Math 1800-C Handout 9: Summary of Chapter 8 - How to Calculate line integrals

Subhadip Chowdhury

Summary of Chapter 8

We learned the following theorems in chapter 8.

Parametrized Curves: If the curve *C* can be parametrized as $\vec{\mathbf{r}}(t)$, $a \leq t \leq b$, then

$$\int_{C} \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \int_{a}^{b} \vec{\mathbf{F}}(\vec{\mathbf{r}}(t)) \vec{\mathbf{r}}'(t) dt$$

Fundamental Theorem of Line Integrals: If the vector field $\vec{\mathbf{F}}$ is a gradient vector field i.e. $\vec{\mathbf{F}} = \nabla f$, and the curve C starts at P and ends at Q, then

$$\int_{C} \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \int_{C} \nabla f \cdot d\vec{\mathbf{r}} = f(Q) - f(P)$$

Green's Theorem: If C is a *simple, closed, oriented* curve and the vector field $\vec{\mathbf{F}}$ is *smooth* over the region R enclosed by C (oriented so that R is always to the left of C), then

$$\oint_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \iint_R \operatorname{curl} \vec{\mathbf{F}} \, dA$$

Vector Fields Venn Diagram

Calculating Line Integral - a flowchart

