

Distributed Manufacturing using Secure 3D Printing

Lörrach, 17. Dezember 2019

Prof. Dr. Jan M. Olaf

& Studierende Wirtschaftsinformatik 5. Semester WWI17A-AM

Studienzentrum IT Management & Informatik - DHBW Lörrach

www.dhbw-loerrach.de

Hinweis für den Benutzer:

Dieser Foliensatz einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verfasser unzulässig und strafbar. Dies gilt insbesondere für Vervielfältigungen, Audio- und Videoaufzeichungen, Mikroverfilmungen und Einspeicherung und der Verarbeitung in elektronischen Systemen.

Dieser Foliensatz wird Ihnen mit einem nicht ausschließlichen, nicht übertragbaren, kein auf Vergabe von Unterlizenzen beinhaltenden Nutzungsrecht für Ihren persönlichen Gebrauch zur Verfügung gestellt.

Die Weitergabe ist nur mit Zustimmung des Verfasser gestattet.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. berechtigen nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutzgesetzgebung als frei zu betrachten wären und daher von jedermann genutzt werden dürfen.

Die Verwendung von fremden Inhalten ist im Sinne der wissenschaftlichen Verwendung und im Umfang gemäß Urheberrechtsgesetzgebung gekennzeichnet. Der Verfasser hat sich bemüht, sämtliche Rechteinhaber von Abbildungen zu ermitteln, soweit die Verwendung über das Maß der Urheberrechtsgesetzgebung hinaus geht.

3D Printing opens new Value Chains:

Past:

Prototyping

Central mass production

Country A

Last mile logistics

Transfer production data

Decentral local production

International Cooperation of global SMEs

PL

Sub

Business Logic and Models projects incl. tax & law issues

Fachlich e-PL

Contrib. Prio 1

Contrib. Prio 2

ZENTRUM

Transfer licensed data pakages

HIGHTECH/

Contents & digital encryption licensee Licenser

Printing process controlling & QA

Contents & digital encryption Licenser licensee

Fallstudien 3D-Druck

Value Chain

Fallstudien 3D-Druck

3D Printing opens new Value Chains:

Disruption durch 3D-Druck

Last mile logistics

Transfer produ data

production

CHANCE for SME!

Disruption durch 3D-Druck

Wodurch entsteht Disruption durch 3D-Druck?

- ☐ Geringer Materialverbrauch
- ☐ Hohe Geometriefreiheit
- □ Wirtschaftlich sinnvoll für kleine Stückzahlen
- □ Sehr Kundennah
- Nachhaltig
- ☐ Geographische Unabhängigkeit

Disruption durch 3D-Druck

3D-Druck – Nachteile?

- □ Lange Fertigungszeit
- Begrenztes Bauvolumen
- □ Konfliktpotential mit Urheberrecht und Patent
- Oftmals ist eine Nacharbeitung notwendig
- □ Abhängigkeit von Druck-Dienstleistern (Verfügbarkeit, Technologie, Material)

Fallstudien 3D-Druck

12

Licensing – Digital Rights Management

13

Licensing via Smart Contracts

Grundlagen von DLT

Distributed Ledger Technologie

Technik zur Dokumentation von Transaktionen nach dem Prinzip verteilter Kassenbücher

Transaktionspartner müssen sich weder untereinander noch einer übergeordneten Instanz vertrauen

Integrität und Authentizität der Daten wird durch Transparenz und Manipulationssicherheit gewährleistet

DLTals Technik ist nicht von der technologischen Umsetzung abhängig

Was ist die Blockchain

Datenstruktur

System zur Verwaltung

Wie funktioniert die Blockchain

Validieren von Blöcken

Validierung durch NetzwerkteilnehmerÜberprüfung des HashwertesMehrheitsentscheidung

Erzeugen von Blöcken

Private Blockchain

Öffentliche Blockchain

Zugangsbeschränkung	auf festen Teilnehmerkreis	keine
Teilnehmer	bekannt	anonym bzw. pseudonym
Konsensmechanismus	z.B. Proof of Authentication	z.B. Proof of Work oder Proof of Stake
Transparenz	gespeicherte Daten nur für Teilnehmer einsehbar	gespeicherte Daten öffentlich einsehbar

Darstellung in Anlehnung an

https://medium.com/luxtag-live-tokenized-assets-on-blockchain/private-vs-public-blockchain-what-are-the-major-differences-d92a504f3a4a

Nachteile der Blockchain

- Langsam
- Ressourcen-/Energiefresser (vgl. Ökobilanz)

Fallstudien 3D-Druck

20

Future trends to be forced by 3D – printing

Reduction CO₂ Footprint leads to increased motivation to realize the indicated scenariaos

Value Chain – CO₂ Calculation

243 g Kerosin 500g CO₂

per ton-km

10kg 10.000km

-> 50 kg CO₂

IT and Data provider
3D printing service provider

??? kWh electricity ??? g CO₂

per ???

"Strommix" DE

474g CO₂/kWh

Manufacturer=

Data supplier

Value Chain & IT Realization

Protecting print file by DRM

Data file transfer Data storage

Manufacturer= Data supplier

IT and Data provider
3D printing service provider

Customer

Infrastructure

(Server, Storage, Network)

Transactions

Securing the value chain by means of Distributed Ledger Technologies

Energy consumption of IT

INTERNET USES MORE THAN 10% OF THE WORLD'S ELECTRICITY

Around 10% of the world's total electricity consumption is being used by the internet, according to a recent research

report from Swedish KTH.

RELATED ARTICLES

CULTURE

Swedish Television enforces strict advertising rules

CULTURE

Should the Danish government continue to fund Theatre?

CULTURE

Norway's birth rate is

decreasing

Energy consumption of IT

Energy consumption of IT

- Operating Desktop PC for 5 years: 700 kg CO_{2 (2010)}
- Operating Server for 5 years: 3.800 kg CO_{2 (2010)}
- Youtube 2016: 10 Mio tons CO₂ p.a. (Source: Deutschlandfunk)
- One Search request at Google: 0,2g CO₂
 65.000 Requests per second -> 13 kg CO₂ per second
- Bitcoin 2018: 500 g CO₂ per Kilowatthour (kWh)
 -> ca. 23 Mio tons CO₂ p.a.
- 1 Bitcoin Transaction: 270 kg CO₂

Attempting a CO₂ calculation

Summary

- CO₂ balance is important to be investigated
- Savings in logistics versus spendings in IT
- Progress/improvements in IT and/or new more efficient methods for securing the process have to be developed, e.g. "CARBONARA", "Red Belly Blockchain"
- Reasonable sizing (1.000 machines?)
- INTERREG (EU) project is dealing with alternative solutions for securing transactions and data files:

"IPFS + Blockchain n.g. + Smart Contracts"

Job Opportunities

- Project funding until 31.12.2021 is already released
- 2 positions (50%) are offered for master/PhD students
- Working areas:
 - Business Models and Digital Transformation
 - Digital Rights Management (DRM)
 - Distributed Ledger Technologies (DLT)
- Expertise in at least two of the above areas is desired.

 Contact: Prof. Dr. Jan M. Olaf, DHBW Lörrach, Germany email: olaf@dhbw-loerrach.de

Value Chain & IT Realization

Protecting print file by DRM

Data file transfer Data storage

Manufacturer= Data supplier

IT and Data provider
3D printing service provider

Customer

Infrastructure

(Server, Storage, Network)

Transactions

Securing the value chain by means of Distributed Ledger Technologies

Herzlichen Dank für Ihre Aufmerksamkeit

Vielen Dank!

