

BITS F464 Machine Learning

Assignment 1

Date: 15th March, 2020

Team Members

Durba Satpathi 2019A7PS0972H R Adarsh 2019A7PS0230H Navdeep Singh Narsinghia 2017B5A71675H

Problem 1A Fisher Discriminant

1.1. Model Description and implementation

Fisher Discriminant analysis is a linear binary classification model using dimensionality reduction. We consider the case of 2 classes C_1 , C_2 and given a d dimensional input vector x we project it to one dimension using $y = w^T \cdot x$ where w is a unit vector such that all the projections of points belonging to C_1 are to one side of threshold value v_o and projections of points belonging to C_2 are to the other side.

Given

Training examples - $(x_1, t_1), (x_2, t_2), \dots, (x_N, t_N)$

- x_i is a d dimensional unit vector for $i \in \{1,2,\ldots,N\}$
- t_i is the target attribute (In the given examples $t_i = 0$ if $x_i \in C1$ and $t_i = 1$ if $x_i \in C2$) for $i \in \{1, 2, ..., N\}$

Procedure

1)We first find the unit vector w such that that it maximizes the difference between the means of projections of the points belonging to C_1 and the means of projections of the points belonging to C_2 and also minimizes the sum of variances of projections of the points belonging to C_1 and variances of projections of the points belonging to C_2 i.e $\frac{w^T \cdot (m_1 - m_2)}{s_1^2 + s_2^2}$ subject to $w^T \cdot w = 1$, where maximize the function

- $m_1 = \frac{1}{N_1} \sum_{n \in C} y_n$ *i.e* mean of the projections of points belonging to C_1
- $m_2 = \frac{1}{N_2} \sum_{n \in C} y_n$ i.e mean of the projections of points belonging to C_2
- N_1 = number of examples belonging to C_1
- N_2 = number of examples belonging to C_2 $y_n = w^T \cdot x_n$
- $s_1^2 = \frac{1}{N_1} \sum_{n \in C_1} (y_n m_1)^2$ i.e within-class variance of the projections of points belonging to C_1
- $s_2^2 = \frac{1}{N_2} \sum_{n \in C_2} (y_n m_2)^2$ i.e within-class variance of the projections of points belonging to C_2

On solving the optimization problem, we get $w \propto S_w^{-1} \cdot (M_1 - M_2)$, where

• $M_1 = \frac{1}{N_1} \sum_{n \in C_1} x_n$ *i.e* mean of the points belonging to C_1

- $M_2 = \frac{1}{N_2} \sum_{n \in C_2} x_n$ i.e mean of the points belonging to C_2
- $S_w = \frac{1}{N_1} \sum_{n \in C_1} (x_n M_1) \cdot (x_n M_1)^T + \frac{1}{N_2} \sum_{n \in C_2} (x_n M_2) \cdot (x_n M_2)^T$ *i.e* total within-class covariance matrix
- 2) We then find the projections of points w i.e $c_1 = \{w^T x_n | x_n \in C_1\}$, $c_2 = \{w^T x_n | x_n \in C_2\}$.
- 3) We then plot the normal distributions of the points in c_1 ($Y_{c1} \sim N(m_1, s_1^2)$) and c_2 ($Y_{c2} \sim N(m_2, s_2^2)$)and find their intersection which is the threshold v_o . Thus given a d dimensional vector x' we find the value $y' = w^T \cdot x'$ and classify it as belonging to C_1 , if $y' > v_o$ and belonging to C_2 otherwise. Thus, the line $y = v_o$ is the equation of the discriminant in 1-D.

Calculation of point of intersection of the normal distributions:

$$\rightarrow \frac{1}{s_1\sqrt{2\pi}}e^{\frac{-1}{2}\frac{(x-m_1)^2}{s_1^2}} = \frac{1}{s_2\sqrt{2\pi}}e^{\frac{-1}{2}\frac{(x-m_2)^2}{s_2^2}}$$

→
$$-\ln(s_1) - \frac{1}{2} \frac{(x-m_1)^2}{s_1^2} = -\ln(s_2) - \frac{1}{2} \frac{(x-m_2)^2}{s_2^2}$$

The above equation is quadratic in x ($ax^2 + bx + c = 0$) with $a = \frac{1}{s_1^2} - \frac{1}{s_2^2}$, $b = \frac{-2m_1}{s_1^2} + \frac{2m_2}{s_2^2}$ and $c = \frac{m_1^2}{s_1^2} - \frac{m_2^2}{s_2^2} + 2ln(\frac{s_1}{s_2})$ and its roots can be found as $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ one of which gives the value of v_0

4) The equation of the discriminant in the original space thus becomes $w^T \cdot x = v_o$. If $w = [w_1, w_2, \dots, w_d]$ and $x = [X_1, X_2, \dots, X_d]$, then the equation of the hyperplane becomes $w_1 X_1 + w_2 X_2 + \dots + w_d X_d - v_o = 0$.

Results

For the given dataset we get

w = [-0.00655686 -0.01823739 0.99981218] The value of threshold v_o is -0.3893028020993765 Accuracy 1.0

Discriminating line in 1-D

- \rightarrow y= v_o =-0.3893028020993765
- → where $y = w^T \cdot x$ and w = [-0.00655686 0.01823739 0.99981218]

Equation of the discriminating plane in 3-D

- → w is perpendicular to the discriminating plane;
- \rightarrow W=[-0.00655686 -0.01823739 0.99981218]
- → Thus equation of plane becomes --0.00655686 (X1) -0.01823739 (X2) +0.99981218 (X3) =-0.3893028020993765

1.2. Plot of the higher dimensional data

1.3. Plots of the reduced clusters and their corresponding normal distribution and unit vector along the discriminant line 1-D

1.4.Discriminant in 3-D

Plot of the discriminant in 3D

Plot of the discriminant in 3D at different viewing angle

Projections on w and discriminant in 3D

