~

KEY MACHINE LEARNING CONCEPTS

Explained with Linear Regression

WHAT WILL YOU LEARN

- Reviewing the basic idea behind linear regression
- Learning how to measure predictive quality with Mean Square Error (MSE).
- Understanding the role of parameters in a machine learning model in general and in linear regression in particular
- Calculating optimal regression parameters using OLS
- Finding optimal regression parameters by trial and error
- Distinguish between unfitted and fitted models
- Using the tidymodels package to split observations from a dataset randomly into a training and testing dataset.
- (female/male) can be transformed into humerical dummy variable. Understanding how categorical data such as the sex of a person

- Being able to distinguish between dummy encoding and one-hot encoding
- Using tidymodels including model design and data pre-processing (recipes) to analyze housing prices.

UNIVARIATE LINEAR REGRESSION - DATA TABLE AND GOAL

The Regression:

$\hat{y}_i = \beta_1 x_i + \beta_2$

The Goal

Find values for eta_1 and eta_2 that minimize the prediction errors $(\hat{y}_i - y_i)^2$

The Data Table

Mockup Training Dataset

×	StudyTime	2	3	7	8	4
>	Grade	9	82	93	93	83
,	•—	∀	7	က	4	5

JNIVARIATE LINEAR REGRESSION - DATA DIAGRAM AND GOAL

The Regression:

$$\hat{y}_i = \beta_1 x_i + \beta_2$$

The Goal

Find values for eta_0 and eta_1 that minimize the prediction errors $(\hat{y}_i - y_i)^2$

The Data Diagram

/

$$MSE \ = \ rac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2 \ \Longleftrightarrow$$

$$\iff WSE = rac{1}{N} \sum_{i=1}^{N} (rac{ ext{Prediction } i}{ ext{Error } i})^2$$

CUSTOM R FUNCTION TO CALCULATE MSE

Function Call:

▼ Code

[11] 29.

Function Definition:»

▼ Code

HOW TO FIND OPTIMAL VALUES FOR eta_1 and eta_2

Method 1:

Calculate optimal values for the parameters (the eta s) based on Ordinary Least Squares (OLS) using two formulas (Note, this method works only for linear regression)

Method 2:

We can use a systematic trial and error process.

\subseteq

METHOD 1: CALCULATE OPTIMAL PARAMETERS (ONLY FOR OLS!)

$$eta_{1,opt} = rac{N\sum_{i=1}^{N}y_ix_i - \sum_{i=1}^{N}y_i\sum_{i=1}^{N}x_i}{N\sum_{i=1}^{N}x_i^2 - \left(\sum_{i=1}^{N}x_i
ight)^2} = 3.96$$

$$eta_{2,opt.} = rac{\sum_{i=1}^{N} y_i - eta_1 \sum_{i=1}^{N} x_i}{N} = 64.18$$

Mockup Training Dataset

×	Grade StudyTime GradeXStudyTime StudyTimeSquared	4	6	49	64	16
×	GradeXStudyTime	130	246	651	744	332
×	StudyTime	2	က	7	∞	4
>	Grade	9	82	93	93	83
	•	П	2	က	4	2

METHOD 2: USE A SYSTEMATIC TRIAL AND ERROR PROCESS 😥

Grid Search (aka Brute Force):

- 1. For a given range of eta_1 and eta_2 values, build a table with pairs of all combinations of these βs .
- 2. Then use our custom FctMSE() command to calculate a MSEfor each eta pair.
- 3. Find the eta pair with the lowest MSE
- **Optimizer:** Use the R build-in optimizer. Push the start values for β_1 and β_2 together with the data to the optimizer as arguments. The rest is done by the optimizer.
- See the R script in the footnote to see both algorithms in action.»

UNIVARIATE OLS WITH A REAL WORLD DATASET

Data

- **▼** Code
- from May 2014 to May 2015 for King County in Washington State. King County House Sale dataset (Kaggle 2015). House sales prices
- ullet Several predictor variables. For now we use only Sqft
- We will only use 500 randomly chosen observations from the total of 21,613 observations.

Unfitted Model:»

$$\widehat{\mathit{Price}} = eta_1 Sqft + eta_2$$

INIVARIATE OLS WITH A REAL WORLD DATASET

Splitting in Training and Testing Datasets

▼ Code

DataTrain

DataTest

A tibble: 151 × 2

https://econ.lange-analytics.com/aibook/

											(
<int></int>	2340	2120	1400	2170	1730	2790	2120	1670	2430	2040	/ 1 200
<int></int>	735000	475226	242025	510000	325000	560000	733500	785000	580000	872500	- ; - ; - ; - ; - ; - ; - ; - ; - ; - ;
		7	3	4	2	9	7	∞	0	10	#

UNIVARIATE OLS WITH A REAL WORLD DATASET

Run the Analysis»

https://lange-analytics.com/AIBook/Exercises/handler.html?file=05-LinRegrExerc100.Rmd

<u> Multivariate analysis — Three Predictor Variables</u>

Sqft: Living square footage of the house.

Grade Indicates the condition of houses (1 (worst) to 13 (best).

Waterfront: Is house located at the waterfront (yes or no).

▼ Code

Unfitted Model: »

$$Price = eta_1 Sqft + eta_2 Grade + eta_3 Waterfront_yes + eta_4$$

JLTIVARIATE REAL WORLD DATASET - SPLITTING

▼ Code

DataTrail

```
<int> <int> <chr><</pre>
A tibble: 15,128 \times 4
                                                                                                       1190
                                                                                                                              1000
                                                         1200
                                                                     1250
                                                                                1070
                                                                                            1220
                      <db/>
                                  221900
                                                                                                                   287000
                                                                                                                              204000
                                                                    230000
                                                                               252700
                                                                                            240000
                                                                                                       228000
```

DataTest

```
https://econ.lange-analytics.com/aibook/
5420
1230000
```

7 no		7 no	7 no	ou 6	8 no	ou 9	8 no	8 no	7
1715	1060	1780	1810	2950	2270	1710	1400	2570	775 3020
257500	291850	229500	530000	650000	285000	233000	000/99	719000	7 +
\sim	3	4	2	9	7	∞	0	10	±

DUMMY AND ONE-HOT ENCODING

One-Hot Encoding

One-hot encoding is easier to interpret but causes problems in OLS (dummy trap) because one variable is redundant. We can calculate one variable from the other (perfect multicollinearity):

$$Water front_{yes} = 1-Water front_{no}$$

^

DUMMY AND ONE-HOT ENCODING

Dummy Coding

We use one variable less than we have categories. Waterfront has two categories. Therefore, we use one variable (e.g.,

Waterfront_yes):

Dummy Encoding Example

Note, dummy encoding can be done with step_dummy() in a tidymodels recipe.»

<u> JLTIVARIATE ANALYSIS — BUILDING THE RECIPE</u>

▼ Code

Here is how the recipe later on (in the workflow) transforms the data:

MULTIVARIATE ANALYSIS — BUILDING THE MODEL DESIGN

Unfitted Model:

▼ Code

Linear Regression Model Specification (regression)

Computational engine: Im

ҳ

JLTIVARIATE ANALYSIS — CREATING WORKFLOW & FITTING TO THE

RAINING DATA

▼ Code

```
868338.
                                                                                          Waterfront yes
A tibble: 4 ×
                  term
```

▼ Code

```
<db/>
A tibble: 1 \times 12
```

MULTIVARIATE ANALYSIS — PREDICTING TESTING DATA AND METRICS

▼ Code