1 Módulos inducidos (continuación)

Proposición 1. Los G-módulos inducidos $M = \operatorname{Ind}_G(A)$ son cohomológicamente triviales. Si además G es finito, tenemos que $\hat{H}^n(G, M) = 0$ para todo $n \in \mathbb{Z}$.

Demostración. Consideramos las resoluciones estándar $X^{\bullet}(G, A)$ y $X^{\bullet}(G, \operatorname{Ind}_{G}(A))$, es decir aquellas en las que:

$$X^n = \operatorname{Map}(G^{n+1}, A); X^n = \operatorname{Map}(G^{n+1}, \operatorname{Ind}_G(A))$$

respectivamente. Tenemos una aplicación:

$$X^n(G, \operatorname{Ind}_G(A))^G \to X^n(G, A)$$

dada por $x(\sigma_0, ..., \sigma_n) \mapsto y(\sigma_0, ..., \sigma_n) = x(\sigma_0, ..., \sigma_n)(1)$. De hecho, esto un isomorfismo (ejercicio: encontrar el inverso) luego tenemos un isomorfismo de complejos:

$$C^{\bullet}(G, \operatorname{Ind}_G(A)) \cong X^{\bullet}(G, A).$$

El primer día demostramos que $X^{\bullet}(G,A)$ era exacta, luego:

$$H^n(G, \operatorname{Ind}_G(A)) = H^n(C^{\bullet}(G, \operatorname{Ind}_G(A))) = 0$$

para $n \geq 1$. Si H es un subgrupo cerrado de G, por la proposición anterior podemos escribir $\operatorname{Ind}_G(A) = \operatorname{Ind}_H(B)$ para algún B y entonces:

$$H^n(H, \operatorname{Ind}_G(A)) = 0.$$

Cuando G es finito, se puede repetir el argumento en el complejo extendido $(X^n)_{n\in\mathbb{Z}}$ para obtener $\hat{H}^n(G,\operatorname{Ind}_G(A))=0$ para todo $n\in\mathbb{Z}$.

Este resultado nos permite aplicar una técnica conocida como dimension shifting que consiste en reducir demostraciones sobre todos los grupos de cohomología a una única dimension. Dado A, definimos A_1 con la siguiente sucesión exacta:

$$0 \longrightarrow A \stackrel{i}{\longrightarrow} \operatorname{Ind}_{G}(A) \longrightarrow A_{1} \longrightarrow 0,$$

donde ia es la función constante $ia(\sigma) = a$. Si $H \leq G$ es un subgrupo cerrado, por la proposición anterior tenemos que el homomorfismo:

$$\delta: H^n(H, A_1) \to H^{n+1}(H, A)$$

es sobreyectivo para n = 0 y un isomorfismo para n > 0. Aplicando el mismo proceso inductivamente para $A_0 = A$ y $A_+ = (A_{p-1})_1$ para p > 0 obtenemos:

Proposición 2. Para $n, p \ge 0$ y cualquier subgrupo H de G, tenemos un homomorfismo canónico:

$$\delta^p: H^n(H, A_p) \to H^{n+p}(H, A)$$

que es sobreyectivo para n = 0 y un isomorfismo para n > 0.

Si G es un grupo finito, también podemos obtener un resultado parecido para la cohomología de Tate. Consideremos la sucesión exacta:

$$0 \longrightarrow A_{-1} \longrightarrow \operatorname{Ind}_G(A) \stackrel{\nu}{\longrightarrow} A \longrightarrow 0,$$

donde $\nu: x \mapsto \sum_{g \in G} x(g)$. Definimos $A_p = (A_{p+1})_{-1}$ para p < 0; utilizando que $\operatorname{Ind}_G(A) \cong A \otimes \mathbb{Z}[G]$ es fácil ver que:

$$A_p \cong A \otimes J_G^{\otimes p} \text{ y } A_{-p} \cong I_G^{\otimes p}$$

para $p \geq 0$, donde I_G , J_G vienen dados por las sucesiones:

$$0 \longrightarrow I_G \longrightarrow \mathbb{Z}[G] \stackrel{\epsilon}{\longrightarrow} \mathbb{Z} \longrightarrow 0,$$

$$0 \longrightarrow \mathbb{Z} \xrightarrow{N_G} \mathbb{Z}[G] \longrightarrow J_G \longrightarrow 0.$$

A ϵ se le denomina augmentation map:

$$\epsilon: \sum_{\sigma \in G} a_{\sigma} \sigma \mapsto \sum_{\sigma \in G} a_{\sigma},$$

y al G-módulo I_G se le llama augmentation ideal. Como $\hat{H}^n(H, \operatorname{Ind}_G(A)) = 0$, obtenemos isomorfismos canónicos:

$$\hat{H}^n(H,A) \cong \hat{H}^{n-p}(H,A_p)$$

para todo $n, p \in \mathbb{Z}$.

Volviendo a caso general de un grupo profinito G, otra forma de calcular los grupos de cohomología es utilizando resoluciones acíclicas Y^{\bullet} de A, en cuyo caso $H^n(G,A) \cong H^n(H^0(G,Y^{\bullet}))$ (ver Proposición 1.3.9).

2 El producto cup

Recordamos que dados dos G-módulos A y B, $A \otimes_{\mathbb{Z}} B$ con la acción diagonal también es un G-módulo. Esto nos permite definir para $p, q \geq 0$:

$$C^p(G,A) \times C^q(G,B) \xrightarrow{\cup} C^{p+q}(G,A \otimes B)$$

dado por:

$$(a \cup b)(\sigma_0, ..., \sigma_{p+q}) = a(\sigma_0, ..., \sigma_q) \otimes b(\sigma_p, ..., \sigma_{p+q}).$$

Esta función verifica la siguiente formula:

$$\partial(a \cup b) = (\partial a) \cup b + (-1)^p (a \cup \partial b),$$

que puede verificarse con un simple cálculo. Claramente, si a y b son cociclos entonces $a \cup b$ también es un cociclo. Además, si uno es un cociclo y el otro es un coborde, $a \cup b$ también es un coborde. En definitiva, \cup induce una aplicación bilineal:

$$H^p(G,A) \times H^q(G,B) \xrightarrow{\cup} H^{p+q}(G,A \otimes B),$$

dado por $(\alpha, \beta) \mapsto \alpha \cup \beta$. A esta aplicación le llamamos **producto cup**. También se le llama producto cup a la composición:

$$H^p(G,A) \times H^q(G,B) \xrightarrow{\cup} H^{p+q}(G,A \otimes B) \longrightarrow H^{p+q}(G,C),$$

que viene inducida por una aplicación bilineal $A \times B \to C$ que factoriza en el producto tensorial.

Cada vez que definimos una aplicación nueva en la cohomología, tenemos que verificar sus propiedades functoriales y su compatibilidad con las anteriores. Directamente de la definición se sigue que el producto cup conmuta con homomorfismos $A \to A', B \to B'$. A continuación demostramos la compatibilidad con δ :

Proposición 3. Sean

$$0 \to A' \to A \to A'' \to 0 \ y \ 0 \to C' \to C \to C'' \to 0.$$

dos sucesiones exactas de G-módulos. Sea B otro G-módulo y supongamos que existe un emparejamiento $A \times B \to C$ que induce $A' \times B \to C''$ y $A'' \times B \to C''$. Entonces el diagrama siguiente conmuta:

$$H^p(G, A'') \times H^q(G, B) \xrightarrow{\cup} H^{p+q}(G, C'')$$

$$\downarrow^{\delta} \qquad \qquad \downarrow_{id} \qquad \qquad \downarrow^{\delta}$$

$$H^{p+1}(G, A') \times H^q(G, B) \xrightarrow{\cup} H^{p+q+1}(G, C')$$

Es decir, $\delta(\alpha'' \cup \beta) = \delta\alpha'' \cup \beta$.

Análogamente, dadas dos sucesiones exactas:

$$0 \rightarrow B' \rightarrow B \rightarrow B'' \rightarrow 0 \ y \ 0 \rightarrow C' \rightarrow C \rightarrow C'' \rightarrow 0$$

con un emparejamiento $A \times B \to C$ que induce $A \times B' \to C'$ y $A \times B'' \to C''$, el diagrama siguiente conmuta:

$$H^{p}(G,A) \times H^{q}(G,B'') \xrightarrow{\cup} H^{p+q}(G,C'')$$

$$\downarrow_{id} \qquad \qquad \downarrow^{\delta} \qquad \downarrow^{(-1)^{p}\delta}$$

$$H^{p}(G,A) \times H^{q+1}(G,B') \xrightarrow{\cup} H^{p+q+1}(G,C')$$

Es decir, $(-1)^p \delta(\alpha \cup \beta'') = \alpha \cup \delta \beta''$.

Demostración. Demostramos la primera igualdad, siendo análoga la demostración de la segunda. Sean $\alpha'' = \overline{a''}, \beta = \overline{b}$ para $a'' \in Z^p(G, A''), b \in Z^q(G, A)$.

El functor $A \mapsto C^p(G, A)$ es exacto, luego podemos elegir $a \in C^p(G, A)$ que esté en la preimagen de a''. Entonces por definición de δ , $\delta \alpha'' \in H^{p+1}(G, A')$ es representado por $\partial a \in Z^{p+1}(G, A')$ (identificando A' con su imagen en A).

A su vez, $\delta(\alpha'' \cup \beta)$ es representado por $\partial(a \cup b) = \partial a \cup b$, ya que $\partial b = 0$. Pasando a cohomología esto significa:

$$\delta(\alpha'' \cup \beta) = \delta\alpha'' \cup \beta.$$

Proposición 4. El producto cup verifica:

$$i) \ (\alpha \cup \beta) \cup \gamma = \alpha \cup (\beta \cup \gamma).$$

$$ii) \ \alpha \cup \beta = (-1)^{pq} (\beta \cup \alpha).$$

Demostración. La primera afirmación es una comprobación directa. Para la segunda utilizaremos el método de dimension shifting introducido en la Proposición 2. Recordamos que existen homomorfismos sobreyectivos δ^n : $H^0(G,A_n) \to H^n(G,A)$. Aplicando la proposición anterior p y q veces respectivamente obtenemos un diagrama commutativo:

$$H^{0}(G, A_{p}) \times H^{0}(G, B_{q}) \xrightarrow{\cup} H^{0}(G, (A \otimes B_{q})_{p}) = H^{0}(G, A_{p} \otimes B_{q})$$

$$\downarrow^{\delta^{p}} \qquad \downarrow^{id} \qquad \downarrow^{\delta^{p}}$$

$$H^{p}(G, A') \times H^{0}(G, B_{q}) \xrightarrow{\cup} H^{p}(G, (A \otimes B)_{q}) = H^{p}(G, A \otimes B_{q})$$

$$\downarrow^{id} \qquad \downarrow^{\delta^{p}} \qquad \downarrow^{(-1)^{pq}\delta^{q}}$$

$$H^{p}(G, A \times H^{q}(G, B) \xrightarrow{\cup} H^{p+q}(G, A \otimes B)$$

Para p=q=0 la identidad es trivial. Como las flechas verticales son sobreyectivas, obtenemos $\alpha \cup B = (-1)^{pq} (\beta \cup \alpha)$ para $p,q \geq 0$.

El producto cup también se puede definir en dimensiones arbitrarias cuando G es finito (es decir, para cohomología de Tate) y de manera que los resultados que hemos demostrado también se cumplan. Esto se puede consultar en la Proposición 1.4.7 del libro.

3 Cambios en el grupo G

En esta sección estudiaremos cómo se comportan los grupos de cohomología en la siguiente situación: tenemos dos grupos profinitos G y G', un G-módulo A y respectivamente un G'-módulo A' junto a homomorfismos:

$$\phi: G' \to G, f: A \to A'$$

que verifican $f(\phi(\sigma')a) = \sigma'f(a)$. Esto nos permite obtener otro homomorfismo $C^n(G,A) \to C^n(G',A')$ dado por $a \mapsto f \circ a \circ \phi$. Claramente esto conmuta con ∂ luego induce un homomorfismo:

$$H^n(G,A) \to H^n(G',A').$$

De hecho, los $H^n(G, A)$ es functorial tanto en A como een G, es decir, dados $G'' \to G' \to G$ y $A'' \to A' \to A$, el homomorfismo:

$$H^n(G,A) \to H^n(G'',A'')$$

es la composición de los dos homomorfismos intermedios.

Proposición 5. Si $G = \varprojlim_{i \in I} G_i$ y $A = \varinjlim_{i \in I} A_i$, entonces:

$$H^n(G,A) \cong \varinjlim_{i \in I} H^n(G_i,A_i).$$

Los tres casos más relevantes de homomorfismos $H^n(G,A) \to H^n(G',A')$ más un caso adicional son los siguientes:

Conjugación: dados un subgrupo cerrado H de G, un G-módulo A y un H-módulo B, podemos definir para $\sigma, \tau \in G$:

$$\tau^{\sigma} = \sigma^{-1} \tau \sigma, {}^{\sigma} H = \sigma H \sigma^{-1}.$$

Los homomorfismos ${}^{\sigma}H \to H$ dado por $\tau \mapsto \tau^{\sigma}$ y $B \to \sigma B$ dado por $b \mapsto \sigma b$ son compatibles e inducen un isomorfismo que llamamos conjugación:

$$\sigma_*: H^n(H,B) \to H^n({}^{\sigma}H, \sigma B).$$

Además se verifica $1_* = id$ and $(\sigma \tau)_* = \sigma_* \tau_*$

Inflation: dados un subgrupo normal cerrado H de G y un G-módulo A, tenemos que A^H es un G/H-módulo. Las proyecciones e inclusiones canónicas son compatibles e inducen un homomorfismo:

$$inf_G^{G/H}: H^n(G/H, A^H) \to H^n(G, A)$$

llamado inflation, que cuando $H\subseteq F$ son dos subgrupos cerrados y normales verifica:

$$inf_G^{G/H} \circ inf_{G/H}^{G/F} = inf_G^{G/F}.$$

Restricción: para cualquier subgrupo cerrado H de G y cualquier G-módulo A podemos considerar la inclusión $H \hookrightarrow G$ y la id $_A$, que inducen:

$$res_H^G: H^n(G,A) \to H^n(H,A).$$

Claramente la restricción verifica:

$$res_F^H \circ res_H^G = res_F^G.$$

Correstricción: si H es un subgrupo abierto, podemos definir una familia de funciones norma inducida por la resolución estándar $X^{\bullet}(G, A)$ que resulta ser una resolución acíclica de A (como H-módulo) ya que $\operatorname{Ind}_G(X^{n-1}) = X^n$. Es decir:

$$H^n(H, A) = H^n((X^{\bullet})^H).$$

Entonces para $n \geq 0$ tenemos la aplicación norma $N_{G/H}: (X^n)^H \to (X^n)^G$ que conmuta con ∂ luego induce un homomorfismo de complejos:

$$N_{G/H}:(X^{\bullet})^H\to (X^{\bullet})^G$$

que al tomar cohomología nos da los homomorfismos canónicos:

$$cor_G^H: H^n(H,A) \to H^n(G,A).$$

Para n=0 se trata de la norma usual. Además como $N_{G/H}\circ N_{H/F}=N_{G/F},$ también se verifica:

$$cor_G^H \circ cor_H^F = cor_G^F.$$

4 Propiedades básicas

Sea G un grupo profinito. En esta sección recopilaremos algunas propiedades de lo grupos de cohomología que se usarán frecuentemente. Al igual que para el caso finito, definimos $\hat{H}^n(G,A) = H^n(G,A)$ para $n \geq 1$.

Recordamos que $cor_G^U \circ res_U^G = (G:U)$, de lo cual obtenemos:

Proposición 6. Sea G un grupo profinito y U un subgrupo abierto. Si G es finito o $n \ge 1$, entonces para todo G-módulo A tal que $\hat{H}^n(U,A) = 0$ se cumple:

$$(G:U)\hat{H}^n(G,A) = 0.$$

En particular, si G es finito, el teorema de Lagrange nos dice que |G| aniquila $\hat{H}^n(G, A)$. Además, si A es finitamente generado $H^n(G, A)$ es finito.

De la proposición anterior obtenemos que para grupos profinitos arbitrarios, $H^n(G,A)$ son grupos de torsión para $n \geq 1$, ya que el día 2 demostramos que $H^n(G,A) = \varinjlim_U H^n(G/U,A^U)$, donde U recorre los subgrupos normales de G.

Proposición 7. Sea G un grupo finito y A un G-módulo. Supongamos que la multiplicación por P es un automorfismo de A para todo primo p|#G. Entonces para todo $i \in \mathbb{Z}$:

$$\hat{H}^i(G,A) = 0.$$

Para G profinito, el resultado se cumple para $i \geq 1$ y A es cohomológicamente trivial si:

- 1. A es un grupo de torsión cuyo orden (supernatural) es coprimo con |G|.
- 2. A es un grupo profinito abeliano cuyo orden es coprimo con |G|.
- 3. A es divisible y libre de torsión.