Задание №4. Интерполирование функций

Цель задания: практическое освоение методов интерполирования функций

Часть 1. Полиномы Лагранжа и Ньютона

- 1. Программно реализуйте процесс построения:
- интерполяционного полинома в форме Лагранжа:

в двух вариантах:

- 1) по n равноотстоящим узлам для функции f(x) на интервале [a,b] (обозначение: $L_n(x)$);
- 2) по n «оптимальным» узлам (см. (3.2)) для функции f(x) на интервале [a,b] (обозначение: $Lopt_n(x)$):
- интерполяционного полинома в форме Ньютона

в двух вариантах:

- 1) по n равноотстоящим узлам для функции f(x) на интервале [a,b] (обозначение: $N_n(x)$);
- 2) по n «оптимальным» узлам (см. (3.2)) для функции f(x) на интервале [a,b] (обозначение: $Nopt_n(x)$):

$$x_i = \frac{1}{2} \left[(b-a) \cos \frac{(2i+1)}{2(n+1)} \pi + (b+a) \right], \quad i = \overline{0, n}.$$
 (3.2)

Примечание:

- 1) интерполируемая функция f(x) указана в Вашем варианте задания (см. Приложение). № варианта = Ваш № в списке группы.
- 2) [a,b] любой интервал непрерывности из области определения функции f(x) на Ваш выбор.
- 2. Найти максимальные отклонения интерполяционных полиномов (Лагранжа, Ньютона) от функции f(x) для разного количества узлов. Максимальное отклонение определяется по формуле:

$$RL_n = \max (|f(t_i) - L_n(t_i)|), \qquad i = 1..m, \qquad m \gg n.$$

$$RN_n = \max(|f(t_i) - N_n(t_i)|), \qquad i = 1..m, \qquad m \gg n.$$

где

n – количество узлов интерполирования, по которым строится интерполяционный полином;

m – количество точек разбиения интервала интерполирования, в которых определяется отклонение полинома от функции f(x) ($m \gg n$).

Заполнить таблицы (автоматически в Вашей программной реализации):

Таблица №1. Поведение интерполяционного полинома Лагранжа при увеличении количества узлов интерполирования.

Количество узлов (n)	Количество проверочных точек (m)	Максимальное отклонение (RL_n)	Максимальное отклонение ($RLopt_n$)

Таблица №2. Поведение интерполяционного полинома Ньютона при увеличении количества узлов интерполирования.

Количество узлов (n)	Количество проверочных точек (m)	Максимальное отклонение (<i>RN_n</i>)	Максимальное отклонение ($RNopt_n$)

3. Построить графики интерполируемой функции f(x) и интерполяционных полиномов для разного количества узлов интерполирования, например:

```
График №1: f(x), L_3(x), L_{10}(x), ..., L_{50}(x) График №2: f(x), Lopt_3(x), Lopt_{10}(x), ..., Lopt_{50}(x) ... или График №1: f(x), L_3(x), Lopt_3(x) График №2: f(x), L_{10}(x), Lopt_{10}(x)
```

Аналогичные графики построить для полиномов Ньютона.

Часть 2. Сплайны

- 1. Программно реализуйте процесс построения:
- интерполяционных сплайнов $S_{1,0}(x)$, $S_{2,1}(x)$, $S_{3,2}(x)$:

по n равноотстоящим узлам для функции f(x) на интервале [a,b] (обозначение: $S_{m,p}^n$);

2. Найти максимальные отклонения интерполяционных сплайнов ($S_{1,0}(x)$, $S_{2,1}(x)$, $S_{3,2}(x)$) от функции f(x) для разного количества узлов. Максимальное отклонение определяется по формуле:

$$RS_{m,p}^{n} = \max(|f(t_i) - S_{m,p}^{n}(t_i)|), \quad i = 1 ... k, \quad k \gg n.$$

где

n – количество узлов интерполирования, по которым строится интерполяционный сплайн;

k – количество точек разбиения интервала интерполирования, в которых определяется отклонение сплайна от функции f(x) ($k \gg n$).

Заполнить таблицы (автоматически в Вашей программной реализации):

Таблица №3. Поведение интерполяционных сплайнов при увеличении количества узлов интерполирования.

Количество узлов (n)	Количество проверочных точек (k)	Максимальное отклонение $(RS^n_{m,p})$

- 3. Построить графики интерполяционных сплайнов ($S_{1,0}(x)$, $S_{2,1}(x)$, $S_{3,2}(x)$) для некоторых значений n.
- 4. Построить графики распределения абсолютной погрешности на интервале интерполирования для кубического сплайна $S_{3,2}$ и полинома Лагранжа (или Ньютона) по равноотстоящим узлам при некоторых значениях n.

Варианты функций для выполнения задания

1.
$$f(x) = x - \sin x - 0.25$$
;

2.
$$f(x) = x^3 - e^x + 1$$
;

3.
$$f(x) = \sqrt{x} + \cos x;$$

4.
$$f(x) = x^2 + 1 - \arccos x$$
;

5.
$$f(x) = \lg x + \frac{7}{2x+6}$$
;

6.
$$f(x) = tg(0.5x + 0.2) - x^2;$$
 18. $f(x) = x^2 - 1 - \ln x;$

7.
$$f(x) = 3x - \cos x - 1$$
;

8.
$$f(x) = x + \lg x.5$$
;

9.
$$f(x) = x^2 - \arcsin(x - 0.2);$$
 21. $f(x) = x^2 \cos 2x + 1;$

10.
$$f(x) = x^2 + 4\sin x - 2$$

11.
$$f(x) = \operatorname{ctg} x + x^2$$
;

12.
$$f(x) = \operatorname{tg} x - \cos x + 0.1;$$
 24. $f(x) = x \ln(x+1) - 0.5.$

13.
$$f(x) = x \ln(x+1)$$
;

14.
$$f(x) = x^2 - \sin 10x$$
;

$$15. \ f(x) = \operatorname{ctg} x - x;$$

16.
$$f(x) = \operatorname{tg} 3x + 0.4 - x^2$$
;

17.
$$f(x) = x^2 + 1 - \operatorname{tg} x;$$

18.
$$f(x) = x^2 - 1 - \ln x$$

19.
$$f(x) = 0.5^x + 1 - (x - 2)^2$$
;

20.
$$f(x) = (x+3)\cos x - 1$$
;

21.
$$f(x) = x^2 \cos 2x + 1$$
;

10.
$$f(x) = x^2 + 4\sin x - 2;$$
 22. $f(x) = \cos(x + 0.3) - x^2;$

23.
$$f(x) = 2^x(x-1)^2 - 2;$$

24.
$$f(x) = x \ln(x+1) - 0.5$$
.