## Discrete Mathematics Assignment 5

12312706 Zhou Liangyu

- 1. (a)  $R_1$  is irreflexive, symmetric and transitive.
  - (b)  $R_2$  is reflexive, symmetric and transitive.
  - (c)  $R_3$  is irreflexive, antisymmetric and transitive.
  - (d)  $R_4$  is irreflexive, antisymmetric and transitive.
  - (e)  $R_5$  is reflexive, antisymmetric and transitive.
- 2. (a) Counterexample: Consider a relation  $R = \{(1,1), (2,2), (3,3), (1,2), (2,1), (2,3), (3,2)\}$  on set  $A = \{1,2,3\}$ .
  - $\therefore$   $(1,1),(2,2),(3,3) \in R$
  - $\therefore R$  is reflexive.
  - $\therefore$  For (1,2) and  $(2,3) \in R$ , we have (2,1) and  $(3,2) \in R$
  - $\therefore R$  is symmetric.
  - $\therefore$  For (1,2) and  $(2,3) \in R$ , we don't have  $(1,3) \in R$
  - $\therefore$  R is not transitive.
  - $\therefore$  If R is reflexive and symmetric, then R has no need to be transitive.
  - (b) :  $R_1$ ,  $R_2$  are reflexive
    - $\therefore$  For all  $a \in A$ ,  $(a, a) \in R_1$  and  $(a, a) \in R_2$ .
    - $\therefore$  For all  $a \in A$ ,  $(a, a) \in R_1 \cup R_2$ .
    - $\therefore R_2$  is reflexive.
  - (c) Counterexample: Consider relations  $R_1 = \{(1,2),(2,3)\}, R_2 = \{(2,1),(3,2)\}$  on set  $A = \{1,2,3\}$ .
    - $\therefore$  For elements  $m_{ij}$  of  $M_{R_1}$  and  $M_{R_2}$ ,  $m_{ij} = 1$  implies  $m_{ji} = 0$  for  $i \neq j$ .
    - $\therefore R_1$  and  $R_2$  are both antisymmetric.
    - $R_1 \cup R_2 = \{(1,2), (2,3), (2,1), (3,2)\}$

For 
$$(1,2)$$
 and  $(2,3) \in R_1 \cup R_2$ , we have  $(2,1)$  and  $(3,2) \in R_1 \cup R_2$ , but  $1 \neq 2, \ 2 \neq 3$ .

- $\therefore R_1 \cup R_2$  is not antisymmetric.
- $\therefore$  If  $R_1$ ,  $R_2$  are antisymmetric, then  $R_1 \cup R_2$  has no need to be antisymmetric.
- 3. (a) :  $s_{C_2}(R) = \{a \in R \mid C_2(a) = T\}$

$$\therefore s_{C_1}(s_{C_2}(R)) = \{a \in R \mid C_1(a) = T \land C_2(a) = T\} = s_{C_1 \land C_2}(R).$$

(b) : 
$$P_{i_1,i_2,...,i_m}(R \cup S) = \{(a_{i_1},a_{i_2},...,a_{i_m}) \mid (a_i,a_2,...,a_m) \in R \cup S\},$$

$$P_{i_1,i_2,...,i_m}(R) = \{(a_{i_1},a_{i_2},...,a_{i_m}) \mid (a_i,a_2,...,a_m) \in R\},$$

$$P_{i_1,i_2,...,i_m}(S) = \{(a_{i_1},a_{i_2},\ldots,a_{i_m}) \mid (a_{i_1},a_{i_2},\ldots,a_{i_m}) \in S\}$$

$$P_{i_1,i_2,...,i_m}(R \cup S) = P_{i_1,i_2,...,i_m}(R) \cup P_{i_1,i_2,...,i_m}(S).$$

4. (a) Proof by induction:

Basic step:  $R^1 = R$  is symmetric.

Inductive step: Assume that for an arbitrary positive integer k,  $R^k$  is symmetric.

$$\therefore$$
 For all  $(a,b) \in \mathbb{R}^k$ , we have  $(b,a) \in \mathbb{R}^k$ .

$$R^{k+1} = R^k \circ R$$

 $\therefore$  For all  $(a,c) \in \mathbb{R}^{k+1}$ , there exists  $(a,b),(b,c) \in \mathbb{R}^k$ .

 $\therefore R^k$  is symmetric

 $\therefore (c,b), (b,a) \in R^k$ .

 $\therefore$   $(c,a) \in R^{k+1}$ .

 $\therefore R^{k+1}$  is symmetric.

(b) Proof: Consider a pair  $(a,b) \in R^*$ .

$$\therefore R^* = \bigcup_{k=1}^{\infty} R^k$$

 $\therefore$  There exists pairs  $(a, m_1), (m_1, m_2), (m_2, m_3), \dots, (m_{k-1}, b) \in R$ .

 $\therefore R$  is symmetric

 $(b, m_{k-1}), \dots, (m_2, m_1), (m_1, a) \in R.$ 

 $\therefore (b,a) \in R^*$ 

 $\therefore R^*$  is symmetric.

5. Consider a relation R. Let S be the symmetric closure of R, T be the transitive closure of R.

Let  $T_S$  be the transitive closure of S,  $S_T$  be the symmetric closure of T.

Consider pair  $(a, b) \in S_T$ , then we have  $(a, b) \in T$  or  $(b, a) \in T$ , or both. We also have  $(b, a) \in S_T$ .

If  $(a,b) \in T$ , then there exists pairs  $(a,m_1), (m_1,m_2), (m_2,m_3), \ldots, (m_k,b) \in R$ .

 $\therefore$  There exists  $(b, m_k), \ldots, (m_2, m_1), (m_1, a) \in S$ .

 $\therefore$   $(a,b),(b,a)\in T_S.$ 

If  $(b, a) \in T$ , then there exists pairs  $(b, n_k), \ldots, (n_2, n_1), (n_1, a) \in R$ .

 $\therefore$  There exists  $(a, n_1), (n_1, n_2), (n_2, n_3), \dots, (n_k, b) \in S$ .

 $\therefore$   $(b,a),(a,b)\in T_S.$ 

If both, obviously  $(a, b), (b, a) \in T_S$ .

- ... The transitive closure of the symmetric closure of a relation must contain the symmetric closure of the transitive closure of this relation.
- 6. Let  $v_1 = a$ ,  $v_2 = b$ ,  $v_3 = c$ ,  $v_4 = d$ ,  $v_5 = e$ .

$$R = \{(a,b), (a,c), (a,e), (b,a), (b,c), (c,a), (c,b), (d,a), (e,d)\}$$

$$\therefore w_{12} = w_{13} = w_{15} = w_{21} = w_{23} = w_{31} = w_{32} = w_{41} = w_{54} = 1.$$

$$\therefore W_0 = egin{bmatrix} 0 & 1 & 1 & 0 & 1 \ 1 & 0 & 1 & 0 & 0 \ 1 & 1 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 \end{bmatrix}.$$

In the first iteration:

$$w_{21} = 1, w_{31} = 1, w_{41} = 1, w_{12} = 1, w_{13} = 1, w_{15} = 1.$$

$$\therefore w_{22} = w_{25} = w_{33} = w_{35} = w_{42} = w_{43} = w_{45} = 1.$$

$$\therefore W_1 = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}.$$

In the second iteration:

$$w_{12} = 1, w_{21} = 1$$

$$:: w_{11} = 1.$$

$$\therefore W_2 = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}.$$

In the third iteration:

$$\therefore W_3 = W_2 = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}.$$

In the 4th iteration:

$$w_{54} = 1, w_{41} = 1, w_{42} = 1, w_{43} = 1, w_{45} = 1$$

$$\therefore w_{51} = w_{52} = w_{53} = w_{55} = 1.$$

$$\therefore W_4 = egin{bmatrix} 1 & 1 & 1 & 0 & 1 \ 1 & 1 & 1 & 0 & 1 \ 1 & 1 & 1 & 0 & 1 \ 1 & 1 & 1 & 0 & 1 \ 1 & 1 & 1 & 1 & 1 \end{bmatrix}.$$

In the 5th iteration:

$$\therefore w_{15} = 1, w_{25} = 1, w_{35} = 1, w_{45} = 1, w_{55} = 1, w_{51} = 1, w_{52} = 1, w_{53} = 1, w_{54} = 1.$$

$$\therefore w_{14} = w_{24} = w_{34} = w_{44} = 1.$$

 $W_5$  is the transitive closure of R.

7. (a) **Reflexive**: For every  $x \in \mathbb{R}$ , we have  $(x, x) = x - x = 0 \in \mathbb{Z}$ 

 $\therefore R$  is reflexive.

**Symmetric**: Assume that for  $x, y \in \mathbb{R}$ , we have  $(x, y) = x - y \in \mathbb{Z}$ .

$$(y,x) = y - x = -(x - y) \in \mathbb{Z}$$

 $\therefore R$  is symmetric.

**Transitive**: Assume that for  $x, y, z \in \mathbb{R}$ , we have  $(x, y) = x - y \in \mathbb{Z}$ ,  $(y, z) = y - z \in \mathbb{Z}$ .

$$\therefore (x,z) = x - z = (x - y) + (y - z),$$

The sum of two integers is still integer.

$$\therefore$$
  $(x,z) = x - z \in \mathbb{Z}$ .

 $\therefore R$  is transitive.

(b) : 
$$[1] = \{x \in \mathbb{R} \mid 1 - x \in \mathbb{Z}\}$$

$$\therefore x = 1 + n, n \in \mathbb{Z}.$$

$$\therefore [1] = \{0, 1, -1, 2, -2, \dots\}$$

$$\because \left[\frac{1}{2}\right] = \{ y \in \mathbb{R} \mid \frac{1}{2} - y \in \mathbb{Z} \}$$

$$\therefore y = \frac{1}{2} + n, n \in \mathbb{Z}.$$

$$\therefore \left[\frac{1}{2}\right] = \left\{\frac{1}{2}, -\frac{1}{2}, \frac{3}{2}, -\frac{3}{2}, \dots\right\}.$$

$$:: [\pi] = \{ z \in \mathbb{R} \mid \pi - z \in \mathbb{Z} \}$$

$$\therefore z = \pi + n, n \in \mathbb{Z}.$$

$$[\pi] = {\pi, \pi + 1, \pi - 1, \dots}.$$

8. (a) **Reflexive**:  $\because$  For any function  $f, \forall x \in \mathbb{R}, f(x) = f(x), \text{ i.e. } f(x) \leq f(x), f \leq f$ 

 $\therefore$  The relation  $\leq$  is reflexive.

**Antisymmetric**: For any function  $f : \mathbb{R} \to \mathbb{R}$  and  $g : \mathbb{R} \to \mathbb{R}$ :

If 
$$f \leq g$$
 and  $g \leq f$ , i.e.  $f(x) \leq g(x)$ ,  $g(x) \leq f(x)$ , then we have  $f(x) = g(x)$ .

 $\therefore$  The relation  $\prec$  is antisymmetric.

**Transitive**: For three functions  $f: \mathbb{R} \to \mathbb{R}$ ,  $g: \mathbb{R} \to \mathbb{R}$  and  $h: \mathbb{R} \to \mathbb{R}$ :

If 
$$f \leq g$$
 and  $g \leq h$ , i.e.  $f(x) \leq g(x)$ ,  $g(x) \leq h(x)$ , then we have  $f(x) \leq h(x)$ .

 $\therefore$  The relation  $\leq$  is transitive.

(b) Counterexample: Consider two functions  $f(x) = x : \mathbb{R} \to \mathbb{R}$  and  $g(x) = -x : \mathbb{R} \to \mathbb{R}$ .

When 
$$x \ge 0$$
,  $f(x) \ge g(x)$ ; when  $x < 0$ ,  $f(x) < g(x)$ .

$$\therefore f \leq g \text{ or } g \leq f \text{ not always holds.}$$

 $\therefore$  The relation  $\leq$  is not a total ordering.

- 9. (a) Maximal elements: l, m.
  - (b) Minimal elements: a, b, c.
  - (c) : There are 2 maximal elements
    - ... The greatest element does not exist.
  - (d): There are 3 minimal elements
    - ... The least element does not exist.
  - (e) The upper bounds of  $\{a, e, f\}$  are k, l, m.
  - (f) The least upper bound of  $\{a, e, f\}$  is k.
  - (g) The lower bounds of  $\{h, i, j\}$  are a, b, d.
  - (h) The greatest lower bound of  $\{h, i, j\}$  is d.
- 10. The Hasse Diagram for the poset  $(\{2,3,4,6,12\}, |)$ :



... The compatible total orderings for the poset  $(\{2,3,4,6,12\},\ |)$  are:

$$2 \prec 3 \prec 6 \prec 4 \prec 12$$

$$2 \prec 3 \prec 4 \prec 6 \prec 12$$

$$2 \prec 4 \prec 3 \prec 6 \prec 12$$

$$3 \prec 2 \prec 4 \prec 6 \prec 12$$

$$3 \prec 2 \prec 6 \prec 4 \prec 12$$