STATISTICS

X a population characteristic, $X_1, X_2, ..., X_n$ a sample of size n, i.e. independent and identically distributed, with the same pdf as X; θ target parameter, $\overline{\theta} = \overline{\theta}(X_1, X_2, ..., X_n)$ point estimator for θ .

Sample Functions:

Sample Mean:
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
,

Sample Moment:
$$\overline{\nu_k} = \frac{1}{n} \sum_{i=1}^n X_i^k$$
,

Sample Absolute Moment:
$$\overline{\mu_k} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^k$$
,

Sample Variance:
$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$
.

Sample Distribution Function:
$$\overline{F}(x) = \frac{\operatorname{card}\{X_i | X_i \leq x\}}{n}$$
.

Likelihood Function of a Sample:
$$L(X_1, ..., X_n; \theta) = \prod_{i=1}^n f(X_i; \theta)$$
.

Fisher Information:
$$I_n(\theta) = E\left[\left(\frac{\partial \ln L(X_1, ..., X_n; \theta)}{\partial \theta}\right)^2\right];$$

- if the range of
$$X$$
 does not depend on θ , then $I_n(\theta) = -E\left[\frac{\partial^2 \ln L(X_1, ..., X_n; \theta)}{\partial \theta^2}\right]$ and $I_n(\theta) = nI_1(\theta)$.

$$\underline{\textbf{Efficiency of an Absolutely Correct Estimator}} \colon e(\overline{\theta}) = \frac{1}{I_n(\theta)V(\overline{\theta})}.$$

Estimator $\overline{\theta}$ is

- unbiased: $E(\overline{\theta}) = \theta$;
- MVUE (minimum variance unbiased estimator): $E(\overline{\theta}) = \theta$ and $V(\overline{\theta}) \leq V(\hat{\theta}), \forall \hat{\theta}$ unbiased estimator;

- consistent:
$$\lim_{n\to\infty} P(|\overline{\theta}-\theta|\leq\varepsilon) = 1, \ \forall \varepsilon > 0;$$

- absolutely correct:
$$E(\overline{\theta}) = \theta$$
 and $\lim_{n \to \infty} V(\overline{\theta}) = 0$;

- efficient: absolutely correct and
$$e(\overline{\theta}) = 1$$
.

Statistic $S = S(X_1, \dots, X_n)$ with value $s = S(x_1, \dots, x_n)$ is

- sufficient: conditional joint pdf $f(x_1, ..., x_n; \theta|s)$ does not depend on θ ; OR $L(x_1, ..., x_n; \theta) = g(x_1, ..., x_n)h(s; \theta)$, for some measurable functions g, h.
- complete for the family of distributions $f(x;\theta), \theta \in A$: if $E(\varphi(S)) = 0$, $\forall \theta \in A$, then $\varphi = 0$ a. s.

Rao - Cramer Inequality: If $\overline{\theta}$ is an absolutely coorect estimator for θ , then $V(\overline{\theta}) \geq \frac{1}{I_n(\theta)}$.

Rao - Blackwell Theorem: If $\hat{\theta}$ is an unbiased estimator for θ and S is a sufficient statistic for θ , then $\overline{\theta} = E(\hat{\theta}|S)$ is also an unbiased estimator for θ and $V(\overline{\theta}) \leq V(\hat{\theta})$.

Lehmann - Scheffé Theorem: If $\hat{\theta}$ is an unbiased estimator for θ and S is a sufficient and complete statistic for θ , then $\overline{\theta} = E(\hat{\theta}|S)$ is a MVUE.

Method of Moments:

Solve the system ν_k (= $E(X^k)$) = $\overline{\nu}_k$, for as many parameters as needed (k = 1... nr. of unknown parameters).

Method of Maximum Likelihood:

Solve the system $\frac{\partial \ln L(X_1,...,X_n|\theta_1,...,\theta_m)}{\partial \theta_j} = 0, \ j = \overline{1,m}$ for the unknown parameters $\theta_1,...,\theta_m$.

<u>Hypothesis Testing</u>: $H_0: \theta = \theta_0$ with one of the alternatives $H_1: \begin{cases} \theta < \theta_0 \text{ (left-tailed test),} \\ \theta > \theta_0 \text{ (right-tailed test),} \\ \theta \neq \theta_0 \text{ (two-tailed test),} \end{cases}$ TS is the test statistic, RR is the rejection region.

Significance Level: $\alpha = P(\text{type I error}) = P(\text{reject } H_0 \mid H_0) = P(TS \in RR \mid \theta = \theta_0).$

Type II Error: $\beta(\theta^*) = P(\text{type II error}) = P(\text{not reject } H_0 \mid H_1) = P(TS \notin RR \mid \theta = \theta^*).$

Power of a Test: $\pi(\theta^*) = P(\text{reject } H_0 \mid \theta = \theta^*) = P(TS \in RR \mid \theta = \theta^*).$

Neyman-Pearson Lemma (NPL): Suppose we test two simple hypotheses $H_0: \theta = \theta_0$ versus $H_1: \theta = \theta_1$. Let $L(\theta^*)$ denote the likelihood function of the sample, when $\theta = \theta^*$. Then for every $\alpha \in (0,1)$, a most powerful test (a test that maximizes the power $\pi(\theta_1)$) is the test with $RR = \left\{\frac{L(\theta_1)}{L(\theta_0)} \ge k_\alpha\right\}$, for some constant $k_\alpha > 0$.