Lab 4 solutions

$$f_N = N f_1 \text{ for } N=1, 2, 3, ...$$

2)
$$f_1 = v/4L$$

 $f_3 = 3v/4L$
 $f_5 = 5v/4L$
 $f_7 = 7v/4L$

$$f_N = N f_1 \text{ for } N=1, 3, 5, \dots$$

Part I

1) closed tube:
$$L_{eff} = L + 0.61 r = 1.35 m$$

open tube: $L_{eff} = L + 1.22 r = 1.40 m$

2)
$$f_1 = v/2L_eff \rightarrow v = f_1 * 2L_eff = 339 m/s$$

3) percent difference = |346-339|/346 * 100 = 2% Slightly lower than 346 m/s due in part to slightly lower temperature in the room

Part II

- 1) 0.37*4.2 = 1.55 corresponding to t=750 ms Exponential decay time = 750 ms -400 ms = 350 ms
- 2) L_eff = L + 0.61 r = 1.22 m f = v/4L = 346/(4*1.22) = 71.8 Hz

Part III.A

$$-> f = (v/(2 pi)) * sqrt(A/(L_eff* vol)) = 93.3 Hz$$

Part III.B

1) L_eff = L + (0.61+0.85)r_avg = 0.1004 m A = pi * r_avg^2 = 3.48e-4 m^2 vol = 0.75e-3 m^3

$$-> f = (v/(2 pi)) * sqrt(A/(L_eff* vol)) = 118.4 Hz$$

- 2) percent difference = |113-118|/118 * 100 = 4.2%
- 3) f \propto 1/sqrt{vol}
 f_1-liter/f_2-liter = sqrt{2} = 1.414