Class 5: Data Visualization with ggplot

Deborah Sigaud Kutner (PID: A69027018)

2024-01-24

Graphic systems in R

There are many graphic systems for R, including the so-called *base* R and those in add-on packages like 'ggplot2'.

Dataset: cars

Same plot with ggplot2. You need to specify:

- data (data.frame)
- aesthetics (how the data map to the plot)
- **geometry** (type of plot e.g. line, dots, boxplot, etc.)

```
# install.packages("ggplot2") #install package
library(ggplot2) #load up the package
p1 <- ggplot(data=cars, aes(x= speed, y=dist)) +
    geom_point() +
    geom_smooth()+
    xlab("Speed") + ylab("Stopping Distance (ft)") + ggtitle("Stopping Distance of Old Cars"
    theme_bw()</pre>
```

Same plot with a linear regression and no confidence interval.

```
p2 <- ggplot(data=cars, aes(x= speed, y=dist)) +
    geom_point() +
    geom_smooth(method="lm", se=F)+
    xlab("Speed") + ylab("Stopping Distance (ft)") + ggtitle("Stopping Distance of Old Cars"
    theme_bw()</pre>
```

Combining multiple plots in one figure:

library("patchwork")

Warning: package 'patchwork' was built under R version 4.3.2

```
(p1 | p2) / (p1 | p2) + plot_annotation(tag_levels = 'A')
```


Dataset: Genes

```
url <- "https://bioboot.github.io/bimm143_S20/class-material/up_down_expression.txt"
genes <- read.delim(url)
head(genes, 5)</pre>
```

```
Gene Condition1 Condition2 State
1 A4GNT -3.6808610 -3.4401355 unchanging
2 AAAS 4.5479580 4.3864126 unchanging
3 AASDH 3.7190695 3.4787276 unchanging
4 AATF 5.0784720 5.0151916 unchanging
5 AATK 0.4711421 0.5598642 unchanging
```

```
# How many genes are in this dataset?
  nrow(genes)
[1] 5196
  # How many columns did you find?
  ncol(genes)
[1] 4
  colnames(genes)
                 "Condition1" "Condition2" "State"
[1] "Gene"
  # How many 'up' regulated genes are there?
  table(genes$State) # There are 127 "up"
      down unchanging
                              up
        72
                 4997
                             127
  # What fraction of total genes is up-regulated in this dataset?
  table(genes$State == "up")/nrow(genes)*100 # 2.44%
   FALSE
               TRUE
97.555812 2.444188
  round(table(genes$State)/nrow(genes)*100, 2)
      down unchanging
                96.17
                            2.44
      1.39
```

```
ggplot(data=genes, aes(x=Condition1, y=Condition2, color = State)) +
  geom_point() +
  scale_colour_manual(labels=c("Down", "Unchanging", "Up"), values=c("blue", "gray", "red")
  xlab("Control (no drug)") + ylab("Drug treatment") + ggtitle("Gene Expression Changes Up
  theme_bw()
```

Gene Expression Changes Upon Drug Treatment

library("plotly") # Won't work in a PDF

Warning: package 'plotly' was built under R version 4.3.2

```
# ggplotly(ggplot(data=genes, aes(x=Condition1, y=Condition2, color = State, name = Gene))
# geom_point() +
# scale_colour_manual(labels=c("Down", "Unchanging", "Up"), values=c("blue","gray","red"
# xlab("Control (no drug)") + ylab("Drug treatment") + ggtitle("Gene Expression Changes
# theme_bw())
```

Dataset: gapminder

```
url <- "https://raw.githubusercontent.com/jennybc/gapminder/master/inst/extdata/gapminder.
  gapminder <- read.delim(url)</pre>
  head(gapminder)
      country continent year lifeExp
                                         pop gdpPercap
1 Afghanistan Asia 1952 28.801 8425333 779.4453
2 Afghanistan
                  Asia 1957 30.332 9240934 820.8530
                 Asia 1962 31.997 10267083 853.1007
Asia 1967 34.020 11537966 836.1971
Asia 1972 36.088 13079460 739.9811
3 Afghanistan
4 Afghanistan
5 Afghanistan
6 Afghanistan
                  Asia 1977 38.438 14880372 786.1134
  library(dplyr)
  gapminder_2007 <- gapminder %>% filter(year==2007)
  ggplot(data=gapminder_2007) +
    aes(x= gdpPercap, y=lifeExp, color=continent, size=pop) +
    geom_point(alpha = 0.5) + #make the dots slightly transparent
    labs(size = "Population (millions)", color = "Continent", x="GDP per capita", y="Life Ex
    theme_bw()
```


Dataset: USArrests

head(USArrests)

	Murder	Assault	UrbanPop	Rape
Alabama	13.2	236	58	21.2
Alaska	10.0	263	48	44.5
Arizona	8.1	294	80	31.0
Arkansas	8.8	190	50	19.5
California	9.0	276	91	40.6
Colorado	7.9	204	78	38.7

```
yend=Murder), color="blue") +
coord_flip() +
xlab("State") + ylab("Number of murders") +
theme_bw()
```

