Earth and Planetary Sciences (ES1101)

(Minerals: Building Blocks of Rocks) (Autumn 2021 by Gaurav Shukla)

- **Book: 1) Understanding Earth by Grotzinger & Jordan (Text Book)**
 - 2) Earth: An introduction to Physical Geology by Tarbuck & Lutgens
 - 3) The Solid Earth: An introduction to global geophysics by Fowler

Structure of Minerals

Most abundant elements in the crust

Figure 3.30
The eight most abundant elements in the continen-

Minerals Classification

- More than 4000 minerals have been identified, and several new ones are identified each year.
- Common minerals that make up most of the Earth's crust are only a few dozens and known as rock-forming minerals.
- As we have seen that the oxygen and silicon are the most common elements in the Earth's crust, so the silicate minerals account for more than 90% of the crust.

Minerals Classification: Silicate Minerals

Minerals Classification: Silicate Minerals

Table 11.1 Silicate Classification^a

Silicate Class	Number of O ²⁻ Shared per Tetrahedron	Z:O Ratio	Structural Configuration
Orthosilicates	0	1:4	Isolated tetrahedra
Disilicates	1	2:7	Double tetrahedra
Ring silicates	2	1:3	Rings of tetrahedra
Chain silicates			Chains of tetrahedra
Single chain	2	1:3	
Double chain	2 or 3	4:11	
Sheet silicates	3	2:5	Sheets of tetrahedra
Framework silicates	4	1:2	Framework of tetrahedra

^aZ refers to the cation(s), usually Si⁴⁺, and also Al³⁺, that occupy the tetrahedral sites.

Minerals Classification: Silicate Minerals

Phase Transitions in Olivine

Figure 1. Schematic of the volumetric mineral constitution of a peridotite mantle down to the lower mantle (modified after Ito & Takahashi 1987). Peridotite is a dense coarse-grained igneous rock consisting mainly of olivine and pyroxene. It is high in Fe and Mg and contains less than 45% Si. Peridotite can be found in xenoliths (rock fragments) brought to the surface by magma deriving from the upper mantle. Pl=plagioclase–CaAl₂Si₂O₈; Sp=spinel–MgAl₂O₄; Gt=garnet–(Mg,Fe,Ca)₃Al₂Si₃O₁₂; majorite garnet–Mg₃(Mg,Si)₂Si₃O₁₂; Cpx=clinopyroxene–(Ca,Fe,Mg) SiO₃; Opx=orthopyroxene–(Mg,Fe)SiO₃; Mg-Pv=Mg-perovskite–(Mg,Fe)SiO₃; olivine–(Mg,Fe)₂SiO₄; Mw=magnesiowüstite–(Mg,Fe)O; Ca-Pv=Ca-perovskite–CaSiO₃; St=stishovite–SiO₂.

https://royalsocietypublishing.org/doi/10.1098/rsta.2005.1675

Phase Transitions in Olivine

lpha —Olivine

 β –Olivine

 γ –Olivine

Phase Transitions in Bridgmanite

Post-perovskite, Orthorhombic (expected to be in the D" region)

Some interesting details about Olivine

- Nesosilicate: Isolated SiO₄ Tetrahedra
- Most common mineral in the Earth's mantle
- (Mg,Fe)₂SiO₄
- Mg, Fe form MO₆ Octahedra that link Tetrahedra
- Olivine is Orthorhombic near surface conditions called Alpha olivine
- At higher P-T, Alpha olivine changes to Beta olivine which contains sites that contain (OH)
- At still higher P-T, changes to gamma olivine which is isometric and can contain OH
- At still higher P-T changes to perovskite structure

Alpha to Beta at 410 Km, Beta to Gamma at 520 Km, Gamma to Perovskite at 660 Km

Exploring Earth's Interior using Seismic Waves

Alpha to Beta at 410 Km, Beta to Gamma at 520 Km, Gamma to Perovskite at 660 Km

FIGURE 14.8 • The structure of the mantle beneath old oceanic lithosphere, showing S-wave velocities to a depth of 900 km. Changes in S-wave velocity mark the strong, brittle lithosphere, the weak, ductile asthenosphere, and a transition zone, in which increasing pressure forces rearrangements of atoms into denser and more compact crystal structures (phase changes).

TABLE 4.2 Summary of Mantle Mineral Assemblages for Average Garnet Lherzolite from High-Pressure Studies

Studies					
Depth (km)	Mineral assemblage (minerals in vol%)		Density contrast (%)	Slope of reaction (MPa/°C)	
<410	Olivine	58			
	Opx	11			
	Срх	18			
	Garnet	13			
350-450	Opx-Cpx → Majorite		6	+1.5	
410-km discontii	nuity				
410	Olivine (α phase) \rightarrow Wadsleyite (β phase)		6	+5.5	
410-550	Wadsleyite	58			
	Majorite	30			
	Срх	9			
	Орх	3			
520-km discontinuity					
520	Wadsleyite \rightarrow Ringwoodite (γ phase) Ca-garnet \rightarrow Ca-perovskite		1	+3.0	
550-660	Ringwoodite	58			
	Majorite	37			
	Ca-Perovskite	5			
660-km discontii	nuity				
660	$Ringwood ite \mathop{\rightarrow}\nolimits Bridgman ite \mathop{+}\nolimits Magnesio wustite$		7-9	-0.5 to -3.5 (dry); ≤ -2 (wet)	
650-680	Majorite → Perovskite			+1.5 to +2.5	
650–680	$Ilmenite \rightarrow Perovskite$				
650–680	$Pyroxene \mathop{\rightarrow}\nolimits Akimotoite$				
680–2900	Bridgmanite	77			
	Magnesiowustite	15			
	Ca-Perovskite	8			
	Silica (?)				
D" discontinuity					
2600-2750	$Bridgmanite \mathop{\rightarrow} post\text{-}perovskite$		1	7-10	

Opx, orthopyroxene; Cpx, clinopyroxene.

Data from Itá and Stixrude (1992), Christensen (1995), Mambole and Fleitout (2002), Hirose (2002), Katsura et al. (2003), Fei et al. (2004), Litsov et al. (2005), Wolstencroft and Davies (2011).

- During chemical analysis of different samples of *a mineral*, it is routinely found that these samples do not have same chemical composition (Definite but not a fixed chemical composition).
- Composition variation is possible because different cations can interchangeably occupy the various sites. The term applied to this compositional variation is **solid solution**.
- Practically all naturally occurring minerals containing Fe-Mg-Mn-Ca or Na-K etc. are solid solutions.
- Quartz (SiO₂) is not a solid solution.

Substitution Solid Solution: Substitution of one cation for another.

- > Requirement for substitution solid solution:
 - Ion sizes must be similar
 - Charge neutrality must be maintained
 - Similar electronegativity
- ✓ If the difference in ion size is less than 15%, extensive substitution is possible.
- ✓ If the size difference is \sim 15-30%, limited substitution possible.
- ✓ If the size difference is greater than 30%, substitution is very unlikely.
- Temperature has a substantial influence on the degree to which ions of different sizes may substitute for each other.

Substitution Solid Solution: Substitution of one cation for another.

> Simple substitution:

Olivine, Forsterite (Mg₂SiO₄)-Fayalite (Fe₂SiO₄) end members

- The structure is viewed down the a-axis
- Octahedral M-sites or occupied by Mg²⁺ or Fe²⁺
- The shaded wedge shown on M-sites represents the occupation of Fe²⁺. In this case 22%.

➤ Coupled substitution: Coupled substitution maintains a charge balance by coupling one substitution that increases the charge with another that reduces the charge.

Example: Plagioclase: Albite (NaAlSi3O8)-Anorthite (CaAl2Si2O8) end members

- Ca²⁺ and Na⁺ both occupy distorted 8fold coordination sites.
- Si⁴⁺ and Al³⁺ both occupy tetrahedral coordination sites.

$$Ca^{2+} + Al^{3+} = Na^{+} + Si^{4+}$$

Polymorphism: Al₂SiO₅

Polymorphism: SiO₂

Polymorphism: SiO₂

Meteor Crater, also known as Barringer Crater (Arizona, USA)

https://en.wikipedia.org/wiki/Meteor Crater

Impact crater/structure				
Confidence	Confirmed [1]			
Diameter	0.737 miles (1.186 km)			
Depth	560 feet (170 m)			
Rise	148 feet (45 m)			
Impactor diameter	160 feet (50 m)			
<u>Age</u>	50,000 years			

Polymorphism: Carbon

Figure 3.29

Diamond versus graphite

Both diamond and graphite are natural substances with the same chemical composition: carbon atoms. Nevertheless, their internal structures and physical properties reflect the fact that each formed in a very different environment. (Photo A Marcel Clemens/Shutterstock; photo B by E. J. Tarbuck)

Polymorphism: Carbon

Polymorphism

 Table 4.4 Common Polymorphic Mineral Groups

Chemical Composition	Mineral Name
SiO_2	α -Quartz
	β -Quartz
	α -Tridymite
	β -Tridymite
	Cristobalite
	Coesite
	Stishovite
FeS_2	Pyrite
	Marcasite
C	Graphite
	Diamond
AlAlOSiO ₄	Andalusite
	Sillimanite
	Kyanite
KAlSi ₃ O ₈	Sanidine
	Orthoclase
	Microcline

Minerals Classification: Silicate Minerals

