Iniciado em quarta-feira, 28 jun. 2023, 19:43

Estado Finalizada

Concluída em quarta-feira, 28 jun. 2023, 19:49

Tempo 6 minutos 48 segundos

empregado

Notas 1,00/6,00

Avaliar 1,67 de um máximo de 10,00(16,67%)

Correto

Atingiu 1,00 de 1,00

Calcule a integral

$$\int_{(1,1,1)}^{(2,2,2)} \left(\frac{1}{y}\right) \, dx + \left(\frac{1}{z} - \frac{x}{y^2}\right) \, dy - \left(\frac{y}{z^2}\right) \, dz.$$

Resposta: 0

Resolução:

$$\int_{(1,1,1)}^{(2,2,2)} \left(\frac{1}{y}\right) dx + \left(\frac{1}{z} - \frac{x}{y^2}\right) dy - \left(\frac{y}{z^2}\right) dz$$

A partir da integral dada teremos que:

$$M = \frac{1}{y}$$

$$N = \left(\frac{1}{z} - \frac{x}{y^2}\right)$$

$$P = \left(-\frac{y}{z^2}\right)$$

Como :

$$\frac{\partial}{\partial u}(M) = \frac{\partial}{\partial u}\left(\frac{1}{u}\right) = -\frac{1}{u^2}$$

$$\frac{\partial}{\partial x}(N) = \frac{\partial}{\partial x} \left(\frac{1}{z} - \frac{x}{y^2} \right) = -\frac{1}{y^2}$$

$$\frac{\partial}{\partial y}(P) = \frac{\partial}{\partial y}\left(-\frac{y}{z^2}\right) = -\frac{1}{z^2}$$

$$\frac{\partial}{\partial z}(N) = \frac{\partial}{\partial z} \left(\frac{1}{z} - \frac{x}{y^2} \right) = -\frac{1}{z^2}$$

$$\frac{\partial}{\partial z}(M) = \frac{\partial}{\partial z}\left(\frac{1}{u}\right) = 0$$

$$\frac{\partial}{\partial x}(P) = \frac{\partial}{\partial x}\left(-\frac{y}{z^2}\right) = 0$$

A função na forma diferencial é exata.

Como $\frac{\partial}{\partial x}(f) = \frac{\partial}{\partial x}(M)$, teremos:

$$\int \frac{\partial}{\partial x}(f) = \int (M) dx = \int \frac{1}{y} dx = \frac{x}{y} + g(y, z)$$

Derivando f(x,y,z) em relação à y:

$$rac{\partial}{\partial y}(f) = -rac{x}{y^2} + rac{\partial}{\partial y}(g)$$

Como $rac{\partial}{\partial u}(f)=N$ teremos:

$$-rac{x}{y^2}+rac{\partial}{\partial y}(g)=\left(rac{1}{z}-rac{x}{y^2}
ight)$$

$$\frac{\partial}{\partial y}(g) = \frac{1}{z}$$

$$\int rac{\partial}{\partial y}(g) = \int rac{1}{z} \, dy$$

$$g(x,y) = \frac{y}{z} + h(z)$$

Logo:

$$f(x,y,z) = \frac{x}{y} + \frac{y}{z} + h(z)$$

Derivando f(x,y,z) em relação à z:

$$rac{\partial}{\partial z}(f) = -rac{y}{z^2} + rac{\partial}{\partial z}(h)$$

Como $rac{\partial}{\partial z}(f)=P$ teremos:

$$-rac{y}{z^2}+rac{\partial}{\partial z}(h)=-rac{y}{z^2}$$
 $rac{\partial}{\partial z}(h)=0$

Integrando $rac{\partial}{\partial z}(h)$, teremos h(z)=C , em que C é uma constante.

Assim
$$f(x,y,z)=rac{x}{y}+rac{y}{z}+C$$

Resolvendo a Integral:

$$\begin{split} & \int_{(1,1,1)}^{(2,2,2)} \left(\frac{1}{y} \right) \, dx + \left(\frac{1}{z} \right) - \left(\frac{x}{y^2} \right) \, dy - \left(\frac{y}{z^2} \right) \, dz \\ &= f(2,2,2) - f(1,1,1) \\ &= \left(\frac{2}{2} + \frac{2}{2} + C \right) - \left(\frac{1}{1} + \frac{1}{1} + C \right) = 0 \end{split}$$

A resposta correta é: 0

Questão 2

Não respondido

Vale 1,00 ponto(s).

Use o terema de Green para resolver a integral $\oint_C 6y + x dx + (y+2x) dy$ sobre a circunferência $(x-2)^2 + (y-3)^2 = 4$.

Escolha uma opção:

- \odot a. -12π
- \odot b. -6π
- \odot c. -11π
- \bigcirc d. -8π
- \odot e. -16π

Sua resposta está incorreta.

Resposta:

Logo
$$r^2=4\Rightarrow r=2$$

Passo 1: Transforma a integral de linha em integral dupla

$$\int_{C} (6y+x)dx + (y+2x)dy = \iint_{C} \left(\frac{\rho N}{\rho x}\right) - \left(\frac{\rho M}{\rho y}\right) dx dy$$

$$\frac{\rho N}{\rho x} = \frac{\rho y + 2x}{\rho x} = 2$$

$$\frac{\rho M}{\rho y} = \frac{\rho 6y + x}{\rho y} = 6$$

$$\oint_{C} M(8y+x)dx + N(y+2x)dy \iint_{R} (2-6) dx dy \Rightarrow \iint_{R} -4dxdy$$

Usando a área do círculo para concluir a integral temos:

$$\iint\limits_{\mathbb{R}} -4dxdy = -4\pi r^2 = -4\pi (2)^2 = -16\pi$$

A resposta correta é: -16π

Não respondido

Vale 1,00 ponto(s).

Qual a parametrização do plano x+y+z=1 inclinado dentro de um cilindro $y^2+z^2=9$.

Escolha uma opção:

- a. $\vec{\mathbf{r}}(u,v) = (1-u\cos v u\sin v)\mathbf{i} + (u\cos v)\mathbf{j} (u\sin v)\mathbf{k}$, $\cos 0 \le u \le 3$ e $0 \le v \le 2\pi$.
- $\qquad \text{b.} \quad \vec{\mathbf{r}}(u,v) = (1-u\cos v u\sin v)\mathbf{i} (u\cos v)\mathbf{j} + (u\sin v)\mathbf{k}, \ \text{com} \ 0 \leq u \leq 3 \ \text{e} \ 0 \leq v \leq 2\pi.$
- $^{\bigcirc} \text{ c. } \vec{\mathbf{r}}(u,v) = (1-u\cos\,v u\sin\,v)\mathbf{i} + (u\cos\,v)\mathbf{j} + (u\sin\,v)\mathbf{k} \text{, com } 0 \leq u \leq 3 \text{ e } 0 \leq v \leq 2\pi.$
- $\bigcirc \ \, \mathbf{d}. \quad \vec{\mathbf{r}}(u,v) = (1+u\cos\,v u\sin\,v)\mathbf{i} + (u\cos\,v)\mathbf{j} + (u\sin\,v)\mathbf{k}, \ \mathrm{com}\ 0 \leq u \leq 3 \ \mathrm{e}\ 0 \leq v \leq 2\pi.$
- $\ \, \stackrel{\text{e.}}{\mathbf{r}}(u,v) = (1-u\cos\,v u\sin\,v)\mathbf{i} (u\cos\,v)\mathbf{j} (u\sin\,v)\mathbf{k},\, \cos 0 \leq u \leq 3\,\mathrm{e}\,0 \leq v \leq 2\pi.$

Sua resposta está incorreta.

Solução:

De maneira semelhante às coordenadas cilíndricas, mas trabalhando no plano yz em vez do plano xy.

 $y=u\cos v$ e $z=u\sin v$, onde $u=\sqrt{y^2+z^2}$ e v é o angulo formado por (x,y,z),(y,0,0) e (x,y,0), com (x,0,0) como vértice.

Sendo
$$x+y+z=1 \Rightarrow x=1-y-z \Rightarrow x=1-u\cos v-u\sin v.$$

Substituindo x, y e z na função de superfície, temos:

$$\vec{\mathbf{r}}(u,v) = (1 - u\cos v - u\sin v)\mathbf{i} + (u\cos v)\mathbf{j} + (u\sin v)\mathbf{k}, \ \text{com} \ 0 \le u \le 3 \ \text{e} \ 0 \le v \le 2\pi.$$

A resposta correta é: $\vec{\mathbf{r}}(u,v) = (1 - u\cos v - u\sin v)\mathbf{i} + (u\cos v)\mathbf{j} + (u\sin v)\mathbf{k}$, com 0 < u < 3 e $0 < v < 2\pi$.

Não respondido

Vale 1,00 ponto(s).

Qual o fluxo $\iint\limits_{\mathbb{C}}\ \vec{\mathbf{F}}\cdot\vec{\mathbf{n}}\ d\sigma\$ do campo $\vec{\mathbf{F}}=xy\mathbf{i}-z\mathbf{k}$ através do cone $z=\sqrt{x^2+y^2}$, $0\leq z\leq 1$.

Obs: o campo está para fora (normal no sentido oposto ao eixo z) atravessando o cone $z=\sqrt{x^2+y^2}$, $0\leq z\leq 1$.

Escolha uma opção:

- \bigcirc a. $\frac{4\pi}{3}$
- \bigcirc b. $\frac{3\pi}{2}$
- \bigcirc c. $\frac{2\pi}{5}$
- \bigcirc d. $\frac{5\pi}{3}$
- \bigcirc e. $\frac{2\pi}{3}$

Sua resposta está incorreta.

Resposta:

Utilizamos a parametrização $\vec{\mathbf{r}}\left(r,\,\theta\right)=r\cos(\theta)\mathbf{i}+r\sin(\theta)\mathbf{j}+r\mathbf{k}$, $~0\leq r\leq 1$ e $~0\leq \theta\leq 2\pi$

Temos que:

$$\frac{\partial \vec{\mathbf{r}}}{\partial r} = \cos(\theta)\mathbf{i} + \sin(\theta)\mathbf{j} + \mathbf{k}$$

$$\frac{\partial \vec{\mathbf{r}}}{\partial \theta} = -r \sin(\theta) \mathbf{i} + r \cos(\theta) \mathbf{j} + 0 \mathbf{k}$$

Agora calculamos o determinante dessas derivadas:

$$egin{aligned} ec{\mathbf{r}}_{ heta} imes ec{\mathbf{r}}_r &= egin{aligned} \mathbf{i} & \mathbf{j} & \mathbf{k} \ -r\sin(heta) & r\cos(heta) & 0 \ \cos(heta) & \sin(heta) & 1 \end{aligned} \ &= r\cos(heta)\mathbf{i} - r\sin^2(heta)\mathbf{k} + r\sin(heta)\mathbf{j} - r\cos^2(heta)\mathbf{k} \ &= r\cos(heta)\mathbf{i} + r\sin(heta)\mathbf{j} - r\mathbf{k} \end{aligned}$$

Sabendo que o fluxo atravéz da superficie é:

$$\iint\limits_{S} |\vec{\mathbf{F}} \cdot \vec{\mathbf{n}}| d\sigma = \iint\limits_{S} |\vec{\mathbf{F}} \cdot \frac{\vec{\mathbf{r}}_{\theta} \times \vec{\mathbf{r}}_{r}}{\|\vec{\mathbf{r}}_{\theta} \times \vec{\mathbf{r}}_{r}\|} \|\vec{\mathbf{r}}_{\theta} \times \vec{\mathbf{r}}_{r}\| \, d\theta dr$$

Que:

$$rac{ec{\mathbf{r}}_{ heta} imesec{\mathbf{r}}_r}{\parallelec{\mathbf{r}}_{ heta} imesec{\mathbf{r}}_r\parallel}=ec{\mathbf{n}}$$

E que o campo vetorial é:

$$\vec{\mathbf{F}} = xy\mathbf{i} - z\mathbf{k} = (r^2\cos(\theta)\sin(\theta))\mathbf{i} - r\mathbf{k}$$

Calculamos:

$$\begin{aligned} &\parallel \vec{\mathbf{r}}_{\theta} \times \vec{\mathbf{r}}_{r} \parallel = \sqrt{(r\cos(\theta))^{2} + (r\sin(\theta))^{2} + (-r)^{2}} \\ &= \sqrt{r^{2} \left(\cos^{2}(\theta) + \sin^{2}(\theta)\right) + r^{2}} \\ &= r\sqrt{2} \end{aligned}$$

$$\begin{split} &\Rightarrow \frac{\vec{\mathbf{r}}_{\theta} \times \vec{\mathbf{r}}_{r}}{\parallel \vec{\mathbf{r}}_{\theta} \times \vec{\mathbf{r}}_{r} \parallel} \parallel \vec{\mathbf{r}}_{\theta} \times \vec{\mathbf{r}}_{r} \parallel = \\ &= \left(\frac{r \cos(\theta)}{r\sqrt{2}} \mathbf{i} + \frac{r \sin(\theta)}{r\sqrt{2}} \mathbf{j} - \frac{r}{r\sqrt{2}} \mathbf{k} \right) \left(r\sqrt{2} \right) \\ &= r \cos(\theta) \mathbf{i} + r \sin(\theta) \mathbf{j} - r \mathbf{k} \end{split}$$

Sendo assim, calculamos o produto escalar $ec{\mathbf{F}} \cdot ec{\mathbf{n}} \parallel ec{\mathbf{r}}_{ heta} imes ec{\mathbf{r}}_{r} \parallel$

$$= (r^2 \cos(\theta) \sin(\theta), 0, -r) \cdot (r \cos(\theta), r \sin(\theta), -r)$$

$$= r^3 \cos^2(\theta) \sin(\theta) + r^2$$

Agora calculamos a integral:

$$\begin{split} & \int_0^{2\pi} \int_0^1 \ r^3 \cos^2(\theta) \sin(\theta) + r^2 \ dr d\theta \\ & = \cos^2(\theta) \sin(\theta) \int_0^1 \ r^3 dr + \int_0^1 r^2 dr \\ & = \left[\frac{r^3}{3} \right]_0^1 + \cos^2(\theta) \sin(\theta) \left[\frac{r^4}{4} \right]_0^1 \\ & = \frac{1}{3} + \frac{\cos^2(\theta) \sin(\theta)}{4} \\ & \int_0^{2\pi} \frac{1}{3} + \frac{\cos^2(\theta) \sin(\theta)}{4} \ d\theta \\ & = \int_0^{2\pi} \frac{1}{3} \ d\theta + \int_0^{2\pi} \frac{\cos^2(\theta) \sin(\theta)}{4} \ d\theta \end{split}$$

Para $\int_0^{2\pi} \frac{\cos^2(\theta)\sin(\theta)}{4} \,d\theta$ precisaremos utilizar uma substituição: Chamaremos $u=\cos(\theta) \,\Rightarrow\, du=-\sin(\theta)\,d\theta$

Chamaremos
$$u=\cos(heta) \,\Rightarrow\, du=-\sin(heta)\,d heta$$

$$egin{aligned} &= -rac{1}{4} \int u^2 \ du \ &= -rac{1}{4} \Big[rac{u^3}{3}\Big] = -rac{\cos^3(heta)}{12} + C \end{aligned}$$

Retomando:

$$= \left[\frac{1}{3}\theta\right]_0^{2\pi} + \left[-\frac{\cos^3(\theta)}{12}\right]_0^{2\pi}$$
$$= \left(\frac{2\pi}{3} - \frac{1}{12}\right) - \left(0 - \frac{1}{12}\right)$$
$$= \frac{2\pi}{3}$$

A resposta correta é: $\frac{2\pi}{3}$

Não respondido

Vale 1,00 ponto(s).

Seja $\vec{\mathbf{n}}$ a normal unitária exterior da casca elíptica S: $4x^2+9y^2+36z^2=36$, $z\geq 0$, e seja $\vec{\mathbf{F}}=y\mathbf{i}+x^2\mathbf{j}+(x^2+y^4)^{\frac{3}{2}}\sin e^{\sqrt{xyz}}\mathbf{k}$. Encontre o valor de $\int\int_S \nabla \times \vec{\mathbf{F}}\cdot\vec{\mathbf{n}}\,d\sigma$.

- \odot a. -4π
- \odot b. -8π
- \odot c. 8π
- \odot d. -6π
- \odot e. 6π

Sua resposta está incorreta.

Solução: Temos $x=3\,\cos\,t\,\mathrm{e}\,y=2\,\sin\,t$

$$\vec{\mathbf{F}} = (2 \sin t)\mathbf{i} + (9 \cos^2 t)\mathbf{j} + (9 \cos^2 t + 16 \sin^4 t) \sin e^{\sqrt{(6 \sin t \cos t)(0)}}\mathbf{k}$$

$$r = (3 \cos t)\mathbf{i} + (2 \sin t)\mathbf{j}$$
, então $d\vec{\mathbf{r}} = (-3 \sin t)\mathbf{i} + (2 \cos t)\mathbf{j}$

$$\vec{\mathbf{F}} \cdot \frac{d\vec{\mathbf{r}}}{dt} = -6 \sin^2 t + 18 \cos^3 t$$

$$\iint_{S} \nabla \times \vec{\mathbf{F}} \cdot \vec{\mathbf{n}} \, d\sigma = \int_{0}^{2\pi} (-6 \, \sin^{2} \, t + 18 \, \cos^{3} \, t) \, dt = \left[-3t + \frac{3}{2} \sin \, 2t + 6(\sin \, t)(\cos^{2} \, t + 2) \right]_{0}^{2\pi} = -6\pi.$$

A resposta correta é:

 -6π

Questão 6

Incorreto

Atingiu 0,00 de 1,00

Utilize o teorema da divergência para encontrar o fluxo exterior de $\vec{\mathbf{F}}$ através da fronteira da região D.

Cilindro e paraboloide $\vec{\mathbf{F}} = y\mathbf{i} + xy\mathbf{j} - z\mathbf{k}$, D: A região dentro do cilindro sólido $x^2 + y^2 \le 4$ entre o plano z = 0 e o paraboloide $z = x^2 + y^2$.

- a. 16
- b. 14

 ★
- \odot c. -14
- \odot d. -16
- \circ e. -8π

Sua resposta está incorreta.

Solução: Inicialmente calculamos a derivada parcial

$$Flux = \int \int_D \int (x-1) \, dz \, dy \, dx = \int_0^{2\pi} \int_0^2 \int_0^{r^2} (r \, \cos \, heta - 1) \, dz \, r \, dr \, d heta = \int_0^{2\pi} \int_0^2 (r^3 \, \cos \, heta - r^2) \, r \, dr \, d heta = \int_0^{2\pi} \left[rac{r^5}{5} \cos \, heta - rac{r^4}{4}
ight]_0^2 \, d heta = \int_0^{2\pi} \left(rac{32}{5} \cos \, heta - r^2
ight) \, r \, dr \, d heta = \int_0^{2\pi} \left[rac{r^5}{5} \cos \, heta - rac{r^4}{4}
ight]_0^2 \, d heta = \int_0^{2\pi} \left(rac{32}{5} \cos \, heta - r^2
ight) \, r \, dr \, d heta = \int_0^{2\pi} \left[rac{r^5}{5} \cos \, heta - rac{r^4}{4}
ight]_0^2 \, d heta = \int_0^{2\pi} \left[rac{r^5}{5} \cos \, heta - rac{r^4}{4}
ight]_0^2 \, d heta = \int_0^{2\pi} \left[rac{r^5}{5} \cos \, heta - rac{r^4}{4}
ight]_0^2 \, d heta = \int_0^{2\pi} \left[rac{r^5}{5} \cos \, heta - rac{r^4}{4}
ight]_0^2 \, d heta = \int_0^{2\pi} \left[rac{r^5}{5} \cos \, heta - rac{r^4}{4}
ight]_0^2 \, d heta = \int_0^{2\pi} \left[rac{r^5}{5} \cos \, heta - rac{r^4}{4}
ight]_0^2 \, d heta = \int_0^{2\pi} \left[rac{r^5}{5} \cos \, heta - rac{r^4}{4}
ight]_0^2 \, d heta = \int_0^{2\pi} \left[rac{r^5}{5} \cos \, heta - rac{r^4}{4}
ight]_0^2 \, d heta = \int_0^{2\pi} \left[rac{r^5}{5} \cos \, heta - rac{r^5}{4}
ight]_0^2 \, d heta = \int_0^{2\pi} \left[rac{r^5}{5} \cos \, heta - rac{r^5}{4}
ight]_0^2 \, d heta = \int_0^{2\pi} \left[rac{r^5}{5} \cos \, heta - rac{r^5}{4} \sin \, heta - rac{r^5}{5} \cos \, heta - rac{r^5}{4}
ight]_0^2 \, d heta = \int_0^{2\pi} \left[rac{r^5}{5} \cos \, heta - rac{r^5}{4} \sin \, heta - rac{r^5}{5} \sin \, he$$

A resposta correta é:

 -8π