Rappel de cours

Exercice 2

Exercice 2.1.a

Fausse, car plus de 7 nombres entre les nombres premiers 191 et 179.

Exercice 2.1.b

Vraie, soit 7 entiers consécutifs $a, a + 1, a + 2, \dots, a + 6$. Soit :

- a = 6k, donc c'est un multiple de 6
- a = 6k + r, 0 < r < 6, donc ce n'est pas un multiple de 6. si r = 1 alors a + 5 = 6(k + 1), si r = 2 alors a + 4 = 6(k + 1), ..., si r = 5 alors a + 1 = 6(k + 1)

Donc il existe toujours un multiple de 6 parmi 7 entiers consécutifs.

Exercice 2.2.a

Fausse. a = 7 et b = 5, premiers entre eux et a + b = 12 et a - b = 2 non premiers entre eux.

Exercice 2.2.b

Vraie. Preuve par contracdiction.

Supposons que ab et a+b ne sont pas premiers entre eux donc $\exists d>1$, $\gcd(ab,a+b)=d$. Donc d|ab, supposons que d|a, comme d|a+b, alors $a=k_1d$ et $a+b=k_2d$, donc $k_1d+b=k_2d$ ce qui montre aue d|b. On vient de trouver un d qui divise a et b, contredisant qu'ils sont premiers entre eux. Par conséquent, Si a et b sont premiers entre eux alors ab et a+b sont premiers entre eux.

Exercice 2.3

Fausse. Contre-exemple x = 27 car $27^2 + 1 = 729 + 1 = 730 = 73 * 10$.

Sinon admettons qu'il existe un x tel que $x^2 \equiv -1 \pmod{73}$. On sait par le petit théorème de Fermat que $x^{72} \equiv 1 \pmod{73}$. Donc $x^{2^{36}} \equiv 1 \pmod{73}$ $\Longrightarrow (-1)^{36} \equiv 1 \pmod{73}$. Ce qui est vrai car $1 \equiv 1 \pmod{73}$. Donc il existe un x. Sinon admettons qu'il existe un x tel que $x^2 \equiv -1 \pmod{73}$. On sait par le le petit théorème de Fermat que $x^72 \equiv 1 \pmod{73}$. Donc $x^{2^{36}} \equiv 1 \pmod{73}$ $\Longrightarrow (-1)^{36} \equiv 1 \pmod{73}$. Ce qui est vrai car $1 \equiv 1 \pmod{73}$. Donc il existe un x.

Exercice 2.4

Vraie. Si $x^1 8 \equiv n \pmod{37}$ alors $x^1 8 = 37k + n$. Donc $x^3 6 = x^{18^2} = (37k + n)^2 = 37^2k^2 + 74nk + n^2 = 37(37k^2 + 2nk) + n^2 = n^2 \pmod{37}$. D'après le petit théorème de Fermat on a $x^{36} \equiv 1 \pmod{37}$ donc il faut que $n^2 = 1$. Ceci implique n = 1 ou n = -1 donc $x^1 8 \equiv 1 \pmod{37}$ ou $x^{18} \equiv -1 \pmod{37}$.

Exercice 4

Exercice 4.1

x	$x^2 \pmod{7}$
$0,7,\ldots,7k$	$0 \pmod{7} = 0$
$1,8,\ldots,7k+1$	$1 \pmod{7} = 1$
$2,9,\ldots,7k+2$	$4 \pmod{7} = 4$
$3, 10, \ldots, 7k + 3$	$9 \pmod{7} = 2$
$4,11,\ldots,7k+4$	$16 \pmod{7} = 2$
$5, 12, \ldots, 7k + 5$	$25 \pmod{7} = 4$
$6, 13, \ldots, 7k + 6$	$36 \pmod{7} = 1$

Exercice 4.2

Montrons que $a^2 + b^2 \equiv 0 \pmod{7} \implies a \equiv 0 \pmod{7}$ et $b \equiv 0 \pmod{7}$, Les valeurs possibles pour $x^2 \pmod{7}$ sont $\{0,1,2,4\}$, la seule combinaison qui donne $a^2 + b^2 \equiv 0 \pmod{7}$ est $a^2 \pmod{7} = 0$ et $b^2 \pmod{7} = 0$, d'aprés le tableau 1 est la seule valeur de x qui donne $x^2 \equiv 0 \pmod{7}$ donc que 7 divise a et b.

Exercice 4.3

 $0^2 + 0^2 = 7.0^2$ est vraie

Exercice 4.4

On a $x = 7k_x$ et $y = 7k_y$, donc $x^2 + x^2 = 49k_x^2 + 49k_y^2 = 7(7k_x^2 + 7k_y^2) = 7z^2$. Donc $z^2 = 7(k_x^2 + k_y^2)$. donc 7 divise z^2 . D'aprés le tableau 1, la seule valeur pour $x^2 \equiv 0 \pmod{7}$ est x = 7k. Donc z = 7k.

Exercice 4.5

On a $(7a)^2 + (7b)^2 = 7(7c)^2$, donc $a^2 + b^2 = 7c^2$. C'est le triplet $(a, b, c), a^2 + b^2 = 7c^2$??

Exercice 4.6

Exercice 4.7

Exercice 5

Exercice 5.1

x	$x^2 \pmod{7}$
$0, 8, \ldots, 8k$	$0 \pmod{8} = 0$
$1, 9, \ldots, 8k + 1$	$1 \pmod{8} = 1$
$2, 10, \ldots, 8k + 2$	$4 \pmod{8} = 4$
$3, 11, \ldots, 8k + 3$	$9 \pmod{8} = 1$
$4, 12, \ldots, 8k + 4$	$16 \pmod{8} = 0$
$5, 13, \ldots, 8k + 5$	$25 \pmod{8} = 1$
$6, 14, \ldots, 8k + 6$	$36 \pmod{8} = 4$
$7, 15, \ldots, 8k + 7$	$49 \pmod{8} = 1$

On a $4^2 \equiv 0 \pmod{8}$, donc $\mathbb{Z}/8\mathbb{Z}$ est nilpotent.

Exercice 5.2

x	$x^2 \pmod{14}$
14k	$0 \pmod{14} = 0$
14k + 1	$1 \pmod{14} = 1$
14k + 2	$4 \pmod{14} = 4$
14k + 3	$9 \pmod{14} = 9$
14k + 4	$16 \pmod{14} = 2$
14k + 5	$25 \pmod{14} = 11$
14k + 6	$36 \pmod{14} = 8$
14k + 7	$49 \pmod{14} = 7$
14k + 8	$64 \pmod{14} = 8$
14k + 9	$81 \pmod{14} = 11$
14k + 10	$100 \pmod{14} = 2$
14k + 11	$121 \pmod{14} = 9$
14k + 12	$144 \pmod{14} = 4$
14k + 13	$169 \pmod{14} = 1$

On a $x^1 \not\equiv 0 \pmod{14}$ et $x^2 \not\equiv 0 \pmod{14}$. soit :

- n est pair, $x2n \pmod{14} = x^{2^n} \pmod{14} \equiv (x^2 \pmod{14})^n \not\equiv 0 \pmod{14}$
- n est impair, $x^{2n+1} \pmod{14} \equiv x \cdot x^{2^n} \pmod{14} \equiv (x \cdot (x^2 \pmod{14})^n) \pmod{14} \not\equiv 0 \pmod{14}$.

QED