(4) Strictly convex quadratic function: $f(x) = \frac{1}{2}x^{\top}Ax$, where A is an $n \times n$ symmetric positive definite matrix, with $dom(f) = \mathbb{R}^n$. The function $x \mapsto y^{\top}x - \frac{1}{2}x^{\top}Ax$ has a unique maximum when is gradient is zero, namely

$$y = Ax$$
.

Substituting for $x = A^{-1}y$ in $y^{\top}x - \frac{1}{2}x^{\top}Ax$, we obtain

$$y^{\top} A^{-1} y - \frac{1}{2} y^{\top} A^{-1} y = -\frac{1}{2} y^{\top} A^{-1} y,$$

SO

$$f^*(y) = -\frac{1}{2}y^{\top} A^{-1} y$$

with dom $(f^*) = \mathbb{R}^n$.

(5) Log-determinant: $f(X) = \log \det(X^{-1})$, where X is an $n \times n$ symmetric positive definite matrix. Then

$$f(Y) = \log \det((-Y)^{-1}) - n,$$

where Y is an $n \times n$ symmetric negative definite matrix; see Boyd and Vandenberghe; see [29], Section 3.3.1, Example 3.23.

(6) Norm on \mathbb{R}^n : f(x) = ||x|| for any norm $||\cdot||$ on \mathbb{R}^n , with $dom(f) = \mathbb{R}^n$. Recall from Section 14.7 that the dual norm $||\cdot||^D$ of the norm $||\cdot||$ (with respect to the canonical inner product $x \cdot y = y^{\mathsf{T}} x$ on \mathbb{R}^n is given by

$$||y||^D = \sup_{||x||=1} |y^\top x|,$$

and that

$$|y^{\top}x| \le ||x|| \, ||y||^D$$
.

We have

$$f^{*}(y) = \sup_{x \in \mathbb{R}^{n}} (y^{\top}x - ||x||)$$

$$= \sup_{x \in \mathbb{R}^{n}, x \neq 0} \left(y^{\top} \frac{x}{||x||} - 1\right) ||x||$$

$$\leq \sup_{x \in \mathbb{R}^{n}, x \neq 0} (||y||^{D} - 1) ||x||,$$

so if $||y||^D > 1$ this last term goes to $+\infty$, but if $||y||^D \le 1$, then its maximum is 0. Therefore,

$$f^*(y) = ||y||^* = \begin{cases} 0 & \text{if } ||y||^D \le 1 \\ +\infty & \text{otherwise.} \end{cases}$$