

TALLER Nº 12 Ley de Ampère Miércoles 10 de junio de 2015

1. Un conductor cilíndrico, muy largo y orientado con su eje en la dirección z conduce una corriente cuya densidad es \vec{J} . La densidad de corriente, aunque simétrica con respecto al eje del cilindro, no es contante,

sino que varía de acuerdo con la relación
$$\vec{J}(r) = \frac{2I_0}{\pi a^2} \left[1 - \left(\frac{r}{a}\right)^2 \right] \hat{k}$$
, para $r \le a$ y

 $\vec{J}(r) = 0$ para r > a, donde **a** es el radio del cilindro, **r** es la distancia radial desde el eje del cilindro, e I_0 es una corriente medida en A.

- a) Demuestre que I_0 es la corriente total que pasa por toda la sección transversal del conductor.
- b) Obtenga una expresión para la magnitud del campo magnético en la región $r \ge a$.
- Obtenga una expresión para la corriente contenida en una sección transversal circular de radio r < a y con centro en el eje del cilindro.
- d) Obtenga una expresión para la magnitud del campo magnético en la región r < a.
- 2. Tres alambres conductores muy largos y paralelos se hacen pasar por los vértices de un cuadrado de lado L (ver Figura).

Calcular el campo magnético \vec{B} en el vértice no ocupado cuando:

- b) I_1 e I_3 circulan hacia dentro del papel e I_2 hacia fuera.
- c) I_1 e I_2 circulan hacia dentro del papel e I_3 hacia fuera.

