1) Comparison between MPCOPF and MPDOPF: In this section, comparative analyses are carried out between MPCOPF and MPDOPF considering 5-hour time steps.

TABLE I: Comparative analyses between MPCOPF and MPDOPF - 20% PVs and 30% Batteries for a 5-hour

Metric	MPCOPF	MPDOPF
Line loss (kW)	75.99	76.12
Substation real power (kW)	4308.28	4308.14
Substation reactive power (kVAR)	574.18	656.24
PV reactive power (kVAR)	116.92	76.01
Substation power cost (\$)	576.31	576.30
Number of Iterations	1	5
Total Simulation Time (s)	521.25	49.87

Further, here the

TABLE II: ACOPF feasibility analyses - 20% PVs and 30% Batteries for a 5-hour Horizon

Metric	MPDOPF	OpenDSS
Full horizon		
Line loss (kW)	76.12	76.09
Substation real power (kW)	4308.14	4308.35
Substation reactive power (kVAR)	656.24	652.49
Max. all-time discrepancy		
Voltage (pu)	0.0002	
Line loss (kW)	0.0139	
Substation power (kW)	0.3431	

Boundary Variable Plots are too tall, make them slightly shorter, like 25% of the page only.

- 2) Scalability Analysis:
- 3) Comparison between MPCOPF and MPDOPF: In this section, comparative analyses are carried out between MPCOPF and MPDOPF considering 10-hour time steps with 20% PV penetration and 30% battery penetration.

Do you want PV Real Power in the table too? (Not controllable, so nothing to compare)

TABLE III: Comparative analyses between MPCOPF and MPDOPF - 20% PVs and 30% Batteries for a 10-hour Horizon

Metric	MPCOPF	MPDOPF
Line loss (kW)	148.67	148.94
Substation real power (kW)	8544.28	8544.04
Substation reactive power (kVAR)	1092.39	1252.03
PV reactive power (kVAR)	222.59	139.81
Substation power cost (\$)	1197.87	1197.87
Number of Iterations	1	5
Total Simulation Time (s)	4620.73	358.69

Further, here the

Provide a separate graph for PV, Load forecasts for T = 5 and 10

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor

TABLE IV: ACOPF feasibility analyses - 20% PVs and 30% Batteries for a 10-hour Horizon

Metric	MPDOPF	OpenDSS
Full horizon		
Line loss (kW)	148.94	148.87
Substation real power (kW)	8544.04	8544.40
Substation reactive power (kVAR)	1252.03	1243.36
Max. all-time discrepancy		
Voltage (pu)	0.0002	
Line loss (kW)	0.0132	
Substation power (kW)	0.4002	

gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Fig. 1: Boundary variables exchanged between pairs of areas during each iteration

Fig. 2: Forecasts for Demand Power, Irradiance and Cost of Substation Power over a 10 Hour Horizon

Fig. 3: Charging-Discharging and SOC graphs for Battery at Bus 3 located in Area 1 obtained via MultiPeriodENApp