Freesound General-Purpose Audio Tagging Challeng

NTU b04901020 算名師下去啦(解正平 吳倉永 黃平瑋 張問寬)

I. Introduction & Motivation

A. Task Description

利用包含在真實世界中收集到的各種聲音的dataset, 訓練出一個能自動將input sound 做tagging的model,其中training set大約有9400筆資料,經過model的預測,能對聲音能從41種category中做classification。(圖 from Zafar)

"Acoustic_guitar", "Applause", "Bark", "Bass_drum", "Burping_or_eructation", "Bus", "Cello", "Chime", "Clarinet", "Computer_keyboard", "Cough", "Cowbell", "Double_bass", "Drawer_open_or_close", "Electric_piano", "Fart", "Finger_snapping", "Fireworks", "Flute", "Glockenspiel", "Gong", "Gunshot_or_gunfire", "Harmonica", "Hi-hat", "Keys_jangling", "Knock", "Laughter" "Meow", "Microwave_oven", "Oboe", "Saxophone", "Scissors", "Shatter", "Snare_drum", "Squeak", "Tambourine", "Tearing", "Telephone", "Trumpet", "Violin_or_fiddle", "Writing"

B. Motivation

因為同時有修語音相關的課程,所以final project決定作與聲音辨識相關的task,如此 一來能將本課程所學的一些machine learning的技術與語音相關課程互相結合。

II. Data Preprocessing & Feature Engineering

A. Spectrogram

Spectrogram的作法是給定一段音訊檔,用一段window將所對印到的input作Short-time Fourier transform,即可得到一個時間對頻率的一個2維的圖片,每個點範圍在0到-80之間,表示在該時間特定頻率的強度。由於training data中的音訊長度不盡相同,所以得到的spectrogram大小也不太一樣,我們橫軸取出平均的長度513,將所有的圖片resize成相同的長度,如此一來,就能將這個題目轉換成圖片的分類問題,可以透過CNN抽取不同spectrogram的特徵,以達到訊練的目的。

可以看出不同樂器的spectrogram明顯在頻率的分佈上不太一樣

B. Dimension Reduction 將原本input為513 x439的spectrogram先除以(-80)做scaling, 再利用autoencoder降到 4096維, model如下

model training的參數: optimizer = Adam, learning rate為10^-5 loss function 採用min square error batch size = 16, epoch =100, 有early stopping loss 最低可以到 0.006

此外,我們還用latent vector去重建原本的圖,以比較降維方法的好壞,以下是幾張圖 重現的結果

上排的是原圖, 下排是重現後的結果

由上面的幾張圖可以發現, 在處理較大塊的面積或是直條狀的區塊時, 重現的效果較好

C. Labelspreading

由於原本9473個data,verified的只有3710個,unverified有5763個,如果只拿verified的做訓練會太少data,可是拿全部的會有不好的data導致model訓練不起來,因此我們想到用labelspreading的方式做cluster,判斷unverified的data是否可用,目的增加可用的traing data數量,而本部分分為兩個步驟,前面提到的降維以及分類。

1. methods

每一個聲音訊號spectrogram經過降維之後,我們透過labelspreading的方式,把unverified的訊號來標上new label,再依據原本的old label來判斷,如果兩者相同我們就,將這份data標成verified,已增加我們的資料量。

2. Labelspreading

先用簡單的model來分類不同類別的data,並且標上新的label。

- sklearn.semi_supervised.LabelSpreading
- kernel='rbf',gamma=20,alpha=0.2,max_iter=100000,tol=0.001

3. Class similarity

由於每個類別的聲音會有相似性,所以在做分類的可以事先人工將已有的label分組,好處是讓model在分類的時候較不會因為類別太多而容易有錯誤,在屬於自己的特定class判斷,可以有效提高verified data;壞處是因為這是由人工分組,可能會造成明明聲音相近似的data卻分不同區,這樣無法判斷出正確的label,而有一些誤差。以下是分不同class中可以增加多少verified data的統計,以及各個class中原始verifed跟unverid的數量及比例。

• 1 group (class: 41all)

	41 class
all data	9473
verified	3710 (39.16%)
new verified	5174 (54.62%)
all verified	5174 (39.16% => 54.62%)

• 2 group (class: 19music and 22non-music)

	music	non music
all data	4827 4626	
verified	2069 (42.86%)	1642 (35.34%)
new verified	3054 (63.27%)	2395 (51.55%)
all verified	5449 (39.16% => 57.52%)	

• 3 group (class: 19music, 10creature and 12non-human)

	music	creature	non human
all data	4827	2464	2182
verified	2069 (42.86%)	708 (28.73%)	934 (42.80%)
new verified	3054 (63.27%)	1340 (54.38%)	1334 (61.14%)
all verified	5728 (39.16% => 60.47%)		

5 group (class: 4strings, 7musical, 8percussion, 10creature, 12non-human)

	musical	strings	percussion	creature	non human
all data	1779	1200	1848	2464	2182
verified	853 (47.95%)	572 (47.67%)	644 (34.85%)	708 (28.73%)	934 (42.80%)
new verified	1295 (72.79%)	811 (67.58%)	1162 (62.88%)	1340 (54.38%)	1334 (61.14%)
all verified	5942 (39.16% => 62.73%)				

從以上五種分析可以發現分組更為詳細可以使得labelspreading的結果較為突出,原因是data可以選擇的class更少,容易在人工限制的群組裡面選擇最為相近的 label,然而可成會影響spreading不到真正的class因此我們並未採用。再來如果我們將class分成3組group,會發現data較不balance,這樣子去做spreading會使得原本data較多的class增加更多,使得資料更不平衡。綜上所述,我們只選擇分開 music跟non-music的做spreading的data,可以看見我們能將原本verified 39.16%的data有效提升到57.52%,對於training會有很大幫助,至於還有約50%的data我們沒有用到,後面我們會介紹利用semi-supervisied learning的方式做訓練。

4. TSNE

由於我們透過labelspreading的方式增加verified資料,但是並未確定是否能夠有效分類為正確的class,因此我們使用TSNE的方式將資料visualize,觀察分為兩種group (music and non music) 的效果為何,發現可以有效準確的增加每個class的資料量,下列圖片會分為4張是因為一共有41個class我們將其分開來畫圖。

• music

左邊的圖為未經過spreading的資料分布,右邊的圖是經過spreading。 從圖可以發現右邊可以將資料分開,代表spreading的結果可以使得data有效增加;左邊的圖很雜代表原始標得label會因為unverified而影響分布。

non-music

左邊的圖為未經過spreading的資料分布,右邊的圖是經過spreading。 兩張圖都很難區分出每個class的資料,推測是因為non-music的聲音本來就很 難區分,不像music都是有很明顯的特徵,經過spreading之後,可以看到部分 class有被分開來,尤其右邊右下角的圖可以看出與左邊右下角圖的差異。

III. Model Description

A. Model structure

類似VGG16的做法,左邊是每一層CNN都是兩層,使用LeakyReLU activation方法,最後再用1024fully connected層搭配selu activation。右邊是每一層CNN都是三層,使用較多參數,最後是4096fully connected層搭配selu activation。會用VGG16的原因是這個model專門訓練圖片,可以適用在spectrogram的辨識中。

B. Data generator

使用data generator的原因是因為記憶體不夠,不可能一次就把所有data都loading進來等待訓練,必須只能現在需要training的資料,因此我們使用generator在每個epoch產生每筆資料,只會暫存一點點data,然而不管是preprocess還是function都要小心處理,因為會使得時間過久,訓練的效率較很低。

C. Ensemble

由於訓練出來的模型會因為bias跟variance而有誤差,因此需要透過ensemble的方式將每個model predict的機率平均起來,方式有算術平均、幾何平均或是加權平均,每種方式出來的結果不盡相同。

D. Semisupervisied

因為data有分是否verified,造成不是全部資料都能當training data,雖然我們已經有實做labelspreading來增加數量,但是希望還是以semisupervisied learning的方法來改善資料不夠的問題,好處是可以改善model運用所有data,壞處是需要很久的時間,因此我們想了以下方法來改善。

tradeoff between iteration and epoch

由於每個epoch訓練的時間大約需要15分鐘,因此必須考慮怎麼樣有效率訓練好model,共取決於兩個因素,一個是epoch數量代表我模型要訓練到多好再去加入semi data增加資料量;一個是iteration數量代表我要取幾次semi data。如果epoch高就不需要太大iteration,因為model其實已經train好只是再增加data微調;但是我們可以也選擇不用訓練太好就先引入部分資料,這樣可以讓model學到比較多資料,雖然epoch少但是就要有較大的iteration。

下頁是我們的兩種設定方式,我們設定earlystop (15)及 checkpoint:

● 先細再一點微調(epoch = 200 / iteration = 3)

觀察圖可以發現,我們先把model訓練好,val acc約為0.829,之後才開始加入新的data,在epoch為66跟94時分別加入新的semi資料進入下個iteration,造成train acc下降,但是很快model又會學好,val acc有逐漸增加的趨勢。

iteration	epoch	data	train acc	val acc
1	0	5449	0.5687	0.0368
2	0	6118	0.8635	0.7610
3	0	6109	0.8801	0.8346
2	11	6118	0.9012	0.8474

● 先粗再持續微調(epoch = 20 / iteration = 30)

觀察圖可以發現,我們先把model以epoch=20訓練完,再開始加入新的data,從表可以發現每一次iteration通常val acc都有上升,直到train完30次iteration都還是有上升的趨勢。

ICIALION APAS	E.日工기时短为。			
iteration	epoch	data	train acc	val acc
1	0	8042	0.0440	0.0368
2	0	7539	0.6810	0.6397
3	0	7287	0.7398	0.6489
4	0	7052	0.7752	0.7776
5	0	6721	0.8147	0.7647
6	0	6569	0.8329	0.7537
7	0	6437	0.8406	0.8015
8	0	6267	0.8606	0.7647
9	0	6057	0.8697	0.7923
10	0	6079	0.8712	0.8033
11	0	5868	0.8799	0.7757
12	0	5879	0.8819	0.7923
13	0	5778	0.8961	0.7978
14	0	5649	0.8949	0.8070
15	0	5634	0.9021	0.8254
16	0	5625	0.8996	0.8272
17	0	5601	0.9059	0.7757
18	0	5644	0.9091	0.8015
19	0	5459	0.9206	0.8033
20	0	5509	0.9292	0.8051
21	0	5445	0.9327	0.8088
22	0	5383	0.9394	0.8309
23	0	5338	0.9422	0.8254
24	0	5330	0.9390	0.8051
25	0	5282	0.9482	0.8346
26	0	5224	0.9557	0.8456
27	0	5150	0.9585	0.8566
28	0	5111	0.9638	0.8180
29	0	5057	0.9725	0.8585
30	0	5022	0.9732	0.8640
28	11	5111	0.9798	0.8787
	1	l .	l .	l

2. scheduled threshold

選擇semi data是否能當作training data餵給模型是看predict出來的機率數值, 通常會直接設個threshold,機率大於某個值就代表是正確的(非黑即白)。然而我們 需要防止overfitting,所以threshold有上限及下限,下限是為了表示label是夠確定的 才能選,上限是為了怕已經訓練太好的資料還繼續訓練,造成overfitting。

除了上限及下限,我們認為每個iteration選擇多少機率水準下的data不應該是固定的,我們使用scheduled threshold來線性調整下限,讓model剛開始因為下限較低會先學較多的資料量,之後隨著model變強j我們使下限上修,這樣就不應該再選到機率不高的資料,怕造成bias,而且選擇的資料量會越來越少,有點像是先學大量再慢慢學精隨;先大的調整再來為調。

程式碼範例如下:可以發現我們原本下限是0.35,之後會變成0.65。

```
for i in range(30):
threshold = (0.65 - i * 0.01)
```

IV. Experiment and Discussion (部分實驗已在partII介紹)

A. layer feature

下圖是VGG16較少參數的model,它第一層CNN filter中32個unit的Feature圖,可以發現有很多明暗變化,是因為spectrogram的圖就是很多不同amplitude不同亮度,部分unit是針對顏色深淺也就是數值大小,部分unit是針對細微紋路也就是數值分布,從第一層layer可以看出model知道如何解析spectrogram的圖。

B. performance in different methods

除了用將signal轉成spectrogram的方式來training,我們還多做了兩種方式,第一種是直接將row data數值餵給1D CNN;第二種是用MFCC將原訊號轉換,再以2D CNN的架構來訓練,下表為kaggle的分數,與未經過優化的spectrogram結果比較,發現再沒有任何前處理的狀態下spectrogram分數最高,但三者分數都很接近,推測可能會因為model或是參數設定影響,但此表可以發現raw data其實也訓練得起來,但是沒有甚麼能進步的方向。

methods	Public score
row data in 1D CNN	66.9%
MFCC in 2D CNN	67.1%
Spectrogram in 2D CNN	67,5%

C. performance advancement

models (Spectrogram)	Public score
all data	65.8%
all verified data	67.5%
with longer frequency window size	68.8%
vgg (more parameters)	77.5%
vgg (more parameters) in train music	78.5%
vgg (less paramenters) in train music	83.5% and 84.3%
vgg (less paprameters)(autoencoder)	87.9%
vgg (less parameters)(long iter semi)	86.8%
ensemble six data > 0.8	89.7%
ensemble four semi+train data	90.3%
ensemble with GM	91.1%

V. Conclusion

在這次作業中,我們嘗試了各種不同的前處理,如mfcc, spectrogram或甚至是未處理的raw data,在過程中發現了spectrogram的表現最佳,因此往後都是建立在spectrogram之上。而因為原始有verified的資料太少(約3千多筆),我們又將降維後的spectrogram作clustering,讓有verified的資料做labelspreading,判斷unverified的資料是否可以使用,希望能達到增加training data的目的,而最後的結果也十分顯著,training data可以從39.16%增加到最高62.13%,2對往後模型的訓練有不少助益。

由於還是有將近一半的資料是unverfied的,所以我們採用semi-supervised的方式訓練,模型採用經典的vgg-16 和 vgg-19,比起我們自己設計的model,在準確度上有顯著的提昇,最後將Kaggle上accuracy超過0.8的模型作ensemble,最後的結果可以達到將近90%的準確度。

VI. Reference

[1] Hershey, Shawn, et al. "CNN architectures for large-scale audio classification." *Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE International Conference on.* IEEE, 2017.

[2] Zafar, Beginner's Guide to Audio Data https://www.kaggle.com/fizzbuzz/beginner-s-guide-to-audio-data