Feuille d'exercices 8

- **Exercice 1.** On considère l'extension $\mathbf{Q}[\cos(\frac{2\pi}{7})]/\mathbf{Q}$. Montrer que c'est une extension galoisienne et calculer son degré. Est-ce que son groupe de Galois est cyclique ?
- Exercice 2. Soit $N \geq 1$ un entier. Cet exercice est consacré à l'étude de la réduction du polynôme cyclotomique Φ_N modulo un nombre premier p, que l'on notera $\overline{\Phi}_N \in \mathbf{F}_p[X]$.
 - (i) On suppose désormais (p, N) = 1, rappeler pourquoi $X^N 1$ est séparable dans $\mathbf{F}_p[X]$.
 - (ii) Montrer que

$$\overline{\Phi}_N = \prod_{\zeta} (X - \zeta)$$

où ζ parcourt les racines primitives N-ièmes de l'unité dans une clôture algébrique Ω de \mathbf{F}_p .

(iii) Montrer que $\overline{\Phi}_N$ est de la forme

$$P_1 \dots P_g$$

où tous les $P_i \in \mathbf{F}_p[X]$ sont des polynômes irréductibles unitaires distincts de même degré, ce degré coïncidant avec l'ordre de p dans $(\mathbf{Z}/N\mathbf{Z})^*$. (On pourra étudier les orbites du Frobenius sur l'ensemble des racines primitives N-ièmes de l'unité dans Ω).

- (iv) En déduire que Φ_N est irréductible dans $\mathbf{F}_p[X]$ si et seulement si p engendre $(\mathbf{Z}/N\mathbf{Z})^*$.
 - (v) Montrer que

$$X^4 + 1$$

est irréductible dans $\mathbf{Q}[X]$ mais réductible dans $\mathbf{F}_p[X]$ pour tout nombre premier p.

Exercice 3.

- (i) Soit $N \ge 1$ un entier. Montrer que toute sous-extension de $\mathbf{Q}[e^{2i\pi/N}]$ est galoisienne sur \mathbf{Q} .
 - (ii) Est-ce qu'il existe un entier N tel que

$$\sqrt[3]{2} \in \mathbf{Q}[e^{2i\pi/N}]?$$

Exercice 4. Soient n, m des entiers non nuls. Soient d, l leur PGCD et PPCM respectivement.

- (i) Montrer que $\mathbf{Q}[\zeta_n, \zeta_m] = \mathbf{Q}[\zeta_l]$, et $\mathbf{Q}[\zeta_n] \cap \mathbf{Q}[\zeta_m] = \mathbf{Q}[\zeta_d]$.
- (ii) Décrire explicitement la correspondance de Galois pour ces sous-corps de $\mathbf{Q}[\zeta_l]$.

Exercice 5.

- (i) Soit $n = p^r$ une puissance d'un nombre premier. Montrer que les coefficients de $\Phi_n(X)$ sont positifs. Est-ce vrai pour tous les polynômes cyclotomiques?
- (ii) Construire un isomorphisme entre le groupe de Galois de $\Phi_{12}(X)$ et le groupe

$$(\mathbf{Z}/2\mathbf{Z}) \times (\mathbf{Z}/2\mathbf{Z}).$$

[On pourra commencer par donner deux sous-corps de degré 2 sur ${\bf Q}$ du corps de décomposition de Φ_{12}].

Exercice 6.

Soit $n \geq 3$ un entier.

- (i) Montrer que les transpositions (i, i+1) $(1 \le i \le n-1)$ engendrent S_n .
 - (ii) Montrer que (1, ..., n) et (1, 2) engendrent S_n .
- (iii) Soient a, b, c des cycles de longueurs respectives 2, n-1, n. Montrer que S_n est engendré par a, b et c.
 - (iv) Montrer que A_n est engendré par les 3-cycles.