Ex 1.2

Proof. Let $E = B_1 \cup \ldots \cup B_n$ and $F = V_1 \cup \ldots \cup V_m$ where B_i , V_j are boxes in \mathbb{R}^d .

- (i) By definition, E and F are the unions of finite boxes, and thus $E \cup F$ is the union of finite boxes meaning it is elementary.
- (ii) Note that the intersection of two intervals is always an interval (assuming \emptyset is also an interval). That is because if the intersection is non-empty and the endpoints of the intervals are a_1, b_1 and a_2, b_2 , then the endpoints of their intersection are $\min(a_1, a_2)$ and $\max(b_1, b_2)$. Thus the intersection of two boxes is itself a box. Note

$$E\cap F=\bigcup_i\bigcup_j B_i\cap V_j$$

which is the union of the intersection of boxes, which themselves are boxes. Hence $E \cap F$ is elementary.

(iii)

- (iv) Since $E \setminus F$ and $F \setminus E$ are elementary from (iii), then their union is also elementary from (i). Thus $E\Delta F$ is elementary.
- (v) Note that $E + x = \bigcup_i (B_i + x)$ thus we only need to consider $B_i + x$. Suppose $B_i = [a_1, b_1] \times \ldots \times [a_d, b_d]$ (since the following argument works regardless of endpoint inclusion). Note than that

$$B_i + x = [a_1 + x_1, b_1 + x_1] \times ... \times [a_d + x_d, b_d + x_d]$$

which is still a box. Thus E is the union of a finite number of boxes and therefore elementary.

 \Diamond

Ex 1.7

Proof. Let $c = \tilde{m}([0,1)^d)$. Note that finite additivity and non-negativity of \tilde{m} give monotonicity because if $A \subset B$, then $\tilde{m}(B \setminus A) \geq 0$ and

$$\tilde{m}(B) = \tilde{m}(A \cup (B \setminus A)) \ge \tilde{m}(A) + \tilde{m}(B \setminus A) \ge \tilde{m}(A).$$

We can now extend the known value of \tilde{m} to general boxes.

- Take $n \in \mathbb{N}$. Then $[0,1)^d$ can be subdivided into n^d cubes of side length $\frac{1}{n}$. By translation invariance, each of these cubes must have the same measure, thus $\tilde{m}\left([0,\frac{1}{n})^d\right) = \frac{c}{n^d}$.
- Let B be a box with rational endpoints. By translation invariance it can be assumed $B = \prod_{i=1}^d [0, r_i)$ where $r_i \in \mathbb{Q}$. For some $q \in \mathbb{N}$, we can then write $r_i = \frac{p_i}{q}$ for some $p_i \in \mathbb{Z}$. It is therefore possible to partition B into $p_1 p_2 \dots p_d$ boxes of side length $\frac{1}{q}$. It follows from the previous part then that

$$\tilde{m}(B) = p_1 \dots p_d \cdot \frac{c}{q^d} = c \cdot \prod_{i=1}^d r_i = cm(B).$$

• Now let B be a box with real endpoints. Again by translation invariance it can be assumed $B = \prod_{i=1}^d [0, t_i)$. Take $q \in \mathbb{N}$ and set $p_i = \lfloor qt_i \rfloor$. Define then

$$B_L = \prod_{i=1}^d \left[0, \frac{p_i}{q}\right) \qquad B_U = \prod_{i=1}^d \left[0, \frac{p_i+1}{q}\right).$$

Note that $B_L \subset B \subset B_U$ and

$$\frac{p_1 \dots p_d}{a} \le t_1 \dots t_d \le \frac{(p_1 + 1) \dots (p_d + 1)}{a} \tag{*}$$

which in the limit as $q \to \infty$ leads to both sides converging to $t_1 \dots t_d$. Monotonicity gives $\tilde{m}(B_L) \le \tilde{m}(B) \le \tilde{m}(B_U)$. From the previous part, we have

$$\tilde{m}(B_L) = c \cdot \frac{p_1 \dots p_d}{q}$$
 $\tilde{m}(B_U) = c \cdot \frac{(p_1 + 1) \dots (p_d + 1)}{q}$.

Therefore

$$c \cdot \frac{p_1 \dots p_d}{q} \le \tilde{m}(B) \le c \cdot \frac{(p_1 + 1) \dots (p_d + 1)}{q}.$$

In the limit as $q \to \infty$, it follows then in conjunction with (\star) that $\tilde{m}(B) = c \cdot t_1 \dots t_2 = cm(B)$.

Now consider an elementary set E. Then there is a disjoint decomposition of E into boxes $B_1 \cup \ldots B_n$. By finite additivity of \tilde{m} , it follows

$$\tilde{m}(B) = \sum_{i} \tilde{B}_{i} = \sum_{i} c \cdot m(B_{i}) = c \sum_{i} m(B_{i}) = c m(E)$$

 \Diamond

which was to be shown.

Ex 1.11

Proof. We will prove $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 1$.

 $1\Rightarrow 2)$ Suppose E is Jordan measurable and take $\varepsilon>0$. By the definition of the inner and outer Jordan measure, it follows that there exists elementary sets A and B such that $A\subset E$ and $E\subset B$ as well as

$$m(A) + \frac{\varepsilon}{2} \le m_*^J(E)$$
 $m_J^*(E) \le m(B) - \frac{\varepsilon}{2}$.

Subtracting the first inequality from the second gives

$$m(B) - \frac{\varepsilon}{2} - m(A) - \frac{\varepsilon}{2} \le m_J^*(E) - m_*^J(E) = 0 \implies m(B) - m(A) \le \varepsilon.$$

Since $B \setminus A$ and A are disjoint and $(B \setminus A) \cup A = A$,

$$m(A) = m((B \setminus A) \cup A)$$
$$= m(B \setminus A) + m(A) \implies m(B \setminus A) = m(B) - m(A)$$

Therefore $m(B \setminus A) \leq \varepsilon$.

- $2\Rightarrow 3)$ Take $\varepsilon>0$ and suppose there exists elementary sets $A\subset E\subset B$ such that $m(B\setminus A)\leq \varepsilon$. Note that $A\setminus E=\varnothing$, thus $A\Delta E=E\setminus A$. Since $E\setminus A\subset B$ and $(E\setminus A)\cap A=\varnothing$, $E\setminus A\subset B\setminus A$ and thus $A\Delta E\subset B\setminus A$. Therefore $m_J^*(A\Delta E)\leq m(B\setminus A)\leq \varepsilon$.
- $3\Rightarrow 1)$ Take $\varepsilon>0$ and suppose there exists and elementary set A such that $m_J^*(A\Delta E)\leq \varepsilon$. Then for any $\delta>0$ there exists some elementary set C such that $A\Delta E\subset C$ and $m(C)\leq m_J^*(A\Delta E)+\delta\leq \varepsilon+\delta$. Note that $A\cup C\supset E$ and $A\setminus C\subset E$ are both elementary sets. Therefore we have

$$m_J^*(E) \leq m_J^*(A \cup C) = m(A \cup C) \leq m(A) + m(C) \leq m(A) + (\varepsilon + \delta)$$

and

$$m_*^J(E) \ge m_*^J(A \setminus C) = m(A \setminus C) \ge m(A) - m(C) \ge m(A) - (\varepsilon + \delta).$$

Putting these together gives

$$m(A) - (\varepsilon + \delta) \le m_*^J(E) \le m_J^*(E) \le m(A) + (\varepsilon + \delta).$$

Since δ was arbitrary, we can reduce the inequality bounds to $m(A) \pm \varepsilon$. Furthermore since ε was arbitrary, $m_*^J(E) = m_J^*(E) = m(A)$ and thus E is measurable.

Ex. 1.13

Proof.

- (i) Take $\varepsilon > 0$. Then there exists elementary sets A_1, A_2, B_1, B_2 such that $A_1 \subset E_1 \subset B_1, A_2 \subset E_2 \subset B_2$ and $m(B_1 \setminus A_1), m(B_2 \setminus A_2) \leq \varepsilon$.
 - Note that $A_1 \cup A_2 \subset E_1 \cup E_2 \subset B_1 \cup B_2$ and

$$(B_1 \cup B_2) \setminus (A_1 \cup A_2) = (B_1 \setminus (A_1 \cup A_2)) \cup (B_2 \setminus (A_1 \cup A_2))$$
$$\subset (B_1 \setminus A_1) \cup (B_2 \setminus A_2)$$

Therefore $m((B_1 \cup B_2) \setminus (A_1 \cup A_2)) \leq m(B_1 \cup A_1) + m(B_2 \setminus A_2) \leq 2\varepsilon$. Since $A_1 \cup A_2$ and $B_1 \cup B_2$ are elementary, $E_1 \cup E_2$ is Jordan measurable.

• Note that $A_1 \cap A_2 \subset E_1 \cap E_2 \subset B_1 \cap B_2$ and

$$(B_1 \cap B_2) \setminus (A_1 \cap A_2) = (B_1 \setminus (A_1 \cap A_2)) \cup (B_2 \setminus (A_1 \cap A_2))$$

$$\subset (B_1 \setminus A_1) \cup (B_2 \setminus A_2)$$

•

• Since $E_1 \Delta E_2 = (E_1 \setminus E_2) \cup (E_2 \setminus E_1)$, $E_1 \Delta E_2$ is Jordan measurable by (i) and (iii).

- (ii) Since the elementary measure is non-negative and $m(E_1) = m_*^J(E_1) = \sup\{m(A): A \subset E_1, A \in \mathcal{E}(\mathbb{R}^d)\} \geq 0$
- (iv) If $A \subset E_1$ is elementary, then $A \subset E_2$, thus the supremum over all inner elementary sets for E_1 is a subset of the inner elementary sets for E_2 . Thus $m_*^J(E_1) \leq m_*^J(E_2)$, which gives $m(E_1) \leq m(E_2)$ since E_1 and E_2 are Jordan measurable.
- (v) Pick $\varepsilon > 0$ and elementary sets $B_1 \supset E_1, B_2 \supset E_2$ such that $m(B_1) m(E_1) \le \varepsilon$ and $m(B_2) m(E_2) \le \varepsilon$. Since $E_1 \cup E_2 \subset B_1 \cup B_2$ by (iv) it follows

$$m(E_1 \cup E_2) \le m(B_1 \cup B_2) \le m(B_1) + m(B_2) \le m(E_1) + m(E_2) + 2\varepsilon.$$

Since ε was arbitrary, it follows $m(E_1 \cup E_2) \leq m(E_1) + m(E_2)$.

(iii) Take $\varepsilon > 0$. Then there exists elementary sets $A_1 \subset E_1, A_2 \subset E_2$ such that $m(E_1) - m(A_1) \leq \varepsilon$ and $m(E_2) - m(A_2) \leq \varepsilon$. Since $E_1 \cap E_2 = \emptyset, A_1 \cap A_2 = \emptyset$ which means $m(A_1 \cup A_2) = m(A_1) + m(A_2)$. Note that $A_1 \cup A_2 \subset E_1 \cup E_2$, which by (iv) gives

$$m(E_1 \cup E_2) \ge m(A_1 \cup A_2) = m(A_1) + m(A_2) \ge m(E_1) + m(E_2) - 2\varepsilon.$$

Since ε was arbitrary, it follows $m(E_1 \cup E_2) \ge m(E_1) + m(E_2)$ which in conjunction with (v) gives $m(E_1 \cup E_2) = m(E_1) + m(E_2)$.

(vi) Take $\varepsilon > 0$. Then there exists elementary sets $A \subset E_1 \subset B$ such that $m(B \setminus A) \leq \varepsilon$. Note that $A + x \subset E_1 + x \subset B + x$. Since $m(\cdot)$ is translation invariant for elementary sets, it follows m(A + x) = m(A) and m(B + x) = m(B). Note then by (iv) that

$$m(A) \le m(E_1) \le m(B)$$

and by the definition of the outer/inner Jordan measure that

$$m(A) = m(A+x) \le m_*^J(E_1+x) \le m_J^*(E_1+x) \le m(B+x) = m(B).$$

Since $m(B \setminus A) = m(B) - m(A) \le \varepsilon$ we have both $|m(E_1) - m_J^*(E_1 + x)| \le \varepsilon$ and $|m(E_1) - m_*^J(E_1 + x)|$. The choice of ε was arbitrary, hence $m_J^*(E_1 + x) = m_*^J(E_1 + x) = m(E)$.

Ex. 1.14

Proof.

i) Take $\varepsilon > 0$. Since B is closed and bounded, it is compact meaning f is uniformly continuous over B. Therefore $\exists \delta > 0$ such that $|x - y| < \delta \implies |f(x) - f(y)| < \varepsilon$. Partition B into a disjoint set of closed boxes Q_i whose diameters are smaller than δ . Associate then the set of points x_i with Q_i where $x_i \in Q_i$. Note then that $x \in Q_i$ gives $|x - x_i| < \delta \implies |f(x) - f(x_i)| < \varepsilon$. Thus we have

$$\{(x, f(x)) : x \in Q_i\} \subset Q_i \times [f(x_i) - \varepsilon, f(x_i) + \varepsilon].$$

Since all the Q_i cover B, it follows

$$G(f) \subset \bigcup_i Q_i \times [f(x_i) - \varepsilon, f(x_i) + \varepsilon].$$

The measure of the union can be bounded above by $2\varepsilon \cdot M$ where M is the total size of all the Q_i . The total size of all the Q_i is constant since it is simply the size of B. Therefore we have

$$0 \le m_*^J(G(f)) \le m_J^*(G(f)) \le 2\varepsilon \cdot M.$$

Since ε is arbitrary, it follows that m(G(f)) = 0.

ii) Take $\varepsilon > 0$. Partition B into the boxes Q_i as described above. Let $m_i = \inf_{x \in B_i} f(x)$ and $M_i = \sup_{x \in B_i} f(x)$, and define the elementary sets

$$L = \bigcup_i Q_i imes [0, m_i] \qquad \qquad U = \bigcup_i Q_i imes [0, M_i].$$

Note that $A \subset B(f) \subset B$ and that $0 \leq M_i - m_i \leq \varepsilon$. Therefore

$$m(U\setminus L)=migg(igcup_i Q_i imes [m_i,M_i]igg)\leq \sum_i |Q_i|(M_i-m_i)\leq arepsilon \sum_i |Q_i|.$$

Similar to above, the total size of all the Q_i is constant giving $m(U \setminus L) \le \varepsilon \cdot M$, hence B(f) is Jordan measurable.

Ex 1.18

Proof.

\Diamond

Ex 1.25

Proof.

\Diamond

Ex 1.26

Proof.

i) Since $E \subset \overline{E}$ it follows $m_J^*(E) \leq m_J^*(\overline{E})$, thus it suffices to show the reverse inequality. Take $\varepsilon > 0$. Then there exists boxes B_1, \ldots, B_n such that $E \subset \bigcup B_i$ and $\sum |B_i| \leq m_J^*(E) + \varepsilon$. Note that $|\overline{B_i}| = |B_i|$ and

$$\overline{E}\subset \overline{\bigcup_i B_i}=\bigcup_i \overline{B_i}.$$

Therefore $m_J^*(\overline{E}) \leq \sum |\overline{B_i}| = \sum |B_i| \leq m_J^*(E) + \varepsilon$, giving $m_J^*(\overline{E}) \leq m_J^*(E) + \varepsilon$. Since ε was arbitrary, we have equality.

- ii) We use a similar argument as above. Clearly $m_*^J(\mathring{E}) \leq m_*^J(E)$. Take $\varepsilon > 0$. Then there exists boxes B_1, \ldots, B_n such that $\bigcup B_i \subset E$ with $m_*^J(E) + \varepsilon < \sum |B_i|$.
- iii) Suppose E is Jordan measurable. Then $m_J^*(E)=m_*^J(E)$. Since $\mathring{E}\subset\overline{E},$ $m_*^J(\mathring{E})\leq$
- iv) Since $\overline{[0,1]^2 \setminus \mathbb{Q}^2} = [0,1]^2 = \overline{[0,1]^2 \cap \mathbb{Q}^2}$, it follows $m_J^*([0,1]^2 \setminus \mathbb{Q}^2) = m_J^*([0,1]^2 \cap \mathbb{Q}^2) = m_J^*([0,1]^2) = 1$. But $\operatorname{int}([0,1]^2 \setminus) = \varnothing = \operatorname{int}([0,1]^2 \cap \mathbb{Q}^2)$, thus $m_*^J([0,1]^2 \setminus \mathbb{Q}) = m_*^J([0,1]^2 \cap \mathbb{Q}^2) = m_*^J(\varnothing) = 0$. Therefore neither $[0,1]^2 \setminus \mathbb{Q}^2$ or $[0,1]^2 \cap \mathbb{Q}^2$ are Jordan measurable.

