- Photo OCR
- Problem Description and Pipeline
- Photo OCR pipeline Optical character recognition
 - · Text detection
 - find the regions of where the there is text in the image
 - · Character segmentation
 - try to segment the text into individual characters
 - Character classification
 - looks at the images of the individual characters and figure what each character represents
- Photo OCR pipeline
 - · how to break the system down into different modules

- Sliding Windows
- Text detection (detection in anything example pedestrian detection)
- Supervised learning for pedestrian detection
 - x = pixels in 82x36 image patches
 - positive examples (y=1)
 - negative examples (y=0)
- Sliding window detection
 - take a rectangle or window and slide over the image using a step size of stride size
- Text detection
 - positive examples (y=1)
 - negative examples(y=0)
 - · white regions show where the classifier thinks it found text
 - take the white regions and perform an expansion to that region
 - is a pixel within a range of a white area in the classifier output
 - to obtain the new white regions that are expanded
- 1d sliding window for character segmentation
 - positive examples (y = 1)
 - negative examples (y = 0)

- Getting Lots of Data and Artificial Data

- Character recognition
 - · takes as input an image and recognize what character it is
- Artificial data synthesis for photo OCR
 - · take characters from different fonts and paste characters against random backgrounds
 - perform scaling and other things to obtain synthetic data
 - · using synthetic data unlimited supply of training data
- Synthesizing data by introducing distortions
 - · introduce distortions to obtain more training data
 - · ways to amplify or multiply training set
- Synthesizing data by introducing distortions: Speech recognition
 - add background noise to the training examples to gain more training data
- Synthesizing data by introducing distortions
 - Distortion introduced should be representation of the type of noise/distortions in the test set

- · Audio: Background noise, bad cellphone connection
- Usually does not help to add purely random/meaningless noise to your data
 - Distortion introduced should be representation of the type of noise/distortions in the test set.

Usually does not help to add purely random/meaningless noise to your data.

- Discussion on getting more data
 - make sure you have a low bias classifier before expending the effort. (Plot learning curves).
 E.g. keep increasing the number of features/number of hidden units in neural network until you have a low bias classifier
 - How much work would it be to get 10x as much data as we currently have?
 - artificial data synthesis
 - collect/label it yourself
 - "crowd source" (e.g. amazon mechanical turk)
- Ceiling Analysis: What Part of the Pipeline to Work on Next
 - Estimating the errors due to each component (ceiling analysis)
 - image -> text detection -> character segmentation -> character recognition
 - what part of the pipeline should you spend the most time trying to improve?

Estimating the errors due to each component (ceiling analysis)

- Another ceiling analysis example
 - Face recognition from images(Artificial example)

- Another ceiling analysis example

-