⑩ 公 開 特 許 公 報 (A) 平1-148955

@Int_Cl.4

識別記号

庁内整理番号

49公開 平成1年(1989)6月12日

G 01 N 27/26 27/46 381

D-6923-2G A-7363-2G

審査請求 有 請求項の数 22 (全10頁)

図発明の名称 測定装置の較正方法とその方法を実施するためのシステム

②特 願 昭63-267986

29出 願 昭63(1988)10月24日

⑫発 明 者 ヘルベルト・クローナ

オーストリア国 8052 グラーツ ヤコブ グシール・ガ

ッセ 8/21

イス 一切発 明 者 ヘルマン・マルゾーナ

オーストリア国 8153 シユタインベルク ローゼツガー

ジードルング 2

⑦発 明 者 タグニ・ノルモフイデ

オーストリア国 8054 グラーツ マウチヤ 78

1

⑪出 願 人 アー・フアウ・エル・

スイス国 8201 シヤフハウゼン グラーベンシュトラー

t 11

四代 理 人 弁理士 北村 修

アー・ゲー

明細書

1 発明の名称 測定装置の較正方法とその方法を実施する ためのシステム

2 特許請求の範囲

- 1. 少なくとも水性媒体中のpH-とpCO:-値を測定する測定装置の較正方法において、2つの保管安定性を有する水性一次溶液:AとBが較正の前に直接所定の割合でもって混合され、この一次溶液AとBの化学反応の後はじめて測定装置の該当する電極の較正のために所望のpH-とpCO:-値が用意されることを特徴とする較正方法。
- 2. 前記一次溶液 A が p H 級衝剤システムの 所定の酸性成分量を、そして前記一次溶液 B が炭酸塩と重炭酸塩の所定の量を含んでいる ことを特徴とする請求項1に記載の較正方法。
- 3. 前記一次溶液 B が p H ー 級衝システムの基礎成分を付加的に含んでいることを特徴とする請求項 2 に記載の較正方法。

- 4. 前記一次溶液 B において重炭酸塩対炭酸塩の比により結果として生じる p C O z ー値が 調整され、この値は周囲空気の平均 p C O z ー値に一致することを特徴とする請求項 2 又 3 に記載の較正方法。
- 5. 測定物にイオン強度を合わせるために前記 一次溶液AまたはBあるいはその両方にpH-不活性塩を混ぜることを特徴とする請求項1 ~4のいずれかに記載の較正方法。
- 6. 不活性塩としてNaClまたはKClある いはその両方が用いられることを特徴とする 請求項5に記載の較正方法。
- 7. pH-緩衝システムが燐酸塩緩衝剤または 水溶性有機アミノ緩衝剤のグループから選択 されることを特徴とする請求項5に記載の較 正方法。
- 8. すくなくとも二点較正が行われ、一次溶液 AとBのすくなくとも2つの異なる混合比が 選ばれることを特徴とする請求項1~7のい ずれかに記載の較正方法。

- 9. 混合比として、例えば1:2と2:1というように第1にx:yそして第2にy:xが 選ばれることを特徴とする請求項8に記載の 較正方法。
- 10. 一次溶液 A または B に色素が混ぜられ、かつ一次溶液の混合比が吸収測定のような光学的な方法を用いてコントロールされることを特徴とする請求項 1 ~ 9 のいずれかに記載の較正方法。
- 11. 一次溶液 A と B の一つが較正のすぐ前に周囲空気の酸素と平衡化され、 p H 較正と p C O z 較正に加えて p O z 較正が行われることを特徴とする請求項 1 ~ 1 0 のいずれかに記載の較正方法。
- 12. 一次溶液 A または B の酸素との平衡化が一次溶液のそれぞれの貯蔵容器と該当測定電極との間のシリコンホース部で行われることを特徴とする請求項11に記載の較正方法。
- 13. 一次溶液 A または B のひとつから p O 2 零点を較正するために酸素が陰極反応によっ

媒体とのための容器と、較正装置とを有する 測定ないしは分析装置のための請求項1~1 6のいずれかに記載の較正方法を実施するた めのシステムにおいて、

較正装置(5)が少なくとも2つの流体状の一次溶液AとBのための貯蔵容器(6、7)を備えており、かつ

測定部(1)に入る前に一次溶液を所定の比 でもって混合する適量分配装置(11)が備えら れていることを特徴とするシステム。

- 18. 適量分配装置(11)に接続して混合室(12)が 設けられており、この混合室は必要に応じて 混合装置(12')、好ましくは磁気撹拌機を備 えていることを特徴とする請求項17に記載 のシステム。
- 19. 適量分配装置(11)がポンプ、好ましくはホースポンプ(10)を介してつながっている異なる断面(d1、d2)を持つ2つのホース部(8、9)を備え、このホース部がそれぞれ一方を貯蔵容器(6、7)と他方を混合室(12)と接続

て取り除かれることを特徴とする請求項1又 12に記載の較正方法。

- 14. p O2-零点を較正するために溶液 C、好ましくはNa.SO。等の酸素消費剤を含む水溶液が採用されることを特徴とする請求項1 又12に記載の較正方法。
- 15. PO: 一等点を較正するために用いられた 溶液 Cの酸素成分が、酸化から還元状態への 移行の際色変化を示す酸化還元指示薬の添加 によってコントロールされることを特徴とす る請求項14に記載の較正方法。
- 16. 酸素消費剤としてNa₂SO₂を使用している場合 pO₂ 零点を較正するために用いられた溶液 Cの酸素成分が、溶液 Cの pH 値が 9 から7 に移る際色変化を示す pH 指示薬の添加によってコントロールされることを特徴とする請求項14 に配載の較正方法。
- 17. p H ー値とp C O : ー値とさらに必要に応じてp O : ー値を測定するための測定電極を 備えた測定部と、洗浄媒体と較正媒体と標準

していることを特徴とする請求項18に記載 のシステム。

20. ポンプ、好ましくはホースポンプ(10)を介 してつながっている3つのホース部(8.9.14) が備えられ、第1ホース部(8)が貯蔵容器(6) と第2ホース部(9)が他の貯蔵容器(7)と接続

第 3 ホース部(14) が切換手段(15) によって 選択的に貯蔵容器(6、7) のいずれかに接続さ れ、かつ

全てのホース部(8、9、14)が測定室(12)につながっていることを特徴とする請求項 1 8 に記載のシステム。

- 21. 3 つのホース部(8、9、14) が混合比 1 : 2 と 2 : 1 を実現するために同じ断面をもっていることを特徴とする請求項 2 0 に記載のシステム
- 22. 一次溶液AとBのいずれものための適量分配装置(11)が各1つのピストン式噴射器 (18,19;18'、19')を備えており、それぞれ貯

蔵容器(6.7)に接続されているピストン式噴射器(18.19:18'、19')が異なるピストン径(K1, K2)または異なるストローク(H1, H2)を有することを特徴とする請求項17又18に配載のシステム。

3 発明の詳細な説明

[産業上の利用分野]

本発明は、少なくとも水性媒体中の p H - と p C O z - 値を測定する測定装置の較正方法及びその方法を実施するためのシステムに関する。 [従来の技術]

少なくとも水性媒体中のpH-とpCO:-値の相互依存する関係からこの両値を一緒に測定したいという分析課題がよく与えられる。特にこのような関心は、物質変換生成物としてCO:をそして比較的狭い範囲で一定保持される生体の状態量としてpH-値を評価する生物系において生じる。

そのような分析課題は例えば血液ガス分析であり、その場合完全血液におけるpHとpCOz

の期待値に適合するように調整され、血液分析においてはCOzでは40または80mmHg (5.33または10.67kPa)で、Ozでは0または140から160mmHg (0または18.67から21.33kPa)である。

これに補充してコントロール目的のために相応に気密な容器に正確なガスと平衡化された流体が引き込まれることができる。このシステムは較正目的を達成するものではなく、むしろ1回きりの使用のためのものであるが、これはボンベの解放の後そのガス分圧は比較的すぐに空気値に対して悪くなるからである。

従って、このよく知られた較正方法は、ガス接続の準備、精密なガス混合器の高い費用、平衡化される較正流体の保管において容器と装置の接続に対する高いガス密封性の要求などの欠点が付きまとう。

さらに別なシステムは大体の場合用いられているセンサによって分けられ、通常は電気化学 的センサ、例えばpH-ガラス電極、そのガラ とpO。の値が調べられる。次に新しい較正方法を血液分析を例として述べられるが、決してこの測定目的に限定されるわけではない。

血液分析における較正方法として現在種々の方法が用いられている。ガスセンサーは正確に調整されたガス混合体によってあるれば一定にはできる。いずれにしてがない。ことができる。いずれにではないではなができる。いずれにではないができる。いずれにでいる。ははオーストリア特許300423号に気が立れて、例では対して、例では対して、例では対して、がでは対して、がでは対して、がでは対して、がでは対して、がでは対して、がいら直接に取り出されるようになっている。

ガス混合機構を備えた装置は圧縮空気の代わりに室内空気を使っても作動させることができるが、CO。供給源への接続は相変わらず必要である。

CO.とO.のための較正分圧は通常その試料

ス電極が膜で覆われ膜とガラス電極との間での電解溶液のpH変化がCOェによって引き起こされるいわゆるセバリングハウスCOェー電極のようなセンサが考慮される。電解損失や乾燥が生じた場合このセンサはその機能を失うために乾燥を防がなければならず、ガスによる検定の場合、このガスを水蒸気で飽和させるという付加的な要求がでてくる。

大変小量の試料を測定する場合、血液分析に限らず重要な要望であるが、ガス状媒体での較正において較正と測定のためにセンサと相互作用する分析量が異なって用意されてしまうとセンサの品質により同じ希望値(分析量)の際較正値と測定値の間で違いが生じるという別な問題も生じる。

[発明が解決すべき課題]

発明の課題は、上記の欠点を回避し、特に外部のガス供給システムなしでやりくりし、 較正されるべき測定部つまり測定電極の乾燥を防ぎ 測定装置や評価装置のためにも適しており、測 定のためにほんの小量の試料が供給される較正 方法を提案することである。

[課題を解決すべき手段]

この課題は、本発明によれば、2つの保管安定性を有する水性一次溶液 A と B が較正の前に直接所定の割合でもって混合され、この一次溶液 A と B の化学反応の後はじめて測定装置の該当する電極の較正のために所望の p H - と p C O z - 値が準備されることによって解決される。

[作用·効果]

これによって、一次溶液AとBは、所望の較正値からかなり外れているとともに溶液の保管において安定であるpH-とpCOェー値を有することができる。較正のための必要な値は両一次溶液AとBの所定の混合の後はじめて調整される。

両一次溶液は空気中での保管によって影響されないか、あるいは較正の品質にとって無視できる程度にしか影響されない。その際問題とな

な較正値が実現されるべきかにかかっている。 それゆえ、あるケースでは、本発明に従い、前記一次溶液BにpH-緩衝システムの基礎成分を付加的に含ませることが考慮される。一次溶液Aはその際緩衝システムの酸性成分を含んでおり、溶液Bはあらかじめ選ばれた配分で重炭酸塩と炭酸塩とともに緩衝システムの基礎成分を含んでいる。

さらに本発明の別な形態において、前記一次溶液 B において重炭酸塩対炭酸塩の比により結果として生じる p C O z ー値が調整され、この値は周囲空気の平均 p C O z ー値に一致することが提案される。空気 ー C O z の影響に対する特に良好な安定性は、重炭酸塩と炭酸塩との間の比ー結果的には p H ー値ーが C O z

(H₂CO₃)、HCO₃-、CO₃- 間の化学 的均衡に基づいて溶液が空気のCO₄-値に相 当するCO₄-値を有するように選択されるこ とによって得ることができる:

 $\alpha CO_2 \cdot P CO_2 \leftarrow \rightarrow H^+ + H CO_3 \leftarrow \rightarrow 2 H^+ + CO_3$

る要素は一次溶液のCOェー成分であり、その変動はCOェー較正値だけでなくpH-較正値をも変化させる。

流体状の較正媒体が用いられるので、外部のガス供給システムとガス混合器は省かれ、付加的に測定電極の光学的な保護対策が施される。 一次溶液は従来の樹脂ボンベ、例えば P V C やポリエチレン容器に保管され、その際±5℃の温度変動が許容される。

[別な特徴と作用・効果]

本発明の別な形態によれば、前記一次溶液AがpH-緩衝剤システムの所定の量の酸性成分を、そして前記一次溶液Bが所定の量の炭酸塩と重炭酸塩を含んでいる。一次溶液Aの安定性は、そのため、空気からのCOzの解け込みをほんの少ししか許さないその酸性性質により与えられ、一次溶液Bの安定性はそのHCOzーCOzー級衝システムによる。

一次溶液 B がさらに基本的な要素を添加して かまたはしないで作り出されるかどうかはどん

種CO.とHCO.」とCO.2-がこの均衡に従い pH-値の移行により順に変換される。他方では、非揮発性の基礎成分HCO.」とCO.2-の 所定の投入により水性システムにpH-値を与えることができ、そこではわずかの量だけの揮発性の成分(CO.)が存在する。

緩衝システムHCOェ/COューがいまや有効となり、高いpHー領域において正確に予定されたpHー値の調整が可能となる。このpHー値は、揮発性の成分COェを与えることによって溶液のCOェー分圧が周囲空気のCOェー分圧に相当するように選ばれる。

期待されるべき周囲空気の p C O z - 変動と ± 5 C の温度変動が一次溶液 B の C O z 成分に どの程度影響するかは、次のように見積られる; a) 周囲空気の p C O z - 変動 仮定:

空気-CO:-分圧:0.3<pCO:<0.6mmHg ボンベ :500mlPVC容器

500 mlポリエチレン容器 (PE)

保管期間

: 1年

結果(最悪の場合):

1年間限界値として与えられた分圧 (0.3 または0.6 mm H g) が周囲にさらされるなら、溶液Bでの全成分の0.01%のCO: (P V C のために) や0.02%のCO: (P E のために) が取り入れられるか、分け与えられる。

b) 与えられた保管温度25℃に対して±5℃ の温度変動において1年間の保管中にCO₁-分量が最悪の場合(最大温度)次のように変化 する:

PVC-容器

: 0.006%

PE一容器

: 0.011%

この最悪のケースでの溶液 B 中の全 C O z ー分 量の変化は測定技術的には無視することができ、 比較すればこれは同じ条件での 4 0 ~ 8 0 mmHg の p C O z ー値を有するガス平衡化された較正 溶液の全 C O z ー変化より 4 0 0 ~ 1 2 0 0 倍 少ない。

水溶性有機アミノ緩衝剤のグループから選択される。アミノ緩衝剤としては、モプス、ヘペス、トリス、トリエタノールアミンなどが適している。

一次溶液AとBが保管安定性であることがすでに示されている。溶液Aの保管安定性のためにはそのpH-値の状態、例えばpH

が肝心である。溶液Bの保管安定性のためにはそのpH-値が調整可能な緩衝システムHCOュークによってこの溶液 AとB

では所定のCOェー分圧を有する。溶液AとB

の混合によりシステムHCOュー/COュークの緩衝を存在する。混合体での緩衝システムは対策に対するである。

ではでする緩衝の表が失われているでは逆に付加的によりである。

になるでのの緩衝システムは所望の物になる。

によりいているでは、重要ないでは、

にないているでは、

を行により較正 pH値において前もって

を付により較正 COェー分圧が生じる。

本発明の 1 つの形態では、すくなくとも二点 較正が行われ、一次溶液 A と B のすくなくとも

一次溶液Aに酸性成分を一次溶液Bに基本成分を与える適切な緩衝物質は、所望の較正一 pH-値において較正のために十分な緩衝容量 を備えている全ての緩衝システムである。とく にpH-値7での血液分析のために本発明によ り、pH-緩衝システムが燐酸塩緩衝剤または

2つの異なる混合比が選ばれる。溶液 A と B の 構成成分の濃度は、所望の較正量が例えば血液 分析のためには 2 つの異なる混合比によって実 現されるように選択され、その際両一次溶液は 同じにされている。血液分析における通常の較 正値は、 p H は 7. 3 8 3 と 6. 8 4 1 であり、 p C O z は 4 0 と 8 0 meHgである。

特別な簡単化は、混合比として、例えば1: 2と2:1というように第1にx:yそして第 2にy:xを選ぶことによって達成される。従って、較正測定対はこれまで普通であった較正値の領域において一次溶液の混合比を交換することによって簡単に実現される。較正方法から何も要求されないにもかかわらず、複雑な混合比を選択することで通常の較正値が任意に正確に達成される。

混合比A:B=1:2の場合でのその化学過程が下記に示される:

一次溶液AとBにおける関係する成分(定量) の濃度

特開平1~148955 (6)

溶液 A: [HP] =緩衝酸に与えられた濃度

(例えばNo1/1)

溶液 B: [P-] = 緩衝ベースに与えられた

濃度

[HCO] = 重炭酸塩に与えれた濃度 [CO] = 炭酸塩に与えられた濃度 化学的均衡の調整の前の混合比A:B=1:2 における混合体の濃度は、1/3 [HP]、

2 / 3 [P-] 、 2 / 3 [H C O ;] 、

2/3 [CO:*-] である.

化学的均衡の調整

第1ステップ:

ns.

HP+CO₃²-→P-+HCO₃-: 存在している炭酸塩は級衝酸の一部分と交換さ

第1ステップによって得られる濃度は:
[HP·] = 1/3 [HP] - 2/3 [CO₃^{z-}]
[P··] = 2/3 [P⁻] + 2/3 [CO₃^{z-}]
[HCO₃⁻·] = 2/3 [HCO₃⁻] + 2/3 [CO₃^{z-}]
[CO₃^{z-}] = 0 (無視できる程度に小さい。

· る混合体のpH-値とpCOz-値が得られる。

р Кир: [НР] の拡散定数の負の常用対数

pKs:炭酸の見かけ上の拡散定数の負の常用対数

α coz : C O z の溶解係数

次の表は溶液の構成成分の与えられた濃度と

混合比1:2での溶液AとBとの混合の後の均

衡濃度との比較をしている。

一次溶液	夜中の護度	1:2混合体の濃度		
提街酸 (HP)	溶液A中の【NP】	1/3 [HP] -2/3 [CO.*-] -X		
投術ベース (P-)	溶液B中の [P-]	2/3 [P-] +2/3 [CO,*-] +x		
血炭酸塩	溶液 B 中の [IICO。*)	2/3 [HCO2*-] +2/3 [CO2*-] -x		
炭酸塩	溶液 B 中の [CO,**]	pH=7で近似的に0		
H _z CO; ρCO _z	pCO:= (pCO:) 99*	χ-α ρCO,		

例えば一次溶液 A 中の級街酸の濃度が 5 1 mmoi/1で炭酸塩濃度 [C O , * -] が 9 mmoi/1の 場合、化学的均衡の調整前において混合比 A: B = 1:2において次の濃度となる:

1 / 3 [HP] = 17mmol/l、2 / 3 [CO,*-] = 6 mmol/l 第 1 ステップで得られる濃度 HP・= 1 / 3 [HP] - 2 / 3 [CO,*-] は、CO,*-

濃度が無視できる程度に小さいと仮定するなら、

1 1 mmoi/1となる。)

第2ステップ

HP+HCO₃-→P⁻+H₁CO₃(=αCO₂·PCO₂) 級衝酸の別な部分が重炭酸塩と交換される。こ の反応は成分の1つが完全に消費されることな しに均衡するまで統善、これは級衝システムH P/P⁻とH₂CO₃/HCO₃-のための級街式 から数学的に定量化される:

 $p H = p K_{MP} + log ((P^-) + X) / ((H P^-) - X)$ $X = \alpha CO2 \cdot p C O2$

p H = p K_s+log ((H C O_s ··) - X) / X 2 つの未知数をもつ 2 つの式から均衡におけ

[P-]は、緩衝ベースは混合過程の際対応する緩衝酸から所定の量で均衡調整によって作り出されるので、強制的には設定されてはいけない。溶液 B は、H C O 3 * と C O 3 * (水中)からのみでも構成することができる。

本発明の好適な形態として、 一次溶液の混合もれ、かつ一次溶液の混合する。 吸収測定のような光学的な方法を用いてつられる。 混合方法のためのコール法を出る。 混合方法のためのコール法としれる。 混合方法のためのコール法とられる。 混合方法のためのは貫流キュートでなった。 に応じてのることができる(ランバートでは、 で算定されるの際色ですれた。 れていない溶液を測定することで内部較正が可 能なことは特に利点を与える。

# 4\	##01/1	混合比	H- 1*	+- 65 TE 18
成分	##01/1	作品比	生じた較正値	
溶液 A	溶液 B	A : B	рН	рСО
киро 51.5	NaziiPO. 50.05	1:2	7.383	40.0
NaC & 20.0	KHCO, 27.65	2:1	6.709	82.1
	Na 2 CO 3 8.40	3:2	6.832	77.8
K II PO 23.8	KHCO, 25.3	1:2	7.383	36.8
NaC £ 125.0	Na 2CO 3 7.7	2:1	6.540	97.3
	NaC & 110.0	1:1	6.865	81.0
nops	NaMoPS 35.5	1:2	7.382	39.0
(自由版)	KHCO, 26.8	2:1	6.696	80.6
	Na.CO. 8.1	3:2	6.822	76.3
NaC £ 100.0	NaC € 100.0			

一次溶液の1つに他の化学的または物理的マ ーカ、例えば蛍光吸収性のまたは放射性マーカ 物質を混ぜることも可能である。

次の表からは本発明による較正方法において 理想的な混合比から外れた場合理想的な較正希 望値からのずれが大変小さいことが理解される.

> その際、本発明によれば、一次溶液Aまたは Bの酸素との平衡化が一次溶液のそれぞれの貯 蔵容器と該当測定電極との間のシリコンホース 部で行われることができる。COェ/pH-較 正システムの一次溶液AとBの周囲空気との平 衡化はその際熱平衡化はなしで平衡化過程の温 度コントロールをもって行われ、ガス交換なし でTn(測定または較正温度)に加熱される。

 $(c O_z) = \alpha_{oz}, T_i \cdot (p O_z) y_z y_1$ $(p O_z) T_H = (c O_z) T_1 / \alpha_{oz} T_1$

 $(p O_1) \dot{v}_1 \dot{v}_1 = (p - p_{H20}, T_1) \cdot 0.209$

c O z :溶解した酸素の濃度

p O 2 : 酸素分圧

:空気圧

α ο ε : 酸素の溶解度係数

 $\alpha 02 = f(T)$

: 平衡化温度

p H₂O:水分圧

例えば37℃の測定温度で直接平衡化を行い その溶液をそれに応じて熱固定(thermostatisi-溶液Aの酸性質のためpH/pCO--較正シ

A : B	ρН	p C O :	湖定俱差	рli	PCO
(理想)	(理想)	(理想)			
1:2	7.382	38.26	0	0	0
			0.5%	< ± 0.009 .	<0.12mmlg
			1.0%	< ± 0.007	<0.41mmilg
			2.0%	< 0.013	<0.83mmHg
2:1	6.697	79.63	0	o	a
			0.5%	< 0.003	<0.06mmHg
			1.0%	< 0.005	<0.10mm/lg
					<0.20mm#g
	}		2.0%	< 0.010	<0.20mmle

まず生化学の分野での多くの分析において測 定されるべき媒体の酸素分圧p0ょも関心があ るものである。従って、本発明によれば、一次 溶液AとBの一つが較正の直前に周囲空気の酸 素と平衡化され、酸素のためにも外部のガス接 統が省かれ、そしてpH-較正とpCOz-較 正に加えてPOェー較正が行われることも考慮 されている。

eren) することも可能である。

つぎに例えば一次溶液Aがく37℃の温度に おいて周囲温度と平衡化される。酸素溶解度の 温度依存性に応じて、その際、37℃での較正 過程のために 0 2 空気分圧より小さな酸素分圧 が実現される。例えば、155mmHgの周囲空気 のpO: 値と43.5℃の平衡化の際、37 でにガス交換なしで冷却された後37℃におい て140. 4 mmHgのpOz-値が達成される。

酸素較正はもちろん測定装置に入っている他 の流体を使っても、例えば酸素との洗浄液の平 衡化により、行うことができる。平衡化の場所 として、例えば、内側に設けられた絶縁加熱線 と好ましくは制御のために備えられる複数の温 度センサを備えた加熱されるシリコンホースが 適している。

それぞれの温度における〇:-平衡化のための 周囲空気流は水蒸気で飽和させられることがで き、このため溶液の濃度変動が避けられる。

ステムへの検出可能な作用が期待できないので、 一次溶液Aは装置容器に内で直接周囲空気と平 衡化されることも可能である。

特別な較正方法においてpOュー祭点を較正 に取り入れることが必要な場合、本発明によれ ば、一次溶液AまたはBのひとつから酸素が除 極反応によって取り除かれる。簡単な方法で電 気化学的な酸素除去のための方法を用いるため に、大きな面を持つ陰極として構成された質流 小室が搬送路または測定室の前のバイパスに設 けられる。陰極は、例えばホース部または陽極 のパイプ部に沿って光沢のある白金線として構 成されることができる。この種のシステムはポ ラログラフ酸素電極のように機能する。 電圧が 与えられると酸素の陰極交換が行われ、生じた 電流が陰極における〇ェー変換のために量であ る。従って、変換の完逐を制御することあるい は完全に酸素を消費するまで反応をすすめさせ ず、電流値をまだ残っている酸素成分のための 量として取り込むことが可能である。このシス

達成される。その際、酸化状態と還元状態において異なった色を有する酸化還元指示物質が考慮される。〇ェー消費物質が存在する限り、指示薬は減少した形を提示し、〇ェが存在するとすぐに指示薬の色変化を引き起こす。例えばこのためには指示薬としてピロガロルがあり、これは〇ェとの変換の後茶色に変色する、つまり有機酸化還元色素である。

つぎに本発明によるOェー成分の監視を行う別なやり方は、酸素消費剤としてNazSO。を使用している場合pOェー零点を較正するために用いられた溶液Cの酸素成分が、溶液CのpHー値が9から7に移る際色変化を示すpHー指示薬の添加によってある。SOェー消費を用いなりHーでを整理することの可能となるものである。SOェールはpHークとの間のに変換点をもつりH指示薬を添加することにより可能である。これは亜硫酸塩から硫酸塩への酸化はpHークの溶液がpH~7にpHー値を移行させる

テムの内部較正値は、例えば空気平衡化の反応 の開始のための電流とすることができる。多点 較正はこの方法でも可能であるが、測定システ ムへの嫌気性の撥送が必要である。

本発明によれば、PO=-客点を較正するために溶液C、例えばNa=SO事の酸素消費剤を含む水溶液が利用されることも可能である。さらに別なそのような物質は例えば水溶液中の過剰なナトリウム亜ニチオン酸塩とピロガロルであり、これにより分子酸素が減少させらくのでは基本環境においてすせんでいる。 上記反応は基本環境においてすいでで置とが流れる。 と記反応は基本環境においてするではである。 で変異していていてでである。 、これを同時に洗浄溶液として用いるを 機え、これを同時に洗浄溶液として用いるを はない。酸素との反応において安定な反応と 成物が生じるので、Na=SO」は効果的である。

酸素の自由を確実にするコントロールは、本発明によれば、pOz- 等点を較正するために用いられた溶液 Cの酸素成分が、酸化から選元状態への移行の際色変化を示す酸化選元指示薬の添加によってコントロールされることにより

ことと関係するからである。そのような指示薬 は文献から知られており、例えばクレゾール-赤やニュートラル-赤である。

PH-値とPCOx値とさらに必要に応じてPOx-値を測定するための測定電極を備えた測定部と、洗浄媒体と較正媒体と標準媒体とのための容器と、較正装置とを有する測定ないしは分析装置のための本発明による方法を実施するための本発明による方法を実施するための本発明による方法を実施が少なくとも2つの流体状の一次溶液AとBのための貯蔵容器を備え、かつ測定部に入る前に分の下でである。

もし適量分配装置に接続して混合室が設けられ、この混合室が必要に応じて混合装置、好ましくは磁気撹拌機を備えているなら、本発明に とって利点をもたらす。

本発明による特に簡単なシステムは、適量分 記装置がポンプ、好ましくはホースポンプを介 してつながっている異なる断面を持つ2つのホ ース部を備え、このホース部がそれぞれ一方を 貯蔵容器と他方を混合室と接続していることに よって得られる。

最後に本発明のさらに別な形態において、一次溶液AとBのいずれものための適量分配装置が各1つのピストン式噴射器を備えており、それぞれ貯蔵容器に接続されているピストン式噴射器が異なるピストン径または異なるストロー

おり、これは切換手段15によってホース部16と17を介して貯蔵容器6と7に選択的に接続される。全ての3つのホース部8と9と14の断面を同じにした場合切換手段15を切り換えることによってその混合比を1:2から2:1に変えることができる。

第3図は2つのピストン噴射器18と19を使って混合比を大変正確に設定することができるさらに別な実施形態を示している。このピストン噴射器はそれぞれ吸引と吐出行程の間で切り換えられる弁20が取り付けられている。両ピストン噴射器18と19を異なった断面K」とK:にすることによって混合比が定められる。

第4図に示されているように、ピストン18'と19'の断面を同じにし、その行程長さH」とHュを違ったものにすることもできる。第3図の実施例において共通の駆動を用いている両ピストン21と22は第4図では互いに独立して、例えばここでは図示されていないステッピングモータによって駆動される。

クを有することが可能である。この場合でも測 定部の前に混合室が設けることができる。

本発明は、次に部分的に図示された実施例を参照して詳しく説明される。

[実施例]

第1図には、測定部1とその中に配設されている例えばpH-、CO:-、O:-測定のための測定電極2、3、4を備えた測定あるいは分析装置が示されている。較正手段5を用いて測定装置1を較正する間-次溶液AとBが保管容器6と7からホース部8と9を介して混合空12へ適量配送手段11としてのホースポンプ10によって送り込まれ、必要の場合そこに配設されている混合手段12。を用いて混合される。この混合体は続いてホース部13を介して測定部1の個々の測定電極2、3、4に達する。断面d」とd:によって必要な混合比が与えられる

第2図で示されたシステムでは、ホース部8 と9とともに第3のホース部14が備えられて

4 図面の簡単な説明

図面は本発明に係わる測定装置の較正を行うシステムの実施例を示しており、第1図はシステム全体を表している概略説明図、第2図から第4図はそれぞれ部分的な別実施例を示している部分概略説明図である。

- (1)……測定部、(2),(3),(4)……測定電極、
- (5) …… 較正裝置、 (6), (7) …… 保管容器、
- (11)……適量分配装置。

代理人 弁理士 北 村 修

