

Machine learning

Support Vector Machines (SVM)

Wouter Gevaert & Marie Dewitte

Inhoud

Support Vector Machines - SVM

Cross-validatie

Niet-gebalanceerde data

Wat is een SVM?

Een SVM is een supervised ML algoritme dat zowel voor classificatie als regressie gebruikt kan worden. Classificatie gebeurt door het vinden van een hyper-plane die een optimale scheiding maakt tussen twee verschillende klasses.

Wat is een SVM? -> LARGE HARGIN CLASIFIER.

Welke classifier zou je verkiezen en waarom?

- Beide scheiden de training data perfect.
- Het gaat er niet om welke er best presteert op de training data, maar wel op de test data.
- De rechtse classifier is meer robuust.

Hoe een SVM classificeert

- Zoek scheidingslijnen die de trainingset zo goed mogelijk scheiden.
- Kies de scheidingslijn die de grootste afstand (margin) heeft tot de punten die er het dichtst bij gelegen zijn. Tx2:x,
- De dichtstbii gelegen punten noemen we de support vectors.
- SVM = Large margin classifier.

Hoe een SVM classificeert

Wat als een perfecte lineaire scheiding niet mogelijk is?

Hoe een SVM classificeert

Wat als een perfecte lineaire scheiding niet mogelijk is?

Antwoord: Werken met een regularisatie parameter C

- Afweging tussen correcte classificatie op training set en een grote marge tussen de klasses (large margin).
 - Grote C-waarde: constraints zijn moeilijk te negeren ⇒ smalle marge.
 - Kleine C-waarde: constraints kunnen makkelijker genegeerd worden ⇒ brede marge.

Hoe een SVM classificeert

Wat als een perfecte lineaire scheiding niet mogelijk is?

Antwoord: Werken met een regularisatie parameter C

Hoe een SVM classificeert

XOR-pudden

KERNELS

Hoe een SVM classificeert

Wat bij niet-lineair scheidbare gegevens?

Oplossing: transformeer de data naar een hogere dimensie gevolgd door lineaire scheiding.

Bijvoorbeeld:

Hoe een SVM classificeert

Wat bij niet-lineair scheidbare gegevens?

Oplossing: transformeer de data naar een hogere dimensie gevolgd door lineaire scheiding.

Kernels

Projecteer de data in een hogere dimenensie en probeer lineair te scheiden.

Meest gebruikte kernels:

- Default big SVC

Kernels

PONUT PROBLEM

Voorbeeld: Hoe kan je onderstaande klasses scheiden?

Kernels

Voorbeeld: Gebruik van een Gaussiaanse (RBF) kernel

Kernels

Parameter gamma regelt de breedte van de RBF kernels

- Kleine gamma brede RBF kernels. Te kleine gamma leidt ertoe dat het model de complexiteit van het model niet kan capteren (underfitting).
- Grote gamma smalle RBF kernels. Te grote gamma leidt tot overfitting.

Bij gebruik van een RBF kernel: **feature scaling** (= normalisatie) toepassen.

Kernels

Parameter gamma regelt de breedte van de RBF kernels

Hyperparameters

Implementeren van een SVM:

- Test lineaire kernel (geen kernel) en RBF kernel.
- Tune de parameter C.
- Bij gebruik van RBF kernel: tune zowel de parameters C als gamma.

Motivatie voor het gebruik van SVM

- Kan zowel gebruikt worden voor regressie als classificatie (en zelfs clustering).
- Werkt goed op kleine datasets (in tegenstelling tot neurale netwerken en deep learning).
- Is nog altijd effectief wanneer het aantal features groter is dan het aantal training samples.
- Het werkt goed bij een groot aantal features (high dimensional space).
- Gebruikt niet alle training examples tijdens training ⇒ geheugenefficiënt.
- Geen lokale minima/optima, maar globaal optimum.

Logistic regression vs. SVM

Wanneer welke classifier kiezen?

- Wanneer het aantal features groot is ten opzichte van het aantal training samples: gebruik logistic regression of SVM zonder kernel (= lineaire kernel).
- Wanneer het aantal features klein is en het aantal training samples behoorlijk: gebruik SVM met RBF kernel.
- Bij een klein aantal features met een groot aantal training samples: creëer meer features en gebruik logistic regression of SVM zonder kernel (= lineaire kernel).

-> Hyperpanet tuning -> Evolution on modella met wing data.

Cross-validatie

Verschillende types cross-validatie

- Leave One Out cross-validation
- Bootstrap cross-validation

- Training data: om model mee te trainen.
- Validation data: tuning van hyper parameters en model selection.
- Test data: uiteindelijke test van het best gevalideerde model op nog nooit geziene data.

<= ? SVC (RBF, C,) TRAIN GR: D-SEARCH 0,02 0,1

K-fold cross validation

• Voorbeeld: 10-fold cross-validation

Leave one out cross-validation

- K = N (aantal examples in de training set)
- Evenveel rondes als aantal examples

Bootstrap cross-validation

- Sampling met teruglegging
- zie bogging (nenie 5)
- Validatie op niet geselecteerde examples

Pimspace (0, 200, 5)

Longou (1; 2000) 1 10 20 600 100 00

Hyperparameter tuning via cross-validatie

Grid search

Hyperparameter tuning via cross-validatie

→ Random search

Hyperparameter tuning via cross-validatie

Bayes optimization

6% 754. 6

STRATIFIED SAMPLING

Niet-gebalanceerde data

Problematiek

Problematiek

	precision	recall	f1-score	support
0 1	0.90 0.62	$\begin{bmatrix} 0.99 \\ 0.18 \end{bmatrix}$	0.94	8824 1176
micro avg macro avg weighted avg	0.89 0.76 0.87	0.89 0.58 0.89	0.89 0.61 0.86	10000 10000 10000
[[8694 130] [968 208]] 89.02				

Verzamel meer data (van de minderheidsklasse)

SMOTE

Omgaan met niet-gebalanceerde data

Undersampling & Oversamling

Oversampling

Andere scoring parameter / metric kiezen

In plaats van het model te kiezen dat de hoogste accuracy oplevert, kies bijvoorbeeld het model dat de hoogste f1-score oplevert.

```
https://scikit-learn.org/stable/modules/model_evaluation.html#the-scoring-parameter-defining-model-evaluation-rules
```

- weghted near=

PREDICTED

HOND

KAT

PREDICTED

BARRO

HOND

KAT

IRUE KAT

mino Recoll. = Th + Th + Th.

4 + 2 + 6

(TP2+TP2)+(FN1+FN,+FN,)

= 0,48

fos

Ŧ2

- for = 2. Reall . Precision Roofl + Precision

 - $(1+\beta^2)$. Prime. Recoll
 - p2. preinion + Rebl

0,5°. pec.+ Recoll

(1+4) P2 . Rec 4 Pr + Red

(1+0,52) Pr. Rec

- B= 0,5 ma belong on prices

B = 2 => men holes on Revolt.

| P = 1 |

Class-weight balancing

model = LogisticRegr	ession (C=1, solve)	r='liblinear'	, class_weight= 'b	palanced')	
	precision	recall	f1-score	support	
• 0 • 1	0.94 0.27	0.77 0.62	0.85 0.38	8824 1176	
micro avg macro avg weighted avg	0.76 0.60 0.86	0.76 0.70 0.76	0.76 0.61 0.79	10000 10000 10000	
[[6830 1994] [444 732]] 75.62					

Data augmentation - SMOTE (Synthetic Minority Over-sampling Technique)

Data augmentation - image augmentation

