SENTIMENT ANALYSIS FOR MARKETING

TEAM MEMBER

821721243042: NITHISH D

821721243023: HARISH S

821721243028: NAVEEN M

821721243007: AJITHKUMAR M

821721243301: AJITH G

Phase 2 Submission Document

Project: Sentiment analysis for marketing (BERT, RoBERTa)

Introduction:

➤ Sentiment analysis is a Natural language processing technique that identifies the polarity of a given text. There are different flavors of sentiment analysis, but one of the most widely used techniques labels data into positive, negative and neutral.

- ➤ Sentiment analysis is a marketing tool that helps you examine the way people interact with a brand online. This method is more comprehensive than traditional online marketing tracking, which measures the number of online interactions that customer.
- ➤ Emphasize the need for advanced techniques like fine-tuning pre-trained sentiment analysis models (BERT, RoBERTa) to enhance more accurate sentiment predictions.

Content for Project Phase 2:

Explore advanced techniques like fine-tuning pre-trained sentiment analysis models (BERT, RoBERTa) for more accurate sentiment predictions.

Data Source:

➤ A good data source for Sentiment analysis for marketing should be Accurate, Complete, Covering the geographic area of interest, Accessible.

Dataset Link:(https://www.kaggle.com/datasets/crowdflower/twitter-airline-sentiment)

Airline sentiment	Airline sentiment confidence	Negative reason	Negative reason confidence	Airline
neutral	1			Virgin America
positive	0.3486		0	Virgin America
neutral	0.6837			Virgin America
negative	1		0.7033	Virgin America
negative	1	Bad flight	1	Virgin America
negative	1	Can't tell	0.6842	Virgin America
positive	0.6745	Can't tell	0	Virgin America
neutral	0.634			Virgin America
positive	0.6559			Virgin America
positive	1			Virgin America
neutral	0.6769		0	Virgin America
positive	1			Virgin America
positive	1			Virgin America

Data Preparation:

- ➤ Collect and preprocess your sentiment analysis dataset. Ensure it is well-labeled with sentiment labels (e.g., positive, negative, neutral).
- > Split your dataset into training, validation, and test sets.

Select a Pre-trained Model:

- ➤ Choose a pre-trained model that suits your needs. BERT, RoBERTa, GPT-2, and others are popular choices.
- ➤ You can use pre-trained models available through Hugging Face Transformers library, which provides pre-trained models and easy-to-use APIs for fine-tuning.

Model Architecture:

- ➤ Modify the architecture of the pre-trained model to suit the specific sentiment analysis task.
- ➤ Add a classification layer on top of the model. The number of output units should match the number of sentiment classes in your dataset.

Fine-Tuning:

- Fine-tuning involves training the selected pre-trained model on your sentiment analysis dataset.
- ➤ Use transfer learning, where you start with the weights learned during pretraining and fine-tune them on your task-specific data.
- > Train the model on your training data and validate it on the validation set.

Hyperparameter Tuning:

- Experiment with different hyperparameters such as learning rates, batch sizes, and the number of epochs to optimize model performance.
- ➤ Utilize techniques like learning rate scheduling to improve training stability.

Loss Function:

➤ Choose an appropriate loss function for your sentiment classification task. Cross-entropy loss is commonly used.

Regularization Techniques:

> Employ techniques like dropout and weight decay to prevent overfitting.

Evaluation:

Assess the fine-tuned model's performance on the test dataset using metrics like accuracy, precision, recall, F1-score, and ROC AUC.

Post-processing:

➤ Depending on your specific application, you may want to perform postprocessing on model predictions, such as thresholding or applying smoothing techniques.

Model Deployment:

➤ Once you have a well-fine-tuned sentiment analysis model, deploy it in your desired application, whether it's for real-time sentiment analysis on social media or integrating it into a customer support chat bot.

Model Monitoring and Maintenance:

- ➤ Continuously monitor the model's performance in production to ensure it remains accurate over time.
- ➤ Periodically re-train the model with new data to adapt to evolving language and sentiment trends.

Ethical Considerations:

➤ Be mindful of potential biases in the data and the model. Implement fairness and bias mitigation techniques, and ensure the model aligns with ethical guidelines.

Program:

Sentiment analysis for marketing

```
from textblob import TextBlob
def analyze_sentiment(text):
analysis = TextBlob(text)
if analysis.sentiment.polarity > 0:
return 'Positive'
elif analysis.sentiment.polarity == 0:
return 'Neutral'
else:
return 'Negative'
# Example usage
text = "Stock prices are rising, and investors are optimistic about the
market."
sentiment = analyze_sentiment(text)
print("Sentiment:", sentiment)
from sklearn.model selection import train test split
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive bayes import MultinomialNB
from sklearn.metrics import accuracy_score
```

```
# Load your labeled dataset
# Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(features, labels,
test_size=0.2, random_state=42)
# Vectorize the text data
vectorizer = CountVectorizer()
X_train_vectorized = vectorizer.fit_transform(X_train)
X_test_vectorized = vectorizer.transform(X_test)
# Train a Naive Bayes classifier
clf = MultinomialNB()
clf.fit(X_train_vectorized, y_train)
# Make predictions
predictions = clf.predict(X_test_vectorized)
# Calculate accuracy
accuracy = accuracy_score(y_test, predictions)
print("Accuracy:", accuracy)
```

Model 1 - Load the Pre-trained Language Model and Tokenizer:

```
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
```

```
# Load the pre-trained tokenizer
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
```

Load the pre-trained model for sequence classification model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased')

Model 2 - Prepare the Sentiment Analysis Dataset:

Convert the sentiment labels to numerical form sentiment_labels = [sentiments.index(sentiment) for sentiment in sentiments]

Model 3 - Add a Custom Classification Head:

import torch.nn as nn

Add a custom classification head on top of the pre-trained model
num_classes = len(set(sentiment_labels))
classification_head = nn.Linear(model.config.hidden_size, num_classes)

Replace the pre-trained model's classification head with our custom head model.classifier = classification_head

Model 4 - Fine-Tune the Model:

import torch.optim as optim

Define the optimizer and loss function optimizer = optim.AdamW(model.parameters(), Ir=2e-5) criterion = nn.CrossEntropyLoss()

Fine-tune the model
num_epochs = 3
for epoch in range(num_epochs):

```
optimizer.zero_grad()
  outputs = model(input_ids, attention_mask=attention_mask,
labels=torch.tensor(sentiment_labels))
  loss = outputs.loss
  loss.backward()
  optimizer.step()
```

Conclusion

➤ In the Phase 2 conclusion, we will summarize the key findings and insights from the advanced techniques. We will reiterate the impact of these techniques on improving the accuracy and robustness of Sentiment analysis for marketing.

THANK YOU