Lecture 5: Model-Free Prediction

Hado van Hasselt

UCL, 2021

Background

Sutton & Barto 2018, Chapters 5 + 6 + 7 + 9 + 12

Don't worry about reading all of this at once! Most important chapters, for now: 5 + 6 You can also defer some reading, e.g., until the reading week

Don't forget to pause

Recap

- ► Reinforcement learning is the science of learning to make decisions
- Agents can learn a policy, value function and/or a model
- ► The general problem involves taking into account time and consequences
- ▶ Decisions affect the **reward**, the **agent state**, and **environment state**

Lecture overview

- Last lectures (3+4):
 - ▶ Planning by dynamic programming to solve a known MDP
- ▶ This and next lectures $(5 \rightarrow 8)$:
 - ► Model-free prediction to estimate values in an unknown MDP
 - ► Model-free control to optimise values in an unknown MDP
 - Function approximation and (some) deep reinforcement learning (but more to follow later)
 - Off-policy learning
- Later lectures:
 - Model-based learning and planning
 - Policy gradients and actor critic systems
 - More deep reinforcement learning
 - More advanced topics and current research

Model-Free Prediction: Monte Carlo Algorithms

Monte Carlo Algorithms

- ► We can use experience samples to learn without a model
- ► We call direct sampling of episodes Monte Carlo
- ► MC is model-free: no knowledge of MDP required, only samples

Monte Carlo: Bandits

- Simple example, multi-armed bandit:
 - For each action, average reward samples

$$q_t(a) = \frac{\sum_{i=0}^t I(A_i = a) R_{i+1}}{\sum_{i=0}^t I(A_i = a)} \approx \mathbb{E}[R_{t+1} | A_t = a] = q(a)$$

Equivalently:

$$q_{t+1}(A_t) = q_t(A_t) + \alpha_t(R_{t+1} - q_t(A_t))$$

$$q_{t+1}(a) = q_t(a)$$

$$\forall a \neq A_t$$
with $\alpha_t = \frac{1}{N_t(A_t)} = \frac{1}{\sum_{i=0}^t I(A_i = a)}$

Note: we changed notation $R_t \to R_{t+1}$ for the reward after A_t In MDPs, the reward is said to arrive on the time step after the action

Monte Carlo: Bandits with States

- Consider bandits with different states
 - episodes are still one step
 - ~ multiple step this time. actions do not affect state transitions
 - ⇒ no long-term consequences
- Then, we want to estimate

$$q(s,a) = \mathbb{E}\left[R_{t+1}|S_t = s, A_t = a\right]$$

These are called contextual bandits

Introduction Function Approximation

Value Function Approximation

- So far we mostly considered lookup tables
 - ightharpoonup Every state *s* has an entry v(s)
 - Or every state-action pair s, a has an entry q(s, a)
- Problem with large MDPs:
 - There are too many states and/or actions to store in memory
 - It is too slow to learn the value of each state individually
 - ► Individual states are often **not fully observable**

Value Function Approximation

Solution for large MDPs:

► Estimate value function with function approximation

$$v_{\mathbf{w}}(s) \approx v_{\pi}(s)$$
 (or $v_{*}(s)$)
 $q_{\mathbf{w}}(s, a) \approx q_{\pi}(s, a)$ (or $q_{*}(s, a)$)

- Update parameter w (e.g., using MC or TD learning)
- Generalise from to unseen states

Agent state update

Solution for large MDPs, if the environment state is not fully observable

Use the agent state:

$$S_t = u_{\omega}(S_{t-1}, A_{t-1}, O_t) \quad \text{for any Description}$$

with parameters ω (typically $\omega \in \mathbb{R}^n$)

- \triangleright Henceforth, S_t denotes the agent state
- Think of this as either a vector inside the agent. or, in the simplest case, just the current observation: $S_t = O_t$
- For now we are **not** going to talk about how to learn the agent state update
- Feel free to consider S_t an observation

Linear Function Approximation

Feature Vectors

- ► A useful special case: linear functions
- ► Represent state by a **feature vector**

$$\mathbf{x}(s) = \left(\begin{array}{c} x_1(s) \\ \vdots \\ x_m(s) \end{array}\right)$$

- $\mathbf{x}: \mathcal{S} \to \mathbb{R}^m$ is a fixed mapping from agent state (e.g., observation) to features
- ightharpoonup Short-hand: $\mathbf{x}_t = \mathbf{x}(S_t)$
- For example:
 - Distance of robot from landmarks
 - ► Trends in the stock market
 - Piece and pawn configurations in chess

Linear Value Function Approximation

Approximate value function by a linear combination of features

$$v_{\mathbf{w}}(s) = \mathbf{w}^{\top} \mathbf{x}(s) = \sum_{j=1}^{n} x_{j}(s) w_{j}$$

► Objective function ('loss') is quadratic in w — we don't have this.

$$L(\mathbf{w}) = \mathbb{E}_{S \sim d}[(v_{\pi}(S) - \mathbf{w}^{\top}\mathbf{x}(S))^{2}]$$

- Update rule is simple

$$\nabla_{\mathbf{w}} v_{\mathbf{w}}(S_t) = \mathbf{x}(S_t) = \mathbf{x}_t \qquad \Longrightarrow \qquad \Delta \mathbf{w} = \alpha (v_{\pi}(S_t) - v_{\mathbf{w}}(S_t)) \mathbf{x}_t$$

Update = step- $size \times prediction error \times feature vector$

Table Lookup Features

- Table lookup is a special case of linear value function approximation
- Let the *n* states be given by $S = \{s_1, ..., s_n\}$. The one bot feature:

$$\mathbf{x}(s) = \begin{pmatrix} I(s = s_1) \\ \vdots \\ I(s = s^n) \end{pmatrix}$$

Parameters w then just contains value estimates for each state

$$v(s) = \mathbf{w}^{\mathsf{T}} \mathbf{x}(s) = \sum_{i} w_{i} x_{j}(s) = w_{s}.$$

Model-Free Prediction: Monte Carlo Algorithms

(Continuing from before...)

Monte Carlo: Bandits with States

ightharpoonup q could be a parametric function, e.g., neural network, and we could use loss

$$L(\mathbf{w}) = \frac{1}{2} \mathbb{E} \left[(R_{t+1} - q_{\mathbf{w}}(S_t, A_t))^2 \right]$$

Then the gradient update is

$$\begin{aligned} \mathbf{w}_{t+1} &= \mathbf{w}_t - \alpha \nabla_{\mathbf{w}_t} L(\mathbf{w}_t) \\ &= \mathbf{w}_t - \alpha \nabla_{\mathbf{w}_t} \frac{1}{2} \mathbb{E} \left[(R_{t+1} - q_{\mathbf{w}_t}(S_t, A_t))^2 \right] \\ &= \mathbf{w}_t + \alpha \mathbb{E} \left[(R_{t+1} - q_{\mathbf{w}_t}(S_t, A_t)) \nabla_{\mathbf{w}_t} q_{\mathbf{w}_t}(S_t, A_t) \right] \ . \end{aligned}$$

We can sample this to get a stochastic gradient update (SGD) with is this.

- The tabular case is a special case (only updates the value in cell $[S_t, A_t]$)
- \triangleright Also works for large (continuous) state spaces S this is just regression

Monte Carlo: Bandits with States

▶ When using linear functions, $q(s, a) = \mathbf{w}^{\mathsf{T}}\mathbf{x}(s, a)$ and

$$\nabla_{\mathbf{w}_t} q_{\mathbf{w}_t}(S_t, A_t) = \mathbf{x}(s, a)$$

► Then the SGD update is

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha (R_{t+1} - q_{\mathbf{w}_t}(S_t, A_t)) \mathbf{x}(s, a).$$

- ► Linear update = step-size × prediction error × feature vector
- ► Non-linear update = step-size × prediction error × gradient

Monte-Carlo Policy Evaluation

- Now we consider sequential decision problems
- Goal: learn v_{π} from episodes of experience under policy π

$$S_1, A_1, R_2, ..., S_k \sim \pi$$

▶ The **return** is the total discounted reward (for an episode ending at time T > t):

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-t-1} R_T$$

The value function is the expected return:

$$v_{\pi}(s) = \mathbb{E}\left[G_t \mid S_t = s, \pi\right]$$

- ► We can just use **sample average** return instead of **expected** return
- ► We call this Monte Carlo policy evaluation

Example: Blackjack

Blackjack Example

- ► States (200 of them):
 - ► Current sum (12-21)
 - ► Dealer's showing card (ace-10)
 - ▶ Do I have a "useable" ace? (yes-no)
- Action stick: Stop receiving cards (and terminate)
- Action draw: Take another card (random, no replacement)
- Reward for stick:
 - \triangleright +1 if sum of cards > sum of dealer cards
 - 0 if sum of cards = sum of dealer cards
 - -1 if sum of cards < sum of dealer cards
- ► Reward for draw:
 - ► -1 if sum of cards > 21 (and terminate)
 - 0 otherwise
- ► Transitions: automatically draw if sum of cards < 12

Blackjack Value Function after Monte-Carlo Learning

Disadvantages of Monte-Carlo Learning

- We have seen MC algorithms can be used to learn value predictions
- But when episodes are long, learning can be slow
 - ...we have to wait until an episode ends before we can learn
 - ...return can have high variance
- Are there alternatives? (Spoiler: yes)

- important

Temporal-Difference Learning

Temporal Difference Learning by Sampling Bellman Equations

Previous lecture: Bellman equations,

$$v_{\pi}(s) = \mathbb{E}\left[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s, A_t \sim \pi(S_t)\right]$$

Previous lecture: Approximate by iterating,

$$v_{k+1}(s) = \mathbb{E}[R_{t+1} + \gamma v_k(S_{t+1}) \mid S_t = s, A_t \sim \pi(S_t)]$$

► We can sample this! Lothing of a t

$$v_{t+1}(S_t) = R_{t+1} + \gamma v_t(S_{t+1})$$

▶ This is likely quite noisy — better to take a small step (with parameter α):

$$v_{t+1}(S_t) = v_t(S_t) + \alpha_t \left(\underbrace{R_{t+1} + \gamma v_t(S_{t+1})}_{\text{target}} - v_t(S_t) \right)$$

(Note: tabular update)

Temporal difference learning

- **Prediction** setting: learn v_{π} online from experience under policy π
- ► Monte-Carlo
 - ▶ Update value $v_n(S_t)$ towards sampled return G_t

$$v_{n+1}(S_t) = v_n(S_t) + \alpha \left(G_t - v_n(S_t) \right)$$

- Temporal-difference learning:
 - ▶ Update value $v_t(S_t)$ towards estimated return $R_{t+1} + \gamma v(S_{t+1})$

$$v_{t+1}(S_t) \leftarrow v_t(S_t) + \alpha \left(\underbrace{\frac{\text{TD error}}{R_{t+1} + \gamma v_t(S_{t+1})} - v_t(S_t)}_{\text{target}} \right)$$

 $\delta_t = R_{t+1} + \gamma v_t(S_{t+1}) - v_t(S_t)$ is called the TD error

Dynamic Programming Backup

Monte-Carlo Backup

Temporal-Difference Backup

$$v(S_t) \leftarrow v(S_t) + \alpha \left(R_{t+1} + \gamma v(S_{t+1}) - v(S_t) \right)$$

Bootstrapping and Sampling

- **Bootstrapping:** update involves an estimate
 - MC does not bootstrap
 - DP bootstraps
 - ► TD bootstraps
- Sampling: update samples an expectation
 - MC samples
 - DP does not sample
 - ► TD samples

Temporal difference learning

- ► We can apply the same idea to action values
- Temporal-difference learning for action values:
 - ▶ Update value $q_t(S_t, A_t)$ towards estimated return $R_{t+1} + \gamma q(S_{t+1}, A_{t+1})$

$$q_{t+1}(S_t, A_t) \leftarrow q_t(S_t, A_t) + \alpha \left(\underbrace{\frac{\text{TD error}}{R_{t+1} + \gamma q_t(S_{t+1}, A_{t+1})} - q_t(S_t, A_t)}_{\text{target}} \right)$$

This algorithm is known as SARSA, because it uses $(S_t, A_t, R_{t+1}, S_{t+1}, A_{t+1})$

Temporal-Difference Learning

- ► TD is model-free (no knowledge of MDP) and learn directly from experience
- ► TD can learn from incomplete episodes, by bootstrapping
- TD can learn during each episode

Lodon't have to mait until end of episods.

.

Example: Driving Home

Driving Home Example -

State	Elapsed Time (minutes)	Predicted Time to Go	Predicted Total Time
leaving office	0 1~6	wall) 30	30
reach car, raining	5 1 +13 20 1 +10	35	40
exit highway	20 1 410	15	35
behind truck	30 1 1 10	10	40
home street	40	3	43
arrive home	43	0	43

Driving Home Example: MC vs. TD

Changes recommended by Monte Carlo methods (α =1)

Changes recommended by TD methods (α =1)

Comparing MC and TD

Advantages and Disadvantages of MC vs. TD

- TD can learn **before** knowing the final outcome
 - TD can learn online after every step
 - MC must wait until end of episode before return is known
- TD can learn without the final outcome
 - TD can learn from incomplete sequences
 - MC can only learn from complete sequences
 - TD works in continuing (non-terminating) environments
 - MC only works for episodic (terminating) environments
- TD is independent of the temporal span of the prediction
 - ► TD can learn from single transitions

 - MC must store all predictions (or states) to update at the end of an episode
- ► TD needs reasonable value estimates

Bias/Variance Trade-Off

- ► MC return $G_t = R_{t+1} + \gamma R_{t+2} + \dots$ is an **unbiased** estimate of $v_{\pi}(S_t)$
- ► TD target $R_{t+1} + \gamma v_t(S_{t+1})$ is a **biased** estimate of $v_{\pi}(S_t)$ (unless $v_t(S_{t+1}) = v_{\pi}(S_{t+1})$)
- But the TD target has lower variance:
 - Return depends on many random actions, transitions, rewards
 - TD target depends on one random action, transition, reward

Bias/Variance Trade-Off

- In some cases, TD can have irreducible bias
- The world may be partially observable
 - ► MC would implicitly account for all the latent variables
- The function to approximate the values may fit poorly
- In the tabular case, both MC and TD will converge: $v_t \rightarrow v_{\pi}$

Example: Random Walk

Random Walk Example

- Uniform random transitions (50% left, 50% right)
- Initial values are v(s) = 0.5, for all s
- True values happen to be $v(A) = \frac{1}{6}$, $v(B) = \frac{2}{6}$, $v(C) = \frac{3}{6}$, $v(D) = \frac{4}{6}$, $v(E) = \frac{5}{6}$

Random Walk Example

Random Walk: MC vs. TD

TD MC

Batch MC and TD

Batch MC and TD

- ► Tabular MC and TD converge: $v_t \to v_{\pi}$ as experience $\to \infty$ and $\alpha_t \to 0$
- ▶ But what about finite experience?
- Consider a fixed batch of experience:

episode 1:
$$S_1^1, A_1^1, R_2^1, ..., S_{T_1}^1$$
 \vdots episode K: $S_1^K, A_1^K, R_2^K, ..., S_{T_K}^K$

- ▶ Repeatedly sample each episode $k \in [1, K]$ and apply MC or TD(0)
 - = sampling from an empirical model

Example:

Batch Learning in Two States

Example: Batch Learning in Two States

Two states A, B; no discounting; 8 episodes of experience

Example: Batch Learning in Two States

Two states A, B; no discounting; 8 episodes of experience

Differences in batch solutions

▶ MC converges to best mean-squared fit for the observed returns

$$\sum_{k=1}^{K} \sum_{t=1}^{T_k} \left(G_t^k - v(S_t^k) \right)^2$$

- In the AB example, v(A) = 0
- TD converges to solution of max likelihood Markov model, given the data
 - ► Solution to the empirical MDP $(S, \mathcal{A}, \hat{p}, \gamma)$ that best fits the data
 - ► In the AB example: $\hat{p}(S_{t+1} = B \mid S_t = A) = 1$, and therefore v(A) = v(B) = 0.75

Advantages and Disadvantages of MC vs. TD

- ► TD exploits Markov property
 - Can help in fully-observable environments
- MC does not exploit Markov property
 - Can help in partially-observable environments
- ▶ With finite data, or with function approximation, the solutions may differ

Between MC and TD: Multi-Step TD

Unified View of Reinforcement Learning

Multi-Step Updates

- ▶ TD uses value estimates which might be inaccurate
- only 1 State in In addition, information can propagate back quite slowly
- ▶ In MC information propagates faster, but the updates are noisier
- ► We can go in between TD and MC

Multi-Step Prediction

Let TD target look *n* steps into the future

Multi-Step Returns

Consider the following *n*-step returns for $n = 1, 2, \infty$:

ightharpoonup In general, the n-step return is defined by

$$G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n \nu(S_{t+n})$$

Multi-step temporal-difference learning

$$v(S_t) \leftarrow v(S_t) + \alpha \left(G_t^{(n)} - v(S_t) \right)$$

Multi-Step Examples

Grid Example

Action values increased

(Reminder: SARSA is TD for action values q(s, a))

Large Random Walk Example

..., but with 19 states, rather than 5

Mixed Multi-Step Returns

Mixing multi-step returns

Multi-step returns bootstrap on one state, $v(S_{t+n})$:

$$G_t^{(n)} = R_{t+1} + \gamma G_{t+1}^{(n-1)}$$
 (while $n > 1$, continue)
$$G_t^{(1)} = R_{t+1} + \gamma \nu (S_{t+1}) .$$
 (truncate & bootstrap)

You can also bootstrap a little bit on multiple states:

$$G_t^{\lambda} = R_{t+1} + \gamma \left((1 - \lambda) \nu(S_{t+1}) + \lambda G_{t+1}^{\lambda} \right)$$

This gives a weighted average of n-step returns:

$$G_t^{\lambda} = \sum_{n=1}^{\infty} (1 - \lambda) \lambda^{n-1} G_t^{(n)}$$

(Note,
$$\sum_{n=1}^{\infty} (1 - \lambda) \lambda^{n-1} = 1$$
)

Mixing multi-step returns

$$G_t^{\lambda} = R_{t+1} + \gamma \left((1 - \lambda) \nu(S_{t+1}) + \lambda G_{t+1}^{\lambda} \right)$$

Special cases:

$$G_t^{\lambda=0} = R_{t+1} + \gamma \nu(S_{t+1})$$
 (TD)
 $G_t^{\lambda=1} = R_{t+1} + \gamma G_{t+1}$ (MC)

Mixing multi-step returns

Intuition: $1/(1-\lambda)$ is the 'horizon'. E.g., $\lambda=0.9\approx n=10$.

Benefits of Multi-Step Learning

Benefits of multi-step returns

- Multi-step returns have benefits from both TD and MC
- Bootstrapping can have issues with bias
- Monte Carlo can have issues with variance
- ▶ Typically, intermediate values of *n* or λ are good (e.g., n = 10, $\lambda = 0.9$)

Independence of temporal span

- ► MC and multi-step returns are not **independent of span** of the predictions: To update values in a long episode, you have to wait
- TD can update immediately, and is independent of the span of the predictions
- Can we get both?

- ► Recall linear function approximation
- ► The Monte Carlo and TD updates to $v_{\mathbf{w}}(s) = \mathbf{w}^{\top}\mathbf{x}(s)$ for a state $s = S_t$ is

$$\Delta \mathbf{w}_t = \alpha (G_t - \nu(S_t)) \mathbf{x}_t \tag{MC}$$

$$\Delta \mathbf{w}_t = \alpha (R_{t+1} + \gamma \nu(S_{t+1}) - \nu(S_t)) \mathbf{x}_t$$
 (TD)

ightharpoonup MC updates all states in episode k at once:

$$\Delta \mathbf{w}_{k+1} = \sum_{t=0}^{T-1} \alpha (G_t - v(S_t)) \mathbf{x}_t$$

where $t \in \{0, ..., T-1\}$ enumerate the time steps in this specific episode

 \triangleright Recall: tabular is a special case, with one-hot vector \mathbf{x}_t

Accumulating a whole episode of updates:

e of updates: $\Delta \mathbf{w}_t \equiv \alpha \delta_t \mathbf{e}_t \qquad \text{(one time step)}$ where $\mathbf{e}_t = \gamma \lambda \mathbf{e}_{t-1} + \mathbf{x}_t$

- Note: if $\lambda = 0$, we get one-step TD
- ▶ Intuition: decay the **eligibility** of past states for the current TD error, then add it
- This is kind of magical: we can update all past states (to account for the new TD error) with a single update! No need to recompute their values.
- \triangleright This idea extends to function approximation: \mathbf{x}_t does not have to be one-hot

We can rewrite the MC error as a sum of TD errors:

$$G_{t} - v(S_{t}) = R_{t+1} + \gamma G_{t+1} - v(S_{t})$$

$$= \underbrace{R_{t+1} + \gamma v(S_{t+1}) - v(S_{t})}_{= \delta_{t}} + \gamma (G_{t+1} - v(S_{t+1}))$$

$$= \delta_{t}$$

$$= \delta_{t} + \gamma (G_{t+1} - v(S_{t+1}))$$

$$= \dots$$

$$= \delta_{t} + \gamma \delta_{t+1} + \gamma^{2} (G_{t+2} - v(S_{t+2}))$$

$$= \dots$$

$$= \sum_{k=t}^{T} \gamma^{k-t} \delta_{k}$$
 (used in the next slide)

Now consider accumulating a whole episode (from time t = 0 to T) of updates:

$$\Delta \mathbf{w}_{k} = \sum_{t=0}^{T-1} \alpha (G_{t} - v(S_{t})) \mathbf{x}_{t}$$

$$= \sum_{t=0}^{T-1} \alpha \left(\sum_{k=t}^{T-1} \gamma^{k-t} \delta_{k} \right) \mathbf{x}_{t}$$
(Using result from previous slide)
$$= \sum_{k=0}^{T-1} \alpha \sum_{t=0}^{k} \gamma^{k-t} \delta_{k} \mathbf{x}_{t}$$
(Using
$$\sum_{i=0}^{m} \sum_{j=i}^{m} z_{ij} = \sum_{j=0}^{m} \sum_{i=0}^{j} z_{ij}$$

$$= \sum_{k=0}^{T-1} \alpha \delta_{k} \sum_{t=0}^{k} \gamma^{k-t} \mathbf{x}_{t}$$

$$= \sum_{k=0}^{T-1} \alpha \delta_{k} \mathbf{e}_{k} = \sum_{t=0}^{T-1} \alpha \delta_{t} \mathbf{e}_{t}.$$
renaming
$$k \to t$$

Accumulating a whole episode of updates:

$$\Delta \mathbf{w}_{k} = \sum_{t=0}^{T-1} \alpha \delta_{t} \mathbf{e}_{t}$$
 where
$$\mathbf{e}_{t} = \sum_{j=0}^{t} \gamma^{t-j} \mathbf{x}_{j}$$
$$= \sum_{j=0}^{t-1} \gamma^{t-j} \mathbf{x}_{j} + \mathbf{x}_{t}$$
$$= \gamma \sum_{j=0}^{t-1} \gamma^{t-1-j} \mathbf{x}_{j} + \mathbf{x}_{t}$$
$$= \mathbf{e}_{t-1}$$
$$= \gamma \mathbf{e}_{t-1} + \mathbf{x}_{t}.$$

The vector \mathbf{e}_t is called an **eligibility trace** Every step, it decays (according to γ) and then the current feature \mathbf{x}_t is added

Accumulating a whole episode of updates:

$$\Delta \mathbf{w}_t \equiv \alpha \delta_t \mathbf{e}_t \qquad \qquad \text{(one time step)}$$

$$\Delta \mathbf{w}_k = \sum_{t=0}^{T-1} \Delta \mathbf{w}_t \qquad \qquad \text{(whole episode)}$$
 where
$$\mathbf{e}_t = \gamma \mathbf{e}_{t-1} + \mathbf{x}_t \,.$$

(And then apply $\Delta \mathbf{w}$ at the end of the episode)

► Intuition: the same TD error shows up in multiple MC errors—grouping them allows applying it to all past states in one update

Eligibility Traces: Intuition

Consider a batch update on an episode with four steps: $t \in \{0, 1, 2, 3\}$

$\Delta \mathbf{v} =$	$\delta_0 \mathbf{e}_0$	$\delta_1 \mathbf{e}_1$	$\delta_2 \mathbf{e}_2$	$\delta_3 {f e}_3$
$(G_0-v(S_0))\mathbf{x}_0$	$\delta_0 \mathbf{x}_0$	$\gamma \delta_1 \mathbf{x}_0$	$\gamma^2 \delta_2 \mathbf{x}_0$	$\gamma^3\delta_3\mathbf{x}_0$
$(G_1 - v(S_1))\mathbf{x}_1$		$\delta_1\mathbf{x}_1$	$\gamma \delta_2 \mathbf{x}_1$	$\gamma^2\delta_3\mathbf{x}_1$
$(G_2 - v(S_2))\mathbf{x}_2$			$\delta_2 \mathbf{x}_2$	$\gamma\delta_3\mathbf{x}_2$
$(G_3 - v(S_3))\mathbf{x}_3$				$\delta_3 \mathbf{x}_3$

Mixed Multi-Step Returns and Eligibility Traces

Mixing multi-step returns & traces

► Reminder: mixed multi-step return

$$G_t^{\lambda} = R_{t+1} + \gamma \left((1 - \lambda) v(S_{t+1}) + \lambda G_{t+1}^{\lambda} \right)$$

The associated error and trace update are

$$G_t^{\lambda} = \sum_{k=0}^{T-t} \lambda^k \gamma^k \delta_{t+k} \qquad \text{(same as before, but with } \frac{\lambda \gamma}{t} \text{ instead of } \gamma)$$

$$\implies \mathbf{e}_t = \gamma \lambda \mathbf{e}_{t-1} + \mathbf{x}_t \qquad \text{and} \qquad \Delta \mathbf{w}_t = \alpha \delta_t \mathbf{e}_t .$$

- ightharpoonup This is called an **accumulating trace** with decay $\gamma\lambda$
- It is exact for batched episodic updates ('offline'), similar traces exist for online updating

End of Lecture

Next lecture: Model-free control

