

⑯ BUNDESREPUBLIK  
DEUTSCHLAND



DEUTSCHES

PATENTAMT

⑯ Offenlegungsschrift  
⑯ DE 195 43 232 A 1

⑯ Int. Cl.<sup>6</sup>:  
**C07H 21/04**  
C08B 37/00  
C07K 14/00

- ⑯ Aktenzeichen: 195 43 232.0  
⑯ Anmeldetag: 7. 11. 95  
⑯ Offenlegungstag: 15. 5. 97

⑯ Anmelder:

Hans-Knöll-Institut für Naturstoff-Forschung e.V.,  
07745 Jena, DE

⑯ Erfinder:

Ermantraut, Jewgeni, 07745 Jena, DE; Wölfl, Stefan,  
Dr., 07768 Kahla, DE; Saluz, Hans-Peter, Prof. Dr.,  
07646 Oberbodnitz, DE

⑯ Herstellung einer Matrix-gebundenen miniaturisierten kombinatorischen Poly- und Oligomerbibliothek

⑯ Die Erfindung betrifft ein neues Verfahren zur Herstellung rationaler kombinatorischer Oligo- und Polymerbibliotheken auf festen Substraten. Dabei wird eine etablierte Synthesechemie genutzt. Die Bibliothek wird durch in-situ Synthese generiert. Durch Nutzung einer Stempeltechnik ist es möglich, sehr kleine Loci selektiv mit entsprechenden Reagenzien anzusprechen. Die laterale Auflösung kann bei Bedarf im Bereich der lithographischen Techniken, wie sie in der Mikrosystemtechnik üblich sind, angesiedelt werden. Mit entsprechend geeigneten Synthesealgorhythmen gelingt es, eine große Zahl molekularer Spezies auf kleine Flächen zu positionieren. Nach erfolgter Synthese ist die Position jeder der synthetisierten molekularen Spezies einzeln bekannt.

DE 195 43 232 A 1

DE 195 43 232 A 1

## Beschreibung

Molekulare Wechselwirkungen zwischen Polymeren und Liganden spielen eine wichtige Funktion bei biologischen Vorgängen. Geringe Änderungen in den physikalisch-chemischen Eigenschaften von Polymeren und/oder Liganden können wesentliche Änderungen in der Wechselwirkung zwischen Polymer und Ligand verursachen. Zur Untersuchung der Bindungseigenschaften eines Liganden sollten idealerweise alle Sequenzvariationen des Polymers zur Verfügung stehen (Bibliothek). Die Wechselwirkung mit den Liganden sollte parallel untersucht werden können. Dies legt nahe, alle Polymervariationen auf einer Fläche unterzubringen, um diese in einem Schritt mit Liganden interagieren zu lassen. Damit wären identische Inkubationsbedingungen für alle Moleküle gegeben und ein direkter Vergleich möglich. Sind spezifische Wechselwirkungen bekannt, kann in weiteren Untersuchungen der Einfluß anderer Moleküle (wie Wirkstoffe) auf spezifische Wechselwirkungen durch gemeinsame Inkubation ermittelt werden. Diese Untersuchungen setzen das Vorhandensein einer Technologie voraus, die gestattet, kleine Mengen an Polymeren gezielt an definierten Stellen eines festen Trägers anzubringen. Da bei gegebener Monomerzahl  $M$  die Länge des Polymers  $L$  als Potenz eingeht, gilt für die Gesamtzahl  $G$  aller Variationen eines Polymers:  $G = M^L$ . Damit wird klar, dass eine Miniaturisierung einer solchen Matrix ebenfalls notwendig wird. Dies ist auch in Anbetracht der Preise für die Reagenzien erstrebenswert.

Es existieren vielfältige Bemühungen Polymerbibliotheken anzulegen. Eine erfolgreiche Realisation dieses Vorhabens gelang Mitarbeitern der Firmen Affymax und Affymetrix (Combinatorial Chemistry — applications of light directed chemical synthesis; Jacobs, Jeffrey W.; Fodor, Stephen P.A.; Trends in Biotechnology, 1994, 12(1), 19–26). Hierbei wird eine neuartige Syntheseschemie mit lichtsensitiven Schutzgruppen genutzt. Mittels geeigneter Masken, wie sie in der Photolithographie üblich sind, werden Moleküle auf definierten Bereichen einer Oberfläche aktiviert und so nach und nach Polymere mit definierten Positionen aufgebaut. So ist es bereits gelungen, alle Variationen eines Oligonucleotidoctamers aufzubauen, was bedeutet, daß 65536 molekulare Spezies synthetisiert wurden (Light generated oligonucleotide arrays for rapid DNA sequence analysis; Pease, Ann Ciani; Solas, Dennis; Sullivan, Edward J.; Cronin, Maureen T.; Holm Christopher P.; Fodor, Stephen P.A.; Proc. Natl. Acad. Sci. U.S.A. (1994), 91(11), 5022–6). Ebenfalls ist es mittels desselben Verfahrens und lichtaktivierbarer Aminogruppen gelungen, Peptidbibliotheken anzulegen (Light directed combinatorial peptide synthesis, Gruber, S.M.; Yu-Pang, P.; Fodor, Stephen P.A.; Proc. Am. Pep. Symp., 12th (1992), Meeting Date 1991, 489–91).

Ein alternatives Verfahren zur Herstellung von Oligonucleotidbibliotheken wurde von Southern und Maskos beschrieben (Parallel synthesis and analysis of large numbers of related chemical compounds: applications to oligonucleotides; Southern, Edwin M.; Maskos, Uwe; J. Biotechnology (1994), 35(2-3), 217–27) und erfolgreich angewandt. Hierbei wurde die herkömmliche, aus der Festphasensynthese bekannte Chemie angewandt. Kapillaren wurden auf einem Träger geformt und diese mit Reagenzien gefüllt. Je nach Beladung der Kapillaren konnte so ein Nucleotid lokal spezifisch addiert werden.

Beide Verfahren haben entscheidende Nachteile. Das

Verfahren von Affymax erfordert eine spezielle Schutzgruppenchemie, die nicht allgemein gebräuchlich und folglich kostenaufwendig und unausgereift ist. Dies führt zu Limitationen bei der Länge der zu synthetisierenden Polymere. Weiterhin werden photolithographische Synthesetechniken genutzt, die heute Standard in der Mikrostrukturtechnik sind. Dies macht ein Arbeiten im Reinstauraum erforderlich, will man hohe räumliche Auflösungen erreichen. Nichtsdestotrotz sind physikalische Grenzen gegeben; selbst unter idealen Bedingungen sind Auflösungen von < 200 nm nicht zu erwarten ( $\lambda/2$ ). Durch die Nutzung einer photolithographischen Apparatur bei jedem Syntheseschritt ist der Syntheseaufwand erhöht. Somit können mit diesem Verfahren keine langen Polymere synthetisiert werden; die Ränder sind nur im Rahmen der photolithographischen Technik scharf.

Das Verfahren von Southern und Maskos bietet zwar die Möglichkeit der Nutzung herkömmlicher Synthesereagenzien, ist aber hierbei unökonomisch, die Kapillaren müssen auf voller Länge mit dem Reagenz gefüllt werden. Auch ist bei Nutzung des beschriebenen Synthesealgorhythmus die Synthese aller Variationen einer Polymerlänge unmöglich. Das Verfahren ist im selben Maße, wie das zuvor beschriebene, miniaturisierbar. Allerdings ist die Mikrostrukturierung des Trägers selbst erforderlich.

Somit besteht ein Bedarf nach einem alternativen Verfahren zur Herstellung einer miniaturisierten Polymer- und Oligomerbank, bei dem die Nachteile der bekannten Verfahren vermieden werden. Die Aufgabe besteht somit in der Bereitstellung eines entsprechenden alternativen Verfahrens.

Die Erfindung betrifft ein Verfahren zur Herstellung einer Matrix-gebundenen miniaturisierten kombinatorischen Polymer- und Oligomerbibliothek von Nukleinsäuren, Peptiden, Zuckern und anderen chemischen Verbindungen, die durch Mehrschrittsynthese hergestellt werden, und Kombinationen daraus, unter Verwendung eines chemisch inerten Stempels, dessen aktive Oberfläche eine durch den gewählten Synthesealgorithmus vorbestimmte Mikrostrukturierung aufweist, wodurch ein selektives Ansprechen definierter Loci auf einem Substrat ermöglicht wird, und eines Substrats, bei dem es sich um einen festen inerten Träger handelt, auf dessen Oberfläche eine Monoschicht aus einem Linker mit einer terminalen geschützten funktionellen Gruppe kovalent gebunden ist, dadurch gekennzeichnet, daß

a. besagter Stempel in eine Lösung enthaltend ein für die Freisetzung der terminalen geschützten funktionellen Gruppen geeignetes Entschützungsreagenz getaucht wird,

b. der mit dem Entschützungsreagenz benetzte Stempel mit dem besagtem Substrat in Kontakt gebracht wird, wodurch an den Kontaktflächen die terminalen funktionellen Gruppen freigesetzt werden,

c. nach Waschen mit einem inerten Lösungsmittel das Substrat mit einem ersten aktivierten chemischen Baustein überschichtet wird, wodurch an den freigesetzten terminalen funktionellen Gruppen eine Kettenverlängerung durch den besagten chemischen Baustein erfolgt,

d. die Synthesefolge der Schritte a–c beliebig oft wiederholt wird, bis die gemäß Synthesealgorithmus gewünschte Kettenlänge hergestellt ist, wobei bei jedem Syntheseschritt definierte Loci auf be-

sagtem Substrat durch Verwendung von Stempeln mit vorbestimmten Mustern angesprochen werden.

Die kombinatorische Polymerbibliothek befindet sich auf einem festen; gegenüber den bei den Syntheseschritten verwendeten Reagenzien inertem Träger (Matrix), der selbst nicht mikrostrukturiert sein muß. Es können sowohl ebene Flächen (Abb. 1, Schritt 1.1) als auch mikrostrukturierte genutzt werden. Diese Bedingungen werden von jedem der in der Mikrostrukturierung gebräuchlichen Wafer, z. B. Silizium/Siliziumoxid, aber auch von entsprechend poliertem Quarzglas, z. B. Suprasil, erfüllt. Die Oberfläche des festen Trägers ist über einen Linker und gegebenenfalls zusätzlich mit dem ersten chemischen Baustein verbunden (Abb. 1, Schritte 1.2 und 1.3). Im folgenden wird ein derartig präparierter fester Träger als Substrat bezeichnet.

Ein Linker ist eine geeignete chemische Verbindung zwischen der Trägeroberfläche und dem ersten chemischen Baustein. Das Linkermolekül ist frei wählbar und richtet sich nach der prospektiven Anwendung. Der Linker ist ein polyfunktionelles, insbesondere bifunktionelles Molekül, das mit separaten funktionellen Gruppen eine kovalente Bindung mit dem Träger und mit dem ersten chemischen Baustein bildet. Das Substrat enthält den Linker mit einer terminalen geschützten funktionellen Gruppe. Bei der Auswahl des geeigneten Linkers zur Herstellung einer Oligomer- oder Polymerbibliothek ist zu beachten, daß die Linker unter den gewählten Synthesebedingungen stabil sind. Solche Linker werden im Falle der Oligonucleotidsynthese z. B. aus 3-Glycidoxypropyltrimethoxysilan oder 3-Aminopropyl-triethoxysilan hergestellt (Chemically Bonded Stationary Phases for Aqueous High Performance Exclusion Chromatography; Engelhardt, H. and Mathes, D.; Journal of Chromatography, 142 (1977) 311–320).

Der Linker kann auch bereits den ersten chemischen Baustein beinhalten oder wird in einem ersten Syntheseschritt mit dem ersten chemischen Baustein verknüpft. Ein chemischer Baustein ist grundsätzlich ein an seinen funktionellen Gruppen geschütztes, zum Aufbau von Oligomeren und Polymeren geeignetes Monomer (z. B. CE-Nucleotid-Phosphoramidite, FMoc-Aminosäuren, etc.). Dieser Baustein wird durch Entschüttung (Freisetzung) der für die Kettenverlängerung vorgesehenen funktionellen Gruppe aktiviert und kann so mit geeigneten Gruppen (z. B. eines zweiten chemischen Bausteins) in Wechselwirkung treten. Ein weiter Polymerisations-(Kettenverlängerungs-)Schritt wird somit eröffnet, wenn die hierfür notwendige funktionelle Gruppe des ersten Bausteins entschützt wird und so mit einer zuvor aktivierte funktionelle Gruppe eines zweiten chemischen Baustein reagieren kann. Dies erfolgt im erfundungsgemäßen Verfahren mit Hilfe eines topologisch definierten (mikrostrukturierten), gegenüber den bei den Syntheseschritten verwendeten Reagenzien inertem Stempels, so daß positionstreu nur auf den definierten (vorbestimmten) Bereichen des Substrats die Entschüttung erfolgt (Abb. 1, Schritt 1.4). Derartige Stempeltechniken sind an sich bekannt (Patterning self assembled monolayers: Applications in Materials Science; Amit Kumar, Hans A. Biebuyck, George M. Whitesides; Langmuir, 1994(10), 1498–1511). Nach erfolgter Entschüttung liegt ein entshützter Bereich auf der Oberfläche des Substrats vor (Abb. 1, Schritt 1.5), der mit einem aktivierte chemischen Baustein reagiert (Abb. 1, Schritt 1.6).

Nach diesem Verfahren ist prinzipiell die Synthese

aller Polymere und Oligomere möglich, solange diese unter den gewählten Bedingungen stabil sind (z. B. Nukleinsäuren, Peptide, Polysaccharide und andere chemische Verbindungen; die durch Mehrschrittsynthese hergestellt werden, z. B. Polyterpene, usw.). Für die Synthese werden dabei zur Herstellung von Oligonucleotiden, Polynucleotiden, Peptiden, Polysacchariden, etc. geeignete Monomere als chemische Bausteine eingesetzt. Weiterhin ist auch die Synthese von Mischpolymeren aus solchen chemischen Bausteinen durchführbar; so können z. B. mit einem Nukleinsäuretag versehene Glycopeptide aufgebaut werden. Die maximale Länge der synthetisierten Ketten ist abhängig von der Schritteffizienz (Ausbeute) der gewählten Syntheseschemie.

Die Anordnung der Polymere auf der Trägeroberfläche resultiert aus dem gewählten Synthesealgorhythmus, und dieser ist im Grunde frei wählbar. Die Polymere haben eine durch den Stempelalgorhythmus bestimmte Länge und sind auf der Oberfläche eindeutig lokalisiert. Die Methoden zur Synthese der erwähnten Polymere sind Stand der Technik.

Das Verfahren zur Herstellung der Polymerbibliothek gestaltet sich im Detail wie folgt:

Die Oberfläche des Trägers wird gereinigt und vollständig mit einem geeigneten Linker versehen. Dieser Linker trägt an der terminalen funktionellen Gruppe eine abspaltbare Schutzgruppe, oder es wird in einem zusätzlichen Schritt die gesamte Oberfläche mit einem ersten chemischen Baustein mit einer terminalen geschützten funktionellen Gruppe besetzt; in beiden Fällen ist die Oberfläche geschützt und kann selektiv lokal aktiviert werden. Die Stempel bestehen aus einem chemisch inertem Material, das organische Lösungsmittel adsorbiert, z. B. Poly-di-methyl-siloxan (PDMS), wodurch eine ausreichende Menge an Reagenzien zur Entschüttung spezifischer endständiger funktioneller Gruppen positionstreu auf das Substrat aufgebracht werden und so die Kopplungsreaktionen an diesen Positionen auf dem Substrat erfolgen.

Stempel, deren aktive Oberfläche ein durch den gewählten Synthesealgorhythmus vorbestimmtes Muster aufweist, werden wie folgt hergestellt. Ein Negativ der Stempel wird auf zuvor festgelegte Weise in der Photolackschicht beschichteter Wafer mikrostrukturiert und gereinigt (Abb. 2, Schritt 2.1). Die Mikrostrukturierung ermöglicht die Realisation des gewünschten Synthesealgorhythmus. Damit wird auch die selektive Ansprache von definierten Bereichen auf einer Oberfläche möglich. Di-methyl-siloxan vermischt mit einem geeigneten Härtner wird auf das Negativ gegeben und zur besseren Handhabung und zum Schutz vor Kontaminierungen mit einer Glasplatte abgedeckt. Das ausgehärtete PDMS ist kovalent an das Deckglas gebunden (Abb. 2, Schritt 2.2), läßt sich aber problemlos vom Silizium und dem verbliebenen Photolack auf dem Stempelnegativ abziehen (Abb. 2, Schritt 2.3). Dieser Vorgang wird entsprechend wiederholt, bis alle für die Synthese notwendigen Stempelmuster hergestellt sind. Die Anzahl der für die Herstellung einer bestimmten Polymerbibliothek notwendigen mikrostrukturierten Stempel resultiert aus dem gewählten Synthesealgorhythmus.

Um einen bestimmten Bereich auf dem Substrat zu aktivieren; wird der hierfür vorgesehene, spezifisch mikrostrukturierte Stempel mit dem Entschüttungsreagenz beschichtet (Abb. 2, Schritt 2.4) und mit dem Substrat in Kontakt gebracht, d. h. auf das Substrat gedrückt. Die dem Stempel exponierten Stellen (Kontaktstellen) auf dem Substrat (Träger mit Linker und termi-

naler geschützter funktioneller Gruppe der entsprechend geschütztem erstem chemischen Baustein, der damit zu einem Teil des Linkers wird) werden dadurch geschützt (Abb. 2, Schritte 2.5 und 1.5). Nach Abnahme des Stempels und gründlichem Waschen wird die Oberfläche des Substrats dem ersten chemischen Baustein; dessen zur Reaktion vorgesehene funktionelle Gruppe zuvor aktiviert wurde, ausgesetzt. Damit wird das Substrat an den aktivierten Stellen um ein Monomer verlängert. Danach ist die Oberfläche wieder vollständig geschützt (Abb. 1, Schritt 1.6). Allen Syntheseschritten ist ein Waschschritt mit einem inerten Lösungsmittel zwischengeschaltet. Die genannten Schritte werden in der gleichen Reihenfolge solange wiederholt, bis die gewünschte Kettenlänge erreicht ist.

Die Zahl der Orte auf der Oberfläche ("Loci"), die separat angesprochen werden müssen, ist gleich der Zahl der gewünschten Variationen einer Polymerkette. Sollen alle Variationen eines Polymers der Länge L hergestellt werden und die Anzahl M an chemischen Bausteinen verwendet werden so ergibt sich für die Zahl der separaten Loci Z:

$Z = M^L$ . Die Zahl der hierzu notwendigen Stempel S beträgt allerdings nur:  $S = M \times L$  (Abb. 3). Die Maße der so hergestellten Polymerbibliothek können ausgesprochen klein gehalten werden, da selbst elektronenlithographisch hergestellte Negative genau kopiert werden können. Damit ist die Grenze für die Miniaturisierung der Polymerbibliothek mit der Grenze der Mikrosystemtechnik identisch (Microcontact Printing of Self-Assembled Monolayers: A flexible New Technique for Microfabrication; James L. Wilbur, Amit Kumar, Enoch Kirn; George M. Whitesides; Journal of the American Chemical Society, 1992(114), 9188–89). Die maximale Länge der Polymere ist lediglich abhängig von der gewählten Syntheseschemie; es kann die gemäß Literaturangaben oder eigenen Erfahrungen am meisten erfolgversprechende genutzt werden. Das Verfahren ist ökonomisch, da die Oberfläche bei großer Varianz der Polymere klein gehalten werden kann.

Es ist möglich, die abgespaltenen Schutzgruppen beim Entschützen aufzufangen. Ihre Quantifizierung ist ein direktes Maß für die Schritteffizienz. Denkbar ist auch, die terminale Schutzgruppe an der Kette zu belassen und damit einen Marker zur Mengenbestimmung zur Verfügung zu haben. Eine weitere Möglichkeit besteht in der terminalen Markierung der Syntheseprodukte mit einer fluoreszierenden Gruppe.

Die Anwendungsgebiete solcher erfindungsgemäß herstellbaren Bibliotheken sind ausgesprochen vielfältig. Beispiele solcher Anwendungsgebiete sind ein molekulares Screening auf Wechselwirkungen zwischen verschiedenen Molekülspezies (s. o.) sowie die Sequenzierung von Nucleinsäuren durch Hybridisierung.

#### Ausführungsbeispiel

##### Herstellung einer Oligonucleotidbibliothek mit allen Variationen eines Trimmers mit den vier natürlich vorkommenden Basen

Die Gesamtzahl der zu synthetisierenden Oligonucleotide beträgt 64. Jedes der 64 Oligonucleotide ist drei Basen lang.

Der Linker wird wie folgt hergestellt: ein Quarzglas wird im Ultraschallbad gereinigt und in eine 25%ige Lösung von 3-Glycidoxypipropyl-trimethoxysilan in Xylool enthaltend eine katalytische Menge an N-Ethyldiisopro-

pylamin getaucht; das Gefäß wird dicht abgeschlossen und 8 h bei 80°C gehalten. Danach wird in Xylool und Ethylenglycol gewaschen. Das Glas wird in Ethylenglycol gestellt und der pH-Wert der Lösung durch Zugabe von Schwefelsäure auf 5 eingestellt; die Reaktion dauert 8 h bei 80°C. Nach Abschluß der Reaktion wird das Glas gründlich mit Methanol und Diethylether gewaschen und im Trockenofen getrocknet (Chemically Bonded Stationary Phases for Aqueous High Performance Exclusion Chromatography, Engelhardt, H. and Mathes, D., Journal of Chromatography, 142 (1977) 311–320). Damit befindet sich auf dem Glas eine Monoschicht aus Hydroxyethoxyethoxypropyl-siloxan, die bereitwillig mit Tetrazolyl Nucleotidphosphoramiditen (aktivierter chemischer Baustein) reagiert. Alle folgenden Herstellungsschritte werden bei Raumtemperatur und unter trockenem Schutzgas durchgeführt, da die genutzten Reagenzien feuchtigkeitsempfindlich sind (z. B. in einem Laborzelt (Atmosbag), das mit Argon gefüllt wird). Ein beliebiges FOD (fast oligonucleotide deprotection)-Nucleotid-Phosphoramidit (z. B. FOD-dG-CE-Phosphoramidit), dessen 5'-OH-Gruppe mit Dimethoxytrityl(DMT) geschützt ist, wird zu gleichen Teilen in Acetonitril und Tetrazol gelöst, so daß eine 0.1 M Lösung eines aktivierten Nucleotidphosphoramidits vorliegt. Diese Lösung wird auf das zuvor mit Acetonitril gewaschene Glas für 30 Minuten gegeben. Nach Waschen mit Acetonitril wird mittels einer 0.02 M Jod-Lösung (in Tetrahydrofuran; Pyridin und Wasser) das Phosphit zum Phosphat oxidiert und danach gründlich mit Acetonitril gewaschen. Damit liegt eine Di-methoxy-trityl-geschützte Oberfläche auf dem Glas vor.

Die Stempel werden nach dem in den Abb. 2 und 3 dargestellten Algorhythmus hergestellt und angewandt. Jeder Synthesezyklus beinhaltet einen Stempelschritt und besteht aus einem einheitlichen Procedere: 1.) Waschen mit Dichlormethan (0.5 min), 2.) Entschützen der 5'-Hydroxylgruppe (Detritylierung, 5 min) mit 2% Tri-chloressigsäure (TCA) in Dichlormethan; erfolgt mit dem Stempel, 3.) mehrmaliges Waschen mit Acetonitril (jeweils 2.5 min), 4.) Kondensation (Zugabe von Tetrazolyl-Nucleotid-Phosphoramidit, 5 min), Kopplung erfolgt nur an zuvor entschützten Stellen; 5.) Waschen mit Acetonitril (2.5 min), 6.) Oxidation mit 0.02 M Jod in Tetrahydrofuran, Pyridin und Wasser (5 min), 7.) Waschen mit Acetonitril (2 min). Damit ist ein Synthesezyklus abgeschlossen.

Die verwendeten Lösungen und Reagenzien sind Standard in der FOD-Phosphoramidit-Nucleotidsynthese (Models 392–394 DNA/RNA Synthesizers, Users Manual, ABI, 1992). Die Waschlösungen werden über die Oberfläche kontinuierlich gespült, die Reagenzien verbleiben auf der Oberfläche für die angegebene Zeit.

Nach den ersten vier Stempelschritten sind vier Oligonucleotide mit der Länge 1 synthetisiert. Nach vier weiteren Stempelschritten sind 16 Oligonucleotide der Länge 2 synthetisiert, und nach weiteren vier Stempelschritten sind 64 Oligonucleotide der Länge 3 synthetisiert. Die terminalen Schutzgruppen werden mit 2%iger TCA abgespalten, vorhandene Schutzgruppen der exocyclischen Aminogruppen der Basen (Dimethyl-formamid-Gruppe bei Adenosin und Guanosin und Iso-butyryl-Gruppe bei Cytidin, Thymidin besitzt keine exocyclische Aminogruppe) und am Phosphat ( $\beta$ -Cyanoethyl-Gruppe) werden mit konzentrierter Ammoniak-Lösung abgespalten (1 h bei 55°C oder 8 h bei Raumtemperatur). Der verwendete Linker ist bei allen Schritten stabil, so daß nach vollständiger Entschützung die Oli-

gonucleotide am Träger verbleiben. Damit ist die Oligonuclotid-Trimer-Bibliothek hergestellt. Die Ausbeute wird durch Absorptionsmessungen der abgespaltenen DMT-Gruppen bestimmt und ist nahezu quantitativ.

### Patentansprüche

1. Verfahren zur Herstellung einer Matrix-gebundenen miniaturisierten kombinatorischen Polymer- und Oligomerbibliothek von Nukleinsäuren, Peptiden, Zuckern und anderen chemischen Verbindungen, die durch Mehrschrittsynthese hergestellt werden; und Kombinationen daraus, unter Verwendung eines chemisch inerten Stempels, dessen aktive Oberfläche eine durch den gewählten Synthesearithmus vorbestimmte Mikrostrukturierung aufweist, wodurch ein selektives Ansprechen definierter Loci auf einem Substrat ermöglicht wird, und eines Substrats, bei dem es sich um einen festen inerten Träger handelt, auf dessen Oberfläche eine Monoschicht aus einem Linker mit einer terminalen geschützten funktionellen Gruppe kovalent gebunden ist, dadurch gekennzeichnet, daß

- a. besagter Stempel in eine Lösung enthaltend ein für die Freisetzung der terminalen geschützten funktionellen Gruppen geeignetes Entschüttungsreagenz getaucht wird,
- b. der mit dem Entschüttungsreagenz benetzte Stempel mit dem besagtem Substrat in Kontakt gebracht wird, wodurch an den Kontaktflächen die terminalen funktionellen Gruppen freigesetzt werden,
- c. nach Waschen mit einem inerten Lösungsmittel das Substrat mit einem ersten aktivierten chemischen Baustein überschichtet wird, wodurch an den freigesetzten terminalen funktionellen Gruppen eine Kettenverlängerung durch den besagten chemischen Baustein erfolgt,
- d. die Synthesefolge der Schritte a--c beliebig oft wiederholt wird, bis die gemäß Synthesearithmus gewünschte Kettenlänge hergestellt ist, wobei bei jedem Syntheseschritt definierte Loci auf besagtem Substrat durch Verwendung von Stempeln mit vorbestimmten Mustern angesprochen werden.

2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß der chemische Baustein ein an seinen funktionellen Gruppen geschütztes, zum Aufbau von Oligomeren und Polymeren geeignetes Monomer ist.

3. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß als chemischer Baustein ein zur Herstellung von Oligonucleotiden, Polynucleotiden, Peptiden, Polysacchariden oder entsprechenden Mischpolymeren geeignetes Monomer eingesetzt wird.

---

Hierzu 3 Seite(n) Zeichnungen

**Abbildung 1) SCHEMATISCHE DARSTELLUNG EINES  
SYNTHESESCHRITTES**

1.1)



TRÄGER

1.2)



TRÄGER MIT LINKER

1.3)

TRÄGER MIT LINKER  
UND ERSTEM CHEMISCHEN  
BAUSTein

1.4)

ENTSCHÜTZUNG MIT  
STEMPEL

1.5)



1.6)

+ NÄCHSTER AKTIVIERTER  
CHEMISCHER BAUSTein

## Abbildung 2) HERSTELLUNG DES STEMPELS UND STEMPLEVORGANG



Abbildung 3) Beispiel für die Synthese eines Oligonucleotidtrimers mittels der Stempeltechnik

Stempel



Matrix

Stempel



Matrix

Stempel



Matrix