

Introduction of Generative Adversarial Networks

Hao Dong

2019 April 24 Peking University

Introduction of Generative Adversarial Networks (GAN)

- Vanilla GAN
- GAN with Encoder
- Summary

Vanilla GAN

Vanilla GAN

Unidirectional Mapping

GAN: map a distribution to another distribution

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{data}}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{z}}[\log(1 - D(G(\boldsymbol{z}))]$$

$$\mathcal{L}_{D} = - \mathbb{E}_{\boldsymbol{x} \sim p_{data}} [\log D(\boldsymbol{x})] - \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}} [\log (1 - D(G(\boldsymbol{z})))]$$

$$\mathcal{L}_{G} = -\left[\mathbb{E}_{\mathbf{z} \sim p_{z}}[\log D(G(\mathbf{z}))]\right]$$

Vanilla GAN – Deep Convolutional GAN (DCGAN)

Using the power of CNN

Vanilla GAN – Deep Convolutional GAN (DCGAN)

Latent representation z

Vanilla GAN – Deep Convolutional GAN (DCGAN)

Latent representation z

Vanilla GAN -- Conditional GAN

和桌大学 PEKING UNIVERSITY

Auxiliary Classifier GANs

$$\mathcal{L}_{D} = \mathbb{E}_{x \sim p_{data}}[log D_{x}(x)] + \mathbb{E}_{z \sim p_{z}}[log(1 - D_{x}(G(z, c)))]$$
$$\mathbb{E}_{x \sim p_{data}}[log D_{c}(x)] + \mathbb{E}_{z \sim p_{z}}[log(1 - D_{c}(G(z, c)))]$$

 $\mathcal{L}_G = \mathbb{E}_{x \sim p_{data}}[log D_x(G(z,c))] + \mathbb{E}_{z \sim p_z}[log D_c(G(z,c))]$

monarch butterfly

y goldfinch

daisy

Multi-modal problem: one problem has multiple solutions P(z, c)

GAN with Encoder

GAN with Encoder – Vanilla GAN vs VAE

VAE has an Encoder that can map x to z

GAN with Encoder – Vanilla GAN vs VAE

- VAE = **G**enerator + **E**ncoder
- Vanilla GAN = **G**enerator + **D**iscriminator
- Better GAN = Generator + Discriminator + Encoder

GAN with Encoder – Why Encoder

Encoder allows GAN to receive images == More applications

GAN with Encoder – Encoder as a part of the Generator

Supervised image-to-image "translation"

Image-to-Image Translation with Conditional Adversarial Networks. P. Isola, J. Zhu et al. CVPR 2017.

GAN with Encoder – Encoder as a part of the Generator

Supervised image-to-image "translation"

Image-to-Image Translation with Conditional Adversarial Networks. P. Isola, J. Zhu et al. CVPR 2017.

GAN with Encoder – Encoder as a part of the Generator

Supervised image-to-image "translation"

16

GAN with Encoder – Encoder as the Feature Extractor

Supervised image super resolution

Better feature reconstruction

Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. C. Ledig, L. Theis et al. CVPR 2017.

GAN with Encoder – Encoder as the Feature Extractor

Supervised image super resolution

Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. C. Ledig, L. Theis et al. CVPR 2017.

GAN with Encoder – Learn the mapping from x to z like VAE

Unsupervised image-to-image translation

Given an ACGAN

Learning the Encoder in a Brute Force Way

GAN with Encoder – Learn the mapping from x to z

Unsupervised image-to-image translation

GAN with Encoder – Learn the mapping from x to z

• Limitation of the brute force method: Encoder never see real data samples

GAN with Encoder – Learn the mapping from x to z

• Limitation of the brute force method : GAN Collapse

G can only synthesis some part of the dataset x

G can only synthesis one data

Examples of GAN collapse

GAN with Encoder -- Learn the Encoder from Real Data

• Learn the Encoder

Adversarial Autoencoder

GAN with Encoder -- Learn the Encoder from Real Data

• Learn the Encoder

Discriminator as the feature extractor

• Training the G and E in Autoencoder way can force the G to be able to generate all X, avoiding GAN collapse

GAN with Encoder -- Unsupervised Image-to-Image Translation

Unsupervised image-to-image translation networks. *M.Y. Liu, T. Breuel, J. Kautz. NIPS. 2017*Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. *J. Zhu, T. Park et al. ICCV 2017.*

GAN with Encoder -- Unsupervised Image-to-Image Translation

Liu et al.

Learn the Encoder Explicitly

zebra \rightarrow horse

CycleGAN
Learn the Encoder Implicitly

Unsupervised image-to-image translation networks. *M.Y. Liu, T. Breuel, J. Kautz. NIPS. 2017*Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. *J. Zhu, T. Park et al. ICCV 2017.*

GAN with Encoder -- Unsupervised Image-to-Image Translation

Input GTA5 CG

ttps://blog.csdn.net/gdymind

Output image with German street view style log. csdn. net/

Unsupervised image-to-image translation networks. *M.Y. Liu, T. Breuel, J. Kautz. NIPS. 2017*Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. *J. Zhu, T. Park et al. ICCV 2017*.

GAN with Encoder – Learn Encoder in Implicit or Explicit Ways Peking UNIVERSITY

- Simple normal distribution is difficult to model complex images
- 3D tensors can contain more spatial information than vectors
- Many applications do not need interpolation

- Image inpainting
- Image super resolution
- Image-to-image translation
- •

Summary

Summary

This talk:

- GAN: G+D → G+D+E
- Learning E from real data is important
- Autoencoder can help to avoid GAN collapse
- Learning E implicitly is becoming more and more popular
- The E can be extended to text and any other data type

GAN applications:

- Image-to-image: Pix2Pix→CycleGAN→Attention CycleGAN
- Text-to-image: GAN-CLS → StackGAN → StackGAN++
- Text+image to image: ...
- Video-to-video: ...

Questions

- Q1. 如何解决GAN中,输入的normal distribution太简单的问题?
- Q2. 为什么G、D要来回对抗训练,而不是完全训练好D后再训练G?
- Q3. G是不是真的能创造出训练数据中没有的数据?