最优化理论与方法

研究生学位课

陈军华(副教授/主任)

- What is Linear Programming(LP)?
 - Optimize a linear objective function of decision variables subject to a set of linear constraints.
 - Example

• Graphic Representation

$$P = \{(x_1, x_2) | x_1 + x_2 \le 40, 2x_1 + x_2 \le 60, x_1, x_2 \ge 0\}$$

• LP的线性表示

$$\max(\min) \ z = c_1x_1 + c_2x_2 + \dots + c_nx_n$$
 s.t.
$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \le (=, \ge)b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \le (=, \ge)b_2$$

$$\dots \qquad \dots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \le (=, \ge)b_m$$

$$x_1, x_2, \dots, x_n \ge 0$$

$$\max(\min) \ z = \sum_{j=1}^n c_j x_j$$
 s.t.
$$\sum_{j=1}^n a_{ij}x_j \le (=, \ge)b_i \quad \forall \ i \in \{1, 2, \dots, m\}$$

$$x_1, x_2, \dots, x_n \ge 0$$

• LP的矩阵表示

$$\min z = c^T x$$

$$s. t. Ax = b$$

$$x \ge 0$$

$$\max(\min) \ z = \sum_{j=1}^n c_j x_j$$
 s.t.
$$\sum_{j=1}^n a_{ij} x_j \le (=, \ge) b_i \qquad \forall \ i \in \{1, 2, \dots, m\}$$

$$x_1, x_2, \dots, x_n \ge 0$$

• LP的向量表示

$$\min z = c^{T} x
s. t. Ax = b
x \geq 0
x = \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix}
c^{T} = (c_{1}, c_{2}, ... c_{n})
A = \begin{pmatrix} a_{11} & a_{12} & ... & a_{1n} \\ a_{21} & a_{22} & ... & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & ... & a_{mn} \end{pmatrix} = (A_{1}, A_{2}, ... A_{n})$$

max(min)
$$z = c^T x$$

s.t. $\sum_{j=1}^n A_j x \le b$
 $x \ge 0$

Linear Program

Recall that the standard form of LP:

Where $c \in \mathbb{R}^n$, A is an $m \times n$ matrix with full row rank, $b \in \mathbb{R}^m$

$$\min \sum_{j=1}^n c_j x_j$$

s. t.
$$\sum_{j=1}^{n} a_{ij}x_{j} = b_{i} \quad \forall i \in \{1,2,...,m\}$$
$$x_{j} \geq 0 \quad \forall j \in \{1,2,...,n\}$$

Minimize
$$-3x_1 - 2x_2$$

s. t. $x_1 + x_2 \le 40$
 $2x_1 + x_2 \le 60$
 $x_1 , x_2 \ge 0$

Covert to standard form:

Minimize
$$-3x_1 - 2x_2$$

s.t. $x_1 + x_2 + x_3 = 40$
 $2x_1 + x_2 + x_4 = 60$
 x_1 , x_2 , x_3 , $x_4 \ge 0$

Minimize $-3x_1 - 2x_2$ s. t. $x_1 + x_2 \le 40$ $2x_1 + x_2 \le 60$ $x_1 , x_2 \ge 0$

$$x^{1} = \begin{pmatrix} 0 \\ 0 \\ 40 \\ 60 \end{pmatrix} \qquad x^{2} = \begin{pmatrix} 0 \\ 40 \\ 0 \\ 20 \end{pmatrix}$$

$$x^3 = \begin{pmatrix} 20 \\ 20 \\ 0 \\ 0 \end{pmatrix} \quad x^4 = \begin{pmatrix} 30 \\ 0 \\ 10 \\ 0 \end{pmatrix}$$

Minimize
$$-3x_1 - 2x_2$$
 $= 40$... $2x_1 + x_2 + x_3$ $+ x_4 = 60$... x_1 , x_2 , x_3 , $x_4 \ge 0$

• 超平面

□定义

$$X = \{x | c^T x = z\}x \neq 0, z$$
 为常数,那么: 称X为超平面

□ 超平面将空间分成两部分: $c^T x \ge z$, $c^T x \le z$

A single linear inequality determines a unique half-plane.

• Learning from Example

Minimize
$$-3x_1 - 2x_2$$

 $s. t.$ $x_1 + x_2 \le 40$
 $2x_1 + x_2 \le 60$
 x_1 , $x_2 \ge 0$

- Linear Program
 - Recall that the standard form of LP:

$$min C^{T}X$$

$$s. t. Ax = b$$

$$x \ge 0$$

Where $c \in \mathbb{R}^n$, A is an $m \times n$ matrix with full row rank, $b \in \mathbb{R}^n$

□ Polyhedron set & convex set : $\{x \in R^n | Bx \ge d\}$

Which of the following are convex? Or not?

Background knowledge

• Definition: Let $x^1, x^2, ..., x^p \in R^n, \lambda_1, \lambda_2, ..., \lambda_p \in R$. And

$$x = \sum_{i=1}^{p} \lambda_i x^i = \lambda_1 x^1 + \lambda_2 x^2 + \dots + \lambda_p x^p$$

We say x is a linear combination of $\{x^1, ..., x^p\}$.

If $\sum_{i=1}^{p} \lambda_i = 1$, we say x is an affine combination of $\{x^1, \dots, x^p\}$.

If $\lambda_i \geq 0$, we say x is a conic combination of $\{x^1, \dots, x^p\}$.

If $\sum_{i=1}^{p} \lambda_i = 1$, $\lambda_i \ge 0$ we say x is a convex combination of $\{x^1, \dots, x^p\}$.

- Affine set, convex set, and cone
 - Definition: Let S be a subset of \mathbb{R}^n .

If the affine combination of any two points of *S* falls in *S*, then *S* is an affine set.

If the convex combination of any two points of S falls in S, then S is a convex set.

If $\lambda x \in S$ for all $x \in S$ and $\lambda \geq 0$, then S is a cone.

Convex set

Definition: A set S is convex if for every two points in the set, the line segment joining the points is also in the set; that is, If $p_1, p_2 \in S$, then so is $(1 - \lambda)p_1 + \lambda p_2$ for $\lambda \in [0,1]$.

• The feasible region of a LP is convex

Ax = b and $x \ge 0$ means that the rhs vector b falls in the cone generated by the columns of constraint matrix A

$$A = (A_1|A_2| \dots |A_n)$$

$$A_{j} = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \dots \\ a_{mj} \end{pmatrix} \qquad A_{x} = (A_{1}|A_{2}| \dots |A_{n}) \begin{pmatrix} x_{1} \\ x_{2} \\ \dots \\ x_{n} \end{pmatrix} = \sum_{j=1}^{n} x_{j} A_{j} \in R^{m}$$

- Interior and boundary points
 - Given a set, what's the difference between an interior point and a boundary points?
 - □ Definition: Given a set $s \subset R^n$, a point $x \in s$ is an interior point of S, if

 $\exists \epsilon > 0 \text{ such that the ball } B = \{ y \in \mathbb{R}^n | ||y - x|| \le \epsilon \} \subset S.$

Otherwise, x is a boundary point of S.

We denote that

 $int(s) = \{x \text{ is an interior point of } S\}$

 $bdry(s) = \{x \text{ is an boundary point of } S\}$

- Boundary points of convex sets
 - What's special about boundary points of a convex set?
 - Separation Theorem:

 $s \subset R^n$ is convex, then $\forall x \in bdry(s)$, $\exists n$ hyperplane H, such that $x \in H$ and either $s \subset H_L$ or $s \subset H_U$. Supporting hyperplane

- Are all boundary points the same?
 - Some sits on the shoulders of others, and some don't.
 - Definition: x is an extreme point of a convex set S. If x cannot be expressed as a convex combination of other points in S.
 - Question: Can you now see that if an LP has a finite optimal solution, then one vertex of P is optimal?
 - Let $P \in \mathbb{R}^n$ be a given polyhedron. A vector $x \in P$ is an extreme point of P if there does not exist $y, z \in P$, and $\lambda \in (0,1)$ such that $x = \lambda y + (1 \lambda)z$

$$x^{1} = \begin{pmatrix} 0 \\ 0 \\ 40 \\ 60 \end{pmatrix} \qquad x^{2} = \begin{pmatrix} 0 \\ 40 \\ 0 \\ 20 \end{pmatrix}$$

$$x^3 = \begin{pmatrix} 20 \\ 20 \\ 0 \\ 0 \end{pmatrix} \quad x^4 = \begin{pmatrix} 30 \\ 0 \\ 10 \\ 0 \end{pmatrix}$$

Minimize
$$-3x_1 - 2x_2$$
 $= 40$... $2x_1 + x_2 + x_3$... $+ x_4 = 60$... $x_1 + x_2 + x_3 + x_4 = 0$

What's special?

Vertices

Minimize
$$-3x_1 - 2x_2$$

 $s. t.$ $x_1 + x_2 \le 40$
 $2x_1 + x_2 \le 60$
 $x_1 , x_2 \ge 0$

$$v^1 = \begin{pmatrix} 0 \\ 0 \\ 40 \\ 60 \end{pmatrix}$$
, $v^2 = \begin{pmatrix} 30 \\ 0 \\ 10 \\ 0 \end{pmatrix}$, $v^3 = \begin{pmatrix} 20 \\ 30 \\ 0 \\ 0 \end{pmatrix}$, $v^4 = \begin{pmatrix} 0 \\ 40 \\ 0 \\ 20 \end{pmatrix}$

Edge

Interior

$$v^{5} = \begin{pmatrix} 20 \\ 0 \\ 20 \\ 20 \end{pmatrix}$$

$$v^{6} = \begin{pmatrix} 15 \\ 15 \\ 10 \\ 15 \end{pmatrix}$$

$$n = 4, m = 2, n - m = 2$$

Finding extreme points

Theorem:

A point $x \in P = \{x \in R^n | Ax = b, x \ge 0\}$ is an extreme point of P if and only if the columns of A corresponding to the positive components of x are linearly independent.

Proof

• • •

An extreme point of P is obtained by setting n-m variables to be zero and solving the remaining m variable in m equations.

- Managing extreme points algebraically
 - Let A be an m by n matrix with m < n, we say A has full rank(full row rank) if A has m linearly independent columns.
 - In this, we can rearrange

$$x = \begin{pmatrix} x_B \\ x_N \end{pmatrix}$$
 where, x_B : basic variables x_N : non-basic variables

- A = (B|N) where, B: basics N: non-basics
- Definition(basic solution and basic feasible solution)
- If we set $x_N = 0$ and solve x_B for $Ax = Bx_B = b$, then x is a basic solution(bs)
- Furthermore, if $x_B \ge 0$, then x is a basic feasible solution(bfs).

Example of basic and basic feasible solutions

Minimize
$$-3x_1 - 2x_2$$
 $x_1 + x_2 + x_3$ $= 40$... $2x_1 + x_2$ $+ x_4 = 60$... x_1 , x_2 , x_3 , $x_4 \ge 0$

Linear independence of the columns:

$$\binom{1}{2}x_1 + \binom{1}{1}x_2 + \binom{1}{0}x_3 + \binom{0}{1}x_4 = \binom{40}{60}$$

Example of basic and basic feasible solutions

$$x^{1} = \begin{pmatrix} 0 \\ 0 \\ 40 \\ 60 \end{pmatrix} \qquad x^{3} = \begin{pmatrix} 0 \\ 40 \\ 0 \\ 20 \end{pmatrix} \qquad x^{5} = \begin{pmatrix} 40 \\ 0 \\ 0 \\ -20 \end{pmatrix}$$

$$x_1 + x_2 \le 40 \qquad x^2 = \begin{pmatrix} 20 \\ 20 \\ 0 \\ 0 \end{pmatrix} \qquad x^4 = \begin{pmatrix} 30 \\ 0 \\ 10 \\ 0 \end{pmatrix} \qquad x^6 = \begin{pmatrix} -20 \\ 0 \\ 60 \\ 0 \end{pmatrix}$$

Minimize
$$-3x_1 - 2x_2$$
 $x_1 + x_2 + x_3$ $x_1 = 40$... $2x_1 + x_2$ $x_2 + x_3$... $x_4 = 60$... $x_1 + x_2 + x_3$... $x_2 + x_3 + x_4 = 60$

Further results

- Observation: when A does not have full rank, then either
 - (1) Ax = b has no solution and hence p = 0, or
 - (2) some constraints are redundant.

For the second case, after remaining the redundant constraints, new A has full rank.

- Corollary: A point x in P is an extreme point of P if and only if x is a bfs corresponding to some basis B.
- Corollary: The polyhedron P has only a finite number of extreme point. Proof:#of ways to choose m linearly independent columns from n columns

$$\leq C(n,m) = \frac{n!}{m!(n-m)!}$$

- Extremal direction for unboundedness
 - When P is unbounded, we need a direction leading to infinity.
 - Definition:

A vector $d(\neq 0) \in R^n$ is an extremal direction of P, if $\{x \in R^n \big| x = x^0 + \lambda d, \lambda \geq 0\} \subset P$

For all $x^0 \in P$

- Observations:
- (1) P is unbounded $\rightarrow P$ has an extremal direction.
- (2) $d(\neq 0)$ is an extremal direction of $P \rightarrow Ad = 0$ and $d \geq 0$

- Basic solutions and Extreme Points
 - Let $\{x \in R^n | Ax = b, x \ge 0\}$, the feasible set of LP. Since A is full row rank, if the feasible set is not empty, then we must $m \le n$, we assume that m < n.
 - Let A = (B, N), where B is an $m \times m$ matrix with full rank, i.e., $det(B) \neq 0$. Then, B is called a basic.
 - Let $X = \begin{pmatrix} X_B \\ X_N \end{pmatrix}$. We have $BX_B + NX_N = b$. Setting $X_N = 0$, we have $X_B = B^{-1}b$. $X = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix}$ is called a basic solution. X_B is called basic variables, X_N is called nonbasic variables.
 - If the basic solution is also feasible, this is $B^{-1}b \ge 0$, then X is called a basic feasible solution.

- Basic solutions and Extreme Points
 - $\widehat{x} \in S$ is an extreme point of S if and only if \widehat{x} is a basic feasible solution.
 - Two extreme points are adjacent if they differ in only one basic variable.
 - (Basic Theorem of LP) Consider the linear program: $min\{c^Tx|Ax=b,x\geq 0\}$. If S has at least one extreme point and there exists an optimal solution, then there exists an optimal solution that is an extreme point.
 - Proof (representation of polyhedron)
 - The feasible set of standard form linear program has least one feasible point.

- Basic solutions and Extreme Points
 - (Basic Theorem of LP) Consider the linear program: $min\{c^Tx|Ax=b,x\geq 0\}$. If S has at least one extreme point and there exists an optimal solution, then there exists an optimal solution that is an extreme point.
 - Proof (representation of polyhedron)
 - The feasible set of standard form linear program has least one feasible point.
 - Therefore, we claim that the optimal value of a linear program is either −∞, or is attained an extreme point(basic feasible solution) of the feasible set.

- Basic solutions and Extreme Points
 - Theorem: Let $V = \{v^i \in R^n | i \in I\}$ be a set of all extreme points of P, I is a finite index set, then $\forall x \in P$, we have

$$x = \sum_{i \in I} \lambda_i v^i + d$$

where

$$\sum_{i\in I}\lambda_i=1$$
, $\lambda_i\geq 0$, $\forall i\in I$

and either d=0 or d is an external direction of P.

- Basic solutions and Extreme Points
 - Theorem: For a standard form LP, if its feasible domain P is nonempty, then the optimal objective value of $z = c^T x$ over P is either unbounded below, or it is attained at an extreme point of P.

Proof: There are two case1:

Case1: P has an extremal direction d such that

 $c^T d < 0$. Hence P is unbounded and $z \to -\infty$, along d.

$$c^{T}x = c^{T}\left(\sum_{i \in I} \lambda_{i}v^{i} + d\right) = c^{T}\sum_{i \in I} \lambda_{i}v^{i} + c^{T}d$$

Basic solutions and Extreme Points

Case2: P has no extremal direction d such that

$$c^{T}x = c^{T}\left(\sum_{i \in I} \lambda_{i}v^{i} + d\right) = c^{T}\sum_{i \in I} \lambda_{i}v^{i} + c^{T}d$$

$$\geq \sum_{i \in I} \lambda_{i} (c^{T} v^{i})$$

$$\geq \min \{(c^{T} v^{i})\} \sum_{i \in I} \lambda_{i}$$

$$= \min \{(c^{T} v^{i})\}$$

$$= c^{T}\min(v^{i})$$

• Algorithm 1:Enumeration

- Let $min\{c^Tx|Ax=b,x\geq 0\}$ be a bounded LP
- Enumerate all bases $B \in \{1, ..., n\}, C_n^m = o(n^m)$
- Computer associated basic solution $x = {B^{-1}b \choose 0}$
- Return the one which has largest objective function value among the feasible basic solutions.
- Running time is $o(n^m \cdot m^3)$

• Algorithm 2:Simplex method

Algorithm 2:Simplex method

Step1:(Starting)

Find an initial extreme point or declare P is null

Step2: (Checking optimality)

If the current ep is optimal, STOP. Else Step3:

Step3: (Pivoting)

Move to a better ep.

Return to step 2.

 Property 1: If a bfs x is nondegenerate, then x is uniquely determined by n hyperplanes.

$$A = (B, N), x = \begin{bmatrix} x_B \\ x_N \end{bmatrix} = \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix}$$

Let: $M = \begin{bmatrix} B & N \\ 0 & I \end{bmatrix}$, Then M is nonsingular and

$$\mathbf{M}\mathbf{x} = \begin{bmatrix} B & N \\ \mathbf{0} & I \end{bmatrix} \begin{bmatrix} x_B \\ x_N \end{bmatrix} = \begin{bmatrix} b \\ \mathbf{0} \end{bmatrix}$$

$$x = \begin{bmatrix} x_B \\ x_N \end{bmatrix} = M^{-1} \begin{bmatrix} b \\ 0 \end{bmatrix} = \begin{bmatrix} B^{-1} & -B^{-1}N \\ 0 & I \end{bmatrix} \begin{bmatrix} b \\ 0 \end{bmatrix}$$

- Under nondegeneracy, every basic feasible solution(extreme point) has exactly n-m adjacent neighbors.
- For a bfs, each adjacent bfs can be reached by increasing one nonbasic variable from 0 to positive and decreasing one basic variable from positive to 0. -Pivoting
- See from the example.

$$x^1 = x^0 + \lambda d_q \text{ for } \lambda > 0$$

 d_q : edge direction λ : step length

Pivoting

 One nonbasic variable enters (from 0 to positive) the basis and one basic variable leaves the basis (from positive to 0).

Where are these edge directions?

$$\mathbf{M} = \begin{bmatrix} B & N \\ \mathbf{0} & I \end{bmatrix}$$
$$\mathbf{M}\mathbf{x} = \begin{bmatrix} B & N \\ \mathbf{0} & I \end{bmatrix} \begin{bmatrix} x_B \\ x_N \end{bmatrix} = \begin{bmatrix} b \\ \mathbf{0} \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} B^{-1} & -B^{-1}N \\ 0 & I \end{bmatrix} \xrightarrow{(-B^{-1}A_{q1}, -B^{-1}A_{q2}, \dots, -B^{-1}A_{q(n-m)})}$$

$$n - m$$

第一章 线性规划

Example

$$A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{pmatrix}$$

At vertex 1, $BV = \{x_3, x_4\}, NBV = \{x_1, x_2\}$

$$x^{1} = \begin{pmatrix} 0 \\ 0 \\ 40 \\ 60 \end{pmatrix} \quad x^{2} = \begin{pmatrix} 0 \\ 40 \\ 0 \\ 20 \end{pmatrix}$$

$$B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, N = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}$$

$$x^3 = \begin{pmatrix} 20\\20\\0\\0 \end{pmatrix} \quad x^4 = \begin{pmatrix} 30\\0\\10\\0 \end{pmatrix}$$

$$\mathbf{M} = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{M}^{-1} = \begin{pmatrix} 1 & 0 & -1 & -1 \\ 0 & 1 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Which neighbor is a good one?

Optimality check by reduced cost

- Analysis of step length (minimum ratio test)
- We have $x(\alpha)=x+\alpha d_q$ for $\alpha>0$ with $r_q=c^Td_q=c_q-c_B^TB^{-1}A_q<0$

Case 1: if all
$$d_q \ge 0$$
, then $x(\alpha) \ge 0$.
$$c^T x(\alpha) = c^T x + \alpha c^T d_q$$
 as $\alpha \to \infty$, $c^T x(\alpha) \to -\infty$

Case 2: d_q has at least one component<0. To keep $x(\alpha) \ge 0$, we have to choose

$$\alpha = \min\{\frac{x_i}{-d_q^i} | d_q^i < 0\}$$

- Algorithm 2:Simplex method
 - Step1:(Starting)Find a bfs x with A=[B|N]
 - Step2: Check $r_q=c^Td_q=c_q-c_B^TB^{-1}A_q$ if all $r_q\geq 0$, x is optimal. else pick one $r_q<0$, Go to step 3
 - □ Step3: If all $d_q \ge 0$, then LP is unbounded.

else find
$$\lambda = min\{\frac{x_i}{-d_q^i}|d_q^i < 0\}$$

Then $x = x + \lambda d_q$, go to step 2.

• Example 2

Minimize
$$-x_1 - x_2$$
 $s.t. x_1 + \leq 1$
 $x_2 \leq 1$
 $x_1, x_2 \geq 0$

Covert to standard form:

Minimize
$$-x_1 - x_2$$

 $s.t.$ $x_1 + x_3 = 1$
 $x_2 + x_4 = 1$
 $x_1, x_2, x_3, x_4 \ge 0$

• Example 2

- How to start the simplex method?
 - How to get an initial basic feasible solution?
 - -eye inspection
 - -randomly generate (test of luck)
 - -systematic approach
 - 1. Two-phase method (Phase 1 problem)
 - 2. big-M method

- Big-M method
 - Add a big penalty M > 0 to each artificial variable.
 - Combine phase I problem with the original problem to consider a big-M problem:

$$\operatorname{Min} \sum_{j=1}^{n} c_{j} x_{j} + \sum_{i=1}^{m} M u_{i}$$

$$(PhI) \quad s. t. \quad Ax + Iu = b (\geq 0)$$

$$x, u \geq 0$$

Homework

- Code a lp algorithm using the simplex procedure and,
- 2. Solve the problem:

minimize
$$2x_1 + 4x_2 + x_3 + x_4$$

subject to $x_1 + 3x_2 + x_4 \le 4$
 $2x_1 + x_2 \le 3$
 $x_2 + 4x_3 + x_4 \le 3$
 $x_1 \ge 0$ $i = 1, 2, 3, 4$.

- 3. For the lp exercise,
- a) How much can the element of b = (4,3,3) be changed without changing the optimal basis?
- b)How much can the elements of c = (2,4,1,1) be changed without changing the optimal basis.
 - c) What happens to the optimal cost for small changes in b?
 - d) what happens to the optimal cost for small changes in c?

- Algorithm 2:Simplex method
 - Simplex method was invented by George Dantzig (1914-2005)
 - Suppose we have a basic feasible solution $\hat{x} = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix}$,

$$A = (B, N), x = {x_B \choose x_N}, c = {c_B \choose c_N}$$

$$Ax = b \leftrightarrow Bx_B + Nx_N = b, \text{ and so:} \quad x_B = B^{-1}b - B^{-1}Nx_N$$

$$c^T x = c_B^T x_B + c_N^T x_N$$

$$= c_B^T (B^{-1}b - B^{-1}Nx_N) + c_N^T x_N$$

$$= c^T \widehat{x} + (c_N^T - c_R^T B^{-1}N)x_N$$