Formula Sheet - Midterm 1

Descriptive Measures (sample size n)

Mean:
$$\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$$

Sample Variance:
$$s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$$

Sample Standard deviation:
$$s = \sqrt{s^2}$$

Coefficient of variation:
$$CV = \frac{s}{|\bar{x}|}$$

Sample Covariance:
$$\operatorname{Cov}(x,y) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n-1}$$

Sample Correlation:
$$r = \frac{\mathrm{Cov}(x,y)}{s_x s_y}$$

Properties of Estimators

Bias:
$$\operatorname{Bias}(\hat{\theta}) = \mathbb{E}[\hat{\theta}] - \theta$$

Variance:
$$\operatorname{Var}(\hat{\theta}) = \mathbb{E}\Big[\left(\hat{\theta} - \mathbb{E}[\hat{\theta}] \right)^2 \Big]$$

Mean squared error:
$$MSE(\hat{\theta}) = Var(\hat{\theta}) + Bias(\hat{\theta})^2$$

Statistics and Their Distributions

Statistic	Distribution
$Z = \frac{\sqrt{n}(\overline{X} - \mu)}{\sigma}$	$Z \sim \mathcal{N}(0,1)$
$T = \frac{\sqrt{n}(\overline{X} - \mu)}{S}$	$T \sim t_{n-1}$
$Z = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}}$	$Z \sim \mathcal{N}(0, 1)$
$T = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{S_1^2/n_1 + S_2^2/n_2}}$ $(\nu \approx \min(n_1 - 1, n_2 - 1))$	$T \sim t_{ u}$
$J = \frac{(n-1)S^2}{\sigma^2}$ $F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2}$	$J \sim \chi^2_{n-1}$ $F \sim F_{(n_1-1, n_2-1)}$
$T = \frac{\sqrt{n} \left(\overline{D} - \mu_D \right)}{S_D}$	$T \sim t_{n-1}$
(differences D_i)	
$T = rac{r\sqrt{n-2}}{\sqrt{1-r^2}}$ (correlation r)	$T \sim t_{n-2}$

Notes: (i) S^2, S_1^2, S_2^2 are sample variances; S_D is the sample sd of differences. (ii) Welch df shown as simple conservative approximation.