:
$$\frac{d\beta}{dt} = -\frac{1}{\tau^2} \alpha y$$
, $\beta(T) = 0$

• Solved backwards in time, $\beta(0) = d_{\tau}f = \left(\frac{\mathrm{T}}{\tau^2}\right)\left(\frac{dL}{dy(T)}\right)y_0\exp\left[-\frac{\mathrm{T}}{\tau}\right]$

Automatic differentiation introduction

• Numerical differentiation, finite difference methods:

$$\frac{dy}{dt} = \lim_{\varepsilon \to 0} \frac{y(t+\varepsilon) - y(t)}{\varepsilon} = f(t,y)$$

Numerical error dependent on the step size used:

$$\frac{y(t+\varepsilon)-y(t)}{\varepsilon} = \dot{y}(t) + \frac{1}{2}\varepsilon \ddot{y}(t) + \dots = f(t,y) + \text{Error}(\varepsilon)$$

Enter automatic differentiation...

- Every computer program can be written as a computation graph of mathematical 'primitive' functions (+, x, exp, sin, etc.)
- For example:

$$f(x,y,z) = y \exp(x) + y \sin(z)$$

- Every computer program can be written as a computation graph of mathematical 'primitive' functions (+, x, exp, sin, etc.)
- For example:

$$f(x,y,z) = y \exp(x) + y \sin(z)$$

All optimisation problems have many-to-one functions

Reverse-mode AD provides most efficient method to compute gradients

• Define the 'adjoint' as gradient w.r.t. output: $\bar{x} = \frac{df}{dx}$

• In our example:

A single 'back-propagation' gives all gradients!

Differentiable Programming?

Yann LeCun:

"Deep Learning est mort. Vive Differentiable Programming!

...

An increasingly large number of people are defining the networks procedurally in a data-dependent way (with loops and conditionals), allowing them to change dynamically as a function of the input data fed to them. It's really very much like a regular program, except it's parameterized, automatically differentiated, and trainable/optimizable. Dynamic networks have become increasingly popular..."

Automatic-differentiation/differentiableprogramming frameworks

Python: PyTorch – autograd

Python: Tensorflow – GradientTape

Python: JAX

• C++: autodiff

Check out autodiff.org for other languages/libraries

Automatic-differentiation/differentiableprogramming frameworks

Python: PyTorch – autograd

Python: Tensorflow – GradientTape

Python: JAX

• C++: autodiff

Check out autodiff.org for other languages/libraries

PythonJAX simple example

import jax

import jax.numpy as jnp

import matplotlib.pyplot as plt

A single 'back-propagation' gives all gradients!

Colab exercise 0

An introduction to JAX

https://github.com/ aidancrilly/MiniCourse-DifferentiableSimulation Back to differential equations...

The adjoint state problem – differentiable programming

• For differential equations, the *adjoint equation* is itself another differential equation

- Backpropagation of gradients through our differential equation would implicitly solve *adjoint equations*
 - We will show this...

A simple example ODE, solved using Euler's method

$$\frac{dy}{dt} = -\frac{1}{\tau}y, \qquad y_{n+1} = \left(1 - \frac{dt}{\tau}\right)y_n = \delta y_n$$

- Define some loss, f, which uses values of y
- It's just a graph

We can compute d_{τ} f, d_{dt} f and d_{y_0} f using back-propagation

• A simple example ODE, with parameters y_0 and τ

$$\frac{dy}{dt} = -\frac{1}{\tau}y, \qquad f = L(y(T))$$

• What are the formal adjoint equations?

Adjoint process:
$$\frac{d\alpha}{dt} = \frac{1}{\tau}\alpha$$
, $\alpha(T) = \frac{dL}{dy(T)}$ Exponential growth

Parameter gradients:
$$\frac{d\beta}{dt} = -\frac{1}{\tau^2} \alpha y$$
, $\beta(T) = 0$

• Solved backwards in time, $\beta(0) = d_{\tau}f = \left(\frac{\mathrm{T}}{\tau^2}\right)\left(\frac{dL}{dy(T)}\right)y_0\exp\left[-\frac{\mathrm{T}}{\tau}\right]$

Backpropagation a single step:

$$\frac{df}{d\tau} = \frac{dL}{dy_N} \cdot \frac{dy_N}{d\tau}$$

$$\frac{dy_N}{d\tau} = \frac{d}{d\tau} \left[\left(1 - \frac{dt}{\tau} \right) y_{N-1} \right]$$

• Backpropagation a single step:

$$\frac{df}{d\tau} = \frac{dL}{dy_N} \cdot \frac{dy_N}{d\tau} = \frac{dL}{dy_N} \cdot \left(\frac{dt}{\tau^2} y_{N-1} + \left(1 - \frac{dt}{\tau}\right) \frac{dy_{N-1}}{d\tau}\right)$$

Backpropagation all the way:

AD + ODE:
$$\frac{df}{d\tau} = \frac{T}{\tau^2} \frac{dL}{dy_N} y_0 \left(1 - \frac{T}{N\tau} \right)^{N-1}, \qquad T = \text{Ndt}$$

Analytic adjoint state method:

$$\beta(0) = \frac{T}{\tau^2} \frac{dL}{dy(T)} y_0 \exp\left[-\frac{T}{\tau}\right]$$

Backprop of ODE solution numerically solves adjoint state method

= "discretise-then-optimise"

Extending the computational graph

An abstraction

Colab Exercise 1

- Computational graphs and AD
- Euler's method for simple ODEs
- The adjoint method for ODEs

https://github.com/ aidancrilly/MiniCourse-DifferentiableSimulation

Numerical modelling — PDEs

- Partial differential equations (PDEs) dependent on only many independent variables
 - For the most part, these variables are space and time

Total derivative vs. partial derivative

$$\frac{d}{dt}[f(x,t)] = \frac{\partial f}{\partial t} + \frac{\partial x}{\partial t} \cdot \frac{\partial f}{\partial x} = \frac{\partial f}{\partial t} + v_x \cdot \frac{\partial f}{\partial x}$$

• Example: Hydrodynamics
$$\begin{cases} \frac{\partial \rho}{\partial t} + \mathbf{u} \cdot \nabla \rho + \rho \nabla \cdot \mathbf{u} = 0 \\ \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} + \frac{\nabla p}{\rho} = \mathbf{g} \\ \frac{\partial e}{\partial t} + \mathbf{u} \cdot \nabla e + \frac{p}{\rho} \nabla \cdot \mathbf{u} = 0 \end{cases}$$

Numerical modelling – PDEs

- Method of lines for time dependent PDEs
 - Discretising all but the time dimension turns PDE → system of ODEs
- For example, the heat equation:

$$\frac{\partial T(x,t)}{\partial t} = k \frac{\partial^2 T(x,t)}{\partial x^2}$$

Becomes (centred-space differencing):

$$\frac{dT(x_i,t)}{dt} = k \left(\frac{T(x_{i+1},t) - 2T(x_i,t) - T(x_{i-1},t)}{\Delta x^2} \right)$$

Numerical modelling – PDEs

- Method of lines for time dependent PDEs
 - Discretising all but the time dimension turns PDE → system of ODEs
- For example, the heat equation:

$$\frac{\partial \dot{T}(x,t)}{\partial t} = k \frac{\partial^2 T(x,t)}{\partial x^2}$$

Becomes:

$$\frac{d\mathbf{T}(t)}{dt} = k\underline{D}\mathbf{T}(t)$$

• Where T is a vector of $T(x_i, t)$ at discrete points x_i

- Spatial discretisation makes time-space PDEs into time ODEs
- Explicit time-stepping easiest:

$$\frac{d\mathbf{y}}{dt} = L(\mathbf{y}, \boldsymbol{\theta}) \xrightarrow{\text{discretise}} \mathbf{y}_{n+1} = (\underline{1} - \underline{L}(\mathbf{y}_n, \boldsymbol{\theta})dt)\mathbf{y}_n = \underline{A}_n\mathbf{y}_n$$

We can modify our initial conditions or our model parameters to minimise the loss

parameters

Recipe for differentiable solver

1. Specify your ODE/PDE

2. Choose spatial (and temporal) differencing scheme

3. Define loss term for optimisation purposes

4. Compute adjoint system via 'discretise-then-optimise' or 'optimise-then-discretise' strategies

Gradient-Based Optimisation

- Key idea is gradient descent, move your parameters in the direction of local improvement
- Some other common concepts are:
 - Momentum, m: The history of gradients is used to update parameters, not just current gradient value
 - Adaptive learning rate, α : The step size is adapted for each parameter to penalise parameters which cause oscillations in the gradient

• In general, the parameter updates look like:

$$\boldsymbol{\theta}_{n+1} = \boldsymbol{\theta}_n + \boldsymbol{\alpha}_n \boldsymbol{m}_n$$

Backpropagating through a fluid simulation

 Modify the initial conditions (velocities) to match some input image after a set simulation time

Steps:

- 1. Write a fluid simulator in a differentiable programming framework in this case AutoGrad
- 2. Initialise some densities and x,y velocities on nx by ny grid
- 3. Find distance to target image (loss) after N simulation iterations
- 4. Use Jacobian of loss to update initial velocities (2x nx x ny values)

ODE differentiable programming libraries

 Diffrax – JAX-based library providing numerical differential equation solvers

 SciMLSensitivity.jl – Julia-based library, AD and adjoints for differential equations solvers (and more...)

ODE differentiable programming libraries

 Diffrax – JAX-based library providing numerical differential equation solvers

 SciMLSensitivity.jl – Julia-based library, AD and adjoints for differential equations solvers (and more...)

Diffrax example

• Diffrax has 4 key features (for our purposes):

- 1. Terms
- 2. Solvers
- 3. Adaptive stepping
- 4. Adjoints

```
def dydt(t,y,args):
  return -y/args['tau']
def diffrax solve(dydt,t0,t1,Nt,rtol=1e-5,atol=1e-5):
  Here we wrap the diffrax diffeqsolve function such that we can run with
  different y0s and taus over the same time interval easily
  # We convert our python function to a diffrax ODETerm
  term = diffrax.ODETerm(dydt)
  # We chose a solver (time-stepping) method from within diffrax library
  # Heun's method (https://en.wikipedia.org/wiki/Heun%27s method)
  solver = diffrax.Heun()
  # At what time points you want to save the solution
  saveat = diffrax.SaveAt(ts=jnp.linspace(t0,t1,Nt))
  # Diffrax uses adaptive time stepping to gain accuracy within certain tolerances
  stepsize controller = diffrax.PIDController(rtol=rtol, atol=atol)
  return lambda y0,tau : diffrax.diffeqsolve(term, solver,
                         y0=y0, args = {'tau' : tau},
                         t0=t0, t1=t1, dt0=(t1-t0)/Nt,
                         saveat=saveat, stepsize_controller=stepsize_controller)
t0 = 0.0
t1 = 1.0
Nt = 100
ODE solve = diffrax solve(dydt,t0,t1,Nt)
# Solve for specific y0 and tau
y0 = 1.0
tau = 0.5
sol = ODE solve(y0,tau)
```

Diffrax example

• Diffrax has 4 key features (for our purposes):

- 1. Terms
- 2. Solvers
- 3. Adaptive stepping
- 4. Adjoints

```
def dydt(t,y,args):
  return -y/args['tau']
def diffrax_solve(dydt,t0,t1,Nt,rtol=1e-5,atol=1e-5):
 Here we wrap the diffrax diffeqsolve function such that we can run with
  different y0s and taus over the same time interval easily
  # We convert our python function to a diffrax ODETerm
  term = diffrax.ODETerm(dydt)
  # We chose a solver (time-stepping) method from within diffrax library
  # Heun's method (https://en.wikipedia.org/wiki/Heun%27s method)
  solver = diffrax.Heun()
  # At what time points you want to save the solution
  saveat = diffrax.SaveAt(ts=jnp.linspace(t0,t1,Nt))
  # Diffrax uses adaptive time stepping to gain accuracy within certain tolerances
  stepsize controller = diffrax.PIDController(rtol=rtol, atol=atol)
  return lambda y0, tau : diffrax.diffeqsolve(term, solver,
                         y0=y0, args = {'tau' : tau},
                         t0=t0, t1=t1, dt0=(t1-t0)/Nt,
                         saveat=saveat, stepsize controller=stepsize controller)
t0 = 0.0
t1 = 1.0
Nt = 100
ODE_solve = diffrax_solve(dydt,t0,t1,Nt)
def loss(inputs):
  y0 = inputs['y0']
  tau = inputs['tau']
  sol = ODE solve(y0,tau)
  return sol.ys[-1]
inputs = {'y0' : y0, 'tau' : tau}
# Returns gradient of loss with respect to all inputs, i.e. dLdtau and dLdy0
jax.grad(loss)(inputs)
```

Neural Differential Equations

 What if what to describe a dynamical system but don't know the form of (some of) the terms?

Neural network parameters learnt using adjoint state method

Colab Exercise 2

- Diffrax library for solving ODEs
- Numerical solution to PDEs
- Differentiable PDE solvers
- Neural Differential Equations

https://github.com/ aidancrilly/MiniCourse-DifferentiableSimulation