Algorithm to find minimal media for a metabolic model

Joshua Goldford

Introduction

This is a document describing a mixed-integer linear program to find a minimal media set for metabolic model.

Defs

Let S be an $m \in \mathcal{M}$ by $n \in \mathcal{N}$ stoichiometric matrix, where \mathcal{M} and \mathcal{N} are the sets of metabolites and reactions, respectively. Let v represent the vector of fluxes with some lower bound and upper bound vectors l and u, respectively. For a subset of reactions $\mathcal{U} \in \mathcal{N}$, let \mathcal{U} represent the set of uptake (or exchange reactions), and z_k represent the binary variable, where when $z_k = 1$, uptake reaction $k \in \mathcal{U}$ is required for growth and $z_k = 0$, it is not. For each k, we can inforce this by imposing the following constraint:

$$l_k z_k < v_k < u_k \tag{1}$$

When $z_k = 1$, $v_k \ge lb$, otherwise $v_k \ge 0$, which means there is no uptake flux through reaction k. If we constrain the biomass growth rate to some minimum value μ_{\min} , then the full program is: