# PH 107: Quantum Physics and applications Fourier Series and Fourier Transform

Sunita.srivsatava@phy.iitb.ac.in

Lecture06: 23-12-2021

# **Learning Objectives**

 Introduction to Fourier Integrals and Fourier Transforms.

Doubt clearing session Saturday (25-12-2021) @ 11am.

#### Example 1

An electron has de Broglie wavelength of 2 X 10<sup>-12</sup> m. Find its Kinetic energy, phase velocity and group velocity.

$$E_0 = m_0 c^2 \qquad E_0 = 511 \text{ keV (for electron)}$$

$$E = \sqrt{E_0^2 + p^2 c^2}$$

$$\therefore KE = E - E_0 = \sqrt{E_0^2 + p^2 c^2} - E_0$$

$$pc = \frac{hc}{\lambda} = \frac{(4.136 \times 10^{-15} \, eV.s) \times (3 \times 10^8 \, m/s)}{2 \times 10^{-12} \, m} = 620 keV$$

$$\therefore E = \sqrt{(511)^2 + (620)^2} = 803 \text{ keV}$$

$$\therefore KE = 803 - 511 = 292 \text{ keV}$$

KE = 292 keV

$$E = \gamma m_0 c^2 = \gamma E_0$$

$$\gamma = \frac{1}{\sqrt{1 - v^2/c^2}}$$

$$\therefore 1 - \frac{\mathbf{v}^2}{\mathbf{c}^2} = \frac{E_0^2}{E^2}$$

$$\mathbf{v} = c\sqrt{1 - \frac{E_0^2}{E^2}}$$

$$v = c\sqrt{1 - \frac{(511)^2}{(803)^2}} \qquad v = 0.77c$$

$$v_g = v = 0.77c$$

$$v = \frac{c^2}{v_p}$$
  $v_p = \frac{c^2}{v} = \frac{c^2}{0.77c}$ 

 $v_p = 1.3c$ 

#### **Periodic Functions**

Consider periodic functions f(x) = f(x + 2L)

$$f(x) = f(x + 2L)$$



Periodic but not sinusoidal waves (functions)

#### **Fourier Series**

Any given periodic function y = f(x) can be written as a superposition of sinusoidal (sine and cosine) functions



1807

#### Lets verify pictorially !!





$$Sin(3x)/3 + Sin(x)$$









A Square Wave = Sinx + Sin(3x)/3 + Sin(5x)/5 ....infinity

#### **Amplitude Spectrum**



Superposing oscillatory waves of different frequency and amplitude

#### **Fourier Series**

Any given periodic function y = f(x) can be written as a superposition of sinusoidal (sine and cosine) functions



1807

Mathematically, if 
$$f(x) = f(x + 2L)$$
 (i.e. period =  $2L$ ), then  $f(x)$  can be written as

$$f(x) = a_0 + \sum_{n=1}^{\infty} \left( a_n \cos \frac{n\pi}{L} x + b_n \sin \frac{n\pi}{L} x \right)$$

Note, that we are superposing sinusoidal waves of different wavenumbers (wavelengths) and **amplitudes** 

#### **Fourier Coefficients**

The coefficients  $a_0$ ,  $a_n$ , and  $b_n$  are given by (You can verify this)

Period  $2L=2\pi$ 

$$a_0 = \frac{1}{2L} \int_{-L}^{L} f(x) dx$$

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi}{L} x dx \quad n = 1, 2, 3 \dots$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi}{L} x dx \quad n = 1, 2, 3 \dots$$



$$f(x) = \begin{cases} 1 & 0 < x < L/2 \\ -1 & \frac{L}{2} < x < L \end{cases}$$

$$\sum_{n=1}^{K} \left( a_n \cos \frac{n\pi}{L} x + b_n \sin \frac{n\pi}{L} x \right)$$

$$a_0 = \frac{1}{L} \int_0^L f(x) dx = 0$$

$$f(x) = \sum_{n=1}^{oaa} \left( b_n \sin \frac{n\pi}{L} x \right)$$







$$f(x) = a_0 + \sum_{n=1}^{\infty} \left( a_n \cos \frac{n\pi}{L} x + b_n \sin \frac{n\pi}{L} x \right)$$

#### **Optical Spectra**



#### **Human Ear**



#### What about non-periodic functions?

Can we express them as superposition of sinusoidal waves?

Note that this will solve our problem. A wave packet is localized in space and not a periodic function (like those shown below).



#### **Answer: YES (Fourier Integral)**

It is same as imagining a periodic function with  $L \to \infty$ . It can be shown that in this limit

$$f(x) = a_0 + \sum_{n=1}^{\infty} \left( a_n \cos \frac{n\pi}{L} x + b_n \sin \frac{n\pi}{L} x \right)$$

$$= a_0 + \sum_{n=1}^{\infty} (a_n \cos k_n x + b_n \sin k_n x)$$

should be replaced by an integral

$$f(x) = \int_0^\infty A(k)\cos(kx) + B(k)\sin(kx) dk$$



We notice that now we are considering a continuous distribution of wavenumbers for the constituent sinusoidal waves. Coefficients A(k) and B(k), is the weighted amplitude of the oscillatory wave of different frequency (wavelength)

#### Fourier Integral and Fourier Transform

$$A(k) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(x) \cos(kx) dx$$

$$B(k) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(x) \sin(kx) dx$$

Using,

$$\left[\cos(kx) = \left(e^{ikx} + e^{-ikx}\right)/2\right] \text{ and } \left[\sin(kx) = \left(e^{ikx} - e^{-ikx}\right)/2i\right]$$

In the complex form, the Fourier integral can be written as

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(k)e^{ikx} dk$$
 Inverse Fourier Transform

With

$$g(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-ikx} dx$$

**Fourier Transform** 

g(k) is known as the **Fourier transform** of f(x) and vice versa.

**Fourier Transform** is the change of 'representation" from x-space to k-space.

#### Fourier Transform (Time Domain)

In terms of time "t" and frequency "ω"

$$f(t) = \sum_{n} a_n \sin nt + \sum_{n} b_n \cos nt$$

$$e^{it} = Cos t + i Sin t$$

F(t) as an infinite "sum" (integral ) of sine and cosine functions 
$$f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(\omega) e^{i\omega t} d\omega$$

Coefficient, 
$$g(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{-i\omega t} d\omega$$

FT is a change of "representation" from 't-space' to ' $\omega$  – space'.

#### **Fourier Integrals**

Wave number, k is reciprocal of wavelength Frequency,  $\omega$  is inverse of time, t.

#### In Real Space; x

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(k) e^{ikx} dk$$

#### In Time Domain; t

$$f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(\omega) e^{i\omega t} d\omega$$

#### In Reciprocal Space; k

$$g(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-ikx} dk$$

#### In Frequency Domain; ω

$$g(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{-i\omega t} d\omega$$

#### **Application in Quantum Mechanics**

Can FT and Fourier series form an mathematical ground for the construction of the wave packet?





### **Example: General Periodic Function**

$$f(t) = \sum_{n=0}^{\infty} c_n e^{i\omega_n t}$$

$$g(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt = \sum_{n=0}^{\infty} c_n \int_{-\infty}^{\infty} e^{-i(\omega - \omega_n)t} dt$$

$$= \sum_{n=0}^{\infty} c_n \delta(\omega - \omega_n)$$

Note :  $\delta$  function

$$\delta(\omega - \omega_n) = \int_{-\infty}^{\infty} e^{-i(\omega - \omega_n)t} dt$$

This function exits for  $\omega = \omega_n$  and is zero for all other values of  $\omega$ .

## **Oscillatory Functions**

$$f(t) = \cos \omega_0 t \qquad \cos \omega_0 t = \frac{1}{2} \left( e^{i\omega_0 t} + e^{-i\omega_0 t} \right)$$

$$g(\omega) = \frac{1}{2} \int_{-\infty}^{\infty} \left( e^{i\omega_0 t} + e^{-i\omega_0 t} \right) e^{-i\omega t} dt$$

$$= \frac{1}{2} \int_{-\infty}^{\infty} \left( e^{-i(\omega - \omega_0)t} + e^{-i(\omega + \omega_0)t} \right) dt$$

$$= \frac{1}{2} \delta(\omega - \omega_0) + \frac{1}{2} \delta(\omega + \omega_0)$$
Exercise:
$$f(t) = \sin \omega_0 t \quad \text{Find g}(\omega)$$
Use  $\sin \omega_0 t = \frac{1}{2i} \left( e^{i\omega_0 t} - e^{-i\omega_0 t} \right)$ 

## Some more examples of FT

#### Constant function

$$f(t) = \alpha$$

$$g(\omega) = \alpha \int_{-\infty}^{\infty} e^{-i\omega t} dt$$

$$=\alpha\delta(\omega)$$

#### Using,

$$\int_{-\infty}^{\infty} e^{-i(\omega - \omega_n)t} dt = \delta(\omega - \omega_n)$$

$$\int_{-\infty}^{\infty} e^{-i\omega t} dt = \delta(\omega)$$

Zero everywhere except at w = 0





#### Fourier Transform (time domain)

$$f(t) = 7\sin(2\pi \cdot 2t) + 11\sin(2\pi \cdot 3t) + 13\sin(2\pi \cdot 5t)$$



$$f(t) = \sum_{n} c_n e^{i\omega_n t}$$
 g(\omega) = ?

#### Fourier Transform (time domain)



# Periodic signal f(t)

This could be a signal of vibrating floor or an ECG



Fourier Transform g(ω) of f(t)

(g(ω) is also called as Spectrum)

By taking Fourier transform, we have identified the frequencies and their 'weights' in the signal.

#### **Application in Quantum Mechanics : Back to wave packet**



To form a true wave-packet that is zero everywhere outside a finite range  $\Delta x$ , requires adding together an infinite number of harmonic waves with continuously varying wavelength and amplitudes.



#### **Supplementary Information**

The Exponential Fourier Series (From Advanced Engineering Mathematics by Kreyszig)

Refer to supplementary notes for derivation of Fourier integrals for non-periodic functions