Linearization and Transversality

D. Zack Garza

Review 8.2

Space of Perturbations of

Section 8.4: Linearizing the Floer Equation: The Differential of F

Linearization and Transversality

Sections 8.3 and 8.4

D. Zack Garza

April 2020

Linearization and Transversality

D. Zack Garza

Review 8.2

ection 8.3: The pace of Perturbations of

Linearizing the Floer Equation:
The Differential

Review 8.2

Linearization and

Section 8.3: The Space of Perturbations of

Section 8.3: The Space of Perturbations of Н

Goal

Linearization and Transversality

D. Zack Garz

Review 8.3

Section 8.3: The Space of Perturbations of H

Section 8.4: Linearizing the Floer Equation: The Differentia of F **Goal**: Given a fixed Hamiltonian $H \in C^{\infty}(W \times S^1; \mathbb{R})$, perturb it (without modifying the periodic orbits) so that $\mathcal{M}(x, y)$ are manifolds of the expected dimension.

Goal

Linearization and Transversality

D. Zack Garza

Review 8.2

Section 8.3: The Space of Perturbations of

Section 8.4: Linearizing the Floer Equation: The Differential of F Start by trying to construct a subspace $\mathcal{C}^{\infty}_{\mathbb{C}}(H) \subset \mathcal{C}^{\infty}(W \times S^1; \mathbb{R})$, the space of perturbations of H depending on a certain sequence $\varepsilon = \{\varepsilon_k\}$, and show it is a dense subspace.

Define an Absolute Value

Linearization and Transversality

D. Zack Garza

Review 8.2

Section 8.3: The Space of Perturbations of H

Section 8.4: Linearizing the Floer Equation: The Differential of F Idea: similar to how you build $L^2(\mathbb{R})$, define a norm $\|\cdot\|_{\varepsilon}$ on $C_{\varepsilon}^{\infty}(H)$ and take the subspace of finite-norm elements.

- Let $h(\mathbf{x}, t) \in C_{\varepsilon}^{\infty}(H)$ denote a perturbation of H.
- Fix $\varepsilon = \left\{ \varepsilon_k \mid k \in \mathbb{Z}^{\geq 0} \right\} \subset \mathbb{R}^{>0}$ a sequence of real numbers, which we will choose carefully later.
- For a fixed $\mathbf{x} \in W$, $t \in \mathbb{R}$ and $k \in \mathbb{Z}^{\geq 0}$, define

$$|d^k h(\mathbf{x}, t)| = \max \{d^{\alpha} h(\mathbf{x}, t) \mid |\alpha| = k\},$$

the maximum over all sets of multi-indices α of length k. Note: I interpret this as

$$d^{\alpha_1,\alpha_2,\cdots,\alpha_k}h=\frac{\partial^k h}{\partial x_{\alpha_1}\,\partial x_{\alpha_2}\cdots\partial x_{\alpha_k}},$$

the partial derivatives wrt the corresponding variables.

Define a Norm

Linearization and Transversality

D. Zack Garz

Review 8.2

Section 8.3: The Space of Perturbations of

Section 8.4: Linearizing the Floer Equation: The Differential of F – Define a norm on $C^{\infty}(W \times S^1; \mathbb{R})$:

$$||h||_{U} = \sum_{k\geq 0} \varepsilon_k \sup_{(x,t)\in W\times S^1} |d^k h(x,t)|.$$

– Since $W \times S^1$ is assumed compact (?), fix a finite covering $\{B_i\}$ of $W \times S^1$ such that

$$\bigcup_{i} B_{i}^{\circ} = W \times S^{1}.$$

Choose them in such a way we obtain charts

$$\Psi_i: B_i \longrightarrow \overline{B(0,1)} \subset \mathbb{R}^{2n+1}$$
 (?).

Obtain the computable form

$$||h||_{\cdot\cdot} = \sum_{k>0} \varepsilon_k \sup_{(x,t)\in W\times S^1} \sup_{i,z\in B(0,1)} |d^k(h\circ \Psi_i^{-1})(z)|.$$

Define a Banach Space

Linearization and Transversality

D. Zack Garz

Review 8.3

Section 8.3: The Space of Perturbations of

Section 8.4: Linearizing the Floer Equation: The Differential of F Define

$$C_{\varepsilon}^{\infty} = \left\{ h \in C^{\infty}(W \times S^{1}; \mathbb{R}) \mid \|h\|_{\varepsilon} < \infty \right\} \subset C^{\infty}(W \times S^{1}; \mathbb{R}),$$

which is a Banach space (normed and complete).

– Show that the sequence $\{\varepsilon_k\}$ can be chosen so that C_{ε}^{∞} is a dense subspace for the C^{∞} topology, and in particular for the C^1 topology.

Theorem

Such a sequence $\{\varepsilon_k\}$ can be chosen.

Lemma

 $C^{\infty}(W \times S^1; \mathbb{R})$ with the C^1 topology is separable as a topological space (contains a countable dense subset).

Sketch Proof of Theorem

Linearization and Transversality

D. Zack Garz

Review 8.2

Section 8.3: The Space of Perturbations of H

Section 8.4: Linearizing the Floer Equation: The Differential of F

- By the lemma, produce a sequence $\{f_n\} \subset C^{\infty}(W \times S^1; \mathbb{R})$ dense for the C^1 topology.
- Using the norm on $C^n(W \times S^1; \mathbb{R})$ for the f_n , define

$$\frac{1}{\varepsilon_n} = 2^n \max \left\{ \|f_k\| \mid k \le n \right\} \implies \varepsilon_n \sup |d^n f_k(x, t)| \le 2^{-n}$$

which is summable.

Why does this imply density? I don't know.

Modified Theorem

Linearization and Transversality

D. Zack Garz

Review 8

Section 8.3: The Space of Perturbations of H

Section 8.4: Linearizing the Floer Equation: The Differentia of F The next proposition establishes a version of this theorem with compact support:

Theorem

For any $(\mathbf{x}, t) \subset U \in W \times S^1$) there exists a $V \subset U$ such that every $h \in C^{\infty}(W \times S^1; \mathbb{R})$ can be approximated in the C^1 topology by functions in C^{∞}_{ϵ} supported in U.

Then fix a time-dependent Hamiltonian H_0 with nondegenerate periodic orbits and consider

$$\left\{h\in C_{\varepsilon}^{\infty}(H_0)\ \middle|\ h(x,t)=0 \text{ in some }U\supseteq \text{the 1-periodic orbits of }H_0\right\}$$

Then supp(h) is "far" from $Per(H_0)$, so

$$||h||_{\varepsilon} \ll 1 \implies \operatorname{Per}(H_0 + h) = \operatorname{Per}(H_0)$$

and are both nondegenerate.

Linearization and Transversality

Section 8.4: Linearizing the Floer Equation: The Differential

Section 8.4: Linearizing the Floer Equation: The Differential of F

Goal

Linearization and Transversality

D. Zack Garz

Review 8

Section 8.3: The Space of Perturbations of H

Section 8.4: Linearizing the Floer Equation: The Differential of F Choose $m > n = \dim(W)$ and embed $TW \hookrightarrow \mathbb{R}^m$ to identify tangent vectors (such as Z_i , tangents to W along u or in a neighborhood B of u) with actual vectors in \mathbb{R}^m .

Why? Bypasses differentiating vector fields and the Levi-Cevita connection.

We can then identify

im
$$\mathcal{F} = C^{\infty}(\mathbb{R} \times S^1; \mathbb{R}^m)$$
 or $L^p(\mathbb{R} \times S^1; W)$,

and we seek to compute its differential $d\mathcal{F}$.

We've just replaced the codomain here.

Definitions

Linearization and Transversality

D. Zack Garza

Review 8.1

Section 8.3: The Space of Perturbations of H

Section 8.4: Linearizing the Floer Equation: The Differential of F

Recall that

- -x, y are contractible loops in W that are nondegenerate critical points of the action functional A_H ,
- $-u \in \mathcal{M}(x,y) \subset C^{\infty}_{loc}$ denotes a fixed solution to the Floer equation,
- $-C_{\searrow}(x,y)$ was the set of solutions $u: \mathbb{R} \times S^1 \longrightarrow W$ satisfying some conditions.

Recall:

$$C_{\searrow}(x,y) \subset \{u \in C^{\infty}(\mathbb{R} \times S^{1}; W)\}$$
where $\lim_{s \to -\infty} u(s,t) = x(t)$, $\lim_{s \to \infty} u(s,t) = y(t)$
and $\left|\frac{\partial u}{\partial t}(s,t)\right|$, $\left|\frac{\partial u}{\partial t}(s,t) - X_{H}(u)\right| \sim \exp(|s|)$