Motivation

Given: p,q two n-digit decimal numbers.

Goal: compute the product $p \cdot q$ efficiently

p,q are stored as arrays $P=[1,\ldots,n]$ and $Q=[1,\ldots,n]$, with p_1,q_1 as 'most significant digit'.

$$p = \sum_{i=1}^{n} P[i] \cdot 10^{n-i}$$

$$q = \sum_{i=1}^{n} Q[i] \cdot 10^{n-i}$$

Methods

Method 1: School method

 n^2 multiplications (plus additions) $\Rightarrow \mathcal{O}(n^2)$ time.

Method 2: Divide & Conquer

Divide p into a and b: $p = a \mid\mid b = a \cdot 10^{n/2} + b$

Divide q into c and d: $q = c \mid\mid d = c \cdot 10^{n/2} + d$

$$p \cdot q = a \cdot c \cdot 10^n + (a \cdot d + c \cdot b) \cdot 10^{n/2} + b \cdot d$$

4 multiplications with n/2 digits (10^x only needs a shift-operation)

Method 3: Improved Divide & Conquer

Calculate u=ac, v=bd, w=(a+b)(c+d). This are three multiplications with n/2 digits. We also need ad+bc.

$$(ad + bc) = ad + ac + bd + bc - ac - bd$$
$$= (a + b)(c + d) - ac - bd$$
$$= w - u - v$$

So no more multiplications are required. Additions can be done in $\mathcal{O}(n)$ time.

$$T(n) = 3T(n/2) + \mathcal{O}(n)$$

$$= 3[3T(n/4) + \mathcal{O}(n/2)] + \mathcal{O}(n)$$

$$= 3^{2}T(n/2^{2}) + 3^{1}\mathcal{O}(n/2^{1}) + 3^{0}\mathcal{O}(n/2^{0}) = \cdots =$$

$$= 3^{k}T(n/2^{k}) + \sum_{i=0}^{k-1} 3^{i}\mathcal{O}(n/2^{i})$$

$$= \mathcal{O}(3^{ld(n)}) + \mathcal{O}(n) \sum_{i=0}^{ldn-1} (3/2)^{i}$$

$$= \mathcal{O}(n^{ld(3)}) \sim \mathcal{O}(n^{1.59})$$