Towards the Compression of First-Order Resolution Proofs by Lowering Unit Clauses

J. Gorzny¹ B. Woltzenlogel Paleo²

¹University of Victoria

²Vienna University of Technology

6 August 2015

Proof Compression Motivation

 The best, most efficient provers, do not generate the best, least redundant proofs.

 Many compression algorithms for propositional proofs; few for first-order proofs.

(Propositional) Proofs

Definition (Proof)

A directed acyclic graph $\langle V, E, \Gamma \rangle$, where

- V is a set of nodes
- E is a set of edges labeled by literals
- Γ (the proof clause) is inductively constructible using axiom and resolution nodes

Definition (Axiom)

A proof with a single node (so $E = \emptyset$)

(Propositional) Resolution

Definition (Resolution)

Given two proofs ψ_L and ψ_R with conclusions Γ_L and Γ_R with some literal I such that $\overline{I} \in \Gamma_L$ and $I \in \Gamma_R$, the resolution proof ψ of ψ_L and ψ_R on I, denoted $\psi = \psi_L \psi_R$ is such that:

- ψ 's nodes are the union of the nodes of ψ_L and ψ_R , and a new root node
- there is an edge from $\rho(\psi)$ to $\rho(\psi_L)$ labeled with \bar{I}
- there is an edge from $\rho(\psi)$ to $\rho(\psi_R)$ labeled with I
- ψ 's conclusion is $(\Gamma_L \setminus \{\bar{I}\}) \cup (\Gamma_R \setminus \{I\})$

A Propositional Proof

LowerUnits

Definition (Unit)

A unit is a subproof with a conclusion having exactly 1 literal

Theorem

A unit can always be lowered

Compression is achieved by delaying resolution with unit subproofs.

Two Traversals

- ↑ Collect units with more than one resolvent
- Delete units and reintroduce them at the bottom of the proof

$$a, \bar{b}, \bar{c}$$
 a, \bar{b}, c a, \bar{b}

$$a, \bar{b}, \bar{c}$$
 a, \bar{b}, c a, \bar{b} a, \bar{b} a, \bar{b} a, \bar{b}

$$a, \bar{b}, \bar{c}$$
 a, \bar{b}, c a, \bar{b} a, b a, \bar{b} a, \bar{b} a, \bar{b} a, \bar{c}

$$a, \bar{b}, \bar{c}$$
 a, \bar{b}, c a, \bar{b} a, \bar{b} a, \bar{b} a, \bar{b} a, \bar{b} a, \bar{c} a, \bar{c}

Definition (Pre-Deletion Property)

 η unit, $I \in \eta$, such that I is resolved with literals I_1, \ldots, I_n in a proof ψ . η satisfies the *pre-deletion unifiability* property in ψ if I_1, \ldots, I_n and \bar{I} are unifiable.

9/17

$$\eta_1: r(Y), p(X, q(Y, b)), p(X, Y) \vdash$$
 $\eta_2: \vdash p(U, V)$
 $\eta_4: \vdash r(W)$
 $\eta_5: p(U, q(W, b)) \vdash$

$$\eta_1: r(Y), p(X, q(Y, b)), p(X, Y) \vdash$$
 $\eta_2: \vdash p(U, V)$
 $\eta_4: \vdash r(W)$
 $\eta_5: p(U, q(W, b)) \vdash$

$$\eta_{1}: r(Y), p(X, q(Y, b)), p(X, Y) \vdash \eta_{2}: \vdash p(U, V)$$
 $\eta_{4}: \vdash r(W) \qquad \eta_{3}: r(V), p(U, q(V, b)) \vdash$
 $\eta_{5}: p(U, q(W, b)) \vdash$
 $\eta'_{1}: r(Y), p(X, q(Y, b)), p(X, Y) \vdash \eta'_{4}: \vdash r(W)$
 $\eta'_{5}: p(X, q(W, b)), p(X, W) \vdash$

$$\eta_{1}: r(Y), p(X, q(Y, b)), p(X, Y) \vdash \eta_{2}: \vdash p(U, V)$$
 $\eta_{4}: \vdash r(W) \quad \eta_{3}: r(V), p(U, q(V, b)) \vdash$

$$\eta_{5}: p(U, q(W, b)) \vdash$$

$$\eta'_{1}: r(Y), p(X, q(Y, b)), p(X, Y) \vdash \eta'_{4}: \vdash r(W)$$

$$\eta'_{5}: p(X, q(W, b)), p(X, W) \vdash$$

$$\downarrow \eta'_{5}$$

$$\eta_1: r(Y), p(X, q(Y, b)), p(X, Y) \vdash$$
 $\eta_2: \vdash p(U, V)$
 $\eta_4: \vdash r(W)$
 $\eta_5: p(U, q(W, b)) \vdash$

Definition (Post-Deletion Property)

 η unit, $I \in \eta$, such that I is resolved with literals I_1, \ldots, I_n in a proof ψ . η satisfies the *post-deletion unifiability* property in ψ if $I_1^{\dagger\downarrow}, \ldots, I_n^{\dagger\downarrow}$ and \overline{I}^{\dagger} are unifiable, where I^{\dagger} is the literal in $\psi' = \psi \setminus \{\eta\}$ corresponding to I in ψ , and $I^{\dagger\downarrow}$ is the descendant of I^{\dagger} in the roof of ψ' .

First-Order Lower Units Challenges

- Deletion changes literals
- Unit collection depends on if contraction is possible after propagation down the proof

Deletion of units require knowledge of proof after deletion, and deletion depends on what will be lowered.

- $O(n^2)$ solution to have full knowledge
- Difficult bookkeeping required for implementation

Greedy First-Order Lower Units - A Quicker Alternative

- Ignore post-deletion satisfaction
- Focus on pre-deletion satisfaction
- Greedy contraction

Faster run-time (linear; one traversal)
Easier to implement

Doesn't always compress (returns original proof sometimes)

Greedy First-Order Lower Units - A Quicker Alternative

- Ignore post-deletion satisfaction
- Focus on pre-deletion satisfaction
- Greedy contraction

Faster run-time (linear; one traversal) Easier to implement

Greedy First-Order Lower Units - A Quicker Alternative

- Ignore post-deletion satisfaction
- Focus on pre-deletion satisfaction
- Greedy contraction

Faster run-time (linear; one traversal)
Easier to implement

Doesn't always compress (returns original proof sometimes)

$$\eta_1$$
: $\vdash p(a)$

$$\eta_4$$
: $r(X)$, $p(V) \vdash q(Y)$, $t(Z)$ η_3 : $p(a) \vdash q(X)$, $r(Y)$, $t(Z)$
 \uparrow
 η'_6 : $p(a)$, $p(a) \vdash q(X)$, $t(Z)$
 \uparrow
 η_7 : $q(X)$, $p(a) \vdash t(Z)$ $\downarrow \eta'_6 \rfloor$: $p(a) \vdash q(X)$, $t(Z)$
 \uparrow
 η_9 : $t(Z) \vdash \eta_8$: $p(a) \vdash t(Z)$

Experiment Setup

- Simple First-Order Lower units implemented as part of Skeptik (in Scala)
- 308 real first-order proofs generated by SPASS from problems from TPTP Problem Library
 - 2280 initial problems (1032 known unsatisfiable)
 - solver asked to use only resolution and contraction rules
 - 300s timeout
- proofs generated on cluster at the University of Victoria
- proofs compressed on this laptop

Time to generate proofs: \approx 40 minutes Time to compress proofs: \approx 5 seconds

Experiment Setup

- Simple First-Order Lower units implemented as part of Skeptik (in Scala)
- 308 real first-order proofs generated by SPASS from problems from TPTP Problem Library
 - 2280 initial problems (1032 known unsatisfiable)
 - solver asked to use only resolution and contraction rules
 - 300s timeout
- proofs generated on cluster at the University of Victoria
- proofs compressed on this laptop

Time to generate proofs: \approx 40 minutes Time to compress proofs: \approx 5 seconds

Results

Original Proof Length Compressed Proof Length Cumulative Proof Length 1000 -Number of Proofs (sorted by input length)

Results

Higher compression in longer proofs: 13/18 proofs with length \geq 30 nodes successfully compressed.

Total compression ratio 11.3%: 4429 vs. 3929 nodes. 18.4% for 100 longest proofs.

Only 14/308 proofs were returned uncompressed

Conclusion

- Simple First-Order Lower Units is a quick algorithm for first-order proof compression
- Future work:
 - Explore other proof compression algorithms, e.g. Recycle Pivots with Intersection
 - Explore ways of dealing with the post-deletion property quickly

Thank you for your attention.

Any questions?

- Source code: https://github.com/jgorzny/Skeptik
- Data: http://www.math.uvic.ca/~jgorzny/data/

