A	В	С	A and	A and	$A \rightarrow$	В →	(A → C)	A	- (A	-C	-A	(A
			В	$B \rightarrow$	C	C	V	V	and		V	V
				C			(B → C)	В	B)		-В	B)
											V-	and
											C	(-C
												V
												-D
												V
												-E)
1	1	1	1	1	1	1	1	1	0	0	0	0
1	1	0	1	0	0	0	0	1	0	1	1	1
1	0	0	0	1	0	1	1	1	1	1	1	1
0	0	0	0	1	1	1	1	0	0	1	1	0
0	0	1	0	1	1	1	1	0	0	0	0	0
0	1	1	0	1	1	1	1	1	1	0	1	1
1	0	1	0	1	1	1	1	1	1	0	1	1
0	1	0	0	1	1	0	1	1	1	1	1	1

Problem 1, Part 1)

- a. True
- b. True
- c. False
- d. True
- e. True
- f. True

Problem 1, Part 2)

- a. Prove bi-directionally:
 - 1) If True = true, which means that alpha is valid in every model.
 - 2) If alpha is valid (true in all models), True is still true in every model.
- b. Prove alpha entails beta iff (alpha \rightarrow beta) is valid
 - 1) In every model where alpha is true, beta is also true
 - 2) If (alpha \rightarrow beta) is valid (true in all models), beta will also be true.
- c. Prove alpha \equiv beta iff (alpha $\leftarrow \rightarrow$ beta)
 - 1) A truth table proves that where (alpha $\leftarrow \rightarrow$ beta), alpha \equiv beta is true in all models.
 - 2) A truth table proves that where (alpha \equiv beta), alpha \rightarrow beta is also true in all models.
- d. Prove alpha entails beta iff (alpha ^~beta) is unsatisfiable.
- 1) Let (alpha ^~beta) be satisfiable (at least one model exists where alpha is true and beta is false), which does not show entailment.
- 2) Let (alpha entails beta) be valid. Here, there is never a case where alpha is true and beta is false.

Overall, if alpha is true and beta is never false, (alpha ^~beta) is unsatisfiable.

```
Robin Mehta
AI Homework 3
```

Problem 2, Part 1)

A

~C

~A V B

CVD

Ε

~B V ~D V ~E V F

Overall:

(A)
$$\land$$
 (\sim C) \land (\sim A V B) \land (C V D) \land (E) \land (\sim B V \sim D V \sim E V F)

Problem 2, Part 2) Use resolution to prove F

Assume: F is false. Prove using contradiction

$$\sim$$
F \rightarrow (\sim B V \sim D V \sim E):

 \sim F \rightarrow \sim B must be true

true $\rightarrow \sim (\sim A \ V \ B)$, given A, meaning B is true, meaning $\sim B$ is false. (true \rightarrow false is false). Contradiction.

OR

 \sim F \rightarrow \sim D must be true

true \rightarrow (C V D), given C, meaning D is true, meaning \sim D is false. (true \rightarrow false is false). Contradiction.

OR

 \sim F \rightarrow \sim E must be true

true \rightarrow ~E, given E is true, meaning ~E is false. (true \rightarrow false is false). Contradiction.

Finally:

 \sim F \rightarrow false or false

true → false. Contradiction!

Problem 3, Part 1: Determine whether the pairs can be unified

- 1. No. Since B and C are different constants, and y and y are the same variable, these pairs cannot be unified.
- 2. No. B is not equal to GameOf(x), meaning that B, being a constant, cannot be substituted for GameOf(x).
- 3. Yes. C(B, FriendOf(B), GameOf(FriendOf(B)))
- 4. Yes. P(A, FriendOf(B))
- 5. No. By the unique names assumption, two pairs of different functions cannot be unified.
- 6. No. By the unique names assumption, A and C are different constants, and so FriendOf(x,x) cannot be substituted with FriendOf(x,x).

Problem 4

Part 1: Translate the knowledge base into first-order-logic (using quantifiers!)

- 1) Student(Pat)
- 2) Restaurant(Ayse)
- 3) GetsScholarship(Pat)
- 4) $Vx(Student(x) \land GetScholarship(x)) \rightarrow SpecialOccasion(x)$
- 5) Ex(Patron(Pat, y))
- 6) $Vx,y,z(Student(x) \land Patron(x, y) \land Restaurant(y) \land SpecialOccasion(x)) \Rightarrow$ Eats(x, z=lentil soup)

Part 2: Convert To CNF

- 1) Student(Pat) ^
- 2) Restaurant(Ayse) ^
- 3) GetsScholarship(Pat) ^
- 4) \sim Student(x) V \sim GetsScholarship(x) V SpecialOccasion(x) \wedge
- 5) Patron(Pat, y) ^
- 6) ~Student(x) V ~Patron(x, y) V ~Restaurant(y) V ~SpecialOccasion(x)) V Eats(x, z=lentil soup)

Part 3: Prove that Pat eats lentil soup using resolution refutation.

Assume: \sim Eats(x=Pat,z=lentil soup)

Given by CNF:

If ~Eats(x=Pat,z=lentil soup) is true, then:

~SpecialOccasion(x) must be true

```
Robin Mehta
AI Homework 3
       Given: Student(Pat), GetsScholarship(Pat)
              ~Student(Pat) V ~GetsScholarship(Pat) V SpecialOccasion(Pat) must be
true
              false V false V SpecialOccasion(Pat) must be true, so
SpecialOccasion(Pat) is true. Contradiction.
OR
       ~Restaurant(y) must be true
       Given: Restaurant(y) is true. Contradiction.
OR
       \simPatron(x, y) must be true
       Given: Patron(Pat, y) is true. Contradiction.
OR
       ~Student(x) must be true
       Given: Student(Pat) is true. Contradiction.
Finally:
\simStudent(x) V \simPatron(x, y) V \simRestaurant(y) V \simSpecialOccasion(x)) V Eats(x,
z=lentil soup)
False V False V False V False V False. Contradiction!
Problem 5:
Part 1: List unary constraints, if any:
   1) None
   2) Constraints i, ii, iii, iv, v, vi
```

Part 2:

1) Possible ordered list of the deliverables:

a) BDFHJCK violates constraint iii.

- b) CJBHDKF violates constraint i.
- c) HBDFJCK does not violate any constraints!
- d) HBDFKJC violates constraint v.
- e) HJDBFKC violates constraint iv.
- 1) Domains after applying arc consistency:

B: 1,2,3,4,5,6

C: 1,2,3,4,5,6,7

D: 2,3,4,5,6,7

E: 1,2,3,4,5,6,7

F: 1,2,3,4,5,6,7

H: 1,2,3,4,5,6

J: 1,2,3,4,5,6,7

K: 2,3,4,5,6,7

3) Backtracking

	В	С	D	F	Н	J	K
Initial	4, 5, 6,	4, 5, 6,		4, 5, 6,	1, 2, 3, 4, 5, 6, 7		1, 2, 3, 4, 5, 6, 7
B=1	1	3, 4, 5, 6, 7	2	3, 4, 5, 6, 7	3, 4, 5, 6,	3, 4, 5, 6, 7	3, 4, 5, 6,
D=2	1	3, 4, 5, 6, 7	2	3, 4, 5, 6, 7	Backtrack		
B=2	2	1, 3, 4,	1, 3	1, 3, 4,	1, 3, 4, 5,	1, 3, 4,	3, 4, 5, 6,

		5, 6, 7		5, 6, 7	6, 7	5, 6, 7	7
D=1	2	3, 4, 5, 6, 7	1	3, 4, 5, 6, 7	Backtrack		
D=3	2	1, 4, 5, 6, 7	3	1, 3, 4, 5, 6, 7	1	1, 4, 5, 6, 7	1, 4, 5, 6, 7
H=1	2	4, 5, 6, 7	3	4	1	4, 5, 6, 7	4, 5, 6, 7
F=4	2	5, 6, 7	3	4	1	5, 6, 7	5, 6, 7
C=5	2	5	3	4	1	6, 7	6, 7
J=6	2	5	3	4	1	6	Backtrack
C=6	2	6	3	4	1	5, 7	5, 7
J=5	2	6	3	4	1	5	7
K=7	2	6	3	4	1	5	7

Problem 6, Part 1:

	4	5	6
A	1, 4, 7, or 9	2	1, 4, 7, or 9
В	3	1, 4, 7, or 9	5
С	8	1, 4, 7, or 9	6

2) Reduce the domain for variables: List the new domains.

4	5	6

A	4, or 9	2	1, 4, or 7
В	3	4, or 7	5
С	8	7, or 9	6

3) Minimum-remaining value heuristic: We would consider A4, B5, or C5 since these have 2 values left to consider each.

Part 2: Code

```
robin_mehta_solver.py ×
     def ac3(sudoku):
92
         numQueue = list(sudoku)
93
         box = sudoku[0][0]
         for (x,y), value in np.ndenumerate(sudoku):
    if (value == box):
94
95
96
                  solved = True
         solved_sudoku = np.copy(sudoku)
98
         return False, solved_sudoku
99
     111
.00
01
     Backtracking search Algorithm
L02
     Input: 2D numpy matrix
L03
     Output: return True if a solution is found, with solved sudoku, False
L04
L05
     def check(sudoku, box, x, y):
L06
          for (a,b), value in np.ndenumerate(sudoku):
              if (value != box and x == a and y == b):
L07
L08
                  if (x == a \text{ or } y == b):
L09
                      return False
L10
          return True
111
112
     def bts(sudoku):
L13
         solved = False
         for (x,y), value in np.ndenumerate(sudoku):
L14
              if(value == "*"):
115
L16
                  solved = False
         solved_sudoku = np.cdpy(sudoku)
118
         return solved, solved sudoku
119
L20
L21
     Main function
L22
L23
     def main():
L24
         sudoku list = read sudoku(sys.argv[1])
L25
         solved_sudokus = []
L26
         for sudoku in sudoku_list:
L27
              print sudoku(sudoku)
L28
              if sys.argv[2] = 'ac3':
```