Course: CS455 - Algorithms & Structured Programming

Faculty: Prof. Henry Chang

Dijkstra's Algorithm to find the shortest path of Maze

Signature Project Name: Haripriya A

ID: 19579

Table of Contents

- Introduction of Dijkstra's Algorithm
- Steps for Implementing a tree from given Maze
- Finding the Shortest Path using Dijkstra's Algorithm
- Algorithm Steps to find the shortest path
- Implementing table to find shortest path
- Conclusion
- References

Introduction to Dijkstra's Algorithm

*Dijkstra's algorithm solves the single-source shortest-paths problem on a directed weighted graph where all the nodes need to be non-negative.

*With the given maze we are going to implementing a tree of shortest paths from source vertex to the target vertex and find the shortest path of the following maze using Dijkstra's algorithm.

Steps for Implementing a tree from given Maze

A. Below are the detailed steps to implement a tree from source vertex S to the end E

STEP - 1: Starting with the Initial Node S

STEP - 2: Draw the dotted lines and place the nodes in each box and draw the path from each node starting from S

STEP - 3: Take out the maze and draw the nodes and path.

STEP - 4: Identify the nodes end and find the distance to draw a tree

STEP - 5: Implement tree with vertices and distance between the each vertices.

B. Below are the detailed steps to find the shortest path from source vertex S to the target vertex E by developing a table

Here we need to identify the shortest path between two vertices from source vertex which is shortest distance

Let G = (V, E) and vertices or nodes denoted as v or u. Here an edge is denoted as (u,v), and the distance or weight is denoted as w(u,v)

G=(V, E) be a non-negative edges (i.e., $w(u, v) \ge 0$ for each edge $(u, v) \in E$)

By using the function Extract-Min() we extract the node with the smallest key.


```
Algorithm: Dijkstra's-Algorithm (G, w, s)
```

```
for each vertex v \in G.V

v.d := \infty

v.\prod := NIL

s.d := 0

S := \Phi

Q := G.V

while Q \neq \Phi

u := Extract-Min(Q)

S := S \cup \{u\}

for each vertex v \in G.adj[u]

if v.d > u.d + w(u, v)

v.d := u.d + w(u, v)

v.\prod := u
```

The complexity of this algorithm is fully dependent on the implementation of Extract-Min function. If extract min function is implemented using linear search, The complexity of this algorithm is $O(V^2 + E)$.

For developing a table let us consider vertex S and E as the start and target destination vertex respectively.

Initially, all the vertices except the start vertex S are marked by ∞ and the start vertex S is marked by 0.

STEPS to implement table and find the shortest path

We are going to determine the path based on predecessor information.

Initial: $\underline{0}$ is smallest cost on Initial step. Thus, \underline{S} is selected as the starting point for Step 1.

Step-1: S is selected as the starting point for Step 1.

- From S, one can go to B or A
 - The accumulated cost on S is not changed. It is still 0.
 - The accumulated cost on B is 1.
 - The accumulated cost on A is 3.
 - 1 is smaller than 3.
 - Thus, B is selected as the starting point for Step 2.

Step-2: B is selected as the starting point for Step 2.

- From B, one can go to A as the B is already visited and does not have any further extended path
 - The accumulated cost on S is not changed. It is still 0.
 - The accumulated cost on B is 1.
 - The accumulated cost on A is 3.
 - 3 is smaller as B is already visited and remaining nodes are infinity.
 - Thus, A is selected as the starting point for Step 3.

Step-3: A is selected as the starting point for Step 3.

- From A, one can go to D or C
 - The accumulated cost of D is 5 (S => A => D).
 - The accumulated cost on C is 5(S => A => C).
 - Here both D and C are 5. We can select any of the node and we are taking D
 - Thus, D is selected as the starting point for Step 4.

Step-4: D is selected as the starting point for Step 4.

- From D, cannot go to any other node as none is point away from D so selected C as in the table only C is small and all other are visited nodes.
 - The accumulated cost on C is 5(S => A => C).
 - Here C is the next smallest having 5.
 - Thus, C is selected as the starting point for Step 5.

Step-5: C is selected as the starting point for Step 5.

- From C, one can go to H or G or F
 - The accumulated cost of H is 6(S => A => C => H).
 - The accumulated cost on G is 8(S => A => C => G).
 - The accumulated cost on F is $7(S \Rightarrow A \Rightarrow C \Rightarrow F)$.
 - Here H is the smallest having 6 among G and F.
 - Thus, H is selected as the starting point for Step 6.

Step-6: H is selected as the starting point for Step 6.

- From H, one can go to I or J
 - The accumulated cost of I is $11(S \Rightarrow A \Rightarrow C \Rightarrow H \Rightarrow I)$.
 - The accumulated cost on J is $11(S \Rightarrow A \Rightarrow C \Rightarrow H \Rightarrow J)$.
 - The accumulated cost on G is $8(S \Rightarrow A \Rightarrow C \Rightarrow G)$.
 - The accumulated cost on F is 7(S => A => C => F).
 - We have F as the next smallest node in the table having 7.
 - Thus, F is selected as the starting point for Step 7.

Step-7: F is selected as the starting point for Step 7.

- From F, one can go to L or K
 - The accumulated cost of I is $11(S \Rightarrow A \Rightarrow C \Rightarrow H \Rightarrow I)$.
 - The accumulated cost on J is $11(S \Rightarrow A \Rightarrow C \Rightarrow H \Rightarrow J)$.
 - The accumulated cost on G is $8(S \Rightarrow A \Rightarrow C \Rightarrow G)$.
 - The accumulated cost on L is $12(S \Rightarrow A \Rightarrow C \Rightarrow F \Rightarrow L)$.
 - The accumulated cost on K is $10(S \Rightarrow A \Rightarrow C \Rightarrow F \Rightarrow K)$
 - We have G as the next smallest node in the table having 8.
 - i. Thus, G is selected as the starting point for Step 8.

Step-8: G is selected as the starting point for Step 8.

- From G, one cannot go to any other node as none is point away from G so selected K as in the table only K is small among all unvisited nodes.
 - The accumulated cost of I is $11(S \Rightarrow A \Rightarrow C \Rightarrow H \Rightarrow I)$.
 - The accumulated cost on J is $11(S \Rightarrow A \Rightarrow C \Rightarrow H \Rightarrow J)$.
 - The accumulated cost on L is $12(S \Rightarrow A \Rightarrow C \Rightarrow F \Rightarrow L)$.
 - The accumulated cost on K is $10(S \Rightarrow A \Rightarrow C \Rightarrow F \Rightarrow K)$
 - We have K as the next smallest node in the table having 10.
 - Thus, K is selected as the starting point for Step 9.

Step-9: K is selected as the starting point for Step 9.

- From K, one can go to M or E.
 - The accumulated cost of I is $11(S \Rightarrow A \Rightarrow C \Rightarrow H \Rightarrow I)$.
 - The accumulated cost on J is $11(S \Rightarrow A \Rightarrow C \Rightarrow H \Rightarrow J)$.
 - The accumulated cost on L is $12(S \Rightarrow A \Rightarrow C \Rightarrow F \Rightarrow L)$.
 - The accumulated cost on M is $11(S \Rightarrow A \Rightarrow C \Rightarrow F \Rightarrow K \Rightarrow M)$
 - The accumulated cost on E is $18(S \Rightarrow A \Rightarrow C \Rightarrow F \Rightarrow K \Rightarrow E)$
 - We have M, I, J as the next smallest node in the table having 11. We can select any of the node and we are taking M.
 - Thus, M is selected as the starting point for Step 10.

Step-10: M is selected as the starting point for Step 10.

- From M, one cannot go to any other node as none is point away from M, we can select I or J, as in the table I and J are small among all unvisited nodes but alphabetically we are selecting I.
 - The accumulated cost of I is $11(S \Rightarrow A \Rightarrow C \Rightarrow H \Rightarrow I)$.
 - The accumulated cost on J is $11(S \Rightarrow A \Rightarrow C \Rightarrow H \Rightarrow J)$.
 - The accumulated cost on L is $12(S \Rightarrow A \Rightarrow C \Rightarrow F \Rightarrow L)$.
 - The accumulated cost on E is $18(S \Rightarrow A \Rightarrow C \Rightarrow F \Rightarrow K \Rightarrow E)$
 - We have I, J as the next smallest nodes in the table having 11. We can select any of the node and we are taking I.
 - Thus, I is selected as the starting point for Step 11.

Step-11: I is selected as the starting point for Step 11.

- From M, one cannot go to any other node as none is point away from I so selected J, as in the table only J is small among all unvisited nodes.
 - The accumulated cost on J is $11(S \Rightarrow A \Rightarrow C \Rightarrow H \Rightarrow J)$.
 - The accumulated cost on L is $12(S \Rightarrow A \Rightarrow C \Rightarrow F \Rightarrow L)$.
 - The accumulated cost on E is $18(S \Rightarrow A \Rightarrow C \Rightarrow F \Rightarrow K \Rightarrow E)$
 - J is the next smallest nodes in the table having 11. We can select J.
 - Thus, J is selected as the starting point for Step 12.

Step-12: J is selected as the starting point for Step 12.

- From J, one cannot go to any other node as none is point away from J so selected L, as in the table only L is small among all unvisited nodes.
 - The accumulated cost on L is $12(S \Rightarrow A \Rightarrow C \Rightarrow F \Rightarrow L)$.
 - The accumulated cost on E is $18(S \Rightarrow A \Rightarrow C \Rightarrow F \Rightarrow K \Rightarrow E)$
 - L is the next smallest nodes in the table having 12. We can select L.
 - Thus, L is selected as the starting point for Step 13.

Step-13: L is selected as the starting point for Step 13.

- From L, one cannot go to any other node as none is point away from L so selected E, as in the table only E is left.
 - The accumulated cost on E is $18(S \Rightarrow A \Rightarrow C \Rightarrow F \Rightarrow K \Rightarrow E)$.

Implemented table to find shortest path

0						100				100				
Vertex	Initial	Step 1	Step 2 (S)	Step3 (S, B)	Step4 (S, B, A)	Step5 (S, B, A, D)	Step6 (S, B, A, D)	Step7 (S, B, A, D, H)	Step8 (S, B, A, D, H, F)	Step9 (S, B, A, D, H, F, G)	Step10 (S, B, A, D, H, F, G, K)	Step11 (S, B, A, D, H, F, G, K, M)	Step12 (S, B, A, D, H, F, G, K, M, I)	Step13 I (S, B, A, D, H, F, G, K, M, I, J, L)
		Step	Step	Step	Step	Step	Step	Step	Step	Step	Step	Step	Step	at Step
S	О	0	0	0	0	0	0	Θ	0	0	0	0	0	0
A	∞	3	3	3	3	3	3	3	3	3	3	3	3	3
В	∞	1	1	4	1	1	4	1	1	4	4	4	4	1
С				5	5	5	5	5	5	5	5	5	5	5
D			-	5	5	5	5	5	5	5	5	5	5	5
F	∞		-	-	∞	7	7	7	7	7	7	7	7	7
G	-	-	~~	~	∞	8	8	8	8	8	8	8	8	8
H	∞	∞	∞	∞	∞	6	6	6	6	6	6	6	6	6
1	∞	∞	~	∞	∞	∞	11	11	11	11	11	11	11	11
J	∞	∞	~	∞	∞	∞	11	11	11	11	11	11	11	11
K	∞	-	∞	∞	∞	∞	~	10	10	10	10	10	10	10
L	∞	∞	∞	∞	∞	∞	∞	12	12	12	12	12	12	12
M	∞	-		∞	∞	∞	-	~	-	11	11	11	11	11
E	∞	∞	~	∞	∞	∞		-	∞	18	18	18	18	18

V: the current visiting node V: the next node to visit

¥: this node has been visited

Conclusion

Hence, the minimum distance from S to E in the maze is 18

- *The path is $S \rightarrow A \rightarrow C \rightarrow F \rightarrow K \rightarrow E$
- * Distance is $3 \rightarrow 2 \rightarrow 2 \rightarrow 3 \rightarrow 8$

Note: The shortest path can be found by either Dijkstra's Algorithm or Bellman Ford Algorithm.

• Dijkstra's algorithm only works for the edges which are non-negative whereas Bellman Ford Algorithm works for both negative and non-negative edges.

References

- https://npu85.npu.edu/~henry/npu/classes/algorithm/tutorialpoints_daa/slide/sh ortest_paths.html
- https://npu85.npu.edu/~henry/npu/classes/algorithm/graph-alg/slide/maze.html

Google slides URL:

https://docs.google.com/presentation/d/1JbDMnSiinAii8PDmttBEmT9bl0mP7SUp18YGTKBCWYw/edit#slide=id.gcbd2d89a56 0 376

