

LEGUS Star Cluster Age Distribution Analysis of NGC 1566

By: Benjamin Pieczynski

NGC 1566

- Type: SAB(rs)bc and is a Seyfert galaxy
- Distance 21.3 Mpc
- $M_* = 6.5 \times 10^{10} M_{\odot}$
- $L = 1.2 \times 10^{11} L_{\odot}$
- Dark Matter Fractions 0.58 0.66

Sources:

Elagali et al. 2019, Meurer et al. 2006

Spiral Structure from Star Cluster Distributions

Simulations

- Dobbs & Pringle (2010) modeled gas flow in spiral galaxies for different excitation mechanisms
 - Self-Excitation: through local instabilities or density wave theory (Lin & Shu 1964; Bertin et al. 1989)
 - External tidal effects (companion galaxies / collisions)
 - Internal tidal Effects (central rotating bar)

Star Cluster Distribution Analysis

- UBVI Ha measurements to age date clusters
 - HST WFC3 or WFPC2
- Chandar et al. 2017 studied M51 to use star cluster age distributions to study possible spiral structure excitation mechanisms.

Figure from Dobbs & Pringle (2010) showing star cluster distributions for different excitation mechanisms.

Methods: Studying Star Cluster Distributions

Methods by Chandar et al. 2017

- Derived cluster ages from UBVI Ha measurements (Chandar et al. 2011)
- Use 3.6μ Spitzer images to define spiral arms
 - Logarithmic spiral arms
- Assign clusters located within 2 kpc to each arm
- Separate clusters by age (< 6 Myr, 6-30 Myr, 30-100 Myr, 100-400 Myr)

Findings

- Star cluster distribution peaks in the center of the arms, increase width at older ages.
- Inner spiral arms consistent with a density wave
- Outer spiral arms consistent with an interacting galaxy

Figures from Chandar et al. 2017 showing how spiral arms are defined from 3.6μ peaks in M51.

Why Study NGC 1566?

Observational Justification

- HST WFC3 frame captures significant portions of spiral arms
- Available 3.6 μ Spitzer images
- LEGUS catalog contains age dated clusters in a large sample size 2448 clusters (Calzetti et al. 2015)

Scientific Justification

- Can compare with Dobbs & Pringle (2010) to determine excitation mechanisms.
- Study consistency with a Density Wave Theory
- Study the spatial distribution of clusters in the arms

Image Credit: NASA/ESA/HUBBLE Processing and copyright: Leo Shatz

LEGUS Star Cluster Data

- LEGUS Legacy ExtraGalactic UV Survey (Calzetti et al. 2015)
- Uses five-band imaging with HST WFC3 and parallel optical imaging with the Advanced Camera for Surveys
- Goal: provide complete inventories of young stellar cluster populations
 - o 50 nearby galaxies
 - Ages, masses, extinctions, and spatial distributions
- Cluster Photometry
 - Uses SExtractor (Bertin & Arnouts 1996) to extract sources
 - Filter through candidate clusters using DOLPHOT
- Age dating clusters
 - Automatically and manually filter through the candidates
 - Use χ^2 minimization based SED fitting

Defining Spiral Arms

- Make a contour plot of a 3.6μ Spitzer image
 - Locate peak emission
- Manually fit a logarithmic spiral arm equation to the emission peaks

$$R = \operatorname{Aexp}[(2\pi/m - \varphi) - \tan(i)]$$

R = radius

A = amplitude

m = number of spiral arms

 φ = polar angle

i = pitch angle

Defining Spiral Arms

Assigning Clusters to Arms

Assigning Clusters to Arms

- If clusters are within 2 kpc they are assigned to the nearest arm segment point.
- This results in an arm assignment
- Examine the distribution of clusters from the center of the arm structure
 - Negative inner arm
 - o Positive outer arm

- Area of each bar normalized to 1
 - For each set of cluster ages
 - o 20 bins
- Dashed line is the center of the arm
 - Negative distance inner arm
 - Positive distance outer arm
- There was only sufficient data for the primary arms
 - Substructure typically had fewer than
 10 clusters
- Each arm segment demonstrates and increase in distribution width as cluster age increases

- Represents cluster position in the West arm
 - \circ θ N of E
- Normalized to 1 for each age group
- Comparing to Dobbs & Pringle (2010) to determine excitation mechanism
- Displays monotonic sequence - consistency with a density wave and bar models.

- Represents cluster position in the East arm
 - \circ θ N of E
- Normalized to 1 for each age group
- Comparing to Dobbs & Pringle (2010) to determine excitation mechanism
- Displays monotonic sequence - consistency with a density wave and bar models.

Star Cluster Age Distribution - Findings

- NGC 1566 shows star clusters peak in the center at younger ages and disburse over time
 - Older clusters have wider distance distributions
 - Consistent with Dobbs & Pringle (2010) and similar result to Chandar et al. 2017
- Both the West and East Arms display monotonic sequences of star cluster age distribution
 - Consistent for the fixed pattern speed model (density wave theory)
 - Consistent for the bar unstable model
 - Agrees with Dobbs & Pringle (2010) and Shabani et al. (2018)

West Arm

ages	mean Dist [kpc]	median Dist [kpc]	σ Dist [kpc]
str13	float64	float64	float64
< 6 Myr	-0.006384	-0.093584	0.854428
6 - 30 Myr	0.158724	0.197902	0.805578
30 - 100 Myr	0.025075	0.146356	1.033819
100 - 400 Myr	-0.232757	-0.200775	1.058411

East Arm

ages	mean Dist [kpc]	median Dist [kpc]	σ Dist [kpc]
str13	float64	float64	float64
< 6 Myr	0.145586	0.10292	0.604285
6 - 30 Myr	0.070157	0.090407	0.705812
30 - 100 Myr	0.200962	0.363238	0.994919
100 - 400 Myr	0.137123	0.673023	1.339077

Star Cluster Mass Distribution

Star Cluster Mass Distribution - Findings

- The median NGC 1566 star cluster mass increases with the cluster ages
 - Massive clusters having more gravity and can avoid mass loss
 - Would indicate the larger the cluster the longer it could survives
 - Consistent with Kroupa (2001)
- Plausible that larger clusters form in the center of the arms
 - Could be due to higher gas density
 - Needs more analysis

West Arm

ages	mean mass	median mass	σ mass
str13	float64	float64	float64
< 6 Myr	11274.914368	5677.5	18923.955323
6 - 30 Myr	12981.342857	7195.0	19373.966066
30 - 100 Myr	38287.430894	28600.0	39284.213336
100 - 400 Myr	95949.621622	53960.0	94604.077278

East Arm

ages	mean mass	median mass	σ mass
str13	float64	float64	float64
< 6 Myr	11782.500426	5458.0	18610.710575
6 - 30 Myr	12875.116382	6838.0	21737.031394
30 - 100 Myr	46570.603175	27160.0	59442.035047
100 - 400 Myr	87936.8	60240.0	81387.116608

NGC 1566 - Key Findings

- The star cluster distribution peaks in the center of the arms, and the distribution width increases with age.
 - Consistent with Dobbs & Pringle (2010)
- Both the West and East Arms displays monotonic sequences of star cluster age distribution
 - This agrees with 'Density Wave theory' and models for a barred spiral galaxy (Dobbs & Pringle 2010)
- Findings in agreement with Shabani et al. (2018)
- The median NGC 1566 star cluster mass increases with cluster age
- Evidence that larger clusters could form in the center of NGC 1566 arms
 - Needs more analysis

Future Work

- Apply this method to different galaxy types
- Observe NGC 1566 sub structures that have insufficient cluster data
- Investigate the formation of larger clusters in the center of spiral arms

Acknowledgements

Thank you to Dr. Li-Hsin Chien for being an amazing mentor. I owe so much of where I am today to your guidance and support during my time at Northern Arizona University.

Thank you Dr. Rubin for a great semester and for the suggestion to use the LEGUS star cluster catalog. Deriving the star cluster ages would have been a paper in itself.

Thank you Giaky, Sam, and Spencer for practicing the night before the presentation.

This work is based [in part] on archival data obtained with the Spitzer Space Telescope, which was operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.

References

Elagali, A., Staveley-Smith, L., Rhee, J., et al. 2019, MNRAS, 487, 2797. doi:10.1093/mnras/stz1448

Meurer, G. R., Hanish, D. J., Ferguson, H. C., et al. 2006, ApJS, 165, 307. doi:10.1086/504685

Dobbs, C. L. & Pringle, J. E. 2010, MNRAS, 409, 396. doi:10.1111/j.1365-2966.2010.17323.x

Lin, C. C. & Shu, F. H. 1964, ApJ, 140, 646. doi:10.1086/147955

Bertin, G., Lin, C. C., Lowe, S. A., et al. 1989, ApJ, 338, 78. doi:10.1086/167182

Chandar, R., Chien, L.-H., Meidt, S., et al. 2017, ApJ, 845, 78. doi:10.3847/1538-4357/aa7b38

Chandar, R., Whitmore, B. C., Calzetti, D., et al. 2011, ApJ, 727, 88. doi:10.1088/0004-637X/727/2/88

Fazio, G. G., Hora, J. L., Allen, L. E., et al. 2004, ApJS, 154, 10. doi:10.1086/422843

Calzetti, D., Lee, J. C., Sabbi, E., et al. 2015, AJ, 149, 51. doi:10.1088/0004-6256/149/2/51

Bertin, E. & Arnouts, S. 1996, A&AS, 117, 393. doi:10.1051/aas:1996164

Shabani, F., Grebel, E. K., Pasquali, A., et al. 2018, MNRAS, 478, 3590. doi:10.1093/mnras/sty1277

Kroupa, P. 2001, From Darkness to Light: Origin and Evolution of Young Stellar Clusters, 243, 387

Thank you! Any Questions?