## 教程

| 预备知识                                  |  |  |  |  |
|---------------------------------------|--|--|--|--|
| 课程介绍 (index.html)                     |  |  |  |  |
| LogiSim (doc_logisim.html)            |  |  |  |  |
| Verilog语法 (doc_verilog.html)          |  |  |  |  |
| FPGA原理 (doc_fpga.html)                |  |  |  |  |
| Nexys4DDR开发板 (doc_nexys.html)         |  |  |  |  |
| Vivado介绍 (doc_vivado.html)            |  |  |  |  |
| TestBench编写及仿真 (doc_testbench.html)   |  |  |  |  |
| 代码风格规范 (coding_convention.html)       |  |  |  |  |
| 一些例子                                  |  |  |  |  |
| 基本逻辑门 (doc_basic_logic.html)          |  |  |  |  |
| 简单组合逻辑电路 (doc_simple_logic.html)      |  |  |  |  |
| 复杂组合逻辑电路 (doc_complex_logic.html)     |  |  |  |  |
| 简单时序逻辑电路 (doc_simple_timing.html)     |  |  |  |  |
| 复杂时序逻辑电路 (doc_complex_timing.html)    |  |  |  |  |
| 有限状态机 (doc_finite_state_machine.html) |  |  |  |  |
| Collapse All   Expand All             |  |  |  |  |

## FPGA基础知识

## FPGA基础知识介绍

FPGA (Field - Programmable Gate Array) ,即现场可编程门阵列,它是在PAL、GAL、CPLD等可编程器件的基础上进一步发展的产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。

目前FPGA的两大主要厂商为xilinx和altera。

Xilinx:公司网址为:www.xilinx.com . FPGA市场的龙头老大,市场份额接近50%,其主要产品包括:Sparten系列、Virtex系列、Artix系列、Kintex系列、Virtex系列等

开发工具: 其第六代及以前的产品的开发工具为ISE , 从第七代产品开始 , 已全部转移到vivado平台。

Altera:公司网址为:www.altera.com 亿,FPGA市场的二当家,市场份额40%以上,2015年6月被Intel以167亿美元收购。主要产品包含:Max系列、Cyclone系列、Arria系列、Stratix系列等。主要开发工具:Quartus

此外,Lattice、Actel、Atmel等公司也有FPGA产品,由于市场份额小,市面上很少见到,此处不再介绍。

FPGA产品种类多种多样,但原理都是相同的。我们只要理解了其基本结构,学习起来还是非常轻松的。 在介绍FPGA之前,先对数字电路中所学的知识做一个简单的回顾。 现如今的集成电路绝大部分采用CMOS工艺,CMOS电路是互补型金属氧化物半导体电路 (Complementary Metal-Oxide-Semiconductor)的英文字头缩写,它由绝缘场效应晶体管组成,由于只有一种载流子,因而是一种单极型晶体管集成电路,其基本结构是一个N沟道MOS管和一个P沟道MOS 管。NMOS和PMOS可以认为是两种开关电路,两种电路均包含G(栅极)、D(漏极)、S(源极)三个极:

对于NMOS, 当G为高电平时, D、S导通, 否则截止对于PMOS, 当G为低电平时, D、S导通, 否则截止



一个NMOS和一个PMOS可构成一个CMOS反相器: vi为高电平时,PMOS截止,NMOS导通,vo输出低电平 vi为低电平时,PMOS导通,NMOS截止,vo输出高电平



## 其逻辑表达式可写成:



同理,可构成CMOS的与非门、或非门



通过非门、与非门、或非门可实现所有的组合逻辑电路,多个与非门可组成一个带有复位、置位功能的D触发器,而D触发器则是时序逻辑电路的最核心部件。



由此可知,通过非门、与非门、或非门的有序堆叠,可实现任意功能的数字电路,如果有一款电路,其基本单元可配置成各种基本门,则其就具备了硬件编程能力。FPGA就是这种芯片,它基于查找表(LUT: Look Up Table)技术的可编程逻辑器件,通过配置,LUT可实现与门、或门、与非门、或非门或者其他简单组合逻辑功能,其本质上就是1bit位宽的RAM

我们以一个2输入的查找表为例,来做讲解



以目前比较流行的Spartan6芯片为例,来说明

其最底层便是一个6输入查找表(可拆成两个5输入LUT使用)以及两个D触发器的结构



Slice是Xilinx FPGA的最基本单元,包含4个6输入LUT及8个D触发器

Xilinx的FPGA中包含三类Slice: SliceL、SliceM、SliceX,三类slice本质上是相同的,只不过在细节上有一些差别,此处不再详细展开。



CLB (Configurable Logic Blocks) 是Sparten6 的主要资源,包含两个Slice,如下图所示:



Figure 29: CLB Array and Interconnect Channels

多个CLB再加上丰富的互联开关,便构成了Xilinx公司FPGA的最核心框架。

下图是xilinx一款型号为XC6SLC45T的FPGA在planAhead中的视图



从图中可以看出,FPGA内部,除了大量的CLB资源,用于实现可编程逻辑外,还有一些其它的硬件资源,包括block ram、内存控制器、时钟管理(CMT)单元、数字信号处理(DSP)端口控制(IOB)单元等,大大提高了其可编程性,几乎可以实现所有的数字电路功能。

下面是在planahead中对xc6slx4-2tqg144芯片的截图,通过这些图片,可以对其结构有一个整体的了解。更多的细节性问题,需要大家在实际使用过程中逐步掌握。



v 输入输出块,包含了焊盘及其相关电路



ILOGIC、OLOGIC、IODELAY部分



Slice



Slice



block ram资源

| BRAMSITE2_X3Y52 | 2                             |           |          |
|-----------------|-------------------------------|-----------|----------|
| _               |                               |           |          |
|                 |                               |           |          |
|                 |                               |           |          |
| WEB3            |                               |           | 0.000    |
| _WEB2           |                               |           | DOPEQ_   |
| WEB1            |                               |           | DOP82_   |
| W E80           |                               |           |          |
| WEAG            |                               |           | DOPB1    |
| W EA2           |                               |           | D.O.D.DO |
| W EA1           | _WEBWELL1                     |           | DOPBO_   |
| W EAO           | W E8W EU0<br>W E8W EL1        | DOPBDOP1_ | DOPAQ_   |
| RSTB            | W EAW ELO                     | DOPBDOP0_ |          |
| RSTA            | RSTBRST<br>RSTA               |           | DOPA2    |
| REGCEB          | REGCEBREGCE                   | DOPADOP1_ | DOD01    |
| REGCEA          | REGCEA<br>ENBRDEN             | DOPADOPO_ | DOPA1_   |
| ENB             | ENAWREN                       | DOBDO15_  | DOPA0_   |
| ENA             | _DIPBDIP1<br>_DIPBDIP0        |           |          |
| DIPB3           | _DIPADIP1                     | DOBDO14   | DOB31_   |
| DIPB2           | _DIPADIPO<br>_DIBDI15         | DOBDO13_  | DOB30_   |
| _DIPB1          | □DIBDI14                      | DOBDO12   |          |
| DIPBO           | _DIBDI13<br>_DIBDI12          |           | DOB29_   |
| _DIPA3          | □DIBDI11                      | DOBDO11_  | 0.0000   |
| DIPA2           | _DIBDI10<br>_DIBDI9           | DOBDO10_  | DOB28_   |
| _DIPA1          | ⊒DIBDI8                       | DOBDO9_   | DOB27_   |
| DIPAO           | _DIBDI7<br>_DIBDI6            | 200003    |          |
| _DIB31          | _DIBDI5                       | D08008_   | DOB26_   |
| _DIB30          | _DIBDI4<br>_DIBDI3            | DOBDO7    | DOB25_   |
| _DIB29          | _DIBDI2                       | _200800   | 00023    |
| DIB28           | _DIBDI1<br>_DIBDI0            | 505504_   | DOB24_   |
| _DIB27          | _DIADI15                      | DOBDOS_   | 0.0000   |
| _DIB26          | _DIADI14<br>_DIADI13          | DOBDO4_   | DOB23_   |
| DIB25           | □DIADI12                      | DOBDOQ    | DOB22_   |
| DIB24           | _DIADI11<br>_DIADI10          |           |          |
| _DIB23          | _DIADI9                       | DOBDO2_   | DOB21_   |
| DIB22           | _DIADI8<br>_DIADI7            | DOBDO1    | DOB20_   |
| _DIB21          | _DIADI6                       | DOBDO0_   |          |
| DIB20           | _DIADI5<br>_DIADI4            |           | DOB19_   |
| DIB19           | _DIADI3                       | DOADO15_  | 5.0540   |
| _DIB18          | _DIADI2<br>_DIADI1<br>_DIADI0 | DOMDO14   | DOB18_   |
|                 | DIADIO                        |           |          |

时钟管理单元



时钟驱动电路



FPGA依靠其强大、全方面、多维度的可编程能力,在航空航天、电子通信、银行金融、医疗设备、信息存储、数据处理、ASIC原型验证等许多行业或领域发挥着极其重要的作用