# Exercise 1

#### 1.1

1.1. (3 points)  $n \lg n^5 + n \lg 2^n + n \sqrt{n}$  is: a)  $\Theta(n \lg n)$  b)  $\Theta(n)$  c)  $\Theta(\sqrt{n})$  d)  $\Theta(n^2)$  e)  $\Theta(n^{1.5})$ 1.2. (3 points)  $700 \cdot n^2 + 999 \cdot n^2 \lg n + 0.1 \cdot n^2 \lg^2 n$  is: a)  $\Theta(n^2 \lg n)$  b)  $\Omega(n^2 \lg n)$  c)  $\Theta(n^2)$  d)  $\Theta(n^2 \cdot \lg^2 n)$ 

## 1.2



## 1.3



## 1.4



# 1.5

- **b)** Max-Heapify(A, 3), Max-Heapify(A, 4), Max-Heapify(A, 2), Max-Heapify(A, 1)
- **(a)** c) Max-Heapify(A, 1), Max-Heapify(A, 2), Max-Heapify(A, 4), Max-Heapify(A, 3)
- **d)** Max-Heapify(A, 3), Max-Heapify(A, 4), Max-Heapify(A, 1), Max-Heapify(A, 2)

## 1.6



## 1.7

The correct should be [\_, 1, 10, 17, 13, 5, \_, \_, 9]



# Exercise 2

#### 2.1

We can represent each combination as i binary number. Given that there are five questions it would be 5-bit. Doing the questions  $Q_1, Q_3, Q_5$  would be represented as 10101. Since we are evaluating each combination and each combination has a unique binary representation we would need to evaluate  $2^5 = 16$  cases, or  $2^n$  given n questions.

#### 2.2

This can easily by restated as an instance of the knapsack problem. The main idea in the algorithm is to save results in an array V[0..n][0..X]. Saving the results saves us from recomputing a lot of values as per usual in dynamic programming. In the end we will have a value for V[n][X] which we can return.

The recurrence is as follows

```
\begin{split} V(0,0) &= 0 \\ V(i,j) &= V(i-1,j), if t_i > j \\ V(i,j) &= max(v_i + V(i-1,j-t_i), V(i-1,j)), otherwise \\ \text{def student\_questions(v, t, X)} \\ &= \text{v.length} \\ &= \text{let V[0..n][0..X] be filled with 0's} \\ &= \text{for i = 1 to n} \\ &= \text{for j ! 1 to X} \\ &= \text{if t[i] > j} \\ &= \text{v[i][j] = V[i-1][j]} \\ &= \text{else} \end{split}
```

Due to the initialization of  ${\tt V}$  and the double nested for loops we get a run-time of  $\Theta(n\cdot X).$ 

# Exercise 3

3.1