Grundbegriffe der Informatik Aufgabenblatt 4

Matr.nr.:							
Nachname:							
Vorname:							
Tutorium:	Nr.			Name des Tutors:			
Ausgabe:	18. N	ovem	ber 2	2015	5		
Abgabe:	e: 27. November 2015, 12:30 Uhr						
	im G	BI-Bri	efka	sten	im	Un	tergeschoss
	von (Gebäu	de 5	0.34	•		
Lösungen werden nur korrigiert, wenn sie • rechtzeitig, • in Ihrer eigenen Handschrift, • mit dieser Seite als Deckblatt und • in der oberen linken Ecke zusammengeheftet							
abgegeben werden.							
Vom Tutor auszufüllen:							
erreichte Pu	nkte						
Blatt 4:					/ 18	8	(Physik: 18)
Blätter 1 – 4:					/ 60	5	(Physik: 63)

Aufgabe 4.1 (2 + 2 + 2 = 6 Punkte)

Das Additionswerk der arithmetisch-logischen Einheit eines 8-Bit Prozessors realisiert eine Abbildung add₈: $Z_2^8 \times Z_2^8 \to Z_2^8$ mit der Eigenschaft, dass für jedes Wort $u \in Z_2^8$ und jedes Wort $v \in Z_2^8$ gilt:

$$add_8(u, v) = bin_8((Num_2(u) + Num_2(v)) \mod 2^8).$$

- a) Geben Sie $Zkpl_8(23)$ und $Zkpl_8(-57)$ an.
- b) Geben Sie $Zkpl_8(23 + (-57))$ und $add_8(Zkpl_8(23), Zkpl_8(-57))$ an.
- c) Geben Sie ein Wort $w \in \mathbb{Z}_2^*$ so an, dass $\operatorname{Num}_2(w) = \operatorname{Num}_{16}(\mathtt{B3C8})$.

Aufgabe 4.2 (3 + 3 = 6 Punkte)

Es sei w das Wort strrprrrstprprtt über dem Alphabet $\{r, s, t, p\}$.

- a) Bestimmen Sie eine Huffman-Codierung des Wortes *w* anhand des in der Vorlesung vorgestellten Algorithmus.
- b) Bestimmen Sie eine Block-Codierung des Wortes w für Blöcke der Länge 2 anhand des in der Vorlesung vorgestellten Algorithmus.

Aufgabe 4.3 (3 + 3 = 6 Punkte)

Für jedes $i \in \mathbb{N}_0$ sei a_i ein Symbol so, dass für jedes $k \in \mathbb{Z}_i$ gilt $a_k \neq a_i$. Weiter sei M die Menge $\{a_i \mid i \in \mathbb{N}_0\}$.

a) Geben Sie für jedes $k \in \mathbb{N}_+$ ein Alphabet $A_k \subseteq M$ und ein Wort $u_k \in A_k^*$ so an, dass jedes Symbol $x \in A_k$ mindestens einmal in u_k vorkommt und für jede Huffman-Codierung $h \colon A_k^* \to \{0,1\}^*$ von u_k gilt:

Für jedes
$$x \in A_k$$
 gilt $|h(x)| = k$.

- b) Geben Sie für jedes $n \in \mathbb{N}_+$ ein Alphabet $B_n \subseteq M$ und ein Wort $w_n \in B_n^*$ so an, dass jedes Symbol $x \in B_n$ mindestens einmal in w_n vorkommt und für jede Huffman-Codierung $h \colon B_n^* \to \{0,1\}^*$ von w_n gelten:
 - Es gibt ein Symbol $x \in B_n$ mit |h(x)| = 1;
 - Es gibt ein Symbol $x \in B_n$ mit |h(x)| = n;
 - Für jedes Symbol $x \in B_n$ gilt $|h(x)| \in \{1, n\}$.