EE363 Winter 2008-09

Review Session 5

- a partial summary of the course
- no guarantees everything on the exam is covered here
- not designed to stand alone; use with the class notes

LQR

- balance good control and small input effort
- quadratic cost function

$$J(U) = \sum_{\tau=0}^{N-1} (x_{\tau}^{T} Q x_{\tau} + u_{\tau}^{T} R u_{\tau}) + x_{N}^{T} Q_{f} x_{N}$$

ullet Q, Q_f and R are state cost, final state cost, input cost matrices

Solving LQR problems

- can solve as least-squares problem
- solve more efficiently with dynamic programming: use value function

$$V_t(z) = \min_{u_t, \dots, u_{N-1}} \sum_{\tau=t}^{N-1} \left(x_{\tau}^T Q x_{\tau} + u_{\tau}^T R u_{\tau} \right) + x_N^T Q_f x_N$$

subject to
$$x_t = z$$
, $x_{\tau+1} = Ax_{\tau} + Bu_{\tau}$, $\tau = t, \ldots, T$

- ullet $V_t(z)$ is the minimum LQR cost-to-go from state z at time t
- ullet can show by recursion that $V_t(z)=z^TP_tz$; $u_t^{\mathrm{lqr}}=K_tx_t$
- get Riccati recursion, runs backwards in time

Steady-state LQR

- ullet usually P_t in value function converges rapidly as t decreases below N
- ullet steady-state value $P_{
 m ss}$ satisfies

$$P_{\rm ss} = Q + A^T P_{\rm ss} A - A^T P_{\rm ss} B (R + B^T P_{\rm ss} B)^{-1} B^T P_{\rm ss} A$$

- this is the discrete-time algebraic Riccati equation (ARE)
- ullet for t not close to horizon N, LQR optimal input is approximately a linear, constant state feedback

LQR extensions

- time-varying systems
- time-varying cost matrices
- tracking problems (with state/input offsets)
- Gauss-Newton LQR for nonlinear dynamical systems
- can view LQR as solution of constrained minimization problem, via Lagrange multipliers

Infinite horizon LQR

• problem becomes: choose u_0, u_1, \ldots to minimize

$$J = \sum_{\tau=0}^{\infty} \left(x_{\tau}^T Q x_{\tau} + u_{\tau}^T R u_{\tau} \right)$$

- infinite dimensional problem
- possibly no solution in general
- ullet if (A,B) is controllable, then for any x^{init} , there's a length-n input sequence that steers x to zero and keeps it there

Hamilton-Jacobi equation

- ullet define value function $V(z)=z^TPz$ as minimum LQR cost-to-go
- satisfies Hamilton-Jacobi equation

$$V(z) = \min_{w} \left(z^{T} Q z + w^{T} R w + V (A z + B w) \right),$$

ullet after minimizing over w, HJ equation becomes

$$z^{T}Pz = z^{T}Qz + w^{*T}Rw^{*} + (Az + Bw^{*})^{T}P(Az + Bw^{*})$$
$$= z^{T}(Q + A^{T}PA - A^{T}PB(R + B^{T}PB)^{-1}B^{T}PA)z$$

ullet holds for all z, so P satisfies the ARE (thus, constant state feedback)

$$P = Q + A^T P A - A^T P B (R + B^T P B)^{-1} B^T P A$$

Receding-horizon LQR control

- ullet find sequence that minimizes first T-step-ahead LQR cost from current position then use just the first input
- ullet in general, optimal T-step-ahead LQR control has constant state feedback
- state feedback gain converges to infinite horizon optimal as horizon becomes long (assuming controllability)
- ullet closed loop system is stable if (Q,A) observable and (A,B) controllable

Continuous-time LQR

• choose $u:[0,T]\to \mathbf{R}^m$ to minimize

$$J = \int_0^T \left(x(\tau)^T Q x(\tau) + u(\tau)^T R u(\tau) \right) d\tau + x(T)^T Q_f x(T)$$

- infinite dimensional problem
- ullet can solve via dynamic programming, V_t again quadratic; P_t found from a differential equation, running backwards in time
- ullet LQR optimal u easily expressed in terms of P_t
- can also handle time-varying/tracking problems

Continuous-time LQR in steady-state

- ullet usually P_t converges rapidly as t decreases below T
- limit P_{ss} satisfies continuous-time ARE

$$A^T P + PA - PBR^{-1}B^T P + Q = 0$$

- can solve using Riccati differential equation, or directly, via Hamiltonian
- ullet for t not near T, LQR optimal input is approximately a linear constant state feedback
- (can also derive via discretization or Lagrange multipliers)

Linear quadratic stochastic control

- add IID process noise w_t : $x_{t+1} = Ax_t + Bu_t + w_t$
- objective becomes

$$J = \mathbf{E} \left(\sum_{t=0}^{N-1} \left(x_t^T Q x_t + u_t^T R u_t \right) + x_N^T Q_f x_N \right)$$

- ullet choose input to minimize J, after knowing the current state, but before knowing the disturbance
- can solve via dynamic programming
- optimal policy is linear state feedback (same form as deterministic LQR)
- ullet strangely, optimal policy is the same as LQR, doesn't depend on X, W

Invariant subspaces

- \mathcal{V} is A-invariant if $A\mathcal{V} \subseteq \mathcal{V}$, i.e., $v \in \mathcal{V} \implies Av \in \mathcal{V}$
- \bullet e.g., controllable/unobservable subspaces for linear systems
- ullet if $\mathcal{R}(M)$ is A-invariant, then there is a matrix X such that AM=MX
- ullet converse is also true: if there is an X such that AM=MX, then $\mathcal{R}(M)$ is A-invariant

PBH controllability criterion

 \bullet (A,B) is controllable if and only if

$$\mathbf{Rank} [sI - A \ B] = n \text{ for all } s \in \mathbf{C}$$

or,

 \bullet (A,B) is uncontrollable if and only if there is a $w \neq 0$ with

$$w^T A = \lambda w^T, \qquad w^T B = 0$$

i.e., a left eigenvector is orthogonal to columns of B

ullet mode associated with left eigenvector w is uncontrollable if $w^TB=0$,

PBH observability criterion

 \bullet (C,A) is observable if and only if

$$\mathbf{Rank} \left[\begin{array}{c} sI - A \\ C \end{array} \right] = n \text{ for all } s \in \mathbf{C}$$

or,

• (C,A) is unobservable if and only if there is a $v \neq 0$ with

$$Av = \lambda v, \qquad Cv = 0$$

i.e., a (right) eigenvector is in the nullspace of C

ullet mode associated with right eigenvector v is unobservable if Cv=0

Estimation

- ullet minimum mean-square estimator (MMSE) is, in general, ${f E}(x|y)$
- ullet for jointly Gaussian x and y, MMSE estimator of x is affine function of y

$$\hat{x} = \phi_{\text{mmse}}(y) = \bar{x} + \Sigma_{xy} \Sigma_y^{-1} (y - \bar{y})$$

ullet when x, y aren't jointly Gaussian, best linear unbiased estimator is

$$\hat{x} = \phi_{\text{blu}}(y) = \bar{x} + \Sigma_{xy} \Sigma_y^{-1} (y - \bar{y})$$

- ϕ_{blu} is unbiased ($\mathbf{E} \, \hat{x} = \mathbf{E} \, x$), often works well, has MMSE among all affine estimators
- given A, Σ_x , Σ_v , can evaluate $\Sigma_{\rm est}$ before knowing measurements (can do experiment design)

Linear system with stochastic process

ullet covariance $\Sigma_x(t)$ satisfies a Lyapunov-like linear dynamical system

$$\Sigma_x(t+1) = A\Sigma_x(t)A^T + B\Sigma_u(t)B^T + A\Sigma_{xu}(t)B^T + B\Sigma_{ux}(t)A^T$$

• if $\Sigma_{xu}(t) = 0$ (x and u uncorrelated), we have the Lyapunov iteration

$$\Sigma_x(t+1) = A\Sigma_x(t)A^T + B\Sigma_u(t)B^T$$

ullet if (and only if) A is stable, converges to steady-state covariance which satisfies the Lyapunov equation

$$\Sigma_x = A\Sigma_x A^T + B\Sigma_u B^T$$

Kalman filter

- estimate current or next state, based on current and past outputs
- recursive, so computationally efficient (can express as Riccati recursion)
- measurement update

$$\hat{x}_{t|t} = \hat{x}_{t|t-1} + \Sigma_{t|t-1}C^T \left(C\Sigma_{t|t-1}C^T + V\right)^{-1} (y_t - C\hat{x}_{t|t-1})$$

$$\Sigma_{t|t} = \Sigma_{t|t-1} - \Sigma_{t|t-1}C^T \left(C\Sigma_{t|t-1}C^T + V\right)^{-1} C\Sigma_{t|t-1}$$

time update

$$\hat{x}_{t+1|t} = A\hat{x}_{t|t}, \qquad \Sigma_{t+1|t} = A\Sigma_{t|t}A^T + W$$

- ullet can compute $\Sigma_{t|t-1}$ before any observations are made
- steady-state error covariance satisfies ARE $\hat{\Sigma} = A\hat{\Sigma}A^T + W A\hat{\Sigma}C^T(C\hat{\Sigma}C^T + V)^{-1}C\hat{\Sigma}A^T$

Approximate nonlinear filtering

- in general, exact solution is impractical; requires propagating infinite dimensional conditional densities
- extended Kalman filter: use affine approximations of nonlinearities, Gaussian model
- \bullet other methods (e.g., particle filters): based on Monte Carlo methods that sample the random variables
- usually heuristic, unless problems are very small

Conservation and dissipation

• a set $C \subseteq \mathbb{R}^n$ is invariant with respect to autonomous, time-invariant, nonlinear $\dot{x} = f(x)$ if for every trajectory x,

$$x(t) \in C \implies x(\tau) \in C \text{ for all } \tau \geq t$$

- every trajectory that enters or starts in C must stay there
- scalar valued function ϕ is a conserved quantity for $\dot{x}=f(x)$ if for every trajectory x, $\phi(x(t))$ is constant
- ullet ϕ is a dissipated quantity for $\dot{x}=f(x)$ if for every trajectory x, $\phi(x(t))$ is (weakly) decreasing

Quadratic functions and linear dynamical systems

continuous time: linear system $\dot{x}=Ax$, quadratic form $\phi(z)=z^TPz$

- ullet ϕ is conserved if and only if $A^TP+PA=0$
- ullet ϕ is dissipated if and only if $A^TP + PA \leq 0$

discrete time: linear system $x_{t+1} = Ax_t$, quadratic form $\phi(z) = z^T Pz$

- ullet ϕ is conserved if and only if $A^TPA-P=0$
- $\bullet \ \phi$ is dissipated if and only if $A^TPA-P \leq 0$

Stability

consider nonlinear time-invariant system $\dot{x} = f(x)$

- x_e is an equilibrium point if $f(x_e) = 0$
- system is globally asymptotically stable (GAS) if for every trajectory x, $x(t) \to x_e$ as $t \to \infty$
- system is locally asymptotically stable (LAS) near or at x_e , if there is an R>0 such that $||x(0)-x_e||\leq R \implies x(t)\to x_e$ as $t\to\infty$
- for linear systems (with $x_e = 0$), LAS \Leftrightarrow GAS $\Leftrightarrow \Re \lambda_i(A) < 0$

Energy and dissipation functions

consider nonlinear time-invariant system $\dot{x} = f(x)$, function $V: \mathbb{R}^n \to \mathbb{R}$

- define $\dot{V}: \mathbf{R}^n \to \mathbf{R}$ as $\dot{V}(z) = \nabla V(z)^T f(z)$
- $\dot{V}(z)$ gives $\frac{d}{dt}V(x(t))$ when z=x(t), $\dot{x}=f(x)$
- ullet can think of V as generalized energy function, $-\dot{V}$ as the associated generalized dissipation function
- V is positive definite if $V(z) \geq 0$ for all z, V(z) = 0 if and only if z = 0 and all sublevel sets of V are bounded $(V(z) \to \infty \text{ as } z \to \infty)$

Lyapunov theory

- used to make conclusions about of system trajectories, without finding the trajectories
- boundedness: if there is a (Lyapunov function) V with all sublevel sets bounded, and $\dot{V}(z) \leq 0$ for all z, then all trajectories are bounded
- global asymptotic stability: if there is a positive definite V with $\dot{V}(z) < 0$ for all $z \neq 0$ and $\dot{V}(0) = 0$, then every trajectory of $\dot{x} = f(x)$ converges to zero as $t \to \infty$
- exponential stability: if there is a positive definite V, and constant $\alpha>0$ with $\dot{V}(z)\leq -\alpha V(z)$ for all z, then there is an M such that every trajectory satisfies $\|x(t)\|\leq Me^{-\alpha t/2}\|x(0)\|$

Lasalle's theorem

- \bullet can conclude GAS of a system with only $\dot{V} \leq 0$ and an observability-type condition
- if there is a positive definite V with $\dot{V}(z) \leq 0$, and the only solution of $\dot{w} = f(w)$, $\dot{V}(w) = 0$ is w(t) = 0 for all t, then the system is GAS
- requires time-invariance

Converse Lyapunov theorems

- if a linear system is GAS, there is a quadratic Lyapunov function that proves it
- if a system is globally exponentially stable, there is a Lyapunov function that proves it

Linear quadratic Lyapunov theory

- Lyapunov equation: $A^TP + PA + Q = 0$
- for linear system $\dot{x}=Ax$, if $V(z)=z^TPz$, then $\dot{V}(z)=(Az)^TPz+z^TP(Az)=-z^TQz$
- ullet if z^TPz is the generalized energy, then z^TQz is the associated generalized dissipation
- boundedness: if P > 0, $Q \ge 0$, then all trajectories are bounded, and the ellipsoids $\{z \mid z^T P z \le a\}$ are invariant
- ullet stability: if P>0, Q>0, then the system is GAS
- ullet an extension from Lasalle's theorem: if P>0, $Q\geq 0$ and (Q,A) observable, then the system is GAS
- ullet if $Q \geq 0$ and $P \not\geq 0$, then A is not stable

The Lyapunov operator

the Lyapunov operator is given by

$$\mathcal{L}(P) = A^T P + P A$$

- ullet if A is stable, Lyapunov operator is nonsingular
- ullet if A has imaginary eigenvalue, then Lyapunov operator is singular
- ullet thus, if A is stable, for any Q there is exactly one solution P of the Lyapunov equation $A^TP+PA+Q=0$
- efficient ways to solve the Lyapunov equation (review session 3)

The Lyapunov integral

• if A is stable, explicit formula for solution of Lyapunov equation:

$$P = \int_0^\infty e^{tA^T} Q e^{tA} dt$$

• if A is stable, P is unique solution of Lyapunov equation, then

$$V(z) = z^T P z = \int_0^\infty x(t)^T Q x(t) dt$$

(where $\dot{x} = Ax$ and x(0) = z)

- \bullet thus, V(z) is cost-to-go from point z, and integral quadratic cost function with matrix Q
- can use to evaluate quadratic integrals

Further Lyapunov results

- all linear quadratic Lyapunov results have discrete-time counterparts
- discrete-time Lyapunov equation is

$$A^T P A - P + Q = 0$$

(if
$$V(z) = z^T P z$$
, then $\delta V(z) = -z^T Q z$)

• for a nonlinear system $\dot{x}=f(x)$ with x_e an equilibrium point, if the linearized system near x_e is stable, then the nonlinear system is locally asymptotically stable (and nearly vice versa)

LMIs

- ullet the Lyapunov inequality $A^TP+PA+Q\leq 0$ is an LMI in variable P
- P satisfies the Lyapunov LMI if and only if the quadratic form $V(z)=z^TPz$ satisfies $\dot{V}(z)\leq -z^TQz$
- bounded-real LMI: if P satisfies

$$\begin{bmatrix} A^T P + PA + C^T C & PB \\ B^T P & -\gamma^2 I \end{bmatrix} \le 0, \qquad P \ge 0$$

then the quadratic Lyapunov function $V(z)=z^TPz$ proves the RMS gain of the system is no more than γ

Using LMIs

- practical approach to strict matrix inequalities: if inequalities are homogeneous in x, replace $F_{\text{strict}}(x) > 0$ with $F_{\text{strict}}(x) \geq I$
- if inequalities aren't homogeneous, replace $F_{\text{strict}}(x) > 0$ with $F_{\text{strict}}(x) \ge \epsilon I$, with ϵ small and positive
- if we have $\dot{x}(t) = A(t)x(t)$, with $A(t) \in \{A_1, \ldots, A_K\}$, can use multiple simultaneous LMIs to find a simultaneous Lyapunov function that establishes a property for all trajectories
- can't be done analytically, but possible to do numerically
- more generally, can globally and efficiently solve SDPs:

minimize
$$c^Tx$$
 subject to $F_0 + x_1F_1 + \cdots + x_nF_n \ge 0$ $Ax = b$

S-procedure

- for two quadratic forms, if and (with a constraint qualification) only if there is a $\tau \geq 0$ with $F_0 \geq \tau F_1$, then $z^T F_1 z \geq 0 \implies z^T F_0 z \geq 0$
- can also replace ≥ with >
- for multiple quadratic forms, if there are $\tau_1, \ldots, \tau_k \geq 0$ with

$$F_0 \ge \tau_1 F_1 + \dots + \tau_k F_k$$

then, for all z,

$$z^{T}F_{1}z > 0, \dots, z^{T}F_{k}z > 0 \implies z^{T}F_{0}z > 0$$

• can solve using LMIs

Systems with sector nonlinearities

- a function $\phi: \mathbf{R} \to \mathbf{R}$ is said to be in sector [l,u] if for all $q \in \mathbf{R}$, $p = \phi(q)$ lies between lq and uq
- a (single nonlinearity) Lur'e system has the form

$$\dot{x} = Ax + Bp, \qquad q = Cx, \qquad p = \phi(t, q)$$

where $\phi(t,\cdot):\mathbf{R}\to\mathbf{R}$ is in sector [l,u] for each t

• goal: prove stability or bound using only the sector information

GAS of Lur'e system

• can express GAS of Lur'e system using quadratic Lyapunov function $V(z)=z^TPz$ as requiring $\dot{V}+\alpha V\leq 0$, equivalent to

$$\begin{bmatrix} z \\ p \end{bmatrix}^T \begin{bmatrix} A^TP + PA + \alpha P & PB \\ B^TP & 0 \end{bmatrix} \begin{bmatrix} z \\ p \end{bmatrix} \le 0$$

whenever

$$\left[\begin{array}{c} z \\ p \end{array} \right]^T \left[\begin{array}{cc} \sigma C^T C & -\nu C^T \\ -\nu C & 1 \end{array} \right] \left[\begin{array}{c} z \\ p \end{array} \right] \leq 0$$

ullet can convert this to the LMI (with variables P and au)

$$\begin{bmatrix} A^T P + PA + \alpha P - \tau \sigma C^T C & PB + \tau \nu C^T \\ B^T P + \tau \nu C & -\tau \end{bmatrix} \le 0, \qquad P \ge I$$

• can sometimes extend to case with multiple nonlinearities

Perron-Frobenius theory

- a nonegative matrix A is regular if for some $k \ge 1$, $A^k > 0$ (path of length k from every node to every other node)
- ullet if A is regular, then there is a real, positive, strictly dominant, simple Perron-Frobenius eigenvalue $\lambda_{\rm pf}$, with positive left and right eigenvectors
- if we only have $A \ge 0$, then there is an eigenvalue $\lambda_{\rm pf}$ of A that is real, nonnegative and (non-strictly) dominant, and has (possibly not unique) nonnegative left and right eigenvectors
- ullet For a Markov chain with transition matrix P, if P is regular, the distribution always converges to the unique invariant distribution $\pi>0$, associated with a simple, dominant eigenvalue of 1
- rate of convergence depends on second largest eigenvalue magnitude

Max-min/min-max ratio characterization

Perron-Frobenius eigenvalue is optimal value of two optimization problems

maximize
$$\min_i \frac{(Ax)_i}{x_i}$$
 subject to $x > 0$

and

$$\begin{array}{ll} \text{minimize} & \max_i \frac{(Ax)_i}{x_i} \\ \text{subject to} & x > 0 \end{array}$$

ullet the optimal x is the Perron-Frobenius eigenvector

Linear Lyapunov functions

- ullet suppose c>0, and consider the linear Lyapunov function $V(z)=c^Tz$
- if $V(Az) \leq \delta V(z)$ for some $\delta < 1$ and all $z \geq 0$, then V proves (nonnegative) trajectories converge to zero
- a nonnegative regular system is stable if and only if there is a linear Lyapunov function that proves it

Continuous time results

- \mathbf{R}^n_+ is invariant under $\dot{x} = Ax$ if and only if $A_{ij} \geq 0$ for $i \neq j$
- such matrices are called Metzler matrices
- ullet A has a real, dominant eigenvalue $\lambda_{
 m metzler}$ that is real and has associated nonnegative left and right eigenvectors
- analogs exist with other discrete-time results

Exam advice

- five questions
- determine the topic(s) each question covers
- guess the form the problem statement should take
- manipulate ('hammer') the question into that standard form
- explain things as simply as possible; if your solution is extremely complicated, you're probably missing something
- we're not especially concerned about boundary conditions or edge cases, but mention any assumptions you make