CS6910- Assignment 1

Creation of a neural network from scratch using numpy only in python and apply it in Fashion-MNIST Dataset and see how it perform under various hyper parameters and also after applying various optimizers to see how they vary from each other on different aspects

Shuvrajeet Das

Question 1:

Question 2:-

Question 3:-

Question 4:-

Question 5 and 6:-

Question 7:-

Question 8:-

Question 9:-

Question 10:-

Question 1:

The Fashion-MNIST Dataset's sample images are shown

• Question 2:-

The Neural Network code is implemented in the following project.

• Question 3:-

Implementation of the following optimizers are done:-

- sgd
- momentum based gradient descent
- nesterov accelerated gradient descent
- rmsprop
- adam
- nadam

Question 4:-

Hyper parameter setup:-

- number of epochs: 5, 10
- number of hidden layers: 3, 4, 5
- size of every hidden layer: 32, 64, 128
- weight decay (L2 regularisation): 0, 0.0005, 0.5
- learning rate: 1e-3, 1 e-4
- optimizer: sgd, momentum, nesterov, rmsprop, adam, nadam
- batch size: 16, 32, 64
- weight initialisation: random, Xavier
- activation functions: sigmoid, tanh, ReLU

• Question 5 and 6:-

test_accuracy v. created

The Best results achieved so far is with the hyper parameters settings as:-

- Activation function: Tanh
- Batch size: 32
- Learning rate: 0.001
- Number of epochs: 5
- Number of hidden layers: 3
- Activation function: Adam
- Size of every hidden layer: 128
- Weight decay: 0.0005
- Weight initialisation: Xavier uniform

Making it reach up to an accuracy of 86.85%.

The observations done:

- The longer the runtime the more better the result gets
- Adam optimizer is highly suitable for this as it is highly correlated
- The smaller the batch size the better result result that is tries to produce
- Lesser number of hidden layers produces better results
- Weight decay is highly discarded since it is opting for smaller complexity models on its own.
- Mostly tanh as an activation is performing better than the rest activation.

• Question 7:-

The confusion matrix of the best model.

Question 8:-

The validation accuracy plot of Categorical Cross Entropy loss vs Mean Squared Error loss:

Thus we can see that the neural network didn't perform very well in the case of Mean Squared Error loss function.

• Question 9:-

The github link of the assignment is: https://github.com/TheUnsolvedDev/cs6910_assignment1

Question 10:-

The Choice of the Hyper parameters for the MNIST Dataset:-


```
Below contains the table for the hyper parameters chosen for this experiment.
```

```
| MNIST | 5 | Cross Entropy | Adam | 0.001 | 0 | Xavier Uniform | 3 | 64 | Tanh |
```

```
| MNIST | 5 | Cross Entropy | Adam | 0.001 | 0.0005 | Xavier Normal | 3 | 128 | Tanh |
```

```
| MNIST | 10 | Cross Entropy | Adam | 0.001 | 0.0005 | Xavier Normal | 3 | 64 | Tanh |
```

Created with♥on Weights & Biases.

https://wandb.ai/shuvrajeet/CS23E001_DL_1/reports/CS6910-Assignment-1--Vmlldzo3MDY0OTU0