CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Level

MARK SCHEME for the October/November 2013 series

9701 CHEMISTRY

9701/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9701	41

l (a)

[4]

CCE A LEVEL Cotto be a /November 2042 0704	Page 3	Mark Scheme	Syllabus	Paper
GCE A LEVEL – October/November 2013 9701		GCE A LEVEL – October/November 2013	9701	41

- 2 (a) (i) Si-Si bonds are weaker (than C-C bonds) [1]
 - (ii) metallic (Sn) is weaker than (giant) covalent (Ge) [1]

[2]

(b) (i)
$$SiCl_4 + 2H_2O \longrightarrow SiO_2 + 4HCl$$

 $or SiCl_4 + 4H_2O \longrightarrow Si(OH)_4 + 4HCl$
 $or SiCl_4 + 3H_2O \longrightarrow H_2SiO_3 + 4HCl$
(partial hydrolysis is *not sufficient* e.g. to $SiCl_3OH + HCl$) [1]

(ii)
$$PbCl_4 \longrightarrow PbCl_2 + Cl_2$$
 [1]

(iii)
$$SnCl_2 + 2FeCl_3 \longrightarrow SnCl_4 + 2FeCl_2$$
 [1]

(iv)
$$SnO_2 + 2NaOH \longrightarrow Na_2SnO_3 + H_2O$$

 $or SnO_2 + 2NaOH + 2H_2O \longrightarrow Na_2Sn(OH)_6$
 or ionic equation $SnO_2 + 2OH \longrightarrow SnO_3^2 + H_2O$ [1]

[4]

[Total: 6]

	GOL A LLVLL — October/November 2013	3701	71	
(a) (i)	$NH_3 + HZ \longrightarrow NH_4^+ + Z$ $CH_3OH + HZ \longrightarrow CH_3OH_2^+ + Z$			[1] [1]
(ii)	$NH_3 + B \longrightarrow NH_2 + BH$ $CH_3OH + B \longrightarrow CH_3O + BH$			[1] [1]
				[4]
(b) (i)	a reaction that can go in either direction			[1]
(ii)	<pre>rate of forward = rate of backward reaction or forward/back reactions occurring but concentrations of a</pre>	II species do no	ot change	[1]
				[2]
(c) (i)	a solution that resists changes in pH			[1]
	when small quantities of acid or base/alkali are added			[1]
(ii)	in the equilibrium system HZ + $H_2O \Rightarrow Z + H_3O^+$			[1]
	addition of acid: reaction moves to the left or H ⁺ combines with Z <u>and</u> forms HZ			[1]
	addition of base: the reaction moves to the right or H ⁺ combines with OH <u>and</u> more Z formed			[1]
			[5 ma	ıx 4]
(d) (i)	$[H^{+}] = \sqrt{(0.5 \times 1.34 \times 10^{5})} = 2.59 \times 10^{3} \text{ (mol dm}^{3})$			[1]
	pH = 2.59/2.6 (min 1 d.p)		ecf	[1]
(ii)	$CH_3CH_2CO_2H + NaOH \longrightarrow CH_3CH_2CO_2Na + H_2O$			[1]
(iii)	n(acid) in 100 cm ³ = $0.5 \times 100/1000 = 0.05$ mol n(acid) remaining = $0.05 - 0.03 = 0.02$ mol [acid remaining] = 0.2 (mol dm ³)			[1]
	likewise, $n(salt) = 0.03 \text{ mol}$ [salt] + 0.3 (mol dm ³)			[1]
(iv)	pH = 4.87 + log(0.3/0.2) = 5.04–5.05		ecf	[1]
				[6]
(e) G	s CH ₃ CH ₂ COC <i>l</i>			
) H	s SOCl₂ or PCl₅ s NaCl			[2]
	corresponding Br compounds for G , H and J ; CH ₃ CH ₂ COBr,	SOBr ₂ , NaBr)	[Total:	

Mark Scheme
GCE A LEVEL – October/November 2013

Page 4

3

Syllabus 9701 Paper 41

Page 5	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9701	41

- 4 (a) (the energy change) when 1 mol of bonds [1]
 - is broken in the gas phase [1]
 - (b) (i) (C-X bond energy) decreases/becomes weaker (from F to I) [1]
 - due to bond becoming longer/not such efficient orbital overlap [1]
 - (ii) (as the bond energy of C-X decreases) the halogenalkanes become more reactive (answer must imply that it is from F to I) [1]
 - (c) The C-Cl bond is weaker than the C-F <u>and</u> C-H bonds or C-Cl bond (E = 340) and C-H (E = 410) [1]
 - so is (easily) broken to form Cl^{\bullet}/Cl radicals/Cl atoms [1] causing the breakdown of O_3 into O_2 [1]
 - (d) C*l*-CH₂CH₂-CO₂H HO-CH₂CH₂-C*l* [1]

- (e) (i) light/UV/hv or 300°C [1]
 - (ii) (free) radical substitution [1]
 - (iii) $\Delta H = E(C-H) E(H-Cl) = 410 431 = -21 \text{ kJ mol}^{1}$ [1]
 - (iv) $\Delta H = E(C-H) E(H-I) = 410 299 = +111 \text{ kJ mol}^{1}$ ecf [1]
 - (v) The reaction with iodine is endothermic $or \Delta H$ is positive or requires energy [1]
 - (vi) $Cl_2 \longrightarrow 2Cl^{\bullet}$ [1] $CH_3CH_2^{\bullet} + Cl_2 \longrightarrow CH_3CH_2Cl + Cl^{\bullet}$ [1] $CH_3CH_2^{\bullet} + Cl^{\bullet} \longrightarrow CH_3CH_2Cl$ [1]

[Total: 19]

[8]

[2]

[3]

[3]

[3]

Page 6	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9701	41

5 (a) (i) many monomers form a polymer

[1]

- (ii) addition [1]
- (iii) C=C/double/ π bond is broken **and** new C-C single bond**s** are formed or double bond breaks and forms single bonds with other monomers

[1] [3]

(b) propenoic acid [1]

[1]

carbon chain and CO₂H [1]

- at least one sodium salt [1]
- (ii) 120° to 109(.5)° [1] due to the change from a trigonal/sp² carbon to a tetrahedral/sp³ carbon [1]

[4]

- (d) (i)

Any four:

hydrogen bond labelled

water H-bonded to O through H atom

 δ +/ δ - shown on each end of a H-bond

lone pair shown on O or C=O or H2O on a correct H-bond

Na⁺ shown as coordinated to a water molecule

[3]

(ii) Solution became paler and Cu⁽²⁺⁾ swapped with Na⁽⁺⁾ or darker in colour and polymer absorbs water

[1] [4]

Page 7	,	Mark Scheme	Syllabus	Paper
		GCE A LEVEL – October/November 2013	9701	41
(e) (i)	alke	ne(1), amide(1)		[2]
(ii)	NH_3			[1]
(iii)	H ₂ O			[1]
(iv)		(aq)/H₃O⁺ and heat/reflux (not warm) H (aq), heat and acidify		[1]
	0, 0	ir (aq), ricat and acidity		[5]
				[Total: 17]

Page 8	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9701	41

Section B

6 (a) (i) **six/6** (gsv, sgv, gvs, vgs, svg, vsg)

[1]

(ii)
$$H_3C$$
 CH_3 OH OH

(iii) valine (allow glycine) [1]

(iv) any two of: hydrogen bonds and CO_2H or OH or NH_2 or CONH or CO or NH or CO_2 ionic bonds and NH_3^+ or CO_2 van der Waals' and $-CH_3$ or -H

2 × [1]

[6]

[1] [1]

(b) (i) same shape/structure as substrate

[1]

(inhibitor) competes/blocks/binds/bonds to **active site** *or* substrate cannot bind to **active site**

[1]

(ii) binds with enzyme and changes shape/3D structure (of enzyme/active site)

[1]

[1]

[4]

Page 9	Mark Sche n	Syllabus	Paper
	GCE A LEVEL - October/November 2013	9701	41

7 (a)

power supply (idea of complete circuit) electrolyte/buffer solution gel/filter paper/absorbent plip in (a nino acid) sample/mixture [:entre of plate]

4:[1]

[-]

(b) any two from:

size/ M_r (of the amino acid species) charge (on the amino acid species) te perature

2:[1]

[:]

(c) Ratio of the <u>concentration</u> of a solute in each of two (immiscible) solvents or equilibrium constant representing the distribution of a solute bet reen two solvents or PC = [X]_a/[X]_a (at a constant temperature)

[1]

[1]

(d) (i) $K_{pc} = [Z \text{ in ether}]/[Z \text{ in H}_2O] - \text{allow reverse ratio}$ 40 = (x/0.05)/((4-x)/0.5)

[1]

= 3.2 g

ecf [1]

(ii) First extraction 40 = (x/0.025)/((4-x)/0.5)x = 2.67 g

ecf [1]

(iii) Second extraction: 1.3 g remain in solution Second extraction 40 = (y/0.025)/((1.33-y)/0.5) y = **0.887** g

mass extracted = 2.67 + 0.89 = 3.5 i/3.6 g

ecf [1]

[]

GCE A LEVEL – October/November 2013 9701 41	Page 10	Mark Scheme	Syllabus	Paper
		GCE A LEVEL – October/November 2013	9701	41

- 8 (a) (i) (nitrates are) soluble
 - (ii) $Ba^{(2+)}$ and $Pb^{(2+)}$ [1]
 - $SO_4^{(2)}$ [1]
 - BaCO₃/PbCO₃/CaSO₄ are insoluble [1]
 - [4]
 - (b) (i) fertilisers/animal manure [1]
 - (ii) washing powder/detergents/fertilisers/animal manure [1]
 - (iii) growth/production of algae/weeds/plants or eutrophication [1]
 - (c) (i) any one of:

$$2SO_2 + O_2 \longrightarrow 2SO_3$$
 and $SO_3 + H_2O \longrightarrow H_2SO_4$

or
$$SO_2 + NO_2 \longrightarrow SO_3 + NO$$
 and $SO_3 + H_2O \longrightarrow H_2SO_4$

or
$$SO_2 + \frac{1}{2}O_2 + H_2O \longrightarrow H_2SO_4$$
 [1]

(ii) roasting sulfide ores/extraction of metals from sulfide ores [1]

[2]

[3]

[1]

[Total: 9]

CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Level

MARK SCHEME for the October/November 2013 series

9701 CHEMISTRY

9701/42

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9701	42

l (a)

[Total: 10]

[4]

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9701	42

- 2 (a) (i) Si-Si bonds are weaker (than C-C bonds) [1]
 - (ii) metallic (Sn) is weaker than (giant) covalent (Ge) [1]

[2]

(b) (i)
$$SiCl_4 + 2H_2O \longrightarrow SiO_2 + 4HCl$$

 $or SiCl_4 + 4H_2O \longrightarrow Si(OH)_4 + 4HCl$
 $or SiCl_4 + 3H_2O \longrightarrow H_2SiO_3 + 4HCl$
(partial hydrolysis is *not sufficient* e.g. to $SiCl_3OH + HCl$) [1]

(ii)
$$PbCl_4 \longrightarrow PbCl_2 + Cl_2$$
 [1]

(iii)
$$SnCl_2 + 2FeCl_3 \longrightarrow SnCl_4 + 2FeCl_2$$
 [1]

(iv)
$$SnO_2 + 2NaOH \longrightarrow Na_2SnO_3 + H_2O$$

 $or SnO_2 + 2NaOH + 2H_2O \longrightarrow Na_2Sn(OH)_6$
 or ionic equation $SnO_2 + 2OH \longrightarrow SnO_3^2 + H_2O$ [1]

[4]

[Total: 6]

Page 4	i	Mark Scheme	Syllabus	Paper	
		GCE A LEVEL – October/November 2013	9701	42	
(a) (i)	-	+ HZ \longrightarrow NH ₄ ⁺ + Z OH + HZ \longrightarrow CH ₃ OH ₂ ⁺ + Z			[1] [1]
(ii)	-	+ B \longrightarrow NH ₂ + BH OH + B \longrightarrow CH ₃ O + BH			[1] [1]
					[4]
(b) (i)	a rea	action that can go in either direction			[1]
(ii)		of forward = rate of backward reaction rward/back reactions occurring but concentrations of a	II species do no	t change	[1]
					[2]
(c) (i)	a so	lution that resists changes in pH			[1]
	whe	n small quantities of acid or base/alkali are added			[1]
(ii)	in th	e equilibrium system HZ + $H_2O \rightleftharpoons Z + H_3O^+$			[1]
		tion of acid: reaction moves to the left [†] combines with Z <u>and</u> forms HZ			[1]
		tion of base: the reaction moves to the right [†] combines with OH <u>and</u> more Z formed			[1]
				[5 ma	x 4]
(d) (i)	[H ⁺]	= $\sqrt{(0.5 \times 1.34 \times 10^5)}$ = 2.59 × 10 ³ (mol dm ³)			[1]
	pH =	2.59/2.6 (min 1 d.p)		ecf	[1]
(ii)	CH ₃	$CH_2CO_2H + NaOH \longrightarrow CH_3CH_2CO_2Na + H_2O$			[1]
(iii)	n(ac	id) in 100 cm ³ = 0.5 × 100/1000 = 0.05 mol id) remaining = 0.05 – 0.03 = 0.02 mol I remaining] = 0.2 (mol dm ³)			[1]
		vise, n(salt) = 0.03 mol] + 0.3 (mol dm ³)			[1]
(iv)	pH =	= 4.87 + log(0.3/0.2) = 5.04–5.05		ecf	[1]
					[6]
` '	-	CH_2COC1 Cl_2 or PCl_5			
J is	NaC	1	COD# NaDa		[2]
(or (corre	sponding Br compounds for G , H and J ; CH₃CH₂COBr	, 3001 ₂ , Nabr)	[Total:	18]

3

Page 5	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9701	42

- 4 (a) (the energy change) when 1 mol of bonds [1]
- is broken in the gas phase [1]
 - **(b) (i)** (C-X bond energy) decreases/becomes weaker (from F to I) [1]
 - due to bond becoming longer/not such efficient orbital overlap [1]
 - (ii) (as the bond energy of C-X decreases) the halogenalkanes become more reactive (answer must imply that it is from F to I) [1]
 - (c) The C-Cl bond is weaker than the C-F <u>and</u> C-H bonds or C-Cl bond (E = 340) and C-H (E = 410) [1]
 - so is (easily) broken to form Cl^*/Cl radicals/Cl atoms [1] causing the breakdown of O_3 into O_2 [1]
 - (d) C*l*-CH₂CH₂-CO₂H [1] HO-CH₂CH₂-C*l* [1]

- (e) (i) light/UV/hv *or* 300°C [1]
 - (ii) (free) radical substitution [1]

(iii)
$$\Delta H = E(C-H) - E(H-Cl) = 410 - 431 = -21 \text{ kJ mol}^{1}$$
 [1]

(iv)
$$\Delta H = E(C-H) - E(H-I) = 410 - 299 = +111 \text{ kJ mol}^{1}$$
 ecf [1]

(v) The reaction with iodine is endothermic $or \Delta H$ is positive or requires energy [1]

(vi)
$$Cl_2 \longrightarrow 2Cl^*$$
 [1] $CH_3CH_2^* + Cl_2 \longrightarrow CH_3CH_2Cl + Cl^*$ [1] $CH_3CH_2^* + Cl^* \longrightarrow CH_3CH_2Cl$ [1]

[Total: 19]

[8]

[2]

[3]

[3]

[3]

Page 6	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9701	42

5 (a) (i) many monomers form a polymer

[1]

- (ii) addition [1]
- (iii) C=C/double/ π bond is broken **and** new C-C single bond<u>s</u> are formed or double bond breaks and forms single bonds with other monomers

[1]

[3]

(b) propenoic acid [1]

[1]

(c) (i) CO₂Na CO₂Na

carbon chain **and** CO₂H [1]

- at least one sodium salt
- (ii) 120° to 109(.5)° [1] due to the change from a trigonal/sp² carbon to a tetrahedral/sp³ carbon [1]

[4]

(A) (i)

(d) (i) $\begin{array}{c} & & & \\$

Any four:

hydrogen bond labelled

water H-bonded to O through H atom

 δ +/ δ - shown on each end of a H-bond

lone pair shown on O or C=O or H₂O on a correct H-bond

Na⁺ shown as coordinated to a water molecule

[3]

(ii) Solution became paler **and** Cu⁽²⁺⁾ swapped with Na⁽⁺⁾ or darker in colour **and** polymer absorbs water

[4]

[1]

Page 7	,	Mark Scheme	Syllabus	Paper
		GCE A LEVEL – October/November 2013	9701	42
(e) (i)	alke	ne(1), amide(1)		[2]
(ii)	NH_3			[1]
(iii)	H ₂ O			[1]
(iv)		(aq)/H₃O⁺ and heat/reflux (not warm) H (aq), heat and acidify		[1]
	0, 0	ir (aq), ricat and acidity		[5]
				[Total: 17]

Page 8	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9701	42

Section B

6 (a) (i) six/6 (gsv, sgv, gvs, vgs, svg, vsg) [1]

(ii)

two displayed peptide bonds

[1] [1]

correct formula of peptide

[1]

(iii) valine (allow glycine)

(iv) any two of:

hydrogen bonds and CO₂H or OH or NH₂ or CONH or CO or NH or CO₂ ionic bonds and NH₃⁺ or CO₂ van der Waals' and -CH3 or -H

2 × [1]

(b) (i) same shape/structure as substrate

[1]

[6]

(inhibitor) competes/blocks/binds/bonds to active site or substrate cannot bind to active site

[1]

(ii) binds with enzyme and changes shape/3D structure (of enzyme/active site)

[1]

(iii)

[1]

[4]

Page 9	Mark Sche n	Syllabus	Paper
	GCE A LEVEL - October/November 2013	9701	42

7 (a)

power supply (idea of complete circuit) electrolyte/buffer solution gel/filter paper/absorbent plup in (a nino acid) sample/mixture [:entre of plate]

4:[1]

[]

(b) any two from:

size/ M_r (of the amino acid species) charge (on the amino acid species) te perature

2:[1]

[:]

(c) Ratio of the <u>concentration</u> of a solute in each of two (immiscible) solvents or equilibrium constant representing the distribution of a solute bet reen two solvents or PC = [X]_a/[X]_o (at a constant temperature)

[1] **[1]**

(d) (i) $K_{pc} = [Z \text{ in ether}]/[Z \text{ in } H_2O] - \text{allow reverse ratio}$ 40 = (x/0.05)/((4-x)/0.5)

[1]

= 3.2 g

ecf [1]

(ii) First extraction

40 = (x/0.025)/((4-x)/0.5)

x = 2.67 g

ecf [1]

(iii) Second extraction: 1.3 g remain in solution

Second extraction

40 = (y/0.025)/((1.33-y)/0.5)

y = 0.887 g

mass extracted = 2.67 + 0.89 = 3.5 i/3.6 g

ecf [1]

[]

Page 10	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9701	42

- 8 (a) (i) (nitrates are) soluble [1]
 - (ii) $Ba^{(2+)}$ and $Pb^{(2+)}$ [1]
 - SO₄⁽²⁾ [1]
 - BaCO₃/PbCO₃/CaSO₄ are insoluble [1]

 - (b) (i) fertilisers/animal manure [1]
 - (ii) washing powder/detergents/fertilisers/animal manure [1]
 - (iii) growth/production of algae/weeds/plants or eutrophication [1]
 - (c) (i) any one of:

$$2SO_2 + O_2 \longrightarrow 2SO_3$$
 and $SO_3 + H_2O \longrightarrow H_2SO_4$

or
$$SO_2 + NO_2 \longrightarrow SO_3 + NO$$
 and $SO_3 + H_2O \longrightarrow H_2SO_4$

$$or SO_2 + \frac{1}{2}O_2 + H_2O \longrightarrow H_2SO_4$$
 [1]

(ii) roasting sulfide ores/extraction of metals from sulfide ores [1]

[2]

[4]

[3]

[Total: 9]

CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Level

MARK SCHEME for the October/November 2013 series

9701 CHEMISTRY

9701/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9701	43

1 (a)

(b) (i)
$$2Mg(NO_3)_2 \longrightarrow 2MgO + 4NO_2 + O_2$$
 [1]

(ii) (down the group)
 nitrates become more stable *or* are more difficult to decompose *or* need a higher temperature to decompose
 [1]
 because there is less polarisation of the anion/nitrate ion/N–O bonds
 [1]
 as radius of M²⁺/metal ion increases *or* charge density of the cation decreases
 [1]

[4]

(c)
$$Cu + 4H^{+} + 2NO_{3} \longrightarrow Cu^{2+} + 2NO_{2} + 2H_{2}O$$
 species [1] balancing [1]

[Total: 9]

[2]

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9701	43

2 (a) any two from: molecules have negligible volume

> negligible intermolecular forces or particles are not attracted to each other or to the walls of the container

random motion

no loss of kinetic energy during collisions or elastic collisions (NOT

elastic molecules)

2 × [1]

[2]

(b) (i) low temperature and high pressure

both required [1]

(ii) (at low T) forces between particles are more important,

[1]

(at high P) volume of molecules are significant

[1]

[3 max 2]

- (c) (i) endothermic; because the equilibrium moves to the right on heating or with increasing temperature or because bonds are broken during the reaction [1]
 - (ii) e.g. halogenation or Friedel-Crafts alkylation/acylation

reactants [1]

products [1]

other possibilities: Cl₂, I₂, R–Cl, RCOCl etc.

[3]

[Total: 7]

Page 4	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9701	43

3 (a) (i)
$$CH_3Br(g) \longrightarrow CH_3(g) + Br(g)$$
 [1]

(ii)
$${}^{1}/_{3} A l C l_{3}(g) \longrightarrow {}^{1}/_{3} A l(g) + C l(g)$$
 [2]
or $A l C l_{3}(g) \longrightarrow A l C l_{2}(g) + C l(g)$ [4]
 $(A l C l_{3}(g) \longrightarrow A l(g) + 3 C l(g)$ for (1) mark) [3]

- (b) (i) bond energies decrease from Cl_2 to I_2 [1] due to increasing bond length or increase in number of electron shells [1] which causes less effective orbital overlap or less attraction for the shared pair [1]
 - (ii) either because fluorine is electronegative, (hence each F wants to keep its electrons to itself)
 or because the bond length is so short there is repulsion between the lone pairs (on F)
 or repulsion between the nuclei (of F)

[4 max 3]

$$\Delta H = E(H - H) + E(Cl - Cl) - 2E(H - Cl) = 436 + 242 - (2 \times 431)$$

= -184 kJ mol⁻¹ [2]

for iodine:

$$\Delta H = E(H - H) + E(I - I) - 2E(H - I)$$
 = 436 + 151 - (2 × 299)
= -11 kJ mol⁻¹ [1]

- (ii) Hydrides become less thermally stable down the group from C1 to I [1] as the H–X bond energy decreases (more than does the X–X bond energy) [1]
 - [5]

(d) (i) Na O Br
$$15.2 / 23$$
 $31.8 / 16$ $53.0 / 79.9$ [1] $\Rightarrow 0.661$ 1.99 0.663 $\div 0.661 \Rightarrow 1.0$ 3.0 1.0

thus NaBrO₃ [1]

(ii)
$$3Br_2 + 6NaOH \longrightarrow NaBrO_3 + 5NaBr + 3H_2O$$

or $3Br_2 + 6OH \longrightarrow BrO_3 + 5Br + 3H_2O$ species [1] balancing [1]

Page 5	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9701	43

- **4 (a) (i)** Carbon (graphite) has delocalised electrons whereas silicon's electrons are localised. [1]
 - (ii) Tin has metallic structure *or* delocalised/mobile electrons whereas germanium has localised electrons *or* giant covalent structure [1]

(b) (i)
$$2 PbO_2 \longrightarrow 2 PbO + O_2$$
 [1]

(ii)
$$PbO_2 + 4HCl \longrightarrow PbCl_2 + Cl_2 + 2H_2O$$
 [1]

(iii) SnO + 2NaOH
$$\longrightarrow$$
 Na₂SnO₂ + H₂O [1]

(iv)
$$GeCl_4 + 2H_2O \longrightarrow GeO_2 + 4HCl$$
 [1]

[Total: 6]

Page 6	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9701	43

5 [1] (a) (i) $Br_2(aq)$

$$3Br_2$$
 \longrightarrow Br OH $\left(+ 3 HBr\right)$

[1]

product [1]

$$\mathsf{Br}_2 \longrightarrow \bigoplus^{\mathsf{Br}} \left(+ \mathsf{HBr} \right)$$

product [1]

balanced equation in (i) (i.e. 3 Br₂ and 3 HBr) [1] balanced equation in (iii) (i.e. Br₂ and HBr) [1]

[11 max 10]

(b) (i)

3 correct structures (can be in any order) 3 × [1]

(ii) results of tests:

(N.B. letters may be different – must refer to the candidate's formulae)

[Total: 16]

[6]

6 (a) A (Bronsted-Lowry) acid is a proton donor.

[1] **[1]**

(b) (i)

at least one H₂O molecule in the right orientation:

attached to –CO₂H attached to –NH₂

[1] [1]

lone pair (on oxygen in H_2O or $-CO_2H$ or on nitrogen) shown at least once on a H-bond

a H-bond [1] δ + and δ – shown at least once (at each end of the same H-bond) [1]

(ii) + H₃N

[1] **[5]**

(c) allow either S_N1 or S_N2

any three of δ + and δ - shown in C-Cl

curly arrow from lone pair on NH_3 to $(\delta \text{+})$ carbon

curly arrow from C–C*l* bond to C*l*

5-coordinate transition state or carbocation intermediate if S_N1 , with

correct charge

[2]

[3]

(d) lysine @ pH 1: ${}^{\dagger}NH_3(CH_2)_4CH(NH_3^{\dagger})CO_2H$ aspartic acid @ pH 12: $O_2CCH_2CH(NH_2)CO_2$

[1] [1]

[2]

Page 8	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9701	43

(e) (i) 6 (six) [1]

(ii) either $H_2NCH(CH_3)CO-NHCH(CH_2OH)CO_2H$ or $H_2NCH(CH_2OH)CO-NHCH(CH_3)CO_2H$ [2]

(f) (i) Compounds have the same **structural** formula but

different (spatial) arrangement/position *or* orientation of atoms in space [1]

(ii) J [1]

H₂NWWH HO₂C OH

[Total: 17]

[1] **[3]**

Page 9	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9701	43

Section B

7 (a) (i) Metals such as Hg, Ag, Cd, Pb, Cu (identified – NOT just "heavy metals") (allow names, atomic symbols or ions, names or formulae of salts – e.g. Pb(NO₃)₂) or penicillin or organophosphorus insecticide etc.

(ii) The ion/inhibitor binds to a part of the enzyme molecule away from the active site or to an allosteric site [1]

This changes the shape of the active site *or* denatures the enzyme **OR**

the inhibitor forms a **covalent/permanent** bond with the active site [1] blocking entry of the substrate [1]

(iii)

(b) (i) (DNA) \longrightarrow mRNA \longrightarrow ribosome \longrightarrow tRNA \longrightarrow (Protein) [2]

(ii) stop codon/it is used to stop the growth of a protein chain
(allow: used at the start of protein synthesis)

[1]

(c) (i) Adenosine diphosphate (ADP) or AMP and (inorganic) phosphate/P_i/PO₄ ³ /H₃PO₄ [1]

(ii) Any two of –

muscle contraction

transport of ions/molecules $\it or$ active transport $\it or$ exocytosis $\it or$ Na/K pump synthesis of new compounds/proteins etc.

movement of electric charge in nerve cells

bioluminescence

non-shivering thermogenesis

DNA synthesis/reproduction

2 × [1]

[3]

[1]

[1]

[1] **[4]**

Page 10	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9701	43

8 (a) NMR and radiowaves (or VHF/UHF or 40 – 800 MHz)

[1]

(b) NMR: protons have (nuclear) spin

or (spinning) proton produces magnetic moment/field or two spin states or protons can align with or against an applied magnetic field

[1]

there is insufficient electron density/cloud around H atoms for X-ray crystallography

[1] **[2]**

(c) Sulfur, because it has the highest electron density

[1] **[1]**

(d) (i) $\frac{4.5}{1.5} \frac{100}{1.1} \times n$ $n \frac{100 \times 0.15}{4.5 \times 1.1}$ 3.03 **3**

(calculation must be shown) [1]

(ii) the –OH peak (broad singlet) at δ 4.6

[1]

(iii) 3 (three)

[1]

(iv) **Q** has peak at 11.7δ . which is due to $-CO_2H$

[1] [1]

(This can only be formed by oxidising a *primary* alcohol.)

[1]

or **P** has 4 peaks in its NMR spectrum, not 3 in a secondary alcohol with 3 carbons, two (methyl) groups will be in the same chemical environment (or wtte)

[1]

or analysis of the splitting pattern in **P**: the peaks at δ 0.9 and 3.6 are triplets, so each must be adjacent to a $-CH_2$ - group. (hence $-CH_2$ - $-CH_3$)

[1] [1]

(v) CH₃CH₂CO₂H (**structure** needed, not name)

[1] **[6]**

Page 11			Mark Scheme		Syllabus	Paper	
			GCE A LEVEL - (October/November 2013		9701	43
(a)	(i)	diam	ond and graphite				[1]
((ii)	· · · · · · · · · · · · · · · · · · ·					
	colour		ur	o .	diam transi	ond parent/colourles	SS
	electrical conductivity		rical conductivity	good conductor	non-conductor		
	hardness density			1 1 3		rd/non slippery ore dense than graphite	
	melting point		ing point	lower	higher		2 v [4]
							3 × [1] [4]
				nded to 3 others or is uns	atura	ted/doubly-bond	ded/sp ²
	or has 3 bonding locations (NOT forms only 3 bonds)						[1]
($C_{60}H_{60}$				[1]		
							[2]
(c)	(i)	Num	ber of atoms carbon pr	esent = 0 001 × 6 02 × 10) ²³ / 1:	2 = 5.02 × 10 ¹⁹	[1]
							[.]
((ii)						
		Area of sheet = $690 \times 2.51 \times 10^{19} = 1.73 \times 10^{22} \text{ nm}^2$					[1]
(i	iii)	Graphene: Yes, since it has free/delocalised/mobile electrons				[1]	
		Buckminsterfullerene: No, (although there is delocalisation within each sphere) it consists of separate/simple/discrete molecules/spheres/particles, (so no delocalisation from one sphere to the next)					
				hin each molecule/sphere	€		[1] [4]

9