Here Somomeric Romanneric Romanne F-Test

Hos U= value
Ha: U = "

Two-tailed

Two-tailed

One-tailed

- Find our whether the two independent estimates of pop varionce differ significantly of
 - Two sample drawn (tandomly)
 from the normal distribution
 having same ironner.

RatioTex

$$F = \frac{5^2}{5^2}$$
 or $\frac{5^2}{5^2}$

Skewed towards (signittrange $0 \rightarrow \infty$ median roughly = 9 value of F will always be greater O Shape of F-d184; depends - d of (Numerators) - dof (demon)) 4. of = of = 30 $df_1 = df_2 = 5$ foos 5.05 L fo.03 = 1.84 df1=df2-60.

Ho:
$$\delta_1 = \delta_2$$
 Ha: $\delta_1 \neq \delta_1$

Null hypotheris

$$F = \frac{S_1^2}{S_2^2} = \frac{S_1^2}{S_1^2} = \frac{S_1^2}{S$$

$$S_{1}^{2} = \frac{734}{8^{1}} = \frac{91.75}{10}$$

$$S_{1}^{2} = \frac{1298}{10} = \frac{129.8}{129.8}$$

$$F = \frac{129.8}{91.75} = \frac{1.4147}{1.4147}$$
Fcolc

Tobulated $F = 3.35$
Ho is excepted

Both the pop have same variate
$$S_{1}^{2} = S_{1}^{2}$$

Chi Square - Test X2
7-Test (F-test>
manypotion: Samples are drawn from
normally distributed population
parameteric: T
Non-parametricts
No exact info; is available.
regarding pop; - binomial, poisson, normel.
$\frac{\sqrt{2}}{\sqrt{1+64}}$.
X²-rest, magnitude of the
descrip omy 5/w Theoretical & empirical stored value.

 $\chi^2 = \sum (o - E)^{7} \frac{E}{freq}$ (1) No; of Sountion. V= (Y-1)(C-1) Condition: At least 5 observation in each cey 45 overestimated Ho rejection (migh cume) 2. Independent Observation & Ompreily Tandon N 250 data: original units.

Applications

1 -	Test for independent	æd	ofto butes:
		4	
	x2: help		

2. X2 to check goodness of fit

· actual Sample dist; matches
or coincide -> know proj
distributio.

3. X2. (Yate's correction)

2×2

(O-E|-0.25

Date: 18/01/23

1842, 1823, 1835, 1846,1821, 1844, 1839, 1851 1828, 1843, 1850, 1831, 1833, 1840

Ho: Quinine = No effect Ha: " + No m

Treatment Fever E Notin E Total

1. Quinnie 20 30 480 470 500

2. No " 100 450 1410 150

Total 120 1820

DOF = 9 = (7-1)(c-1) (2-1)(2-1) = 1 5% $7^2 = 3.84$ $7^2 = 4.72$ Ho rejected

Ho rejected

One way

VIET CECOS PAST

PASH

LIST

ANOVA = variorbility by the means (a)
variorbility with the dotan; (4)

Total vari; = a+6

Assuption:

1: Normal distintion.

$$S_1^L = S_2^L = S_3^L \cdots S_r^L$$

3,

Ho:
$$U_1 = U_2 = U_3 \cdots \neq U_{1}$$

Ha: $U_1 \neq U_2 \neq V_3 \cdots \neq U_{1}$

STEP IL cole variance Dw The Samples (9) mean of each capie. XA = 4 ND = 5 NC = 6 Grand mean (b) Difference b/w The Of saples of x (水一次)(水一次) (水石一次) (水石一次) (水石) (水石) 2 (343)

III: varrance within the sample (a): XA = 4 XD>S xc = 6 deviation of item in Saple from non (A-NA)(A- KA) (B-NB)(B-XI) (C-NC)(C-N) 404 8 8+8+8 = (24)

Ratio 4F

Source of variant within MSE = SCE Table Ho-accepted.

Dalà:

DAYS	A	B	C	D	
MON	2	3	4	2	
	4	5	(3)	7	
TUE	6	7	8	9	

Source Variance	Ednoter Erm of	DoF	Mean of Squares	
B/w The Columns	sse 15	19 = C-1 = 3	MSC=SSC Vi	MSE/msk F=:4.
Hw The rows	SSE LV	V++ (~-1)	MSE = SSE	MSE/MSR.
Residual or Errol	SSR	= 4 + 4	MSR - SSR	
	SST 47	n-1 =11		4.2

STER-I

Pays A B C D TANK

MMM
$$-\frac{3}{3}$$
 $-\frac{7}{2}$ $-\frac{1}{1}$ 0 $-\frac{6}{5}$

TUE -1 0 1 2 2 $-\frac{1}{5}$

WED +1 2 3 4 10 $-\frac{3}{5}$
 $-\frac{3}{5}$ 0 3 6 6 $-\frac{6}{5}$
 $-\frac{3}{5}$ 0 3 6 6 $-\frac{6}{5}$

$$C.F \neq \frac{T^2}{N} = \frac{36}{12} = \frac{3}{3}$$

$$= \frac{A^{2}}{N_{A}} + \frac{B^{2}}{N_{B}} + \frac{C^{2}}{N_{C}} + \frac{B^{2}}{N_{D}} - \frac{C^{2}}{N_{D}} + \frac{B^{2}}{N_{D}} + \frac{B^{2}}$$

1 sample:
2 Samples.
1 Sample -> 2 measure

3) Purpose of malysis