Rangkaian Sekuensial

Eko Didik Widianto

Kuliah#11 TSK205 Sistem Digital - TA 2013/2014

Sistem Komputer - Universitas Diponegoro

23 Maret 2014

Sekuensial

@2014,Eko Didik Widianto

Elemen Penyimpan Keadaan

Latch (Pengunci)

Flip-flop

Register

Counter/Pencaca

Ringkasan

Register

Ringkasan

Counter/Pencacah

- Sebelumnya dibahas tentang rangkaian kombinasional yang nilai keluarannya di suatu saat hanya ditentukan oleh nilai-nilai masukannya pada saat itu
 - multiplekser, dekoder, demultiplekser, enkoder dan code converter
 - Peraga 7-segmen
- Teorema ekspansi Shannon untuk mendesain rangkaian logika menggunakan multiplekser

Elemen

- Membahas tentang rangkaian sekuensial yang keluarannya tidak hanya tergantung dari masukan saat ini, juga dari nilai keluaran sebelumnya
 - Rangkaian ini membutuhkan elemen penyimpan nilai dari sinyal logika
- Bahasan:
 - prinsip rangkaian sekuensial
 - elemen penyimpan 1 bit latch, yaitu set-reset latch (latch) SR), latch SR tergerbang dan data latch (latch D) serta rangkaian logikanya
 - elemen penyimpan 1 bit flip-flop, meliputi data flip-flop (DFF), toggle flip-flop (TFF), JK flip-flop (JKFF)
 - register data n bit dan register geser (shift register)
 - pencacah naik-turun
 - pencacah sinkron dan asinkron

- Setelah mempelajari bab ini, mahasiswa akan mampu:
 - ► [C2] menjelaskan perbedaan antara latch dan flip-flop
 - ► [C4] menganalisis fungsi karakteristik latch set-reset, latch tergerbang, latch data
 - [C4] menganalisis fungsi karakteristik flip-flop (D, T, dan JK)
 - ► [C3] membedakan perilaku dan rangkaian pencacah sinkron dan asinkron
 - [C5] merancang rangkaian n buah flip-flop menjadi register data *n* bit, shift register, pencacah naik/turun sinkron/asinkron serta menganalisisnya
 - ► [C5] merancang dan menganalisis implementasi rangkaian sekuensial menggunakan IC TTL
- ► link
 - Website http://didik.blog.undip.ac.id/2014/02/25/ tkc205-sistem-digital-2013-genap/
 - Email: didik@undip.ac.id

```
Bahasan
 Elemen Penyimpan Keadaan
 Latch (Pengunci)
    Latch SR (Set-Reset)
    Latch SR Tergerbang
    Gated Latch D (Data)
    IC TTL Latch
 Flip-flop
    Flip-Flop Data (DFF)
    Flip-flop Toggle (T)
    Flip-flop JK (JKFF)
    IC TTL Flip-flop
 Register
    Register Data
    Register Geser
    IC TTL Register
 Counter/Pencacah
    Pencacah Asinkron
```

@2014.Eko Didik Widianto

Penyimpan Keadaan Latch (Pengunci)

Flip-flop

Register

Elemen

Counter/Pencacah

Ringkasan

Dancacah Sinkran dancan DEE

Flip-flop

Register

Counter/Pencacah

Ringkasan

Lisensi

 Rangkaian yang nilai keluarannya tidak hanya tergantung dari masukan saat ini, juga dari nilai keluaran sebelumnya

- ► Rangkaian mempunyai elemen penyimpan
 - Isi dari elemen penyimpan merepresentasikan keadaan (state) dari rangkaian
 - Perubahan nilai masukan dapat menyebabkan keadaan rangkaian tidak berubah atau berubah ke keadaan baru
 - ► Rangkaian **berubah sesuai urutan keadaan** sebagai hasil dari perubahan masukannya

Latch (Pengunci)

- Diinginkan rangkaian untuk mengontrol alarm
 - lacktriangle Alarm merespon kontrol masukan On/\overline{Off}
 - akan berbunyi saat $On/\overline{Off} = 1$
 - ▶ mati saat $On/\overline{Off} = 0$
 - Alarm berbunyi saat sensor membangkitkan sinyal tegangan positif (Set) jika terjadi event tidak diinginkan
 - Diinginkan alarm tetap aktif (berbunyi) walaupun keluaran sensor tidak aktif (Set=0)
 - ► Alarm dimatikan manual menggunakan kontrol Reset

 Rangkaian ini memerlukan elemen memori untuk mengingat bahwa alarm telah aktif hingga datangnya sinyal Reset

Flip-flop

Register

Counter/Pencacah

Ringkasan

Lisensi

► Menggunakan 2 buah NOT

- mempunyai 2 keadaan yang masing-masing akan berulang tanpa batas, yaitu
 - ▶ Jika A=0, maka $B=\overline{A}=1$ dan $A=\overline{B}=0$. Rangkaian selalu menghasilkan B=1
 - ▶ Jika A=1, maka $B=\overline{A}=0$ dan $A=\overline{B}=1$. Rangkaian selalu menghasilkan B=0

Elemen Memori Terkontrol

Menyediakan mekanisme mengubah keadaan rangkaian

- ▶ Load = 0, maka TG2 aktif dan TG1 tidak aktif (feedback)
 - Keadaan rangkaian (dan juga keluaran Y) tetap
- ▶ Jika Load = 1, maka TG1 aktif dan TG2 tidak aktif (update)
 - ▶ Masukan *Data* akan memperbarui nilai *A*, sehingga nilai keluaran Y = Data
- Rangkaian berubah keadaannya sesuai Data

@2014.Eko Didik Widianto

Elemen Penyimpan Keadaan

Latch (Pengunci)

Flip-flop

Register

Counter/Pencacah

Ringkasan

Latch

@2014,Eko Didik Widianto

Elemen Penyimpan Keadaan

Latch (Pengunci) Latch SR (Set-Reset) Latch SR Tergerbang Gated Latch D

IC TTL Latch

Register

ounter/F

ingkasan

- Elemen memori terkontrol di atas membentuk latch (pengunci)
- ► Latch merupakan elemen penyimpan 1-bit
 - Untuk menyimpan 1-bit data/state diperlukan 1 buah latch
- ► Tipe latch berdasarkan fungsinya:
 - ▶ latch set-reset (SR latch)
 - SR latch tergerbang
 - ▶ latch data (D latch)
- diaplikasikan untuk mengunci data masukan dan/atau keluaran suatu rangkaian lain

Elemen Penyimpan Keadaan

 Masukannya, Set (S) dan Reset (R), digunakan untuk mengubah state/keadaan, Q, dari rangkaian

Latch (Pengunci)
Latch SR
(Set-Reset)
Latch SR
Tergerbang
Gated Latch D
(Data)
IC TTL Latch

► Rangkaian tersebut membentuk latch SR

Flip-flop

Register

ounter/Penca

ngkasan

.isen si

- Perilaku rangkaian:
 - ▶ Jika R=S=0, maka state tidak berubah (terkunci)
 - ▶ Jika R=1 (S=0 atau S=1), maka state Q=0
 - ▶ Jika R=0 dan S=1, maka state Q=1

Widianto

S	R	Qa	Q_{b}	
0	0	0/1	1/0	Tidak Berubah
0	1	0	1	
1	0	1	0	Tabel Karakteristik
1	1	0	0	Latch SR

- Rangkaian dihubungkan secara cross-coupled
- ► Saat R=S=0, rangkaian tetap berada di state saat ini

$$lacksquare$$
 Baik $(Q_a=0$ dan $Q_b=1)$ atau $(Q_a=1$ dan $Q_b=0)$

- lacksquare Saat S=1 dan R=0, latch diset ke keadaan dimana $Q_{a}=1$ dan $Q_{b}=0$
- lacksquare Saat S=0 dan R=1, latch diset ke keadaan dimana $Q_{a}=0$ dan $Q_{b}=1$
- ▶ Saat S=1 dan R=1, $Q_a = Q_b = 0 \rightarrow Kondisi race$
- Terjadi osilasi antara $Q_a=Q_b=0$ dan $Q_a=Q_b=1$

Elemen Penyimpan

Penyimpan Keadaan

Latch (Pengunci)
Latch SR
(Set-Reset)
Latch SR
Tergerbang
Gated Latch D
(Data)
IC TTL Latch

Flip-flop

Register

ounter/Pencaca

ngkasan

.isensi

Analisis Waktu Latch SR

- Jika delay propagasi dari Q_a dan Q_b sama, osilasi di waktu t_{10} akan berlanjut secara tak terbatas
- Di rangkaian realnya, mungkin terdapat perbedaan dalam delay dan latch berada di salah satu dari 2 keadaan
 - Tidak dapat ditentukan (kondisi race), yang lebih cepat mengunci keadaan
 - ► Sehingga, kombinasi S=R=1 merupakan kombinasi yang

Rangkaian Sekuensial

@2014,Eko Didik Widianto

Elemen Penyimpan Keadaan

Latch (Pengunci)
Latch SR
(Set-Reset)
Latch SR
Tergerbang
Gated Latch D
(Data)
IC TTL Latch

Flip-flop

Register

ounter/Pencaca

ngkasan

_isen si

Recall: Sistem Kontrol Alarm

@2014.Eko Didik Widianto

Keadaan

Latch (Pengunci) Latch SR (Set-Reset) Tergerbang Gated Latch D (Data)

Flip-flop

 Seringkali diinginkan untuk menambah satu sinyal enable ke latch SR dasar

Sinyal enable diberikan oleh masukan Clk

 Digunakan untuk mengontrol kapan rangkaian dapat mengubah state-nya

► Saat Clk=0 state tidak berubah, saat Clk=1 state tergantung masukan S dan R

Disebut sebagai gated SR latch

Rangkaian Sekuensial

@2014,Eko Didik Widianto

Elemen Penyimpan Keadaan

Latch (Pengunci)
Latch SR
(Set-Reset)
Latch SR
Tergerbang
Gated Latch D
(Data)
IC TTL Latch

Flip-flop

Register

Counter/F

Ringkasan

Gated SR Latch

Diagram Pewaktuan

- ► Keadaan saat S=R=1 dihindari, menyebabkan keluaran tak dapat ditentukan
- ► Latch set saat Q=1 dan latch reset saat Q=0

Rangkaian Sekuensial

@2014,Eko Didik Widianto

Elemen Penyimpan Keadaan

Latch (Pengunci)
Latch SR
(Set-Reset)
Latch SR
Tergerbang
Gated Latch D
(Data)
IC TTL Latch

Flip-flop

Register

ounter/Pencaca

ingkasan

_isen si

- Masukan S dan R dibalik dibandingkan dengan rangkaian dengan gerbang AND
- Gerbang NAND memerlukan transistor lebih sedikit daripada gerbang AND
- Akan lebih banyak digunakan daripada Gated SR Latch dengan NOR

Rangkaian Sekuensial

@2014,Eko Didik Widianto

Elemen Penyimpan Keadaan

Latch (Pengunci)
Latch SR
(Set-Reset)
Latch SR
Tergerbang
Gated Latch D
(Data)
IC TTL Latch

Flip-flop

eg ist er

Counter/Pencaca

ingkasan

- Latch dapat digunakan sebagai elemen memori untuk sistem alarm di contoh sebelumnya
- ► Gated latch lainnya adalah **D latch**
 - Mempunyai sebuah masukan data, D
 - Tidak akan terjadi kondisi race seperti latch RS
 - Menyimpan nilai masukan dengan kontrol berupa sinyal clock
 - Digunakan di rangkaian yang perlu menyimpan nilai
 - Misalnya 'mengingat' nilai keluaran dari rangkaian adder/substractor
 - Latch dapat dikatakan sebagai elemen penyimpan 1 bit data
 - Diimplementasikan dengan 18 transistor CMOS

Elemen Penyimpan Keadaan

Latch (Pengunci)
Latch SR
(Set-Reset)
Latch SR
Tergerbang
Gated Latch D
(Data)
IC TTL Latch

Flip-flop

Register

ngkasan

. .

Gated D (Data) Latch

Simbol, Tabel Karakteristik dan Diagram Pewaktuan

@2014, Eko Didik Widianto

Elemen Keadaan

Latch (Pengunci) Latch SR (Set-Reset) Tergerbang Gated Latch D (Data)

Flip-flop

@2014,Eko Didik Widianto

Penyimpan Keadaan						
_atch (Pengunci) Latch SR (Set-Reset)						

Latch SR (Set-Reset) Latch SR Tergerbang Gated Latch D (Data) IC TTL Latch

ip-flop

Register

ouniter/1

Ringkasan

. .

Nomor IC	Deskripsi
74279	latch set-reset (quad), aktif rendah
74363/74373	latch data transparan dengan keluaran 3 keadaan (oktal)

► IC 74363/74373

Struktur dan Fungsi 74363/74373

Mada Onavasi		trol	Masukan	Latch Internal	Keluaran	
Mode Operasi	OE	LE	Dn	Qn	Qn	
Mode transparan,	L	Н	L	Н	L	
Aktif dan baca register			Н	L	Н	
Kunci dan baca register	L	L	L*	Н	L	
			Н*	L	Н	
Kunci register dan matikan keluaran	Н	Х	Х	Х	Z	

@2014 Eko Didik Widianto

Elemen Keadaan

Latch (Pengunci) Latch SR (Set-Reset) Tergerbang Gated Latch D (Data) IC TTL Latch

Flip-flop

- Sensitivitas elemen storage: Level-sensitive dan Edge-triggered
 - ► Level-sensitive: keluaran elemen dikontrol oleh level masukan clock (0 atau 1)
 - Edge-triggered: keluaran elemen hanya berubah di titik transisi nilai clock
 - ▶ Positive-edge: transisi sinyal clock dari 0 ke 1
 - ▶ Negative-edge: transisi sinyal clock dari 1 ke 0
- Latch merupakan elemen penyimpan dengan sensitivitas level
 - ightharpoonup Selama clock clk=1 nilai keluaran akan tergantung dari nilai masukan D
 - Dalam satu periode clock bisa terjadi lebih dari 1 perubahan state keluaran Q
 - Ini akan membedakannya dengan elemen penyimpan flip-flop yang akan dibahas berikutnya

Latch (Pengunci)

Flip-flop Flip-Flop Data (DFF) Flip-flop Toggle (T)

(T)

Flip-flop JK
(JKFF)

IC TTL Flip-flop

Register

. . . .

Ringkasan

- Rangkaian latch (gated) merupakan level-sensitive
 - State dapat berubah lebih dari sekali selama periode 'aktif' dari sinyal clock
 - Untuk logika positif, periode aktif adalah saat clk=1.
 Dan sebaliknya
- ► Flip-flop
 - ▶ Elemen penyimpan 1 bit
 - Statenya berubah hanya sekali dalam satu periode clock
 - Tipe: master-slave flip-flop dan edge-triggered flip-flop
 - ▶ Jenis: DFF (data), TFF (toggle) dan JKFF

Elemen

Flip-flop

Penvimpan Keadaan

Latch (Pengunci)

Flip-Flop Data (DFF) Flip-flop Toggle

Flip-flop JK IC TTL Flip-flop

- ▶ Dibentuk dari 2 buah gated D latch (38 transistor CMOS): sebagai master dan slave
 - master mengubah statenya saat clock = 1
 - slave mengubah statenya saat clock = 0

Analisis diagram pewaktuan

- ► Saat clock=1, master melihat nilai dari sinyal masukan D, slave tidak berubah
 - \triangleright Q_m mengikuti perubahan D, dan Q_s konstan
- ► Saat clock=0, master berhenti mengikuti perubahan nilai masukan D, sebaliknya slave merespon masukan Q_m dan mengubah statenya
 - Karena Q_m tidak berubah selama clock=0, slave hanya mengubah statenya sekalis aja selama satu siklus clock
- Dari sudut pandang keluaran
 - \triangleright Rangkaian mengubah Q_s (keluaran flip-flop) di titik transisi negatif sinyal clock (perubahan dari $1\rightarrow 0$)
 - Disebut negative-edge-triggered D Flip-flop

Simbol dan Karakteristik DFF Transisi Turun

D	Clk	Q	Q
X	0	Q	Q
X	1	Q	Q
0	ļ	0	1
1	1	1	Ω

@2014 Eko Didik Widianto

Elemen Keadaan

Latch (Pengunci)

Flip-flop Flip-Flop Data (DFF) Flip-flop Toggle Flip-flop JK IC TTL Flip-flop

Elemen

Penvimpan Keadaan

- Sebelumnya efek delay propagasi diabaikan
 - Dalam prakteknya, delay ini perlu diperhatikan
- Di master-slave D flip-flop (negative-edge)
 - nilai D harus tidak berubah (stabil) saat clock berubah dari 1 ke 0 (transisi turun)
 - Waktu minimum dimana sinyal D harus stabil sebelum transisi clock turun disebut setup time (t_{su})
 - Waktu minimum dimana sinyal D harus stabil setelah transisi clock disebut hold time (t_h)
 - Nilai tipikal di CMOS: $t_{su} = 3ns$ dan $t_h = 2ns$

Latch (Pengunci)

Rangkaian Sekuensial

 Rangkaian berfungsi sama dengan master-slave D flip-flop dapat dibentuk dengan 6 gerbang NAND (24 transistor)

- ► Saat clock = 0, keluaran gerbang 2 dan 3 tinggi
 - ho P1=P2=1, keluaran latch tidak berubah, berada di present statenya
 - ▶ P3 = D dan $P4 = \overline{D}$
- Saat clock = 1, nilai P3 dan P4 ditransmisikan lewat gerbang 2 dan 3

@2014,Eko Didik Widianto

Elemen Penyimpan Keadaan

Latch (Pengunci)

Flip-flop

Flip-Flop Data
(DFF)

Flip-flop Toggle
(T)

Flip-flop JK
(JKFF)

IC TTL Flip-flop

Register

ouniter/1

lingkasan

Perilaku Positive DFF

@2014 Eko Didik Widianto

Elemen Keadaan

Latch (Pengunci)

Flip-flop Flip-Flop Data (DFF) Flip-flop Toggle Flip-flop JK (JKFF) IC TTL Flip-flop

Elemen Keadaan

 Setup time dari flip-flop sama dengan delay dari masukan D lewat gerbang 4 dan 1 ke P3

Latch (Pengunci)

▶ Hold time diberikan oleh delay lewat gerbang 3, sebab sekali P2 stabil, perubahan di D tidak akan berpengaruh (mengubah state)

Flip-flop Flip-Flop Data (DFF) Flip-flop Toggle Flip-flop JK IC TTL Flip-flop

► Harus dipastikan bahwa setelah clock berubah ke 1, setiap perubahan di D tidak akan mempengaruhi keluaran latch selama_clock=1

Register

 Kasus 1: jika D=0 saat transisi naik clock, maka P2=0 yang akan membuat keluaran gerbang 4 sama dengan 1 selama clock=1, apapun nilai dari masukan D

 Kasus 2: jika D=1 saat transisi naik clock, maka P1=0 yang memaksa keluaran gerbang 1 dan 3 sama dengan 1, apapun nilai dari masukan D

Sehingga, flip-flop akan mengabaikan perubahan

- Dua tipe rangkaian:
 - positive-edge triggered D flip-flop
 - rangkaian merespon di transisi positif sinyal clock
 - negative-edge triggered D flip-flop
 - rangkaian merespon di transisi negatif sinyal clock

Positive-edge-triggered D type flip-flop

Negative-edge-triggered D type flip-flop

Rangkaian Sekuensial

@2014,Eko Didik Widianto

Elemen Penyimpan Keadaan

Latch (Pengunci)

Flip-flop

Flip-Flop Data
(DFF)

Flip-flop Toggle
(T)

Flip-flop JK
(JKFF)

IC TTL Flip-flop

Register

-ounter/F

Ringkasan

Membandingkan Elemen Penyimpan Data

Latch, Positive-edge DFF dan Negative-edge DFF

► Elemen storage: Level-sensitive, positive-edge-sensitive, dan negative-edge-sensitive

Rangkaian Sekuensial

@2014,Eko Didik Widianto

Elemen Penyimpan Keadaan

Latch (Pengunci)

Flip-flop

Flip-flop Data
(DFF)

Flip-flop Toggle
(T)

Flip-flop JK
(JKFF)

IC TTL Flip-flop

Register

ounter/Fen

Ringkasan

- ▶ Diinginkan untuk mengeset sebuah flip-flop (Q = 1) atau meng-clear-kannya (Q = 0)
 - Flip-flop umumnya mempunyai masukan preset dan clear
 - ► Input ini asinkron (tidak tergantung dari sinyal clock)
 - Keluaran Q berubah seketika saat preset atau clear aktif (active-low)

posedge triggered DFF

negedge triggered DFF

- ▶ Jika $\overline{Preset} = 0$, keluaran Q = 1
- ightharpoonup Jika *Clear* = 0, keluaran Q = 0

Rangkaian Sekuensial

@2014,Eko Didik Widianto

Elemen Penyimpan Keadaan

Latch (Pengunci)

Flip-flop

Flip-Flop Data
(DFF)

Flip-flop Toggle
(T)

Flip-flop JK
(JKFF)

IC TTL Flip-flop

Register

,

Ringkasan

@2014.Eko Didik Widianto

Keadaan

Latch (Pengunci)

Flip-flop Flip-Flop Data (DFF) Flip-flop Toggle Flip-flop JK IC TTL Flip-flop

Simbol DFF Transisi Turun, Preset, Clear

Preset	Clear	D	Clk	Q	Q
0	1	Χ	X	1	0
1	0	X	X	0	1
0	0	X	X	1	1
1	1	X	0	Q	Q
1	1	Χ	1	Q	Q
1	1	0	ţ	0	1
1	1	1	1	1	0

@2014 Eko Didik Widianto

Elemen Keadaan

Latch (Pengunci)

Flip-flop Flip-Flop Data (DFF) Flip-flop Toggle Flip-flop JK IC TTL Flip-flop

Masukan Preset dan Clear

Posedge-triggered D Flip-flop with Preset and Clear

Rangkaian Sekuensial

@2014,Eko Didik Widianto

Elemen Penyimpan Keadaan

Latch (Pengunci)

Flip-flop
Flip-Flop Data
(DFF)
Flip-flop Toggle
(T)
Flip-flop JK
(JKFF)
IC TTL Flip-flop

Register

ounter/Fen

Ringkasan

Simbol DFF Transisi Naik, Preset, Clear

Preset	Clear	D	Clk	Q	Q
0	1	Χ	X	1	0
1	0	Χ	X	0	1
0	0	Χ	Χ	1	1
1	1	Χ	0	Q	\overline{Q}
1	1	Χ	1	Q	\overline{Q}
1	1	0	†	0	1
1	1	1	Ť	1	0

Rangkaian Sekuensial

@2014, Eko Didik Widianto

Elemen Penyimpan Keadaan

Latch (Pengunci)

Flip-flop
Flip-Flop Data
(DFF)
Flip-flop Toggle
(T)
Flip-flop JK
(JKFF)
IC TTL Flip-flop

Register

ounter/Pend

Ringkasan

naik

untuk mendrive masukannya

 \overline{Q} di bawah kontrol sinyal T

• Saat $T=0 \rightarrow \text{statenya tetap}$

IC TTL Flip-flop

Menggunakan sebuah posedge D flip-flop dan rangkaian logika

▶ Feedback membuat sinyal masukan D sama dengan nilai Q atau

Digunakan sebagai elemen di rangkaian pencacah

Saat $T=1 \rightarrow \text{state rangkaian 'toggle' saat transisi clock}$

Rangkaian dan Diagram Pewaktuan TFF

@2014 Eko Didik Widianto

Elemen Keadaan

Latch (Pengunci)

Flip-Flop Data (DFF) Flip-flop Toggle Flip-flop JK (JKFF) IC TTL Flip-flop

Simbol dan Fungsi TFF

@2014 Eko Didik Widianto

Elemen Keadaan

Latch (Pengunci)

Flip-flop Flip-Flop Data (DFF) Flip-flop Toggle Flip-flop JK IC TTL Flip-flop

- ► Flip-flop JK mengkombinasikan perilaku flip-flop SR dan flip-flop T
 - ightharpoonup J = S dan K = R untuk semua nilai, kecuali untuk J = K = 1 (flip-flop SR)
 - ▶ Jika J=K=1, flip-flop menbalik (toggle) statenya seperti flip-flop T
- Dapat digunakan sebagai storage seperti DFF dan SR FF. Dan juga T FF dengan menghubungkan J dan K sebagai T

Rangkaian dan Diagram Pewaktuan JKFF

Rangkaian Sekuensial

@2014,Eko Didik Widianto

Elemen Penyimpan Keadaan

Latch (Pengunci)

Flip-flop
Flip-Flop Data
(DFF)
Flip-flop Toggle
(T)
Flip-flop JK
(JKFF)
IC TTL Flip-flop

Register

ounici, i

Ringkasan

_isen si

Simbol dan Fungsi TFF

- ► Dapat digunakan sebagai elemen penyimpan 1 bit
 - DFF: menghubungkan Data ke masukan J dan Data ke masukan K
- ► TFF: menghubungkan Toggle ke J dan K

Rangkaian Sekuensial

@2014,Eko Didik Widianto

Elemen Penyimpan Keadaan

Latch (Pengunci)

Flip-flop
Flip-Flop Data
(DFF)
Flip-flop Toggle
(T)
Flip-flop JK
(JKFF)
IC TTL Flip-flop

eg ist er

ounter/Pencaca

ingkasan

IC TTL Flip-flop

Nomor IC	Deskripsi
7474	DFF transisi naik dengan preset dan clear (dual)
7476	JKFF dengan preset dan clear (dual)
7479	DFF (dual)
74112	JKFF transisi turun dengan preset dan clear (dual)
74173	DFF dengan keluaran tiga keadaan (quad)
74174	DFF dengan clear (hex)
74574/74874	DFF dengan keluaran tiga keadaan (oktal)

@2014 Eko Didik Widianto

Keadaan

Latch (Pengunci)

Flip-flop Flip-Flop Data (DFF) Flip-flop Toggle Flip-flop JK (JKFF) IC TTL Flip-flop

. .

ingkasan

_isen si

 Dual D-type Positive-Edge-Trigerred Flip-Flops with Preset and Clear

IC 7474: Rangkaian dan Fungsi

nSD	nRD	nCP	nD	nQ	nQ
LHLHH	HLLHH	×××	H X X	TLTL	H H H L

@2014 Eko Didik Widianto

Keadaan

Latch (Pengunci)

Flip-flop Flip-Flop Data (DFF) Flip-flop Toggle Flip-flop JK (JKFF) IC TTL Flip-flop

IC 74574: 8 DFF Transisi Naik, Tiga Keadaan

ŌĒ	СР	nD	FF intern	nQ
L H H	* * *	ILIL	LHLH	L H Z Z

Rangkaian Sekuensial

@2014,Eko Didik Widianto

Elemen Penyimpan Keadaan

Latch (Pengunci)

Flip-flop
Flip-Flop Data
(DFF)
Flip-flop Toggle
(T)
Flip-flop JK
(JKFF)
IC TTL Flip-flop

eg ist er

Counter/Pend

Ringkasan

lisensi

Latch (Pengunci)

- Sebuah DFF dapat menyimpan 1 bit data
- Register n bit dibentuk dari n buah DFF
 - masukan Clk digunakan secara bersama oleh tiap DFF penyusunnya
- ▶ DFF dapat digunakan untuk membentuk register data dan register geser
 - Register data digunakan untuk menyimpan data
 - Data yang tersimpan di register bersifat sementara (volatile)
 - Register geser digunakan dalam operasi pergeseran bit serta dalam konversi data serial ke paralel dan data paralel ke serial

- Register Data n-bit tersusun atas n buah flip-flip untuk menyimpan n-bit data
 - Perilaku register data n bit transisi naik
 - Untuk setiap DFF, Q = D saat transisi naik Clk
 - Keluaran Q(t+1) = Q(t) atau tetap saat kondisi Clk lainnya
- Register data di prosesor: register akumulator, register status, register alamat, register instruksi, register data serial terima (RX)/kirim (TX)
- Contoh penggunaan register:
 - Menahan/menyimpan (hold) sebuah keluaran nilai data dari suatu rangkaian aritmatika
 - Menahan/menyimpan (hold) nilai pencacah dalam rangkaian counter/pencacah

Register Data 4 Bit

Saat transisi naik Clk, register akan bernilai Q[3:0] = D[3:0]

Flip-flop

Register Data Register Geser IC TTL Register

334......

Ringkasan

Flip-flop

Register Data Register Geser IC TTL Register

Counter/Fei

Ringkasar

- Merupakan sebuah register yang dapat menggeser isinya sejauh 1 bit perclock
 - ▶ Bisa geser ke kanan atau ke kiri
- ► Register geser kiri

Register Register Data Register Geser

- Data digeser ke kiri secara serial menggunakan masukan In
- Isi dari tiap flip-flop ditransfer ke flip-flop berikutnya di tiap transisi naik sinyal clock

	Q_3	Q_2	Q_1	Q_0	In
t0	0	0	0	0	1
t1	0	0	0	1	0
<i>t</i> 2	0	0	1	0	1
t3	0	1	0	1	1
t4	1	0	1	1	1
t5	0	1	1	1	0
t6	1	1	1	0	0
t7	1	1	0	0	0

Register Geser Kanan dengan Akses Paralel

- Tipe transfer data di sistem komputer
 - transfer paralel: trasfer n-bit data sekaligus
 - transfer serial: transfer 1-bit bit dalam satu waktu
- Untuk mentransfer data secara serial, data diletakkan dalam suatu register secara paralel (dalam waktu 1 siklus clock) dan digeser keluar satu bit dalam satu waktu
 - Disebut sebagai konversi data parallel-ke-serial
- ▶ Jika bit-bit diterima secara serial, setelah n siklus clock, isid ari register dapat diakses secara paralel sebagai sebuah data n-bit
 - Disebut sebagai konversi data serial-ke-paralel

@2014.Eko Didik Widianto

Elemen Penvimpan Keadaan

Latch (Pengunci)

Flip-flop

Register Register Data Register Geser IC TTL Register

Register Geser dengan Akses Paralel

Rangkaian Sekuensial

@2014,Eko Didik Widianto

Elemen Penyimpan Keadaan

Latch (Pengunci)

Flip-flop

Register Data Register Geser IC TTL Register

Counter/Penc

Ringkasar

Nomor IC

Deskripsi

Nomor IC	Deskripsi
74164	register geser 8 bit, keluaran paralel, masukan <i>clear</i>
	asinkron
74165	register geser 8 bit, masukan paralel, dengan keluaran
	komplementer
74166	register geser 8 bit, masukan paralel
74194/74195	register geser universal dua arah (bidireksional) 4 bit
74198	register geser universal dua arah (bidireksional) 8 bit
74273	register 8 bit dengan <i>reset</i>
74278	register prioritas 4 bit, dapat di-kaskade, masukan
	data terkunci
74299	register geser universal dua arah (bidireksional) 8 bit,
	keluaran tiga-keadaan
74374	register oktal dengan keluaran tiga-keadaan
74377	register 8 bit dengan kontrol <i>enable</i> detak
http:// //d4/d3/l9/6 /log.und	ip rægirster oktal, akse⊈oparr≣ke Didik Widianto 55

74164: Register Geser 8 Bit, Serln/ParOut

Rangkaian Sekuensial

@2014,Eko Didik Widianto

Elemen Penyimpar Keadaan

Latch (Pengunci)

Flip-flop

Register Register Data Register Geser IC TTL Register

ounter/Penca

Ringkasan

74165/74166: Register Geser 8 Bit, Load Paralel

PL	CE	СР	DS	D0-D7	Q0	Q1-Q6	Q7	Q7
L H H H	X + H X	X L X H	X X X X	X X X X	D0 DS DS Q0 Q0	D1-D6 Q0-Q5 Q0-Q5 Q1-Q6 Q1-Q6	D7 Q6 Q6 Q7 Q7	D7 Q6 Q6 Q7 Q7

H: level HIGH, L: level LOW, X: don't care

Rangkaian Sekuensial

@2014,Eko Didik Widianto

Elemen Penyimpa Keadaan

Latch (Pengunci)

Flip-flop

Register Register Data Register Geser IC TTL Register

ounter/Pencac

Ringkasan

74165/74166: Perilaku

@2014.Eko Didik Widianto

Elemen Keadaan

Latch (Pengunci)

Flip-flop

Register Register Data Register Geser IC TTL Register

74299: Register Geser Universal 8 Bit

@2014.Eko Didik Widianto

Keadaan

Latch (Pengunci)

Flip-flop

Register Register Data Register Geser IC TTL Register

Operasi IC 74299

MR	S1	S0	СР	Fungsi
L H H H	XIJIJ	XHHLL		Reset, Q=0 Load, I/On \rightarrow Qn Geser kanan, DSR \rightarrow Q ₀ Geser kiri, DSL \rightarrow Q ₇ Hold register

H: level HIGH, L: level LOW, X: don't care

- SIPO (serial-in parallel-out), register diisi dengan data serial 1 bit dalam satu waktu dan data yang tersimpan di register tersedia sebagai keluaran paralel
- SISO (serial-in serial-out), data digeser secara serial dari masukan ke keluaran serial, 1 bit dalam satu waktu
- PISO (parallel-in serial-out), register diisi dengan data paralel n bit dan isi register digeser keluar secara serial 1 bit dalam satu waktu
- 4. PIPO (parallel-in parallel-out), register diisi dengan data paralel n bit dan isi register dapat tersedia sebagai keluaran paralel

Rangkaian Sekuensial

@2014,Eko Didik Widianto

Elemen Penyimpan Keadaan

Latch (Pengunci)

Flip-flop

Register Register Data Register Geser

IC TTL Register

2in akasan

ingkasan

IC 74374: Register Data 8 Bit

ОC	CLK	D	Q
L L H	† L X	XXTH	H L Q _o Z

H: level HIGH, L: level LOW, X: don't care, Z: high-Z

@2014, Eko Didik Widianto

Keadaan

Latch (Pengunci)

Flip-flop

Register Register Data Register Geser IC TTL Register

IC 74374: Register Data 8 Bit

@2014 Eko Didik Widianto

Keadaan

Latch (Pengunci)

Flip-flop

Register Register Data Register Geser IC TTL Register

Latch (Pengunci)

Flip-flop

Elemen

Register

Counter/Pencacah Pencacah Pencacah Sinkron Pencacah Sinkron

IC TTL Pencacah

- Rangkaian counter ini dapat digunakan melakukan beberapa fungsi, misalnya
 - Menghitung kejadian dari suatu event
 - Membangkitkan interval waktu untuk mengontrol pekerjaan-pekerjaan (task) di sistem digital
 - Menghitung waktu mundur antar event
 - Menyediakan alamat baru di pencacah program (PC)
- Rangkaian counter yang paling sederhana dapat dibuat dengan menggunakan flip-flop T
 - flip-flop T secara natural cocok untuk diimplementasikan di operasi pencacahan

Pencacah Sinkron dan Asinkron

- ► Pencacah asinkron dibentuk dengan memberikan sinyal Clk ke terminal detak satu flip-flop
 - Masukan detak untuk flip-flop berikutnya diperoleh dari keluaran flip-flop sebelumnya (efek serupa RCA)
 - ► Lambat karena sumber *Clk* merambat dari satu flip-flop ke flip-flop lainnya
- Pencacah sinkron dibentuk dengan memberikan sinyal
 Clk ke semua flip-flop di waktu yang sama
 - Semua flip-flop menggunakan sumber detak yang sama
 - Mempunyai respon yang lebih cepat daripada pencacah asinkron

Rangkaian Sekuensial

@2014,Eko Didik Widianto

Elemen Penyimpan Keadaan

Latch (Pengunci)

Flip-flop

Register

Counter/Pencacah Pencacah Asinkron Pencacah Sinkron Pencacah Sinkron dengan DFF IC TTL Pencacah

Ringkas

.isensi

- Pencacah 3-bit yang dapat mencacah 0 sampai 7 atau pencacah module-8
 - Masukan clock untuk ketiga flip-flop dikoneksikan secara kaskade
 - ► Flip-flop pertama terkoneksi ke Clock
 - Flip-flop berikutnya, sinyal clocknya didrive dari keluaran Q flip-flop sebelumnya
 - Rangkaian seperti ini disebut sebagai pencacah asinkron atau pencacah ripple
 - Masukan T tiap flip-flop dikoneksikan ke konstan 1
 - State tiap flip-flop akan dibalik (toggle) setiap transisi naik clocknya

Rangkaian Sekuensial

@2014,Eko Didik Widianto

Elemen Penyimpan Keadaan

Latch (Pengunci)

Flip-flop

Register

Counter/Pencacah
Pencacah
Asinkron
Pencacah Sinkron
Pencacah Sinkron

Pencacah Sinkron dengan DFF IC TTL Pencacah

Ringkasar

Diagram Pewaktuan Pencacah Naik

- Nilai Q_0 akan toggle setiap clock cycle
 - Perubahan terjadi setelah transisi naik sinyal clock
- Nilai Q_1 akan toggle setelah transisi turun dari Q_0 , demikian juga Q_2
- Nilai $Q_2 Q_1 Q_0$ menunjukkan nilai pencacahnya

Rangkaian Sekuensial

@2014,Eko Didik Widianto

Elemen Penyimpan Keadaan

Latch (Pengunci)

Flip-flop

Register

ounter/Pencaca

Pencacah Asinkron Pencacah Sinkron Pencacah Sinkron dengan DFF IC TTL Pencacah

ingkasan

Pencacah Turun dengan Flip-flop T

 Mirip dengan rangkaian pencacah naik, kecuali masukan clock flip-flop kedua dan seterusnya berasal dari keluaran Q flip-flop sebelumnya Rangkaian Sekuensial

@2014,Eko Didik Widianto

Elemen Penyimpan Keadaan

Latch (Pengunci)

Flip-flop

Register

Counter/Pencacah

Pencacah Asinkron Pencacah Sinkron Pencacah Sinkron dengan DFF IC TTL Pencacah

ingkasan

Diagram Pewaktuan Pencacah Turun

- Nilai Q_0 akan toggle setiap clock cycle
 - Perubahan terjadi setelah transisi naik sinyal clock
- Nilai Q_1 akan toggle setelah transisi naik dari Q_0 , demikian juga Q_2
- Nilai $Q_2 Q_1 Q_0$ menunjukkan nilai pencacahnya

Rangkaian Sekuensial

@2014,Eko Didik Widianto

Elemen Penyimpan Keadaan

Latch (Pengunci)

Flip-flop

Register

Counter/Pencacah

Pencacah Asinkron Pencacah Sinkron Pencacah Sinkron dengan DFF IC TTL Pencacah

ngkasan

sensi

@2014, Eko Didik Widianto

Penyimpan Keadaan

Latch (Pengunci)

Flip-flop

Elemen

Register

Counter/Pencacah Pencacah Asinkron Pencacah Sinkron Pencacah Sinkron dengan DFF

IC TTL Pencacah

Ringkasan

isensi

Desain pencacah naik/turun 3-bit menggunakan flip-flop T. Sebuah masukan kontrol $\overline{Up}/Down$ harus disertakan. Jika $\overline{Up}/Down = 0$ rangkaian berfungsi sebagai pencacah naik. Jika $\overline{Up}/Down = 1$ rangkaian berfungsi sebagai pencacah turun.

@2014.Eko Didik Widianto

Elemen Keadaan

Latch (Pengunci)

Flip-flop

Register

Counter/Pencacah Asinkron

Pencacah Sinkron Pencacah Sinkron dengan DFF

Dapat dibentuk dengan TFF

		Q_3	$Q_{2} \\$	${\tt Q_1}$	$Q_0 \\$		
	0	0	0	0	0	\rightarrow	Kondisi awal
	1	0	0	0	1	\rightarrow	Q ₀ berubah
	2	0	0	1	0	-	Q_0 , Q_1 berubah
	3	0	0	1	1	→	Q ₀ berubah
	4	0	1	0	0	\rightarrow	Q_0 , Q_1 , Q_2 berubah
	5	0	1	0	1	\rightarrow	Q ₀ berubah
	6	0	1	1	0	\longrightarrow	Q_0 , Q_1 berubah
	7	0	1	1	1	\rightarrow	Q ₀ berubah
	8	1	0	0	0	\rightarrow	Q_0 , Q_1 , Q_2 , Q_3 berubah
1	.5	1	1	1	1	\rightarrow	Q ₀ berubah
1	.6	0	0	0	0	\rightarrow	Q ₀ ,Q ₁ , Q ₂ , Q ₃ berubah
1	.7	0	0	0	1	\rightarrow	Q ₀ berubah

$$T_0 = 1$$
 $T_1 = Q_0$
 $T_2 = Q_0 Q_1$
 $T_3 = Q_0 Q_1 Q_2$

- ▶ Implementasi rangkaian pencacah sinkron tersebut membutuhkan gerbang AND.
 - Masukan T_0 dihubungkan logika 1, sehingga Q_0 akan membalik setiap transisi naik Clk
 - Masukan T_1 dihubungkan dengan Q_0
 - Masukan T_2 membutuhkan gerbang AND-2 untuk memperoleh $Q_0 Q_1$
 - ightharpoonup Masukan T_3 membutuhkan gerbang AND-3 untuk memperoleh $Q_0 Q_1 Q_2$
- \triangleright Masalah fan-in: pencacah *n* bit akan membutuhkan gerbang AND

http://didik.blog.undip.ac.id

@2014 Eko Didik Widianto

@2014 Eko Didik Widianto

Penvimpan Keadaan

Latch (Pengunci)

Flip-flop

Elemen

Register

Counter/Pencacah **Asinkron** Pencacah Sinkron Pencacah Sinkron dengan DFF

IC TTL Pencacah

Latch (Pengunci)

Flip-flop

Register

Counter/Pencacah Pen ca ca h

Asinkron Pencacah Sinkron Pencacah Sinkron dengan DFF

► Faktorisasi untuk mengatasi fan-in

Diagram Pewaktuan

Elemen Penyimpan Keadaan

Latch (Pengunci)

Flip-flop

Register

Counter/Pencaca

Pencacah Asinkron Pencacah Sinkron Pencacah Sinkron dengan DFF

IC TTL Per

. .

Untuk sebarang pencacah naik n bit, rangkaiannya dapat dibentuk dengan persamaan masukan T_i sebagai berikut:

$$\begin{array}{rcl}
 I_0 & = & 1 \\
 T_1 & = & Q_0 \\
 T_2 & = & T_1 Q_1 \\
 T_3 & = & T_2 Q_2 \\
 & & & & \\
 T_n & = & T_{n-1} Q_{n-1}
 \end{array}$$

Pencacah Sinkron dengan Enable dan Clear

Rangkaian Sekuensial

@2014,Eko Didik Widianto

Elemen Penyimpan Keadaan

Latch (Pengunci)

Flip-flop

Register

Counter/Pencaca

Pencacah Asinkron Pencacah Sin

Pencacah Sinkron Pencacah Sinkron dengan DFF IC TTL Pencacah

Ringkasan

_isen si

Register

Counter/Pencacah Pencacah Asinkron Pencacah Sinkron Pencacah Sinkron dengan DFF IC TTL Pencacah

Ringkasan

lisensi

- Pencacah akan mempunyai urutan nilai $0, 1, 2, 3, \dots, 15, 0, 1, \dots$
- lacktriangle Nilai pencacah ini diberikan oleh keluaran DFF $Q_3\,Q_2\,Q_1\,Q_0$
- Pencacah akan aktif saat Enable = 1. Saat Enable = 0 maka nilai pencacah tidak berubah
 - Nilai Q_0 akan membalik (toggle) setiap transisi naik Clk. Agar Q_0 membalik di transisi naik Clk berikutnya, maka nilai D_0 harus bernilai \overline{Q}_0 saat Enable=1. Persamaannya adalah $D_0=Q_0\oplus Enable$
 - Nilai Q_1 akan membalik setelah nilai $Q_0=1$. Agar Q_1 membalik di transisi naik Clk berikutnya, maka nilai D_1 harus bernilai \overline{Q}_1 saat $Q_0=1$ dan Enable=1. Persamaannya adalah $D_1=Q_1\oplus Q_0\cdot Enable$
 - Nilai Q_2 akan membalik setelah nilai $Q_1\,Q_0=11$. Agar Q_2 membalik di transisi naik Clk berikutnya, maka nilai D_2 harus bernilai \overline{Q}_2 saat $Q_1=1$, $Q_0=1$ dan Enable=1. Persamaannya adalah $D_2=Q_2\oplus Q_1\cdot Q_0\cdot Enable$
 - Nilai Q_3 akan membalik setelah nilai $Q_2 Q_1 Q_0 = 111$. Agar Q_3 membalik di transisi naik Clk berikutnya, maka nilai D_3 harus bernilai \overline{Q}_3 saat $Q_2 = 1$, $Q_1 = 1$, $Q_0 = 1$ dan Enable = 1. Persamaannya adalah $D_3 = Q_3 \oplus Q_2 \cdot Q_1 \cdot Q_0 \cdot Enable$

Pencacah Sinkron dengan DFF

$$D_0 = Q_0 \oplus \textit{Enable}$$
 $D_1 = Q_1 \oplus Q_0 \cdot \textit{Enable}$
 $D_2 = Q_2 \oplus Q_1 \cdot Q_0 \cdot \textit{Enable}$
 $D_3 = Q_3 \oplus Q_2 \cdot Q_1 \cdot Q_0 \cdot \textit{Enable}$

▶ Untuk pencacah yang lebih besar, masukan D di tiap DFF bernilai $D_i = Q_i \oplus Q_{i-1} \cdot Q_{i-2} \cdots Q_1 \cdot Q_0 \cdot Enable$ —> masalah fan-in

$$\begin{array}{lcl} D_0 & = & Q_0 \oplus \textit{Enable} \\ D_1 & = & Q_1 \oplus Q_0 \cdot \textit{Enable} \\ D_2 & = & Q_2 \oplus Q_1 \cdot (Q_0 \cdot \textit{Enable}) \\ D_3 & = & Q_3 \oplus Q_2 \cdot (Q_1 \cdot Q_0 \cdot \textit{Enable}) \end{array}$$

Rangkaian Sekuensial

@2014,Eko Didik Widianto

Penyimpan Keadaan

Latch (Pengunci)

Flip-flop

Register

Elemen

Counter/Pencacah Pencacah Asinkron Pencacah Sinkron Pencacah Sinkron dengan DFF

IC TTL Pencacah

Ringkasan

.isen si

Rangkaian Pencacah Sinkron DFF

Rangkaian Sekuensial

@2014,Eko Didik Widianto

Elemen Penyimpan Keadaan

Latch (Pengunci)

Flip-flop

Registe

Pencacah Asinkron Pencacah Sinkron

Pencacah Sinkron Pencacah Sinkron dengan DFF IC TTL Pencacah

Ringkasan

Lisensi

Rangkaian Pencacah Sinkron dengan Load Paralel

Rangkaian Sekuensial

@2014,Eko Didik Widianto

Elemen Penyimpan Keadaan

Latch (Pengunci)

Flip-flop

Register

Pencacah Asinkron Pencacah Sinkron Pencacah Sinkron dengan DFF

IC TTL Pencacah

Ringkasan

_isen si

@2014, Eko Didik Widianto

Nomor IC	Deskripsi	Elemen Penyimpan
7493	4-bit binary counter	Keadaan Latch (Pengunc Flip-flop Register Counter/Pencae
74161	synchronous 4-bit binary counter with asynchronous clear	
74163	synchronous 4-bit binary counter with synchronous clear	
74169	synchronous 4-bit up/down binary counter	
74177/74197	presettable binary counter/latch	Pencacah Asinkron
74191	synchronous up/down binary counter	Pencacah Sinkro Pencacah Sinkro
74193	synchronous up/down binary counter with clear	dengan DFF IC TTL Pencaca
74393	dual 4-bit binary counter	Ringkasan
74453	dual binary counter, synchronous	Lisensi
74455	dual binary up/down counter, synchronous, preset input	
74461	8-bit presettable binary counter with three-state outputs	
74491	10-bit binary up/down counter with limited preset and	
	three-state outputs	

IC 74393: Dual Pencacah Asinkron 4 Bit

Rangkaian Sekuensial

@2014, Eko Didik Widianto

Elemen Penyimpan Keadaan

Latch (Pengunci)

Flip-flop

Register

Counter/Pencaca

Pencacah Asinkron Pencacah Sinkron Pencacah Sinkron dengan DFF

IC TTL Pencacah

Ringkasan

_isen si

@2014 Eko Didik Widianto

Keadaan

Latch (Pengunci)

Flip-flop

Register

Pen ca ca h **Asinkron** Pencacah Sinkron Pencacah Sinkron dengan DFF

IC TTL Pencacah

IC 74193: Dual Pencacah Sinkron 4 Bit, Naik/Turun

Rangkaian Sekuensial

@2014,Eko Didik Widianto

Elemen Penyimpan Keadaan

Latch (Pengunci)

Flip-flop

Register

Pencacah Asinkron Pencacah Sinkron Pencacah Sinkron

dengan DFF IC TTL Pencacah

Ringkasan

isensi

IC 74193: Fungsi Logika

@2014 Eko Didik Widianto

Keadaan

Latch (Pengunci)

Flip-flop

Register

Pencacah Asinkron Pencacah Sinkron Pencacah Sinkron dengan DFF

IC TTL Pencacah

IC 74193: Perilaku

@2014 Eko Didik Widianto

Elemen Keadaan

Latch (Pengunci)

Flip-flop

Register

Pencacah Asinkron Pencacah Sinkron Pencacah Sinkron dengan DFF IC TTL Pencacah

Pencacah Sinkron n x 4 Bit

Menggunakan 74193

@2014.Eko Didik Widianto

Elemen Keadaan

Latch (Pengunci)

Flip-flop

Register

Counter/Pencacah Pen ca ca h **Asinkron**

Pencacah Sinkron Pencacah Sinkron dengan DFF IC TTL Pencacah

- Yang telah kita pelajari hari ini:
 - ► Elemen rangkaian sekuensial berupa latch dan flip-flop:
 - Latch: RS-latch, D-latch, gated latch
 - Flip-flop: master-slave D flip-flop, edge-trigerred flip-flop, T flip-flop dan JK flip-flop
 - Perbedaan antara latch dan flip-flop
 - Register dan pencacah
 - Register data dan register geser
 - Pencacah asinkron dan sinkron
- Yang akan kita pelajari di pertemuan berikutnya adalah tentang perancangan rangkaian sekuensial menggunakan diagram keadaan (Moore)
 - ► Pelajari: http://didik.blog.undip.ac.id/2014/ 02/25/tkc205-sistem-digital-2013-genap/

Bacaan Lebih Lanjut

@2014,Eko Didik Widianto

Elemen Penyimpan Keadaan

Latch (Pengunci)

Flip-flop

Register

Counter/Pencacah

Ringkasan

Lisensi

- Bab 7: Stephen Brown and Zvonko Vranesic, Fundamentals of Digital Logic with Verilog/VHDL, 2nd Edition, McGraw-Hill, 2005 Tentang flip-flop, register, pencacah dan prosesor sederhana
- Datasheet CD4043BE (Texas): Quad Latch SR NOR. http://www.ti.com/lit/gpn/CD4043B
- Datasheet CD4044BE (Texas), 54LS279, 74LS279: Quad Latch SR NAND. http://www.ti.com/lit/gpn/CD4044B
- Datasheet SN74LS74A: Dual D-type Positive-Edge-Trigerred Flip-Flops with Preset and Clear. http://www.ti.com/lit/gpn/SN74LS74A

Elemen

Creative Common Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)

- ► Anda bebas:
 - untuk Membagikan untuk menyalin, mendistribusikan, dan menyebarkan karya, dan
 - untuk Remix untuk mengadaptasikan karya
- ► Di bawah persyaratan berikut:
 - ▶ Atribusi Anda harus memberikan atribusi karya sesuai dengan cara-cara yang diminta oleh pembuat karya tersebut atau pihak yang mengeluarkan lisensi. Atribusi yang dimaksud adalah mencantumkan alamat URL di bawah sebagai sumber.
 - ▶ Pembagian Serupa Jika Anda mengubah, menambah, atau membuat karya lain menggunakan karya ini, Anda hanya boleh menyebarkan karya tersebut hanya dengan lisensi yang sama, serupa, atau kompatibel.
- Lihat: Creative Commons Attribution-ShareAlike 3.0 Unported License
- Alamat URL: http://didik.blog.undip.ac.id/2014/02/25/tkc205-