Hatványsorok, Taylor sor, újra

2018. február 12.

Hatványsor

Legyen
$$P(x) = c_0 + c_1 x + \cdots + c_n x^n \dots = \sum_{n=0}^{\infty} c_n x^n$$
.

Kicsit általánosabban:

Definíció. A hatványsor:

$$\sum_{n=0}^{\infty} c_n (x-x_0)^n, \qquad c_n \in \mathbb{R}.$$

Az egyszerűség kedvéért egyelőre feltesszük, hogy $x_0 = 0$.

Konvergencia halmaz

Definíció. Adott egy $\sum_{n=0}^{\infty} c_n x^n$ hatványsor.

Ennek konvergencia halmaza (konvergencia tartománya):

$$\mathcal{H} = \{x \in \mathbb{R} : \sum_{n=0}^{\infty} c_n x^n < \infty\}.$$

Röviden: "Ahol konvergens"

Konvergencia sugár

Definíció. Tegyük fel, hogy $\exists \xi \neq 0$, melyre $\xi \epsilon \mathcal{H}$, és $\exists \eta \not \in \mathcal{H}$

A hatványsor konvergencia sugara

$$\rho := \sup\{|x| : x \in \mathcal{H}\}.$$

Definíció. Ha $\mathcal{H} = \{0\}$, akkor $\rho := 0$.

Definíció. Ha $\mathcal{H} = \mathbb{R}$, akkor $\rho := \infty$.

Konvergencia halmaz

Állítás. A konvergencia halmaz intervallum.

A következő három eset lehetséges:

- 1. $\mathcal{H} = \{0\}.$
- 2. $\mathcal{H} = \mathbb{R}$.
- 3. $\mathcal{H} = [(-\rho, \rho)].$

Konvergencia halmaz

3.
$$\mathcal{H} = [(-\rho, \rho)].$$

Ez röviden azt jelenti, hogy ha $0<\rho<\infty$, akkor a konvergencia halmaz végpontjairól nem tudunk semmit.

Tehát a következő esetek bármelyike lehetséges:

$$\mathcal{H} = [-\rho, \rho]$$
 $\mathcal{H} = (-\rho, \rho]$

$$\mathcal{H} = [-\rho, \rho)$$
 $\mathcal{H} = (-\rho, \rho)$

Általános eset. Hatványsor konvergencia halmaza.

A hatványsor:
$$\sum_{n=0}^{\infty} c_n (x-x_0)^n$$
, $(c_n) \subset \mathbb{R}$, $x_0 \in \mathbb{R}$ rögzített szám.

A hatványsor konvergencia halmaza:

$$\mathcal{H} = \{x \in \mathbb{R} : \sum_{n=0}^{\infty} c_n (x - x_0)^n < \infty\}.$$

A hatványsor konvergencia sugara $\rho := \sup\{|x - x_0| : x \in \mathcal{H}\}.$

A következő három eset lehetséges:

-
$$\mathcal{H} = \{x_0\}$$

-
$$\mathcal{H} = \mathbb{R}$$

-
$$\mathcal{H} = [(x_0 - \rho, x_0 + \rho)].$$

Konvergencia sugár.

Tegyük fel, hogy létezik az alábbi határérték (esetleg $+\infty$) :

$$\gamma = \lim_{n \to \infty} \frac{|c_{n+1}|}{|c_n|}, \qquad \gamma = \lim_{n \to \infty} \sqrt[n]{|c_n|}$$

Ekkor

- $-\gamma=0$ esetén $\rho=\infty$. A hatványsor mindenütt konvergens.
- $\gamma = \infty$ esetén $\rho = 0$. A hatványsor csak 0-ban konvergens.
- 0 < γ < ∞ esetén a hatványsor konvergencia sugara:

$$\rho = \frac{1}{\gamma}$$

Példa, új kérdés.

Legyen $f(x) := \frac{1}{1 - x^2}$. Feírható-e hatványsorként? Igen:

$$\frac{1}{1-x^2} = \sum_{n=0}^{\infty} x^{2n}$$

Tehát az együtthatók:

$$c_n = \begin{cases} 0 & n = 2k+1 \\ 1 & n = 2k \end{cases}$$

A konvergencia sugár "reciproka" $\gamma = \lim_{n \to \infty} \sqrt[n]{1} = 1$.

Így $\rho = 1$. A konvergencia tartomány (-1, 1).

Ezért f hatványsor előállítása ebben az intervallumban igaz.

Hatványsor előállítás

Ha
$$f(x) = \sum_{n=0}^{\infty} c_n x^n$$
 az $x_0 = 0$ valamely környezetében,

akkor

$$f^{(n)}(0)=c_n n!.$$

Ezért a hatványsor előállításban

$$c_n=\frac{f^{(n)}(0)}{n!}.$$

Hatványsor előállítás

Általában, ha

$$f(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^n$$

az x₀ valamely környezetében, akkor

$$f(x_0) = c_0.$$
 $f'(x) = \sum_{n=1}^{\infty} c_n n(x - x_0)^{n-1}$, ezért $f'(x_0) = c_1 \cdot 1$
stb ... $f^{(n)}(x_0) = c_n n!$

A hatványsor együtthatói: $c_n = \frac{f^{(n)}(x_0)}{n!}$.

Függvény előállítása Taylor sorának segítségével

Adott egy $f : [a, b] \rightarrow \mathbb{R}$ függvény.

Tfh $x_0 \epsilon(a, b)$ pontban végtelen sokszor differenciálható.

Definíció.

Az f függvény x_0 pont körüli **Taylor sora** az alábbi függvény

$$T(x) := \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} \cdot (x - x_0)^n$$

 $x_0 = 0$ esetén szokás a Taylor sor helyett *McLaurent sor*ról beszélni.

Taylor sor konvergenciája

Állítás.

Legyen $f:(x_0-\rho,x_0+\rho)\to\mathbb{R}$ végtelen sokszor differenciálható függvény.

Tegyük fel, hogy az $f^{(k)}$ deriváltak egyenletesen korlátosak:

$$|f^{(k)}(x)| \le K$$
 $\forall x \in (x_0 - \rho, x_0 + \rho)$ $\forall k = 0, 1, 2, ...$

Ekkor f(x) = T(x) teljesül $\forall x \in (x_0 - \rho, x_0 + \rho)$ esetén.

Exponenciális függvény

Állítás.

Az $f(x) = e^x$ függvény Taylor sora:

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}, \qquad x \in \mathbb{R}.$$

Bizonyítás. $f^{(n)}(x) = e^x$.

Ezért $x_0 = 0$ választással $f^{(n)}(0) = 1$, $\forall n$ mellett.

Logaritmus függvény

Állítás. Az $f(x) = \ln(x)$ függvény $x_0 = 1$ körüli hatványsora

$$\ln(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (x-1)^n.$$

Bizonyítás.

$$f'(x) = \frac{1}{x}$$
, $f''(x) = -\frac{1}{x^2}$..., $f^{(n)}(x) = (-1)^{n-1}(n-1)!\frac{1}{x^n}$

Trigonometrikus függvények

Az $f(x) = \sin(x)$ függvény $x_0 = 0$ körüli Taylor sora:

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots \qquad x \in \mathbb{R},$$

Az $f(x) = \cos(x)$ függvény $x_0 = 0$ körüli Taylor sora:

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots \qquad x \in \mathbb{R}.$$