Applied Analytics and Predictive Modeling

Spring 2020

Lecture-9

Lydia Manikonda

manikl@rpi.edu

Today's agenda

- 2-slide project presentations
- Class Exercise
- Association Rules

2-slide project Presentations

Association Rules

Association Rule Mining

 Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction.

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

```
{Diaper} \rightarrow {Beer},

{Milk, Bread} \rightarrow {Eggs,Coke},

{Beer, Bread} \rightarrow {Milk},
```

Implication means co-occurrence, not causality!

Definitions

Itemset

- A collection of one or more items
 - Example: {Milk, Bread, Diaper}
- k-itemset
 - An itemset that contains k items

Support count (σ)

- Frequency of occurrence of an itemset
- E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$

Support

- Fraction of transactions that contain an itemset
- E.g. s({Milk, Bread, Diaper}) = 2/5

• Frequent Itemset

An itemset whose support is greater than or equal to a minsup threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Association Rule

- Association Rule
 - An implication expression of the form X → Y, where X and Y are itemsets
 - Example: {Milk, Diaper} → {Beer}
- Rule Evaluation Metrics
 - Support (s)
 - Fraction of transactions that contain both X and Y
 - Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example – Association Rule

• {Milk, Diaper} => {Beer}

Support

$$s = \frac{\sigma(\text{Milk, Diaper, Beer})}{|T|} = \frac{2}{5} = 0.4$$

Confidence

$$c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$$

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ *minsup* threshold
 - confidence ≥ *minconf* threshold
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the minsup and minconf thresholds
 - ⇒ Computationally prohibitive!

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

```
{Milk, Diaper} \rightarrow {Beer} (s=0.4, c=0.67)

{Milk, Beer} \rightarrow {Diaper} (s=0.4, c=1.0)

{Diaper, Beer} \rightarrow {Milk} (s=0.4, c=0.67)

{Beer} \rightarrow {Milk, Diaper} (s=0.4, c=0.67)

{Diaper} \rightarrow {Milk, Beer} (s=0.4, c=0.5)

{Milk} \rightarrow {Diaper, Beer} (s=0.4, c=0.5)
```

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining Association Rules

- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup
 - 2. Rule Generation
 - Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset

Frequent itemset generation is still computationally expensive

Frequent Itemset Generation

Given d items, there are 2^d possible candidate itemsets

Frequent Itemset Generation

- Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database

- Match each transaction against every candidate
- Complexity ~ O(NMw) => Expensive since M = 2^d !!!

Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
 - Complete search: M=2^d
 - Use pruning techniques to reduce M
- Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset increases
 - Used by DHP and vertical-based mining algorithms
- Reduce the number of comparisons (NM)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction

Reducing Number of Candidates

- Apriori principle:
 - If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \geq s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

Apriori Algorithm

- F_k: frequent k-itemsets
- L_k: candidate k-itemsets
- Algorithm
 - Let k=1
 - Generate F₁ = {frequent 1-itemsets}
 - Repeat until F_k is empty
 - Candidate Generation: Generate L_{k+1} from F_k
 - Candidate Pruning: Prune candidate itemsets in L_{k+1} containing subsets of length k that are infrequent
 - Support Counting: Count the support of each candidate in L_{k+1} by scanning the DB
 - Candidate Elimination: Eliminate candidates in L_{k+1} that are infrequent, leaving only those that are frequent => F_{k+1}

Exercise-1 — Solved in the last class

Transaction 1	Apple, beer, rice, chicken
Transaction 2	Apple, beer, rice
Transaction 3	Apple, beer
Transaction 4	Milk, beer, rice, chicken
Transaction 5	Milk, beer, rice
Transaction 6	Milk, beer

Find all the frequent itemsets where, min_sup = 0.2

Exercise-2

• Using Apriori algorithm, identify frequent itemsets where min_sup =2

Transaction 1	a, b, e
Transaction 2	b, d
Transaction 3	b, c
Transaction 4	a, b, d
Transaction 5	a, c
Transaction 6	b, c
Transaction 7	a, c
Transaction 8	a, b, c, e
Transaction 9	a, b, c

Association Rules

- Association rules
 - An implication expression of the form X → Y, where X and Y are itemsets
- Rule: X => Y (X is antecedent; Y is consequent)

• Support =
$$\frac{Frequency(X \ and \ Y)}{Total \ \# \ transactions}$$

• Confidence =
$$\frac{Frequency(X \ and \ Y)}{Frequency(X)}$$

• Lift =
$$\frac{Support}{Support(X) * Support(Y)}$$

A **lift** value greater than 1 indicates positive dependence between the antecedent and consequent – that the **antecedent and consequent** appear more often together than expected

Association Rules

- Support = $\frac{Frequency(X \ and \ Y)}{Total \# transactions}$
- Tells us how often the itemset appears in the dataset
- Confidence = $\frac{Frequency(X \ and \ Y)}{Frequency(X)}$
- Tells us how often the rule is true with regard to our dataset

• Lift =
$$\frac{Support}{Support(X) * Support(Y)}$$

Tells us if X and Y are independent of each other

Association Rules Examples

• Rule-1: A => D

•	Confidence = Freq(A,D)/Freq(A)
	= 2/3

Transaction ID	Items
T1	A, B, C
T2	A, C, D
Т3	B, C, D
T4	A, D, E
T5	В, С, Е

• Lift = Support/Supp(A)*Support(D) = (2/5)/((3/5)*(3/5)) = (2/5)/(9/25) = 10/9 > 1 so dependent on each other.

Example-2

• Rule: C => A

Transaction ID	Items
T1	A, B, C
T2	A, C, D
Т3	B, C, D
Т4	A, D, E
T5	В, С, Е

Example-3

• Rule A => C

Transaction ID	Items
T1	A, B, C
T2	A, C, D
Т3	B, C, D
Т4	A, D, E
T5	В, С, Е

Example-4

• {B, C} => D

Transaction ID	Items
T1	A, B, C
T2	A, C, D
Т3	B, C, D
Т4	A, D, E
T5	В, С, Е