Exercise Report-1

For

INF 4140/9140 -Numerical Analysis

Hao, Zhao

Department of Geoscience & Department of Informatics, University of Oslo

Feb 15, 2016

Exercise 4.1.1:

The interpolation problem in P_n leads to a linear system V'c = f, where V is a Vandermonde matrix. Write down the expression for the element v_{ij} :

Answer:

The Candermonde matrix:
$$Vn = \begin{bmatrix} 1 & 1 & \dots & 1 \\ X1 & X2 & \dots & Xn \\ \vdots & \vdots & \ddots & \vdots \\ X1^{n-1} & X2^{n-1} & \dots & Xn^{n-1} \end{bmatrix}$$

Exercise 4.1.3:

What is meant by a triangle family q1(x), q2(x), ..., qn(x) of polynomials? Are all such families a basis for Pn?

.....

Answer:

A triangle family of polynomials means a sequence of polynomials form a triangular matrix S.

q1(x) = S11, q2(x) = S12 + S22x, $q3(x) = S13 + S23x + S33x^2$

 $q_3(x) = 313 + 323x + 333x + 2$ $q_1(x) = S1n + S2nx + S3n x^2 + \cdots + Snn.x^n - 1$

for any j , Pj $(x) = x^{j-1}$ can be expressed recursively and uniquely as linear combinations of $q1(x), \ldots, qj(x)$ by inverse transformation. Thus every triangle family is a basis for Pm.

Exercise 4.1.5:

What good effects can be achieved by using over determination in polynomial interpolation?

Answer:

The over determination in polynomial interpolation can be used to (1) reduce the effect of random or irregular errors in the values of function. (2) give the polynomial a smoother behavior between the grid points.

Problems and Computer Exercises

Exercise 4.1.1 (a):

Plots Display:

Remarks:

For the display purpose, the 0 in difference has been replaced with the 1e-20 to avoid the 'infinite' in the logarithm display.

Figure 1. Interpolation of function, with equidistant points and Chebyshev points, n = 2

Top-Left: |f(x)-p(x)|: (equidistant points). **Top-right**: |f(x)-p(x)|: (Chebyshev points).

Figure 2. Interpolation of function, with equidistant points and Chebyshev points, n = 4

Bot-Left: |q(x)-p(x)|: (equidistant points). **Bot-right**: |q(x)-p(x)|: (Chebyshev points).

Figure3. Interpolation of function, with equidistant points and Chebyshev points, n =6

Top-Left: |f(x)-p(x)|: (equidistant points). **Top-right**: |f(x)-p(x)|: (Chebyshev points).

Figure4. Interpolation of function, with equidistant points and Chebyshev points, n =8

Bot-Left: |q(x)-p(x)|: (equidistant points). **Bot-right**: |q(x)-p(x)|: (Chebyshev points).

Figure 5. Interpolation of function, with equidistant points and Chebyshev points, n = 10

Top-Left: |f(x)-p(x)|: (equidistant points). **Top-right**: |f(x)-p(x)|: (Chebyshev points).

Figure 6. Interpolation of function, with equidistant points and Chebyshev points, n = 12

Bot-Left: |q(x)-p(x)|: (equidistant points). **Bot-right**: |q(x)-p(x)|: (Chebyshev points).

Figure 7. Interpolation of function, with equidistant points and Chebyshev points, n = 14

Top-Left: |f(x)-p(x)|: (equidistant points). **Top-right**: |f(x)-p(x)|: (Chebyshev points).

Figure8. Interpolation of function, with equidistant points and Chebyshev points, n =16

Exercise 4.1.1 (b):

.....

Plots Display:

Remarks:

The random function $y = \sin(x^*pi)$, x = [-1,1] is used for this test.

Figure 9. Interpolation of random function, with equidistant points and Chebyshev points, n = 8

Left: Display of f(x) and P(x) (equidistant points). **Right**: Display of f(x) and P(x) (Chebyshev points).

Figure 10. Interpolation of random function, with equidistant points and Chebyshev points, n = 16**Left**: Display of f(x) and P(x) (equidistant points). **Right**: Display of f(x) and P(x) (Chebyshev points)