

글로벌미디어학부

미디어 GAN

Media GAN(Generative Adversarial Network)

11주차: CNN

박재완

컨볼루션 신경망(CNN)

• 컨볼루션(Convolution Neural Network: CNN) 신경망에서는 하위 레이어의 노드들과 상위 레이어 의 노드들이 부분적으로만 연결되어 있다.

컨볼루션 신경망(CNN)

컨볼루션 신경망은 Hubel과 Wiesel이 발견한 고양이의 시각 세포에서부터 출발함

시각 피질 뉴런의 구조 – Hubel's book, Eye, Brain, and Vision

CNN의 역사

- "네오코그니트론(Neocognitron)"은 1980년 후쿠시마(Kunihiko Fukushima)에 의해 소개된 신경망 구조.
- 1989년 벨 연구소 얀 르쿤 "네오코그니트론(Neocognitron)"를 적용한 CNN 공개
- 제프리 힌튼, Relu, Dropout

네오코그니트론(출처: 후쿠시마의 논문)

컨벌루션 신경망의 중요성

- 컨벌루션 신경망은 모든 신경망 구조 중에서 가장 강력한 성능을 보여주는 신경망 중의 하나임
- 컨벌루션 신경망은 2차원 형태의 입력을 처리하기 때문에, 이미지 처리에 특히 적합함
- 신경망의 각 레이어에서 일련의 필터가 이미지에 적용됨

• 컨벌루션 신경망도 여러 레이어를 연결하여 신경망을 구축함

- ✓ 입력층
- ✓ 입력층에서 컨벌루션 연산을 통하여 특징을 뽑아내는 특징맵(feature map)이 존재
- ✓ 풀링(Pooling) 연산을 적용. 풀링 연산은 입력의 차원을 줄이는 연산
- ✓ 컨벌루션 레이어와 풀링 레이어는 여러 번 되풀이 됨
- ✓ 신경망의 맨 끝에는 완전히 연결된 구조의 전통적인 분류 신경망이 있어서 추출된 특징을 바탕으로 물체를 인식

^{*} 서브 샘플링(sub sampling) = 풀링(pooling)

컨벌루션의 구체적인 예

영상 처리에서의 컨벌루션 연산

• 컨벌루션를 수행한 결과는 특징맵(feature map)이라고 불림

영상 처리에서의 컨벌루션 연산

신경망에서는 필터의 가중치가 학습

컨벌루션 신경망에서는 커널의 가중치들이 학습

컨벌루션 신경망에서의 컨벌루션 연산

- 컨벌루션 신경망에서도 커널이 입력층의 각 픽셀을 중심으로 덮여 씌워짐
- 앞 레이어의 값 X는 **각 커널 W**와 곱해져서 더해져서 **WX+b**가 돰
- 이 계산값은 Relu()와 같은 활성화 함수를 통과해서, 다음 레이어의 동일한 위치에 ReLU(WX+b)로 저장됨

신경망에서의 컨벌루션 연산

컨벌루션 레이어

- 여러 개의 필터를 이용할 수 있다.
- "필터의 값은 미리 정해진 것이 아니고 학습된다."

보폭

- 보폭(stride) 은 커널을 적용하는 거리이다. 보폭이 1이면 커널을 한 번에 1픽셀씩 이동하면서 커널을 적용하는 것임
- 보폭이 2라는 것은 하나씩 건너뛰면서 픽셀에 커널을 적용한다는 것을 의미함

패딩

• 패딩(padding)은 이미지의 가장자리를 처리하기 위한 기법

패딩이 필요한 이유

2가지 패딩 방법

• Valid: 커널을 입력 이미지 안에서만 움직인다.

• Same :입력 이미지의 주변을 특정값(예를 들면 0, 또는 이웃 픽셀값)으로 채우는 것

필터가 여러 개일 때의 컨벌루션 레이어

Pooling(Sub Sampling)

• 풀링(Pooling)이란 서브 샘플링이라고도 하는 것으로 입력 데이터의 크기를 줄 이는 것이다.

풀링 레이어

MaxPooling

• 컨벌루션처럼 윈도우를 움직여서 윈도우 안에 있는 숫자 중에서 가장 큰 값만 출력하는 연산이다.

풀링 연산

풀링의 장점

- 레이어의 크기가 작아지므로 계산이 빨라짐
- 레이어의 크기가 작아진다는 것은 신경망의 매개변수가 작아진다는 것을 의미한다. 따라서 과적합 이 나올 가능성이 줄어듬
- 공간에서 물체의 이동이 있어도 결과는 변하지 않는다. 즉 물체의 공간이동에 대하여 둔감해지게 됨

풀링의 종류

풀링의 종류

컨벌루션 신경망의 해석

컨벌루션 레이어의 분석

케라스로 컨벌루션 신경망 구현하기

	클래스 이름	설명
컨벌루션 레이어	Conv1D, Conv2D, Conv3D, SeparableConv1D, SeparableConv2D, DepthwiseConv2D,Conv2DTranspose, Conv3DTranspose	컨벌루션 연산을 구현하는 레이어이다.
풀링 레이어	MaxPooling1D, MaxPooling2D AveragePooling1D, AveragePooling2D GlobalMaxPooling1D, GlobalMaxPooling2D GlobalAveragePooling1D, GlobalAveragePooling2D	몇 개의 값을 하나로 합치는 레이어이다.

컨벌루션 레이어

tf.keras.layers.Conv2D(filters, kernel_size, strides=(1, 1), activation=None, input_shape, padding='same')

- filters: 필터의 개수이다.
- kernel size: 필터의 크기이다.
- strides: 보폭이다.
- activation: 유닛의 활성화 함수이다.
- input_shape: 입력 배열의 형상
- padding: 패딩 방법을 선택한다. 디폴트는 "valid"이다.

컨벌루션 레이어

- tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2,2), padding="valid")
 - pool_size: 풀링 윈도우의 크기, 정수 또는 2개 정수의 튜플이다. (2, 2)라면 2x2 풀링 윈도우에서 최 대값을 추출한다.
 - strides: 보폭, 각 풀링 단계에 대해 풀링 윈도우가 이동하는 거리를 지정한다.
 - padding: "valid"나 "same" 중의 하나이다. "valid"는 패딩이 없음을 의미한다. "same"은 출력이 입력과 동일한 높이 / 너비 치수를 갖도록 입력의 왼쪽 / 오른쪽 또는 위 / 아래에 균일하게 패딩한다.