Sekilas tentang Logaritma

Z. Nayaka Athadiansyah

2 Maret 2022

Kita bisa mulai dengan mendefinisikan logaritma sebagai kebalikan/invers dari operasi perpangkatan:

$$y = a^x \Leftrightarrow \log_a(y) = x$$

dengan a berperan sebagai basis, x sebagai hasil logaritma, dan y sebagai numerus atau anti-logaritma. a, x, dan y adalah bilangan real, dengan a > 0, $a \ne 1$, dan y > 0.

Secara intuitif, $\log_a(y)$ bisa diartikan seperti ini: "a dipangkatkan berapa agar hasilnya jadi y?" atau "y itu a pangkat berapa?"

 $\log_5(25)$, misalnya, menanyakan dengan angka berapakah 5 harus dipangkatkan agar menjadi 25. Tentunya jawabannya adalah 2, sebab $5^2=25$. Kita bisa menuliskan $\log_5(25)=2$.

Sifat 1. $\log_a(1) = 0$

Bukti: $a^0 = 1$ asalkan $a \neq 0$. Menurut definisi logaritma, jika $1 = a^0$ maka $\log_a(1) = 0$.

NB: Secara intuitif, kita pun bisa menanyakan, "a dipangkatkan berapa supaya jadi 1?" Tentunya jawabannya adalah 0.

Sifat 2. $\log_a(a) = 1$

Bukti: $a=a^1$. Secara definisi, jika $a=a^1$, maka $\log_a(a)=1$. \blacksquare NB: Ini juga cukup intuitif: "a pangkat berapa supaya jadi a?" Jelas bahwa jawabannya adalah 1.

Sifat 3.
$$a^{\log_a(x)} = x$$
 dan $\log_a(a^p) = p$

Bukti: Misalkan $p = \log_a(x)$. Maka, $a^p = x$.

Substitusikan $p = \log_a(x)$ ke a^p , sehingga $a^p = a^{\log_a(x)} = x$. \blacksquare Sebaliknya, mensubstitusikan $x = a^p$ ke dalam $\log_a(x) = p$ akan memberikan kita $\log_a(a^p) = p$. \blacksquare

Sifat 4. $\log_a(x) + \log_a(y) = \log_a(xy)$

dengan x dan y merupakan bilangan real positif

Bukti: Berdasarkan sifat 3, $x = a^{\log_a(x)}$ dan $y = a^{\log_a(y)}$

$$xy = (a^{\log_a(x)})(a^{\log_a(y)})$$

$$xy = a^{\log_a(x) + \log_a(y)}$$

$$\log_a(xy) = \log_a(a^{\log_a(x) + \log_a(y)})$$

$$\log_a(xy) = \log_a(x) + \log_a(y)$$

Sifat 5. $\log_a x - \log_a y = \log_a(\frac{x}{y})$

dengan x dan y merupakan bilangan real positif

Bukti: Seperti sebelumnya, $x = a^{\log_a(x)} \operatorname{dan} y = a^{\log_a(y)}$

$$\frac{x}{y} = \frac{a^{\log_a(x)}}{a^{\log_a(y)}}$$

$$\frac{x}{y} = a^{\log_a(x) - \log_a(y)}$$

$$\log_a(\frac{x}{y}) = \log_a(a^{\log_a(x) - \log_a(y)})$$

$$\log_a(\frac{x}{y}) = \log_a(x) - \log_a(y)$$

Sifat 6. $\log_a(x^n) = \log_a(x) \cdot n$

dengan n merupakan sembarang bilangan real

Bukti: Lagi, kita gunakan sifat 3.

$$x = a^{\log_a(x)}$$

$$x^n = (a^{\log_a(x)})^n$$

$$x^n = a^{\log_a(x) \cdot n}$$

$$x^n = \log_a(a^{\log_a(x) \cdot n})$$

Sifat 7.
$$\log_{a^m}(x) = \frac{\log_a(x)}{m}$$

dengan m adalah sembarang bilangan real

Bukti: Misalkan $x = a^{mn}$ sehingga

$$\log_a(x) = \log_a(a^{mn})$$

$$\log_a(x) = mn$$

$$\frac{\log_a(x)}{m} = n$$

Lalu, karena
$$x = a^{mn} = (a^m)^n, maka$$

$$\log_{a^m}(x) = \log_{a^m}[(a^m)^n]$$

$$\log_{a^m}(x) = n$$

$$\log_{a^m}(x) = \frac{\log_a(x)}{m}$$

Sifat 8.
$$\log_a(x) = \frac{\log_p(x)}{\log_n(a)}$$

dengan p adalah sembarang bilangan real positif selain 1

Bukti: Untuk sekali lagi, kita gunakan sifat 3.

$$x = a^{\log_a(x)}$$

$$\log_p(x) = \log_p(a^{\log_a(x)})$$

$$\log_p(x) = \log_p(a) \cdot \log_a(x)$$

$$\log_a(x) = \frac{\log_p(x)}{\log_p(a)}$$

NB: Sifat ini umumnya disebut $change\ of\ base\ rule\ (aturan\ pergantian\ basis)$ Tadinya, a adalah basis, tapi kemudian basisnya berganti menjadi p.

Sifat 9.
$$\log_a(x) = \frac{1}{\log_x(a)}$$

Bukti: Kita bisa gunakan sifat sebelumnya untuk mengganti basisnya menjadi x, sehingga $\log_a(x) = \frac{\log_x(x)}{\log_x(a)} = \frac{1}{\log_x(a)}$

Sifat 10. $\log_a(b) \cdot \log_b(c) = \log_a(c)$

dengan a, b, dan c adalah sembarang bilangan real positif

Bukti: Lagi, kita gunakan sifat 8, sehingga

$$\log_a(b) \cdot \log_b(c) = \frac{\log_p(b)}{\log_p(a)} \cdot \frac{\log_p(c)}{\log_p(b)}$$

$$\log_a(b) \cdot \log_b(c) = \frac{\log_p(c)}{\log_p(a)}$$

Lalu, dengan me-reverse pergantian basis

$$\log_a(b) \cdot \log_b(c) = \log_a(c)$$

Fungsi Logaritma itu Injektif

Andaikata kita punya persamaan $\log_a(b) = \log_a(c)$. Apa yang bisa disimpulkan dari sini?

Misalkan $log_a(b) = p$. Karena $log_a(b) = log_a(c)$, maka akibatnya $log_a(c) = p$ juga.

Sehingga, secara definisi logaritma, $a^p = b$ dan $a^p = c$. Karena b dan c sama-sama sama dengan a^p , maka keduanya sama. Jadi, b = c.

Kesimpulannya, ketika dua hasil logaritma adalah sama, sedangkan basisnya pun juga sama, maka numerusnya pun sama. Ketika $\log_a(b) = \log_a(c)$, maka b=c.

Dengan kata lain, fungsi logaritma itu fungsi injektif atau satu-satu, di mana tiap anggota dari daerah asal dipasangkan dengan tepat satu anggota pada daerah hasil.

Catatan

- $\bullet \ \log_a(y)$ lebih sering ditulis sebagai $^a \log(y)$ di Indonesia
- $\bullet \, \log_a(y)$ biasa dibaca "log basis adari y" atau "log y dengan basis/bilangan pokoka"
- $\log_a^n(x)$ maksudnya $(\log_a(x))^n$. Jadi, $\log_a^2(x) = (\log_a(x))^2$
- $\ln x = \log_e x$, dengan e adalah bilangan Euler
- Logaritma dengan basis 10 biasanya ditulis tanpa basisnya: $\log_{10} x = \log x$