STAT1012 Statistics for Life Sciences

Quick Revision Notes Fall, 2019

LEUNG Man Fung, Heman

(Reference: lecture and tutorial notes)

Contents

I) Descriptive Statistics	3
Central tendency	3
Dispersion	3
Graphical methods	4
II) Probability	5
Notations	5
Probability theory	5
Conditional probability	5
III) Discrete Probability Distributions	7
Discrete random variables	7
Binomial distribution	7
Poisson distribution	8
IV) Continuous Probability Distribution	<u>S</u>
Continuous random variable	9
Normal distribution	9
V) Point Estimation	10

I) Descriptive Statistics

Data type: Qualitative (Special: Categorical), Quantitative (Discrete, Continuous)

Population: the whole set of entities of interest

Sample: a subset of the population

Central tendency

Sample mean: $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$

Sequential update property: $\bar{X}_n = \frac{1}{n}[(n-1)\bar{X}_{n-1} + X_n]$

Mode: the value which has the greatest number of occurrence (may not be unique)

Median: the "middle" value, or the average of the two values closest to "middle" after sorting Percentile: the p-th percentile $(V_{\frac{p}{100}})$ is a value such that p% of the data are less than or equal to $V_{\frac{p}{100}}$. In particular, upper quantile = $V_{0.75}$, median = $V_{0.5}$, lower quantile = $V_{0.25}$.

Denote the sorted data by $X_{(1)}, X_{(2)}, \dots, X_{(n)}$ where $X_{(1)} \leq X_{(2)} \leq \dots \leq X_{(n)}$. This is equivalent to saying that $X_{(1)}$ is the smallest, $X_{(2)}$ is the second smallest etc.

Median: $V_{0.5}=X_{(\frac{n+1}{2})}$ if n is odd or $\frac{1}{2}\Big[X_{(\frac{n}{2})}+X_{(\frac{n}{2}+1)}\Big]$ if n is even

Percentile: $V_{\frac{p}{100}} = X_{(k)}$ where $k = roundUp\left(\frac{np}{100}\right)$ if $\frac{np}{100}$ is not an integer.

Otherwise, $V_{\frac{p}{100}} = \frac{1}{2} \left[X_{\left(\frac{np}{100}\right)} + X_{\left(\frac{np}{100} + 1\right)} \right]$

Dispersion

Symmetric: the left hand side of the distribution mirrors the right hand side

Unimodal: the mode is unique

Skewness: measure of asymmetry

Left-skewed (negatively skewed): mean < median, have a few extreme small values

Right-skewed (positively skewed): mean > median, have a few extreme large values

Symmetric → mean = median (converse not true)

Symmetric + unimodal → mean = median = mode (converse not true)

Range: maximum – minimum $(X_{(n)} - X_{(1)})$

Interquartile range: $V_{0.75} - V_{0.25}$

Sample variance: $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ or $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i^2 - n\bar{X}^2)$

Sample standard deviation: $SD = \sqrt{S^2}$

Graphical methods

Bar graph: use for categorical data, show the number of observations in each category

Histogram: use for quantitative data, showing the number of observations in each range

Stem-and-leaf plot: ordered the data into a tree-like structure

Boxplot: show 5 numbers (min, Q1, median, Q3, max), help locate outliers (As a rule of thumb, some people define outliers as values > Q3 + 1.5*IQR or < Q1 – 1.5*IQR)

II) Probability

Notations

Sample space: the set of all possible outcomes, often denoted as Ω

Outcome: a possible type of occurrence

Event: any set of outcomes of interest, can be denoted as $E \subset \Omega$

Probability (of an event): denoted by P(E), always lies between 0 and 1 (both inclusive)

$$P(E) = \frac{\text{# of outcomes in } E}{\text{# of outcomes in } \Omega}$$

Union: either A or B occurs, or they both occurs, denoted by $A \cup B$ (logically equivalent to OR)

Intersection: both A and B occur, denoted by $A \cap B$ (logically equivalent to AND)

Complement: A does not occur, denoted by $A^{\mathcal{C}}$ (logically equivalent to NOT)

DeMorgan's laws: $(A \cup B)^C = A^C \cap B^C$, $(A \cap B)^C = A^C \cup B^C$

Probability theory

Mutually exclusive: A and B are mutually exclusive if $P(A \cap B) = 0$ (cannot co-occur)

Independence: $P(A \cap B) = P(A)P(B)$ iff A and B are independent. Their complements (A and B^c; A^c and B; A^c and B^c) will be pairwise independent as well

Addition law: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Multiplication law: if $A_1, ..., A_k$ are mutually independent, then $P(A_! \cap ... \cap A_k) = P(A_1) \times ... \times P(A_k)$

Conditional probability

Conditional probability: $P(B|A) = \frac{P(A \cap B)}{P(A)}$, if P(B|A) = P(B), then A and B are independent

Relative risk: $RR(B|A) = \frac{P(B|A)}{P(B|A^C)}$

Total probability rule: $P(B) = P(B|A)P(A) + P(B|A^C)P(A^C)$

Exhaustive: if A_1, \dots, A_k are exhaustive, then $A_1 \cup \dots \cup A_k = \Omega$ (at least one of them must occur)

Generalized total probability rule: let A_1,\ldots,A_k be mutually exclusive and exhaustive events. For any event B, we have $P(B)=\sum_{i=1}^k P(B|A_i)P(A_i)$

Bayes' theorem: conditional probability + generalized total probability rule. let A_1, \dots, A_k be mutually exclusive and exhaustive events. For any event B,

$$P(A_i|B) = \frac{P(A_i \cap B)}{P(B)} = \frac{P(A_i)P(B|A_i)}{P(B)} = \frac{P(A_i)P(B|A_i)}{\sum_{j=1}^k P(B|A_j)P(A_j)}$$

III) Discrete Probability Distributions

Random variables: numeric quantities that take different values with specified probabilities

Discrete random variable: a R.V. that takes value from a discrete set of numbers

Continuous random variable: a R.V. that takes value over an interval of numbers

Discrete random variables

Probability mass function: a pmf assigns a probability to each possible value x of the discrete random variable X, denoted by f(x) = P(X = x)

$$\sum_{i=1}^{n} f(x_i) = 1 \text{ (total probability rule)}$$

Cumulative distribution function: a cdf gives the probability that X is less than or equal to the value x, denoted by $F(x) = P(X \le x)$

Expected value: $\mu = E(X) = \sum_{i=1}^{n} x_i P(X = x_i)$ (the idea is "probability weighted average")

Variance: $\sigma^2 = Var(X) = \sum_{i=1}^n (x_i - \mu)^2 P(X = x_i)$, alternatively $Var(X) = E(X^2) - [E(X)]^2$

Translation/rescale: E(aX + b) = aE(X) + b, $Var(aX + b) = a^2Var(X)$

Linearity of expectation: $E(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} E(X_i)$

Binomial distribution

Factorial: $n! = n \times (n-1) \times ... \times 1$, note that 0! = 1

Permutation (order is important): $P_k^n = \frac{n!}{(n-k)!}$

Combination (order is not important): $C_k^n = \frac{n!}{k!(n-k)!}$, also denoted as $\binom{n}{k}$

Binomial distribution: probability distribution on the number of successes X in n independent experiments, each experiment has a probability of success p, then $X \sim B(n, p)$

Pmf:
$$P(X = x) = \binom{n}{k} p^x (1 - p)^{1-x}$$
 for $x = 0, 1, 2, ..., n$

Mean: E(X) = np

Variance: Var(X) = np(1-p)

Skewness: right-skewed if p<0.5, symmetric if p=0.5, left-skewed if p>0.5

Poisson distribution

Poisson distribution: probability distribution on the number of occurrence X (usually of a rare event) over a period of time or space with rate μ , then $X \sim Po(\mu)$

Pmf:
$$P(X = x) = \frac{e^{-\mu}\mu^k}{k!}$$
 for $k = 0, 1, 2, ...$

Mean: $E(X) = \mu$

Variance: $Var(X) = \mu$

Skewness: right-skewed

Poisson limit theorem (poisson approximation to binomial): if $X \sim B(n, p)$ where $n \ge 20$, p < 0.1 and np < 5, then $X \approx Y \sim Po(\mu)$ where $\mu = np$

IV) Continuous Probability Distribution

Continuous random variable

Probability density function: a pdf specifies the probability of the random variable falling within a particular range of values, denoted by f(x)

 $P(a \le X \le b) = \int_a^b f(x) dx$, which is the area under the curve from a to b

$$P(X = a) = \int_a^a f(x) dx = 0$$
 for all a

$$\int_{-\infty}^{\infty} f(x)dx = 1 \text{ (total probability rule)}$$

Cumulative distribution function: a cdf gives the probability that X is less than or equal to the value x, denoted by $F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$

Expected value: $\mu = E(X) = \int_{-\infty}^{\infty} x f(x) dx$

Variance:
$$\sigma^2 = Var(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx = \int_{-\infty}^{\infty} x^2 f(x) dx - \mu^2$$

Normal distribution

Normal distribution: if X follows normal distribution with mean μ and variance σ^2 , then $X \sim N(\mu, \sigma^2)$, often used to represent continuous random variable with unknown distributions

Pdf:
$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$
 for $-\infty < x < \infty$

Shape: bell-shape, symmetric about the mean, unimodal

Standard normal distribution: $Z \sim N(0,1)$

Cdf of standard normal: denoted as $\Phi(z) = P(Z \le z)$

$$P(a \le Z \le b) = P(Z \le b) - P(Z \le a) = \Phi(b) - \Phi(a)$$

$$\Phi(-z) = 1 - \Phi(z)$$
 by symmetric property

Percentile of standard normal: $\Phi(1.645) = 0.95$, $\Phi(1.96) = 0.975$

Standardization: if $X \sim N(\mu, \sigma^2)$, then $\frac{X-\mu}{\sigma} \sim N(0,1)$

$$P(a < X < b) = P\left(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma}\right) = \Phi\left(\frac{b - \mu}{\sigma}\right) - \Phi\left(\frac{a - \mu}{\sigma}\right)$$

De Moivre–Laplace theorem (normal approximation to binomial): if $X \sim B(n,p)$, $P(a < X < b) \approx P(a+0.5 \le Y \le b-0.5)$ where $Y \sim N(np,np(1-p))$. The 0.5s are continuity correction.

STAT1012 Statistics for Life Sciences 10

V) Point Estimation