Unsupervised Data Mining: From Batch to Stream Mining Algorithms

Prof. Dr. Stefan Kramer

Johannes Gutenberg-Universität

Mainz

A Brief Introduction to Data Mining and KDD

Knowledge Discovery in Databases

"... is the process of identifying valid, novel, potentially useful and ultimately understandable structure in data."

(Fayyad & Uthurusamy, 1996)
Structure = pattern or model

Knowledge Discovery in Databases and Data Mining

Data Mining

- Knowledge Discovery in Databases (KDD) (Fayyad 96): "KDD is the non-trivial process of identifying valid, novel, potentially useful, and ultimately understandable patterns in data."
- Data Mining: data analysis step within the KDD process

Machine Learning

- Learning = improving with experience at some task
 - Improve on task T
 - With respect to performance measure P
 - Based on experience E.
- Learn to play checkers:
 - T: Play checkers
 - P: % of games won
 - E: opportunity to play against oneself

Machine Learning

- Learning to classify examples (e.g., gene expression profiles into two subtypes):
 - T: Classifying examples
 - P: % of examples classified correctly
 - E: Training set of examples to learn from
- Machine learning algorithms (such as for classification) often used in Data Mining

Alternative Definitions...

Heikki Mannila:

- "Knowledge Discovery in Databases is finding the joint probability distribution"
- "Data Mining is the technology of fast counting"

Descriptive Data Mining, Predictive Data Mining

Pattern Mining

q(p, D) ... interestingness predicate: a pattern p from L is interesting wrt. database D what is interesting? frequent, non-redundant, class correlated, structurally diverse, ...

Clustering

Graph Mining

- Graph database D (graphs (b) to (d))
- Find all subgraphs (patterns) that occur in at least two of the three graphs (examples)
- Example subgraph pattern p shown in (a)₁₂

Stream Mining

Algorithm / Bounded Resource Analyzer

- Data stream model and philosophy
- Not one model
- Approximations

Big (Data) Vs

Volume

- depends also on

 preprocessing or on
 operations on them (e.g.,
 pairwise comparisons)
 11 to 100 PB
 1.1 to 10 PB
 101 TB to 1 Petabyte
 1.1 to 100 TB
 1.1 to 10 TB
 101 GB to 1 Terabyte (TB)
 11 to 100 GB
 1.1 to 10 GB
 1.1 to 10 GB
- how much volume really?

Variety

- often underestimated
- Velocity
 - analyzing data as they are generated ("one-touch"), real-time, anytime, ...

Veracity

uncertainty in data, data quality, trust, but also prediction quality

2013 Largest Database Analyze/Data Mined

Options for Scaling Up / Out (Partly Inspired by Mikio Braun)

Expected Growth of Connected Devices

Stream Mining

Algorithm / Bounded Resource Analyzer

Model

- Data stream model and philosophy
- Not one model
- Approximations

Basic Stream Mining Algorithmics

Mean and Variance

Given a stream x_1, x_2, \ldots, x_n

$$\bar{x}_n = \frac{1}{n} \cdot \sum_{i=1}^n x_i$$

$$\sigma_n^2 = \frac{1}{n-1} \cdot \sum_{i=1}^n (x_i - \bar{x}_i)^2.$$

Mean and Variance

Given a stream x_1, x_2, \ldots, x_n

$$s_n = \sum_{i=1}^n x_i, \ q_n = \sum_{i=1}^n x_i^2$$

$$s_n = s_{n-1} + x_n, \ q_n = q_{n-1} + x_n^2$$

$$\bar{x}_n = s_n/n$$

$$\sigma_n^2 = \frac{1}{n-1} \cdot (\sum_{i=1}^n x_i^2 - n\bar{x}_i^2) = \frac{1}{n-1} \cdot (q_n - s_n^2/n)$$

Count Min Sketch

- Data structure for fast and memory-efficient counting on data streams
- Multiple hash tables and *pairwise independent* hash functions are used to update counts, effect of collisions is alleviated by taking the minimum of the results (i.e., the minimum of the counts from the table)
- Collisions still lead to overcounting, but this is upper-bounded, where the bound depends on the number d and the dimension w of the hash tables used.

CM Sketch Example Structure

- Width of table = dimension of hash tables = w = 7
- Depth of table = number of hash tables = d = 4
- d and w are *derived* from a bound (see below)
- Assume parameters are set as follows $\varepsilon = 0.4$, $\delta = 0.02$
- Bound tells us that the count resulting from CM sketch $\hat{a}_i \leq a_i + N^* \epsilon$ in all but δ cases, with N being the length of the stream up to that point

Determining Size of Table and Determining Count from Table

• If you want overcounting only by maximally N* ϵ with a probability of 1- δ , then you dimension the table by:

$$w = \left\lceil \frac{e}{\epsilon} \right\rceil, \qquad d = \left\lceil \ln \frac{1}{\delta} \right\rceil$$

- CM Sketch uses space w*d and update time d
- Counts are determined by:
 â_i = min_j count[j, h_j(i)]

Classification on Data Streams and Hoeffding Trees

Data Stream Classification Cycle

- Process an example at a time, and inspect it only once (at most)
- Use a limited amount of memory
- Work in a limited amount of time
- Be ready to predict at any point

Prequential Testing

 First use new instance from stream to predict/test, then update the model based on it

 Approximates hold-out evaluation (testing on an "external" test set)

 Estimate accuracy using sliding windows or fading factors

Hoeffding Tree Algorithm (Domingos & Hulten, KDD 2000)

Procedure HoeffdingTree(Stream, δ) Let HT = Tree with single leaf (root) Initialize sufficient statistics at root For each example (X, Y) in Stream Sort (X, Y) to leaf using HT Update sufficient statistics at leaf

Compute G for each attribute $R^2 \ln \left(\frac{1}{\delta}\right)$ If G(best) - G(2nd best) > $\varepsilon = \sqrt{\frac{R^2 \ln \left(\frac{1}{\delta}\right)}{2\pi}}$

then Split leaf on best attribute

For each branch

Start new leaf, init sufficient statistics

Return HT

Hoeffding Trees Preliminaries

- Suppose we have n observations of a real-valued random variable whose range is R (we assume R is 1 in the following) and mean is X.
- The Hoeffding bound states that with probability 1- δ , the true mean of the variable is at least \overline{X} - ϵ , where

$$\varepsilon = \sqrt{\frac{R^2 \ln(1/\delta)}{2n}}$$

Hoeffding Trees

- Assume we have some evaluation function G like information gain or Gini index to assess the goodness of a split up to some number of examples n, and the difference between the best evaluated and the second best evaluated attribute is $\Delta \overline{G} = \overline{G}(best) \cdot \overline{G}(2^{nd} best) \geq 0$.
- Then, given a desired δ , the Hoeffding bound guarantees that best is the correct choice with probability 1- δ and $\Delta \overline{G}$ > ϵ .

(Concept) Drift

- One of the main problems with stream mining methods
- Gradual drift, abrupt drift
- Drift in class or in attributes/features
- Recurrence of distributions
- Methods range from simple sliding window based ones (moving average type) to classifier based