Statistical learning and deep learning: theoretical background and hands-on sessions Tidymodels

S. Biffani & F. Biscarini

IBBA/CNR

27 gennaio, 2023

Tidymodels 1

- collezione di librerie per implementare modelli predittivi
- Obiettivo:
 - uniformare le molte procedure/librerie disponibili
 - dare la possibilità di creare delle workflow
 - utilizzare l'approccio tidyverse (operazioni in sequenza)

Figura 1: un pizzico di Tidymodels

Tidymodels 2

Overview of tidymodels Basics				
Package	Step	Functions		
rsimple	1. Split into testing and training sets	initial_split() training() testing()		
Nesis Ne	2. Create recipe + assign variable roles	recipe() update_role()		
parajo	3. Specify model, engine, and mode	parsnip function for specifying model (ex. decision_tree()) (https://www.tidymodels.org/find/parsnip/) set_engine() set_mode()		
Called Services	4. Create workflow, add recipe, add model	workflow() add_recipe() add_model()		
parvip	5. Fit workflow	fit()		
Dannib	6. Get predictions	predict()		
yardzick	7. Use predictions to get performance metrics	rmse() (continuous outcome) accuracy() (categorical outcome) metrics() (either type of outcome)		

Figura 2: un pizzico di Tidymodels

Tidymodels 3

I passi principali:

- Data Resampling and Feature Engineering: rsample, recipes
- Model Fitting and Tuning: parsnip, tune, dials
- Model Evaluation: yardstick

rsample: Crea training e test datasets 1

```
library(ISLR2)
library(tidymodels)
tidymodels_prefer(quiet=F)
?initial_split()
```

Create a data split object

```
set.seed(3)
auto_split <- initial_split(
  Auto,
  prop = 0.5,
  # stratification by outcome variable
  #strata = mpg
)</pre>
```

rsample: Crea training e test datasets 2

strata= stratificazione del campionamento (vale anche per le variabili continue)


```
set.seed(3)
auto_split <- initial_split(
  Auto,
  prop = 0.5,
  # stratification by outcome variable
  strata = mpg
)</pre>
```

rsample: Crea training e test datasets 3

Create the training data

```
auto_training <- auto_split %>%
    training()
```

Create the test data

```
auto_test <- auto_split %>%
  testing()
```

3 Check number of rows in each dataset

```
nrow(auto_training)
```

```
## [1] 194
```

Specify a model with parsnip

- Specify model type (e.g. linear regression, random forest ...)
 - linear_reg()
 - rand_forest()
- Specify engine (i.e. package implementation of algorithm)
 - set_engine("some package's implementation")
- odeclare mode (e.g. classification vs linear regression)
 - use this when model can do both classification & regression
 - set_mode("regression")
 - set_mode("classification")

All available models are listed at here.

Fit a model 1

```
lm_spec <- linear_reg() %>%
  set_engine(engine = "lm") %>%
  set_mode(mode = "regression")

m <- fit(
  lm_spec, # parsnip model spec
  mpg ~ horsepower, # formula
  auto_training # data frame
)</pre>
```

```
## parsnip model object
##
##
## Call:
## stats::lm(formula = mpg ~ horsepower,
##
## Coefficients:
## (Intercept) horsepower
## 39.7476 -0.1532
```

Fit a model 2

obtain the estimated parameters

Tabella 1: Parametri Stimati

term	estimate	std.error	statistic	p.value
(Intercept)	39.75	1.00	39.66	0
horsepower	-0.15	0.01	-17.32	

generate predictions

```
# using fitting model to get prediction

lm_pred <- m %>%

predict(new_data = auto_test)
```

```
head(lm_pred) %>%
knitr::kable(caption = 'Predizioni',digits=.1)
```

Tabella 2: Predizioni

.pre	
2 1 1 2 2	

Fit a model 3

bind result

Tabella 3: Stima e Variabile Originale

mpg	horsepower	.pred
18	130	19.8
16	150	16.8
14	215	6.8
15	150	16.8
24	95	25.2
22	95	25.2

Measure the model performance with yardstick::rmse() 1

- Residui: valori predetti valori originali $\hat{y_i} y_i$
- Mean Absolute Error: $\frac{1}{n} \sum_{i=1}^{n} |(\hat{y}_i y_i)|$
- Root Mean Absolute Error: $\frac{1}{n}\sqrt{\sum_{1}^{n}(\hat{y}_{i}-y_{i})^{2}}$

sfrutto l'oggetto creato precedentemente

Measure the model performance with yardstick::rsq() 2

R-2

```
auto_test_res %>%
    rsq(truth = mpg, estimate = .pred)

## # A tibble: 1 x 3

## .metric .estimator .estimate

## <chr> <chr> <chr> ## 1 rsq standard 0.606
```

```
auto_test_res %>%
  ggplot(aes(x = mpg, y = .pred)) +
  geom_point(alpha = .5) +
  geom_abline(color = "blue", linetype = 2) +
  coord_obs_pred() +
  labs(x = "MPG", y = "Predicted MPG")
```


Cross Validation 1

- loo cv(): leave-one-out (deprecated)
 - Leave-one-out methods are deficient compared to almost any other method. For anything but pathologically small samples, LOO is computationally excessive, and it may not have good statistical properties. Although the rsample package contains a loo_cv() function, these objects are not generally integrated into the broader tidymodels frameworks.
- vfold_cv(): k-fold
- bootstraps: test set con replacement

Cross Validation 2

```
vfold_cv(data, v = 10, repeats = 1, strata = NULL, breaks = 4, ...)

set.seed(123)

folds <- vfold_cv(Auto, v = 10, strata = mpg)
##
fit_resamples(lm_spec,mpg - horsepower,resamples=folds)-> res

res %>%
    collect_metrics() %>%
    knitr::kable(caption='Statistiche Cross=Validation')
```

Tabella 4: Statistiche Cross-Validation

.metric	.estimator	mean	n	std_err	.config
rmse	standard	4.889087	10	0.1409716	Preprocessor1_Model1
rsq	standard	0.610207	10	0.0208169	Preprocessor1_Model1

Cross Validation 3

repliche di CV per diminuire la varianza dell'errore

```
resall %>%
  filter(.metric=='rmse') %>%
  mutate(Repliche=n/10) %>%
  select(Repliche,std_err) %>%
  ggplot(aes(Repliche,std_err))+
  geom line()
```

