LogSafe: Secure and Scalable Data Logger for IoT

Hung Nguyen, Radoslav Ivanov, Linh T.X. Phan, Oleg Sokolsky, James Weimer

Presented by: Rachell Kim

Introduction: Vulnerabilities in IoT

- IoT devices collect large amounts of personal data
 - Opens up security and privacy concerns
 - Devices become vulnerable to both physical and network attacks
- Securing all IoT devices is an impossible task
 - 20.4 billion IoT devices predicted to exist by 2020 [1]

Introduction: Surfaces of Attack

- Cloud services in IoT
 - o Yahoo, Ashley Madison, Equifax, etc.
- Replay, injection, eavesdropping, side-channel attacks
- Cyber-physical attacks
- DoS/DDoS

Introduction: Data Logging

- Need to secure and store data in a safe manner:
 - Methods of data collection
 - End-to-end security guarantees
- Communication protocols and data storage
- Previous works:
 - Not fault tolerant
 - Very slow
 - Scaling issues

Problem Definition

- Logging system must be:
 - Tamper evident
 - Fault tolerant
 - Scalable
- Should defend against network attacks such as:
 - Replay
 - Injection
 - Eavesdropping
 - Side-channel

Must satisfy CIA properties

Problem Definition

- Logging system must be:
 - Tamper evident
 - Fault tolerant
 - Scalable
- Should defend against network attacks such as:
 - Replay
 - Injection
 - Eavesdropping
 - Side-channel

Must satisfy CIA properties

How do we build that?

Solution: LogSafe

- Decentralized logging architecture
 - Logger nodes built in a distributed fashion on the cloud
- Logger nodes are placed in a ring-like structure to back up other nodes
- Uses Transport Layer Security (TLS)
- Employs Intel Software Guard Extensions (SGX)
 - Allows for the creation of an isolated execution environment on the cloud
 - SGX-enabled nodes are decentralized to minimize performance hits
- Other contributions → Snapshot algorithm

LogSafe Architecture I

Includes:

- SGX-enabled nodes
- The cloud
- IoT devices
- Method to store data

SGX

- Software Guard Extensions (SGX)
 - Designed by Intel
 - Enables safe execution of code in untrusted environments

Enclave

- Secure, encrypted region for code and data
- Instantiated by SGX
- Provides encrypted memory, but not for disk (i.e. not for I/O operations, etc.)

Remote attestation

• Allows other parties to verify the trustworthiness of the enclave

LogSafe Architecture II

- Main modules of the LogSafe architecture:
 - IoT Device
 - Logger Establishes connection to the IoT device and listens for incoming messages
 - Tracker Takes a "snapshot" of the latest logged data of a given IoT device for verification purposes
 - Manager Provisions both IoT devices and Logger nodes; assists in communication protocols (i.e. remote attestation)
- Written in C++

LogSafe Data Flow

LogSafe Data Flow

Snapshot Algorithm

- Use cases:
 - Logger cluster shutdown
 - IoT device is inactive for long period of time
- Creates a hash chain and signature without encrypting data
 - Uses the SGX monotonic counter
- Verifies in-memory Logger counter and authenticity of logged data

Solution Summary: LogSafe

- Decentralized logging → Availability, Fault-tolerance
- Cloud infrastructure → Scalability
- SGX implementation → Confidentiality, Integrity
- TLS + Hash Chaining → Integrity
- Attacks:
 - Replay and injection → physical monotonic counter
 - \circ Eavesdropping and side channel \rightarrow protection from the enclave
 - DoS/DDoS → *decentralized logger nodes

- Biggest issues:
 - Computation overhead of setup time
 - Scalability
- Setup time experiment
 - Measured the time needed to successfully establish a TLS connection when:
 - The device is being set up for the first time
 - The device is re-connecting to the Logger node

- Results:
 - Set up time with remote attestation tends to be significantly higher

Intel Edison	Dell 5480	Task	Logger
$717\mu s$	$87\mu s$	Device Hello \rightarrow	
		← SGX Hello	$5,886 \mu s$
$370,055 \mu s$	$8,617 \mu s$	Device Negotiate \rightarrow	
		(*) Remote Attestation	1.038s
		← SGX Finish	5,935 μs
1.420s	1.059s	Total time (with remote attestation)	
382.5ms	20.5ms	Total time (without remote attestation)	

- Claim:
 - o Logger provisioning is a one-time cost

- Logging performance / Scalability results:
 - Average processing time for 3 nodes is much lower as the number of IoT devices increases
 - Multi-threading implementation benefits after 2+ devices joining the system

- Performance comparison with other implementations
 - Overhead of SGX
- Cloud Logger
 - Previous implementation using SGX
- Claim:
 - LogSafe provides more security with the price of slower performance

Critique

- Claims logger provisioning is a one-time cost, but also states it must reconnect once session time expires
 - What is the true cost of logger provisioning on long-term performance?
- Does not address methods to perform forensic analysis on logged data
 - Only that it can
- Evaluation did not include tests to challenge security of the LogSafe system

Conclusions

- Paper proposes a new, decentralized logging system using SGX-enabled notes to guarantee fault-tolerance and confidentiality of private information collected from IoT devices
 - Enhanced tamper detection
- Emphasizes the scalability of LogSafe
 - o Incorporates cloud infrastructure to support better management of a large number of devices
- (Almost) Outperforms previous implementations with added layer of security through SGX features

Paper Feedback

- Is there a model that can determine the percentage of machines needed to be taken offline to disrupt a system of linked nodes sharing computation? (Niko Reveliotis, Comprehension)
- If enough nodes received sufficient I/O requests, could this potentially compromise the system as a whole? (Sam Frey, Comprehension)
- Is the number of snapshots created enough to maintain integrity? (Alvaro Albero, Critical)
- In Figure 4, why does performance seem to improve as more IoT devices push logs? (Sean McBride,
 Critical)
- How does a hash chaining work? (Sean McBride, Critical)

Works Cited

[1] - https://www.vxchnge.com/blog/iot-statistics