

A FLIGHT RESEARCH OVERVIEW OF WSPR, A PILOT PROJECT FOR SONIC BOOM COMMUNITY RESPONSE

AIAA AVIATION 2014 June 17th, 2014

> Presented by: Larry J. Cliatt, II

> > Authors:

Larry J. Cliatt II, Edward A. Haering Jr., Thomas P. Jones, Erin R. Waggoner, Ashley K. Flattery

NASA Armstrong Flight Research Center

Scott L. Wiley

Jacobs Technology

WAVEFORMS AND SONICBOOM PERCEPTION AND RESPONSE (WSPR)

Sonic boom monitors

Armstrong Langley

Atmospheric Effects Fidell Associates Transmission into Smartphone study Structures

STRAIR BASE WIT

Recruitment

coordination

Human Response

NRA leadership & integration Sonic boom data analysis

> Subject Recruitment Coordination with EAFB Subjective data collection

Gulfstream Sonic boom monitors

NASA ARMSTRONG FLIGHT RESEARCH CENTER

Armstrong Flight Research Center

Aeronautics Flight Research

- Over 60 years of flight research (NACA Muroc Flight Test Unit)
- Edwards Air Force Base (EAFB)
- Remote Location
- Varied Topography
- 350 Testable Days Per Year
- Extensive Range Airspace
- 29,000 Ft Concrete Runways
- 68 Miles of Lakebed Runways
- Supersonic Corridor

- Motivation & Objectives
- Test Preparation
- Test Execution
- Flight Operation Results
- Challenges & Lessons Learned
- Future Work

- Simulated next generation commercial sonic boom levels, 70-80 PLdB (database of <u>human responses</u> to over 100 booms)
- Provide data for FAA and ICAO to <u>determine regulations</u> and requirements for over-land sonic booms
- Low Boom Demonstrator shows the ability to meet sonic boom requirements

Source: Rachami, J., and Page, J., "Sonic Boom Modeling of Advanced Supersonic Business Jets in NextGen," AIAA-2010-1385, 2010.

- FAA and ICAO <u>rule change</u> allowing quiet supersonic flight
- US <u>manufacturing</u> of quiet supersonic aircraft
- Greatly reduced travel time for people and products worldwide

 Key goal – Test and demonstrate the techniques for gathering data from an in-home low-level sonic boom community response test

- Project objectives
 - Investigating surveying methods, data acquisition and analysis methods, and human response subject recruitment strategies.
 - Expose 100+ volunteer human response subjects to a schedule of sonic booms with a C-weighted day-night average sound level (CDNL) of 42-58 dB
- Flight objectives (First ever low boom community response test)
 - Execute 20 25 flights over 2 weeks, up to 4 flights/day
 - Accurately place "low booms" on community. Produce sonic booms with peaks of $0.13-0.53\ lb/ft^2$
 - With the use of a of a unique, NASA-designed F-18 dive maneuver

- Motivation & Objectives
- Test Preparation
- Test Execution
- Flight Operation Results
- Challenges & Lessons Learned
- Future Work

HUMAN RESPONSE SUBJECT SURVEYS

Armstrong Flight Research Center

ational Aeronautics and Space Administration												
		Daily S	Sumr	nary F	Respo	nse F	orm					
Date:	/									ID:		
Which	Which parts of the day were you at home for at least one hour? (select all that apply)											
1 2												
During	the time you were at home	today,	how r	nany s	onic be	ooms (did you	hear?	ente	numb	er belo	w)
	# of sonic booms heard today	(If 0	boom	s hear	d toda	y, go t	o A10)					
or the next questions, please think about the sonic booms you heard today while at home.												
(select o		lot at all 0	1	2	3	4	5	6	7	8	9	Extremely 10
	ich did the sonic booms disturb, or annoy you?	•□	1	2	3	4	5	6	7	8	9	10
Which of the following categories best describes how much the sonic booms bothered, disturbed, or annoyed you? (select one) 1												
(select	one for each)	Not at all 0	1	2	3	4	5	6	7	8	9 9	tremely 10
6 How lo	ud were the sonic booms?	0	1	2	3	4	5	6	7	8	9	10
	uch did the sonic booms re with your activities?	0	1	2	3	4	5	6	7	8	9	10
(select	one for each)	None 0	1	2	3	4	5	6	7	8	A gr 9	reat deal 10
may be vibration	on is a motion. The motion seen or felt. How much on from the sonic booms did e or feel in your home today?	0	1	2	3	4	5	6	7	8	9	10
occur w vibratio sonic b	s a type of noise that can when objects move due to a in. How much rattle from the ooms did you experience in ome today?	0	1	2	3	4	5	6	7	8	9	10
	During the time you were at home today, were your windows closed most of the time or were they open most of the time? (select one)											
1	Closed most of the time		2	0	pen m	ost of	the tim	ie				
ı Did yo	u hear any noises today tha	t might	have	been s	sonic b	ooms	but yo	u are r	not sur	e? (sel	ect one	e)
1 2	Yes A12 Please descri No	-					-					
B Please	e enter any additional comm	ents.	-									

Source: Hodgdon, K. K., and Page, J. A., "Low Amplitude Sonic Boom Noise Exposure and Social Survey Design," Proceedings of Meetings on Acoustics, Vol. 19, ICA Montreal, Canada, 2013, pp. 1-6.

- Web-based surveys
 - Instruction via emails and phone calls
- Paper/Pencil surveys
 - Instructions and materials mailed via postal service
- Smartphone application surveys
 - Door-to-door installations for Apple[®] iOS application on subject-owned devices
 - Centralized meetings for distribution of Android™ phones with application pre-installed (to be returned after the project)

RECRUITMENT AND OUTREACH

Military-controlled community constraints

- High resident turnover rate
- Approval of outreach methods
- No door-to-door solicitation
- Knowledge of housing types
- Confident projections of occupancy and turnover rate
- EAFB allowed exclusive communication channels
 - EAFB newspaper
 - Base-wide emails
 - Facebook, Twitter, EAFB website
- Recruitment letters
 - Endorsed by NASA and EAFB
 - Could not be mailed by non-military parties

GROUND INSTRUMENTATION

Remote sonic boom recording

- Sonic Boom Unattended Data Acquisition System (SBUDAS)
- Contributed and operated by Gulfstream Aerospace Corporation (Savannah, Georgia, USA) and Pennsylvania State University (University Park, Pennsylvania, USA)
- 13 recorders distributed throughout the community
- GRAS Type 41AO-S2 microphones
- Remotely triggered over a Wi-Fi network from a host station
- Solar powered
- Hardware concealed in National Electrical Manufacturers Association-rated (NEMA) box

Source: Cook, B., Hobbs, C. M., Page, J., and Salamone, J., "Objective Data Collection and Analysis for the Waveform and Sonic Boom Perception and Response Program (WSPR)," *Proceedings of Meetings on Acoustics*, Vol. 19, ICA Montreal, Canada, 2013, pp. 1-8.

GROUND INSTRUMENTATION, CONT.

- Autonomous sonic boom recording
 - Supersonic Notification Of Overpressure Instrumentation (SNOOPI)
 - All-weather enclosure (dog house)
 - Automatically records events greater than a preset overpressure threshold
 - Continuous ring-buffer technique
 - SenSym SCXL004DN pressure transducer: +/- 20.8 lb/ft² range, at 0.00304 lb/ft² per count resolution

Underside of SNOOPI

- Meteorology
 - Sonic boom propagation is extremely sensitive to atmospheric conditions
 - Meteorological data was required for both pre-flight planning and post-flight analysis
 - Surface weather towers placed within the community
 - GPS radiosonde weather balloons

- Three day test to identify possible problems with survey questionnaires or data collection procedures
- 21 volunteer human response subjects from NASA Armstrong
 - Instructed to treat workspace as their home
- Six full sonic booms were generated on second day
 - Adventitious sonic booms were expected on other days
- Select lessons learned:
 - Update Apple® iOS smartphone survey to require manual entry of date & time

Poor connectivity can result in data transmission delays for smartphone surveys

- More frequent follow-up telephone calls required with paper/pencil method
- Greater latency was expected with web survey method
- Ensure ID numbers for respondents are easy to remember (Web and Paper/pencil)

- Motivation & Objectives
- Test Preparation
- Test Execution
- Flight Operation Results
- Challenges & Lessons Learned
- Future Work

"LOW BOOM DIVE" MANEUVER

- Unique, NASA-designed maneuver to simulate the sound of future civil supersonic aircraft's sonic booms
 - Requires intricate pre-flight planning
 - Pre-flight weather data, canned F-18 trajectory, sonic boom propagation simulation software
 - Produced a waypoint (Latitude/Longitude) for the pilot to begin "low boom dive" maneuver
 - 49,000 ft. altitude, Mach 0.96. Upon reaching waypoint
 - → Roll to inverted, -53° flight path angle accelerated dive to Mach 1.10
 - Airplane recovers straight and level at 34,000 feet
 - Produces undesirable focus sonic boom

MISSION PLANNING & SONIC BOOM SCHEDULE

Total booms

Flight in time-ofday sequence Armstrong Flight Research Center

Sonic Boom Schedule

Optimized for target daily CDNL, with different level combinations

Four target sonic boom levels at center of community:

- Low booms: 0.13 lb/ft² (low), 0.33 lb/ft² (medium), 0.53 lb/ft² (high)
- Full sonic booms, approximately 1.2 lb/ft²
- Pseudo-random sonic boom spacing
- Two aircraft/flights required for most missions
- Sonic boom placement planning
 - Sonic boom propagation software PCBoom (developed by wyle)
 - A template, "ideal" Low
 Boom Dive maneuver
 adjusted for day-of-flight
 upper-atmosphere
 conditions

PCBoom prediction

WSPR Flt. 1 (Training)					
T1- AM	2L, 1M, 1F	4			
Boom #	Minutes into	Minutes between			
	mission	neighboring booms			
1	0				
2	8	8			
3	16	8			
1	2/	0			

Test day –	WSPR Flt. 2	4L	4			
Time of day	Boom #	Minutes into mission	Minutes between neighboring booms			
	1	0				
	2	10	10			
	3	24	14			
	4	44	20			
Boom levels	WSPR Fit. 3					
(1 Low,	T2- PM	1L, 3M	4			
(1 Low, 3 Medium)	T2- PM Boom #	1L, 3M Minutes into mission	4 Minutes between neighboring booms			
		Minutes into	Minutes between			
	Boom #	Minutes into mission	Minutes between			
	Boom #	Minutes into mission 0	Minutes between neighboring booms			

WSPR Flt. 4		
T3-AM	2L, 1M, 1H	4 (Flight 1)
Boom #	Minutes into	Minutes between
B00m #	mission	neighboring booms
1	0	
2	10	10
3	26	16
4	38	12
	•	
WSPR Flt. 5		
T3-AM	2L, 1M, 1H	(Flight 2)
Boom #	Minutes into	Minutes between
Boom #	mission	neighboring booms
1	50	
2	62	12
3	72	10
4	92	20
	•	•
WSPR Flt. 6		
T3- PM	3M, 1H	4
D	Minutes into	Minutes between
Boom #	mission	neighboring booms
1	0	
2	10	10
3	26	16
4	38	12

- Motivation & Objectives
- Test Preparation
- Test Execution
- Flight Operation Results
- Challenges & Lessons Learned
- Future Work

MAXIMUM OVERPRESSURES

- 89 planned sonic booms within the community
 - 84 planned low booms
 - 75 of which were actually low booms (less than 0.60 lb/ft²)
 - 5 planned full sonic booms
- 14 additional adventitious full sonic booms
- 76% of the planned low booms were within +/- 0.15 lb/ft² of target
 - The lowest target attempt (0.13 lb/ft²) was most difficult to achieve
 - 0.13 lb/ft² attempts were within 30% of target for only 30% of the attempts
 - All other low boom attempts were within 30% of their targets for 60% of the attempts

^{*}All measurements recorded at center of community

PCBOOM VERSUS SBUDAS

- PCBoom analysis done using real aircraft trajectory and time-oftakeoff upper atmospheric conditions
- Maximum overpressures on SBUDAS recorders within
 0.15 lb/ft² for only approximately 35% of the low booms
- Consistent yet precision inaccuracy
- Possible reasons for poor magnitude agreement
 - Spiking and rounding due to turbulence
 - Very low overpressure levels

LOW BOOM DIVE REPEATABILITY

- Used extensively for previous tests Low Boom/No Boom (2006), HouseVIBES (2007) and SonicBOBS (2010)
- Template maneuver chosen from SonicBOBS
- Heading and flight path angle were relatively consistent during test
- Dynamic pressure (Mach & pressure altitude) was much less precise and typically larger than designed
 - Yielded louder sonic booms than planned
- Possible causes for inconsistency
 - The need for a better-defined maneuver
 - Four different pilots used for WSPR
- WSPR still had overall success planning and generating low sonic booms within the residential community

Test description	Successful out of total	Success rate, %
Sonic booms successfully planned and executed	89 out of 91	98
Low booms successfully planned and executed	75 out of 83	90
Low booms within 0. 15 lb/ft² of planned target value	63 out of 83	76
Low boom attempts with overpressures higher than planned target values	59 out of 83	71

- Motivation & Objectives
- Test Preparation
- Test Execution
- Flight Operation Results
- Challenges & Lessons Learned
- Future Work

CHALLENGES & LESSONS LEARNED

Armstrong Flight Research Center

Recruitment

Smartphones

- Two-week delay (out of a 14-week recruitment effort) due to unanticipated approvals required for recruitment letters
- Failed to meet target # of subjects (76 out of 100) after initial outreach
 - \$50 pre-paid debit card incentive introduced, and target was achieved
- Distribution/training of Android™ smartphones was tedious as it required several small meetings due to participants' varying schedules
 - Suggestion: Distribute individually, and include a tutorial video

• Due to an inadequate sign-off process, two participants received their incentives prior to returning their smartphones

- SNOOPI had excessive false-triggers due to high winds (226 in one day)
- SBUDAS installation required unanticipated, extensive EAFB approval
- Incomplete description of SBUDAS hardware created concerns during EAFB approval process
- Installation time for SBUDAS was underestimated
- Weather balloons sometimes terminated prior to reaching the necessary altitude
 - Old data was used to fill in gaps

Confusions among civilian air traffic controllers not accustomed to supersonic aircraft

- Unanticipated need for full sonic booms to be generated
- Non-WSPR sonic booms toward the end of testing

Support

Instrumentation

Mission Planning & Sonic Boom Schedule

- Community response using low boom dives on a larger community unaccustomed to sonic booms
 - Continued methodology studies
- Community response using a large-scale shaped low-boom demonstrator vehicle on large communities
 - Data used for proposal of overland sonic boom regulations change

QUESTIONS?