Seminare ASC - Rezolvări

Matei-Iulian Cocu

Ștefan Chiper

matei-iulian.cocu@s.unibuc.ro

stefan.chiper@s.unibuc.ro

Cuprins	
Seminar 0x00	2
Seminar 0x01	4
Seminar 0x02	5
Seminar 0x03	5
Seminar 0x04	5
Seminar 0x05	5

Seminar 0x00

 ${\bf 1.}$ Completați următorul tabel cu reprezentările lipsă ale unor numere naturale:

Baza: $B=2$	B=4	B=8	B = 10	B = 16
1011 1110 1110 1111	2332 3233	137 357	48879	0xBEEF
0000 0000 0010 1010	222	52	42	0x002A
1001 1100 1111 0011	2130 3303	116 363	40179	0x9CF3
0000 0010 1011 1101	22331	1275	701	0x02BD
0000 0001 1111 1111	13333	777	511	0x01FF
1101 1110 1010 1111	3132 2233	157 257	57007	0xDEAF
1100 1010 0101 0011	3022 1103	145 123	51795	0xCA53
0000 0000 1110 0100	3210	344	228	0x00E4
0000 1110 1001 1101	322131	7235	3741	0x0E9D
0000 0111 1110 0100	133210	3744	2020	0x07E4
0001 0001 0001 0001	101 0101	10 421	4,369	0x1111
1111 1111 1111 1111	3333 3333	177 777	65535	0xFFFF
1111 1111 0000 0000	3333 0000	177 400	65280	0xFF00
0000 0000 1111 1111	3333	377	255	0x00FF

2. Completați următorul tabel cu reprezentările lipsă ale unor numere întregi (16 biți):

Baza: $B=2$	B=4	B=8	B = 10	B = 16
1111 1110 1110 1101	3332 3231	177 355		0xFEED
			-42	θx
0101 1100 1111 0011	1130 3303			θx
	22331			θx
		777		θx
				0xA1F1
1100 1010 0101 0011				θx
	3210			θx
		7007		θx
			-1337	θx
				0xF111
				0xFFFF
1111 1111 0000 0000	3333 0000			0xFF00
1111 0000 1111 0000	3300 3300			0xF0F0

3. Realizați următoarele operații aritmetice cu numere pe biți reprezentate în complement față de doi (verificați-vă calculele folosind sistemul zecimal):

	1111 1111 1111 1111	
0101 1100 1111 0011	0000 0000 0000 0001	+
1111 1111 0000 0000	+ overflow - 0000 0000 0000 0000	
overflow - 0101 1011 1111 0011		
0111 1111 1111 1111	0101 1100 1111 0011	
	0111_0000_1111_0000	
$0000\ 0000\ 0000\ 0001\ +$	1100 1101 1110 0011	
1000 0000 0000 0000		
1111 1111 1111 1111	1000 0000 0000 0000	
$0000\ 0000\ 0000\ 0000\ +$	$\underline{}$	
1111 1111 1111 1111	1000 0000 0000 0001	
l l	I	

În următoarele cazuri, numărul de biți scriși reprezintă dimensiunea totală alocată pentru reprezentarea numerelor (14 și 8 biți în stânga, 12 și 8 biți în dreapta):

11 1000 0010 0101	
1011 1100	+
11 1000 1110 0001	

4. Realizați următoarele operații logice pe biți:

0101 1100 1111 0011	
0101 1100 1111 0011	AND
0101 1100 1111 0011	
	I
0111 1111 1111 1111	
0000 0000 0000 0001	AND
0000 0000 0000 0001	
	!
1101 1001 0110 0001	
1111 1111 0000 0000	AND
1101 1001 0000 0000	
	! !
0000 0000 1111 1111	
0000 0001 0000 0000	AND
0000 0000 0000 0000	
	ı

1101 1100 1111 0011	
_ 1101 1100 1111 0011	XOR
0000 0000 0000 0000	
	i
0101 1100 1111 0011	
0111 0000 1111 0000	OR
0111 1100 1111 0011	
	1
0101 1100 1111 0011	
0000 0000 1111 1111	OR
0101 1100 1111 1111	
	ı
1100 0110 1001 1110	
1001 1111 0110 1100	XOR
1100 0110 1001 1110	XOR
1001 1111 0110 1100	

- 5. Folosing cunoștințele de curs, răspundeți la următoarele întrebări:
 - (a) care este cel mai mare număr zecimal (natural) care se poate reprezenta pe N biți? $R: 2^N 1$
 - (b) care este cel mai mare număr zecimal (întreg) care se poate reprezenta (în complement față de doi) pe N biți? dar cel mai mic? $R: 2^{N-1} 1(mare); -2^{N-1}(mic)$
 - (c) fie x un număr natural, de câți biți este nevoie pentru a-l reprezenta în binar? $R: |\log_2(x)| + 1$
 - (d) dacă un număr x este reprezentat cu k cifre în sistemul hexazecimal, de câți biți avem nevoie pentru a-l reprezenta în binar? R:4k
 - (e) dacă un număr x este reprezentat cu k biți în sistemul binar, de câte cifre avem nevoie pentru a reprezenta x în sistemul hexazecimal? R: $\frac{k}{4}$
 - (f) dacă un număr x este reprezentat cu k cifre în sistemul zecimal, de câți biți avem nevoie pentru a-l reprezenta în binar? $R: \lceil k \cdot \log_2(10) \rceil$
- 6. Reprezentarea binară a unui număr poate fi extinsă la dreapta, cu numere sub-unitare în felul următor (binary fixed-point):

	27	2^{6}	2^{5}	2^4	2^3	2^2	2^1	2^{0}	2^{-1}	2^{-2}	2^{-3}	2^{-4}	2^{-5}	2^{-6}	2^{-7}		
--	----	---------	---------	-------	-------	-------	-------	---------	----------	----------	----------	----------	----------	----------	----------	--	--

- ullet calculați valorile în sistemul zecimal pentru următoarele numere reprezentate în formatul de mai sus (punctul stă între 2^0 și 2^{-1}):
 - (a) 101.101 **R**: 5.625
 - (b) 111.001 R: 7.125
 - (c) 1110.00111 R: 14.21875
 - (d) 1010.0000011 R: 10.0234375
 - (e) 1111.0010011 *R*: 15.148438
- calculați valorile în sistemul binar fixed-point pentru următoarele numere reprezentate în formatul zecimal:
 - (a) 3.75 *R*: 11.11
 - (b) 12.3125 **R**: 1100.0101
 - (c) 3.078125 R: 11.000101
 - (d) 17.671875 R: 10001.101011
 - (e) $\frac{2}{3} \approx 0.6667 \ R$: 0.101010101010... (periodic)
- când au numere reprezentate în acest sistem o reprezentare finită (fără repetiția zecimalelor)? R: Atunci când partea fracționară poate fi exprimată ca o sumă finită de puteri negative ale lui 2, adică atunci când numărul fracționar este un multiplu finit al unei puteri negative a lui 2. Altfel, numerele care nu pot fi exprimate astfel vor avea o reprezentare periodică în binar.
- cum arată un număr negativ reprezentat într-un astfel de sistem de reprezentare? Reprezentați $\frac{5}{8}$ și $-\frac{5}{8}$ în sistemul binary fixed-point (folosiți un sigur bit pentru reprezentarea părții întregi, gândiți-vă și cum folosiți un bit de semn și la reprezentarea în complement față de doi).

 R: Vom aloca 8 biți (1 byte) pentru reprezentarea unui număr întreg. Similar cu reprezentarea în complement față de 2 a numerelor întregi, aceeași idee se aplică și pentru numerele din sistemul fixed-point: se calculează complementul față de 2 a numărului non-negativ și se adaugă 1 la acesta (un LSB în reprezentarea respectivă). Astfel, $\frac{5}{8} = 0.625 \rightarrow 0b0000.1010 \implies -\frac{5}{8} = -0.625 \rightarrow 0b1111.0110 = 0b1111.0101 + 0b0000.0001.$
- 7. Demonstrați cum reprezentarea în complement față de doi a numărului -x poate fi obținută prin inversarea tuturor biților lui x și adunarea lui 1 la rezultat.

 $\mathbf{R} \text{: } \mathrm{Fie} \ x$ un număr întreg pozitiv reprezentat pe N biți. Reprezentarea sa binară este dată de suma:

$$x = \sum_{i=0}^{N-1} b_i \cdot 2^i, \quad b_i \in \{0, 1\}$$

Atunci, reprezentarea în complement față de doi a numărului -x este dată de:

$$-x = 2^{N} - x = 2^{N} - \sum_{i=0}^{N-1} b_{i} \cdot 2^{i} = \sum_{i=0}^{N-1} (1 - b_{i}) \cdot 2^{i} + 1$$

unde $\sum_{i=0}^{N-1} (1-b_i) \cdot 2^i$ reprezintă inversarea tuturor biților lui x, iar adunarea lui 1 finalizează procesul de obținere a reprezentării în complement fată de doi.

8. Demonstrați că metoda asocierii a p termeni consecutivi este soluția corectă pentru problema transformării unui număr din baza B în baza B^p , $p > 1, p \in \mathbb{N}$.

R: Fie un număr N reprezentat în baza B ca o secvență de cifre $d_k d_{k-1} \dots d_1 d_0$, unde fiecare cifră d_i satisface $0 \le d_i < B$. Atunci, valoarea acestui număr în baza 10 este dată de:

$$N = \sum_{i=0}^{k} d_i \cdot B^i$$

Pentru a transforma acest număr în baza B^p , împărțim secvența de cifre în grupuri de câte p cifre, începând de la dreapta spre stânga. Fiecare grup de p cifre reprezintă o cifră în baza B^p . Astfel, fiecare grup G_j format din cifrele $d_{jp+p-1}d_{jp+p-2}\dots d_{jp}$ poate fi convertit în baza B^p prin calculul:

$$C_j = \sum_{i=0}^{p-1} d_{jp+i} \cdot B^i$$

unde C_j este cifra corespunzătoare în baza B^p . Prin această metodă, fiecare grup de p cifre din baza B este transformat într-o singură cifră în baza B^p , păstrând astfel valoarea numerică a numărului original. Aceasta demonstrează că metoda asocierii a p termeni consecutivi este corectă pentru transformarea unui număr din baza B în baza B^p .

9. Demonstrați că $\lfloor log_2x \rfloor = i_{max}$ unde x este un număr dat pe N biți iar $i_{max} = max\{i|b_i = 1, \forall i = 0, \dots, N-1\}$ unde b_i reprezintă al i-lea bit din reprezentarea binară a numărului x. De exemplu, dacă x = 00101110 (46 zecimal) atunci $\lfloor log_2x \rfloor = 5$.

 \mathbf{R} : Fie x un număr reprezentat pe N biți, astfel încât:

$$x = \sum_{i=0}^{N-1} b_i \cdot 2^i, \quad b_i \in \{0,1\}$$

Fie $i_{max} = \max\{i \mid b_i = 1, \forall i = 0, \dots, N-1\}$. Atunci, putem observa că: $2^{i_{max}} \le x < 2^{i_{max}+1}$ Aplicând logaritmul în baza 2 pe toate părțile inegalității, obținem: $i_{max} \le \log_2(x) < i_{max} + 1$ Din această relație rezultă că: $\lfloor \log_2(x) \rfloor = i_{max}$.

10. În 2014, videoclipul melodiei "Gangnam Style" se apropia de 2.147.483.647 vizualizări (adică 2³¹ – 1). Cei de la Youtube au trebuit să facă niște modificări pentru a acomoda acest număr mare de vizualizări. Explicați ce s-a întâmplat: care este semnificația numărului de mai sus, care era riscul, și care e solutia pentru rezolvarea potentialei probleme.

R: Numărul de vizualizări era stocat într-o variabilă de tip întreg pe 32 de biți, folosind reprezentarea în complement față de doi. Astfel, valoarea maximă care putea fi stocată era $2^{31} - 1 = 2.147.483.647$. Când numărul de vizualizări a atins această valoare, orice incrementare ar fi cauzat un overflow, resetând contorul la o valoare negativă sau zero, ceea ce ar fi fost incorect. Soluția a fost trecerea la o reprezentare pe 64 de biți pentru stocarea numărului de vizualizări, permițând astfel un număr mult mai mare de vizualizări fără riscul de overflow. De ce nu unsigned? regulile interne Youtube, pe scurt.

11. În Anexa 1 aveți două implementări ale algoritmului de căutare binară; care este cea optimă?

Seminar 0x01

1. Avem un pachet de cărți de joc (52 de cărți). Luăm cărțile pentru prima dată afară din pachet. Câtă informație avem în acest moment despre cărți? Amestecăm cărțile aleator (apropo, cum facem asta, algoritmic, eficient?). Câtă informație avem acum în pachetul de cărți? (folosiți și aproximarea lui Stirling pentru calcularea rezultatului) R: Informația inițială este de $log_2(52!) \approx 225.58$ biți, iar după amestecare rămâne aceeași, deoarece amestecarea

 $nu\ schimbă\ entropia\ sistemului.\ Amestecarea\ se\ poate\ face\ folosind\ algoritmul\ Fisher-Yates,\ care\ are\ complexitate\ O(n).\ Aproximarea\ lui\ Stirling$

- 2. Se dă o urnă în care avem 5 bile roșii și 3 bile albastre. Ni se spune că cineva extrage o bilă din urnă și aceasta este albastră. Se cere:
 - (a) câtă informație primim în urma acestei observații?
 - (b) care a fost entropia urnei înainte de extragere și care este entropia urnei după extragere?
 - (c) continuați să calculați entropia presupunân că extragem pas cu pas toate bilele albastre;
 - (d) similar cu cerința anterioară pentru bilele roșii (începând cu urna inițială presupunem că extrageți rând pe rând fiecare bilă roșie și calculați entropia la fiecare pas).
- 3. Se dau 12 bile. 11 dintre ele au aceeași greutate, iar una este mai ușoară. Folosind o balanță, care este numărul minim de cântăriri necesare pentru a identifica bila mai usoară?
- 4.
- 5. 6.
- 7. Considerăm următorul mesaj bloc:

D_{00}	D_{01}	D_{02}	P_{0l}
D_{10}	D_{11}	D_{12}	P_{1l}
D_{20}	D_{21}	D_{22}	P_{2l}
P_{c1}	P_{c2}	P_{c3}	P_{cl}

Elementele D_{ij} sunt date (deci avem 9 biți) 8.

 $\mathbf{Seminar}\ \mathbf{0}\mathbf{x}\mathbf{02}$

Seminar 0x03

Seminar 0x04

 ${\bf Seminar}~0{\bf x}05$