

IEEE World Congress on Computational Intelligence 2016

100 Million Dimensions Large-Scale Global Optimization Using Distributed GPU Computing

Alberto Cano and Carlos García-Martínez

Alberto Cano
Assistant Professor
Department of Computer Science
Virginia Commonwealth University, USA
acano@vcu.edu

Motivation

- IEEE CEC Competition on Large Scale Global Optimization
 - 2013: 15 benchmark functions on 1000 dimensions
 - Imbalanced subcomponents, nonuniform sizes, conforming and conflicting overlapping functions
- Lastra et al. proposed a GPU version of the MA-SW-Chains
 - Increase the dimensionality to up to 3 million dimensions
 - Limited to one GPU's memory and compute capability
 - Limited to functions with no subcomponents

M. Lastra, D. Molina, and J. M. Benítez, A high performance memetic algorithm for extremely high-dimensional problems, Information Sciences, vol. 293, pp. 35–58, 2015.

- Research questions
 - Why? Why not? Exploring the boundaries of LSGO
 - What are the dimensionalities limitations?
 - Memory:
 - Individual representation: O(D) using FP32/FP64
 - Population and offspring
 - GPU limited memory ≤ 12 GB
 - Computation:
 - Single fitness evaluation time
 - Running 3 million evaluations
 - GPU cores count ≤ 3k
 - Heuristics for 1,000D would work in a million-dimension problem?

- Benefits of LSGO parallelization
 - Speeding up existing algorithms
 - Speed up computation, reduce execution time
 - Same fitness results, "waste" of GPU resources for low dims
 - Generating multiple solutions per iteration
 - Multiple crossover, offspring, parallel local search
 - Occupancy maximization of GPU resources
 - Should lead to better fitness results
 - Cannot be fairly compared for equal number of FEs
 - Scaling to larger dimensionalities
 - Explore heuristics and convergence in high-dimensional sets
 - Occupancy maximization of GPU resources

Proposal

- Distributed GPU computing for scaling MA-SW-Chains to up to 100 million variables while maximizing GPU occupancy
- SSGA to Generational: P individuals selected, crossed, mutated
- Local Search: P individuals are optimized (in parallel)
- Scaling definition of functions to millions of dimensions
- Speeding up fitness computation
 - Requisites: known expression and additively decomposable
 - Can be expressed as the sum of other functions
 - Sum of subcomponents computed in parallel

Fully-separable functions

Fully-separable functions
$$f_1: \textbf{Shifted Elliptic Function} \qquad f_1(\mathbf{z}) = \sum_{i=1}^D 10^{6\frac{i-1}{D-1}} z_i^2 \qquad \sum \begin{cases} f_{X_1 \dots X_j} \\ f_{X_j \dots X_k} \\ f_{X_k \dots X_D} \end{cases}$$

- $\mathbf{x} \in [-100,100]^D$
- Definition of the function scales to any dimensionality with any number of parallel tasks
- Partially additively separable / overlapping functions

 f_4 : 7-nonseparable, 1-separable Shifted and Rotated Elliptic Function

$$S = \{50, 25, 25, 100, 50, 25, 25, 700\}$$

$$\mathbf{y} = \mathbf{x} - \mathbf{x}^{\text{opt}}$$

$$f_4(\mathbf{z}) = \sum_{i=1}^{|\mathcal{S}|-1} w_i f_{\text{elliptic}}(\mathbf{z}_i) + f_{\text{elliptic}}(\mathbf{z}_{|\mathcal{S}|})$$

$$\mathbf{y}_i = \mathbf{y}(\mathcal{P}_{[\mathcal{C}_{i-1}+1]} : \mathcal{P}_{[\mathcal{C}_i]}), i \in \{1, \dots, |\mathcal{S}|\}$$

$$\mathbf{z_i} = T_{\text{osz}}(\mathbf{R}_i \mathbf{y_i}), i \in \{1, \dots, |\mathcal{S}| - 1\}$$

$$\mathbf{z}_{|\mathcal{S}|} = T_{\text{osz}}(\mathbf{y}_{|\mathcal{S}|})$$

$$\mathbf{R}_i$$
: a $|\mathcal{S}_i| \times |\mathcal{S}_i|$ rotation matrix

- Parallel Rotation Matrix
- Scaling using repetitions of the 1,000D block definition

Single-GPU parallelization of the fitness computation

- Concurrent kernels and asynchronous data / execution, no divergence
- Individuals and dimensions are mapped into a 2D grid of thread blocks
- Similar mapping for crossover and mutation: 1 thread 1 dimension

- Multiple-GPU parallelization of the fitness computation
 - Distribution of individuals
 - Simpler implementation, GPUs allocate a subset of individuals
 - Slow Genetic Operators due to GPU-to-GPU data transfers
 - Distribution of variables
 - Dimensions are mapped into multiple devices

- Partial fitness per GPU
- Minimum CPU-GPU sync
- Minimum CPU-GPU transfers
- No GPU-GPU sync / transfers
- Maximum throughput

- Experiment I: fitness function speedup
 - Evaluation time for F1, F6, F10 and 1 million dimensions

Evaluation	Function	1 CPU	2 CPUs	4 CPUs	1 GPU	2 GPUs	4 GPUs	8 GPUs
Time (ms)	F1	121.92	61.30	31.90	1.26	0.85	0.40	0.24
	F6	198.29	99.87	62.22	5.00	2.68	1.28	0.75
	F10	232.22	116.25	72.28	17.35	8.72	4.73	2.17
Speedup	F1	1	1.99	3.82	96.51	143.08	307.22	517.68
vs 1 CPU	F6	1	1.99	3.19	39.66	73.89	155.03	265.55
	F10	1	2.00	3.21	13.38	26.64	49.13	107.19

Experiment II: fitness improvement (mean)

TABLE I NGPUs-MA-SW-Chains vs its Predecessors (D = 1,000)

	F1	F2	F3	F4	F5
MA-SW-Chains	6.27e-13	1.24e+3	2.14e+1	4.96e+9	1.86e+6
Std	5.34e-13	1.42e+2	4.52e-2	2.69e+9	3.66e + 5
MA-SSW-Chains	8.18e-13	1.06e+3	2.03e+1	1.28e+10	1.34e+6
Std	6.88e-13	1.22e+2	3.90e-2	3.79e+9	3.86e + 5
NGPUs-MA-SW-Chains	0	4.78e+0	2.00e+1	9.01e+6	1.05e+6
Std	0	1.88e+0	0	7.10e+6	1.51e+5
	F6	F7	F8	F9	F10
MA-SW-Chains	1.01e+6	3.69e+6	4.82e+13	5.38e+8	9.13e+7
Std	1.38e+4	1.01e+6	9.92e+12	2.34e + 8	8.18e+5
MA-SSW-Chains	1.05e+6	8.41e+7	1.44e + 14	2.56e + 8	9.35e+7
Std	3.64e + 3	2.68e+7	3.18e+13	1.45e + 8	2.38e+5
NGPUs-MA-SW-Chains	9.97e+5	2.27e+1	3.22e+11	1.19e+8	3.67e+6
Std	1.44e+2	1.51e+1	3.37e+11	1.37e+7	2.79e+6
	F11	F12	F13	F14	F15
MA-SW-Chains	9.24e+11	1.24e+3	1.89e + 7	1.46e + 8	5.17e+6
Std	7.57e+9	9.69e+1	2.13e+6	1.75e+7	6.40e + 5
MA-SSW-Chains	9.29e+11	1.34e+3	4.92e + 9	3.78e+10	8.38e+6
Std	9.54e + 9	1.05e+2	1.63e+9	1.61e+10	1.52e+6
NGPUs-MA-SW-Chains	1.67e+3	4.45e+2	1.66e+2	3.40e+3	5.39e+4
Std	1.02e+3	2.91e+2	5.09e+1	2.62e+3	3.14e+3

Experiment III: extremely large number of dimensions

TABLE II RESULTS IN 10⁶ DIMENSIONS

	F1	F2	F3	F4	F5
NGPUs-MA-SW-Chains	1.23e+13	1.85e+7	2.12e+1	8.91e+14	1.63e+10
Std	9.02e+11	4.61e+4	0	3.21e+13	7.08e+07
NGPU Random Search	2.41e+14	5.97e+7	2.17e+1	1.32e+17	7.74e+10
Std	3.92e+10	9.18e+3	7.63e-5	9.94e + 14	2.11e+8
	F6	F7	F8	F9	F10
NGPUs-MA-SW-Chains	1.08e+9	2.76e+13	1.15e+19	1.43e+12	9.80e+10
Std	3.77e+4	2.48e+13	8.57e+17	1.08e+11	1.49e+8
NGPU Random Search	1.08e+9	2.34e + 21	8.10e + 21	5.32e+12	9.82e+10
Std	2.68e+4	1.35e + 20	2.98e+19	1.83e+10	3.50e+6
	F11	F12	F13	F14	F15
NGPUs-MA-SW-Chains	9.72e+15	2.82e+13	1.26e+16	2.92e+16	3.50e+16
Std	1.47e+15	2.21e+12	3.87e+15	2.25e+16	2.04e+15
NGPU Random Search	1.30e+23	1.99e+15	3.74e + 22	2.91e+23	1.77e+19
Std	1.25e+22	5.76e+11	2.17e+21	1.84e+22	5.07e+15

Experiment III: extremely large number of dimensions

TABLE IV
RESULTS IN 10⁸ DIMENSIONS

	F1	F2	F3	F4	F5
NGPUs-MA-SW-Chains	8.42e+15	1.95e+9	2.17e+1	2.44e+18	2.55e+12
Std	8.65e+14	7.59e+6	8.36e-3	1.73e+17	1.21e+10
NGPU Random Search	2.43e+16	6.00e+9	2.17e+1	1.44e + 19	8.09e+12
Std	2.64e+11	4.38e+4	0	8.24e+15	2.91e+9
	F6	F7	F8	F9	F10
NGPUs-MA-SW-Chains	1.08e+11	1.81e+19	1.95e+23	2.07e+14	9.74e+12
Std	3.42e+6	4.31e+21	2.15e+22	1.52e + 13	1.22e+10
NGPU Random Search	1.08e+11	1.39e + 24	8.86e + 23	5.59e+14	9.82e+12
Std	3.00e+5	2.51e+22	5.08e+20	7.48e+10	5.46e+7
	F11	F12	F13	F14	F15
NGPUs-MA-SW-Chains	7.46e+21	4.59e+16	2.39e+21	9.67e+22	2.68e+19
Std	1.96e+21	3.29e + 15	1.33e+21	6.16e+22	1.80e+18
NGPU Random Search	1.70e+26	2.00e+17	1.32e + 25	1.56e + 26	7.65e+19
Std	2.43e+24	4.90e+11	2.13e+23	1.53e+24	5.56e+16

Experiment IV: convergence F1 function

Experiment IV: convergence F4 function

- Conclusions and future work
 - Multiple GPUs speed up fitness computation and evolution on extremely high-dimensional functions with components
 - Distribution of the dimensions provides an efficient and scalable approach for large-scale global optimization using multiple GPUs
 - GPUs may be employed to generate multiple solutions per iteration, leading to better results (not equal number of FEs)
 - 1 billion-scale dimensionality challenge
 - NVIDIA DGX-1 system, 8 GPUs and 128 GB memory
 - Scaling IEEE CEC 2015 Competition winner:
 - MOS (Multiple Offspring Sampling)
 - Need for real-world applications / functions!!
 - Hadoop / Spark implementation?

IEEE World Congress on Computational Intelligence 2016

100 Million Dimensions Large-Scale Global Optimization Using Distributed GPU Computing

Alberto Cano and Carlos García-Martínez

Alberto Cano
Assistant Professor
Department of Computer Science
Virginia Commonwealth University, USA
acano@vcu.edu

