

LOUISIANA STATE UNIVERITY

College of Agriculture
School of Plant, Environmental, and Soil Sciences
AGRO 7076 HTP in Plant Breeding

Introduction to the HTP course

Prof. Roberto Fritsche-Neto

rfneto@agcenter.lsu.edu

Baton Rouge, Jan 24th, 2024

Schedule

		Workflow (3 credits)	
Class	Date	Lectures (Wednesdays, from campus) 9:30 -12:30 am	
1	Jan 24	Introduction to HTP; Radiation properties and remote sensing	
2	Jan 31	Image properties and acquisition; Image matrix practice on R	
3	Feb 7	Indices and tools (HW 1)	
4	Feb 21	Metashape: orthomosaic, DEM, and cloud points; Shapefiles on R (HW 2)	
5	Feb 28	Raster, index, counts, areas, and plant height on R (HW3)	
6	Mar 6	Envirotyping (theory) and Practice on R (HW4)	
7	Mar 20	Pre-processing images (theory and practice on R and VGG image annotator) (HW 5)	
8	April 3	Data mining and modeling (Theory)	
9	April 10	Data mining and modeling – Practice on R (HW 6)	
10	April 24	Journal Club	

Classes <u>Moodle</u>

Scripts and data https://github.com/rfn-qtl

Evaluation

Homeworks <u>Moodle</u>

Journal Club 4 papers in the end of the course

Main bibliography and material

Books

- Softwares
- QGIS https://www.qgis.org/en/site/
- Metashape https://www.agisoft.com/
- R https://cran.r-project.org/
- Rstudio https://posit.co/download/rstudio-desktop/
- See and install the packages one week in advance based on the script in the next slide

R packages and material

- Create a folder on your PC and inside it download the materials
- Download the datasets a week before (26 Gb of data!!!):
- Also, install R (version 4.2.3), then, these packages running this code:
- install.packages("imager", "raster", "devtools", "magick", "foreach", "doParallel", "sp", "tidyr", "data.table", "rlas", "lidR", "spdep", "pak", "BiocManager", "devtools", "superheat", "caret", "caretEnsemble", "h2o", "Cairo", "reticulate", "keras", "tensorflow", "abind", "ggplot2", "terra", "sf")
- BiocManager::install("EBImage")
- pak::pkg_install("TiagoOlivoto/pliman")
- https://cran.r-project.org/src/contrib/Archive/rgdal/rgdal 1.6-7.tar.gz (install manually this package)
- devtools::install github("andersst91/UAStools")
- devtools::install github("rfn-qtl/SoilType")
- devtools::install_github('allogamous/EnvRtype', force=TRUE)
- Install Tensorflow via https://tensorflow.rstudio.com/install/
- For Mac users follow: https://medium.com/gft-engineering/macbook-m1-tensorflow-on-jupyter-notebooks-6171e1f48060

Plant breeding as a solution

- It is the genetic improvement of plants for human benefit
- Two sources of information Genotype and Phenotype
- Connect genotype to phenotype heritability
- Understand the underlying genetics of traits
- Improve the rate of genetic gain
- Develop cultivars more efficiently
- It necessitates very large sample (population) sizes
- Improve the probability of selecting favorable recombinants
- Challenge: collecting phenotypic data on large populations

Phenotyping vs. genotyping

$$y = Zm + \varepsilon$$

Phenotypic data

Genomic/genotypic data

Phenomics (HTP)

Current challenges:

- 1. Validation of methods
- 2. Optimization of information

Plant Phenotyping

- Classic
- Time intensive
- Limited amount of data collected
- Small population sizes single time point data Quality?
- Trait bias visually scored
- Expensive?
- High-Throughput (HTP)
- Efficient
- Massive amount of data collected Large population sizes
- Multiple time point data
- Latent traits machine scored
- Lower cost?

Bottleneck

- How do we increase VG, accuracy, and response to selection?
- How can we accurately evaluate thousands of genotypes?
- Effect on Breeder's equation

$$RS = \frac{i.r.Vg}{T}$$

- Reduce phenotyping costs
- Challenges: build the structure, algorithms, and pipelines

Applications

Corn Stand RGB

<u>Machine</u>	<u>Manual</u>
2.25 seconds per plot	5.75 seconds per plot
Requires 1 person	Requires 9 people

<u>Machine</u>	<u>Manual</u>
<u>Average</u>	<u>Average</u>
2%	5.6%
Range 0% - 5%	Range 0% - 26%
on plot basis	on plot basis

Source: Gore (2017)

Light Detection And Ranging (LIDAR) phenotyping of defoliated cotton plants

HTP is an interdisciplinary field

- Computing languages
- Artificial intelligence
- Physiology
- Crop development
- Quantitative genetics
- Remote sensing
- Image and spectral wavebands
- GPS or GNSS
- http://thetruesize.com/

