Tutorial Quiz 2

MAT344 - Spring 2019

First, recall that for $n \ge 1$, p(n) is the number of all partitions of n.

Definition

For $n \ge k \ge 1$, we define:

- $\mathbf{f}_{k}(n)$ to be the number of partitions of n whose first k parts are equal.
- $\mathbf{g}_k(n)$ to be the number of partitions of n whose parts all have size k or more.
- $s_k(n)$ to be the number of partitions of n whose *last* part has size k. $(s_k(n)$ is needed only for Question 2.)

1 **(2+3 points** \Rightarrow **5 points)** (This whole question is identical to the individual version.)

- 1.1 **(1 point each)** Draw the *Ferrers shapes* of all of the partitions enumerated by
 - (a) $f_3(9)$
 - (b) $g_3(9)$
- 1.2 (3 points) Fix arbitrary $n \ge k \ge 1$. Prove using a bijection that $f_k(n) = g_k(n)$.

SOLUTION

- 1.1 There are four of each; I'll save some time and just write them out in numbers.
 - For $f_3(9)$ we have 3+3+3, 2+2+2+2+1, 2+2+2+1+1+1, 1+...+1.
 - For $g_3(9)$ we have 3+3+3, 5+4, 6+3, and 9.
- 1.2 The bijection is conjugation: the Ferrers shape of a partition enumerated by f_k has a $k \times w$ block β as it's first k rows, for some $w \ge 1$. The rest of the partition consists of a partition, call it π , with parts of size no larger than w. When conjugated, the resulting partition will have w rows, each with size at least k, because the image of β is a $w \times k$ block. Now since π has no rows of size $\ge w$, the conjugate of π will not have more than w rows, so we get a proper partition to the right of the image of β . Notice that there is a unique partition of the first type that is sent to the second by conjugation; it's purely determined by the two pieces we mentioned above (β and π).

2

(3 points) (This whole question is identical to the individual version.)

Fix an arbitrary
$$k \geqslant 2$$
. Prove that $f_k(n) = p(n) - \sum_{i=1}^{k-1} s_i(n)$.

Solution

We can count the partitions of n with all parts of size $\geqslant k$, by subtracting from *all* possible partitions of n (counted by p(n)), the partitions of n where the last part is size 1 or 2 or ... or k-1. Notice that each of these classes of partitions of n is distinct from the others (they don't overlap) and each is

counted by $s_i(n)$ for the appropriate value of i. This proves that $g_k(n) = p(n) - \sum_{i=1}^{k-1} s_i(n)$. From the previous question, $f_k(n) = g_k(n)$, so we're done.

- 3 (2+2 = 4 bonus points)
 - 3.1 **(1 point each)** Prove the following (for an arbitrary $n \ge 4$):
 - (a) $s_1(n) = p(n-1)$
 - (b) $s_2(n) = p(n-2) p(n-3)$.
 - 3.2 **(2 points)**

Use our observations so far to prove (for an arbitrary $n \ge 4$) that

$$f_3(n) = p(n) - p(n-1) - p(n-2) + p(n-3).$$

- 3.1 (a) Define a bijection as follows: from a partition of n with last part 1, remove that part. The remainder is an arbitrary partition of n-1. (This is clearly bijective.)
 - (b) Define a bijection as follows: from a partition of $\mathfrak n$ with last part 2, remove that part. The remainder is a partition of $\mathfrak n-2$ with the property that the last block cannot have size 1. (This is clearly bijective.)

This shows that $s_2(n) = p(n-2) - s_1(n-2)$, but from the previous part of the question, $s_1(n-2) = p(n-3)$, and the formula for $s_2(n)$ follows.

- 3.2 From Question 2, $f_3(n) = p(n) s_1(n) s_2(n)$. Plugging in the formulas from 3.1, we are done.
- 4 (1 bonus point)

SOLUTION

SOLUTION

Conjecture and prove a formula for $f_4(n)$ which only involves various p(n)'s, as we did for $f_3(n)$.

So to repeat something like we did in 3.2, we need a formula for $s_3(n)$.

A similar argument to what we did in 3.1(b) shows that $s_3(n) = p(n-3) - p(n-4) - p(n-5) + p(n-6)$. If you prove that and then substitute, we get

$$f_4(n) = p(n) - p(n-1) - p(n-2) + p(n-4) + p(n-5) - p(n-6)!$$

From Question 2 we have $f_4(n) = p(n) - s_1(n) - s_2(n) - s_3(n)$.