WRITTEN HW #3 SOLUTIONS

(1) (10 points) Suppose that gcd(q, a) = 1. Dirichlet's Theorem (which we stated but never proved) says that there are infinitely many primes of the form qk+a, where $k \in \mathbb{Z}$. On the other hand, show that there are infinitely many values of k such that qk + a > 0 and qk + a is composite.

Solution. Let us look at the values of qk + 1, where gcd(q, a) = 1. Let p be some prime which does not divide q or a. Consider the values $q + a, 2q + a, 3q + a, \ldots, (p-1)q + a$. Since p doesn't divide q or a, one of these values is a multiple of p; assume it is nq + a. Then for k = pm + n, qk + a = (pm + n)q + a = pmq + nq + a is divisible by p, and thus can be prime for at most one value of m. The rest of the numbers of this form must be composite. \square

(2) (10 points) Recall that we defined the binomial coefficient n choose m to equal

$$\binom{n}{m} = \frac{n!}{m!(n-m)!},$$

and that in the first homework assignment we saw this was equal to an integer. Let p be a prime, and let 0 < i < p. Show that the power of p appearing in the factorization of $\binom{p}{i}$ is 1; ie, show that $p \mid \mid \binom{p}{i}$.

Solution. Recall that if 0 < i < p, then $p \nmid i$, so p does not appear in the prime factorization of i. Since $\binom{p}{i} = \frac{p!}{i!(p-i)!}$, if we write $p! = p(p-1)\dots(2)(1)$, we see that p appears in only one factor in the numerator of $\binom{p}{i}$, so $p \parallel p!$. Looking at the denominator, as long as 0 < i < p, then p does not divide either i! or (n-i)!, since both i, n-i < p. Hence p does not divide the denominator, so $p \parallel \binom{p}{i}$. \square

(3) (10 points) Let p be a prime, and let n be a positive integer. Find an expression for the power of p in the factorization of lcm(1, 2, 3, ..., n), and prove that your answer is correct.

Solution. First, we claim that if $n_1 = p_1^{e_{11}} \dots p_k^{e_{1k}}, n_2 = p_1^{e_{21}} \dots p_k^{e_{2k}}, \dots, n_r = p_1^{e_{r1}} \dots p_k^{e_{rk}}$, then

$$lcm(n_1,\ldots,n_r) = p_1^{m_1}\ldots p_k^{m_k},$$

where $m_i = \max(e_{1i}, e_{2i}, \dots, e_{ri})$ is the maximum of all the exponents of the *i*th prime p_i in the factorizations of n_1, \dots, n_r . Indeed, this follows from the fact that $b \mid a$ if and only if the exponent of each prime p appearing in the factorization of b divides the exponent of p in the factorization of a.

Therefore, for an arbitrary prime p, the power of p in the factorization of $L = \operatorname{lcm}(1, 2, 3, \ldots, n)$ is the highest power of p less than or equal to n. Let p^k be the highest power. On the other hand, We want $p^k \leq n < p^{k+1}$, or equivalently $k \leq \log_p(n) < k+1$. Hence the expression we are looking for is $|\log_p n|$. \square

(4) (10 points) Let a, b > 1 be two integers which do not have all the same prime factors. (For instance, a = 6, b = 24 would not satisfy this property, since their prime factors are the same; namely, 2, 3, whereas a = 10, b = 8 would, since $5 \mid a, 5 \nmid b$.) Show that $\log_a b$ is an irrational number.

Solution. First, notice that because b > 1, $\log_a b > 0$. Suppose $\log_a b$ were rational; say of the form m/n, where m, n > 0. Then

$$a^{m/n} = b$$
, or $a^m = b^n$.

However, if $p \mid a, p \nmid b$, then p divides the left hand side but not the right hand side, a contradiction. Similarly if $p \mid b, p \nmid a$. \square

(5) (10 points) Show that there are infinitely many prime numbers in the form 8k + 5 or 8k + 7.

Solution. (In this problem, you are not supposed to use Dirichlet's Theorem.) Suppose there were only finitely many primes of form 8k+5 or 8k+7; call them p_1, \ldots, p_k . Let $N = 8p_1 \ldots p_k - 1$. Notice that $p_i \nmid N$ for all $1 \leq i \leq k$, since $p_i \mid (8p_1 \ldots p_k)$, but $p_i \nmid -1$. Also, N is not even. Therefore, N is a product of primes of form 8k+1 and 8k+3. However, notice that a product of numbers of these two forms is always of form 8k+1 or 8k+3. Indeed, using congruence notation, if $a, b \equiv 1$ or $3 \mod 8$, then $ab \equiv 1, 3, 3 \cdot 3 \equiv 1, 3, 1 \mod 8$. But then this means $N \equiv 1, 3 \mod 8$, which is evidently impossible because the definition of N shows that $N \equiv 7 \mod 8$. \square