4.2.6

ADHARVAN KSHATHRIYA BOMMAGANI - EE25BTECH11003

October 4, 2025

Question

Find the direction and normal vectors of each of the following lines.

4.2.6
$$3x + 2 = 0$$

Theoretical Solution

The equation of a line in a 2D plane can be written in the form $\mathbf{n}^T \mathbf{x} = c$, where \mathbf{n} is the normal vector and $\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}$.

We can rewrite the given equation 3x + 2 = 0 to explicitly include the *y* term:

$$3x + 0y = -2$$

This can be expressed in vector form as:

$$\begin{pmatrix} 3 \\ 0 \end{pmatrix}^T \begin{pmatrix} x \\ y \end{pmatrix} = -2$$

By comparing this to the general form, we can identify the **normal vector** as:

$$\mathbf{n} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$$

Theoretical Solution

The direction vector \mathbf{m} is orthogonal (perpendicular) to the normal vector \mathbf{n} . This means their dot product is zero:

$$\mathbf{m}^T \mathbf{n} = 0$$

Let the direction vector be $\mathbf{m} = \begin{pmatrix} m_1 \\ m_2 \end{pmatrix}$. We can set up the equation:

$$\begin{pmatrix} m_1 & m_2 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \end{pmatrix} = 0$$

 $(m_1)(3) + (m_2)(0) = 0$
 $3m_1 = 0 \implies m_1 = 0$

Since $m_1 = 0$, the direction vector is of the form $\begin{pmatrix} 0 \\ m_2 \end{pmatrix}$. The vector must be non-zero, so we can choose any non-zero value for m_2 . The simplest choice is $m_2 = 1$.

Theoretical Solution

For the line
$$3x + 2 = 0$$
:

Normal Vector:
$$\mathbf{n} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$$

Direction Vector:
$$\mathbf{m} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Illustration of the Line and Vectors:

1 ≣ ▶