ZeSt Kolloquium

Mitigating consequences of the Markov property

Jan-Ole Koslik October 24, 2023

Outline

Recap & Motivation

Recap & Motivation

Inhomogeneous HMMs

Periodic stationarity
Dwell-time distribution(s)

Hidden semi-Markov models

Basic model formulation Inhomogeneous HSMMs Dwell times of inhomogeneous HSMMs

Application

Drosophila melanogaster Arctic muskox

Conclusion and Outlook

Outline

Recap & Motivation

Recap & Motivation

Inhomogeneous HMM:

Periodic stationarity

Hidden semi-Markov models

Inhomogeneous HSMMs

Durell times of inhomogeneous HSMMs

Application

Drosophila melanogaster

Arctic muskox

Conclusion and Outlook

Recap & Motivation

Doubly stochastic process:

- \triangleright every observation is generated by one of N possible distributions $f_1, ..., f_N$,
- ▶ the state process selects which distribution is active at any given time point
- the state process is a Markov chain

Reminder: Markov chains

Recap & Motivation

A Markov chain is a sequence of random variables S_1, S_2, \ldots that takes values in the state space $\{1, \ldots, N\}$ and fulfills the Markov property

$$\Pr(S_{t+1} = s_{t+1} \mid S_1 = s_1, \dots, S_t = s_t) = \Pr(S_{t+1} = s_{t+1} \mid S_t = s_t).$$

Reminder: Markov chains

Recap & Motivation

000000

A Markov chain is a sequence of random variables S_1, S_2, \ldots that takes values in the state space $\{1, \ldots, N\}$ and fulfills the Markov property

$$\Pr(S_{t+1} = s_{t+1} \mid S_1 = s_1, \dots, S_t = s_t) = \Pr(S_{t+1} = s_{t+1} \mid S_t = s_t).$$

Due to this, we can characterise the state process by specifying the **initial distribution**

$$\boldsymbol{\delta}^{(1)} = (\mathsf{Pr}(\mathcal{S}_1 = 1), \dots, \mathsf{Pr}(\mathcal{S}_1 = \mathcal{N}))$$

and the transition probabilities

$$\gamma_{ij}^{(t)} = \Pr(S_{t+1} = j \mid S_t = i).$$

Reminder: Markov chains

Recap & Motivation

000000

A Markov chain is a sequence of random variables S_1, S_2, \ldots that takes values in the state space $\{1, \ldots, N\}$ and fulfills the Markov property

$$\Pr(S_{t+1} = s_{t+1} \mid S_1 = s_1, \dots, S_t = s_t) = \Pr(S_{t+1} = s_{t+1} \mid S_t = s_t).$$

Due to this, we can characterise the state process by specifying the **initial distribution**

$$\boldsymbol{\delta}^{(1)} = (\mathsf{Pr}(\mathcal{S}_1 = 1), \dots, \mathsf{Pr}(\mathcal{S}_1 = \mathcal{N}))$$

and the transition probabilities

$$\gamma_{ij}^{(t)} = \Pr(S_{t+1} = j \mid S_t = i).$$

We summarise the transition probabilities in the transition probability matrix (t.p.m.)

$$\mathbf{\Gamma}^{(t)} = (\gamma_{ij}^{(t)})_{i,j=1,\dots,N}.$$

Why deal with the Markov property?

Recap & Motivation

$$\mathbf{\Gamma} = \begin{pmatrix} \gamma_{11} & 1 - \gamma_{11} \\ 1 - \gamma_{22} & \gamma_{22} \end{pmatrix}$$

The Markov property and state dwell-times

In a homogeneous Markov chain, leaving a state can be interpreted as a repeated Bernoulli trial

$$\mathbf{\Gamma} = \begin{pmatrix} \gamma_{11} & 1 - \gamma_{11} \\ 1 - \gamma_{22} & \gamma_{22} \end{pmatrix}$$

$$\Pr(R=1) = 1 - \gamma_{11}$$

Recap & Motivation

$$\mathbf{\Gamma} = \begin{pmatrix} \gamma_{11} & 1 - \gamma_{11} \\ 1 - \gamma_{22} & \gamma_{22} \end{pmatrix}$$

$$Pr(R = 1) = 1 - \gamma_{11}$$

 $Pr(R = 2) = \frac{\gamma_{11}}{1} (1 - \gamma_{11})$

Recap & Motivation

$$\Gamma = \begin{pmatrix} \gamma_{11} & 1 - \gamma_{11} \\ 1 - \gamma_{22} & \gamma_{22} \end{pmatrix}$$

$$Pr(R = 1) = 1 - \gamma_{11}$$

 $Pr(R = 2) = \gamma_{11} (1 - \gamma_{11})$

$$\Pr(R = r) = \gamma_{11}^{r-1} (1 - \gamma_{11})$$

Recap & Motivation

$$\Gamma = \begin{pmatrix} \gamma_{11} & 1 - \gamma_{11} \\ 1 - \gamma_{22} & \gamma_{22} \end{pmatrix}$$

$$Pr(R = 1) = 1 - \gamma_{11}$$

 $Pr(R = 2) = \frac{\gamma_{11}}{1} (1 - \gamma_{11})$

$$\Pr(R = r) = \gamma_{11}^{r-1} (1 - \gamma_{11})$$

Recap & Motivation

The Markov property and state dwell times

In many scenarios, this is unrealistic:

Sleeping: We expect a mode > 1

In many scenarios, this is unrealistic:

- **Sleeping:** We expect a mode > 1
- Whale foraging:
 - Getting to feeding grounds requires a lot of energy: most probable dwell time should not be one (Langrock et al., 2014)
 - 2. Memorylessness is problematic as whales need to resurface for breathing

The Markov property and state dwell times

In many scenarios, this is unrealistic:

- **Sleeping:** We expect a mode > 1
- Whale foraging:
 - Getting to feeding grounds requires a lot of energy: most probable dwell time should not be one (Langrock et al., 2014)
 - 2. Memorylessness is problematic as whales need to resurface for breathing
- ▶ **Finance:** Time-spent in a particular market regime often shows longer right tail than geometric distribution (J. Bulla and I. Bulla, 2006).

Recap & Motivation

The Markov property and state dwell times

In many scenarios, this is unrealistic:

- **Sleeping:** We expect a mode > 1
- Whale foraging:
 - Getting to feeding grounds requires a lot of energy: most probable dwell time should not be one (Langrock et al., 2014)
 - 2. Memorylessness is problematic as whales need to resurface for breathing
- **Finance:** Time-spent in a particular market regime often shows longer right tail than geometric distribution (J. Bulla and I. Bulla, 2006).
- \rightarrow One of the most important points of criticism for HMMs.

Recap & Motivation

In many scenarios, this is unrealistic:

- **Sleeping:** We expect a mode > 1
- Whale foraging:
 - 1. Getting to feeding grounds requires a lot of energy: most probable dwell time should not be one (Langrock et al., 2014)
 - 2. Memorylessness is problematic as whales need to resurface for breathing
- ▶ **Finance:** Time-spent in a particular market regime often shows longer right tail than geometric distribution (J. Bulla and I. Bulla, 2006).
- \rightarrow One of the most important points of criticism for HMMs.

The **Markov property** and **geometric** dwell times are two sides of the same coin: **Memorylessness** of the process

Recap & Motivation

Motivation

Recap & Motivation

1. How problematic is the Markov property in more complex models? (including periodic variation)

Motivation

Recap & Motivation

- 1. How problematic is the Markov property in more complex models? (including periodic variation)
- 2. What about other options? (Hidden semi-Markov models)

Outline

Recap & Motivation

Recap & Motivation

Inhomogeneous HMMs

Periodic stationarity
Dwell-time distribution(s)

Hidden semi-Markov models

Basic model formulation
Inhomogeneous HSMMs
Dwell times of inhomogeneous HSMMs

Application

Drosophila melanogaster

Conclusion and Outlook

Inhomogeneity in the state process

Inhomogeneity in the state process

Periodic variation

Recap & Motivation

Periodically varying transition probabilities formally means:

$$\Gamma^{(t)} = \Gamma^{(t+L)}$$
 for all $t = 1, \dots, T$, (1)

where *L* is the length of one cycle.

Periodic variation

Recap & Motivation

Periodically varying transition probabilities formally means:

$$\Gamma^{(t)} = \Gamma^{(t+L)}$$
 for all $t = 1, \dots, T$, (1)

where L is the length of one cycle.

Recap: Stationarity

Recap & Motivation

Homogeneous and "well-behaved" ¹ Markov chains converge against their stationary distribution.

$$\Pr(S_t = i) \rightarrow \delta_i$$

where δ is the solution to

$$oldsymbol{\delta \Gamma} = oldsymbol{\delta}, \quad \mathsf{s.t.} \ \sum_{i=1}^N \delta_i = 1.$$

 δ_i is a useful summary statistic: Average time spent in state i.

¹Finite state space, irreducible and aperiodic.

Recap & Motivation

lacktriangle We do not expect convergence for inhomogeneous chains $(\Gamma^{(t)})$ is changing all the time).

- We do not expect convergence for inhomogeneous chains $(\Gamma^{(t)})$ is changing all the time).
- ightharpoonup We are still interested in how $\Pr(S_t = i)$ evolves over the course of one day.

- lacktriangle We do not expect convergence for inhomogeneous chains $(\Gamma^{(t)})$ is changing all the time).
- ightharpoonup We are still interested in how $\Pr(S_t = i)$ evolves over the course of one day.
- ightharpoonup Previously, approximated by $ho^{(t)}$ which is the solution to

$$oldsymbol{
ho}^{(t)} oldsymbol{\Gamma}^{(t)} = oldsymbol{
ho}^{(t)}, \quad ext{s.t. } \sum_{i=1}^N
ho_i^{(t)} = 1, \quad ext{for } t = 1, \ldots, L.$$

Recap & Motivation

- We do not expect convergence for inhomogeneous chains ($\Gamma^{(t)}$ is changing all the time).
- \triangleright We are still interested in how $\Pr(S_t = i)$ evolves over the course of one day.
- Previously, approximated by $ho^{(t)}$ which is the solution to

$$oldsymbol{
ho}^{(t)} oldsymbol{\Gamma}^{(t)} = oldsymbol{
ho}^{(t)}, \quad ext{s.t. } \sum_{i=1}^N
ho_i^{(t)} = 1, \quad ext{for } t = 1, \ldots, L.$$

But this estimate is biased!

Recap & Motivation

 $lackbox{\ }$ Consider for every $t\in\{1,\ldots,L\}$ the thinned Markov chain $S_t,S_{t+L},S_{t+2L},\ldots$

- Consider for every $t \in \{1, ..., L\}$ the thinned Markov chain $S_t, S_{t+L}, S_{t+2L}, ...$
- It has constant t.p.m.

$$ilde{\Gamma}_t = \Gamma^{(t)} \cdot \Gamma^{(t+1)} \cdot \ldots \cdot \Gamma^{(t+L-1)}.$$

Recap & Motivation

- ▶ Consider for every $t \in \{1, ..., L\}$ the thinned Markov chain $S_t, S_{t+L}, S_{t+2L}, ...$
- It has constant t.p.m.

$$ilde{\mathbf{\Gamma}}_t = \mathbf{\Gamma}^{(t)} \cdot \mathbf{\Gamma}^{(t+1)} \cdot \ldots \cdot \mathbf{\Gamma}^{(t+L-1)}.$$

▶ Thus each thinned chain converges, and we get $Pr(S_t = i)$ for each t by solving

$$oldsymbol{\delta}^{(t)} ilde{oldsymbol{\Gamma}}_t = oldsymbol{\delta}^{(t)} \quad ext{s.t. } \sum_{i=1}^N \delta_i^{(t)} = 1.$$

► We are now interested in the implied dwell-time distribution of an inhomogeneous Markov chain.

- ▶ We are now interested in the implied dwell-time distribution of an inhomogeneous Markov chain.
- ▶ To begin with, we can consider the dwell-time distribution at a certain time point:

$$d_i^{(t)}(r) = (1 - \gamma_{ii}^{(t+r-1)}) \cdot \prod_{j=1}^{r-1} \gamma_{ii}^{(t+j-1)}, \qquad r \in \mathbb{N}$$
leave stay r times

Expected (time-varying) dwell time

▶ The time-varying distribution is already a useful inference tool,

- ▶ The time-varying distribution is already a useful inference tool,
- but we want something simpler for inference and model checking.

- ▶ The time-varying distribution is already a useful inference tool,
- but we want something simpler for inference and model checking.
- ▶ We want to find the *overall* dwell-time distribution of a given state...

We can obtain the overall dwell-time distribution as a mixture:

$$d_i(r) = \sum_{t=1}^L w_i^{(t)} d_i^{(t)}(r), \qquad r \in \mathbb{N}$$

We can obtain the overall dwell-time distribution as a mixture:

$$d_i(r) = \sum_{t=1}^L w_i^{(t)} d_i^{(t)}(r), \qquad r \in \mathbb{N}$$

with the mixture weights defined as

$$w_i^{(t)} = \frac{\sum_{l \neq i} \delta_l^{(t-1)} \gamma_{li}^{(t-1)}}{\sum_{t=1}^{L} \sum_{l \neq i} \delta_l^{(t-1)} \gamma_{li}^{(t-1)}}, \qquad t = 1, \dots, L,$$

where $\delta^{(t)}$ is the periodically stationary distribution.

What we have here is

Recap & Motivation

$$\frac{\sum_{t=1}^{L} \Pr(\text{Transition to state } i \text{ at time } t \text{ and stay } r \text{ times})}{\Pr(\text{Transition to state } i \text{ happens at some point of the day})}$$

$$= \frac{\Pr(\text{Transition to state } i \text{ and stay } r \text{ times at some point of the day})}{\Pr(\text{Transition to state } i \text{ happens at some point of the day})}$$

= $Pr(Stay \ r \text{ times in state } i \mid Transition to \ i \text{ happens at some point of the day})$

Concluding remarks:

Recap & Motivation

Periodic inhomogeneity can already mitigate undesired consequences of the Markov property.

Concluding remarks:

- Periodic inhomogeneity can already mitigate undesired consequences of the Markov property.
- ▶ But this may be limited to scenarios with a large amount of periodic variation.

Concluding remarks:

- Periodic inhomogeneity can already mitigate undesired consequences of the Markov property.
- But this may be limited to scenarios with a large amount of periodic variation.
- ▶ Thus, we need even more flexible models...

Outline

Recap & Motivation

Hidden semi-Markov models

Basic model formulation Inhomogeneous HSMMs Dwell times of inhomogeneous HSMMs

Hidden semi-Markov models

So-called hidden semi-Markov models (HSMMs) are a flexible extension of HMMs explicitly designed to accommodate arbitrary dwell-time distributions.

Hidden semi-Markov models

- ➤ So-called hidden semi-Markov models (HSMMs) are a flexible extension of HMMs explicitly designed to accommodate arbitrary dwell-time distributions.
- But estimation and inference become more involved ...

Constructing a semi-Markov chain

Instead of just a t.p.m., we need two ingredients:

- A set of dwell-time distributions d_1, d_2, \ldots, d_N with support \mathbb{N} that determine the time-spent in a state.
- The conditional transition probabilities

$$\omega_{ij} = \Pr(S_{t+1} = j \mid S_t = i, S_{t+1} \neq i), \quad i, j = 1, \dots, N, \quad i \neq j,$$

given that the current state is left.

Constructing a semi-Markov chain

Approximation of a semi-Markov chain (Toy example)

Say we want to approximate a 2-state semi-Markov chain with

- dwell time in state $1 \sim \text{shiftedPois}(\lambda) \rightarrow \text{p.m.f.: } d(r)$
- dwell time in state 2 \sim Geom (1γ) and conditional t.p.m.

$$\mathbf{\Omega} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 .

To approximate the dwell-time distribution in state 1, we replace it with a state aggregate of size 3.

We build a new Markov chain with the following block t.p.m.

$$oldsymbol{\Gamma} = egin{pmatrix} 0 & 1-c(1) & 0 & c(1) \ 0 & 0 & 1-c(2) & c(2) \ 0 & 0 & 1-c(3) & c(3) \ \hline 1-\gamma & 0 & 0 & \gamma \end{pmatrix}$$

where

$$c(r) = \begin{cases} \frac{d(r)}{1 - F(r - 1)} & \text{for } F(r - 1) < 1, \\ 1 & \text{for } F(r - 1) = 1 \end{cases} \quad (= \Pr(R = r \mid R \ge r))$$

We build a new Markov chain with the following block t.p.m.

$$oldsymbol{\Gamma} = egin{pmatrix} 0 & 1-c(1) & 0 & c(1) \ 0 & 0 & 1-c(2) & c(2) \ 0 & 0 & 1-c(3) & c(3) \ \hline 1-\gamma & 0 & 0 & \gamma \end{pmatrix}$$

where

Recap & Motivation

$$c(r) = \begin{cases} \frac{d(r)}{1 - F(r-1)} & \text{for } F(r-1) < 1, \\ 1 & \text{for } F(r-1) = 1 \end{cases} \quad (= \Pr(R = r \mid R \ge r))$$

Letting d^* denote the p.m.f. of the dwell time in the state aggregate, we see that

$$d^*(1) = c(1) = d(1),$$

We build a new Markov chain with the following block t.p.m.

$$oldsymbol{\Gamma} = egin{pmatrix} 0 & 1-c(1) & 0 & c(1) \ 0 & 0 & 1-c(2) & c(2) \ 0 & 0 & 1-c(3) & c(3) \ \hline 1-\gamma & 0 & 0 & \gamma \end{pmatrix}$$

where

Recap & Motivation

$$c(r) = \begin{cases} \frac{d(r)}{1 - F(r - 1)} & \text{for } F(r - 1) < 1, \\ 1 & \text{for } F(r - 1) = 1 \end{cases} \quad (= \Pr(R = r \mid R \ge r))$$

Letting d^* denote the p.m.f. of the dwell time in the state aggregate, we see that

$$d^*(1) = c(1) = d(1),$$

and

$$d^*(2) = (1 - c(1)) \cdot c(2) = (1 - d(1)) \cdot \frac{d(2)}{1 - d(1)} = d(2).$$

- Paths through the state aggregate yield a telescoping product → Exact representation up to the chosen aggregate size.
- ► For dwell times larger than 3, so-called geometric tail:

$$d^*(r) = d(3) \cdot (1 - c(3))^{r-3}$$

$$d^{*}(1) = c(1) = d(1)$$

$$d^{*}(2) = (1 - c(1))c(2) = d(2)$$

$$d^{*}(3) = (1 - c(1))(1 - c(2))c(3) = d(3)$$

$$d^{*}(4) = d(3)(1 - c(3))$$

$$d^{*}(5) = d(3)(1 - c(3))^{2}$$

$$d^{*}(6) = d(3)(1 - c(3))^{3}$$

Recap & Motivation

. . .

Can be generalised to all states of a given semi-Markov chain, by chosing p.m.f.s d_1, d_2, \ldots, d_N and aggregate sizes N_1, N_2, \ldots, N_N .

- Can be generalised to all states of a given semi-Markov chain, by chosing p.m.f.s d_1, d_2, \ldots, d_N and aggregate sizes N_1, N_2, \ldots, N_N .
- Each state in a state aggregate is associated with the same state-dependent distribution f_i , i = 1, ..., N.

- Can be generalised to all states of a given semi-Markov chain, by chosing p.m.f.s d_1, d_2, \ldots, d_N and aggregate sizes N_1, N_2, \ldots, N_N .
- Each state in a state aggregate is associated with the same state-dependent distribution f_i , i = 1, ..., N.
- In doing so we represent an HSMM by a regular HMM with an enlarged state space and structured transition probabilities.

- Can be generalised to all states of a given semi-Markov chain, by chosing p.m.f.s d_1, d_2, \ldots, d_N and aggregate sizes N_1, N_2, \ldots, N_N .
- Each state in a state aggregate is associated with the same state-dependent distribution f_i , i = 1, ..., N.
- ► In doing so we represent an HSMM by a regular HMM with an enlarged state space and structured transition probabilities.
- Parameter estimation via numerical maximum likelihood and standard inference.

Sometimes the assumption of homogeneous dwell-time distributions may be unrealistic.

- Sometimes the assumption of homogeneous dwell-time distributions may be unrealistic.
- ► Therefore we now consider HSMMs with inhomogeneous dwell-time distributions:

$$d_i^{(t)}, \quad i = 1, \ldots, N, \quad t = 1, \ldots, T.$$

- Sometimes the assumption of homogeneous dwell-time distributions may be unrealistic.
- ► Therefore we now consider HSMMs with inhomogeneous dwell-time distributions:

$$d_i^{(t)}, \quad i=1,\ldots,N, \quad t=1,\ldots,T.$$

▶ Typically by linking the mean to external covariates, e.g. $d_i^{(t)} = \text{shiftedPois}(\lambda_i^{(t)})$ where $\lambda_{:}^{(t)} = \exp(\beta_{:}^{t} z_{t})$ for some set of external covariates z_{t} , t = 1, ..., T.

- Sometimes the assumption of homogeneous dwell-time distributions may be unrealistic.
- ▶ Therefore we now consider HSMMs with inhomogeneous dwell-time distributions:

$$d_i^{(t)}, \quad i=1,\ldots,N, \quad t=1,\ldots,T.$$

- Typically by linking the mean to external covariates, e.g. $d_i^{(t)} = \text{shiftedPois}(\lambda_i^{(t)})$ where $\lambda_i^{(t)} = \exp(\beta_i' \mathbf{z}_t)$ for some set of external covariates \mathbf{z}_t , $t = 1, \ldots, T$.
- The conditional transition probabilities $\omega_{ij}^{(t)}$ may also be inhomogeneous, but we will ignore that for now (well explored).

Here comes the tricky part

- ▶ We will do the same as before (but now with general notation) and add the inhomogeneity.
- Now for i = 1, ..., N consider the inhomogeneous hazard rates

$$c_i^{(t)}(r) = \begin{cases} \frac{d_i^{(t)}(r)}{1 - F_i^{(t)}(r-1)} & \text{for } F_i^{(t)}(r-1) < 1, \\ 1 & \text{for } F_i^{(t)}(r-1) = 1 \end{cases}$$

Here comes the tricky part

Recap & Motivation

- We will do the same as before (but now with general notation) and add the inhomogeneity.
- Now for i = 1, ..., N consider the inhomogeneous hazard rates

$$c_i^{(t)}(r) = egin{cases} rac{d_i^{(t)}(r)}{1 - F_i^{(t)}(r-1)} & ext{for } F_i^{(t)}(r-1) < 1, \ 1 & ext{for } F_i^{(t)}(r-1) = 1 \end{cases}$$

For t = 1, ..., T consider the structured block t.p.m.

$$oldsymbol{\Gamma}^{(t)} = egin{pmatrix} \Gamma_{11}^{(t)} & \cdots & \Gamma_{1N}^{(t)} \ dots & \ddots & dots \ \Gamma_{N1}^{(t)} & \cdots & \Gamma_{NN}^{(t)} \end{pmatrix}$$

Inhomogeneous HSMMs

Recap & Motivation

The diagonal block matrices $(N_i \times N_i)$ are now inhomogeneous and are defined as

$$oldsymbol{\Gamma}_{ii}^{(t)} = egin{pmatrix} 0 & 1-c_i^{(t)}(1) & 0 & \cdots & 0 \ 0 & 0 & 1-c_i^{(t-1)}(2) & \cdots & 0 \ 0 & 0 & 0 & \ddots & 0 \ dots & dots & dots & dots \ 0 & 0 & \cdots & 0 & 1-c_i^{(t-N_i+2)}(N_i-1) \ 0 & 0 & \cdots & 0 & 1-c_i^{(t-N_i+1)}(N_i) \end{pmatrix}.$$

Inhomogeneous HSMMs

Recap & Motivation

The off-diagonal block matrices $(N_i \times N_i)$ are defined as

$$m{\Gamma}_{ij}^{(t)} = egin{pmatrix} \omega_{ij} c_i^{(t)}(1) & 0 & \cdots & 0 \ \omega_{ij} c_i^{(t-1)}(2) & 0 & \cdots & 0 \ dots & dots & & & \ dots \ \omega_{ij} c_i^{(t-N_i+1)}(N_i) & 0 & \cdots & 0 \end{pmatrix}.$$

Example

$$\Gamma_{ii}^{(t)} = \begin{pmatrix}
0 & \mathbf{1} - \mathbf{c}_{i}^{(t)}(\mathbf{1}) & 0 & \cdots & 0 \\
0 & 0 & 1 - \mathbf{c}_{i}^{(t-1)}(2) & \cdots & 0 \\
0 & 0 & 0 & \ddots & 0 \\
\vdots & \vdots & & & \vdots
\end{pmatrix}$$

$$\Gamma_{ii}^{(t+1)} = \begin{pmatrix}
0 & 1 - \mathbf{c}_{i}^{(t+1)}(1) & 0 & \cdots & 0 \\
0 & 0 & \mathbf{1} - \mathbf{c}_{i}^{(t)}(2) & \cdots & 0 \\
0 & 0 & \ddots & 0 \\
\vdots & \vdots & & & \vdots
\end{pmatrix}$$

Example

Recap & Motivation

$$oldsymbol{\Gamma}_{ij}^{(t+2)} = egin{pmatrix} \omega_{ij} c_i^{(t+2)}(1) & 0 & \cdots & 0 \ \omega_{ij} c_i^{(t+1)}(2) & 0 & \cdots & 0 \ \omega_{ij} c_i^{(t)}(\mathbf{3}) & 0 & \cdots & 0 \ dots & dots \end{pmatrix}$$

The ω_{ii} are summed out by total probability.

Inhomogeneous HSMMs

- lacktriangle Dwell time in a state aggregate is again determined by the superdiagonal of $\Gamma_{ii}^{(t)}$
- Due to the inhomogeneity path runs through $\Gamma^{(t)}$, $\Gamma^{(t+1)}$, $\Gamma^{(t+2)}$, \dots
- ▶ The implemented time-shift renders the dwell-time distriution $d_i^{(t)}$ when the transition into that state aggregate happends in t.
- ► We have arrived at fully inhomogeneous HSMMs.²

²Covariates in the dwell-time distributions, conditional transition probabilities and the state-dependent process.

- ▶ I already mentioned some advantages of approximating HSMMs with HMMs
- Another very nice one: All theory established before applies very similarly when we restrict ourselves to periodic variation as a covariate.

- ▶ I already mentioned some advantages of approximating HSMMs with HMMs
- Another very nice one: All theory established before applies very similarly when we restrict ourselves to periodic variation as a covariate.
- ▶ We can calculate the periodically stationary distributions,

- ▶ I already mentioned some advantages of approximating HSMMs with HMMs
- Another very nice one: All theory established before applies very similarly when we restrict ourselves to periodic variation as a covariate.
- ▶ We can calculate the periodically stationary distributions,
- and the overall state dwell-time distribution...

$$d_i(r) = \sum_{t=1}^L v_i^{(t)} d_i^{(t)}(r), \quad \text{for } r \leq N_i,$$

with the mixture weights defined as

$$v_i^{(t)} = \frac{\sum_{l \in I_k, k \neq i} \delta_l^{(t-1)} \gamma_{II_i^-}^{(t-1)}}{\sum_{t=1}^L \sum_{l \in I_k, k \neq i} \delta_l^{(t-1)} \gamma_{II_i^-}^{(t-1)}}, \quad t = 1, \dots, L,$$

where I_i^- is the lowest state of state aggregate i and $\delta^{(t)}$ is the stationary distribution at *t*.

Outline

Recap & Motivation

Recap & Motivation

Inhomogeneous HMMs

Periodic stationarity

Dwell-time distribution(s

Hidden semi-Markov model

Basic model formulation
Inhomogeneous HSMMs

Dwell times of inhomogeneous HSMMs

Application

Drosophila melanogaster Arctic muskox

Conclusion and Outlook

Figure 1: Source: https://de.wikipedia.org/wiki/Drosophila_melanogaster.

Figure 2: Source: https://www.eurekalert.org/multimedia/670792.

Drosophila flies have a strong circadian rhythm.

- Drosophila flies have a strong circadian rhythm.
- ▶ Researchers are interested in its reaction to external variation, therefore
- two conditions: Light-Dark (LD) and only Dark (DD)

- ▶ Drosophila flies have a strong circadian rhythm.
- Researchers are interested in its reaction to external variation, therefore
- two conditions: Light-Dark (LD) and only Dark (DD)
- 2-state HMMs: low and high activity state

Application: Arctic muskox

Figure 3: Source: https://en.wikipedia.org/wiki/Muskox

Application: Arctic muskox

- ► Largest arctic herbivore
- Previous analyses revealed non-geometric dwell times and temporal variation (Pohle, Langrock, et al., 2017; Beumer et al., 2020; Pohle, Adam, et al., 2022)
- ▶ 3-state HMMs and HSMMs: resting, foraging and travelling

Application: Arctic muskox

Overall dwell-time distributions

Outline

Recap & Motivation

Recap & Motivation

Inhomogeneous HMM:

Periodic stationarity

Hidden semi-Markov model

Basic model formulation
Inhomogeneous HSMMs

Application

Drosophila melanogaster

Conclusion and Outlook

Recap & Motivation

Having a closer look at widely used HMMs with periodic variation enables us to conduct new inference.

- ► Having a closer look at widely used HMMs with periodic variation enables us to conduct new inference.
- ▶ In periodic HMMs, dwell time can be very non-geometric

- ► Having a closer look at widely used HMMs with periodic variation enables us to conduct new inference.
- ▶ In periodic HMMs, dwell time can be very non-geometric
- ► Thus, criticising the Markov assumption by addressing geometric dwell-times falls short of such models' actual potential.

- ► Having a closer look at widely used HMMs with periodic variation enables us to conduct new inference.
- ▶ In periodic HMMs, dwell time can be very non-geometric
- ► Thus, criticising the Markov assumption by addressing geometric dwell-times falls short of such models' actual potential.
- Some scenarios still require flexible modelling of state dwell times that are not well described by periodic variation only.

- ► Having a closer look at widely used HMMs with periodic variation enables us to conduct new inference.
- ▶ In periodic HMMs, dwell time can be very non-geometric
- ► Thus, criticising the Markov assumption by addressing geometric dwell-times falls short of such models' actual potential.
- Some scenarios still require flexible modelling of state dwell times that are not well described by periodic variation only.
- ► The muskox example showed that in scenarios with non-geometric dwell times and additional inhomogeneity, inhomogeneous HSMMs become worthwile.

Literature

- Beumer, Larissa T et al. (2020). "An application of upscaled optimal foraging theory using hidden Markov modelling: year-round behavioural variation in a large arctic herbivore". In: *Movement Ecology* 8, pp. 1–16.
- Bulla, Jan and Ingo Bulla (2006). "Stylized facts of financial time series and hidden semi-Markov models". In: Computational Statistics & Data Analysis 51.4, pp. 2192–2209.
- Langrock, Roland et al. (2014). "Modeling the diving behavior of whales: a latent-variable approach with feedback and semi-Markovian components". In: *Journal of Agricultural, Biological, and Environmental Statistics* 19, pp. 82–100.
- Pohle, Jennifer, Timo Adam, et al. (2022). "Flexible estimation of the state dwell-time distribution in hidden semi-Markov models". In: Computational Statistics & Data Analysis 172, p. 107479.
- Pohle, Jennifer, Roland Langrock, et al. (2017). "Selecting the number of states in hidden Markov models: pragmatic solutions illustrated using animal movement". In: *Journal of Agricultural, Biological and Environmental Statistics* 22, pp. 270–293.

Thank you very much for your attention!

