ЛЕКЦИЯ № 10

2.2.7. <u>Различение сигналов с неопределенной фазой</u> (<u>некогерентный прием</u> сигналов).

При построении алгоритма приема сигналов с неопределенной фазой воспользуемся критерием максимального отношения правдоподобия (2.31):

$$\Lambda_{k0}(\vec{\mathbf{y}}_n) = \max_k$$

По гипотезе H_i : $y_i = A_i \cdot \cos(w_i \cdot i + \Psi_{ki} + \varphi) + \eta_i$, где $i = \overline{1:n}$ - дискретное время.

В зависимости от вида модуляции известная A_k - амплитуда сигнала, $w_k = \frac{2\pi}{T_k} \cdot \Delta t$

- нормированная частота, T_k - период k-ого сигнала (Δt - интервал дискретизации), Ψ_{ki} - информационная фаза сигнала; φ - случайная начальная фаза (неизвестная), $k=\overline{1:m}$.

По гипотезе H_0 : $y_i = \eta_i$ - гауссовский шум, с нулевым математическим ожиданием и дисперсией σ_η^2 .

Далее используем отношение правдоподобия, полученное в п.2.1.5. для задачи обнаружения гармонического сигнала со случайной начальной фазой. Основываясь на нем, запишем отношение правдоподобия для задачи различения m сигналов с неизвестной начальной фазой:

$$\Lambda_{k0}(\vec{\mathbf{y}}_n) = \exp\{-\frac{E_k}{2\sigma_n^2}\} \cdot I_0\{\frac{A_k X_{nk}}{\sigma_n^2}\} , \qquad (2.41)$$

где $I_0(\cdot)$ - функция Бесселя нулевого порядка, $X_{nk} = \sqrt{X_{nck}^2 + X_{nsk}^2}$, $X_{nck} = \sum_{i=1}^n y_i \cos(w_k i + \Psi_{ki})$, $X_{nsk} = \sum_{i=1}^n y_i \sin(w_k i + \Psi_{ki})$. Тогда выражение (2.41)

можно преобразовать, взяв от левой и правой его части функцию натурального логарифма:

$$\begin{split} &\ln \Lambda_{k_0}(\overrightarrow{y_n}) = \lambda_{k_0}(\overrightarrow{y_n}) = \ln\{e^{-\frac{E_k}{2\sigma_{\eta}^2}} \cdot I_0(\frac{A_k X_{nk}}{\sigma_{\eta}^2})\} = \ln\{e^{-\frac{E_k}{2\sigma_{\eta}^2}}\} + \ln\{I_0(\frac{A_k X_{nk}}{\sigma_{\eta}^2})\} = \\ &= \ln\{I_0(\frac{A_k X_{nk}}{\sigma_{\eta}^2})\} - \frac{E_k}{2\sigma_{\eta}^2} \end{split}$$

=> алгоритм оптимального приема имеет вид:

$$\lambda_{k_0}(\overrightarrow{\mathbf{y}}_n) = \ln\{I_0(\frac{A_k X_{nk}}{\sigma_n^2})\} - \frac{E_k}{2\sigma_n^2} = \max_k$$
 (2.42)