Parsimonious Vole

A Systemic Functional Parser for English

Eugeniu Costetchi

Supervisor: Prof. John Bateman

Advisor: Dr. Eric Ras

Faculty 10: Linguistics and Literary Studies University of Bremen

This dissertation is submitted for the degree of Doctor of Philosophy

thank you

for Adriana

Tamara, Ion and Cristi Costetchi

Declaration

I hereby declare that except where specific reference is made to the work of others, the contents of this dissertation are original and have not been submitted in whole or in part for consideration for any other degree or qualification in this, or any other university. This dissertation is my own work and contains nothing which is the outcome of work done in collaboration with others, except as specified in the text and Acknowledgements.

Eugeniu Costetchi May 2019

Acknowledgements

This thesis owes much to the many people who have guided me, supported me, and inspired me throughout the preparation and writing of this work. Below, I attempt to list some of these colleagues, family, and friends, but I cannot hope to thank everyone by name. Thus, upfront, to each and every one I offer my heartfelt thanks.

First and foremost I shall forever be grateful to my academic supervisor, John Bateman, for giving me his guidance, deep insight, patience and a lot of diligent proofreading work when the time finally came. Without him I would never have become a computational linguist and this thesis would not have happened. Similarly, I am very much indebted to my advisor, Eric Ras, for his kind encouragements, guidance and support right from the beginning starting with PhD proposal writing. Without Eric this thesis could not have started in the first place.

I believe knowledge is created between people and I would like to thank all those who have shared this process with me. To everyone who has shared a chat over coffee, a talk around the table or a talk at a conference or seminar, thank you. In particular I would like to thank my colleague and friend Muriel Foulonneau, who invited me to join LIST research centre and was always engaging in stimulating discussions. Thanks to Anke Schulz who was the first person I met in real need of an SFL parser because she was performing, at that time, tedious manual corpus annotation. That corpus annotation later became part of the Parsimonious Vole evaluation. Thank you to Ela Oren for the work we have done together on corpus annotation, also used in the parser evaluation; for inviting me on a short scientific mission to Tel Aviv University; and from whom I have learned about Obsessive Compulsive Disorder. My deep gratitude goes to Daniel Couto Vale who always welcomed me in Bremen and enthusiastically shared his knowledge on Systemic Functional Linguistics.

There are many friends that have shared this experience with me and I can't thank each of them enough. To any I have inadvertently left out please don't think you are forgotten. A big thank you goes to my friend Mikolaj Podlaszewski with whom I shared lots of thought-provoking philosophical discussions, sometimes fierce debates and who provided me with lots of constructive criticisms. My friend, Andrei Mihalceanu, who

unfortunately passed away, has my sincere gratitude for enthusiastic philosophical discussions on language, mind, determinism and entropy. Thanks to Christoph Stahl for his friendship, encouragement and for putting me always to work on my thesis.

Even more so than friends, family are there in person and spirit when you need them most, and that is why they deserve the greatest gratitude of all. A huge thank you to my parents Tamara and Ion Costetchi for unconditional love, encouragement and support. I want to thank my younger brother Cristi. I haven't always been the best big brother for him, but he has always been there for me. But most of all, I thank Adriana, my beloved wife, who sometimes pushed hard and some other times gently encouraged me in the last phase of this thesis, and then patiently waited for the manuscript to mature. This thesis is for her.

Finally, I gratefully acknowledge the support of Luxembourg National Research Fund through an AFR PhD grant which made this work possible in the first place. I also want to thank all those who gave me feedback on drafts along the way. However, mistakes, be them of the conceptual or typographic variety, remain mine and mine alone.

Abstract

Building a natural language parser can be seen as a task of creating an artificial text reader that understands the meaning expressed in some text. This thesis aims at a reliable modular method for parsing unrestricted English text into feature-rich constituency structure using Systemic Functional Grammars (SFG). SFGs are chosen because of their versatility to account for the complexity and phenomenological diversity of human language.

The descriptive power of a Systemic Functional Grammar (SFG) lies in its separation of descriptive work across "structure" (i.e., syntagmatic organisations) and "choice" (i.e., paradigmatic organisations). A shortcoming, however, is that SFL has been primarily concerned with the paradigmatic axis of language, and accounts of the syntagmatic axis of language, such as the syntactic structure, have been put in the background.

Moreover, parsing with features that depart from directly observable grammatical variations towards increasingly abstract semantic features comes at the cost of high computational complexity, which still presents today the biggest challenge in parsing broad coverage texts with full SFGs. Previous research has discussed how each successive attempt to construct parsing components using SFL then led to the acceptance of limitations either in grammar size or in language coverage.

One of the main contributions of this thesis is the investigation to what degree cross-theoretical bridges can be established between Systemic Functional Linguistic (SFL) and other theories of grammar, Dependency Grammar in particular, in order to compensate for the limited syntagmatic accounts. A second main contribution is to research how suitable predefined graph patterns are for detecting systemic features in the constituency structure in order to reduce the complexity of identifying increasingly abstract grammatical features.

The technical achievement of this thesis lies in the development and evaluation of a SFG parser, named Parsimonious Vole. The implementation follows a pipeline architecture comprising of two major phases: (a) creation of the constituency structure from Dependency graphs and (b) structure enrichment with the systemic features using graph pattern matching techniques.

The empirical evaluation is based on two manually annotated corpora. First, covers constituency structure and Mood features and, second, covers the more abstract Transitivity features. The parser accuracy at generating constituency structure (76%) is slightly lower than that achieved in previous research, while the accuracy to detect Mood (60%) and Transitivity (42%) could not be compared to any previous works because either such features are missing or results are not comparable.

The current work concludes that (a) reusing parse results with other grammars for structure creation and (b) employing graph patterns for enrichment with systemic features constitutes a viable solution to create feature-rich constituency structures in SFL style.

Table of contents

1	\mathbf{Intr}	roduction 1				
	1.1	On artificial intelligence and computational linguistics	1			
	1.2	Living in a technologically ubiquitous world	3			
	1.3	NLP for business	4			
	1.4	Linguistic framework	5			
	1.5	A systemic functional analysis example	8			
	1.6	Challenges of parsing with SFGs	13			
		1.6.1 Syntagmatic descriptions in SFL	14			
		1.6.2 Computational complexity appears in parsing	15			
		1.6.3 Parsing with semantic features	17			
		1.6.4 Covert elements	18			
		1.6.5 Problem summary	20			
	1.7	Goals and scope of the thesis	21			
		1.7.1 On theoretical compatibility and reuse	22			
		1.7.2 Towards the syntagmatic account	23			
		1.7.3 Towards the paradigmatic account	24			
		1.7.4 Parsimonious Vole architecture	26			
	1.8	Thesis overview	29			
2	An	overview of selected work on parsing with SFG	33			
	2.1	Winograd's SHRDLU	34			
	2.2	Kasper	34			
	2.3	O'Donnell	35			
	2.4	O'Donoghue	36			
	2.5	Honnibal	37			
	2.6	Summary	38			

xii Table of contents

3	\mathbf{Sys}	temic	functional theory of grammar	39
	3.1	A wor	d on wording	40
	3.2	Sydne	y theory of grammar	43
		3.2.1	Unit	44
		3.2.2	Structure	46
		3.2.3	Class	47
		3.2.4	System	48
		3.2.5	Functions and metafunction	51
		3.2.6	Lexis and lexico-grammar	53
	3.3	Cardif	ff theory of grammar	53
		3.3.1	Class of units	54
		3.3.2	Element of structure	55
		3.3.3	Item	56
		3.3.4	Componence and obscured dependency	57
		3.3.5	Filling and the role of probabilities	58
	3.4	Critica	al discussion of both theories: consequences and decisions for parsing	60
		3.4.1	Relaxing the rank scale	60
		3.4.2	Approach to structure formation	63
		3.4.3	Relation typology in the system networks	63
		3.4.4	Unit classes	64
		3.4.5	Syntactic and semantic heads	67
		3.4.6	Coordination as unit complexing	69
	3.5	Summ	nary	75
4	Par	simoni	ious Vole grammar	77
	4.1	Gram	matical units	77
		4.1.1	Verbal group and clause boundaries	77
		4.1.2	Clause	79
		4.1.3	Nominal Group	80
		4.1.4	Adjectival and Adverbial Groups	84
	4.2	Syster	n networks	87
		4.2.1	MOOD	87
		4.2.2	TRANSITIVITY	90
		4.2.3	Process Type Database	92
	4.3	Summ	nary	93

Table of contents xiii

5	Dep	enden	cy grammar (DG)	95
	5.1	Origin	as of dependency theory	. 95
	5.2	Evolut	tion into modern dependency theory	. 101
		5.2.1	Definition of dependency	. 101
		5.2.2	Grammatical function	. 102
		5.2.3	Projectivity	. 103
		5.2.4	Function words	. 103
	5.3	Depen	ndency grammar in automated text processing	. 105
	5.4	Stanfo	ord dependency model	. 107
	5.5	Stanfo	ord dependency representation	. 109
	5.6	Cross	theoretical bridge from DG to SFG	. 110
6	Gov	ernme	ent and Binding Theory (GBT)	117
	6.1	Introd	luction to GBT	. 118
		6.1.1	Phrase structure	. 119
		6.1.2	Theta theory	. 121
		6.1.3	Government and Binding	. 123
	6.2	On Nu	all Elements	. 126
		6.2.1	PRO Subjects and control theory	. 127
		6.2.2	NP-traces	. 129
		6.2.3	WH-traces	. 131
	6.3	Placin	${f g}$ Null Elements into the Stanford dependency grammar	. 133
		6.3.1	PRO subject	. 133
		6.3.2	NP-traces	. 137
		6.3.3	Wh-traces	. 139
		6.3.4	Wh-traces in relative clauses	. 142
	6.4	Discus	ssion	. 144
7	Gra	phs, F	eature Structures and Systemic Networks	145
	7.1	Genera	al definitions	. 146
	7.2	Graph	ı traversal	. 152
	7.3	Patter	rn graphs	. 154
	7.4	Graph	matching	. 158
	7.5	Patter	n based operations	. 163
		7.5.1	Pattern based node update	. 164
		7.5.2	Pattern based node insertion	. 166
	7.6	Systen	ns and Systemic Networks	. 167

xiv Table of contents

	7.7	On rea	alisation rules	171
	7.8	Summ	ary	174
8	Cre	ating t	the systemic functional constituency structure	175
	8.1	Canon	icalisation of dependency graphs	175
		8.1.1	Loosening conjunction edges	176
		8.1.2	Transforming copulas into verb centred clauses	177
		8.1.3	Non-finite clausal complements with adjectival predicates (a	
			pseudo-copula pattern)	179
	8.2	Correc	etion of errors in dependency graphs	181
		8.2.1	Free prepositions and $prep$ relation	181
		8.2.2	Non-finite clausal complements with internal subjects	182
		8.2.3	First auxiliary of non-finite POS	182
		8.2.4	Prepositional phrases as false prepositional clauses	183
		8.2.5	Mislabelled infinitives	183
		8.2.6	Attributive verbs mislabelled as adjectives	184
		8.2.7	Non-finite verbal modifiers with clausal complements $\ \ldots \ \ldots$	184
		8.2.8	Demonstratives with a qualifier	185
		8.2.9	Topicalised complements labelled as second subjects	187
		8.2.10	Misinterpreted clausal complement of the auxiliary verb in inter-	
			rogative clauses	188
	8.3	Creati	on of systemic constituency graphs from dependency graphs	188
		8.3.1	Dependency nature and implication on head creation \dots .	189
		8.3.2	Tight coupling of dependency and constituency graphs \dots	190
		8.3.3	Rule tables	191
		8.3.4	Creating partial constituency graph through top-down traversal	
		8.3.5	Completing the constituency graph through bottom-up traversal	197
	8.4	Summ	ary	200
9	Enr	ichmer	nt of the constituency graph with systemic features	20 1
	9.1	Creati	on of MOOD graph patterns	202
	9.2	Enrich	ment with MOOD features	205
	9.3	Creati	on of empty elements	208
		9.3.1	PRO and NP-trace Subjects	208
		9.3.2	Wh-trances	212
	9.4	Cleani	ng up the PTDB	213
	9.5	Genera	ation of the TRANSITIVITY graph patterns	216

Table of contents xv

	9.6	Enrichment with TRANSITIVITY features	220
	9.7	Summary	222
10	Emr	pirical evaluation	223
10	-	Evaluation corpus	
	10.1	10.1.1 OE corpus	
		10.1.2 OCD corpus	
		10.1.2 OCD corpus	
	10.2	Evaluation methodology	
	10.2	10.2.1 Corpus annotations as a set of mono-labelled segments	
		10.2.2 Parser output as a set of mono-labelled segments	
		10.2.3 Segment alignment method and evaluation data	
	10.3	Evaluation of syntactic structure generation	
	10.5	10.3.1 Segmentation evaluation	
		10.3.2 Unit class evaluation	
		10.3.3 Clause Mood elements evaluation	
	10.4	10.3.4 Clause Transitivity elements evaluation	
	10.4	Evaluation of systemic feature assignment	
		10.4.1 Evaluation of MOOD systemic feature assignment	
	10.5	10.4.2 Evaluation of TRANSITIVITY systemic feature assignment	
	10.5	Summary	255
11	Con	clusions	259
	11.1	Research questions and main findings	261
	11.2	Limitations and future work	263
	11.3	Practical applications	273
	11.4	Final word	274
D.	eferei	2000	275
nε	eierei	ices	213
\mathbf{A}	\mathbf{SFL}	Syntactic Overview	291
	A.1	Cardiff Syntax	291
		A.1.1 Clause	291
		A.1.2 Nominal Group	291
		A.1.3 Prepositional Group	292
		A.1.4 Quality Group	292
		A.1.5 Quantity Group	292
		A.1.6 Genitive Cluster	292

xvi Table of contents

	A.2 Sydney Syntax	. 293
	A.2.1 Logical	. 293
	A.2.2 Textual	. 293
	A.2.3 Interactional	. 293
	A.2.4 Experiential	. 293
	A.2.5 Taxis	. 294
В	Stanford Dependency schema	295
\mathbf{C}	Penn treebank tag-set	299
D	Rules for clause complex taxis analysis	301
${f E}$	Mapping dependency to constituency graph	309
F	Normalization of PTDB and Cardiff TRANSITIVITY system	313
G	A selection of graph patterns	315
Н	Auxiliary algorithms	319
Ι	Annotation guidelines for OCD corpus	321
	I.1 Constituency	. 321
	I.2 Clause partition	. 323
	I.3 The tricky case of prepositional phrases	
	I.4 Making selection from the MOOD system network	. 325
J	Empirical evaluation data	327