

C. briggsae genome annotation and comparative analysis with *C. elegans* using RNA-Seq data

Final oral examination for the degree of Master of Science

SHINTA THIO

Monday, April 6th, 2020

Caenorhabditis elegans as a model organism -

C. elegans:

• Small: ~1mm long

• Simple body plan: 959 cells

Compact genome size: ~100 Mbp, first multicellular genome sequenced¹

Key discoveries using *C. elegans*:

1. microRNA²

2. Apoptosis pathway³

Nomarski photomicrograph, newly hatched ced-1 larva. Bar=10u

3. Cell visualization in living organism using GFP⁵

C. briggsae facilitates C. elegans research

- 1. Improving genome annotation (ortholog-based)¹⁻⁷
- 2. Understanding embryonic development⁸⁻¹⁰

3. Understanding evolution of hermaphroditism¹¹

C. briggsae is a powerful comparative tool to improve the understanding of C. elegans

Current *C. briggsae* annotation is inadequate

C. elegans

C. briggsae

■ C. elegans

Current *C. briggsae* annotation is inadequate

C. elegans

C. briggsae

Extensive studies in *C. elegans*, **limited studies** in *C. briggsae*.

Current *C. briggsae* annotation is mostly computational

C. briggsae

Computational

- Ab initio gene finding
- Sequence conservation

Experimental

- ESTs & Protein-based comparisons
- RNA Sequencing (RNA-Seq, 2 libraries)

C. elegans

Computational

- Ab initio gene finding
- Homology-based gene prediction

Experimental

- Expressed sequence tags (ESTs)
- Open reading frame sequence tags (OSTs)
- Serial analysis of gene expression (SAGE)
- Rapid Amplification of cDNA ends (RACE)
- Trans-spliced exon coupled RNA end determination (TEC-RED)
- RNA Sequencing (RNA-Seq, ~800 libraries)

Hypothesis #1: The *C. briggsae* genome annotation is incomplete and can be improved using additional RNA-Seq data.

Complete genome annotation is essential for comparative genomics

- Protein-coding sequences and cis-regulatory regions are usually highly conserved
- A more complete or accurate genome annotation can increase the quality of the annotation of its close relative

Hypothesis #2: Using the improved *C. briggsae* annotation, we can find additional orthologous relationships with *C. elegans* that were previously missed and additional *C. elegans* gene models.

Hypotheses

C. briggsae genome annotation is incomplete which limits its utility as a comparative platform for C. elegans.

- <u>Hypothesis #1:</u> The different number of molecular features observed between the two species is due to the incomplete annotation of *C. briggsae* genome. The *C. briggsae* annotation can be improved using RNA-Seq data.
- <u>Hypothesis #2:</u> Using the improved *C. briggsae* annotation, we can find additional orthologous relationships with *C. elegans* that were previously missed and additional *C. elegans* gene models.

Specific Aims

- <u>Aim #1:</u> Improve the *C. briggsae* genome annotation at the intron, exon, transcript levels.
- <u>Aim #2:</u> Find additional orthologous relationships between *C. briggsae* and *C. elegans* and improve *C. elegans* genome annotation at the transcript level.

Aim 1: Improve *C. briggsae* genome annotation

Method: Building RNA-Seq intron and exon databases

Method: Building RNA-Seq intron and exon databases

¹Douglas, M., 2018

Aim 1: Improve *C. briggsae* genome annotation

RNA-Seq introns validated 73% of WormBase introns

Pictured: Cbr-unc-18 (uncoordinated), an ortholog of C. elegans unc-18

Validating ~3/4 of WormBase introns demonstrates the utility of our intron database

20,660 novel RNA-Seq introns identified

Pictured: Cbr-daf-4 (abnormal dauer formation), an ortholog of C. elegans daf-4

Pictured: Cbr-max-2 (motor axon guidance), an ortholog of C. elegans max-2

RNA-Seq specific 20,660 (22%)

9,516 protein-coding genes affected

Novel introns suggest gene model modifications and novel genes

- 73% located internal of existing genes (top left)
- 12% extending existing genes
- 1% merging existing genes (bottom left)
- 14% of introns did not map to existing genes

RNA-Seq exons validated 66% of WormBase exons

Pictured: *Cbr-unc-18* (uncoordinated), an ortholog of *C. elegans unc-18*; ~46% of WormBase transcripts are completely validated by our RNA-Seq introns and exons

Validating ¾ of WormBase exons demonstrates the utility of our exon database

35,635 novel RNA-Seq exons identified

Pictured: *Cbr-unc-52* (<u>unc</u>oordinated), an ortholog of *C. elegans unc-52*; 31% of WormBase transcripts are partially validated by our RNA-Seq introns and exons

Novel exons suggest gene model modifications and novel genes

- 76% located internal of existing genes
- 14% extending existing genes (left)
- <1% merging existing genes</p>
- 9% of exons did not map to existing genes

Aim 1: Improve *C. briggsae* genome annotation

Method: Building improved intron and exon databases

¹Douglas, M., 2018

Intron and Exon Summary

- Evidence that the *C. briggsae* annotation is incomplete and can be improved using 13 RNA-Seq libraries
 - Identified 20,660 novel introns and 35,635 novel exons
 - Validated 73% and 66% WormBase introns and exons

- Built improved intron and exon databases that serve as a more complete annotation at the intron and exon level
 - Intron database consisting of 123,974 introns
 - Exon database consisting of 150,690 exons

Aim 1: Improve *C. briggsae* genome annotation

Method: Building RNA-Seq transcript database

Aim 1: Improve *C. briggsae* genome annotation

Method: transcript-to-transcript comparison (intron chain)

Category 1: Complete match

Criteria:

Both assembled transcript and WB transcript have identical intron chains

Pictured: transcript CBG00984.2 of *Cbr-usp-14* (<u>u</u>biquitin <u>specific protease</u>), ortholog of *C. elegans' usp-14*. All introns in WormBase CBG00984 transcript are observed in the assembled transcript

Category 2: partial match - 3' extension

Criteria:

- All introns in the annotated transcript are observed in the assembled transcript
- One or more additional introns are found extending 3' of the transcript

The transcript we identified shares similar structure with its C. elegans' ortholog

26

Category 2: partial match – intron overlapping internal exon

Criteria:

- All introns in the annotated transcripts are observed in the assembled transcripts
- One more additional intron is found overlapping an annotated internal exon of existing transcripts
- Both transcripts have the same leftmost and rightmost intron boundaries

Category 12: No match - Novel

Criteria:

- Has not been annotated previously
- No overlapping genes in the genomic regions

Pictured: Transcript MERGE_00026402 (nCBG00109). Previously not annotated by WormBase

Method: transcript-to-transcript comparison (intron chain)

Limitation: single-exon transcripts excluded

 Using intron chain comparison method, a transcript is discarded when either WormBase or assembled transcript is single-exon (i.e., no intron)

Identified 6,285 candidate protein-coding transcripts

#	Category	Diagram	Protein-coding transcripts	Protein-coding genes
1.	Complete match (WB confirmed)		8,080 (32.71%)	8,055
2.	3' extension		316 (1.28%)	287
3.	5' extension		753 (3.05%)	687
4.	5' & 3' extension		26 (0.11%)	25
5.	Intron overlapping internal exon		358 (1.45%)	332
6.	Introns overlapping intron		217 (0.88%)	205
7.	Alternative donor (5'ss)		777 (3.15%)	746
8.	Alternative acceptor (3'ss)		882 (3.57%)	810
9.	Alternative donor & acceptor		346 (1.40%)	327
10.	Merging 2 or more genes		206 (0.83%)	116
11.	Complex changes	᠋ 🗂 🖭 , ʊ`ြ ऻऻ॔ 🗀 🖂	2,245 (9.09%)	1,517
12.	Novel	53^53^53	159 (0.64%)	159
13.	Other – Single-exon (no intron)	(22222222)	120 (0.49%)	95
	Other – Partial	οσί [™] τον , οσί [™] τοοοοοον	10,220 (41.37%)	5,304

Method: Building an improved transcript database

Category		Diagram	Protein-coding transcripts	With proper start & stop codon
2.	3' extension		316	284
3.	5' extension		753	692
4.	5' & 3' extension	מרם שר שר מי	26	23
5.	Intron overlapping internal exon		358	341
6.	Introns overlapping intron		217	197
7.	Alternative donor (5'ss)		777	717
8.	Alternative acceptor (3'ss)		882	818
9.	Alternative donor & acceptor		346	284
10.	Merged		206	179
11.	Complex changes	□'□' □, ((((((((((((((((((((((((((((((((((((2,245	2,015
12.	Novel	ಚ^ಚ^ಕ	159	104
	Total		6,285 (100.00%)	5,654 (89.96%)

Integrated protein-coding transcripts (28,129 transcripts)

Transcript summary

- Evidence that the C. briggsae annotation is incomplete and can be improved using 13 RNA-Seq libraries
 - Identified 24,705 protein-coding transcripts, including 5,654 candidate protein-coding transcripts to improve *C. briggsae* annotation

 Generated an improved C. briggsae transcript database consisting of 28,129 transcripts (25% higher than current annotation)

Discovery power is proportional to RNA-Seq data quantity

- Using 13 *C. briggsae* RNA-Seq libraries, we identified thousands of introns, exons, and transcripts. We hypothesized that data availability does limit the discovery of features.
- Method: Applied the same pipeline on limited C. elegans RNA-Seq data

Aim 2: Find additional orthologs and improve *C. elegans* annotation

32 ortholog pairs were found from novel *C. briggsae* genes

¹Li et al., 2003

Aim 2: Find additional orthologs and improve *C. elegans* annotation

Method: *C. elegans* gene model improvement

¹Keilwagen et al., 2018, ²Douglas, M., 2018

Identified 279 *C. elegans* transcripts supported by RNA-Seq introns

C. elegans intron database credit: Matt Douglas

Random sampling suggested that some are also supported by long-read alignments

Long-read alignments credit: WormBase JBrowse (as of Dec 20th, 2019)

Pictured: *bro-1* (BROther (Drosophila tx factor partner) homolog), predicted to contribute to sequence-specific DNA binding activity, ortholog of human CBFB (core-binding factor subunit beta). Human ortholog of this gene are implicated in acute myeloid leukemia.

Identified 2 *C. elegans* novel genes supported by RNA-Seq introns

- Previously have not been annotated
- No overlapping genes in the genomic regions
- Have more than 400 reads supporting the introns

Comparative analyses summary

- Homology and RNA-Seq based comparative analysis using the improved *C. briggsae* annotation revealed more ortholog relationships between *C. briggsae* and *C. elegans*, and improved *C. elegans* annotation
 - Revealed 132 new ortholog pairs, 32 belong to C. briggsae novel transcripts
 - Revealed 279 transcripts and 2 novel *C. elegans* genes

Conclusions

- RNA-Seq provides evidence to improve C. briggsae annotation
 - Reveals thousands of novel introns and exons, as well as hundreds of novel protein-coding transcripts
- The improved C. briggsae annotation together with comparative analyses reveals novel C. briggsae—C. elegans ortholog relationships and novel C. elegans proteincoding transcripts

 Despite limited data available for C. briggsae, the improved annotation has enhanced the utility of C. briggsae as a comparative platform for C. elegans.

Significance

 As more RNA-Seq data becomes available, this method can be used to further refine not only *C.* briggsae annotation but also *C.* elegans annotation.

Acknowledgements

Senior Supervisor

Chen Lab Members (past&present)

Dr. Jack Chen

Dr. Jiarui Li

Dr. Michelle Hu

Committee Members & Examining Committee

Matthew Douglas

Dr. Fiona Brinkman

Marija Jovanovic

Dr. Ryan Morin

Kate Gibson

Dr. Christopher Beh

Dr. Mark Paetzel

Family and friends

Thio, Adair, Uplands family

MBB, SFU Omics, Indo friends

Extras

What is genome annotation?

The process of finding location and structure of all genes in the genome

- Introns
- Exons
- Splice sites
- Coding regions
- Promoter sequences
- TF binding sites
- and many more..

Challenge in genome annotation: alternative splicing

- Genes can have alternative splicing pathways to process pre-mRNAs into two or more mature transcripts that encode different proteins.
- This can contribute to the completeness of the annotation.

WormBase introns not supported by RNA-Seq

WormBase exons not supported by RNA-Seq

WormBase transcripts evaluation

- Less than 50% of *C. briggsae* transcript models are validated by
 our intron and exon databases
- 31% are partially validated, which maybe due to mispredicted genes and lowly expressed transcripts
- 23% of transcripts are not validated at all.

Caenorhabditis briggsae Gene model confirmation status (based on the EST/mRNA evidence)

Confirmed 10331 (47.3%) Every base of every exon has transcription evidence (mRNA/EST)
Partially_confirmed 7763 (35.5%) Some, but not all exon bases are covered by transcript evidence
Predicted 3769 (17.2%) No coverage by mRNA/EST evidence

Method: transcript-to-transcript comparison (intron chain)

■ Protein-coding transcripts 52

RNA-Seq suggests 159 novel transcript/gene

- Transcript MERGE_00026402 (nCBG00109) is previously not annotated by WormBase
- Using RNA-Seq data, we found introns and assembled a transcript suggesting putative novel gene in this genomic region
- First and second hits from BLAST result shown that the protein sequence is the most similar to *C. elegans* proteins (right)

34% of candidate transcripts do not start with ATG

- A functional protein-coding transcript should contain an Open Reading Frame (ORF) that begins with start codon and ends with stop codon¹.
- Limitation of TransDecoder: does not have a start-codon finding function and will include transcript from the beginning if there is no upstream in-frame stop codon at the beginning of the transcript^{2,3}.

Category		Protein-coding transcripts	Starts with ATG	Does not start with ATG
2.	3' extension	316	216	100
3.	5' extension	753	528	225
4.	5' & 3' extension	26	15	11
5.	Intron overlapping internal exon	358	246	112
6.	Introns overlapping intron	217	144	73
7.	Alternative donor (5'ss)	777	515	262
8.	Alternative acceptor (3'ss)	882	559	323
9.	Alternative donor & acceptor	346	218	128
10.	Merged	206	119	87
11.	Complex changes	2,245	1496	749
12.	Novel	159	78	81
	Total	6,285	4,134 (66%)	2,151 (34%)

Ortholog pairs breakdown

• 16,880:

- 1894: modified, same cel, revised cbriggsae transcript (extension etc)
- 100: new, cel exist in original, contains 4 nCBG new cbriggsae transcripts
- 32: new from nCBG (4 redundant with one point above)
- 80: need further analysis, maybe new new (so total new would be plus nCBG)

Significance

 As more RNA-Seq data becomes available, this method can be used to further refine not only *C. briggsae* annotation but also *C. elegans* annotation.

