# Building a model to predict Uber trip requests

Natalia Shcheglova, Oct 19, 2024



## Why Would We Want To Predict The Demand?

#### **Higher revenues**



- Demand-based pricing.
- Increased capacity.

# Improved operational efficiency



 measures to meet the surge in demand by incentivizing more drivers to work during peak hours

# Increase customer satisfaction



Reduced wait times.

#### The Data

New York for-hire vehicles trip data for 2021 from Taxi and Limousine Commission



### **Data Exploration**



#### Annual trend



2021-0120021-0222021-0420021-0520021-0722021-0920021-1022021-12-17 Request date

The number of requests is the lowest in the beginning of the year, the highest in the last 3 months of the year, and drops around Christmas.

### Weekly trend



The number of requests is the lowest on Mondays, and the highest on Fridays and Saturdays.

### Daily trend



The number of requests is the lowest at nighttime, and the highest after work hours — between 5 pm and 7 pm.

#### Autocorrelation



Number of requests in previous hours have impact on the current number of requests.

#### Modelling

Time series forecasting with seasonal terms & weather as exogenous features

#### **SARIMAX:**

- Fourier terms (yearly, weekly and daily seasonality).
- Exogenous features (incl. weather)
- Splitting into train and test.



VS

# Regression models with seasonal and lagged features

#### **Linear Regression:**

- Lagged features (trip requests at t -24 hours).
- Features scaling
- Splitting into train and test.

#### **GXBoost Regression:**

- Lagged features (trip requests at t -24 hours).
- Features scaling
- Splitting into train and test.





# **Initial Models Comparison**

| Model              | MAE  | RMSE | AIC    | R-squared |
|--------------------|------|------|--------|-----------|
| SARIMAX            | 77.7 | 99.5 | 74,997 | n/a       |
| Linear Regression  | 55   | 72.7 | 10,007 | 0.67      |
| XGBoost Regression | 54   | 70   | n/a    | 0.69      |

#### Hyperparameters optimization

- Randomized Search with cross-fold validation.
- Optimal parameters:
  - colsample\_bytree: 0.85,
  - gamma: 0.31,
  - learning\_rate: 0.11,
  - max\_depth: 9,
  - min\_child\_weight: 7,
  - n\_estimators: 111,
  - reg\_alpha: 0.33,
  - reg\_lambda: 0.73,
  - subsample: 0.82



## **Model Diagnostics**





## After log-transformation of a target feature



Residuals are scattered without a pattern.

#### **Final Results**



R-squared: 0.76

**MAE:** 46.8

**RMSE**: 62.4