N-Grams and Maximum Likelihood Estimation

Natalie Parde UIC CS 421

N-Gram Language Models

- Goal: Predict P(word|history)
 - P("spring" | "I'm so excited to be taking CS 421 this")

How do we predict these probabilities?

- One method: Estimate it from frequency counts
 - Take a large corpus
 - Count the number of times you see the history
 - Count the number of times the specified word follows the history

P("spring" | "I'm so excited to be taking CS 521 this")

= C("I'm so excited to be taking CS 521 this spring") / C("I'm so excited to be taking CS 521 this")

However, we don't necessarily want to use our entire history.

- What if our history contains uncommon words?
- What if we have limited computing resources?

P("spring" | "I'm so excited to be taking Natalie Parde's CS 421 this")

Out of all possible 11-word sequences on the web, how many are "I'm so excited to be taking Natalie Parde's

We need a better way to estimate P(word|history)!

- The solution: Instead of computing the probability of a word given its entire history, approximate the history using the most recent few words.
- We do this using fixed-length n-grams.

Special N-Grams

- Most higher-order (n>3) ngrams are simply referred to using the value of n
 - 4-gram
 - 5-gram
- However, lower-order ngrams are often referred to using special terms:
 - Unigram (1-gram)
 - Bigram (2-gram)
 - Trigram (3-gram)

N-gram models follow the Markov assumption.

- We can predict the probability of some future unit without looking too far into the past
 - Bigram language model:

 Probability of a word depends only on the previous word
 - Trigram language model:
 Probability of a word depends only on the two previous words
 - N-gram language model:
 Probability of a word depends only on the *n*-1 previous words

More formally....

- $P(w_n|w_1^{n-1}) \approx P(w_n|w_{n-N+1}^{n-1})$
- We can then multiply these individual word probabilities together to get the probability of a word sequence
 - $P(w_1^n) \approx \prod_{k=1}^n P(w_k | w_{k-N+1}^{k-1})$

P("Summer break is already over?")

P("over?" | "already") * P("already" | "is") * P("is" | "break") * P("break" | "Summer")

To compute n-gram probabilities, maximum likelihood estimation is often used.

- Maximum Likelihood Estimation (MLE):
 - Get the requisite n-gram frequency counts from a corpus
 - Normalize them to a 0-1 range
 - $P(w_n | w_{n-1}) = \#$ of occurrences of the bigram $w_{n-1} | w_n | \#$ of occurrences of the unigram w_{n-1}

I am cold.

You are cold.

Everyone is cold.

This is Chicago.

Bigram	Frequency
<s> </s>	1
I am	1
am cold.	1
cold.	3
is Chicago.	1
Chicago.	1

Bigram	Freq.
<s> </s>	1
l am	1
am cold.	1
cold.	3
is Chicago.	1
Chicago.	1

Unigram	Freq.
<s></s>	4
1	1
am	1
cold.	3
Chicago.	1
	4

Bigram	Freq.
<s> </s>	1
I am	1
am cold.	1
cold.	3
is Chicago.	1
Chicago.	1

Unigram	Freq.
<s></s>	4
I	1
am	1
cold.	3
Chicago.	1
	4

$$P("I" | "~~") = C(" ~~I") / C("~~") = 1 / 4 = 0.25~~~~~~$$

Bigram	Freq.
<s> </s>	1
l am	1
am cold.	1
cold.	3
is Chicago.	1
Chicago.	1

Unigram	Freq.
<s></s>	4
1	1
am	1
cold.	3
Chicago.	1
	4

$$P("I" | "~~") = C(" ~~I") / C("~~") = 1 / 4 = 0.25~~~~~~$$

$$P("" | "cold.") = C("cold. ") / C("cold.") = 3 / 3 = 1.00$$

Bigram	Freq.
<s> </s>	1
I am	1
am cold.	1
cold.	3
is Chicago.	1
Chicago.	1

Unigram	Freq.
<s></s>	4
1	1
am	1
cold.	3
Chicago.	1
	4

$$P("I" | "~~") = C(" ~~I") / C("~~") = 1 / 4 = 0.25~~~~~~$$

