AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1	1.	(Currently Amended) A method of processing traffic received from
2	an InfiniBand	l node via a first queue pair, comprising:
3	select	ing a traffic entry in an InfiniBand receive queue, wherein said traffic
4	entry compris	ses one of:
5		a Send command comprising an encapsulated communication;
6		a Send command comprising an RDMA Read descriptor; and
7		an RDMA Read response comprising a response to an RDMA
8	Read	request;
9	if said	selected traffic entry comprises a Send command comprising an
10	RDMA Read	descriptor:
11		issuing a first RDMA Read request to retrieve one or more portions
12	of a c	ommunication described by said RDMA Read descriptor;
13		in a linked list corresponding to the first queue pair, adding an
14	entry	corresponding to said first RDMA Read request, said entry
15	comp	rising a first sequence number and a last sequence number that
16	<u>identi</u>	fy a range of sequence numbers associated with expected responses
17	to said	d first RDMA Read request and optionally comprising a sequence
18	<u>numb</u>	er of the most recently received response or a link to the next entry of
19	in the	linked listidentifying a range of sequence numbers associated with
20	expec	ted responses to said first RDMA Read request; and
21		in a retry queue, adding an entry corresponding to said first RDMA

22	Read request; and
23	if said selected traffic entry comprises an RDMA Read response to said
24	first RDMA Read request:
25	identifying a sequence number associated with said RDMA Read
26	response;
27	comparing said sequence number to said range of sequence
28	numbers;
29	storing said one or more portions of said described communication
30	to facilitate assembly of said described communication in said queue; and
31	if said sequence number matches a final sequence number in said
32	range, retiring in said retry queue said entry corresponding to said first
33	RDMA Read request.
1	2. (Original) The method of claim 1, further comprising:
2	forwarding a communication associated with said selected traffic entry, for
3	transmission on an external communication link, wherein said communication is
4	one of:
5	said encapsulated communication; and
6	said described communication, after said described communication
7	is assembled.
1	3. (Original) The method of claim 1, further comprising, if said
2	selected traffic entry comprises an RDMA Read response to said first RDMA
3	Read request:
4	if said sequence number does not match said final sequence number,
5	updating said entry in said linked list to include said sequence number.

(Original) The method of claim 1, further comprising:

4.

1

3	including said linked list;	
4	wherein each linked list stores entries associated with RDMA Read	
5	requests for a different InfiniBand queue pair.	
1	5. (Original) The method of claim 1, further comprising:	
2	maintaining a single memory structure for queuing InfiniBand traffic	
3	received via multiple virtual lanes and multiple queue pairs, said single memory	
4	structure comprising said queue.	
1	6. (Original) The method of claim 5, wherein said queue comprises a	
2	linked list of memory buffers within said single memory structure.	
1	7. (Original) The method of claim 1, further comprising:	
2	maintaining a head pointer configured to identify a head of said linked list	
3	and	
4	maintaining a tail pointer configured to identify a tail of said linked list.	
1	8. (Currently Amended) The method of claim 1, further comprising:	
2	maintaining a head pointer configured to identify a head of said queue;	
3	maintaining a tail pointer configured to identify a tail of said queue; and	
4	maintaining a next traffic entry pointer configured to identify a next entry	
5	in said queue to be processed after said forwarding.	
-	in outa queue to oe processed after bara for maranig.	
1	9. (Original) The method of claim 8, wherein said tail pointer is	
2	configured to identify where in said queue a next traffic entry is to be queued.	

maintaining a single memory structure comprising multiple linked list,

(Original) The method of claim 1, further comprising, if said

10.

1

2

2	selected traffic entry comprises an RDMA Read descriptor:
3	appending space to a head of said queue;
4	wherein said described communication is assembled in said appended
5	space.
1	11. (Original) The method of claim 1, further comprising, if said
2	selected traffic entry comprises an RDMA Read response to said first RDMA
3	Read request:
4	dropping an RDMA Read response received out of order; and
5	requesting a retry of said first RDMA Read request.
1	12. (Currently Amended) A computer readable medium storing
2	instructions that, when executed by a computer, cause the computer to perform a
3	method of processing traffic received from an InfiniBand node via a first queue
4	pair, the method comprising:
5	selecting a traffic entry in an InfiniBand receive queue, wherein said traffic
6	entry comprises one of:
7	a Send command comprising an encapsulated communication;
8	a Send command comprising an RDMA Read descriptor; and
9	an RDMA Read response comprising a response to an RDMA
10	Read request;
11	if said selected traffic entry comprises a Send command comprising an
12	RDMA Read descriptor:
13	issuing a first RDMA Read request to retrieve one or more portions
14	of a communication described by said RDMA Read descriptor;
15	in a linked list corresponding to the first queue pair, adding an
16	entry corresponding to said first RDMA Read request, said entry
17	comprising a first and a last sequence numbers that identify a range of

Read request and optionally comprising a sequence number of the most
recently received response or a link to the next entry of in the linked list
identifying a range of sequence numbers associated with expected
responses to said first RDMA Read request; and
in a retry queue, adding an entry corresponding to said first RDMA
Read request; and
if said selected traffic entry comprises an RDMA Read response to said
first RDMA Read request:
identifying a sequence number associated with said RDMA Read
response;
comparing said sequence number to said range of sequence
numbers;
storing said one or more portions of said described communication
to facilitate assembly of said described communication in said queue; and
if said sequence number matches a final sequence number in said
range, retiring in said retry queue said entry corresponding to said first
RDMA Read request.
13. (Currently Amended) A method of tracking responses to an RDMA
Read operation, the method comprising:
issuing an RDMA Read on a first communication connection;
identifying a range of sequence numbers to be associated with responses to
the RDMA Read;
adding an entry to a first linked list corresponding to the first
communication connection, said entry comprising configured to identify:
a first and a last sequence numbers that identify said range of
sequence numbers; and

10	a latest sequence number received in said range of sequence
11	numbers;
12	optionally a link to the next entry of in the linked list;
13	receiving a first RDMA Read response;
14	determining whether a first sequence number associated with the first
15	RDMA Read response matches a last sequence number in said range of sequence
16	numbers; and
17	if said first sequence number does not match said last sequence number,
18	updating said latest sequence number to match said first sequence number.
1	14. (Original) The method of claim 13, further comprising:
2	if said first sequence number matches said last sequence number, retiring
3	an entry in a retry queue corresponding to the RDMA Read.
1	15. (Original) The method of claim 13, wherein the first
2	communication connection is an InfiniBand queue pair.
1	16. (Original) The method of claim 15, wherein:
2	said issuing is performed by an InfiniBand transmit module; and
3	said adding, said determining and said updating are performed by an
4	InfiniBand receive module;
5	the method further comprising:
6	at the InfiniBand transmit module, retrying the RDMA Read if an RDMA
7	Read response associated with said range of sequence numbers is received out of
8	order.
1	17. (Original) The method of claim 15, wherein:
2	said issuing is performed by an InfiniBand transmit module; and

g, at the InfiniBand transmit module: neue for tracking RDMA Reads that have not id retry queue corresponding to the RDMA
neue for tracking RDMA Reads that have not
-
id retry queue corresponding to the RDMA
id retry queue corresponding to the RDMA
ses corresponding to said range of sequence
r.
d of claim 17, further comprising, at the
RDMA Read responses corresponding to one
imbers are received out of order.
d of claim 13, wherein said identifying
be received in response to the RDMA Read
for the first communication connection.
d of claim 13, further comprising:
structure comprising multiple linked lists
cation connections, including said first linked
inication connection.
d of claim 20, further comprising:
nunication connections, including the first
nunication connections, including the first ning pointers to the first entry and the last

1	22. (Original) An apparatus for queuing multiple types of receive	
2	traffic in a communication interface, comprising:	
3	a queue for queuing multiple types of receive traffic associated with	
4	communications to be transmitted from the communication interface;	
5	a head pointer configured to identify a head of said queue;	
6	a tail pointer configured to identify a tail of said queue, wherein said	
7	traffic commands are enqueued at said tail;	
8	a next entry pointer configured to identify a next entry in said queue to be	
9	processed; and	
10	a linked list, wherein each entry in said linked list corresponds to an	
11	RDMA Read request issued by the communication interface, and is configured to	
12	identify a range of sequence numbers associated with expected responses to the	
13	RDMA Read request.	
1	23. (Original) The apparatus of claim 22, wherein each entry said	
2	linked list is further configured to identify a sequence number of a most recently	
3	received response to the RDMA Read request.	
1	24. (Original) The apparatus of claim 22, wherein the linked list is one	
2	of multiple linked lists, each said linked list corresponding to a separate	
3	InfiniBand queue pair.	
1	25. (Original) The apparatus of claim 22, further comprising:	
2	a retry queue, wherein a retry entry is added to said retry queue for each	
3	RDMA Read request issued by the communication interface;	
4	wherein a first retry entry in said retry queue corresponding to a first	
5	RDMA Read request is retired when said expected responses to the first RDMA	

- Read request are received.1 26. (Original) The appar
- 1 26. (Original) The apparatus of claim 22, further comprising: 2 a memory configured to store pointers to a first entry and a last entry in 3 said linked list.
- 1 27. (Original) The apparatus of claim 22, wherein said queue 2 comprises an assembly area for assembling a communication associated with a 3 first type of receive traffic.
- 1 28. (Original) The apparatus of claim 27, wherein said assembly area 2 comprises a portion of said queue delimited by said head pointer and said next 3 entry pointer.
- 1 29. (Original) The apparatus of claim 27, wherein said first type of 2 receive traffic is an InfiniBand RDMA Read command comprising a set of 3 RDMA read descriptors configured to identify the communication associated with 4 said first type of receive traffic.
- 1 30. (Original) The apparatus of claim 29, wherein a second type of receive traffic is an InfiniBand Send command configured to encapsulate the communication associated with said second type of receive traffic command.
- 1 31. (Original) The apparatus of claim 27, wherein:
 2 said first type of receive traffic comprises a set of descriptors, wherein
 3 each said descriptor is configured to describe a portion of the communication
 4 associated with said first type of receive traffic; and
- 5 the apparatus is configured to issue read requests to retrieve the portions of

7	in said assembly area.
1	32. (Original) The apparatus of claim 22, further comprising:
2	a transmit module configured to transmit the communications associated
3	with said receive traffic;
4	wherein each communication associated with receive traffic is forwarded
5	from said queue to said transmit module after the communication is determined to
6	be complete.
1	33. (Original) The apparatus of claim 32, wherein a communication is
2	forwarded from said queue to said transmit module by passing to the transmit
3	module a set of pointers delimiting the communication within said queue.
1	34. (Original) The apparatus of claim 22, wherein said queue
2	comprises a linked list of buffers within a memory structure configured to queue
3	receive traffic for multiple communication connections.
1	35. (Currently Amended) A communication interface for tracking
2	responses to an InfiniBand RDMA Read request, comprising:
3	for each of one or more active InfiniBand queue pairs, a corresponding
4	linked list, wherein each entry in said linked list is configured to include:
5	a first and a last sequence numbers that identify a range of
6	sequence numbers associated with expected responses to an RDMA Read
7	request issued on the corresponding queue pair by the communication
8	interface; and
9	a previous sequence number, wherein said previous sequence
10	number is a sequence number associated with a most recently received
	11

the communication described by the set of descriptors and assemble said portions

6

11	response to the RDMA Read request; and
12	optionally a link to the next entry of in said linked list; and
13	for each of the linked lists, pointers to a first entry and a last entry in said
14	linked list.
1	36. (Original) The communication interface of claim 35, further
2	comprising:
3	a retry queue configured to queue retry entries corresponding to RDMA
4	Read requests issued by the communication interface;
5	wherein an retry entry in said retry queue is retired when a final response
6	to a corresponding RDMA Read request is received, said final response being
7	identified by a final sequence number in said range of sequence numbers.
1	37. (Original) The communication interface of claim 35, further
2	comprising:
3	a transmit module configured to:
4	issue a first RDMA Read request on a first queue pair; and
5	calculate said range of sequence numbers associated with said
6	expected responses to the first RDMA Read request; and
7	a receive module configured to add an entry, corresponding to the first
8	RDMA Read request, to said corresponding first linked list.
1	38. (Original) The communication interface of claim 37, wherein said
2	receive module is further configured to:
3	determine a sequence number of a response to the first RDMA Read
4	request; and
5	determine if said sequence number matches a final sequence number in
6	said range of sequence numbers associated with expected responses to the first

- 7 RDMA Read request.
- 1 39. (Original) The communication interface of claim 38, wherein said
- 2 receive module is further configured to:
- determine if said sequence number is out of order.