Funkcje elementarne

1. Funkcja liniowa: y=ax+b; $a,b \in \mathbb{R}$, $D_f=R$; $f(D_f)=R$ (gdy $a \ne 0$) oraz $f(D_f)=\{b\}$ (gdy a=0)

a - współczynnik kierunkowy prostej ($a=tg\alpha$, α - kat nachylenia prostej do osi OX),

b – współrzędna y przecięcia prostej z osią OY.

Przykłady i wykresy powyżej: $f_1(x) = 2x + 1$; $f_2(x) = x / 2 + 1$; $f_3(x) = x / 2 - 1$.

2. Funkcja potęgowa: $y=x^a$; $a \in \mathbb{R}$, $a\neq 0$, $a\neq 1$

Funkcja potęgowa ma różne własności i wykresy w zależności od wartości wykładnika a:

1) a jest liczbą naturalną parzystą

$$D_f = \mathbf{R}; \quad f(D_f) = [0; +\infty)$$

2) a jest liczbą naturalną nieparzystą;

$$D_f = \mathbf{R}; \quad f(D_f) = \mathbf{R}$$

3) a – liczba całkowita ujemna nieparzysta

$$D_f = \mathbf{R} - \{0\}$$
 $f(D_f) = (0; +\infty)$

5) a jest ułamkiem 1/m

m jest naturalną liczbą nieparzystą;

m jest naturalną liczbą parzystą – $D_f = \mathbf{R}^+$;

$$D_f = \mathbf{R}; \quad f(D_f) = \mathbf{R}$$

$$D_f = \mathbf{R}^+ \cup \{0\}; \quad f(D_f) = \mathbf{R}^+ \cup \{0\}$$

3. Funkcja wykładnicza: $y=a^x$; $a \in \mathbb{R}$, a>0; $D_f=\mathbb{R}$

Specjalnym przykładem funkcji wykładniczej jest funkcja eksponencjalna $y = e^x$ z podstawą e≈2,7182818285... (*e* jest liczbą niewymierną definiowaną jako granica ciągu: $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$).

4. Funkcja logarytmiczna: $y=log_a x; a \in \mathbb{R}^+; D_f = \mathbb{R}^+ f(D_f) = \mathbb{R}$

Funkcja logarytmiczna jest funkcją odwrotną do funkcji wykładniczej:

$$y = \log_a x \Leftrightarrow x = a^y$$

Logarytmem naturalnym nazywamy logarytm o podstawie e i oznaczamy lnx: $lnx = log_{e}x$

Logarytmem dziesiętnym nazywamy logarytm o podstawie 10 i oznaczamy logx: $logx = log_{10}x$

Przykłady wykresów funkcji logarytm dla *a*>1

Przykład wykresu funkcji logarytm dla 0<a<1

Najważniejsze własności logarytmu:

$$1. a^{\log_a b} = b,$$

$$\log_a 1 = 0$$

$$\log_a a = 1$$

$$_{4.} \quad \log_a(b \cdot c) = \log_a b + \log_a c$$

$$\int_{5.} \log_a \frac{b}{c} = \log_a b - \log_a c$$

6.
$$\log_a b^c = c \cdot \log_a b$$

Jeżeli a > 1 wtedy:

$$\lim_{x \to 0} \log_a x = -\infty$$

$$\lim_{x \to 0} \log_a x = -\infty \qquad \lim_{x \to +\infty} \log_a x = +\infty$$

Jeżeli 0 < a < 1 wtedy:

$$\lim_{x \to 0} \log_a x = +\infty$$

$$\lim_{x \to 0} \log_a x = +\infty \qquad \lim_{x \to +\infty} \log_a x = -\infty$$

5. Funkcje trygonometryczne: y=sinx, y=cosx, y=tgx, y=ctg

$$D_f = \mathbf{R} \ f(D_f) = [-1;1]$$

$$D_f = \mathbf{R} \ f(D_f) = [-1;1]$$

$$D_f = \mathbf{R} - \{x \in \mathbf{R}: x \neq (2k+1)\frac{\pi}{2}; k=0, \pm 1, \pm 2,...\} f(D_f) = \mathbf{R}$$

$$D_f = \mathbf{R} - \{x \in \mathbf{R}: x \neq k\pi; k = 0, \pm 1, \pm 2, ...\}$$
 $f(D_f) = \mathbf{R}$

Tożsamości trygonometryczne:

$$1. \sin^2 \theta + \cos^2 \theta = 1$$

2.
$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$

3.
$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$

$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \alpha$$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$$

$$\sin^2 \theta = \frac{1 - \cos 2\theta}{2}$$

$$\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$$

$$\sin^2\theta = \frac{1 - \cos 2\theta}{2}$$

$$\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$$

6. Funkcje cyklometryczne (funkcje arcus): y=arcsinx, y=arccosx, y=arctgx, y=arcctgx

Funkcje cyklometryczne są funkcjami odwrotnymi do funkcji trygonometrycznych

Nazwa	Oznaczenie	Definicja	Dziedzina	Zbiór wartości funkcji
Arcus sinus	$y = \arcsin(x)$	$x=\sin(y)$	[-1;+1]	[-π/2; π/2]
Arcus cosinus	$y = \arccos(x)$	$x = \cos(y)$	[-1;+1]	[0; π]
Arcus tangens	$y = \operatorname{arctg}(x)$	x = tg(y)	R	$(-\pi/2 \; ; \; \pi/2)$
Arcus cotangens	$y = \operatorname{arcctg}(x)$	$x = \operatorname{ctg}(y)$	R	(0; π)

Linia czerwona ciągła - $f(x) = \arcsin(x)$; linia niebieska przerywana - $f(x) = \arccos(x)$

Linia czerwona ciągła - f(x) = arctg(x); linia niebieska przerywana - f(x) = arcctg(x)

- 7. Funkcje hiperboliczne: y=sinhx, y=coshx, y=tghx, y=ctghx.
- 1. Sinus hiperboliczny (oznaczenie: *sinhx* lub *shx*):

$$sinh x = \frac{e^x - e^{-x}}{2}$$
 $D_f = \mathbf{R}; \quad f(D_f) = \mathbf{R}$

2. Cosinus hiperboliczny (oznaczenie: coshx lub chx):

$$\cosh x = \frac{e^x + e^{-x}}{2}$$
 $D_f = \mathbf{R}; \quad f(D_f) = [1; +\infty)$

3. Tangens hiperboliczny (oznaczenie: tghx lub thx):

$$tghx = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
 $D_f = R$; $f(D_f) = (-1, +1)$

4. Cotangens hiperboliczny (oznaczenie: *ctghx* lub *cthx*):

$$ctghx = \frac{\cosh x}{\sinh x} = \frac{e^x + e^{-x}}{e^x - e^{-x}} \quad D_f = \mathbf{R} - \{0\}; \quad f(D_f) = (-\infty; -1) \cup (1; +\infty)$$

Tożsamości hiperboliczne:

$$1. \cosh^2 t - \sinh^2 t = 1$$

$$\cosh^{2} \frac{x}{2} = \frac{\cosh x + 1}{2}$$

$$\sinh^{2} \frac{x}{2} = \frac{\cosh x - 1}{2}$$

4.
$$e^x = \cosh x + \sinh x$$

5.
$$e^{-x} = \cosh x - \sinh x$$
.

Funkcja
$$y = \frac{a^2}{b^2 + x^2}$$

$$D_f = \mathbf{R}; \quad f(D_f) = (0; \frac{a^2}{b^2})$$

Wykres funkcji y=1/(1+x^2)

Przekształcenia wykresów funkcji

Na przykładzie wykresu funkcji

1. f(x) + a przesunięcie równoległe wzdłuż osi OY o a jednostek

2. f(x + a) przesunięcie równoległe wzdłuż osi OX o a jednostek w lewo; f(x - a) przesunięcie równoległe wzdłuż osi OX o a jednostek w prawo

$$y = (x+3)^2$$

 $y=(x+3)^2$ 3. -f(x) odbicie względem osi OX

- 4. f(-x) odbicie względem osi OY

5. f(ax) a > 1 skala osi OX jest a razy mniejsza

$$v=(2x)^2$$

6. f(ax) $0 \le a \le 1$ skala osi OX jest a razy większa

7. af(x) a > 1 skala osi OY jest a razy większa

8. af(x) 0<a<1 skala osi OY jest a razy mniejsza

 $y = (1/2)x^2$

Konstrukcja wykresu funkcji odwrotnej (tylko dla funkcji wzajemnie jednoznacznej - bijekcji)

1. wykres wyjściowy

2. narysowanie dwusiecznej pierwszej ćwiartki

3. odbicie symetryczne względem dwusiecznej punktów wykresu

4. tak powstały wykres jest wykresem funkcji odwrotnej do funkcji wyjściowej

