Задача 4.

Исходный код

Репозиторий: https://github.com/Grand-OT/GPU course

Реализация GPU функционала:

https://github.com/Grand-OT/GPU course/blob/master/kernel.cu

Система

GPU: NVIDIA GeForce RTX 3050m.

CUDA: 12.6.

Результаты

Выполнялось сравнение разных алгоритмов умножения матриц для разных типов данных. Так же был выполнен анализ производительности средствами инструмента Nsight Compute. Сравнение выполнялось для матриц размером 1024x1024.

Первый алгоритм: каждый поток вычисляет значение одного элемента результирующей матрицы. Матрицы-множители хранятся в глобальной памяти GPU.

Второй алгоритм: каждый блок выполняет умножение подматриц. Сначала подматрицы копируются в разделяемую память блока, после выполняется умножение.

Третий алгоритм: алгоритм умножения матриц средствами библиотеки cuBLAS.

Таблица 1. Суммарная ошибка для значений типа float

Функция GPU	Длительность вычислений, мс
Прямое умножение	11.98
Умножение с разделяемой памятью	9.17
cuBLAS	1.19

Таблица 2. Суммарная ошибка для значений muna double

Функция GPU	Длительность вычислений, мс
Прямое умножение	48.8
Умножение с разделяемой памятью	48.4
cuBLAS	54.9

Использование инструментов профилирования показало проблему низкого использования FMA-инструкций при выполнении умножения cuBLAS для чисел типа double.