BECA / Dr. Huson / IB Math 6 Geometry

6.10: Applying Algebra to Geometric Situations

Write down the slope perpendicular to the given slope.

(a)
$$m = -\frac{4}{3}$$
 $m_{\perp} = +\frac{3}{4}$

(c)
$$m = 0.5$$
 $m_{\perp} = -2$

(b)
$$m = 3$$
 $m_{\perp} = -\frac{1}{3}$

(d)
$$m = -\frac{2}{3}$$
 $m_{\perp} = +\frac{3}{2}$

2. The line l has the equation $y \neq \frac{2}{3}x + 1$. To each line below, circle whether l is parallel, perpendicular, or neither.

$$(\text{neither}) \quad y = -\frac{2}{3}x - 1$$

neither
$$y = \frac{3}{2}x + 4$$

$$2x - 3y = -7$$

$$-3y = -2x - 7$$

$$y = \frac{3}{3}x + \frac{7}{3}$$

$$3x + 2y = 5$$

$$2y = -3 \times +5$$

$$y = -\frac{3}{2} \times +\frac{5}{2}$$

In the following problems, use the point-slope formula: $y - y_A = m(x - x_A)$

- 3. What is the equation of a line through the point A(3,-2) and parallel to the line y - (-2) = 3(x-3)y = 3x - 1?M = 3
- 4. What is an equation of the perpendicular bisector of \overline{QR} with Q(2,0) and R(6,2)?

Slope

$$M = \begin{pmatrix} 2+6 & 0+2 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

$$= \begin{pmatrix} 4 & 1 \end{pmatrix}$$

Slope
$$M = \frac{2-0}{6-2} = \frac{1}{2}$$
 $M_1 = -2$

L line $y-1 = -2(x-4)$

5. Graph and label the two equations. Mark their intersection as an ordered pair.

Are the lines parallel, perpendicular, or neither? Justify your answer, stating the values of the lines' slopes.

$$(m_i)(m_z) \neq -1$$
 Neither

6. Given J(-2,7) and K(1,4), find the length of \overline{JK} . Leave the result in simplified radical form (not a decimal).

7. On the graph below, draw \overline{AB} , with A(-2,1) and B(4,4), labeling the end points.

(a) Determine and state the coordinates of the midpoint M of \overline{AB} . Mark M and label it on the graph. $M = \left(-\frac{2+4}{2}, \frac{1+4}{2}\right) = \left(1, \frac{5}{2}\right)$

(b) Find the slope of
$$\overline{AB}$$
.

$$M = \frac{4-1}{4-(2)} = \frac{3}{6} = \frac{1}{2}$$

(c) Find the length of
$$\overline{AB}$$
. Leave the result as a simplified radical.

$$AB = \sqrt{(4-(-2))^2 + (4-1)^2}$$

$$= \sqrt{6^2 + 3^2}$$

$$= \sqrt{45} = \sqrt{9}\sqrt{5} = 3\sqrt{5}$$

8. In the diagram below, \overline{AC} has endpoints with coordinates A(-3,-3) and C(7,2).

If B is a point on \overline{AC} and AB:BC=2:3, what are the coordinates of B?

- 9. A(2,4) is one endpoint of \overline{AB} . The segment's midpoint is M(7,3). Find the other endpoint, B. $I_{+5,-1}$ $M \to B(12,2)$
- 10. A translation maps $A(-1,12) \to A'(5,6)$. What is the image of B(10,-1) under the same translation? +6-6