PATENT: POLAR-OPTIMIZED BATTERY MANAGEMENT SYSTEM

PATENT APPLICATION

POLAR-OPTIMIZED BATTERY MANAGEMENT SY

United States Patent Application No. 16/789,432

Filed: March 15, 2022

Inventors: Marcus Chen, Dr. James Barrett, Sarah Wu

Assignee: Polar Dynamics Robotics, Inc.

Priority Date: March 15, 2021

ABSTRACT

A system and method for optimizing battery performance in extreme cold environments, specifically for autonomous mobile robots operating in sub-zet temperatures. The invention comprises an intelligent thermal management sy that maintains optimal battery temperature while maximizing power efficient through predictive modeling and dynamic load balancing.

BACKGROUND

[0001] Autonomous mobile robots operating in cold storage environments far significant challenges related to battery performance and longevity. Tradition lithium-ion batteries experience severely reduced capacity and increased internal resistance at temperatures below -20°C.

[0002] Existing solutions typically rely on energy-intensive heating elements

that significantly reduce overall system efficiency and operating time.
SUMMARY OF THE INVENTION
[0003] The present invention provides a novel battery management system specifically designed for extreme cold environments, comprising:
a) An intelligent thermal management subsystem utilizing phase-change mat and variable-conductance heat pipes;
b) Predictive temperature modeling algorithms that optimize power distribute based on anticipated workload and environmental conditions;
c) A multi-cell battery architecture with independent thermal zones and selective cell activation.

DETAILED DESCRIPTION

Thermal Management Subsystem

[0004] The thermal management subsystem comprises:
-
A network of variable-conductance heat pipes filled with proprietary working
-
Phase-change material chambers strategically positioned around battery cell
-
Microprocessor-controlled thermal switches
-
Temperature sensors with 0.1°C accuracy

[0005] The system maintains battery cell temperature between -5°C and +10
while ambient temperatures range from -40°C to +25°C.
Predictive Modeling System
Treateure Frodering System
[0006] The predictive modeling system employs:
Machine learning algorithms trained on historical performance data
-
Real-time environmental sensor inputs
-
Dynamic workload profiling
- Adaptive power allocation protocols
Adaptive power anocation protocols

Multi-Cell Architecture

[0007] The battery pack comprises:

-

16 independent cell groups

-

Individual thermal management zones

_

Selective cell activation based on demand

-

Redundant power pathways

CLAIMS

6 -
A battery management system for cold-environment autonomous robots com-
a) A thermal management subsystem utilizing phase-change materials;
b) Predictive temperature modeling algorithms;
c) Multi-cell architecture with independent thermal zones.
The system of claim 1, wherein the thermal management subsystem maintain
The system of claim 1, wherein the predictive modeling system optimizes po

[Claims 4-20 omitted for brevity]

DRAWINGS

[Fig. 1] System architecture diagram

[Fig. 2] Thermal management flow schematic

[Fig. 3] Cell group configuration

[Figs. 4-12 omitted for brevity]

DECLARATION AND POWER OF ATTORNEY

I hereby declare that:

- (1) Each inventor's residence is stated below their name above.
- (2) I believe the inventors named above to be the original and first inventors of the subject matter claimed.
- (3) I acknowledge the duty to disclose information material to patentability.

SIGNATURES

/Marcus Chen/

Marcus Chen

Date: March 15, 2022

/James Barrett/

Dr. James Barrett

Date: March 15, 2022

/Sarah Wu/

Sarah Wu

Date: March 15, 2022

ATTORNEY DOCKET INFORMATION

Attorney Docket No.: PDR-2022-BMS-001

Law Firm: Morrison & Thompson LLP

Attorney: Elizabeth R. Morgan, Reg. No. 58,723

Address: 1700 Technology Drive, Suite 300

Boston, MA 02110

[End of Patent Application]

