Finite Difference Time Domain

Generated by Doxygen 1.8.9.1

Wed Apr 29 2015 12:24:23

Contents

Chapter 1

Modules Index

1.1 Modules List

Here is a list of all documented modules with brief descriptions:

fdtd	
Main FDTD Update Equations	??
fdtd_constants	
Contains various constants for an FDTD simulation, including sizes of various domains, and electric/magnetic constants. ??	
fieldcoefficients	
FDTD Coefficients	??
printfield	
Prints Ez output to a .csv file	??
tfsf	
Total Field/Scattered Field Implementation	??

2 **Modules Index**

Chapter 2

Module Documentation

2.1 fdtd Module Reference

Main FDTD Update Equations.

Functions/Subroutines

```
    subroutine updateh ()
    H-field FDTD Update Loops.
```

• subroutine updatee ()

Ez FDTD Update Loop.

• subroutine tfsf_hupdate ()

Hx, Hy TF/SF Updates.

• subroutine tfsf_eupdate ()

Ez TF/SF Updates.

• real(dp) function source (n)

Source function for FDTD.

Variables

```
• integer, parameter, private dp = KIND(1.d0)
```

Electric and Magnetic Fields.

```
• real(dp), dimension(0:sizex-1, 0:sizey-1) ez = 0.d0
```

- real(dp), dimension(0:sizex-2, 0:sizey-1) **hy** = 0.d0
- real(dp), dimension(0:sizex-1, 0:sizey-2) hx = 0.d0

2.1.1 Detailed Description

Main FDTD Update Equations.

2.1.2 Function/Subroutine Documentation

2.1.2.1 real(dp) function fdtd::source (integer, intent(in) n)

]>p0.15 p0.805
freq
time
2.1.2.2 subroutine fdtd::tfsf_eupdate ()
Ez TF/SF Updates. Parameters
[>p0.15 p0.805 Ez
HxInc
2.1.2.3 subroutine fdtd::tfsf_hupdate ()
Hx, Hy TF/SF Updates.
Parameters
>p0.15 p0.805
Hx
Hy
EzInc
2.1.2.4 subroutine fdtd::updatee ()
Ez FDTD Update Loop.
Parameters
[>p0.15 p0.805
Ez
2.1.2.5 subroutine fdtd::updateh ()
2.1.2.3 Subroutine lutuupuaten ()
H-field FDTD Update Loops.
Parameters
]>p0.15 p0.805
Hx field
Hy field

4

Module Documentation

2.1.3 Variable Documentation

2.1.3.1 integer, parameter, private fdtd::dp = KIND(1.d0)

Electric and Magnetic Fields.

Because of the staggering of the Yee grid, the fields are offset from each other. Therefore, Hx(m,n+1/2), Hy(m+1/2,n), and Ez(m,n) share the same index, [m,n].

2.2 fdtd_constants Module Reference

Contains various constants for an FDTD simulation, including sizes of various domains, and electric/magnetic constants.

.

Variables

- integer, parameter, private **dp** = KIND(1.d0)
- real(dp), parameter **pi** = 4.0d0 * DATAN(1.0d0)
- real(dp), parameter cc = 299792458.d0
- real(dp), parameter **mu0** = 4.0d0 * pi * 10.0d0**(-7.0d0)
- real(dp), parameter **eps0** = 1.0d0 / (cc * cc * mu0)
- real(dp), parameter freq = 10.d0**9.d0
- real(dp), parameter **nlambda** = 50
- real(dp), parameter dx = (cc / freq) / Nlambda
- real(dp), parameter **dy** = dx
- real(dp), parameter dt = dx * 0.99d0 / (DSQRT(2.0d0) * cc)
- integer, parameter **totaltime** = 1000
- integer, parameter tfsf_size = 5 * Nlambda
- integer, parameter pml_size = 0
- integer, parameter sizex = 0.5 * Nlambda + TFSF_Size
- integer, parameter sizey = SizeX
- integer, parameter tfsf x0 = Nlambda / 4
- integer, parameter tfsf_x1 = TFSF_x0 + TFSF_Size
- integer, parameter tfsf_y0 = TFSF_x0
- integer, parameter tfsf y1 = TFSF x1
- real(dp), parameter **phi** = pi / 60.d0
- real(dp), parameter cosphi = DCOS(phi)
- real(dp), parameter **sinphi** = DSIN(phi)

2.2.1 Detailed Description

Contains various constants for an FDTD simulation, including sizes of various domains, and electric/magnetic constants.

.

6 Module Documentation

Author

Christopher Fadden, School of Electrical and Computer Engineering, Georgia Institute of Technology

```
dp = FORTRAN constant for double precision floating point on any OS
```

pi = Standard constant (3.14159...)

cc = The speed of light in m/s

mu0 = magnetic permeability in a vacuum

eps0 = electric permittivity in a vacuum

freq = The highest frequency for the simulation. Used for Fourier Transform when calculating power.

Nlambda = Number of points per wavelength

dx = The spatial step in the x direction

dy = The spatial step in the y direction

dt = The time step increment

TotalTime = The total number of time steps in the simulation

TFSF_Size = The size of the Total Field region, in cells, which must encompass the scatterer

PML Size = The size, in cells, of the Perfectly Matched Layer, to prevent reflections from boundaries.

SizeX = The size in cells, in the x direction, of the total simulation

SizeY = The size in cells, in the y direction, of the total simulation

TFSF_x0 = The first cell of the Total Field region in the x direction

TFSF_x1 = The last cell of the Total Field region in the x direction

TFSF_y0 = The first cell of the Total Field region in the y direction

TFSF_y1 = The last cell fo the Total Field region in the y direction

phi = The direction of the plane wave incident on the total field box

cosphi = The cosine of phi

sinphi = The sine of phi

2.3 fieldcoefficients Module Reference

FDTD Coefficients.

Variables

• integer, parameter, private dp = KIND(1.d0)

A collection of coefficients used in the FDTD update equations.

- real(dp), dimension(0:sizex-1, 0:sizey-1) ceze = 1.d0
- real(dp), dimension(0:sizex-1, 0:sizey-1) cezh = dt / (eps0 * dx)
- real(dp), dimension(0:sizex-1, 0:sizey-2) chxh = 1.d0
- real(dp), dimension(0:sizex-1, 0:sizey-2) chxe = dt / (mu0 * dx)
- real(dp), dimension(0:sizex-2, 0:sizey-1) chyh = 1.d0
- real(dp), dimension(0:sizex-2, 0:sizey-1) chye = dt / (mu0 * dx)

2.3.1 Detailed Description

FDTD Coefficients.

2.3.2 Variable Documentation

2.3.2.1 integer, parameter, private fieldcoefficients::dp = KIND(1.d0)

A collection of coefficients used in the FDTD update equations.

Ceze = Ez: coefficient of previous Ez

Cezh = Ez: coefficient of curl(H)

Chxh = Hx: coefficient of previous Hx Chxe = Hx: coefficient of curl(E) Chyh = Hy: coefficient of previous Hy Chye = Hy: coefficient of curl(E)

2.4 printfield Module Reference

Prints Ez output to a .csv file.

Functions/Subroutines

• subroutine printez ()

Prints output.

2.4.1 Detailed Description

Prints Ez output to a .csv file.

2.4.2 Function/Subroutine Documentation

2.4.2.1 subroutine printfield::printez ()

Prints output.

Parameters

|>p0.15|p0.805|

Ez field

2.5 tfsf Module Reference

Total Field/Scattered Field Implementation.

Functions/Subroutines

```
• subroutine tfsf_inc ()
```

1D TF/SF Update Loops

• subroutine tfsf_updatehinc ()

Get HxInc and HyInc from Hinc0.

• subroutine tfsf_updateeinc ()

Update EzInc from Einc0.

Variables

- integer, parameter, private dp = KIND(1.d0)
 - Incidenet Fields.
- real(dp), dimension(-10:sizex-1) einc0
- real(dp), dimension(-10:sizex-1) einc1

8 Module Documentation

- real(dp), dimension(-10:sizex-1) hinc0
- real(dp), dimension(-10:sizex-1,-10:sizey-1) ezinc
- real(dp), dimension(-10:sizex-1,-10:sizey-1) hxinc
- real(dp), dimension(-10:sizex-1,-10:sizey-1) hyinc

2.5.1 Detailed Description

Total Field/Scattered Field Implementation.

2.5.2 Function/Subroutine Documentation

2.5.2.1 subroutine tfsf::tfsf_inc() 1D TF/SF Update Loops **Parameters** |>p0.15|p0.805| Einc0 Einc1 Hinc0 2.5.2.2 subroutine tfsf::tfsf_updateeinc() Update EzInc from Einc0. **Parameters** |>p0.15|p0.805| EzInc Einc0 2.5.2.3 subroutine tfsf::tfsf_updatehinc () Get HxInc and HyInc from Hinc0. **Parameters** |>p0.15|p0.805| HxInc HyInc Hinc0

2.5.3 Variable Documentation

2.5.3.1 integer, parameter, private tfsf::dp = KIND(1.d0)

Incidenet Fields.

2.5 tfsf Module Reference 9

The Einc0, Einc1, and Hinc0 fields are the fields on the incident grid.

The EzInc, HxInc, and HyInc fields are used to update the actual FDTD fields.

10 **Module Documentation**