

TRANSIMS Version 5 Application Concepts

January 20, 2011

David Roden – AECOM

Topics

- Goals and objectives
- NetPrep applications
- Router applications
- PathSkim applications
- Microsimulator applications
- Resent convergence discussions

Goals and objectives

- Improve user interaction during network conversion
 - Separate link selection and collapsing from relational file generation
- Streamline the application process
 - Consolidate processing steps
 - Minimize the number intermediate/working files (e.g., plan files)
- Coordinate partitioned tasks to cumulate shared and dependent data (e.g., flow and travel times)
 - Performance statistics and reports based on all partitions
- Improve performance and functionality for demand model feedback (i.e., skims)

Version 4 Network Preparation

- Convert source data → link and node files
 - GISNet, TPPlusNet, EMME2Net, TransCAD GISDK
 - Develop a User Program script to manipulate link data fields
 - Review and edit link and node files
- Synthesize TRANSIMS network with TransimsNet
 - Review network, refine parameters, re-run
 - Manually edit or provide Update/Delete commands
 - Review and edit signal and sign warrants
- Synthesize traffic controls with IntControl
 - Coordinate signal offsets with Progression
- (Similar process for transit networks)

Version 5 Network Preparation

- Convert and edit source data → link and node files
 - NetPrep (input GIS, TP+, EMME/2, TRANSIMS network files)
 - Develop a User Program script to manipulate link data fields
 - Merge, select and collapse nodes and links
 - Apply Update/Delete commands
 - Review and edit link and node files
- Synthesize TRANSIMS network with TransimsNet
 - Review network, refine parameters, re-run
 - Apply Update/Delete commands
 - Review and edit signal and sign warrants
- Synthesize traffic controls with IntControl
 - Coordinate signal offsets with Progression

Network Preparation Differences

- Greater focus on the initial develop of the input link and node file
 - Additional data manipulation and update/delete tools
 - Tools for selecting a subset of links from an all-streets network
- TransimsNet includes much finer controls of synthetic data generation
 - Pocket lanes, link connections, activity locations, traffic controls, parking details, speeds, and other attributes

Router Applications

- Additional path building controls and features
 - Forward or backward path building with trip end constraints
 - Expanded selection criterion
 - Time, location, zone, traveler type, mode, household, etc.
 - Build paths for individual travelers or trips within a household
 - More rigorous path building algorithm available to minimize transit transfer anomalies
 - Parking and vehicle operating costs included in path building
 - Can be varied by vehicle type
 - Traveler type script for traveler-specific path building parameters
 - Local impedance factor to avoid hard-limit effects

Router Performance Enhancements

- Faster and integrated Router-based iterations
 - Create link-delays directly from Router
 - Independently control update of link flows and link travel-times
 - Build upon input flows / travel-times or start from free-flow conditions
 - Choice of periodic update vs. single final update
 - Multi-step incremental loading can be replaced with single application
 - PlanSum can be bypassed
 - Integrated Plan merging (PlanPrep)
 - Subset of input plans can be replaced with selective re-routing/update

Version 4 Router Applications

Version 5 Router Applications

Version 4 Travel Skims

Router + PlanSum

- Enter a list of origin and destination Activity Locations
- Set start time increments
- Build a plan for each O-D-T
 - Long run times
 - Huge plan files
- Use PlanSum to summarize the plans and aggregate zone or district skims
 - Limited O-D-T index size
- Single output skim file

Version 5 Travel Skims

PathSkim

- Multiple methods for automatically selecting origins and destinations
- Multiple or merged variable length time periods
 - Start or end time points
- One-to-many path building and save only skim data
 - No need to write/read plans
- Location/zone/district skims
- Multi-threading and timeperiod based partitioning

Microsimulator Applications

Version 4 Microsimulator

- Single thread, limited network/demand size → subarea applications
- Subarea polygon defines area for regional extraction
 - SubareaNet and SubareaPlans
- Subarea link-delays merged with regional link-delays for feedback

Version 5 simulations

- Multiple cores (threads or MPI) processing multiple subareas
- Geographic subareas defined in the Node file using SimSubareas
 - Normally the CBD is selected as the central subarea
 - Lake Michigan makes subarea selection more challenging
 - Subareas can be defined once or updated during each iteration based on link vehicle hours of travel (i.e., load balancing)

Version 4 Microsimulator

Version 5 Microsimulator

Microsimulator Feedback Loops

Process Convergence

Recent Convergence Discussions

- Discussions with academics about Dynamic User Equilibrium (DUE) convergence using TRANSIMS
 - New performance measures

$$Trip \ Gap = \frac{\sum (c_{xs}\{c_{at}\}) - (c_{ys}\{c_{at}\})}{\sum (c_{xs}\{c_{at}\})}$$

Relative Gap =
$$\frac{\sum VE_n \times CE_n - \sum VA_n \times CE_n}{\sum VE_n \times CE_n}$$

- Link delay MSA averaging seems acceptable
- Less comfortable with selected traveler feedback
 - Prefer simulating AON plans in each iterations
 - Since a unique path is built for each trip, gridlock concerns may be minimized

Chicago RTSTEP TRANSIMS Model

18

Equilibrium Statistics

Equilibrium Convergence

Trip Gap by Time of Day and Iteration

21

Relative Gap by Time of Day and Iteration

22