1 Обратный оператор

1.1 Единица. Обратный элемент

1.1.1 Опр

Если х * у = е, то х называется левым обратным к у у называется правым обратным к х

1.1.2 Опр

xz = xz = r

х называется обратимый к z и обозначатеся $x=z^{-1}$

1.1.3 Лемма

Если $y,z\in A$

 $\exists x$ - левый обратимый и у - правый обратимый тогда:

- 1. z обратим
- 2. x = y = z

1.2 Обратная матрица

 K_n^n - алгебра матриц

1.2.1 Опр

Единичной матрицой нахывается $E: \forall A \in K_n^n$ AE=EA=A

1.2.2 Опр

Обратной матрице называется $A^{-1}:AA^{-1}=E$

1.2.3 Теорема

 $\exists A^{-1} \Leftrightarrow det A \neq 0$

1.2.4 Способы вычисления A^{-1}

$$[A|E] \sim [E|A^{-1}]$$

Союзная матрица

озная матрица
$$[A:\tilde{a}^i_j=A^i_j=(-1)^{i+j}M^i_j \text{ - союзная матрица}$$

$$A^{-1}=\frac{1}{\det A}\tilde{A}^T$$

1.3 Обртаный оператор

$$\varphi:X\to X$$

1.3.1 Опр

Обртаным к опреатору φ называется оператор φ^{-1} : $\varphi^{-1}\varphi=\varphi\varphi^{-1}=I$

1.3.2 Теорема

Оператор φ обратим если \exists базис в котором его матрица невырождена

1.3.3 NB

$$\tilde{A} = SAT$$

$$det\tilde{A} = det(SAT) = detSdetAdetY$$

1.3.4 Опр

Ядро
$$\varphi : Ker \varphi = \{x \ in X : \varphi x = 0\}$$

1.3.5 Лемма

$$Ket\varphi$$
 - ЛП

1.3.6 Опр

Образ
$$\varphi : \Im \varphi = \{ y \ in Y : \exists x : \varphi(x) = y \}$$

1.3.7 Лемма

$$\Im\varphi$$
 - ЛП

1.3.8 Теорема (о ядре и образе)

$$\varphi: x \to X \Rightarrow dim Ker \varphi + dim \Im \varphi = dim X$$

1.3.9 Теорема

 $]\varphi:X\to X\Rightarrow \exists \varphi^{-1}\Leftrightarrow dim\Im\varphi=dimX\Leftrightarrow dimKer\varphi=0$

2 Внешняя степень ЛОп

2.0.1 Опр

Определителем набора векторов $\{x_i\}_{i=1}^n$ называется число $det[x_1,x_2,\ldots,x_n]$ такое, что: $x_1\wedge x_2\wedge\cdots\wedge x_n=det[x_1,x_2,\ldots,x_n]e_1\wedge e_2\wedge\cdots\wedge e_n$

2.0.2 Опр

 $]\varphi:x o X$ Внешней степенью φ^{Λ_p} опреатора φ называется отображение: $\varphi^{\Lambda_p}(x_1\wedge x_2\wedge\cdots\wedge_p)=\varphi(x_1)\wedge\varphi(x_2)\wedge\cdots\wedge\varphi(x_p)$

2.0.3 Опр

Определитель линейного оператора φ $det \varphi = det [\varphi(x_1) \wedge \varphi(x_2) \wedge \cdots \wedge \varphi(x_p)] = det A_{\varphi} e_1 \wedge e_2 \wedge \cdots \wedge e_n$