Dimensionamento

> OS SEIS CRITÉRIOS TÉCNICOS DE DIMENSIONA-MENTO DE CONDUTORES ELÉTRICOS:

Chamamos de dimensionamento técnico de um circuito à aplicação dos diversos itens da NBR 5410/2004 relativos à escolha da seção de um condutor e do seu respectivo dispositivo de proteção. Os seis critérios da norma são:

- seção mínima; conforme 6.2.6;
- capacidade de condução de corrente;conforme 6.2.5;
- queda de tensão; conforme 6.2.7;
- sobrecarga; conforme 5.3.3;
- curto-circuito; conforme 5.3.5;
- proteção contra choques elétricos; conforme 5.1.2.2.4 (quando aplicável)

Para considerarmos um circuito completa e corretamente dimensionado, é necessário realizar os seis cálculos acima, cada um resultando em uma seção e considerar como seção final aquela que é a maior dentre todas as obtidas.

Especial atenção deve ser dispensada ao dimensionamento de condutores em circuitos onde haja a presença de harmônicas. Esse assunto é abordado no item 6.2.6.2.5 da NBR 5410/2004.

>> SEÇÃO DO CONDUTOR NEUTRO:

Conforme 6.2.6.2 da NBR 5410/2004, o condutor neutro deve possuir, no mínimo, a mesma seção que os condutores fase nos seguintes casos:

- em circuitos monofásicos e bifásicos;
- em circuitos trifásicos, quando a seção do condutor fase for igual ou inferior a 25mm²;
- em circuitos trifásicos, quando for prevista a presenca de harmônicas.

Conforme 6.2.6.2.6 da NBR 5410/2004, apenas nos circuitos trifásicos, é admitida a redução do condutor neutro quando as três condições abaixo forem simultaneamente atendidas:

- quando a seção do neutro for no mínimo igual a 25mm²;
- caso a máxima corrente susceptível de percorrer o neutro seja inferior à capacidade de condução de corrente correspondente à seção reduzida do condutor neutro;
- quando o condutor neutro for protegido contra sobrecorrentes.

Os valores mínimos da seção do condutor neutro nestes casos estão indicados na tabela 14 a seguir.

Dimensionamento

> O CONDUTOR DE PROTEÇÃO (FIO TERRA):

A NBR 5410/2004 recomenda o uso de condutores de proteção (designados por PE), que, preferencialmente, deverão ser condutores isolados, cabos unipolares ou veias de cabos multipolares.

A tabela 15 a seguir, indica a seção mínima do condutor de proteção em função da seção dos condutores fase do circuito. Em alguns casos, admite-se o uso de um condutor com a função dupla de neutro e condutor de proteção. É o condutor PEN (PE + N), cuja seção mínima é de 10mm², se for condutor isolado ou cabo unipolar, ou de 4mm², se for uma veia de um cabo multipolar.

> CORES DOS CONDUTORES NEUTRO E DE PROTEÇÃO:

A NBR 5410/2004 prevê, no item 6.1.5.3, que os condutores de um circuito devem ser identificados, porém deixa em aberto o modo como fazer esta identificação. No caso de o usuário desejar fazer a identificação por cores, então devem ser adotadas aquelas prescritas na norma, a saber:

- neutro (N) = azul-claro;
- condutor de proteção (PE) = verde-amarela;
- condutor PEN = azul-claro com indicação verdeamarela nos pontos visíveis.

CAPACIDADE DE CONDUÇÃO DE CORRENTE

TABELA 1 - (*) MÉTODOS DE INSTALAÇÃO E DETERMINAÇÃO DAS COLUNAS DAS TABELAS 2, 3, 4, 5, 10 E 11.

		condutor isolado	cabo unipolar	cabo multipolar
tipo de linha elétrica	método de instalação (1)	cabo superastic cabo superastic flex fio superastic cabo afumex 750V	cabo sintenax flex cabo sintenax cabo eprotenax gsette cabo eprotenax cabo voltalene	cabo sintenax flex cabo sintenax cabo eprotenax gsette cabo eprotenax cabo voltalene
Afastado da parede ou suspenso por cabo de suporte (2)	15/17	_	F	E
Bandejas não perfuradas ou prateleiras	12	_	С	С
Bandejas perfuradas (horizontal ou vertical)	13	_	F	E
Canaleta fechada no piso, solo ou parede	33/34/72/72A/75/75A	B1	B1	B2
Canaleta ventilada no piso ou solo	43	_	B1	B1
Diretamente em espaço de construção - 1,5D _e \leq V $<$ 5D _e (4)	21	_	B2	B2
Diretamente em espaço de construção – $5D_e \le V \le 50D_e$ (4)	21	_	B1	B1
Diretamente enterrado	63	_	D	D
Eletrocalha	31/31A/32/32A/35/36	B1	B1	B2
Eletroduto aparente	3/4/5/6	B1	B1	B2
Eletroduto de seção não circular embutido em alvenaria	27	_	B2	B2
Eletroduto de seção não circular embutido em alvenaria - $1.5D_e \le V < 5D_e$ (4)	26	B2	_	_
Eletroduto de seção não circular embutido em alvenaria - $5D_e \le V < 50D_e$ (4)	26	B1	_	_
Eletroduto em canaleta fechada - 1,5D _e ≤ V < 20D _e (4)	41	B2	B2	
Eletroduto em canaleta fechada - V≥20D _e (4)	41	B1	B1	
Eletroduto em canaleta ventilada no piso ou solo	42	B1	_	_
Eletroduto em espaço de construção	23/25	_	B2	B2
Eletroduto em espaço de construção - 1,5D _e ≤ V < 20D _e (4)	22/24	B2	_	_
Eletroduto em espaço de construção - v ≥ 20D _e (4)	22/24	B1	_	
Eletroduto embutido em alvenaria	7/8	B1	B1	B2
Eletroduto embutido em caixilho de porta ou janela	73/74	A1	_	
Eletroduto embutido em parede isolante	1/2	A1	A1	A1
Eletroduto enterrado no solo ou canaleta não ventilada no solo	61/61A	_	D	D
Embutimento direto em alvenaria	52/53	_	С	С
Embutimento direto em caixilho de porta ou janela	73/74	_	A1	A1
Embutimento direto em parede isolante	51	_	_	A1
Fixação direta à parede ou teto (3)	11/11A /11B	_	С	С
Forro falso ou piso elevado – 1,5D _e \leq V $<$ 5D _e (4)	28	_	B2	B2
Forro falso ou piso elevado − 5D _e ≤ V ≤ 50D _e (4)	28	_	B1	B1
Leitos, suportes horizontais ou telas	14/16	_	F	E
Moldura	71	A1	A 1	
Sobre isoladores	18	G	-	-

⁽¹⁾ método de instalação conforme a tabela 33 da NBR 5410/2004 (2) distância entre o cabo e a parede ≥ 0,3 diâmetro externo do cabo (3) distância entre o cabo e a

A Prysmian reserva-se ao direito de modificar sem aviso prévio as características técnicas, pesos e dimensões apresentadas neste catálogo, sempre respeitando os valores previstos nas normas citadas. A Prysmian não se responsabiliza por danos pessoais ou materiais decorrentes do uso inadequado e/ou negligente das informações contidas neste catálogo.

parede < 0,3 diâmetro externo do cabo (4) V = altura do espaço de construção ou da canaleta/De = diâmetro externo do cabo (*) Os locais da tabela assinalados por (—) significam que os cabos correspondentes não podem, de acordo com a NBR 5410/2004, ser instalados na maneira especificada ou então trata-se de uma maneira de instalar não usual para o tipo de cabo escolhido.

CAPACIDADE DE CONDUÇÃO DE CORRENTE

TABELA 2 - (*) CAPACIDADES DE CONDUÇÃO DE CORRENTE, EM AMPÈRES, PARA OS MÉTODOS DE REFERÊNCIA, A1, A2, B1, B2, C e D DA TABELA 1 FIOS E CABOS ISOLADOS EM TERMOPLÁSTICO, CONDUTOR DE COBRE.

- Cabo Superastic, Cabo Superastic Flex, Fio Superastic, Cabo Sintenax, Cabo Sintenax Flex e Afumex 750V;
 - 2 e 3 condutores carregados;
 - Temperatura no condutor: 70 °C;
 - Temperaturas: 30 °C (ambiente) e 20 °C (solo).

seções nominais				méto	dos de ii	nstalação	definid	os na tab	ela 1			
(mm²)	1	\1	Δ	.2	В	1	В	2	(c	ı	D
	2 condutores carregados	3 condutores carregados										
[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]
0,5	7	7	7	7	9	8	9	8	10	9	12	10
0,75	9	9	9	9	11	10	11	10	13	11	15	12
1	11	10	11	10	14	12	13	12	15	14	18	15
1,5	14,5	13,5	14	13	17,5	15,5	16,5	15	19,5	17,5	22	18
2,5	19,5	18	18,5	17,5	24	21	23	20	27	24	29	24
4	26	24	25	23	32	28	30	27	36	32	38	31
6	34	31	32	29	41	36	38	34	46	41	47	39
10	46	42	43	39	57	50	52	46	63	57	63	52
16	61	56	57	52	76	68	69	62	85	76	81	67
25	80	73	75	68	101	89	90	80	112	96	104	86
35	99	89	92	83	125	110	111	99	138	119	125	103
50	119	108	110	99	151	134	133	118	168	144	148	122
70	151	136	139	125	192	171	168	149	213	184	183	151
95	182	164	167	150	232	207	201	179	258	223	216	179
120	210	188	192	172	269	239	232	206	299	259	246	203
150	240	216	219	196	309	275	265	236	344	299	278	230
185	273	245	248	223	353	314	300	268	392	341	312	258
240	321	286	291	261	415	370	351	313	461	403	361	297
300	367	328	334	298	477	426	401	358	530	464	408	336
400	438	390	398	355	571	510	477	425	634	557	478	394
500	502	447	456	406	656	587	545	486	729	642	540	445
630	578	514	526	467	758	678	626	559	843	743	614	506
800	669	593	609	540	881	788	723	645	978	865	700	577
1000	767	679	698	618 1	1012	906	827	738	1125	996	792	652

^(*) De acordo com a tabela 36 da NBR 5410/2004.

CAPACIDADE DE CONDUÇÃO DE CORRENTE

TABELA 3 - (*) CAPACIDADES DE CONDUÇÃO DE CORRENTE, EM AMPÈRES, PARA OS MÉTODOS DE REFERÊNCIA A1, A2, B1, B2, C e D DA TABELA 1 CABOS ISOLADOS EM TERMOFIXO, CONDUTOR DE COBRE.

- > Cabos Voltalene, Eprotenax, Eprotenax Gsette e Afumex 0,6/1kV;
 - 2 e 3 condutores carregados;
 - Temperatura no condutor: 90 °C;
 - Temperaturas: 30 °C (ambiente), 20 °C (solo).

seções nominais				méto	dos de i	nstalação	definid	os na tal	oela 1			
(mm²)	4	\1	Δ	.2	В	1	В	2		c		D
	2 condutores carregados	3 condutores carregados										
[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]
0,5	10	9	10	9	12	10	11	10	12	11	14	12
0,75	12	11	12	11	15	13	15	13	16	14	18	15
1	15	13	14	13	18	16	17	15	19	17	21	17
1,5	19	17	18,5	16,5	23	20	22	19,5	24	22	26	22
2,5	26	23	25	22	31	28	30	26	33	30	34	29
4	35	31	33	30	42	37	40	35	45	40	44	37
6	45	40	42	38	54	48	51	44	58	52	56	46
10	61	54	57	51	75	66	69	60	90	71	73	61
16	81	73	76	68	100	88	91	80	107	96	95	79
25	106	95	99	89	133	117	119	105	138	119	121	101
35	131	117	121	109	164	144	146	128	171	147	146	122
50	158	141	145	130	198	175	175	154	209	179	173	144
70	200	179	183	164	253	222	221	194	269	229	213	178
95	241	216	220	197	306	269	265	233	328	278	252	211
120	278	249	253	227	354	312	305	268	382	322	287	240
150	318	285	290	259	407	358	349	307	441	371	324	271
185	362	324	329	295	464	408	395	348	506	424	363	304
240	424	380	386	346	546	481	462	407	599	500	419	351
300	486	435	442	396	628	553	529	465	693	576	474	396
400	579	519	527	472	751	661	628	552	835	692	555	464
500	664	595	604	541	864	760	718	631	966	797	627	525
630	765	685	696	623	998	879	825	725	1122	923	711	596
800	885	792	805	721 1	1158	1020	952	837	1311	1074	811	679
1000	1014	908	923	826 1	1332	1173	1088	957	1515	1237	916	767

^(*) De acordo com a tabela 37 da NBR 5410/2004.

CAPACIDADE DE CONDUÇÃO DE CORRENTE

TABELA 4 - (*) CAPACIDADES DE CONDUÇÃO DE CORRENTE, EM AMPÈRES, PARA OS MÉTODOS DE REFERÊNCIA E, F, G DA TABELA 1 FIOS E CABOS ISOLADOS EM TERMOPLÁSTICO, CONDUTOR DE COBRE.

- Cabo Superastic, Cabo Superastic Flex, Fio Superastic, Cabo Sintenax, Cabo Sintenax Flex e Afumex 750V;
 - Temperatura no condutor: 70 °C;
 - Temperatura ambiente: 30 °C.

seções nominais			métodos de in	stalação defini	dos na tabela	1				
	cabos mul	ltipolares	cabos unipolares ou condutores isolados							
(mm²)	E	E	F	F	F	G	G			
	cabos	cabos tripolares	2 condutores	condutores	3 cabos unip	olares ou 3 condut	ores isolados			
	bipolares	e tetrapolares	isolados ou 2 cabos unipolares	isolados ou cabos unipolares em trifólio	contíguos	espaçados horizontalmente	espaçados verticalmente			
	0		00 0u 0		000 ou 000	O O O De				
[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]			
0,5	11	9	11	8	9	12	10			
0,75	14	12	14	11	11	16	13			
1	17	14	17	13	14	19	16			
1,5	22	18,5	22	17	18	24	21			
2,5	30	25	31	24	25	34	29			
4	40	34	41	33	34	45	39			
6	5 1	43	53	43	45	59	51			
10	70	60	73	60	63	81	71			
16	94	80	99	82	85	110	97			
25	119	101	131	110	114	146	130			
35	148	126	162	137	143	181	162			
50	180	153	196	167	174	219	197			
70	232	196	251	216	225	281	254			
95	282	238	304	264	275	341	311			
120	328	276	352	308	321	396	362			
150	379	319	406	356	372	456	419			
185	434	364	463	409	427	521	480			
240	514	430	546	485	507	615	569			
300	593	497	629	561	587	709	659			
400	715	597	754	656	689	852	795			
500	826	689	868	749	789	982	920			
630	958	789	1005	855	905	1138	1070			
800	1118	930	1169	971	1119	1325	1251			
1000	1292	1073	1346	1079	1296	1528	1448			

^(*) De acordo com a tabela 38 da NBR 5410/2004.

CAPACIDADE DE CONDUÇÃO DE CORRENTE

TABELA 5 - (*) CAPACIDADES DE CONDUÇÃO DE CORRENTE, EM AMPÈRES, PARA OS MÉTODOS DE REFERÊNCIA E, F, G DA TABELA 1 CABOS ISOLADOS EM TERMOFIXO, CONDUTOR DE COBRE.

- Cabos Voltalene, Eprotenax, Eprotenax Gsette e Afumex 0,6/1kV;
 - Temperatura no condutor: 90 °C;
 Temperatura ambiente: 30 °C.

seções nominais			métodos de in	stalação defini	dos na tabela	1					
	cabos mul	ltipolares		cabos unipolares ou condutores isolados							
(mm²)	E	E	F	F	F	G	G				
	cabos	cabos tripolares	2 condutores	condutores	3 cabos unip	oolares ou 3 condut	ores isolados				
	bipolares	e tetrapolares	isolados ou 2 cabos unipolares	isolados ou cabos unipolares em trifólio	contíguos	espaçados horizontalmente	espaçados verticalmente				
	0		00 00 00		000 ou 0	© © © De	⊙ De				
[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]				
0,5	13	12	13	10	10	15	12				
0,75	17	15	17	13	14	19	16				
1	21	18	21	16	17	23	19				
1,5	26	23	27	21	22	30	25				
2,5	36	32	37	29	30	41	35				
4	49	42	50	40	42	56	48				
6	63	54	65	53	55	73	63				
10	86	75	90	74	77	101	88				
16	115	100	121	101	105	137	120				
25	149	127	161	135	141	182	161				
35	185	158	200	169	176	226	201				
50	225	192	242	207	216	275	246				
70	289	246	310	268	279	353	318				
95	352	298	377	328	342	430	389				
120	410	346	437	383	400	500	454				
150	473	399	504	444	464	577	527				
185	542	456	575	510	533	661	605				
240	641	538	679	607	634	781	719				
300	741	621	783	703	736	902	833				
400	892	745	940	823	868	1085	1008				
500	1030	859	1083	946	998	1253	1169				
630	1196	995	1254	1088	1151	1454	1362				
800	1396	1159	1460	1252	1328	1696	1595				
1000	1613	1336	1683	1420	1511	1958	1849				

^(*) De acordo com a tabela 39 da NBR 5410/2004.

CAPACIDADE DE CONDUÇÃO DE CORRENTE

TABELA 6 - (*) FATORES DE CORREÇÃO PARA TEMPERATURAS AMBIENTES DIFERENTES DE 30°C PARA LINHAS NÃO SUBTERRÂNEAS E DE 20°C (TEMPERATURA DO SOLO) PARA LINHAS SUBTERRÂNEAS.

temperatura		isolaç	ão	
	PVC	EPR ou XLPE	PVC	EPR ou XLPE
(°C)	am	biente	do	solo
10	1,22	1,15	1,10	1,07
15	1,17	1,12	1,05	1,04
20	1,12	1,08	1	1
25	1,06	1,04	0,95	0,96
30	1	1	0,89	0,93
35	0,94	0,96	0,84	0,89
40	0,87	0,91	0,77	0,85
45	0,79	0,87	0,71	0,80
50	0,71	0,82	0,63	0,76
55	0,61	0,76	0,55	0,71
60	0,50	0,71	0,45	0,65
65	_	0,65	_	0,60
70	_	0,58	_	0,53
75	_	0,50	_	0,46
80	_	0,41	_	0,38

^(*) De acordo com a tabela 40 da NBR 5410/2004.

CAPACIDADE DE CONDUÇÃO DE CORRENTE

TABELA 7 - (*) FATORES DE CORREÇÃO PARA CABOS CONTIDOS EM ELETRODUTOS ENTERRADOS NO SOLO, COM RESISTIVIDADES TÉRMICAS DIFERENTES DE 2,5 K.m/W, A SEREM APLICADOS ÀS CAPACIDADES DE CONDUÇÃO DE CORRENTE DO MÉTODO DE REFERÊNCIA D.

resistividade térmica (K.m/W)	1	1,5	2	3
fator de correção	1,18	1,10	1,05	0,96

^(*) De acordo com a tabela 41 da NBR 5410/2004.

A Prysmian reserva-se ao direito de modificar sem aviso prévio as características técnicas, pesos e dimensões apresentadas neste catálogo, sempre respeitando os valores previstos nas normas citadas. A Prysmian não se responsabiliza por danos pessoais ou materiais decorrentes do uso inadequado e/ou negligente das informações contidas neste catálogo.

FATORES DE CORREÇÃO PARA AGRUPAMENTO DE CIRCUITOS

TABELA 8 - (*) FATORES DE CORREÇÃO APLICÁVEIS A CONDUTORES AGRUPADOS EM FEIXE (EM LINHAS ABERTAS OU FECHADAS) E A CONDUTORES AGRUPADOS NUM MESMO PLANO, EM CAMADA ÚNICA.

ref.	forma de agrupamento dos		número de circuitos ou de cabos multipolares					tabelas dos métodos de						
	condutores	1	2	3	4	5	6	7	8	9 a 11	12 a 15	16 a 19	20	referência
1	em feixe: ao ar livre ou sobre superfície; embutidos: em condutos fechados	1,00	0,80	0,70	0,65	0,60	0,57	0,54	0,52	0,50	0,45	0,41	0,38	36 a 39 (métodos A a F)
2	camada única sobre parede, piso ou em bandeja não perfurada ou prateleira		0,85	0,79	0,75	0,73	0,72	0,72	0,71	0,70		0,70		36 a 37
3	camada única no teto	0,95	0,81	0,72	0,68	0,66	0,64	0,63	0,62	0,61		0,61		(método C)
4	camada única em bandeja perfurada	1,00	0,88	0,82	0,77	0,75	0,73	0,73	0,72	0,72		0,72		38 e 39 (métodos
5	camada única sobre leito, suporte, etc.	1,00	0,87	0,82	0,80	0,80	0,79	0,79	0,78	0,78		0,78		E e F)

^(*) De acordo com a tabela 42 da NBR 5410/2004.

NOTAS:

- 1) Esses fatores são aplicáveis a grupos homogêneos de cabos, uniformemente carregados.
- 2) Quando a distância horizontal entre cabos adjacentes for superior ao dobro de seu diâmetro externo, não é necessário aplicar nenhum fator de reducão.
- 3) O número de circuitos ou de cabos com o qual se consulta a tabela refere-se:
 - à quantidade de grupos de dois ou três condutores isolados ou cabos unipolares, cada grupo constituindo um circuito (supondo-se um só condutor por fase, isto é, sem condutores em paralelo), e/ou;
 - à quantidade de cabos multipolares que compõe o agrupamento, qualquer que seja essa composição (só condutores isolados, só cabos unipolares, só cabos multipolares ou qualquer combinação).
- 4) Se o agrupamento for constituído, ao mesmo tempo, de cabos bipolares e tripolares, deve-se considerar o número total de cabos como sendo o número de circuitos e, de posse do fator de agrupamento resultante, a determinação das capacidades de condução de corrente, nas tabelas 2 a 5, deve ser então efetuada:
 - na coluna de dois condutores carregados, para os cabos bipolares; e
- na coluna de três condutores carregados, para os cabos tripolares.
- 5) Um agrupamento com N condutores isolados, ou N cabos unipolares, pode ser considerado composto tanto de N/2 circuitos com dois condutores carregados quando de N/3 circuitos com três condutores carregados.
- 6) Os valores indicados são médios para a faixa usual de seções nominais, com dispersão geralmente inferior a 5%.

FATORES DE CORREÇÃO PARA AGRUPAMENTO DE CIRCUITOS

TABELA 9 - (*) FATORES DE CORREÇÃO APLICÁVEIS A AGRUPAMENTOS CONSISTINDO EM MAIS UMA CAMADA DE CONDUTORES - MÉTODOS DE REFERÊNCIA C (TABELAS 36 E 37), E e F (TABELAS 38 E 39).

		quantidade de circuitos trifásicos ou de cabos multipolares por camada							
		2	3	4 ou 5	6 a 8	9 e mais			
	2	0,68	0,62	0,60	0,58	0,56			
quantidade	3	0,62	0,57	0,55	0,53	0,51			
de	4 ou 5	0,60	0,55	0,52	0,51	0,49			
camada	6 a 8	0,58	0,53	0,51	0,49	0,48			
-	9 e mais	0,56	0,51	0,49	0,48	0,46			

(*) De acordo com a tabela 43 da NBR 5410/2004.

NOTAS:

- A) Os fatores são válidos independentemente da disposição da camada, se horizontal ou vertical.
- B) Sobre condutores agrupados em uma única camada, ver tabela 42 (linhas 2 a 5 da tabela).
- c) Se forem necessários valores mais precisos, deve-se recorrer à ABNT NBR 11301.

FATORES DE CORREÇÃO PARA AGRUPAMENTO DE CIRCUITOS

TABELA 10 - (*) FATORES DE AGRUPAMENTO PARA MAIS DE UM CIRCUITO CABOS UNIPOLARES OU CABOS MULTIPOLARES DIRETAMENTE ENTERRADOS (MÉTODO DE REFERÊNCIA D, DA TABELA 1).

número de circuitos		distância entre cabos ⁽¹⁾ (a)								
	nula	um diâmetro de cabo	0,125m	0,25m	0,5m					
2	0,75	0,80	0,85	0,90	0,90					
3	0,65	0,70	0,75	0,80	0,85					
4	0,60	0,60	0,70	0,75	0,80					
5	0,55	0,55	0,65	0,70	0,80					
6	0,50	0,55	0,60	0,70	0,80					

(*) De acordo com a tabela 44 da NBR 5410/2004.

CABOS MULTIPOLARES

CABOS UNIPOLARES

NOTAS:

- A) Os valores indicados são aplicáveis para um profundidade de 0,7m e uma resistividade térmica de solo de 2,5 K.m/W.
- B) São valores médios para as dimensões de cabos abrangidas nas tabelas 36 e 37.
- C) Os valores médios arredondados podem apresentar erros de até ± 10% em certos casos. Se forem necessários valores mais precisos, deve-se recorrer à ABNT NBR 11301.

FATORES DE CORREÇÃO PARA AGRUPAMENTO DE CIRCUITOS

TABELA 11 - (*) FATORES DE AGRUPAMENTO PARA MAIS DE UM CIRCUITO **CABOS EM ELETRODUTOS DIRETAMENTE ENTERRADOS** (MÉTODO DE REFERÊNCIA D NAS TABELAS 2 E 3).

a) cabos multipolares em eletrodutos - um cabo por eletroduto

número de circuitos	espaçamento entre dutos (a)									
	nula	0,25m	0,5m	1,0m						
2	0,85	0,90	0,95	0,95						
3	0,75	0,85	0,90	0,95						
4	0,70	0,80	0,85	0,90						
5	0,65	0,80	0,85	0,90						
6	0,60	0,80	0,80	0,80						

(*) De acordo com a tabela 45 da NBR 5410/2004.

CABOS MULTIPOLARES

b) condutores isolados ou cabos unipolares em eletrodutos - um cabo por eletroduto (**)

número de circuitos	espaçamento entre dutos (a)								
	nula	0,25m	0,5m	1,0m					
2	0,80	0,90	0,90	0,95					
3	0,70	0,80	0,85	0,90					
4	0,65	0,75	0,80	0,90					
5	0,60	0,70	0,80	0,90					
6	0,60	0,70	0,80	0,90					

(*) De acordo com a tabela 45 da NBR 5410/2004. (**) Somente deve ser instalado um cabo unipolar por eletroduto, no caso deste ser em material não-magnético.

CABOS UNIPOLARES

FATORES DE CORREÇÃO PARA AGRUPAMENTO DE CIRCUITOS

> GRUPOS CONTENDO CABOS DE DIMENSÕES DIFERENTES

Os fatores de correção tabelados (tabelas 8 a 11) são aplicáveis a grupos de cabos semelhantes, igualmente carregados. O cálculo dos fatores de correção para grupos contendo condutores isolados ou cabos unipolares ou multipolares de diferentes seções nominais, depende da quantidade de condutores ou cabos e da faixa de seções. Tais fatores não podem ser tabelados e devem ser calculados caso a caso, utilizando, por exemplo, a NBR 11301

NOTA:

São considerados cabos semelhantes aqueles cujas capacidades de condução de corrente baseiam-se na mesma temperatura máxima para serviço contínuo e cujas seções nominais estão contidas no intervalo de 3 seções normalizadas sucessivas.

No caso de condutores isolados, cabos unipolares ou cabos multipolares de dimensões diferentes em condutos fechados ou em bandejas, leitos, prateleiras ou suportes, caso não seja viável um cálculo mais específico, devese utilizar a expressão:

$$F = \frac{1}{\sqrt{n}}$$

onde:

F = fator de correção

n = número de circuitos ou de cabos multipolares

NOTA:

A expressão dada está a favor da segurança e reduz os perigos de sobrecarga sobre os cabos de menor seção nominal. Pode, no entanto, resultar no superdimensionamento dos cabos de seções mais elevadas.

PRESENÇA DE HARMÔNICAS DE 3º ORDEM

NÚMERO DE CONDUTORES (6.2.5.6 DA NBR 5410/2004)

Em circuitos trifásicos com neutro, com taxa de terceira harmônica e seus múltiplos superior a 15%, o condutor neutro deve ser considerado como condutor carregado. Dessa forma, a capacidade máxima de condução de corrente do condutor fase deve ser multiplicada por 0,86.

> CONDUTOR NEUTRO (6.2.6.2 DA NBR 5410/2004)

A seção de um condutor neutro de um circuito monofásico deve ser igual a seção do condutor de fase. Para circuitos trifásicos, o condutor neutro deve ter seção mínima:

- igual ao previsto na tabela 14 (informações complementares) quando a presença de terceira harmônica for no máximo de 15%.
- igual a seção do condutor de fase para presença de terceira harmônica entre 16% e 33%. Quando a presença de terceira harmônica e seus múltiplos for superior a 33%, a seção do condutor neutro de ser determinada conforme a tabela a seguir.

PRESENÇA DE HARMÔNICAS DE 3º ORDEM

TABELA 12 - FATOR f_h PARA A DETERMINAÇÃO DA CORRENTE DE NEUTRO (TABELA F.1 DA NBR 5410/2004)

taxa de terceira harmônica		f _h
(%)	circuito trifásico com neutro	circuito com duas fases e neutro
33 a 35	1,15	1,15
36 a 40	1,19	1,19
41 a 45	1,24	1,23
46 a 50	1,35	1,27
51 a 55	1,45	1,30
56 a 60	1,55	1,34
61 a 65	1,64	1,38
> = 66	1 73	1 41

$$I_n = f_h \times I_B$$

$$I_B = \sqrt{I_1^2 + I_i^2 + I_j^2 + ...I_n^2}$$

Onde

 I_1 = valor eficaz da componente fundamental ou componente 60 Hz.

l_i, l_j ...l_n = valores eficazes das componentes harmônicas de ordem i, j ... n presentes na corrente de fase e f_h é o fator multiplicativo em função da taxa de terceira harmônica.

OBSERVAÇÃO

Na falta de uma estimativa mais precisa da taxa de terceira harmônica esperada, recomenda-se a adoção de um f_h igual a 1,73 no caso de circuito trifásico com neutro e igual a 1,41 no caso de circuito com duas fases e neutro.

INFORMAÇÕES COMPLEMENTARES

TABELA 13 - (*) SEÇÕES MÍNIMAS DOS CONDUTORES ISOLADOS.

tipo de instalação	utilização do circuito	seção mínima do condutor isolado (mm²)
instalações	circuitos de iluminação	1,5
fixas	circuitos de força (incluem tomadas)	2,5
em geral	circuitos de sinalização e circuitos de controle	0,5
	para um equipamento específico	como especificado na norma do equipamento
ligações flexíveis	para qualquer outra aplicação	0,75
HEXIVEIS	circuitos a extrabaixa tensão para aplicações especiais	0,75

^(*) De acordo com a tabela 47 da NBR 5410/2004.

INFORMAÇÕES COMPLEMENTARES

TABELA 14 - (*) SEÇÃO DO CONDUTOR NEUTRO.

INFORMAÇÕES COMPLEMENTARES

TABELA 15 - (*) SEÇÕES MÍNIMAS DOS CONDU-TORES DE PROTEÇÃO.

seção dos condutores fase	seção mínima do condutor neutro
(mm²)	(mm²)
S ≤ 25	S
35	25
50	25
70	35
95	50
120	70
150	70
185	95
240	120
300	150
400	185
500	240
630	400
800	400
1.000	500

^(*) De acordo com a tabela 48 da NBR 5410/2004.

seção dos condutores fase	seção do condutor de proteção
(mm²)	(mm²)
1,5	1,5 (mínima)
2,5	2,5
4	4
6	6
10	10
16	16
25	16
35	16
50	25
70	35
95	50
120	70
150	95
185	95
240	120
300	150
400	240
500	240
630	400
800	400
1.000	500

^(*) De acordo com a tabela 58 da NBR 5410/2004.

OBSERVAÇÃO

Ver restrições à redução da seção do condutor neutro na página 1 da Introdução.

QUEDA DE TENSÃO

TABELA 16 - (*) LIMITES DE QUEDA DE TENSÃO.

		valor máximo	
A	calculados a partir dos terminais secundários do transformardor MT/BT, no caso de transformador próprio	7%	
В	calculados a partir dos terminais secundários do transformardor MT/BT, da empresa distribuidora de eletricidade quando o ponto de entrega for aí localizado.	7%	
C	calculados a partir do ponto de entrega, nos demais casos com fornecimento em tensão secundária de distribuição.	5%	
D	calculados a partir dos terminais de saída do gerador, no caso de grupo gerador próprio.	7%	

^(*) De acordo com 6.2.7 da NBR 5410/2004.

NOTAS:

- 1. Em nehum caso a queda de tensão nos circuitos terminais podem ser superior a 4%;
- 2. Nos casos A, B e D, quando as linhas principais da instalação tiverem um comprimento superior a 1000m, as quedas de tensão podem ser aumentadas de 0,005% por metro de linha superior a 100m, sem que, no entanto, essa suplementação seja superior a 0,5%.

QUEDA DE TENSÃO

TABELA 17 - QUEDA DE TENSÃO EM V/A.km
CABO SUPERASTIC, CABO SUPERASTIC FLEX, FIO SUPERASTIC E AFUMEX 750V.

Cabo Superastic, Cabo Superastic Flex, Fio Superastic e Afumex 750V.

seções nominais	eletroduto e e (material n		eletroduto e eletrocalha (A) (material não-magnético)									
	circuito m e trifa		circuito m	onofásico	circuito trifásico							
(mm²)	FP = 0,8 FP = 0,95		FP = 0,8	FP = 0,95	FP = 0,8	FP = 0,95						
1,5	23	27,4	23,3	27,6	20,2	23,9						
2,5	14	16,8	14,3	16,9	12,4	14,7						
4	9,0 10,5		8,96	10,6	7,79	9,15						
6	5,87 7,00		6,03	7,07	5,25	6,14						
10	3,54	4,20	3,63	4,23	3,17	3,67						
16	2,27	2,70	2,32	2,68	2,03	2,33						
25	1,50	1,72	1,51	1,71	1,33	1,49						
35	1,12	1,25	1,12	1,25	0,98	1,09						
50	0,86	0,95	0,85	0,94	0,76	0,82						
70	0,64	0,67	0,62	0,67	0,55	0,59						
95	0,50	0,51	0,48	0,50	0,43	0,44						
120	0,42	0,42	0,40	0,41	0,36	0,36						
150	0,37	0,35	0,35	0,34	0,31	0,30						
185	0,32	0,30	0,30	0,29	0,27	0,25						
240	0,29	0,25	0,26	0,24	0,23	0,21						
300	0,27	0,22	0,23	0,20	0,21	0,18						
400	0,24	0,20	0,21	0,17	0,19	0,15						
500	0,23 0,19		0,19	0,16	0,17	0,14						

NOTAS

A) As dimensões do eletroduto e da eletrocalha adotadas são tais que a área dos cabos não ultrapassa 40% da área interna dos mesmos;

A Prysmian reserva-se ao direito de modificar sem aviso prévio as características técnicas, pesos e dimensões apresentadas neste catálogo, sempre respeitando os valores previstos nas normas citadas. A Prysmian não se responsabiliza por danos pessoais ou materiais decorrentes do uso inadequado e/ou negligente das informações contidas neste catálogo.

B) Os valores da tabela admitem uma temperatura no condutor de 70 $^{\circ}$ C.

QUEDA DE TENSÃO

TABELA 18 - QUEDA DE TENSÃO EM V/A. km CABO SINTENAX, CABO SINTENAX FLEX E VOLTALENE

> Cabo Sintenax, Cabo Sintenax Flex e Voltalene.

seções nominais		instalação ao ar livre ^(C)															ı	
					ca	bos uni	ipolares ^(D)									cabos uni e bipolares		tri e olares
		cir	cuito m	onofás	ico		circuito trifásico							circuito trifásico ^(B)		uito	circuito	
									◎ _ ◎ _ <u>◎ ↓ □</u>						monofa	ísico ^(B)	trifá	sico
(mm²)	- 3 -							3 3										
	s=10cm			s=2D s=10		0cm s=20cm s=20			2 D				©					
	-		-															
	FP-0,8	FP-0,95	FP-0,8	FP-0,95	FP-0,8	FP-0,95	FP-0,8	FP-0,95	FP-0,8	FP-0,95	FP-0,8	FP-0,95	FP-0,8	FP-0,95	FP-0,8	FP-0,95	FP-0,8	FP-0,95
1,5	23,6	27,8	23,7	27,8	23,4	27,6	20,5	24,0	20,5	24,1	20,3	24,0	20,2	23,9	23,3	27,6	20,2	23,9
2,5	14,6	17,1	14,7	17,1	14,4	17,0	12,7	14,8	12,7	14,8	12,5	14,7	12,4	14,7	14,3	16.9	12,4	
4	9,3	10,7	9,3	10,7	9,1	10,6	8,0	9,3	8,1	9,3	7,9	9,2	7,8	9,2	9,0	10,5	7,8	9,1
6	6.3	7,2	6,4	7,2	6.1	7,1	5,5	6.3	5,5	6,3	5,3	6,2	5,2	6,1	6,0	7,1	5,2	6,1
10	3.9	4,4	3,9	4,4	3,7	4,3	3,4	3,8	3,4	3,8	3,2	3,7	3,2	3,7	3,6	4,2	3,1	3,7
16	2,6	2,8	2,6	2,8	2,4	2,7	2,2	2.4	2,3	2,5	2,1	2,4	2,0	2.3	2,3	2,7	2,0	2,3
25	1,73	1,83	1,80	1,86	1,55	1,76	1,52	1,59	1,57	1,62	1,40	1,53	1,32	1,49	1,50	1,71	1,31	1,48
35	1,33	1,36	1,39	1,39	1,20	1,29	1,17	1,19	1,22	1,22	1,06	1,13	0,98	1,09	1,12	1,25	0,97	1,08
50	1,05	1,04	1,11	1,07	0,93	0,97	0,93	0,91	0,98	0,94	0,82	0,85	0,75	0,82	0,85	0,93	0,74	0,81
70	0,81	0,76	0,87	0,80	0,70	0,71	0,72	0,67	0,77	0,70	0,63	0,62	0,55	0,59	0,62	0,67	0,54	0,58
95	0,65	0,59	0,71	0,62	0,56	0,54	0,58	0,52	0,64	0,55	0,50	0,47	0,43	0,44	0,48	0,50	0,42	0,43
120	0,57	0,49	0,63	0,52	0,48	0,44	0,51	0,43	0,56	0,46	0,43	0,39	0,36	0,36	0,40	0,41	0,35	0,35
150	0,50	0,42	0,56	0,45	0,42	0,38	0,45	0,37	0,51	0,40	0,38	0,34	0,31	0,30	0,35	0,34	0,30	0,30
185	0,44	0,36	0,51	0,39	0,37	0,32	0,40	0,32	0,46	0,35	0,34	0,29	0,27	0,25	0,30	0,29	0,26	0,25
240	0,39	0,30	0,45	0,33	0,33	0,27	0,35	0,27	0,41	0,30	0,30	0,24	0,23	0,21	0,26	0,24	0,22	0,20
300	0,35	0,26	0,41	0,29	0,30	0,23	0,32	0,23	0,37	0,26	0,28	0,21	0,21	0,18	0,23	0,20	0,20	0,18
400	0,32	0,22	0,37	0,26	0,27	0,21	0,29	0,20	0,34	0,23	0,25	0,19	0,19	0,15	_	_	_	
500	0,28	0,20	0,34	0,23	0,25	0,18	0,26	0,18	0,32	0,21	0,24	0,17	0,17	0,14	_	_	_	
630	0,26	0,17	0,32	0,21	0,24	0,16	0,24	0,16	0,29	0,19	0,22	0,15	0,16	0,12	_	_	_	
800	0,23	0,15	0,29	0,18	0,22	0,15	0,22	0,14	0,27	0,17	0,21	0,14	0,15	0,11	_	_	_	
1000	0,21	0,14	0,27	0,17	0,21	0,14	0,20	0,13	0,25	0,16	0,20	0,13	0,14	0,10	_	_	_	_

NOTAS:

- A) Os valores da tabela admitem uma temperatura no condutor de 70 $^{\circ}$ C;
- B) Válido para instalação em eletroduto não-magnético e diretamente enterrado;
- C) Aplicável a fixação direta a parede ou teto, ou eletrocalha aberta, ventilada ou fechada, espaço de construção, bandeja, prateleira, suportes e sobre isoladores;
- D) Aplicável também ao Cabo Superastic Flex, Cabo Superastic, Fio Superastic e Cabo Afumex 750V sobre isoladores.

QUEDA DE TENSÃO

TABELA 19 - QUEDA DE TENSÃO EM V/A. km CABO EPROTENAX, CABO EPROTENAX GSETTE E AFUMEX 0,6/1kV

> Cabo Eprotenax, Cabo Eprotenax Gsette e Afumex 0,6/1kV.

seções nominais		instalação ao ar livre ^(C)																
					ca	bos uni	polares ^(D)									cabos uni e bipolares		s tri e olares
		cir	cuito m	onofás	ico		circuito trifásico							circuito		uito	circuito	
(mm²)	⊚ S ⊕ I D							S						ico ^(B)	monofa	ísico(B) ⊚ ⊚	trifá	sico
	s=1	0cm	s=20cm		s=2D		s=1	0cm	s=2	Ocm s=2D								
	FP-0,8	FP-0,95	FP-0,8	FP-0,95	FP-0,8	FP-0,95	FP-0,8	FP-0,95	FP-0,8	FP-0,95	FP-0,8	FP-0,95	FP-0,8	FP-0,95	FP-0,8	FP-0,95	FP-0,8	FP-0,95
1,5	23,8	28,0	23,9	28,0	23,6	27,9	20,7	24,3	20,5	24,1	20,4	24,1	20,4	24,1	23,5	27,8	20,3	24,1
2,5	14,9	17,4	15,0	17,5	14,7	17,3	12,9	15,1	13,0	15,1	12,8	15,0	12,7	15,0	14,6	17,3	12,7	15,0
4	9,4	10,9	9,5	10,9	9,2	10,8	8,2	9,5	8,2	9,5	8,0	9,4	7,9	9,3	9,1	10,8	7,9	9,3
6	6,4	7,3	6,4	7,3	6,2	7,2	5,5	6,3	5,6	6,3	5,4	6,2	5,3	6,2	6,1	7,1	5,3	6,2
10	3,9	4,4	4,0	4,4	3,7	4,3	3,4	3,8	3,5	3,8	3,3	3,7	3,2	3,7	3,6	4,2	3,2	3,7
16	2,58	2,83	2,64	2,86	2,42	2,74	2,25	2,46	2,31	2,48	2,12	2,39	2,05	2,35	2,34	2,70	2,03	2,34
25	1,74	1,85	1,81	1,88	1,61	1,77	1,53	1,61	1,58	1,64	1,41	1,55	1,34	1,51	1,52	1,73	1,32	1,50
35	1,34	1,37	1,40	1,41	1,21	1,30	1,18	1,20	1,23	1,23	1,06	1,14	0,99	1,10	1,15	1,26	0,98	1,09
50	1,06	1,05	1,12	1,09	0,94	0,99	0,94	0,92	0,99	0,95	0,83	0,87	0,76	0,83	0,86	0,95	0,75	0,82
70	0,81	0,77	0,88	0,80	0,70	0,71	0,72	0,68	0,78	0,70	0,63	0,63	0,56	0,59	0,63	0,67	0,54	0,58
95	0,66	0,59	0,72	0,62	0,56	0,54	0,59	0,52	0,64	0,55	0,50	0,48	0,43	0,44	0,48	0,50	0,42	0,44
120	0,57	0,49	0,63	0,53	0,48	0,45	0,51	0,44	0,56	0,46	0,43	0,40	0,36	0,36	0,40	0,41	0,35	0,35
150	0,50	0,42	0,57	0,46	0,42	0,38	0,45	0,38	0,51	0,41	0,39	0,34	0,32	0,31	0,35	0,35	0,30	0,30
185	0,44	0,36	0,51	0,39	0,38	0,32	0,40	0,32	0,46	0,35	0,34	0,29	0,27	0,26	0,30	0,29	0,26	0,25
240	0,39	0,30	0,45	0,33	0,33	0,27	0,35	0,27	0,41	0,30	0,30	0,24	0,23	0,21	0,26	0,24	0,22	0,21
300	0,35	0,26	0,41	0,29	0,30	0,24	0,32	0,24	0,37	0,26	0,28	0,21	0,21	0,18	0,23	0,20	0,20	0,18
400	0,31	0,23	0,38	0,26	0,27	0,21	0,29	0,21	0,34	0,23	0,25	0,19	0,19	0,16				
500	0,28	0,20	0,34	0,23	0,25	0,18	0,26	0,18	0,32	0,21	0,24	0,17	0,17	0,14				
630	0,26	0,17	0,32	0,21	0,24	0,16	0,24	0,16	0,29	0,19	0,22	0,15	0,16	0,12				
800	0,23	0,15	0,29	0,18	0,22	0,15	0,22	0,14	0,27	0,17	0,21	0,14	0,15	0,11				
1000	0,21	0,14	0,27	0,17	0,21	0,14	0,21	0,13	0,25	0,16	0,20	0,13	0,14	0,10	_	_	_	_

NOTAS

- A) Os valores da tabela admitem uma temperatura no condutor de 90 $^{\circ}\text{C};$
- B) Válido para instalação em eletroduto não-magnético e diretamente enterrado;
- C) Aplicável a fixação direta a parede ou teto, ou eletrocalha aberta, ventilada ou fechada, espaço de construção, bandeja, prateleira, suportes e sobre isoladores.

RESISTÊNCIAS ELÉTRICAS E REATÂNCIAS INDUTIVAS

> Os valores de resistências elétricas e reatâncias indutivas indicadas na tabela a seguir são valores médios e destinam-se a cálculos aproximados de circuitos elétricos, utilizando-se a seguinte fórmula:

 $Z = R \cos \phi + X \sin \phi$

RESISTÊNCIAS ELÉTRICAS E REATÂNCIAS INDUTIVAS

TABELA 20 - RESISTÊNCIAS ELÉTRICAS E REATÂNCIAS INDUTIVAS DE FIOS E CABOS ISOLADOS EM PVC, EPR E XLPE EM CONDUTOS FECHADOS (VALORES EM Ω / km).

seção (mm²)	R _{cc} (A)	condutos não-magnéticos ^(B) circuitos FN/FF/3F							
(1)	(2)	R _{ca} (3)	x _L (4)						
1,5	12,1	14,48	0,16						
2,5	7,41	8,87	0,15						
4	4,61	5,52	0,14						
6	3,08	3,69	0,13						
10	1,83	2,19	0,13						
16	1,15	1,38	0,12						
25	0,73	0,87	0,12						
35	0,52	0,63	0,11						
50	0,39	0,47	0,11						
70	0,27	0,32	0,10						
95	0,19	0,23	0,10						
120	0,15	0,19	0,10						
150	0,12	0,15	0,10						
185	0,099	0,12	0,094						
240	0,075	0,094	0,098						
300	0,060	0,078	0,097						
400	0,047	0,063	0,096						
500	0,037	0,052	0,095						
630	0,028	0,043	0,093						
800	0,022	0,037	0,089						
1000	0,018	0,033	0,088						

NOTAS

A) Resistência elétrica em corrente contínua calculada a 70 °C no condutor.

B) Válido para condutores isolados, cabos unipolares e multipolares instalados em condutos fechados não-magnéticos.

RESISTÊNCIAS ELÉTRICAS E REATÂNCIAS INDUTIVAS

> Os valores de resistências elétricas e reatâncias indutivas indicadas na tabela a seguir são valores médios e destinam-se a cálculos aproximados de circuitos elétricos, utilizando-se a seguinte fórmula:

 $Z = R \cos \phi + X \sin \phi$

RESISTÊNCIAS ELÉTRICAS E REATÂNCIAS INDUTIVAS

TABELA 21 - RESISTÊNCIAS ELÉTRICAS E REATÂNCIAS INDUTIVAS DE FIOS E CABOS ISOLADOS EM PVC, EPR E XLPE AO AR LIVRE (VALORES EM Ω / km).

seção	R _{cc} ^(A)		condutores isolados cabos unipolares ao ar livre ^(B) circuitos FN/FF										
		S=	de	S =	2de	S = 1	10cm	S = 2	Ocm	trifófio			
		S	I		5_		5_	S					
(mm²)		6	<u>d</u> e	•	\odot								
					de		de	de					
		R _{ca}	ХL	R _{ca}	ΧL	R _{ca} X _L		R _{ca}	ХL	R _{ca}	ХL		
[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]		
1	'		1	'	1	1	1	'	'	'	'		
1,5	12,1	14,48	0,16	14,48	0,21	14,48	0,39	14,48	0,44	14,48	0,16		
2,5	7,41	8,87	0,15	8,87	0,20	8,87	0,37	8,87	0,42	8,87	0,15		
4	4,61	5,52	0,14	5,52	0,20	5,52	0,35	5,52	0,40	5,52	0,14		
6	3,08	3,69	0,14	3,69	0,19	3,69	0,33	3,69	0,39	3,69	0,14		
10	1,83	2,19	0,13	2,19	0,18	2,19	0,32	2,19	0,37	2,19	0,13		
16	1,15	1,38	0,12	1,38	0,17	1,38	0,30	1,38	0,35	1,38	0,12		
25	0,73	0,87	0,12	0,87	0,17	0,87	0,28	0,87	0,34	0,87	0,12		
35	0,52	0,63	0,11	0,63	0,17	0,63	0,27	0,63	0,32	0,63	0,11		
50	0,39	0,46	0,11	0,46	0,16	0,46	0,26	0 ,46	0,31	0,46	0,11		
70	0,27	0,32	0,10	0,32	0,16	0,32	0,25	0,32	0,30	0,32	0,10		
95	0,19	0,23	0,10	0,23	0,16	0,23	0,24	0,23	0,29	0,23	0,10		
120	0,15	0,19	0,10	0,18	0,15	0,18	0,23	0,18	0,28	0,19	0,10		
150	0,12	0,15	0,10	0,15	0,15	0,15	0,22	0,15	0,27	0,15	0,10		
185	0,099	0,12	0,10	0,12	0,15	0,12	0,21	0,12	0,26	0,12	0,10		
240	0,075	0,09	0,10	0,09	0,15	0,09	0,20	0,09	0,25	0,09	0,10		
300	0,060	0,08	0,10	0,07	0,15	0,07	0,19	0,07	0,24	0,08	0,10		
400	0,047	0,06	0,10	0,06	0,15	0,06	0,18	0,06	0,23	0,06	0,10		
500	0,037	0,05	0,10	0,05	0,15	0,05	0,17	0,05	0,23	0,05	0,10		
630	0,028	0,04	0,09	0,04	0,15	0,04	0,16	0,04	0,22	0,04	0,09		
800	0,022	0,04	0,09	0,03	0,14	0,03	0,15	0,03	0,20	0,04	0,09		
1000	0,018	0,03	0,09	0,03	0,14	0,03	0,14	0,03	0,19	0,03	0,09		

NOTAS:

A) Resistência elétrica em corrente contínua calculada a 20 °C no condutor;

B) Válido para linhas elétricas ao ar livre, bandejas, suportes e leitos para cabos.

RESISTÊNCIAS ELÉTRICAS E REATÂNCIAS INDUTIVAS

Os valores de resistências elétricas e reatâncias indutivas indicadas na tabela a seguir são valores médios e destinam-se a cálculos aproximados de circuitos elétricos, utilizando-se a seguinte fórmula:

 $Z = R \cos \phi + X \sin \phi$

RESISTÊNCIAS ELÉTRICAS E REATÂNCIAS INDUTIVAS

TABELA 22 - RESISTÊNCIAS ELÉTRICAS E REATÂNCIAS INDUTIVAS DE FIOS E CABOS ISOLADOS EM PVC, EPR E XLPE AO AR LIVRE (VALORES EM Ω / km).

seção	R _{CC} ^(A)		condutores isolados cabos unipolares ao ar livre ⁽⁸⁾ circuitos 3F										cabos bi e tripolares ^(B)		cabo tetrapolar ^(B)	
		S=	de	S =	2de	S = 1	0cm	S = 2	0cm	trifó	ófio	FN/F	F/3F	3F+N/3F+PE		
(mm²)			- <u> </u>	• <u>S</u>	de	S			• • •			(a)				
		R _{ca}	x_L	R _{ca}	ΧL	R _{ca}	x_L	R _{ca}	ΧL	R _{ca}	x_L	R _{ca}	ΧL	R _{ca}	XL	
[1]	[2]	[13]	[14]	[15]	[16]	[17]	[18]	[19]	[20]	[21]	[22]	[23]	[24]	[25]	[26]	
1	'	'		•	1	'		'	'	'		' '		'	'	
1,5	12,1	14,48	0,17	14,48	0,23	14,48	0,40	14,48	0,46	14,48	0,16	14,48	0,12	14,48	0,14	
2,5	7,41	8,87	0,16	8,87	0,22	8,87	0,38	8,87	0,44	8,87	0,15	8,87	0,12	8,87	0,13	
4	4,61	5,52	0,16	5,52	0,22	5,52	0,37	5,52	0,42	5,52	0,14	5,52	0,12	5,52	0,13	
6	3,08	3,69	0,15	3,69	0,20	3,69	0,35	3,69	0,40	3,69	0,14	3,69	0,11	3,69	0,12	
10	1,83	2,19	0,14	2,19	0,20	2,19	0,34	2,19	0,39	2,19	0,13	2,19	0,10	2,19	0,12	
16	1,15	1,38	0,14	1,38	0,19	1,38	0,32	1,38	0,37	1,38	0,12	1,38	0,10	1,38	0,11	
25	0,73	0,87	0,13	0,87	0,18	0,87	0,30	0,87	0,35	0,87	0,11	0,87	0,10	0,87	0,11	
35	0,52	0,63	0,13	0,63	0,18	0,63	0,29	0,63	0,34	0,63	0,11	0,63	0,09	0,63	0,11	
50	0,39	0,46	0,13	0,46	0,18	0,46	0,28	0,46	0,33	0,46	0,11	0,46	0,09	0,46	0,11	
70	0,27	0,32	0,12	0,32	0,17	0,32	0,27	0,32	0,32	0,32	0,10	0,32	0,09	0,32	0,10	
95	0,19	0,23	0,12	0,23	0,17	0,23	0,25	0,23	0,30	0,23	0,10	0,23	0,09	0,23	0,10	
120	0,15	0,19	0,12	0,18	0,17	0,18	0,24	0,18	0,29	0,19	0,10	0,19	0,09	0,19	0,10	
150	0,12	0,15	0,12	0,15	0,17	0,15	0,23	0,15	0,29	0,15	0,10	0,15	0,09	0,15	0,10	
185	0,099	0,12	0,12	0,12	0,17	0,12	0,23	0,12	0,28	0,12	0,10	0,12	0,09	0,12	0,10	
240	0,075	0,09	0,12	0,09	0,17	0,09	0,22	0,09	0,27	0,09	0,10	0,10	0,09	0,09	0,10	
300	0,060	0,08	0,11	0,07	0,17	0,07	0,21	0,07	0,26	0,08	0,10	0,08	0,09	0,08	0,10	
400	0,047	0,06	0,11	0,06	0,17	0,06	0,20	0,06	0,25	0,06	0,10	_				
500	0,037	0,05	0,11	0,05	0,16	0,05	0,19	0,05	0,24	0,05	0,10			_		
630	0,028	0,04	0,11	0,04	0,16	0,04	0,18	0,04	0,23	0,04	0,09			_		
800	0,022	0,04	0,11	0,03	0,16	0,03	0,16	0,03	0,22	0,04	0,09		_	_		
1000	0,018	0,03	0,11	0,03	0,16	0,03	0,16	0,03	0,21	0,03	0,09	_	_	_	_	

NOTAS:

A) Resistência elétrica em corrente contínua calculada a 20 °C no condutor;

B) Válido para linhas elétricas ao ar livre, bandejas, suportes e leitos para cabos.

CARACTERÍSTICAS DOS CONDUTORES

TABELA 23 - CARACTERÍSTICAS DOS CONDUTORES CLASSE 1 (NBR NM 280)

seção nominal	resistência máxima do condutor a 20 °C, condutores circulares e fios nus
(mm²)	(Ω / km)
0,5	36,0
0,75	24,5
1	18,1
1,5	12,1
2,5	7,41
4	4,61
6	3,08
10	1,83
16	1,15

CARACTERÍSTICAS DOS CONDUTORES

TABELA 24 - CARACTERÍSTICAS DOS CONDUTORES CLASSE 2 (NBR NM 280)

seção	número mínimo de fios no condutor		resistência máxima do condutor a 20°C,
nominal (mm²)	condutor não-compactado	condutor compactado	condutores circulares e fios nus (Ω / km)
	circular	não-circular	
0,5	7	_	36,0
0,75	7	_	24,5
1	7	_	18,1
1,5	7	6	12,1
2,5	7	6	7,41
4	7	6	4,61
6	7	6	3,08
10	7	6	1,83
16	7	6	1,15
25	7	6	0,727
35	7	6	0,524
50	19	6	0,387
70	19	12	0,268
95	19	15	0,193
120	37	18	0,153
150	37	18	0,124
185	37	30	0,0991
240	61	34	0,0754
300	61	34	0,0601
400	6 1	53	0,0470
500	6 1	53	0,0366
630	91	53	0,0283
800	91	53	0,0221
1000	91	53	0,0176

A Prysmian reserva-se ao direito de modificar sem aviso prévio as características técnicas, pesos e dimensões apresentadas neste catálogo, sempre respeitando os valores previstos nas normas citadas. A Prysmian não se responsabiliza por danos pessoais ou materiais decorrentes do uso inadequado e/ou negligente das informações contidas neste catálogo.

CARACTERÍSTICAS DOS CONDUTORES

TABELA 25 - CARACTERÍSTICAS DOS CONDUTORES CLASSE 5 (NBR NM 280)

seção nominal	diâmetro máximo dos fios no condutor	resistência máxima do condutor a 20 °C, condutores circulares e fios nus
(mm²)	(mm)	(Ω / km)
0,5	0,21	39,0
0,75	0,21	26,0
1	0,21	19,0
1,5	0,26	13,3
2,5	0,26	7,98
4	0,31	4,95
6	0,31	3,30
10	0,41	1,91
16	0,41	1,21
25	0,41	0,780
35	0,41	0,554
50	0,41	0,386
70	0,51	0,272
95	0,51	0,206
120	0,51	0,161
150	0,51	0,129
185	0,51	0,106
240	0,51	0,0801
300	0,51	0,0641
400	0,51	0,0486
500	0,51	0,0384

CARACTERÍSTICAS DOS CONDUTORES

TABELA 26 - CARACTERÍSTICAS DOS CONDUTORES DOS CABOS FLEXOSOLDA (NBR 8762)

seção diâmetro máximo dos fios nominal no condutor		resistência máxima do condutor a 20 °C, condutores circulares e fios nus	
(mm²)	(mm)	(Ω / km)	
10	0,26	1,91	
16	0,26	1,21	
25	0,26	0,780	
35	0,31	0,554	
50	0,31	0,386	
70	0,31	0,272	
95	0,31	0,206	
120	0,31	0,161	
150	0,31	0,129	
185	0,31	0,106	
240	0,31	0,0801	

DETERMINAÇÃO DA INTEGRAL DE JOULE (I2t) DE CONDUTORES ELÉTRICOS

O cálculo do valor da Integral de Joule pode ser determinado de acordo com a norma IEC 949 (1988).

Assim temos:

Fórmula geral: I^2 t = I^2 G^2 , onde:

$$G = \frac{X + \sqrt{\Delta}}{2 \sqrt{S}}$$

$$z = \frac{I^2}{I} \quad \frac{Y}{I}$$

$$\Delta = X^2 + 4 z S$$

$$z = \frac{I^2}{\alpha} \frac{Y}{S}$$

$$\alpha = K^2 S^2 \ln \left(\frac{\theta f + \beta}{\theta i + \beta} \right)$$
[4]

I = corrente admissível no condutor (A)

S = seção nominal do condutor (mm²)

 θ f = temperatura final do condutor (°C)

 θ i = temperatura inicial do condutor (°C)

eta = recíproco do coeficiente de temperatura da resistência do condutor em °C (K) - tabela 1

K = constante que depende do material condutor - tabela 1

X e Y = tabela 2

TABELA 1

material	К	β
cobre	226	234,5
alumínio	148	228

TABELA 2- CONDUTORES DE COBRE

isolação	x	Υ
$PVC \le 3 kV$	0,29	0,06
PVC > 3 kV	0,27	0,05
XLPE	0,41	0,12
EPR ≤ 3 KV	0,38	0,10
FPR > 3 KV	0.32	0.07

> Exemplo: calcular a Integral de Joule para um cabo 6 mm² de cobre, isolado em PVC, 0,6/1kV percorrido por uma corrente de 100A.

Considere ainda os seguintes parâmetros: θ f = 160 °C, θ i = 70 °C

Temos:

$$\alpha = K^2 S^2 In \left(\frac{\theta f + \beta}{\theta i + \beta} \right) = 226^2 . 6^2 In \frac{160 + 234,5}{70 + 234,5} = 476137$$

$$z = \frac{I^2}{I} + \frac{Y}{I} = \frac{100^2}{I} + \frac{0.06}{I} = 0.011$$

$$\Delta = X^2 + 4 z S = 0.29^2 + 4 . 0.011 . 6 = 0.348 \longrightarrow \sqrt{\Delta} = 0.59$$

$$G = \frac{X + \sqrt{\Delta}}{2 z \sqrt{S}} = \frac{0.29 + 0.59}{0.0539} = 16.33$$

$$I^2 t = I^2 G^2 = 100^2 \cdot (16,33)^2 = 2665816 A^2 s$$

CORRENTES MÁXIMAS DE CURTO-CIRCUITO NO CONDUTOR

CABO SUPERASTIC, CABO SUPERASTIC FLEX E FIO SUPERASTIC CABO SINTENAX, CABO SINTENAX FLEX E AFUMEX 750V CONDUTOR - COBRE

CONEXÕES PRENSADAS E SOLDADAS

CORRENTES MÁXIMAS DE CURTO-CIRCUITO NO CONDUTOR

➤ CABO EPROTENAX, CABO EPROTENAX GSETTE, CABO VOLTALENE E CABO AFUMEX 0,6/1kV CONDUTOR - COBRE CONEXÕES SOLDADAS

CORRENTES MÁXIMAS DE CURTO-CIRCUITO NO CONDUTOR

➤ CABO EPROTENAX, CABO EPROTENAX GSETTE, CABO VOLTALENE E CABO AFUMEX 0,6/1kV
CONDUTOR - COBRE
CONEXÕES PRENSADAS

