

Examen Session Normale

T. Gherbi - J.A. Lorenzo	Système d'exploitation
ING1-GI-GM	Année 2019–2020

Modalités

- Durée : 2 heures.
- Vous devez rédiger votre copie à l'aide d'un stylo à encre exclusivement.
- Toutes vos affaires (sacs, vestes, trousse, etc.) doivent être placées à l'avant de la salle.
- Aucun document n'est autorisé.
- Aucune question ne peut être posée aux enseignants, posez des hypothèses en cas de doute.
- Aucune machine électronique ne doit se trouver sur vous ou à proximité, même éteinte.
- Aucune sortie n'est autorisée avant une durée incompressible d'une heure.
- Aucun déplacement n'est autorisé.
- Aucun échange, de quelque nature que ce soit, n'est possible.

Exercice 1 : Programmation de processus (5 points)

Écrivez un programme qui crée un processus père. Ce dernier crée un processus fils1. Le processus fils1 affiche son pid et le pid de son père ; puis renvoie via exit le code 120 à son père. Le père attend la fin de son fils et affiche son code retourné via exit. Ensuite le père utilise une boucle for pour créer N autres fils et ensuite termine. Les N fils devront afficher chacun son PID.

Exercice 2 : Le système de fichiers (2 points)

Soit un système de fichiers Unix basé sur les i-nodes, formé de blocs de taille 2 Ko et utilisant des numéros de blocs sur 16 bits.

Calculez la taille maximale que peut prendre un fichier. Pour rappel, un i-node contient, en plus des propriétés du fichier, 10 adresses de bloc directes, et 3 adresses de bloc indirectes.

Exercice 3: Gestion de processus - ordonnancement (4 points)

Soient cinq processus prêts A, B, C, D et E, tels que : A arrive à l'instant 0 et nécessite pour son exécution 6 unités de temps, B arrive à l'instant 2 et nécessite un temps d'exécution de 3 unités, C arrive à l'instant 3 et nécessite un temps d'exécution de 5 unités, D arrive à l'instant 6 et nécessite un temps d'exécution de 4 unités et, en fin, E arrive à l'instant 7 et nécessite un temps d'exécution de 2 unités.

Processus	Temps d'exécution	Temps d'arrivée
A	6	0
В	3	2
С	5	3
D	4	6
Е	2	7

En supposant que le temps de commutation est nul, calculez :

- le temps de séjour de chaque processus.
- le temps moyen de séjour.
- le temps d'attente : temps de séjour temps d'exécution.
- le temps moyen d'attente.
- le nombre de changements de contexte

en utilisant les techniques :

- 1. FCFS (First Come First Served)
- 2. SRT (Shortest Remaining Time)

Exercice 4 : Mémoire virtuelle (4 points)

Soit une machine ayant 1 KBytes (1 Byte = 1 octet) de mémoire physique, divisée en pages de taille 512 Bytes, et adressable via une plage d'adressage virtuelle de 12 bits. Répondez aux questions suivantes :

- 1. Dans l'adresse virtuelle, combien de bits sont nécessaires pour le numéro de page virtuelle ?
- 2. Quelle est la taille maximale de mémoire virtuelle qui peut être gérée ?

- 3. En utilisant la table de pages ci-dessous, traduisez l'adresse virtuelle suivante en adresse réelle : 0 1 0 1 $0\ 0\ 1\ 0\ 0\ 0\ 1\ 0$
- 4. Faut-il remplacer la page en mémoire physique ? Pourquoi ?

	Page number	Valid bit
7	00	1
6	01	0
5	11	1
4	01	1
3	10	0
2	01	0
1	10	1
0	11	0

Q

CM	: (5 points)		
a)	Dans le code suivant, combien a-t-on de processus avant la dernière accolade ?		
	<pre>void main(){ p=fork(); if (p==0)</pre>		
	fork(); else		
	fork();		
	$\left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
b)	parted est une commande		
	\square de compression de fichiers \square de traduction de l'adresse virtuelle en adresse réelle		
	\Box de profilage et de \Box de gestion de partitions \Box de démarrage du bios		
c)	Où se trouve la zone du swap?		
	□ dans la mémoire ROM □ dans les registres □ dans le disque dur		
	□ dans la mémoire RAM □ dans le MBR		
d)	Que fait la commande apt-get upgrade ?		
	□ met à jours les paquets □ met à jour le noyau		
	□ met à jour le fichier des liens des dépôts officiels □ met à jour le bios		
e)	Quel est le nombre maximal de partitions primaires qu'on peut créer sur un disque GPT en MS Windows ?		
	\square 1 \square 2 \square 3 \square 4 \square 8 \square 32 \square 64 \square 128 \square 256		