Análisis exploratorios

Santos G

Tabla de contenidos

	1 Contexto del proyec	Contexto del proyecto								
	2 Carga y verificación inicial de datos									
	3 Matriz de correlaciones y distribuciones entre variables numéricas 3.1 Distribuciones univariadas 3.2 Relaciones bivariadas 3.3 Correlaciones numéricas 3.4 Interpretación ecológica general									
L	# Librerías									
2	<pre>library(tidyverse)</pre>	# Manipulación de datos: dplyr, tidyr, readr								
3	<pre>library(janitor)</pre>	# Limpieza: clean_names(), tabyl()								
1	<pre>library(ggplot2)</pre>	Gráficos profesionales								
5	library(skimr)	# EDA rápido y completo (skim())								
6	library(GGally)	# Matriz de gráficos para variables múltiples								
7	library(knitr)	# Tablas en Quarto								
3	<pre>library(kableExtra)</pre>	# Tablas formateadas para informes								

1 Contexto del proyecto

Se realizó una exploración y control de calidad de los datos de entrada para identificar variables relevantes, evaluar supuestos básicos y priorizar rutas analíticas. El objetivo es generar una guía reproducible que permita a futuros analistas (o a un equipo de consultoría) replicar y ampliar los análisis según objetivos específicos (p. ej. comparar tratamientos, modelar abundancias o construir índices de condición).

2 Carga y verificación inicial de datos

```
# | label: data-load
# Carga de datos (ejemplo iris) y limpieza mínima
data("iris")
df <- as_tibble(iris) %>%
janitor::clean_names() # convierte a snake_case: sepal_length, etc.
```

Tabla 1: Data summary

Name	df
Number of rows	150
Number of columns	5
Column type frequency:	
factor	1
numeric	4
Group variables	None

Variable type: factor

6

skim_variable	n_missing	complete_rate	ordered	n_unique	top_counts
species	0	1	FALSE	3	set: 50, ver: 50, vir: 50

Variable type: numeric

skim_variable	n_missing comp	lete_rate	mean	sd	p0	p25	p50	p75	p100	hist
sepal_length	0	1	5.84	0.83	4.3	5.1	5.80	6.4	7.9	
$sepal_width$	0	1	3.06	0.44	2.0	2.8	3.00	3.3	4.4	
petal_length	0	1	3.76	1.77	1.0	1.6	4.35	5.1	6.9	
$petal_width$	0	1	1.20	0.76	0.1	0.3	1.30	1.8	2.5	

El dataset contiene $\mathbf{N}=\mathbf{150}$ observaciones y 5 variables. Cuatro son cuantitativas continuas en centímetros (Sepal.Length, Sepal.Width, Petal.Length, Petal.Width), y una categórica (Species), que clasifica en tres grupos balanceados ($\mathbf{n}=50$ por especie). No se detectaron valores faltantes ni duplicados tras la inspección inicial. Esta estructura balanceada y sin NA permite aplicar análisis univariados, comparativos y multivariados con mínimo preprocesamiento.

La **Tabla 1** de estadísticos descriptivos muestra lo siguiente:

- **Sepal.Length:** media 5.84 cm, SD 0.83, rango 4.3–7.9. Variación moderada, con solapamiento esperado entre especies.
- Sepal.Width: media 3.06 cm, SD 0.44, rango 2.0–4.4. Es la variable más estable, aunque con ligera asimetría negativa.
- **Petal.Length:** media 3.76 cm, SD 1.77, rango 1.0–6.9. Mayor dispersión relativa, con clara separación de *setosa*.
- Petal.Width: media 1.20 cm, SD 0.76, rango 0.1–2.5. Alta variabilidad, con potencial de discriminación entre las tres especies.

Aspectos destacados del dataset:

- Escala homogénea de medidas: todas las variables en centímetros \rightarrow comparaciones y análisis multivariados sin necesidad de reescalado inmediato.
- Colinealidad esperada: Petal.Length y Petal.Width muestran alta correlación, lo que debe considerarse en regresiones o PCA.
- Grupos biológicos claros y balanceados: un escenario ideal para aprendizaje, aunque poco frecuente en estudios ecológicos reales.
- Potencial de discriminación: las variables de pétalos concentran el mayor poder de separación, coherente con su relevancia funcional en la biología reproductiva de las plantas.

3 Matriz de correlaciones y distribuciones entre variables numéricas

La **Figura 1** combina tres tipos de información: distribuciones univariadas, relaciones bivariadas y correlacciones númericas.

```
num_df <- df %>% select(where(is.numeric))
Fig1<- GGally::ggpairs(
    df,
    columns = 1:4, # solo variables numéricas
    mapping = aes(color = species), # color por especie
    upper = list(continuous = wrap("cor", size = 3)),
    diag = list(continuous = wrap("densityDiag", alpha = 0.6))
Fig1</pre>
```


Figura 1: Matriz de dispersión y correlación de las variables cuantitativas.

3.1 Distribuciones univariadas

• Sepal.Length:

- Setosa: concentrada en valores bajos (4.3 5.8 cm), muy homogénea.
- Versicolor: rango intermedio (4.9 7.0 cm).
- Virginica: valores altos (4.9 7.9 cm), con ligera superposición con Versicolor.
- Interpretación: útil para separar Setosa, pero Versicolor y Virginica se solapan.

• Sepal.Width:

- Distribución amplia en todas las especies.
- Setosa tiende a mayores valores promedio, pero con solapamiento considerable.
- Interpretación: poco poder discriminante, refleja variabilidad natural en la anchura del sépalo.

• Petal.Length:

- Setosa: valores muy bajos (1.0 1.9 cm), sin solapamiento con las otras especies.
- Versicolor: rango medio (3.0 5.1 cm).

- Virginica: valores altos (4.5 6.9 cm).
- Interpretación: variable clave, separa Setosa y discrimina bastante bien Versicolor vs Virginica.

• Petal.Width:

- Setosa: valores muy bajos (0.1 0.6 cm).
- Versicolor: rango medio (1.0 1.8 cm).
- Virginica: valores altos (1.4 2.5 cm).
- Interpretación: la más robusta para separar las tres especies, casi sin solapamiento.

3.2 Relaciones bivariadas

- Sepal.Length vs Sepal.Width: gran solapamiento entre especies, con nubes de puntos mezcladas. Setosa muestra ligera tendencia a sépalos más anchos.
 - Interpretación: baja capacidad de discriminación.
- Sepal.Length vs Petal.Length: patrón positivo moderado. Setosa queda claramente apartada (pétalos muy cortos). Versicolor y Virginica siguen una línea ascendente, con solapamiento parcial.
 - Interpretación: ayuda a diferenciar Setosa, pero no tanto entre las otras dos.
- Sepal.Length vs Petal.Width: tendencia positiva clara. Setosa aislada (pétalos estrechos). Virginica tiende a valores más altos.
 - Interpretación: más útil que Sepal. Length solo, pero aún con solapamientos.
- Sepal.Width vs Petal.Length: relación débil, nubes muy mezcladas. Setosa separada por bajos valores de pétalo, no por el sépalo.
 - Interpretación: variable Sepal. Width poco informativa.
- Sepal.Width vs Petal.Width: relación débil, con gran dispersión. Setosa se distingue porque tiene pétalos angostos, no por anchura del sépalo.
 - Interpretación: no aporta discriminación extra.
- Petal.Length vs Petal.Width: relación lineal muy fuerte, tres grupos claramente separados. Setosa aislada en valores bajos; Versicolor intermedia; Virginica en el rango alto.
 - Interpretación: la combinación de estas dos variables es la mejor para clasificar especies.

3.3 Correlaciones numéricas

• Petal.Length vs Petal.Width: r 0.96 (correlación muy alta). Variables casi redundantes, pero en conjunto definen un espacio morfológico clave.

- Sepal.Length vs Petal.Length: r 0.87 (correlación fuerte). A mayor sépalo, mayor pétalo, patrón general de tamaño.
- Sepal.Length vs Petal.Width: r 0.82 (correlación alta). También refleja el gradiente de tamaño floral.
- Sepal.Width con el resto: correlaciones bajas (r entre -0.4 y 0.3). Confirma que aporta poca información discriminante.

3.4 Interpretación ecológica general

- Los **pétalos** son rasgos reproductivos clave: su longitud y anchura diferencian a las especies porque están ligados a estrategias de atracción de polinizadores.
- Los **sépalos**, en cambio, son más plásticos y menos específicos, lo que explica su bajo poder discriminante.
- La correlación entre variables de pétalo refleja que ambas describen el mismo fenómeno biológico (tamaño floral), pero su combinación refuerza la clasificación.
- En un contexto real de ecología vegetal, esto sugiere que la diferenciación entre especies del género *Iris* depende más de rasgos reproductivos (pétalos) que de rasgos de soporte (sépalos).