Form with equations for Electricity and Magnetism

Speed of light: $c = 3.00 \cdot 10^8 \text{ m/s}$

Magnetic permeability of vacuum: $\mu_0 = 4\pi \cdot 10^{-7} \text{ N/A}^2$

Electrical permittivity of vacuum: $\varepsilon_0 = \frac{1}{\mu_0 c^2} = 8.854 \cdot 10^{-12} \frac{\text{C}^2}{\text{Nm}^2}$

Charge of an electron: $e = 1.6 \cdot 10^{-19}$ C

Coulomb's law: $\vec{F} = k \frac{q_1 q_2}{r_{1,2}^2} \hat{r}_{1,2}$ with $k = \frac{1}{4\pi\varepsilon_0} = 8.99 \cdot 10^9 \text{ Nm}^2/\text{C}^2$

Force on a charge in an electric field $\vec{F} = q\vec{E}$

Torque on an electric dipole: $\vec{\tau} = \vec{p} \times \vec{d}$ with the electric dipole moment: $\vec{p} = q\vec{d}$

Potential energy of an electric dipole: $U = -\vec{p} \cdot \vec{E}$

Potential difference: $\Delta V_{AB} = V_B - V_A = -\int_{r_a}^{r_b} \vec{E} \cdot d\vec{r}$

Potential of a charge distribution: $V = \iiint_V \frac{k}{r} dq$

Electric field of a change in potential: $\vec{E} = -\vec{\nabla}V$

Force on a charge in a magnetic field: $\vec{F} = q\vec{v} \times \vec{B}$

Lorenz's law: $\vec{F} = I\vec{L} \times \vec{B}$

Torque on a magnetic dipole: $\vec{\tau} = \vec{\mu} \times \vec{B}$ with the magnetic dipole moment: $\vec{\mu} = N\vec{A}$

Potential energy of a magnetic dipole: $U = -\vec{\mu} \cdot \vec{B}$

Biot-Savart's law: $\vec{B} = \int d\vec{B} = \int \frac{\mu_0}{4\pi} \frac{I d\vec{L} \times \hat{r}}{r^2}$

Electrical current $I = \frac{\Delta Q}{\Delta t} = nqA |\vec{v}_d|$ with \vec{v}_d the drift velocity.

Current density $\vec{J} = nq\vec{v}_d = \sigma\vec{E}$ with σ the conductivity.

Resistance: $R = \frac{\rho l}{A} = \frac{l}{\sigma A}$ with ρ the resistivity.

Ohm's law: V = IR.

Energy density of the electric field: $u_E = \frac{1}{2} \varepsilon_0 \varepsilon_r E^2$

Capacity: $C = \frac{Q}{V}$

Energy stored in a capacitor: $U = \frac{1}{2}CV^2$

Energy density of the magnetic field: $u_B = \frac{B^2}{2\mu_0\mu_r}$

Inductance: $L = \frac{\Phi_B}{I}$

Energy stored in an inductance: $U = \frac{1}{2}LI^2$

The electric flux $\Phi_E = \int \vec{E} \cdot d\vec{A}$

Gauss's law for the electric field:

- In vacuum (book): $\oint \vec{E} \cdot d\vec{A} = \int \vec{\nabla} \cdot \vec{E} dV = \frac{1}{\varepsilon_0} \int \rho dV$

- Including material properties: $\oint \vec{D} \cdot d\vec{A} = \int \vec{\nabla} \cdot \vec{D} dV = \int \rho_f dV$

The magnetic flux $\Phi_B = \int \vec{B} \cdot d\vec{A}$

Gauss's law for the magnetic field: $\oint \vec{B} \cdot d\vec{A} = \int \vec{\nabla} \cdot \vec{B} dV = 0$

Faraday's law: $\oint \vec{E} \cdot d\vec{r} = \int (\vec{\nabla} \times \vec{E}) \cdot d\vec{A} = -\frac{d}{dt} \int \vec{B} \cdot d\vec{A}$

Ampère's law:

- In vacuum (book): $\oint \vec{B} \cdot d\vec{r} = \int (\vec{\nabla} \times \vec{B}) \cdot d\vec{A} = \mu_0 \int \vec{J} \cdot d\vec{A} + \mu_0 \varepsilon_0 \frac{d}{dt} \int \vec{E} \cdot d\vec{A}$

- Including material properties: $\oint \vec{H} \cdot d\vec{r} = \int (\vec{\nabla} \times \vec{H}) \cdot d\vec{A} = \int \vec{J}_f \cdot d\vec{A} + \frac{d}{dt} \int \vec{D} \cdot d\vec{A}$

The constitutive equations:

- For dielectric materials in general: $\vec{D} = \varepsilon_0 \vec{E} + \vec{P}$

- For linear dielectric materials: $\vec{D} = \varepsilon_0 \vec{E} + \vec{P} = \varepsilon_0 \varepsilon_r \vec{E} = \varepsilon_0 \kappa \vec{E} = \varepsilon_0 (1 + \chi_e) \vec{E}$

- For magnetic materials in general: $\vec{B} = \mu_0 \vec{H} + \mu_0 \vec{M}$

- For linear magnetic materials: $\vec{B} = \mu_0(\vec{H} + \vec{M}) = \mu_0(1 + \chi_m)\vec{H} = \mu_0\mu_r\vec{H}$

The Poynting vector: $\vec{S} = \frac{\vec{E} \times \vec{B}}{\mu_0}$

Momentum of an electromagnetic wave: $p = \frac{U}{c}$

For an electromagnetic wave in vacuum: E = cB and $f\lambda = c$.