תרגול 1

שחר פרץ

הערה: זה מוגדר היטב כי דטרמיננטה לא תלויה בבסיס מהסיבה הבאה:

$$\det([T]_C^C) = \det([id]_C^B[T]_B^B[id]_B^C) = \det(M_C^B) \det([T]_B^B) \det(M_B^C) = \det(M_C^B) \det((M_C^B))^{-1} \det([T]_B^B) = \det([T]_B^B)$$

עתה נפנה להוכיח את השאלה. משום שאנו יכולים לבחור כל בסיס, נבחר את הבסיס הסטנדרטי. בהינתן:

$$B = \{e_1 \dots e_9\}, \ T(B) = \{e_1, e_4, e_7, e_2, e_5, e_8, e_3, e_6, e_9\}$$

הערה: e_i מוגדר באופן הבא:

$$e_i = \begin{pmatrix} \delta_{i1} & \delta_{i2} & \delta_{i3} \\ \delta_{i4} & \delta_{i5} & \delta_{i6} \\ \delta_{i7} & \delta_{i8} & \delta_{i9} \end{pmatrix}$$

קיבלנו מטריצה 9×9 שנוכל למצוא את הדטרמיננטה שלה באמצעות מינורים ושטויות, אבל אפשר להסתכל על זה גם כעל 3 החלפות עמודות הדטרמיננטה $\det[T]_B^B = (-1)^3 \det I = -1$ ביחס ל-I כלומר I

 $V=\ker T\oplus\operatorname{Im} T$ יהי $T\circ T=T$ הוכיחו ט"ל $T\colon V o V$ המקיימת דו מעל מ"ו מעל "ל מ"ו מעל

הוכחה. נתחיל מלהוכיח חיתוך ריק. יהי $w \in V \colon Tw = v$ אינ. $v \in \ker T \cap \operatorname{Im} T$ היק. יהי

$$T^2 = T \implies 0 = Tv = T(T(w)) = T^2w = Tw = v \implies v = 0$$

 $\dim(\ker T\oplus \operatorname{idim}(\ker T\oplus \operatorname{idim}($

יהי ע מ"ו המוגדר מעל $\mathbb R$ יהיו. תהיינה $T,S\colon V o\mathbb R$ העתקות לינאריות שאינן העתקת האפס. נניח שמתקיים לכל $v\in V$ כך שאם $T,S:V o\mathbb R$ הוכיחו כי קיים סקלר $T,S:V o\mathbb R$ ממשי המקיים $T(v)\geq 0\implies S(v)\geq 0$

 $\dim\ker T=0$ טייטה. $\dim\operatorname{Im} S=1$ ממשפט הממדים . $\dim\operatorname{Im} S=1$ טייטה. $\dim\operatorname{Im} S=1$ ממשפט הממדים . $\dim\operatorname{Im} T=1$ (כי לא העתקת האפס, ולכן 0 על 0 $\dim\operatorname{Im} T=1$ (כי קיים 0 כזה ואז אפשר להרחיב בסיס). נרצה להגיד . $T(v)=\lambda_n T(v_n)$ כך ש־0 כך ש־0 (כי קיים 0 כזה ואז אפשר להרחיב בסיס). נרצה להגיד אותו הדבר על 0, כך לא ברור שזה אותו הבסיס. נבחר בסיס כך ש־0 0 0 0 0 0 0 0 0 ועד למעשה הוכחנו שוויון קרנלים מה שמוכיח את הטענה. למעשה רוצים להוכיח 0 0 0 0 0 אז 0 0 0 לכן 0 0 0 0 0 0 0 0 0 וסה"כ הראנו 0 0

הוכחה. $v \in \ker T$ משמע $S(-v) = -S(v) \geq 0$, ע"פ הנתון $Sv \geq 0$. תשתקו, $Sv \geq 0$ משמע $S(-v) = -S(v) \geq 0$, מכאן נסיק אוכחה. $v \in \ker T$ מרכר שבהכרח S(v) = 0 מועל כן $v \in \ker S$ ועל כן $v \in \ker S$ מרכר שבהכרח שבהכרח משמע $v \in \ker S$ ועל כן $v \in \ker S$ מרכר שבהכרח

. כיוון ו־T,S אינן העתקות האפס והטווח שלהן הוא $\mathbb R$ שממדו T

 $\dim \operatorname{Im} T = \dim \operatorname{Im} S = 1$

ע"פ משפט הממדים, נגרר:

 $\dim \ker T = \dim \ker S = n - 1$

 $v\in V$ יחדיו עם ההכלה ממקודם נסיק $\{v_1\dots v_n\}$ יהי בסיס יהי בסיס ל- $\{v_1\dots v_n\}$ בסיס יהי אל יהי $\{v_1\dots v_n\}$ של V. יהי יהי $S(v)=\lambda_n S(v_n)$ ובאופן דומה $T(v)=\sum_{i=0}^n \lambda_i T(v_i)=\lambda_n T(v_n)$ בהגדרה יקרי אירוף לינארי יומה $S(v)=\lambda_n S(v_n)$ ובאופן דומה יחדי אירוף לינארי $V(v)=\lambda_n T(v_n)$ ובאופן המפשר לחלק ולקבל: $V(v)=\lambda_n T(v_n)$ וה מאפשר לחלק ולקבל:

$$\lambda_n = \frac{T(v_n)}{S(v_n)} T(v_n) = \frac{T(v_n)}{S(v_n)} S(v)$$

. $\forall v \in V: T(v) = \alpha S(v) \implies T = \alpha S$ נקבל . $\alpha = \frac{T(v_n)}{S(v_n)}$ נגדיר נגדיר

lacktriangle מש"ל. $S(v_n) \geq 0$ מא"ב הנתון $S(v_n) \geq 0$ ולכן עם $-v_n$ מותר להניח בה"כ מ $T(v_n) > 0$ ולכן שלים לבסיס עם

אינטואציה שלי: צריך למעשה שקבוצת המקורות של התמונה תהיה אותה הדבר. תנסו להבין למה זה נכון, זה המפתח לפתרון השאלה.

()
. $\operatorname{adj}(AB)=\operatorname{adj} B\operatorname{adj} A$ ביחו כי . $\operatorname{rank} A,\operatorname{rank} B eq n-1$ נניח . $A,B\in M_n(\mathbb{F})$
הרמז להפרדה למקרים: אי־השוויון ל־ $n-1$. במקרה של $n-2$ אי אפשר להשתמש בקטע של ההפיכות ולכן חייבים להשתמש בהגדרה.
הוכחה. נחלק למקרים.
AB אם $n=\operatorname{rank} A,\operatorname{rank} B$ במקרה הזה שתיהן הפיכות ובפרט $n=\operatorname{rank} A$
$adj(AB) = det(AB) \cdot (AB)^{-1} = (det(B)B^{-1})(det AA^{-1}) = adj B adj A$
0 נניח שלפחות אחת מהמטריצות בה"כ A מדרגה לכל היותר $n-2$. טענת עזר: אם $adj\ C=0$ אז $adj\ C=0$ לכן אגף ימין $adj\ AB=0$ ולכן גם $adj\ AB=0$ ולכן גם $adj\ AB=0$ וסיימנו. ידוע
. טענת העזר נכונה ישירות מההגדרה של adj, כי המינור מתאפס, המינור מחאפס
$\operatorname{rank} A = n-2$ הערה שלי: מי שמתקשה שיפתור את 23BA שאלה 1. ו־25AB שאלה 1. יש שם גם הרחבה על
עוד הערה שלי: תפתרו שאלות מס' 3-4 ממבחנים של גינסבורג. אלו השאלות הכי קשות שתמצאו.
קוראים לזה הג'וינט ואני לא יכול לומר לך" \sim גינסוברג למיכאל ששאל אותו מה זה"

שחר פרץ, 2025

אונער באטצעות תוכנה חופשית בלבד $\mathrm{IAT}_E X^-$