Projektowanie

TECHNOLOGIA KSZTAŁTOWANIA WYPRASEK NACZYNIOWYCH METODAMI OBRÓBKI PLASTYCZNEJ OBJĘTOŚCIOWEJ

Materiały pomocnicze do projektowania

Wojciech Presz

Uwaga! Dokument w fazie powstawania. Wersja 2014 r1

Do realizacji projektu konieczny jest dostęp do programu SolidWorks wersja edukacyjna.						

Nowoczesne projektowanie

Rysunek techniczny powstał jako forma zapisu otaczającego nas świata przestrzennego za pomocą rysunków płaskich. Umieszczane na papierze były następnie podstawą procesu wytwarzania na kolejnych stanowiskach roboczych. Konstruktor w przypadku złożonych urządzeń zmuszony był rozrysowywać wiele przekrojów, tak by zauważyć przestrzenne kolizje elementów. Umieszczane na rysunkach wykonawczych wymiary musiały być sprawdzane przez kolejne osoby, które starały się zauważyć często zdarzające się pomyłki. Na rysunkach zaznaczano także, inne prócz kształtu cechy przedmiotów: materiał, obróbkę cieplną, chropowatość poszczególnych powierzchni, tolerancje wymiarów i kształtów itp. Cechy te wiązane były z określonymi miejscami poszczególnych rysunków i przez niedopatrzenia mogły nie być przenoszone na kolejne arkusze.

Obecnie, stosowane jest powszechnie projektowanie parametryczne 3D, którego podstawą jest tworzenie konstrukcji przestrzennych w przestrzeni matematycznej. Tak zapisane konstrukcje umożliwiają automatyczne lub choćby wizualne wykrywanie kolizji przestrzennych, a więc praktycznie eliminują pomyłki rysunkowe i nie wymagają sprawdzania pod tym kątem. Automatyczne wymiarowanie eliminuje błędy wymiarowania poszczególnych rysunków wykonawczych, a cechy są przyporządkowywane poszczególnym powierzchniom lub bryłom, co powoduje ich automatyczne przenoszenie do tworów Parametryzacja wymiarów i budowanie zależności pomiedzy nimi powoduje łatwość wprowadzania zmian konstrukcyjnych, a pakiety obliczeniowe podają wymagane parametry konstrukcji lub jej części: objętość, powierzchnię, ciężar itp. Przestrzenny zapis elementów konstrukcji: (poszczególnych części) pozwala także na bezpośrednie generowanie kodów do maszyn lub centrów obróbczych sterowanych numerycznie, co obecnie w niektórych wypadkach wręcz eliminuje konieczność powstawania tradycyjnych rysunków technicznych. Matematyczny zapis przestrzenny elementów pozwala także na bezpośrednie przenoszenie ich do programów obliczeniowych np. MES (metoda elementów skończonych) w celu obliczeń wytrzymałościowych.

Sposób realizacji projektu

Projekt ma być realizowany w oparciu o edukacyjną wersje programu SolidWorks (2013/2014), w którym definiowane bryły posiadają łatwo zmienne parametry, co umożliwia proste wprowadzanie poprawek w trakcie procesu projektowania. Wybór akurat tego programu związany jest z jego powszechnością występowania i faktem, że posiada wymagane cechy. Nie oznacza natomiast jego wartościowania. Jest jednym z programów dobrze nadających się do nowoczesnego projektowania.

Wszystkie elementy oraz całość konstrukcji muszą być modelowane w przestrzeni i na tej podstawie sporządzane odpowiednie rysunki techniczne części. W trakcie projektowania Planu technologicznego (sekwencji kształtów procesu technologicznego) niezbędne jest obliczanie objętości kształtowanego materiału. Objętość ta obliczana (odczytywana) ma być za pomocą stosowanego programu.

<u>Niedopuszczalne jest tworzenie rysunków, które nie są odwzorowaniem modeli</u> przestrzennych.

1. Proces technologiczny

Wprowadzenie

W obrębie tego zadania przewidziane jest zaprojektowanie procesu technologicznego prowadzącego do powstania jednego z wyrobów reprezentatywnych pokazanych na rys. 1. Wyroby te zaliczane są do grupy wyrobów kształtowanych objętościowo.

Pierwszą czynnością przed przystąpieniem do projektowania procesu technologicznego, jest zamodelowanie kształtu wyrobu według wymiarów podanych na stronie tytułowej, a następnie sporządzenie jego rysunku (odpowiedni zwymiarowany przekrój na płaszczyźnie rysunku z tabelką).

Procesy obróbki objętościowej rzadko prowadzą do uzyskania gotowego wyrobu. Najczęściej otrzymuje się wypraskę, która wymaga odpowiednich operacji dodatkowych takich jak obróbka (wyrównywanie) powierzchni swobodnych lub korygowanie wymiarów. Oznacza to, że końcowy kształt uzyskany w procesie technologicznym obróbki plastycznej różni się od kształtu wyrobu o odpowiednie naddatki technologiczne.

W następnym kroku projektowania należy więc kształt wyrobu odpowiednio zmodyfikować o naddatki i uzyskać kształt wypraski, która ma być końcowym efektem operacji plastycznego kształtowania.

Teraz na podstawie kształtu wypraski należy zaprojektować proces technologiczny składający się z następujących po sobie *operacji technologicznych*.

Operacja technologiczna związana jest z jednym stanowiskiem roboczym np. z prasą. Operacja może być prosta tzn. składać się z jednego zabiegu technologicznego lub złożona – składać się z kilku zabiegów technologicznych.

Zabieg technologiczny związany jest, z kolei, z kształtowaniem realizowanym pojedynczym narzędziem (lub ich parą np. stempel-matryca) w trakcie jednego ruchu roboczego maszyny.

Każda operacja technologiczna wymaga:

- zaprojektowania kształtu wejściowego do operacji oraz kształtu wyjściowego z niej,
- zaprojektowania narzędzi (np. stempel, matryca),
- zaprojektowania przyrządu umożliwiającego właściwą pracę narzędzi,
- doboru odpowiedniej maszyny (prasy).

Plan postępowania

- 1. Rysunek techniczny wyrobu
- 2. Rysunek techniczny planu operacyjnego z umieszczonym na końcu wyrobem (na rysunku tym w miarę kolejnych faz procesu projektowania dodawane są kolejne kształty).
- 3. Analiza możliwości wykonania.
- 4. Obliczenie objętości materiału.
- 5. Ustalenie wymiarów wstępniaka i wrysowanie wstępniaka na początku planu operacyjnego.
- 6. Opracowanie procesu technologicznego (plan operacyjny)
- 7. Obliczenie sił i prac kształtowania w poszczególnych operacjach.
- 8. Rysunki narzędzi kształtujących.

- 9. Projekt przyrządu do wybranej operacji.10. Dobór prasy do wybranej operacji.

Tablica 1. Klasy dokładności według ISO

Metoda												
kształtowania	5	6	7	8	9	10	11	12	13	14	15	16
										1	1	
Kucie matrycowe												
Wyciskanie na gorąco						X	X	X	X	X	X	X
Wyciskanie na zimno			X	x	X	X	X	X				
Wyciąganie		X	X	X	X	X						
Dogniatanie			X	X	X	X	X	X				
Matrycowanie		X	X	X	X							
Młotkowanie		X	X	X	X	X	X					
Toczenie				X	X	X	X	X	X	X		
Szlifowanie	X	X	X	X								

Tablica 2. Najmniejsza opłacalna produkcja technologią obróbki plastycznej

Masa wyrobu	Najmniejsza	Rocznie
[kg]	seria [szt.]	[szt]
do 0.5	10000	30000
0.5 - 1	5000	15000
1.0 - 3.0	3000	9000
ponad 3.0	1000	2000

Przygotowanie wstępniaka

Rys..1. Przykłady metod przygotowania wstępniaka

Smarowanie

Dotyczy wstępniaka oraz w razie potrzeby, (trudne warunki) kształtów pośrednich.

Tablica 2. Smarowanie w procesach obróbki plastycznej objętościowej

Materiał obrabiany	Warstwa podsmarna	Smar
Stale węglowe Stopy aluminium Stopy cynku	Powłoki fosforanowe: fosforany cynku (najczęściej), manganu lub żelaza	Mydła sodowe Dwusiarczek molibdenu Grafit
Stale nierdzewne Stopy niklu	Powłoki szczawianowe:	Mydła sodowe Dwusiarczek molibdenu Grafit
Stopy aluminium Stopy miedzi		Stearynian cynku Stearynian sodu Lanolina Oleje Łoje

Zalecane parametry dotyczące realizacji procesów kształtowania na zimno przedmiotów osiowo-symetrycznych

Rys. 2. Procesy kształtowania przedmiotów osiowo-symetrycznych- od lewej: a – wyciskanie współbieżne pręta, b- wyciskanie współbieżne naczynia, c – wyiskanie współbieżne tulei, d-wyciskanie przeciwbieżne naczynia, e- wyciąganie naczynia.

Warunki ograniczające i sprawności procesów

Wyciskanie przeciwbieżne

Warunek 1: maksymalne odkształcenie

Rys. 3. Wpływ odkształcenia ε i względnej wysokości wstępniaka h_0/d_0 na wartość współczynnika sprawności η_4 procesu przeciwbieżnego wyciskania stalowych naczyń.

$$\mathcal{E} = \ln \frac{A_0}{A_0 - A_s} = \ln \frac{d_0^2}{d_0^2 - d_s^2} \tag{1}$$

Tablica.3. Orientacyjne wartości odkształcenia dla różnych materiałów możliwe do uzyskania w jednej operacji przeciwbieżnego wyciskania naczyń

Materiał	$\epsilon_{ m A}$	%	Materiał	ε _Α %	
Iviateriai	max	min	Wiateriai	max	min
Aluminium: AR1, AR2, A00, A0, A1, A2	98	10	Stale o szczególnie małej zawartości węgla: E04, E04A, E04J, E04JA	70	15
Stopy aluminium: PA1, PA2, PA11, PA38, PA4, PA 43	95	10	Stale niskowęglowe wyższej jakości: 08, 08YA, 10, 10YA, 15	65	20
Stopy aluminium: PA6, PA7, PA21, PA23, PA25, PA9	70	10	Stale węglowe wyższej jakości: 20, 25, 35, 35YA	65	20
Miedź: M1R, M1E, M2R, M2G, M3G, MOOB, MOB, MHDT	75	30	Stale stopowe:15H, 20H, 16HG, 15HGM, 15 HN	60	20
Mosiądz: M90, M80, M70, M63, MN65	65	20			

$$\mathcal{E}_{A} = \frac{\Delta A}{A_{0}} \bullet 100\% = \frac{A_{0} - A_{n}}{A_{0}} \bullet 100\% = \frac{A_{s}}{A_{0}} \bullet 100\% = \left(\frac{d_{s}^{2}}{d_{0}^{2}}\right) \bullet 100\%$$
(2)

Warunek 2: Zacieranie – powodujące przeciążenie narzędzi – ograniczenie względnej głębokości otworu

Uwaga! Wymiary dna wypraski podane są orientacyjnie. Jego dokładny kształt odzwierciedla kształt czoła stempla.

Rys.4. Zalecana względna głębokość otworu

Rys.5. Zalecana względna głębokość otworu w wypadku stempla stopniowego

Wyciskanie współbieżne

Warunek 1: Maksymalne odkształcenie

Tablica 4. Przybliżone wartości współczynnika sprawności η_2 dla współbieżnego wyciskania prętów i tulei za pomocą matrycy o kącie stożka roboczego $2\alpha=60^{\circ}$ i przy bardzo dobrym smarowaniu $/\mu\approx0.03\div0.05$ /.

Efficiency η				Efficiency η ₂		
Strain ε	$h_0 = 1$	$\underline{h_0} = 1^0$	Strain ε	$h_0 = 1$	$\underline{h_0} = 1^0$	
	$d_{\scriptscriptstyle 0}$	$d_{\scriptscriptstyle 0}$		$d_{\scriptscriptstyle 0}$	$d_{\scriptscriptstyle 0}$	
0,4	0,54	0,46	1,4	0,75	0,63	
0,6	0,61	0,52	1,6	0,77	0,65	
0,8	0,67	0,56	1,8	0,78	0,66	
1,0	0,71	0,59	2,0	0,79	0,67	
1,2	0,73	0,61	2,2	0,80	0,68	

Tablica 5. Maksymalne odkształcenia ((3) i (4)) możliwe do uzyskania w jednej operacji

wyciskania współbieżnego

wyciskania wsj		62116	gu		
Material	ε _Α %	з	Material	ε _Α %	3
Aluminum: AR1, AR2, A00, A0, A1, A2	98	3,9	Mild steel: E04, E04A, E04J, E04JA	75	1,4
Aluminium alloy: PA1, PA2, PA11, PA38, PA4, PA	95	3,0	Low carbon steel: 08, 08YA, 10, 10YA, 15	70	1,2
Aluminum alloy: PA6, PA7, PA21, PA23, PA25, PA9	70	1,2	Low carbon steel: 20, 25, 35, 35YA	60	0,9
Copper: M1R, M1E, M2R, M2G, M3G, MOOB, MOB, MHDT	80	1,6	Alloy steel:15H, 20H, 16HG, 15HGM, 15 HN	55	0,8
Brass: M90, M80, M70, M63, MN65	70	1,2	Alloy steel: 30H, 40H, 35HN, 1H13, 1H18N9T	50	0,7

$$\varepsilon = \ln \frac{A_0}{A} \tag{3}$$

$$\varepsilon_A = \frac{A_0 - A}{A_0} \bullet 100\% \tag{4}$$

Rys.6. Zalecane wymiary narzędzi

Wyciąganie

Warunek 1: Maksymalne odkształcenie

Tablica 6. Odkształcenie (5,6) możliwe do uzyskania w jednej operacji

Material	ε _Α %	3	Material	ε _Α %	3
Aluminum: AR1, AR2, A00, A0, A1, A2	30	0,35	Mild steel: E04, E04A, E04J, E04JA	40	0,5
Aluminum alloy: PA1, PA2, PA11, PA38, PA4, PA 43	30	0,35	Low carbon steel: 08, 08YA, 10, 10YA, 15	35	0,43
Aluminum alloy: PA6, PA7, PA21, PA23, PA25, PA9	30	0,35	Low carbon steel: 20, 25, 35, 35YA	35	0,43
Copper: M1R, M1E, M2R, M2G, M3G, MOOB, MOB, MHDT	40	0,5	Alloy steel:15H, 20H, 16HG, 15HGM, 15 HN	30	0,35
Brass: M90, M80, M70, M63, MN65	35	0,43	Alloy steel: 30H, 40H, 35HN, 1H13, 1H18N9T	30	0,35

$$\varepsilon = \ln \frac{A_0}{A} = \ln \frac{d_0^2 - d_w^2}{d^2 - d_w^2}$$
 (5)

$$\mathcal{E}_{A} = \frac{A_{0} - A}{A_{0}} \bullet 100 = \left(1 - \frac{A}{A_{0}}\right) \bullet 100 = \left(1 - \frac{d^{2} - d_{w}^{2}}{d_{0} - d_{w}^{2}}\right) \bullet 100$$
 (6)

Sprawność η_3 zależy od wartości odkształcenia ϵ , kąta matrycy 2α oraz współczynnika tarcia μ . Podobnie jak dla przepychania i wyciskania, zwiększenie wartości odkształcenia ϵ powoduje wzrost η_3

Dla wyciągania stalowych naczyń o fosforanowanych i namydlanych powierzchniach współczynnik sprawności procesu wynosi:

$$\eta_3 = 0.35 \div 0.6$$
 – przy odkształceniu $\epsilon = 0.15$

$$\eta_3 = 0.6 \div 0.85 - \text{przy odkształceniu } \epsilon = 0.5$$

Większe wartości η_3 odpowiadają wyciąganiu przy optymalnym kącie $/2\alpha/_{opt}$, dla którego siła wyciągania jest najmniejsza. Kąt ten zależy również od ϵ , a jego wartość wynosi:

$$/2\alpha/_{opt} = 12^{\circ}$$
 -przy odkształceniu $\epsilon = 0.15$

$$/2\alpha/_{opt} = 30^{\circ}$$
 -przy odkształceniu $\epsilon = 0.5$

W praktyce może wystąpić konieczność przeprowadzenia procesu wyciągania przy kątach $2\alpha > /2\alpha/_{opt}$. Dolne granice η_3 odpowiadają w przybliżeniu dwukrotnemu powiększeniu kąta stożka roboczego matrycy.

<u>Uwaga! W wypadku wyciągania innych materiałów niż stal przyjąć można te same</u> wartości sprawności.

Wyciąganie dwuzabiegowe

Fig. 11. Two steps drawing processes.

Większość materiałów w tablicy można kształtować w dwóch operacjach wyciągania bez zastosowania wyżarzania rekrystalizującego. Całkowite odkształcenie możliwe do uzyskania jest wówczas większe i np. dla stali niskowęglowej wynosi około $\varepsilon A = 50\%$, $\varepsilon = 0.7$. Stosuję się zwykle równy podział tego odkształcenia. Dobre wyniki uzyskuje się również, wtedy gdy w pierwszej operacji odkształcenie jest nieco większe – np. podział 0.4 i 0.3.

Przykłady procesów

Rys.3.70. Przebieg kształtowania cylindra amortyzatora

Rys.3.71. Przebieg kształtowania pojemnika wirówki

Projektowanie procesu

Wypraski naczyniowe

Plan postępowania

- Rysunek techniczny wyrobu
- 2. Analiza możliwości wykonania (sekwencja operacji)
- Rysunek techniczny wypraski (z naddatkami)
- 4. Obliczenie objętości materiału
- 5. Ustalenie wymiarów wstępniaka
- 6. Opracowanie procesu technologicznego
- 7. Obliczenie sił kształtowania
- 8. Rysunki narzędzi kształtujących
- Projekt przyrządu do wybranej operacji

Warunki ograniczające

- 1. Dopuszczalne naciski (stempel, matryca) wyciskanie
- Dopuszczalne odkształcenia w jednej operacji obciążenie narzędzi
- Pękanie lokalizacja odkształceń procesy wyciągania
- 4. Zacieranie (głębokość otworu) wyciskanie

WN1 Sekwencja operacji

- Wyciskanie przeciwbieżne : średnica wewnętrzna taka jak w wyrobie z uwzględnieniem luzu ok. 0.2 mm.
- 2. Wyciąganie (1 lub kilka) ścianki, aż do wymaganej wielkości.

W wersji WN1d dodatkowo: Prostowanie dna.

Wyo	Wyciskanie przeciwbieżne naczyń								
Liczba			isk na mpel	przy l/d	[MPa]				
wyprasek		1	2	3	4				
	do 1000	2800	2600	2300	1900				
1000	do 3000	2600	2400	2100	1700				
3000	do 5000	2300	2150	1900	1600				
5000	do 10000	2000	1900	1700	1500				
10000	do 20000	1700	1600	1500	1350				
20000	do 40000	1500	1450	1300	1200				

WN2 Sekwencja operacji

- Wyciskanie przeciwbieżne : średnica wewnętrzna taka jak średnica większa wyrobu z uwzględnieniem luzu ok. 0.2 mm.
- Obciskanie z wyciąganiem, do średnicy wewnętrznej przy założeniu równości pola przekroju (prostopadłego do osi) przestrzeni obciskanej oraz pola przekroju ścianki ponad grubość ścianki cieńszej.

Uwaga! Ze względu na konieczność dociśnięcia materiału do stempla pole a powinno być nieco większe niż pole b.

- 3. Prostowanie dna
- 4. Wyrównanie obrzeża

WN3 Sekwencja operacji

- Wyciskanie przeciwbieżne : średnica wewnętrzna taka jak w wyrobie z uwzględnieniem luzu ok. 0.2 mm.
- 2. Wyrównanie obrzeza
- 3. Podtaczanie
- 4. Prostowanie dna
- 5 Wyciskanie współbieżne nieprzelotowe -1/kilka (lub wyciąganie nieprzelotowe ścianki), aż do wymaganej wielkości.

WN4 Sekwencja operacji

- Wyciskanie przeciwbieżne : średnica wewnętrzna taka jak w wyrobie z uwzględnieniem luzu ok. 0.2 mm.
- 2. Wyrównanie obrzeża
- 3. Odcinanie dna
- Wyciskanie współbieżne nieprzelotowe -1/lkilka (lub wyciąganie nieprzelotowe ścianki), aż do wymaganej wielkości.
- 5. Wyrównanie obrzeża

Uwaga! Na rysunku brakuje operacji wyrównania obrzeża. Ostatni kształt jest kształtem po wyrównaniu, to znaczy, że nie ma kształtu po wyciskaniu współbieżnym.

Konstrukcja narzędzi

Konstrukcja stempli

Rys.3.78. Zalecane kształty uchwytowej części stempla

Rys.3.79. Zalecany kształt czołowej części stempla do wyciskania naczyń

Rys.3.80. Konstrukcja trzonowej części stempli do przeciwbieżnego wyciskania naczyń: a/ stempel pracujący bez ściągacza, b/ stempel współpracujący ze ściągaczem

Tablica 3.22. Stale zalecane na stemple i trzpienie do wyciskania

×		S	Stal		Naprężenia	7-100-0	\$redni-
Przeznacze-,	Wymagania	Rodzaj	Znak	Norma	dopuszczal- ne [MPa]		ca rów- noważna dla gwaran- cji właści- wości
SN	Największa wytrzymałość i od- porność na ścieranie	szybkotną- ca kobal- towa	SK8M	PN-77 H-85022	2500 šciskanie	63÷65	80
SN SW T	Duża wytrzymałość i odporność na ścieranie	szybkotną- ca wolfra- mowa	SW7M	11	2400 ściskanie	62÷64	80
SN SW T	Duża wytrzymałość i średnia odporność na ścieranie	narzędzio- wa chromo- wa	H12M /NCWV/	BN-63 0644-02	2200 ściskanie	60÷62	120
SN SW T	Duża wytrzymałość i średnia odporność na ścieranie	n	NC11 NC10	PN-69 H-85023	2000 ściskanie	60÷62	
T	Duża wytrzymałość na rozciąga- nie, małe opory tarcia	narzędzio- wa do pra- cy na go- raco	WCL azo- tow.	PN-77 H-85-021	1500 rozciąga- nie	azotow. 1200HV	- -

x/ SN - stemple do przeciwbieżnego wyciskania naczyń

SW - stemple do współbieżnego wyciskania tulei, naczyń i przedmiotów pełnych

T - trzpienie do współbieżnego wyciskania tulei i naczyń

Konstrukcja matryc

Tablica 3. 23. Przybliżone wymiary matryc w zależności od nacisków jednostkowych działających na ich powierzchnie wewnętrzne

Rodzaj matrycy	Matryca jednolita	Matryca dwupierścienio- wa	Matryca trzypierścieniowa
Schemat		0	
Jednostkowy nacisk wewnętrzny	p ≤ 1000 MPa	p = 1000 ÷ 1600 MPa	p = 1600 ÷ 2000 MPa
Średnica zewnętrzna matrycy w mm	$D = /3,5 \div 5/d_{o}$	D = /4 ÷ 6/ d _o	$D = /4 \div 6/d_0$
Średnica podziału matrycy w mm		d ₁ ≈ 0,9 √D . d _o	$d_1 = /1, 6 \div 1, 8/d_0$ $d_2 = /2, 5 \div 3, 2/d_0$

Uwaga! Kąt pochylenia tworzącej stożka wkładki matrycowej przyjmuje się: 0.5-1 stopnia (od dołu szerzej).

Tablica 3.24. Stale zalecane na matryce do wyciskania

la a		•	Stal		Naprężenia	Zalecana	Srednica
Przezna- czepie	Wymagania	Rodzaj	Znak	Norma	dopuszczalne [MPa]	twardość [HRC]	równoważna dla gwaran- cji właści- wości
0	Największa wytrzymałość 1 odporność na ściera- nie	szypkotnąca kobaltowa	SK8M	PN-77 H-85022	2500 ściskanie	63-65	100
ieni	Duża wytrzymałość i odporność na ścieranie	szybkotnąca wolframowa	SW7M	_11_	2400 ściskanie	62-64	100.
pierścienie robocze	Duża wytrzymałość i średnia odporność na ścieranie	narzędziowa chromowa	H12M /NCWV/	BN-63 0644-02	2200 ściskanie	60-62	160
	Duża wytrzymałość i średnia odporność na ścieranie	. #	NC11 NC10	PN-69 H-85023	2000 ściskanie	60-62	
	Duża wytrzymałość na rozciąganie	chromowo- manganowo- krzemowa	35HGS	PN-72 H-84030	1200 rozciąganie	44-50	-
nie jące	- " -	sprężynowa chromowo- krzemowa	50HSA	PN-65 H-84032	1100 rozciąganie	44-50	, -
ścier	_ " _	chromowo- molibdenowa	40HM	PN-72 H-84030	1100 rozciąganie	270-330 [HB]	100
pierścienie wzmacniające	Bardzo duża wytrzyma- łość na rozciąganie	chromowo- niklowo- molibdenowo wanadowa	45HNMF	PN-72 H-84030	1400 rozciąganie	270-330 [нв]	100
	Bardzo duża wytrzyma- łość na rozciąganie	narzędziowa do pracy na gorąco	WNL	PN-60 H-85021	1300 rozciąganie	40-45	

Przedstawiony powyżej rysunek wykonawczy jest rysunkiem odnoszącym się do końcowych wymiarów zmontowanej matrycy. Proces montażu powoduje nieznaczne i

trudne do przewidzenia zmiany jej wymiarów. Po montażu następuje więc korekta ostatecznym szlifowaniem.

Konstrukcja przyrządów

Rys. 3.95. Przyrząd na prasę mechaniczną do przeciwbieżnego wyciskania naczynia /opis w tekście/

Rys. 3.96. Przyrząd na prasę mechaniczną do współbieżnego wyciskania tulei z dnem /opis w tekście/

Rys. 3.102. Przyrząd na prasę hydrauliczną bez wypychacza do nie-przelotowego wyciągania naczynia z kołnierzem /opiś w tekście/

Przykładowy projekt

Wypraska typ WN3

1 Dane wstępne

Wyrób – wypraska naczyniowa

Typ wypraski – WN 3

- Średnica zewnętrzna w części kołnierza d₁=50 mm
- Średnica zewnętrzna wypraski $d_2 = 45$ mm
- Średnica wewnętrzna wypraski d₃ = 40mm
- Wysokość całkowita wypraski h₁ = 90 mm
- Wysokość kołnierza h₂ = 15mm
- Grubość dna g = 8mm

Materiał S10C (stal niskoweglowa)

Stal S10C charakteryzuje się krzywą umocnienia: $\sigma_p=580 \bullet \epsilon^{0.28}$

1.1 Rysunek gotowego wyrobu

Rys. 2. Rysunek wykonawczy wypraski naczyniowej

1.2 Dobranie procesów technologicznych

Aby uzyskać gotowy wyrób należało rozważyć zastosowanie procesu wyciskania przeciwbieżnego naczynia, a następnie proces wyciskania współbieżnego. Naczynie otrzymane w procesie wyciskania przeciwbieżnego powinno mieć średnicę wewnętrzną dw równą średnicy wewnętrznej gotowego wyrobu (z zachowaniem luzu dla wykonania operacji wyciskania współbieżnego), a średnicą zewnętrzną równą średnicy zewnętrznej kołnierza wyrobu (pomniejszonej o luz umożliwiający włożenie do matrycy w przyrządzie do wyciskania współbieżnego)

2 Założenia do projektu procesu plastycznego kształtowania na zimno

W celu zaprojektowania procesu kształtowania plastycznego obliczono objętość gotowego wyrobu, wysokość wstępniaka, oraz dobrano najmniejszą liczbę operacji.

2.1 Obliczanie objętości wypraski

2.1.1 Obliczanie objętości gotowego wyrobu (V)

Obliczono objętość gotowego wyrobu (na podstawie modelu 3d)

$V = 46478 \text{ mm}^3$

2.1.2 Obliczanie objętości wypraski z której ukształtowano gotowy wyrób (V wypraski 1)

Z uwagi na zachodzący proces wyżarzania rekrystalizacyjnego i straty na utlenianie powiększono objętość materiału, z którego zostanie ukształtowany wyrób o 5%.

$$V_{wypraski\ 1} = 1.05\ V = 48802\ mm^3$$

2.1.3 Obliczanie wysokości wypraski uzyskanej w procesie wyciskania przeciwbieżnego (hg)

Wypraska uzyskana w procesie technologicznym zostaje poddana operacjom ścięcia naddatku wypraski oraz podtoczenia. Poniżej przedstawiono rysunek wypraski poddanej tym operacjom, z której zostanie wykonany wyrób gotowy. Wymiary jej obliczono z warunku stałej objętości.

Rysunek 3. Rysunek wypraski przygotowanej do wyciskania współbieżnego.

W celu obliczenia wysokości wypraski założono wartości d_z i d_w, które powinny odpowiadać wymiarom gotowej wypraski w części kołnierzowej, z zachowaniem niezbędnych luzów dla wykonania wyciskania współbieżnego:

 $d_z = 49,5 \text{ mm}$

 $d_{\rm w} = 40.2 \; {\rm mm}$

 $d_{z2}=45 \text{ mm}$

g=8 mm

Z warunku stałości objętości obliczono wysokość wypraski:

Wysokość wypraski wynosi: $h_g = 56 \text{ mm}$

Rysunek 4. Rysunek wypraski przygotowanej do operacji wyciskania współbieżnego.

2.1.3 Obliczanie objętości wypraski uzyskanej w wyniku wyciskania przeciwbieżnego ($V_{wypraski2}$)

Ponieważ w wyniku procesu wyciskania przeciwbieżnego materiał wypływa do góry powstaje nierówna górna powierzchnia wyrobu, założono operacje planowania nierównej powierzchni.

Obliczono objętość naddatku, zakładając wysokość naddatku równą 3mm.

$V_{naddatku} = 1966 \text{ mm}^3$

Aby wypraskę uzyskaną w operacji wyciskania przeciwbieżnego dalej kształtować w procesie wyciskania współbieżnego należy podtoczyć ją tak, aby możliwe było poprawne ułożenie w matrycy.

Obliczono objętość podtoczonego naddatku:

$V_{podtoczenia} = 5902 \text{ mm}^3$

Poniżej pokazano rysunek wypraski uzyskanej w wyniku operacji wyciskania przeciwbieżnego, przed operacjami usunięcia naddatku i podtoczenia.

Rysunek 5. Wypraska uzyskana w wyniku procesu wyciskania przeciwbieżnego wraz z naddatkami. Objętość powyższej wypraski wynosi:

 $V_{wypraski2} = 56670 \text{ mm}^3$

2.1.3 Obliczanie wysokości wstępniaka (h₀)

Założono średnicę wstępniaka z uwzględnieniem luzu na włożenie do matrycy:

 $d_0 = 49$ mm oraz jednostronną fazę 2-45.

Obliczono wysokość wstępniaka z warunku stałej objętości:

$$V_w = V_{wypraski2}$$
 $h_0 = 30mm$

Rysunek 6. Wstępniak.

2.2 Dobór liczby operacji

Aby uzyskać wymagany wyrób należy zastosować operacje wyciskania przeciwbieżnego, ścięcia naddatku, podtoczenia oraz wyciskania współbieżnego. Poniżej rozpatrzono warunki wykonania operacji wyciskania przeciwbieżnego i współbieżnego.

2.1.3 Operacja wyciskania przeciwbieżnego

Aby wypraska została wykonana w jednej operacji musi być spełniony warunek względnej głębokości gniazda wypraski: $\frac{h_g}{d_s} \le 1.8$

$$\frac{h_g}{d_s} = \frac{56}{40,2} = 1,39$$

Warunek został spełniony.

Ponadto odkształcenie względne procesu nie może przekroczyć wartości dopuszczalnych

 $\varepsilon_{Aproc} \leq \varepsilon_{Adop}$

$$\varepsilon_A = \frac{d_s^2}{d_0^2} \cdot 100 = \frac{40.2^2}{49.5^2} \cdot 100 = 66\% < \varepsilon_{Adop} = 70\%$$

Warunek został spełniony. Wypraska zostanie wykonana w jednej operacji.

2.1.3 Operacja wyciskania współbieżnego

Aby wypraska mogła być wykonana w jednej operacji musi być spełniony następujący warunek: $\epsilon_{proc} \leq \epsilon_{dop}$

$$\varepsilon_{proc} = \ln \frac{d_{z0}^2 - d_{w0}^2}{d_z^2 - d_w^2} = \ln \frac{50^2 - 40^2}{45^2 - 40.2^2} = 0.75$$

 $\varepsilon_{\text{dop}}=1,2$

Warunek został spełniony

3 Obliczenia do poszczególnych operacji

W kolejnej części projektu wykonano obliczenia odkształcenia plastycznego, wartości sił kształtowania, jednostkowych nacisków oraz pracy plastycznego odkształcenia dla przewidywanych operacji.

3.1 Operacja wyciskania przeciwbieżnego

3.1.1 Obliczenie odkształcenia plastycznego

Odkształcenie w mierze logarytmicznej:

$$\varepsilon_{procesu} = \ln \frac{d_0^2}{d_0^2 - d_s^2} = \ln \frac{49.5^2}{49.5^2 - 40.2^2} = \ln 2.9 = 1.08$$

3.1.2 Obliczenie siły kształtowania (P)

$$P = A_p \frac{W}{\eta}$$

W – praca jednostkowa odkształcenia plastycznego

η - sprawność procesu

A_p – przekrój wypychacza (na niego działa siła)

A_p=A₀ – dla operacji wyciskania przeciwbieżnego gdzie A₀ – przekrój otworu matrycy

$$A_0 = \frac{\pi}{4} \cdot d_0^2 = \frac{\pi}{4} \cdot 49.5^2 = 1924 mm^2$$

$$w = \frac{c}{1+n} \cdot \boldsymbol{\varepsilon}^{n+1} = \frac{580}{1+0.28} \cdot 1,08^{0.28+1} = 500 \left[\frac{Nmm}{mm^3} \right]$$

Uwzględniając ε =1,08

Na podstawie wykresu z [1]:

 $\eta = 0.48;$

$$\frac{h_0}{d_0} = \frac{30}{49} = 0.61$$

Siła w operacji wyciskania przeciwbieżnego będzie równa:

$$P = 1924 \cdot \frac{500}{0.48} = 2004167[N] = 2004[kN]$$

3.1.3 Obliczenie nacisków na matrycę (p_m) i na stempel (p_s)

Obliczenie nacisków na matryce (p_m)

$$p_{m} = \frac{W}{\eta} = \frac{500}{0.48} = 1042MPa$$

Ponieważ p_m >1000 – stosujemy jeden pierścień wzmacniający [1]

 $D = (4 \div 6) d_0$

 $D=(198 \div 294) \text{ mm}$

Założono w przyrządzie gniazdo pod matrycę o średnicy 250 mm

Następnie obliczono średnicę podziałową między pierścieniem roboczym i wzmacniającym:

$$d_1 = 0.9\sqrt{D \cdot d_0} = 99.6 \cong 100[mm]$$

Rysunek 7. Matryca do wyciskania przeciwbieżnego.

Obliczenie nacisków na stempel (ps)

Z warunku równowagi sił:

$$p_{s} = p_{m} \frac{d_{0}^{2}}{d_{s}^{2}} = 1042 \frac{49.5^{2}}{40^{2}} = 1596 MPa$$

gdzie p_{sdop} =1600 MPa przy wykonywaniu 20 000 sztuk wyrobu (z uwzględnieniem wytrzymałości zmęczeniowej stempla)

3.2 Operacja wyciskania współbieżnego

3.2.1 Obliczenie odkształcenia plastycznego

Odkształcenie w mierze logarytmicznej:

 $\varepsilon_{\text{proc}}=0.75$

3.2.2 Obliczenie siły kształtowania (P) w opercji wyciskania współbieżnego.

$$P = A_p \frac{W}{\eta}$$

Przekrój na który działa siła:

$$A_p = \frac{\pi}{4} (d_z^2 - d_w^2) = \frac{\pi}{4} (50^2 - 40^2) = 707 mm^2$$

$$w = \frac{c}{1+n} \cdot \varepsilon^{n+1} = \frac{580}{1+0.28} \cdot 0.75^{0.28+1} = 313.6 \left[\frac{Nmm}{mm^3} \right]$$

 $\eta = 0.56$

$$P = 707 \cdot \frac{313,6}{0.56} = 396[kN]$$

3.2.3 Obliczenie nacisków na matrycę (p_m) i na stempel (p_s)

Dla wyciskania współbieżnego $p_m = p_s$

Obliczenie nacisków na matrycę:

$$p_{m} = \frac{W}{\eta} = \frac{313.6}{0.56} = 560MPa$$

 $p_m = p_s = 560 \text{ MPa}$

3.3 Obliczenie pracy całkowitej

Pracę obliczono ze wzoru:

 $L = P \odot s_r$

3.3.1 Obliczenie pracy przy wyciskaniu przeciwbieżnym

Do obliczenia pracy wyznaczono wielkość skoku roboczego:

$$s_r = h_0 - g_d = 30 - 8 = 22 \text{ mm}$$

 $L = 2004167 \odot 22 = 44092 \text{ J} = 44,09 \text{ kJ}$

3.3.1 Obliczenie pracy przy wyciskaniu współbieżnym

$$s_r = h - h_1 = 56 - 15 = 41 \text{ mm}$$

 $L=396\ 000\odot 41=16236\ J=16,236\ kJ$

3.4 Plan operacyjny

Rys.8 Plan operacyjny

3 Technologiczny schemat realizacji wyciskania przeciwbieżnego

4.1 Rysunek narzędzia : matrycy i stempla

W celu zaprojektowania stempla przyjęto następujące założenia [1]:

h₁ ≥ wysokości naczynia

 $h_1 \geq 67 \ mm$

przyjęto:

 $h_1 = 80 \text{ mm}$

 d_s – średnica stempla

 $d_s = 40 mm$

Dane do narysowania matrycy zostały obliczone w punkcie 3.1.3.

Rys.9. Konstrukcja stempla i matrycy

Rys. 10. Matryca składana

Rys. 11. Stempel

Projektowanie przyrządu

Przyrządy służą do posadowienia narzędzi, i wzajemnego ich pozycjonowania w trakcie realizacji operacji. Najczęściej składa się je, odpowiednio do potrzeb z dostępnych na rynku elementów. Przyrząd składa z płyty dolnej, w której mocowana jest matryca i wypychacz, płyty górnej, w której mocowany jest stempel oraz płyty ściągacza, w której mocowany jest ściągacz. Wzajemne pozycjonowanie płyt zapełniają słupy i prowadnice. Ilość słupów i rodzaj ich prowadzenia zależy od prowadzonego procesu, dostępnej maszyny itp. Przykłady płyt oferowanych przez jednego z producentów oraz jednego ze sposobów prowadzenia pokazane są na rys. 1.

Rys. 12. Przykłady płyt i jeden ze sposobów ich wzajemnego prowadzenia

W projekcie należy zaprojektować (model 3d) przyrząd będący miejscem posadowienia narzędzi: stempla i matrycy oraz zapewniający wzajemne ich pozycjonowanie. W przyrządzie tym ma być realizowana operacja wyciskania przeciwbieżnego naczynia. Przebieg tej operacji oraz obowiązująca konstrukcja przyrządu pokazuje rys. 2.

Rys.13. Operacja wyciskania przeciwbieżnego naczynia: załadowanie wstępniaka (górne położenia suwaka prasy), wyciśnięcie naczynia (dolne położenie suwaka prasy), wycofanie stempla z jednoczesnym wypchnięciem naczynia z matrycy i zepchnięciem naczynia ze stempla

W sposób dokładny (tak jak do wykonania) mają być zaprojektowane narzędzia oraz ich posadowienia. Oznacza to, zaprojektowanie wszystkich elementów włącznie ze śrubami, kołkami, podkładkami itp. Poszczególne części mają mieć podcięcia obróbkowe, fazy, promienie, gwinty itp. Na rys. 3 pokazane są posadowienia, których wszystkie części mają być zaprojektowane szczegółowo (3d – do wykonania).

Rys. 14. Posadowienia stempla i matrycy (obowiązuje konstrukcja dokładna – śruby, podcięcia, fazy)

Przyrząd, w którym umieszczone mają być posadowienia z narzędziami należy otrzymać od prowadzącego w formie złożenia 3d umozliwiającego realizacje ruchów roboczych, kolizji itp.

4.2 Ruch narzędzia dla operacji wyciskania przeciwbieżnego

Podstawą do wyznaczenia niezbędnych do ustawienia prasy ruchów procesu jest symulacja pracy przyrządu w przestrzeni programu. Zapisem skrajnych położeń przyrządu jest rysunek zbiorczy (rys.4). Na nim zaznacza się poszukiwane wymiary to znaczy: gabaryty przyrządu w górnym położeniu (H, A, B), skok prasy (S), ruch roboczy (Sr), ruch wypychacza (Sw).

Rys.15. Proces wyciskania przeciwbieżnego

4.2.1 Wyznaczenie skoku prasy dla operacji wyciskania przeciwbieżnego

Skok prasy wyznaczony z symulacji ruchów przyrządu rys.4.

S = 128 mm. Skok prasy.

Sr=22 mm. Skok roboczy, w czasie którego występuje siła procesu - konieczny do wyznaczenia pracy procesu).

Rys.16. Wyznaczenie ruchów narzędzi

4.2.2 Wyznaczenie skoku wypychacza dla operacji wyciskania przeciwbieżnego

Skok wypychacza maszyny musi być wystarczająco duży, aby usunąć wypraskę z przyrządu, rys.5. W przypadku wyciskania przeciwbieżnego wynosi on: $s_{\rm w}=64~\rm mm$

Dobór prasy

Rys.17. Prasa wysięgowa z poduszką: a) mimośrodowa, b) hydrauliczna, 1-suwak, 2-skok suwaka, 3-poduszka

Tablica 12a. Parametry wybranych pras mimośrodowych

Wielkos	ść	Symb.	Jedn. Typ prasy								
					PMS10	PMS16	PMS25	PMS40	PMS63	PMS10	PMS16
					C	C	C	C	C	0D	0B
Nacisk nominalny P _n		P _n	kN		100	160	250	400	630	1000	1600
Wysięg		W	mm		160	180	220	250	280	315	400
Skok na suwaka	ıstawny	S	mm		6-70	6-80	8-90	8-100	8-110	10-110	20-140
Liczba skoków n _s		n _s	1/min		160;180	140;165	80;115; 145	60;90; 120	65;85; 110	60	40
Odl. suwaka od stołu dla R=0 i S _{max}		О	mm		270	220	250	280	315	305	440
Nastawność suwaka R		R	mm		56	63	70	80	90	85	120
Wymiary stołu Bx		BxL	mm		430X31 5	500x355	630x450	710x500	800x560	900x620	1140x76 0
Średnica otworu w stole		D/D ₁	mm		140/160	160/180	200/220	220/250	250/280	325/365	450/490
	Grubość płyty mocującej		Mm		56	63	70	80	90	100	125
	Średn. otw. w płycie		Mm		60	80	100	110	120	180	250
Średnica otw. W suwaku		d	mm		25	32	32	40	40	50	50
Praca	Ruch poj.		kGm		40	45			230	240	1200
użytec zna	Ruch ciągły		kGm		45	20			120	120	660
wypyc	Nacisk		kN		10	16	16		63	49	160
hacz	Skok		mm		30	35			50	50	75

+Tablica 12b - Parametry wybranych pras hydraulicznych

			Model prasy PYE S/1-M								
Wielkość	Wiel.	Jedn.	10	25	40	63	100	160	250		
Nacisk	Pn		100	250	400	630	1000	1600	2500		
Siła powrotu	Pp		21	50	85	100	200	340	380		
Prędkość stempla			110	115	110	63	320	200	210		
Odjazd		Mm/s	42	32	26	18	14	9	9		
Średnia Dojazd		_	450	450	450	380	200	125	110		
Skok	S	Mm	400	500	500	500	500	500	500		
Wysięg		Mm	250	360	360	360	360	360	360		
Wys. Zabudowy		Mm	630	800	800	800	800	800	800		
Wym. Stołu [A x B]	A	Mm	500	630	630	750	750	900	900		
	В		400	500	500	560	560	630	630		
Kanały T stołu		Mm	18	18	22	22	22	22	28		
Śr. Otwóru stołu C		Mm	140	180	200	200	200	200	200		
Wys. Stołu od		Mm	710	710	710	710	710	800	800		
podłoża											
Wym. Suwaka [D x	D	Mm	360	450	450	530	530	750	750		
E]	Е		280	360	360	400	400	450	450		
Otw. cent. w suwaku	d	Mm	25	32	40	40	50	50	65		
Kanały T w suwaku	K	Mm	-	18	22	22	22	22	28		
Podłączenie		kW	5,25	8,75	12,6	12,6	16,6	16,6	20,1		
Masa własna		Kg	1300	2200	3150	4100	5040	7000	8000		
Gabaryty prasy		Mm	1000	1000	1100	1150	1150	1250	1250		
Szerokość		Mm	1260	1550	1750	1850	1850	2200	2200		
Głębokość Wysokość		Mm	2300	2650	2800	2950	3100	3450	3450		

Tablica 13 a. Zalecane materiały na matryce i pierścienie wzmacniające

	Charak-		Zalec	ana stal narzę	Granica plas-	Zaleca-	Średnica równo-	Wskaźnik porównawcz własności ¹)			
Narzędzie	terysty- ka ob- ciąźę- nia	Wymagania	rodzaj	znak	norma	tyczności R _{0.2} (R _e) MPa	D:1	waż, dla gwarancji własności mm	odpor - ność na ściera- nie	ciągli- wość	skrawal ność
1	. 2	3	4	5	6	7	8	9	10	11	12
Matryce	Duże na- pręże- nia roz- ciągają- ce i sil- ne ście- ranie	Najwyższa wy- trzymałość i odporność na ścieranie	Szybkotnąca kobaltowa	SK8M	PN-77 H-85022	2450 ściskunie	63 65	100	9 .	3	5
		Dobra wy- trzymałość .i odporność na ściera- nie	Szybkotnąca wolframowa	SW7M		2350 ściskanie	6264	100	8	4	5
		Dobra wy- trzymałość i średnia odporność na ścieranie	Chromowa odporna na korozję i zaroodpor- na	Н12М	BN -63 0644-02	2150 ściskanie	60-62	160	7	5	5
		Dobra wytrzy- małość i śred- nia odporność na ścieranie	Narzędzio- wa do pra- cy na zimno	NC10	PN-69 H-85023	2000 ściskunie	60-62		6	5	5
		Najwyższa wy- trzymałość na rozciąganie. Średnia rozsze- rzalność cieplm	Narzędziowa na gorąco	WCL	PN-77 II-85021	1350 rozciąg.	380-450 (HB)		-	10	10
		Dobra wy trzy- małość na roz- ciąganie. Mała rozszerzalność cieplna	Chromowo- manganowo- krzemowa	35MGS	PN72 H-84030	1200 rozciąg.	440-500 (HB)		-	4	5
		Duża wytrzy- małość na roz- ciąganie. Mała rozszerzalność cieplna	Sprężynowa - chromowo- -krzemowa	50IISA	PN-65 H-84032	1100 rozciąg	440-500 (HB)			4	5
		Duża wytrzy- małość na roz- ciąganie. Duża rozszerzalność cieplna	Chromowo-mo- libdenowa	40HM	PN72 H-84030	1100 rozciąg.	270-330 (IIB)	100	-	4	6
		Najwyższa wytrzymałość na rozciąganie. Duża rozsze- rzalność cieplna	Chromowo-ni- klowo-moli- bdenowo-wa- nadowa	45 HNMF	PN-72 H-84030	1390 rozciąg.	270-330 (HB)	250	_	4	6

Tablica 13 b. Zalecane materiały na części tłoczników.

Nazwa części przyrządu		Zalecan	Zalecana twardość	Rodzaj obciążenia		
Nazw.	a części przyrządu	rodzaj	znak	norma	HRC	
Wypychacz		szybkotnąca kobaltowa szybkotnąca wolframowa chromowa, odp. na korozję	SK8M- SW7M H12M	W7M PN-77/H-82022		duże obciążenia ściskające oraz ew wyboczające
		narzędziowa do prasy na zimno narzędziowa do prasy na zimno narzędziowa do prasy na zimno	NC6 NCLV - NZ2	PN-77/H-85023 PN-77/H-85023 PN-77/H-85023	60-62 58-62 56-58	niższe naprężenie ściskające
Kołek wypychacza		narzędziowa do prasy na zimno narzędziowa do prasy na zimno stopowa konstrukcyjna	NC6 NZ2 40H	PN-77/H-85023 PN-77/H-85023 PN-72/H-84030	60-62 56-58 56-58	obciążenia wybocza- jące
haez	Płytka	konstrukcyjna zwykłej jakości konstrukcyjna zwykłej jakości konstrukcyjna wyższej jakości konstrukcyjna wyższej jakości	St5 St6 45 4 5	PN-72/H-84020 PN-72/H-84020 PN-75/H-84019 PN-75/H-84019	42-46 48-52	obciążenia zgina- jące
Spychacz	Wkładka pierście- niowa lub szczęki	konstrukcyjna wyższej jakości narzędziowa do praży na zimno narzędziowa do pracy na zimno	55 NC6 NZ2	PN-75/H-84019 PN-77/H-85023 PN-77/H-85023	54-58 60-62 56-58	odporność na ście- ranie
Przekł	adka	narzędziowa do pracy na zimno narzędziowa do pracy na zimno chromowa, odporna na korózję narzędziowa do pracy na zimno	NC6 NC11 H12M NCLV	PN-77/H-85023 PN-77/H-85023 BN-63/0644-02 PN-77/H-85023	60-62 60-62 60-62 58-62	duże obciążenia ściskające
Obudowa płyty: głowicowa i podstawowa		konstrukcyjna zwykłej jakości konstrukcyjna zwykłej jakości konstrukcyjna zwykłej jakości konstrukcyjna wyższej jakości konstrukcyjna wyższej jakości staliwo węglowe konstrukcyjne staliwo węglowe konstrukcyjne	St5 St6 St4S * 45 S5 L50II * L6QII *	PN-77/H-84020 PN-72/H-84020 PN-72/H-84020 PN-75/H-84019 PN-75/H-84019 PN-71/H-83152 PN-71/H-83152	38 - 42 46 - 50	obciążenia ściskające i rozciągające
	nakrętki specjalne	konstrukcyjna wyższej jakości konstrukcyjna wyższej jakości narzędziowa do prasy na zimno	45 55 NZ2	PN-75/H-84019 PN-75/H-84019 PN-77/H-85023	42-46 48-52 56-58	obciążenia rozciąga- jące
Części mocujące	tuleje gwintowane	konstrukcyjna wyższej jakości narzędziowa do pracy na zimno narzędziowa do pracy na zimno	55 NC6 NZ2	PN-75/H-84019 PN-77/H-85023 PN-77/H-85023	48-52 56-58 54-56	obciążenia rozciąga- jące
	tuleja stemplowa (ustalająca)	konstrukcyjna wyższej jakości narzędziowa do pracy na zimno narzędziowa do pracy na zimno narzędziowa do pracy na gorące	55 NC6 NZ2 WCL	PN-75/H-84019 PN-77/H-85023 PN-77/H-85023 PN-77/H-85021	48-52 60-62 56-58 58-60	obciążenia rozciaga- jące
	wkładka klinowa (do ustalania matrycy)	konstrukcyjna wyższej jakości narzędziowa do pracy na gorąco	55 WCL	PN-75/H-84019 PN-77/H-85021	48-52 50-54	obciążenia rozciąga- jące
	pierścienie (obsady) do mocowania płyt	konstrukcyjna zwykłej jakości konstrukcyjna wyższej jakości	St5 55	PN-72/H-84020 PN-75/H-84019	■ 48 ~ 52	obciążenia rozciaga: jące
Słupy		stopowa konstrukcyjna .	20H	PN-72/H-\$4030	58-62 nawegt.	
,	e prowadzące użych wymiarów)	Ropons Konstrukeyjna .			52-56 nawegl.	