Bimonads on Species

Sandesh S. Kalantre

October 7, 2017

Outline

Introduction

Monad for monoids

Comonad for comonoids

Bimonad for Bimonoids

Plan

Introduction

Monad for monoids

Comonad for comonoids

Bimonad for Bimonoids

The main aim is to provide an instance of a categorical framework for monoids, comonoids and bimonoids.

Instead of the usual monoidal category, the idea of monads and monad algebras is used.

Bimonoids as bialgebras over a bimonad

Proposition

The following are equivalences of categories.

```
\mathcal{T}-algebras \cong \mathcal{A}-monoids \mathcal{T}^{\vee}-coalgebras \cong \mathcal{A}-comonoids (\mathcal{T}, \mathcal{T}^{\vee}, \lambda)-bialgebras \cong \mathcal{A}-bimonoids
```

Plan

Introduction

Monad for monoids

Comonad for comonoids

Bimonad for Bimonoids

Construction of the \mathcal{T} functor

Given a species p, define

$$\mathcal{T}(\mathsf{p})[A] := \bigoplus_{F: A \le F} \mathsf{p}[F]. \tag{1}$$

Suppose A and B have the same support. We can define a linear map

$$(\beta_{B,A}: \mathcal{T}(p)[A] \to \mathcal{T}(p)[B])_{(F,G)} = \begin{cases} \beta_{G,F} & G = BF \\ 0 & \text{otherwise} \end{cases}$$

(F,G) stands for the (F,G) component of the map). This turns $\mathcal{T}(p)$ into a species.

Construction of the \mathcal{T} functor

Further, if $f: p \to q$ is a map of species, then summing the components $f_F: p[F] \to q[F]$ yields a map of species $\mathcal{T}(f): \mathcal{T}(p) \to \mathcal{T}(q)$.

Thus \mathcal{T} is a functor.

Definition of natural transformations μ and ι

Define a natural transformation

$$\mu: \mathcal{T} \xrightarrow{\mathcal{T}}, \qquad \bigoplus_{A \le F \le G} \mathsf{p}[G] \to \bigoplus_{A \le G} \mathsf{p}[G]$$
(2)

by mapping each summand in the lhs identically to the matching summand in the rhs. In other words, for a given G, all summands labeled p[G] in the lhs map identically to the summand labeled p[G] in the rhs.

Definition of natural transformations μ and ι

There is also an obvious natural transformation

$$\iota: \mathsf{id} \to \mathcal{T}, \qquad \mathsf{p}[A] \to \bigoplus_{F: A \le F} \mathsf{p}[F]$$
 (3)

given by inclusion.

Monad construction

Recall the definition of a monad.

Definition

A monad on a category C is a functor $\mathcal{T}:\mathsf{C}\to\mathsf{C}$ equipped with natural transformations $\mu:\mathcal{T}\mathcal{T}\to\mathcal{T}$ and $\iota:\mathsf{id}\to\mathcal{T}$ such that the diagrams

commute.

Monad construction

The maps (2) and (3) turn \mathcal{T} into a monad. The diagrams commute simply by inclusion. For instance, the first diagram explicitly looks like:

Monads and Monoids

Proposition

The category of algebras over the monad \mathcal{T} is equivalent to the category of monoids in species.

Proof.

Suppose p is a \mathcal{T} -algebra. Evaluating on a face A,

$$\bigoplus_{F:A\leq F}\mathsf{p}[F]\to\mathsf{p}[A].$$

This is equivalent to a family of maps $p[F] \to p[A]$, one for each $A \le F$.

Denote the map corresponding to $A \leq F$ by μ_A^F . One can check the naturality, associativity and unitality axioms required for a monoid. Thus a \mathcal{T} -algebra is the same as a monoid.

Plan

Introduction

Monad for monoids

Comonad for comonoids

Bimonad for Bimonoids

Construction of \mathcal{T}^{\vee} functor

Dually, we construct a comonad

$$\mathcal{T}^ee: \mathcal{A} ext{-Sp} o \mathcal{A} ext{-Sp}$$

as follows.

As a functor, $\mathcal{T}^{\vee} := \mathcal{T}$. Thus, for a species p,

$$\mathcal{T}^{\vee}(\mathsf{p})[A] = igoplus_{F\colon A \leq F} \mathsf{p}[F].$$

Construction of natural transformations Δ and ϵ

The comonad structure on \mathcal{T}^\vee is given by the natural transformation Δ

$$\Delta: {\color{red}\mathcal{T}^{\vee}} \rightarrow {\color{red}\mathcal{T}^{\vee}} {\color{red}\mathcal{T}^{\vee}}, \qquad \bigoplus_{A \leq {\color{red}\mathcal{G}}} p[G] \rightarrow \bigoplus_{A \leq F \leq {\color{red}\mathcal{G}}} p[G]$$

which maps each summand in the lhs identically to all matching summands in the rhs,

and the natural transformation ϵ

$$\epsilon: \mathcal{T}^{\vee} o \mathsf{id}, \qquad \bigoplus_{F: A \le F} \mathsf{p}[F] o \mathsf{p}[A]$$

which sends p[A] to itself, and all other summands to zero.

Comands and Comonoids

Recall that,

Definition

A comonad on a category C is a functor $\mathcal{U}:\mathsf{C}\to\mathsf{C}$ equipped with natural transformations $\Delta:\mathcal{U}\to\mathcal{U}\mathcal{U}$ and $\epsilon:\mathcal{U}\to\mathsf{id}$ such that the diagrams

commute.

It is easy to check that $\mathcal{U}=\mathcal{T}^\vee$ on the category of species forms a comonad.

Comands and Comonoids

Analogous to the argument for \mathcal{T} , it is clear that the category of \mathcal{T}^{\vee} -coalgebras is equivalent to the category of comonoids in species.

Thus, we have shown,

 \mathcal{T} -algebras $\cong \mathcal{A}$ -monoids \mathcal{T}^{\vee} -coalgebras $\cong \mathcal{A}$ -comonoids

Plan

Introduction

Monad for monoids

Comonad for comonoids

Bimonad for Bimonoids

We now define a natural transformation

$$\lambda: \mathcal{T}_{\mathcal{T}}^{\vee} \to \mathcal{T}^{\vee} \mathcal{T}. \tag{6}$$

On a species p, on the A-component, this entails a linear map

$$\bigoplus_{A \leq F \leq \textbf{G}} p[G] \to \bigoplus_{A \leq \textbf{F}' \leq G'} p[G'].$$

Both spaces are indexed by pairs of faces (F, G) with $A \leq F \leq G$.

$$\lambda_{F,G,F',G'} := \begin{cases} \mathsf{p}[G] \xrightarrow{\beta_{G',G}} \mathsf{p}[G'] & \text{if } FF' = G \text{ and } F'F = G', \\ 0 & \text{otherwise.} \end{cases}$$
(7)

Bimonad

Theorem

The triple $(\mathcal{T}, \mathcal{T}^{\vee}, \lambda)$ is a bimonad, or equivalently, λ is a mixed distributive law between \mathcal{T} and \mathcal{T}^{\vee} .

Bimonads and Bimonoids

Proposition

The category of bialgebras over the bimonad $(\mathcal{T}, \mathcal{T}^{\vee}, \lambda)$ is equivalent to the category of bimonoids in species.

Proof.

Suppose h is a $(\mathcal{T}, \mathcal{T}^{\vee}, \lambda)$ -bialgebra, that is, h is a \mathcal{T} -algebra, a \mathcal{T}^{\vee} -coalgebra, and the following diagram commutes.

Bimonads and Bimonoids

Let us equate the matrix-components. Thus each choice of faces $A \leq F$ and $A \leq F'$ yields a commutative diagram. Since the indices G and G' are forced by G = FF' and G' = F'F, this diagram is precisely the bimonoid axiom.

Thus a $(\mathcal{T}, \mathcal{T}^{\vee}, \lambda)$ -bialgebra is the same as a bimonoid in species.

Conclusion

Hence, we have shown that

 \mathcal{T} -algebras $\cong \mathcal{A}$ -monoids \mathcal{T}^{\vee} -coalgebras $\cong \mathcal{A}$ -comonoids $(\mathcal{T}, \mathcal{T}^{\vee}, \lambda)$ -bialgebras $\cong \mathcal{A}$ -bimonoids

Plan

Introduction

Monad for monoids

Comonad for comonoids

Bimonad for Bimonoids

Pretty Pictures

Figure: A Feynman Diagram

Is the resemblance to objects and morphisms only aesthetic?

¹J. Baez, http://math.ucr.edu/home/baez/rosetta.pdf ← ≥ → ← ≥ → へへ ○

Pretty Pictures

Category Theory	Physics	Topology	Logic	Computation
object	system	manifold	proposition	data type
morphism	process	cobordism	proof	program

Table 1: The Rosetta Stone (pocket version)

Figure: A bird's eye view ¹

Appreciate category theory due to its unifying power of mathematical structures and constructions.

¹J. Baez, http://math.ucr.edu/home/baez/rosetta.pdf ⟨ ₱ ⟩ ⟨ ₱ ⟩ ⟨ ₱ ⟩ ⟨ ₱ ⟩

Pretty Pictures

$$\frac{\text{"GOOD QM"}}{\text{von Neumann QM}} \simeq \frac{\text{HIGH-LEVEL language}}{\text{low-level language}}$$

Figure: "Languages" ²

Category theory offers a "high level language" to talk about quantum mechanics.

A higher level of sophistication in a theory allows us to ask the right questions.

²B. Coecke, https://arxiv.org/pdf/quant-ph/0510032.pdf

Thank You for your time!