

N-channel 600 V, 45 mΩ typ., 52 A MDmesh M6 Power MOSFET in a TO-247 long leads package

Features

Order code	V _{DS}	R _{DS(on)} max.	I _D
STWA67N60M6	600 V	49 mΩ	52 A

- Reduced switching losses
- Lower R_{DS(on)} per area vs previous generation
- Low gate input resistance
- 100% avalanche tested
- Zener-protected

Applications

- Switching applications
- LLC converters
- Boost PFC converters

The new MDmesh M6 technology incorporates the most recent advancements to the well-known and consolidated MDmesh family of SJ MOSFETs. STMicroelectronics builds on the previous generation of MDmesh devices through its new M6 technology, which combines excellent $R_{DS(on)}$ per area improvement with one of the most effective switching behaviors available, as well as a user-friendly experience for maximum end-application efficiency.

Maturity status link

STWA67N60M6

Device summary			
Order code STWA67N60M6			
Marking	67N60M6		
Package	TO-247 long leads		
Packing Tube			

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{GS}	Gate-source voltage	±25	V
I-	Drain current (continuous) at T _C = 25 °C	52	Α
Ι _D	Drain current (continuous) at T _C = 100 °C	33	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	200	Α
P _{TOT}	Total power dissipation at T _C = 25 °C	330	W
dv/dt (2)	Peak diode recovery voltage slope	15	V/ns
dv/dt (3)	MOSFET dv/dt ruggedness	100	V/115
T _{stg}	Storage temperature range	range -55 to 150	
Tj	Operating junction temperature range	-33 (0 130	°C

- 1. Pulse width is limited by safe operating area.
- 2. $I_{SD} \le 52$ A, $di/dt \le 400$ A/ μ s, $V_{DS(peak)} < V_{(BR)DSS}$, $V_{DD} = 400$ V
- 3. $V_{DS} \le 480 \text{ V}$

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thJC}	Thermal resistance, junction-to-case	0.38	°C/W
R _{thJA}	Thermal resistance, junction-to-ambient	50	°C/W

Table 3. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by T_{jmax})	6	Α
E _{AS}	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	900	mJ

DS13200 - Rev 2 page 2/12

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 4. On /off-states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	V _{GS} = 0 V, I _D = 1 mA	600			V
	7	V _{GS} = 0 V, V _{DS} = 600 V			1	
I _{DSS}	Zero-gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V},$ $T_{C} = 125 ^{\circ}\text{C}^{(1)}$			100	μА
I _{GSS}	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = ±25 V			±5	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	3.25	4	4.75	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 26 A		45	49	mΩ

^{1.} Specified by design, not tested in production.

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance	V -0 V V - 100 V	-	3400	-	pF
C _{oss}	Output capacitance	$V_{GS} = 0 \text{ V}, V_{DS} = 100 \text{ V},$ f = 1 MHz	-	280	-	pF
C _{rss}	Reverse transfer capacitance		-	2	-	pF
Coss eq. (1)	Equivalent output capacitance	V _{GS} = 0 V, V _{DS} = 0 to 480 V	-	520	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz open drain	-	1.4	-	Ω
Qg	Total gate charge	V _{DD} = 480 V, I _D = 52 A,	-	72.5	-	nC
Q _{gs}	Gate-source charge	V _{GS} = 0 to 10 V	-	24.5	-	nC
Q _{gd}	Gate-drain charge	(see Figure 14. Test circuit for gate charge behavior)	-	28.5	-	nC

^{1.} $C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 300 \text{ V}, I_D = 26 \text{ A},$ $R_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$ (see Figure 13. Test circuit for resistive load switching times and Figure 18. Switching time waveform)	-	24.5	-	ns
t _r	Rise time		-	35	-	ns
t _{d(off)}	Turn-off delay time		-	72	-	ns
t _f	Fall time		-	10.5	-	ns

DS13200 - Rev 2 page 3/12

Table 7. Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		52	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		200	Α
V _{SD} (2)	Forward on voltage	V _{GS} = 0 V, I _{SD} = 52 A	-		1.6	V
t _{rr}	Reverse recovery time	I _{SD} = 52 A, di/dt = 100 A/μs,	-	348		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V (see Figure 15. Test circuit for	-	5.6		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times)	-	32		А
t _{rr}	Reverse recovery time	I _{SD} = 52 A, di/dt = 100 A/μs,	-	484		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V, T _j = 150 °C	-	10.6		μC
I _{RRM}	Reverse recovery current	(see Figure 15. Test circuit for inductive load switching and diode recovery times)	-	44		А

^{1.} Pulse width is limited by safe operating area.

DS13200 - Rev 2 page 4/12

^{2.} Pulse test: pulse duration = 300 μ s, duty cycle 1.5%.

2.1 Electrical characteristics (curves)

Figure 2. Maximum transient thermal impedance GADG111120241044ZTH (°C/W) duty=0.5 10 -1 0.3 0.05 0.2 10 -2 Single pulse 10 -3 t_p (s) 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1

Figure 3. Typical output characteristics Ι_D (A) GADG131220191116OCH V_{GS} =10 V 200 160 V_{GS} =9 V 120 V_{GS} =8 V 80 V_{GS} =7 V 40 V_{GS} =6 V 12 16 8 V_{DS} (V)

DS13200 - Rev 2 page 5/12

Figure 7. Typical capacitance characteristics

Figure 8. Normalized gate threshold vs. temperature

Figure 9. Normalized on-resistance vs. temperature

Figure 10. Normalized breakdown voltage vs temperature

Figure 11. Typical output capacitance stored energy

Figure 12. Typical reverse diode forward characteristics

DS13200 - Rev 2 page 6/12

3 Test circuits

Figure 13. Test circuit for resistive load switching times

V_D

V_D

V_D

V_D

V_D

AM01468v1

Figure 14. Test circuit for gate charge behavior

V_{GS}

V_{GS}

Pulse width

2200

1 kΩ

AM01469v10

Figure 15. Test circuit for inductive load switching and diode recovery times

Figure 17. Unclamped inductive waveform

Figure 18. Switching time waveform

DS13200 - Rev 2 page 7/12

4 Package information

To meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions, and product status are available at: www.st.com. ECOPACK is an ST trademark.

4.1 TO-247 long leads package information

Figure 19. TO-247 long leads package outline

BACK VIEW

8463846_5

DS13200 - Rev 2 page 8/12

Table 8. TO-247 long leads package mechanical data

Dim.		mm	
Dim.	Min.	Тур.	Max.
А	4.90	5.00	5.10
A1	2.31	2.41	2.51
A2	1.90	2.00	2.10
b	1.16		1.26
b2			3.25
b3			2.25
С	0.59		0.66
D	20.90	21.00	21.10
E	15.70	15.80	15.90
E2	4.90	5.00	5.10
E3	2.40	2.50	2.60
е	5.34	5.44	5.54
L	19.80	19.92	20.10
L1			4.30
M	0.35		0.95
Р	3.50	3.60	3.70
Q	5.60		6.00
S	6.05	6.15	6.25
aaa		0.04	0.10

DS13200 - Rev 2 page 9/12

Revision history

Table 9. Document revision history

Date	Revision	Changes
18-Dec-2019	1	First release.
28-Feb-2025	2	Updated Section 4.1: TO-247 long leads package information. Minor text changes.

DS13200 - Rev 2 page 10/12

Contents

1	Elec	trical ratings	.2
2	Elec	trical characteristics	.3
	2.1	Electrical characteristics (curves)	. 5
3	Test	circuits	.7
4	Pacl	kage information	.8
	4.1	TO-247 long leads package information	٤ .
Rev	vision	history	10

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2025 STMicroelectronics – All rights reserved

DS13200 - Rev 2 page 12/12