# LESSON 1:

# Review of Recursion

#### What is Recursion?

Recursion is the idea of a method running itself noside of itself

public int 
$$f(x) \in f(5) = f(4)(1)$$

if  $(x==1)$ 

return 1;  $f(3) = f(2)(1)$ 

return 1;  $f(2) = f(3)(1)$ 

Preven seturn  $f(x-1)$ ;  $f(1) = 1$ 

3

public int f(int x) } f(5) = f(4)(1) Inputs of the f(-2000) = f(-2001)

Bose case needs to not contra

# Analyzing Recursion wysky -m

```
public static int mystery(int n) {
    if(n==0) {
       return 1;
    }
    else {
       return 3 * mystery(n-1);
    }
}
```

$$m(5) = 3 * m(4) = 243$$
  
 $m(4) = 3 * m(3)^{27} = 81$   
 $m(3) = 3 * m(2)^{9} = 27$   
 $m(2) = 3 * m(1)^{3} = 9$   
 $m(1) = 3 * m(0)^{1} = 3$   
 $m(0) = 1$ 

What is the result of:

System.out.println(
$$mystery(5)$$
); = 243

## Analyzing Recursion, Part 2

```
public static int f(int n) {
   if(n==0) {
      return 0;
   }
   else if(n==1) {
      return 1;
   }
   else {
      return f(n-1) + f(n-2);
   }
}
```

#### What is the result of:

### Why Do We Care?

- Break down large problems into smaller ones
  - 1) Sorting
  - @ Data Structures

