

Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

Aprobación: 2022/03/01 Código: GUIA-PRLE-001 Página: 1

INFORME DE LABORATORIO

(formato estudiante)

INFORMACIÓN BÁSICA					
ASIGNATURA:	LABORATORIO B - FÍSICA COMPUTACIONAL				
TÍTULO DE LA PRÁCTICA:	Desplazamiento, velocidad promedio y velocidad instantánea				
NÚMERO DE PRÁCTICA:	01	AÑO LECTIVO:	2025 – A	NRO. SEMESTRE:	VII
FECHA DE PRESENTACIÓN	23/05/2025	HORA DE PRESENTACIÓN	23:59		
INTEGRANTE (s): - Huanaco Hallasi, Diego Edgardo				NOTA:	
DOCENTE(s): LLAMOCA REQUENA, EDWIN AGAPITO					

SOLUCIÓN Y RESULTADOS

- I. SOLUCIÓN DE EJERCICIOS/PROBLEMAS
- Página 40 del libro de física computacional

```
Unset
clear; clf; hold off;
n = 0; h = 0.1;

% Constantes del Sistema
k = 1;
m = 2;

% Condiciones Iniciales
t = 0;
x = 1;
v = 0;
tfin = 30;

% Inicio de la Simulación
pt(1) = t;
pv(1) = v;
```


Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

Aprobación: 2022/03/01 Código: GUIA-PRLE-001 Página: 2

```
px(1) = x;
for t = 0:h:tfin
   n = n + 1;
   a = feval('armonico', x, k, m);
   v = v + h * a;
   x = x + h * v;
    pt(n+1) = t;
    px(n+1) = x;
   pv(n+1) = v;
   pa(n+1) = a;
end
subplot(2,2,1), plot(pt, pa); grid on;
xlabel('Tiempo (s)');
ylabel('Aceleración (m/s²)');
subplot(2,2,2), plot(pt, pv); grid on;
xlabel('Tiempo (s)');
ylabel('Velocidad (m/s)');
subplot(2,2,3), plot(pt, px); grid on;
xlabel('Tiempo (s)');
ylabel('Desplazamiento (m)');
subplot(2,2,4), plot(px, pv); grid on;
xlabel('Desplazamiento (m)');
ylabel('Velocidad (m/s)');
% Función que define el movimiento armónico
function y = armonico(x, k, m)
   y = -k * x / m;
end
```


Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

Aprobación: 2022/03/01 Código: GUIA-PRLE-001 Página: 3

- a = 0: movimiento con aceleración constante (a = 0) y velocidad constante.

Movimiento Rectilíneo Uniforme (MRU)

Características:

- La aceleración es cero, es decir, no hay cambio de velocidad.
- La velocidad es constante durante todo el movimiento.
- El cuerpo recorre distancias iguales en tiempos iguales.

```
Unset
clear, clf, hold off; n=0; h=0.1;
% Constantes del Sistema
k=1; m=2;
% Condiciones Iniciales
t=0; x=-2; v=5; tfin = 30; a = 0;
% Inicio de la Simulación
pt(1)=t; pv(1)=v; px(1)=x;
for t=0:h:tfin
    n=n+1;
    v = v + h*a;
    x = x + h*v;
    pt(n+1)=t;
```


Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

Aprobación: 2022/03/01 Código: GUIA-PRLE-001 Página: 4

```
px(n+1)=x;
pv(n+1)=v;
pa(n+1)=a;
end
subplot(2,2,1), plot(pt,pa); grid on;
xlabel('Tiempo (s)'); ylabel('Aceleracion (m/s2)');
subplot(2,2,2), plot(pt,pv); grid on;
xlabel('Tiempo (s)'); ylabel('Velocidad (m/s)');
subplot(2,2,3), plot(pt,px); grid on;
xlabel('Tiempo (s)'); ylabel('Desplazamiento (m)');
subplot(2,2,4), plot(px,pv); grid on;
xlabel('Desplazamiento (m)'); ylabel('Velocidad (m/s)');
```


-a = -10

Movimiento Rectilíneo Uniformemente Acelerado (MRUA)

Características:

- La aceleración es constante y negativa, lo que indica desaceleración o aceleración en sentido contrario al movimiento.
- La velocidad cambia uniformemente con el tiempo.

Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

Aprobación: 2022/03/01 Código: GUIA-PRLE-001 Página: 5

• El desplazamiento se calcula con una fórmula cuadrática en función del tiempo.

```
Unset
clear, clf, hold off; n=0; h=0.1;
% Constantes del Sistema
k=1; m=2;
% Condiciones Iniciales
t=0; x=-2; v=5; tfin = 30; a = -10;
% Inicio de la Simulación
pt(1)=t; pv(1)=v; px(1)=x;
for t=0:h:tfin
   n=n+1;
   v = v + h*a;
   x = x + h*v;
   pt(n+1)=t;
   px(n+1)=x;
    pv(n+1)=v;
    pa(n+1)=a;
end
subplot(2,2,1), plot(pt,pa); grid on;
xlabel('Tiempo (s)'); ylabel('Aceleracion (m/s2)');
subplot(2,2,2), plot(pt,pv); grid on;
xlabel('Tiempo (s)'); ylabel('Velocidad (m/s)');
subplot(2,2,3), plot(pt,px); grid on;
xlabel('Tiempo (s)'); ylabel('Desplazamiento (m)');
subplot(2,2,4), plot(px,pv); grid on;
xlabel('Desplazamiento (m)'); ylabel('Velocidad (m/s)');
```


Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

Aprobación: 2022/03/01 Código: GUIA-PRLE-001 Página: 6

- Movimiento parabólico

- La aceleración actúa solo en la dirección vertical (a = -10 m/s²), simulando la gravedad.
- La velocidad horizontal (vx) es constante.
- La velocidad vertical (vy) varía con el tiempo debido a la aceleración.

```
Unset
clear, clf, hold off; n=0; h=0.1;
% Constantes del Sistema
k=1; m=2;
% Condiciones Iniciales
t=0; x=0;
vx=5*cos(pi/3);
tfin = 1;
a = -10;
vy=5*sin(pi/3);
y = 0;
% Inicio de la Simulación
pt(1)=t; py(1)=y; px(1)=x;
for t=0:h:tfin
    n=n+1;
    x = x + h*vx;
    vy = vy + h*a;
```


Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

Aprobación: 2022/03/01 Código: GUIA-PRLE-001 Página: 7

```
y = y + h*vy;
pt(n+1)=t;
px(n+1)=x;

pa(n+1)=a;
py(n+1)=y;
end
subplot(2,2,1), plot(px,py); grid on;
xlabel('x'); ylabel('y');
```


- Movimiento en el Espacio Tridimensional (3D) con aceleración constante en un solo eje "y"

Se tiene velocidad inicial en tres direcciones:

- $vx = 5 \rightarrow constante \ en \ eje \ X$
- vy = 3 -> afectada por la aceleración a = -10
- $vz = 4 \rightarrow constante en eje Z$

```
Unset
clear, clf, hold off; n=0; h=0.1;
% Constantes del Sistema
k=1; m=2;
```


Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

Aprobación: 2022/03/01 Código: GUIA-PRLE-001 Página: 8

```
% Condiciones Iniciales
t=0;
tfin = 1;
a = -10;
vx=5;
vy=3;
vz=4;
x = 0;
y = 0;
z = 0;
% Inicio de la Simulación
pt(1)=t; py(1)=y; px(1)=x;
for t=0:h:tfin
    n=n+1;
    x = x + h*vx;
    vy = vy + h*a;
    y = y + h*vy;
    z = z + h*vz;
    pt(n+1)=t;
    px(n+1)=x;
    pa(n+1)=a;
    py(n+1)=y;
    pz(n+1)=z;
plot3(2,2,1), plot3(px,py,pz); grid on;
xlabel('x'); ylabel('y'); zlabel('z');
```


Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

Aprobación: 2022/03/01 Código: GUIA-PRLE-001 Página: 9

II. CONCLUSIONES

Cuando la aceleración es cero, es un Movimiento Rectilíneo Uniforme (MRU), donde la velocidad es constante y el desplazamiento es lineal respecto al tiempo.

Cuando la aceleración es constante (distinta de cero), es un Movimiento Rectilíneo Uniformemente Acelerado (MRUA).

Al considerar componentes vertical y horizontal con aceleración en una dirección (como la gravedad), se simula un movimiento parabólico, como proyectiles en 2D.

Cuando se tiene tres dimensiones, se representa un movimiento tridimensional con aceleración.

REFERENCIAS Y BIBLIOGRAFÍA

[1] E. A. Llamoca Requena. "Introducción a la Física Computacional con Matlab". Repositorio Institucional Universidad Nacional de San Agustín de Arequipa. Accedido el 18 de mayo de 2025. [En línea]. Disponible: https://repositorio.unsa.edu.pe/items/756be956-0d8d-4dd2-aba4-21a15cd0109a