(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2003 年4 月24 日 (24.04.2003)

PCT

(10) 国際公開番号 WO 03/033472 A1

(51) 国際特許分類⁷: C07D 215/22, 401/12, 409/12, 413/12, 417/12, 453/02, 239/88, A61K 31/439, 31/47, 31/4709, 31/517, 31/5377, 31/496, 31/55, 31/551, A61P 1/00, 1/18, 11/00, 13/12, 15/00, 35/00, 43/00

(21) 国際出願番号:

PCT/JP02/10803

(22) 国際出願日:

2002年10月17日(17.20.2002)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願2001-319826

2001 年10 月17 日 (17.10.2001) JP 特願2002-167652 2002 年6 月7 日 (07.06.2002) JP

(71) 出願人 (米国を除く全ての指定国について): 麒麟 麦酒株式会社 (KIRIN BEER KABUSHIKI KAISHA) [JP/JP]; 〒104-8288 東京都 中央区 新川二丁目 1 0番 1号 Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 三輪 篤史 (MIWA,Atsushi) [JP/JP]; 〒370-1295 群馬県 高崎市 宮原町 3 番地 麒麟麦酒株式会社 医薬探索研究所 内 Gunma (JP). 吉野哲也 (YOSHINO,Tetsuya) [JP/JP]; 〒370-1295 群馬県 高崎市 宮原町 3 番地 麒麟麦酒 株式会社 医薬探索研究所内 Gunma (JP). 大澤 立志 (OSAWA,Tatsushi) [JP/JP]; 〒370-1295 群馬県 高崎市宮原町 3 番地 麒麟麦酒株式会社 医薬探索研究所内 Gunma (JP). 酒井 輝行 (SAKAI,Teruyuki) [JP/JP]; 〒370-1295 群馬県 高崎市宮原町 3 番地 麒麟麦酒株式会社 医薬探索研究所内 Gunma (JP). 清水寿通(SHIMIZU,Toshiyuki) [JP/JP]; 〒370-1295 群馬県高崎市宮原町 3 番地 麒麟麦酒株式会社 医薬探索研究所内 Gunma (JP). 藤原康成 (FUJIWARA,Yasunari) [JP/JP]; 〒370-1295 東京都 渋谷区 神宮前 6-2 6-1 麒麟麦酒株式会社内 Tokyo (JP).

- (74) 代理人: 吉武 賢次, 外(YOSHITAKE,Kenji et al.); 〒 100-0005 東京都 千代田区 丸の内三丁目 2番 3号 富士ビル 3 2 3号 協和特許法律事務所 Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[続葉有]

(54) Title: QUINOLINE OR QUINAZOLINE DERIVATIVES INHIBITING AUTO- PHOSPHORYLATION OF FIBROBLAST GROWTH FACTOR RECEPTORS

(54) 発明の名称: 線維芽細胞増殖因子受容体自己リン酸化を阻害するキノリン誘導体およびキナゾリン誘導体並び にそれらを含有する医薬組成物

(57) Abstract: The invention provides novel compounds which exhibit an inhibitory activity against autophosphorylation of FGF receptor family and can inhibit the proliferation of cancer cells through oral or intravenous administration, specifically compounds represented by the general formula (|) or pharmaceutically acceptable salts or solvates thereof: (|) wherein X is CH or N; Z is O or S; Q is NR¹⁰, CR¹¹R¹², carbonyl, O, S(=O)_m (wherein m is 0 to 2), or urea; R¹, R² and R³ are each H, OH, halogeno, nitro, amino, alkyl, alkoxy, or the like (with the proviso that the alkyl and the alkoxy may be further substituted); R⁴ is H; R⁵, R⁶, R⁷ and R⁸ are each H, halogeno, alkyl, or alkoxy; and R⁹ is a carbocyclic or heterocyclic group which may be substituted.

WO 03/033472 A1

1

明 細 書

線維芽細胞増殖因子受容体自己リン酸化を阻害するキノリン誘導体 およびキナゾリン誘導体並びにそれらを含有する医薬組成物

発明の背景

発明の分野

本発明は、抗腫瘍効果を有するキノリン誘導体およびキナゾリン誘導体に関し、 さらに詳細には、線維芽細胞増殖因子受容体自己リン酸化阻害作用を有し、異常 な細胞増殖に対する阻害作用を有するキノリン誘導体ならびにキナゾリン誘導体 に関する。

背景技術

細胞の増殖においては、上皮増殖因子、血小板由来増殖因子、インスリン様増殖因子、塩基性線維芽細胞増殖因子(basic Fibroblast Growth Factor,以下「bFGF」とする)などの増殖因子が重要な役割を果たしており、中でもbFGFは血管内皮細胞や線維芽細胞などに対し、細胞増殖能および遊走促進能を有し血管新生、創傷治癒などに関わっていることが知られている(Trends. Pharm acol. Sci. Apr; 22(4):201-7, 2001)。

また、脳腫瘍、肺癌、乳癌、胃癌、頭頸部癌、前立腺癌など種々の癌において b F G F または線維芽細胞増殖因子受容体ファミリーに属するF G F R 1 (以下 「F l g」とする)、F G F R 2 (以下「B e k」とする)などの発現が報告されている (Proc. Natl. Acad. Sci. USA, 87: 5710-5714, 1990 Oncogene. 1997 Aug 14;15(7):817-26 Cancer Res. 1994 Jan 15;54(2):523-30. Cancer Res. 1992 Feb 1;52(3):571-7)。特に胃癌においては、スキルス胃癌など分化度の低い癌を中心に、B e k の過剰発現およびその予後の悪さとの相関が報告されている (Clin Cancer Res. 1996 Aug;2(8):1373-81. J Cancer Res Clin Oncol. 2001 Apr;127(4):207-16. Int Rev Cytol. 2001;204:49-95.)。

Flgの自己リン酸化に対する阻害作用を有する低分子化合物については複数の報告があるが (J Pharmacol Exp Ther. 1998 Jul;286(1):569-77. Invest

3

-NH-C (=0)-NH-

を表し、

 R^{1} 、 R^{2} 、および R^{3} は、同一または異なっていてもよく、

水素原子、

水酸基、

ハロゲン原子、

エトロ基。

アミノ基、

- C1-8アルキル基、
- C2-6アルケニル基、
- С2-6アルキニル基、または
- C₁₋₆アルコキシ基を表し、

R¹、R²、およびR³が表すことがあるC1-6アルキル基、C2-6アルケニル 基、C₂₋₆アルキニル基、およびC₁₋₆アルコキシ基は、水酸基、ハロゲン原子、 C_{1-6} アルコキシ基、 C_{1-6} アルキルカルボニル基、カルボキシル基、 C_{1-6} ア ルコキシカルボニル基、- (C=O) -NR¹⁴R¹⁵ (R¹⁴およびR¹⁵は、同一 または異なっていてもよく、水素原子または水酸基により置換されていてもよい C₁₋₄アルキル基を表すか、あるいはR¹⁴とR¹⁵はそれらが結合している窒素 原子と一緒になって飽和の5または6員の複素環式基を表す)、アミノ基(この アミノ基上の1または2の水素原子は、C1-6アルキル基または飽和または不飽 和の3~8員炭素環式基または複素環式基により置換されていてもよく、このC $_{1-6}$ アルキル基は更に水酸基、 C_{1-6} アルコキシ基、または飽和または不飽和の 3~8員炭素環式基または複素環式基により置換されていてもよい)、または飽 和または不飽和の3~8員炭素環式基または複素環式基((i)この炭素環式基 または複素環式基は、水酸基、酸素原子、 C_{1-6} アルキル基、 C_{2-6} アルケニル 基、 C_{2-6} アルキニル基、 C_{1-6} アルコキシ基、 C_{1-6} アルコキシカルボニル基、 または飽和または不飽和の3~8員炭素環式基または複素環式基により置換され ていてもよく、これらの C_{1-8} アルキル基、 C_{2-8} アルケニル基、および C_{3-6} アルキニル基は更に水酸基、C₁₋₈アルコキシ基、または飽和または不飽和の3

- C_{1-6} アルコキシは、好ましくは、 C_{1-4} アルコキシである。
- C_{2-6} アルケニルは、好ましくは、 C_{2-4} アルケニルである。
- C_{2-6} アルキニルは、好ましくは、 C_{2-4} アルキニルである。
- C_{1-6} アルキルの例としては、メチル、エチル、n-プロビル、イソプロビル、n-ブチル、i-ブチル、s-ブチル、t-ブチル、n-ペンチル、n-ペキシルが挙げられる。
- C_{1-6} アルコキシの例としては、メトキシ、エトキシ、n-プロポキシ、i-プロポキシ、n-プトキシ、i-ブトキシ、s-プトキシ、t-ブトキシが挙げられる。
- C_{2-6} アルケニルの例としては、アリル基、ブテニル基、ペンテニル基、ヘキセニル基が挙げられる。
- C_{2-8} アルキニルの例としては、2-プロピニル基、ブチニル基、ベンチニル基、ヘキシニル基が挙げられる。

本明細書において「により置換されていてもよいアルキル」とは、アルキル上の1またはそれ以上の水素原子が1またはそれ以上の置換基(同一または異なっていてもよい)により置換されたアルキルおよび非置換アルキルを意味する。置換基の最大数はアルキル上の置換可能な水素原子の数に依存して決定できることは当業者に明らかであろう。これらはアルキル以外の置換基を有する基についても同様である。

ハロゲン原子とは、フッ素原子、塩素原子、臭素原子、およびヨウ素原子を意味する。

飽和または不飽和の3~8員炭素環は、好ましくは、飽和または不飽和の4~7員炭素環、より好ましくは飽和または不飽和の5または6員炭素環、であることができる。飽和または不飽和の3~8員炭素環の例としては、フェニル、シクロプロビル、シクロブチル、シクロペンチル、シクロヘキシル、およびシクロヘプチルが挙げられる。

飽和または不飽和の3~8員複素環は、酸素原子、窒素原子、および硫黄原子から選択される1以上の異種原子を含む。飽和または不飽和の3~8員複素環は、好ましくは、1、2、または3個の異種原子を含み、残りの環員原子が炭素原子

ロゲン原子により置換されていてもよく、R13は水素原子、水酸基、ハロゲン 原子、C₁₋₈アルコキシ基、C₁₋₈アルキルカルボニル基、カルボキシル基、C $_{1-6}$ アルコキシカルボニル基、 $-(C=O)-NR^{14}R^{15}(R^{14}$ および R^{15} は、 同一または異なっていてもよく、水素原子または水酸基により置換されていても よいC₁₋₄アルキル基を表すか、あるいはR¹⁴とR¹⁵はそれらが結合している 窒素原子と一緒になって飽和の5または6員の複素環式基を表す)、アミノ基 (このアミノ基上の1または2の水素原子は、〇1-8アルキル基または飽和また は不飽和の3~8員炭素環式基または複素環式基により置換されていてもよく、 この C1-6 アルキル基は更に水酸基、 C1-6 アルコキシ基、または飽和または不 飽和の3~8員炭素環式基または複素環式基により置換されていてもよい)、ま たは飽和または不飽和の3~8員炭素環式基または複素環式基(この炭素環式基 または複素環式基は、水酸基、酸素原子、C1-6アルキル基、C2-6アルケニル 基、 C_{2-6} アルキニル基、 C_{1-6} アルコキシ基、 C_{1-6} アルコキシカルボニル基、 または飽和または不飽和の3~8員炭素環式基または複素環式基により置換され ていてもよく、これらのC1-8アルキル基、C2-8アルケニル基、およびC2-8 アルキニル基は更に水酸基、C1-gアルコキシ基、または飽和または不飽和の3 ~8員炭素環式基または複素環式基により置換されていてもよく、この炭素環式 基または複素環式基が2つのC₁₋₈アルキル基により置換されている場合にはこ の2つのアルキル基は一緒になってアルキレン鎖を形成していてもよく、またこ の炭素環式基または複素環式基は他の飽和または不飽和の5~7員炭素環または 複素環と縮合して二環式基を形成してもよい)を表す)を表す。 p=0のとき、 - (CH₂) p-は結合を表す。

 R^{5} 、 R^{6} 、 R^{7} 、および R^{8} は、好ましくは、すべて水素原子を表すか、あるいは R^{5} 、 R^{6} 、 R^{7} 、および R^{8} のいずれか一つまたは二つが水素原子以外の基を表し、残りすべてが水素原子を表す。

 R^{9} は、好ましくは、飽和または不飽和の $4\sim7$ 員炭素環式基または複素環式基を表す。

 R^{9} が表す炭素環式基または複素環式基の置換基は、好ましくは、酸素原子、 C_{1-4} アルキル基、 C_{2-4} アルケニル基、 C_{1-4} アルコキシ基、ハロゲン原子、

9

-C $(-R^{111})$ $(-R^{112})$ - $(式中、R^{111}およびR^{112}は、同一または異なっていてもよく、水素原子または<math>C_{1-4}$ アルキルカルボニルオキシ基を表す)、または

-0-

を表し、

 R^{103} は、水酸基または C_{1-6} アルコキシ基を表し、この C_{1-6} アルコキシ基 は、水酸基、ハロゲン原子、С1-6アルコキシ基、С1-8アルキルカルボニル基、 カルボキシル基、 C_{1-6} アルコキシカルボニル基、 $-(C=0)-NR^{14}R^{15}$ (R¹⁴およびR¹⁵は、同一または異なっていてもよく、水素原子または水酸基 により置換されていてもよいC1-4アルキル基を表すか、あるいはR14とR15 はそれらが結合している窒素原子と一緒になって飽和の5または6員の複素環式 基を表す)、アミノ基(このアミノ基上の1または2の水素原子は、C1-6アル キル基または飽和または不飽和の3~8員炭素環式基または複素環式基により置 換されていてもよく、この C_{1-6} アルキル基は更に水酸基、 C_{1-6} アルコキシ基、 または飽和または不飽和の3~8員炭素環式基または複素環式基により置換され ていてもよい)、または飽和または不飽和の3~8員炭素環式基または複素環式 基(この炭素環式基または複素環式基は、水酸基、酸素原子、 C1-6アルキル基、 C2-6アルケニル基、C2-6アルキニル基、C1-6アルコキシ基、C1-6アルコ キシカルボニル基、または飽和または不飽和の3~8員炭素環式基または複素環 式基により置換されていてもよく、これらの C_{1-6} アルキル基、 C_{2-6} アルケニ ル基、および C2-6 アルキニル基は更に水酸基、 C1-6 アルコキシ基、または飽 和または不飽和の3~8員炭素環式基または複素環式基により置換されていても よく、この炭素環式基または複素環式基が2つのC1-6アルキル基により置換さ れている場合にはこの2つのアルキル基は一緒になってアルキレン鎖を形成して いてもよく、またこの炭素環式基または複素環式基は他の飽和または不飽和の5 ~7員炭素環または複素環と縮合して二環式基を形成してもよい)により置換さ れていてもよく、

 R^{105} 、 R^{106} 、 R^{107} 、および R^{108} はすべて水素原子を表すか、あるいは R^{105} 、 R^{106} 、 R^{107} 、および R^{108} のいずれか一つまたは二つがハロゲン原

この C_{1-6} アルキル基は更に水酸基、 C_{1-6} アルコキシ基、または飽和または不飽和の $3 \sim 8$ 員炭素環式基または複素環式基により置換されていてもよい)、または飽和または不飽和の $3 \sim 8$ 員炭素環式基または複素環式基(この炭素環式基または複素環式基は、水酸基、酸素原子、 C_{1-6} アルキル基、 C_{2-6} アルケニル基、 C_{2-6} アルキニル基、 C_{1-6} アルコキシ基、 C_{1-6} アルコキシカルボニル基、または飽和または不飽和の $3 \sim 8$ 員炭素環式基または複素環式基により置換されていてもよく、これらの C_{1-6} アルキル基、 C_{2-6} アルケニル基、および C_{2-6} アルキニル基は更に水酸基、 C_{1-6} アルコキシ基、または飽和または不飽和の $3 \sim 8$ 員炭素環式基または複素環式基により置換されていてもよく、この炭素環式基または複素環式基により置換されていてもよく、この炭素環式基または複素環式基により置換されていてもよく、またこの2つのアルキル基は一緒になってアルキレン鎖を形成していてもよく、またこの炭素環式基または複素環式基は他の飽和または不飽和の $5 \sim 7$ 員炭素環または複素環式基を形成してもよい)を表す)を表し、

 R^{205} 、 R^{206} 、 R^{207} 、および R^{208} はすべて水素原子を表すか、あるいは R^{205} 、 R^{206} 、 R^{207} 、および R^{208} のいずれか一つまたは二つがハロゲン原 子、 C_{1-4} アルキル基、 C_{1-4} アルコキシ基、ニトロ基、またはアミノ基を表し、残りすべてが水素原子を表し、

 R^{209} は、 C_{1-4} アルキル基または飽和または不飽和の $4\sim7$ 員炭素環式基または複素環式基を表し、 R^{210} は水素原子または C_{1-4} アルキル基を表す)

本発明による化合物の好ましい例としては、式 (300)の化合物が挙げられる。

(上記式中、

Xは、CHまたはNを表し、

本発明による化合物の好ましい例としては、式 (400) の化合物が挙げられる。

(上記式中、

Xは、CHまたはNを表し、

 R^{402} および R^{403} は、同一または異なっていてもよく、 $-O-(CH_2)$ p $-R^{13}$ (pは0~6の整数を表し、-(CH₂) p-は C_{1-6} アルキル基、水酸 基、またはハロゲン原子により置換されていてもよく、R13は水素原子、水酸 基、ハロゲン原子、C₁₋₆アルコキシ基、C₁₋₆アルキルカルボニル基、カルボ キシル基、C₁₋₆アルコキシカルポニル基、- (C=O) -NR¹⁴R¹⁵ (R¹⁴ およびR15は、同一または異なっていてもよく、水素原子または水酸基により 置換されていてもよいC₁₋₄アルキル基を表すか、あるいはR¹⁴とR¹⁵はそれ らが結合している窒素原子と一緒になって飽和の5または6員の複素環式基を表 す)、 C_{1-6} アルコキシカルボニル基、アミノ基(このアミノ基上の1または2 の水素原子は、C₁₋₈アルキル基または飽和または不飽和の3~8員炭素環式基 または複素環式基により置換されていてもよく、この C 1-6 アルキル基は更に水 酸基、 C_{1-6} アルコキシ基、または飽和または不飽和の $3\sim8$ 員炭素環式基また は複素環式基により置換されていてもよい)、または飽和または不飽和の3~8 員炭素環式基または複素環式基 (この炭素環式基または複素環式基は、水酸基、 酸素原子、 C_{1-6} アルキル基、 C_{2-6} アルケニル基、 C_{2-6} アルキニル基、 C_{1-6} $_6$ アルコキシ基、 C_{1-6} アルコキシカルポニル基、または飽和または不飽和の3 ~8員炭素環式基または複素環式基により置換されていてもよく、これらの C, -6アルキル基、C₂₋₆アルケニル基、およびC₂₋₆アルキニル基は更に水酸基、 C_{1-6} アルコキシ基、または飽和または不飽和の $3\sim8$ 員炭素環式基または複素

本発明による化合物は溶媒和物とすることができる。このような溶媒和物としては、水和物、アルコール和物(例えば、メタノール和物、エタノール和物)、 およびエーテル和物(例えば、ジエチルエーテル和物)が挙げられる。

化合物の製造

本発明の化合物は、例えば、スキーム1からスキーム14にしたがって製造できる。本発明による化合物の合成に必要な出発物質は市販されているか、または常法によって容易に製造できる。なお、スキーム中のR¹~R¹⁰は式(I)において定義された内容と同義である。

スキーム1

スキーム2

$$R^{2}$$
 R^{3} R^{4} R^{5} $R^{$

適当な溶媒 (例えば、クロロベンゼン) 中において、ニトロフェノール誘導体

相当するキナゾリン誘導体を得ることができる。水酸基の保護は、未精製の固体を、N,N-ジメチルホルムアミド中、炭酸カリウムの存在下、ベンジルクロリドを作用させた後、分離精製することにより行うことができる。

スキーム3

$$R^5$$
 R^6 $R^$

適当な溶媒(例えば、クロロベンゼン)中において、フェノール誘導体に対し 4ークロロキノリン誘導体あるいは相当するキナゾリン誘導体を作用させ、4ーフェノキシキノリン誘導体あるいは相当するキナゾリン誘導体を合成した後、水酸基の保護基を適当な条件(例えば、保護基がベンジル基の場合は、例えば、N, Nージメチルホルムアミド中、水酸化パラジウムー炭素あるいはパラジウムー炭素の存在下、水素雰囲気下において反応させる)で外し、4ー(ヒドロキシフェノキシ)キノリン誘導体あるいは相当するキナゾリン誘導体を得る。4ー(ヒドロキシフェノキシ)キノリン誘導体あるいはキナゾリン誘導体のヒドロキシ基を適当な条件でアリール化(例えば、クロロホルムートリエチルアミン混合溶媒中で酢酸銅(II)存在下アリールホウ酸誘導体と反応させる)もしくはアルキル

Ĺ

護されたフェノール誘導体に適当な溶媒(例えば、ニトロメタン)中で、ルイス酸(例えば、イッテリビウム(III)トリフラート)の存在下酸クロリド誘導体を反応させると、アシル基を有するフェノール誘導体が得られ、さらに水酸基の保護を適当な条件で外すことによって、対応するアシルフェノール誘導体が得られる。

スキーム5

キノリン環の7位に特定の置換基を有する誘導体を合成する為の中間体は、例えば、スキーム5に従って製造できる。市販の4'ーヒドロキシアセトフェノン誘導体を適当な置換基(例えば、ベンジル基)で保護した後、ニトロ化剤(例えば、発煙硝酸ー酢酸)を作用させることによりニトロ基を導入できる。ここからは、スキーム1と同様にして行なう。すなわち、ニトロ基を還元しアミノ基とした後、塩基の存在下、ギ酸エステルを作用させてキノロン環を形成させる。次い

キナゾリン環の7位に特定の置換基を有する誘導体を合成する為の中間体は、例えば、スキーム6に従って製造できる。市販の4'ーヒドロキシ安息香酸エステル誘導体の水酸基を適当な置換基(例えば、ベンジル基)で保護した後、ニトロ化剤(例えば、発煙硝酸一酢酸)を作用させることによりニトロ基を導入できる。ここからは、スキーム1と同様にして行なう。すなわち、ニトロ基を還元しアミノ基とした後、塩基の存在下、ホルムアミドを作用させてキナゾロン環を形成させる。次いで塩素化剤を作用させることにより4ークロロキナゾリン誘導体を製造できる。この塩素化反応においては、塩素化剤としてオキシ塩化リンを用いる場合、塩基(例えば、N、Nージイソプロビルエチルアミン)を添加することによって更に収率の向上が可能である。

キナゾリン環の6位に特定の置換基を有する誘導体を合成する為の中間体は、 4'ーヒドロキシ安息香酸エステル誘導体の代わりに3'ーヒドロキシ安息香酸 エステル誘導体を用いることにより製造できる。

キノリンまたはキナゾリン環の7位に特定の置換基を有するアニリン誘導体は、 例えば、スキーム7に従って製造できる。すなわち、スキーム5もしくはスキー ム6で得られた4-クロロキノリン誘導体あるいはキナゾリン誘導体を適当な溶 媒(例えば、クロロベンゼン)中において、ニトロフェノール誘導体と反応させ、 4- (ニトロフェノキシ) キノリン誘導体あるいは相当するキナゾリン誘導体を 合成した後、適当な溶媒(例えば、N, N-ジメチルホルムアミド)中、触媒 (例えば、水酸化パラジウムー炭素あるいはパラジウムー炭素) の存在下、水素 雰囲気下において反応をおこなうと4-(アミノフェノキシ)キノリン誘導体あ るいは相当するキナゾリン誘導体が得られる。ニトロ基は亜鉛、鉄などによって も還元することが可能である。あるいはまた、アミノフェノール誘導体に対し、 適当な溶媒(例えば、ジメチルスルホキシド)中において塩基(例えば、水素化 ナトリウム)の存在下、4ークロロキノリン誘導体あるいは相当するキナゾリン 誘導体を作用させると4-(アミノフェノキシ)キノリン誘導体あるいは相当す るキナゾリン誘導体が得られる。4-(アミノフェノキシ)キナゾリン誘導体は、 アミノフェノール誘導体を水酸化ナトリウム水溶液に溶解し、適当な有機溶媒 (例えば、エチルメチルケトン) に溶解した4-クロロキナゾリン誘導体と相関 移動触媒(例えば、テトラーnーブチルアンモニウムクロリド)の存在下、また は触媒なしで、2相系反応をおこなうことによっても製造できる。4- (アミノ フェノキシ) キノリン誘導体あるいはキナゾリン誘導体のアニリノ基を適当な条 件でアリール化(例えば、クロロホルムートリエチルアミン混合溶媒中で酢酸銅 (II) 存在下アリールホウ酸誘導体と反応させる) もしくはアルキル化 (例え ば、N, N-ジメチルホルムアミド中、ケトン誘導体と縮合した後で、酢酸ホウ 素化水素ナトリウムと反応させる)させると対応する、キノリンあるいはキナゾ リンの7位の水酸基が保護されたアニリン誘導体が得られる。このアニリン誘導 体の水酸機の保護基を適当な条件(例えば、保護基がベンジル基の場合は、例え ば、N, N-ジメチルホルムアミド中、水酸化パラジウムー炭素あるいはパラジ ウムー炭素の存在下、水素雰囲気下において反応させる)で外し、7-ヒドロキ シキノリン誘導体あるいは相当する7ーヒドロキシキナゾリン誘導体を得る。次 に7ーヒドロキシキノリン誘導体あるいは相当する7ーヒドロキシキナゾリン誘

27

R³=置換されていてもよいC₁₋₆アルコキシ基

キノリンまたはキナゾリン環の7位に特定の置換基を有するエーテル誘導体は、例えば、スキーム8に従って製造できる。すなわち、スキーム5もしくはスキーム6で得られた4ークロロキノリン誘導体あるいはキナゾリン誘導体を適当な溶媒(例えば、クロロベンゼン)中において、フェノール誘導体と反応させ、4ーフェノキシキノリン誘導体あるいは相当するキナゾリン誘導体を合成した後、水酸基の保護基を適当な条件(例えば、保護基がベンジル基の場合は、例えば、N,N-ジメチルホルムアミド中、水酸化パラジウムー炭素あるいはパラジウムー炭

スキーム9

$$R^{5}$$
 R^{6} $R^$

R³-- 置換されていてもよいC₁₋₆アルコキシ基

キノリンまたはキナゾリン環の7位に特定の置換基を有するケトン誘導体は、例えば、スキーム9に従って製造できる。すなわち、スキーム5もしくはスキーム6で得られた4ークロロキノリン誘導体あるいはキナゾリン誘導体を適当な溶媒(例えば、クロロベンゼン)中において、アシルフェノール誘導体と反応させると、キノリンあるいはキナゾリンの7位の水酸基が保護されたケトン誘導体が得られる。このケトン誘導体の水酸基の保護基を適当な条件(例えば、保護基がベンジル基の場合は、例えば、N,Nージメチルホルムアミド中、水酸化パラジウムー炭素あるいはパラジウムー炭素の存在下、水素雰囲気下において反応させる)で外し、7ーヒドロキシキノリン誘導体あるいは相当する7ーヒドロキシキナゾリン誘導体を得る。次に7ーヒドロキシキノリン誘導体あるいは相当する7ーヒドロキシキナゾリン誘導体を得る。次に7ーヒドロキシキノリン誘導体あるいは相当する7ーヒドロキシキナゾリン誘導体に対して、適当な条件(例えば、N,Nージメチ

キノリンまたはキナゾリン環の7位に特定の置換基を有するメチレン誘導体は、例えば、スキーム10に従って製造できる。すなわち、スキーム9で得られたキノリンあるいはキナゾリンの7位の水酸基が保護されたケトン誘導体のカルボニル基を適当な条件で還元し、対応するメチレン誘導体を得る。このメチレン誘導体の水酸基の保護基を適当な条件(例えば、保護基がベンジル基の場合は、例えば、N,Nージメチルホルムアミド中、水酸化パラジウムー炭素あるいはパラジウムー炭素の存在下、水素雰囲気下において反応させる)で外し、7ーとドロキシキノリン誘導体あるいは相当する7ーヒドロキシキナゾリン誘導体を得る。次に7ーヒドロキシキノリン誘導体あるいは相当する7ーヒドロキシキナゾリン誘導体を得る。次に7ーヒドロキシキノリン誘導体あるいは相当する7ーヒドロキシキナゾリン誘導体に対して、適当な条件(例えば、N,Nージメチルホルムアミド中、炭酸カリウムの存在下、ハロゲン化アルキルと反応させる)でアルキル化反応を行なうと、キノリンまたはキナゾリン環の7位に特定の置換基を有するメチレン誘導体が得られる。

なお、スキーム10にはキノリン環またはキナゾリン環の7位に置換基を有する本発明による化合物の合成法が開示されているが、6位に保護基が導入されたキノリン誘導体またはキナゾリン誘導体を出発物質として使用することにより、キノリン環またはキナゾリン環の6位に置換基を有する本発明による化合物を合成することができる。出発化合物として使用する6位に保護基が導入されたキノリン誘導体またはキナゾリン誘導体は、例えば、後記のスキーム18に従って合成することができる。

存在下NaS-R⁹と反応をおこなうと式(I)においてQ=Sである化合物が得られる。

スキーム13
$$R^{5}$$

$$R^{7}$$

$$R^{8}$$

$$R^{7}$$

$$R^{8}$$

$$R^{8}$$

$$R^{7}$$

$$R^{8}$$

$$R^{8}$$

$$R^{8}$$

$$R^{7}$$

$$R^{8}$$

$$R^{8}$$

$$R^{7}$$

$$R^{8}$$

$$R^{8}$$

$$R^{7}$$

$$R^{8}$$

$$R^{8}$$

$$R^{7}$$

$$R^{8}$$

$$R^{8}$$

$$R^{9}$$

$$R^{1}$$

$$R^{1}$$

$$R^{1}$$

$$R^{2}$$

$$R^{1}$$

$$R^{2}$$

$$R^{1}$$

$$R^{2}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$Alk=C_{1-6}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{4}$$

例えば、エタノール中で水素化ホウ素ナトリウムを作用させてアルコール誘導体とし、更に適当な溶媒中(例えばN, N-ジメチルホルムアミド中)で塩基 (例えばトリエチルアミン)の存在下、アシル化剤(例えば無水酢酸)を作用させることによりエステル誘導体(式(I)において R^{11} または R^{12} が C_{1-6} アルキルカルボニルオキシ基である化合物)が得られる。

キシキノリン誘導体あるいは相当するキナゾリン誘導体に対して、適当な条件 (例えばN, Nージメチルホルムアミド中、炭酸カリウムの存在下、ハロゲン化 アルキル (RHal) を作用させるか、あるいは、光延反応を用いて、アルキル アルコール (ROH) を作用させる) でアルキル化反応を実施することにより、キノリンあるいはキナゾリンの7位に特定の置換基を有するウレア誘導体を得ることができる。

キノリン環またはキナゾリン環の6位あるいは7位に特定の置換基を有する、6,7ージメトキシー4ー(ニトロフェノキシ)キノリン誘導体あるいは相当するキナゾリン誘導体を適当な溶媒(例えば、クロロホルム)に溶解し、適当なルイス酸(例えば、三塩化アルミニウム)の存在下、加熱還流することにより、キノリンあるいはキナゾリンの6位あるいは7位が水酸基であるキノリン誘導体あるいは相当するキナゾリン誘導体を得ることができる。この誘導体の水酸基を適当な条件で保護し、分離精製することにより、6位あるいは7位が保護された4ー(ニトロフェノキシ)キノリン誘導体あるいは相当するキナゾリン誘導体を得ることができる。水酸基は、例えば、ベンジル基により保護することができ、N,Nージメチルホルムアミド中、炭酸カリウムの存在下、ベンジルクロリドを作用させることによりベンジル基を導入できる。得られた誘導体は、スキーム7に記載の方法と同様にして、4ー(アミノフェノキシ)キノリン誘導体あるいは相当するキナゾリン誘導体に誘導することができる。この誘導体からスキーム14に従って、キノリン環またはキナゾリン環の6位あるいは7位に特定の置換基を有するウレア誘導体を製造することができる。

なお、スキーム14にはキノリン環またはキナゾリン環の7位に置換基を有する本発明による化合物の合成法が開示されているが、6位に保護基が導入されたキノリン誘導体またはキナゾリン誘導体を出発物質として使用することにより、キノリン環またはキナゾリン環の6位に置換基を有する本発明による化合物を合成することができる。出発化合物として使用する6位に保護基が導入されたキノリン誘導体またはキナゾリン誘導体は、例えば、後記のスキーム18およびスキーム7に従って合成することができる。

キノリン環の7位またはキナゾリン環の7位に特定の置換基を有するウレア誘

本発明によれば、Bekの自己リン酸化の阻害が治療上または予防上有効である疾患の治療または予防に用いられる薬剤の製造のための、本発明による化合物の使用が提供される。

本発明による化合物は、経口および非経口(例えば、静脈内投与、筋肉内投与、皮下投与、直腸投与、経皮投与)のいずれかの投与経路で、ヒトおよびヒト以外の動物に投与することができる。したがって、本発明による化合物を有効成分と 本産薬組成物は、投与経路に応じた適当な剤型に処方される。

具体的には、経口剤としては、錠剤、カプセル剤、散在、顆粒剤、シロップ剤などが挙げられ、非経口剤としては、注射剤、座剤、テープ剤、軟膏剤などが挙げられる。

これらの各種製剤は、通常用いられている賦形剤、崩壊剤、結合剤、滑沢剤、 着色剤、希釈剤などを用いて常法により製造することができる。

賦形剤としては、例えば、乳糖、ブドウ糖、コーンスターチ、ソルビット、結晶セルロースなどが、崩壊剤としては、例えば、デンプン、アルギン酸ナトリウム、ゼラチン末、炭酸カルシウム、クエン酸カルシウム、デキストリンなどが、結合剤としては例えばジメチルセルロース、ポリビニルアルコール、ポリビニルエーテル、メチルセルロース、エチルセルロース、アラビアゴム、ゼラチン、ヒドロキシプロピルセルロース、ポリビニルピロリドンなどが、滑沢剤としては、例えば、タルク、ステアリン酸マグネシウム、ポリエチレングリコール、硬化植物油などがそれぞれ挙げられる。

また、上記注射剤は、必要により緩衝剤、pH調整剤、安定化剤、等張化剤、 保存剤などを添加して製造することができる。

本発明による医薬組成物中、本発明による化合物の含有量は、その剤型に応じて異なるが、通常全組成物中0.5~50重量%、好ましくは、1~20重量%である。

投与量は患者の年齢、体重、性別、疾患の相違、症状の程度などを考慮して、個々の場合に応じて適宜決定されるが、好ましくは、1-100mg/kgの範囲であり、これを1日1回または数回に分けて投与する。

本発明による化合物は他の医薬、たとえば抗癌剤と組み合わせて投与すること

41

スキーム18

スキーム19

亜鉛(12.80g)をメタノール(80ml)に加え、100℃で3時間攪拌した。反応液をろ過し、滤液を濃縮した。得られたクルードに飽和炭酸水素ナトリウム水溶液を加え室温で一晩攪拌した。溶液にクロロホルムを加え抽出操作を行い、クロロホルム層を硫酸ナトリウムで乾燥した。減圧下溶媒を留去し目的とする化合物を1.80g、収率47%で得た。

製造例5 (原料5)

4-{[7-(ベンジルオキシ)-6-メトキシー4-キノリル]オキシ}-2-フルオロアニリン(1.78g)、4-tertープチルフェニルボロン酸(1.62g)、酢酸銅(II)(2.07g)、トリエチルアミン(6ml)をクロロホルム(100ml)に加え室温で一晩攪拌した。更に4-tertープチルボロン酸(0.81g)、酢酸銅(II)(1.03g)を加え室温で一晩攪拌した。反応液に水を加え、クロロホルムで抽出し、クロロホルム層を硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られたクルードをクロロホルム/アセトンで展開するシリカゲルクロマトグラフィーにて精製し目的とする化合物を1.94g,収率82%で得た。

製造例6 (原料6)

N-(4-{[7-(ベンジルオキシ)-6-メトキシー4ーキノリル]オキシ}-2-フルオロフェニル)-N-[4-(tert-ブチル)フェニル]アミン(1.94g)、メタンスルホン酸(1m1)をトリフルオロ酢酸(20m1)に加え1時間加熱還流した。反応液の溶媒を減圧下留去し、得られたクルードに飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。クロロホルム層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られたクルードをクロロホルム/メタノールで展開するシリカゲルクロマトグラフィーにて精製し目的とする化合物を1.28g,収率80%で得た。

製造例7(原料7)

6,7ージメトキシー4ークロロキノリン(4.00g)、4ーベンジルオキシフェノール(7.15g)をクロロベンゼン(4ml)に加え一晩加熱還流した。反応液にクロロホルム、水酸化ナトリウム水溶液を加え室温で攪拌した。有機層をクロロホルムで抽出し、クロロホルム層を飽和炭酸水素ナトリウム水溶液

製造例11(原料11)

 $N-(4-\{[7-(ベンジルオキシ)-6-メトキシ-4-キナゾリニル]$ オキシ $\}$ フェニル) -N-[4-(tert-ブチル) フェニル] アミン (0.45g)、メタンスルホン酸 (0.5m1) をトリフルオロ酢酸 (10m1) に加え1時間加熱還流した。反応液の溶媒を減圧下留去し、得られたクルードに飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。クロロホルム層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られたクルードをクロロホルム/アセトンで展開するシリカゲルクロマトグラフィーにて精製し目的とする化合物を0.20g、収率54%で得た。

製造例12:2-アミノ-5-ベンジルオキシ-4-メトキシアセトフェノン(原料16)の製造

3'、4'-ジヒドロキシアセトフェノン (20.1g) をN, N-ジメチル ホルムアミド (320m1) に溶解し、炭酸リチウム (24.4g) およびヨウ 化メチル (20.5ml) を加え、55℃で一晩攪拌した。反応液を氷冷し、1 0% 塩酸水溶液を加え酸性にした。クロロホルムを加え、2回抽出した。飽和 食塩水で洗浄し、硫酸ナトリウムで乾燥後、濃縮乾燥した。生成した固体をN, N-ジメチルホルムアミド(200m1)に溶解し、炭酸カリウム(21.8) g)、テトラブチルアンモニウムヨーダイド(4.8g)およびベンジルブロミ ド (18.9m1) を加え、100℃で1時間攪拌した。水を加え、クロロホル ムで2回抽出した。飽和食塩水で洗浄し、硫酸ナトリウムで乾燥後、濃縮乾燥し た。得られた固体を酢酸 (95m1) に溶解し、氷冷下発煙硝酸 (13.6m 1)を少しずつ加え、室温で3時間攪拌した。氷冷下、10%水酸化ナトリウム 水溶液を加え中和した。クロロホルムを加え生成した固体を溶解した。反応液を クロロホルムで2回抽出し、飽和食塩水で洗浄し、硫酸ナトリウムで乾燥後、濃 縮乾燥した。得られた固体にエタノールを加え、100°に加熱し溶解した。水 (20m1)、アンモニウムクロリド (21.1g) および亜鉛粉末 (112 g) を加え、100℃で1時間攪拌した。反応液を熱いうちにろ過し、クロロホ ルムーメタノール混合液で洗浄した。母液を濃縮し、得られた残渣に酢酸エチル および10%水酸化ナトリウムを加え激しく攪拌した後,不溶物をろ過した。母 去した。クルードをクロロホルム/メタノールで展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を1.6g、収率63%で得た。

¹H-NMR (CDC1₃, 400MHz): δ 4.04 (s, 3H), 5.32 (s, 2H), 7.32-7.44 (m, 4H), 7.45 (s, 1H), 7.49 (s, 1H), 7.51-7.55 (m, 2H), 8.57 (d, J=4.9Hz, 1H)

質量分析值 (ESI-MS, m/z):300 (M-1)

製造例 15:4-[(6-ペンジルオキシ-7-メトキシ-4-キノリル) オキシ]-3-フロローニトロペンゼン (原料 <math>19) の製造

4-[(6,7-ジメトキシー4-キノリル)オキシ]-3-フロローニトロベンゼン(4.3g)をクロロホルム(200m1)に溶解し、塩化アルミニウム(10g)を加え、2時間加熱還流した。溶媒留去後注意深く水(200m1)を加え、析出する粗結晶(6.5g)をろ取した。この粗結晶をジメチルホルムアミド(150m1)に溶解し、これに炭酸カリウム(9.0g)および塩化ベンジル(4.5g)を加え、5時間室温にて攪拌した。酢酸エチルにて抽出した後飽和食塩水にて洗浄し、無水硫酸ナトリウムにて乾燥し、減圧下に溶媒を留去した。得られる残留物をシリカゲルカラムクロマトグラフィーにて精製し、ローヘキサン:酢酸エチル(1:4) 画分より表題の化合物を1.4g、収率27%の収率で得た。

¹H-NMR (CDCl₃, 400MHz): 4.04 (s, 3H), 5.26 (s, 2H), 6.57 (d, J=5.1Hz, 1H), 7.15-7.47 (m, 6H), 7.33 (s, 1H), 7.47 (s, 1H), 8.02-8.05 (m, 1H), 8.13-8.16 (m, 1H), 8.57 (d, J=5.1Hz, 1H)

化合物 5:(4-tert-ブチルフェニル)-[4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]アミン

4-[(6,7-ジメトキシ-4-キノリル) オキシ] アニリン <math>(689mg) (出発原料A)、4-t-ブチルフェニルポロン酸 (450mg) (出発原料B) をジクロロメタン (50m1)、トリエチルアミン (0.7m1) の混液

1)、20%水酸化パラジウム(0.58g)を加え、水素雰囲気下室温で一晩 攪拌した。不溶物をろ過後、溶媒を減圧下留去した。クルードに水と酢酸エチル を加え、酢酸エチルで抽出し、飽和食塩水にて洗浄し、硫酸ナトリウムにて乾燥 した。溶媒を減圧下留去し、クロロホルム/アセトンで展開するシリカゲルクロ マトグラフィーにより精製し、表題の化合物を205mg、収率62%で得た。 ¹H-NMR(CDC1₃,400MHz): 88.49(d,J=5.2Hz, 1H),7.60(s,1H),7.52(s,1H),/.32(d,J=8. 5Hz,2H),7.12(d,J=8.8Hz,2H),7.07(d,J= 9.3Hz,2H),7.05(d,J=8.8Hz,2H),6.45(d, J=5.4Hz,1H),5.68(s,1H),4.08(s,3H),1. 32(s,9H)

質量分析値 (m/z):415 [M+H] +

化合物 $22:(4-tert-ブチルフェニル) - \{4-[7-(2-クロロエトキシ) - 6-メトキシキノリン-4-イルオキシ] フェニル} アミン$

4-[4-(4-tert-ブチルフェニルアミノ)フェノキシ]-6-メトキシキノリン-7-オール(化合物21)(60mg)(出発原料A)をN,N-ジメチルホルムアミド(2m1)に溶解した後、炭酸カリウム(200mg)、1-ブロモ-2-クロロエチレン(0.1m1)(出発原料B)を加え、室温で8時間攪拌した。反応液に水と酢酸エチルを加え、酢酸エチルで抽出し、飽和食塩水にて洗浄し、硫酸ナトリウムにて乾燥した。溶媒を減圧下留去し、クルードをメタノール洗浄することにより精製し、表題の化合物を22mg、収率32%で得た。

¹H-NMR (CDCl₃, 400MHz): δ8. 49 (d, J=5. 1Hz, 1H), 7. 60 (s, 1H), 7. 41 (s, 1H), 7. 33 (d, J=8. 6Hz, 2H), 7. 12 (d, J=8. 6Hz, 2H), 7. 07 (d, J=8. 3Hz, 2H), 7. 06 (d, J=8. 6Hz, 2H), 6. 49 (d, J=5. 4Hz, 1H), 5. 69 (s, 1H), 4. 45 (t, J=6. 1Hz, 2H), 4. 05 (s, 3H), 3. 96 (t, J=6. 3Hz, 2H), 1. 33 (s, 9H)

 $^{1}H-NMR$ (CDCl₃, 400MHz): δ 8. 50 (d, J=5. 1Hz, 1H), 7. 57 (s, 1H), 7. 44 (s, 1H), 7. 38 (d, J=8. 8Hz, 2H), 7. 15 (d, J=8. 8Hz, 2H), 7. 09 (d, J=9. 0Hz, 2H), 6. 99 (d, J=8. 8Hz, 2H), 6. 48 (d, J=5. 4Hz, 1H), 4. 05 (s, 3H), 4. 05 (s, 3H), 1. 34 (s, 9H)

質量分析値 (m/z):430 [M+H]+

<u>化合物31:酢酸 (4-tert-ブチルフェニル) - [4-(6,7-ジメ)] トキシキノリン-4-イルオキシ) フェニル] メチル エステル</u>

[4-(tertープチル)フェニル] {4-[(6,7-ジメトキシー4-キノリル)オキシ]フェニル}メタノン(111mg)、水素化ホウ素ナトリウム(76mg)をエタノール(15ml)に加え、室温で3時間攪拌した。反応液に水を加え、クロロホルムで抽出し、クロロホルム層を無水硫酸ナトリウムで乾燥した。クロロホルムを減圧下留去し、得られたクルードをクロロホルム/酢酸エチルで展開する薄層シリカゲルクロマトグラフィーにより精製し、(4-tertープチルフェニル)-[4-(6,7-ジメトキシー4-キノリルオキシ)フェニル]メタノールを108mg、収率97%で得た。

(4-tert-ブチルフェニル)-[4-(6,7-ジメトキシー4-キノリルオキシ)フェニル]メタノール(51mg)をN,Nージメチルホルムアミド(10m1)に溶解した後、トリエチルアミン(1m1)、無水酢酸(0.5m1)を加え、室温で一晩攪拌した。反応液に水と酢酸エチルを加え、酢酸エチルで抽出し、飽和食塩水にて洗浄し、硫酸ナトリウムにて乾燥した。溶媒を減圧下留去し、クロロホルム/アセトンで展開する薄層シリカゲルクロマトグラフィーにより精製し、表題の化合物を35mg、収率63%で得た。

¹H-NMR (CDCl₃, 400MHz): δ8.50 (m, 1H), 7.5 4 (s, 1H), 7.52 (s, 1H), 7.45 (d, J=8.8Hz, 2 H), 7.39 (d, J=8.3Hz, 2H), 7.29 (d, J=8.6Hz, 2H), 7.16 (d, J=8.5Hz, 2H), 6.91 (s, 1H), 6. 52 (d, J=5.2Hz, 1H), 4.06 (s, 3H), 4.03 (s, 3 ¹H-NMR (CDCl₃, 400MHz): δ 8. 48 (d, J=5. 1Hz, 1H), 7. 58 (s, 1H), 7. 41 (s, 1H), 7. 33 (d, J=8. 8Hz, 2H), 7. 04-7. 13 (m, 6H), 6. 48 (d, J=5. 1 Hz, 1H), 5. 69 (br, 1H), 4. 34 (t, J=6. 0Hz, 2 H), 4. 03 (s, 3H), 3. 73-3. 77 (m, 4H), 2. 96 (t, J=6. 1Hz, 2H), 2. 62-2. 66 (m, 4H), 1. 33 (s, 9 H)

質量分析值 (m/z):528 [M+H] +

化合物 $42:(4-tert-ブチルフェニル)-{4-[6-メトキシ-7-(1-プロピルピペリジン-4-イルメトキシ)キノリン-4-イルオキシ]フェニル<math>}$ アミン

4-ヒドロキシメチルヒペリジン (1.8g) をクロロホルム (30ml) に 溶解した後、トリエチルアミン (4m1)、二炭酸ジーtertーブチル (3.28g) を加え、室温で1時間攪拌した。減圧下溶媒を留去した後、クルードを 酢酸エチルに溶解し、飽和食塩水にて洗浄し、硫酸ナトリウムにて乾燥した。溶 媒を減圧下留去し、ヘキサンにて洗浄し、tert-ブチルー4- (ヒドロキシ メチル) -1 - 1 (4-tert-ブチルフェニル) - [4-(6-メトキシ-7-ヒドロキシ-4-キノリルオキシ) フェニル] アミン (化合物 2 1) (0.8g) (出発原 料A)、tertーブチルー4ー(ヒドロキシメチル)-1ーピペリジンカルボ キシレート (0.59g) (出発原料B)、トリフェニルホスフィン (0.85 g) をテトラヒドロフラン (25ml) に溶解し、室温にて20分間攪拌した。 氷冷下反応液に40%ジエチルアゾジカルボキシレート(1.5ml)を加え、 室温で一晩攪拌した。反応液に水と酢酸エチルを加え、酢酸エチルで抽出し、飽 和食塩水にて洗浄し、硫酸ナトリウムにて乾燥した。溶媒を減圧下留去し、得ら れたクルードを30%トリフルオロ酢酸/クロロホルム溶液(15ml)に溶解 し、室温にて30分間攪拌した。減圧下溶媒を留去した後、クロロホルム/アセ トンで展開するシリカゲルクロマトグラフィーにより精製し、(4-tert-ブチルフェニル) - {4-[6-メトキシ-7-(4-ピペリジニルメトキシ)

(100mg)、モルホリン(0.15ml)、炭酸セシウム(200mg)を順次加え、80℃で一晩攪拌した。不溶物をろ過した後、溶媒を減圧下留去し、クロロホルム/アセトンで展開する薄層シリカゲルクロマトグラフィーにより精製し、表題の化合物を10mg、収率9%で得た。

¹H-NMR (CDCl₃, 400MHz): δ8. 47 (d, J=5.6Hz, 1H), 7. 59 (s, 1H), 7. 51 (s, 1H), 7. 32-6. 70 (m, 8H), 6. 51 (d, J=5.6Hz, 1H), 4. 06 (s, 3H), 4. 06 (s, 3H), 3. 88 (m, 4H), 3. 74-3. 38 (m, 4H)

質量分析值 (m/z):458 [M+H] + .

化合物 $59:1-{4-(4-tert-ブチル-フェニルアミノ) フェノキシ]-6-メトキシキノリン-<math>7-$ イルオキシ $}-3-$ モルホリン-4-イルプロパン-2-オール

 $4-[4-(4-tert-ブチルフェニルアミノ)フェノキシ]-6-メトキシキノリン-7-オール(化合物21)(150mg)(出発原料A)、炭酸カリウム(250mg)にN,N-ジメチルホルムアミド(2m1)を加え、エピブロモヒドリン(46<math>\mu$ 1)を滴下し、室温で24時間攪拌した。反応液中にモルホリン(95 μ 1)(出発原料B)を滴下し、 $70\sim75$ で5時間攪拌した。酢酸エチルで抽出し、飽和食塩水にて洗浄し、硫酸ナトリウムにて乾燥後、溶媒を減圧下留去した。クルードをクロロホルム/メタノールで展開する薄層シリカゲルクロマトグラフィーにより精製し、表題の化合物を179mg、収率89%で得た。

¹H-NMR (CDCl₃, 400MHz): δ 8. 48 (d, J=5. 4Hz, 1H), 7. 58 (s, 1H), 7. 43 (s, 1H), 7. 33 (d, J=8. 8Hz, 2H), 7. 04-7. 14 (m, 6H), 6. 48 (d, J=5. 1 Hz, 1H), 5. 69 (br, 1H), 4. 25-4. 32 (m, 1H), 4. 15-4. 24 (m, 2H), 4. 02 (s, 3H), 3. 69-3. 79 (m, 4H), 2. 66-2. 72 (m, 2H), 2. 60-2. 64 (m, 2H), 2. 48-2. 54 (m, 2H), 1. 32 (s, 9H)

間攪拌した。反応液に水と酢酸エチルを加え、酢酸エチルで抽出し、飽和食塩水にて洗浄し、硫酸ナトリウムにて乾燥した。溶媒を減圧下留去し、クロロホルム/アセトンで展開する薄層シリカゲルクロマトグラフィーにより精製し、表題の化合物を180mg、収率64%で得た。

¹H-NMR (CDCl₃, 400MHz): δ 8. 48 (d, J=5. 4Hz, 1H), 7. 58 (s, 1H), 7. 43 (s, 1H), 7. 33 (d, J=8. 8Hz, 2H), 7. 04-7. 14 (m, 6H), 6. 48 (d, J=5. 1 Hz, 1H), 5. 69 (br, 1H), 4. 25-4. 32 (m, 1H), 4. 15-4. 24 (m, 2H), 4. 02 (s, 3H), 3. 69-3. 79 (m, 4H), 2. 66-2. 72 (m, 2H), 2. 60-2. 64 (m, 2H), 2. 48-2. 54 (m, 2H), 1. 32 (s, 9H)

質量分析値 (m/z):558 [M+H] +

<u>化合物 7 5: [4-(6,7-ジメトキシキノリン-4-イルオキシ) フェニル 1-(4,5-ジメチルチアゾール-2-イル) アミン</u></u>

4-[(6,7-ジメトキシー4-キノリル) オキシ] アニリン (200 mg) をエタノール (30 m1) に溶解させそこへ <math>4- クロロベンゾイルイソチオシアナート (173 mg) 加え室温で 3時間攪拌した。反応終了後溶媒を留去し得られたクルードをクロロホルム/アセトンで展開するシリカゲルクロマトグラフィーにて精製し、N-(4- クロロベンゾイル)-N'-4-[(6,7-ジメトキシー4-キノリル) オキシ] フェニル] チオウレアを <math>313 mg,収率 94%で得た。

この化合物を 3 N 水酸化ナトリウム水溶液 1 0 m 1 に加え 1 0 0 $\mathbb C$ で 1 0 分加熱攪拌した。加熱を止め濃塩酸にて酸性にした後、アンモニア水で弱アルカリ性にした。溶液中の沈殿物を水で洗浄しながら濾別し、N - $\{4-[(6,7-3)(4-4-4-4))$ がきます。フェニル $\{4-4-4\}$ がで得た。

 $N-\{4-[(6,7-ジメトキシ-4-キノリル) オキシ] フェニル } チオウレア (50mg) をジメチルホルムアミド (5ml) に溶解し、トリエチルアミン (43mg) および<math>3-$ プロモー2-プタノン (43mg) を加え、室温に

 1 H-NMR (DMSO-d₆, 400MHz) : δ 8. 52 (d, J=5. 1 Hz, 1H), 7. 72-7. 66 (m, 4H), 7. 50 (s, 1H), 7. 45 (m, 2H), 7. 41 (s, 1H), 7. 39 (d, J=9. 0Hz, 2 H), 7. 20 (m, 1H), 6. 60 (d, J=5. 1Hz, 1H), 3. 9 6 (s, 3H), 3. 94 (s, 3H)

質量分析値 (m/z):455 [M-H]-

<u>名合物 7 7 : (4-tert-ブチルシクロヘキシル) - 34-(6,7-ジメトキシキノリン-4-イルオキシ) フェニル] アミン</u></u>

4-(6,7-ジメトキシー4-キノリルオキシ)アニリン(300mg)をN,N-ジメチルホルムアミド(10ml)に溶解した後、4-tertーブチルシクロヘキサノン(200mg)を加え、60℃で一時間攪拌した。室温に冷却後、ナトリウムトリアセトキシボロハイドライド(400mg)を加え、室温で3時間攪拌した。反応液に水と酢酸エチルを加え、酢酸エチルで抽出し、飽和食塩水にて洗浄し、硫酸ナトリウムにて乾燥した。溶媒を減圧下留去し、クロロホルム/アセトンで展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を50mg、収率11%で得た。

¹H-NMR (CDCl₃, 400MHz): δ8. 45 (m, 1H), 7. 5 9 (s, 1H), 7. 48 (s, 1H), 7. 02-6. 96 (m, 2H), 6. 70-6. 62 (m, 2H), 6. 48 (m, 1H), 4. 05 (s, 6H), 3. 18 (m, 1H), 2. 25-1. 05 (m, 9H), 0. 88 (m, 9H)

質量分析值 (m/z):435 [M+H] +

化合物 $78:(4-tert-ブチルフェニル) - \{4-[6-メトキシ-7-(2-モルホリン-4-イルエトキシ) キナゾリン-4-イルオキシ] フェニル} アミン$

 $4-\{4-\{4-\{4-(tert-プチル) アニリノ\} フェノキシ\} -6-メトキシ-7-キナゾリノール (原料11) (100mg)、炭酸カリウム (50mg)、<math>4-(2-$ クロロエチル) モルホリン塩酸塩 (67mg) をN, N-ジメチルホルムアミド (2m1) に加え、80で一晩攪拌した。反応液に水を加え

質量分析值 (m/z):546 [M+H] + //2 / (M+H) + //2 /

化合物 $87:1-(3,3-ジメチループチル)-3-\{2-フルオロ-4-(6-メトキシ-7-(2-モルホリン-4-イルーエトキシ)-キノリン-4-イルオキシ]-フェニル<math>1-ウレ$ ア

4-[(7-ベンジルオキシー6-メトキシー4-キノリル)オキシ]-2-フルオローアニリン(3.0g)を無水クロロホルム(100m1)に溶解し、トリエチルアミン(3.9g)を加え、続いて無水クロロホルム(5m1)に溶解したトリフォスゲン(2.3g)を加え、室温にて30分攪拌した。次いで無水クロロホルム(5m1)に溶解した3,3-ジメチルブチルアミン(1.6g)を加え、室温にてさらに1時間攪拌した。飽和炭酸水素ナトリウム溶液を加え、攪拌した後、有機層を分離した。有機層を飽和食塩水にて洗浄し、無水硫酸ナトリウムにて乾燥し、減圧下に溶媒を留去した。得られる残留物をシリカゲルカラムクロマトグラフィーにて精製し、クロロホルム:メタノール(98:2)画分より1-[4-([7-ベンジルオキシー6-メトキシーキノリンー4ーイルオキシ]-2-フルオロフェニル)-3-(3,3-ジメチループチル)ウレアを3.9g、収率97%の収率で得た。

¹H-NMR (CDCl₃, 400MHz): 0.93 (s, 9H), 1.43 -1.47 (m, 2H) 3.26-3.31 (m, 2H), 4.01 (s, 3 H), 4.78 (br s, 1H), 5.30 (s, 2H), 6.45 (d, J =5.4Hz, 1H), 6.57 (br s, 1H), 6.88-6.95 (m, 2H), 7.28-7.49 (m, 5H), 7.44 (s, 1H), 7.50 (s, 1H), 8.14 (t, J=8.8Hz, 1H), 8.45 (d, J=5.4Hz, 1H)

上記で得られた1-[4-([7-ベンジルオキシ-6-メトキシーキノリン-4-イルオキシ] -2-フルオロフェニル) -3-(3,3-ジメチルーブチル) ウレア(11g) にトリフルオロ酢酸(20ml) およびメタンスルフォン酸(1ml) に懸濁し、1時間加熱還流した。溶媒を減圧下に留去し、得られる残留物に水を加え、<math>10%水酸化ナトリウム溶液にて溶液をほぼpH7とし、得られる沈殿物をろ取し、1-(3,3-ジメチループチル) -3-[2-フルオ

8 (m, 2H), 4. 94 (br, 2H), 6. 84 (d, J=5. 1Hz, 1H), 6. 97 (d, J=9. 0Hz, 2H), 7. 64 (s, 1H), 8. 01 (s, 1H), 8. 38 (t, J=9. 0Hz, 1H), 8. 57 (d, J=4. 6Hz, 1H)

質量分析値 (ESI-MS, m/z):563 (M+Na) $^+$ 化合物99:1-(3,3-ジメチループチル)-3-{2-フルオロ-4- [6-メトキシー7-(2-ピペリジン-1-イルーエトキシ)-キノリン-4- -イルオキシ]-フェニル}-ウレア

1-(3,3-9メチループチル)-3-[2-7ルオロー4-(7-1) にキシー6ーメトキシーキノリンー4ーイルオキシ)ーフェニル]ーウレアの粗精製物をジメチルホルムアミド(100m1)に溶解し、これに炭酸カリウム(18g)、1-7ロモー2-0ロロエタン(11g)を加え、室温にて20時間攪拌した。酢酸エチルにて抽出した後飽和食塩水にて洗浄し、無水硫酸ナトリウムにて乾燥し、減圧下に溶媒を留去した。得られる残留物を1-0+サン:酢酸エチル(10+1)の混合溶媒にて洗浄後ろ取りし、1-[1-1]+1)の混合溶媒にて洗浄後ろ取りし、1-[1-1]+1)の混合溶媒にて洗浄後ろ取りし、1-[1-1]+1)の混合溶媒にて洗浄後ろ取りし、1-[1-1]+1)の混合溶媒にて洗浄後ろ取りし、1-[1-1]+1)の混合溶媒にて洗浄後ろ取りし、1-[1-1]+1)の収率で得た。

 $^{1}H-NMR$ (CDCl₃, 400MHz): 0. 94 (s, 3H), 1. 44 -1. 48 (m, 2H) 3. 26-3. 32 (m, 2H), 3. 91-3. 95 (m, 2H), 4. 01 (s, 3H), 4. 41-4. 45 (m, 2H), 4. 79-4. 81 (m, 1H), 6. 47 (d, J=5. 4Hz, 1H), 6. 55-6. 57 (m, 1H), 6. 89-6. 96 (m, 2H), 7. 40 (s, 1H), 7. 51 (s, 1H), 8. 10 (t, J=8. 8Hz, 1H), 8. 47 (d, J=5. 4Hz, 1H)

上記で得られたウレア (1.98g) (出発原料A)、炭酸カリウム 5 eq (2.82g)、ピペリジン 5 eq (2.02ml) (出発原料B) に、N,N -ジメチルホルムアミド (80ml) を加え、70-75で17時間攪拌した。ピペリジン 2 eq (0.8ml) (出発原料B) を追加した。さらに70-7

-フェニル<math>] -3 -(3, 3 -ジメチル-ブチル) -ウレア

4-[(6, 7-ジメトキシーキノリル) オキシ] アニリン (2g) をクロロ ホルム (100m1) (出発原料A) に溶解し、トリエチルアミン (2m1) を 添加した。トリホスゲン (1g) のクロロホルム (4m1) 溶液を滴下し、室温 で30分間攪拌した。3, 3-ジメチルブチルアミン(750 mg)(出発原料B) を加え、室温で5時間攪拌した。反応液に水およびクロロホルムを加えクロ ロホルムで抽出し、飽和食塩水にて洗浄し、硫酸ナトリウムにて乾燥後、溶媒を 減圧下で溜去した。クルードをクロロホルム/アセトンで展開するシリカゲルク ロマトグラフィーにより精製し、表題の化合物を1.70g、収率59%で得た。 ¹H-NMR (CDCl₃, 400MHz): 0.93 (s, 9H), 1.42 -1.46 (m, 2H), 3.27-3.32 (m, 2H), 4.03 (s, 3H), 4. 03 (s, 3H), 5. 03 (br, 1H), 6. 44 (d, J=5. $3 \,\mathrm{Hz}$, $1 \,\mathrm{H}$), $7.\,11$ (d, $J = 9.\,0 \,\mathrm{Hz}$, $2 \,\mathrm{H}$), $7.\,41$ (s, 1H), 7. 43 (d, J = 8.8Hz, 2H), 7. 55 (s, 1H), 8. 4 6 (d, J=5.1Hz, 1H), 8.84 (br, 1H)質量分析值 (ESI-MS, m/z):424 (M++1)

3-(3,3-ジメチループチル)-ウレア塩酸塩

1 - [4 - (6, 7 - ジメトキシーキノリン-4 - イルオキシ) - フェニル]-3-(3,3-ジメチルーブチル)-ウレアにメタノール20m1、クロロホルム2m1を加えて溶かし、塩化水素メタノールを加え、酸性にした。濃縮し、 残渣にジエチルエーテルを加える過し、表題の化合物を1.75g、収率91% で得た。

¹H-NMR (CDCl₃, 400MHz): 0.92 (s, 9H), 1.45 -1.49 (m, 2H), 3.24-3.30 (m, 2H), 4.10 (s, 3) H), 4. 14 (s, 3H), 5. 98 (br, 1H), 6. 48 (d, J=6. $6 \,\mathrm{Hz}$, $1 \,\mathrm{H}$), 7.02 (d, $J = 9.0 \,\mathrm{Hz}$, $2 \,\mathrm{H}$), 7.65 (s, 1H), 7. 72 (d, J=9.0Hz, 2H), 7. 88 (s, 1H), 8. 1 8 (d, J=6.6Hz, 1H), 8.84 (br, 1H)

化合物番号	化合物構造
5	
20	
21	HO N
22	CI ON N

73

4-イルオキシ)フェニル]アミン

- 8: (4-プチルフェニル) [4-(6,7-ジメトキシキノリン-4-イル オキシ) フェニル] アミン
- 9: [4-(6,7-i)] (4-i) (4
- 10: (4-9)00へキシルフェニル) [4-(6,7-9)3トキシキノリン -4-71ルオキシ)フェニル] アミン
- 11: (4-tert-ブチルフェニル) [2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ) フェニル] アミン
- 12: (4-tert-ブチルフェニル) [3-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ) フェニル] アミン
- 13: (4-tert-ブチルフェニル) [4-(6,7-ジメトキシキノリン-4-イルオキシ) 2-メチルフェニル] アミン
- 14: (4-t er t-ブチルフェニル) [4-(6,7-ジメトキシキノリン-4-イルオキシ) 2-メトキシフェニル] アミン
- 15: (4-tert-ブチルフェニル) [4-(6,7-ジメトキシキノリン-4-イルオキシ) 3-メトキシフェニル] アミン
- 16: (4-tert-ブチルフェニル) [4-(6,7-ジメトキシキノリン-4-イルオキシ) 2,3-ジメチルフェニル] アミン
- 17: (4-tert-ブチルフェニル) [4-(6,7-ジメトキシキノリン-4-イルオキシ) 2,5-ジメチルフェニル] アミン
- 18: (4-tert-ブチルフェニル) [4-(6,7-ジメトキシキノリン-4-イルオキシ) 3-フルオロフェニル] アミン
- 19: (4-tert-ブチルフェニル) [4-(6,7-ジメトキシキノリン-4-イルオキシ) 2-フルオロフェニル] アミン
- 23: $(4-tert-ブチルフェニル) \{4-[7-(3-クロロプロポキシ) 6-メトキシキノリン-4-イルオキシ] フェニル} アミン$
- 25: $(4-tert-ブチルフェニル) \{4-[6-メトキシ-7-(4-thr)] 4-イルブトキシ) キノリン-4-イルオキシ] フェニル} アミン$

エチルアミノ) エトキシ] -6-メトキシ-4-キノリル} オキシ) アニリン 43:(3,4-ジメトキシフェニル) -[4-(6,7-ジメトキシキノリン -4-イルオキシ) フェニル] アミン

 $45:(4-tert-ブチルフェニル)-(4-{6-メトキシ-7-[2-(4-メチルー[1,4]ジアゼピン-1-イル)エトキシ]キノリン-4-イルオキシ}フェニル)アミン$

46:N1-[4-(tert-ブチル) フェニル] -4-($\{7-[3-(i)]\}$ メチルアミノ) プロポキシ] -6-メトキシー4ーキノリル} オキシ) アニリン47:N1-[4-(tert-ブチル) フェニル] -4-($\{7-[3-(i)]\}$ エチルアミノ) プロポキシ] -6-メトキシー4ーキノリル} オキシ) アニリン48:2-[(2- $\{4-[4-(4-tert-ブチル-フェニルアミノ))$ フェノキシ] -6-メトキシキノリン- $\{7-(3-(i))\}$ エチルーフェニルアミノ) フェノキシ] -6-メトキシキノリン- $\{7-(3-(i))\}$ エチル) -($\{7-[3-(i))\}$ コキシエチル) アミノ] エタノール

 $49:2-[(2-\{4-\{4-\{4-tert-7+n-7+n-7+n-7+1,2-1\}\})]$ $x_1+y_2=(2-\{4-\{4-\{4-tert-7+n-7+n-7+1,2-1\}\}\})$ $x_2+y_3=(2-\{4-\{4-\{4-tert-7+n-7+n-7+1,2-1\}\}\})$

 $50: \{4-[7-(2-rゼパン-1-イルエトキシ)-6-メトキシキノリン-4-イルオキシ] フェニル \} - (4-tert-ブチルフェニル) アミン <math>51:2-[(3-[4-[4-(4-tert-ブチルフェニルアミノ)] フェノキシ]-6-メトキシキノリン-7-イルオキシ] ブロビル) - (2-ハイドロキシエチル) アミノ] エタノール$

52:2-[(3-{4-[4-(4-tert-ブチルフェニルアミノ) フェノキシ] -6-メトキシキノリン-7-イルオキシ} プロピル) メチルアミノ] エタノール

 $53: (4-tert-プチルフェニル) - {4-[6-メトキシ-7-(3-ピロリジン-1-イルプロボキシ) キノリン-4-イルオキシ] フェニル} アミン$

54: [4-[7-(3-rセパン-1-イルプロポキシ)-6-メトキシキノリン-4-イルオキシ] フェニル] - (4-tert-ブチルフェニル) アミン

77

アゼピンー1ーイル)プロパンー2ーオール

 $66:1-\{4-\{4-\{4-tert-ブチルフェニルアミノ\}\}$ フェノキシ] -6-メトキシキノリン-7-イルオキシ $\}$ -3-エチルアミノプロパン-2-オール

 $67:1-{4-(4-tert-ブチルフェニルアミノ) フェノキシ]$ $-6-メトキシキノリン-7-イルオキシ} -3-ジメチルアミノプロパン-2 -オール$

 $68: (4-tert-ブチルフェニル) - (4-{7-[2-(2,6-ジメチルモルホリン-4-イル) エトキシ] - 6-メトキシキノリン-4-イルオキシ} フェニル) アミン$

69: $(4-tert-ブチルフェニル) - (4-{7-[3-(2,6-ジメチルモルホリン-4-イル) プロポキシ] - 6-メトキシキノリン-4-イルオキシ} フェニル) アミン$

72: [4-(6, 7-ジメトキシキナゾリン-4-イルオキシ) フェニル] - (4-イソプロピルフェニル) アミン

73: [4-(6,7-9)メトキシキノリン-4-4ルオキシ) フェニル] チオフェン-3-4ルアミン

74: (4-tert-ブチルフェニル) - [4-(6,7-ジメトキシキナゾリン-4-イルオキシ) フェニル] アミン

 $80: (4-tert-ブチルフェニル) - {4-[6-メトキシ-7-(3-th) + 20: (4-tert-ブチルフェニル) - 4-(4-tert-ブチルフェニル) アミン$

81: $[1-(2-\{4-\{4-(4-tert-プチルフェニルアミノ) フェノキシ]-6-メトキシキノリン-7-イルオキシ} エチル) ピペリジン-4-イル] メタノール$

82:1-(2-{4-[4-(4-tert-ブチルフェニルアミノ) フェノキシ] -6-メトキシキノリン-7-イルオキシ} エチル) ピペリジン-4-オール

 -イルオキシ} -2-フルオローフェニル) -ウレア

 $98:1-(3,3-ジメチループチル)-3-\{3-フルオロー4-[6-メトキシ-7-(2-モルホリン-4-イルーエトキシ)-キノリン-4-イルオキシ]-フェニル}-ウレア$

100:1-{2-クロロ-4-[6-メトキシ-7-(2-ピペリジン-1-イルーエトキシ)ーキノリン-4-イルオキシ]ーフェニル}-3-(3,3-ジメチループチル)ーウレア

102:1-[4-(6,7-ジメトキシーキノリン-4-イルオキシ)-3-フルオロフェニル]-3-(3,3-ジメチループチル)ーウレア

103:1-[2-クロロー4-(6,7-ジメトキシーキノリンー4ーイルオキシ) -7ェニル] -3-(3,3-ジメチループチル) -ウレア

105:1-[4-(6,7-ジメトキシーキノリンー4-イルオキシ)ーフェニル1-3-(3,3,5-トリメチルーシクロヘキシル)-ウレア

108:1-[4-(6,7-ジメトキシーキノリンー4-イルオキシ)ーフェニル]-3-(3,3-ジメチルーシクロヘキシル)ーウレア

109:1-[4-(6,7-ジメトキシーキノリン-4-イルオキシ)-2-フルオローフェニル]-3-(3,3-ジメチルーシクロヘキシル)ーウレア

111:1-[4-(6,7-ジメトキシーキノリンー4-イルオキシ)-2-フルオローフェニル]-3-(3,3-ジメチループチル)ーウレア

 $112:1-(3,3-ジメチループチル)-3-\{4-[6-メトキシ-7-(2-モルホリン-4-イルーエトキシ)-キノリン-4-イルオキシ]-フェ$

エトキシ) -6-メトキシーキノリン-4-イルオキシ] -7ェニル} -3- (3, 3-ジメチループチル) -ウレア

124:1-(3,3-ジメチループチル)-3-(4- $\{6-x\}$ +キシ-7-[2-(4-ビロリジン-1-イルーピペリジン-1-イル)-エトキシ]ーキノリン-4-イルオキシ}-フェニル)-ウレア

 $125:1-(2-クロロ-4-{7-[2-(2,6-ジメチルーモルホリン-4-イル)-エトキシ]-6-メトキシーキノリン-4-イルオキシ}-フェニル)-3-(3,3-ジメチループチル)-ウレア$

 $126:1-{3-011-4-[6-メトキシ-7-(2-モルホリン-4-イルーエトキシ)ーキノリン-4-イルオキシ]-フェニル}-3-(3,3-ジメチループチル)ーウレア$

127:1-(3-クロロー4-{7-[2-(2,6-ジメチルーモルホリンー4-イル)ーエトキシ]ー6-メトキシーキノリンー4ーイルオキシ}ーフェニル)ー3-(3,3-ジメチループチル)ーウレア

128:1-(3,3-ジメチループチル)-3-(4- $\{7-[2-(2,6-2)]$ -ジメチルーモルホリン-4-イル)-エトキシ]-6-メトキシーキノリン-4-イルオキシ}-3-フルオローフェニル)-ウレア

129:1-(3,3-ジメチループチル)-3- $\{3-7$ ルオロー4-[6-4+5)-7-(2-ピペリジン-1-イルーエトキシ)-キノリン-4-イルオキシ]-フェニル $\}$ -ウレア

 $130:1-(3,3-ジメチループチル)-3-(4-{7-[2-(2,6-ジメチルーピペリジン-1-イル)-エトキシ]-6-メトキシーキノリン-4-イルオキシ}-2-フルオローフェニル)-ウレア$

131:1-(3,3-ジメチループチル)-3-(2-フルオロー4-{6-メトキシ-7-[2-(2,2,6,6-テトラメチルーピペリジン-1-イル)-エトキシ]ーキノリン-4-イルオキシ}ーフェニル)ーウレア

 $132:1-(3,3-ジメチループチル)-3-(4-{7-[2-(2,6-ジメチルーピペリジン-1-イル)-エトキシ]-6-メトキシーキノリン-4-イルオキシ}-3-フルオローフェニル)-ウレア$

化合物番号	化合物構造	出発原料A
1		NH ₂
2		NH ₂
3		NH ₂
4		NH ₂
6	F F	NH ₂

化合物 番 号	化合物構造	出発原料A
7		NH ₂
8		NH ₂
9		NH ₂
10		NH ₂
11		CI NH ₂

化合物番号	化合物構造	出発原料A
12		CI NH ₂
13		NH ₂
14		NH ₂
15		O NH ₂
16		NH ₂

化合物番号	化合物構造	出発原料A
17		NH ₂
18		F NH ₂
19		NH ₂
23		HOLLIN
25		

化合物番 号	化合物構造	出発原料A
26		
27		HO
28		HO
29		
33		

化合物番 号	化合物構造	出発原料A
34		
35		
36		
38		
39		

化合物番号	化合物構造	150 PM. PT-1-1-1
番号	ILE WIFE	出発原料A
41		
43		NH ₂
45		
46		

化合物 番 号	化合物構造	出発原料A
47		
48		
49		a ON ON
50		
51	HO OH	

化合物番号	. 化合物構造	出発原料A
52	HO NO	
53		
54		
55		HO
56		

化合物番号	化合物構造	出発原料A
57		HO
58		HO
60		HO N
61		HO
62	OH OH	HO N

化合物番号	化合物構造	出発原料A
63		HON
64		HO
65	OH OH	HOND
66	NOW	HO
67		HO N

化合物番号	化合物構造	111 00 EE MA
68		出発原料A
69		
72		NH ₂
73		NH ₂
74		NH ₂

化合物番号	化合物構造	出発原料A
80		Br L O L N
81	HO NO	CI N
82	HO O N	CI VO V N

化合物 番 号	化合物構造	出発原料A
83	H ₃ C CH ₃	
84	CI N CH, CH, H,C CH,	
85	H ₃ C ² CH ₃	
86	OH OH H ₃ C OH ₃	HO
88	H ₂ C ₀ CH ₃	

化合物 番 号	化合物構造	出発原料A
89	H,C CH, H,C CH, OH CIH CIH CIH	HO N
90	H ₂ C ₂ C ₄ , H ₃ C ₂ C ₄ C ₄ ,	HO TO THE STATE OF
91	CH CH	
94	Ho. The cold of th	
96	H ₃ C ⁻⁰ + + + + + + + + + + + + + + + + + + +	

化合物 番 号	化合物構造	出発原料A
97	CH ₃ CH ₃ CH ₃	
98	CH ₃ CH ₃ CH ₃	
100	H,C CH,	
102	H ₃ C CH ₃ H ₃ C CH ₃	F NH ₂
103	H ₃ C OH H ₃ C OH H ₃ C OH	S NH ₂

化合物 番 号	化合物構造	出発原料A
105	H ₃ C O CH ₃	NH ₂
106	H _s C O CH _s	NH₂ NH₂
107	H ₃ C ₀ N CH ₃ CH ₃	O NH ₂
108	H ₃ C O N CH ₃	NH ₂
109	H ₃ C O CH ₃ CH	NH ₂

化合物 番 号	化合物構造	出発原料A
110	H° CH's	ONH ₂
111	H ₃ C O N CH ₃	NH ₂
112	H,CO CH CH	
113	H ₃ C H ₃ C CH CH	
114	H _C CH	

化合物 番 号	化合物構造	出発原料A
115	H ₃ C CH ₃ O CH ₃ O CH ₃	
116	H,C O H,C CH,	
117	H ₂ C CH ₃	
119	H ₂ C O CH ₃	
120	H,C O CH,	

化合物 番 号	化合物構造	出発原料A
121	H ₃ C ² O++++C _{CH₃} CH ₃	a ~ 0 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +
122	H _i C CH ₃	
123	H ₂ C CH ₃	
124	H ₃ C ² CH ₃	
125	H ₁ C CH ₁ H ₂ C CH ₂ H ₃ C CH ₃ H ₄ C CH ₃ H ₄ C CH ₃ H ₅ C	

化合物番 号	化合物構造	出発原料A
126	CI N N N CH ₃ CH ₃ H ₃ C CH ₃	
127	CH ₃	
128	F N N N HC CH, CH, CH, CH, CH,	
129	H ₃ C OH ₃	
130	CH,	NH ₂

化合物 番 号	化合物構造	出発原料A
131		NH ₂
132	F T N N HC CH, CH, CH,	F NH ₂
133	H ₂ C ² CH ₃	
134	CH ₃ CH ₃ CH ₄ CH ₅ CH ₅ CH ₆ CH ₇	

<u> 化合物 8 3</u>

¹H-NMR (CDCl₃, 400MHz): 1. 32 (s, 9H), 3. 47
-3. 54 (m, 4H), 3. 83-3. 89 (m, 4H), 3. 99 (s, 3
H), 4. 45-4. 50 (m, 2H), 4. 83-4. 87 (m, 2H), 5.
76 (br, 1H), 6. 49 (d, J=5. 1Hz, 1H), 7. 06 (d, J=8. 5Hz, 2H), 7. 06 (d, J=9. 0Hz, 2H), 7. 12
(d, J=9. 0Hz, 2H), 7. 33 (d, J=8. 8Hz, 2H), 7. 49 (s, 1H), 7. 58 (s, 1H), 8. 49 (d, J=5. 4Hz, 1H)

<u> 化合物 8 4</u>

¹H-NMR (CDCl₃, 400MHz): 1. 33 (s, 9H), 2. 62 -2. 64 (m, 4H), 2. 94 (t, J=5. 9Hz, 2H), 3. 74-3. 77 (m, 4H), 4. 004 (s, 3H), 4. 33 (t, J=5. 9Hz, 2H), 5. 79 (s, 1H), 6. 37 (d, J=5. 1Hz, 1H), 6. 79 (d, J=6. 6Hz, 2H), 6. 96 (dd, J=2. 7, 8. 8Hz, 1H), 7. 07-7. 12 (m, 1H), 7. 17 (d, J=2. 7Hz, 1H), 7. 35 (d, J=8. 5Hz, 2H), 7. 42 (s, 1H), 7. 61 (s, 1H), 8. 48 (d, J=5. 4Hz, 1H)

<u>化合物 8 5</u>

¹H-NMR (CDCl₃, 400MHz): 1. 32 (s, 9H), 2. 89
-2. 92 (m, 2H), 3. 18 (t, J=5. 1Hz, 2H), 3. 683. 71 (m, 2H), 4. 03 (s, 3H), 4. 23 (t, J=5. 1Hz, 2H), 5. 72 (br, 1H), 6. 48 (d, J=5. 4Hz, 1H), 7. 06 (d, J=8. 5Hz, 2H), 7. 07 (d, J=8. 5Hz, 2H), 7. 12 (d, J=9. 0Hz, 2H), 7. 33 (d, J=8. 5Hz, 2H), 7. 42 (s, 1H), 7. 58 (s, 1H), 8. 48 (d, J=5. 4Hz, 1H)

<u>化合物 8 6</u>

 $^{1}H-NMR$ (CDCl₃, 400MHz) :1.33 (s, 9H), 2.52

<u> 化合物 9 0</u>

¹H-NMR (CDC1₃, 400MHz): δ0.94 (s, 9H), 1.43 -1.48 (m, 2H), 2.63-2.68 (m, 4H), 2.96 (t, J =5.8Hz, 2H), 3.26-3.33 (m, 2H), 3.73-3.77 (m, 4H), 4.02 (s, 3H), 4.33 (t, J=6.0Hz, 2H), 4.91-4.96 (m, 1H), 6.44 (d, J=5.4Hz, 1H), 6. 96 (br, 1H), 7.08 (d, J=9.0Hz, 2H), 7.42-7. 47 (m, 3H), 7.59 (s, 1H), 8.42 (d, J=5.6Hz, 1H)

質量分析値(ESI-MS, m/z):523 (M+1)

化合物 9 1

 1 H-NMR (CD₃OD, 400MHz): 0.97 (s, 9H), 1.48 -2.02 (m, 8H), 3.19 (m, 2H), 3.25 (m, 2H), 3. 72-3.80 (m, 4H), 4.12 (s, 3H), 4.76 (m, 2H), 6.94 (d, J=6.8Hz, 1H), 7.24 (d, J=9.0Hz, 2H), 7.61 (d, J=8.8Hz, 2H), 7.64 (s, 1H), 7.8 8 (s, 1H), 8.70 (d, J=6.6Hz, 1H) 質量分析値 (ESI-MS, m/z): 521 (M+-1)

<u>化合物 9 4</u>

¹H-NMR (CDC1₃+CD₃OD, 400MHz): 0.95 (s, 9H), 1.32-1.41 (m, 1H), 1.44-1.46 (m, 2H), 1.74 -1.77 (m, 4H), 2.03-2.08 (m, 2H), 2.13-2.19 (m, 2H), 2.61-2.64 (m, 2H), 3.03-3.07 (m, 2H), 3.27-3.32 (m, 2H), 3.51 (t, J=6.1Hz, 2H), 4.00 (s, 3H), 4.25 (t, J=6.6Hz, 2H), 4.83 (br, 1H), 6.43 (d, J=5.4Hz, 1H), 6.78 (s, 1H), 7.11 (d, J=9.0Hz, 2H), 7.42 (s, 1H), 7.43 (d, J=9.0Hz, 2H), 7.53 (s, 1H), 8.44 (d, J=5.4Hz, 1H)

1H), 7.58(s, 1H), 8.43(d, J=5.4Hz, 1H) 質量分析値(ESI-MS, m/z):539(M-1) 化合物100

 $1 - \{2 - D - D - 4 - [6 - \lambda + 2 - 7 - (2 - U \lor U) \lor V - 1 - 1 - 1 V - 1 - 1 V - 4 - 1 V + 2 V - 1 - 2 V - 1 - 2 V - 1 - 2 V$

 1 H-NMR (CDCl₃, 400MHz): 0.97 (s, 9H), 1.42 -1.54 (m, 4H), 1.58-1.68 (m, 4H), 2.57 (br, 4H), 2.93 (t, J=6.3Hz, 2H), 3.28-3.36 (m, 2H), 4.01 (s, 3H), 4.34 (t, J=6.3Hz, 2H), 4.74 (s, 1H), 6.47 (d, J=5.4Hz, 1H), 6.70 (s, 1H), 7.10 (dd, J=2.7, 9.0Hz, 1H), 7.21 (d, J=2.7Hz, 1H), 7.41 (s, 1H), 7.49 (s, 1H), 8.25 (d, J=9.0Hz, 1H), 8.49 (d, J=5.1Hz, 1H), 9 (g量分析値 (ESI-MS, m/z):555 (M) +

<u>化合物102</u>

 $^{1}H-NMR$ (CDCl₃, 400MHz): 0.92 (s, 9H), 1.41 -1.45 (m, 2H), 3.26-3.32 (m, 2H), 4.02 (s, 3 H), 4.04 (s, 3H), 5.36 (br, 1H), 6.39 (d, J=5.4Hz, 1H), 7.07-7.13 (m, 2H), 7.40 (s, 1H), 7.49-7.52 (m, 1H), 7.58 (s, 1H), 7.86 (br, 1H), 8.44 (d, J=5.4Hz, 1H)

<u>化合物103</u>

 $^{1}H-NMR$ (CDC1₃, 400MHz): 0.95 (s, 9H), 1.45 -1.50 (m, 2H), 3.27-3.35 (m, 2H), 4.04 (s, 3 H), 4.04 (s, 3H), 5.61 (br, 1H), 6.48 (d, J=5.4Hz, 1H), 7.10 (dd, J=2.7, 9.0Hz, 1H), 7.17 (br, 1H), 7.18 (d, J=2.7Hz, 1H), 7.43 (s, 1H), 7.51 (s, 1H), 8.29 (d, J=9.0Hz, 1H), 8.4 質量分析値 (ESI-MS, m/z):498,500 (M++1) 化合物108

¹H-NMR (CDCl₃, 400MHz): 0.84-2.15 (m, 8H), 0.87 (s, 3H), 0.93 (s, 3H), 3.77-3.83 (m, 1 H), 4.00 (s, 3H), 4.01 (s, 3H), 5.01 (d, J=7.8Hz, 1H), 6.40 (d, J=5.4Hz, 1H), 7.01 (d, J=9.0Hz, 2H), 7.22 (s, 1H), 7.33 (s, 1H), 7.35 (d, J=9.0Hz, 2H), 8.38 (d, J=5.4Hz, 1H)

質量分析値 (ESI-MS, m/z): 450 (M++1)

化合物 109

¹H-NMR (CDCl₃, 400MHz): 0.81-2.03 (m, 8H), 0.86 (s, 3H), 0.90 (s, 3H), 3.72-3.80 (m, 1 H), 3.97 (s, 3H), 3.98 (s, 3H), 5.02 (d, J=7.8Hz, 1H), 6.41 (d, J=5.4Hz, 1H), 6.82-6.93 (m, 3H), 7.35 (s, 1H), 7.44 (s, 1H), 8.13 (t, J=9.0Hz, 1H), 8.41 (d, J=5.4Hz, 1H)

質量分析値 (ESI-MS, m/z): 468 (M++1)

<u>化合物 1 1 0</u>

 1 H-NMR (CDCl₃, 400MHz): 0.85-2.07 (m, 8H), 3.72-3.83 (m, 1H), 4.01 (s, 3H), 4.02 (s, 3 H), 5.01 (d, J=7.6Hz, 1H), 6.44 (d, J=5.4Hz, 1H), 7.07 (dd, J=2.7, 9.0Hz, 1H), 7.16 (d, J=2.7Hz, 1H), 7.40 (s, 1H), 7.49 (s, 1H), 8.27 (d, J=9.0Hz, 1H), 8.46 (d, J=5.4Hz, 1H) 質量分析値 (ESI-MS, m/z): 484, 486 (M++1)

化合物 111

 $^{1}H-NMR$ (CDCl₃, 400MHz) : 0. 96 (s, 9H), 1. 45 -1. 51 (m, 2H), 3. 28-3. 35 (m, 2H), 4. 04 (s, 3 H), 4. 05 (s, 3H), 4. 74 (t, J=5. 4Hz, 1H), 6. 4 4. 75 (t, J=5.6Hz, 1H), 6. 48 (d, J=5.1Hz, 1H), 6. 70 (s, 1H), 7. 10 (dd, J=2.7, 9.0Hz, 1H), 7. 21 (d, J=2.9Hz, 1H), 7. 42 (s, 1H), 7. 50 (s, 1H), 8. 26 (d, J=9.0Hz, 1H), 8. 50 (d, J=5.1Hz, 1H)

質量分析値 (ESI-MS, m/z):557 (M)+

質量分析値 (ESI-MS, m/z):570 (M++1)

<u>化合物115</u>

¹H-NMR (CDCl₃, 400MHz): 0.97 (s, 9H), 1.48
-1.52 (m, 2H), 1.81 (br, 4H), 2.31 (s, 3H), 2.
51 (br, 2H), 2.68 (br, 2H), 2.97 (t, J=6.1Hz, 2H), 3.29-3.35 (m, 2H), 4.01 (s, 3H), 4.33
(t, J=6.1Hz, 2H), 4.75 (br, 1H), 6.47 (d, J=5.4Hz, 1H), 6.71 (s, 1H), 7.11 (dd, J=2.7, 9.0Hz, 1H), 7.21 (d, J=2.7Hz, 1H), 7.41 (s, 1H), 7.49 (s, 1H), 8.26 (d, J=9.0Hz, 1H), 8.4
9 (d, J=5.4Hz, 1H)

<u>化合物116</u>

¹H-NMR (CDC1₃, 400MHz): 0.96 (s, 9H), 1.18 (d, J=6.3Hz, 6H), 1.47-1.52 (m, 2H), 1.92-1.97 (m, 2H), 2.88-2.96 (m, 4H), 3.29-3.35 (m, 2H), 3.70-3.77 (m, 2H), 4.01 (s, 3H), 4.33 (t, J=6.1Hz, 2H), 4.97 (t, J=5.4Hz, 1H), 6.48 (d, J=5.4Hz, 1H), 6.82 (s, 1H), 7.10 (dd, J=2.7, 9.0Hz, 1H), 7.42 (s, 1H), 7.50 (s, 1H), 8.27 (d, J=9.0Hz, 1H), 8.49 (d, J=5.1H) z, 1H)

WO 03/033472 PCT/JP02/10803

137

H), 7.39-7.44 (m, 3H), 7.54 (s, 1H), 8.43 (d, J = 5.4 Hz, 1H

質量分析值 (ESI-MS, m/z):549 (M+1),547 (M-1) <u>化合物 1 2 1</u>

 $^{1}H-NMR$ (CDCl₃ 400MHz) : δ 0.94 (s, 9H), 1.43 -1.49 (m, 2H), 1.88-2.06 (m, 4H), 2.38-2.50 (m, 2H), 2. 53-2. 62 (m, 1H), 3. 09-3. 14 (m, 2H)2 H), $3.\ 26-3.\ 34$ (m, 4 H), $4.\ 01$ (s, 3 H), $4.\ 41-$ 4. 46 (m, 2H), 4. 87-4.93 (m, 1H), 6. 40 (d, J=5. 1 Hz, 1 H), 6. 88 (br, 1 H), 7. 07 (d, J = 9. 0 Hz, 2 H), 7. 18-7. 33 (m, 5 H), 7. 42-7. 50 (m, 3 H), 7. 55 (s, 1H), 8. 42 (d, J = 5.4 Hz, 1H) 質量分析値 (ESI-MS, m/z) : 597 (M+1), 595 (M-1)

<u>化合物122</u>

 $^{1}H-NMR$ (CDC1₃, 400MHz) : δ 0. 95 (s, 9H), 1. 42 -1.49 (m, 2H), 1.88-2.09 (m, 4H), 2.26-2.47 (m, 4H), 2.55-2.66 (m, 1H), 2.83-2.92 (m, 1H)2 H), 3.24-3.37 (m, 4 H), 4.01 (s, 3 H), 4.27(t, J=6.3 Hz, 2H), 6.41 (d, J=5.4 Hz, 1H), 7.0.8 (d, J = 9.0 Hz, 2H), 7.19-7.34 (m, 5H), 7.38 (s, 1H), 7.47 (d, J=8.8Hz, 2H), 7.54 (s, 1)H), 8.39 (d, J = 5.1 Hz, 1 H)

質量分析値 (ESI-MS, m/z):611 (M+1)

<u>化合物123</u>

 $^{1}\text{H}-\text{NMR}$ (CDC1_{3.}400MHz) : δ 0.94 (s, 9H), 1.42 -1.50 (m, 4H), 1.62-1.74 (m, 6H), 1.83-1.9 0 (m, 2H), 2.11-2.20 (m, 2H), 2.43 (br, 1H), 2. 61 (br, 4H), 2. 93 (t, J=6. 1Hz, 2H), 3. 08-3.15 (m, 2H), 3.25-3.33 (m, 2H), 4.00 (s, 3

WO 03/033472 PCT/JP02/10803

139

<u>化合物126</u>

 $^{1}H-NMR$ (CDC1₃, 400MHz) : 0. 93 (s, 9H), 1. 40 -1.48 (m, 2H), 2.60-2.66 (m, 4H), 2.94 (t, J)=6.1 Hz, 2 H), 3.25-3.34 (m, 2 H), 3.72-3.78(m, 4H), 4. 02 (s, 3H), 4. 32 (t, J=5.9Hz, 2H), 5. 13 (br, 1H), 6. 29 (d, J=6.1Hz, 1H), 7. 11 (d, J=8.8Hz, 1H), 7.31(dd, J=2.7, 8.8Hz, 1)H), 7.40 (s, 1H), 7.42 (br, 1H), 7.59 (s, 1H), 7. 63 (d, J=2.7Hz, 1H), 8. 44 (d, J=5.1Hz, 1 H),

質量分析値 (ESI-MS, m/z):579 (M+Na)+

<u>化合物127</u> $^{1}H-NMR$ (CDC1₃, 400MHz) : 0. 95 (s, 9H), 1. 17 (s, 3H), 1. 18 (s, 3H), 1. 42-1. 50 (m, 2H), 1.

90-1.98 (m, 2H), 2.85-2.95 (m, 4H), 3.26-3.

35 (m, 2H), 3.67-3.77 (m, 2H), 4.03 (s, 3H),

4. 33 (t, J=5.9Hz, 2H), 4. 82 (br, 1H), 6. 30

(d, J=5.4Hz, 1H), 6.88(br, 1H), 7.14(d, J=

8. 8 Hz, 1 H), 7. 31 (dd, J=2.7, 8.8 Hz, 1 H), 7.

42 (s, 1H), 7.59 (s, 1H), 7.64 (d, J=2.7Hz, 1

H), 8. 45 (d, J=5.1Hz, 1H)

質量分析値(ESI-MS, m/z):607 (M+Na) +

<u>化合物 1 2 8</u>

 $^{1}H-NMR$ (CDC1₃, 400MHz) : δ 0. 95 (s, 9H), 1. 18 (d, J=6.3Hz, 6H), 1.44-1.50 (m, 2H), 1.99(t, J=10.9Hz, 2H), 2.90-2.98(m, 4H), 3.24-3.33 (m, 2H), 3.71-3.80 (m, 2H), 4.02 (s, 3H), 4.36 (t, J=6.0Hz, 2H), 4.90-4.95 (m, 1 H), 6.39 (d, J=5.4Hz, 1H), 7.04-7.13 (m, 3)

質量分析值 (ESI-MS, m/z):595 (M++1)

化合物 132

¹H-NMR (CDCl₃, 400MHz): 0.90 (s, 9H), 1.17 (d, J=6.3Hz, 6H), 1.27-1.67 (m, 8H), 2.54-2.61 (m, 2H), 3.16-3.23 (m, 2H), 3.24-3.29 (m, 2H), 3.99 (s, 3H), 4.02-4.18 (m, 2H), 5.15-5.18 (m, 1H), 6.36 (d, J=5.4Hz, 1H), 7.03-7.09 (m, 2H), 7.37 (s, 1H), 7.54 (s, 1H), 7.46-7.50 (m, 1H), 7.64 (brs, 1H), 8.42 (d, J=5.4Hz, 1H)

質量分析値 (ESI-MS, m/z) : 5 6 7 (M++1)

<u>化合物133</u>

¹H-NMR (CDCl₃, 400MHz): δ 0. 94 (s, 3H), 0. 98 (s, 3H), 0. 95-1. 12 (m, 2H), 1. 33-1. 40 (m, 1H), 1. 50-1. 65 (m, 2H), 1. 71-1. 77 (m, 1H), 2. 03-2. 10 (m, 1H), 2. 61-2. 66 (m, 4H), 2. 95 (t, J=5. 9Hz, 2H), 3. 70-3. 88 (m, 6H), 4. 00 (s, 3H), 4. 33 (t, J=5. 9Hz, 2H), 4. 94 (d, J=7. 8Hz, 1H), 6. 48 (d, J=5. 1Hz, 1H), 6. 79 (d, J=2. 6Hz, 1H), 6. 91 (dd, J=2. 6, 11. 5Hz, 1H), 6. 96 (d, J=9. 0Hz, 1H), 7. 41 (s, 1H), 7. 50 (s, 1H), 8. 20 (t, J=9. 0Hz, 1H), 8. 48 (d, J=5. 1Hz, 1H)

質量分析値 (ESI-MS, m/z):565 (M-1)

<u>化合物134</u>

 $^{1}H-NMR$ (CDC1₃, 400MHz): δ 0. 93 (s, 3H), 0. 98 (s, 3H), 0. 94-1. 11 (m, 2H), 1. 17 (d, J=9. 3Hz, 6H), 1. 33-1. 38 (m, 1H), 1. 46-1. 65 (m, 2H), 1. 70-1. 76 (m, 1H), 1. 94 (t, J=10. 7Hz, 2

145:1-[4-(7-ベンジルオキシ-6-メトキシーキノリン-4-イルオキシ) -フェニル] -3-(3,3-ジメチルーブチル) -ウレア

 $146:1-\{4-[7-(2-プロモーエトキシ)-6-メトキシーキノリン-4-イルオキシ]-フェニル<math>\}$ -3-(3,3-ジメチループチル)-ウレア $147:1-\{4-[7-(3-プロモープロポキシ)-6-メトキシーキノリン-4-イルオキシ]-フェニル<math>\}$ -3-(3,3-ジメチループチル)-ウレア

 $150:1-[4-(6,7-ジメトキシーキノリンー4-イルオキシ)-2-トリフルオロメチルーフェニル]-3-(3,3-ジメチループチル)-ウレア <math>151:1-[4-[7-(3-クロロープロポキシ)-6-メトキシーキノリン-4-イルオキシ]-フェニル}-3-(3,3-ジメチループチル)-ウレア$

 $152:1-\{4-[7-(2-クロローエトキシ)-6-メトキシーキノリン-4-イルオキシ]-フェニル\}-3-(3,3-ジメチルーブチル)-ウレア <math>153:1-\{4-[7-(4-クロロープトキシ)-6-メトキシーキノリン-4-イルオキシ]-フェニル\}-3-(3,3-ジメチループチル)-ウレア <math>154:1-(3,3-ジメチループチル)-3-\{4-[6-メトキシ-7-(3-ピペリジン-1-イループロボキシ)-キノリン-4-イルオキシ]-フェニル\}-ウレア塩酸塩$

 $155:1-(3,3-ジメチループチル)-3-\{4-[6-メトキシー7-(3-モルホリンー4-イループロポキシ)-キノリンー4-イルオキシ]-フェニル}-ウレア塩酸塩$

 $156:1-(3,3-ジメチループチル)-3-(4-{6-メトキシ-7-[3-(4-メチルーピペラジン-1-イル)-プロポキシ]-キノリン-4-$

 $167:1-\{2-D_{DD}-4-[7-(2-ジェチルアミノ-エトキシ)-6$ -メトキシーキノリン-4-イルオキシ] -フェニル $\}$ -3-(3,3-ジメチループチル) -ウレア

 $168:1-\{2-クロロ-4-[6-メトキシ-7-(ピペリジン-4-イルメトキシ) -キノリン-4-イルオキシ] -フェニル<math>\}$ -3-(3,3-ジメチループチル) -ウレア

 $169:1-{2-クロロ-4-[6-メトキシ-7-(1-メチルーピペリジン-4-イルメトキシ)ーキノリン-4-イルオキシ]ーフェニル}-3-(3,3-ジメチループチル)ーウレア$

170:1-(2-クロロー4-{7-[1-(2-ヒドロキシーエチル)ーピペリジン-4-イルメトキシ]-6-メトキシーキノリン-4-イルオキシ}-フェニル)-3-(3,3-ジメチループチル)-ウレア

171:1-(2-クロロー4-{6-メトキシ-7-[1-(2-メトキシ-エチル)ーピペリジン-4-イルメトキシ]ーキノリン-4-イルオキシ}ーフェニル)-3-(3,3-ジメチループチル)ーウレア

172:1-{2-クロロー4-[7-(3-ジメチルアミノープロポキシ)-6-メトキシーキノリンー4-イルオキシ]-フェニル}-3-(3,3-ジメチループチル)-ウレア

173:1-(2-クロロー4-{7-[2-(1,3-ジオキソ-1,3-ジ ヒドローイソインドールー2ーイル)ーエトキシ]ー6ーメトキシーキノリンー 4ーイルオキシ}ーフェニル)ー3ー(3,3-ジメチループチル)ーウレア 174:1-(2-クロロー4-{7-[3-(1,3-ジオキソ-1,3-ジ ヒドローイソインドールー2ーイル)ープロボキシ]ー6ーメトキシーキノリン ー4ーイルオキシ}ーフェニル)ー3ー(3,3-ジメチループチル)ーウレア 175:1-[4-[7-(4-アミノーブトキシ)ー6ーメトキシーキノリンー4ーイルオキシ]ー2ークロローフェニル}ー3ー(3,3-ジメチループチル)ーウレア メチルーブチル) ーウレア

186:1-(2-2)

[1, 4] ジアゼパンー1ーイル) ーエトキシ] ーキノリンー4ーイルオキシ}

-フェニル) - 3 - (3, 3 - ジメチループチル) - ウレア

187:1-(2-クロロー4-{6-メトキシ-7-[3-(4-メチルーピ

ペラジン-1-イル) ープロポキシ] ーキノリン-4-イルオキシ} ーフェニ

(3, 3 - 3) (3, 3 - 3) (3 +

188:1-(2-クロロ-4-{6-メトキシ-7-[3-(4-メチルー

「1、4] ジアゼパンー1ーイル) ープロポキシ] ーキノリンー4ーイルオキ

シ} ーフェニル) ー3ー (3,3-ジメチループチル) ーウレア

189:3-(4-{3-クロロ-4-[3-(3,3-ジメチループチル)-

ウレイド] ーフェノキシ} ー 6 ーメトキシーキノリンー 7 ーイルオキシメチル)

ーピペリジン-1-カルボン酸tertーブチルエステル

190:1-{2-クロロ-4-[6-メトキシ-7-(ピペリジン-3-イル

メトキシ) ーキノリンー 4ーイルオキシ] ーフェニル} ー3ー(3,3ージメチ

ループチル) ーウレア

191:1-{2-クロロ-4-[7-(3-ジエチルアミノ-2-ヒドロキシ

-プロポキシ) -6 -メトキシーキノリン-4 -イルオキシ] -フェニル} -3

- (3,3-ジメチループチル)ーウレア

192:1- [2-クロロ-4-[7-(2-ヒドロキシ-3-ピロリジン-1

ーイループロポキシ) ー 6 ーメトキシーキノリンー 4 ーイルオキシ] ーフェニ

ル} - 3 - (3, 3 - ジメチループチル) - ウレア

193:1-{2-クロロ-4-[7-(2-ヒドロキシ-3-ピペリジン-1

ーイループロポキシ) ー 6 ーメトキシーキノリンー 4 ーイルオキシ] ーフェニ

|v| - 3 - (3, 3 - 3) + (

194:1-{4-[7-(3-アゼパン-1-イルー2-ヒドロキシープロポ

キシ) -6-メトキシーキノリン-4-イルオキシ] -2-クロローフェニル

-3-(3,3-ジメチループチル)-ウレア

195:1-{2-クロロ-4-[7-(2-ヒドロキシ-3-モルホリン-4

 $205:1-\{2-D$ ロロー $4-[6-メトキシ-7-(3-モルホリン-4-イループロポキシ) ーキノリン-4ーイルオキシ] ーフェニル<math>\}$ -3-(3,3-ジメチループチル) ーウレア

 $206:1-\{2-クロロ-4-[7-(2-ヒドロキシ-3-モルホリン-4-イループロポキシ)-6-メトキシーキノリン-4-イルオキシ]-フェニル<math>\}$ -3-(3,3-ジメチループチル)ーウレア

 $207:1-(2-クロロ-4-{6-メトキシ-7-[3-(4-メチルーピペリジン-1-イル)-プロポキシ]-キノリン-4-イルオキシ}-フェニル)-3-(3,3-ジメチループチル)-ウレア$

 $208:1-(2-\rho - 4-4-7-13-(2-\nu + 2-\nu + 2-\nu$

 $209:1-(3,3-ジメチループチル)-3-{2-フルオロー4-[7-(2-ヒドロキシー3-モルホリンー4-イループロポキシ)-6-メトキシーキノリン-4-イルオキシ]-フェニル}-ウレア$

 $210:1-(3,3-ジメチループチル)-3-\{2-フルオロ-4-[6-メトキシ-7-(3-モルホリン-4-イループロポキシ)-キノリン-4-イルオキシ]-フェニル}-ウレア$

 $212: (4-tert-ブチルーフェニル) - {4-[7-メトキシ-6-(2-モルホリン-4-イルーエトキシ) - キノリン-4-イルオキシ] - フェニル} -アミン$

214:4-[4-(4-tert-7+)-7+]-7-++2-+7+

- シー3ーモルホリンー4ーイループロポキシ) -7ーメトキシーキノリンー4ー . イルオキシ] ーフェニル} ーウレア
- 226:1-{4-[6-(3-ジメチルアミノ-2-ヒドロキシープロポキ
- (3, 3) (3, 3) (3, 3) (3, 3) (3, 3) (3, 3)

- $229:2-\{4-[4-(4-4)]$ ロピルーフェニルアミノ) ーフェノキシ] -6- メトキシーキノリン-7-4ルオキシ-1-モルホリン-4-4ル
- 230: [1, 4'] ビビベリジンイルー1'ーカルボン酸 $4-\{4-[3-(3, 3-3)]$ (3, 3-3)メチループチル) ーウレイド[-3-7] (3, 2-2) ーナーフェノキシ[-3-7] (3) ーカルオローフェノキシ[-3-7] (3) ーカルオローフェノキシ[-3-7] (4) ーカルオローフェノキシ[-3-7] (5) ーカルオローフェノキシ[-3-7] (7) ーカルオローフェノキシ[-3-7] (7) ーカルボン酸[-3-7] (7) ーオルズンテル
- 232: $(4-tert-ブチルーフェニル) (4-{7-[3-(2,6-5) メチルーモルホリンー4-イル) プロポキシ] 6-メトキシーキノリンー4-イルオキシ} フェニル) アミン$
- $234: (4-tert-ブチルーフェニル) (4-\{6-メトキシー7-[3-(4-フェニルーピペリジン-1-イル) プロポキシ] キノリン-4 イルオキシ} フェニル) アミン$

-4-イルオキシ} ーフェニル) ーウレア

 $245:1-(3,3-ジメチループチル)-3-(4-{7-[3-(3,5)]}$

-ジメチルーピペリジン-1-イル) -プロポキシ] -6-メトキシーキノリン

-4-イルオキシ} ーフェニル) ーウレア

 $246:1-(3,3-ジメチループチル)-3-(4-{6-メトキシー7-$

[3-(4-フェニルーピペリジン-1-イル)-プロポキシ]ーキノリン-4

ーイルオキシ} ーフェニル) ーウレア

247:1-(4-{7-[3-(4-ベンジルーピペリジン-1-イル)ープ

ロポキシ] -6-メトキシーキノリン-4-イルオキシ} -フェニル) -3-

(3,3-ジメチループチル)ーウレア

248:1-{4-[7-(3-[1, 4'] ビビベリジニルー1'ーイループ

ロボキシ) -6-メトキシーキノリン-4-イルオキシ] -フェニル} -3-

(3, 3-ジメチループチル)ーウレア

 $249:1-(3,3-ジメチループチル)-3-(4-{6-メトキシー7-$

[3-(4-ピロリジン-1-イルーピペリジン-1-イル)ープロポキシ]ー

キノリンー4-イルオキシ} -フェニル) -ウレア

 $250:1-(3,3-ジメチループチル)-3-(4-{7-[3-(2,6])}$

ージメチルーモルホリンー4ーイル) -2-ヒドロキシープロポキシ] -6-メ

トキシーキノリンー4-イルオキシ}-フェニル) -ウレア

 $251:1-(3,3-ジメチループチル)-3-(4-{7-[3-(3,5)]}$

ージメチルーピペリジンー1ーイル)-2-ヒドロキシープロポキシ]-6-メ

トキシーキノリンー4-イルオキシ}-フェニル)-ウレア

 $252:1-(3,3-ジメチループチル)-3-(4-{7-[2-ヒドロキ$

シー3ー(4ーフェニルービベリジンー1ーイル)ープロポキシ]ー6ーメトキ

シーキノリンー4ーイルオキシ} ーフェニル) ーウレア

 $253:1-\{4-[4-(4-tert-7f)]-7x-2)$

キシ] -6 -メトキシーキノリンー7 -イルオキシ} -3 - (2, 6 -ジメチル

ーモルホリンー4ーイル) ープロパンー2ーオール

 $254:1-\{4-[4-(4-tert-{\it TFN-}7x-{\it LNP}])$

267:1-[2-クロロー4-(7-{3-[4-(2-ヒドロキシーエチ

(1) (2) (3) (3) (3) (3) (3) (4) (4) (4) (4) (4) (5) (5) (6) (6) (7)

268:1-(2-クロロ-4-{7-[3-(4-ヒドロキシーピペリジン-

1-イル) -プロポキシ] -6-メトキシーキノリン-4-イルオキシ} -フェ

ニル) -3-(3,3-ジメチループチル)ーウレア

 $270:[1-(3-\{4-\{4-(4-tert-プチルーフェニルアミノ)-2-フルオローフェノキシ]-6-メトキシーキノリン-7-イルオキシ}-プロビル)-ピペリジン-4-イル]-メタノール$

 $271:1-(3,3-ジメチループチル)-3-(4-{6-メトキシー7-13-(2-メトキシーエチルアミノ)-プロポキシ]ーキノリンー4ーイルオキシ}-フェニル)ーウレア$

 $272:2-[1-(3-[4-[4-(4-tert-]{27})-7]{27}]$

ノ) -2-フルオローフェノキシ] -6-メトキシーキノリン-7-イルオキ

シ] ープロビル) ーピペリジンー4ーイル] ーエタノール

273:1-(3-[4-[4-(4-tert-ブチルーフェニルアミノ)-

2-フルオローフェノキシ] -6-メトキシーキノリン-7-イルオキシ} -プ

ロビル)ーピペリジンー4ーオール

 $274:1-(2-クロロ-4-{7-[2-(4-ヒドロキシーピペリジンー1-イル) -エトキシ]-6-メトキシーキノリンー<math>4-$ イルオキシ}ーフェニ

「ル)-3-(3,3-ジメチルーブチル)-ウレア

 $275:1-(2-000-4-{7-[2-(4-ヒドロキシメチルーピペリ ジン-1-イル) - エトキシ] - 6-メトキシーキノリン-4-イルオキシ} -$

[3-(4-ヒドロキシメチル-ピペリジン-1-イル)-プロポキシ]-6-メトキシーキノリン-4-イルオキシ}-フェニル)-ウレア

 $286:1-(3,3-ジメチループチル)-3-(3-フルオロー4-{7-[3-(4-ヒドロキシーピペリジン-1-イル)-プロポキシ]-6-メトキシーキノリン-4-イルオキシ}-フェニル)-ウレア$

 $287:1-(2-{4-[4-(4-tert-ブチルーフェニルアミノ)-3-フルオローフェノキシ]-6-メトキシーキノリンー<math>7-1$ ルオキシ}-エチル)-ピペリジンー4-1オール

 $288: [1-(2-\{4-\{4-(4-tert-プチルーフェニルアミノ)-3-フルオローフェノキシ]-6-メトキシーキノリンー<math>7-1$ ルオキシ}-エチル)-ピペリジンー4-1ル]-メタノール

289:1-(3-{4-[4-(4-tert-ブチルーフェニルアミノ) - 3-フルオロ-フェノキシ] -6-メトキシーキノリン-7-イルオキシ} -プロピル) -ピペリジン-4-オール

 $290: [1-(3-\{4-\{4-(4-tert-プチルーフェニルアミノ)-3-フルオローフェノキシ]-6-メトキシーキノリン-7-イルオキシ}-プロピル)-ピペリジン-4-イル]-メタノール$

 $292:1-[2-クロロ-4-(7-{2-[4-(2-ヒドロキシーエチル)-ヒペリジン-1-イル]-エトキシ}-6-メトキシーキノリンー4ーイルオキシ)-フェニル<math>]-3-(3,3-ジメチルーブチル)-ウレア$

293:2-[1-(2-{4-[4-(4-tert-ブチルーフェニルアミノ)-3-クロローフェノキシ]-6-メトキシーキノリン-7-イルオキシ}-エチル)-ピペリジン-4-イル]-エタノール

 $294:2-[1-(3-{4-[4-(4-tert-ブチルーフェニルアミノ)-3-クロローフェノキシ]-6-メトキシーキノリン-7-イルオキシ}-プロピル)-ピペリジン-4-イル]-エタノール$

 $295:1-(3,3-ジメチループチル)-3-(3-フルオロー4-{7-[2-(4-ヒドロキシメチルーピペリジン-1-イル)-エトキシ]-6-メトキシーキノリン-4-イルオキシ}-フェニル)-ウレア$

- シ} ーエチル) ーピペリジンー4ーイル] ーエタノール
- $306:2-[1-(3-\{4-[4-(4-tert-7)])]$
- ノ) -3-フルオローフェノキシ] -6-メトキシーキノリン-7-イルオキ
- シ}ープロピル)ービベリジンー4ーイル]ーエタノール
- $307:1-(2-\{4-[4-(4-tert-ブチルーフェニルアミノ)-$
- 2-クロローフェノキシ] -6-メトキシーキノリン-7-イルオキシ} -エチ
- ル) ーピペリジンー 4ーオール
- $308: [1-(2-\{4-[4-(4-tert-7]) + v-7] + v-7]$
- -2-クロローフェノキシ] -6-メトキシーキノリン-7-イルオキシ} ーエ
- チル) ーピペリジンー4ーイル] ーメタノール
- $309:1-(3-\{4-[4-(4-tert-7+)])-$
- 2-クロローフェノキシ] -6-メトキシーキノリン-7-イルオキシ} ープロ
- ヒル) ーピペリジンー 4ーオール
- $310:[1-(3-\{4-[4-(4-tert-{\it T}fu-{\it T}x=u)r\}])$
- -2-クロローフェノキシ] -6-メトキシーキノリン-7-イルオキシ} ープ
- ロビル)ーピペリジンー4ーイル]ーメタノール
- 311:1-(3-クロロ-4-{7-[2-(4-ヒドロキシーピペリジンー
- 1-イル) -エトキシ] -6-メトキシーキノリン-4-イルオキシ} ーフェニ
- (3, 3-3)ル) (3, 3-3)メチループチル) (3, 3-3)
- 312:1-(3-クロロ-4-{7-[2-(4-ヒドロキシメチルーピペリ
- ジンー1ーイル) ーエトキシ] -6-メトキシーキノリンー4-イルオキシ} -
- フェニル) -3-(3,3-ジメチルーブチル) -ウレア
- 313:2-[1-(2-{4-[4-(4-tert-ブチルーフェニルアミ
- ーエチル) ーピペリジンー4ーイル] ーエタノール
- 314:2-[1-(3-[4-[4-(4-tert-7])+N-7]]
- ノ) -2-クロローフェノキシ] -6-メトキシーキノリン-7-イルオキシ}
- ープロビル) ーピペリジンー4ーイル] ーエタノール・
- 315:1-[3-クロロ-4-(7-{2-[4-(2-ヒドロキシーエチ

 $325:1-(3,3-ジメチループチル)-3-(4-{7-[3-(2,6-ジメチルーモルホリンー4-イル)-プロポキシ]-6-メトキシーキノリン-4-イルオキシ}-2-フルオローフェニル)-ウレア$

326:1-(3,3-9)メチルーブチル) $-3-\{3-7)$ ルオロー $4-\{6-4\}$ メトキシー7-(3-4)ルオキシ] -71 -71 -72 -72 -73 -74 -77 -7

 $327:1-(3,3-ジメチルーブチル)-3-(4-{7-[3-(2,6-ジメチルーモルホリン-4-イル)-プロポキシ]-6-メトキシーキノリン-4-イルオキシ}-3-フルオローフェニル)-ウレア$

 $328:1-(3,3-ジメチループチル)-3-[4-(7-{2-[(2-ヒドロキシーエチル)-メチルーアミノ]-エトキシ}-6-メトキシーキノリン-4-イルオキシ)-フェニル]-ウレア$

329:1-(3,3-ジメチルーブチル)-3-(2-フルオロー4-{7-[2-(2-ヒドロキシーエチルアミノ)-エトキシ]-6-メトキシーキノリン-4-イルオキシ}-フェニル)-ウレア

 $330:1-(3,3-ジメチループチル)-3-[2-フルオロー4-(7-{2-[(2-ヒドロキシーエチル)-メチルーアミノ]-エトキシ}-6-メトキシーキノリン-4-イルオキシ)-フェニル]-ウレア$

 $331:1-(2-クロロ-4-{7-[2-(2-ヒドロキシーエチルアミ ノ)-エトキシ]-6-メトキシーキノリン-4-イルオキシ}-フェニル)-3-(3,3-ジメチループチル)-ウレア$

332:1-(3,3-9)メチルーブチル)-3-(2-7)ルオロー $4-\{7-(3-(2-1))$ (2-1) -プロポキシ]-6-メトキシーキノリン-4-イルオキシ} -フェニル) -ウレア

333:1-(3,3-ジメチループチル)-3-[2-フルオロー4-(7-{3-[(2-ヒドロキシーエチル)-メチルーアミノ]-プロポキシ}-6-メトキシーキノリン-4-イルオキシ)-フェニル]-ウレア

 $334:1-(2-クロロ-4-{7-[3-(2-ヒドロキシーエチルアミ ノ)-プロポキシ]-6-メトキシーキノリン-4-イルオキシ}-フェニル)$

WO 03/033472 PCT/JP

163

345:1-[2-クロロ-4-(7-{3-[エチル-(2-ヒドロキシーエチル) -アミノ] -プロポキシ} -6-メトキシーキノリン-4-イルオキシ)

-フェニル] -3-(3,3-ジメチルーブチル)-ウレア

 $346:2-[(2-{4-[4-(4-tert-ブチルーフェニルアミノ)} -2-クロローフェノキシ] -6-メトキシーキノリン-7-イルオキシ} -エチル) - (2-ヒドロキシーエチル) -アミノ] -エタノール$

 $347:N1-[4-(tert-プチル) フェニル] -4-[(6-メトキシ-7-{2-[(テトラヒドロ-2-フラニルメチル) アミノ] エトキシ} -4-キノリル) オキシ] アニリン$

 $348:2-[(2-{4-[4-(4-tert-ブチルーフェニルアミノ)}$ $-フェノキシ]-6-メトキシーキノリンー7-イルオキシ}-エチル)-メチルーアミノ<math>1-$ エタノール塩酸塩

 $349:2-[(2-{4-[4-(4-tert-ブチルーフェニルアミノ)}$ $-フェノキシ]-6-メトキシーキノリン-7-イルオキシ}-エチル)-(2-tert-ブチルーエチル)-アミノ]-エタノール塩酸塩$

 $351:2-(2-\{4-\{4-\{4-tert-7+\nu-7+\nu-7+1,2-1\}\}-7+1\}-7+1)$

 $352:1-[(2-{4-[4-(4-tert-ブチル-フェニルアミノ)}$ $-フェノキシ]-6-メトキシーキノリン-7-イルオキシ}-エチル)-(2-ヒドロキシープロピル)-アミノ]-プロパン-2-オール$

353:2-(2-{4-[4-(4-tert-プチルーフェニルアミノ) - フェノキシ] - 6-メトキシーキノリン-7-イルオキシ} -エチルアミノ) - プロパン-1-オール

キノリル) オキシ] アニリン

 $364:2-[(2-{4-[4-(4-tert-ブチルーフェニルアミノ) -フェノキシ]-6-メトキシーキノリン-7-イルオキシ}-エチル)-シクロヘキシルーアミノ]-エタノール$

 $365:2-[ベンジルー(2-{4-[4-(4-tert-ブチルーフェニルアミノ)-フェノキシ]-6-メトキシーキノリン-7-イルオキシ}-エチル)-アミノ]-エタノール$

 $367:2-[(2-{4-[4-(4-tert-プチルーフェニルアミノ) -フェノキシ] -6-メトキシーキノリンー<math>7-$ イルオキシ} -エチル) -イソプロビルーアミノ] -エタノール

 $368:1-[4-(7-{2-[ベンジル-(2-ヒドロキシーエチル)-アミノ]-エトキシ}-6-メトキシーキノリン-4-イルオキシ)-フェニル] <math>-3-(3,3-ジメチループチル)$ -ウレア

 $369:1-(3,3-ジメチルーブチル)-3-[4-(7-{2-[(2-ヒドロキシーエチル)-プロピルーアミノ]-エトキシ}-6-メトキシーキノリン-4-イルオキシ)-フェニル]-ウレア$

 $370:1-(3,3-ジメチループチル)-3-[4-(7-{2-[(2-ヒドロキシーエチル)-イソプロピルーアミノ]-エトキシ}-6-メトキシーキノリン-4-イルオキシ)-フェニル]-ウレア$

 $371:1-(3, 3-ジメチルーブチル) -3-(4-{7-[2-(4-ヒ ドロキシメチルーピペリジン-1-イル) -エトキシ] -6-メトキシーキノリン-4-イルオキシ} -フェニル) -ウレア$

 $372:1-(3,3-ジメチループチル)-3-(4-{7-[2-(2-ヒドロキシーエチルアミノ)-エトキシ]-6-メトキシーキノリンー4ーイルオキシ}-フェニル)-ウレア$

 $373:1-(3,3-ジメチループチル)-3-(4-{7-[2-(4-ヒ$

-	n All mes
化合物番号	化合物構造
135	H_3C O
136	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
137	$\begin{array}{c c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$
138	H ₃ C O CH ₃ CH ₃ CH ₃

143	$\begin{array}{c c} H_3C \\ \hline \\ H_3C \\ \hline \\ \end{array} \begin{array}{c} CH_3 \\ \hline \\ CH_3 \\ \end{array} \begin{array}{c} CH_3 \\ \hline \\ \end{array}$
144	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$
145	H ₃ C O CH ₃ CH ₃
146	H ₃ C CH ₃

159	H ₃ C O CH ₃ H ₃ C O CH ₃ AH AH
160	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$
- 161	CI N N N H ₃ C CH ₃
162	$\begin{array}{c c} & & & & \\ & &$

167	H ₃ C O CH ₃
168	H ₃ C CH ₃
169	H _s C O N N H _s C CH _s
170	H ₃ C CH ₃

183	H ₃ C N O N N H ₃ C CH ₃
184	HO OH OH
185	H ₃ C O CH ₃
186	H ₃ C-N H ₃ C CH ₃

199	H ₃ C O O O O O O O O O O O O O O O O O O O
200	H ₃ C CH ₃ H ₃ C CH ₃
201	H _s C CH _s
202	H ₃ C CH ₃

_		
**	207	H ₃ C CH ₃
	208	OH H ₃ C CH ₃
,	209	H ₃ C CH ₃
-	210	H ₃ C CH ₃

231	CH ₃
232	H ₃ C CH ₃ CH ₃
233	H _s C CH _s CH _s
234	H _a C CH _a

 	l .
298	H ₃ C CH ₃
299	HO CH ₃ CH ₃ CH ₃ CH ₃
300	OH CH ₃ OH CH ₃ OH CH ₃
301	HO CH ₃ O CH ₃

306	HO CH ₃ O CH ₃ H ₃ C CH ₃
307	CH ₃ CH ₃ CH ₃ CH ₃
308	OH CH _s O CH _s CH _s CH _s
309	CH ₃ CH ₃ CH ₃ CH ₃

330	HO NO
331	H ₃ C CH ₃
332	HO NO
333	HO CH ₃

354	H ₃ C CH ₃ H ₃ C CH ₃
355	HO H ₃ C OH ₃
356	HO NO CH ₃
357	HO O CH ₃ H ₃ C O N CH ₃

370	H ₃ C CH ₃ O H ₃ C CH ₃ H ₃
371	HO H ₃ CH ₃ C
372	H ₃ COH ₃ CH ₃ C
373	HO H ₃ CH ₃

382:1-[4-(6,7-ジメトキシーキノリンー4ーイルオキシ)-フェニル]-3-(4,4-ジメチルーペンチル)-ウレア

383:1-[4-(6,7-ジメトキシーキナゾリンー4-イルオキシ)-フェニル]-3-(3,3-ジメチループチル)ーウレア

 $384:1-(3,3-ジメチルーシクロヘキシル)-3-(3-フルオロー4-(6-メトキシー7-(2-ヒベリジン-1-イルーエトキシ)-キノリンー4-イルオキシ]-フェニル}-ウレア$

 $385:1-{3-7ルオロ-4-[6-メトキシ-7-(2-ビベリジン-1-4-1ルーエトキシ) ーキノリン-4-1ルオキシ] ーフェニル<math>} -3-(3,3,5-1)$

 $386:1-\{2-7ルオロ-4-[6-メトキシ-7-(2-ビベリジン-1-4-1ルーエトキシ) ーキノリン-4-1ルオキシ] ーフェニル\ -3-(3,3,5-トリメチルーシクロヘキシル) ーウレア$

 $387:1-\{4-[7-(2-アゼパン-1-イルーエトキシ)-6-メトキシーキノリン-4-イルオキシ]-2-クロローフェニル\}-3-(3,3-ジメチループチル)ーウレア$

 $388:1-(3,3-ジメチループチル)-3-(4-{6-メトキシ-7-13-(4-メチルーピペラジン-1-イル)-プロポキシ]ーキノリンー4ーイルオキシ}ーフェニル)ーウレア塩酸塩$

 $389:1-(3,3-ジメチループチル)-3-(2-フルオロー4-{6- メトキシ-7-[3-(4-メチルーピペラジン-1-イル)-プロポキシ]- キノリン-4-イルオキシ}-フェニル)-ウレア$

 $390:1-(3,3-ジメチループチル)-3-(3-クロロー4-{6-メトキシ-7-[3-(4-メチルーピペラジン-1-イル)-プロポキシ]-キノリン-4-イルオキシ}-フェニル)-ウレア$

化合物 番 号	化合物構造	出発原料A
376	H ₁ C O C1H	H ₃ C O NH ₂
377	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	H _s C O NH ₂
378	CH ₃ CH ₃ CH ₃	H ₃ CONN
379	CH ₃ CH ₃ CH ₃ CH ₃	H ₃ CONH ₂
380	H,C O CH	H ₃ C O NH ₂

化合物 番号	化合物構造	出発原料A
381	H _s C N	H ₃ C O N N N N N N N N N N N N N N N N N N
382	Hic of the state o	H ₃ C O NH ₂
383	H ₁ C CH ₂ H ₃ CH ₃	H ₃ C O N N H ₂
384	His State of the S	His College of the Co
385	H ₂ C°C)	He COLL I

化合物 番号	化合物構造	出発原料A
386		Ho of the state of
387		Hico CH
388	H _C CH ₃ HC1 HC1	"
389	H.C. O. H. C. O. H. C	
390	HC N HC CH	

薬理試験例1: ELISA法を用いるBek自己リン酸化阻害活性の測定

ヒトスキルス胃癌細胞であるOCUM-2MD3(大阪市立大学、平川弘聖氏から入手)を5%炭酸ガスインキュベーター内において10%ウシ胎仔血清を含むRPMI培地(ICN社より購入)で50~90%コンフルエントとなるまで培養した。ハーベストした細胞を0.1%ウシ胎仔血清を含むRPMI培地で96ウェル平底プレートに3.5×10⁴個/ウェルとなるように播種し37℃で1晩培養した。ジメチルスルホキシドに溶解させた被験物質を各ウェルに添加して37℃で更に1時間培養した。培地を除去し、可溶化緩衝液(20mM HEPES(pH7.4)、150mM NaCl、0.2% TritonX-100、10% グリセロール、5mM オルトバナジル酸ナトリウム、5mM エチレンジアミン4酢酸2ナトリウム、2mM Na4P2O7)を50μ1添加し、4℃で2時間振蕩して細胞抽出液を調製した。

ELISA用マイクロプレート (Maxisorp; NUNC社より購入) に5 μg/m 1の抗phospho-tyrosine抗体 (PY20; Transduction Laboratories社より購 入) を含むリン酸緩衝生理食塩水 (pH7.4) を50 μ1加えて、4℃で1晩 静置し固相化した。プレートを洗浄した後、プロッキング液を300μ1添加し 室温で2時間静置してブロッキングを行った。洗浄後、上記の細胞抽出液を全量 移し4℃で1晩静置した。洗浄後、抗Bek抗体(Bek(C-17)、Santa Cruz Biotechnology社より購入)、あるいはAnti-Human K-sam Rabbit IgG Affinity Purity ((株)免疫生物研究所より購入)を室温1時間反応させ、さ らに洗浄後、ペルオキシダーゼ標識した抗ウサギIg抗体(アマシャム社より購 入) を室温1時間反応させた。洗浄後、ベルオキシダーゼ用発色基質(住友ベー クライト社より購入) を添加して反応を開始した。適当な発色が得られた後、反 応停止液を添加し反応を止めマイクロプレートリーダーにより450nmの吸光 度を測定した。薬物無添加での吸光度を100%のBekリン酸化活性、大過剰 のポジティブコントロール (N-{4-[(6,7-ジメトキシ-4-キノリ ル) オキシ] フェニル $\}$ -N'-(3,3-ジメチルプチル) ウレア、<math>1000nM) を添加した場合の吸光度を0%のBekリン酸化活性として各ウェルのB e kリン酸化活性を求めた。被験物質の濃度を数段階に変えて、それぞれの場合

41	0.4799
42	0.3989
43	3.3410
44	0.0765
45	0.2403
46	0.2300
47	0.2433
48	0.0335
49	0.0339
50	0.0350
51	0.0306
52	0.0330
53	0.0380
54	0.3242
55	8.0027
56	0,4054
57	3.8267
58	1.1998
59	0.1427
60	0.2034
61	0,1865
62	0.2494
63	0.2466
64	0.1782
65	0.1845
66	0.1986
67	0.1885
68	0.2483
69	0.2477
70	0.0685
71	0.0611
72	0.8359
73	3.5085
74	0.5206
75	5.1890
76	7.5605
77	3.4479
78	0.2737
79	0.1587
80	0.1512
81	0.0101
82	0.0701
87	<0.0100
88	0.0108
89	<0.0100
90	0.0126
	1 0.0150

141	0.0586
142	0.2653
143	0.1925
144	0.2018
147	0.6539
148	1.6713
149	0.2182
150	0.0638
151	0.2214
152	0.025
153	0.2408
154	0.0244
155	0.0287
156	0.0191
157	0.0285
158	0.0321
159	0.0262
160	0.0235
161	0.1887
	0.1667
162	
163	0.3696
164	0.2598
165	0.0689
166	0.039
167	0.095
168	0.024
169	0.0252
170	0.0244
171	0.0324
172	<0.0100
173	0.1526
175	0.0217
176	<0.0100
177	0.0106
178	<0.0100
179	0.0173
180	0.0227
181	0.0262
182	0.0095
183	0.0154
184	0.0092
185	0.0548
186	0.0183
187	0.0223
	0.0223
188	
189	0.0833
190	0.0335

242	0.4007
243	0.3415
244	<0.0100
245	0.0165
246	0.0309
247	0.0819
248	0.0126
249	<0.0100
250	<0.0100
251	0.0207
252	0.0426
253	0.0285
254	0.0942
258	0.11
259	0.0466
260	0.0267
261	<0.0100
262	<0.0100
263	<0.0100
264	1.4351
265	<0.0100
266	0.011
267	0.0267
268	0.0157
269	0.0356
270	0.303
271	0.0332
272	0.1512
273	0.1612
274	0.0278
275	0.0316
276	1.1253
277	0.617
278	1.1247
279	0.3699
280	0.2784
281	0.2443
282	0.0316
283	0.167
284	0.2467
285	0.0228
286	0.0172
287	0.2541
288	0.1095
289	0.2482
290	0.2329

341	0.0289
342	0.0116
343	<0.0100
344	<0.0100
345	0.0098
346	0.2941
347	0.3541
348	0.1862
349	0.0959
350	0.3342
351	0.2323
352	0.0547
353	0.3741
354	0.0384
355	0.4027
356	0.3467
357	0.2131
358	0.0517
359	0.2542
360	0.0195
361	0.0298
362	0.0492
363	0.3636
364	0.2301
365	7.1303
366	0.2571
367	0.4681
368	0.1566
369	0.0423
370	0.1303
371	<0.0100
372	<0.0100
373	<0.0100
374	0.0328
375	0.028

薬理試験例2:ヒト胃癌細胞(OCUM-2MD3)に対する腫瘍増殖抑制作用

ヒト胃癌細胞(OCUM-2MD3)(大阪市立大学、平川弘聖氏から入手)をヌードマウスに移植し、腫瘍体積が100~200mm³程度になった時点で各群の腫瘍体積の平均が均一になるように1群4匹ずつに群分けをし、0.5%メチルセルロースに懸濁した被験物質を5日間、1日2回経口投与した。(初日のみ1日1回投与)

対象群には0.5%メチルセルロースを同様に投与した。投与開始日の腫瘍体積を1としたときの対照群のX日目の腫瘍体積をCX、被験化合物投与群の腫瘍体積をTXとし、腫瘍増殖抑制率(TGIR)=(1-TX/CX)×100を

請求の範囲

1. 式(I)の化合物、またはその薬学上許容される塩もしくは溶媒和物。

$$R^{1}$$
 R^{2}
 R^{3}
 R^{4}
 R^{4}
 R^{5}
 R^{5}
 R^{5}
 R^{7}
 R^{8}
 R^{8}
 R^{7}
 R^{8}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{4}

(上記式中、

Xは、CHまたはNを表し、

Zは、OまたはSを表し、

Qは、

- $-N(-R^{10})-(式中、R^{10}$ は水素原子または C_{1-4} アルキル基を表す)、
- -C $(-R^{11})$ $(-R^{12})$ $(式中、R^{11}およびR^{12}は、同一または異なっていてもよく、水素原子または<math>C_{1-6}$ アルキルカルボニルオキシ基を表す)、
 - -C (=0) -
 - -0-
 - -S (=0) m- (mは0、1、または2を表す)、または
 - -NH-C (=O)-NH-

を表し、

 R^1 、 R^2 、および R^3 は、同一または異なっていてもよく、

水素原子、

水酸基、

ハロゲン原子、

ニトロ基、

酸基または C1-6 アルコキシ基により置換されていてもよく、

R⁴は水素原子を表し、

 R^5 、 R^6 、 R^7 、および R^8 は、同一または異なっていてもよく、水素原子、ハロゲン原子、 C_{1-4} アルキル基、 C_{1-4} アルコキシ基、ニトロ基、またはアミノ基を表し、

 R^9 は、 C_{1-10} アルキル基または飽和または不飽和の $3\sim8$ 員炭素環式基または複素環式基を表し、この $3\sim8$ 員炭素環式基または複素環式基は、酸素原子、 C_{1-6} アルキル基、 C_{2-6} アルケニル基、 C_{2-6} アルキニル基、 C_{1-6} アルコキン基、ハロゲン原子、または飽和または不飽和の $3\sim8$ 員炭素環式基または複素環式基により置換されてもよく、 C_{1-6} アルキル基、 C_{2-6} アルケニル基、 C_{2-6} アルキニル基、および C_{1-6} アルコキシ基は更に、ハロゲン原子または飽和または不飽和の $3\sim8$ 員炭素環式基または複素環式基により置換されていてもよく、但し、Qが-C(=Q) -c表すとき、 R^2 および R^3 が同時にメトキシ基を表すことはない)

- 2. R^1 が水素原子を表し、 R^2 および R^3 が、同一または異なっていてもよく、水素原子以外の基を表す、請求項1に記載の化合物。
- 3. R^2 が非置換 C_{1-6} アルコキシ基を表す、請求項1または2に記載の化合物。
- 4. R^3 が水酸基または置換されていてもよい C_{1-6} アルコキシ基を表す、 請求項 $1\sim3$ のいずれか一項に記載の化合物。
- 5. R^3 が $-O-(CH_2)$ $p-R^{13}$ (pは $0\sim6$ の整数を表し、 $-(CH_2)$ p-d1 C_{1-6} アルキル基、水酸基、またはハロゲン原子により置換されていてもよく、 R^{13} は水素原子、水酸基、ハロゲン原子、 C_{1-6} アルコキシ基、 C_{1-6} アルカルボニル基、カルボキシル基、 C_{1-6} アルコキシカルボニル基、 $-(C=O)-NR^{.14}R^{.15}$ (R^{14} および $R^{.15}$ は、同一または異なっていてもよく、水素原子または水酸基により置換されていてもよい C_{1-4} アルキル基を表すか、あるいは $R^{.14}$ と $R^{.15}$ はそれらが結合している窒素原子と一緒になって飽和の5または6員の複素環式基を表す)、アミノ基(このアミノ基上の1または2の水素原子は、 C_{1-6} アルキル基または飽和または不飽和の3~8員炭素環式基または複素環式基により置換されていてもよく、この C_{1-6} アルキル基は更に水

10. 式(I) の化合物が式(100) により表される、請求項1に記載の 化合物。

(上記式中、

XはCHまたはNを表し、

Qは、

- $-N(-R^{110})-(式中、R^{110}$ は水素原子または C_{1-4} アルキル基を表す)、
- -C $(-R^{111})$ $(-R^{112})$ $(式中、R^{111}およびR^{112}$ は、同一または異なっていてもよく、水素原子または C_{1-4} アルキルカルボニルオキシ基を表す)、または

-0-

を表し、

 R^{103} は、水酸基または C_{1-6} アルコキシ基を表し、この C_{1-6} アルコキシ基は、水酸基、ハロゲン原子、 C_{1-6} アルコキシ基、 C_{1-6} アルコキシカルボニル基、カルボキシル基、 C_{1-6} アルコキシカルボニル基、 $-(C=0)-NR^{14}R^{15}$ (R^{14} および R^{15} は、同一または異なっていてもよく、水素原子または水酸基により置換されていてもよい C_{1-4} アルキル基を表すか、あるいは R^{14} と R^{15} はそれらが結合している窒素原子と一緒になって飽和の5または6員の複素環式基を表す)、アミノ基(このアミノ基上の1または2の水素原子は、 C_{1-6} アルキル基または飽和または不飽和の $3\sim8$ 員炭素環式基または複素環式基により置

11. 式(I) の化合物が式(200)により表される、請求項1に記載の 化合物。

(上記式中、

Xは、CHまたはNを表し、

 R^{203} は、 $-O-(CH_2)p-R^{13}(pは0~6の整数を表し、-(CH_2)p-R^{13}(pは0~6の整数を表し、-(CH_2)p-R^{13}(pは0~6の整数を表し、-(CH_2)p-R^{13}(pは0~6の整数を表し、-(CH_2)p-R^{13}(pは0~6の整数を表し、-(CH_2)p-R^{13}(pは0~6の整数を表し、-(CH_2)p-R^{13}(pは0~6の整数を表し、-(CH_2)p-R^{13}(pは0~6の整数を表し、-(CH_2)p-R^{13}(pは0~6の整数を表し、-(CH_2)p-R^{13}(pは0~6の整数を表し、-(CH_2)p-R^{13}(pは0~6の整数を表し、-(CH_2)p-R^{13}(p+R^$ 2) p-はC1-8アルキル基、水酸基、またはハロゲン原子により置換されてい てもよく、R13は水素原子、水酸基、ハロゲン原子、C1-8アルコキシ基、C1 - 『アルキルカルボニル基、カルボキシル基、C1-『アルコキシカルボニル基、 - (C=O) - NR ¹⁴ R ¹⁶ (R ¹⁴ および R ¹⁵ は、同一または異なっていてもよ く、水素原子または水酸基により置換されていてもよい C1-4アルキル基を表す か、あるいはR14とR15はそれらが結合している窒素原子と一緒になって飽和 の 5 または 6 員の複素環式基を表す)、 C_{1-6} アルコキシカルボニル基、アミノ 基(このアミノ基上の1または2の水素原子は、C1-6アルキル基または飽和ま たは不飽和の3~8員炭素環式基または複素環式基により置換されていてもよく、 この C₁₋₈ アルキル基は更に水酸基、 C₁₋₆ アルコキシ基、または飽和または不 飽和の3~8員炭素環式基または複素環式基により置換されていてもよい)、ま たは飽和または不飽和の3~8員炭素環式基または複素環式基(この炭素環式基 または複素環式基は、水酸基、酸素原子、 С 1-8 アルキル基、 С 2-8 アルケニル 基、C2-6アルキニル基、C1-6アルコキシ基、C1-6アルコキシカルボニル基、 または飽和または不飽和の3~8員炭素環式基または複素環式基により置換され ていてもよく、これらの C_{1-6} アルキル基、 C_{2-6} アルケニル基、および C_{2-6}

く、水素原子または水酸基により置換されていてもよい С1-4アルキル基を表す か、あるいはR14とR15はそれらが結合している窒素原子と一緒になって飽和 の5または6員の複素環式基を表す)、C₁₋₆アルコキシカルボニル基、アミノ 基 (このアミノ基上の1または2の水素原子は、C1-6アルキル基または飽和ま たは不飽和の3~8員炭素環式基または複素環式基により置換されていてもよく、 この C_{1-6} アルキル基は更に水酸基、 C_{1-6} アルコキシ基、または飽和または不 飽和の3~6月号素環式基または複素環式基により置換されていてもよい)。ま たは飽和または不飽和の3~8員炭素環式基または複素環式基(この炭素環式基 または複素環式基は、水酸基、酸素原子、 C_{1-6} アルキル基、 C_{2-6} アルケニル 基、C2-4アルキニル基、C1-6アルコキシ基、C1-6アルコキシカルボニル基、 または飽和または不飽和の3~8員炭素環式基または複素環式基により置換され ていてもよく、これらのC1-8アルキル基、C2-8アルケニル基、およびC2-8 アルキニル基は更に水酸基、 C_{1-8} アルコキシ基、または飽和または不飽和の3~8 員炭素環式基または複素環式基により置換されていてもよく、この炭素環式 基または複素環式基が2つのC,-。アルキル基により置換されている場合にはこ の2つのアルキル基は一緒になってアルキレン鎖を形成していてもよく、またこ の炭素環式基または複素環式基は他の飽和または不飽和の5~7員炭素環または 複素環と縮合して二環式基を形成してもよい)を表す)を表し、

 R^{305} 、 R^{306} 、 R^{307} 、および R^{308} はすべて水素原子を表すか、あるいは R^{305} 、 R^{306} 、 R^{307} 、および R^{308} のいずれか一つまたは二つがハロゲン原 子、 C_{1-4} アルキル基、 C_{1-4} アルコキシ基、ニトロ基、またはアミノ基を表し、残りすべてが水素原子を表し、

 R^{308} は、 C_{1-4} アルキル基または飽和または不飽和の $4\sim7$ 員炭素環式基または複素環式基を表し、 R^{310} は水素原子または C_{1-4} アルキル基を表す)

 C_{1-6} アルコキシ基、または飽和または不飽和の $3 \sim 8$ 員炭素環式基または複素環式基により置換されていてもよく、この炭素環式基または複素環式基が 2 つの C_{1-6} アルキル基により置換されている場合にはこの 2 つのアルキル基は一緒になってアルキレン鎖を形成していてもよく、またこの炭素環式基または複素環式基は他の飽和または不飽和の $5 \sim 7$ 員炭素環または複素環と縮合して二環式基を形成してもよい)を表す)を表し、

 R^{405} 、 R^{408} . R^{407} 、および R^{408} はすべて水素原子を表すか、あるいは R^{405} 、 R^{408} 、 R^{407} 、および R^{408} のいずれか一つまたは二つがハロゲン原 子、 C_{1-4} アルキル基、 C_{1-4} アルコキシ基、ニトロ基、またはアミノ基を表し、残りすべてが水素原子を表し、

 R^{408} は、 $t-プチル基により置換されたC_{1-4}$ アルキル基、または $1\sim3$ 個の C_{1-4} アルキル基により置換されていてもよい飽和の $5\sim7$ 員炭素環式基を表す)

- 14. 請求項1~13のいずれか一項に記載の化合物、またはその薬学上許容される塩もしくは溶媒和物を含んでなる、医薬組成物。
- 15. Bekの自己リン酸化の阻害が治療上または予防上有効である疾患の 治療または予防に用いられる、請求項14に記載の医薬組成物。
- 16. Bekの自己リン酸化の阻害が治療上または予防上有効である疾患が 悪性腫瘍である、請求項15に記載の医薬組成物。
- 17. 悪性腫瘍が、胃ガン、脳腫瘍、大腸ガン、膵ガン、肺ガン、腎ガン、卵巣ガン、および前立腺ガンからなる群から選択される、請求項16に記載の医薬組成物。
- 18. Bekの自己リン酸化の阻害が治療上または予防上有効である疾患の 治療または予防に用いられる薬剤の製造のための、請求項1~13のいずれか一 項に記載の化合物、またはその薬学上許容される塩もしくは溶媒和物の使用。
- 19. 請求項1~13のいずれか一項に記載の化合物、またはその薬学上許容される塩もしくは溶媒和物の治療上または予防上の有効量を哺乳類に投与する工程を含んでなる、Bekの自己リン酸化の阻害が治療上または予防上有効である疾患の治療または予防方法。

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP02/10803

7,14-18 6,14-18
7,14-18 6,14-18
6,14-18
12,14-18
·
9,13-18
7,14-18
6,14-18

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP02/10803

Continuation of A. CLASSIFICATION OF SUBJECT MATTER (International Patent Classification (IPC))

Int.Cl7

15/00, 35/00, 43/00

(According to International Patent Classification (IPC) or to both national classification and IPC)

Continuation of B. FIELDS SEARCHED

Minimum Documentation Searched(International Patent Classification (IPC))

Int.Cl⁷ 15/00, 35/00, 43/00

Minimum documentation searched (classification system followed by classification symbols)

Form PCT/ISA/210 (extra sheet) (July 1998)

r		
C (続き) .	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	WO 01/21596 A1 (ASTRAZENECA UK LIMITED) 2001.03.29 &EP 1218354 A1 &BR 2000014116 A &NO 2002001399 A	1-9, 14-18
X	JP 11-158149 A (麒麟麦酒株式会社) 1999.06.15 (ファミリーなし)	1-7, 14-18
X	WANG, Yanong D. et al., Inhibitors of Src tyrosine kinase: the preparation and structure—activity relationship of 4—anilino—3—cyanoquinolines and 4—anilinoquinazolines, Bioorganic & Medicinal Chemistry Letters (2000), Vol. 10, No. 21, p. 2477—2480	1-6, 14-18
x	WO 96/09294 A1 (THE WELLCOME FUNDATION LIMITED) 1996.03.28 &JP 10-505600 A &EP 782570 A1 &AU 9534824 A &ZA 9507853 A	1-12, 14-18
PX	WO 02/32872 A1 (エーザイ株式会社) 2002.04.25 &AU 2001095986 A	1-9, 13-18
PX	WO 02/88110 A1 (麒麟麦酒株式会社) 2002.11.07 &JP 2003-012668 A	1-7, 14-18
PX	JP 2002-030083 A (麒麟麦酒株式会社) 2002.01.29 (ファミリーなし)	1-6, 14-18
		,

HPS Trailer Page for

Walk-Up_Printing

UserID: ANDERSON

Printer: rem_04c70_gbuqptr

Summary

Document	Pages	Printed	Missed	Copies
WO000222598	207	207	0	· 1
US006605617	71	71	0	1
WO000128993	107	107	0	1
WO009813350	129	129	0	1
WO003033472	264	264	0	1
Total (5)	778	778	0	-