

http://keeneland.gatech.edu

ADVANCED OPTIMIZATION FOR SCALABLE HETEROGENEOUS CLUSTERS

Jeremy Meredith February 21, 2012

Outline

- Single-GPU optimization techniques
 - Hand-written CUDA, OpenCL
 - Compiler directive approaches
- Optimization for heterogeneous systems
 - Non-uniform memory access
 - Data transfers between devices
 - Task layout examples

SINGLE-GPU OPTIMIZATION TECHNIQUES

Host Motherboard Layout

PCIe slot

Discrete GPU PCB Layout

Image from http://techreport.com/articles.x/14168

CUDA, OpenCL Optimization

- Minimize data transfers across PCI-Express bus
 - Very expensive: e.g. 5GB/s PCIe versus 100GB/s for device
 - Can be asynchronous; overlap communication with computation
- Coalesce memory reads (and writes)
 - ensure threads simultaneously read adjacent values
 - effectively uses GPU memory bandwidth

CUDA, OpenCL Optimization

- Shared memory is fast, local to a group of threads
- When access patterns are irregular:
 - perform coalesced reads to shared memory
 - synchronize threads
 - then access in any pattern

CUDA, OpenCL Optimization

- Unroll loops to minimize overhead
 - GPU kernel compilation not yet mature here
- Execute more than one item per thread
 - further increase computational density
 - remember: maintain coalescing
 - e.g. stride by grid size

^{*}Many presentations, whitepapers detail these aspects of optimization.

Accelerating Compiler Optimization

- Similar concepts apply
- Relying on compiler for a lot:
 - coalescing: you might be able to help by modifying your array layouts
 - unrolling, tiling, shared memory: some compilers are better than others, some offer unroll+jam pragmas, some offer shared memory pragmas
 - minimizing data transfers: most offer directives to specify allocation and transfer boundaries

OPTIMIZATIONS ON HETEROGENEOUS SYSTEM NODES

Keeneland's Multi-GPU Nodes

- Keeneland is a dual-I/O-hub node architecture
 - Allows full PCIe bandwidth to 3 GPUs and 1 NIC

Sharing GPUs on Keeneland

Simultaneous PCle bandwidth to all 3 GPUs

NON-UNIFORM MEMORY ACCESS

Non-Uniform Memory Access

- Node architectures result in Non-Uniform Memory Access (NUMA)
 - Point-to-point connections between devices
 - Not fully-connected topologies
 - Host memory connected to sockets instead of across a bus

NUMA Can Affect GPUs and Network Too

Older node architecture with single I/O hub but no NUMA effects between CPU and GPU/HCA

- DL160
- Single I/O Hub
- PCIe switch connects GPUs

Keeneland node architecture with dual I/O hub but NUMA effects

- SL390
- Dual I/O Hub
- No PCle switch

NUMA Control Mechanisms

- Process, data placement tools:
 - Tools like libnuma and numactl
 - Some MPI implementations have NUMA controls built in (e.g., Intel MPI, OpenMPI)

numactl usage:

numactl on Keeneland

[meredith@kid107]\$ numactl -show

policy: default

preferred node: current

physcpubi nd: 0 1 2 3 4 5 6 7 8 9 10 11

cpubi nd: 0 1

nodebi nd: 0 1

membind: 0 1

"NUMA Nodes" on Keeneland nodes

numactl on Keeneland

[meredith@kid107]\$ numactl --hardware

```
available: 2 nodes (0-1)
```

node 0 size: 12085 MB

node 0 free: 11286 MB

node 1 size: 12120 MB

node 1 free: 11648 MB

node distances:

node 0 1

0: 10 20

1: 20 10

OpenMPI with NUMA control

Use mpirun to execute a script:

```
mpirun ./prog_with_numa.sh
```

In that script (prog_with_numa.sh) launch under *numactl*:

```
if [[$0MPI_COMM_WORLD_LOCAL_RANK == "0"]]
then
   numactl --membind=0 --cpunodebind=0 ./prog -args
else
   numactl --membind=1 --cpunodebind=1 ./prog -args
fi
```


How much Does NUMA Impact Performance?

- Microbenchmarks to focus on individual node components
- Macrobenchmarks to focus on individual operations and program kernels
- Full applications to gauge end-user impact

Spafford, K., Meredith, J., Vetter, J. **Quantifying NUMA and Contention Effects in Multi-GPU Systems**. Proceedings of the Fourth Workshop on General-Purpose Computation on Graphics Processors (GPGPU 2011). Newport Beach, CA, USA.

Meredith, J., Roth, P., Spafford, K., Vetter, J. **Performance Implications of Non-Uniform Device Topologies in Scalable Heterogeneous GPU Systems**. IEEE MICRO Special Issue on CPU, GPU, and Hybrid Computing. October 2011.

Data Transfer Bandwidth

Measured bandwidth of data transfers between CPU socket 0 and the GPUs

SHOC Benchmark Suite

- What penalty for "long" mapping?
- Rough inverse correlation to computational intensity

Test	Units	Correct NUMA	Incorrect NUMA	% Penalty
SGEMM	GFLOPS	535.640	519.581	3%
DGEMM	GFLOPS	239.962	230.809	4%
FFT	GFLOPS	30.501	26.843	12%
FFT-DP	GFLOPS	15.181	13.352	12%
MD	GB/s	12.519	11.450	9%
MD-DP	GB/s	19.063	17.654	7%
Reduction	GB/s	5.631	4.942	12%
Scan	GB/s	0.007	0.005	31%
Sort	GB/s	1.081	0.983	9%
Stencil	seconds	8.749	11.895	36%

Table 3: SHOC Benchmark Results

Full Applications

- With one application task, performance penalty for using incorrect mapping (e.g., CPU socket 0 with GPU 1)
- With two application tasks, performance penalty for using mapping that uses "long" paths for both (e.g., CPU socket 0 with GPU 1 and CPU socket 1 with GPU 0)

HPL Linpack

Runtimes on Keeneland under 3 pinning scenarios

NUMA and Network Traffic

 Have to worry about not only process/data placement for CPU and GPU, but also about CPU and Infiniband HCA

Thread Splitting

 Instead of 1 thread that controls a GPU and issues MPI calls, split into two threads and bind to appropriate CPU sockets

GPU DIRECT

GPU Direct

- Transferring data between GPUs in a scalable heterogeneous system like KIDS is expensive
 - Between GPUs in different nodes
 - Between GPUs in the same node

The Problem with Inter-Node Transfers

- Data is in device memory of GPU on one node, needs to be transferred to device memory of GPU on another node
- Several hops:
 - Data transferred from GPU memory to GPU buffer in host memory
 - Data copied from GPU buffer to IB buffer in host memory
 - Data read by IB HCA using RDMA transfer
 - Repeat in reverse on other end

http://www.mellanox.com/pdf/whitepapers/TB_GPU_Direct.pdf

GPUDirect

- NVIDIA and Mellanox developed an approach for allowing others to access the GPU buffer in host memory
- Eliminates the data copy from GPU buffer to IB buffer
 - Eliminates two system memory data copy operations (one on each end)
 - Keeps host CPU out of the data path
 - Up to 30% performance improvement (according to NVIDIA)

http://www.mellanox.com/pdf/whitepapers/TB GPU Direct.pdf

GPUDirect 2.0: Improving Transfer Performance Within a Node

- Similar problem when transferring data from one GPU to another within the same node
- Old way:
 - Copy data from GPU 1 to host memory
 - Copy data from host memory to GPU 2
- New way:
 - Copy data from GPU 1 to GPU2 without host CPU involvement
- Integrates well with Unified Virtual Addressing feature (single address space for CPU and 1+ GPUs)
- Available in CUDA 4.0

Deploying GPUDirect on Keeneland

- Initially, GPUDirect packaging made deploying it unattractive
 - Required running a specific kernel version, with RPMs provided by Mellanox
 - Kernel version was quite old
 - Concerns about keeping updated to avoid security risks
 - Have not yet tested GPUDirect kernel patches with PAPI patches for our CentOS 5.5 kernel
- Mellanox now makes kernel patches available for some Enterprise distributions
- Mellanox working on getting GPUDirect support included as part of stock Linux kernel
- GPUDirect 2.0 included with CUDA 4.0

Current GPUDirect support on Keeneland

- Currently active on Keeneland for GPU1⇔GPU2
 - 2.8 GB/s normally, 4.9 GB/s with GPUDirect
- Not yet possible for GPU0 or NIC

Using GPUDirect

- General strategy:
 - GPU-GPU copies
 - Use cudaMemcpy with two device pointers
 - Enable peer access in CUDA to allow direct GPU-GPU
 - even allows inter-GPU access within CUDA kernels
 - Host-device copies
 - Allocated any host memory as pinned in CUDA
 - CUDA driver puts this in user-pageable memory, virtual address space
 - May need to "export CUDA_NIC_INTEROP=1" for InfiniBand to share this with CUDA

Checking GPUDirect for GPU1 ⇔ GPU2

- 1. Are devices using Tesla Compute Cluster driver?
 - cudaDevi ceProp prop1, prop2;
 - cudaGetDevi ceProperti es(&prop1, 1);
 - cudaGetDevi ceProperti es(&prop2, 2);
 - check prop1. tccDri ver==1 and prop2. tccDri ver==1
- 2. Do devices support peer access to each other?
 - int access2from1, access1from2;
 - cudaDevi ceCanAccessPeer(&access2from1, 1, 2);
 - cudaDeviceCanAccessPeer(&access1from2, 2, 1);
 - check access2from1==1 and access1from2==1

Enabling GPUDirect for GPU1 ⇔ GPU2

- 3. Enable device peer access both directions:
 - cudaSetDevi ce(1);
 - cudaDevi ceEnabl ePeerAccess(2, fl ags); //fl ags=0
 - cudaSetDevi ce(2);
 - cudaDevi ceEnabl ePeerAccess(1, fl ags); //fl ags=0
- 4. Example: send data directly from GPU2 to GPU1:
 - float *gpu1data, *gpu2data;
 - cudaSetDevi ce(1);
 - cudaMalloc(&gpu1data, nbytes);
 - cudaSetDevi ce(2);
 - cudaMalloc(&gpu2data, nbytes);
 - cudaMemcpy(gpu1data, gpu2data, cudaMemcpyDefault);

MPI AND GPU TASK MAPPING

How to combine GPUs and MPI?

Use 1 MPI task per CPU core?

- Simplest for an existing MPI code
 - particularly if they are not threaded
- Either time share GPUs ...
 - performance can vary, especially with more tasks/GPU
- ... or only use GPUs from some MPI tasks
 - introduce load balance problem

How to combine GPUs and MPI?

Use 1 MPI task per GPU? Per CPU socket?

- thread/OpenMP/OpenCL to use more CPU cores
- ratios like 3GPU:2CPU add complexity
 - pinning 3 tasks to 2 CPU sockets makes using 12 cores hard
 - optimal NUMA mapping may not be obvious
- can use 1 task for 2 GPUs, leave 3rd GPU idle
 - with 2 I/O hubs, bandwidth is probably sufficient
- can leave CPU cores idle
 - for codes that match GPUs well, this can be a win
 - recent NVIDIA HPL results show benefits of this approach

How to combine GPUs and MPI?

Use 1 MPI task per compute node?

- With work, can be highly optimized:
 - Best use of GPUDirect transfers (GPU-GPU, GPU-NIC)
 - Can use numactl library within the task
- Very complex must handle:
 - multiple GPUs in one task
 - offload work for all CPU cores
 - NUMA mapping is a challenge
 - especially for automated threading like OpenMP

SUMMARY

Summary

- GPU optimization techniques remain valid in the context of scalable heterogeneous systems
- More CPUs and GPUs add complexity
- Be aware of the machine architecture
 - simultaneous bandwidths
 - NUMA penalties
 - peer data transfers
- Pay attention to your CPU,GPU task mapping

- http://keeneland.gatech.edu
- Project PI: Jeffrey S. Vetter vetter@cc.gatech.edu

