Practical Information

Public presentation of "Integer sequences, algebraic series and differential operators"

Sergey Yurkevich

Universität Wien, Austria and Inria, France

Friday 2nd July, 2021

Administrative Information

 Cotutelle between Inria Saclay (France) and University of Vienna (Austria). Defense in Austria.

Past, current, and future work

- Advisors: Alin Bostan and Herwig Hauser.
- Duration: March 2020 August 2023. In total 12 months in Paris.
- Funding: FWF-Project P-31338 and DOC fellowship.

Motivating Example: Apéry's miracle

■ Define the sequences $(A_n)_{n\geq 0}$ and $(B_n)_{n\geq 0}$ by the recursion

$$(n+1)^3u_{n+1}-(2n+1)(17n^2+17n+5)u_n+n^3u_{n-1}=0, \quad n\geq 1,$$

with initial conditions $(A_0, A_1) = (1, 5)$ and $(B_0, B_1) = (0, 6)$.

- $(A_n)_{n\geq 0} = (1,5,73,1445,33001,\dots) \& (B_n)_{n\geq 0} = (0,6,\frac{351}{4},\frac{62531}{36},\frac{11424695}{288},\dots).$
- One finds that:
 - \blacksquare $A_n \in \mathbb{Z}$ for all $n \ge 0$ and $d_n^3 B_n \in \mathbb{Z}$ for all $n \ge 0$, where $d_n = \operatorname{lcm}\{1, 2, \dots, n\}$.
 - $B_n/A_n \to \zeta(3) := \sum_{k \ge 1} k^{-3} \text{ as } n \to \infty.$
- The facts above imply that $\zeta(3) \notin \mathbb{Q}$ [Apéry, 1979].
- Natural questions:
 - Why is $A_n \in \mathbb{Z}$ and what can we say about $f_{2,2}(t) := \sum_{n \ge 0} A_n t^n$?
 - Can we generalize this proof/method?
- In fact, deep theory responsible for this proof [Beukers, 1983].
- Aim of thesis: Study and understand this and similar phenomena!

Practical Information

A sequence $(u_n)_{n\geq 0}$ is **P-recursive**, if it satisfies a linear recurrence with polynomial coefficients:

$$c_d(n)u_{n+d}+\cdots+c_0(n)u_n=0.$$

$$(u_n)_{n\geq 0}$$
 is hypergeometric if $d=1$.

$$u_n = 1/n!$$
 satisfies $nu_n = u_{n-1}$.

Practical Information

A power series $f(t) \in \mathbb{Q}[\![t]\!]$ is called **D-finite** if it satisfies a linear differential equation with polynomial coefficients:

$$p_n(t)f^{(n)}(t)+\cdots+p_0(t)f(t)=0.$$

$$exp(t)$$
 satisfies $exp'(t) = exp(x)$.

For a multivariate power series

$$f(x_1,\ldots,x_n)=\sum_{i,\ldots,j_n}f_{j_1,\ldots,j_n}x_1^{j_1}\cdots x_n^{j_n}$$

the diagonal is given by

$$\operatorname{Diag}(f) = \sum_{i} f_{j,j,...,j} t^{j} \in \mathbb{Q}[\![t]\!].$$

Diagonals are series which can be written as diagonals of multivariate rational functions.

$$\operatorname{Diag}\left(\frac{1}{1-x-y}\right) = \operatorname{Diag}\sum_{i,j} \binom{i+j}{j} x^i y^j = \sum_n \binom{2n}{n} t^n = (1-4t)^{-\frac{1}{2}}$$

[Abel, 1827]:

Algebraic ⊆ **D**-finite.

[Furstenberg, 1967]: **Algebraic** ⊂ **Diagonals**.

[Lipshitz, 1988]:

 $\mathsf{Diagonals} \subseteq \mathsf{D}\text{-finite}.$

[Beukers, Heckman, 1989]:

Algebraic ∩ **Hypergeometric**.

[Bostan, Lairez, Salvy, 2015]: **Diagonals = Multiple binomial sums**.

Christol's Conjecture [Christol, 1987]: A convergent **D-finite** power series with integer coefficients is a Diagonal.

Practical Information

- Hypergeometric diagonals
- 2 Computing N-th term of a a-P-recursive sequence
- 3 Bézivin's conjecture
- Zagier's problem

Past, current, and future work

5 Diagonal representations

Hypergeometric Diagonals: Towards Christol's conjecture

- Joint work with Alin Bostan.
- Generalization, extension and simplification of the main result of [Abdelaziz, Koutschan, Maillard, 2020] on Christol's conjecture.
- Main theorem:

Theorem (Bostan, Y.<u>, 2020)</u>

Diag
$$\left(\prod_{i=1}^{n} (1 + x_1 + \dots + x_i)^{b_i}\right) = {}_{M}F_{M-1}(u; v; t)$$

is a hypergeometric function with explicitly given parameters.

- Corollary: Christol's conjecture holds for a large class of hypergeometric functions, e.g. ${}_{3}F_{2}([1/9,4/9,7/9];[2/3,1];t)$. $({}_{3}F_{2}([1/9,4/9,5/9];[1/3,1];t)$ still open!)
- Accepted for publication in Proceedings of the American Mathematical Society.

Computing the N-th term of a q-P-recursive sequence

- Joint work with Alin Bostan.
- Adaptation of known results about complexity of computation of N-th terms in P-recursive sequences to their q-analogues.

Theorem (Bostan, Y., 2020)

Let $q \in \mathbb{K}$ and $(u_n)_{n \geq 0}$ be q-P-recursive sequence of order r. Let $N \in \mathbb{N}$. Then u_N can be computed in $\tilde{O}(r^{\theta}\sqrt{N})$ operations in \mathbb{K} .

- Naive and previously best known complexity: O(N).
- Uses ideas of [Strassen, 1977]&[Chudnovsky², 1988] exploited in [Bostan, 2020].
- Applications: e.g. evaluation of polynomials or fast computation of *p*-curvatures.
- Accepted for publication in Journal of Symbolic Computation.

On Bézivin's conjecture

Joint work with Herwig Hauser.

Conjecture (Bézivin, 1991)

If a differential operator L has a basis of series solutions with integer coefficients, then all solutions to Ly = 0 are algebraic.

- Deep commutative algebra involved.
- Grothendieck-Katz conjecture ⇒ Bézivin's conjecture. Equivalence open.
- New elementary proof of Bézivin's conjecture for equations of order one.
- Current work todo:
 - Effective version of the proof.
 - Extend the proof to special cases of equations of order two.
 - Comparison with work of Katz, Honda and Chudnovsky².

Zagier's problem

- Joint work with Alin Bostan and Jacques-Arthur Weil.
- Origin: integral over a moduli space ("topological ODE") [Bertola, et. al, 2015].
- In [Zagier, 2018]:

$$c_{n-3} + 20 \left(4500n^2 - 18900n + 19739\right) c_{n-2} + 80352000n(5n-1)(5n-2)(5n-4)c_n$$

 $25 \left(2592000n^4 - 16588800n^3 + 39118320n^2 - 39189168n + 14092603\right) c_{n-1} = 0,$
with initial terms $c_0 = 1$, $c_1 = -161/(2^{10} \cdot 3^5)$ and $c_2 = 26605753/(2^{23} \cdot 3^{12} \cdot 5^2)$.

- Task: Find $(u, v) \in \mathbb{Q}^* \times \mathbb{Q}^*$ such that $c_n \cdot (u)_n \cdot (v)_n \cdot w^n \in \mathbb{Z}$ for some $w \in \mathbb{Z}^*$.
- [Yang and Zagier]: $a_n = c_n \cdot (3/5)_n \cdot (4/5)_n \cdot (2^{10} \cdot 3^5 \cdot 5^4)^n \in \mathbb{Z}$,
- [Dubrovin and Yang]: $b_n = c_n \cdot (2/5)_n \cdot (9/10)_n \cdot (2^{12} \cdot 3^5 \cdot 5^4)^n \in \mathbb{Z}$.

Theorem (Bostan, Weil, Y.; work in progress)

There are 7 more pairs (u, v) for which $c_n \cdot (u)_n \cdot (v)_n \cdot w^n \in \mathbb{Z}$ for some $w \in \mathbb{Z}^*$. All yield algebraic generating functions.

Diagonal representation of generalized Apéry numbers

- Joint work with Duco van Straten.
- Open problem: Construct a power series which is a diagonal, but cannot be written as the diagonal of a rational function in three or less variables.

Theorem (van Straten, Y.; *work in progress*)

The generating function of the generalized Apérv numbers

$$f_{\alpha,\beta}(t) = \sum_{n>0} \sum_{k>0} \binom{n}{k}^{\alpha} \binom{n+k}{k}^{\beta} t^n,$$

for $\alpha, \beta \in \mathbb{N}$, is a diagonal of a rational power series in $\alpha + \beta$ variables, and not less.

• $f_{2,2}(t)$ is the generating function of the Apéry numbers.

Methodology

- Interplay: theoretical and applied mathematics
- Algebraic geometry
 - Connection to periods and modular forms.
 - Picard-Fuchs equations.
 - Connection to Gromov-Witten theory.
- Computer science
 - Efficient algorithms & symbolic computation
 - Experimental mathematics
 - Applications

Past, current, and future work

Bonus: Diagonal representations of the Apéry numbers

It holds that

$$Diag \frac{1}{1 - w(1 + x)(1 + y)(1 + z)(xyz + yz + y + z + 1)} = \sum_{n} \sum_{k=0}^{n} {n \choose k}^{2} {n+k \choose k}^{2} t^{n}.$$

Past, current, and future work

■ It holds [Straub, 2014] that

$$Diag \frac{1}{(1-x-y)(1-z-w)-xyzw} = \sum_{n=1}^{n} \sum_{k=0}^{n} \binom{n}{k}^{2} \binom{n+k}{k}^{2} t^{n}.$$

Bonus: More definitions and facts

■ A power series $f(t) \in \mathbb{Q}[t]$ is called D-algebraic if

$$P(t, f(t), f'(t), \dots, f^{(n)}(t)) = 0,$$

for some polynomial $P(t, z_1, ..., z_n) \neq 0$. $\tan(x)$ satisfies $\tan'(x) = \tan(x)^2 + 1$.

- Multiple binomial sums: Class of multivariate sequences, containing the binomial coefficient sequence, closed under pointwise addition, pointwise multiplication, linear change of variables and partial summation [Bostan,et.al,2015].
- $f \in \mathbb{Q}[\![t]\!]$ is called *globally bounded* if it has finite non-zero radius of convergence and $\beta \cdot f(\alpha \cdot t) \in \mathbb{Z}[\![t]\!]$ for some non-zero $\alpha, \beta \in \mathbb{Z}$.
- Let \mathbb{K} be a field, and $q \in \mathbb{K}$. A sequence $(u_n(q))_{n\geq 0}$ in $\mathbb{K}^{\mathbb{N}}$ is called q-holonomic if there exist $r \in \mathbb{N}$ and polynomials $c_0(x,y),\ldots,c_r(x,y)$ in $\mathbb{K}[x,y]$, with $c_r(x,y)\neq 0$, such that $c_r(q,q^n)u_{n+r}(q)+\cdots+c_0(q,q^n)u_n(q)=0$, $n\geq 0$.
- A power series $f(t) = \sum_n a_n t^n \in \mathbb{Q}[\![t]\!]$ is a G-function if it has a positive radius of convergence, is D-finite, and both $|a_n|$ and the common denominator of (a_1, \ldots, a_n) are bounded by C^n for some C depending only on f.

Bonus: Finer classification

Methodology