Здесь будет титульник, листай ниже

# СОДЕРЖАНИЕ

| 1 ПОСТАНОВКА ЗАДАЧИ              | 5  |
|----------------------------------|----|
| 1.1 Описание входных данных      |    |
| 1.2 Описание выходных данных     |    |
| 2 МЕТОД РЕШЕНИЯ                  |    |
| 3 ОПИСАНИЕ АЛГОРИТМОВ            | 11 |
| 3.1 Алгоритм функции main        | 11 |
| 4 БЛОК-СХЕМЫ АЛГОРИТМОВ          | 13 |
| 5 КОД ПРОГРАММЫ                  | 14 |
| 5.1 Файл main.cpp                | 14 |
| 5.2 Файл obj.cpp                 | 15 |
| 5.3 Файл obj.h                   | 17 |
| 6 ТЕСТИРОВАНИЕ                   | 18 |
| СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ | 10 |

### 1 ПОСТАНОВКА ЗАДАЧИ

Дан объект следующей конструкции:

В закрытом доступе имеется массив целого типа и поле его длины. Количество элементов массива четное и больше двух. Объект имеет функциональность:

- конструктор по умолчанию, вначале работы выдает сообщение;
- параметризированный конструктор, передается целочисленный параметр. Параметр должен иметь значение больше 2 и быть четным. Вначале работы выдает сообщение;
- конструктор копии, обеспечивает создание копии объекта в новой области памяти. Вначале работы выдает сообщение;
- метод деструктор, который в начале работы выдает сообщение;
- метод который создает целочисленный массив в закрытой области, согласно ранее заданной размерности.
- метод ввода значений элементов созданного массива;
- метод 1, который суммирует значения очередной пары элементов и сумму присваивает первому элементу пары. Например, пусть массив состоит из элементов {1,2,3,4}. В результате суммирования пар получим массив {3,2,7,4};
- метод 2, который умножает значения очередной пары элементов и результат присваивает первому элементу пары. Например, пусть массив состоит из элементов {1,2,3,4}. В результате умножения пар получим массив {2,2,12,4};
- метод, который суммирует значения элементов массива и возвращает это значение;
- метод последовательного вывода содержимого элементов массива,

которые разделены двумя пробелами;

- метод, который возвращает значение указателя на массив из закрытой области;
- метод, который присваивает значение указателя массива из закрытой области.

Назовём класс описания данного объекта cl\_obj (для примера, у вас он может называться иначе).

Разработать функцию func, которая имеет один целочисленный параметр, содержащий размерность массива. В функции должен быть реализован алгоритм:

- 1. Инициализация указателя на объект класса cl\_obj адресом объекта, созданного с использованием параметризированного конструктора.
- 2. С использованием указателя на объект класса cl\_obj вызов метода создания массива.
- 3. С использованием указателя на объект класса cl\_obj вызов метода ввода значений элементов массива.
- 4. С использованием указателя на объект класса cl\_obj вызов метода 2.
- 5. Возврат указателя на объект класса cl\_obj.

В основной функции реализовать алгоритм:

- 1. Ввод размерности массива.
- 2. Если размерность массива некорректная, вывод сообщения и завершить работу алгоритма.
- 3. Вывод значения размерности массива.
- 4. Объявить первый указатель на объект класса cl\_obj.
- 5. Присвоение первому указателю результата работы функции func с аргументом, содержащим значение размерности массива.
- 6. С использованием первого указателя вызов метода 1.
- 7. Инициализация второго указателя на объект класса cl\_obj адресом

объекта, созданного с использованием конструктора копии с аргументом первого объекта.

- 8. С использованием второго указателя вызов метода 2.
- 9. Вывод содержимого массива первого объекта.
- 10. Вывод суммы элементов массива первого объекта.
- 11. Вывод содержимого массива второго объекта.
- 12. Вывод суммы элементов массива второго объекта.
- 13. Второму объекту присвоить первый объект.
- 14. С использованием первого указателя вызов метода 1.
- 15. Вывод содержимого массива второго объекта.
- 16. Вывод суммы элементов массива второго объекта.
- 17. Удалит первый объект.
- 18. Удалить второй объект.

Добавить в этот алгоритм пункты, которые обеспечат корректное завершение работы программы.

#### 1.1 Описание входных данных

```
Первая строка:

«целое число»
Вторая строка:

«целое число» «целое число» . . .

Пример:

4
3 5 1 2
```

#### 1.2 Описание выходных данных

Если введенная размерность массива допустима, то в первой строке выводится это значение:

«Целое число»

Если введенная размерность массива не больше двух или нечетная, то в первой строке выводится некорректное значение и вопросительный знак:

«Целое число»?

Конструктор по умолчанию в начале работы с новой строки выдает сообщение:

Default constructor

Параметризированный конструктор в начале работы с новой строки выдает сообщение:

Constructor set

Конструктор копии в начале работы с новой строки выдает сообщение:

Copy constructor

Деструктор в начале работы с новой строки выдает сообщение:

Destructor

Метод последовательного вывода содержимого элементов массива, с новой строки выдает:

```
«Целое число» «Целое число» «Целое число» . . .
```

#### Пример вывода:

```
4
Constructor set
Copy constructor
20 5 4 2
31
100 5 8 2
```

115 100 5 8 2 115 Destructor Destructor

# 2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- объект obj1 класса obj предназначен для ;
- объект obj2 класса obj предназначен для ;
- функция main для Основная;
- функция fun для;
- Условный оператор;
- Оператор со счетчиком;
- Объект стандартного потока ввода/вывода cin/cout.

### 3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

### 3.1 Алгоритм функции main

Функционал: Основная функция.

Параметры: Отсутсвуют.

Возвращаемое значение: Целое.

Алгоритм функции представлен в таблице 1.

Таблица 1 – Алгоритм функции таіп

| N₂ | Предикат | Действия                                                                                                                                              | N₂       |
|----|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|    |          |                                                                                                                                                       | перехода |
| 1  |          | Ввод размерности массива                                                                                                                              | 2        |
| 2  |          | Если размерность массива некорректная, вывод сообщения и завершить работу алгоритма.                                                                  |          |
| 3  |          | Вывод значения размерности массива.                                                                                                                   |          |
| 4  |          | Объявить первый указатель на объект класса cl_obj.                                                                                                    |          |
| 5  |          | Присвоение первому указателю результата работы функции func с аргументом, содержащим значение размерности массива.                                    |          |
| 6  |          | С использованием первого указателя вызов метода 1.                                                                                                    |          |
| 7  |          | Инициализация второго указателя на объект класса cl_obj адресом объекта, созданного с использованием конструктора копии с аргументом первого объекта. |          |
| 8  |          | С использованием второго указателя вызов метода 2.                                                                                                    | 9        |
| 9  |          | Вывод содержимого массива первого объекта.                                                                                                            | 10       |
| 10 |          | Вывод суммы элементов массива первого объекта.                                                                                                        | 11       |
| 11 |          | Вывод содержимого массива второго объекта.                                                                                                            | 12       |

| N₂ | Предикат | Действия                                           | No       |
|----|----------|----------------------------------------------------|----------|
|    |          |                                                    | перехода |
| 12 |          | Вывод суммы элементов массива второго объекта.     | 13       |
| 13 |          | Второму объекту присвоить первый объект.           | 14       |
| 14 |          | С использованием первого указателя вызов метода 1. | 15       |
| 15 |          | Вывод содержимого массива второго объекта.         | 16       |
| 16 |          | Вывод суммы элементов массива второго объекта.     | 17       |
| 17 |          | Удалит первый объект.                              | 18       |
| 18 |          | Удалит второй объект.                              | Ø        |

#### 4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-1.



Рисунок 1 – Блок-схема алгоритма

### 5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

#### 5.1 Файл таіп.срр

Листинг 1 – main.cpp

```
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
#include "obj.h"
using namespace std;
obj* fun(int size)
  obj* cl_obj = new obj(size);
  cl_obj->Array();
  cl_obj->Fill();
  cl_obj->Metod2();
  return cl_obj;
int main()
  int size_arr;
  cin >> size_arr;
  if(size_arr > 2 && size_arr %2 == 0)
     cout << size_arr << endl;
     obj* obj1;
     obj1 = fun(size_arr);
     obj1->Metod1();
     obj* obj2 = new obj(*obj1);
     obj2->Metod2();
     obj1->Vivod();
     cout << obj1->Sum() << endl;</pre>
     obj2->Vivod();
     cout << obj2->Sum() << endl;</pre>
     *obj2 = *obj1;
     obj1->Metod2();
     obj2->Vivod();
     cout << obj2->Sum();
     delete obj1;
     delete obj2;
  else
```

```
cout << size_arr << "?";
}
return(0);
}</pre>
```

### 5.2 Файл обј.срр

Листинг 2 – obj.cpp

```
#include "obj.h"
#include <iostream>
using namespace std;
obj::obj()
  cout << "Default constructor" << endl;</pre>
}
obj::obj(int size_arr)
  cout << "Constructor set";</pre>
  this->size_arr = size_arr;
obj::obj(const obj & obj)
  cout << "\nCopy constructor" << endl;</pre>
  size_arr = obj.size_arr;
  arr = new int[size_arr];
  for(int i = 0; i < size_arr; i ++)</pre>
      arr[i] = obj.arr[i];
obj::~obj()
  cout << "\nDestructor";</pre>
void obj::Array()
  arr = new int[size_arr];
void obj::Fill()
  for(int i = 0; i <size_arr; i++)</pre>
      cin >> arr[i];
}
int obj::Sum()
```

```
int sum = 0;
  for(int i = 0; i < size_arr; i++)</pre>
     sum += arr[i];
  return sum;
}
void obj::Metod1()
  for(int i = 0; i < size_arr; i+=2)</pre>
     arr[i] += arr[i+1];
}
void obj::Metod2()
  for(int i = 0; i < size_arr; i+=2)
     arr[i] *= arr[i+1];
}
void obj::Vivod()
  for(int i = 0; i < size_arr; i++)</pre>
     if(i == size_arr -1)
        cout << arr[i];</pre>
      }
     else
         cout << arr[i] << " ";
  cout << endl;</pre>
}
int* obj::Get()
  return arr;
void obj::Set(int* arr)
  this->arr = arr;
}
```

### 5.3 Файл obj.h

Листинг 3 – obj.h

```
#ifndef __IKB051__H
#define __IKB051__H
class obj
private:
   int* arr;
  int size_arr;
public:
  obj();
obj(int size_arr);
  obj(const obj & obj_);
  ~obj();
  void Fill();
  void Array();
  int* Get();
void Set(int*);
  int Sum();
  void Metod1();
  void Metod2();
  void Vivod();
};
#endif
```

## 6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 2.

Таблица 2 – Результат тестирования программы

| Входные данные | Ожидаемые выходные<br>данные                                                                   | Фактические выходные<br>данные                                                                   |
|----------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 4<br>3 5 1 2   | Constructor set Copy constructor 20 5 4 2 31 100 5 8 2 115 100 5 8 2 115 Destructor Destructor | 4 Constructor set Copy constructor 20 5 4 2 31 100 5 8 2 115 100 5 8 2 115 Destructor Destructor |

#### СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe\_posobie\_dlya\_laboratornyh\_ra bot\_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye\_k\_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).