

DUOMENŲ BAZĖS

FUNKCINĖS PRIKLAUSOMYBĖS

Tikslas ir rezultatai

Tikslas – suprasti duomenų funkcines priklausomybes

Gebėsite:

- Apibrėžti funkcinės priklausomybės sąvoką
- > Paaiškinti funkcinių priklausomybių nustatymo principus
- > Suformuluoti funkcinių priklausomybių išvedimo taisykles

Funkcinės priklausomybės (FP) apibrėžimas

Atributas Y funkciškai priklauso nuo atributo X (X → Y), jei kiekviena ta pati X stulpelio reikšmė nustato (atitinka) tik vieną ir tą pačią Y stulpelio reikšmę.

Funkcinė priklausomybė X→Y

R schemos santykio pavyzdys

Kodas	Vardas	Pavardė	Užsakymo_data	Pristatymo_miestas
111111	Jonas	Jonaitis	2013.12.12	Joniškis
111222	Jonas	Petraitis	2013.10.10	Plungė
222111	Jonas	Jonaitis	2013.12.12	Joniškis
111111	Jonas	Jonaitis	2013.12.22	Klaipėda

Jei
$$t_1(X) = t_2(X)$$
 ir $t_1(Y) = t_2(Y)$, tai $X \rightarrow Y$

Jei X \rightarrow Y, tai \forall x \in X \exists ! y \in Y

t- santykio eilutė X ir Y – schemos R atributų poaibiai

kodas -> vardas, pavardė

Kitos FP sąvokos

Kaip nustatyti FP?

- ➤ Išanalizuoti dalykinę sritį ir suprasti kiekvieno atributo prasmę, ryšius su kitais atributais.
- ➤ Informaciją apie dalykinę sritį teikia:
 - dalykinės srities žinovai
 - sritį atspindintys dokumentai, dokumentų formos
 - duomenų pavyzdžiai
 - taikomosios programos

Santykio pavyzdys

PREKĖS

KODAS	PAVADINIMAS	KAINA	VIETA	KIEKIS	AR_PAPILDYTI
001038	Klevas	100	Kaunas	150	.F.
001027	Liepa	500	Kaunas	50	.F.
001027	Liepa	75	Vilnius	50	.F.
001038	Klevas	100	Vilnius	1	.Т.

Kodas – baldų komplekto kodas

Pavadinimas – baldų komplekto pavadinimas

Kaina – baldų komplekto kaina

Vieta – baldų komplekto sandėliavimo vieta

Kiekis – baldų komplektų kiekis sandėlyje

Ar_paildyti – požymis, ar reikia papildyti sandėlį baldų komplektais

Santykio pavyzdys

<u>PREKĖS</u>

KODAS	PAVADINIMAS	KAINA	VIETA	KIEKIS	AR_PAPILDYTI
001038	Klevas	100	Kaunas	150	.F.
001027	Liepa	500	Kaunas	50	.F.
001027	Liepa	75	Vilnius	50	.F.
001038	Klevas	100	Vilnius	1	.Т.

Х	→	Υ
Kodas	\rightarrow	Pavadinimas
Pavadinimas	\rightarrow	Kodas
Kodas	\rightarrow	Kaina
Kodas, Vieta	\rightarrow	Kiekis
Kodas, Vieta	\rightarrow	Ar_papildyti

Funkcinių priklausomybių pavyzdys

Funkcinių priklausomybių išvedimo taisyklės

FT1. Refleksyvumas

FT2. Papildymas

FT3. Adityvumas

FT4. Projektyvumas

FT5. Tranzityvumas

FT6. Pseudotranzityvumas

FT7. Kaupimas

FT1. Refleksyvumas

Taisyklė:

 $x\rightarrow x$ yra teisinga.

Pavyzdys:

Kodas → Kodas yra teisinga.

Kodas, Pavadinimas → Kodas yra teisinga.

FT2. Papildymas

Taisyklė:

Jei **x→y** yra teisinga, tai ir **x**, **z→y** yra teisinga.

Pavyzdys:

Jei Kodas → Kaina yra teisinga, tai Kodas, Vieta → Kaina yra teisinga.

FT3. Adityvumas

Taisyklė:

Jei $x \rightarrow y$ ir $x \rightarrow z$ yra teisingos, tai ir $x \rightarrow y$, z yra teisinga.

Pavyzdys:

Jei Kodas → Kaina ir Kodas → Pavadinimas yra teisingos, tai ir Kodas → Kaina, Pavadinimas yra teisinga.

FT4. Projektyvumas

Taisyklė:

Jei $x \rightarrow Y$, z yra teisinga, tai ir $x \rightarrow Y$ ir $x \rightarrow z$ yra teisingos.

Pavyzdys:

Jei Kodas → Kaina, Pavadinimas yra teisinga, tai Kodas → Kaina ir Kodas → Pavadinimas yra teisingos.

FT5. Tranzityvumas

Taisyklė:

Jei $x \rightarrow y$ ir $y \rightarrow z$ yra teisingos, tai ir $x \rightarrow z$ yra teisinga.

Pavyzdys:

Jei Kodas → Pavadinimas ir

Pavadinimas → Kaina yra teisingos,
tai ir Kodas → Kaina yra teisinga.

FT6. Pseudotranzityvumas

Taisyklė:

Jei $x \rightarrow y$ ir $y, z \rightarrow w$ yra teisingos, tai ir $x, z \rightarrow w$ yra teisinga.

Pavyzdys:

Jei Kodas → Pavadinimas ir

Pavadinimas, Vieta → Kiekis yra teisingos,
tai Kodas, Vieta → Kiekis yra teisinga.

FT7. Kaupimas

Taisyklė:

Jei $x \rightarrow Y$, z ir $Y \rightarrow V$, w yra teisingos, tai ir $x \rightarrow Y$, z, w yra teisinga.

Pavyzdys:

Jei Kodas → Pavadinimas, Kaina ir

Pavadinimas → Tipas, Svoris yra teisingos,
tai Kodas → Pavadinimas, Kaina, Svoris yra teisinga.

Galinė FP aibė

Išvedimo taisyklių savybės

- Patikimumas
- Pilnumas
- Pertekliškumas

Apibendrinimas

- > Funkcinės priklausomybės sąvoka
- > Funkcinių priklausomybių nustatymo principais
- > Funkcinių priklausomybių išvedimo taisyklėmis

DUOMENŲ BAZĖS

SCHEMOS RAKTAS

Tikslas ir rezultatai

Tikslas – suprasti kaip nustatomas santykio schemos raktas.

Gebesite:

Paaiškinti, kas yra ir kaip nustatomas duoto santykio schemos raktas

Schemos raktas

Atributas, kuris unikaliai identifikuoja lentelės eilutes, vadinamas raktu.

STUDENTAI

kodas	vardas	pavardė
S1	Jonas	Jonaitis
S2	Petras	Petraitis
S3	Linas	Linkus

kodas → vardas, pavardė

Tarp rakto ir kitų schemos atributų yra funkcinė priklausomybė.

Sudėtinis schemos raktas

JVERTINIMAI

modulis	studentas	balas
M1	S1	10
M1	S2	9
M2	S2	8

MODULIO STUDENTAI

modulis	studentas
M1	S1
M1	S2
M2	S 2

modulis, studentas → balas

Raktas iš kelių atributų vadinamas sudėtiniu raktu.

Atributas, įeinantis į rakto sudėtį, vadinamas **raktiniu atributu**.

Nesunormintos schemos pavyzdys

R schemos santykio pavyzdys

Kodas	Vardas	Pavardė	Užsakymo_data	Pristatymo_miestas
111111	Jonas	Jonaitis	2013.12.12	Joniškis
111222	Jonas	Petraitis	2013.10.10	Plungė
222111	Jonas	Jonaitis	2013.12.12	Joniškis
111111	Jonas	Jonaitis	2013.12.22	Klaipėda

<u>R</u>

Pilnoji funkcinė priklausomybė

Pilnoji FP X→Y – FP su minimaliu atributų rinkiniu kairiojoje pusėje (X), kurio pakanka dešiniosios pusės atributų (Y) funkcinei priklausomybei palaikyti.

Schemos rakto nustatymas

X={Kodas, Užsakymo_data, pristatymo_miestas} Y={Vardas, Pavardė}

Schemos raktu X tampa tie atributai, kurie funkciškai nepriklauso nei nuo vieno kito atributo.

Santykio schemos rakto apibrėžimas

Sakykime, kad:

- R=(A1, A2, ..., An) santykio schema;
- F duotųjų funkcinių priklausomybių aibė;
- X schemos R atributų poaibis.

X yra schemos R raktas, jeigu:

- 1. $X \rightarrow R \in \mathbf{F}^+$;
- 2. Visiems $Y \subset X$ galioja $Y \rightarrow R \notin F^+$.

Apibendrinimas

- Kas yra santykio schemos raktas
- Kaip nustatyti duoto santykio schemos raką

DUOMENŲ BAZĖS

FUNKCINIŲ PRIKLAUSOMYBIŲ TIPAI

Tikslas ir rezultatai

Tikslas – suprasti funkcinės priklausomybių tipus.

Gebėsite:

- lšvardinti funkcinių priklausomybių tipus
- Paaiškinti kaip nustatyti pilnąją, dalinę ir tranzityviąją funkcinę priklausomybę

Pilnoji FP

Pilnoji FP X→Y – FP su minimaliu atributų rinkiniu kairiojoje pusėje (X), kurio pakanka dešiniosios pusės atributų (Y) funkcinei priklausomybei palaikyti.

Dalinė FP

Dalinė FP X→Y – FP, iš kurios kairiosios pusės atributų rinkinio X pašalinus atributą, dešiniosios pusės atributų Y funkcinė priklausomybė nuo X išlieka.

Tranzityvioji FP

Tranzityvioji FP X→Y – FP, gauta pritaikius tranzityvumo taisyklę FP išvesti.

Jei **Užsakymo_nr** → **Kodas** ir **Kodas** → **Vardas**, **Pavardė** yra teisingos, tai ir **Užsakymo_nr** → **Vardas**, **Pavardė** yra teisinga.

Apibendrinimas

- Trys funkcinių priklausomybių tipai:
 - pilnoji funkcinė priklausomybė
 - dalinė funkcinė priklausomybė
 - tranzityvioji funkcinė priklausomybė
- Funkcinių priklausomybių tipų nustatymas

Antros dalies pabaiga