Supplementary Material for Loosely-Coupled Semi-Direct Monocular SLAM

Seong Hun Lee and Javier Civera

November 2018

1 Median Errors

Table 1: [EuRoC MAV] Median absolute trajectory errors e_{ate} [m] over 10 runs on each sequence. The best and the worst results are in blue and red, respectively. The mark \times indicates that more than half of the total runs lost tracking due to challenging scene textures, camera motions or illumination changes.

	ORB	ORB	DSO	DSO	Ours	Ours
	VO	SLAM	default	reduced	VO	SLAM
M1L	0.046	0.046	0.053	0.076	0.044	0.046
M2L	0.038	0.037	0.050	0.071	0.038	0.037
M3L	0.039	0.039	0.166	0.249	0.040	0.040
M4L	0.064	0.065	0.172	0.163	0.060	0.064
M5L	0.078	0.051	0.101	0.144	0.061	0.065
V11L	0.096	0.097	0.104	0.115	0.089	0.090
V12L	0.127	0.103	0.516	0.136	0.104	0.105
V13L	0.938	0.423	×	0.757	0.608	0.412
V21L	0.080	0.080	0.089	0.090	0.089	0.088
V22L	0.185	0.178	0.210	0.233	0.181	0.178
V23L	X	X	1.429	1.055	1.174	1.062

	ORB	ORB	DSO	DSO	Ours	Ours
	VO	SLAM	default	reduced	VO	SLAM
M1R	0.040	0.038	0.052	0.076	0.038	0.039
M2R	0.038	0.038	0.052	0.071	0.036	0.036
M3R	0.045	0.043	0.149	0.185	0.043	0.045
M4R	0.074	0.069	0.129	0.174	0.070	0.074
M5R	0.056	0.055	0.095	0.122	0.065	0.060
V11R	0.103	0.104	0.119	0.215	0.100	0.099
V12R	0.125	0.112	0.133	0.161	0.111	0.111
V13R	×	0.130	×	0.614	1.277	0.825
V21R	0.103	0.104	0.104	0.116	0.113	0.114
V22R	0.198	0.183	0.255	0.209	0.201	0.191
V23R	×	X	0.707	0.432	0.345	0.238

Table 2: [TUM monoVO] Median alignment errors e_{align} [m] over 10 runs on each sequence. The best and the worst results are in blue and red, respectively. The mark \times indicates that more than half of the total runs lost tracking due to challenging scene textures, camera motions or illumination changes.

	ORB	ORB	DSO	DSO	Ours	Ours
	VO	SLAM	default	reduced	VO	SLAM
1	0.744	1.063	0.526	0.799	0.885	0.860
2	19.08	56.03	0.570	0.487	1.412	0.908
3	0.731	0.510	3.393	4.747	3.283	0.529
4	2.458	2.234	0.689	0.770	0.677	0.764
5	×	×	1.718	2.004	1.921	1.880
6	1.328	0.037	0.808	1.328	1.358	0.522
7	0.406	0.454	0.604	0.969	0.926	0.931
8	596.9	425.0	0.353	0.483	0.600	0.625
9	0.534	0.393	0.617	1.069	1.057	0.994
10	1.632	1.312	0.289	0.427	0.400	0.564
11	1.086	0.152	0.592	0.847	0.961	0.172
12	2.533	1.646	0.597	0.937	1.000	0.812
13	2.232	2.366	1.388	1.312	1.130	1.216
14	10.05	20.63	0.718	0.666	0.863	0.847
15	1.241	1.498	0.832	1.310	1.340	1.323
16	0.832	0.086	0.514	0.739	0.931	0.603
17	1.777	0.417	2.300	2.684	2.681	1.300
18	5.381	×	1.579	2.135	1.986	0.411
19	6.493	5.621	1.898	3.534	3.673	1.232
20	1.266	0.273	0.754	1.095	1.331	0.295
21	X	×	4.219	2.707	2.504	0.230
22	×	×	3.954	4.785	4.732	1.131
23	5.140	0.161	0.478	2.344	2.538	0.061
24	5.731	0.263	0.297	0.361	0.275	0.156
25	1.657	0.099	0.821	2.275	2.070	0.081

	ORB	ORB	DSO	DSO	Ours	Ours
	VO	SLAM	default	reduced	VO	SLAM
26	5.386	0.323	3.336	4.756	3.705	0.241
27	3.810	0.198	0.965	1.496	1.530	0.321
28	9.517	0.433	2.185	2.309	2.186	0.121
29	8.255	0.325	0.430	1.232	1.311	0.039
30	1.278	0.046	0.663	1.919	0.821	0.037
31	×	X	0.593	0.770	0.738	0.078
32	3.094	0.077	0.320	0.816	0.876	0.070
33	2.726	0.074	1.449	1.730	1.632	0.078
34	2.687	0.105	0.884	9.434	22.54	0.355
35	7.046	0.705	0.578	2.620	2.758	0.290
36	1.465	0.590	5.851	2.898	3.661	0.528
37	0.442	0.103	0.379	0.685	0.709	0.180
38	×	X	0.768	1.662	1.966	0.171
39	32.58	0.314	1.293	2.221	2.896	0.210
40	×	×	1.805	1.185	1.007	0.164
41	×	X	0.897	0.542	0.449	0.195
42	X	0.547	0.889	1.293	1.158	0.084
43	1.388	0.181	0.458	1.963	1.902	0.102
44	1.388	0.065	0.552	1.780	1.713	0.120
45	4.085	0.204	1.258	2.442	2.693	0.227
46	12.09	1.345	0.608	1.415	1.605	0.403
47	12.68	0.252	1.519	2.019	2.234	0.122
48	3.753	0.208	1.089	3.314	2.621	0.060
49	11.40	0.164	×	1.023	1.172	0.195
50	137.2	4.557	0.771	1.830	1.999	1.586

2 Derivation of Equation (7) and (8)

Let subscript w, i and j denote the world reference frame, the previous and the current keyframe, respectively. Also, let subscript D and F denote the direct and the feature-based module, respectively. Suppose that two modules have the same camera axes convention. Now, let the relative scale between the two modules be s, such that for an arbitrary point p,

$$s\mathbf{p}_{i|\mathsf{D}} = \mathbf{p}_{i|\mathsf{F}},\tag{1}$$

$$s\mathbf{p}_{i|D} = \mathbf{p}_{i|F} = \mathbf{R}_{ii|F}\mathbf{p}_{i|F} + \mathbf{t}_{ii|F}.$$
 (2)

Then, we have

$$s\mathbf{p}_{i|D} = s(\mathbf{R}_{ii|D}\mathbf{p}_{i|D} + \mathbf{t}_{ii|D}) \tag{3}$$

$$= \mathbf{R}_{ii|\mathbf{D}}(s\mathbf{p}_{i|\mathbf{D}}) + s\mathbf{t}_{ii|\mathbf{D}} \tag{4}$$

$$\stackrel{\text{(1)}}{=} \mathbf{R}_{ji|\mathbf{D}} \mathbf{p}_{i|\mathbf{F}} + s \mathbf{t}_{ji|\mathbf{D}} \tag{5}$$

Subtracting (5) from (2) leads to

$$(\mathbf{R}_{ji|F} - \mathbf{R}_{ji|D})\mathbf{p}_{i|F} + \mathbf{t}_{ji|F} - s\mathbf{t}_{ji|D} = \mathbf{0}.$$
 (6)

For (6) to hold for $\mathbf{p}_{i|F} = \mathbf{0}$:

$$\mathbf{t}_{ii|\mathbf{F}} = s\mathbf{t}_{ii|\mathbf{D}}.\tag{7}$$

Likewise, for (6) to hold for $\mathbf{p}_{i|F} \neq \mathbf{0}$,

$$\mathbf{R}_{ii|F} = \mathbf{R}_{ii|D}.\tag{8}$$

On the other hand, we know that

$$\mathbf{p}_{i|D} = \mathbf{R}_{iw|D} \mathbf{p}_{w|D} + \mathbf{t}_{iw|D}, \tag{9}$$

$$\mathbf{p}_{j|D} = \mathbf{R}_{jw|D} \mathbf{p}_{w|D} + \mathbf{t}_{jw|D}. \tag{10}$$

Hence,

$$\mathbf{p}_{w|D} \stackrel{(9)}{=} (\mathbf{R}_{iw|D})^{-1} (\mathbf{p}_{i|D} - \mathbf{t}_{iw|D}) = (\mathbf{R}_{iw|D})^{\mathrm{T}} (\mathbf{p}_{i|D} - \mathbf{t}_{iw|D}) = (\mathbf{R}_{iw|D})^{\mathrm{T}} \mathbf{p}_{i|D} - (\mathbf{R}_{iw|D})^{\mathrm{T}} \mathbf{t}_{iw|D},$$
(11)

$$\mathbf{p}_{w|D} \stackrel{(10)}{=} (\mathbf{R}_{iw|D})^{-1} (\mathbf{p}_{i|D} - \mathbf{t}_{iw|D}). \tag{12}$$

Equating the right-hand sides of (11) and (12), we get

$$\mathbf{p}_{j|D} = \mathbf{R}_{jw|D} (\mathbf{R}_{iw|D})^{\mathrm{T}} \mathbf{p}_{i|D} - \mathbf{R}_{jw|D} (\mathbf{R}_{iw|D})^{\mathrm{T}} \mathbf{t}_{iw|D} + \mathbf{t}_{jw|D}. \tag{13}$$

This shows that

$$\mathbf{R}_{ij|D} = \mathbf{R}_{jw|D} (\mathbf{R}_{iw|D})^{\mathrm{T}} \tag{14}$$

and

$$\mathbf{t}_{ii|D} = -\mathbf{R}_{iw|D}(\mathbf{R}_{iw|D})^{\mathrm{T}}\mathbf{t}_{iw|D} + \mathbf{t}_{iw|D}$$
(15)

$$\stackrel{\text{(14)}}{=} -\mathbf{R}_{ij|D}\mathbf{t}_{iw|D} + \mathbf{t}_{jw|D}. \tag{16}$$

Finally, substituting (14) and (16) into (7) and (8) leads to the two equations we wanted to prove in the main paper.