

Q-3-	R_1 , $R_2 = $?
	$\frac{1}{R_{1}} + \frac{1}{R_{2}} = \frac{1}{25.\Omega} - 0$
	$R_1R_2 = 25 \times G$
	$R_1R_2 = 150 - \bigcirc$
	from ① & ② we get: $R_1 = 15 - \Omega$ Ay $R_2 = 10 - \Omega$
	102
Q.4	h 00000
	$R = 1 + 1 \times R + 1$
	$R = 2 + R \longrightarrow R^{2}R = 2R + 2 + R$ $R+1$
	$R^2 - 2R - 2 = 0 \rightarrow R = 1 + \sqrt{3}, 1 - \sqrt{3} \propto$
	V = e-i8
	iR = E - iX $i = E - 12 = 3.71 A PV$
	8+R 0.8+ 2.73
Q.5.	$V = \int_{a}^{b} i(t) dt + V(bo)$
	C-to 2
	0 < t < 2 :
	$=\frac{30+10}{4}+10=17.5$ Volt
	a<+<4: v= 1 (=10) x183d+ + 17.5
	4×10 ⁻³
	= 22.6 + 2.5 }

V = -5+17.5 = 12.5 Volt

$$4 < t < 6$$
: $V = 1$ odt + 12.5 = 12.5 volt
$$4 \times 10^{-3}$$

$$6< t<8$$
: $V = 1$ $\int 10 \times 10^{3} dt + 12.6 = 2.5t - 2.5$
 4×10^{-3}

$$V(t) = \begin{cases} 10 + 3.75t, & 0 < t < 2 \\ 22.5 - 2.5t, & 2 < t < 4 \\ 12.5 & 9 & 4 < t < 6 \\ 2.5t - 2.5, & 6 < t < 8 \end{cases}$$

$$\omega = \frac{1}{2}L^{2} = \begin{cases} \sigma, t \leq 0 \\ 16t^{2}, 0 \leq t \leq 2 \\ 16t^{2} - 128t, 2 \leq t \leq 4 \end{cases}$$

$$p(t) = d\omega = \begin{cases} 0 & , t \leq 0 \\ dt & 32t & , 0 < t \leq 2 \end{cases}$$

$$32t-128 & , 2 < t \leq 4 \end{cases}$$

Q.7. 1(t) +

v(t) = 12 e st volt , i(t) = 5e st Amp. t>,0

 $P(t) = V(t) i(t) = 12e^{-8t} \times se^{-8t}$

= 60e-16t wat 94/

 $\omega(t) = \int_{0}^{\infty} P(t) dt = \int_{0}^{\infty} \cos^{-16t} dt$

 $= 60 \times e^{-106} + \frac{60}{16} = \frac{60}{16} (1 - e^{-1.6})$

 $\omega(0.1) = 60 (1-e^{1.0}) = 2.99 \text{ J (approx) } 9$