

**(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION
EN MATIÈRE DE BREVETS (PCT)**

**(19) Organisation Mondiale de la Propriété
Intellectuelle**
Bureau international

(43) Date de la publication internationale
15 mai 2003 (15.05.2003)

PCT

(10) Numéro de publication internationale
WO 03/040366 A2

(51) Classification internationale des brevets⁷ :
C12N 15/11, A61K 31/713

[FR/FR]; 47 ter, rue Hippolyte Maindron, F-75014 Paris (FR).

(21) Numéro de la demande internationale :
PCT/FR02/03843

(74) Mandataire : **BREESE, Pierre**; Breesé-Majerowicz, 3, avenue de l'Opéra, F-75001 Paris (FR).

(22) Date de dépôt international :
8 novembre 2002 (08.11.2002)

(81) États désignés (national) : AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(25) Langue de dépôt :
français

(26) Langue de publication :
français

(84) États désignés (régional) : brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(30) Données relatives à la priorité :
01/14549 9 novembre 2001 (09.11.2001) FR
02/04474 10 avril 2002 (10.04.2002) FR

(71) Déposant (pour tous les États désignés sauf US) :
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE -CNRS- [FR/FR]; 3, rue Michel-Ange, F-75794 Paris Cedex 16 (FR).

Publiée :

— sans rapport de recherche internationale, sera republiée dès réception de ce rapport

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

(54) Title: INHIBITOR OLIGONUCLEOTIDES AND THEIR USE FOR SPECIFIC REPRESSION OF A GENE

(54) Titre : OLIGONUCLEOTIDES INHIBITEURS ET LEUR UTILISATION POUR REPRIMER SPECIFIQUEMENT UN GENE

WO 03/040366 A2

(57) Abstract: The invention concerns a double-stranded oligonucleotide characterized in that it consists of two complementary oligonucleotide sequences forming a hybrid comprising each at one of their 3' or 5' ends one to five non-matched nucleotides forming single-stranded ends overlapping from the hybrid, one of said oligonucleotide sequences being substantially complementary of a target sequence belonging to a DNA or RNA molecule to be specifically repressed. The invention also concerns the use of said oligonucleotides in pharmaceutical compositions for treating cancers.

(57) Abrégé : L'invention a pour objet un oligonucléotide double brin caractérisé en ce qu'il est constitué de deux séquences oligonucléotidiques complémentaires formant un hybride comprenant chacune à l'une de leurs extrémités 3' ou 5' un à cinq nucléotides non appariés formant des bouts simples brins débordant de l'hybride, l'une desdites séquences oligonucléotidiques étant实质lement complémentaire d'une séquence cible appartenant à une molécule d'ADN ou d'ARN à réprimer spécifiquement. L'invention se rapporte aussi à l'utilisation desdits oligonucléotides dans des compositions pharmaceutiques notamment pour le traitement des cancers.

OLIGONUCLEOTIDES INHIBITEURS ET LEUR
UTILISATION POUR REPRIMER SPECIFIQUEMENT UN GENE.

La présente invention concerne le domaine de l'investigation et du traitement génétiques de pathologies humaines, notamment les cancers ou les maladies infectieuses. Plus particulièrement, l'invention vise à offrir des moyens pour déterminer la fonction d'un gène ou d'une famille de gènes impliqués dans un processus cellulaire, et pour réprimer un gène nocif responsable d'une pathologie chez l'homme ou l'animal. L'invention se rapporte aux agents actifs pour la mise en œuvre de ces méthodes et les compositions les contenant.

On connaît dans l'art antérieur, des techniques d'oligonucléotides anti-sens permettant d'inhiber spécifiquement un gène dans les cellules de mammifères. Ces techniques sont basées sur l'introduction dans les cellules d'un court oligonucléotide d'ADN complémentaire du gène cible. Cet oligonucléotide induit la dégradation de l'ARN messager transcrit par le gène cible. Un autre mode d'action des anti-sens consiste à introduire dans la cellule un oligonucléotide d'ADN qui va former une triple hélice avec le gène cible. La formation de cette triple hélice réprime le gène soit en bloquant l'accès pour des protéines activatrices, soit dans des approches plus sophistiquées, en induisant la dégradation du gène. Aucune de ces approches ne semble s'appuyer sur un mécanisme cellulaire existant dans les cellules de mammifères, et elles se sont avérées peu efficaces. En effet, l'utilisation des anti-sens en clinique est réduite à quelques cas très rares, et il n'y a aucune utilisation possible des oligonucléotides formant triple hélice.

La méthode de l'invention est basée sur l'interférence ARN désigné aussi « RNA'inh » ou « RNAi » ou

5 encore co-suppression, qui a été mise en évidence dans les plantes. Chez les plantes, il a été observé que l'introduction d'un long ARN double brin, correspondant à un gène, induit la répression spécifique et efficace du gène ciblé. Le mécanisme de cette interférence comporte la dégradation de l'ARN double brin en courts duplex 10 d'oligonucléotides de 20 à 22 nucléotides.

10 Les Inventeurs ont maintenant montré que ce principe peut s'appliquer à des gènes de mammifères qui jouent un rôle important dans le contrôle du destin cellulaire.

15 L'approche « RNA'inh » plus généralement dénommée selon l'invention oligonucléotides inhibiteurs ou ARNi s'appuie sur un mécanisme cellulaire dont l'importance est soulignée par son grand degré de conservation puisque ce mécanisme est conservé à travers les règnes et les espèces et a été montré non seulement chez la plante, mais aussi chez le vers *Caenorhabditis Elegans* et la levure et les mammifères, homme et souris.

20 Les travaux de recherche réalisés dans le cadre de l'invention ont montré que cette approche est beaucoup plus efficace pour réprimer spécifiquement les gènes que les techniques envisagées dans l'art antérieur. En outre, elle réunit potentiellement les avantages des anti-sens et 25 des anti-gènes. En effet, chez la plante, la co-suppression s'effectue au niveau post-transcriptionnel, sur l'ARN mature, mais aussi au niveau transcriptionnel, donc sur le gène lui-même. En effet, la répression se transmet de génération en génération et permettrait donc de réprimer un 30 gène de façon prolongée voire définitive.

35 L'invention a donc pour objet un oligonucléotide double brin pour être utilisé dans un processus d'interférence ARN (RNAi) caractérisé en ce qu'il est constitué de deux séquences oligonucléotidiques complémentaires comprenant chacune à l'une de leurs

extrémités 3' ou 5' un à cinq nucléotides non appariés formant des bouts simples brins débordant de l'hybride, l'une desdites séquences oligonucléotidiques étant实质iellement complémentaire d'une séquence cible appartenant à une molécule d'ADN ou d'ARN cible que l'on souhaite réprimer spécifiquement. Cet ADN ou ARN peut être de toute nature, il peut s'agir par exemple d'ARN messager ou ribosomique ou encore de préférence d'un gène.

Avantageusement, chacune des deux séquences oligonucléotidiques complémentaires comprend à la même extrémité 3' ou 5' un à cinq nucléotides non appariés formant des bouts simples brins débordant de l'hybride.

Avantageusement les deux séquences oligonucléotidiques ont la même taille.

Du fait de la loi d'appariement des bases, on désignera aussi indistinctement ci-après par oligonucléotide de l'invention, l'une ou l'autre des séquences de l'oligonucléotide double brin de l'invention qui est complémentaire d'une séquence cible appartenant à une molécule d'ADN ou d'ARN que l'on souhaite réprimer spécifiquement et qui peut donc être aussi simple ou double brin(s).

Les oligonucléotides de l'invention peuvent être de nature ribonucléotidique, désoxy ribonucléotidique ou mixte. On préfère toutefois que l'oligonucléotide complémentaire de la séquence cible, aussi désigné brin antisens, soit majoritairement de nature ribonucléotidique. Le brin sens peut être de nature ribonucléotidique désoxy ribonucléotidique ou mixte. Des exemples d'oligonucléotides de l'invention de type ARN/ARN ou ADN/ARN sont donnés dans la partie expérimentale ci-après.

En effet, les hybrides ARN/ARN sont plus stables que les hybrides ADN/ADN ou ADN/ARN et beaucoup plus stables que les acides nucléiques simples brins utilisés dans des stratégies anti-sens.

On entend aussi par oligonucléotide, un polynucléotide de 2 à 100, et plus généralement de 5 à 50, nucléotides de type ribo-, désoxyribo- ou mixte.

La partie de la séquence oligonucléotidique qui est hybridée et complémentaire de la séquence cible a de préférence une taille comprise entre 15 et 25 nucléotides et tout préférentiellement de 20 à 23 nucléotides.

Les oligonucléotides doubles brins de l'invention comprennent, de préférence à l'extrémité 3' de chaque brin, de 1 à 5 nucléotides de préférence de 2 à 3 et tout préférentiellement 2 nucléotides débordant de l'hybride. Ces nucléotides débordant de l'hybride peuvent être ou non complémentaire de la séquence cible. Ainsi, dans une forme de réalisation particulière de l'invention, les nucléotides débordant de l'hybride sont des nucléotides quelconque par exemple des Thymines.

On peut représenter un oligonucléotide double brin de l'invention de la façon suivante, où chaque tiret correspond à un nucléotide et où chaque brin comprend à son extrémité 3' deux thymines débordant de l'hybride :

La séquence des oligonucléotides de l'invention est substantiellement complémentaire d'une séquence cible appartenant à une molécule d'ADN ou d'ARN messager d'un gène que l'on souhaite réprimer spécifiquement. Bien que l'on préfère des oligonucléotides parfaitement complémentaires de la séquence cible, on entend par substantiellement complémentaire, le fait que la séquence oligonucléotidique peut comprendre quelques nucléotides mutés par rapport à la séquence cible dès lors que les propriétés de répression du gène visé ne sont pas altérées. Ainsi, une séquence oligonucléotidique de l'invention peut comprendre de 1 à 3 nucléotides mutés.

Ces nucléotides mutés peuvent donc être ceux débordant de l'hybride ou des nucléotides à l'intérieur de la séquence oligonucléotide.

Ainsi un oligonucléotide de l'invention peut être un hybride parfait ou comprendre un ou plusieurs mismatch au sein du double brin. On préfère toutefois que la partie de la séquence oligonucléotidique qui est hybridée soit parfaitement complémentaire de la séquence cible alors que les nucléotides débordant de l'hybride peuvent être quelconques et notamment des thymines. On entend ainsi également par parfaitement complémentaire le fait que l'oligonucléotide de l'invention soit complémentaire d'une séquence qui appartient à un ADN ou ARN d'un gène muté. Les oligonucléotides de l'invention peuvent permettre ainsi de discriminer entre la séquence du gène sauvage et du gène muté ce qui peut présenter un intérêt particulier tant dans l'analyse des gènes que dans les utilisations thérapeutiques des oligonucléotides de l'invention.

Les oligonucléotides de l'invention sont généralement constitués de bases nucléotidiques naturelles (A, T, G, C, U), mais peuvent aussi comprendre des nucléotides modifiés ou des nucléotides portant des groupements réactifs ou des agents de pontage ou agents intercalant pouvant réagir avec la séquence cible complémentaire à l'oligonucléotide.

Les oligonucléotides de l'invention peuvent être préparés par les méthodes conventionnelles de synthèse chimique ou biologique des oligonucléotides.

L'invention envisage aussi les oligonucléotides couplés à des substances favorisant ou permettant leur pénétration, le ciblage ou l'adressage dans les cellules, il peut s'agir de lipides, de protéines, polypeptides ou peptides ou de toute autre substance naturelle ou

synthétique. En effet, les oligonucléotides de l'invention sont destinés à être internalisés dans les cellules et avantageusement dans certains cas, jusque dans le noyau des cellules, où ils vont interagir avec des molécules d'acide nucléiques portant la séquence cible de l'oligonucléotide. De même, il peut être intéressant de favoriser leur pénétration dans un tissu particulier comme une tumeur, l'os, etc.

10 Les oligonucléotides de l'invention sont utiles pour réprimer de manière très efficace et très spécifique un gène ou un ensemble de gènes et donc pour le traitement de nombreuses pathologies humaines. Ils constituent aussi un outil de recherche pour l'investigation et la 15 compréhension de la fonction de gènes. L'invention a donc pour objet des compositions pharmaceutiques comprenant un oligonucléotide ou un ensemble de nucléotides différents et l'utilisation de ces oligonucléotides, seuls ou couplés à des substances de transport, comme médicament.

20 Les oligonucléotides de l'invention peuvent être mis en œuvre dans des applications *ex vivo* par exemple lors de greffe. Ainsi, les oligonucléotides peuvent être soit transfectés dans des cellules, notamment tumorales, qui seront ensuite injectées soit injectés dans les tissus 25 par exemple des tumeurs déjà développées, par exemple par voie locale, systémique ou aérosols etc, avec agents de vectorisation éventuellement nécessaires.

30 Les oligonucléotides seront utilisés à des concentrations suffisantes en fonction de l'application et de la forme d'administration utilisée avec des excipients pharmaceutiques appropriés. Suivant la nature des oligonucléotides (ADN/ARN ou ARN/ARN) des doses différentes pourront être utilisées pour obtenir l'effet biologique recherché.

Les oligonucléotides de l'invention sont également utiles comme outils de diagnostic permettant d'établir *in vitro* le profil génétique d'un patient à partir d'un échantillon cellulaire de celui-ci. La mise en œuvre des oligonucléotides de l'invention dans un tel procédé d'analyse permet de connaître ou d'anticiper la réponse des cellules cancéreuses de ce patient et d'établir un traitement personnalisé ou encore d'ajuster le traitement d'un patient.

Les oligonucléotides de l'invention présentent plusieurs avantages par rapport aux agents chimiothérapeutiques classiques :

- Les hybrides ARN-ARN sont plus stables que les hybrides ADN-ADN ou ADN-ARN et beaucoup plus stables que les acides nucléiques simples brins utilisés dans des stratégies anti-sens.

- Ils constituent des composés naturels, aucune réaction immunologique ou d'intolérance médicamenteuse n'est *a priori* à craindre.

- Les expériences de transfections réalisées dans le cadre de l'invention montrent une bien meilleure pénétration des RNAi dans les cellules tumorales que celle obtenue avec des plasmides. Ce point est essentiel dans le cas de cellules tumorales qui sont généralement très difficiles à transfecter.

- Les expériences d'injection systémique de siRNA *in vivo* montrent une très bonne pénétration de ces molécules dans les tissus.

- Il est aisément possible de mélanger plusieurs RNAi entre eux afin de prendre pour cibles plusieurs gènes cellulaires en même temps.

Les oligonucléotides de l'invention et les compositions les contenant sont utiles pour le traitement ou la prévention des maladies infectieuses ou virales, en

5

particulier le SIDA, les maladies infectieuses non conventionnelles, en particulier ESB et Kreutzfeld Jacob. Ils sont tout particulièrement indiqués pour traiter des maladies virales à l'origine de cancers. Le tableau ci-dessous rapporte des exemples de virus impliqués dans des pathologies cancéreuses chez l'homme.

Tableau 1

Virus	Type de cancer humain associé
Virus de l'hépatite B (VHB)	Carcinome du foie
Virus d'Epstein-Barr (EBV)	Lymphome de Burkitt, cancer nasopharyngé, maladie de Hodgkin, lymphomes non hodgkiniens, cancer gastrique, cancer du sein.
Herpèsvirus humain 8 ou HHV-8/KSHV	Sarcome de Kaposi (SK), lymphomes primitif des séreuses (PEL), maladie de Castelman multifocale (MCD)
VPH	Col de l'utérus, tête, cou, peau, nasopharynx
Virus des lymphocytes T (HTLV)	Leucémie de type T
Virus de l'hépatite C (VHC)	Carcinome du foie

10

Les oligonucléotides de l'invention et les compositions les contenant sont encore utiles pour le traitement ou la prévention des maladies liées à une hypervascularisation comme la dégénérescence maculaire liée à l'age, l'angiogénèse tumorale, les rétinopathies diabétiques, le psoriasis, l'arthrite rhumatoïde.

15

20

Les travaux de recherche réalisés dans le cadre de l'invention ont permis de montrer que ces oligonucléotides sont particulièrement adaptés pour réprimer des gènes nocifs impliqués dans la cancérisation et sont donc tout particulièrement utiles pour le traitement ou la prévention des cancers et plus généralement des maladies oncologiques.

Un traitement anti-cancéreux idéal doit entraîner la mort de la cellule tumorale tout en évitant

les phénomènes de résistance. La mort cellulaire peut être obtenue par :

- Inhibition de la division cellulaire, blocage du cycle cellulaire,

5 - Induction de l'apoptose des cellules tumorales,

- Induction de la sénescence,

- Induction de la nécrose,

- Induction de la différenciation. Dans ce cas, 10 les traitements conduisent la cellule à redevenir normale.

Ainsi, l'invention s'intéresse tout particulièrement à un oligonucléotide ou un ensemble d'oligonucléotides différents, comportant chacun une séquence oligonucléotidique complémentaire d'une séquence cible appartenant à une molécule d'ADN ou d'ARN messager d'un gène dont la répression induit l'apoptose, ou la sénescence, ou la nécrose, ou la différenciation des cellules tumorales ou empêche leur division ou plusieurs de ces phénomènes.

20 L'induction de l'apoptose des cellules tumorales est basée sur le fait que la fonction de nombreux gènes cellulaires (par exemple membres de la famille BCL2, BCL XL) est de protéger les cellules de l'apoptose. La perte d'expression de ces gènes induite par RNAi permet donc le passage en apoptose.

La mort cellulaire peut également être provoquée par la perte d'adhésion des cellules à la matrice (anoïkis). Cet effet peut être obtenu en perturbant la balance entre protéases et inhibiteurs de protéases dans les tumeurs et leur environnement stromal. Cette perturbation a par ailleurs pour effet de diminuer les capacités des cellules tumorales à envahir les tissus sains et à se métastaser. Les siRNA peuvent donc être utilisés pour empêcher la synthèse de protéines des familles des

métallo protéases matricielles (MMP), des métallo protéases matricielles membranaires, de leurs inhibiteurs (TIMPs), ainsi que celle des activateurs des inhibiteurs des protéases comme par exemple PAI-1 et des protéases elles-mêmes comme par exemple l'urokinase.

L'induction de la sénescence repose sur le fait que les cellules normales ne peuvent se diviser qu'un nombre limité de fois. Ce nombre est programmé, environ 50 divisions par exemple pour des fibroblastes embryonnaires, et "mesuré" par la longueur des télomères qui se raccourcit au fur et à mesure des divisions cellulaires. En deçà d'une certaine taille, les télomères ne sont plus fonctionnels et la cellule, incapable de se diviser, entre en sénescence. Dans les cellules germinales cependant, cette longueur est maintenue constante par l'action d'une enzyme, la télomérase. La télomérase est ré-exprimée dans de nombreux cancers, ce qui permet aux cellules tumorales de se multiplier indéfiniment. Un RNAi bloquant l'expression de la télomérase serait sans conséquence sur les cellules somatiques normales et devrait conduire les cellules tumorales vers la sénescence.

Le blocage de la division cellulaire conduit également les cellules à la sénescence. Ce blocage peut être obtenu en inhibant des récepteurs cellulaires essentiels. Ces récepteurs peuvent appartenir suivant la nature de la cellule soit à la classe des récepteurs des facteurs de croissance (EGF, SST2, PDGF, FGF notamment), que ceux-ci soient ou non mutés, soit à celle des récepteurs nucléaires d'hormones (androgènes, œstrogènes, glucocorticoïdes notamment).

Les récepteurs d'hormones sont fréquemment mutés dans les cancers, et l'invention concerne dans ce cas l'utilisation d'oligonucléotides reconnaissant les formes mutées de ces récepteurs et qui n'inhibent pas la synthèse

des formes sauvages. Ceci permet par exemple dans le cas des carcinomes prostatiques devenus résistants par mutation du récepteur des androgènes de traiter par voie systémique les patients avec des siRNA qui bloquent la synthèse du récepteur muté sans induire d'effets de castration liés à l'inhibition des formes sauvage du récepteur dans d'autres organes. Un exemple d'utilisation d'oligonucléotides reconnaissant des formes mutées du récepteur est présenté.

Le cycle cellulaire peut également être arrêté en inhibant la synthèse de protéines indispensables à son déroulement comme par exemple les cyclines, kinases dépendantes des cyclines, enzymes de réPLICATION de l'ADN, facteurs de transcription tels que E2F.

L'induction de la nécrose résulte du besoin des cellules tumorales en oxygène et en nutriments. Initialement une tumeur assure son développement à partir des vaisseaux préexistants de l'hôte. Au-delà de 1 à 2 mm de diamètre, les cellules situées au centre de la tumeur se trouvent en hypoxie. Cette hypoxie, par l'intermédiaire d'une proline hydroxylase, entraîne la stabilisation du facteur de transcription Hif1 α , dont la séquence SEQ ID NO. 59 est donnée en annexe, qui, en se fixant sur des séquences HRE dans les promoteurs de ses gènes cibles, déclenche la réaction hypoxique. Cette réaction conduit à l'activation d'une centaine de gènes permettant d'activer notamment la voie de la glycolyse anaérobie, la réponse au stress et l'angiogénèse. Ce dernier mécanisme active en particulier le gène du VEGF, dont la séquence SEQ ID NO. 60 est donnée en annexe, principal facteur angiogénique tumoral.

Ainsi des oligonucléotides selon l'invention bloquant par exemple l'expression du facteur de transcription Hif1 α ou par exemple celle du VEGF mettent les cellules tumorales dans l'incapacité à monter une

réponse hypoxique ou angiogénique. L'angiogénèse est un mécanisme normalement réprimé chez l'adulte à l'exception du cycle menstruel (utérus ovaires). L'inhibition de ce mécanisme a donc peu de conséquences pour les tissus normaux.

5

En conséquence, l'invention se rapporte à un oligonucléotide dont l'une desdites séquences oligonucléotidiques est实质iellement complémentaire d'une séquence cible appartenant à une molécule d'ADN ou d'ARN messager du gène codant :

10

- le facteur de transcription Hif1 α ;
- une ou plusieurs des isoformes du VEGF A ou d'un membre de la famille de ce facteur de croissance.

15

Dans certains cancers, le phénotype tumoral résulte de, ou est maintenu par, l'expression d'une protéine normalement absente des cellules normales. Cette protéine peut résulter de l'expression actuelle ou ancienne d'un génome viral dans la cellule comme celui du virus du papillome, HPV, ou du virus de l'hépatite B. Cette protéine peut également résulter de la mutation (ponctuelle, délétion, insertion) d'un gène cellulaire normal. Dans ce cas, il est fréquent que la protéine mutée ainsi produite possède des propriétés transdominantes négatives par rapport à la protéine normale. La spécificité des siRNA permet d'inhiber la synthèse de la protéine mutante sans bloquer la synthèse des protéines sauvages. Deux exemples concernant des formes mutées de la protéine p53 et du récepteur des androgènes sont rapportés dans la partie expérimentale ci-après.

20

25

30

35

Les travaux de recherche réalisés dans le cadre de l'invention ont permis de montrer que ces oligonucléotides sont particulièrement adaptés pour réprimer des gènes nocifs impliqués dans la cancérisation et tout particulièrement à ceux conduisant à la formation

de protéine de fusion dans les cellules cancéreuses, comme la protéine de fusion PML-RAR alfa.

En conséquence, l'invention se rapporte tout particulièrement à des oligonucléotides dont la séquence est complémentaire d'une séquence cible appartenant à un gène résultant d'une translocation chromosomique de façon à inhiber les effets de la protéine de fusion exprimée par ce gène. Ainsi, la séquence cible est celle correspondant à la séquence de la jonction de la protéine de fusion.

Le tableau 2 de l'annexe A à la fin de la présente description est une liste non exhaustive des protéines de fusion représentant des cibles thérapeutiques ou diagnostiques pour les oligonucléotides de l'invention.

Le fait de cibler avec un oligonucléotide de l'invention, la jonction entre deux gènes, par exemple les deux gènes *pml* et *rara*, permet d'aboutir à l'inhibition spécifique de la protéine de fusion sans affecter le rôle biologique des protéines naturelles qui peuvent être codées par le second allèle. Cette forme de mise en œuvre de l'invention englobe donc toutes les protéines de fusion impliquées dans la cancérogénèse, particulièrement les leucémies. Les formes réciproques si elles existent, ainsi que tous les variants des protéines de fusion citées en annexe constituent également des cibles de l'invention. L'invention concerne donc tout particulièrement, l'utilisation des oligonucléotides comme défini ci-dessus pour la préparation d'une composition pharmaceutique destinée au traitement des maladies résultant de l'expression d'une protéine de fusion, tout particulièrement dans les cancers.

Les thérapies anti-cancéreuses actuelles prennent pour cible les cellules cancéreuses, par différentes approches, prises isolément ou combinées entre elles (chimiothérapie, chirurgie, radiothérapie, immunothérapie). Les échecs thérapeutiques sont massivement

dus soit à des cellules n'ayant pas été atteintes par le traitement soit, et majoritairement, à des cellules ayant muté en réponse au traitement. Cette capacité de mutation est grandement facilitée par l'instabilité génétique des cellules tumorales. L'inhibition de la vascularisation tumorale, privant les cellules d'oxygène et de nutriments, a depuis quelques années ouvert de nouvelles perspectives thérapeutiques en cancérologie. Cette stratégie, complémentaire des précédentes, prend pour cible la cellule endothéliale normale de l'hôte, génétiquement stable, et donc théoriquement peu susceptible de muter. De nombreux essais cliniques visant à inhiber l'angiogénèse tumorale par différentes approches sont en cours dans le monde. Cependant, les premiers résultats rapportés semblent assez décevants.

Les Inventeurs ont démontré que des tumeurs sont capables de compenser les effets d'inhibiteurs de l'angiogénèse, en sélectionnant des sous-populations de cellules sécrétant de fortes concentrations de facteurs pro angiogéniques.

Les tumeurs ne sont pas constituées de cellules homogènes quant à leur expression génique. Ceci est attesté par de très nombreuses études dans lesquelles des immunomarquages ont été réalisés pour une grande variété d'antigènes dans les tumeurs. Macroscopiquement, une tumeur est fréquemment composée de régions hautement vascularisées côtoyant des zones de nécrose ou au contraire avasculaires.

Cette hétérogénéité tumorale favorise l'échappement des tumeurs aux traitements appliqués, quelle qu'en soit la nature. Plus la diversité de l'expression génique dans une tumeur est grande plus la probabilité qu'il existe au moins une cellule capable de résister à un agent anti-tumoral est en effet élevée. Il apparaît dès lors essentiel d'associer différentes stratégies afin de

réduire tout d'abord l'hétérogénéité tumorale et d'éviter les phénomènes d'échappement.

5 L'invention s'intéresse tout particulièrement à des siRNAs inhibiteurs de l'expression de gènes responsables de l'inactivation de la p53 et à leur utilisation dans le traitement des cancers. La p53 est le produit d'un gène suppresseur de tumeurs ou anti-oncogène, muté dans plus de 50% des tumeurs chez l'homme. La p53 est ainsi considérée comme un « gardien du génome ». Elle est activée dans les cellules en cas de stress génotoxique et participe à divers processus dont l'induction du processus 10 de mort programmée.

15 Dans 74% des cas de mutation monoallélique, l'inactivation de la p53 est due à une mutation ponctuelle aboutissant à l'expression d'une protéine de taille normale, mais mutée. On considère généralement que la forme mutée forme des hétéromères avec le produit de l'allèle sauvage sur lequel elle agit comme un « transdominant 20 négatif » et bloque son activité. La forme mutante semble également avoir une activité oncogénique en elle-même. Ainsi, des formes mutées de la p53 sont capables d'activer le gène MDR, qui facilite la résistance des cellules cancéreuses aux chimiothérapies. De plus, l'expression de 25 mutants de la p53 est associée à une plus forte angiogenèse tumorale, sans doute en raison du fait que les formes mutantes de la p53 ne sont plus capables de stimuler la transcription du gène de la thrombospondine, l'un des plus puissants répresseurs de l'angiogénèse, et activent le VEGF et le bFGF, deux puissants activateurs de l'angiogénèse. De 30 plus, les cellules dans lesquelles une forme mutée de la p53 s'exprime perdent divers niveaux de régulation. En particulier elles ne sont plus capables d'entamer un processus de mort programmée, qui constitue l'un des 35 processus majeurs de protection contre la tumorigénèse. La

restauration d'une activité p53 sauvage entraîne, dans des cellules tumorales en culture, la restauration de cette réponse cellulaire. Ainsi, l'inhibition de l'expression des formes mutées de la p53 représente potentiellement un outil puissant en thérapie anti-cancéreuse.

Il n'y a, à l'heure actuelle, aucun moyen efficace de restaurer une activité p53 dans les cellules cancéreuses humaines. En ce qui concerne les cancers dans lesquels les deux allèles sont inactivés, des tentatives de restauration de l'activité p53 par thérapie génique sont envisagées. Ces approches sont compliquées par l'utilisation de vecteurs viraux et se montrent pour le moment peu efficaces.

Par ailleurs, il a été observé spécifiquement dans les cancers cervicaux liés à l'infection par le virus HPV des cellules du col de l'utérus, que la p53 peut-être inactivée par la surexpression d'une protéine virale. En effet, ce virus code pour une protéine, la protéine E6, qui inactive la p53. Dans ce type de cancers, c'est l'inhibition de la protéine E6 qui pourra restaurer une activité p53 sauvage.

L'invention vise à offrir de nouveaux moyens permettant d'activer la p53 en inhibant l'expression de gènes responsables de son inactivation. Les travaux de recherche réalisés dans le cadre de la présente invention ont permis de mettre en évidence qu'il était ainsi possible de réprimer de manière très efficace et très spécifique l'expression d'une forme mutante de la p53.

L'invention concerne des oligonucléotides présentant une séquence complémentaire d'une séquence polynucléotidique spécifique du gène de la p53 mutée. Il s'agit donc d'oligonucléotides dont la séquence porte une mutation par rapport à la séquence de la p53 sauvage. La séquence du gène sauvage de la p53 est indiquée dans la liste de séquences en annexe sous le numéro SEQ ID NO.1.

Les différentes mutations pouvant intervenir sur la séquence de la p53 sont indiquées dans le tableau 3 de l'annexe B à la fin de la présente description.

5 Les mutations les plus fréquemment observées dans les pathologies cancéreuses sont reportées dans le tableau 4 ci-après.

Tableau 4

Position	P53 sauvage	SEQ ID No.
R273H	GAGGTGCGTGTGGTGC	SEQ ID No. 61
R248Q	gcaTgaaccggaggcccaT	SEQ ID No. 62
R248W	gcaTgaaccggaggcccaT	SEQ ID No. 63
R249S	gcaTgaaccggaggcccaT	SEQ ID No. 64
G245S	CTGCATGGCGGCATGAAC	SEQ ID No. 65
R282W	TGGGAGAGACC GGCG CACA	SEQ ID No. 66
R175H	TGTGAGGC ACTGCC CAC	SEQ ID No. 67
C242S	TAACAGTT CCTGCATGGCG	SEQ ID No. 68
Position	P53 mutée	
R273H	GAGGTGCATGTGGTGC	SEQ ID No. 69
R248Q	gcaTgaacCAgaggcccaT	SEQ ID No. 70
R248W	GCATGA ACTGGAGGC CAT	SEQ ID No. 71
R249S	gcaTgaaccggagTcccaT	SEQ ID No. 72
G245S	CTGCATGGCAGCATGAAC	SEQ ID No. 73
R282W	TGGGAGAGACTGGCG CACA	SEQ ID No. 74
R175H	TGTGAGGC GCTGCC CAC	SEQ ID No. 75
C242S	TAACAGTT CCTCCATGGCG	SEQ ID No. 76

10 Ainsi, des oligonucléotides selon l'invention sont complémentaires d'une séquence cible appartenant au gène de la p53 muté portant l'une au moins des mutations données dans le tableau 3 et tout particulièrement l'une au moins des mutations du tableau 4 ci-dessus.

15 Ces oligonucléotides sont capables de discriminer de manière efficace entre la forme sauvage et la forme mutée de la p53. En effet, la stratégie est de bloquer l'expression de la forme mutée pour réactiver la

forme sauvage et induire dans les cellules un processus de mort programmée pour lequel la forme sauvage est indispensable, et/ou bloquer tout autre processus induit par la forme mutée de la p53. En outre, cette capacité de discrimination des oligonucléotides de l'invention permet de ne toucher que les cellules cancéreuses et d'épargner les cellules normales, qui n'expriment pas cette forme mutée de la p53.

L'invention a donc aussi pour objet le traitement ou la prévention des maladies induites par une inactivation de la protéine p53 et tout particulièrement les cancers résultant de l'expression de la protéine p53 mutée et les cancers résultant de l'expression de gènes inhibiteurs de la p53. L'invention a encore pour objet de prévenir l'apparition de cancers chez les sujets exprimant une forme mutée de la p53, comme dans le cas du syndrome de Li Fraumeni.

La P53 peut être inactivée à travers plusieurs mécanismes distincts. En particulier, dans la majorité des cancers cervicaux, la P53 est inactivée par une protéine codée par le virus du papillome humain, la protéine E6. E6 entraîne l'ubiquitylation de la P53 ce qui conduit à sa dégradation par le protéasome. Dans ce cas, l'expression de la P53 peut être restaurée par l'inhibition de l'expression de la protéine E6. L'invention concerne également des oligonucléotides présentant une séquence complémentaire d'une séquence polynucléotidique spécifique du gène de la protéine E6 de HPV. La séquence du gène de la protéine E6 de HPV est donnée à la figure 6A ainsi que dans la liste de séquences en annexe sous le numéro SEQ ID NO 2.

Comme indiqué précédemment, une stratégie selon l'invention a pour but de bloquer à l'aide de RNAi l'expression du récepteur des androgènes dans les carcinomes. La séquence du récepteur des androgènes est

5 donnée dans la liste de séquence en annexe sous le numéro SEQ ID NO. 77. Pour traiter les carcinomes avant qu'ils ne soient devenus résistants ou ceux qui le sont devenus par amplification du récepteur sans mutation, des siRNA homologues d'une région pour laquelle aucune mutation n'a été décrite dans les banques de données des mutations du récepteur des androgènes (notés siRNA AR) ont été utilisés.

10 Pour traiter spécifiquement les carcinomes prostatiques devenus androgéno résistants par mutation, un séquençage de l'ARNm codant pour le récepteur sera effectué dans les cellules du patient afin de concevoir une séquence spécifique de la mutation, permettant de traiter le patient sans conséquence pour les cellules normales. Un exemple est présenté par l'utilisation de siRNA reconnaissant

15 spécifiquement la mutation du récepteur des androgènes présente dans la lignée cellulaire LNCaP (siRNA LNCaP).

En conséquence, l'invention se rapporte à des oligonucléotides substantiellement complémentaires d'une séquence cible appartenant à une molécule d'ADN ou d'ARN messager codant le récepteur aux androgènes muté ou non muté. Il s'agit par exemple du récepteur aux androgènes portant l'une au moins des mutations données dans le tableau 5 de l'annexe C. Ces oligonucléotides de l'invention spécifiques du récepteur aux androgènes sont utiles pour traiter ou prévenir les maladies androgéno-dépendantes, comme par exemple le cancer de la prostate.

30 D'autres avantages et caractéristiques de l'invention apparaîtront des exemples qui suivent concernant :

- Exemple 1 : Inhibition de la protéine PML-RAR α associée à la leucémie aiguë promyélocyttaire (APL).
- Exemple 2 : Inhibition de l'angiogénèse tumorale induite par le VEGF.

- Exemple 3 : Inhibition de la réponse hypoxique induite par HIF1 α .

5 - Exemple 4 : Inhibition des formes sauvages ou mutantes des récepteurs des androgènes dans les cellules de carcinome prostatique.

10 - Exemple 5 : Inhibition des formes sauvages ou mutantes de la protéine p53.

- Exemple 6 : Inhibition de la protéine virale E6.

15 - Exemple 7 : Utilisation des hybrides ADN/ARN pour inhiber l'expression de différentes protéines.

- Exemple 8 : Administration *in vivo* de siRNA par différentes voies.

20 Il est fait référence dans les exemples aux figures dans lesquelles :

- La figure 1A est une représentation schématique des protéines RAR α , PML et de la protéine de fusion associée, PML-RAR α . La figure 1B représente les résultats de transfections avec un siRNA dirigé contre PML-RAR α .

25 - La figure 2 concerne l'inhibition de l'expression du VEGF par des siRNA dirigés contre cette protéine et les conséquences de cette inhibition. La figure 2A représente l'immunodétection du VEGF dans des cellules cJ4 ou LNCaP transfectées par le siRNA contrôle ou un siRNA dirigé contre le VEGF. La figure 2B représente la quantification par ELISA du VEGF dans le milieu conditionné des cellules cJ4 transfectées par le siRNA contrôle ou le siRNA VEGF en fonction du temps après la transfection. La figure 2C représente la courbe de croissance chez des souris nudes de tumeurs provenant de l'injection sous cutanée de 10^6 cellules cJ4 non transfectées, transfectées par le siRNA contrôle ou le siRNA VEGF. La figure 2D représente l'aspect des tumeurs au jour 7 après injection des cellules. La figure 2E représente l'immunodétection du

VEGF dans des tumeurs provenant de l'injection de cellules cj4 transfectées avec le siRNA contrôle ou le siRNA VEGF après 12 jours de développement in vivo.

5 - La figure 3 concerne l'effet de l'inhibition par un siRNA spécifique de l'expression d'un facteur de transcription, HIF1alpha, sur la réponse transcriptionnelle à l'hypoxie. La figure représente la mesure de l'activité d'un reporter VEGF luciférase en réponse à l'hypoxie dans des cellules cj4 non transfectées, transfectées par le siRNA contrôle ou par le siRNA dirigé contre HIF1alpha.

10 - La figure 4 concerne l'inhibition par des siRNA spécifiques de l'expression du récepteur des androgènes dans des cellules et les conséquences fonctionnelles de ces inhibitions. La figure 4A représente la détection par immunoblot de l'expression du récepteur des androgènes 48h après transfection des cellules LNCaP par un siRNA contrôle ou un siRNA dirigé contre le récepteur des androgènes (AR). La figure 4B représente la mesure de l'activité d'un reporter 4xARE luciferase au R1881 dans divers clones de la lignée LNCaP non transfectée, ou transfectée par le siRNA contrôle ou le siRNA AR. La figure 4C représente la comparaison de la réponse au R1881 de cellules LNCaP non transfectées (100%), et des cellules LNCaP transfectées par un siRNA contrôle, 15 un siRNA dirigé contre le récepteur des androgènes (AR) ou un siRNA reconnaissant spécifiquement une mutation ponctuelle présente dans le récepteur des androgènes de la lignée LNCaP. La figure 4D représente la croissance chez des souris nudes de tumeurs résultant de l'injection sous cutanée de cellules LNCaP transfectées par un siRNA contrôle ou par un siRNA dirigé contre le récepteur des androgènes. La figure 4E représente la croissance de tumeurs LNCaP chez des souris ayant reçu au 40e jour après implantation des cellules une injection intraveineuse dans 20 la veine de la queue de 2µg de siRNA dirigés contre le VEGF.

ou de siRNA contrôle. La figure 4F représente la croissance de tumeurs LNCaP chez des souris ayant reçu au 34e et au 40e jour après implantation des cellules tumorales une injection intrapéritonéale de 2 μ g de siRNA dirigé contre le récepteur des androgènes ou de siRNA contrôle.

- La figure 5 concerne l'inhibition de l'expression de formes sauvages ou mutantes de la p53 par des siRNA et des conséquences fonctionnelles de ces inhibitions. La figure 5A représente la séquence de protéine p53 humaine. La figure 5B représente l'inhibition spécifique et dépendante de la dose par des siRNA de l'expression de formes sauvages ou mutantes de la p53 transfectées dans des cellules ne l'exprimant pas initialement. La figure 5C représente l'inhibition spécifique par des siRNA de l'expression simultanée ou non de formes sauvages ou mutantes de la p53 transfectées dans des cellules ne l'exprimant pas initialement. La figure 5D représente l'inhibition de l'expression de la p53 endogène sauvage ou d'une forme mutante transfectée de p53 par des siRNA. La figure 5E représente l'effet de l'inhibition de la p53 par des siRNA sur la résistance à un stress génotoxique. Les figures 5 F, G, H et I montrent l'inhibition de l'expression d'un forme mutante de la p53 dans les cellules d'un patient atteint du syndrome de Li Fraumeni sur le niveau de l'ARNm (5G), et l'expression de la protéine par immunoblot (GF) ou en immunofluorescence indirecte (5H) et les conséquences sur la résistance de ces cellules à un stress génotoxique. La figure 5J montre l'inhibition par les siRNA spécifiques de la transcription dépendante de la p53 dans des cellules exprimant par transfection des formes sauvages ou mutantes de la p53. La figure 5K montre l'inhibition de l'expression d'un des gènes cibles de la p53, la p21, protéine inhibitrice de la prolifération cellulaire, par la coexpression de formes mutantes de la p53 et la restauration de cette expression

par traitement des cellules avec un siRNA inhibant la synthèse de la forme mutante de la p53.

- La figure 6 concerne l'inhibition de l'expression de la protéine E6 du virus du papillome humain HPV par des siRNA spécifiques et les conséquences de cette inhibition. La figure 6 A représente la séquence de la protéine HPV. La figure 6B représente l'effet de l'inhibition par des siRNA spécifiques de l'expression de la protéine E6 de HPV dans des cellules qui expriment ce virus, sur l'expression de la p53 et de la p21. Les figures 6C et 6D représentent l'effet de l'inhibition de l'expression de la protéine E6 de HPV sur le cycle cellulaire.

- La figure 7 concerne l'utilisation de siRNA hybrides, comportant des bases ADN et des bases ARN. Les figures 7A et 7B représentent l'effet de siRNA hybrides ADN/ARN sur l'expression de la GFP exprimée par transfection dans des cellules. La figure 7C compare l'effet de siRNA ARN/ARN, ADN/ARN ou ARN/ADN à dose constante sur l'inhibition de la transcription induite par le récepteur des androgènes. Les figures 7D et 7E représentent les effets d'une substitution de bases ARN par des bases ADN dans la séquence de siRNA inhibant la synthèse de la p53.

- La figure 8 concerne l'inhibition de la luciférase dans des tumeurs exprimant cette enzyme par injection de siRNA par voie sous cutanée, ou intra-tumorale ou intra-péritonéale ou intra-veineuse

EXEMPLE 1 : INHIBITION DE LA PROTEINE PML-RAR α ASSOCIEE A LA LEUCEMIE AIGUË PROMYELOCYTAIRE (APL).

I - Introduction.

La leucémie aiguë promyélocyttaire (APL) est due à la translocation t(15 ;17) sur le chromosome 15. Chez les patients atteints, le récepteur de l'acide rétinoïque RAR α

(RAR α) est fusionné à la protéine PML (*promyelocytic leukemia protein*) générant ainsi la protéine de fusion PML-RAR α . Jusqu'à ce jour, cinq protéines de fusion mettant en jeu le RAR α ont été identifiées. Tous ces types de leucémies impliquent le récepteur RAR α et sont cliniquement similaires, ce qui suggère que la rupture de la voie de transduction de l'acide rétinoïque est cruciale dans la pathogenèse des leucémies APL.

La protéine de fusion PML-RAR α a gardé les domaines de liaison à l'ADN et à l'acide rétinoïque du RAR α . Il a été montré que la protéine de fusion PML-RAR α réprime l'expression des gènes cibles de l'acide rétinoïque et provoque ainsi le blocage de la différenciation des cellules promyélocytaires. Seule l'administration de doses pharmacologiques d'acide rétinoïque permet la levée de la répression transcriptionnelle exercée par PML-RAR α et la reprise de la différenciation cellulaire. En outre, la portion protéique PML de la protéine de fusion pourrait également intervenir dans le mécanisme du blocage de la voie de transduction par l'acide rétinoïque. Dans la mesure où PML fonctionne comme un inhibiteur de croissance et un agent apoptotique et qu'elle est nécessaire pour l'expression de certains gènes induit par l'acide rétinoïque, l'effet dominant négatif de PML-RAR α sur PML pourrait permettre aux cellules d'acquérir une capacité de croissance, une résistance à l'apoptose et un arrêt de la différenciation.

Des études de biologie cellulaire sur PML ont montré que cette protéine possède une localisation particulière dans le noyau, dans des structures particulières appelées corps nucléaires. Il semble que le rôle de ces structures soit en relation directe avec le rôle antioncogène de PML. Dans les cellules malignes APL, la protéine PML-RAR α provoque, par hétérodimérisation avec PML, la délocalisation de PML des corps nucléaires vers des

structures microponctuées pouvant correspondre à des sites d'ancrage de PML-RAR α sur la chromatine. Cette délocalisation pourrait bloquer la fonction pro-apoptotique de PML et son rôle dans la différenciation myéloïde.

5 Plusieurs équipes ont montré que le traitement combiné à l'acide rétinoïque et à l'AS₂O₃, sur des lignées cellulaires qui expriment la protéine de fusion PML-RAR α permet la dégradation des protéines de fusion en même temps qu'une relocalisation de PML sur les corps nucléaires. Cette 10 réorganisation des corps nucléaires restaure les fonctions de PML et contribue à la reprise de la différenciation.

Finalement, la protéine chimère PML-RAR α aurait donc un double effet dominant négatif, sur RAR α et sur PML, en permettant à la fois aux cellules d'échapper à 15 l'apoptose et de bloquer la différenciation des promyélocytes ainsi transformés.

Plus de 98% des patients atteints par la leucémie APL présentent la translocation t(15 ;17) (q22 ;q21) qui conduit à la formation de gènes fusionnés PML-RAR α et RAR α -PML. Il existe deux sous-types 20 de protéines de fusion PML-RAR α , les fusions S (short) et L (Long). La forme longue de la protéine de fusion PML-RAR α correspondant à une protéine de 955 acides aminés représente la forme majoritairement exprimée et a donc été prise comme modèle dans cette étude (Annexes A, B et C). 25 Cette protéine comporte les acides aminés 1 à 552 de la protéine PML fusionnés avec les acides aminés 59 à 462 du récepteur α de l'acide rétinoïque (RAR α).

30 II - Préparation et administration des oligonucléotides.

Des oligonucléotides RNA complémentaires correspondant à la séquence de la jonction du gène de la protéine de fusion, soit 10 nucléotides du gène PML et 10 nucléotides du gène RAR α ont été synthétisés avec 35 adjonction de deux déoxythymidines en 3' (Figure 1). Ces

oligonucléotides ont été hybridés et l'obtention de l'oligonucléotide double-brin a été vérifiée sur gel d'acrylamide.

Les séquences des siRNA PML-RAR et contrôle utilisés (5'-3') sont données ci-dessous.

Contrôle :

FW :

[CAUGUCAUGUGUCACAUUCUC] ARN [TT] ADN (SEQ ID NO.3)

REV :

10 [GAGAUGUGACACAUGACAU] ARN [TT] ADN (SEQ ID NO.4)

PR :

Sens :

[GGGGAGGCAGCCAUUGAGAC] ARN [TT] ADN (SEQ ID NO.5)

Antisens :

15 [GUCUCAAUGGCUGCCUCCCC] ARN [TT] ADN (SEQ ID NO.6)

III - Résultats.

Des fibroblastes NIH3T3 ont été cotransfектés avec de la lipofectamine par un vecteur d'expression de la protéine PML-RAR α (100ng) et par 500ng de siRNA contrôle (C) ou dirigés contre PML-RAR α (PR). 48 h après transfection, un western blot (Figure 1B) a été réalisé sur des extraits cellulaires totaux en utilisant un anticorps qui reconnaît la protéine RAR α , entière ou sous forme de protéine de fusion.

La figure 1B montre que la transfection du siRNA PR inhibe très fortement l'expression de la protéine de fusion PML-RAR α par rapport aux cellules transfectées avec le siRNA contrôle (C), sans modifier l'expression de la protéine RAR α .

EXEMPLE 2 : INHIBITION DE L'ANGIOGENESE TUMORALE PAR LE VEGF.

I - Introduction.

Le VEGF (vascular endothelial growth factor) est l'un des plus puissants facteurs angiogéniques

identifiés. Ces facteurs sont surexprimés dans de nombreuses situations d'hypervascularisation pathologiques et notamment dans le développement tumoral. L'inhibition de cette angiogénèse permet de bloquer la croissance tumorale.

5 Notre procédé a pour but d'inhiber l'angiogénèse tumorale en bloquant l'expression de l'un de ces facteurs angiogéniques et dans cet exemple celui du VEGF par les cellules tumorales.

10 II - Préparation et administration des oligonucléotides.

Deux oligonucléotides RNA, complémentaires d'une région de la séquence codante du VEGF humain, conservée chez le rat et la souris ont été synthétisés. Deux déoxynucléotides (TT) ont été ajoutés en 3'

15 - Séquence des RNAi VEGF :

5' [AUGUGAAUGCAGACCAAAGAA] RNA-TT [DNA] (SEQ ID NO. 7)

5' [UUCUUUGGUCUGCAUUCACAU] RNA-TT [DNA] (SEQ ID NO. 8)

- Séquence des RNAi contrôle :

5' [CAUGUCAUGUGUCACAUUC] RNA-TT [DNA] (SEQ ID NO. 9)

20 5' [GAGAUGUGACACAUGACAUg] RNA-TT [DNA] (SEQ ID NO. 10)

Ces oligonucléotides ou des oligonucléotides contrôle, dont la séquence ne présente aucune homologie avec les séquences répertoriées dans les bases de données, ont été hybridés et transfectés en utilisant le kit polyfect (Qiagen) dans des cellules d'un fibrosarcome de rat (cJ4) ou dans les cellules humaines du carcinome prostatique LNCaP.

25 III - Résultats.

30 48h après transfection, une immunofluorescence indirecte a été réalisée pour détecter l'expression de la protéine dans les cellules. La figure 2A montre une inhibition massive de l'expression du VEGF.

Pour quantifier cet effet, un dosage du VEGF dans des cellules cJ4 transfectées en parallèle avec le RNAi contrôle ou avec le RNAi VEGF a été effectué par ELISA

(quantikine, R&D). Les cellules ont été incubées 48h avant le dosage dans un milieu contenant 1% de sérum. Le dosage a été réalisé 4 jours et 6 jours après la transfection. Dans ces conditions, la figure 2B montre une inhibition de la sécrétion de VEGF de 85% à 4 jours et de 75% à 6 jours et de 60% à 13 jours dans les cellules transfectées avec le RNAi VEGF comparé à celles transfectées avec le RNAi contrôle (figure 2B).

L'effet de l'inhibition de l'expression de VEGF par les cellules tumorales a été testé *in vivo* : 3 jours après transfection, trois groupes de 4 souris nudes femelles de 4 semaines ont été injectés en sous cutané à raison de un million de cellules par souris : Le premier groupe a été injecté avec des cellules non transfectées, le second avec des cellules transfectées par le RNAi contrôle, le troisième par des cellules transfectées avec le RNAi VEGF. Aucune sélection des cellules transfectées n'a été effectuée avant l'injection.

La croissance tumorale a été suivie en mesurant le volume des tumeurs à intervalles réguliers (figure 2C).

Les figures 2C et 2D ne montrent aucune différence significative entre les tailles des tumeurs des groupes A et B. Une très forte réduction du volume tumoral est observée dans le groupe C. L'aspect des tumeurs, beaucoup plus blanches dans le groupe C (Fig 2D) traduit une diminution marquée de la vascularisation tumorale. Après sacrifice des animaux, au jour 12 après l'injection, les tumeurs ont été disséquées, fixées et une immunodétection du VEGF réalisée sur des coupes de ces tumeurs. On observe une très forte réduction de l'expression du VEGF dans les tumeurs du groupe C en comparaison avec celles du groupe B (Figure 2E).

Dans une autre expérience, des tumeurs ont été induites chez des souris nudes males par injection de cellules du carcinome prostatique LNCaP. 40 jours après

5 injection, le volume des tumeurs ayant atteint 1 à 1,5cm³, les souris ont été divisées en deux groupes. Le premier groupe (4 souris) a reçu une injection intraveineuse dans la veine de la queue de 2 microgrammes de siRNA contrôle dans 100µl de PBS. Le second groupe a reçu une dose équivalente de siRNA VEGF dans les mêmes conditions. On observe que le siRNA VEGF, mais pas le siRNA contrôle, induit un arrêt transitoire de la croissance tumorale. (figure 4D).

10

EXEMPLE 3: INHIBITION DE LA REPONSE HYPOXIQUE.

I - Introduction.

15 Certaines tumeurs sont capables de se développer dans des conditions de forte anoxie. On observe très fréquemment dans les tumeurs des régions très peu vascularisées. Cette faible sensibilité à l'hypoxie a deux conséquences : d'une part un traitement anti-angiogénique a peu de chances d'être efficace sur ces tumeurs ou ces sous populations tumorales. D'autre part, cette faible vascularisation rend difficile la délivrance de molécules thérapeutiques. Le facteur de transcription Hif1α régule 20 l'activité de plus de 100 gènes permettant la réponse hypoxique. L'inhibition de ce facteur de transcription dans les tumeurs hypoxiques a pour but de bloquer leur 25 croissance.

II - Préparation des oligonucléotides.

- RNAi Hif1α

5' [CAUGUGACCAUGAGGAAAUGA] RNA-TT [DNA] (SEQ ID NO. 11)

5' [UCAUUUCCUCAUGGUCACAUG] RNA-TT [DNA] (SEQ ID NO. 12)

30

- RNAi contrôle

5' [GAUAGCAAUGACGAAUGC GUA] RNA-TT [DNA] (SEQ ID NO. 13)

5' [UACGCAUUCGUCAUUGC UAU C] RNA-TT [DNA] (SEQ ID NO. 14)

III - Résultats.

35 Le promoteur du VEGF contient un élément de réponse au facteur de transcription Hif1α. Pour tester in

vitro l'effet d'un RNAi dirigé contre Hif1 α , nous avons transfecté des cellules CJ4 avec un vecteur reporter VEGF-luciférase, seul ou en association avec un RNAi Hif1 α ou contrôle.

5 24h après transfection, les cellules ont été incubées pendant 18h en milieu sans sérum, additionné ou non de chlorure de Cobalt 100 μ M afin de produire des conditions hypoxiques puis l'activité luciférase a été mesurée.

10 La figure 3 montre une inhibition complète de l'induction de la réponse du promoteur VEGF à l'hypoxie a été observée lorsque les cellules sont transfectées avec le RNAi Hif1 α mais pas avec le RNAi contrôle.

15 EXEMPLE 4 : inhibition des formes sauvages ou mutantes des récepteurs des androgènes dans les carcinomes prostatiques.

I - Introduction.

Les carcinomes prostatiques sont la deuxième cause de mortalité par cancer pour les hommes dans les pays industrialisés. En France, ils sont la cause de plus de 9500 morts par an. Les cellules épithéliales prostatiques sont dépendantes des androgènes pour leur croissance. Les carcinomes prostatiques sont initialement androgéno-dépendants. Une castration chimique permet dans un premier temps de bloquer la croissance du carcinome. Cependant dans tous les cas, ces carcinomes deviennent androgéno-indépendants et leur pronostic est alors très pessimiste. Cette androgéno-indépendance est due suivant les individus le plus souvent à une mutation du récepteur (lui conférant par exemple une réponse aux oestrogènes ou aux glucocorticoïdes) ou à une amplification du récepteur.

II - Préparation des oligonucléotides.

Deux oligonucléotides ARN, complémentaires d'une région de la séquence codante du récepteur androgène

(AR) non muté humain, ont été synthétisés. Deux déoxynucléotides (TT) ont été ajoutés en 3'. Dans d'autres expériences, des siRNA, dénommés LNCaP, reconnaissant spécifiquement la mutation du récepteur des androgènes (T877A) dans les cellules de carcinome prostatique humain LNCaP ont été utilisés.

- AR :

5' [GACUCAGCUGCCCCAUCCACG] ARN-TT [ADN] (SEQ ID NO.15)

5' [CGUGGAUGGGGCAGCUGAGUC] ARN-TT [ADN] (SEQ ID NO.16)

10

- Contrôle :

5' [GAUAGCAAUGACGAAUGC GUA] ARN-TT [ADN] (SEQ ID NO.17)

5' [UACGCAUUCGUCAUUGC UAU C] ARN-TT [ADN] (SEQ ID NO.18)

- LNCap :

15

5' [GCAUCAGUUCGCUUUUGAC] ARN -TT [ADN] (SEQ ID NO.19)

5' [GUCAAAAGCGAACUGAUGC] ARN -TT [ADN] (SEQ ID NO.20)

20

Plusieurs sous-clones de la lignée de carcinome prostatique humaine LNCaP ont été utilisés dans cette étude. La lignée originale, LNCaP, est androgéno-dépendante. Les cellules LN70, obtenues par passages répétés de la lignée LNCaP *in vitro*, ont une diminution de leur réponse aux androgènes. Le clone LNS5, obtenu après passage des cellules chez l'animal, est androgéno-résistant.

25

III - Résultats.

30

Des cellules LNCaP ont été transfectées *in vitro* avec des siRNA AR ou des siRNA contrôle en utilisant l'agent de transfection polyfect (qiagen). 48h après transfection, les cellules ont été détachées de leur support. La moitié des cellules a été utilisée pour réaliser une détection par western blot du récepteur des androgènes, l'autre moitié a été remise en culture. Le récepteur des androgènes (bande à 110 kDa) n'est plus détectable par western dans les cellules transfectées par le siRNA AR (Figure 4A). Les cellules transfectées par le

35

siRNA remises en culture se sont avérées incapables de poursuivre leur croissance, contrairement aux cellules transfectées par le siRNA contrôle.

Le niveau de réponse aux androgènes a été mesuré en transfectant différents clones cellulaires de la lignée LNCaP avec un vecteur rapporteur plaçant la séquence codante de la luciférase en aval d'un promoteur minimal flanqué de 4 répétitions de l'élément de réponse aux androgènes (4xARE). Après transfection, les cellules ont été incubées pendant 18h en absence de sérum et en présence ou en absence d'un analogue métaboliquement stable de la dihydro testostérone, le R1881 (NEN). Le rapport des activités luciférases dans ces deux conditions permet de mesurer le niveau de réponse aux androgènes du vecteur reporter.

Nous avons mesuré l'effet de la cotransfection dans ces cellules du RNAi contrôle ou du RNAi AR sur la réponse aux androgènes des différents clones de la lignée LNCaP.

La figure 4B montre une inhibition complète de la réponse aux androgènes dans les deux clones sensibles aux androgènes : LNCaP et LNCaP p70. Cette méthode ne permet pas de mesurer la réponse du clone LNS5, androgénorésistant, au traitement par le RNAi AR.

Le récepteur des androgènes présent dans la lignée LNCaP est porteur d'une mutation. Nous avons utilisé deux siRNA différents pour inhiber sa synthèse, le siRNA AR précédemment utilisé et le siRNA LNCaP reconnaissant spécifiquement la mutation LNCaP. La réponse aux androgènes a été mesurée comme dans l'expérience 4B (Figure 4C).

Pour étudier l'effet de l'inhibition de l'expression du récepteur des androgènes sur la croissance tumorale *in vivo* des cellules de carcinome prostatique, des cellules du carcinome LNCaP, transfectées par un siRNA contrôle (groupe A) ou AR (groupe B) ont été injectées en

sous cutané à des souris nudes males. La croissance tumorale a été suivie à intervalles réguliers. On observe que les tumeurs des animaux du groupe B ont démarré plus tardivement que celles du groupe A et que le volume des tumeurs du groupe B au 48e jour est nettement plus petit que celui des tumeurs du groupe A (Figure 4D).

Dans une autre expérience, des cellules LNCaP ont été injectées chez des souris nudes males. Lorsque, au 34e jour, les tumeurs ont atteint un volume compris entre 1,2 et 1,5 cm³, les souris ont reçu par voie intrapéritonéale une injection de 2µg de siRNA contrôle ou AR dans 100µl de PBS. Cette injection a été répétée au 40e jour. On observe que l'administration de siRNA AR entraîne un ralentissement de la croissance tumorale (Figure 4E).

15

EXEMPLE 5 : Inhibition des formes sauvages ou mutantes de la protéine p53.

I - Préparation des oligonucléotides.

Les trois siRNAs dont la séquence est indiquée ci-dessous ont été préparés, l'un dirigé contre la forme sauvage de la p53, et l'autre dirigé contre la forme mutée exprimée chez un patient et ayant donné lieu à l'établissement d'une lignée.

Cette mutation correspond à l'une des trois observées le plus fréquemment dans les tumeurs humaines.

- p53 sauvage :

Sense: [GCAUGAACCGGAGGGCCAU] ARN [TT] ADN (SEQ ID NO.21)

Anti: [AUGGGCCUCCGGUUCAUGC] ARN [TT] ADN (SEQ ID NO.22)

- p53 MT1 (r248w) :

Sense: [GCAUGAACUGGAGGGCCAU] ARN [TT] ADN (SEQ ID NO.23)

Anti: [AUGGGCCUCCAUUCAUGC] ARN [TT] ADN (SEQ ID NO.24)

- p53 MT2 (r248w) :

Sense: [UCAUGAACUGGAGGGCCAU] ARN [TT] ADN (SEQ ID NO.25)

Anti: [AUGGGCCUCCAUGUCAUGA] ARN [TT] ADN (SEQ ID NO.26)

5 Les nucléotides soulignés dans la p53 sauvage sont ceux qui sont mutés dans la forme mutante et qui sont en italique dans les séquences des formes mutées de la p53 mutée (p53 MT1 et MT2). Les bases en gras ci-dessus sont des mutations qui ont été introduites pour augmenter la spécificité.

II - Résultats.

10 Comme montré sur la figure 5B, les cellules H1299-NCI, qui n'expriment pas la p53, ont été transfectées (en utilisant la lipofectamine) par des vecteurs d'expression (400 ng) de la p53 sauvage (WT) ou mutée (mt). Les siRNAs (en dose croissante : 0, 125 ng, 250 ng, 500 ng et 1000 ng) dirigés contre la forme sauvage (WT), la forme mutée (MT1 et MT2), ou un siRNA irrelevant (C) ont été transfectés en même temps. Les cellules ont été collectées 15 24 heures après, et analysées par Western blot avec un anticorps dirigé contre la p53.

20 Comme montré sur la figure 5C, les cellules H1299-NCI, qui n'expriment pas la p53, ont été transfectées (en utilisant la lipofectamine) par des vecteurs d'expression (400 ng) de la p53 sauvage (WT), mutée (mt) ou un mélange des deux (WT+MT), comme indiqué. Les siRNAs (400 ng) dirigés contre la forme sauvage (WT), la forme mutée (MT1), ou un siRNA irrelevant (C) ont été transfectés en 25 même temps. Les cellules ont été collectées 24 heures après, et analysées par Western blot (ib : immunoblot) avec un anticorps dirigé contre la p53 (DO1, Santa Cruz), ou l'actine cellulaire (Sigma) pour contrôler la quantité de protéines utilisée dans le test.

30 Comme montré sur la figure 5D, des cellules U2OS (ostéosarcome humain exprimant une forme sauvage de la p53) ont été transfectées de façon stable soit par un vecteur exprimant une forme mutante de la P53 (R248W) soit par le vecteur vide correspondant (pCDNA3). Ces lignées ont

étété transfectées par les siRNA indiqués et l'expression des protéines indiquées a été détectée par western blot.

Dans tous les cas, le siRNA dirigé contre la forme mutée de la protéine inhibe la forme mutée et le siRNA dirigé contre la forme sauvage inhibe la forme sauvage. De plus, il n'y a pas de « réaction croisée », puisque le siRNA dirigé contre la forme sauvage n'a pas d'effet sur la forme mutée et réciproquement. Il faut noter que l'expression du mutant stabilise la protéine sauvage lorsqu'elle est co-exprimée. En conséquence, l'inhibition du mutant ramène, par cet effet indirect, la forme sauvage à son niveau de base, sans qu'il n'y ait inhibition de l'expression de la protéine.

Comme montré sur la figure 5E, les cellules utilisées dans la figure 5D ont été transfectées par les siRNA indiqués. Les cellules ont ensuite été soumises à un stress génotoxique par traitement à la doxorubicine (200 ng/ml) pendant 24h. La Figure 5E montre l'analyse du cycle cellulaire de ces cellules par incorporation de Iodure de propidium et analyse au FACS. Les cellules non transfectées avec la forme mutante, et donc n'exprimant que la forme sauvage (cellules PCDNA) montrent un fort pourcentage d'arrêt en G1 en présence de dauxorubicine. Le traitement de ces cellules par le siRNA sauvage, en diminuant la p53 sauvage, réduit cet arrêt en G1. Les cellules qui expriment la forme mutée et sauvage (R248W) s'arrêtent peu en G1 en présence de dauxorubicine, montrant que la forme mutée inhibe l'activité de la forme sauvage. Quand ces cellules sont traitées avec le siRNA mt1, elles récupèrent une capacité normale (à comparer avec les contrôles PCDNA non traitées) de s'arrêter en G1, montrant la restauration de l'activité p53 sauvage dans ces cellules.

Comme montré sur les figures 5 F, G, H, les cellules MDA 087 (provenant d'un patient atteint d'un syndrome de Li Fraumeni et exprimant le mutant R248W) ont

5 été transfectées avec un siRNA dirigé contre la forme mutante (MT1) de la p53, ou encore avec un siRNA irrelevant (C) (1,6 µg). L'expression de la P53 a été détectée dans ces cellules par western blot (Figure 5F), les ARN messagers ont été mesurés par PCR quantitative (Light cycler, Roche) (Figure 5G) ou immunofluorescence (Figure 5H).

10 Les cellules MDA 087 ont été transfectées avec un siRNA reconnaissant la forme sauvage (WT) ou la forme mutée de la p53 (mt1) ou encore par un siRNA contrôle puis soumises à un stress génotoxique par traitement à la doxorubicine (200 ng/ml) pendant 24h. L'expression de la forme mutante de la p53 a été détectée par western blot dans les cellules. On observe que les cellules ayant reçu le siRNA mt1 ne sont pas capables de stabiliser la p53 en réponse à la dauxorubicine (Figure 5I).

15 La figure 5J montre l'effet des siRNA mt1 et mt2 dans des cellules qui expriment les formes sauvages et mutées de la p53. Les cellules H1299-NCI, qui n'expriment pas la p53, ont été transfectées (en utilisant la lipofectamine) par un vecteur reporter comportant le gène de la luciférase sous contrôle d'un élément de réponse à la p53 et des vecteurs d'expression (400 ng) de la p53 sauvage (WT), mutée (MT) ou un mélange des deux (WT+MT), comme indiqué. Les siRNAs (400 ng) dirigés contre la forme sauvage (WT), la forme mutée (mt1, mt2), ou un siRNA irrelevant (C) ont été transfectés en même temps. Les cellules ont été collectées 24 heures après et analysées pour l'expression de la luciférase. La p53 sauvage seule active le vecteur reporter, et la co-expression de la forme mutante inhibe cette activité. La co-transfection du siRNA sauvage inhibe l'expression de la protéine sauvage et donc l'activation résiduelle du gène reporter. La co-transfection des siRNAs mt1 ou mt2, au contraire, restaure cette activation en bloquant sélectivement l'expression de

la forme mutée et en empêchant l'effet de transdominant négatif qu'elle exerce sur la forme p53 sauvage.

La figure 5K montre un résultat similaire sur l'expression d'une des cibles de la p53, la protéine inhibitrice de la prolifération cellulaire p21, dans des cellules traitées comme dans la figure 5F. L'expression de la p21, détectée par western blot est activée par la p53 sauvage et inhibée lorsque le mutant est co-exprimé. Cette inhibition est levée en présence du siRNA mt1.

10

EXEMPLE 6 : Inhibition de la protéine virale E6.

I - Préparation des oligonucléotides.

Un siRNA dirigé contre la protéine E6 de HPV a également été préparé. Il répond à la séquence suivante :

15

- HPV-16-S2

Sens: 5' [CCACAGUUAUGCACAGAGC] ARN [TT] ADN (SEQ ID NO.27)

Anti: 5' [GCUCUGUGCAUAACUUGG] ARN [TT]] ADN (SEQ ID NO.28)

II - Résultats.

Comme montré sur la figure 6B, des cellules CasKi et SiHA, exprimant toutes deux la protéine E6 de HPV ont été transfectées avec les siRNA indiqués, traitées ou non comme indiqué par la doxorubicine et analysées par western blot en utilisant les anticorps indiqués. Le traitement des cellules par le siRNA E6 induit une augmentation de l'expression de P53. Cette expression de p53 se traduit par une augmentation de l'expression de la protéine p21.

30

Comme montré sur la figure 6C, le cycle cellulaire de cellules SiHA traitées comme dans la figure 6B a été analysé par FACS. La figure représente une expérience caractéristique. On observe une augmentation de cellules en phase G1 (Figure 6D) dans les cellules traitées par le siRNA E6, augmentation qui est également observée dans ces cellules lorsqu'elles sont traitées par la doxorubicine.

35

EXEMPLE 7 : Effet des oligonucléotides ARN/ARN
et des hybrides ADN/ARN.

I - Introduction.

5 L'invention envisage l'utilisation d'oligonucléotides hybrides ADN/ARN comme alternative aux oligonucléotides ARN/ARN pour inhiber spécifiquement l'expression d'un gène. Dans le cas des hybrides ADN/ARN, le brin sens est préférentiellement de nature ADN et le brin anti-sens de nature ARN. Les autres aspects ayant trait notamment à la taille des oligonucléotides, à la nature des extrémités 3' et au mode de synthèse sont les mêmes que pour les oligonucléotides ARN/ARN. Les applications de ces hybrides ADN/ARN sont identiques à celles précédemment décrites pour les siRNA ARN/ARN, notamment en ce qui concerne les applications thérapeutiques, à visées diagnostic ou de validation de gènes. Les doses d'oligonucléotides employées pour obtenir les mêmes effets avec les hybrides ADN/ARN et les ARN/ARN peuvent cependant être différentes

10

15

20

II - Préparation des oligonucléotides.

Le brin sens est celui dont la séquence est identique à celle de l'ARN messager. Le brin antisens est le brin complémentaire du brin sens. Par convention, dans un duplexe, la nature des brins est indiquée dans l'ordre sens/antisens. Ainsi par exemple, un hybride ADN/ARN, noté D/R est un oligonucléotide dont le brin sens est de nature ADN et le brin antisens, est de nature ARN et de séquence complémentaire de l'ARN messager.

25

30 Dans les expériences décrites, les oligonucléotides dont la séquence est indiquée ci-dessous ont été utilisés.

- Pour la GFP :

GFP :

35 Sens : [GCAAGCTGACCCTGAAGTTCAT] ADN (SEQ ID NO.29)

Antisens : [GAACUUCAGGGUCAGCUUGCCG] ARN (SEQ ID NO.30)

Contrôle GFP :

Sens : [CAUGUCAUGUGUCACAUCUC] ARN [TT] ADN (SEQ ID NO.31)

Antisens : [GAGAUGUGACACAUGACAUG] ARN [TT] ADN (SEQ ID NO.32)

5 - Pour le LNCaP : Les bases soulignées ci-dessous correspondant à la mutation du récepteur des androgènes exprimée dans les cellules du carcinome prostatique humain (LNCap).

LNCaP :

10 Sens :

[GCATCAGTTCGCTTTGACTT] ADN (SEQ ID NO.33)

[GCAUCAGUUCGUUUUGAC] ARN-TT [ADN] (SEQ ID NO.34)

Antisens :

[GTCAAAAGCGAACTGATGCTT] ADN (SEQ ID NO.35)

15 [GUCAAAAAGCGAACUGAUGC] ARN-TT [ADN] (SEQ ID NO.36)

Contrôle LNCaP :

Sens :

[GUUCGGUCUGCUUACACUA] ARN-TT [ADN] (SEQ ID NO.37)

Antisens :

20 [UAGUGUAAGCAGACCGAAC] ARN-TT [ADN] (SEQ ID NO.38)

- Pour la P53 :

Les brins ADN des hybrides notés H1 comportent des bases ARN (U, soulignées).

La mutation présente dans les oligonucléotides MT1 est indiquée en italique.

WT :

Sens: 5' [GCAUGAACCCGGAGGCCAU] ARN [TT] ADN (SEQ ID NO.39)

Anti: 5' [AUGGGCCUCCGGUCAUGC] ARN [TT] ADN (SEQ ID NO.40)

wt H1 D/R :

30 Sens: 5' [GCAUGAACCCGGAGGCCAUTT] ADN (SEQ ID NO.41)

Anti: 5' [AUGGGCCUCCGGUCAUGC] ARN [TT] ADN (SEQ ID NO.42)

wt H1 R/D :

Sens: 5' [GCAUGAACCCGGAGGCCAU] ARN [TT] ADN (SEQ ID NO.43)

Anti: 5' [AUGGGCCUCCGGUCAUGCTT] ADN (SEQ ID NO.44)

35 wt H2 D/R :

Sens: 5' [GCATGAACCGGAGGCCATT] ADN (SEQ ID NO.45)

Anti: 5' [AUGGGCCUCCGGUUCAUGC] ARN [TT] ADN (SEQ ID NO.46)

wt H2 R/D :

Sens: 5' [GCAUGAACUGGAGGCCAU] ARN [TT] ADN (SEQ ID NO.47)

5 Anti: 5' ATGGGCCUTCCGGTTCATGCTT] ADN (SEQ ID NO.48)

Mt1 (r248w) ** :

Sens: 5' [GCAUGAACUGGAGGCCAU] ARN [TT] ADN (SEQ ID NO.49)

Anti: 5' [AUGGGCCUCCAGUUCAUGC] ARN [TT] ADN (SEQ ID NO.50)

Mt1 H1 D/R :

10 Sens : 5' [GCAUGAACUGGAGGCCAUTT] ADN (SEQ ID NO.51)

Anti : 5' [AUGGGCCUCCAGUUCAUGC] ARN [TT] ADN (SEQ ID NO.52)

Mt1 H1 R/D :

Sens: 5' [GCAUGAACUGGAGGCCAU] ARN [TT] ADN (SEQ ID NO.53)

Anti: 5' AUGGGCCUCCAGUUCAUGTT] ADN (SEQ ID NO.54)

15 Mt1 H2 D/R :

Sens: 5' [GCATGAACTGGAGGCCATT] ADN (SEQ ID NO.55)

Anti: 5' [AUGGGCCUCCAGUUCAUGC] ARN [TT] ADN (SEQ ID NO.56)

Mt1 H2 R/D :

Sens: 5' [GCATGAACTGGAGGCCAT] ARN [TT] ADN (SEQ ID NO.57)

20 Anti: 5' [AUGGGCCUCCAGUUCAUGTT] ADN (SEQ ID NO.58)

II - Résultats.

1) Inhibition de la GFP (Green Fluorescent Protein) par les hybrides ADN/ARN.

Les siRNAs contrôle (R/R) ou GFP (D/R) en doses croissantes ont été introduits par transfection en utilisant le kit Polyfect dans les myoblastes de souris C2C12, en même temps qu'un vecteur d'expression de la GFP. Le niveau de GFP a été suivi par Western Blot (Figure 7A) et par mesure directe de la fluorescence émise par la GFP à l'aide d'un fluorimètre (Figure 7B). On observe une forte inhibition (jusqu'à 80%) de l'expression de la GFP par les siRNA hybrides ADN/ARN.

2) Inhibition du récepteur des androgènes par les hybrides ADN/ARN.

Les cellules LNCaP ont été transfectées avec un vecteur reporteur mettant la luciférase sous le contrôle d'un promoteur contenant 4 éléments de réponse au récepteur des androgènes. 24h plus tard, Les siRNA R/R, D/R ou R/D indiqués sur la figure ont été transfectés par l'agent de transfection Transit-tKO (Mirus) à raison de 250ng de chaque double brin pour 80000 cellules. Les cellules ont été incubées en milieu complet contenant des androgènes et l'activité luciférase, normalisée par rapport à la quantité de protéines de chaque échantillon, a été mesurée 24h plus tard (Figure 7C). Les hybrides R/D n'ont pas montré d'activité inhibitrice dans cette expérience. Les hybrides LNCaP D/R inhibent aussi efficacement que les siRNA R/R le récepteur des androgènes.

15 3) Inhibition de la p53 par les hybrides ADN/ARN.

La figure 7D montre que les hybrides H1 D/R sont aussi efficaces que les R/R pour inhiber l'expression des gènes. Les cellules H1299-NCI, qui n'expriment pas la p53, ont été transfectées (en utilisant la lipofectamine) par des vecteurs d'expression (400 ng) de la p53 sauvage (WT), mutée (MT) ou un mélange des deux (WT+MT), comme indiqué. Un vecteur CMV-GFP a été transfecté également comme contrôle interne. Les siRNAs (400 ng) dirigés contre la forme sauvage (WT), la forme mutée (MT), ou un siRNA irrelevant (CTRL) ont été transfectées en même temps. Les cellules ont été collectées 24 heures après, et analysées par Western blot avec un anticorps dirigé contre la p53 (DO1, Santa Cruz), ou la GFP (Santa-Cruz) pour contrôler l'efficacité de transfection. Note : l'expression de la forme mutée de la protéine stabilise la forme sauvage.

La figure 7E montre que les hybrides H2 D/R sont aussi efficaces que les R/R pour inhiber l'expression des gènes. Les cellules H1299-NCI, qui n'expriment pas la p53, ont été transfectées (en utilisant la lipofectamine)

par des vecteurs d'expression (400 ng) de la p53 sauvage (WT), mutée (MT) ou un mélange des deux (WT+MT), comme indiqué. Les siRNAs (400 ng) dirigés contre la forme sauvage (WT), la forme mutée (MT), ou un siRNA irrelevant (C) ont été transfectées en même temps. Les cellules ont été collectées 24 heures après, et analysées par Western blot avec un anticorps dirigé contre la p53 (DO1, Santa Cruz).

10 EXEMPLE 8 : Administration *in vivo* de siRNA par différentes voies.

Des cellules tumorales exprimant la luciférase de façon stable ont été injectées en sous cutané à des souris nudes (1 million de cellules dans le flanc droit). Au 8e jour de la croissance tumorale, les tumeurs ayant un volume moyen de 200 mm³ ont été injectées soit avec des siRNA contrôles (séquence mélangée de HIF1 alpha, voir exemple 3) soit avec un siRNA dirigé contre la luciférase. Les siRNA contrôles (3 µg/souris) ont été injectés dans un volume de 50µl de PBS par voie sous cutanée dans le flanc de l'animal.

Les siRNA Luciférase ont été injectés à raison de 3µg/souris (3 animaux dans chaque groupe) dans 50 µl de PBS par voie sous cutanée (sc), ou par voie intrapéritonéale (ip) ou par voie intra-veineuse(iv) (veine de la queue) ou par voie intratumorale (it). Dans ce dernier cas, les siRNA luciferase (3µg/souris) ont été dilués dans 20µl de PBS seulement.

Trois jours après l'injection des siRNA, les animaux ont été sacrifiés, les tumeurs ont été prélevées, homogénéisées à l'aide d'un broyeur polytron. Sur les homogénats, un dosage de protéines et une mesure de l'activité luciférase dans un luminimètre ont été réalisés.

Les résultats représentés à la figure 8 montrent l'activité luciférase rapportée à la quantité de protéine.

Maladie	Protéine de fusion	Translocation chromosomique	Références
APL (acute promyelocytic leukaemia)	PML-RARalpha PLZF-RARalpha NPM-RARalpha NuMA-RARalpha	t(15;17)(q22;q21) t(11;17)(q23;q21) t(5;17)(q32;q12) t(5;17)(q13;q21)	De The et al. <i>Cell</i> 1991, 66 :675 Chen Z et al. <i>EMBO J</i> 1993, 12 :1161 Redner RL et al. <i>Blood</i> 1996, 87 :882 Wells RA et al. <i>Leukemia</i> 1996, 10 :735
STAT5beta/RARalpha			Arnould C et al. <i>Hum. Mol. Genet.</i> 1999, 8 :1741
ALL (acute lymphoblastic leukaemia)	TEL-AML1 BCR/ABL MLL/AF4 ALL-translocation CALM/AF10 ALL1/AF4 E2A/HLF	t(12;21) (p13;q22) t(9;22)(q34;q11) t(4;11)(q21;q23) t(12;21)(q12;q22) t(10;11)(p12-p13;q14-q21) t(4;11) t(17;19)(q22,p13)	Domer PH et al. <i>Proc Natl Acad Sci USA</i> 1993, 90 :7884-8 Dreyling MH et al. <i>Proc Natl Acad Sci USA</i> 1996, 93 :4804 Janssen JW et al. <i>Blood</i> 1994, 84 :3835 Hunger SP et al. <i>Genes Dev</i> 1992, 6 :1608
AML (acute myeloid leukemia)	TLS/FUS-ERG MLL-AF10 MLL-AB11 HLXB9-ETV6 MLL-ELL CBFbeta/MYH11 AML1-MTG8 TEL-TRKC AML1/ETO CALM/AF10 ETV6-BTL CBFbeta-SMMHC FUS/ERG DEK/CAN MLL-AF9 MLL-ENL MLL-AF4 MLL-AF6 MLL-AF17 MLL-AFX MLL-AF1p MLL-AF1q	t(16;21)(p11;q22) AML(M7) t(10;11)(p12-p13;q23); t(10;11) t(7;12)(q36;p13) t(11;19)(q23;p13.1) inv[16] t(8;21) t(12;15)(p13;q25) t(8;21) t(10;11)(p12-p13;q14-q21) t(4;12)(q11-q12;p13). inv(16) (p13;q22) t(16;21)(p11;q22) t(6;9) (p23, q34). t(9;11)(p22;q23) (11;q23) t(4;11)(q21;q23) t(6;11)(q27;23) t(11;17)(q23;q21) (X;11)(q13;q23). t(11;11) (q21;q23)	Ichikawa H et al. <i>Cancer Res</i> 1994, 54 :2865 Borkhardt A et al. <i>Leukemia</i> 1995, 9 :1796 Shibuya et al. <i>Genes Chromosomes Cancer</i> 2001, 32 :1 Beverloo et al. <i>Cancer Res</i> 2001, 61 :5374 Rubnitz JE et al. <i>Blood</i> 1996, 87 :4804 Tobal K et al. <i>Br J Haematol</i> 1995, 91 :104 Miyoshi et al. <i>EMBO J</i> 1993, 12 :2715 Eguchi et al. <i>Blood</i> , 1999, 93 :1355 Kusc R et al. <i>Leukemia</i> , 1994, 8 :735 Dreyling MH et al. <i>Proc Natl Acad Sci USA</i> 1996, 93 :4804 Cools et al. <i>Blood</i> 1999, 94 :1820 Wijnmenga C et al. <i>Proc Natl Acad Sci USA</i> 1996, 93 :1630 Panagopoulos I et al. <i>Genes Chromosomes Cancer</i> , 1994, 11 :256 on Lindern M et al. <i>Mol Cell Biol</i> , 1992, 12 :1687 Super HI et al. <i>Blood</i> , 1995, 85 :855 Schreiner SA et al. <i>Leukemia</i> 1999, 13 :1525 Domer PH et al. <i>Proc Natl Acad Sci USA</i> 1993, 90 :7884 Tanabe S et al. <i>Genes Chromosomes Cancer</i> 1996, 15 :206 Prasad R et al. <i>Proc Natl Acad Sci USA</i> 1994, 91 :8107

Tableau 2

Annexe A(2)

Maladie	Protéine de fusion	Translocation chromosomique	Références
MLL self			Borkhardt A et al. <i>Oncogene</i> 1997, 14 :195
MLL-CBP	t(11;16)(q23,p13)		So CW et al. <i>Leukemia</i> 2000, 14 :594
AML1-ETO	t(8;21)		Busson-Le Comt M et al. <i>Leukemia</i> 1999, 13 :302
MDS/AML (myelodysplasia/acute myeloid leukemia)	NPM-MLF1	t(3;5)(q25.1;q34)	Taki T et al. <i>Cancer Res</i> 1997, 57 :1117
CML (chronic myelogenous leukemia)	Bcr-Abl/p210 AML1-MDS1-EVI1 (AME)	t(3;21)(q26;q22)	Erickson P et al. <i>Blood</i> 1992, 80 :1825
BpALL (cell acute lymphoblastic leukemia)	TEL-AML1	t(12;21) (p13,q22)	Yoneda-Kato N et al. <i>Oncogene</i> 1996, 12 :265
MPD (myeloproliferative disease)	TEL-JAK2 TEL-PDGFbetaR TEL-TRKC	t(9;12)(p24;q13) t(5;12)(q33;p13) t(12;15)(p13;q25)	Golub TR et al. <i>Proc Natl Acad Sci U S A</i> 1995, 92 :4917
CML (chronic myelomonocytic leukemia)	involving PDGFbetaR HIP1/PDGFbetaR TEL/PDGFbetaR API2-MALT1	t(5;17)(q33;p13) t(5;7)(q33;ql1.2) t(5;12)(q33;p13) t(11;18)(q21;q21)	Lacronique et al. <i>Science</i> 1997, 278 :1309 Jousset C et al. <i>EMBO J</i> , 1997, 16 :69 Eguchi et al. <i>Blood</i> , 1999, 93 :1355
MALT (gastric mucosa-associated lymphoid tissue lymphoma)			Magnusson et al. <i>Blood</i> 2001 98 :2518 Ross TS et al. <i>Blood</i> 1998, 91 :4419 Tomasson MH et al. <i>Blood</i> 1999, 93 :1707 Motegi M et al. <i>Am J Pathol</i> 2000, 156 :807
ALCL (anaplastic large cell lymphoma)	NPM-ALK SU-DHL-1 ATIC-ALK	t(2;5)(p23;q35) (2;5) inv(2)(p23q35) t(2;17)(p23;q25)	Waggoner W et al. <i>Br J Haematol</i> 1995, 89 :905 Siminovitch KA et al. <i>Blood</i> 1986, 67 :391 Colleoni GW et al. <i>Am J Pathol</i> 2000, 156 :781 Maes et al. <i>Am J Pathol</i> 2001, 158 :2185
MPD (myeloproliferative disease)	NUP98-HOXA9	t(7;11)(p15;p15)	Nakamura T et al. <i>Nat Genet</i> 1996, 12 :154

APP (amyloid precursor protein) in sporadic Alzheimer's disease (AD) or Down's syndrome	APP+1 (38-kDa)		Hersberger et al. <i>J Neurochem</i> 2001 76 (5):1308-14
primary pleural monophasic synovial sarcomas (SS)	SYT-SSX1 SYT-SSX2	t(X;18)(p11.2;q11.2) t(X;18)(p11.2;q11.2)	Crew AJ et al. <i>EMBO J</i> 1995, 14 :2333 Crew AJ et al. <i>EMBO J</i> 1995, 14 :2333
Dermatofibrosarcoma protuberans (DP)	COL1A1/PDGFB rearrangement	t(17;22)	O'Brien KP et al. <i>Genes Chromosomes Cancer</i> 1998, 23 :187
ARMS (pediatric alveolar rhabdomyosarcoma)	EWS-FLII	t(11;22)(q24;q12)	Athale et al. <i>J Pediatr Hematol Oncol</i> 2001, 23 :99
ESFT (Ewing sarcoma family of tumors)	EWS-ERG	t(2;13) (q35;q14)	Sorensen PH et al. <i>Nat Genet</i> 1994, 6 :146
DSRCT (desmoplastic small round cell tumors)	PAX3-FKHR	t(1;13)(p36;q14)	Fredericks WJ et al. <i>Mol Cell Biol</i> 1995, 15 :1522
MM (multiple myeloma)	PAX7-FKHR	t(11;22)(p13;q12)	Barr FG et al. <i>Hum Mol Genet</i> 1996, 5 :15
MPD (stem cell myeloproliferative disorder)	EWS-WTI	t(11;22) (q24;q12)	Benjamin et al. <i>Med Pediatr Oncol</i> 1996 27 (5):434-9
Ewing sarcoma (ES)-peripheral primitive neuroectodermal tumor (pPNET)	EWS/FI-1	t(4;14)(p16.3; q32)	Fidelia-Lambert et al. <i>Hum Pathol</i> 1999, 30 :78
MLS (myxoid liposarcomas)	IGH-MMMSET	t(8;9)(p12;q33)	Malgeri et al. <i>Cancer Res</i> 2000 60 :4058
	FGFR1 -CEP110		Guasch et al. <i>Blood</i> 2000 95 :1788
	EWS-PEV	t(2;22)(q13;q22,t(3;18) (p2;1;q23) t(11;22;14)(q24;q12;q11)	Lombart-Bosch et al. <i>Diagn Mol Pathol</i> 2000, 9 :137
	EWS-FLII	t(21;22)(q22;q12)	Bonin G et al. <i>Cancer Res</i> 1993, 53 :3655
	EWS-ERG	t(12;21)(p12;q22)	Sorensen PH et al. <i>Nat Genet</i> 1994, 6 :146
	ETV6/CBFA2	t(12;16) (q13;p11)	Fears S et al. <i>Genes Chromosomes Cancer</i> 1996, 17 :127
	FUS/CHOP	t(12;22;20)(q13;q12;q11)	Rabbitts TH et al. <i>Nat Genet</i> 1993, 4 :175
	EWS/CHOP		Zinsner H et al. <i>Genes Dev</i> 1994, 8 :2513

Annexe B(1)

Codon	Event	Codon	Event	Codon	Event	Codon	Event	Codon	Event
248	G->A	129	C->A	189	C->G	217	Stop at 219	202	Ins
248	C->T	281	A->G	290	G->T	239	Stop at 259	247	Ins
282	C->T	293	Fr.	136	Stop at 169	187	G->C	171	Ins
175	G->A	157	DEL	201	Stop at 208	273	Stop at 343	203	Ins
196	C->T	161	C->A	275	Stop at 344	182	C->T	290	Stop at 303
213	G->A	195	A->T	132	Stop at 148	263	Stop at 344	233	del
234	T->C	197	G->C	176	Stop at 180	307	Stop at 344	210	Stop at 244
237	T->G	342	Fr.	191	del	261	Stop at 344	201	G->A
244	G->T	135	G->C	218	G->A	285	Stop at 344	92	Ins
256	A->G	145	T->A	234	T->A	159	G->A	44	Fr.
259	A->G	276	G->C	136	C->A	168	C->T	109	ins
					G->C/G-				G->A/G-
260	T->G	173	G->T	245	>A	230	C->T	279	>A
245	G->T	270	T->G	126	Stop at 148	228	A->C	168	Stop at 170
278	C->T	158	G->C	259	G->C	230	C->A	153	Stop at 178
134	T->A	152	Fr.	171	G->C	287	Stop at 300	247	C->A
194	C->T	132	G->T	197	T->A	269	Stop at 343	272	Stop at 305
273	G->A	288	A->C	236	T->G	227	Stop at 227	137	Stop at 169
309	C->T	247	A->T	239	C->A	231	Stop at 238	148	Stop at 180
274	T->A	273	G->C	288	A->T	275	G->C	157	Stop at 180
156	G->C	283	G->C	161	Fr.	142	T->C	191	Stop at 208
245	G->A	109	Fr.	164	Fr.	312	C->G	243	Stop at 260
193	A->G	174	G->C	142	Stop at 148	282	C->G/G->C	251	C->A
229	T->A	300	C->G	240	A->C	235	Stop at 244	242	C->A
237	G->A	205	A->G	137	T->C	156	Stop at 179	244	C->A
277	G->T	224	G->T	100	G->A	207	A->G	239	C->G
194	T->G	168	A->T	106	C->G	179	Stop at 246	142	T->A
242	G->C	167	Fr.	215	A->G	210	Stop at 214	248	C->A
246	G->C	136	C->G	246	Fr.	315	T->C	177	Stop at 246
68	G->T	164	A->C	117	G->A	229	Stop at 229	296	Fr.
147	T->A	179	C->G	271	Stop at 344	167	A->C	303	C->T
151	C->A	187	G->T	324	T->G	256	Stop at 343	140	C->A
209	A->T	201	Stop at 246	346	Fr.	176	Stop at 176	268	C->T
213	C->T	213	C->A	174	Stop at 246	309	Stop at 336	254	A->C
214	A->G	238	G->T	170	Stop at 177	270	Stop at 344	291	G->A
			T->G/C-						
248	G->T	113	>T	234	T->G	129	G->A	139	Stop at 148
266	G->T	143	G->T	354	A->G	46	Stop at 50	251	A->G
273	C->T	160	G->T	259	Stop at 344	160	T->G	221	Stop at 224
273	G->T	198	G->T	319	Stop at 344	56	A->T	237	A->T/G->T
282	C->G	203	G->T	332	Ins	74	Stop at 144	234	Stop at 234
334	G->T	238	T->A	340	Ins	118	A->G	215	T->A
342	C->T	272	G->C	177	del	257	del	191	T->A
132	A->C	276	Ins	179	T->A	192	G->T	290	C->A
249	G->C	277	T->G	190	Stop at 246	294	G->T/G->C	60	A->T
280	G->A	302	G->T	254	Ins	240	del	93	C->A
285	G->A	131	C->G	194	C->A	306	G->T	143	T->C/G->C
							C->G/G-		
241	C->T	168	A->G	172	T->A	175	>A	319	G->T
					G->T/T-				
249	G->T	258	G->T	173	>G	246	Stop at 261	110	Stop at 122
158	G->A	278	C->A	261	T->C	279	Stop at 305	190	T->G
163	T->C	285	G->C	266	A->G	146	T->G/G->T	192	C->G
176	G->A	287	G->A	199	Fr.	154	Stop at 169	126	T->G/A->G

Annexe B(2)

Codon	Event	Codon	Event	Codon	Event	Codon	Event	Codon	Event
206	Fr.	294	Fr.	236	C->G	132	del	273	Stop at 305
234	A->G	236	Fr.	168	C->G	175	Stop at 175	266	Stop at 344
238	G->A	301	Ins	201	G->C	152	Stop at 165	64	Stop at 122
	A->G/T->A				Stop at 208 C->A/C-	260	Stop at 262	103	C->A
254		228	A->G	203					
287	G->T	175	Fr.	250	>G	194	Stop at 246	343	A->G
143	Fr.	282	G->T	283	G->T	170	C->A	317	Stop at 344
205	A->T	152	Stop at 180	256	C->A	213	C->G	125	Stop at 148
262	Fr.	177	C->G	245	C->T	213	A->C	239	A->G/C->T
171	G->T	216	T->A	342	G->C	232	A->G	119	Fr.
126	C->G	232	T->G	243	G->A	294	G->C	162	T->G/C->G
138	Fr.	275	Stop at 305	296	A->G	240	T->A	12	C->A/C->G
223	C->T	216	G->T	68	G->C	223	C->G	247	C->G
274	G->T	137	Fr.	102	C->T	171	A->C	190	T->A
218	Fr.	251	T->G	104	G->C	328	T->G	240	T->C
246	A->G	252	Ins	117	G->C	150	C->T	315	C->T
250	Fr.	254	T->A	175	Stop at 246	252	C->A	313	C->T
143	T->C	49	G->C	138	Stop at 169	256	Stop at 342	42	G->T
173	G->A	53	G->T	215	T->G	200	Stop at 246	73	G->T
242	G->T	60	C->T	247	Stop at 262	239	del	231	C->A
190	Fr.	202	G->T	104	C->T	215	A->T	172	Stop at 173
246	T->C	204	A->G	297	A->C	147	Stop at 169	211	Stop at 214
157	G->T	265	T->A	252	T->C	276	G->A	150	Stop at 180
239	Fr.	135	T->C	276	C->T	210	A->C	145	C->A
240	A->T	147	G->A	349	A->C	182	T->C	335	C->G
					G->A/T-				G->A/A-
238	T->C	153	C->T	173	>G/G->T	161	G->A/C->T	285	>G
35	Stop at 42	170	G->T	225	G->C	83	C->A	85	Stop at 122
47	C->T	260	C->T	250	del	304	Stop at 344	98	C->T
89	Fr.	255	Stop at 263	224	A->G	225	ins	113	C->T
102	Fr.	139	G->C	166	T->A	314	Stop at 344	87	Stop at 148
141	C->G	234	A->C	156	C->A	301	A->G	97	C->T
144	C->T	152	C->A	291	A->G	224	G->A	217	Stop at 246
146	G->A	170	C->T	305	A->G	112	C->G	226	G->T
158	G->T	175	G->C	306	A->T	163	C->A	278	T->A
161	G->A	240	A->G	296	C->T	299	T->A	145	C->T
164	G->T	259	G->T	267	del	251	del	133	Stop at 148
165	Ins	87	Fr.	151	Stop at 169	162	Stop at 180	136	A->C
176	C->G	142	Fr.	228	Stop at 238	44	G->T	239	A->T/C->A
									G->A/C-
191	Fr.	175	C->G	165	Stop at 180	177	C->A/C->T	245	>A
215	G->T	126	A->G	176	C->A	236	A->C	252	T->A
									G->A/C-
217	G->T	128	T->G	192	A->G	243	T->C	244	>A
220	A->G	128	C->T	167	Ins	137	G->A	299	Stop at 305
224	G->C	134	T->C	166	T->C	218	G->C	305	A->T/G->A
242	C->G	172	Fr.	120	A->G	277	G->C	310	A->C
259	A->T	237	T->A	150	C->A	54	Fr.	322	C->G
267	G->C	193	A->C	155	A->C	40	Ins	323	Stop at 344
291	A->T	213	Fr.	203	Stop at 246	156	Stop at 166	315	C->G
298	G->T	246	G->A	221	A->G	168	C->G/A->T	308	G->C
182	C->A	235	Fr.	50	Stop at 109	249	G->T/G->T	323	T->G
233	Stop at 239	329	Fr.	191	Stop at 243	158	C->A	201	T->A

Annexe B(3)

Codon	Event	Codon	Event	Codon	Event	Codon	Event	Codon	Event
173	T->C	155	A->G	205	T->C	209	G->T	190	T->C
251	A->C	7	G->C	210	Stop at 246	184	Stop at 207	278	T->C
219	Fr.	56	G->T	110	C->G	146	G->T	305	G->C
280	A->T	104	Fr.	166	C->A	250	C->A	176	del
			G->A/G-						
126	T->A	245	>A	269	G->T	74	Stop at 122	217	T->G
132	G->C	317	C->T	155	Stop at 179	225	del	174	A->C
181	C->T	125	G->A	155	Stop at 169	253	C->A	289	C->G
184	G->T	214	Fr.	156	Stop at 169	269	INS	234	C->G
220	T->C	248	G->C	162	C->T	184	T->C	232	A->C
266	G->A	307	Ins	196	A->G	304	T->G	317	A->T
279	G->A	152	G->T	213	Stop at 246	204	A->C	132	Fr.
305	Ins	178	C->G	214	C->T	66	Stop at 145	299	Fr.
220	A->C	253	C->T	269	C->T	259	Stop at 263	158	C->G/G->T
284	A->C	270	T->C	287	A->G	263	Stop at 271	142	Stop at 169
280	G->C	281	C->A	313	C->G	280	Stop at 344	203	Stop at 207
	Stop at								
172	231	216	Fr.	108	Stop at 144	237	Stop at 246	248	G->C/G->C
	Stop at								
174	176	131	Fr.	321	A->G	289	C->A	256	A->C
224	Ins	141	Ins	244	C->T	315	Stop at 344	262	Stop at 343
	Stop at								
251	344	140	Fr.	198	Stop at 246	312	C->T	301	Stop at 343
261	del	163	T->A	135	Ins	145	C->G	335	G->A
181	G->A	178	A->C	187	Stop at 246	169	G->T	179	Fr.
265	C->T	186	G->T	264	del	184	G->A	341	Stop at 344
272	T->C	208	A->T	52	C->T	364	G->A	103	C->G
136	C->T	255	Fr.	141	G->C	144	del	159	Stop at 179
281	G->T	307	G->A	167	A->G	146	Stop at 169	189	Stop at 246
316	C->T	130	T->G	84	C->T	190	C->A	274	Stop at 304
130	C->G	356	G->T	122	Stop at 169	249	A->C	149	Fr.
234	C->A	43	T->C	140	A->T	214	T->A	183	Stop at 183
368	Fr.	159	G->C	153	Ins	204	G->A	227	Stop at 245
							G->A/C-		
301	Fr.	280	Ins	173	Fr.	242	>G	292	Stop at 343
148	Fr.	327	Fr.	186	Fr.	208	Stop at 241	178	A->G
176	G->T	87	C->A	152	C->G	158	Stop at 180	251	Stop at 343
152	C->T	156	G->T	171	A->G	217	Stop at 221	252	Stop at 263
248	C->G	158	C->G	180	G->T	262	Stop at 344	64	Fr.
255	T->G	161	G->T	202	G->A	239	Stop at 246	89	Stop at 122
271	Fr.	173	Stop at 180	227	T->G	205	Stop at 246	108	Stop at 122
274	Fr.	199	G->T	298	G->A	214	T->C	110	Ins
225	G->A	144	Fr.	303	G->A	297	ins	124	Stop at 124
176	T->A	233	Fr.	261	Ins	268	Fr.	285	del
135	Fr.	275	T->G	276	C->G	256	A->T	342	del
135	C->G	162	T->G	305	Fr.	223	C->A	313	A->T
151	C->T	178	Fr.	117	Stop at 122	26	Stop at 43	217	T->A
159	C->T	256	Fr.	155	Stop at 177	186	A->T	167	Stop at 169
179	A->G	225	Fr.	277	T->A	214	Stop at 246	278	C->T/T->C
306	C->T	148	T->A	298	A->C	245	C->A	290	Stop at 304
174	G->A	187	G->A	141	C->T	287	G->C	173	Stop at 173
			C->A/C-						
208	Fr.	250	>A	115	T->C	96	C->T	259	C->T
126	Fr.	254	T->G	119	G->A	164	Stop at 166	288	T->A
173	del	257	T->C	120	Fr.	255	Ins	207	T->A

Annexe B(4)

Codon	Event	Codon	Event	Codon	Event	Codon	Event	Codon	Event
192	C->T	275	T->C	127	T->A	275	del	197	Stop at 208
209	Fr.	216	>T	133	Fr.	284	ins	214	A->T
216	T->G	149	T->C	144	A->T	161	G->C	127	C->G
258	G->A	240	G->T	187	T->C	246	A->T/G->T	337	G->C
282	G->C	65	A->T	205	T->A	199	G->C	102	Stop at 122
308	Fr.	125	C->T	209	A->G	195	Stop at 246	187	Stop at 202
332	Fr.	166	C->T	237	A->T	275	Fr.	100	A->G
173	T->G	242	C->T	337	G->T	283	Stop at 305	140	Stop at 143
249	Fr.	263	A->C	342	G->A	233	ins	176	Stop at 179
275	G->A	139	G->T	377	C->A	127	Stop at 169	235	Ins
294	G->T	165	A->T	93	C->T	138	G->A	250	Stop at 262
316	Fr.	241	T->G	202	C->T	208	A->T/C->T	284	Stop at 305
159	C->A	255	T->A	199	Stop at 246	106	del	132	G->A
118	Ins	265	Fr.	252	C->T	245	G->C/G->T	129	C->T
277	G->A	279	Fr.	254	C->T	212	Stop at 246	210	C->T
244	G->C	241	Fr.	262	G->A	133	G->A	232	C->T
264	Fr.	151	C->G	263	A->G	124	T->C	257	C->T
C->T/C->T									
278	>T	156	Fr.	274	Stop at 344	51	Stop at 122	164	Stop at 169
177	C->T	170	A->T	293	Stop at 344	170	G->A	249	del
179	C->T	204	G->T	156	C->G	150	del	187	Fr.
281	C->T	249	A->G	157	Stop at 169	85	Stop at 143	210	Fr.
141	G->A	280	G->T	92	C->T	195	T->A	207	T->C
Stop at 344									
283	344	281	A->C	201	G->T	314	Stop at 338	226	G->C
Stop at 148									
136	148	94	T->A	202	Stop at 246	307	Stop at 340	168	C->G/C->G
286	G->A	153	C->A	222	C->T	67	Stop at 122	185	A->G
109	C->A	172	T->C	223	Stop at 246	255	Stop at 344	198	Stop at 208
164	A->G	173	T->A	264	Stop at 344	163	del	208	G->C
C->A/G->A									
238	G->C	296	C->G	273	>A	191	Stop at 246	331	A->C
110	G->T	284	A->G	316	C->A	255	Stop at 257	320	Stop at 336 A->C/G->A
113	T->G	135	G->T	271	Ins	262	Stop at 263	331	>A
162	C->G	31	G->A	129	Fr.	264	C->A	338	T->A
183	C->G	72	Fr.	192	Ins	348	G->T	280	Fr.
Stop at 344									
287	91	G->A	307	G->T	232	Stop at 246	290	Fr.	
152	G->A	110	Fr.	220	T->A	170	ins	297	Fr.
138	C->T	154	Fr.	285	A->G	114	T->A	297	C->G
278	C->G	158	Fr.	226	G->A	343	G->T	136	Stop at 164
236	T->C	167	C->T	137	Ins	26	Stop at 36	149	Stop at 180
237	A->G	178	Stop at 180	259	Ins	137	G->T	221	Stop at 246
289	T->A	195	Stop at 208	234	Fr.	145	G->C	228	ins
237	G->T	197	G->A	135	del	146	T->C	243	Stop at 340
136	Ins	199	G->A	102	Stop at 116	286	A->T	292	Stop at 304
G->A/A->G									
99	147	227	Ins	324	>G	296	A->T	328	del
Stop at 169									
134	169	248	>T	27	Fr.	164	G->A	338	Stop at 346
242	T->C	265	>T	162	del	148	T->G	243	A->C
193	C->T	272	T->A	277	Ins	274	del	348	T->A

Tableau 3

Annexe B(5)

Codon	Event	Codon	Event	Codon	Event	Codon	Event	Codon	Event
188	Fr. Stop at	274	T->G	135	T->G	211	Stop at 215	304	C->T
152	169	349	Fr.	69	C->G	239	A->T	228	G->T
57	Fr.	203	Fr.	242	T->G	313	ins	370	A->C
281	C->G Stop at	205	T->G	157	G->A	327	T->G	149	C->T/C->T
260	263	205	A->C	198	G->C	211	C->A	158	C->T/G->A
132	A->T Stop at	246	A->T	157	T->G	246	Stop at 246	240	G->A
249	263	282	Stop at 305	279	G->C	163	C->T	258	Stop at 263
167	G->T	133	A->C	134	Ins	252	del	317	C->A
17	A->T	162	A->T	239	Stop at 263	129	del	262	T->A
24	A->T	174	A->T	168	Stop at 169	215	G->C	263	A->T
175	C->T	253	C->G	134	Fr.	253	A->C	163	T->G
358	G->A	131	A->G	253	A->T	274	Ins	312	Fr.
175	Ins	137	T->A	254	A->T	154	C->A	301	C->A G->A/G-
115	C->T	141	Fr.	247	A->G	183	C->T	226	>A
103	Fr.	157	T->A	235	A->T	225	T->A	200	A->C/A->C
237	Fr.	157	Fr.	176	Stop at 243	149	ins	207	G->C
250	C->T	176	Ins	163	Stop at 169	171	Fr.	226	Stop at 227
365	A->G	240	Fr.	248	Stop at 344	287	A->T	266	
271	G->A	274	T->C	289	Stop at 304	133	G->T	113	del
320	G->C	46	Fr.	163	Fr.	137	C->A	226	Fr.
349	G->T	112	Fr.	207	Fr.	148	G->T	94	C->A
126	del	295	C->T	251	A->T	246	A->C	127	Fr.
36	G->A	193	T->A	112	Stop at 120	251	T->C	133	Stop at 145
76	Fr.	221	G->T	120	Stop at 122	273	T->C	153	Stop at 180
241	C->G	227	Fr.	231	C->T	297	C->A	75	C->T
281	G->C	241	C->A	212	Stop at 214	192	G->A	116	Stop at 122
244	G->A	281	G->A	179	A->C	244	C->G	184	del
218	T->G	316	Ins	174	G->T	221	Stop at 222	106	Stop at 122
256	344 A->C/G-	344	Fr.	232	del	243	T->A	69	Stop at 147
280	>C	145	T->G	173	Stop at 195	308	C->G	298	Stop at 344
258	A->G	145	T->C	273	Stop at 344	189	C->A	182	ins
270	T->A	194	T->C	143	T->A	239		133	del
176	T->G	162	A->G	161	C->T	142	C->G	163	Stop at 168
171	231 Stop at	315	Ins	72	Stop at 120	295	C->A	174	del
251	263	203	T->A	265	del	156	Stop at 168	330	T->G
337	C->T	273	Ins	214	Stop at 214	213	Stop at 245	125	C->G
266	G->C	62	G->T	107	Stop at 147	243	Stop at 244	258	Stop at 344
203	G->C Stop at	71	Fr.	317	Ins	289	C->T	330	Stop at 335
241	252	128	Fr.	165	C->A	211	del	113	T->C
193	A->T	203	T->C	99	Stop at 122	220	Stop at 244	265	T->G
255	A->G	254	C->G	36	C->T	229	T->G	126	T->C
194	C->G Stop at	282	Fr.	245	Ins	253	del	214	Stop at 218
342	342	258	G->C	76	C->T	302	Stop at 303	284	C->T
55	Ins	217	Fr.	160	T->A	208	A->G	96	ins
257	C->G	139	A->C	165	A->C	212	Stop at 244	62	Stop at 121

Tableau 3

Annexe B(6)

Codon	Event	Codon	Event	Codon	Event	Codon	Event	Codon	Event
282	ins	215	A->C	269	Fr. G->T/C-	129	Stop at 145	285	A->C
245	G->C	243	Ins	245	>A	190	del	358	G->T
209	ins	295	Fr.	208	G->A	216	Stop at 221	122	G->A
239	ins	285	A->T	236	C->T	275	Stop at 304	69	Stop at 122
179	T->G	170	Stop at 179	294	G->A	150	ins	155	C->T/C->G G->A/C-
314	C->T	208	Stop at 246	251	Fr.	188	C->G	245	>G
155	C->T	209	Stop at 214	215	Ins	220	Ins	181	C->G
	Stop at								
249	344	240	Stop at 263	154	C->T	292	A->C	185	Ins
116	C->G	141	G->T	293	G->C	305	G->T	52	Stop at 56
163	A->G	151	Fr.	161	C->G	48	A->T/C->T	112	Stop at 122
173	G->C	182	Stop at 246	56	G->A	154	C->G	165	Stop at 169
255	C->T	140	A->G	139	G->A	150	Fr.	323	del
255	C->G	142	C->T	222	G->C	329	C->A	67	C->G
218	T->C	169	T->A	302	Stop at 344	80	C->T	148	A->T
	Stop at								
301	344	170	A->G	144	Stop at 169	243	T->G	230	Stop at 246
271	A->T	271	A->G	166	T->G	104	Stop at 148	95	Stop at 148
286	A->G	331	C->T	149	T->A	117	Stop at 148	276	Stop at 286
294	A->G	194	Stop at 245	204	del	138	C->A	249	Stop at 342
	T->G/T-								
264	C->T	113	>G	127	C->A	248	C->T/G->C	208	del
235	A->G	165	C->T	289	T->C	167	G->A	163	Stop at 163
249	A->T	176	Stop at 246	261	A->G	214	C->G	213	A->G
216	G->A	207	T->G	269	A->G	272	Fr.	282	Stop at 304
215	G->A	297	C->T	128	Stop at 169	186	A->G	295	Stop at 344
272	G->A	141	T->G	159	Stop at 169	147	Ins	160	del
	Stop at								
267	344	181	G->C	204	Ins	261	T->G	233	A->T
242	G->A	229	Fr.	242	Stop at 242	240	T->G	186	T->C
195	T->C	276	Fr.	237	del	288	Fr.	243	T->C/G->A
172	G->T	149	Stop at 169	284	Stop at 304	286	A->G/A->T	142	C->A
239	A->G	193	C->G	331	G->T	126	Stop at 169	144	G->T
262	G->T	293	Stop at 304	130	T->A	182	Fr.	231	Fr.
255	T->C	147	Fr.	39	C->T	298	Fr.	254	Fr.
286	A->C	286	G->T	352	G->C	220	T->G	266	ins
283	G->A	287	Stop at 303	209	Stop at 246	269	G->A	258	A->C
190	C->T	293	G->A	90	C->T	232	Fr.	239	Stop at 261
154	G->A	295	T->C	111	G->A	131	del	262	G->C/G->C
	Stop at								
272	344	215	Fr.	119	C->T	261	Fr.	296	Stop at 334
143	G->A	333	Fr.	141	T->C	111	T->A	284	del
271	A->C	28	A->C	202	T->C	285	Fr.	150	A->C
133	T->A	67	C->T	326	A->G	266	G->A/A->T	225	G->T
174	Fr.	288	A->G	36	G->T	162	Stop at 169	247	Fr.
132	A->G	276	del	68	A->G	208	Ins	322	C->T
252	Fr.	292	Fr.	117	G->T	250	Ins	85	Stop at 117
330	T->A	189	C->T	145	G->T	130	Stop at 169	86	ins
	G->A/T-								
179	C->A	210	A->G	215	>A	289	Fr.	189	Fr.
309	C->G	217	T->C	325	G->A	198	Fr.	315	Fr.
212	ins	135	Stop at 169	112	G->A	302	Fr.	169	Stop at 180
175	G->T	165	A->G	308	G->A	137	C->T	245	G->T/G->T

Tableau 3

Annexe B(7)

Codon	Event	Codon	Event	Codon	Event	Codon	Event	Codon	Event
153	C->G C->G/G->T	234	del	63	C->T	191	Ins	175	C->A/G->C/C->G
145	Fr.	218	del	104	A->T	186	G->A	71	C->T
277	G->T	100	C->T	212	T->C	237	ins	72	Stop at 148
275	C->T	169	G->A	217	G->A	230	A->G	98	T->A
110	T->A	158	Stop at 179	328	T->C	184	A->G	287	Stop at 304
232	C->A/C->A/C->T	143	Stop at 169	45	C->T	157	ins	162	A->G/C->T
151	>T	200	Ins	299	G->C	95	T->A/T->G	130	T->C
218	G->T	185	Stop at 246	111	T->C	314	Fr.	215	Stop at 243
139	A->G	11	G->A	127	T->C	306	A->G	204	Stop at 207
250	C->G	217	G->C	162	Ins	45	C->A	315	Stop at 336
280	A->C	72	Stop at 122	360	G->T	100	Fr.	33	Stop at 43
127	C->T	105	G->T	257	Ins	162	Fr.	41	Stop at 43
176	G->C	221	G->A	341	T->G	319	Fr.	80	Stop at 120
274	G->C	253	A->G	242	Stop at 246	113	Fr.	96	Stop at 147
246	T->G	300	Stop at 344	262	del	126	C->A	207	Stop at 212
229	Stop at 238	250	Stop at 342	257	T->G	196	Stop at 246	215	Stop at 245
247	A->C	135	T->A C->T/C->T	229	T->C	175	>G	224	Stop at 246
290	G->A	159	>T	196	G->A	182	T->G	260	del
219	Stop at 246	249	G->A	200	A->G	190	C->G	276	Stop at 339
88	122	198	A->G	278	Stop at 344	141	Stop at 148	290	Stop at 339
254	T->C	238	T->G	144	G->C	166	Stop at 180	300	Stop at 343
283	C->G	243	A->T	158	Stop at 169	345	Stop at 369	51	Stop at 121
299	G->A	259	G->A	252	Stop at 344	192	C->A	301	Stop at 303
346	G->A	268	A->G	241	Stop at 261	65	Fr.	236	A->C/C->G
116	T->C	287	Fr.	282	>A	185	G->T	83	C->T
150	A->G	302	G->A	276	G->T	181	C->A	237	T->C
95	T->C	189	G->C	196	C->A	190	Stop at 208	156	ins
54	T->A	212	Fr.	193	T->C	155	C->G	128	C->G
256	C->T	51	G->T	160	A->C	242	G->T/C->T	243	T->G/G->C
309	C->A	160	G->C	243	A->G	269	A->T	133	A->G
109	T->C	207	Ins	206	Stop at 246	283	Fr.	125	C->A
265	T->C	147	T->G	194	T->A	189	G->A	62	A->G
139	Stop at 169	177	Fr.	212	T->A	244	G->A/G->C	54	C->T
154	G->T	121	Fr.	169	A->G	138	Stop at 148	84	C->G
179	A->T	147	T->C	183	T->C	188	Stop at 208	202	G->C/T->G
255	del	160	A->G	77	C->G	246	del	319	A->C
342	Stop at 344	230	Fr.	188	Ins G->T/C->T	180	G->C	138	C->G
11	G->C	237	A->C	158	>T	175	del	229	T->A/G->A
121	122	47	Stop at 121	194	Stop at 207	290	Stop at 301	101	Stop at 122
34	ins	78	Fr.	253	Ins	271	del	278	Stop at 304
53	G->A	81	Stop at 122	360	Stop at 369	156	Stop at 180	339	Fr.
144	A->C	108	Stop at 146	191	C->G	69	C->A	303	G->T
280	A->G	110	G->C	141	T->A	112	C->A	247	Stop at 344

Tableau 3

Annexe B(8)

Codon	Event	Codon	Event	Codon	Event	Codon	Event	Codon	Event
326	G->T Stop at	156	C->T	303	A->T	193	C->A	299	Ins
332	344	217	del	49	Ins	222	Fr.	293	del
256	Ins	242	T->A	62	Stop at 141	228	Stop at 245	247	Stop at 343
283	C->T	245	Stop at 340	103	del	145	del	5	C->T
232	T->C	251	Ins	105	del	148	Stop at 167	123	C->T
184	Fr.	91	G->T	121	del	140	Stop at 168	126	C->T
273	C->G	136	A->G	124	Ins	171	Stop at 180	320	G->A
133	T->C	146	G->C	124	Stop at 167	304	Fr.	356	G->A
272	G->T	164	A->T	338	Stop at 343	159	ins	379	G->A
293	G->T	194	Fr.	336	G->T	261	G->A	154	Stop at 180
267	G->A	255	A->T	124	C->G	304	A->G	164	G->C
325	G->T	339	Ins	284	A->T	222	G->T	75	C->G
71	Ins	35	G->T	144	G->A	291	G->C	163	Stop at 165
120	A->T	213	G->T	227	C->T	147	T->A/T->A	238	Stop at 244
151	Ins	261	Stop at 263	208	G->T	216	G->C	8	C->T
307	Fr.	299	T->C	228	G->A	91	Ins	15	A->C
108	Fr.	204	A->T	196	G->T	311	A->C	61	A->G
257	T->A Stop at	47	Fr.	195	C->G	334	Stop at 344	72	C->T
257	344	178	C->A	272	T->G	211	T->C	102	ins
138	G->T	257	G->A	53	G->C	197	G->T	104	G->T
155	C->A	341	C->T	290	C->G	202	C->A	106	A->G
167	C->A	290	C->T	292	>T	219	C->A	365	C->T
174	A->G	169	T->C	245	Stop at 246	228	G->C	10	C->T
181	G->T	233	C->T	188	Stop at 246	163	A->C	21	C->T
241	T->A	198	G->A	288	Stop at 344	271	>G	361	G->A
305	A->T	200	Fr.	176	Fr.	238	Fr.	364	C->T
273	C->A	228	C->G	148	Stop at 179	206	T->A	385	T->C
219	C->T	236	C->A	161	Stop at 169	52	del	307	A->G
251	C->G	245	>T	211	Stop at 246	94	Stop at 122	161	G->T/C->T
233	C->G	249	Ins	244	Stop at 246	236	Stop at 236	241	Stop at 263
215	246 Stop at	251	T->A	247	del	107	C->A	327	Stop at 335
216	Ins	258	Fr.	260	Stop at 344	106	Fr.	157	T->C
344	T->C	278	Ins	216	T->C	69	Fr.	132	Stop at 169
213	G->C	279	Ins	231	A->T	204	Fr.	221	A->C
82	C->T	296	A->C	208	C->A	305	A->C/G->T	184	G->C
151	del	255	Stop at 343	301	C->G	269	Stop at 344	157	Stop at 179
180	G->A	290	Stop at 344	208	C->G	230	Stop at 238	289	Stop at 305
337	G->A	137	Stop at 145	237	G->C	227	Stop at 228	105	G->C
281	A->T	155	Fr.	243	G->C	363	G->A	215	Stop at 221
133	T->G	206	Ins	159	G->T	253	Fr.	179	Stop at 180
236	del	242	Ins	33	Ins	250	Stop at 344	128	Stop at 148
306	G->C	300	Fr.	192	del	259	C->A	256	Stop at 263
227	T->A	191	T->C	312	C->A	167	del	131	Stop at 169
138	G->C	191	C->A	321	Stop at 344	173	Stop at 246	143	Stop at 167
178	246 C->T/A-	246	T->A	283	>G	313	Fr.	158	C->T/G->T
213	>G	258	A->T	285	G->T	346	Ins	207	A->T
191	Stop at	143	Ins	283	C->A	293	Ins	245	Stop at 262

Tableau 3

Annexe B(9)

Codon	Event	Codon	Event	Codon	Event	Codon	Event	Codon	Event
207		207		207		207		207	
236	A->G	159	Fr.	216	del	224	A->T	258	Stop at 291
196	G->C	165	Stop at 178	318	C->T G->C/C-	158	Stop at 167	266	Stop at 271
156	G->A	168	Ins	119	>G/C->G	154	Stop at 167	284	Stop at 344
339	G->T	169	del	344	T->G	283	Stop at 304	285	ins
166	C->G	195	T->G	216	Stop at 246	284	C->A	290	ins
184	Stop at	246		191	C->T	240	G->C	176	G->T/C->T
279	Stop at	344		152	Ins	306	Stop at 344	47	C->T/C->T
140	C->T	168	A->C	210	A->T	151	C->T/C->T	49	Stop at 50
282	C->A	209	G->C	198	A->T	88	C->T/C->T	254	Stop at 260
162	T->A	209	G->A	273	Fr.	71	C->A	301	Stop at 305
251	C->T	214	T->G	138	del	162	T->C	311	Stop at 344
241	Stop at	246		166	Fr.	171	Stop at 173	180	A->G
248	G->A/G->A	265	Stop at 344	174	Ins	150	Stop at 163	324	Stop at 344
362	369	163	C->G	209	A->C	218	Stop at 219	244	Stop at 263
81	C->T	182	T->A	208	Stop at 215	218	ins	265	C->A
224	>A	211	Ins	285	Stop at 304	228	C->A	222	Stop at 246
197	T->G	236	T->A	286	G->C	248	Fr.	296	C->A
301	C->T	267	C->T	130	C->A	282	G->A/G->T	205	ins
157	G->C	148	G->A	201	Fr.	61	A->T	77	Fr.
282	G->A	133	Stop at 169	330	Stop at 344	75	T->C	86	C->T
276	C->A	174	Stop at 179	131	Stop at 148	76	G->A	112	C->T
250	C->T/C->T	239	A->C	236	Stop at 239	295	C->G	320	ins
279	G->T	244	Fr.	236	Ins	340	G->A	125	G->T
219	C->T/C->T/C->T	271	G->T	238	del	144	A->G	266	Fr.
152	>T	278	Fr.	313	Stop at 334	126	T->G	135	Stop at 148
157	C->T	171	G->A	240	Stop at 262	234	T->C/C->G	316	Stop at 336
158	C->T	229	G->A	266	del	165	Fr.	234	T->A/C->A
222	C->T/C->G/C->A	161	>A	276	Stop at 344	101	A->T	233	C->T/A->C
195	C->T	168	C->A	166	Ins	254	Stop at 344	206	T->A/G->T
291	G->T	241	T->C	150	Stop at 169	217	>A	226	C->A
192	A->T	154	Ins	222	C->A	169	Fr.	302	G->C
333	G->A	177	>T	218	T->A	167	A->T	260	C->G
369	del	202	G->C	228	C->T	148	A->C	220	A->G/T->A
203	G->A	250	>G	141	C->A	155	Stop at 180	233	Stop at 246
232	C->G	261	A->T	221	G->C	195	del	325	G->C
188	G->A	303	G->C	226	C->T	248	del	185	A->T
224	Fr.	182	G->A	215	T->C	275	T->A	186	Stop at 208
199	A->G	177	C->A	85	C->T	230	Stop at 239	184	Stop at 185
277	T->C	271	G->C	89	C->T	303	Stop at 344	187	Stop at 208
176	T->C	292	A->T	101	A->G	279	del	234	C->T
227	T->C	300	C->T	132	A->T/A-	153	Fr.	235	Stop at 239

Tableau 3

Annexe B(10)

Tableau 5

Annexe C

Accession #	Mutation Phenotype	Proven Position	CpG Position	Change	Exon 1 tracts	Androgen Binding				Family history	Reference
	Type	Exon	hot spot	Amino acid	Poly Gly #	Poly Bmax	Thermolabile k	k _d	Comments	External Genitalia	
0001 PAIS	Substitut.	1 Nterm	*	002	Glu \Rightarrow Lys GAA \Rightarrow AAA				1 nt insertion causing frame shift & stop in Codon 180 Also Phe89 Leu (TTT to CCT) mut. Somatic mutation	Male	Ambiguous
0002 CAIS	Insertion	1 Nterm	051	4	Gly \Rightarrow 0 GGC \Rightarrow +C		zero			Female	Normal
0003 Prostate cancer	Substitut.	1 Nterm	054	0523	Leu \Rightarrow Ser TTG \Rightarrow TCG					Male	Normal
0004 Laryngeal cancer	Deletion	1 Nterm	057		\Rightarrow				30 nt. deletion Somatic mutation	Male	Normal
0005 Prostate cancer	Substitut.	1 Nterm	057	532	Leu \Rightarrow Glu CTG \Rightarrow CAG		8		Somatic mutation	Male	Normal
0411 Mental Retard.	Deletion	1 Nterm	058		\Rightarrow				3 affected siblings - normal CAG = 23	Male	Normal
0006 Kennedy Syndrome	Insertion	1 Nterm	058-078		\Rightarrow		>40		Expansion of polyglutamine repeat	Male	Normal
0007 Prostate cancer	Deletion	1 Nterm	058-078		\Rightarrow				Contraction of poly Glu repeats (24 to 18) Somatic mutation	Male	Normal
0324 Prostate cancer	Deletion	1 Nterm	058-078		\Rightarrow				Deletion of 1 polyGln repeat (23-22) Somatic mutation	Male	Normal
0325 Prostate cancer	Insertion	1 Nterm	058-078		\Rightarrow				Insertion of 1 polyGln repeat (21-22) in 2 diff patients.Som mut	Male	Normal

Accession #	Mutation type	CpG Position	Change	Exon 1 tracts	Androgen Binding	Family history	Reference
		hot Amino acid	Amino acid	Poly Gln #	Poly Bmax	External rearing	
		spot Base	Base	k	k	Genitalia	
0495	Prostate cancer	Deletion 1 Nterm	058-078	=	18	Male	Wallin et al; J Pathology 189: 559-653, 1999
0008	CAIS	Substitut 1 Nterm *	060 540	Gln \Rightarrow Stop CAG \Rightarrow TAG	low	Normal	neg Zoppi et al; J Clin Inv 19:1105, 1993
0409	CAIS	Insertion 1 Nterm or deletion	060 542	Gln \Rightarrow Gln CAG \Rightarrow CAAG		Female	pos Zhu et al; J Clin Endocrinol & metab 84: 1590-1594, 1999
0009	Prostate cancer	Substitut 1 Nterm	064	Gln \Rightarrow Arg CAG \Rightarrow CGG		Male	Tilley et al; Clinical Cancer Res. 2: 277-285, 1996
0416	CAIS	Insertion 1 Nterm	085 550	Gln \Rightarrow Gln CAG \Rightarrow CAAG	25	Normal	Gottlieb et al; Hum Mutat 14: 527-539, 1999
0529	CWR22R Prost. CA Cell line	Substitut 1 Nterm	91 635	Glu \Rightarrow Asp CAG \Rightarrow GAG	19	Female	Chelski et al; The Prostate 47: 66-75, 2001
0417	CAIS	Deletion 1 Nterm	102 668	Pro \Rightarrow Pro CCAAC \Rightarrow CCG	25	Male	neg Gottlieb et al; Hum Mutat 14: 527-539, 1999
0010	Prostate cancer	Substitut 1 Nterm	112 698	Gln \Rightarrow His CAG \Rightarrow CAT		Normal	Tilley et al; Clinical Cancer Res. 2: 277-285, 1996
0418	CAIS	Substitut 1 Nterm	113 699	Gln \Rightarrow Stop CAA \Rightarrow TAA	27	Female	Gottlieb et al; Hum Mutat 14: 527-539, 1999
0417	CAIS	Deletion 1 Nterm	125 738	Pro \Rightarrow Pro CCAC \Rightarrow CCG	24	Normal	neg Gottlieb et al; Hum Mutat 14: 527-539, 1999
0011	CAIS	Deletion 1 Nterm	127 743	Arg \Rightarrow Arg AGAA \Rightarrow AGG	zero	Female	Batch et al; Hum Mol Genet 1:497, 1992
0436	CAIS	Deletion 1 Nterm	127 743	Arg \Rightarrow Arg AGAA \Rightarrow AGG		Female	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
0012	CAIS	Deletion 1 Nterm	140	=	=	Female	Hiori et al; Am J Med Genet 63: 218-222, 1996

Accession #	Mutation type	CpG Position	Change	Exon 1 tracts	Androgen Binding	External	Family history	Reference
		hot spot	Amino acid	Poly Amino acid	Poly Gly #	rearing	Genitalia	
		Exon	Base	Gln#	Bmax	kd	k	
0516 CAIS	Substitut	1 Nterm	153	Glu \Rightarrow Stop <u>GAG</u> \Rightarrow TAG			Female Normal	Copelli et al; Asian J Androl 1: 73-77, 1999
0523 CAIS	Substitut	1 Nterm	819	Glu \Rightarrow Stop <u>GAG</u> \Rightarrow TAG			Female Normal	Gacobini et al; Hum Genet 108; 176, 2001
0013 CAIS	Substitut	1 Nterm	153	Leu \Rightarrow Stop <u>TTA</u> \Rightarrow TGA			Female Normal	Hiori et al; Am J Med Genet 63: 218-222, 1996
0316 PAIS	Substitut	1 Nterm	876	Leu \Rightarrow Stop <u>TTA</u> \Rightarrow TGA	low	normal	Ambiguous	Holterius et al; J Clin Endocrinol. 82: 3584-3589, 1997
0420 CAIS	Substitut	1 Nterm	172	Leu \Rightarrow Stop <u>TTA</u> \Rightarrow TGA	26	zero	Female Normal	Gottlieb et al; Hum Mutat. 14: 527-539, 1999
0014 Prostate cancer	Substitut	1 Nterm	180	Lys \Rightarrow Arg <u>AAA</u> \Rightarrow AGA			Male	Tilley et al; Clinical Cancer Res. 2: 277-285, 1996
0319 CAIS	Substitut	1 Nterm	911	Gln \Rightarrow Arg <u>CAA</u> \Rightarrow CGA			Female Normal	Komori et al; J Obstetrics & Gynocol. 23: 277-81, 1997
0551 Prostate cancer	Substitut	1 Nterm	194				Male	Taplin et al; 37th meeting ASCO 20: Abstr. 1738 2001
0015 CAIS	Insertion	1 Nterm	943				Normal	neg Baich et al; Hum Mol Genet 1:497, 1992
0549 Prostate cancer	Substitut	1 Nterm	198	Glu \Rightarrow Gly <u>GAA</u> \Rightarrow GGA			Male	Taplin et al; 37th meeting ASCO 20: Abstr. 1738 2001
0395 Normal	Substitut	1 Nterm	955	Glu \Rightarrow 0	zero		Normal	Mack et al; Am J Human Genetics 53: 844-852, 1993
0437 CAIS	Deletion	1 Nterm	202				Female Normal	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
0376 MAIS	Substitut	1 Nterm	968	Glu \Rightarrow Glu <u>GAA</u> \Rightarrow GAG			Male	Wang et al; Clinical Genetics 54: 185-192, 1998
			977	Ser \Rightarrow Arg <u>AGC</u> \Rightarrow AGG				
			205	Arg \Rightarrow Lys <u>AAAG</u> \Rightarrow AAG	zero			
			985					
			210	Arg \Rightarrow Arg <u>AGG</u> \Rightarrow AGA				
			992					

Accession #	Mutation type	Proven CpG Position hot spot	Amino acid change	Exon 1 tracts Poly	Androgen Binding	Comments	Sex of rearing	External Genitalia	Family history	Reference	
		Exon	Domain	Base	Poly	Thermolabile	Gly #	Bmax	k		
0328	Normal	Substitut	1 Nterm	211 995	Glu \Rightarrow Glu GAG \Rightarrow GAA			Silent mutation - polymorphism detected in 8% popul.	Male	Normal	Batch et al; Hum Mol Genet 1:497, 1992
0329	Normal	Substitut	1 Nterm	211 995	Glu \Rightarrow Glu GAG \Rightarrow GAA			Silent mut,polymorph -detected in 14% of X chromosomes	Male	Normal	Hiori et al; Eur J Pediatr 153: 317-321, 1994
0330	Normal	Substitut	1 Nterm	211 995	Glu \Rightarrow Glu GAG \Rightarrow GAA			Silent mutation polymorphism	Male	Normal	Lu et al; Clinical Genetics 49: 323-324, 1996
0377	Normal	Substitut	1 Nterm	211 995	Glu \Rightarrow Glu GAG \Rightarrow GAA			Silent mutation polymorphism	Male	Normal	Wang et al; Clinical Genetics 54: 185-192, 1998
0396	Normal	Substitut	1 Nterm	211 995	Glu \Rightarrow Glu GAG \Rightarrow GAA			Silent mut,polymorph detected in 10% of X chromosomes	Male	Normal	Macke et al; Am J Human Genetics 53: 844-852, 1993
0378	MAIS	Substitut	1 Nterm	211 995	Glu \Rightarrow Glu GAG \Rightarrow GAA			Silent mutation polymorphism - 4 patients with infertility	Male	Normal	Wang et al; Clinical Genetics 54: 185-192, 1998
0421	CAIS	Substitut	1 Nterm	211 995	Glu \Rightarrow Glu GAG \Rightarrow GAA	22	24 v low	Silent mutation -negligible level of mRNA & hAR	Female	Normal	Gottilieb et al; Hum Mutat. 14: 527-539, 1999
0422	CAIS	Substitut	1 Nterm	211 995	Glu \Rightarrow Glu GAG \Rightarrow GAA	21	23 normal	Silent mutation -	Female	Normal	Gottilieb et al; Hum Mutat. 14: 527-539, 1999
0423	PAIS	Substitut	1 Nterm	211 995	Glu \Rightarrow Glu GAG \Rightarrow GAA	23	24 v low	Silent mutation -	Male	Ambiguous	Gottilieb et al; Hum Mutat. 14: 527-539, 1999
0424	PAIS	Substitut	1 Nterm	211 995	Glu \Rightarrow Glu GAG \Rightarrow GAA	19	24 normal high	Silent mutation -	Male	Ambiguous	Gottilieb et al; Hum Mutat. 14: 527-539, 1999
0425	MAIS	Substitut	1 Nterm	211 995	Glu \Rightarrow Glu GAG \Rightarrow GAA	20	16 normal high	Silent mutation -	Male	Normal	Gottilieb et al; Hum Mutat. 14: 527-539, 1999
0379	MAIS	Substitut	1 Nterm	* 214 1005	Gly \Rightarrow Arg GGG \Rightarrow AGG	27	23 normal norm	severe oligospermia- 20% lower transactivation	Male	Normal	Wang et al; Clinical Genetics 54: 185-192, 1998
0380	Normal	Substitut	1 Nterm	214 1005	Gly \Rightarrow Arg GGG \Rightarrow AGG				Male	Normal	Wang et al; Clinical Genetics 54: 185-192, 1998

Accession #	Phenotype	Mutation type	CpG Position	Change Amino acid	Exon 1 tracts	Androgen Binding	Family history	Reference
			hot spot	Base	Poly Gly #	Poly Bmax	External rearing	Genitalia
			Nterm	215	Ala \Rightarrow Gly GCT \Rightarrow GGCT	Kd k	Female	Normal
0016	CAIS	Insertion	1					
0548	Prostate cancer	Substitut	1 Nterm	222	Asn \Rightarrow Asp <u>AAT</u> \Rightarrow <u>GAT</u>		Male	Normal
0531	MAIS	Substitut	1 Nterm *	1026	Asn \Rightarrow Lys AAC \Rightarrow		Male	Normal
0350	CAIS	Substitut	1 Nterm *	233	Leu \Rightarrow Pro CTG \Rightarrow CCG		Female	Normal
0017	Prostate cancer	Substitut	1 Nterm	1061	Met \Rightarrow Thr ATG \Rightarrow ACG		Male	Normal
0018	Prostate cancer	Substitut	1 Nterm	1126	Pro \Rightarrow Ser CCA \Rightarrow TCA		Female	Normal
0019	CAIS	Deletion	1 Nterm	266	zero		Male	Normal
0556	Prostate cancer	Substitut	1 Nterm	1149	Gly \Rightarrow Gly GGAA \Rightarrow GGG		Female	Normal
0550	Prostate cancer	Substitut	1 Nterm	1178	Ser \Rightarrow Arg AGC \Rightarrow AGA		Male	Normal
0398	Prostate cancer	Substitut	1 Nterm	296	TCC \Rightarrow CCC		Female	Normal
0020	CAIS	Substitut	1 Nterm	1250	Ser \Rightarrow Pro TCC \Rightarrow CTG		Male	Normal
0021	CAIS	Substitut	1 Nterm	334	Pro \Rightarrow Leu CTG \Rightarrow CTG		Female	Normal
0338	MAIS	Substitut	1 Nterm *	1353	Glu \Rightarrow Stop GAG \Rightarrow TAG	21	Female	Normal
				1359		23		
				1381				
				1419				
				371				
				1474				
				390				
				1530				

1 nt insertion causing frameshift & stop in Codon 232				
Treated with flutamide also Threonine 87 Ala - somatic mutation				
* Azospermia - transactivation 46% of wt				
* Also Gly820 Ala mut. Extra mutation causes greater thermolability				
Also Leu574 Pro (CTG to CCC) mut.				
Somatic mutation				
Somatic mutation				
1 nt deletion causing frameshift & stop in Codon 301				
Poor differentiation of Male Cap. Germline mutation ?				
Treated with flutamide Male somatic mutation Stage 3 tumor				
Somatic mutation				
Stage 3 tumor				
low specific binding with MB only-mRNA < 20%				
Somatic instability of polyglycine tract				
Oligospermia				

Accession #	Mutation type	CpG proven hot spot	Position	Change	Exon 1 tracts	Androgen Binding	External history	Family history	Reference
		Eson	Domain	Amino acid	Poly Poly	Theriotable	rearing	Genitalia	
				Base	Gly#	Bmar	Kd	k	
0504 MAIS	Substitut	1	*	390	<u>CCG</u> ⇒ <u>TCG</u>		Oligospermia	Male	Normal
		Nterm		1530	Pro ⇒ Ser				Hiori et al; J Clin Endocrinol & Metab 85: 2810-2815, 2000
0547 Prostate cancer	Substitut	1	Nterm	390	Pro ⇒ Leu				Taplin et al; 37th meeting ASCO 20: Abstr, 1738 2001
				1531	<u>CCG</u> ⇒ <u>CTG</u>				
0022 CAIS	Substitut	1	Nterm	390	Pro ⇒ Arg	20	24	Normal	pos Gotlieb et al; Hum Mutat. 14: 527-539, 1999
				1531	<u>CCG</u> ⇒ <u>CGG</u>				
0426 CAIS	Substitut	1	Nterm	403	Gln ⇒ Stop	28	23	Normal	Gotlieb et al; Hum Mutat. 14: 527-539, 1999
				1569	<u>CAG</u> ⇒ <u>TAG</u>				
0438 CAIS	Deletion	1	Nterm	461	Gly ⇒ Gly		zero	Normal	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
				1735	<u>GGAC</u> ⇒ <u>GGG</u>				
0410 CAIS	Deletion	1	Nterm	473	Glu ⇒ Gly	24	22	Normal	Thiele et al; J Clin Endocrinol & Metab 84: 1751-1753, 1999
				1779	<u>GAA</u> <u>G</u> ⇒ <u>GGC</u>				
0427 CAIS	Deletion	1	Nterm	473	Glu ⇒ Gly	26	26	Normal	Gotlieb et al; Hum Mutat. 14: 527-539, 1999
				1779	<u>G</u> <u>A</u> <u>G</u> ⇒ <u>GGC</u>				
0024 CAIS	Substitut	1	Nterm	480	Tyr ⇒ Stop	15	15	Normal	Boehmer et al; J Clin Endocrinol & Metab 86: 4151-4160, 2001
				1802	<u>TAC</u> ⇒ <u>TAA</u>				
0546 CAIS	Deletion	1	Nterm	487	Gln ⇒ Stop			Normal	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
				1821	<u>CAG</u> ⇒ <u>TAG</u>				
0439 CAIS	Deletion	1	Nterm	488	Gly ⇒ 0		low	Normal	Boehmer et al; J Clin Endocrinol & Metab 86: 4151-4160, 2001
				1824	⇒				
0440 CAIS	Substitut	1	Nterm	491	Gly ⇒ Ser		low	Female	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
				1833	<u>GGC</u> ⇒ <u>AGC</u>				
0025 CAIS	Substitut	1	Nterm	502	Trp ⇒ Stop			Normal	Bruegenwirth et al; J Steroid Biochem Mol Biol 58: 569-575, 1996
				1867	<u>TGG</u> ⇒ <u>TAG</u>				
0339 MAIS	Substitut	1	Nterm	* 511	Val ⇒ Val			Normal	Hiori et al; 80th US Endo Soc Meeting, Abstr P2-38, 1998
				1895	<u>GTG</u> ⇒ <u>GTA</u>				

Pathogenicity

proven

Eson

hot spot

Domain

Amino acid

Base

Change

Exon 1 tracts

Androgen Binding

Comments

Oligospermia

Male

Normal

External history

Family history

Reference

Accession #	Mutation type	CpG Position	Change Amino acid	Exon 1 tracts	Androgen Binding	Sex of rearing	External Genitalia	Family history	Reference
Phenotype	Domain	hot spot Base	Amino acid Base	Poly Gly #	Poly Bmax	Kd	k		
0026	Prostate cancer	Substitut 1 Nterm	528 1945	Asp \Rightarrow Gly GAT \Rightarrow GGT			Somatic mutation	Male	Tilley et al; Chemical Cancer Res. 2: 277-285, 1996
0027	CAIS	Substitut 1 Nterm	534 1964	Tyr \Rightarrow Stop TAC \Rightarrow TAG	zero			Female	McPhaul et al; FASEB J 5:2910-15, 1991
0028	CAIS and mental retardation	Deletion 1-8		\Rightarrow	zero		Termini not yet defined	Female	Trifiro et al; Mol Cell Endocrinol 75:37-47, 1991
0029	CAIS	Deletion 1-8		\Rightarrow	zero			Female	Quigley et al; J Clin Endocrinol Metab 74:927, 1992
0030	CAIS	Deletion 1-8		\Rightarrow	zero			Female	Hiort et al; Am J Med Genet. 63: 218-22, 1996
0435	CAIS	Deletion 1-8		\Rightarrow	zero			Female	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
0031	CAIS	Deletion 2		\Rightarrow	\Rightarrow			Female	Quigley et al; J Cell Biochem Suppl 16C; Abstr L323, 1992
0441	CAIS	Duplicat 2		\Rightarrow	\Rightarrow		Duplication of exon 2	Female	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
0032	PAIS	Substitut 2	547 2003	Leu \Rightarrow Phe TTG \Rightarrow TTT	low	high	Also has Trp741Cys (TGG to TGT) mutation	Male	Kari et al; 76th US Endo Soc Meeting, Abstr 1735, 1994
0357	Prostate cancer	Deletion 2	547 2003	Leu \Rightarrow Leu TTG \Rightarrow TTC			Frameshift - somatic mutation	Male	Takahashi et al; Cancer Research 55: 1621-1624, 1995
0033	MAIS	Substitut 2	548 2004	Pro \Rightarrow Ser CCC \Rightarrow TCC			Distal hypospadias, variable penetrance in family members	Male	Near-normal male
0023	CAIS	Duplicat 2		\Rightarrow	\Rightarrow		Duplication of 8nt # 2011-2018 frameshift & stop in Codon 563	Female	Sutherland et al; J of Urology 156: 828-831, 1996
0358	Prostate cancer	Deletion 2	554 2023	Pro \Rightarrow Pro CCA \Rightarrow CCC			Frameshift - somatic mutation	Male	Lumbroso et al; 10th Int Cong of Endocrinol, Abstr P1-182, 1996
									Takahashi et al; Cancer Research 55: 1621-1624, 1995

Accession #	Mutation type	Proven Exon	CPG Position hot spot	Change Amino acid	Exon 1 tracts Poly	Androgen Binding	Comments	Sex of rearing	External Genitalia	Family history	Reference
Phenotype	Domain	2	554 2023	Pro ⇒ Pro CCΔA ⇒ CCC			Frame shift - somatic mutation	Male	Normal	Takahashi et al; Cancer Research 55: 1621-1624, 1995	
0359 CAIS	Prostate cancer	Substitut 2 DBD	*	559 2038	Cys ⇒ Tyr TGC ⇒ TAC		normal normal	Female	Normal	Zoppi et al; Mol Endocrinol 6:409, 1992 neg	
0034 PAIS	Substitut 2 DBD	2064	568	Gly ⇒ Trp GGG ⇒ TGG			normal normal	Female	Normal	Lobaccaro et al; Clin Endocrinol, 40:297, 1994	
0035 PAIS	Substitut 2 DBD	2065	568	Gly ⇒ Val GGG ⇒ GTG			normal	Severe hypospadias	Male	Allera et al; J Clin Endocrinol & Metab 80: 2697-2699, 1995	
0036 PAIS	Substitut 2 DBD	2065-6	568	Gly ⇒ Val GGG ⇒ GTT			normal normal		Ambiguous	Chang et al; 73rd US Endo Soc Meeting, Abstr 28, 1991	
0037 PAIS	Substitut 2 DBD	2073	571	Tyr ⇒ His TAT ⇒ CAT	21			Male	Ambiguous	Boehmner et al; J Clin Endocrinol & Metab 86: 4151-4160, 2001	
0545 PAIS	Substitut 2 DBD	2073	571	Tyr ⇒ His TAT ⇒ CAT		DHT therapy effective	Male	Ambiguous	Foresti et al; Am J Med Genet 107: 259-260, 2002		
0558 PAIS	Substitut 2 DBD	*	571	Tyr ⇒ Cys TAT ⇒ TGT			normal	Female	Normal	Kornai et al; Arch Gynecol & Obstetrics 26: 95-100, 1998	
0332 CAIS	Substitut 2 DBD	*	571	Tyr ⇒ Cys TAT ⇒ TGT			normal	Defective DNA binding & transactivation	Female	neg Bruggenwirth et al; J Steroid Biochem Mol Biol 58: 569-575, 1996	
0038 CAIS	Substitut 2 DBD	2080	573	Ala ⇒ Asp GCT ⇒ GAT			normal	Somatic Mutation	Male	Marcelli et al; Cancer Research 60: 944-949, 2000	
0489 Prostate Cancer	Substitut 2 DBD	2085	575	Thr ⇒ Ala ACA ⇒ GCA			normal	Defective DNA binding & transactivation	Female	pos Zoppi et al; Mol Endocrinol 6:409, 1992	
0039 CAIS	Substitut 2 DBD	*	576	Cys ⇒ Arg TGT ⇒ CGT			normal normal	normal	Female	Chang et al; 73rd US Endo Soc Meeting, Abstr 28, 1991	
0040 CAIS	Substitut 2 DBD	2088	576	Cys ⇒ Phe TGT ⇒ TTT			normal normal	Female	Hooper et al; 81st US Endo Soc Meeting, Abstr P2-145, 1999		
0407 CAIS	Substitut 2 DBD	2089	576	Cys ⇒ Phe TGT ⇒ TTT			Lack of DNA binding - 17 members of same family	Female	Normal		

Accession #	Mutation type	Proven hot Amino acid	Position spot	CPG Position	Change	Exon 1 tracts	Androgen Binding Poly	Comments	Sex of rearing	External Genitalia	Family history	Reference
Phenotype		Amino acid	Base	Gln #	Gly #	Bmax	Kd	k				
0554 PAIS	Substitut 2	*	DBD	577 2091	Gly \Rightarrow Arg <u>GGA</u> \Rightarrow <u>AGA</u>	normal	normal	normal	Alters affinity & selectivity of AR-ARE interactions	Male		Nguyen et al; Mol Endocrinol 15:1790-1802, 2001
0509 PAIS	Substitut 2	*	DBD	578 2095	Ser \Rightarrow Thr <u>AGC</u> \Rightarrow <u>ACC</u>	normal	normal	partial transactivation in COS cells		Ambiguous		Giverman et al; Hormone Research 53: 83-88, 2000
0041 CAIS	Substitut 2	*	DBD	579 2098	Cys \Rightarrow Tyr <u>TGC</u> \Rightarrow <u>TAC</u>	normal	normal	Reduced transcription & DNA binding	Female	Normal		Sultan et al; J Steroid Biochem & Mol Biol 46: 519, 1993
0042 CAIS	Substitut 2	*	DBD	579 2098	Cys \Rightarrow Phe <u>TGC</u> \Rightarrow <u>TTC</u>	zero	normal	Single nt. deletion causing frameshift & stop in Codon 619	Female	Normal		Imasaki et al; Mol & Cell Endocrinol 120: 15-24, 1996
0043 CAIS	Deletion 2		DBD	579 2099	Cys \Rightarrow Cys <u>TGAC</u> \Rightarrow <u>TGA</u>	zero	normal	Somatic mutation	Male	Normal		Imai et al; Annals of Clin Biochem, 32: 482-486, 1995
0487 Prostate Cancer	Substitut 2	*	DBD	580 2101	Lys \Rightarrow Arg <u>AAG</u> \Rightarrow <u>AGG</u>	normal	normal		Female	Normal		Marcelli et al; Cancer Research 60: 944-949, 2000
0044 CAIS	Substitut 2	*	DBD	581 2103	Val \Rightarrow Phe <u>GTC</u> \Rightarrow <u>TTC</u>	23	low	3 nt. del - Phe 582 del 2nt. from 581 int. 582. 581 still Val	Female	Normal		Lumbroso et al; Fertil Steril, 60:814, 1993
0045 CAIS	Deletion 2	*	DBD	582 2104-6	Phe \Rightarrow 0 <u>CAT</u> \Rightarrow <u>GTC</u>	22	normal	3 nt. del - of Phe	Female	Normal		Beitel et al; Hum Mol Genet, 3:21, 1994
0442 CAIS	Deletion 2		DBD	582 2106-8	Phe \Rightarrow 0 <u>TTC</u> \Rightarrow	normal	normal		Female	Ambiguous		Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
0047 PAIS	Substitut 2	*	DBD	582 2107	Phe \Rightarrow Ser <u>TTC</u> \Rightarrow <u>TCC</u>	zero	normal	Reduced transcription & DNA binding	Female	Ambiguous		Hiori et al; Hum Mol Genet 3: 1163-1166, 1994
0046 PAIS	Substitut 2	*	DBD	582 2107	Phe \Rightarrow Tyr <u>TTC</u> \Rightarrow <u>TAC</u>	normal	normal		Female	Normal		Imasaki et al; Mol & Cell Endocrinol 120: 15-24, 1996
0048 CAIS	Substitut 2		DBD	585 2116	Arg \Rightarrow Lys <u>AGA</u> \Rightarrow <u>AAA</u>	zero	zero	Similar 2-8 deletion in 2 different families	Female	Normal		Sultan et al; J Steroid Biochem & Mol Biol 46: 519, 1993
0049 CAIS	Deletion 2-8											Jakubczka et al; Human Mutation 9: 57-61, 1997

Accession #	Phenotype	Mutation type	CpG Position	Change hot Amino acid	Exon 1 tracts	Androgen Binding	External Genitalia	Family history	Reference
		Domain	spot Base	Amino acid	Poly Gly #	Bmax	Kd		
0050	CAIS	Deletion	3 DBD *		⇒	high normal	Female	Normal	pos Quigley et al; Mol Endocrinol 6:1103, 1992
0051	CAIS	Deletion	3 DBD		⇒	zero	Female	Normal	pos Hiori et al; Am J Med Genet 63: 218-22, 1996
0443	CAIS	Deletion	3 DBD		⇒		Female	Normal	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
0444	CAIS	Deletion	3 DBD		⇒		Female	Normal	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
0488	Prostate Cancer	Substitution	3 DBD	586 2119	Ala⇒Val GCC⇒GTC	Somatic mutation	Male	Normal	Marcelli et al; Cancer Research 60: 944-949, 2000
0490	Prostate Cancer	Substitution	3 DBD	587 2121	Ala⇒Ser GCT⇒TCT	Somatic mutation	Male	Normal	Marcelli et al; Cancer Research 60: 944-949, 2000
0052	CAIS	Substitution	3 DBD *	590 2130	Lys⇒Stop AAA⇒TAA	zero	Female	Normal	Marcelli et al; Mol Endocrinol 4: 1105, 1990
0053	PAIS	Substitution	3 DBD *	596 2148	Ala⇒Thr GCC⇒ACC	normal normal	Male	Ambiguous	Gast et al; Mol & Cell Endocrinol 111: 93-98, 1995
0434	PAIS	Substitution	3 DBD *	596 2148	Ala⇒Thr GCC⇒ACC	normal normal	Male	Ambiguous	Holterius et al; Pediatric Res 46: 684-690, 1999
0510	PAIS	Substitution	3 DBD *	596 2148	Ala⇒Thr GCC⇒ACC	normal	Male	Ambiguous	Giwerzman et al; Hormone Research 53: 83-88, 2000
0054	PAIS	Substitution	3 DBD *	597 2151	Ser⇒Gly AGC⇒GGC	normal normal	Female	Ambiguous	Zoppi et al; Mol Endocrinol 6:409, 1992
0390	PAIS	Substitution	3 DBD	597 2152	Ser⇒Thr AGC⇒ACC	normal	Male	Ambiguous	Nordenkjold et al; Urological Res. 27: 49-55, 1999
0055	CAIS	Substitution	3 DBD	601 2164	Cys⇒Phe TGC⇒TTC	normal	Female	Normal	pos Balduzzi et al; Hum Mol Genet 3:1169-70 1994

Accession #	Phenotype	Mutation type	Proven Cys Position	Change Amino acid	Exon 1 tracts	Androgen Binding Poly	External rearing	Family history	Reference
			hot spot	Base	Gly#	Bmax	Genitalia		
			Exon	Domain	Gln#	Kd	k		
0056	PAIS	Substitut	3	DBD	604 2172	Asp⇒Tyr <u>GAT</u> ⇒ <u>TAT</u>			Hior et al; Hum Mol Genet 3: 1163-1166 1994.
0057	CAIS	Substitut	3	DBD	* 607 2181	Arg⇒Stop <u>CGA</u> ⇒ <u>TGA</u>	zero	Female Normal	Brown et al; Eur J Pediatr (Suppl 2) 152; S62, 1993
0511	CAIS	Substitut	3	DBD	* 607 2181	Arg⇒Stop <u>CGA</u> ⇒ <u>TGA</u>	zero	Female Normal	Giverneman et al; Hormone Research 53: 83-88, 2000
0058	PAIS and breast cancer	Substitut	3	DBD	* 607 2182	Arg⇒Gln <u>CGA</u> ⇒ <u>CAA</u>		Male Ambiguous	Wooster et al; Nat Genet 2:132, 1992
0059	PAIS	Substitut	3	DBD	* * 607 2182	Arg⇒Gln <u>CGA</u> ⇒ <u>CAA</u>	normal normal	Male Ambiguous	pos Weidemann et al; Clin Endocrinology 45:733-739, 1996
0060	PAIS	Substitut	3	DBD	* 607 2182	Arg⇒Gln <u>CGA</u> ⇒ <u>CAA</u>		Female Ambiguous	Hior et al; Am J Med Genet 63: 218-222, 1996
0347	PAIS	Substitut	3	DBD	* 607 2182	Arg⇒Gln <u>CGA</u> ⇒ <u>CAA</u>		Male Ambiguous	Weidemann et al; I Clin Endocrinol & Metab 83: 1173-1176, 1998
0393	PAIS	Substitut	3	DBD	* 607 2182	Arg⇒Gln <u>CGA</u> ⇒ <u>CAA</u>	Patient successfully treated with testosterone enanthate	Female Normal	Chen et al; Human Reproduction 14: 664-670, 1999
0412	CAIS	Deletion	3	DBD	608 2184	⇒ ⇒	Germ cell tumour - in undescended testis	Female Normal	Chen et al; Fertility & Sterility 72: 170-173, 1999
0061	PAIS	Substitut	3	DBD	608 2185	Arg⇒Lys <u>AGG</u> ⇒ <u>AAG</u>	Mullerian ducts pres. 5nt. del frameshift & stop in codon 619	Male Ambiguous	Saunders et al; Clin Endocrinol 37:214, 1992
0062	PAIS and breast cancer	Substitut	3	DBD	608 2185	Arg⇒Lys <u>AGG</u> ⇒ <u>AAG</u>	normal normal	Male Ambiguous	Lobaccaro et al; Hum Mol Genet, 2:1799, 1993
0322	PAIS	Substitut	3	DBD	608 2185	Arg⇒Lys <u>AGG</u> ⇒ <u>AAG</u>	normal normal	Male Ambiguous	Tincello et al; Clinical Endocrinology 46: 497-506, 1997
0352	PAIS	Substitut	3	DBD	608 2185	Arg⇒Lys <u>AGG</u> ⇒ <u>AAG</u>	Defective nuclear localization	Male Ambiguous	Hior et al; J Pediatrics 132: 939- 943, 1998

Accession #	Mutation type	Eon	Proven QPG Position hot Amino acid	Change Amino acid	Exon 1 tracts Poly	Androgen Binding	External history	Family history	Reference
Phenotype	Domain	spot Base	Base	Gly#	Bmax	Kd	Comments	rearing Genitalia	
0481 PAIS	Substitut 3 DBD	*	608 2185	Arg=>Lys A <u>GG</u> => <u>AAG</u>	normal high				Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
0063 PAIS	Substitut 3 DBD	*	610 2190	Asn=>Thr A <u>AT</u> => <u>ACT</u>	normal low			Male Ambiguous	Weidemann et al; Clin Endocrinology 45: 733-739, 1996
0496 CAIS	Substitut 3 DBD	*	611 2193	Cys=>Tyr T <u>GT</u> => <u>TAT</u>				Female Normal	Mockel et al; Geburtsh. und Frauen. 60: 232-234, 2000
0064 CAIS	Deletion 3 DBD	*	615 2204-6	Arg=>0 T <u>CA</u> T <u>CG</u> =>TGT	27	23	3 nt. del -Arg615 del, Int. from 614. 2nt. 615. 614 still Cys	Female Normal	Beitel et al; Hum Mol Genet, 3:21, 1994
0512 CAIS	Substitut 3 DBD	*	615 2205	Arg=>Gly C <u>GT</u> => <u>GGT</u>			no transactivation in COS cells	Female Normal	Giwenzman et al; Hormone Research 53: 83-88, 2000
0065 CAIS	Substitut 3 DBD	*	615 2206	Arg=>His C <u>GT</u> => <u>CAT</u>	25	23	low high	Female Normal	Beitel et al; Hum Mol Genet, 3:21, 1994
0066 CAIS	Substitut 3 DBD	*	615 2206	Arg=>His C <u>GT</u> => <u>CAT</u>			normal normal	Female Normal	Mojszowicz et al; Mol Endocrinol 7:861-869, 1993
0067 CAIS	Substitut 3 DBD	*	615 2206	Arg=>His C <u>GT</u> => <u>CAT</u>				Female Normal	Brown et al; Eur J Pediatr 152 (Suppl 2): S62, 1993
0068 CAIS	Substitut 3 DBD	*	615 2206	Arg=>His C <u>GT</u> => <u>CAT</u>				Female Normal	Ris-Stalpers et al; Pediatr Res 36: 227, 1994
0348 CAIS	Substitut 3 DBD	*	615 2206	Arg=>His C <u>GT</u> => <u>CAT</u>				Female Normal	Cabral et al; Brazilian J Mol & Biol Res. 31: 775-778, 1998
0353 CAIS	Substitut 3 DBD	*	615 2206	Arg=>His C <u>GT</u> => <u>CAT</u>				Female Normal	Hiori et al; J Pediatrics 132: 939-943, 1998
0354 CAIS	Substitut 3 DBD	*	615 2206	Arg=>His C <u>GT</u> => <u>CAT</u>				Female Normal	Hiori et al; J Pediatrics 132: 939-943, 1998
0069 PAIS	Substitut 3 DBD	*	615 2206	Arg=>His C <u>GT</u> => <u>CAT</u>				Male Ambiguous	Hiori et al; Am J Med Genet 63: 218-222, 1996

Accession #	Phenotype	Mutation type	Proven CpG hot spot	Position	Change	Exon 1 tracts		Androgen Binding Poly	Comments	Sex of rearing	External Genitalia	Family history	Reference	
						Exon	Domain	Base	Gly #	Bmax	Kd	k		
0070 PAIS		Substitut 3	DBD	615 2206	Arg⇒Pro CGT⇒CCT								Male	Ambiguous
0445 CAIS	Substitut 3	DBD	615 2206	Arg⇒Pro CGT⇒CCT		normal high							Female	Normal
0071 PAIS	Substitut 3	*	DBD	616 2209	Leu⇒Arg CTT⇒CGT								Female	Ambiguous
0072 CAIS	Substitut 3	DBD	616 2209	Leu⇒Pro CTT⇒CCT		normal normal							Female	Normal
0073 CAIS	Substitut 3	*	DBD	616 2209	Leu⇒Pro CTT⇒CCT								Female	Normal
0074 PAIS	Substitut 3	*	DBD	617 2212	Arg⇒Pro CGG⇒CCG								Female	Ambiguous
0075 PAIS	Substitut 3	*	DBD	617 2212	Arg⇒Pro CGG⇒CCG	normal normal		high		Mutation also at 597			Female	Normal
0431 Prostate cancer	Substitut 3	*	DBD	619 2218	Cys⇒Tyr TGT⇒TAT	low		high		Inactive transcription Does not bind DNA			Male	Normal
0491 Prostate cancer	Substitut 3	*	DBD	619 2218	Cys⇒Tyr TGT⇒TAT					somatic mutation			Male	Normal
0076 CAIS	Deletion	3-8			⇒								Female	Normal
0077 MAIS	Deletion	4	LBD		⇒								Male	Normal
0078 CAIS	Deletion	4	LBD	*	⇒								Female	Normal
0306 Prostate cancer	Substitut 4			629 2248	Arg⇒Gln CGG⇒CAG								Male	Normal
													13 nt deletion causing frameshift and stop at codon 783	
													1 of 6 of hormone-independent D2 patients- somatic mut	

Accession #	Mutation type	Proven hot spot	CpG Position	Change	Exon 1 tracts	Poly Amino acid	Poly Gly #	Androgen Binding	External rearing	Family history	Reference
Phenotype	Domain	Base	Exon	Base	Base	Base	Bmax	Thermostable	Genitalia		
0079	Prostate cancer	Substitut 4	630	Lys⇒Thr					Male	Normal	Tilley et al; Clinical Cancer Res. 2:277-285, 1996
0400	CAIS	Substitut 4 LBD	2251	AAG⇒ACG					Female	Normal	Yagashi et al; Tohoku J of Exp Med 187: 263-272, 1999
0429	CAIS	Substitut 4 LBD	640	Gln⇒Stop					Female	Normal	Uehara et al; Am J Med Genet. 86: 107-111, 1999
0080	PAIS	Substitut 4 LBD	2280	CAG⇒TAG					Male	Ambiguous	Hjort et al; Am J Med Genet. 63: 218-222, 1996
0334	Normal	Substitut 4 LBD	640	Gln⇒Stop					Male	Normal	Nordenskjold et al; Human Mutation. 11: 339, 1998
0081	Prostate cancer	Substitut 4 LBD	645	CAG⇒TAG					Male	Normal	Taplin et al; New England J Med 332: 1393-1398, 1995
0555	PAIS	Substitut 4 LBD	2296	Ala⇒Asp					Male	Ambiguous	Lundberg et al; J Clin Endocrinol & Metab 87: 2023-2028, 2002
0517	CAIS	Substitut 4 LBD	645	GCT⇒GAT					Female	Normal	Chavez et al; Clin Genet 59: 185-188, 2001
0082	PAIS	Substitut 4 LBD	647	Ala⇒Asp					Male	Ambiguous	Pinsky et al; Clin Inv Med 15: 456, 1992
0083	Prostate cancer	Substitut 4 LBD	2302	GCT⇒GAT					Female	Normal	Tilley et al; Clinical Cancer Res. 2: 277-285, 1996
0084	PAIS	Substitut 4 LBD	653	Ser⇒Asn	20				Male	Ambiguous	Hjort et al; Am J Med Genet. 63: 218-222, 1996
0085	Prostate cancer	Substitut 4 LBD	2319	AGC⇒AAC					Male	Normal	Tilley et al; Clinical Cancer Res. 2: 277-285, 1996
0086	CAIS	Substitut 4 LBD	657	Glu⇒Stop					Female	Normal	Belsham et al; Human Mutation 5: 28-33, 1995
				CAG⇒AAAG							pos
				Glu⇒Stop							
				CAG⇒TAG							
				Ile⇒Asn	22						
				ATT⇒AAT							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC							
				Ile⇒Asn	22						
				ATC⇒AAC		</					

Accession #	Phenotype	Mutation type	CpG Position	Change	Exon 1 tracts		Androgen Binding	Comments	Sex of rearing	External Genitalia	Family history	Reference
					hot spot	Exon	Amino acid	Base	Poly Gly #	Bmax	Kd	
0087	CAIS	Substitut	4 LBD	681 2403	Glu \Rightarrow Lys <u>GAG</u> \Rightarrow <u>AAG</u>				Female	Normal		Hjort et al; J Clin Endocrinol Metab 77: 262-266, 1993
0394	CAIS	Substitut	4 LBD	681 2403	Glu \Rightarrow Lys <u>GAG</u> \Rightarrow <u>AAG</u>				Female	Normal		Chen et al; Human Reproduction 14: 664-670, 1999
0534	PAIS	Substitut	4 LBD	682 2406	Pro \Rightarrow Thr <u>CCA</u> \Rightarrow <u>ACA</u>	low			Female	Ambiguous		Chavez et al; J Hum Genet 46: 560-565, 2001
0089	Prostate cancer	Substitut	4 LBD	683 2410	Gly \Rightarrow Ala <u>GGT</u> \Rightarrow <u>GCT</u>				Male	Normal		Koivisto et al; Cancer Research 57: 314-319, 1997
0090	CAIS	Substitut	4 LBD	684 2412	Val \Rightarrow Ile <u>GTA</u> \Rightarrow <u>ATA</u>	zero			Female	Normal		Mebarki et al; 75th US Endo Soc Meeting, Abstr 602, 1993
0091	PAIS	Substitut	4 LBD	686 2418	Cys \Rightarrow Arg <u>TGT</u> \Rightarrow <u>CGT</u>				Male	Ambiguous		Hjort et al; Am J Med Genet 63: 218-222, 1996
0092	PAIS	Substitut	4 LBD	687 2422	Ala \Rightarrow Val <u>GCT</u> \Rightarrow <u>CTT</u>				Male	Ambiguous		Hjort et al; Am J Med Genet 63: 218-222, 1996
0093	CAIS	Substitut	4 LBD	688	Gly \Rightarrow Glu GGA \Rightarrow				Female	Normal		Hjort et al; J Pediatrics 132: 939- 943, 1998
0446	CAIS	Substitut	4 LBD	688 2424	Gly \Rightarrow Stop <u>GGA</u> \Rightarrow <u>TGA</u>				Female	Normal		Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
0094	PAIS	Deletion	4 LBD	690 2428-30	Asp \Rightarrow 0 ACG \Rightarrow 0							Schwartz et al; Horm Res 41:117 Abstr 244, 1994
0095	CAIS	Deletion	4 LBD	692 2436-8	Asn \Rightarrow 0 AAC \Rightarrow 0	normal high		* Three nucleotide deletion	Female	Normal		Baich et al; Hum Mol Genet 1:497, 1992
0096	CAIS	Substitut	4 LBD	* 695 2445	Asp \Rightarrow His <u>GAC</u> \Rightarrow <u>CAC</u>	low			Female	Normal		Ris-Stalpers et al; Mol Endocrinol 5:1562, 1991
0097	CAIS	Substitut	4 LBD	* 695 2445	Asp \Rightarrow Asn <u>GAC</u> \Rightarrow <u> AAC</u>	normal normal high		mutation found in two unrelated families	Female	Normal		Ris-Stalpers et al; Mol Endocrinol 5:1562, 1991

Accession #	Mutation type	Proven hot spot	CpG Position	Change		Exon 1 tracts		Androgen Binding		Comments	Sex of rearing	External Genitalia	Family history	Reference
				Amino acid	Base	Poly Gln #	Poly Gly #	Bmax	Kd					
0098 PAIS	Substitut.	4 LBD	* 695	Asp \Rightarrow Asn	GAC \Rightarrow AAC	21				de novo mutation	Female	Ambiguous		Hiori et al; J Pediatr 132: 939- 943, 1998
0335 CAIS	Substitut.	4 LBD	695 2445	Asp \Rightarrow Val	GAC \Rightarrow GTC					mutation found in two siblings	Female	Normal	pos	Dork et al; Human Mutation 11: 337-339, 1998
0447 CAIS	Substitut.	4 LBD	700 2446	Leu \Rightarrow Met	TTG \Rightarrow ATG						Female	Normal		Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
0448 CAIS	Substitut.	4 LBD	701 2463	Leu \Rightarrow Phe	CTC \Rightarrow TTC						Female	Normal		Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
0518 PAIS	Substitut.	4 LBD	701 2463	Leu \Rightarrow Ile	CTC \Rightarrow ATC						Male	Normal		Chavez et al; Clin Genet 59.: 185-188, 2001
0099 Prostate cancer	Substitut.	4 LBD	701 2464	Leu \Rightarrow His	CTC \Rightarrow CAC					Somatic mutation	Male	Normal		Suzuki et al; J Steroid Biochem Molec Biol 46:759, 1993
0326 Prostate cancer	Substitut.	4 LBD	701 2464	Leu \Rightarrow His	CTC \Rightarrow CAC					Somatic mutation	Male	Normal		Watanabe et al; Jpn J Clin Oncol 27: 389-393, 1997
0408 MDA PCa-Za	Substitut.	4 LBD	701 2464	Leu \Rightarrow His	CTC \Rightarrow CAC					Som. mut. Prostate cancer cell line. Also has Thr877Ala	Male	Normal		Zao et al; J of Urology 162: 2192-2199, 1999
0100 CAIS	Substitut.	4 LBD	702 2466	Ser \Rightarrow Ala	TCT \Rightarrow GCT					normal low	Female	Normal		Pinsky et al; Clin Inv Med 15:456, 1992
0101 PAIS	Substitut.	4 LBD	* 703 2469	Ser \Rightarrow Gly	AGC \Rightarrow GGC					zero	Male	Ambiguous		Radnayr et al; J of Urology 158: 1553-1556, 1997
0449 CAIS	Substitut.	4 LBD	* 703 2469	Ser \Rightarrow Gly	AGC \Rightarrow GGC					high	Female	Normal		Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
0559 CAIS	Substitut.	4 LBD	705 2475	Asn \Rightarrow Tyr	AT \Rightarrow TAT					low	Female	Normal		Sills et al; Int J Mol Med 9: 45-48, 2002
0102 CAIS	Substitut.	4 LBD	705 2476	Asn \Rightarrow Ser	AT \Rightarrow AGT					zero	Female	Normal		Pinsky et al; Clin Inv Med 15:456, 1992

Accession #	Mutation type	Proven E-on	CpG Position hot spot	Change Amino acid	Exon 1 tracts Poly	Androgen Binding	External rearing	Family history	Reference
Phenotype	Domain								
0103 CAIS	Substitut. 4	LBD	705 2476	Asn \Rightarrow Ser <u>AAT</u> \Rightarrow <u>AGT</u>	zero				DeBellis et al; Mol Endocrinol 6:1909-20, 1992
0104 CAIS	Substitut. 4	LBD	705 2476	Asn \Rightarrow Ser <u>AAT</u> \Rightarrow <u>AGT</u>	Mutation found in two unrelated families		Female Normal		Quigley et al; Endocrine Reviews 16: 271, 1995
0482 PAIS	Substitut. 4	LBD	705 2476	Asn \Rightarrow Ser <u>AAT</u> \Rightarrow <u>AGT</u>					Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
0105 CAIS	Substitut. 4	*	707 2482	Leu \Rightarrow Arg <u>CTG</u> \Rightarrow <u>CGG</u>			Female Normal		Lumbroso et al; J Clin Endo & Metab 8 : 1984-1988, 1996
0106 PAIS	Substitut. 4	LBD	708 2485	Gly \Rightarrow Ala <u>GGA</u> \Rightarrow <u>GCA</u>			Male	Ambiguous	Hiort et al; Hum Mol Genet 3: 1163-1166 1994
0314 PAIS	Substitut. 4	LBD	708 2485	Gly \Rightarrow Ala <u>GGA</u> \Rightarrow <u>GCA</u>	Severe hypospadias		Male	Ambiguous	Albers et al; J of Pediatrics 131: 388-392, 1997
0107 CAIS	Substitut. 4	LBD	708 2485	Gly \Rightarrow Val <u>GGA</u> \Rightarrow <u>GTA</u>	zero		Male	Ambiguous	pos Auchus et al; 77th US Endo Soc Meeting, Abstr P1-508 1995
0450 CAIS	Substitut. 4	LBD	710 2491	Arg \Rightarrow Thr <u>AGA</u> \Rightarrow <u>ACA</u>	zero		Female	Normal	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
0525 PAIS	Substitut. 4	*	711 2493	Gln \Rightarrow Glu <u>CAG</u> \Rightarrow <u>GAG</u>	v low		Female	Ambiguous	pos Lumbroso et al; 83rd US Endo Soc Meeting, Abstr P2-29, 2001
0535 PAIS	Substitut. 4	*	711 2493	Gln \Rightarrow Glu <u>CAG</u> \Rightarrow <u>GAG</u>	normal		Female	Ambiguous	pos Chavez et al; J Hum Genet. 46: 560-565, 2001
0108 PAIS	Substitut. 4	*	712 2496	Leu \Rightarrow Phe <u>CTT</u> \Rightarrow <u>GTT</u>	normal high		Male	Ambiguous	pos Hiort et al; Am J Med Genet 63: 218-222, 1996
0505 PAIS	Substitut. 4	*	712 2496	Leu \Rightarrow Phe <u>CTT</u> \Rightarrow <u>GTT</u>	normal high		Male	Ambiguous	pos Hiort et al; J Clin Endocrinol & Metab 85: 3245-3250, 2000
0506 PAIS	Substitut. 4	*	712 2496	Leu \Rightarrow Phe <u>CTT</u> \Rightarrow <u>GTT</u>	normal high		Male	Ambiguous	pos Hiort et al; J Clin Endocrinol & Metab 85: 3245-3250, 2000

Accession #	Phenotype	Mutation type	CpG Position	Change	Exon 1 tracts		Androgen Binding	Comments	Sex of rearing	External Genitalia	Family history	Reference	
					hot spot	Amino acid	Poly Gln #	Poly Gly #	Bmax	Kd	k		
0507 PAIS	Substitut	4 LBD	* 712 2496	Leu⇒Phe CTT⇒ <u>GTT</u>		normal			phenotypic diversity uncle of 108,505,506 Testost-induced norm.	Male	Ambiguous	pos	Hiori et al; J Clin Endocrinol & Metab 85: 3245-3250, 2000
0109 Prostate cancer	Substitut	4 LBD	* * 715 2507	Val⇒Met <u>GTG</u> ⇒ <u>ATG</u>		normal			Somatic mutation. Receptor showed a gain in function	Male	Normal		Culig et al; Mol Endocrinol 7:1541-1550 1993
0110 Prostate cancer	Substitut	4 LBD	* 715 2507	Val⇒Met <u>GTG</u> ⇒ <u>ATG</u>		normal			Somatic mutation. Receptor showed a gain in function	Male	Normal		Bubley et al 87th Am Assoc Cancer Res Meet Abstr. 1680, 1996
0111 CAIS	Substitut	4 LBD	718 2516	Tp⇒Stop <u>TGG</u> ⇒ <u>TGA</u>		zero				Female	Normal	pos	Sai et al; Am J Hum Genet 46:1095, 1990
0112 Prostate cancer	Substitut	4 LBD	720 2520	Lys⇒Glu <u>AAG</u> ⇒ <u>GAG</u>					Somatic mutation- Bone metasteses of Prostate cancer	Male	Normal		Kleinerman et al; J of Urology 155: 624A, 1996
0113 Prostate cancer	Substitut	4 LBD	721 2523	Ala⇒Thr <u>GCC</u> ⇒ <u>ACC</u>					Somatic mutation in 20% of isolates in initial cloning	Male	Normal		Taplin et al; New England J Med 332: 1393-1398, 1995
0114 CAIS	Substitut	4 LBD	722 2526	Leu⇒Phe <u>TTG</u> ⇒						Female	Normal		Hiori et al; Am J Med Genet. 63: 218-222, 1996
0451 CAIS	Substitut	4 LBD	723 2529	Pro⇒Ser <u>CCT</u> ⇒ <u>CTT</u>		normal				Female	Normal		Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
0452 CAIS	Substitut	4 LBD	724 2532	Gly⇒Ser <u>GGC</u> ⇒ <u>AGC</u>		zero				Female	Normal		Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
0453 CAIS	Substitut	4 LBD	724 2533	Gly⇒Asp <u>GGC</u> ⇒ <u>GAC</u>		zero				Female	Normal		Brown et al; Proc Natl Acad Sci 85:8151, 1988
0115 CAIS	Deletion	4-8 LBD				⇒						pos	Maclean et al; J Clin Invest, 91:1123, 1993
0116 CAIS	Deletion	5 LBD				⇒			Affected aunt deleted for exons 6 and 7 only.	Female	Normal		Marcelli et al; 74th US Endo Soc Meetings; Abstr. 224, 1992
0117 CAIS	Substitut	5 LBD				Tyr⇒Arg ⇒				Female	Normal		

Accession #	Mutation type	Proven hot spot	CpG Position	Change	Exon 1 tracts	Androgen Binding	External	Family history	Reference
Phenotype	Mutation	Exon Domain	Base	Amino acid	Poly Gln #	Poly Gly #	Rearing	Genitalia	
					Bmax	k			
0118 PAIS	Substitut.	5 LBD	725 2535	Phe \Rightarrow Leu <u>TTC</u> \Rightarrow <u>CTC</u>	normal	normal	Male	Ambiguous	Quigley et al; Endocrin Rev 16: 271, 1995
0391 PAIS	Substitut.	5 LBD	725 2535	Phe \Rightarrow Leu <u>TTC</u> \Rightarrow <u>CTC</u>	normal	normal	Male	Normal	Nordenskjold et al Urological Res, 27: 49-55, 1999
0119 Prostate cancer	Substitut.	5 LBD	* 726 2539	Arg \Rightarrow Leu <u>CGC</u> \Rightarrow <u>CTC</u>	normal	normal	Male	Normal	Elo et al; J Clin Endocrinol Metab, 80: 3494-3500, 1995
0508 Prostate cancer	Substitut.	5 LBD	* 726 2539	Arg \Rightarrow Leu <u>CGC</u> \Rightarrow <u>CTC</u>	estimated that 2% of Finnish CAP patients have this mutation	estimated that 2% of Finnish CAP patients have this mutation	Male	Normal	Mononen et al; Cancer Res 60: 6479-6481, 2000
0120 MAIS	Substitut.	5 LBD	727 2543	Asn \Rightarrow Lys AAC \Rightarrow AAQ	low	high	Male	Normal	Yong et al; Lancet, 344: 826-827, 1994
0121 PAIS	Substitut.	5 LBD	728 2545	Leu \Rightarrow Ser TTA \Rightarrow TCA	*	*	Male	Normal	McPhaul et al; J Clin Inv, 90:2097, 1992
0122 Prostate Cancer	Substitut.	5 LBD	* 730 2550	Val \Rightarrow Met GTG \Rightarrow ATG	somatic mutation	male	Male	Normal	Newmark et al; Proc Natl Acad Sci 89:6319, 1992
0123 Prostate Cancer	Substitut.	5 LBD	* 730 2550	Val \Rightarrow Met GTG \Rightarrow ATG	somatic mutation	male	Female	Normal	Petersel et al; Int J Cancer 63: 544-550, 1995
0310 CAIS	Substitut.	5 LBD	732 2556	Asp \Rightarrow Asn GAC \Rightarrow AAC	19	high	Female	Normal	Ko et al; J Reprod Med 42: 424-427, 1997
0125 CAIS	Substitut.	5 LBD	* 732 2556	Asp \Rightarrow Tyr GAC \Rightarrow TAC	zero	zero	Female	Normal	Brown et al; 74th US Endo Soc Meeting, Abstr 1506, 1992
0126 CAIS	Substitut.	5 LBD	732 2556	Asp \Rightarrow Tyr GAC \Rightarrow TAC	high	high	Female	Normal	Pinsky et al; Clin Inv Med 15:456, 1992
0127 CAIS	Substitut.	5 LBD	732 2556	Asp \Rightarrow Tyr GAC \Rightarrow TAC	high	high	Female	Normal	Ghirri and Brown; Pediatr Res 33: Abstr 95, 1993
0124 CAIS	Substitut.	5 LBD	732 2556	Asp \Rightarrow Asn GAC \Rightarrow AAC	high	high	Female	Normal	Brown et al; 74th US Endo Soc Meeting, Abstr 1506, 1992

Accession #	Mutation type	Proven CpG Position	Change Amino acid	Exon 1 tracts	Poly Amino acid	Androgen Binding	External rearing	Family history	Reference
		hot spot	Base	Gln #	Poly Gln #	Bmax	Genitalia		
		Exon	Domain			Kd k			
0128 PAIS	Substitution	5	LBD	733 2561	Gln ⇒ His CAG ⇒ CAT	low	Ambiguous	neg	Hjort et al; J Pediatrics 132: 939- 943, 1998
0129 PAIS	Substitution	5	LBD	737 2571	Ile ⇒ Thr ATG ⇒ ACT	zero	Female	Female	Quigley et al; Endocrinol Reviews 16: 271, 1995
0530 CAIS	Substitution	5	LBD	739 2577	Tyr ⇒ Asp TAC ⇒ GAC	low	no transactivation in COS-1 cells	Normal	Suzuki et al; Int J Andrology 24: 183-188, 2001
0130 CAIS	Substitution	5	LBD	741	Trp ⇒ Arg TGG ⇒ CCG	high	Female	Normal	Marcelli et al; J Clin Invest 94: 1642-1650, 1994
0360 Prostate cancer	Substitution	5	LBD	741 2583	Trp ⇒ Stop TGG ⇒ TAG	high	Male	Normal	Takahashi et al; Cancer Research 55: 1621-1624, 1995
0552 Prostate cancer	Substitution	5	LBD	741 2584	Trp ⇒ Cys TGG ⇒ TGG	high	Treated with bicalutamide - somatic mutation	Male	Taplin et al; 37th meeting ASCO 20: Abstr. 1738
0131 PAIS	Substitution	5	LBD	742 2586	Met ⇒ Val ATG ⇒ GTG	high			Ris-Stalpers et al; Pediatric Res. 36: 227-234, 1994
0341 PAIS	Substitution	5	LBD	742 2586	Met ⇒ Val ATG ⇒ GTG	normal high			Melo et al; 80th US Endo Soc Meeting Abstr P-44, 1998
0132 PAIS	Substitution	5	LBD	742 2588	Met ⇒ Ile ATG ⇒ ATA	normal high			Batch et al; Hum Mol Genet 1:497, 1992
0519 CAIS	Substitution	5	LBD	743 2589	Gly ⇒ Arg GGG ⇒ CGG	low	Female	Ambiguous	Chavez et al; Clin Genet 59: 185-188, 2001
0133 PAIS	Substitution	5	LBD	743 2590	Gly ⇒ Val GGG ⇒ GTG	high	Transcription only at high conc of androgen	Female	Georget et al; J Clin Endocrinol & Metab 83: 3597-3603, 1998
0134 PAIS	Substitution	5	LBD	743 2590	Gly ⇒ Val GGG ⇒ GTG	normal normal	*		Nakao et al; J Clin Endocrinol Metab 77:103-107, 1993
0414 CAIS	Substitution	5	LBD	743 2590	Gly ⇒ Val GGG ⇒ GTG	zero	de novo mutation	Female	Lobaccaro et al; J Steroid Biochem & Mol Biol. 44: 211-216, 1993

Accession #	Mutation type	Proven hot Exon	CpG position spot	Change in Amino acid Base	Exon 1 tracts Poly	Androgen Binding Poly	Comments	Sex of rearing	External Genitalia	Family history	Reference
Phenotype	Domain	Exon	Base	Gly #	Bmax	Kd	k				
0536 CAIS	Substitut.	5 LBD	743 2590	Gly \Rightarrow Glu C <u>GG</u> \Rightarrow GAG	normal			Female	Normal		Chavez et al; J Hum Genet. 46: 560-56, 2001
0361 Prostate cancer	Deletion	5 LBD	743 2591	Gly \Rightarrow Gly G <u>GA</u> G \Rightarrow GGC				Male	Normal		Takahashi et al; Cancer Research 55: 1621-1624, 1995
0135 CAIS	Substitut.	5 LBD	744 2592	Leu \Rightarrow Phe <u>CTC</u> \Rightarrow TTC							Brinkmann et al; J Steroid Biochem & Mol Biol 53: 443, 1995
0362 Prostate cancer	Substitut.	5 LBD	744 2592	Leu \Rightarrow Phe <u>CTC</u> \Rightarrow TTC							Takahashi et al; Cancer Research 55: 1621-1624, 1995
0136 PAIS	Substitut.	5 LBD	745 2597	Met \Rightarrow Thr ATG \Rightarrow ACG							Ris-Stalpers et al; Pediatric Res 36: 227-234, 1996
0137 PAIS	Substitut.	5 LBD	746 2598	Val \Rightarrow Met <u>GTG</u> \Rightarrow ATG							Brown et al; 74th US Endo Soc Meeting, Abstr 1506, 1992
0138 PAIS	Substitut.	5 LBD	746 2598	Val \Rightarrow Met <u>GTG</u> \Rightarrow ATG							Hiori et al; Am J Med Genet 63: 218-222, 1996
0492 Prostate cancer	Substitut.	5 LBD	748 2604	Ala \Rightarrow Thr <u>GCC</u> \Rightarrow ACC							Marcelli et al; Cancer Research 60: 944-949, 2000
0139 PAIS	Substitut.	5 LBD	* 748	Ala \Rightarrow Asp <u>GCC</u> \Rightarrow GAC							Marcelli et al; J Clin Invest 94: 1642-1650, 1994
0363 Prostate cancer	Substitut.	5 LBD	748 2605	Ala \Rightarrow Val <u>GCC</u> \Rightarrow GTG							Takahashi et al; Cancer Research 55: 1621-1624, 1995
0140 CAIS	Substitut.	5 LBD	749 2607	Met \Rightarrow Val <u>ATG</u> \Rightarrow GTG							DeBellis et al; Mol Endocrinol 6:1909-20, 1992
0141 CAIS	Substitut.	5 LBD	749 2607	Met \Rightarrow Val <u>ATG</u> \Rightarrow GTG							pos Jakubiczka et al; Hum Genet 90:311-2, 1992
0483 PAIS	Substitut.	5 LBD	749 2607	Met \Rightarrow Val <u>ATG</u> \Rightarrow GTG							Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000

Accession #	Mutation type	Proven hot spot	CpG Position	Change	Exon 1 tracts	Poly Amino acid	Androgen Binding	External rearing	Family history	Reference
Phenotype		Domain	Exon	Base	Poly	Poly	Thermolabile	Genitalia		
				Gln #	Gly #	Bmax	Kd			
0364	Prostate cancer	Substitut 5 LBD	749	Met⇒Ile	Somatic mutation	Male	Normal	Takahashi et al; Cancer Research 55: 1621-1624, 1995		
0365	Prostate cancer	Substitut 5 LBD	2609	AT <u>G</u> ⇒AT <u>A</u>	Gly⇒Ser	Male	Normal	Takahashi et al; Cancer Research 55: 1621-1624, 1995		
0142	CAIS	Substitut 5 LBD	750 *	GGC⇒AGC	Gly⇒Asp	Male	Normal	Bevan et al; J Steroid Biochem Molec. Biol 61: 19-26, 1997		
0143	CAIS	Substitut 5 LBD	2611	GGC⇒GAC	Gly⇒Asp	Female	Normal	Brown et al; 74th US Endo Soc Meeting Abstr 1506, 1992		
0144	CAIS	Substitut 5 LBD	750	GGC⇒GAC	Gly⇒Asp	Female	Normal	Brinkmann et al; J Steroid Biochem Mol Biol 53: 443, 1995		
0366	Prostate cancer	Substitut 5 LBD	751	Trp⇒Arg	TGG⇒AGG	Male	Normal	Takahashi et al; Cancer Research 55: 1621-1624, 1995		
0367	Prostate cancer	Substitut 5 LBD	2613	TGG⇒AGG	TGG⇒TAG	Male	Normal	Takahashi et al; Cancer Research 55: 1621-1624, 1995		
0368	Prostate cancer	Substitut 5 LBD	751	Trp⇒Stop	TGG⇒TAG	Male	Normal	Takahashi et al; Cancer Research 55: 1621-1624, 1995		
0401	CAIS	Substitut 5 LBD	2614	TGG⇒TAG	Trp⇒Stop	Female	Normal	Yaegashi et al; Tohoku J of Exp Med 187: 263-272, 1999		
0145	CAIS	Substitut 5 LBD	751	TGG⇒TGA	TGG⇒TGA	Female	Normal	Pinsky et al; Clin Inv Med 15:456, 1992		
0146	CAIS	Substitut 5 LBD	2615	zero	zero	Female	Normal	Brinkmann et al; J Steroid Biochem Mol Biol 53: 443, 1995		
0342	CAIS	Substitut 5 LBD	752 *	TGA	TGA	In two different families	Female	Melo et al; 80th US Endo Soc Meeting Abstr P2-44, 1998		
0402	CAIS	Substitut 5 LBD	2616 *	TGA	TGA	zero	Female	Yaegashi et al; Tohoku J of Exp Med 187: 263-272, 1999		

Accession #	Phenotype	Mutation type	CpG Position	Change	Exon 1 tracts	Androgen Binding	Family history	Reference
		Exon	hot spot	Amino acid	Poly Gln #	Poly Gly #	External rearing	
		Domain	Base	Base	Bmax	Kd	Genitalia	
0147	CAIS	Substitut 5	LBD	*	752	Arg=>Gln CGA=>CAA	Female	Brown et al; 74th US Endo Soc Meeting, Abstr 1506, 1992
0148	CAIS	Substitut 5	LBD	*	752	Arg=>Gln CGA=>CAA	Female	Evans; J Endocrinol 135 Suppl, Abstr P26, 1992
0333	CAIS	Substitut 5	LBD	*	752	Arg=>Gln CGA=>CAA	Female	pos Komori et al; Arch Gynecol & Obstetrics 261: 95-100, 1998
0349	CAIS	Substitut 5	LBD	*	752	Arg=>Gln CGA=>CAA	Female	Cabral et al; Brazilian J Med & Biol Res. 31: 775-758, 1998
0497	CAIS	Substitut 5	LBD	*	752	Arg=>Gln CGA=>CAA	Female	Sakai et al; International J of Urology 7: 390-392, 2000
0149	CAIS	Substitut 5	LBD	*	752	Arg=>Gln CGA=>CAA	Female	Lobaccaro et al; Hum Mol Genet 2:1041-1043, 1993
0150	CAIS	Substitut 5	LBD	*	754	Phe=>Val TTC=>GTC	Female	Hiori et al; Am J Med Genet 63: 218-222, 1996
0369	Prostate cancer	Substitut 5	LBD	2617	2617	Phe=>Val TTC=>GTC	Male	Takahashi et al; Cancer Research 55: 1621-1624, 1995
0151	PAIS	Substitut 5	LBD	2622	754	Phe=>Leu TTC=>CTC	Male	Hiori et al; Hum Mol Genet 3: 1163-1166 1994
0152	PAIS	Substitut 5	LBD	2624	754	Phe=>Leu TTC=>TTA	Male	Weidemann et al; Clin Endocrinology 45: 733-739, 1996
0370	Prostate cancer	Substitut 5	LBD	2624	754	Phe=>Leu TTC=>TTA	Male	Takahashi et al; Cancer Research 55: 1621-1624, 1995
0153	PAIS	Substitut 5	LBD	2625	755	Thr=>Ala ACC=>GCC	Male	Hiori et al; Am J Med Genet 63: 218-222, 1996
0532	MAIS	Substitut 5	LBD	2629	756	Asn=>Ser AAT=>AGT	Male	Giverman et al; Clin Endocrinol 54: 827-834, 2001
				*	756	Asn=>Ser AAT=>AGT	high	Severe oligospermia of wt.

Accession #	Mutation type	Phenotype	CpG Position	Change		Exon 1 tracts		Androgen Binding		Comments	Sex of rearing	External Genitalia	Family history	Reference
				hot spot	Amino acid	Poly Gln #	Poly Gly #	Bmax	Kd					
0300	Prostate cancer	Substitut. 5 LBD	* 757	Val \Rightarrow Ala						binds R188I normal transcriptionally inactive-Som mut	Male	Normal		James et al; 79th US Endo Soc Meeting, Abstr P2-484; 1997
0493	Prostate cancer	Substitut. 5 LBD	2632	GTC \Rightarrow GCC	Val \Rightarrow Ala					Somatic mutation	Male	Normal		Marcelli et al; Cancer Research 60: 944-949, 2000
0346	PAIS	Substitut. 5 LBD	* 757	GTC \Rightarrow GCC	Asn \Rightarrow Thr					*	Yong et al; Mol & Cell Endocrinol. 137: 41-50, 1998			
0371	Prostate cancer	Substitut. 5 LBD	2635	AAC \Rightarrow ACC	Ser \Rightarrow Pro					50% reduction in transactivation in COS-7	Male	Normal		Takahashi et al; Cancer Research 55: 1621-1624; 1995
0154	CAIS	Substitut. 5 LBD	759	TCC \Rightarrow CCC	TCC \Rightarrow TTC	zero				Somatic mutation	Female	Normal		DeBellis et al; Mol Endocrinol, 6:1909-20, 1992
0155	CAIS	Substitut. 5 LBD	2638	TCC \Rightarrow TTC	Leu \Rightarrow Phe	zero					Female	Normal		Brown et al; 74th US Endo Soc Meeting, Abstr 1506, 1992
0156	CAIS	Substitut. 5 LBD	762	CTC \Rightarrow TTC	Leu \Rightarrow Phe	zero					Female	Normal		Bevan et al; J Steroid Biochem Molec Biol 61: 19-26, 1997
0157	CAIS	Substitut. 5 LBD	2646	CTC \Rightarrow TTC	Tyr \Rightarrow His	zero					Female	Normal		Quigley et al; Endocrin. Reviews, 16:271, 1995
0158	PAIS	Substitut. 5 LBD	763	TAC \Rightarrow CAC	Tyr \Rightarrow Cys	normal high				*	Male	Ambiguous		McPhaul et al; J Clin Inv 87: 1413-1419; Batch&al Arc Dis Ch 68:453 pos
0159	PAIS	Substitut. 5 LBD	2649	TAC \Rightarrow CAC	TAC \Rightarrow TGC	12				(only 12 repeats)	Male	Ambiguous		
0405	PAIS	Substitut. 5 LBD	763	TAC \Rightarrow TGC	Tyr \Rightarrow Cys	low					Male	Ambiguous		Morono et al; Human Mutation 6: 152-162, 1995
0484	PAIS	Substitut. 5 LBD	2650	TAC \Rightarrow TGC	Tyr \Rightarrow Cys						Male	Ambiguous		Batch et al; Arch Disease Child 68: 453, 1993
0485	PAIS	Substitut. 5 LBD	763	TAC \Rightarrow TGC	Tyr \Rightarrow Cys	normal high					Male	Ambiguous		Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
			2650	TAC \Rightarrow TGC	Tyr \Rightarrow Cys	normal high					Male	Ambiguous		Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000

Accession #	Phenotype	Mutation type	CpG Position	Change	Exon 1 tracts		Androgen Binding	Comments	Sex of rearing	External genitalia	Family history	Reference
					proven hot spot	Amino acid	Poly Amino acid	Gly #	Bmax	Kd	k	
0372	Prostate Cancer	Substitution	5 LBD	763	Tyr \Rightarrow Cys				Somatic mutation	Male	Normal	Takahashi et al; Cancer Research 55: 1621-1624, 1995
0160	CAIS	Substitution	5 LBD	* 764	TAC \Rightarrow TGC	Phe \Rightarrow Leu		high		Female	Normal	Marcelli et al; J Clin Invest 94: 1642-1650, 1994
0161	CAIS	Substitution	5 LBD	* 764	TTC \Rightarrow CTC	Phe \Rightarrow Leu		zero		Female	Normal	Ris-Stalpers et al; Pediatric Res 36: 227-234, 1994
0162	CAIS	Substitution	5 LBD	764	TTC \Rightarrow TTG	Phe \Rightarrow Leu		low	normal	Female	Normal	Pinsky et al; Clin Inv Med, 15:456, 1992
0163	CAIS	Substitution	5 LBD	* * 765	Ala \Rightarrow Thr			zero		Female	Normal	Bevan et al; J Steroid Biochem Molec. Biol 61: 19-26, 1997
0164	CAIS	Substitution	5 LBD	* 765	GCC \Rightarrow ACC	Ala \Rightarrow Thr		zero		Female	Normal	Merkabi et al; 75th US Endo Soc Meeting Abstr 602, 1993
0165	CAIS	Substitution	5 LBD	* 765	GCC \Rightarrow ACC	Ala \Rightarrow Thr		zero		Female	Normal	Sweet et al; Fertil Sterility 58: 703, 1992
0166	CAIS	Substitution	5 LBD	* 765	GCC \Rightarrow ACC	Ala \Rightarrow Thr		zero		Female	Normal	Hiori et al; Am J Med Genet 63: 218-222, 1996
0311	CAIS	Substitution	5 LBD	* 765	GCC \Rightarrow ACC	Ala \Rightarrow Thr	27			Female	Normal	Ko et al; J Reprod Med 42: 424-427, 1997
0382	CAIS	Substitution	5 LBD	* 765	GCC \Rightarrow ACC	Ala \Rightarrow Thr				Female	Normal	Giverman et al; Human Genetics 103: 529-531, 1998
0454	CAIS	Substitution	5 LBD	* 765	GCC \Rightarrow ACC	Ala \Rightarrow Thr				Female	Normal	Ahmed et al; J Clin Endocrinol & Metab 85: 638-665, 2000
0455	CAIS	Substitution	5 LBD	* 765	GCC \Rightarrow ACC	Ala \Rightarrow Thr				Female	Normal	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
0456	CAIS	Substitution	5 LBD	* 765	GCC \Rightarrow ACC	Ala \Rightarrow Thr				Female	Normal	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000

Accession #	Phenotype	Mutation type	Proven CpG hot spot	Position	Change	Exon 1 tracts	Androgen Binding Poly	Thermalstable k	Comments	Sex of rearing	External Genitalia	Family history	Reference
0520 PAIS	Substitut	5	LBD	765	Ala \Rightarrow Ser <u>GCC</u> \Rightarrow <u>TCC</u>	20	zero			Female	Normal		Chavez et al; Clin Genet 59: 185-188, 2001
0167 CAIS	Substitut	5	LBD	2655	Ala \Rightarrow Val <u>GCC</u> \Rightarrow <u>GTC</u>	20				Female	Normal	pos	Pinsky et al; Clin Inv Med, 15:456, 1992
0168 CAIS	Substitut	5	LBD	* 766	Pro \Rightarrow Ser <u>CCT</u> \Rightarrow <u>TCT</u>		low	high		Female	Normal	pos	Marcelli et al; J Clin Invest 94: 1642-1650, 1994
0457 CAIS	Substitut	5	LBD	2658	Pro \Rightarrow Ser <u>CCT</u> \Rightarrow <u>TCT</u>					Female	Normal		Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
0543 CAIS	Substitut	5	LBD	766	Pro \Rightarrow Ala <u>CCT</u> \Rightarrow <u>ATG</u>					Female	Normal		Boehmer et al; J Clin Endocrinol & Metab 86: 4151-4160, 2001
0169 CAIS	Deletion	5	LBD	2658	Pro \Rightarrow Pro <u>CCAT</u> \Rightarrow <u>ATG</u>					Female	Normal	pos	Baldazzi et al; Hum Mol Genet 3:1169-1170, 1994
0388 CAIS	Deletion	5	LBD	766	Pro \Rightarrow Pro <u>CCAT</u> \Rightarrow <u>CCG</u>					Female	Normal		Chung et al; Molecules & Cells 8: 741-745, 1998
0458 CAIS	Deletion	5	LBD	2660	Pro \Rightarrow Pro <u>CCAT</u> \Rightarrow <u>CCG</u>					Female	Normal		Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
0459 CAIS	Deletion	5	LBD	766	Pro \Rightarrow Pro <u>CCAT</u> \Rightarrow <u>CCG</u>					Female	Normal		Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
0561 CAIS	Deletion	5	LBD	2660	Pro \Rightarrow Pro <u>CCAT</u> \Rightarrow <u>CCG</u>					Female	Normal		Guillen et al; An Esp Pediatr 56: 341-352, 2002
0170 CAIS	Substitut	5	LBD	766	Asp \Rightarrow Glu <u>GAT</u> \Rightarrow <u>GAG</u>					Female	Normal		Lobaccaro et al; Pediatr Res, 33, Abstr 115, 1993
0343 CAIS	Substitut	5	LBD	2663	Asp \Rightarrow Glu <u>GAT</u> \Rightarrow <u>GAG</u>					Female	Normal		Melo et al; 80th US Endo Soc Meeting Abstr P2-44, 1998
0544 PAIS	Substitut	5	LBD	768	Leu \Rightarrow Met <u>CTG</u> \Rightarrow <u>ATG</u>					Female	Ambiguous		Boehmer et al; J Clin Endocrinol & Metab 86: 4151-4160, 2001

Accession #	Phenotype	Mutation type	Proven CpG Position hot spot	Amino acid	Change Base	Exon 1 tracts Poly	Androgen Binding Poly	Comments	Sex of rearing	External Genitalia	Family history	Reference
					Gly # Bmax	Kd	k					
0175	CAIS	Substitut.	6 * 774 LBD	2682	Arg⇒Cys CGC ⇒ TGC	v low		mosaic-de novo mutation	Female	Normal	Brown et al; Mol Endocrinol, 4:1759-72, 1990	
0355	CAIS	Substitut.	6 * 774 LBD	2682	Arg⇒Cys CGC ⇒ TGC				Female	Normal	Hiori et al; J Pediatrics 132: 939-943, 1998	
0181	CAIS	Substitut.	6 * 774 LBD	2683	Arg⇒His CGC ⇒ CAC	normal	high	*	Female	Normal	Prior et al; Am J Hum Genet, 51:143, 1992	
0182	CAIS	Substitut.	6 * 774 LBD	2683	Arg⇒His CGC ⇒ CAC	low	normal	*	Female	Normal	Batch et al; Hum Mol Endocrinol, 6:199-7, 1992	
0183	CAIS	Substitut.	6 * 774 LBD	2683	Arg ⇒ His CGC ⇒ CAC	v low	high	*	Female	Normal	DeBellis et al; Mol Endocrinol, 6:1999-20, 1992	
0184	CAIS	Substitut.	6 * 774 LBD	2683	Arg ⇒ His CGC ⇒ CAC	zero			Female	Normal	Hiort et al; Am J Med Genet 63: 218-222, 1996	
0461	CAIS	Substitut.	6 * 774 LBD	2683	Arg ⇒ His CGC ⇒ CAC				Female	Normal	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000	
0462	CAIS	Substitut.	6 * 774 LBD	2683	Arg ⇒ His CGC ⇒ CAC				Female	Normal	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000	
0185	PAIS	Substitut.	6 * 774 LBD	2683	Arg ⇒ His CGC ⇒ CAC				Female	Normal	Quicley et al; Endocrin Reviews 16:271, 1995	
0186	CAIS	Substitut.	6 * 774 LBD	2687	Arg ⇒ Trp CGG ⇒ TGG				Female	Normal	Hiort et al; Hum Mol Genet 3: 1163-1166 1994	
0187	CAIS	Substitut.	6 * 774 LBD	2687	Arg ⇒ Trp CGG ⇒ TCG				Female	Normal	Morono et al; Human Mutation 6: 152-162, 1995	
0188	CAIS	Substitut.	6 * 774 LBD	2697	Arg ⇒ Trp CGG ⇒ TGG				Female	Normal	Sinnecker et al; Eur J. Pediatr. 156: 7-14, 1997	
0463	CAIS	Substitut.	6 * 774 LBD	2697	Arg ⇒ Trp CGG ⇒ TGG				Female	Normal	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000	

Accession #	Phenotype	Mutation type	Proven hot spot	CpG Position	Change Amino acid	Exon 1 tracts	Androgen Binding Poly	Comments	Sex of rearing Genitalia	External history	Family history	Reference	
0189 PAIS	Substitut	6	*	780	Met⇒Ile	Gln#	Poly		Female	Ambiguous		Bevan et al; Hum Mol Genet, 5: 265-273, 1996	
0190 PAIS	Substitut	6	LBD	2702	ATG⇒ATA	20	23	normal high	high	1 family member - male. Rest of family - females	Female / Male	pos	Pinsky et al; Clin Inv Med, 15:456, 1992
0191 PAIS	Substitut	6	LBD	2702	Met⇒Ile	ATG⇒ATA							Brinkmann et al; J Steroid Biochem & Mol Biol 53: 443, 1995
0192 PAIS	Substitut	6	LBD	2702	Met⇒Ile	ATG⇒ATA							pos Rodien et al; J Clin Endo & Metab 81: 2904-2908, 1996
0305 CAIS	Substitut	6	LBD	2702	Met⇒Ile	ATG⇒ATA							pos Rodien et al; J Clin Endo & Metab 81: 2904-2908, 1996
0193 CAIS	Substitut	6	LBD	2702	Met⇒Ile	ATG⇒ATA							Jakubczak et al; Human Mutation 9: 57-61, 1997
0464 CAIS	Substitut	6	LBD	2702	Met⇒Ile	ATG⇒ATA							Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
0194 Prostate cancer	Substitut	6	LBD	2702	Met⇒Ile	ATG⇒ATA							Tilley et al; Clinical Cancer Res. 2: 277-285, 1996
0383 CAIS	Substitut	6	LBD	2707	Ser⇒Asn	AGC⇒AAC							Giwerzman et al; Human Genetics 103: 529-531, 1998
0195 CAIS	Substitut	6	*	784	Cys⇒Tyr	TGT⇒TAT							Pinsky et al; Clin Inv Med, 15:456, 1992
0557 CAIS	Substitut	6	LBD	2713	Arg⇒Stop	CGA⇒TGA							Ignaccio et al; J Appl Genet 43: 109-114, 2002
0196 CAIS	Substitut	6	*	786	Arg⇒Stop	CGA⇒TGA							pos Nakao et al; J Clin Endocrinol Metab, 74:1152, 1992
0406 MAIS	Substitut	6	LBD	2718	Met⇒Val	ATG⇒GTG							pos Lumroso et al 81st US endo Soc Meetings Abstr. P3-288, 1999
			*	787	zero								
			*	2721									
			*	2726	Arg⇒Ser	AGG⇒AGT	24	23	normal normal high	* Gynecomastia and infertility	Male	Ambiguous	

Accession #	Mutation type	Proven hot spot	CpG Position	Change	Exon 1 tracts	Androgen Binding	Family history	Reference
		Exon	Amino acid	Amino acid	Poly Gly #	Bmax	Thermalstable k	
		Domain	Base	Base	Gly #	k		
0197 MAIS	Substitut 6	LBD	*	790	Leu ⇒ Phe	normal		Tsukada et al; J Clin Endocrinol Metab. 79:1202, 1994
0198 MAIS	Substitut 6	LBD	2730	CTC ⇒ TTC	Glu ⇒ Asp	normal	Male	Near-normal male
0397 Normal	Substitut 6	LBD	793	GAG ⇒ GAC	Glu ⇒ Asp	normal normal	Male	Normal
0199 CAIS	Substitut 6	LBD	2741	GAG ⇒ GAC	Phe ⇒ Ser	Inconsistent increases in k	Female	Normal
0200 CAIS	Substitut 6	LBD	794	TTC ⇒ TCT	Phe ⇒ Ser	Homosexual individual	Male	Normal
0201 CAIS	Substitut 6	LBD	2743	TTC ⇒ TCT	Phe ⇒ Ser		Female	Normal
0202 PAIS	Substitut 6	LBD	*	796	Trp ⇒ Stop	v low	Female	Normal
0203 PAIS	Substitut 6	LBD	*	2750	TGG ⇒ TGA	*	Female	Ambiguous
0204 PAIS	Substitut 6	LBD	*	798	Gln ⇒ Glu	normal normal	Female	Ambiguous
0205 Prostate cancer	Substitut 6	LBD	2754	CAA ⇒ GAA	Gln ⇒ Glu	normal normal	Male	Normal
0399 Prostate cancer	Substitut 6	LBD	2754	CAA ⇒ GAA	Gln ⇒ Glu	Also present in genomic DNA	Male	Normal
0340 MAIS	Substitut 6	LBD	798	CAA ⇒ GAA	Gln ⇒ Glu	Somatic mutation Stage 4 tumor	Male	Normal
0381 MAIS	Substitut 6	LBD	*	2754	CAA ⇒ GAA	Azospermia	Male	Normal
			*	798	Gln ⇒ Glu	normal	Male	Azoospermia - defective transactivation
			*	2754	CAA ⇒ GAA	normal		

Accession #	Mutation type	Proven CPG spot	Proven CPG position	Change at Amino acid	Exon 1 tracts	Androgen Binding	External	Family history	Reference
Phenotype	Exon	Domain	Base	Amino acid	Poly Poly	Poly	Rearing	Genitalia	
				Gly #	Bmax	Kd			
0542	CAIS	Deletion	6	LBD	800 2762	Thr \Rightarrow Thr AC Δ C \Rightarrow ACC			Boehmer et al; J Clin Endocrinol & Metab 86: 4151-4160, 2001
0521	PAIS	Substitut.	6	LBD	802 2767	Gln \Rightarrow Arg C \underline{G} G \Rightarrow C \underline{G} G			Chavez et al; Clin Genet 59: 185-188, 2001
0498	CAIS	Substitut.	6	LBD	803 2769	Glu \Rightarrow Lys <u>G</u> AA \Rightarrow AAA	zero	Female Normal	pos Sawai et al; J Hum Genet 45: 342-345, 2000
0206	PAIS	Substitut.	6	LBD	806 2779	Cys \Rightarrow Tyr T \underline{G} C \Rightarrow TAC			Brown et al; Eur J Pediatr 152: (Suppl 2) S62, 1993
0207	CAIS	Substitut.	6	*	807 2781	Met \Rightarrow Val ATG \Rightarrow GTG	low	Female Normal	Morono et al; Human Mutation 6: 152-162, 1995
0208	CAIS	Substitut.	6	LBD	807 2782	Met \Rightarrow Arg ATG \Rightarrow AGG	zero	Female Normal	Adeyemo et al; Hum Mol Genet, 2: 1809, 1993
0428	PAIS	Substitut.	6	*	807 2782	Met \Rightarrow Thr ATG \Rightarrow ACG	low	Female Ambiguous	Ong et al; Lancet 354: 1444-1445, 1999
0403	PAIS	Substitut.	6	LBD	812 2796	Leu \Rightarrow Phe CTC \Rightarrow TTC		Female Normal	Yagishita et al; Tohoku J of Exp Med 187: 263-272, 1999
0209	PAIS	Substitut.	6	LBD	814 2803	Ser \Rightarrow Asn AGC \Rightarrow AAC	20	Female Ambiguous	Pinsky et al; Clin Inv Med, 15:436, 1992
0210	MAIS	Substitut.	6	LBD	814 2803	Ser \Rightarrow Asn AGC \Rightarrow AAC	20	Male	Pinsky et al; Clin Inv Med, 15:436, 1992
0501	CAIS	Substitut.	7	LBD	819 2818	Asp \Rightarrow Gln GAT \Rightarrow GGT		Female Normal	Choi et al; Arch Gynecol Obstet 263: 201-205, 2000
0211	CAIS	Substitut.	7	*	820 2821	Gly \Rightarrow Ala GGG \Rightarrow GCG	normal high	Female Ambiguous	neg Tanaka et al; Arch Gynecological Endo. 12: 75-82, 1998
0212	PAIS	Substitut.	7	LBD	821 2823	Leu \Rightarrow Val CTG \Rightarrow GTG	23	normal normal	Pinsky et al; Clin Inv Med, 15:436, 1992

* Also Leu 257 Pro,
enhances
thermolability

Accession #	Mutation type	Proven Cys Position	Change Amino acid	Exon 1 tracts	Androgen Binding	External history	Family history	Reference
Phenotype	Exon	hot spot Base	Base	Poly Poly	Thermostable	Comments		
	Domain			Gln# Gly#	Bmax	Kd	k	
0513 MAIS	Substitut.	7 LBD *	824 2832	Gln ⇒ Lys CAA ⇒ AAA		Gynecomastia-normal	Male	pos Giwercman et al; J Clin Endocrinol & Metab 85: 2253-2259, 2000
0514 MAIS	Substitut.	7 LBD *	824 2832	Gln ⇒ Lys CAA ⇒ AAA		Gynecomastia-normal	Male	pos Giwercman et al; J Clin Endocrinol & Metab 85: 2253-2259, 2000
0537 CAIS	Substitut.	7 LBD	827 2841	Phe ⇒ Val TTT ⇒ GTT		Gynecomastia-normal	Male	pos Chavez et al; J Hum Genet 46: 560-565, 2001
0522 CAIS	Substitut.	7 LBD	830 2850	Leu ⇒ Val CTT ⇒ GTT		Female	Normal	Chavez et al; Clin Genet 59:: 185-188, 2001
0213 CAIS	Substitut.	7 LBD *	831 2853	Arg ⇒ Stop CGA ⇒ TGA	zero	Female	Normal	DeBellis et al; Mol Endocrinol, 6:1909-20, 1992
0214 CAIS	Substitut.	7 LBD *	831 2853	Arg ⇒ Stop CGA ⇒ TGA	zero	Female	Normal	Tincello et al; J Endocrinol, 132 Suppl, Abstr 87, 1992
0215 CAIS	Substitut.	7 LBD *	831 2853	Arg ⇒ Stop CGA ⇒ TGA	zero	Female	Normal	Ris-Salpers et al; 74th Endo Soc Meeting, 1992
0384 CAIS	Substitut.	7 LBD *	831 2853	Arg ⇒ Stop CGA ⇒ TGA	zero	Female	Normal	Giwercman et al; Human Genetics 103: 529-531, 1998
0465 CAIS	Substitut.	7 LBD *	831 2853	Arg ⇒ Stop CGA ⇒ TGA	zero	Female	Normal	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
0500 CAIS	Substitut.	7 LBD *	831 2853	Arg ⇒ Stop CGA ⇒ TGA	zero	Female	Normal	Choi et al; Arch Gynecol Obstet 263: 201-205, 2000
0515 CAIS	Substitut.	7 LBD *	831 2853	Arg ⇒ Stop CGA ⇒ TGA	zero	Female	Normal	Chen et al; Fertility & Sterility 74: 182-183, 2000
0466 CAIS	Substitut.	7 LBD *	831 2854	Arg ⇒ Gln CGA ⇒ CAA	Hamartoma found in pubertal patient	Female	Normal	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
0499 CAIS	Substitut.	7 LBD *	831 2854	Arg ⇒ Gln CGA ⇒ CAA	Hamartoma found in pubertal patient	Female	Normal	Choi et al; Arch Gynecol Obstet 263: 201-205, 2000

Accession #	Phenotype	Mutation type	Proven Exon	CpG Position hot spot	Change Amino acid Base	Exon 1 tracts Poly	Androgen Binding	Comments	Sex of External Genitalia		Family history	Reference	
									Gly #	Bmax	Kd		
0216 CAIS	Substitut	7	LBD	* * 831	Arg=>Gln CGA=>CAA	v low			Female	Normal		pos	Brown et al; Mol Endocrinol, 4:1759-72, 1990
0217 CAIS	Substitut	7	LBD	* 831	Arg=>Gln CGA=>CAA	zero		Found in two unrelated families	Female	Normal			McPhaul et al; J Clin Inv, 90: 2097, 1992
0404 CAIS	Substitut	7	LBD	831	Arg=>Gln CGA=>CAA	zero			Female	Normal			Yaegashi et al; Tohoku J of Exp Med 187: 263-272, 1999
0524 CAIS	Substitut	7	LBD	831	Arg=>Gln CGA=>CAA	zero		Sertoli cell carcinoma	Female	Normal			Ko et al; Int. J. Gynecol. Pathol. 20: 196-199, 2001
0218 CAIS	Substitut	7	LBD	* 831	Arg=>Leu CGA=>CTA	21	19	zero	Female	Normal			Shkolyiv et al; Human Mol Genetics 4: 515-521,1995
0307 CAIS	Substitut	7	LBD	* 831	Arg=>Leu CGA=>CTA	26	16	zero	Female	Normal			Shkolyiv et al; Human Mol Genetics 4: 515-521,1995
0219 CAIS	Substitut	7	LBD	834	Tyr=>Cys TAC=>TGC	zero			Female	Normal			Wilson et al; J Clin Endocrinol Metab, 75:1474-8, 1992
0392 PAIS	Substitut	7	LBD	838	Leu=>Leu CTC=>CTT			Hypospadia and cryptorchidism - silent mutation	Male	Ambiguous			Nordenskjold et al; Urological Res, 27: 49-55, 1999
0415 PAIS	Substitut	7	LBD	840	Arg=>Ser CGT=>AGT	20	16	normal high	Male	Ambiguous			Melo et al; Hum Mutat. 14: 353, 1999
0220 PAIS	Substitut	7	LBD	* * 840	Arg=>Cys CGT=>TGT	20	16	norm *	Male	Ambiguous			Beitel et al; J Clin Inv, 94: 546-554 1994
0221 PAIS	Substitut	7	LBD	* * 840	Arg=>Cys CGT=>TGT	low	high	*	Female	Ambiguous			Beitel et al; J Clin Inv, 94: 546-554 1994
0222 PAIS	Substitut	7	LBD	* * 840	Arg=>Cys CGT=>TGT	2880		normal high	Sibling of 0308	Female	Ambiguous		McPhaul et al; J Clin Inv, 90: 2097, 1992
0308 PAIS	Substitut	7	LBD	* * 840	Arg=>Cys CGT=>TGT	2880		normal high	Sibling of 0222	Male	Ambiguous		Bevan et al; Hum Mol Genet, 5: 265-273, 1996
													Bevan et al; Hum Mol Genet, 5: 265-273, 1996

Accession #	Phenotype	Mutation type	Proven Exon	CpG Position	Change hot Amino acid	Amino acid Base	Exon 1 tracts Poly	Androgen Binding Gly #	Bmax	Therabolite Kd	k	Comments	Rearing	External Genitalia	Family history	Reference
0387 PAIS	Substitut	7	*	840	Arg=>Cys											Georget et al; J Clin Endocrinol & Metab 83: 3597-3603, 1998
0385 PAIS	Substitut	7	*	840	Arg=>Gly		low									Givernet et al; Human Genetics 103: 529-531, 1998
0337 PAIS	Substitut	7	*	840	Arg=>His	CGT=>GGT	19	normal	high	high	*					Beitel et al; J Clin Inv, 94: 546-554 1994
0224 PAIS	Substitut	7	*	840	Arg=>His	CGT=>CAT	18	24	normal	high	high	*				Beitel et al; J Clin Inv, 94: 546-554 1994
0225 PAIS	Substitut	7	*	840	Arg=>His	CGT=>CAT										pos Hiori et al; J Clin Endocrinol Metab, fam 77:262-266, 1993
0226 PAIS	Substitut	7	*	840	Arg=>His	CGT=>CAT										McPhaul et al; J Clin Inv, 90:2097, 1992
0227 PAIS	Substitut	7	*	840	Arg=>His	CGT=>CAT										pos Imaasaki et al; Eur J Endocrinol, 130: 569-574, 1994
0228 PAIS	Substitut	7	*	840	Arg=>His	CGT=>CAT										Lumbroso et al; Eur J Endocrinol 130: 327, 1994
0229 PAIS	Substitut	7	*	840	Arg=>His	CGT=>CAT										Imai et al; Annals of Clinical Biochem, 32: 482-486, 1995
0230 PAIS	Substitut	7	*	840	Arg=>His	CGT=>CAT										Ghirri & Brown; Pediatr Res 33: Abstr. 95, 1993
0231 PAIS	Substitut	7	*	840	Arg=>His	CGT=>CAT										Marcelli et al; J Clin Invest 94: 1642-1650, 1994
0232 PAIS	Substitut	7	*	840	Arg=>His	CGT=>CAT										pos Weidemann et al; Clin Endocrinology 45: 733 - 739, 1996
0223 PAIS	Substitut	7	*	840	Arg=>His	CGT=>CAT										De Bellis et al; J Clin Endocrinol Metab, 78:513, 1994

Accession #	Mutation type	CpG Position	Change	Exon 1 tracts	Androgen Binding	Family history	Reference
Phenotype	Proven Exon	hot Amino acid	Amino acid	Poly Gln #	Poly Gly #	External Genitalia	
	Domain	spot Base	Base	Bmax	Bmax	Female Ambiguous	
0233 PAIS	Substitut	7 LBD	841	Ile⇒Ser ATC⇒AGC			Hiori et al; Am J Med Genet. 63: 218-222, 1996
0234 CAIS	Substitut	7 LBD	842	Ile ⇒ Thr ATT⇒ACT		Female Normal	Hiori et al; J Clin Endocrinol Metab. 77:262-266, 1993
0235 PAIS	Substitut	7 LBD	*	842	Ile ⇒ Thr ATT⇒ACT	Male	pos Weidemann et al Clin Endocrinology 45: 733 - 739, 1996
0494 Prostate cancer	Substitut	7 LBD		846	Arg⇒Gly AGA⇒GGA	Male	Marcelli et al; Cancer Research 60: 944-949, 2000
0236 CAIS	Insertion	7 LBD		848	Asn⇒Lys AAT⇒AAA T		Brinkmann et al; J Steroid Biochem Mol Biol 53: 443, 1995
0467 CAIS	Insertion	7 LBD		848	Asn⇒Lys AAT⇒AAA T		Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
0237 CAIS	Substitut	7 LBD		853	Ser⇒Stop TCA⇒TGA	Female Normal	Wilson et al; J Clin Endocrinol Metab, 75:1474-8, 1992
0238 CAIS	Substitut	7 LBD		853	Ser⇒Stop TCA⇒TGA	Female Normal	Jakubczak et al; Human Mutation 9: 57-61, 1997
0239 PAIS	Substitut	7 LBD		854	Arg⇒Lys AGA⇒AAA		McPhaul et al; J Clin Inv, 90:2097, 1992
0240 CAIS	Substitut	7 LBD	*	855	Arg ⇒ Cys CGC ⇒ TGC	Female Normal	DeBellis et al; Mol Endocrinol 6:1909-20, 1992
0241 CAIS	Substitut	7 LBD	*	855	Arg ⇒ Cys CGC ⇒ TGC	Female Normal	Tincello et al; J Endocrinol 132 Suppl, Abstr 87, 1992
0242 CAIS	Substitut	7 LBD	*	855	Arg ⇒ Cys CGC ⇒ TGC	zero	McPhaul et al; J Clin Inv, 90:2097, 1992
0243 CAIS	Substitut	7 LBD	*	855	Arg ⇒ Cys CGC ⇒ TGC	Female Normal	Lobaccaro et al; Pediat Res 33: Abstr 115, 1993

Accession #	Mutation type	Proven hot spot	CpG Position	Exon 1 tracts		Androgen Binding Poly	Poly Gly #	Bmax	Kd	Comments	Sex of rearing	External Genitalia	Family history	Reference
				Exon	Domain	Amino acid	Base							
0244 CAIS	Substitut	7 LBD	* 855	Arg ⇒ Cys CGC ⇒ TGC			low				Female	Normal		pos Morono et al; Human Mutation 6: 152-162. 1995
0245 CAIS	Substitut	7 LBD	* 855	Arg ⇒ Cys CGC ⇒ TGC			zero				Female	Normal		Sultan et al; J Steroid Biochem & Mol Biol:40 519, 1993
0246 CAIS	Substitut	7 LBD	* 855	Arg ⇒ Cys CGC ⇒ TGC							Female	Normal		Brinkmann et al; J Steroid Biochem & Mol Biol 53: 443, 1995
0247 CAIS	Substitut	7 LBD	* 855	Arg ⇒ Cys CGC ⇒ TGC							Female	Normal		Hiort et al; Am J Med Genet 63: 218-222, 1996
0248 CAIS	Substitut	7 LBD	* 855	Arg ⇒ Cys CGC ⇒ TGC			v low	high			Female	Normal		pos Malmgren et al; Clin Genet 50:202-205, 1996
0320 CAIS	Substitut	7 LBD	* 855	Arg ⇒ Cys CGC ⇒ TGC							Female	Normal		Komori et al; J Obstetrics & Gynocol Res. 23: 277-81, 1997
0468 CAIS	Substitut	7 LBD	* 855	Arg ⇒ Cys CGC ⇒ TGC			zero				Female	Normal		Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
0469 CAIS	Substitut	7 LBD	* 855	Arg ⇒ Cys CGC ⇒ TGC			normal high				Female	Normal		Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
0527 CAIS	Substitut	7 LBD	* 855	Arg ⇒ Cys CGC ⇒ TGC			v low	high			Female	Normal		Elihaji et al; 83rd US Endo Soc Meeting, Abstr P2-37, 2001
0528 PAIS	Substitut	7 LBD	* 855	Arg ⇒ His CGC ⇒ CAC			normal high			*	Male			Elihaji et al; 83rd US Endo Soc Meeting, Abstr P2-37, 2001
0251 PAIS	Substitut	7 LBD	* 855	Arg ⇒ His CGC ⇒ CAC			normal high			*	Ambiguous			Chang et al; 73rd Endo Soc Meeting, Abstr 28, 1991
0252 PAIS	Substitut	7 LBD	* 855	Arg ⇒ His CGC ⇒ CAC			normal high			*	Ambiguous			Batch et al; Hum Mol Genet, 1:497, 1992
0253 PAIS	Substitut	7 LBD	* 855	Arg ⇒ His CGC ⇒ CAC			serve hypospadi			*	Male			Hiort et al; Am J Med Genet 63: 218-222, 1996

Accession #	Mutation type	Proven CpG Position	Change	Exon 1 tracts		Androgen Binding		Comments	Sex of rearing	External Genitalia	Family history	Reference
				hot spot	Amino acid	Poly Gln #	Poly Gly #					
0254 PAIS	Phenotype	Substitut. 7 LBD	* 855	2926	Arg ⇒ His CGC ⇒ CAC	low	high	norm	Female	Ambiguous	pos	Weidemann et al; Clin Endocrinology 45: 733 - 739, 1996
0255 PAIS	Phenotype	Substitut. 7 LBD	* *	855	Arg ⇒ His CGC ⇒ CAC	14			Male	Ambiguous	pos	Boehmer et al; Am J Hum Genetics 60: 1003-6, 1997
0301 PAIS	Phenotype	Substitut. 7 LBD	*	855	Arg ⇒ His CGC ⇒ CAC				Female	Ambiguous	pos	Weidemann et al; Clin Endocrinology 45: 733-739, 1996
0250 PAIS	Phenotype	Substitut. 7 LBD	*	855	Arg ⇒ His CGC ⇒ CAC	zero			Female	Ambiguous	pos	Boehmer et al; Am J Hum Genetics 60: 1003-6, 1997
0302 PAIS	Phenotype	Substitut. 7 LBD	* *	855	Arg ⇒ His CGC ⇒ CAC	14			Female	Ambiguous	pos	Boehmer et al; Am J Hum Genetics 60: 1003-6, 1997
0249 CAIS	Phenotype	Substitut. 7 LBD	*	855	Arg ⇒ His CGC ⇒ CAC	low			Female	Normal	neg	McPhaul et al; J Clin Invest. 90: 2097, 1998
0344 PAIS	Phenotype	Substitut. 7 LBD	*	855	Arg ⇒ His CGC ⇒ CAC				Female	Normal	neg	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
0470 CAIS	Phenotype	Substitut. 7 LBD	*	856	Phe ⇒ Leu TTC ⇒ TTG				Female	Normal	neg	Hiori et al; J Pediatr 132: 939-943, 1998
0356 CAIS	Phenotype	Substitut. 7 LBD	*	857	Tyr ⇒ Stop TAC ⇒				Female	Normal	neg	Brown et al; Eur J Pediatr 152: (Suppl 2) S62, 1993
0256 CAIS	Phenotype	Substitut. 7 LBD	*	863	Leu ⇒ Arg CTG ⇒ CGG				Female	Normal	neg	Bevan et al; J Steroid Biochem Molec. Biol 61: 19-26, 1997
0257 CAIS	Phenotype	Substitut. 7 LBD	*	864	Asp ⇒ Asn GAC ⇒ AAC				Female	Normal	neg	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
0471 CAIS	Phenotype	Substitut. 7 LBD	*	864	Asp ⇒ Asn GAC ⇒ AAC				Female	Normal	neg	DeBellis et al; Mol Endocrinol, 6:1909-20, 1992
0258 CAIS	Phenotype	Substitut. 7 LBD	*	864	Asp ⇒ Gly GAC ⇒ GGC	zero			Female	Normal	neg	

Accession #	Mutation type	Proven hot spot	CpG Position	Change Amino acid	Exon 1 tracts	Androgen Binding	External rearing	Family history	Reference
Phenotype	Substitut	7 LBD	864 2953	Asp \Rightarrow Gly GAC \Rightarrow GGC	Poly	Thermostable	Comments		
0472 CAIS	Substitut	7 LBD	865 2955	Ser \Rightarrow Pro <u>TCC</u> \Rightarrow CCC	Gly #	Bmax			
0486 CAIS	Substitut	7 LBD	865 2955	Ser \Rightarrow Pro <u>TCC</u> \Rightarrow CCC					Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
0560 CAIS	Substitut	7 LBD	865 2955	Val \Rightarrow Leu <u>GTG</u> \Rightarrow TTG	21	normal high			Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
0259 PAIS	Substitut	7 LBD	866 2958	Val \Rightarrow Leu <u>GTG</u> \Rightarrow TTG	25	normal high			Mongan et al; Clin Endocrinol Metab 87: 1057-1061, 2002
0345 PAIS	Substitut	7 LBD	866 2958	Val \Rightarrow Leu <u>GTG</u> \Rightarrow TTG	25	normal high			Saunders et al; Clin Endocrinol 37: 214, 1992
0260 PAIS	Substitut	7 LBD	866 2958	Val \Rightarrow Leu <u>GTG</u> \Rightarrow TTG	25	normal high			Saunders et al; Clin Endocrinol 37: 214, 1992
0261 PAIS	Substitut	7 LBD	866 2958	Val \Rightarrow Leu <u>GTG</u> \Rightarrow TTG	25	high			Hiort et al; J Clin Endocrinol Metab, 77:262-266, 1993
0262 PAIS	Substitut	7 LBD	866 2958	Val \Rightarrow Leu <u>GTG</u> \Rightarrow TTG	20	zero			Merkel et al; 75th US Endo Soc Meeting Abstr 602, 1993
0263 CAIS	Substitut	7 LBD	866 2958	Val \Rightarrow Met <u>GTG</u> \Rightarrow ATG	16	normal high			Kazemi-Esfarjani et al; Mol Endocrinol, 7:37-46, 1993
0264 CAIS	Substitut	7 LBD	866 2958	Val \Rightarrow Met <u>GTG</u> \Rightarrow ATG	20	normal high			Kazemi-Esfarjani et al; Mol Endocrinol, 7:37-46, 1993
0265 CAIS	Substitut	7 LBD	866 2958	Val \Rightarrow Met <u>GTG</u> \Rightarrow ATG	20	normal high	*		Weidemann et al; Clin Endocrinology 45:733 -739, 1996
0266 PAIS	Substitut	7 LBD	866 2958	Val \Rightarrow Met <u>GTG</u> \Rightarrow ATG	20	normal high	*		Lubahn et al; Proc Natl Acad Sci. 86: 9534, 1989
0267 PAIS	Substitut	7 LBD	866 2958	Val \Rightarrow Met <u>GTG</u> \Rightarrow ATG	20	high	*		McPhail et al; J Clin Inv, 90:2097, 1992
							*		Hiort et al; J Pediatrics 132: 939- 943, 1998
							*		neg
									mosaic 2 functionally diff AR's

Accession #	Mutation type	CpG Position	Change Amino acid	Exon 1 tracts	Androgen Binding	External Genitalia	Family history	Reference
Phenotype	Exon	hot spot	Base	Poly Gly #	Poly Bmax	Kd	k	
0373 Prostate cancer	Substitut 7	LBD	*	866 2958	Val⇒Met GTG ⇒ ATG			Takahashi et al; Cancer Research 55: 1621-1624, 1995
0473 CAIS	Substitut 7	LBD	*	866 2958	Val⇒Met GTG ⇒ ATG			Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
0474 CAIS	Substitut 7	LBD	*	866 2958	Val⇒Met GTG ⇒ ATG	zero		Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
0475 CAIS	Substitut 7	LBD	*	866 2958	Val⇒Met GTG ⇒ ATG	zero		Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
0268 CAIS	Substitut 7	LBD	*	866 2959	Val⇒Glu GTG ⇒ GAG			McPhaul et al; J Clin Inv, 90:2097, 1992
0269 PAIS	Substitut 8	LBD	*	869 2969	Ile⇒Met ATG ⇒ ATG	normal high		Bevan et al; Hum Mol Genet 5: 265-273, 1996
0270 PAIS	Substitut 8	LBD	*	870 2971	Ala⇒Val GCG ⇒ GTG			Hiort et al; Eur J Pediatr, 153:317, 1994
0315 PAIS	Substitut 8	LBD	*	870 2971	Ala⇒Gly GCG ⇒ GGG			Albers et al; J of Pediatrics 131: 388-392, 1997
0271 PAIS	Substitut 8	LBD	*	870 2971	Ala⇒Gly GCG ⇒ GGG			Hiort et al; J Pediatrics 132: 939- 943, 1998
0562 MAIS	Substitut 8	LBD	*	870 2971	Ala⇒Gly GCG ⇒ GGG			Zenteno et al; Horm Res 57: 90-93, 2002
0272 MAIS	Substitut 8	LBD	*	871 2973	Arg⇒Gly AGA ⇒ GGA	24		Shkolny et al; J Clin Endocrinol & Metab 84: 805-810, 1999
0273 Prostate cancer	Substitut 8	LBD	*	874 2982	His⇒Tyr CAT ⇒ TAT			Taplin et al; New England J Med 332: 1393-1398, 1995
0274 Prostate cancer	Substitut 8	LBD	*	874 2982	His⇒Tyr CAT ⇒ TAT			Tan et al; J of Urology 155: 340A, 1996

Accession #	Mutation type	Proven hot spot	Q/G Position	Change	Exon 1 tracts	Androgen Binding	External	Family history	Reference
		Exon	hot Amino acid	Amino acid	Poly Gln #	Poly Gly # Bmax	Thermostable	Genitalia	
			Domain	Base	CAT => CGT	k	Comments	rearing	
0538	CAIS	Substitut 8	LBD	874 2983	His => Arg CAT => CGT	zero		Female	Normal
0275	LNCaP mutation	Substitut 8	LBD	877 2991	Thr => Ala <u>ACT</u> => <u>GCT</u>		Altered binding specificity - somatic mutation	Male	Normal
0276	Prostate cancer	Substitut 8	LBD	877 2991	Thr => Ala <u>ACT</u> => <u>GCT</u>		Somatic mutation 1/8 endocrine resistant therapy cases	Male	Normal
0277	Prostate cancer	Substitut 8	LBD	877 2991	Thr => Ala <u>ACT</u> => <u>GCT</u>		6 out of 24 patients screened - somatic mutation	Male	Normal
0278	Prostate cancer	Substitut 8	LBD	877 2991	Thr => Ala <u>ACT</u> => <u>GCT</u>		3 out of 22 cases in metastatic tissue -somatic mutation	Male	Normal
0279	Prostate cancer	Substitut 8	LBD	877 2991	Thr => Ala <u>ACT</u> => <u>GCT</u>		Somatic mutation in bone metastases of Prostate cancer	Male	Normal
0432	Prostate cancer	Substitut 8	LBD	877 2991	Thr => Ala <u>ACT</u> => <u>GCT</u>		Som mut found in 5 of 16 patients treated with flutamide	Male	Normal
0280	Prostate cancer	Substitut 8	LBD	*	877 2992	Thr => Ser <u>ACT</u> => <u>AGT</u>	Som mut. in 86% of isolates . Stimulated by estrogen & progest	Male	Normal
0539	PAIS	Substitut 8	LBD	879 2997	Asp => Tyr GAC => TAC	normal	Treated with bicalutamide - somatic mutation	Male	Ambiguous
0553	Prostate cancer	Substitut 8	LBD	879 2998	Asp => Gly GAC => GCC		Somatic instability in polyglutamine tract	Female	Normal
0281	CAIS	Substitut 8	LBD	881 3003	Leu => Val <u>CTA</u> => <u>GTA</u>			Female	Normal
0282	CAIS	Substitut 8	LBD	883 3009	Lys => Stop <u>AAG</u> => <u>TAG</u>	zero	Oligospermia-50% red. in transactivation	Male	Normal
0283	MAIS	Substitut 8	LBD	*	886 3018	Met => Val <u>ATG</u> => <u>GTG</u>	23	normal normal norm	

Accession #	Phenotype	Mutation type	Proven hot spot	CpG Position	Change	Exon 1 tracts	Androgen Binding	External Genitalia	Family history	Reference
			Exon	Amino acid	Amino acid	Poly Gln #	Poly Gly #	Thermolabile		
			Domain	Base	Base	Bmax	Bmax	Comments		
0309	MAIS	Substitut	8 LBD	*	886 3018	Met⇒Val <u>ATG</u> ⇒ <u>G</u> TG	21 24	normal normal norm	Oligospermia-50% red. in transactivation	Male
0533	PAIS	Substitut	8 LBD	*	888 3026	Ser⇒Ser AG <u>C</u> ⇒AG <u>T</u>	21	v low	silent mut.-part exon 8 + part of 3' untransl also small amt. wt AR	Male
0540	PAIS	Substitut	8 / Splice	*	888 3026	Ser⇒Ser AG <u>C</u> ⇒AG <u>T</u>	normal			Ambiguous
0476	CAIS	Substitut	8 LBD	*	889 3027	Val⇒Met <u>G</u> TG⇒ <u>A</u> TG	low	normal		Female
0284	CAIS	Substitut	8 LBD	*	889 3027	Val⇒Met <u>G</u> TG⇒ <u>A</u> TG	zero			Normal
0285	PAIS	Substitut	8 LBD	*	889 3027	Val⇒Met <u>G</u> TG⇒ <u>A</u> TG	low	normal		Female
0321	PAIS	Substitut	8 LBD	*	889 3027	Val⇒Met <u>G</u> TG⇒ <u>A</u> TG				Normal
0433	Prostate cancer	Substitut	8 LBD	*	890 3030	Asp⇒Asn <u>G</u> AC⇒ <u>A</u> AC	26			Male
0389	CAIS	Substitut	8 LBD	*	892 3036	Pro⇒Leu <u>CCG</u> ⇒ <u>T</u> CG	low	high		Reduced transactivation
0375	CAIS	Substitut	8 LBD	*	892 3037	Pro⇒Leu <u>CCG</u> ⇒ <u>C</u> TG				Mutation found in two siblings
0413	CAIS	Substitut	8 LBD	*	892 3037	Pro⇒Leu <u>CCG</u> ⇒ <u>C</u> TG				Mutation found in two siblings
0386	CAIS	Substitut	8 LBD	*	895 3046	Met⇒Thr <u>A</u> TG⇒ <u>A</u> CG	low			Female
0286	CAIS	Substitut	8 LBD	*	898 3055	Ile⇒Thr <u>A</u> TC⇒ <u>A</u> CC				Normal
										de novo mutation

Accession #	Phenotype	Mutation type	Proven hot spot	CpG Position	Change Amino acid	Exon 1 tracts	Androgen Binding	External Genitalia	Family history	Reference	
0287	Prostate cancer	Substitut 8	LBD	902	Gln \Rightarrow Arg CAA \Rightarrow CGA			Male	Normal	Taplin et al; New England J Med 332: 1392-1398, 1995	
0288	PAIS	Substitut 8	LBD	903	Val \Rightarrow Met GTG \Rightarrow ATG	low		Female	Normal	McPhaul et al; J Clin Inv, 90:2097, 1992	
0289	CAIS	Substitut 8	LBD	904	Pro \Rightarrow Ser CCC \Rightarrow TCC	27	normal/high	Female	Normal	Pinsky et al; Clin Inv Med, 15:456, 1992	
0290	CAIS	Substitut 8	LBD	904	Pro \Rightarrow His CCC \Rightarrow CAC	zero		Female	Normal	McPhaul et al; J Clin Inv, 90:2097, 1992	
0291	CAIS	Substitut 8	LBD	907	Leu \Rightarrow Phe CTT \Rightarrow TTT	low	normal	Decreased transactivation activity compared to normal	Female	Normal	Bevan et al; J Steroid Biochem Molec. Biol 61: 19-26, 1997
0292	PAIS	Substitut 8	LBD	907	Gly \Rightarrow Arg GGG \Rightarrow AGG	low	low	Also silent G to A mutation in codon 211	Female	Ambiguous	Choong et al; J Clin Endocrinol Metab, 81: 236-243, 1996
0374	Prostate cancer	Substitut 8	LBD	909	Gly \Rightarrow Glu GGG \Rightarrow GAG	low	low	Somatic mutation	Male	Normal	Takahashi et al; Cancer Research 55: 1621-1624, 1995
0327	Prostate cancer	Substitut 8	LBD	909	Gly \Rightarrow Glu GGG \Rightarrow GAG	low	low	Somatic mutation	Male	Normal	Watanabe et al; Jpn J Clin Oncol 27: 389-393, 1997
0430	PAIS	Substitut 8	LBD	910	Lys \Rightarrow Arg AAA \Rightarrow AGA	19		Severe oligozoospermia	Male	Ambiguous	Knoke et al; Andrologia 31: 199-201, 1999
0293	PAIS	Substitut 8	LBD	911	Val \Rightarrow Leu GTC \Rightarrow CTG	3093			Female	Normal	Ghifri and Brown; Paed Res, 33(5) Suppl, Abstr 95, 1993
0318	CAIS	Substitut 8	LBD	913	Pro \Rightarrow Ser CCC \Rightarrow TCC	3099			Female	Normal	Radnay et al; J of Urology 158: 1553-1556, 1997
0477	CAIS	Substitut 8	LBD	916	Phe \Rightarrow Leu TTC \Rightarrow TTG	3110	high	*	Female	Normal	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
0303	Prostate cancer	Substitut 8	LBD	919	Gln \Rightarrow Arg CAG \Rightarrow CGG	3118		Somatic mutation	Male	Normal	Nazereth et al; 79th US Endo Soc Meetings Abstr. P2-489, 1997

Accession #	Phenotype	Mutation type	Proven Exon	CpG Position	Change Amino acid	Poly Amino acid	Gln #	Gly #	Bmax	Rd	k	Exon 1 tracts	Androgen Binding	External Genitalia	Family history	Reference
0294	CAIS	Splice	exon1 intron 1		gta ⇒ gttta		24	23				Insertion at +3 position of donor splice site		Female	Normal	Trifiro et al; Eur J Hum Genetics 5: 50-58, 1997
0304	CAIS	Splice	exon2 intron 2		ctg ⇒ cta							Substitution at +1 pos of donor splice site - lacks exon 2		Female	Normal	neg Hellwinkel et al; J Steroid Biochem & Mol Biol 68: 1-9, 1999
0479	CAIS	Splice	exon2 intron 2		⇒											Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
0480	CAIS	Splice	exon2 intron 2		⇒											Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
0295	CAIS	Splice	exon3 intron 3		⇒							Substitution at +1 position of donor splice site		Female	Normal	Evans et al; J Endocrinol 129 Suppl, Abstr 65, 1991
0478	CAIS	Splice	exon3 intron 3		ggt ⇒ gat							Substitution at +1 position of donor splice site		Female	Normal	Ahmed et al; J Clin Endocrinol & Metab 85: 658-665, 2000
0296	CAIS	Splice	exon4 intron 4		ggt ⇒ gat							+1 pos of donor site. Splice site activated & del of aa's 683-723		Female	Normal	Ris-Stalpers et al; Proc Natl AcadSci 87:7866-70, 1990
0297	CAIS	Splice	exon6 intron 6		ggt ⇒ gtt							Substitution at +3 position of donor splice site		Female	Normal	Pinsky et al; Eur J Hum Genetics 5: 50-58, 1997
0503	PAIS	Splice	exon6 intron 6		gt <u>a</u> ⇒ t <u>a</u>		21					Subst. at +5 position of donor splice site, stop at + 79 bases		Female	Ambiguous	Sammacco et al; J Clin Endocrinol & Metab 85: 3256-3261, 2000
0541	CAIS	Splice	exon6 intron 6		t <u>a</u> ⇒ t <u>t</u>							Sust. at +6 position of donor splice site.		Female	Normal	Chavez et al; J Hum Genet 46: 560-565, 2001
0298	CAIS	Splice	exon7 intron 7		aag ⇒ aac											pos Lim et al; Mol & Cell Endocrinology 131: 205-210, 1997
0502	CAIS	Splice	exon7 intron 7		⇒											Choi et al; Arch Gynecol Obstet 233: 201-205, 2000
0299	PAIS	Splice	2/exon 3		tgt ⇒ tat											Bruggenwirth et al; Am J Hum Genet 61: 1067-1077, 1997

Accession #	Mutation type	Proven Exon	CpG Position	Change Amino acid	Exon 1 tracts	Androgen Binding	External Genitalia	Family history	Reference
Phenotype #	Mutation type	Econ	hot spot	Base	Poly Gln #	Poly Gly #	Poly Rmax	Kd	Comments
0317	Breast Cancer	Splice			≥				- exon 3: higher express. of mut. var in 7/31breast cancer
0351	CAIS	Substitution	intron 2		⇒ gt ⇒ at				Female Normal
0088	PAIS	Deletion	intron 2		⇒				Female Normal
0312	Prostate Cancer	Substitution	5' UTR		agc ⇒ atc				6 kb del at -18 pos of Male acceptor site 2 transcr: 1 wt, 1 minus exon 3
0313	Prostate Cancer	Substitution	5' UTR		⇒ ggc ⇒ gac				+2 pos from transcription initiation site AR-TIS II
0323	Prostate Cancer		3' UTR		⇒ ⇒				+214 pos from transcription initiation site AR-TIS II
									Som mut. polymorph seq 2820-36 downstream to transl. init. site

REVENDICATIONS

1) Un oligonucléotide double brin caractérisé en ce qu'il est constitué de deux séquences oligonucléotidiques complémentaires formant un hybride comprenant chacune à l'une de leurs extrémités 3' ou 5' un à cinq nucléotides non appariés formant des bouts simples brins débordant de l'hybride, l'une desdites séquences oligonucléotidiques étant实质iellement complémentaire d'une séquence cible appartenant à une molécule d'ADN ou d'ARN à réprimer spécifiquement.

2) Un oligonucléotide selon la revendication 1, caractérisé en ce que ladite molécule d'ADN ou d'ARN à réprimer spécifiquement est choisie dans le groupe comprenant des ARN messagers ou ribosomiques et des gènes.

3) Un oligonucléotide selon l'une des revendications 1 ou 2, caractérisé en ce que chacune des deux séquences oligonucléotidiques complémentaires comprend à la même extrémité 3' ou 5' un à cinq nucléotides non appariés formant des bouts simples brins débordant de l'hybride.

4) Un oligonucléotide selon l'une quelconque des revendications 1 à 3, caractérisé en ce que les deux séquences oligonucléotidiques complémentaires comprenant à l'une de leurs extrémités 3' ou 5' un à cinq nucléotides non appariés ont la même taille.

5) Un oligonucléotide selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les deux séquences oligonucléotidiques complémentaires ont la même taille en l'absence d'un à cinq nucléotides non appariés à l'une de leurs extrémités 3' ou 5'.

5 6) Un oligonucléotide selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la séquence oligonucléotidique complémentaire de la séquence cible a de préférence une taille comprise entre 15 et 25 nucléotides et tout préférentiellement de 20 à 23 nucléotides.

10 7) Un oligonucléotide selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il est de nature ribonucléotidique, désoxyribonucléotidique ou mixte.

15 8) Un oligonucléotide selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la séquence oligonucléotidique complémentaire de la séquence cible, désigné brin antisens, est majoritairement de nature ribonucléotidique et en ce que l'autre séquence oligonucléotidique, désigné brin sens, est de nature ribonucléotidique désoxyribonucléotidique ou mixte.

20 9) Un oligonucléotide selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'il comprend, de préférence à l'extrémité 3' de chaque séquence oligonucléotidique, de 1 à 5 nucléotides de préférence de 2 à 3 et tout préférentiellement 2 nucléotides débordant de l'hybride.

25 10) Un oligonucléotide selon l'une quelconque des revendications 1 à 9, caractérisé en ce que les nucléotides débordant de l'hybride sont complémentaires de la séquence cible.

30

 11) Un oligonucléotide selon l'une quelconque des revendications 1 à 9, caractérisé en ce que les nucléotides débordant de l'hybride ne sont pas complémentaires de la séquence cible.

12) Un oligonucléotide selon l'une quelconque des revendications 1 à 11, caractérisé en ce que les nucléotides débordant de l'hybride sont des Thymines.

5 13) Un oligonucléotide selon l'une quelconque des revendications 1 à 12, caractérisé en ce qu'il est couplé à des substances favorisant ou permettant leur pénétration, ciblage ou adressage dans les cellules.

10 14) Un oligonucléotide selon l'une quelconque des revendications 1 à 13, caractérisé en ce que l'une desdites séquences oligonucléotidiques est实质iellement complémentaire d'une séquence cible appartenant à une molécule d'ADN ou d'ARN messager d'un gène dont la répression induit l'apoptose, ou la sénescence, ou la nécrose, ou la différenciation des cellules tumorales ou empêche leur division ou plusieurs de ces phénomènes.

20 15) Un oligonucléotide selon la revendication 14, caractérisé en ce que ledit gène est choisi dans le groupe comprenant les gènes cellulaires de la famille BCL2, BCL XL, les gènes codant des protéines des familles des métallo protéases matricielles (MMP), des métallo protéases matricielles membranaires, de leurs inhibiteurs (TIMPs), ainsi que celle des activateurs, des inhibiteurs des protéases comme par exemple PAI-1 et des protéases elles-mêmes comme par exemple l'urokinase, le gène codant la télomérase, les gènes codant les récepteurs des facteurs de croissance mutés ou non, les gènes codant les formes mutées des récepteurs nucléaires d'hormones, les gènes codant des protéines nécessaires au déroulement du cycle cellulaire.

35 16) Un oligonucléotide selon l'une quelconque des revendications 1 à 13, caractérisé en ce que l'une

desdites séquences oligonucléotidiques est
substantiellement complémentaire d'une séquence cible
appartenant à une molécule d'ADN ou d'ARN messager du gène
codant le facteur de transcription Hif1 α .

5

17) Un oligonucléotide selon l'une quelconque
des revendications 1 à 13, caractérisé en ce que l'une
desdites séquences oligonucléotidiques est
substantiellement complémentaire d'une séquence cible
appartenant à une molécule d'ADN ou d'ARN messager du gène
codant l'une ou plusieurs des isoformes du VEGF A ou d'un
membre de la famille de ce facteur de croissance.

10

18) Un oligonucléotide selon l'une quelconque
des revendications 1 à 13, caractérisé en ce que l'une
desdites séquences oligonucléotidiques est
substantiellement complémentaire d'une séquence cible
appartenant à une molécule d'ADN ou d'ARN messager d'un
gène viral.

20

25

19) Un oligonucléotide selon l'une quelconque
des revendications 1 à 13, caractérisé en ce que l'une
desdites séquences oligonucléotidiques est
substantiellement complémentaire d'une séquence cible
appartenant à une molécule d'ADN ou d'ARN messager d'un
gène codant une protéine mutée.

30

20) Un oligonucléotide selon l'une quelconque
des revendications 1 à 13, caractérisé en ce que l'une
desdites séquences oligonucléotidiques est
substantiellement complémentaire d'une séquence cible
appartenant à une molécule d'ADN ou d'ARN messager d'un
gène responsable de l'inactivation de la p53.

5 21) Un oligonucléotide selon l'une quelconque des revendications 1 à 13, caractérisé en ce que l'une desdites séquences oligonucléotidiques est实质iellement complémentaire d'une séquence cible appartenant à une molécule d'ADN ou d'ARN messager choisi parmi les gènes codant la p53 mutée ou la protéine E6 d'un HPV.

10 22) Un oligonucléotide selon la revendication 21, caractérisé en ce que l'une desdites séquences oligonucléotidiques est实质iellement complémentaire d'une séquence cible appartenant à une molécule d'ADN ou d'ARN messager du gène de la p53 muté portant l'une au moins des mutations données dans le tableau 3 et tout particulièrement l'une au moins des mutations du tableau 4.

20 23) Un oligonucléotide selon l'une quelconque des revendications 1 à 13, caractérisé en ce que l'une desdites séquences oligonucléotidiques est实质iellement complémentaire d'une séquence cible appartenant à la partie d'un gène résultant d'une translocation chromosomique codant pour la jonction d'une protéine de fusion de façon à inhiber les effets de ladite protéine de fusion exprimée par ce gène.

25 24) Un oligonucléotide selon la revendication 23, caractérisé en ce que la protéine de fusion est choisie dans le groupe donné dans le tableau 2.

30 25) Un oligonucléotide selon la revendication 23, caractérisé en ce que la protéine de fusion est la protéine PML-RAR α .

35 26) Un oligonucléotide selon l'une quelconque des revendications 1 à 13, caractérisé en ce que l'une

desdites séquences oligonucléotidiques est
substantiellement complémentaire d'une séquence cible
appartenant à une molécule d'ADN ou d'ARN messager du gène
codant le récepteur aux androgènes muté ou non muté.

5

27) Un oligonucléotide selon la revendication
26, caractérisé en ce que l'une desdites séquences
oligonucléotidiques est substantiellement complémentaire
d'une séquence cible appartenant à une molécule d'ADN ou
10 d'ARN messager du gène codant le récepteur aux androgènes
muté, portant par exemple l'une au moins des mutations du
tableau 5 de l'annexe C.

10

28) Composition notamment pharmaceutique pour
15 être utilisée dans la recherche de la fonction de gène ou à
des fins thérapeutiques ou diagnostiques, caractérisée en
ce qu'elle comprend à titre d'agent actif au moins un
oligonucléotide selon l'une quelconque des revendications 1
à 27.

20

29) Utilisation d'un oligonucléotide selon
l'une quelconque des revendications 1 à 27 pour la
préparation d'une composition pharmaceutique utile pour la
prévention ou le traitement d'une maladie résultant de
25 l'expression d'un gène nocif.

25

30) Utilisation d'un oligonucléotide selon
l'une quelconque des revendications 23 ou 24 pour la
préparation d'une composition pharmaceutique utile pour la
prévention ou le traitement d'une maladie résultant de
30 l'expression d'une protéine de fusion.

30

31) Utilisation selon l'une quelconque des
revendications 29 ou 30, caractérisée en ce que ladite
35 maladie est un cancer.

35

5 32) Utilisation d'un oligonucléotide selon l'une quelconque des revendications 20 à 22 pour la préparation d'une composition pharmaceutique utile pour la prévention ou le traitement d'un cancer résultant de l'expression d'un gène codant pour une protéine p53 mutée.

10 33) Utilisation d'un oligonucléotide selon la revendication 21 pour la préparation d'une composition pharmaceutique utile pour la prévention ou le traitement d'un cancer résultant de l'expression d'un gène codant pour la protéine E6 de HPV.

15 34) Utilisation d'un oligonucléotide selon l'une quelconque des revendications 1 à 13 pour la préparation d'une composition pharmaceutique utile pour la prévention ou le traitement d'une maladie infectieuse ou virale, en particulier le SIDA, les maladies infectieuses non conventionnelles, en particulier ESB et Kreutzfeld Jacob.

20 35) Utilisation d'un oligonucléotide selon l'une quelconque des revendications 1 à 13 pour la préparation d'une composition pharmaceutique utile pour la prévention ou le traitement d'une maladie virale à l'origine de cancers.

30 36) Utilisation d'un oligonucléotide selon l'une quelconque des revendications 1 à 13, 16 ou 17 pour la préparation d'une composition pharmaceutique utile pour la prévention ou le traitement d'une maladie d'une maladie liée à une hypervascularisation comme la dégénérescence maculaire liée à l'age, l'angiogénèse tumorale, les rétinopathies diabétiques, le psoriasis, l'arthrite rhumatoïde.

1 / 14

Fig. 1 A

Fig. 1 B

2/14

Fig. 2 A

Fig. 2 B

Fig. 2 C

Fig. 2 D

Fig. 2 E**Fig. 3**

4 / 14

Fig. 4 A

Fig. 4 B

Fig. 4 C

5 / 14

Fig. 4 D

Fig. 4 E

Fig. 4 F

6/14

Fig. 5 A

1 atggaggagc .cgcagtca ga tccttagcg tc gagccccctc tg agtcagga aacat tttca
61 gacctatgga aactacttcc tgaaaaca ac gttctgtccc ccttgcgc tc ccaagcaatg
121 gatgatttg a tgctgtcccc ggacgatatt gaacaatgg tca actgaaga cccaggtcca
181 gatgaagctc ccagaatgcc agaggctg ct ccccccgtgg cccctgcacc agcagctc
241 acaccggcgg cccctgcacc agccccctc tgccccctgt catcttctgt cccttcccag
301 aaaacctacc agggcagcta cggttccgt ctgggcttct tgcattctgg gacagccaag
361 tctgtgactt gcacgtactc ccctgcccc aacaagatgt tttgccaact ggccaagacc
421 tgccctgtgc agctgtgggt tgattccaca ccccccggc gcacccggcgt ccgcgcattg
481 gccatctaca agcagtca ca gcacatgacg gaggttgtga ggcgctgccc ccaccaatgag
541 cgctgctca g atagcgatgg tctggccct cctcagcatc ttatccgagt ggaaggaaat
601 ttgcgtgtgg agtatttgg a tgacagaa ac actttcgac atagtgtgg ggtgccstat
661 gagccgcctg aggttggctc tgactgtacc accatccact acaactacat gtgtacat
721 tcctgcattgg g cggcatgaa ccggaggccc atcctcacca tc atcacact ggaagactcc
781 agtggtaatc tactgggacg gaacagctt gaggtgcgtg tttgtgcctg tcctgggaga
841 gaccggcgc a cagagga a gaatctccgc a aaaaagggg agcctcacca cgagctgccc
901 ccagggagca ctaagcgagc actgccccaa aacaccagct cctctccca gccaaagaag
961 aaaccactgg atggagaata tttcaccctt cagatccgtg ggcgtgagcg cttcgagatg
1021 ttccgagagc tgaatgaggc cttggaaactc aaggatgccc aggctggaa ggagccaggg
1081 gggagcaggc ctcactccag ccacctgaag tccaaaaagg gtcagtcac ctcccgccat
1141 aaaaaactca tgttcaagac agaaggcct gactcagact ga

7/14

Fig. 5 B

Fig. 5 C

Fig. 5 D

Fig. 5 E

8 / 14

Fig. 5 I**Fig. 5 K**

p53	-	wt	mt	wt+mt
wt	—	—	—	—
mt	—	—	—	—

ib:p53

ib:p53
ib:p21
ib:tubulin

siRNA C C C C wt mt1

9 / 14

Fig. 6 A

1 actacaataa ttcatgtata aaactaaggg cgtaaccgaa atcggttcaa ccgaaacccgg
61 ttagtataaa agcagacatt tatgcacca aaagagaact gaaatgttc aggaccaca
121 ggagcgaccc agaaaattac cacagttagt cacagagctg caaacaacta tacatgatat
181 aatattagaa tttgtgtact gcaagcaaca gttactgcg cgtggatgt atgactttgc
241 tttccggat tatgcatag tatataaaaa ttagtgagta tggaatcca tatgtgtat gtgataaatg
301 ttaaaggtt tattctaaaa tttagtgagta tagacattat tttatagtt tttatggac
361 aacattagaa cagcaataca acaaaccgtt gtgtgatting ttaataggt gtattactg
421 taaaagcca ctgtcctg aaaaaaaagca aagacatctg gacaaaaggc aaagatcca
481 taatataagg ggtcggtgaa cgggtcgatg tatgtctgt tgcatgatcat caagaacacg
541 tagagaaacc cagctgtat catgcattga gatacaccta cattgcatga atatatgtt
601 gatttgcac cagagacaaac tgatctcata tgatgtgac aattaaatga cagctcagag
661 gaggaggatg aaataagatgg tccagctggaa caagcagaac cggacagagc ccattacaat
721 attgttaacct tttgtgtcaa gtgtgactct acgcttcgtt tgtcgtaca aagcacac
781 gtagacattc gtactttgaa agacctgtta atggcacac taggaattgt gtgcacccatc
841 tttctcage aaccataatc taccatggc gatccgtcag gtaccaatgg ggaagagggt
901 acgggtatg atggatgtt ttatgttagag gttgtatgg aaaaaaaaaaaagggtatg
961 atatcagatg acgagaaacga aataatgacatg gatcagggt aagattttgtt agatttata
1021 gtaaatgata atgattattt aacacaggca gaaacagaga cagcacatgc gttgttact
1081 gcacaggaa caaaaacaca tagatgtca gtagatgtca gtaacatgtt aaaaacgaa gtatggta
1141 gtccacttag tttatgtatgg gatgtgttag aataataat tagtcttaga taaaagacta
1201 tatgtataga aaaacaaatgt agagctgcaaa aaggagatt attgtaaagc gaagacacg
1261 ggtatggca tactgaagtg gaaactcagc agatgttaca ggttagaagg cgccatgaga
1321 ctgaaacacc atgtatgcg tttatgtgtt gaaatgttca gaaatgttca gttgtcgtt cagtagt
1381 gtggaaatgg gggaggggtt gttagtggaa gacacactat atgccaacaca ccacttacaa
1441 atatTTTaaa tttactaaaaa actatgtatgg cttttttttt gatgtatgg aatTTTaaag
1501 agttatcgg ggtgatgtt tttttttttt tttttttttt tttttttttt tttttttttt
1561 gttcgattt gtttatgtt gtttatgtt gtttatgtt gtttatgtt gtttatgtt gtttatgtt
1621 cactattaca acaatattgtt tttatgtt gtttatgtt gtttatgtt gtttatgtt gtttatgtt
1681 tgggtgtgtt actattatgtt agatataat gttttttttt gttttttttt gttttttttt
1741 tttgtgtctaa actattatgtt gtttatgtt gtttatgtt gtttatgtt gtttatgtt gtttatgtt
1801 gtagatcagc agcagcattttt tttttttttt tttttttttt tttttttttt tttttttttt
1861 atggagacac gcccggatgg atttttttttt tttttttttt tttttttttt tttttttttt
1921 gtacatttga attatcacag atggatgtt gttttttttt gttttttttt gttttttttt
1981 gtggaaatgg atataaatat gttttttttt gttttttttt gttttttttt gttttttttt
2041 taaaatgttca tttccaggca aaaaatttgtt gttttttttt gttttttttt gttttttttt
2101 aacgagcaga aaaaacaaaatgtt gttttttttt gttttttttt gttttttttt gttttttttt
2161 tagatgtatgg aggtgatgtt gttttttttt gttttttttt gttttttttt gttttttttt
2221 ttatgtcat tttactgtca tttttttttt gttttttttt gttttttttt gttttttttt
2281 tttactatca tttttttttt gttttttttt gttttttttt gttttttttt gttttttttt
2341 ttctgcaagg gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt
2401 tagcagatgc caaaaatgtt gttttttttt gttttttttt gttttttttt gttttttttt
2461 atgacattt aaaaatgtca tttttttttt gttttttttt gttttttttt gttttttttt
2521 ctttggtaca actaaaaatgc cttttttttt gttttttttt gttttttttt gttttttttt
2581 attcttaggtt gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt
2641 ctttggtaca aaaaacggaaat cttttttttt gttttttttt gttttttttt gttttttttt
2701 ttcaggac gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt
2761 actcttgc tttttttttt gttttttttt gttttttttt gttttttttt gttttttttt
2821 agtacagaccc tacgtgacca tttttttttt gttttttttt gttttttttt gttttttttt
2881 tttttttttt gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt
2941 gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt
3001 ttaactcacc aatataatgtt gttttttttt gttttttttt gttttttttt gttttttttt
3061 ttaactgcac caacaggatg tttttttttt gttttttttt gttttttttt gttttttttt
3121 ggagacatataatgtt gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt
3181 gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt
3241 gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt
3301 gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt
3361 aacggatgtt cttttttttt gttttttttt gttttttttt gttttttttt gttttttttt
3421 cataccaaaatgtt gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt
3481 tcagagccatg acacggaaaaa cttttttttt gttttttttt gttttttttt gttttttttt
3541 gacagtgtctc caatccatc tttttttttt gttttttttt gttttttttt gttttttttt
3601 agtaacacta cccccatgtt acatttttttt gttttttttt gttttttttt gttttttttt
3661 tttttttttt gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt
3721 gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt
3781 cttttttttt gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt
3841 atgttctatataatgtt gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt
3901 gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt
3961 atacacatca tttttttttt gttttttttt gttttttttt gttttttttt gttttttttt

10/14

Fig. 6 A (suite)

4021 gtgttttatt gtatataatt tatttgtta tataccatta ttttaatac atacacatgc
 4081 acgctttta attacataat gtatatgtac ataatgtat tggtacatat aattgttgta
 4141 taccataact tactatttt fctttttat ttcataatat aattttttt ttgtttgtt
 4201 tgggttttt ttaataact gtttactt aacaatgcga cacaacgtt ctgaaaacg
 4261 cacaacgt gcatcggtt cccaacttta aaaaacatgc aaacaggcag gtacatgtcc
 4321 accgtacatt atacctaagg ttgaaggcaaa aactattgtc gaacaaatatacataatgg
 4381 aagtatgggt gtatttttggt gtgggttagg aattggaaaca gggcgggtt caggcggacg
 4441 cactgggtat atccatggt gaacaaggcc tcccacact acagatacac ttgcctctgt
 4501 aagacccctt ttaacagtag atccgtggg ccctctgtat cctctatag ttcttttagt
 4561 ggaagaaact agtttattt atgtgtgtc accaacatct gtacccatca ttcccccaaga
 4621 tggatcaggta tttagtattt ctacttcaac tgataccaca cctgttatata tagatattaa
 4681 taatactgtt actactgtt ctacacataa taatccactt tcactgacc catctgtatt
 4741 gcagcctcca acacatgcg aactggagg gcattttaca ctttcatcat ccactatattag
 4801 tacacataat tatgaagaaa ttccatggta tacattttat tttagcacaa accctaacac
 4861 agtaactagt agcacacca taccagggtc tcgcccagtgc acacgcctag gattatataag
 4921 tcgcacaaca caacagggtt aagtgttga ccctctgtttt gtaaccactc ccactaaact
 4981 tattacatata gataatctg catatgaagg ttatgtatgt gataatacat tattttttc
 5041 tagtaatgtt aatagtattt atatagttcc agatcctgtc ttttggata tagtgcttt
 5101 acataggcca gcattaacctt ctaggcgtac tggcattagg tacatgttac ttggtaataa
 5161 acaaacaactt cgtactgtt gtggaaaatc tataatgtct aaggtacattt attattatga
 5221 tttaaatgtt attgtatctg cagaagaaaatc agaaatatacataatccatcata
 5281 tactaccat tcacatgcgt cctcacctt ttcttattata aatggattat atgatattta
 5341 tgcagatgac ttattacag atacttctac aaccccggtt ccacatgtac cctctacatc
 5401 tttatcaggat tataatctg caaatacaac aatttctt ggtgtgtcat acaatattcc
 5461 tttatgtatca ggtctctgtt taccatggtaa tataatgtac caagctcctt cattatattcc
 5521 tatagttcca ggtctccatc aatatacaat tattgtctat gcaagggtact ttatatttaca
 5581 tcctttagtt tacatgttac gaaaacgacg taaacgtt ccatattttt ttcagatgt
 5641 ctcttggct gccttagtgg gccactgtt acttgcctt tggccatgttca tctaagggtt
 5701 taagcacgga taaatgtt gcaacgcacaa aatataattt tcatgcggaa acatccagac
 5761 tactgcagt tggacatccc tattttctta taaaaaaacc taacaataac aaaatattag
 5821 ttcctaaatgtt atcaggatca caatacagggtt tatttagaat acatttacat gaccccaata
 5881 agtttgggtt tccctgacacc tcattttata atccatgtt acagcggctg gtttgggct
 5941 gtgttaggtt tgaggtaggt cgtgtgtc cattatgtt gggcattatgtt ggcacatcctt
 6001 tattaaataaa attggatgac acagaaaatg ttagtgcattt tgcagcaat gcaggtgtgg
 6061 ataatagaga atgtatatact atggattaca aacaaacaca atttgcgttta attgggttca
 6121 aaccacatctt aggggaacac tggggcaaaag gatccccatc taccatgtt gcaatatac
 6181 cagggtattt tccaccatca gaggtaataa acacagtta tcaggatgtt gatatggttc
 6241 atactggctt tgggtctatg gactttacta cattacaggc taacaaaatgtt gaaatccac
 6301 tggatatttgc tacatctttt tgcaatatac tggatatttgc taaatgttgc tcagaaccat
 6361 atggcgacag cttatttttt tattttcgaa gggcaaaat tttttttttt catttttattt
 6421 atagggtctgg tactgttggt gaaaatgtac cagacgattt atacattttt ggctctgggt
 6481 ctactgcataa tttagccatg tcaattttt ttcctacacc taggtgttct atggtaact
 6541 ctgtatgcataa aatattcaat aaacatctt gtttacaacg agcacaggc cacaataatg
 6601 gcatttgggtt gggtaacacaa ctatttggta ctgttggta tactacacgc agtacaaata
 6661 tgtcattatg tgcgtccata tctacttcacaa aactacata taaaataact aactttttaagg
 6721 agtacactacg acatggggag gaatatgtt tacatgttatttttcaacttgc tgcaaaataa
 6781 ccttaactgc agacgtttagt acatatacttatttctatgatccatatttttgcacttgc
 6841 ggaattttgg tctacaaccc cccccaggag gcacactaga agatatttgc tttttttttt
 6901 cccaggcaat tgcttgcataa aaacatacac tccacgc taaaagat gatccccatc
 6961 aaaaatacacat tttttggaa gtaatattttaa agggaaaatgtt ttctgtcgac ctatgtc
 7021 ttccctttagg acgcaattttt ttaatcaacatg caggatgtt gggccaaacca aaatttacat
 7081 tagggaaaacg aaaagctaca cccaccaccc catctaccc tacaactgtt aaacgcacaaa
 7141 aacgttaagct gtaagtattt tatgtatgtt gatttagtgc ttgtttttttt ttttttttt
 7201 gtagtgcattt gtagtgcattt gtaatattttaa agttgtatgtt ttgtttttttt ttttttttt
 7261 ataaacacatc gtgtatgtt tttaatgttgc ttgtgtactt attgtgtcat gcaacataaaa
 7321 taaacttattt gtttcaacac ctactaatttgc ttgtgtgtt attcattgttataaactat
 7381 atttgcataa tcctgtttt gttttatataa tactatattt tttttttttt tttttttttt
 7441 gtagtgcataa ccgaaatttgc ttgcattgtt ttggcacaat aatgtttttt tttttttttt
 7501 tctatgtcactt caactatgtt ttaaacttgc acgtttccatg cttggccatgc tgccaaatc
 7561 cctgtttccatg tgacctgttgc tgcttgcataa ccattttccatg tttttttttt ttttttttt
 7621 tgcaactactt gaaatcaactt gtagtgcatttgc tcatatataa taaatcaacta tgccaaacg
 7681 ccttacatc cgctgttagg cacatattttt tggcttgcataaactt aattgtcatat
 7741 ttggcataag gttttaaactt ctaaggccaa ctaatgttca ccctgttca tacatgaact
 7801 gtgtaaaggt tagtcatataa ttgttgcattt gttttttttt tttttttttt tttttttttt
 7861 atttgggtt acatatttac aagcaacttataaataataaataataaataataaataataaataataa

11/14

Fig. 6 B

Fig. 6 C

Fig. 6 D

12/14

Fig. 7 A

Fig. 7 B
B

Fig. 7 C

13 / 14

Fig. 7 D

Fig. 7 E

14 / 14

Fig. 8

LISTAGE DE SEQUENCES

<110> CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
<120> oligonucleotides inhibiteurs et leur utilisation pour reprimer spécifiquement un gene
<130> 24240PCT Nov 2002
<140> pct/fr02/xxxxxx
<141> 2002-11-08
<150> FR01/14549
<151> 2001-11-09
<150> FR02/04474
<151> 2002-04-10
<160> 77
<170> PatentIn version 3.1

<210> 1
<211> 1182
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(1182)
<223> Séquence du gène p53

<400> 1
atggaggagc cgcaagtccaga tccttagcggtc gagccccctc tgagtcagga aacatttca 60
gaccatatgga aactacttcc taaaaacaac gttctgtccc ccttgcgtc ccaagcaatg 120
gatgatttga tgctgtcccc ggacgatatt gaacaatggt tcactgaaga cccaggtcca 180
gatgaagctc ccagaatgcc agaggctgtc ccccccgtgg cccctgcacc agcagctcct 240
acaccggcgg cccctgcacc agccccctcc tggccctgt catcttctgt cccttcccag 300
aaaacctacc agggcagcta cggtttccgt ctgggcttct tgcattctgg gacagccaag 360
tctgtgactt gcacgtactc ccctgccctc aacaagatgt tttgccaact ggccaagacc 420
tgccctgtgc agctgtgggt tgattccaca ccccccgtgg gcaccgcgt ccgcgcattg 480
gccatctaca agcagtcaca gcacatgacg gaggttgtga ggcgctgccc ccaccatgag 540
cgctgctcag atagcgatgg tctggcccct cctcagcatc ttatccgagt ggaaggaaat 600
ttgcgtgtgg agtatttggta tgacagaaaac actttcgac atagtgtgg ggtgccctat 660
gagccgcctg aggttggtc tgactgtacc accatccact acaactacat gtgtAACAGT 720
tcctgcattgg gcggcatgaa cccggaggccc atcctcacca tcatcacact ggaagactcc 780
agtggtaatc tactgggacg gaacagcttt gaggtgcgtg tttgtgcctg tcctgggaga 840
gaccggcgca cagaggaaga gaatctccgc aagaaaagggg agcctcacca cgagctgccc 900
ccagggagca ctaaggcggc actgccccaa aacaccagct cctctccca gccaaagaag 960
aaaccactgg atggagaata ttccaccctt cagatccgtg ggcgtgagcg ttccgagatg 1020
ttccgagagc tgaatgaggc ctggaaactc aaggatgccc aggctgggaa ggagccaggg 1080
gggagcaggg ctcactccag ccacctgaag tccaaaaagg gtcagtctac ctcccgccat 1140
aaaaaaactca tggcaagac agaaggccct gactcagact ga 1182

<210> 2
<211> 7904
<212> DNA

<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(7904)
<223> Variant HPV16

<400> 2

actacaataa ttcatgtata aaactaaggg cgtaaccgaa atcggttcaa ccgaaaccgg	60
ttagtataaa agcagacatt ttatgcacca aaagagaact gcaatgttc aggacccaca	120
ggagcgaccc agaaagttac cacagttatg cacagagctg caaacacaacta tacatgatat	180
aatattagaa tgtgtgtact gcaagcaaca gttactgcga cgtgaggat atgactttgc	240
ttttcgggat ttatgcata gataatagaga tggaaatcca tatgctgtat gtgataaattg	300
tttaaagttt tattctaaaa ttagtgagta tagacattat tttatagtt tgatggAAC	360
aacattagaa cagcaataca acaaaccgtt gtgtgatTTT ttaatttagt gtattaactg	420
tcaaaaagcca ctgtgtcctg aagaaaagca aagacatctg gacaaaaAGC aaagattcca	480
taatataagg ggtcggtggc cccgtcgatg tatgtcttgt tgcatgatcat caagaacacg	540
tagagaaacc cagctgtaat catgcata gatacaccta cattgcata atatatgtta	600
gattgcaac cagagacaac tgatctctac tttatgagc attaaatgaa cagctcagag	660
gaggaggatg aaatagatgg tccagctgaa caagcagaac cggacagagc ccattacaat	720
attgtaacct tttgttgcAA gtgtgactct acgcTTcggt tgcatgatcat aagcacacac	780
gtagacattc gtactttggc agacctgttA atggcacaC taggaattgt gtgcCcCAtC	840
tgttctcaga aaccataatc taccatggc gatctgcagC gtaccaatgg ggaagagggt	900
acgggatgta atggatggg ttatgttagg gctgttagtgg aaaaaaaaaAC agggatgtct	960
atatcagatg acgagaacga aaatgacagt gatacaggta aagattttgt agattttata	1020
gtaaaatgata atgattattt aacacaggc gaaacagaga cagcacatgc gttgtttact	1080
gcacaggaag caaaacaaca tagagatgca gtacaggTC taaaacgaa gtatTTggta	1140
gtccacttag tgatattagt gatgtgttag acaataatAT tagtcctaga taaaagcta	1200
tatgtataga aaaacaaagt agagctgcaaa aagagatt atttgaAGC gaagacagcgc	1260
ggtatggca tactgaagtg gaaactcagc agatgttaca ggtagaaggg cgcctatgaga	1320
ctgaaacacc atgttagtcg tatagtgggT gggtggggT tggtgcagt cagtagtgc	1380
gtggaagtgg gggagagggt gttatgtaaa gacacactat atgccaAA ccaacttacaa	1440
atattttaaa tttactaaaa actatgtatg caaaggcagc aatgttagca aaattttaaag	1500
agttatacgg ggtgagttt tcagaatttgc taagaccatt taaaagtaat aaatcaacgt	1560
gttgcatttgc gtgtattgct gcatttggc ttacaccCAG tatactgcAG agtataaaaa	1620
cactattaca acaatattgt ttatatttac acattcaaAG tttatgcatttgc tcatggggaa	1680
tggttgtgtt actattatgt agatataat gtggaaaaaa tagagaaACA attggaaaaat	1740
tgctgtctaa actattatgt gtgtctccaa tttatgtatgat gatagagcct ccaaatttgc	1800
gtatgtacgc agcagcattt tactggataa aaacaggta atcaaatattt agtgaagtgt	1860
atggagacac gccagaatgg atacaaagac aaacagtatt acaacatagt tttatgtatt	1920
gtacatttgc attatCACAG atgttacaat gggctacga taatgcata gtagacgata	1980
gtgaaatttgc atataaatat gcacaatttgg cagacactaa tagtaatgca agtgccttC	2040
taaaaaagtaa ttccacaggc AAAATTGTA aggattgtgc aacaatgtgt agacattata	2100
aacgagcaga aaaaaaACAA atgagatgtg gtaatggat aaaaatataAG tggtataggG	2160
tagatgtatgg aggtgattgg aagcaatTTT ttatgtttt aaggatataa ggtgttagagt	2220
ttatgtcatt ttatgtcata tttatgtatgg cttatgtatgg catacctaaa aaaaatttgcA	2280
tattactata tggtgacgt aacacaggta aatcattatt tggatgtatgt ttaatgtaaa	2340
ttctgtcaagg gtctgtataa tggggatgtaa attctaaaAG ccatttttgg ttacaaccat	2400
tagcagatgc caaaataggT atgttagatg atgttacagt gcccgttgg aactacatag	2460
atgacaattt aagaatgtca ttggatggaa atttagtttC tatggatgtA aagcatagac	2520
cattgtaca actaaaatgc cttccattat taattacatC taacattaaat gctggtacag	2580
attcttaggtg gccttattta cataatagat tgggtgtt tacatttccC aatgtgtttC	2640
catttgacga aaacgaaat ccagtgtatg agcttaatgA taagaactgg aaatccttt	2700
tctcaaggac gtgggtccaga ttaagttgc acgaggacga ggacaaggaa aacgatggag	2760
actctttgcc AACGTtAAA tgggtgtcag gacaaaatac taacacatTA tgaaaatgtat	2820
agtacagacc tacgtgacca tatagactat tggaaacaca tgcccttgc atgtgttC	2880
tattacaagg ccagagaaat gggatTTAA catattaacc accaagtggt gccaacactg	2940
gctgtatcaa agaataaAGC attacaagca attgaactgc aactaacgtt agaaaacaata	3000
tataactcac aatatagtaa tgaaaatgtgg acattacaag acgttagcct tgaatgttat	3060
ttaactgcac caacaggatg tataaaaaaa catggatata cagtgaaatgt gcaatgttat	3120
ggagacatata gcaatacaat gcattataca aactggacac atatataat tttgtgaagaa	3180
gcatcgtaa ctgtgttgc gggtaaggta gactattatg gtttatattt tttatgtatgaa	3240

ggaatacgaa catattttgt gcagtttaaa gatgatgcag	aaaaatata	taaaaataaa	3300
gtatggaaag ttcatgcggg tggtcaggtt	atattatgtc	ctacatctgt	3360
aacgaagtat cctctcctga aattattagg	cagcaactgg	ccaaccaccc	3420
cataccaaag ccgtcgccctt gggcacccgaa	gaaacacaga	cgactatcca	3480
tcaagagccag acaccggaaa cccctgcccac	accactaagt	tgttgcacag	3540
gacagtgctc caatcctcac tgcatttaac	agctcacaca	aaggacgat	3600
agtaacacta caccatagt acatttaaaa	ggtgatgcta	atactttaaa	3660
tatagattta aaaagcattt tacattgtat	actgcagtgt	cgtctacatg	3720
ggacataatg taaaacataa aagtgcattt	gttacactta	catatgatag	3780
cgtgaccaat ttttgtctca agttaaaaata	ccaaaaacta	ttacagtgtc	3840
atgtctatat gacaatctt gatactgcat	ccacaacatt	actggcggtc	3900
gctttgtgtg cttttgtgtg tctgcctatt	aatacgtccg	ctgctttgt	3960
atacacatca ttaataaatat tggtattact	attgtggata	acagcagcct	4020
gtgttttatt gtatataattt tatttgttta	tataccatta	tttttaatac	4080
acgctttta attacataat gtatatgtac	ataatgtaat	tgttacatata	4140
taccataact tactattttt tcttttttat	tttcatatata	aattttttt	4200
tgtttgtttt ttaataaaact gttattactt	aacaatgcga	cacaaacgtt	4260
cacaaaacgt gcacggcta cccaaacttta	taaaacatgc	aaacaggcg	4320
acctgacatt atacctaagg ttgaaggcaa	aactattgtc	gaacaaatata	4380
aagtatgggt gtatttttt gtgggttagg	aatttgaaca	gggtcggtt	4440
cactgggtat attccattgg gaacaaggcc	tcccacagct	acagatacac	4500
aagacccctt ttaacagtag atcctgtggg	cccttctgat	ccttctatag	4560
ggaagaaact agttttattt atgctgtgtc	accaacatct	gtaccccttca	4620
tgtatcagga ttttagtata ctacttcaac	tgataccaca	cctgctatata	4680
taatactgtt actactgtt ctacacataa	taatccccact	ttcactgacc	4740
gcacgccttca acacctgcag	aaactggagg	gcattttaca	4800
tacacataat tatgaagaaa ttccatgaa	tacattttt	tttagcaca	4860
agtaactagt agcacaccca taccagggtc	tcgcccagtg	gcacgcctag	4920
tcgcacaaca caacaggtt aagttgtaga	ccctgctttt	gtaaccactc	4980
tattacatata gataatcctg catatgaagg	tatacatgtg	gataatacat	5040
tagtaatgtt aatagtata atatacttcc	agatcctgac	tttttgata	5100
acataggcca gcattaacct cttaggcgtac	tggcattagg	tacagtagaa	5160
acaaaacacta cgtactcgta gtggaaaatc	tatagtgtc	aaggtagatt	5220
tttaagtact attgatcctg cagaagaaat	agaattacaa	actataacac	5280
tactaccact tcacatgcag cctcacctac	ttcttataat	aatggattat	5340
tgcagatgac tttattacag atacttctac	aaccccggtt	ccatctgtac	5400
ttttagcaggat tatttcctg caaatacaca	aattcccttt	ggtgggtcat	5460
tttagtatca ggtcctgata taccctttaa	tataactgac	caagctcctt	5520
tatagttcca gggctccac aatatacaat	tattgtgtat	gcaggtgact	5580
tcctagttat tacatgttac gaaaacgacg	taaacgttta	ccatattttt	5640
ctctttggct gccttagttag gccactgtct	acttgcctcc	tgtcccagta	5700
taagcacgga tgaatatgtt gcacgcacaa	acatatatta	tcatgcagga	5760
tacttgcagt tggacatccc tattttccta	ttaaaaaacc	taacaataac	5820
ttccttaaagt atcaggatta caatacaggg	tatttagaat	acatttacat	5880
agtttggttt tcctgacacc tcattttata	atccagatac	acagcggctg	5940
gtgttaggtgt tgaggtaggt cgtggtcagc	cattaggtgt	gggcattagtt	6000
tattaaataa attggatgac acagaaaaatg	ctagtgttt	tgccatcaat	6060
ataatagaga atgtatatact atggattaca	aacaaacaca	attgtgttta	6120
aaccacctat agggaaacac tggggcaaaag	gatccccatg	taccaatgtt	6180
caggtgattt tccaccatata gagttataaa	acacagttt	tcaggatgtt	6240
atactggctt tgggtgtatg gactttacta	cattacaggc	taacaaaagt	6300
tggatatttg tacatctatt tgcaaatatac	cagattatata	taaaatgttgc	6360
atggcgacag ctttattttt tatttacgaa	gggaacaaat	tgttggtaga	6420
atagggctgg tactgttggt gaaaatgtac	cagacgattt	atacattaaa	6480
ctactgcaaa ttttagccagt tcaaattattt	ttccttacacc	tagtggttct	6540
ctgatgccca aatattcaat aaaccttattt	ggttacaacg	agcacaggc	6600
gcatttggtg gggtaaccaa ctattgttta	ctgttggta	tactacacgc	6660
tgtcattatgtg tgcgtccata tctacttcag	aaactacata	taaaaatact	6720
agtacctacg acatggggag gaatatgatt	tacagtttat	ttttcaactg	6780
ccttaactgc agacgtttagt acatacatac	attctatgaa	ttccactatt	6840
ggaattttgg tctacaaccc cccccaggag	gcacactaga	agatacttat	6900

ccaggcaat tgcttgtcaa aaacatacac ctccagcacc taaagaagat gatccccta	6960
aaaaatacac ttgtggaa gtaaatcaa aggaaaagtt ttctgcagac ctagatcagt	7020
ttcctttagg acgcaaattt ttactacaag caggattgaa ggccaaacca aaatttacat	7080
tagggaaacg aaaagctaca cccaccaccc catctacctc tacaactgct aaacgcaaaa	7140
aacgttaagct gtaagtattt tatgttatgtt gaatttagtgt tggttggtgt gtatatgttt	7200
gtatgtgctt gtatgtgctt gtaaatatta agttgtatgt tggttggtat gtatggtata	7260
ataaacacgt gtgtatgtgt tttaaatgc ttgtgtact attgtgtcat gcaacataaa	7320
taaacttatt gttcaacac ctactaattt tggttggtt attcattgttataaaactat	7380
atttgcatac tcctgtttt gtttatata tactatattt ttagcgcca ggccatttt	7440
gtagcttcaa ccgaattcgg ttgcattgctt ttggcacaa aatgtgttt tttaaatagt	7500
tctatgtcag caactatggt tttaacttgc acgttcctg cttgccatgc gtgcacaaatc	7560
cctgtttcc tgacctgcac tgcttgccaa ccattccatt gtttttaca ctgcactatg	7620
tgcactact gaatcactat gtacattgtt tcataaaaa taaatcaacta tgcccaacg	7680
ccttacatac cgctgttagg cacatatttt tggcttggtt taactaacct aattgcataat	7740
ttggcataag gtttaaactt ctaaggccaa ctaaatgtca ccctagttca tacatgaact	7800
gtgttaaaggt tagtcataca ttgttcattt gtaaaaactgc acatgggtgt gtgcaaacgg	7860
atttgggtt acacatttac aagcaactta tataataata ctaa	7904

<210> 3
<211> 22
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(20)
<223> brin sens de PML-rare

<220>
<221> misc_feature
<222> (21)..(22)
<223> residus thymine ajoutés

<400> 3
caugucaugu gucacaucuc tt 22

<210> 4
<211> 22
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(20)
<223> brin anti-sens de PML-rare

<220>
<221> misc_feature
<222> (21)..(22)
<223> residus thimine ajoutés

<400> 4
gagaugugac acaugacaug tt 22

<210> 5
<211> 22
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(20)
<223> brin sens PLM-rare

<220>
<221> misc_feature
<222> (21)..(22)
<223> résidus thimine ajoutés

<400> 5
ggggaggcag ccauugagac tt 22

<210> 6
<211> 22
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(20)
<223> brin anti-sens PML-rare

<220>
<221> misc_feature
<222> (21)..(22)
<223> Résidus thimine ajoutés

<400> 6
gucucaaugg cugccucccc tt 22

<210> 7
<211> 23
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(21)
<223> séquence issue du VGEF humain

<220>
<221> misc_feature
<222> (22)..(23)
<223> résidus thimine ajoutés

<400> 7
augugaaugc agaccaaaga att 23

<210> 8
<211> 23
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(21)
<223> séquence issue du VGEF humain

<220>
<221> misc_feature
<222> (22)..(23)
<223> résidus thimine ajoutés

<400> 8
uucuuugguc ugcauucaca utt 23

<210> 9
<211> 22

<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(20)
<223> séquence issue du VEGF humain

<220>
<221> misc_feature
<222> (21)..(22)
<223> résidus thimine ajoutés

<400> 9
caugucaugu gucacaucuc tt 22

<210> 10
<211> 22
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(20)
<223> séquence issue du VEGF humain

<220>
<221> misc_feature
<222> (21)..(22)
<223> résidus thimine ajoutés

<400> 10
gagaugugac acaugacaug tt 22

<210> 11
<211> 23
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(21)
<223> séquence issue du HIF 1 alpha humain

<220>
<221> misc_feature
<222> (22)..(23)
<223> résidus thimine ajoutés

<400> 11
caugugacca ugaggaaaug att 23

<210> 12
<211> 23
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(21)
<223> séquence issue du HIF 1 alpha humain

<220>
<221> misc_feature
<222> (22)..(23)

<223> résidus Thimine ajoutés

<400> 12

ucauuuccuc auggucacau gtt

23

<210> 13

<211> 23

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)..(21)

<223> séquence issue du HIF 1 alpha humain

<220>

<221> misc_feature

<222> (22)..(23)

<223> résidus thimine ajoutés

<400> 13

gauagcaaug acgaaugcgu att

23

<210> 14

<211> 23

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)..(21)

<223> Séquence issue du HIF 1 alpha humain

<220>

<221> misc_feature

<222> (22)..(23)

<223> Séquence issue du HIF 1 alpha humain

<400> 14

uacgcaauucg ucauugcuau ctt

23

<210> 15

<211> 23

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)..(21)

<223> séquence issue du récepteur aux androgènes humain

<220>

<221> misc_feature

<222> (22)..(23)

<223> résidus thimine ajoutés

<400> 15

gacucagcug ccccauccac gtt

23

<210> 16

<211> 23

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature
<222> (1)..(21)
<223> séquence issue du HIF 1 alpha humain

<220>
<221> misc_feature
<222> (22)..(23)
<223> résidus thimine ajoutés

<400> 16
cguggauggg gcagcugagu ctt 23

<210> 17
<211> 23
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(21)
<223> séquence issue du HIF 1 alpha humain

<220>
<221> misc_feature
<222> (22)..(23)
<223> résidus thimine ajoutés

<400> 17
gauagcaaug acgaaugcgu att 23

<210> 18
<211> 23
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(21)
<223> séquence issue du HIF 1 alpha humain

<220>
<221> misc_feature
<222> (22)..(23)
<223> résidus thimine ajoutés

<400> 18
uacgcaauucg ucauugcuau ctt 23

<210> 19
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> Séquence issue du récepteur aux androgènes portant la mutation T8 77A

<220>
<221> misc_feature
<222> (20)..(21)
<223> résidus thimine ajoutés

<400> 19
gcaucaguuc gcuuuugact t 21

<210> 20
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du récepteur aux androgènes portant la mutation T8
77A

<220>
<221> misc_feature
<222> (20)..(21)
<223> résidus thimine ajoutés

<400> 20
gucaaaaagcg aacugaugct t 21

<210> 21
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du p53 humain sauvage (sens)

<220>
<221> misc_feature
<222> (20)..(21)
<223> résidus thimine ajoutés

<400> 21
gcaugaaccg gagggcccaut t 21

<210> 22
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du gène p53 humain sauvage (antisens)

<220>
<221> misc_feature
<222> (20)..(21)
<223> résidus thimine ajoutés

<400> 22
augggccucc gguucaugct t 21

<210> 23
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature

<222> (1)..(19)
<223> séquence issue du p53 humain muté portant la mutation MT1 (r248w)
(sens)

<220>
<221> misc_feature
<222> (20)..(21)
<223> résidus thimine ajoutés

<400> 23
gcaugaacug gaggcccaut t 21

<210> 24
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du p53 humain muté portant la mutation MT1 (r248w)
(antisens)

<220>
<221> misc_feature
<222> (20)..(21)
<223> résidus thimine ajoutés

<400> 24
augggccucc aguucaugt t 21

<210> 25
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du p53 humain muté portant la mutation MT2 (r248w)
(sens)

<220>
<221> misc_feature
<222> (20)..(21)
<223> résidus thimine ajoutés

<400> 25
ucaugaacug gaggcccaut t 21

<210> 26
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du p53 humain muté portant la mutation MT2 (r248w)
(antisens)

<220>
<221> misc_feature
<222> (20)..(21)

<223> résidus thimine ajoutés
<400> 26
auggggccucc aguucaugat t 21

<210> 27
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du E6 de HPV (sens)

<220>
<221> misc_feature
<222> (20)..(21)
<223> résidus thimine ajoutés

<400> 27
ccacaguuau gcacagagct t 21

<210> 28
<211> 20
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(18)
<223> séquence issue du E6 de HPV (antisens)

<220>
<221> misc_feature
<222> (19)..(20)
<223> résidus thimine ajoutés

<400> 28
gcucugugca uaacuuggtt 20

<210> 29
<211> 22
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(22)
<223> séquence issue du gène codant la GFP (brin sens)

<400> 29
gcaagctgac cctgaagttc at 22

<210> 30
<211> 22
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(22)
<223> séquence issue du gène codant la GFP (brin anti-sens)

<400> 30

gaacuucagg gucagcuugc cg 22

<210> 31
<211> 22
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(20)
<223> séquence issue du gène codant la GFP (brin sens)

<220>
<221> misc_feature
<222> (21)..(22)
<223> résidus thimine ajoutés

<400> 31
caugucaugu gucacaucuc tt 22

<210> 32
<211> 22
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(20)
<223> séquence issue du gène codant la GFP (brin antisens)

<220>
<221> misc_feature
<222> (21)..(22)
<223> résidus thimine ajoutés

<400> 32
gagaugugac acaugacaug tt 22

<210> 33
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(21)
<223> séquence issue du récepteur aux androgènes humain muté (brin sens)

<400> 33
gcatcagttc gcttttgact t 21

<210> 34
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du récepteur aux androgènes humain muté (brin sens)

<220>
<221> misc_feature

<222> (20)..(21)
<223> résidus thimine ajoutés

<400> 34
gcaucaguuc gcuuuugact t 21

<210> 35
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(21)
<223> séquence issue du récepteur aux androgènes humain muté (brin sens)

<400> 35
gtcaaaaagcg aactgatgct t 21

<210> 36
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du récepteur aux androgènes humain muté (brin sens)

<220>
<221> misc_feature
<222> (20)..(21)
<223> résidus thimine ajoutés

<400> 36
gucaaaaagcg aacugaugct t 21

<210> 37
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du récepteur aux androgènes humain muté (brin sens)

<220>
<221> misc_feature
<222> (20)..(21)
<223> résidus thimine ajoutés

<400> 37
guucggucug cuuacacuat t 21

<210> 38
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature

<222> (1)..(19)
<223> séquence issue du récepteur aux androgènes humain muté (brin ant
isens)

<220>
<221> misc_feature
<222> (20)..(21)
<223> résidus thimine ajoutés

<400> 38
uaguguaaggc agaccgaact t 21

<210> 39
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du gène p53 humain sauvage (brin sens)

<220>
<221> misc_feature
<222> (20)..(21)
<223> résidus thimine ajoutés

<400> 39
gcaugaaccg gagggcccaut t 21

<210> 40
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du gène p53 humain sauvage (brin antisens)

<220>
<221> misc_feature
<222> (20)..(21)
<223> résidus thimine ajoutés

<400> 40
augggccucc gguucaugct t 21

<210> 41
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du gène p53 humain muté (brin sens)

<220>
<221> misc_feature
<222> (20)..(21)
<223> résidus thimine ajoutés

<400> 41

gcaugaacct gaggcccaut t 21

<210> 42
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du gène p53 humain sauvage (brin antisens)

<220>
<221> misc_feature
<222> (20)..(21)
<223> résidus thimine ajoutés

<400> 42
augggccucc gguucaugct t 21

<210> 43
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du gène p53 muté (brin sens)

<220>
<221> misc_feature
<222> (20)..(21)
<223> résidus thimine ajoutés

<400> 43
gcaugaacct gaggcccaut t 21

<210> 44
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issu du gène p53 humain muté (brin antisens)

<220>
<221> misc_feature
<222> (20)..(21)
<223> résidus thimine ajoutés

<400> 44
augggccucc gguucaugct t 21

<210> 45
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du gène p53 muté (brin sens)

<220>
<221> misc_feature
<222> (20)..(21)
<223> résidus thimine ajoutés

<400> 45
gcatgaaccg gaggcccatt t 21

<210> 46
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du gène p53 humain muté (brin antisens)

<220>
<221> misc_feature
<222> (20)..(21)
<223> résidus thimine ajoutés

<400> 46
augggccucc gguucaugct t 21

<210> 47
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du gène p53 humain muté (brin sens)

<220>
<221> misc_feature
<222> (20)..(21)
<223> résidus thimine ajoutés

<400> 47
gcaugaaccc gaggcccaut t 21

<210> 48
<211> 22
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(20)
<223> séquence issue du gène p53 humain muté (brin antisens)

<220>
<221> misc_feature
<222> (21)..(22)
<223> résidus thimine ajoutés

<400> 48
atgggccutc cggttcatgc tt 22

<210> 49

<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du gène p53 humain muté (brin sens)

<220>
<221> misc_feature
<222> (20)..(21)
<223> résidus thimine ajoutés

<400> 49
gcaugaacug gaggcccaut t 21

<210> 50
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du gène p53 humain muté (brin antisens)

<220>
<221> misc_feature
<222> (20)..(21)
<223> résidus thimine ajoutés

<400> 50
augggccucc aguucaugct t 21

<210> 51
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du gène p53 humain muté (brin sens)

<220>
<221> misc_feature
<222> (20)..(21)
<223> résidus thimine ajoutés

<400> 51
gcaugaacug gaggcccaut t 21

<210> 52
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du gène p53 humain muté (brin antisens)

<220>
<221> misc_feature

<222> (20)..(21)
<223> résidus thimine ajoutés

<400> 52
augggccucc aguucaugct t 21

<210> 53
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du gène p53 humain muté (brin isens)

<220>
<221> misc_feature
<222> (20)..(21)
<223> résidus thimine ajoutés

<400> 53
gcaugaacug gaggcccaut t 21

<210> 54
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du gène p53 humain muté (brin antisens)

<220>
<221> misc_feature
<222> (20)..(21)
<223> résidus thimine ajoutés

<400> 54
augggccucc aguucaugct t 21

<210> 55
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du gène p53 humain muté (brin sens)

<220>
<221> misc_feature
<222> (20)..(21)
<223> résidus thimine ajoutés

<400> 55
gcatgaactg gaggcccatt t 21

<210> 56
<211> 21
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du gène p53 humain muté (brin antisens)

<220>
<221> misc_feature
<222> (20)..(21)
<223> résidus thimine ajoutés

<400> 56
augggccucc aguucaugct t 21

<210> 57
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du gène p53 humain muté (brin sens)

<220>
<221> misc_feature
<222> (20)..(21)
<223> résidus thimine ajoutés

<400> 57
gcatgaactg gaggcccatt t 21

<210> 58
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du gène p53 humain muté (brin antisens)

<220>
<221> misc_feature
<222> (20)..(21)
<223> résidus thimine ajoutés

<400> 58
augggccucc aguucaugct t 21

<210> 59
<211> 3933
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(3933)
<223> Homo sapiens hypoxia-inducible factor 1 sous-unité alpha. (HIF-1 alpha)

<400> 59
cacgaggcg cactcttgc gtcgtttcgg ccagtgtgtc gggctgggcc ctgacaagcc 60
acctgaggag aggctcgag cccggcccg accccggcga ttgccgccc cttctctcta 120
gtctcacgag gggttttccg cctcgaccc ccacctctgg attgccttt cttctcttc 180

tccgcgtgtg	gagggagcca	gcgcttaggc	cggacgcgac	ctggggggcg	ccgcgcgtga	240
agacatcgcg	gggaccgatt	caccatggag	ggcggccggcg	gcgcgaacga	caaaaaaaag	300
ataagttctg	aacgtcgaaa	agaaaagtct	cgagatgcag	ccagatctcg	gcgaagtaaa	360
aatctgaa	tttttatga	gcttgctcat	cagttgccac	ttcccacataa	tgtgagttcg	420
catcttgcata	aggcctctgt	gatgaggcct	accatcagct	atttgcgtgt	gaggaaactt	480
ctggatgctg	gtgatttgg	tattgaagat	gacatgaaag	cacagatgaa	ttgttttat	540
ttgaaagcct	tggatggttt	tgttatgggt	ctcacagatg	atggtgacat	gatttacatt	600
tctgataatg	tgaacaaata	catgggatta	actcagttt	aactaactgg	acacagtgtg	660
tttgatttt	ctcatccatg	tgaccatgag	gaaatgagag	aatgtttac	acacagaaat	720
ggccttgcata	aaaaggtaa	agaacaaaac	acacagcgaa	gctttttct	cagaatgaaag	780
tgtaccctaa	ctagccgagg	aagaactatg	aacataaaatg	ctgcaacatg	gaaggtattt	840
cactgcacag	gccacattca	cgtatatgt	accaacagta	accaacctca	gtgtgggtat	900
aagaaaccac	ctatgacctg	cttggtgctg	atttgtgaaac	ccattcccta	cccatcaaat	960
attgaaattt	cttttagatag	caagacttcc	ctcagtcac	acagccttgc	tatgaaattt	1020
tcttattgtg	atgaaagaat	taccgaattt	atggatattt	agccagaaga	acttttaggc	1080
cgctcaattt	atgaatatta	tcatgcttt	gactctgtt	atctgacca	aactcatcat	1140
gatatgttt	ctaaaggaca	agtcaccaca	ggacagtaca	ggatgctgc	caaaagaggt	1200
ggatatgtct	gggttggaaac	tcaagcaact	gtcatatata	acaccaagaa	ttctcaacca	1260
cagtgcattt	tatgtgtgaa	ttacgttgc	agtggattt	ttcagcacga	cttgattttc	1320
tcccttcaac	aaacagaatg	tgtccttaaa	ccggttgaat	cttcagatat	gaaaatgact	1380
cagctattca	ccaaagttga	atcagaagat	acaagtagcc	tctttgacaa	acttaagaag	1440
gaacctgtat	ctttaacttt	gctggcccca	gccgctggag	acacaatcat	atcttttagat	1500
tttggcagca	acgacacaga	aactgtatgc	cagcaacttgc	aggaagtacc	attatataat	1560
gatgtatgtc	tcccctcacc	caacgaaaaaa	ttacagaata	taaatttggc	aatgtctcca	1620
ttacccaccc	ctgaaacgc	aaagccactt	cgaagtagtgc	ctgaccctgc	actcaatcaa	1680
gaagttgcat	taaaatttga	accaaatttca	gagtacttgc	aactttctt	taccatgccc	1740
cagattcagg	atcagacacc	tagtccttcc	gatggaaagca	ctagacaaag	ttcacctgag	1800
cctaatagtc	ccagtgaata	ttgtttttat	gtggatagtgc	atatggtcaa	tgaattcaag	1860
ttggaatttgg	tagaaaaactt	ttttgtgaa	gacacagaag	caaagaaccc	attttctact	1920
caggacacag	atttagactt	ggagatgtt	gctccctata	tcccaatgg	tgatgacttc	1980
cagttacgtt	ctttcgatca	gttgcacca	tttagaaagca	gttccgcaag	ccctgaaagc	2040
gcaagtccctc	aaagcacagt	tacagtattt	cagcagactc	aaatacaaga	acctactgt	2100
aatgccacca	ctaccactgc	caccactgt	gaattaaaaaa	cagtgcacaa	agaccgtatg	2160
gaagacatta	aaatatttgc	tgcatctcca	tctccctaccc	acatacataa	agaaactact	2220
agtgccacat	catcaccata	tagagatact	caaagtccga	cagcctcacc	aaacagagca	2280
ggaaaaggag	tcatagaaca	gacagaaaaaa	tctcatccaa	gaagccctaa	cgtgttatct	2340
gtcgcttgc	gtcaaaaac	tacagttcc	gaggaagaac	taaattccaa	gatactagct	2400
ttgcagaatg	ctcagagaaa	gcgaaaaatg	gaacatgttgc	gttcaatttt	tcaagcagta	2460
gaaatttggaa	cattattaca	gcagccagac	gatcatgttgc	ctactacatc	actttcttgg	2520
aaacgtgtaa	aaggatgca	atcttagtgc	cagaatggaa	tgggcaaaa	gacaattatt	2580
ttaataccct	ctgatttagc	atgttagactt	ctggggcaat	caatggatgc	aagtggatta	2640
ccacagctga	ccagttatgc	ttgtgaattt	aatgtctcta	tacaaggcag	cagaaaccta	2700
ctgcagggtt	aagaattact	cagagcttt	gatcaagttt	actgagctt	ttcttaattt	2760
cattcccttt	tttggacact	ggtggctcac	tacctaaagc	agtctattt	tattttctac	2820
atctaatttt	agaagcctgg	ctacaataact	gcacaaaactt	ggttagttca	atttttgtatc	2880
ccctttctac	ttaatttaca	ttaatgtct	tttttagtat	gttcttaat	gctggatcac	2940
agacagctca	ttttctcagt	tttttggat	ttaaaccatt	gcattgcagt	agcatcattt	3000
taaaaaatgc	acctttttat	ttatatttt	ttggcttaggg	agtttatccc	tttttcgaat	3060
tattnnaag	aagatgcca	tataattttt	gtaagaaggc	agtaacctt	catcatgatc	3120
ataggcagtt	aaaaaaattt	tacacccttt	ttttcacatt	ttacataaaat	aataatgttt	3180
tgccagcagt	acgtggtagc	cacaatttgc	caatataattt	tcttaaaaaaa	taccagcagt	3240
tactcatgga	atataattctg	cgtttataaa	actagttttt	aagaagaaat	tttttttggc	3300
ctatgaaattt	gtttaaacctg	gaacatgaca	ttgttaatca	tataataatg	attcttaat	3360
gctgtatgtt	ttattattt	aatgggtaaa	gccatttaca	taatatagaa	agatatgtat	3420
atatctagaa	ggtatgttgc	atttattttt	ataaaaattt	caattcagag	aaatcatctg	3480
atgtttctat	agtcacttt	ccagctcaaa	agaaaaacaat	accctatgtt	gttggaaag	3540
tttatgttca	tattgtgtt	ctgatattaa	acctaaaatgt	tctgcctacc	ctgttggat	3600
aaagatattt	tgagcagact	gtaaaacaaga	aaaaaaaaat	catgcattct	tagaaaattt	3660
gcctagatgt	ttaatttgct	caaaaatacaa	tgtttgattt	tatgcacttt	gtcgcttata	3720
acatcccttt	tttcatgttag	atttcaataaa	ttgagtaatt	ttagaagcat	tattttagga	3780
atatatagtt	gtcacagtaa	atatacttgc	ttttctatgt	acattgtaca	aatttttcat	3840

tcctttgct ctttgtggtt ggatctaaca ctaactgtat tgttttgtta catcaaataa	3900
acatcttctg tggaaaaaaaaaaa aaaaaaaaaaaa aaa	3933

<210> 60
<211> 3166
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature.
<222> (1)..(3166)
<223> VEGF A humain

<400> 60		
aagagctcca gagagaagtc gaggaagaga gagacggggt	cagagagagc ggcggggcgt	60
gcgagcagcg aaagcgacag gggcaaagtg agtacatgc	ttttgggggt gaccgcggga	120
gcccggcggtg agccctcccc cttgggatcc cgcaatgtac	cagtcgcgt gacggacaga	180
cagacagaca cccggcccgag ccccaatgtac cacccctcc	ccggccggcg gggacagtg	240
gacgcggcg gggcccgag ggaggggccg gagcccgccc	ccggaggccg ggtggagggg	300
gtcgagctc gcggcgatgc actgaaactt ttctccaaac	ttctgggctg ttctcgatcc	360
ggaggagccg tggcccgccg gggggaaagcc gagccgagcg	gagccgcgag aagtgttagc	420
tccggccggg aggaggccgca gccggaggag gggaggagg	aagaagagaa ggaagaggag	480
aggggggccgc agtggcgact cggcgatcg aagccgggt	catggacggg tgaggccgcg	540
gtgtgcgcag acagtgcctc agcgccgcg ctcccaatgc	ctggccggc ctcggccgg	600
gaggaagagt agctcgccga ggcgcggagg agacggggcc	gccccacagc ccgagccgga	660
gaggggacgcg agccgcgcgc cccggatcg cctccaaac	catgaactt ctgtgtctt	720
gggtgcattt gggccgttgc ttgtgtctt acctccacca	tgccaatgtgg tcccgaggctg	780
cacccatggc agaaggagga gggcagaatc atcacaatgt	ggtaatgttc atggatgtct	840
atcagcgccat ctactgcctt ccaatcgaga ccctgggtgg	catcttcac ggttccctg	900
atagatgcgt gtacatctt aagccatctt gtgtgtccct	gtgcgtatgc gggggctgt	960
ccaatgacga gggccgttgc ttgtgtccca ctggggatgc	caacatcacc atgcagatta	1020
tgcggatcaa acctcaccaaa ggcgcggcaca taggagat	gagcttcata cagcacaaca	1080
aatgtgaatg cagacaaag aaagatagag caagacaaga	aaatccctgt gggccttgct	1140
cagagcggag aaagcatttgc ttgttacaatgc atccgcagac	gtgtaaatgt tcctgcaaaa	1200
acacacactc gcgttcaag ggcggcagc ttgtgttataa	cgaacgtact tgcatgtgt	1260
acaaggccgag ggcgttgcggcc gggcaggagg aaggagccct	cctcagggtt tcgggaacca	1320
gatctctctc caggaaagac tgatacagaa cgatcgatcc	agaaaccacg ctgcccac	1380
cacccatca ccatcgacag aacatgtccat aatccagaaa	cctgaaatga aggaagagga	1440
gactctgcgc agagcattt gggccggag ggcggactc	cgccggaaagc attcccgggc	1500
gggtgaccca gcacgttccc tcttggatt ggattgcata	ttttatgtttt ctgtgtctt	1560
aatcaccgag cccggaaatgt tagagatgtt tatttctggg	attcctgtatg acacaccac	1620
ccacatacat acatttatatatatatatatata	taaaaataaa tatctctatt	1680
ttatatatatatata tattttttt ttaaattaaac	agtgtatgtt ttattgggt	1740
cttcacttgcgt tttttttttt tttttttttt ttatgttttt	tttttttttt ttatgttttt	1800
atcctgcacat ggaaggaggag gagatgagatgacttgc	tttttttttt ttatgttttt	1860
tggccggccggc agggccctctt cccctggccca agaatgtgc	tttttttttt ttatgttttt	1920
atatgaccca gttttggaa caccgcacaaa cccagccctg	tttttttttt ttatgttttt	1980
agtcagacg gacagaaaga caaatcacaatgttccggat	tttttttttt ttatgttttt	2040
ggagtttggg gagcttcagg acattgtgt gctttgggat	tttttttttt ttatgttttt	2100
cgcacatctgc ccccaatgggc actgccttgcg agattcagg	tttttttttt ttatgttttt	2160
cttcacatctgc tttttttttt ttatgtttttt ttatgttttt	tttttttttt ttatgttttt	2220
gacacattgt tggaaagaagc agcccatgtac agcgccttgc	tttttttttt ttatgttttt	2280
tcttctgtgt ccccttcctt gggccggccca taaaaggacc	tttttttttt ttatgttttt	2340
accacttgtt ctgtcccccc agggaaatctt gttgtgtgt	tttttttttt ttatgttttt	2400
ccatcccctt gtcctccct tccctccctt agggccggcc	tttttttttt ttatgttttt	2460
gcccatgtt gggccggccca aaaaatgttccatgttccatgtt	tttttttttt ttatgttttt	2520
ctttttttttt ttatgtttttt ttatgtttttt ttatgttttt	tttttttttt ttatgttttt	2580
tcttgggtttt tttttttttt ttatgtttttt ttatgttttt	tttttttttt ttatgttttt	2640
tttttttttt ttatgtttttt ttatgtttttt ttatgttttt	tttttttttt ttatgttttt	2700
gtgacatgtca ctagcttatac ttggacatgttccatgttcc	tttttttttt ttatgttttt	2760
tcccccgttcc cctggctccc cagcacat tccttgaaa	tttttttttt ttatgttttt	2820
acatactata tatatatattgg gcaacttgcataatcatct	tttttttttt ttatgttttt	2880

tgtatatatg tgatcctgaa aaaataaaca tcgcatttct gtttttata tggtaaaacc 2940
aaacaagaaa aaatagagaa ttctacatac taaatcttc tcctttta atttaatat 3000
ttgttatcat ttatatttg gtgctactgt ttatccgtaa taattgtggg gaaaagat 3060
taacatcacg tctttgtctc tagtgcagg tttcgagata ttccgttagta catatttatt 3120
tttaaacaac gacaaagaaa tacagatata tctaaaaaaa aaaaaaa 3166

<210> 61
<211> 17
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(17)
<223> séquence issue du gène p53 humain sauvage

<400> 61
gaggtgcgtg tttgtgc 17

<210> 62
<211> 19
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du gène p53 humain sauvage

<400> 62
gcatgaaccg gagggccat 19

<210> 63
<211> 19
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du gène p53 humain sauvage

<400> 63
gcatgaaccg gagggccat 19

<210> 64
<211> 19
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du gène p53 humain sauvage

<400> 64
gcatgaaccg gagggccat 19

<210> 65
<211> 19
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)

<223> séquence issue du gène p53 humain sauvage

<400> 65

ctgcatgggc ggcataaac

19

<210> 66

<211> 19

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)..(19)

<223> séquence issue du gène p53 humain sauvage

<400> 66

tgggagagac cggcgacaca

19

<210> 67

<211> 19

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)..(19)

<223> séquence issue du gène p53 humain sauvage

<400> 67

tgtgaggcac tgcccccac

19

<210> 68

<211> 20

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)..(20)

<223> séquence issue du gène p53 humain sauvage

<400> 68

taacagttcc tgcataggc

20

<210> 69

<211> 17

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)..(17)

<223> séquence issue du gène p53 humain muté, portant la mutation r273h

<400> 69

gaggtgcattt tttgtgc

17

<210> 70

<211> 19

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)..(19)

<223> séquence issue du gène p53 humain muté, portant la mutation r248q

<400> 70
gcatgaacca gaggccat 19

<210> 71
<211> 18
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(18)
<223> séquence issue du gène p53 humain muté, portant la mutation r248w

<400> 71
gcatgaactg gaggccat 18

<210> 72
<211> 19
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du gène p53 humain muté, portant la mutation r249s

<400> 72
gcatgaaccg gagtcccat 19

<210> 73
<211> 19
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du gène p53 humain muté, portant la mutation g245s

<400> 73
ctgcatgggc agcatgaac 19

<210> 74
<211> 19
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du gène p53 humain muté, portant la mutation r282w

<400> 74
tggagagac tggcgcaca 19

<210> 75
<211> 19
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(19)
<223> séquence issue du gène p53 humain muté, portant la mutation r175h

<400> 75		
tgtgaggcgc tgcccccac		19
<210> 76		
<211> 20		
<212> DNA		
<213> Homo sapiens		
<220>		
<221> misc_feature		
<222> (1)..(20)		
<223> séquence issue du gène p53 humain muté, portant la mutation c242s		
<400> 76		
taacagttcc tccatggcg		20
<210> 77		
<211> 3231		
<212> DNA		
<213> Homo sapiens		
<220>		
<221> misc_feature		
<222> (1)..(3231)		
<223> séquence codant pour le récepteur aux androgènes humain.		
<400> 77		
agcttagctgc agcgactacc gcatcatcac agcctgttga actcttctga gcaagagaag 60		
gggaggcggg gtaaggaaag taggttgaag attcagccaa gctcaaggat ggaagtgcag 120		
ttagggctgg gaagggtcta ccctcgcccg ccttccaaga cttaccgagg agcttccag 180		
aatctgttcc agagcgtccg cgaagtgttc cagaacccgg gccccagca cccagaggcc 240		
gcgagcgcag cacctcccg cgccagtttgc ctgctgtgc agcagcagca gcagcagcag 300		
cagcagcagc agcagcagca gcagcaagag actagccca ggcagcagca gcagcagcag 360		
ggtgaggatg gttctccca agcccatcgt agaggccca caggctacct ggtcttggat 420		
gaggaacagc aaccttcaca gccgcagtcg gccctggagt gccacccca gagagggttc 480		
gtcccagagc ctggagccgc cgtggccgcc agcaaggggc tgccgcagca gctgccagca 540		
cctccggacg aggatgactc agctgccccca tccacgttgt ccctgttgc cccactttc 600		
ccccggcttaa gcagctgctc cgctgacctt aaagacatcc tgagcggagc cagcaccatg 660		
caactccctc agcaacagca gcaggaagca gtatccgaag gcagcagcag cgggagagcg 720		
aggaggccct cgggggctcc cacttcctcc aaggacaatt acttaggggg cacttcgacc 780		
atttctgaca acgccaagga gttgtttaag gcagtgtcgg tgcacatggg cctgggtgtg 840		
gaggcgttgg agcatcttag tccagggaa cagttcggg gggattgtcat gtacgccccca 900		
cttttggag ttccacccgc tgcgttccc actccctgtg cccatggc cgaatgcaaa 960		
ggttctctgc tagacgacag cgcaggcaag agcactgaag atactgtca gtattccct 1020		
ttcaaggggag gttacaccaa agggcttagaa ggcgagagcc taggctgtc tggcagcgct 1080		
gcagcaggga gctccgggac acttgaactc cctgttaccc tgcacatcta caagtccgga 1140		
gcactggacg aggcaactgc gtaccagagt cgcactact acaactttc actggctctg 1200		
gccggaccgc cgccttccccc gcccgcctccc catccccacg ctcgcataa gctggagaac 1260		
ccgctggact acggcagcgc ctggcgccgt gcggcggcgc agtgcgccta tgggacctg 1320		
gcgagcctgc atggcgccgg tgcagcgaaa cccgttctg gtcacccctc agccgcccgt 1380		
tccttcatcct ggcacactct cttcacagcc gaagaaggcc agttgtatgg accgtgtgg 1440		
ggtgttgggg gtgggtggcg cggcgccggc ggcggccggc gcccgcggc gggagctgta 1500		
gccccctacg gctacactcg gccccctca gggctggcg gcccggaaag cgacttcacc 1560		
gcacactgtg tgcacatccc tggcgccatg gtgagcagag tgcacatcc cagtcact 1620		
tgtgtcaaaa gcgaaatggg cccctggatg gatagctact cggaccta cggggacatg 1680		
cgtttggaga ctgccaggaa ccatgttttgc cccattgtact attactttcc accccagaag 1740		
acctgcctga tctgtggaga tgaagcttct ggggtgtcaat atggagctct cacatgtgaa 1800		
agctgcaagg tcttcttcaa aagagccgtt gaaggaaac agaagttactt gtgcgcgc 1860		
agaaatgatt gcacttattga taaattccga agaaaaattt gtcacatctt tcgttccgg 1920		
aaatgttatg aagcaggat gactctggaa gcccggaaagc tgaagaaact tggtaatctg 1980		
aaactacagg aggaaggaga ggcttccagc accaccagcc ccaactgagga gacaacccag 2040		
aagctgacag tgtcacat tgaaggctat gaatgtcagc ccacatccatc gaatgtcctg 2100		

gaagccattg agccaggtgt agtgtgtgct ggacacgaca acaaccagcc cgactcctt	2160
gcagccttgc tctctaggct caatgaactg ggagagagac agcttgtaca cgtggtaag	2220
tgggccaagg ccttcctgg cctccgcaac ttacacgtgg acgaccagat ggctgtcatt	2280
cagtactcct gcatggggct catggtggtt gccatgggct ggcatcctt caccatgtc	2340
aactccagga tgctctactt cgccccgtat ctgggtttca atgagtacccg catgcacaag	2400
tcccgatgt acagccagtg tgtccgaatg aggcacctct ctcaagagtt tggatggctc	2460
caaataccccc cccaggaatt cctgtcatg aaagccatgc tactcttcag cattattcca	2520
gtggatgggc tgaaaaatca aaaattcttt gatgaacttc gaatgaacta catcaaggaa	2580
ctcgatcgta tcattgtcatg caaaagaaaa aatcccacat cctgctcaag acgcttctac	2640
cagctcacca agtcctgga ctccgtgcag cctattgcga gagagctgca tcagttcact	2700
tttgacctgc taatcaagtc acacatgggt agcgtggact ttccggaaat gatggcagag	2760
atcatctctg tgcaagtgcc caagatcctt tctggaaag tcaagccat ctatttccac	2820
acccagtgaa gcattggaaa cccttattttcc ccaccccgac tcatgcccc tttcagatgt	2880
cttctgcctg ttataactct gcactactcc tctgcagtgc cttggaaat ttcccttatt	2940
gatgtacagt ctgtcatgaa catgttcctg aattctatct gctggcctt tttttctct	3000
ttctctcctt tcttttctt cttccctccc tatctaacc tcccatgca cttcagact	3060
ttgcttccca ttgtggctcc tatctgtgtt ttgaatgggt ttgtatgcct taaatctgtg	3120
atgatcctca tatggcccg tgcgttgtg tgctgtta cacgcacatc tgcgtccagcc	3180
acacaaaccg tttacttact taccgcaagg gaacttagag agctagaatt c	3231