Peilin (Jack) Rao

Los Angeles, CA | (310) 729-0831 | jackrao@g.ucla.edu . jackraorpl.github.io

EDUCATION

University of California, Los Angeles (UCLA)

Los Angeles, CA

Bachelor of Science, Mathematics of Computation & Bachelor of Arts, Economics

Sep 2022 - Jun 2026

- **GPA: 3.98**/4.00 (Major), 3.95/4.00 (Cumulative) **GRE: 336** (V168, Q168; AW3.5)
- Honors: Dean's Honors List (All eligible quarters)
- Selected Coursework:
 - Mathematics & Stats: Real Analysis I &II, Linear Algebra, Probability Theory, Mathematical Statistics, Complex Analysis, Applied Numerical Methods, Optimization, Machine Learning.
 - **Economics & Finance:** Micro/Macro Theory, Intro/Advanced Econometrics (+Lab), Data Science for Econ (+Lab), Economic Forecasting, Finance (+Lab), Financial Markets (+Lab), Investments (+Lab).
 - **Computer Science:** Data Structures, Computer Organization, Natural Language Processing (NLP).

Nanjing Foreign Language School

Nanjing, China

International Baccalaureate (IB) Diploma

Graduated Jun 2022

• IB Score: 42/42 (Full Marks)

Publications & Working Papers_

Rao, Peilin, and Randall R. Rojas. (2025). "From Prediction to Scientific Discovery: A Case Study in Causal Inference for Financial Economics."

To appear in Proceedings of the NeurIPS 2025 Workshop on Causal Inference for Scientific Discovery (CauScien). (Extended version: "Predicting Market Troughs: A Machine Learning Approach with Causal Interpretation," arXiv: 2509.05922)

Rao, Peilin. (2025). "The GNN as a Low-Pass Filter: A Spectral Perspective on Achieving Stability in Neural PDE Solvers."

To appear in Proceedings of the NeurIPS 2025 Workshop on New Perspectives in Graph Machine Learning (NPGML).

RESEARCH EXPERIENCE

Research Assistant, Computational Economics

Remote (CUHK)

Advisor: Prof. Ji Huang

Jul 2025 - Present

- Developed a JAX framework to solve for the farsighted equilibrium in a computationally intractable dynamic model of network formation and collective action.
- Made the governing Hamilton-Jacobi-Bellman (HJB) equation tractable by architecting a vectorized training loop to evaluate all counterfactual states in a single pass.
- Improved model stability and convergence by designing a ResNet value function approximator that isolates the learned farsighted correction from the analytical myopic payoff.
- Engineered an importance-weighted Bellman error loss function to accelerate convergence by prioritizing training on strategically critical game states.

Research Assistant, Labor & Trade Economics

Remote (Southeast University)

Advisor: Prof. Xin Gu

Jan 2024 - Present

- Conducted literature reviews on the causal effects of trade policy on labor market outcomes, synthesizing findings from over 20 academic papers weekly.
- Performed empirical analysis using Python, implementing multilinear regression and Difference-in-Differences (DiD) models to test economic hypotheses.
- Presented and led weekly discussions on recent research papers from top-tier economics journals.

Research Mentorship on SPAC Viability

Remote (University of Auckland)

Advisor: Dr. Yeguang Chi

Jul 2024 – Feb 2025

- Investigated the viability of Special Purpose Acquisition Companies (SPACs) by collecting historical IPO and merger data from Capital IQ and formulating an initial microfoundational model for SPAC legitimacy.
- Concluded project after identifying critical limitations in data availability, honing ability to assess research feasibility and the importance of deep institutional knowledge.

Teaching Experience_

Reader (Teaching Assistant)

UCLA

Department of Economics

Sep 2025 - Present

• Course: Econ 144: Economic Forecasting (Instructor: Prof. Randall R. Rojas).

ACADEMIC PROJECTS_____

AI Language Detector

UCLA

Course: Natural Language Processing

Spring 2025

- Developed a deep learning model to differentiate between AI-generated and human-written text by engineering features using semantic embeddings (Sentence-BERT) and stylometric analysis.
- Implemented and trained a Transformer-based architecture in PyTorch, achieving 0.90 AUC and 85% accuracy on a held-out test set.

Pet Image Segmentation

UCLA

Course: Machine Learning (Grade: A+)

Winter 2025

- Led a team of four to build and train a U-Net, a convolutional neural network (CNN) architecture, for semantic segmentation of pets in images from the Oxford-IIIT Pet Dataset.
- Implemented the full model pipeline in PyTorch, including data preprocessing, augmentation, and training.

TECHNICAL SKILLS

Computational & ML Methods: Dynamic Programming (HJB), Graph Neural Networks, Deep Learning Theory, Vectorized Computing (JAX).

Econometric & Causal Inference: Double/Debiased Machine Learning (DML), Time Series Analysis (GARCH, State-Space Models, MiniRocket), Panel Data Methods (DiD), Bayesian Econometrics.

Programming Languages: Python (4 yrs; NumPy, Pandas, PyTorch, JAX), R (3 yrs), C++ (3 yrs), Matlab (1 yr). **Data &Software:** Capital IQ, FRED, CBOE, Databento (Options & Futures), LaTeX.

Languages: Mandarin (Native), English (Fluent).

LEADERSHIP EXPERIENCE

Financial Investment and Technology (FIT)

UCLA

UCLA's student-run quantitative finance and investment group Director of Data

Mar 2024 - Present

- Pioneered a departmental restructuring by separating the Data and Fund teams to enhance operational specialization and manage member workload, improving project focus and output quality.
- Designed and launched a novel research workshop modeled after academic conferences to foster independent inquiry, where members pitch, develop, and present research posters on quantitative topics.
- Mentor a team of three student analysts in applying machine learning to finance; oversee all member projects to ensure methodological rigor, addressing pitfalls like data leakage and non-stationarity.
- Developed a quantitative trading model and a robust backtesting pipeline, demonstrating a 12.6% CAGR (vs. 6.01% benchmark) and validated through out-of-sample and sensitivity analysis.