

ЭТИКЕТКА

<u>СЛКН.431232.066 ЭТ</u> Микросхема интегральная 564 ИЕ14Т1ЭП Функциональное назначение – Двоичный/двоично-десятичный 4-х-разрядный реверсивный счетчик с предварительной установкой

Климатическое исполнение УХЛ Схема расположения выводов

Схема электрическая функциональная

Таблица назначения выводов

№ вывода	Назначение вывода	№ вывода	Назначение вывода	
1	V – вход разрешения установки	9	2/10 – вход двоичный/двоично-десятичный	
2	Q8 – выход четвертого разряда	10	± 1 – вход сложение / вычитание	
3	D8 – вход четвертого разряда	11	Q2 – выход второго разряда	
4	D1 - вход первого разряда	12	D2 – вход второго разряда	
5	РО – вход переноса	13	D4 – вход третьего разряда	
6	Q1 - выход первого разряда	14	Q4 – выход третьего разряда	
7	Р – выход переноса	15	С – вход тактовый	
8	0V - Общий	16	V _{CC} - Питание	

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = (25\pm10)$ °C) Таблица 1

	Буквенное	Норма		
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более	
1	2	3	4	
1. Выходное напряжение низкого уровня, B , при: $U_{CC} = U_{IH} = 5 \ B, \ U_{IL} = 0 B$ $U_{CC} = U_{IH} = 10 \ B, \ U_{IL} = 0 B$	U _{OL}	-	0,01 0,01	
2. Выходное напряжение высокого уровня, B, при: $U_{\rm CC} = U_{\rm IH} = 5$ B, $U_{\rm IL} = 0$ B $U_{\rm CC} = U_{\rm IH} = 10$ B, $U_{\rm IL} = 0$ B	$ m U_{OH}$	4,99 9,99	- -	
3. Максимальное выходное напряжение низкого уровня, B, при: $U_{CC}=5$ B, $U_{IL}=1,5$ B, $U_{IH}=3,5$ B $U_{CC}=10$ B, $U_{IL}=3,0$ B, $U_{IH}=7,0$ B	U _{OL max}	-	0,8 1,0	
4. Минимальное выходное напряжение высокого уровня, B, при: $U_{\rm CC}=5$ B, $U_{\rm IL}=1,5$ B, $U_{\rm IH}=3,5$ B $U_{\rm CC}=10$ B, $U_{\rm IL}=3,0$ B, $U_{\rm IH}=7,0$ B	U _{OH min}	4,2 9,0	<u>-</u>	
5 . Входной ток низкого уровня, мкА, при: $U_{CC} = U_{IH} = 10 \; B, \; U_{IL} = 0B \; U_{CC} = U_{IH} = 15 \; B, \; U_{IL} = 0B$	I_{IL}	-	/-0,05/ /-0,10/	
6 . Входной ток высокого уровня, мкА, при: $U_{CC} = U_{IH} = 10~B, U_{IL} = 0B$ $U_{CC} = U_{IH} = 15~B, U_{IL} = 0B$	I_{IH}	-	0,05 0,10	
7. Выходной ток низкого уровня (по выходам разрядов), мА, при: $U_{CC}=5~B,~U_{IH}=U_{CC},~U_{IL}=0B,~U_0=0,5~B$ $U_{CC}=10~B,~U_{IH}=U_{CC},~U_{IL}=0B~,U_0=0,5~B$	I_{OL1}	0,40 0,60	-	
8. Выходной ток низкого уровня (по выходу переноса), мА, при: $U_{CC}=5~B,~U_{IH}=U_{CC},~U_{IL}=0B,~U_{O}=0,5~B$ $U_{CC}=10~B,~U_{IH}=U_{CC},~U_{IL}=0B~,U_{O}=0,5~B$	I_{OL2}	0,08 0,32	-	
9. Выходной ток высокого уровня (по выходам разрядов), мА, при: $U_{CC}=5~B,~U_{IH}=U_{CC},~U_{IL}=0B,~U_{O}=4,5~B$ $U_{CC}=10~B,~U_{IH}=U_{CC},~U_{IL}=0B~,U_{O}=9,5~B$	I_{OHI}	/-0,12/ /-0,20/	-	

Продолжение таблицы 1			
1	2	3	4
10. Выходной ток высокого уровня (по выходам переноса), мА, при:			
$U_{CC} = 5 \text{ B}, \ U_{IH} = U_{CC}, \ U_{IL} = 0 \text{B}, \ U_0 = 4,5 \text{ B}$	I_{OH2}	/-0,06/	-
$U_{CC} = 10 \text{ B}, U_{IH} = U_{CC}, U_{IL} = 0 \text{B}, U_0 = 9,5 \text{ B}$		/-0,10/	-
11. Ток потребления, мкА, при:			
$U_{CC} = 10 \text{ B}, \ U_{IH} = U_{CC}, \ U_{IL} = 0 \text{B}$	I_{CC}	-	10,0
$U_{CC} = 15 \text{ B}, U_{IH} = U_{CC}, U_{IL} = 0 \text{B}$		-	20,0
12. Максимальная тактовая частота, МГц, при:			
$U_{CC} = 5 \text{ B}, \ U_{IH} = U_{CC}, \ U_{IL} = 0 \text{B}, \ C_L = 50 \text{ n}\Phi$	f max	1,5	-
$U_{CC} = 10 \text{ B}, \ U_{IH} = U_{CC}, \ U_{IL} = 0 \text{B}, \ C_L = 50 \text{ n}\Phi$		3,0	-
13. Время задержки распространения при включении и выключении (от тактового входа			
к выходу разряда), нс, при:	4		
$U_{CC} = 5 \text{ B}, \ U_{IH} = U_{CC}, \ U_{IL} = 0 \text{B}, \ C_L = 50 \text{ n} \Phi$	t _{PHL1}	-	880
$U_{CC} = 10 \text{ B}, \ U_{IH} = U_{CC}, \ U_{IL} = 0 \text{B}, \ C_L = 50 \text{ n}\Phi$	(t _{PLH1})	-	320
14. Время задержки распространения при включении и выключении (от тактового входа	t_{PHL2}		
к выходу переноса), нс, при:	(t _{PLH2})		
$U_{CC} = 5 \text{ B}, \ U_{IH} = U_{CC}, \ U_{IL} = 0 \text{B}, \ C_L = 50 \text{ n}\Phi$	(GLHZ)	-	1200
$U_{CC} = 10 \text{ B}, \ U_{IH} = U_{CC}, \ U_{IL} = 0 \text{B}, \ C_L = 50 \text{ n} \Phi$		-	360
15. Время задержки распространения при включении и выключении (от входа	t_{PHL3}		
разрешения установки к выходу разряда), нс, при:	(t_{PLH3})		000
$U_{CC} = 5 \text{ B}, \ U_{IH} = U_{CC}, \ U_{IL} = 0 \text{B}, \ C_L = 50 \text{ n} \Phi$	(1213)	-	880
$U_{CC} = 10 \text{ B}, \ U_{IH} = U_{CC}, \ U_{IL} = 0 \text{B}, \ C_L = 50 \text{ n}\Phi$		-	320
16. Время задержки распространения при включении и выключении (от входа	t_{PHL4}		
«разрешения установки» к выходу переноса), нс, при: $U_{CC} = 5 \text{ B}, \ U_{IH} = U_{CC}, \ U_{II} = 0 \text{ B}, \ C_I = 50 \ \pi \Phi$	(t_{PLH4})		1200
$U_{CC} = 10 \text{ B}, \ U_{IH} = U_{CC}, \ U_{IL} = 0\text{B}, \ C_L = 50 \text{ n}\Phi$		-	360
		-	300
17. Время задержки распространения при включении и выключении (от входа переноса к выходу переноса), нс, при:	t_{PHL5}		
выходу переноса), не, при. $U_{CC} = 5 \text{ B}, \ U_{IH} = U_{CC}, \ U_{IL} = 0 \text{B}, \ C_L = 50 \ \text{п} \Phi$	(t_{PLH5})	_	650
$U_{CC} = 10 \text{ B}, \ U_{IH} = U_{CC}, \ U_{IL} = 0B, \ C_L = 50 \text{ n}\Phi$		_	230
, ,		_	230
18. Входная емкость, пФ, при:	C_{I}	-	10
$U_{CC} = 10 \text{ B}, \ U_{I} = 0 \text{ B}$			

1	.2	Солержание	драгоценных	металлов	в 1000	шт.	излелий

золото г, серебро г,

золото г/мм

на 16 выводах, длиной мм.

Цветных металлов не содержится.

2 НАДЕЖНОСТЬ

в том числе:

2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5)°С не менее 100000 ч, а в облегченном режиме (U_{CC} от 5 до 10В)- не менее 120000 ч.

2.2 Гамма — процентный срок сохраняемости ($T_{\text{Су}}$) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП , должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных, - в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям АЕЯР.431200.610-16ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие.

Срок гарантии исчисляется с даты изготовления, нанесенной на микросхемы.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 564 ИЕ14Т1ЭП соответствуют техническим условиям АЕЯР.431200.610-16ТУ и признаны годными для эксплуатации.

Приняты по (извещение, акт и др.)	OT	(дата)	
Место для штампа ОТК			Место для штампа ВП
Место для штампа «Перепроверка и	произведена		»
Приняты по	OT	(дата)	
Место для штампа ОТК			Место для штампа ВП
Цена договорная			

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): общая точка, выход – общая точка, вход – выход, питание-общая точка.

Остальные указания по применению и эксплуатации – в соответствии с АЕЯР.431200.610ТУ