Ripon Kumar Saha

Arizona, USA

+1-602-802-9345GitHub: github.com/riponcs LinkedIn: linkedin.com/in/riponsaha Website: riponcs.github.io

EDUCATION

Arizona State University

Arizona, US

ripon.ece@gmail.com

PhD in Computer Engineering (Computer Vision)

January 2021 - Present

o Relevant Courses: Physics-Based Computer Vision, Machine Vision & Pattern Recognition, Algorithms, Random Signal Theory

Gwangju Institute of Science and Technology

Gwangju, South Korea

Master of Science in Biomedical Science & Engineering

August 2018 - December 2020

- Relevant Courses: Computer Vision, Deep Learning, Advanced Deep Learning, Biomedical Optics
- o Award: Recipient of the South Korean Government Scholarship

Jessore University of Science and Technology (JUST)

Jessore, Bangladesh

Bachelor of Science in Computer Science & Engineering

February 2012 - December 2017

TECHNICAL SKILLS

• Programming Languages: Python, MATLAB, C, C++, Java, SQL, Bash, JavaScript

- Frameworks & Libraries: PyTorch, TensorFlow, Keras, Fast.AI, Pandas, NumPy, Scikit, NLTK, OpenCV, Flask, J2EE
- Machine Learning & AI: CNN, FCN, RNN, LSTM, Diffusion Models, GAN, Transformers
- Data Visualization and Analysis: Tableau, Microsoft PowerBI, Seaborn, Origin-Pro, GraphPad
- High-Performance Computing: Batch Scripting, GPU Clusters, Python Multi-Processing, Dask, Cython
- Version Control and DevOps: Git, Docker, MySQL

EXPERIENCE

Kitware Inc. Summer Internship

Minneapolis, MN

May 2024 - Aug 2024

- o Deep Learning and Computer Vision Methods: Applied deep learning and computer vision methods for object detection, event/activity recognition, and video/image search, calculating uncertainty in object recognition and detection in long-range video footage.
- o Data Utilization: Utilized data from ground, handheld, aerial, or satellite cameras, advancing real-time segmentation, enhancing multiple degraded videos, optimizing performance, and emphasizing object feature preservation.

Imaging Lyceum Lab, Arizona State University

Tempe, AZ

Research Assistant

January 2021 - Present

- o Dynamic Scene Restoration: Designed a physics-based deep learning model for dynamic scene restoration affected by atmospheric turbulence with Ultra-Zoom or astrophotography camera, presenting findings to colleagues and students.
- Research Contributions: Contributed to research on computational imaging and photography, computer vision, and visual/perceptual experience with a focus on challenges posed by atmospheric turbulence in Ultra-Zoom and astrophotography cameras.

Alphacore Inc.

Tempe, AZ

Doctorate Student Collaborator

March 2021 - August 2023

- Field Experiments: Managed onsite field setup with telescopes, drones, cameras, weather stations, & scintillometers.
- Atmospheric Turbulence Model: Built a deep learning model for Atmospheric Turbulence estimation for varying focus distances, light intensity, platform motion, and camera shake while analyzing extensive multidimensional data from

Lightsense Technology Inc.

Tucson, AZ

Summer Intern

June 2022 - August 2022

- AI Model Development: Developed an AI model for Covid-19 classification using spectral data and ML techniques.
- o Spectral Unmixing Solutions: Developed spectral unmixing solutions for bacteria samples, analyzing viruses in saliva and buffer solutions using the PARAFAC algorithm and various preprocessing techniques.

NeuroPhotonics Lab, Gwangju Institute of Science and Technology

Gwangju, South Korea

Research Assistant - Machine Learning and Computer Vision

August 2018 - December 2020

- o Deep Learning Architecture: Designed a multimodal deep learning architecture for Meibomian Gland analysis with GAN in PyTorch, Resnet50, and encoder-decoder based network for segmentation and qualitative analysis.
- o Automated Assessment: Enabled automated assessment of infrared images of tear film, detecting and segmenting out the eye gland area, removing the specular reflection, and releasing a dataset of 1,600 infrared images with annotated MASK for public use.

Projects

- Multimodal approach for atmospheric image degradation (2024): Developed a multimodal system integrating image quality metrics with meteorological data using a Kolmogorov Arnold Network (KAN) to predict atmospheric image degradation, surpassing previous state-of-the-art methods in accuracy and generalizability.
- AI Chat Assistant for Oral History Documentation (2022): Developed an AI platform for U.S. refugee oral histories using LLMs, integrating Transformer and T5 models for intent recognition and responses. Utilized Whisper and Google TTS for voice interactions.
- Real-Time Atmospheric Turbulence Video Simulator (2022): Developed a high-speed simulator in Python for real-time applications, simulating 3 sets of simplex noise for realistic movement and coherent video, producing 4k/8k resolution atmospheric turbulence.
- Turbulence-Resistant Object Segmentation (2021): Built a Region Growing algorithm for object segmentation in turbulent videos, minimizing degradation in long-range observation systems. Refined with a two-stage process using optical flow and RAFT, validated with real-world data.
- Blood Glucose Prediction via CV (2020): Designed an architecture to analyze images of custom contact lenses in various color spaces, leveraging spectroscopy for measurements, achieving 85% accuracy in blood glucose prediction.
- Denoising Low Light Images with DL (2019): Introduced deep learning-based low-light image enhancement, designed a U-Net architecture in PyTorch, trained with short exposure dark images and 67GB long exposure images on RTX 2080Ti.
- 3D Point Cloud and Mesh from Motion (2018): Analyzed images from different viewpoints, estimating the fundamental matrix and camera poses in 3D space, providing 3D point cloud information, converting to 3D Mesh using MeshLab.
- Focus-Stacked Imaging (2018): Aligned images based on SIFT, determining depth from focus measure, combining focus points to produce an all in-focus image, broadening depth of field, and reducing blur.
- Diffraction Microscopy Setup (2017): Built an optical setup with two cameras, a beam splitter, laser beam, and various lens elements, collaborating to develop Confocal, Abbe diffraction, and Light-sheet microscopes.

PUBLICATIONS

- Turb-Seg-Res: A Segment-then-Restore Pipeline for Dynamic Videos with Atmospheric Turbulence: Saha, Ripon Kumar, Qin D, e J, Li N, and Jayasuriya S, CVPR 2024
- Unsupervised Region-Growing Network for Object Segmentation in Atmospheric Turbulence: Qin D, Saha, Ripon Kumar, Jayasuriya S, Ye J, and Li N, ECCV 2024
- Automated Quantification of Meibomian Gland Dropout in Infrared Meibography using Deep Learning: Saha, Ripon Kumar, Chowdhury AM, Na KS, Hwang GD, Hwang H, and Chung E, Ocular Surface 2022
- Turbulence Strength C2n Estimation from Video using Physics-based Deep Learning: Saha, Ripon Kumar, Esen S, Jihoo K, Joseph S, and Suren J, Optics Express 2022
- Electrocorticography-Based Motor Imagery Movements Classification using LSTM based on Deep Learning Approach: Rashid M, Islam M, Sulaiman N, Bari BS, Saha, Ripon Kumar, Hasan MJ, SN Applied Science 2020
- MetaVIn: Meteorological and Visual Integration for Atmospheric Image Degradation Estimation: Saha, Ripon Kumar, Mccloskey S, Jayasuriya S, submitted to WACV 2025

Honors, Awards, and Additional Information

- 1st Place Winner: BuildwithAI Hackathon (4,000 participants, 70 countries) 2020
- Recipient of the "Most Active Online Attendee" Award: European Conference on Computer Vision 2020
- Reviewer: Reviewer for WACV, IEEE Access, Journal of Optics Express, and Applied Optics
- Volunteering: Co-Organizer, cholopaltai.org (2018); Programming Instructor, Jessore University (2014 2015)