

Baryls and their derivatives. IV. Oxidation of 2,2-naphthyl-4-sulfonic acid and 2,6-dihydroxynaphthalene. I. S. Ioffe and S. G. Kuznetsov, *J. Russ. Chem. (U. S. S. R.)* 8, 877-85 (1935); cf. *C. A.* 28, 2709^a.—The oxidation of 2,6-HOC₆H₄SO₃H (I) by FeCl₃ in H₂O at elevated temps. gave 2,6-HOOC₆H₄SO₃H and not 2,2'-dihydroxy-1,1'-binaphthyl-4,4'-disulfonic acid (II) as was expected (cf. *C. A.* 28, 1091). At 20-30° the reaction proceeded normally, giving 90% II after 20 days of interaction. II, heated with 25% H₂SO₄ at 170-180° for 12 hr., gave 2,2'-dihydroxy-1,1'-binaphthyl, m. 210°. II, fused with KOH at 300° for 15 min., proved 47.7% of 2,2'-1,1'-tetrahydroxy-1,1'-binaphthyl (III), m. 318-30° (unrecr.) (decompn.). 2,6-COOH(OH)₂ (IV) gave with 1 mol. of FeCl₃ III and with 1.5 mols. of FeCl₃ the tetramer consisting of 4 IV groups with mol. wt. 980 (cf. Saks, *Ber.* 39, 3006 (1906); Willstätter and Parnas, *Ber.* 40, 1406 (1907)). II is highly sol. and cannot be sep'd. with NaCl. The sepa. was effected by making the reaction mixt. slightly alk. with Ba(OH)₂, neutralizing the filtrate with AcOH, evapg. the soln. to a small vol. and filtering from BaCl₂. The filtrate was treated with Ba(OAc)₂ and the I in the soln. was removed by coupling it with the theoretical amt. of p-*Ac*₂N₂Cl₂N₂Ac. The filtrate was treated with the exact amt. of H₂SO₄ and the filtrate from BaSO₄ was repeatedly evapd. to dryness, giving 11.71 g. (41% alc.). V. Optical activity of 2,2'-dihydroxy-1,1'-binaphthylsulfonic acids. I. S. Ioffe and I. V. Grachiev, *Ibid.* 900-5.—The dibasic salts of the 6,6' and 7,7'-disulfonic acids of 2,2'-dihydroxy-1,1'-binaphthyl were

separated by fractional crystallization into the diastereomeric dibenzene salts of *L*- and *D*-aspartic acid. The latter by the action of alkali saponified, the optical antipodes, *L*- and *D*-aspartic acid. These show optical rotation only in the form of the Na salts in alk. soln., and none in a free state or in an acid soln. The antipodes of the 7,7'-dihydroxy acid are more stable than the 6,6'-acid. The racemization of the *D* acids proceeds more rapidly in an alk. soln. than in an acid one.

dyeing, changing to a beautiful brown-chocolate after mordanting with $K_2Cr_2O_7$. The presence of a pyrrole ring was demonstrated by the formation of pyrrole-*cation*, with Zn dust. The product is probably 1,12-dihydroxyperylene-3-carboxylic acid or 1,12-peryleicosanoic, 3-carboxylic acid. VII. Oxidation of 2-hydroxyanthracene. J. S. Tolle, *J Am. Chem. Soc.*, 1210-12.—The oxidation of 2-hydroxyanthracene with $FeCl_3$ in alc. of $AcOH$ resulted in the formation of 2-hydroxy-1,1',2,2'-bianthryl-3-one oxide (I) and a brown compd. of unknown structure. I is unstable, changing at 200° to the brown compd., m. above 300° . It gives with HCl the oxonium salt and with Ac_2O in dry pyridine the Ac deriv., m. 247-40° (uncor.). Chas. Blanc

-CA

Dianyl and their derivatives. VIII. Influence of the medium acidity on the interaction of ρ -nitrophenol with sodium chlorite. I. S. Kolle, S. G. Kuznetsov and B. Litovskii. *J. Russ. Chem. Soc.* 8, 1822-9 (1884); cf. *C. A.* 5, 10487.—The effect of the medium acidity on the formation of 2,2'-dinitro-1,1'-binaphthyl (I) by the interaction of δ -C₆H₄OH (II) with NaClO in H₂O (Litovskii, *J. Russ. Phys.-Chem. Soc.* 6, 180 (1874)) was studied by refluxing 5.6 g. II in 1100 cc. of H₂O, HCl of various concentrations, with 20 cc. of 1 N NaClO for 3-38 hrs. At a ratio of 25 mole. of HCl to 1 mole. of II the formation of 1,2-C₆H₄NOH (III) begins with 3.6% and gradually rises with the increasing amount of HCl to 32.4% III at a ratio of 180 mole. of HCl to 1 mole. of II. The formation of I decreases correspondingly from 72.4 to 27.5% III, m. 70°, was nrgd. from I, m. 216° (C₆H₆) by steam distillation.

APPROVED FOR RELEASE: 08/10/2001

CIA-RDP86-00513R000618620019-8"

Reaction Of *p*-phenylenediamine And Its Derivatives With Diazotized Amines. I. S. Ioffe And V. Ya. Solodovnikov, *J. Russ. Chem. (U. S. S. R.)*, 6, 177-201 (1930).—In the preliminary expts. in the preps. of substituted metall vinyls, followed by conversion into complex derivs. of p -H₂NCH₂NHPh (D), the interaction of equiv. amnts. of diphenyl-*p*

phenylenediamine (III) with $N(N\text{-C}_6\text{H}_5)_2\text{Mn}(\text{III})$ (III) resulted in the decomps. of III with a strong evolution of N_2 , considerable amt. of unchanged III, a little of diphenylquinoxaline (IV), and no new compd.: Obviously III acts as a mild reducing agent and the diamonium salts are an oxidizing agent: $\text{III} + \text{RNH}_2 \rightarrow \text{IV} + \text{RH} + \text{HCl} + \text{N}_2$. $\rho\text{-C}_6\text{H}_4(\text{NH}_2)_2$ (V) and II react with III similarly with a complete decomps. of III and nearly quant. liberation of N_2 . In this decomps. of derivs. of V, comng. at least 1 H atom at each of the NH_2 groups, the formed quinoxalimines react further with the diamonium salt, forming, probably, arylquinoxalimines: $\text{R}'\text{N}\cdot\text{C}_6\text{H}_4\text{NR}'' + \text{RNH}_2 \rightarrow \text{R}'\text{N}\cdot\text{C}_6\text{H}_4(\text{NR}''\text{H})$. In the presence of an excess of diamonium, the decomps. of the latter proceeds further with the formation of probably polyarylquinoxalimines. References.

10.1.1.1 METALLURGICAL LITERATURE CLAIMIFICATION

APPROVED FOR RELEASE: 08/10/2001

CIA-RDP86-00513R000618620019-8"

Phenyl and their derivatives. XIII. Selective absorption of one dye derived from 2,3-dihydroxybenzene and polyhydroxybenzenes by vegetable fibers. I. S. Isac and M. A. Chigrov. *J. Gen. Chem. (U. S. S. R.)* 8: 1014-31 (1938); *c. A. 31*, 7637. ¹-Baptin, the precip. and drying of one dye derived from 2,3,2',3'-tetraphenoxy-1,1'-biphenyl, 2,3,2',3'-tetrahydroxy-1,1'-biphenyl, 2,3,2',3'-trihydroxybiphenyl, and 2,3,2',3'-dihydroxybiphenol, are described in detail. The maximum dyes were obtained by coupling with $\text{P}_\text{H}(\text{OMe})_3\text{NaCl}$ (8), and the dian dyes with 3 and $(\text{NC})_2\text{MnNaCl}$. All 16 dyes gave no wood red dyes in various shades. Cotton is poorly dyed orange-brown to light rose madder by water and soap.

ASB-SEA METALLURGICAL LITERATURE CLASSIFICATION

APPROVED FOR RELEASE: 08/10/2001

CIA-RDP86-00513R000618620019-8"

"APPROVED FOR RELEASE: 08/10/2001

CIA-RDP86-00513R000618620019-8

"APPROVED FOR RELEASE: 08/10/2001

CIA-RDP86-00513R000618620019-8

APPROVED FOR RELEASE: 08/10/2001

CIA-RDP86-00513R000618620019-8"

Con

2-Hydroxyanthraquinone-3-carboxylic acid and its α -toluidide. I. S. Ioffe and R. A. Shokhamer. *Org. Chem. Ind.* (U. S.S.R.), 6, 257-60 (1967). In the prepn. of 2,3-hydroxyanthraquinonecarboxylic acid (I) by heating hydroxyterephthaloyl- α -benzoic acid with 0.1 mol. of 100% H_2SO_4 at 150-40° for 4.5 hrs. (cf. Kharkhov, *C. A.* 20, 7254), the separ. of I from the 1,2-isomer (II) is best effected by extg. I with boiling water. By this method a yield of 97% of mixed isomers, m. 265°, was obtained, giving 87% I, m. 285° (292° from 70% AcOH), and 9.1% II, m. 264-5°. Crude I in 25% NaOH reduced with Zn dust (cf. Sov. pat. 557,246 (*C. A.* 27, 311), 604,280 (*C. A.* 29, 815)) yielded 94% 2-Hydroxyanthraquinone-3-carboxylic acid, m. 264° (280° from CaH_2Cl_2). The crude acid (0.13 g.) in 15 cc. toluene refluxed with 0.06 cc. α -toluidine for 10-15 min. and then with the addition of 0.06 cc. PCl_5 for 5 hrs. gave the α -toluidide, m. 270° (cf. U. S. pat. 1,960,378, *C. A.* 29, 4907). The product is identical with nephthol AS-GR (IG).

Chas. Blane

ASG-1A METALLURICAL LITERATURE CLASSIFICATION

SEARCHED		SEARCHED MAP ONE		COLLECTED		SEARCHED	
SEARCHED	INDEXED	SEARCHED	INDEXED	SEARCHED	INDEXED	SEARCHED	INDEXED
Y	Y	Y	Y	Y	Y	Y	Y

Reaction of *p*-phenylenediamine and its derivatives with diazonium salts. II. Reaction of diphenyl-*p*-phenylenediamine with diazotized methanesulfonic acid and *p*-chlorodiazotized I. S. Ingold and E. T. Lernerovich. *J. Org. Chem.* (U.S.A.), 7, 1115-18 (1942); cf. C. A. 36, 1990. Further study of the interaction of diphenyl-*p*-phenylenediamine (I) with m -C₆H₄N₂SO₃H (III), resulting in the disappearance of I with liberation of N₂ and no azo compd., showed that I is capable of reacting with a max. of 3 III molts. The reaction proceeds in 3 successive stages with the formation of *N,N'*-diphenyl-1,4-quinonediimine and its 2-mono- and 2,5-bis(m -nitrophenyl) derivs. The inconclusive results of the interaction of I with p -C₆H₄N₂Cl require further investigation.

Chas. Blum

100-110. METALLURGICAL LITERATURE CLASSIFICATION

卷之三

APPROVED FOR RELEASE: 08/10/2001

CIA-RDP86-00513R000618620019-8"

Bisaryl and their derivatives. XV. The reaction of 2-naphthol-3,6-disulfonic acid with salts of trivalent iron. I. S. Il'ya and R. Chernysheva. *J. Russ. Chem. (U.S.S.R.)* 7, 830 (1937), cf. I, 4, 31, 7410. When the Na salt of this acid is heated for 18 hrs with FeCl_3 , it gives the Na salt of 1-chloro-2-naphthol-3,6-disulfonic acid (I) and 2,2'-dihydroxy-1,1'-bisnaphthyl-3,6,3',6'-tetrasulfonic acid (II). If the reaction is carried out in the presence of a large excess of HCl, I is almost the only product, and if Ba(OAc)_2 is present to remove all the HCl formed, II is the chief product. If the oxidation is carried out with $\text{Fe}_2(\text{SO}_4)_3$, only II is formed. The Cl in I is easily split off by AgNO_2 or diazonium salts. **XVI.** The reaction of salts of trivalent iron with 2-naphthol-3-sulfonic acid and 2-naphthol-3,7-disulfonic acid. I. S. Il'ya and V. I. Kobayakova. *Ibid.* 24(2) 60. When 2-naphthol-3-sulfonic acid is oxidized by FeCl_3 , even in the presence of excess HCl, or by $\text{Fe}_2(\text{SO}_4)_3$, the only product is 2,2'-dihydroxy-1,1'-bisnaphthyl-3,6-disulfonic acid. With FeCl_3 , 2-naphthol-3,7-disulfonic acid gives chiefly 2,2'-dihydroxy-1,1'-bisnaphthyl-3,7,3',7'-tetrasulfonic acid, but when excess HCl is added, 1-chloro-2-naphthol-3,7-disulfonic acid is also formed. $\text{Fe}_2(\text{SO}_4)_3$ gives only the bisnaphthyl compd. **XVII.** The reaction of salts of trivalent iron with 2-naphthol-4-sulfonic acid and its derivatives. I. S. Il'ya and M. A. Bendikitskaya-Plechter. *Ibid.* 26(5) 80.—With $\text{Fe}_2(\text{SO}_4)_3$ or FeCl_3 , even in the presence of excess HCl, 2-naphthol-4-sulfonic acid gives only 2,2'-dihydroxy-1,1'-bisnaphthyl-4,4'-disulfonic acid. 6-Nitro-2-naphthol-4-sulfonic acid does not react at all with $\text{Fe}_2(\text{SO}_4)_3$ and with FeCl_3 gives only 6-nitro-1-chloro-2-naphthol-4-sulfonic acid. H. M. Fletcher

AIA-SEA METALLURGICAL LITERATURE CLASSIFICATION

The reaction of 1-chloro-2-naphthyl with ρ -nitrobenzene diazonium salts. I. S. Gold. J. Org. Chem. (U. S. G. R.) 7, 2057-8 (1942).—While 1-bromo-2-naphthol and $(\rho\text{-NO}_2\text{C}_6\text{H}_4\text{N})_2\text{NO}_2$ give entirely para red, 1-chloro-2-naphthol also forms about 40% of a light yellow compound, 120° (decomp.). This is either $\text{C}_6\text{H}_4\text{Cl}-\text{ON}(\text{NC}_6\text{H}_4-\text{NO}_2)_2$ or its quinonoid isomer. In the presence of $\text{NaI}(\text{NaO})$, a better quality of para red is obtained in this reaction.

APPROVED FOR RELEASE: 08/10/2001

CIA-RDP86-00513R000618620019-8"

PROCESSES AND PROPERTIES INDEX

Con

Bialyls and their derivatives. XVIII. Oxidation of 2-hydroxyanthracene-3-carboxylic acid. I. S. Ioffe and R. A. Shokhamer. *J. Gen. Chem. (U.S.S.R.)*, 7, 2710-11 (1937); cf. *C. A.*, 32, 2112^a.—When 2-hydroxyanthracene-3-carboxylic acid is heated in HOAc with at least a 3-fold excess of ferric NH₄ alum, the corresponding bialyl compound is probably formed, but it at once reacts further to give 80% of 3,3'-dicarboxy-1,1'-bianthryl-3,3',2,2'-dioxide, which decomps. above 320°. **XIX.** The reaction of 2-hydroxyanthracene with ferric chloride. I. S. Ioffe and L. S. Klimov. *Ibid.* 2712-14.—The brown product obtained along with 2-hydroxy-1,1'-bianthryl-3,3'-dioxide when 2-hydroxyanthracene is oxidized with FeCl₃ (I. S. Ioffe, 1048) is actually the Fe salt of 2,2'-dihydroxy-9,9'-bianthra-10,10'-dione. **XX.** A general consideration of the mechanism of the reaction of 2-naphthol and its derivatives with salts of trivalent iron. I. S. Ioffe. *Ibid.* 2716-18.—In these reactions equil. exists between 2 compds. of the type Cu(H₂O)₆Cl₂, (Cu(H₂O)₆)₂Cl₃, (Cu(H₂O)₆)₂Cl₂—(Cu(H₂O)₆). In acid solns., the formation of the more complex compds. is prevented, and Cl can enter the ring to form a Cl-substituted naphthol. In less acid solns., the complexes tend to form bialyls.

H. M. Lester

10

ASH-SLA METALLURGICAL LITERATURE CLASSIFICATION

Editor 11/16/2017

62-1 2-22

1331 139477

SEARCHED	INDEXED																		
W	W	N	N	H	H	S	S	E	E	M	M	A	A	V	V	M	M	S	S

~~TOFFER, I.S.~~

21

Sulfoxation (of organic compounds),⁹ I. S. Ioffe, *Org. Chem. Ind.* (U. S. S. R.) 3, 302 (1957); M. V. Il'yukovich, *Ibid.* 303; O. V. Yu. Shaposhnikov, *Ibid.* 303; M. A. Il'inskii, *Ibid.* 304-7; N. N. Voruchtsov, Jr., *Ibid.* 307-8; T. I. Vorontsova, *Ibid.* 308-9; V. N. Ulin'stev, *Ibid.* 309-400; A. I. Kondratenko, *Ibid.* 309; N. N. Voruchtsov, *Ibid.* 400-1. A summary of the joint discussion of the theory and practice of sulfoxation of org. comp. at the Prague works Chas. Blane.

ASME-1994 METALLURGICAL LITERATURE CLASSIFICATION

APPROVED FOR RELEASE: 08/10/2001

CIA-RDP86-00513R000618620019-8"

2-Methylamino-5-sulfobenzoic acid as a stabilizing constituent in Rapidegene Ruby Red II and Red III. J. S. Lofe and N. M. Fedorova. *Org. Chem. Ind.* (U.S.S.R.), 37, 347-3 (1963).—Previously it was shown that in Rapidegene Red II the azo component is Naphtalene ANH₂ and the diazonium component is a diazoaminocompound formed from 2,5-C₆H₄NH₂ and an unknown amino stabilizing constituent. To date, the nature of the latter diazocompound has not been established.

amino compd. was decompr., by boiling the dye with $\text{AcOH} + \text{MgO}_2$, the azo dye, formed by the interaction of the cleaved $\text{Cl}_2\text{C}_6\text{H}_4\text{NCl}$ with the Naphthol ASOL, was filtered off, the filtrate contg. the liberated amino stabilizer was evapd. with a little HCl to dryness and the residue was recrystallized. Raumim, or the latter by the method of analysis and degradation showed that it is 2,5-MeNH₂-SO₂J(C₆H₄)COCl (I). It is identical with the synthetic I, giving the same 2,5-MeNH(SO₂Cl)C₆H₄COCl, m. 144-7.² The stabilizing constituent in Rapideogene Red 1TR is also I. Alkylaminosuccinic acids as stabilizing constituents in Rapideogene Brown 1B, Violet B, Blue B, Blue R, Green B and Navy Blue R. L. S. Isse and R. F. Mazel, *Ibid.* 543-4.—The stabilizing constituents in the diazocomino compds. of the Rapideogenes are: MeNH₂-SO₂J(C₆H₄) in Brown 1B and Violet B, and BuNH₂-SO₂J(C₆H₄) in Blue B, Blue R, Green B and Navy Blue R. The alkylaminosuccinic acids were identified by coupling with diazotized β -nitroaniline. Chau, Blane

ASIA-SEA METALLURGICAL LITERATURE CLASSIFICATION

APPROVED FOR RELEASE: 08/10/2001

CIA-RDP86-00513R000618620019-8"

111 AND 112 ODETTA

The relation between α -nitro- β -nitrophenylbenzene and the p -phenylenediamine derivatives. I. S. Litt, *Jurkow*, *Odel, Tsch. Nachr.* 1939, No. 1, 117-21; *Acta Chem. Scand.* 1939, No. 7, 104; cf. C. A. 33, 10270. It was shown that the p -phenylenediamine derivs. contg. at least 1 unsubstituted H atom in each amino group (p -C₆H₄(NHPh)₂), unsubstituted p -C₆H₄(NH₂)₂, p -Ph₂NCH₂Ph) are able to decomp. the diazonium salts with evolution of N (when reacting with their salts), being oxidized thereby into the corresponding derivs. of p -quinonodimine. The reaction, however, does not stop at this stage and the deriv. of p -quinoxalinediime decomps. the excess diazo compd. with evolution of N and introduction of the excess aryl residues of the diazo compd. into the quinoxaline group. An investigation of the reaction of p -C₆H₄(NHPh)₂ with diazotized metanilic acid and with α -chloroaniline (in various mol. ratios) confirmed this supposition. It was found that from the am. of the evolved N it is possible to det. the whole reaction process of the p -phenylenediamine derivs. with the diazo compds. (including the am. of the aryl residues which were introduced in the quinoxaline group of the p -quinonodimine). In order to obtain a better transformation of the diazo compd. in the 1st part of the process the reactions of the diazotized p -nitroaniline with p -C₆H₄(NHPh)₂ and with p -Ph₂NCH₂Ph were compared. It was detd. that the reaction takes place in 2 directions (1) $\text{CH}_3(\text{NHR})_2 + \text{R}'\text{N}^+ \text{NOH} \rightarrow \text{RN-C}_6\text{H}_4\text{NR}' + \text{R}'\text{H} + \text{H}_2\text{O} + \text{S}_2$; and (2) $\text{CH}_3(\text{NHR})_2 + 2\text{R}'\text{N}^+ \text{NOH} \rightarrow \text{RN-C}_6\text{H}_4\text{NR}' + \text{R}' + 2\text{H}_2\text{O} + 2\text{N}_2$. The reduction reaction of the diazo compd. takes place predominantly according to (2). W. R. Henn

四

A.I.M.-SEA METALLURGICAL LITERATURE CLASSIFICATION

會考3冊

APPROVED FOR RELEASE: 08/10/2001

CIA-RDP86-00513R000618620019-8"

1. YERSHOV, A.P., IOFFE, I.S.

2. USSR (600)

"The Reaction with Dizao Compounds of Primary Aromatic Amines Containing Salt-Forming Groups --- I. The Tautomerism of Triazenes", Zhur. Obshch. Khim., 9, No. 24, 1939. Sci. Inst. of Organic Intermediate Products and Dyes imeni Voroshilov. Received 7 July 1939.

9. ~~██████████~~ report U-1626, 11 Jan 1952.

New derivatives of diphenyl-*p*-phenylenediamine. I.
S. Ioffe and V. Ya. Solov'evich. *J. Russ. Chem. (U. S. S. R.)*, 19, 144 (1938); cf. preceding abstr.—In studies of the structure of intermediates in the formation of aniline black the following new derivatives of diphenyl-*p*-phenylenediamine were obtained by successive condensation of 1,3-*p,p'*- $\text{CH}_2(\text{O}_2\text{N})\text{C}_6\text{H}_4\text{SO}_3\text{Na}$ (I) with PhNH₂C₆H₄NH₂ (II) and PhNH₂, and subsequent reduction and cleavage of the SO₃²⁻ group. I was prepd. by sulfonation and nitration of *m*-C₆H₄Cl₂ (cf. *Ger. pat.* 1201,345). *6-Nitro-3-chlorodiphenyl-p-phenylenediamine-4-sulfonic acid* (III) was prepd. in 80.7% yield by refluxing 38 g. of the Na salt of I in 150 ml. H₂O and 20 g. II in 150 ml. alc. with 20 g. Na₂CO₃ for 10 hrs., dilg. with H₂O to 500 ml., filtering and pptg. with 10% HCl. The product dried at 130° forms brown crystals, sparingly sol. in H₂O. The amine resulted in 73% yield by stirring 67 g. III in 200 ml. of 5% Na₂CO₃ into the hot suspension of 55 g. Zn dust, 35 g. NaCl and 6 g. CuSO₄ in 400 ml. H₂O and boiling the mixt. for 2 hrs. After the addn. of a few drops of NaHSO₃, the reaction mixt. is filtered, the filtrate is treated with HCl and the ppt. is dried at a moderate temp. Refluxing 6 g. of the amine with 6 g. ZnCl₂ and 140 ml. of 26% HCl (preliminarily boiled with 1 g. Zn dust) for 3 hrs., dilg. with 100 ml. of cold H₂O and adding an excess of NH₄OH yielded 25% of *8-nitro-3-chloro-diphenyl-p-phenylenediamine*, m. 148° (benzene). It is a white product, giving colorless soln. in alc., red in C₆H₆ and orange with a green fluorescence in benzene.

Autoclaving 30 g. III (Na salt) in 300 ml. of 50% alc with 8 g. PhNH₂ and 22 g. NaO₂ at 100° for 30 hr and acidifying the filtrate with 90% HCl formed 30-35% *6*-nitro-*4*-phenylaminophenyl-*p*-phenylenediamine-*4*-sulfonic acid, greenish powder, insol. in H₂O. The acid when reduced under the conditions analogous to the preceding expt. yielded 70% of the corresponding amine. The attempts to obtain from it the barbituric acid-like leucoumine by cleaving the SO₃H group produced org. results.

APPROVED FOR RELEASE: 08/10/2001

CIA-RDP86-00513R000618620019-8"

Sulfonation reaction. IV. Sulfonation of benzanthrone. I. S. Ioffe and N. N. Mel'teva. *J. Gen. Chem. U.S.S.R.* 19, 1104-8 (1939); cf. *C. A.* 33, 2284. Benzanthrone (**I**) with 30% oleum (87.14% SO₃) is completely sulfonated in 300 hrs. at 20° and in 6 hrs. at 100°. Weaker acids (contg. up to 6% oleum (82.65% SO₃)) are relatively ineffective at temps. below 100°. **I** with 22% oleum for 24 hrs. at 20° gives, after removal of unreacted **I**, mixt. contg. 81% α -benzanthronesulfonic acid (**II**) and 19% β -isomer (**III**), repd. as the yellow Ba salts by fractional pptn. of **II** from cold water. With **I** and 90.5% H₂SO₄ at 100-70° for 8 hrs. the mixt. of sulfonic acids contains 20% **II** and 80% **III**. With 100% H₂SO₄ (**IV**) under the same conditions appreciable amts. of disulfonic acids are obtained, also isolated as the Ba salts. The Ba salts of both **II** and **III** form *guinac salts*, m. 240-2° and 20-2°, resp. Oxidized with Na₂Cr₂O₇ in 30% H₂SO₄ both **II** and **III** give 1-anthrquinonecarboxylic acid, m. 282-4°. *V.* Sulfonation of α -naphthyl phenyl ketone. I. S. Ioffe and G. Z. Naumova. *Ibid.* 1121-3. α -CuPh (V) readily reacts with 98% H₂SO₄ (**VII**) at 20°.

At 100° with **VI** or with oleum at low and high temps. **V** is completely converted into water-sol. products. When heated with **VI** at 100-70° for 8 hrs. **V** is hydrolyzed and sulfonated to give BaOH and Cu₂(SO₄)₂, the latter isolated from the sulfonation mixt. as the Ba salt. To prevent hydrolysis **V** is sulfonated with 10% oleum at 20° for 24 hrs. to give presumably 1-naphthylphenyl-3-sulfonic acid (**VIII**), whose anilide salt, m. 215°, is identical with the compd. obtained by Dzieciol'ski and Moskow (*C. A.* 26, 1811). With NaOH at 240-320° for 30 min. **VIII** gives α -naphthol, m. 93°. *VI.* Sulfonation of 1,2-benzanthraquinone. I. S. Ioffe and R. N. Kadnikskaya. *Ibid.* 1121-7. Contrary to Graebe (*C. A.* 26, 210 (1905)) 1,2-benzanthraquinone (**VIII**) is more readily sulfonated than anthraquinone. **VIII** with **VI** at 20° is not sulfonated after 10 days but at 100° the sulfonation is practically complete in 8 hrs. **VIII**, as well as weak oleum, completely sulfonate **VIII** at 20° in several hrs. **VIII** sulfonated at elevated temp. gives a monosulfonic acid (**X**) whose Ba salt, brown, forms a *guinac salt*, brown, m. 118-22°. At low temp. a monomilleric acid (**XI**) is obtained whose Ba salt, yellow, gives a yellow *guinac salt*, m. 202-5°. Oxidation of **X** or **XI** with KMnO₄ in acid soln. gives 1,2-anthrquinonedicarboxylic acid, m. 208°, which indicates that in the sulfonation of **VIII** the sulfo group enters exclusively in the side benzene nucleus.

John Livak

AIA-SLA METALLURGICAL LITERATURE CLASSIFICATION

ca

Benzyl and their derivatives. XXI. Oxidation of *n*-naphthol. I. S. Isidor and N. K. Krichevsky. *J. Gen. Chem. (U. S. S. R.)*, 9, 1130-42 (1939); cf. *C. A.*, 32, 2431.
n-Naphthol (25 g.) in 2.5 l. boiling water is oxidized with 500-540 cc. 5% FeCl₃ soln., added dropwise and with stirring at 70-80°, to give a mixt. (21 g.) of 4,4'-dihydroxy-1,1'-binaphthyl (I), m. 300°, difficultly sol. in hot benzene, and 1,1'-dihydroxy-2,2'-binaphthyl (II), m. 230°, tol. in hot benzene. I and II with Ac₂O in pyridine form the di-Ac derivs., m. 217° and 198°, resp. Both I and II form azo dyes. I with diazoic p-nitroaniline in alk. soln. gives the *β*-azo, dark red and the *α,3'*-di-azo deriv., dark red, m. above 350°; II gives the *β*-azo, red powder, and the *α,4'*-di-azo compd. (III), brick-red, m. above 310°. Of the 4 dyes only III, having 2 OH groups ortho to the azo groups, is insol. in alkali. I (5 g.) with 25 g. AlCl₃ heated under anhyd. conditions at 150-160° for 3 hrs. undergoes cyclization with the formation of 3,10-perylenequinone, dark brown, m. 350°, and 3,10-dihydroperylene (IV), yellow, m. 227°; di-Bz deriv., m. 295°. IV distd. with Zn dust gives perylene, orange, m. 260°. II with AlCl₃ is recovered unchanged. II (5 g.) with 30 g. ZnCl₄ under anhyd. conditions at 230-300° for 4 hrs. gives 2.5 g. 2,2'-binaphthyl 1,1'-oxide, grayish yellow, m. 182°, unchanged when dried with Zn dust; picrate, m. 173°. I fused with ZnCl₄ under the same conditions remains unchanged. **XXII. Phenanthryl dioxide.** I. S. Isidor. *Ibid.* 1148-4.—Oxidation of 2-hydroxyphenanthrene with FeCl₃ in AcOH or EtOH gives 2,2'-dihydro-1,1'-binaphthyl, which, with an equal wt. of Ag₂O in boiling benzene for 6 hrs., is oxidized to 1,1'-binaphthyl-2,10',2',10-dioxide (V), bright yellow, m. 290°. V is extremely stable and remains unaltered after treatment with strong oxidizing agents.

John L. Kirk

Reaction of diazo compounds with primary aromatic amines containing salt-forming groups. A. Tautomerism of triazenes. A. P. Kirshov and I. S. Isosie. *J. Gen. Chem. (U. S. S. R.)*, **9**, 2211-18 (1930). The following is a summary of the results obtained by the authors:

CO_2Na . The prepn. of 2,5-dichloro-4'-nitrophenylbenzene is given as example. A soln. of 0.08 mole 2,5-C₆H₄N:NNHPh is added slowly while cooling to a soln. of 0.14 g. Na sulfonate and 10.22 g. NaOAc in 80 ml. H₂O. The reaction product is filtered after 1 hr., the residue washed with H₂O and dissolved in a 0.5% NaCl/H₂O soln. The soln. is filtered and the filtrate is acidified with AcOH. The other compds. listed above are prepd. in a similar way. These triazene derivs. exist in 2 tautomeric forms RN:NNH⁺ ≡ RNHN:NR⁺ and the preponderance of one or the other form depends on the character and position of the substituents in the phenyl radicals. II. General course of reaction. *Ibid.* 2210-31.—The following new derivs. of diphenyltriazene are prepd.: 4-Me,²⁻-CO₂Na; 4'-SO₃Na; 4-Me,²⁻-CO₂Na,²⁻-SO₃Na; 4-NH₂,²⁻-SO₃Na; 4-NO₂,²⁻-CO₂H,²⁻-SO₃Na. The mech-
anism of the reaction between diazo compds. and animes contg. multi-forming groups was investigated under various conditions.

Gentle Remind

S.S.A. METALLURGICAL LITERATURE CLASSIFICATION

SUBDIVISION										SUBDIVISION									
SUBDIVISION					SUBDIVISION					SUBDIVISION					SUBDIVISION				
SUBDIVISION		SUBDIVISION			SUBDIVISION		SUBDIVISION			SUBDIVISION		SUBDIVISION			SUBDIVISION		SUBDIVISION		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

CA

10

The characteristic peculiarities of the anthracene derivatives. Investigation of the reaction of 2-hydroxyanthracene with iron chloride. I. B. Ioffe and L. S. Efrem. *Trudy LKKATI, Lab. Akademiaki Rukhchev. 1936, No. 7, 142-60.* — Two parallel reactions take place with aqueous. the same velocity from the action of FeCl₃ on 2-hydroxyanthracene (I): the oxidation-condensation of 2 mols. of I at the expense of the α -positions with the formation of 2,2'-dihydroxy-1,1'-bianthryl which after formation is immediately further oxidized to 2-hydroxy-1,1'-2',3-bianthrylene oxide, and the oxidation-condensation of 2 mols. of I at the expense of their α -positions with the formation of 2,2'-dihydroxy-9,9'-bianthrone. The 1st process is the usual one for α -deriv. of β -naphthol and yields a ruby-colored product which is sol. in benzene, producing a blood-red soin. with a yellow fluorescence (mol. wt. 1604, calcd. 384). The 2nd process, which is specific for anthracene compds., produces a brown product, very little sol. in most org. solvents, sol. in pyridine and insol. in alkali. It is acetylated with difficulty and it dyos wool in a brown color with Cr and Fe mordants.

W. R. Henn

ASR-SLA METALLURGICAL LITERATURE CLASSIFICATION

SEARCH STRATEGY

TOPIC MAP ONLY ONE

SEARCH #

CA

Monosulfonic acids of phenanthrene.—*J. S. Joffe, Org. Chem. Ind. (U. S. S. R.)* 7, 374-8 (1940).—The following method may be used to sulfonate phenanthrene and to sep. the isomeric monosulfonic acids. Heat 178 g. of phenanthrene gradually to the molten state and then heat to 108-110°. Mix with a stirrer, add from a funnel 160 g. of 92-94% H_2SO_4 in 20 min., regulating the temp. so that it will not rise above 120°, then maintain for 3 hrs. at 110-120° while stirring continuously. Pour into 1 l. of satd. salt soln., wash the vessel and stirrer with the same soln. (the total vol. should be about 1.6 l.), cool and filter. The filtrate is weakly colored, indicating complete absence of

of sufficiently pure salt. The Ba salts are a mixt. of salts of the 2- and 3-sulfo acids and may be converted to Na salts and sep'd. in the usual manner. To convert the sulfo acids into the phenanthrane proceed as follows. Add a few ml. of water to 500 g. NaOH, heat to 260° to melt, add in small amounts 160 g. of 2-sulfonic acid obtained above during the course of 1 hr., raise the temp. to 300° and hold at 300° for 30 min. Pour the melt into 2 l. of water, add while heating HCl to a weakly acidic reaction, filter and add HCl to a weakly acidic reaction. Cool, filter and dry. The product in 160.2¹ and the yield was 70% of the theoretical. β -Phenanthrane is obtained under the same conditions except that 350-400 g. NaOH may be used instead of the 500 g. The product usually becomes tarry so that it should be purified by vacuum distn.

B. Z. Kamich

APPROVED FOR RELEASE: 08/10/2001

CIA-RDP86-00513R000618620019-8"

CA

157 AND 158 OF 625

The interaction of diazo compounds with indophenols.

I. S. Jade and B. K. Krichevskiy. *J. Gen. Chem. (U. S. S. R.)* 10, 1385-90 (1940); *cf. C. A.* 34, 4730^a.—An indophenol, obtained by the condensation of *p*-NO₂C₆H₄OH with carbazole and having the formula 3-(*p*-O-C₆H₄N)-C₁₁H₈C₆H₅NH (I), was used in glacial AcOH for the reaction with diazotized *p*-NH₂C₆H₄SO₃H₂ (II) at 10-5°. With no excess of II the reaction yielded after 2-3 hrs. 2 isomeric forms of phenylindophenoquinone acid, 2 (and 3)-(*p*-HO-S-C₆H₄)-4-O-C₆H₅:NC₆H₅C₆H₅NH (75%), and in the presence of excess of II it yielded after 5-6 hrs. the 2,5-bis(*p*-C₆H₅) deriv. The monosulfonate was insol. in water but sol. in aq. alk. solns, and the disulfide was sol. in water and in aq. alk. solns. The soln. of I in acetone treated with diazotized *p*-ClC₆H₅NH₂ yielded 2 (and 3)-(*p*-ClC₆H₅)-4-O-C₆H₅:NC₆H₅C₆H₅NH and in the presence

of an excess of the reagent the 2,5-bis(*p*-ClC₆H₅) deriv. Conclusions: The indophenols reacted with the diazo compds., decompg. them with the liberation of N₂ and adding the aryl residue to the quinoid ring. The arylated indophenols were more colored than the original compds.

A. A. Podgorny

ABSTRACT METALLURGICAL LITERATURE CLASSIFICATION

SEARCHED, SERIALIZED

COM. ST. LIBRARY

SEARCHED

SEARCHED AND INDEXED

SEARCHED

SEARCHED

SEARCHED

SEARCHED

in glacial AcOH and H_2SO_4 ; m.p. (m-nitrophenyl)dinitrophenyl-oxanthine (IV), m. 334° (uncorr.); m.p. (m-nitrophenyl)- α -nitrophenyl-oxanthine (V), m. 345°; m.p. (m-nitrophenyl)- β -nitrophenyl-oxanthine (VI), m. 325-37°. Compound (III), m. above 330°, was oxidized with HgO , yielding a corresponding carbonyl, m. 319-32° [IR], with HgO followed by H_2O_2 , m. 305-31° [IR]. Compound (IV) was oxidized with HgO and oxidation of IV in place of H on the central C atom] and oxidation of IV yielded the carbonyl, m. 309-1°. Reducing the above compound, with a mixt. of AlCl_3 and NaCl at 130°, yielded the corresponding carbonyl dyes. The condensation of the same reagents as for the prepn. of (IV) but in each case (using mixts. of orthophenylbenzoquinone and CuCl_2) yielded at room temp. of III, 5-naphthylaminonaphthalimidone (IV), m. 295°; m.p. (m-nitrophenyl)dinitrophenyl-oxanthine (IV), m. 305°; oxidation of which with Br_2 in PCl_5 yielded the carbonyl, m. 304-5°. On applying the same reagents (but using CuCl_2 instead of CuCl_2) to compound (VI), m. 311°. On heating with an AlCl_3 - NaCl mixt., m.p. 305°, a carbonyl dye, m.p. 305°, was obtained. The carbonyl dyes have stronger basic properties than those of the oxanthine.

A. A. P.

The reaction of sulfonation. VII. Sulfonation of 1,2-benzanthraquinone by sulfuric acid. I. S. Toft and N. M. Fedorova. *J. Gen. Chem. (U. S. S. R.)*, 191-26 (1941). —Sulfonation of 1,2-benzanthraquinone by oleum may be expected to produce and preserve the more readily formed, but also more readily hydrolyzable, α -sulfonic acids of the naphthalene part of the mol. On the other hand, sulfonation by H_2SO_4 , especially at elevated temps., may be ex-uct or obtained on fusion of 0.3 g. $H_2S_2O_7$ -hydroxy-1,2-benzanthraquinone in 12.5 g. KOH at 210° for 0.5 hrs. The (alkaline) β -sulfonic acids of the naphthalene residue yields the following yields of the two HCO compds. there are in excess of 20% of 1,2-Benzanthraquinone (30 g.) was added to 300 g. 90% theory. The K sulfonate (30 g.) in 11. HCl is added to 60 H_2SO_4 at 150° and stirred with heating to 180-200° for 8 g. Zn dust and 80 cc. 25% NH_4OH ; after 12 hrs. the mixt. is 6 hrs., poured into 200-300 g. ice, filtered, dissolved in 1.5 treated with 200 cc. 25% NH_4OH ; after 12 hrs. the mixt. is 1. hot H_2O and treated hot with a soln. of $Ba(OH)_2$ to alk. filtered and the ppt. extd. with hot H_2O to yield, on evap. of the filtrate and drying at 110°; g. of the above K salt and heated for 1 hr., poured into 100°-110° is treated with 7 2 hrs., the K salt of the sulfonic acid being isolated (yield); KOH (35 g.) fused at 180°-190° is treated with 7 in 80% yield by evapn. of the filtrate and drying at 110°; g. of the above K salt and heated for 1 hr., poured into 1,2-benzanthraquinone- β - SO_3^- /acetone, dark yellow pow. H_2O , cooled and acidified by HCl to Congo red, yielding K- β -hydroxy-1,2-benzanthraquinone- β - SO_3^- (from H_2O -HClO). KOH (35 g.) melted in a Ni cruc. 3.4 g. (73%) $H_2S_2O_7$ -hydroxy-1,2-benzanthraquinone, m. 178-9 (from H_2O -HClO). At 220-240° was treated with 10 g. of the above K salt (from 30% AcOH); Ac_2O , m. 182-3° (from H_2O) is added to the melt., which was dissolved in dil. H_2O and cooled to give 3.7 g. blue 248-9° (from MePh). $H_2S_2O_7$ -hydroxy-1,2-benzanthraquinone fluorescent ppt., which was dissolved in dil. alk. (with 0.5 g. Ac_2O) in 25 cc. AcOH is added to 2 g. of C anhydride heating) and acidified to Congo red to ppt. Ac_2S - β -hydroxy-1,2-benzanthraquinone, m. 248-9° (from H_2O -HClO); 20 cc. H_2O and filtered (cold) to yield 0.25 g. Ac_2S - β -hydroxy-1,2-benzanthraquinone, m. 253-5° (from benzene). At 220-230° (from benzene). The alk. filtrate Ac_2S -1,2-benzanthraquinone, m. 253-5° (from benzene), from the HCl compd. was treated with CO_2 to remove traces. Therefore, the contention that sulfonations of 1,2-benzanthraquinone by H_2SO_4 at 150-200° takes place predominantly in the β -position of the naphthalene residue is (from H_2O -HClO); At 220°, m. 200°. The name prod. justified. Cf. C. A. 33, 8907. G. M. Kosanofsky

1.1.1.1.1. METALLURGICAL LITERATURE CLASSIFICATION

APPROVED FOR RELEASE: 08/10/2001

CIA-RDP86-00513R000618620019-8"

CD		PROCESS AND PROPERTIES INDEX		CD	
1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36
37	38	39	40	41	42
43	44	45	46	47	48
49	50	51	52	53	54
55	56	57	58	59	60
61	62	63	64	65	66
67	68	69	70	71	72
73	74	75	76	77	78
79	80	81	82	83	84
85	86	87	88	89	90
91	92	93	94	95	96
97	98	99	100	101	102
103	104	105	106	107	108
109	110	111	112	113	114
115	116	117	118	119	120
121	122	123	124	125	126
127	128	129	130	131	132
133	134	135	136	137	138
139	140	141	142	143	144
145	146	147	148	149	150
151	152	153	154	155	156
157	158	159	160	161	162
163	164	165	166	167	168
169	170	171	172	173	174
175	176	177	178	179	180
181	182	183	184	185	186
187	188	189	190	191	192
193	194	195	196	197	198
199	200	201	202	203	204
205	206	207	208	209	210
211	212	213	214	215	216
217	218	219	220	221	222
223	224	225	226	227	228
229	230	231	232	233	234
235	236	237	238	239	240
241	242	243	244	245	246
247	248	249	250	251	252
253	254	255	256	257	258
259	260	261	262	263	264
265	266	267	268	269	270
271	272	273	274	275	276
277	278	279	280	281	282
283	284	285	286	287	288
289	290	291	292	293	294
295	296	297	298	299	300
301	302	303	304	305	306
307	308	309	310	311	312
313	314	315	316	317	318
319	320	321	322	323	324
325	326	327	328	329	330
331	332	333	334	335	336
337	338	339	340	341	342
343	344	345	346	347	348
349	350	351	352	353	354
355	356	357	358	359	360
361	362	363	364	365	366
367	368	369	370	371	372
373	374	375	376	377	378
379	380	381	382	383	384
385	386	387	388	389	390
391	392	393	394	395	396
397	398	399	400	401	402
403	404	405	406	407	408
409	410	411	412	413	414
415	416	417	418	419	420
421	422	423	424	425	426
427	428	429	430	431	432
433	434	435	436	437	438
439	440	441	442	443	444
445	446	447	448	449	450
451	452	453	454	455	456
457	458	459	460	461	462
463	464	465	466	467	468
469	470	471	472	473	474
475	476	477	478	479	480
481	482	483	484	485	486
487	488	489	490	491	492
493	494	495	496	497	498
499	500	501	502	503	504
505	506	507	508	509	510
511	512	513	514	515	516
517	518	519	520	521	522
523	524	525	526	527	528
529	530	531	532	533	534
535	536	537	538	539	540
541	542	543	544	545	546
547	548	549	550	551	552
553	554	555	556	557	558
559	560	561	562	563	564
565	566	567	568	569	570
571	572	573	574	575	576
577	578	579	580	581	582
583	584	585	586	587	588
589	590	591	592	593	594
595	596	597	598	599	600
601	602	603	604	605	606
607	608	609	610	611	612
613	614	615	616	617	618
619	620	621	622	623	624
625	626	627	628	629	630
631	632	633	634	635	636
637	638	639	640	641	642
643	644	645	646	647	648
649	650	651	652	653	654
655	656	657	658	659	660
661	662	663	664	665	666
667	668	669	670	671	672
673	674	675	676	677	678
679	680	681	682	683	684
685	686	687	688	689	690
691	692	693	694	695	696
697	698	699	700	701	702
703	704	705	706	707	708
709	710	711	712	713	714
715	716	717	718	719	720
721	722	723	724	725	726
727	728	729	730	731	732
733	734	735	736	737	738
739	740	741	742	743	744
745	746	747	748	749	750
751	752	753	754	755	756
757	758	759	760	761	762
763	764	765	766	767	768
769	770	771	772	773	774
775	776	777	778	779	780
781	782	783	784	785	786
787	788	789	790	791	792
793	794	795	796	797	798
799	800	801	802	803	804
805	806	807	808	809	810
811	812	813	814	815	816
817	818	819	820	821	822
823	824	825	826	827	828
829	830	831	832	833	834
835	836	837	838	839	840
841	842	843	844	845	846
847	848	849	850	851	852
853	854	855	856	857	858
859	860	861	862	863	864
865	866	867	868	869	870
871	872	873	874	875	876
877	878	879	880	881	882
883	884	885	886	887	888
889	890	891	892	893	894
895	896	897	898	899	900
901	902	903	904	905	906
907	908	909	910	911	912
913	914	915	916	917	918
919	920	921	922	923	924
925	926	927	928	929	930
931	932	933	934	935	936
937	938	939	940	941	942
943	944	945	946	947	948
949	950	951	952	953	954
955	956	957	958	959	960
961	962	963	964	965	966
967	968	969	970	971	972
973	974	975	976	977	978
979	980	981	982	983	984
985	986	987	988	989	990
991	992	993	994	995	996
997	998	999	999	999	999

With 20% oleum at 100° or similarly from the hydroxy-vinylcarboxylic acid (see above). Refluxing of this ester with 10% Na₂CO₃ yields the 3,2'-dihydroxy-6,6'-vinylcarboxylic acid. C. M. Kundrapu, S. Johnson and Wesley E. Isenberg (Univ. of Wisconsin), J. Am. Chem. Soc. 67, 1883-4 (1945). — i-MeOC₂H₂Cl₂, refluxed with 6-(p-methoxyphenyl)propionic acid. Wen, C. J. Wind (unpublished). Cyclization of 6-(p-methoxyphenyl)propionic acid. Wen, S. Johnson and Wesley E. Isenberg (Univ. of Wisconsin), J. Am. Chem. Soc. 67, 1883-4 (1945). — i-MeOC₂H₂Cl₂, allowed to stand overnight, gives 94% of unchanged I and 3% of 6-methoxy-1-hydroxylone (II); if the reaction mixt. is allowed to stand in a closed Cu bath for 3 days, there results 47% of I and 30% of II. The acid chloride (pepp., with PCl₅) from 3 g. I and 2.53 g. AlCl₃ in 70 cc. C₆H₆, stirred 3.5 hrs. at room temp., gave 85% of crude II and 4% of crude I; after 0.5 hr. the yield of II was 60%; after 20 hrs. it was 80%. C. J. Wind

Sulphonation reaction. XIII. Sulphonation of 1-phenyl-3-methyl-5-pyrazolone. I. N. Indra and A. V. Khotin. *J. Gen. Chem. (U.S.S.R.)*, 14, 222-4 (1944) (English summary).—Sulphonation of 1-phenyl-3-methyl-5-pyrazolone by H_2SO_4 , H_2O below 10° , followed by neutralization by $NaOH$, gave the *Ba-salt*. (I) of caustic 1-phenyl-3-methyl-

pyrazadine-4-sulfonic acid. The 4-sulfonic acid is very labile and is readily cleaved by HNO_3 or diazonium salts, while heating with 98% H_2SO_4 transforms it to the 4-sulfone acid, which is formed under all but the mildest conditions of sulfonation of the initial pyrazadone (Mollenhol, Ber., 23, 1041 (1892)). G. M. Karpinskoff

APPROVED FOR RELEASE: 08/10/2001

CIA-RDP86-00513R000618620019-8"

CA

Sulfonation reaction. XIV. Sulfonation of 1-phenyl-3-methyl-5-pyrazolone and preparation and properties of sulfonic acids of phenylmethylpyrazolones. I. B. Il'io and Z. Ya. Khavin. *J. Gen. Chem. (U.S.S.R.)* 17, 522-7 (1947) (in Russian); cf. *C.A.* 40, 2847. — 1-Phenyl-3-methyl-5-pyrazolone (I) (10 g.) in 80 g. 60% H_2SO_4 was heated 1.0 hrs. at 200–20° until the reaction was complete (a few drops of the mixt. in 3–4 cc. H_2O is treated with several drops of $NaNO_2$ and 2–3 cc. Et_2O and shaken; completion of the reaction is shown by a colorless Et_2O layer and intensely yellow aq. layer), poured into 100 g. ice, and filtered after standing until ptin. was complete, giving 92% 1-*p*-sulfophenyl-3-methyl-5-pyrazolone, difficultly sol. in cold H_2O , sol. in hot H_2O , forms in hot aq. soln. with $BaCl_2$ the Ba salt, which is sol. in H_2O but can be recrystallized from aq. $EtOH$. The acid or the Ba salt with $NaNO_2$ gives the water-sol. nitroso deriv. p - O_2NCH_2NiCl gives an orange-yellow azo dye which is fairly sol. in H_2O and in alkalies with a red color. The free acid reduces NH_4AgO and gives with $FeCl_3$ a red color which fades on heating or acidification with HCl . It is stable to hydrolysis; heating to 100–20° with 24% HCl does not affect it. I (10 g.), thoroughly dry, was added slowly to 30 g. 20% oleum and the soln. kept several days at 10–15° (end of reaction shown by treating a few drops with 2–4 g. ice, shaking with Et_2O , and treating the Et_2O layer with $NaNO_2$ and acid, which should give a barely yellow color); after pouring on 100 g. ice, keeping the temp. below 2–3°, the soln. was neutralized with $BaCO_3$, filtered, concd. to 100 cc., again filtered, treated hot

with $EtOH$ until crystal. lmpns. and dried, giving 61% 1-phenyl-3-methyl-5-pyrazolone-4-sulfonic acid as white scales; mp 160°, very crystals, contains 5.5 moles H_2O and cannot be completely dehydrated without decomprn.; is sol. in H_2O , poorly sol. in dil. $EtOH$; $AgNO_2$ gives an insol. Ag salt; $FeCl_3$ gives a blue-violet color; $NaNO_2$ in acid soln. causes loss of $NaSO_3$ and gives 4-nitroso-1-phenyl-3-methyl-5-pyrazolone, m. 147–8° (from H_2O); reaction with p - O_2NCH_2NiCl in the presence of $NaOMe$ also causes loss of $NaSO_3$ and gives a dye, m. 108–9° (from C_6H_6) which is identical with the product of similar coupling of I. The free acid loses the SO₃ group as easily as does the Ba salt. I (10 g.) was slowly added to 50 g. 20% oleum with cooling, then heated on a steam bath 2 hrs. (test as above should give an intense colorless Et_2O layer), poured slowly with cooling into 200 g. ice, the cooled soln. neutralized with $BaCO_3$, filtered, and the filtrate evapd. to 50 cc. and treated with $EtOH$ to give 78.7% of the Ba salt of 1-*p*-sulfophenyl-3-methyl-5-pyrazolone-4-sulfonic acid; on cryst. from dil. $EtOH$ this is obtained as colorless needles, sol. in H_2O , more sol. in dil. $EtOH$ than the Ba salt of the 4-sulfonic acid; it contains 61% H_2O and cannot be completely dehydrated without decomprn.; treatment with $AgNO_2$ gives an insol. Ag salt; with $FeCl_3$ it gives a red color; $NaNO_2$ in acid soln. splits off the 4-sulfo group and gives a nitroso compd. identical with that of the 4-sulfo deriv.; p - O_2NCH_2NiCl also cleaves a 4-sulfo group and gives an azo dye identical with that from the 4-sulfo acid. Heating with acids leads to ready loss of the 4-sulfo group. The $NaNO_2$ reaction with the Ba salts of the above acids is quant. and may be used as a basis for their analytical estn.

G. M. Kosolapoff

AFB-SLA METALLURGICAL LITERATURE CLASSIFICATION

13001 13121 13124

Sulfonation reaction. XV. Sulfonation of 1-phenyl-3-methyl-*p*-pyrazolone and the influence of reaction conditions on the yield of sulfonation products and their mutual transformations. I. S. Ioffe and Z. Ya. Khavin. *J. Gen. Chem. (U.S.S.R.)* 17, 322-37 (1947) (in Russian). It was shown in part XIV (*C.A.*, 42, 933a) that sulfonation of 1-phenyl-3-methyl-*p*-pyrazolone (I) can be made to yield 3 products, depending on conditions: the 4-sulfo (II), the 1-*p*-sulophenyl (III), and the 4-sulfo-1-*p*-sulophenyl (IV) derivs. Since this was in contradiction with Mollenhöf's results (*Ber.* 23, 1941 (1890)) a new series of expts. were carried out showing that M.'s isolation of only III was due to hydrolysis of the sulfo group in the 4-position during quenching of his reaction mixt. with ice without adequate provision for cooling. Sulfonation in *o*leum leads to IV by 2 routes: formation of II and III which then undergo further sulfonation; II is formed predominantly and is unlikely to fairly rapidly sulfonate even at low temp. Sulfonation with H_2SO_4 leads to III through a complex series of steps; the primary products are similar to those produced by oleum; these lead to the formation of IV in later stages of the reaction as well as to accumulation of III through hydrolysis of II by H_2O ; III being stable to such hydrolysis. IV then substantially loses the 4-sulfo group by similar hydrolysis and the overall reaction is the formation of III. I (10 g.) added with external cooling to 30 g. 30% *o*leum in small portions and allowed to stand 7-10 days at 10-15° and hydrolysed by pouring slowly into 100 g. externally cooled ice, followed by neutralization with $NaCO_3$, gave 65% of the Ba salt (V) of II; the mother liquor on further treatment with $BaCO_3$ gave 17% IV (the Ba salt (VI) and a small amt. of V. However, when 10 g. I in 80 g. 30% *o*leum was heated to 100° 1.5-2 hrs., cooled, and the salt, divided into (a) which was rapidly poured into 100 cc. H_2O (without cooling), allowed to cool, and yielded 85% III, and (b) which was carefully poured on 100 g. ice with external cooling; the salt remained clear and, after neutralization by $NaCO_3$, filtration of the Na_2SO_4 and addition of $BaCO_3$

with HCl , giving 61% of hydroxy- α -methyl- β -chloroquinoline (**III**), m. 230° (decompn.). It is also obtained in 60% yield when 100 g. of **II** is refluxed with 80 cc. HCl in 11.1 l. EtOH . The Ag salt of **III** refluxed with MeI in MeOH 4 hrs., gives 8.5% **IV**, light yellow needles, m. 123–8°. Slow addition of 41 g. **III** to 150 cc. POCl_3 at 80°, refluxing the mixt. 1.5 hrs., and pouring it into 700 cc. concd. NH_4OH and ice gives 80% 8-chloro- α -methoxy- β -nitroquinoline (**IV**), m. 203.5–5°. Heating 4.77 g. **IV** with $\text{CH}_3(\text{OH})\text{CH}_2\text{ONa}$ in $(\text{CH}_2\text{OH})_2$ 2 hrs. and pouring the cooled mixt. into 250 cc. H_2O give 5-(2-hydroxyphenyl)- α -methoxy- β -nitroquinoline (**V**), bright yellow solid, m. 122–3° (4% decr. m. 70–1°). **V** is also obtained in 32% yield by heating 2.4 g. **IV** to 90 cc. $(\text{CH}_2\text{OH})_2$ with 0.06 g. 80% KOH in 10 cc. H_2O at 105°. Reduction of 7.1 g. **V** in 100 cc. EtOH with PbO at 40 l. in 3 min. gives 81% 5-(2-hydroxyethyl)- α -methoxy- β -nitroquinoline (**VI**), m. 113–4° (picrate m. 174–0°). An intimate mist of 9.83 g. **VI** and 12.0 g. $\text{Fe}(\text{CN})_3(\text{CH}_3\text{OH})_2$ is heated 12 hrs. at 115–125° and 2 hrs. at 125–130° in a N atm., giving 2-(β -(6- α -hydroxyphenylamino)- α -methyl-5-quinoxalyl)ethanol, unstable yellow oil, b.p. 150–6°. Heating 2 g. **VI** with 30 cc. concd. HCl in a sealed tube 6 hrs. at 100° gives 1.4 g. 5,6-dihydro- β -nitroquinoline- α - β -C₆H₅, m. 221–2° (sealed tube, decompn.). Nitration of 17 g. α - $\text{C}_6\text{H}_5\text{CH}_2\text{NH}_2$ in 30 cc. Ac_2O and 9 g. Ac_2NO at 0° to –5° with 10 g. HNO_2 (1:12) in 9 cc. Ac_2O gives 100% 2- α -tolueneacetanilide, m. 117–18°, reported with MeONa in MeOH to 100% 2,6-($\text{R}_2\text{N})\text{C}_6\text{H}_3\text{NHO}_2$, m. 127.5–8°, which is converted into α -chloro- α -nitroquinoline (**VII**) according to Fourneau, et al. (C. A. 24, 5381). Treatment of 3 g. **VII** with 3 g. Me_2SiN_3 in MeOH 6 hrs. at 40–60° and overnight at room temp. gives 80% 3-methoxy- β -nitroquinoline (**VIII**), yellow crystals, m. 119.5–20°. Refluxing 1 g. **VIII** with 60 cc. H_2O and 3 cc. concd. HCl gives 81% 3-hydroxy- β -nitroquinoline (**IX**), compact orange crystals, m. 201° (decompn.). **IX** is also formed in 45% yield by refluxing **VII** with 800 cc. H_2O and 10.0 cc. concd. HCl (m. 201–21.5°, decr.). Methyl-

which gives a clear result in both cases. A similar procedure gives good results in the case where linear conditions give rise to a non-linear result.

"APPROVED FOR RELEASE: 08/10/2001

CIA-RDP86-00513R000618620019-8

RECORDED AND INDEXED BY:

RECORDED

APPROVED FOR RELEASE: 08/10/2001

CIA-RDP86-00513R000618620019-8"

"APPROVED FOR RELEASE: 08/10/2001 CIA-RDP86-00513R000618620019-8"

APPROVED FOR RELEASE: 08/10/2001 CIA-RDP86-00513R000618620019-8"

"APPROVED FOR RELEASE: 08/10/2001

CIA-RDP86-00513R000618620019-8

APPROVED FOR RELEASE: 08/10/2001 CIA-RDP86-00513R000618620019-8"

"APPROVED FOR RELEASE: 08/10/2001 CIA-RDP86-00513R000618620019-8

cycle product obtained from 100% enriched Chinese
uranium, treated with 0.6% Am-241, and with 7.0%

APPROVED FOR RELEASE: 08/10/2001 CIA-RDP86-00513R000618620019-8"

"APPROVED FOR RELEASE: 08/10/2001

CIA-RDP86-00513R000618620019-8

APPROVED FOR RELEASE: 08/10/2001

CIA-RDP86-00513R000618620019-8"

"APPROVED FOR RELEASE: 08/10/2001

CIA-RDP86-00513R000618620019-8

APPROVED FOR RELEASE: 08/10/2001

CIA-RDP86-00513R000618620019-8"

sofa. Is carried by the ton VI. In going all, file 4.

1. The sofa is made of a light-colored wood frame. It has a dark, polished finish. The sofa is upholstered in a light-colored fabric. The sofa is very comfortable and has a classic design. The sofa is positioned in the center of the room. The sofa is surrounded by several pieces of furniture, including a coffee table, a chair, and a lamp. The sofa is the main piece of furniture in the room.

2. The sofa is made of a light-colored wood frame. It has a dark, polished finish. The sofa is upholstered in a light-colored fabric. The sofa is very comfortable and has a classic design. The sofa is positioned in the center of the room. The sofa is surrounded by several pieces of furniture, including a coffee table, a chair, and a lamp. The sofa is the main piece of furniture in the room.

IOFFE, I. S.

"Investigation in the Field of the Oxyfuchsone Dyes. II. Preparation of 4', 4''-Dioxy-3,3',3(''-Trimethoxyfuchsone (Rubrophene)" (p. 1376)

SO: Journal of General Chemistry, (Zhurnal Obshchei Khimii), 1947, Vol. 17, No. 7

CA

Hydroxyfuchsins dyes. IV. Indicator properties of benzarin, aurin, and their methoxy derivatives. I. S. Ioffe, Zhu, Brikker Khan, (J. Gen. Chem.) 17, 707 (1947); cf. C.A. 42, 2434. Titration of aurin, of benzarin (I), dimethoxybenzarin (II), aurin (III), and trimethoxyaurin (IV) by 0.1 N NaOH potentiometrically shows all 4 substances to be unchanged (pale yellow) up to pH 7; further titration (in which all 4 behave like weak acids), produces a red color going to violet (pH 1, brown-violet going to blue in II, pink in III, and violet in IV). I and II show a slight break in the curve, typical of weak acid titrations; III and IV give 2 small breaks indicating 2 phenolic OH groups. The final color stabilization for all 4 substances is reached only at pH 8; on the basis of sharpness of color change, II may have practical uses. However, I and II are not stable at pH about 7, and after 24 hrs. the color formation is much weaker. Indicating compn.: both higher and lower pH values give more stable points. Further increase of pH beyond 8 results in transformation of the original hydroxyquinone ion into the colorless carbonyl structure, which takes place at pH 11 for I, pH 11.5 for II, in 0.5 N NaOH for III, and in 1.2 N NaOH for IV. In strongly acid solns. (HCl) these substances also give color changes due to proton addition and formation ofonium-type cations; the changes are: pH 1 for I (orange), pH somewhat under 1 for II (raspberry), pH 2.5 for III (golden) with the best defined color in 0.5 N HCl, and pH 2 for IV (raspberry). V. Blauflotte compounds of hydroxyfuchsins dyes. Ibid. 1910-21. The NaHSO₄ adducts of I-IV were readily prep'd. by the following procedure: a mortar, preheated to 80°, is charged with 40 g. concd. NaHSO₄ soln., in which is gradually

titrated 10 g. of the fuchsins deriv., the resulting colorless solid is readily reduced to a powder, which, after soln. in hot H₂O (contg. a drop of N AcOH), is filtered and cooled; the products are dried in vacuo over KOH; traces of NH₃ or acid in the atm. must be absent. All of the products are colorless crystals, sol. in H₂O, which decompose on warming in 0.5 N soln. (reversible for brief heating). Acidification of the solns. gives typical ion colors of the anion; note: AcOH does not decompose the blauflotte adduct; treatment with alkalies produces colors typical of the alkali salts of the hydroxyfuchsins dyes. Analyses indicate equimolar adducts. The decomps. in atm. takes place at pH 4 for acids, and pH 6 for bases for III and IV, and at pH 2 and 7, resp., for I and II. Purification of III may be readily accomplished as follows: crude III (27 g.) at 20° in 600 ml. 1.5% NaOH is stirred, the filtrate (12.5 g. in 200 ml.) warmed with 12 ml. concd. NaHSO₄ soln. in 100 ml. H₂O, leaving behind 5 g. insol. matter; the filtrate, after addn. of 400 ml. 21% NaCl, is warmed with HCl and the pgi. contg. III, HCl treated with NaAc soln., stirred, and dried, yielding 7.5 g. pure III, m. 292°. Direct conversion of the crude III to the blauflotte adduct, followed by HCl treatment, yields III, m. 297-98°. VI. Methoxy- and dimethoxyaurins. I. S. Ioffe and Z. I. Pavlova. Ibid. 18, 223-6 (1948). Molten PhOH (40 g.) and 30.4 g. vanillin were satd. with dry HCl and let stand until crystallized; titration with 2 vol. 30% AcOH gave 30.8 g. 6,6'-dimethoxy-4-methoxyphenylphenol, m. 180-1 (from 30% AcOH), colorless but turning pink in the air. 1 mol. in petr. ether, sol. in KOH, AcOH, less sol. in C₆H₆. Heating 2 g. with 10 g. AcOH and 4 g. NaOAc 4 hrs. on a

steam bath gave the *tri-Ac dyes*, colorless needles, m. 112° (from H(OH)). NaOAc-HClO (12.2 g.) and 20 g. guaiacol in 50 ml. AcOH added, with dry HCl , allowed to stand several days, and the red mass taken up in 10% NaOH , dilut. to 9 l. with water, filtered, and acidified with HCl , gave 30 g. *4,4',4''-trihydroxy-3,3'-dimethoxytrityphenimine*, m. 173-8.5° (from 30% AcOH) sol. in H(OH) , RtOAc , AmOAc , less sol. in $\text{C}_6\text{H}_5\text{OAc}$, ether; *tri-Ac dye*, colorless, m. 120-1°. The condensation product of 40 g. PhOAc and 20.4 g. vanillin taken up in 100 ml. AcOAc , treated with 40 ml. AmOAc and, with dry HCl , the mixt. treated with 17.6 g. fresh AmONO with stirring over 9-3 hrs., stirred 4 hrs., and let stand overnight gave 70% *3-methoxyvanillin-HCl*, purified by heating to 80° with 20 ml. cold NaHSO_3 soln. and 100 ml. H_2O , pouring into 400 ml. boiling 20% NaCl soln., treating with charcoal, filtering, adding 60 ml. concd. HCl dropwise to the hot filtrate, and collecting the product and washing it with water; the pure product, brownish-luted crystals, decomposing, 100°, can be recrystd. from AcOH . This HCl salt (12 g.), on addition to 5 g. NaOAc in water, gives an oil, which on boiling crystallizes and yields *hydroxyfuchsin*, m. 274-5°, red crystals with bronze-like tints, can be crystallized from RtOAc or AcOH ; heating with Ac_2O and NaOAc gives the *tri-Ac dye*, yellowish, m. 104-9° (from RtOAc), which probably is based on the carbinal structure, *4,4',4''-Trihydroxy-3,3'-dimethoxytrityphenimine* (5 g.) in 20 ml. AmOAc treated with 4 ml. AcOAm and, with HCl , stirred 6 hrs., and let stand overnight gave 3.9 g. *3,3'-dimethoxyquinin-HCl*, which, purified as above, decomps. 165-70°; treatment with NaOAc as above gave the *free dye*, red, m. 220-4° (from RtOAc); *tri-Ac dye*, colorless, m. 128°. (G. M. K.)

Ioffe, I. S.

Ioffe, I. S., Pavlova, Z. I., "Research in the Field of Oxyfuchsone Dyes. VI. Methoxy-
and Dimethoxyaurins." (p. 222)
(Nav Med Acad imeni Leningrad)

SO: Journal of General Chemistry, (Zhurnal Obshchei Khimii), 1948, Volume 18, no. 2

IOFFE, I. S.

22972 Issledovaniye v ob oblasti oksifuksonovykh krasiteley. (Soobshch)
9. I. S. Ioffe i A.F. Sukhina. Stroyenie i tsvetnost' oksimetoksfuksonov.
Zhurnal obshchey khimii, 1949, Vyp. 6, C. 1169-76. Bibliogr: 9 Nasv.

SO: LETOPIS' NO. 31, 1949

boiled 4 hrs. with AcOH as above. The bisulfite deriv. is obtained by shaking an alc. soln. of the fuchson with warm satd. NaHSO₃ soln. and diln. to 50% with hot H₂O (I does not undergo this reaction); it is also obtained on addn. of NaHSO₃ soln. to AcOH soln. of fuchson or I; either I or fuchson in excess cold concd. HCl yields the brown HCl salt, which with satd. NaHSO₃ soln. (enough to neutralize residual acid) also gives the same bisulfite deriv. Warm alc. soln. of fuchson is decolorized by a few drops of aq. NH₄OH and on diln. gives I; the same results on boiling with N NaOH and diln. with NH₄Cl soln., or on boiling with 40% AcOH, or on soln. in concd. HCl and diln. Cooled HCl soln. of fuchson-HCl is rapidly hydrolyzed by ice yielding voluminous *red fuchson hydrate*, m. 59-62°, which on long standing in water yields I; the hydrate is stable only in acid media. Ph₃CCl₂ (192 g.) and 240 g. guaiacol let stand 3 weeks gave a red mass which was divided in halves; the 1st half was ste am distd., powd., and extd. with N NaOH and the soln. treated with CO₂ giving 64% *4-hydroxy-3-methoxytriphenylcarbinol* (II), m. 138-9° (from C₆H₆); the 2nd half was stirred on a steam bath with excess satd. NaHSO₃ soln., shaken with warm H₂O and benzene, and the bisulfite deriv. (80%) was ground with concd. HCl and the red soln. of 3-methoxyfuchson-HCl was hydrolyzed by ice after 24 hrs. giving voluminous *red hydrate*, which on stirring with H₂O gave 78% yellow II, m. 116-18°, pure m. 137-9° (colorless) (from C₆H₆). II (25 g.) boiled 4-5

hrs. with 150 ml. AcOH and evapd. in vacuo gave on extn. with warm Et₂O 71% *Jonathan's fuchson*, m. 130-3°; the same was obtained in 50% yield by boiling the bisulfite deriv. with AcOH, evapn., washing with Et₂O, and extn. with hot C₆H₆; the bisulfite deriv. forms under the same conditions as that of fuchson itself and forms a tetrahydrate. The carbonyl deriv. of 3-methoxyfuchson: action of NH₄OH or alkali on fuchson give colorless II, m. 137-9°, while boiling 3-methoxyfuchson with 40% AcOH yields *yellow carbonyl deriv.*, m. 147°, and hydrolysis of 3-methoxyfuchson-HCl gives *yellow hydrate*, m. 116-18°, on standing, while the immediate hydrolysis product is a deep-pink solid. Benzhydrol (30 g.), 45 g. PhOH, and 10 ml. AcOH added in the cold with HCl and kept several days, steam distd., and treated with C₆H₆ gave *4-hydroxytriphenylmethane* (73%), m. 108-10° (from dil. AcOH); its deriv., m. 82-4°. A similar reaction with 100 g. guaiacol gave 40% *4-hydroxy-3-methoxytriphenylmethane*, m. 103-5° (from C₆H₆); its deriv. m. 116-18° (from EtOH). G. M. Kosolapoff

IOFFE, I. S.

PA 67/49T50	
UESR/Chemistry - Dyes Tucson	May 49
<p>"Research in the Field of Oxyduchsone Dyes: VII, Bromoethoxybenzaurin," I. S. Ioffe, Chair of Org. Chem., Rev Med Acad., 6 pp.</p> <p>"Zhur Obshch Khim" Vol XIX, No 5</p> <p>Synthesized 3-methoxy-<i>i,i</i>-dioxotriphenylmethane to obtain 3-methoxybenzaurin. It is extracted in a crystalline form by the passage of dry hydrogen chloride gas over a saturated mixture containing phenol, and 5 moles of guaiacol. The tri-phenyl- methane derivative, with a melting point of</p>	
67/49T50	
UESR/Chemistry - Dyes (contd)	May 49
<p>166-168°, remains after the acetyl derivative melts at 100-102°. It is then oxidized in an amyl- acetate solution of amylnitrite to produce the 3-methoxybenzaurin, which has a low melting point in the hydrate form and melts at 158-160° in the anhydride form. Alkali solutions of this dye are violet; strong hydrochloric acid solutions, rasp- berry; and in the nonionized form, it forms light yellow solutions similar to the solutions of benz- aurin and its di-methoxy derivative. Submitted 23 Feb 48</p>	
67/49T50	

IOFFE, IS. S.

FA 67/49149

USSR/Chemistry - Dyes
Fuchsone

May 49

"Research in the Field of Oxyfuchsone Dyes: VIII,
New Data on Fuchsone and 3-Methoxyfuchsone,"
I. S. Ioffe, Z. Ya. Khevin, Chair of Org. Chem.,
Rev Med Acad, 11 3/4 PP

"Zhur Obshch Khim" Vol XIX, No 5

Describes a "new method" for the dehydration of
oxy-triarylcarmiols to produce "good yields" of
anthrone and 3-methoxy-fuchsone, determining that
3,4-dioxy-tetraphenylmethane is also accumulated
in the process. Also describes a "new and easier"

67/49149

USSR/Chemistry - Dyes (Contd)

May 49

method for extracting oxy-triaryl-carbinols or
fuchsones from products of the reaction of benzo-
phenonechloride with phenols, and in addition a
"new method" for obtaining oxy-triarylmethanes,
based on the activity of benzhydrol with phenol
in the presence of dry hydrogen chloride gas.
Submitted 23 Feb 48.

67/49149

IOFFE, I. S.

Ioffe, I. S. & Khavin, Z. Ya. - "Interaction of methylenic bases of the thiazole series with alkyl halides." (p. 145)

SO: Journal of General Chemistry, (Zhurnal Obshchei Khimii), 1950, Vol. 20, No. 1

CA

Hydroxyfuchin dyes. X. So-called tautomerism of hydroxytriphenylcarbinols. I. N. Ioffe and Z. Ya. Khavin (Naval Med. Acad., Leningrad). Zhur. Obrabotki Khimi. (J. Gen. Chem.) 20, 168-70 (1950); cf. C.I. 43, 9451b. Crit. examin. of evptl. data indicates that Comberg's school is in error in its defense of "deamutropy" of hydroxytriphenylcarbinols (C.I. 7, 3507; 10, 52, 53). Heating such compds. as 3-methoxy-4-hydroxytriphenylcarbinol to 75° in porcelain boats in glass app. gave loss of 1.1% only in 50 hrs. from the colored form, while the colorless form lost but 0.6% of its wt.; however, continued heating gave continued wt. loss and formation of sublimable decompr. products; in addn. the "dehydrated" product on treatment with NaHSO₄ soln. gave a ppt. of the initial carbinal, while authentic 3-methoxyfuchinone gave a colorless soln. Spectroscopic data of Comberg and Andersen (C.I. 29, 3457) indicate that the so-called "deamutropes" are probably mixts. of colorless carbinalos with fuchinones. Although crystn. of 4-hydroxytriphenylcarbinol and 3-methoxy-4-hydroxytriphenylcarbinol from AcOH of various concns. (40, 60, 80%) gives products of different colors and m.p.s., quant. colorimetry of their salts, in *Colla*, merely indicates different amts. of admixture (0.1-1.1%). Corresponding fuchinone to the carbinal, and not individually different substances. This is supported by isolation of similar materials upon crystn. of fuchinones from dil. AcOH of the same concns., i.e. hydration of fuchinones occurring in this case gives mixts. similar to those obtained by dehydration of the carbinalos, both reactions being feasible in dil. AcOH. Treatment of such products from 4-hydroxytriphenylcarbinol with dry *Colla* suffices to separate the fuchinone impurity; similar reagent is possible by treatment with NaHBO₄ soln., where the fuchinones dissolve in the form of adducts, while the carbinalos are unchanged.

G. M. Komilapoff

CA 29
Hydroxyfuchsine dyes. XI. Oxidative alkaline decomposition of hydroxyfuchsine dyes of benzene ring group. I. S. Ioffe, Zhar. Osnchek Khim. (J. Gen.

*Chem.) 20, 346-55 (1940); cf. C.I. 44, 5501. Aer-
ation of alk. solns. of hydroxyfuchsine dyes gives the
corresponding substituted benzophenones. The reaction
permits identification of Biettolotti's compd. (Gazz.
Chim. Ital. 27, 298 (1907)), m. 133-2° (from BrCl and
glucuric) as 4-methoxy-3-hydroxybenzophenone. Only
the colored monomeric anions of the dyes are oxidizable;
solns. in the form of undissolved hydroxyquinone derivs.
or colorless carbinals are stable to oxidation, and the ease
of oxidation rises with increased concn. of alkali, although
an increase of oxidation-stable carbinal form gives a super-
ficial appearance of lesser overall reactivity; low temp.
and higher alk. concn. both tend to shift the equil. to the
carbinal side. The effect of alkali was confirmed on solns.
of 1% Na₂CO₃ and 0.1-5.0% NaOH with aurin, tri-
methoxyaurin, benzoin, and 2,3-dimethoxybenzoin.
Passage of air through 5 g. benzoin in 250 ml. 1%
NaOH on a water bath until mil-tawny color forms, fol-
lowed by addition of 10 ml. AcOH and 2 ml. NaHSO₃ soln.
gave 1.6 g. 4-hydroxybenzophenone, m. 134-5°; benzoin,
m. 112.5° (from EtOH). Similar reaction with 2,3'-
dimethoxybenzoin gave 3-methoxy-4-hydroxybenzophenone,
m. 97-8°. Treatment of this or the 4,4'-analog with
Me₂SO₄ and 10% NaOH gave 3,4-dimethoxybenzophenone,
m. 99-100° (from dil. EtOH). — G. M. Kosolapoff*

CH

25

Hydroxyfuchson dyes. XII. Acidic transformations of methoxyfuchson derivatives. I. S. Afanasyeva. (Naval Med. Acad., Leningrad). *Zhur. Obshchey Khim.* (J. Gen. Chem.). 30, 539-49 (1950); cf. C.A. 44, 61304. — Fuchsones contg. a MeO group ortho to the CO link undergo an irreversible change on heating with acids; the products

are colorless substances, with the same empirical compn., which are the result of ring closure to *meta*-phenylfluorene derivs.; the distn. of such products with Zn dust should yield *meta*-phenylfluorene, but this has not been accomplished as yet, and the evidence is indirect. Heating 10 g. 3-methoxyfuchson with 100 ml. 15% HCl 1-2 hrs. yields 10 g. brown transformation product, purified by soln. in KOH and addn. of NaHSO₃ soln., followed by extr. with K₂Cr₂O₇ and crystall. from 40% EtOH, 30% AcOH, or C₂H₅OH and crystall. from 40% EtOH, 30% AcOH, or C₂H₅OH. The purified product forms colorless needles, m. 173-4°. poorly sol. in cold aq. alkalies; the product, $C_{16}H_{16}O(OH)$, yields a monocetate, m. 176°, with Ac₂O-pyridine. 3,3'-Dimethoxybenzaurin similarly heated with 10% HCl yields a colorless product, $C_{16}H_{14}O_2(OH)_2$, m. 190-201° (from EtOH and AcOH), which forms a *disacetate*, m. 227-9° (from AcOH), identical with that formed by heating 3,3'-dimethoxybenzaurin-HCl with Ac₂O and AcCl 2 hrs. on a steam bath. Boiling 3,3'-3"-trimethoxyaurin with 10% HCl 2-3 days gave 5-6 g. transformation product, which was finally purified by boiling in C₂H₅OH with Zn dust and AcOH, when it was obtained in 0.5-1.5 g. yield, m. 230-40°; its acetation product m. 204-6° (from EtOH). The MeO groups in all the aurins investigated are intact in the transformation products, which are believed to contain the OH group in the para position, relative to the central C atom. The Ac deriv. of the last compd. was identical with the acetylation product of rubrocol (cf. Riklin and Postovskii, C.R. 62, 182g), but the structure proposed by [I] and [II] is questionable.

G. M. Kosolapoff

IOFFE, I. [Ed.]

[Using engineer Kovalev's method in oil well drilling and operation] Opyt primeneniia metoda inzhenera Kovaleva v burenii i dobyste nefti. 1951. 58 p. (MIMA 8:8)

1. Moscow. Tsentral'nyy nauchno-issledovatel'skiy institut mekhanizatsiy truda v neftyanoy promyshlennosti. Byuro tekhniko-ekonomicheskoy informatsii.

(Oil well drilling)

CA

25

Hydroxyfuchsine dyes. XIII. Acetylation of hydroxy-methoxyfuchsines. I. B. Jaffe, Zhur. Otschekel Khim. (J. Gen. Chem.) 26: 2910-2913 (1951); cf. C.A. 45, 30004, 02824. — Hydroxyfuchsine dyes with MeO groups ortho to hydroxyl or keto groups are acetylated normally forming corresponding acetoxymethoxyphenylcarbinols, which are hydrolyzed by acids or bases to colored salts of the original hydroxyfuchsine dyes. The acetylation in the presence of HCl leads to 2 reactions simultaneously: one yields the above products while the second reaction leads to acid polymerization of the original dyes with subsequent acetylation of the probably formed hydroxyfusorene derivs. The concept of free radical dimers, as representative of the 2nd set of products (above), as postulated by Ridili and Postovskii (C.A. 42, 152), is in error. *3,3'-Dimethoxybenzidine*, Ac₂O, and NaOAc refluxed 6 hrs. give 63% of an acetylation product, m. 136 ° (from Et(OH)₂), whose salts are colorless

In org. solvents, white mineral acids give violet color; hot sq. alkali gives blue color; boiling the Ac deriv. with Zn-AcOH yields a product that no longer gives color with acids or alkalies; analysis of the Ac deriv. indicates the compn. CaH₁₀O₄Ac₂. Acetylation with AcCl-Ac/D gives a small amt. of a substance, m. 229-32°, identical with the product of acid isomerization of 3,3'-dimethoxybenzidine, and the mother liquor yields the product, m. 136-11°, described in above expt. Acetylation of 3,3',5'-trihydroxyaniline with Ac₂O-NaOAc gives 90% product, m. 144°, corresponding to the normal triacetate; heated with acids or alkalies it gives violet color of reduced salts. Acetylation (with AcCl-Ac/D) gave the above product and a less sol. product, m. 200-8°, identical to the Postovskii-Khush product, unchanged by acids; alkalies on heating yield a colorless salt.

I. M. Kosolapoff

CF

25

Hydroxyfuchshine dyes. XIV. Structures of the bisulfite derivatives of hydroxyfuchshine dyes. I. S. Ioffe (Naval Med. Acad., Leningrad). Zhar. Obshch. Khim. [J. Gen. Chem.] 21, 1514-17(1951); cf. C.I. 45, 10250. — Alk. hydrolysis of acetyl derivs. of hydroxyfuchshine dyes, which are the Ac derivs. of the carbinal derivs., results in formation of colorless salts of the carbinalos. Similar hydrolysis of the bisulfite derivs. of hydroxyfuchshine dyes leads directly to the colored salts of the dyes. Hence, the bisulfite derivs. are not the sulfite esters of the carbinalos as proposed by Bayer (Ber. 39, 57(1906)) but are the result of reaction of the bisulfite with the carbonyl group of the dye and should be regarded as the α -hydroxysulfonic acids. Thus, the bisulfite deriv. of 3,3'-dimethoxybenzaurine in H_2O treated in the cold with 5% NaOH gives immediately a blue color, which disappears only slowly and reappears on warming. Similar treatment of the Ac deriv. gives murkiness, which goes over to a colorless soln., which acquires a weak blue color only after long standing, which is intensified by heating, but disappears on cooling. G. M. Kusulapoff

IOFFE, I. S.

"Hydroxyfuchsone dyestuffs. XV. Acetoxyfuchsones." (p. 1677)

SO: Journal of General Chemistry (Zhurnal Obozreniya Khimii) 1951, Vol 21, No 9.

IOFFE, I. S.

Ioffe, I. S., Bolen'kii, B. G.- "Investigation of hydroxyfuchsone dyes. XVI.
2-Hydroxyfuchsone." (p. 1437)

SO: Journal of General Chemistry, (Zhurnal Obshchei Khimii), 1952, Vol. 22, No. 8

IOFFE, I. S.

Catalysts

Chemical Abst.
Vol. 48 No. 3
Feb. 10, 1954
Organic Chemistry

Quinones. 1. Reaction of α -benzenequinone with p -acetylaminobenzenesulfonic acid. I. N. Ioffe, G. M. Kosolapoff, K. A. Zhdanov, *J. Russ. Chem. Soc.*, 23, 126-8 (1888). A solution of 20 g. p -AcNH₂Cl·HSO₄ in 800 ml. H₂O was filtered, brought to the b.p., and treated gradually with 11 g. α -benzoquinone, causing a temporary orange-yellow color, with birth of charred product; after 18 min. boiling the colorless soln. was filtered yielding 37 g. $C_9H_8O_4NS$, m. 222-5° (from AcOH in EtOH). This product is 4-acetamido-2',5'-dihydroxydiphenyl sulfone (I). Heated on water bath with Ac₂O and pyridine 1 hr. it gave 4-acetamido-2',5'-dihydroxydiphenyl sulfone, 84%, m. 182-3° (from aq. EtOH); on 20 hr. in alkali and subsequent acidification the 2 Ac groups are lost and the original material, m. 283°, is regenerated. Similar reaction of p -methoxycarbonylaminobenzenesulfonic acid gave 97% 4-methoxy-carboxyamino-2',5'-dihydroxydiphenyl sulfone (II), 210-11° (from H₂O), very stable to hot mineral acids, but hydrolyzed with hot alkalies. I refluxed with 10% HCl and evap. gave 83% 4-amino-2',5'-dihydroxydiphenyl sulfone, m. 175-6° (from aq. EtOH); the same is obtained by hydrolysis of I in hot 10% NaOH. II similarly yields this substance by hydrolysis with 10% NaOH. The amino deriv. yields the tri-Ac deriv., m. 150-2°, when heated with Ac₂O-pyridine, while mere Ac₂O yields the *N*-Ac deriv. identical with above described. The amino deriv. forms *HCl* salt, m. 208-10°, which hydrolyzes rather readily in aq. solns.

(G. M. Kosolapoff)

-31-54-

TOFFE, I. S.

Oul'noi, series II. Chloromethoxyquinones. I. *J. Russ. Otdel' Khim.* 23, 295-9 (1952); cf. *C.A.* 48, 1200c. Methylation of chloro-*p*-benzoquinone with MeOII-ZnCl leads not only to introduction of MeO group, but also to displacement of the Cl by a 2nd MeO group. To 6 g. vanillin in 40 ml. 4% NaOH was rapidly added 40 ml. 6% H₂O₂, and the dark brown soln. treated after 1 hr. with 8 ml. 20% H₂SO₄ (&稀), chilled, then treated at -3° with 40 g. Na₂Cr₂O₇ in 75 ml. 20% H₂SO₄ over 3 hrs., followed by 2 hrs. at 0°, giving 3.0 g. (71%) methoxy-*p*-benzoquinone, m. 144° (from EtOH). Direct chlorination of vanillin in CHCl₃ gave 3,4,5-Cl₃(MeO)C₆H₃CHO, m. 168°, which (6 g.) in 40 ml. 4% NaOH treated as described above with 40 ml. 6% H₂O₂ 30-40 min., acidified with 20% H₂SO₄, and chilled gave a ppt. of 6-chloro-2-methoxybenzoquinone, m. 140°, the mixt. can be directly oxidized with Na₂Cr₂O₇ at -5° as described, yielding 77% 6-chloro-2-methoxy-*p*-benzoquinone, orange, m. 168-9° (from EtOH). Similar treatment of 3,4,5-Cl₃(HO)(MeO)C₆H₃CHO gave 80% 5-chloro-2-methoxy-*p*-benzoquinone, yellow, m. 172-3° (from EtOH), less sol. in AcOH and EtOH than the 6-Cl analog. The yield of 2,5-dimethoxy-*p*-benzoquinone by the Baekel method (*Ber.* 34, 383 (1901)) is increased beyond 33% by addn. of oxidizing agents to the reaction mixt. and thus reducing the consumption of the starting material in oxidation-reduction reactions. Chilled and the yields were even lower than without such addns. (PCl₅, PBO₂). III. Chlorination of methoxyquinones. I. *ibid.* 299-303.—Passage of HCl into methoxy-*p*-benzoquinone (I) in CHCl₃ gave a blue-violet ppt., free of Cl, m. 238-40° (from PhNO₂), also formed on addn. of emerald seeds to I in AcOH. The product has been described earlier (Erdman, *C.A.* 28, 1337). Thus 1 dimerizes in the presence of mineral acids. Passage of Cl through I in CHCl₃ yields a dichloride, which yellow at 160° and

(cont'd)

decomp. 120° losing HCl and yielding an orange littl which resolubility and m. 158-63° being transformed to *p*-chloro-2-methoxy-*p*-benzoquinone. Thus introduction of a MeO group reduces the stability of quinone dichlorides. Benzoquinone dichloride m. 146° without decompl., and only at 170-80° does it slowly lose HCl, yielding an unstable monochloroquinone (cf. Dimroth, et al., C.A. 20, 1064). Chlorination of methoxy-*p*-benzoquinone must be done with pure Cl, for even traces of HCl lead to dimerization mentioned above. The heating of the methoxyquinone dichloride is best done by spreading the substance in a thin layer in a dish and heating to 120° in a thermostat. Although its decomprn. can lead to 2 isomeric chloromethoxy-*p*-benzoquinones, the product actually obtained is the pure chloro-2-methoxy isomer, m. 173°. The yield reaches 70%. The methoxyquinone dichloride is also unstable on heating in various solvents. Thus in hot ag. EtOH it loses HCl and yields up to 80% 6-chloro-2-methoxy-*p*-benzoquinone, m. 159°. Addn. of the dichloride to hot AcOH gave 6-chloro-2-methoxybenzoquinone, m. 173-3°, also formed in hot dry MeCO but in ac. AcOH and ag. MeCO the 6-Cl analog is formed. In hot H₂O the dichloride also yields the 6-Cl deriv. Heating the dichloride in aromatic hydrocarbons under dry conditions gives different results; the substance is not decompt. in boiling xylene for over 1 hr., while hot C₆H₆ can be used as recrystl. solvent; the dichloride thus purified m. 120° (decomp.). A trace of H₂O immediately yields 6-chloro-2-methoxy-*p*-benzoquinone. G. M. K.

IOFFE, I. S.

"Investigation of quinones. Part 3. Chlorination of methoxy-quinone." Ioffe, I. S.,
Sukhina, A. F. (p. 299)

SO: Journal of General Chemistry (Zhurnal Obshchei Khimii) 1953, Volume No. 23, No.2.

COFFEE, 1-2.

Chen Abs

1.47 25 Jan 19

Organic Chem

Quinone series. IV. Transformation of methoxyquinone under the influence of acids. I. S. 106 and A. V. Nal'kin. *Zhur. Obshchel Khim.* 23, 1370-8 (1953); *cf.* 1954, 266; Erdman, *C.A.* 48, 1337.—In contrast with other quinones, methoxyquinone (I), under the action of mineral acids, forms a condensation product with formation of a biphenyl link in a position para to the MoO_3 group. Thus 10 g. I in 100 ml. warm AcOH , poured into 2 l. 1% HCl , gradually yields a blue ppt., which after 48 hrs. amounts to 95% II, m. 230° (crude), m. 235° (from pyridine), which is generally but sparingly sol. in org. solvents.

Reduction of 3 g. II with 3 g. Zn dust in refluxing AcOH gave, upon filtration, *diss.*, and treatment with oil. NaHSO₃, a 60% yield of [8,5'-(*HO*)-MeOC₆H₄]₂C₆H₃, decomps. 210° (from oil. AcOH); *anhydride* from *AcO*-pyridine, m. 188-7° (from *NaOAc*). II (3 g.) agitated with 3 g. chromic acid in 300 ml. H₂O gave III, m. 212-14° (from *AcOH*). I (1 g.) in 10 ml. *AcOH* treated with 20 ml. concd. HCl gave after 48 hrs. 78% 5,5'-dihydroxy-4,4'-dimethoxy-3,3'-bis(4-methylphenyl) oxide, m. 200-1° (from *AcOH*); *anhydride* (*AcO*-pyridine), m. 200-1° (from *AcOH*); also obtained in 86% yield from II in warm *AcOH* with concd. HCl; the blue color of II being discharged at 60-70°. III (8 g.) in 25 ml. *AcOH* refluxed with 25 ml. concd. HCl gave 86% 5,5'-dihydroxy-4,4'-dimethoxy-3,3'-bis(4-methylphenyl) oxide, m. 200-4° (from *AcOH*); *anhydride*, m. 200-3° (from *AcOH*). O. M. Kammann

(2)
chicks

154

IOFFE, I. S.

CATALYST

Chemical Abst.
Vol. 48 No. 3
Feb. 10, 1954
Dyes and Textile Chemistry

(2) Catalyst

Hydroxufuchsin Anhydride. XVII. Condensation of some nitrobenzaldehydes with guaiacol. T. S. Ioffe and B. G. Belen'kii. Zav. Otschchet. Khim. 23, 1035 (1953). Cf. J. A. 42, 2431a; 43, 8033g; 45, 896a. $\text{C}_8\text{H}_7\text{NO}_2\text{C}_6\text{H}_4\text{CHO}$ (21 g.) and 38 g. guaiacol, mtd. with dry HCl (3.5 g.) and kept in the cold 10 days in a closed flask, give a mass of solid product, which was extd. several times with hot 2% Na₂CO₃. The crude product treated with 60% EtOH and finally crystd. from 50% EtOH gave $\text{N}^{\text{a}}\text{-nitro-3,3'-dihydroxyphenylmethane}$, m. 141.5°. The yield of crude product is 60.3% after the extn. with 60% EtOH; yield of pure product is unstated. The crude product (5 g.), after the Na₂CO₃ treatment, was taken up in 50 ml. AmOAc and std. with dry HCl, followed by a stream of N oxides (from NaNO₂-H₂SO₄) while maintaining the HC stream. After 3 hrs. the mlt. was allowed to stand overnight; it deposited 68.5% crude $\text{N}^{\text{a}}\text{-nitro-3,3'-dihydroxy-4-hydroxyfuchsin-C}_6\text{H}_4\text{Cl}$. With pure starting material the yield is 98%. The product is violet with green sheen and has no definite m.p. The HC salt ground with excess 25% KOAc and 4 parts H₂O and allowed to stand overnight gave a ppt. of the hydrate form of the fuchsin, red solid. The latter (4.0 g.) heated with 60 ml. AcOH and cooled, gave 60.8% free fuchsin, red-orange, m. 239-9.5° (from AcOH); it is sol. in eq. acids and bases, giving red-violet soln. in acids and blue in bases. $\text{C}_8\text{H}_7\text{NO}_2\text{C}_6\text{H}_4\text{CHO}$ (4.9 g.) and 9.8 g. guaiacol mtd. with dry HCl (0.7 g.) and kept in the cold 15 days, then treated with hot H₂O, gave crude yellowish-lemon base, m. 10-60°, which (6 g.) was treated in AmOAc with HCl and N oxides as above, yielding 66% $\text{N}^{\text{a}}\text{-nitro-3,3'-dihydroxy-4-hydroxyfuchsin-C}_6\text{H}_4\text{Cl}$, violet, without definite m.p. The latter (3.6 g.) with eq. KOAc gave the brick-red crystalline form of the fuchsin (3 g.), which crystd. from AcOH gave 48% free

sulfone, red, m. 175-5.5°; sol. in acids with violet color, in bases with blue-green color. When 5 g. $\text{O}_2\text{NCH}_2\text{CHO}$ and 9 g. guaiacol were acted with 1.1 g. dry HCl and kept 3 weeks there was formed a viscous orange mass. This kept overnight under 10 ml. 70% EtOH and dried gave 2.92 g. golden-yellow crystals, which could be crystallized from various org. solvents; on recryst. from AcOH it m. 181.5°. The product failed to undergo oxidation under the conditions used for the cases described above. Its compn. was $\text{C}_{12}\text{H}_{12}\text{NO}_2$ (I) indicating the condensation of 1 mol. of aldehyde with 1 mol. of guaiacol and simultaneous chlorination occurring. When the product was treated with HCl-Zn dust 70%, the ultimate was chlorinated and coupled with 2- $\text{C}_6\text{H}_4\text{O}_2\text{Na}$, a red dye was formed; with H-acid the dye was red-violet. The results indicate that I had the structure II, apparently formed by rearrangement of the intermediate 3,4-(MeO) $\text{X}(\text{HO})\text{C}_6\text{H}_3\text{Cl}(\text{OH})(\text{OEt}_2\text{NO}_2)$.

G. M. Koenigsdorf

412-54
898

IOFFE, I.S.; SUKHINA, A.F.

Research in the field of quinones. Part 5. Chlorination of 2,5-dimethoxy-
quinone. Zhur. ob. khim. 23 no.10:1752-1757 O '53. (NIIKA 6:11)
(quinone)

10FF, 15

Hydroxyfuchrome dyes. XVIII. Halogen derivatives. S. J. S. Johnson, D. C. Peeler, L. M. Miller, K. H. Koenig, and R. E. Gaskins. U.S. Patent 3,131,411. Nov. 10, 1964.
Zhur. Obshch. Khim. 23, 1631-16 (1948); cf. U.S. 2,471,787.
—Passage of dry HCl into 0.03 mole aldehyde and 0.12 mole 4-hydroxyfuchin, followed by storage of the mixt. 1 week at room temp. in a closed vessel, treatment with hot H₂O and evap. with hot 10% eq. Na₂CO₃, gave 65-80% of the following leucobases, which were purified by soln. in KOH and crystals from EtOH or AcOH: 3,3'-dimethoxy-4,4'-dihydroxyfuchin; 3,3'-methylbenzene (halogen shown): 3'-chloro, decomps. 100-30°; 3'-chloro, decomps. 130-40°; 4'-chloro, m. 130-31°; 2'-bromo, decomps. 120-30°; 3'-bromo, decomps. 130-31°; 4'-bromo, m. 125-7°. These leucobases in AcOEt were treated with dry HCl, then treated over 2 hrs. with a soln. of N oxide containing NO₂, yielding a ppt. of the HCl salt of the dye in 100% yield: 3,3'-dimethoxy-4'-fuchinate (halogen shown): 3'-chloro, m. 164-6°; 3'-chloro, m. 147-1°; 4'-chloro, m. 202-4°; 3'-bromo, m. 171-2°; 2'-bromo, m. 143-4°; 4'-bromo, m. 202-4°. These salts are hydrolyzed by H₂O, yielding the hydrated forms of the hydroxyfuchin, boiling these with AcOH, followed by distil. of the solvent *in vacuo*, give the anhydride forms of the dyes, which were purified by crystals from dry C₆H₆ or AcOH: (these were, resp.: 3'-chloro, orange-yellow, purple in acids, blue-violet in alkalies; 4'-chloro, orange-red, violet in acids, blue in alkalies; 2'-chloro, red, red-purple in acids, blue in alkalies; 3'-bromo, yellow-orange, violet in acids, blue-violet in alkalies; 4'-bromo, red, purple in acids, blue-violet in alkalies; 3'-bromo, red-purple in acids, blue in alkalies). [G. M. H.]

Ioffe, I. S.

USSR/Chemistry - Dyes

Card 1/1 Pub. 151 - 30/38

Authors : Ioffe, I. S., and Belen'kiy, B. G.

Title : Investigation of oxyfuchsone dyas. Part 19.- Effect of nitro-group and halogens on the indication properties of 3,3-dimethoxybenzaurin derivatives

Periodical : Zhur. ob. khim. 24/2, 343-352, Feb 1954

Abstract : The effect of nitro-groups and halogens in the benzene nucleus of 3,3-dimethoxybenzaurin on the indicating properties of dyes was investigated. It was found that the presence of these substitutes weakens the basic properties of dyes, their ability to form onic cations in strong acid media and reduces the stability of the cations. The presence of halogens in position relative to the central carbon atom, screens the latter and produces steric hindrances even during hydration of the dyes. The effects of the electron-acceptor and electron-donor nitro-groups on the conversion of 3,3-dimethoxybenzaurin derivatives into carbinol compounds are discussed. Four USSR references (1947-1953). Tables; graphs.

Institution : ...

Submitted : July 28, 1953

Ioffe, I. S.

USSR/Chemistry - Dyes

Card 1/1 Pub. 151 - 31/38

Authors : Ioffe, I. S., and Belen'kiy, B. G.

Title : Investigation of oxyfuchsine dyes. Part 20.- Effect of nitro-groups and halogens on the colority of 3,3'-dimethoxybenzaurin derivatives

Periodical : Zhur. ob. khim. 24/2, 353-361, Feb 1954

Abstract : The effect of substitutes on the colority of 3,3'-dimethoxybenzaurin derivatives containing nitro-groups and halogens in the benzene nucleus, was investigated. It was established that the presence of these substitutes has a definite effect of the colority of dyes in nonionized state, and in ionized state only in strongly acid and alkaline solutions. Nitro-groups and halogens cause a deepening of the color and onium cation of the dye in a strongly acid solution and a deepening of the dye anion in an alkaline solution. The conditions leading to maximum bathochromic effects of the nitro-groups and halogens are discussed. Ten references: 7-USSR; 1-USA and 1-English; 1-B. African (1900-1954). Tables; graphs.

Institution : ...

Submitted : July 28, 1953

Ioffe, I. S.
USSR/Chemistry - Condensation products

Card 1/1 : Pub. 151 - 26/37

Authors : Ioffe, I. S., and Khavin, Z. Ya.

Title : Investigation of quinones. Part 6.-Condensation of p-benzoquinone with alpha-amino acids

Periodical : Zhur. ob. khim. 24/3, 521-527, Mar 1954

Abstract : Investigations showed that the reaction of p-benzoquinone with alpha-amino acids is followed by oxidizing cleavage of the amino-acid and consequent formation of products of their condensation with p-benzoquinone. The condensation products obtained from p-benzoquinone with glycine and from p-benzoquinone with alpha-alanine are listed. The physico-chemical properties of these condensation products are described. Ten references: 3-USA; 3-German; 1-Polish; 1-English; 1-Japanese and 1-French (1910-1950).

Institution :

Submitted : July 28, 1953

Ioffe, I. S.

USSR/Chemistry - Reaction processes

Card 1/1 : Pub. 151 - 27/37

Authors : Ioffe, I. S., and Khavin, Z. Ya.

Title : Investigation of quinones. Part 7.-Reaction of chlorine derivatives of p-benzoquinone with glycine esters

Periodical : Zhur. ob. khim. 24/3, 527-532, Mar 1954

Abstract : The reaction of chloroquinones with amines and with non-substituted quinone was investigated. The formation of a diamino-quinone derivative having both amino-groups in p-position relative to each other is described. The mechanisms and tendencies of such a chloroquinone reaction and its dependence upon the number of halogen atoms are discussed. Ten references: 5-German; 4-French and 1-USSR (1881-1954).

Institution :

Submitted : July 28, 1953

Ioffe I.S.

USSR

Outgast. VIII. Condensation of β -benzoquinone with
sulfanilamide. I. S. Ioffe, N. A. Filimonov, and Z. Ya.
Kharasik. *Bio. Chem. USSR*, 34, 702-4 (1959); *c. O.A.
1959-60*. Addn. of 2.2 g. β -benzoquinone in 100 ml. hot
H₂O to 2.1 g. sulfapyridine in 100 ml. EtOH followed by
refluxing 1 hr. gave 2.08 g. 2,5-disulfapyridine- β -benzo-
quinone, m. above 300°. Similarly sulfanilamide gave 2,5-
disulfahydro- β -benzoquinone, m. above 300°, while sulfa-
pyrimidine gave 2,5-disulfonylpyrimidino- β -benzoquinone. C₄
H₆O₄N₂S₂, m. above 300°. β -Benzoquinone in 2 l. warm
H₂O was added to 3.61 g. 2-sulfanilamido- β -benzoquinone, which
in the soln. reached room temp. it was treated with 0.5 g. sul-
fanilamide in 100 ml. EtOH and after 3 days at room temp.
gave 5 g. 2-sulfanilamido- β -benzoquinone, purified by extn.
with hot EtOH in which the bis-anale, was isol. while
diss. of the ale. ext. with H₂O gave the pure 2-sulfanilamido-
 β -benzoquinone. Similarly was prep'd. 2-sulfapyridine- β -
benzoquinone, sol. in EtOH and AcOH. In soln. both the
mono-deriv. are slowly transformed into mod. substances,
possibly polymerization or condensation products. IX.
Reaction of methoxyguanines with anilines. I. S. Ioffe and
A. F. Soshina. *Ibid.* 706-9. To hot extn. of 5 g. 2-meth-
oxy- β -benzoquinone (I) in 75 ml. EtOH was added 1.5 g.
PhNH₂ and the mixt. refluxed 2 hrs. and cooled, yielded 3.6
g. red 1-methoxy-5-anilino- β -benzoquinone, m. 100° (from
50% EtOH). This (1 g.) in 50 ml. hot AcOH treated with 1

Ioffe, I.S.

1. PhNH₂ and refluxed 2 hrs. gave after hot filtration and cooling 1.2 g. red 2,5-diazidoo-p-benzoquinone, m. above 300° (from PhNO₂); the same can be obtained in 1 step by using excess PhNH₂. I (5 g.) in 75 ml. hot H₂O₂ treated with 2.5 g. sulfanilamide and refluxed 2 hrs. gave 3 g. 2-methoxy-5-sulfanilamido-p-benzoquinone, red-brown, m. 278-81° (from AcOH); on heating in AcOH it changes to 2,6-disulfanilamidobenzoquinone. Similarly I and sulfapyridine gave 2-methoxy-5-(4-sulfopyridino-p-benzoquinone, red-decomp. 273° (from 85% AcOH); sulfathiazole similarly give red 2-methoxy-5-(sulfathiazolo-p-benzoquinone, decomp. 215-7° (from 80% AcOH). To 1 g. 2,6-dimethoxy-p-benzoquinone in 75 ml. hot AcOH was added 1 g. PhNH₂ and after 2 hrs. refluxing the mixt. gave 1 g. 2,6-dianilino-p-benzoquinone, m. above 300°. When 1 g. 2,6-dimethoxy-p-benzoquinone in 75 ml. hot AcOH was treated with 0.3 g. PhNH₂ and refluxed 2 hrs. there was formed after evapn. and diln. with H₂O 0.8 g. 2-methoxy-5-anilino-p-benzoquinone, m. 160°.

G. M. Kosolapoff

IOFFE, I. S.

USSR/Chemistry

Card 1/1

Authors : Ioffe, I. S. ; and Sukhina, A. F.

Title : Investigation of quinones. Part 9.- Reaction of methoxyquinones with amines.

Periodical : Zhur. Ob. Khim. 24, Ed. 4, 705 - 709, April 1954

Abstract : The reaction of methoxyquinones with amines shows two trends: 1) addition of the amino radical to the non-substituted carbon atom of the quinoid nucleus and 2) displacement of the methoxyl group by the amino group. The amino radical subjected to the effect of the methoxyl group rapidly attaches itself to the non-substituted carbon atom provided the latter is in para-position relative to the amino group. Displacement of methoxyl group by still another amino radical at an aniline surplus is already much slower. Six references; 5 USSR since 1946; 1 English 1946; 2 German since 1891. Chemical formulas.

Institution :

Submitted : July 28, 1953

IOFFE, Isaak Solomonovich; KHAVIN, Z.Ya., redaktor; KERLIKH, Ye.Ya., tekhnicheskiy redaktor.

[Organic chemistry] Organicheskaya khimiia. Issledovaniye khim. lit-ry,
1956. 438 p. (MIRA 9:?)
(Chemistry, Organic)

5 (3)

AUTHORS:

Ioffe, I. S., Zal'manovich, M. Z. SOV/79-29-8-51/81

TITLE:

N-Substituted Amides of Salicylic Acid and Its Derivatives.
I. Arylides of 3,5-Dichloro- and 5-Nitrosalicylic Acid

PERIODICAL:

Zhurnal obshchey khimii, 1959, Vol 29, Nr 8, pp 2682 - 2685
(USSR)

ABSTRACT:

Some arylides of salicylic acid are highly active disinfectants (Ref 1) (e.g. the "Anabial"). Particular attention is due to the synthesis of the parent compound of this group, the salicylanilide, by condensation of aniline with esters of the salicylic acid, e.g. with salol (Ref 8), where phenol is separated. This "salol method" is recommended as a general method of synthesizing various arylides of salicylic acid by heating salol with amines (Ref 10), in the medium of an inert solvent, e.g. trichlorobenzene. The experiments carried out by the authors, however, indicated that the solvent decreases the yield and only complicates the process. This reaction is shown to proceed quite smoothly when a mixture of salol and amine is fused together at 150-180° in an equimolar ratio, in which case at the beginning of the reaction the low-melting

Card 1/3

N-Substituted Amides of Salicylic Acid and Its
Derivatives. I. Arylides of 3,5-Dichloro- and 5-Ni-
trosalicylic Acid

SOV/79-29-8-51/81

salol acts as a solvent, and later on the resultant phenol. After termination of the reaction (1-2 hours) the phenol is removed by distillation, and the arylamide is purified from the alkaline solution by precipitation with acid and recrystallization from alcohol. In this way, yields of 80-95% were obtained in different arylides such as *m*-anisidine (Ref 8), *n*-phenetidine (Ref 9), *o*-nitroanilide and others (Refs 1,11,9). This method was also used for derivatives of salicylanilide with substituents in the salicyloyl nucleus. Different chlorine derivatives of the salicylanilide have so far been obtained by chlorination of this compound (Refs 12-14), while the degree of chlorination depends on the reaction conditions, and mixtures of different chlorinated chlorine derivatives are formed. The authors obtained easily the chlorine derivatives of salicylanilide in a pure state by fusing together the salol (and, accordingly, the chlorine salts) with aniline or chloro anilines. In this way, the 4'-chloro salicylanilide and 2',5'-dichloro salicylanilide (Ref 9) were obtained from

Card 2/3

N-Substituted Amides of Salicylic Acid and Its
Derivatives. I. Arylides of 3,5-Dichloro- and
5-Nitrosalicylic Acid

SOV/79-29-8-51/81

salol, and the 3,5,4'-trichloro salicylanilide and 3,5,2',5'-tetrachloro salicylanilide (Ref 1) from 3,5-dichloro salol. Tables 1 and 2 present further arylides of the 3,5-dichloro salicylic acid and 5-nitrosalicylic acid synthesized in the same way. There are 2 tables and 16 references, 2 of which are Soviet.

ASSOCIATION: Voyenno-meditsinskaya akademiya imeni S. M. Kirova (Military Medical Academy imeni S. M. Kirov)

SUBMITTED: July 19, 1958

Card 3/3