

GROUP MEMBERS

AISYAH

ISYHRAF

SARAH

SYUHADA

SYNOPSIS

Description of the assignment

- Our group choose Diabetes Disease Detection for this assignment. Diabetes is a chronic disease that occurs either when the pancreas does not produce enough insulin or when the body cannot effectively use the insulin it produces.
- There are two types of diabetes which are Type 1 Diabetes and Type 2 Diabetes.
- TYPE 1 DIABETES: serious condition where your blood glucose (sugar) level is too high because your body cannot make a hormone called insulin.
- TYPE 2 DIABETES: a serious condition where the insulin your pancreas makes cannot work properly, or your pancreas cannot make enough insulin.

Problem to be solved

In 2019, an estimated 1.4 million new cases of diabetes were diagnosed among people ages 18 and older. Seeing how this disease keeps on increasing by year, it is starting to be a concerning issue around the world. We chose this dataset to help in identifying which factor leads to this diabetes disease and which factor is the high

factor that can increase the amount of this disease.

Question to be answered

- ☐ What is the average age of a person that suffers from diabetes?
- ☐ What is the major factor that could lead to diabetes?
- ☐ What effect does the measurement of BMI have on predicting the likelihood of someone getting diabetes?

Objectives

- ☐ To detect factors related to diabetes much quicker.
- ☐ To improve the quality of life among diabetic people.
- ☐ To make better decisions in diabetes medical care.
- ☐ To identify the age range of people that suffer diabetes.

Data Variable	Data Description
Pregnancies	The number of times a patient got pregnant.
Glucose	Plasma glucose concentration is 2 hours in an oral glucose tolerance test.
Blood Pressure	Diastolic blood pressure test of the patients(mm Hg).
Skin Thickness	Triceps skin fold thickness of non diabetic and diabetic patients(mm).
Insulin	2-Hour serum insulin intake of the patients in (mu U/ml).
BMI	Body mass index of the patients(weight in kg/(height in m)^2).
Diabetes Pedigree	Diabetes pedigree function (a function which scores likelihood of
Function	diabetes based on family history).
Age	Age (years of patients).
Outcome	Class variable (0 if non diabetic and 1 if diabetic).

Data Description

Packages	Packages Function	Park
Pandas	- Read csv file - Data frame df - Data loc - Fillna - Desc data - Head()	Packag Required
Numpy	- Mean - Sort	
Scipy	- Stats.iqr	
Matplotlib.pyplot	- Plt.figure	
Seaborn	 Sns.heatmap Sns.countplot Sns.lineplot Sns.hisplot Sns.scatterplot 	
Altair	- Alt.chart	
Plotly.express	- Px.bar - Px.histogram	

DATAPREPARATION

IMPORT DATA

FIND MISSING VALUES

REPLACE MISSING VALUES USING MEAN

DETECT AND REMOVE OUTLIER

GENERATING PAIRWISE CORRELATION

PREVIEW DATA USING SUBSET & GROUPBY

MAKE DATA ANALYTICS USING AGGREGATION

MAKE DATA
VISUALIZATION

Diabetes= pd.read_csv("diabetes.csv")
pd.set_option('display.max_rows', None)
#pd.set_option('display.max_columns', None)
Diabetes

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1=
3	1	89	66	23	94	28.1	0.167	21	0=
4	0	137	40	35	168	43.1	2.288	33	1
5	5	116	74	0	0	25.6	0.201	30	0
6	3	78	50	32	88	31.0	0.248	26	1
7	10	115	0	0	0	35.3	0.134	29	0
8	2	197	70	45	543	30.5	0.158	53	1
9	8	125	96	0	0	0.0	0.232	54	1
10	4	110	92	0	0	37.6	0.191	30	0

FIND NULL VALUES

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
0	False	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False
5	False	False	False	False	False	False	False	False	False
6	False	False	False	False	False	False	False	False	False
7	False	False	False	False	False	False	False	False	False
8	False	False	False	False	False	False	False	False	False
9	False	False	False	False	False	False	False	False	False
10	False	False	False	False	False	False	False	False	Fals

<pre>Diabetes.isna().sum()</pre>	
Pregnancies	0
Glucose	0
BloodPressure	0
SkinThickness	0
Insulin	0
BMI	0
DiabetesPedigreeFunction	0
Age	0
Outcome	0
dtype: int64	

DATA IMPUTATION


```
meanGlucose = Diabetes['Glucose'].mean(skipna=True)
Diabetes.loc[Diabetes.Glucose == 0, 'Glucose'] = meanGlucose

meanBloodPressure = Diabetes['BloodPressure'].mean(skipna=True)
Diabetes.loc[Diabetes.BloodPressure == 0, 'BloodPressure'] = meanBloodPressure

meanSkinThickness = Diabetes['SkinThickness'].mean(skipna=True)
Diabetes.loc[Diabetes.SkinThickness == 0, 'SkinThickness'] = meanSkinThickness

meanInsulin = Diabetes['Insulin'].mean(skipna=True)
Diabetes.loc[Diabetes.Insulin == 0, 'Insulin'] = meanInsulin

meanBMI = Diabetes['BMI'].mean(skipna=True)
Diabetes.loc[Diabetes.BMI == 0, 'BMI'] = meanBMI

#Replacing the 0 value with mean where we decide to choose columns BloodPressure, SkinThickness, BMI & Insulin print(Diabetes)
```

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	
0	6	148.000000	72.000000	35.000000	79.799479	
1	1	85.000000	66.000000	29.000000	79.799479	
2	8	183.000000	64.000000	20.536458	79.799479	
3	1	89.000000	66.000000	23.000000	94.000000	
4	0	137.000000	40.000000	35.000000	168.000000	
5	5	116.000000	74.000000	20.536458	79.799479	
6	3	78.000000	50.000000	32.000000	88.000000	
7	10	115.000000	69.105469	20.536458	79.799479	
8	2	197.000000	70.000000	45.000000	543.000000	
9	8	125.000000	96.000000	20.536458	79.799479	
10	4	110.000000	92.000000	20.536458	79.799479	
11	10	168.000000	74.000000	20.536458	79.799479	
12	10	139.000000	80.000000	20.536458	79.799479	
13	1	189.000000	60.000000	23.000000	846.000000	
14	5	166.000000	72.000000	19.000000	175.000000	
15	7	100.000000	69.105469	20.536458	79.799479	
16	0	118.000000	84.000000	47.000000	230.000000	

SUMMARY STATISTICS OF DATAFRAME

In [68]: Diabetes.describe()

Out[68]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000
mean	3.845052	121.681605	72.254807	26.606479	118.660163	32.450805	0.471876	33.240885	0.348958
std	3.369578	30.436016	12.115932	9.631241	93.080358	6.875374	0.331329	11.760232	0.476951
min	0.000000	44.000000	24.000000	7.000000	14.000000	18.200000	0.078000	21.000000	0.000000
25%	1.000000	99.750000	64.000000	20.536458	79.799479	27.500000	0.243750	24.000000	0.000000
50%	3.000000	117.000000	72.000000	23.000000	79.799479	32.000000	0.372500	29.000000	0.000000
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	0.626250	41.000000	1.000000
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.420000	81.000000	1.000000

DETECT AND REMOVE OUTLIERS

```
Pregnancies Glucose BloodPressure SkinThickness Insuli
Upper bound:
    BMT \
                  False
          False
                                False
                                             False
                                                      False False
         False
                False
                               False
                                             False
                                                     False False
                False
                                             False
         False
                               False
                                                     False False
          False
                False
                               False
                                             False
                                                     False False
          False
                 False
                               False
                                             False
                                                     False False
          False
                False
                               False
                                             False
                                                     False False
```

```
In [113]: #find Q1, Q3, and interquartile range for each column
Q1 = Diabetes.quantile(q=.25)
Q3 = Diabetes.quantile(q=.75)
IQR = Diabetes.apply(stats.iqr)

#only keep rows in dataframe that have values within 1.5*IQR of Q1 and Q3
data_clean = Diabetes[~((Diabetes < (Q1-1.5*IQR)) | (Diabetes > (Q3+1.5*IQR))).a

#find how many rows are left in the dataframe
newshape = data_clean.shape
oldshape = Diabetes.shape

print("Old shape: ", oldshape)
print("New shape: ", newshape)

4

Old shape: (768, 9)
New shape: (619, 9)
```


PAIRWISE CORRELATION OF THE DATASET

Diabetes.corr()	iabetes.corr()										
	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome		
Pregnancies	1.000000	0.127964	0.208984	0.013376	-0.018082	0.021546	-0.033523	0.544341	0.221898		
Glucose	0.127964	1.000000	0.219666	0.160766	0.396597	0.231478	0.137106	0.266600	0.492908		
BloodPressure	0.208984	0.219666	1.000000	0.134155	0.010926	0.281231	0.000371	0.326740	0.162986		
SkinThickness	0.013376	0.160766	0.134155	1.000000	0.240361	0.535703	0.154961	0.026423	0.175026		
Insulin	-0.018082	0.396597	0.010926	0.240361	1.000000	0.189856	0.157806	0.038652	0.179185		
ВМІ	0.021546	0.231478	0.281231	0.535703	0.189856	1.000000	0.153508	0.025748	0.312254		
DiabetesPedigreeFunction	-0.033523	0.137106	0.000371	0.154961	0.157806	0.153508	1.000000	0.033561	0.173844		
Age	0.544341	0.266600	0.326740	0.026423	0.038652	0.025748	0.033561	1.000000	0.238356		
Outcome	0.221898	0.492908	0.162986	0.175026	0.179185	0.312254	0.173844	0.238356	1.000000		

```
# grouping age by range (21-30), (31-40), (41-50), (51-60), (61-70)
labels = ["{0} - {1}".format(i, i+9) for i in range(21, 71, 10)]
category = pd.cut(data_clean['Age'], np.arange(20, 71, 10),
           include lowest=True, right=False,
           labels=labels)
ageClass = data clean['Age'].groupby(category).agg(['count'])
print(ageClass)
         count
Age
21 - 30
          329
31 - 40
          134
41 - 50
           96
51 - 60
           41
61 - 70
           19
```

```
# import new excel that containt ageClass
data clean1 = pd.read excel("data clean.xlsx")
#group data by ageClass follow by pregnancies
age=data_clean1.groupby(['ageClass', 'Pregnancies'])
age.first() #print value in each group
                     Glucose BloodPressure SkinThickness
                                                            Insulin
                                                                        BMI DiabetesPer
 ageClass Pregnancies
    21-30
                       105.0
                                 64.000000
                                               41.000000 142.000000 41.500000
                        89 0
                                 66.000000
                                               23.000000 94.000000 28.100000
                        90.0
                                 68.000000
                                               42.000000
                                                         79.799479 38.200000
                        78.0
                                 50.000000
                                               32.000000
                                                         88.000000 31.000000
                       110.0
                                 92.000000
                                               20.536458 79.799479 37.600000
```

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
ageClass									
21-30	728	38312.683594	23669.320312	8598.208333	30960.716146	10723.340625	137.102	8480	63
31-40	682	15617.894531	9376.738281	3317.359375	12022.559896	4038.900000	61.377	4483	57
41-50	627	11511.894531	7112.421875	2470.458333	8566.166667	3180.600000	37.033	4114	51
51-60	234	4935.000000	2947.000000	873.729167	3694.585938	1121.192578	15.791	2023	18
61-70	79	2238.000000	1230.000000	369.901042	1487.192708	466.300000	6.425	1018	4

subset1 = data_clean[['Pregnancies','Age','Outcome']]|
subset1.head()

	Pregnancies	Age	Outcome
0	6	50	1
1	1	31	0
2	8	32	1
3	1	21	0
5	5	30	0

notpregnant = subset1[(data_clean['Pregnancies']==0) & (data_clean['Outcome']== 1)]
notpregnant

	Pregnancies	Age	Outcome
16	0	31	1
66	0	38	1
78	0	26	1
109	0	24	1
124	0	23	1
129	0	62	1
164	0	32	1
213	0	24	1
237	0	23	1
266	0	25	1
280	0	28	1
291	0	25	1

211 rows × 4 columns

4) E
	Pregnancies	Age	ВМІ	Outcome	
0	6	50	33.600000	1	
2	8	32	23.300000	1	
6	3	26	31.000000	1	
9	8	54	31.992578	1	
11	10	34	38.000000	1	
				1999	
754	8	45	32.400000	1	
755	1	37	36.500000	1	1710 10 17
759	6	66	35.500000	1	pregnant['Outcome'].sum(
761	9	43	44.000000	1	211
766	1	47	30.100000	1	211

pregnant = subset1[(data_clean['Pregnancies']>=1) & (data_clean['Outcome']== 1)]

subset2 = data_clean[['Glucose','Insulin','Outcome']]
subset2.head()

	Glucose	Insulin	Outcome
0	148.0	79.799479	1
1	85.0	79.799479	0
2	183.0	79.799479	1
3	89.0	94.000000	0
5	116.0	79.799479	0

	Glucose	Insulin	Outcome
1	85.0	79.799479	0
3	89.0	94.000000	0
5	116.0	79.799479	0
7	115.0	79.799479	0
10	110.0	79.799479	0
			2.2
762	89.0	79.799479	0
763	101.0	180.000000	0
764	122.0	79.799479	0
765	121.0	112.000000	0
767	93.0	79.799479	0

nondiabetic.aggregate(['max'])

Glucose Insulin Outcome

max 194.0 387.0 0

SLEEP INSULIN REPEAT

476 rows x 3 columns

subset3 = data_clean[['BloodPressure','BMI','Age','Outcome']]
subset3.head()

	BloodPressure	BMI	Age	Outcome
0	72.0	33.6	50	1
1	66.0	26.6	31	0
2	64.0	23.3	32	1
3	66.0	28.1	21	0
5	74.0	25.6	30	0

	BloodPressure	BMI	Age	Outcome
2	64.0	23.3	32	1
93	72.0	23.8	60	1
197	62.0	22.9	23	1
319	78.0	23.5	59	1
646	74.0	23.4	33	1
676	86.0	24.8	53	1
749	62.0	24.3	50	1

avgbp_bmi = subset3[['BloodPressure','BMI']].mean()
avgbp_bmi

BloodPressure 72.137306 BMI 32.128876

dtype: float64

print('Sum of normal BMI that have diabetes:')
normalBMI['Outcome'].sum()

Sum of normal BMI that have diabetes:

7

subset4 = data_clean[['SkinThickness','BMI','Outcome']]
subset4.head()

	SkinThickness	BMI	Outcome
0	35.000000	33.6	1
1	29.000000	26.6	0
2	20.536458	23.3	1
3	23.000000	28.1	0
5	20.536458	25.6	0

	SkinThickness	BMI	Outcome
1	29.000000	26.6	0
3	23.000000	28.1	0
5	20.536458	25.6	0
7	20.536458	35.3	0
10	20.536458	37.6	0
			577
762	20.536458	22.5	0
763	48.000000	32.9	0
764	27.000000	36.8	0
765	23.000000	26.2	0
767	31.000000	30.4	0

476 rows × 3 columns

c_110	mulabetic.ag	Riego	te(['max','mi	ш
	SkinThickness	ВМІ	Outcome	
max	54.0	47.9	0	
min	7.0	18.2	0	

subset5 = data_clean1[['DiabetesPedigreeFunction','Age','Outcome', 'ageClass']]
subset5.head()

DiabetesPe	digreeFunction	Age	Outcome	ageClass
0	0.627	50	1	41-50
1	0.351	31	0	31-40
2	0.672	32	1	31-40
3	0.167	21	0	21-30
4	0.201	30	0	21-30

pedigree = subset5[(data_clean['Outcome']==1)]
pedigree

	DiabetesPedigreeFunction	Outcome
0	0.627	1
2	0.672	1
6	0.248	1
9	0.232	1
11	0.537	1
755	1.057	1
757	0.258	1
759	0.278	1
761	0.403	1
766	0.349	1

242 rows × 2 columns

number of diabetic patients by age class
pedigree1=pedigree.groupby('ageClass').sum('Outcome')
pedigree1

	DiabetesPedigreeFunction	Age	Outcome
ageClass			
21-30	29.778	1599	63
31-40	29.827	1992	57
41-50	22.847	2250	51
51-60	7.972	963	18
61-70	2.363	255	4

p	edigree	.aggregate(['max',	'min'])

	Diabetes Pedigree Function	Age	Outcome	ageClass
max	1.191	66	1	61-70
min	0.088	21	1	21-30

pedigree['DiabetesPedigreeFunction'].mean()

0.4807616580310883

EXPLORATORY DATA ANALYSIS

I. Visualization of pairwise correlation of the dataset

2. Diabetic outcome from dataset

 Negative diabetes outweigh positive diabetes with 426 and 193 data respectively.

PREGNANCY FACTORS

3. Cumulative number of pregnancies by age class

- Highest total number of pregnancies is from age class 21-30 with 728 times of pregnancies.
- Lowest total number of pregnancies is from age class 61-70 with 79 times of pregnancies.

4. Diabetics with zero times of pregnancy

- Youngest patient is 21 years old while the oldest is 62 years old.
- Patients mostly in the range of 21-30 years old.

5. Diabetics with a history of pregnancy

 Data concentrated in the age range of 30-50 years old with the number of individual pregnancies in the range of four to ten times.

GLUCOSE FACTORS

6. Relationship between glucose and outcome of diabetes

- There is a linear relationship between glucose content and the outcomes of diabetes.
- The higher glucose level, the chances of getting diabetes are also high.

BLOOD PRESSURE FACTORS

7. Average of blood pressure readings in dataset

 There is weak relationship between blood pressure and outcome of diabetes.

 Average blood pressure from dataset in the range of 60-90 mmHg.

SKIN THICKNESS AND BMI FACTORS

8. Effect of skin thickness on BMI

- Skin thickness has the strongest relation with BMI.
- As the skin thickness increases, the BMI also will increase.
- Positive diabetes outcomes are more concentrated in the obesity category (BMI >= 30)

PEDIGREE FACTORS

9. Relationship between diabetes pedigree and outcome of diabetes

- There is a linear relationship between diabetes pedigree function and the outcome of diabetes.
- The higher the value of diabetes pedigree function, the chances of getting diabetes are also high.

AGE FACTORS

IO. Positive diabetes patients by age class

Highest total number of patients is

from age class 21-30 with 63 patients.

 Lowest total number of patients is from age class 61-70 with 4 patients.

II. Comparison of outcome based on age

- Highest age from negative diabetes are from age 22 to 23 years old with 81 patients.
- Highest age from positive diabetes are from age 40 to 41 years old with 16 patients.

Highest number of diabetic patients:

age of 40-41 YEARS OLD

Highest number of non-diabetic patients :

age 22-23 YEARS OLD

the value of the diabetes pedigree function and BMI, the greater the likelihood of that person developing diabetes.

Individuals aged **30-50 YEARS OLD** with a history of multiple pregnancies are much more likely to develop diabetes.

Glucose is **1** of the strongest factors that affect the outcome of positive diabetes.

#