1. Reconstruction model

The ℓ -th coil k-space data g_{ℓ} is modeled as follows:

$$q_{\ell} = \mathcal{PFS}_{\ell}u + \eta_{\ell}, \ \ell = 1, \cdots, p,$$

where η_{ℓ} is the additive noise, \mathcal{S}_{ℓ} the diagonal sensitivity matrix, \mathcal{F} is the discrete Fourier transform matrix and \mathcal{P} , called sampling matrix, is a diagonal matrix with 0 and 1, u is target slice image. In real application, the sensitivity \mathcal{S}_{ℓ} and target image u are unknown variables. We adopt an alternative scheme to solve problem, and need to fix one and then solve another.

1.1. Update image u

When the sensitivity \hat{S}_{ℓ} is given, we want to solve the target image u. We combine all the coil data g_{ℓ} and have a compact formula:

$$g = Q_p M u + \eta,$$

where g is the stacked k-space data, M is the composition of \mathcal{F} and \mathcal{S}_{ℓ} , and Q_p is the concatenation of \mathcal{P} :

$$g := \begin{bmatrix} g_1 \\ \vdots \\ g_p \end{bmatrix}, \mathcal{F}_p := \begin{bmatrix} \mathcal{F} \\ & \ddots \\ & & \mathcal{F} \end{bmatrix}, M = \mathcal{F}_p \begin{bmatrix} \hat{\mathcal{S}}_1 \\ \vdots \\ \hat{\mathcal{S}}_p \end{bmatrix}, Q_p = \begin{bmatrix} \mathcal{P} \\ & \ddots \\ & & \mathcal{P} \end{bmatrix}, \eta = \begin{bmatrix} \eta_1 \\ \vdots \\ \eta_p \end{bmatrix}$$

The proposed optimization model by tight framelet regularization for SENSE-based MRI reconstruction is:

$$\hat{u} = \arg\min_{u} \left\{ \frac{1}{2} \|Q_{p}Mu - g\|_{2}^{2} + \|\Gamma W \mathcal{F}_{p}^{-1} (Q_{o}Mu + g)\|_{1} \right\}$$
(1)

Where $Q_o = I - Q_p$ is the sampling matrix at the missing positions, Γ is a diagonal matrix with non-negative diagonal elements and the W is a transformation matrix by 3-dimension and 2-dimension tight framelet system.

Let x be a multi coil image of size $m \times n \times c$ in $C^{m \times n \times c}$, therefore the tight frame transform using the filters for $u \in C^{m \times n \times c}$ is given by

$$Wx = \begin{bmatrix} W_{3D,l} \otimes x & W_{3D,x} \otimes x & W_{3D,y} \otimes x & W_{2D}W_{3D,z} \otimes x & W_{3D,xy} \otimes x \end{bmatrix}^T$$

where the $W_{3D,l}$ denotes the lowpass filter of the 3-D transformation, W_{2D} is the 2-D transformer matrix, while others represent the highpass filter at different directions of the 3-D transformation.

2. Algorithm

Let $K \doteq Q_p M$, $A \doteq W \mathcal{F}_p^{-1} Q_o M$ and $b \doteq W \mathcal{F}_p^{-1} g$, and identify the functions f, and p as follows:

$$f(u) = \frac{1}{2} ||Ku - g||^2, \quad p(s) = ||\Gamma(s + b)||_1$$
 (2)

Our optimization model (1) is written into the

$$\min_{u} \left\{ \frac{1}{2} \|Ku - g\|_{2}^{2} + p(Au) \right\}. \tag{3}$$

The PD3O algorithm is provided as:

$$s^{k+1} = \operatorname{prox}_{\delta p^*} \left((I - \gamma \delta A A^{\top}) s^k + \delta A (u^k - \gamma \nabla f(u^k)) \right)$$
$$= \operatorname{prox}_{\delta p^*} \left(s^k - A (\delta \gamma A^T s^k - \delta (u^k - \gamma \nabla f(u^k))) \right)$$
$$u^{k+1} = u^k - \gamma \nabla f(u^k) - \gamma A^{\top} s^{k+1}$$

In the model (3), the operator $A \doteq W \mathcal{F}_p^{-1} Q_o M$, and its odjoint can be formulated as $A^T \doteq M^T Q_o^T \mathcal{F}_p W^T$, where W^T denotes the adjoint matrix of the W. Assuming the ω obtained by the Wx, where ω is the tight frame coefficient of the multi coil image x and satisfies the perfect reconstruction formula, i.e.,

$$x = W^T W x = W^T \omega$$

$$W^T\omega = W_{3D,l}^T \circledast \omega_l + W_{3D,x}^T \circledast \omega_x + W_{3D,y}^T \circledast \omega_y + W_{3D,z}^T W_{2D}^T \circledast \omega_z + W_{3D,xy}^T \circledast \omega_{xy}$$