The Impact of Inclement Weather and Subway Outages on Citi Bike Ridership

Brian Weinstein Andy Enkeboll Ashutosh Nanda

https://github.com/BrianWeinstein/citibike-predictions

Overview

Data Source: Subway Status v1

Alert Archive				Get Free Service Alerts	
Start:	5/11/2015	End:	5/14/2015		
	Sent Date	Agency	Subject	Message	
>	5/14/2015 7:12:16 PM	Subway	MANH, 4 and 5 Trains, Signal Problems	b/d, 4 and 5 trains delayed, some s/b 5 via 2 from 149 St to Nevins St due to signal problems at 86 St. Allow additional travel time.	
>	5/14/2015 7:00:24 PM	LIRR	Port Washington Br./Great Neck W/B Train Operating 13 Minutes Late	The 6:44PM train from Great Neck due Penn at 7:15PM is operating 13 minutes late due to switch trouble.	
>	5/14/2015 6:58:54 PM	LIRR	Port Washington Westbound Train 11 Minutes Late	The 6:24PM train from Port Washington due Penn at 7:01PM is operating 11 minutes late due to congestion on the branch caused by switch trouble at Great Neck.	
>	5/14/2015 6:48:47 PM	LIRR	Babylon Eastbound Train 11 Minutes Late	The 5:59PM train from Penn due Babylon at 7:01PM is operating 11 minutes late due to a late train ahead.	

Data Source: Subway Status v2


```
var yourLabels =
                 "Good Service",
                 "Delays",
                "Planned Work",
                "Service Change",
                "Suspended"];
series: [{
       name: 'Status',
       ,3,3,3,3,3,3,3,3,3,1,1
           ,1,1,1,1,1,4,2,1,1,1,1,1
           ,1,1,4,4,4,4,4,4,4,4,4,4
           ,4,4,4,4,4,4,4,4,4,4,4,4
           ,4,4,4,2,1,1,1,1,1,1,1,2
           ,2,2,2,2,2,2,2,2,2,2,2
           ,2,2,2,1,1,1,1,1,1,1,1,1,1
```

Data Source: CitiBike Trips

Citi Bike Trip Histories

Below are links to downloadable files of Citi Bike trip data. The data includes:

- Trip Duration (seconds)
- Start Time and Date
- Stop Time and Date
- Start Station Name
- End Station Name
- Station ID
- Station Lat/Long
- Bike ID
- User Type (Customer = 24-hour pass or 7-day pass user; Subscriber = Annual Member)
- Gender (Zero=unknown; 1=male; 2=female)
- Year of Birth

July 2013 (25.8 MB) August 2013 (30.6 MB) September 2013 (31.6 MB) October 2013 (31.5 MB) November 2013 (20.6 MB) December 2013 (13.6 MB) January 2014 (9.2 MB) February 2014 (6.9 MB) March 2014 (13.4 MB) April 2014 (20.4 MB) May 2014 (26.3 MB) June 2014 (28.5 MB) July 2014 (29.4 MB) August 2014 (29.2 MB) September 2014 (28.8 MB) October 2014 (24.9 MB) November 2014 (16 MB) December 2014 (12.1 MB)

Data Source: New York Weather

Data Exploration

Prediction Model

Tested 4 regression models on two subsets of predictors:

```
Subset 1: trips ~ hour + weekday + nearestSubStationDist + avgSubStationStatus + anyPrecip + maxTemp

Subset 2: trips ~ hour + weekday + citiStationID + avgSubStationStatus + anyPrecip + maxTemp
```

 Test RMSE
 Ridge
 Lasso
 Linear Least Squares
 Polynomial Least Squares

 Subset 1
 3.2910
 3.2885
 3.2884
 3.2811

 Subset 2
 2.9843
 2.9808
 2.9809
 2.9727

Additional: Data Exploration

Additional: Optimization

When using set.seed (12), Lasso didn't shrink any of the coefficients to 0, although it does with other seeds.

(Intercept)	-3.29118	weekday1	0.67272
hour1	-0.34314	citiStationID127	3.56446
hour2	-0.43761	citiStationID143	-0.19339
hour3	-0.48536	citiStationID167	2.74610
hour4	-0.47186	citiStationID228	1.33829
hour5	-0.40206	citiStationID254	0.27684
hour6	0.22949	citiStationID259	0.85215
hour7	1.31776	citiStationID294	3.27361
hour8	3.65633	citiStationID298	-0.70295
hour9	3.08644	citiStationID331	0.13698
hour10	1.89055	citiStationID332	0.27645
hour11	2.08708	citiStationID339	-0.58213
hour12	2.42439	citiStationID352	2.22051
hour13	2.56377	citiStationID357	1.69681
hour14	2.78327	citiStationID389	-0.41492
hour15	2.82930	citiStationID430	0.81722
hour16	3.38743	citiStationID431	-0.81171
hour17	4.56809	citiStationID485	1.70873
hour18	4.35563	citiStationID494	3.09902
hour19	2.80921	citiStationID536	2.79051
hour20	1.68588	avgSubStationStatus	-0.11149
hour21	0.91142	anyPrecip1	-0.63762
hour22	0.57315	maxTemp	0.04402
hour23	0.21723		

Data Source: MTA Subway Locations

```
curl https://data.ny.gov/api/views/i9wp-a4ja/rows.csv \
    cut -d , -f 2-16 > datasets/mta_station_data_raw.csv
(head -n 1 datasets/mta_station_data_raw.csv ፟ \
   tail -n +2 datasets/mta_station_data_raw.csv |\
    sort | uniq) > datasets/mta_station_data.csv
rm datasets/mta_station_data_raw.csv
awk -F',' 'NR==1 {print "Station ID,"$2","$3","$4} NR>1 {print NR-1","$1": "$2","$3","$4}' \
   OFS=, datasets/mta_station_data.csv > datasets/mta_station_location.csv
awk -F',' 'NR==1 {print "Station ID,Line"} NR>1 {for (i=5; i<=15; i++) {if (length($i) > 0) {print NR-1","$i}}}' \
    OFS=, datasets/mta_station_data.csv > datasets/mta_station_lines.csv
rm datasets/mta_station_data.csv
```

Data Source: Subway Status v1

```
# initialize webdriver instance and visit url
url = 'http://archive.mymtaalerts.com/messagearchive.aspx'
browser = webdriver.Firefox()
browser.get(url)
# set start date
start_date = browser.find_element_by_id('RadDatePickerStart_dateInput')
start_date.send_keys(Keys.COMMAND, 'a')
start date.send keys('1/1/2014')
start_date.send_keys(Keys.ENTER)
# set end date
end_date = browser.find_element_by_id('RadDatePickerEnd_dateInput')
end_date.send_keys(Keys.COMMAND, 'a')
end_date.send_keys('12/31/2014')
end_date.send_keys(Keys.ENTER)
```

Data Source: Subway Status v2

```
while pull_date < max_date:
    for line in lines:
        url = base_url.format(line=line, date=pull_date.isoformat())
        try:
            page = urllib2.urlopen(url)
            soup = BeautifulSoup(page.read())
            # this is super brittle, but this site is very well organized so it works
            script = soup.find_all('script')[10]
            data = script.text.split("data: ")[1].split("\r\n")[0].replace("null", "None")
            data = ast.literal_eval(data)
            prev_d = None
            for i in range(len(data)):
                if data[i] is None:
                    data[i] = prev_d if prev_d else 1
                temp d = data[i]
            # rows = create_rows(data)
            all_data.append((pull_date.isoformat(), line, data))
            print pull date.isoformat(), line
        except:
            print "error with url {}".format(url)
    pull_date += timedelta(1)
```

Data Source: CitiBike Trips

```
# Loop over each month
for url in $urls
do
    # Download the zip file
    curl -0 $url
    # Define local file names
    file=`basename $url`
    csv=${file//.zip/}".csv"
    # Unzip the downloaded file, remove header lines, include only relevant columns,
    # remove minute and second from timestamp, group/count each unique line, and save as csv
    unzip -p $file | sed 1d | cut -d, -f2,4 | sed 's/:[0-9][0-9]:[0-9][0-9]//g' | sort | uniq -c > $csv
    # Remove the zip file
    rm $file
done
```

Data Source: CitiBike Locations

```
- stationBeanList: [
         id: 72,
         stationName: "W 52 St & 11 Ave",
         availableDocks: 37,
         totalDocks: 39,
         latitude: 40.76727216,
                                               import urllib
         longitude: -73.99392888,
                                               import json
         statusValue: "In Service",
         statusKey: 1,
         availableBikes: 2,
                                               url = 'http://www.citibikenyc.com/stations/json/'
         stAddress1: "W 52 St & 11 Ave",
                                               response = urllib.urlopen(url)
         stAddress2: "",
                                               data = json.loads(response.read()).get('stationBeanList')
         city: "",
         postalCode: "",
         location: "",
         altitude: "",
         testStation: false,
         lastCommunicationTime: null,
         landMark: ""
     },
```


Analyzing the Graph of Citibike Stations

Difference Between Graph Structure **Metrics**

- Average In Degree, Average Out Degree
- Average Path Length Between Stations
- Eigenvector Centrality (Bonacich, 1972, Journal of

Mathematical Sociology)
$$v_v = \frac{1}{\lambda_{\max}} \sum_{t \in N(v)} x_t = \frac{1}{\lambda_{\max}} \sum_{t \in G} a_{v,t} x_t$$
 Original basis for Google's PageRank

- Calculate eigenvector for largest eigenvalue of adjacency matrix
- Each entry in this vector is a centrality measure for a node
- Measure is guaranteed unique by Perron-Frobenius theorem
 - All nodes having positive centrality measures requires greatest eigenvalue

Simple Metrics - In Degree

Weekday

Ending Station ID	In Degree
473	332
151	331
412	331
497	331
293	330
312	330

Weekend

Ending Station ID	In Degree
151	321
293	320
387	317
312	316
263	315
428	315

Simple Metrics - Out Degree

Weekday

Starting Station ID	Out Degree
151	331
497	331
265	329
387	329
236	328
250	328

Weekend

Starting Station ID	Out Degree
312	318
151	316
251	314
237	313
236	312
387	312

Simple Metrics - Degree Distribution

In Degree

Out Degree

Less Simple Metrics - Average Path Length Between Stations

Complicated Metrics - Eigencentrality

Weekday

Station ID	
473	0.0619
151	0.0618
497	0.0618
412	0.0618
293	0.0617
312	0.0617

Weekend

Station ID	Out Degree
151	0.0695
293	0.0695
312	0.0690
250	0.0686
251	0.0686
428	0.0685

Complicated Metrics - Eigencentrality

