ANNOUNCEMENTS

- Homework 2 is out on Canvas:
 - Due date: May 1 (midnight) on Canvas
 - Should be submitted as a pdf file
 - Answers for homework 1 are out (check announcements on Canvas)

The worst homework grade will be removed for the final score.

- Quiz 4: April 30, last 10 minutes of class.
 - Material: "Wanderjahre" chapter from Logicomix and lectures 8 and 9 (today's lecture is lecture 9).
 - You will get 2 attempts.
- Exam 1: May 5. Canvas quiz during class time. Covering all month of April.
- Short review next class, but mostly topics from homework, quizzes, and lectures.

LOGICAL REASONING

Formal Proofs

GIVEN A SET OF PREMISES, WHAT NEW INFORMATION CAN WE DERIVE?

- If Superman is able and willing to prevent evil, he would do so
- If Superman is unable to prevent evil, he would be impotent
- If Superman was unwilling to prevent evil, he would be malevolent
- Superman does not prevent evil
- If Superman exists, he is neither impotent nor malevolent
- If all the above premises are true, can we conclude that Superman does not exist?

WHAT WE HAVE SEEN SO FAR

- Definition: A Tautology is a proposition that is always true
- Definition: A Contradiction is a proposition that is always false
- Definition: p and q are equivalent
 - iff $p \leftrightarrow q$ is a tautology
 - iff p and q have the same truth table.
 - Notation:
 - $p \Leftrightarrow q$ or $p \equiv q$

THE TRUTH TABLE METHOD IS NOT SCALABLE

Premises

m	p	q
Т	Т	Т
•	•	•
Т	F	Т
		•
F	Т	Т
		•
F	F	Т
F	F	F

Conclusion

m	p	q
T	Т	<i>q</i> Т
T	F	Т
		•
F	Т	Т
F	Т	F
F	F	Т
F	F	F

With n constants, there are 2^n truth assignments.

WHAT WE MUST TACKLE NOW: PROOFS

- How do we get new conclusions from previous premises or previous results?
- "True Logic" developing a deductive system for the language of propositions
- Proofs:
 - Symbolic manipulation of sentences rather than enumeration of truth assignments
 - Benefits:
 - Proofs are usually smaller than truth tables
 - Proofs can often be found with less work
- The foundations of mathematics:
 - Given a set of axioms, or premises, we must use a valid argument (a proof) to obtain a conclusion

PROOFS AS DEFINED IN LOGICOMIX:

- Verification of a mathematical statement
- Starting from a set of agreed-upon first principles
 - Axioms or already proven statements derived from these axioms
- Proceeding by unambiguous and unabridged logical steps or rules of inference (e.g., modus ponens)

THEOREMS

- A theorem is any inference obtained from:
 - a set of premises: Γ
 - axioms or previously proved Theorems and
 - the rules of inference
- Notation (Hilbert system):

$$\Gamma \vdash \alpha$$
 $\vdash \alpha$ if Γ is empty

(ZyBook Notation):

⊢ is called the (single) "Turnstile" symbol

EXAMPLE: HILBERT SYSTEM

- Small set of rules of inference and axioms from where all "theorems" can be derived
- Lukasiewicz Axioms and only Modus Ponens
- 3 fixed Axioms (all truth tables are Tautologies) doc cam:

A1
$$\alpha \to (\beta \to \alpha)$$

A2 $(\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma))$
A3 $(\neg \alpha \to \neg \beta) \to (\beta \to \alpha)$

Modus Ponens

$$\blacksquare p, p \rightarrow q \vdash q$$

 Goal: Use only axioms and modus ponens (and previous results) to prove all theorems of propositional logic

IS THIS A VALID PROOF?

Premises:

$$p \rightarrow q$$

$$p \rightarrow r$$

Rule of Inference Modus Ponens:

$$p \rightarrow q$$
, $p \vdash q$

Since p occurs in the second premise

Conclusion:

$$q \rightarrow r$$

IT IS VERY IMPORTANT TO SPELL OUT THE REASON FOR EACH STEP

 $Thm1: \vdash \alpha \rightarrow \alpha$

 $Thm2: \quad \alpha \to \beta, \beta \to \gamma \vdash \alpha \to \gamma$

 $R1: \quad \alpha \vdash \beta \rightarrow \alpha$

 $R2: \quad \alpha \to (\beta \to \gamma), \alpha \to \beta \vdash \alpha \to \gamma$

 $R3: \neg \alpha \rightarrow \neg \beta \vdash \beta \rightarrow \alpha$

 $Thm3: \neg \alpha \vdash \alpha \rightarrow \beta$

 $Thm4: \neg \neg \alpha \vdash \alpha$

 $Thm5: \quad \alpha, \neg \alpha \vdash \beta$

IT IS VERY IMPORTANT TO SPELL OUT THE REASON FOR EACH STEP

 $\begin{array}{lll} \textbf{Theorem 2} & \alpha \to \beta, \beta \to \gamma \vdash \alpha \to \gamma \\ & \textbf{Proof 1}.\beta \to \gamma & P \\ & 2.(\beta \to \gamma) \to (\alpha \to (\beta \to \gamma)) & A1 \\ & 3.\alpha \to (\beta \to \gamma) & MP1, 2 \\ & 4. (\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma)) & A2 \\ & 5.(\alpha \to \beta) \to (\alpha \to \gamma) & MP3, 4 \\ & 6.\alpha \to \beta & P \\ & 7.\alpha \to \gamma & MP5, 6 \end{array}$

ANOTHER STEP-BY-STEP PROOF

Rule 2
$$\alpha \to (\beta \to \gamma), \alpha \to \beta \vdash \alpha \to \gamma$$

Proof $1.\alpha \to (\beta \to \gamma)$ P
 $2.(\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma))$ $A2$
 $3.(\alpha \to \beta) \to (\alpha \to \gamma)$ $MP1, 2$
 $4.\alpha \to \beta$ P
 $5.\alpha \to \gamma$ $MP3, 4$

PREVIOUS THEOREMS CAN BE USED IN PROOFS

Theorem 4 $\neg \neg \alpha \vdash \alpha$

Proof $1.\neg\neg\alpha$

P

$$2.\neg \alpha \rightarrow \neg \neg \neg \alpha$$

Thm3, 1

$$3.\neg\neg\alpha \rightarrow \alpha$$

R3, 2

$$4.\alpha$$

MP1, 3

PREVIOUS THEOREMS CAN BE USED IN PROOFS

Theorem 5 $\alpha, \neg \alpha \vdash \beta$

Proof $1.\neg \alpha$

 $2.\alpha \rightarrow \beta$

 $3.\alpha$

 $4.\beta$

P

Thm3, 1

P

MP2, 3

PROOF BY CONTRADICTION

Meta – Theorem

Let Γ be a set of premises

Meta-Corollary

$$\Gamma, \neg \alpha \vdash \beta, \neg \beta \implies \Gamma \vdash \alpha$$

$$(a)\Gamma, \alpha \vdash \beta, \neg \beta \implies \Gamma \vdash \neg \alpha$$

$$(b)\Gamma, \neg \alpha \vdash \alpha \implies \Gamma \vdash \alpha$$

USING PROOF BY CONTRADICTION

Theorem 6 $\alpha \to \beta, \neg \beta \vdash \neg \alpha$ (Modus Tollens)

Proof Assume $\alpha \to \beta, \neg \beta, \neg \neg \alpha$

You get a contradiction with lines 2 and 5

USING PROOF BY CONTRADICTION (2)

Theorem 7
$$\alpha \to \beta, \neg \alpha \to \beta \vdash \beta$$
Proof Assume $\alpha \to \beta, \neg \alpha \to \beta, \neg \beta$

$$1.\alpha \to \beta$$

$$2.\neg \beta$$

$$3.\neg \alpha \to \beta$$

$$4.\neg \alpha$$

$$5.\beta$$

$$MP 3, 4$$

You get a contradiction with lines 2 and 5

USING PROOF BY CONTRADICTION (3)

Theorem 8 $\alpha, \neg \beta \vdash \neg(\alpha \rightarrow \beta)$

Proof Assume $\alpha, \neg \beta, \alpha \rightarrow \beta$

You get a contradiction with lines 4 and 5