Are Mutants a Valid Substitute for Real Faults in Software Testing?

René Just*, Darioush Jalali*, Laura Inozemtseva[†], Michael D. Ernst*, Reid Holmes[†], Gordon Fraser[‡]

*University of Washington
†University of Waterloo
‡University of Sheffield

November 20, 2014

How good is my test suite?

A good test suite detects real faults

Test quality metric is necessary in many areas:

► Test generation, minimization, prioritization, ...

How good is my test suite?

A good test suite detects real faults

Test quality metric is necessary in many areas:

► Test generation, minimization, prioritization, ...

Problem: Set of real faults is unknowable

Solution: Use a **proxy metric** for test quality

- Code coverage ratio
- Mutant detection rate

How good is my test suite?

A good test suite detects real faults

Test quality metric is necessary in many areas:

Test generation, minimization, prioritization, ...

Problem: Set of real faults is unknowable

Solution: Use a **proxy metric** for test quality

- Code coverage ratio
- Mutant detection rate

Mutant detection rate \approx Real fault detection rate?

Program

Test suite


```
public float avg(float[] data) {
'
                    float sum = 0;
Program
                    for (float num : data) {
                     sum += num;
                    return sum / data.length;
Generate
mutants
                   public float avg(float[] data) {\( \textsquare{D} \)
                    float sum = 1:
                    for (float num : data) {
                     sum += num;
Mutants
                    return sum / data.length;
```

Each mutant contains one small syntactic change

```
public float avg(float[] data) {
'
                     float sum = 0:
Program
                     for (float num : data) {
                      sum += num;
                     return sum / data.length;
Generate
mutants
                    public float avg(float[] data) {<sup>f</sup>
                      public float avg(float[] data) {\( \tilde{\tilde{L}} \)
                       float sum = 0;
                       for (float num : data) {
Mutants
                       return sum / data.length;
```

```
public float avg(float[] data) {
'
                     float sum = 0:
Program
                     for (float num : data) {
                      sum += num;
                     return sum / data.length;
Generate
mutants
                    public float avg(float[] data) {<sup>f</sup>
                      public float avg(float[] data) {\( \tilde{\tilde{L}} \)
                         public float avg(float[] data) {<sup>L</sup>
                          float sum = 0:
Mutants
                          for (float num : data) {
                           sum += num:
                          return sum * data.length;
```


Mutation analysis: How it is used

Mutation analysis: How it is used

Mutation analysis: How it is used*

Mutation analysis: How it is used*

ISSTA'961

ICSE'05²

FSE'14

¹ Daran and Thévenod-Fosse, ISSTA'96.

²Andrews et al., *ICSE'05*.

ISSTA'96¹ ICSE'05² **FSE'14**KLOC 1 6 **321**

¹ Daran and Thévenod-Fosse, ISSTA'96.

²Andrews et al., *ICSE'05*.

	ISSTA'96 ¹	ICSE'05 ²	FSE'14
KLOC	1	6	321
Faults	12	38	357

¹Daran and Thévenod-Fosse, ISSTA'96.

²Andrews et al., ICSE'05.

	ISSTA'96 ¹	ICSE'05 ²	FSE'14
KLOC	1	6	321
Faults	12	38	357
Mutants	24	1,100	230,000

¹ Daran and Thévenod-Fosse, ISSTA'96.

²Andrews et al., *ICSE'05*.

	ISSTA'96 ¹	ICSE'05 ²	FSE'14
KLOC	1	6	321
Faults	12	38	357
Mutants	24	1,100	230,000
Tests	generated	generated	generated & developer-written

¹Daran and Thévenod-Fosse, ISSTA'96.

²Andrews et al., *ICSE'05*.

	ISSTA'96 ¹	ICSE'05 ²	FSE'14
KLOC	1	6	321
Faults	12	38	357
Mutants	24	1,100	230,000
Tests	generated	generated	generated & developer-written
	_	_	Effect of code coverage considered
	_	_	Qualitative study of real faults

¹ Daran and Thévenod-Fosse, ISSTA'96.

²Andrews et al., *ICSE'05*.

Are mutants a valid substitute for real faults?

Research Questions

- 1. Do stronger test suites detect more mutants?
- 2. What types of real faults are not represented by mutants?
- **3.** Is mutant detection correlated with fault detection?

Methodology: Overview

Methodology: Overview

Methodology: Overview

Reproducible and isolated real faults

Reproducible and isolated real faults

Real faults from version control history

Subject programs

5 open source Java programs

- Different application domains
- Version control and bug tracking systems
- Comprehensive test suites

	KLOC	Test KLOC	Tests
JFreeChart	96	50	2,205
Closure Compiler	90	83	7,927
Commons Math	85	19	3,602
Joda Time	28	53	4,130
Commons Lang	22	6	2,245
Total	321	211	20,109

Real faults

357 reproducible and isolated real faults

	Candidates	Compilable	Reproducible	Isolated
JFreeChart	80	62	28	26
Closure Compiler	316	227	179	133
Commons Math	435	304	132	106
Joda Time	75	57	29	27
Commons Lang	273	186	69	65
Total	1,179	836	437	357

Real faults

357 reproducible and isolated real faults

	Candidates	Compilable	Reproducible	Isolated
JFreeChart	80	62	28	26
Closure Compiler	316	227	179	133
Commons Math	435	304	132	106
Joda Time	75	57	29	27
Commons Lang	273	186	69	65
Total	1,179	836	437	357

Real faults

357 reproducible and isolated real faults

	Candidates	Compilable	Reproducible	Isolated
JFreeChart	80	62	28	26
Closure Compiler	316	227	179	133
Commons Math	435	304	132	106
Joda Time	75	57	29	27
Commons Lang	273	186	69	65
Total	1,179	836	437	357

Real faults

357 reproducible and isolated real faults

	Candidates	Compilable	Reproducible	Isolated
JFreeChart	80	62	28	26
Closure Compiler	316	227	179	133
Commons Math	435	304	132	106
Joda Time	75	57	29	27
Commons Lang	273	186	69	65
Total	1,179	836	437	357

Real faults

357 reproducible and isolated real faults

	Candidates	Compilable	Reproducible	Isolated
JFreeChart	80	62	28	26
Closure Compiler	316	227	179	133
Commons Math	435	304	132	106
Joda Time	75	57	29	27
Commons Lang	273	186	69	65
Total	1,179	836	437	357

Methodology: Overview

Mutants

230,000 mutants generated by Major mutation framework

Mutation operators^{1,2}

- Replace operators
- Replace literals
- Delete statements
- Modify branch conditions

¹Namin et al., ICSE'08.

²Jia and Harman, TSE'11.

Methodology: Overview

Obtaining related test suites T_{bug} and T_{fix}

Source code V_{fix}

Test suite T_{bug}

Test suite T_{fix}

Obtaining related test suites T_{bug} and T_{fix}

Obtaining related test suites T_{bug} and T_{fix}

Obtaining related test suites T_{bug} and T_{fix}

Test suite T_{n-1}

Test suite T_n

We cannot directly use T_{n-1} and T_n from version control

- ► T_{n-1} and T_n might include failing tests
- ► T_n might include additional tests (unrelated to the fault)

Obtaining related test suites T_{bug} and T_{fix}

We cannot directly use T_{n-1} and T_n from version control

- $ightharpoonup T_{n-1}$ and T_n might include failing tests
- ► T_n might include additional tests (unrelated to the fault)

Obtaining related test suites T_{bug} and T_{fix}

We cannot directly use T_{n-1} and T_n from version control

- ► T_{n-1} and T_n might include failing tests
- ► T_n might include additional tests (unrelated to the fault)

Obtaining related test suites T_{bug} and T_{fix}

Automatically-generated test suites

EvoSuite, Randoop, and JCrasher

Multiple configurations and test objectives

Workflow

- 1. Generate tests for fixed program version
- 2. Automatically remove failing tests

Test suites: Summary

Developer-written test suites

- Related test suite pairs T_{bug} and T_{fix}
- ► Average statement coverage of T_{bug}: 90%

Automatically-generated test suites

- ▶ 35,141 test suites
- Average statement coverage: 55%

Methodology: Overview

Evaluation: Overview

Research Questions

- 1. Do stronger test suites detect more mutants?
- 2. What types of real faults are not represented by mutants?
- 3. Is mutant detection correlated with fault detection?

RQ1: Do stronger test suites detect more mutants?

Setup

- ▶ Developer-written test suite pairs T_{bug} and T_{fix}
- ▶ Does T_{fix} have a higher mutant detection rate than T_{bug} ?

RQ1: Do stronger test suites detect more mutants?

Setup

- ▶ Developer-written test suite pairs T_{bug} and T_{fix}
- ▶ Does T_{fix} have a higher mutant detection rate than T_{bug} ?

Mutant detection rate increased for 73% of faults

- Mutant detection rate increased
- Mutant detection rate unchanged

RQ1: Do stronger test suites detect more mutants?

Comparison to code coverage

Setup

- Qualitative study for 27% of faults
- Weakness or general limitation?

- Mutant detection rate increased
- Mutant detection rate unchanged

Setup

- Qualitative study for 27% of faults
- Weakness or general limitation?

- Mutant detection rate increased
- Weak or missing mutation operator
- No such mutation operator

Setup

- Qualitative study for 27% of faults
- Weakness or general limitation?

Results

- Mutant detection rate increased
- Weak or missing mutation operator
- No such mutation operator

Buggy version

```
switch (x) {
  case 1:
    ...
  case 2:
  ...
```

```
switch (x) {
  case 1:
    ...
    return false;
  case 2:
    ...
```

Setup

- Qualitative study for 27% of faults
- Weakness or general limitation?

Results

Mutation operator: Delete all returns

- Mutant detection rate increased
- Weak or missing mutation operator
- No such mutation operator

Buggy version

```
switch (x) {
  case 1:
    ...
  case 2:
  ...
```

```
switch (x) {
  case 1:
    ...
    return false;
  case 2:
    ...
```

Setup

- Qualitative study for 27% of faults
- Weakness or general limitation?

Results

- Mutant detection rate increased
- Weak or missing mutation operator
- No such mutation operator

Buggy version

```
if (isNumZero) {
  return INF;
}
return NaN;
...
```


Setup

- Qualitative study for 27% of faults
- Weakness or general limitation?

Results

Mutation operator: Insert ???

- Mutant detection rate increased
- Weak or missing mutation operator
- No such mutation operator

Buggy version

oduction Methodology Results Conclus

RQ3: Is mutant detection correlated with fault detection?

Setup

- 35,141 automatically-generated test suites
- How well does mutant detection predict fault detection?

RQ3: Is mutant detection correlated with fault detection?

Setup

- 35,141 automatically-generated test suites
- How well does mutant detection predict fault detection?

RQ3: Is mutant detection correlated with fault detection?

Setup

- 35,141 automatically-generated test suites
- How well does mutant detection predict fault detection?

Setup

- 35,141 automatically-generated test suites
- How well does mutant detection predict fault detection?

Setup

- 35,141 automatically-generated test suites
- How well does mutant detection predict fault detection?

Mutants are a valid substitute for most real faults

Mutant detection is positively correlated with fault detection

Mutant detection vs. fault detection

Mutation-based test generation is promising

Mutants are a valid substitute for most real faults

Mutant detection is positively correlated with fault detection

Mutation-based test generation is promising

Mutant detection is more sensitive to faults than coverage

Don't use code coverage for test suite minimization: You might miss up to 60% of real faults!

Mutants are a valid substitute for most real faults

Mutant detection is positively correlated with fault detection

Mutation-based test generation is promising

Mutant detection is more sensitive to faults than coverage

Don't use code coverage for test suite minimization: You might miss up to 60% of real faults!

17% of faults cannot be represented by any mutants

Mutation results do not generalize to those faults

http://defects4j.org

http://mutation-testing.org