ShanghaiTech University

EE 115B: Digital Circuits

Fall 2022

Lecture 17

Hengzhao Yang December 1, 2022

D: latch vs. flip-flop

D flip-flops with CLEAR and PRESET

- Control signals: CLEAR and PRESET
 - Use CLEAR to set initial condition Q=0
 - Use PRESET to set initial condition Q=1
- Implementations
 - Based on master-slave D flip-flop
 - Based on edge-triggered D flip-flop

Master-slave D flip-flop with CLEAR and PRESET

- CLEAR and PRESET are active low
 - CLEAR=0: Q=0
 - PRESET=0: Q=1
 - CLEAR=1 or PRESET=1: no effect
- Circuit symbol (negative edge)

Master-slave D flip-flop with CLEAR and PRESET

Circuit: modified master-slave D flip-flop

Edge-triggered D flip-flop with CLEAR and PRESET

Circuit and circuit symbol (positive edge)

Asynchronous vs. synchronous CLEAR

- Asynchronous CLEAR
 - If CLEAR=0, flip-flop will be cleared to Q=0 immediately without regard to clock
- Synchronous CLEAR
 - If CLEAR=0, flip-flop will be cleared to Q=0 at the next clock edge (positive or negative)

Synchronous CLEAR

Circuit

T flip-flop

- T flip-flop
 - T=0: state does not change
 - T=1: state is reversed
- Circuit

T flip-flop

Characteristic table and circuit symbol

T	Q(t+1)
0	Q(t)
1	$\overline{\mathbf{Q}}(t)$

Timing diagram

JK flip-flop

- JK flip-flop
 - Combines behaviors of basic SR latch and T flip-flop
 - J: set, K: reset
- Circuit, characteristic table, and circuit symbol

J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	$\overline{\mathbf{Q}}(t)$

Code for D flip-flop (positive edge)

Code

- Sensitivity list: Clock
- 'EVENT: signal attribute
- Clock'EVENT: any change in the Clock signal
- Clock'EVENT AND
 Clock='1': clock signal
 value has changed and
 the value is now 1
 (positive edge)


```
LIBRARY ieee:
USE ieee.std_logic_1164.all;
ENTITY flipflop IS
    PORT (D, Clock: IN
                          STD_LOGIC ;
                   : OUT STD_LOGIC);
END flipflop;
ARCHITECTURE Behavior OF flipflop IS
BEGIN
    PROCESS (Clock)
    BEGIN
        IF Clock'EVENT AND Clock = '1' THEN
             Q \leq D;
        END IF:
    END PROCESS:
END Behavior:
```

Comparison: VHDL code for gated D latch

Clk	D	Q(t+1)
0	x	Q(t)
1	0	0
1	1	1

```
LIBRARY ieee:
USE ieee.std_logic_1164.all;
ENTITY latch IS
   PORT (D, Clk : IN STD_LOGIC ;
                 : OUT STD_LOGIC);
END latch;
ARCHITECTURE Behavior OF latch IS
BEGIN
    PROCESS (D, Clk)
    BEGIN
        IF Clk = '1' THEN
            Q \leq D:
        END IF:
    END PROCESS:
END Behavior:
```

Alternative code for D flip-flop (positive edge)

Alternative code

- Sensitivity list: omitted
- WAIT UNTIL: implying that sensitivity list only includes clock signal
- Some VHDL tools
 accept a simplified
 WAIT UNTIL
 statement (i.e.,
 Clock'EVENT is
 redundant and
 removed): WAIT
 UNTIL Clock='1'

```
LIBRARY ieee:
USE ieee.std_logic_1164.all;
ENTITY flipflop IS
   PORT (D, Clock: IN
                          STD_LOGIC:
                   : OUT STD_LOGIC);
END flipflop;
ARCHITECTURE Behavior OF flipflop IS
BEGIN
   PROCESS
   BEGIN
        WAIT UNTIL Clock'EVENT AND Clock = '1':
        Q \leq D;
   END PROCESS:
END Behavior;
```

Code for D flip-flop with asynchronous reset (clear)

Asynchronous reset (clear): active low

```
LIBRARY ieee:
USE ieee.std_logic_1164.all;
ENTITY flipflop IS
    PORT (D, Resetn, Clock: IN STD_LOGIC;
                            : OUT STD_LOGIC) ;
END flipflop;
ARCHITECTURE Behavior OF flipflop IS
BEGIN
   PROCESS (Resetn, Clock)
   BEGIN
        IF Resetn = '0' THEN
            O \le '0':
        ELSIF Clock'EVENT AND Clock = '1' THEN
            O \leq D:
        END IF:
    END PROCESS:
END Behavior:
```


Code for D flip-flop with synchronous reset (clear)

Synchronous reset (clear) acts at clock edge

```
LIBRARY ieee:
USE ieee.std_logic_1164.all;
ENTITY flipflop IS
    PORT (D, Resetn, Clock: IN STD_LOGIC;
                           : OUT STD_LOGIC) ;
END flipflop;
ARCHITECTURE Behavior OF flipflop IS
BEGIN
    PROCESS
    BEGIN
        WAIT UNTIL Clock'EVENT AND Clock = '1':
        IF Resetn = '0' THEN
                                          Clear
            Q \le '0':
                                                                        Q
        ELSE
            O \leq D:
        END IF:
                                                       Clock
   END PROCESS:
END Behavior:
```