

Worm Club Research Update

Joey Doll 12/5/2011

Outline

- Why poke hair cells?
- Device design and performance
- Hair cell stimulus results

Hair Cells as Mechanical Transducers

Current Experimental Methods

Experiments

- 1) Mechanics
- 2) Kinetics
- 3) Motility

a

Project image onto photodiode

Mechanics: 1 kHz, 1 mN/m

Kinetics: 5-10 kHz, >10 mN/m

Problem

Macroscale force probes are too slow for mammalian hair cells

Bundle Mechanics

Channel Kinetics

Amphibian kinetics: 10 kHz

Mammalian kinetics: ???

Outer Hair Cell Motility

OHCs as a source of positive feedback (the search for the cochlear amplifier)

Source: Joe Santos-Sacci

Motile force not measured to date (length inferred from capacitance)

Design Targets

	Design #	l_c $(\mu \mathbf{m})$	$l_{pr} (\mu \mathbf{m})$	k (mN/m)	f_d (kHz)	t_r ($\mu \mathbf{sec}$)	R_{pr} $(\mathbf{k}\Omega)$	MDD (nm)	MDF (pN)
<u>Mechanics</u>	1	142	12.6	0.3	3.3	286	4.1	11	3.3
	2	96	9.5	1.0	9.7	60	3.2	6.3	6.2
	3	75	7.7	2.1	19	23	2.7	4.6	9.6
	4	61	6.6	3.9	32	11	2.4	3.6	14
<u>Kinetics</u>	5	46	5.2	9.0	64	4.6	2.0	2.7	24
	6	35	4.1	20.4	124	2.0	1.6	2.1	42
	7	29	3.6	35.8	190	1.2	1.5	1.7	61

<u>Mechanics</u>

Device Design

Macroscale Probe Design

- Upright microscope
- 2mm working distance
- In-plane forces

Finished Devices

Actuator Step Response

Piezoelectric Actuator

Actuator-Sensor Crosstalk

Crosstalk Results

Actuator-Patch Clamp Crosstalk

First Hair Cell Results

Ongoing Work

- Solve the soft probe problem
 - Preliminary O2 plasma treatments done
- Prep more devices for experiments
- Wrap up characterization
 - Frequency response in liquid
 - Temperature
 - Finalize analysis and start writing up results