第10章α:重积分的概念和性质

数学系 梁卓滨

2017-2018 学年 II

假设

- 区域 D 为平面薄片
- 密度为 μ
- 质量为 m

假设

- 区域 D 为平面薄片
- 密度为 μ
- 质量为 m

● 当薄片均匀时(μ = 常数),

当薄片非均匀时(μ = μ(x, y) 为 D 上函数),

假设

- 区域 D 为平面薄片
- 密度为 μ
- 质量为 m

● 当薄片均匀时(µ=常数),

$$m = \mu \cdot Area(D)$$

当薄片非均匀时(μ = μ(x, y) 为 D 上函数),

假设

- 区域 D 为平面薄片
- 密度为 μ
- 质量为 m

当薄片均匀时(μ=常数),

$$m = \mu \cdot Area(D)$$

假设

- 区域 D 为平面薄片
- 密度为 μ
- 质量为 m

● 当薄片均匀时(μ = 常数),

$$m = \mu \cdot Area(D)$$

假设

- 区域 D 为平面薄片
- 密度为 μ
- 质量为 m

当薄片均匀时(μ=常数),

$$m = \mu \cdot Area(D)$$

假设

- 区域 D 为平面薄片
- 密度为 μ
- 质量为 m

● 当薄片均匀时(µ=常数),

$$m = \mu \cdot Area(D)$$

假设

- 区域 D 为平面薄片
- 密度为 μ
- 质量为 m

当薄片均匀时(μ=常数),

$$m = \mu \cdot Area(D)$$

$$\mu(\xi_i, \eta_i)\Delta\sigma_i$$

假设

- 区域 D 为平面薄片
- 密度为 μ
- 质量为 m

当薄片均匀时(μ=常数),

$$m = \mu \cdot Area(D)$$

$$\sum_{i=1}^n \mu(\xi_i,\,\eta_i) \Delta \sigma_i$$

假设

- 区域 D 为平面薄片
- 密度为 μ
- 质量为 m

● 当薄片均匀时(µ=常数),

$$m = \mu \cdot Area(D)$$

$$\sum_{i=1}^n \mu(\xi_i,\,\eta_i) \Delta \sigma_i$$

假设

- 区域 D 为平面薄片
- 密度为 μ
- 质量为 m

● 当薄片均匀时(µ=常数),

$$m = \mu \cdot Area(D)$$

$$\lim_{\lambda \to 0} \sum_{i=1}^{n} \mu(\xi_i, \, \eta_i) \Delta \sigma_i$$

假设

- 区域 D 为平面薄片
- 密度为 μ
- 质量为 m

● 当薄片均匀时(µ=常数),

$$m = \mu \cdot Area(D)$$

$$m = \lim_{\lambda \to 0} \sum_{i=1}^{n} \mu(\xi_i, \, \eta_i) \Delta \sigma_i$$

二重积分定义 设

- D 是平面上有界闭区域,
- *f*(*x*, *y*) 是 *D* 上的有界函数,

二重积分定义 设

- D 是平面上有界闭区域,
- f(x, y) 是 D 上的有界函数,

二重积分定义 设

- D 是平面上有界闭区域,
- f(x, y) 是 D 上的有界函数,

二重积分定义 设

- D 是平面上有界闭区域,
- *f*(*x*, *y*) 是 *D* 上的有界函数,

二重积分定义 设

- D 是平面上有界闭区域,
- f(x, y) 是 D 上的有界函数,

二重积分定义 设

- D 是平面上有界闭区域,
- f(x, y) 是 D 上的有界函数,

若

 $f(\xi_i, \eta_i)\Delta\sigma_i$

二重积分定义 设

- D 是平面上有界闭区域,
- *f*(*x*, *y*) 是 *D* 上的有界函数,

$$\sum_{i=1}^n f(\xi_i, \, \eta_i) \Delta \sigma_i$$

二重积分定义 设

- D 是平面上有界闭区域,
- *f*(*x*, *y*) 是 *D* 上的有界函数,

$$\lim_{\lambda \to 0} \sum_{i=1}^n f(\xi_i, \, \eta_i) \Delta \sigma_i$$

二重积分定义 设

- D 是平面上有界闭区域,
- *f*(*x*, *y*) 是 *D* 上的有界函数,

若

• 极限 $\lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i, \eta_i) \Delta \sigma_i$ 存在,

二重积分定义 设

- D 是平面上有界闭区域,
- *f*(*x*, *y*) 是 *D* 上的有界函数,

- 极限 $\lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i, \eta_i) \Delta \sigma_i$ 存在,且极限
- 与上述 D 的划分、 (ξ_i, η_i) 的选取无关,

二重积分定义 设

- D 是平面上有界闭区域,
- f(x, y) 是 D 上的有界函数,

若

- 极限 $\lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i, \eta_i) \Delta \sigma_i$ 存在,且极限
- 与上述 D 的划分、 $(ξ_i, η_i)$ 的选取无关,

则定义

$$\iint_D f(x, y) d\sigma = \lim_{\lambda \to 0} \sum_{i=1}^n f(\xi_i, \eta_i) \Delta \sigma_i$$

二重积分定义 设

- D 是平面上有界闭区域,
- f(x, y) 是 D 上的有界函数,

若

- 极限 $\lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i, \eta_i) \Delta \sigma_i$ 存在,且极限
- 与上述 D 的划分、(ξ_i, η_i) 的选取无关,

则定义

$$\iint_{D} f(x, y) d\sigma = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_{i}, \eta_{i}) \Delta \sigma_{i}$$

称为 f(x, y) 在 D 上的二重积分。

二重积分定义 设

- D 是平面上有界闭区域,
- f(x, y) 是 D 上的有界函数,

若

- 极限 $\lim_{\lambda \to 0} \sum_{i=1}^{"} f(\xi_i, \eta_i) \Delta \sigma_i$ 存在,且极限
- 与上述 D 的划分、(ξ_i, η_i) 的选取无关,

则定义

$$\iint_{D} f(x, y) d\sigma = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_{i}, \eta_{i}) \Delta \sigma_{i}$$

称为 f(x, y) 在 D 上的二重积分。 $d\sigma$ 称为面积元素。

二重积分定义 设

- D 是平面上有界闭区域,
- f(x, y) 是 D 上的有界函数,

若

- 极限 $\lim_{\lambda \to 0} \sum_{i=1}^{\prime\prime} f(\xi_i, \eta_i) \Delta \sigma_i$ 存在,且极限
- 与上述 D 的划分、(ξ_i, η_i) 的选取无关,

则定义

$$\iint_{D} f(x, y) d\sigma = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_{i}, \eta_{i}) \Delta \sigma_{i}$$

称为 f(x, y) 在 D 上的二重积分。 $d\sigma$ 称为面积元素。 $(d\sigma = dxdy)$

二重积分定义 设

- D 是平面上有界闭区域,
- f(x, y) 是 D 上的有界函数,

若

- 极限 $\lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i, \eta_i) \Delta \sigma_i$ 存在,且极限
- 与上述 D 的划分、 (ξ_i, η_i) 的选取无关,

则定义

$$\iint_{D} f(x, y) d\sigma = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_{i}, \eta_{i}) \Delta \sigma_{i}$$

称为 f(x, y) 在 D 上的二重积分。 $d\sigma$ 称为面积元素。($d\sigma = dxdy$)

定理 若 f(x, y) 在有界闭区域 D 上连续,则 $\iint_{D} f(x, y) d\sigma$ 存在。

曲顶柱体的体积:

V

曲顶柱体的体积:

ν

曲顶柱体的体积:

V

曲顶柱体的体积:

V

曲顶柱体的体积:

ν

曲顶柱体的体积:

V

曲顶柱体的体积:

V

曲顶柱体的体积:

ν

曲顶柱体的体积:

/

 $f(\eta_i, \xi_i)\Delta\sigma_i$

$$V \qquad \sum_{i=1}^{n} f(\eta_i, \, \xi_i) \Delta \sigma_i$$

$$V \qquad \sum_{i=1}^n f(\eta_i, \, \xi_i) \Delta \sigma_i$$

$$V \qquad \sum_{i=1}^n f(\eta_i, \, \xi_i) \Delta \sigma_i$$

$$V \qquad \sum_{i=1}^n f(\eta_i, \, \xi_i) \Delta \sigma_i$$

$$V = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\eta_i, \, \xi_i) \Delta \sigma_i$$

$$V = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\eta_i, \, \xi_i) \Delta \sigma_i = \iint_D f(x, \, y) d\sigma$$

性质1(线性性)

$$\iint_{D} \alpha f(x, y) + \beta g(x, y) d\sigma = \alpha \iint_{D} f(x, y) d\sigma + \beta \iint_{D} g(x, y) d\sigma,$$
其中 α , β 是常数。

性质1(线性性)

$$\iint_{D} \alpha f(x, y) + \beta g(x, y) d\sigma = \alpha \iint_{D} f(x, y) d\sigma + \beta \iint_{D} g(x, y) d\sigma,$$
其中 α , β 是常数。

$$\iint_{D} \alpha f(x, y) + \beta g(x, y) d\sigma$$

$$= \lim_{\lambda \to 0} \sum_{i=1}^{n} [\alpha f(\xi_{i}, \eta_{i}) + \beta g(\xi_{i}, \eta_{i})] \Delta \sigma_{i}$$

性质1(线性性)

$$\iint_{D} \alpha f(x, y) + \beta g(x, y) d\sigma = \alpha \iint_{D} f(x, y) d\sigma + \beta \iint_{D} g(x, y) d\sigma,$$
其中 α , β 是常数。

$$\iint_{D} \alpha f(x, y) + \beta g(x, y) d\sigma$$

$$= \lim_{\lambda \to 0} \sum_{i=1}^{n} [\alpha f(\xi_{i}, \eta_{i}) + \beta g(\xi_{i}, \eta_{i})] \Delta \sigma_{i}$$

$$= \alpha \cdot \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_{i}, \eta_{i}) \Delta \sigma_{i} + \beta \cdot \lim_{\lambda \to 0} \sum_{i=1}^{n} g(\xi_{i}, \eta_{i}) \Delta \sigma_{i}$$

性质1(线性性)

$$\iint_{D} \alpha f(x, y) + \beta g(x, y) d\sigma = \alpha \iint_{D} f(x, y) d\sigma + \beta \iint_{D} g(x, y) d\sigma,$$
其中 α , β 是常数。

$$\iint_{D} \alpha f(x, y) + \beta g(x, y) d\sigma$$

$$= \lim_{\lambda \to 0} \sum_{i=1}^{n} [\alpha f(\xi_{i}, \eta_{i}) + \beta g(\xi_{i}, \eta_{i})] \Delta \sigma_{i}$$

$$= \alpha \cdot \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_{i}, \eta_{i}) \Delta \sigma_{i} + \beta \cdot \lim_{\lambda \to 0} \sum_{i=1}^{n} g(\xi_{i}, \eta_{i}) \Delta \sigma_{i}$$

$$= \alpha \iint_{D} f(x, y) d\sigma + \beta \iint_{D} g(x, y) d\sigma$$

性质 2(积分可加性) 将 D 划分成两部分 D_1 和 D_2 , 则

$$\iint_D f(x, y) d\sigma = \iint_{D_1} f(x, y) d\sigma + \iint_{D_2} f(x, y) d\sigma$$

性质 2(积分可加性) 将 D 划分成两部分 D_1 和 D_2 ,则

$$\iint_{D} f(x, y) d\sigma = \iint_{D_{1}} f(x, y) d\sigma + \iint_{D_{2}} f(x, y) d\sigma$$

性质 2(积分可加性) 将 D 划分成两部分 D_1 和 D_2 , 则

$$\iint_{D} f(x, y) d\sigma = \iint_{D_{1}} f(x, y) d\sigma + \iint_{D_{2}} f(x, y) d\sigma$$

性质 $3\iint_D 1d\sigma = |D|$ (D 的面积)。

性质 $3\iint_D 1d\sigma = |D|$ (D 的面积)。

性质 $3\iint_D 1d\sigma = |D|$ (D 的面积)。

性质 3 $\iint_D 1d\sigma = |D|$ (D 的面积)。特别地, $\iint_D kd\sigma =$ 。

性质 $3\iint_D 1d\sigma = |D|$ (D 的面积)。特别地, $\iint_D kd\sigma = k|D|$ 。

性质 4 如果在
$$D$$
 上成立 $f(x, y) \le g(x, y)$,则
$$\iint_D f(x, y) d\sigma \le \iint_D g(x, y) d\sigma$$

性质 4 如果在
$$D$$
 上成立 $f(x, y) \le g(x, y)$,则
$$\iint_D f(x, y) d\sigma \le \iint_D g(x, y) d\sigma$$

性质 5 假设在
$$D$$
 上成立 $m \le f(x, y) \le M$,则

$$m\sigma \leq \iint_{\Omega} f(x, y) d\sigma \leq M\sigma,$$

性质 4 如果在
$$D$$
 上成立 $f(x, y) \le g(x, y)$,则
$$\iint_D f(x, y) d\sigma \le \iint_D g(x, y) d\sigma$$

性质 5 假设在 D 上成立 $m \le f(x, y) \le M$,则

$$m\sigma \leq \iint_D f(x, y) d\sigma \leq M\sigma,$$
 (σ 为 D 的面积)

性质 4 如果在
$$D$$
 上成立 $f(x, y) \le g(x, y)$,则
$$\iint_{D} f(x, y) d\sigma \le \iint_{D} g(x, y) d\sigma$$

性质 5 假设在 D 上成立 $m \le f(x, y) \le M$,则

$$m\sigma \leq \iint_D f(x, y) d\sigma \leq M\sigma,$$
 (σ 为 D 的面积)

$$\iint_{D} md\sigma \leq \iint_{D} f(x, y)d\sigma \leq \iint_{D} Md\sigma$$

性质 4 如果在
$$D$$
 上成立 $f(x, y) \le g(x, y)$,则
$$\iint_{D} f(x, y) d\sigma \le \iint_{D} g(x, y) d\sigma$$

性质 5 假设在 D 上成立 $m \le f(x, y) \le M$,则

$$m\sigma \leq \iint_D f(x, y) d\sigma \leq M\sigma,$$
 (σ 为 D 的面积)

$$\iint_{D} md\sigma \leq \iint_{D} f(x, y)d\sigma \leq \iint_{D} Md\sigma = M\sigma$$

性质 4 如果在 D 上成立 $f(x, y) \le g(x, y)$,则 $\iint_D f(x, y) d\sigma \le \iint_D g(x, y) d\sigma$

性质 5 假设在 D 上成立 $m \le f(x, y) \le M$,则

$$m\sigma \leq \iint_D f(x, y) d\sigma \leq M\sigma,$$
 (σ 为 D 的面积)

$$m\sigma = \iint_{D} md\sigma \le \iint_{D} f(x, y)d\sigma \le \iint_{D} Md\sigma = M\sigma$$

1.
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
, $D = \{(x, y) | x^2 + y^2 \le 4\}$

2.
$$I = \iint_D \frac{d\sigma}{\sqrt{x^2 + y^2 + 2xy + 16}}, D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 2\}$$

3.
$$I = \iint_D \frac{d\sigma}{100 + \cos^2 x + \cos^2 y}$$
, $D = \{(x, y) | |x| + |y| \le 10\}$

1.
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
, $D = \{(x, y) | x^2 + y^2 \le 4\}$

2.
$$I = \iint_D \frac{d\sigma}{\sqrt{x^2 + y^2 + 2xy + 16}}$$
, $D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 2\}$

3.
$$I = \iint_D \frac{d\sigma}{100 + \cos^2 x + \cos^2 y}$$
, $D = \{(x, y) | |x| + |y| \le 10\}$

1.
$$9 \le x^2 + 4y^2 + 9$$

1.
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
, $D = \{(x, y) | x^2 + y^2 \le 4\}$

2.
$$I = \iint_D \frac{d\sigma}{\sqrt{x^2 + y^2 + 2xy + 16}}$$
, $D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 2\}$

3.
$$I = \iint_D \frac{d\sigma}{100 + \cos^2 x + \cos^2 y}$$
, $D = \{(x, y) | |x| + |y| \le 10\}$

1.
$$9 \le x^2 + 4y^2 + 9 = (x^2 + y^2) + 3y^2 + 9$$

1.
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
, $D = \{(x, y) | x^2 + y^2 \le 4\}$

2.
$$I = \iint_D \frac{d\sigma}{\sqrt{x^2 + y^2 + 2xy + 16}}$$
, $D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 2\}$

3.
$$I = \iint_D \frac{d\sigma}{100 + \cos^2 x + \cos^2 y}$$
, $D = \{(x, y) | |x| + |y| \le 10\}$

1.
$$9 \le x^2 + 4y^2 + 9 = (x^2 + y^2) + 3y^2 + 9 \le 4 + 3 \cdot 4 + 9$$

1.
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
, $D = \{(x, y) | x^2 + y^2 \le 4\}$

2.
$$I = \iint_D \frac{d\sigma}{\sqrt{x^2 + y^2 + 2xy + 16}}, D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 2\}$$

3.
$$I = \iint_D \frac{d\sigma}{100 + \cos^2 x + \cos^2 y}$$
, $D = \{(x, y) | |x| + |y| \le 10\}$

1.
$$9 \le x^2 + 4y^2 + 9 = (x^2 + y^2) + 3y^2 + 9 \le 4 + 3 \cdot 4 + 9 = 25$$

1.
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
, $D = \{(x, y) | x^2 + y^2 \le 4\}$

2.
$$I = \iint_D \frac{d\sigma}{\sqrt{x^2 + y^2 + 2xy + 16}}$$
, $D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 2\}$

3.
$$I = \iint_D \frac{d\sigma}{100 + \cos^2 x + \cos^2 y}$$
, $D = \{(x, y) | |x| + |y| \le 10\}$

1.
$$9 \le x^2 + 4y^2 + 9 = (x^2 + y^2) + 3y^2 + 9 \le 4 + 3 \cdot 4 + 9 = 25$$

$$\Rightarrow 9|D| \le I \le 25|D|$$

1.
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
, $D = \{(x, y) | x^2 + y^2 \le 4\}$

2.
$$I = \iint_D \frac{d\sigma}{\sqrt{x^2 + y^2 + 2xy + 16}}$$
, $D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 2\}$

3.
$$I = \iint_D \frac{d\sigma}{100 + \cos^2 x + \cos^2 y}$$
, $D = \{(x, y) | |x| + |y| \le 10\}$

1.
$$9 \le x^2 + 4y^2 + 9 = (x^2 + y^2) + 3y^2 + 9 \le 4 + 3 \cdot 4 + 9 = 25$$

$$\Rightarrow 9|D| \le I \le 25|D| \xrightarrow{|D|=4\pi}$$

1.
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
, $D = \{(x, y) | x^2 + y^2 \le 4\}$

2.
$$I = \iint_D \frac{d\sigma}{\sqrt{x^2 + y^2 + 2xy + 16}}$$
, $D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 2\}$

3.
$$I = \iint_D \frac{d\sigma}{100 + \cos^2 x + \cos^2 y}$$
, $D = \{(x, y) | |x| + |y| \le 10\}$

1.
$$9 \le x^2 + 4y^2 + 9 = (x^2 + y^2) + 3y^2 + 9 \le 4 + 3 \cdot 4 + 9 = 25$$

$$\Rightarrow 9|D| \le I \le 25|D| \quad \Longrightarrow \quad 36\pi \le I \le 100\pi$$

1.
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
, $D = \{(x, y) | x^2 + y^2 \le 4\}$

2.
$$I = \iint_D \frac{d\sigma}{\sqrt{x^2 + y^2 + 2xy + 16}}$$
, $D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 2\}$

3.
$$I = \iint_D \frac{d\sigma}{100 + \cos^2 x + \cos^2 y}$$
, $D = \{(x, y) | |x| + |y| \le 10\}$

1.
$$9 \le x^2 + 4y^2 + 9 = (x^2 + y^2) + 3y^2 + 9 \le 4 + 3 \cdot 4 + 9 = 25$$

$$|D| = 4\pi$$

$$\Rightarrow 9|D| \le I \le 25|D| \xrightarrow{|D|=4\pi} 36\pi \le I \le 100\pi$$

$$x^2 + y^2 + 2xy + 16$$

1.
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
, $D = \{(x, y) | x^2 + y^2 \le 4\}$

2.
$$I = \iint_D \frac{d\sigma}{\sqrt{x^2 + y^2 + 2xy + 16}}$$
, $D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 2\}$

3.
$$I = \iint_D \frac{d\sigma}{100 + \cos^2 x + \cos^2 y}$$
, $D = \{(x, y) | |x| + |y| \le 10\}$

1.
$$9 \le x^2 + 4y^2 + 9 = (x^2 + y^2) + 3y^2 + 9 \le 4 + 3 \cdot 4 + 9 = 25$$

$$\Rightarrow 9|D| \le I \le 25|D| \xrightarrow{|D|=4\pi} 36\pi \le I \le 100\pi$$

2.
$$x^2 + y^2 + 2xy + 16 = (x + y)^2 + 16$$

1.
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
, $D = \{(x, y) | x^2 + y^2 \le 4\}$

2.
$$I = \iint_D \frac{d\sigma}{\sqrt{x^2 + y^2 + 2xy + 16}}$$
, $D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 2\}$

3.
$$I = \iint_D \frac{d\sigma}{100 + \cos^2 x + \cos^2 y}$$
, $D = \{(x, y) | |x| + |y| \le 10\}$

1.
$$9 \le x^2 + 4y^2 + 9 = (x^2 + y^2) + 3y^2 + 9 \le 4 + 3 \cdot 4 + 9 = 25$$

$$\Rightarrow 9|D| \le I \le 25|D| \xrightarrow{|D|=4\pi} 36\pi \le I \le 100\pi$$

2.
$$16 \le x^2 + y^2 + 2xy + 16 = (x + y)^2 + 16$$

1.
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
, $D = \{(x, y) | x^2 + y^2 \le 4\}$

2.
$$I = \iint_D \frac{d\sigma}{\sqrt{x^2 + y^2 + 2xy + 16}}$$
, $D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 2\}$

3.
$$I = \iint_D \frac{d\sigma}{100 + \cos^2 x + \cos^2 y}$$
, $D = \{(x, y) | |x| + |y| \le 10\}$

1.
$$9 \le x^2 + 4y^2 + 9 = (x^2 + y^2) + 3y^2 + 9 \le 4 + 3 \cdot 4 + 9 = 25$$

$$\Rightarrow 9|D| \le I \le 25|D| \xrightarrow{|D|=4\pi} 36\pi \le I \le 100\pi$$

2.
$$16 \le x^2 + y^2 + 2xy + 16 = (x+y)^2 + 16 \le 3^2 + 16$$

1.
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
, $D = \{(x, y) | x^2 + y^2 \le 4\}$

2.
$$I = \iint_D \frac{d\sigma}{\sqrt{x^2 + y^2 + 2xy + 16}}, D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 2\}$$

3.
$$I = \iint_D \frac{d\sigma}{100 + \cos^2 x + \cos^2 y}$$
, $D = \{(x, y) | |x| + |y| \le 10\}$

1.
$$9 \le x^2 + 4y^2 + 9 = (x^2 + y^2) + 3y^2 + 9 \le 4 + 3 \cdot 4 + 9 = 25$$

$$\Rightarrow 9|D| \le I \le 25|D| \xrightarrow{|D|=4\pi} 36\pi \le I \le 100\pi$$

2.
$$16 \le x^2 + y^2 + 2xy + 16 = (x+y)^2 + 16 \le 3^2 + 16 = 25$$

$$16 \le x^2 + y^2 + 2xy + 16 = (x + y)^2 + 16 \le 3^2 + 16 = 25$$

1.
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
, $D = \{(x, y) | x^2 + y^2 \le 4\}$

2.
$$I = \iint_D \frac{d\sigma}{\sqrt{x^2 + y^2 + 2xy + 16}}, D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 2\}$$

3.
$$I = \iint_D \frac{d\sigma}{100 + \cos^2 x + \cos^2 y}$$
, $D = \{(x, y) | |x| + |y| \le 10\}$

$$\begin{array}{ll}
\text{if } & 9 \le x^2 + 4y^2 + 9 = (x^2 + y^2) + 3y^2 + 9 \le 4 + 3 \cdot 4 + 9 = 25
\end{array}$$

$$\Rightarrow 9|D| \le I \le 25|D| \quad \stackrel{|D|=4\pi}{\Longrightarrow} \quad 36\pi \le I \le 100\pi$$

2.
$$16 \le x^2 + y^2 + 2xy + 16 = (x+y)^2 + 16 \le 3^2 + 16 = 25$$

$$\Rightarrow \quad \frac{1}{5} \le \frac{1}{\sqrt{x^2 + y^2 + 2xy + 16}} \le \frac{1}{4}$$

1.
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
, $D = \{(x, y) | x^2 + y^2 \le 4\}$

2.
$$I = \iint_D \frac{d\sigma}{\sqrt{x^2 + y^2 + 2xy + 16}}, D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 2\}$$

3.
$$I = \iint_D \frac{d\sigma}{100 + \cos^2 x + \cos^2 y}, \ D = \{(x, y) | |x| + |y| \le 10\}$$

$$\Rightarrow 9|D| \le I \le 25|D| \xrightarrow{|D|=4\pi} 36\pi \le I \le 100\pi$$

2.
$$16 \le x^2 + y^2 + 2xy + 16 = (x+y)^2 + 16 \le 3^2 + 16 = 25$$

$$\Rightarrow \frac{1}{x} \le \frac{1}{x} = \frac{1}{x} =$$

$$\Rightarrow \frac{1}{5} \le \frac{1}{\sqrt{x^2 + y^2 + 2xy + 16}} \le \frac{1}{4}$$
$$\Rightarrow \frac{1}{5}|D| \le I \le \frac{1}{4}|D|$$

1.
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
, $D = \{(x, y) | x^2 + y^2 \le 4\}$

2.
$$I = \iint_D \frac{d\sigma}{\sqrt{x^2 + y^2 + 2xy + 16}}, D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 2\}$$

3.
$$I = \iint_D \frac{d\sigma}{100 + \cos^2 x + \cos^2 y}, \ D = \{(x, y) | |x| + |y| \le 10\}$$

1.
$$9 \le x^2 + 4y^2 + 9 = (x^2 + y^2) + 3y^2 + 9 \le 4 + 3 \cdot 4 + 9 = 25$$

$$\Rightarrow 9|D| \le I \le 25|D| \xrightarrow{|D|=4\pi} 36\pi \le I \le 100\pi$$

2.
$$16 \le x^{2} + y^{2} + 2xy + 16 = (x + y)^{2} + 16 \le 3^{2} + 16 = 25$$

$$\Rightarrow \frac{1}{5} \le \frac{1}{\sqrt{x^{2} + y^{2} + 2xy + 16}} \le \frac{1}{4}$$

$$\Rightarrow \frac{1}{5}|D| \le I \le \frac{1}{4}|D| \xrightarrow{|D|=2}$$

1.
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
, $D = \{(x, y) | x^2 + y^2 \le 4\}$

2.
$$I = \iint_D \frac{d\sigma}{\sqrt{x^2 + y^2 + 2xy + 16}}, D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 2\}$$

3.
$$I = \iint_D \frac{d\sigma}{100 + \cos^2 x + \cos^2 y}, \quad D = \{(x, y) \mid |x| + |y| \le 10\}$$

1.
$$9 \le x^2 + 4y^2 + 9 = (x^2 + y^2) + 3y^2 + 9 \le 4 + 3 \cdot 4 + 9 = 25$$

$$\Rightarrow 9|D| \le I \le 25|D| \xrightarrow{|D| = 4\pi} 36\pi \le I \le 100\pi$$

$$\Rightarrow 9|D| \le I \le 25|D| \xrightarrow{|D|} 36\pi \le I \le 100\pi$$
2.
$$16 \le x^2 + y^2 + 2xy + 16 = (x+y)^2 + 16 \le 3^2 + 16 = 25$$

$$\Rightarrow \frac{1}{5} \le \frac{1}{\sqrt{x^2 + y^2 + 2xy + 16}} \le \frac{1}{4}$$

$$\Rightarrow \frac{1}{5}|D| \le I \le \frac{1}{4}|D| \xrightarrow{|D|=2} \frac{2}{5} \le I \le \frac{1}{2}$$

1.
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
, $D = \{(x, y) | x^2 + y^2 \le 4\}$

2.
$$I = \iint_D \frac{d\sigma}{\sqrt{x^2 + y^2 + 2xy + 16}}, D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 2\}$$

3.
$$I = \iint_D \frac{d\sigma}{100 + \cos^2 x + \cos^2 y}$$
, $D = \{(x, y) | |x| + |y| \le 10\}$

$$\frac{100 + \cos^2 x + \cos^2 y}{}$$

1.
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
, $D = \{(x, y) | x^2 + y^2 \le 4\}$

2.
$$I = \iint_D \frac{d\sigma}{\sqrt{x^2 + y^2 + 2xy + 16}}, D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 2\}$$

3.
$$I = \iint_D \frac{d\sigma}{100 + \cos^2 x + \cos^2 y}$$
, $D = \{(x, y) | |x| + |y| \le 10\}$

$$\frac{1}{102} \le \frac{1}{100 + \cos^2 x + \cos^2 y}$$

1.
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
, $D = \{(x, y) | x^2 + y^2 \le 4\}$

2.
$$I = \iint_D \frac{d\sigma}{\sqrt{x^2 + y^2 + 2xy + 16}}, D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 2\}$$

3.
$$I = \iint_D \frac{d\sigma}{100 + \cos^2 x + \cos^2 y}$$
, $D = \{(x, y) | |x| + |y| \le 10\}$

$$\frac{1}{102} \le \frac{1}{100 + \cos^2 x + \cos^2 y} \le \frac{1}{100}$$

1.
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
, $D = \{(x, y) | x^2 + y^2 \le 4\}$

2.
$$I = \iint_D \frac{d\sigma}{\sqrt{x^2 + y^2 + 2xy + 16}}, D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 2\}$$

3.
$$I = \iint_D \frac{d\sigma}{100 + \cos^2 x + \cos^2 y}$$
, $D = \{(x, y) | |x| + |y| \le 10\}$

$$\frac{1}{102} \le \frac{1}{100 + \cos^2 x + \cos^2 y} \le \frac{1}{100}$$

$$\Rightarrow \quad \frac{1}{102}|D| \le I \le \frac{1}{100}|D|$$

1.
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
, $D = \{(x, y) | x^2 + y^2 \le 4\}$

2.
$$I = \iint_D \frac{d\sigma}{\sqrt{x^2 + y^2 + 2xy + 16}}, D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 2\}$$

3.
$$I = \iint_D \frac{d\sigma}{100 + \cos^2 x + \cos^2 y}$$
, $D = \{(x, y) | |x| + |y| \le 10\}$

$$\frac{1}{102} \le \frac{1}{100 + \cos^2 x + \cos^2 y} \le \frac{1}{100}$$

$$\Rightarrow \frac{1}{102} |D| \le I \le \frac{1}{100} |D| \xrightarrow{|D|=200}$$

1.
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
, $D = \{(x, y) | x^2 + y^2 \le 4\}$

2.
$$I = \iint_D \frac{d\sigma}{\sqrt{x^2 + y^2 + 2xy + 16}}, D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 2\}$$

3.
$$I = \iint_D \frac{d\sigma}{100 + \cos^2 x + \cos^2 y}$$
, $D = \{(x, y) | |x| + |y| \le 10\}$

$$\frac{1}{102} \le \frac{1}{100 + \cos^2 x + \cos^2 y} \le \frac{1}{100}$$

$$1 \qquad 1 \qquad |D| = 200 \qquad 50$$

$$\Rightarrow \quad \frac{1}{102}|D| \le I \le \frac{1}{100}|D| \quad \xrightarrow{|D|=200} \quad \frac{50}{51} \le I \le 2$$

1.
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
, $D = \{(x, y) | x^2 + y^2 \le 4\}$

2.
$$I = \iint_D \frac{d\sigma}{\sqrt{x^2 + y^2 + 2xy + 16}}, D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 2\}$$

3.
$$I = \iint_D \frac{d\sigma}{100 + \cos^2 x + \cos^2 y}$$
, $D = \{(x, y) | |x| + |y| \le 10\}$

3.
$$\frac{1}{102} \le \frac{1}{100 + \cos^2 x + \cos^2 y} \le \frac{1}{100}$$

$$\Rightarrow \quad \frac{1}{102}|D| \le I \le \frac{1}{100}|D| \quad \xrightarrow{|D|=200} \quad \frac{50}{51} \le I \le 2$$

1.
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
, $D = \{(x, y) | x^2 + y^2 \le 4\}$

2.
$$I = \iint_D \frac{d\sigma}{\sqrt{x^2 + y^2 + 2xy + 16}}, D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 2\}$$

3.
$$I = \iint_D \frac{d\sigma}{100 + \cos^2 x + \cos^2 y}$$
, $D = \{(x, y) | |x| + |y| \le 10\}$

3.
$$\frac{1}{102} \le \frac{1}{100 + \cos^2 x + \cos^2 y} \le \frac{1}{100}$$

$$\Rightarrow \frac{1}{102} |D| \le I \le \frac{1}{100} |D| \xrightarrow{|D| = 200} \frac{50}{51} \le I \le 2$$

画
$$|x| + |y| = 10$$

• $x \ge 0, y \ge 0$ 时,
• $x \ge 0, y \le 0$ 时,
• $x \le 0, y \ge 0$ 时,
• $x \le 0, y \le 0$ 时,

1.
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
, $D = \{(x, y) | x^2 + y^2 \le 4\}$

2.
$$I = \iint_D \frac{d\sigma}{\sqrt{x^2 + y^2 + 2xy + 16}}, D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 2\}$$

3.
$$I = \iint_D \frac{d\sigma}{100 + \cos^2 x + \cos^2 y}, \ D = \{(x, y) | |x| + |y| \le 10\}$$

3.
$$\frac{1}{102} \le \frac{1}{100 + \cos^2 x + \cos^2 y} \le \frac{1}{100}$$
$$\Rightarrow \frac{1}{102} |D| \le I \le \frac{1}{100} |D| \xrightarrow{|D| = 200} \frac{50}{51} \le I \le 2$$

画
$$|x| + |y| = 10$$

• $x \ge 0$, $y \ge 0$ 时, $x + y = 10$

•
$$x \ge 0, y \le 0$$
 时,
• $x \le 0, y \ge 0$ 时,
• $x \le 0, y \le 0$ 时,

1.
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
, $D = \{(x, y) | x^2 + y^2 \le 4\}$

2.
$$I = \iint_D \frac{d\sigma}{\sqrt{x^2 + y^2 + 2xy + 16}}, D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 2\}$$

3.
$$I = \iint_D \frac{d\sigma}{100 + \cos^2 x + \cos^2 y}$$
, $D = \{(x, y) | |x| + |y| \le 10\}$

$$\frac{1}{102} \le \frac{1}{100 + \cos^2 x + \cos^2 y} \le \frac{1}{100}$$

$$\Rightarrow \frac{1}{102} |D| \le I \le \frac{1}{100} |D| \xrightarrow{|D| = 200} \frac{50}{51} \le I \le 2$$

画 |x| + |y| = 10

$$\begin{array}{c} 10 \\ \hline \\ 10 \\ \hline \end{array}$$

•
$$x \ge 0$$
, $y \ge 0$ 时, $x + y = 10$

- $x \ge 0$, $y \le 0$ 时,
- $x \le 0, y \ge 0$ 时,
 - x ≤ 0, y ≤ 0 时,

1.
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
, $D = \{(x, y) | x^2 + y^2 \le 4\}$

2.
$$I = \iint_D \frac{d\sigma}{\sqrt{x^2 + y^2 + 2xy + 16}}, D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 2\}$$

3.
$$I = \iint_D \frac{d\sigma}{100 + \cos^2 x + \cos^2 y}$$
, $D = \{(x, y) | |x| + |y| \le 10\}$

$$\frac{1}{102} \le \frac{1}{100 + \cos^2 x + \cos^2 y} \le \frac{1}{100}$$

$$\Rightarrow \frac{1}{102} |D| \le I \le \frac{1}{100} |D| \xrightarrow{|D| = 200} \frac{50}{51} \le I \le 2$$

画
$$|x| + |y| = 10$$

- $x \ge 0$, $y \ge 0$ 时, x + y = 10
- $x \ge 0$, $y \le 0$ 时, x y = 10
- $x \le 0, y \ge 0$ 时,
- $x \le 0, y \le 0$ 时,

1.
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
, $D = \{(x, y) | x^2 + y^2 \le 4\}$

2.
$$I = \iint_D \frac{d\sigma}{\sqrt{x^2 + y^2 + 2xy + 16}}, D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 2\}$$

3.
$$I = \iint_D \frac{d\sigma}{100 + \cos^2 x + \cos^2 y}$$
, $D = \{(x, y) | |x| + |y| \le 10\}$

$$\frac{1}{102} \le \frac{1}{100 + \cos^2 x + \cos^2 y} \le \frac{1}{100}$$

$$\Rightarrow \frac{1}{102} |D| \le I \le \frac{1}{100} |D| \xrightarrow{|D| = 200} \frac{50}{51} \le I \le 2$$

1.
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
, $D = \{(x, y) | x^2 + y^2 \le 4\}$

2.
$$I = \iint_D \frac{d\sigma}{\sqrt{x^2 + y^2 + 2xy + 16}}, D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 2\}$$

3.
$$I = \iint_D \frac{d\sigma}{100 + \cos^2 x + \cos^2 y}$$
, $D = \{(x, y) | |x| + |y| \le 10\}$

$$\Rightarrow \frac{1}{102}|D| \le$$

-10

$$\frac{1}{102} \le \frac{1}{100 + \cos^2 x + \cos^2 y} \le \frac{1}{100}$$

$$\Rightarrow \frac{1}{102} |D| \le I \le \frac{1}{100} |D| \xrightarrow{|D| = 200} \frac{50}{51} \le I \le 2$$

画
$$|x| + |y| = 10$$

• $x \ge 0$, $y \ge 0$ 时, $x + y = 10$

•
$$x \ge 0$$
, $y \le 0$ 时, $x - y = 10$
• $x \le 0$, $y \ge 0$ 时, $-x + y = 10$
• $x \le 0$, $y \le 0$ 时,

• $x \le 0, y \le 0$ 时,

1.
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
, $D = \{(x, y) | x^2 + y^2 \le 4\}$

2.
$$I = \iint_D \frac{d\sigma}{\sqrt{x^2 + y^2 + 2xy + 16}}, D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 2\}$$

3.
$$I = \iint_D \frac{d\sigma}{100 + \cos^2 x + \cos^2 y}$$
, $D = \{(x, y) | |x| + |y| \le 10\}$

$$\Rightarrow \frac{1}{102}|D| \le$$

-10

$$\frac{1}{102} \le \frac{1}{100 + \cos^2 x + \cos^2 y} \le \frac{1}{100}$$
$$\frac{1}{102} |D| \le I \le \frac{1}{100} |D| \xrightarrow{|D| = 200} \frac{50}{51} \le I \le 2$$

画
$$|x| + |y| = 10$$

•
$$x \ge 0$$
, $y \ge 0$ 时, $x + y = 10$

•
$$x \ge 0$$
, $y \le 0$ 时, $x - y = 10$

•
$$x \le 0$$
, $y \ge 0$ 时, $-x + y = 10$

x ≤ 0, y ≤ 0 时,

1.
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
, $D = \{(x, y) | x^2 + y^2 \le 4\}$

2.
$$I = \iint_D \frac{d\sigma}{\sqrt{x^2 + y^2 + 2xy + 16}}, D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 2\}$$

3.
$$I = \iint_D \frac{d\sigma}{100 + \cos^2 x + \cos^2 y}$$
, $D = \{(x, y) | |x| + |y| \le 10\}$

3.
$$\frac{1}{102} \le \frac{1}{100 + \cos^2 x + \cos^2 y} \le \frac{1}{100}$$
$$\Rightarrow \frac{1}{102} |D| \le I \le \frac{1}{100} |D| \xrightarrow{|D| = 200} \frac{50}{51} \le I \le 2$$

$$= \frac{1}{100} |D|$$

$$= |x| + |y| = 10$$

•
$$x \ge 0$$
, $y \ge 0$ 时, $x + y = 10$

•
$$x \ge 0$$
, $y \le 0$ 时, $x - y = 10$

•
$$x \le 0, y \ge 0$$
 时, $-x + y = 10$

•
$$x \le 0$$
, $y \le 0$ 时, $-x - y = 10$

1.
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
, $D = \{(x, y) | x^2 + y^2 \le 4\}$

2.
$$I = \iint_D \frac{d\sigma}{\sqrt{x^2 + y^2 + 2xy + 16}}, D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 2\}$$

3.
$$I = \iint_D \frac{d\sigma}{100 + \cos^2 x + \cos^2 y}$$
, $D = \{(x, y) | |x| + |y| \le 10\}$

$$\frac{1}{102} \le \frac{1}{100 + \cos^2 x + \cos^2 y} \le \frac{1}{100}$$

$$\Rightarrow \frac{1}{102} |D| \le I \le \frac{1}{100} |D| \xrightarrow{|D| = 200} \frac{50}{51} \le I \le 2$$

- $x \ge 0$, $y \ge 0$ 时, x + y = 10
- $x \ge 0$, $y \le 0$ 时, x y = 10
- $x \le 0$, $y \ge 0$ 时, -x + y = 10
- $x \le 0$, $y \le 0$ 时, -x y = 10

1.
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
, $D = \{(x, y) | x^2 + y^2 \le 4\}$

2.
$$I = \iint_D \frac{d\sigma}{\sqrt{x^2 + y^2 + 2xy + 16}}, D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 2\}$$

3.
$$I = \iint_D \frac{d\sigma}{100 + \cos^2 x + \cos^2 y}$$
, $D = \{(x, y) | |x| + |y| \le 10\}$

$$\frac{1}{102} \le \frac{1}{100 + \cos^2 x + \cos^2 y} \le \frac{1}{100}$$

$$\frac{1}{100 + \cos^2 x + \cos^2 y} \le \frac{1}{100}$$

$$\Rightarrow \quad \frac{1}{102}|D| \le I \le \frac{1}{100}|D| \quad \xrightarrow{|D|=200} \quad \frac{50}{51} \le I \le 2$$

画
$$|x| + |y| = 10$$

- $x \ge 0$, $y \ge 0$ 时, x + y = 10
- $x \ge 0$, $y \le 0$ 时, x y = 10
- $x \le 0$, $y \ge 0$ 时, -x + y = 10
- $x \le 0$, $y \le 0$ 时, -x y = 10

$$I_1 = \iint_D (x+y)^2 d\sigma, \qquad I_2 = \iint_D (x+y)^3 d\sigma$$

$$I_1 = \iint_D (x+y)^2 d\sigma, \qquad I_2 = \iint_D (x+y)^3 d\sigma$$

$$I_1 = \iint_D (x+y)^2 d\sigma, \qquad I_2 = \iint_D (x+y)^3 d\sigma$$

$$I_1 = \iint_D (x+y)^2 d\sigma, \qquad I_2 = \iint_D (x+y)^3 d\sigma$$

$$I_1 = \iint_D (x+y)^2 d\sigma, \qquad I_2 = \iint_D (x+y)^3 d\sigma$$

$$I_1 = \iint_D (x+y)^2 d\sigma, \qquad I_2 = \iint_D (x+y)^3 d\sigma$$

例 设
$$D = \{(x, y) | (x-2)^2 + (y-1)^2 \le 2\}$$
,比较以下两个积分大小:

$$I_1 = \iint_D (x+y)^2 d\sigma, \qquad I_2 = \iint_D (x+y)^3 d\sigma$$

解 如图,在比区域 *D* 上成立

$$x + y \ge 1$$

例 设
$$D = \{(x,y) | (x-2)^2 + (y-1)^2 \le 2\}$$
,比较以下两个积分大小:

$$I_1 = \iint_D (x+y)^2 d\sigma, \qquad I_2 = \iint_D (x+y)^3 d\sigma$$

解 如图,在比区域 D 上成立

$$x + y \ge 1$$

所以

$$(x+y)^2 \le (x+y)^3$$

例 设
$$D = \{(x,y)|(x-2)^2 + (y-1)^2 \le 2\}$$
,比较以下两个积分大小:

$$I_1 = \iint_D (x+y)^2 d\sigma, \qquad I_2 = \iint_D (x+y)^3 d\sigma$$

解 如图,在比区域 D 上成立

$$x + y \ge 1$$

所以

$$(x+y)^2 \le (x+y)^3$$

所以

$$I_1 \leq I_2$$

性质 6(二重积分的中值定理) 设函数 f(x, y) 在闭区域 D 上连续,|D| 是 D 的面积,则在 D 上至少存在一点 (ξ, η) ,使得

$$\iint_D f(x, y) d\sigma = f(\xi, \eta) \cdot |D|.$$

性质 6(二重积分的中值定理) 设函数 f(x, y) 在闭区域 D 上连续,|D|

是 D 的面积,则在 D 上至少存在一点 (ξ, η),使得

$$\iint_D f(x, y) d\sigma = f(\xi, \eta) \cdot |D|.$$

证明

$$m \cdot |D| \le \iint_D f(x, y) d\sigma \le M \cdot |D|$$

性质 6(二重积分的中值定理) 设函数 f(x, y) 在闭区域 D 上连续,|D|

是 D 的面积,则在 D 上至少存在一点 (ξ, η),使得

$$\iint_D f(x, y) d\sigma = f(\xi, \eta) \cdot |D|.$$

证明

$$m \cdot |D| \le \iint_D f(x, y) d\sigma \le M \cdot |D| \implies m \le \frac{1}{|D|} \iint_D f(x, y) d\sigma \le M$$

性质 6(二重积分的中值定理) 设函数 f(x, y) 在闭区域 D 上连续,|D|

是 D 的面积,则在 D 上至少存在一点 (ξ, η) ,使得

$$\iint_{D} f(x, y) d\sigma = f(\xi, \eta) \cdot |D|.$$

证明 因为

$$m \cdot |D| \le \iint_D f(x, y) d\sigma \le M \cdot |D| \quad \Rightarrow \quad m \le \frac{1}{|D|} \iint_D f(x, y) d\sigma \le M$$

由闭区域上连续函数的中值定理可知:存在 $(\xi, \eta) \in D$,使得

$$f(\xi, \eta) = \frac{1}{|D|} \iint_{D} f(x, y) d\sigma,$$

二重积分的性质 (Cont.)

性质 6(二重积分的中值定理) 设函数 f(x,y) 在闭区域 D 上连续,|D|

是 D 的面积,则在 D 上至少存在一点 (ξ, η) ,使得

$$\iint_D f(x, y) d\sigma = f(\xi, \eta) \cdot |D|.$$

证明 因为

$$m \cdot |D| \le \iint_D f(x, y) d\sigma \le M \cdot |D| \quad \Rightarrow \quad m \le \frac{1}{|D|} \iint_D f(x, y) d\sigma \le M$$

由闭区域上连续函数的中值定理可知:存在 $(\xi, \eta) \in D$,使得

$$f(\xi, \eta) = \frac{1}{|D|} \iint_D f(x, y) d\sigma,$$

即

$$\iint_{D} f(x, y) d\sigma = f(\xi, \eta) \cdot |D|.$$

$$\iint_D f(x, y) d\sigma = h|D|$$

性质 设闭区域 D 关于 x 轴对称,

性质 设闭区域 D 关于 x 轴对称,

性质 设闭区域 D 关于 x 轴对称,

• 若 f(x, y) 关于 y 是奇函数 (即: f(x, -y) = -f(x, y)),则

性质 设闭区域 D 关于 x 轴对称,

• 若 f(x, y) 关于 y 是奇函数(即: f(x, -y) = -f(x, y)),则 $\iint_{\Gamma} f(x, y) d\sigma = 0$

性质 设闭区域 D 关于 x 轴对称,

• 若 f(x, y) 关于 y 是奇函数 (即: f(x, -y) = -f(x, y)),则

$$\iint_D f(x, y) d\sigma = 0$$

• 若f(x, y) 关于y 是偶函数 (即: f(x, -y) = f(x, y)),则

性质 设闭区域 D 关于 x 轴对称,

• 若 f(x, y) 关于 y 是奇函数 (即: f(x, -y) = -f(x, y)),则

$$\iint_D f(x, y) d\sigma = 0$$

• 若 f(x, y) 关于 y 是偶函数 (即: f(x, -y) = f(x, y)),则

$$\iint_D f(x, y) d\sigma = 2 \iint_{D_1} f(x, y) d\sigma = 2 \iint_{D_2} f(x, y) d\sigma$$

性质 设闭区域 D 关于 y 轴对称,

性质 设闭区域 D 关于 y 轴对称,

性质 设闭区域 D 关于 y 轴对称,

• 若 f(x, y) 关于 x 是奇函数 (即: f(-x, y) = -f(x, y)),则

性质 设闭区域 D 关于 y 轴对称,

• 若 f(x, y) 关于 x 是奇函数 (即: f(-x, y) = -f(x, y)), 则

$$\iint_D f(x, y) d\sigma = 0$$

性质 设闭区域 D 关于 y 轴对称,

• 若 f(x, y) 关于 x 是奇函数 (即: f(-x, y) = -f(x, y)),则

$$\iint_D f(x, y) d\sigma = 0$$

• 若f(x, y) 关于x 是偶函数 (即: f(-x, y) = f(x, y)), 则

性质 设闭区域 D 关于 y 轴对称,

• 若 f(x, y) 关于 x 是奇函数 (即: f(-x, y) = -f(x, y)),则

$$\iiint_D f(x, y) d\sigma = 0$$

• 若 f(x, y) 关于 x 是偶函数 (即: f(-x, y) = f(x, y)),则

$$\iint_D f(x, y)d\sigma = 2 \iint_{D_3} f(x, y)d\sigma = 2 \iint_{D_4} f(x, y)d\sigma$$

例设
$$D = \{(x,y) | x^2 + y^2 \le 1\}$$
,则

$$\iint_D x^2 + y^2 d\sigma = 4 \iint_{D_{\pm \perp}} x^2 + y^2 d\sigma$$

例设
$$D = \{(x,y) | x^2 + y^2 \le 1\}$$
,则

$$\iint_D x^2 + y^2 d\sigma = 4 \iint_{D_{\bar{\tau}, \perp}} x^2 + y^2 d\sigma$$

$$\mathbf{H} \iint_D x^2 + y^2 d\sigma = 2 \iint_{D_{\pm}} x^2 + y^2 d\sigma$$

例设
$$D = \{(x,y) | x^2 + y^2 \le 1\}$$
,则

$$\iint_D x^2 + y^2 d\sigma = 4 \iint_{D_{\pm,\perp}} x^2 + y^2 d\sigma$$

$$\Re \iint_D x^2 + y^2 d\sigma = 2 \iint_{D_{\pm}} x^2 + y^2 d\sigma = 2 \cdot 2 \iint_{D_{\pm}} x^2 + y^2 d\sigma.$$

例设
$$D = \{(x, y) | x^2 + y^2 \le 1\}$$
,则

$$\iint_D x^2 + y^2 d\sigma = 4 \iint_{D_{\pm \pm}} x^2 + y^2 d\sigma$$

$$\mathbb{H} \iint_D x^2 + y^2 d\sigma = 2 \iint_{D_{\pi}} x^2 + y^2 d\sigma = 2 \cdot 2 \iint_{D_{\pi+}} x^2 + y^2 d\sigma.$$

例 计算
$$\iint_D (2x + 3y\sqrt{1-x^2})d\sigma$$
,
其中 $D = \{(x,y)|x^2+y^2 \le 1\}$

例设
$$D = \{(x,y) | x^2 + y^2 \le 1\}$$
,则

$$\iint_D x^2 + y^2 d\sigma = 4 \iint_{D_{\pm}} x^2 + y^2 d\sigma$$

$$\Re \iint_D x^2 + y^2 d\sigma = 2 \iint_{D_{\pi}} x^2 + y^2 d\sigma = 2 \cdot 2 \iint_{D_{\pi+}} x^2 + y^2 d\sigma.$$

例 计算
$$\iint_D (2x + 3y\sqrt{1-x^2})d\sigma$$
,
其中 $D = \{(x,y)|x^2+y^2 \le 1\}$

解原式 = $2\iint_D x d\sigma + 3\iint_D y \sqrt{1-x^2} d\sigma$

第10章α:重积分的概念和性质

例设
$$D = \{(x, y) | x^2 + y^2 \le 1\}$$
,则

$$\iint_D x^2 + y^2 d\sigma = 4 \iint_{D_{\pm \pm}} x^2 + y^2 d\sigma$$

$$\mathbf{H} \iint_D x^2 + y^2 d\sigma = 2 \iint_{D_{fa}} x^2 + y^2 d\sigma = 2 \cdot 2 \iint_{D_{fa, b}} x^2 + y^2 d\sigma.$$

例 计算
$$\iint_D (2x + 3y\sqrt{1-x^2})d\sigma$$
,
其中 $D = \{(x,y)|x^2+y^2 \le 1\}$

解原式 = $2 \iint_D x d\sigma + 3 \iint_D y \sqrt{1 - x^2} d\sigma = 0$.

