Package 'WLreg'

August 9, 2023

Type Package		
Version 1.0.0.1		
Date 2017-04-18		
Title Regression Analysis Based on Win Loss Endpoints		
Description Use various regression models for the analysis of win loss endpoints adjusting for non-binary and multivariate covariates.		
Depends R (>= $3.1.2$)		
Imports inline, stats, survival		
License GPL (>= 2)		
RoxygenNote 5.0.1		
NeedsCompilation yes		
Author Xiaodong Luo [aut, cre], Sanofi [cph]		
Maintainer Xiaodong Luo < Xiaodong Luo@sanofi.com>		
Repository CRAN		
Date/Publication 2023-08-09 04:33:54 UTC		
R topics documented:		
winreg		
Index		

2 winreg

winreg	Double Cox regression for win product	
--------	---------------------------------------	--

Description

Use two Cox regression models (one for the terminal event and the other for the non-trminal event) to model the win product adjusting for covariates

Usage

```
winreg(y1,y2,d1,d2,z)
```

Arguments

y1	a numeric vector of event times denoting the minimum of event times T_1 , T_2 and censoring time C , where the endpoint T_2 , corresponding to the terminal event, is considered of higher clinical importance than the endpoint T_1 , corresponding to the non-terminal event. Note that the terminal event may censor the non-terminal event, resulting in informative censoring.
y2	a numeric vector of event times denoting the minimum of event time T_2 and censoring time C . Clearly, y2 is not smaller than y1.
d1	a numeric vector of event indicators with 1 denoting the non-terminal event is observed and 0 else.
d2	a numeric vector of event indicators with 1 denoting the terminal event is observed and 0 else.
Z	a numeric matrix of covariates.

Details

This function uses two Cox regression models (one for the terminal event and the other for the non-trminal event) to model the win product adjusting for covariates.

Value

beta1	Estimated regression parameter based on the non-terminal event times y1, $\exp(\text{beta1})$ is the adjusted hazard ratio
sigma1	Estimated variance of beta1 using the residual method instead of the inverse of Fisher information
tb1	Wald test statistics based on beta1 and sigma1
pb1	Two-sided p-values of the Wald test statistics tb1
beta2	Estimated regression parameter based on the terminal event times y2, $\exp(\text{beta2})$ is the adjusted hazard ratio
sigma2	Estimated variance of beta2 using the residual method instead of the inverse of Fisher information

winreg 3

tb2	Wald test statistics based on beta2 and sigma2
pb2	Two-sided p-values of the Wald test statistics tb2
beta	$\tt beta1+beta2, exp(-beta)$ is the adjusted win product
sigma	Estimated variance of beta using the residual method
tb	Wald test statistics based on beta and sigma
pb	Two-sided p-values of the Wald test statistics tb

Author(s)

Xiaodong Luo

References

Pocock S.J., Ariti C.A., Collier T. J. and Wang D. 2012. The win ratio: a new approach to the analysis of composite endpoints in clinical trials based on clinical priorities. European Heart Journal, 33, 176-182.

Luo X., Tian H., Mohanty S. and Tsai W.-Y. 2015. An alternative approach to confidence interval estimation for the win ratio statistic. Biometrics, 71, 139-145.

Luo X., Qiu J., Bai S. and Tian H. 2017. Weighted win loss approach for analyzing prioritized outcomes. Statistics in Medicine, to appear.

See Also

```
wrlogistic
```

Examples

```
###Generate data
n<-300
rho<-0.5
b2 < -c(1.0, -1.0)
b1 < -c(0.5, -0.9)
bc < -c(1.0, 0.5)
lambda10<-0.1;lambda20<-0.08;lambdac0<-0.09
lam1 < -rep(0,n); lam2 < -rep(0,n); lamc < -rep(0,n)
z1 < -rep(0,n)
z1[1:(n/2)]<-1
z2<-rnorm(n)</pre>
z < -cbind(z1, z2)
lam1<-lam2<-lamc<-rep(0,n)</pre>
for (i in 1:n){
    lam1[i] < -lambda10 * exp(-sum(z[i,]*b1))
    lam2[i] < -lambda20 * exp(-sum(z[i,]*b2))
    lamc[i]<-lambdac0*exp(-sum(z[i,]*bc))</pre>
tem<-matrix(0,ncol=3,nrow=n)</pre>
y2y<-matrix(0,nrow=n,ncol=3)
```

```
y2y[,1]<-rnorm(n);y2y[,3]<-rnorm(n)
y2y[,2]<-rho*y2y[,1]+sqrt(1-rho^2)*y2y[,3]
tem[,1]<--log(1-pnorm(y2y[,1]))/lam1
tem[,2]<--log(1-pnorm(y2y[,2]))/lam2
tem[,3]<--log(1-runif(n))/lamc

y1<-apply(tem,1,min)
y2<-apply(tem[,2:3],1,min)
d1<-as.numeric(tem[,1]<=y1)
d2<-as.numeric(tem[,2]<=y2)
y<-cbind(y1,y2,d1,d2)
z<-as.matrix(z)
aa<-winreg(y1,y2,d1,d2,z)
aa</pre>
```

wrlogistic

Logistic regression for win ratio

Description

Use a logistic regression model to model win ratio adjusting for covariates with the user-supplied comparison results

Usage

```
wrlogistic(aindex,z,b0=rep(0,ncol(z)),tol=1.0e-04,maxiter=20)
```

Arguments

aindex

a vector that collects the pairwise comparison results. Suppose there are a total of n subjects in the study, there are n(n-1)/2 elements in aindex. The (i-1)*(i-2)/2+j-th element, denoted by C_{ij} , is the comparison result between subject i and subject j, where $i=2,\ldots,n$ and $j=1,\ldots,i-1$. The element C_{ij} is equal to 1 if subject i wins over subject j on the most important outcome, C_{ij} is equal to -1 if subject i loses against subject j on the most important outcome; C_{ij} is equal to -1 if subject i wins over subject i on the second most important outcome after tie on the most important outcome, C_{ij} is equal to -1 if subject i on the second most important outcome after tie on the most important outcome after tie on the most important outcome after tie on the most important outcome; and so forth until all the outcomes have been used for comparison; then C_{ij} is equal to 0 if an ultimate tie is resulted.

z a matrix of covariates

b0 the initial value of the regression parameter

tol error tolerence

maxiter maximum number of iterations

Details

This function uses a logistic regression model to model win ratio adjusting for covaraites. This function uses the pairwise comparision result supplied by the user which hopefully will speed up the program.

Value

b Estimated regression parameter, exp(b) is the adjusted win ratio

Ubeta The score function

Vbeta The estimated varaince of $\sqrt{n} \times b$

Wald test statistics for the estimated parameter b

pvalue Two-sided p-values of the Wald statistics

Imatrix The information matrix

Wtotal Total wins
Ltotal Total losses

err at convergence

iter number of iterations performed before covergence

Author(s)

Xiaodong Luo

References

Pocock S.J., Ariti C.A., Collier T. J. and Wang D. 2012. The win ratio: a new approach to the analysis of composite endpoints in clinical trials based on clinical priorities. European Heart Journal, 33, 176-182.

Luo X., Tian H., Mohanty S. and Tsai W.-Y. 2015. An alternative approach to confidence interval estimation for the win ratio statistic. Biometrics, 71, 139-145.

Luo X., Qiu J., Bai S. and Tian H. 2017. Weighted win loss approach for analyzing prioritized outcomes. Statistics in Medicine, to appear.

See Also

winreg

Examples

```
###Generate data
n<-300
rho<-0.5
b2<-c(1.0,-1.0)
b1<-c(0.5,-0.9)
bc<-c(1.0,0.5)
lambda10<-0.1;lambda20<-0.08;lambdac0<-0.09
lam1<-rep(0,n);lam2<-rep(0,n);lamc<-rep(0,n)
```

```
z1<-rep(0,n)
z1[1:(n/2)]<-1
z2<-rnorm(n)</pre>
z < -cbind(z1, z2)
lam1 < -lam2 < -lamc < -rep(0,n)
for (i in 1:n){
    lam1[i] < -lambda10*exp(-sum(z[i,]*b1))
    lam2[i] < -lambda20 * exp(-sum(z[i,]*b2))
    lamc[i]<-lambdac0*exp(-sum(z[i,]*bc))</pre>
}
tem<-matrix(0,ncol=3,nrow=n)</pre>
y2y<-matrix(0,nrow=n,ncol=3)</pre>
y2y[,1]<-rnorm(n);y2y[,3]<-rnorm(n)
y2y[,2]<-rho*y2y[,1]+sqrt(1-rho^2)*y2y[,3]
tem[,1] < -log(1-pnorm(y2y[,1]))/lam1
tem[,2] < -log(1-pnorm(y2y[,2]))/lam2
tem[,3] < --log(1-runif(n))/lamc
y1<-apply(tem,1,min)
y2<-apply(tem[,2:3],1,min)
d1<-as.numeric(tem[,1]<=y1)</pre>
d2<-as.numeric(tem[,2]<=y2)</pre>
y < -cbind(y1, y2, d1, d2)
z<-as.matrix(z)</pre>
##############################
#####Define the comparison function
comp<-function(y,x){</pre>
  y1i < -y[1]; y2i < -y[2]; d1i < -y[3]; d2i < -y[4]
  y1j < x[1]; y2j < -x[2]; d1j < -x[3]; d2j < -x[4]
  w2 < -0; w1 < -0; 12 < -0; 11 < -0
  if (d2j==1 \& y2i>=y2j) w2<-1
  else if (d2i==1 & y2j>=y2i) 12<-1
  if (w2==0 & 12==0 & d1j==1 & y1i>=y1j) w1<-1
  else if (w2==0 & 12==0 & d1i==1 & y1j>=y1i) l1<-1
  comp<-0
  if (w2==1) comp<-1
  else if (12==1) comp < -(-1)
  else if (w1==1) comp<-2
  else if (11==1) comp<-(-2)
  comp
}
bin < -rep(0, n*(n-1)/2)
for (i in 2:n)for (j in 1:(i-1))bin[(i-1)*(i-2)/2+j]<-comp(y[i,],y[j,])
###Use the win loss indicator matrix to calculate the general win loss statistics
bb2<-wrlogistic(bin,z,b0=rep(0,ncol(z)),tol=1.0e-04,maxiter=20)
```

bb2

```
####Calculate the win, loss, tie result using Fortran loops to speed up the process
####Using the "inline" package to convert the code into Fortran
#install.packages("inline") #Install the package "inline''
library("inline") ###Load the package "inline"
# The use of ``inline'' needs ``rtools'' and ``gcc''
# in the PATH environment of R.
# The following code will put these two into
# the PATH for the current R session ONLY.
#rtools <- "C:\Rtools\bin"</pre>
#gcc <- "C:\Rtools\gcc-4.6.3\bin"</pre>
#path <- strsplit(Sys.getenv("PATH"), ";")[[1]]</pre>
#new_path <- c(rtools, gcc, path)</pre>
#new_path <- new_path[!duplicated(tolower(new_path))]</pre>
#Sys.setenv(PATH = paste(new_path, collapse = ";"))
codex4 <- "
integer::i,j,indexij,d1i,d2i,d1j,d2j,w2,w1,l2,l1
double precision::y1i,y2i,y1j,y2j
do i=2,n,1
  y1i=y(i,1);y2i=y(i,2);d1i=dnint(y(i,3));d2i=dnint(y(i,4))
  do j=1,(i-1),1
     y1j=y(j,1);y2j=y(j,2);d1j=dnint(y(j,3));d2j=dnint(y(j,4))
     indexij=(i-1)*(i-2)/2+j
     w2=0;w1=0;12=0;11=0
     if (d2j==1 .and. y2i>=y2j) then
     else if (d2i==1 .and. y2j>=y2i) then
        12=1
     else if (d1j==1 .and. y1i>=y1j) then
     else if (d1i==1 .and. y1j>=y1i) then
        11=1
     end if
     aindex(indexij)=0
     if (w2==1) then
        aindex(indexij)=1
     else if (12==1) then
        aindex(indexij)=-1
     else if (w2==0 .and. 12==0 .and. w1==1) then
        aindex(indexij)=2
     else if (w2==0 .and. l2==0 .and. l1==1) then
        aindex(indexij)=-2
     end if
  end do
end do
```

8 zinv

zinv

Inverse matrix

Description

This will calculate the inverse matrix by Gauss elimination method

Usage

zinv(y)

Arguments

у

a sqaure matrix

Details

Inverse matrix

Value

уi

the inverse of y

Note

This provides the inverse matrix using Gauss elimination method, this program performs satisfactorily when the size of the matrix is less than 50

Author(s)

Xiaodong Luo

Examples

```
y<-matrix(c(1,2,0,1),ncol=2,nrow=2)
zinv(y)</pre>
```

Index

```
* Cox regression
     winreg, 2
* Win loss regression
     winreg, 2
\ast conditional logistic regression
     wrlogistic, 4
* logistic regression
     {\tt wrlogistic}, {\color{red} 4}
*\ pairwise\ comparison
     wrlogistic, 4
* weighted
     {\tt wrlogistic}, {\tt 4}
\ast win loss statistics
     winreg, 2
* win product
     winreg, 2
* win ratio
     winreg, 2
     wrlogistic, 4
winreg, 2, 5
wrlogistic, 3, 4
zinv, 8
```