Schedule

1. What are models?

Exercise: Python Skills

2. Energy budget of the Earth

Exercise: Simple Energy Balance Model

3. Nonlinearity, Feedback, and Predictability

Exercise: Nonlinearity and Feedbacks

Exercise: Revised Energy Balance Model

4. Parametrization and Sensitivity

5. Radiative budget

Exercise: 1-layer greenhouse model

Exercise: 2-layer greenhouse model

6. Introduction to fluid dynamics

Exercise: Analytical katabatic flow model

7. Finite difference method

Exercise: Heat Equation

Exercise: Advection-Diffusion Equation

Exercise: Boundary layer Evolution

Exercise: Numerical katabatic flow model

8. Implicit finite difference methods

Exercise: Boundary layer evolution

9. Optimization problem

Exercise: Surface energy balance

Exercise: Sublimation

10. COSIPY snow model

Exercise: Simulations with COSIPY

11. Introduction to PALM

Exercise: Simulations with PALM

12. How to write an article

Step 1: Mathematical model

$$\frac{\partial u}{\partial t} = -\left(u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + w\frac{\partial u}{\partial z}\right) - g_x - \frac{1}{\rho}\frac{\partial p}{\partial x} - \frac{\partial u'u'}{\partial x} - \frac{\partial\overline{u'v'}}{\partial y} - \frac{\partial u'w'}{\partial z}$$

- Partial differential equation (PDE)
- Boundary conditions (BC)
- Does the model fit the problem?
- Does it introduce errors?

Step 2: Discretization → Approximation of the PDEs → system of algebraic equations

$$\rho \left(\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u} \right) = -\nabla p - g - \nabla \cdot \tau$$

$$\nabla \cdot \vec{u} = 0$$

$$Ax = b = \begin{pmatrix} A_{11} & \cdots & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{m1} & \cdots & A_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$$

Step 2: Discretization

Finite Elements

- Geometry: Create mesh or grid
- Model $\frac{\partial}{\partial x}$ \rightarrow arithmetic operations

Step 3: Analyse the model

Numerical Scheme must satisfy ...

consistency

stability

convergence

conversation

boundedness

accuracy and error behaviour

Step 4: Solve the model

'Steady state' model

Ax = b

Linear solver

'Time dependent' model

Ordinary differential equations (ODE)
Time integration solver

Finite Differences

Step 1: Discretization of domain (grid/mesh)

Step 2: Substitution of derivations by differences

Step 3: Sort the differences equations

Step 4: Solve the difference equations, linear system

Discretization of the domain

Approximate derivatives $\frac{\partial}{\partial x}$, $\frac{\partial}{\partial t}$... numerically

Let's define a grid:

- V
- contains field variables dependent on neighbouring nodes
- provides one algebraic equation
- grid lines from same family don't intersect

Discretization of the domain

Domain:

Interval: I = [a, b]

Discretization:

Grid points: $x_i = a + i\Delta x$, i = 0, ..., n

Equidistant grid:

Grid step: $\Delta x = \frac{b-a}{n}$

Discretization of the domain

$$\left. \frac{\partial u}{\partial x} \right|_{x_i} = \lim_{\Delta x \to 0} \frac{u(x_i + \Delta x) - u(x_i)}{\Delta x}$$

Forward difference

$$\left. \frac{\partial u}{\partial x} \right|_{x_i} \simeq \lim_{\Delta x \to 0} \frac{u(x_{i+1}) - u(x_i)}{\Delta x}$$

Backward difference

$$\left. \frac{\partial u}{\partial x} \right|_{x_i} \simeq \lim_{\Delta x \to 0} \frac{u(x_i) - u(x_{i-1})}{\Delta x}$$

Central difference

$$\left. \frac{\partial u}{\partial x} \right|_{x_i} \simeq \lim_{\Delta x \to 0} \frac{u(x_{i+1}) - u(x_{i-1})}{2\Delta x}$$

Accuracy of finite difference approximation

Taylor-Series:

Accuracy of finite difference approximation

Taylor-Series:

(1)
$$u(x_{i-1}) = u(x_i) - \Delta x u_x(x_i) + \frac{\Delta x^2}{2} u_{xx}(x_i) - \frac{\Delta x^3}{6} u_{xxx}(x_i) + \cdots$$

(2)
$$u(x_{i+1}) = u(x_i) + \Delta x u_x(x_i) + \frac{\Delta x^2}{2} u_{xx}(x_i) + \frac{\Delta x^3}{6} u_{xxx}(x_i) + \cdots$$

Difference quotient of derivation: (2) - (1)

$$u(x_{i+1}) - u(x_{i-1}) = 2\Delta x u_x(x_i) - \frac{2\Delta x^3}{6} u_{xxx}(x_i) + \sigma(\Delta x^5)$$

$$\frac{u(x_{i+1}) - u(x_{i-1})}{2\Delta x} = u_x(x_i) - \frac{\Delta x^2}{6} u_{xxx}(x_i) + \sigma(\Delta x^4)$$

We neglect all h.o.t.

Accuracy of finite difference approximation

$$\frac{u(x_{i+1}) - u(x_i)}{\Delta x} \simeq \frac{\partial u}{\partial x}\bigg|_{x_i} + \sigma(\Delta x)$$

Forward difference

$$\frac{u(x_i) - u(x_{i-1})}{\Delta x} \simeq \frac{\partial u}{\partial x}\bigg|_{x_i} + \sigma(\Delta x)$$

Backward difference

$$\frac{u(x_{i+1}) - u(x_{i-1})}{2\Delta x} \simeq \frac{\partial u}{\partial x}\bigg|_{x_i} + \sigma(\Delta x^2)$$

Central difference

$$\frac{u(x_{i+1}) - 2u(x_i) + u(x_{i-1})}{\Delta x^2} \simeq \frac{\partial^2 u}{\partial x^2} \bigg|_{x_i} + \sigma(\Delta x^2)$$

2. Derivative

Grid spacing Δx	Method	Error
0.1	FD, BD	$\sigma(\Delta x) = 0.1 (10\%)$
0.1	CD	$\sigma(\Delta x^2) = 0.01 (1\%)$
0.01	FD, BD	$\sigma(\Delta x) = 0.01 (10\%)$