Università degli Studi Roma Tre - Corso di Laurea in Matematica

Tutorato di GE220

A.A. 2010-2011 - Docente: Prof. Edoardo Sernesi

Tutori: Filippo Maria Bonci, Annamaria Iezzi e Maria Chiara Timpone

Tutorato 3 (31 Marzo 2011)

1. Sia $X=\mathbb{R},$ sia $S:=\{1,2,3\}\cup (4,5)$ e sia ρ la relazione d'equivalenza così definita:

$$x \rho y \Leftrightarrow x = y$$
 oppure $x, y \in S$.

Verificare che la proiezione sul quoziente $p:X\to X/\rho$ non è nè aperta nè chiusa.

2. Sia ρ la relazione d'equivalenza su $\mathbb R$ così definita:

$$x \rho y \Leftrightarrow |x| = |y|$$

Dimostrare che \mathbb{R}/ρ è omeomorfo alla semiretta chiusa $[0, +\infty)$.

- 3. Sia $f: X \to Y$ un'identificazione, $B \subseteq Y$ un sottospazio aperto e $A = f^{-1}(B) \subseteq X$. Dimostrare che l'applicazione $g: A \to B$ indotta da f è un'identificazione.
- 4. Sia $p: X \to Y$ un'identificazione. Dimostrare che se D è un sottoinsieme denso di X, p(D) è denso in Y.
- 5. Siano (X, \mathcal{T}_X) ed (Y, \mathcal{T}_Y) due spazi topologici e sia $\mathcal{T}_{X \times Y}$ la topologia prodotto su $X \times Y$. Verificare:
 - (a) $\mathcal{T}_{X\times Y}$ è la topologia discreta $\Leftrightarrow \mathcal{T}_X$ ed \mathcal{T}_Y sono rispettivamente la topologia discreta su X e su Y;
 - (b) $\mathcal{T}_{X\times Y}$ è la topologia banale $\Leftrightarrow \mathcal{T}_X$ ed \mathcal{T}_Y sono rispettivamente la topologia banale su X e su Y.
- 6. Sia K un campo, $n \ge 1$ e X_1, \ldots, X_n indeterminate. Sia $K[X_1, \ldots, X_n]$ l'anello dei polinomi in X_1, \ldots, X_n a coefficienti in K.

Dato $S \subseteq K[X_1, \ldots, X_n]$ un sottoinsieme di polinomi, definiamo:

$$V(S): {\bf a} = (a_1, \dots, a_n) \in K^n: f({\bf a}) = 0 \,\forall \, f \in S$$
.

Dimostrare che:

- (a) V(S) = V((S)), dove $(S) := \{p_1 f_1 + \dots + p_h f_h : f_1, \dots, f_h \in S, p_1, \dots, p_h \in K[X_1, \dots, X_n]\}$;
- (b) su K^n si può definire una topologia \mathcal{Z} , detta topologia di Zariski, che ha come insiemi chiusi la classe \mathcal{C} definita come segue:

$$\mathcal{C} := \{ V(S) : \forall S \subseteq K[X_1, \dots, X_n] \};$$

- (c) i punti sono chiusi in (K^n, \mathcal{Z}) ;
- (d) se n = 1, \mathcal{Z} coincide con la topologia cofinita.
- 7. Sia X una corona circolare chiusa in \mathbb{R}^2 racchiusa dalle circonferenze C_1 e C_2 . Consideriamo su X le seguenti relazioni di equivalenza:

$$x \rho_i y \Leftrightarrow x = y \text{ oppure } x, y \in C_i, \quad i = 1, 2.$$

A cosa è omeomorfo il quoziente X/ρ_i ?

- 8. Trovare un esempio di applicazione continua $f:(X,\mathcal{T}_1)\to (Y,\mathcal{T}_2)$, determinando opportunamente per ciascun caso (X,\mathcal{T}_1) e (Y,\mathcal{T}_2) , tale che:
 - (a) f sia aperta e non chiusa;
 - (b) f sia chiusa e non aperta;
 - (c) f sia chiusa e aperta;
 - (d) f non sia né aperta né chiusa.
- 9. Sia $X = \{(x,y) \in \mathbb{R}^2 : (x+3)^2 + y^2 \le 1\} \cup \{(x,y) \in \mathbb{R}^2 : (x-3)^2 + y^2 \le 1\}$ e siano $\gamma_1 = \{(x,y) \in \mathbb{R}^2 : (x+3)^2 + y^2 = 1\}$ e $\gamma_2 = \{(x,y) \in \mathbb{R}^2 : (x-3)^2 + y^2 = 1\}$. Sia $Y = \gamma_1 \cup \gamma_2$ e X/ρ_Y il quoziente di X ottenuto identificando Y a un punto (ovvero quozientando X rispetto alla relazione di equivalenza ρ_Y tale che $x \rho_Y y \Leftrightarrow x = y$ oppure $x, y \in Y$). Dire se la proiezione $p : X \to X/\rho_Y$ è aperta o non aperta, chiusa o non chiusa.