Theorem 1.1.8 Let &t, tE(0,1) be a smooth family of contact structures on a (2n+1)-dimensional closed manifold M and B a closed contact submanifold for all &t. Then there is an isotopy Yt of M satisfying $(Y_t)_* \S_0 = \S_1$ that leaves B'invariant. If moreover $\S_t \cap TB = \S_0 \cap TB$ $\forall t$, then Y_t may be chosen to fix B pointwise.

Proof Let dt be a smooth family of contact forms with Kerdr = St. Assume It is the time-dependent flow of the time-dependent VF Xt EX(M). Since M compact, the flow will exist for all time. Xt can be uniquely decomposed Xt=HtRt+Yt where HtE COM, Rt the Reeb VF of dt, Yt E St. $(Y_t)_{\star} \xi_0 = \xi_1$ is satisfied if $\exists \lambda_t \in C^{\infty}M$ s.t. $Y_t^{\star} \alpha_t = \lambda_t \alpha_0$. Differentiating, we get

 $\psi_t^*(\mu_t d_t) = \frac{\lambda_t}{\lambda_t} \lambda_t d_0 = \lambda_t d_0 = \psi_t^*(\dot{d}_t + dH_t + i_t d\alpha_t)$ where $\mu_t = \left(\frac{d}{dt} \middle| l_n(\lambda_t)\right) \circ \psi_t^{-1}$

Hence we solve $\dot{\mathcal{A}}_t^+dH_t^+l_{t_t}d\mathcal{A}_t^=\mu_t\mathcal{A}_t$ for Y_t , μ_t , H_t . Notice, given any H_t , we can uniquely solve for Y_t , μ_t . In the first part we find H_t s.t. Y_t is tangent to \mathcal{B} .

Looking at the contact submid B, we can solve the equation $\mathring{\alpha}_{t}|_{TB} + d\widetilde{H}_{t} + i\widetilde{r}_{t}(d\mathscr{A}_{t}|_{TB}) = \widetilde{\mathcal{U}}_{t} \, \mathscr{A}_{t}|_{TB}$ by choosing $\widetilde{H}_{t} = 0$. From this \widetilde{V}_{t} , $\widetilde{\mu}_{t}$ are defined. Define $\widetilde{\mathcal{X}}_{t} = \widetilde{\mathcal{A}}_{t} + i\widetilde{r}_{t}(d\mathscr{A}_{t}) - \widetilde{\mu}_{t}\mathscr{A}_{t} : TM_{IB} \rightarrow C^{\infty}B$.

Define $\tilde{\alpha}_t = \dot{\alpha}_t + i \tilde{\gamma}_t (d\alpha_t) - \tilde{\mu}_t \dot{\alpha}_t : TM_{1B} \rightarrow C^{\infty}B$. Lemma Let B be a closed subsuff of M and $\alpha \in \Omega^1 M$ 5.t. $\alpha \mid TB = 0$. Then $\exists f \in C^{\infty}M$ 5.t. $\alpha \notin TM_{1B} = \alpha \mid TM_{1B}$. Hence we find H_t s.t. $H_t IB = 0$, $dH_t II_{MIB} = -\tilde{\alpha}_t$. From this we get our solutions $Y_{t,l}u_t$ and we see that $Y_t = Y_t$ along B, so Y_t tangent to B. If we maneover assume $3t^{1}TB = 50^{1}TB + t$, then $d_t | TB = 9td_0 | TB$ for $9t \in C^{\infty}B$. Then $\dot{\alpha}_t | TB + i\dot{\gamma}_t (d\omega_t | TB) = \hat{\mu}_t \omega_t | TB$ has solution $\hat{\mu}_t = \frac{\dot{\gamma}_t}{\dot{\gamma}_t}, \dot{\gamma}_t = 0$, hence X_t fixes B ($H_t | B = 0$, $Y_{t|B} = 0 \Rightarrow X_t = 0$).