CS₁

Development of hybrid finite element/neural network methods to help create digital surgical twins

Authors:

Frédérique LECOURTIER

Supervisors:

Emmanuel FRANCK Michel DUPREZ Vanessa LLERAS

June 14, 2024

Introduction

Scientific context

Context: Create real-time digital twins of an organ (e.g. liver).

Current Objective : Develop hybrid finite element / neural network methods.

 ϕ -**FEM**: New fictitious domain finite element method.

⇒ domain given by a level-set function

Appendix ¹

Current work

Elliptic problem with Dirichlet conditions:

Find $u:\Omega \to \mathbb{R}^d (d=1,2,3)$ such that

$$\begin{cases} L(u) = -\nabla \cdot (A(x)\nabla u(x)) + c(x)u(x) = f(x) & \text{in } \Omega, \\ u(x) = g(x) & \text{on } \partial \Omega \end{cases} \tag{1}$$

with A a definite positive coercivity condition and c a scalar. We consider Δ the Laplace operator, Ω a smooth bounded open set and Γ its boundary.

Two lines of research:

- 1. How to deal with complex geometry in PINNs?
- 2. Once we have the prediction, how can we improve it (using FEM-type methods)?

How to deal with complex geometry in PINNs?

Standard PINNs

Implicit neural representation.

$$u_{\theta}(x) = u_{NN}(x)$$

with u_{NN} a neural network (e.g. a MLP).

DoFs Minimization Problem:

Considering the least-square form of (1), our discrete problem is

$$\theta_{u} = \operatorname*{argmin}_{\theta \in \mathbb{R}^{N}} \alpha J_{in}(\theta) + \beta J_{bc}(\theta) \tag{2}$$

with N the number of parameters of the NN and

$$J_{in}(heta) = rac{1}{2} \int_{\Omega} (\mathit{L}(u_{ heta}) - \mathit{f})^2 \quad ext{ and } \quad J_{bc}(heta) = rac{1}{2} \int_{\partial\Omega} (u_{ heta} - \mathsf{g})^2$$

Monte-Carlo method: Discretize the cost function by random process.

Limits

Claim on PINNs: No mesh, so easy to go on complex geometry!

⚠ *In practice*: Not so easy! We need to find how to sample in the geometry.

Solution: Approach by levelset.

Advantages:

- → Sample is easy in this case.
- → Allow to impose in hard the BC :

$$u_{\theta}(X) = \phi(X)w_{\theta}(X) + g(X)$$

Natural LevelSet:

Signed Distance Function (SDF)

Problem: SDF is a C^0 function

- \Rightarrow its derivatives explodes
- ⇒ we need a regular levelset

Learn a regular levelset

If we have a boundary domain Γ , the SDF is solution to the Eikonal equation:

$$\begin{cases} ||\nabla \phi(\mathbf{X})|| = 1, \ \mathbf{X} \in \mathcal{O} \\ \phi(\mathbf{X}) = 0, \ \mathbf{X} \in \Gamma \\ \nabla \phi(\mathbf{X}) = n, \ \mathbf{X} \in \Gamma \end{cases}$$

with \mathcal{O} a box which contains Ω completely and n the exterior normal to Γ .

How make that? with a PINNs [2] by adding a term to regularize.

$$J_{
m reg} = \int_{\mathcal{O}} |\Delta \phi|^2$$

Poisson On Cat

- ightharpoonup Solving the Poisson problem with f=1 and homogeneous Dirichlet BC.
- ightharpoonup Looking for $u_{\theta} = \phi w_{\theta}$ with ϕ the levelset learned.

How improve PINNs prediction (on simple geometry)?

Idea

TODO

TODO

Theoretical results

TODO

How improve PINNs prediction (on simple geometry)?

Numerical results I

TODO

TODO

Conclusion

Supplementary work

TODO

Conclusion

TODO

Bibliography

- [1] Alexander Belyaev, Pierre-Alain Fayolle, and Alexander Pasko. Signed Lp-distance fields. Computer-Aided Design.
- [2] Mattéo Clémot and Julie Digne. Neural skeleton: Implicit neural representation away from the surface. Computers and Graphics.
- [3] Pierre-Alain Fayolle. Signed Distance Function Computation from an Implicit Surface.
- [4] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. *Journal of Computational Physics*.
- [5] N. Sukumar and Ankit Srivastava. Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks. Computer Methods in Applied Mechanics and Engineering.
- [6] Sifan Wang, Shyam Sankaran, Hanwen Wang, and Paris Perdikaris. An Expert's Guide to Training Physics-informed Neural Networks.

Appendix

Appendix 1 : ϕ **-FEM**

App1

Appendix 2: Test2

App2

Appendix 3: Test3

App3

