

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re: Bao et al. Confirmation No.:
Appl. No.: Not Assigned
Filed: Concurrently Herewith
For: SCLEROTINIA-INDUCIBLE GENES AND PROMOTERS AND THEIR USES

STATEMENT IN SUPPORT OF FILING A
SEQUENCE LISTING UNDER 37 CFR § 1.821(f)

Commissioner for Patents
Washington, DC 20231

Sir:

I hereby state that the content of the paper and computer readable copies of the Sequence Listing, submitted concurrently herewith in accordance with 37 CFR § 1.821(c) and (e), are the same.

Respectfully submitted,

Kathryn L. Coulter
Agent for Applicant
Registration No. 45,889

Customer No. 00826
Alston & Bird LLP
Bank of America Plaza
101 South Tryon Street, Suite 4000
Charlotte, NC 28280-4000
Tel Raleigh Office (919) 862-2200
Fax Raleigh Office (919) 862-2260

"Express Mail" Mailing Label Number EL868637248US
Date of Deposit: August 7, 2001

I hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 on the date indicated above and is addressed to Box Patent Application, Commissioner for Patents, Washington, DC 20231.

Nora C. Martinez

SEQUENCE LISTING

(11) Bao, Zhongmeng
Lu, Guihua

•120• Sclerotinia-inducible Genes and Promoters and Their Uses

(130) · 35713/234631

<150> US 60/224,603

151 2000-08-11

160 200

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 1271

<212> DNA

<213> *Helianthus annuus*

522(1)3

<221> CDS

$\langle \bar{c} c \rangle = 2 > \quad (1)$

Autumn

Met Glu Phe Leu Lys Ala Pro Thr Leu Leu Leu Val Ile Phe Ser Leu
1 5 10 15

13

gac att tgt agt oct ata agc gcc caa aac aaa ggg ggt tat tgg oct
 Ala Ile Cys Ser Pro Ile Ser Ala Gln Asn Lys Gly Gly Tyr Trp Pro
 20 25 30

四

tca tgg gcc caa gat tti ttg cca cca tcc aat att caa acc gcg tat	Ser Trp Ala Gln Asp Phe Leu Pro Pro Ser Asn Ile Gln Thr Ala Tyr	
35	40	45

141

ttc act cat gtc tat tat gct ttt ctc tcc cct aac aat gtc aca ttc
 Phe Thr His Val Tyr Tyr Ala Phe Leu Ser Pro Asn Asn Val Thr Phe
 50 55 60

192

caa ttc gac gtc cac cgg aca act gcg tct gcg ctc aat agc ttc aac
 Gln Phe Asp Val His Arg Thr Thr Ala Ser Ala Leu Asn Ser Phe Asn
 65 70 75 80

240

```

acc gcc ctt cac gga aag aat cca cct gtc aag acg ttg ttt tcc atc
Thr Ala Leu His Gly Lys Asn Pro Pro Val Lys Thr Leu Phe Ser Ile
          85           90           95

```

283

```

ggc ggc tcc gct ggc gta aaa caa ctc ttt tcc aag ttg gcc tcc
Gly Gly Ser Ala Gly Val Lys Glu Leu Phe Ser Lys Leu Ala Ser
    100          105          110

```

335

ags cct ggc tgg agg gcc gct ttt atc cgt tgg act ata caa gtg qcg	384
Ser Pro Gly Ser Arg Ala Ala Phe Ile Arg Ser Thr Ile Gln Val Ala	
115 120 125	
cgg aac tat tac ttt gat gga gct gac ttg gat tgg gaa tat cct gaa	432
Arg Asn Tyr Tyr Phe Asp Gly Ala Asp Leu Asp Trp Glu Tyr Pro Glu	
130 135 140	
acc caa acc gat atg aac aac ttt gga ctc ttg ctt gac gag tgg cgt	480
Thr Gln Thr Asp Met Asn Asn Phe Gly Leu Leu Asp Glu Trp Arg	
145 150 155 160	
gtg gcg gtc aac aat gaa gcc aca tca act ggt aag cca cga ctt ctt	516
Val Ala Val Asn Asn Glu Ala Thr Ser Thr Gly Lys Pro Arg Leu Leu	
165 170 175	
ctt tca gcc gcc act cgt cat gag cca gaa gtt aca gac aat gga gtt	576
Leu Ser Ala Ala Thr Arg His Glu Pro Glu Val Arg Asp Asn Gly Val	
180 185 190	
gca aag tat cca gtg gca tcc ata aat aag aat ttg gat ggg ata aat	624
Ala Lys Tyr Pro Val Ala Ser Ile Asn Lys Asn Leu Asp Gly Ile Asn	
195 200 205	
gca atg tgt tat gat tat cac ggg cca ttg act ccc gat gca act ggg	672
Ala Met Cys Tyr Asp Tyr His Glu Pro Trp Thr Pro Asp Ala Thr Gly	
210 215 220	
gcc cca gcc gcg tta tat aat cca aat ggc aat ctt aca acc agt aac	720
Ala Pro Ala Ala Leu Tyr Asn Pro Asn Gly Ser Leu Ser Thr Ser Asn	
225 230 235 240	
ggg cta caa tca tgg atc agc gct ggg atc cia agg caa aag ttg gtg	766
Gly Leu Gln Ser Trp Ile Ser Ala Gly Ile Gln Arg Gln Lys Leu Val	
245 250 255	
atg ggc atg cca tta tat ggt tgg aca tgg aaa cta aag aat cca tct	816
Met Gly Met Pro Leu Tyr Gly Trp Thr Trp Lys Leu Lys Asn Pro Ser	
260 265 270	
gta aat ggt att ggg gct cca gct gcg ggt ata gca ccc ggt aat gag	864
Val Asn Gly Ile Gly Ala Pro Ala Ala Gly Ile Gly Pro Gly Asn Glu	
275 280 285	
gga gca atg ctt tac tca gaa gtg caa caa ttc aat gcc cia aat aac	912
Gly Ala Met Leu Tyr Ser Glu Val Gln Gln Phe Asn Ala Gln Asn Asn	
290 295 300	
gcc agg gtg gtt tat gac aca caa acc gta tct tat tat tat tac tca	960
Ala Arg Val Val Tyr Asp Thr Gln Thr Val Ser Tyr Tyr Ser Tyr Ser	
305 310 315 320	
gga acg act tgg att gga tat gac gat gtt aat tca gta cag aca aag	1005
Gly Thr Thr Trp Ile Gly Tyr Asp Asp Val Asn Ser Val Gln Arg Lys	
325 330 335	

gta caa tat gca aaa tca ctt aac ata gga gga tat ttc ttt tgg aca		1056
Val Gln Tyr Ala Lys Ser Leu Asn Ile Gly Gly Tyr Phe Phe Trp Thr		
340	345	350
gcc gtc ggc gat caa gat tgg aaa atc tag cga cta get tag tag aca		1104
Ala Val Gly Asp Gln Asp Trp Lys Ile Ser Arg Leu Ala Ser Gln Thr		
355	360	365
tgg act gct t gaaaatcaat ggaggacaag tgaacttagat gaatgaaatt		1154
Trp Thr Ala		
370		
aaataaaaag attatgtta ctgtgtgtat tcatgttctt taataaaatat tccagtttgc		1214
tttgtaaagt taataaataa tacacaacca gatgtgttaa aaaaaaaaaa aaaaaaa		1271
<C10> 2		
<C11> 371		
<C12> PRT		
<C13> Helianthus annuus		
<400> 2		
Met Glu Phe Leu Lys Ala Pro Thr Leu Leu Val Ile Phe Ser Leu		
1 5 10 15		
Ala Ile Cys Ser Pro Ile Ser Ala Gln Asn Lys Gly Gly Tyr Trp Pro		
20 25 30		
Ser Trp Ala Gln Asp Phe Leu Pro Pro Ser Asn Ile Gln Thr Ala Tyr		
35 40 45		
Phe Thr His Val Tyr Tyr Ala Phe Leu Ser Pro Asn Asn Val Thr Phe		
50 55 60		
Gln Phe Asp Val His Arg Thr Thr Ala Ser Ala Leu Asn Ser Phe Asn		
65 70 75 80		
Thr Ala Leu His Gly Lys Asn Pro Pro Val Lys Thr Leu Phe Ser Ile		
85 90 95		
Gly Gly Gly Ser Ala Gly Val Lys Gln Leu Phe Ser Lys Leu Ala Ser		
100 105 110		
Ser Pro Gly Ser Arg Ala Ala Phe Ile Arg Ser Thr Ile Gln Val Ala		
115 120 125		
Arg Asn Tyr Tyr Phe Asp Gly Ala Asp Leu Asp Trp Glu Tyr Pro Glu		
130 135 140		
Thr Gln Thr Asp Met Asn Asn Phe Gly Leu Leu Asp Glu Trp Arg		
145 150 155 160		
Val Ala Val Asn Asn Glu Ala Thr Ser Thr Gly Lys Pro Arg Leu Leu		
165 170 175		
Leu Ser Ala Ala Thr Arg His Gln Pro Glu Val Arg Asp Asn Gly Val		
180 185 190		
Ala Lys Tyr Pro Val Ala Ser Ile Asn Lys Asn Leu Asp Gly Ile Asn		
195 200 205		
Ala Met Cys Tyr Asp Tyr His Gly Pro Trp Thr Pro Asp Ala Thr Gly		
210 215 220		
Ala Pro Ala Ala Leu Tyr Asn Pro Asn Gly Ser Leu Ser Thr Ser Asn		
225 230 235 240		
Gly Leu Gln Ser Trp Ile Ser Ala Gly Ile Gln Arg Gln Lys Leu Val		
245 250 255		
Met Gly Met Pro Leu Tyr Gly Trp Thr Trp Lys Leu Lys Asn Pro Ser		
260 265 270		
Val Asn Gly Ile Gly Ala Pro Ala Ala Gly Ile Gly Pro Gly Asn Glu		

275	280	285
Gly Ala Met Leu Tyr Ser Glu Val Gln Gln Phe Asn Ala Gln Asn Asn		
290	295	300
Ala Arg Val Val Tyr Asp Thr Gln Thr Val Ser Tyr Tyr Ser Tyr Ser		
305	310	315
Gly Thr Thr Trp Ile Gly Tyr Asp Asp Val Asn Ser Val Gln Arg Lys		
325	330	335
Val Gln Tyr Ala Lys Ser Leu Asn Ile Gly Gly Tyr Phe Phe Trp Thr		
340	345	350
Ala Val Gly Asp Gln Asp Trp Lys Ile Ser Arg Leu Ala Ser Gln Thr		
355	360	365
Trp Thr Ala		
370		

<210> 3
<211> 475
<212> DNA
<213> Helianthus annuus

<220>
<221> CDS
<222> (34)...(325)

<400> 3					
aacctctcta accactcctt satccccctcc aaa atg aag gca ccc acc atg atc					54
Met Lys Ala Pro Thr Met Ile					
1		5			
tgc ttt ctg gtt gca gtt att gca gcc atg atg gtc ttt atg ggc caa					102
Cys Phe Leu Val Ala Val Ile Ala Ala Met Met Val Phe Met Gly Gln					
10		20			
ctc cct gca gcc act ggc gtg act tgc aac tac atg gag ctc gtg cca					150
Leu Pro Ala Ala Thr Ala Val Thr Cys Asn Tyr Met Glu Leu Val Pro					
25		30	35		
tgt gct ggt ggc atc tca tcc tcc tcc cca tcc tcc tcc tcc tcc tcc					198
Cys Ala Gly Ala Ile Ser Ser Gln Pro Pro Ser Gly Ser Cys Cys					
40		45	50	55	
aat aag gta agg gag cag agg ccc tcc tcc gga tac ctc cgg aac					246
Ser Lys Val Arg Glu Gln Arg Pro Cys Phe Cys Gly Tyr Leu Arg Asn					
60		65	70		
cgg agt ctc cgt cag ttt gtc aca gct gca gcc cag aag att gct					294
Pro Ser Leu Arg Gln Phe Val Ser Pro Ala Ala Gln Lys Ile Ala					
75		80	85		
agg cag tgt gga gtt agt att cca cag tcc t agaaataatg ttttgttcc					345
Ser Gln Cys Gly Val Ser Ile Pro Gln Cys					
90		95			
aacttatcat aatatcagat atttggaaatat ttgtggaaataa agtgttgacat gcaacttac					405
tactgtatgtta aggtgtttgt ttgtgtttgtt aatgaaacaa aggttagttgg tgggtgtjcaa					465
aaaaaaaaaaaa					475

<210> 4
<211> 97
<212> PRT
<213> Helianthus annuus

<400> 4
Met Lys Ala Pro Thr Met Ile Cys Phe Leu Val Ala Val Ile Ala Ala
1 5 10 15
Met Met Val Phe Met Gly Gln Leu Pro Ala Ala Thr Ala Val Thr Cys
20 25 30
Asn Tyr Met Glu Leu Val Pro Cys Ala Gly Ala Ile Ser Ser Ser Gln
35 40 45
Pro Pro Ser Gly Ser Cys Cys Ser Lys Val Arg Glu Gln Arg Pro Cys
50 55 60
Phe Cys Gly Tyr Leu Arg Asn Pro Ser Leu Arg Gln Phe Val Ser Pro
65 70 75 80
Ala Ala Ala Gln Lys Ile Ala Ser Gln Cys Gly Val Ser Ile Pro Gln
85 90 95
Cys

<210> 5
<211> 349
<212> DNA
<213> Helianthus annuus

<400> 5
cgtcggtttcg ctggagggg gataaaaagat aatatacaga tcaccattca tcacgcttaa 60
aatttccttc tttagtcaat tttgtaaattt ttgttaattat ttgtgttagact ataaactgtta 120
ttgttttttgc tatatttttc ttgttaattt gcttgttatt ccagtatata atgatatcaa 180
aacttcctaa tcaagcagag agaggttccct gatttacatc acggctgcc 6 240
ctaagttaac ttcatccatt aattttgtaa acgtgaaagg aaatttggc attttctatg 300
cccgaaatttgc ctttgttagtt cacaaaatata catataaaac cacggaaatttgc ccgttcttgt 360
tsacagaaaaa aatgaatgaa gttAACCCAG tggactaaaa tggcaacgat gaaaccattt 420
tggatccaca ggcgaaaaaaat gaaacttttg gactaaactg ggcggaaaaata aaaaattttgg 480
actaaatcac atgaactaaa atggctttta actaaatttt aataaccgtt ttaattttat 540
aaaggaaaaa taaaactttac aaaaagcata gtttgtttat ttatataaaga ttaaaggttac 600
ttggcgtttc aaacatatgt taatagatga atcaagatgc atgtacaact ctatgttttag 660
ataagggttac tagatgaata tgagtttagt atctataatgt ctataacttag aaagttcaaa 720
gtcaatgtatt ttgtattgtat actgtttgtt gttgaattca taaaagttt gaataactgtt 780
ttgtatgttggaa ttcatasaaag ctggagtata agagatcatg ggatttcccg agtattacaa 840
cacacgttg 849

<210> 6
<211> 1089
<212> DNA
<213> Helianthus annuus

<400> 6
atcttactac ctcaaaacttt atcttaattca tcaacacaaac ggaggtttgg ttatatttgc 60
ttgggtccatc aaaaaggaca aaaatgcact tcatcttaac aaaaaaaaaa aaaaaaaaaa 120
ctaagttagt gattttggatg aaaatgacaa acggac aaaaatgcac ttcatcttaa 180
aaaaaaaaa actgagtttag taatttggat gaaaacgaca aaaaaagacaa aactgaaag 240
attcaaatgc acaaaaaaaaat tattttggat gaaacacgca tatatgtca aacccaaagag 300

acgattttaa tattttactc gaaattttaa aagaagttaa tattagacag gaatcatgtt	360
agagacatat gccaaaccta ttaattttct aagttcaaac aaaaatctat tatttttcc	420
aaaccacacgc tataatttat gtaattttat ctctataaat ggacaaaagaa taaaagttt	480
ctacaaacgg taacaacaag gaagctaccc tcgtttgaa gatagtttaag acaataattc	540
aactacttcc taactactt tctcacaaga cttaattttc cacacacatc tttatgacta	600
aatctaccat atgtgatggg ccaagtcaacc attaatatgt ctcaaccac aagtccgtaa	660
accggaccat cagccacttg gccacggcg cagcttagtq gaaacgggg gtgcacaacc	720
cctctaattgt ttccgtttaga aytgcaaaaat ttacgattt tcgtccgaaa atttcgccc	780
accagaacct tttagtcaaac ttccgcccactg cactttgccc aatgttctat taaggttttt	840
attttatttt tattattttt tataacgatt caaaaaattt ttggacata tacatctgac	900
atgcgttata tgttagatata gaatttgaac tcgcaacctt ttaattatac gatacatcac	960
cacstagatt tgaattctca ttggggccaa tggctataa ataatgcacc aacccttcag	1020
ttaaacacac caccactaca cttcatacaa caaaacctct ctaaccactc cttaatcccc	1080
tccaaaaatg	1089

<210> 7
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 7
ggtactccac

10

<210> 8
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 8
gaccgcgttg

10

<210> 9
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 9
aaccacaaaca aacacacctac atcagt

26

<210> 10
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 10	
tcgggttgtt atgttgtgtg gaattt	26
<210> 11	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligonucleotide primer	
<400> 11	
cacatgtttt tcaactgtca ccaggag	28
<210> 12	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligonucleotide primer	
<400> 12	
gcgatataagt tgggttaacgc cagggt	26
<210> 13	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligonucleotide primer	
<400> 13	
tcgggttgtt atgttgtgtg gaattt	26
<210> 14	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligonucleotide primer	
<400> 14	
caaggcgtcc atgtctggaa agcttagtc	28
<210> 15	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligonucleotide primer	
<400> 15	

gtaatacgtac tcactatagg gc	22
<210> 16	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligonucleotide primer	
<400> 16	19
actatacggtt acggcttggt	
<210> 17	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligonucleotide primer	
<400> 17	26
caggggatgtt gcccataaaag accatcat	
<210> 18	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<210>	
<213> Oligonucleotide primer	
<400> 18	22
gttaatgttttc tcactatagg gc	
<210> 19	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligonucleotide primer	
<400> 19	19
actatacggtt acggcttggt	
<210> 20	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligonucleotide primer	
<400> 20	26
gggggtttttt aggactacaa atggcaag	