Graph Neural Networks

Natalia Dubljevic ENEL 645 Co-instructor Biomedical Engineering Schulich School of Engineering

W2024

Outline

- Learning Goals
- Graph neural networks
 - What is graph-structured data
 - What sorts of problems can we solve using graph neural networks
 - How are graph neural networks designed
- Summary

Learning Goals

- Understand graph structured data and its differences from data we've seen so far
- What are some applications of GNNs
- Some of the core concepts of GNN implementation such as
 - Message passing
 - K-hop neighbourhood

What is a graph anyways?

- Graphs have nodes and edges
- Edges represent the relationship between any two nodes

Graph structured data

Graphs can be used to represent data such as:

Social networks Molecules

[University of Kentucky]

Transit

[translink.ca]

Brain Connectivity

Citation Maps

[connectedpapers.com]

Graph structured data

GNNs aren't just for niche applications-- they're trendy in industry too!

Uber Eats

Pinterest

Google maps

[deepmind.google.com]

[Ying et al. 2018]

What we've seen so far

Signals

Images

Tabular

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship
0	39	State-gov	77516	Bachelors	13	Never- married	Adm- clerical	Not-in- family
1	50	Self-emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in- family
3	53	Private	234721	11th	7	Married- civ- spouse	Handlers- cleaners	Husband
4	28	Private	338409	Bachelors	13	Married- civ- spouse	Prof- specialty	Wife

- All of these can be represented as graphs!
- Graphs are one of the most general data structures

Text

Love looks not with the eyes, but with the mind; And therefore is wing'd Cupid painted blind. Nor hath love's mind of any judgment taste; Wings and no eyes figure unheedy haste: And therefore is love said to be a child, Because in choice he is so oft beguil'd.

 We can represent graphs as an adjacency matrix

- We can represent graphs as an adjacency matrix
- Edges can be weighted and/or directional

Weighted edges

- We can represent graphs as an adjacency matrix
- Edges can be weighted and/or directional

Directional edges

	A	В	С	D	E
Α	0	1	1	0	0
В	1	0	0	0	1
С	1	0	0	0	0
D	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	0	0	0	1
E	0	1	0	1	1

- We can represent graphs as an adjacency matrix
- Edges can be weighted and/or directional
- Can have features related to nodes, edges, or graph as a whole
 - Node features most common

	_A	В	С	D	Е
Α	0	1	1	1	0
В	1	0	0	0	1
C	1 1	0	0	0	0
D	1	0	0	0	1
E	0	1	0	1	1

	Α	В	С	D	Ε
A	0	1	1	1	0
В	1	0	0	0	1
С	1	0	0	0	0
D	1	0	0	0	1
E	0	1	0	1	1
	•				

	0	1	2	3	4
C	0	1	1	1	0
1	1	0	0	0	1
2	1	0	0	0	0
3	1	0	0	0	1
4	0	1	0	1	1

	0	1	2	3	4
0	0	1	1	1	0
1	1	0	0	0	1
2	1	0	0	0	0
3	1	0	0	0	1
4	0	1	0	1	1
	_				

	0	1	2	3	4
0	0	1	1	1	0
1	1	0	0	0	1
2	1	0	0	0	0
3	1	0	0	0	1
4	0	1	0	1	1
	I				

 Since they are often sparse, adjacency matrices are commonly represented as a list of edges

	0	1	2	3	4
0	0	1	1	1	0
1	1	0	0	0	1
2	1	0	0	0	0
3	1	0	0	0	1
4	0	1	0	1	1

(0, 1) (0, 2) (0, 3)

	0	1	2	3	4
0	0	1	1	1	0
1	1	0	0	0	1
2	1	0	0	0	0
3	1	0	0	0	1
4	0	1	0	1	1

	0	1	2	3	4
0	0	1	1	1	0
1	1	0	0	0	1
2	1	0	0	0	0
3	1	0	0	0	1
4	0	1	0	1	1

Tasks

Node Classification

Graph Classification

Edge prediction

Clustering

Prelude to message passing

- How do we create models that can accommodate graph-structured data?
- Naïve approach: Feed a node and its features into an FCNN

• Question: Are there any issues with this approach?

Prelude to message passing

- Unlike standard supervised learning, we do not have i.i.d. points!
 - Our nodes are connected to each other in unique ways

- We want to develop models that can exploit the relationships between the nodes
- We'll introduce 'message passing' which allows for information to be propagated effectively throughout a neural network

1. Message: Nodes send messages to their neighbors

- 1. Message: Nodes send messages to their neighbors
- 2. Aggregate:
 Messages are
 aggregated in a
 permutationinvariant way

- 1. Message: Nodes send messages to their neighbors
- 2. Aggregate:
 Messages are
 aggregated in a
 permutationinvariant way
- 3. Update: Node embeddings are updated

• The number of layers we have corresponds to the 'k-hop' neighborhood

Layer 1

- The more hops, the more distant information each node gets
- More hops is good for global context
- ...but too many hops will wash out local structural information

Trainable parameters

 Can think of it as two places we can have trainable parameters:

- Can think of it as two places we can have trainable parameters:
 - When passing a message

- Can think of it as two places we can have trainable parameters:
 - When passing a message
 - When updating an embedding

- Can think of it as two places we can have trainable parameters:
 - When passing a message
 - When updating an embedding

- Can think of it as two places we can have trainable parameters:
 - When passing a message
 - When updating an embedding

- Can think of it as two places we can have trainable parameters:
 - When passing a message
 - When updating an embedding

- Can think of it as two places we can have trainable parameters:
 - When passing a message
 - When updating an embedding

- Can think of it as two places we can have trainable parameters:
 - When passing a message
 - When updating an embedding

- Can think of it as two places we can have trainable parameters:
 - When passing a message
 - When updating an embedding

- Graph convolutional network (GCN) learns a simple matrix of weights
 - Can think of this matrix as a 'convolutional kernel' we use at each node instead of pixel

- Graph convolutional network (GCN) learns a simple matrix of weights
 - Can think of this matrix as a 'convolutional kernel' we use at each node instead of pixel

- Graph convolutional network (GCN) learns a simple matrix of weights
 - Can think of this matrix as a 'convolutional kernel' we use at each node instead of pixel

- Graph convolutional network (GCN) learns a simple matrix of weights
 - Can think of this matrix as a 'convolutional kernel' we use at each node instead of pixel
- GCN assumes self-edges!
 - So, each node is its own neighbor

Putting it all together

- We could just learn node/edge/graph embeddings e.g. node2vec
- To tailor network for a specific task, we add an appropriate head
- E.g. Node classification:

Graph layer 1

Graph layer 2

Softmax

*Size of h_i^2 = # of classes

$$h_A^2 \qquad e^{h_i^2} \qquad [0.7, 0.3]$$

$$h_B^2 \qquad \sum_{j}^{K} e^{h_j^2} \qquad [0.2, 0.8]$$

$$h_D^2 \qquad [0.5, 0.5]$$

$$h_D^2 \qquad [0.1, 0.9]$$

Summary

- Graph structured data is one of the most general types of data that encompasses a broad range of applications
- Graph neural networks can be used to solve a variety of tasks
- Since graph data is inherently different from other types of data, we need a unique framework to handle it
- Message passing allows for all the information in a graph to be effectively harnessed

Next class:

 We will learn how to work with graphs and build models using pytorch-geometric!

Cora dataset (Citations)

TU MUTAG Dataset (Molecules)

References

- J. Leskovec. CS224W: Machine Learning with Graphs. ** Great option if you want a whole COURSE on graph-based machine learning
- W. L. Hamilton. Graph Representation Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning, 14(3), pages 1-159. 2020.
- Sanchez-Lengeling, et al., "A Gentle Introduction to Graph Neural Networks", Distill, 2021.
- T. N. Kipf et al., Semi-Supervised Classification with graoh Convolutional Networks, ICLR 2017.
- K. Xu et al., How Powerful are Graph Neural Networks? ICLR, 2019.
- W. L. Hamilton et al., Inductive representation Learning on Large Graphs. NIPS, 2017.
- J. Zhou et al., Graph neural networks: A review of methods and applications. AI Open 1. Pages 57-81. 2020.
- Daigavane, et al., "Understanding Convolutions on Graphs", Distill, 2021.
- P. Lippe. Tutorial 7: Graph Neural Networks UvA DL Notebooks v1.2 documentation (uvadlc-notebooks.readthedocs.io). 2022.
- M. N. Bernstein. <u>Graph convolutional neural networks Matthew N. Bernstein (mbernste.github.io)</u>. 2023.
- Z. Wu et al., A Comprehensive Survey on Graph Neural Networks. IEEE Trans. On Neural networks and Learning Systems. 32(1). 2021.
- R. Anand. Math Behind Graph Neural Networks Rishabh Anand (rish-16.github.io). 2022.
- D. Grattarola. A practical introduction to GNNs Part 2 Daniele Grattarola. 2021.
- E. Benjaminson. <u>Understanding Message Passing in GNNs Emma Benjaminson Data Scientist (sassafras13.github.io)</u>. 2022.
- T. Masui. Graph Neural Networks with PyG on Node Classification, Link Prediction, and Anomaly Detection | by Tomonori Masui | Towards Data Science. 2022.

Thank you!

