Extreme rainfall events in Morocco: Spatial dependence and climate drivers

Abdelaziz Chaqdid a b ♀ ☒, Alexandre Tuel c, Abdelouahad El Fatimy a,

Nabil El Moçayd a d

Heidi Lantz

Morocco Location Information

Many different types of landforms

North Atlantic Oscillation (NAO) and other teleconnection patterns

Other Events: Rossby
Wave-Breaking (RWB),
Greenland blocking,
Atmospheric Rivers,
extratropical cyclones, etc.

Research Question:

What are the physical drivers of Extreme Precipitation Events in Morocco, and how do they differ regionally?

Datasets Used:

- NAO Teleconnection Index Data (<u>link</u>)
 - US government data Climate Prediction Center
- MJO Teleconnection Index Data (<u>link</u>)

(Both contain simple time series information including variables of time with corresponding NAO and MJO Indexes)

- 3. ERA5 Data (link)
 - Files are in .grib or .nc format
 - Considered the years 1979-2020
 - 7 Variables: precipitation, sea surface temperature, wind speed, geopotential height, total column water, integrated water vapor transport, and daily Ertel potential velocity.

Some EDA (Examples)

Methods

- 1. Use an algorithm to partition Morocco into regions
 - Used a Hierarchical Clustering (HC)
 Algorithm from Saunders et al. (2021).

- 2. Check the spatial coherence of the regions
 - Using co-occurrence probability
 - Changed cluster amount from 6 to 5 (pg. 10-11)
 - Algorithm listed on pg. 13
- 3. Define EPEs for each region and compute circulation anomalies (with significance)

Results

Defining EPEs for each region (Hydrology year)

Table 1. Seasonal frequency (%) of EPEs in each region.

	Winter		Autumn	
	DJF	MAM	JJA	SON
Region 1	55★	0	0	45 ★
Region 2	25★	25	10	40 ★
Region 3	40	15	0	45
Region 4	15	20	10	55 ★
Region 5	25	10	5	60 ★

Overall Results

Circulation Anomalies with Significance (Summary)

Wind Rose Plots

Results For Region 5

Wind Rose Plot

JJA

SON

MAM

Average Anomalies of large-scale conditions associated with EPEs

Climate/Weather factors identified

R: Ridge
T: Trough
RWB: Rossby Wave Breaking
IVT: Integrated vapor transport
WCB: Warm Conveyor Belt
QG lifting: Quasi-Geostrophic lifting

3 Ideas of Future Applications

- 1. Flooding Forecasting
 - Can use this knowledge with other factors that affect flooding, such as river flow data, knowledge of dykes, and snow melt (near mountain ranges).
- 2. Defining EPEs for other countries, such as Canada.
 - Look at Basins in Squamish area- using co-occurrence probabilities
- Assess if regions and their EPE physical drivers are useful for OTHER
 weather extremes such as cold and heat waves in Morocco.