Lösungshinweise zur Klausur vom 10. Juli 2023

1.

a)

$$S \rightarrow 0S \mid 1S \mid 1A$$

$$A \rightarrow 0B$$

$$B \rightarrow 1C$$

$$C \rightarrow 1$$

b)

- c) $(0 \cup 1)^* 1011$
- d) \equiv_A hat genau 5 Äquivalenzklassen: Der DFA in Teil b) hat 5 Zustände. Damit hat \equiv_A höchstens 5 Äquivalenzklassen.

Anderseits hat \equiv_A hat mindestens 5 Äquivalenzklassen, da die Wörter $\varepsilon, 1, 10, 101, 1011$ paarweise nicht äquivalent sind. Dazu geben wir für je 2 dieser Wörter x, y ein w an, so dass entweder $xw \in A$ oder $yw \in A$.

1	011			
10	11	11		
101	1	1	1	
1011	ε	ε	ε	ε
	arepsilon	1	10	101

2.

3.

4.

5.

a)
$$S \rightarrow S \lor S \mid S \land S \mid \neg S \mid (S) \mid a \mid b \mid c.$$

- b) Die Grammatik ist nicht eindeutig, da z.B. die Formel $a \wedge b \vee c$ zwei Linksableitungen hat:
 - $\bullet \ S \implies S \land S \implies a \land S \implies a \land S \lor S \implies a \land b \land S \implies a \land b \lor c$
 - $\bullet S \Longrightarrow S \vee S \Longrightarrow S \wedge S \vee S \Longrightarrow a \wedge S \vee S \Longrightarrow a \wedge b \wedge S \Longrightarrow a \wedge b \vee c$

Die Sprache ist aber eindeutig, d.h. es gibt eindeutige Grammatiken dafür.

- c) Sei p > 0 beliebig. Wähle $w = (p \ a)^p \in B$.
- d) Die Wörter $x_n = (n \ a \ \text{sind paarweise inäquivalent}, \ \text{für} \ n = 1, 2, \ldots$: Sei $n \neq m \ \text{und} \ w = (n \ a \ \text{sind paarweise inäquivalent}, \ \text{für} \ n = 1, 2, \ldots$: Sei $n \neq m \ \text{und} \ w \in B$.
- **6.** Sei p > 0 beliebig und $w = a^p b^{p^3} \in C$. Sei w = uvxyz eine Zerlegung von w mit $|vxy| \le p$ und |vy| > 0.
 - Ist $vy = a^m$ oder $vy = b^m$, für ein $1 \le m \le p$, dann ist $uv^2xy^2z \not\in C$.
 - Ist $vy=a^mb^\ell$ für $m,\ell>0$ und $m+\ell\leq p$, Dann besteht uv^2xy^2z aus p+m a's und $p^3+\ell$ b's. Dann gilt $uv^2xy^2z\not\in C$, da $(p+m)^3=p^3+\ell$ gelten müsste. Es gilt aber

$$(p+m)^3 \ge (p+1)^3 = p^3 + 3p^2 + 3p + 1 > p^3 + p \ge p^3 + \ell.$$