AMENDMENTS In the Claims

1.(canceled) 2.(canceled) 3.(canceled) 4.(canceled) 5.(canceled) 6.(canceled) 7.(canceled) 8.(canceled) 10.(canceled) 11.(canceled) 12.(canceled) 13.(canceled)		
14.(currently amended) A method comprising the steps of:		
feeding a contaminated brine solution comprising a monovalent alkali metal salt and having		
a salinity greater than or equal to about 3% to a biological reactor containing a mixed		
bacterial culture capable of degrading at least one contaminant under anoxic/anaerobic		
conditions;		
adding an effective amount of a divalent cation precursor to the reactor, where the effective		
amount of the divalent precursor is sufficient to maintain a divalent to monovalent cation		
mole ratio at a numeric value greater than or equal to about 0.05 and to form a medium		
capable of supporting a stable population of the bacterial culture,		
degrading the contaminant in the contaminated brine solution for a time and at a temperature		
sufficient to reduce a concentration of the contaminant at or below a desired concentration		
while maintaining a suitable nutrient environment in the reactor and while maintaining the		
divalent to monovalent cation mole ratio greater than or equal to about 0.05.		
15.(original) The method of claim 14, wherein the reactor is sealed to reduce or eliminate oxygen		
from the reactor.		
16.(original) The method of claim 14, further comprising the step of:		
sparging or purging the reactor with an oxygen-free gas after feeding the brine solution and		

3 optionally during the degrading step. 1 17.(original) The method of claim 14, wherein the gas is selected from the group of nitrogen, 2 argon, and mixtures and combinations thereof. 18.(original) The method of claim 14, wherein the divalent cation precursor is selected from the 1 group consisting of a soluble Mg²⁺ salt, a soluble Ca²⁺ salt, a soluble Sr²⁺, a soluble Ba²⁺ salt, and 2 3 mixtures or combinations thereof. 1 19.(original) The method of claim 14, wherein the divalent cation precursor is selected from the group consisting of a soluble Mg²⁺ salt, a soluble Ca²⁺ salt, a soluble Sr²⁺, and mixtures or 2 3 combinations thereof. 1 20.(original) The method of claim 14, wherein the divalent cation precursor is selected from the group consisting of a soluble Mg²⁺ salt, a soluble Ca²⁺ salt, and mixtures or combinations thereof. 2 21.(original) The method of claim 14, wherein the divalent cation precursor is a soluble Mg²⁺ salt. 1 1 22.(original) The method of claim 14, wherein the contaminant is selected from the group 2 consisting of perchlorate, nitrate and mixture or combinations thereof. 1 23.(original) The method of claim 22, wherein the nutrient environment comprises adding an 2 inorganic energy source or an organic energy source in amounts greater than a stoichiometric amount 3 of electrons required to reduce the perchlorate and/or nitrate present in the brine solution for 4 sustained microbial growth during the degrading step. 1 24.(original) The method of claim 23, wherein the inorganic energy source is selected from the 2 group consisting of H₂ gas, a hydrogen delivery chemical, and mixtures or combinations thereof.

25.(original) The method of claim 23, wherein the organic energy source is selected from the group

1

2	consisting of acetate, ethanol, methanol, lactate, and mixtures or combinations thereof.		
1	26.(original) The method of claim 14, wherein the contaminated brine solution is a perchlorate		
2	and/or nitrate contaminated ion-exchange regenerate brine.		
1	27.(currently amended) A method comprising the steps of:		
2	passing a waste water stream including at least one ion-exchangeable pollutant through an		
3	ion-exchange resin able of exchanging the pollutant ion for a non-pollutant ion for a predetermi		
4	time or until the resin is no longer able to exchange the pollutant ion with the non-pollutant ion;		
5	stopping the waste water stream from passing through the resin;		
6	passing a brine solution comprising a monovalent alkali metal salt and having a sa		
7	greater than or equal to about 3% through the resin for a time sufficient to exchange all		
8	substantially all of the pollutant ion with the non-pollutant ion to form a pollutant contaminated brid		
9	solution;		
10	adding an effective amount of a divalent cation to the pollutant contaminated brine solut to adjust a divalent to monovalent cation mole ratio to a numeric value greater than or equal to 0		
11			
12	to form a stabilized, pollutant contaminated brine solution capable of supporting a stable population		
13	of a pollutant degrading bacterial culture;		
contacting the stabilized, pollutant contaminated brine solution with an effective ar			
15	a the pollutant degrading bacterial culture under anaerobic/anoxic conditions for a time and at		
16	temperature sufficient to degrade a concentration of the pollutant to or below a desired concentration		
17 18 19	to form a crude treated brine solution, while maintaining the divalent to monovalent cation mole ratio greater than or equal to about 0.05; and		
	20	solution.	
1	28.(original) The method of claim 27, further comprising the step of:		
2	repeating the step of claim 26, where the brine solution comprises the treated brine solution		
1	29.(currently amended) A method comprising the steps of:		

feeding a waste w	ater stream including at least one ion-exchangeable pollutant with a first
_	
_	on-exchange resin able of exchanging the pollutant ion for a non-pollutant
_	me or until the resin is no longer to exchange the pollutant ion with the
non-pollutant ion;	
switching the wast	te water stream feeding from the first column to a second column including
a second ion-exchange re	sin capable of exchanging the pollutant ion for a non-pollutant ion for a
predetermined time or un	ntil the resin is no longer to exchange the pollutant ion with the non-
pollutant ion;	
passing a brine so	olution comprising a monovalent alkali metal salt and having a salinity
greater than or equal to a	bout 3% through the first column for a time sufficient to exchange all or
substantially all of the poll	utant ion with the non-pollutant ion to form a pollutant contaminated brine
solution and to regenerate	the first resin;
adding an effective	e amount of a divalent cation to the pollutant contaminated brine solution
to adjust a divalent to mor	novalent cation mole ratio to a numeric value greater than or equal to 0.05
to form a stabilized, pollut	ant contaminated brine solution capable of supporting a stable population
of a pollutant degrading b	pacterial culture;
contacting the stat	pilized, pollutant contaminated brine solution with an effective amount of
a the pollutant degrading	bacterial culture under anaerobic/anoxic conditions for a time and at a
temperature sufficient to d	legrade a concentration of the pollutant to or below a desired concentration
to form a crude treated bi	rine solution, while maintaining the divalent to monovalent cation mole
ratio greater than or equal	to about 0.05;
filtering the crude	treated brine solution to remove the culture and to form a treated brine
solution;	
switching the was	te water stream feeding from the second column to first column; and
repeating the abov	ve-identified steps.

resins are the same.