Mikołaj Korobczak

Algorytmy i struktury danych

Zadanie 6 lista 1

Wrocław, 6 kwietnia 2020

Prowadzący: mgr Adam Kunysz

1. Treść zadania

Dany jest niemalejący ciąg n liczb dodatnich $a_1 \leq a_2 \leq \cdots \leq a_n$. Wolno nam modyikować ten ciąg za pomocą następujących operacji: wybieramy dwa elementy a_i, a_j spełniające $2a_i \leq a_j$ i wykreślamy je oba z ciągu. Ułóż algorytm obliczający, ile co najwyżej elementów możemy w ten sposób usunąć.

2. Algorytm

```
Algorytm będzie zachłanny:

Dane: A[1, ..., n]

i = 1
j = (n \text{ div } 2) + 1

counter = 0

while j \le n do

if 2*A[i] \le A[j] then

A[i] = -1
A[j] = -1
counter = counter + 1
i = i + 1
endif
j = j + 1
done
```

3. Dowód poprawności

Weźmy dowolne rozwiązanie optymalne O. Załóżmy, że w tym rozwiązaniu usunięte zostało k par.

Lemat 1.

return counter

Weźmy dwa zbiory L i R takie, że dla dowolnej usuwanej pary (a_i, a_j) takiej, że $2a_i \le a_j$, $a_i \in L$ i $a_j \in R$. Wtedy można zmienić te punkty w taki sposób, że:

- 1. $\forall a_i \in L a_i < \min R$,
- 2. zbiór L jest postaci

$$L = \{a_1, a_2, \dots, a_k\}$$

taki, że $\forall_{a_1 \leqslant a_i \leqslant a_k} a_i \in L$,

3. zbiór R to

$$R = \{a_{m+i}, a_{m+j}, \dots, a_{m+l}\} \qquad \text{dla } m = \lfloor \frac{n}{2} \rfloor + 1 \text{ i pewnych } 0 \leqslant i < j < l.$$

Dowód.

- 1. Weźmy dowolne dwie pary punktów $(a_i, a'_i), (a_j, a'_j)$ takie, że $a'_i \leq a_j$. Wtedy (a_i, a_j) oraz (a'_i, a'_j) są poprawnymi parami więc można je poukładać w naszych zbiorach w ten sposób.
- 2. Weźmy dowolny punkt a_i dla i < k taki, że $a_i \notin L$. Weźmy najmniejszy punkt $a_j \in L$ taki, że $i < j \leqslant k$. Wtedy można punkt sparowany z nim sparować z naszym a_i , natomiast a_j sparować z parą kolejnego punktu z L i tak aż każdy będzie miał parę. Więc a_i będzie należał do L.
- 3. Załóżmy, że zbiór R składa się z punktów (a_i, a_j, \ldots, a_k) takich, że i < m. Wtedy możemy zamienić te punkty na większe takie, że punkty zaczynają się od a_{m+l} dla $l \ge 0$. Wiemy, że jest to możliwe ponieważ $k \le \frac{n}{2}$. W ten sposób dostajemy żądany zbiór R.

Korzystając z lematu 1 wystarczy pokazać, że nasz algorytm znajduje punktom a_1, a_2, \ldots, a_k parę. Dowód będzie przez indukcję.

Dowód.

Baza:

 a_1 zostanie sparowane z najmniejszym a_j takim, że $j \ge m = \lfloor \frac{n}{2} \rfloor + 1$, czyli znajdzie parę z najmniejszym punktem z R.

Krok:

Weźmy dowolne $i \leq k$ i załóżmy, że punkty $a_1, a_2, \ldots, a_{i-1}$ znajazły pary, z kolejnymi najmniejszymi punktami $a'_1, a'_2, \ldots, a'_{i-1}$ takimi, że są $\geq a_m$. Wtedy punkt a_i znajdzie parę z najmniejszym punktem po punkcie a'_{i-1} , który spełni wymaganą nierówność. Taki punkt na pewno istnieje ponieważ w szczególności algorytm może brać punkty ze zbioru R, a wtedy napewno sparuje wszystkie punkty. \square

Jednocześnie warto zaznaczyć, że algorytm nie może znaleść więcej niż k par, ponieważ nie jest to możliwe sprawdzając za każdym razem zadaną nierówność.

4. Złożoność czasowa i pamięciowa

Złożoność pamięciowa to O(1) ponieważ rezerwujemy pamięć tylko dla zmiennych i, j, counter. Jeżeli założymy, że musimy zarezerwować pamięć dla naszej tablicy (ja zakładam, że dostajemy tablicę już gdzieś w pamięci), to złożoność pamięciowa to O(n).

Złożoność czasowa to O(n) poniważ w najgorszym przypadku przebiegamy po naszej tablicy A od A[1] do $A[\lfloor \frac{n}{2} \rfloor]$ oraz od $A[\lfloor \frac{n}{2} \rfloor + 1]$ do A[n].