VEŽBE IZ MATEMATIČKE ANALIZE I

Novi Sad, 2020.

Sadržaj

1	Vežbe IV.3			3
	1.1	Diferer	ncijalne jednačine višeg reda	3
		1.1.1	Snižavanje reda diferencijalne jednačine	3
		1.1.2	Linearna diferencijalna jednačina	7
		1.1.3	Linearna diferencijalna jednačina drugog reda	8
	1.2	Zadaci	za samostalan rad	15

1. Vežbe IV.3

1.1. Diferencijalne jednačine višeg reda

Diferencijalna jednačina višeg reda je jednačina oblika

$$F(x, y, y', ..., y^{(n)}) = 0,$$

gde je y = y(x) i n > 1. Red jednačine je red najvišeg izvoda nepoznate funkcije koji se javlja u datoj jednačini, tj. red je n.

1.1.1. Snižavanje reda diferencijalne jednačine

Postoje diferencijalne jednačine višeg reda kojima se rešenje može odrediti pomoću rešenja odgovarajućih diferencijalnih jednačina nižeg reda. Ovaj postupak se naziva snižavanje reda diferencijalne jednačine.

a) Jednačina oblika

$$y^{(n)} = f(x)$$

rešava se direktnom integracijom.

Zadatak 1.1. Rešiti diferencijalnu jednačinu

$$y''\sin^4 x = \sin 2x.$$

Rešenje. Pre svega datu jednačinu napisaćemo u obliku

$$y'' = \frac{\sin 2x}{\sin^4 x},$$

a sređivanjem desne strane dobijamo

$$y'' = 2\frac{\cos x}{\sin^3 x}.$$

Dakle,

$$y' = 2 \int \frac{\cos x}{\sin^3 x} dx = [t = \sin x, dt = \cos x dx] = 2 \int \frac{dt}{t^3}$$
$$= -\frac{1}{t^2} + c_1 = -\frac{1}{\sin^2 x} + c_1,$$

tj.

$$y = \int \left(-\frac{1}{\sin^2 x} + c_1 \right) dx = -\int \frac{1}{\sin^2 x} dx + \int c_1 dx$$

= ctg x + c₁x + c₂.

b) Diferencijalna jednačina oblika

$$F(x, y^{(k)}, y^{(k+1)}, ..., y^{(n)}) = 0, \quad 1 \le k < n,$$

je jednačina koja ne sadrži funkciju y, a ni njene izvode do reda k-1 i rešava se smenom $y^{(k)}=z$, gde je z funkcija koja zavisi od x tj. z=z(x). Primetimo, za smenu uzimamo k-ti izvod funkcije y - najmanji izvod koji se pojavljuje u jednačini. Ovom smenom se red diferencijalne jednačine snižava za k.

Zadatak 1.2. Rešiti diferencijalnu jednačinu

$$xy''' + y'' = x^2.$$

Rešenje. Kako je y'' najmanji izvod koji se pojavljuje u jednačini smena je z=y'', iz čega imamo da je y'''=z', pa jednačina postaje

$$xz' + z = x^2$$
.

Ako prethodnu jednačinu podelimo sa \boldsymbol{x} dobijamo linearnu diferencijalnu jednačinu prvog reda

$$z' + \frac{1}{x}z = x$$

koju rešavamo smenom $z = u \cdot v$. Iz z' = u'v + uv' imamo

$$vu' + uv' + \frac{1}{x}uv = x,$$

$$vu' + u(\underline{v' + \frac{1}{x}v}) = x,$$

pa je $v' + \frac{v}{x} = 0$ ako je $\frac{dv}{v} = -\frac{dx}{x}$ tj. $v = \frac{1}{x}$. Za takvo v jednačina postaje

$$\frac{1}{r}u' = x,$$

odnosno, $u'=x^2$ tj. $du=x^2dx$. Konačno,

$$u = \frac{x^3}{3} + c_1,$$

tj. z je dato sa $z = uv = \frac{x^2}{3} + \frac{c_1}{x}$. Jednačina

$$y'' = z = \frac{x^2}{3} + \frac{c_1}{x}$$

se rešava direktnom integracijom, pa je

$$y' = \int y'' dx = \int \left(\frac{x^2}{3} + \frac{c_1}{x}\right) dx$$
$$= \frac{x^3}{9} + c_1 \ln|x| + c_2,$$

odnosno,

$$y = \int y' dx = \int \left(\frac{x^3}{9} + c_1 \ln|x| + c_2\right) dx.$$

Kako je

$$\ln|x| = \begin{cases}
\ln x &, x > 0, \\
\ln(-x) &, x < 0,
\end{cases}$$

imamo da je za x > 0

$$y = \int \left(\frac{x^3}{9} + c_1 \ln x + c_2\right) dx$$
$$= \frac{x^4}{36} + c_1(x \ln x - x) + c_2 x + c_3,$$

a za x < 0

$$y = \int \left(\frac{x^3}{9} + c_1 \ln(-x) + c_2\right) dx$$
$$= \frac{x^4}{36} + c_1(x \ln(-x) - x) + c_2 x + c_3.$$

Konačno, opšte rešenje je

$$y = \frac{x^4}{36} + c_1(x \ln|x| - x) + c_2 x + c_3$$

i posmatramo ga na intervalima Iza koje važi da $0\not\in I,$ jer funkcija ynije definisana u tački x=0.

c) Diferencijalna jednačina oblika

$$F(y, y', ..., y^{(n)}), n \ge 1$$

je jednačina koja ne sadrži x i rešava se smenom y'=z, gde je z funkcija koja zavisi od y tj. z=z(y). Za razliku od prethodnog slučaja gde je z bila funkcija od x sada je funkcija od y pa se izvodi viseg reda računaju

$$y'' = \frac{dy'}{dx} = \frac{dy'}{dy} \frac{dy}{dx} = \underbrace{\frac{dz}{dy}}_{z'} \underbrace{\frac{dy}{dx}}_{y'} = z'z,$$

$$y''' = \frac{dy''}{dx} = \frac{dy''}{dy} \frac{dy}{dx} = \underbrace{\frac{d(z'z)}{dy}}_{dy} \frac{dy}{dx} = (zz'' + (z')^2)z$$

$$= z^2 z'' + z(z')^2,$$

analognim postupkom tražimo i ostale izvode višeg reda. Napomenimo da je $\frac{d(z'z)}{dy}=(z'z)'_y$, a primenom pravila za izvod proizvoda dobijamo $(z'z)'_y=zz''+(z')^2$ što objašnjava četvrtu jednakost pri računanju y'''. Red diferencijalne jednačine se ovom smenom snižava za 1.

Zadatak 1.3. Naći opšte rešenje diferencijalne jednačine

$$3yy'' - 5(y')^2 = 0.$$

Rešenje. Primenom smene y'=z i korišćenjem izraza za y'' jednačina postaje

$$3yzz' - 5z^2 = 0,$$

odnosno, ako je $z \neq 0$,

$$3yz' - 5z = 0,$$

što je jednačina koja razdvaja promenljive pa imamo da je

$$z' = \frac{5z}{3y}.$$

Rešenje date jednačine je $z=c_1\sqrt[3]{y^5},$ a vraćanjem smene y'=z dobijamo jednačinu

$$y' = c_1 y^{\frac{5}{3}},$$

tj.

$$y^{-\frac{5}{3}}dy = c_1 dx.$$

Kako je $\int y^{-\frac{5}{3}} dy = -\frac{3}{2} y^{-\frac{2}{3}} + C,$ rešenje jednačine je

$$\sqrt[3]{y^2}(c_1x + c_2) = -\frac{3}{2}.$$

Primetimo da ako je z=0, tada je y=c, što je obuhvaćeno prethodnim rešenjem za $c_1=0$.

1.1.2. Linearna diferencijalna jednačina

Posmatramo diferencijalnu jednačinu oblika

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = f(x),$$

gde su funkcije $a_0(x), a_1(x), ..., a_{n-1}(x)$ i f(x) definisane i neprekidne nad nekim intervalom I.

Linearna diferencijalna jednačina se naziva homogena linearna diferencijalna jednačina ako je f(x) = 0.

Homogeni deo linearne jednačine

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = f(x)$$

jе

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = 0.$$

Neka je y_p partikularno rešenje jednačine

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = f(x),$$

a y_h opšte rešenje homogenog dela jednačine, tada je $y=y_h+y_p$ opšte rešenje jednačine jer imamo da je

$$\begin{split} &(y_h + y_p)^{(n)} + a_{n-1}(x)(y_h + y_p)^{(n-1)} + \ldots + a_1(x)(y_h + y_p)' + a_0(x)(y_h + y_p) \\ &= y_h^{(n)} + a_{n-1}(x)y_h^{(n-1)} + \ldots + a_1(x)y_h' + a_0(x)y_h + \\ &+ y_p^{(n)} + a_{n-1}(x)y_p^{(n-1)} + \ldots + a_1(x)y_p' + a_0(x)y_p \\ &= 0 + f(x) = f(x). \end{split}$$

Za n=1 dobijamo linearnu jednačinu prvog reda

$$y' + a_0(x)y = f(x)$$

sa kojom smo se upoznali ranije.

1.1.3. Linearna diferencijalna jednačina drugog reda

U nastavku se bavimo rešavanjem diferencijalnih jednačina drugog reda tj. jednačinama oblika

$$y'' + a_1(x)y' + a_0(x)y = f(x).$$

Ako je poznato jedno partikularno rešenje $y_1(x)$ homogene linearne diferencijalne jednačine

$$y'' + a_1(x)y' + a_0(x)y = 0,$$

tada se smenom $y=zy_1$, gde je z=z(x), dobija jednačina koja dopušta snižavanje reda diferencijalne jednačine, pa dobijamo diferencijalnu jednačinu prvog reda koja razdvaja promenljive.

Ako znamo dva partikularna rešenja $y_1(x)$ i $y_2(x)$ jednačine

$$y'' + a_1(x)y' + a_0(x)y = f(x),$$

tada je funkcija $y_3 = y_2(x) - y_1(x)$ jedno partikularno rešenje homogenog dela jednačine, tj. jednačine

$$y'' + a_1(x)y' + a_0(x)y = 0,$$

pa se taj deo rešava smenom $y_h=y_3z.$ Opšte rešenje polazne diferencijalne jednačine je tada

$$y(x) = y_h(x) + y_1(x)$$

ili

$$y(x) = y_h(x) + y_2(x).$$

Takođe, jednačina

$$y'' + a_1(x)y' + a_0(x)y = f(x),$$

se može rešiti ako se zna jedno partikularno rešenje $y_1(x)$ homogenog dela. Uvođenjem smene $y=zy_1$ dobija se jednačina koja dopusta snižavanje reda diferencijalne jednačine, pa dobijamo linearnu diferencijalnu jednačinu prvog reda.

Zadatak 1.4. Naći opšte rešenje diferencijalne jednačine

$$y'' + \frac{x}{1-x}y' - \frac{1}{1-x}y = 0$$

ako se zna da je njeno partikularno rešenje oblika e^x .

Rešenje. Uvođenjem smene $y = zy_1$ dobijamo da je

$$y' = (z' + z)e^x,$$

 $y'' = (z' + z + z'' + z')e^x$

i jednačina postaje

$$(z'' + 2z' + z)e^x + \frac{x}{1 - x}(z' + z)e^x - \frac{1}{1 - x}ze^x = 0.$$

Sređivanjem jednačine po redu izvoda dobijamo

$$z'' + (2 + \frac{x}{1-x})z' + \underbrace{\left(1 + \frac{x}{1-x} - \frac{1}{1-x}\right)}_{=0} z = 0,$$

tj.

$$z'' + (2 + \frac{x}{1 - x})z' = 0,$$

što predstavlja jednačinu koja ne sadrži z pa je smena z'=u. Tada je z''=u' i dobijamo jednačinu koja razdvaja promenljive jer je

$$u' = -\left(2 + \frac{x}{1-x}\right)u = -\frac{2-2x+x}{1-x}u$$
$$= -\frac{2-x}{1-x}u = -\frac{1+1-x}{1-x}u = (\frac{1}{x-1}-1)u.$$

Dakle, imamo

$$\frac{du}{u} = \left(\frac{1}{x-1} - 1\right)dx, \text{ tj.}$$

$$\int \frac{du}{u} = \int \left(\frac{1}{x-1} - 1\right)dx,$$

odnosno,

$$\ln|u| = \ln|x - 1| - x + c = \ln|x - 1| + \ln e^{-x} + \ln e^{c}$$
$$= \ln e^{c-x}|x - 1|,$$

pa je

$$u = c_1(x-1)e^{-x},$$

gde je $c_1 = \pm e^c$. Vraćanjem smene z' = u dobijamo da je

$$z = \int z' dx = c_1 \int (x - 1)e^{-x} dx = c_1 \int xe^{-x} dx - c_1 \int e^{-x} dx$$

$$= \begin{bmatrix} u = x & dv = e^{-x} dx \\ du = dx & v = -e^{-x} \end{bmatrix} = c_1(-xe^{-x} + \int e^{-x} dx) + c_1 e^{-x}$$

$$= c_1(-xe^{-x} - e^{-x}) + c_1 e^{-x} + c_2 = -c_1(x \cdot e^{-x} + e^{-x} - e^{-x}) + c_2$$

$$= -c_1 xe^{-x} + c_2.$$

Konačno, kako je $y=ze^x$ imamo da je opšte rešenje početne diferencijalne jednačine

$$y = (-c_1x \cdot e^{-x} + c_2) \cdot e^x = -c_1x + c_2e^x.$$

Zadatak 1.5. Naći opšte rešenje jednačine

$$(1 - x^2)y'' + 2y = 2$$

ako su $y_1 = 1$ i $y_2 = x^2$ njena dva partikularna rešenja.

Rešenje. Prvo rešavamo homogeni deo jednačine, tj.

$$(1 - x^2)y'' + 2y = 0.$$

Partikularno rešenje prethodne jednačine je $y_3=y_2-y_1=x^2-1$, pa uvodimo smenu $y_h=z(x^2-1)$ i dobijamo da je

$$\begin{aligned} y_h' &= z'(x^2 - 1) + 2xz, \\ y_h'' &= z''(x^2 - 1) + 2xz' + 2z + 2xz' = (x^2 - 1)z'' + 4xz' + 2z. \end{aligned}$$

Tada je

$$(1 - x2) ((x2 - 1)z'' + 4xz' + 2z) + 2(x2 - 1)z = 0,$$

a sređivanjem izraza po redu izvoda dobijamo

$$(x^{2}-1)^{2}z'' + 4x(x^{2}-1)z' + 2\underbrace{(x^{2}-1-x^{2}+1)}_{=0}z = 0,$$

tj.

$$(x^2 - 1)^2 z'' + 4x(x^2 - 1)z' = 0.$$

Smenom z'=u, za koju je z''=u', spuštamo red diferencijalne jednačine i dobijamo jednačinu koja razdvaja promenljive

$$u' = -\frac{4x}{x^2 - 1}u.$$

Kako je

$$\frac{du}{u} = -\frac{4x}{x^2 - 1}dx,$$

$$\int \frac{du}{u} = -2\int \frac{2xdx}{x^2 - 1},$$

dobijamo

$$\ln|u| = -2\ln|x^2 - 1| + c$$
$$= \ln\left|\frac{c_1}{(x^2 - 1)^2}\right|,$$

gde je $c = \ln |c_1|$, tj.

$$u = \frac{c_1}{(x^2 - 1)^2}.$$

Vraćanjem smene z' = u dobijamo

$$z = \int \frac{c_1}{(x^2 - 1)^2} dx = -c_1 \int \frac{x^2 - 1 - x^2}{(x^2 - 1)^2} dx = -c_1 \int \frac{dx}{x^2 - 1} + c_1 \int \frac{x^2 dx}{(x^2 - 1)^2}$$

$$= \begin{bmatrix} u = x & dv = \frac{x dx}{(x^2 - 1)^2} \\ du = dx & v = -\frac{1}{2} \frac{1}{x^2 - 1} \end{bmatrix} = c_1 \left(-\frac{1}{2} \ln \left| \frac{x - 1}{x + 1} \right| - \frac{1}{2} \frac{x}{x^2 - 1} + \frac{1}{2} \int \frac{dx}{x^2 - 1} \right)$$

$$= c_1 \left(-\frac{1}{2} \ln \left| \frac{x - 1}{x + 1} \right| - \frac{x}{2(x^2 - 1)} + \frac{1}{4} \ln \left| \frac{x - 1}{x + 1} \right| \right) + c_2$$

$$= -\frac{c_1}{4} \ln \left| \frac{x - 1}{x + 1} \right| - \frac{c_1}{2} \frac{x}{x^2 - 1} + c_2,$$

tj.

$$z = c_3(\ln\left|\frac{x-1}{x+1}\right| + \frac{2x}{x^2-1}) + c_2,$$

gde je $c_3 = -\frac{c_1}{4}$. Dakle, rešenje homogenog dela je

$$y_h = (x^2 - 1)z$$

= $c_3(x^2 - 1)(\ln\left|\frac{x - 1}{x + 1}\right| + \frac{2x}{x^2 - 1}) + c_2(x^2 - 1),$

a opšte rešenje početne diferencijalne jednačine je

$$y = y_h + y_1$$

= $c_3(x^2 - 1)(\ln\left|\frac{x - 1}{x + 1}\right| + \frac{2x}{x^2 - 1}) + c_2(x^2 - 1) + 1$

i posmatramo ga na intervalima I za koje važi da $-1, 1 \notin I$, jer funkcija y nije definisana u tačkama x = -1 i x = 1.

Napomenimo da jednačina

$$(1 - x^2)y'' + 2y = 2$$

uvođenjem smene $y = z(x^2 - 1)$ postaje

$$(x^2 - 1)^2 z'' + 4x(x^2 - 1)z' = 2.$$

a ako nakon smene m=z', dobijamo

$$(x^2 - 1)^2 m' + 4x(x^2 - 1)m = 2,$$

što predstavlja linearnu diferencijalnu jednačinu prvog reda. Ostavljamo čitaocu za vežbu da uporedi rešenja.

Zadatak 1.6. Naći opšte rešenje jednačine

$$(3x^3 + x)y'' + 2y' - 6xy = 4 - 12x^2$$

ako su $y_1 = ax + b$ i $y_2 = Ax^2 + Bx + C$ njena dva partikularna rešenja.

Rešenje. Pošto su y_1 i y_2 rešenja date jednačine, nepoznate koeficijente ćemo odrediti ubacivanjem y_1 i y_2 u jednačinu.

Za $y_1 = ax + b$ je $y'_1 = a$ i $y''_1 = 0$, pa je

$$2a - 6x(ax + b) = 4 - 12x^2,$$

a sređivanjem po stepenima od x dobijamo

$$-6ax^2 - 6bx + 2a = 4 - 12x^2.$$

Rešavanjem sistema

$$\begin{array}{rcl}
-6a & = -12, \\
-6b & = 0, \\
2a & = 4
\end{array}$$

dobijamo da je a=2 i b=0, odnosno $y_1=2x$. Za $y_2=Ax^2+Bx+C$ je $y_2'=2Ax+B$ i $y_2''=2A$, pa je

$$(3x^3 + x)2A + 2(2Ax + B) - 6x(Ax^2 + Bx + C) = 4 - 12x^2,$$

a sređivanjem po stepenima od x dobijamo

$$-6Bx^2 + (6A - 6C)x + 2B = 4 - 12x^2.$$

Sistem

$$6A = -6B = -12,$$
 $6A = -6C = 0,$
 $2B = 4$

je neodređen i jedno njegovo rešenje je A=C=1 i B=2. Dakle, $y_2=x^2+2x+1$. Sada kada smo našli eksplicitan oblik od y_1 i y_2 možemo rešiti homogeni deo diferenicijalne jednačine, tj. jednačinu

$$(3x^3 + x)y'' + 2y' - 6xy = 0.$$

Kako je jedno rešenje homogenog dela oblika $y_3=y_2-y_1=x^2+1$, uvodimo smenu $y_h=z(x^2+1)$ i dobijamo da je

$$\begin{aligned} y_h' &= z'(x^2+1) + 2xz, \\ y_h'' &= z''(x^2+1) + 2xz' + 2z + 2xz' = (x^2+1)z'' + 4xz' + 2z. \end{aligned}$$

Ubacivanjem u jednačinu dobijamo

$$(3x^3+x)(x^2+1)z'' + (3x^3+x)4xz' + 2(3x^3+x)z + 2(x^2+1)z' + 4xz - 6x(x^2+1)z = 0,$$

a sređivanjem po redu izvoda od z imamo

$$x(3x^{2}+1)(x^{2}+1)z'' + (12x^{4}+6x^{2}+2)z' + \underbrace{(6x^{3}+6x-6x^{3}-6x)}_{=0}z = 0,$$

tj.

$$x(3x^2+1)(x^2+1)z'' + (12x^4+6x^2+2)z' = 0.$$

Ako uvedemo smenu u=z', za koju je z''=u', dobijamo

$$x(3x^2+1)(x^2+1)u' + (12x^4+6x^2+2)u = 0,$$

što predstavlja jednačinu koja razdvaja promenljive, pa je

$$\begin{aligned} \frac{du}{u} &= -\frac{12x^4 + 6x^2 + 2}{x(3x^4 + 4x^2 + 1)} dx = -2\frac{3x^4 + 4x^2 + 1 - x^2 + 3x^4}{x(3x^4 + 4x^2 + 1)} dx \\ &= -2\frac{dx}{x} + 2\frac{x - 3x^3}{3x^4 + 4x^2 + 1} dx = -2\frac{dx}{x} + \frac{2x - 6x^3}{(x^2 + 1)(3x^2 + 1)} dx \\ &= -2\frac{dx}{x} - \frac{4x}{x^2 + 1} dx + \frac{6x}{3x^2 + 1} dx. \end{aligned}$$

Poslednja jednakost je dobijena rastavljanjem razlomka $\frac{2x-6x^3}{(x^2+1)(3x^2+1)}$ na parcijalne razlomke, tj.

$$\frac{2x - 6x^3}{(x^2 + 1)(3x^2 + 1)} = \frac{Ax + B}{x^2 + 1} + \frac{Cx + D}{3x^2 + 1}.$$

Iz

$$\frac{du}{u} = -2\frac{dx}{x} - 2\frac{2x}{x^2 + 1}dx + \frac{6x}{3x^2 + 1}dx,$$

dobijamo

$$\ln |u| = -2 \ln |x| - 2 \ln \left| x^2 + 1 \right| + \ln \left| 3x^2 + 1 \right| + c,$$

pa je

$$u = c_1 \frac{3x^2 + 1}{x^2(x^2 + 1)^2},$$

gde je $c = \ln c_1$.

Vraćanjem smene u=z', dobijamo

$$z = c_1 \int \frac{3x^2 + 1}{x^2(x^2 + 1)^2} dx = c_1 \int \frac{x^2 + 1 + 2x^2}{x^2(x^2 + 1)^2} dx$$

$$= c_1 \int \frac{1}{x^2(x^2 + 1)} dx + c_1 \int \frac{2}{(x^2 + 1)^2} dx$$

$$= c_1 \int \frac{1 + x^2 - x^2}{x^2(x^2 + 1)} dx + 2c_1 \int \frac{1}{(x^2 + 1)^2} dx$$

$$= c_1 \int \frac{dx}{x^2} - c_1 \int \frac{dx}{x^2 + 1} + 2c_1 \underbrace{\int \frac{1}{(x^2 + 1)^2} dx}_{=I_1}$$

$$= c_1 \int \frac{dx}{x^2} - c_1 \int \frac{dx}{x^2 + 1} + 2c_1 \frac{x}{2(x^2 + 1)} + 2c_1 \frac{1}{2} \int \frac{1}{x^2 + 1} dx$$

$$= -c_1 \frac{1}{x} + c_1 \frac{x}{x^2 + 1} + c_2$$

$$= -c_1 \frac{1}{x(x^2 + 1)} + c_2 = c_3 \frac{1}{x(x^2 + 1)} + c_2, \text{ za } c_3 = -c_1,$$

jer je

$$I_{1} = \int \frac{1}{(x^{2}+1)^{2}} dx = \int \frac{1+x^{2}-x^{2}}{(x^{2}+1)^{2}} dx$$
$$= \int \frac{1}{x^{2}+1} dx - \underbrace{\int \frac{x^{2}}{(x^{2}+1)^{2}} dx}_{=I_{2}}$$
$$= \frac{x}{2(x^{2}+1)} + \frac{1}{2} \int \frac{1}{x^{2}+1} dx,$$

zbog toga što je

$$I_2 = \int \frac{x^2}{(x^2+1)^2} dx = \int \frac{x}{(x^2+1)^2} x dx = \begin{bmatrix} u = x & dv = \frac{x dx}{(x^2+1)^2} \\ du = dx & v = -\frac{1}{2} \frac{1}{x^2+1} \end{bmatrix}$$
$$= \frac{-x}{2(x^2+1)} + \frac{1}{2} \int \frac{1}{x^2+1} dx.$$

Konačno, rešenje homogenog dela je

$$y_h = z(x^2 + 1)$$

= $\frac{c_3}{x} + c_2(x^2 + 1)$,

a opšte rešenje jednačine je

$$y = y_h + y_1$$

= $\frac{c_3}{x} + c_2(x^2 + 1) + 2x$.

1.2. Zadaci za samostalan rad

Zadatak 1.7. Naći rešenje diferencijalne jednačine

$$xy'' = y' \ln \frac{y'}{x}.$$

Zadatak 1.8. Naći opšte rešenje diferencijalne jednačine

$$xy'' + 2y' - xy = 0,$$

ako je $y_1 = \frac{e^x}{x}$ partikularno rešenje.

Zadatak 1.9. Naći opšte rešenje diferencijalne jednačine

$$(x^2 - 1)y'' + 4xy' + 2y = 6x,$$

ako su $y_1=x$ i $y_2=\frac{x^2+x+1}{x+1}$ njena dva partikularna rešenja.

Literatura

- [1] Ilija Kovačević, Nebojša Ralević, Biljana Carić, Vojislav Marić, Momčilo Novaković, Slavica Medić. *Matematička analiza 1, Uvodni pojmovi i granični procesi.* FTN Izdavaštvo, Novi Sad 2018.
- [2] Ilija Kovačević, Nebojša Ralević, Biljana Carić, Vojislav Marić, Momčilo Novaković, Slavica Medić. *Matematička analiza 1, Diferencijalni i integralni račun; obične diferencijalne jednačine*. FTN Izdavaštvo, Novi Sad 2018.
- [3] Ilija Kovačević, Biljana Carić, Slavica Medić, Vladimir Ćurić. *Testovi sa ispita iz Matematičke analize 1.* FTN Izdavaštvo, Novi Sad 2018.
- [4] Ilija Kovačević, Biljana Carić, Slavica Medić, Vladimir Ćurić, Momčilo Novaković. Zbirka rešenih zadataka iz Matematičke analize 1. FTN Izdavaštvo, Novi Sad 2018.