Let A be an $n \times m$ matrix. We show the existence of the (full) SVD, i.e. there is an $n \times n$ orthogonal matrix U, an $n \times m$ diagonal matrix Σ with weakly decreasing entries, and an $m \times m$ orthogonal matrix V, such that $A = U \Sigma V^{\top}$.

First, we reduce our problem to finding an orthonormal basis of \mathbb{R}^m whose property of orthogonality is preserved under the transformation defined by A.

Lemma 1. Assume there exists an orthonormal basis $v_1, \ldots, v_m \in \mathbb{R}^m$ such that the vectors Av_i are pairwise orthogonal, meaning that $(Av_i) \cdot (Av_i) = 0$ for all $i \neq j$. Then A has an SVD.

Proof. Some of the Av_i 's may be zero. Reorder the v_i 's so that those ones come last. Hence, for some r, we may assume that

- Av_1, \ldots, Av_r are nonzero and of weakly decreasing length.
- Av_{r+1}, \ldots, Av_m are zero.

Let V be the $m \times m$ orthogonal matrix built from v_1, \ldots, v_m . Let Σ be the $n \times m$ diagonal matrix whose first r diagonal entries are $||Av_1||, \ldots, ||Av_r||$, and whose remaining entries are zero. Let U be an $n \times n$ orthogonal matrix whose first r columns are given by the orthonormal collection $\frac{1}{||Av_1||}Av_1, \ldots, \frac{1}{||Av_r||}Av_r$, and whose remaining columns are arbitrary. Then we have

$$Av_i = ||Av_i|| (i\text{-th column of } U)$$

for all i = 1, ..., m. Therefore $AV = U\Sigma$, so $A = U\Sigma V^{\top}$, as desired.

Next, we show that this 'good' orthonormal basis exists.

Lemma 2. Let $v \in \mathbb{R}^m$ be a unit vector which maximizes $||Av||^2$. Then, for any $w \in \mathbb{R}^m$ such that $w \cdot v = 0$, we have $(Aw) \cdot (Av) = 0$.

Proof. The maximality property of v implies that t=0 is a global maximum of the function

$$f(t) = \left\| A\left(\frac{v + tw}{\|v + tw\|} \right) \right\|^2$$

because $\frac{v+tw}{\|v+tw\|}$ is a unit vector. Therefore, f'(0) = 0.

This derivative is computed as follows. First, note that

$$\begin{split} f(t) &= \frac{1}{\|v + tw\|^2} \left(v + tw \right)^\top A^\top A(v + tw) \\ &= \frac{1}{1 + t^2 \|w\|^2} \left(\|Av\|^2 + 2t \left(Aw \right) \cdot (Av) + t^2 \|Aw\|^2 \right) \end{split}$$

where we have used that ||v|| = 1 and $v \cdot w = 0$. By looking at the t coefficient and ignoring higher powers of t, we see that $f'(0) = 2(Aw) \cdot (Av)$. Therefore $(Aw) \cdot (Av) = 0$, as desired.

Lemma 3. Let A be an $n \times m$ matrix. There exists an orthonormal basis $v_1, \ldots, v_m \in \mathbb{R}^m$ such that the vectors Av_i are pairwise orthogonal.

Proof. Proceed by induction on m. For the base case m=1, just take v_1 to be any unit vector.

Assume $m \geq 2$. Let v_m be a unit vector¹ which maximizes $||Av_m||^2$. Consider the (m-1)-dimensional subspace $W \subset \mathbb{R}^m$ consisting of all vectors w such that $w \cdot v = 0$. By choosing an orthonormal basis of W, we obtain an $m \times (m-1)$ orthogonal matrix Q whose column space is W. Applying the inductive hypothesis to the $n \times (m-1)$ matrix AQ, we obtain orthonormal vectors $x_1, \ldots, x_{m-1} \in \mathbb{R}^{m-1}$ such that the AQx_i are pairwise orthogonal. Since Q is an orthogonal matrix, the vectors Qx_i are orthonormal.

Set $v_i = Qx_i$ for i = 1, ..., m-1. Then the $v_1, ..., v_{m-1}$ are orthonormal, and $Av_1, ..., Av_{m-1}$ are pairwise orthogonal. Since $v_1, ..., v_{m-1} \in W$ by construction, the set $v_1, ..., v_m$ is an orthonormal basis, and Lemma 2 implies that Av_m is orthogonal to the $Av_1, ..., Av_{m-1}$. Therefore $v_1, ..., v_m$ has the desired properties, so the inductive step is proved.

¹Such a v_m exists because any continuous function on a compact domain attains its maximum. Indeed, a unit vector v varies on the unit sphere in \mathbb{R}^m , which is compact, and the map $v \mapsto ||Av||^2$ is continuous.