

Sorry arima, I'm going Bayesian

Pierre Gauthier

École des Mines de Nancy

May 2019

Tuteur: Denis Villemonais

Pierre Gauthier Sorry ARIMA

Introduction

- Projet à partir du billet Sorry ARIMA, but I'm Going Bayesian par Kim Larsen. S'appuis sur plusieurs publications :
 - Predicting the Present with Bayesian Structural Time Series, S.L. Scott and H. Varian
 - ▶ Variable Selection Via Gibbs sampling , E.I. George, R.E. McCulloch
 - A simple and efficient simulation smoother, J. Durbin, S.J. Koopman
- Étudier une autre approche que celle classique pour les série temporelles
- Utilisation des méthodes de Monté-carlo par chaîne de Markov.

Sommaire

- 1 Méthode de Monte-Carlo par chaînes de Markov
- 2 Approche bayésienne pour la modélisation des series temporelles
- 3 Modélisation d'un jeu de données

Approche bayésienne pour la modélisation des series temporelles

Approche bayésienne pour les séries temporelles

Pierre Gauthier Sorry ARIMA May 2019

Approche bayésinne pour la modélisation des séries temporelles

Les modèle espace-états

bruit blanc gaussien

equation d'observation	$y_t = Z_t^T \alpha_t + \epsilon_t$	$\epsilon_t \sim N\left(0, H_t ight)$
equation de transition	$\alpha_{t+1} = T_t \alpha_t + R_t \eta_t$	$\eta_t \sim N\left(0,Q_t ight)$

- v_t observations
- α_t variables d'états / latentes / cachées
- Z_t matrice de mesure
- T_t matrice de transition

Figure – Hidden Markov Chain[researchgate.net]

Approche bayésienne pour la modélisation des séries temporelles

→ Bayesian structural time series (BSTS)

bruit blanc gaussien

observation	$y_t = \mu_t + \beta^T x_t + \tau_t + \varepsilon_t$	$arepsilon_{t}\sim N\left(0,\sigma_{arepsilon}^{2} ight)$
regression	$\beta^T x_t$	
tendance + marche aléatoire	$\mu_t = \mu_{t-1} + \delta_{t-1} + u_t$	$u_t \sim N\left(0, \sigma_u^2\right)$
marche aléatoire	$\delta_t = \delta_{t-1} + v_t$	$v_t \sim N\left(0, \sigma_v^2\right)$
saisonnalité	$ au_t = -\sum_{s=1}^{s-1} au_{t-s} + w_t$	$w_t \sim N\left(0, \sigma_w^2\right)$

Pierre Gauthier Sorry ARIMA May 2019 4 / 20

→ Bayesian structural time series (BSTS)

observation	$y_t = Z_t^T \alpha_t + \epsilon_t$	$\epsilon_t \sim N(0, H_t)$
	Z_t^T $(1 0 \beta^T \mathbf{x}_t)$	$\begin{pmatrix} \alpha_t^T \\ \mu_t & \delta_t & 1 \end{pmatrix}^T$
equation de transition	$\alpha_{t+1} = T_t \alpha_t + R_t \eta_t$	$\eta_t \sim N\left(0, Q_t ight)$
$\left(egin{array}{c} lpha_t \ lpha_t \ \delta_t \ 1 \end{array} ight)$	$egin{pmatrix} T_t \ 1 & 1 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \ \end{pmatrix}$	$egin{pmatrix} \mathcal{N}_t\eta_t \ u_t \ v_t \ w_t \end{pmatrix}$

 $\rightarrow \text{ estimation des paramètres}$

Loi à postériori états cachés α_t : Le filtre de Kalman

Itérations sur l'estimation $p(\alpha_t|y_{1:t}) \sim \mathcal{N}(\hat{\alpha}_t, P_t)$

Figure – [github : anhdanggit/nowcasting-google-queries/]

Loi à postériori de β : *spike-and-slab prior*

- On prend la partie regression $y_t^* = y_t \mu_t$
- On utilise pour β une distribution à priori *spike-and-slab* :

$$ho(\gamma)=\prod_{k=1}^N\pi^{\gamma_k}(1-\pi)^{1-\gamma_k}$$
, $\gamma_k\in\{0,1\}$ $N=\mathit{Card}(\mathsf{x})$

- $\blacktriangleright \text{ Å priori}: p\left(\beta,\gamma,\sigma_{\varepsilon}^{2}\right) = p\left(\beta_{\gamma}|\gamma,\sigma_{\varepsilon}^{2}\right)p\left(\sigma_{\varepsilon}^{2}|\gamma\right)p(\gamma)$

papramètres à priori : v nombre de paramètres, $\frac{ss}{v} = (1 - R^2) s_y^2$, $\Omega^{-1} \propto X^T X$

■ On utilise les propriété des lois conjugé pour obtenir les loi à postériori $\beta_{\gamma}|\sigma_{\epsilon}, \gamma, \mathbf{y}^* \qquad \gamma_{\epsilon}^2|\gamma, \mathbf{y}^* \qquad \gamma|\mathbf{y}^*$

■ Intérêt de la spike-and-slab

Figure –

[batisengul.co.uk]

$$\beta_{\gamma} = \beta [\gamma_{k} \neq 0]$$

Échantilloneur de Gibbs pour BSTS : SSVS algorithm

$$\Theta = \left(\gamma, \beta, \sigma_{\varepsilon}^2, \sigma_{v}^2, \sigma_{u}^2\right)$$

- ► Choisir paramètres à priori v, R^2 , s_v^2 , π
- ► Tirer $\gamma, \beta, \sigma_{\varepsilon}^2, \sigma_{v}^2, \sigma_{u}^2$

$$\sigma_u^2, \sigma_u^2, \sigma_w^2$$
 sont tiré selon la loi .| $\gamma \sim \mathit{IG}\left(\frac{\nu}{2}, \frac{ss}{2}\right)$

Sur $1, \ldots, M$:

- **1** Après application du filtre de Kalman, on tire les états latents α depuis $p\left(\alpha|y,\gamma,\beta,\sigma_{\varepsilon}^2,\sigma_{v}^2,\sigma_{u}^2\right)$
- 2 On tire σ_u^2 et σ_v^2 selon $p\left(\frac{1}{\sigma_u^2}, \frac{1}{\sigma_v^2}|y, \alpha, \beta, \sigma_\varepsilon^2\right)$
- 3 On tire β et σ_{ϵ}^2 selon $p\left(\beta, \sigma_{\epsilon}^2 | y, \alpha, \sigma_{u}^2, \sigma_{v}^2\right)$

On prend comme modèle la moyenne des tirages $(\Theta^m, \dots, \Theta^M)$

Utilisation du modèle BSTS sur un jeu de données

On prend le jeu de données CO2 comprenant 295 observations

- ► *Input Gas* : arrivée d'essence
- ► Output CO2 : CO2 en sortie

On utilise le modèle précédent pour exprimer Input Gas en fonction de Output CO2.

$$y_t = \mu_t + \beta^T \mathbf{x}_t + \epsilon_t \qquad \epsilon_t \sim \mathcal{N}\left(0, \sigma_\epsilon^2\right)$$

$$\mu_t = \mu_{t-1} + \delta_{t-1} + u_t \qquad u_t \sim \mathcal{N}\left(0, \sigma_u^2\right)$$

Listing 1 - package bsts

Observations et valeurs obtenues par le modèle bsts.reg

Pierre Gauthier Sorry ARIMA May 2019 10 / 20

Convergence

Résidus

Comparaison avec un modéle à fontion de transfert

Modèle à fonction de transfert : $Y_t = \mu + \frac{\Omega(B)}{\Delta(B)} X_{t-b} + \frac{\Theta(B)}{\Phi(B)} \varepsilon_t$ Avec :

- \blacksquare (Y_t) chronique à modeliser
- (X_t) chronique explicative

- $\frac{\Omega(B)}{\Delta(B)}$ fonction de transfert
- (u_t) chronique des erreurs
- ightarrow On blanchit la chronique $X_t: \chi_t = rac{\Phi_1(B)}{\Theta_1(B)} X_t$

$$ightarrow \Upsilon_t = \frac{\Phi_1(B)}{\Theta_1(B)} Y_t = \frac{\Omega(B)}{\Delta(B)} \chi_{t-b} + \widetilde{\varepsilon}_t$$

On utilise le corrélogramme croisé
$$\rho(h) = \frac{\operatorname{Cov}(\chi_t, \Upsilon_{t+h})}{\sqrt{\operatorname{Var}(\chi_t) \cdot \operatorname{Var}(\Upsilon_t)}} = \begin{cases} \nu_h \frac{\partial \chi}{\partial r} & \text{si } h \geqslant 0 \\ 0 & \text{si } h < 0 \end{cases}$$

où
$$\Upsilon_t = \sum_{h \geqslant 0} \nu_h \chi_{t-h} + \widetilde{\varepsilon}_t$$

Pierre Gauthier Sorry ARIMA May 2019 13 / 20

 \rightarrow blanchissement de *Input Gas*.

Pierre Gauthier Sorry ARIMA May 2019 14 / 20

 \rightarrow blanchissement de *Input Gas*.

Pierre Gauthier Sorry ARIMA May 2019 15 / 20

→ Determiner la fonction de transfert

Pierre Gauthier Sorry ARIMA May 2019 16 / 20

ightarrow Le meilleur modèle est un AR[2] au numérateur et un polynome de degré 4 au dénominateur

```
> output XY=arimax(Y,order=c(2,0,0),transfer=list(c(1,5)),fixed=c(NA,NA,NA,0,0,0,0,NA,NA,NA),xtransf=X)
> summary(output XY)
Coefficients
         ar 1
                       intercept
                                 T1-AR1 T1-MAO T1-MA1 T1-MA2
                                                                             T1-MA4
      1.5272
                                  0.5490
                                                                   -0.5310
                                                                            -0.3801
              -0.6288
                         53.3618
                                                                   0.0738
      0 0467
               0 0495
                          0 1375 0 0392
                                                                             0 1017
      T1-MA5
      -0.5180
      0 1086
sigma^2 estimated as 0.0571: log likelihood = 2.08, aic = 9.83
Training set error measures:
                               RMSE
                                                                           MASE
Training set 0.0001700879 0.2389594 0.1681788 -0.001732428 0.3130213 0.2806151 0.02877323
```

```
> coeftest(output_XY)
z test of coefficients:
           Estimate Std. Error z value Pr(>|z|)
ar1
           1.527181
                      0.046723
                                32.6859 < 2.20-16
          -0.628841
                      0.049471 = 12.7114 < 2.20 = 16
intercept 53.361773
                      0.137503 388.0769 < 2.2e-16
T1-AR1
           0.549027
                      0.039191 14.0089 < 2.20-16
T1-M43
          -0.530964
                      0.073814 =7.1933 6.325 = 13 ***
T1-MA4
          -0.380125
                      0.101704 -3.7376 0.0001858 ***
T1-MA5
          -0.518006
                      0.108562 -4.7715 1.829@-06 ***
```

ightarrow Diagnostic des résidus

Pierre Gauthier Sorry ARIMA May 2019 18 / 20

Modélisation d'un jeu de données

Conclusion

Pierre Gauthier Sorry ARIMA May 2019

Conclusion

 Arguments de l'auteur pour une approche bayesienne

■ Bayesiens contre fréquentistes

Les avantage de l'approche bayésienne

Figure - [http://www.tylervigen.com/]

Modélisation d'un jeu de données

Merci de votre attention

Pierre Gauthier Sorry ARIMA May 2019