Sistemas Elétricos

- Conceitos fundamentais:
- Elementos Puros e representações
 - exemplo
- Leis de Kirchhoff
- método prático
- Analogias mecânica/elétrica
 - $f \rightarrow i$; $v \rightarrow V$
- Construção de circuitos análogos
 - exemplos

Conceitos Fundamentais

• *Tensão*: Trabalho necessário para transportar uma carga positiva entre dois pontos.

Unidade: V (volts)

$$i = \frac{dq}{dt}$$

taxa de variação do fluxo de cargas elétricas no tempo através de uma determinada área.

Unidades:
$$[i]$$
= A (Ampère) $[t]$ = s (segundo)

$$dq = idt \Rightarrow [dq] = [idt] = A.s = Coulomb = C$$

Elementos Puros

- Capacitor

• a) Dois armazenadores de energia:

Indutor

• b) Dissipador de energia:

- Resistência

C → Capacitância:

Capacidade de acumulação de carga no elemento para uma determinada tensão entre as placas condutoras.

$$Vc = V_{12} = V_{1}-V_{2}$$

Material dielétrico: permite que haja campo elétrico sem que haja passagem de corrente.

Placas de material condutor

•
$$[C] = \left[\frac{dq}{dV_c}\right] = \frac{As}{V} = \frac{C}{V} = Farad = F$$

• A queda de tensão em um capacitor (V_c) é dada por:

$$C = \frac{q}{V_c} \Longrightarrow V_c = \frac{q}{C} \quad (1)$$

$$i = \frac{dq}{dt} \Rightarrow dq = idt \Rightarrow q = \int idt + Q_0$$
 (2)

 $Q_0 \rightarrow \text{carga inicial}$

Pondo (2) em (1):
$$V_c = \frac{\int idt + Q_0}{C}$$

$$V_c(t) = \frac{\int idt}{C} + V_c(o)$$

onde $V_c(o) = \frac{Q_0}{C}$ diferença de tensão inicial.

Definindo o operador:

$$D[\bullet] = \frac{d}{dt} [\bullet]$$

pela lei fundamental do cálculo:

$$\frac{1}{\mathbf{D}[\bullet]} = \int [\bullet] dt$$

$$V_c(t) = \frac{\int i_c dt}{C} \Rightarrow V_c(t) = \frac{i_c}{CD[\bullet]} = \frac{i_c}{CD}$$

para tensão inicial nula.

$$\Rightarrow i_c = CDV_c$$

Define-se *admitância* do capacitor por:

CD

Indutor

• *Indutância*: quando passa uma corrente num fio ou estrutura condutora qualquer, estabelece-se um campo magnético ao redor deste corpo. Se a corrente varia no tempo, o campo variará também no tempo. De acordo com a *Lei de Lenz*, a variação do campo magnético induz uma *ddp* (diferença de potencial) no corpo que tende a contrapor a mudança de corrente . O elemento elétrico "resiste" com uma diferença de tensão à variação do fluxo de corrente (podemos pensar numa mola sendo comprida e resistindo à força aplicada nela). Esse fenômeno recebe o nome de indutância.

Indutor

• A queda de tensão num indutor é dada pela *Lei de Faraday:*

$$V_{12} = V_1 - V_2 = V_L = L \frac{di_L}{dt}$$

Unidades:

$$[L] = V_L \frac{dt}{di_L} = \frac{V.s}{A} = \frac{Weber}{A} = Henry = H$$

Obs.:
$$V_L = L \frac{di_L}{dt} \Rightarrow \int L di_L = \int V_L dt \Rightarrow \lambda = Li_L$$

 $\lambda \equiv$ fluxo elétrico concatenado ou fluxo magnético concatenado.

Indutor

• Usando o operador D[.]

$$V_{L} = L \frac{di_{L}}{dt} \Rightarrow V_{L} = LDi_{L}$$

$$\Rightarrow i_{L} \neq \frac{V_{L}}{LD}$$

Definimos *admitância* do indutor por:

$$\frac{1}{LD}$$

Resistência

 \mathbf{V}_{R}

A queda de tensão (V_R) numa resistência é modelada pela *Lei de Ohm*: $V_R = V_1 - V_2 = V_{12} = Ri_R$

$$\Rightarrow i_R = \frac{V_R}{R}$$

A admitância da resistência é definida por : $\frac{1}{R}$

Unidades:

$$[R] = \left\lceil \frac{V_R}{i} \right\rceil = \frac{V}{A} = Ohms = \Omega$$

Leis fundamentais: Kirchhoff

• Lei dos nós: "Em cada nó: $\sum i = 0$ "

• Lei das malhas: "Em cada malha: $\sum V = 0$ "

Método Prático de Kirchhoff (correntes)

- Identificar os nós de tensão desconhecida. Para cada um destes nós, escrevemos uma equação.
- Escolher o referencial nulo e escrever as equações. Para cada equação tem-se:
 - 2.1) termos positivos (correntes que entram no nó): tensão do nó multiplicada pela soma das admitâncias conectadas no nó;
 - 2.2) termos negativos (correntes que saem do nó): tensão na outra extremidade do nó multiplicada pela admitância entre os nós. O nó do referencial nulo tem tensão nula e não contribui com nenhum termo.
- 2.3) igualar os termos dos itens anteriores com as eventuais correntes externas, por exemplo a introduzida por uma fonte de corrente.

Exemplos do Método Prático

• a) Circuito RLC em paralelo:

- Um nó com tensão desconhecida (V_a)→ uma equação
- 2. O referencial nulo está indicado
 - 2.1) só há termos positivos, já que o nó de tensão desconhecida se liga apenas ao nó do referencial (tensão nula)

Circuito RLC em paralelo

$$Va\left(\frac{1}{R} + \frac{1}{LD} + CD\right) = i(t)$$

$$\therefore CDVa + \frac{1}{LD}Va + \frac{1}{R}Va = i(t)$$

e usando a notação usual:

$$C\dot{V}a + \frac{1}{R}Va + \frac{1}{L}\int Va.dt = i(t) \quad (3)$$

Sistema multi-malhas:

Tarefa para casa: Resolver o circuito pelo método dos nós e pelo método das malhas

Solução método prático

Solução pelo método prático

- nós com tensão desconhecida: nó *b* e nó *c*=> haverá duas equações diferenciais para descrever este sistema.
 - obs.: a tensão em *c* é a tensão de saída do circuito (desconhecida) => Vc(t) = Vo(t)
 - a tensão em α é a tensão de entrada (conhecida) => Va(t)=e(t)

nó b:

$$V_{b} \left(\frac{1}{R_{1}} + \frac{1}{R_{2}} + CD \right) - \frac{V_{a}}{R_{1}} - \frac{V_{c}}{R_{2}} = 0$$

$$\therefore V_{b} \left(\frac{1}{R_{1}} + \frac{1}{R_{2}} + CD \right) - \frac{e(t)}{R_{1}} - \frac{Vo}{R_{2}} = 0$$

nó c: tensão Vc=Vo

$$V_{o} \left(\frac{1}{R_{3}} + \frac{1}{R_{2}} + \frac{1}{LD} \right) - \frac{V_{b}}{R_{2}} - \frac{e(t)}{LD} = 0$$

• Sistema mecânico básico:

$$m \dot{v} + b v + k \int v d t = f(t)$$
 (3)

Sistema elétrico básico:

Comparando (3) e (4) encontramos as seguintes analogias:

variável entre

Obs: A corrente passa através do elemento, a tensão é medida entre dois pontos!

- Esta analogia é chamada analogia força/corrente velocidade/tensão (alguns livros a denominam analogia do tipo 2).
- A partir das definições acima, podemos obter as expressões da eletricidade a partir de suas equivalentes mecânicas:

Energia cinética:

$$T = \frac{1}{2}mv^2 \Longrightarrow T_e = \frac{1}{2}CV^2$$

Potência:

$$P = Fv \Rightarrow Pe^{-} = i.V$$

no espaço :
$$P = \vec{F} \cdot \vec{v} = |F||v|\cos\theta$$

na eletricidade: $P_e = iV \cos \theta$ onde $\cos \theta$ é o fator de potência₂₁

Trabalho:

$$\tau = \int F dx = \int F v dt = \int P dt \rightarrow \text{caso unidirecional}$$

$$\Rightarrow \tau_e = \int i d\lambda = \int i V dt = \int P_e dt \rightarrow \text{fasor alinhado}$$

Quantidade de movimento:
$$\vec{Q} = m\vec{v} \Rightarrow q = CV$$

(q carga acumulada no capacitor)

Impulso (integral da variável através):
$$\vec{I} = \int \vec{F} dt = \Delta \vec{Q}$$

Energia potencial:
$$V_k = \frac{1}{2}kx^2$$

$$\Rightarrow \Delta q = \int idt$$

$$\Rightarrow V_e = \frac{1}{2} \frac{1}{L} \lambda^2$$

Deslocamento (integral da variável entre):

$$x = \int v dt$$

$$\Rightarrow \lambda = \int V dt$$

Potência dissipada:

$$P_{d} = f_{b}v = bvv = bv^{2}$$

$$\Rightarrow P_{de} = i_{R}V_{R} = i_{R}Ri_{R} = Ri_{R}^{2}$$

Apresentar tabela de Analogias até aqui.

Trans.

Mec.

Rot.

Elétrica

Trans.

Mec.

Rot.

Elétrica

$$f(t)$$
 $v(t)$

[m/s]

 $\omega(t)$

V(t)

[V]

[m]

 $\int \omega dt = \Delta \theta$

[rad]

 $\int V dt = \Delta \lambda$

[Web]

 J_{G}

[kgm²]

C

[F]

k

K

1/L

[H]

T

 $=\frac{1}{2}mv^{2}$

 \prod

T

 $=\frac{1}{2}J_{G}\omega^{2}$

 $=\frac{1}{2}CV^{2}$

b

B

1/R

 $[\Omega]$

P

= fv

[W]

 P_{r}

 $= M_G \omega$

[W]

P

=iV

[W]

 $V = \frac{1}{2}kx^2$

[]]

T

 $V_r = \frac{1}{2}K\theta^2$

T

 $=\lambda^2/(2L)$

Q=mv

 $H=J_G\omega$

q=CV

 $\mathbf{H} = \mathbf{J}_{\mathbf{G}} \dot{\boldsymbol{\omega}}$

 $=\mathbf{M}_{\mathbf{G}}(\mathbf{t})$

[N.m]

 $\dot{q} = CV$

=i(t)

[A]

 $= \int \mathbf{f} dx = \int \mathbf{P} dt$

 $\tau_r = \int M_G d\theta$

 $= \int f dx = \int P dt$

 $P_d = bv^2$

[W]

 $P_d = B\omega^2$

[W]

 $P_{d} = (1/R) V^{2}$

 $=Ri^2$

[W]

$$M_G(t)$$
 $\omega(t)$ $N.m$ $modes$

i(t)

[A]

[N]

1		
Мес.	∫fdt=I=∆Q	∫vdt=∆x

 $\int \mathbf{M_G} dt = \Delta \mathbf{H}$

∫idt=Δq

[C]

 Para construir os circuitos elétricos análogos aos circuitos mecânicos, nesta analogia, observamos as velocidades (tensões) e deslocamentos entre os elementos mecânicos. Nesta analogia, as massas aparecem sempre aterradas, pois o movimento da massa é sempre relativo ao referencial inercial.
 Vamos partir do sistema mecânico básico: massa, mola amortecedor:

- de la constant de la
- 2. há uma fonte de força aplicada à massa.(a força eleva o potencial da massa)
- a massa é ligada ao referencial fixo por uma mola, portanto uma extremidade da mola tem o mesmo deslocamento da massa e a outra extremidade o deslocamento do referencial fixo (nulo).
- 4. a massa também se liga ao referencial fixo pelo amortecedor, portanto uma extremidade do amortecedor tem a mesma velocidade da massa e a outra a mesma velocidade do referencial fixo (velocidade nula).
- 5. Portanto, temos o seguinte circuito mecânico:

Utilizando as analogias mecânica/elétrica, substituímos força por corrente, velocidade por tensão, massa por capacitor, amortecedor por resistência e mola pelo indutor, obtendo o circuito elétrico:

Resolvemos o circuito elétrico, obtendo as equações elétricas equivalentes:

$$Va\left(\frac{1}{R} + \frac{1}{LD} + CD\right) = i(t)$$

usando a notação usual:

$$C\dot{V}a + \frac{1}{R}Va + \frac{1}{L}\int Va.dt = i(t)$$

Enfim, usando a tabela de analogias obtemos as equações do sistema mecânico:

$$C\dot{V}_a + \frac{1}{R}V_a + \frac{1}{L}\int V_a dt = i(t)$$

Mec. Trans.	f(t) [N]	v(t) [m/s]	m [kg]	b	k	Q=mv	=m a = f (t) [N]	τ = ∫ f dx= ∫Pdt [J]
Elétrica	i(t) [A]	V(t) [V]	C [F]	1/R [Ω]	1/L [H]	q=CV	= C = i(t) [A]	τ = ∫fdx=∫Pdt [J]

$$M\frac{dv}{dt} + bv + k\int vdt = f(t)$$

$$M\ddot{x} + b\dot{x} + kx = f(t)$$