

ÉPREUVE SPÉCIFIQUE-FILIÈRE MP

MATHÉMATIQUES 2

Durée: 4 heures

Les calculatrices programmables et alphanumériques sont autorisées, sous réserve des conditions définies dans la circulaire n°99-018 du 01.02.99.

Préambule

Dans ce problème, on se propose d'étudier des familles de matrices que l'on rencontre lors de la résolution numérique de problèmes relatifs à des équations aux dérivées partielles de type elliptique par des méthodes de différences finies.

Matrices irréductibles - Matrices à diagonales faiblement ou fortement dominantes.

Notations:

Dans tout le problème, on suppose que N est un entier supérieur ou égal à 2. $\mathcal{M}_N(\mathbb{R})$ est l'ensemble des matrices carrées réelles à N lignes et N colonnes, $\mathcal{M}_{N,P}(\mathbb{R})$ l'ensemble des matrices réelles à N lignes et P colonnes.

 I_N est la matrice unité de $\mathcal{M}_N(\mathbb{R})$. $\mathcal{S}_N(\mathbb{R})$ est l'ensemble des matrices symétriques à N lignes et N colonnes. Si $A \in \mathcal{M}_N(\mathbb{R})$, $(A \in \mathcal{S}_N(\mathbb{R}) \Leftrightarrow {}^t A = A)$.

Si A appartient à $\mathcal{M}_N(\mathbb{R})$ on pourra écrire $A = \left(a_{ij}\right)$ i = 1,...,N j = 1,...,N.

 a_{ij} étant l'élément de la i-ème ligne et de la j-ème colonne de A.

 $(u,v)\mapsto \left(u\mid v\right)_N$ de $(\mathbb{R}^N)^2$ dans \mathbb{R} désigne le produit scalaire euclidien canonique de \mathbb{R}^N . On identifiera \mathbb{R}^N et $\mathcal{M}_{N,1}(\mathbb{R})$ et pour $A\in\mathcal{M}_N(\mathbb{R}),\ v\in\mathcal{M}_{N,1}(\mathbb{R})$ on écrira par exemple $\left(Av\mid v\right)_N$ le produit scalaire des éléments de \mathbb{R}^N correspondants : on a donc, en raison de l'identification $\left(Av\mid v\right)_N={}^tvAv$.

 W_N est l'ensemble des N premiers entiers strictement positifs.

Rappel: une matrice réelle symétrique est dite positive (définie positive) si ses valeurs propres sont positives (strictement positives).

Tournez la page S.V.P.

Soient $(e_1, e_2, ..., e_N)$ la base canonique de \mathbb{R}^N et σ une permutation de l'ensemble $\{1, 2, ..., N\}$. On appellera matrice de permutation P_{σ} associée à σ , la matrice P_{σ} de $\mathcal{M}_{N}(\mathbf{R})$ telle que $P_{\sigma}e_i = e_{\sigma(i)}$. Alors $P_{\sigma} = \left(\delta_{i\sigma(j)}\right)$ où δ_{ij} est le symbole de Kronecker.

Définition 2:

Soit $A \in \mathcal{M}_N(\mathbb{R})$. On dit qu'une matrice $A = (a_{ij})$ est irréductible si pour tout couple (S, T) de parties de W_N telles que $S \cap T = \emptyset$ et $S \cup T = W_N$, il existe un élément $a_{ij} \neq 0$ avec $i \in S$ et $j \in T$.

Dans le cas contraire on dira que A est réductible.

Définition 3:

 $A \in \mathcal{M}_N(\mathbf{R})$ $A = (a_{ij})$ est à diagonale faiblement dominante si :

1) pour tout indice
$$i \in W_N$$
, $|a_{ii}| \ge \sum_{\substack{j=1 \ j \ne i}}^N |a_{ij}|$

1) pour tout indice
$$i \in W_N$$
, $|a_{ii}| \ge \sum_{\substack{j=1 \ j \ne i}}^N |a_{ij}|$
2) pour au moins un indice $i \in W_N$, $|a_{ii}| > \sum_{\substack{j=1 \ j \ne i}}^N |a_{ij}|$

Définition 4:

 $A \in \mathcal{M}_N(\mathbb{R})$ est à diagonale fortement dominante si, pour tout indice $i \in W_N$,

Première partie

Question 1-1

- a) Soient σ et σ' deux permutations de l'ensemble W_N .
 - a.1) Montrer que $P_{\sigma}P_{\sigma'} = P_{\sigma\sigma'}$.
 - a.2) Montrer que P_{σ} est inversible et que $P_{\sigma}^{-1} = P_{\sigma^{-1}}$.
 - a.3) Montrer que $P_{\sigma}^{-1} = {}^{t}P_{\sigma}$.

- &b) Soit $A \in \mathcal{M}_N(\mathbb{R})$ et $P_{\sigma} \in \mathcal{M}_N(\mathbb{R})$ la matrice associée à la permutation σ . On définit $B = P_{\sigma}^{-1}AP_{\sigma} = (b_{ij})$. Exprimer b_{ij} à l'aide de σ .
 - c) Montrer que $A \in \mathcal{M}_N(\mathbb{R})$ est irréductible si et seulement s'il n'existe pas de matrice de permutation P_{σ} telle que $P_{\sigma}^{-1}AP_{\sigma}$ soit de la forme :

$$P_{\sigma}^{-1}AP_{\sigma} = \begin{pmatrix} F & O \\ G & H \end{pmatrix}$$

où F et H sont des matrices appartenant respectivement à $\mathcal{M}_P(R)$ et $\mathcal{M}_{N-P}(R)$ et O une matrice dont tous les éléments sont nuls.

Question 1-2

- a) Soit $C \in \mathcal{M}_N(\mathbb{R})$ telle que $C = \begin{pmatrix} F & O \\ G & H \end{pmatrix}$ où F et H appartiennent respectivement à $\mathcal{M}_P(\mathbb{R})$ et $\mathcal{M}_{N-P}(\mathbb{R})$ et sont inversibles. Résoudre le système linéaire CX = U où $X \in \mathcal{M}_{N,1}(\mathbb{R})$ est la matrice des inconnues et $U \in \mathcal{M}_{N,1}(\mathbb{R})$ est donnée. On utilisera pour cela une décomposition convenable de X et de U en blocs $U = \begin{pmatrix} U_1 \\ U_2 \end{pmatrix}$, $X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$.
- b) On suppose que $A \in \mathcal{M}_N(\mathbb{R})$ est réductible. Proposer une méthode de résolution du système AX = U.

Question 1-3

On veut montrer que $A \in \mathcal{M}_N(\mathbb{R})$ est irréductible si et seulement si la propriété (P) suivante est vérifiée :

- (P) pour tout couple (i, j) d'indices distincts de W_N , $a_{ij} \neq 0$ ou alors il existe un entier s et des indices i_1, i_2, \dots, i_s tels que le produit $a_{ii_1} a_{i_1 i_2} \dots a_{i_{s-1} i_s} a_{i_s j}$ soit non nul.
- a) Etablir que la condition est suffisante.
- b) On suppose maintenant que $A \in \mathcal{M}_N(\mathbb{R})$ est irréductible. Pour chaque indice $i \in W_N$, on définit X_i comme l'ensemble des indices j de W_N tels que :

1)
$$j \neq i$$

2) soit $a_{ij} \neq 0$
soit il existe $i_1,...,i_s$ tels que le produit $a_{ii_1}a_{i_1i_2}...a_{i_{s-1}i_s}a_{i_sj}$ soit différent de 0.

Montrer que $X_i = W_N \setminus \{i\}$ et en déduire que la condition est nécessaire.

Question 1-4

Le concept d'irréductibilité peut être illustré graphiquement.

Soit $A \in \mathcal{M}_N(\mathbb{R})$, $A = \left(a_{ij}\right)$ et $\left\{P_i \mid i \in W\right\}$ un ensemble de N points distincts du plan. Pour chaque couple $(i,j) \in \left(W_N\right)^2$ tel que $a_{ij} \neq 0$, on trace une flèche allant du point P_i vers le point P_j . Si a_{ij} et a_{ji} sont non nuls, il y aura une flèche du point P_i vers le point P_j et une autre de P_j vers P_i . Si $a_{ii} \neq 0$ on pourra tracer une boucle allant de P_i vers lui-même.

On associe ainsi à chaque matrice ce que l'on appelle un graphe orienté. En étudiant les graphes associés aux deux matrices suivantes :

$$A_{1} \in \mathcal{M}_{4}(\mathbb{R}) \qquad A_{1} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix} \qquad A_{2} \in \mathcal{M}_{3}(\mathbb{R}) \qquad A_{2} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

donner une interprétation graphique du caractère réductible ou irréductible de chacune d'elles.

Deuxième partie

Question 2-1

Soit $A \in \mathcal{M}_N(\mathbb{R})$ à diagonale fortement dominante; soit $U \in \mathcal{M}_{N,1}(\mathbb{R})$ tel que AU = 0 $U = \begin{pmatrix} u_1 \\ \vdots \\ u_N \end{pmatrix}$; soit i, un indice tel que $|u_i| = \max\{|u_1|, ..., |u_N|\}$. En considérant la i-ème ligne du produit AU montrer que l'on a nécessairement U = 0. Que peut-on en déduire pour det A?

Question 2-2

On suppose que $A \in \mathcal{M}_N(\mathbb{R})$ est irréductible et à diagonale faiblement dominante.

a) Montrer qu'alors pour tout indice $i \in W_N$, $|a_{ii}| > 0$.

b) Montrer que det $A \neq 0$. Pour cela, on raisonnera comme dans la question 2-1 et on montrera d'abord que si AU = 0, tous les éléments de la matrice colonne U sont nécessairement égaux en valeur absolue.

Question 2-3

- a) Si $A \in \mathcal{S}_N(\mathbb{R})$ est une matrice dont les éléments diagonaux sont ≥ 0 et si, de plus, elle est à diagonale faiblement dominante, montrer que toutes les valeurs propres de A sont ≥ 0 .
- b) Si, de plus, A est irréductible ou inversible, on montrera que toutes les valeurs propres de A sont strictement positives.

Troisième partie

Définition 5:

Une matrice $A \in \mathcal{S}_N(\mathbb{R})$ est une L-matrice si :

- 1) pour tout indice $i \in W_N$, on a $a_{ii} > 0$
- 2) pour tout couple d'indices $(i, j) \in (W_N)^2$ tels que $i \neq j$, on a $a_{ij} < 0$

<u>Définition 6</u>:

Une matrice $A \in \mathcal{S}_N(\mathbb{R})$ est une S-matrice si :

- 1) A est définie positive,
- 2) pour tout couple d'indices $(i, j) \in (W_N)^2$ tels que $i \neq j$, on a $a_{ij} < 0$

Définition 7:

Une matrice $A \in \mathcal{S}_N(\mathbb{R})$ est une *M*-matrice si :

- 1) pour tout couple d'indices $(i, j) \in (W_N)^2$ tels que $i \neq j$, on a $a_{ij} < 0$,
- 2) A est inversible,
- 3) tous les éléments de A^{-1} sont ≥ 0 .

Question 3-1

- a) Soit $A \in \mathcal{S}_N(\mathbb{R})$ définie positive, montrer qu'alors $a_{ii} > 0$ pour tout indice $i \in W_N$. En déduire que $A \in \mathcal{S}_N(\mathbb{R})$ est une S-matrice si et seulement si A est une L-matrice définie positive.
- b) Montrer que toute *M*-matrice est une *L*-matrice.

- c) Montrer que si $A \in \mathcal{S}_N(\mathbb{R})$ est une L-matrice
 - 1) irréductible,
 - 2) à diagonale faiblement dominante, alors A est une S-matrice.

Question 3-2

Le spectre de Q est, par définition, l'ensemble des valeurs propres réelles ou complexes de Q. $Sp(Q) = \{\lambda \in \mathbb{C} / \det(Q - \lambda I_N) = 0\}$. On appelle alors rayon spectral de Q, $S(Q) = \max_{\lambda \in Sp(Q)} |\lambda|$.

a) Si $Q \in \mathcal{M}_N(\mathbb{R})$, montrer que la série $\sum_{k\geq 0} Q^k$ est convergente si et seulement si S(Q) < 1.

On admettra l'équivalence : $Q^n \xrightarrow[n \to \infty]{} 0 \Leftrightarrow S(Q) < 1$.

Dans toute la suite de la question 3-2, on considère une L-matrice A d'ordre N et D la matrice diagonale ayant la même diagonale que A, donc définie par :

Pour tout couple d'indices $(i, j) \in (W_N)^2$ tels que $i \neq j$, on a $d_{ij} = 0$ Pour tout indice $i \in W_N$, on a $d_{ii} = a_{ii}$

Soit $C = (c_{ij})$ appartenant à $\mathcal{M}_N(\mathbb{R})$, telle que A = D - C et soit $B = D^{-1}C$ (on justifiera l'existence de D^{-1}). On suppose que S(B) < 1.

- b) Justifier le fait que $I_N B$ est inversible et montrer que tous les éléments de $(I_N B)^{-1}$ sont positifs ou nuls.
- c) Montrer que A est inversible et que A est une M-matrice.

Question 3-3

Si D est une matrice diagonale à coefficients diagonaux strictement positifs, on définit $D^{1/2}$ et $D^{-1/2}$ matrices diagonales dont les éléments diagonaux sont respectivement $\sqrt{d_{ii}}$ et $\frac{1}{\sqrt{d_{ii}}}$ pour tout indice $i \in W_N$.

Soit A une M-matrice.

On définit D, C, B comme à la question précédente et $\hat{A} \in \mathcal{M}_N(\mathbb{R})$ par $\hat{A} = D^{-1/2}AD^{-1/2} = I_N - D^{-1/2}CD^{-1/2}$ et $\hat{B} \in \mathcal{M}_N(\mathbb{R})$ par $\hat{B} = D^{1/2}BD^{-1/2}$.

a) Montrer que \hat{A} est une *M*-matrice et que :

$$\left(\hat{A}\right)^{-1} = \left(I_N - \hat{B}\right)^{-1} = I_N + \hat{B} + \left(\hat{B}\right)^2 + \dots + \left(\hat{B}\right)^m + \left(I_N - \hat{B}\right)^{-1} \left(\hat{B}\right)^{m+1} \quad \text{pour tout entier } m \text{ strictement positif.}$$

- b) Soit $G_m \in \mathcal{M}_N(\mathbb{R})$ définie par : $G_m = I_N + \mathring{B} + + \left(\mathring{B}\right)^m$. Montrer que tous les éléments de G_m sont positifs et majorés indépendamment de m.
- c) En déduire que S(B) < 1.

Question 3-4

Soit $A \in \mathcal{S}_N(\mathbb{R})$ une S-matrice.

On utilise les mêmes notations qu'en 3-2 et 3-3.

- a) Montrer que A est inversible et que $A^{-1} = (I_N B)^{-1} D^{-1}$.
- b) On veut maintenant montrer que S(B) < 1 ce qui suffira pour établir que toute S-matrice est une M-matrice.
 - b1) Montrer que \hat{A} est définie positive.
 - b2) En supposant $S(B) \ge 1$, montrer que l'on est conduit à une contradiction et que donc toute S-matrice est une M-matrice. On admettra que si $Q \in \mathcal{M}_N(\mathbb{R})$ a tous ses éléments positifs ou nuls, alors, il existe $\mu \in Sp(Q)$ tel que $\mu = S(Q)$.

Fin de l'énoncé.