Evaluation Quiz

Due No due date **Time Limit** None

Points 3 Questions 3
Allowed Attempts Unlimited

Available after Mar 23 at 0:00

Take the Quiz Again

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	less than 1 minute	0 out of 3

Submitted Jun 16 at 18:19

Jnanswered

Question 1 0 / 1 pts

On a given test data, a classifier detects 4 TP, 3 TN, 6 FP, and 0 FN. The Precision (P), Recall (R) and F-score (assume β =1) of the classifier are:

P:0.1, R:1, F:0.8

orrect Answer

- P:0.4, R:1, F:0.57
- P:0.2, R:0.8, F:2
- P:1, R:0.4, F:1

Precision = TP/(TP+FP)=4/(4+6)=0.4

Recall = TP/(TP+FN)=4/(4+0)=1

F-score = 2*P*R/(P+R) = 2*0.4*1/(0.4+1)=0.4/1.4=0.57

Jnanswered

Question 2 0 / 1 pts

You have built a model which detects whether a patient has cancer or not. Your model has a high Precision, but low Recall. Now, which of the following statement(s) is CORRECT? There might be more than one correct answer.

orrect Answer

- A lot of cancer patients will remain undetected
- The False Positive rate of the model is high.
- This model should be safe to use

orrect Answer

- A patient who is tested positive result will likely indeed have cancer
- A lot of cancer patients will remain undetected because a low Recall means there will be a lot of False Negatives.
- High precision means that the false positive rate is low, i.e., that most predicted positives are true positives
- The fact that many cancer cases remain undetected indicates that the system is **not** safe to deploy

Jnanswered Question 3 0 / 1 pts

	Which statement is TRUE about evaluation? There might be more than one correct answer.		
	Train and test subsets are allowed to overlap in evaluation.		
orrect Answer	The number of partitions in Cross-validation influences on evaluating the performance of a classifier.		
orrect Answer	Cross-validation reduces the effect of random spliting of data into train-test subsets in comparison with Holdout approach.		
	Accuracy is always the best metric to evaluate the performance of classifiers.		
	Using train data for evaluating the performance of a classifier returns worse value than using Holdout subset.		