Faculté des Sciences & Techniques Settat

ARCHITECTURE DES SERVEURS/PROGRAMATION ASSEMBLEURS

Réalisé par :

- Ghanouch Issam
- Safraoui Majdouline
- Achtout Loubna

HORLOGE

2013/2014

ENCADRE PAR: M.FIHRI

5. Etape 3 : réalisation de compteur de 0 A 2: -----9

6. Etape 4 : réalisation d'un automate: ------10

1. Présentation du projet :

Le but de ce projet est de réaliser une horloge à base de la logique combinatoire et séquentielle en utilisant le logiciel electronic workbench et en introduisant des compteurs afin De réaliser une horloge en respectant un ensemble des étapes.

2. Définition et explication du fonctionnement :

L'horloge synchrone est réalisée par 2 compteurs synchrones modulo 10, 2 compteur synchrone modulo 6, 1 compteur synchrone modulo 3 et un automate contient 2 cycles :

Un allant de 0 à 9 si le bit de poids fort du compteur de 3 était à l'état 0, ou allant de 0 à 3 si ce bit était à l'état1.

Entre chaque 2 compteur ou entre le compteur de 5 et l'automate il y a une porte logique NON-OU lié avec les bascules constituant le compteur ou l'automate et l'entrée de Clock du compteur suivant.

Cela provoque une incrémentation (un signal montant) lorsque le compteur revient à l'état 0.

Les 2 premiers compteurs de 9 et de 5 permettent le comptage des secondes, chaque compteur lié avec 1 afficheur pour compter de 0 à 59, puis vient le rôle du 2 compteurs suivants qui permet le comptage des minutes, chaque compteur lié avec 1 afficheur pour compter de 0 à 59.

Finalement vient le rôle de l'automate et du compteur de 0 à 2 qui permet le comptage des heures, ils sont aussi connecter avec 2 afficheurs pour compter de 0 jusqu'à 23, et après 23h59min59s le

comptage va reprendre l'état initial pour refaire la même opération (00h00min00s).

Notre Horloge est initialisée à l'aide d'un signal INIT qu'on a réalisé, qui permet de revenir à l'état initial (00h00min00s).Donc pour initialiser cette horloge il faut juste click sur Espace. Chaque bascule des compteurs ou de l'automate est liée avec ce signal.

3. Etape 1 : réalisation de compteur de 0 A 9 :

Pour réaliser ce compteur il faut faire une table de transition .Donc on doit Réaliser un compteur de 0 à 9 : il y a 10 états donc 4 bascules sont nécessaires $(D_0, D_1, D_2 \text{ et } D_3)$.

4 bascules permettent de coder 16 états, donc 6 seront inutilisées.

		t					t+1		
Etat	D_3	D_2	D_1	D_0	Etat	D_3	D_2	D_1	D_0
0	0	0	0	0	1	0	0	0	1
1	0	0	0	1	2	0	0	1	0
2	0	0	1	0	3	0	0	1	1
3	0	0	1	1	4	0	1	0	0
4	0	1	0	0	5	0	1	0	1
5	0	1	0	1	6	0	1	1	0
6	0	1	1	0	7	0	1	1	1
7	0	1	1	1	8	1	0	0	0
8	1	0	0	0	9	1	0	0	1
9	1	0	0	1	0	0	0	0	0
10	1	0	1	0	X	X	X	X	X
11	1	0	1	1	X	X	X	X	X
12	1	1	0	0	X	X	X	X	X
13	1	1	0	1	X	X	X	X	X
14	1	1	1	0	X	X	X	X	X
15	1	1	1	1	X	X	X	X	X

• Pour D_3^{t+1} on a le tableau de Karnaugh:

$D_3D_2\backslash D_1D_0$	00	01	11	10
00	0	0	0	0
01	0	0	1	0
11	X	X	X	X
10	1	0	X	X

$$D_3^{t+1} = \overline{D_0}D_3 + D_2D_1D_0$$

• Pour D_2^{t+1} on a le tableau de karnaugh :

$D_3D_2\backslash D_1D_0$	00	01	11	10
00	0	0	1	0
01	1	1	0	1
11	X	X	X	X
10	0	0	X	0

$$\begin{split} D_2^{t+1} &= D_2(\overline{D_1} + \overline{D_0}) + D_1 D_0 \overline{D_2} \\ D_2^{t+1} &= D_2(\overline{D_1} \overline{D_0}) + D_1 D_0 \overline{D_2} \\ D_2^{t+1} &= D_2 \oplus (D_1 D_0) \end{split}$$

• Pour D_I^{t+1} on a le tableau de karnaugh :

$D_3D_2\backslash D_1D_0$	00	01	11	10
00	0	1	0	1
01	0	1	0	1
11	X	X	X	X
10	0	0	X	X

$$D_1^{t+1} = \overline{D_3}(D_1 \oplus D_0)$$

• Pour D_0^{t+1} on a le tableau de karnaugh :

$D_3D_2\backslash D_1D_0$	00	01	11	10
00	1	0	0	1
01	1	0	0	1
11	X	X	X	X
10	1	0	X	X

$$D_0^{t+1} = \overline{D_0}$$

• APRES AVOIR TERMINER LES TABLES ET CONCLURE LES EQUATIONS ON PASSE A FAIRE LE SHEMA DU COMPTEUR

4. ETAPE 2: REALISATION DU COMPTEUR DE 0 A 5:

POUR REALISER CE COMPTEUR ON AURA 8 ETAT ET 3

BASCULES D2D1D0 :

	T			T+1	
D 2	<i>D1</i>	$D\theta$	D2	<i>D1</i>	D0
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	0	0	0
1	1	0	X	X	X
1	1	1	X	X	X

• Pour D_2^{t+1} on a le tableau de karnaugh:

$D_2 \setminus D_1 D_0$	00	01	11	10
0	0	0	1	0
1	1	0	0	0

$$D_2^{t+1} = D_2 \oplus (D_1 D_0)$$

• Pour D_I^{t+1} on a le tableau de karnaugh :

$D_2 D_1 D_0$	00	01	11	10
0	0	1	0	1
1	0	0	0	0

$$\begin{split} D_1^{t+1} &= \overline{D_2} \overline{D_1} D_0 + \overline{D_2} D_1 D_0 \\ D_1^{t+1} &= \overline{D_2} (\overline{D_1} D_0 + D_1 \overline{D_0}) \\ D_1^{t+1} &= \overline{D_2} (D_1 \oplus D_0) \end{split}$$

• Pour D_0^{t+1} on a le tableau de karnaugh :

$D_2 \setminus D_1 D_\theta$	00	01	11	10
0	1	0	0	1
1	1	0	0	0

$$D_0^{t+1} = \overline{D_1}.\overline{D_0} + \overline{D_2}.D_1\overline{D_0}$$

• APRES AVOIR TERMINER LES TABLES ET CONCLURE LES EQUATIONS ON PASSE A FAIRE LE SHEMA DU COMPTEUR DE 0 A 5:

5. Etape 3: REALISATION DU COMPTEUR DE 0 A 2:

T		<i>T</i> +1		
D 1	D0	D1	D0	
0	0	0	1	
0	1	1	0	
1	0	0	0	
1	1	x	x	

• Pour D_I^{t+1} on a le tableau de karnaugh :

$D_1 \backslash D_{\theta}$	0	1
0	0	1
1	0	0

$$D_1^{t+1} = \overline{D_1}D_0$$

• Pour D_0^{t+1} on a le tableau de karnaugh :

$D_I \backslash D_\theta$	0	1
0	0	1
1	0	0

$$D_0^{t+1} = \overline{D_1}\overline{D_0}$$

• APRES AVOIR TERMINER LES TABLES ET CONCLURE LES EQUATIONS on PASSE A FAIRE LE SHEMA DU COMPTEUR DE 0 A 2 :

6. Etape 4: REALISATION D'UN AUTOMATE:

Dans ce cas il y a 2 cycles de fonctionnements différents. un de 0 à 9, et un de 0 à 3.

2 cycles différents ==> 1 bit pour les différencier.

On le note c qui signe du poids fort du compteur de 2.

 $C'est-\grave{a}-dire\ que: C=0:=>0\ \grave{a}\ 9$

 $C=1 :=> 0 \ a \ 3$

• A partir de la table de transition ; on constate que la différence entre cet automate et le compteur de 9 n'existe que dans l'entré de la bascule D2.

[=> D2=0 si c=1 ce qui permet de revenir à l'état 0 après l'état 3].

[=> D2 égale D2 du compteur de 9 si c=0 ce qui permet de compter de 0 à 9.

Table de transitions:

c	t	t+1
	$D3D_2D_1D_0$	$D3D_2D_1D_0$
0	0000	0001
0	0001	0010
0	0010	0011
0	0011	0100
0	0100	0101
0	0101	0110
0	0110	0111
0	0111	1000
0	1000	1001
0	1001	0000
0	1010	xxxx
0	1011	xxxx
0	1100	xxxx
0	1101	xxxx
0	1110	xxxx
0	1111	xxxx
1	0001	xxxx
1	0010	xxxx
1	0011	xxxx
1	0100	xxxx
1	0101	xxxx
1	0110	xxxx
I	0111	xxxx
I	1000	xxxx
1	1001	xxxx
1	1010	xxxx
1	1011	xxxx
1	1100	xxxx
1	1101	xxxx
1	1110	xxxx
1	1111	xxxx

Une image montre coment introduire le cycle d'action C:

Voilà le shéma de notre autome , il est semblable de celui du compteur 9 sauf à l'entré de D2 :

JE VOUS LAISSE AVEC UNE IMAGE SUR WORKBENCH D'UNE HEURE COMPLETE ON SYNCHRONISATION TOUS LES COMPTEUR :

