SPECIAL DISCRETE DISTRIBUTIONS

NOTATION parameters	DISCRETE PDF	MEAN	VARIANCE	MGF
	$f_X(x)$	E(X)	var(X)	$M_X(t)$
Binomial $X \sim BIN(n, p)$	$\binom{n}{x} p^x q^{n-x}$	np	npq	$(pe^t + q)^n$
0 $q = 1 - p$	$x = 0,1,\ldots,n$			
Bernoulli $X \sim BIN(1, p)$	p^xq^{1-x}	p	pq	$pe^t + q$
0	x = 0.1			
q = 1 - p				
Negative Binomi	al			
$\mathbf{X} \sim \mathbf{NB}(r, p)$	/aa 1\	$oldsymbol{r}$	ra	, + \ r
0	$\binom{x-1}{r-1}p^rq^{x-r}$	$\frac{r}{p}$	$rac{rq}{p^2}$	$\left(\frac{pe^t}{1-qe^t}\right)'$
r = 1, 2,	x = r, r + 1,			` ' '
Geometric	,			
$X \sim GEO(p)$	pq^{x-1}	1_	$\frac{q}{p^2}$	$\frac{pe^t}{1 - qe^t}$
0	x = 1,2,	\overline{p}	p^2	$\overline{1-qe^t}$
q = 1 - p Hyporgoometric				
Hypergeometric $X\sim HYP(n, M, N)$		$\frac{nM}{N}$	$n\frac{M}{N}\Big(1-\frac{M}{N}\Big)\frac{N-m}{N-1}$	<u>!</u> . *
n = 1, 2,, N M = 0, 1,, N	$ \begin{pmatrix} N \\ n \end{pmatrix} \\ x = 0, 1, \dots, n $	11		
Poisson	$e^{-\mu}\mu^x$			
$\mathbf{X} \sim \mathbf{POI}(\mu)$	$\frac{\chi!}{x!}$	μ	μ	$e^{\mu(e^t-1)}$
$0 < \mu$	x = 0,1,2,			
Discrete Uniform	1	(N + 1)	$(N^2 - 1)$	$1\left(\rho^{t}-\rho^{(N+1)t}\right)$
$X\sim DU(N)$	$\frac{1}{N}$	$\frac{(1+1)}{2}$	$\frac{(N-1)}{12}$	$\frac{1}{N} \frac{(e^{-e^{t}})}{1 - e^{t}}$
<i>N</i> = 1,2,	x=1,2,,N			

^{*} Not tractable

SPECIAL CONTINUOUS DISTRIBUTIONS

NOTATION parameters	CONTINUOUS PDF	MEAN	VARIANCE	MGF
parameters	$f_X(x)$	E(X)	var(X)	$M_X(t)$
Uniform	JA			Λ
$X \sim UNIF(a, b)$	1	$\frac{a+b}{2}$	$(b - a)^2$	$e^{bt} - e^{at}$
	$\frac{1}{(b-a)}$	2	$\frac{(b-a)^2}{12}$	$\frac{e^{bt} - e^{at}}{(b-a)t}$
a < b	, ,			
	a < x < b			
Normal				
$\mathbf{X} \sim \mathbf{N}(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi}\sigma}e^{-[(x-\mu)/\sigma]^2}$	$\mu_{2/2}$	σ^2	$e^{\mu t + \sigma^2 t^2/2}$
	$\sqrt{2\pi}\sigma$	•		
$0 < \sigma^2$				
Gamma				
$X\sim GAM(\theta,\kappa)$	$\frac{1}{\theta^{\kappa}\Gamma(\kappa)}x^{\kappa-1}e^{-x}$	$\kappa \theta$	$\kappa heta^2$	$\left(\frac{1}{1-\theta t}\right)^{\kappa}$
	$\theta^{\kappa}\Gamma(\kappa)^{\lambda}$	•		$(\overline{1-\theta t})$
$0 < \theta$				
$0 < \kappa$	0 < x			
Exponential				
$X\sim EXP(\theta)$	$\frac{1}{\theta}e^{-x/\theta}$	heta	$ heta^2$	1
	θ^{ϵ}			$1 - \theta t$
$0 < \theta$				
	0 < x			
-	er Exponential			
$\mathbf{X} \sim \mathbf{E} \mathbf{X} \mathbf{P}(\theta, \eta)$	1		27	nt
0 10	$\frac{1}{\theta}e^{-(x-\eta)/\theta}$	$\eta + \theta$	$ heta^2$	$e^{\eta t}$
$0 < \theta$	heta			$\overline{1-\theta t}$
	20 / 22			
	$\eta < x$			

Double Exponential

$$\mathbf{X} \sim \mathbf{DE}(\theta, \eta)$$

$$\frac{1}{2\theta}e^{-|x-\eta|/\theta}$$

$$\eta$$

$$2\theta^2$$

$$\frac{e^{\eta t}}{1-\theta^2 t^2}$$

SPECIAL CONTINUOUS DISTRIBUTIONS

NOTATION	CONTINUOUS	MEAN	VARIANCE	MGF
parameters	PDF			
	$f_X(x)$	E(X)	var(X)	$M_X(t)$
Weibull			2	4

$$\mathbf{X} \sim \mathbf{WEI}(\theta, \beta) \frac{\beta}{\theta^{\beta}} x^{\beta - 1} e^{-(x/\theta)^{\beta}} \qquad \theta \Gamma (1 + \frac{1}{\beta}) \qquad \theta^{2} \left[\Gamma \left(1 + \frac{2}{\beta}\right) - \Gamma^{2} \left(1 + \frac{1}{\beta}\right)\right] \qquad ^{*} 0 < \theta$$

Extreme Value

$$\mathbf{X} \sim \mathbf{E} \mathbf{V}(\theta, \eta) \qquad \frac{1}{\theta} e^{\left[\frac{x-\eta}{\theta} - e^{\frac{x-\eta}{\theta}}\right]} \qquad \eta - \gamma \theta \qquad \frac{\pi^2 \theta^2}{6} \qquad e^{\eta t} \Gamma(1 + \theta t)$$

Cauchy

 $0 < \beta$

$$\mathbf{X} \sim \mathbf{CAU}(\theta, \eta) \qquad \frac{1}{\theta \pi \left[1 + \left(\frac{x - \eta}{\theta}\right)^{2}\right]} \qquad ** \qquad ** \qquad **$$

Pareto

$$X\sim PAR(\theta,\kappa)$$

	<u>κ</u>	heta	$ heta^2 \kappa$	**
$0 < \theta$	$\theta(1+\frac{x}{\theta})^{\kappa+1}$	$\overline{\kappa-1}$	$\overline{(\kappa-2)(\kappa-1)^2}$	
$0 < \kappa$	0 < x	$1 < \kappa$	$2 < \kappa$	

Chi-Square

$$X \sim \chi^{2}(\nu) \qquad \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \chi^{\frac{\nu}{2} - 1} e^{-\frac{x}{2}} \qquad \qquad \nu \qquad 2\nu \qquad (1 - 2t)^{-\nu/2}$$

$$\nu = 1, 2, \dots$$

^{*} Not tractable

^{**} Does not exist

SPECIAL CONTINUOUS DISTRIBUTIONS

NOTATION parameters	CONTINUOUS PDF	MEAN	VARIANCE	MGF'
	$f_X(x)$	E(X)	var(X)	$M_X(t)$
Student's t X ~t(ν)				
$\frac{\Gamma}{I}$	$\frac{(\frac{\nu+1}{2})}{(\frac{\nu}{2})} \frac{1}{\sqrt{\nu\pi}} (1 + \frac{x^2}{\nu})^{-\frac{\nu+1}{2}}$	0	$\frac{\nu}{\nu-2}$	**
$\nu = 1, 2,$	2	$1 < \nu$	$2 < \nu$	

Snedecor's F

Beta

 $X \sim BETA(a, b)$

$$\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1} \quad \frac{a}{a+b} \quad \frac{ab}{(a+b+1)(a+b)^2} \\
0 < b \\
0 < x < 1$$

^{*} Not tractable

^{**} Does not exist