

Napari-clusters-plotter plugin

Marcelo Leomil Zoccoler

Reusing material from

Robert Haase, Johannes Soltwedel, Till Korten, Ryan Savill, Laura Zigutyte and Mara Lampert, PoL TU Dresden

Napari-clusters-plotter plugin

For today's demo, please use this environment:

mamba create -n napari-clusters-plotter-env python=3.10 napari=0.4.17 devbio-napari

mamba activate napari-clusters-plotter-env

2022

April

October

2023

Quantitative Bio-Image Analysis with Visualization

Quantitative bio-image analysis

 Deriving <u>quantitative information</u> from images of biological samples taken with microscopes <u>+ visualization</u>

Reliable bio-image analysis

- Algorithms must be reliable (trustworthy).
- Visualization helps gaining trust in automated methods.

Overlay

Source: M. Zoccoler & R. Haase licensed <u>CC-BY</u> https://haesleinhuepf.github.io/BioImageAnalysisNotebo oks/60 data visualization/overlay text on image.html

Object classification

- Goal: Separate objects
 - According to an expert's annotation (supervised)
 - According to separability of object properties (unsupervised)

Object classification

Raw data

Instance segmentation

Semantic segmentation

Unsupervised Machine Learning for Object Characterization

Reusing material from
Robert Haase, Johannes Soltwedel and Till Korten, PoL, TU Dresden and
OpenStreetMap foundation

Unsupervised machine learning

• If you don't provide ground truth, the algorithm is unsupervised.

Unsupervised machine learning

- If you don't provide ground truth, the algorithm is unsupervised.
- Nevertheless, algorithms can tell us something about the data

Hypothesis-driven quantitative biology

- Hypothesis: Cell shape can be influenced by modifying X.
- Null-Hypothesis: Circularity of modified cells is similar to cells in the control group.

• Sample preparation

Imaging

Shall we use a different microscope?

Should we use a different segmentation algorithm?

• Cell segmentation

Circularity measurement

Is circularity the right parameter to measure?

Statistics

Hypothesis generating quantitative biology

- Hypothesis: Cell shape can be influenced by modifying X.
- Question: Which image-derived parameter is influenced when modifying X?
 - Sample preparation

Imaging

Which segmentation algorithms allow measurements that show a relationship with X?

Cell segmentation algorithm A, algorithm B, algorithm C

Why?

- Measurement of circularity, solidity, elongation, extend, texture, intensity, topology ...
 - Statistics

Which parameter shows any relationship with X?

Identifying features to measure

Example: Inactive vs. activated microglia in mouse brain

Challenge: Which of these features reflect biological propeties?

	label	area	bbox_area	convex_area	quivalent_diamete	max_intensity	mean_intensity	min_intensity	solidity	extent	eret_diameter_ma	local_centroid-0
1	1	3379	13949	5120	18.61786412639	613.0	345.6717963894	259.0	0.6599609375	0	37.3496987939662	15.77952056821 1
2	2	2319	7448	3491	16.42230229224	421.0	297.8434670116	240.0	0	0	38.65229618017	4 1
3	3	2304	14415	4281	16.38681751812	456.0	300.8298611111	245.0	0	0	34.19064199455	17.73828125 1.
4	4	3278	13804	5139	18.43048549951	467.0	316.1446003660	249.0	0	0	34.84250278036	15.52287980475 1
5	5	1501	3315	1681	14.20563625190	458.0	302.147235176549	236.0	0	0	17.97220075561	6 6
6	6	2341	6061	2714	16.47407088948	594.0	355.4446817599	261.0	0	0	30.67572330035	16.54250320375 6
7	7	1725	3584	1940	14.87979081163	568.0	343.7866666666	257.0	0	0	17.72004514666	7.80463768115942 7
8	8	1502	3840	1753	14.20879025650	431.0	290.0659121171	235.0	0	0	18.57417562100	8 6

@zoccolermarcelo

Dimensionality Reduction

Dimensionality reduction

- Challenge: Find a representation (embedding) of your data that represents the data in fewer dimensions
- Preserve local distances at the expense of global distortions

Many dimensions

Few dimensions

Dimensionality reduction

Identifying the right features might require deforming feature space.

Example: Euclidean distance and travel time while hiking. Travelling from Wehlen to Strand might be faster if you take a detour through Rathen.

→ The data might be better represented like this:

Dimensionality reduction from 2D to 1D

Dimensionality reduction from 2D to 1D

Approach:

Points within a defined radius are considered neighbors

Dimensionality reduction from 2D to 1D

Result:

Neighborhood graph of close points

Problem:

The scarcity of the points leads to a disconnected neighborhood

→ Searching neighbors by radius may not be viable

Dimensionality reduction from 2D to 1D

Each point now has its own distance metric assigned to it

- → d(A, C) from A's point of view: 1
- → d(B,C) from C's point of view: 1

Result:

We choose a number of neighbors that each radius should cover rather than a fixed distance threshold

Dimensionality reduction from 2D to 1D

- → Demand that each point is connected to its closest neighbor
- → Weigh connection to further neighbors with distance beyond nearest neighbor
- → Results in a fuzzy topology

Dimensionality reduction from 2D to 1D

Result:

- → Global neighborhood graph
- → Local scarcity is reflected through edge weights

Last step:

Project this structure into a lower dimension so that overall topology is reflected

Clustering – k-means

Introduction

- Starting point: Feature space or dimensionality reduction reveals "groups" in our data
- Can we automatically identify these groups?

→ **Clustering** allows to stratify data into groups *without previous annotations*

Strategy: Group data points into n groups so that variance within group is minimal

Step1: Random initialization of cluster centers

Step4: Repeat 2&3 until convergence

Step2: Tessellation of space into cluster regions

Step3: Replace cluster center with centroids

Strength and weaknesses

- Number of clusters needs to be known
- Clusters can not capture more complex topologies
- Based on Euclidian metrics → every new point can be assigned to a cluster

Dimensionality reduction

Clustering

∠ Ø 🗑 🗖 🔳 👭

K-means clustering

※←→中Q草屋 🖺

Agglomerative clustering

Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN)

Laura Žigutytė @zigutyte

Ryan Savill @RyanSavill4

Marcelo L. Zoccoler Robert Haase, Thorsten Wagner, Johannes Soltwedel

Data Exploration

... using interactive clustering

Laura Žigutytė @zigutyte

Ryan Savill @RyanSavill4

Marcelo L. Zoccoler Robert Haase, Thorsten Wagner, Johannes Soltwedel

Separate different cell populations

- 1. Open the human mitosis image:
 - File > Open Sample > napari > Human Mitosis
- 2. Apply the 'voronoi_otsu_labeling' function
 - Tools > Segmentation / labeling > Voronoi-Otsu-labeling
 - Choose parameters and click on 'Run'
 - Close widgets (optional, but recommended)
- 3. Use napari-skimage-regionprops to extract object features
 - Tools > Measurement tables > Object Features / Properties
 - Select 'intensity', 'size' and 'shape' and click 'Run'
 - Close widgets, including table (optional, but recommended)
- 4. Use napari-clusters-plotter to apply dimensionality reduction
 - Tools > Measurements post-processing > Dimensionality Reduction
 - Select UMAP in the 'Dimensionality Reduction Method' dropdown and click 'Run'
 - Close widgets, including table (optional, but recommended)
- 5. Use napari-clusters-plotter to apply k-means clustering
 - Tools > Measurements post-processing > Clustering
 - In the Measurements field, hold CTRL (CMD on MAC) and click on 'UMAP-0' and 'UMAP-1'
 - In Clustering Method, select 'K-MEANS' and click 'Run'
- 6. Plot UMAP dimensions and display K-MEANS clusters with different colors
 - Tools > Visualization > Plot Measurements
 - In Axes, select 'UMAP-0' and 'UMAP-1'
 - In Clustering, select 'K-MEANS-CLUSTER-ID'
 - Click 'Plot'

Further reading

Blog posts on the Focalplane about Unsupervised Machine Learning

https://focalplane.biologists.com/2022/ 05/23/explorative-image-data-sciencewith-napari/

Acknowledgements

BiAPoL team

- Mara Lampert
- Marcelo Zoccoler
- Johannes Soltwedel
- Maleeha Hassan
- Allyson Ryan
- Till Korten
- Stefan Hahmann
- Somashekhar Kulkarni

Former lab members:

- Ryan George Savill
- Laura Zigutyte

Networks

CENTER FOR SYSTEMS BIOLOGY DRESDEN

Funding

Chan
Zuckerberg
Initiative ®

