Generative Adversarial Stacked Autoencoders

Ariel Ruiz-Garcia*, Ibrahim Almakky•, Vasile Palade•, Luke Hicks•

*LatinX in AI and SeeChange.ai

Data Science Centre, Coventry University, UK

Motivation

- Generative Adversarial Networks (GANs) are predominant in image generation tasks.
- Difficult to train:
- Prone to vanishing gradients.
- Prone to non-convergence.
- Sensitive to hyperparameter and parameter initialization.
- The Generator model is prone to mode collapse:
- Often results in generated images with little variation.
- Hardly ever used for pre-training tasks.

Generative Adversarial Autoencoders

Vanilla Autoencoders:

$$y = g(f(x))$$

GAN Autoencoders:

Given a data distribution $p_d(x_\phi)$ and target data distribution $p_d(x_u)$:

- G maps x_{ϕ} to latent space z and back to reconstruction y that resembles x_{μ} and lies in q(y).
- Impose $p_d(x_\mu)$ on q(y):

$$q(y) = \mathbb{R}_{x_{\mu}} q(x|\mu) p_d(x_{\phi}) dx_{\mu}$$

• G tries to fool the discriminator that y came from $p_d(x_\mu)$ and not from q(y):

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(x_{\mu}^{(i)}\right) + \log(1 - D\left(G(y^{(i)})\right)) \right]$$

• D rates samples from $p_d(x_\mu)$ with a higher probability and samples from q(y) with a low probability:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(x_{\mu}^{(i)}\right) + \log(1 - D\left(G(y^{(i)})\right)) \right]$$

Generative Adversarial Stacked Autoencoders

- For a given GAN Autoencoder:
- Decompose the Generator model into smaller shallow autoencoders.
- Decompose the discriminator into one-layer classifiers.
- Train one shallow adversarial autoencoder at a time.
- Place in corresponding stack.
- Fine-tune entire stack.
- Repeat until done.

Formally defined as:

$$[G^{1}, D^{1}] \leftarrow L(G^{1}, D^{1}, X, X^{\sim})$$

$$D^{(k)} \circ D$$

$$D^{(k)} \circ D$$

$$for k = 2, ..., m do$$

$$[\xi, \delta] \leftarrow D$$

$$[X_{g}, X_{g}^{\sim}] \leftarrow \xi(X, X^{\sim})$$

$$[G^{k}, D^{k}] \leftarrow L(G^{k}, D^{k}, X_{d}, X_{d}^{\sim})$$

$$G \leftarrow G^{(k)} \circ G$$

$$D \leftarrow D^{(k)} \circ D$$

$$G \leftarrow T(G, X, X^{\sim})$$

$$X_{\varphi} \leftarrow G(x_{\varphi})$$

$$D \leftarrow T(D, \{X_{\varphi}, x_{\mu} \subset X\})$$
end for
$$return G, D$$

Main advantages over vanilla autoencoders:

Better reconstructions

Main advantages over GAN Autoencoders:

- Reduced error accumulation.
- Better reconstructions.
- Significantly faster to train ~1 tenth of GPU time.
- Less sensitive to parameter initialization.
- Can be used as a pre-training method.
- Allows for reconstruction targets to be different than inputs.

Reconstruction Results

Training to reconstruct profile images as frontal images (CK+dataset):

Training to improve illumination (Yale Faces Database):

Pre-training Classifiers

Pre-training a classifier as a GAN Stacked Autoencoder (where the classifier is used as the Generator (tested on KDEF dataset):

	ResNet34	CNN (pose)	CNN (pose and illumination)
Angry	84.127	94.444	96.825
Disgust	85.600	97.600	97.600
Fear	73.810	89.683	93.651
Нарру	98.413	100.00	100.00
Neutral	90.400	100.00	100.00
Sad	84.921	98.413	98.413
Surprise	95.161	97.571	98.070