пижегородский государственный университет имени п. и. ловачевского							
Радиофизический факультет							
Отчет по лабораторной работе №1							
Исследование акустического поля в однородной среде с							
плоской праниной							
плоской границей							
Вынолимии спулоница 440 групны							
Выполнили студенты 440 группы							
Есюнин Д.В., Есюнин М.В.							

Цель работы: Цель работы: исследование пространственного распределения звукового поля источника, находящегося в однородной среде вблизи гладкой поверхности раздела воздух-вода. Приборы и оборудование: ультразвуковая экспериментальная установка, представляющая собой устройство для излучения и приема акустических импульсов, осциллограф.

1. Теоретическая часть

Колебательное движение в сжимаемой жидкости называется звуковыми волнами. Звуковая волна может быть полностью описана следующими уравнениями:

$$\frac{\partial \vec{v}}{\partial t} + \frac{\nabla p'}{\rho_0} = 0 \tag{1}$$

$$\frac{\partial p'}{\partial t} + \rho_0 \frac{\partial p}{\partial p_0} \operatorname{div} \vec{v} = 0 \tag{2}$$

 $\vec{v}=\mathrm{grad}\varphi,\,\varphi$ - потенциал скорости, который удовлетворяет волновому уравнению:

$$\frac{\partial^2 \varphi}{\partial t^2} - c^2 \nabla \varphi = 0 \tag{3}$$

где
$$c = \sqrt{\left(\frac{\partial p}{\partial \rho}\right)_s}$$
 - скорость звука

Важным случаем волн являются монохроматические волны $\varphi=\mathrm{Re}\{\varphi_0(x,y,z)e^{-i\omega t}\}$. φ_0 удовлетворяет уравнению Гельмгольца $\nabla\varphi_0+k^2\varphi_0=0$. Два простейших решения этого уравнения:

- A) Сферическая волна $\varphi = \frac{-V_0}{4\pi R} \exp(ikR);$
- Б) Плоская волна $\varphi = A \exp\left(i\vec{k}\vec{r}\right)$

2. Экспериментальная часть

Описание установки

2.1. Диаграмма направленности излучателя

Для снятия диаграммы направленности, излучатель был погружен в воду на глубину 15 см. Приемный щуп был расположен на той же глубине. Измерения проводились в зоне Фраунгофера при условиях полного разделения отраженного и приемного по времени прихода.

Для того, чтобы убедиться, что все условия были выполнены, оценим значение расстояния между приемным и передающим расстоянием с учетом выполнения неравенства p>>1, где $p=\sqrt{\frac{\lambda r}{D}}$ - волновой параметр, $\lambda=1.5$ мм - длина волны, D=10 мм - характерный размер излучателя. Тогда

$$r >> \frac{D^2}{\lambda} \approx 6 \text{ cm}$$
 (4)

Второе - прямой и отраженный импульс должны полностью разделяться по времени прихода. Чтобы это условие выполнялось, необходимо, чтобы время прихода отраженного импульса t_2 было больше, чем величина $t_1+\tau$, где t_1 - время прихода прямого импульса, а τ - длительность импульса.

Рис. 1: Схема к расчету расстояния между источником и приемником

$$t_2 > t_1 + \tau, \quad t_1 = \frac{L}{c}, t_2 = \frac{R_1 + R_2}{c}$$
 (5)

В достаточно грубом приближении, считая $L\sim 1$ м, а $R_1+R_2\sim 1.5$ м, можно получить:

$$\tau < \frac{R_1 + R_2 - L}{c} \simeq \frac{0.5}{1500} = 3 \cdot 10^{-4} \text{ c}$$
 (6)

$$\tau < 300 \text{ MKC}$$
 (7)

В работе использовалось $\tau = 100$ мкс, что удовлетворяет условию (7).

Отнормированная диаграмма направленности излучателя, а также расчитанная теоретически в приближении плоского диска приведены на рис. 2. В качестве теоретической характеристики использовалась характеристика круглой плоской антенны с диаметром d:

$$b(\theta) = \frac{2J_1\left[\frac{\pi d}{\lambda}\cos\theta\right]}{\frac{\pi d}{\lambda}\cos\theta},\tag{8}$$

где J_1 - функция Бесселя первого порядка.

Рис. 2: Нормированная диаграмма направленности излучателя

Рис. 3: Нормированная диаграмма направленности излучателя

2.2. Исследование распределения звукового давления

Излучатель был расположен на глубине ~ 3 см, чтобы полностью быть погруженным в воду. С помощью приемного щупа было произведено исследовано распределение звукового давления в ванне, были произведены три продольных разреза на глубинах h=1,2,3 см, и три вертикальных среза на расстояниях l=60,90,120 см.

Рис. 4: Схема постановки эксперимента

Теоретическое значение для модуля амплитуды суммарного давления рассчитывалось по формуле (9):

$$|P(h,R)| = \sqrt{\frac{1}{R^2} + \frac{1}{R_1^2} - \frac{2}{R_1 R} \cos k \Delta R}, \quad \Delta R = R - R_1,$$
 (9)

где $R^2=l^2+(h-z_0)^2,$ а $R_1^2=l^2+(h+z_0)^2,$ k - волновое число.

Рис. 5: Амплитуды максимумов и минимумов при продольном срезе, на расстоянии $h=1\,$ см

h=1 cm		h=2 cm		h=3 cm	
z, cm	2A, B	z, cm	2A, B	z, cm	2A, B
1.8	0.8	1.4	2.36	1	0.76
5.3	2.48	3.1	0.92	1.7	1.8
8.8	0.28	4.5	2.24	2.9	0.86
16	1.72	6.3	0.36	3.8	1.6
25.5	0.2	9	2.12	5.2	0.52
47.5	0.68	10.7	0.24	6.3	1.64
111	0.28	14.2	1.88	7.6	0.2
16	1.72	18.3	0.32	9.5	1.52
25.5	0.2	24	1.44	11.3	0.2
47.5	0.68	31.6	0.24	13.7	1.52
111	0.28	45.7	0.8	16.3	0.36
		62	0.12	19.8	1.52
		105	0.44	25.5	0.4
				27.8	1.28
				34.2	0.28
				41.5	0.84
				54.5	0.2
				69	0.56
				101	0.16

Рис. 6: Амплитуды максимумов и минимумов при продольном срезе, на расстоянии $h=2\,$ см

Рис. 7: Амплитуды максимумов и минимумов при продольном срезе, на расстоянии $h=3\,$ см

z=60 cm		z = 90 cm		z=120 cm	
h, cm	2A, B	h, cm	2A, B	h, cm	2A, B
12.4	0.2	26.4	0.056	14	0.328
13.2	0.72	25.5	0.616	15.5	0.02
13.7	0.2	24.6	0.088	16.5	0.332
14.4	0.8	23.9	0.584	17.7	0.04
14.9	0.2	23	0.104	18.8	0.35
15.5	0.704	22.1	0.56	19.8	0.045
15.9	0.15	21.2	0.112	20.8	0.368
16.5	0.79	20.6	0.512	22	0.052
17	0.17	19.5	0.112	23.1	0.04
17.6	0.8	18.7	0.504	25.5	0.432
18.2	0.18	17.9	0.088	26.6	0.056
18.7	0.83	17	0.464	27.7	0.448
19.3	0.19	16.2	0.08		
19.9	0.856	15.4	0.456		
20.4	0.16	14.6	0.02		
21	0.856	13.6	0.476		
21.7	0.088				
22.5	0.808				
22.9	0.064				
23.4	0.8				
24	0.112				
24.6	0.768				
25.2	0.144				
25.8	0.736				
26.4	0.16				
26.9	0.648				
27.6	0.2				

Рис. 8: Амплитуды максимумов и минимумов при вертикальном срезе, на расстоянии $l=60~{
m cm}$

Рис. 9: Амплитуды максимумов и минимумов при вертикальном срезе, на расстоянии $l=90~{
m cm}$

Рис. 10: Амплитуды максимумов и минимумов при вертикальном срезе, на расстоянии $l=120~{
m cm}$

Если учесть диаграмму направленности излучателя, то выражение для модуля амплитуды суммарного давления видоизменится.

$$|P(h,R)| = \sqrt{\frac{b^2(\theta_2)}{R^2} + \frac{b^2(\theta_0)}{R_1^2} - \frac{2b(\theta_2)b(\theta_0)}{R_1R}\cos k\Delta R}, \quad \Delta R = R - R_1, \tag{10}$$

где $b(\theta)$ - диаграмма направленности круглой плоской антенны, которая задается выражением (8). Углы θ_2 и θ_0 определяются следующим образом $\cos\theta_2=\frac{z-h}{R},\,\cos\theta_0=\frac{z+h}{R}$ В таком случае, распределение давления по глубине на различных расстояниях представлено ниже.

Рис. 11: Амплитуды максимумов и минимумов при вертикальном срезе, на расстоянии $l=60~{
m cm}$

Рис. 12: Амплитуды максимумов и минимумов при вертикальном срезе, на расстоянии $l=90~{
m cm}$

Рис. 13: Амплитуды максимумов и минимумов при вертикальном срезе, на расстоянии $l=120~{
m cm}$

3. Вывод

Исследовали пространственного распределения звукового поля источника, находящегося в однородной среде вблизи гладкой поверхности раздела воздух-вода.