F ENT COOPERATION TREA

	From the INTERNATIONAL BUREAU			
PCT	To:			
NOTIFICATION OF THE RECORDING OF A CHANGE (PCT Rule 92bis.1 and Administrative Instructions, Section 422) Date of mailing (day/month/year) 05 July 2000 (05.07.00)	PLOUGMANN, VINGTOFT & PARTNERS A/S Sankt Annæ Plads 11 P.O. Box 3007 DK-1021 Copenhagen K DANEMARK			
03 3diy 2000 (05.07.00)				
Applicant's or agent's file reference 22129 PC 1	IMPORTANT NOTIFICATION			
International application No. PCT/DK99/00562	International filing date (day/month/year) 15 October 1999 (15.10.99)			
The following indications appeared on record concerning:				
X the applicant X the inventor	the agent the common representative			
Name and Address	State of Nationality State of Residence			
ARKHAMMAR, Per, O., G. Helmfeltsgatan 13 S-254 40 Helsingborg Sweden	SE SE Telephone No.			
oweden.	Facsimile No.			
,	Teleprinter No.			
2. The International Bureau hereby notifies the applicant that the	he following change has been recorded concerning:			
the person the name X the add	dress the nationality the residence			
Name and Address	State of Nationality State of Residence			
ARKHAMMAR, Per, O., G. Husensjövägen 97 S-25252 Helsingborg	SE SE Telephone No.			
Sweden				
	Facsimile No.			
	Teleprinter No.			
3. Further observations, if necessary:				
4. A copy of this notification has been sent to:				
X the receiving Office	the designated Offices concerned			
the International Searching Authority	X the elected Offices concerned			
X the International Preliminary Examining Authority	other:			
	Authorized officer			
The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland	Catherine Massetti			
Faccimile No : (41 22) 740 14 25	Telephone No : (41-22) 338 83 38			

F FENT COOPERATION TREA

To:

From the	INTERNATIONAL	BUREAU

PCT

NOTIFICATION OF ELECTION

(PCT Rule 61.2)

Assistant Commissioner for Patents United States Patent and Trademark Office Box PCT Washington, D.C.20231 ETATS-UNIS D'AMERIQUE

Date of mailing (day/month/year)
06 June 2000 (06.06.00)

International application No.
PCT/DK99/00562

International filing date (day/month/year)
15 October 1999 (15.10.99)

Applicant

ARKHAMMAR, Per, O., G. et al

	The designated Office is hereby notified of its election made:	مسمم مواجي د دو د سيد رايد
	X in the demand filed with the International Preliminary Examining Authority on:	
	25 April 2000 (25.04.00)	
	in a notice effecting later election filed with the International Bureau on:	
2.	The election X was	
	was not	
	made before the expiration of 19 months from the priority date or, where Rule 32 applies Rule 32.2(b).	s, within the time limit under

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland Authorized officer

Manu Berrod

Telephone No.: (41-22) 338.83.38

Facsimile No.: (41-22) 740.14.35

PATENT COOPERATION TREATY

PCT

INTERNATIONAL SEARCH REPORT

(PCT Article 18 and Rules 43 and 44)

Applicant's or agent's file reference	FOR FURTHER see Notification of Transmittal of International Search Report (Form PCT/ISA/220) as well as, where applicable, item 5 below. ACTION				
International application No.	International filing date (day/month/year) (Earliest) Priority Date (day/month/year)				
PCT/DK 99/00562	15/10/1999	15/10/1998			
Applicant					
BIOIMAGE A/S et al.					
This International Search Report has been according to Article 18. A copy is being tra	n prepared by this International Searching Auth Insmitted to the International Bureau.	nority and is transmitted to the applicant			
This International Search Report consists [X] It is also accompanied by	of a total of sheets. a copy of each prior art document cited in this	report.			
Basis of the report					
 a. With regard to the language, the language in which it was filed, unl 	international search was carried out on the bas ess otherwise indicated under this item.	is of the international application in the			
the international search w Authority (Rule 23.1(b)).	as carried out on the basis of a translation of the	ne international application furnished to this			
b. With regard to any nucleotide an was carried out on the basis of the		ternational application, the international search			
ara .	onal application in written form.	•			
X filed together with the inte	mational application in computer readable for	n.			
furnished subsequently to	this Authority in written form.				
,	this Authority in computer readble form.				
international application a	osequently furnished written sequence listing d is filed has been furnished.				
the statement that the info furnished	ormation recorded in computer readable form is	s identical to the written sequence listing has been			
-·	nd unsearchable (See Box I).				
3. X Unity of invention is lac	king (see Box II).				
4. With regard to the title,					
the text is approved as su	bmitted by the applicant.				
	hed by this Authority to read as follows:				
METHOD FOR EXTRACTING QUANTITATIVE INFORMATION RELATING TO AN INFLUENCE ON A CELLULAR RESPONSE					
5. With regard to the abstract,					
X the text is approved as submitted by the applicant.					
the text has been establis within one month from the	hed, according to Rule 38.2(b), by this Authori a date of mailing of this international search rep	ty as it appears in Box III. The applicant may, ort, submit comments to this Authority.			
6. The figure of the drawings to be publ	ished with the abstract is Figure No.	16			
as suggested by the appli		None of the figures.			
because the applicant fail	ed to suggest a figure.				
because this figure better	characterizes the invention.				

International application No. PCT/DK 99/00562

INTERNATIONAL SEARCH REPORT

Box I Observati ns wh re certain laims wer f und uns archabl (C ntinuati n fitem 1 of first sheet)	
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:	
1. X Claims Nos.: 1-28, 39 because they relate to subject matter not required to be searched by this Authority, namely:	
Rule 39.1(v) PCT - Presentation of information: The subject-matter of claim 39 is a "set of data". This is a mere representation of presentation for which the ISA is not required to establish a search report.	
2. X Claims Nos.: 1-28 because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:	:
see FURTHER INFORMATION sheet PCT/ISA/210	
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).	
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)	
This International Searching Authority found multiple inventions in this international application, as follows:	
see additional sheet	
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.	
2. X As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.	
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:	
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:	
Remark on Protest The additional search fees were accompanied by the applicant's protest.	
No protest accompanied the payment of additional search fees.	
	- [

Continuation of Box I.2

Claims Nos.: 1-28

Claim 1-28 are not supported by technical terms, as is required by Article 6 and Rule 6.3(a) PCT, which legitimately define the scope of the subject-matter for which protection is sought as no technical contribution to the state of the art commensurate to the scope of the present claims is derivable from the description in terms of a technical problem and a solution thereto as is required by Article 5 and Rule 5.1(iii) PCT. Inasfar as claims 1-28 could be understood they would rely on the act of recording of signals from the underlying biological systems and the subsequent processing of the recorded signals. No technical features technically describing such act as a possible contribution to the state of the art is derivable other than the trivial use of state of the art photographic recording devices. No algorithms nor any unexpected combinations of hardware and software defines the subject-matter for which protection is sought. These flaws with respect to the requirements of Article 5 and 6 of the PCT are of such nature that a meaningful compete search could not be executed.

The only technical definition of subject-matter for which a meaningful search could be executed was found in claims limited to the involvement of the technically characterised luminophores as in claims 29-38 and in the parts of the description supporting these claims.

Moreover, the initial phase of the search for this limited subject-matter revealed a very large number of documents relevant to the issue of novelty of claim 1. So many documents were retrieved falling under the wide scope of claim 1-28 that it is impossible to determine which parts of these claim(s) may be said to define subject-matter for which protection might legitimately be sought (Article 6 PCT). For these reasons also, a meaningful search over the whole breadth of the claim(s) is impossible.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 29-38 IN PART

A method for extracting quantitative information relating to an influence on a cellular response in mechanically intact or permeabilised living cells, the method comprising recording variation in spatially distributed light emitted from a GFP comprising luminophore, the luminophore being present in the cells and being capapble of being redistributed in a manner which is related with the degree of the influence, and/or of being modulated by a biochemically active component which is capable of being redistributed in a manner which is related to the degree of influence, as a change in light intensity measured by an instrument designed for the measurement of changes in fluorescence intensity. In which the GFP comprising luminophore is a polypeptide encoded by SEQ ID No. 1.

2. Claims: 29-38 IN PART

A method for extracting quantitative information relating to an influence on a cellular response in mechanically intact or permeabilised living cells, the method comprising recording variation in spatially distributed light emitted from a GFP comprising luminophore, the luminophore being present in the cells and being capapble of being redistributed in a manner which is related with the degree of the influence, and/or of being modulated by a biochemically active component which is capable of being redistributed in a manner which is related to the degree of influence, as a change in light intensity measured by an instrument designed for the measurement of changes in fluorescence intensity. In which the GFP comprising luminophore is a polypeptide encoded by SEQ ID No. 3.

3. Claims: 29-38 IN PART

A method for extracting quantitative information relating to an influence on a cellular response in mechanically intact or permeabilised living cells, the method comprising recording variation in spatially distributed light emitted from a GFP comprising luminophore, the luminophore being present in the cells and being capapble of being redistributed in a manner which is related with the degree of the influence, and/or of being modulated by a biochemically active component which is capable of being redistributed in a manner which is related to the degree of influence, as a change in light intensity measured by an instrument designed for the measurement of changes in lfuorescence intensity. In which the GFP comprising luminophore is a polypeptide encoded by SEQ ID No. 17

4. Claims: 29-38 IN PART

A method for extracting quantitative information relating to an influence on a cellular response in mechanically intact or permeabilised living cells, the method comprising recording variation in spatially distributed light emitted from a GFP comprising luminophore, the luminophore being present in the cells and being capapble of being redistributed in a manner which is related with the degree of the influence, and/or of being modulated by a biochemically active component which is capable of being redistributed in a manner which is related to the degree of influence, as a change in light intensity measured by an instrument designed for the measurement of changes in fluorescence intensity. In which the GFP comprising luminophore is a polypeptide encoded by SEQ ID No. 7.

5. Claims: 29-38 IN PART

A method for extracting quantitative information relating to an influence on a cellular response in mechanically intact or permeabilised living cells, the method comprising recording variation in spatially distributed light emitted from a GFP comprising luminophore, the luminophore being present in the cells and being capapble of being redistributed in a manner which is related with the degree of the influence, and/or of being modulated by a biochemically active component which is capable of being redistributed in a manner which is related to the degree of influence, as a change in light intensity measured by an instrument designed for the measurement of changes in fluorescence intensity. In which the GFP comprising luminophore is a polypeptide encoded by SEQ ID No. 9.

6. Claims: 29-38 IN PART

A method for extracting quantitative information relating to an influence on a cellular response in mechanically intact or permeabilised living cells, the method comprising recording variation in spatially distributed light emitted from a GFP comprising luminophore, the luminophore being present in the cells and being capapble of being redistributed in a manner which is related with the degree of the influence, and/or of being modulated by a biochemically active component which is capable of being redistributed in a manner which is related to the degree of influence, as a change in light intensity measured by an instrument designed for the measurement of changes in fluorescence intensity. In which the GFP comprising luminophore is a polypeptide encoded by SEQ ID No. 11.

7. Claims: 29-38 IN PART

A method for extracting quantitative information relating to an influence on a cellular response in mechanically intact or permeabilised living cells, the method comprising recording variation in spatially distributed light emitted from a GFP comprising luminophore, the luminophore being present in the cells and being capapble of being redistributed in a manner which is related with the degree of the influence, and/or of being modulated by a biochemically active component which is capable of being redistributed in a manner which is related to the degree of influence, as a change in light intensity measured by an instrument designed for the measurement of changes in fluorescence intensity. In which the GFP comprising luminophore is a polypeptide encoded by SEQ ID No. 13.

8. Claims: 29-38 IN PART

A method for extracting quantitative information relating to an influence on a cellular response in mechanically intact or permeabilised living cells, the method comprising recording variation in spatially distributed light emitted from a GFP comprising luminophore, the luminophore being present in the cells and being capapble of being redistributed in a manner which is related with the degree of the influence, and/or of being modulated by a biochemically active component which is capable of being redistributed in a manner which is related to the degree of influence, as a change in light intensity measured by an instrument designed for the measurement of changes in fluorescence intensity. In which the GFP comprising luminophore is a polypeptide encoded by SEQ ID No. 15

9. Claims: 29-38 IN PART

A method for extracting quantitative information relating to an influence on a cellular response in mechanically intact or permeabilised living cells, the method comprising recording variation in spatially distributed light emitted from a GFP comprising luminophore, the luminophore being present in the cells and being capapble of being redistributed in a manner which is related with the degree of the influence, and/or of being modulated by a biochemically active component which is capable of being redistributed in a manner which is related to the degree of influence, as a change in light intensity measured by an instrument designed for the measurement of changes in fluorescence intensity. In which the GFP comprising luminophore is a polypeptide encoded by SEQ ID No. 17

International Application No PCT/DK 99/00562

A CLASSIFICATION OF SUBJECT MATTER IPC 7 G01N33/50 G01N G01N21/64 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) G01N C12Q C12N C07K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category o P,X WO 98 45704 A (TULLIN SOEREN ; KASPER 1-39 ALMHOLT (DK); NOVONORDISK AS (DK); SCUDDER K) 15 October 1998 (1998-10-15) cited in the application See SEQ ID's SEQ ID's identical to SEQ ID 1,3,5,7,9,11,13 and 15 are present. 29 - 38X WO 96 23898 A (NOVONORDISK AS ; THASTRUP OLE (DK); TULLIN SOEREN (DK); POULSEN LAR) 8 August 1996 (1996-08-08) page 8 -page 17 29-38 X WO 97 11094 A (NOVONORDISK AS ; THASTRUP OLE (DK); TULLIN SOEREN (DK); POULSEN LAR) 27 March 1997 (1997-03-27) the whole document Patent family members are listed in annex. Further documents are listed in the continuation of box C. Special categories of cited documents: "I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance Invention "E" earlier document but published on or after the International "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or s, such combination being obvious to a person skilled ments, sur other means "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 23. 03. 2000 2 February 2000 Name and mailing address of the ISA **Authorized officer** European Patent Office, P.B. 5818 Patentlaan 2 NL - 2260 HV Rijewijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016 Hoekstra, S

Category *	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	- In
	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 91 01305 A (UNIV WALES MEDICINE) 7 February 1991 (1991-02-07) page 5, line 15 - line 20	29–38
X	WO 95 07463 A (UNIV COLUMBIA ;WOODS HOLE OCEANOGRAPHIC INST (US); CHALFIE MARTIN) 16 March 1995 (1995-03-16) claim 26	29–38
X	WO 96 03649 A (UNIV NORTH CAROLINA) 8 February 1996 (1996-02-08) page 49; example 6.10	29–38
X	WO 97 20931 A (US HEALTH ;HTUN HAN (US); HAGER GORDON L (US)) 12 June 1997 (1997-06-12) claims 41-58	29–38
X	WO 97 30074 A (CYTOGEN CORP; UNIV NORTH CAROLINA (US)) 21 August 1997 (1997-08-21) page 57	29-38
X	WO 98 02571 A (TSIEN ROGER Y ;CUBITT ANDREW B (US); UNIV CALIFORNIA (US)) 22 January 1998 (1998-01-22) claims	29–38
X	WO 98 30715 A (ISACOFF EHUD Y ;SIEGAL MICAH S (US); UNIV CALIFORNIA (US); CALIFOR) 16 July 1998 (1998-07-16) the whole document	29–38
X	SAKAI ET AL: "Translocation of protein kinase C-gamma and epsilon - Direct visualization in living cells using fusion protein with green fluorescent protein" THE JOURNAL OF CELL BIOLOGY, US, ROCKEFELLER UNIVERSITY PRESS, XP002078902 ISSN: 0021-9525 the whole document	29–38
X	SCHMIDT ET AL: "Dynamic analysis of alpha-PKC-GFP chimera translocation events in smooth muscle with ultra-high speed 3D fluorescence microscopy" FASEB JOURNAL, US, FED. OF AMERICAN SOC. FOR EXPERIMENTAL BIOLOGY, BETHESDA, MD, vol. 3, no. 11, page A505 XP002077257 ISSN: 0892-6638 abstract	29-38

A 10		TC1/DK 99/00302
C.(Continu	Citation of document, with Indication, where appropriate, of the relevant passages	Relevant to dalm No.
X	SIDOROVA ET AL: "Cell cycle-regulated phosphorylation of Swi6 controls its nuclear localization" MOLECULAR BIOLOGY OF THE CELL,US,BETHESDA, MD, vol. 6, no. 12, page 1641-1658 XP002089512 ISSN: 1059-1524 the whole document	29–38
X	HAN HTUN ET AL: "VISUALIZATION OF GLUCOCORTICOID RECEPTOR TRANSLOCATION AND INTRANUCLEAR ORGANIZATION IN LIVING CELLS WITH A GREEN FLUORESCENT PROTEIN CHIMERA" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, US, NATIONAL ACADEMY OF SCIENCE. WASHINGTON, vol. 93, no. 10, page 4845-4850 XP002029560 ISSN: 0027-8424 the whole document	29-38
X	CAREY K L ET AL: "EVIDENCE USING A GREEN FLUORESCENT PROTEIN—GLUCOCORTICOID RECEPTOR CHIMERA THAT THE RAN/TC4 GTPASE MEDIATES AN ESSENTIAL FUNCTION INDEPENDENT OF NUCLEAR PROTEIN IMPORT" THE JOURNAL OF CELL BIOLOGY, US, ROCKEFELLER UNIVERSITY PRESS, vol. 133, no. 5, page 985-996 XP000670316 ISSN: 0021-9525 the whole document	29-38
X	OGAWA H ET AL: "LOCALIZATION, TRAFFICKING, AND TEMPERATURE-DEPENDENCE OF THE AEQUOREA GREEN FLUORESCENT PROTEIN IN CULTURES VERTEBRATE CELLS" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA,US,NATIONAL ACADEMY OF SCIENCE. WASHINGTON, vol. 92, no. 25, page 11899-11903 XP002029556 ISSN: 0027-8424 the whole document	29–38
X	WESTPHAL ET AL: "Microfilament dynamics during cell movement and chemotaxis monitored using a GFP — actin fusion protein" CURRENT BIOLOGY,GB,CURRENT SCIENCE,, vol. 7, no. 3, page 176-183 XP002090291 ISSN: 0960-9822 page 181, left-hand column, line 1 ————————————————————————————————————	29–38

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	TODA ET AL: "The fission yeast sts5+ gene is required for maintenance of growth polarity and functionally interacts with protein kinase C and an osmosensing MAP kinase pathway" JOURNAL OF CELL SCIENCE, GB, ESSEX, vol. 109, no. 9, page 2331-2342 XP002090292 abstract	29–38
X	WEBB ET AL: "Use of green fluorescent protein for visualization of cell-specific gene expression and subcellular protein localization during sporulation in Bacillus subtilis" JOURNAL OF BACTERIOLOGY, US, WASHINGTON, DC, vol. 177, no. 20, page 5906-5911 XP002089513 ISSN: 0021-9193 the whole document	29-38
X	WO 94 23039 A (CANCER RES INST ROYAL; MARSHALL CHRISTOPHER JOHN (GB); ASHWORTH AL) 13 October 1994 (1994-10-13) the whole document	29–38
X	GERISCH ET AL: "Chemoattractant-controlled accumulation of coronin at the leading edge of Dictyostelium cells monitored using a green fluorescent protein-coronin fusion protein" CURRENT BIOLOGY, GB, CURRENT SCIENCE,, vol. 5, no. 11, page 1280-1285 XP002089510 ISSN: 0960-9822 page 1281, right-hand column	29-38

Information on patent family members

						1C1/DK 99/00302		
	Patent document cited in search report		Publication date		Patent family member(s)		Publication date	
	WO 9845704	Α	15-10-1998	AU	6820998	A	30-10-1998	
	W0 9623898	Α	08-08-1996	AU	4483096	Α	21-08-1996	
		,,		CA	2217700		08-08-1996	
				EP	0815257		07-01-1998	
				บร	5958713		28-09-1999	
	W0 9711094	Α	27-03-1997	AT	184613	T	15-10-1999	
				AU	4482996	A	09-04-1997	
				CA	2232727	Α	27 – 03–1 99 7	
				DE	69604298	D	21-10-1999	
				EΡ	0851874	Α	08-07-1998	
				JP	11512441		26-10-1999	
	WO 9101305	A	07-02-1991	AU	6054590		22-02-1991	
				CA	2064766		23-01-1991	
				EP	0484369		13-05-1992	
				JP		T	08-04-1993	
				US	5683888	A	04-11-1997	
	W0 9507463	Α	16-03-1995	US	5491084		13-02-1996	
			•	AU	694745		30-07-1998	
				AU	7795794		27-03-1995	
				CA	2169298		16-03-1995	
				EP	0759170		26-02-1997	
				JP	9505981	T	17-06-1997	
·" .	₩0 9603649	Α	08-02-1996	AU	3146095		22-02-1996	
				CA	2195629		08-02-1996	
				EP	0772773		14-05-1997	
				JP	10503369	T	31 - 03 - 1998	
	WO 9720931	Α	12-06-1997	AU	1283497	A	27-06-1997	
				CA	2239951		12-06-1997	
	WO 9730074	Α	21-08-1997	ĄŲ	2272397		02-09-1997	
				CA	2246378		21-08-1997	
				EP	0897392	A	24-02-1999	
	WO 9802571	A	22-01-1998	US	5912137		15-06-1999	
				US	5925558		20-07-1999	
				AU	3801997		09-02-1998	
				EP	0915989	A	19-05-1999	
	WO 9830715	A	16-07-1998	AU	5090498	A	03-08-1998	
	WO 9423039	A	13-10-1994	AU	677834		08-05-1997	
				AU	6382394		24-10-1994	
				CA	2157774		13-10-1994	
				ΕP	0703984		03-04-1996	
				JP		T	10-02-1997	
		=	(· •	US	5958721		28-09-1999	
				AU	696939		24 -09- 1998	
				AU	1586195	Α	2 9- 08-1995	
				CA	2182967		17-08-1995	
					0740007			
				EP	0742827	A	20-11-1996	
				EP Wo	9521923		20-11-1996 17-08-1995	

PATENT 0459-0571P

IN THE U.S. PATENT AND TRADEMARK OFFICE

Applicant:

ARKHAMMAR, Per O.G. et al.

Int'l. Appl. No.:

PCT/DK99/00562

Appl. No.:

New

Group:

Filed:

April 12, 2001

Examiner:

For:

AN IMPROVED METHOD FOR EXTRACTING QUANTITATIVE INFORMATION RELATING TO AN

INFLUENCE IN A CELLULAR RESPONSE

LETTER

BOX PATENT APPLICATION

Assistant Commissioner for Patents Washington, D.C. 20231

April 12, 2001

Sir:

The PTO is requested to use the amended sheets/claims attached hereto (which correspond to Article 34 amendments or to claims attached to the International Preliminary Examination Report) during prosecution of the above-identified national phase PCT application.

Respectfully submitted,

BIRCH, STEWART, KOLASCH & BIRCH, LLP

By Mell Leonard R. Svensson, #30,330

P.O. Box 747

Falls Church, VA 22040-0747

(703) 205-8000

LRS/cqc 0459-0571P

CLAIMS

- A method for extracting quantitative information relating to an influence on a cellular response in mechanically intact or permeabilised living cells, the method comprising
 recording variation in spatially distributed light emitted from a luminophore, the luminophore being present in the cells and being capable of being redistributed in a manner which is related with the degree of the influence, and/or of being modulated by a component which is capable of being redistributed in a manner which is related to the degree of the influence, as a change in light intensity measured by an instrument
 designed for the measurement of changes in fluorescence intensity.
- A method according to claim 1, wherein the quantitative information which is indicative of the degree of the cellular response to the influence or the result of the influence on the subcellular component is extracted from the recorded variation according to a
 predetermined calibration based on responses or results, recorded in the same manner, to known degrees of a relevant specific influence.
- 3. A method according to claims 1 or 2, wherein the influence comprises contact between the mechanically intact or permeabilised living cells and a chemical substance and/or incubation of the mechanically intact or permeabilised living cells with a chemical substance.
 - 4. A method according to any of claims 1-3, wherein the cells comprise a group of cells contained within a spatial limitation.
 - 5. A method according to any of claims 1-4, wherein the cells comprise multiple groups of cells contained within multiple spatial limitations.
- 25 6. A method according to any of claims 1-5, wherein the cells comprise multiple groups of cells that are qualitatively the same but are subjected to different influences.
 - 7. A method according to any of claims 1-5, wherein the cells comprise multiple groups of cells that are qualitatively different but are subjected to the same influence.
- 8. A method according to any of claims 1-7, wherein multiple spatial limitations are measured simultaneously by means of a one- or two-dimensional array detector, whereby the multiple spatial limitations are imaged onto the array detector such that

discrete subsets of the detecting units (pixels) in the array detector measure the signal from one and only one of the multiple spatial limitations, the signal from any one spatial limitation being the combined signal from those pixels that receive the image from one of the spatial limitations.

- 5 9. A method according to claim 8, wherein the detector is a linear diode array.
 - 10. A method according to claim 8, wherein the detector is a video camera.
 - 11. A method according to claim 8. wherein the detector is a charge transfer device.
 - 12. A method according to claim 8, wherein the charge transfer device is a charge-coupled device.
- 10 13. A method according to any of claims 1-12, wherein all of the multiple spatial limitations are simultaneously illuminated during the measurement operation.
 - 14. A method according to any of claims 1-12, wherein the individual spatial limitations are singly illuminated only during the time period in which they are being measured.
- 15. A method according to any of claims 1-14, wherein the illumination is provided by a laser which is scanned in a raster fashion over some or all of the spatial limitations being measured, the scanning taking place at a rate substantially faster than the measurement process such that the illumination appears to the measurement process to be continuous in time and spatially uniform over the region being measured.
- 16. A method according to any of claims 1-15, wherein the spatial limitations are spatial 20 limitations arranged in one or more arrays on a common carrier.
 - 17. A method according to claim 16, wherein the spatial limitations are wells in a plate of microtiter type.
 - 18. A method according to any of claims 1-17, wherein the spatial limitations are domains defined on a substrate on which the cells are present.
- 19. A method according to claim 18, wherein the domains are domains established by the presence of the cells on the substrate in a pattern defining the domains.
 - 20. A method according to claim 18, wherein the domains are domains established by the spatial pattern of the influence as it is applied to or contacted with the cells.

- 21. A method according to any of claims 1-20, wherein the recording is performed at a series of points in time, in which the application of the influence occurs at some time after the first time point in the series of recordings, the recording being performed, e.g., with a predetermined time spacing of from 0.1 seconds to 1 hour, preferably from 1 to 60 seconds, more preferably from 1 to 30 seconds, in particular from 1 to 10 seconds, over a time span of from 1 second to 12 hours, such as from 10 seconds to 12 hours, e.g., from 10 seconds to one hour, such as from 60 seconds to 30 minutes or 20 minutes.
 - 22. A method according to claim 21, wherein the recording is made at two points in time, one point being before, and the other point being after the application of the influence.
- 10 23. A method according to any of claims 1-22, wherein the cells are fixed at a point in time after the application of the influence at which the response has been predetermined to be significant, and the recording is made at an arbitrary later time.
- 24. A method according to any of claims 1-23, wherein the redistribution results in quenching of fluorescence, the quenching being measured as a decrease in the intensity15 of the fluorescence.
 - 25. A method according to any of claims 1-24, wherein the redistribution results in energy transfer, the energy transfer being measured as a change in the intensity of the luminescence.
- 26. A method according to any of claims 1-24, wherein the illumination necessary to 20 excite fluorescence is non-homogeneous such that the redistribution results in a greater or lesser number of fluorescent molecules being excited, the result being measured as a change in fluorescent intensity.
- 27. A method according to any of claims 1-24, wherein the intensity of the light being recorded is a function of the fluorescence lifetime, polarisation, wavelength shift, or other
 property which is modulated as a result of the underlying cellular response.
 - 28. A method according to any of claims 1-27, wherein the light to be measured passes through a filter which selects the desired component of the light to be measured and rejects other components.

- 29. A method according to any of claims 1-28, wherein the flourescence comes from a fluorophore encoded by and expressed from a nucleotide sequence harboured in the cells.
- 30. A method according to any of claims 1-28, wherein the fluorescence comes from a
 5 fluorophore introduced into the cells by any or various techniques for the bulk loading of material into cells such as transfection, incubation, scrape loading, electroporation.
 - 31. A method according to any of the preceding claims, wherein the flourescence comes from a luminescent polypeptide, such as GFP.
- 32. A method according to any of claims 1-31, wherein the cells are selected from thegroup consisting of fungal cells, such as yeast cells; invertebrate cells including insect cells; and vertebrate cells, such as mammalian cells.
- 33. A method according to claim 32, wherein the mechanically intact or permeabilised living cells are mammalian cells which, during the time period over which the influence is observed, are incubated at a temperature of 30°C or above, preferably at a temperature of from 32°C to 39°C, more preferably at a temperature of from 35°C to 38°C, and most preferably at a temperature of about 37°C.
- 34. A method according to any of the preceding claims, wherein the nucleic acid construct is a DNA construct with a sequence selected from the group consisting of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15 and 17 or is a variant thereof capable of encoding the same fusion polypeptide or a fusion polypeptide which is biologically equivalent thereto.
 - 35. A method according to any of claims 1-34, used as a screening program.
- 36. A method according claim 35, wherein the method is a screening program for the identification of a biologically active substance that directly or indirectly affects an intracellular signalling pathway and is potentially useful as a medicament, wherein the result of the individual measurement of each substance being screened which indicates its potential biological activity is based on measurement of the redistribution of spatially resolved luminescence in living cells and which undergoes a change in distribution upon activation of an intracellular signalling pathway.
- 37. A method according to claim 35, wherein the method is a screening program for the30 identification of a biologically toxic substance as defined herein that exerts its toxic effect

WO 00/23615 PCT/DK99/00562

62

by interfering with an intracellular signalling pathway, wherein the result of the individual measurement of each substance being screened which indicates its potential biologically toxic activity is based on measurement of the redistribution of said fluorescent probe in living cells and which undergoes a change in distribution upon activation of an intracellular signalling pathway.

- 38. A method according to any of claims 1-37 wherein a fluorescent probe is used in back-tracking of signal transduction pathways as defined herein.
- 39. A set of data relating to an influence on a cellular response in mechanically intact or permeabilised living cells, obtained by recording variation in spatially distributed light
 10 emitted from a luminophore, the luminophore being present in the cells and being capable of being redistributed in a manner which is related with the degree of the influence, and/or of being modulated by a component which is capable of being redistributed in a manner which is related to the degree of the influence, as a change in light intensity measured by an instrument designed for the measurement of changes in fluorescence intensity.

PLOUGMANN VINGTOFT & PARTNERS

PATENT COOPERATION TREATY

PCT09/8073428 NOV. 2000

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

(PCT Article 36 and Rule 70)

Applicant's	or age	ent's file reference	· · · · · · · · · · · · · · · · · · ·	See Notification of Transmittal of International
FOR FURTURE ACTION		FOR FURTHER ACTION	Preliminary Examination Report (Form PCT/IPEA/416)	
Internationa	-	ication No	International filing date (day/month	/year) Priority date (day/month/year)
PCT/DK9	• •		15/10/1999	15/10/1998
		ent Classification (IPC) or nat		13/10/1995
C12Q1/6		ent classification (if c) of had	uonai ciassilication and IFO	
A 11 4				
Applicant	· - •	10 -1 -1		
BIOIMAG	at A	S et al.		
				by this International Preliminary Examining Authority
and is	tran	smitted to the applicant a	ccording to Article 36.	
2. This F	REPC	ORT consists of a total of	6 sheets, including this cover sl	neet.
⊠т	hie re	nort is also accompanies	t by ANNEYES is shoots of th	e description, claims and/or drawings which have
				ontaining rectifications made before this Authority
· (s	see R	ule 70.16 and Section 60	07 of the Administrative Instruction	ons under the PCT).
These	ann	exes consist of a total of	3 sheets.	
		····		
3. This r	eport	contains indications relat	ting to the following items:	·
I	⊠	Pagin of the report		
31		Basis of the report Priority		
111	⊠	<u> </u>	pinion with regard to novelty, inv	entive step and industrial applicability
IV		Lack of unity of inventio	·	,
٧	Ø	Reasoned statement un		novelty, inventive step or industrial applicability;
VI		Certain documents cite	ed	
VII		Certain defects in the in	ternational application	
VIII	\boxtimes	Certain observations on	the international application	
Date of sub	missio	on of the demand	Date of c	completion of this report
25/04/200	00		27.11.20	00
Nom and -	nailin-	address of the international	Andrada	nd officer
		ning authority:	Authorize	ed officer
<u></u>		pean Patent Office - P.B. 58 280 HV Rijswijk - Pays Bas	i i	
<i></i>		280 HV Hijswijk - Pays Bas +31 70 340 - 2040 Tx: 31 65	1 1 10 0 10 0	ra, S
Fax: +31 70 340 - 3016			Telephor	ne No. +31 70 340 2847

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

I. Basi	s fthe	report
---------	--------	--------

1.	res _l the	This report has been drawn on the basis of (substitute sheets which have been furnished to the receiving Office in response to an invitation under Article 14 are referred to in this report as "originally filed" and are not annexed to the report since they do not contain amendments (Rules 70.16 and 70.17).): Description, pages:							
	1-5	7	as originally f	iled					
	Cla	ims, No.:							
	1-20	0	as received o	n	01/11/2000	with letter of	01/11/2000		
	Dra	wings, sheets:							
	1/18	3-18/18	as originally f	iled					
2.		n regard to the lan guage in which the					hed to this Authority in the under this item.		
	The	se elements were	available or fur	nished to this Au	thority in the fo	ollowing languag	e: , which is:		
		the language of a translation furnished for the purposes of the international search (under Rule 23.1(b)).							
		the language of publication of the international application (under Rule 48.3(b)).							
		the language of a translation furnished for the purposes of international preliminary examination (under Rule 55.2 and/or 55.3).							
3.		With regard to any nucleotide and/or amino acid sequence disclosed in the international application, the international preliminary examination was carried out on the basis of the sequence listing:							
		contained in the international application in written form.							
		filed together with the international application in computer readable form.							
		furnished subsequently to this Authority in computer readable form.							
		The statement that the subsequently furnished written sequence listing does not go beyond the disclosure in the international application as filed has been furnished.							
		The statement tha listing has been fu		on recorded in co	mputer readal	ole form is identic	cal to the written sequence		
4.	The	amendments have	resulted in the	e cancellation of:	-				
		the description,	pages:						
	_ ⊠	the claims,	Nos.:	21-39					
	-	•							

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

		the drawings, sheets:								
5.	5. This report has been established as if (some of) the amendments had not been made, since they considered to go beyond the disclosure as filed (Rule 70.2(c)):									
		(Any replacement sheet containing such amendments must be referred to under item 1 and annexed to this report.)								
6.		itional observations, if necessary: separate sheet								
Ш.	Nor	establishment of opinion with regard to novelty, inventive step and industrial applicability								
	•	estions whether the claimed invention appears to be novel, to involve an inventive step (to be non-obvious), industrially applicable have not been examined in respect of:								
		the entire international application.								
	Ø	claims Nos. 20.								
be	caus	e:								
	×	the said international application, or the said claims Nos. 20 relate to the following subject matter which does not require an international preliminary examination (<i>specify</i>): see separate sheet								
		the description, claims or drawings (indicate particular elements below) or said claims Nos. are so unclear that no meaningful opinion could be formed (specify):								
		the claims, or said claims Nos. are so inadequately supported by the description that no meaningful opinion could be formed.								
		no international search report has been established for the said claims Nos								
2.	and	A meaningful international preliminary examination report cannot be carried out due to the failure of the nucleotide and/or amino acid sequence listing to comply with the standard provided for in Annex C of the Administrative Instructions:								
		the written form has not been furnished or does not comply with the standard.								
		the computer readable form has not been furnished or does not comply with the standard.								
V.		soned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; ions and explanations supporting such statement								
1.	Stat	ement								
	Nov	elty (N) Yes: Claims 1-19								

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No. PCT/DK99/00562

No: Claims

Yes:

No:

Inventive step (IS)

Yes: Claims 1-19

No: Claims

Industrial applicability (IA)

Claims 1-19 Claims

2. Citations and explanations see separate sheet

VIII. Certain observations on the international application

The following observations on the clarity of the claims, description, and drawings or on the question whether the claims are fully supported by the description, are made: see separate sheet

R Item I

The originally filed documents encompass as part of the description a 69 page sequence listing.

Re Item III

Non-establishment of opinion with regard to novelty, inventive step and industrial applicability

Claim 20 relates to a set of data relating to experimental observations. Article 34(4)(a) PCT and Rule 67.1(v) PCT stipulates that the IPEA is not required to carry out the preliminary examination for subject-matter which is a mere presentation of information. It is noted that the data set per se does not give rise to any technical effect.

Re Item V

Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement

The statement on page 8 line 1, limits the invention to methods involving cells that contain an expressible nucleic acid that encodes a fusion polypeptide as "defined herein". This is a de facto limitation of all inventions in the set of claims filed 01.11.2000 to fluorogenic fusion proteins. All methods are further limited by the special technical features of the "..recording variation (...), as a change in light intensity wherein etc.". (derived form previous claim 15). These combined limitations provide the technical link making up a single general inventive concept required by Rule 13.1 PCT. The International search, having in mind these two limitations, covers the entire scope of the present claims 1-19 as intended by Article 15(3) PCT and Rule 33.3(b) PCT.

The presently claimed invention applies, in a method for extracting quantitative information relating to an influence on redistribution of at least one component in the cell, known technology from Schroeder, K. and Neagle, B.J. [(1996), Biomolecular screening, vol. 1, pp. 75-80.] in the form of a scanning laser imager (FLIPR(tm)) to record and quantify variation in spatially distributed light as a measure of a (chemical) influence applied to the cell.

The documents in the international search report did not disclose a method actually applying this technology for the quantification of the redistribution in a manner fit for HTS.

The claims are therefore considered to relate to subject-matter that meets the requirements of Article 33(2) PCT.

Example 11 shows that redistribution of a GFP fusion protein (human PKC beta 1 -EGFP) can be detected and quantified in the FLIPR(tm) instrument when imaging with a resolution far below what is needed to resolve single cells or subcellular compartments.

The results obtained at this resolution are surprising. This is considered to be a positive indicator for the presence of an inventive step. It thus appears that the subject-matter of claims 1-19 meets the requirement of Article 33(3) PCT.

Re Item VIII

Certain observations on the international application

The technical effect of example 11 is considered surprising in view of the used resolution. The claims, however, do not limit the method to the use of a resolution far below what is needed to resolve single cells or subcellular compartments. The omission of this feature causes the claims to be seriously flawed with respect to Article 6 and Rule 6.3(a) PCT. As a result the present claims may also be considered to encompass the obvious application of the known FLIPR(tm) instrument in order to obtain expected of data on redistribution, like those obtainable with a confocal laser scanning fluorescent microscope (See e.g. Sakai, N. et al.; The Journal of Cell Biology, vol. 139 (1997).p 1465).

Also the limitation to methods involving cells that contain an expressible nucleic acid that encodes a fusion polypeptide as "defined herein", i.e. a GFP fusion protein, is absent form the claims as an essential technical feature.

	٠.		.:	,	• •
			1.	P	~`.[
	,	. · ⇔	100	/	
•.				REQ	UES
		The un	dersigne	d regu	iests t

For receiving Office use only
International Application No.
International Filing Date
Name of receiving Office and "PCT International Application"
Applicant's or agent's file reference

international application be processed according to the Patent Cooperation Treaty.	Name of receiving Office and "PCT International Application"			
	Applicant's or agent's file reference (if desired) (12 characters maximum), 22129 PC 1			
to an influence on a cellular res	g quantitative information relating sponse			
Box No. II APPLICANT	,			
Name and address: (Family name followed by given name; for a designation. The address must include postal code and name of countain address indicated in this Box is the applicant's State (that is, country, of residence is indicated below.)	of residence if no State			
BioImage A/S Mørkhøj Bygade 28 DK-2860 Søborg DK	Facsimile No.			
	Teleprinter No.			
State (that is, country) of nationality: DK	State (that is, country) of residence: DK			
This person is applicant for the purposes of: all designated the United States all designated the United States	d States except the United States the States indicated in the States of America only the Supplemental Box			
Box No. III FURTHER APPLICANT(S) AND/OR (FURTH				
Name and address: (Family name followed by given name; for a le designation. The address must include postal code and name of coun address indicated in this Box is the applicant's State (that is, country) of residence is indicated below.) ARKHAMMAR, Per O. G. Helmfeltsgatan 13 S-25440 Helsingborg SE	applicant only X applicant and inventor inventor only (If this check-box is marked, do not fill in below.)			
State (that is, country) of nationality: SE	State (that is, country) of residence:			
This person is applicant all designated all designated	SE States except with United States the States indicated in			
for the purposes of: States the United Sta	ates of America			
X Further applicants and/or (further) inventors are indicated on				
Box No. IV AGENT OR COMMON REPRESENTATIVE;				
The person identified below is hereby/has been appointed to act on of the applicant(s) before the competent International Authorities a	as: Common representative			
Name and address: (Family name followed by given name; for a ladesignation. The address must include postal coordinates and plougmann, Vingtoft & Partners A/	+ 45 33 63 93 00			
Sankt Annæ Plads 11 P.O. Box 3007 DK-1021 Copenhagen K	Facsimile No. + 45 33 63 96 00 Teleprinter No.			
DK				
Address for correspondence: Mark this check-box where no	agent or common representative is/has been appointed and the			

		2	
Sheet	No	_	

Continuation of Box No. III FURTHER APPLICANT(S) AND/OR (FURTHER) INVENTOR(S)								
If none of the following sub-boxes is used, this sheet should not be included in the request.								
Name and address: (Family name followed by given name: for a legal entity, full official designation. The address must include postal code and name of country. The country of the address indicated in this Box is the applicant's State (that is, country) of residence if no State of residence is indicated below.) TERRY, Bernard Robert Frederiksberg Allé 15,1. 1820 Frederiksberg C DK	This person is: applicant only applicant and inventor inventor only (If this check-bax is marked, do not fill in below.)							
State (that is, country) of nationality: GB State (that is, country) of DK	residence:							
	United States America only the States indicated in the Supplemental Box							
Name and address: (Family name followed by given name; for a legal entity, full official designation. The address must include postal code and name of country. The country of the address indicated in this Box is the applicant's State (that is, country) of residence if no State of residence is indicated below.) SCUDDER, Kurt Marshall Lavendelhaven 70 DK-2830 Virum DK	This person is: applicant only applicant and inventor inventor only (If this check-box is marked, do not fill in below.)							
State (that is, country) of nationality: State (that is, country) of	residence:							
This person is applicant all designated last designated States except the	United States the States indicated in							
for the purposes of: States the United States of America of A	umerica only the Supplemental Box							
Name and address: (Family name followed by given name; for a legal entity, full official designation. The address must include postal code and name of country. The country of the address indicated in this Box is the applicant's State (that is, country) of residence if no State of residence is indicated below.) BJØRN, Sara Petersen Klampenborgvej 102 DK-2800 Lyngby DK	This person is: applicant only applicant and inventor inventor only (If this check-box is marked, do not fill in below.)							
State (that is, country) of nationality: State (that is, country) of r DK	residence:							
This person is applicant all designated all designated States except the	United States the States indicated in the Supplemental Box							
Name and address: (Family name followed by given name; for a legal entity, full official designation. The address must include postal code and name of country. The country of the address indicated in this Box is the applicant's State (that is, country) of residence if no State of residence is indicated below.) THASTRUP, Ole Birkevej 37 DK-3460 Birkerød DK	This person is: applicant only applicant and inventor inventor only (If this check-box is marked, do not fill in below.)							
State (that is, country) of nationality: DK State (that is, country) of red DK	esidence:							
This person is applicant all designated all designated States except the	United States United States indicated in the Supplemental Box							
X Further applicants and/or (further) inventors are indicated on another continuation sheet.								

Sheet No.

Continuation of Box No. III FURTHER APPLICANT(S) AND/OR (FURTHER) INVENTOR(S)								
If none of the following sub-boxes is used, this sheet should not be included in the request.								
Name and address: (Family name followed by given name; for a legal entity, full official designation. The address must include postal code and name of country. The country of the address indicated in this Box is the applicant's State (that is, country) of residence if no State This person is:								
HAGEL, Grith		applicant only						
Harevænget 109 DK-2791 Dragør		X applicant and inventor						
DK		inventor only (If this check-box is marked, do not fill in below.)						
	v	L						
State (that is, country) of nationality: DK	State (that is, country) of DK	residence: ω						
This person is applicant all designated for the purposes of:		United States America only the States indicated in the Supplemental Box						
Name and address: (Family name followed by given name; for a lidesignation. The address must include postal code and name of cour address indicated in this Box is the applicant's State (that is, country) of residence is indicated below.)	egal entity, full official ury. The country of the of residence if no State	This person is:						
		applicant only						
		applicant and inventor						
		is marked, do not fill in below.)						
State (that is, country) of nationality:	State (that is, country) of	residence:						
This person is applicant all designated for the purposes of: all designated the United States		United States the States indicated in the Supplemental Box						
Name and address: (Family name followed by given name; for a le designation. The address must include postal code and name of coun. address indicated in this Box is the applicant's State (that is, country)	egal entity, full official try. The country of the of residence if no State	This person is:						
of residence is indicated below.)		applicant only						
		applicant and inventor						
•		inventor only (If this check-box is marked, do not fill in below.)						
State (that is, country) of nationality:	State (that is, country) of r	esidence:						
	tes of America of A	United States the States indicated in the Supplemental Box						
Name and address: (Family name followed by given name; for a le designation. The address must include postal code and name of count address indicated in this Box is the applicant's State (that is, country) of residence is indicated below.)	Name and address: (Family name followed by given name; for a legal entity, full official designation. The address must include postal code and name of country. The country of the address indicated in this Box is the applicant's State (that is, country) of residence if no State of residence is indicated below.) This person is:							
	·	applicant only						
		applicant and inventor						
		inventor only (If this check-box is marked, do not fill in below.)						
State (that is, country) of nationality:	State (that is, country) of nationality: State (that is, country) of residence:							
This person is applicant all designated for the purposes of:	States except the of A	United States the States indicated in the Supplemental Box						
Further applicants and/or (further) inventors are indicated on another continuation sheet.								

Box NoV DESIGNATION OF STATES											
Regional Patent AP ARTIO Patent: GH Ghana, GM Gambia, KE Kenya, LS Lesotho, MW Malawi, SD Sudan, SL Sierra Leone, SZ Swaziland, UG Uganda, ZW Zimbabwe, and any other State which is a Contracting State of the Harare Protocol and of the PCT of Moldova, RU Russian Federation, TJ Tajikistan, TM Turkmenistan, and any other State which is a Contracting State of the Eurasian Patent Convention and of the PCT of Moldova, RU Russian Federation, TJ Tajikistan, TM Turkmenistan, and any other State which is a Contracting State of the Eurasian Patent Convention and of the PCT of Moldova, RU Russian Federation, TJ Tajikistan, TM Turkmenistan, and any other State which is a Contracting State of the PCT of Moldova, RU Russian Federation, TJ Tajikistan, TM Turkmenistan, and any other State which is a Contracting State of the PCT of Contract, TM Turkmenistan, and any other State which is a Contracting State of the PCT of Contract, TM Turkmenistan, and any other State which is a Contracting State of the Contracting State of the PCT of Contracting State of CAPI and Contracting State of the PCT of Contracting State of the PCT of Contracting State of CAPI and Contracting State of the PCT of Contracting State of CAPI and Contracting State of the PCT of Contracting State of CAPI and Contracting State S	Box No.V DESIGNATION OF STATES										
AP ARTPO Patent: GH Ghana, GM Gambia, KE Kenya, LS Lesocho, MW Malawi, SD Sudan, SL Sieral Loone, SZ Swazialan UG Uganda, ZW Zimbabwe, and any other State which is a Contracting State of the Harar Protocol and of the PCT of Modova, RU Russian Federation, 17 Tajikitan, TM Turkmenistan, and any other State which is a Contracting State of the Eurasian Patent: AM Ammenia, AZ Azztabijan, BV Belavus, KG Kyrgyrstan, KZ Kazakhsra, MD Republic of Modova, RU Russian Federation, 17 Tajikitan, TM Turkmenistan, and any other State which is a Contracting State of the European Patent Convention and of the PCT			_	ark (i	ње арр	licable check-boxes; at least one must be marked);					
UC Uganda, ZW Zimbabwe, and any other Sate which is a Contracting State of the Harare Protocol and of the PCI E AE Parasian Patent: AM Amenia AZ Azzebijan, PB Elacius, KG Kyrgyzstan, KZ Azakhistan, MD Republic of Moldova, RU Russian Federation, TJ Tajikitato, TM Turkmenistan, and any other State which is a Contracting State of the European Patent: AT Austria, BE Egiptic, GB United Kingdom, GR Greece, EF Ireland, IT Haly, LU Luxembourg, MC Monaco, ML Notherlands, ET Portugal, SE Sweden, and any other State which is Contracting State of the European Patent Convention and of the PCT OA OAT Platent: BF Burkins Faso, BJ Benin, CF Central African Republic, CG Congo, Cl Cóte d'Ivoire, CM Cameroon, GA Gabon, GN Guinea, GW Guinea-Bissau, ML Mail, MR Mauritania, NE Niger, SN Senegal, TD Chad, TGT go, and any other State which is a member State of OAP! and a Countaried gistate of the PCT Glother Intel of protestion or reament desired, specify on dotted line): At a United Arab Emirates AL Albania B AL Albania B AL Albania B AL Scription AM Amenia B AB Bosnia and Herzegovina B B Barbados B MC Belaris B B Barbados B MC Belaris B MC C Canada C H and LJ Switzerland and Liechtenstein C MC Madagascar B MC Madagascar B MC Madagascar B MC Mongolia B W Belarus C MC Nicha B MC Mongolia B W Belarus C MC Nicha B MC Mongolia B W Belarus C MC Nicha B MC Mongolia C MC Scription C MC Scription C MC Scription C MC Madagascar C MC Nicha C MC Scription C MC Madagascar C MC Nicha C MC Scription C MC Madagascar C MC Nicha C MC Scription C MC Madagascar C MC Nicha C MC Scription C MC Madagascar C MC Nicha C MC Scription C MC Scription C MC Madagascar C MC											
Moldova, RU Russian Federation, TJ Tajikistan, TM Turkmenistan, and any other State which is a Contracting State of the Eurasian Patent: AT Austria, BE Belgium, CH and LI Switzzrland and Lichtenstein, CY Cyprus, DE Germany, PR Denmark, ESpain, FF friance, GB United Kingdom, CR Greece, IE Ireland, IT list), LU Luxembourg, MC Monaco, NL Netherlands, Pr Frince, GB United Kingdom, CR Greece, IE Ireland, IT list), LU Luxembourg, MC Monaco, NL Netherlands, Pr Fortugal, SE Sweden, and any other State which is a Contracting State of the Proceedings of the Control of Control	M		UG Uganda, ZW Zimbabwe, and any other State which is a Contracting State of the Harare Protocol and of the PCT								
FE	[2]	EA	Moldova, RU Russian Federation, TJ Tajikistan, TM Turkmenistan, and any other State which is a Contracting State of the Eurasian Patent Convention and of the PCT								
GA Gabon, CN Guinea, CW Guinea-Bissau, ML Mali, MR Mauritania, NE Niger, SN Senegal, TD Chaq. TT go, and any other State which is a member State of OAP and a Contracting State of the PCT (fother kind of protection or returnent desired, specify on dotted line). National Plasted (fother kind of protection or returnent desired, specify on dotted line): EA L United Arab Emirates AL Albania BA L United Arab Emirates AL Albania CH LT Lithuania AT Austria 2DI, Utility, model CH LT Lithuania AT Austria 2DI, Utility, model CH LT Lithuania AZ Azezbaijan BA Bosnia and Herzegovina BB Barbados BB Barbados BB Barbados BB BBrazil BB BBrazil BB BBrazil BB BBrazil BB BBrazil CH And LI Switzerland and Liechtenstein CH AND Mongolia CH AND Mon	(Z)	EP	European Patent: AT Austria, BE Belgium, CII and LI Switzerland and Liechtenstein, CY Cyprus, DE Germany, DK Denmark, ES Spain, FI Finland, FR France, GB United Kingdom, GR Greece, IE Ireland, IT Italy, LU Luxembourg, MC Monaco, NL Netherlands, PT Portugal, SE Sweden, and any other State which is a Contracting State of the European								
Nafonal Patent (If other kind of protection or seatment desired, specify on dotted line): A E United Arab Emirates	凹	OA OAPI Patent: BF Burkina Faso, BJ Benin, CF Central African Republic, CG Congo, CI Côte d'Ivoire, CM Cameroon, GA Gabon, GN Guinea, GW Guinea-Bissau, ML Mali, MR Mauritania, NE Niger, SN Senegal, TD Chad, TG T go, and any other State which is a member State of OAPI and a Contracting State of the PCT (if other kind of protection or treatment									
AE United Arab Emirates	Nation	al Pate		m dot	ted lin	e):					
AL Albania											
AM Armenia						• •					
AT Austria And Wtility model PLU Luxembourg EA AV Australia ED LV Lavia AZ Azzrbaijan EM DR Expublic of Moldova EB BA Bosaia and Herzegovina EM DR Expublic of Moldova EB B Barbados EM DR Expublic of Moldova B B Barbados EM MR The former Yugoslav Republic of Macedonia B B B Brazil EM MK The former Yugoslav Republic of Macedonia EB B Belgaria EM MN Mongolia ED BY Belarus EM MW Malawi EC A Canada EM MW Malawi EC CA Canada EM MW Malawi				_		• • • • • • • • • • • • • • • • • • • •					
M. Au Australia		AM	Amenia model		LT	Lithuania					
M. Republic of Moldova M. Madagascar M. M. Madagascar M. M. Mongolia M. M. Mongolia M. M. Mexico				P	LU	Luxembourg					
BA Bosnia and Herzegovina E MG Madagascar E MK The former Yugoslav Republic of Macedonia E MS Bulgaria E MN Mongolia	[23]	ΛU	Australia	29	LV	Latvia					
BA Bosnia and Herzegovina E MG Madagascar E MK The former Yugoslav Republic of Macedonia E MK Macico MK Macico MK Macico MK Macico MX M	23	٨Z	Azerbaijan	29	MD	Republic of Moldova					
BB Barbados MK The former Yugoslav Republic of Macedonia	23	BA	Bosnia and Herzegovina			-					
BG Bulgaria Para						_					
BR Brazil		-			11117						
BY Belarus MW Malawi MX Mexico				m							
CA Canada CH and LI Switzerland and Liechtenstein CN China CN China CZ Czech Republic and utility model DE Germany and utility model DE Germany and utility model EE Estonia and utility model EE Estonia and utility model ES Spain CS Spain CS GB United Kingdom CS GB Georgia CG GG Georgia CG GG Georgia CG GG Gambia CG	_										
CH and LI Switzerland and Liechtenstein CN China CN China CU Cuba CU Cuba CC Czech Republic and utility model DE Germany and utility model DE Germany and utility model EE Estonia and utility model ES Spain DE GB United Kingdom DI GB United Kingdom DI GB Grenada DE GE Georgia DE GB Grenada DE SS Slovakia and utility model DE GB Grenada DE SS Slovakia and utility model DE GB Grenada DE SS Slovakia and utility model DE GB Grenada DE SS Slovakia and utility model DE GB Grenada DE SS Slovakia and utility model DE GB Grenada DE SS Slovakia and utility model DE GB Grenada DE SS Slovakia and utility model DE GB Grenada DE SS Slovakia and utility model DE GB Grenada DE SS Slovakia and utility model DE GB Grenada DE SS Slovakia and utility model DE GB Grenada DE SS Slovakia and utility model DE GB Grenada DE SS Slovakia and utility model DE GB Grenada DE SS Slovakia and utility model DE GB Grenada DE SS Sveden DE SS Sveden DE SS Slovakia and utility model DE SS Sveden DE SS Sveden DE SS Slovakia and utility model DE SS Slovakia and utility model DE SS Sveden DE ST Trinidad and Totalana DE SS Sveden DE ST Turkcy DE				떰							
CV Cuba CU Cuba CC Czech Republic and utility model DE Germany and utility model DE Germany and utility model EE Estonia and utility model ES Spain ES Spain CG GB United Kingdom CG GB Grenada CG GE Georgia CG Ge				[2]	MX	Mexico					
CU Cuba CZ Czech Republic And Utility Model DE Germany. and Utility Model DE DE Demark. And Utility Model DE EE Estonia and Utility Model EE Estonia and Utility Model ES Spain. SS Sweden FI Finland. And Utility Model GB United Kingdom GG Grenada GE GG Georgia GI Ghana. GI GH Ghana. GI GH Ghana. GI HU Hungary GI HU Hungary GI ID Indonesia FI IL Israel. GI IL Israel. GI IL Israel. GI IN India. GI IN India. GI IN India. GI IN Coatia. CI IN India.				23							
CZ Czech Republic And Utility Model DE Germany. and Utility Model DK Denmark. and Utility Model EE Estonia and Utility Model ES Spain. SS Sweden EF Finland. and Utility Model EGB United Kingdom EGB United Kingdom EG GB Georgia. SI Slovenia EG GG Grenada EG GG Grenada EG GG Grenada EG GG Gambia EG GM Gambia EG HU Hungary. EG TT Trailidad and Tobago EG HU Hungary. EG TT Trailidad and Tobago EG IL Israel. EG UG Uganda EG IL Israel. EG UG Uganda EG IN India. EG UG Uganda E	(23	CN	China		NZ	New Zealand					
□ CZ Czech Republic and Utility model □ PT Portugal □ DE Germany	凶	CU	Cuba	X	PL	Poland					
E DE Germany and utility model E DK Denmark and utility model E E Estonia and utility model E E S Spain S S Sudan E F F Finland and utility model E GB United Kingdom S S Singapore E GB Georgia S S Slovakia E GH Ghana S S Siovakia E GM Gambia T M Turkmenistan E IR Croatia T M Turkmenistan E IR Croatia T T Trinidad and Tobago E IL Israel U U Ukraine E IN India US United States of America E IS Iceland UN Vict Nam E K Kenya V V Vict Nam E K Kenya Y U Yugoslavia E K R Republic of Korea E ZA South Africa E K K Republic of Korea E ZA South Africa E KZ Kazakhstan E DM. Dominica x. MA. Morocco E KK Costa Rica x. TZ Tanzania		CZ	Czech Republic and utility model		PT	Portugal					
DK Denmark	₽3.	DE	Germany and utility model								
EE Estonia and utility model ES Spain SE Sweden EI FI Finland and utility model EI GB United Kingdom EI GD Grenada EI GE Georgia SI Slovania and utility model EI GH Ghana SI Trajikistan EI GH Ghana SI Trajikistan EI HI Croatia SI TR Turkey EI HU Hungary SI Tr Trinidad and Tobago EI D Indonesia SI UA Ukraine EI IL Israel SI UG Uganda EI IN India SI US United States of America EI IS Iccland EI JP Japan SI UZ Uzbekistan EI KE Kenya SI UZ Uzbekistan EI KE Kenya SI UZ Uzbekistan EI W Y Vigoslavia EI KC Karzakhstan EI KR Republic of Korea SI ZA South Africa EI ZW Zimbabwe Check-boxes reserved for designating States which have become party to the PCT after issuance of this sheet: EI LC Saint Lucia EI CR Costa Rica X MA Morocco	P	DK	Denmark and utility model								
□ ES Spain	_	EE	Estonia and utility model								
FI Finland and .utility.model E SG Singapore GB United Kingdom SI Slovenia Slovakia and .utility model GG Georgia SK Slovakia and .utility model GG Georgia SI Siera Leone			•	-		_					
E GB United Kingdom □ GD Grenada □ SK Slovakia and utility model □ GE Georgia □ SL Sierra Leone □ SL											
☐ GD Grenada ☐ SK Slovakia and utility model ☐ GE Georgia ☐ SL Sierra Leone ☐ SL Si						.					
☑ GE Georgia ☑ SL Sierra Leone ☑ GH Ghana ☑ TJ Tajikistan ☑ GM Gambia ☑ TM Turkmenistan ☑ IR Croatia ☑ TR Turkey ☑ HU Hungary ☑ TT Trinidad and Tobago ☑ ID Indonesia ☑ UA Ukraine ☑ IL Israel ☑ UG Uganda ☑ IN India ☑ US United States of America ☑ IS Iceland ☑ UZ Uzbekistan ☑ JP Japan ☑ UZ Uzbekistan ☑ KE Kenya ☑ VN Vict Nam ☑ KG Kyrgyzstan ☑ YU Yugoslavia ☑ KR Republic of Korea ☑ ZA South Africa ☑ ZW Zimbabwe ☐ ZA South Africa ☑ ZW Zimbabwe ☐ ZW Zimbabwe ☑ KR Republic of Korea ☐ Check-boxes reserved for designating States which have become party to the PCT after issuance of this sheet: ☑ LC Saint Lucia ☑ DM. Dominica x MA Morocco ☑ LK Sri Lanka ☑ CR. Costa Rica x TZ Tanzania			_		SI	Slovenia and utility model					
☑ GH Ghana ☑ TJ Tajikistan ☑ GM Gambia ☑ TM Turkmenistan ☑ IR Croatia ☑ TR Turkey ☑ HU Hungary ☑ TT Trinidad and Tobago ☑ ID Indonesia ☑ UA Ukraine ☑ IL Israel ☑ Uganda ☑ IN India ☑ US United States of America ☑ IS Iceland ☑ UZ Uzbekistan ☑ JP Japan ☑ UZ Uzbekistan ☑ KE Kenya ☑ YN Vict Nam ☑ KG Kyrgyzstan ☑ YU Yugoslavia ☑ KP Democratic People's Republic of Korea ☑ ZA South Africa ☑ KR Republic of Korea ☑ ZA South Africa ☑ KR Republic of Korea ☑ ZA South Africa ☑ KZ Kazakhstan ☑ DM. Dominica x. MA Morocco ☑ LK Sri Lanka ☑ CR. Costa Rica x. TZ Tanzania	_										
☑ GM Gambia ☒ TM Turkmenistan ☒ IIR Croatia ☒ TR Turkcy ☒ HU Hungary ☒ TT Trinidad and Tobago ☒ ID Indonesia ☒ UA Ukraine ☒ IL Israel ☒ UG Uganda ☒ IN India ☒ US United States of America ☒ IS Iceland ☒ UZ Uzbekistan ☒ KE Kenya ☒ VN Vict Nam ☒ KG Kyrgyzstan ☒ YV Yugoslavia ☒ KP Democratic People's Republic of Korea ☒ ZW Zimbabwe ☒ KR Republic of Korea ☒ ZW Zimbabwe ☒ KR Republic of Korea ☒ ZW Zimbabwe ☒ KZ Kazakhstan ☒ DM Dominica ☒ MA Morocco ☒ LK Saint Lucia ☒ DM Dominica ☒ MA Morocco ☒ LK Sri Lanka ☒ CR Costa Rica X TZ Tanzania			8	凹	SL	Sierra Leone					
IIR Croatia	2	GH	Ghana	2							
☑ HU Hungary ☑ TT Trinidad and Tobago ☑ ID Indonesia ☑ UA Ukraine ☑ IL Israel ☑ UG Uganda ☑ IN India ☑ US United States of America ☑ IS Iceland ☑ UZ Uzbekistan ☑ KE Kenya ☑ VN Viet Nam ☑ KG Kyrgyzstan ☑ YU Yugoslavia ☑ KP Democratic People's Republic of Korea ☑ ZA South Africa ☑ KR Republic of Korea ☑ ZW Zimbabwe ☑ KR Republic of Korea ☐ Check-boxes reserved for designating States which have become party to the PCT after issuance of this sheet: ☑ KZ Kazakhstan ☑ DM. Dominica x. MA. Morocco ☑ LK Sri Lanka ☑ CR. Costa Rica x. TZ Tanzania				$oldsymbol{oldsymbol{oldsymbol{eta}}}$	TM	Turkmenistan					
☑ ID Indonesia ☑ UA Ukraine ☑ IL Israel ☑ UG Uganda ☑ IN India ☑ US United States of America ☑ IS Iceland ☑ UZ Uzbekistan ☑ KE Kenya ☑ VN Vict Nam ☒ KG Kyrgyzstan ☑ VN Vict Nam ☒ KP Democratic People's Republic of Korea ☑ ZA South Africa ☒ ZW Zimbabwe ☑ ZW Zimbabwe ☒ KZ Kazakhstan ☑ Check-boxes reserved for designating States which have become party to the PCT after issuance of this sheet: ☒ LC Saint Lucia ☒ DM. Dominica x. MA. Moxocco ☒ LK Sri Lanka ☒ CR. Costa Rica x. TZ Tanzania	区	IIR	Croatia	\boxtimes	TR	Turkey					
☑ ID Indonesia ☑ UA Ukraine ☑ IL Israel ☑ UG Uganda ☑ IN India ☑ US United States of America ☑ IS Iceland ☑ UZ Uzbekistan ☑ KE Kenya ☑ VN Viet Nam ☑ KG Kyrgyzstan ☑ VN Viet Nam ☑ KP Democratic People's Republic of Korea ☑ ZA South Africa ☑ ZW Zimbabwe ☑ ZW Zimbabwe ☑ KR Republic of Korea ☑ Check-boxes reserved for designating States which have become party to the PCT after issuance of this sheet: ☑ KZ Kazakhstan ☑ DM. Dominica x. MA. Moxocco ☑ LK Sri Lanka ☑ CR. Costa Rica x. TZ Tanzania	\boxtimes	HU	Hungary	P.							
☑ IL Israel ☑ UG Uganda ☑ IN India ☑ US United States of America ☑ IS Iceland ☑ UZ Uzbekistan ☑ KE Kenya ☑ VN Vict Nam ☒ KG Kyrgyzstan ☒ YU Yugoslavia ☒ KP Democratic People's Republic of Korea ☒ ZA South Africa ☒ ZW Zimbabwe ☒ ZW Zimbabwe ☒ KZ Kazakhstan ☒ Check-boxes reserved for designating States which have become party to the PCT after issuance of this sheet: ☒ LC Saint Lucia ☒ DM. Dominica X. MA. Morocco ☒ LK Sri Lanka ☒ CR. Costa Rica X. TZ Tanzania	X	ID									
☑ IN India ☑ US United States of America ☑ IS Iceland ☑ UZ Uzbekistan ☑ KE Kenya ☑ VN Vict Nam ☒ KG Kyrgyzstan ☒ YU Yugoslavia ☒ KP Democratic People's Republic of Korea ☒ ZA South Africa ☒ ZW Zimbabwe ☒ ZW Zimbabwe ☒ KZ Kazakhstan ☒ Check-boxes reserved for designating States which have become party to the PCT after issuance of this sheet: ☒ LC Saint Lucia ☒ DM. Dominica X. MA. Morocco ☒ LK Sri Lanka ☒ CR. Costa Rica X. TZ Tanzania	X	IL	Israel								
IS Iceland ☑ JP Japan ☑ UZ Uzbekistan ☒ KE Kenya ☒ VN Vict Nam ☒ KG Kyrgyzstan ☒ YU Yugoslavia ☒ KP Democratic People's Republic of Korea ☒ ZA South Africa ☒ KR Republic of Korea ☒ ZW Zimbabwe ☒ KZ Kazakhstan ☒ Check-boxes reserved for designating States which have become party to the PCT after issuance of this sheet: ☒ LC Saint Lucia ☒ DM. Dominica x. MA. Morocco ☒ LK Sri Lanka ☒ CR. Costa Rica x. TZ Tanzania											
☑ JP Japan ☑ UZ Uzbekistan ☒ KE Kenya ☒ VN Vict Nam ☒ KG Kyrgyzstan ☒ YU Yugoslavia ☒ KP Democratic People's Republic of Korea ☒ ZA South Africa ☒ ZW Zimbabwe ☒ ZW Zimbabwe ☒ KZ Republic of Korea ☒ Check-boxes reserved for designating States which have become party to the PCT after issuance of this sheet: ☒ LC Saint Lucia ☒ DM. Dominica x MA Morocco ☒ LK Sri Lanka ☒ CR. Costa Rica x TZ Tanzania					Ų3						
☑ KE Kenya ☑ VN Vict Nam ☑ KG Kyrgyzstan ☑ YU Yugoslavia ☑ KP Democratic People's Republic of Korea ☑ ZA South Africa ☑ KR Republic of Korea ☑ ZW Zimbabwe ☑ KZ Kazakhstan Check-boxes reserved for designating States which have become party to the PCT after issuance of this sheet: ☑ LC Saint Lucia ☑ DM. Dominica x. MA. Morocco ☑ LK Sri Lanka ☑ CR. Costa Rica x TZ Tanzania				~							
☑ KG Kyrgyzstan ☑ YU Yugoslavia ☑ KP Democratic People's Republic of Korea ☑ ZA South Africa ☑ KR Republic of Korea ☑ ZW Zimbabwe ☑ KZ Kazakhstan Check-boxes reserved for designating States which have become party to the PCT after issuance of this sheet: ☑ LC Saint Lucia ☑ DM. Dominica x MA Morocco ☑ LK Sri Lanka ☑ CR. Costa Rica x TZ Tanzania											
☑ KP Democratic People's Republic of Korea ☑ ZA South Africa ☑ KR Republic of Korea ☑ ZW Zimbabwe ☑ KZ Kazakhstan Check-boxes reserved for designating States which have become party to the PCT after issuance of this sheet: ☑ LC Saint Lucia ☑ DM. Dominica x. MA Morocco ☑ LK Sri Lanka ☑ CR. Costa Rica x. TZ Tanzania											
Image: State of Korea in the Example of the Example					YU						
IN KR Republic of Korea Check-boxes reserved for designating States which have become party to the PCT after issuance of this sheet: IN LC Saint Lucia IN Dominicax. MA. Morocco IN LK Sri Lanka IN Costa. Rica.x. TZ. Tanzania	124	KP	•	O		•					
IN It Strike It Strike It Strike It Strike It Strike It Strike It It Strike<				M	ZW	Zimbabwe					
 I.C. Saint Lucia I.C. Saint Lucia I.C. Sri Lanka I.C. Sri Lanka I.C. Costa Rica x TZ Tanzania 				Che	ck-be	oxes reserved for designating States which have					
☑ LK SriLanka ☑ CR. Costa Rica x.TZ Tanzania	Z Z	KZ	Kazakhstan								
	2	LC	Saint Lucia	X	DM.	.Dominicax.MA.Morocco					
	23	LK	Sri Lanka	\boxtimes	CR.						

Precautionary Designation Statement: In addition to the designations made above, the applicant also makes under Rule 4.9(b) all other designations which would be permitted under the PCT except any designation(s) indicated in the Supplemental Box as being excluded from the scope of this statement. The applicant declares that those additional designations are subject to confirmation and that any designation which is not confirmed before the expiration of 15 months from the priority date is to be regarded as withdrawn by the applicant at the expiration of that time limit. (Confirmation of a designation consists of the filing of a notice specifying that designation and the payment of the designation and confirmation fees. Confirmation must reach the receiving Office within the 15-month time limit.)

Sheet No.

Box No. VI PRIORITY C	CLAIM		Further priority claims are indicated in the Supplemental Box.			
Filing date Number			Where earlier application is:			
of earlier application (day/month/year)	of earlier applicati	on n	national application: country	regional application:* regional Office	international application receiving Office	
item (1)						
15 October 1998	PA 1998 013	320	DK			
item (2)		İ				
item (3)						
()					·	
The receiving Office is reof the earlier application purposes of the present in Where the earlier application is	s) (only if the earlier of ternational application an ARIPO application	application is the rec it is manda	on was filed with the (ceiving Office) identificatory to indicate in the St	Office which for the ed above as item(s): (1) ne country party to the Pari	
Convention for the Protection of I	ndustrial Property for wh	tich that ed	arlier application was file	ed (Rule 4.10(b)(ii)). See S	Supplemental Box.	
	DNAL SEARCHING					
Choice of International Searc (if two or more International Se competent to carry out the intern the Authority chosen; the two-lette	arching Authorities are ational search, indicate	search ho	t to use results of earl as been carried out by or r y/month/year)	equested from the Internat	to that search (if an earlie ional Searching Authority): Country (orregional Office)	
ISA/EP	V		,, .		Country (or regional Office)	
Box No. VIII CHECK LIST		FILING			<i>\rightarrow</i>	
This international application of the following number of sheet	contains This interna	·	plication is accompan	ied by the item(s) marke		
request :	5 1. kg fee o				ν	
description (excluding		_	ed power of attorney			
sequence listing part) :	i -		-	reference number, if any	7:	
-1	3	•	laining lack of signatur nent(s) identified in Bo			
	†. .	•	international application	•		
sequence listing part	-· -		• •	` 0 0,	other biological material	
of description :	~ _			ce listing in computer re	-	
Total number of sheets : 1			-		nce listing ν	
Figure of the drawings which should accompany the abstract	. 16	Langua internat	age of filing of the ional application:	nglish		
	OF APPLICANT OR					
Next to each signature, indicate the no	ame of the person signing ar	nd the capac	city in which the person sign	rs (if such capacity is not obv	ious from reading the request).	
Copenhagen, 1	5 October 1:	999				
Plougmann,/Vi	ngtoft & Par	rtner	s A/S			
Peter Janarup						
1 100 -						
		or receivi	ing Office use only -			
Date of actual receipt of the international application:			g ase omy —		2. Drawings:	
 Corrected date of actual rec timely received papers or di the purported international 	rawings completing				received:	
4. Date of timely receipt of the corrections under PCT Arti	cle 11(2):				not received:	
5. International Searching Auti (if two or more are compete	hority nt): ISA/		6. Transmittal until search	of search copy delayed fee is paid.		
	For	Internatio	onal Bureau use only			
Date of receipt of the record co by the International Bureau:	рру				-	

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:

C12Q 1/68

A2

(11) International Publication Number:

WO 00/23615

(43) International Publication Date:

27 April 2000 (27.04.00)

(21) International Application Number:

PCT/DK99/00562

(22) International Filing Date:

15 October 1999 (15.10.99)

(30) Priority Data:

PA 1998 01320

15 October 1998 (15.10.98)

DK

(71) Applicant (for all designated States except US): BIOIMAGE A/S [DK/DK]; Mørkhøj Bygade 28, DK-2860 Søborg (DK).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): ARKHAMMAR, Per, O., G. [SE/SE]; Helmfeltsgatan 13, S-254 40 Helsingborg (SE). TERRY, Bernard, Robert [GB/DK]; Frederiksberg Allé 15,1., DK-1820 Frederiksberg C (DK). SCUDDER, Kurt, Marshall [US/DK]; Lavendelhaven 70, DK-2830 Virum (DK). BJØRN, Sara, Petersen [DK/DK]; Klampenborgvej 102, DK-2800 Lyngby (DK). THASTRUP, Ole [DK/DK]; Birkevej 37, DK-3460 Birkerød (DK). HAGEL, Grith [DK/DK]; Harevænget 109, DK-2791 Dragør (DK).
- (74) Agent: PLOUGMANN, VINGTOFT & PARTNERS A/S; Sankt Annæ Plads 11, P.O. Box 3007, DK-1021 Copenhagen K (DK).

(81) Designated States: AE, AL, AM, AT, AT (Utility model), AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, CZ (Utility model), DE, DE (Utility model), DK, DK (Utility model), DM, EE, EE (Utility model), ES, FI, FI (Utility model), GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (Utility model), SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: AN IMPROVED METHOD FOR EXTRACTING QUANTITATIVE INFORMATION RELATING TO AN INFLUENCE ON A CELLULAR RESPONSE

(57) Abstract

An improved method and tools for quantifying the effect of an influence on cellular response is described. In particular, an improved method is described for detecting intracellular translocation or redistribution of biologically active polypeptides. The invention also describes several ways of contacting the cells with a substance influencing a cellular response and extracting quantitative information relating to the response in a highly parallel fashion. The method may be used as a very efficient procedure for testing or discovering the influence of a substance on a physiological process using commercially available parallel, high volume assay techniques, for example in connection with screening for new drugs, testing of substances for toxicity, and identifying drug targets for known or novel drugs.

hPKCbeta1-GFP ATP dose-response in FLIPR (n=6)

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JР	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		20400
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

AN IMPROVED METHOD FOR EXTRACTING QUANTITATIVE INFORMATION RELATING TO AN INFLUENCE ON A CELLULAR RESPONSE.

SUMMARY OF THE INVENTION

5 The present invention relates to an improved method and tools for extracting quantitative information relating to an influence on a cellular response, in particular an influence caused by contacting or incubating the cell with a substance influencing a cellular response, wherein the cellular response is manifested in redistribution of at least one component in the cell. In particular, the invention relates to an improved method for 10 extracting the quantitative information relating to an influence on an intracellular pathway involving redistribution of at least one component associated with the pathway. The method of the invention may be used as a very efficient procedure for testing or discovering the influence of a substance on a physiological process, for example in connection with screening for new drugs, testing of substances for toxicity, identifying 15 drug targets for known or novel drugs. In particular, the present invention relates to an improved method for parallelisation of the testing procedure so that a large number of substances can be tested simultaneously using commercially available instrumentation. The invention also describes several ways of contacting the cells with a substance influencing a cellular response and modifications made to the actual cells before, during 20 or after contacting the cells with these substances as to improve the applicability and use of the method for extracting quantitative information relating to influence on an intracellular pathway in a highly parallel fashion. Other valuable uses of the method and technology of the invention will be apparent to the skilled person on the basis of the following disclosure. In a particular embodiment of the invention, the present invention 25 relates to a method of detecting intracellular translocation or redistribution of biologically active polypeptides, preferably an enzyme, affecting intracellular processes, and a DNA construct and a cell for use in the method.

BACKGROUND OF THE INVENTION

30 Intracellular pathways are tightly regulated by a cascade of components that undergo modulation in a temporally and spatially characteristic manner. Several disease states can be attributed to altered activity of individual signalling components (i.e. protein

kinases, protein phosphatases, transcription factors). These components therefore render themselves as attractive targets for therapeutic intervention.

2

Protein kinases and phosphatases are well-described components of several intracellular signalling pathways. The catalytic activity of protein kinases and phosphatases are assumed to play a role in virtually all regulatable cellular processes. Although the involvement of protein kinases in cellular signalling and regulation have been subjected to extensive studies, detailed knowledge on e.g. the exact timing and spatial characteristics of signalling events is often difficult to obtain due to lack of a convenient technology.

The measurement of the activity of intracellular enzymes, such as kinases and phosphatases, can be performed by well-established procedures, both manually and in various automated forms, at throughput rates which make these measurements useful in the search for new drug candidates. In addition to measures of activity, measures of the distribution of these and other enzymes in the cell has proven useful, and established techniques exist for this type of measurement as well. Protein kinases often show a specific intracellular distribution before, during and after activation. Monitoring the translocation processes and/or redistribution of individual protein kinases or subunits thereof is thus likely to be indicative of their functional activity. A connection between translocation and catalytic activation has been shown for protein kinases like the diacyl glycerol (DAG)-dependent protein kinase C (PKC), the cAMP-dependent protein kinase (PKA) [(DeBernardi et al.1996)] and the mitogen-activated-protein kinase Erk-1 [(Sano et al.1995)]. Such methods of detection of intracellular localisation/activity of protein kinases and phosphatases include immunoprecipitation, Western blotting and immunocytochemical detection.

One aspect of the function of intracellular enzymes which has not been characterised so thoroughly is the redistribution of those enzymes. The importance of subcellular redistribution of enzymes as a mechanism of enzyme specificity, and of the general importance of the measurement of subcellular redistribution as a tool for identifying novel drug targets and searching for drug candidates which influence those targets, is disclosed in: A METHOD FOR EXTRACTING QUANTITATIVE INFORMATION RELATING TO AN INFLUENCE ON A CELLULAR RESPONSE, the contents of which

V

were part of the priority application, and which, as WO9845704 has been published during the priority year, are hereby incorporated herein by reference.

While the redistribution of subcellular components is known to be important, the

5 measurement of this phenomenon in real time has not been widely exploited. This is
primarily due to the lack of a suitable technique. There is essentially only one direct
technique: the microscopic imaging of cells in which the subcellular component of
interest has been labelled in such a way that it can be visualised and recorded by the
microscopic imaging system, using for example a video or scientific CCD camera and
10 appropriate software for collecting and storing the images. Novel ways of monitoring
specific modulation of intracellular pathways in intact, living cells is assumed to provide
new opportunities in drug discovery, functional genomics, toxicology, patient monitoring
etc.

15 Recently it was discovered that Green Fluorescent Protein (GFP) expressed in many different cell types, including mammalian cells, became highly fluorescent [(Chalfie et al. 1994)]. WO95/07463 describes a cell capable of expressing GFP and a method for detecting a protein of interest in a cell based on introducing into a cell a DNA molecule having DNA sequence encoding the protein of interest linked to DNA sequence encoding 20 a GFP such that the protein produced by the DNA molecule will have the protein of interest fused to the GFP, then culturing the cells in conditions permitting expression of the fused protein and detecting the location of the fluorescence in the cell, thereby localizing the protein of interest in the cell. However, examples of such fused proteins are not provided, and the use of fusion proteins with GFP for detection or quantitation of 25 translocation or redistribution of biologically active polypeptides affecting intracellular processes upon activation, such as proteins involved in signalling pathways, e.g. protein kinases or phosphatases, has not been suggested. WO 95/07463 further describes cells useful for the detection of molecules, such as hormones or heavy metals, in a biological sample, by operatively linking a regulatory element of the gene which is affected by the 30 molecule of interest to a GFP, the presence of the molecules will affect the regulatory element which in turn will affect the expression of the GFP. In this way the gene encoding GFP is used as a reporter gene in a cell which is constructed for monitoring the presence of a specific molecular identity.

WO 00/23615

Green Fluorescent Protein has been used in an assay for the detection of translocation of the glucocorticoid receptor (GR) [(Carey, KL et al. 1996)]. A GR-S65TGFP fusion has been used to study the mechanisms involved in translocation of the glucocorticoid receptor (GR) in response to the agonist dexamethasone from the cytosol, where it is 5 present in the absence of a ligand, through the nuclear pore to the nucleus where it remains after ligand binding. The use of a GR-GFP fusion enables real-time imaging and quantitation of nuclear/cytoplasmic ratios of the fluorescence signal. A similar genetic construct has been used to follow and quantify dexamethasone induced translocation of GR to the nucleus in HeLa cells [(Guiliano, K.A et al. 1997)] in a system called Array 10 Scan™ (WO 97/45730) designed for automated drug screening. Recently, several other investigators have demonstrated that tagging a specific protein (or part of a protein) involved in an intracellular signalling pathway with GFP provides a new means to measure and quantify the influence of substances on this pathway. The concept has been shown to work both for cytoplasmic to nuclear translocation of the androgen 15 receptor [(Georget V et al. 1997)] and transcription factors such as NF-ATc [(Beals CR et al. 1997)] in analogy with what has already been described for GR above. Another relevant example is a β -arrestin – GFP construct that was shown to report on activation of G-protein coupled receptors by translocating from the cytosol to the plasma membrane [(Barak LS et al. 1997)]. Finally, it has also been demonstrated that attaching 20 GFP to a smaller part of a protein like the pleckstrin homology domain of phospholipase C δ 1 [(Stauffer TP et al. 1998)] and a cysteine-rich domain of PKC γ [(Oancea E et al. 1998)] can be used to report on an influence from a substance by quantifying their redistribution within the cells during activation of the specific signalling pathway to which they belong.

25

Many currently used screening programmes designed to find compounds that affect protein kinase activity are based on measurements of kinase phosphorylation of artificial or natural substrates, receptor binding and/or reporter gene expression. The interest in fluorescence measurements as the basis for future high-throughput drug screening has however increased dramatically over the last few years [(Silverman L *et al.* 1998)]. Of particular interest to the present invention is a scanning laser imager for rapid screening of fluorescence changes in living cells [(Schroeder K & Neagle B 1996)] currently offered commercially by Molecular Devices, Inc. as the FLIPR™.

5

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides an important new dimension in the investigation of cellular systems involving redistribution in that the invention provides quantification of the 5 redistribution responses or events caused by an influence, typically contact with a chemical substance or mixture of chemical substances, but also changes in the physical environment, in a massively parallel fashion. The quantification makes it possible to set up meaningful relationships, expressed numerically, or as curves or graphs, between the influences (or the degree of influences) on cellular systems and the redistribution 10 response. This is highly advantageous because, as has been found, the quantification can be achieved in both a fast and reproducible manner, and - what is perhaps even more important - the systems which become quantifiable utilising the method of the invention are systems from which enormous amounts of new information and insight can be derived.

15

The present screening assays have the distinct advantage over other screening assays, e.g., receptor binding assays, enzymatic assays, and reporter gene assays, in providing a system in which biologically active substances with completely novel modes of action, e.g. inhibition or promotion of redistribution/translocation of a biologically active 20 polypeptide as a way of regulating its action rather than inhibition/activation of enzymatic activity, can be identified in a way that insures very high selectivity to the particular isoform of the biologically active polypeptide and further development of compound selectivity versus other isoforms of the same biologically active polypeptide or other components of the same signalling pathway.

25

In one of its broadest aspects, the invention relates to an improved method, with higher throughput compared to previous methods, for extracting quantitative information relating to an influence on a cellular response, the method comprising recording variation, caused by the influence on mechanically intact living cells, in spatially distributed light 30 emitted from a luminophore, the luminophore being present in the cells and being capable of being redistributed in a manner which is related with the degree of the influence, and/or of being modulated by a component which is capable of being redistributed in a manner which is related to the degree of the influence, the association resulting in a modulation of the luminescence characteristics of the luminophore,

35 detecting and recording the variation in spatially distributed light from the luminophore as

6

a change in fluorescence intensity using an instrument designed to measure changes in fluorescence intensity, and processing the recorded variation in the spatially distributed light to provide quantitative information correlating the spatial distribution or change in the spatial distribution to the degree of the influence. In one aspect of the present 5 invention the mechanically intact living cell is permeabilised at some time after the influence has begun but during or before the actual experimental recording. In another aspect, the present invention relates to an improved method for extracting quantitative information relating to an influence on a cellular response, the method comprising recording variation, caused by the influence on permeabilised living cells, in spatially 10 distributed light emitted from a luminophore, the luminophore being present in the cells and being capable of being redistributed in a manner which is related with the degree of the influence, and/or of being modulated by a component which is capable of being redistributed in a manner which is related to the degree of the influence, the association resulting in a modulation of the luminescence characteristics of the luminophore, 15 detecting and recording the spatially distributed light from the luminophore as a change in fluorescence intensity using an instrument designed to measure changes in fluorescence intensity, and processing the recorded variation in the spatially distributed light to provide quantitative information correlating the spatial distribution or change in the spatial distribution to the degree of the influence. In a preferred embodiment of the 20 invention the luminophore, which is present in the cells, is capable of being redistributed by modulation of an intracellular pathway, in a manner which is related to the redistribution of at least one component of the intracellular pathway. In another preferred embodiment of the invention, the luminophore is a fluorophore.

25 Typically the cell and/or cells are mechanically intact and alive throughout the experiment. In another embodiment of the invention, the cells are fixed at a point in time after the application of the influence at which the response has been predetermined to be significant, and the recording is made at an arbitrary later time. In another embodiment the cell and/or cells are mechanically intact and alive throughout the experiment but are mechanically or chemically disrupted or permeabilised as the initial step of experimental analysis. In another aspect of the invention the cells have their plasma membrane permanently and stably permeabilised before the initiation of the experiment in such a way that the plasma membrane stays permeable during the experiment. This allows the components of intracellular pathways to be contacted by

7

substances that are not normally permeating the cell plasma membrane such as peptides, proteins and hydrophilic organic compounds..

The mechanically intact or permeabilised living cells could be selected from the group consisting of fungal cells, such as yeast cells; invertebrate cells including insect cells; and vertebrate cells, such as mammalian cells. These cells are incubated at a temperature of 30°C or above, preferably at a temperature of from 32°C to 39°C, more preferably at a temperature of from 35°C to 38°C, and most preferably at a temperature of about 37°C during the time period over which the influence is observed. In one aspect of the invention the mechanically intact or permeabilised living cell is part of a matrix of identical or non-identical cells. In one embodiment of the invention the cells comprise a group or groups of cells contained within a spatial limitation or spatial limitations. In one embodiment, the cells comprise multiple groups of cells that are qualitatively the same but subjected to different influences. In another embodiment, the cells comprise multiple groups of cells that are qualitatively different but subjected to the same influence.

In one embodiment of the invention the spatial limitations are domains defined on a substrate on which the cells are present. The spatial limitations may be arranged in one or more arrays on a common carrier. The spatial limitations may be wells in a plate of 20 microtiter type, such that 96, 384, 864 and 1536 wells are situated on the common carrier. In another embodiment the spatial limitations are wells in a plate of a format different from the microtiter type. In one embodiment of the invention the domains are established by the presence of the cells on the substrate in a pattern that defines the domains. In another aspect of the invention, the domains are instead established by the 25 spatial pattern or array of the influence or influences as it/they are applied to or contacted by the cells. This aspect is thoroughly disclosed in "Method and apparatus for high density format screening for bioactive molecules" the contents of which were part of the priority application, and which, as WO99/35496 has been published during the priority year, are hereby incorporated herein by reference. Briefly, in this aspect of the 30 invention the mechanically intact or permeabilised living cells are part of a continuous or discontinuous sheet of cells cultured on an optically clear flat surface typically optimised for cell culture. The optically clear and flat surface may be a porous membrane that may allow cellular processes to grow through the membrane pores and may allow directed capillary flow of fluid through the pores.

8

A cell used in the present invention should contain a nucleic acid construct encoding a fusion polypeptide as defined herein and be capable of expressing the sequence encoded by the construct. The cell is a eukaryotic cell selected from the group consisting of fungal cells, such as yeast cells; invertebrate cells including insect cells; vertebrate cells such as mammalian cells. The preferred cells are mammalian cells.

In another aspect of the invention the cells could be from an organism carrying in at least one of its component cells a nucleic acid sequence encoding a fusion polypeptide as defined herein and be capable of expressing said nucleic acid sequence. The organism is selected from the group consisting of unicellular and multicellular organisms, such as a mammal.

The luminophore is the component that allows the redistribution to be visualised and/or recorded by emitting light in a spatial distribution related to the degree of influence. The 15 term redistribution is intended to cover all aspects of a change in spatial location, such as a translocation of the luminophore or other components. In one embodiment of the invention, the luminophore is capable of being redistributed in a manner that is physiologically relevant to the degree of the influence. In another embodiment, the luminophore is capable of associating with a component that is capable of being 20 redistributed in a manner that is physiologically relevant to the degree of the influence. In another embodiment, a correlation between the redistribution of the luminophore and the degree of the influence could be determined experimentally. In a preferred aspect of the invention, the luminophore is capable of being redistributed in substantially the same manner as the at least one component of an intracellular pathway. In another 25 embodiment of the invention, the luminophore is capable of being quenched upon spatial association with a component that is redistributed by modulation of the pathway, the quenching being measured as a change in the intensity of the luminescence. In another embodiment of the invention, the luminophore is stationary but may have a certain spatial distribution, and interacts with at least one component that is capable of being 30 redistributed in a manner which is physiologically relevant to the degree of the influence, in such a way that one or more luminescence characteristics of the luminophore is/are modulated as the component moves closer to, or farther from, the luminophore.

The luminophore could be a fluorophore. In a preferred embodiment of the invention, the luminophore is a polypeptide encoded by and expressed from a nucleotide sequence

harboured in the cells. The luminophore could be a hybrid polypeptide comprising a fusion of at least a portion of each of two polypeptides one of which comprises a luminescent polypeptide and the other one of which comprises a biologically active polypeptide, as defined herein.

9

5

The luminescent polypeptide could be a GFP as defined herein or could be selected from the group consisting of green fluorescent proteins having the F64L mutation as defined herein such as F64L-GFP, F64L-Y66H-GFP, F64L-S65T-GFP, and EGFP. The GFP could be N- or C-terminally tagged, optionally via a peptide linker, to the biologically active polypeptide or a part or a subunit thereof. The fluorescent probe could be a component of an intracellular signalling pathway. The probe is coded for by a nucleic acid construct.

In one aspect of the invention the pathway of investigation is an intracellular signalling pathway.

In a preferred embodiment of the invention, the influence could be contact between the group or groups of mechanically intact or permeabilised living cells and a chemical substance, and/or incubation of the group or groups of mechanically intact or permeabilised living cells with a chemical substance in solution. In one aspect of the invention that is thoroughly described in "Method and apparatus for high density format screening for bioactive molecules" the contents of which were part of the priority application, and which, as WO99/35496 has been published during the priority year, are hereby incorporated herein by reference, the chemical substances are attached to an underlying matrix. In this aspect, the chemical substances may also be produced and secreted from, or attached to the plasma membrane surfaces of, a sheet of genetically engineered cells. In this aspect of the invention the chemical substances may also have been separated two-dimensionally in a non-denaturing gel using electrophoresis and the gel is directly put in close proximity or direct contact with the mechanically intact or permeabilised living cells so that the chemical substances can contact the cells through diffusion or convection.

The influence will modulate the intracellular processes. In one aspect the modulation could be an activation of the intracellular processes. In another aspect the modulation could be a deactivation of the intracellular processes. In yet another aspect, the

10

influence could inhibit or promote the redistribution without directly affecting the metabolic activity of the component of the intracellular processes.

In one embodiment the invention is used to establish a dose-response relationship for one or many chemical substances. In one embodiment the invention is used as a basis for a screening program, where the effect of unknown influences such as a compound library, can be compared to influence of known reference compounds under standardised conditions.

In addition to the intensity, there are several parameters of fluorescence or luminescence that can be modulated by the effect of the influence on the underlying cellular phenomena, and can therefore be used in the invention. Some examples are resonance energy transfer, fluorescence lifetime, polarisation, and wavelength shift. Each of these methods requires a particular kind of filter in the emission light path to select the
component of the light desired and reject other components. The recording of property of light could be in the form of an ordered array of values such as a CCD array or a vacuum tube device such as a vidicon. In addition, the translational mobility, or freedom of movement, of the luminophore attached to the protein of interest can be an important property affected by the influence on the underlying cellular phenomena, and can
therefore be used in the invention.

In one embodiment of the invention, the spatially distributed light emitted by a luminophore is detected by a change in the resonance energy transfer between the luminophore and another luminescent entity capable of delivering energy to the luminophore, each of which has been selected or engineered to become part of, bound to or associated with particular components of the intracellular pathway. In this embodiment, either the luminophore or the luminescent entity capable of delivering energy to the luminophore undergoes redistribution in response to an influence. The resonance energy transfer would be measured as a change in the intensity of emission from the luminophore, preferably sensed by a single channel photodetector that responds only to the average intensity of the luminophore in a non-spatially resolved fashion.

In one embodiment of the invention, the spatially distributed light emitted by a luminophore includes the case of uniform spatial distribution of the light.

In one aspect of the invention, the luminophore is a fluorophore which redistributes through a non-homogenous excitation light field, resulting in a change in the intensity of the light emitted from the luminophore as a result of the change in the amount of excitation light intensity at different points in the field.

In one embodiment of the invention, the recording of the spatially distributed light could be made at a single point in time after the application of the influence. In another embodiment, the recording could be made at two points in time, one point being before, and the other point being after the application of the influence. The result or variation is determined from the change in fluorescence compared to the fluorescence measured prior to the influence or modulation. In another embodiment of the invention, the recording could be performed at a series of points in time, in which the application of the influence occurs at some time after the first time point in the series of recordings, the recording being performed, e.g., with a predetermined time spacing of from 0.1 seconds to 1 hour, preferably from 1 to 60 seconds, more preferably from 1 to 30 seconds, in particular from 1 to 10 seconds, over a time span of from 1 second to 12 hours, such as from 10 seconds to 12 hours, e.g., from 10 seconds to one hour, such as from 60 seconds to 30 minutes or 20 minutes. The result or variation is determined from the change in fluorescence over time. The result or variation could also be determined as a change in the spatial distribution of the fluorescence over time.

In one embodiment the recording comprises a time series of total luminescence of the cells of one or several of the spatial limitations. In one embodiment the signal from all of the spatial limitations, one at a time, is measured by a recording being made in the individual spatial limitations by means of an apparatus to sequentially position each one of the limitations in the field of view of the detector and repeating the positioning and measurement process until all of the spatial limitations have been measured. The detector may be a photomultiplier tube. In a preferred embodiment of the present invention more than one spatial limitation is measured simultaneously. This may be done by means of a one- or two-dimensional array detector, whereby the multiple spatial limitations are imaged onto the array detector such that discrete subsets of the detecting units (pixels) in the array detector measure the signal from one and only one of the multiple spatial limitations, the signal from any one spatial limitation being the combined signal from those pixels that receive the image from one of the spatial limitations. This

12

array detector may be a linear diode array, a video camera (according to any present or future standards and definitions of image acquisition and transmission) or a charge transfer device such as a charge-coupled device (CCD). In one embodiment the recording of signal requires illumination of the multiple spatial limitations to excite the luminophores so that they emit light. In one embodiment all of the spatial limitations are simultaneously illuminated during the measurement. In another embodiment the spatial limitations are singly illuminated only during the time in which they are being measured. In a preferred embodiment the illumination is provided by a laser that is scanned in a raster fashion over some or all of the spatial limitations being measured. The scanning may take place at a rate that is substantially faster than the measurement process such that the illumination appears to the measurement process to be continuous in time and spatially uniform over the region being measured.

The recording of spatially distributed luminescence emitted from the luminophore is performed by an apparatus for measuring the distribution of fluorescence in the cells, and thereby any change in the distribution of fluorescence in the cells, which includes at a minimum the following component parts: (a) a light source, (b) a method for selecting the wavelength(s) of light from the source which will excite the luminescence of the luminophore, (c) a device which can rapidly block or pass the excitation light into the rest of the system, (d) a series of optical elements for conveying the excitation light to the specimen, collecting the emitted fluorescence in a spatially resolved fashion, and forming an image from this fluorescence emission (or another type of intensity map relevant to the method of detection and measurement), (e) a bench or stand which holds the container of the cells being measured in a predetermined geometry with respect to the series of optical elements, (f) a detector to record the spatially resolved fluorescence in the form of an image, (g) a computer or electronic system and associated software to acquire and store the recorded images, and to compute the degree of redistribution from the recorded images.

30 In a preferred embodiment of the invention the apparatus system is automated. In one embodiment the components in d and e mentioned above comprise a fluorescence microscope. In one embodiment the component in f mentioned above is a CCD camera. In one embodiment the component in f mentioned above is an array of photomultiplier tubes/devices.

In one embodiment the image is formed and recorded by an optical scanning system.

In one embodiment the optical scanning system is used to illuminate the bottom of a plate of microtiter type so that a time-resolved recording of changes in luminescence or fluorescence can be made from all spatial limitations simultaneously.

In a preferred embodiment the actual luminescence or fluorescence measurements are made in a FLIPR™ instrument, commercially available from Molecular Devices, Inc.

- 10 In one embodiment of the invention the actual fluorescence measurements are made in a standard type of fluorometer for plates of microtiter type (fluorescence plate reader).
 - In one embodiment a liquid addition system is used to add a known or unknown compound to any or all of the cells in the cell holder at a time determined in advance.
- Preferably, the liquid addition system is under the control of the computer or electronic system. Such an automated system can be used for a screening program due to its ability to generate results from a larger number of test compounds than a human operator could generate using the apparatus in a manual fashion.
- The methods whereby the detector layer of cells are physically contacted by the compounds can also be of another conceptual type where the compounds are delivered to the cells through a porous membrane by convection/diffusion or by directly contacting compounds attached to an inorganic or organic support (such as glass, plastic or the plasma membrane of intact living cells) with the cells. These methods are thoroughly described in "Method and apparatus for high density format screening for bioactive molecules" the contents of which were part of the priority application, and which, as WO99/35496 has been published during the priority year, are hereby incorporated herein by reference, but are also outlined in the following paragraphs.
- 30 In one aspect of the present invention where the detector layer of cells is a continuous or discontinuous sheet of cells without any separation into test units or wells. The compounds are printed onto a nonabsorbent sheet of porous material as a solution in solvent and allowed to dry. This printed sheet of compounds then defines the test pattern for the experiment as it is brought down in close proximity to or in direct contact with the underlying detector layer of cells. The compounds, now dissolved by the fluid layer on

the cells, is brought in contact with the cells through the pores of the membrane by convection. The porous membrane onto which the compounds are printed is optically clear and preferably composed as stated in Method and apparatus for high density format screening for bioactive molecules" the contents of which were part of the priority 5 application, and which, as WO99/35496 has been published during the priority year, are hereby incorporated herein by reference. In another embodiment of this aspect of the present invention the detector layer of cells is a continuous or discontinuous sheet of cells, without any separation into test units or wells, growing on a porous and optically clear membrane preferably of the types mentioned above. The porous membrane may 10 allow the cells to send cellular processes through the pores of the membrane. The compounds are printed onto an optically clear substratum such as glass, plastic or quartz as solutions in solvent and allowed to dry. At the time of the experiment the cell sheet on the membrane, surrounded by a thin film of fluid, is layered ontop of the printed compound pattern. The compounds then dissolve and contact the cells via diffusion and 15 convection. The compounds may be made using combinatorial chemistry techniques, and may be peptides. The compounds may be covalently attached to the optically clear substratum or porous membrane. The compounds may also be proteins, polypeptides or peptides secreted by or attached to the plasma membrane of genetically modified cells growing as a continuous or discontinuous sheet on a flat optically clear surface or an 20 optically clear porous membrane.

The recording of the variation or result with respect to light emitted from the luminophore is performed by recording the spatially distributed light as one or more digital images, and the processing of the recorded variation to reduce it to one or more numbers

25 representative of the degree of redistribution comprises a digital image processing procedure or combination of digital image processing procedures. The quantitative information which is indicative of the degree of the cellular response to the influence or the result of the influence on the intracellular pathway is extracted from the recording or recordings according to a predetermined calibration based on responses or results,

30 recorded in the same manner, to known degrees of a relevant specific influence. This calibration procedure is developed according to principles described below (Developing an Image-based Assay Technique). Specific descriptions of the procedures for particular assays are given in the examples.

While the stepwise procedure necessary to reduce the image or images to the value representative of the response caused by the influence is particular to each assay, the individual steps are generally well-known methods of image processing. Some examples of the individual steps are point operations such as subtraction, ratioing, and 5 thresholding, digital filtering methods such as smoothing, sharpening, and edge detection, spatial frequency methods such as Fourier filtering, image cross-correlation and image autocorrelation, object finding and classification (blob analysis), and colour space manipulations for visualisation. In addition to the algorithmic procedures, heuristic methods such as neural networks may also be used. In a preferred embodiment of the 10 invention, a dose-response relationship is established based on quantification of the responses caused by a particular influence, representative of the underlying intracellular signalling process, using the methods described above and in the examples. The doseresponse relationship for the particular influence is then compared to the dose-response relationship obtained by performing the same assay in an instrument which allows 15 parallel monitoring of all wells in a microtiter plate such as a FLIPR™ or an ordinary fluorescence plate reader for microtiter plates. If a good correlation between the doseresponse relationships obtained from the two different measurement systems is obtained, it can be said that the parallel measurement mode has been validated (see examples 8, 9, 10 and 11). This implies that it can be used as the primary basis for a 20 screening assay with the potential benefit of screening a significantly higher number of substances per unit of time for their influence on the response. For example, if the single experiment performed on the microscope can be run in at least 96 experimental chambers simultaneously the throughput for the person who is running the experiments increases by a factor of 96.

25

Imaging plate readers integrate the signal from each well into a single value per time point. Thus the data resulting from a single "run" of the instrument is a set of time series of single values, one for each well, with the injection of the test compound taking place at a known point in the time series. The primary advantage of this type of instrumentation is that it greatly increases the number of samples that can be processed in a given amount of time (the throughput). This is of great advantage when using the assay in a screening program for new pharmaceutical lead compounds.

The first step in the data analysis is to normalise the results from each well so that they can be compared with each other or with previously analysed known compounds. This

16

always begins with correcting the signal by subtracting the instrument bias from all data points on a well-by-well basis. From this point, either of two techniques can be followed depending on the design of the assay:

Procedure 1: The average of the signal prior to the addition of the test compound is subtracted from all data points on a well-by-well basis.

Procedure 2: The data are corrected for any known background by subtracting the background value from all data points on a well-by-well basis. The resulting background-corrected data are normalised by dividing each data set by the average of the data values prior to the injection of the test compound on a well-by-well basis.

10

The corrected or normalised time series data sets are then further reduced by a technique that converts the time series to a single value. There are at least three such approaches:

For transient responses, the maximum deviation from the baseline is determined. This is also known as the "peak height" technique.

Alternatively, the signal is integrated over time between pre-defined limits. If the data were treated according to Procedure 2 above, then the offset is subtracted such that the integral of a non-response is zero within the limit of measurement error. This is also known as the "peak area" technique. If the response is a cumulative one, e.g., an exponential change to a new level, the result is taken as the either the difference or the ratio between the signal after a predetermined time and the signal prior to the addition of the test compound.

25 All of the above procedures reduce the data for a given well to one or more single values. For screening purposes, these values will be searched for those that are greater than a certain statistically determined cut-off value. For characterisation, the values represent a quantitative response, and are further treated in sets by techniques such as dose-response curve fitting.

30

In another embodiment of the invention, the measurement of redistribution is accomplished indirectly by taking advantage of the fact that in order for redistribution to occur, the probe will experience some change in its freedom, or restriction, of movement within the intracellular milieu. The degree of translocation will correlate with the amount of freely mobile luminophore in the cytoplasm. At a point in time after the test compound

17

has begun to have any influence it may have, the amount or fraction of restricted luminophore can be measured by disrupting or permeabilising the plasma membrane of the cells and allowing the freely mobile luminophore to diffuse away. If the detection volume of the detector is limited to the region immediately surrounding the cells, and the overall volume into which the freely mobile luminophore can diffuse is much larger, then the freely mobile luminophore essentially disappears from the detector's view and its signal is not recorded.

In one aspect of the invention, the above mentioned measurement of redistribution is

made on cells with permanently permeabilised plasma membranes immersed in a
solution mimicking the cytoplasmic environment. In this way the influence of compounds
that can normally not enter the cytoplasm of cells can be tested.

The nucleic acid constructs used in the present invention encode in their nucleic acid
sequences fusion polypeptides comprising a biologically active polypeptide that is a
component of an intracellular signalling pathway, or a part thereof, and a GFP,
preferably an F64L mutant of GFP, N- or C-terminally fused, optionally via a peptide
linker, to the biologically active polypeptide or part thereof. In one embodiment the
biologically active polypeptide encoded by the nucleic acid construct is a protein kinase
or a phosphatase. In one embodiment the biologically active polypeptide encoded by the
nucleic acid construct is a transcription factor or a part thereof which changes cellular
localisation upon activation.

In one embodiment the biologically active polypeptide encoded by the nucleic acid
construct is a protein, or a part thereof, which is associated with the cytoskeletal network
and which changes cellular localisation upon activation. In one embodiment the
biologically active polypeptide encoded by the nucleic acid construct is a protein kinase
or a part thereof which changes cellular localisation upon activation. In one embodiment
the biologically active polypeptide encoded by the nucleic acid construct is a

30 serine/threonine protein kinase or a part thereof capable of changing intracellular
localisation upon activation. In one embodiment the biologically active polypeptide
encoded by the nucleic acid construct is a tyrosine protein kinase or a part thereof
capable of changing intracellular localisation upon activation. In one embodiment the
biologically active polypeptide encoded by the nucleic acid construct is a phospholipid-

dependent serine/threonine protein kinase or a part thereof capable of changing intracellular localisation upon activation.

In a specific embodiment the constructs listed in table 1 are used in a method for extracting quantitative information relating to an influence on a cellular response in mechanically intact or permeablised living cells, the method comprising recording variation in spatially distributed fluorescence emitted from the fluorophore being present in the cells and being capable of being redistributed in a manner which is related with the degree of the influence, and/or being modulated by a component which is capable of being redistributed in a manner which is related to the degree of the influence, as a change fluorescence intensity preferably measured by an instrument designed for the measurement of changes in fluorescence intensity.

Table 1 The fusion constructs of the invention by the names used herein as well as by reference to relevant SEQ ID NOs of sequences of DNA encoding the construct and full amino acid sequences.

Fusion construct	DNA sequence SEQ ID NO:	Protein Sequence SEQ ID NO:
PKAcat - F64LS65TGFP	1	2
PKCα- F64L-S65TGFP	3	4
EGFP - Erk1	5	6
EGFP - SMAD2	7	8
SMAD2 - EGFP	9	10
EGFP - VASP	11	12
EGFP - NFχβ	13	14
NFχβ - EGFP	15	16
EGFP - PKCβ1	17	18

As illustrated in examples 8, 9 and 11, the redistribution of PKA, and PKC can readily be detected as a variation in fluorescence intensity, as measured e.g. in the FLIPRTM instrument.

20

In one embodiment any new luminophore determined to redistribute in response to an influence in a pattern similar to the pattern observed in the microscope for PKA or PKC (see examples 1, 2, 8 and 11), that is from an aggregated form to a dispersed form or from a dispersed form to an aggregated form of the luminophore as the redistribution takes place, can be predicted to be detectable as a variation in light intensity as measured, for example in the FLIPRTM instrument.

In one embodiment the biologically active polypeptide encoded by the nucleic acid construct is a cAMP-dependent protein kinase or a part thereof capable of changing cellular localisation upon activation. In a preferred embodiment the biologically active polypeptide encoded by the nucleic acid construct is a PKAc-F64L-S65T-GFP fusion. In one embodiment the biologically active polypeptide encoded by the nucleic acid construct is a cGMP-dependent protein kinase or a part thereof capable of changing cellular localisation upon activation.

10 In one embodiment the biologically active polypeptide encoded by the nucleic acid construct is a calmodulin-dependent serine/threonine protein kinase or a part thereof capable of changing cellular localisation upon activation.

In one embodiment the biologically active polypeptide encoded by the nucleic acid construct is a mitogen-activated serine/threonine protein kinase or a part thereof capable of changing cellular localisation upon activation. In preferred embodiments the biologically active polypeptide encoded by the nucleic acid constructs are an ERK1-F64L-S65T-GFP fusion or an EGFP-ERK1 fusion.

20 In one embodiment the biologically active polypeptide encoded by the nucleic acid construct is a cyclin-dependent serine/threonine protein kinase or a part thereof capable of changing cellular localisation upon activation.

In one embodiment the biologically active polypeptide encoded by the nucleic acid construct is a protein phosphatase or a part thereof capable of changing cellular localisation upon activation.

In one preferred embodiment of the invention the nucleic acid constructs may be DNA constructs.

In one embodiment the biologically active polypeptide encoded by the nucleic acid construct. In one embodiment the gene encoding GFP in the nucleic acid construct is derived from Aequorea victoria. In a preferred embodiment the gene encoding GFP in the nucleic acid construct is EGFP or a GFP variant selected from F64L-GFP, F64L-

35 Y66H-GFP and F64L-S65T-GFP.

30

In preferred embodiments of the invention the DNA constructs which can be identified by any of the DNA sequences shown in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15 and 17 or are variants of these sequences capable of encoding the same fusion polypeptide or a fusion polypeptide which is biologically equivalent thereto, e.g. an isoform, or a splice variant or a homologue from another species.

The present invention describes a method that may be used to establish a screening program for the identification of biologically active substances that directly or indirectly affects intracellular signalling pathways and because of this property are potentially useful as medicaments. Based on measurements in living cells of the redistribution of spatially resolved luminescence from luminophores which undergo a change in distribution upon activation or deactivation of an intracellular signalling pathway the result of the individual measurement of each substance being screened indicates its potential biological activity.

In one embodiment of the invention the screening program is used for the identification of a biologically toxic substance as defined herein that exerts its toxic effect by interfering with an intracellular signalling pathway. Based on measurements in living cells of the 20 redistribution of spatially resolved luminescence from luminophores which undergo a change in distribution upon activation or deactivation of an intracellular signalling pathway the result of the individual measurement of each substance being screened indicates its potential biologically toxic activity. In one embodiment of a screening program a compound that modulates a component of an intracellular pathway as defined 25 herein, can be found and the therapeutic amount of the compound estimated by a method according to the method of the invention. In a preferred embodiment the present invention leads to the discovery of a new way of treating a condition or disease related to the intracellular function of a biologically active polypeptide comprising administration to a patient suffering from said condition or disease of an effective amount of a compound 30 which has been discovered by any method according to the invention. In another preferred embodiment of the invention a method is established for identification of a new drug target or several new drug targets among the group of biologically active polypeptides which are components of intracellular signalling pathways.

21

In another embodiment of the invention an individual treatment regimen is established for the selective treatment of a selected patient suffering from an ailment where the available medicaments used for treatment of the ailment are tested on a relevant primary cell or cells obtained from said patient from one or several tissues, using a method comprising transfecting the cell or cells with at least one DNA sequence encoding a fluorescent probe according to the invention, transferring the transfected cell or cells back the said patient, or culturing the cell or cells under conditions permitting the expression of said probes and exposing it to an array of the available medicaments, then comparing changes in fluorescence patterns or redistribution patterns of the fluorescent probes in the intact living cells to detect the cellular response to the specific medicaments (obtaining a cellular action profile), then selecting one or more medicament or medicaments based on the desired activity and acceptable level of side effects and administering an effective amount of these medicaments to the selected patient.

15 The present invention describes a method that may be used to establish a screening program for back-tracking signal transduction pathways as defined herein. In one embodiment the screening program is used to establish more precisely at which level one or several compounds affect a specific signal transduction pathway by successively or in parallel testing the influence of the compound or compounds on the redistribution of spatially resolved luminescence from several of the luminophores which undergo a change in distribution upon activation or deactivation of the intracellular signalling pathway under study.

In general, a probe, i.e. a "GeneX"-GFP fusion or a GFP-"GeneX" fusion, is constructed using PCR with "GeneX"-specific primers followed by a cloning step to fuse "GeneX" in frame with GFP. The fusion may contain a short vector derived sequence between "GeneX" and GFP (e.g. part of a multiple cloning site region in the plasmid) resulting in a peptide linker between "GeneX" and GFP in the resulting fusion protein.

30 Some of the steps involved in the development of a probe include the following: Identify the sequence of the gene. This is most readily done by searching a depository of genetic information, e.g. the GenBank Sequence Database, which is widely available and routinely used by molecular biologists. In the specific examples below the GenBank Accession number of the gene in question is provided.

Design the gene-specific primers. Inspection of the sequence of the gene allows design of gene-specific primers to be used in a PCR reaction. Typically, the top-strand primer encompasses the ATG start codon of the gene and the following ca. 20 nucleotides, while the bottom-strand primer encompasses the stop codon and the ca. 20 preceding 5 nucleotides, if the gene is to be fused behind GFP, i.e. a GFP-"GeneX" fusion. If the gene is to be fused in front of GFP, i.e. a "GeneX"-GFP fusion, a stop codon must be avoided. Optionally, the full-length sequence of GeneX may not be used in the fusion, but merely the part that localizes and redistributes like GeneX in response to a signal. In addition to gene-specific sequences, the primers contain at least one recognition 10 sequence for a restriction enzyme, to allow subsequent cloning of the PCR product. The sites are chosen so that they are unique in the PCR product and compatible with sites in the cloning vector. Furthermore, it may be necessary to include an exact number of nucleotides between the restriction enzyme site and the gene-specific sequence in order to establish the correct reading frame of the fusion gene and/or a translation initiation 15 consensus sequence. Lastly, the primers always contain a few nucleotides in front of the restriction enzyme site to allow efficient digestion with the enzyme.

Identify a source of the gene to be amplified. In order for a PCR reaction to produce a product with gene-specific primers, the gene-sequence must initially be present in the reaction, e.g. in the form of cDNA. Information in GenBank or the scientific literature will usually indicate in which tissue(s) the gene is expressed, and cDNA libraries from a great variety of tissues or cell types from various species are commercially available, e.g. from Clontech (Palo Alto), Stratagene (La Jolla) and Invitrogen (San Diego). Many genes are also available in cloned form from The American Type Tissue Collection (Virginia).

25

Optimise the PCR reaction. Several factors are known to influence the efficiency and specificity of a PCR reaction, including the annealing temperature of the primers, the concentration of ions, notably Mg²⁺ and K⁺, present in the reaction, as well as pH of the reaction. If the result of a PCR reaction is deemed unsatisfactory, it might be because the parameters mentioned above are not optimal. Various annealing temperatures should be tested, e.g. in a PCR machine with a built-in temperature gradient, available from e.g. Stratagene (La Jolla), and/or various buffer compositions should be tried, e.g. the OptiPrime buffer system from Stratagene (La Jolla).

Clone the PCR product. The vector into which the amplified gene product will be cloned and fused with GFP will already have been taken into consideration when the primers

23

were designed. When choosing a vector, one should at least consider in which cell types the probe subsequently will be expressed, so that the promoter controlling expression of the probe is compatible with the cells. Most expression vectors also contain one or more selective markers, e.g. conferring resistance to a drug, which is a useful feature when one wants to make stable transfectants. The selective marker should also be compatible with the cells to be used.

The actual cloning of the PCR product should present no difficulty as it typically will be a one-step cloning of a fragment digested with two different restriction enzymes into a vector digested with the same two enzymes. If the cloning proves to be problematic, it may be because the restriction enzymes did not work well with the PCR fragment. In this case one could add longer extensions to the end of the primers to overcome a possible difficulty of digestion close to a fragment end, or one could introduce an intermediate cloning step not based on restriction enzyme digestion. Several companies offer systems for this approach, e.g. Invitrogen (San Diego) and Clontech (Palo Alto).

Once the gene has been cloned and, in the process, fused with the GFP gene, the resulting product, usually a plasmid, should be carefully checked to make sure it is as expected. The most exact test would be to obtain the nucleotide sequence of the fusion-20 gene.

Once a DNA construct for a probe has been generated, its functionality and usefulness may be evaluated by transfecting it into cells capable of expressing the probe. The fluorescence of the cell is inspected soon after, typically the next day. At this point, two features of cellular fluorescence are noted: the intensity and the sub-cellular localisation.

The intensity should usually be at least as strong as that of unfused GFP in the cells. If it is not, the sequence or quality of the probe-DNA might be faulty, and should be carefully checked.

30

The sub-cellular localisation is an indication of whether the probe is likely to perform well. If it localises as expected for the gene in question, e.g. is excluded from the nucleus, it can immediately go on to a functional test. If the probe is not localised soon after the transfection procedure, it may be because of overexpression at this point in time, as the cell typically will have taken up very many copies of the plasmid, and localisation will

24

occur in time, e.g. within a few weeks, as plasmid copy number and expression level decreases. If localisation does not occur after prolonged time, it may be because the fusion to GFP has destroyed a localisation function, e.g. masked a protein sequence essential for interaction with its normal cellular anchor-protein. In this case the opposite fusion might work, e.g. if GeneX-GFP does not work, GFP-GeneX might, as two different parts of GeneX will be affected by the proximity to GFP. If this does not work, the proximity of GFP at either end might be a problem, and it could be attempted to increase the distance by incorporating a longer linker between GeneX and GFP in the DNA construct.

10

If there is no prior knowledge of localisation, and no localisation is observed, it may be because the probe should not be localised at this point, because such is the nature of the protein fused to GFP. It should then be subjected to a functional test.

In a functional test, the cells expressing the probe are treated with at least one compound known to perturb, usually by activating, the signalling pathway on which the probe is expected to report by redistributing itself within the cell. If the redistribution is as expected, e.g. if prior knowledge tell that it should translocate from location X to location Y, it has passed the first critical test. In this case it can go on to further characterisation and quantification of the response.

If it does not perform as expected, it may be because the cell lacks at least one component of the signalling pathway, e.g. a cell surface receptor, or there is species incompatibility, e.g. if the probe is modelled on sequence information of a human gene product, and the cell is of hamster origin. In both instances one should identify other cell types for the testing process where these potential problems would not apply.

If there is no prior knowledge about the pattern of redistribution, the analysis of the redistribution will have to be done in greater depth to identify what the essential and indicative features are, and when this is clear, it can go on to further characterisation and quantification of the response. If no feature of redistribution can be identified, the problem might be as mentioned above, and the probe should be retested under more optimal cellular conditions. If the probe does not perform under optimal cellular conditions, then it's back to the drawing board.

The process of developing an image-based redistribution assay begins with either the unplanned experimental observation that a redistribution phenomenon can be visualised, or the design of a probe specifically to follow a redistribution phenomenon already known to occur. In either event, the first and best exploratory technique is for a trained scientist or technician to observe the phenomenon. Even with the rapid advances in computing technology, the human eye-brain combination is still the most powerful pattern recognition system known, and requires no advance knowledge of the system in order to detect potentially interesting and useful patterns in raw data. This is especially if those data are presented in the form of images, which are the natural "data type" for human visual processing. Because human visual processing operates most effectively in a relatively narrow frequency range, i.e., we cannot see either very fast or very slow changes in our visual field, it may be necessary to record the data and play it back with either time dilation or time compression.

15 Some luminescence phenomena cannot be seen directly by the human eye. Examples include polarisation and fluorescence lifetime. However, with suitable filters or detectors, these signals can be recorded as images or sequences of images and displayed to the human in the fashion just described. In this way, patterns can be detected and the same methods can be applied.

20

Once the redistribution has been determined to be a reproducible phenomenon, one or more data sets are generated for the purpose of developing a procedure for extracting the quantitative information from the data. In parallel, the biological and optical conditions are determined which will give the best quality raw data for the assay. This can become an iterative process; it may be necessary to develop a quantitative procedure in order to assess the effect on the assay of manipulating the assay conditions.

The data sets are examined by a person or persons with knowledge of the biological phenomenon and skill in the application of image processing techniques. The goal of this exercise is to determine or at least propose a method that will reduce the image or sequence of images constituting the record of a "response" to a value corresponding to the degree of the response. Using either interactive image processing software or an image processing toolbox and a programming language, the method is encoded as a procedure or algorithm that takes the image or images as input and generates the

WO 00/23615

30

degree of response (in any units) as its output. Some of the criteria for evaluating the validity of a particular procedure are:

Does the degree of the response vary in a biologically significant fashion, i.e., does it show the known or putative dependence on the concentration of the stimulating agent or condition?

Is the degree of response reproducible, i.e., does the same concentration or level of stimulating agent or condition give the same response with an acceptable variance? Is the dynamic range of the response sufficient for the purpose of the assay? If not, can a change in the procedure or one of its parameters improve the dynamic range? Does the procedure exhibit any clear "pathologies", i.e., does it give ridiculous values for the response if there are commonly occurring imperfections in the imaging process? Can these pathologies be eliminated, controlled, or accounted for? Can the procedure deal with the normal variation in the number and/or size of cells in an image?

In some cases the method may be obvious; in others, a number of possible procedures may suggest themselves. Even if one method appears clearly superior to others, optimisation of parameters may be required. The various procedures are applied to the data set and the criteria suggested above are determined, or the single procedure is applied repeatedly with adjustment of the parameter or parameters until the most satisfactory combination of signal, noise, range, etc. are arrived at. This is equivalent to the calibration of any type of single-channel sensor.

The number of ways of extracting a single value from an image are extremely large, and thus an intelligent approach must be taken to the initial step of reducing this number to a small, finite number of possible procedures. This is not to say that the procedure arrived at is necessarily the best procedure - but a global search for the best procedure is simply out of the question due to the sheer number of possibilities involved.

Image-based assays are no different than other assay techniques in that their usefulness is characterised by parameters such as the specificity for the desired component of the sample, the dynamic range, the variance, the sensitivity, the concentration range over which the assay will work, and other such parameters. While it is not necessary to

WO 00/23615 PCT/DK99/00562 27

characterise each and every one of these before using the assay, they represent the only way to compare one assay with another.

The final step is then to see whether there exists a possibility to increase the throughput of the assay to improve its utility as the basis of a screening program. In order to do this, a dose-response relationship is established based on quantification of the responses caused by a particular influence, representative of the underlying intracellular signalling process, using the methods described above and in the examples. The dose-response relationship for the particular influence is then compared to the dose-response relationship obtained by performing the same assay in an instrument which allows parallel monitoring of all wells in a microtiter plate such as a FLIPR™ or an ordinary imaging or fluorescence plate reader for microtiter plates. If a good correlation between the dose-response relationships obtained from the two different measurement systems is obtained, it can be said that the parallel measurement mode has been validated (see examples 8, 9 and 11). This implies that it can be used as the primary basis for a screening program with the potential benefit of screening a significantly higher number of substances for their influence on the response per unit of time.

In the present specification and claims, the term "an influence" covers any influence to
which the cellular response comprises a redistribution. Thus, e.g., heating, cooling, pH,
high pressure, low pressure, humidifying, or drying are influences on the cellular
response on which the resulting redistribution can be quantified, but as mentioned
above, perhaps the most important influences are the influences of contacting or
incubating the cells with substances which are known or suspected to exert an influence
on the cellular response involving a redistribution contribution. In another embodiment of
the invention the influence could be substances from a compound drug library.

In the present context, the term "green fluorescent protein" is intended to indicate a protein which, when expressed by a cell, emits fluorescence upon exposure to light of the correct excitation wavelength (cf. [(Chalfie, M. et al. (1994) Science 263, 802-805)]). In the following, GFP in which one or more amino acids have been substituted, inserted or deleted is most often termed "modified GFP". "GFP" as used herein includes wild-type GFP derived from the jelly fish *Aequorea victoria* and modifications of GFP, such as the blue fluorescent variant of GFP disclosed by Heim et al. (1994). Proc.Natl.Acad.Sci. 91:26, pp 12501-12504, and other modifications that change the spectral properties of the GFP

WO 00/23615 28

fluorescence, or modifications that exhibit increased fluorescence when expressed in cells at a temperature above about 30°C described in PCT/DK96/00051, published as WO 97/11094 on 27 March 1997 and hereby incorporated by reference, and which comprises a fluorescent protein derived from *Aequorea* Green Fluorescent Protein (GFP) or any functional analogue thereof, wherein the amino acid in position 1 upstream from the chromophore has been mutated to provide an increase of fluorescence intensity when the fluorescent protein of the invention is expressed in cells. Preferred GFP variants are F64L-GFP, F64L-Y66H-GFP and F64L-S65T-GFP. An especially preferred variant of GFP for use in all the aspects of this invention is EGFP (DNA encoding EGFP which is a F64L-S65T variant with codons optimized for expression in mammalian cells is available from Clontech, Palo Alto, plasmids containing the EGFP DNA sequence, cf. GenBank Acc. Nos. U55762, U55763).

PCT/DK99/00562

The term "intracellular signalling pathway" and "signal transduction pathway" are
intended to indicate the co-ordinated intracellular processes whereby a living cell
transduce an external or internal signal into cellular responses. Said signal transduction
will involve an enzymatic reaction said enzymes include but are not limited to protein
kinases, GTPases, ATPases, protein phosphatases, phospholipases and cyclic
nucleotide phosphodiesterases. The cellular responses include but are not limited to
gene transcription, secretion, proliferation, mechanical activity, metabolic activity, cell
death.

The term "second messenger" is used to indicate a low molecular weight component involved in the early events of intracellular signal transduction pathways.

25

The term "luminophore" is used to indicate a chemical substance that has the property of emitting light either inherently or upon stimulation with chemical or physical means. This includes but is not limited to fluorescence, bioluminescence, phosphorescence, and chemiluminescence.

30

The term "mechanically intact living cell" is used to indicate a cell which is considered living according to standard criteria for that particular type of cell such as maintenance of normal membrane potential, energy metabolism, proliferative capability, and has not experienced any physically invasive treatment designed to introduce external substances into the cell such as microinjection.

In the present context, the term "permeabilised living cell" is used to indicate cells where a pore forming agent such as Streptolysin O or Staphylococcus Aureus α-toxin has been applied and thereby incorporated into the plasma membrane in the cells. This creates 5 proteinaceous pores with a defined pore size in the plasma membranes of the exposed cells. Pores could also be made by electroporation, i.e. exposing the cells to high voltage discharges, a procedure that creates small holes in the plasma membrane by coagulating integral membrane proteins. Treatment with a mild detergent such as saponin may accomplish the same thing. Common to all these treatments are that pores 10 are formed only in the plasma membrane without affecting the integrity of cytoplasmic structural elements and organelles. The term living in this context means that the permeabilised cells bathed in a solution mimicking the intracellular milieu still have functional organelles, such as actively respiring mitochondria and endoplasmic reticulum that can take up and release calcium ions, and functional structural elements. The 15 benefit of this method is that substances that normally can not traverse the plasma membrane, but most likely exert their influence intracellularly, can be introduced and their influence studied without cumbersome microinjection of the substances into single cells. Using this method the response to an influence can be recorded from many cells simultaneously.

20

In the present context, the term "permeabilisation" is intended to indicate the selective disruption of the plasma membrane barrier so that soluble substances freely mobile in the cytosol are lost from the cells. The permeabilisation can be achieved as described above under "permeabilised living cells" or by using other chemical detergents such as Triton X-100 or digitonin in carefully titrated amounts.

The term "physiologically relevant", when applied to an experimentally determined redistribution of an intracellular component, as measured by a change in the luminescence properties or distribution, is used to indicate that said redistribution can be explained in terms of the underlying biological phenomenon which gives rise to the redistribution.

The terms "image processing" and "image analysis" are used to describe a large family of digital data analysis techniques or combination of such techniques which reduce ordered arrays of numbers (images) to quantitative information describing those ordered

arrays of numbers. When said ordered arrays of numbers represent measured values from a physical process, the quantitative information derived is therefore a measure of the physical process.

5 The term "fluorescent probe" is used to indicate a fluorescent fusion polypeptide comprising a GFP or any functional part thereof which is N- or C-terminally fused to a biologically active polypeptide as defined herein, optionally via a peptide linker consisting of one or more amino acid residues, where the size of the linker peptide in itself is not critical as long as the desired functionality of the fluorescent probe is maintained. A
10 fluorescent probe according to the invention is expressed in a cell and basically mimics the physiological behaviour of the biologically active polypeptide moiety of the fusion polypeptide.

The term "mammalian cell" is intended to indicate any living cell of mammalian origin. 15 The cell may be an established cell line, many of which are available from The American Type Culture Collection (ATCC, Virginia, USA) or a primary cell with a limited life span derived from a mammalian tissue, including tissues derived from a transgenic animal, or a newly established immortal cell line derived from a mammalian tissue including transgenic tissues, or a hybrid cell or cell line derived by fusing different cell types of 20 mammalian origin e.g. hybridoma cell lines. The cells may optionally express one or more non-native gene products, e.g. receptors, enzymes, enzyme substrates, prior to or in addition to the fluorescent probe. Preferred cell lines include but are not limited to those of fibroblast origin, e.g. BHK, CHO, BALB, or of endothelial origin, e.g. HUVEC, BAE (bovine artery endothelial), CPAE (cow pulmonary artery endothelial), HLMVEC 25 (human lung microvascular endothelial cells) or of pancreatic origin, e.g. RIN, INS-1, MIN6, bTC3, aTC6, bTC6, HIT, or of hematopoietic origin, e.g.primary isolated human monocytes, macrophages, neutrophils, basophils, eosinophils and lyphocyte populations, AML-193, HL-60, RBL-1, adipocyte origin, e.g. 3T3-L1, neuronal/neuroendocrine origin, e.g. AtT20, PC12, GH3, muscle origin, e.g. SKMC, A10, 30 C2C12, renal origin, e.g. HEK 293, LLC-PK1.

The term "hybrid polypeptide" is intended to indicate a polypeptide which is a fusion of at least a portion of each of two proteins, in this case at least a portion of the green fluorescent protein, and at least a portion of a catalytic and/or regulatory domain of a protein kinase. Furthermore a hybrid polypeptide is intended to indicate a fusion

polypeptide comprising a GFP or at least a portion of the green fluorescent protein that contains a functional fluorophore, and at least a portion of a biologically active polypeptide. Thus, GFP may be N- or C-terminally tagged to a biologically active polypeptide, optionally via a linker portion or linker peptide consisting of a sequence of one or more amino acids. The hybrid polypeptide or fusion polypeptide may act as a fluorescent probe in intact living cells carrying a DNA sequence encoding the hybrid polypeptide under conditions permitting expression of said hybrid polypeptide.

The term "kinase" is intended to indicate an enzyme that is capable of phosphorylating a cellular component.

The term "protein kinase" is intended to indicate an enzyme that is capable of phosphorylating serine and/or threonine and/or tyrosine in peptides and/or proteins.

15 The term "phosphatase" is intended to indicate an enzyme that is capable of dephosphorylating phosphoserine and/or phosphothreonine and/or phosphotyrosine in peptides and/or proteins.

The term "cyclic nucleotide phosphodiesterase" is intended to indicate an enzyme that is capable of inactivating the second messengers cAMP and cGMP by hydrolysis of their 3'-ester bond.

In the present context, the term "biologically active polypeptide" is intended to indicate a polypeptide affecting intracellular processes upon activation, such as an enzyme which is active in intracellular processes or a portion thereof comprising a desired amino acid sequence which has a biological function or exerts a biological effect in a cellular system. In the polypeptide one or several amino acids may have been deleted, inserted or replaced to alter its biological function, e.g. by rendering a catalytic site inactive. Preferably, the biologically active polypeptide is selected from the group consisting of proteins taking part in an intracellular signalling pathway, such as enzymes involved in the intracellular phosphorylation and dephosphorylation processes including kinases, protein kinases and phosphorylases as defined herein, but also proteins making up the cytoskeleton play important roles in intracellular signal transduction and are therefore included in the meaning of "biologically active polypeptide" herein. More preferably, the biologically active polypeptide is a protein which according to its state as activated or

non-activated changes localisation within the cell, preferably as an intermediary component in a signal transduction pathway. Included in this preferred group of biologically active polypeptides are cAMP dependent protein kinase A.

32

5 The term "a substance having biological activity" is intended to indicate any sample that has a biological function or exerts a biological effect in a cellular system. The sample may be a sample of a biological material such as a sample of a body fluid including blood, plasma, saliva, milk, urine, or a microbial or plant extract, an environmental sample containing pollutants including heavy metals or toxins, or it may be a sample containing a compound or mixture of compounds prepared by organic synthesis or genetic techniques.

The phrase "any change in fluorescence" means any change in absorption properties, such as wavelength and intensity, or any change in spectral properties of the emitted light, such as a change of wavelength, fluorescence lifetime, intensity or polarisation, or any change in the intracellular localisation of the fluorophore. It may thus be localised to a specific cellular component (e.g. organelle, membrane, cytoskeleton, molecular structure) or it may be evenly distributed throughout the cell or parts of the cell.

- 20 The term "organism" as used herein indicates any unicellular or multicellular organism preferably originating from the animal kingdom including protozoans, but also organisms that are members of the plant kingdoms, such as algae, fungi. bryophytes, and vascular plants are included in this definition.
- 25 The term "nucleic acid" is intended to indicate any type of poly- or oligonucleic acid sequence, such as a DNA sequence, a cDNA sequence, or an RNA sequence.

The term "biologically equivalent" as it relates to proteins is intended to mean that a first protein is equivalent to a second protein if the cellular functions of the two proteins may substitute for each other, e.g. if the two proteins are closely related isoforms encoded by different genes, if they are splicing variants, or allelic variants derived from the same gene, if they perform identical cellular functions in different cell types, or in different species. The term "biologically equivalent" as it relates to DNA is intended to mean that a first DNA sequence encoding a polypeptide is equivalent to a second DNA sequence

33

encoding a polypeptide if the functional proteins encoded by the two genes are biologically equivalent.

The term "higher throughput" is intended to mean an increased number of experiments 5 per time unit per person performing the actual experiments.

The term "high throughput screening assay" as used herein is intended to mean the process of performing a screening assay with at least 100 individual experiments where compounds are tested for their influence on the redistribution of a luminophore in one working day for one person skilled in the art. In a preferred embodiment the high throughput screening assay involves at least 500 individual experiments such as 750, 1000, 2000, 5000, or even 10.000 individual experiments in one working day for a person skilled in the art.

- The phrase "back-tracking of a signal transduction pathway" is intended to indicate a process for defining more precisely at what level a signal transduction pathway is affected, either by the influence of chemical compounds or a disease state in an organism. Consider a specific signal transduction pathway represented by the bioactive polypeptides A B C D, with signal transduction from A towards D. When investigating all components of this signal transduction pathway compounds or disease states that influence the activity or redistribution of only D can be considered to act on C or downstream of C whereas compounds or disease states that influence the activity or redistribution of C and D, but not of A and B can be considered to act downstream of B.
- The term "fixed cells" is used to mean cells treated with a cytological fixative such as glutaraldehyde or formaldehyde, treatments that serve to chemically cross-link and stabilise soluble and insoluble proteins within the structure of the cell. Once in this state, such proteins cannot be lost from the structure of the now-dead cell.
- 30 In the present context a "screening assay" is intended to mean any measurement protocol, including materials, cells. instruments, chemicals, reagents, detection units, calibration and quantification procedures used to measure a response from mechanically intact or permeabilised living cells relevant to influences on an intracellular pathway.

The term "dose-response relationship" and "screening programme" is in the present context intended to mean a clear correlation between the quantified response of cells in a screening assay to application of an influence, such as a compound, and the concentration of the applied influence. The response to the influence may be both an upregulation and a down-regulation of the quantified parameter used in the screening assay.

In the present context, the term "physiology" is intended to mean the normal function of biological and biochemical processes inside cells, between cells and in the whole organism or animal.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1. CHO cells expressing the PKAc-F64L-S65T-GFP hybrid protein have been treated in HAM's F12 medium with 50 μM forskolin at 37°C. The images of the GFP fluorescence in these cells have been taken at different time intervals after treatment, which were: a) 40 seconds b) 60 seconds c) 70 seconds d) 80 seconds. The fluorescence changes from a punctate to a more even distribution within the (non-nuclear) cytoplasm.

- Figure 2. Time-lapse analysis of forskolin induced PKAc-F64L-S65T-GFP redistribution. CHO cells, expressing the PKAc-F64L-S65T-GFP fusion protein were analysed by time-lapse fluorescence microscopy. Fluorescence micrographs were acquired at regular intervals from 2 min before to 8 min after the addition of agonist. The cells were challenged with 1 μM forskolin immediately after the upper left image was acquired (t=0).
- 25 Frames were collected at the following times: i) 0, ii) 1, iii) 2, iv) 3, v) 4 and vi) 5 minutes. Scale bar 10 μm.

Figure 3. Time-lapse analyses of PKAc-F64L-S65T-GFP redistribution in response to various agonists. The effects of 1 μM forskolin (A), 50 μM forskolin (B), 1mM dbcAMP (C) and 100 μM IBMX (D) (additions indicated by open arrows) on the localisation of the PKAc-F64L-S65T-GFP fusion protein were analysed by time-lapse fluorescence microscopy of CHO/PKAc-F64L-S65T-GFP cells. The effect of addition of 10 μM forskolin (open arrow), followed shortly by repeated washing with buffer (solid arrow), on the localisation of the PKAc-F64L-S65T-GFP fusion protein was analysed in the same

35

cells (E). In a parallel experiment, the effect of adding 10 μM forskolin and 100 μM IBMX (open arrow) followed by repeated washing with buffer containing 100 μM IBMX (solid arrow) was analysed (F). Removing forskolin caused PKAc-F64L-S65T-GFP fusion protein to return to the cytoplasmic aggregates while this is prevented by the continued presence of IBMX (F). The effect of 100 nM glucagon (Fig 3G, open arrow) on the localisation of the PKAc-F64L-S65T-GFP fusion protein is also shown for BHK/GR, PKAc-F64L-S65T-GFP cells. The effect of 10 μM norepinephrine (H), solid arrow, on the localisation of the PKAc-F64L-S65T-GFP fusion protein was analysed similarly, in transiently transfected CHO, PKAc-F64L-S65T-GFP cells, pretreated with 10 μM forskolin, open arrow, to increase [cAMP]. N.B. in Fig 3H the x-axis counts the image numbers, with 12 seconds between images. The raw data of each experiment consisted of 60 fluorescence micrographs acquired at regular intervals including several images acquired before the addition of buffer or agonist. The charts (A-G) each show a quantification of the response seen through all the 60 images, performed as described in

Figure 4. Dose-response curve (two experiments) for forskolin-induced redistribution of the PKAc-F64L-S65T-GFP fusion.

Figure 3, versus time for each experiment. Scale bar 10 μm.

15 analysis method 2. The change in total area of the highly fluorescent aggregates, relative to the initial area of fluorescent aggregates is plotted as the ordinate in all graphs in

- Figure 5. Time from initiation of a response to half maximal (t_{1/2max}) and maximal (t_{max}) PKAc-F64L-S65T-GFP redistribution. The data was extracted from curves such as that shown in "Figure 2." All t_{1/2max} and t_{max} values are given as mean±SD and are based on a total of 26-30 cells from 2-3 independent experiments for each forskolin concentration. Since the observed redistribution is sustained over time, the t_{max} values were taken as the earliest time point at which complete redistribution is reached. Note that the values do not relate to the degree of redistribution.
- Figure 6. Parallel dose-response analyses of forskolin induced cAMP elevation and PKAc-F64L-S65T-GFP redistribution. The effects of buffer or 5 increasing concentrations of forskolin on the localisation of the PKAc-F64L-S65T-GFP fusion protein in CHO/PKAc-F64L-S65T-GFP cells, grown in a 96 well plate, were analysed as described above. Computing the ratio of the SD's of fluorescence micrographs taken of the same field of cells, prior to and 30 min after the addition of forskolin, gave a reproducible measure of

36

PKAc-F64L-S65T-GFP redistribution. The graph shows the individual 48 measurements and a trace of their mean±s.e.m at each forskolin concentration. For comparison, the effects of buffer or 8 increasing concentrations of forskolin on [cAMP], was analysed by a scintillation proximity assay of cells grown under the same conditions. The graph shows a trace of the mean ± s.e.m of 4 experiments expressed in arbitrary units.

Figure 7. BHK cells stably transfected with the human muscarinic (hM1) receptor and the PKCα-F64L-S65T-GFP fusion. Carbachol (100 μM added at 1.0 second) induced a transient redistribution of PKCα-F64L-S65T-GFP from the cytoplasm to the plasma membrane. Images were taken at the following times: a) 1 second before carbachol addition, b) 8.8 seconds after addition and c) 52.8 seconds after addition.

Figure 8. BHK cells stably transfected with the hM1 receptor and PKCα-F64L-S65T-GFP fusion were treated with carbachol (1 μM, 10 μM, 100 μM). In single cells intracellular [Ca²+] was monitored simultaneously with the redistribution of PKCα-F64L-S65T-GFP. Dashed line indicates the addition times of carbachol. The top panel shows changes in the intracellular Ca²+ concentration of individual cells with time for each treatment. The middle panel shows changes in the average cytoplasmic GFP fluorescence for individual cells against time for each treatment. The bottom panel shows changes in the fluorescence of the periphery of single cells, within regions that specifically include the circumferential edge of a cell as seen in normal projection, the best regions for monitoring changes in the fluorescence intensity of the plasma membrane.

Figure 9. The hERK1-F64L-S65T-GFP fusion expressed in HEK293 cells treated with 100 μM of the MEK1 inhibitor PD98059 in HAM F-12 (without serum) for 30 minutes at 37 °C. The nuclei empty of fluorescence during this treatment. The same cells as in (a) following treatment with 10 % foetal calf serum for 15 minutes at 37 °C. Time profiles for the redistribution of GFP fluorescence in HEK293 cells following treatment with various concentrations of EGF in Hepes buffer (HAM F-12 replaced with Hepes buffer directly before the experiment). Redistribution of fluorescence is expressed as the change in the ratio value between areas in nucleus and cytoplasm of single cells. Each time profile is the mean for the changes seen in six single cells. Bar chart for the end-point measurements, 600 seconds after start of EGF treatments, of fluorescence change (nucleus:cytoplasm) following various concentrations of EGF.

Figure 10. The SMAD2-EGFP fusion expressed in HEK293 cells starved of serum overnight in HAM F-12. HAM F-12 was then replaced with Hepes buffer pH 7.2 immediately before the experiment. Scale bar is 10 μ m.

HEK 293 cells expressing the SMAD2-EGFP fusion were treated with various concentration of TGF-beta as indicated, and the redistribution of fluorescence monitored against time. The time profile plots represent increases in fluorescence within the nucleus, normalised to starting values in each cell measured. Each trace is the time profile for a single cell nucleus.

A bar chart representing the end-point change in fluorescence within nuclei (after 850 seconds of treatment) for different concentrations of TGF-beta. Each bar is the value for a single nucleus in each treatment.

Figure 11. The VASP-F64L-S65T-GFP fusion in CHO cells stably transfected with the human insulin receptor. The cells were starved for two hours in HAM F-12 without serum, then treated with 10% foetal calf serum. The image shows the resulting redistribution of fluorescence after 15 minutes of treatment. GFP fluorescence becomes localised in structures identified as focal adhesions along the length of actin stress fibres.

Figure 12. Dose-response relationship for the translocation of PKCα-GFP in BHKhM1 cells stimulated with the muscarininc agonist carbamylcholine using a FLIPR™ to do the actual experiments.

Figure 13. Dose-response relationship for the translocation of PKAc-GFP in CHO/PKAc-F64L-S65T-GFP cells stimulated with forskolin using a FLIPR™ to do the actual 25 experiments.

Figure 14. CHO cells stably expressing the human insulin receptor and mouse cPKA labeled with S65T-GFP were more thoroughly investigated in the FLIPRTM instrument. A forskolin (a substance that increases Adenylate cyclase production of cAMP in the cells) dose-response was created where six separate wells were imaged over time for each concentration. The changes in fluorescence were calculated as AUC (area under the curve) for 9 min of stimulation.

Conclusion: Redistribution of mouse cPKA - BioST can be detected in the FLIPR[™] despite the fact that the whole wells, containing around 50-100 000 cells, are illuminated and imaged simultaneously with a spatial resolution that is far from capable of resolving

single cells or subcellular events. The method can be used as a real time measurement of cAMP levels in the cells and as a screening assay to measure effects of ligands to G-protein coupled receptors linked to Gi and Gq type G-proteins.

- 5 Figure 15. Dose-response relationship for the disappearance of fluorescence from permeabilised CHO/PKAc-F64L-S65T-GFP when previously exposed to different doses of forskolin.
- Figure 16. CHO cells stably expressing the human insulin receptor and human PKC beta
 10 1 labeled with EGFP were investigated in the microscope. A dose-response was created
 where a set of cells were imaged over time for each concentration. The changes in
 fluorescence were calculated as AUC for 4 min of stimulation. From the images the
 following data were extracted:
- Whole image: Just analysing the change in intensity in the whole images taking both cells and background.
 - Single cell: 5 separate cells were analysed after background compensation. The analysis was made on the entire cell.
 - Cytoplasm: The same 5 cells as above were analysed after background compensation. the analysis was made on a small region in the cytoplasm close to the nucleus.
- 20 Conclusion: Redistribution of human PKC beta 1 EGFP can only be detected if a subregion of each cell is analysed. The event is clearly visible when the image series is viewed as a movie but if the whole image change in fluorescence or the change in fluorescence in entire cells are analysed the redistribution cannot be detected.
- Figure 17. CHO cells stably expressing the human insulin receptor and human PKC beta 1 labeled with EGFP were investigated in the FLIPRTM. A dose-response was created where six separate wells were imaged over time for each concentration. The changes in fluorescence were calculated as AUC for 5 min of stimulation.
- Conclusion: Redistribution of human PKC beta 1 EGFP can be detected in the

 FLIPRTM despite the fact that the whole wells, containing around 50-100 000 cells, are illuminated and imaged by a detector that has a resolution far below that needed to resolve single cells or subcellular structures. This phenomenon can clearly not be predicted from the microscope data in Figure 16.

Figure 18 CHO cells stably expressing the insulin receptor and a human NFkB – GFP protein hybrid were stimulated with different concentrations of IL-1 for 1 h, then washed with a hypoosmotic buffer (TRIS-base 10mM, MgCl2 2mM, PMSF(Phenyl methyl sulfonyl fluoride) 0.5mM, pH 7.4) and placed on the microscope. A sequence of images were acquired during the addition of 0.05% Triton X-100 and subsequent gentle mixing after a short incubation period. The treatment causes the cell membranes to rupture leaving the fraction of NFkB-GFP that has translocated to the nucleus behind whereas the cytoplasmic amount of the probe leaves the cells more quickly and immediately becomes infinitely diluted in the surrounding medium (out of focus - this part of the total fluorescence from the probe is thereby lost). At a defined time point before and after this treatment a total intensity value for the whole image was extracted. To normalize each experiment, the after value was divided by the before value meaning that a higher ratio was found in cells where more NFkB had translocated to the nucleus and thereby contributed to the total fluorescence after permeabilisation.

15 <u>Conclusion:</u> the present protocol is a good example of the possibility of revealing translocation of a fluorescent probe from the cytosol to the nucleus or translocation from the nucleus to the cytosol.

EXAMPLES

EXAMPLE 1 Construction, testing and implementation of an assay for cAMP based on PKA activation.

5 Useful for monitoring the activity of signalling pathways that lead to altered concentrations of cAMP, e.g. activation of G-protein coupled receptors which couple to G-proteins of the G_S or G_I class.

The catalytic subunit of the murine cAMP dependent protein kinase (PKAc) was fused Cterminally to a F64L-S65T derivative of GFP. The resulting fusion (PKAc-F64L-S65T-

10 GFP) was used for monitoring in vivo the translocation and thereby the activation of PKA.

To construct the PKAc-F64L-S65T-GFP fusion, convenient restriction endonuclease sites were introduced into the cDNAs encoding murine PKAc (Gen Bank Accession number: M12303) and F64L-S65T-GFP (sequence disclosed in WO 97/11094) by

15 polymerase chain reaction (PCR). The PCR reactions were performed according to standard protocols with the following primers:

5'PKAc:

TTggACACAAgCTTTggACACCCTCAggATATgggCAACgCCgCCgCCgCCAAg, 3'PKAc:

20 gTCATCTTCTCgAgTCTTTCAggCgCgCCCAAACTCAgTAAACTCCTTgCCACAC 5'GFP:

TTggACACAAgCTTTggACACggCgCgCCATgAgTAAAggAgAAGAACTTTTC

gTCATCTTCTCgAgTCTTACTCCTgAggTTTgTATAgTTCATCCATgCCATgT.

25

The PKAc amplification product was then digested with HindIII+AscI and the F64L-S65T-GFP product with AscI+Xhol. The two digested PCR products were subsequently ligated with a HindIII+Xhol digested plasmid (pZeoSV® mammalian expression vector, Invitrogen, San Diego, CA, USA). The resulting fusion construct (SEQ ID NO:1 and 2)

30 was under control of the SV40 promoter.

Transfection and cell culture conditions:

Chinese hamster ovary cells (CHO), were transfected with the plasmid containing the PKAc-F64L-S65T-GFP fusion using the calcium phosphate precipitate method in HEPES-buffered saline (Sambrook *et al.*, 1989). Stable transfectants were selected using 1000 µg Zeocin/ml (Invitrogen) in the growth medium (DMEM with 1000 mg glucose/l, 10 % fetal bovine serum (FBS), 100 µg penicillin-streptomycin mixture ml⁻¹, 2 mM L-glutamine purchased from Life Technologies Inc., Gaithersburg, MD, USA). Untransfected CHO cells were used as the control. To assess the effect of glucagon on fusion protein translocation, the PKAc-F64L-S65T-GFP fusion was stably expressed in

baby hamster kidney cells overexpressing the human glucagon receptor (BHK/GR cells).

- 10 Untransfected BHK/GR cells were used as the control. Expression of GR was maintained with 500 μg G418/ml (*Neo* marker) andPKAc-F64L-S65T-GFP was maintained with 500 μg Zeocin/ml (*Sh ble* marker). CHO cells were also simultaneously co-transfected with vectors containing the PKAc-F64L-S65T-GFP fusion and the human α2a adrenoceptor (hARa2a).
- 15 For fluorescence microscopy, cells were allowed to adhere to Lab-Tek chambered coverglasses (Nalge Nunc Int., Naperville, IL, USA) for at least 24 hours and cultured to about 80% confluence. Prior to experiments, the cells were cultured over night without selection pressure in HAM F-12 medium with glutamax (Life Technologies), 100 μg penicillin-streptomycin mixture ml⁻¹ and 0.3 % FBS. This medium has low
- 20 autofluorescence enabling fluorescence microscopy of cells straight from the incubator.
 - Monitoring activity of PKA activity in real time:
 - Image aquisition of live cells were gathered using a Zeiss Axiovert 135M fluorescence microscope fitted with a Fluar 40X, NA: 1.3 oil immersion objective and coupled to a
- 25 Photometrics CH250 charged coupled device (CCD) camera. The cells were illuminated with a 100 W HBO arc lamp. In the light path was a 470±20 nm excitation filter, a 510 nm dichroic mirror and a 515±15 nm emission filter for minimal image background. The cells were maintained at 37°C with a custom built stage heater.
 - Images were processed and analysed in the following manner:
- 30 Method 1: Stepwise procedure for quantitation of translocation of PKA:

 The image was corrected for dark current by performing a pixel-by-pixel subtraction of a dark image (an image taken under the same conditions as the actual image, except the camera shutter is not allowed to open).

The image was corrected for non-uniformity of the illumination by performing a pixel-by-pixel ratio with a flat field correction image (an image taken under the same conditions as the actual image of a uniformly fluorescent specimen).

The image histogram, i.e., the frequency of occurrence of each intensity value in the 5 image, was calculated.

A smoothed, second derivative of the histogram was calculated and the second zero is determined. This zero corresponds to the inflection point of the histogram on the high side of the main peak representing the bulk of the image pixel values.

The value determined in step 4 was subtracted from the image. All negative values were discarded.

The variance (square of the standard deviation) of the remaining pixel values was determined. This value represents the "response" for that image.

Scintillation proximity assay (SPA) for independent quantitation of cAMP.

- 15 Method 2: Alternative method for quantitation of PKA redistribution:
 - The fluorescent aggregates are segmented from each image using an automatically found threshold based on the maximisation of the information measure between the object and background. The *a priori* entropy of the image histogram is used as the information measure.
- The area of each image occupied by the aggregates is calculated by counting pixels in the segmented areas.
 - The value obtained in step 2 for each image in a series, or treatment pair, is normalised to the value found for the first (unstimulated) image collected. A value of zero (0) indicates no redistribution of fluorescence from the starting condition. A value of one (1)
- 25 by this method equals full redistribution.
 - Cells were cultured in HAM F-12 medium as described above, but in 96-well plates. The medium was exchanged with Ca^{2+} -HEPES buffer including 100 μ M IBMX and the cells were stimulated with different concentrations of forskolin for 10 min. Reactions were stopped with addition of NaOH to 0.14 M and the amount of cAMP produced was
- 30 measured with the cAMP-SPA kit, RPA538 (Amersham) as described by the manufacturer.

Manipulating intracellular levels of cAMP to test the PKAc-F64L-S65T-GFP fusion.

The following compounds were used to vary cAMP levels: Forskolin, an activator of adenylate cyclase; dbcAMP, a membrane permeable cAMP analog which is not degraded by phosphodiesterase; IBMX, an inhibitor of phosphodiesterase.

- CHO cells stably expressing the PKAc-F64L-S65T-GFP, showed a dramatic
- 5 translocation of the fusion protein from a punctate distribution to an even distribution throughout the cytoplasm following stimulation with 1 μM forskolin (n=3), 10 μM forskolin (n=4) and 50 μM forskolin (n=4) (Fig 1), or dbcAMP at 1mM (n=6).
 - Fig. 2 shows the progression of response in time following treatment with 1 μ M forskolin.
- Fig. 3 gives a comparison of the average temporal profiles of fusion protein redistribution and a measure of the extent of each response to the three forskolin concentrations (Fig. 3A, E, B), and to 1 mM dbcAMP (fig 3C) which caused a similar but slower response, and to addition of 100 μM IBMX (n=4, Fig. 3D) which also caused a slow response, even in the absence of adenylate cyclase stimulation. Addition of buffer (n=2) had no effect (data not shown).
- As a control for the behaviour of the fusion protein, F64L-S65T-GFP alone was expressed in CHO cells and these were also given 50 μM forskolin (n=5); the uniform diffuse distribution characteristic of GFP in these cells was unaffected by such treatment (data not shown).
- The forskolin-induced translocation of PKAc-F64L-S65T-GFP showed a dose-response relationship (Fig 4 and 6), see quantitative procedures above.

Reversibility of PKAc-F64L-S65T-GFP translocation.

The release of the PKAc probe from its cytoplasmic anchoring hotspots was reversible.

Washing the cells repeatedly (5-8 times) with buffer after 10µM forskolin treatment

- completely restored the punctate pattern within 2-5 min (n=2, Fig. 3E). In fact the fusion protein returned to a pattern of fluorescent cytoplasmic aggregates virtually indistinguishable from that observed before forskolin stimulation.
 - To test whether the return of fusion protein to the cytoplasmic aggregates reflected a decreased [cAMP], cells were treated with a combination of 10 μ M forskolin and 100 μ M
- 30 IBMX (n=2) then washed repeatedly (5-8 times) with buffer containing 100 μM IBMX (Fig. 3F). In these experiments, the fusion protein did not return to its prestimulatory localisation after removal of forskolin.

Testing the PKA-F64L-S65T-GFP probe with physiologically relevant agents.

To test the probe's response to receptor activation of adenylate cyclase, BHK cells stably transfected with the glucagon receptor and the PKA-F64L-S65T-GFP probe were exposed to glucagon stimulation. The glucagon receptor is coupled to a G_S protein which activates adenylate cyclase, thereby increasing the cAMP level. In these cells, addition of 100 nM glucagon (n=2) caused the release of the PKA-F64L-S65T-GFP probe from the cytoplasmic aggregates and a resulting translocation of the fusion protein to a more even cytoplasmic distribution within 2-3 min (Fig. 3G). Similar but less pronounced effects were seen at lower glucagon concentrations (n=2, data not shown). Addition of buffer (n=2) had no effect over time (data not shown).

10 Transiently transfected CHO cells expressing hARα2a and the PKA-F64L-S65T-GFP probe were treated with 10 μM forskolin for 7.5 minutes, then, in the continued presence of forskolin, exposed to 10 μM norepinephrine to stimulate the exogenous adrenoreceptors, which couple to a G_I protein, which inhibit adenylate cyclase. This treatment led to reappearance of fluorescence in the cytoplasmic aggregates indicative of a decrease in [cAMP]_i (Fig. 3H).

Fusion protein translocation correlated with [cAMP],

As described above, the time it took for a response to come to completion was dependent on the forskolin dose (Fig. 5) In addition the degree of responses was also dose-dependent. To test the PKA-F64L-S65T-GFP fusion protein translocation in a semi high through-put system, CHO cells stably transfected with the PKA-F64L-S65T-GFP fusion was stimulated with buffer and 5 increasing doses of forskolin (n=8). Using the image analysis algorithm described above (Method 1), a dose-response relationship was observed in the range from 0.01-50 μM forskolin (Fig. 6). A half-maximal stimulation was observed at about 2 μM forskolin. In parallel, cells were stimulated with buffer and 8 increasing concentrations of forskolin (n=4) in the range 0.01-50 μM. The amount of cAMP produced was measured in an SPA assay. A steep increase was observed between 1 and 5 μM forskolin coincident with the steepest part of the curve for fusion protein translocation (also Fig. 6).

30

EXAMPLE 2 Probe for detection of PKC activity

Construction of PKC-GFP fusion:

The probe was constructed by ligating two restriction enzyme treated polymerase chain reaction (PCR) amplification products of the cDNA for murine PKC α (GenBank

Accession number: M25811) and F64L-S65T-GFP (sequence disclosed in WO 97/11094) respectively. Taq® polymerase and the following oligonucleotide primers were used for PCR;

5'mPKCa:

5 TTggACACAAgCTTTggACACCCTCAggATATggCTgACgTTTACCCggCCAACg 3'mPKCα:

gTCATCTTCTCgAgTCTTTCAggCgCgCCCTACTgCACTTTgCAAgATTgggTgC, 5'F64L-S65T-GFP:

TTggACACAAgCTTTggACACggCgCgCCATgAgTAAAggAgAAGAACTTTTC,

10 3'F64L-S65T-GFP:

gTCATCTTCTCgAgTCTTACTCCTgAggTTTgTATAgTTCATCCATgCCATgT.

The hybrid DNA strand was inserted into the pZeoSV® mammalian expression vector as a HindIII-XhoI casette as described in example 1.

- 15 BHK cells expressing the human M1 receptor under the control of the inducible metallothionine promoter and maintained with the dihydrofolate reductase marker were transfected with the PKCα-F64L-S65T-GFP probe using the calcium phosphate precipitate method in HEPES buffered saline (HBS [pH 7.10]). Stable transfectants were selected using 1000 μg Zeocin®/ml in the growth medium (DMEM with 1000 mg
- 20 glucose/l, 10 % foetal bovine serum (FBS), 100 μg penicillin-streptomycin mixture ml-1, 2 mM l-glutamine). The hM1 receptor and PKCα-F64L-S65T-GFP fusion protein were maintained with 500 nM methotrexate and 500 μg Zeocin®/ml respectively. 24 hours prior to any experiment, the cells were transferred to HAM F-12 medium with glutamax, 100 μg penicillin-streptomycin mixture ml⁻¹ and 0.3 % FBS. This medium relieves
- 25 selection pressure, gives a low induction of signal transduction pathways and has a low autofluorescence at the relevant wavelength enabling fluorescence microscopy of cells straight from the incubator.

Method 1: Monitoring the PKC α activity in real time:

- Digital images of live cells were gathered using a Zeiss Axiovert 135M fluorescence microscope fitted with a 40X, NA: 1.3 oil immersion objective and coupled to a Photometrics CH250 charged coupled device (CCD) camera. The cells were illuminated with a 100 W arc lamp. In the light path was a 470±20 nm excitation filter, a 510 nm dichroic mirror and a 515±15 nm emission filter for minimal image background. The cells
- 35 were kept and monitored to be at 37°C with a custom built stage heater.

Images were analyzed using the IPLab software package for Macintosh.

Upon stimulation of the M1-BHK cells, stably expressing the PKCα-F64L-S65T-GFP fusion, with carbachol we observed a dose-dependent transient translocation from the cytoplasm to the plasma membrane (Fig. 7a,b,c). Simultaneous measurement of the cytosolic free calcium concentration shows that the carbachol-induced calcium mobilisation precedes the translocation (Fig. 8).

46

Stepwise procedure for quantification of translocation of PKCa:

The image was corrected for dark current by performing a pixel-by-pixel subtraction of a dark image (an image taken under the same conditions as the actual image, except the camera shutter is not allowed to open).

The image was corrected for non-uniformity of the illumination by performing a pixel-by-pixel ratio with a flat field correction image (an image taken under the same conditions as the actual image of a uniformly fluorescent specimen).

A copy of the image was made in which the edges are identified. The edges in the image are found by a standard edge-detection procedure — convolving the image with a kernel which removes any large-scale unchanging components (i.e., background) and accentuates any small-scale changes (i.e., sharp edges). This image was then converted to a binary image by threshholding. Objects in the binary image which are too small to represent the edges of cells were discarded. A dilation of the binary image was

20 performed to close any gaps in the image edges. Any edge objects in the image which were in contact with the borders of the image are discarded. This binary image represents the edge mask.

Another copy of image was made via the procedure in step 3. This copy was further processed to detect objects which enclose "holes" and setting all pixels inside the holes

- to the binary value of the edge, i.e., one. This image represents the whole cell mask.

 The original image was masked with the edge mask from step 3 and the sum total of all pixel values is determined.
 - The original image was masked with the whole cell mask from step 4 and the sum total of all pixel values was determined.
- 30 The value from step 5 was divided by the value from step 6 to give the final result, the fraction of fluorescence intensity in the cells which was localized in the edges.

EXAMPLE 3 Probes for detection of mitogen activated protein kinase Erk1 redistribution.

Useful for monitoring signalling pathways involving MAPK, e.g. to identify compounds which modulate the activity of the pathway in living cells.

5 Erk1, a serine/threonine protein kinase, is a component of a signalling pathway that is activated by e.g. many growth factors.

Probes for detection of ERK-1 activity in real time within living cells:

The extracellular signal regulated kinase (ERK-1, a mitogen activated protein kinase, MAPK) is fused N- or C-terminally to a derivative of GFP. The resulting fusions

10 expressed in different mammalian cells are used for monitoring *in vivo* the nuclear translocation, and thereby the activation, of ERK1 in response to stimuli that activate the MAPK pathway.

The human Erk1 gene (GenBank Accession number: X60188) was amplified using PCR according to standard protocols with primers

15 Erk1-top

5'-TAGAATTCAACCATGGCGGCGGCGGCGCG-3' and Erk1-bottom/+stop

5'-TAGGATCCCTAGGGGGCCTCCAGCACTCC-3'.

The PCR product was digested with restriction enzymes EcoR1 and BamH1, and ligated into pEGFP-C1 (Clontech, Palo Alto; GenBank Accession number U55763) digested with EcoR1 and BamH1. This produces an EGFP-Erk1 fusion (SEQ ID NOs: 5 and 6) under the control of a CMV promoter.

The plamid containing the EGFP-Erk1 fusion was transfected into HEK293 cells employing the FUGENE transfection reagent (Boehringer Mannheim). Prior to

- experiments the cells were grown to 80%-90% confluency 8 well chambers in DMEM with 10% FCS. The cells were washed in plain HAM F-12 medium (without FCS), and then incubated for 30-60 minutes in plain HAM F-12 (without FCS) with 100 micromolar PD98059, an inhibitor of MEK1, a kinase which activates Erk1; this step effectively empties the nucleus of EGFP-Erk1. Just before starting the experiment, the HAM F-12
- 30 was replaced with Hepes buffer following a wash with Hepes buffer. This removes the PD98059 inhibitor; if blocking of MEK1 is still wanted (e.g. in control experiments), the inhibitor is included in the Hepes buffer.

The experimental setup of the microscope was as described in example 1.

60 images were collected with 10 seconds between each, and with the test compound added after image number 10.

Addition of EGF (1-100 nM) caused within minutes a redistribution of EGFP-Erk1 from the cytoplasm into the nucleus (Fig. 9a,b).

The response was quantitated as described below and a dose-dependent relationship between EGF concentration and nuclear translocation of EGFP-Erk1 was found (Fig.

9c,d). Redistribution of GFP fluorescence is expressed in this example as the change in the ratio value between areas in nuclear versus cytoplasmic compartments of the cell. Each time profile is the average of nuclear to cytoplasmic ratios from six cells in each treatment.

10 EXAMPLE 4 Probes for detection of Smad2 redistribution.

Useful for monitoring signalling pathways activated by some members of the transforming growth factor-beta family, e.g. to identify compounds which modulate the activity of the pathway in living cells.

Smad 2, a signal transducer, is a component of a signalling pathway that is induced by some members of the TGFbeta family of cytokines.

- a) The human Smad2 gene (GenBank Accession number: AF027964) was amplified using PCR according to standard protocols with primers Smad2-top
- 5'-GTGAATTCGACCATGTCGTCCATCTTGCCATTC-3'
- 20 and Smad2-bottom/+stop
 - 5'-GTGGTACCTTATGACATGCTTGAGCAACGCAC-3'.

The PCR product was digested with restriction enzymes EcoR1 and Acc65I, and ligated into pEGFP-C1 (Clontech; Palo Alto; GenBank Accession number U55763) digested with EcoR1 and Acc65I. This produces an EGFP-Smad2 fusion (SEQ ID NOs: 7 and 8) under

- 25 the control of a CMV promoter.
 - b) The human Smad2 gene (GenBank Accession number: AF027964) was amplified using PCR according to standard protocols with primers Smad2-top
 - 5'-GTGAATTCGACCATGTCGTCCATCTTGCCATTC-3'
- 30 and Smad2-bottom/-stop
 - 5'-GTGGTACCCATGACATGCTTGAGCAACGCAC-3'.

The PCR product was digested with restriction enzymes EcoR1 and Acc65I, and ligated into pEGFP-N1 (Clontech, Palo Alto; GenBank Accession number U55762) digested with EcoR1 and Acc65I. This produces a Smad2-EGFP fusion (SEQ ID NOs:9 and 10) under

35 the control of a CMV promoter.

The plasmid containing the EGFP-Smad2 fusion was transfected into HEK293 cells, where it showed a cytoplasmic distribution. Prior to experiments the cells were grown in 8 well Nunc chambers in DMEM with 10% FCS to 80% confluence and starved overnight in HAM F-12 medium without FCS.

PCT/DK99/00562

5 For experiments, the HAM F-12 medium was replaced with Hepes buffer pH 7.2. The experimental setup of the microscope was as described in example 1. 90 images were collected with 10 seconds between each, and with the test compound added after image number 5.

After serum starvation of cells, each nucleus contains less GFP fluorescence than the surrounding cytoplasm (Fig. 10a). Addition of TGFbeta caused within minutes a redistribution of EGFP-Smad2 from the cytoplasma into the nucleus (Fig. 10b). The redistribution of fluorescence within the treated cells was quantified simply as the fractional increase in nuclear fluorescence normalised to the starting value of GFP fluorescence in the nucleus of each unstimulated cell and displayed a dose dependent change in response to TGFβ (fig. 10c).

EXAMPLE 5 Probes for detection of VASP redistribution.

Useful for monitoring signalling pathways involving rearrangement of cytoskeletal elements, e.g. to identify compounds which modulate the activity of the pathway in living cells. VASP, a phosphoprotein, is a component of cytoskeletal structures, which redistributes in response to signals that affect focal adhesions.

The human VASP gene (GenBank Accession number: Z46389) was amplified using PCR according to standard protocols with primers

VASP-top

5'-GGGAAGCTTCCATGAGCGAGACGGTCATC-3'

25 and VASP-bottom/+stop

5'-CCCGGATCCTCAGGGAGAACCCCGCTTC-3'.

The PCR product was digested with restriction enzymes Hind3 and BamH1, and ligated into pEGFP-C1 (Clontech, Palo Alto; GenBank Accession number U55763) digested with Hind3and BamH1. This produces an EGFP-VASP fusion (SEQ ID NOs:11 and 12) under

30 the control of a CMV promoter.

The resulting plasmid was transfected into CHO cells expressing the human insulin receptor using the calcium-phosphate transfection method. Prior to experiments, cells were grown in 8 well Nunc chambers and starved overnight in medium without FCS. Experiments are performed in a microscope setup as described in example 1.10% FCS was added to the cells and images were collected. The EGFP-VASP fusion was

redistributed from a somewhat even distribution near the periphery into more localised structures, identified as focal adhesion points (Fig. 11).

EXAMPLE 7 Probes for detection of NFkappaB redistribution.

- 5 Useful for monitoring signalling pathways leading to activation of NFkappaB, e.g. to identify compounds which modulate the activity of the pathway in living cells.
 NFkappaB, an activator of transcription, is a component of signalling pathways that are responsive to a varity of inducers including cytokines, lymphokines, and some immunosuppressive agents.
- 10 a) The human NFkappaB p65 subunit gene (GenBank Accession number: M62399) is amplified using PCR according to standard protocols with primers NFkappaB-top 5'-GTCTCGAGCCATGGACGAACTGTTCCCCCTCATC-3' and NFkappaB-bottom/+stop
- 15 5'-GTGGATCCTTAGGAGCTGATCTGACTCAGCAG-3'.
 The PCR product is digested with restriction enzymes Xho1 and BamH1, and ligated into pEGFP-C1 (Clontech, Palo Alto; GenBank Accession number U55763) digested with Xho1 and BamH1. This produces an EGFP-NFkappaB fusion (SEQ ID NOs:13 and 14) under the control of a CMV promoter.
- 20 b) The human NFkappaB p65 subunit gene (GenBank Accession number: M62399) is amplified using PCR according to standard protocols with primers NFkappaB-top 5'-GTCTCGAGCCATGGACGAACTGTTCCCCCTCATC-3' and NFkappaB-bottom/-stop
- 5'-GTGGATCCAAGGAGCTGATCTGACTCAGCAG-3'.
 The PCR product is digested with restriction enzymes Xho1 and BamH1, and ligated into pEGFP-N1 (Clontech, Palo Alto; GenBank Accession number U55762) digested with Xho1 and BamH1. This produces an NFkappaB-EGFP fusion (SEQ ID NOs: 15 and 16) under the control of a CMV promoter.
- The resulting plasmids are transfected into a suitable cell line, e.g. Jurkat, in which the EGFP-NFkappaB probe and/or the NFkappaB-EGFP probe should change its cellular distribution from cytoplasmic to nuclear in response to activation of the signalling pathway with e.g. IL-1.

CHO cells stably expressing the insulin receptor and a human NFkB – GFP protein hybrid were stimulated with different concentrations of IL-1 for 1 hour, then washed with a hypoosmotic buffer (TRIS-base 10mM, MgCl2 2mM, PMSF(Phenyl methyl sulfonyl fluoride) 0.5mM, pH 7.4) and placed on the microscope. A sequence of images were acquired during the addition of 0.05% Triton X-100 and subsequent gentle mixing after a short incubation period. The treatment causes the cell membranes to rupture leaving the fraction of NFkB-GFP that has translocated to the nucleus behind whereas the cytoplasmic amount of the probe leaves the cells more quickly and immediately becomes infinitely diluted in the surrounding medium (out of focus - this part of the total fluorescence from the probe is thereby lost). At a defined time point before and after this treatment a total intensity value for the whole image was extracted. To normalize each experiment, the after value was divided by the before value, meaning that a higher ratio was found in cells where more NFkB had translocated to the nucleus and thereby contributed to the total fluorescence after permeabilisation, the actual data from such an experiment run in duplicate is shown in Figure 18.

Conclusion: the present protocol is a good example of the possibility of revealing translocation of a fluorescent probe from the cytosol to the nucleus or translocation from the nucleus to the cytosol by using a measurement immediately before and after plasma membrane permeabilisation recorded as an image sequence.

20

EXAMPLE 8 real-time redistribution of protein kinase C α

Measurement of the real-time redistribution of protein kinase C α isoform-GFP fusion (PKC α -GFP, SEQ ID NOs: 3 and 4) in response to carbamylcholine stimulation of the muscarinic M1 receptor; 96 parallel redistribution measurements in microtiter plates.

BHK cells were stably expressing a recombinant human muscarinic type 1 receptor, under the selection with 500 µg/ml Methotrexate, and also a PKCα-GFP construct (KaA 048), under the selection of 500 nM Zeocin. The cells were grown in 96-well plates (Packard ViewPlate, black with transparent bottom), washed and preincubated in a Hank's Buffered Salt solution (HBSS) without phenol red, with 20 mM HEPES and 5.5
 mM glucose.

The plate was measured in a FLIPR™ (Fluorescence Imaging Plate Reader) from Molecular Devices. The 488 nm emission line from an argon ion laser, run at between 0.4 and 0.8 W output, was used to excite fluorescence form the GFP. Emission wavelengths were collected through a 510 to 565 nm band pass filter.

The cells were challenged with three doses of carbamylcholine, an M1 receptor agonist known from previous studies to give a microscopically detectable redistribution of the PKCα-GFP construct [(Almholt *et al.* 1997)]. Measurements were made every 10 seconds for 5 minutes. After data handling including normalisation of baseline fluorescence for the different wells. background subtraction and averaging the 6 wells used for each concentration the data presented in figure 14 were obtained. It can clearly be seen (Fig 12) that carbamylcholine gave a time- and dose-dependent, and transient, decrease in fluorescence very similar to the time- and dose-dependent profile seen in microscopic fluorescence measurements [(see Almholt *et al.* 1997)]. This experiment was repeated twice on the same batch of cells with similar results.

EXAMPLE 9 real-time redistribution of cyclic-AMP dependent protein kinase catalytic subuit-GFP fusion

Measurement of the real-time redistribution of cyclic-AMP dependent protein kinase

15 catalytic subuit-GFP fusion (C-GFP^{LT} SEQ ID NOs: 1 and 2) in response to forskolin stimulation of the adenylate cyclase; 96 parallel redistribution measurements in microtiter plates.

CHO cells were stably transfected with hybrid DNA for the PKA catalytic subunit-F64L+S65T GFP (C-GFP^{LT}) fusion protein, and were typically under continuous selection with 1000 μg/ml zeocin (Invitrogen). The cells were grown without selection for 2 days in 96-well plates (Packard ViewPlate, black with transparent bottom), washed and preincubated in a Hank's Buffered Salt solution (HBSS) without phenol red, with 20 mM HEPES and 5.5 mM glucose.

The plate was measured in a FLIPR™ (Fluorescence Imaging Plate Reader) from

Molecular Devices. The 488 nm emission line from an argon ion laser, run at between
0.4 and 0.8 W output, was used to excite fluorescence from the GFP. Emission
wavelengths were collected through a 510 to 565 nm band pass filter.

The cells were challenged with three doses of forskolin (Fig 13), an adenylate cyclase
agonist known from previous studies to give a microscopically detectable redistribution of
the C-GFP^{LT} construct. Measurements were made every 10 seconds for over 6 minutes
from the point of addition of forskolin. After data handling including normalisation of
baseline fluorescence for the different wells, background subtraction and averaging the 6
wells used for each concentration the data presented below were obtained. It can clearly
be seen in figure 15 that forskolin gave a time- and dose-dependent decrease in

35 fluorescence very similar to the time- and dose-dependent profile seen in microscopic

fluorescence measurements. This experiment was repeated twice on the same batch of cells with similar results. As can be seen in figure 14, a more extensive dose-response test gives at hand that this method is both sensitive and reproducible enough to use as the basis for a high throughput screening assay.

5 EXAMPLE 10 cyclic-AMP dependent protein kinase catalytic subuit-GFP fusion

Measurement of the redistribution response of cyclic-AMP dependent protein kinase catalytic subuit-GFP fusion (C-GFP^{LT} SEQ ID NOs: 1 and 2) after forskolin stimulation of the adenylate cyclase; measurement of the change in total fluorescence upon permeabilisation of agonist-treated cells.

CHO cells were stably transfected with hybrid DNA for the PKA catalytic subunit-F64L+S65T GFP (C-GFP^{LT}) fusion protein, and were typically under continuous selection with 1000 μ g/ml zeocin (Invitrogen). For the experiments reported here, cells were grown without selection to 90% confluence in 8-well tissue culture-treated Lab-Tek®

15 chambered coverglass units (chambers, obtained from Nunc, Inc. Illinois, USA).
Immediately prior to the experiment growth medium was washed from the cells and replaced with 200 μl HEPES buffer per well.

For the results reported here, chambers were measured using a cooled CCD camera (KAF1400 chip, Photometrics Ltd., USA) attached to an inverted microscope (Diaphot 300, Nikon, Japan) equipped with a x40 oil-immersion Fluar lens, NA 1.4. Cells were illuminated with 450-490 nm light from a 50 W HBO lamp, and emitted light collected

between 510-560 nm.

The cells were challenged with four doses of forskolin, an adenylate cyclase agonist

known from previous studies to give a microscopically detectable redistribution of the C-GFP^{LT} construct. Images were collected at 10-second intervals for a period of 10 minutes for each treatment. Six minutes after the addition of forskolin or buffer control, Triton-X100 was added to a final concentration of 0.1%. The detergent releases freely mobile C-GFP^{LT} from the cells. The change in fluorescence resulting from this loss was measured after 1 minute of equilibration. After data handling including background subtraction and normalisation to pre-detergent values, the data presented in figure 16 were obtained. Permeabilisation caused decreases in fluorescence, the magnitude of

were obtained. Permeabilisation caused decreases in fluorescence, the magnitude of which were dependent on the forskolin treatments. This experiment was repeated twice on the same batch of cells with similar results.

EXAMPLE 11 Prob s for detection of PKCβ1 redistribution.

Useful for monitoring signalling pathways involving Protein Kinase C, e.g. to identify compounds which modulate the activity of the pathway in living cells.

PKCbeta1, a serine/threonine protein kinase, is closely related to PKCalpha and

- 5 PKCbeta2 but not identical; it is a component of a signalling pathway which is activated by elevation of intracellular calcium concomitant with an increase in diacylglycerol species.
- a) The human PKCbeta1 gene (GenBank Accession number: X06318) was amplified
 using PCR according to standard protocols with primers
 PKCβ1-top

GTCTCGAGGCAAGATGGCTGACCC

and PKCβ1-bottom

GTGGATCCCTACACATTAATGACAAACTCTGGG.

- 15 The PCR product was digested with restriction enzymes Xho1 and BamH1, and ligated into pEGFP-C1 (Clontech, Palo Alto; GenBank Accession number U55763) digested with Xho1 and BamH1. This produces an EGFP-PKCβ1 fusion (SEQ ID NOs: 17 and 18) under the control of a CMV promoter.
- b) CHO cells stably expressing the human insulin receptor and human PKC beta 1
 20 labeled with EGFP were investigated in the microscope. A dose-response was created where a set of cells were imaged over time for each concentration. The changes in fluorescence were calculated as AUC for 4 min of stimulation.

It can be seen in figure 16 that using microscopic measurements, redistribution of human PKC beta 1 – EGFP can only be detected if a subregion of each cell is analysed. The

- event is clearly visible when the image series is viewed as a movie but if the whole image changes in fluorescence or the changes in fluorescence in entire cells are analysed the redistribution cannot be detected.
 - CHO cells stably expressing the human insulin receptor and human PKC beta 1 labelled with EGFP were investigated in the $FLIPR^{TM}$. A dose-response was created where six
- 30 separate wells were imaged over time for each concentration. The changes in fluorescence were calculated as AUC for 5 min of stimulation. As shown in figure 17 redistribution of human PKC beta 1 − EGFP can be detected in the FLIPR™ instrument despite the fact that the whole wells, containing around 50-100 000 cells, are illuminated and imaged with a resolution far below what is needed to resolve single cells or
- 35 subcellular compartments. This phenomenon can clearly not be predicted from the

WO 00/23615 PCT/DK99/00562 55

microscope data in Figure 16. Based on these observations it is clear that a screening assay can be established in the $FLIPR^{TM}$ instrument. It might even be possible to establish a high throughput screening assay with further optimisation.

REFERENCES:

- Adams, S.R., Harootunian, A.T., Buechler, Y.J., Taylor, S.S. & Tsien, R.Y. (1991) Nature 349, 694-697.
- Barak, L.S., Ferguson, S.S.G., Zhang, J. & Caron, M.G. (1997) J. Biol. Chem. **272**:44, 5 27497-27500.
 - Bastiaens, P.I.H. & Jovin, T.M. (1996) Proc. Natl. Acad. Sci. USA **93**, 8407-8412. Beals, C.R., Clipstone, N.A., Ho, S.N. & Crabtree, G.R. (1998) Genes and Development **11**:7, 824-834.
- Blobe, G.C., Stribling, D.S., Fabbro, D., Stabel, S & Hannun, Y.A. (1996) J. Biol. Chem.
- 10 **271**, 15823-15830.
 - Carey, K.L., Richards, S.A., Lounsbury, K.M. & Macara, I.G. (1996) J. Cell Biol. **133**: 5, 985-996.
 - Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W. & Prasher, D.C. (1994) Science **263**, 802-805.
- 15 Cossette, L.J., Hoglinger, O., Mou, L.J. & Shen, S.H. (1997) Exp. Cell Res. 223, 459-466.
 - DeBernardi, M.A. & Brooker, G. (1996) Proc. Natl. Acad. Sci. USA **93**, 4577-4582. Farese, R.V. (1992) Biochem. J. **288**, 319-323.
 - Fulop Jr., T., Leblanc, C., Lacombe, G. & Dupuis, G. (1995) FEBS Lett. 375, 69-74.
- 20 Georget, V., Lobaccaro, J.M., Terouanne, B., Mangeat, P., Nicolas, J.C. & Sultan, C. (1997) Mol. Cell. Endocrinol. 129:1, 17-26.
 - Godson, C., Masliah, E., Balboa, M.A., Ellisman, M.H. & Insel, P.A. (1996) Biochem. Biophys. Acta 1313, 63-71.
 - Guiliano, K.A., DeBiasio, R, Dunlay, R.T., Gough, A., Volosky, J.M., Zock, J., Pavlakis,
- 25 G.N. & Taylor, D.L. (1997) J. Biomol. Screening 2:4, 249-259.
 - Khalil, R.A., Lajoie, C., Resnick, M.S. & Morgan, K.G. (1992) Am. J. Physiol. **263** (Cell Physiol. 32) C714-C719.
 - Oancea, E., Teruel, M.N., Quest, A.F.G. & Meyer, T. (1998) J. Cell Biol. **140**:3, 485-498. Sano, M., Kohno, M. & Iwanaga, M. (1995) Brain Res. **688**, 213-218.
- 30 Sakai, N., Sasaki, K., Hasegawa, C., Ohkura, M., Sumioka, K., Shirai, Y. & Saito, N. (1996) Soc. Neuroscience 22, 69P (Abstract).
 - Sakai, N., Sakai, K. Hasegawa, C.. Ohkura, M., Sumioka, K., Shirai, Y., & Naoaki, S. (1997) Japanese Journal of Pharmacology 73, 69P (Abstract of a meeting held 22-23 March).
- 35 Schmidt, D.J., Ikebe, M., Kitamura, K. & Fay, F.S. (1997) FASEB J. 11, 2924 (Abstract).

Schroeder, K. & Neagle, B.J. (1996) Biomolecular Screening 1, 75-80. Silverman, L., Campbell, R. & Broach, J.R. (1998) Current Opinion in Chemical Biology 2:3, 397-403.

Stauffer, T.P., Ahn, S. & Meyer, T. (1998) Current Biol. 8:6, 343-346.

CLAIMS

- A method for extracting quantitative information relating to an influence on a cellular response in mechanically intact or permeabilised living cells, the method comprising
 recording variation in spatially distributed light emitted from a luminophore, the luminophore being present in the cells and being capable of being redistributed in a manner which is related with the degree of the influence, and/or of being modulated by a component which is capable of being redistributed in a manner which is related to the degree of the influence, as a change in light intensity measured by an instrument
 designed for the measurement of changes in fluorescence intensity.
- A method according to claim 1, wherein the quantitative information which is indicative of the degree of the cellular response to the influence or the result of the influence on the subcellular component is extracted from the recorded variation according to a
 predetermined calibration based on responses or results, recorded in the same manner, to known degrees of a relevant specific influence.
- 3. A method according to claims 1 or 2, wherein the influence comprises contact between the mechanically intact or permeabilised living cells and a chemical substance and/or incubation of the mechanically intact or permeabilised living cells with a chemical substance
 - 4. A method according to any of claims 1-3, wherein the cells comprise a group of cells contained within a spatial limitation.
 - 5. A method according to any of claims 1-4, wherein the cells comprise multiple groups of cells contained within multiple spatial limitations.
- 25 6. A method according to any of claims 1-5, wherein the cells comprise multiple groups of cells that are qualitatively the same but are subjected to different influences.
 - 7. A method according to any of claims 1-5, wherein the cells comprise multiple groups of cells that are qualitatively different but are subjected to the same influence.
- 8. A method according to any of claims 1-7, wherein multiple spatial limitations are
 30 measured simultaneously by means of a one- or two-dimensional array detector,
 whereby the multiple spatial limitations are imaged onto the array detector such that

discrete subsets of the detecting units (pixels) in the array detector measure the signal from one and only one of the multiple spatial limitations, the signal from any one spatial limitation being the combined signal from those pixels that receive the image from one of the spatial limitations.

- 5 9. A method according to claim 8, wherein the detector is a linear diode array.
 - 10. A method according to claim 8, wherein the detector is a video camera.
 - 11. A method according to claim 8, wherein the detector is a charge transfer device.
 - 12. A method according to claim 8, wherein the charge transfer device is a charge-coupled device.
- 10 13. A method according to any of claims 1-12, wherein all of the multiple spatial limitations are simultaneously illuminated during the measurement operation.
 - 14. A method according to any of claims 1-12, wherein the individual spatial limitations are singly illuminated only during the time period in which they are being measured.
- 15. A method according to any of claims 1-14, wherein the illumination is provided by a laser which is scanned in a raster fashion over some or all of the spatial limitations being measured, the scanning taking place at a rate substantially faster than the measurement process such that the illumination appears to the measurement process to be continuous in time and spatially uniform over the region being measured.
- 16. A method according to any of claims 1-15, wherein the spatial limitations are spatial limitations arranged in one or more arrays on a common carrier.
 - 17. A method according to claim 16, wherein the spatial limitations are wells in a plate of microtiter type.
 - 18. A method according to any of claims 1-17, wherein the spatial limitations are domains defined on a substrate on which the cells are present.
- 25 19. A method according to claim 18, wherein the domains are domains established by the presence of the cells on the substrate in a pattern defining the domains.
 - 20. A method according to claim 18, wherein the domains are domains established by the spatial pattern of the influence as it is applied to or contacted with the cells.

- 21. A method according to any of claims 1-20, wherein the recording is performed at a series of points in time, in which the application of the influence occurs at some time after the first time point in the series of recordings, the recording being performed, e.g., with a predetermined time spacing of from 0.1 seconds to 1 hour, preferably from 1 to 60 seconds, more preferably from 1 to 30 seconds, in particular from 1 to 10 seconds, over a time span of from 1 second to 12 hours, such as from 10 seconds to 12 hours, e.g., from 10 seconds to one hour, such as from 60 seconds to 30 minutes or 20 minutes.
 - 22. A method according to claim 21, wherein the recording is made at two points in time, one point being before, and the other point being after the application of the influence.
- 10 23. A method according to any of claims 1-22, wherein the cells are fixed at a point in time after the application of the influence at which the response has been predetermined to be significant, and the recording is made at an arbitrary later time.
- 24. A method according to any of claims 1-23, wherein the redistribution results in quenching of fluorescence, the quenching being measured as a decrease in the intensity15 of the fluorescence.
 - 25. A method according to any of claims 1-24, wherein the redistribution results in energy transfer, the energy transfer being measured as a change in the intensity of the luminescence.
- 26. A method according to any of claims 1-24, wherein the illumination necessary to excite fluorescence is non-homogeneous such that the redistribution results in a greater or lesser number of fluorescent molecules being excited, the result being measured as a change in fluorescent intensity.
- 27. A method according to any of claims 1-24, wherein the intensity of the light being recorded is a function of the fluorescence lifetime, polarisation, wavelength shift, or other
 property which is modulated as a result of the underlying cellular response.
 - 28. A method according to any of claims 1-27, wherein the light to be measured passes through a filter which selects the desired component of the light to be measured and rejects other components.

WO 00/23615 PCT/DK99/00562 61

- 29. A method according to any of claims 1-28, wherein the flourescence comes from a fluorophore encoded by and expressed from a nucleotide sequence harboured in the cells.
- 30. A method according to any of claims 1-28, wherein the fluorescence comes from a
 5 fluorophore introduced into the cells by any or various techniques for the bulk loading of material into cells such as transfection, incubation, scrape loading, electroporation.
 - 31. A method according to any of the preceding claims, wherein the flourescence comes from a luminescent polypeptide, such as GFP.
- 32. A method according to any of claims 1-31, wherein the cells are selected from the group consisting of fungal cells, such as yeast cells; invertebrate cells including insect cells; and vertebrate cells, such as mammalian cells.
- 33. A method according to claim 32, wherein the mechanically intact or permeabilised living cells are mammalian cells which, during the time period over which the influence is observed, are incubated at a temperature of 30°C or above, preferably at a temperature of from 32°C to 39°C, more preferably at a temperature of from 35°C to 38°C, and most preferably at a temperature of about 37°C.
- 34. A method according to any of the preceding claims, wherein the nucleic acid construct is a DNA construct with a sequence selected from the group consisting of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15 and 17 or is a variant thereof capable of encoding the same fusion polypeptide or a fusion polypeptide which is biologically equivalent thereto.
 - 35. A method according to any of claims 1-34, used as a screening program.
- 36. A method according claim 35, wherein the method is a screening program for the identification of a biologically active substance that directly or indirectly affects an intracellular signalling pathway and is potentially useful as a medicament, wherein the result of the individual measurement of each substance being screened which indicates its potential biological activity is based on measurement of the redistribution of spatially resolved luminescence in living cells and which undergoes a change in distribution upon activation of an intracellular signalling pathway.
- 37. A method according to claim 35, wherein the method is a screening program for the identification of a biologically toxic substance as defined herein that exerts its toxic effect

WO 00/23615 PCT/DK99/00562 62

by interfering with an intracellular signalling pathway, wherein the result of the individual measurement of each substance being screened which indicates its potential biologically toxic activity is based on measurement of the redistribution of said fluorescent probe in living cells and which undergoes a change in distribution upon activation of an intracellular signalling pathway.

- 38. A method according to any of claims 1-37 wherein a fluorescent probe is used in back-tracking of signal transduction pathways as defined herein.
- 39. A set of data relating to an influence on a cellular response in mechanically intact or permeabilised living cells, obtained by recording variation in spatially distributed light
 10 emitted from a luminophore, the luminophore being present in the cells and being capable of being redistributed in a manner which is related with the degree of the influence, and/or of being modulated by a component which is capable of being redistributed in a manner which is related to the degree of the influence, as a change in light intensity measured by an instrument designed for the measurement of changes in fluorescence intensity.

WO 00/23615 PCT/DK99/00562

Figure 1

1/18

Fig. 1 a

Fig. 1 b

Fig. 1 c

Fig. 1 d

Fig. 1

Fig. 2

Fig. 3 A

Fig. 3 C

Fig. 3 E

Fig. 3 G

Fig. 3 B

Fig. 3 D

Fig. 3 F

Fig. 3 H

Fig. 3
SUBSTITUTE SHEET (RULE 26)

Fig. 4
SUBSTITUTE SHEET (RULE 26)

5/18

[forskolin]µM	$t_{1/2\text{max}}/s$	$t_{\rm max}/s$
1	115±21	310±31
10	69±14	224±47
50	47±10	125±28

Fig. 5

Fig. 6

Fig. 7 a

Fig. 7 b

Fig. 7 c

Fig. 7
SUBSTITUTE SHEET (RULE 26)

Fig. 8

Fig. 9 a

Fig. 9 b

Fig. 9 c

Fig. 9 d

Fig. 9 SUBSTITUTE SHEET (RULE 26)

10/18

Fig. 10 a

Fig. 10 b

Fig. 10 c

Fig. 10 SUBSTITUTE SHEET (RULE 26)

Fig. 11 substitute sheet (Rule 26)

WO 00/23615 PCT/DK99/00562

12/18

Fig. 12

Fig. 13

Fig. 14

15/18

Fig. 15
SUBSTITUTE SHEET (RULE 26)

Fig. 16
SUBSTITUTE SHEET (RULE 26)

cPKA BioST Forskolin dose-response on FLIPR (n=6).

Fig. 17

SUBSTITUTE SHEET (RULE 26)

Fig. 18

SUBSTITUTE SHEET (RULE 26)

1

SEQUENCE LISTING

<110> BioImage A/S

<120> AN IMPROVED METHOD FOR EXTRACTING QUANTITATIVE INFORMATION RELATING TO AN INFLUENCE ON A CELLULAR RESPONSE.

<130> 22129PC1

<160> 18

<170> FastSEQ for Windows Version 3.0

<210> 1

<211> 1788

<212> DNA

<213> Aequorea victoria and mouse

<220>

<221> CDS

<222> (1)...(1788)

<400> 1

atg ggc aac gcc gcc gcc aag aag ggc agc gag cag gag agc gtg 48
Met Gly Asn Ala Ala Ala Lys Lys Gly Ser Glu Gln Glu Ser Val

1 5 10 15

aaa gag ttc cta gcc aaa gcc aag gaa gat ttc ctg aaa aaa tgg gaa 96
Lys Glu Phe Leu Ala Lys Ala Lys Glu Asp Phe Leu Lys Lys Trp Glu
20 25 30

gac ccc tct cag aat aca gcc cag ttg gat cag ttt gat aga atc aag 144
Asp Pro Ser Gln Asn Thr Ala Gln Leu Asp Gln Phe Asp Arg Ile Lys
35 40 45

acc ctt ggc acc ggc tcc ttt ggg cga gtg atg ctg gtg aag cac aag

Thr Leu Gly Thr Gly Ser Phe Gly Arg Val Met Leu Val Lys His Lys

50

55

60

_	-					gcc Ala					_	_	-	_		240
	_		_	-		gag Glu			_			_	_		•	288
		_			_	ttc Phe	_	-			_				,	336
						atg Met			_		_	_				384
						cgg Arg 135					_				-	432
						atc Ile										480
						gac Asp				-						528
						gtg Val						_	-	_		576
						ttg Leu							_	_		624
			_			ggc Gly 215				-		-			-	672

								ttc Phe		720
						_		aag Lys 255		768
							-	cgg Arg		816
								gac Asp		864
			_		-	-	_	tgg Trp		912
								ttt Phe		960
							 -	gag Glu 335		1008
								ttt Phe		1056
								cca Pro		1104
								gtt Val	_	1152

					_		tac Tyr							1200
				_			gtt Val				_	-		1248
							ttt Phe 425							1296
							gcc Ala							1344
-	_					-	gac Asp				-	-	,	1392
			_		_		ctt Leu	_		_				1440
							aac Asn						-	1488
	•						tac Tyr 505		_	_	_		-	1536
			-				att	-				•		1584
				_			caa Gln						_	1632

ggc	cct	gtc	ctt	tta	сса	gac	aac	cat	tac	ctg	tcc	acg	caa	tct	gcc	1680
Gly	Pro	Val	Leu	Leu	Pro	Asp	Asn	His	Tyr	Leu	Sèr	Thr	Gln	Ser	Ala	
545					550					555			•		560	
ctt	tcc	aaa	gat	ccc	aac	gaa	aag	aga	gat	cac	atg	atc	ctt	ctt	gag	1728
Leu	Ser	Lys	Asp	Pro	Asn	Glu	Lys	Arg	Asp	His	Met	Ile	Leu	Leu	Glu	
				565					570					575		
ttt	gta	aca	gct	gct	ggg	att	aca	cat	ggc	atg	gat	gaa	cta	tac	aaa	1776
Phe	Val	Thr	Ala	Ala	Gly	Ile	Thr	His	Gly	Met	Asp	Glu	Leu	Tyr	Lys	
			580					585					590			
cct	cag	gag	taa													1788
Pro	Gln	Glu	*													
		595														
	<:	210>	2													
	<:	211>	595													
	<:	212>	PRT													
	<:	213>	Aequ	orea	a vio	ctor	ia ar	nd mo	ouse							
	<	400>	2													
Met	~ 1		_													
	GTA	Asn		Ala	Ala	Ala	Lys	Lys	Gly	Ser	Glu	Gln	Glu	Ser	Val	
1	GTA	Asn		Ala 5	Ala	Ala	Lys	Lys	Gly 10	Ser	Glu	Gln	Glu	Ser 15	Val	
			Ala	5	Ala				10					15		
			Ala	5					10					15		
Lys	Glu	Phe	Ala Leu 20	5 Ala		Ala	Lys	Glu 25	10 Asp	Phe	Leu	Lys	Lys 30	15 Trp	Glu	
Lys	Glu	Phe	Ala Leu 20	5 Ala	Lys	Ala	Lys	Glu 25	10 Asp	Phe	Leu	Lys	Lys 30	15 Trp	Glu	
Lys Asp	Glu	Phe Ser 35	Ala Leu 20 Gln	5 Ala Asn	Lys	Ala Ala	Lys Gln 40	Glu 25 Leu	10 Asp Asp	Phe Gln	Leu Phe	Lys Asp 45	Lys 30 Arg	15 Trp Ile	Glu Lys	
Lys Asp	Glu	Phe Ser 35	Ala Leu 20 Gln	5 Ala Asn	Lys Thr	Ala Ala	Lys Gln 40	Glu 25 Leu	10 Asp Asp	Phe Gln	Leu Phe	Lys Asp 45	Lys 30 Arg	15 Trp Ile	Glu Lys	
Lys Asp Thr	Glu Pro Leu 50	Phe Ser 35 Gly	Ala Leu 20 Gln Thr	5 Ala Asn Gly	Lys Thr	Ala Ala Phe 55	Lys Gln 40 Gly	Glu 25 Leu Arg	10 Asp Asp Val	Phe Gln Met	Leu Phe Leu 60	Lys Asp 45 Val	Lys 30 Arg Lys	15 Trp Ile	Glu Lys Lys	
Lys Asp Thr	Glu Pro Leu 50	Phe Ser 35 Gly	Ala Leu 20 Gln Thr	5 Ala Asn Gly	Lys Thr Ser	Ala Ala Phe 55	Lys Gln 40 Gly	Glu 25 Leu Arg	10 Asp Asp Val	Phe Gln Met	Leu Phe Leu 60	Lys Asp 45 Val	Lys 30 Arg Lys	15 Trp Ile	Glu Lys Lys	
Lys Asp Thr Glu 65	Glu Pro Leu 50 Ser	Phe Ser 35 Gly	Ala Leu 20 Gln Thr	5 Ala Asn Gly	Lys Thr Ser	Ala Ala Phe 55 Ala	Lys Gln 40 Gly Met	Glu 25 Leu Arg	10 Asp Asp Val	Phe Gln Met Leu 75	Leu Phe Leu 60 Asp	Lys Asp 45 Val	Lys 30 Arg Lys Gln	15 Trp Ile His	Glu Lys Lys Val 80	
Lys Asp Thr Glu 65	Glu Pro Leu 50 Ser	Phe Ser 35 Gly	Ala Leu 20 Gln Thr	5 Ala Asn Gly	Lys Thr Ser Tyr 70	Ala Ala Phe 55 Ala	Lys Gln 40 Gly Met	Glu 25 Leu Arg	10 Asp Asp Val	Phe Gln Met Leu 75	Leu Phe Leu 60 Asp	Lys Asp 45 Val	Lys 30 Arg Lys Gln	15 Trp Ile His	Glu Lys Lys Val 80	
Lys Asp Thr Glu 65 Val	Glu Pro Leu 50 Ser	Phe Ser 35 Gly Gly Leu	Ala Leu 20 Gln Thr Asn	5 Ala Asn Gly His Gln 85	Lys Thr Ser Tyr 70	Ala Ala Phe 55 Ala Glu	Lys Gln 40 Gly Met	Glu 25 Leu Arg Lys	10 Asp Asp Val Ile Leu 90	Phe Gln Met Leu 75 Asn	Leu Phe Leu 60 Asp	Lys Asp 45 Val Lys	Lys 30 Arg Lys Gln	15 Trp Ile His Lys Ile 95	Glu Lys Lys Val 80 Leu	
Lys Asp Thr Glu 65 Val	Glu Pro Leu 50 Ser	Phe Ser 35 Gly Gly Leu	Ala Leu 20 Gln Thr Asn	5 Ala Asn Gly His Gln 85	Lys Thr Ser Tyr 70 Ile	Ala Ala Phe 55 Ala Glu	Lys Gln 40 Gly Met	Glu 25 Leu Arg Lys	10 Asp Val Ile Leu 90 Lys	Phe Gln Met Leu 75 Asn	Leu Phe Leu 60 Asp	Lys Asp 45 Val Lys	Lys 30 Arg Lys Gln	15 Trp Ile His Lys Ile 95	Glu Lys Lys Val 80 Leu	
Lys Asp Thr Glu 65 Val	Glu Pro Leu 50 Ser Lys	Phe Ser 35 Gly Gly Leu Val	Ala Leu 20 Gln Thr Asn Lys Asn 100	5 Ala Asn Gly His Gln 85 Phe	Lys Thr Ser Tyr 70 Ile	Ala Ala Phe 55 Ala Glu Phe	Lys Gln 40 Gly Met His	Glu 25 Leu Arg Lys Thr	Asp Val Ile Leu 90 Lys	Phe Gln Met Leu 75 Asn	Leu Phe Leu 60 Asp Glu Glu	Lys Asp 45 Val Lys Phe	Lys 30 Arg Lys Gln Arg Ser 110	15 Trp Ile His Lys Ile 95 Phe	Glu Lys Lys Val 80 Leu	
Lys Asp Thr Glu 65 Val	Glu Pro Leu 50 Ser Lys	Phe Ser 35 Gly Gly Leu Val	Ala Leu 20 Gln Thr Asn Lys Asn 100	5 Ala Asn Gly His Gln 85 Phe	Lys Thr Ser Tyr 70 Ile	Ala Ala Phe 55 Ala Glu Phe	Lys Gln 40 Gly Met His	Glu 25 Leu Arg Lys Thr Val 105 Met	Asp Val Ile Leu 90 Lys	Phe Gln Met Leu 75 Asn	Leu Phe Leu 60 Asp Glu Glu	Lys Asp 45 Val Lys Phe	Lys 30 Arg Lys Gln Arg Ser 110 Gly	15 Trp Ile His Lys Ile 95 Phe	Glu Lys Lys Val 80 Leu Lys	

Met	Phe 130	Ser	His	Leu	Arg	Arg	Ile	Gly	Arg	Phe	Ser 140	Glu	Pro	His	Ala
_					~ 1			_				_	_		_
Arg 145	Pne	Tyr	Ala	Ala	150	lle	Val	Leu	Thr	Phe 155	GIu	Tyr	Leu	His	Ser
Leu	Asp	Leu	Ile	Tyr	Arg	Asp	Leu	Lys	Pro	Glu	Asn	Leu	Leu	Ile	Asp
				165					170					175	
Gln	Gln	Gly	Tyr	Ile	Gln	Val	Thr	Asp	Phe	Gly	Phe	Ala	Lys	Arg	Val
			180					185					190		
Lys	Gly	Arg	Thr	Trp	Thr	Leu	Cys	Gly	Thr	Pro	Glu	Tyr	Leu	Ala	Pro
		195					200					205			
Glu	Ile	Ile	Leu	Ser	Lys	Gly	Tyr	Asn	Lys	Ala	Val	Asp	Trp	Trp	Ala
	210					215					220				
Leu	Gly	Val	Leu	Ile	Tyr	Glu	Met	Ala	Ala	Gly	Tyr	Pro	Pro	Phe	Phe
225					230					235					240
Ala	Asp	Gln	Pro	Ile	Gln	Ile	Tyr	Glu	Lys	Ile	Val	Ser	Gly	Lys	Val
				245		٠			250					255	
Arg	Phe	Pro	Ser	His	Phe	Ser	Ser	Asp	Leu	Lys	Asp	Leu	Leu	Arg	Asn
			260					265					270		
Leu	Leu	Gln	Val	Asp	Leu	Thr	Lys	Arg	Phe	Gly	Asn	Leu	Lys	Asp	Gly
		275					280					285			
Val	Asn	Asp	Ile	Lys	Asn	His	Lys	Trp	Phe	Ala	Thr	Thr	Asp	Trp	Ile
	290					295					300				
Ala	Ile	Tyr	Gln	Arg	Lys	Val	Glu	Ala	Pro	Phe	Ile	Pro	Lys	Phe	Lys
305					310					315					320
Gly	Pro	Gly	Asp	Thr	Ser	Asn	Phe	Asp	Asp	Tyr	Glu	Glu	Glu	Glu	Ile
				325					330					335	
Arg	Val	Ser	Ile	Asn	Glu	Lys	Суѕ	Gly	Lys	Glu	Phe	Thr	Glu	Phe	Gly
			340					345					350		
Arg	Ala		Ser	Lys	Gly	Glu	Glu	Leu	Phe	Thr	Gly	Val	Val	Pro	Ile
	•	355					360					365			
Leu		Glu	Leu	Asp	Gly		Val	Asn	Gly	Gln	Lys	Phe	Ser	Val	Ser
	370					375					380				
	Glu	Gly	Glu	Gly		Ala	Thr	Tyr	Gly	Lys	Leu	Thr	Leu	Lys	Ph∈
385					390					395					400
Ile	Cys	Thr	Thr	-	Lys	Leu	Pro	Val	Pro	Trp	Pro	Thr	Leu	Val	Thr
				405					410			-		415	
Thr	Leu	Thr		Gly	Val	Gln	Cys	Phe	Ser	Arg	Tyr	Pro	_	His	Met
_			420					425					430		
Lys	Gln		Asp	Phe	Phe	Lys		Ala	Met	Pro	Glu	_	Tyr	Val	Glr
		435					440	•				445			

Glu	Arg 450	Thr	Ile	Phe	Tyr	Lys 455	Asp	Asp	Gly	Asn	Tyr 460	Lys	Thr	Arg	Ala	
Glu		Lvs	Phe	Glu	Glv	Asp	Thr	T.e.u	Val	Δen		Tla	Glu	T.A.II	T.ve	
465	,	2,0		OI u	470	7100	1111	БСС	vai	475	nrg	116		пец	480	
Gly	Ile	Asp	Phe	Lys	Glu	Asp	Gly	Asn	Ile	Leu	Gly	His	Lys	Met	Glu	
				485					490					495		
Tyr	Asn	Tyr	Asn	Ser	His	Asn	Val	Tyr	Ile	Met	Ala	Asp	Lys	Pro	Lys	
			500					505					510			
Asn	Gly	Ile	Lys	Val	Asn	Phe	Lys	Ile	Arg	His	Asn	Ile	Lys	Asp	Gly	
		515					520					525				
Ser	Val	Gln	Leu	Ala	Asp	His	Tyr	Gln	Gln	Asn	Thr	Pro	Ile	Gly	Asp	
	530					535					540					
Gly	Pro	Val	Leu	Leu	Pro	Asp	Asn	His	Tyr	Leu	Ser	Thr	Gln	Ser	Ala	
545					550					555					560	
Leu	Ser	Lys	Asp	Pro	Asn	Glu	Lys	Arg	Asp	His	Met	Ile	Leu	Leu	Glu	
				565					570					575		
Phe	Val	Thr	Ala	Ala	Gly	Ile	Thr	His	Gly	Met	Asp	Glu	Leu	Tyr	Lys	
			580					585					590			
Pro	Gln	Glu														
		595														
	<2	210>	3													
	<2	211>	275	1												
	<2	212>	DNA													
	<2	213>	Aequ	orea	a vio	ctor	ia ar	nd ma	ouse							
-	<2	220>														
	<2	221>	CDS													
	<2	222>	(1)	(2	2751)										
	< 4	400>	3													
atg	gct	gac	gtt	tac	cċg	gcc	aac	gac	tcc	acg	gcg	tct	cag	gac	gtg	48
Met	Ala	Asp	Val	Tyr	Pro	Ala	Asn	Asp	Ser	Thr	Ala	Ser	Gln	Asp	Val	
1				5					10					15		
gcc	aac	cgc	ttc	gcc	cgc	aaa	ggg	gcg	ctg	agg	cag	aag	aac	gtg	cat	96
Ala	Asn	Arg	Phe	Ala	Arg	Lys	Gly	Ala	Leu	Arg	Gln	Lys	Asn	Val	His	
			20					25					30			
gag	ata	222	~ ~ ~	C 2 C	222	++~	2+0	~~~	~~~	++-	++~	220		~~~	200	1//

WO 00/23615

Glu	Val	Lys 35	Asp	His	Lys	Phe	Ile 40	Ala	Arg	Phe	Phe	Lys 45	Gln	Pro	Thr	
ttc	tgc	agc	cac	tgc	acc	gac	ttc	atc	tgg	ggg	ttt	ggg	aaa	caa	ggc	192
Phe	Cys	Ser	His	Cys	Thr	Asp	Phe	Ile	Trp	Gly	Phe	Gly	Lys	Gln	Gly	
	50					55					60					
			•													
ttc	cag	tgc	caa	gtt	tgc	tgt	ttt	gtg	gtt	cat	aag	agg	tgc	cat	gag	240
	Gln	Cys	Gln	Val	Cys	Суѕ	Phe	Val	Val	His	Lys	Arg	Cys	His	Glu	
65					70					75					80	
	- 1 1											,				000
						ccg										288
Pne	vai	Thr	Pne	Ser 85	Cys	Pro	GIÀ	Ата	90	гÀг	стА	Pro	Asp	95	Asp	
				0.5					90					90		
gac	ccc	agg	agc	aaq	cac	aag	ttc	aaa	atc	cac	aca	tac	gga	agc	cct	336
						Lys										
•			100	2		4		105				_	110			
acc	ttc	tgt	gat	cac	tgt	ggg	tcc	ctg	ctc	tat	gga	ctt	atc	cac	caa	384
Thr	Phe	Cys	Asp	His	Cys	Gly	Ser	Leu	Leu	Tyr	Gly	Leu	Ile	His	Gln	
		115					120					125				
ggg	atg	aaa	tgt	gac	acc	tgc	gac	atg	aat	gtt	cac	aac	cag	tgt	gtg	432
Gly	Met	Lys	Cys	Asp	Thr	Cys	Asp	Met	Asn	Val	His	Asn	Gln	Cys	Val	
	130					135					140					
				-		tgc		_	_				_			480
	Asn	Asp	Pro	Ser		Cys	Gly	Met	Asp		Thr	Glu	Lys	Arg	Gly	
145					150					155					160	
									+							. 20
						gag					_			_	-	528
Arg	ire	ryr	Leu		Ala	Glu	vaı	THE		GIU	rys	Leu	HIS		Inr	
				165					170					175		
ata	caa	gat	aca	222	aat	cta	atc	cct	ato	gat	CC2	aat	aaa	c++	tca	576
						Leu										570
	9		180	Lys	11011		-10	185	1100	, rob	110	21011	190	Leu	501	
			_50					_00								
gat	cct	tat	gtg	aag	ctg	aaa	cta	atc	cct	gac	ccc	aag	aat	gag	agc	624

WO 00/23615

Asp	Pro	_	Val	Lys	Leu	Lys		Ile	Pro	Asp	Pro	_	Asn	Glu	Ser	
		195					200					205				
aaa	cag	aaa	acc	aaa	acc	atc	cgc	tcc	aac	ctg	aat	cct	cag	tgg	aat	672
Lys	Gln	Lys	Thr	Lys	Thr	Ile	Arg	Ser	Asn	Leu	Asn	Pro	Gln	Trp	Asn	
	210					215					220					
gag	tec	ttc	acg	ttc	aaa	tta	aaa	cct	tica	дас	aaa	gac	caa	cga	cta	720
			Thr													•
225	501	1110	****	1110	230	ыси	шуб	110	001	235	Lys	nop.	1119	1119	240	
223					230					233					240	
tct	gta	gaa	atc	tgg	gac	tgg	gat	cgg	acg	act	cgg	aat	gac	ttc	atg	768
Ser	Val	Glu	Ile	Trp	Asp	Trp	Asp	Arg	Thr	Thr	Arg	Asn	Asp	Phe	Met	
				245					250					255		
gga	tcc	ctt	tcc	ttt	ggt	gtc	tca	gag	cta	atg	aaq	atg	ccq	qcc	agt	816
			Ser			_				_	_	_	_	-		
-			260		_			265			-		270			
gga	tgg	tat	aaa	gct	cac	aac	caa	gaa	gag	ggc	gaa	tat	tac	aac	gtg	864
Gly	Trp	Tyr	Lys	Ala	His	Asn	Gln	Glu	Glu	Gly	Glu	Tyr	Tyr	Asn	Val	
		275					280					285				
										_ 4						912
			gaa		_	-	_			_	_					912
Pro		Pro	Glu	GIÀ	Asp		GIU	стХ	Asn	мет		Leu	Arg	GIN	ьys	
	290					295					300					
ttt	gag	aaa	gcc	aag	cta	ggt	cct	gtt	ggt	aac	aaa	gtc	atc	agc	cct	960
Phe	Glu	Lys	Ala	Lys	Leu	Gly	Pro	Val	Gly	Asn	Lys	Val	Ile	Ser	Pro	
305					310					315					320	
tca	gaa	gac	aga	aag	caa	cca	tcc	aac	aac	ctg	gac	aga	gtg	aaa	ctc	1008
Ser	Glu	Asp	Arg	Lys	Gln	Pro	Ser	Asn	Asn	Leu	Asp	Arg	Val	Lys	Leu	
				325					330					335		
	-		aac			_		_		_		_				1056
Thr	Asp	Phe	Asn	Phe	Leu	Met	Val	Leu	Gly	Lys	Gly	Ser	Phe	Gly	Lys	
			340					345					350			
gtg	atg	ctt	gct	gac	agg	aag	gga	acg	gag	gaa	ctg	tac	gcc	atc	aag	1104

Val	Met	Leu	Ala	Asp	Arg	Lys	Gly	Thr	Glu	Glu	Leu	Tyr	Ala	Ile	Lys	
		355					360					365				
											•					
atc	ctg	aag	aag	gac	gtg	gtg	atc	cag	gac	gac	gac	gtg	gag	tgc	acc	1152
Ile	Leu	Lys	Lys	Asp	Val	Val	Ile	Gln	Asp	Asp	Asp	Val	Glu	Cys	Thr	
	370					375					380					
atg	gtg	gag	aag	cgc	gtg	ctg	gcc	ctg	ctg	gac	aag	ccg	сса	ttt	ctg	1200
Met	Val	Glu	Lys	Arg	Val	Leu	Ala	Leu	Leu	Asp	Lys	Pro	Pro	Phe	Leu	
385			_	_	390					395	-				400	
aca	cad	cta	cac	tcc	tac	ttc	cag	aca	gtg	aac	caa	cta	tac	ttc	atc	1248
					-		-		Val			_			_	12.10
1111	OI.	БСС	11.1.5	405	Cys	LIIC	0111	1111	410	Азр	ALG	пеа	1 9 1	415	V 0.1	
				403					410					413		
								_+.								1206
_	_		-				-		atg				_		-	1296
Met	Glu	Tyr		Asn	GLY	GTA	Asp		Met	Tyr	His	Ile		Gin	Val	
			420					425					430			
ggg	aaa	ttt	aag	gag	cca	caa	gca	gta	ttc	tac	gca	gcc	gag	atc	tcc	1344
Gly	Lys	Phe	Lys	Glu	Pro	Gln	Ala	Val	Phe	Tyr	Ala	Ala	Glu	Ile	Ser	
		435					440					445				
atc	gga	ctg	ttc	ttc	ctt	cat	aaa	aga	ggg	atc	att	tac	agg	gat	ctg	1392
Ile	Gly	Leu	Phe	Phe	Leu	His	Lys	Arg	Gly	Ile	Ile	Tyr	Arg	Asp	Leu	
	450					455					460					
										•						
aag	ctg	aac	aat	gtc	atg	ctg	aac	tca	gaa	ggg	cac	atc	aaa	atc	gcc	1440
									Glu							
465					470					475			_		480	•
gac	ttc	aaa	ato	tac	aad	gaa	cac	ato	atg	gat	aaa	atc	aca	acc	agg	1488
									Met							2100
пор	1110	Cry	1100	485	цуо	Olu		1100	490	тър	GLY	Vai	1111	495	1119	
				400					490					433		
																7526
									gcc							1536
Thr	Phe	Cys	_	Thr	Pro	Asp	Tyr		Ala	Pro	GLu	Пе		Ala	Tyr	
			500					505					510			
cag	ccg	tac	ggg	aag	tct	gta	gat	tgg	tgg	gcg	tac	ggt	gtg	ctg	ctg	1584

11

Gln	Pro	Tyr 515	Gly	Lys	Ser	Val	Asp 520	Trp	Trp	Ala	Tyr	Gly 525	Val	Leu	Leu	
tac	gag	atg	cta	gcc	ggg	cag	cct	ccg	ttt	gat	ggt	gaa	gat	gaa	gat	1632
Tyr	Glu	Met	Leu	Ala	Gly	Gln	Pro	Pro	Phe	Asp	Gly	Glu	Asp	Glu	Asp	
	530					535					540					
gaa	ctg	ttt	cag	tct	ata	atg	gag	cac	aac	gtg	tcc	tac	ccc	aaa	tcc	1680
Glu	Leu	Phe	Gln	Ser	Ile	Met	Glu	His	Asn	Val	Ser	Tyr	Pro	Lys	Ser	
545					550					555					560	
					gtc			-				_			_	1728
Leu	Ser	Lys	Glu		Val	Ser	Ile	Cys	_	Gly	Leu	Met	Thr	_	Gln	
				565					570					575		
cct	gcc	aag	cga	ctg	ggc	tgc	ggg	ccc	gag	gga	gag	agg	gat	gtc	aga	1776
Pro	Ala	Lys	Arg	Leu	Gly	Cys	Gly	Pro	Glu	Gly	Glu	Arg	Asp	Val	Arg	
			580					585					590			
gag	cat	gcc	ttc	ttc	agg	agg	atc	gac	tgg	gag	aaa	ctg	gag	aac	agg	1824
Glu	His	Ala	Phe	Phe	Arg	Arg	Ile	Asp	Trp	Glu	Lys	Leu	Glu	Asn	Arg	
		5 95					600					605				
					ttc											1872
Glu		Gln	Pro	Pro	Phe	_	Pro	Lys	Val	Cys	_	Lys	Gly	Ala	Glu	
	610					615					620					
aac	+++	aac	220	ttc	ttc	3.C.C.	caa	aa s	Cad	cct	atc	++=	202	CCa	CCa	1920
					Phe											1320
625			270	20	630		*** 9	Cly	0111	635	• • •	2500	****	110	640	•
	•									000					0.10	
gat	cag	ctg	gtc	att	gct	aac	ata	gac	caa	tct	gat	ttt	gaa	ggg	ttc	1968
Asp	Gln	Leu	Val	Ile	Ala	Asn	Ile	Asp	Gln	Ser	Asp	Phe	Glu	Gly	Phe	
				645					650					655		
tcg	tat	gtc	aac	ccc	cag	ttt	gtg	cac	сса	atc	ttg	caa	agt	gca	gta	2016
Ser	Tyr	Val	Asn	Pro	Gln	Phe	Val	His	Pro	Ile	Leu	Gln	Ser	Ala	Val	
			660					665					670			
ggg	cgc	gcc	atg	agt	aaa	gga	gaa	gaa	ctt	ttc	act	gga	gtt	gtc	cca	2064

Gly Arg Ala Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro 675 680 685

12

att ctt gtt gaa tta gat ggc gat gtt aat ggg caa aaa ttc tct gtt

Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly Gln Lys Phe Ser Val
690 695 700

agt gga gag ggt gaa ggt gat gca aca tac gga aaa ctt acc ctt aaa 2160

Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys
705 710 715 720

ttt att tgc act act ggg aag cta cct gtt cca tgg cca acg ctt gtc 2208
Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val
725 730 735

act act ctc act tat ggt gtt caa tgc ttt tct aga tac cca gat cat 2256

Thr Thr Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His

740 745 750

atg aaa cag cat gac ttt ttc aag agt gcc atg ccc gaa ggt tat gta 2304

Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val

755 760 765

cag gaa aga act ata ttt tac aaa gat gac ggg aac tac aag aca cgt 2352
Gln Glu Arg Thr Ile Phe Tyr Lys Asp Asp Gly Asn Tyr Lys Thr Arg
770 780

gct gaa gtc aag ttt gaa ggt gat acc ctt gtt aat aga atc gag tta 2400 Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu 785 790 795 800

aaa ggt att gat ttt aaa gaa gat gga aac att ctt gga cac aaa atg 2448 Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Met 805 810 815

gaa tac aat tat aac tca cat aat gta tac atc atg gca gac aaa cca 2496 Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Pro 820 825 830

aag aat ggc atc aaa gtt aac ttc aaa att aga cac aac att aaa gat 2544

Lys	Asn	Gly 835	Ile	Lys	Val	Asn	Phe 840	Lys	Ile	Arg	His	Asn 845	Ile	Lys	Asp	
gga	agc	gtt	caa	tta	gca	gac	cat	tat	caa	caa	aat	act	cċa	att	ggc	2592
Gly		Val	Gln	Leu	Ala	_	His	Tyr	Gln	Gln		Thr	Pro	Ile	Gly	
	850					855					860					
gat	ggc	cct	gtc	ctt	tta	cca	gac	aac	cat	tac	ctg	tcc	acg	caa	tct	2640
Asp	Gly	Pro	Val	Leu	Leu	Pro	Asp	Asn	His	Tyr	Leu	Ser	Thr	Gln	Ser	
865					870					875					880	
gcc	ctt	tcc	aaa	gat	ccc	aac	gaa	aag	aga	gat	cac	atg	atc	ctt	ctt	2688
Ala	Leu	Ser	Lys	_	Pro	Asn	Glu	Lys	-	Asp	His	Met	Ile		Leu	
				885					890					895		
gag	+++	gta	aca	act	act	aaa	att	aca	cat	aac	atq	gat	gaa	cta	tac	2736
		Val									_	_	_			2.00
			900			-		905		•		•	910		-	
aaa	cct	cag	gag	taa												2751
Lys	Pro	Gln	Glu	*												
		915														
	<2	210>	4													
		211>														
	<2	212>	PRT													
	<2	213>	Aequ	orea	a vi	ctor	ia aı	nd m	ouse							
	•	400>		_	_			_	_					_		
_	Ala	Asp	Val		Pro	Ala	Asn	Asp		Thr	Ala	Ser	Gln		Val	
l Ala	Δsn	Arg	Phe	5 21a	Δrα	Lus	Glv	Δla	10 Leu	Δrα	Gln	T.ve	Δen	15 Val	Hic	
1120	11511	111.9	20	nια	m g	цуз	Ory	25	БСС	my	0111	БУЗ	30	Vai	1113	
Glu	Val	Lys	Asp	His	Lys	Phe	Ile		Arg	Phe	Phe	Lys		Pro	Thr	
		35	-		_		40		-			45				
Phe	Cys	Ser	His	Cys	Thr	Asp	Phe	Ile	Trp	Gly	Phe	Gly	Lys	Gln	Gly	
	50					55					60					
	Gln	Cys	Gln	Val		Cys	Phe	Val	Val	His	Lys	Arg	Cys	His		
65					70			•		75					80	

Phe	Val	Thr	Phe	Ser 85	Cys	Pro	Gly	Ala	Asp 90	Lys	Gly	Pro	Asp	Thr 95	Asp
Asp	Pro	Arg	Ser	Lys	His	Lys	Phe	Lys 105	Ile	His	Thr	Tyr	Gly 110	Ser	Pro
Thr	Phe	Cys 115		His	Cys	Gly	Ser 120		Leu	Tyr	Gly	Leu 125		His	Gln
Gly	Met	Lys	Cys	Asp	Thr	Cys	Asp	Met	Asn	Val	His	Asn	Gln	Cys	Val
Ile 145	Asn	Asp	Pro	Ser	Leu 150	Cys	Gly	Met	Asp	His	Thr	Glu	Lys	Arg	Gly
	Ile	Tyr	Leu	Lys 165		Glu	Val	Thr	Asp 170		Lys	Leu	His	Val 175	
Val	Arg	Asp	Ala 180		Asn	Leu	Ile	Pro 185		Asp	Pro	Asn	Gly 190		Ser
Asp	Pro	Tyr 195	Val	Lys	Leu	Lys	Leu 200	Ile	Pro	Asp	Pro	Lys 205	Asn	Glu	Ser
Lys	Gln 210	Lys	Thr	Lys	Thr	Ile 215	Arg	Ser	Asn	Leu	Asn 220	Pro	Gln	Trp	Asn
Glu 225	Ser	Phe	Thr	Phe	Lys 230	Leu	Lys	Pro	Ser	Asp 235	Lys	Asp	Arg	Arg	Leu 240
Ser	Val	Glu	Ile	Trp 245	Asp	Trp	Asp	Arg	Thr 250	Thr	Arg	Asn	Asp	Phe 255	Met
Gly	Ser	Leu	Ser 260	Phe	Gly	Val	Ser	Glu 265	Leu	Met	Lys	Met	Pro 270	Ala	Ser
Gly	Trp	Tyr 275	Lys	Ala	His	Asn	Gln 280	Glu	Glu	Gly	Glu	Tyr 285	Tyr	Asn	Val
Pro	Ile 290	Pro	Glu	Gly	Asp	Glu 295	Glu	Gly	Asn	Met	Glu 300	Leu	Arg	Gln	Lys
Phe 305	Glu	Lys	Ala	Lys	Leu 310	Gly	Pro	Val	Gly	Asn 315	Lys	Val	Ile	Ser	Pro 320
Ser	Glu	Asp	Arg	Lys 325	Gln	Pro	Ser	Asn	Asn 330	Leu	Asp	Arg	Val	Lys 335	Let
Thr	Asp	Phe	Asn 340	Phe	Leu	Met	Val	Lėu 345	Gly	Lys	Gly	Ser	Phe 350	Gly	Lys
Val	Met	Leu 355	Ala	Asp	Arg	Lys	Gly 360	Thr	Glu	Glu	Leu	Tyr 365	Ala	Ile	Lys
Ile	Leu 370	Lys	Lys	Asp	Val	Val 375	Ile	Gln	Asp	Asp	Asp 380	Val	Glu	Cys	Thr
Met 385	Val	Glu	Lys	Arg	Val 390	Leu	Ala	Leu	Leu	Asp 395	Lys	Pro	Pro	Phe	Le:

Thr	Gln	Leu	His		Cys	Phe	Gln	Thr	Val	Asp	Arg	Leu	Tyr	Phe	Val
				405					410					415	
Met	Glu	Tyr	Val	Asn	Gly	Gly	Asp	Leu	Met	Tyr	His	Ile	Gln	Gln	Val
			420					425					430		
Gly	Lys	Phe	Lys	Glu	Pro	Gln	Ala	Val	Phe	Tyr	Ala	Ala	Glu	Ile	Ser
		435					440					445			
Ile	Gly	Leu	Phe	Phe	Leu	His	Lys	Arg	Gly	Ile	Ile	Tyr	Arg	Asp	Leu
	450					455					460				
Lys	Leu	Asn	Asn	Val	Met	Leu	Asn	Ser	Glu	Gly	His	Ile	Lys	Ile	Ala
465					470					475					480
Asp	Phe	Gly	Met	Cys	Lys	Glu	His	Met	Met	Asp	Gly	Val	Thr	Thr	Arg
-		_		485	-				490	•	-			495	
Thr	Phe	Cys	Gly	Thr	Pro	Asp	Tyr	Ile	Ala	Pro	Glu	Ile	Ile	Ala	Tyr
			500					505					510		
Gln	Pro	Tyr	Gly	Lys	Ser	Val	Asp	Trp	Trp	Ala	Tyr	Gly	Val	Leu	Leu
		515					520					525			
Tyr	Glu	Met	Leu	Ala	Gly	Gln	Pro	Pro	Phe	Asp	Gly	Glu	Asp	Glu	Asp
	530					535					540				
Glu	Leu	Phe	Gln	Ser	Ile	Met	Glu	His	Asn	Val	Ser	Tyr	Pro	Lys	Ser
545					550					555		_		_	560
Leu	Ser	Lys	Glu	Ala	Val	Ser	Ile	Cys	Lys	Gly	Leu	Met	Thr	Lys	Gln
				565					570					575	
Pro	Ala	Lys	Arg	Leu	Gly	Cys	Gly	Pro	Glu	Gly	Glu	Arg	Asp	Val	Arg
			580					585					590		
Glu	His	Ala	Phe	Phe	Arg	Arg	Ile	Asp	Trp	Glu	Lys	Leu	Glu	Asn	Arg
		595					600					605			
Glu	Ile	Gln	Pro	Pro	Phe	Lys	Pro	Lys	Val	Cys	Gly	Lys	Gly	Ala	Glu
	610					615					620				
Asn	Phe	Asp	Lys	Phe	Phe	Thr	Arg	Gly	Gln	Pro	Val	Leu	Thr	Pro	Pro
625					630					635					640
Asp	Gln	Leu	Val	Ile	Ala	Asn	Ile	Asp	Gln	Ser	Asp	Phe	Glu	Gly	Phe
				645				_	650		_			655	
Ser	Tyr	Val	Asn	Pro	Gln	Phe	Val	His	Pro	Ile	Leu	Gln	Ser	Ala	Val
			660					665					670		
Gly	Arg	Ala	Met	Ser	Lys	Gly	Glu	Glu	Leu	Phe	Thr	Gly	Val	Val	Pro
_	,	675			-	_	680					685			
Ile	Leu		Glu	Leu	Asp	Gly	Asp	Val	Asn	Gly	Gln		Phe	Ser	Val
	690				-	695	•			-	700	-			
Ser		Glu	Gly	Glu	Gly	Asp	Ala	Thr	Tyr	Gly	Lys	Leu	Thr	Leu	Lys
705	-		-		710	-			•	715	-				720

16

Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val 730 725 735 Thr Thr Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His 740 745 Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val 760 Gln Glu Arg Thr Ile Phe Tyr Lys Asp Asp Gly Asn Tyr Lys Thr Arg 775 Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu 785 790 795 800 Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Met 805 810 Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Pro 820 825 830 Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Lys Asp 840 Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly 850 855 860 Asp Gly Pro Val Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser 875 870 Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Ile Leu Leu 885 890 895 Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr 905 900 910 Lys Pro Gln Glu 915 <210> 5 <211> 1896 <212> DNA <213> Aequorea victoria and human <220> <221> CDS <222> (1)...(1896) <400> 5 atg gtg agc aag ggc gag gtg ttc acc ggg gtg gtg ccc atc ctg

Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu

10

5

1

48

15

									cac His	_		_				96
			20					25					30			
gag	ggc	gag	ggc	gat	gcc	acc	tac	ggc	aag	ctg	acc	ctg	aag	ttc	atc	144
Glu	Gly	Glu	Gly	Asp	Ala	Thr	Tyr	Gly	Lys	Leu	Thr	Leu	Lys	Phe	Ile	
		35					40					45				
tgc	acc	acc	ggc	aag	ctg	ccc	gtg	ccc	tgg	ccc	acc	ctc	gtg	acc	acc	192
Cys	Thr	Thr	Gly	Lys	Leu	Pro	Val	Pro	Trp	Pro	Thr	Leu	Val	Thr	Thr	
	50					55					60					
ctg	acc	tac	ggc	gtg	cag	tgc	ttc	agc	cgc	tac	ccc	gac	cac	atg	aag	240
	Thr	Tyr	Gly	Val		Cys	Phe	Ser	Arg	-	Pro	Asp	His	Met	Lys	
65					70					75					80	
cag	cac	gac	ttc	ttc	aag	tcc	gcc	atg	ccc	gaa	ggc	tac	gtc	cag	gag	288
Gln	His	Asp	Phe	Phe	Lys	Ser	Ala	Met	Pro	Glu	Gly	Tyr	Val	Gln	Glu	
				85					90					95		
cgc	acc	atc	ttc	ttc	aag	gac	gac	ggc	aac	tac	aag	acc	cgc	gcc	gag	336
Arg	Thr	Ile	Phe	Phe	Lys	Asp	Asp	Gly	Asn	Tyr	Lys	Thr	Arg	Ala	Glu	
			100					105					110			
gtg	aag	ttc	gag	ggc	gac	acc	ctg	gtg	aac	cgc	atc	gag	ctg	aag	ggc	384
Val	Lys	Phe	Glu	Gly	Asp	Thr	Leu	Val	Asn	Arg	Ile	Glu	Leu	Lys	Gly	
		115					120					125				
atc	gạc	ttc	aag	gag	gac	ggc	aac	atc	ctg	ggg	cac	aag	ctg	gag	tac	432
Ile	Asp	Phe	Lys	Glu	Asp	Gly	Asn	Ile	Leu	Gly	His	Lys	Leu	Glu	Tyr	
	130					135					140					
aac	tac	aac	agc	cac	aac	gtc	tat	atc	atg	gcc	gac	aag	cag	aag	aac	480
Asn	Tyr	Asn	Ser	His	Asn	Val	Tyr	Ile	Met	Ala	Asp	Lys	Gln	Lys	Asn	
145					150					155					160	
															-	
ggc	atc	aag	gtg	aac	ttc	aag	atc	cgc	cac	aac	atc	gag	gac	ggc	agc	528
Gly	Ile	Lys	Val		Phe	Lys	Ile	Arg	His	Asn	Ile	Glu	Asp	_	Ser	
				165				•	170					175		

	cag Gln			-			_	_								576
	gtg Val											_		-		624
_	aaa Lys 210	-				_	-	-		_	•	-	_			672
_	acc Thr	_	_						_	_		_		-		720
	ctc Leu	-		-	-		_	_				_			•	768
	gct Ala															816
	ccg Pro															864
	gtg Val 290														gcg Ala	912
	ggc Gly	_	-	_	_			-			_	_		_		960
	atc Ile	_	_		_			_		_			_	_	Arg	1008

19

			-		_	atc Ile	_	·-	_		=				-	1056
			_	_		ctg Leu					_	-	_	_	_	1104
_	-				-	gac Asp 375	_	_			_	_		-	-	1152
_		-	_	-	_	agc Ser		_			-					1200
						aag Lys					-					1248
-	_		_			aac Asn	_		-				•	-		1296
		_	=			ctg Leu	_			_	-				_	1344
	•			_	_	gag Glu 455			_	_	_				•	1392
				_		tcc Ser	_				_			•		1440
						ctg Leu										1488

ttc	cct	ggc	aag	cac	tac	ctg	gat	cag	ctc	aac	cac	att	ctg	ggc	atc	1536
Phe	Pro	Gly	Lys	His	Tyr	Leu	Asp	Gln	Leu	Asn	His	Ile	Leu	Gly	Ile	
			500					505					510			
ctg	ggc	tcc	cca	tcc	cag	gag	gac	ctg	aat	tgt	atc	atc	aac	atg	aag	1584
Leu	Gly	Ser	Pro	Ser	Gln	Glu	Asp	Leu	Asn	Cys	Ile	Ile	Asn	Met	Lys	
		515					520					525				
gcc	cga	aac	tac	cta	cag	tct	ctg	ccc	tcc	aag	acc	aag	gtg	gct	tgg	1632
Ala	Arg	Asn	Tyr	Leu	Gln	Ser	Leu	Pro	Ser	Lys	Thr	Lys	Val	Ala	Trp	
	530					535					540					
gcc	aag	ctt	ttc	ccc	aag	tca	gac	tcc	aaa	gcc	ctt	gac	ctg	ctg	gac	1680
	Lys	Leu	Phe	Pro	-	Ser	Asp	Ser	Lys	Ala	Leu	Asp	Leu	Leu	Asp	
545					550					555					560	
	_		acc											_		1728
Arg	Met	Leu	Thr		Asn	Pro	Asn	Lys	_	Ile	Thr	Val	Glu		Ala	
				565					570					575		
- . .																1776
			ccc							_	_	_	_			1776
Leu	Ala	HIS	Pro	Tyr	Leu	GLU	GIN	_	Tyr	Asp	Pro	Thr	-	Glu	Pro	
			580					585					590			
a+ a	~~~	~~~	~~~				++~	~~~	- + -	~ ~ ~	~+~	~-+	~	- +-		1824
	-		gag Glu					_	_	-	-	-	_			1024
Val	AIG	595	GIU	FIO	riie	1111	600	мта	Met	GIU	ьеи	605	Asp	ьeu	FIO	
		3,33					000					003				
aaq	gag	caa	ctg	aag	gag	ctc	atc	ttc	cad	gag	aca	aca	cac	ttc	cad	1872
	•		Leu	_					_			-	-		_	10,2
-1-	610	9		-,-	024	615			02	014	620	1114	111 9	1110	021.	
ccc	gga	ata	ctg	gag	acc	ccc	tao									1896
			Leu				*									
625					630											

<210> 6 <211> 631

<212> PRT

<213> Aequorea victoria and human

<400> 6

Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys Ser Gly Leu Arg Ser Arg Ala Gln Ala Ser Asn Ser Thr Met Ala Ala Ala Ala Ala Gln Gly Gly Gly Gly Glu Pro Arg Arg Thr Glu Gly Val Gly Pro Gly Val Pro Gly Glu Val Glu Met Val Lys Gly Gln Pro Phe

Asp	Val	Gly	Pro	Arg	Tyr	Thr	Gln	Leu	Gln	Tyr	Ile	Gly	Glu	Gly	Ala
	290					295					300				
Tyr	Gly	Met	Val	Ser	Ser	Ala	Tyr	Asp	His	Val	Arg	Lys	Thr	Arg	Val
305					310					315					320
Ala	Ile	Lys	Lys	Ile	Ser	Pro	Phe	Glu	His	Gln	Thr	Tyr	Cys	Gln	Arg
				325					330					335	
Thr	Leu	Arg	Glu	Ile	Gln	Ile	Leu	Leu	Arg	Phe	Arg	His	Glu	Asn	Val
			340					345					350		
Ile	Gly	Ile	Arg	Asp	Ile	Leu	Arg	Ala	Ser	Thr	Leu	Glu	Ala	Met	Arg
		355					360					365			
Asp	Val	Tyr	Ile	Val	Gln	Asp	Leu	Met	Glu	Thr	Asp	Leu	Tyr	Lys	Leu
	370					375					380				
Leu	Lys	Ser	Gln	Gln	Leu	Ser	Asn	Asp	His	Ile	Cys	Tyr	Phe	Leu	Tyr
385					390					395					400
Gln	Ile	Leu	Arg	Gly	Leu	Lys	Tyr	Ile	His	Ser	Ala	Asn	Val	Leu	His
				405					410					415	
Arg	Asp	Leu	Lys	Pro	Ser	Asn	Leu	Leu	Ser	Asn	Thr	Thr	Cys	Asp	Leu
			420					425					430		
Lys	Ile	Cys	Asp	Phe	Gly	Leu	Ala	Arg	Ile	Ala	Asp	Pro	Glu	His	Asp
		435					440					445			
His	Thr	Gly	Phe	Leu	Thr	Glu	Tyr	Val	Ala	Thr	Arg	Trp	Tyr	Arg	Ala
	450					455					460				
Pro	Glu	Ile	Met	Leu	Asn	Ser	Lys	Gly	Tyr	Thr	Lys	Ser	Ile	Asp	Ile
465					470					475					480
Trp	Ser	Val	Gly	Cys	Ile	Leu	Ala	Glu	Met	Leu	Ser	Asn	Arg	Pro	Ile
				485					490					495	
Phe	Pro	Gly	Lys	His	Tyr	Leu	Asp	Gln	Leu	Asn	His	Ile	Leu	Gly	Ile
			500					505					510		
Leu	Gly	Ser	Pro	Ser	Gln	Glu	Asp	Leu	Asn	Суѕ	Ile	Ile	Asn	Met	Lys
		515					520					525			
Ala		Asn	Tyr	Leu	Gln	Ser	Leu	Pro	Ser	Lys	Thr	Lys	Val	Ala	Trp
	530					535					540				
	Lys	Leu	Phe	Pro		Ser	Asp	Ser	Lys		Leu	Asp	Leu	Leu	Asp
545					550					555					560
Arg	Met	Leu	Thr		Asn	Pro	Asn	Lys	_	Ile	Thr	Val	Glu	Glu	Ala
				565					570					575	
Leu	Ala	His	Pro	Tyr	Leu	Glu	Gln		Tyr	Asp	Pro	Thr	Asp	Glu	Pro
			580					585					590		
Val	Ala		Glu	Pro	Phe	Thr		Ala	Met	Glu	Leu		Asp	Leu	Pro
		595					600					605			

23

<210> 7

<211> 2160

<212> DNA

<213> Aequorea victoria and human

<220>

<221> CDS

<222> (1)...(2160)

<400> 7

atg gtg agc aag ggc gag gag ctg ttc acc ggg gtg gtg ccc atc ctg

Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu

1 5 10 15

gtc gag ctg gac ggc gac gta aac ggc cac aag ttc agc gtg tcc ggc 96 Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly 20 25 30

gag ggc gag ggc gat gcc acc tac ggc aag ctg acc ctg aag ttc atc

144

Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile

35

40

45

tgc acc acc ggc aag ctg ccc gtg ccc tgg ccc acc ctc gtg acc acc

Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr

50 55 60

ctg acc tac ggc gtg cag tgc ttc agc cgc tac ccc gac cac atg aag

Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys

65 70 75 80

cag cac gac ttc ttc aag tcc gcc atg ccc gaa ggc tac gtc cag gag 288 Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu 85 90 95

cgc acc atc ttc ttc aag gac gac ggc aac tac aag acc cgc gcc gag 336

24

Arg	Thr	Ile	Phe	Phe	Lys	Asp	Asp	Gly 105	Asn	Tyr	Lys	Thr	Arg 110	Ala	Glu	
					gac Asp								_	-		384
	_		_		gac Asp				_	222		_	-	, ,		432
			_		aac Asn 150	-			_	_	_	_	_	_		480
		_			ttc Phe	_		-					~	,,	3	528
	_		_	_	cac His		_	_						-		576
		_	_		gac Asp				_	_				-	-	624
					gag Glu									_		672
					atc Ile 230											720
		-		-	gct Ala			_		-		-	-			768
ttg	cca	ttc	acg	ccg	cca	gtt	gtg	aag	aga	ctg	ctg	gga	tgg	aag	aag	816

WO 00/23615

Leu	Pro	Phe	Thr	Pro	Pro	Val	Val	Lys	Arg	Leu	Leu	Gly	Trp	Lys	Lys	
			260					265					270			
											٠		-			
								-				_	aat		-	864
Ser	Ala		Gly	Ser	Gly	Gly		Gly	Gly	Gly	Glu		Asn	Gly	Gln	
		275					280					285				
gaa	gaa	aaα	taa	tat	gag	aaa	aca	ata	aaa	agt	cta	ata	aag	aaq	cta	912
													Lys			710
	290			- 2 -		295			-1-		300		-1-	_, _		
aag	aaa	aca	gga	cga	tta	gat	gag	ctt	gag	aaa	gcc	atc	acc	act	caa	960
Lys	Lys	Thr	Gly	Arg	Leu	Asp	Glu	Leu	Glu	Lys	Ala	Ile	Thr	Thr	Gln	
305					310					315					320	
aac	tgt	aat	act	aaa	tgt	gtt	acc	ata	cca	agc	act	tgc	tct	gaa	att	1008
Asn	Суѕ	Asn	Thr		Cys	Val	Thr	Ile		Ser	Thr	Cys	Ser	Glu	Ile	
				325					330					335		
+~~	~~~	a+~	~~+													1056
							_		_	_		-	aca			1056
115	Gry	реп	340	1111	FIO	ASII	1111	345	ASP	GIII	пр	ASP	Thr 350	THE	сту	
			3.0					313					330			
ctt	tac	agc	ttc	tct	gaa	caa	acc	agg	tct	ctt	gat	ggt	cgt	ctc	cag	1104
Leu	Tyr	Ser	Phe	Ser	Glu	Gln	Thr	Arg	Ser	Leu	Asp	Gly	Arg	Leu	Gln	
		355					360					365				
gta	tcc	cat	cga	aaa	gga	ttg	cca	cat	gtt	ata	tat	tgc	cga	tta	tgg	1152
Val	Ser	His	Arg	Lys	Gly	Leu	Pro	His	Val	Ile	Tyr	Cys	Arg	Leu	Trp	
	370					375					380					
	.									- •						1000
									-		_	-	att	-		1200
385	пр	PIO	Asp	Leu	390	ser	HIS	HIS	GIU	ьеи 395	гÀг	Ala	Ile	GIU	400	
303					390					393					400	
tgc	gaa	tat	qct	ttt	aat	ctt	aaa	aaq	gat	qaa	qta	tat	gta	aac	cct	1248
								_	_	_	_	_	Val			
				405			-	-	410			-		415		
tac	cac	tat	cag	aga	gtt	gag	aca	сса	gtt	ttg	cct	cca	gta	tta	gtg	1296

26

Tyr	His	Tyr	Gln 420	Arg	Val	Glu	Thr	Pro 425	Val	Leu	Pro	Pro	Val 430	Leu	Val	
ccc	cga	cac	acc	gag	atc	cta	aca	gaa	ctt	ccg	cct	ctg	gat	gac	tat	1344
Pro	Arg	His	Thr	Glu	Ile	Leu	Thr	Glu	Leu	Pro	Pro	Leu	Asp	Asp	Tyr	
		435					440					445				
act	cac	tcc	att	сса	gaa	aac	act	aac	ttc	сса	gca	gga	att	gag	cca	1392
Thr	His	Ser	Ile	Pro	Glu	Asn	Thr	Asn	Phe	Pro	Ala	Gly	Ile	Glu	Pro	
	450					455					460					
cac	act	aat	tat	att	cca	gaa	acq	cca	cct	cct	aga	tat	atc	agt	gaa	1440
_	-		Tyr													
465	001		- , -		470					475	1				480	
gat	gga	gaa	aca	agt	gac	caa	cag	ttg	aat	caa	agt	atg	gac	aca	ggc	1488
Asp	Gly	Glu	Thr	Ser	Asp	Gln	Gln	Leu	Asn	Gln	Ser	Met	Asp	Thr	Gly	
				485					490					495		
																1506
			gaa													1536
Ser	Pro	Ala	Glu	Leu	Ser	Pro	Thr		Leu	Ser	Pro	Val		His	Ser	
			500					505					510			
tta	gat	tta	cag	сса	gtt	act	tac	tca	gaa	cct	gca	ttt	tgg	tgt	tca	1584
_	_		Gln													
		515					520					525				
	_		tat													1632
Ile	Ala	Tyr	Tyr	Glu	Leu	Asn	Gln	Arg	Val	Gly			Phe	His	Ala	•
	530					535					540	1				
tca	cad	CCC	tca:	ctc	act	σta	gat	. aac	ttt	aca	gac	cca	tca	aat	tca	1680
			Ser													
545					550		-	_		555					560	
gag	agg	ttc	tgc	: tta	ggt	tta	cto	tco	aat	gtt	aac	c cga	aat	gcc	: acg	1728
Glu	Arg	Phe	e Cys	Leu	Gly	Let	Lei	ı Ser	Asr	val	. Asr	Arc	Asr	Ala	Thr	
				565	i				570)				575	j	
																1776
gta	gaa	ato	g aca	a aga	ago	, cat	ata	a gga	a aga	a gga	gt	g cgo	tta	a tac	tac	1776

Val	Glu	Met	Thr 580	Arg	Arg	His	Ile	Gly 585	Arg	Gly	Val	Arg	Leu 590	Tyr	Tyr	
ata	ggt	ggg	gaa	gtt	ttt	gct	gag	tgc	cta	agt	gat	agt	gca	atc	ttt	1824
Ile	Gly	Gly	Glu	Val	Phe	Ala	Glu	Cys	Leu	Ser	Asp	Ser	Ala	Ile	Phe	
		595					600					605				
gtg	cag	agc	ccc	aat	tgt	aat	cag	aga	tat	ggc	tgg	cac	cct	gca	aca	1872
Val	Gln	Ser	Pro	Asn	Cys	Asn	Gln	Arg	Tyr	Gly	Trp	His	Pro	Ala	Thr	
	610					615					620					
gtg	tgt	aaa	att	cca	cca	ggc	tgt	aat	ctg	aag	atc	ttc	aac	aac	cag	1920
Val	Cys	Lys	Ile	Pro	Pro	Gly	Cys	Asn	Leu	Lys	Ile	Phe	Asn	Asn	Gln	
625					630					635					640	
gaa	ttt	gct	gct	ctt	ctg	gct	cag	tct	gtt	aat	cag	ggt	ttt	gaa	gcc	1968
Glu	Phe	Ala	Ala	Leu	Leu	Ala	Gln	Ser	Val	Asn	Gln	Gly	Phe	Glu	Ala	
				645					650					655		
gtc	tat	cag	cta	act	aga	atg	tgc	acc	ata	aga	atg	agt	ttt	gtg	aaa	2016
Val	Tyr	Gln	Leu	Thr	Arg	Met	Cys	Thr	Ile	Arg	Met	Ser	Phe	Val	Lys	
			660					665					670			
ggg	tgg	gga	gca	gaa	tac	cga	agg	cag	acg	gta	aca	agt	act	cct	tgc	2064
Gly	Trp	Gly	Ala	Glu	Tyr	Arg	Arg	Gln	Thr	Val	Thr	Ser	Thr	Pro	Cys	
		675					680					685				
tgg	att	gaa	ctt	cat	ctg	aat	gga	cct	cta	cag	tgg	ttg	gac	aaa	gta	2112
Trp	Ile	Glu	Leu	His	Leu	Asn	Gly	Pro	Leu	Gln	Trp	Leu	Asp	Lys	Val	•
	690					695					700)				
tta	act	cag	atg	gga	tcc	cct	tca	gtg	cgt	tgc	tca	agc	atg	tca	taa	2160
Leu	Thr	Gln	Met	Gly	Ser	Pro	Ser	Val	Arg	Cys	Ser	Ser	Met	Ser	*	
705					710					715						

<210> 8

<211> 719

<212> PRT

<213> Aequorea victoria and human

		00>													
Met	Val	Ser	Lys	Gly	Glu	Glu	Leu	Phe	Thr	Gly	Val	Val	Pro	Ile	Leu
1				5					10					15	
Val	Glu	Leu	Asp	Gly	Asp	Val	Asn	Gly	His	Lys	Phe	Ser	Val	Ser	Gly
			20					25					30		
Glu	Gly	Glu	Gly	Asp	Ala	Thr	Tyr	Gly	Lys	Leu	Thr	Leu	Lys	Phe	Ile
		35					40					45			
Cys	Thr	Thr	Gly	Lys	Leu	Pro	Val	Pro	Trp	Pro	Thr	Leu	Val	Thr	Thr
	50					55					60				
Leu	Thr	Tyr	Gly	Val	Gln	Cys	Phe	Ser	Arg	Tyr	Pro	Asp	His	Met	Lys
65					70					75					80
Gln	His	Asp	Phe	Phe	Lys	Ser	Ala	Met	Pro	Glu	Gly	Tyr	Val	Gln	Glu
				85					90					95	
Arg	Thr	Ile	Phe	Phe	Lys	Asp	Asp	Gly	Asn	Tyr	Lys	Thr	Arg	Ala	Glu
			100					105					110		
Val	Lys	Phe	Glu	Gly	Asp	Thr	Leu	Val	Asn	Arg	Ile	Glu	Leu	Lys	Gly
		115					120					125			
Ile	Asp	Phe	Lys	Glu	Asp	Gly	Asn	Ile	Leu	Gly	His	Lys	Leu	Glu	Tyr
	130					135					140				
Asn	Tyr	Asn	Ser	His	Asn	Val	Tyr	Ile	Met	Ala	Asp	Lys	Gln	Lys	Asn
145					150					155					160
Gly	Ile	Lys	Val	Asn	Phe	Lys	Ile	Arg	His	Asn	Ile	Glu	Asp	Gly	Ser
				165					170					175	
Val	Gln	Leu	ı Ala	Asp	His	Tyr	Gln	Gln	Asn	Thr	Pro	Ile			Gly
			180					185					190		_
Pro	Val	Leu	ı Leu	Pro	Asp	Asn	His	Tyr	Let	ı Ser	Thr			Ala	Leu
		195					200					205			
Ser	Lys	Asp	Pro	Asr	ı Glu			Asp	His	s Met			ı Lev	ı Git	ı Phe
	210					215					220		_	_	•
Val	Thr	Ala	a Ala	a Gly	/ Ile	Thr	Leu	Gly	/ Met			ı Lev	נעד ג	r Lys	Ser
225					230					235			_	_	240
Gly	/ Let	a Ar	g Sei	r Arq	g Ala	a Glr	n Ala	Ser			r Thi	. Met	: Se		c Ile
				245					250					25	
Le	Pro د	Phe	e Thi	r Pro	o Pro	val	l Val			g Le	u Lei	ı Gl			s Lys
			260					265			_		27		63
Se:	r Ala			y Se	r Gly	y Gl			y Gl	y Gl	y Gl			n Gl	y Gln
		27					280		_		_	28		_	_ T
G1	u Glı	ı Ly	s Tr	р Су	s Gl			a Vai	l Ly	s Se			т гА	s rà	s Leu
	20	^				20	L				30	i J			

Lys Lys Thr Gly Arg Leu Asp Glu Leu Glu Lys Ala Ile Thr Thr Gln Asn Cys Asn Thr Lys Cys Val Thr Ile Pro Ser Thr Cys Ser Glu Ile Trp Gly Leu Ser Thr Pro Asn Thr Ile Asp Gln Trp Asp Thr Thr Gly Leu Tyr Ser Phe Ser Glu Gln Thr Arg Ser Leu Asp Gly Arg Leu Gln Val Ser His Arg Lys Gly Leu Pro His Val Ile Tyr Cys Arg Leu Trp Arg Trp Pro Asp Leu His Ser His His Glu Leu Lys Ala Ile Glu Asn Cys Glu Tyr Ala Phe Asn Leu Lys Lys Asp Glu Val Cys Val Asn Pro Tyr His Tyr Gln Arg Val Glu Thr Pro Val Leu Pro Pro Val Leu Val Pro Arg His Thr Glu Ile Leu Thr Glu Leu Pro Pro Leu Asp Asp Tyr Thr His Ser Ile Pro Glu Asn Thr Asn Phe Pro Ala Gly Ile Glu Pro Gln Ser Asn Tyr Ile Pro Glu Thr Pro Pro Pro Gly Tyr Ile Ser Glu Asp Gly Glu Thr Ser Asp Gln Gln Leu Asn Gln Ser Met Asp Thr Gly Ser Pro Ala Glu Leu Ser Pro Thr Thr Leu Ser Pro Val Asn His Ser Leu Asp Leu Gln Pro Val Thr Tyr Ser Glu Pro Ala Phe Trp Cys Ser Ile Ala Tyr Tyr Glu Leu Asn Gln Arg Val Gly Glu Thr Phe His Ala Ser Gln Pro Ser Leu Thr Val Asp Gly Phe Thr Asp Pro Ser Asn Ser Glu Arg Phe Cys Leu Gly Leu Leu Ser Asn Val Asn Arg Asn Ala Thr Val Glu Met Thr Arg Arg His Ile Gly Arg Gly Val Arg Leu Tyr Tyr Ile Gly Gly Glu Val Phe Ala Glu Cys Leu Ser Asp Ser Ala Ile Phe Val Gln Ser Pro Asn Cys Asn Gln Arg Tyr Gly Trp His Pro Ala Thr

Val Cys Lys Ile Pro Pro Gly Cys Asn Leu Lys Ile Phe Asn Asn Gln 630 635 Glu Phe Ala Ala Leu Leu Ala Gln Ser Val Asn Gln Gly Phe Glu Ala 650 645 Val Tyr Gln Leu Thr Arg Met Cys Thr Ile Arg Met Ser Phe Val Lys 665 Gly Trp Gly Ala Glu Tyr Arg Arg Gln Thr Val Thr Ser Thr Pro Cys 680 675 Trp Ile Glu Leu His Leu Asn Gly Pro Leu Gln Trp Leu Asp Lys Val 700 695 Leu Thr Gln Met Gly Ser Pro Ser Val Arg Cys Ser Ser Met Ser 715 710 705 <210> 9 <211> 2157 <212> DNA <213> Aequorea victoria and human <220> <221> CDS <222> (1) ... (2157) <400> 9 atg tcg tcc atc ttg cca ttc acg ccg cca gtt gtg aag aga ctg ctg 48 Met Ser Ser Ile Leu Pro Phe Thr Pro Pro Val Val Lys Arg Leu Leu 15 10 5 1 gga tgg aag aag tca gct ggt ggg tct gga gga gca ggc gga gga gag 96 Gly Trp Lys Lys Ser Ala Gly Gly Ser Gly Gly Ala Gly Gly Glu 25 20 144 cag aat ggg cag gaa gaa aag tgg tgt gag aaa gca gtg aaa agt ctg Gln Asn Gly Gln Glu Lys Trp Cys Glu Lys Ala Val Lys Ser Leu 45 40 35 gtg aag aag cta aag aaa aca gga cga tta gat gag ctt gag aaa gcc 192 Val Lys Lys Leu Lys Lys Thr Gly Arg Leu Asp Glu Leu Glu Lys Ala 60 55 50 atc acc act caa aac tgt aat act aaa tgt gtt acc ata cca agc act 240

Ile	Thr	Thr	Gln	Asn	Cys	Asn	Thr	Lys	Cys	Val	Thr	116	e P	ro	Ser			
65					70					75						8	80	
	•																	200
					gga													288
Cys	Ser	Glu	Ile	Trp	Gly	Leu	Ser	Thr	Pro	Asn	Thr	Il	e F	4sp		T :	rp	
				85					90						95			
																		226
					tac													336
Asp	Thr	Thr	Gly	Leu	Tyr	Ser	Phe		Glu	Gln	Thr	Ar			Leu	. А	.sp	
			100					105						110				
																	+	384
					tcc													304
Gly	Arg	Leu	Gln	Val	Ser	His			GTA	. Leu	Pro			Val	TIE	: 1	yμ	
		115					120					12	25					
										~+		+ 0:	a +	~ a a	cto	۰ -	nae	432
					tgg -													
Cys			Trp	Arg	Trp			ь гес	l Hl:	s ser	14		13	Giu	1100		-,-	
	130					135	•				7.3							
					gaa		~~+	. ++	- 221	t cti	r aa	a a	aq	gat	ga	a (gta	480
					s gaa s Glu													
		e GIV	ı Asr	ı Cys	150		. Alc	ı Elik	; AS	15		ŭ -	1				160	
145)				130	,				10	•							
			a aat	+ + a/	c cad	- tai	- cad	r ag	a ort	t ga	a ac	a c	:ca	gtt	: tt	g	cct	528
					r His													
Cys	s Va.	LASI	II ET	16!		. بر د	. 01		17						17			
				10.	_													
66	a at	a ++	a ot	a co	c cg	a ca	c ac	c qa	g at	c ct	a a	ca g	gaa	ct.	t cc	g	cct	576
					o Ar													
11		1 10	18			5		18						19				
ct	a aa	t qa	c ta	t ac	t ca	c tc	c at	t co	a ga	aa aa	ac a	ct a	aac	: tt	c co	ca	gca	624
Le	u As	n As	vT a	r Th	r Hi	s Se	r Il	e Pr	o G1	Lu As	sn T	hr i	Asn	ı Ph	e Pi	ro	Ala	
		19					20						205					
ac	a at	t qa	ag co	a ca	ig aç	ıt aa	ıt ta	at at	it c	ca ga	aa a	cg	cca	a cc	t c	ct	gga	672
					ln S∈													
	21					21						20						
ta	at at	c a	gt ga	aa ga	at go	ga ga	aa a	ca a	gt g	ac c	aa c	cag	tt	g aa	at c	aa	agt	720

32	
Tyr Ile Ser Glu Asp Gly Glu Thr Ser Asp Gln Gln Leu Asn Gln Ser 225 230 235 240	
atg gac aca ggc tct cca gca gaa cta tct cct act act ctt tcc cct Met Asp Thr Gly Ser Pro Ala Glu Leu Ser Pro Thr Thr Leu Ser Pro 245 250 255	768
gtt aat cat agc ttg gat tta cag cca gtt act tac tca gaa cct gca Val Asn His Ser Leu Asp Leu Gln Pro Val Thr Tyr Ser Glu Pro Ala 260 265 270	816
ttt tgg tgt tca ata gca tat tat gaa tta aat cag agg gtt gga gaa Phe Trp Cys Ser Ile Ala Tyr Tyr Glu Leu Asn Gln Arg Val Gly Glu 275 280 285	864
acc ttc cat gca tca cag ccc tca ctc act gta gat ggc ttt aca gac Thr Phe His Ala Ser Gln Pro Ser Leu Thr Val Asp Gly Phe Thr Asp 290 295 300	912
cca tca aat tca gag agg ttc tgc tta ggt tta ctc tcc aat gtt aac Pro Ser Asn Ser Glu Arg Phe Cys Leu Gly Leu Leu Ser Asn Val Asn 305 310 315 320	960
cga aat gcc acg gta gaa atg aca aga agg cat ata gga aga gga gtg Arg Asn Ala Thr Val Glu Met Thr Arg Arg His Ile Gly Arg Gly Val 325 330 335	1008
cgc tta tac tac ata ggt ggg gaa gtt ttt gct gag tgc cta agt gat Arg Leu Tyr Tyr Ile Gly Gly Glu Val Phe Ala Glu Cys Leu Ser Asp 340 345 350	1056
agt gca atc ttt gtg cag agc ccc aat tgt aat cag aga tat ggc tgg Ser Ala Ile Phe Val Gln Ser Pro Asn Cys Asn Gln Arg Tyr Gly Trp 355 360 365	1104
cac cct gca aca gtg tgt aaa att cca cca ggc tgt aat ctg aag atc His Pro Ala Thr Val Cys Lys Ile Pro Pro Gly Cys Asn Leu Lys Ile 370 375 380	1152
ttc aac aac cag gaa ttt gct gct ctt ctg gct cag tct gtt aat cag	1200

Phe Asn Asn Gln Glu Phe Ala Ala Leu Leu Ala Gln Ser Val Asn Gln 385	
ggt ttt gaa gcc gtc tat cag cta act aga atg tgc acc ata aga atg Gly Phe Glu Ala Val Tyr Gln Leu Thr Arg Met Cys Thr Ile Arg Met 405 410 410 415	1248
agt ttt gtg aaa ggg tgg gga gca gaa tac cga agg cag acg gta aca Ser Phe Val Lys Gly Trp Gly Ala Glu Tyr Arg Arg Gln Thr Val Thr 420 425 430	1296
agt act cct tgc tgg att gaa ctt cat ctg aat gga cct cta cag tgg Ser Thr Pro Cys Trp Ile Glu Leu His Leu Asn Gly Pro Leu Gln Trp 435 440 445	1344
ttg gac aaa gta tta act cag atg gga tcc cct tca gtg cgt tgc tca Leu Asp Lys Val Leu Thr Gln Met Gly Ser Pro Ser Val Arg Cys Ser 450 455 460	1392
agc atg tca tgg gta ccg cgg gcc cgg gat cca ccg gtc gcc acc atg Ser Met Ser Trp Val Pro Arg Ala Arg Asp Pro Pro Val Ala Thr Met 465 470 475 480	1440
gtg agc aag ggc gag gag ctg ttc acc ggg gtg gtg ccc atc ctg gtc Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val 485 490 495	1488
gag ctg gac ggc gac gta aac ggc cac aag ttc agc gtg tcc ggc gag Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu 500 505 510	1536
ggc gag ggc gat gcc acc tac ggc aag ctg acc ctg aag ttc atc tgc Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys 515 520 525	1584,
acc acc ggc aag ctg ccc gtg ccc tgg ccc acc ctc gtg acc acc ctg Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Leu 530 535 540	1632
acc tac ggc gtg cag tgc ttc agc cgc tac ccc gac cac atg aag cag	1680

Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln 545 550 550 560	
cac gac ttc ttc aag tcc gcc atg ccc gaa ggc tac gtc cag gag cgc His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg 565 570 575	1728
acc atc ttc ttc aag gac gac ggc aac tac aag acc cgc gcc gag gtg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val 580 585 590	1776
aag ttc gag ggc gac acc ctg gtg aac cgc atc gag ctg aag ggc atc Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile 595 600 605	1824
gac ttc aag gag gac ggc aac atc ctg ggg cac aag ctg gag tac aac Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn 610 615 620	1872
tac aac agc cac aac gtc tat atc atg gcc gac aag cag aag aac ggc Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly 625 630 635 640	1920
atc aag gtg aac ttc aag atc cgc cac aac atc gag gac ggc agc gtg Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val 645 650 655	1968
cag ctc gcc gac cac tac cag cag aac acc ccc atc ggc gac ggc ccc Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro 660 665 670	2016
gtg ctg ctg ccc gac aac cac tac ctg agc acc cag tcc gcc ctg agc Val Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser 675 680 685	2064
aaa gac ccc aac gag aag cgc gat cac atg gtc ctg ctg gag ttc gtg Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val 690 695 700	2112
acc gcc gcc ggg atc act ctc ggc atg gac gag ctg tac aag taa	2157

Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys * 705 710 715

<210> 10

<211> 718

<212> PRT

<213> Aequorea victoria and human

<400> 10 Met Ser Ser Ile Leu Pro Phe Thr Pro Pro Val Val Lys Arg Leu Leu Gly Trp Lys Lys Ser Ala Gly Gly Ser Gly Gly Ala Gly Gly Glu Gln Asn Gly Gln Glu Lys Trp Cys Glu Lys Ala Val Lys Ser Leu Val Lys Lys Leu Lys Lys Thr Gly Arg Leu Asp Glu Leu Glu Lys Ala Ile Thr Thr Gln Asn Cys Asn Thr Lys Cys Val Thr Ile Pro Ser Thr Cys Ser Glu Ile Trp Gly Leu Ser Thr Pro Asn Thr Ile Asp Gln Trp Asp Thr Thr Gly Leu Tyr Ser Phe Ser Glu Gln Thr Arg Ser Leu Asp Gly Arg Leu Gln Val Ser His Arg Lys Gly Leu Pro His Val Ile Tyr Cys Arg Leu Trp Arg Trp Pro Asp Leu His Ser His His Glu Leu Lys Ala Ile Glu Asn Cys Glu Tyr Ala Phe Asn Leu Lys Lys Asp Glu Val Cys Val Asn Pro Tyr His Tyr Gln Arg Val Glu Thr Pro Val Leu Pro Pro Val Leu Val Pro Arg His Thr Glu Ile Leu Thr Glu Leu Pro Pro Leu Asp Asp Tyr Thr His Ser Ile Pro Glu Asn Thr Asn Phe Pro Ala Gly Ile Glu Pro Gln Ser Asn Tyr Ile Pro Glu Thr Pro Pro Pro Gly Tyr Ile Ser Glu Asp Gly Glu Thr Ser Asp Gln Gln Leu Asn Gln Ser

Met	Asp	Thr	Gly		Pro	Ala	Gl	u Le		Ser 250	Pro	Thr	Thr	Le	eu S	Ser 255	Pro	
				245				_			mh ~		501	٠ ۵.) 11 J	2ra	Ala	a
			Ser 260					2	65					2	70			
Phe	Trp	Cys 275	Ser	Ile	Ala	Туг	Ту 28		lu :	Leu	Asn	Gln	Arg 285	y V: 5	al (Gly	Gl [,]	u
Thr		His	Ala	Ser	Gln	Pro		er L	eu '	Thr	Val	Asp 300	Gl	y P	he	Thr	As	p
	290		_					T	011	Glv	T.eu			r A	.sn	Val	As	n
Pro	Ser	Asn	Ser	Glu				ys L	eu	O.L.y	315						32	:0
305					310		_	_		_			. (1	T	ra	Glv		
			Thr	325	,					330						335		
Aro	Leu	туг	туг	: Ile	e G13	, Gl	y G	lu V	/al	Phe	Ala	i Gl	з Су	s I	Leu	Ser	As	sp
			340)				:	345					3	350			
Ser	Ala		e Phe	e Val	Glr	n Se		ro <i>i</i> 60	Asn	Cys	Ası	n Gl	n Ar 36	:g : 55	ſyr	Gly	T:	rp
	_	359	a Thi	. 175) C::	~ I.s.			Pro	Pro	Gl	v Cy	s As	sn :	Leu	Lys	s I	le
His			a Tni	r va.	L Cy.	э ду 37						38						
	370)	_ =	- 3	5)			115	T 013	T. 🗪 1	1 A I			er '	Val	Ası	า G	ln
Ph	e Ası	n As	n Gl	n GI			.a F	11 d	Dea	пес	39		-	-			4	00
38	5				39		_	_	-1	7			, с. т [.]	hr	Tle	Ar	a M	let
Gl	y Ph	e Gl	u Al	a Va	1 Ту	r G	Ln 1	Leu	Thr			ic Cy	5 1.	111.	110	41	5 5	,
				40						41		_	_	,	m 1			'h r
Se	r Ph	e Va	l Ly	s Gl	y Tr	p G	ly i	Ala	Glu	ту.	r Ar	g Ai	g G	Tn	Thr	. va		. 111
			42						425						430			_
Se	r Th	r Pr	:0 C3	s Tr	p Il	e G	lu	Leu	His	s Le	u As	sn G	Ly P	ro	Lev	ı G1	n '	rp.
		43	35					440					4	45				
Le			ys Va	al Le	eu Th		ln 55	Met	Gly	y Se	r P	co S 4	er V 60	al.	Ar	g Cy	s :	Ser
_	45		er T	W	ים ני	- - 2	ra	Δla	Arc	a As	q a	ro P	ro V	/al	Al	a Th	ır !	Met
	•	et S	er 1.	rþ v			11 9			J	4	75						480
4 (65		ys G			70		Dho	ሞኮ	~ G1			all	Pro	Ιl	e Le	eu	Val
V	al Se	er L	ys G			ıu ı	.eu	Pne	111		90 90	u_ •				4	95	
				4	85							C		V-1	92			Glu
G	lu L	eu A	.sp G	ly A	sp V	al P	Asn	GТУ			ys r	ne s	er	vaı	51	^	- 1	
				00					50					_			٦.	C++C
G	ly G	lu G	Sly A	sp A	la T	hr '	Гуr	Gl?	, Ly	s L	eu I	hr l	Leu	Lys	Pr	ie i	Te	Cys
		5	15					520						525				_
Т	hr T	hr C	Sly I	ys I	eu E	ro	Val	Pro	Tr	sp P	ro :	Thr :	Leu	Va]	Th	ır T	hr	Leu
	5	30					535						540					
ч	hr T	yr (Gly V	/al (3ln (Cys	Phe	Se	r Ai	rg T	yr :	Pro	Asp	Hi	s Me	et I	ys	Gln
	545	-	-			550						555						560

37 His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg 570 565 Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val 585 580 Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile 600 Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn 620 615 610 Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly 635 630 Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val 650 645 Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro 670 665 660 Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser 680 675 Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val 700 695 Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys 715 710 705 <210> 11 <211> 1908 <212> DNA <213> Aequorea victoria and human <220> <221> CDS <222> (1)...(1908) <400> 11 atg gtg agc aag ggc gag gag ctg ttc acc ggg gtg gtg ccc atc ctg 48 Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu 15 10 5 1 96 gtc gag ctg gac ggc gac gta aac ggc cac aag ttc agc gtg tcc ggc Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly 30 25 20 144 gag ggc gag ggc gat gcc acc tac ggc aag ctg acc ctg aag ttc atc

PCT/DK99/00562

Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile 35 40 45	
tgc acc acc ggc aag ctg ccc gtg ccc tgg ccc acc ctc gtg acc acc Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr 50 55 60	192
ctg acc tac ggc gtg cag tgc ttc agc cgc tac ccc gac cac atg aag Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys 65 70 75 80	240
cag cac gac ttc ttc aag tcc gcc atg ccc gaa ggc tac gtc cag gag Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu 85 90 95	288
cgc acc atc ttc ttc aag gac gac ggc aac tac aag acc cgc gcc gag Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu 100 105 110	336
gtg aag ttc gag ggc gac acc ctg gtg aac cgc atc gag ctg aag ggc Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly 115 120 125	384
atc gac ttc aag gag gac ggc aac atc ctg ggg cac aag ctg gag tac Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr 130 135 140	432
aac tac aac age cac aac gtc tat atc atg gcc gac aag cag aag aacAsn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn145150	480
ggc atc aag gtg aac ttc aag atc cgc cac aac atc gag gac ggc agc Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser 165 170 175	528
gtg cag ctc gcc gac cac tac cag cag aac acc ccc atc ggc gac ggc Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly 180 185 190	576
ccc gtg ctg ccc gac aac cac tac ctg agc acc cag tcc gcc ctg	624

39	
Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu 195 200 205	
agc aaa gac ccc aac gag aag cgc gat cac atg gtc ctg ctg gag ttc Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe 210 215 220	672
gtg acc gcc gcc ggg atc act ctc ggc atg gac gag ctg tac aag tcc Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys Ser 230 235 240	720
gga ctc aga tct cga gct caa gct tcc atg agc gag acg gtc atc atg Gly Leu Arg Ser Arg Ala Gln Ala Ser Met Ser Glu Thr Val Ile Met 245 250 255	768
agc gag acg gtc atc tgt tcc agc cgg gcc act gtg atg ctt tat gat Ser Glu Thr Val Ile Cys Ser Ser Arg Ala Thr Val Met Leu Tyr Asp 260 265 270	816
gat ggc aac aag cga tgg ctc cct gct ggc acg ggt ccc cag gcc ttc Asp Gly Asn Lys Arg Trp Leu Pro Ala Gly Thr Gly Pro Gln Ala Phe 275 280 285	864
age ege gte eag ate tae eac aac eee aeg gee aat tee ttt ege gte Ser Arg Val Gln Ile Tyr His Asn Pro Thr Ala Asn Ser Phe Arg Val 290 295 300	912
gtg ggc cgg aag atg cag ccc gac cag cag gtg gtc atc aac tgt gcc Val Gly Arg Lys Met Gln Pro Asp Gln Gln Val Val Ile Asn Cys Ala 305 310 315 320	960
atc gtc cgg ggt gtc aag tat aac cag gcc acc ccc aac ttc cat cag Ile Val Arg Gly Val Lys Tyr Asn Gln Ala Thr Pro Asn Phe His Gln 325 330 335	1008
tgg cgc gac gct cgc cag gtc tgg ggc ctc aac ttc ggc agc aag gag Trp Arg Asp Ala Arg Gln Val Trp Gly Leu Asn Phe Gly Ser Lys Glu 340 345 350	1056
gat gcg gcc cag ttt gcc gcc ggc atg gcc agt gcc cta gag gcg ttg	1104

Asp Ala Ala Gln Phe Ala Ala Gly Met Ala Ser Ala Leu Glu Ala Leu 355 360 365	
gaa gga ggt ggg ccc cct cca ccc cca gca ctt ccc acc tgg tcg gtc Glu Gly Gly Pro Pro Pro Pro Pro Ala Leu Pro Thr Trp Ser Val 370 375 380	1152
ccg aac ggc ccc tcc ccg gag gag gtg gag, cag cag aaa agg cag cagPro Asn Gly Pro Ser Pro Glu Glu Val Glu Gln Gln Lys Arg Gln Gln385390	1200
ccc ggc ccg tcg gag cac ata gag cgc cgg gtc tcc aat gca gga ggc Pro Gly Pro Ser Glu His Ile Glu Arg Arg Val Ser Asn Ala Gly Gly 405 410 415	1248
cca cct gct ccc ccc gct ggg ggt cca ccc cca cca cca gga cct ccc Pro Pro Ala Pro Pro Ala Gly Gly Pro Pro Pro Pro Pro Gly Pro Pro 420 425 430	1296
cct cct cca ggt ccc ccc cca ccc cca ggt ttg ccc cct tcg ggg gtc Pro Pro Pro Gly Pro Pro Pro Pro Gly Leu Pro Pro Ser Gly Val 435 440 445	1344
cca gct gca gcg cac gga gca ggg gga gga cca ccc cct gca ccc cct Pro Ala Ala Ala His Gly Ala Gly Gly Pro Pro Pro Ala Pro Pro 450 455 460	1392
ctc ccg gca gca cag ggc cct ggt ggt ggg gga gct ggg gcc cca ggc Leu Pro Ala Ala Gln Gly Pro Gly Gly Gly Gly Ala Gly Ala Pro Gly 465 470 475 480	1440
ctg gcc gca gct att gct gga gcc aaa ctc agg aaa gtc agc aag cag Leu Ala Ala Ala Ile Ala Gly Ala Lys Leu Arg Lys Val Ser Lys Gln 485 490 495	1488.
gag gag gcc tca ggg ggg ccc aca gcc ccc aaa gct gag agt ggt cga Glu Glu Ala Ser Gly Gly Pro Thr Ala Pro Lys Ala Glu Ser Gly Arg 500 505 510	1536
agc gga ggt ggg gga ctc atg gaa gag atg aac gcc atg ctg gcc cgg	1584

Ser (Gly 515	Gly	Gly	Leu		Glu 520	Glu	Met	Asn	Ala	Met 525	Leu	Ala	Arg	
aga (auu	aaa	acc	acq	caa	gtt	ggg	gag	aaa	acc	ccc	aag	gat	gaa	tct	1632
Arg	729	Tue	Δla	Thr	Gln	Val	Glv	Glu	Lys	Thr	Pro	Lys	Asp	Glu	Ser	
		цуэ	ALG		0	535	-				540					
	530															
gcc			~~~	~~~	CCB	aaa	acc	aga	atc	ccq	gcc	cag	agt	gaa	tct	1680
gcc	aat -	cay	gag	Clu	Bro	Glu	Δla	Ara	Val	Pro	Ala	Gln	Ser	Glu	Ser	
	Asn	GIN	GIU	. GIU	550	Gia	112.0	9		555					560	
545					550											
						224	220	200	aca	acc	tto	r cca	a ago	ato	aag	1728
gtg	cgg	aga	CCC	tgg:	gag	aay	Aac Aan	Sor	Thr	Thr	Let	n Pro	o Arc	, Met	Lys	
Val	Arg	Arç	Pro			гăг	ASII	261	570		200			575	Lys	
				565)				370							
									- 200			- ta	c ac	a cc	c agc	1776
tcg	tct	tct	tc	g gto	g acc	act	tcc	gaç	, mb	Cle	Dr	o Cv	e Th	r Pr	c agc	
Ser	Ser	Se:	r Se	r Val	l Thr	Thr	Ser			. G11	1 11,	J Cy	5 1 59	n	o Ser	
			58	0				585	0				3,5	Ü		
												~ ~ ~	a' at	t ct	a aaa	1824
tcc	agt	ga:	t ta	c tc	g ga	c cta	a caq	g age	g gto	gaaa	a ca	y ya	y cc	To	g gaa	
Ser	Se	r As	р Ту	r Se	r As) Le	ı Glı	n Ar	g Va.	г гу:	s Gl	n Gi	u be	u De	u Glu	
		59	5				60	0				60	15			
																1872
gag	gt	g aa	g aa	ıg ga	a tt	g ca	g aa	a gt	g aa	a ga	g ga	a at	c at	t ga	a gcc	
Glu	ı Va	l Ly	s Ly	s Gl	u Le	u Gl	n Ly	s Va	l Ly	s Gl	u Gl	u I	le Il	Le Gl	Lu Ala	
	61					61					62	20				
																1000
tto	c gt	.c ca	ag ga	ag ct	g ag	ıg aa	g cg	ia ac	jt to	t co	c to	ga				1908
									Ly Se			*				•

Phe Val Gln Glu Leu Arg Lys Arg Gly Ser Pro * 635 630 625

<210> 12

<211> 635

<212> PRT

<213> Aequorea victoria and human

<400> 12

Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu 15 10 5

Val	Glu	Leu	Asp	Gly	Asp	Val	Asn	Gly	His	s Ly	s P	he :	Ser		S€	r G	ly
			20					25			-			30			
Glu	Ġly		Gly	Asp	Ala	Thr	Tyr 40	Gly	Lys	s Le	u T		Leu 45	ГЛS	: Ph	ne I	le
		35		_		D		Dro	ጥጥ	n Pr	^O T	hr	Leu	Val	L Tì	ır I	'hr
Cys		Thr	Gly	Lys	Leu	pro 55	vai	PIO	11	, 11		0	200				
	50	_	Gly	**- 3	C1-		Bho	Ser	- Δr	α ጥነ			asA	His	s M	et I	.ys
	Thr	Tyr	GTÀ	vaı		Cys	FIIC	561	. 111	75						8	30
65			Phe	51	70	Cox	רות	Mat	- Dr			31 v	Tvr	Va	1 G	ln (Glu
				85					90						9	5	
Arg	Thr	Ile	Phe	Phe	Lys	Asp	Asp	Gly	y As	n T	yr 1	ГЛS	Thr	Ar	g A	la (Glu
			100					10	5					11	0		
Val	Lys	Phe	Glu	Gly	Asp	Thr	Lev	va.	l As	n A	rg	Ile	Glu	ı Le	u L	,ys	Gly
		115)				120)					125	5			
Ile	. Asp	Phe	Lys	s Glu	. Asp	61 ⁷	/ Asr	ı Il	e Le	eu G	lу	His	Lys	s Le	eu C	Slu	Tyr
	130)				135						140					_
Asr	ту:	r Ası	n Sei	His	s Asr	ı Val	LTy	r Il	e Me	et P	Ala	Asp	Ly	s Gl	Ln I	Lys	Asn
145	5				150						L55						160
Gl	y Il	e Ly	s Vai	l Ası	n Phe	e Ly:	s Il	e Ar	g H	is P	Asn	Ile	Gl	u As	sp (Gly	Ser
				16						70						175	
Va	l Gl	n Le	u Al 18		p Hi	s Ту	r Gl	n Gl 18		sn '	Thr	Pro) Il		ly 90	Asp	GIÀ
D	- 17-	1 70	u Le		0 As	n As	n Hi			eu	Ser	Thi	c Gl	n S	er	Ala	Leu
PI	o va	1 Le		urr	0 110	P	20						20	5			
Co	Τ.	בר אי	p Pr	ο As	n Gl	n Lv			sp H	lis	Met	Va.	l L∈	u L	eu	Glu	Phe
Se	21		pri	0 110	0_	21		-	•			220					
17-	ነ ጥነ	.ט רא ∞.	= Z\ T	a Gl	v Il			eu G	ly N	1et	Asp	Gl.	u Le	eu I	'yr	Lys	Ser
22		ir m		.u 0.	23				_		235						240
C1	.J .v T4	וב ווב	ra Se	or Ar			n A	la S	er 1	Met	Ser	Gl	u Tl	ar V	/al	Ile	Met
61	. у	su m	.g 5		15					250						255	•
S.	ar G	ויי ידו	ar Va			ıs Se	er S	er A	rg :	Ala	Thr	· Va	1 M	et 1	Leu	Туг	Asp
	51 G	14 1.		60					65					:	270		
70.	en G	1 τ Δ			ra Ti	ro L	eu P	ro P	Ala	Gly	Thr	Gl	y P	ro '	Gln	Ala	a Phe
A	ap G		511 b. 75	, U 11.	·			80		-			2	85			
c	7\			ln T	ום ד	vr H			Pro	Thr	Ala	a As	sn S	er	Phe	Ar	g Val
5			a r G	-11 I			95						00				
* *	2 ده	90. א ייני	ra T	ve M	et C			ge.	Gln	Gln	Va.	1 Va	al I	le	Asn	Су	s Ala
		тА Ъ	ra n	ys M		10					31						320
-	05	יי ו בי	a	:1 17 17			'vr F	\sn	Gln	Ala	Th	r P	ro P	Asn	Phe	e Hi	s Gln
1	.re /	ar F	y		325	. <u></u> -				330						33	5

Trp	Arg	Asp	Ala 340	Arg	Gln	Val	Trp	Gly 345	Leu	Asn	Phe	Gly	Ser 350	Lys	Glu
Asp	Ala	Ala 355	Gln	Phe	Ala	Ala	Gly 360	Met	Ala	Ser	Ala	Leu 365	Glu	Ala	Leu
Glu	Gly 370	Gly	Gly	Pro	Pro	Pro 375	Pro	Pro	Ala	Leu	Pro 380	Thr	Trp	Ser	Val
Pro	Asn	Gly	Pro	Ser	Pro	Glu	Glu	Val	Glu	Gln	Gln	Lys	Arg	Gln	
385					390					395					400
Pro	Gly	Pro	Ser	Glu	His	Ile	Glu	Arg		Val	Ser	Asn	Ala		Gly
				405					410					415	
Pro	Pro	Ala	Pro	Pro	Ala	Gly	Gly	Pro	Pro	Pro	Pro	Pro	Gly	Pro	Pro
			420					425					430		
Pro	Pro	Pro	Gly	Pro	Pro	Pro	Pro	Pro	Gly	Leu	Pro	Pro	Ser	Gly	Val
		435					440					445			
Pro	Ala	Ala	Ala	His	Gly	Ala	Gly	Gly	Gly	Pro	Pro	Pro	Ala	Pro	Pro
	450					455					460				
Leu	Pro	Ala	Ala	Gln	Gly	Pro	Gly	Gly	Gly	Gly	Ala	Gly	Ala	Pro	Gly
465					470					475					480
Leu	Ala	Ala	Ala	Ile	Ala	Gly	Ala	Lys	Leu	Arg	Lys	Val	Ser	Lys	Gln
				485					490					495	
Glu	Glu	Ala	Ser	Gly	Gly	Pro	Thr	Ala	Pro	Lys	Ala	Glu	Ser	Gly	Arg
			500					505					510		
Ser	Gly	Gly	Gly	Gly	Leu	Met	Glu	Glu	Met	Asn	Ala	Met	Leu	Ala	Arg
		515					520					525			
Arg	Arg	Lys	Ala	Thr	Gln	Val	Gly	Glu	Lys	Thr	Pro	Lys	Asp	Glu	Ser
	530	ı				535					540				
Ala	Asn	Gln	Glu	Glu	Pro	Glu	Ala	Arg	Val	Pro	Ala	Gln	Ser	Glu	Ser
545					550					5 55					560
Val	Arg	Arg	Pro	Trp	Glu	Lys	Asn	Ser	Thr	Thr	Leu	Pro	Arg	Met	Lys
				565	,				570)				575	
Ser	Ser	Ser	Ser	. Val	Thr	Thr	Ser	Glu	Thr	Gln	Pro	Cys	Thr	Pro	Ser
			580)				585	5				590)	
Ser	Ser	Asr	Tyr	: Ser	Asp	Leu	Glr	Arc	y Val	Lys	Glr	Glu	Let	Leu	Glu
		595			_		600					605			
Glu	ı Val		Lys	s Glu	ı Lev	ı Glr	. Lys	val	Llys	s Glu	ı Glu	ı Ile	: Ile	e Glu	. Ala
	610		.			615			-		620				
Ph∈			n Glu	ı Leı	ı Arc			g Glv	y Sei	r Pro	5				
625					630		-		-	635					
	-														

44

<211> 2394 <212> DNA <213> Aequorea victoria and human <220> <221> CDS <222> (1)...(2394) <400> 13 atg gtg agc aag ggc gag gag ctg ttc acc ggg gtg gtg ccc atc ctg 48 Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu 15 5 10 1 gtc gag ctg gac ggc gac gta aac ggc cac aag ttc agc gtg tcc ggc 96 Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly 30 25 20 gag ggc gag ggc gat gcc acc tac ggc aag ctg acc ctg aag ttc atc 144 Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile 40 45 35 tgc acc acc ggc aag ctg ccc gtg ccc tgg ccc acc ctc gtg acc acc 192 Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr 60 55 50 ctg acc tac ggc gtg cag tgc ttc agc cgc tac ccc gac cac atg aag 240 Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys 80 75 70 65 288 cag cac gac ttc ttc aag tcc gcc atg ccc gaa ggc tac gtc cag gag Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu 90 95 85 336 cgc acc atc ttc ttc aag gac gac ggc aac tac aag acc cgc gcc gag Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu 110 105 100

gtg aag ttc gag ggc gac acc ctg gtg aac cgc atc gag ctg aag ggc 384

Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly

115 120 125

	-		aag													432
Ile	Asp	Phe	Lys	Glu	Asp	Gly	Asn	Ile	Leu	Gly	Ĥis	Lys	Leu	Glu	Tyr	
	130					135					140					
			agc													480
Asn	Tyr	Asn	Ser	His	Asn	Val	Tyr	Ile	Met		Asp	Lys	Gln	Lys		
145					150					155					160	
											5 t 6	~ ~ ~	~ ~ ~	aac	acc	528
			gtg													323
Gly	Ile	Lys	Val		Phe	гàг	TIE	Arg	170	ASII	116	Giu	лэр	175	501	
				165					170					1,5		
ata	cad	ctc	gcc	gac	cac	tac	caq	caq	aac	acc	ccc	atc	ggc	gac	ggc	576
	_		Ala													
			180	•		-		185					190			
ccc	gtg	ctg	ctg	ccc	gac	aac	cac	tac	ctg	agc	acc	cag	tcc	gcc	ctg	624
Pro	Val	Leu	Leu	Pro	Asp	Asn	His	Tyr	Leu	Ser	Thr	Gln	Ser	Ala	Leu	
		195					2,00					205				
			ccc													672
Ser	Lys	Asp	Pro	Asn	Glu	Lys	Arg	Asp	His	Met	Val	Leu	Leu	Glu	Phe	
	210					215					220)				
												_ 4			. +	720
															tcc	720
		Ala	a Ala	Gly			Let	ı GIy	мет			л њес	ı ıyı	. nys	Ser 240	
225	5				230)				235)				240	
aas	o cto	- 201	a tot	· cas	a aca	ato	r gad	c gaa	cto	ı tto	cc	c cto	c ato	: tto	ccg	768
															e Pro	
رسدن	, пс		, 001	245					250					25		
															*	
gca	a gaq	g cca	a gco	caq	g gc	c tct	gg	c ccc	ta:	t gt	g ga	g at	c at	t ga	g cag	816
															u Gln	
			260	С				265	5				27	0		
															c tcc	864
Pr	o Ly	s Gl	n Ar	g Gl	у Ме	t Ar	g Ph	e Ar	д Ту	r Ly	s Cy	s Gl	u Gl	y Ar	g Ser	
		27	5				28	0				28	5			

gcg	ggc	agc	atc	cca	ggc	gag	agg	agc	aca	gat	acc	acc	aag	acc	cac	912
Ala	Gly	Ser	Ile	Pro	Gly	Glu	Arg	Ser	Thr	Asp	Thr	Thr	Lys	Thr	His	
	290					295					300		•			
ccc	acc	atc	aag	atc	aat	ggc	tac	aca	gga	cca	ggg	aca	gtg	cgc	atc	960
Pro	Thr	Ile	Lys	Ile	Asn	Gly	Tyr	Thr	Gly	Pro	Gly	Thr	Val	Arg	Ile	
305			_		310					315					320	
tcc	ctg	gtc	acc	aag	gac	cct	cct	cac	cgg	cct	cac	ccc	cac	gag	ctt	1008
Ser	Leu	Val	Thr	Lys	Asp	Pro	Pro	His	Arg	Pro	His	Pro	His	Glu	Leu	
				325					330					335		
gta	gga	aag	gac	tgc	cgg	gat	ggc	ttc	tat	gag	gct	gag	ctc	tgc	ccg	1056
Val	Gly	Lys	Asp	Cys	Arg	Asp	Gly	Phe	Tyr	Glu	Ala	Glu	Leu	Cys	Pro	
			340					345					350			
gac	cgc	tgc	atc	cac	agt	ttc	cag	aac	ctg	gga	atc	cag	tgt	gtg	aag	1104
Asp	Arg	Cys	Ile	His	Ser	Phe	Gln	Asn	Leu	Gly	Ile	Gln	Cys	Val	Lys	
_		355					360					365				
aag	cgg	gac	ctg	gag	cag	gct	atc	agt	cag	cgc	atc	cag	acc	aac	aac	1152
							Ile									
	370					375					380					
aac	ccc	ttc	caa	gtt	cct	ata	gaa	gag	cag	cgt	ggg	gac	tac	gac	ctg	1200
Asn	Pro	Phe	Gln	Val	Pro	Ile	Glu	Glu	Gln	Arg	, Gly	Asp	Tyr	Asp	Leu	
385					390					395	5				400	
aat	gct	gto	g cgg	cto	tgc	ttc	cag	gto	aca	gto	g cgç	gac	cca	tca	ggc	1248
Asn	Ala	Val	. Arg	Leu	ı Cys	Phe	Gln	Val	. Thr	· Val	L Arc	g Asp	Pro	Ser	Gly	
				405	5				410)				415	.	
agg	g ccc	cto	c cgc	: ctq	g ccg	g cct	gto	ctt	cct	cat	t cc	ato	ttt	gad	aat	1296
Arç	g Pro	Lei	a Arg	Lei	ı Pro	Pro	Val	. Le	ı Pro	His	s Pro	o Ile	e Phe	e Asp	Asn	
			420)				425	5				430)		
cgt	gco		c aac	act	t gco	gag	g cto	aa e	gato	c tg	c cga	a gto	g aad	c cga	a aac	1344
															g Asn	
		43					440					44			•	

		-	_			ggg Gly 455	_								1392
, ,	_		•	_		gag Glu				_					 1440
-	-				•	caa Gln	_	_			_				1488
						tac Tyr									1536
_	-		_	_	_	cgg Arg									1584
						ctg Leu 535									1632
			_			aca Thr					_	-			1680
_				-	Gly	ccc Pro									1728
	_			Ser	=	agc Ser		_	Ser					Ala	1776
_			Pro		_	tca Ser		Leu					Tyr		1824

ttt	ccc	acc	atg	gtg	ttt	cct	tct	ggg	cag	atc	agc	cag	gcc	tcg	gcc	1872
Phe	Pro	Thr	Met	Val	Phe	Pro	Ser	Gly	Gln	Ile	Ser	Gln	Ala	Ser	Ala	
	610					615					620					
ttg	gcc	ccg	gcc	cct	ccc	caa	gtc	ctg	ccc	cag	gct	cca	gcc	cct	gcc	1920
Leu	Ala	Pro	Ala	Pro	Pro	Gln	Val	Leu	Pro	Gln	Ala	Pro	Ala	Pro	Ala	
625					630					635					640	
cct	act	cca	gcc	atq	qta	tca	qct	ctq	qcc	cag	qcc	cca	gcc	cct	qtc	1968
	_		Ala	_	-					_						
				645					650					655		
				0.0												
cca	gtc	cta	gcc	сса	ggc	cct	cct	cag	gct	gtg	gcc	cca	cct	gcc	ccc	2016
Pro	Val	Leu	Ala	Pro	Gly	Pro	Pro	Gln	Ala	Val	Ala	Pro	Pro	Ala	Pro	
			660		-			665					670			
aaq	ccc	acc	caq	act	aaa	qaa	qqa	acq	ctq	tca	qaq	qcc	ctq	ctq	cag	2064
_			Gln	-		-		-	_			_	_	_	_	
-1-		675			1		680					685				
ctq	caq	ttt	gat	gat	qaa	gac	ctg	ggg	gcc	ttg	ctt	ggc	aac	agc	aca	2112
_	_		Asp	-	-	-	-					-		-		
	690		•	-		695		-			700	_				
gac	сса	gct	gtg	ttc	aca	gac	ctg	gca	tcc	gtc	gac	aac	tcc	gag	ttt	2160
Asp	Pro	Ala	Val	Phe	Thr	Asp	Leu	Ala	Ser	Val	Asp	Asn	Ser	Glu	Phe	
705					710	_				715	_				720	
caq	caq	cta	ctg	aac	caq	aac	ata	cct	ata	acc	ccc	cac	aca	act	gag	2208
-		_	Leu		_					_					• -	
				725					730					735		
CCC	ato	cta	atg	gad	tac	cct	gag	act.	ata	act	cac	cta	ata	aca	aga	2256
	-	_	Met													
0		c u	740	Jiu	- y -		J_ U	745			• • • • •	∵u	750		 3	
			740					,43					, 50			
acc	C 2 C	200	ccc	666	a a c	66.5	act	cc+	ac+	000	c+~			C C C	aaa	2304
	_				_		_		_		_		_			2504
wrd	GTU			FIO	ASP	PLO			Ald	F10	reu			LIO	Gly	
		755					760					765				

ctc ccc aat ggc ctc ctt tca gga gat gaa gac ttc tcc tcc att gcg 2352 Leu Pro Asn Gly Leu Leu Ser Gly Asp Glu Asp Phe Ser Ser Ile Ala 770 gac atg gac ttc tca gcc ctg ctg agt cag atc agc tcc taa 2394 Asp Met Asp Phe Ser Ala Leu Leu Ser Gln Ile Ser Ser * 785 790 795

<210> 14

<211> 797

<212> PRT

<213> Aeguorea victoria and human

<400> 14

Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu 1 10 15 Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly 25 Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile 35 40 Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr 55 Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys 65 70 75 80 Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu 100 105 110 Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly 120 Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr 130 135 140 Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn 150 155 Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser 165 170 Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly 180 .185

Pro	Val	Leu	Leu	Pro	Asp	Asn	His	Tyr	Leu	Ser	Thr	Gln	Ser	Ala	Leu
		195					200					205			
Ser	Lys	Asp	Pro	Asn	Glu	Lys	Arg	Asp	His	Met	∀al	Leu	Leu	Glu	Phe
	210					215					220				
Val	Thr	Ala	Ala	Gly	Ile	Thr	Leu	Gly	Met	Asp	Glu	Leu	Tyr	Lys	Ser
225					230					235					240
Gly	Leu	Arg	Ser	Arg	Ala	Met	Asp	Glu	Leu	Phe	Pro	Leu	Ile	Phe	Pro
				245					250					255	
Ala	Glu	Pro	Ala	Gln	Ala	Ser	Gly	Pro	Tyr	Val	Glu	Ile	Ile	Glu	Gln
			260					265					270		
Pro	Lys	Gln	Arg	Gly	Met	Arg	Phe	Arg	Tyr	Lys	Cys	Glu	Gly	Arg	Ser
		275					280					285			
Ala	Gly	Ser	Ile	Pro	Gly	Glu	Arg	Ser	Thr	Asp	Thr	Thr	Lys	Thr	His
	290					295					300				
Pro	Thr	Ile	Lys	Ile	Asn	Gly	Tyr	Thr	Gly	Pro	Gly	Thr	Val	Arg	Ile
305		•			310					315					320
Ser	Leu	Val	Thr		Asp	Pro	Pro	His	Arg	Pro	His	Pro	His	Glu	Leu
				325					330					335	
Val	Gly	Lys		Cys	Arg	Asp	Gly		Tyr	Glu	Ala	Glu	Leu	Cys	Pro
			340					345					350		
Asp	Arg		Ile	His	Ser	Phe		Asn	Leu	Gly	Ile	Gln	Cys	Val	Lys
		355					360					365			
Lys		Asp	Leu	Glu	Gln		Ile	Ser	Gln	Arg		Gln	Thr	Asn	Asn
_	370				_	375					380				
	Pro	Phe	GIn	Val		He	Glu	Glu	Gln		Gly	Asp	Tyr	Asp	
385	70.7	77 - 7	70	T	390	D)	61.	**. 3	m)	395	_	_	_		400
ASI	Ата	vaı	Arg		Cys	Pne	GIN	vai		vaı	Arg	Asp	Pro	Ser	GIY
71 ~~ ~	Dwa	T 0	7)	405	D	D	17- 1	T	410	77.2 -	D	T 3 -	70 b -	415	70
Arg	FIO	пеп	420	ьец	PIO	PIO	Val	425	PIO	HIS	Pro	11e		Asp	ASI
Ara	Δ1 a	Pro		Thr	Δla	Glu	Len		Tlo	Cvc	7~~	Wal	430	Arg	λαη
9	1110	435	ASII	1111	AIG	Olu	440	цуз	116	СуЗ	ALG	445	ASII	ALG	ASII
Ser	Glv		Cvs	Len	Glv	Glv		Glu	Tle	Phe	Len		Cue	Asp	T.ve
	450	-	O, O	200	O_j	455	110p	014		1	460	ncu	CyS	пор	Lys
Val		Lvs	Glu	Asp	Tle		Val	Tvr	Phe	Thr		Pro	Glv	Trp	Glu
465				<u>F</u>	470			- , -		475		110	OL J		480
	Ara	Glv	Ser	Phe		Gln	Ala	Asp	Val		Ara	Gln	Val	Ala	
	- 2	- 4		485				F	490					495	
Val	Phe	Arq	Thr		Pro	Tyr	Ala	Asp		Ser	Leu	Gln	Ala	Pro	Val
		-	500			_		505					510		

Arg	vaı		мес	GIN	Leu	Arg		Pro	ser	Asp	Arg		Leu	Ser	GIU
		515					520					525			
Pro	Met	Glu	Phe	Gln	Tyr	Leu	Pro	Asp	Thr	Asp	Asp	Arg	His	Arg	Ile
	530					535					540		•		
Glu	Glu	Lys	Arg	Lys	Arg	Thr	Tyr	Glu	Thr	Phe	Lys	Ser	Ile	Met	Lys
545					550					555					560
Lys	Ser	Pro	Phe	Ser	Gly	Pro	Thr	Asp	Pro	Arg	Pro	Pro	Pro	Arg	Arg
				565					570					575	
Ile	Ala	Val	Pro	Ser	Arg	Ser	Ser	Ala	Ser	Val	Pro	Lys	Pro	Ala	Pro
			580					585					590		
Gln	Pro	Tyr	Pro	Phe	Thr	Ser	Ser	Leu	Ser	Thr	Ile	Asn	Tyr	Asp	Glu
		595					600					605			
Phe	Pro	Thr	Met	Val	Phe	Pro	Ser	Gly	Gln	Ile	Ser	Gln	Ala	Ser	Ala
	610					615					620				
Leu	Ala	Pro	Ala	Pro	Pro	Gln	Val	Leu	Pro	Gln	Ala	Pro	Ala	Pro	Ala
625					630					635					640
Pro	Ala	Pro	Ala	Met	Val	Ser	Ala	Leu	Ala	Gln	Ala	Pro	Ala	Pro	Val
				645					650					655	
Pro	Val	Leu	Ala	Pro	Gly	Pro	Pro	Gln	Ala	Val	Ala	Pro	Pro	Ala	Pro
			660					665					670		
Lys	Pro	Thr	Gln	Ala	Gly	Glu	Gly	Thr	Leu	Ser	Glu	Ala	Leu	Leu	Gln
		675					680					685			
Leu	Gln	Phe	Asp	Asp	Glu	Asp	Leu	Gly	Ala	Leu	Leu	Gly	Asn	Ser	Thr
	690					695					700				
Asp	Pro	Ala	Val	Phe	Thr	Asp	Leu	Ala	Ser	Val	Asp	Asn	Ser	Glu	Phe
705					710					715					720
Gln	Gln	Leu	Leu	Asn	Gln	Gly	Ile	Pro	Val	Ala	Pro	His	Thr	Thr	Glu
				725					730					735	
Pro	Met	Leu	Met	Glu	Tyr	Pro	Glu	Ala	Ile	Thr	Arg	Leu	Val	Thr	Gly
			740					745					750		
Ala	Gln	Arg	Pro	Pro	Asp	Pro	Ala	Pro	Ala	Pro	Leu	Gly	Ala	Pro	Gly
		755					760					765			
Leu	Pro	Asn	Gly	Leu	Leu	Ser	Gly	Asp	Glu	Asp	Phe	Ser	Ser	Ile	Ala
	770					775					780				
Asp	Met	Asp	Phe	Ser	Ala	Leu	Leu	Ser	Gln	Ile	Ser	Ser			
785					790					795					

<210> 15

<211> 2394

<212> DNA

PCT/DK99/00562

96

52

<213> Aequorea victoria and human

<220>
<221> CDS
<222> (1)...(2394)
<400> 15

WO 00/23615

atg gac gaa ctg ttc ccc ctc atc ttc ccg gca gag cca gcc cag gcc 48
Met Asp Glu Leu Phe Pro Leu Ile Phe Pro Ala Glu Pro Ala Gln Ala
1 5 10 15

tct ggc ccc tat gtg gag atc att gag cag ccc aag cag cgg ggc atg
Ser Gly Pro Tyr Val Glu Ile Ile Glu Gln Pro Lys Gln Arg Gly Met
20 25 30

cgc ttc cgc tac aag tgc gag ggg cgc tcc gcg ggc agc atc cca ggc 144
Arg Phe Arg Tyr Lys Cys Glu Gly Arg Ser Ala Gly Ser Ile Pro Gly
35 40 45

gag agg agc aca gat acc acc aag acc cac ccc acc atc aag atc aat 192
Glu Arg Ser Thr Asp Thr Thr Lys Thr His Pro Thr Ile Lys Ile Asn
50 55 60

ggc tac aca gga cca ggg aca gtg cgc atc tcc ctg gtc acc aag gac 240 Gly Tyr Thr Gly Pro Gly Thr Val Arg Ile Ser Leu Val Thr Lys Asp 65 70 75 80

cct cct cac cgg cct cac ccc cac gag ctt gta gga aag gac tgc cgg

Pro Pro His Arg Pro His Pro His Glu Leu Val Gly Lys Asp Cys Arg

85

90

95

gat ggc ttc tat gag gct gag ctc tgc ccg gac cgc tgc atc cac agt

Asp Gly Phe Tyr Glu Ala Glu Leu Cys Pro Asp Arg Cys Ile His Ser

100 105 110

ttc cag aac ctg gga atc cag tgt gtg aag aag cgg gac ctg gag cag

384

Phe Gln Asn Leu Gly Ile Gln Cys Val Lys Lys Arg Asp Leu Glu Gln

115

120

125

gct atc agt cag cgc atc cag acc aac aac ccc ttc caa gtt cct 432

Ala Ile Ser Gln Arg Ile Gln Thr Asn Asn Pro Phe Gln Val Pro ata gaa gag cag cgt ggg gac tac gac ctg aat gct gtg cgg ctc tgc Ile Glu Glu Gln Arg Gly Asp Tyr Asp Leu Asn Ala Val Arg Leu Cys ttc cag gtg aca gtg cgg gac cca tca ggc agg ccc ctc cgc ctg ccg Phe Gln Val Thr Val Arg Asp Pro Ser Gly Arg Pro Leu Arg Leu Pro cct gtc ctt cct cat ccc atc ttt gac aat cgt gcc ccc aac act qcc Pro Val Leu Pro His Pro Ile Phe Asp Asn Arg Ala Pro Asn Thr Ala gag etc aag ate tge ega gtg aac ega aac tet gge age tge etc ggt Glu Leu Lys Ile Cys Arg Val Asn Arg Asn Ser Gly Ser Cys Leu Gly ggg gat gag atc ttc cta ctg tgt gac aag gtg cag aaa gag gac att Gly Asp Glu Ile Phe Leu Cys Asp Lys Val Gln Lys Glu Asp Ile gag gtg tat ttc acg gga cca ggc tgg gag gcc cga ggc tcc ttt tcg Glu Val Tyr Phe Thr Gly Pro Gly Trp Glu Ala Arg Gly Ser Phe Ser caa gct gat gtg cac cga caa gtg gcc att gtg ttc cgg acc cct ccc Gln Ala Asp Val His Arg Gln Val Ala Ile Val Phe Arg Thr Pro Pro tac gca gac ccc agc ctg cag gct cct gtg cgt gtc tcc atg cag ctg Tyr Ala Asp Pro Ser Leu Gln Ala Pro Val Arg Val Ser Met Gln Leu cgg cgg cct tcc gac cgg gag ctc agt gag ccc atg gaa ttc cag tac Arg Arg Pro Ser Asp Arg Glu Leu Ser Glu Pro Met Glu Phe Gln Tyr

ctg cca gat aca gac gat cgt cac cgg att gag gag aaa cgt aaa agg

Leu	Pro 290	Asp	Thr	Asp	Asp	Arg 295	His	Arg	Ile	Glu	Glu 300	Lys	Arg	Lys	Arg	
aca	tat	gag	acc	ttc	aag	agc	atc	atg	aag	aag	agt	cct	ttc	agc	gga	960
Thr	Tyr	Glu	Thr	Phe	Lys	Ser	Ile	Met	Lys	Lys	Ser	Pro	Phe	Ser	Gly	
305					310					315					320	
ccc	acc	gac	ccc	cgg	cct	сса	cct	cga	cgc	att	gct	gtg	cct	tcc	cgc	1008
Pro	Thr	Asp	Pro	Arg	Pro	Pro	Pro	Arg	Arg	Ile	Ala	Val	Pro	Ser	Arg	
				325					330					335		
agc	tca	gct	tct	gtc	ccc	aag	cca	gca	ccc	cag	ccc	tat	ccc	ttt	acg	1056
Ser	Ser	Ala	Ser	Val	Pro	Lys	Pro	Ala	Pro	Gln	Pro	Tyr	Pro	Phe	Thr	
			340					345					350			
tca	tcc	ctg	agc	acc	atc	aac	tat	gat	gag	ttt	ccc	acc	atg	gtg	ttt	1104
Ser	Ser	Leu	Ser	Thr	Ile	Asn	Tyr	Asp	Glu	Phe	Pro	Thr	Met	Val	Phe	
		355					360					365				
cct	tct	ggg	cag	atc	agc	cag	gcc	tcg	gcc	ttg	gcc	ccg	gcc	cct	ccc	1152
Pro	Ser	Gly	Gln	Ile	Ser	Gln	Ala	Ser	Ala	Leu	Ala	Pro	Ala	Pro	Pro	
	370					375					380					
caa	gtc	ctg	ccc	cag	gct	cca	gcc	cct	gcc	cct	gct	cca	gcc	atg	gta	1200
Gln	Val	Leu	Pro	Gln	Ala	Pro	Ala	Pro	Ala	Pro	Ala	Pro	Ala	Met	Val	
385					390					395					400	
tca	gct	ctg	gcc	cag	gcc	cca	gcc	cct	gtc	cca	gtc	cta	gcc	cca	ggc	1248
Ser	Ala	Leu	Ala	Gln	Ala	Pro	Ala	Pro	Val	Pro	Val	Leu	Ala	Pro	Gly	
	٠			405					410					415		
cct	cct	cag	gct	gtg	gcc	cca	cct	gcc	CCC	aag	ccc	acc	cag	gct	ggg	1296
Pro	Pro	Gln	Ala	Val	Ala	Pro	Pro	Ala	Pro	Lys	Pro	Thr	Gln	Ala	Gly	
			420					425					430			
gaa	gga	acg	ctg	tca	gag	gcc	ctg	ctg	cag	ctg	cag	ttt	gat	gat	gaa	1344
Glu	Gly	Thr	Leu	Ser	Glu	Ala	Leu	Leu	Gln	Leu	Gln	Phe	Asp	Asp	Glu	
		435					440					445				
gac	ctg	ggg	gcc	ttg	ctt	ggc	aac	agc	aca	gac	сса	gct	gtg	ttc	aca	1392

Asp	Leu 450	Gly	Ala	Leu	Leu	Gly 455	Asn	Ser	Thr	Asp	Pro 460	Ala	Val	Phe	Thr	
gac	ctg	gca	tcc	gtc	gac	aac	tcc	gag	ttt	cag	cag	ctg	ctg	aac	cag	1440
Asp	Leu	Ala	Ser	Val	Asp	Asn	Ser	Glu	Phe	Gln	Gln	Leu	Leu	Asn	Gln	
465					470					475					480	
ggc	ata	cct	gtg	gcc	ccc	cac	aca	act	gag	ccc	atg	ctg	atg	gag	tac	1488
Gly	Ile	Pro	Val	Ala	Pro	His	Thr	Thr	Glu	Pro	Met	Leu	Met	Glu	Tyr	
				485					490					495		
																1526
												agg				1536
Pro	GIU	Ата		Thr	Arg	Leu	vaı		GTA	Ата	Gin	Arg		Pro	Asp	
			500					505					510			
cca	act	cct	act	сса	cta	aaa	acc	cca	aaa	ctc	ccc	aat	aac	ctc	ctt	1584
	_						-					Asn				
		515				7	520		1			525	2			
		010					0.00					020				
tca	gga	gat	gaa	gac	ttc	tcc	tcc	att	gcg	gac	atg	gac	ttc	tca	gcc	1632
Ser	Gly	Asp	Glu	Asp	Phe	Ser	Ser	Ile	Ala	Asp	Met	Asp	Phe	Ser	Ala	
	530					535					540					
ctg	ctg	agt	cag	atc	agc	tcc	ttg	gat	cca	ccg	gtc	gcc	acc	atg	gtg	1680
Leu	Leu	Ser	Gln	Ile	Ser	Ser	Leu	Asp	Pro	Pro	Val	Ala	Thr	Met	Val	
545					550					555					560	
agc	aag	ggc	gag	gag	ctg	ttc	acc	ggg	gtg	gtg	ccc	atc	ctg	gtc	gag	1728
Ser	Lys	Gly	Glu	Glu	Leu	Phe	Thr	Gly	Val	Val	Pro	Ile	Leu		Glu	·
				565					570					575		
																1776
_	-		-	•				_		_		tcc				1776
Leu	Asp	GLY		Val	Asn	GLY	His		Phe	Ser	Val	Ser			GTĀ	
			580					585					590			
gag	aac	ast.	acc	acc	tac	aac	aac	cta	acc	cta	aan	ttc	atc	tac	acc	1824
		-	_				_	_		_	_	Phe		_		,
•	Ory	595		1111	1 Y L	OT.Y	600		T 11T	neu	- Lys	605		Oy 3	****	
		J 3 J					000					505				
acc	ggc	aag	ctg	ccc	gtg	ccc	tgg	ccc	acc	ctc	gtg	acc	acc	ctg	acc	1872

Thr	Gly	Lys	Leu	Pro	Val	Pro	Trp	Pro	Thr	Leu	Val	Thr	Thr	Leu	Thr	
	610					615					620					
tac	aac	ata	caq	tgc	ttc	agc	cac	tac	ccc	gac	cac	ato	aaα	caq	cac	1920
				Cys										_		
625	•			_	630		,	-		635					640	
gac	ttc	ttc	aag	tcc	gcc	atg	ccc	gaa	ggc	tac	gtc	cag	gag	cgc	acc	1968
Asp	Phe	Phe	Lys	Ser	Ala	Met	Pro	Glu	Gly	Tyr	Val	Gln	Glu	Arg	Thr	
				645					650					655		
				gac							-	_			-	2016
Ile	Phe	Phe		Asp	Asp	Gly	Asn	_	Lys	Thr	Arg	Ala		Val	Lys	
			660					665					670			
ttc	aaa	aac	a a c	acc	C‡ a	at a	220	cac	at c	a 2 a	cta	220	~~~	2+0	435	2064
				Thr						_	_	_			_	2004
11.0	Olu	675	1100	1111	шси	val	680	11± 9	110	GIU	neu	685	GLY	116	nsp	
ttc	aag	gag	gac	ggc	aac	atc	ctg	ggg	cac	aag	ctg	gag	tac	aac	tac	2112
Phe	Lys	Glu	Asp	Gly	Asn	Ile	Leu	Gly	His	Lys	Leu	Glu	Tyr	Asn	Tyr	
	690					695					700					
				gtc												2160
	Ser	His	Asn	Val	Tyr	Ile	Met	Ala	Asp	_	Gln	Lys	Asn	Gly	Ile	
705					710					715					720	
224	~+~		++~		a+-											2200
				aag Lys		=					_		_	gtg		2208
БУЗ		ASII	THE	725	116	Arg	1113	N311	730	Gru	Asp	GIY	ser	735	GIII	•
	•			0					, 50					, 55		
ctc	gcc	gac	cac	tac	cag	cag	aac	acc	ccc	atc	ggc	gac	ggc	ccc	gtg	2256
				Tyr												
			740					745					750			
ctg	ctg	ccc	gac	aac	cac	tac	ctg	agc	acc	cag	tcc	gcc	ctg	agc	aaa	2304
Leu	Leu	Pro	Asp	Asn	His	Tyr	Leu	Ser	Thr	Gln	Ser	Ala	Leu	Ser	Lys	
		755					760					765				
										_						00
gac	ccc	aac	gag	aag	cgc	gat	cac	atg	gtc	ctg	ctg	gag	ttc	gtg	acc	2352

Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val Thr
770 780

57

gcc gcc ggg atc act ctc ggc atg gac gag ctg tac aag taa . 2394
Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys *
785 790 795

<210> 16

<211> 797

<212> PRT

<213> Aequorea victoria and human

<400> 16

Met Asp Glu Leu Phe Pro Leu Ile Phe Pro Ala Glu Pro Ala Gln Ala 1 5 10 15

Ser Gly Pro Tyr Val Glu Ile Ile Glu Gln Pro Lys Gln Arg Gly Met
20 25 30

Arg Phe Arg Tyr Lys Cys Glu Gly Arg Ser Ala Gly Ser Ile Pro Gly
35 40 45

Glu Arg Ser Thr Asp Thr Thr Lys Thr His Pro Thr Ile Lys Ile Asn
50 55 60

Gly Tyr Thr Gly Pro Gly Thr Val Arg Ile Ser Leu Val Thr Lys Asp
65 70 75 80

Pro Pro His Arg Pro His Pro His Glu Leu Val Gly Lys Asp Cys Arg
85 90 95

Asp Gly Phe Tyr Glu Ala Glu Leu Cys Pro Asp Arg Cys Ile His Ser 100 105 110

Phe Gln Asn Leu Gly Ile Gln Cys Val Lys Lys Arg Asp Leu Glu Gln
115 120 125

Ala Ile Ser Gln Arg Ile Gln Thr Asn Asn Asn Pro Phe Gln Val Pro 130 135 140

Ile Glu Glu Gln Arg Gly Asp Tyr Asp Leu Asn Ala Val Arg Leu Cys

145 150 155 160

Phe Gln Val Thr Val Arg Asp Pro Ser Gly Arg Pro Leu Arg Leu Pro 165 170 175

Pro Val Leu Pro His Pro Ile Phe Asp Asn Arg Ala Pro Asn Thr Ala 180 185 190

Glu Leu Lys Ile Cys Arg Val Asn Arg Asn Ser Gly Ser Cys Leu Gly
195 200 205

Gly	-	Glu	Ile	Phe	Leu		Cys	Asp	Lys	Val		Lys	Glu	Asp	Ile
	210					215					220				
	Val	Tyr	Phe	Thr	Gly	Pro	Gly	Trp	Glu		Arg	Gly	Ser	Phe	
225		_			230					235					240
Gln	Ala	Asp	Val		Arg	Gln	Val	Ala		Val	Phe	Arg	Thr		Pro
				245					250					255	
Tyr	Ala	Asp		Ser	Leu	Gln	Ala		Val	Arg	Val	Ser		Gln	Leu
			260					265					270		
Arg	Arg	Pro	Ser	Asp	Arg	Glu		Ser	Glu	Pro	Met	Glu	Phe	Gln	Tyr
		275					280					285			
Leu	Pro	Asp	Thr	Asp	Asp	Arg	His	Arg	Ile	Glu	Glu	Lys	Arg	Lys	Arg
	290					295					300				
Thr	Tyr	Glu	Thr	Phe	Lys	Ser	Ile	Met	Lys	Lys	Ser	Pro	Phe	Ser	Gly
305					310					315					320
Pro	Thr	Asp	Pro	Arg	Pro	Pro	Pro	Arg	Arg	Ile	Ala	Val	Pro	Ser	Arg
				325					330					335	
Ser	Ser	Ala	Ser	Val	Pro	Lys	Pro	Ala	Pro	Gln	Pro	Tyr	Pro	Phe	Thr
			340					345					350		
Ser	Ser	Leu	Ser	Thr	Ile	Asn	Tyr	Asp	Glu	Phe	Pro	Thr	Met	Val	Phe
		355					360					365			
Pro	Ser	Gly	Gln	Ile	Ser	Gln	Ala	Ser	Ala	Leu	Ala	Pro	Ala	Pro	Pro
	370					375					380				
Gln	Val	Leu	Pro	Gln	Ala	Pro	Ala	Pro	Ala	Pro	Ala	Pro	Ala	Met	Val
385					390					395					400
Ser	Ala	Leu	Ala	Gln	Ala	Pro	Ala	Pro	Val	Pro	Val	Leu	Ala	Pro	Gly
				405					410					415	
Pro	Pro	Gln	Ala	Val	Ala	Pro	Pro	Ala	Pro	Lys	Pro	Thr	Gln	Ala	Gly
			420					425					430		
Glu	Gly	Thr	Leu	Ser	Glu	Ala	Leu	Leu	Gln	Leu	Gln	Phe	Asp	Asp	Glu
		435					440					445			
Asp	Leu	Gly	Ala	Leu	Leu	Gly	Asn	Ser	Thr	Asp	Pro	Ala	Val	Phe	Thr
	450					455					460				
Asp	Leu	Ala	Ser	Val	Asp	Asn	Ser	Glu	Phe	Gln	Gln	Leu	Leu	Asn	Glr
465					470					475					480
	Ile	Pro	Val	Ala	Pro	His	Thr	Thr	Glu		Met	Leu	Met	Glu	Tvr
_				485					490					495	-]
Pro	Glu	Ala	Ile		Arg	Leu	Val	Thr		ДІа	Gln	Ara	Pro		Asr
•			500		9			505	- x y			9	510	-+0	F
Pro	د ۱ ۵	Pro		Pro	Leu	G1 v	Δ 1 =		G1 v	Leu	Pro	Δος		I.e.i	T.e.
110	11TG	515	TTG	110	ıeu	оту	520		СТУ	neu	110	525	ату	цeи	пег
		213					J20					J Z J			

Ser	Gly	Asp	Glu	Asp	Phe	Ser	Ser	Ile	Ala	Asp	Met	Asp	Phe	Ser	Ala
	530					535					540				
Leu	Leu	Ser	Gln	Ile	Ser	Ser	Leu	Asp	Pro	Pro	Val	Ala	Thr	Met	Val
545					550					555			•		560
Ser	Lys	Gly	Glu	Glu	Leu	Phe	Thr	Gly	Val	Val	Pro	Ile	Leu	Val	Glu
				565					570					575	
Leu	Asp	Gly	Asp	Val	Asn	Gly	His	Lys	Phe	Ser	Val	Ser	Gly	Glu	Gly
			580					585					590		
Glu	Gly	Asp	Ala	Thr	Tyr	Gly	Lys	Leu	Thr	Leu	Lys	Phe	Ile	Cys	Thr
		595					600					605			
Thr	Gly	Lys	Leu	Pro	Val	Pro	Trp	Pro	Thr	Leu	Val	Thr	Thr	Leu	Thr
	610					615					620				
Tyr	Gly	Val	Gln	Cys		Ser	Arg	Tyr	Pro	_	His	Met	Lys	Gln	
625					630					635					640
Asp	Phe	Phe	Lys	Ser	Ala	Met	Pro	Glu	-	Tyr	Val	Gln	Glu	Arg	Thr
				645					650					655	
Ile	Phe	Phe	_	Asp	Asp	Gly	Asn	_	Lys	Thr	Arg	Ala		Val	Lys
			660					665					670		
Phe	Glu	_	Asp	Thr	Leu	Val		Arg	Ile	Glu	Leu	Lys	Gly	Ile	Asp
		675	_				680		•	_		685		_	
Phe	_	Glu	Asp	Gly	Asn		Leu	Gly	His	Lys		Glu	Tyr	Asn	Туі
_	690	•	_		_	695			_	_	700	_	_		- 1
	Ser	His	Asn	Val	_	lle	Met	Ala	Asp		GIn	Lys	Asn	GLY	
705	** 1	.	D1	.	710	20	•	3	T 1.	715	3	0 1	0 -	**- 7	720
ьуs	vaı	Asn	Pne	-	TIE	Arg	HlS	Asn		GIU	Asp	Gly	Ser		GII
T	7.1.	7	T7	725	C1	C1	7	m	730	T1 -	C1	7	C1	735	17-1
ьеu	Ата	Asp		Tyr	GIN	GIN	ASI		PIO	тте	GIÀ	Asp	_	PIO	val
Ton	T 0.11	Dwo	740	7 ~ ~	uic	m	T 0.11	745	ጥኮሎ	C1 n	C ~ ~	ת ות	750	50*	T
ьeu	теп	755	ASP	ASII	птъ	ıyı	760	ser	IIII	GIII	ser	Ala 765	ьeu	ser	ту
λας	Dro		C1.,	T	7 ~~	7.00		Mot	17 - 1	T 011	T 011		Dho	17 - 1	Th.
vah	770	ASII	GIU	гу	Arg	775	птѕ	met	val	ьеи		Glu	rne	val	1111
7.1.~		C1	T 1 ~	mh	T 01-	_	Ma+	7 ~~	C1	T 0	780	T			
	WIG	стА	Ile	TUL		стА	met	Asp	GIU		ıyr	гуѕ			
785					790					795					

<210> 17

<211> 2757

<212> DNA

<213> Aequorea victoria and human

130

432

60

<220> <221> CDS <222> (1)...(2757) <400> 17 atg gtg agc aag ggc gag gtg ttc acc ggg gtg gtg ccc atc ctg 48 Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu 1 10 15 gtc gag ctg gac ggc gac gta aac ggc cac aag ttc agc gtg tcc ggc 96 Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly 20 25 gag ggc gag ggc gat gcc acc tac ggc aag ctg acc ctg aag ttc atc 144 Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile 35 40 tgc acc acc ggc aag ctg ccc gtg ccc tgg ccc acc ctc gtg acc acc 192 Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr 50 55 60 ctg acc tac ggc gtg cag tgc ttc agc cgc tac ccc qac cac atg aag 240 Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys 65 70 75 80 cag cac gac ttc ttc aag tcc gcc atg ccc gaa ggc tac gtc cag gag 288 Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu 85 90 95 ege ace ate the the aag gae gae gge aac tae aag ace ege gee gag 336 Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu 100 105 110 gtg aag ttc gag ggc gac acc ctg gtg aac cgc atc gag ctg aag ggc 384 Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arq Ile Glu Leu Lys Gly 115 120 125

atc gac ttc aag gag gac ggc aac atc ctg ggg cac aag ctg gag tac

Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr

140

		aac Asn 150					_	_	_		480
		ttc Phe						_		-	528
		cac	_	_					-		576
		gac Asp					_		_	_	624
		gag Glu									672
		atc Ile 230			_	-	 _		_		720
		ggc Gly							_	_	768
		gag Glu									816
		gtg Val								_	864
		ccc Pro									912

 		 -	_			-	tgc Cys		-	_	-			960
							aca Thr 330			_			_	1008
		-					cgc Arg	_					-	1056
	_		-		-		tgt Cys	-		-			-	1104
	-			_		_	aaa Lys	-	-		_	-	_	1152
							gtt Val		_	-				1200
			-				tac Tyr 410		_					1248
 	-		_		-	-	gat Asp	-				-		1296
			_				tac Tyr	-						1344
		_				_	aag Lys						-	1392

						aat				_		_	-		-	1440
	Leu	Asn	Pro	Glu	_	Asn	Glu	Thr	Phe		Phe	Gln	Leu	Lys		
465					470					475					480	
tcg	gac	aaa	gac	aga	aga	ctg	tca	gta	gag	att	tgg	gat	tgg	gat	ttg	1488
Ser	Asp	Lys	Asp	Arg	Arg	Leu	Ser	Val	Glu	Ile	Trp	Asp	Trp	Asp	Leu	
				485					490					495		
acc	agc	agg	aat	gac	ttc	atg	gga	tct	ttg	tcc	ttt	ggg	att	tct	gaa	1536
Thr	Ser	Arg	Asn	Asp	Phe	Met	Gly	Ser	Leu	Ser	Phe	Gly	Ile	Ser	Glu	
			500					505					510			
ctt	cag	aag	gcc	agt	gtt	gat	ggc	tgg	ttt	aag	tta	ctg	agc	cag	gag	1584
Leu	Gln	Lys	Ala	Ser	Val	Asp	Gly	Trp	Phe	Lys	Leu	Leu	Ser	Gln	Glu	
		515					520					525				
gaa	ggc	gag	tac	ttc	aat	gtg	cct	gtg	cca	cca	gaa	gga	agt	gag	gcc	1632
Glu	Gly	Glu	Tyr	Phe	Asn	Val	Pro	Val	Pro	Pro	Glu	Gly	Ser	Glu	Ala	
	530					535					540					
aat	gaa	gaa	ctg	cgg	cag	aaa	ttt	gag	agg	gcc	aag	atc	agt	cag	gga	1680
Asn	Glu	Glu	Leu	Arg	Gln	Lys	Phe	Glu	Arg	Ala	Lys	Ile	Ser	Gln	Gly	
545					550					555					560	
acc	aag	gtc	ccg	gaa	gaa	aag	acg	acc	aac	act	gtc	tcc	aaa	ttt	gac	1728
Thr	Lys	Val	Pro	Glu	Glu	Lys	Thr	Thr	Asn	Thr	Val	Ser	Lys	Phe	Asp	
				565					570					575		_
aac	aat	ggc	aac	aga	gac	cgg	atg	aaa	ctg	acc	gat	ttt	aac	ttc	cta	1776
Asn	Asn	Gly	Asn	Arg	Asp	Arg	Met	Lys	Leu	Thr	Asp	Phe	Asn	Phe	Leu	
			580					585					590			
atg	gtg	ctg	ggg	aaa	ggc	agc	ttt	ggc	aag	gtc	atg	ctt	tca	gaa	cga	1824
Met	Val	Leu	Gly	Lys	Gly	Ser	Phe	Gly	Lys	Val	Met	Leu	Ser	Glu	Arg	
		595					600					605				
aaa	ggc	aca	gat	gag	ctc	tat	gct	gtg	aag	atc	ctg	aag	aag	gac	gtt	1872
Lys	Gly	Thr	Asp	Glu	Leu	Tyr	Ala	Val	Lys	Ile	Leu	Lys	Lys	Asp	Val	
	610					615					620			-		

			_	_	_			-		atg Met			-			1920
625	•				630					635			•		640	
ttg	gcc	ctg	cct	ggg	aag	ccg	ccc	ttc	ctg	acc	cag	ctc	cac	tcc	tgc	1968
Leu	Ala	Leu	Pro		Lys	Pro	Pro	Phe	Leu	Thr	Gln	Leu	His	Ser	Cys	
				645					650					655		
ttc	cag	acc	atg	gac	cgc	ctg	tac	ttt	gtg	atg	gag	tac	gtg	aat	ggg	2016
Phe	Gln	Thr		Asp	Arg	Leu	Tyr	Phe	Val	Met	Glu	Tyr	Val	Asn	Gly	
			660					665					670			
ggc	gac	ctc	atg	tat	cac	atc	cag	caa	gtc	ggc	cgg	ttc	aag	gag	ccc	2064
Gly	Asp	Leu	Met	Tyr	His	Ile	Gln	Gln	Val	Gly	Arg	Phe	Lys	Glu	Pro	
		675					680					685				
cat	gct	gta	ttt	tac	gct	gca	gaa	att	gcc	atc	ggt	ctg	ttc	ttc	tta	2112
His	Ala	Val	Phe	Tyr	Ala	Ala	Glu	Ile	Ala	Ile	Gly	Leu	Phe	Phe	Leu	
	690					695					700					
cag	agt	aag	ggc	atc	att	tac	cgt	gac	cta	aaa	ctt	gac	aac	gtg	atg	2160
Gln	Ser	Lys	Gly	Ile	Ile	Tyr	Arg	Asp	Leu	Lys	Leu	Asp	Asn	Val	Met	
705					710					715					720	
ctc	gat	tct	gag	gga	cac	atc	aag	att	gcc	gat	ttt	ggc	atg	tgt	aag	2208
Leu	Asp	Ser	Glu	Gly	His	Ile	Lys	Ile	Ala	Asp	Phe	Gly	Met	Cys	Lys	
				725					730					735		
gaa	aac	atc	tgg	gat	ggg	gtg	aca	acc	aag	aca	ttc	tgt	ggc	act	cca	2256
Glu	Asn	Ile	Trp	Asp	Gly	Val	Thr	Thr	Lys	Thr	Phe	Cys	Gly	Thr	Pro	
			740					745					750			
gac	tac	atc	gcc	ccc	gag	ata	att	gct	tat	cag	ccc	tat	ggg	aag	tcc	2304
Asp	Tyr	Ile	Ala	Pro	Glu	Ile	Ile	Ala	Tyr	Gln	Pro	Tyr	Gly	Lys	Ser	
		755					760					765				
gtg	gat	tgg	tgg	gca	ttt	gga	gtc	ctg	ctg	tat	gaa	atg	ttg	gct	ggg	2352
Val	Asp	Trp	Trp	Ala	Phe	Gly	Val	Leu	Leu	Tyr	Glu	Met	Leu	Ala	Gly	
	770					775					780					

65

caq	qca	ccc	ttt	gaa	aaa	gag	gat	gaa	gat	gaa	ctc	ttc	caa	tcc	atc	2400
_	_			-			-	Glu	-	_						
785	•				790		- · - <u>-</u>		•	795					800	
atg	gaa	cac	aac	gta	gcc	tat	ccc	aag	tct	atg	tcc	aag	gaa	gct	gtg	2448
Met	Glu	His	Asn	Val	Ala	Tyr	Pro	Lys	Ser	Met	Ser	Lys	Glu	Ala	Val	
				805					810					815		
gcc	atc	tgc	aaa	ggg	ctg	atg	acc	aaa	cac	cca	ggc	aaa	cgt	ctg	ggt	2496
Ala	Ile	Cys	Lys	Gly	Leu	Met	Thr	Lys	His	Pro	Gly	Lys	Arg	Leu	Gly	
			820					825					830			
tgt	gga	cct	gaa	ggc	gaa	cgt	gat	atc	aaa	gag	cat	gca	ttt	ttc	cgg	2544
Cys	Gly	Pro	Glu	Gly	Glu	Arg	Asp	Ile	Lys	Glu	His	Ala	Phe	Phe	Arg	
		835					840					845				
tat	att	gat	tgg	gag	aaa	ctt	gaa	cgc	aaa	gag	atc	cag	ccc	cct	tat	2592
Tyr	Ile	Asp	Trp	Glu	Lys	Leu	Glu	Arg	Lys	Glu	Ile	Gln	Pro	Pro	Tyr	
	850					855					860					
aag	cca	aaa	gct	aga	gac	aag	aga	gac	acc	tcc	aac	ttc	gac	aaa	gag	2640
Lys	Pro	Lys	Ala	Arg	Asp	Lys	Arg	Asp	Thr	Ser	Asn	Phe	Asp	Lys	Glu	
865					870					875					880	
ttc	acc	aga	cag	cct	gtg	gaa	ctg	acc	ccc	act	gat	aaa	ctc	ttc	atc	2688
Phe	Thr	Arg	Gln	Pro	Val	Glu	Leu	Thr	Pro	Thr	Asp	Lys	Leu	Phe	Ile	
				885					890					895		
atg	aac	ttg	gac	caa	aat	gaa	ttt	gct	ggc	ttc	tct	tat	act	aac	cca	2736
Met	Asn	Leu	-	Gln	Asn	Glu	Phe	Ala	Gly	Phe	Ser	Tyr	Thr	Asn	Pro	
			900					905					910			
		gtc				tag										2757
Glu	Phe	Val	Ile	Asn	Val	*										
		915														
				-												

<210> 18

<211> 918

<212> PRT

<213> Aequorea victoria and human

<400> 18

Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu 10 Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly 25 Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr 55 Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys 65 70 75 80 Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu 85 90 Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu 105 100 110 Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly 120 Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr 130 135 140 Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn 150 Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser 165 170 Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly 185 Pro Val Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu 200 205 Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe 215 Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys Ser 230 235 Gly Leu Arg Ser Arg Gly Lys Met Ala Asp Pro Ala Ala Gly Pro Pro 245 Pro Ser Glu Gly Glu Glu Ser Thr Val Arg Phe Ala Arg Lys Gly Ala 265 Leu Arg Gln Lys Asn Val His Glu Val Lys Asn His Lys Phe Thr Ala 275 280 285

Arg	Phe	Phe	Lys	Gln	Pro	Thr	Phe	Cys	Ser	His	Cys	Thr	Asp	Phe	Ile
	290					295					300				
Trp	Gly	Phe	Gly	Lys	Gln	Gly	Phe	Gln	Cys	Gln	Vаl	Cys	Cys	Phe	Val
305					310					315					320
Val	His	Lys	Arg	Cys	His	Glu	Phe	Val	Thr	Phe	Ser	Cys	Pro	Gly	Ala
				325					330					335	
Asp	Lys	Gly	Pro	Ala	Ser	Asp	Asp	Pro	Arg	Ser	Lys	His	Lys	Phe	Lys
			340					345					350		
Ile	His	Thr	Tyr	Ser	Ser	Pro	Thr	Phe	Cys	Asp	His	Cys	Gly	Ser	Leu
		355					360					365			
Leu	Tyr	Gly	Leu	Ile	His	Gln	Gly	Met	Lys	Cys	Asp	Thr	Cys	Met	Met
	370					375					380				
Asn	Val	His	Lys	Arg	Cys	Val	Met	Asn	Val	Pro	Ser	Leu	Cys	Gly	Thr
385					390					395					400
Asp	His	Thr	Glu	Arg	Arg	Gly	Arg	Ile	Tyr	Ile	Gln	Ala	His	Ile	Asp
				405					410					415	
Arg	Asp	Val	Leu	Ile	Val	Leu	Val	Arg	Asp	Ala	Lys	Asn	Leu	Val	Pro
			420					425					430		
Met	Asp	Pro	Asn	Gly	Leu	Ser	Asp	Pro	Tyr	Val	Lys	Leu	Lys	Leu	Ile
		435					440					445			
Pro	Asp		Lys	Ser	Glu	Ser		Gln	Lys	Thr	Lys		Ile	Lys	Cys
Pro	Asp 450		Lys	Ser	Glu	Ser 455		Gln	Lys	Thr	Lys 460		Ile	Lys	Cys
	450	Pro	_			455	Lys				460	Thr		Lys	
	450	Pro	_			455	Lys				460	Thr		_	
Ser 465	450 Leu	Pro Asn	Pro	Glu Arg	Trp 470	455 Asn	Lys Glu	Thr	Phe	Arg 475	460 Phe	Thr	Leu	Lys	Glu 480
Ser 465 Ser	450 Leu Asp	Pro Asn Lys	Pro Asp	Glu Arg 485	Trp 470 Arg	455 Asn Leu	Lys Glu Ser	Thr Val	Phe Glu 490	Arg 475 Ile	460 Phe Trp	Thr Gln Asp	Leu Trp	Lys Asp	Glu 480 Leu
Ser 465 Ser	450 Leu Asp	Pro Asn Lys	Pro Asp Asn	Glu Arg 485	Trp 470 Arg	455 Asn Leu	Lys Glu Ser	Thr Val Ser	Phe Glu 490	Arg 475 Ile	460 Phe Trp	Thr Gln Asp	Leu Trp Ile	Lys	Glu 480 Leu
Ser 465 Ser Thr	450 Leu Asp Ser	Pro Asn Lys Arg	Pro Asp Asn 500	Glu Arg 485 Asp	Trp 470 Arg Phe	455 Asn Leu Met	Lys Glu Ser Gly	Thr Val Ser 505	Phe Glu 490 Leu	Arg 475 Ile Ser	460 Phe Trp	Thr Gln Asp Gly	Leu Trp Ile 510	Lys Asp 495 Ser	Glu 480 Leu Glu
Ser 465 Ser Thr	450 Leu Asp Ser	Pro Asn Lys Arg	Pro Asp Asn 500	Glu Arg 485 Asp	Trp 470 Arg Phe	455 Asn Leu Met	Lys Glu Ser Gly	Thr Val Ser 505	Phe Glu 490 Leu	Arg 475 Ile Ser	460 Phe Trp	Thr Gln Asp Gly Leu	Leu Trp Ile 510	Lys Asp 495 Ser	Glu 480 Leu
Ser 465 Ser Thr	450 Leu Asp Ser Gln	Pro Asn Lys Arg Lys 515	Pro Asp Asn 500 Ala	Glu Arg 485 Asp Ser	Trp 470 Arg Phe	455 Asn Leu Met	Lys Glu Ser Gly Gly 520	Thr Val Ser 505 Trp	Phe Glu 490 Leu Phe	Arg 475 Ile Ser Lys	460 Phe Trp Phe Leu	Thr Gln Asp Gly Leu 525	Leu Trp Ile 510 Ser	Lys Asp 495 Ser	Glu 480 Leu Glu
Ser 465 Ser Thr	450 Leu Asp Ser Gln	Pro Asn Lys Arg Lys 515	Pro Asp Asn 500 Ala	Glu Arg 485 Asp Ser	Trp 470 Arg Phe	455 Asn Leu Met Asp	Lys Glu Ser Gly Gly 520	Thr Val Ser 505 Trp	Phe Glu 490 Leu Phe	Arg 475 Ile Ser Lys	460 Phe Trp Phe Leu	Thr Gln Asp Gly Leu 525	Leu Trp Ile 510 Ser	Lys Asp 495 Ser	Glu 480 Leu Glu
Ser 465 Ser Thr Leu Glu	Asp Ser Gln Gly 530	Pro Asn Lys Arg Lys 515 Glu	Pro Asp Asn 500 Ala	Glu Arg 485 Asp Ser	Trp 470 Arg Phe Val	455 Asn Leu Met Asp Val 535	Lys Glu Ser Gly Gly 520 Pro	Thr Val Ser 505 Trp Val	Phe Glu 490 Leu Phe	Arg 475 Ile Ser Lys	460 Phe Trp Phe Leu Glu 540	Thr Gln Asp Gly Leu 525 Gly	Leu Trp Ile 510 Ser	Lys Asp 495 Ser Gln	Glu 480 Leu Glu Glu
Ser 465 Ser Thr Leu Glu	Asp Ser Gln Gly 530	Pro Asn Lys Arg Lys 515 Glu	Pro Asp Asn 500 Ala	Glu Arg 485 Asp Ser	Trp 470 Arg Phe Val Asn	455 Asn Leu Met Asp Val 535	Lys Glu Ser Gly Gly 520 Pro	Thr Val Ser 505 Trp Val	Phe Glu 490 Leu Phe	Arg 475 Ile Ser Lys Pro	460 Phe Trp Phe Leu Glu 540	Thr Gln Asp Gly Leu 525 Gly	Leu Trp Ile 510 Ser	Lys Asp 495 Ser	Glu 480 Leu Glu Glu Ala
Ser 465 Ser Thr Leu Glu Asn 545	Asp Ser Gln Gly 530 Glu	Pro Asn Lys Arg Lys 515 Glu Glu	Pro Asp Asn 500 Ala Tyr Leu	Glu Arg 485 Asp Ser Phe Arg	Trp 470 Arg Phe Val Asn Gln 550	455 Asn Leu Met Asp Val 535 Lys	Lys Glu Ser Gly Gly 520 Pro	Thr Val Ser 505 Trp Val Glu	Phe Glu 490 Leu Phe Pro	Arg 475 Ile Ser Lys Pro	460 Phe Trp Phe Leu Glu 540 Lys	Thr Gln Asp Gly Leu 525 Gly Ile	Leu Trp Ile 510 Ser Ser	Lys Asp 495 Ser Gln Glu	Glu 480 Leu Glu Glu Ala Gly 560
Ser 465 Ser Thr Leu Glu Asn 545	Asp Ser Gln Gly 530 Glu	Pro Asn Lys Arg Lys 515 Glu Glu	Pro Asp Asn 500 Ala Tyr Leu	Glu Arg 485 Asp Ser Phe Arg Glu	Trp 470 Arg Phe Val Asn Gln 550	455 Asn Leu Met Asp Val 535 Lys	Lys Glu Ser Gly Gly 520 Pro	Thr Val Ser 505 Trp Val Glu	Phe Glu 490 Leu Phe Arg Asn	Arg 475 Ile Ser Lys Pro	460 Phe Trp Phe Leu Glu 540 Lys	Thr Gln Asp Gly Leu 525 Gly Ile	Leu Trp Ile 510 Ser Ser	Lys Asp 495 Ser Gln Glu Gln Phe	Glu 480 Leu Glu Glu Ala Gly 560
Ser 465 Ser Thr Leu Glu Asn 545 Thr	Asp Ser Gln . Gly 530 Glu	Pro Asn Lys Arg Lys 515 Glu Glu Val	Pro Asp Asn 500 Ala Tyr Leu Pro	Glu Arg 485 Asp Ser Phe Arg Glu 565	Trp 470 Arg Phe Val Asn Gln 550 Glu	455 Asn Leu Met Asp Val 535 Lys	Lys Glu Ser Gly 520 Pro Phe	Thr Val Ser 505 Trp Val Glu Thr	Phe Glu 490 Leu Phe Pro Arg Asn 570	Arg 475 Ile Ser Lys Pro Ala 555 Thr	460 Phe Trp Phe Leu 540 Lys	Thr Gln Asp Gly Leu 525 Gly Ile Ser	Leu Trp Ile 510 Ser Ser Lys	Lys Asp 495 Ser Gln Glu Gln Phe 575	Glu 480 Leu Glu Glu Ala Gly 560 Asp
Ser 465 Ser Thr Leu Glu Asn 545 Thr	Asp Ser Gln Gly 530 Glu Lys	Pro Asn Lys Arg Lys 515 Glu Glu Val	Pro Asp Asn 500 Ala Tyr Leu Pro Asn	Glu Arg 485 Asp Ser Phe Arg Glu 565	Trp 470 Arg Phe Val Asn Gln 550 Glu	455 Asn Leu Met Asp Val 535 Lys	Lys Glu Ser Gly 520 Pro Phe	Thr Val Ser 505 Trp Val Glu Thr	Phe Glu 490 Leu Phe Pro Arg Asn 570	Arg 475 Ile Ser Lys Pro Ala 555 Thr	460 Phe Trp Phe Leu 540 Lys	Thr Gln Asp Gly Leu 525 Gly Ile Ser	Leu Trp Ile 510 Ser Ser Lys Asn	Lys Asp 495 Ser Gln Glu Gln Phe	Glu 480 Leu Glu Glu Ala Gly 560 Asp
Ser 465 Ser Thr Leu Glu Asn 545 Thr	Asp Ser Gln Gly 530 Glu Lys Asn	Pro Asn Lys Arg Lys 515 Glu Glu Val	Pro Asp Asn 500 Ala Tyr Leu Pro Asn 580	Glu Arg 485 Asp Ser Phe Arg Glu 565 Arg	Trp 470 Arg Phe Val Asn Gln 550 Glu Asp	455 Asn Leu Met Asp Val 535 Lys Lys	Lys Glu Ser Gly 520 Pro Phe Thr	Thr Val Ser 505 Trp Val Glu Thr Lys 585	Phe Glu 490 Leu Phe Pro Arg Asn 570 Leu	Arg 475 Ile Ser Lys Pro Ala 555 Thr	460 Phe Trp Phe Leu 540 Lys Val	Thr Gln Asp Gly Leu 525 Gly Ile Ser Phe	Leu Trp Ile 510 Ser Ser Lys Asn 590	Lys Asp 495 Ser Gln Glu Gln Phe 575 Phe	Glu 480 Leu Glu Glu Ala Gly 560 Asp
Ser 465 Ser Thr Leu Glu Asn 545 Thr	Asp Ser Gln Gly 530 Glu Lys Asn	Pro Asn Lys Arg Lys 515 Glu Glu Val	Pro Asp Asn 500 Ala Tyr Leu Pro Asn 580	Glu Arg 485 Asp Ser Phe Arg Glu 565 Arg	Trp 470 Arg Phe Val Asn Gln 550 Glu Asp	455 Asn Leu Met Asp Val 535 Lys Lys	Lys Glu Ser Gly 520 Pro Phe Thr	Thr Val Ser 505 Trp Val Glu Thr Lys 585	Phe Glu 490 Leu Phe Pro Arg Asn 570 Leu	Arg 475 Ile Ser Lys Pro Ala 555 Thr	460 Phe Trp Phe Leu 540 Lys Val	Thr Gln Asp Gly Leu 525 Gly Ile Ser Phe	Leu Trp Ile 510 Ser Ser Lys Asn 590	Lys Asp 495 Ser Gln Glu Gln Phe 575	Glu 480 Leu Glu Glu Ala Gly 560 Asp

Lys		Thr	Asp	Glu	Leu	Tyr	Ala	Val	Lys	Ile	Leu	Lys	Lys	Asp	Val
	610					615					620				
	Ile	Gln	Asp	Asp	_	Val	Glu	Cys	Thr		Val	Glu	Lys	Arg	
625					630					635					640
Leu	Ala	Leu	Pro		Lys	Pro	Pro	Phe		Thr	Gln	Leu	His		Cys
				645					650					655	
Phe	Gln	Thr	Met	Asp	Arg	Leu	Tyr		Val	Met	Glu	Tyr	Val	Asn	Gly
			660					665					670		
Gly	Asp		Met	Tyr	His	Ile		Gln	Val	Gly	Arg	Phe	Lys	Glu	Pro
		675					680	•				685			
His		Val	Phe	Tyr	Ala		Glu	Ile	Ala	Ile	_	Leu	Phe	Phe	Leu
	690					695					700				
	Ser	Lys	Gly	Ile		Tyr	Arg	Asp	Leu		Leu	Asp	Asn	Val	Met
705					710					715					720
Leu	Asp	Ser	Glu		His	Ile	Lys	Ile		Asp	Phe	Gly	Met		Lys
	_		_	725					730					735	
Glu	Asn	Ile		Asp	Gly	Val	Thr		Lys	Thr	Phe	Cys	Gly	Thr	Pro
_	_		740					745					750		
Asp	Tyr		Ala	Pro	Glu	Ile		Ala	Tyr	Gln	Pro	=	Gly	Lys	Ser
	_	755	_				760	_		_		765	_		
Val		Trp	Trp	Ala	Phe		Val	Leu	Leu	Tyr		Met	Leu	Ala	Gly
-	770	_				775	_		_		780			_	
	Ala	Pro	Phe	Glu		Glu	Asp	Glu	Asp		Leu	Phe	Gln	Ser	
785	6 3		_		790	_	_	_	_	795	_	_			800
мет	GIu	HIS	Asn		Ala	Tyr	Pro	Lys		Met	Ser	Lys	Glu		Val
7.1	T 1 -	Q		805	_		~ 1	-	810	_	~ 3		_	815	~ 1
Ата	11e	Cys	_	GTÀ	Leu	Met	Thr	_	HIS	Pro	GIA	ьуs	Arg	Leu	GIY
C	C1	D	820	61	61	.	3	825	-	0 3			830	5 1	~
Cys	GIÀ		GIU	GIĀ	GLu	Arg		TTE	ьуs	GIu	His		Phe	Phe	Arg
m	Tl-	835	m	6 3	_	-	840	_	_	0 1	~ 1	845	_	_	_
ıyr		Asp	Trp	GIU	ьуs		GIU	Arg	ьуs	GIu		GIn	Pro	Pro	Tyr
T	850	.	7.7	_	_	855	_	_	** 1		860		_	_	
	Pro	rys	Ala	Arg		Lys	Arg	Asp	Thr		Asn	Phe	Asp	Lys	
865	m \	70	61		870	6 1	•	m).		875		-	_	5)	880
Pne	Thr	Arg	GIn		Vai	Glu	Leu	Thr		Thr	Asp	Lys	Leu		TTe
Mah	70	T	20	885	_	63	51.		890	51	•	_		895	_
мес	ASN	ьeu		GIN	ASN	GLU	rne		GIY	rne	ser	Tyr	Thr	Asn	Pro
C1	DL -	37 m 3	900	.	373			905					910		
GIU	Phe		тте	Asn	val										
		915													

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 27 April 2000 (27.04.2000)

(10) International Publication Number WO 00/23615 A3

- G01N 33/50, (51) International Patent Classification7: 21/64
- (21) International Application Number: PCT/DK99/00562
- (22) International Filing Date: 15 October 1999 (15.10.1999)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

PA 1998 01320

15 October 1998 (15.10.1998)

- (71) Applicant (for all designated States except US): BIOIM-AGE A/S [DK/DK]; Mørkhøj Bygade 28, DK-2860 Søborg (DK).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): ARKHAMMAR, Per, O., G. [SE/SE]; Husensjövägen 97, S-25252 Helsingborg (SE). TERRY, Bernard, Robert [GB/DK]; Frederiksberg Allé 15,1., DK-1820 Frederiksberg C (DK). SCUDDER, Kurt, Marshall [US/DK]; Lavendelhaven 70, DK-2830 Virum (DK). BJØRN, Sara, Petersen [DK/DK]; Klampenborgvej 102, DK-2800 Lyngby (DK). THASTRUP, Ole [DK/DK]; Birkevej 37, DK-3460 Birkerød (DK). HAGEL, Grith [DK/DK]; Harevænget 109, DK-2791 Dragør (DK).

- (74) Agent: PLOUGMANN, VINGTOFT & PARTNERS A/S; Sankt Annæ Plads 11, P.O. Box 3007, DK-1021 Copenhagen K (DK).
- (81) Designated States (national): AE, AL, AM, AT, AT (utility model), AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, CZ (utility model), DE, DE (utility model), DK, DK (utility model), DM, EE, EE (utility model), ES, FI, FI (utility model), GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (utility model), SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- With international search report.
- (88) Date of publication of the international search report: 29 March 2001

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METHOD FOR EXTRACTING QUANTITATIVE INFORMATION RELATING TO AN INFLUENCE ON A CELLU-LAR RESPONSE

(57) Abstract: An improved method and tools for quantifying the effect of an influence on cellular response is described. In particular, an improved method is described for detecting intracellular translocation or redistribution of biologically active polypeptides. The invention also describes several ways of contacting the cells with a substance influencing a cellular response and extracting quantitative information relating to the response in a highly parallel fashion. The method may be used as a very efficient procedure for testing or discovering the influence of a substance on a physiological process using commercially available parallel, high volume assay techniques, for example in connection with screening for new drugs, testing of substances for toxicity, and identifying drug targets for known or novel drugs.

tnten. Jonal Application No PCT/DK 99/00562

A CLASSIF IPC 7	GO1N33/50 GO1N21/64		
Anna-ther to	. International Entert Classification (IDC) or to both notional describe	leation and IDC	
	International Patent Classification (IPC) or to both national classifi	Caudi and IFC	
B. FIELDS	SEANCHED cumentation searched (classification system followed by classifica-	then exembole)	
	GOIN C12Q C12N C07K	inch symbols	
Documentat	ion searched other than minimum documentation to the extent that	such documents are included in the fields a	earched
Hechoric G	ata base consulted during the international search (name of data b	мого расиса, остан выно вос	•
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the r	elevant nessenes	Relevant to claim No.
Calcyony			
P,X	WO 98 45704 A (TULLIN SOEREN ;KA ALMHOLT (DK); NOVONORDISK AS (DK K) 15 October 1998 (1998-10-15) cited in the application See SEQ ID's SEQ ID's identical to SEQ ID 1,3,5,7,9,11,13 and 15 are prese	(); SCUDDER	1–39
			
X	WO 96 23898 A (NOVONORDISK AS ;1 OLE (DK); TULLIN SOEREN (DK); PC 8 August 1996 (1996-08-08) page 8 -page 17		2 9– 38
X	WO 97 11094 A (NOVONORDISK AS ;7 OLE (DK); TULLIN SOEREN (DK); PC 27 March 1997 (1997-03-27) the whole document	THASTRUP DULSEN LAR)	29–38
		-/	
1		•	
X Fust	ther documents are listed in the continuation of box C.	Patent family members are listed	In annex.
Special ca	stegories of cited documents:	"T" later document published after the Into	emational films date
	ent defining the general state of the art which is not dered to be of particular relevance	or priority date and not in conflict with cited to understand the principle or th	the application but
	document but published on or after the International	invention "X" document of particular relevance; the	
"L" docum	ent which may throw doubts on priority claim(s) or its cited to establish the publication date of another	cannot be considered novel or canno involve an inventive step when the de	ocument is taken alone
citatio	n or other special reason (as specified) nent retenting to an oral disclosure, use, exhibition or	"Y" document of particular relevance; the cannot be considered to involve an in- document is combined with one or m	ventive step when the
other	means means the published prior to the international filing date but	ments, such combination being obvious in the art.	
	than the priority date claimed	"&" document member of the same patent	family
Date of the	actual completion of the international search	Date of mailing of the international se	•
2	Prebruary 2000	2 3. 03.	2000
Name and	mailing address of the ISA	Authorized officer	
	European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rightly Tel (491-70) 940-2040 Tv 91 851 enorgi		
I	Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Hoekstra, S	

Inte. Jonal Application No PCT/DK 99/00562

		PC1/DK 99/00562
(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
		Toolan w want NV
	WO 91 01305 A (UNIV WALES MEDICINE) 7 February 1991 (1991-02-07) page 5, line 15 - line 20	29–38
(WO 95 07463 A (UNIV COLUMBIA ;WOODS HOLE OCEANOGRAPHIC INST (US); CHALFIE MARTIN) 16 March 1995 (1995-03-16) claim 26	29–38
(WO 96 03649 A (UNIV NORTH CAROLINA) 8 February 1996 (1996-02-08) page 49; example 6.10	29–38
X	WO 97 20931 A (US HEALTH ; HTUN HAN (US); HAGER GORDON L (US)) 12 June 1997 (1997–06–12) claims 41–58	29–38
X	WO 97 30074 A (CYTOGEN CORP ;UNIV NORTH CAROLINA (US)) 21 August 1997 (1997-08-21) page 57	29–38
X	WO 98 02571 A (TSIEN ROGER Y ;CUBITT ANDREW B (US); UNIV CALIFORNIA (US)) 22 January 1998 (1998-01-22) claims	29–38
X	WO 98 30715 A (ISACOFF EHUD Y ;SIEGAL MICAH S (US); UNIV CALIFORNIA (US); CALIFOR) 16 July 1998 (1998-07-16) the whole document	29–38
X	SAKAI ET AL: "Translocation of protein kinase C-gamma and epsilon - Direct visualization in living cells using fusion protein with green fluorescent protein" THE JOURNAL OF CELL BIOLOGY, US, ROCKEFELLER UNIVERSITY PRESS, XP002078902 ISSN: 0021-9525 the whole document	29-38
X	SCHMIDT ET AL: "Dynamic analysis of alpha-PKC-GFP chimera translocation events in smooth muscle with ultra-high speed 3D fluorescence microscopy" FASEB JOURNAL, US, FED. OF AMERICAN SOC. FOR EXPERIMENTAL BIOLOGY, BETHESDA, MD, vol. 3, no. 11, page A505 XP002077257 ISSN: 0892-6638 abstract	29–38

Inten. conal Application No PCT/DK 99/00562

		PC1/DK 99/00562
ategory °	intion) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	SIDOROVA ET AL: "Cell cycle—regulated phosphorylation of Swi6 controls its nuclear localization" MOLECULAR BIOLOGY OF THE CELL,US,BETHESDA, MD, vol. 6, no. 12, page 1641-1658 XP002089512 ISSN: 1059-1524 the whole document	29-38
X	HAN HTUN ET AL: "VISUALIZATION OF GLUCOCORTICOID RECEPTOR TRANSLOCATION AND INTRANUCLEAR ORGANIZATION IN LIVING CELLS WITH A GREEN FLUORESCENT PROTEIN CHIMERA" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, US, NATIONAL ACADEMY OF SCIENCE. WASHINGTON, vol. 93, no. 10, page 4845-4850 XP002029560 ISSN: 0027-8424 the whole document	29-38
X	CAREY K L ET AL: "EVIDENCE USING A GREEN FLUORESCENT PROTEIN—GLUCOCORTICOID RECEPTOR CHIMERA THAT THE RAN/TC4 GTPASE MEDIATES AN ESSENTIAL FUNCTION INDEPENDENT OF NUCLEAR PROTEIN IMPORT" THE JOURNAL OF CELL BIOLOGY, US, ROCKEFELLER UNIVERSITY PRESS, vol. 133, no. 5, page 985—996 XP000670316 ISSN: 0021—9525 the whole document	29-38
X	OGAWA H ET AL: "LOCALIZATION, TRAFFICKING, AND TEMPERATURE-DEPENDENCE OF THE AEQUOREA GREEN FLUORESCENT PROTEIN IN CULTURES VERTEBRATE CELLS" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, US, NATIONAL ACADEMY OF SCIENCE. WASHINGTON, vol. 92, no. 25, page 11899-11903 XP002029556 ISSN: 0027-8424 the whole document	29-38
X	WESTPHAL ET AL: "Microfilament dynamics during cell movement and chemotaxis monitored using a GFP - actin fusion protein" CURRENT BIOLOGY,GB,CURRENT SCIENCE,, vol. 7, no. 3, page 176-183 XP002090291 ISSN: 0960-9822 page 181, left-hand column, line 1	29-38

Inte. Jonal Application No PCT/DK 99/00562

		PCT/DK 99/00562
(Continu	tion) DOCUMENTS CONSIDERED T BE RELEVANT	
ategory *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	TODA ET AL: "The fission yeast sts5+ gene is required for maintenance of growth polarity and functionally interacts with protein kinase C and an osmosensing MAP kinase pathway" JOURNAL OF CELL SCIENCE, GB, ESSEX, vol. 109, no. 9, page 2331-2342 XP002090292 abstract	29–38
X	WEBB ET AL: "Use of green fluorescent protein for visualization of cell-specific gene expression and subcellular protein localization during sporulation in Bacillus subtilis" JOURNAL OF BACTERIOLOGY, US, WASHINGTON, DC, vol. 177, no. 20, page 5906-5911 XP002089513 ISSN: 0021-9193 the whole document	29-38
X	WO 94 23039 A (CANCER RES INST ROYAL; MARSHALL CHRISTOPHER JOHN (GB); ASHWORTH AL) 13 October 1994 (1994-10-13) the whole document	29–38
X	GERISCH ET AL: "Chemoattractant-controlled accumulation of coronin at the leading edge of Dictyostelium cells monitored using a green fluorescent protein-coronin fusion protein" CURRENT BIOLOGY,GB,CURRENT SCIENCE,, vol. 5, no. 11, page 1280-1285 XP002089510 ISSN: 0960-9822 page 1281, right-hand column	29-38

Inter. ..onal application No. PCT/DK 99/00562

Box I Observations wher certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X Claims Nos.: 1-28, 39 because they relate to subject matter not required to be searched by this Authority, namely:
Rule 39.1(v) PCT - Presentation of information: The subject-matter of claim 39 is a "set of data". This is a mere representation of presentation for which the ISA is not required to establish a search report.
2. X Claims Nos.: 1-28 because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
see FURTHER INFORMATION sheet PCT/ISA/210
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
see additional sheet
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. X As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 1-28

Claim 1-28 are not supported by technical terms, as is required by Article 6 and Rule 6.3(a) PCT, which legitimately define the scope of the subject-matter for which protection is sought as no technical contribution to the state of the art commensurate to the scope of the present claims is derivable from the description in terms of a technical problem and a solution thereto as is required by Article 5 and Rule 5.1(iii) PCT. Inasfar as claims 1-28 could be understood they would rely on the act of recording of signals from the underlying biological systems and the subsequent processing of the recorded signals. No technical features technically describing such act as a possible contribution to the state of the art is derivable other than the trivial use of state of the art photographic recording devices. No algorithms nor any unexpected combinations of hardware and software defines the subject-matter for which protection is sought. These flaws with respect to the requirements of Article 5 and 6 of the PCT are of such nature that a meaningful compete search could not be executed.

The only technical definition of subject-matter for which a meaningful search could be executed was found in claims limited to the involvement of the technically characterised luminophores as in claims 29-38 and in the parts of the description supporting these claims.

Moreover, the initial phase of the search for this limited subject-matter revealed a very large number of documents relevant to the issue of novelty of claim 1. So many documents were retrieved falling under the wide scope of claim 1-28 that it is impossible to determine which parts of these claim(s) may be said to define subject-matter for which protection might legitimately be sought (Article 6 PCT). For these reasons also, a meaningful search over the whole breadth of the claim(s) is impossible.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 29-38 IN PART

A method for extracting quantitative information relating to an influence on a cellular response in mechanically intact or permeabilised living cells, the method comprising recording variation in spatially distributed light emitted from a GFP comprising luminophore, the luminophore being present in the cells and being capapble of being redistributed in a manner which is related with the degree of the influence, and/or of being modulated by a biochemically active component which is capable of being redistributed in a manner which is related to the degree of influence, as a change in light intensity measured by an instrument designed for the measurement of changes in fluorescence intensity. In which the GFP comprising luminophore is a polypeptide encoded by SEQ ID No. 1.

2. Claims: 29-38 IN PART

A method for extracting quantitative information relating to an influence on a cellular response in mechanically intact or permeabilised living cells, the method comprising recording variation in spatially distributed light emitted from a GFP comprising luminophore, the luminophore being present in the cells and being capapble of being redistributed in a manner which is related with the degree of the influence, and/or of being modulated by a biochemically active component which is capable of being redistributed in a manner which is related to the degree of influence, as a change in light intensity measured by an instrument designed for the measurement of changes in fluorescence intensity. In which the GFP comprising luminophore is a polypeptide encoded by SEQ ID No. 3.

3. Claims: 29-38 IN PART

A method for extracting quantitative information relating to an influence on a cellular response in mechanically intact or permeabilised living cells, the method comprising recording variation in spatially distributed light emitted from a GFP comprising luminophore, the luminophore being present in the cells and being capable of being redistributed in a manner which is related with the degree of the influence, and/or of being modulated by a biochemically active component which is capable of being redistributed in a manner which is related to the degree of influence, as a change in light intensity measured by an instrument designed for the measurement of changes in lfuorescence intensity. In which the GFP comprising luminophore is a polypeptide encoded by SEQ ID No. 17

4. Claims: 29-38 IN PART

A method for extracting quantitative information relating to an influence on a cellular response in mechanically intact or permeabilised living cells, the method comprising recording variation in spatially distributed light emitted from a GFP comprising luminophore, the luminophore being present in the cells and being capapble of being redistributed in a manner which is related with the degree of the influence, and/or of being modulated by a biochemically active component which is capable of being redistributed in a manner which is related to the degree of influence, as a change in light intensity measured by an instrument designed for the measurement of changes in fluorescence intensity. In which the GFP comprising luminophore is a polypeptide encoded by SEQ ID No. 7.

5. Claims: 29-38 IN PART

A method for extracting quantitative information relating to an influence on a cellular response in mechanically intact or permeabilised living cells, the method comprising recording variation in spatially distributed light emitted from a GFP comprising luminophore, the luminophore being present in the cells and being capapble of being redistributed in a manner which is related with the degree of the influence, and/or of being modulated by a biochemically active component which is capable of being redistributed in a manner which is related to the degree of influence, as a change in light intensity measured by an instrument designed for the measurement of changes in fluorescence intensity. In which the GFP comprising luminophore is a polypeptide encoded by SEQ ID No. 9.

6. Claims: 29-38 IN PART

A method for extracting quantitative information relating to an influence on a cellular response in mechanically intact or permeabilised living cells, the method comprising recording variation in spatially distributed light emitted from a GFP comprising luminophore, the luminophore being present in the cells and being capapble of being redistributed in a manner which is related with the degree of the influence, and/or of being modulated by a biochemically active component which is capable of being redistributed in a manner which is related to the degree of influence, as a change in light intensity measured by an instrument designed for the measurement of changes in fluorescence intensity. In which the GFP comprising luminophore is a polypeptide encoded by SEQ ID No. 11.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

7. Claims: 29-38 IN PART

A method for extracting quantitative information relating to an influence on a cellular response in mechanically intact or permeabilised living cells, the method comprising recording variation in spatially distributed light emitted from a GFP comprising luminophore, the luminophore being present in the cells and being capapble of being redistributed in a manner which is related with the degree of the influence, and/or of being modulated by a biochemically active component which is capable of being redistributed in a manner which is related to the degree of influence, as a change in light intensity measured by an instrument designed for the measurement of changes in fluorescence intensity. In which the GFP comprising luminophore is a polypeptide encoded by SEQ ID No. 13.

8. Claims: 29-38 IN PART

A method for extracting quantitative information relating to an influence on a cellular response in mechanically intact or permeabilised living cells, the method comprising recording variation in spatially distributed light emitted from a GFP comprising luminophore, the luminophore being present in the cells and being capapble of being redistributed in a manner which is related with the degree of the influence, and/or of being modulated by a biochemically active component which is capable of being redistributed in a manner which is related to the degree of influence, as a change in light intensity measured by an instrument designed for the measurement of changes in fluorescence intensity. In which the GFP comprising luminophore is a polypeptide encoded by SEQ ID No. 15

9. Claims: 29-38 IN PART

A method for extracting quantitative information relating to an influence on a cellular response in mechanically intact or permeabilised living cells, the method comprising recording variation in spatially distributed light emitted from a GFP comprising luminophore, the luminophore being present in the cells and being capapble of being redistributed in a manner which is related with the degree of the influence, and/or of being modulated by a biochemically active component which is capable of being redistributed in a manner which is related to the degree of influence, as a change in light intensity measured by an instrument designed for the measurement of changes in fluorescence intensity. In which the GFP comprising luminophore is a polypeptide encoded by SEQ ID No. 17

information on patent family members

Inta...ional Application No PCT/DK 99/00562

		T =			
Patent document cited in search rep		Publication date		Patent family member(s)	Publication date
WO 9845704	A	15-10-1998	AU	6820998 A	30-10-1998
WO 9623898	A	08-08-1996	AU	4483096 A	21-08-199
			CA	2217700 A	08-08-1990
			EP	0815257 A	07-01-1998
			US	5958713 A	28-09-1999
WO 9711094	Α	27-03-1997	AT	184613 T	15-10-1999
			AU	4482996 A	09-04-1997
			CA	2232727 A	27-03-199
			DE	69604298 D	21-10-1999
			EP	0851874 A	08-07-1998
			JP 	11512441 T	26-10-1999
WO 9101305	A	07-02-1991	AU	6054590 A	22-02-199
			CA	2064766 A	23-01-199
			EP	0484369 A	13-05-1992
			JP	5501862 T	08-04-1993
	· · · · · · · · · · · · · · · · · · ·		US	5683888 A	04-11-199
WO 9507463	A	16-03-1995	US	5491084 A	13-02-199
			AU	694745 B	30-07-1998
			AU	7795794 A	27-03-199
			CA	2169298 A	16-03-199
		•	EP	0759170 A	26-02-199
			JP	9505981 T	17-06-199
WO 9603649	Α	08-02-1996	AU	3146095 A	22-02-199
			CA	2195629 A	08-02-1990
			EP	0772773 A	14-05-199
			JP	10503369 T	31-03-199
WO 9720931	Α	12-06-1997	AU	1283497 A	27-06-1997
	**************************************		CA	2239951 A	12-06-199
WO 9730074	Α	21-08-1997	AU	2272397 A	02-09-199
			CA	2246378 A	21-08-199
			EP	0897392 A	24-02-199
WO 9802571	Α	22-01-1998	US	5912137 A	15-06-1999
			US	5925558 A	20-07-199
			AU	3801997 A	09-02-199
			EP	0915989 A	19-05-199
WO 9830715	Α	16-07-1998	AU	5090498 A	03-08-199
WO 9423039	Α	13-10-1994	AU	677834 B	08-05-199
			AU	6382394 A	24-10-1994
			CA	2157774 A	13-10-199
			EP	0703984 A	03-04-199
			JP	9501302 T	10-02-199
			US	5958721 A	28-09-199
			AU	696939 B	24-09-199
			AU	1586195 A	29-08-199
			CA	2182967 A	17-08-199
			EP	0742827 A	20-11-199
			WO	9521923 A	17-08-199
			JP	9508795 T	09-09-199