

شبكههاي عصبي مصنوعي

جلسه پانزدهم: ماشین بردار پشتیبان (۳) (Support Vector Machine = SVM)

۱- ابرصفحه بهینه برای الگوهای جداپذیر خطی

$$-$$
حل مساله اولیه و یافتن وزنهای بهینه: $\phi(\mathbf{w})=\minrac{1}{2}\mathbf{w}^T\mathbf{w}$ $d_i(\mathbf{w}^T\mathbf{x}_i+b)-1=0 \qquad ext{for} \qquad i=1,...,N$ تابع لاگرانژ $-$

$$J(\mathbf{w},b,\alpha) = \frac{1}{2}\mathbf{w}^T\mathbf{w} - \sum_{i=1}^N \alpha_i \left[d_i(\mathbf{w}^T\mathbf{x}_i + b) - 1\right]$$

- حل مساله اولیه و یافتن وزنهای بهینه:

$$\phi(\mathbf{w}) = \min \frac{1}{2} \mathbf{w}^T \mathbf{w}$$

$$d_i(\mathbf{w}^T \mathbf{x}_i + b) - 1 = 0 \quad \text{ for } \quad i = 1, ..., N$$

- تابع لاگرانژ

$$J(\mathbf{w},b,\alpha) = \frac{1}{2}\mathbf{w}^T\mathbf{w} - \sum\nolimits_{i=1}^N \alpha_i \Big[\, d_i(\mathbf{w}^T\mathbf{x}_i + b) - 1 \Big]$$

ایجاد نقطه زینی (Saddle Point)

- حل مساله اولیه و یافتن وزنهای بهینه:

$$\phi(\mathbf{w}) = \min rac{1}{2} \mathbf{w}^T \mathbf{w}$$

$$d_i(\mathbf{w}^T \mathbf{x}_i + b) - 1 = 0 \quad ext{ for } \quad i = 1, \dots, N$$
 تابع لاگ انث

- تابع لاگرانژ

$$J(\mathbf{w},b,\alpha) = \frac{1}{2}\mathbf{w}^T\mathbf{w} - \sum\nolimits_{i=1}^N \alpha_i \Big[d_i(\mathbf{w}^T\mathbf{x}_i + b) - 1 \Big]$$

ایجاد نقطه زینی (Saddle Point)

- حل مساله دوگان و یافتن ضرایب لاگرانژ:

$$\phi(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i d_j \mathbf{x}_i^T \mathbf{x}_j$$

$$\sum_{i=1}^{N} \alpha_i d_i = 0$$

$$\alpha_i \ge 0 \qquad i = 1, \dots, N$$

ماشین بردار یشتیبان

۱- ابرصفحه بهینه برای الگوهای جدایذیر خطی

- حل مساله اولیه و یافتن وزنهای بهینه:

$$\phi(\mathbf{w})=\minrac{1}{2}\mathbf{w}^T\mathbf{w}$$

$$d_i(\mathbf{w}^T\mathbf{x}_i+b)-1=0 \qquad ext{for} \quad i=1,...,N$$
 تابع لاگرانژ –

$$J(\mathbf{w},b,lpha)=rac{1}{2}\mathbf{w}^T\mathbf{w}-\sum_{i=1}^Nlpha_iig[d_i(\mathbf{w}^T\mathbf{x}_i+b)-1ig]$$
 (Saddle Point) ایجاد نقطه زینی

- حل مساله دوگان و یافتن ضرایب لاگرانژ:

$$\phi(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i d_j \mathbf{x}_i^T \mathbf{x}_j$$

 $d_i = +1$

$$\mathbf{x}^{(s)}$$
 تعیین بردارهای پشتیبان
$$\sum_{i=1}^N \alpha_i d_i = 0$$
 $\alpha_i \geq 0$ $i=1,\dots,N$

۲- ابرصفحه بهینه برای الگوهای جداناپذیر

۲- ابرصفحه بهینه برای الگوهای جداناپذیر

۲- ابرصفحه بهینه برای الگوهای جداناپذیر

$$\sum_{i=1}^{N} \alpha_i d_i = 0$$

$$0 \le \alpha_i \le C$$

- فلسفه SVM براى كلاسهبندى الگوها

- فلسفه SVM براى كلاسهبندى الگوها
 - اصول SVM

- فلسفه SVM براى كلاسهبندى الكوها
 - اصول SVM
- ۱- نگاشت غیرخطی بردار ورودی به فضای ویژگیها

- فلسفه SVM براى كلاسهبندى الكوها
 - اصول SVM
- ۱- نگاشت غیرخطی بردار ورودی به فضای ویژگیها
- ۲- تشکیل ابرصفحه بهینه برای جداسازی ویژگیها که در قسمت ۱ کشف شدند.

- فلسفه SVM براي كلاسهبندي الگوها
 - اصول SVM
- ۱- نگاشت غیرخطی بردار ورودی به فضای ویژگیها
- ۲- تشکیل ابرصفحه بهینه برای جداسازی ویژگیها که در قسمت ۱ کشف شدند.

نکته مهم: نظریه SVM، به طور تحلیلی ابعاد بهینه برای فضای پنهان پیدامی کند.

۳- SVM با استفاده از توابع کرنل

۳- SVM با استفاده از توابع کرنل

- فرض کنید:

- ۳ SVM با استفاده از توابع کرنل
 - فرض کنید:
- بردار \mathbf{x} از فضای ورودی با بُعد m_0 انتخاب شده است

۳- SVM با استفاده از توابع کرنل

- فرض كنيد:
- بردار \mathbf{x} از فضای ورودی با بُعد m_0 انتخاب شده است
- $\{ \varphi_j(\mathbf{x}) \}_{j=1}^\infty$ مجموعهای از توابع غیرخطی که فضای ورودی را به فضای ویژگیها انتقال میدهد.

۳- SVM با استفاده از توابع کرنل

- فرض کنید:
- ست انتخاب شده است ورودی با بُعد m_0 انتخاب شده است •
- $\{ \varphi_j(\mathbf{x}) \}_{j=1}^\infty$ مجموعهای از توابع غیرخطی که فضای ورودی را به فضای ویژگیها انتقال می دهد.
 - ابرصفحه بهعنوان سطح تصمیم گیری

$$\sum_{j=1}^{\infty} w_j \varphi_j(\mathbf{x}) = 0$$

۳ – SVM با استفاده از توابع کرنل

- فرض کنید:
- ست انتخاب شده است ورودی با بُعد m_0 انتخاب شده است •
- $\{ \varphi_j(\mathbf{x}) \}_{j=1}^\infty$ مجموعهای از توابع غیرخطی که فضای ورودی را به فضای ویژگیها انتقال می دهد.
 - ابرصفحه بهعنوان سطح تصمیم گیری

$$\sum_{j=1}^{\infty} w_j \varphi_j(\mathbf{x}) = 0$$

مجموعهای بینهایت بزرگ از وزنها که فضای ویژگیها را به فضای خروجی انتقال میدهد. $\{\mathbf w_j\}_{j=1}^\infty$

۳- SVM با استفاده از توابع کرنل

- فرض کنید:
- بردار \mathbf{x} از فضای ورودی با بُعد m_0 انتخاب شده است
- $\{ \varphi_j(\mathbf{x}) \}_{j=1}^\infty$ مجموعهای از توابع غیرخطی که فضای ورودی را به فضای ویژگیها انتقال می دهد.
 - ابرصفحه بهعنوان سطح تصمیم گیری

$$\sum_{j=1}^{\infty} w_j \varphi_j(\mathbf{x}) = 0$$

مجموعهای بینهایت بزرگ از وزنها که فضای ویژگیها را به فضای خروجی انتقال میدهد. $\{\mathbf w_j\}_{j=1}^\infty$

- به فرم برداری

$$\mathbf{w}^T \Phi(\mathbf{x}) = 0$$

۳ – SVM با استفاده از توابع کرنل

- فرض کنید:
- بردار \mathbf{x} از فضای ورودی با بُعد m_0 انتخاب شده است
- $\{ \varphi_j(\mathbf{x}) \}_{j=1}^\infty$ مجموعهای از توابع غیرخطی که فضای ورودی را به فضای ویژگیها انتقال می دهد.
 - ابرصفحه بهعنوان سطح تصمیم گیری

$$\sum_{j=1}^{\infty} w_j \varphi_j(\mathbf{x}) = 0$$

مجموعهای بینهایت بزرگ از وزنها که فضای ویژگیها را به فضای خروجی انتقال میدهد. $\{\mathbf w_j\}_{j=1}^\infty$

- به فرم برداری

$$\mathbf{w}^T \Phi(\mathbf{x}) = 0$$

بردار ویژگیها $\Phi(\mathbf{x})$

۳- SVM با استفاده از توابع کرنل

- ۳ SVM با استفاده از توابع کرنل
- همانند قبل، به دنبال «جدا پذیری خطی» الگوهای انتقال یافته به فضای ویژگی ها هستیم.

۳- SVM با استفاده از توابع کرنل

- همانند قبل، به دنبال «جدا پذیری خطی» الگوهای انتقال یافته به فضای ویژگی ها هستیم.
- با توجه به این هدف، معادله وزنها را که قبلا بهصورت $\mathbf{w} = \sum_{i=1}^{Ns} \alpha_i d_i \mathbf{x}_i$ بود، را بهفرم زیر ارایه می کنیم:

$$\mathbf{w} = \sum_{i=1}^{Ns} \alpha_i d_i \Phi(\mathbf{x}_i)$$

$$\Phi(\mathbf{x}_i) = [\varphi_1(\mathbf{x}_i), \varphi_2(\mathbf{x}_i), \dots]^T$$

۳ – SVM با استفاده از توابع کرنل

- همانند قبل، بهدنبال «جداپذیری خطی» الگوهای انتقال یافته به فضای ویژگیها هستیم.
- با توجه به این هدف، معادله وزنها را که قبلا به صورت $\mathbf{w} = \sum_{i=1}^{Ns} \alpha_i d_i \mathbf{x}_i$ بود، را به فرم زیر ارایه می کنیم:

$$\mathbf{w} = \sum_{i=1}^{Ns} \alpha_i d_i \Phi(\mathbf{x}_i)$$

$$\Phi(\mathbf{x}_i) = [\varphi_1(\mathbf{x}_i), \varphi_2(\mathbf{x}_i), \dots]^T$$

با قراردادن این رابطه در $\mathbf{w}^T\Phi(\mathbf{x})=0$ خواهیم داشت:

$$\sum_{i=1}^{Ns} \alpha_i d_i \Phi^T(\mathbf{x}_i) \Phi(\mathbf{x}) = 0$$

۳ – SVM با استفاده از توابع کرنل

- همانند قبل، به دنبال «جدا پذیری خطی» الگوهای انتقال یافته به فضای ویژگی ها هستیم.
- با توجه به این هدف، معادله وزنها را که قبلا بهصورت $\mathbf{w} = \sum_{i=1}^{Ns} lpha_i d_i \mathbf{x}_i$ بود، را بهفرم زیر ارایه می کنیم:

$$\mathbf{w} = \sum_{i=1}^{Ns} \alpha_i d_i \Phi(\mathbf{x}_i)$$

$$\Phi(\mathbf{x}_i) = [\varphi_1(\mathbf{x}_i), \varphi_2(\mathbf{x}_i), \dots]^T$$

با قراردادن این رابطه در $\mathbf{w}^T\Phi(\mathbf{x})=0$ خواهیم داشت:

$$\sum_{i=1}^{Ns} \alpha_i d_i \Phi^T(\mathbf{x}_i) \Phi(\mathbf{x}) = 0$$

- ضرب داخلی را با اسکالر زیر نشان می دهیم:

$$k(\mathbf{x}, \mathbf{x}_i) = \Phi^T(\mathbf{x}_i) \Phi(\mathbf{x})$$

۳ – SVM با استفاده از توابع کرنل

- همانند قبل، به دنبال «جدا پذیری خطی» الگوهای انتقال یافته به فضای ویژگی ها هستیم.
- با توجه به این هدف، معادله وزنها را که قبلا به صورت $\mathbf{w} = \sum_{i=1}^{Ns} \alpha_i d_i \mathbf{x}_i$ بود، را به فرم زیر ارایه می کنیم:

$$\mathbf{w} = \sum_{i=1}^{Ns} \alpha_i d_i \Phi(\mathbf{x}_i)$$

$$\Phi(\mathbf{x}_i) = [\varphi_1(\mathbf{x}_i), \varphi_2(\mathbf{x}_i), \dots]^T$$

با قراردادن این رابطه در $\mathbf{w}^T\Phi(\mathbf{x})=0$ خواهیم داشت:

$$\sum_{i=1}^{Ns} \alpha_i d_i \Phi^T(\mathbf{x}_i) \Phi(\mathbf{x}) = 0$$

- ضرب داخلی را با اسکالر زیر نشان میدهیم:

$$k(\mathbf{x}, \mathbf{x}_i) = \Phi^T(\mathbf{x}_i) \Phi(\mathbf{x})$$

=
$$\sum_{j=1}^{\infty} \varphi_j(\mathbf{x}_i) \varphi_j(\mathbf{x}) \qquad i = 1, ..., Ns$$

۳- SVM با استفاده از توابع کرنل

۳- SVM با استفاده از توابع کرنل

- بنابراین، سطح تصمیم گیری بهینه (ابرصفحه) در فضای خروجی برابر است با

$$\sum_{i=1}^{Ns} \alpha_i d_i k(\mathbf{x}, \mathbf{x}_i) = 0$$

۳ – SVM با استفاده از توابع کرنل

- بنابراین، سطح تصمیم گیری بهینه (ابرصفحه) در فضای خروجی برابر است با

$$\sum_{i=1}^{Ns} \alpha_i d_i k(\mathbf{x}, \mathbf{x}_i) = 0$$

ضرب داخلی کرنل (یا بهطور ساده، کرنل) که بهصورت زیر تعریف میشود: $k(\mathbf{x},\mathbf{x}_i)$

۳ – SVM با استفاده از توابع کرنل

- بنابراین، سطح تصمیم گیری بهینه (ابرصفحه) در فضای خروجی برابر است با

$$\sum_{i=1}^{Ns} \alpha_i d_i k(\mathbf{x}, \mathbf{x}_i) = 0$$

ضرب داخلی کرنل (یا بهطور ساده، کرنل) که بهصورت زیر تعریف میشود: $k(\mathbf{x}, \mathbf{x}_i)$

کرنل $k(\mathbf{x},\mathbf{x}_i)$ تابعی است که ضرب داخلی تصاویر تشکیل شده در فضای ویژگیها را برای دو نقطه در فضای ورودی با استفاده از Φ محاسبه می کند.

۳- SVM با استفاده از توابع کرنل

- بنابراین، سطح تصمیم گیری بهینه (ابرصفحه) در فضای خروجی برابر است با

$$\sum_{i=1}^{Ns} \alpha_i d_i k(\mathbf{x}, \mathbf{x}_i) = 0$$

ضرب داخلی کرنل (یا بهطور ساده، کرنل) که بهصورت زیر تعریف میشود: $k(\mathbf{x},\mathbf{x}_i)$

کرنل $k(\mathbf{x},\mathbf{x}_i)$ تابعی است که ضرب داخلی تصاویر تشکیل شده در فضای ویژگیها را برای دو نقطه در فضای ورودی با استفاده از Φ محاسبه می کند.

- دوخاصیت کرنل:

۳ – SVM با استفاده از توابع کرنل

- بنابراین، سطح تصمیم گیری بهینه (ابرصفحه) در فضای خروجی برابر است با

$$\sum_{i=1}^{Ns} \alpha_i d_i k(\mathbf{x}, \mathbf{x}_i) = 0$$

ضرب داخلی کرنل (یا بهطور ساده، کرنل) که بهصورت زیر تعریف میشود: $k(\mathbf{x}, \mathbf{x}_i)$

کرنل $k(\mathbf{x}, \mathbf{x}_i)$ تابعی است که ضرب داخلی تصاویر تشکیل شده در فضای ویژگیها را برای دو نقطه در فضای ورودی با استفاده از Φ محاسبه می کند.

- دوخاصیت کرنل:

حول نقطه مرکز (\mathbf{x}_i) متقارن است $k(\mathbf{x},\mathbf{x}_i)$ حول نقطه مرکز

$$k(\mathbf{x}, \mathbf{x}_i) = k(\mathbf{x}_i, \mathbf{x}) \quad \forall \, \mathbf{x}_i$$

۳ – SVM با استفاده از توابع کرنل

- بنابراین، سطح تصمیم گیری بهینه (ابرصفحه) در فضای خروجی برابر است با

$$\sum_{i=1}^{Ns} \alpha_i d_i k(\mathbf{x}, \mathbf{x}_i) = 0$$

ضرب داخلی کرنل (یا بهطور ساده، کرنل) که بهصورت زیر تعریف میشود: $k(\mathbf{x}, \mathbf{x}_i)$

کرنل $k(\mathbf{x},\mathbf{x}_i)$ تابعی است که ضرب داخلی تصاویر تشکیل شده در فضای ویژگیها را برای دو نقطه در فضای ورودی با استفاده از Φ محاسبه می کند.

- دوخاصیت کرنل:

حول نقطه مرکز (\mathbf{x}_i) متقارن است $k(\mathbf{x},\mathbf{x}_i)$ حول نقطه مرکز

$$k(\mathbf{x}, \mathbf{x}_i) = k(\mathbf{x}_i, \mathbf{x}) \quad \forall \, \mathbf{x}_i$$

سطح (حجم) زیر منحنی تابع $k(\mathbf{x},\mathbf{x}_i)$ مقداری ثابت است. $-\mathbf{Y}$

۳- SVM با استفاده از توابع کرنل

۳- SVM با استفاده از توابع کرنل

شعبده بازی کرنل:

۳ – SVM با استفاده از توابع کرنل

شعبده بازی کرنل:

- معادله سطح تصمیم گیری را مجددا درنظربگیرید:

$$\sum_{i=1}^{Ns} \alpha_i d_i k(\mathbf{x}, \mathbf{x}_i) = 0$$

۳ – SVM با استفاده از توابع کرنل

شعبده بازی کرنل:

- معادله سطح تصمیم گیری را مجددا درنظربگیرید:

$$\sum_{i=1}^{Ns} \alpha_i d_i k(\mathbf{x}, \mathbf{x}_i) = 0$$

- در مورد این معادله، دو نکته قابل تامل است:

۳- SVM با استفاده از توابع کرنل

شعبده بازی کرنل:

- معادله سطح تصمیم گیری را مجددا درنظربگیرید:

$$\sum\nolimits_{i=1}^{Ns} \alpha_i d_i k(\mathbf{x}, \mathbf{x}_i) = 0$$

- در مورد این معادله، دو نکته قابل تامل است:

ا برای کلاسهبندی الگوها در فضای خروجی، فقط نیاز به کرنل $k(\mathbf{x},\mathbf{x}_i)$ داریم.

۳- SVM با استفاده از توابع کرنل

شعبده بازی کرنل:

- معادله سطح تصمیم گیری را مجددا درنظربگیرید:

$$\sum\nolimits_{i=1}^{Ns} \alpha_i d_i k(\mathbf{x}, \mathbf{x}_i) = 0$$

- در مورد این معادله، دو نکته قابل تامل است:

۱- برای کلاسهبندی الگوها در فضای خروجی، فقط نیاز به کرنل $k(\mathbf{x},\mathbf{x}_i)$ داریم. به عبارت دیگر، هیچگاه نیاز به محاسبه صریح بردار وزن \mathbf{w}_o نداریم.

SVM -۳ با استفاده از توابع کرنل

شعبده بازی کرنل:

- معادله سطح تصمیم گیری را مجددا درنظربگیرید:

$$\sum\nolimits_{i=1}^{Ns} \alpha_i d_i k(\mathbf{x}, \mathbf{x}_i) = 0$$

- در مورد این معادله، دو نکته قابل تامل است:

ا براى كلاسەبندى الگوها در فضاى خروجى، فقط نياز به كرنل $k(\mathbf{x},\mathbf{x}_i)$ داريم.

به همین جهت، استفاده از $\Phi^T(\mathbf{x}_i)$ به همین جهت، استفاده از $\Phi^T(\mathbf{x}_i)$ به همین جهت، استفاده از

SVM -۳ با استفاده از توابع کرنل

شعبده بازی کرنل:

- معادله سطح تصمیم گیری را مجددا درنظربگیرید:

$$\sum_{i=1}^{Ns} \alpha_i d_i k(\mathbf{x}, \mathbf{x}_i) = 0$$

- در مورد این معادله، دو نکته قابل تامل است:

ا برای کلاسهبندی الگوها در فضای خروجی، فقط نیاز به کرنل $k(\mathbf{x},\mathbf{x}_i)$ داریم. به عبارت دیگر، هیچگاه نیاز به محاسبه صریح بردار وزن \mathbf{w}_o نداریم. به همین جهت، استفاده از $\Phi^T(\mathbf{x}_i)$ $\Phi(\mathbf{x})$ را شعبدهبازی کرنل مینامند.

۲- اگرچه فرض کردیم که فضای ویژگیها می تواند دارای ابعاد بینهایت باشد، معادله خطی ابر صفحه بالا از تعداد محدودی جمله تشکیل می شود.

SVM -۳ با استفاده از توابع کرنل

شعبده بازی کرنل:

- معادله سطح تصمیم گیری را مجددا درنظربگیرید:

$$\sum_{i=1}^{Ns} \alpha_i d_i k(\mathbf{x}, \mathbf{x}_i) = 0$$

- در مورد این معادله، دو نکته قابل تامل است:
- ا برای کلاسهبندی الگوها در فضای خروجی، فقط نیاز به کرنل $k(\mathbf{x},\mathbf{x}_i)$ داریم. به عبارت دیگر، هیچگاه نیاز به محاسبه صریح بردار وزن \mathbf{w}_o نداریم. به همین جهت، استفاده از $\Phi^T(\mathbf{x}_i)$ $\Phi(\mathbf{x})$ را شعبده بازی کرنل می نامند.
 - ۲- اگرچه فرض کردیم که فضای ویژگیها می تواند دارای ابعاد بینهایت باشد، معادله خطی ابر صفحه بالا از تعداد محدودی جمله تشکیل می شود.
 - به خاطر نکته ۱، به ماشین بردار پشتیبان، ماشین کرنل نیز می گویند.

SVM -۳ با استفاده از توابع کرنل

شعبده بازی کرنل:

- معادله سطح تصمیم گیری را مجددا درنظربگیرید:

$$\sum\nolimits_{i=1}^{Ns} \alpha_i d_i k(\mathbf{x}, \mathbf{x}_i) = 0$$

- در مورد این معادله، دو نکته قابل تامل است:

ا- برای کلاسهبندی الگوها در فضای خروجی، فقط نیاز به کرنل $k(\mathbf{x},\mathbf{x}_i)$ داریم. به عبارت دیگر، هیچگاه نیاز به محاسبه صریح بردار وزن \mathbf{w}_o نداریم. به همین جهت، استفاده از $\Phi^T(\mathbf{x}_i)$ $\Phi(\mathbf{x})$ را شعبده بازی کرنل می نامند.

۲- اگرچه فرض کردیم که فضای ویژگیها می تواند دارای ابعاد بی نهایت باشد، معادله خطی ابر صفحه بالا از تعداد محدودی جمله تشکیل می شود.

- به خاطر نکته ۱، به ماشین بردار پشتیبان، ماشین کرنل نیز می گویند.
- برای مقاصد کلاسهبندی الگو، پارامترهای ماشین توسط یک بردار N-بُعدی تعیین میشود که برای جمله i ام آن برابر است با $\alpha_i\,d_i$ $i=1,\ldots,N$

۳- SVM با استفاده از توابع کرنل

۳ – SVM با استفاده از توابع کرنل

می توان $\{k(\mathbf{x}_i,\mathbf{x}_j)\}_{i,j=1}^N$ را به عنوان درایه ijام ما تریس متقارن زیر درنظر گرفت:

$$\mathbf{K} = \{k(\mathbf{x}_i, \mathbf{x}_j)\}_{i,j=1}^N$$

۳ – SVM با استفاده از توابع کرنل

می توان $\{k(\mathbf{x}_i,\mathbf{x}_j)\}_{i,j=1}^N$ را به عنوان درایه ij ام ماتریس متقارن زیر درنظر گرفت:

$$\mathbf{K} = \{k(\mathbf{x}_i, \mathbf{x}_j)\}_{i,j=1}^N$$

ماتریس K ماتریسی غیرمنفی است به نام ماتریس کرنل که گرام (Gram) نیز مینامند.

۳ – SVM با استفاده از توابع کرنل

می توان $\{k(\mathbf{x}_i,\mathbf{x}_j)\}_{i,j=1}^N$ را به عنوان درایه ij ام ماتریس متقارن زیر درنظر گرفت:

$$\mathbf{K} = \{k(\mathbf{x}_i, \mathbf{x}_j)\}_{i,j=1}^N$$

ماتریس K ماتریسی غیرمنفی است به نام ماتریس کرنل که گرام (Gram) نیز مینامند.

قضیه مرسر (Mercer's Theorem):

۳ – SVM با استفاده از توابع کرنل

امی توان درنظر گرفت: $\{k(\mathbf{x}_i,\mathbf{x}_j)\}_{i,j=1}^N$ را به عنوان درایه ij می توان ریر درنظر گرفت:

$$\mathbf{K} = \{k(\mathbf{x}_i, \mathbf{x}_j)\}_{i,j=1}^N$$

ماتریس K ماتریسی غیرمنفی است به نام ماتریس کرنل که گرام (Gram) نیز مینامند.

قضیه مرسر (Mercer's Theorem):

- فرض کنید $k(\mathbf{x},\mathbf{x}')$ کرنل متقارن و پیوسته ای باشد که در بازه $a \leq \mathbf{x}, \mathbf{x}' \leq b$ تعریف شده باشد. بسط کرنل $k(\mathbf{x},\mathbf{x}')$ را می توان با استفاده از ثابت $k(\mathbf{x},\mathbf{x}')$ به صورت زیر ارایه کرد:

۳- SVM با استفاده از توابع کرنل

می توان $\{k(\mathbf{x}_i,\mathbf{x}_j)\}_{i,j=1}^N$ را به عنوان درایه ij ام ماتریس متقارن زیر درنظر گرفت:

$$\mathbf{K} = \{k(\mathbf{x}_i, \mathbf{x}_j)\}_{i,j=1}^N$$

ماتریس K ماتریسی غیرمنفی است به نام ماتریس کرنل که گرام (Gram) نیز مینامند.

قضیه مرسر (Mercer's Theorem):

- فرض کنید $k(\mathbf{x},\mathbf{x}')$ کرنل متقارن و پیوستهای باشد که در بازه $a\leq\mathbf{x},\mathbf{x}'\leq b$ تعریف شده باشد. بسط کرنل $k(\mathbf{x},\mathbf{x}')$ را می توان با استفاده از ثابت $a\leq\mathbf{x}$ به صورت زیر ارایه کرد:

$$k(\mathbf{x}, \mathbf{x}') = \sum_{i=1}^{\infty} \lambda_i \varphi_i(\mathbf{x}) \varphi_i(\mathbf{x}')$$

۳ – SVM با استفاده از توابع کرنل

می توان $\{k(\mathbf{x}_i,\mathbf{x}_j)\}_{i,j=1}^N$ را به عنوان درایه ij ام ماتریس متقارن زیر درنظر گرفت:

$$\mathbf{K} = \{k(\mathbf{x}_i, \mathbf{x}_j)\}_{i,j=1}^N$$

ماتریس K ماتریسی غیرمنفی است به نام ماتریس کرنل که گرام (Gram) نیز مینامند.

قضیه مرسر (Mercer's Theorem):

- فرض کنید $k(\mathbf{x},\mathbf{x}')$ کرنل متقارن و پیوستهای باشد که در بازه $a\leq\mathbf{x},\mathbf{x}'\leq b$ تعریف شده باشد. بسط کرنل $k(\mathbf{x},\mathbf{x}')$ را می توان با استفاده از ثابت $a\leq\mathbf{x}$ به صورت زیر ارایه کرد:

$$k(\mathbf{x}, \mathbf{x}') = \sum_{i=1}^{\infty} \lambda_i \varphi_i(\mathbf{x}) \varphi_i(\mathbf{x}')$$

برای این که این بسط معتبر باشد و همچنین همگرای مطلق و پیوسته باشد، شرط لازم و کافی زیر باید برقرار باشد:

۳ – SVM با استفاده از توابع کرنل

امی توان درنظر گرفت: $\{k(\mathbf{x}_i,\mathbf{x}_j)\}_{i,j=1}^N$ را به عنوان درایه ij می توان ریر درنظر گرفت:

$$\mathbf{K} = \{k(\mathbf{x}_i, \mathbf{x}_j)\}_{i,j=1}^N$$

ماتریس K ماتریسی غیرمنفی است به نام ماتریس کرنل که گرام (Gram) نیز مینامند.

قضیه مرسر (Mercer's Theorem):

– فرض کنید $k(\mathbf{x},\mathbf{x}')$ کرنل متقارن و پیوستهای باشد که در بازه $a\leq\mathbf{x},\mathbf{x}'\leq b$ تعریف شده باشد. بسط کرنل $k(\mathbf{x},\mathbf{x}')$ را می توان با استفاده از ثابت $a\leq\mathbf{x}$ به صورت زیر ارایه کرد:

$$k(\mathbf{x}, \mathbf{x}') = \sum_{i=1}^{\infty} \lambda_i \varphi_i(\mathbf{x}) \varphi_i(\mathbf{x}')$$

برای این که این بسط معتبر باشد و همچنین همگرای مطلق و پیوسته باشد، شرط لازم و کافی زیر باید برقرار باشد:

$$\int_{a}^{b} \int_{a}^{b} k(\mathbf{x}, \mathbf{x}') \psi(\mathbf{x}) \psi(\mathbf{x}') d\mathbf{x} d\mathbf{x}' = 0$$

$$\int_a^b \psi^2(\mathbf{x}) \, d\mathbf{x} < \infty$$

بهطوریکه

۳- SVM با استفاده از توابع کرنل

$$k(\mathbf{x}, \mathbf{x}') = \sum_{i=1}^{\infty} \lambda_i \varphi_i(\mathbf{x}) \varphi_i(\mathbf{x}')$$

۳ – SVM با استفاده از توابع کرنل

$$k(\mathbf{x}, \mathbf{x}') = \sum_{i=1}^{\infty} \lambda_i \varphi_i(\mathbf{x}) \varphi_i(\mathbf{x}')$$

(Eigenfunctions) توابع ویژه $\varphi_i(\mathbf{x})$

۳- SVM با استفاده از توابع کرنل

$$k(\mathbf{x}, \mathbf{x}') = \sum_{i=1}^{\infty} \lambda_i \varphi_i(\mathbf{x}) \varphi_i(\mathbf{x}')$$

(Eigenfunctions) توابع ویژه $\varphi_i(\mathbf{x})$ (Eigenvalues) مقادیر ویژه λ_i

۳- SVM با استفاده از توابع کرنل

$$k(\mathbf{x}, \mathbf{x}') = \sum_{i=1}^{\infty} \lambda_i \varphi_i(\mathbf{x}) \varphi_i(\mathbf{x}')$$

(Eigenfunctions) توابع ویژه $\varphi_i(\mathbf{x})$ (Eigenvalues) مقادیر ویژه λ_i

- توجه: قضیه مرسر فقط می گوید که تابع انتخاب شده، کرنل ضرب داخلی است یا خیر.

۳ – SVM با استفاده از توابع کرنل

$$k(\mathbf{x}, \mathbf{x}') = \sum_{i=1}^{\infty} \lambda_i \varphi_i(\mathbf{x}) \varphi_i(\mathbf{x}')$$

(Eigenfunctions) توابع ویژه $\varphi_i(\mathbf{x})$ (Eigenvalues) مقادیر ویژه λ_i

- توجه: قضیه مرسر فقط می گوید که تابع انتخاب شده، کرنل ضرب داخلی است یا خیر. این قضیه چیزی در مورد چگونگی تشکیل این تابع نمی گوید.

۳ – SVM با استفاده از توابع کرنل

$$k(\mathbf{x}, \mathbf{x}') = \sum_{i=1}^{\infty} \lambda_i \varphi_i(\mathbf{x}) \varphi_i(\mathbf{x}')$$

(Eigenfunctions) توابع ویژه $\varphi_i(\mathbf{x})$ (Eigenvalues) مقادیر ویژه λ_i

- توجه: قضیه مرسر فقط می گوید که تابع انتخاب شده، کرنل ضرب داخلی است یا خیر. این قضیه چیزی در مورد چگونگی تشکیل این تابع نمی گوید.
 - قضیه مرسر از آن جهت مهم است که تعداد کرنلها را محدود میکند.

۳ – SVM با استفاده از توابع کرنل

$$k(\mathbf{x}, \mathbf{x}') = \sum_{i=1}^{\infty} \lambda_i \varphi_i(\mathbf{x}) \varphi_i(\mathbf{x}')$$

(Eigenfunctions) توابع ویژه $\varphi_i(\mathbf{x})$ (Eigenvalues) مقادیر ویژه λ_i

- توجه: قضیه مرسر فقط می گوید که تابع انتخاب شده، کرنل ضرب داخلی است یا خیر. این قضیه چیزی در مورد چگونگی تشکیل این تابع نمی گوید.
 - قضیه مرسر از آن جهت مهم است که تعداد کرنلها را محدود میکند.

نتیجه گیری: بسط

$$k(\mathbf{x}, \mathbf{x}_i) = \sum_{j=1}^{\infty} \varphi_j(\mathbf{x}_i) \, \varphi_j(\mathbf{x})$$

 $\lambda_i=1$ حالت خاصی از قضیه مرسر است با

طراحی ماشین بردار پشتیبان:

ابتدا توجه کنید که کرنل $k(\mathbf{x},\mathbf{x}_i)$ به ما اجازه می دهد که سطح تصمیم گیری غیر خطی را در فضای ورودی تشکیل دهیم به طوری که شکل این سطح در فضای ویژگیها، خطی است.

- ابتدا توجه کنید که کرنل $k(\mathbf{x}, \mathbf{x}_i)$ به ما اجازه میدهد که سطح تصمیم گیری غیرخطی را در فضای ورودی تشکیل دهیم به طوری که شکل این سطح در فضای ویژگیها، خطی است.
- برای طراحی ماشین بردار پشتیبان فقط نیاز به استفاده از فرم دوگان بهینه سازی مقید داریم.

- ابتدا توجه کنید که کرنل $k(\mathbf{x},\mathbf{x}_i)$ به ما اجازه میدهد که سطح تصمیم گیری غیر خطی را در فضای ورودی تشکیل دهیم به طوری که شکل این سطح در فضای ویژ گیها، خطی است.
- برای طراحی ماشین بردار پشتیبان فقط نیاز به استفاده از فرم دوگان بهینه سازی مقید داریم. $\{\alpha_i\}_{i=1}^N$ که تابع با توجه به داده های آموزش $\{(\mathbf{x}_i,d_i)\}_{i=1}^N$ که تابع هزینه زیر را بیشینه کند:

- ابتدا توجه کنید که کرنل $k(\mathbf{x},\mathbf{x}_i)$ به ما اجازه می دهد که سطح تصمیم گیری غیر خطی را در فضای ورودی تشکیل دهیم به طوری که شکل این سطح در فضای ویژگیها، خطی است.
- برای طراحی ماشین بردار پشتیبان فقط نیاز به استفاده از فرم دوگان بهینه سازی مقید داریم. $\{\alpha_i\}_{i=1}^N$ که تابع با توجه به داده های آموزش $\{(\mathbf{x}_i,d_i)\}_{i=1}^N$ که تابع هزینه زیر را بیشینه کند:

$$Q(\alpha) = \sum\nolimits_{i=1}^{N} \alpha_i - \frac{1}{2} \sum\nolimits_{i=1}^{N} \sum\nolimits_{j=1}^{N} \alpha_i \alpha_j d_i d_j k(\mathbf{x}_i \,, \mathbf{x}_j)$$

طراحی ماشین بردار پشتیبان:

- ابتدا توجه کنید که کرنل $k(\mathbf{x},\mathbf{x}_i)$ به ما اجازه می دهد که سطح تصمیم گیری غیر خطی را در فضای ورودی تشکیل دهیم به طوری که شکل این سطح در فضای ویژ گیها، خطی است.
- برای طراحی ماشین بردار پشتیبان فقط نیاز به استفاده از فرم دوگان بهینه سازی مقید داریم. $\{\alpha_i\}_{i=1}^N$ که تابع با توجه به داده های آموزش $\{(\mathbf{x}_i,d_i)\}_{i=1}^N$ که تابع هزینه زیر را بیشینه کند:

$$Q(\alpha) = \sum\nolimits_{i=1}^{N} \alpha_i - \frac{1}{2} \sum\nolimits_{i=1}^{N} \sum\nolimits_{j=1}^{N} \alpha_i \alpha_j d_i d_j k(\mathbf{x}_i \,, \mathbf{x}_j)$$

با درنظر گرفتن قیود

$$\sum\nolimits_{i=1}^{N}\alpha_{i}d_{i}=0$$

$$0\leq\alpha_{i}\leq C \qquad i=1,...,N$$

طراحی ماشین بردار پشتیبان:

- ابتدا توجه کنید که کرنل $k(\mathbf{x},\mathbf{x}_i)$ به ما اجازه می دهد که سطح تصمیم گیری غیر خطی را در فضای ورودی تشکیل دهیم به طوری که شکل این سطح در فضای ویژ گیها، خطی است.
- برای طراحی ماشین بردار پشتیبان فقط نیاز به استفاده از فرم دوگان بهینه سازی مقید داریم. $\{\alpha_i\}_{i=1}^N$ که تابع با توجه به داده های آموزش $\{(\mathbf{x}_i,d_i)\}_{i=1}^N$ که تابع هزینه زیر را بیشینه کند:

$$Q(\alpha) = \sum\nolimits_{i=1}^{N} \alpha_i - \frac{1}{2} \sum\nolimits_{i=1}^{N} \sum\nolimits_{j=1}^{N} \alpha_i \alpha_j d_i d_j k(\mathbf{x}_i \,, \mathbf{x}_j)$$

با درنظر گرفتن قیود

$$\sum\nolimits_{i=1}^{N}\alpha_{i}d_{i}=0$$

$$0\leq\alpha_{i}\leq C \qquad i=1,...,N$$

که در آن C > 0 توسط طراح تعیین میشود.

طراحی ماشین بردار پشتیبان:

- ابتدا توجه کنید که کرنل $k(\mathbf{x},\mathbf{x}_i)$ به ما اجازه می دهد که سطح تصمیم گیری غیرخطی را در فضای ورودی تشکیل دهیم به طوری که شکل این سطح در فضای ویژگیها، خطی است.
- برای طراحی ماشین بردار پشتیبان فقط نیاز به استفاده از فرم دوگان بهینه سازی مقید داریم.

با توجه به دادههای آموزش $\{(\mathbf{x}_i,d_i)\}_{i=1}^N$ ، مطلوب است یافتن ضرایب لاگرانژ $\{\alpha_i\}_{i=1}^N$ که تابع هزینه زیر را بیشینه کند:

$$Q(\alpha) = \sum\nolimits_{i=1}^{N} \alpha_i - \frac{1}{2} \sum\nolimits_{i=1}^{N} \sum\nolimits_{j=1}^{N} \alpha_i \alpha_j d_i d_j k(\mathbf{x}_i \,, \mathbf{x}_j)$$

با درنظر گرفتن قیود

$$\sum\nolimits_{i=1}^{N}\alpha_{i}d_{i}=0$$

$$0\leq\alpha_{i}\leq C \qquad i=1,...,N$$

که در آن C>0 توسط طراح تعیین میشود.

- توجه کنید که این مساله دوگان دقیقا مثل حالت «الگوهای جداناپذیر» است با این تفاوت که بهجای ضرب داخلی $\mathbf{x}_i^T\mathbf{x}_j$ ار کرنل $k(\mathbf{x},\mathbf{x}_i)$ استفاده شده است.

- مثالهایی از ماشین بردار پشتیبان:

- مثالهایی از ماشین بردار پشتیبان:

Type of support vector machine	Mercer kernel $k(\mathbf{x}, \mathbf{x}_i), i = 1, 2,, N$	Comments
Polynomial learning machine	$(\mathbf{x}^T\mathbf{x}_i+1)^p$	Power <i>p</i> is specified <i>a priori</i> by the user
Radial-basis-function network	$\exp\left(-\frac{1}{2\sigma^2}\ \mathbf{x}-\mathbf{x}_i\ ^2\right)$	The width σ^2 , common to all the kernels, is specified <i>a priori</i> by the user
Two-layer perceptron	$\tanh(\beta_0 \mathbf{x}^T \mathbf{x}_i + \beta_1)$	Mercer's theorem is satisfied only for some values of β_0 and β_1

- مثالهایی از ماشین بردار پشتیبان:

Type of support vector machine	Mercer kernel $k(\mathbf{x}, \mathbf{x}_i), i = 1, 2,, N$	Comments
Polynomial learning machine	$(\mathbf{x}^T\mathbf{x}_i+1)^p$	Power <i>p</i> is specified <i>a priori</i> by the user
Radial-basis-function network	$\exp\left(-\frac{1}{2\sigma^2}\ \mathbf{x}-\mathbf{x}_i\ ^2\right)$	The width σ^2 , common to all the kernels, is specified <i>a priori</i> by the user
Two-layer perceptron	$\tanh(\beta_0 \mathbf{x}^T \mathbf{x}_i + \beta_1)$	Mercer's theorem is satisfied only for some values of β_0 and β_1

۱- کرنلهای مرسر چندجمله ای و RBF همواره قضیه مرسر را برآورده می کند.

- مثالهایی از ماشین بردار پشتیبان:

Type of support vector machine	Mercer kernel $k(\mathbf{x}, \mathbf{x}_i), i = 1, 2,, N$	Comments
Polynomial learning machine	$(\mathbf{x}^T\mathbf{x}_i+1)^p$	Power <i>p</i> is specified <i>a priori</i> by the user
Radial-basis-function network	$\exp\left(-\frac{1}{2\sigma^2}\ \mathbf{x}-\mathbf{x}_i\ ^2\right)$	The width σ^2 , common to all the kernels, is specified <i>a priori</i> by the user
Two-layer perceptron	$\tanh(\boldsymbol{\beta}_0 \mathbf{x}^T \mathbf{x}_i + \boldsymbol{\beta}_1)$	Mercer's theorem is satisfied only for some values of β_0 and β_1

۱- کرنلهای مرسر چندجمله ای و RBF همواره قضیه مرسر را برآورده میکند.

۲- کرنل مرسر tanh به این واقعیت اشاره دارد که تعیین کرنل مرسر همواره کار سادهای نیست.

- مثالهایی از ماشین بردار پشتیبان:

Type of support vector machine	Mercer kernel $k(\mathbf{x}, \mathbf{x}_i), i = 1, 2,, N$	Comments
Polynomial learning machine	$(\mathbf{x}^T\mathbf{x}_i+1)^p$	Power <i>p</i> is specified <i>a priori</i> by the user
Radial-basis-function network	$\exp\left(-\frac{1}{2\sigma^2}\ \mathbf{x}-\mathbf{x}_i\ ^2\right)$	The width σ^2 , common to all the kernels, is specified <i>a priori</i> by the user
Two-layer perceptron	$\tanh(\beta_0 \mathbf{x}^T \mathbf{x}_i + \beta_1)$	Mercer's theorem is satisfied only for some values of β_0 and β_1

۱- کرنلهای مرسر چندجمله ای و RBF همواره قضیه مرسر را برآورده میکند.

۲- کرنل مرسر tanh به این واقعیت اشاره دارد که تعیین کرنل مرسر همواره کار سادهای نیست.

۳- برای هر سه نوع ماشین، ابعاد فضای ویژگیها (تعداد سلولها) توسط تعداد بردارهای پشتیبان
 که از حل مساله بهینهسازی مقید بهدست می آید، تعیین می شود.

مثالهایی از ماشین بردار پشتیبان:

Type of support vector machine	Mercer kernel $k(\mathbf{x}, \mathbf{x}_i), i = 1, 2,, N$	Comments
Polynomial learning machine	$(\mathbf{x}^T\mathbf{x}_i+1)^p$	Power <i>p</i> is specified <i>a priori</i> by the user
Radial-basis-function network	$\exp\left(-\frac{1}{2\sigma^2}\ \mathbf{x}-\mathbf{x}_i\ ^2\right)$	The width σ^2 , common to all the kernels, is specified <i>a priori</i> by the user
Two-layer perceptron	$\tanh(\beta_0 \mathbf{x}^T \mathbf{x}_i + \beta_1)$	Mercer's theorem is satisfied only for some values of β_0 and β_1

۱- کرنلهای مرسر چندجمله ای و RBF همواره قضیه مرسر را برآورده میکند.

۲- کرنل مرسر tanh به این واقعیت اشاره دارد که تعیین کرنل مرسر همواره کار سادهای نیست.

۳- برای هر سه نوع ماشین، ابعاد فضای ویژگیها (تعداد سلولها) توسط تعداد بردارهای پشتیبان
 که از حل مساله بهینهسازی مقید بهدست می آید، تعیین می شود.

۴- در ماشین بردار پشتیبان، برخلاف RBF و MLP، نیازی به استفاده از روشهای ابتکاری نیست.

- مثالهایی از ماشین بردار پشتیبان:

Type of support vector machine	Mercer kernel $k(\mathbf{x}, \mathbf{x}_i), i = 1, 2,, N$	Comments
Polynomial learning machine	$(\mathbf{x}^T\mathbf{x}_i+1)^p$	Power <i>p</i> is specified <i>a priori</i> by the user
Radial-basis-function network	$\exp\left(-\frac{1}{2\sigma^2}\ \mathbf{x}-\mathbf{x}_i\ ^2\right)$	The width σ^2 , common to all the kernels, is specified <i>a priori</i> by the user
Two-layer perceptron	$\tanh(\beta_0 \mathbf{x}^T \mathbf{x}_i + \beta_1)$	Mercer's theorem is satisfied only for some values of β_0 and β_1

- ۱- کرنلهای مرسر چندجمله ای و RBF همواره قضیه مرسر را برآورده می کند.
- ۲- کرنل مرسر tanh به این واقعیت اشاره دارد که تعیین کرنل مرسر همواره کار سادهای نیست.
- ۳- برای هر سه نوع ماشین، ابعاد فضای ویژگیها (تعداد سلولها) توسط تعداد بردارهای پشتیبان
 که از حل مساله بهینهسازی مقید بهدست می آید، تعیین می شود.
- ۴- در ماشین بردار پشتیبان، برخلاف RBF و MLP، نیازی به استفاده از روشهای ابتکاری نیست.
- ۵– در ماشین بردار پشتیبانRBF، تعداد RBFها و مرکز آنها به ترتیب توسط بردارهای پشتیبان و مقدار آنها تعیین می شود.

x_1, x_2	d
(-1,-1)	-1
(-1,+1)	+1
(+1, -1)	+1
(+1,+1)	-1

x_1, x_2	d
(-1,-1)	-1
(-1,+1)	+1
(+1, -1)	+1
(+1,+1)	-1

$$k(\mathbf{x},\mathbf{x}_i)=(1+\mathbf{x}^T\mathbf{x}_i)^2$$
 مکرنل درنظرگرفته شده
$$\mathbf{x}=[x_1 \quad x_2]^T \quad \mathbf{x}_i=[x_{i1} \quad x_{i2}]^T$$

x_1, x_2	d
(-1,-1)	-1
(-1,+1)	+1
(+1, -1)	+1
(+1,+1)	-1

$$k(\mathbf{x},\mathbf{x}_i)=(1+\mathbf{x}^T\mathbf{x}_i)^2$$
 مکرنل درنظرگرفته شده
$$\mathbf{x}=[x_1 \quad x_2]^T \quad \mathbf{x}_i=[x_{i1} \quad x_{i2}]^T$$
 بنابراین

$$k(\mathbf{x}, \mathbf{x}_i) = 1 + x_1^2 x_{i1}^2 + 2x_1 x_2 x_{i1} x_{i2} + x_2^2 x_{i2}^2 + 2x_1 x_{i1} + 2x_2 x_{i2}$$

x_1, x_2	d
(-1,-1)	-1
(-1,+1)	+1
(+1, -1)	+1
(+1,+1)	-1

$$k(\mathbf{x},\mathbf{x}_i)=(1+\mathbf{x}^T\mathbf{x}_i)^2$$
 مکرنل درنظرگرفته شده
$$\mathbf{x}=[x_1 \quad x_2]^T \quad \mathbf{x}_i=[x_{i1} \quad x_{i2}]^T$$
 بنابراین

مثال: مساله XOR

$$k(\mathbf{x}, \mathbf{x}_i) = 1 + x_1^2 x_{i1}^2 + 2x_1 x_2 x_{i1} x_{i2} + x_2^2 x_{i2}^2 + 2x_1 x_{i1} + 2x_2 x_{i2}$$

در نتیجه می توان استنباط کرد که تصویر انتقال یافته x به فضای ویژگی ها برابر است با

$$\mathbf{\phi}(\mathbf{x}) = [1, x_1^2, \sqrt{2}x_1x_2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2]^T$$

x_1, x_2	d
(-1,-1)	-1
(-1,+1)	+1
(+1, -1)	+1
(+1,+1)	-1

$$k(\mathbf{x},\mathbf{x}_i)=(1+\mathbf{x}^T\mathbf{x}_i)^2$$
 مین درنظرگرفته شده
$$\mathbf{x}=[x_1 \quad x_2]^T \quad \mathbf{x}_i=[x_{i1} \quad x_{i2}]^T$$
 بنابراین

$$k(\mathbf{x}, \mathbf{x}_i) = 1 + x_1^2 x_{i1}^2 + 2x_1 x_2 x_{i1} x_{i2} + x_2^2 x_{i2}^2 + 2x_1 x_{i1} + 2x_2 x_{i2}$$

در نتیجه می توان استنباط کرد که تصویر انتقال یافته x به فضای ویژگی ها برابر است با

$$\mathbf{\phi}(\mathbf{x}) = [1, x_1^2, \sqrt{2}x_1x_2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2]^T$$

 \mathbf{x}_i و به همین ترتیب برای

$$\mathbf{\phi}(\mathbf{x}_i) = [1, x_{i1}^2, \sqrt{2}x_{i1}x_{i2}, x_{i2}^2, \sqrt{2}x_{i1}, \sqrt{2}x_{i2}]^T, \qquad i = 1, 2, 3, 4$$

x_1, x_2	d
(-1,-1)	-1
(-1,+1)	+1
(+1, -1)	+1
(+1,+1)	-1

$$k(\mathbf{x},\mathbf{x}_i)=(1+\mathbf{x}^T\mathbf{x}_i)^2$$
 مین درنظرگرفته شده
$$\mathbf{x}=[x_1 \quad x_2]^T \quad \mathbf{x}_i=[x_{i1} \quad x_{i2}]^T$$
 بنابراین

$$k(\mathbf{x}, \mathbf{x}_i) = 1 + x_1^2 x_{i1}^2 + 2x_1 x_2 x_{i1} x_{i2} + x_2^2 x_{i2}^2 + 2x_1 x_{i1} + 2x_2 x_{i2}$$

در نتیجه می توان استنباط کرد که تصویر انتقال یافته x به فضای ویژگی ها برابر است با

$$\mathbf{\phi}(\mathbf{x}) = [1, x_1^2, \sqrt{2}x_1x_2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2]^T$$

 \mathbf{X}_i و به همین ترتیب برای

مثال: مساله XOR

$$\mathbf{\phi}(\mathbf{x}_i) = [1, x_{i1}^2, \sqrt{2}x_{i1}x_{i2}, x_{i2}^2, \sqrt{2}x_{i1}, \sqrt{2}x_{i2}]^T, \qquad i = 1, 2, 3, 4$$

ماتریس کرنل (گرام)

$$\mathbf{K} = \{k(\mathbf{x}_i, \mathbf{x}_j)\}_{i,j=1}^N$$

x_1, x_2	d
(-1,-1)	-1
(-1,+1)	+1
(+1, -1)	+1
(+1,+1)	-1

$$k(\mathbf{x},\mathbf{x}_i)=(1+\mathbf{x}^T\mathbf{x}_i)^2$$
 مین درنظرگرفته شده
$$\mathbf{x}=[x_1 \quad x_2]^T \quad \mathbf{x}_i=[x_{i1} \quad x_{i2}]^T$$
 بنابراین

$$k(\mathbf{x}, \mathbf{x}_i) = 1 + x_1^2 x_{i1}^2 + 2x_1 x_2 x_{i1} x_{i2} + x_2^2 x_{i2}^2 + 2x_1 x_{i1} + 2x_2 x_{i2}$$

در نتیجه می توان استنباط کرد که تصویر انتقال یافته x به فضای ویژگی ها برابر است با

$$\mathbf{\phi}(\mathbf{x}) = [1, x_1^2, \sqrt{2}x_1x_2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2]^T$$

 \mathbf{X}_i و به همین ترتیب برای

$$\mathbf{\phi}(\mathbf{x}_i) = [1, x_{i1}^2, \sqrt{2}x_{i1}x_{i2}, x_{i2}^2, \sqrt{2}x_{i1}, \sqrt{2}x_{i2}]^T, \qquad i = 1, 2, 3, 4$$

$$\mathbf{K} = \{k(\mathbf{x}_i, \mathbf{x}_j)\}_{i,j=1}^N \longrightarrow \mathbf{K} = \begin{bmatrix} 9 & 1 & 1 & 1 \\ 1 & 9 & 1 & 1 \\ 1 & 1 & 9 & 1 \\ 1 & 1 & 1 & 9 \end{bmatrix}$$

مثال: مساله XOR

تابع هزینه مساله دوگان بهینهسازی

$$\begin{split} Q(\alpha) &= \sum\nolimits_{i=1}^{N} \alpha_i - \frac{1}{2} \sum\nolimits_{i=1}^{N} \sum\nolimits_{j=1}^{N} \alpha_i \alpha_j d_i d_j k(\mathbf{x}_i \,, \mathbf{x}_j) \\ &\qquad \qquad \sum\nolimits_{i=1}^{N} \alpha_i d_i = 0 \\ 0 &\leq \alpha_i \leq C \qquad i = 1, \dots, N \end{split}$$

مثال: مساله XOR

تابع هزینه مساله دوگان بهینهسازی

$$\begin{split} Q(\alpha) &= \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} d_{i} d_{j} k(\mathbf{x}_{i}, \mathbf{x}_{j}) \\ &\qquad \qquad \sum_{i=1}^{N} \alpha_{i} d_{i} = 0 \\ 0 &\leq \alpha_{i} \leq C \qquad i = 1, ..., N \\ Q(\alpha) &= \alpha_{1} + \alpha_{2} + \alpha_{3} + \alpha_{4} - \frac{1}{2} \left(9\alpha_{1}^{2} - 2\alpha_{1}\alpha_{2} - 2\alpha_{1}\alpha_{3} + 2\alpha_{1}\alpha_{4} + 9\alpha_{2}^{2} + 2\alpha_{2}\alpha_{3} - 2\alpha_{2}\alpha_{4} + 9\alpha_{3}^{2} - 2\alpha_{3}\alpha_{4} + 9\alpha_{4}^{2} \right) \end{split}$$

مثال: مساله XOR

تابع هزینه مساله دوگان بهینهسازی

$$\begin{split} Q(\alpha) &= \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} d_{i} d_{j} k(\mathbf{x}_{i}, \mathbf{x}_{j}) \\ &\qquad \qquad \sum_{i=1}^{N} \alpha_{i} d_{i} = 0 \\ 0 &\leq \alpha_{i} \leq C \qquad i = 1, \dots, N \\ Q(\alpha) &= \alpha_{1} + \alpha_{2} + \alpha_{3} + \alpha_{4} - \frac{1}{2} \left(9\alpha_{1}^{2} - 2\alpha_{1}\alpha_{2} - 2\alpha_{1}\alpha_{3} + 2\alpha_{1}\alpha_{4} + 9\alpha_{2}^{2} + 2\alpha_{2}\alpha_{3} - 2\alpha_{2}\alpha_{4} + 9\alpha_{3}^{2} - 2\alpha_{3}\alpha_{4} + 9\alpha_{4}^{2} \right) \end{split}$$

بهینهسازی این تابع هزینه برحسب ضرایب لاگرانژ، نتیجه میدهد:

$$9\alpha_{1} - \alpha_{2} - \alpha_{3} + \alpha_{4} = 1$$

$$-\alpha_{1} + 9\alpha_{2} + \alpha_{3} - \alpha_{4} = 1$$

$$-\alpha_{1} + \alpha_{2} + 9\alpha_{3} - \alpha_{4} = 1$$

$$\alpha_{1} - \alpha_{2} - \alpha_{3} + 9\alpha_{4} = 1$$

مثال: مساله XOR

بهینهسازی این تابع هزینه برحسب ضرایب لاگرانژ، نتیجه میدهد:

$$9\alpha_{1} - \alpha_{2} - \alpha_{3} + \alpha_{4} = 1$$

$$-\alpha_{1} + 9\alpha_{2} + \alpha_{3} - \alpha_{4} = 1$$

$$-\alpha_{1} + \alpha_{2} + 9\alpha_{3} - \alpha_{4} = 1$$

$$\alpha_{1} - \alpha_{2} - \alpha_{3} + 9\alpha_{4} = 1$$

مثال: مساله XOR

بهینه سازی این تابع هزینه برحسب ضرایب لاگرانژ، نتیجه می دهد:

$$9\alpha_{1} - \alpha_{2} - \alpha_{3} + \alpha_{4} = 1$$

$$-\alpha_{1} + 9\alpha_{2} + \alpha_{3} - \alpha_{4} = 1$$

$$-\alpha_{1} + \alpha_{2} + 9\alpha_{3} - \alpha_{4} = 1$$

$$\alpha_{1} - \alpha_{2} - \alpha_{3} + 9\alpha_{4} = 1$$

بنابراین، مقدار بهینه این ضرایب برابراند با

$$\alpha_{o, 1} = \alpha_{o, 2} = \alpha_{o, 3} = \alpha_{o, 4} = \frac{1}{8}$$

مثال: مساله XOR

بهینه سازی این تابع هزینه برحسب ضرایب لاگرانژ، نتیجه می دهد:

$$9\alpha_{1} - \alpha_{2} - \alpha_{3} + \alpha_{4} = 1$$

$$-\alpha_{1} + 9\alpha_{2} + \alpha_{3} - \alpha_{4} = 1$$

$$-\alpha_{1} + \alpha_{2} + 9\alpha_{3} - \alpha_{4} = 1$$

$$\alpha_{1} - \alpha_{2} - \alpha_{3} + 9\alpha_{4} = 1$$

بنابراین، مقدار بهینه این ضرایب برابراند با

$$\alpha_{o,1} = \alpha_{o,2} = \alpha_{o,3} = \alpha_{o,4} = \frac{1}{8}$$

یعنی این که هر چهار بردار ورودی، بردار پشتیبان هستند. یعنی رابطه

$$\sum_{i=1}^{N} \alpha_i d_i = 0$$

برای تمامی دادهها، برقرار است.

مثال: مساله XOR

مقدار بهینه تابع هزینه

$$Q_o(\alpha) = \frac{1}{4}$$

مثال: مساله XOR

مقدار بهینه تابع هزینه

$$Q_o(\alpha) = \frac{1}{4}$$

از آن جا می توان نتیجه گرفت که
$$\frac{1}{2}\|\mathbf{w}_o\|^2 = \frac{1}{4} \implies \|\mathbf{w}_o\| = \frac{1}{\sqrt{2}}$$

مثال: مساله XOR

مقدار بهینه تابع هزینه

$$Q_o(\alpha) = \frac{1}{4}$$

از آن جا می توان نتیجه گرفت که
$$rac{1}{2}\|\mathbf{w}_o\|^2 = rac{1}{4} \implies \|\mathbf{w}_o\| = rac{1}{\sqrt{2}}$$

مثال: مساله XOR

مقدار بهینه تابع هزینه

$$Q_o(\alpha) = \frac{1}{4}$$

از آن جا می توان نتیجه گرفت که
$$\frac{1}{2}\|\mathbf{w}_o\|^2 = \frac{1}{4} \implies \|\mathbf{w}_o\| = \frac{1}{\sqrt{2}}$$

با استفاده از

$$\mathbf{w} = \sum_{i=1}^{Ns} \alpha_i d_i \Phi(\mathbf{x}_i)$$

مثال: مساله XOR

مقدار بهینه تابع هزینه

$$Q_o(\alpha) = \frac{1}{4}$$

از آن جا می توان نتیجه گرفت که
$$\frac{1}{2}\|\mathbf{w}_o\|^2 = \frac{1}{4} \implies \|\mathbf{w}_o\| = \frac{1}{\sqrt{2}}$$

با استفاده از

$$\mathbf{w} = \sum_{i=1}^{Ns} \alpha_i d_i \Phi(\mathbf{x}_i)$$

خواهیم داشت

$$\mathbf{w}_o = \frac{1}{8} \left[-\varphi(\mathbf{x}_1) + \varphi(\mathbf{x}_2) + \varphi(\mathbf{x}_3) - \varphi(\mathbf{x}_4) \right]$$

مثال: مساله XOR

مقدار بهينه تابع هزينه

$$Q_o(\alpha) = \frac{1}{4}$$

$$\frac{1}{2}\|\mathbf{w}_o\|^2 = \frac{1}{4}$$
 \Longrightarrow $\|\mathbf{w}_o\| = \frac{1}{\sqrt{2}}$

با استفاده از

$$\mathbf{w} = \sum_{i=1}^{Ns} \alpha_i d_i \Phi(\mathbf{x}_i)$$

خواهیم داشت

$$\mathbf{w}_o = \frac{1}{8} \left[-\varphi(\mathbf{x}_1) + \varphi(\mathbf{x}_2) + \varphi(\mathbf{x}_3) - \varphi(\mathbf{x}_4) \right]$$

$$= \frac{1}{8} \begin{bmatrix} -\begin{bmatrix} 1\\1\\\sqrt{2}\\1\\-\sqrt{2}\\1\\-\sqrt{2} \end{bmatrix} + \begin{bmatrix} 1\\1\\-\sqrt{2}\\1\\-\sqrt{2}\\\sqrt{2} \end{bmatrix} + \begin{bmatrix} 1\\1\\-\sqrt{2}\\1\\\sqrt{2}\\-\sqrt{2} \end{bmatrix} - \begin{bmatrix} 1\\1\\\sqrt{2}\\1\\\sqrt{2}\\\sqrt{2} \end{bmatrix} \end{bmatrix}$$

مثال: مساله XOR

مقدار بهينه تابع هزينه

$$Q_o(\alpha) = \frac{1}{4}$$

$$\frac{1}{2}\|\mathbf{w}_o\|^2 = \frac{1}{4}$$
 \Longrightarrow $\|\mathbf{w}_o\| = \frac{1}{\sqrt{2}}$

با استفاده از

$$\mathbf{w} = \sum_{i=1}^{Ns} \alpha_i d_i \Phi(\mathbf{x}_i)$$

$$\mathbf{w}_o = \frac{1}{8} \left[-\varphi(\mathbf{x}_1) + \varphi(\mathbf{x}_2) + \varphi(\mathbf{x}_3) - \varphi(\mathbf{x}_4) \right]$$

$$= \frac{1}{8} \begin{bmatrix} 1 \\ 1 \\ \sqrt{2} \\ 1 \\ -\sqrt{2} \\ 1 \\ -\sqrt{2} \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ -\sqrt{2} \\ 1 \\ -\sqrt{2} \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ -\sqrt{2} \\ 1 \\ \sqrt{2} \\ -\sqrt{2} \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \\ \sqrt{2} \\ 1 \\ \sqrt{2} \\ \sqrt{2} \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -1/\sqrt{2} \\ 0 \\ 0 \end{bmatrix}$$

مثال: مساله XOR

$$\mathbf{w}_o^T \mathbf{\phi}(\mathbf{x}) = 0$$

مثال: مساله XOR

$$\mathbf{w}_{o}^{T} \mathbf{\phi}(\mathbf{x}) = 0 \implies \left[0, 0, \frac{-1}{\sqrt{2}}, 0, 0, 0\right] \begin{bmatrix} 1 \\ x_{1}^{2} \\ \sqrt{2}x_{1}x_{2} \\ x_{2}^{2} \\ \sqrt{2}x_{1} \\ \sqrt{2}x_{2} \end{bmatrix} = 0$$

مثال: مساله XOR

$$\mathbf{w}_{o}^{T}\mathbf{\phi}(\mathbf{x}) = 0 \implies \left[0, 0, \frac{-1}{\sqrt{2}}, 0, 0, 0\right] \begin{bmatrix} 1\\ x_{1}^{2}\\ \sqrt{2}x_{1}x_{2}\\ x_{2}^{2}\\ \sqrt{2}x_{1}\\ \sqrt{2}x_{2} \end{bmatrix} = 0 \implies \left(-x_{1}x_{2} = 0\right)$$

مثال: مساله XOR

$$\mathbf{w}_{o}^{T}\mathbf{\phi}(\mathbf{x}) = 0 \implies \left[0, 0, \frac{-1}{\sqrt{2}}, 0, 0, 0\right] \begin{bmatrix} 1 \\ \frac{x_{1}^{2}}{\sqrt{2}x_{1}x_{2}} \\ \frac{x_{2}^{2}}{\sqrt{2}x_{1}} \\ \frac{\sqrt{2}x_{2}}{\sqrt{2}x_{2}} \end{bmatrix} = 0 \implies \left(-x_{1}x_{2} = 0\right)$$

x_1, x_2	у
(-1,-1)	-1
(-1,+1)	+1
(+1, -1)	+1
(+1,+1)	-1

مثال: مساله XOR

$$\mathbf{w}_{o}^{T}\mathbf{\phi}(\mathbf{x}) = 0 \implies \left[0, 0, \frac{-1}{\sqrt{2}}, 0, 0, 0\right] \begin{bmatrix} 1 \\ x_{1}^{2} \\ \sqrt{2}x_{1}x_{2} \\ x_{2}^{2} \\ \sqrt{2}x_{1} \\ \sqrt{2}x_{2} \end{bmatrix} = 0 \implies \left(-x_{1}x_{2} = 0\right)$$

x_1, x_2	у
(-1,-1)	-1
(-1,+1)	+1
(+1, -1)	+1
(+1,+1)	-1

ماشین چندجملهای

مثال: مساله XOR

$$\mathbf{w}_{o}^{T}\mathbf{\phi}(\mathbf{x}) = 0 \implies \begin{bmatrix} 0, 0, \frac{-1}{\sqrt{2}}, 0, 0, 0 \end{bmatrix} \begin{bmatrix} 1 \\ \frac{x_{1}^{2}}{\sqrt{2}x_{1}x_{2}} \\ \frac{x_{2}^{2}}{\sqrt{2}x_{1}} \\ \frac{1}{\sqrt{2}x_{2}} \end{bmatrix} = 0 \implies \begin{bmatrix} -x_{1}x_{2} = 0 \\ -x_{1}x_{2} = 0 \end{bmatrix}$$

x_1, x_2	у
(-1,-1)	-1
(-1,+1)	+1
(+1, -1)	+1
(+1,+1)	-1

ماشین چندجملهای

1.0	(1,-1) (-1,1)	
0		Decision
		boundary
-1.0	(1,1)	
	(1,1) (-1,-1)	

تصویر القاشده به فضای ویژگیها

مثال: كلاسهبندى كلاسهاى ماه شكل

مثال: كلاسهبندى كلاسهاى ماه شكل

Classification using SVM with distance = -6, radius = 10, and width = 6

مثال: کلاسهبندی کلاسهای ماه شکل

Classification using SVM with distance = -6, radius = 10, and width = 6

۳۰۰ داده برای آموزش ۲۰۰۰ داده برای آزمایش

مثال: کلاسهبندی کلاسهای ماه شکل

Classification using SVM with distance = -6, radius = 10, and width = 6

۳۰۰ داده برای آموزش ۲۰۰۰ داده برای آزمایش

مثال: كلاسهبندى كلاسهاى ماه شكل

Classification using SVM with distance = -6, radius = 10, and width = 6

۳۰۰ داده برای آموزش ۲۰۰۰ داده برای آزمایش

مثال: كلاسهبندى كلاسهاى ماه شكل

۳۰۰ داده برای آموزش ۲۰۰۰ داده برای آزمایش

مثال: کلاسهبندی کلاسهای ماه شکل

Classification using SVM with distance = -6.5, radius = 10, and width = 6

۳۰۰ داده برای آموزش ۲۰۰۰ داده برای آزمایش