臺北區 108 學年度第二學期 指定科目第一次模擬考試

數學甲

一作答注意事項一

考試範圍:第一~四冊全、選修數學甲(上)

考試時間:80分鐘

作答方式: •選擇(填)題用 2B 鉛筆在「答案卡」上作答; 更正時, 應以橡皮擦擦拭, 切勿使用修正液(帶)。

- 非選擇題用筆尖較粗之黑色墨水的筆在「答案卷」上作答;更正時,可以使用修正液(帶)。
- 未依規定畫記答案卡,致機器掃描無法辨識答案;或未使用黑色墨水的筆書寫答案卷,致評閱人員無法辨認機器掃描後之答案者,其後果由考生自行承擔。
- 答案卷每人一張,不得要求增補。

選填題作答說明:選填題的題號是 A,B,C,……,而答案的格式每題可能不同,考生必須依各題的格式填答,且每一個列號只能在一個格子畫記。請仔細閱讀下面的例子。

例:若第 B 題的答案格式是 $\frac{\text{(B)}}{\text{(D)}}$,而依題意計算出來的答案是 $\frac{3}{8}$,則考生必須分別在答案卡上的第 18 列的 $\frac{3}{19}$ 與第 19 列的 $\frac{8}{10}$ 畫記,如:

例:若第 C 題的答案格式是 $\frac{202}{50}$,而答案是 $\frac{-7}{50}$ 時,則考生必須分別在答案卡的第 20 列的二與第 21 列的 $\frac{7}{50}$ 畫記,如:

祝考試順利

版權所有·翻印必究

第壹部分:選擇題(單選題、多選題及選填題共占 76 分)

一、單選題(占24分)

說明:第1題至第4題,每題有5個選項,其中只有一個是正確或最適當的選項,請畫記在答案卡之「選擇(填)題答案區」。各題答對者,得6分;答錯、未作答或畫記多於一個選項者,該題以零分計算。

- 1. 設a為實數,經二階方陣 $\begin{bmatrix} 1 & a \\ 0 & 2 \end{bmatrix}$ 所定義的線性變換,將坐標平面上的直線L: x-2y=1 變換成另一條直線L',若L與L'互相垂直,則a的值為下列哪一個選項?
 - (1) 3
 - (2) 1
 - (3) 0
 - (4) 1
 - (5) 3

2. $\triangle ABC$ 中, \overline{AB} = 2, \overline{BC} = 3, \overline{CA} = 4,今將 \overline{BC} 對摺,恰使得 B、C 兩點重合,得摺痕 \overline{DE} 與 \overline{CA} 交於 D,如圖所示。試問 $\cos \angle ABD$ 之值為下列哪一個選項?

- $(1)\frac{1}{4}$
- $(2)\frac{\sqrt{15}}{8}$
- $(3)\frac{1}{2}$
- $(4)\frac{17}{32}$
- $(5)\frac{7}{8}$

- 3. 如圖所示。將正方形 ABCD 以中心點 O 為旋轉中心,順時針旋轉 45° 得另一正方形 A'B'C'D',然後扣除內部 8 條線段(虛線部分)後可以形成一個正八角星(共 16 個頂點),其中 \overrightarrow{x} 、 \overrightarrow{y} 分別為點 O 到兩個頂點的向量。若將點 O 到正八角星 16 個頂點的向量都改寫成 $a\overrightarrow{x} + b\overrightarrow{y}$ 的形式,試問滿足 1 < a b < 2 的向量有幾個?
 - (1) 2
 - (2) 3
 - (3) 4
 - (4) 5
 - (5)6

- 4. 在複數平面上,設 O 為原點,令點 A、B 所對應的複數分別為 z_1 、 z_2 ,若 $\left|z_1-3\right|=1$, $z_2=(1+i)z_1$,則 $\triangle OAB$ 面積的值<u>不可能</u>為下列哪一個選項?
 - (1) 2
 - (2) 4
 - (3) 6
 - (4) 8
 - (5) 10

二**、多選題**(占40分)

- 說明:第5題至第9題,每題有5個選項,其中至少有一個是正確的選項,請將正確選項畫 記在答案卡之「選擇(填)題答案區」。各題之選項獨立判定,所有選項均答對者,得 8分;答錯1個選項者,得4.8分;答錯2個選項者,得1.6分;答錯多於2個選項或 所有選項均未作答者,該題以零分計算。
- 5. 已知 $a=10^{\sqrt{7}}$, $b=7^{\sqrt{10}}$ 。試選出正確的選項。 (log $2\approx 0.3010$,log $3\approx 0.4771$,log $7\approx 0.8451$, $\sqrt{7}\approx 2.65$, $\sqrt{10}\approx 3.16$)
 - (1) a < 500
 - (2) b < 500
 - (3) a > b
 - (4) a^{10} 是一個 27 位數
 - $(5)b^{\sqrt{10}}$ 的首位數字為 3

6. 將 $y=f_1(x)=\sin x-\cos x$ 、 $y=f_2(x)=\sin \left(x+\frac{\pi}{6}\right)$ 、 $y=f_3(x)=\sin 3x$ 的函數圖形繪於同一坐標平面上,三個函數圖形與 x 軸的相關位置如圖所示。

試選出正確的選項。

- (1)圖中標示為 y=A(x) 的圖形,所代表的函數為 $y=f_2(x)$
- (2)此三個函數圖形中振幅最大為 $\sqrt{2}$
- (3)令函數 $y=f_2(x)$ 與 $y=f_3(x)$ 的(最小正)週期分別為 $P_2 \cdot P_3 \cdot$ 則 $3P_2=P_3$
- (4)在 $0 \le x \le 2\pi$ 的範圍中, $y = f_2(x)$ 與 $y = f_3(x)$ 的函數圖形共有 6 個交點
- (5)在 $0 \le x \le 2\pi$ 的範圍中, $|f_1(x)-f_2(x)|$ 的最大值為 $\sqrt{2}+1$

- 7. 袋子裡裝有大小規格相同的 2 顆白球與 1 顆紅球,今從袋中隨機抽出一球,記錄球的顏色後放回袋中,稱為一次。若連續進行 n 次(n 為任意正整數),假設出現偶數次白球的機率為 P(n),奇數次白球的機率為 Q(n)。試選出正確的選項。
 - (1) P(n) + Q(n) = 1
 - (2) $P(2) Q(2) = \frac{1}{3}$
 - (3) $P(3) Q(3) = \frac{1}{27}$
 - (4) $P(4) Q(4) = \frac{1}{81}$
 - $(5) P(2020) < \frac{1}{2}$

- 8. 在坐標平面上,設圓 Γ : $x^2+y^2-2x+2y-2=0$ 的圓心為 C,已知由直線 L: 3x-4y+18=0 上一點 P 向圓 Γ 可作兩條切線 L_1 與 L_2 ,且直線 L 恰為 L_1 與 L_2 其中一夾角的角平分線。試選出正確的選項。
 - (1)直線 L 與圓 Γ 不相交
 - (2)直線 PC 與直線 L 互相垂直
 - (3)直線 L_1 與直線 L_2 互相垂直
 - (4) P 點的坐標為 (-3,2)
 - (5)若圓 Γ 上任一點關於直線 ax-by-15=0 的對稱點均仍然在圓 Γ 上,則 a+b=0

數學甲

- 9. 給定空間中平面 E: 2x-y-3z=2 與直線 $L_1: x-1=\frac{y+1}{3}=\frac{z+2}{2}$ 、 $L_2: x-2=\frac{y+1}{k}=z-1$ (其中 $k \neq 0$)。試選出正確的選項。
 - (1)平面 E 與直線 L_1 恰交於一點
 - (2)存在實數 k, 使得直線 L_2 垂直平面 E
 - (3)存在實數 k, 使得直線 L_2 與平面 E 沒有交點
 - (4)存在實數 k, 使得直線 L_1 與直線 L_2 的公垂線垂直平面 E
 - (5)存在實數 k, 使得直線 L_1 與直線 L_2 有交點

三、選填題(占12分)

說明:1.第A至B題,將答案畫記在答案卡之「選擇(填)題答案區」所標示的列號(10-13)。 2.每題完全答對給6分,答錯不倒扣,未完全答對不給分。

A. 在實數線上,有一動點 A 每次移動 1 個單位,且往左與往右的機率相等。今對動點 A 進行 觀察,若 A 從坐標為 1 處開始移動,總共移動三次,計算 A 在這三次移動所停的坐標數字 總和,則數字總和的期望值為 ⑩ 。

B. 空間中有 \overrightarrow{a} 、 \overrightarrow{b} 兩個非零向量。已知 $\left|\overrightarrow{a}\times\overrightarrow{b}\right| = \sqrt{3}\left(\overrightarrow{a}\cdot\overrightarrow{b}\right)$ 且向量 $\overrightarrow{a}+2\overrightarrow{b}$ 平分 \overrightarrow{a} 與 \overrightarrow{b} 的夾角。若 $\left|\overrightarrow{a}+2\overrightarrow{b}\right| = 4$,則 $\left|\overrightarrow{b}\right| = \frac{\sqrt[3]{2}}{\sqrt[3]{2}}$ 。(化為最簡根式)

第貳部分:非選擇題(占24分)

說明:本部分共有二大題,答案必須寫在「答案卷」上,並於題號欄標明大題號(一、二) 與子題號((1)、(2)、(3)),同時必須寫出演算過程或理由,否則將予扣分甚至零分。作 答務必使用筆尖較粗之黑色墨水的筆書寫,且不得使用鉛筆。每一子題配分標於題末。

- 一、在坐標平面上,已知 $A=\frac{1}{25}\begin{bmatrix} -7 & 24 \\ 24 & 7 \end{bmatrix}$ 是以直線 L 為鏡射軸的鏡射矩陣,若對於平面上任
 - 一點P,設Q為P點經A變換後所對應的點。試回答下列問題:
 - (1) 試求x 軸經A 變換後的直線方程式。(3分)
 - (2) 試求鏡射軸 L 的直線方程式。(4 分)
 - (3) 若 P 為圖形 $(x-2)^2+y^2=1$ 上的一個動點,試求 \overline{PQ} 的最大值。(4分)

- 二、用 12 根鋼條架構出一個正六面體的裝置藝術,並在其底面裝上不透明的灰色面板 OADC。 今將其斜立在公園的平地上,如圖所示。為了穩固此裝置藝術,除了將 O 點落在地面上,還在 $A \cdot B \cdot C \cdot D$ 四處各架上一根<u>垂直地面</u>的鐵柱,分別為 $\overline{AA'} \cdot \overline{BB'} \cdot \overline{CC'}$ 與 $\overline{DD'}$ 。已知此正六面體的邊長為 7 公尺,且 $\overline{AA'}$ 的長為 2 公尺, $\overline{CC'}$ 的長為 3 公尺。試回答下列問題:
 - (1) 試問鐵柱 \overline{DD} 的長為多少公尺?(3分)
 - (2) 試問地面上的平行四邊形 OA'D'C' 的面積為多少平方公尺?(5分)
 - (3) 試問鐵柱 $\overline{BB'}$ 的長為多少公尺?(5分)

