Zobrazení a funkce

Uspořádaná dvojice [x, y] je dvojice prvků, kde záleží na pořadí: $[x, y] \neq [y, x]$ pro $x \neq y$.

Zobrazení mezi množinami A a B je množina uspořádaných dvojic [x,y], kde $x \in A$, $y \in B$, s vlastností, že pro každé $x \in A$ (vzor) existuje nejvýše jedno $y \in B$ (obraz), takové, že [x,y] je v této množině. Formálně:

$$f:A\to B.$$

Funkce jedné proměnné je speciální případ zobrazení, kdy

$$f: D(f) \to R(f),$$

kde $D(f) \subseteq \mathbb{R}$ je **definiční obor** (množina všech vstupních hodnot, pro které je funkce definována) a $R(f) \subseteq \mathbb{R}$ je **obor hodnot** funkce (množina všech hodnot, které funkce nabývá). **Grafem funkce** f nazýváme množinu všech uspořádaných dvojic: $\{[x, f(x)], x \in D(f)\}$.

Funkce f může mít na intervalu (nebo na celém definičním oboru) různé vlastnosti:

- Rostoucí funkce: pro všechna $x_1 < x_2$ z D(f) platí $f(x_1) < f(x_2)$.
- Klesající funkce: pro všechna $x_1 < x_2$ z D(f) platí $f(x_1) > f(x_2)$.
- Neklesající funkce: pro všechna $x_1 < x_2$ z D(f) platí $f(x_1) \le f(x_2)$.
- Nerostoucí funkce: pro všechna $x_1 < x_2$ z D(f) platí $f(x_1) \ge f(x_2)$.
- Monotónní funkce: funkce, která je buď neklesající nebo nerostoucí.
- Ryze monotónní funkce: funkce, která je buď klesající nebo rostoucí.
- Prostá funkce: jestliže platí $f(x_1) = f(x_2)$ právě tehdy, když $x_1 = x_2$. V praxi to znamená, že funkce nikdy nenabývá jedné hodnoty více než jednou. Každá ryze monotónní funkce (tedy rostoucí nebo klesající) je prostá.
- Inverzní funkce: pokud je funkce prostá a její obor hodnot je R(f), pak existuje inverzní funkce

$$f^{-1}: R(f) \to D(f),$$

která každému prvku $y \in R(f)$ přiřadí právě jedno $x \in D(f)$ takové, že f(x) = y. Tedy platí následující dualita mezi definičním oborem a oborem hodnot:

$$D(f^{-1}) = R(f) \quad {\rm a} \quad R(f^{-1}) = D(f).$$

Dále platí vztahy:

$$f^{-1}(f(x)) = x$$
 pro všechna $x \in D(f) = R(f^{-1})$

a

$$f(f^{-1}(y)) = y$$
 pro všechna $y \in D(f^{-1}) = R(f)$.

Grafy funkcí f a f^{-1} jsou navzájem symetrické podél osy y=x.

- Omezená funkce: funkce, pro kterou existují čísla m, M taková, že $m \leq f(x) \leq M$ pro všechna $x \in D(f)$.
- Sudá funkce: pro všechna $x \in D(f)$ platí f(-x) = f(x).
- Lichá funkce: pro všechna $x \in D(f)$ platí f(-x) = -f(x).
- Periodická funkce: existuje číslo T > 0, že pro všechna $x \in D(f)$ platí f(x + T) = f(x).

Elementární funkce a jejich definiční obory

Funkce	Definiční obor $D(f)$	
Konstantní $f(x) = b$	\mathbb{R}	
Lineární $f(x) = ax + b$	\mathbb{R}	
Kvadratická $f(x) = ax^2 + bx + c$	\mathbb{R}	
Mocninná $f(x) = x^n, n \in \mathbb{N}$	\mathbb{R}	
Mocninná $f(x) = x^{-n}, n \in \mathbb{N}$	$\mathbb{R}\setminus\{0\}$	
Exponenciální $f(x) = a^x, \ a > 0, \ a \neq 1$	\mathbb{R}	
Logaritmická $f(x) = \log_a x, \ a > 0, \ a \neq 1$	$(0,\infty)$	
Sinus $f(x) = \sin x$	\mathbb{R}	
Kosinus $f(x) = \cos x$	\mathbb{R}	
Kosinus $f(x) = \cos x$ Tangens $f(x) = \operatorname{tg} x = \frac{\sin x}{\cos x}$ Votangens $f(x) = \operatorname{tg} x = \frac{\sin x}{\cos x}$	$ \mathbb{R} \setminus \left\{ \frac{(2k+1)\pi}{2} \mid k \in \mathbb{Z} \right\} $	
Kotangens $f(x) = \cot x = \frac{\cos x}{\sin x}$	$\mathbb{R} \setminus \{k\pi \mid k \in \mathbb{Z}\}$	
Arkus sinus $f(x) = \arcsin x$	[-1,1]	
Arkus kosinus $f(x) = \arccos x$	[-1,1]	
Arkus tangens $f(x) = \operatorname{arctg} x$	\mathbb{R}	
Arkus kotangens $f(x) = \operatorname{arccotg} x$	\mathbb{R}	

Inverzní funkce ke goniometrickým funkcím (sin, cos, tg, cotg) označujeme běžně jako cyklometrické funkce (arcsin, arccos, arctg, arccotg).

Inverzní funkce k elementárním funkcím

Mnohé elementární funkce nejsou na svém definičním oboru prosté, a tedy nemají inverzní funkci v celém definičním oboru. Pokud však takovou funkci omezíme na interval, na kterém je ryze monotónní, pak inverzní funkce již existuje. Níže uvádíme tabulku nejčastějších inverzních funkcí:

Funkce	D(f)	R(f)	Inverzní funkce	$D(f^{-1})$	$R(f^{-1})$
$\sin x$	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	[-1, 1]	$\arcsin x$	[-1, 1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
$\cos x$	$[0,\pi]$	[-1, 1]	$\arccos x$	[-1, 1]	$[0,\pi]$
$\operatorname{tg} x$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	\mathbb{R}	$\operatorname{arctg} x$	\mathbb{R}	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
$\cot x$	$(0,\pi)$	\mathbb{R}	$\operatorname{arccotg} x$	\mathbb{R}	$(0,\pi)$
$a^x \ (a > 0, a \neq 1)$	\mathbb{R}	$(0,\infty)$	$\log_a x$	$(0,\infty)$	\mathbb{R}
$\log_a x \ (a > 0, \ a \neq 1)$	$(0,\infty)$	\mathbb{R}	a^x	\mathbb{R}	$(0,\infty)$
$ax + b \ (a \neq 0)$	\mathbb{R}	\mathbb{R}	$f^{-1}(x) = \frac{x-b}{a}$	\mathbb{R}	\mathbb{R}
$x^n \ (n \text{ lich\'e}, n \in \mathbb{N})$	\mathbb{R}	\mathbb{R}	$\sqrt[n]{x}$	\mathbb{R}	\mathbb{R}
x^{-n} $(n \text{ liché}, n \in \mathbb{N})$	$\mathbb{R}\setminus\{0\}$	$\mathbb{R}\setminus\{0\}$	$-\sqrt[n]{x}$	$\mathbb{R}\setminus\{0\}$	$\mathbb{R}\setminus\{0\}$

Základní vzorce pro logaritmy a goniometrické funkce

Vzorce pro logaritmy

Nechť $a,b\in\mathbb{R},\,a>0,\,a\neq1,\,b>0,\,x>0,\,y>0.$ Pak platí následující základní vztahy:

- $\log_a 1 = 0$
- $\log_a a = 1$
- $\log_a(xy) = \log_a x + \log_a y$
- $\log_a \left(\frac{x}{y}\right) = \log_a x \log_a y$
- $\log_a(x^n) = n \cdot \log_a x$
- $\log_a x = \frac{\log_b x}{\log_b a}$ (vzorec pro změnu základu)

Základní goniometrické vztahy

Pro všechna $x \in \mathbb{R}$ platí:

- $\bullet \sin^2 x + \cos^2 x = 1$
- $\sin(-x) = -\sin x$ (lichost funkce sinus)
- $\cos(-x) = \cos x$ (sudost funkce kosinus)
- $\sin(2x) = 2\sin x \cos x$
- $\bullet \cos(2x) = \cos^2 x \sin^2 x$

Rovinné křivky a způsoby jejich popisu

Rovinná křivka je množina uspořádaných dvojic [x, y], které splňují daný vztah.

Funkce vs. křivka

Funkce $f: D(f) \to \mathbb{R}$ každému $x \in D(f)$ přiřadí právě jednu hodnotu y = f(x). Grafem funkce je tedy křivka, která prochází nejvýše jedním bodem v každé svislé přímce. Naopak **křivka** obecně může mít v jedné svislé přímce více bodů – typickým příkladem je kružnice nebo elipsa. Proto nelze všechny křivky vyjádřit pomocí funkce.

Základní způsoby popisu křivek

Rovinné křivky lze popsat několika různými způsoby:

- 1. **Explicitně:** Křivka je zadána předpisem funkce y = f(x). Např. parabola: $y = x^2$.
- 2. **Implicitně:** Křivka je určena rovnicí F(x,y)=0, kde F je funkce dvou proměnných. Např. kružnice: $x^2+y^2-r^2=0$.
- 3. Parametricky: Souřadnice bodů křivky jsou určeny pomocí parametru t:

$$x = x(t),$$

 $y = y(t),$ pro $t \in I.$

4. Vztahem mezi polárními souřadnicemi: (r, φ) :

$$r = r(\varphi),$$

kde r je vzdálenost od počátku a φ je úhel, který svírá vektor s kladnou poloosou x, měřený kladně proti směru hodinových ručiček v obloukové míře.

Mezi polárními a kartézskými souřadnicemi platí tento vztah:

$$x = r\cos\varphi,$$
$$y = r\sin\varphi,$$

Srovnání způsobů popisu křivek

• Explicitní zápis:

jednoduchý tvar, snadná derivace podle x; málo obecný - zahrnuje jen funkce.

• Implicitní zápis:

umožňuje popis obecnějších tvarů (např. kružnic, elips); složitější na práci (např. implicitní derivace).

• Parametrický zápis:

popisuje libovolnou křivku, zachovává orientaci, vhodný pro pohybové úlohy; méně názorný, obtížnější zpětné převedení na jiný zápis.

• Polární zápis:

přirozený pro křivky s kruhovou symetrií (spirály, růžice apod.); složitější analyticky (např. výpočty derivací nebo délek křivek).