Mapping between Compositional Semantic Representations and Lexical Semantic Resources: Towards Deep Accurate Semantic Parsing

Sergio Roa, Valia Kordoni and Yi Zhang

46th Annual Meeting of the ACL: HLT Columbus, OH, USA June 15-20 2008

Main ideas

- Rich compositional semantic representations as parser output.
 - Minimal Recursion Semantics (MRS) gives more fine-grained semantic representations.
- Shallow semantic parsers use lexical semantic resources for evaluation. (PropBank, VerbNet, FrameNet)
- Modelling of a probability distribution for the mapping between MRS and PropBank/VerbNet.

Main ideas

- Features are taken from Robust Minimal Recursion Semantics (RMRS) representation, used by the ERG English Resource Grammar (Head-Driven Phrase Structure formalism).
- Use of WordNet semantic network to reduce complexity of the model (define selectional restrictions).
- Use of the PropBank corpus for evaluation and VerbNet PropBank mapping.

RMRS representation

Some plans give advertisers discounts

```
Some plans give advertisers discounts
TOP
       h1
                                                                        give_v
                                                                                           udef a rel
           MARG
                                                                                           BODY
RELS
           udef a rel
           LBL
                                discount n
           RSTR
                               ARGO x13 num=pl pers=3
           BODY
                          h20
HCONS {h3 qeq h11, h8 qeq h10, h15 qeq h17, h19 qeq h21}
       {}
ING
```

DES

PropBank semantic roles

Some plans give advertisers discounts

[Arg, Some plans] give [Arg, advertisers] [Arg, discounts]

VerbNet thematic roles and classes

31 thematic roles, 237 top-level classes, and 194 new subclasses based on the classification by Levin.

Class: Give-13.1

Parent: -

Themroles: Agent Theme Recipient

Selrestr: [+animate or +organization] [+animate or +organization]

Frame:

Name Example Syntax
Dative Some plans give advertisers discounts Agent V Recipient Theme

Bayesian network based mapping.

■ Features: PropBank/VerbNet roles, RMRS, WordNet.

UNIVERSITÄT DES SAARLANDES

Mapping between RMRS and VerbNet/PropBank

- Other features: adjectives, prepositions (SEM-I classification), verbs, other SEM-I relations.
- Example of SEM-I verb relations:

Predicate	Synopsis			
_show_v_1_rel	ARG0 e	ARG1 p	ARG2 u	[ARG3 <i>h</i>]
_show_v_1_rel	ARG0 e	ARG1 p	ARG2 x	ARG3 x
_show_v_as_rel	ARG0 e	ARG1 p	ARG2 h	
_show_v_up_rel	ARG0 e	ARG1 p		

Extraction of RMRS and SEM-I features

Some plans give advertisers discounts

SEM-I roles	Features	Words
ARG1 ARG2 ARG3	<pre>plan_n discount_n generic_entity_rel</pre>	plans discounts advertisers

WordNet features (up to 5th level) may replace the nouns features.

Alignment between RMRS and lexical resources

- PropBank/VerbNet annotation: [Arg₀(Agent)] Some plans] give [Arg₂(Recipient)] advertisers [Arg₁(Theme)] discounts
- Alignment process:

SEM-I roles	Mapped roles	Features
ARG1	Agent	plan_n
ARG2	Theme	discount_n
ARG3	Recipient	generic_entity_rel

Verb classes inference

A possible realisation of a bayesian network for semantic verb classes (following Sabine Schulte im Walde)

A priori bayesian structure for VerbNet classes inference:

 $ldsymbol{\sqcup}$ Algorithms for mapping

Bayesian Learning and Inference

Learning and Inference

■ Learning phase:

- Maximum Likelihood (ML) for the a priori structure, generating conditional probability tables by using multinomial distributions.
- Structural Expectation Maximization (SEM). Iterative process when parameters and structures are updated based on the best network so far.
- Inference: Markov Chain Monte Carlo (MCMC) inference engine (sampling process considering the evidence).

Algorithms for mapping

Bayesian Learning and Inference

Learning algorithm

 Algorithm for training Bayesian Networks for inference of lexical semantic roles

procedure Train (Model)

- 1: for all Verbs do
- 2: for all Sentences and Parsings which include the current verb do
- 3: Initialize vertices of the network with SEM-I labels and features.
- 4: Initialize vertices with the corresponding VerbNet class.
- 5: Initialize edges connecting corresponding features.
- 6: Append the current features as evidence for the network.
- 7: end for
- 8: Start Training Model for the current Verb, where Model is ML or SEM.
- 9: end for

Results for inference of mapped roles

10370 sentences of the PropBank corpus successfully parsed using the ERG grammar.

Corpus	Nr. iter. MCMC	Mode	WordNet feature	Verb classes	Accuracy %
PropBank with	1000	ML			78.41
VerbNet features	10000	ML			84.48
	10000	ML		×	87.92
	1000	ML	×		84.74
	10000	ML	×		86.79
	10000	ML	×	×	87.76
	1000	SEM			84.25
	1000	SEM	×		87.26
PropBank with	1000	ML			87.46
PropBank features	1000	ML	×		75.70
	1000	SEM			90.27

Preliminary results for inference of VerbNet classes

- The inference of a VerbNet class can help disambiguate the parsing.
- Regardless of whether [Theme you] hike from lodge to lodge or stayLODGE-46 [Location in one place] and take day trips, there are plenty of choices.
- Using ERG, an incorrect mapping for the verb stay to the VerbNet class EXIST-47.1-1 with the (falsely) favored parse where the PP "in one place" is treated as an adjunct/modifier is derived.

Discussion

- Reliable mapping between MRSs structures and lexical semantic resources.
- Potential improvement of the parse disambiguation task by using verb semantic information.
- Enrichment of shallow semantic information with compositional semantic structures can eventually be helpful for applications like question answering.

Discussion and Future work

The End...

Thanks for your attention!

Results of alignment

Corpus	Nr of parsings	Parsability	Alignment %
PropBank with VerbNet features	10	25.67%	80.65%
PropBank with PropBank features	25	26.54%	84.15%

Pseudocode alignment

 Algorithm for the alignment of SEM-I and PropBank (VerbNet) labels

```
procedure AlignRMRSPropBankLabels (Sentence, Parsing)
1: for all Verbs at the current Sentence and Parsing do
2:
      for all SEM-I argument role labels do
3:
         for all PropBank (VerbNet) argument role labels do
4:
             if All the words in current SEM-I argument are found in PropBank
             argument then
5:
                Map SEM-I and PropBank (VerbNet) roles.
6:
7:
                Do not allow more mappings for these labels.
             end if
8:
         end for
9:
      end for
10:
       Obtain the VerbNet semantic class for the current verb.
11:
       Obtain the leaf lexical type for the current verb.
12: end for
```

