Exercícios Métodos Numéricos

1 - Integre numericamente, aplicando os métodos de Euler e RK4, a seguinte equação $\frac{\delta y}{\delta x} = x^2 + y^2$ no intervalo de integração [0, 1.4], com um passo de integração h=0.1, considerando y(0)=0.

- a) Apresente o valor de y(0.7) e y(1.4) para ambos os métodos;
- b) Repita a alínea anterior para h' e h'';
- c) Calcular o Quociente de convergência para cada uma das soluções em x=1.4;
- d) Calcular o erro aproximado para cada uma das soluções;

2 – Integre numericamente o seguinte sistema de equações recorrendo aos métodos de Euler e RK2, utilizando o intervalo de integração [0,0.5], utilizando como ponto de partida (0,1,1). O passo de integração será h=0.05.

$$\begin{cases} \frac{\delta y}{\delta x} = z \times y + x \\ \frac{\delta z}{\delta x} = z \times x + y \end{cases}$$

- a) Apresente o resultado do sistema em x=0.1 e x=0.5;
- b) Calcule o QC e Erro aproximado para x=0.5;

3 – Integre numericamente o seguinte sistema de equações recorrendo ao método de RK4, utilizando como ponto de partida (0,2,4). Preencha a tabela seguinte com o resultado após o primeiro passo de integração, determinando se o valor de **k é 0, 2 ou 6**.

$\left(\frac{\delta}{\delta}\right)$	- = -k	$\kappa y + 4e^{-}$
1	δz _	yz^2
ĺ	$\frac{\overline{\delta x}}{\delta x} =$	3

h	Х	У	Z
0.1	0.1	1.982	3.160

4 – Resolva a seguinte equação $\frac{\delta^2 y}{\delta x^2} + 0.6 \frac{\delta y}{\delta x} + 8y = 0$ recorrendo ao método RK4 em que y(0)=4 e y'(0)=0, no intervalo de integração [0,0.5] com um passo de integração de h=0.1. Calcule o QC e erro aproximado para x=0.1 e x=0.5.

5 - Resolva a seguinte equação $\frac{\delta^2 v}{\delta t^2} = 0.5 \frac{\delta v}{\delta t} - v$ recorrendo ao método RK2 em que v(0)=2 e v'(0)=0, no intervalo de integração [0,4] com um passo de h=0.01. Calcule o QC e erro aproximado para t=4.

6 – Resolva o seguinte sistema de equações lineares recorrendo ao método da eliminação gaussiana. De seguida, analise a estabilidade externa considerando $\partial A=0.1$ e $\partial b=0.1$. Apresente a coluna dos resíduos e os desvios em cada uma das incógnitas. Qual a expectativa relativamente à estabilidade interna?

$$\begin{cases} 3a + 9c + 1d = 5b - 4 \\ 2b - 3c + 3d = 5 \\ 12a - c = 10 + 8d \\ 5a + 4b = d - c \end{cases}$$

7 – Resolva o seguinte sistema de equações lineares:

$$\begin{cases} 4x - y + 2z = 20 \\ 8y + 2z = 25 - x \\ 3x - y + 5z = -10 \end{cases}$$

- a) Recorrendo ao método de Khalesky.
- b) Recorrendo ao método de Gauss-Jacobi, utilizando como guess (0,0,0) ao fim de 5 iterações.
- c) Recorrendo ao método de Gauss-Seidel, utilizando como guess (0,0,0) ao fim de 5 iterações.
- d) Assumindo a solução de khalesky como exata, calcule o erro relativo para as soluções encontradas nas alíneas b) e c).

8 – Considere o seguinte integral definido $\int_1^5 \frac{e^{x-2}}{x}$. Aplicando os método de quadratura, preencha a tabela seguinte:

	Trap	ézios	Simpson		
	n S		n	S	
h=					
h'= 0.5					
h''=					
QC					

9 – O resultado da integração numérica da seguinte equação diferencial $\frac{\delta x}{\delta y} = xy^2 - 1.1x$ está apresentada na tabela em baixo. Foi utilizado o método de Euler no intervalo de integração é [0, 2.4], considerando x(0)=1.

0												2.4
1.00	0.78	0.61	0.50	0.43	0.39	0.38	0.40	0.47	0.61	0.87	1.38	2.41

- a) Qual o passo de integração considerado?
- b) Considerando este passo de integração com h", repita o cálculo para h' e h;
- c) Calcule o QC e erro aproximado.

SOLUÇÕES1

[1] Soluções:

a)	Euler		Rk4	
	y(0.7)= 0.09142		y(0.7)= 0.11566	
	y(1.4)= 0.93073		y(1.4)=1.13313	
b)	h'	h"	h'	h"
	y(0.7)= 0.10315	y(0.7)= 0.10930	y(1)= 0.11566	y(1)= 0.11566
	y(1.4)=1.02227	y(1.4)=1.07476	y(1.4)= 1.13311	y(1.4)=1.13311
c)	1.74421		13.66110	
d)	0.05248		-6.77488*10 ⁻⁸	

[2] Soluções:

a)	Euler	Rk2
	(x=0.1): y=1.10763, z=1.10513;	(x=0.1): y=1.11610; z=1.11065;
	(x=0.5): y=2.01722, z=1.83398;	(x=0.5): y=2.15185, z=1.89938;
b)	QCy=1.81357;	QCy=-0.08598;
	Erroy=0.03376;	Erroy=-0.00043;
	QCz=1.85296:	QCz=2.43228:
	Erroz=0.01859;	Erroz=0.00057;

[3] Soluções: k=2;

У	Z
1.934	2.619
1.982	3.160
1.995	3.530

[4] Soluções:

x=0.1 Sy=3.844, Sz=-3.065; S'y=3.844, S'z=-3.065; S"y=3.844, S"z=-3.065; QC=13.13; Erro=-1.287x10^-7; x=0.5 Sy=0.9265, Sz=-9.6608; S'y=0.9263, S'z=-9.6608; S"y=0.9263, S"z=-9.6607; QC=16.36; Erro=-1.023x10^-6;

[5] Soluções:

Sy=-3.1782, Sz=3.7747; S'y=-3.1431, S'z=3.7626; S"y=-3.1258, S"z=3.7564; QCy=2.2188; Erroy=0.0640; QCz=1.4604; Erroz=-0.0170;

[6] Soluções: Solução do sistema= [1.25606; -0.98863, -1.50371, 0.82205]; coluna de resíduos= [0.541;0.541;0.541;0.541]; desvios= [0.15737;-0.01392;-0.01900;0.17075];

[7] Soluções: a) x=9.359;y=3.675;z=-6.880; b) x=8.919;y=3.575;z=-6.446; c) x=9.300;y=3.659;z=-6.848; d) para b) errox=0.0500, erroy=0.0273, erroz=-0.0631; para c) errox=0.0063, erroy=0.0044, erroz=-0.0047

[8] Soluções:

Trapézios – 5.4459;5.2487;5.1987; QC=3.946; Simpson – 5.1954, 5.1830, 5.1821; QC=13.712;

[9] Soluções: h"=0.2; S'=1.11; S=0.16; QC=0.72; Erro=-0.94;

¹ Resultados obtidos em python com versão 3.7.4 (32 bits), outras versões poderão obter resultados ligeiramente distintos.