Question 1 [10 Marks]

Write an algorithm (in **pseudocode** form) to find the difference between the largest and the smallest elements of an array of **n** random integers and also write the asymptotic time complexity of the algorithm. Your solution should not take more than linear steps (time complexity) and constant extra space.

```
max = array[1]
min = array [1]
FOR i = 2 to Length(array)
IF max < array [i]
max = array [i]
ELSE IF min > array[i]
min = array[i]
END IF
END FOR
Diff = max - min
Time Complexity: Θ(n)
```

Question 2 [5x5=25 Marks]

Provide a worst-case asymptotic time complexity of the following algorithms by using a suitable asymptotic notation considering a nearest function. Assume that there are no errors/ bugs in the algorithms. Show the meaningful working behind your answer in the rough work column.

		Time Complexity	Rough Work
a)	Func(n)		
	BEGIN	$\Theta(n^3)$	n(n+1)(2n+1)
	FOR $(i = 1 \text{ to } n)$		6
	FOR $(j = 1 \text{ to } i \times i)$		
	IF (j modulus $i = 1$) THEN		
	PRINT i		
	END FOR		
	END FOR		
	END		
b)	for (int $i = 1$; $i \le n*n$; $i = i*3$) {	$\Theta(n^2)$	1+3+9++n ² (Geometric series)
	for (int $j = 0$; $j < i$; $j++$)		
	cout << j;		
	}		
c)	for (int $i = 0$; $i \le n$; $i = i+2$) {	$\Theta(n^2)$	i-loop: n/2 times
	for (int $j = n; j >= i; j$) {		j-loop: i-times, maximum n-times
	for $(k = 100; k \ge 1; k = k/2)$		k-loop: constant, log 100
	cout << k;		
	}		
	}		
d)	for (int $i = 1$; $i*i \le n$; $i++$)	$\Theta(\sqrt{n})$	Assume n=64
	{		i=1; 1x1<=64
	if (n % i == 0)		2; 2x2<=64
	$cout \ll i$;		
	}		8; 8x8<=64
			Loop: 8 times
			log 64= 6
			$\sqrt{64} = 8$

e)	// Algorithm to Search in a Binary	Θ(n)	In worst case, the tree can be
	// Search Tree		skewed, i.e., totally unbalanced.
	1 while $x \neq NIL$ and $k \neq x$.key		
	2 if $k < x.key$		
	x = x.left		
	4 else $x = x.right$		
	5 return x		

Question 3 [12.5+12.5=25 Marks]

Write recursive algorithms for the following problems. Write the recurrence relations and the asymptotic time complexities of your algorithms.

a) Suppose there are 'n' integers stored in a Singly Linked List. Write a recursive algorithm (in **pseudocode** form) to sum all elements of the list and write the *worst case* asymptotic time complexity.


```
Sum(nodeptr)
BEGIN

IF (nodeptr = NULL) THEN

RETURN 0

ELSE

RETURN nodeptr ->data + Sum(nodeptr ->next)

END IF

END

T(n) = T(n-1) + c
T(0) = c
T(n) = \Theta(n)
```

b) Given an array, size of the array, and an element to be searched, write a recursive function (in **pseudocode** form) to find the last occurrence of the element in the array and write the asymptotic *best-case* time complexity.

```
Find(array, size, target)

BEGIN

IF (size < 1) THEN

RETURN -1

END IF

IF (array[size] = target) THEN

RETURN size

END IF

RETURN Find(array, size-1, target)

END

T(n) = T(n-1) + c
```

Question 4 [5+5+10=20 Marks]

a) Can the Master theorem (for solving recurrence) be applied to the following recurrence relation: $T(n)=7T(n/2)+n^3+n\log n$

Why or why not? If yes, then give an asymptotic upper bound for this recurrence using Master Theorem.

Solution:

```
Yes. n^{\log_b a} n^{\log_2 7} = n^{2.8} f(n) = n^3 Case 3 (of Master Theorem) as f(n) grows faster than n^{\log_b a} Check regularity condition: af(n/b) <= cf(n) 7(n/2)^3 <= n^3 satisfies with c=1 Therefore, T(n) = \Theta(n^3)
```

b) Solve the following recurrence relation using iteration method. Show all steps.

```
T(n) = T(n-1) + n^{2}; for all n > 0

T(0) = 1
```

Solution:

```
T(n) = T(n-1) + n^{2}
= T(n-2) + (n-1)^{2} + n^{2}
= T(n-3) + (n-2)^{2} + (n-1)^{2} + n^{2}
\vdots
\vdots
= T(n-k) + (n-k+1)^{2} + (n-k+2)^{2} + \dots + (n-2)^{2} + (n-1)^{2} + n^{2}
= T(n-n) + (n-n+1)^{2} + (n-n+2)^{2} + \dots + (n-2)^{2} + (n-1)^{2} + n^{2} \quad \text{(Putting k = n)}
= 0 + 1 + 2^{2} + 3^{2} \dots + n^{2} \quad \text{(Formula # 3 in the formula guide)}
= (n(n+1)(2n+1))/6
= O(n^{3})
```

c) Solve the following recurrence using recursion tree method and write the asymptotic upper bound (Big-O):

$$T(n) = 2T(n/4) + n\log n$$

Solution:

```
Time complexity:  T(n) = nlogn + (n/2)log n - n + (n/4)log n - n + ... + (n/2^k)log n - n \\ = logn(n+n/2+n/4+....+1) - (n+n+n+...+n) \qquad (Putting 2^k = n) \\ = logn(n+n/2+n/4+....+1) - nlogn \\ <= nlogn \\ = O(nlogn)
```