Probability Theory and Random Processes (MA225)

Lecture SLIDES
Lecture 10

Indian Institute of Technology Guwahati

July-Nov 2022

Moment Inequality

Theorem: Let X be a RV and $g:[0,\infty)\to [0,\infty)$ be a non-decreasing function such that $E\left(g(|X|)\right)$ is finite. Then for any c>0 with g(c)>0, then

$$P(|X| \ge c) \le \frac{E(g(|X|))}{g(c)}.$$

Corollary: (Markov Inequality) Let X be a RV with $E(|X|^r) < \infty$ for some r > 0. Then for any c > 0,

$$P(|X| \ge c) \le \frac{E(|X|^r)}{c^r}.$$

Corollary: (Chebyshev Inequality) Let X be a RV with $E(X^2) < \infty$. Let us denote $\mu = E(X)$ and $\sigma^2 = Var(X)$. Then for any k > 0,

$$P(|X - \mu| \ge k) \le \frac{\sigma^2}{k^2}.$$

◆ロ → ◆部 → ◆ き → ◆ き め へ ○

Example 1: (Chebyshev inequality is tight) Let X be a DRV with PMF

$$f_X(x) = \begin{cases} \frac{1}{8} & \text{if } x = -1, 1\\ \frac{3}{4} & \text{if } x = 0\\ 0 & \text{otherwise.} \end{cases}$$

Then E(X)=0 and $E(X^2)=\frac{1}{4}$.

Using Chebyshev inequality, $P\left(|X| \geq 1\right) \leq \frac{1}{4}$.

Using PMF, $P\left(|X| \ge 1\right) = \frac{1}{4}$.

MA225 July-Nov 2022

Gamma Function

Def: For $\alpha > 0$, define

$$\Gamma(\alpha) = \int_0^\infty t^{\alpha - 1} e^{-t} dt.$$

Theorem:

- **①** The functional equation $\Gamma(\alpha+1)=\alpha\Gamma(\alpha)$ holds for $\alpha>0$.
- ② $\Gamma(n+1) = n!$ for n = 1, 2, ...

Beta Function

Def: For $\alpha > 0$ and $\beta > 0$, define

$$B(\alpha, \beta) = \int_0^1 x^{\alpha - 1} (1 - x)^{\beta - 1} dx.$$

Theorem: For $\alpha > 0$ and $\beta > 0$,

$$B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}.$$

Corollary: $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.

MA225

Gamma Distribution

A RV X is said to have a gamma distribution if the PDF of the RV is given by

$$f_X(x) = \begin{cases} \frac{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} & \text{if } x > 0\\ 0 & \text{otherwise,} \end{cases}$$

where $\alpha > 0$ and $\beta > 0$. We will use the notation $X \sim Gamma(\alpha, \beta)$.

Remark:
$$E(X) = \frac{\alpha}{\beta}$$
, $Var(X) = \frac{\alpha}{\beta^2}$.

Remark:
$$M_X(t) = \left(1 - \frac{t}{\beta}\right)^{-\alpha}$$
 for $t < \beta$.

MA225

Beta Distribution

A RV X is said to have a beta distribution if the PDF of the RV is given by

$$f_X(x) = \begin{cases} \frac{1}{B(\alpha,\beta)} \, x^{\alpha-1} (1-x)^{\beta-1} & \text{if } 0 < x < 1 \\ 0 & \text{otherwise,} \end{cases}$$

where $\alpha > 0$ and $\beta > 0$. We will use the notation $X \sim Beta(\alpha, \beta)$.

Remark:
$$E(X) = \frac{\alpha}{\alpha + \beta}$$
, $Var(X) = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$.

MA225