Design of a Simple Processor

CS1800: Discrete Structures

J. Aslam H. Fell R. Rajaraman R. Sundaram

College of Computer & Information Science Northeastern University

Based on material from CMU's Great Theoretical Ideas course

Outline

- Building Blocks
- Architecture
 - Components of the Processor
 - Instruction Set
- Design of the CPU

Building Blocks That We Have Already Seen

Clocked Gates and Registers

- Circuits using these basic gates are called combinational circuits.
 - No notion of time in computation: when inputs are fixed, outputs are permanently determined.
- We often need to regulate the flow the data; this is done using clocks.
- Using clocked gates, can build a register that stores values: if the set bit is 1 when the clock pulses, the output takes the input value, otherwise stays the same.

Registers and Adder

- Eight 32-bit registers R_0 , R_1 , ..., R_7 for holding data.
 - Useful to have the constant values 0 and 1 available.
 - Set register R_0 to hold 0 and R_1 to hold 1, permanently.
- 256 16-bit registers $P_0, P_1, \ldots, P_{255}$ for holding a program.
- An 8-bit register PC that will serve as a program counter.
- A 32-bit adder.

Registers and Adder, contd.

- Set bit for PC always 1 and set bit of program registers always 0.
- Set bits for the data registers determined by the instruction.

Instruction Set

- Four types of instructions:
 - add, negate, load, and jump if zero.
- A program is a sequence of instructions stored in the 256 program registers.
 - Each of these registers holds 16 bits.
 - The contents of the register specify the type of instruction and its operands.
 - Two bits (positions 14-15) specify the instruction.

The add Instruction

add
$$R_a, R_b \rightarrow R_c$$

- Adds contents of registers R_a and R_b and stores result in register R_c.
- The indices a, b, and c are in bit positions 11-13, 8-10, and 5-7, respectively.
- Bit positions 0-4 will be ignored.
- Also increments the program counter by 1.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	а	а	а	b	b	b	С	С	С	0	0	0	0	0

The negate Instruction

neg R_a

- Replaces R_a with $-R_a$, using the two's complement representation.
- Index a is specified by bit positions 11-13.
- Also increments the program counter by 1.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	а	а	а	0	0	0	0	0	0	0	0	0	0	0

The *load* Instruction

lod
$$d \rightarrow R_a$$

- Loads an 8-bit number d into the 8 low-order bit positions of register R_a.
- The index a is specified by bit positions 11-13.
- The value d is specified the 8 low-order bits (positions 0-7) of the instruction.
- Also increments the program counter by 1.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	а	а	а	0	0	0	d	d	d	d	d	d	d	d

The jump if zero Instruction

jiz
$$R_a \rightarrow d$$

- If register R_a is 0, sets the program counter to the value specified by an 8-bit number d,
- The index a is specified by bit positions 11-13.
- The value d is specified in binary by the 8 low-order positions of the instruction; that is, positions 0-7.
- Otherwise the program counter PC is incremented by 1, as usual.

0	lod	$10 ightarrow R_2$
1	lod	$0 ightarrow R_3$
2	lod	$-1 ightarrow R_4$
3	add	$R_2, R_3 \rightarrow R_3$
4	add	$R_2, R_4 \rightarrow R_2$
5	jiz	$R_2 \rightarrow 7$
6	jiz	$R_0 ightarrow 3$
	jiz	$R_0 ightarrow 7$

10	010	000	00001010
10	011	000	00000000
10	100	000	11111111
00	010	011	011 00000
00	010	100	010 00000
11	010	000	00000111
11	000	000	00000011
11	000	000	00000111

0	lod	$10 ightarrow R_2$
1	lod	$0 ightarrow R_3$
2	lod	$-1 ightarrow R_4$
3	add	$R_2, R_3 \rightarrow R_3$
4	add	$R_2, R_4 \rightarrow R_2$
5	jiz	$R_2 \rightarrow 7$
6	jiz	$R_0 ightarrow 3$
7	jiz	$R_0 \rightarrow 7$

10	010	000	00001010
10	011	000	00000000
10	100	000	11111111
00	010	011	011 00000
00	010	100	010 00000
11	010	000	00000111
11	000	000	00000011
11	000	000	00000111

0	lod	$10 ightarrow R_2$
1	lod	$0 ightarrow R_3$
2	lod	$-1 ightarrow R_4$
3	add	$R_2, R_3 \rightarrow R_3$
4	add	$R_2, R_4 \rightarrow R_2$
5	jiz	$R_2 \rightarrow 7$
6	jiz	$R_0 ightarrow 3$
	jiz	$R_0 \rightarrow 7$

10	010	000	00001010
10	011	000	00000000
10	100	000	11111111
00	010	011	011 00000
00	010	100	010 00000
11	010	000	00000111
11	000	000	00000011
11	000	000	00000111

0	lod	$10 ightarrow R_2$
1	lod	$0 ightarrow R_3$
2	lod	$-1 ightarrow R_4$
3	add	$R_2, R_3 \rightarrow R_3$
4	add	$R_2, R_4 \rightarrow R_2$
5	jiz	$R_2 \rightarrow 7$
6	jiz	$R_0 o 3$
7	jiz	$R_0 \rightarrow 7$

10	010	000	00001010
10	011	000	00000000
10	100	000	11111111
00	010	011	011 00000
00	010	100	010 00000
11	010	000	00000111
11	000	000	00000011
11	000	000	00000111

0	lod	$10 ightarrow R_2$
1	lod	$0 ightarrow R_3$
2	lod	$-1 ightarrow R_4$
3	add	$R_2, R_3 \rightarrow R_3$
4	add	$R_2, R_4 \rightarrow R_2$
5	jiz	$R_2 ightarrow 7$
6	jiz	$R_0 ightarrow 3$
7	jiz	$R_0 ightarrow 7$

10	010	000	00001010
10	011	000	00000000
10	100	000	11111111
00	010	011	011 00000
00	010	100	010 00000
11	010	000	00000111
11	000	000	00000011
11	000	000	00000111

0	lod	$10 ightarrow R_2$
1	lod	$0 ightarrow R_3$
2	lod	$-1 ightarrow R_4$
3	add	$R_2, R_3 \rightarrow R_3$
4	add	$R_2, R_4 \rightarrow R_2$
5	jiz	$R_2 \rightarrow 7$
6	jiz	$R_0 ightarrow 3$
7	jiz	$R_0 \rightarrow 7$

10	010	000	000	01010
10	011	000	000	00000
10	100	000	111	11111
00	010	011	011	00000
00	010	100	010	00000
11	010	000	000	00111
11	000	000	000	00011
44	$\cap \cap \cap$	$\cap \cap \cap$	000	00111

0	lod	$10 ightarrow R_2$
1	lod	$0 ightarrow R_3$
2	lod	$-1 ightarrow R_4$
3	add	$R_2, R_3 \rightarrow R_3$
4	add	$R_2, R_4 \rightarrow R_2$
5	jiz	$R_2 \rightarrow 7$
6	jiz	$R_0 ightarrow 3$
7	jiz	$R_0 o 7$

10	010	000	00001010
10	011	000	00000000
10	100	000	11111111
00	010	011	011 00000
00	010	100	010 00000
11	010	000	00000111
11	000	000	00000011
11	000	000	00000111

0	lod	$10 ightarrow R_2$
1	lod	$0 ightarrow R_3$
2	lod	$-1 ightarrow R_4$
3	add	$R_2, R_3 \rightarrow R_3$
4	add	$R_2, R_4 \rightarrow R_2$
5	jiz	$R_2 \rightarrow 7$
6	jiz	$R_0 o 3$
7	jiz	$R_0 ightarrow 7$

10	010	იიი	00001010
			00000000
10	100	000	11111111
00	010	011	011 00000
00	010	100	010 00000
11	010	000	00000111
11	000	000	00000011
4.4	$\cap \cap \cap$	$\cap \cap \cap$	00000111

0	lod	$10 ightarrow R_2$
1	lod	$0 ightarrow R_3$
2	lod	$-1 ightarrow R_4$
3	add	$R_2, R_3 \rightarrow R_3$
4	add	$R_2, R_4 \rightarrow R_2$
5	jiz	$R_2 \rightarrow 7$
6	jiz	$R_0 o 3$
7	jiz	$R_0 \rightarrow 7$

40	040	000	00001010
10	010	000	00001010
10	011	000	0000000
10	100	000	11111111
00	010	011	011 00000
00	010	100	010 00000
11	010	000	00000111
11	000	000	00000011
4.4	$\cap \cap \cap$	$\cap \cap \cap$	00000111

0	lod	$10 ightarrow R_2$
1	lod	$0 ightarrow R_3$
2	lod	$-1 ightarrow R_4$
3	add	$R_2, R_3 \rightarrow R_3$
4	add	$R_2, R_4 \rightarrow R_2$
5	jiz	$R_2 \rightarrow 7$
6	jiz	$R_0 o 3$
7	jiz	$R_0 \rightarrow 7$

10	010	000	000	01010
10	011	000	000	00000
10	100	000	111	11111
00	010	011	011	00000
00	010	100	010	00000
11	010	000	000	00111
11	000	000	000	00011
4.4	000	000	000	00111

A program to add numbers from 1 to 10 and store the result in one of the registers

0	lod	$10 ightarrow R_2$
1	lod	$0 ightarrow R_3$
2	lod	$-1 ightarrow R_4$
3	add	$R_2, R_3 \rightarrow R_3$
4	add	$R_2, R_4 \rightarrow R_2$
5	jiz	$R_2 \rightarrow 7$
6	jiz	$R_0 o 3$
7	jiz	$R_0 \rightarrow 7$

ΙU	010	000	00001010
10	011	000	00000000
10	100	000	11111111
00	010	011	011 00000
00	010	100	010 00000
11	010	000	00000111
11	000	000	00000011
11	000	000	00000111

10 010 000 0001010

A program to add numbers from 1 to 10 and store the result in one of the registers

0	lod	$10 ightarrow R_2$
1	lod	$0 ightarrow R_3$
2	lod	$-1 ightarrow R_4$
3	add	$R_2, R_3 \rightarrow R_3$
4	add	$R_2, R_4 \rightarrow R_2$
5	jiz	$R_2 \rightarrow 7$
6	jiz	$R_0 ightarrow 3$
7	jiz	$R_0 \rightarrow 7$

ΙU	010	UUU	00001010
10	011	000	00000000
10	100	000	11111111
00	010	011	011 00000
00	010	100	010 00000
11	010	000	00000111
11	000	000	00000011
11	$\cap \cap \cap$	000	00000111

10 010 000 00001010

0	lod	$10 ightarrow R_2$
1	lod	$0 ightarrow R_3$
2	lod	$-1 \to R_4$
3	add	$R_2, R_3 \rightarrow R_3$
4	add	$R_2,R_4 ightarrow R_2$
5	jiz	$R_2 \rightarrow 7$
6	jiz	$R_0 o 3$
7	jiz	$R_0 \rightarrow 7$

10	010	000	00001010
10	011	000	00000000
10	100	000	11111111
00	010	011	011 00000
00	010	100	010 00000
11	010	000	00000111
11	000	000	00000011
11	000	000	00000111

0	lod	$10 ightarrow R_2$
1	lod	$0 ightarrow R_3$
2	lod	$-1 ightarrow R_4$
3	add	$R_2, R_3 \rightarrow R_3$
4	add	$R_2, R_4 \rightarrow R_2$
5	jiz	$R_2 \rightarrow 7$
6	jiz	$R_0 \rightarrow 3$
7	jiz	$R_0 \rightarrow 7$

10	010	000	00001010
10	011	000	00000000
10	100	000	11111111
00	010	011	011 00000
00	010	100	010 00000
11	010	000	00000111
11	000	000	00000011
11	000	000	00000111

0	lod	$10 ightarrow R_2$	10 010 000 00001010
1	lod	$0 o R_3$	10 011 000 00000000
2	lod	$-1 \to R_4$	10 100 000 11111111
3	add	$R_2,R_3 ightarrow R_3$	00 010 011 011 00000
4	add	$R_2,R_4 ightarrow R_2$	00 010 100 010 00000
5	jiz	$R_2 \rightarrow 7$	11 010 000 00000111
6	jiz	$R_0 o 3$	11 000 000 00000011
7	jiz	$R_0 \rightarrow 7$	11 000 000 00000111

Design of the CPU

- Lay out the registers, giving names to the input bits, output bits, and registers (have already done this).
- Design the circuits for extracting the next instruction and incrementing the PC.
- Design the circuits for implementing the add, negate, load, and jump-if-zero operations.
- Design the circuit that determines the input and the set bits for the data registers and the PC.
- These circuits can be put together by matching the appropriate labeled inputs and outputs.

Registers and Adder

Extracting the instruction and incrementing the PC

Circuit for the add instruction

Circuit for the negate instruction

Circuit for the load instruction

Circuit for the jump-if-zero instruction

Storing the new values into the data registers and PC

- The preceding circuits give us potential values to be stored in the data registers.
- The new values for the data registers are determined by instruction type.

