

GABARITO QUÍMICA

Questão 31

Um reator é carregado com 60 g de grafite e 112 L de oxigênio em CNTP. A mistura é ignitada e todo grafite é convertido em $CO e CO_2$.

O processo ocorre em temperatura contante e a pressão total no reator aumentou em 20% após o final da reação.

Assinale a alternativa que mais se aproxima da pressão parcial de CO₂ ao final da reação.

A () 0,4 atm

B () 0,6 atm

C () 0,8 atm

D () 1,0 atm

E () 1,2 atm

Gabarito: A

Questão 32

Considere as seguintes proposições sobre a estrutura molecular.

- 1. As moléculas CF_4 e XeF_4 são apolares, entretanto, o SF_4 é polar.
- 2. As moléculas NF_3 e ClF_3 são polares, entretanto, o BF_3 é apolar.
- 3. Na molécula SF₆ todas as ligações possuem o mesmo comprimento, entretanto, no PF₅ duas liações são mais longas que as outras.
- 4. Existem dois isômeros com fórmula molecular PF₃Cl₂, sendo que um desses possui momento de dipolo nao nulo.

Assinale a alternativa que relaciona as proposições corretas.

A() **1**

B () 2

C () 2 e 3 D () 1, 2 e 3 E () 1, 2, 3 e 4

Gabarito: D

Etapa 1. Escreva as estruturas de Lewis.

Questão 33

Um reator é carregado com certa pressão amônia em 25 °C e o equilíbrio é estabelecido:

$$N_2(g) + 3 H_2(g) \Longrightarrow 2 NH_3(g) \quad K = 5.4 \cdot 10^5$$

Quando o equilíbrio é atingido, 50% da quantidade de amônia adicionada sofre decomposição.

Assinale a alternativa que mais se aproxima da pressão inicial de amônia carregada no reator.

A () 0,2 Torr

B () 0,4 Torr

C () 0,8 Torr

D () 1,6 Torr

E () 3,2 Torr

Gabarito: D

Etapa 1. Elabore uma tabela de reação.

Etapa 2. Insira os valores da tabela na expressão do volume total.

$$K = \frac{P_{\text{NH}_3}^2}{P_{\text{N}_2}P_{\text{H}_2}^3} = \frac{\left(\frac{P_0}{2}\right)^2}{\left(\frac{P_0}{4}\right) \times \left(\frac{3P_0}{4}\right)^3} = \frac{64}{27P_0^2} = 5.4 \cdot 10^5$$

logo,

$$P_0 = 2 \cdot 10^{-3} \, \text{atm} = \boxed{1.6 \, \text{Torr}}$$

Questão 34

O composto \mathbf{X} , C_5H_9Br , não reage com bromo ou com permanganato de potássio diluído. O tratamento de \mathbf{X} com potassa alcoólica leva à formação de um único composto, \mathbf{Y} . Diferente de \mathbf{X} , \mathbf{Y} descora a água de bromo e muda a cor de uma solução de permanganato de violeta para marrom. A reação de \mathbf{Y} com gás hidrogênio e platila forma metilciclobutano. Quando \mathbf{Y} é tratado com ozônio seguido de zinco metálico, é formado o composto \mathbf{Z} , $C_5H_8O_2$.

Assinale a alternativa com a estrutura do composto X.

Gabarito: A

Etapa 1. Reação de eliminação

$$\begin{array}{c|c} \mathsf{Br} & & & \\ & & & \mathsf{KOH} \\ & & & & \mathsf{Y} \end{array}$$

Etapa 2. Reação de hidrogenação

$$\begin{array}{c|c} \mathsf{Br} & & & \\ & & H_2 & \\ & & \mathsf{Pt} & \\ & & \\ \mathbf{Y} & & \\ \end{array}$$

Etapa 3. Reação de ozonólise

$$\begin{array}{c|c} & & 1. & O_3 \\ \hline & & 2. & Zn \end{array} \xrightarrow{\hspace{0.5cm} H} \begin{array}{c} O \\ O \\ Z \end{array}$$

Questão 35

Considere as proposições.

- 1. A energia de ligação na molécula NO é maior que no íon NO⁺.
- 2. A energia de ligação na molécula CO é maior que no íon CO⁺.
- 3. A molécula O_2 tem maior energia de ligação que os íons O_2^- e O_2^+ .
- 4. A ligação dupla C=C no eteno tem o dobro da energia da ligação simples C-C no etano.

Assinale a alternativa que mais se aproxima das proposições corretas.

- \mathbf{A} () $\mathbf{1}$ e $\mathbf{2}$
- **B**() 1 e 4
- C() 2 e 4
- **D** () **1**, **2** e **4**
- E() 1, 2, 3 e 4

Gabarito: D

Questão 36

Considere a transformação a seguir.

Assinale a alternativa com uma rota de síntese correta para essa transformação.

- **A** () 1. BH₃, THF; 2. H_2O_2 , NaOH; 3. NaC \equiv CH; 4. H_2 , Pd-CaCO₃; 5. O₃; 6. DMS.
- **B** () 1. BH₃, THF; 2. H₂O₂, NaOH; 3. HCl; 4. NaC \equiv CH; 5. O₃; 6. DMS.
- \mathbf{C} () 1. HBr, ROOR; 2. NaC \equiv CH; 3. BH₃, THF; 4. H₂O₂, NaOH.
- \mathbf{D} () 1. HBr, ROOR; 2. NaC \equiv CH; 3. NaC \equiv CH; 4. H₂, Pd-CaCO₃; 5. O₃; 6. DMS.
- \mathbf{E} () 1. HBr, ROOR; 2. NaC \equiv CH; 3. NaC \equiv CH; 4. O₃; 5. DMS; 6. H₂, Pd-CaCO₃.

Gabarito: D

Questão 37

Considere as proposições.

- 1. Os limites possíveis da escala de pH se situam entre os valores de 0 a 14.
- 2. A soma pH + pOH sempre vale 14.
- 3. Os produtos de uma reação entre um ácido e uma base são ácidos e bases.
- 4. Ácidos mais fortes possuem menores valores de p K_a e maiores valores de p K_b da base conjugada.

Assinale a alternativa que relaciona as proposições corretas.

- **A**() 3
- **B**() 4
- C () 3 e 4
- **D**() 1, 3 e 4
- E() 2, 3 e 4

Gabarito: C

Questão 38

Considere dois recipientes perfeitamente isolados sob pressão de 1 atm. O recipiente A contém um cubo de gelo em 0 °C e água a em 0 °C. O recipiente B inicialmente contém um cubo de gelo em 0 °C e uma solução de água do mar a 0 °C.

Considere as proposições.

- 1. A variação de entropia da vizinhança é nula para o processo que ocorre no recipiente A.
- 2. A variação de entropia da vizinhança é nula para o processo que ocorre no recipiente B.

- 3. A variação de entropia do sistema é negativa para o processo que ocorre no recipiente A.
- 4. A variação de entropia do sistema é positiva para o processo que ocorre no recipiente B.

Assinale a alternativa que relaciona as proposições corretas.

A() **1** e **2**

B() 1 e 4

C() 2 e 4

D() 1, 2 e 4

E() 1, 2, 3 e 4

Gabarito: D

Gabarito

Questão 39

Uma pequena gota de mercúrio é adicionada à uma cubeta de 10 mL em 300 K.

Dados em 300 K	Hg(l)	Hg(g)
Entalpia padrão de formação, $\Delta H_{\mathrm{f}}^{\circ}/\frac{\mathrm{kJ}}{\mathrm{mol}}$		+60
Entropia padrão, $S_{\rm m}^{\circ}/\frac{{\rm JK}}{{\rm mol}}$	70	170

Considere $e^{-12} \approx 6 \cdot 10^{-6}$.

Assinale a alternativa que mais se aproxima do número de átomos de mercúrio gasoso na cubeta.

A () $9 \cdot 10^{20}$

B () $3 \cdot 10^{20}$

 \mathbf{C} () $6 \cdot 10^{21}$

 \mathbf{D} () $9 \cdot 10^{21}$

 \mathbf{E} () $3 \cdot 10^{22}$

Gabarito: D

Questão 40

A digestão de $0.15\,\mathrm{g}$ de uma amostra de um composto que contém fósforo em uma mistura de HNO $_3$ e $\mathrm{H}_2\mathrm{SO}_4$ resulta na formação de CO_2 , $\mathrm{H}_2\mathrm{O}$ e $\mathrm{H}_3\mathrm{PO}_4$. A adição de molibdato de amônio produz um sólido cuja composição é $(\mathrm{NH}_4)_3\mathrm{PO}_4\cdot 12\,\mathrm{MoO}_3$. Esse precipitado foi filtrado, lavado, e dissolvido em $50\,\mathrm{mL}$ de NaOH $0.2\,\mathrm{mol}\,\mathrm{L}^{-1}$:

$$(NH_4)_3PO_4 \cdot 12 \, MoO_3(s) + OH^-(aq) \longrightarrow HPO_4{}^{2-}(aq) + MoO_4{}^{2-}(aq) + H_2O(l) + NH_3(g)$$

Ao final da reação, a solução foi aquecida para remover o excesso de NH₃. O excesso de NaOH foi titulado com $11\,\mathrm{mL}$ de HCl $0.2\,\mathrm{mol}\,\mathrm{L}^{-1}$.

Assinale a alternativa que mais se aproxima da fração mássica de fósforo na amostra.

A () 3,1%

B () 6,2%

C () 9,3%

D () 12,4%

E () 15,5%

Etapa 1. Escreva as reações iônicas simplificadas das reações de neutralização.

$$(NH_4)_3PO_4 \cdot 12 \, MoO_3(s) + 26 \, OH^-(aq) \longrightarrow HPO_4{}^{2-}(aq) + 12 \, MoO_4{}^{2-}(aq) + 14 \, H_2O(l) + 3 \, NH_3(g) \\ H^+(aq) + OH^-(aq) \longrightarrow H_2O(l)$$

Etapa 2. Calcule a quantidade adicionada de HCl e NaOH.

$$n_{\text{NaOH}} = (0.2 \,\text{mol}\,\text{L}^{-1}) \times (50 \,\text{mL}) = 10 \,\text{mmol}$$

 $n_{\text{HCl}} = (0.2 \,\text{mol}\,\text{L}^{-1}) \times (11 \,\text{mL}) = 2.2 \,\text{mmol}$

Etapa 3. Use as relações estequiométricas para converter a quantidade de OH^- e H^+ na quantidades de $(NH_4)_3PO_4\cdot 12\,MoO_3$.

$$26n_{(NH_4)_3PO_4 \cdot 12MoO_3} + n_{HCl} = n_{NaOH}$$

logo,

$$n_{({\rm NH_4})_3{\rm PO}_4\,\cdot\,12\,{\rm MoO}_3} = \frac{1}{26} \Big\{ 10\,{\rm mmol} - 2.2\,{\rm mmol} \Big\} = 0.3\,{\rm mmol}$$

Etapa 4. Converta a quantidade de $(NH_4)_3PO_4 \cdot 12MoO_3$ na quantidade de P.

Como cada fórmula unitária $(NH_4)_3PO_4 \cdot 12 MoO_3$ contém um átomo de P:

$$n_{\rm P} = 0.3 \, \mathrm{mmol}$$

Etapa 5. Converta a quantidade de P em massa.

$$m_{\rm P} = n_{\rm P} M_{\rm P} = (0.3 \,\mathrm{mmol}) \times (31 \,\mathrm{g \, mol}^{-1}) = 9.3 \,\mathrm{mg}$$

Etapa 6. Calcule a fração mássica de P na amostra.

$$f_{\rm P} = \frac{m_{\rm P}}{m_{\rm amostra}} = \frac{9.3\,{\rm mg}}{150\,{\rm mg}} = \boxed{6.2\%}$$