1 ADMM

Let $x, y, w \in \mathbb{R}^n$ be the location, response, and weight data, respectively. We are trying to solve:

$$\min_{\theta} \sum_{i=1}^{n} w_i (y_i - \theta_i)^2$$
where $\theta \in \mathcal{K}, \mathcal{K} = \{\theta \in \mathbb{R}^n : \exists \text{ convex function } f(\cdot), \text{ s.t. } f(x_i) = \theta_i, i = 1, 2, \cdots, n\}$

This is equivalent to:

$$\min_{\theta} \sum_{i=1}^{n} w_i (y_i - \theta_i)^2$$
s.t. $z_i = \frac{\theta_{i+1} - \theta_i}{x_{i+1} - x_i}$ for $i = 1, 2, \dots, n-1$

$$z_1 \le z_2 \le \dots \le z_{n-1}$$

Let $D^{(x,1)} = \operatorname{diag}\left(\frac{1}{x_2-x_1},\cdots,\frac{1}{x_n-x_{n-1}}\right)\cdot D^{(1)}$, where $D^{(1)} \in R^{(n-1)\times n}$ is the discrete different operator of order 1, then the first constraint can be written as $D^{(x,1)}\theta - z = 0$.

We implement the ADMM algorithm as follows. Let $Q = \{z \in \mathbb{R}^{n-1} : z_1 \leq z_2 \cdots \leq z_{n-1}\}$, and

$$L(\theta,z,u) = \frac{1}{2} \|W^{\frac{1}{2}}(\theta-y)\|_2^2 + \delta(z \in Q) + \frac{\rho}{2} \|D^{(x,1)}\theta - z + u\|_2^2 - \frac{\rho}{2} \|u\|_2^2,$$

where $W = \operatorname{diag}(w_1, \cdots, w_n)$ and $\delta(\cdot)$ is the convex indicator function. The ADMM algorithm then iterates the steps:

$$\begin{cases} \theta_{t+1} = (W + \rho(D^{(x,1)})^T D^{(x,1)})^{-1} (Wy + \rho(D^{(x,1)})^T (z_t - u_t)) \\ z_{t+1} = \arg\min_{z \in \mathbb{R}^{n-1}} \frac{\rho}{2} \|D^{(x,1)} \theta_{t+1} - z + u_t\|_2^2 + \delta(z \in Q) \\ u_{t+1} = u_t + (D^{(x,1)} \theta_{t+1} - z_{t+1}) \end{cases}$$

The θ -update step is a banded linear system solve, which can be implemented in time $\mathcal{O}(n)$. The z-update step can be solved using the pool-adjacent-violators algorithm (PAVA), which costs $\mathcal{O}(n)$. Therefore, each iteration is $\mathcal{O}(n)$.

Assuming linear convergence, the total run time to achieve an error of ϵ is $\mathcal{O}\left(nlog\frac{1}{\epsilon}\right)$. Addity abelieves that the convergence rate for problems of time type is indeed linear, as proved by Hong and Luo [1].

2 Duality Gap

We denote f^* as the convex conjugate of f. Given any u, taking inf over (θ, z) with respect to the Lagrangian

$$\frac{1}{2} \|W^{\frac{1}{2}}(y - \theta)\|_{2}^{2} + \delta(z \in Q) + \rho u^{T}(D^{(x,1)}\theta - z),$$

we obtain the dual

$$\begin{split} D(u) &= \min_{\theta, z} \left\{ \frac{1}{2} \|W^{\frac{1}{2}}(y - \theta)\|_{2}^{2} + \delta(z \in Q) + \rho u^{T}(D^{(x, 1)}\theta - z) \right\} \\ &= \min_{\theta} \left\{ \frac{1}{2} \|W^{\frac{1}{2}}(y - \theta)\|_{2}^{2} + \rho u^{T}D^{(x, 1)}\theta \right\} + \rho \cdot \min_{z} \left\{ \delta(z \in Q) - u^{T}z \right\} \\ &= -\sup_{\theta} \left\{ -\rho u^{T}D^{(x, 1)}\theta - \frac{1}{2} \|W^{\frac{1}{2}}(y - \theta)\|_{2}^{2} \right\} - \rho \cdot \sup_{z} \left\{ u^{T}z - \delta(z \in Q) \right\} \\ &= \left(\frac{\rho^{2}}{2} - \rho \right) \cdot \|W^{-\frac{1}{2}}(D^{(x, 1)})^{T}u\|_{2}^{2} + u^{T}D^{(x, 1)}y - \delta^{*}(u) \end{split}$$

The duality gap is therefore

$$\frac{1}{2} \|W^{\frac{1}{2}}(y_t - \theta_t)\|_2^2 + \left(\rho - \frac{\rho^2}{2}\right) \cdot \|W^{-\frac{1}{2}}(D^{(x,1)})^T u_t\|_2^2 - u_t^T D^{(x,1)} y_t + \delta(z_t \in Q) + \delta^*(u_t)$$

$$= \begin{cases} \infty \text{ , if } z_t \not\in Q \text{ or } u_t \not\in \text{the polar cone of Q} \\ \\ \frac{1}{2}\|W^{\frac{1}{2}}(y_t - \theta_t)\|_2^2 + \left(\rho - \frac{\rho^2}{2}\right) \cdot \|W^{-\frac{1}{2}}(D^{(x,1)})^T u_t\|_2^2 - u_t^T D^{(x,1)} y_t \text{ , o.w.} \end{cases}$$

As Anup suggests, to check if u is in the polar cone of Q, we can solve the linear program

$$\max_{z} \frac{u^{T}z}{\|z\|_{2}}$$
s.t. $z \in Q$

and check if the optimal value is negative.

In the code, I rescale the duality gap by $\left(\frac{x_n-x_1}{n}\right)^2$, before using it as a termination criteria. This is because u is multiplied by $\frac{n}{x_n-x_1}$ and squared in the duality gap. The rescaled duality gap works well in simulations.

3 Experiments

3.1 Simulated data

To create the simulated data, I generate the sequence of x from n=1001 equally spaced points in [-0.5, 0.5], and $y_i=x_i^2+0.02z_i$, with z_i drawn from $\mathcal{N}(0,1)$ independently, for $i=1,2,\cdots,n$. The weights $w_1=w_2\cdots=w_n=1$. The y,x,w data frame is created in R ("cvx_reg_simulations.R") and outputted in cvs file "cvxReg_input.csv". This is then taken as the input file for C ("CvxReg1d.c"), where convex regression is performed and the outputs are saved into "cvxReg_output_1.csv" (the fitted curve) and "csvReg_output_2.csv" (the time series of duality gap).

For ADMM, I choose $\rho \sim \left(\frac{x_n-x_1}{n}\right)^2$. This is due to the observation that, in the θ -update step of ADMM, ρ multiplies the matrix/vector whose elements are of order $\left(\frac{n}{x_n-x_1}\right)^2$ (notice that u,z are of order $\left(\frac{n}{x_n-x_1}\right)$). Here, I choose $\rho=10^{-4},10^{-5},10^{-6}$, and set the termination criteria as duality gap $\leq 10^{-5}$ or reaching 1000 iterations, whichever comes first.

Figure 1 shows time series of the (rescaled) duality gap, the sequence of simulated data, and the fitted curve. As ρ increases, the (rescaled) duality gap converges faster, though the fitted curve when $\rho=10^{-4}$ appears different from the fitted curves when $\rho=10^{-5}, 10^{-6}$.

Figure 3 diagnoses whether the fitted curve is convex, by showing the first and second differences for the fitted data (blue), compared with the corresponding reference curves for $y=x^2$ case (red). We can see that, when $\rho=10^{-5},10^{-6}$, the first differences for fitted curves are monotone increasing, and the second differences stay non-negative, meaning that the fitted curve is indeed convex. However, when $\rho=10^{-4}$, the first difference for the fitted curve breaks monotonicity, and the second difference breaks the non-negativity. This suggests that the convergence of duality gap when $\rho=10^{-4}$ is merely due to the "rescaling". I then re-run the ADMM for $\rho=10^{-4}$ with only maxima = 1000 as the termination criteria. The fitted curve and diagnostic results stay the same. $\rho=10^{-4}$ is not a proper choice for a statistically sound result.

I run the same simulation with unit spacing (i.e. 1000 times the spacing in the original x), and use $\rho = 100, 10, 1$. The rescaling of the duality gap here is simply 1. The results are shown in Figure 2 and Figure 4.

3.2 The choice of ρ

At unit spacing, the fastest convergence when $\rho \in [1,100]$ appears at $\rho = 25$, which takes 0.53 sec. At 10^{-3} unit spacing, the fastest convergence when $\rho \in [10^{-5},10^{-6}]$ appears at $\rho = 10^{-5}$, which takes 2.65 sec. This empirically supports selecting $\rho \sim \left(\frac{x_n-x_1}{n}\right)^2$.

Figure 1: Time series of the (rescaled) duality gap, the sequence of simulated data, and the fitted curve, for $\rho=10^{-4},10^{-5},10^{-6}$, respectively. Here the rescaling $=10^{-6}$.

Figure 2: Time series of the (rescaled) duality gap, the sequence of simulated data, and the fitted curve, for $\rho = 100, 10, 1$, respectively. Here the rescaling = 1.

Figure 3: The first and second differences for the fitted data (blue) for $\rho=10^{-4},10^{-5},10^{-6}$, compared with the corresponding reference curves for $y=x^2$ case (red).

Figure 4: The first and second differences for the fitted data (blue) for $\rho=100,10,1$, compared with the corresponding reference curves for $y=x^2$ case (red).

References

[1] Mingyi Hong and Zhi-Quan Luo. On the linear convergence of the alternating direction method of multipliers. *Mathematical Programming*, 162(1-2):165–199, 2017.