Nonlinearities and Kernels

- Polynomials (especially high-dimensional ones) get wild rather fast.
- There is a more elegant and controlled way to introduce nonlinearities in support-vector classifiers — through the use of kernels.
- Before we discuss these, we must understand the role of *inner products* in support-vector classifiers.

$$\langle x_i, x_{i'} \rangle = \sum_{j=1}^p x_{ij} x_{i'j}$$
 — inner product between vectors

$$\langle x_i, x_{i'} \rangle = \sum_{j=1}^{p} x_{ij} x_{i'j}$$
 — inner product between vectors

• The linear support vector classifier can be represented as

$$f(x) = \beta_0 + \sum_{i=1}^{n} \alpha_i \langle x, x_i \rangle$$
 — n parameters

$$\langle x_i, x_{i'} \rangle = \sum_{j=1}^p x_{ij} x_{i'j}$$
 — inner product between vectors

• The linear support vector classifier can be represented as

$$f(x) = \beta_0 + \sum_{i=1}^{n} \alpha_i \langle x, x_i \rangle$$
 — n parameters

• To estimate the parameters $\alpha_1, \ldots, \alpha_n$ and β_0 , all we need are the $\binom{n}{2}$ inner products $\langle x_i, x_{i'} \rangle$ between all pairs of training observations.

$$\langle x_i, x_{i'} \rangle = \sum_{i=1}^p x_{ij} x_{i'j}$$
 — inner product between vectors

• The linear support vector classifier can be represented as

$$f(x) = \beta_0 + \sum_{i=1}^{n} \alpha_i \langle x, x_i \rangle$$
 — n parameters

• To estimate the parameters $\alpha_1, \ldots, \alpha_n$ and β_0 , all we need are the $\binom{n}{2}$ inner products $\langle x_i, x_{i'} \rangle$ between all pairs of training observations.

It turns out that most of the $\hat{\alpha}_i$ can be zero:

$$f(x) = \beta_0 + \sum_{i \in S} \hat{\alpha}_i \langle x, x_i \rangle$$

S is the support set of indices i such that $\hat{\alpha}_i > 0$. [see slide 8]

• If we can compute inner-products between observations, we can fit a SV classifier. Can be quite abstract!

- If we can compute inner-products between observations, we can fit a SV classifier. Can be quite abstract!
- Some special kernel functions can do this for us. E.g.

$$K(x_i, x_{i'}) = \left(1 + \sum_{j=1}^{p} x_{ij} x_{i'j}\right)^d$$

computes the inner-products needed for d dimensional polynomials — $\binom{p+d}{d}$ basis functions!

- If we can compute inner-products between observations, we can fit a SV classifier. Can be quite abstract!
- Some special kernel functions can do this for us. E.g.

$$K(x_i, x_{i'}) = \left(1 + \sum_{j=1}^{p} x_{ij} x_{i'j}\right)^d$$

computes the inner-products needed for d dimensional polynomials — $\binom{p+d}{d}$ basis functions!

Try it for
$$p = 2$$
 and $d = 2$.

- If we can compute inner-products between observations, we can fit a SV classifier. Can be quite abstract!
- Some special kernel functions can do this for us. E.g.

$$K(x_i, x_{i'}) = \left(1 + \sum_{j=1}^{p} x_{ij} x_{i'j}\right)^d$$

computes the inner-products needed for d dimensional polynomials — $\binom{p+d}{d}$ basis functions!

Try it for p=2 and d=2.

• The solution has the form

$$f(x) = \beta_0 + \sum_{i \in \mathcal{S}} \hat{\alpha}_i K(x, x_i).$$

Radial Kernel

$$K(x_i, x_{i'}) = \exp(-\gamma \sum_{j=1}^{p} (x_{ij} - x_{i'j})^2).$$

$$f(x) = \beta_0 + \sum_{i \in \mathcal{S}} \hat{\alpha}_i K(x, x_i)$$

Implicit feature space; very high dimensional.

Controls variance by squashing down most dimensions severely

The SVM as defined works for K=2 classes. What do we do if we have K>2 classes?

The SVM as defined works for K = 2 classes. What do we do if we have K > 2 classes?

OVA One versus All. Fit K different 2-class SVM classifiers $\hat{f}_k(x)$, k = 1, ..., K; each class versus the rest. Classify x^* to the class for which $\hat{f}_k(x^*)$ is largest.

The SVM as defined works for K = 2 classes. What do we do if we have K > 2 classes?

- OVA One versus All. Fit K different 2-class SVM classifiers $\hat{f}_k(x)$, k = 1, ..., K; each class versus the rest. Classify x^* to the class for which $\hat{f}_k(x^*)$ is largest.
- OVO One versus One. Fit all $\binom{K}{2}$ pairwise classifiers $\hat{f}_{k\ell}(x)$. Classify x^* to the class that wins the most pairwise competitions.

The SVM as defined works for K = 2 classes. What do we do if we have K > 2 classes?

- OVA One versus All. Fit K different 2-class SVM classifiers $\hat{f}_k(x)$, k = 1, ..., K; each class versus the rest. Classify x^* to the class for which $\hat{f}_k(x^*)$ is largest.
- OVO One versus One. Fit all $\binom{K}{2}$ pairwise classifiers $\hat{f}_{k\ell}(x)$. Classify x^* to the class that wins the most pairwise competitions.

Which to choose? If K is not too large, use OVO.

Support Vector versus Logistic Regression?

With $f(X) = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p$ can rephrase support-vector classifier optimization as

$$\underset{\beta_0,\beta_1,\dots,\beta_p}{\text{minimize}} \left\{ \sum_{i=1}^n \max\left[0,1-y_i f(x_i)\right] + \lambda \sum_{j=1}^p \beta_j^2 \right\}$$

This has the form loss plus penalty.

The loss is known as the *hinge loss*.

Very similar to "loss" in logistic regression (negative log-likelihood).

Which to use: SVM or Logistic Regression

- When classes are (nearly) separable, SVM does better than LR. So does LDA.
- When not, LR (with ridge penalty) and SVM very similar.
- If you wish to estimate probabilities, LR is the choice.
- For nonlinear boundaries, kernel SVMs are popular. Can use kernels with LR and LDA as well, but computations are more expensive.