1

1.1

- (1) 不能构成映射, 如 $x_1 = 0$, 则 $x_2 = 0, 1, \ldots, 9$ 均满足.
- (2) 能构成映射, $\forall y_1 \in \mathbb{R}, \exists ! y_2 = y_1^2$.
- (3) 不能构成映射, 如 $y_1 = 1$, 则 $y_2 = \pm 1$ 均满足.

1.2

(1)

$$R_f = \{2, -2, 0\}$$

(2)

$$\begin{cases} |A| = 9 \\ |R_f| = 3 \end{cases} \Rightarrow n = 3^9.$$

1.3

(1) 满射

$$\forall y \in \mathbb{Z}^+, \exists x = \pm (y-1) \in \mathbb{Z}, f(x) = y.$$

(2) 既不是单射,又不是满射.值域为 $\{0,1,2\}\subseteq \mathbb{Z}\cup \{0\}$

$$\forall y \in \mathbb{Z} \cup \{0\} \begin{cases} y \in \{0, 1, 2\}, \ \exists \ x = 3k + y(k \in \mathbb{Z}), \ f(x) = y. \\ y \notin \{0, 1, 2\}, \ \forall \ x \in \mathbb{Z}, \ f(x) \neq y. \end{cases}$$

(3) f,g 均是双射.

$$\begin{cases} \forall \ y \in \mathbb{Z}, \ \exists ! \ x = y - 1 \in \mathbb{Z}, f(x) = y. \\ \forall \ y \in \mathbb{Z}, \ \exists ! \ x = y + 1 \in \mathbb{Z}, g(x) = y. \end{cases}$$

(4) 满射.

$$\forall y \in \{0,1\}, \exists x = 2k + y + 1(k \in \mathbb{Z}), f(x) = y.$$

(5) 既不是单射,又不是满射.

$$\begin{cases} \forall \ y \in \mathbb{Z}, \ y < -16, \ \forall \ x \in \mathbb{Z}, \ f(x) > y. \\ \exists \ y = -15, \ f(0) = f(-2) = y. \end{cases}$$

1.4

证明.

$$\begin{cases} f: A \times B \to B \times A, \ (a,b) \mapsto (b,a) \\ g: B \times A \to A \times B, \ (b,a) \mapsto (a,b) \end{cases}$$

则

$$f \circ g = Id_{A \times B}, \quad g \circ f = Id_{B \times A}, \quad g = f^{-1}.$$

即 f 为双射,即证 $|A \times B| = |B \times A|$.

1.5

证明.

(1)
$$\forall f(x) = \sum_{i=0}^{n} a_i \cdot x^i, \ \exists! \ g(x) = \sum_{i=1}^{n} i \cdot a_i \cdot x^{i-1}, \ \frac{d}{dx} f(x) = g(x). \ (a_i \in \mathbb{R})$$

值域为 R[x], 是满射不是双射.

$$\forall \ g(x) = \sum_{i=0}^{n} a_i \cdot x^i, \ \exists \ f(x) = a + \sum_{i=0}^{n} \frac{a_i}{i+1} \cdot x^{i+1}, \ \frac{d}{dx} f(x) = g(x). \ (a, a_i \in \mathbb{R})$$

 \square

1.6

证明.

1.7

证明.

(1)

 \square

1.8

(1)

妮可

(2)

1.9

- (1)
- (2)
- (3)
- (4)
- (5)

1.10

证明.

1.11

- (1)
- (2)

1.12

- (1)
- (2)
- (3)
- (4)

1.13

- (1)
- (2)

妮可

1.14

(1)

(2)

(3)

1.15

(1)

(2)

1.16

证明.

1.17

(1)

(2)

1.18

(1)

(2)

(3)

1.19

(1)

(2)