Schwingungen

 $y(t) = \hat{\mathbf{y}} \cdot \sin(\omega \cdot t + \varphi_0)$ $v(t) = \hat{\mathbf{y}}\omega \cdot \sin(\omega t + \varphi_0)$ $a(t) = -\hat{\mathbf{y}}\omega^2 \sin(\omega t + \varphi_0)$ $\omega = 2\pi f \; ; \; f = \frac{1}{T} = \frac{\omega}{2\pi}$ $\hat{\mathbf{v}} = \hat{\mathbf{y}}\omega \; ; \; \hat{\mathbf{a}} = \hat{\mathbf{y}}\omega^2;$ $Merke : \cos(\alpha) = \sin(\alpha + \frac{\pi}{2})$

Federpendel

 $F_{rueck} = -c \cdot s; \ c = -\frac{F}{s}; \ s = \frac{m \cdot g}{-c}$ $T = 2\pi \sqrt{\frac{m}{c}}; \ \omega = \sqrt{\frac{c}{m}}; \ f = \frac{1}{2\pi} \cdot \sqrt{\frac{c}{m}};$ $F = m \cdot \hat{\mathbf{y}} \cdot \omega^2; \ \hat{\mathbf{v}} = \hat{\mathbf{y}} \cdot \omega_0;$ $E_{ges} = E_{KIN} + E_{POT} = \frac{1}{2}c\hat{\mathbf{y}};$

Mathematisches Pendel (auch Fadenpendel)

Physikalisches Pendel

$$\begin{split} &\omega_0 = \sqrt{\frac{mgd}{J_P}}; \ T_0 = 2\pi\sqrt{\frac{J_P}{mgd}}; \\ &J_P = J_S + m_{ges} \cdot d^2; \ J_s = \frac{T_0^2}{4\pi^2} \cdot c^*; \\ &c^* = \omega_0^2 \cdot J_S = -(\frac{M_{rueck}}{\beta}); \\ &\text{mit } sin(\beta) \cong \beta \text{ bei } Kleinwinkeln\"{a}herung \\ &M = J_P \cdot \frac{d^2\beta}{dt^2} = J_P \cdot \ddot{\beta}; \end{split}$$

Torsionspendel

$$\begin{split} M_r &= -c^*\beta; \ \beta(t) = \hat{\beta} \cdot \cos(\omega_0 t + \varphi_0); \\ \omega_0 &= \frac{c^*}{J_S}; \ T_0 = 2\pi \sqrt{\frac{J_S}{c^*}}; \\ J_S &= J_A - mr^2 = mr \cdot \frac{T_0^2}{4\pi} \cdot g - r; \end{split}$$

Flüssigkeitspendel im U-Rohr

 $m_{fl} = V_H \cdot \rho; \quad \omega_0^2 = \frac{2A\rho g}{m_{ges}}; \quad \omega_0^2 = \frac{2g}{l};$ $T_0 = 2\pi \sqrt{\frac{m_{ges}}{2A\rho g}}; \quad m_{ges} = A \cdot l \cdot \rho;$ $y(t) = \hat{\mathbf{y}}cos(\omega_0 t + \varphi_0); \quad T_0 = 2\pi \sqrt{\frac{l}{2g}};$

Energie

$$\begin{split} E_{GES} &= E_{KIN} + E_{POT} = \frac{1}{2}cy^2; \\ \mathbf{E_{kin}} &= \frac{1}{2}m\hat{\mathbf{y}}^2 \\ \Rightarrow \frac{1}{2}m\hat{\mathbf{y}}^2 \cdot \omega_0^2 \cdot sin^2(\omega_0t + \varphi_0); \\ \mathbf{E_{pot}} &= \frac{1}{2}cy^2 = \frac{1}{2} \cdot c \cdot \hat{\mathbf{y}}^2 \cdot cos(\omega_0t + \varphi_0); \\ 0 &\leq E_{POT} \leq \frac{1}{5}cy^2 \end{split}$$

Energieniveaus:

 $\mathbf{E_{kin}} = \frac{1}{2}mv^2$ \Rightarrow \frac{1}{2}D\hat{\hat{y}}^2 \cdot [1 - \cos^2(\omega_0 t + \varphi_0)]

Arbeit bei $y_1 \to y_2$: $W_{12} = \left[\frac{1}{2}Dy^2\right]_{y_1}^{y_2} = \frac{1}{2}D(y_2^2 - y_1^2);$

Autoren:

Freie gedämpfte Schwingung

Gleit und Rollreibkraft: $F_R = \pm \mu \cdot F_N$ Viskose Reibkraft: $F_R = -b \cdot v(t)$;

Geschw. unabh. Luftreibkraft:

 $F_R = -k \cdot v^2(t);$

für den gedämpften Teil

$$\begin{split} y(t) &= \hat{\mathbf{y}} \cdot e^{-\delta t} \cdot \cos(\omega_d t + \varphi_0) \\ \delta &= \frac{b}{2m}; \quad D = \frac{\delta}{\omega_0}; \quad \omega_d^2 = \omega_0^2 - \delta^2; \\ \delta &= \text{Abklingkoeffizient} \\ b &= \text{Dämpfungskoeffizient} \\ D &= \text{Dämpfungsgrad} \\ \omega_0 &= \text{ungedämpfter Teil} \\ \omega_d &= \text{gedämpfter Teil} \end{split}$$

Schwingfall: D < 1 $\Rightarrow y(t) = \hat{\mathbf{y}}_0 \cdot e^{-\delta t} \cos(\omega_0 t + \varphi_0);$

$$\begin{split} & \text{Kriechfall: } D > 1 \\ & \Rightarrow y(t) = \hat{\mathbf{y}}_1 \cdot e^{-\omega_0(D + \sqrt{D^2 - 1})t} + \hat{\mathbf{y}}_2 \\ & e^{-\omega_0(D + \sqrt{D^2 - 1})t} ; \end{split}$$

Aperiodischer Grenzfall: D = 1 $\Rightarrow y(t) = (\hat{\mathbf{y}}_1 + \hat{\mathbf{y}}_2) \cdot e^{-\omega_0 t};$

Logarithmisches Dekrement:

 $\Lambda = ln(k) = \delta \cdot T_d = ln(\frac{\hat{y}_i}{\hat{y}_{i+1}});$ $k = \sqrt[n]{\frac{\hat{y}_i}{\hat{y}_{i+n}}};$

Erzwungene Schwingungen

$$\begin{split} A &= \frac{\hat{\mathbf{f}}_E}{c} \cdot \frac{1}{\sqrt{(1-\eta^2)^2 + (2D\eta)^2}} \\ &\Rightarrow \frac{\hat{\mathbf{f}}_E}{c} \cdot \frac{1(Bei\,Resonanz)}{2D\sqrt{1-D^2}}; \\ F_E &= -cy, \ F_E = \hat{\mathbf{f}}_E \cdot cos(\omega_E t); \\ F_{ges} &= F_{rueck} + F_R + F_E; \\ \eta_{res} &= \sqrt{1-2D^2}; \ \eta = \frac{\omega_E}{\omega_0}; \\ \mathbf{Phasendifferenz}: \ \alpha = arctan(\frac{2D\eta}{(1-\eta^2)}) \\ \omega_{res} &= \omega_0 \cdot \sqrt{1-D^2} = \sqrt{\omega_0^2 - 2\delta^2}; \end{split}$$

Gekoppelte Pendel

Gleichphasig: $f_1 = f_0 = \frac{1}{2\pi} \cdot \sqrt{\frac{c}{m}};$ Gegenphasig: $f_2 = \frac{1}{2\pi} \cdot \sqrt{\frac{c+2c_{12}}{m}};$

Kopplungsgrad k:

 $k = \frac{c_{12}}{c+c_{12}} = \frac{T_1^2 - T_2^2}{T_1^2 + T_2^2} = \frac{f_2^2 - f_1^2}{f_1^2 + f_2^2}$ lose Kopplung: $k \ll 1$ und $f_2 \approx f_1$; feste Kopplung: $k \approx 1$ und $f_2 \neq f_1$;

$$\begin{array}{l} y_1(t) = 2\hat{\mathbf{y}}cos(\frac{\omega_1 + \omega_2}{2}t) \cdot cos(\frac{\omega_1 - \omega_2}{2}t); \\ y_2(t) = 2\hat{\mathbf{y}}sin(\frac{\omega_1 + \omega_2}{2}t) \cdot sin(\frac{\omega_1 - \omega_2}{2}t) \end{array}$$

Interferenz

bei gleicher Raumrichtung:

$$\begin{split} \hat{\mathbf{y}}_{neu} & \Rightarrow \sqrt{\hat{\mathbf{y}}_1^2 + 2\hat{\mathbf{y}}_1\hat{\mathbf{y}}_2 \cdot \cos(\varphi_{01} - \varphi_{02}) + \hat{\mathbf{y}}_2^2}; \\ tan(\varphi_{neu}) & = \frac{\hat{\mathbf{y}}_1 sin(\varphi_{01}) + \hat{\mathbf{y}}_2 sin(\varphi_{02})}{\hat{\mathbf{y}}_1 cos(\varphi_{01}) + \hat{\mathbf{y}}_2 cos(\varphi_{02})}; \\ f_{neu} & = \frac{f_1 + f_2}{2} = \frac{\omega_{neu}}{2\pi}; \\ T_{neu} & = 2 \cdot \frac{T_1 \cdot T_2}{T_1 + T_2} = \frac{1}{f_{neu}} \end{split}$$

Schwebung

 $y(t)_{neu} = y_1(t) + y_2(t)$ $\Rightarrow 2\hat{\mathbf{y}}cos(\frac{\omega_1 + \omega_2}{2}t) \cdot cos(\frac{\omega_1 - \omega_2}{2}t)$ $f_s = f_1 - f_2; \quad T_s = \frac{T_1 \cdot T_2}{T_1 - T_2} = \frac{1}{f_s};$

Überlagerung bei großem Δf :

 $y_R = \hat{\mathbf{y}}[sin(\omega t) + \frac{1}{3}sin(3\omega t) + \frac{1}{5}sin(5\omega t)];$ wenn $\frac{fgross}{f_{klein}} = \in \mathbb{N}$ und Überl.: $\perp \Rightarrow Lissajoue;$

Longitudinale Wellen

$$\begin{aligned} &Gas: c = \sqrt{\frac{xp}{\rho}} \quad Fluid: c = \sqrt{\frac{k}{\rho}} \\ &St\ddot{a}be: c = \sqrt{\frac{E}{\rho}} \\ &Torsion \; Rundstab: c = \sqrt{\frac{G}{\rho}} \end{aligned}$$

Torsion Rundstab: $c = \sqrt{\frac{G}{\rho}}$ E-mag Welle in Materie: $c = \frac{1}{\sqrt{\varepsilon_r \varepsilon_0 \mu_r \mu_0}}$ E-mag Welle in Vakuum: $c = \frac{1}{\sqrt{\varepsilon_r \varepsilon_0 \mu_r \mu_0}}$

Totalreflexion

 $\sin(\varepsilon_g) = \frac{n'}{n}$ mit n' = Dünneres Medium Lichtwellenleiter: $\sin(\delta_{max}) = \sqrt{n_1^2 - n_2^2};$

Beugung am Gitter

Gitterkonstante g: $\frac{s}{n}$ mit n = Striche; für $\alpha_n > 90^\circ$: $Maxima: \sin(\alpha_n) = n \cdot \frac{\lambda}{g}$; $Minima: \sin(\alpha_n) = (n + \frac{1}{2}) \cdot \frac{\lambda}{g}$;

Beugung am Spalt

 $\begin{aligned} & \operatorname{Maxima:} \sin(\alpha_n) = (n + \frac{1}{2}] \cdot \frac{\lambda}{b}; \\ & \operatorname{Minima:} \sin(\alpha_n) = n \cdot \frac{\lambda}{b}; \\ & \operatorname{Gangunterschied:} \\ & \max: \Delta s = (n + \frac{1}{2}) \cdot \lambda; \\ & \min: \Delta s = n \cdot \lambda; \end{aligned}$

min. $\Delta s = n \cdot \lambda$, $s = \frac{x}{\tan(\alpha)}$ mit Beugungsmaxima bei $\alpha = \alpha 0^{\circ}$.

 $\begin{array}{l} \textit{Minimaler Abstand: Direkt am Spalt} \\ \textit{Maximaler Abstand:} \sin(\alpha_7) = (7 + \frac{1}{2}) \cdot \frac{\lambda}{b}; \\ \text{b: Spaltbreite, d: Spaltabstand,} \\ \text{s: Abstand Maxima} \\ X = \frac{\pi b}{1} \cdot \sin(\alpha) \end{array}$

Beugung am Doppelspalt

Maxima: $\sin(\alpha_n) = n \cdot \frac{\lambda}{d}$; Minima: $\sin(\alpha_n) = (n + \frac{1}{2}) \cdot \frac{\lambda}{d}$; Gangunterschied: $\delta_{max} = d \cdot \sin(\alpha) = n \cdot \lambda$;

$\delta_{min} = d \cdot \sin(\alpha) = (n + \frac{1}{2}) \cdot \lambda$

Linsen

Brennweite:

Aus n_{Linse} als einzige Brechzahl folgt: $\Rightarrow f' = \frac{n}{n-1} \cdot \frac{r_1 r_2}{n(r_2 - r_1) + d(n-1)} = -f;$

 $\begin{array}{l} \textbf{Linsensystem:} \ \frac{1}{f'} = \frac{1}{f'_1} + \frac{1}{f'_2} - \frac{e_{12}}{f'_1 f'_2} \\ \text{mit } e_{12} \ \text{als Linsenabstand} \\ e_{12} = A + d_1 + d_2; \end{array}$

Snellius'sches Brechungsgesetz: $n_1 \cdot \sin(\delta) = n_2 \cdot \sin(\delta)$

Akkustik

Hörbare Schallwellen: 16Hz - 20kHz

Horbare Schallweilen: 16Hz - 20KHz		
Q	В	Formel
•	← •	$f_B = f_Q(1 + \frac{v_B}{c})$
•	ullet $ o$	$f_B = f_Q(1 - \frac{v_B}{c})$
$\bullet \to$	•	$f_B = f_Q(\frac{c}{c - v_Q})$
$\leftarrow \bullet$	•	$f_B = f_Q(\frac{c}{c + v_Q})$
ullet $ o$	← •	$f_B = f_Q(\frac{c + v_B^2}{c - v_Q})$
$\leftarrow \bullet$	ullet $ o$	$f_B = f_Q(\frac{c - v_B^2}{c + v_Q})$
$\leftarrow \bullet$	← •	$f_B = f_Q(\frac{c + v_B^2}{c + v_Q})$
$\bullet \to$	ullet $ o$	$f_B = f_Q(\frac{c - v_B^2}{c - v_Q})$
Jt		

Überschall:

 $\sin \alpha = \frac{c}{v_O} = \frac{1}{Ma}$ Ma = Mach

Wellen

 $y = \hat{\mathbf{y}}\sin\left(t - \frac{x}{c}\right) = \hat{\mathbf{y}}2\pi\sin\left(\frac{t}{T} - \frac{x}{\lambda}\right);$ Stehende Welle:

$$y_R = y_1 + y_2$$

$$\Rightarrow \hat{\mathbf{y}}[\sin 2\pi (\frac{t}{T} - \frac{x}{\lambda}) + \sin 2\pi (\frac{t}{T} + \frac{x}{\lambda})];$$

Gleiche Frequenzen: $\alpha = \varphi_2 - \varphi_1$ $y_n(x,t) = 2\hat{\mathbf{y}}\cos\left(\frac{\alpha}{s}\right)\cos\left(\omega t - kx + \frac{\alpha}{2}\right)$

Wellenausbreitung:

 $c = \sqrt{\frac{KRT}{M}}$

K = Adiabatenkoeffizient

R = Uni. Gaskonstante $(8, 314 \frac{J}{mol \ K})$ T = Absolute Temperatur in Kelvin

M = Molmasse

Brechung des Lichts

 $\frac{Med_1, c_1, n_1}{Med_2, c_2, n_2} \Rightarrow \varepsilon_1(Med_1) > \varepsilon_2(Med_2)$ Brechungsindex: n

Winkel zum Normalenvektor der Ebene: ε Ausbreitungsgeschwindigkeit: $c_2 = \frac{c_1}{n_2}$

Wellenlänge: $\lambda_2 = \frac{\lambda_1}{n_2}$

Abbildung mit Spiegel Allgemeines vorgehen:

- 0. Linien hinter dem Spiegel gestrichelt
- 1. Objekt zum Spiegel paraxiale Linie
- 2. Schnittpunkt: Spiegel zum Brennpunkt
- $3.\ {\rm Brennpunkt}$ zu Objekt bis Spiegel
- 4. Schnittpunkt: Spiegel paraxiale HINWEIS: evtl. müssen die Linien 2 und 4 verlängert werden damit ein Schnittpunkt entsteht

Beschriftung:

Abstand Brennpunkt (F) Spiegel = f Abstand Objekt (O) Spiegel = a Größe Objekt (P) = y Abstand Abb.Objekt (O') Spiegel = a' Größe Abb.Objekt (P') = y'

Brennweite Konkavspiegel:

 $f = r \cdot (1 - \frac{1}{2}\cos(\varepsilon))$

Abbildungsmaßstab:

 $\beta' = \frac{y'}{y} = -\frac{a'}{a}$

${\bf Extras} \ {\bf Trigonometrie}$

 $\sin^2(x) + \cos^2(x) = 1;$

 $\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$ $\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha)$

 $\cos(2\alpha) = \cos(\alpha) - \sin(\alpha)$ $\sin^2(\alpha) = \frac{1}{2}(1 - \cos(2\alpha))$

 $\sin^{2}(\alpha) = \frac{1}{2}(1 - \cos(2\alpha))$ $\cos^{2}(\alpha) = \frac{1}{2}(1 + \cos(2\alpha))$

Symmetrie:

 $\sin(-x) = -\sin(-x)$ $\cos(-x) = -\cos(x)$

Additions theoreme:

$$\begin{split} \sin(\alpha\pm\beta) &= \sin(\alpha)\cos(\beta)\pm\cos(\alpha)\sin(\beta)\\ \cos(\alpha\pm\beta) &= \cos(\alpha)\cos(\beta)\mp\sin(\alpha)\sin(\beta)\\ \sin(\alpha) &+ \sin(\beta) &= 2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)\\ \sin(\alpha) &- \sin(\beta) &= 2\cos\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)\\ \cos(\alpha) &+ \cos(\beta) &= 2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)\\ \cos(\alpha) &- \cos(\beta) &= 2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right) \end{split}$$

Weitere Formeln:

 $\begin{array}{l} abc\text{-}Formel: \\ ax^2+bx+c \Rightarrow x_{1,2} = \frac{-b\pm\sqrt{b^2-4ac}}{2a} \\ pq\text{-}Formel: \\ x^2+px+q \Rightarrow x_{1,2} = -\frac{p}{2} \pm \sqrt{(\frac{p}{2})^2-q} \end{array}$