计算机导论

第二章计算机中的数据

本章内容

- ▶二进制数据的基本运算
- 一进制数据基本运算的硬件实现
- >二进制数据运算的应用
- ▶其他进制数据
- ▶不同进制数据间的转换
- > 有符号数据在计算机中的存储

本章内容

- >二进制数据的基本运算
- 一进制数据基本运算的硬件实现
- >二进制数据运算的应用
- ▶其他进制数据
- 一不同进制数据间的转换
- > 有符号数据在计算机中的存储

进制

二进制数据

十进制计数制(0-9,逢10进1;后缀D,常省略后缀D)
 123D, -78D, ③141D, -1.414
 一个十进制位

- 二进制计数制 (0,1; 逢2进1; 后缀B)
1011B, -110B, 101.11011B, -101.11011B
- ← 个二进制位

基本逻辑运算

	"与"运算(逻辑乘) Logic Multiplication		"或"运算(逻辑加) Logic Addition			"非"运算(逻辑非) Logic Negation		
示意电路	A B F		A B F			F A		
	АВ	F	АВ	F		Α	F	
真值表	0 0 0 1 1 0 1 1	0 0	0 0 0 1 1 0 1 1	0 1 1 1		0 1	1 0	

本章内容

- >二进制数据的基本运算
- >二进制数据基本运算的硬件实现
- >二进制数据运算的应用
- ▶其他进制数据
- ▶不同进制数据间的转换
- > 有符号数据在计算机中的存储

逻辑电路

	"与"运算(逻辑乘) Logic Multiplication	"或"运算(逻辑加) Logic Addition	"非"运算(逻辑非) Logic Negation
代数式	$F = A \times B = A \cdot B$	F = A+B	F = A
逻辑符号	AF BF	A— B— ≥1 —F	A——1

本章内容

- >二进制数据的基本运算
- 一进制数据基本运算的硬件实现
- >二进制数据运算的应用
- ▶其他进制数据
- ▶不同进制数据间的转换
- > 有符号数据在计算机中的存储

二四译码器的实现原理

- 容易理解: 1根地址线可以产生2(2¹)个输出,即可以区分2个内存块,3根地址线可以产生8(2³)个输出,即可以区分8个内存块,4根地址线可以产生16(2⁴)个输出,即可以区分16个内存块,……
- 一般的, n根地址线可以产生2ⁿ个输出,即可以区分2ⁿ个内存块。
- 计算机换算规则: 1K=2¹⁰ , 1M=2¹⁰ K, 1G=2¹⁰M

本章内容

- ▶二进制数据的基本运算
- 一进制数据基本运算的硬件实现
- >二进制数据运算的应用
- ▶其他进制数据
- 一不同进制数据间的转换
- > 有符号数据在计算机中的存储

八进制数据

● 八进制计数制(0-7; 逢8进1; 后缀Q、O)
 -123Q, 777Q, 123.456Q, -61.456Q
 一个八进制位

十六进制数据

• 十六进制计数制

本章内容

- >二进制数据的基本运算
- 一进制数据基本运算的硬件实现
- >二进制数据运算的应用
- ▶其他进制数据
- 一不同进制数据间的转换
- > 有符号数据在计算机中的存储

- R进制转换成十进制
 - 按权展开求和

R进制数M的整数部分有n位,小数部分有m位,转换成十进制数D。

$$D = \pm \sum_{i=-m}^{n-1} (M_i \times R^i)$$

$$= \pm (M_{-m} \times R^{-m} + \dots + M_{n-1} \times R^{n-1})$$

其中Mi代表第i位的数字,R为基数,Ri为第i位的权。

• 二进制转换成十进制

$$(1101.11)_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2}$$
$$= 8 + 4 + 0 + 1 + 0.5 + 0.25$$
$$= 13.75$$

• 八进制转换成十进制

$$(173.3)_8 = 1 \times 8^2 + 7 \times 8^1 + 3 \times 8^0 + 3 \times 8^{-1}$$

= 64 + 56 + 3 +0.375
= 123.375

• 十六进制转换成十进制

$$(4C.6)_{16} = 4 \times 16^{1} + 12 \times 16^{0} + 6 \times 16^{-1}$$

= 64 + 12 + 0.375
= 76.375

• 练习

```
10111.101B = 23.625D
7035Q = 3613D
-8FD.C H = -2301.75D
```

- 十进制转换成R进制
 - 对于整数,通常采用"除R取余"的方法,即用R不断地去除要转换的整数,直至商等于0为止,然后将所得余数从后向前顺序写出,即为转换成的R进制数。

$$43D = 101011B$$

$$= 53Q$$

- 十进制转换成R进制
 - 对于小数,通常采用"乘R取整"的方法,即用R不断地乘以要转换的小数,直至小数部分等于0或满足所要求的精度为止,将每次得到的乘积的整数部分,从前向后顺序写出,即为转换成的R进制数。

```
0.8125
        整数部分为1
                   (最高位)
1.6250 --
0.625
         整数部分为1
 1.250-
 0.25
        · 整数部分为0
 0.50 ....
  0.5
       ··整数部分为1
                   (最低位)
```

0.8125D = 0.1101B

- 二进制数据转换成八进制数据
 - 将二进制数据从小数点开始,分别向前向后3位分成一组,不足 3位补0, 然后写出对应的八进制即可。

$$(101011.101)_2 = \frac{101}{5} \frac{011}{3} \cdot \frac{101}{5} = (53.5)_8$$

- 八进制数据转换成二进制数据
 - 将每位八进制数据写出对应的3位二进制数即可。

$$(173.3)_8 = \frac{1}{001} \frac{7}{111} \frac{3}{011} \cdot \frac{3}{011} = (1111011.011)_2$$

- 二进制数据转换成十六进制数据
 - 将二进制数据从小数点开始,分别向前向后4位分成一组,不足4位补0,然后写出对应的十六进制即可。

$$(101011.101)_2 = \frac{0010}{2} \frac{1011}{B} \cdot \frac{1010}{A} = (2B.A)_{16}$$

- 十六进制数据转换成二进制数据
 - 将每位十六进制数据写出对应的4位二进制数即可。

$$(173.3)_{H} = \frac{1}{0001} \frac{7}{0111} \frac{3}{0011} \cdot \frac{3}{0011} = (000101110011.0011)_{B}$$

进制对照表

十 进制	二进制	八进制	十六进制
0	00000000	0	0
1	0000001	1	1
2	0000010	2	2
3	00000011	3	3
4	00000100	4	4
5	00000101	5	5
6	00000110	6	6
7	00000111	7	7
8	00001000	10	8

+	二进制	八	十六
进制	— 在	进制	进制
9	00001001	11	9
10	00001010	12	Α
11	00001011	13	В
12	00001100	14	С
13	00001101	15	D
14	00001110	16	E
15	00001111	17	F
16	00010000	20	10
17	00010001	21	11

• 十六进制转八进制

$$(4E2D)_{H} = \frac{4}{0100} \frac{E}{1110} \frac{2}{0010} \frac{D}{1101} = (0100111000101101)_{B}$$

$$(0100111000101101)_{B} = \frac{100}{4} \frac{111}{7} \frac{000}{0} \frac{101}{5} \frac{101}{5}$$

$$= (47055)Q$$

• 八进制转十六进制

$$(4327)_{Q} = \frac{4}{100} \frac{3}{011} \frac{2}{010} \frac{7}{111} = (100011010111)_{B}$$
 $(100011010111)_{B} = \frac{1000}{8} \frac{1101}{D} \frac{0111}{7} = (8D7)_{H}$

本章内容

- ▶二进制数据的基本运算
- 一进制数据基本运算的硬件实现
- >二进制数据运算的应用
- ▶其他进制数据
- ▶不同进制数据间的转换
- > 有符号数据在计算机中的存储

机器数

对于数的符号 "+" 或 "-", 计算机是无法识别的, 因此需要把数的符号数码化。通常, 约定二进制数的最高位为符号位, "0" 表示正号, "1" 表示负号。这种在计算机中使用的表示数的形式称为<mark>机器数</mark>。规定: 以后没有特别指明的话, 规定1个字节, 即8位来存储整数。

机器数

• 例如:

N1 = 00001001 表示带符号数 +9

N2 = 11111001 根据不同的机器数表示不同的值,如:

原码时:表示带符号数 -121

反码时:则表示-6

补码时:则表示-7

原码

• 定义: 符号占1位(最高位), 0表示正、1表示负; 数值部分按二进制书写(占剩下的位置)。

• 例如, +11 原码: 00001011

• 例如, -11 原码: 10001011

原码

• 根据定义, 0有两种表示方法: +0, -0。

0000000

10000000

• 1个字节能表示 -127 到 +127 这 255 个数

最大数: 01111111

最小数: 11111111

反码

• 定义:如果是正数,与原码相同;如果是负数,符号位不变,数据位取反。

例如, +11反码: 00001011

• 例如, -11 反码: 11110100

反码

• 根据定义, 0有两种表示方法: +0, -0。

0000000

11111111

• 1个字节能表示 -127 到 +127 这 255 个数

最大数: 01111111

最小数: 10000000

补码

- 定义: 如果是正数,与原码相同;如果是负数,符号位不变,数据位取反,末位加1。
- 例如, +11补码: 00001011
- 例如, -11补码: 11110101

补码

• 根据定义, 0只有一种表示方法: 00000000

• 特殊值 -128 表示方法: 10000000

• 1个字节能表示 -128 到 +127 这 256 个数

最大数: 01111111

最小数: 10000000

机器数总结

练习

• 写出下列真值的原码、反码、补码。

-33

-56

40

Questions?