Banach-Steinhaus Theorem

Theorem: Principle of Uniform Boundedness

Let:

- X be a Banach space.
- Y be a normed space.
- $\mathcal{T} \subseteq \mathcal{B}(X,Y)$
- $\forall \vec{x} \in X, \exists M_x > 0, \forall T \in \mathcal{T}, ||Tx|| \leq M_x ||\vec{x}||$

$$\exists M > 0, \forall T \in \mathcal{T}, ||T|| \leq M$$

Proof

Let
$$A_n = \{x \in X \mid \forall T \in \mathcal{T}, ||T\vec{x}|| \leq n\}.$$

$$\operatorname{Claim:} \bigcup_{n=1}^{\infty} A_n = X$$

$$(\subseteq)$$
: Assume $ec{x} \in igcup_{n=1}^{\infty} A_n$

Clearly,
$$\vec{x} \in X$$
.

 (\supseteq) : Assume $\vec{x} \in X$

$$\exists\, M_x>0, \forall\, T\in\mathcal{T}, \|T\vec{x}\|\leq M_x\,\|\vec{x}\|\leq n$$
 Thus $\exists\, n\in\mathbb{N}$ such that $\vec{x}\in A_n$.

Therefore
$$\vec{x} \in \bigcup_{n=1}^{\infty} A_n$$

$$\therefore \bigcup_{n=1}^{\infty} A_n = X$$

Clearly,
$$A_n \subset A_{n+1}$$
.

Let
$$A_{n,T} = \{ \vec{x} \in X \mid ||T\vec{x}|| \le n \}.$$

Claim: $A_{n,T}$ is closed.

Assume (\vec{x}_k) is a sequence in $A_{n,T}$ such that $\vec{x}_k \to \vec{x} \in X$.

But T is bounded, and thus continuous, so $\vec{x}_k \to \vec{x} \implies T\vec{x}_k \to T\vec{x}$.

$$||T\vec{x}_k|| = ||(T\vec{x}_k - T\vec{x}) + T\vec{x}|| \to ||T\vec{x}|| \le n$$

Therefore, $\vec{x} \in A_{n,T}$ and thus $A_{n,T}$ is closed.

But
$$A_n = \bigcap_{T \in \mathcal{T}} A_{n,T}$$
, an intersection of closed sets.

Therefore, A_n is closed.

Now, *X* is Banach by assumption, and thus is a Baire space.

So by the Baire Category Theorem, $\exists N \in \mathbb{N}$ such that A_N has a non-empty interior.

Thus, $\exists \vec{x}_0 \in A_N$ and r > 0 such that $B(\vec{x}_0, r) \subset A_N$.

And so $\forall \vec{x} \in \overline{B}(\vec{x}_0, r), \forall T \in \mathcal{T}, ||T\vec{x}|| \leq N.$

Assume $T \in \mathcal{T}$.

Assume $\vec{x} \in X$ such that $||\vec{x}|| \leq r$.

So $\vec{x} + \vec{x}_0 \in \overline{B}(\vec{x}_0, r)$.

$$||T\vec{x}|| = ||T(\vec{x} + \vec{x}_0 - \vec{x}_0)|| = ||T(\vec{x} + \vec{x}_0) - T(\vec{x}_0)|| \le ||T(\vec{x} + \vec{x}_0)|| + ||T(\vec{x}_0)|| \le 2N$$

Assume
$$\|\vec{u}\| = 1$$
.
$$\|T\vec{u}\| = \left\|T\left(\frac{1}{r}(r\vec{u})\right)\right\| = \frac{1}{r}\left\|T(r\vec{u})\right\| \le \frac{2N}{r}$$
 Let $M = \frac{2N}{r}$.
$$\therefore \|T\| = \sup_{\|\vec{x}\|=1}\|T\vec{u}\| \le M.$$

Corollary

Let:

- *X* be a Banach space.
- *Y* be a normed space.
- (T_n) be a sequence in $\mathcal{B}(X,Y)$.
- $\forall \vec{x} \in X, T\vec{x} = \lim_{n \to \infty} T_n \vec{x}$ exists.

T is a linear, bounded map.

Proof

Assume $\vec{x}, \vec{y} \in X$ and $\alpha, \beta \in \mathbb{F}$:

$$T(\alpha \vec{x} + \beta \vec{y}) = \lim_{n \to \infty} T_n(\alpha \vec{x} + \beta \vec{y})$$

$$= \lim_{n \to \infty} [\alpha T_n \vec{x} + \beta T_n \vec{y}]$$

$$= \alpha \lim_{n \to \infty} T_n \vec{x} + \beta \lim_{n \to \infty} T_n \vec{y}$$

$$= \alpha T \vec{x} + \beta T \vec{y}$$

Therefore, T is linear.

Since $(T_n \vec{x})$ converges, it is bounded.

Thus, $\forall \vec{x} \in X, \exists M_x > 0, \forall n \in \mathbb{N}, ||T_n \vec{x}|| \leq M_x ||\vec{x}||.$

So, all the conditions for uniform boundedness are satisfied.

Thus, $\exists\, M>0, \forall\, n\in\mathbb{N}, \|T_n\|\leq M.$ And so $\forall\, \vec{x}\in X$ such that $\|\vec{x}\|=1, \|T_n\vec{x}\|\leq M.$

Therefore, $\|T\vec{x}\| < M$ and thus T is bounded.

Note that this does not imply that $T_n \to T$.