# 실험계획과 분석

심송용(한림대학교 데이터과학스쿨)

http://jupiter.hallym.ac.kr

### 제곱합의 분해와 분산분석-Nested Design

#### 각 제곱합의 자유도

• SST = 
$$\sum_{i,j,k} (y_{\underline{ijk}} - \overline{y}_{...})^2$$
의 자유도:  $abn-1$ 

• SSA = 
$$\sum_{i,j,k} (\overline{y}_{i..} - \overline{y}_{...})^2$$
 의 자유도:  $a-1$ 

• SSB(A) = 
$$\sum_{i,j,k} (\overline{y}_{ij} - \overline{y}_{i..})^2$$
 의 자유도:  $ab - a = a(b-1)$ 

SSB의 자유도와 SSAB의 자유도 합 (b-1)+(a-1)(b-1)과 같음

• SSE = 
$$\sum_{i,j,k} (y_{\underline{ijk}} - \overline{y}_{\underline{ij.}})^2$$
의 자유도:  $abn - ab = ab(n-1)$ 

자유도도 다음이 성립:

$$abn-1 = (a-1) + a(b-1) + ab(n-1)$$

# 제곱합의 분해와 분산분석-Nested Design

분산분석표(두 요인 A, B가 모두 고정효과)

| 요인   | 제곱합    | 자유도     | 평균제곱(MS)                         | F                                        | 유의확률                            |
|------|--------|---------|----------------------------------|------------------------------------------|---------------------------------|
| A    | SSA    | a-1     | $MSA = \frac{SSA}{a-1}$          | MSE                                      | $\Pr[F_{a-1,ab(n-1)} > F_0]$    |
| B(A) | SSB(A) | a(b-1)  | $MSB(A) = \frac{SSB(A)}{a(b-1)}$ | $F_0 = \frac{\text{MSB}(A)}{\text{MSE}}$ | $\Pr[F_{a(b-1),ab(n-1)} > F_0]$ |
| 오차   | SSE    | ab(n-1) | $MSE = \frac{SSE}{ab(n-1)}$      |                                          |                                 |
| 전체   | SST    | abn-1   |                                  |                                          |                                 |

- 귀무가설  $H_0: \alpha_1 = \alpha_2 = \cdots = \alpha_a = 0$  (요인 A에 의한 차이 없음)은  $F_0 = \frac{\text{MSA}}{\text{MSE}} > F_{a-1,ab(n-1);\alpha} \text{ 이거나 유의확률이 유의수준 } \alpha 보다 작으면 기각$
- 귀무가설  $H_0: \beta_{1(1)}=\beta_{2(1)}=\dots=\beta_{b(a)}=0$  (요인 B(A)에 의한 차이 없음)은  $F_0=\frac{\text{MSB}(A)}{\text{MSE}}>F_{a(b-1),ab(n-1);\alpha} \text{ 이거나 유의확률이 유의수준 }\alpha$ 보다 작으면 기각

# 제곱합의 분해와 분산분석-Nested Design

고정효가의다름

K

### 분산분석표(두 요인 A, B(A)가 모두 임의효과)

| 요인   | 제곱합    | 자유도     | 평균제곱(MS)                         | F                                         | 유의확률                                    |
|------|--------|---------|----------------------------------|-------------------------------------------|-----------------------------------------|
| А    | SSA    | a-1     | $MSA = \frac{SSA}{a-1}$          | $F_0 = \frac{\text{MSA}}{\text{MSB (A)}}$ | $\Pr[F_{\underline{a-1,a(b-1)}} > F_0]$ |
| B(A) | SSB(A) | a(b-1)  | $MSB(A) = \frac{SSB(A)}{a(b-1)}$ | $F_0 = \frac{\text{MSB (A)}}{\text{MSE}}$ | $\Pr[F_{a(b-1),ab(n-1)} > F_0]$         |
| 오차   | SSE    | ab(n-1) | $MSE = \frac{SSE}{ab(n-1)}$      |                                           |                                         |
| 전체   | SST    | abn-1   |                                  |                                           |                                         |

- A의 주효과 검정: 귀무가설  $H_0: \sigma_{\alpha}^2 = 0$  대 대립가설  $H_1: \sigma_{\alpha}^2 \neq 0$   $F_0 = \frac{\text{MSA}}{\text{MSB}(A)} > F_{a-1,a(b-1);\alpha} \text{ 이면 } H_0 \text{ 기각}$
- B(A)의 효과 검정: 귀무가설  $H_0: \sigma_\beta^2 = 0$  대 대립가설  $H_1: \sigma_\beta^2 \neq 0$   $F_0 = \frac{\text{MSB}(A)}{\text{MSE}} > F_{a(b-1),ab(n-1);\alpha} \text{ 이면 } H_0 \text{ 기각}$

**예**: 학교나 담임선생님에 따라 학생들의 학업성취도가 차이나는지 알아보기 임의로 3개의 학교를 선정하고 각 학교에서 2개의 반을 선택하여 성취도 테스트를 한 결과이다. (학교를 요인 A, 학급(담임)을 요인 B)

| A          | .1         | A2         |           | A3         |         |
|------------|------------|------------|-----------|------------|---------|
| B1         | B2         | B1         | B2        | B1         | B2      |
| 20, 18, 14 | 19, 20, 20 | 14, 18, 14 | 12, 12, 9 | 13, 16, 13 | 9, 4, 4 |

$$\sum_{ijk} y_{ijk}^2 = 3873$$
,  $\sum_{i,j,k} y_{ijk} = 249$ ,  $CT = \frac{249^2}{3 \cdot 2 \cdot 3} = 3444.5$  이고 필요한 수준별 평균  $\overline{y}_{i..}$  및  $\overline{y}_{ij.}$  는 다음과 같다.

|    | B1     | B2.    | 평균     | 전체 평균    |
|----|--------|--------|--------|----------|
| A1 | 17.333 | 19.667 | 18.500 |          |
| A2 | 15.333 | 11.000 | 13.167 | 13.83333 |
| A3 | 14.000 | 5.667  | 9.833  | <u>v</u> |

각 제곱합은

$$SST = \sum_{i,j,k} y_{ijk}^2 - CT = 3873 - 3444.5 = 428.5$$

SSA = 
$$bn\sum_{i=1}^{a} y_{i..}^{-2} - CT = 2 \cdot 3(18.5^2 + 13.167^2 + 9.8333^2) - 3444.5 = 229.333$$
  
SSB(A) =  $n\sum_{i,j}^{a} y_{ij.}^{-2} - bn\sum_{i,j}^{a} y_{i..}^{-2}$ 

SSB(A) = 
$$n \sum_{i,j}^{a} y_{ij.}^{-2} - \underline{bn} \sum_{i,j}^{a} y_{i..}^{-2}$$

$$= 3(17.333^2 + 19.667^2 + 15.333^2 + 11^2 + 14^2 + 5.667^2) - 2 \cdot 3(18.5^2 + 13.167^2 + 9.8333^2)$$

=140.500

$${\tt SSE} = {\tt SST} - {\tt SSA} - {\tt SSB} - {\tt SSAB} = 428.5 - 229.333 - 140.500 = 58.666$$

으로 계산된다.

55 B(A)

참고로

$$SSB = an \sum_{j=1}^{b} \overline{y}_{.j.}^{-2} - CT = 3 \cdot 3(15.556^{2} + 12.111^{2}) - 3444.5 = 53.388$$

$$SSAB = n \sum_{i=1}^{a} \sum_{j=1}^{b} \overline{y}_{ij.}^{2} - bn \sum_{i=1}^{a} \overline{y}_{i..}^{2} - an \sum_{j=1}^{b} \overline{y}_{.j.}^{2} + CT$$

= 
$$3(17.333^2 + 19.667^2 + 15.333^2 + 11^2 + 14^2 + 5.667^2)$$
  
 $-2 \cdot 3(18.500^2 + 13.167^2 + 9.833^2) - 3 \cdot 3(15.556^2 + 12.111^2) - 3444.5$   
=  $3814.333 - 3673.833 - 3497.889 + 3444.5 = 87.111$   
이므로 SSB(A) = SSB + SSAB =  $53.388 + 87.111 = 140.499$  로 얻을 수도 있다.

이 경우 학교 및 담임선생님이 모두 임의효과이므로 분산분석표는

| 요인   | 제곱합     | 자유도           | 평균제곱(MS) | F     | 유의확률   |
|------|---------|---------------|----------|-------|--------|
| A    | 229.333 | $\frac{2}{2}$ | 114.666  | 2.448 | 0.2342 |
| B(A) | 140.500 | 3             | 46.833   | 9.58) | 0.0017 |
| 오차   | 58.666  | 12            | 4.888    | A.    |        |
| 전체   | 428.5   | 17            |          | •     |        |

•  $F_0=2.448 < F_{2,3;0.05}=9.55$  이므로 귀무가설  $H_{0:}\sigma_{\alpha}^2=0$ 을 기각하지 못함(따라서 학교 차이 없음)

•

•  $F_0=9.58>F_{\underline{3,12;0.05}}=\underline{3.4903}$  이므로 귀무가설  $H_0:\sigma_\beta^2=0$ 을 기각 따라서 담임선생님 차이 있음)

위의 유의확률은 다음과 같음

- > 1-pf(2.448, 2,3)
- [1] 0.2341915
- > 1-pf(9.58,3,12)
- [1] 0.001655408

### SAS를 사용한 내포설계 분석

```
data a; /* nested1.sas */
input school class score@@;
cards;
2 1 14 2 1 18 2 1 14
2 2 12 2 2 12 2 2 9
3 1 13 3 1 16 3 1 13
3 2 9 3 2 4 3 2 4
proc glm data=a;
 class school class;
 model score = school class(school);
 random school class(school)/test;
run;
```





고정효과 모형일때의 ANVA table:

| Source        | DF | Type III SS | Mean Square | F Value | Pr > F |
|---------------|----|-------------|-------------|---------|--------|
| school        | 2  | 229,3333333 | 114,6666667 | 23,45   | <,0001 |
| class(school) | 3  | 140,5000000 | 46,8333333  | 9,58    | 0,0017 |

MSA, MSB(A) 의 기댓값:

| Source         | Type III Expected Mean Square                     |  |  |  |
|----------------|---------------------------------------------------|--|--|--|
| school         | Var(Error) + 3 Var(class(school)) + 6 Var(school) |  |  |  |
| vclass(school) | Var(Error) + 3 Var(class(school))                 |  |  |  |

Dependent Variable: score

 Source
 DF
 Type III SS
 Mean Square
 F Value
 Pr > F

 school
 2
 229,333333
 114,666667
 2.45
 0,2342

 Error
 3
 140,500000
 46,833333
 140,500000
 46,833333

Error: MS(class(school))

수정된 분산분석표:

| Source           | DF | Type III SS | Mean Square | F Value | Pr > F |
|------------------|----|-------------|-------------|---------|--------|
| class(school)    | 3  | 140,500000  | 46,833333   | 9,58    | 0,0017 |
| Error: MS(Error) | 12 | 58,666667   | 4,888889    |         |        |

위의 기댓값을 보면 school에 검정은 class(school)로 나누어야 함. 따라서 TEST 문을 사용

```
/* nested2.sas */
data step 생략
proc glm data=a;
class school class;
model score = school class(school);
test H = school E= class(school);
run;
```

#### 검정결과

| Tests of Hypotheses Using the Type III MS for class(school) as an Error Term |    |             |             |         |        |  |
|------------------------------------------------------------------------------|----|-------------|-------------|---------|--------|--|
| Source                                                                       | DF | Type III SS | Mean Square | F Value | Pr > F |  |
| school                                                                       | 2  | 229,3333333 | 114,6666667 | 2,45    | 0,2342 |  |

#### 다중비교:

- 이 경우 class(school)이 유의하므로 다중비교는 이를 기준으로 실행.
- 이 경우 주효과(school)는 실제 유의하지도 않고 유의하더라도 이 주효과에 대한 다중비 교는 상대적으로 의미없음.

```
/* nested3.sas */
data step 생략

proc glm data=a;
  class school class;
  model score = school class(school);
  random school class(school)/test;
  lsmeans class(school) / adjust=tukey lines;
run;
```

모든 가능한 조합의 비교

#### Least Squares Means Adjustment for Multiple Comparisons: Tukey

| class | school | score LSMEAN | LSMEAN Number |
|-------|--------|--------------|---------------|
| 1     | 1      | 17,3333333   | 1             |
| 2     | 1      | 19,6666667   | 2             |
| 1     | 2      | 15,3333333   | 3             |
| 2     | 2      | 11,0000000   | 4             |
| 1     | 3      | 14,0000000   | 5             |
| 2     | 3      | 5,6666667    | 6             |

### Least Squares Means for effect class(school) Pr > |t| for H0: LSMean(i)=LSMean(j)

#### Dependent Variable: score

| i/j | 1      | 2      | 3      | 4      | 5      | 6      |
|-----|--------|--------|--------|--------|--------|--------|
| 1   |        | 0,7838 | 0,8691 | 0,0389 | 0.4748 | 0,0003 |
| 2   | 0,7838 |        | 0,2299 | 0,0045 | 0.0721 | <.0001 |
| 3   | 0,8691 | 0,2299 |        | 0,2299 | 0,9728 | 0,0018 |
| 4   | 0,0389 | 0,0045 | 0,2299 |        | 0,5780 | 0,0975 |
| 5   | 0,4748 | 0,0721 | 0,9728 | 0,5780 |        | 0,0061 |
| 6   | 0,0003 | <.0001 | 0,0018 | 0,0975 | 0.0061 |        |

# score Tukey Grouping for LS-Means of class (school) (Alpha = 0.05)

LS-means covered by the same bar are not significantly different.

| class | school | Estimate |  |
|-------|--------|----------|--|
| 2     | 1      | 19.6667  |  |
| 1     | 1      | 17.3333  |  |
| 1     | 2      | 15.3333  |  |
| 1     | 3      | 14.0000  |  |
| 2     | 2      | 11.0000  |  |
| 2     | 3      | 5.6667   |  |
|       |        |          |  |