Теория вероятности. Теория

Александр Сергеев

1 Вероятностное пространство. Вероятность и ее свойство

Определение

Алгебра событий:

 Ω – множество элементарных исходов

 \mathcal{A} – набор подмножеств Ω

 \mathcal{A} – алгебра, если

1. $\Omega \in \mathcal{A}$

2.
$$A \in \mathcal{A} \Rightarrow \overline{A} = \Omega \setminus A \in \mathcal{A}$$

3.
$$A, B \in \mathcal{A} \Rightarrow A \cup B = A + B \in \mathcal{A}$$

Элементы алегбры – события

Операции с событиями

1.
$$A \cup B = A + B$$

$$2. \ A \cap B = AB = \overline{A} + \overline{B}$$

3.
$$\overline{A} = \Omega \setminus A$$

$$4. \ A \setminus B = A - B = A\overline{B}$$

Определение

 σ -алгебра

 ${\cal A}$ — сигма-алгебра

1. A – алгебра

2.
$$A_1, A_2, \ldots \in \mathcal{A} \Rightarrow \bigcup A_i \in \mathcal{A}$$

Определение

События A, B – несовместные $AB = \emptyset$

Набор несовместный, если события попарно несовместные

Определение (вероятностное пространство)

 Ω – множество элементарных исходов

 \mathcal{A} – сигма-алгебра

 $P: \mathcal{A} \to \mathbb{R}$ – вероятность, если

- 1. $P(A) \ge 0$
- 2. $P(\Omega) = 1$
- 3. $P(\bigcup A_i) = \sum P(A_i)$

Определение (вероятностное пространство в широком смысле)

Ω – множество элементарных исходов

 \mathcal{A} – алгебра

 $P: \mathcal{A} \to \mathbb{R}$ – вероятность, если

- 1. $P(A) \ge 0$
- 2. $P(\Omega) = 1$

3.
$$\bigcup_{i=0}^{\infty} A_i \Rightarrow P(\bigcup_{i=0}^{\infty} A_i) = \sum_{i=0}^{\infty} P(A_i)$$

Теорема о продолжении меры

 $\langle \Omega, \mathcal{A}, P \rangle$ – вероятностное пространство в широком смысле

Тогда
$$\exists\,!Q:\sigma(\mathcal{A})\to\mathbb{R}$$
 – вероятность, $Q\bigg|_{\mathcal{A}}=P$, где $\sigma(\mathcal{A})$ – сигма-алгебра,

содержащая \mathcal{A}

Определение

 ${\mathcal A}$ — система интервалов на ${\mathbb R},$ замкнутая относительно конечного объединения и пересечения

 $\mathcal{B} = \sigma(\mathcal{A})$ — борелевская сигма-алгебра

Примеры вероятностных пространств

1. Модель классической вероятности

$$\Omega = \{\omega_1, \dots, \omega_N\}
\mathcal{A} = 2^{\Omega}
P(\{\omega_i\}) = P(\omega_i) = \frac{1}{N}
\mathcal{A} = \{\omega_{i_1}, \dots, \omega_{i_M}\} \Rightarrow P(\mathcal{A}) = \frac{M}{N}$$

- 2. Ω набор $\{0^i,1\}, i \in \mathbb{N}_0 = \{0,1,2,3,\ldots\}$ $P(0^i1) = q^ip$
- 3. Модель геометрической вероятности Ω ограниченное, измеримое по Лебегу множество

 \mathcal{A} – измеримое по Лебегу подмножество Ω

$$P(A) = \frac{\lambda A}{\lambda \Omega}$$

Теорема (свойство вероятности)

1.
$$A \subset B \Rightarrow P(A) \leq P(B)$$

2.
$$P(A) < 1$$

3.
$$P(A) + P(\overline{A}) = 1$$

4.
$$P(A + B) = P(A) + P(B) - P(AB)$$

5.
$$P(\varnothing) = 0$$

6.
$$P(\bigcup A_i) \le \sum P(A_i)$$

Доказательство

1.
$$P(B) = P(A) + P(B - A)$$

2.
$$A \subset \Omega \Rightarrow P(A) \leq 1$$

$$3. \ A \sqcup \overline{A} = \Omega$$

$$4. \ B = AB \sqcup (B \setminus AB)$$

5.
$$B_1 = A_1 \ B_2 = A_2 \setminus A_1$$

 $B_n = A_n \setminus (A_1 \cup \dots A_{n-1}) \bigsqcup B_i = \bigcup A_i$
 $B_i \subset A_i$
 $P(\bigcup A_i) = P(\bigsqcup B_i) = \sum P(B_i) \leq \sum P(A_i)$

Теорема (формула включения/исключения)

$$P(A_1 + \ldots + A_n) = \sum_{i} P(A_i) - \sum_{i < j} P(A_i A_j) + \sum_{i < j < k} P(A_i A_j A_k) + \ldots (-1)^{n+1} \sum_{i_1 < \ldots < i_n} P(A_{i_1} \ldots A_{i_n})$$

Доказательство

Доказательство по индукции

Теорема

 \mathcal{A} – алгебра(?) на Ω , p – мера

Тогда равносильны

- 1. p счетно-аддитивно
- 2. p конечно-аддитивно $+\forall (B_n)_{n=1}^{\infty}: B_{n+1} \subset B_n, B = \bigcap B_n \Rightarrow P(B_n) \to$ P(B) – непрерывность сверху
- 3. p конечно-аддитивно+ $\forall (A_n)_{n=1}^{\infty} : A_{n+1} \supset A_n, A = \bigcup A_n \Rightarrow P(A_n) \to A_n$ P(A) – непрерывность снизу

Доказательство (непрерывность сверху) \Leftrightarrow (непрерывность сни-3y)

$$A(n): A_n \subset A_{n+1}; A = \bigcup A_n$$

 $B_n := \overline{A}_n, B := \overline{A}$

$$B_n := A_n, B := A$$
$$B_n \supset B_{n+1}$$

$$B = \overline{A} = \overline{\bigcup A_n} = \cap \overline{A}_n = \cap B_n$$

$$p(B_n) = 1 - p(A_n) \to 1 - p(A) = p(B)$$

Доказательство $1 \to 2$

$$C_1 = B_1 \overline{B}_2$$

$$C_2 = B_2 \overline{B}_3$$

$$C_k = B_k \overline{B}_{k+1}$$

$$B_k = B \sqcup \bigsqcup_{j=k}^{\infty} C_j$$

$$p(B_k) = p(B) + \underbrace{\sum_{j=k}^{\infty} p(C_j)}_{\to 0}$$

$$p(B_k) \to p(B)$$

Доказательство
$$2 \to 1$$

$$\sum_{k=1}^{\infty} p(C_k) = \lim_{n} \sum_{k=1}^{n} p(C_k) = \lim_{n} p(\bigsqcup_{k=1}^{n} C_k) = p(B)$$

2 Условная вероятность. Формуоа полной вероятности. Теорема Байеса

Определение (условная вероятность)

 (Ω, \mathcal{A}, p) – вероятностное пространство

$$B \in \mathcal{A} : p(B) > 0$$

$$p_B(A) = p(A|B) := \frac{p(AB)}{p(B)}$$

Замечание

$$p(AB) = p(A)p(B|A)$$

Теорема (формула произведения вероятностей)

$$p(A_1 \dots A_1) = p(A_1)p(A_2|A_1) \dots p(A_n|A_1 \dots A_{n-1})$$

Доказательство

Тривиально

Определение

$$A_1,\ldots,A_n$$
 – независимые, если $\forall\,A_{i_1},\ldots,A_{i_k}\;p(A_{i_1}\ldots A_{i_k})=p(A_{i_1})\ldots p(A_{i_k})$

Теорема (формула полной вероятности)

$$A\subset\bigsqcup_k B_k$$
 (как правило, $\bigsqcup B_k=\Omega$)
Тогда $p(A)=\sum_k p(A|B_k)p(B_k)$

Тогда
$$p(A) = \sum_{k} p(A|B_k)p(B_k)$$

Доказательство

$$p(A) = p(A \cap \bigsqcup B_k) = p(\bigsqcup AB_k) = \sum_k p(AB_k) = \sum_k p(A|B_k)p(B_k)$$

Теорема Байеса

Краткая форма:

$$p(B|A) = \frac{p(A|B)p(B)}{p(A)}$$

Полная:

$$A \subset | B_k$$

$$A \subset \bigsqcup B_k$$

$$\underbrace{p(B_k|A)}_{\text{апостериорные; posterior}} = \underbrace{\frac{p(A|B_k)}{\sum_j p(A|B_j)}}_{\substack{\text{вікеlyhood априорные; prior} \\ \sum_j p(A|B_j)}} p(B_j)$$
 Доказательство краткой формы

Доказательство краткой формы
$$p(B|A) = \frac{p(AB)}{p(A)} = \frac{p(A|B)p(B)}{p(A)}$$