PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7: C07C 217/52, 215/16, 215/76, 215/50, 217/82, 217/54, C07D 213/74, 309/14, A61K 31/135, 31/33

(11) International Publication Number:

WO 00/18723

(43) International Publication Date:

6 April 2000 (06.04.00)

(21) International Application Number:

PCT/US99/22123

A1

(22) International Filing Date:

23 September 1999 (23.09.99)

(30) Priority Data:

60/101,660

25 September 1998 (25.09.98)

(71) Applicant (for all designated States except US): MONSANTO COMPANY [US/US]; Corporate Patent Dept., P.O. Box 5110, Chicago, IL 60680 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SIKORSKI, James, A. [US/US]; 2313 East Royal Court, Des Peres, MO 63131 (US). DURLEY, Richard, C. [US/US]; 509 Princeton Gate Court, Chesterfield, MO 63017 (US). GRAPPERHAUS, Margaret, L. [US/US]; 518 Nancy Court, Troy, IL 62294 (US), MISCHKE, Deborah, A. [US/US]; 25 White River Lane, Defiance, MO 63341 (US). REINHARD, Emily, J. [US/US]; 1132 Wildemess Bluff Court, Chesterfield, MO 62005 (US). PARNAS, Barry, L. [US/US]; 7715 Blackberry Avenue, University City, MO 63130 (US). RUEPPEL, Melvin, L. [US/US]; 1904 Grassy Ridge Road, St. Louis, MO 63122 (US).

(74) Agents: KEANE, J., Timothy et al.; G.D. Searle & Co., Corporate Patent Dept., P.O. Box 5110, Chicago, IL 60680-5110

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: SUBSTITUTED N-ALIPHATIC-N-AROMATIC TERTIARY-HETEROALKYLAMINES USEFUL FOR INHIBITING CHOLESTERYL ESTER TRANSFER PROTEIN ACTIVITY

(57) Abstract

The invention relates to substituted N-Aliphatic-N-Aromatic tertiary-Heteroalkylamine compounds useful as inhibitors of cholesteryl ester transfer protein (CETP; plasma lipid transfer protein-I) and compounds, compositions and methods for treating atherosclerosis, dyslipidemia, and other coronary artery disease.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Мопасо	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	ТG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	ΙE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
', CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	Pľ	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

1

Substituted N-Aliphatic-N-Aromatic tertiary-Heteroalkylamines Useful for

Inhibiting Cholesteryl Ester Transfer Protein Activity

FIELD OF THE INVENTION

This invention is in the field of treating cardiovascular disease, and specifically relates to compounds, compositions and methods for treating atherosclerosis and other coronary artery disease. More particularly, the invention relates to substituted N-Aliphatic-N-Aromatic tertiary-Heteroalkylamine compounds that inhibit cholesteryl ester transfer protein (CETP), also known as plasma lipid transfer protein-I.

BACKGROUND OF THE INVENTION

15

20

25

30

35

10

Numerous studies have demonstrated that a low plasma concentration of high density lipoprotein (HDL) cholesterol is a powerful risk factor for the development of atherosclerosis (Barter and Rye, Atherosclerosis. 121, 1-12 (1996)). HDL is one of the major classes of lipoproteins that function in the transport of lipids through the blood. The major lipids found associated with HDL include cholesterol, cholesteryl ester, triglycerides, phospholipids and fatty acids. The other classes of lipoproteins found in the blood are low density lipoprotein (LDL) and very low density lipoprotein (VLDL). Since low levels of HDL cholesterol increase the risk of atherosclerosis, methods for elevating plasma HDL cholesterol would be therapeutically beneficial for the treatment of atherosclerosis and other diseases associated with accumulation of lipid in the blood vessels. These diseases include, but are not limited to, coronary heart disease, peripheral vascular disease, and stroke.

Atherosclerosis underlies most coronary artery disease (CAD), a major cause of morbidity and mortality in modern society. High LDL cholesterol (above 180 mg/dl) and low HDL cholesterol (below 35 mg/dl) have been shown to be important contributors to the development of atherosclerosis. Other diseases, such as peripheral vascular disease, stroke, and hypercholesterolaemia are negatively affected by adverse HDL/LDL ratios. Inhibition of CETP by the subject compounds is shown to effectively modify

25

30

plasma HDL/LDL ratios, and to check the progress and/or formation of these diseases.

CETP is a plasma protein that facilitates the movement of cholesteryl esters and triglycerides between the various lipoproteins in the blood (Tall, J. Lipid Res., 34, 1255-74 (1993)). The movement of cholesteryl ester from HDL to LDL by CETP has the effect of lowering HDL cholesterol. It therefore follows that inhibition of CETP should lead to elevation of plasma HDL cholesterol and lowering of plasma LDL cholesterol, thereby providing a therapeutically beneficial plasma lipid profile (McCarthy, Medicinal Res.

10 Revs., 13, 139-59 (1993); Sitori, Pharmac. Ther., 67,443-47 (1995)). This exact phenomenon was first demonstrated by Swenson et al., (J. Biol. Chem., 264, 14318 (1989)) with the use of a monoclonal antibody that specifically inhibited CETP. In rabbits, the antibody caused an elevation of the plasma HDL cholesterol and a decrease in LDL cholesterol. Son et al. (Biochim.

15 Biophys. Acta 795, 743-480 (1984)), Morton et al. (J. Lipid Res. 35, 836-847 (1994)) and Tollefson et al. (Am. J. Physiol., 255, (Endocrinol. Metab. 18, E894-E902 (1988))) describe proteins from human plasma that inhibit CETP. U.S. Patent 5,519,001, issued to Kushwaha et al., describes a 36' amino acid peptide derived from baboon apo C-1 that inhibits CETP activity.

20 Cho et al. (Biochim. Biophys. Acta 1391, 133-144 (1998)) describe a peptide from hog plasma that inhibits human CETP. Bonin et al. (J. Peptide Res., 51, 216-225 (1998)) disclose a decapeptide inhibitor of CETP. A depsipeptide fungal metabolite is disclosed as a CETP inhibitor by Hedge et al. in Bioorg. Med. Chem. Lett., 8, 1277-80 (1998).

There have been several reports of non-peptidic compounds that act as CETP inhibitors. Barrett et al. (J. Am. Chem. Soc., 188, 7863-63 (1996)) and Kuo et al. (J. Am. Chem. Soc., 117, 10629-34 (1995)) describe cyclopropane-containing CETP inhibitors. Pietzonka et al. (Bioorg. Med. Chem. Lett, 6, 1951-54 (1996)) describe phosphonate-containing analogs of cholesteryl ester as CETP inhibitors. Coval et al. (Bioorg. Med. Chem. Lett., 5, 605-610 (1995)) describe Wiedendiol-A and -B, and related sesquiterpene compounds as CETP inhibitors. Japanese Patent Application No. 10287662-A describes polycyclic, non-amine containing, polyhydroxylic natural compounds possessing CETP inhibition properties. Lee et al. (J. Antibiotics, 49, 693-96 (1996)) describe CETP inhibitors derived from an insect fungus.

35 Busch et al. (Lipids, 25, 216-220, (1990)) describe cholesteryl acetyl bromide

10

as a CETP inhibitor. Morton and Zilversmit (*J. Lipid Res.*, 35, 836-47 (1982)) describe that p-chloromercuriphenyl sulfonate. p-hydroxymercuribenzoate and ethyl mercurithiosalicylate inhibit CETP. (1996)) describe Connolly et al. (*Biochem. Biophys. Res. Comm.* 223, 42-47 (1996)) describe other cysteine modification reagents as CETP inhibitors. Xia et al. describe 1,3,5-triazines as CETP inhibitors (Bioorg. Med. Chem. Lett., 6, 919-22 (1996)). Bisgaier et al. (*Lipids*, 29, 811-8 (1994)) describe 4-phenyl-5-tridecyl-4H-1,2,4-triazole-thiol as a CETP inhibitor. Oomura et al. disclose non-peptidic tetracyclic and hexacyclic phenols as CETP inhibitors in Japanese Patent Application No. 10287662. In WO Patent Application No. 09914204. Sikorski describes 1,2,4-triazolylthiols useful as chlolesteryl ester transfer protein inhibitors.

Some substituted heteroalkylamine compounds are known. In European Patent Application No. 796846, Schmidt et al. describe 2-aryl-15 substituted pyridines as cholesteryl ester transfer protein inhibitors useful as cardiovascular agents. One substitutent at C3 of the pyridine ring can be an hydroxyalkyl group. In European Patent Application No. 801060, Dow and Wright describe heterocyclic derivatives substituted with an aldehyde addition product of an alkylamine to afford 1-hydroxy-1-amines. These are reported to be \(\beta \)-adrenergic receptor agonists useful for treating diabetes and other 20 disorders. In Great Britain Patent Application No. 2305665, Fisher et al. disclose 3-agonist secondary amino alcohol substituted pyridine derivatives useful for treating several disorders including cholesterol levels and artherosclerotic diseases. In European Patent Application No. 818448, 25 Schmidt et al. describe tetrahydroquinoline-derivatives as chlolesteryl ester transfer protein inhibitors. European Patent Application No. 818197, Schmek et al. describe pyridines with fused heterocycles as cholesteryl ester transfer protein inhibitors. Brandes et al. in German Patent Application No. 19627430 describe bicyclic condensed pyridine derivatives as cholesteryl ester transfer 30 protein inhibitors. In WO Patent Application No. 09839299, Muller-Gliemann et al. describe quinoline derivatives as cholesteryl ester transfer protein inhibitors. U.S. Patent 2,700,686, issued to Dickey and Towne, describes N-(2-haloalkyl-2-hydroxyethyl)amines in which the amine is further substituted with either 1 to 2 aliphatic groups or one aromatic group and one aliphatic group. U.S. Patent 2,700.686 further describes a process to prepare the N-(2-35

haloalkyl-2-hydroxyethyl)amines by reacting halogenated-1.2-epoxyalkanes with the corresponding aliphatic amines and N-alkylanilines and their use as dye intermediates.

5

15

20

SUMMARY OF THE INVENTION

The present invention provides a class of compounds that can be used to inhibit cholesteryl ester transfer protein (CETP) activity and that have the general structure:

In another aspect, the present invention includes pharmaceutical compositions comprising a pharmaceutically effective amount of the compounds of this invention and a pharmaceutically acceptable carrier.

In another aspect, this invention relates to methods of using these inhibitors as therapeutic agents in humans to inhibit cholesteryl ester transfer protein (CETP) activity, thereby decreasing the concentrations of low density lipoprotein (LDL) and raising the level of high density lipoprotein (HDL), resulting in a therapeutically beneficial plasma lipid profile. The compounds and methods of this invention can also be used to treat dyslipidemia (hypoalphalipoproteinemia), hyperlipoproteinaemia (chylomicronemia and hyperapobetalipoproteinemia), peripheral vascular disease,

hypercholesterolaemia, atherosclerosis, coronary artery disease and other CETP-mediated disorders. The compounds can also be used in prophylactic treatment of subjects who are at risk of developing such disorders. The compounds can be used to lower the risk of atherosclerosis. The compounds of this invention would be also useful in prevention of cerebral vascular
 accident (CVA) or stroke. Besides being useful for human treatment, these

compounds are also useful for veterinary treatment of companion animals. exotic animals and farm animals such as primates, rabbits, pigs, horses, and the like.

DESCRIPTION OF THE INVENTION

5

10

15

The present invention relates to a class of compounds comprising substituted N-Aliphatic-N-Aromatic tertiary-Heteroalkylamines which are beneficial in the therapeutic and prophylactic treatment of coronary artery disease as given in Formula I-WA (also referred to herein as "alicyclic/cyclic aryl/heteroaryl heteroalkylamines"):

or a pharmaceutically-acceptable salt thereof, wherein;

n is an integer selected from 1 through 4;

A and Q are independently selected from the group consisting of

 $-\mathsf{CH}_2(\mathsf{CR}_{37}\mathsf{R}_{38})_v - (\mathsf{CR}_{33}\mathsf{R}_{34})_u - \mathsf{T} - (\mathsf{CR}_{35}\mathsf{R}_{36})_w - \mathsf{H},$

with the provisos that one of A and Q must be AQ-1 and that one of A and Q must be selected from the group consisting of AQ-2 and

$$-\mathsf{CH}_2(\mathsf{CR}_{37}\mathsf{R}_{38})_v\text{-}(\mathsf{CR}_{33}\mathsf{R}_{34})_u\text{-}\mathsf{T}\text{-}(\mathsf{CR}_{35}\mathsf{R}_{36})_w\text{-}\mathsf{H};$$

15

20

T is selected from the group consisting of a single covalent bond, O. S. S(O), $S(O)_2$, $C(R_{33})=C(R_{35})$, and C=C;

v is an integer selected from 0 through 1 with the proviso that v is 1 when any one of R_{33} , R_{34} , R_{35} , and R_{36} is aryl or heteroaryl:

u and w are integers independently selected from 0 through 6; A_1 is $C(R_{30})$;

D₁, D₂, J₁, J₂ and K₁ are independently selected from the group consisting of C, N, O, S and a covalent bond with the provisos that no more than one of D₁, D₂, J₁, J₂ and K₁ is a covalent bond, no more than one of D₁, D₂, J₁, J₂ and K₁ is O, no more than one of D₁, D₂, J₁, J₂ and K₁ is S, one of D₁, D₂, J₁, J₂ and K₁ must be a covalent bond when two of D₁, D₂, J₁, J₂ and K₁ are O and S, and no more than four of D₁, D₂, J₁, J₂ and K₁ are N;

 B_1 , B_2 , D_3 , D_4 , J_3 , J_4 and K_2 are independently selected from the group consisting of C. $C(R_{30})$. N. O. S and a covalent bond with the provisos that no more than 5 of B_1 , B_2 , D_3 , D_4 , J_3 , J_4 and K_2 are a covalent bond, no more than two of B_1 , B_2 , D_3 , D_4 , J_3 , J_4 and K_2 are O, no more than two of B_1 , B_2 , D_3 , D_4 , J_3 , J_4 and K_2 are S, no more than two of B_1 , B_2 , D_3 , D_4 , J_3 , J_4 and K_2 are simultaneously O and S, and no more than two of B_1 , B_2 , D_3 , D_4 , D

 B_1 and D_3 . D_3 and J_3 . J_3 and K_2 . K_2 and J_4 , J_4 and D_4 , and D_4 and D_4 and D_4 are independently selected to form an in-ring spacer pair wherein said spacer pair is selected from the group consisting of $C(R_{33})=C(R_{35})$ and N=N with the provisos that AQ-2 must be a ring of at least five contiguous members.

15

20

25

that no more than two of the group of said spacer pairs are simultaneously $C(R_{33})=C(R_{35})$, and that no more than one of the group of said spacer pairs can N=N unless the other spacer pairs is other than $C(R_{33})=C(R_{35})$, O', N, and S;

R₁₆ is selected from the group consisting of hydrido, alkyl, acyl, aroyl, heteroaroyl, and trialkylsilyl;

X is selected from the group consisting of O, H, F, S, S(O), NH, N(OH), N(alkyl), and N(alkoxy) with the proviso that there is no R_{16} wherein X is H or F;

R₁ is selected from the group consisting of haloalkyl, haloalkenyl, haloalkoxyalkyl, and haloalkenyloxyalkyl;

R₂ is selected from the group consisting of hydrido, aryl, aralkyl, alkenyl, alkenyloxyalkyl, haloalkyl, haloalkenyl, halocycloalkyl, haloalkoxy, haloalkoxyalkyl, haloalkenyloxyalkyl, halocycloalkoxy, halocycloalkoxyalkyl, perhaloaryl, perhaloaralkyl, perhaloaryloxyalkyl, heteroaryl, dicyanoalkyl, and carboalkoxycyanoalkyl;

R₃ is selected from the group consisting of hydrido, hydroxy, cyano, aryl, aralkyl, acyl, alkoxy, alkyl, alkenyl, alkoxyalkyl, heteroaryl, alkenyloxyalkyl, haloalkyl, haloalkenyl, haloalkoxy, haloalkoxyalkyl, haloalkenyloxyalkyl, monocyanoalkyl, dicyanoalkyl, carboxamide, and carboxamidoalkyl;

Y is selected from a group consisting of a covalent single bond, $(C(R_{14})_2)_q$ wherein q is an integer selected from 1 through 4 and $(CH(R_{14}))_g$ -O- $(CH(R_{14}))_p$ wherein g and p are integers independently selected from 0 through 2;

R₁₄ is selected from the group consisting of hydrido, hydroxy, cyano, hydroxyalkyl, acyl, alkoxy, alkyl, alkenyl, alkynyl, alkoxyalkyl, haloalkyl, haloalkoxy, haloalkoxyalkyl, haloalkenyloxyalkyl,

15

monocarboalkoxyalkyl, monocyanoalkyl, dicyanoalkyl, carboalkoxycyanoalkyl, carboalkoxy, carboxamide, carboxamidoalkyl;

Z is selected from the group consisting of covalent single bond, $(C(R_{15})_2)_q$ wherein q is an integer selected from 1 through 2, and

(CH(R_{15}))_j-O-(CH(R_{15}))_k wherein j and k are integers independently selected from 0 through 2:

R₁₅ is selected from the group consisting of hydrido, cyano, hydroxyalkyl, acyl, alkoxy, alkyl, alkenyl, alkynyl, alkoxyalkyl, haloalkyl, haloalkenyl, haloalkoxy, haloalkoxyalkyl, haloalkenyloxyalkyl, monocarboalkoxyalkyl, monocyanoalkyl, dicyanoalkyl, carboalkoxycyanoalkyl, carboalkoxy, carboxamide, and carboxamidoalkyl;

R₃₀ is selected from the group consisting of hydrido, alkoxy, alkoxyalkyl, halo, haloalkyl, alkylamino, alkylthio, alkylthioalkyl, alkyl, alkenyl, haloalkoxy, and haloalkoxyalkyl with the proviso that R₃₀ is selected to maintain the tetravalent nature of carbon, trivalent nature of nitrogen, the divalent nature of sulfur, and the divalent nature of oxygen;

 R_{30} , when bonded to A_1 , is taken together to form an intra-ring linear spacer connecting the A_1 -carbon at the point of attachment of R_{30} to the point of bonding of a group selected from the group consisting of R_{10} , R_{11} , R_{12} ,

20 R₃₁, and R₃₂ wherein said intra-ring linear spacer is selected from the group consisting of a covalent single bond and a spacer moiety having from 1 through 6 contiguous atoms to form a ring selected from the group consisting of a cycloalkyl having from 3 through 10 contiguous members, a cycloalkenyl having from 5 through 10 contiguous members, and a heterocyclyl having from 5 through 10 contiguous members;

 R_{30} , when bonded to A_1 , is taken together to form an intra-ring branched spacer connecting the A_1 -carbon at the point of attachment of R_{30} to the points of bonding of each member of any one of substituent pairs selected

from the group consisting of substituent pairs R₁₀ and R₁₁, R₁₀ and R₃₁. R₁₀ and R₃₂, R₁₀ and R₁₂, R₁₁ and R₃₁, R₁₁ and R₃₂, R₁₁ and R₁₂, R₃₁ and R₃₂, R₃₁ and R₃₂, and R₃₂ and R₁₂ and wherein said intra-ring branched spacer is selected to form two rings selected from the group consisting of cycloalkyl having from 3 through 10 contiguous members, cycloalkenyl having from 5 through 10 contiguous members, and heterocyclyl having from 5 through 10 contiguous members;

 $R_4, R_5, R_6, R_7, R_8, R_9, R_{10}, R_{11}, R_{12}, R_{13}, R_{31}, R_{32}, R_{33}$

R₃₄, R₃₅, and R₃₆ are independently selected from the group consisting of hydrido, carboxy, heteroaralkylthio, heteroaralkoxy, cycloalkylamino, acylalkyl, acylalkoxy, aroylalkoxy, heterocyclyloxy, aralkylaryl, aralkyl, aralkylsulfonyl, heterocyclyl, perhaloaralkyl, aralkylsulfonyl, aralkylsulfonyl, aralkylsulfinyl, aralkylsulfinylalkyl, halocycloalkyl, halocycloalkylsulfinyl, cycloalkylsulfinylalkyl, cycloalkylsulfinyl, cycloalkylsulfinylalkyl, cycloalkylsulfonyl, cycloalkylsulfonylalkyl, heteroarylamino, N-heteroarylamino-N-alkylamino, heteroarylaminoalkyl, haloalkylthio, alkanoyloxy, alkoxy, alkoxyalkyl, haloalkoxylalkyl, heteroaralkoxy, cycloalkoxy, cycloalkoxy, cycloalkoxy, cycloalkoxy, cycloalkylalkoxy,

cycloalkenyloxyalkyl, cycloalkylenedioxy, halocycloalkoxy,

halocycloalkoxyalkyl, halocycloalkenyloxy, halocycloalkenyloxyalkyl,
hydroxy, amino, thio, nitro, lower alkylamino, alkylthio, alkylthioalkyl,
arylamino, aralkylamino, arylthio, arylthioalkyl, heteroaralkoxyalkyl,
alkylsulfinyl, alkylsulfinylalkyl, arylsulfinylalkyl, arylsulfonylalkyl,
heteroarylsulfinylalkyl, heteroarylsulfonylalkyl, alkylsulfonyl,

alkylsulfonylalkyl, haloalkylsulfinylalkyl, haloalkylsulfonylalkyl, alkylsulfonamido, alkylaminosulfonyl, amidosulfonyl, monoalkyl amidosulfonyl, dialkyl amidosulfonyl, monoarylamidosulfonyl, arylsulfonamido, diarylamidosulfonyl, monoalkyl monoaryl amidosulfonyl, arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl,

heteroarylsulfonyl, heterocyclylsulfonyl, heterocyclylthio, alkanoyl, alkenoyl, aroyl, heteroaroyl, aralkanoyl, heteroaralkanoyl, haloalkanoyl, alkyl, alkenyl, alkynyl, alkenyloxy, alkenyloxyalky, alkylenedioxy, haloalkylenedioxy,

10

15

cycloalkyl, cycloalkylalkanoyl, cycloalkenyl, lower cycloalkylalkyl, lower cycloalkenylalkyl, halo, haloalkyl, haloalkenyl, haloalkoxy, hydroxyhaloalkyl, hydroxyaralkyl, hydroxyalkyl, hydoxyheteroaralkyl, haloalkoxyalkyl, aryl, heteroaralkynyl, aryloxy, aralkoxy, aryloxyalkyl, saturated heterocyclyl, partially saturated heterocyclyl, heteroaryl, heteroaryloxy, heteroaryloxyalkyl. arylalkenyl, heteroarylalkenyl, carboxyalkýl, carboalkoxy, alkoxycarboxamido, alkylamidocarbonylamido, arylamidocarbonylamido. carboalkoxyalkyl, carboalkoxyalkenyl, carboaralkoxy, carboxamido, carboxamidoalkyl, cyano, carbohaloalkoxy, phosphono, phosphonoalkyl, diaralkoxyphosphono, and diaralkoxyphosphonoalkyl with the provisos that R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} , R_{13} , R_{31} , R_{32} , R_{33} , R_{34} , R_{35} , and R₃₆ are each independently selected to maintain the tetravalent nature of carbon, trivalent nature of nitrogen, the divalent nature of sulfur, and the divalent nature of oxygen, that no more than three of the R33 and R34 substituents are simultaneously selected from other than the group consisting of of hydrido and halo, and that no more than three of the R_{35} and R_{36} substituents are simultaneously selected from other than the group consistubg of hydrido and halo;

Pg. R₁₀, R₁₁, R₁₂, R₁₃, R₃₁, and R₃₂ are independently selected to be oxo with the provisos that B₁, B₂, D₃, D₄, J₃, J₄ and K₂ are independently selected from the group consisting of C and S. no more than two of R₉, R₁₀, R₁₁, R₁₂, R₁₃, R₃₁, and R₃₂ are simultaneously oxo, and that R₉, R₁₀, R₁₁, R₁₂, R₁₃, R₃₁, and R₃₂ are each independently selected to maintain the tetravalent nature of carbon, trivalent nature of nitrogen, the divalent nature of sulfur, and the divalent nature of oxygen;

 R_4 and R_5 , R_5 and R_6 , R_6 and R_7 , R_7 and R_8 , R_9 and R_{10} , R_{10} and R_{11} , R_{11} and R_{31} , R_{31} and R_{32} , R_{32} and R_{12} , and R_{12} and R_{13} are independently selected to form spacer pairs wherein a spacer pair is taken together to form a linear moiety having from 3 through 6 contiguous atoms

. 10

15

20

connecting the points of bonding of said spacer pair members to form a ring selected from the group consisting of a cycloalkenyl ring having 5 through 8 contiguous members, a partially saturated heterocyclyl ring having 5 through 8 contiguous members, a heteroaryl ring having 5 through 6 contiguous members, and an aryl with the provisos that no more than one of the group consisting of spacer pairs R₄ and R₅, R₅ and R₆, R₆ and R₇, and R₇ and R₈, are used at the same time and that no more than one of the group consisting of spacer pairs R₉ and R₁₀, R₁₀ and R₁₁, R₁₁ and R₃₁, R₃₁ and R₃₂, R₃₂ and R₁₂, and R₁₂ and R₁₃ are used at the same time;

R₉ and R₁₁, R₉ and R₁₂, R₉ and R₁₃, R₉ and R₃₁, R₉ and R₃₂, R₁₀ and R₁₂, R₁₀ and R₁₃, R₁₀ and R₃₁, R₁₀ and R₃₂, R₁₁ and R₁₂, R₁₁ and R₃₂, R₁₂ and R₃₁, R₁₃ and R₃₁, and R₁₃ and R₃₂ are independently selected to form a spacer pair wherein said spacer pair is taken together to form a linear spacer moiety selected from the group consisting of a covalent single bond and a moiety having from 1 through 3 contiguous atoms to form a ring selected from the group consisting of a cycloalkyl having from 3 through 8 contiguous members, a cycloalkenyl having from 5 through 8 contiguous members and a partially saturated heterocyclyl having from 5 through 8 contiguous members with the provisos that no more than one of said group of spacer pairs is used at the same time:

R₃₇ and R₃₈ are independently selected from the group consisting of hydrido, alkoxy, alkoxyalkyl, hydroxy, amino, thio, halo, haloalkyl, alkylamino, alkylthio, alkylthioalkyl, cyano, alkyl, alkenyl, haloalkoxy, and haloalkoxyalkyl.

25

In another embodiment of compounds of Formula I-WA. compounds are alcohols and have the Formula I-WO (also referred to herein as "alicyclic/cyclic aryl/heteroaryl aminoalkanols"):

$$R_{16}$$
 R_{1}
 R_{2}
 R_{3}
 R_{16}
 R_{1

5 or a pharmaceutically acceptable salt thereof, wherein:

R₁₆ is hydrido;

R₁, R₂, R₃, n, A, Y, Q, and Z are defined as given above for Formula I-WA.

In a more specific embodiment of compounds of Formula I-WO. 10 compounds have the Formula I-WOPA:

$$R_1$$
 R_2
 $(CH)_{\overline{n}}$
 R_3
 R_4
 R_5
 R_6
 R_7
 $(I-WOPA)$

or a pharmaceutically acceptable salt thereof, wherein;

n is an integer selected from 1 through 2:

A is selected from the group consisting of C3-C8 alkyl, C3-C8 15 alkenyl, C3-C8 alkynyl, C3-C8 haloalkyl, C3-C8 haloalkenyl, C3-C6 alkoxy C1-C2 alkyl, and C3-C8 hydroxyhaloalkyl, wherein each member of group A may be optionally substituted at any carbon up to and including 6 atoms from the point of attachment of A to Z with one or more of the group consisting of

10

25

R₃₃, R₃₄, R₃₅, and R₃₆ with the provisos that R₃₃, R₃₄, R₃₅, and R₃₆ must not be attached to the carbon directly linking A to Z and that R₃₃, R₃₄, R₃₅, and R₃₆ must be selected from other than aryl and heteroaryl when substituting the carbon 2 atoms from Z wherein Z is a single covalent bond;

R₁ is selected from the group consisting of haloalkyl and haloalkoxymethyl;

R₂ is selected from the group consisting of hydrido, aryl, alkyl, alkenyl, haloalkyl, haloalkoxy, haloalkoxyalkyl, perhaloaryl, perhaloaryloxyalkyl, and heteroaryl;

R₃ is selected from the group consisting of hydrido, aryl, alkyl, alkenyl, haloalkyl, and haloalkoxyalkyl;

Y and Z are independently selected from the group consisting of a covalent single bond, oxy and alkylene;

 R_4 and R_8 are independently selected from the group consisting of hydrido and halo;

R₅, R₆, and R₇ are independently selected from the group consisting of hydrido, alkyl, halo, haloalkyl, haloalkoxy, aryl, alkylthio, arylamino, arylthio, aroyl, arylsulfonyl, aryloxy, aralkoxy, heteroaryloxy, alkoxy, aralkyl, cycloalkoxy, cycloalkylalkoxy, cycloalkylalkanoyl, heteroaryl,

20 cycloalkyl, haloalkylthio, hydroxyhaloalkyl, heteroaralkoxy, heterocyclyloxy,

aralkylaryl, heteroaryloxyalkyl, heteroarylthio, and heteroarylsulfonyl;

R₄ and R₅, R₅ and R₆, R₆ and R₇, and R₇ and R₈ are independently selected to form spacer pairs wherein a spacer pair is taken together to form a linear moiety having from 3 through 6 contiguous atoms connecting the points of bonding of said spacer pair members to form a ring selected from the group consisting of a cycloalkenyl ring having 5 through 8 contiguous members, a partially saturated heterocyclyl ring having 5 through 8 contiguous members, a heteroaryl ring having 5 through 6 contiguous members, and an aryl with the

proviso that no more than one of the group consisting of spacer pairs R_4 and R_5 , R_5 and R_6 , R_6 and R_7 , and R_7 and R_8 , is used at the same time;

R₃₃, R₃₄, R₃₅, and R₃₆ are independently selected from the group group consisting of alkyl, halo, hydroxy, cyano, haloalkyl, haloalkoxy, aryl. alkylthio, arylamino, arylthio, aroyl, arylsulfonyl, aryloxy, aralkoxy, heteroaryloxy, alkoxy, aralkyl, cycloalkoxy, cycloalkylalkoxy, cycloalkylalkanoyl, heteroaryl, cycloalkyl, haloalkylthio, hydroxyhaloalkyl, heteroaralkoxy, heterocyclyloxy, aralkylaryl, heteroaryloxyalkyl, heteroarylthio, and heteroarylsulfonyl.

10

20

5

In another more specific embodiment of compounds of Formula I-WO. compounds have the Formula I-WOPC:

$$R_1$$
 R_2
 $(CH)_n$
 R_3
 R_4
 R_5
 R_6
 R_7
 R_7
 $(I-WOPC)$

or a pharmaceutically acceptable salt thereof, wherein:

n is an integer selected from 1 through 2;

A is selected from the group consisting of C3-C10 cycloalkyl, C5-C10 cycloalkenyl, C4-C9 saturated heterocyclyl, and C4-C9 partially saturated heterocyclyl, wherein each ring carbon may be optionally substituted with R₃₀, a ring carbon other than the ring carbon at the point of attachment of A to Z may be optionally substituted with oxo provided that no more than one ring carbon is substituted by oxo at the same time, ring carbon and nitrogen atoms adjacent to the carbon atom at the point of attachment may be optionally substituted with R₉ or R₁₃, a ring carbon or nitrogen atom adjacent to the R₉

position and two atoms from the point of attachment may be substituted with R_{10} , a ring carbon or nitrogen atom adjacent to the R_{13} position and two atoms from the point of attachment may be substituted with R_{12} , a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the $-R_{10}$ position may be substituted with R_{11} , a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R_{12} position may be substituted with R_{32} , and a ring carbon or nitrogen atom four atoms from

be substituted with R_{32} , and a ring carbon or nitrogen atom four atoms from the point of attachment and adjacent to the R_{11} and R_{32} positions may be substituted with R_{31} ;

R₁ is selected from the group consisting of haloalkyl and haloalkoxymethyl;

R₂ is selected from the group consisting of hydrido, aryl, alkyl, alkenyl, haloalkyl, haloalkoxy, haloalkoxyalkyl, perhaloaryl, perhaloaryloxyalkyl, and heteroaryl;

R₃ is selected from the group consisting of hydrido, aryl, alkyl, alkenyl, haloalkyl, and haloalkoxyalkyl;

Y and Z are independently selected from the group consisting of a covalent single bond, oxy and alkylene;

 R_4 and R_8 are independently selected from the group consisting of hydrido and halo;

R₅, R₆, and R₇ are independently selected from the group consisting of hydrido, alkyl, halo, haloalkyl, haloalkoxy, aryl, alkylthio, arylamino, arylthio, aroyl, arylsulfonyl, aryloxy, aralkoxy, heteroaryloxy, alkoxy, aralkyl, cycloalkoxy, cycloalkylalkoxy, cycloalkylalkanoyl, heteroaryl, cycloalkyl, haloalkylthio, hydroxyhaloalkyl, heteroaralkoxy, heterocyclyloxy, aralkylaryl, heteroaryloxyalkyl, heteroarylthio, and heteroarylsulfonyl;

10

15

R₄ and R₅, R₅ and R₆, R₆ and R₇, and R₇ and R₈ are independently selected to form spacer pairs wherein a spacer pair is taken together to form a linear moiety having from 3 through 6 contiguous atoms connecting the points of bonding of said spacer pair members to form a ring selected from the group consisting of a cycloalkenyl ring having 5 through 8 contiguous members, a partially saturated heterocyclyl ring having 5 through 8 contiguous members, a heteroaryl ring having 5 through 6 contiguous members, and an aryl with the proviso that no more than one of the group consisting of spacer pairs R₄ and

 R_5 , R_5 and R_6 , R_6 and R_7 , and R_7 and R_8 , is used at the same time;

R₁₀, R₁₁, R₁₂, R₃₁, and R₃₂ are independently selected from the group group consisting of alkyl, halo, haloalkyl, haloalkoxy, aryl, alkylthio, arylamino, arylthio, aroyl, arylsulfonyl, aryloxy, aralkoxy, heteroaryloxy, alkoxy, aralkyl, cycloalkoxy, cycloalkylalkoxy, cycloalkylalkanoyl, heteroaryl, cycloalkyl, haloalkylthio, hydroxyhaloalkyl, heteroaralkoxy, heterocyclyloxy, aralkylaryl, heteroaryloxyalkyl, heteroarylthio, and heteroarylsulfonyl;

R₃₀ is selected from the group consisting of alkoxy, alkoxyalkyl, halo, haloalkyl, alkylamino, alkylthio, alkylthioalkyl, alkyl, alkenyl, haloalkoxy, and haloalkoxyalkyl.

In another more specific embodiment of compounds of Formula I-WO, compounds have the Formula I-WOHA:

$$R_1$$
 R_2
 $(CH)_n$
 R_3
 R_4
 R_5
 R_4
 R_5
 R_6
 R_7
 R_8
 R_7
 R_8
 R_7
 R_8
 R_7
 R_8
 R_7
 R_8
 R_7
 R_8
 R_8

or a pharmaceutically acceptable salt thereof, wherein;

15

n is an integer selected from 1 through 2:

A is selected from the group consisting of C3-C8 alkyl, C3-C8 alkenyl, C3-C8 alkynyl, C3-C8 haloalkyl, C3-C8 haloalkyl, C3-C6 alkoxy C1-C2 alkyl, and C3-C8 hydroxyhaloalkyl, wherein each member of group A may be optionally substituted at any carbon up to and including 6 atoms from the point of attachment of A to Z with one or more of the group consisting of R33, R34, R35, and R36 with the provisos that R33, R34, R35, and R36 must not be attached to the carbon directly linking A to Z and that R33, R34, R35, and R36 must be selected from other than aryl and heteroaryl when substituting the carbon 2 atoms from Z wherein Z is a single covalent bond;

substituting the carbon 2 atoms from Z wherein Z is a single covalent bond; D_1, D_2, J_1, J_2 and K_1 are independently selected from the group consisting of C, N, O, S and a covalent bond with the provisos that no more than one of D_1, D_2, J_1, J_2 and K_1 is a covalent bond, no more than one of

 D_1 , D_2 , J_1 , J_2 and K_1 is O, no more than one of D_1 , D_2 , J_1 , J_2 and K_1 is S.

one of D_1 , D_2 , J_1 , J_2 and K_1 must be a covalent bond when two of D_1 , D_2 , J_1 , J_2 and K_1 are O and S, and no more than four of D_1 , D_2 , J_1 , J_2 and K_1 are N;

R₁ is selected from the group consisting of haloalkyl and haloalkoxymethyl;

20 R₂ is selected from the group consisting of hydrido, aryl, alkyl, alkenyl, haloalkyl, haloalkoxy, haloalkoxyalkyl, perhaloaryl, perhaloaralkyl, -perhaloaryloxyalkyl, and heteroaryl;

R₃ is selected from the group consisting of hydrido, aryl, alkyl, alkenyl, haloalkyl, and haloalkoxvalkyl;

Y and Z are independently selected from the group consisting of a covalent single bond, oxy and alkylene:

R₄ and R₈ are independently selected from the group consisting of hydrido and halo:

10

R₅, R₆, and R₇ are independently selected from the group consisting of hydrido, alkyl, halo, haloalkyl, haloalkoxy, aryl, alkylthio, arylamino, arylthio, aroyl, arylsulfonyl, aryloxy, aralkoxy, heteroaryloxy, alkoxy, aralkyl, cycloalkylalkoxy, cycloalkylalkoxy, cycloalkylalkanoyl, heteroaryl, beteroaryl, haloalkylthio, hydroxyhaloalkyl, heteroaralkoxy, heterocyclyloxy, aralkylaryl, heteroaryloxyalkyl, heteroarylthio, and heteroarylsulfonyl;

R₄ and R₅. R₅ and R₆, R₆ and R₇, and R₇ and R₈ are independently selected to form spacer pairs wherein a spacer pair is taken together to form a linear moiety having from 3 through 6 contiguous atoms connecting the points of bonding of said spacer pair members to form a ring selected from the group consisting of a cycloalkenyl ring having 5 through 8 contiguous members, a partially saturated heterocyclyl ring having 5 through 8 contiguous members, a heteroaryl ring having 5 through 6 contiguous members, and an aryl with the proviso that no more than one of the group consisting of spacer pairs R₄ and

15 R₅, R₅ and R₆, R₆ and R₇, and R₇ and R₈, is used at the same time;

R₃₃, R₃₄, R₃₅, and R₃₆ are independently selected from the group group consisting of alkyl, halo, hydroxy, cyano, haloalkyl, haloalkoxy, aryl, alkylthio, arylamino, arylthio, aroyl, arylsulfonyl, aryloxy, aralkoxy, heteroaryloxy, alkoxy, aralkyl, cycloalkoxy, cycloalkylalkoxy, cycloalkylalkanoyl, heteroaryl, cycloalkyl, haloalkylthio, hydroxyhaloalkyl, heteroaralkoxy, heterocyclyloxy, aralkylaryl, heteroaryloxyalkyl, heteroarylthio, and heteroarylsulfonyl.

20

10

15

20

In still another more specific embodiment of compounds of Formula I-WO, compounds have the Formula I-WOHC:

R1
$$R_2$$
 $(CH)_{\overline{D}}$ $(CH)_$

or a pharmaceutically acceptable salt thereof, wherein;

n is an integer selected from 1 through 2;

A is selected from the group consisting of C3-C10 cycloalkyl, C5-C10 cycloalkenyl, C4-C9 saturated heterocyclyl, and C4-C9 partially saturated heterocyclyl, wherein each ring carbon may be optionally substituted with R₃₀, a ring carbon other than the ring carbon at the point of attachment of A to Z may be optionally substituted with oxo provided that no more than one ring carbon is substituted by oxo at the same time, ring carbon and nitrogen atoms adjacent to the carbon atom at the point of attachment may be optionally substituted with R₉ or R₁₃, a ring carbon or nitrogen atom adjacent to the R₉ position and two atoms from the point of attachment may be substituted with R₁₀, a ring carbon or nitrogen atom adjacent to the R₁₃ position and two atoms from the point of attachment may be substituted with R₁₂, a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R₁₀ position may be substituted with R₁₁. a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R₁₀ position may be substituted with R₁₁. a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R₁₂ position may be substituted with R₃₂, and a ring carbon or nitrogen atom four atoms from

15

25

the point of attachment and adjacent to the R_{11} and R_{32} positions may be substituted with R_{31} ;

 D_1 , D_2 , J_1 , J_2 and K_1 are independently selected from the group consisting of C, N, O, S and a covalent bond with the provisos that no more than one of D_1 , D_2 , J_1 , J_2 and K_1 is a covalent bond, no more than one of D_1 , D_2 , J_1 , J_2 and K_1 is O, no more than one of D_1 , D_2 , J_1 , J_2 and K_1 is S, one of D_1 , D_2 , J_1 , J_2 and K_1 must be a covalent bond when two of D_1 , D_2 , J_1 , J_2 and J_1 , J_2 , J_1 , J_2 , J_2 , J_1 , J_2 , J_2 , J_1 , J_2 , and J_1 , J_2 , J_2 , J_1 , J_2 , J_2 , J_2 , J_2 , J_3 , J_3 , J_4 , J_5 ,

R₁ is selected from the group consisting of haloalkyl and haloalkoxymethyl;

R₂ is selected from the group consisting of hydrido, aryl, alkyl, alkenyl, haloalkyl, haloalkoxy, haloalkoxyalkyl, perhaloaryl, perhaloaralkyl, perhaloaryloxyalkyl, and heteroaryl;

R₃ is selected from the group consisting of hydrido, aryl, alkyl, alkenyl, haloalkyl, and haloalkoxyalkyl;

Y and Z are independently selected from the group consisting of a covalent single bond, oxy and alkylene;

 R_4 and R_8 are independently selected from the group consisting of hydrido and halo;

R₉ and R₁₃ is halo;

R₅, R₆, and R₇ are independently selected from the group consisting of hydrido, alkyl, halo, haloalkyl, haloalkoxy, aryl, alkylthio, arylamino, arylthio, aroyl, arylsulfonyl, aryloxy, aralkoxy, heteroaryloxy, alkoxy, aralkyl, cycloalkoxy, cycloalkylalkoxy, cycloalkylalkanoyl, heteroaryl, cycloalkyl, haloalkylthio, hydroxyhaloalkyl, heteroaralkoxy, heterocyclyloxy, aralkylaryl, heteroaryloxyalkyl, heteroarylthio, and heteroarylsulfonyl;

25 ~

R₄ and R₅, R₅ and R₆, R₆ and R₇, and R₇ and R₈ are independently selected to form spacer pairs wherein a spacer pair is taken together to form a linear moiety having from 3 through 6 contiguous atoms connecting the points of bonding of said spacer pair members to form a ring selected from the group consisting of a cycloalkenyl ring having 5 through 8 contiguous members, a partially saturated heterocyclyl ring having 5 through 8 contiguous members, a heteroaryl ring having 5 through 6 contiguous members, and an aryl with the proviso that no more than one of the group consisting of spacer pairs R₄ and R₅, R₅ and R₆, R₆ and R₇, and R₇ and R₈, is used at the same time;

10 R₁₀, R₁₁, R₁₂, R₃₁, and R₃₂ are independently selected from the group group consisting of alkyl, halo, haloalkyl, haloalkoxy, aryl, alkylthio, arylamino, arylthio, aroyl, arylsulfonyl, aryloxy, aralkoxy, heteroaryloxy, alkoxy, aralkyl, cycloalkoxy, cycloalkylalkoxy, cycloalkylalkanoyl, heteroaryl, cycloalkyl, haloalkylthio, hydroxyhaloalkyl, heteroaralkoxy, heterocyclyloxy, aralkylaryl, heteroaryloxyalkyl, heteroarylthio, and heteroarylsulfonyl;

R₃₀ is selected from the group consisting of alkoxy, alkoxyalkyl, halo, haloalkyl, alkylamino, alkylthio, alkylthioalkyl, alkyl, alkenyl, haloalkoxy, and haloalkoxyalkyl.

In a preferred specific embodiment of compounds of Formulas I-WOPA, I-WOHA, I-WOPC, and I-WOHC,

n is the integer 1;

R₁ is selected from the group consisting of trifluoromethyl, 1,1,2,2-tetrafluoroethoxymethyl, trifluoromethoxymethyl, difluoromethyl, chlorodifluoromethyl, and pentafluoroethyl;

R₂ is selected from the group consisting of hydrido, methyl, ethyl, propyl, butyl, vinyl, phenyl, 4-trifluoromethylphenyl, 1,1,2,2-tetrafluoroethoxymethyl, trifluoromethoxymethyl, difluoromethyl, pentafluoroethyl, trifluoromethyl, and 2,2,3,3,3-pentafluoropropyl;

R₃ is selected from the group consisting of hydrido, phenyl, 4 trifluoromethylphenyl, methyl, ethyl, vinyl, trifluoromethyl, trifluoromethyl, difluoromethyl, chlorodifluoromethyl, and pentafluoroethyl;

Y and Z are independently selected from the group consisting of a covalent single bond, oxy, and methylene with the proviso that only one of Y and Z are simultaneously oxy;

R₄ and R₈ are independently selected from the group consisting of hydrido and fluoro;

- 10 R₅ is selected from the group consisting of 4-aminophenoxy, benzoyl, benzyl, benzyloxy, 5-bromo-2-fluorophenoxy, 4-bromo-3-fluorophenoxy, 4-bromobenzyloxy, 4-bromobenzyloxy, 4-bromobenzyloxy, 4-bromobenoxy, 5-bromopyrid-2-yloxy, 4-butoxyphenoxy, chloro, 3-chlorobenzyl, 2-chlorophenoxy, 4-chlorophenoxy,
- 4-chloro-3-ethylphenoxy, 3-chloro-4-fluorobenzyl, 3-chloro-4-fluorophenyl, 3-chloro-2-fluorobenzyloxy, 3-chlorobenzyloxy, 4-chlorobenzyloxy, 4-chloro-3-methylphenoxy, 2-chloro-4-fluorophenoxy, 4-chloro-4-ethylphenoxy, 3-chloro-4-ethylphenoxy, 3-chloro-4-methylphenoxy, 3-chloro-4-fluorophenoxy,
- 4-chloro-3-fluorophenoxy, 4-chlorophenylamino, 5-chloropyrid-3-yloxy, 2-cyanopyrid-3-yloxy, 4-cyanophenoxy, cyclobutoxy, cyclobutoxy, cyclobutoxy, cyclopentyl, cyclopentoxy, cyclopentyl, cyclopentylcarbonyl, cyclopropyl, cyclopropylmethoxy, cyclopropoxy, 2,3-dichlorophenoxy, 2,4-dichlorophenyl,
- 3,5-dichlorophenyl, 3,5-dichlorobenzyl, 3,4-dichlorophenoxy, 3,4-difluorophenoxy, 2,3-difluorobenzyloxy, 2,4-difluorobenzyloxy, 3,5-difluorophenoxy, 3,4-difluorophenyl, 3,5-difluorobenzyloxy, 4-difluoromethoxybenzyloxy, 2,3-difluorophenoxy, 2,4-difluorophenoxy, 2,5-difluorophenoxy,
- 3,5-dimethoxyphenoxy, 3-dimethylaminophenoxy, 3,5-dimethylphenoxy, 3,4-dimethylphenoxy, 3,4-dimethylbenzyl, 3,4-dimethylbenzyloxy, 3,5-dimethylbenzyloxy, 2,2-dimethylpropoxy, 1,3-dioxan-2-yl, 1,4-dioxan-2-yl, 1,3-dioxolan-2-yl, ethoxy, 4-ethoxyphenoxy,

- 4-ethylbenzyloxy, 3-ethylphenoxy, 4-ethylaminophenoxy.
- 3-ethyl-5-methylphenoxy, fluoro, 4-fluoro-3-methylbenzyl.
- 4-fluoro-3-methylphenyl, 4-fluoro-3-methylbenzoyl, 4-fluorobenzyloxy,
- 2-fluoro-3-methylphenoxy, 3-fluoro-4-methylphenoxy, 3-fluorophenoxy,
- 5 3-fluoro-2-nitrophenoxy, 2-fluoro-3-trifluoromethylbenzyloxy.
 - 3-fluoro-5-trifluoromethylbenzyloxy, 4-fluoro-2-trifluoromethylbenzyloxy.
 - 4-fluoro-3-trifluoromethylbenzyloxy, 2-fluorophenoxy, 4-fluorophenoxy,
 - 2-fluoro-3-trifluoromethylphenoxy, 2-fluorobenzyloxy.
 - 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy.
- 4-fluoropyrid-2-yloxy, 2-furyl, 3-furyl, heptafluoropropyl,
 - 1,1,1,3,3,3-hexafluoropropyl, 2-hydroxy-3,3,3-trifluoropropoxy,
 - 3-iodobenzyloxy, isobutyl, isobutylamino, isobutoxy, 3-isoxazolyl.
 - 4-isoxazolyl, 5-isoxazolyl, isopropoxy, isopropyl, 4-isopropylbenzyloxy.
 - 3-isopropylphenoxy, 4-isopropylphenoxy, isopropylthio,
- 4-isopropyl-3-methylphenoxy, 3-isothiazolyl, 4-isothiazolyl,
 - 5-isothiazolyl, 3-methoxybenzyl, 4-methoxycarbonylbutoxy.
 - 3-methoxycarbonylprop-2-enyloxy, 4-methoxyphenyl,
 - 3-methoxyphenylamino, 4-methoxyphenylamino, 3-methylbenzyloxy,
 - 4-methylbenzyloxy, 3-methylphenoxy, 3-methyl-4-methylthiophenoxy,
- 20 4-methylphenoxy, 1-methylpropoxy, 2-methylpyrid-5-yloxy,
 - 4-methylthiophenoxy, 2-naphthyloxy, 2-nitrophenoxy, 4-nitrophenoxy,
 - 3-nitrophenyl, 4-nitrophenylthio, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl,
 - pentafluoroethyl, pentafluoroethylthio, 2,2,3,3,3-pentafluoropropyl,
 - 1,1,3,3,3-pentafluoropropyl, 1,1,2,2,3-pentafluoropropyl, phenoxy,
- 25 phenylamino, 1-phenylethoxy, phenylsulfonyl, 4-propanoylphenoxy,
 - propoxy, 4-propylphenoxy, 4-propoxyphenoxy, thiophen-3-yl, sec-butyl,
 - 4-sec-butylphenoxy, tert -butoxy, 3-tert -butylphenoxy, 4-tert -butylphenoxy,
 - 1,1,2,2-tetrafluoroethoxy, tetrahydrofuran-2-yl,
 - 2-(5,6,7,8-tetrahydronaphthyloxy), thiazol-2-yl, thiazol-4-yl, thiazol-5-yl,
- thiophen-2-yl, 2,3,5-trifluorobenzyloxy, 2,2,2-trifluoroethoxy,
 - 2,2,2-trifluoroethyl, 3,3,3-trifluoro-2-hydroxypropyl, trifluoromethoxy,
 - 3-trifluoromethoxybenzyloxy, 4-trifluoromethoxybenzyloxy,
 - 3-trifluoromethoxyphenoxy, 4-trifluoromethoxyphenoxy, trifluoromethyl,
 - 3-trifluoromethylbenzyloxy, 4-trifluoromethylbenzyloxy,
- 35 2,4-bis-trifluoromethylbenzyloxy, 1,1-bis-trifluoromethyl-1-hydroxymethyl,

- 3-trifluoromethylbenzyl. 3,5-bis-trifluoromethylbenzyloxy.
- 4-trifluoromethylphenoxy, 3-trifluoromethylphenoxy.
- 3-trifluoromethylphenyl, 3-trifluoromethylthiobenzyloxy,
- 4-trifluoromethylthiobenzyloxy, 2,3,4-trifluorophenoxy.
- 5 2.3,4-trifluorophenyl, 2.3,5-trifluorophenoxy, 3,4,5-trimethylphenoxy,
 - 3-difluoromethoxyphenoxy, 3-pentafluoroethylphenoxy,
 - 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, 3-trifluoromethylthiophenoxy, and trifluoromethylthio:

R₆ is selected from the group consisting of chloro, fluoro, hydrido.

pentafluoroethyl, 1,1,2,2-tetrafluoroethoxy, trifluoromethyl, and trifluoromethoxy;

R₇ is selected from the group consisting of hydrido, fluoro, and trifluoromethyl.

In a more preferred specific embodiment of compounds of Formulas I-WOPA, I-WOHA, I-WOPC, and I-WOHC,

n is the integer 1;

chlorodifluoromethyl:

R₁ is selected from the group consisting of trifluoromethyl, 1.1.2,2-tetrafluoroethoxymethyl, trifluoromethoxymethyl, difluoromethyl, chlorodifluoromethyl, and pentafluoroethyl;

Ro is selected from the group consisting of hyd

R₂ is selected from the group consisting of hydrido, methyl, ethyl, phenyl, 4-trifluoromethylphenyl, trifluoromethoxymethyl.

1,1,2,2-tetrafluoroethoxymethyl, difluoromethyl, pentafluoroethyl, trifluoromethyl, and 2,2,3,3,3-pentafluoropropyl;

25 R₃ is selected from the group consisting of hydrido, phenyl, 4-trifluoromethylphenyl, methyl, trifluoromethyl, difluoromethyl, and

Y and Z are independently selected from a covalent single bond and methylene:

R₄ and R₈ are independently selected from the group consisting of hydrido and fluoro;

R₅ is selected from the group consisting of benzyloxy, 5-bromo-2-

fluorophenoxy, 4-bromo-3-fluorophenoxy, 3-bromobenzyloxy.

- 4-bromophenoxy, 4-butoxyphenoxy, 3-chlorobenzyloxy, 2-chlorophenoxy,
- 4-chloro-3-ethylphenoxy, 4-chloro-3-methylphenoxy,
- 5 2-chloro-4-fluorophenoxy, 4-chloro-2-fluorophenoxy, 4-chlorophenoxy,
 - 3-chloro-4-ethylphenoxy, 3-chloro-4-methylphenoxy.
 - 3-chloro-4-fluorophenoxy, 4-chloro-3-fluorophenoxy, 4-chlorophenylamino,
 - 5-chloropyrid-3-yloxy, cyclobutoxy, cyclobutyl, cyclohexylmethoxy,
 - cyclopentoxy, cyclopentyl, cyclopentylcarbonyl, cyclopropylmethoxy,
- 2,3-dichlorophenoxy, 2,4-dichlorophenoxy, 2,4-dichlorophenyl,
 - 3,5-dichlorophenyl, 3,5-dichlorobenzyl, 3,4-dichlorophenoxy,
 - $3,4-difluor ophenoxy,2,3-difluor obenzyloxy,\,3,5-difluor obenzyloxy.\\$
 - difluoromethoxy, 3,5-difluorophenoxy, 3,4-difluorophenyl,
 - 2,3-difluorophenoxy, 2,4-difluorophenoxy, 2,5-difluorophenoxy,
- 15 3,5-dimethoxyphenoxy,3-dimethylaminophenoxy, 3,4-dimethylbenzyloxy,
 - 3,5-dimethylbenzyloxy, 3,5-dimethylphenoxy, 3,4-dimethylphenoxy,
 - 1.3-dioxolan-2-yl, 3-ethylbenzyloxy, 3-ethylphenoxy, 4-ethylaminophenoxy,
 - 3-ethyl-5-methylphenoxy, 4-fluoro-3-methylbenzyl, 4-fluorobenzyloxy,
 - 2-fluoro-3-methylphenoxy, 3-fluoro-4-methylphenoxy, 3-fluorophenoxy,
- 20 3-fluoro-2-nitrophenoxy, 2-fluoro-3-trifluoromethylbenzyloxy,
 - 3-fluoro-5-trifluoromethylbenzyloxy, 2-fluorophenoxy, 4-fluorophenoxy,
 - 2-fluoro-3-trifluoromethylphenoxy, 2-fluorobenzyloxy,
 - 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy, 2-furyl, 3-furyl,
 - heptafluoropropyl, 1,1,1,3,3,3-hexafluoropropyl.
- 25 2-hydroxy-3,3,3-trifluoropropoxy, isobutoxy, isobutyl, 3-isoxazolyl,
 - 4-isoxazolyl, 5-isoxazolyl, isopropoxy, 3-isopropylbenzyloxy,
 - 3-isopropylphenoxy, isopropylthio, 4-isopropyl-3-methylphenoxy,
 - 3-isothiazolyl, 4-isothiazolyl, 5-isothiazolyl, 3-methoxybenzyl,
 - 4-methoxyphenylamino, 3-methylbenzyloxy, 4-methylbenxyloxy, 3-
- methylphenoxy, 3-methyl-4-methylthiophenoxy, 4-methylphenoxy,
 - 1-methylpropoxy, 2-methylpyrid-5-yloxy, 4-methylthiophenoxy,
 - 2-naphthyloxy, 2-nitrophenoxy, 4-nitrophenoxy, 3-nitrophenyl, 2-oxazolyl,
 - 4-oxazolyl, 5-oxazolyl, pentafluoroethyl, pentafluoroethylthio,
 - 2,2,3,3,3-pentafluoropropyl, 1,1,3,3,3-pentafluoropropyl,
- 35 1,1,2,2,3-pentafluoropropyl, phenoxy, phenylamino, 1-phenylethoxy,

4-propylphenoxy. 4-propoxyphenoxy, thiophen-3-yl,tert -butoxy. 3-tert -butylphenoxy, 4-tert -butylphenoxy, 1.1.2.2-tetrafluoroethoxy, tetrahydrofuran-2-yl, 2-(5,6,7,8-tetrahydronaphthyloxy), thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, thiophen-2-yl, 2,2.2-trifluoroethoxy,

- 5 2,2,2-trifluoroethyl, 3,3,3-trifluoro-2-hydroxypropyl, trifluoromethoxy, 3-trifluoromethoxybenzyloxy, 4-trifluoromethoxybenzyloxy, 4-trifluoromethoxyphenoxy, 3-trifluoromethoxyphenoxy, trifluoromethyl, 3-trifluoromethylbenzyloxy, 1,1-bis-trifluoromethyl-1-hydroxymethyl, 3-trifluoromethylbenzyl, 3,5-bis-trifluoromethylbenzyloxy,
- 4-trifluoromethylphenoxy, 3-trifluoromethylphenoxy,
 3-trifluoromethylphenoxy, 2,3,4-trifluorophenoxy, 2,3,5-trifluorophenoxy,
 3,4,5-trimethylphenoxy, 3-difluoromethoxyphenoxy,
 3-pentafluoroethylphenoxy, 3-(1,1,2,2-tetrafluoroethoxy)phenoxy,
 3-trifluoromethylthiophenoxy, 3-trifluoromethylthiobenzyloxy, and
- trifluoromethylthio: R_6 is selected from the group consisting of chloro, fluoro, hydrido.

pentafluoroethyl, 1.1,2,2-tetrafluoroethoxy, and trifluoromethyl:

R₇ is selected from the group consisting of hydrido, fluoro, and trifluoromethyl.

20

30

In an even more preferred specific embodiment of compounds of Formulas I-WOPA. I-WOHA, I-WOPC, and I-WOHC,

n is the integer 1;

R₁ is selected from the group consisting of trifluoromethyl,

25 chlorodifluoromethyl, and pentafluoroethyl;

R₂ is hydrido, pentafluoroethyl, and trifluoromethyl;

R₃ is selected from the group consisting of hydrido, methyl, trifluoromethyl, and difluoromethyl

Y and Z are independently selected from the group consisting of a covalent single bond and methylene;

 R_4 and R_8 are independently selected from the group consisting of hydrido and fluoro:

 R_5 is selected from the group consisting of 5-bromo-2-fluorophenoxy.

4-chloro-3-ethylphenoxy, cyclopentyl, 2,3-dichlorophenoxy, 3,4-dichlorophenoxy, 3-difluoromethoxyphenoxy, 3,5-dimethylphenoxy, 3,4-dimethylphenoxy, 3-ethylphenoxy, 3-ethylphenoxy,

dimethylphenoxy, 3-ethylphenoxy, 3-ethyl-5-methylphenoxy,
4-fluoro-3-methylphenoxy, 4-fluorophenoxy, 2-furyl, isobutyl, isopropoxy,
3-isopropylphenoxy, 3-methylphenoxy, pentafluoroethyl,
3-pentafluoroethylphenoxy, 3-tert -butylphenoxy, 1,1,2,2-tetrafluoroethoxy,
3-(1,1,2,2-tetrafluoroethoxy)phenoxy, 2-(5.6,7,8-tetrahydronaphthyloxy),
trifluoromethoxy, 3-trifluoromethoxybenzyloxy, 3-trifluoromethoxyphenoxy,
trifluoromethyl, 3-trifluoromethylbenzyloxy, 1,1-bis-trifluoromethyl-1-

hydroxymethyl, trifluoromethylthio, and 3-trifluoromethylthiophenoxy;

R6 is selected from the group consisting of fluoro and hydrido;

R₇ is selected from the group consisting of hydrido and fluoro.

In a preferred specific embodiment of compounds of Formulas I-WOPA and I-WOHA.

A is selected from the group consisting of ethyl, 1-propenyl, propyl, isopropyl, butyl, 2-butenyl, 3-butenyl, 2-butynyl, sec-butyl, isobutyl, 2methylpropenyl, 1-pentyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 2-pentynyl, 3pentynyl, 2-pentyl, 1-methyl-2-butenyl, 1-methyl-3-butenyl, 1-methyl-2-20 butynyl, 3-pentyl, 1-ethyl-2-propenyl, 2-methylbutyl, 2-methyl-2-butenyl, 2methyl-3-butenyl, 2-methyl-3-butynyl, 3-methylbutyl, 3-methyl-2-butenyl, 3methyl-3-butenyl, 1-hexyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl, 2hexynyl, 3-hexynyl, 4-hexynyl; 2-hexyl, 1-methyl-2-pentenyl, 1-methyl-3-25 pentenyl, 1-methyl-4-pentenyl, 1-methyl-2-pentynyl, 1-methyl-3-pentynyl, 3hexyl, 1-ethyl-2-butenyl, 1-ethyl-3-butenyl, 1-propyl-2-propenyl, 1-ethyl-2butynyl, 1-heptyl, 2-heptenyl, 3-heptenyl, 4-heptenyl, 5-heptenyl, 6-heptenyl, 2-heptynyl, 3-heptynyl, 4-heptynyl, 5-heptynyl, 2-heptyl, 1-methyl-2-hexenyl, 1-methyl-3-hexenyl, 1-methyl-4-hexenyl, 1-methyl-5-hexenyl, 1-methyl-2-30 hexynyl, 1-methyl-3-hexynyl, 1-methyl-4-hexynyl, 3-heptyl, 1-ethyl-2pentenyl, 1-ethyl-3-pentenyl, 1-ethyl-4-pentenyl, 1-butyl-2-propenyl, 1-ethyl-2-pentynyl, 1-ethyl-3-pentynyl, 1-octyl, 2-octenyl, 3-octenyl, 4-octenyl, 5octenyl, 6-octenyl, 7-octenyl, 2-octynyl, 3-octynyl, 4-octynyl, 5-octynyl, 6octvnvl. 2-octvl. 1-methyl-2-heptenyl. 1-methyl-3-heptenyl. 1-methyl-4-

heptenyl, 1-methyl-5-heptenyl, 1-methyl-6-heptenyl, 1-methyl-2-heptynyl, 1methyl-3-heptynyl, 1-methyl-4-heptenyl, 1-methyl-5-heptenyl, 1-methyl-6heptenyl, 1-methyl-2-heptenyl, 1-methyl-3-heptynyl, 1-methyl-4-heptynyl, 1methyl-5-heptynyl, 3-octyl, 1-ethyl-2-hexenyl, 1-ethyl-3-hexenyl, 1-ethyl-4-5 hexenyl, 1-ethyl-2-hexynyl, 1-ethyl-3-hexynyl, 1-ethyl-4-hexynyl, 1-ethyl-5hexenyl, 1-pentyl-2-propenyl, 4-octyl, 1-propyl-2-pentenyl, 1-propyl-3pentenyl, 1-propyl-4-pentenyl, 1-butyl-2-butenyl, 1-propyl-2-pentynyl, 1propyl-3-pentynyl, 1-butyl-2-butynyl, 1-butyl-3-butenyl, 2.2-difluoropropyl, 4-trifluoromethyl-5.5,5-trifluoropentyl, 4-trifluoromethylpentyl, 5.5.6,6.6-10 pentafluorohexyl, 3,3,3-trifluoropropyl, 2-methoxyethyl, 2-ethoxyethyl, 2propoxyethyl, 2-isopropoxyethyl, 2-butoxyethyl, 2-isobutoxyethyl, 2-secbutoxyethyl, 2-pentoxyethyl, 2-hexoxyethyl, 3-methoxypropyl, 2methoxyisopropyl, 3-ethoxypropyl, 2-ethoxyisopropyl, 3-propoxypropyl, 2propoxyisopropyl, 3-isopropoxypropyl, 2-isopropoxyisopropyl, 3-15 butoxypropyl, 2-butoxyisopropyl, 3-isobutoxypropyl, 2-isobutoxyisopropyl, 3-pentoxypropyl, and 2-pentoxyisopropyl, wherein each member of group A may be optionally substituted at any carbon up to and including 6 atoms from the point of attachment of A to Z with one or more of the group consisting of $R_{33},\,R_{34},\,R_{35},$ and R_{36} with the provisos that $R_{33},\,R_{34},\,R_{35},$ and R_{36} must not be attached to the carbon directly linking A to Z and that R₃₃, R₃₄, 20

R₃₅, and R₃₆ must be selected from other than aryl and heteroaryl when substituting the carbon 2 atoms from Z wherein Z is a single covalent bond;

R₃₃, R₃₄, R₃₅, and R₃₆ are independently selected from the group consisting of cyano, hydroxy, 4-aminophenoxy, benzoyl, benzyl, benzyloxy, 5-bromo-2-fluorophenoxy, 4-bromo-3-fluorophenoxy, 4-bromobenzyloxy, 4-bromobenzyloxy, 4-bromobenzyloxy, 4-bromophenoxy, 5-bromopyrid-2-yloxy, 4-butoxyphenoxy, chloro, 3-chlorobenzyl, 2-chlorophenoxy, 4-chlorophenoxy, 4-chloro-4-fluorophenyl, 3-chloro-4-fluorophenyl, 3-chloro-2-fluorobenzyloxy, 3-chlorobenzyloxy, 4-chlorobenzyloxy, 4-chloro-3-methylphenoxy, 2-chloro-4-fluorophenoxy, 4-chloro-4-fluorophenoxy, 4-chloro-2-fluorophenoxy, 4-chlorophenoxy, 3-chloro-4-ethylphenoxy,

3-chloro-4-methylphenoxy, 3-chloro-4-fluorophenoxy,

- 4-chloro-3-fluorophenoxy, 4-chlorophenylamino, 5-chloropyrid-3-yloxy.
- 2-cyanopyrid-3-yloxy, 4-cyanophenoxy, cyclobutoxy, cyclobutyl,
- cyclohexoxy, cyclohexylmethoxy, cyclopentoxy, cyclopentyl,
- cyclopentylcarbonyl, cyclopropyl, cyclopropylmethoxy, cyclopropoxy,
- 5 2.3-dichlorophenoxy, 2.4-dichlorophenoxy, 2,4-dichlorophenyl.
 - 3,5-dichlorophenyl, 3,5-dichlorobenzyl, 3,4-dichlorophenoxy,
 - 3,4-difluorophenoxy, 2,3-difluorobenzyloxy, 2,4-difluorobenzyloxy,
 - 3,4-difluorobenzyloxy, 2,5-difluorobenzyloxy, 3,5-difluorophenoxy,
 - 3.4-difluorophenyl. 3.5-difluorobenzyloxy, 4-difluoromethoxybenzyloxy,
- 2,3-difluorophenoxy, 2,4-difluorophenoxy, 2,5-difluorophenoxy,
 - 3,5-dimethoxyphenoxy, 3-dimethylaminophenoxy, 3,5-dimethylphenoxy,
 - 3,4-dimethylphenoxy, 3,4-dimethylbenzyl, 3,4-dimethylbenzyloxy,
 - 3,5-dimethylbenzyloxy. 2,2-dimethylpropoxy. 1,3-dioxan-2-yl.
 - 1,4-dioxan-2-yl, 1,3-dioxolan-2-yl, ethoxy, 4-ethoxyphenoxy,
- 4-ethylbenzyloxy, 3-ethylphenoxy, 4-ethylaminophenoxy,
 - 3-ethyl-5-methylphenoxy, fluoro, 4-fluoro-3-methylbenzyl,
 - 4-fluoro-3-methylphenyl, 4-fluoro-3-methylbenzoyl, 4-fluorobenzyloxy,
 - 2-fluoro-3-methylphenoxy, 3-fluoro-4-methylphenoxy, 3-fluorophenoxy,
 - 3-fluoro-2-nitrophenoxy, 2-fluoro-3-trifluoromethylbenzyloxy,
- 3-fluoro-5-trifluoromethylbenzyloxy, 4-fluoro-2-trifluoromethylbenzyloxy,
 - 4-fluoro-3-trifluoromethylbenzyloxy, 2-fluorophenoxy, 4-fluorophenoxy,
 - 2-fluoro-3-trifluoromethylphenoxy, 2-fluorobenzyloxy,
 - 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy,
 - 4-fluoropyrid-2-yloxy, 2-furyl, 3-furyl, heptafluoropropyl.
- 25 1,1,1,3,3,3-hexafluoropropyl, 2-hydroxy-3,3,3-trifluoropropoxy,
 - 3-iodobenzyloxy, isobutyl, isobutylamino, isobutoxy, 3-isoxazolyl,
 - 4-isoxazolyl, 5-isoxazolyl, isopropoxy, isopropyl, 4-isopropylbenzyloxy,
 - 3-isopropylphenoxy, 4-isopropylphenoxy, isopropylthio,
 - 4-isopropyl-3-methylphenoxy, 3-isothiazolyl, 4-isothiazolyl,
- 30 5-isothiazolyl, 3-methoxybenzyl, 4-methoxycarbonylbutoxy,
 - 3-methoxycarbonylprop-2-enyloxy, 4-methoxyphenyl,
 - 3-methoxyphenylamino, 4-methoxyphenylamino, 3-methylbenzyloxy,
 - 4-methylbenzyloxy, 3-methylphenoxy, 3-methyl-4-methylthiophenoxy,
 - 4-methylphenoxy, 1-methylpropoxy, 2-methylpyrid-5-yloxy,
- 4-methylthiophenoxy, 2-naphthyloxy, 2-nitrophenoxy, 4-nitrophenoxy,

35

ł

- 3-nitrophenyl, 4-nitrophenylthio, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, pentafluoroethyl, pentafluoroethylthio, 2,2,3,3,3-pentafluoropropyl, 1,1,2,2,3-pentafluoropropyl, phenoxy, phenylamino, 1-phenylethoxy, phenylsulfonyl, 4-propanoylphenoxy.
- propoxy, 4-propylphenoxy, 4-propoxyphenoxy, thiophen-3-yl. sec-butyl, 4-sec-butylphenoxy.tert -butoxy, 3-tert -butylphenoxy. 4-tert -butylphenoxy, 1,1,2,2-tetrafluoroethoxy, tetrahydrofuran-2-yl, 2-(5,6,7,8-tetrahydronaphthyloxy), thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, thiophen-2-yl, 2,3,5-trifluorobenzyloxy, 2,2,2-trifluoroethoxy.
- 2,2,2-trifluoroethyl, 3,3,3-trifluoro-2-hydroxypropyl, trifluoromethoxy,
 3-trifluoromethoxybenzyloxy, 4-trifluoromethoxybenzyloxy,
 3-trifluoromethoxyphenoxy, 4-trifluoromethoxyphenoxy, trifluoromethyl,
 3-trifluoromethylbenzyloxy, 4-trifluoromethylbenzyloxy,
 2,4-bis-trifluoromethylbenzyloxy, 1,1-bis-trifluoromethyl-1-hydroxymethyl.
- 3-trifluoromethylbenzyl, 3,5-bis-trifluoromethylbenzyloxy,
 4-trifluoromethylphenoxy, 3-trifluoromethylphenoxy,
 3-trifluoromethylphenyl, 3-trifluoromethylthiobenzyloxy,
 4-trifluoromethylthiobenzyloxy, 2,3,4-trifluorophenoxy,
 2,3,4-trifluorophenyl, 2,3,5-trifluorophenoxy, 3,4,5-trimethylphenoxy,
- 3-difluoromethoxyphenoxy, 3-pentafluoroethylphenoxy, 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, 3-trifluoromethylthiophenoxy, and trifluoromethylthio.

In a preferred specific embodiment of compounds of Formulas I-WOPA and I-WOHA.

A is selected from the group consisting of ethyl, 1-propenyl, propyl, isopropyl, butyl, 2-butenyl, 3-butenyl, sec-butyl, isobutyl, 2-methylpropenyl. 1-pentyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 2-pentyl, 1-methyl-2-butenyl, 1-methyl-3-butenyl, 3-pentyl, 1-ethyl-2-propenyl, 2-methylbutyl, 2-methyl-2-butenyl, 3-methyl-3-butenyl, 3-methylbutyl, 3-methyl-2-butenyl, 3-methyl-3-butenyl, 1-hexyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl, 2-hexyl, 1-methyl-2-butenyl, 1-methyl-3-butenyl, 1-propyl-2-propenyl, 1-heptyl, 2-heptenyl, 3-heptenyl, 4-heptenyl, 5-heptenyl, 6-heptenyl, 2-heptyl, 1-methyl-2-hexenyl, 1-methyl-3-hexenyl, 1-methyl-3-hexenyl, 1-methyl-3-hexenyl, 1-methyl-3-hexenyl, 1-methyl-4-hexenyl, 1-methyl-5-hexenyl, 3-heptyl, 1-

ethyl-2-pentenyl, 1-ethyl-3-pentenyl, 1-ethyl-4-pentenyl, 1-butyl-2-propenyl,

1-octyl, 2-octenyl, 3-octenyl, 4-octenyl, 5-octenyl, 6-octenyl, 7-octenyl, 2octyl, 1-methyl-2-heptenyl, 1-methyl-3-heptenyl, 1-methyl-4-heptenyl, 1methyl-5-heptenyl, 1-methyl-6-heptenyl, 1-methyl-4-heptenyl, 1-methyl-6heptenyl, 1-methyl-2-heptenyl, 3-octyl, 1-ethyl-2-hexenyl, 1-ethyl-3-hexenyl. 1-ethyl-4-hexenyl, 1-ethyl-5-hexenyl, 1-pentyl-2-propenyl, 4-octyl, 1-propyl-5 2-pentenyl, 1-propyl-3-pentenyl, 1-propyl-4-pentenyl, 1-butyl-2-butenyl, 1butyl-3-butenyl, 2,2-difluoropropyl, 4-trifluoromethyl-5,5,5-trifluoropentyl, 4-trifluoromethylpentyl, 5,5.6,6,6-pentafluorohexyl, and 3,3,3trifluoropropyl, wherein each member of group A may be optionally substituted at any carbon up to and including 6 atoms from the point of 10 attachment of A to Z with one or more of the group consisting of R₃₃, R₃₄, R₃₅, and R₃₆ with the provisos that R₃₃, R₃₄, R₃₅, and R₃₆ must not be attached to the carbon directly linking A to Z and that R33, R34, R35, and R36 must be selected from other than aryl and heteroaryl when substituting the carbon 2 atoms from Z wherein Z is a single covalent bond; 15

R₃₃, R₃₄, R₃₅, and R₃₆ are independently selected from the group consisting of benzyloxy, 5-bromo-2-fluorophenoxy, 4-bromo-3-fluorophenoxy, 3-bromobenzyloxy, 4-bromophenoxy, 4-butoxyphenoxy, 3-chlorobenzyloxy,

- 2-chlorophenoxy, 4-chloro-3-ethylphenoxy, 4-chloro-3-methylphenoxy,
 2-chloro-4-fluorophenoxy, 4-chloro-2-fluorophenoxy, 4-chlorophenoxy,
 3-chloro-4-ethylphenoxy,
 3-chloro-4-fluorophenoxy,
 4-chloro-3-fluorophenoxy,
 5-chloropyrid-3-yloxy,
 cyclobutoxy,
 cyclobexylmethoxy,
- cyclopentoxy, cyclopentyl, cyclopentylcarbonyl, cyclopropylmethoxy, 2.3-dichlorophenoxy, 2,4-dichlorophenoxy, 2.4-dichlorophenyl, 3,5-dichlorophenyl, 3,5-dichlorobenzyl, 3,4-dichlorophenoxy, 3,4-difluorophenoxy, 3,5-difluorobenzyloxy, difluoromethoxy, 3,5-difluorophenoxy, 3,4-difluorophenyl,
- 2,3-difluorophenoxy, 2,4-difluorophenoxy, 2,5-difluorophenoxy,
 3,5-dimethoxyphenoxy,3-dimethylaminophenoxy, 3,4-dimethylbenzyloxy,
 3,5-dimethylbenzyloxy, 3,5-dimethylphenoxy,
 1,3-dioxolan-2-yl, 3-ethylbenzyloxy, 3-ethylphenoxy,

- 3-ethyl-5-methylphenoxy. 4-fluoro-3-methylbenzyl. 4-fluorobenzyloxy.
- 2-fluoro-3-methylphenoxy, 3-fluoro-4-methylphenoxy, 3-fluorophenoxy,
- 3-fluoro-2-nitrophenoxy, 2-fluoro-3-trifluoromethylbenzyloxy,
- 3-fluoro-5-trifluoromethylbenzyloxy, 2-fluorophenoxy, 4-fluorophenoxy,
- 2-fluoro-3-trifluoromethylphenoxy, 2-fluorobenzyloxy,
 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy, 2-furyl, 3-furyl,
 heptafluoropropyl, 1,1,1,3,3,3-hexafluoropropyl,
 2-hydroxy-3,3,3-trifluoropropoxy, isobutoxy, isobutyl, 3-isoxazolyl,
 - 2-hydroxy-3,3-trifluoropropoxy, isobutoxy, isobutyl, 3-isoxazolyl
 - 4-isoxazolyl, 5-isoxazolyl, isopropoxy, 3-isopropylbenzyloxy,
- 3-isopropylphenoxy, isopropylthio, 4-isopropyl-3-methylphenoxy, 3-isothiazolyl, 4-isothiazolyl, 5-isothiazolyl, 3-methoxybenzyl, 4-methoxyphenylamino, 3-methylbenzyloxy, 4-methylbenxyloxy, 3-methylphenoxy, 3-methylphenoxy, 4-methylphenoxy, 1-methylpropoxy, 2-methylpyrid-5-yloxy, 4-methylthiophenoxy,
- 2-naphthyloxy, 2-nitrophenoxy, 4-nitrophenoxy, 3-nitrophenyl, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, pentafluoroethyl, pentafluoroethylthio. 2,2,3,3,3-pentafluoropropyl, 1,1,3,3,3-pentafluoropropyl, 1,1,2,2,3-pentafluoropropyl, phenoxy, phenylamino, 1-phenylethoxy, 4-propylphenoxy, 4-propoxyphenoxy, thiophen-3-yl,tert -butoxy,
- 3-tert -butylphenoxy, 4-tert -butylphenoxy, 1,1,2,2-tetrafluoroethoxy, tetrahydrofuran-2-yl, 2-(5,6,7,8-tetrahydronaphthyloxy), thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, thiophen-2-yl, 2,2,2-trifluoroethoxy, 2,2,2-trifluoroethyl, 3,3,3-trifluoro-2-hydroxypropyl, trifluoromethoxy, 3-trifluoromethoxybenzyloxy, 4-trifluoromethoxybenzyloxy.
- 4-trifluoromethoxyphenoxy, 3-trifluoromethoxyphenoxy, trifluoromethyl, 3-trifluoromethylbenzyloxy, 1,1-bis-trifluoromethyl-1-hydroxymethyl, 3-trifluoromethylbenzyl, 3,5-bis-trifluoromethylbenzyloxy, 4-trifluoromethylphenoxy, 3-trifluoromethylphenoxy, 3-trifluoromethylphenoxy, 2,3,5-trifluorophenoxy,
- 3,4,5-trimethylphenoxy, 3-difluoromethoxyphenoxy,
 3-pentafluoroethylphenoxy, 3-(1,1,2,2-tetrafluoroethoxy)phenoxy,
 3-trifluoromethylthiophenoxy, 3-trifluoromethylthiobenzyloxy, and
 trifluoromethylthio.
- In an even more preferred specific embodiment of compounds of Formulas I-WOPA and I-WOHA.

A is selected from the group consisting of 1-propenyl, propyl, isopropyl, butyl, 2-butenyl, 3-butenyl, sec-butyl, isobutyl, 2-methylpropenyl, 1-pentyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 2-pentyl, 1-methyl-2-butenyl, 1methyl-3-butenyl, 3-pentyl, 1-ethyl-2-propenyl, 2-methylbutyl, 2-methyl-2butenyl, 2-methyl-3-butenyl, 3-methylbutyl, 3-methyl-2-butenyl, 3-methyl-3-5 butenyl, 1-hexyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl, 2-hexyl, 1methyl-2-pentenyl, 1-methyl-3-pentenyl, 1-methyl-4-pentenyl, 3-hexyl, 1ethyl-2-butenyl, 1-ethyl-3-butenyl, 1-propyl-2-propenyl, 1-ethyl-2-pentenyl, 1-ethyl-3-pentenyl, 1-ethyl-4-pentenyl, 1-butyl-2-propenyl, 1-ethyl-2-hexenyl, 10 1-ethyl-3-hexenyl, 1-ethyl-4-hexenyl, 1-ethyl-5-hexenyl, 1-pentyl-2propenyl, 1-propyl-2-pentenyl, 1-propyl-3-pentenyl, 1-propyl-4-pentenyl, 1butyl-2-butenyl, 1-butyl-3-butenyl, 2,2-difluoropropyl, 4-trifluoromethyl-5.5.5-trifluoropentyl, 4-trifluoromethylpentyl, 5.5.6.6,6-pentafluorohexyl, and 3.3.3-trifluoropropyl, wherein each member of group A may be optionally 15 substituted at any carbon up to and including 6 atoms from the point of attachment of A to Z with one or more of the group consisting of R₃₃, R₃₄, R₃₅, and R₃₆ with the provisos that R₃₃, R₃₄, R₃₅, and R₃₆ must not be attached to the carbon directly linking A to Z and that $R_{33},\,R_{34},\,R_{35},$ and R_{36} must be selected from other than aryl and heteroaryl when substituting the 20 carbon 2 atoms from Z wherein Z is a single covalent bond;

R₃₃, R₃₄, R₃₅, and R₃₆ are independently selected from the group consisting of 5-bromo-2-fluorophenoxy, 4-chloro-3-ethylphenoxy, cyclopentyl, 2,3-dichlorophenoxy, 3,4-dichlorophenoxy, 3-difluoromethoxyphenoxy.

- 3,5-dimethylphenoxy, 3,4-dimethylphenoxy, 3-ethylphenoxy, 3-ethyl-5-methylphenoxy, 4-fluoro-3-methylphenoxy, 4-fluorophenoxy, 2-furyl, isobutyl, isopropoxy, 3-isopropylphenoxy, 3-methylphenoxy, pentafluoroethyl, 3-pentafluoroethylphenoxy, 3-tert -butylphenoxy, 1,1,2,2-tetrafluoroethoxy, 3-(1,1,2,2-tetrafluoroethoxy)phenoxy,
- 30 2-(5,6,7,8-tetrahydronaphthyloxy),trifluoromethoxy, 3-trifluoromethoxybenzyloxy,3-trifluoromethoxyphenoxy, trifluoromethyl, 3-trifluoromethylbenzyloxy, 1,1-bis-trifluoromethyl-1-hydroxymethyl, trifluoromethylthio, and 3-trifluoromethylthiophenoxy.

10

15

In a preferred specific embodiment of compounds of Formulas I-WOHA and I-WOHC,

D₁, D₂, J₁, J₂ and K₁ are independently selected from the group consisting of C, N, O, S and a covalent bond to form the group consisting of 2-thienyl, 3-thienyl, 2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4imidazolyl, 3-pyrazolyl, 4-pyrazolyl, 1,2,4-triazol-3-yl, 1,2,4-triazol-5-yl, 1,2,4 oxadiazol-3-yl, 1,2,4-oxadiazol-5-yl, 1,3,4-oxadiazol-3-yl, 1,3,4oxadiazol-5-yl, 3-isothiazolyl, 5-isothiazolyl, 2-oxazolyl, 2-thiazolyl, 3isoxazolyl, 5-isoxazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrazinyl, 2pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 3-pyridazinyl, 4-pyridazinyl, 1,3,5-triazin-2-yl, 1,2,4-triazin-3-yl, 1,2,4-triazin-5-yl, 1,2,4-triazin-6-yl, 1,2,3-triazin-4-yl, 1-indolizinvl, 7-indolizinvl, 1-isoquinolyl, and 2-quinolyl, wherein a ring carbon atom adjacent to the carbon atom at the point of attachment may be optionally substituted with R4 or R8, a ring carbon atom adjacent to the R₄ position and two atoms from the point of attachment may be substituted with R5, a ring carbon atom adjacent to the R8 position and two atoms from the point of attachment may be substituted with R₇, and a ring carbon atom three atoms from the point of attachment and adjacent to the R5 and R₇ positions may be substituted with R₆.

20

25

30

In a more preferred specific embodiment of compounds of Formulas I-WOHA and I-WOHC.

D₁, D₂, J₁, J₂ and K₁ are independently selected from the group consisting of C.-N. O.-S-and a covalent bond to form the group consisting of 2-thienyl, 3-thienyl, 2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4-imidazolyl, 3-pyrazolyl, 4-pyrazolyl, 2-oxazolyl, 2-thiazolyl, 3-isoxazolyl, 5-isoxazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 3-pyridazinyl, 4-pyridazinyl, 1.3.5-triazin-2-yl, 1-indolizinyl, 7-indolizinyl, 1-isoquinolyl, and 2-quinolyl, wherein a ring carbon atom adjacent to the carbon atom at the point of attachment may be optionally

substituted with R_4 or R_8 , a ring carbon atom adjacent to the R_4 position and two atoms from the point of attachment may be substituted with R_5 , a ring carbon atom adjacent to the R_8 position and two atoms from the point of attachment may be substituted with R_7 , and a ring carbon atom three atoms from the point of attachment and adjacent to the R_5 and R_7 positions may be substituted with R_6 .

In an even more preferred specific embodiment of compounds of Formulas I-WOHA and I-WOHC,

D₁, D₂, J₁, J₂ and K₁ are independently selected from the group 10 consisting of C, N, O, S and a covalent bond to form the group consisting of 2-thienyl, 3-thienyl, 2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4imidazolyl, 3-pyrazolyl, 4-pyrazolyl, 2-thiazolyl, 3-isoxazolyl, 5-isoxazolyl, 2pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5pyrimidinyl, 3-pyridazinyl, 4-pyridazinyl, and 1,3,5-triazin-2-yl, wherein a 15 ring carbon atom adjacent to the carbon atom at the point of attachment may be optionally substituted with R₄ or R₈, a ring carbon atom adjacent to the R₄ position and two atoms from the point of attachment may be substituted with R5, a ring carbon atom adjacent to the R8 position and two atoms from the 20 point of attachment may be substituted with R₇, and a ring carbon atom three atoms from the point of attachment and adjacent to the R5 and R7 positions may be substituted with R_6 .

In a preferred specific embodiment of compounds of Formulas I-WOPC and I-WOHC,

A is selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclopent-2-enyl, cyclopent-3-enyl, cyclohexyl, 4-methylcyclohexyl, 4-chloro-3-ethylphenoxycyclohexyl, 3-

trifluoromethoxyphenoxycyclohexyl, 3-trifluoromethylcyclohexyl, 4trifluoromethylcyclohexyl, 3,5-bis-trifluoromethylcyclohexyl, adamantyl, 3trifluoromethyladamantyl, norbornyl, 3-trifluoromethylnorbornyl, norbornenyl, 7-oxabicyclo[2.2.1]heptan-2-yl, bicyclo[3.1.0]hexan-6-yl. 5 cyclohex-2-enyl, cyclohex-3-enyl, cycloheptyl, cyclohept-2-enyl, cyclohept-3enyl, cyclooctyl, cyclooct-2-enyl, cyclooct-3-enyl, cyclooct-4-enyl, 2morpholinyl, 3-morpholinyl, 4-morpholinyl, 1-piperazinyl, 2-piperazinyl, 1piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-piperidinyl, 1-pyrrolidinyl, 2pyrrolidinyl, 3-pyrrolidinyl, 2-dioxanyl, 2H-2-pyranyl, 2H-3-pyranyl, 2H-4-10 pyranyl, 4H-2-pyranyl, 4H-3-pyranyl, 4H-4-pyranyl, 2H-pyran-2-one-3-yl, 2H-pyran-2-one-4-yl, 2H-pyran-2-one-5-yl, 4H-pyran-4-one-2-yl, 4H-pyran-4-one-3-yl, 2-tetrahydrofuranyl, 3-tetrahydrofuranyl, 2-tetrahydropyranyl, 3tetrahydropyranyl. 4-tetrahydropyranyl. 2-tetrahydrothienyl. and 3tetrahydrothienyl, wherein each ring carbon may be optionally substituted with 15 R₃₀, a ring carbon other than the ring carbon at the point of attachment of A to Z may be optionally substituted with oxo provided that no more than one ring carbon is substituted by oxo at the same time, ring carbon and nitrogen atoms adjacent to the carbon atom at the point of attachment may be optionally substituted with R₉ or R₁₃, a ring carbon or nitrogen atom adjacent to the R₉ 20 position and two atoms from the point of attachment may be substituted with R₁₀, a ring carbon or nitrogen atom adjacent to the R₁₃ position and two atoms from the point of attachment may be substituted with R₁₂, a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R₁₀ position may be substituted with R₁₁, a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R₁₂ position may 25 be substituted with R₃₂, and a ring carbon or nitrogen atom four atoms from the point of attachment and adjacent to the R₁₁ and R₃₂ positions may be substituted with R31;

R₉ and R₁₃ are fluoro;

 R_{10} and R_{12} are independently selected from the group consisting of

- 4-aminophenoxy, benzyl, benzyl, benzyloxy, 5-bromo-2-fluorophenoxy,
- 4-bromo-3-fluorophenoxy, 4-bromo-2-nitrophenoxy, 3-bromobenzyloxy,
- 4-bromobenzyloxy. 4-bromophenoxy, 5-bromopyrid-2-yloxy,
- 5 4-butoxyphenoxy, chloro, 3-chlorobenzyl, 2-chlorophenoxy, 4-chlorophenoxy,
 - 4-chloro-3-ethylphenoxy. 3-chloro-4-fluorobenzyl. 3-chloro-4-fluorophenyl.
 - 3-chloro-2-fluorobenzyloxy, 3-chlorobenzyloxy, 4-chlorobenzyloxy.
 - 4-chloro-3-methylphenoxy, 2-chloro-4-fluorophenoxy,
- 10 4-chloro-2-fluorophenoxy, 4-chlorophenoxy, 3-chloro-4-ethylphenoxy,
 - 3-chloro-4-methylphenoxy, 3-chloro-4-fluorophenoxy,
 - 4-chloro-3-fluorophenoxy, 4-chlorophenylamino, 5-chloropyrid-3-yloxy,
 - 2-cyanopyrid-3-yloxy, 4-cyanophenoxy, cyclobutoxy, cyclobutyl,
 - cyclohexoxy, cyclohexylmethoxy, cyclopentoxy, cyclopentyl,
- cyclopentylcarbonyl, cyclopropyl, cyclopropylmethoxy, cyclopropoxy,
 - 2,3-dichlorophenoxy, 2,4-dichlorophenoxy, 2,4-dichlorophenyl,
 - 3.5-dichlorophenyl, 3,5-dichlorobenzyl, 3,4-dichlorophenoxy,
 - 3,4-difluorophenoxy, 2,3-difluorobenzyloxy, 2,4-difluorobenzyloxy,
 - 3,4-difluorobenzyloxy, 2,5-difluorobenzyloxy, 3,5-difluorophenoxy,
- 20 3,4-difluorophenyl, 3,5-difluorobenzyloxy, 4-difluoromethoxybenzyloxy,
 - 2,3-difluorophenoxy, 2,4-difluorophenoxy, 2,5-difluorophenoxy,
 - 3,5-dimethoxyphenoxy, 3-dimethylaminophenoxy, 3,5-dimethylphenoxy,
 - 3,4-dimethylphenoxy, 3,4-dimethylbenzyl, 3,4-dimethylbenzyloxy,
 - 3,5-dimethylbenzyloxy, 2,2-dimethylpropoxy, 1,3-dioxan-2-yl,
- 25--1-4-dioxan-2-yl, 1,3-dioxolan-2-yl, ethoxy, 4-ethoxyphenoxy,
 - 4-ethylbenzyloxy, 3-ethylphenoxy, 4-ethylaminophenoxy,
 - 3-ethyl-5-methylphenoxy, fluoro, 4-fluoro-3-methylbenzyl,
 - 4-fluoro-3-methylphenyl, 4-fluoro-3-methylbenzovl, 4-fluorobenzyloxy,
 - 2-fluoro-3-methylphenoxy, 3-fluoro-4-methylphenoxy, 3-fluorophenoxy,
- 30 3-fluoro-2-nitrophenoxy, 2-fluoro-3-trifluoromethylbenzyloxy,
 - 3-fluoro-5-trifluoromethylbenzyloxy, 4-fluoro-2-trifluoromethylbenzyloxy,
 - 4-fluoro-3-trifluoromethylbenzyloxy, 2-fluorophenoxy, 4-fluorophenoxy,
 - 2-fluoro-3-trifluoromethylphenoxy, 2-fluorobenzyloxy,
 - 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy,
- 35 4-fluoropyrid-2-yloxy, 2-furyl, 3-furyl, heptafluoropropyl,

- 1,1,1,3,3,3-hexafluoropropyl, 2-hydroxy-3,3,3-trifluoropropoxy.
- 3-iodobenzyloxy, isobutyl, isobutylamino, isobutoxy, 3-isoxazolyl,
- 4-isoxazolyl, 5-isoxazolyl, isopropoxy, isopropyl, 4-isopropylbenzyloxy,
- 3-isopropylphenoxy, 4-isopropylphenoxy, isopropylthio.
- 5 4-isopropyl-3-methylphenoxy, 3-isothiazolyl, 4-isothiazolyl.
 - 5-isothiazolyl, 3-methoxybenzyl, 4-methoxycarbonylbutoxy.
 - 3-methoxycarbonylprop-2-enyloxy, 4-methoxyphenyl,
 - 3-methoxyphenylamino, 4-methoxyphenylamino, 3-methylbenzyloxy,
 - 4-methylbenzyloxy, 3-methylphenoxy, 3-methyl-4-methylthiophenoxy.
- 4-methylphenoxy, 1-methylpropoxy, 2-methylpyrid-5-yloxy,
 - 4-methylthiophenoxy, 2-naphthyloxy, 2-nitrophenoxy, 4-nitrophenoxy,
 - 3-nitrophenyl, 4-nitrophenylthio, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl,
 - pentafluoroethyl, pentafluoroethylthio. 2.2.3.3.3-pentafluoropropyl.
 - 1.1,3,3,3-pentafluoropropyl, 1.1,2,2,3-pentafluoropropyl, phenoxy.
- phenylamino, 1-phenylethoxy, phenylsulfonyl, 4-propanoylphenoxy,
 - propoxy, 4-propylphenoxy, 4-propoxyphenoxy, thiophen-3-yl, sec-butyl,
 - 4-sec-butylphenoxy, tert -butoxy, 3-tert -butylphenoxy, 4-tert -butylphenoxy,
 - 1,1,2,2-tetrafluoroethoxy, tetrahydrofuran-2-yl,
 - 2-(5,6,7,8-tetrahydronaphthyloxy), thiazol-2-yl, thiazol-4-yl, thiazol-5-yl,
- 20 thiophen-2-yl, 2,3,5-trifluorobenzyloxy, 2,2,2-trifluoroethoxy,
 - 2,2,2-trifluoroethyl, 3,3,3-trifluoro-2-hydroxypropyl, trifluoromethoxy,
 - 3-trifluoromethoxybenzyloxy, 4-trifluoromethoxybenzyloxy,
 - 3-trifluoromethoxyphenoxy, 4-trifluoromethoxyphenoxy, trifluoromethyl;
 - 3-trifluoromethylbenzyloxy, 4-trifluoromethylbenzyloxy,
- 25 2,4-bis-trifluoromethylbenzyloxy, 1,1-bis-trifluoromethyl-1-hydroxymethyl,
 - 3-trifluoromethylbenzyl, 3,5-bis-trifluoromethylbenzyloxy,
 - 4-trifluoromethylphenoxy, 3-trifluoromethylphenoxy.
 - 3-trifluoromethylphenyl, 3-trifluoromethylthiobenzyloxy,
 - 4-trifluoromethylthiobenzyloxy, 2,3,4-trifluorophenoxy,
- 30 2,3,4-trifluorophenyl, 2,3,5-trifluorophenoxy, 3,4,5-trimethylphenoxy,
 - 3-difluoromethoxyphenoxy, 3-pentafluoroethylphenoxy,
 - 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, 3-trifluoromethylthiophenoxy, and trifluoromethylthio;

R₁₁, R₃₁, and R₃₂ are independently selected from the group consisting of chloro, fluoro, hydrido, pentafluoroethyl, 1,1.2,2-tetrafluoroethoxy, trifluoromethyl, and trifluoromethoxy:

R₃₀ is selected from the group consisting of chloro,

ethoxy, ethyl, fluoro, heptafluoropropyl, 1,1,1,3,3,3-hexafluoropropyl, isobutyl, isobutoxy, isopropoxy, isopropyl, isopropylthio, methyl, propyl, pentafluoroethyl, 2,2,3,3,3-pentafluoropropyl, 1,1,2,3,3-pentafluoropropyl, propoxy, sec-butyl, tert-butoxy, 1,1,2,2-tetrafluoroethoxy, 2,2,2-trifluoroethoxy, 2,2,2-trifluoroethyl,

trifluoromethoxy, and trifluoromethyl.

In a more preferred specific embodiment of compounds of Formulas I-WOPC and I-WOHC,

A is selected from the group consisting of cyclopropyl, cyclobutyl,

15 cyclopentyl, cyclohexyl, 4-methylcyclohexyl, 4-chloro-3ethylphenoxycyclohexyl, 3-trifluoromethoxyphenoxycyclohexyl, 3trifluoromethylcyclohexyl, 4-trifluoromethylcyclohexyl, 3,5-bistrifluoromethylcyclohexyl, adamantyl, 3-trifluoromethyladamantyl, norbornyl. 3-trifluoromethylnorbornyl, norbornenyl, 7-oxabicyclo[2.2.1]heptan-2-yl, 20 bicyclo[3.1.0]hexan-6-yl, cycloheptyl, cyclooctyl, 2-morpholinyl, 3morpholinyl, 4-morpholinyl, 1-piperazinyl, 2-piperazinyl, 1-piperidinyl, 2piperidinyl, 3-piperidinyl, 4-piperidinyl, 1-pyrrolidinyl, 2-pyrrolidinyl, 3pyrrolidinyl, 2-dioxanyl, 4H-2-pyranyl, 4H-3-pyranyl, 4H-4-pyranyl, 4Hpyran-4-one-2-yl, 4H-pyran-4-one-3-yl, 2-tetrahydrofuranyl, 3-25 tetrahydrofuranyl, 2-tetrahydropyranyl, 3-tetrahydropyranyl, 4tetrahydropyranyl, 2-tetrahydrothienyl, and 3-tetrahydrothienyl, wherein each ring carbon may be optionally substituted with R₃₀, a ring carbon other than the ring carbon at the point of attachment of A to Z may be optionally substituted with oxo provided that no more than one ring carbon is substituted 30 by oxo at the same time, ring carbon and nitrogen atoms adjacent to the carbon atom at the point of attachment may be optionally substituted with R9 or R13, a ring carbon or nitrogen atom adjacent to the Ro position and two atoms from

atom adjacent to the R₁₃ position and two atoms from the point of attachment may be substituted with R₁₂, a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R₁₀ position may be substituted with R₁₁, a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R₁₀ position may be substituted with R₁₁, a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R₁₂ position may be substituted with R₃₂, and a ring carbon or nitrogen atom four atoms from the point of attachment and adjacent to the R₁₁ and R₃₂ positions may be substituted with R₃₁;

R₉ and R₁₃ are fluoro;

- R_{10} and R_{12} are independently selected from the group consisting of 10 benzyloxy, 5-bromo-2-fluorophenoxy, 4-bromo-3-fluorophenoxy, 3-bromobenzyloxy, 4-bromophenoxy, 4-butoxyphenoxy, 3-chlorobenzyloxy, 2-chlorophenoxy, 4-chloro-3-ethylphenoxy, 4-chloro-3-methylphenoxy, 2-chloro-4-fluorophenoxy, 4-chloro-2-fluorophenoxy, 4-chlorophenoxy, 15 3-chloro-4-ethylphenoxy, 3-chloro-4-methylphenoxy, 3-chloro-4-fluorophenoxy, 4-chloro-3-fluorophenoxy, 4-chlorophenylamino, 5-chloropyrid-3-yloxy, cyclobutoxy, cyclobutyl, cyclohexylmethoxy. cyclopentoxy, cyclopentyl, cyclopentylcarbonyl, cyclopropylmethoxy, 2,3-dichlorophenoxy, 2,4-dichlorophenoxy, 2,4-dichlorophenyl, 20 3.5-dichlorophenyl, 3.5-dichlorobenzyl, 3.4-dichlorophenoxy, 3,4-difluorophenoxy,2,3-difluorobenzyloxy, 3,5-difluorobenzyloxy, difluoromethoxy, 3,5-difluorophenoxy, 3,4-difluorophenyl, 2,3-difluorophenoxy, 2,4-difluorophenoxy, 2.5-difluorophenoxy, 3,5-dimethoxyphenoxy,3-dimethylaminophenoxy, 3,4-dimethylbenzyloxy,
- 3.5-dimethylbenzyloxy, 3.5-dimethylphenoxy, 3.4-dimethylphenoxy, 1.3-dioxolan-2-yl, 3-ethylbenzyloxy, 3-ethylphenoxy, 4-ethylaminophenoxy, 3-ethyl-5-methylphenoxy, 4-fluoro-3-methylbenzyl, 4-fluorobenzyloxy, 2-fluoro-3-methylphenoxy, 3-fluoro-4-methylphenoxy, 3-fluorophenoxy, 3-fluoro-2-nitrophenoxy, 2-fluoro-3-trifluoromethylbenzyloxy,

- 3-fluoro-5-trifluoromethylbenzyloxy, 2-fluorophenoxy, 4-fluorophenoxy,
- 2-fluoro-3-trifluoromethylphenoxy, 2-fluorobenzyloxy.
- 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy, 2-furyl, 3-furyl, heptafluoropropyl, 1,1,1,3,3,3-hexafluoropropyl,
- 5 2-hydroxy-3,3,3-trifluoropropoxy, isobutoxy, isobutyl, 3-isoxazolyl,
 - 4-isoxazolyl, 5-isoxazolyl, isopropoxy, 3-isopropylbenzyloxy.
 - 3-isopropylphenoxy, isopropylthio, 4-isopropyl-3-methylphenoxy,
 - 3-isothiazolyl, 4-isothiazolyl, 5-isothiazolyl, 3-methoxybenzyl,
 - 4-methoxyphenylamino, 3-methylbenzyloxy, 4-methylbenxyloxy,
- 3-methylphenoxy, 3-methyl-4-methylthiophenoxy, 4-methylphenoxy, 1-methylpropoxy, 2-methylpyrid-5-yloxy, 4-methylthiophenoxy, 2-naphthyloxy, 2-nitrophenoxy, 4-nitrophenoxy, 3-nitrophenyl. 2-oxazolyl. 4-oxazolyl, 5-oxazolyl, pentafluoroethyl, pentafluoroethylthio,
 - 2,2,3,3,3-pentafluoropropyl, 1,1,3,3,3-pentafluoropropyl,
- 1,1,2,2,3-pentafluoropropyl, phenoxy, phenylamino, 1-phenylethoxy, 4-propylphenoxy, 4-propoxyphenoxy, thiophen-3-yl,tert -butoxy, 3-tert -butylphenoxy, 4-tert -butylphenoxy, 1,1,2,2-tetrafluoroethoxy, tetrahydrofuran-2-yl, 2-(5,6,7,8-tetrahydronaphthyloxy), thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, thiophen-2-yl, 2,2,2-trifluoroethoxy,
- 2.2,2-trifluoroethyl, 3,3,3-trifluoro-2-hydroxypropyl, trifluoromethoxy, 3-trifluoromethoxybenzyloxy, 4-trifluoromethoxybenzyloxy, 4-trifluoromethoxyphenoxy, 3-trifluoromethoxyphenoxy, trifluoromethyl, 3-trifluoromethylbenzyloxy, 1,1-bis-trifluoromethyl-1-hydroxymethyl, 3-trifluoromethylbenzyl, 3,5-bis-trifluoromethylbenzyloxy,
- 4-trifluoromethylphenoxy, 3-trifluoromethylphenoxy,
 3-trifluoromethylphenyl, 2,3,4-trifluorophenoxy, 2,3,5-trifluorophenoxy,
 3,4,5-trimethylphenoxy, 3-difluoromethoxyphenoxy,
 3-pentafluoroethylphenoxy, 3-(1,1,2,2-tetrafluoroethoxy)phenoxy,
 3-trifluoromethylthiophenoxy, 3-trifluoromethylthiobenzyloxy, and
 trifluoromethylthio;
 - R₁₁. R₃₁, and R₃₂ are independently selected from the group consisting of chloro, fluoro, hydrido, pentafluoroethyl, 1.1.2.2-tetrafluoroethoxy, and trifluoromethyl;

R₃₀ is selected from the group consisting of chloro, ethyl, fluoro. heptafluoropropyl, 1,1,1,3,3,3-hexafluoropropyl, isobutyl, isopropyl, methyl, pentafluoroethyl, 2,2,3,3,3-pentafluoropropyl, 1,1,3,3,3-pentafluoropropyl, 1,1,2,2-tetrafluoroethoxy, 2,2,2-trifluoroethyl, trifluoromethoxy, and trifluoromethyl.

In an even more preferred specific embodiment of compounds of Formulas I-WOPC and I-WOHC,

10 A is selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, 4-chloro-3ethylphenoxycyclohexyl, 3-trifluoromethoxyphenoxycyclohexyl, 3trifluoromethylcyclohexyl, 4-trifluoromethylcyclohexyl, 3,5-bistrifluoromethylcyclohexyl, adamantyl, 3-trifluoromethyladamantyl, norbornyl, 15 3-trifluoromethylnorbornyl, norbornenyl, 7-oxabicyclo[2.2.1]heptan-2-yl, bicyclo[3.1.0]hexan-6-yl, 2-tetrahydrofuranyl, 3-tetrahydrofuranyl, 2tetrahydropyranyl, 3-tetrahydropyranyl, 4-tetrahydropyranyl, 2tetrahydrothienyl, and 3-tetrahydrothienyl, wherein a ring carbon other than the ring carbon at the point of attachment of A to Z may be optionally substituted 20 with oxo provided that no more than one ring carbon is substituted by oxo at the same time, ring carbon and nitrogen atoms adjacent to the carbon atom at the point of attachment may be optionally substituted with R₉ or R₁₃, a ring carbon or nitrogen atom adjacent to the Ro position and two atoms from the point of attachment may be substituted with R₁₀, a ring carbon or nitrogen 25 atom adjacent to the R₁₃ position and two atoms from the point of attachment may be substituted with R₁₂, a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R₁₀ position may be substituted with R₁₁, a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R_{12} position may be substituted with R_{32} , and a

30

ring carbon or nitrogen atom four atoms from the point of attachment and adjacent to the R_{11} and R_{32} positions may be substituted with R_{31} :

R_Q and R₁₃ are fluoro;

R₁₀ and R₁₂ are independently selected from the group consisting of

- 5 5-bromo-2-fluorophenoxy, 4-chloro-3-ethylphenoxy, cyclopentyl,
 - 2,3-dichlorophenoxy, 3,4-dichlorophenoxy, 3-difluoromethoxyphenoxy,
 - 3,5-dimethylphenoxy, 3,4-dimethylphenoxy, 3-ethylphenoxy,
 - 3-ethyl-5-methylphenoxy, 4-fluoro-3-methylphenoxy, 4-fluorophenoxy,
 - 2-furyl, isobutyl, isopropoxy, 3-isopropylphenoxy, 3-methylphenoxy,
- pentafluoroethyl, 3-pentafluoroethylphenoxy, 3-tert -butylphenoxy,
 - 1,1,2,2-tetrafluoroethoxy, 3-(1,1,2,2-tetrafluoroethoxy)phenoxy,
 - 2-(5.6,7.8-tetrahydronaphthyloxy),trifluoromethoxy.
 - 3-trifluoromethoxybenzyloxy,3-trifluoromethoxyphenoxy, trifluoromethyl,
 - 3-trifluoromethylbenzyloxy, 1,1-bis-trifluoromethyl-1-hydroxymethyl,
- trifluoromethylthio, and 3-trifluoromethylthiophenoxy;

R₁₁, R₃₁, and R₃₂ are independently selected from the group consisting of chloro, fluoro, hydrido, pentafluoroethyl, 1,1,2,2-tetrafluoroethoxy, and trifluoromethyl.

DEFINITIONS

The use of generic terms in the description of the compounds are herein defined for clarity.

Standard single letter elemental symbols are used to represent specific types of atoms unless otherwise defined. The symbol "C" represents a carbon atom. The symbol "O" represents an oxygen atom. The symbol "N" represents a nitrogen atom. The symbol "P" represents a phosphorus atom. The symbol "S" represents a sulfur atom. The symbol "H" represents a hydrogen atom. Double letter elemental symbols are used as defined for the elements of the periodical table (i.e., Cl represents chlorine. Se represents selenium, etc.).

As utilized herein, the term "alkyl", either alone or within other terms such as "haloalkyl" and "alkylthio", means an acyclic alkyl radical containing from 1 to about 10, preferably from 3 to about 8 carbon atoms and more preferably 3 to

10

15

20

25

30

35

about 6 carbon atoms. Said alkyl radicals may be optionally substituted with groups as defined below. Examples of such radicals include methyl, ethyl, chloroethyl, hydroxyethyl, n-propyl, oxopropyl, isopropyl, n-butyl, cyanobutyl, isobutyl, sec-butyl, tert-butyl, pentyl, aminopentyl, iso-amyl, hexyl, ocityl and the like.

The term "alkenyl" refers to an unsaturated, acyclic hydrocarbon radical in so much as it contains at least one double bond. Such alkenyl radicals contain from about 2 to about 10 carbon atoms, preferably from about 3 to about 8 carbon atoms and more preferably 3 to about 6 carbon atoms. Said alkenyl radicals may be optionally substituted with groups as defined below. Examples of suitable alkenyl radicals include propenyl, 2-chloropropenyl, buten-1-yl, isobutenyl, penten-1-yl, 2-methylbuten-1-yl, 3-methylbuten-1-yl, hexen-1-yl, 3-hydroxyhexen-1-yl, hepten-1-yl, and octen-1-yl, and the like.

The term "alkynyl" refers to an unsaturated, acyclic hydrocarbon radical in so much as it contains one or more triple bonds, such radicals containing about 2 to about 10 carbon atoms, preferably having from about 3 to about 8 carbon atoms and more preferably having 3 to about 6 carbon atoms. Said alkynyl radicals may be optionally substituted with groups as defined below. Examples of suitable alkynyl radicals include ethynyl, propynyl, hydroxypropynyl, butyn-1-yl, butyn-2-yl, pentyn-1-yl, pentyn-2-yl, 4-methoxypentyn-2-yl, 3-methylbutyn-1-yl, hexyn-1-yl, hexyn-2-yl, hexyn-3-yl, 3,3-dimethylbutyn-1-yl radicals and the like.

The term "hydrido" denotes a single hydrogen atom (H). This hydrido radical may be attached, for example, to an oxygen atom to form a "hydroxyl" radical, one hydrido radical may be attached to a carbon atom to form a "methine" radical (=CH-), or two hydrido radicals may be attached to a carbon atom to form a "methylene" (-CH₂-) radical.

The term "carbon" radical denotes a carbon atom without any covalent bonds and capable of forming four covalent bonds.

The term "cyano" radical denotes a carbon radical having three of four covalent bonds shared by a nitrogen atom.

The term "hydroxyalkyl" embraces radicals wherein any one or more of the alkyl carbon atoms is substituted with a hydroxyl as defined above. Specifically embraced are monohydroxyalkyl, dihydroxyalkyl and polyhydroxyalkyl radicals.

15

20

25

30

The term "alkanoyl" embraces radicals wherein one or more of the terminal alkyl carbon atoms are substituted with one or more carbonyl radicals as defined below. Specifically embraced are monocarbonylalkyl and dicarbonylalkyl radicals. Examples of monocarbonylalkyl radicals include formyl, acetyl, and pentanoyl. Examples of dicarbonylalkyl radicals include oxalyl, malonyl, and succinyl.

The term "alkylene" radical denotes linear or branched radicals having from 1 about 10 carbon atoms and having attachment points for two or more covalent bonds. Examples of such radicals are methylene, ethylene, ethylene, and isopropylidene.

The term "alkenylene" radical denotes linear or branched radicals having from 2 to about 10 carbon atoms, at least one double bond, and having attachment points for two or more covalent bonds. Examples of such radicals are 1,1-vinylidene (CH₂=C), 1,2-vinylidene (-CH=CH-), and 1,4-butadienyl (-CH=CH-CH=CH-).

The term "halo" means halogens such as fluorine, chlorine, bromine or iodine atoms.

The term "haloalkyl" embraces radicals wherein any one or more of the alkyl carbon atoms is substituted with halo as defined above. Specifically embraced are monohaloalkyl, dihaloalkyl and polyhaloalkyl radicals. A monohaloalkyl radical, for one example, may have either a bromo, chloro or a fluoro atom within the radical. Dihalo radicals may have two or more of the same halo atoms or a combination of different halo radicals and polyhaloalkyl radicals may have more than two of the same halo atoms or a combination of different halo radicals. More preferred haloalkyl radicals are "lower haloalkyl" radicals having one to about six carbon atoms. Examples of such haloalkyl radicals include fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, pentafluoroethyl, dichloromethyltrichloromethyl, trifluoroethyl, heptafluoropropyl, difluorochloromethyl, dichlorofluoromethyl, difluoroethyl, difluoropropyl, dichloroethyl and dichloropropyl.

The term "hydroxyhaloalkyl" embraces radicals wherein any one or more of the haloalkyl carbon atoms is substituted with hydroxy as defined above. Examples of "hydroxyhaloalkyl" radicals include hexafluorohydoxypropyl.

WO 00/18723 PCT/US99/22123

The term "haloalkylene radical" denotes alkylene radicals wherein any one or more of the alkylene carbon atoms is substituted with halo as defined above. Dihalo alkylene radicals may have two or more of the same halo atoms or a combination of different halo radicals and polyhaloalkylene radicals may have more than two of the same halo atoms or a combination of different halo radicals. More preferred haloalkylene radicals are "lower haloalkylene" radicals having one to about six carbon atoms. Examples of "haloalkylene" radicals include difluoromethylene, tetrafluoroethylene, tetrachloroethylene, alkyl substituted monofluoromethylene, and aryl substituted trifluoromethylene.

5

10

15

20

25

30

35

The term "haloalkenyl" denotes linear or branched radicals having from 1 to about 10 carbon atoms and having one or more double bonds wherein any one or more of the alkenyl carbon atoms is substituted with halo as defined above. Dihaloalkenyl radicals may have two or more of the same halo atoms or a combination of different halo radicals and polyhaloalkenyl radicals may have more than two of the same halo atoms or a combination of different halo radicals.

The terms "alkoxy" and "alkoxyalkyl" embrace linear or branched oxycontaining radicals each having alkyl portions of one to about ten carbon atoms, such as methoxy radical. The term "alkoxyalkyl" also embraces alkyl radicals having one or more alkoxy radicals attached to the alkyl radical, that is, to form monoalkoxyalkyl and dialkoxyalkyl radicals. More preferred alkoxy radicals are "lower alkoxy" radicals having one to six carbon atoms. Examples of such radicals include methoxy, ethoxy, propoxy, butoxy, isopropoxy and tert-butoxy alkyls. The "alkoxy" radicals may be further substituted with one or more halo atoms, such as fluoro, chloro or bromo, to provide "haloalkoxy" and "haloalkoxyalkyl" radicals. Examples of such haloalkoxy radicals include fluoromethoxy, chloromethoxy, trifluoromethoxy, difluoromethoxy, trifluoroethoxy, fluoroethoxy, tetrafluoroethoxy, pentafluoroethoxy, and Examples of such haloalkoxyalkyl radicals include fluoropropoxy. fluoromethoxymethyl, chloromethoxyethyl, trifluoromethoxymethyl, difluoromethoxyethyl, and trifluoroethoxymethyl.

The terms "alkenyloxy" and "alkenyloxyalkyl" embrace linear or branched oxy-containing radicals each having alkenyl portions of two to about ten carbon atoms, such as ethenyloxy or propenyloxy radical. The term "alkenyloxyalkyl" also embraces alkenyl radicals having one or more

15

20

25

30

١

alkenyloxy radicals attached to the alkyl radical, that is, to form monoalkenyloxyalkyl and dialkenyloxyalkyl radicals. More preferred alkenyloxy radicals are "lower alkenyloxy" radicals having two to six carbon atoms. Examples of such radicals include ethenyloxy, propenyloxy, butenyloxy, and isopropenyloxy alkyls. The "alkenyloxy" radicals may be further substituted with one or more halo atoms, such as fluoro, chloro or bromo, to provide "haloalkenyloxy" radicals. Examples of such radicals include trifluoroethenyloxy, fluoroethenyloxy, difluoroethenyloxy, and fluoropropenyloxy.

The term "haloalkoxyalkyl" also embraces alkyl radicals having one or more haloalkoxy radicals attached to the alkyl radical, that is, to form radicals. The monohaloalkoxyalkvl and dihaloalkoxyalkyl term "haloalkenyloxy" also embraces oxygen radicals having one or more haloalkenyloxy radicals attached to the oxygen radical, that is, to form monohaloalkenyloxy and dihaloalkenyloxy radicals. The term "haloalkenyloxyalkyl" also embraces alkyl radicals having one or more haloalkenyloxy radicals attached to the alkyl radical, that is, to form monohaloalkenyloxyalkyl and dihaloalkenyloxyalkyl radicals.

The term "alkylenedioxy" radicals denotes alkylene radicals having at least two oxygens bonded to a single alkylene group. Examples of ethylenedioxy, "alkylenedioxy" radicals include methylenedioxy, alkylsubstituted methylenedioxy, and arylsubstituted methylenedioxy. The term "haloalkylenedioxy" radicals denotes haloalkylene radicals having at least two oxy groups bonded to a single haloalkyl group. Examples of difluoromethylenedioxy, "haloalkylenedioxy" radicals include tetrachloroethylenedioxy, alkylsubstituted tetrafluoroethylenedioxy, monofluoromethylenedioxy, and arylsubstituted monofluoromethylenedioxy.

The term "aryl", alone or in combination, means a carbocyclic aromatic system containing one, two or three rings wherein such rings may be attached together in a pendant manner or may be fused. The term "fused" means that a second ring is present (ie, attached or formed) by having two adjacent atoms in common (ie, shared) with the first ring. The term "fused" is equivalent to the term "condensed". The term "aryl" embraces aromatic radicals such as phenyl, naphthyl, tetrahydronaphthyl, indane and biphenyl.

WO 00/18723 PCT/US99/22123

The term "perhaloaryl" embraces aromatic radicals such as phenyl, naphthyl, tetrahydronaphthyl, indane and biphenyl wherein the aryl radical is substituted with 3 or more halo radicals as defined below.

5

10

15

20

25

30

35

The term "heterocyclyl" embraces saturated and partially saturated heteroatom-containing ring-shaped radicals having from 5 through 15 ring members selected from carbon, nitrogen, sulfur and oxygen, wherein at least one ring atom is a heteroatom. Heterocyclyl radicals may contain one, two or three rings wherein such rings may be attached in a pendant manner or may be fused. Examples of saturated heterocyclic radicals include saturated 3 to 6membered heteromonocylic group containing 1 to 4 nitrogen atoms[e.g. pyrrolidinyl, imidazolidinyl, piperidino, piperazinyl, etc.]; saturated 3 to 6membered heteromonocyclic group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms [e.g. morpholinvl, etc.]; saturated 3 to 6-membered heteromonocyclic group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms [e.g., thiazolidinyl, etc.]. Examples of partially saturated heterocyclyl radicals include dihydrothiophene, dihydropyran, dihydrofuran dihydrothiazole. Non-limiting examples of heterocyclic radicals include 2pyrrolinyl, 3-pyrrolinyl, pyrrolindinyl, 1,3-dioxolanyl, 2H-pyranyl, 4Hpyranyl, piperidinyl, 1,4-dioxanyl, morpholinyl, 1,4-dithianyl, thiomorpholinyl, and the like.

The term "heteroary!" embraces fully unsaturated heteroatom-containing ring-shaped aromatic radicals having from 5 through 15 ring members selected from carbon, nitrogen, sulfur and oxygen, wherein at least one ring atom is a heteroatom. Heteroaryl radicals may contain one, two or three rings wherein such rings may be attached in a pendant manner or may be fused. Examples of "heteroaryi" radicals, include unsaturated 5 to 6 membered heteromonocyclyl group containing 1 to 4 nitrogen atoms, for example, pyrrolyl, pyrrolinyl, imidazolyl, pyrazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, pyrimidyl, pyrazinyl, pyridazinyl, triazolyl [e.g., 4H-1,2,4-triazolyl, 1H-1,2,3-triazolyl, 2H-1,2,3triazolyl, etc.] tetrazolyl [e.g. 1H-tetrazolyl, 2H-tetrazolyl, etc.], etc.; unsaturated condensed heterocyclic group containing 1 to 5 nitrogen atoms, for example, indolyl, isoindolyl, indolizinyl, benzimidazolyl, isoquinolyl, indazolyl, benzotriazolyl, tetrazolopyridazinyl [e.g., tetrazolo [1,5-b]pyridazinyl, etc.], etc.; unsaturated 3 to 6-membered heteromonocyclic group containing an oxygen atom, for example, pyranyl, 2-furyl, 3-furyl, etc.; unsaturated 5 to 6-membered heteromonocyclic group containing a sulfur atom,

10

15

20

25

30

35

for example, 2-thienyl, 3-thienyl, etc.: unsaturated 5- to 6-membered heteromonocyclic group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms, for example, oxazolyl, isoxazolyl, oxadiazolyl [e.g., 1.2.4-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2,5-oxadiazolyl, etc.] etc.; unsaturated condensed heterocyclic group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms [e.g. benzoxazolyl, benzoxadiazolyl, etc.]; unsaturated 5 to 6-membered heteromonocyclic group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms, for example, thiazolyl, thiadiazolyl [e.g., 1.2.4- thiadiazolyl, 1,3.4thiadiazolyl, 1,2.5-thiadiazolyl, etc.] etc.; unsaturated condensed heterocyclic group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms [e.g., benzothiazolyl, benzothiadiazolyl, etc.] and the like. The term also embraces radicals where heterocyclic radicals are fused with aryl radicals. Examples of such fused bicyclic radicals include benzofuran, benzothiophene, and the like. Said "heterocyclyl" group may have 1 to 3 substituents as defined below. Preferred heterocyclic radicals include five to twelve membered fused or unfused radicals. Non-limiting examples of heteroaryl radicals include pyrrolyl, pyridinyl, pyridyloxy, pyrazolyl, triazolyl, pyrimidinyl, pyridazinyl, oxazolyl, thiazolyl, imidazolyl, indolyl, thiophenyl, furanyl, tetrazolyl, 2imidazolinyl, imidazolidinyl, 2-pyrazolinyl, pyrazolidinyl, isoxazolyl, isothiazolyl, 1,2,3-oxadiazolyl, 1,2,3-triazolyl, 1,3,4-thiadiazolyl, pyrazinyl, piperazinyl, 1.3.5-triazinyl, 1,3,5-trithianyl, benzo(b)thiophenyl, benzimidazoyl, quinolinyl, tetraazolyl, and the like.

The term "sulfonyl", whether used alone or linked to other terms such as alkylsulfonyl, denotes respectively divalent radicals -SO₂-. "Alkylsulfonyl", embraces alkyl radicals attached to a sulfonyl radical, where alkyl is defined as above. "Alkylsulfonylalkyl", embraces alkylsulfonyl radicals attached to an alkyl radical, where alkyl is defined as above. "Haloalkylsulfonyl". embraces haloalkyl radicals attached to a sulfonyl radical, where haloalkyl is defined as above. "Haloalkylsulfonylalkyl", embraces haloalkylsulfonyl radicals attached to an alkyl radical, where alkyl is defined as above. The term "aminosulfonyl" denotes an amino radical attached to a sulfonyl radical.

The term-"sulfinyl", whether used alone or linked to other terms such as alkylsulfinyl, denotes respectively divalent radicals -S(O). "Alkylsulfinyl", embraces alkyl radicals attached to a sulfinyl radical, where alkyl is defined as above. "Alkylsulfinylalkyl", embraces alkylsulfinyl radicals attached to an alkyl

WO 00/18723 PCT/US99/22123

radical, where alkyl is defined as above. "Haloalkylsulfinyl", embraces haloalkyl radicals attached to a sulfinyl radical, where haloalkyl is defined as above. "Haloalkylsulfinylalkyl", embraces haloalkylsulfinyl radicals attached to an alkyl radical, where alkyl is defined as above.

The term "aralkyl" embraces aryl-substituted alkyl radicals. Preferable aralkyl radicals are "lower aralkyl" radicals having aryl radicals attached to alkyl radicals having one to six carbon atoms. Examples of such radicals include benzyl, diphenylmethyl, triphenylmethyl, phenylethyl and diphenylethyl. The terms benzyl and phenylmethyl are interchangeable.

5

10

15

20

25

30

35

The term "heteroaralkyl" embraces heteroaryl-substituted alkyl radicals wherein the heteroaralkyl radical may be additionally substituted with three or more substituents as defined above for aralkyl radicals. The term "perhaloaralkyl" embraces aryl-substituted alkyl radicals wherein the aralkyl radical is substituted with three or more halo radicals as defined above.

The term "aralkylsulfinyl", embraces aralkyl radicals attached to a sulfinyl radical, where aralkyl is defined as above. "Aralkylsulfinylalkyl", embraces aralkylsulfinyl radicals attached to an alkyl radical, where alkyl is defined as above.

The term "aralkylsulfonyl", embraces aralkyl radicals attached to a sulfonyl radical, where aralkyl is defined as above. "Aralkylsulfonylalkyl", embraces aralkylsulfonyl radicals attached to an alkyl radical, where alkyl is defined as above.

The term "cycloalkyl" embraces radicals having from 3 through 15 carbon atoms. Cycloalkyl radicals may contain one, two, three, or four rings wherein such rings may be attached in a pendant manner or may be fused. Examples of cycloalkyl radicals having two or more rings include adamantyl, norbornyl, and 7-oxabicyclo[2.2.1]heptanyl. More preferred cycloalkyl radicals are "lower cycloalkyl" radicals having from 3 through 8 carbon atoms. Examples include radicals such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl. The term "cycloalkyl" also embraces radicals where cycloalkyl radicals are fused with aryl radicals or heterocyclyl radicals. The term "cycloalkylalkyl" embraces cycloalkyl-substituted alkyl radicals. Preferable cycloalkylalkyl radicals are "lower cycloalkylalkyl" radicals having cycloalkyl radicals attached to alkyl radicals having from one through six carbon atoms. Examples of such radicals include cyclohexylhexyl. The term "cycloalkenyl" embraces radicals having three to fifteen carbon atoms and one

10

15

20

25

30

35

or more carbon-carbon double bonds. Cycloalkenyl radicals may contain one, two, three, or four rings wherein such rings may be attached in a pendant manner or may be fused. Examples of cycloalkenyl radicals having two or more rings include norbornenyl. Preferred cycloalkenyl radicals are "lower cycloalkenyl" radicals having three to seven carbon atoms. Examples include radicals such as cyclobutenyl, cyclopentenyl, cyclohexenyl and cycloheptenyl. The term "halocycloalkyl" embraces radicals wherein any one or more of the cycloalkyl carbon atoms is substituted with halo as defined above. Specifically embraced are monohalocycloalkyl, dihalocycloalkyl and polyhalocycloalkyl radicals. A monohalocycloalkyl radical, for one example, may have either a bromo, chloro or a fluoro atom within the radical. Dihalo radicals may have two or more of the same halo atoms or a combination of different halo radicals and polyhalocycloalkyl radicals may have more than two of the same halo More preferred atoms or a combination of different halo radicals. halocycloalkyl radicals are "lower halocycloalkyl" radicals having three to about eight carbon atoms. Examples of such halocycloalkyl radicals include difluorocyclobutyl, trifluorocyclopentyl, fluorocyclopropyl, tetrafluorocyclohexyl, and dichlorocyclopropyl. The term "halocycloalkenyl" embraces radicals wherein any one or more of the cycloalkenyl carbon atoms is substituted with halo as defined above. Specifically embraced are monohalocycloalkenyl, dihalocycloalkenyl and polyhalocycloalkenyl radicals.

The term "cycloalkoxy" embraces cycloalkyl radicals attached to an oxy radical. Examples of such radicals includes cyclohexoxy and cyclopentoxy. The term "cycloalkoxyalkyl" also embraces alkyl radicals having one or more cycloalkoxy radicals attached to the alkyl radical, that is, to form monocycloalkoxyalkyl and dicycloalkoxyalkyl radicals. Examples of such radicals include cyclohexoxyethyl. The "cycloalkoxy" radicals may be further substituted with one or more halo atoms, such as fluoro, chloro or bromo, to provide "halocycloalkoxy" and "halocycloalkoxyalkyl" radicals.

The term "cycloalkylalkoxy" embraces cycloalkyl radicals attached to an alkoxy radical. Examples of such radicals includes cyclohexylmethoxy and cyclopentylmethoxy.

The term "cycloalkenyloxy" embraces cycloalkenyl radicals attached to an oxy radical. Examples of such radicals includes cyclohexenyloxy and cyclopentenyloxy. The term "cycloalkenyloxyalkyl" also embraces alkyl radicals having one or more cycloalkenyloxy radicals attached to the alkyl

10

15

20

25

30

35

radical, that is, to form monocycloalkenyloxyalkyl and dicycloalkenyloxyalkyl radicals. Examples of such radicals include cyclohexenyloxyethyl. The "cycloalkenyloxy" radicals may be further substituted with one or more halo atoms, such as fluoro, chloro or bromo, to provide "halocycloalkenyloxy" and "halocycloalkenyloxyalkyl" radicals.

The term "cycloalkylenedioxy" radicals denotes cycloalkylene radicals having at least two oxygens bonded to a single cycloalkylene group. Examples of "alkylenedioxy" radicals include 1,2-dioxycyclohexylene.

The term "cycloalkylsulfinyl", embraces cycloalkyl radicals attached to a sulfinyl radical, where cycloalkyl is defined as above. "Cycloalkylsulfinylalkyl", embraces cycloalkylsulfinyl radicals attached to an alkyl radical, where alkyl is defined as above. The term "Cycloalkylsulfonyl", embraces cycloalkyl radicals attached to a sulfonyl radical, where cycloalkyl is defined as above. "Cycloalkylsulfonylalkyl", embraces cycloalkylsulfonyl radicals attached to an alkyl radical, where alkyl is defined as above.

The term "cycloalkylalkanoyl" embraces radicals wherein one or more of the cycloalkyl carbon atoms are substituted with one or more carbonyl radicals as defined below. Specifically embraced are monocarbonylcycloalkyl and dicarbonylcycloalkyl radicals. Examples of monocarbonylcycloalkyl radicals include cyclohexylcarbonyl, cyclohexylacetyl, and cyclopentylcarbonyl. Examples of dicarbonylcycloalkyl radicals include 1,2-dicarbonylcyclohexane..

The term "alkylthio" embraces radicals containing a linear or branched alkyl radical, of one to ten carbon atoms, attached to a divalent sulfur atom. More preferred alkylthio radicals are "lower alkylthio" radicals having one to six carbon atoms. An example of "lower alkylthio" is methylthio (CH₃-S-). The "alkylthio" radicals may be further substituted with one or more halo atoms, such as fluoro, chloro or bromo, to provide "haloalkylthio" radicals. Examples of such radicals include fluoromethylthio, chloromethylthio, trifluoromethylthio, difluoromethylthio, trifluoroethylthio, fluoroethylthio, tetrafluoroethylthio, pentafluoroethylthio, and fluoropropylthio.

The term "alkyl aryl amino" embraces radicals containing a linear or branched alkyl radical, of one to ten carbon atoms, and one aryl radical both attached to an amino radical. Examples include N-methyl-4-methoxyaniline, N-ethyl-4-methoxyaniline, and N-methyl-4-trifluoromethoxyaniline.

10

15

20

25

30

35

The terms alkylamino denotes "monoalkylamino" and "dialkylamino" containing one or two alkyl radicals, respectively, attached to an amino radical.

The terms arylamino denotes "monoarylamino" and "diarylamino" containing one or two aryl radicals, respectively, attached to an amino radical. Examples of such radicals include N-phenylamino and N-naphthylamino.

The term "aralkylamino", embraces aralkyl radicals attached to an amino radical, where aralkyl is defined as above. The term aralkylamino denotes "monoaralkylamino" and "diaralkylamino" containing one or two aralkyl radicals, respectively, attached to an amino radical. The term aralkylamino further denotes "monoaralkyl monoalkylamino" containing one aralkyl radical and one alkyl radical attached to an amino radical.

The term "arylsulfinyl" embraces radicals containing an aryl radical, as defined above, attached to a divalent S(=O) atom. The term "arylsulfinylalkyl" denotes arylsulfinyl radicals attached to a linear or branched alkyl radical, of one to ten carbon atoms.

The term "arylsulfonyl", embraces aryl radicals attached to a sulfonyl radical, where aryl is defined as above. "arylsulfonylalkyl", embraces arylsulfonyl radicals attached to an alkyl radical, where alkyl is defined as above. The term "heteroarylsulfinyl" embraces radicals containing an heteroaryl radical, as defined above, attached to a divalent S(=O) atom. The term "heteroarylsulfinylalkyl" denotes heteroarylsulfinyl radicals attached to a linear or branched alkyl radical, of one to ten carbon atoms. The term "Heteroarylsulfonyl", embraces heteroaryl radicals attached to a sulfonyl radical, where heteroaryl is defined as above. "Heteroarylsulfonylalkyl", embraces heteroarylsulfonyl radicals attached to an alkyl radical, where alkyl is defined as above.

The term "aryloxy" embraces aryl radicals, as defined above, attached --to an oxygen-atom. Examples of such radicals include phenoxy, 4-chloro-3-ethylphenoxy, 4-chloro-3-methylphenoxy, 3-chloro-4-ethylphenoxy, 3,4-dichlorophenoxy, 4-methylphenoxy, 3-trifluoromethoxyphenoxy, 3-trifluoromethylphenoxy, 4-fluorophenoxy, 3,4-dimethylphenoxy, 5-bromo-2-fluorophenoxy, 4-bromo-3-fluorophenoxy, 4-fluoro-3-methylphenoxy, 5,6,7,8-tetrahydronaphthyloxy, 3-isopropylphenoxy, 3-cyclopropylphenoxy, 3-ethylphenoxy, 4-tert -butylphenoxy, 3-pentafluoroethylphenoxy, and 3-(1,1,2,2-tetrafluoroethoxy)phenoxy.

10

15

20

25

30

35

The term "aroyl" embraces aryl radicals, as defined above, attached to an carbonyl radical as defined above. Examples of such radicals include benzoyl and toluoyl.

The term "aralkanoyl" embraces aralkyl radicals, as defined herein, attached to an carbonyl radical as defined above. Examples of such radicals_include, for example, phenylacetyl.

The term "aralkoxy" embraces oxy-containing aralkyl radicals attached through an oxygen atom to other radicals. More preferred aralkoxy radicals are "lower aralkoxy" radicals having phenyl radicals attached to lower alkoxy radical as described above. Examples of such radicals include benzyloxy, 1-phenylethoxy, 3-trifluoromethoxybenzyloxy, 3-trifluoromethylbenzyloxy, 3,5-difluorobenyloxy, 3-bromobenzyloxy, 4-propylbenzyloxy, 2-fluoro-3-trifluoromethylbenzyloxy, and 2-phenylethoxy.

The term "aryloxyalkyl" embraces aryloxy radicals, as defined above, attached to an alkyl group. Examples of such radicals include phenoxymethyl.

The term "haloaryloxyalkyl" embraces aryloxyalkyl radicals, as defined above, wherein one to five halo radicals are attached to an aryloxy group.

The term "heteroaroyl" embraces heteroaryl radicals, as defined above, attached to an carbonyl radical as defined above. Examples of such radicals include furoyl and nicotinyl.

The term "heteroaralkanoyl" embraces heteroaralkyl radicals, as defined herein, attached to an carbonyl radical as defined above. Examples of such radicals include, for example, pyridylacetyl and furylbutyryl.

The term "heteroaralkoxy" embraces oxy-containing heteroaralkyl radicals attached through an oxygen atom to other radicals. More preferred heteroaralkoxy radicals are "lower heteroaralkoxy" radicals having heteroaryl radicals attached to lower alkoxy radical as described above.

The term "haloheteroaryloxyalkyl" embraces heteroaryloxyalkyl radicals, as defined above, wherein one to four halo radicals are attached to an heteroaryloxy group.

The term "heteroarylamino" embraces heterocyclyl radicals, as defined above, attached to an amino group. Examples of such radicals include pyridylamino.

The term "heteroarylaminoalkyl" embraces heteroarylamino radicals, as defined above, attached to an alkyl group. Examples of such radicals include pyridylmethylamino.

10

15

20

25

30

35

The term "heteroaryloxy" embraces heterocyclyl radicals, as defined above, attached to an oxy group. Examples of such radicals include 2-thiophenyloxy, 2-pyrimidyloxy, 2-pyridyloxy, 3-pyridyloxy, and 4-pyridyloxy.

The term "heteroaryloxyalkyl" embraces heteroaryloxy radicals, as defined above, attached to an alkyl group. Examples of such radicals include 2-pyridyloxymethyl, 3-pyridyloxyethyl, and 4-pyridyloxymethyl.

The term "arylthio" embraces aryl radicals, as defined above, attached to an sulfur atom. Examples of such radicals include phenylthio.

The term "arylthioalkyl" embraces arylthio radicals, as defined above, attached to an alkyl group. Examples of such radicals include phenylthiomethyl.

The term "alkylthioalkyl" embraces alkylthio radicals, as defined above. attached to an alkyl group. Examples of such radicals include methylthiomethyl. The term "alkoxyalkyl" embraces alkoxy radicals, as defined above, attached to an alkyl group. Examples of such radicals include methoxymethyl.

The term "carbonyl" denotes a carbon radical having two of the four covalent bonds shared with an oxygen atom. The term "carboxy" embraces a hydroxyl radical, as defined above, attached to one of two unshared bonds in a carbonyl group. The term "carboxamide" embraces amino, monoalkylamino, dialkylamino, monocycloalkylamino, alkylcycloalkylamino, and dicycloalkylamino radicals, attached to one of two unshared bonds in a carbonyl group. The term "carboxamidoalkyl" embraces carboxamide radicals, as defined above, attached to an alkyl group. The term "carboxyalkyl" embraces a carboxy radical, as defined above, attached to an alkyl group. The term "carboalkoxy" embraces alkoxy radicals, as defined above, attached to one of two unshared bonds in a carbonyl group. The term "carboaralkoxy" embraces aralkoxy radicals, as defined above, attached to one of two unshared bonds in a carbonyl group. The term "monocarboalkoxyalkyl" embraces one carboalkoxy radical, as defined above, attached to an alkyl group. The term "dicarboalkoxyalkyl" embraces two carboalkoxy radicals, as defined above, attached to an alkylene group. The term "monocyanoalkyl" embraces one cyano radical, as defined above, attached to an alkyl group. The term "dicyanoalkylene" embraces two cyano radicals, as defined above, attached to an alkyl group. The term "carboalkoxycyanoalkyl" embraces one cyano radical, as defined above, attached to an carboalkoxyalkyl group.

10

15

20

25

The term "acyl", alone or in combination, means a carbonyl or thionocarbonyl group bonded to a radical selected from, for example, hydrido, alkyl, alkenyl, alkynyl, haloalkyl, alkoxy, alkoxyalkyl, haloalkoxy, aryl, heterocyclyl, heteroaryl, alkylsulfinylalkyl, alkylsulfonylalkyl, aralkyl, cycloalkyl, cycloalkyl, alkylsulfinylalkyl, alkylsulfonylalkyl, aralkyl, cycloalkyl, cycloalkyl, alkylthio, arylthio, amino, alkylamino, dialkylamino, aralkoxy, arylthio, and alkylthioalkyl. Examples of "acyl" are formyl, acetyl, benzoyl, trifluoroacetyl, phthaloyl, malonyl, nicotinyl, and the like. The term "haloalkanoyl" embraces one or more halo radicals, as defined herein, attached to an alkanoyl radical as defined above. Examples of such radicals include, for example, chloroacetyl, trifluoroacetyl, bromopropanoyl, and heptafluorobutanoyl. The term "diacyl", alone or in combination, means having two or more carbonyl or thionocarbonyl groups bonded to a radical selected from, for example, alkylene, alkenylene, alkynylene, haloalkylene, alkoxyalkylene, aryl, heterocyclyl, heteroaryl, aralkyl, cycloalkyl, cycloalkylalkyl, and cycloalkenyl. Examples of "diacyl" are phthaloyl, malonyl, succinyl, adipoyl, and the like.

The term "benzylidenyl" radical denotes substituted and unsubstituted benzyl groups having attachment points for two covalent bonds. One attachment point is through the methylene of the benzyl group with the other attachment point through an ortho carbon of the phenyl ring. The methylene group is designated for attached to the lowest numbered position. Examples include the base compound benzylidene of structure:

The term "phenoxylidenyl" radical denotes substituted and unsubstituted phenoxy groups having attachment points for two covalent bonds. One attachment point is through the oxy of the phenoxy group with the other attachment point through an ortho carbon of the phenyl ring. The oxy group is designated for attached to the lowest numbered position. Examples include the base compound phenoxylidene of structure:

The term "phosphono" embraces a pentavalent phosphorus attached with two covalent bonds to an oxygen radical. The term "dialkoxyphosphono" denotes two alkoxy radicals, as defined above, attached to a phosphono radical with two covalent bonds. The term "diaralkoxyphosphono" denotes two aralkoxy radicals, as defined above, attached to a phosphono radical with two covalent bonds. The term "dialkoxyphosphonoalkyl" denotes dialkoxyphosphono radicals, as defined above, attached to an alkyl radical. The term "diaralkoxyphosphonoalkyl" denotes diaralkoxyphosphono radicals, as defined above, attached to an alkyl radical.

10 Said "alkyl", "alkenyl", "alkynyl". "alkanoyl", "alkylene", "alkenylene", "benzylidenyl", "phenoxylidenyl", "hydroxyalkyl", "haloalkyl", "haloalkylene", "haloalkenyl", "alkoxy", "alkenyloxy", "alkenyloxyalkyl", "alkoxyalkyl", "aryl", "perhaloaryl", "haloalkoxy", "haloalkoxyalkyl", "haloalkenyloxy", "haloalkenyloxyalkyl", "alkylenedioxy", "haloalkylenedioxy", "heterocyclyl", "heteroaryl", "hydroxyhaloalkyl", "alkylsulfonyl", "haloalkylsulfonyl", 15 "alkylsulfonylalkyl". "haloalkylsulfonylalkyl", "alkylsulfinyl", "alkylsulfinylalkyl", "haloalkylsulfinylalkyl", "aralkyl", "heteroaralkyl", "perhaloaralkyl", "aralkylsulfonyl", "aralkylsulfonylalkyl", "aralkylsulfinyl", "aralkylsulfinylalkyl", "cycloalkyl", "cycloalkylalkanoyl", "cycloalkylalkyl", "cycloalkenyl", "halocycloalkyl", "halocycloalkenyl", "cycloalkylsulfinyl", 20 "cycloalkylsulfinylalkyl", "cycloalkylsulfonyl", "cycloalkylsulfonylalkyl", "cycloalkoxy", "cycloalkoxyalkyl", "cycloalkylalkoxy", "cycloalkenyloxy", "cycloalkenyloxyalkyl", "cycloalkylenedioxy", "halocycloalkoxy", "halocycloalkoxyalkyl", "halocycloalkenyloxy", "halocycloalkenyloxyalkyl", 25 "alkylthio", "haloalkylthio", "alkylsulfinyl", "amino", "oxy", "thio", "alkylamino", "arvlamino", "aralkylamino", "arylsulfinyl", "arylsulfinylalkyl", "arylsulfonyl", "arylsulfonylalkyl", "heteroarylsulfinyl", "heteroarylsulfinylalkyl", "heteroarylsulfonyl", "heteroarylsulfonylalkyl", "heteroarylamino", "heteroarylaminoalkyl", "heteroaryloxy", "heteroaryloxylalkyl", "aryloxy",

- "aroyl", "aralkanoyl", "aralkoxy", "aryloxyalkyl", "haloaryloxyalkyl", "heteroaroyl", "heteroaralkanoyl", "heteroaralkoxy", "heteroaralkoxyalkyl", "acyl" and "diacyl" groups defined above may optionally have 1 to 5 non-hydrido substituents such as perhaloaralkyl, aralkylsulfonyl, aralkylsulfonyl, aralkylsulfinyl, aralkylsulfinyl, aralkylsulfinylalkyl, halocycloalkyl, halocycloalkenyl, cycloalkylsulfinyl, cycloalkylsulfinylalkyl, cycloalkylsulfonyl, cycloalkylsulfonylalkyl, heteroarylamino. N-heteroarylamino-N-alkylamino, heteroarylaminoalkyl, heteroaryloxy, heteroaryloxylalkyl, haloalkylthio, alkanoyloxy, alkoxy, alkoxyalkyl, haloalkoxylalkyl, heteroaralkoxy, cycloalkoxy, cycloalkylalkoxy
- cycloalkoxy, cycloalkenyloxy, cycloalkoxyalkyl, cycloalkylalkoxy, cycloalkoxyalkyl, cycloalkoxyalkyl, halocycloalkoxy, halocycloalkoxyalkyl, halocycloalkenyloxy, halocycloalkenyloxyalkyl, hydroxy, amino, thio, nitro, lower alkylamino, alkylthio, alkylthioalkyl, arylamino, aralkylamino, arylthio, arylthioalkyl, heteroaralkoxyalkyl, alkylsulfinyl, alkylsulfinylalkyl,
- arylsulfinylalkyl, arylsulfonylalkyl, heteroarylsulfinylalkyl, heteroarylsulfinylalkyl, heteroarylsulfonylalkyl, alkylsulfonyl, alkylsulfonylalkyl, haloalkylsulfinylalkyl, haloalkylsulfonylalkyl, alkylsulfonamido, alkylaminosulfonyl, amidosulfonyl, monoalkyl amidosulfonyl, dialkyl amidosulfonyl, monoarylamidosulfonyl, arylsulfonamido, diarylamidosulfonyl, monoalkyl monoaryl amidosulfonyl,
- arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, alkanoyl, alkenoyl, aroyl, heteroaroyl, aralkanoyl, heteroaralkanoyl, haloalkanoyl, alkyl, alkenyl, alkynyl, alkenyloxy, alkenyloxyalky, alkylenedioxy, haloalkylenedioxy, cycloalkyl, cycloalkylalkanoyl, cycloalkenyl, lower cycloalkylalkyl, halo, haloalkyl, haloalkenyl, haloalkoxy,
- hydroxyhaloalkyl, hydroxyaralkyl, hydroxyalkyl, hydoxyheteroaralkyl, haloalkoxyalkyl, aryl, aralkyl, aryloxy, aralkoxy, aryloxyalkyl, saturated heterocyclyl, partially saturated heterocyclyl, heteroaryl, heteroaryloxy, heteroaryloxyalkyl, arylalkyl, heteroarylalkyl, arylalkenyl, heteroarylalkenyl, carboxyalkyl, carboalkoxy, alkoxycarbonyl, carboaralkoxy, carboxamido,
- carboxamidoalkyl, cyano, carbohaloalkoxy, phosphono, phosphonoalkyl, diaralkoxyphosphono, and diaralkoxyphosphonoalkyl.

The term "spacer" may include a covalent bond, a linear moiety having a backbone of 1 to 7 continous atoms, and a branched moiety having three branches connecting to a common atom with a total of from 1 through 8 atoms.

The spacer may have 1 to 7 atoms of a univalent or multi-valent chain.

Univalent chains may be constituted by a radical selected from =C(H)-.

 $=C(R_{17})^{-}$, -O-, -S-, -S(O)-, -S(O)₂-, -NH-, -N(R₁₇)-, -N=, -CH(OH)-, =C(OH)-, -CH(OR₁₇)-, =C(OR₁₇)-, and -C(O)- wherein R_{17} is selected from alkyl, alkenyl, alkynyl, aryl, heteroaryl, aralkyl, aryloxyalkyl, alkoxyalkyl, alkylthioalkyl, arylthioalkyl, cycloalkyl, cycloalkyl, haloalkyl, 5 haloalkenyl, haloalkoxyalkyl, perhaloaralkyl, heteroarylalkyl, heteroaryloxyalkyl, heteroarylthioalkyl, and heteroarylalkenyl. Multi-valent chains may consist of a straight chain of 1 or 2 or 3 or 4 or 5 or 6 or 7 atoms, a straight chain of 1 or 2 or 3 or 4 or 5 or 6 atoms with a side chain, or a branched chain made up of 1 or 2 or 3 or 4 atoms in each of the three branches. The chain may be constituted of one or more radicals selected from: lower 10 alkylene, lower alkenyl, -O-, -O-CH2-, -S-CH2-, -CH2CH2-, ethenyl, -CH=CH(OH)-, $-OCH_2O-$, $-O(CH_2)_2O-$, $-NHCH_2-$, $-OCH(R_{17})O-$, $-\mathsf{O}(\mathsf{CH}_2\mathsf{CHR}_{17})\mathsf{O}\text{--}, -\mathsf{O}\mathsf{CF}_2\mathsf{O}\text{--}, -\mathsf{O}(\mathsf{CF}_2)_2\mathsf{O}\text{--}, -\mathsf{S}\text{--}, -\mathsf{S}(\mathsf{O})\text{--}, -\mathsf{S}(\mathsf{O})_2\text{--}, -\mathsf{N}(\mathsf{H})\text{--},$ $-{\sf N}({\sf H}){\sf O-},\ -{\sf N}({\sf R}_{17}){\sf O-},\ -{\sf N}({\sf R}_{17}){\sf -},\ -{\sf C}({\sf O}){\sf -},\ -{\sf C}({\sf O}){\sf NH-},\ -{\sf C}({\sf O}){\sf NR}_{17}{\sf -},\ -{\sf N}{\sf =},$ -OCH₂-, -SCH₂-, S(O)CH₂-, -CH₂C(O)-, -CH(OH)-, =C(OH)-, 15 -CH(OR₁₇)-, =C(OR₁₇)-, S(O)₂CH₂-, and -NR₁₇CH₂- and many other radicals defined above or generally known or ascertained by one of skill-in-the art. Side chains may include substituents such as 1 to 5 non-hydrido substituents such as perhaloaralkyl, aralkylsulfonyl, aralkylsulfonylalkyl, aralkylsulfinyl, aralkylsulfinylalkyl, halocycloalkyl, halocycloalkenyl, 20 cycloalkylsulfinyl, cycloalkylsulfinylalkyl, cycloalkylsulfonyl, cycloalkylsulfonylalkyl, heteroarylamino, N-heteroarylamino-N-alkylamino, heteroarylaminoalkyl, heteroaryloxy, heteroaryloxylalkyl, haloalkylthio, alkanoyloxy, alkoxy, alkoxyalkyl, haloalkoxylalkyl, heteroaralkoxy, 25 cycloalkoxy, cycloalkenyloxy, cycloalkoxyalkyl, cycloalkylalkoxy. cycloalkenyloxyalkyl, cycloalkylenedioxy, halocycloalkoxy, halocycloalkoxyalkyl, halocycloalkenyloxy, halocycloalkenyloxyalkyl,

hydroxy, amino, thio, nitro, lower alkylamino, alkylthio, alkylthioalkyl, arylamino, aralkylamino, arylthio, arylthioalkyl, heteroaralkoxyalkyl, alkylsulfinylalkyl, arylsulfinylalkyl, arylsulfonylalkyl,

15

20

25

30

35

heteroarylsulfinylalkyl, heteroarylsulfonylalkyl, alkylsulfonyl. alkylsulfonylalkyl, haloalkylsulfinylalkyl, haloalkylsulfonylalkyl, alkylsulfonamido, alkylaminosulfonyl, amidosulfonyl, monoalkyl amidosulfonyl, dialkyl amidosulfonyl, monoarylamidosulfonyl, arylsulfonamido, diarylamidosulfonyl, monoalkyl monoaryl amidosulfonyl, arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, alkanoyl, alkenoyl, aroyl, heteroaroyl, aralkanoyl, heteroaralkanoyl, haloalkanoyl, alkyl, alkenyl, alkynyl, alkenyloxy, alkenyloxyalky, alkylenedioxy, haloalkylenedioxy, cycloalkyl, cycloalkenyl, lower cycloalkylalkyl, lower cycloalkenylalkyl, halo, haloalkyl, haloalkenyl, haloalkoxy, hydroxyhaloalkyl, hydroxyaralkyl, hydroxyalkyl, hydoxyheteroaralkyl, haloalkoxyalkyl, aryl, aralkyl, aryloxy, aralkoxy, aryloxyalkyl, saturated heterocyclyl, partially saturated heterocyclyl, heteroaryl, heteroaryloxy, heteroaryloxyalkyl, arylalkyl, heteroarylalkyl, arylalkenyl, heteroarylalkenyl, carboxvalkyl, carboalkoxy, carboaralkoxy, carboxamido, carboxamidoalkyl, cyano, carbohaloalkoxy, phosphono,

Compounds of the present invention can exist in tautomeric, geometric or stereoisomeric forms. The present invention contemplates all such compounds, including cis- and trans-geometric isomers, E- and Z-geometric isomers, R- and S-enantiomers, diastereomers, d-isomers, l-isomers, the racemic mixtures thereof and other mixtures thereof, as falling within the scope of the invention.

Pharmaceutically acceptable sales of such tautomeric, geometric or stereoisomeric forms are also included within the invention.

phosphonoalkyl, diaralkoxyphosphono, and diaralkoxyphosphonoalkyl.

The terms "cis" and "trans" denote a form of geometric isomerism in which two carbon atoms connected by a double bond will each have a hydrogen atom on the same side of the double bond ("cis") or on opposite sides of the double bond ("trans").

Some of the compounds described contain alkenyl groups, and are meant to include both cis and trans or "E" and "Z" geometric forms.

Some of the compounds described contain one or more stereocenters and are meant to include R, S, and mixtures of R and S forms for each stereocenter present.

Some of the compounds described herein may contain one or more ketonic or aldehydic carbonyl groups or combinations thereof alone or as part of a heterocyclic ring system. Such carbonyl groups may exist in part or

10

15

principally in the "keto" form and in part or principally as one or more "enol" forms of each aldehyde and ketone group present. Compounds of the present invention having aldehydic or ketonic carbonyl groups are meant to include both "keto" and "enol" tautomeric forms.

Some of the compounds described herein may contain one or more amide carbonyl groups or combinations thereof alone or as part of a heterocyclic ring system. Such carbonyl groups may exist in part or principally in the "keto" form and in part or principally as one or more "enol" forms of each amide group present. Compounds of the present invention having amidic carbonyl groups are meant to include both "keto" and "enol" tautomeric forms. Said amide carbonyl groups may be both oxo (C=O) and thiono (C=S) in type.

Some of the compounds described herein may contain one or more imine or enamine groups or combinations thereof. Such groups may exist in part or principally in the "imine" form and in part or principally as one or more "enamine" forms of each group present. Compounds of the present invention having said imine or enamine groups are meant to include both "imine" and "enamine" tautomeric forms.

The following general synthetic sequences are useful in making the present invention. Abbreviations used in the schemes are as follows: "AA" 20 represents amino acids, "BINAP" represents 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl, "Boc" represents tert-butyloxycarbonyl, "BOP" represents. benzotriazol-1-yl-oxy-tris-(dimethylamino), "bu" represents butyl, "dba" represents dibenzylideneacetone, "DCC" represents 1,3dicyclohexylcarbodiimide, "DIBAH" represents diisobutylaluminum hydride, 25_ "DIPEA" represents disopropylethylamine, "DMF" represents dimethylformamide, "DMSO" represents dimethylsulfoxide, "Fmoc" represents 9-fluorenylmethoxycarbonyl, "LDA" represents lithium diisopropylamide, "PHTH" represents a phthaloyl group, "pnZ" represents 4nitrobenzyloxycarbonyl, "PTC" represents a phase transfer catalyst, "p-TsOH" 30 represents paratoluenesulfonic acid, "TBAF" represents tetrabutylammonium fluoride, "TBTU" represents 2-(1H-benzotriozole-1-yl)-1,1,3,3-tetramethyl uronium tetrafluoroborate, "TEA" represents triethylamine, "TFA" represents trifluoroacetic acid, "THF" represents tetrahydrofuran, "TMS" represents trimethylsilyl, and "Z" represents benzyloxycarbonyl.

10

15

١

PHARMACEUTICAL UTILITY AND COMPOSITION

The present invention comprises a pharmaceutical composition comprising a therapeutically-effective amount of a compound of Formulas VII-H, VII, VII-2, VII-3, VII-4, and Cyclo-VII, in association with at least one pharmaceutically-acceptable carrier, adjuvant or diluent.

The present invention also comprises a treatment and prophylaxis of coronary artery disease and other CETP-mediated disorders in a subject, comprising administering to the subject having such disorder a therapeutically-effective amount of a compound of Formula I-WA:

$$R_{16}$$
 R_{15}
 R

wherein R₁, R₂, R₃, n, R₁₄, R₁₅, R₁₆, A, Q, X, Y, and Z are as defined above for the compounds of Formula I-WA; or a pharmaceutically-acceptable salt thereof.

As a further embodiment, compounds of the present invention of Formulas I-WA, I-WO, I-WOHA, I-WOPC, I-WOHA, and I-WOHC, or a —pharmaceutically-acceptable salt thereof as defined above and further comprise a treatment and prophylaxis of coronary artery disease and other CETP-mediated disorders in a subject, comprising administering to the subject having such disorder a therapeutically-effective amount of compounds of Formulas I-WA, I-WO, I-WOHA, I-WOPC, I-WOHA, and I-WOHC, of the present invention or a pharmaceutically-acceptable salt thereof.

Compounds of Formulas I-WA, I-WO, I-WOHA, I-WOPC, I-WOHA, and I-WOHC are capable of inhibiting activity of cholesteryl ester transfer protein (CETP), and thus could be used in the manufacture of a medicament, a method for the prophylactic or therapeutic treatment of diseases mediated by CETP, such as peripheral vascular disease, hyperlipidaemia.

10

15

20

30

35

hypercholesterolemia, and other diseases attributable to either high LDL and low HDL or a combination of both, or a procedure to study the mechanism of action of the cholesteryl ester transfer protein (CETP) to enable the design of better inhibitors. The compounds of Formulas I-WA. I-WO. I-WOHA, I-WOPC, I-WOHA, and I-WOHC would be also useful in prevention of cerebral. vascular accident (CVA) or stroke.

Also included in the family of compounds of Formulas I-WA, I-WO, I-WOHA, I-WOPC, I-WOHA, and I-WOHC are the pharmaceutically-acceptable salts thereof. The term "pharmaceutically-acceptable salts" embraces salts commonly used to form alkali metal salts and to form addition salts of free acids or free bases. The nature of the salt is not critical, provided that it is pharmaceutically acceptable. Suitable pharmaceutically-acceptable acid addition salts of compounds of Formula I-WA may be prepared from inorganic acid or from an organic acid. Examples of such inorganic acids are hydrochloric, hydrobromic, hydroiodic, nitric, carbonic, sulfuric and phosphoric acid! Appropriate organic acids may be selected from aliphatic, cycloaliphatic, aromatic, araliphatic, heterocyclic, carboxylic and sulfonic classes of organic acids, examples of which are formic, acetic, propionic, succinic, glycolic, gluconic, lactic, malic, tartaric, citric, ascorbic, glucoronic, maleic, fumaric, pyruvic, aspartic, glutamic, benzoic, anthranilic, mesylic, salicylic, phydroxybenzoic, phenylacetic, mandelic, embonic (pamoic), methanesulfonic, ethylsulfonic, benzenesulfonic, sulfanilic, stearic, cyclohexylaminosulfonic, algenic, galacturonic acid. Suitable pharmaceutically-acceptable base addition salts of compounds of Formula I-WA include metallic salts made from 25 <u>aluminum, calcium, lithium, magnesium, potassium, sodium and zinc or</u> organic salts made from N,N'-dibenzylethyleneldiamine, choline, chloroprocaine, diethanolamine, ethylenediamine, meglumine (Nmethylglucamine) and procain. All of these salts may be prepared by conventional means from the corresponding compounds of Formulas I-WA, I-WO, I-WOHA, I-WOPC, I-WOHA, and I-WOHC by reacting, for example, the appropriate acid or base with the compounds of Formulas I-WA, I-WO, I-WOHA, I-WOPC, I-WOHA, and I-WOHC.

Also embraced within this invention is a class of pharmaceutical compositions comprising the active compounds of Formula I-WA in association with one or more non-toxic, pharmaceutically-acceptable carriers and/or diluents and/or adjuvants (collectively referred to herein as "carrier"

10

15

20

25

30

35

materials) and, if desired, other active ingredients. The active compounds of the present invention may be administered by any suitable route, preferably in the form of a pharmaceutical composition adapted to such a route, and in a dose effective for the treatment intended. The active compounds and composition may, for example, be administered orally, intravascularly, intraperitoneally, subcutaneously, intramuscularly or topically.

For oral administration, the pharmaceutical composition may be in the form of, for example, a tablet, capsule, suspension or liquid. The pharmaceutical composition is preferably made in the form of a dosage unit containing a particular amount of the active ingredient. Examples of such dosage units are tablets or capsules. The active ingredient may also be administered by injection as a composition wherein, for example, saline, dextrose or water may be used as a suitable carrier.

The amount of therapeutically active compounds which are administered and the dosage regimen for treating a disease condition with the compounds and/or compositions of this invention depends on a variety of factors, including the age, weight, sex and medical condition of the subject, the severity of the disease, the route and frequency of administration, and the particular compound employed, and thus may vary widely.

The pharmaceutical compositions may contain active ingredients in the range of about 0.1 to 2000 mg, and preferably in the range of about 0.5 to 500 mg. A daily dose of about 0.01 to 100 mg/kg body weight, and preferably between about 0.5 and about 20 mg/kg body weight, may be appropriate. The daily dose can be administered in one to four doses per day.

The compounds may be formulated in topical ointment or cream, or as a suppository, containing the active ingredients in a total amount of, for example, 0.075 to 30% w/w, preferably 0.2 to 20% w/w and most preferably 0.4 to 15% w/w. When formulated in an ointment, the active ingredients may be employed with either paraffinic or a water-miscible ointment base.

Alternatively, the active ingredients may be formulated in a cream with an oil-in-water cream base. If desired, the aqueous phase of the cream base may include, for example at least 30% w/w of a polyhydric alcohol such as propylene glycol, butane-1,3-diol, mannitol, sorbitol, glycerol, polyethylene glycol and mixtures thereof. The topical formulation may desirably include a compound which enhances absorption or penetration of the active ingredient through the skin or other affected areas. Examples of such dermal penetration

15

20

25

30

35

1

enhancers include dimethylsulfoxide and related analogs. The compounds of this invention can also be administered by a transdermal device. Preferably topical administration will be accomplished using a patch either of the reservoir and porous membrane type or of a solid matrix variety. In either case, the active agent is delivered continuously from the reservoir or microcapsules through a membrane into the active agent permeable adhesive, which is in contact with the skin or mucosa of the recipient. If the active agent is absorbed through the skin, a controlled and predetermined flow of the active agent is administered to the recipient. In the case of microcapsules, the encapsulating agent may also function as the membrane.

The oily phase of the emulsions of this invention may be constituted from known ingredients in a known manner. While the phase may comprise merely an emulsifier, it may comprise a mixture of at least one emulsifier with a fat or an oil or with both a fat and an oil. Preferably, a hydrophilic emulsifier is included together with a lipophilic emulsifier which acts as a stabilizer. It is also preferred to include both an oil and a fat. Together, the emulsifier(s) with or without stabilizer(s) make-up the so-called emulsifying wax, and the wax together with the oil and fat make up the so-called emulsifying ointment base which forms the oily dispersed phase of the cream formulations. Emulsifiers and emulsion stabilizers suitable for use in the formulation of the present invention include Tween 60, Span 80, cetostearyl alcohol, myristyl alcohol, glyceryl monostearate, and sodium lauryl sulfate, among others.

The choice of suitable oils or fats for the formulation is based on achieving the desired cosmetic properties, since the solubility of the active compound in most oils likely to be used in pharmaceutical emulsion formulations is very low. Thus, the cream should preferably be a non-greasy, non-staining and washable product with suitable consistency to avoid leakage from tubes or other containers. Straight or branched chain, mono- or dibasic alkyl esters such as di-isoadipate, isocetyl stearate, propylene glycol diester of coconut fatty acids, isopropyl myristate, decyl oleate, isopropyl palmitate, butyl stearate, 2-ethylhexyl palmitate or a blend of branched chain esters may be used. These may be used alone or in combination depending on the properties required. Alternatively, high melting point lipids such as white soft paraffin and/or liquid paraffin or other mineral oils can be used.

For therapeutic purposes, the active compounds of this combination invention are ordinarily combined with one or more adjuvants appropriate to

10

15

20

the indicated route of administration. If administered per os, the compounds may be admixed with lactose, sucrose, starch powder, cellulose esters of alkanoic acids, cellulose alkyl esters, talc, stearic acid, magnesium stearate, magnesium oxide, sodium and calcium salts of phosphoric and sulfuric acids, gelatin, acacia gum, sodium alginate, polyvinylpyrrolidone, and/or polyvinyl alcohol, and then tableted or encapsulated for convenient administration. Such capsules or tablets may contain a controlled-release formulation as may be provided in a dispersion of active compound in hydroxypropylmethyl cellulose. Formulations for parenteral administration may be in the form of aqueous or non-aqueous isotonic sterile injection solutions or suspensions. These solutions and suspensions may be prepared from sterile powders or granules having one or more of the carriers or diluents mentioned for use in the formulations for oral administration. The compounds may be dissolved in water, polyethylene glycol, propylene glycol, ethanol, corn oil, cottonseed oil, peanut oil, sesame oil, benzyl alcohol, sodium chloride. and/or various buffers. Other adjuvants and modes of administration are well and widely known in the pharmaceutical art.

All mentioned references are incorporated by reference as if here written.

Although this invention has been described with respect to specific embodiments, the details of these embodiments are not to be construed as limitations.

GENERAL SYNTHETIC PROCEDURES

25

30

35

The compounds of the present invention can be synthesized, for example, according to the following procedures of Schemes 1 through 14 below, wherein the substituents are as defined for Formulas I-WA, I-WO, I-WOHA, I-WOPC, I-WOHA, and I-WOHC above except where further noted.

Synthetic Scheme 1 shows the preparation of compounds of formula XIIIA-H ("Secondary Heteroaryl Amines") which are intermediates in the preparation of the compounds of the present invention corresponding to Formula I-WO ("Alicyclic/Cyclic Aryl/Heteroaryl Aminoalcohols") and Formula I-WA ("Alicyclic/Cyclic Aryl/Heteroaryl tertiary Heteroalkylamines") wherein one substituent (A or Q) on the nitrogen is AQ-1 which can be

20

25

30

independently selected from the group consisting of aryl and heteroaryl, which are preferably substituted with one or more groups, and another substituent (A or Q) on the nitrogen is AQ-2 which can be independently selected from the group consisting of AQ-2 and $-CH_2(CR_{37}R_{38})_v$ - $(CR_{33}R_{34})_u$ -T-

(CR₃₅R₃₆)_w-H. AQ-2 and -CH₂(CR₃₇R₃₈)_v-(CR₃₃R₃₄)_u-T-(CR₃₅R₃₆)_w-H can be independently selected from the group consisting of C3-C8 alkyl, C3-C8 alkenyl, C3-C8 alkynyl, C3-C8 haloalkyl, C3-C8 haloalkenyl, C3-C6 alkoxy C1-C2 alkyl, C3-C8 hydroxyhaloalkyl, C3-C10 cycloalkyl, C5-C10 cycloalkenyl, C4-C9 saturated heterocyclyl, and C4-C9 partially saturated heterocyclyl, wherein said group may be optionally substituted.

Schemes 1 through 14, taken together, prepare tertiary heteroalkylamine compounds of the present invention by addition of a halogenated, heteroatom (for example, oxygen, sulfur, or nitrogen) containing precursor to a resulting secondary amine to introduce a heteroatom containing alkyl group wherein one of the two groups making up the secondary amine is aromatic groups and the other is aliphatic (for example, C3-C8 alkyl, C3-C8 alkyl, C3-C8 haloalkyl, C3-C8 haloalkenyl, C3-C6 alkoxy C1-C2 alkyl, C3-C8 hydroxyhaloalkyl, C3-C10 cycloalkyl, C5-C10 cycloalkenyl), C4-C9 saturated heterocyclyl, and C4-C9 partially saturated heterocyclyl.

The "Heteroaryl Imines" corresponding to Formulas XII-AH, CXII-AH, CKXII-AH can be prepared through dehydration techniques generally known in or adaptable from the art by reacting "Heteroaryl Amine" of Formula X-AH or a "Heteroaryl Carbonyl" of Formula XI-AH with a suitable an aliphatic, saturated heterocyclic, or partially saturated heterocyclic amine or carbonyl compound as shown in Schemes 1, 3, 4, 5, 6, 12, and subsequent specific examples. For example in Scheme 3, the two reactants (AQ-2A and XI-AH) react by refluxing them in an aprotic solvent, such as hexane, toluene, cyclohexane, benzene, and the like, using a Dean-Stark type trap to remove water. After about 2-8 hours or until the removal of water is complete, the aprotic solvent is removed *in vacuo* to yield the "Heteroaryl Imine" of Formula XII-AH.

The "Secondary Cyclic Heteroaryl Amines" of Formula XIIIA-H can be prepared from the corresponding "Generic Imine" of Formula XII, "Cyclic

10

15

20

25

30

Heteroaryl Imine" of Formulas XII-AH, CXII-AH, and CKXII-AH can be prepared in several ways. For example, in one synthetic scheme (Reduction Method-1), the "Generic Imine" of Formula XII-AH is partially or completely dissolved in presence of a lower alcohol containing sufficient organic or mineral acid, as described in WO Patent Application No. 9738973, Swiss Patent CH 441366 and U. S. Patent Nos. 3359316 and 3334017, which are incorporated herein by reference, and then hydrogenated at 0-100°C, more preferably 20-50°C, and most preferably between 20-30°C and pressures of 10-200 psi hydrogen or more preferably between 50-70 psi hydrogen in the presence of a noble metal catalyst such as PtO₂.

In another synthetic scheme (Reduction Method-2), the "Cyclic Heteroaryl Imine" of Formulas XII-AH, CXII-AH, and CKXII-AH is slurried in a lower alcohol such as ethanol, methanol or like solvent at 0-10°C and solid sodium borohydride is added in batches over 5-10 minutes at 0-10°C with stirring. The reaction mixture is stirred below 10°C for 30-90 minutes and then is warmed gradually to 15-30°C. After about 1-10 hours, the mixture is cooled and acid is added until the aqueous layer was just acidic (pH 5-7).

In yet another synthetic scheme (Reduction Method-3), which is preferred when Z is an oxygen, the "Cyclic Heteroaryl Imine" of Formulas XII-AH, CXII-AH, and CKXII-AH is slurried in a lower alcohol solvent at 0-10°C and acidified to a pH less than 4 and sodium cyanoborohydride is added in batches over 30-90 minutes at 0-20°C with stirring and addition of a suitable organic or mineral acid to keep the pH at or below 4. The reaction mixture is stirred and warmed gradually to about 20-25°C. After about 1-10 hours, the mixture is cooled and base added until the mixture was just slightly alkaline.

The "Secondary Cyclic Heteroaryl Amines" of Formulas XIII-AH, CXIIIA-H, and CKXIII-AH can also be prepared, according to Schemes 1 and 3, by an alkylation procedure based on the nucleophilic substitution of bromides by amines. In one synthetic alkylation scheme (Alkylation Method-1), a "Cyclic Amine" of Formula AQ-2A or a "Generic Amine-1" of Formula X is reacted with a "Heteroaryl Bromide" of Formula XXI-AH or "Generic

Bromide" of Formula XXI as described in Vogel's Textbook of Practical Organic Chemistry, Fifth Edition, 1989, pages 902 to 905 and references cited therein all of which are incorporated herein by reference. In an alternate synthetic alkylation scheme exemplified in Scheme 1, an "Amine" of Formula XXII is reacted with a "Heteroaryl Bromide" in a method employing palladium catalyzed carbon-nitrogen bond formation. Suitable procedures for this conversion are described in Wagaw and Buchwald, J. Org. Chem.(1996), 61, 7240-7241, Wolfe, Wagaw and Buchwald, J. Am. Chem. Soc. (1996), 118, 7215-7216, and Wolfe and Buchwald, Tetrahedron Letters (1997), 38(36), 6359-6362 and references cited therein all of which are incorporated herein by reference.

The "Generic Secondary Amine", "Heteroaryl Amine", "Cyclic Amine", "Alicyclic Amine", and "Heteoaryl Hydroxylamine" amines and hydroxylamines, the "Generic Carbonyl", "Heteroaryl Carbonyl", "Cyclic 15 Carbonyl", and "Cyclic Ketone" aldehydes and ketones, and "Generic | Bromide-1", Generic Bromide-2", "Heteroaryl Bromide", and the like halides, tosylates, mesylates, triflates, and precursor alcohols required to prepare the "Secondary Cyclic Heteroaryl Amine" compounds are available from commercial sources or can be prepared by one skilled in the art from published procedures. Commercial sources include but are not limited to Aldrich 20 Chemical, TCI-America, Lancaster-Synthesis, Oakwood Products, Acros Organics, and Maybridge Chemical. Disclosed procedures for "Generic Amine" amines, hydroxylamines, and hydrazines include Sheradsky and Nov, J. Chem. Soc., Perkin Trans. 1 (1980), (12), 2781-6; Marcoux, Doye, and Buchwald, J. Am. Chem. Soc. (1997), 119, 1053-9; Sternbach and Jamison, 25 Tetrahedron Lett. (1981), 22(35), 3331-4; U. S. Patent No. 5306718; EP No. 314435; WO No. 9001874; WO No. 9002113; JP No. 05320117; WO No. - 9738973; Swiss Patent No. CH 441366; U. S. Patents Nos. 3359316 and 3334017; and references cited therein which are incorporated herein by 30 reference.

Synthetic Schemes 2, 10 and 11 show the preparation of the class of compounds of the present invention corresponding to Formula I-WO ("Alicyclic/Cyclic Aryl/Heteroaryl Aminoalcohols") and Formula I-WA ("Alicyclic/Cyclic Aryl/Heteroaryl tertiary Heteroalkylamines").

Derivatives of "Alicyclic/Cyclic Aryl/Heteroaryl Aminoalcohols" or "Alicyclic/Cyclic Aryl/Heteroaryl tertiary Heteroalkylamines", in which the

heteroatom (O, N. or S) is attached to an alkyl group removed from the amine by two or more carbons are readily prepared by anion chemistry using the method of Scheme 2. The anion of "Secondary Amine" amines and hydroxylamines of Formula XIII are readily formed by dissolving the specific amine, hydroxylamine, or hydrazine in an aprotic solvent, such as tetrahydrofuran, toluene, ether, dimethylformamide, and dimethylformamide, under anhydrous conditions. The solution is cooled to a temperature between -78 and 0°C, preferably between -78 and -60°C and the anion formed by the addition of at least one equivalent of a strong, aprotic, non-nucleophillic base such as NaH or n-butyllithium under an inert atmosphere for each acidic group present. Maintaining the temperature between -78 and 0°C, preferably between -78 and -60°C, with suitable cooling, an appropriate alkyl halide, alkyl benzenesulfonate such as a alkyl tosylate, alkyl mesylate, alkyl triflate or similar alkylating reagent of the general structure:

$$R_{16}$$

$$X$$

$$R_{1}$$

$$R_{2}$$

$$R_{10}$$

15

20

25

5

10

where m is zero, X can be RN, O, and S, and M is a readily displaceable group such as chloride, bromide, iodide, tosylate, triflate, and mesylate. After allowing the reaction mixture to warm to room temperature, the reaction product is added to water, neutralized if necessary, and extracted with a water-immiscible solvent such as diethyl ether or methylene chloride. The combined aprotic solvent extract is washed with saturated brine, dried over drying agent such as anhydrous MgSO₄ and concentrated *in vacuo* to yield crude Formula I-WO ("Alicyclic/Cyclic Aryl/Heteroaryl Aminoalcohols") and Formula I-WA ("Alicyclic/Cyclic Aryl/Heteroaryl tertiary Heteroalkylamines"). This material is purified, for example, by eluting through silica gel with a medium polar solvent such as ethyl acetate in a non-polar solvent such as hexanes to yield purified Formula I-WA and Formula I-WO. Products are structurally confirmed by low and high resolution mass spectrometry and NMR.

25 ·

30

Compounds of Formula (XXX), which can be used to prepare I-WA, I-WO, I-WOPA, I-WOPC, I-WOHA, and I-WOHC, are given in Table 2.

Reagents 1a and 2a in Table 2 are prepared from the corresponding alcohols.

The tosylates are readily obtained by reacting the corresponding alcohol with tosyl chloride using procedures found in House's Modern Synthetic Reactions, Chapter 7, W. A. Benjamin, Inc., Shriner, Fuson, and Curtin in The Systematic Indentification of Organic Compounds, 5th Edition, John Wiley & Sons, and Fieser and Fieser in Reagents for Organic Synthesis, Volume 1, John Wiley & Sons, which are incorporated herein by reference.

A preferred procedure for Formula I-WO ("Alicyclic/Cyclic Aryl/Heteroaryl Aminoalcohols") and Formula I-WA ("Alicyclic/Cyclic Aryl/Heteroaryl tertiary Heteroalkylamines" compounds is Method A of Schemes 2, 10, 11, and 14. Oxirane reagents useful in Method A are exemplified, but not limited to those in Table 1. Formula I-WO ("Alicyclic/Cyclic Aryl/Heteroaryl 1-Amino-2-alcohol") and Formula I-WA ("Alicyclic/Cyclic Aryl/Heteroaryl tertiary 2-Heteroalkylamine") compounds are prepared by using "Secondary Cyclic Heteroaryl Amine" and "Alicyclic Heteroaryl Amine" amines and hydroxylamines of Formulas XIIIA-H, CXIIIA-H, CKXIII-AH, ACXIIIA-H, and RACXIIIA-H prepared above with

oxiranes of the type listed in Table 1 and represented by the general structure:

In some cases, the oxiranes are prepared by reaction of epoxidation reagents such as MCPBA and similar type reagents readily selectable by a person of skill-in-the-art with alkenes. Fieser and Fieser in Reagents for Organic Synthesis, John Wiley & Sons provides, along with cited references, numerous suitable epoxidation reagents and reaction conditions, which are incorporated herein by reference.

Formula I-WA ("Alicyclic/Cyclic Aryl/Heteroaryl tertiary 2-Heteroalkylamine") compounds, wherein the 2-hetero group is an amino, substituted amino, or thiol, can be prepared by using appropriate aziridines and thirranes according to Method A of Scheme 2. Aziridine and thiirane reagents useful in Method A are exemplified, but not limited to those in Table 1. These Formula I-WA ("Alicyclic/Cyclic Aryl/Heteroaryl tertiary 2-Heteroalkylamine") compounds, wherein the 2-hetero group is an amino, substituted amino, or thiol, can be prepared by using "Secondary Cyclic Heteroaryl Amine" and "Alicyclic Heteroaryl Amine" amines and hydroxylamines of Formulas XIIIA-H, CXIIIA-H, CKXIIIA-H, and RACXIIIA-H prepared above with aziridines and thiiranes of the type listed in Table 1 and represented by the general structure:

5

10

wherein X is selected from N and S and R_{16}

is hydrogen or another suitable group when X is N.

Table 1. Structure of Oxirane, Aziridine, and Thiirane Reagents.

Rgnt No.	R ₁₆	<u>X</u>	<u>R₁</u>	<u>R₂</u>	<u>R3</u>
l		0	CF ₃	Н	Н
2		0	CCl ₃	Н	Н
3		0	CF ₃	CH ₃	H ·
4		O	CF ₃ CF ₂	Н	Н
5		0	CF ₃ CF ₂ CF ₂	Н	H
6		0	CF ₃ OCF ₂ CF ₂	Н	Н
7		0	CF ₃ CH ₂	Н	Н
8		0	CF ₃	CHF ₂	Н
9		0	CF ₃	Н	CF ₃
10		0	CF ₃	CF ₃	Н
11		O	CF ₃	C ₆ H ₅	Н
12		O	CCl ₃	C ₆ H ₅	Н
13		0	CCl ₃	Cyclopropyl	Н
14		О	CCl ₃	CH ₃	Н
15		0	CCl ₃	(CH ₃) ₂ CH	Н
16		0	CHCl ₂	Н.	Н
17		О	CHCl ₂	Cl	Н
18		0	CF ₃	Н	СН3
19	Н	N	CF ₃	CF ₃	Н

74
Table 1. (continued) Structure of Oxirane, Aziridine, and Thiirane Reagents.

Rgnt No.	<u>R₁₆</u>	<u>X</u>	<u>R</u> 1	<u>R₂</u>	<u>R₃</u>
20	Н	N :	CF ₃	Н	Н_
21	Benzyl	N	CF ₃	Н	Н
22	CH ₃ O	Ν	CF ₃	Н	Н
23	СН3	N	CF ₃	Н	Н
24	Benzyloxy	N	CF ₃	Н	Н
25		S	CF ₃	Н	Н
26		S	CF ₃ CF ₂	Н	Н
27		0	CCI ₃ CH ₂	H	Н
28		O	CBr ₃ CH ₂	Н	, H
29		O	CHBr ₂ CH ₂	Н	Н
30		О	CBrCl ₂	Н	Н
31		O	CCIF ₂	Н	, H
32		O	CCl ₂ F	Н	Н
33		О	CCl ₃ CCl ₂	Н	Н
43		О	FCH ₂	Н	Н
46		O	CF ₃	$R_2 + R_3 = (CH_2)_3$	
47		0	CF ₃	$R_2 + R_3 = (CH_2)_4$	
48		0	CHF ₂	$R_2 + R_3 = ($	CH ₂) ₄
56		0	CBrF ₂ CClFCH ₂	Н	H
57		0	HCF ₂ CF ₂ OCH ₂	Н	Н

from Justus

Table 2. Structure and Source of Alcohol and Glycol Reagents.

	Source of Reagent	Chiral separation and then tosylation of alcohol from Justus Liebigs Ann. Chem. (1969), 720, 81-97.	Chiral separation and then tosylation of alcohol from Z. Naturforsch., B: Chem. Sci. (1997), 52 (3). 413-418
Σ \	X-R ₁₆	HO	НО
(xxx)	R ₂ R ₃	Η	Н
(\mathbf{XXX}) $(CH)^{n}$ R_{3}	R2	I	Ξ
×	W	OTs	OTs
R ₂	ū	С.	6
R16,	$R_{\underline{1}}$	CF3	СҒ3СН2СН2
	Reagent Number	ΙA	2A

A mixture of a "Secondary Amine" amine or hydroxylamine and an oxirane of Formula XX are stirred and heated to 40-90°C for 5 to 48 hours in a tightly capped or contained reaction vessel. A Lewis acid such as ytterbium triflate in acetonitrile may be added to speed up reaction and improve yield. When a Lewis acid is used, the reaction should be carried out under inert, 5 anhydrous conditions using a blanket of dry nitrogen or argon gas. After cooling to room temperature and testing the reaction mixture for complete reaction by thin layer chromatography or high pressure liquid chromatography (hplc), the reaction product is added to water and extracted with a water 10 immiscible solvent such as diethyl ether or methylene chloride. (Note: If the above analysis indicates that reaction is incomplete, heating should be resumed until complete with the optional addition of more of the oxirane). The combined aprotic solvent extract is washed with saturated brine, dried over drying agent such as anhydrous MgSO₄ and concentrated in vacuo to yield crude Formula I-WO ("Alicyclic/Cyclic Aryl/Heteroaryl Aminoalcohols") and 15 Formula I-WA ("Alicyclic/Cyclic Aryl/Heteroaryl tertiary Heteroalkylamines") compounds. This material is purified by eluting through silica gel with 5-40% of a medium polar solvent such as ethyl acetate in a non-polar solvent such as hexanes to yield the Formula I-WO ("Alicyclic/Cyclic Aryl/Heteroaryl 20 Aminoalcohols") and Formula I-WA ("Alicyclic/Cyclic Aryl/Heteroaryl tertiary Heteroalkylamines") compounds. Products are tested for purity by HPLC. If necessary, the Formula I-WO ("Alicyclic/Cyclic Aryl/Heteroaryl Aminoalcohols") and Formula I-WA ("Alicyclic/Cyclic Aryl/Heteroaryl tertiary Heteroalkylamines") compounds are purified by additional chromatography or 25 recrystallization. Products are structurally confirmed by low and high resolution mass spectrometry and NMR. Examples of specific Formula VII Formula I-WO ("Alicyclic/Cyclic Aryl/Heteroaryl Aminoalcohols") and Formula I-WA ("Alicyclic/Cyclic Aryl/Heteroaryl tertiary Heteroalkylamines") prepared are summarized in the Examples and Example Tables 1 through 7.

Specific Formula I-WO ("Alicyclic/Cyclic Aryl/Heteroaryl Aminoalcohols") and Formula I-WA ("Alicyclic/Cyclic Aryl/Heteroaryl tertiary Heteroalkylamines") analogs of the Formula I-WO ("Alicyclic/Cyclic Aryl/Heteroaryl Aminoalcohols") and Formula I-WA ("Alicyclic/Cyclic Aryl/Heteroaryl tertiary Heteroalkylamines") compounds summarized in the

Examples and Example Tables 1 through 7, wherein the hydroxyl or oxy group are replaced with an amino, substituted amino, aza, or thiol, can be prepared by

10

15

20

25

30

35

using the appropriate aziridine reagents or thiirane reagents readily by adapting the procedures in the numerous specific Examples and Schemes disclosed in the present invention. Similarly, intermediates, in which the hydroxyl or oxy group of said intermediates are replaced with an amino, substituted amino, aza, or thiol, can be converted using the numerous specific Examples and Schemes disclosed in the present invention to other Formula I-WO ("Alicyclic/Cyclic Aryl/Heteroaryl Aminoalcohols") and Formula I-WA ("Alicyclic/Cyclic Aryl/Heteroaryl tertiary Heteroalkylamines") compounds.

Formula I-WO ("Alicyclic/Cyclic Aryl/Heteroaryl Aminoalcohols") and Formula I-WA ("Alicyclic/Cyclic Aryl/Heteroaryl tertiary Heteroalkylamines") compounds can further be prepared in an alternate manner to procedures disclosed above and in Schemes 1, 2, and 3. Schemes 12 and 13 detail such procedures to prepare compounds of the present invention by initial formation of an halogenated, oxygen containing primary alkylamine XL ("Generic Substituted Alkylamine"). Said halogenated, oxygen containing primary alkylamine XL, formed in Scheme 12, is itself converted to secondary amine LX-H ("Heteroaryl Alkyl Amine) using procedures disclosed above. Primary alkylamine XL is first reacted with an aldehydic or ketonic carbonyl compound, XI-AH ("Heteroaryl Carbonyl") with azeotropic distillation to form imines, L-H ("Heteroaryl Imine"). Said imine L-H are then reduced with or without prior isolation by Reduction Methods 1, 2 or 3 as disclosed above and in Scheme 1 to yield secondary amines LX-H ("Heteroaryl Alkyl Amine). Said secondary amine LX-H can be converted according to Scheme 14 to Formula I-WO ("Alicyclic/Cyclic Aryl/Heteroaryl Aminoalcohols").

Formula I-WO ("Alicyclic/Cyclic Aryl/Heteroaryl Aminoalcohols") and Formula I-WA ("Alicyclic/Cyclic Aryl/Heteroaryl tertiary Heteroalkylamines") compounds can further be prepared in an alternate manner to procedures disclosed above and in additional Schemes.

Formula I-WO ("Alicyclic/Cyclic Aryl/Heteroaryl Aminoalcohols") are alternately referred to as Formula I-WO ("Alicyclic/Cyclic Aryl/Heteroaryl 2-hydroxyalkylamines").

Formula I-WO ("Alicyclic/Cyclic Aryl/Heteroaryl Aminoalcohols") and Formula I-WA ("Alicyclic/Cyclic Aryl/Heteroaryl tertiary Heteroalkylamines") compounds can themselves serve as intermediates for conversion to additional compounds of this invention. Compounds of the present invention useful as intermediates include those in which the R₅ or R₇ position substituent in

10

15

1

Formula I-WO ("Alicyclic/Cyclic Aryl/Heteroaryl Aminoalcohols") and Formula I-WA ("Alicyclic/Cyclic Aryl/Heteroaryl tertiary Heteroalkylamines") compounds is a bromo group, hydroxyl group, sulfhydryl group, bromomethyl or other bromoalkyl groups, nitro group, amino group, methoxy carbonyl or other alkoxy carbonyl groups, cyano group, or acyl groups. Other preferred compounds of the present invention useful as intermediates include those in which the R₁₀ position substituent in Formulas I-WA or I-WO is a bromo group, hydroxyl group, sulfhydryl group, bromomethyl or other bromoalkyl groups, nitro group, amino group, methoxy carbonyl or other alkoxy carbonyl groups, cyano group, or acyl groups. Other compounds of Formulas I-WA or I-WO and the present invention useful as intermediates include those in which one or more of R₆. R₁₁, and R₁₂ substituents in Formulas I-WA or I-WO is a bromo group, hydroxyl group, sulfhydryl group, bromomethyl or other bromoalkyl groups, nitro group, amino group, methoxy carbonyl or other alkoxy carbonyl groups, cyano group, or acyl groups.

Formula I-WO ("Alicyclic/Cyclic Aryl/Heteroaryl Aminoalcohols") are alternately referred to as Formula I-WO ("Alicyclic/Cyclic Aryl/Heteroaryl Tertiary 2-hydroxyalkylamines").

A 3-bromo substituent at the R₅ position in Formula I-WO

("Alicyclic/Cyclic 3-Bromoaryl Tertiary 2-Hydroxyalkylamines") can be reacted with a phenol to afford 3-phenoxy compounds of the present invention of Formula I-WO ("Alicyclic/Cyclic 3-Phenoxyaryl Tertiary 2-Hydroxyalkylamines").

A 3-bromo substituent at the R₅ position in Formula I-WO

("Alicyclic/Cyclic 3-Bromoheteroaryl Tertiary 2-hydroxyalkylamine") can, be reacted, for example, with a phenol to afford additional compounds of the present invention of Formula I-WO ("Alicyclic/Cyclic 3-Aryloxyaryl, 3-Heteroaryloxyaryl, 3-Heteroaryloxyheteroaryl, and 3-Aryloxyheteroaryl Tertiary 2-Hydroxyalkylamines").

A 3-bromo substituent at the R₅ position in Formula I-WO ("Alicyclic/Cyclic 3-Bromoaryl Tertiary 2-hydroxyalkylamine") can be reacted with a phenol to afford additional compounds of the present invention of Formula I-WO ("Alicyclic/Cyclic 3-Phenylaryl Tertiary 2-Hydroxyalkylamine").

10

15

20

25

30

Conversion of a 3-bromo substituent at the R₅ position in Formula I-WO ("Alicyclic/Cyclic 3-Bromoaryl Tertiary 2-hydroxyalkylamine") by reaction with a primary or secondary amine can afford additional compounds of the present invention of Formula I-WO ("Alicyclic/Cyclic 3- R₂₂aminoaryl Tertiary 2-Hydroxyalkylamine").

Conversion of a 3-bromo substituent at the R₅ position in Formula I-WO ("Alicyclic/Cyclic 3-Bromoaryl Tertiary 2-hydroxyalkylamine") by reaction with an aryl borinate can afford additional compounds of the present invention of Formula I-WO ("Alicyclic/Cyclic 3-Phenylaryl Tertiary 2-Hydroxyalkylamine").

Conversion of a 3-bromo substituent at the R₅ position in Formula I-WO ("Alicyclic/Cyclic 3-Bromoaryl Tertiary 2-hydroxyalkylamine") by reaction with a heteroaryl dibutyl tin compound can afford additional compounds of the present invention of Formula I-WO ("Alicyclic/Cyclic 3-Heteroarylaryl Tertiary 2-Hydroxyalkylamine").

Conversion of a 3-bromomethyl substituent at the R₅ position in Formula I-WO ("Alicyclic/Cyclic 3-Bromomethylaryl Tertiary 2-hydroxyalkylamine") by reaction with an aryl borinate can afford additional compounds of the present invention of Formula I-WO ("Alicyclic/Cyclic 3-Arylmethylaryl Tertiary 2-Hydroxyalkylamine").

Conversion of a 3-hydroxyl substituent at the R₅ position in Formula I-WO ("Alicyclic/Cyclic 3-Hydroxyheteroaryl Tertiary 2-hydroxyalkylamine") by reaction with an aryl bromide or heteroaryl bromide can afford additional compounds of the present invention of Formula I-WO ("Alicyclic/Cyclic 3-Aryloxyaryl, 3-Heteroaryloxyaryl, 3-Heteroaryloxyheteroaryl, and 3-Aryloxyheteroaryl Tertiary 2-Hydroxyalkylamines").

Conversion of a 3-hydroxyl substituent at the R₅ position in Formula I-WO ("Alicyclic/Cyclic 3-Hydroxyaryl Tertiary 2-hydroxyalkylamine") by reaction with an aryl bromide can afford additional compounds of the present invention of Formula I-WO ("Alicyclic/Cyclic 3-Phenoxyaryl Tertiary 2-Hydroxyalkylamine").

Conversion of a 3-hydroxyl substituent at the R₅ position in Formula I-WO ("Alicyclic/Cyclic 3-Hydroxyheteroaryl Tertiary 2-hydroxyalkylamine") by reaction with an aralkyl bromide or heteroaralkyl bromide can afford

25

30

additional compounds of the present invention of Formula I-WO ("Alicyclic/Cyclic 3-Aralkyloxyaryl, 3-Heteroaralkyloxyaryl, 3-Heteroaralkyloxyheteroaryl, and 3-Aralkyloxyheteroaryl Tertiary 2-Hydroxyalkylamines").

Conversion of a 3-hydroxyl substituent at the R₅ position in Formula I-WO ("Alicyclic/Cyclic 3-Hydroxyaryl Tertiary 2-hydroxyalkylamine") by reaction with an aralkyl bromide can afford additional compounds of the present invention of Formula I-WO ("Alicyclic/Cyclic 3-Aralkyloxyaryl Tertiary 2-Hydroxyalkylamine").

Conversion of a 3-hydroxyl substituent at the R₅ position in Formula I-WO ("Alicyclic/Cyclic Polycyclic 3-Hydroxyaryl Tertiary 2-hydroxyalkylamine") by reaction with a displaceable organo bromide can afford additional compounds of the present invention of Formula I-WO ("Alicyclic/Cyclic 3-Organooxyaryl Tertiary 2-Hydroxyalkylamine").

15 Conversion of a 3-thio substituent at the R₅ position in Formula I-WO ("Alicyclic/Cyclic 3-thioaryl Tertiary 2-hydroxyalkylamine") by reaction with a displaceable organo bromide can afford additional compounds of the present invention of Formula I-WO ("Alicyclic/Cyclic 3-Organothiaaryl Tertiary 2-Hydroxyalkylamine"). "Alicyclic/Cyclic 3-Organothiaaryl Tertiary 2-Hydroxyalkylamines" can be oxidized to sulfonyl compounds of 3-Organosulfonylaryl Tertiary 2-Hydroxyalkylamine").

Conversion of a 3-nitro substituent at the R₅ position in Formula I-WO ("Alicyclic/Cyclic 3-Nitroaryl Tertiary 2-hydroxyalkylamine") by hydrogenation can afford additional compounds of the present invention of Formula I-WO ("Alicyclic/Cyclic 3-Aminoaryl Tertiary 2-Hydroxyalkylamine"). Formula I-WO ("Alicyclic/Cyclic 3-Aminoaryl Tertiary 2-Hydroxyalkylamines") can be acylated to acyl amide compounds of Formula I-WO ("Alicyclic/Cyclic 3-Acylaminoaryl Tertiary 2-Hydroxyalkylamine").

Conversion of a 3-amino substituent at the R₅ position in Formula I-WO ("Alicyclic/Cyclic 3-Aminoaryl Tertiary 2-hydroxyalkylamine") by reaction with carbonyl compounds can afford additional compounds of the present invention of Formula I-WO ("Alicyclic/Cyclic 3-(Saturated Nitrogen Heterocycl-1yl)aryl Tertiary 2-Hydroxyalkylamine" and "Alicyclic/Cyclic 3-(Unsaturated Nitrogen Heterocycl-1yl)aryl Tertiary 2-Hydroxyalkylamine").

10

25

30

35

Conversion of a 3-methoxycarbonyl substituent at the R₅ position in Formula I-WO ("Alicyclic/Cyclic 3-Carbomethoxyaryl Tertiary 2-hydroxyalkylamine") by reaction with amination reagents can afford additional compounds of the present invention of Formula I-WO ("Alicyclic/Cyclic 3-Carboxamidoaryl Tertiary 2-Hydroxyalkylamine").

Conversion of a 3-cyano substituent at the R₅ position in Formula I-WO ("Alicyclic/Cyclic 3-Cyanoaryl Tertiary 2-hydroxyalkylamine") by reaction with organometallic reagents can afford additional compounds of the present invention of Formula I-WO ("Alicyclic/Cyclic 3-Acylaryl Tertiary 2-Hydroxyalkylamine"). Said "Alicyclic/Cyclic 3-Acylaryl Tertiary 2-Hydroxyalkylamines", can be reduced to hydroxyl compounds of Formula I-WO ("Alicyclic/Cyclic 3-Hydroxysubstitutedmethylaryl Tertiary 2-Hydroxyalkylamine").

Conversion of a 3-methoxycarbonyl substituent at the R₁₀ position in

Formula I-WO ("Alicyclic/Cyclic 3-Carbomethoxyaryl Tertiary 2-hydroxyalkylamine") by reaction with amination reagents can afford additional compounds of the present invention of Formula I-WO ("Alicyclic/Cyclic 3-Carboxamidoaryl Tertiary 2-Hydroxyalkylamine").

Conversion of a 3-methoxycarbonyl substituent at the R₁₀ position in Formula I-WO ("Alicyclic/Cyclic 3-Carbomethoxyaryl Tertiary 2-hydroxyalkylamine") by reaction with an organometallic reagent can afford additional compounds of the present invention of Formula I-WO ("Alicyclic/Cyclic 3-(bis-Organohydroxymethyl)aryl Tertiary 2-Hydroxyalkylamine").

Conversion of a 3-methoxycarbonyl substituent at the R₁₀ position in Formula I-WO ("Alicyclic/Cyclic 3-Carbomethoxyaryl Tertiary 2-hydroxyalkylamine") by reaction with lithium aluminum hydride can afford additional compounds of the present invention of Formula I-WO ("Alicyclic/Cyclic 3-Hydroxymethylaryl Tertiary 2-Hydroxyalkylamine").

Conversion of a 3-methoxycarbonyl substituent at the R₁₀ position in Formula I-WO ("Alicyclic/Cyclic 3-Carbomethoxyaryl Tertiary 2-hydroxyalkylamine") by reaction with an alkylation reagent can afford additional compounds of the present invention of Formula I-WO ("Alicyclic/Cyclic 3-(bis-Organo-hydroxymethyl)aryl Tertiary 2-Hydroxyalkylamine").

10

15

20

25

30

35

Conversion of a 3-methoxycarbonyl substituent at the R₁₀ position in Formula I-WO ("Alicyclic/Cyclic 3-Carbomethoxyaryl Tertiary 2-hydroxyalkylamine") by reaction intially with an amidation reagent and then an organometallic reagent can afford additional compounds of the present invention of Formula I-WO ("Alicyclic/Cyclic 3-(Organo-carbonyl)aryl Tertiary 2-Hydroxyalkylamine").

Formula I-WO ("Alicyclic/Cyclic Aryl/Heteroaryl Aminoalcohols") and Formula I-WA ("Alicyclic/Cyclic Aryl/Heteroaryl tertiary Heteroalkylamines") and other compounds of this invention possessing hydroxyl, thiol, and amine functional groups can be converted to a wide variety derivatives. The hydroxyl group X, wherein R₁₆ is a hydrogen, of compounds of the present invention can be readily converted to esters of carboxylic, sulfonic, carbamic, phosphonic, and phosphoric acids. Acylation to form a carboxylic acid ester is readily effected using a suitable acylating reagent such as an aliphatic acid anhydride or acid chloride. The corresponding aryl and heteroaryl acid anhydrides and acid chlorides can also be used. Such reactions are generally carried out using an amine catalyst such as pyridine in an inert solvent. In like manner, compounds that have at least one hydroxyl group present in the form of an alcohol or phenol can be acylated to its corresponding esters. Similarly, carbamic acid esters (urethans) can be obtained by reacting any hydroxyl group with isocyanates and carbamoyl chlorides. Sulfonate, phosphonate, and phosphate esters can be prepared using the corresponding acid chloride and similar reagents. Compounds that have at least one thiol group present can be converted to the corresponding thioesters derivatives analogous to those of alcohols and phenols using the same reagents and comparable reaction conditions. Compounds of Formulas I-WA, I-WO, and other compounds of the present invention that have at least one primary or secondary amine group present can be converted to the corresponding amide derivatives. Amides of carboxylic acids can be prepared using the appropriate acid chloride or anhydrides with reaction conditions analogous to those used with alcohols and phenols. Ureas of the corresponding primary or secondary amine can be prepared using isocyanates directly and carbamoyl chlorides in the presence of an acid scavenger such as triethylamine or pyridine. Sulfonamides can be prepared from the corresponding sulfonyl chloride in the presence of aqueous sodium hydroxide. Suitable procedures and methods for preparing these derivatives can be found in House's Modern Synthetic Reactions, W. A.

Benjamin, Inc., Shriner, Fuson, and Curtin in The Systematic Indentification of Organic Compounds, 5th Edition, John Wiley & Sons, and Fieser and Fieser in Reagents for Organic Synthesis, Volume 1, John Wiley & Sons. Reagents of a wide variety that can be used to derivatize hydroxyl, thiol, and amines of compounds of Formulas I-WA, I-WO, and other compounds of the present invention are available from commercial sources or the references cited above, which are incorporated herein by reference.

Formula I-WO ("Alicyclic/Cyclic Aryl/Heteroaryl Aminoalcohols") and Formula I-WA ("Alicyclic/Cyclic Aryl/Heteroaryl tertiary Heteroalkylamines") 10 and other compounds of this invention posssessing hydroxyl, thiol, and amine functional groups can be alkylated to a wide variety derivatives. The hydroxyl group X, wherein R₁₆ is a hydrogen, of compounds of Formulas I-WA, I-WO, and other compounds of the present invention can be readily converted to ethers. Alkylation to form an ether is readily effected using a suitable 15 alkylating reagent such as an alkyl bromide, alkyl iodide or alkyl sulfonate. The corresponding aralkyl, heteroaralkyl, alkoxyalkyl, aralkyloxyalkyl, and heteroaralkyloxyalkyl bromides, iodides, and sulfonates can also be used. Such reactions are generally carried out using an alkoxide forming reagent such as sodium hydride, potassium t-butoxide, sodium amide, lithium amide, and n-20 butyl lithium using an inert polar solvent such as DMF, DMSO, THF, and similar, comparable solvents. amine catalyst such as pyridine in an inert solvent. In like manner, compounds of Formulas I-WA, I-WO, and the like that have at least one hydroxyl group present in the form of an alcohol or phenol can be alkylated to their corresponding ethers. Compounds of Formulas I-WA, I-WO, and other compounds that have at least one thiol group present 25 can be converted to the corresponding thioether derivatives analogous to those of alcohols and phenols using the same reagents and comparable reaction conditions. Compounds of Formulas I-WA, I-WO, and other compounds that have at least one primary, secondary or tertiary amine group present can be 30 converted to the corresponding quaternary ammonium derivatives. Quaternary ammonium derivatives can be prepared using the appropriate bromides, iodides, and sulfonates analogous to those used with alcohols and phenols. Conditions involve reaction of the amine by warming it with the alkylating reagent with a stoichiometric amount of the amine (i.e., one equivalent with a 35 tertiary amine, two with a secondary, and three with a primary). With primary and secondary amines, two and one equivalents, respectively, of an acid

10

15

1

scavenger are used concurrently. Tertiary amines can be prepared from the corresponding primary or secondary amine by reductive alkylation with aldehydes and ketones using reduction methods 1, 2, or 3 as shown in Scheme 1. Suitable procedures and methods for preparing these derivatives can be found in House's Modern Synthetic Reactions, W. A. Benjamin, Inc., Shriner, Fuson, and Curtin in The Systematic Indentification of Organic Compounds, 5th Edition, John Wiley & Sons, and Fieser and Fieser in Reagents for Organic Synthesis, Volume 1, John Wiley & Sons. Perfluoroalkyl derivatives can be prepared as described by DesMarteau in J. Chem. Soc. Chem. Commun. 2241 (1998). Reagents of a wide variety that can be used to derivatize hydroxyl, thiol, and amines of compounds of

The following examples are provided to illustrate the present invention and are not intended to limit the scope thereof. Those skilled in the art will readily understand that known variations of the conditions and processes of the following preparative procedures can be used to prepare these compounds.

Formulas I-WA, I-WO, and the like are available from commercial sources or

the references cited above, which are incorporated herein by reference.

Scheme 2

I-WA (X = 0, S, NH), I-WO, I-WOPA,
I-WOPC,I-WOHA, and I-WOHC (X = 0 in others)

Scheme 3

AQ-2A: Cyclic Amine

Scheme 4

Secondary Cyclic
Heteroaryl Amine(CXIIIA-H)

Scheme 5

Scheme 6

Scheme 7

 $NH_2 - CH_2 (CR_{37}R_{38})_v - (CR_{33}R_{34})_u - T - (CR_{35}R_{36})_w - H$

AQ-2AA: Alicyclic Amine

Heteroaryl Carbonyl Chloride (CCXI-AH)

(RACXII-AH):Alicyclic

Heteroaryl Amide

 $\text{HN CH}_2(\text{CR}_{37}\text{R}_{38})_v - (\text{CR}_{33}\text{R}_{34})_u - \text{T} - (\text{CR}_{35}\text{R}_{36})_w - \text{H}$

Scheme 8

Scheme

 $_{
m NH_2}$ —CH $_2$ (CR $_{37}$ R $_{38}$) $_{
m v}$ -(CR $_{33}$ R $_{34}$) $_{
m u}$ -T-(CR $_{35}$ R $_{36}$) $_{
m w}$ -H AQ-2AA: Alicyclic Amine

Heteroaryl Carbonyl Chloride (CCXI-AH)

$$\begin{array}{c}
R_{6} \\
R_{5} \\
J_{1} \\
R_{4}
\end{array}$$

$$\begin{array}{c}
R_{6} \\
J_{2} \\
R_{7} \\
II \\
D_{2} \\
R_{8}$$

(RACXII-AH):Alicyclic

Heteroaryl Amide

 1 HN CH₂ (CR₃₇R₃₈)_v-(CR₃₃R₃₄)_u-T-(CR₃₅R₃₆)_w-H

Scheme 10

Scheme 11

Secondary Cyclic Heteroaryl Amine (XIIIA-H)

Scheme 12

Scheme 13

Scheme 14 "

10

15

20

The following examples are provided to illustrate the present invention and are not intended to limit the scope thereof. Without further elaboration, it is believed that one skilled in the art can, using the preceding descriptions, utilize the present invention to its fullest extent. Therefore the following preferred specific embodiments are to be construed as merely illustrative and not limitative of the remainder of the disclosure in any way whatsoever. Compounds containing multiple variations of the structural modifications illustrated in the preceding schemes or the following Examples are also contemplated. Those skilled in the art will readily understand that known variations of the conditions and processes of the following preparative procedures can be used to prepare these compounds.

One skilled in the art may use these generic methods to prepare the following specific examples, which have been or may be properly characterized by ¹H NMR and mass spectrometry. These compounds also may be formed in vivo.

The following examples contain detailed descriptions of the methods of preparation of compounds of Formula V-H. These detailed descriptions fall within the scope and are presented for illustrative purposes only and are not intended as a restriction on the scope of the invention. All parts are by weight and temperatures are Degrees centigrade unless otherwise indicated.

WO 00/18723 PCT/US99/22123

100

5

EXAMPLE 1

$$F_3C$$
 CH_3
 CF_3

3-[(4-methylcyclohexyl)[[(3-trifluoromethyl)phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol

10 EX-1A) 4-Methylcyclohexylamine (1.15 g, 10 mmol, 97%, mixture of *cis* and *trans* isomers) and 3-trifluoromethylbenzaldehyde (1.74 g, 10 mmol) were dissolved in anhydrous chloroform (25 mL) and heated under reflux for 4 h using a Dean-Stark trap to remove water. The volatile components were removed *in* vacuo to give the desired imine (2.69 g) product quantitatively as a colorless oil,

MS $m/z = 269 \, [\text{M}^+]$. The oil was dissolved in methanol, and after cooling to 0 °C, solid sodium borohydride was added (0.64 g, 17 mmol). The mixture was allowed to warm to room temperature and stirred for 2 h, then acidified with 1 N HCl solution. After neutralizing to pH 7.5 with 2.5 N sodium hydroxide, the mixture was extracted with diethyl ether (3 x 20 mL). The organic layer was

washed with brine and water, then dried over anhydrous MgSO₄, and evaporated to give 1.96 g (68.4%) of the desired N-(4-methylcyclohexyl)[[3-(trifluoromethyl)-phenyl]methyl]amine product as a colorless oil, which was greater than 90% pure by reverse phase HPLC analysis. MS m/z = 271 [M⁺].

EX-1B) The benzylamine product from EX-1A (1.08 g, 4 mmol) and 3,3,3-trifluoro-1,2-epoxypropane (0.67 g, 6 mmol) were dissolved in 1.0 mL of acetonitrile. Ytterbium (III) trifluoromethanesulfonate (0.21 g, 0.33 mmol) was added, and the stirred solution was warmed to 50 °C for 2 h under an atmosphere

of nitrogen, at which time HPLC analysis indicated that no amine starting material remained. The reaction was quenched with water and extracted with ether. The ether layer was washed with water and brine, then dried over anhydrous MgSO₄. The crude product was purified by flash column chromatography on silica gel eluting with ethyl acetate in hexane (1:12) to give 1.18 g (77%) of the desired 3-10 [(4-methyl-cyclohexyl)[[(3-trifluoromethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol product as a light amber oil. 99% pure by HPLC analysis. HRMS calculated for C₁₈H₂₃F₆NO: 384.1762 [M+H]⁺, found: 384.1754. ¹H NMR (CDCl₃) δ 0.92 (dd, 3H), 1.17-1.81 (m, 8H), 1.93 (m, 1H), 2.48 (m, 1H), 2.80 (m, 2H), 3.76 (d, 2H), 3.79 (m, 1H), 3.94 (s, 1H), 7.45-7.60 (m, 4H). ¹⁹F NMR (CDCl₃) δ -79.2 (d, 3F), -63.1 (s, 3F).

Additional substituted 3-[(N-alkyl and N-cycloalkyl)[aryl]methyl]amino-1,1,1-trifluoro-2-propanols can be prepared by one skilled in the art using similar methods, as shown in Example Table 1.

20

25

5 Example Table 1. Substituted 3-[(N-alkyl and N-cycloalkyl)[aryl]methyl]amino-1,1,1-trifluoro-2-propanols.

Ex.	R _{SUB1}	R _{SUB2}	Calculated Mass	Observed Mass
			[M+H] ⁺	[<u>M+H</u>] ⁺
2	cyclopropyl	4-OCF ₃	344.1085	344.1086
3	isopropyl	4-OCF ₃	346.1242	346.1245
4	cyclopropyl	3-OCF ₃	344.1085	344.1085
5	isopropyl	3-OCF ₃	346.1242	346.1239
6	n-propyl	3-OCF ₃	346.1242	346.1252
7	cyclopentyl	3-OCF ₃	372.1398	372.1409

EXAMPLE 8

10

3-[(3-methyl-2-butenyl)[(3-(trifluoromethoxy)phenyl] amino]-1,1,1-trifluoro-2-propanol

EX-8A) 3-Trifluoromethoxy aniline (23.81 g, 134.4 mmol) and 3,3,3-

trifluoro-1,2-epoxypropane (3.76 g, 33.6 mmol) were placed into a sealed tube

20

25

30

and heated at 80 °C for 24 h. The excess aniline was removed by distillation (70 °C at 80 torr). The resulting residue contained 8.6 g (>95%) of the desired 3[[(trifluoromethoxy)phenyl]-amino]-1,1,1-trifluoro-2-propanol product as a light yellow oil. ¹H NMR (CDCl₃) δ 3.29-3.37 (m, 1H), 3.55 (dd, 1H), 4.20 (m, 1H), 6.48-6.63 (m, 3H), 7.12 (t, 1H). ¹⁹F NMR (CDCl₃) δ -79.36 (s, 3F), -58.44 (s, 3F).

EX-8B) The 3-[[(trifluoromethoxy)phenyl]amino]-1.1,1-trifluoro-2-propanol product from EX-8A (18.68 g, 64.6 mmol) and imidazole (10.99 g, 0.162 mmol) were dissolved in dimethylformamide (40.0 mL) and t-butyldimethylsilylchloride (11.69 g, 77.6 mmol) was added in 3.0 g portions over 15 min. The reaction was stirred at 23 °C for 18 h. The resulting solution was diluted with ethyl acetate and washed with water and brine. The organic layer was dried (MgSO₄) and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel eluting with 25% ethyl acetate in hexane to afford 17.08g of the desired silylated product as a light golden oil. FABMS $m/z = 404 \, [\text{M+H}]^+$. H NMR (CDCl₃) δ 0.042 (s, 3H), 0.085 (s, 3H), 0.91 (s, 9H), 3.25-3.35 (m, 1H), 3.50 (dd, 1H), 4.10 (m, 1H), 6.40 (bs, 1H), 6.50 (dd, 1H), 6.59 (d, 1H), 7.17 (t, 1H).

EX-8C) The silylated product from EX-8B (0.15 g, 0.372 mmol) was dissolved in THF (0.5 mL) in a 2-dram glass vial with stir bar and cooled to 0 °C in an ice bath. KOtBu (1 M in THF, 1.2 eq, 0.446 mmol, 0.446 mL) was added to the cold solution in one portion. The reaction mixture was stirred at 0 °C for 5 min, then 1-chloro-3-methyl-2-butene (38.9 mg, 0.372 mmol) in 0.5 mL of THF was added in one portion to the cold reaction mixture. The ice bath was removed, and the reaction was stirred at 23 °C for 18 h. The resulting solution was diluted with ethyl acetate and washed with water and brine. The organic layer was dried

- (MgSO₄) and concentrated under a nitrogen stream. The crude residue was dissolved in 2.0 mL of THF and treated with tetrabutylammonium fluoride (1 M in THF, 1.2 eq, 0.446 mmol, 0.446 mL). The reaction mixture was stirred at 23 °C for 3 h. The reaction was diluted with ethyl acetate and washed with water and brine. The organic layer wad dried (MgSO₄) and concentrated under a nitrogen stream. The crude residue was purified using 0.5 g of silica gel eluting with hexane (100%) followed by 30% ethyl acetate in hexane to give 59.1 mg (44.4% yield) of the desired 3-[(3-methyl-2-butenyl)[(3-(trifluoromethoxy)-phenyl]amino]- 1,1,1-trifluoro-2-propanol product as a golden oil. FABMS m/z = 358 [M+H]⁺.
- Additional examples of substituted 3-[(*N*-alkyl, *N*-alkenyl and *N*-alkynyl)[(trifluoromethoxy)phenyl] amino]-1,1,1-trifluoro-2-propanols can be prepared
 by one skilled in the art using similar methods, as shown in Example Table 2.

25

5

Example Table 2. 3-[(*N*-alkyl, *N*-alkenyl and *N*-alkynyl)[(trifluoromethoxy)phenyl] amino]-1,1,1-trifluoro-2-propanols.

Ex. No.	R _{SUB1}	Calculated Mol. Wt.	Observed Mass [M+H]
9	2,3-octenyl	399	400
10	2,3-propynyl	327	328
11	3-methyl-butyl	359	360
12	2-(carbomethoxy)-2-propenyl	387	388
13	3-(carbomethoxy)-2-propenyl	387	388
14	4-methoxy-2-butenyl	373	374

EXAMPLE 15

10

1,1'-[(Phenylmethyl)imino]bis[3,3,3-trifluoro-2-propanol]

Benzylamine (1.5 eq, 2.88 g, 2.94 mL, 26.8 mmol) was combined with 3,3,3-trifluoro-1,2-epoxypropane (2.0 g, 17.86 mmol) in a sealed glass tube and

heated at 80 °C for 18 h. Upon cooling to room temperature, the reaction mixture formed a slushy white solid. The solid was collected by filtration and washed with diethyl ether. The mother liquor was concentrated *in vacuo* to give 1.71 g (43%) of the desired 1.1'-[(phenyl-methyl)imino]bis[3,3,3-trifluoro-2- propanol] product as a colorless oil. FABMS m/z = 332 [M+H] + . 1 H NMR
 (CDCl₃) δ 2.85-2.96 (m, 4H), 3.94 (s, 2H), 3.94-3.97 (m, 2H), 7.24-7.37 (m,

10 (CDCl₃) δ 2.85-2.96 (m, 4H) , 3.94 (s, 2H), 3.94-3.97 (m, 2H), 7.24- 7.37 (m. 5H).

Additional examples of substituted 1,1'-[(phenylmethyl)imino]bis[3,3,3-tri-fluoro-2-propanols] can be prepared by one skilled in the art using similar methods, as shown in Example Table 3.

15

1

Example Table 3. Substituted 1,1'-[(phenylmethyl)imino]bis[3,3,3-trifluoro-2-propanols]

$$F_3C$$

OH

N

OH

 CF_3

Ex.	R _{SUB2}	Calculated	Observed Mass
No.		Mass [M+H]	[<u>M+H]</u> +
16	3-trifluoromethyl	400.0959	400.0923
17	4-trifluoromethoxy	416.0908	416.0905

PCT/US99/22123

107

5

10

15

20

25

EXAMPLE 18

$$F_3C$$
 CH_2CH_3
 CH_2CH_3

3-[[3-(4-chloro-3-ethylphenoxy)phenyl][3-cyclohexylmethyl]amino]-1,1,1-trifluoro-2-propanol

EX-18A) To a solution of 1,3-dinitrobenzene (16.8 g, 0.1 mol) and 4-chloro-3-ethylphenol (15.6 g, 0.1 mol) in 200 mL of dimethylsulfoxide was added cesium carbonate (65 g, 0.2 mol). The reaction mixture was heated at 100 °C under nitrogen overnight then cooled to room temperature. The reaction mixture was filtered through celite then rinsed with diethyl ether and a small amount of water. The filtrate was extracted several times with diethyl ether. The organic layers were combined, washed with water and brine, dried over MgSO₄, and concentrated *in vacuo* to give 21.8 g (78%) of the desired 3-(4-chloro-3-ethylphenoxy)-1-nitrobenzene product as a dark orange oil, which was greater than 90% pure by reverse phase HPLC analysis. HRMS calcd. for C₁₄H₁₂ClNO₃: 295.0849 [M+NH₄]⁺, found 295.0862.

EX-18B) To a solution of 3-(4-chloro-3-ethylphenoxy)-1-nitrobenzene (10 g, 0.036 mol) from EX-18A in 400 mL of glacial acetic acid and 1 mL of water was added zinc metal (20 g, 0.305 mol) at room temperature, and the resultant mixture was stirred for 1 h. The reaction mixture was filtered through celite. The filtrate was neutralized with ammonium hydroxide and extracted with diethyl ether. The organic layer was washed with water and brine, dried over MgSO₄,

15

20

25

30

5 and concentrated in vacuo to give 10 g (100%) of the desired 3-(4-chloro-3ethylphenoxy)aniline product as a dark orange oil, which was greater than 90% pure by reverse phase HPLC analysis. HRMS calcd. for C14H14ClNO: 248.0842 [M+H]⁺, found: 248.0833.

EX-18C) The 3-(4-chloro-3-ethylphenoxy)aniline (0.545 g, 0.002 mol) product from EX-18B was mixed with neat 3,3,3-trifluoro-1,2-epoxypropane (0.220 g, 0.002 mol) in a pressurized vial. The resulting mixture was heated at 90 °C for 18 h, cooled, and the excess 3,3,3-trifluoro-1,2-epoxypropane was removed in vacuo. The crude product was purified by flash column chromatography on silica gel eluting with 1:4 ethyl acetate in hexane to give 0.254 g (35%) of the desired 3-[[3-(4-chloro-3-ethyl-phenoxy)phenyl]amino]-1,1,1trifluoro-2-propanol product as a pure orange oil. Anal calcd. for C₁₇H₁₇NOF₃Cl: C, 56.75; H, 4.76; N, 3.89. Found: C, 56.72; H, 4.70; N, 3.85. HRMS calcd.: 360.0978 [M+H]⁺, found: 360.0969. ¹H NMR (CDCl₃) δ 1.50 (t, 3H), 2.72 (m, 2H), 3.36 (m, 1H), 3.54 (m, 1H), 4.20 (m, 1H), 6.42 (m, 2H), 6.81 (dd, 1H), 6.94 (d, 1H), 7.18 (d, 1H), 7.25 (m, 2H).

The 3-[[3-(4-chloro-3-ethylphenoxy)phenyl]amino]-1,1,1-trifluoro-2propanol product from EX-18C was dissolved in 12 mL of tetrahydrofuran. To this stirred solution was added cyclohexanecarboxaldehyde (0.032 g, 0.285 mmol), followed by sodium tri-acetoxyborohydride (0.079 g, 0.370 mmol and concentrated acetic acid (0.020 g, 0.325 mmol). The resulting mixture was stirred at room temperature for 18 h. Additional cyclohexanecarboxaldehyde (0.032 g, 0.285 mmol) was added and the mixture was allowed to stir at room temperature for another 18 h. The reaction was quenched with saturated sodium bicarbonate and extracted with methylene chloride. The organic layers were combined, dried

over MgSO₄ and concentrated to an orange/brown oil. The crude product was

purified by flash column chromatography on silica gel eluting with 1:4 ethyl acetate in hexane to give 0.080 g (61%) of the desired 3-[[3-(4-chloro-3-ethylphenoxy)phenyl][3-cyclohexylmethyl]amino]-1,1,1-trifluoro-2-propanol product as a yellow-orange oil (>95% pure by HPLC). HRMS calcd.: 456.1917 [M+H]⁺, found: 456.1942. ¹H NMR (CDCl₃) δ 0.82-1.01 (m, 2H), 1.22-1.27 (m, 3H), 1.73-1.76 (m, 5H), 2.74 (dd, 2H), 3.15 (dd, 2H), 3.23 (dd, 1H), 3.52 (m, 1H), 3.80 (dd, 1H), 4.28 (m, 1H), 6.34 (d, 2H), 6.42 (d, 1H), 6.83 (dd, 1H), 6.98 (d, 1H), 7.19 (t, 1H), 7.29 (d, 1H). ¹⁹F NMR (CDCl₃) δ -79.06 (d, 3F).

Based on the preceding procedures, additional substituted 3-[(N-alkyl)[[aryl]methyl]amino]-1,1,1-trifluoro-2-propanols and 3-[(N-cycloalkyl)[[aryl]methyl]-amino]-halo-2-propanols are prepared by one skilled in the art using similar methods, as shown in Example Tables 4 and 5. Similarly, substituted 3[(N-aryl)[[cycloalkyl]-methyl]amino]-halo-2-propanols and substituted 3-[(N-aryl)[[haloalkyl]methyl]amino]-halo-2-propanols are prepared by one skilled in the art using analogous methods, as shown in Example Tables 6 and 7.

20

25

.30

5 Example Table 4. 3-[(N-alkyl)[[aryl]methyl]amino]-1,1,1-trifluoro-2-propanols.

<u>Ex.</u> <u>No.</u> 19	R _{SUB}
	4-OCF ₃
20	3-OCF ₂ CF ₂ H
21	2-F, 5-CF ₃
22	2-F, 4-CF ₃
23	3-CF ₃ , 4-F
24	3-CF ₃ CF ₂
25	3-cyclopentyl
26	3-іѕоргороху
27	3-SCF ₃
28	3-sec-butoxy
29	3-C(CF ₃) ₂ OH
30	3-(2-furyl)
31	3-(3-furyl)
32	3-isobutyl
33	-3-isobutoxy
34	3-ethoxy
35	.3-OCH ₂ CF ₃
36	3-propoxy
37	3-tert-butoxy

	- 50B
$\frac{\mathbf{E}\mathbf{x}}{\mathbf{No}}$.	<u>R_{SUB}</u>
38	3-(2-thienyl)
39	3-cyclopropyl
40	4-F, 3-(2-furyl)
41	3-(3-CF ₃ -phenoxy)
42	3,4-(OCF ₂ CF ₂ O)
43	3-OCF ₂ CF ₃
44	3-cyclopentoxy
45	3-(cyclopropyl)methoxy
46	3-OCH ₂ CH(OH) CF ₃
47	3-CF ₃
48	4-CF ₃
49	3-CH ₂ CF ₂ CF ₃
50	3-CH ₂ CF ₃
51	3-CH(CF ₃) ₂
52	3-CF ₂ CF ₂ CF ₃
53	3-phenoxy
54	3-phenyl
55	3-(tetrahydro-2-furyl)
56	isoamyl

5 Example Table 4. (cont.) 3-[(N-alkyl)[[aryl]methyl]amino]-1,1,1-trifluoro-2-propanols.

<u>Ex.</u> <u>No.</u> 57	<u>R</u> SUB
	3-OCF ₃
58	3-OCF ₂ CF ₂ H
59	2-F, 5-CF ₃
60	2-F, 4-CF ₃
61	3-CF ₃ , 4-F
62	3-CF ₃ CF ₂
63	3-cyclopentyl
64	3-isopropoxy
65	3-SCF ₃
66	3-sec-butoxy
67	3-C(CF ₃) ₂ OH
68	3-(2-furyl)
69	3-(3-furyl)
70	3-isobutyl
71	3-isobutoxy
72	3-ethoxy
73	3-OCH ₂ CF ₃
74	3-propoxy
75	3-tert-butoxy

1	- KSUB
Ex. No.	R _{SUB}
76	3-(2-thienyl)
77	3-cyclopropyl
78	4-F, 3-(2-furyl)
79	3-(3-CF ₃ -phenoxy)
80	3,4-(OCF ₂ CF ₂ O)
81	3-OCF ₂ CF ₃
82	3-cyclopentoxy
83	3-(cyclopropyl)methoxy
84	3-OCH ₂ CH(OH) CF ₃
85	3-CF ₃
86	4-CF ₃
87	3-CH ₂ CF ₂ CF ₃
88	3-CH ₂ CF ₃
89	3-CH(CF ₃) ₂
90	3-CF ₂ CF ₂ CF ₃
91	3-phenoxy
92	3-phenyl
93	3-(tetrahydro-2-furyl)
94	isoamyl

5 Example Table 4. (cont.) 3-[(*N*-alkyl)[[aryl]96methyl]amino]-1,1,1-trifluoro-2-propanols.

Ex.	R _{SUB}
<u>No.</u> 95	3-OCF ₃
96	3-OCF ₂ CF ₂ H
97	2-F, 5-CF ₃
98	2-F, 4-CF ₃
99	3-CF ₃ , 4-F
100	3-CF ₃ CF ₂
101	3-cyclopentyl
102	3-isopropoxy
103	3-SCF ₃
104	3-sec-butoxy
105	3-C(CF ₃) ₂ OH
106	3-(2-furyl)
107	3-(3-furyl)
108	3-isobutyl
109	3-isobutoxy
110	3-ethoxy
111	3-OCH ₂ CF ₃
112	3-propoxy
113	3-tert-butoxy

\ <u></u>	-7R _{SUB}
$\frac{\mathbf{E}\mathbf{x}}{\mathbf{No}}$.	R _{SUB}
<u>No.</u> 114	3-(2-thienyl)
115	3-cyclopropyl
116	4-F, 3-(2-furyl)
117	3-(3-CF ₃ -phenoxy)
118	3,4-(OCF ₂ CF ₂ O)
119	3-OCF ₂ CF ₃
120	3-cyclopentoxy
121	3-(cyclopropyl)methoxy
122	3-OCH ₂ CH(OH)CF ₃
123	3-CF ₃
124	4-CF ₃
125	3-CH ₂ CF ₂ CF ₃
126	3-CH ₂ CF ₃
127	3-CH(CF ₃) ₂
128	3-CF ₂ CF ₂ CF ₃
129	3-phenoxy
130	3-phenyl
131	3-(tetrahydro-2-furyl)
132	isoamyl

113

Example Table 4. (cont.) 3-[(N-alkyl)][aryl]methyl|amino]-1,1,1-trifluoro-2-propanols.

E	
Ex. No. 133	<u>R</u> SUB
	3-OCF ₃
134	3-OCF ₂ CF ₂ H
135	2-F, 5-CF ₃
136	2-F, 4-CF ₃
137	3-CF ₃ , 4-F
138	3-CF ₃ CF ₂
139	3-cyclopentyl
140	3-isopropoxy
141	3-SCF ₃
142	3-sec-butoxy
143	3-C(CF ₃) ₂ OH
144	3-(2-furyl)
145	3-(3-furyl)
146	3-isobutyl
147	3-isobutoxy
148	3-ethoxy
149	3-OCH ₂ CF ₃
150	3-ргороху
151	3-tert-butoxy

Ex. No. R _{SUB} 152 3-(2-thienyl) 153 3-cyclopropyl 154 4-F, 3-(2-furyl) 155 3-(3-CF ₃ -phenoxy) 156 3,4-(OCF ₂ CF ₂ O) 157 3-OCF ₂ CF ₃ 158 3-cyclopentoxy 159 3-(cyclopropyl)methoxy 160 3-OCH ₂ CH(OH) CF ₃ 161 3-CF ₃ 162 4-CF ₃ 163 3-CH ₂ CF ₂ CF ₃ 164 3-CH ₂ CF ₂ CF ₃ 165 3-CH(CF ₃) ₂ 166 3-CF ₂ CF ₂ CF ₃ 167 3-phenoxy 168 3-phenyl 169 3-(tetrahydro-2-furyl) 150 150 169 3-(tetrahydro-2-furyl) 150 150 160 150 160 150 160 150 160 150 160 150 160 150 160 150 160	900	
153 3-cyclopropyl 154 4-F, 3-(2-furyl) 155 3-(3-CF ₃ -phenoxy) 156 3,4-(OCF ₂ CF ₂ O) 157 3-OCF ₂ CF ₃ 158 3-cyclopentoxy 159 3-(cyclopropyl)methoxy 160 3-OCH ₂ CH(OH) CF ₃ 161 3-CF ₃ 162 4-CF ₃ 163 3-CH ₂ CF ₂ CF ₃ 164 3-CH ₂ CF ₂ CF ₃ 165 3-CH(CF ₃) ₂ 166 3-CF ₂ CF ₂ CF ₃ 167 3-phenoxy 168 3-phenyl 169 3-(tetrahydro-2-furyl)		
154 4-F, 3-(2-furyl) 155 3-(3-CF ₃ -phenoxy) 156 3,4-(OCF ₂ CF ₂ O) 157 3-OCF ₂ CF ₃ 158 3-cyclopentoxy 159 3-(cyclopropyl)methoxy 160 3-OCH ₂ CH(OH) CF ₃ 161 3-CF ₃ 162 4-CF ₃ 163 3-CH ₂ CF ₂ CF ₃ 164 3-CH ₂ CF ₃ 165 3-CH(CF ₃) ₂ 166 3-CF ₂ CF ₂ CF ₃ 167 3-phenoxy 168 3-phenyl 169 3-(tetrahydro-2-furyl)	152	3-(2-thienyl)
155 3-(3-CF ₃ -phenoxy) 156 3,4-(OCF ₂ CF ₂ O) 157 3-OCF ₂ CF ₃ 158 3-cyclopentoxy 159 3-(cyclopropyl)methoxy 160 3-OCH ₂ CH(OH) CF ₃ 161 3-CF ₃ 162 4-CF ₃ 163 3-CH ₂ CF ₂ CF ₃ 164 3-CH ₂ CF ₃ 165 3-CH(CF ₃) ₂ 166 3-CF ₂ CF ₂ CF ₃ 167 3-phenoxy 168 3-phenyl 169 3-(tetrahydro-2-furyl)	153	3-cyclopropyl
156 3,4-(OCF ₂ CF ₂ O) 157 3-OCF ₂ CF ₃ 158 3-cyclopentoxy 159 3-(cyclopropyl)methoxy 160 3-OCH ₂ CH(OH) CF ₃ 161 3-CF ₃ 162 4-CF ₃ 163 3-CH ₂ CF ₂ CF ₃ 164 3-CH ₂ CF ₂ CF ₃ 165 3-CH(CF ₃) ₂ 166 3-CF ₂ CF ₂ CF ₃ 167 3-phenoxy 168 3-phenyl 169 3-(tetrahydro-2-furyl)	154	4-F, 3-(2-furyl)
3,4(OCF ₂ CF ₂ O) 157 3-OCF ₂ CF ₃ 158 3-cyclopentoxy 159 3-(cyclopropyl)methoxy 160 3-OCH ₂ CH(OH) CF ₃ 161 3-CF ₃ 162 4-CF ₃ 163 3-CH ₂ CF ₂ CF ₃ 164 3-CH ₂ CF ₃ 165 3-CH(CF ₃) ₂ 166 3-CF ₂ CF ₂ CF ₃ 167 3-phenoxy 168 3-phenyl 169 3-(tetrahydro-2-furyl)		3-(3-CF ₃ -phenoxy)
158 3-cyclopentoxy 159 3-(cyclopropyl)methoxy 160 3-OCH ₂ CH(OH) CF ₃ 161 3-CF ₃ 162 4-CF ₃ 163 3-CH ₂ CF ₂ CF ₃ 164 3-CH ₂ CF ₃ 165 3-CH(CF ₃) ₂ 166 3-CF ₂ CF ₂ CF ₃ 167 3-phenoxy 168 3-phenyl 169 3-(tetrahydro-2-furyl)		3,4-(OCF ₂ CF ₂ O)
159 3-(cyclopropyl)methoxy 160 3-OCH2CH(OH) CF3 161 3-CF3 162 4-CF3 163 3-CH2CF2CF3 164 3-CH2CF3 165 3-CH(CF3)2 166 3-CF2CF2CF3 167 3-phenoxy 168 3-phenyl 169 3-(tetrahydro-2-furyl)		3-OCF ₂ CF ₃
160 3-OCH ₂ CH(OH) CF ₃ 161 3-CF ₃ 162 4-CF ₃ 163 3-CH ₂ CF ₂ CF ₃ 164 3-CH ₂ CF ₃ 165 3-CH(CF ₃) ₂ 166 3-CF ₂ CF ₂ CF ₃ 167 3-phenoxy 168 3-phenyl 169 3-(tetrahydro-2-furyl)	158	3-cyclopentoxy
3-OCH ₂ CH(OH) Cl 3 161 3-CF ₃ 162 4-CF ₃ 163 3-CH ₂ CF ₂ CF ₃ 164 3-CH ₂ CF ₃ 165 3-CH(CF ₃) ₂ 166 3-CF ₂ CF ₂ CF ₃ 167 3-phenoxy 168 3-phenyl 169 3-(tetrahydro-2-furyl)	159	3-(cyclopropyl)methoxy
3-CF ₃ 162		3-OCH ₂ CH(OH)CF ₃
163 3-CH ₂ CF ₂ CF ₃ 164 3-CH ₂ CF ₃ 165 3-CH(CF ₃) ₂ 166 3-CF ₂ CF ₂ CF ₃ 167 3-phenoxy 168 3-phenyl 169 3-(tetrahydro-2-furyl)		3-CF ₃
3-CH ₂ CF ₂ CF ₃ 164 3-CH ₂ CF ₃ 165 3-CH(CF ₃) ₂ 166 3-CF ₂ CF ₂ CF ₃ 167 3-phenoxy 168 3-phenyl 169 3-(tetrahydro-2-furyl)		4-CF ₃
165 3-CH ₂ CF ₃ 166 3-CF ₂ CF ₂ CF ₃ 167 3-phenoxy 168 3-phenyl 169 3-(tetrahydro-2-furyl)	163	3-CH ₂ CF ₂ CF ₃
3-CH(CF ₃) ₂ 166 3-CF ₂ CF ₂ CF ₃ 167 3-phenoxy 168 3-phenyl 169 3-(tetrahydro-2-furyl)	,164	3-CH ₂ CF ₃
3-CF ₂ CF ₂ CF ₃ 167 3-phenoxy 168 3-phenyl 169 3-(tetrahydro-2-furyl)		3-CH(CF ₃) ₂
168 3-phenyl 169 3-(tetrahydro-2-furyl)		3-CF ₂ CF ₂ CF ₃
169 3-(tetrahydro-2-furyl)	167	3-phenoxy
	168	3-phenyl
170 isoamyl	169	3-(tetrahydro-2-furyl)
	170	isoamyl

114

5 Example Table 4. (cont.) 3-[(N-alkyl)[[aryl]methyl]amino]-1,1,1-trifluoro-2-propanols.

Ex. No. 171	R _{SUB}
	3-OCF ₃
172	3-OCF ₂ CF ₂ H
173	2-F, 5-CF ₃
174	2-F, 4-CF ₃
175	3-CF ₃ , 4-F
176	3-CF ₃ CF ₂
177	3-cyclopentyl
178	3-isopropoxy
179	3-SCF ₃
180	3-sec-butoxy
181	3-C(CF ₃) ₂ OH
182	3-(2-furyl)
183	-3-(3-furyl)
184	3-isobutyl
185	3-isobutoxy
186	3-ethoxy
187	3-OCH ₂ CF ₃
188	3-propoxy
189	3- <i>tert</i> -butoxy

	- 20B
Ex. No.	<u>R_{SUB}</u>
190	3-(2-thienyl)
191	3-cyclopropyl
192	4-F, 3-(2-furyl)
193	3-(3-CF ₃ -phenoxy)
194	3,4-(OCF ₂ CF ₂ O)
195	3-OCF ₂ CF ₃
196	3-cyclopentoxy
197	3-(cyclopropyl)methoxy
198	3-OCH ₂ CH(OH) CF ₃
199	3-CF ₃
200	4-CF ₃
201	3-CH ₂ CF ₂ CF ₃
202	3-CH ₂ CF ₃
203	3-CH(CF ₃) ₂
204	3-CF ₂ CF ₂ CF ₃
205	3-phenoxy
206	3-phenyl
207	3-(tetrahydro-2-furyl)
208	isoamyl

115

5 Example Table 5. 3-[(N-cycloalkyl)[[aryl]methyl]amino]-1,1,1-trifluoro-2-propanols.

Ex.	<u>R</u> SUB
<u>No.</u> 209	3- <i>tert</i> -butoxy
210	3-OCF ₂ CF ₂ H
211	2-F, 5-CF ₃
212	2-F, 4-CF ₃
213	3-CF ₃ , 4-F
214	3-CF ₃ CF ₂
215	3-cyclopentyl
216	3-isopropoxy
217	3-SCF ₃
218	3-sec-butoxy
219	3-C(CF ₃) ₂ OH
220	3-(2-furyl)
221	3-(3-furyl)
222	3-isobutyl
223	3-isobutoxy
224	3-ethoxy
225	3-OCH ₂ CF ₃
226	, 3-ргороху
227	3-(2-pyridyl)

	306
Ex. No.	<u>R</u> SUB
228	3-(2-thienyl)
229	3-cyclopropyl
230	4-F, 3-(2-furyl)
231	3-(3-CF ₃ -phenoxy)
232	3,4-(OCF ₂ CF ₂ O)
233	3-OCF ₂ CF ₃
234	3-cyclopentoxy
235	3-(cyclopropyl)methoxy
236	3-OCH ₂ CH(OH) CF ₃
237	3-CF ₃
238	4-CF ₃
239	3-CH ₂ CF ₂ CF ₃
240	3-CH ₂ CF ₃
241	3-CH(CF ₃) ₂
242	3-CF ₂ CF ₂ CF ₃
243	3-phenoxy
244	3-phenyl
245	3-(tetrahydro-2-furyl)
246	isoamyl

Example Table 5. (cont.). 3-[(N-cycloalkyl)[[aryl]methyl]amino]-halo-2-propanols.

Ex. No. 247	<u>R</u> _{SUB}
	4-OCF ₃
248	3-OCF ₂ CF ₂ H
249	2-F, 5-CF ₃
250	2-F, 4-CF ₃
251	3-CF ₃ , 4-F
252	3-CF ₃ CF ₂
253	3-cyclopentyl
254	3-isopropoxy
255	3-SCF ₃
256	3-sec-butoxy
257	3-C(CF ₃) ₂ OH
258	3-(2-furyl)
259	3-(3-furyl)
260	3-isobutyl
261	3-isobutoxy
262	3-ethoxy
263	3-OCH ₂ CF ₃
264	3-propoxy
265	3-tert-butoxy

, , SOR	
Ex. No.	<u>R</u> _{SUB}
266	3-(2-thienyl)
267	3-cyclopropyl
268	4-F, 3-(2-furyl)
269	3-(3-CF ₃ -phenoxy)
270	3,4-(OCF ₂ CF ₂ O)
271	3-OCF ₂ CF ₃
272	3-cyclopentoxy
273	3-(cyclopropyl)methoxy
274	3-OCH ₂ CH(OH) CF ₃
275	3-CF ₃
276	4-CF ₃
277	3-CH ₂ CF ₂ CF ₃
278	3-CH ₂ CF ₃
279	3-CH(CF ₃) ₂
280	3-CF ₂ CF ₂ CF ₃
281	3-phenoxy
282	3-phenyl
283	3-(tetrahydro-2-furyl)
284	isoamyl

Example Table 5. (cont.). 3-[(N-cycloalkyl)[[aryl]methyl]amino]-halo-2-propanols.

12	
Ex. No. 285	<u>R</u> SUB
285	3-OCF ₃
286	3-OCF ₂ CF ₂ H
287	2-F, 5-CF ₃
288	2-F, 4-CF ₃
289	3-CF ₃ , 4-F
290	3-CF ₃ CF ₂
291	3-cyclopentyl
292	3-isopropoxy
293	3-SCF ₃
294	3-sec-butoxy
295	3-C(CF ₃) ₂ OH
296	3-(2-furyl)
297	3-(3-furyl)
298	3-isobutyl
299	3-isobutoxy
300	3-ethoxy
301	3-OCH ₂ CF ₃
302	3-ргороху
303	3-tert-butoxy

Ex. No.	<u>R</u> _{SUB}
304	3-(2-thienyl)
305	3-cyclopropyl
306	4-F, 3-(2-furyl)
307	3-(3-CF ₃ -phenoxy)
308	3,4-(OCF ₂ CF ₂ O)
309	3-OCF ₂ CF ₃
310	3-cyclopentoxy
311	3-(cyclopropyl)methoxy
312	3-OCH ₂ CH(OH) CF ₃
313	3-CF ₃
314	4-CF ₃
315	3-CH ₂ CF ₂ CF ₃
316	3-CH ₂ CF ₃
317	3-CH(CF ₃) ₂
318	3-CF ₂ CF ₂ CF ₃
319	3-phenoxy
320	3-phenyl
321	3-(tetrahydro-2-furyl)
322	isoamyl

118

5 Example Table 5. (cont.). 3-[(N-cycloalky!)[[aryl]methyl]amino]-halo-2-propanols.

Ex. No.	R _{SUB}
	3-OCF ₃
324	3-OCF ₂ CF ₂ H
325	2-F, 5-CF ₃
326	2-F, 4-CF ₃
327	3-CF ₃ , 4-F
328	3-CF ₃ CF ₂
329	3-cyclopentyl
330	3-isopropoxy
331	3-SCF ₃
332	3-sec-butoxy
333	3-C(CF ₃) ₂ OH
334	3-(2-furyl)
335	3-(3-furyl)
336	3-isobutyl
337	3-isobutoxy
338	3-ethoxy
339	3-OCH ₂ CF ₃
340	3-propoxy
341	3-tert-butoxy

R _{SUB}	
$\frac{\mathbf{E}\mathbf{x}}{\mathbf{No}}$.	<u>R</u> _{SUB}
<u>No.</u> 342	3-(2-thienyl)
343	3-cyclopropyl
344	4-F, 3-(2-furyl)
345	3-(3-CF ₃ -phenoxy)
346	3,4-(OCF ₂ CF ₂ O)
347	3-OCF ₂ CF ₃
348	3-cyclopentoxy
349	3-(cyclopropyl)methoxy
350	3-OCH ₂ CH(OH)CF ₃
351	3-CF ₃
352	4-CF ₃
353	3-CH ₂ CF ₂ CF ₃
354	3-CH ₂ CF ₃
355	3-CH(CF ₃) ₂
356	3-CF ₂ CF ₂ CF ₃
357	3-phenoxy
358	3-phenyl
359	3-(tetrahydro-2-furyl)
360	isoamyl

5 Example Table 5. (cont.). 3-[(N-cycloalkyl)][aryl]methyl]amino]-halo-2-propanols.

Ex. No.	<u>R</u> SUB
361	3-OCF ₃
362	3-OCF ₂ CF ₂ H
363	2-F, 5-CF ₃
364	2-F, 4-CF ₃
365	3-CF ₃ , 4-F
366	3-CF ₃ CF ₂
367	3-cyclopentyl
368	3-isopropoxy
369	3-SCF ₃
370	3-sec-butoxy
371	3-C(CF ₃) ₂ OH
372	3-(2-furyl)
- 373 -	3-(3-furyl)
374	3-isobutyl
375	3-isobutoxy
376	3-ethoxy
377	3-OCH ₂ CF ₃
378	3-propoxy
379	3- <i>tert</i> -butoxy

306	
Ex. No.	<u>R</u> _{SUB}
380	3-(2-thienyl)
381	3-cyclopropyl
382	4-F, 3-(2-furyl)
383	3-(3-CF ₃ -phenoxy)
384	3,4-(OCF ₂ CF ₂ O)
385	3-OCF ₂ CF ₃
386	3-cyclopentoxy
387	3-(cyclopropyl)methoxy
388	3-OCH ₂ CH(OH) CF ₃
389	3-CF ₃
390	4-CF ₃
391	3-CH ₂ CF ₂ CF ₃
392	3-CH ₂ CF ₃
393	3-CH(CF ₃) ₂
394	3-CF ₂ CF ₂ CF ₃
395	3-phenoxy
396	3-phenyl
397	3-(tetrahydro-2-furyl)
398	isoamyl

Example Table 5. (cont.). 3-{(N-cycloalkyl)|[aryl]methyl]amino]-halo-2-propanols.

Ex. No. 399	<u>R</u> SUB
	3-OCF ₃
400	3-OCF ₂ CF ₂ H
401	2-F, 5-CF ₃
402	2-F, 4-CF ₃
403	3-CF ₃ , 4-F
404	3-CF ₃ CF ₂
405	3-cyclopentyl
406	3-isopropoxy
407	3-SCF ₃
408	3-sec-butoxy
409	3-C(CF ₃) ₂ OH
410	3-(2-furyl)
411	3-(3-furyl)
412	3-isobutyl
413	3-isobutoxy
414	3-ethoxy
415	3-OCH ₂ CF ₃
416	3-propoxy
417	3-tert-butoxy

Ex. No.	<u>R_{SUB}</u>
418	3-(2-thienyl)
419	3-cyclopropyl
420	4-F, 3-(2-furyl)
421	3-(3-CF ₃ -phenoxy)
422	3,4-(OCF ₂ CF ₂ O)
423	3-OCF ₂ CF ₃
424	3-cyclopentoxy
425	3-(cyclopropyl)methoxy
426	3-OCH ₂ CH(OH)CF ₃
427	3-CF ₃
428	4-CF ₃
429	3-CH ₂ CF ₂ CF ₃
430	3-CH ₂ CF ₃
431	3-CH(CF ₃) ₂
432	3-CF ₂ CF ₂ CF ₃
433	3-phenoxy
434	3-phenyl
435	3-(tetrahydro-2-furyl)
436	isoamyl

121

Example Table 5. (cont.). 3-|(N-cycloalkyl)||aryl|methyl|amino]-halo-2-propanols.

$$CF_3$$
 F_3C
 R_{SUB}

$\frac{\mathbf{E}\mathbf{x}}{\mathbf{N}\mathbf{o}}$	R _{SUB}
<u>No.</u> 437	3-OCF ₃
438	3-OCF ₂ CF ₂ H
439	2-F, 5-CF ₃
440	2-F, 4-CF ₃
441	3-CF ₃ , 4-F
442	3-CF ₃ CF ₂
443	3-cyclopentyl
444	3-isopropoxy
445	3-SCF ₃
446	3-sec-butoxy
447	3-C(CF ₃) ₂ OH
448	3-(2-furyl)
449	3-(3-furyl)
450	3-isobutyl
451	3-isobutoxy
452	3-ethoxy
453	3-OCH ₂ CF ₃
454	3-propoxy
-455	3-tert-butoxy

Ex. No.	<u>R</u> SUB
456	3-(2-thienyl)
457	3-cyclopropyl
458	4-F, 3-(2-furyl)
459	3-(3-CF ₃ -phenoxy)
460	3,4-(OCF ₂ CF ₂ O)
461	3-OCF ₂ CF ₃
462	3-cyclopentoxy
463	3-(cyclopropyl)methoxy
464	3-OCH ₂ CH(OH) CF ₃
465	3-CF ₃
466	4-CF ₃
467	3-CH ₂ CF ₂ CF ₃
468	3-CH ₂ CF ₃
469	3-CH(CF ₃) ₂
470	3-CF ₂ CF ₂ CF ₃
471	3-phenoxy
472	3-phenyl
473	3-(tetrahydro-2-furyl)
474	isoamyl

122

Example Table 5. (cont.). 3-[(N-cycloalkyl)[[aryl]methyl]amino]-halo-2-propanols.

$$CIF_2C$$
 R_{SUB}

Ex.	Roym
<u>No.</u> 475	R _{SUB}
	3-OCF ₃
476	3-OCF ₂ CF ₂ H
477	2-F, 5-CF ₃
478	2-F, 4-CF ₃
479	3-CF ₃ , 4-F
480	3-CF ₃ CF ₂
481	3-cyclopentyl
482	3-isopropoxy
483	3-SCF ₃
484	3-sec-butoxy
485	3-C(CF ₃) ₂ OH
486	3-(2-furyl)
487	3-(3-furyl)
488	3-isobutyl
489	3-isobutoxy
490	3-ethoxy
491	3-OCH ₂ CF ₃
492	3-propoxy
493	3-tert-butoxy

	SUB
Ex. No.	<u>R_{SUB}</u>
<u>No.</u> 494	3-(2-thienyl)
495	3-cyclopropyl
496	4-F, 3-(2-furyl)
497	3-(3-CF ₃ -phenoxy)
498	3,4-(OCF ₂ CF ₂ O)
499	3-OCF ₂ CF ₃
500	3-cyclopentoxy
501	3-(cyclopropyl)methoxy
502	3-OCH ₂ CH(OH)CF ₃
503	3-CF ₃
504	4-CF ₃
505	3-CH ₂ CF ₂ CF ₃
506	3-CH ₂ CF ₃
507	3-CH(CF ₃) ₂
508	3-CF ₂ CF ₂ CF ₃
509	3-phenoxy
510	3-phenyl
511	3-(tetrahydro-2-furyl)
512	isoamyl

123

5 Example Table 5. (cont.). 3-[(N-cycloalkyl)|[aryl|methyl]amino]-halo-2-propanols.

$$F_3CF_2C$$

OH

 R_{SUB}

Ex. No. 513	<u>R</u> SUB
	3-OCF ₃
514	3-OCF ₂ CF ₂ H
515	2-F, 5-CF ₃
516	2-F, 4-CF ₃
517	3-CF ₃ , 4-F
518	3-CF ₃ CF ₂
519	3-cyclopentyl
520	3-isopropoxy
521	3-SCF ₃
522	3-sec-butoxy
523	3-C(CF ₃) ₂ OH
524	3-(2-furyl)
525	3-(3-furyl)
526	3-isobutyl
527	3-isobutoxy
528	3-ethoxy
529	3-OCH ₂ CF ₃
530	3-ргороху
531	3-tert-butoxy

Ex. No. RSUB 532 3-(2-thienyl) 533 3-cyclopropyl 534 4-F, 3-(2-furyl) 535 3-(3-CF ₃ -phenoxy) 536 3,4-(OCF ₂ CF ₂ O) 537 3-OCF ₂ CF ₃ 538 3-cyclopentoxy 539 3-(cyclopropyl)methoxy 540 3-OCH_CH(OLD CF)
532 3-(2-thienyl) 533 3-cyclopropyl 534 4-F, 3-(2-furyl) 535 3-(3-CF ₃ -phenoxy) 536 3,4-(OCF ₂ CF ₂ O) 537 3-OCF ₂ CF ₃ 538 3-cyclopentoxy 539 3-(cyclopropyl)methoxy
534 4-F, 3-(2-furyl) 535 3-(3-CF ₃ -phenoxy) 536 3,4-(OCF ₂ CF ₂ O) 537 3-OCF ₂ CF ₃ 538 3-cyclopentoxy 539 3-(cyclopropyl)methoxy
535 3-(3-CF ₃ -phenoxy) 536 3,4-(OCF ₂ CF ₂ O) 537 3-OCF ₂ CF ₃ 538 3-cyclopentoxy 539 3-(cyclopropyl)methoxy
536 3,4-(OCF ₂ CF ₂ O) 537 3-OCF ₂ CF ₃ 538 3-cyclopentoxy 539 3-(cyclopropyl)methoxy
537 3-OCF ₂ CF ₃ 538 3-cyclopentoxy 539 3-(cyclopropyl)methoxy
538 3-cyclopentoxy 539 3-(cyclopropyl)methoxy
539 3-(cyclopropyl)methoxy
540
540 2 OCH CHOUNCE
3-OCH ₂ CH(OH) CF ₃
541 3-CF ₃
542 4-CF ₃
3-CH ₂ CF ₂ CF ₃
3-CH ₂ CF ₃
3-CH(CF ₃) ₂
3-CF ₂ CF ₂ CF ₃
547 3-phenoxy
548 3-phenyl
549 3-(tetrahydro-2-furyl)
550 isoamyl

Example Table 5. (cont.). 3-[(N-cycloalkyl)||aryl|methyl|amino]-halo-2-propanols.

Ex. No. 551	<u>R</u> SUB
	3-OCF ₃
552	3-OCF ₂ CF ₂ H
553	2-F, 5-CF ₃
554	2-F, 4-CF ₃
555	3-CF ₃ , 4-F
556	3-CF ₃ CF ₂
557	3-cyclopentyl
558	3-isopropoxy
559	3-SCF ₃
560	3-sec-butoxy
561	3-C(CF ₃) ₂ OH
562	3-(2-furyl)
563	3-(3-furyl)
564	3-isobutyl
565	3-isobutoxy
566	3-ethoxy
567	3-OCH ₂ CF ₃
568	3-propoxy
569	3- <i>tert</i> -butoxy

	002
Ex. No.	<u>R</u> _{SUB}
<u>No.</u> 570	3-(2-thienyl)
571	3-cyclopropyl
572	4-F, 3-(2-furyl)
573	3-(3-CF ₃ -phenoxy)
574	3,4-(OCF ₂ CF ₂ O)
575	3-OCF ₂ CF ₃
576	3-cyclopentoxy
577	3-(cyclopropyl)methoxy
578	3-OCH ₂ CH(OH)CF ₃
579	3-CF ₃
580	4-CF ₃
581	3-CH ₂ CF ₂ CF ₃
582	3-CH ₂ CF ₃
583	3-CH(CF ₃) ₂
584	3-CF ₂ CF ₂ CF ₃
585	3-phenoxy
586	3-phenyl
587	3-(tetrahydro-2-furyl)
588	isoamyl

125

5 Example Table 5. (cont.). 3-[(N-cycloalkyl)][aryl]methyl]amino]-halo-2-propanols.

$$F_3C$$
 CF_3
 F_3C
 R_{SUB}

Tru.	
Ex. No. 589	$\underline{\mathbf{R}}_{\underline{\mathbf{SUB}}}$
	3-OCF ₃
590	3-OCF ₂ CF ₂ H
591	2-F, 5-CF ₃
592	2-F, 4-CF ₃
593	3-CF ₃ , 4-F
594	3-CF ₃ CF ₂
595	3-cyclopentyl
596	3-isopropoxy
597	3-SCF ₃
598	3-sec-butoxy
599	3-C(CF ₃) ₂ OH
600	3-(2-furyl)
601	3-(3-furyl)
602	3-isobutyl
603	3-isobutoxy
604	3-ethoxy
605	3-OCH ₂ CF ₃
606	3-propoxy
607	3-tert-butoxy

	306
Ex. No.	<u>R</u> _{SUB}
608	3-(2-thienyl)
609	3-cyclopropyl
610	4-F, 3-(2-furyl)
611	3-(3-CF ₃ -phenoxy)
612	3,4-(OCF ₂ CF ₂ O)
613	3-OCF ₂ CF ₃
614	3-cyclopentoxy
615	3-(cyclopropyl)methoxy
616	3-OCH ₂ CH(OH) CF ₃
617	3-CF ₃
618	4-CF ₃
619	3-CH ₂ CF ₂ CF ₃
620	3-CH ₂ CF ₃
621	3-CH(CF ₃) ₂
622	3-CF ₂ CF ₂ CF ₃
623	3-phenoxy
624	3-phenyl
625	3-(tetrahydro-2-furyl)
626	isoamyl

126

Example Table 5. (cont.). 3-[(N-cycloalkyl)||aryl|methyl]amino]-halo-2-propanols.

Ex.	
<u>No.</u> 627	$\underline{\mathbf{R}}_{\underline{\mathbf{SUB}}}$
	3-OCF ₃
628	3-OCF ₂ CF ₂ H
629	2-F, 5-CF ₃
630	2-F, 4-CF ₃
631	3-CF ₃ , 4-F
632	3-CF ₃ CF ₂
633	3-cyclopentyl
634	3-isopropoxy
635	3-SCF ₃
636	3-sec-butoxy
637	3-C(CF ₃) ₂ OH
638	3-(2-furyl)
639	3-(3-furyl)
640	3-isobutyl
641	3-isobutoxy
642	3-ethoxy
643	3-OCH ₂ CF ₃
644	3-propoxy
645	3- <i>tert</i> -butoxy

- I SUB	
Ex. No.	<u>R</u> _{SUB}
646	3-(2-thienyl)
647	3-cyclopropyl
648	4-F, 3-(2-furyl)
649	3-(3-CF ₃ -phenoxy)
650	3,4-(OCF ₂ CF ₂ O)
651	3-OCF ₂ CF ₃
652	3-cyclopentoxy
653	3-(cyclopropyl)methoxy
654	3-OCH ₂ CH(OH) CF ₃
655	3-CF ₃
656	4-CF ₃
657	3-CH ₂ CF ₂ CF ₃
658	3-CH ₂ CF ₃
659	3-CH(CF ₃) ₂
660	3-CF ₂ CF ₂ CF ₃
661	3-phenoxy
662	3-phenyl
663	3-(tetrahydro-2-furyl)
664	isoamyl

127

Example Table 5. (cont.). 3-[(N-cycloalkyl)[[aryl]methyl]amino]-halo-2-propanols.

$$F_3C$$

OH

 R_{SUB}

Ex. No. 665	<u>R</u> SUB
	3-OCF ₃
666	3-OCF ₂ CF ₂ H
667·	2-F, 5-CF ₃
668	2-F, 4-CF ₃
669	3-CF ₃ , 4-F
670	3-CF ₃ CF ₂
671	3-cyclopentyl
672	3-isopropoxy
673	3-SCF ₃
674	3-sec-butoxy
675	3-C(CF ₃) ₂ OH
676	3-(2-furyl)
677	-3-(3-furyl)
678	3-isobutyl
679	3-isobutoxy
680	3-ethoxy
681	3-OCH ₂ CF ₃
682	3-propoxy
683	3- <i>tert</i> -butoxy

K _{SUB}	
Ex. No.	<u>R</u> SUB
<u>No.</u> 684	3-(2-thienyl)
685	3-cyclopropyl
686	4-F, 3-(2-furyl)
687	3-(3-CF ₃ -phenoxy)
688	3,4-(OCF ₂ CF ₂ O)
689	3-OCF ₂ CF ₃
690	3-cyclopentoxy
691.	3-(cyclopropyl)methoxy
692	3-OCH ₂ CH(OH)CF ₃
693	3-CF ₃
694	4-CF ₃
695	3-CH ₂ CF ₂ CF ₃
696	3-CH ₂ CF ₃
697	3-CH(CF ₃) ₂
698	3-CF ₂ CF ₂ CF ₃
699	3-phenoxy
700	3-phenyl
701	3-(tetrahydro-2-furyl)
702	isoamyl

128

Example Table 5. (cont.). 3-[(N-cycloalkyl)|[aryl|methyl]amino]-halo-2-propanols.

Ex.	R _{SUB}
No. 703	= <u>20B</u>
	3-OCF ₃
704	3-OCF ₂ CF ₂ H
705	2-F, 5-CF ₃
706	2-F, 4-CF ₃
707	3-CF ₃ , 4-F
708	3-CF ₃ CF ₂
709	3-cyclopentyl
710	3-isopropoxy
711	3-SCF ₃
712	3-sec-butoxy
713	3-C(CF ₃) ₂ OH
714	3-(2-furyl)
715	3-(3-furyl)
716	3-isobutyl
717	3-isobutoxy
718	3-ethoxy
719	3-OCH ₂ CF ₃
720	3-ргороху
721	3-tert-butoxy

$\frac{\mathbf{E}\mathbf{x}}{\mathbf{N}\mathbf{o}}$.	<u>R</u> SUB
<u>No.</u> 722	3-(2-thienyl)
723	3-сусіоргоруі
724	4-F, 3-(2-furyl)
725	3-(3-CF ₃ -phenoxy)
726	3,4-(OCF ₂ CF ₂ O)
727	3-OCF ₂ CF ₃
728	3-cyclopentoxy
729	3-(cyclopropyl)methoxy
730	3-OCH ₂ CH(OH) CF ₃ .
731	3-CF ₃
732	4-CF ₃
733	3-CH ₂ CF ₂ CF ₃
734	3-CH ₂ CF ₃
735	3-CH(CF ₃) ₂
736	3-CF ₂ CF ₂ CF ₃
737	3-phenoxy
738	3-phenyl
739	3-(tetrahydro-2-furyl)
740	isoamyl

129

Example Table 5. (cont.). 3-[(N-cycloalkyl)[[aryl]methyl]amino]-halo-2-propanols.

Ex.	D
<u>No.</u> 741	<u>R</u> SUB
	3-OCF ₃
742	3-OCF ₂ CF ₂ H
743	2-F, 5-CF ₃
744	2-F, 4-CF ₃
745	3-CF ₃ , 4-F
746	3-CF ₃ CF ₂
747	3-cyclopentyl
748	3-isopropoxy
749	3-SCF ₃
750	3-sec-butoxy
751	3-C(CF ₃) ₂ OH
752	3-(2-furyl)
753	3-(3-furyl)
754	3-isobutyl
755	3-isobutoxy
756	3-ethoxy
757	3-OCH ₂ CF ₃
758	3-propoxy
759	3-tert-butoxy

Ex. No.	R _{SUB}
760	3-(2-thienyl)
761	3-cyclopropyl
762	4-F, 3-(2-furyl)
763	3-(3-CF ₃ -phenoxy)
764	3,4-(OCF ₂ CF ₂ O)
765	3-OCF ₂ CF ₃
766	3-cyclopentoxy
767	3-(cyclopropyl)methoxy
768	3-OCH ₂ CH(OH) CF ₃
769	3-CF ₃
770	4-CF ₃
771	3-CH ₂ CF ₂ CF ₃
772	3-CH ₂ CF ₃
773	3-CH(CF ₃) ₂
774	3-CF ₂ CF ₂ CF ₃
775	3-phenoxy
776	3-phenyl
777	3-(tetrahydro-2-furyl)
778	isoamyl

5 Example Table 5. (cont.). 3-[(N-cycloalkyl)||aryl|methyl|amino|-halo-2-propanols.

Ex. No.	<u>R</u> SUB
779	3-OCF ₃
780	3-OCF ₂ CF ₂ H
781	2-F, 5-CF ₃
782	2-F, 4-CF ₃
783	3-CF ₃ , 4-F
784	3-CF ₃ CF ₂
785	3-cyclopentyl
786	3-isopropoxy
787	3-SCF ₃
788	3-sec-butoxy
789	3-C(CF ₃) ₂ OH
790	3-(2-furyl)
791	3-(3-furyl)
792	3-isobutyl
793	3-isobutoxy
794	3-ethoxy
795	3-OCH ₂ CF ₃
796	3-propoxy
797	3- <i>tert</i> -butoxy

$\frac{\mathbf{E}\mathbf{x}}{\mathbf{No}}$.	<u>R</u> SUB
798	3-(2-thienyl)
799	3-cyclopropyl
800	4-F, 3-(2-furyl)
801	3-(3-CF ₃ -phenoxy)
802	3,4-(OCF ₂ CF ₂ O)
803	3-OCF ₂ CF ₃
804	3-cyclopentoxy
805	3-(cyclopropyl)methoxy
806	3-OCH ₂ CH(OH)CF ₃
807	3-CF ₃
808	4-CF ₃
809	3-CH ₂ CF ₂ CF ₃
810	3-CH ₂ CF ₃
811	3-CH(CF ₃) ₂
812	3-CF ₂ CF ₂ CF ₃
813	3-phenoxy
814	3-phenyl
815	3-(tetrahydro-2-furyl)
816	isoamyl

5

131

Example Table 5. (cont.). 3-[(N-cycloalkyl)|[aryl]methyl]amino]-halo-2-propanols.

<u>Ex.</u> <u>No.</u> 817	R _{SUB}
817	OCF ₃
818	OCF ₂ CF ₂ H
819	OCF ₂ CF ₃
820	CH ₂ CF ₃
821	CF ₃
822	CF ₃ CF ₂
823	cyclopentyl
824	isopropoxy
825	SCF ₃
826	sec-butoxy
827	C(CF ₃) ₂ OH
828	(2-furyl)
829	(3-furyl)
830	isobutyl
831	isobutoxy
832	ethoxy
833	OCH ₂ CF ₃

	K SUB
Ex. No.	<u>R</u> _{SUB}
834	(2-thienyl)
835	cyclopropyl
836	(3-CF ₃ -phenoxy)
837	cyclopentoxy
838	(cyclopropyl)methoxy
839	OCH ₂ CH(OH) CF ₃
840	CH ₂ CF ₂ CF ₃
841	CH(CF ₃) ₂
842	CH(CF ₃) ₂
843	CF ₂ CF ₂ CF ₃
844	phenoxy
845	phenyl
846	(tetrahydro-2-furyl)
847	isoamyl
848	propoxy
849	tert-butoxy
850	(2-pyridyl)

5 Example Table 5. (cont.). 3-[(N-cycloalkyl)|[aryl|methyl]amino]-halo-2-propanols.

Ex.	R _{SUB}
No. 851	
1	OCF ₃
852	OCF ₂ CF ₂ H
853	OCF ₂ CF ₃
854	CH ₂ CF ₃
855	CF ₃
856	CF ₃ CF ₂
857	cyclopentyl
858	isopropoxy
859	SCF ₃
860	sec-butoxy
861	C(CF ₃) ₂ OH
862	(2-furyl)
863	(3-furyl)
864	isobutyl
865	isobutoxy
866	ethoxy
867	OCH ₂ CF ₃

N	
Ex. No.	R _{SUB}
868	(2-thienyl)
869	cyclopropyl
870	(3-CF ₃ -phenoxy)
871	cyclopentoxy
872	(cyclopropyl)methoxy
873	OCH ₂ CH(OH) CF ₃
874	CH ₂ CF ₂ CF ₃
875	CH(CF ₃) ₂
876	CH(CF ₃) ₂
877	CF ₂ CF ₂ CF ₃
878	phenoxy
879	phenyl
880	(tetrahydro-2-furyl)
881	isoamyl
882	propoxy
883	tert-butoxy
884	(2-pyridyl)

Example Table 6. 3-[(N-aryl)[[cycloalkyl]methyl]amino]-halo-2-propanols.

$$R_{SUB1}$$
 R_{SUB2}
 $R_{3}C$

Ex. No.	R _{SUB1}
<u>No.</u> 885	3-isopropyl
886	2-Cl, 3-Cl
887	3-CF ₃ O 4-F
888	4-F
889	4-CH ₃
890	2-F, 5-Br
891	4-Cl, 3-CH ₃ CH ₂
892	3-CH₃CH₂
893	3-CH ₃ , 5-CH ₃
894	3-(CH ₃) ₃ C
895	4-F, 3-CH ₃
896	3-C1, 4-C1
897	3,4-(CH ₂) ₄
898	3-HCF ₂ CF ₂ O
899	3-CHF ₂ O
900	3-(CH ₃) ₂ N
901	3-cyclopropyl
902	3-(2-furyl)
903	3-CF ₃ CF ₂
904	4-NH ₂
905	3-CH ₃ , 4-CH ₃ , 5-CH ₃
906	4-CH ₃ CH ₂ CH ₂ O

	130
Ex. No.	R _{SUB2}
909.	3-CF ₃ O-benzyloxy
910	3-CF ₃ -benzyloxy
911	3-F, 5-F-benzyloxy
912	cyclohexylmethyleneoxy
913	benzyloxy
914	3-CF ₃ , 5-CF ₃ -benzyloxy
915	4-CF ₃ O-benzyloxy
916	4-CH ₃ CH ₂ -benzyloxy
917	isopropoxy
918	3-CF ₃ -benzyl
919	isopropylthio
920	cyclopentoxy
921	3-Cl-5-pyridinyloxy
922	3-CF ₃ S-benzyloxy
923	3-CH ₃ , 4-CH ₃ -benzyloxy
924	2-F. 3-CF ₃ -benzyloxy
925	3-F, 5-CF ₃ -benzyloxy
926	4-(CH ₃) ₂ CH-benzyloxy
927	l-phenylethoxy
928	4-F, 3-CH ₃ -benzoyl
929	3-CF ₃ -phenyl
930	4-CH ₃ O-phenylamino

PCT/US99/22123

Ex. No.	R _{SUB1}
907	3-CF ₃
908	2-NO ₂

<u>134</u>	-
Ex. No.	R _{SUB2}
931	cyclopropoxy
932	4-NO ₂ -phenylthio

5

Example Table 6 (cont.). 3-[(N-aryl)[[cycloalkyl]methyl]amino]-halo-2-propanols.

$$R_{SUB1}$$
 R_{SUB1}
 R_{SUB2}

Ex. No.	R _{SUB1}
933	3-isopropyl
934	2-Cl, 3-Cl
935	3-CF ₃ O
936	4-F
937	4-CH ₃
938	2-F, 5-Br
939	4-CI, 3-CH ₃ CH ₂
940	3-CH ₃ CH ₂
941	3-CH ₃ , 5-CH ₃
942	3-(CH ₃) ₃ C
943	4-F, 3-CH ₃
944	3-C1, 4-C1
945	3,4-(CH ₂) ₄
946	3-HCF ₂ CF ₂ O
947	3-CHF ₂ O
948	3-(CH ₃) ₂ N
949	3-cyclopropyl

Ex. No. 957	R _{SUB2}
957	3-CF ₃ O-benzyloxy
958	3-CF ₃ -benzyloxy
959	3-F, 5-F-benzyloxy
960	cyclohexylmethyleneoxy
961	benzyloxy
962	3-CF ₃ , 5-CF ₃ -benzyloxy
963	4-CF ₃ O-benzyloxy
964	4-CH ₃ CH ₂ -benzyloxy
965	isopropoxy
966	3-CF ₃ -benzyl
967	isopropylthio
968	cyclopentoxy
969	cyclopentoxy 3-Cl-5-pyridinyloxy
970	3-CF ₃ S-benzyloxy
971	3-CH ₃ , 4-CH ₃ -benzyloxy
972	2-F, 3-CF ₃ -benzyloxy
973	3-F, 5-CF ₃ -benzyloxy

Ex. No. 950	R _{SUB1}
950	3-(2-furyl)
951	3-CF ₃ CF ₂
952	4-NH ₂
953	3-CH ₃ , 4-CH ₃ , 5-CH ₃
954	4-CH ₃ CH ₂ CH ₂ O
955	3-CF ₃
956	2-NO ₂

135	
Ex. No.	R _{SUB2}
974	4-(CH ₃) ₂ CH-benzyloxy
975	I-phenylethoxy
976	4-F, 3-CH ₃ -benzoyl
977	3-CF ₃ -phenyl
978	4-CH ₃ O-phenylamino
979	cyclopropoxy
980	4-NO ₂ -phenylthio

Example Table 6 (cont.). 3-[(*N*-aryl)[[cycloalkyl]methyl]amino]-halo-2-

$$R_{SUB1}$$
 R_{SUB2}
 $R_{3}C$
 $R_{3}C$

Ex. No.	R _{SUB1}
981	3-isopropyl
982	2-Cl, 3-Cl
983	3-CF ₃ O
984	4-F
985	4-CH ₃
986	2-F, 5-Br
987	4-F, 3-CF ₃
988	3-CH ₃ CH ₂
989	3-CH ₃ , 5-CH ₃
990	3-(CH ₃) ₃ C
991	4-F, 3-CH ₃

Ex. No.	R _{SUB2}
1005	3-CF ₃ O-benzyloxy
1006	3-CF ₃ -benzyloxy
1007	3-F, 5-F-benzyloxy
1008	cyclohexylmethyleneoxy
1009	benzyloxy
1010	3-CF ₃ , 5-CF ₃ -benzyloxy
1011	4-CF ₃ O-benzyloxy
1012	4-CH ₃ CH ₂ -benzyloxy
1013	isopropoxy
1014	3-CF ₃ -benzyl
1015	isopropylthio

Ex. No. 992	R _{SUB1}
	3-Cl, 4-Cl
993	3.4-(CH ₂) ₄
994	3-HCF ₂ CF ₂ O
995	3-CHF ₂ O
996	3-(CH ₃) ₂ N
997	3-cyclopropyl
998	3-(2-furyl)
999	3-CF ₃ CF ₂
1000	4-NH ₂
1001	3-CH ₃ , 4-CH ₃ , 5-CH ₃
1002	4-CH ₃ CH ₂ CH ₂ O
1003	3-CF ₃
1004	2-NO ₂

36	
Ex. No.	R _{SUB2}
1016	cyclopentoxy
1017	3-Cl-5-pyridinyloxy
1018	3-CF ₃ S-benzyloxy
1019	3-CH ₃ . 4-CH ₃ - benzyloxy
1020	2-F. 3-CF ₃ -benzyloxy
1021	3-F. 5-CF ₃ -benzyloxy
1022	4-(CH ₃) ₂ CH-benzyloxy
1023	I-phenylethoxy
1024	4-F. 3-CH ₃ -benzoyl
1025	3-CF ₃ -phenyl
1026	4-CH ₃ O-phenylamino
1027	cyclopropoxy
1028	4-NO ₂ -phenylthio

Example Table 6 (cont.). 3-[(*N*-aryl)[[cycloalkyl]methyl]amino]-halo-2-propanols.

$$R_{SUB1}$$
 R_{SUB2}
 R_{SUB2}
 R_{SUB2}
 R_{SUB2}
 R_{SUB2}
 R_{SUB2}
 R_{SUB2}
 R_{SUB2}
 R_{SUB2}

Ex. No.	R _{SUB1}
1029	3-isopropyl
1030	2-C1. 3-C1
1031	3-CF ₃ O
1032	4-F
1033	4-CH ₃

Ex.	R _{SUB2}
1053	3-CF ₃ O-benzyloxy
1054	3-CF ₃ -benzyloxy
1055	3-F, 5-F-benzyloxy
1056	cyclohexylmethyleneoxy
1057	benzyloxy

Ex. No.R _{SUBI} 10342-F. 5-Br10354-Cl. 3-CH ₃ CH ₂ 10363-CH ₃ CH ₂ 10373-CH ₃ . 5-CH ₃ 10383-(CH ₃) ₃ C10394-F. 3-CH ₃ 10403-Cl. 4-Cl10413,4-(CH ₂) ₄ 10423-HCF ₂ CF ₂ O10433-CHF ₂ O10443-(CH ₃) ₂ N10453-cyclopropyl10463-(2-furyl)10473-CF ₃ CF ₂ 10484-NH ₂ 10493-CH ₃ , 4-CH ₃ , 5-CH ₃ 10504-CH ₃ CH ₂ CH ₂ O10513-CF ₃ 10522-NO ₂		
1035 4-Cl. 3-CH ₃ CH ₂ 1036 3-CH ₃ CH ₂ 1037 3-CH ₃ . 5-CH ₃ 1038 3-(CH ₃) ₃ C 1039 4-F. 3-CH ₃ 1040 3-Cl. 4-Cl 1041 3,4-(CH ₂) ₄ 1042 3-HCF ₂ CF ₂ O 1043 3-CHF ₂ O 1044 3-(CH ₃) ₂ N 1045 3-cyclopropyl 1046 3-(2-furyl) 1047 3-CF ₃ CF ₂ 1048 4-NH ₂ 1049 3-CH ₃ , 4-CH ₃ , 5-CH ₃ 1050 4-CH ₃ CH ₂ CH ₂ O 1051 3-CF ₃	Ex. No.	R _{SUB1}
1036 3-CH ₃ CH ₂ 1037 3-CH ₃ , 5-CH ₃ 1038 3-(CH ₃) ₃ C 1039 4-F, 3-CH ₃ 1040 3-Cl, 4-Cl 1041 3,4-(CH ₂) ₄ 1042 3-HCF ₂ CF ₂ O 1043 3-(CH ₃) ₂ N 1045 3-cyclopropyl 1046 3-(2-furyl) 1047 3-CF ₃ CF ₂ 1048 4-NH ₂ 1049 3-CH ₃ , 4-CH ₃ , 5-CH ₃ 1050 4-CH ₃ CH ₂ CH ₂ O 1051 3-CF ₃		2-F, 5-Br
3-CH ₃ CH ₂ 1037 3-CH ₃ , 5-CH ₃ 1038 3-(CH ₃) ₃ C 1039 4-F, 3-CH ₃ 1040 3-Cl, 4-Cl 1041 3,4-(CH ₂) ₄ 1042 3-HCF ₂ CF ₂ O 1043 3-CHF ₂ O 1044 3-(CH ₃) ₂ N 1045 3-cyclopropyl 1046 3-(2-furyl) 1047 3-CF ₃ CF ₂ 1048 4-NH ₂ 1049 3-CH ₃ , 4-CH ₃ , 5-CH ₃ 1050 4-CH ₃ CH ₂ CH ₂ O 1051 3-CF ₃	,	4-CI, 3-CH ₃ CH ₂
1038 3-(CH ₃) ₃ C 1039 4-F, 3-CH ₃ 1040 3-Cl, 4-Cl 1041 3,4-(CH ₂) ₄ 1042 3-HCF ₂ CF ₂ O 1043 3-(CH ₃) ₂ N 1045 3-cyclopropyl 1046 3-(2-furyl) 1047 3-CF ₃ CF ₂ 1048 4-NH ₂ 1049 3-CH ₃ , 4-CH ₃ , 5-CH ₃ 1050 4-CH ₃ CH ₂ CH ₂ O 1051 3-CF ₃		3-CH ₃ CH ₂
3-(CH ₃) ₃ C 1039	1037	3-CH ₃ , 5-CH ₃
1040 3-Cl, 4-Cl 1041 3,4-(CH ₂) ₄ 1042 3-HCF ₂ CF ₂ O 1043 3-CHF ₂ O 1044 3-(CH ₃) ₂ N 1045 3-cyclopropyl 1046 3-(2-furyl) 1047 3-CF ₃ CF ₂ 1048 4-NH ₂ 1049 3-CH ₃ , 4-CH ₃ , 5-CH ₃ 1050 4-CH ₃ CH ₂ CH ₂ O 1051 3-CF ₃		3-(CH ₃) ₃ C
1041 3,4-(CH ₂) ₄ 1042 3-HCF ₂ CF ₂ O 1043 3-CHF ₂ O 1044 3-(CH ₃) ₂ N 1045 3-cyclopropyl 1046 3-(2-furyl) 1047 3-CF ₃ CF ₂ 1048 4-NH ₂ 1049 3-CH ₃ , 4-CH ₃ , 5-CH ₃ 1050 4-CH ₃ CH ₂ CH ₂ O 1051 3-CF ₃		
3,4-(CH ₂) ₄ 1042 3-HCF ₂ CF ₂ O 1043 3-CHF ₂ O 1044 3-(CH ₃) ₂ N 1045 3-cyclopropyl 1046 3-(2-furyl) 1047 3-CF ₃ CF ₂ 1048 4-NH ₂ 1049 3-CH ₃ , 4-CH ₃ , 5-CH ₃ 1050 4-CH ₃ CH ₂ CH ₂ O 1051 3-CF ₃	1040	3-Cl, 4-Cl
3-HCF ₂ CF ₂ O 1043 3-CHF ₂ O 1044 3-(CH ₃) ₂ N 1045 3-cyclopropyl 1046 3-(2-furyl) 1047 3-CF ₃ CF ₂ 1048 4-NH ₂ 1049 3-CH ₃ , 4-CH ₃ , 5-CH ₃ 1050 4-CH ₃ CH ₂ CH ₂ O 1051 3-CF ₃		3,4-(CH ₂) ₄
3-CHF ₂ O 1044 3-(CH ₃) ₂ N 1045 3-cyclopropyl 1046 3-(2-furyl) 1047 3-CF ₃ CF ₂ 1048 4-NH ₂ 1049 3-CH ₃ , 4-CH ₃ , 5-CH ₃ 1050 4-CH ₃ CH ₂ CH ₂ O 1051 3-CF ₃		3-HCF ₂ CF ₂ O
3-(CH ₃) ₂ N 1045 3-cyclopropyl 1046 3-(2-furyl) 1047 3-CF ₃ CF ₂ 1048 4-NH ₂ 1049 3-CH ₃ , 4-CH ₃ , 5-CH ₃ 1050 4-CH ₃ CH ₂ CH ₂ O 1051 3-CF ₃		3-CHF ₂ O
1046 3-(2-furyl) 1047 3-CF ₃ CF ₂ 1048 4-NH ₂ 1049 3-CH ₃ , 4-CH ₃ , 5-CH ₃ 1050 4-CH ₃ CH ₂ CH ₂ O 1051 3-CF ₃		
1047 3-CF ₃ CF ₂ 1048 4-NH ₂ 1049 3-CH ₃ , 4-CH ₃ , 5-CH ₃ 1050 4-CH ₃ CH ₂ CH ₂ O 1051 3-CF ₃		3-cyclopropyl
3-CF ₃ CF ₂ 1048 4-NH ₂ 1049 3-CH ₃ , 4-CH ₃ , 5-CH ₃ 1050 4-CH ₃ CH ₂ CH ₂ O 1051 3-CF ₃		3-(2-furyl)
1049 3-CH ₃ , 4-CH ₃ , 5-CH ₃ 1050 4-CH ₃ CH ₂ CH ₂ O 1051 3-CF ₃		3-CF ₃ CF ₂
1050 4-CH ₃ CH ₂ CH ₂ O 1051 3-CF ₃		4-NH ₂
1051 3-CF ₃		3-CH ₃ , 4-CH ₃ , 5-CH ₃
3-CF3	į	4-CH ₃ CH ₂ CH ₂ O
1052 2-NO ₂		3-CF ₃
	1052	2-NO ₂

137		
Ex. No.	R _{SUB2}	
	3-CF ₃ . 5-CF ₃ -benzyloxy	
1059	4-CF ₃ O-benzyloxy	
1060	4-CH ₃ CH ₂ -benzyloxy	
1061	isopropoxy	
1062	3-CF ₃ -benzyl	
1063	isopropylthio	
1064	cyclopentoxy	
1065	3-Cl-5-pyridinyloxy	
1066	3-CF ₃ S-benzyloxy	
1067	3-CH ₃ . 4-CH ₃ -benzyloxy	
1068	2-F. 3-CF ₃ -benzyloxy	
1069	3-F, 5-CF ₃ -benzyloxy	
1070	4-(CH ₃) ₂ CH-benzyloxy	
1071	1-phenylethoxy	
1072	4-F, 3-CH ₃ -benzoyi	
1073	3-CF ₃ -phenyl	
1074	4-CH ₃ O-phenylamino	
1075	cyclopropoxy	
1076	4-NO ₂ -phenylthio	

138
Example Table 6 (cont.). 3-[(*N*-aryl)[[cycloalkyl]methyl]amino]-halo-2-

$$R_{SUB1}$$
 R_{SUB2}
 CF_3
 F_3C
 CF_3
 F_3C
 CF_3

Ex.	R _{SUB1}
<u>No.</u> 1077	3-isopropyl
1078	2-C1, 3-C1
1079	3-CF ₃ O
1080	4-F
1081	4-CH ₃
1082	2-F, 5-Br
1083	4-Cl, 3-CH ₃ CH ₂
1084	3-CH ₃ CH ₂
1085	3-CH ₃ , 5-CH ₃
1086	3-(CH ₃) ₃ C
1087	4-F, 3-CH ₃
1088	3-Cl, 4-Cl
1089	3,4-(CH ₂) ₄
1090	3-HCF ₂ CF ₂ O
1091	3-CHF ₂ O
1092	3-(CH ₃) ₂ N
1093	3-cyclopropyl
1094	3-(2-furyl)
1095	3-CF ₃ CF ₂
1096	4-NH ₂
1097	3-CH ₃ , 4-CH ₃ , 5-CH ₃

Ex.	
<u>No.</u>	R _{SUB2}
	3-CF ₃ O-benzyloxy
1102	3-CF ₃ -benzyloxy
1103	3-F, 5-F-benzyloxy
1104	cyclohexylmethyleneoxy
1105	benzyloxy
1106	3-CF ₃ , 5-CF ₃ -benzyloxy
1107	4-CF ₃ O-benzyloxy
1108	4-CH ₃ CH ₂ -benzyloxy
1109	isopropoxy
1110	3-CF ₃ -benzyl
1111	isopropylthio
1112	cyclopentoxy
1113	3-Cl-5-pyridinyloxy
1114	3-CF ₃ S-benzyloxy
1115	3-CH ₃ , 4-CH ₃ -benzyloxy
1116	2-F, 3-CF ₃ -benzyloxy
1117	3-F, 5-CF ₃ -benzyloxy
1118	4-(CH ₃) ₂ CH-benzyloxy
1119	1-phenylethoxy
1120	4-F, 3-CH ₃ -henzoyi
1121	3-CF ₃ -phenyl

Ex. No.	R _{SUB1}
1098	4-CH ₃ CH ₂ CH ₂ O
1099	3-CF ₃
1100	2-NO ₂

1	39	
	Ex. No.	R _{SUB2}
ĺ	1122	4-CH ₃ O-phenylamino
	1123	cyclopropoxy
	1124	4-NO2-phenylthio

 $Example\ Table\ 6\ (cont.).\ 3-[(N-aryl)[[cycloalkyl]methyl]amino]-halo-2-$

$$R_{SUB1}$$
 R_{SUB2}
 $R_{3}C$
 $R_{3}C$

Ex. No. 1125	R _{SUB1}
1125	3-isopropyl
1126	2-Cl, 3-Cl
1127	3-CF ₃ O
1128	4-F
1129	4-CH ₃
1130	2-F, 5-Br
1131	4-C1, 3-CH ₃ CH ₂
1132	3-CH ₃ CH ₂
1133	3-CH ₃ , 5-CH ₃
1134	3-(CH ₃) ₃ C
1135	4-F. 3-CH ₃
1136	3-Cl. 4-Cl
1137	3,4-(CH ₂) ₄
1138	3-HCF ₂ CF ₂ O
1139	3-CHF ₂ O

Ex. No. 1149	R _{SUB2}
	3-CF ₃ O-benzyloxy
1150	3-CF ₃ -benzyloxy
1151	3-F, 5-F-benzyloxy
1152	cyclohexylmethyleneoxy
1153	benzyloxy
1154	3-CF ₃ , 5-CF ₃ -benzyloxy
1155	4-CF ₃ O-benzyloxy
1156	4-CH ₃ CH ₂ -benzyloxy
1157	isopropoxy
1158	3-CF ₃ -benzyl
1159	isopropylthio
1160	cyclopentoxy
1161	3-Cl-5-pyridinyloxy
1162	3-CF ₃ S-benzyloxy
1163	3-CH ₃ , 4-CH ₃ -benzyloxy

,	
Ex. No.	$\underline{\mathbf{R}_{\mathrm{SUB1}}}$
11-40	3-(CH ₃) ₂ N
1141	3-cyclopropyl
1142	3-(2-furyl)
1143	3-CF ₃ CF ₂
1144	4-NH ₂
1145	3-CH ₃ , 4-CH ₃ , 5-CH ₃
1146	4-CH ₃ CH ₂ CH ₂ O
1147	3-CF ₃
1148	2-NO ₂

140		
Ex. No.	R _{SUB2}	
1164	2-F, 3-CF ₃ -benzyloxy	
1165	3-F. 5-CF ₃ -benzyloxy	
1166	4-(CH ₃) ₂ CH-benzyloxy	
1167	l-phenylethoxy	
1168	4-F. 3-CH ₃ -benzovl	
1169	3-CF ₃ -phenyl	
1170	4-CH ₃ O-phenylamino	
1171	cyclopropoxy	
1172	4-NO ₂ -phenylthio	

Example Table 6 (cont.). 3-[(*N*-aryl)[[cycloaikyl]methyl]amino]-halo-2-

1		R _{SUB2}
	ρH Υ	/
F ₃ C	Ń.	1

Ex. No.	R _{SUB1}
1173	3-isopropyl
1174	2-Cl, 3-Cl
1175	3-CF ₃ O
1176	4-F
1177	4-CH ₃
1178	2-F, 5-Br
1179	4-CI, 3-CH ₃ CH ₂
1180	3-CH ₃ CH ₂
1181	3-CH ₃ , 5-CH ₃

Ex. No.	R _{SUB2}
1197	3-CF ₃ O-benzyloxy
1198	3-CF ₃ -benzyloxy
1199	3-F, 5-F-benzyloxy
1200	cyclohexylmethyleneoxy
1201	benzyloxy
1202	3-CF ₃ , 5-CF ₃ -benzyloxy
1203	4-CF ₃ O-benzyloxy
1204	4-CH ₃ CH ₂ -benzyloxy
1205	isopropoxy

Ex. No.	R _{SUB1}
1182	3-(CH ₃) ₃ C
1183	4-F. 3-CH ₃
1184	3-Cl, 4-Cl
1185	3.4-(CH ₂) ₄
1186	3-HCF ₂ CF ₂ O
1187	3-CHF ₂ O
1188	3-(CH ₃) ₂ N
1189	3-cyclopropyl
1190	3-(2-furyl)
1191	3-CF ₃ CF ₂
1192	4-NH ₂
1193	3-CH ₃ , 4-CH ₃ , 5-CH ₃
1194	4-CH ₃ CH ₂ CH ₂ O
1195	3-CF ₃
1196	2-NO ₂

141	
Ex. No.	R _{SUB2}
1206	3-CF ₃ -benzyl
1207	isopropylthio
1208	cyclopentoxy
1209	3-CI-5-pyridinyloxy
1210	3-CF ₃ S-benzyloxy
1211	3-CH ₃ . 4-CH ₃ -benzyloxy
1212	'2-F. 3-CF ₃ -benzyloxy
1213	3-F, 5-CF ₃ -benzyloxy
1214	4-(CH ₃) ₂ CH-benzyloxy
1215	l-phenylethoxy
1216	4-F. 3-CH ₃ -benzoyl
1217	3-CF ₃ -phenyl
1218	4-CH ₃ O-phenylamino
1219	cyclopropoxy
1220.	4-NO ₂ -phenylthio

Example Table 6 (cont.). 3-[(*N*-aryl)[[cycloalkyl]methyl]amino]-halo-2-propanols.

$$R_{SUB1}$$
 R_{SUB2}
 R_{3}
 R_{3}

Ex. No.	<u>R_{SUB1}</u>
1221	3-isopropyl
1222	2-Cl, 3-Cl

Ex. No.	R _{SUB2}
1245	3-CF ₃ O-benzyloxy
1246	3-CF ₃ -benzyloxy

PCT/US99/22123

Ex. No. R _{SUB1} 1223 3-CF ₃ O 1224 4-F 1225 4-CH ₃ 1226 2-F, 5-Br 1227 4-Cl, 3-CH ₃ CH ₂ 1228 3-CH ₃ CH ₂ 1229 3-CH ₃ , 5-CH ₃ 1230 3-(CH ₃) ₃ C 1231 4-F, 3-CH ₃ 1232 3-Cl, 4-Cl 1233 3,4-(CH ₂) ₄ 1234 3-HCF ₂ CF ₂ O 1235 3-CHF ₂ O 1236 3-(CH ₃) ₂ N 1237 3-cyclopropyl 1238 3-(2-furyl) 1239 3-CF ₃ CF ₂ 1240 4-NH ₂ 1241 3-CH ₃ , 4-CH ₃ , 5-CH ₃ 1242 4-CH ₃ CH ₂ CH ₂ O 1243 3-CF ₃ 1244 2-NO ₂		
1224 4-F 1225 4-CH ₃ 1226 2-F, 5-Br 1227 4-Cl, 3-CH ₃ CH ₂ 1228 3-CH ₃ CH ₂ 1229 3-CH ₃ , 5-CH ₃ 1230 3-(CH ₃) ₃ C 1231 4-F, 3-CH ₃ 1232 3-Cl, 4-Cl 1233 3,4-(CH ₂) ₄ 1234 3-HCF ₂ CF ₂ O 1235 3-CHF ₂ O 1236 3-(CH ₃) ₂ N 1237 3-cyclopropyl 1238 3-(2-furyl) 1239 3-CF ₃ CF ₂ 1240 4-NH ₂ 1241 3-CH ₃ , 4-CH ₃ , 5-CH ₃ 1242 4-CH ₃ CH ₂ CH ₂ O 1243 3-CF ₃		R _{SUB1}
1225 4-CH ₃ 1226 2-F, 5-Br 1227 4-Cl, 3-CH ₃ CH ₂ 1228 3-CH ₃ , 5-CH ₃ 1230 3-(CH ₃) ₃ C 1231 4-F, 3-CH ₃ 1232 3-Cl, 4-Cl 1233 3,4-(CH ₂) ₄ 1234 3-HCF ₂ CF ₂ O 1235 3-CHF ₂ O 1236 3-(CH ₃) ₂ N 1237 3-cyclopropyl 1238 3-(2-furyl) 1239 3-CF ₃ CF ₂ 1240 4-NH ₂ 1241 3-CH ₃ , 4-CH ₃ , 5-CH ₃ 1242 4-CH ₃ CH ₂ CH ₂ O 1243 3-CF ₃		3-CF ₃ O
1226 2-F, 5-Br 1227 4-Cl, 3-CH ₃ CH ₂ 1228 3-CH ₃ CH ₂ 1229 3-CH ₃ , 5-CH ₃ 1230 3-(CH ₃) ₃ C 1231 4-F, 3-CH ₃ 1232 3-Cl, 4-Cl 1233 3,4-(CH ₂) ₄ 1234 3-HCF ₂ CF ₂ O 1235 3-CHF ₂ O 1236 3-(CH ₃) ₂ N 1237 3-cyclopropyl 1238 3-(2-furyl) 1239 3-CF ₃ CF ₂ 1240 4-NH ₂ 1241 3-CH ₃ , 4-CH ₃ , 5-CH ₃ 1242 4-CH ₃ CH ₂ CH ₂ O 1243 3-CF ₃	1224	4-F
1227 4-Cl. 3-CH ₃ CH ₂ 1228 3-CH ₃ CH ₂ 1229 3-CH ₃ , 5-CH ₃ 1230 3-(CH ₃) ₃ C 1231 4-F, 3-CH ₃ 1232 3-Cl. 4-Cl 1233 3,4-(CH ₂) ₄ 1234 3-HCF ₂ CF ₂ O 1235 3-CHF ₂ O 1236 3-(CH ₃) ₂ N 1237 3-cyclopropyl 1238 3-(2-furyl) 1239 3-CF ₃ CF ₂ 1240 4-NH ₂ 1241 3-CH ₃ , 4-CH ₃ , 5-CH ₃ 1242 4-CH ₃ CH ₂ CH ₂ O 1243 3-CF ₃		-
1228 3-CH ₃ CH ₂ 1229 3-CH ₃ , 5-CH ₃ 1230 3-(CH ₃) ₃ C 1231 4-F, 3-CH ₃ 1232 3-Cl, 4-Cl 1233 3,4-(CH ₂) ₄ 1234 3-HCF ₂ CF ₂ O 1235 3-CHF ₂ O 1236 3-(CH ₃) ₂ N 1237 3-cyclopropyl 1238 3-(2-furyl) 1239 3-CF ₃ CF ₂ 1240 4-NH ₂ 1241 3-CH ₃ , 4-CH ₃ , 5-CH ₃ 1242 4-CH ₃ CH ₂ CH ₂ O 1243 3-CF ₃		2-F, 5-Br
3-CH ₃ CH ₂ 1230 3-CH ₃ , 5-CH ₃ 1231 4-F, 3-CH ₃ 1232 3-Cl, 4-Cl 1233 3,4-(CH ₂) ₄ 1234 3-HCF ₂ CF ₂ O 1235 3-CHF ₂ O 1236 3-(CH ₃) ₂ N 1237 3-cyclopropyl 1238 3-(2-furyl) 1239 3-CF ₃ CF ₂ 1240 4-NH ₂ 1241 3-CH ₃ , 4-CH ₃ , 5-CH ₃ 1242 4-CH ₃ CH ₂ CH ₂ O 1243 3-CF ₃		4-Cl, 3-CH ₃ CH ₂
1230 3-CH ₃ , 5-CH ₃ 1231 4-F, 3-CH ₃ 1232 3-Cl, 4-Cl 1233 3,4-(CH ₂) ₄ 1234 3-HCF ₂ CF ₂ O 1235 3-CHF ₂ O 1236 3-(CH ₃) ₂ N 1237 3-cyclopropyl 1238 3-(2-furyl) 1239 3-CF ₃ CF ₂ 1240 4-NH ₂ 1241 3-CH ₃ , 4-CH ₃ , 5-CH ₃ 1242 4-CH ₃ CH ₂ CH ₂ O 1243 3-CF ₃		3-CH ₃ CH ₂
3-(CH ₃) ₃ C 1231 4-F, 3-CH ₃ 1232 3-Cl, 4-Cl 1233 3,4-(CH ₂) ₄ 1234 3-HCF ₂ CF ₂ O 1235 3-CHF ₂ O 1236 3-(CH ₃) ₂ N 1237 3-cyclopropyl 1238 3-(2-furyl) 1239 3-CF ₃ CF ₂ 1240 4-NH ₂ 1241 3-CH ₃ , 4-CH ₃ , 5-CH ₃ 1242 4-CH ₃ CH ₂ CH ₂ O 1243 3-CF ₃		3-CH ₃ , 5-CH ₃
1232 3-CH ₃ 1233 3,4-(CH ₂) ₄ 1234 3-HCF ₂ CF ₂ O 1235 3-CHF ₂ O 1236 3-(CH ₃) ₂ N 1237 3-cyclopropyl 1238 3-(2-furyl) 1239 3-CF ₃ CF ₂ 1240 4-NH ₂ 1241 3-CH ₃ , 4-CH ₃ , 5-CH ₃ 1242 4-CH ₃ CH ₂ CH ₂ O 1243 3-CF ₃		3-(CH ₃) ₃ C
1233 3,4-(CH ₂) ₄ 1234 3-HCF ₂ CF ₂ O 1235 3-CHF ₂ O 1236 3-(CH ₃) ₂ N 1237 3-cyclopropyl 1238 3-(2-furyl) 1239 3-CF ₃ CF ₂ 1240 4-NH ₂ 1241 3-CH ₃ , 4-CH ₃ , 5-CH ₃ 1242 4-CH ₃ CH ₂ CH ₂ O 1243 3-CF ₃		
3,4-(CH ₂) ₄ 1234 3-HCF ₂ CF ₂ O 1235 3-CHF ₂ O 1236 3-(CH ₃) ₂ N 1237 3-cyclopropyl 1238 3-(2-furyl) 1239 3-CF ₃ CF ₂ 1240 4-NH ₂ 1241 3-CH ₃ , 4-CH ₃ , 5-CH ₃ 1242 4-CH ₃ CH ₂ CH ₂ O 1243 3-CF ₃		3-Cl, 4-Cl
3-HCF ₂ CF ₂ O 1235 3-CHF ₂ O 1236 3-(CH ₃) ₂ N 1237 3-cyclopropyl 1238 3-(2-furyl) 1239 3-CF ₃ CF ₂ 1240 4-NH ₂ 1241 3-CH ₃ , 4-CH ₃ , 5-CH ₃ 1242 4-CH ₃ CH ₂ CH ₂ O 1243 3-CF ₃		3,4-(CH ₂) ₄
3-CHF ₂ O 1236 3-(CH ₃) ₂ N 1237 3-cyclopropyl 1238 3-(2-furyl) 1239 3-CF ₃ CF ₂ 1240 4-NH ₂ 1241 3-CH ₃ , 4-CH ₃ , 5-CH ₃ 1242 4-CH ₃ CH ₂ CH ₂ O 1243 3-CF ₃		3-HCF ₂ CF ₂ O
3-(CH ₃) ₂ N 1237 3-cyclopropyl 1238 3-(2-furyl) 1239 3-CF ₃ CF ₂ 1240 4-NH ₂ 1241 3-CH ₃ , 4-CH ₃ , 5-CH ₃ 1242 4-CH ₃ CH ₂ CH ₂ O 1243 3-CF ₃		3-CHF ₂ O
1238 3-(2-furyl) 1239 3-CF ₃ CF ₂ 1240 4-NH ₂ 1241 3-CH ₃ , 4-CH ₃ , 5-CH ₃ 1242 4-CH ₃ CH ₂ CH ₂ O 1243 3-CF ₃		
1239 3-CF ₃ CF ₂ 1240 4-NH ₂ 1241 3-CH ₃ , 4-CH ₃ , 5-CH ₃ 1242 4-CH ₃ CH ₂ CH ₂ O 1243 3-CF ₃	1237	3-cyclopropyl
3-CF ₃ CF ₂ 1240 4-NH ₂ 1241 3-CH ₃ , 4-CH ₃ , 5-CH ₃ 1242 4-CH ₃ CH ₂ CH ₂ O 1243 3-CF ₃	1238	3-(2-furyl)
1241 3-CH ₃ , 4-CH ₃ , 5-CH ₃ 1242 4-CH ₃ CH ₂ CH ₂ O 1243 3-CF ₃		3-CF ₃ CF ₂
1242 4-CH ₃ CH ₂ CH ₂ O 1243 3-CF ₃		4-NH ₂
1243 3-CF ₃		3-CH ₃ , 4-CH ₃ , 5-CH ₃
3-CF3		4-CH ₃ CH ₂ CH ₂ O
1244 2-NO ₂	•	3-CF ₃
	1244	2-NO ₂

142	•
Ex. No.	R _{SUB2}
No. 1247	3-F. 5-F-benzyloxy
1248	cyclohexylmethyleneoxy
1249	benzyloxy .
1250	3-CF ₃ . 5-CF ₃ -benzyloxy
1251	4-CF ₃ O-benzyloxy
1252	4-CH ₃ CH ₂ -benzyloxy
1253	isopropoxy
1254	3-CF ₃ -benzyl
1255	isopropylthio
1256	cyclopentoxy
1257	3-Cl-5-pyridinyloxy
1258	3-CF ₃ S-benzyloxy
1259	3-CH ₃ , 4-CH ₃ -benzyloxy
1260	2-F. 3-CF ₃ -benzyloxy
1261	3-F, 5-CF ₃ -benzyloxy
1262	4-(CH ₃) ₂ CH-benzyloxy
1263	1-phenylethoxy
1264	4-F, 3-CH ₃ -benzoyl
1265	3-CF ₃ -phenyl
1266	4-CH ₃ O-phenylamino
1267	cyclopropoxy
1268	4-NO ₂ -phenylthio

PCT/US99/22123

Example Table 6 (cont.). 3-[(*N*-aryl)[[cycloalkyl]methyl]amino]-halo-2-propanols.

	R _{SUB2}
ОН	O,
F_3C	

Ex. No.	R _{SUB1}
<u>No.</u> 1269	3-isopropyl
1270	2-Cl, 3-Cl
1271	3-CF ₃ O
1272	4-F
1273	4-CH ₃
1274	2-F, 5-Br
1275	4-C1, 3-CH ₃ CH ₂
1276	3-CH ₃ CH ₂
1277	3-CH ₃ , 5-CH ₃
1278	3-(CH ₃) ₃ C
1279	4-F, 3-CH ₃
1280	3-Cl, 4-Cl
1281	3,4-(CH ₂) ₄
1282	3-HCF ₂ CF ₂ O
1283	3-CHF ₂ O
1284	3-(CH ₃) ₂ N
1285	3-cyclopropyl
1286	3-(2-furyl)
1287	3-CF ₃ CF ₂
1288	4-NH ₂
1289	3-CH ₃ , 4-CH ₃ , 5-CH ₃

E	
Ex.	$\underline{\mathbf{R}_{\mathrm{SUB2}}}$
<u>No.</u> 1293	3-CF ₃ O-benzyloxy
1294	3-CF ₃ -benzyloxy
1295	3-F, 5-F-benzyloxy
1296	cyclohexylmethyleneoxy
1297	benzyloxy
1298	3-CF ₃ , 5-CF ₃ -benzyloxy
1299	4-CF ₃ O-benzyloxy
1300	4-CH ₃ CH ₂ -benzyloxy
1301	isopropoxy
1302	3-CF ₃ -benzyl
1303	isopropylthio
1304	cyclopentoxy
1305	3-Cl-5-pyridinyloxy
1306	3-CF ₃ S-benzyloxy
1307	3-CH ₃ , 4-CH ₃ -benzyloxy
1308	2-F. 3-CF ₃ -benzyloxy
1309	3-F, 5-CF ₃ -benzyloxy
1310	4-(CH ₃) ₂ CH-benzyloxy
1311	1-phenylethoxy
1312	4-F. 3-CH ₃ -benzoyl
1313	3-CF ₃ -phenyl

PCT/US99/22123

Ex. No.	R _{SUB1}
1290	4-CH ₃ CH ₂ CH ₂ O
1291	3-CF ₃
1292	2-NO ₂

- 1	
	/1/

Ex. No.	R _{SUB2}
1314	4-CH ₃ O-phenylamino
1315	cyclopropoxy 👊
1316	4-NO ₂ -phenylthio

5

Example Table 6 (cont.). 3-[(*N*-aryl)[[cycloalkyl]methyl]amino]-halo-2-propanols.

Ex. No. 1317	R _{SUB1}
1317	3-isopropyl
1318	2-CI, 3-Cl
1319	3-CF ₃ O
1320	4-F
1321	4-CH ₃
1322	2-F, 5-Br
1323	4-Cl, 3-CH ₃ CH ₂ —
1324	3-CH ₃ CH ₂
1325	3-CH ₃ , 5-CH ₃
1326	3-(CH ₃) ₃ C
1327	4-F, 3-CH ₃
1328	3-C1, 4-C1
1329	3,4-(CH ₂) ₄
1330	3-HCF ₂ CF ₂ O
1331	3-CHF ₂ O

Ex. No.	R _{SUB2}
1341	3-CF ₃ O-benzyloxy
1342	3-CF ₃ -benzyloxy
1343	3-F. 5-F-benzyloxy
1344	cyclohexylmethyleneoxy
1345	benzyloxy
1346	3-CF ₃ . 5-CF ₃ -benzyloxy
1347	4-CF ₃ O-benzyloxy
1348	4-CH ₃ CH ₂ -benzyloxy
1349	іѕоргороху
1350	3-CF ₃ -benzyl
-1351	isopropylthio
. 1352	cyclopentoxy
1353	3-Cl-5-pyridinyloxy
1354	3-CF ₃ S-benzyloxy
1355	3-CH ₃ , 4-CH ₃ -benzyloxy

Ex. No.	R _{SUB1}
1332	3-(CH ₃) ₂ N
1333	3-cyclopropyl
1334	3-(2-furyl)
1335	3-CF ₃ CF ₂
1336	4-NH ₂
1337	3-CH ₃ , 4-CH ₃ , 5-CH ₃
1338	4-CH ₃ CH ₂ CH ₂ O
1339	3-CF ₃
1340	2-NO ₂

145	
Ex. No.	R _{SUB2}
1356	2-F, 3-CF ₃ -benzyloxy
1357	3-F, 5-CF ₃ -benzyloxy
13 <i>5</i> 8	4-(CH ₃) ₂ CH-benzyloxy
1359	1-phenylethoxy
1360	4-F. 3-CH ₃ -benzoyl
1361	3-CF ₃ -phenyl
1362	4-CH ₃ O-phenylamino
1363	cyclopropoxy
1364	4-NO ₂ -phenylthio

Example Table 6 (cont.). 3-[(*N*-aryl)[[cycloalkyl]methyl]amino]-halo-2-propanols.

$$R_{SUB1}$$
 OH R_{3} OH R_{3}

31	R _{SUB2}
) (ОН
	F ₃ C N C

Ex. No.	R _{SUB1}
1365	3-isopropyl
1366	2-Cl, 3-Cl
1367	3-CF ₃ O
1368	4-F
1369	4-CH ₃
1370	2-F, 5-Br
1371	4-Cl, 3-CH ₃ CH ₂
1372	3-CH ₃ CH ₂
1373	3-CH ₃ , 5-CH ₃

Ex. No.	R _{SUB2}
1389	3-CF ₃ O-benzyloxy
1390	3-CF ₃ -benzyloxy
1391	3-F, 5-F-benzyloxy
1392	cyclohexylmethyleneoxy
1393	benzyloxy
1394	3-CF ₃ , 5-CF ₃ -benzyloxy
1395	4-CF ₃ O-benzyloxy
1396	4-CH ₃ CH ₂ -benzyloxy
1397	isopropoxy

Ex. No.	<u>R_{SUB1}</u>
1374	3-(CH ₃) ₃ C
1375	4-F, 3-CH ₃
1376	3-Cl. 4-Cl
1377	3.4-(CH ₂) ₄
1378	3-HCF ₂ CF ₂ O
1379	3-CHF ₂ O
1380	3-(CH ₃) ₂ N
1381	3-cyclopropyl
1382	3-(2-furyl)
1383	3-CF ₃ CF ₂
1384	4-NH ₂
1385	3-CH ₃ , 4-CH ₃ , 5-CH ₃
1386	4-CH ₃ CH ₂ CH ₂ O
1387	3-CF ₃
1388	2-NO ₂

146	-
Ex. No.	R _{SUB2}
No. 1398	3-CF ₃ -benzyl
1399	isopropylthio
1400	cyclopentoxy
1401	3-Cl-5-pyridinyloxy
1402	3-CF ₃ S-benzyloxy
1403	3-CH ₃ , 4-CH ₃ -benzyloxy
1404	2-F. 3-CF ₃ -benzyloxy
1405	3-F, 5-CF ₃ -benzyloxy
1406	4-(CH ₃) ₂ CH-benzyloxy
1407	1-phenylethoxy
1408	4-F, 3-CH ₃ -benzoyl
1409	3-CF ₃ -phenyl
1410	4-CH ₃ O-phenylamino
1411	cyclopropoxy
1412	4-NO ₂ -phenylthio

Example Table 6 (cont.). 3-[(*N*-aryl)[[cycloalkyl]methyl]amino]-halo-2-propanols.

$$R_{SUB1}$$
 OH R_{3} OH R_{3}

1413	3-isopropyl	
1414	2-Cl, 3-Cl	
1415	3-CF ₃ O	

Ex. No.	R _{SUB2}
1437	3-CF ₃ O-benzyloxy
1438	3-CF ₃ -benzyloxy
1439	3-F, 5-F-benzyloxy

R_{SUB2}

Ex.	ν
No.	R _{SUB1}
1416	4-F
1417	4-CH ₃
1418	2-F, 5-Br
1419	4-Cl, 3-CH ₃ CH ₂
1420	3-CH ₃ CH ₂
1421	3-CH ₃ , 5-CH ₃
1422	3-(CH ₃) ₃ C
1423	4-F, 3-CH ₃
1424	3-Cl, 4-Cl
1425	3,4-(CH ₂) ₄
1426	3-HCF ₂ CF ₂ O
1427	3-CHF ₂ O
1428	3-(CH ₃) ₂ N
1429	3-cyclopropyl
1430	3-(2-furyl)
1431	3-CF ₃ CF ₂
1432	4-NH ₂
1433	3-CH ₃ , 4-CH ₃ , 5-CH ₃
1434	4-CH ₃ CH ₂ CH ₂ O
1435	3-CF ₃
1436	2-NO ₂

147	-
Ex. No.	R _{SUB2}
<u>No.</u> 1440	cyclohexylmethyleneoxy
1441	benzyloxy
1442	3-CF ₃ , 5-CF ₃ -benzyloxy
1443	4-CF ₃ O-benzyloxy
1414	4-CH ₃ CH ₂ -benzyloxy
1445	isopropoxy
1446	3-CF ₃ -benzyl
1447	isopropylthio
1448	cyclopentoxy
1449	3-Cl-5-pyridinyloxy
1450	3-CF ₃ S-benzyioxy
1451	3-CH ₃ , 4-CH ₃ -benzyloxy
1452	2-F. 3-CF ₃ -benzyloxy
1453	3-F, 5-CF ₃ -benzyloxy
1454	4-(CH ₃) ₂ CH-benzyloxy
1455	l-phenylethoxy
1456	4-F, 3-CH ₃ -benzoyl
1457	3-CF ₃ -phenyl
1458	4-CH ₃ O-phenylamino
1459	cyclopropoxy
1460	4-NO ₂ -phenylthio

148 Example Table 7. 3-[(*N*-aryl)[[haloalkyl]methyl]amino]-halo-2-propanols.

Ex. No.	R _{SUB1}
<u>No.</u> 1461	3-isopropyl
1462	2-CI, 3-CI
1463	3-CF ₃ O
1464	4-F
1465	4-CH ₃
1466	2-F, 5-Br
1467	4-Cl, 3-CH ₃ CH ₂
1468	3-CH ₃ CH ₂
1469	3-CH ₃ , 5-CH ₃
1470	3-(CH ₃) ₃ C
1471	4-F, 3-CH ₃
1472	3-Cl, 4-Cl
1473	3,4-(CH ₂) ₄
1474	3-HCF ₂ CF ₂ O
1475	3-CHF ₂ O
1476	3-(CH ₃) ₂ N
1477	3-cyclopropyl
1478	3-(2-furyl)
1479	3-CF ₃ CF ₂
1480	4-NH ₂
1481	3-CH ₃ , 4-CH ₃ , 5-CH ₃
1482	4-CH ₃ CH ₂ CH ₂ O

_{B1} F₃C	OH N CF	- = ₃
Ex. No.	R _{SUB2}	
1485	3-CF ₃ O-benzyloxy	
1486	3-CF ₃ -benzyloxy	
		i

No.	K _{SUB2}
	3-CF ₃ O-benzyloxy
1486	3-CF ₃ -benzyloxy
1487	3-F, 5-F-benzyloxy
1488	cyclohexylmethyleneoxy
1489	benzyloxy
1490	3-CF ₃ , 5-CF ₃ -benzyloxy
1491	4-CF ₃ O-benzyloxy
1492	4-CH ₃ CH ₂ -benzyloxy
1493	isopropoxy
1494	3-CF ₃ -benzyl
1495	isopropylthio
1496	cyclopentoxy
1497	3-Cl-5-pyridinyloxy
1498	3-CF ₃ S-benzyloxy
1499	3-CH ₃ , 4-CH ₃ -benzyloxy
1500	2-F, 3-CF ₃ -benzyloxy
1501	3-F, 5-CF ₃ -benzyloxy
1502	4-(CH ₃) ₂ CH-benzyloxy
1503	l-phenylethoxy
1504	4-F. 3-CH ₃ -benzoyl
1505	2 CE whomal
1506	3-CF ₃ -phenyl

Ex. No.	R _{SUB1}	
1483	3-CF ₃	
1484	2-NO ₂	

Ex. No.	R _{SUB2}
1507	cyclopropoxy
1508	4-NO ₂ -phenylthio

Example Table 7 (cont.). 3-[(N-aryl)[[haloalkyl]methyl]amino]-halo-2-propanols.

$$R_{SUB1}$$
 R_{SUB2}
 $CF_2CF_3F_3C$
 CF_2CF_3

Ex.	
	R _{SUB1}
<u>No.</u> 1509	3-isopropyl
1510	2-Cl, 3-Cl
1511	3-CF ₃ O
1512	4-F
1513	4-CH ₃
1514	2-F, 5-Br
1515	4-Cl, 3-CH ₃ CH ₂
1516	3-CH ₃ CH ₂
1517	3-CH ₃ , 5-CH ₃
1518	3-(CH ₃) ₃ C
1519	4-F, 3-CH ₃
1520	3-Cl, 4-Cl
1521	3.4-(CH ₂) ₄
1522	3-HCF ₂ CF ₂ O
1523	3-CHF ₂ O
1524	3-(CH ₃) ₂ N
1525	3-cyclopropyl
1526	3-(2-furyl)

Ex.	R _{SUB2}
<u>No.</u> 1533	3-CF ₃ O-benzyloxy
1534	3-CF ₃ -benzyloxy
1535	3-F, 5-F-benzyloxy
1536	cyclohexylmethyleneoxy
1537	benzyloxy
1538	3-CF ₃ , 5-CF ₃ -benzyloxy
1539	4-CF ₃ O-benzyloxy
1540	4-CH ₃ CH ₂ -benzyloxy
1541	isopropoxy
1542	3-CF ₃ -benzyl
1543	isopropylthio
1544	cyclopentoxy
1545	3-Cl-5-pyridinyloxy
1546	3-CF ₃ S-benzyloxy
1547	3-CH ₃ , 4-CH ₃ -benzyloxy
1548	2-F, 3-CF ₃ -benzyloxy
1549	3-F, 5-CF ₃ -benzyloxy
1550	4-(CH ₃) ₂ CH-benzyloxy

PCT/US99/22123

5

Ex. No.	R _{SUB1}
1527	3-CF ₃ CF ₂
1528	4-NH ₂
1529	3-CH ₃ , 4-CH ₃ , 5-CH ₃
1530	4-CH ₃ CH ₂ CH ₂ O
1531	3-CF ₃
1532	2-NO ₂

150	
Ex. No.	R _{SUB2}
1551	1-phenylethoxy
1552	4-F, 3-CH ₃ -benzoyl
1553	3-CF ₃ -phenyl
1554	4-CH ₃ O-phenylamino
1555	cyclopropoxy
1556	4-NO ₂ -phenylthio

Example Table 7 (cont.). 3-[(N-aryl)[[haloalkyl]methyl]amino]-halo-2-propanols.

$$R_{SL}$$
 OH
 N
 $C(CF_3)_3$

	R _{SUE}	32
OH F ₃ C	N	_C(CF₃)₃

Ex. No. 1557	R _{SUB1}
1557	3-isopropyl
1558	2-C1, 3-C1
1559	3-CF ₃ O
1560	4-F
1561	4-CH ₃
1562	2-F, 5-Br
1563	4-Cl, 3-CH ₃ CH ₂
1564	3-CH ₃ CH ₂
1565	3-CH ₃ , 5-CH ₃
1566	3-(CH ₃) ₃ C
1 <i>5</i> 67	4-F, 3-CH ₃
1568	3-Cl, 4-Cl
1569	3,4-(CH ₂) ₄
1570	3-HCF ₂ CF ₂ O

Ex. No.	R _{SUB2}
1581	3-CF ₃ O-benzyloxy
1 <i>5</i> 82	3-CF ₃ -benzyloxy
1583	3-F, 5-F-benzyloxy
1584	cyclohexylmethyleneoxy
1585	benzyloxy
1586	3-CF ₃ , 5-CF ₃ -benzyloxy
1587	4-CF ₃ O-benzyloxy
1588	4-CH ₃ CH ₂ -benzyloxy
1589	isopropoxy
,1590	3-CF ₃ -benzyl
1591	isopropylthio
1592	cyclopentoxy
1593	3-Cl-5-pyridinyloxy
1594	3-CF ₃ S-benzyloxy

PCT/US99/22123

Ex. No.	<u>R_{SUBI}</u>
1571	3-CHF ₂ O
1572	3-(CH ₃) ₂ N
1573	3-cyclopropyl
1574	3-(2-furyl)
1575	3-CF ₃ CF ₂
1576	4-NH ₂
1577	3-CH ₃ , 4-CH ₃ , 5-CH ₃
1 <i>5</i> 78	4-CH ₃ CH ₂ CH ₂ O
1579	3-CF ₃
1580	2-NO ₂

151	<u> </u>
Ex.	R _{SUB2}
1595	3-CH ₃ , 4-CH ₃ -benzyloxy
1596	2-F, 3-CF ₃ -benzyloxy
1597	3-F, 5-CF ₃ -benzyloxy
1598	4-(CH ₃) ₂ CH-benzyloxy
1599	l-phenylethoxy
1600	4-F. 3-CH ₃ -benzoyl
1601	3-CF ₃ -phenyl
1602	4-CH ₃ O-phenylamino
1603	cyclopropoxy
1604	4-NO ₂ -phenylthio

5

Example Table 7 (cont.). 3-[(N-aryl)[[haloalkyl]methyl]amino]-halo-2-propanols.

$$R_{SUB1}$$
 R_{SUB2}
 R_{SUB2}

Ex. No.	R _{SUB1}
-1605	3-isopropyl
1606	2-Cl, 3-Cl
1607	3-CF ₃ O
1608	4-F
1609	4-CH ₃
1610	2-F, 5-Br
1611	4-Cl, 3-CH ₃ CH ₂
1612	3-CH ₃ CH ₂
1613	3-СН ₃ , 5-СН ₃

Ex. No.	R _{SUB2}
1629	3-CF ₃ O-benzyloxy
1630	3-CF ₃ -benzyloxy
1631	3-F. 5-F-benzyloxy
1632	cyclohexylmethyleneoxy
1633	benzyloxy
1634	3-CF ₃ , 5-CF ₃ -benzyloxy
1635	4-CF ₃ O-benzyloxy
1636	4-CH ₃ CH ₂ -benzyloxy
1637	isopropoxy

<u>Ex.</u> <u>No.</u>	R _{SUB1}
1614	3-(CH ₃) ₃ C
1615	4-F, 3-CH ₃
1616	3-Cl, 4-Cl
1617	3,4-(CH ₂) ₄
1618	3-HCF ₂ CF ₂ O
1619	3-CHF ₂ O
1620	3-(CH ₃) ₂ N
1621	3-cyclopropyl
1622	3-(2-furyl)
1623	3-CF ₃ CF ₂
1624	4-NH ₂
1625	3-CH ₃ , 4-CH ₃ , 5-CH ₃
1626	4-CH ₃ CH ₂ CH ₂ O
1627	3-CF ₃
1628	2-NO ₂

52	-
Ex. No. 1638	R _{SUB2}
1638	3-CF ₃ -benzyl
1639	isopropylthio
1640	cyclopentoxy
1641	3-Cl-5-pyridinyloxy
1642	3-CF ₃ S-benzyloxy
1643	3-CH ₃ , 4-CH ₃ -benzyloxy
1644	2-F, 3-CF ₃ -benzyloxy
1645	3-F, 5-CF ₃ -benzyloxy
1646	4-(CH ₃) ₂ CH-benzyloxy
1647	l-phenylethoxy
1648	4-F, 3-CH ₃ -benzoyl
1649	3-CF ₃ -phenyl
1650	4-CH ₃ O-phenylamino
1651	cyclopropoxy
1652	4-NO ₂ -phenylthio

10

15

20

25

30

35

153

BIOASSAYS

CETP Activity In Vitro

ASSAY OF CETP INHIBITION USING PURIFIED COMPONENTS (RECONSTITUTED BUFFER ASSAY)

The ability of compounds to inhibit CETP activity was assessed using an in vitro assay that measured the rate of transfer of radiolabeled cholesteryl ester ([3H]CE) from HDL donor particles to LDL acceptor particles. Details of the assav are provided by Glenn, K. C. et al. (Glenn and Melton, "Quantification of Cholesteryl Ester Transfer Protein (CETP): A) CETP Activity and B) Immunochemical Assay of CETP Protein," Meth. Enzymol., 263, 339-351 Human recombinant CETP can be obtained from the serum-free conditioned medium of CHO cells transfected with a cDNA for CETP and purified as described by Wang, S. et al. (J. Biol. Chem. 267, 17487-17490 (1992)). To measure CETP activity, [3H]CE-labeled-HDL, LDL, CETP and assay buffer (50 mM tris(hydroxymethyl)aminomethane, pH 7.4; 150 mM sodium chloride; 2 mM ethylenediamine-tetraacetic acid (EDTA); 1% bovine serum albumin) were incubated in a final volume of 200 μL, for 2 hours at 37 °C in 96 well plates. Inhibitors were included in the assay by diluting from a 10 mM DMSO stock solution into 16% (v/v) aqueous DMSO so that the final concentration of inhibitor was 800 μ M. The inhibitors were then diluted 1:1 with CETP in assay buffer, and then 25 μ L of that solution was mixed with 175 μ L of lipoprotein pool for assay. Following incubation, LDL was differentially precipitated by the addition of 50 µL of 1% (w/v) dextran sulfate/0.5 M magnesium chloride, mixed by vortex, and incubated at room temperature for 10 minutes. A potion of the solution (200 μ L) was transferred to a filter plate (Millipore). After filtration, the radioactivity present in the precipitated LDL was measured by liquid scintillation counting. Correction for non-specific transfer or precipitation was made by including samples that do not contain CETP. The rate of [3H]CE transfer using this assay was linear with respect to time and CETP concentration, up to 25-30% of [3H]CE transferred.

The potency of test compounds was determined by performing the above described assay in the presence of varying concentrations of the test compounds and determining the concentration required for 50% inhibition of transfer of [3H]CE from HDL to LDL. This value was defined as the IC50. The IC50

values determined from this assay are accurate when the IC₅₀ is greater than 10 nM. In the case where compounds have greater inhibitory potency, accurate measurements of IC₅₀ may be determined using longer incubation times (up to 18 hours) and lower final concentrations of CETP (< 50 nM).

Examples of IC₅₀ values determined by these methods are summarized in Table 3.

Table 3. Inhibition of CETP Activity by Examples in Reconstituted Buffer Assay.

Ex.	1C ₅₀
No.	<u>(μM)</u>
18	11
i	15
16	15
9	18
4	20
11	45
8	45
10	50
14	55
12	60
17	60
13	80
7	100
2	100
6	>100.0
5	>100.0
15	>100.0
3	not tested

Ţ

What we claim is:

1. The compound having the formula of:

$$R_1$$
 R_2
 R_3
 R_3
 R_4
 R_4
 R_5
 R_5

5 or a pharmaceutically acceptable salt thereof, wherein;

n is an integer selected from 1 through 2;

A and Q are independently selected from the group consisting of

$$-\mathsf{CH}_2(\mathsf{CR}_{37}\mathsf{R}_{38})_v\text{-}(\mathsf{CR}_{33}\mathsf{R}_{34})_u\text{-}\mathsf{T}\text{-}(\mathsf{CR}_{35}\mathsf{R}_{36})_w\text{-}\mathsf{H},$$

AQ-1
$$R_{6}$$
 AQ-2 R_{11} R_{31} R_{5} R_{1} R_{2} R_{10} R_{32} R_{4} R_{12} R_{8} and R_{9} R_{13}

with the provisos that one of A and Q must be AQ-1 and that one of A and Q must be selected from the group consisting of AQ-2 and

$$-CH_2(CR_{37}R_{38})_v-(CR_{33}R_{34})_u-T-(CR_{35}R_{36})_w-H;$$

T is selected from the group consisting of a single covalent bond, O, S, S(O), $S(O)_2$, $C(R_{33})=C(R_{35})$. and C=C;

v is an integer selected from 0 through 1 with the proviso that v is 1 when any one of R₃₃, R₃₄, R₃₅, and R₃₆ is aryl or heteroaryl;

u and w are integers independently selected from 0 through 6;

20

 A_1 is $C(R_{30})$;

D₁, D₂, J₁, J₂ and K₁ are independently selected from the group consisting of C, N, O, S and a covalent bond with the provisos that no more than one of D₁, D₂, J₁, J₂ and K₁ is a covalent bond, no more than one of D₁, D₂, J₁, J₂ and K₁ is O, no more than one of D₁, D₂, J₁, J₂ and K₁ is S, one of D₁, D₂, J₁, J₂ and K₁ must be a covalent bond when two of D₁, D₂, J₁, J₂ and K₁ are O and S, and no more than four of D₁, D₂, J₁, J₂ and K₁ are N:

B₁, B₂, D₃, D₄, J₃, J₄ and K₂ are independently selected from the

group consisting of C, C(R₃₀), N, O, S and a covalent bond with the provisos

that no more than 5 of B₁, B₂, D₃, D₄, J₃, J₄ and K₂ are a covalent bond, no

more than two of B₁, B₂, D₃, D₄, J₃, J₄ and K₂ are O, no more than two of

B₁, B₂, D₃, D₄, J₃, J₄ and K₂ are S, no more than two of B₁, B₂, D₃, D₄,

J₃, J₄ and K₂ are simultaneously O and S, and no more than two of B₁, B₂,

D₃, D₄, J₃, J₄ and K₂ are N;

 B_1 and D_3 , D_3 and J_3 , J_3 and K_2 , K_2 and J_4 , J_4 and D_4 , and D_4 and B_2 are independently selected to form an in-ring spacer pair wherein said spacer pair is selected from the group consisting of $C(R_{33})=C(R_{35})$ and N=N with the provisos that AQ-2 must be a ring of at least five contiguous members, that no more than two of the group of said spacer pairs are simultaneously $C(R_{33})=C(R_{35})$, and that no more than one of the group of said spacer pairs is N=N unless the other spacer pairs are other than $C(R_{33})=C(R_{35})$, O, N, and S;

10

15

20

25

R₁ is selected from the group consisting of haloalkyl and haloalkoxymethyl;

R₂ is selected from the group consisting of hydrido, aryl, alkyl. | alkenyl, haloalkyl, haloalkoxy, haloalkoxyalkyl, perhaloaryl, perhaloaryloxyalkyl, and heteroaryl;

R₃ is selected from the group consisting of hydrido, aryl, alkyl. alkenyl, haloalkyl, and haloalkoxyalkyl;

Y is selected from the group consisting of a covalent single bond, $(CH_2)_q \text{ wherein } q \text{ is an integer selected from 1 through 2. and } (CH_2)_j \text{-O-}$

 $(CH_2)_k$ wherein j and k are integers independently selected from 0 through 1;

Z is selected from the group consisting of covalent single bond, $(CH_2)_q \text{ wherein q is an integer selected from 1 through 2. and } (CH_2)_j \text{-O-} (CH_2)_k \text{ wherein j and k are integers independently selected from 0 through 1';}$

R₄, R₈, R₉, and R₁₃ are independently selected from the group consisting of hydrido, halo, haloalkyl, and alkyl;

R₃₀ is selected from the group consisting of hydrido, alkoxy, alkoxyalkyl, halo, haloalkyl, alkylamino, alkylthio, alkylthioalkyl, alkyl. alkenyl, haloalkoxy, and haloalkoxyalkyl with the proviso that R₃₀ is selected to maintain the tetravalent nature of carbon, trivalent nature of nitrogen, the divalent nature of sulfur, and the divalent nature of oxygen;

R₃₀, when bonded to A₁, is taken together to form an intra-ring linear spacer connecting the A₁-carbon at the point of attachment of R₃₀ to the point of bonding of a group selected from the group consisting of R₁₀, R₁₁, R₁₂.

R₃₁, and R₃₂ wherein said intra-ring linear spacer is selected from the group consisting of a covalent single bond and a spacer moiety having from 1 through 6 contiguous atoms to form a ring selected from the group consisting of a

cycloalkyl having from 3 through 10 contiguous members, a cycloalkenyl having from 5 through 10 contiguous members, and a heterocyclyl having from 5 through 10 contiguous members;

R₃₀, when bonded to A₁, is taken together to form an intra-ring

branched spacer connecting the A₁-carbon at the point of attachment of R₃₀ to the points of bonding of each member of any one of substituent pairs selected from the group consisting of substituent pairs R₁₀ and R₁₁, R₁₀ and R₃₁, R₁₀ and R₃₁, R₁₀ and R₃₂, R₁₀ and R₁₂, R₁₁ and R₃₁, R₁₁ and R₃₂, R₁₁ and R₁₂, R₃₁ and R₃₂, R₃₁ and R₁₂, and R₃₂ and R₁₂ and wherein said intra-ring branched spacer is selected to form two rings selected from the group consisting of cycloalkyl having from 3 through 10 contiguous members, cycloalkenyl having from 5 through 10 contiguous members, and heterocyclyl having from 5 through 10 contiguous members;

$$R_4, R_5, R_6, R_7, R_8, R_9, R_{10}, R_{11}, R_{12}, R_{13}, R_{31}, R_{32}, R_{33},$$

- 15 R₃₄, R₃₅, and R₃₆ are independently selected from the group consisting of hydrido, carboxy, heteroaralkylthio, heteroaralkoxy, cycloalkylamino, acylalkyl, acylalkoxy, aroylalkoxy, heterocyclyloxy, aralkylaryl, aralkyl, aralkylsulfonyl, heterocyclyl, perhaloaralkyl, aralkylsulfonyl, aralkylsulfonyl, aralkylsulfonylalkyl, aralkylsulfinyl, aralkylsulfinylalkyl, halocycloalkyl,
- halocycloalkenyl, cycloalkylsulfinyl, cycloalkylsulfinylalkyl, cycloalkylsulfonyl, cycloalkylsulfonylalkyl, heteroarylamino, Nheteroarylamino-N-alkylamino, heteroarylaminoalkyl, haloalkylthio, alkanoyloxy, alkoxy, alkoxyalkyl, haloalkoxylalkyl, heteroaralkoxy, cycloalkoxy, cycloalkoxy, cycloalkoxy, cycloalkoxy, cycloalkoxy, cycloalkoxy, cycloalkoxy, cycloalkoxy,
- cycloalkenyloxyalkyl, cycloalkylenedioxy, halocycloalkoxy, halocycloalkoxyalkyl, halocycloalkenyloxy, halocycloalkenyloxyalkyl, hydroxy, amino, thio, nitro, lower alkylamino, alkylthio, alkylthioalkyl, arylamino, aralkylamino, arylthio, arylthioalkyl, heteroaralkoxyalkyl, alkylsulfinyl, alkylsulfinylalkyl, arylsulfinylalkyl, arylsulfonylalkyl,
- heteroarylsulfinylalkyl, heteroarylsulfonylalkyl, alkylsulfonyl, alkylsulfonylalkyl, haloalkylsulfinylalkyl, haloalkylsulfonylalkyl.

- alkylsulfonamido, alkylaminosulfonyl, amidosulfonyl, monoalkyl amidosulfonyl, dialkyl amidosulfonyl, monoarylamidosulfonyl, arylsulfonamido, diarylamidosulfonyl, monoalkyl monoaryl amidosulfonyl, arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl,
- heteroarylsulfonyl, heterocyclylsulfonyl, heterocyclylthio, alkanoyl, alkenoyl, aroyl, heteroaroyl, aralkanoyl, heteroaralkanoyl, haloalkanoyl, alkyl, alkenyl, alkynyl, alkenyloxy, alkenyloxyalky, alkylenedioxy, haloalkylenedioxy, cycloalkyl, cycloalkylalkanoyl, cycloalkenyl, lower cycloalkylalkyl, lower cycloalkenylalkyl, halo, haloalkyl, haloalkenyl, haloalkoxy, hydroxyhaloalkyl,
- hydroxyaralkyl, hydroxyalkyl, hydoxyheteroaralkyl, haloalkoxyalkyl, aryl, heteroaralkynyl, aryloxy, aralkoxy, aryloxyalkyl, saturated heterocyclyl, partially saturated heterocyclyl, heteroaryl, heteroaryloxy, heteroaryloxyalkyl, arylalkenyl, heteroarylalkenyl, carboxyalkyl, carboalkoxy, alkoxycarboxamido, alkylamidocarbonylamido, arylamidocarbonylamido,
- carboalkoxyalkyl, carboalkoxyalkenyl, carboaralkoxy, carboxamido, carboxamidoalkyl, cyano, carbohaloalkoxy, phosphono, phosphonoalkyl, diaralkoxyphosphono, and diaralkoxyphosphonoalkyl with the provisos that R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, R₁₁, R₁₂, R₁₃, R₃₁, R₃₂, R₃₃, R₃₄, R₃₅,
 - and R₃₆ are each independently selected to maintain the tetravalent nature of
- carbon, trivalent nature of nitrogen, the divalent nature of sulfur, and the divalent nature of oxygen, that no more than three of the R₃₃ and R₃₄ substituents are simultaneously selected from other than the group consisting of
- substituents are simultaneously selected from other than the group consistubg

 of hydrido and halo;
 - R9, R₁₀, R₁₁, R₁₂, R₁₃, R₃₁, and R₃₂ are independently selected to be oxo with the provisos that B₁, B₂, D₃, D₄, J₃, J₄ and K₂ are independently selected from the group consisting of C and S, no more than two of R₉, R₁₀, R₁₁, R₁₂, R₁₃, R₃₁, and R₃₂ are simultaneously oxo, and that
- 30 R₉, R₁₀, R₁₁, R₁₂, R₁₃, R₃₁, and R₃₂ are each independently selected to

10

15

20

25

maintain the tetravalent nature of carbon, trivalent nature of nitrogen, the divalent nature of sulfur, and the divalent nature of oxygen;

R₄ and R₅. R₅ and R₆. R₆ and R₇. R₇ and R₈. R₉ and R₁₀. R₁₀ and R₁₁, R₁₁ and R₃₁, R₃₁ and R₃₂, R₃₂ and R₁₂, and R₁₂ and R₁₃ are independently selected to form spacer pairs wherein a spacer pair is taken together to form a linear moiety having from 3 through 6 contiguous atoms connecting the points of bonding of said spacer pair members to form a ring selected from the group consisting of a cycloalkenyl ring having 5 through 8 contiguous members, a partially saturated heterocyclyl ring having 5 through 8 contiguous members, a heteroaryl ring having 5 through 6 contiguous members, and an aryl with the provisos that no more than one of the group consisting of spacer pairs R₄ and R₅, R₅ and R₆, R₆ and R₇, and R₇ and R₈, is used at the same time and that no more than one of the group consisting of spacer pairs R₉ and R₁₀, R₁₀ and R₁₁, R₁₁ and R₃₁, R₃₁ and R₃₂, R₃₂ and R₁₂, and R₁₂ and R₁₃ is used at the same time;

R₉ and R₁₁, R₉ and R₁₂, R₉ and R₁₃, R₉ and R₃₁, R₉ and R₃₂, R₁₀ and R₁₂, R₁₀ and R₁₃, R₁₀ and R₃₁, R₁₀ and R₃₂, R₁₁ and R₁₂, R₁₁ and R₃₂, R₁₂ and R₃₁, R₁₃ and R₃₁, and R₁₃ and R₃₂ are independently selected to form a spacer pair wherein said spacer pair is taken together to form a linear spacer moiety selected from the group consisting of a covalent single bond and a moiety having from 1 through 3 contiguous atoms to form a ring selected from the group consisting of a cycloalkyl having from 3 through 8 contiguous members, a cycloalkenyl having from 5 through 8 contiguous members and a partially saturated heterocyclyl having from 5 through 8 contiguous members with the provisos that no more than one of said group of spacer pairs is used at the same time;

R₃₇ and R₃₈ are independently selected from the group consisting of hydrido, alkoxy, alkoxyalkyl, hydroxy, amino, thio, halo, haloalkyl,

alkylamino, alkylthio, alkylthioalkyl, cyano, alkyl, alkenyl, haloalkoxy, and haloalkoxyalkyl.

2. The compound as recited in Claim 1 having the formula of:

$$R_1$$
 R_2
 (CH)
 R_3
 (CH)
 R_3

or a pharmaceutically acceptable salt thereof, wherein;

n is an integer selected from 1 through 2;

A and Q are independently selected from the group consisting of

$$-CH_2(CR_{37}R_{38})_v-(CR_{33}R_{34})_u-T-(CR_{35}R_{36})_w-H,$$

10

5

with the provisos that one of A and Q must be AQ-1P and that one of A and Q must be selected from the group consisting of AQ-2 and

$$\hbox{-CH}_2(\mathsf{CR}_{37}\mathsf{R}_{38})_v\hbox{-}(\mathsf{CR}_{33}\mathsf{R}_{34})_u\hbox{-}\mathsf{T}\hbox{-}(\mathsf{CR}_{35}\mathsf{R}_{36})_w\hbox{-}\mathsf{H};$$

T is selected from the group consisting of a single covalent bond, O, S.

15
$$S(O)$$
, $S(O)_2$, $C(R_{33})=C(R_{35})$, and $C=C$;

v is an integer selected from 0 through 1 with the proviso that v is 1 when any one of R_{33} , R_{34} , R_{35} , and R_{36} is aryl or heteroaryl;

10

15

u and w are integers independently selected from 0 through 6; $A_1 \text{ is } C(R_{30});$

B₁, B₂, D₃, D₄, J₃, J₄ and K₂ are independently selected from the group consisting of C, C(R₃₀), N, O, S and a covalent bond with the provisos that no more than 5 of B₁, B₂, D₃, D₄, J₃, J₄ and K₂ are a covalent bond, no more than two of B₁, B₂, D₃, D₄, J₃, J₄ and K₂ are O, no more than two of B₁, B₂, D₃, D₄, J₃, J₄ and K₂ are S, no more than two of B₁, B₂, D₃, D₄, J₃, J₄ and K₂ are simultaneously O and S, and no more than two of B₁, B₂, D₃, D₄, J₃, J₄ and K₂ are N;

 B_1 and D_3 , D_3 and J_3 , J_3 and K_2 , K_2 and J_4 , J_4 and D_4 , and D_4 and B_2 are independently selected to form an in-ring spacer pair wherein said spacer pair is selected from the group consisting of $C(R_{33})=C(R_{35})$ and N=N with the provisos that AQ-2 must be a ring of at least five contiguous members, that no more than two of the group of said spacer pairs are simultaneously $C(R_{33})=C(R_{35})$, and that no more than one of the group of said spacer pairs is N=N unless the other spacer pairs are other than $C(R_{33})=C(R_{35})$, O, N, and S:

R₁ is selected from the group consisting of haloalkyl and haloalkoxymethyl;

20 R₂ is selected from the group consisting of hydrido, aryl, alkyl, alkenyl, haloalkyl, haloalkoxy, haloalkoxyalkyl, perhaloaryl, perhaloaryloxyalkyl, and heteroaryl;

R₃ is selected from the group consisting of hydrido, aryl, alkyl, alkenyl, haloalkyl, and haloalkoxyalkyl;

10

Y is selected from the group consisting of a covalent single bond, $(CH_2)_q \text{ wherein q is an integer selected from 1 through 2, and } (CH_2)_j \text{-O-} \\ (CH_2)_k \text{ wherein j and k are integers independently selected from 0 through 1;}$

Z is selected from the group consisting of covalent single bond, $(CH_2)_q \text{ wherein q is an integer selected from 1 through 2. and } (CH_2)_j \text{-O-} (CH_2)_k \text{ wherein j and k are integers independently selected from 0 through 1:}$

R₃₀ is selected from the group consisting of hydrido, alkoxy, alkoxyalkyl, halo, haloalkyl, alkylamino, alkylthio, alkylthioalkyl, alkyl, alkenyl, haloalkoxy, and haloalkoxyalkyl with the proviso that R₃₀ is selected to maintain the tetravalent nature of carbon, trivalent nature of nitrogen, the divalent nature of sulfur, and the divalent nature of oxygen;

 R_{30} , when bonded to A_1 , is taken together to form an intra-ring linear spacer connecting the A_1 -carbon at the point of attachment of R_{30} to the point of bonding of a group selected from the group consisting of R_{10} , R_{11} , R_{12} ,

15 R₃₁, and R₃₂ wherein said intra-ring linear spacer is selected from the group consisting of a covalent single bond and a spacer moiety having from 1 through 6 contiguous atoms to form a ring selected from the group consisting of a cycloalkyl having from 3 through 10 contiguous members, a cycloalkenyl having from 5 through 10 contiguous members, and a heterocyclyl having 20 from 5 through 10 contiguous members;

 R_{30} , when bonded to A_1 , is taken together to form an intra-ring branched spacer connecting the A_1 -carbon at the point of attachment of R_{30} to the points of bonding of each member of any one of substituent pairs selected from the group consisting of substituent pairs R_{10} and R_{11} , R_{10} and R_{31} ,

25 R_{10} and R_{32} , R_{10} and R_{12} , R_{11} and R_{31} , R_{11} and R_{32} , R_{11} and R_{12} , R_{31}

and R₃₂, R₃₁ and R₁₂, and R₃₂ and R₁₂ and wherein said intra-ring branched spacer is selected to form two rings selected from the group consisting of cycloalkyl having from 3 through 10 contiguous members. cycloalkenyl having from 5 through 10 contiguous members, and heterocyclyl having from 5 through 10 contiguous members;

$$R_4, R_5, R_6, R_7, R_8, R_9, R_{10}, R_{11}, R_{12}, R_{13}, R_{31}, R_{32}, R_{33}$$

R₃₄, R₃₅, and R₃₆ are independently selected from the group consisting of hydrido, carboxy, heteroaralkylthio, heteroaralkoxy, cycloalkylamino, acylalkyl, acylalkoxy, aroylalkoxy, heterocyclyloxy, aralkylaryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, perhaloaralkyl aralkylsulfonyl. 10 aralkylsulfonylalkyl, aralkylsulfinyl, aralkylsulfinylalkyl, halocycloalkyl, halocycloalkenyl, cycloalkylsulfinyl, cycloalkylsulfinylalkyl, cycloalkylsulfonyl, cycloalkylsulfonylalkyl, heteroarylamino, Nheteroarylamino-N-alkylamino, heteroarylaminoalkyl, haloalkylthio, alkanoyloxy, alkoxy, alkoxyalkyl, haloalkoxylalkyl, heteroaralkoxy, 15 cycloalkoxy, cycloalkenyloxy, cycloalkoxyalkyl, cycloalkylalkoxy, cycloalkenyloxyalkyl, cycloalkylenedioxy, halocycloalkoxy, halocycloalkoxyalkyl, halocycloalkenyloxy, halocycloalkenyloxyalkyl, hydroxy, amino, thio, nitro, lower alkylamino, alkylthio, alkylthioalkyl, arylamino, aralkylamino, arylthio, arylthioalkyl, heteroaralkoxyalkyl, 20 alkylsulfinyl, alkylsulfinylalkyl, arylsulfinylalkyl, arylsulfonylalkyl, heteroarylsulfinylalkyl, heteroarylsulfonylalkyl, alkylsulfonyl, alkylsulfonylalkyl, haloalkylsulfinylalkyl, haloalkylsulfonylalkyl, alkylsulfonamido, alkylaminosulfonyl, amidosulfonyl, monoalkyl amidosulfonyl, dialkyl amidosulfonyl, monoarylamidosulfonyl, 25 arylsulfonamido, diarylamidosulfonyl, monoalkyl monoaryl amidosulfonyl, arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, heterocyclylsulfonyl, heterocyclylthio, alkanoyl, alkenoyl, aroyl, heteroaroyl, aralkanoyl, heteroaralkanoyl, haloalkanoyl, alkyl, alkenyl, alkynyl, alkenyloxy, alkenyloxyalky, alkylenedioxy, haloalkylenedioxy, 30 cycloalkyl, cycloalkylalkanoyl, cycloalkenyl, lower cycloalkylalkyl, lower cycloalkenylalkyl, halo, haloalkyl, haloalkenyl, haloalkoxy, hydroxyhaloalkyl, hydroxyaralkyl, hydroxyalkyl, hydoxyheteroaralkyl, haloalkoxyalkyl, aryl,

10

15

20

heteroaralkynyl, aryloxy, aralkoxy, aryloxyalkyl, saturated heterocyclyl, partially saturated heterocyclyl, heteroaryl, heteroaryloxy, heteroaryloxyalkyl, arylalkenyl, heteroarylalkenyl, carboxyalkyl, carboalkoxy, alkoxycarboxamido, alkylamidocarbonylamido, arylamidocarbonylamido, carboalkoxyalkyl, carboalkoxyalkenyl, carboaralkoxy, carboxamido, carboxamidoalkyl, cyano, carbohaloalkoxy, phosphono, phosphonoalkyl, diaralkoxyphosphono, and diaralkoxyphosphonoalkyl with the provisos that R4. R5. R6. R7. R8. R9. R10. R11. R12. R13. R31. R32. R33. R34. R35. and R36 are each independently selected to maintain the tetravalent nature of carbon, trivalent nature of nitrogen, the divalent nature of sulfur, and the divalent nature of oxygen, that no more than three of the R33 and R34 substituents are simultaneously selected from other than the group consisting of of hydrido and halo, and that no more than three of the R35 and R36 substituents are simultaneously selected from other than the group consisting of hydrido and halo;

R₉, R₁₀, R₁₁, R₁₂, R₁₃, R₃₁, and R₃₂ are independently selected to be oxo with the provisos that B₁, B₂, D₃, D₄, J₃, J₄ and K₂ are independently selected from the group consisting of C and S, no more than two of R₉, R₁₀, R₁₁, R₁₂, R₁₃, R₃₁, and R₃₂ are simultaneously oxo, and that R₉, R₁₀, R₁₁, R₁₂, R₁₃, R₃₁, and R₃₂ are each independently selected to maintain the tetravalent nature of carbon, trivalent nature of nitrogen, the divalent nature of sulfur, and the divalent nature of oxygen;

R₄ and R₅, R₅ and R₆, R₆ and R₇, R₇ and R₈, R₉ and R₁₀, R₁₀ and R₁₁, R₁₁ and R₃₁, R₃₁ and R₃₂, R₃₂ and R₁₂, and R₁₂ and R₁₃ are independently selected to form spacer pairs wherein a spacer pair is taken together to form a linear moiety having from 3 through 6 contiguous atoms connecting the points of bonding of said spacer pair members to form a ring selected from the group consisting of a cycloalkenyl ring having 5 through 8

contiguous members, a partially saturated heterocyclyl ring having 5 through 8 contiguous members, a heteroaryl ring having 5 through 6 contiguous members, and an aryl with the provisos that no more than one of the group consisting of spacer pairs R_4 and R_5 . R_5 and R_6 , R_6 and R_7 , and R_7 and R_8 . is used at the same time and that no more than one of the group consisting of spacer pairs R_9 and R_{10} . R_{10} and R_{11} . R_{11} and R_{31} . R_{31} and R_{32} . R_{32} and R_{12} , and R_{12} and R_{13} is used at the same time;

R9 and R11, R9 and R12, R9 and R13, R9 and R31, R9 and R32.

R10 and R12, R10 and R13, R10 and R31, R10 and R32, R11 and R12, R11

and R13, R11 and R32, R12 and R31, R13 and R31, and R13 and R32 are independently selected to form a spacer pair wherein said spacer pair is taken together to form a linear spacer moiety selected from the group consisting of a covalent single bond and a moiety having from 1 through 3 contiguous atoms to form a ring selected from the group consisting of a cycloalkyl having from 3 through 8 contiguous members, a cycloalkenyl having from 5 through 8 contiguous members and a partially saturated heterocyclyl having from 5 through 8 contiguous members with the provisos that no more than one of said group of spacer pairs is used at the same time:

R₃₇ and R₃₈ are independently selected from the group consisting of hydrido, alkoxy, alkoxyalkyl, hydroxy, amino, thio, halo, haloalkyl, alkylamino, alkylthio. alkylthioalkyl, cyano, alkyl, alkenyl, haloalkoxy, and haloalkoxyalkyl.

20

3. The compound as recited in Claim 2 having the formula of:

$$R_1$$
 R_2
 R_3
 R_4
 R_5
 R_6
 R_8
 R_7

or a pharmaceutically acceptable salt thereof, wherein:

n is an integer selected from 1 through 2:

5 A is selected from the group consisting of C3-C10 cycloalkyl, C5-C10 cycloalkenyl, C4-C9 saturated heterocyclyl, and C4-C9 partially saturated heterocyclyl, wherein each ring carbon may be optionally substituted with R₃₀, a ring carbon other than the ring carbon at the point of attachment of A to Z may be optionally substituted with oxo provided that no more than one ring 10 carbon is substituted by oxo at the same time, ring carbon and nitrogen atoms adjacent to the carbon atom at the point of attachment may be optionally substituted with R₉ or R₁₃, a ring carbon or nitrogen atom adjacent to the R₉ position and two atoms from the point of attachment may be substituted with R₁₀, a ring carbon or nitrogen atom adjacent to the R₁₃ position and two 15 atoms from the point of attachment may be substituted with R₁₂, a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R_{10} position may be substituted with R_{11} , a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R₁₂ position may be substituted with R₃₂, and a ring carbon or nitrogen atom four atoms from

10

25

the point of attachment and adjacent to the R_{11}^{\prime} and R_{32} positions may be substituted with R_{31} ;

 R_1 is selected from the group consisting of haloalkyl and haloalkoxymethyl;

R₂ is selected from the group consisting of hydrido, aryl, alkyl, alkenyl, haloalkyl, haloalkoxy, haloalkoxyalkyl, perhaloaryl, perhaloaryloxyalkyl, and heteroaryl;

R₃ is selected from the group consisting of hydrido. aryl. alkyl. alkenyl, haloalkyl, and haloalkoxyalkyl;

Y and Z are independently selected from the group consisting of a covalent single bond, oxy and alkylene;

 R_4 and R_8 are independently selected from the group consisting of hydrido and halo;

R9 and R13 are halo;

of hydrido, alkyl, halo, haloalkyl, haloalkoxy, aryl, alkylthio, arylamino, arylthio, aroyl, arylsulfonyl, aryloxy, aralkoxy, heteroaryloxy, alkoxy, aralkyl, cycloalkoxy, cycloalkylalkoxy, cycloalkylalkanoyl, heteroaryl, cycloalkyl, haloalkylthio, hydroxyhaloalkyl, heteroaralkoxy, heterocyclyloxy, aralkylaryl, heteroaryloxyalkyl, heteroarylthio, and heteroarylsulfonyl;

R₄ and R₅, R₅ and R₆, R₆ and R₇, and R₇ and R₈ are independently selected to form spacer pairs wherein a spacer pair is taken together to form a linear moiety having from 3 through 6 contiguous atoms connecting the points of bonding of said spacer pair members to form a ring selected from the group consisting of a cycloalkenyl ring having 5 through 8 contiguous members, a partially saturated heterocyclyl ring having 5 through 8 contiguous members, a heteroaryl ring having 5 through 6 contiguous members, and an aryl with the

10

15

20

25

30

proviso that no more than one of the group consisting of spacer pairs R_4 and R_5 , R_5 and R_6 , R_6 and R_7 , and R_7 and R_8 , is used at the same time;

R₁₀, R₁₁, R₁₂, R₃₁, and R₃₂ are independently selected from the group group consisting of alkyl, halo, haloalkyl, haloalkoxy, aryl, alkylthio, arylamino, arylthio, aroyl, arylsulfonyl, aryloxy, aralkoxy, heteroaryloxy, alkoxy, aralkyl, cycloalkoxy, cycloalkylalkoxy, cycloalkylalkanoyl, heteroaryl, cycloalkyl, haloalkylthio, hydroxyhaloalkyl, heteroaralkoxy, heterocyclyloxy, aralkylaryl, heteroaryloxyalkyl, heteroarylthio, and heteroarylsulfonyl;

R₃₀ is selected from the group consisting of alkoxy, alkoxyalkyl, halo, haloalkyl, alkylamino, alkylthio, alkylthioalkyl, alkyl, alkenyl, haloalkoxy, and haloalkoxyalkyl.

4. The compound as recited in Claim 3 or a pharmaceutically acceptable salt thereof, wherein;

n is the integer 1:

A is selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclopent-2-enyl, cyclopent-3-enyl, cyclohexyl, 4methylcyclohexyl, 4-chloro-3-ethylphenoxycyclohexyl, 3trifluoromethoxyphenoxycyclohexyl, 3-trifluoromethylcyclohexyl, 4trifluoromethylcyclohexyl, 3,5-bis-trifluoromethylcyclohexyl, adamantyl, 3trifluoromethyladamantyl, norbornyl, 3-trifluoromethylnorbornyl, norbornenyl, 7-oxabicyclo[2.2.1]heptan-2-yl, bicyclo[3.1.0]hexan-6-yl, cyclohex-2-enyl, cyclohex-3-enyl, cycloheptyl, cyclohept-2-enyl, cyclohept-3enyl, cyclooctyl, cyclooct-2-enyl, cyclooct-3-enyl, cyclooct-4-enyl, 2morpholinyl, 3-morpholinyl, 4-morpholinyl, 1-piperazinyl, 2-piperazinyl, 1piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-piperidinyl, 1-pyrrolidinyl, 2pyrrolidinyl, 3-pyrrolidinyl, 2-dioxanyl, 2H-2-pyranyl, 2H-3-pyranyl, 2H-4pyranyl, 4H-2-pyranyl, 4H-3-pyranyl, 4H-4-pyranyl, 2H-pyran-2-one-3-yl, 2H-pyran-2-one-4-yl, 2H-pyran-2-one-5-yl, 4H-pyran-4-one-2-yl, 4H-pyran-4-one-3-yl, 2-tetrahydrofuranyl, 3-tetrahydrofuranyl, 2-tetrahydropyranyl, 3tetrahydropyranyl, 4-tetrahydropyranyl, 2-tetrahydrothienyl, and 3-

10

15

20

25

tetrahydrothienyl, wherein each ring carbon may be optionally substituted with R_{30} , a ring carbon other than the ring carbon at the point of attachment of A to Z may be optionally substituted with oxo provided that no more than one ring carbon is substituted by oxo at the same time, ring carbon and nitrogen atoms adjacent to the carbon atom at the point of attachment may be optionally substituted with R_9 or R_{13} , a ring carbon or nitrogen atom adjacent to the R_9 position and two atoms from the point of attachment may be substituted with R_{10} , a ring carbon or nitrogen atom adjacent to the R_{13} position and two atoms from the point of attachment may be substituted with R_{12} , a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R_{10} position may be substituted with R_{11} , a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R_{10} position may be substituted with R_{31} , and a ring carbon or nitrogen atom four atoms from the point of attachment and adjacent to the R_{12} position may be substituted with R_{32} , and a ring carbon or nitrogen atom four atoms from the point of attachment and adjacent to the R_{32} positions may be substituted with R_{31} ;

R₁ is selected from the group consisting of trifluoromethyl, 1,1,2.2-tetrafluoroethoxymethyl, trifluoromethoxymethyl, difluoromethyl, chlorodifluoromethyl, and pentafluoroethyl;

R₂ is selected from the group consisting of hydrido, methyl, ethyl, propyl, butyl, vinyl, phenyl, 4-trifluoromethylphenyl, 1,1,2,2-tetrafluoroethoxymethyl, trifluoromethoxymethyl, difluoromethyl, pentafluoroethyl, trifluoromethyl, and 2,2,3,3,3-pentafluoropropyl;

R₃ is selected from the group consisting of hydrido, phenyl, 4-trifluoromethylphenyl, methyl, ethyl, vinyl, trifluoromethyl, trifluoromethyl, difluoromethyl, chlorodifluoromethyl, and pentafluoroethyl;

Y and Z are independently selected from the group consisting of a covalent single bond, oxy, and methylene with the proviso that only one of Y and Z are simultaneously oxy:

R₄ and R₈ are independently selected from the group consisting of hydrido and fluoro;

Ro and R13 are fluoro:

R₅, R₁₀ and R₁₂ are independently selected from the group consisting of 4-aminophenoxy, benzyl, benzyloxy, 5-bromo-2-fluorophenoxy, 4-bromo-3-fluorophenoxy, 4-bromo-2-nitrophenoxy, 3-bromobenzyloxy, 4-bromobenzyloxy, 4-bromophenoxy, 5-bromopyrid-2-yloxy, 10 4-butoxyphenoxy, chloro, 3-chlorobenzyl, 2-chlorophenoxy, 4-chlorophenoxy, 4-chloro-3-ethylphenoxy, 3-chloro-4-fluorobenzyl, 3-chloro-4-fluorophenyl, 3-chloro-2-fluorobenzyloxy, 3-chlorobenzyloxy, 4-chlorobenzyloxy, 4-chloro-3-methylphenoxy, 2-chloro-4-fluorophenoxy, 4-chloro-2-fluorophenoxy, 4-chlorophenoxy, 3-chloro-4-ethylphenoxy, 15 3-chloro-4-methylphenoxy, 3-chloro-4-fluorophenoxy, 4-chloro-3-fluorophenoxy, 4-chlorophenylamino, 5-chloropyrid-3-yloxy, 2-cyanopyrid-3-yloxy, 4-cyanophenoxy, cyclobutoxy, cyclobutyl. cyclohexoxy, cyclohexylmethoxy, cyclopentoxy, cyclopentyl, cyclopentylcarbonyl, cyclopropyl, cyclopropylmethoxy, cyclopropoxy. 20 2.3-dichlorophenoxy, 2.4-dichlorophenoxy, 2.4-dichlorophenyl, 3.5-dichlorophenyl, 3.5-dichlorobenzyl, 3.4-dichlorophenoxy. 3,4-difluorophenoxy, 2,3-difluorobenzyloxy, 2,4-difluorobenzyloxy, 3,4-difluorobenzyloxy, 2,5-difluorobenzyloxy, 3,5-difluorophenoxy. 25 3,4-difluorophenyl, 3,5-difluorobenzyloxy, 4-difluoromethoxybenzyloxy, 2,3-difluorophenoxy, 2,4-difluorophenoxy, 2,5-difluorophenoxy, 3,5-dimethoxyphenoxy, 3-dimethylaminophenoxy, 3,5-dimethylphenoxy, 3.4-dimethylphenoxy, 3,4-dimethylbenzyl, 3,4-dimethylbenzyloxy. 3.5-dimethylbenzyloxy, 2.2-dimethylpropoxy, 1,3-dioxan-2-yl, 30 1.4-dioxan-2-yl, 1,3-dioxolan-2-yl, ethoxy, 4-ethoxyphenoxy, 4-ethylbenzyloxy, 3-ethylphenoxy, 4-ethylaminophenoxy, 3-ethyl-5-methylphenoxy, fluoro, 4-fluoro-3-methylbenzyl,

4-fluoro-3-methylphenyl. 4-fluoro-3-methylbenzoyl. 4-fluorobenzyloxy.

- $\hbox{$2$-fluoro-3-methylphenoxy, 3-fluoro-4-methylphenoxy, 3-fluorophenoxy,}$
- 3-fluoro-2-nitrophenoxy, 2-fluoro-3-trifluoromethylbenzyloxy,
- 3-fluoro-5-trifluoromethylbenzyloxy, 4-fluoro-2-trifluoromethylbenzyloxy,
- 4-fluoro-3-trifluoromethylbenzyloxy, 2-fluorophenoxy, 4-fluorophenoxy,
- 2-fluoro-3-trifluoromethylphenoxy, 2-fluorobenzyloxy, 4-fluorophenylamino, 5
 - 2-fluoro-4-trifluoromethylphenoxy, 4-fluoropyrid-2-yloxy, 2-furyl, 3-furyl,
 - heptafluoropropyl, 1,1,1,3,3,3-hexafluoropropyl.
 - 2-hydroxy-3,3,3-trifluoropropoxy, 3-iodobenzyloxy, isobutyl, isobutylamine. isobutoxy, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, isopropoxy, isopropyl,
- 4-isopropylbenzyloxy, 3-isopropylphenoxy, 4-isopropylphenoxy, 10 isopropylthio, 4-isopropyl-3-methylphenoxy, 3-isothiazolyl, 4-isothiazolyl, 5-isothiazolyl, 3-methoxybenzyl, 4-methoxycarbonylbutoxy, 3-methoxycarbonylprop-2-enyloxy, 4-methoxyphenyl,
 - 3-methoxy phenylamino, 4-methoxy phenylamino, 3-methylbenzyloxy,
- 4-methylbenzyloxy, 3-methylphenoxy, 3-methyl-4-methylthiophenoxy, 15
 - 4-methylphenoxy, 1-methylpropoxy, 2-methylpyrid-5-yloxy,
 - 4-methylthiophenoxy, 2-naphthyloxy, 2-nitrophenoxy, 4-nitrophenoxy,
 - 3-nitrophenyl, 4-nitrophenylthio, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl,
 - pentafluoroethyl, pentafluoroethylthio, 2.2.3.3.3-pentafluoropropyl.
- 1,1,3,3,3-pentafluoropropyl, 1,1,2,2,3-pentafluoropropyl, phenoxy, 20 phenylamino, 1-phenylethoxy, phenylsulfonyl, 4-propanoylphenoxy,
 - propoxy, 4-propylphenoxy, 4-propoxyphenoxy, thiophen-3-yl, sec-butyl,
 - 4-sec-butylphenoxy, tert -butoxy, 3-tert -butylphenoxy, 4-tert -butylphenoxy,
 - 1,1,2,2-tetrafluoroethoxy, tetrahydrofuran-2-yl,
- 2-(5,6,7,8-tetrahydronaphthyloxy), thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, thiophen-2-yl, 2,3,5-trifluorobenzyloxy, 2,2.2-trifluoroethoxy,
 - 2,2,2-trifluoroethyl, 3,3,3-trifluoro-2-hydroxypropyl, trifluoromethoxy,
 - 3-trifluoromethoxybenzyloxy, 4-trifluoromethoxybenzyloxy,
 - 3-trifluoromethoxyphenoxy, 4-trifluoromethoxyphenoxy, trifluoromethyl,
- 3-trifluoromethylbenzyloxy, 4-trifluoromethylbenzyloxy, 30
 - 2,4-bis-trifluoromethylbenzyloxy, 1,1-bis-trifluoromethyl-1-hydroxymethyl,
 - 3-trifluoromethylbenzyl, 3.5-bis-trifluoromethylbenzyloxy,
 - 4-trifluoromethylphenoxy, 3-trifluoromethylphenoxy,
 - 3-trifluoromethylphenyl, 3-trifluoromethylthiobenzyloxy,
- 4-trifluoromethylthiobenzyloxy, 2.3.4-trifluorophenoxy, 35

- 2,3,4-trifluorophenyl, 2,3,5-trifluorophenoxy, 3,4.5-trimethylphenoxy, 3-difluoromethoxyphenoxy, 3-pentafluoroethylphenoxy, 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, 3-trifluoromethylthiophenoxy, and trifluoromethylthio;
- R₆, R₁₁, R₃₁, and R₃₂ are independently selected from the group consisting of chloro, fluoro, hydrido, pentafluoroethyl, 1,1.2.2-tetrafluoroethoxy, trifluoromethyl, and trifluoromethoxy;

R₇ is selected from the group consisting of hydrido, fluoro, and trifluoromethyl;

10 R₃₀ is selected from the group consisting of chloro, ethoxy, ethyl, fluoro, heptafluoropropyl, 1,1,1,3,3,3-hexafluoropropyl, isobutyl, isobutoxy, isopropoxy, isopropyl, isopropylthio, methyl pentafluoroethyl, 2,2,3,3,3-pentafluoropropyl, 1,1,3,3,3-pentafluoropropyl, 1,1,2,2,3-pentafluoropropyl, propoxy, propyl, sec-butyl, tert-butoxy, 1,1,2,2-tetrafluoroethoxy, 2,2,2-trifluoroethoxy, 2,2,2-trifluoroethyl, trifluoromethoxy, and trifluoromethyl.

5. The compound as recited in Claim 4 or a pharmaceutically acceptable salt thereof, wherein;

20 n is the integer 1;

25

30

A is selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, 4-chloro-3-ethylphenoxycyclohexyl, 3-trifluoromethoxyphenoxycyclohexyl, 3-trifluoromethylcyclohexyl, 4-trifluoromethylcyclohexyl, 3,5-bis-trifluoromethylcyclohexyl, adamantyl, 3-trifluoromethyladamantyl, norbornyl, 3-trifluoromethylnorbornyl, norbornenyl, 7-oxabicyclo[2.2.1]heptan-2-yl, bicyclo[3.1.0]hexan-6-yl, cycloheptyl, cyclooctyl, 2-morpholinyl, 3-morpholinyl, 4-morpholinyl, 1-piperazinyl, 2-piperazinyl, 1-piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-piperidinyl, 1-pyrrolidinyl, 2-pyrrolidinyl, 3-pyrrolidinyl, 2-dioxanyl, 4H-2-pyranyl, 4H-3-pyranyl, 4H-4-pyranyl, 4H-pyran-4-one-2-yl, 4H-pyran-4-one-3-yl, 2-tetrahydrofuranyl, 3-tetrahydrofuranyl, 2-tetrahydropyranyl, 4-

10

15

20

25

tetrahydropyranyl. 2-tetrahydrothienyl, and 3-tetrahydrothienyl, wherein each ring carbon may be optionally substituted with R_{30} , a ring carbon other than the ring carbon at the point of attachment of A to Z may be optionally substituted with oxo provided that no more than one ring carbon is substituted by oxo at the same time, ring carbon and nitrogen atoms adjacent to the carbon atom at the point of attachment may be optionally substituted with R_9 or R_{13} . a ring carbon or nitrogen atom adjacent to the R_9 position and two atoms from the point of attachment may be substituted with R_{10} , a ring carbon or nitrogen atom adjacent to the R_{13} position and two atoms from the point of attachment and adjacent to the R_{10} position may be substituted with R_{11} , a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R_{10} position may be substituted with R_{31} , a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R_{10} position may be substituted with R_{32} , and a ring carbon or nitrogen atom four atoms from the point of attachment and adjacent to the R_{11} and R_{32} positions may be substituted with R_{31} ;

R₁ is selected from the group consisting of trifluoromethyl, 1,1,2,2-tetrafluoroethoxymethyl, trifluoromethoxymethyl, difluoromethyl, chlorodifluoromethyl, and pentafluoroethyl;

R₂ is selected from the group consisting of hydrido, methyl, ethyl, phenyl, 4-trifluoromethylphenyl, trifluoromethoxymethyl, 1,1,2,2-tetrafluoroethoxymethyl, difluoromethyl, pentafluoroethyl, trifluoromethyl, and 2,2,3,3,3-pentafluoropropyl;

R₃ is selected from the group consisting of hydrido, phenyl, 4-trifluoromethylphenyl, methyl, trifluoromethyl, difluoromethyl, and chlorodifluoromethyl;

Y and Z are independently selected from a covalent single bond and methylene;

 R_4 and R_8 are independently selected from the group consisting of hydrido and fluoro;

R₉ and R₁₃ are fluoro;

R₅, R₁₀ and R₁₂ are independently selected from the group consisting

- 5 of benzyloxy, 5-bromo-2-fluorophenoxy, 4-bromo-3-fluorophenoxy,
 - 3-bromobenzyloxy, 4-bromophenoxy, 4-butoxyphenoxy, 3-chlorobenzyloxy,
 - 2-chlorophenoxy, 4-chloro-3-ethylphenoxy, 4-chloro-3-methylphenoxy,
 - 2-chloro-4-fluorophenoxy, 4-chloro-2-fluorophenoxy, 4-chlorophenoxy,
 - 3-chloro-4-ethylphenoxy, 3-chloro-4-methylphenoxy,
- 3-chloro-4-fluorophenoxy, 4-chloro-3-fluorophenoxy, 4-chlorophenylamino,
 - 5-chloropyrid-3-yloxy, cyclobutoxy, cyclobutyl, cyclohexylmethoxy,
 - cyclopentoxy, cyclopentyl, cyclopentylcarbonyl, cyclopropylmethoxy,
 - 2,3-dichlorophenoxy, 2,4-dichlorophenoxy, 2,4-dichlorophenyl,
 - 3,5-dichlorophenyl, 3,5-dichlorobenzyl, 3,4-dichlorophenoxy,
- 15 3,4-difluorophenoxy,2,3-difluorobenzyloxy, 3,5-difluorobenzyloxy,
 - difluoromethoxy, 3, 5-difluorophenoxy, 3, 4-difluorophenyl,
 - 2.3-difluorophenoxy, 2.4-difluorophenoxy, 2.5-difluorophenoxy,
 - 3.5-dimethoxyphenoxy,3-dimethylaminophenoxy, 3,4-dimethylbenzyloxy,
 - 3,5-dimethylbenzyloxy, 3,5-dimethylphenoxy, 3,4-dimethylphenoxy,
- 20 1,3-dioxolan-2-yl, 3-ethylbenzyloxy, 3-ethylphenoxy, 4-ethylaminophenoxy,
 - 3-ethyl-5-methylphenoxy, 4-fluoro-3-methylbenzyl, 4-fluorobenzyloxy,
 - 2-fluoro-3-methylphenoxy, 3-fluoro-4-methylphenoxy, 3-fluorophenoxy,
 - 3-fluoro-2-nitrophenoxy, 2-fluoro-3-trifluoromethylbenzyloxy,
 - 3-fluoro-5-trifluoromethylbenzyloxy, 2-fluorophenoxy, 4-fluorophenoxy,
- 25 2-fluoro-3-trifluoromethylphenoxy, 2-fluorobenzyloxy,
 - 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy, 2-furyl, 3-furyl, heptafluoropropyl, 1,1,1,3,3,3-hexafluoropropyl,
 - 2-hydroxy-3,3,3-trifluoropropoxy, isobutoxy, isobutyl, 3-isoxazolyl,
 - 4-isoxazolyl, 5-isoxazolyl, isopropoxy, 3-isopropylbenzyloxy.
- 30 3-isopropylphenoxy, isopropylthio, 4-isopropyl-3-methylphenoxy.
 - 3-isothiazolyl, 4-isothiazolyl, 5-isothiazolyl, 3-methoxybenzyl,
 - 4-methoxyphenylamino, 3-methylhenzyloxy, 4-methylbenxyloxy,
 - 3-methylphenoxy, 3-methyl-4-methylthiophenoxy, 4-methylphenoxy.

1-methylpropoxy, 2-methylpyrid-5-yloxy, 4-methylthiophenoxy,

2-naphthyloxy, 2-nitrophenoxy, 4-nitrophenoxy, 3-nitrophenyl, 2-oxazolyl,

4-oxazolyl, 5-oxazolyl, pentafluoroethyl, pentafluoroethylthio.

2,2,3,3-pentafluoropropyl, 1,1,3,3,3-pentafluoropropyl,

- 5 1,1,2,2,3-pentafluoropropyl, phenoxy, phenylamino, 1-phenylethoxy, 4-propylphenoxy, 4-propoxyphenoxy, thiophen-3-yl.tert -butoxy. 3-tert -butylphenoxy, 4-tert -butylphenoxy, 1,1,2,2-tetrafluoroethoxy, tetrahydrofuran-2-yl, 2-(5,6,7,8-tetrahydronaphthyloxy), thiazol-2-yl,
- thiazol-4-yl, thiazol-5-yl, thiophen-2-yl, 2,2,2-trifluoroethoxy,
 2,2,2-trifluoroethyl, 3,3,3-trifluoro-2-hydroxypropyl, trifluoromethoxy,
 3-trifluoromethoxybenzyloxy, 4-trifluoromethoxybenzyloxy,
 - 4-trifluoromethoxyphenoxy, 3-trifluoromethoxyphenoxy, trifluoromethyl,
 - 3-trifluoromethylbenzyloxy, 1,1-bis-trifluoromethyl-1-hydroxymethyl,
 - 3-trifluoromethylbenzyl, 3,5-bis-trifluoromethylbenzyloxy,
- 4-trifluoromethylphenoxy, 3-trifluoromethylphenoxy,
 - 3-trifluoromethylphenyl, 2,3,4-trifluorophenoxy, 2,3,5-trifluorophenoxy,
 - 3,4,5-trimethylphenoxy, 3-difluoromethoxyphenoxy,
 - 3-pentafluor oethylphenoxy, 3-(1,1,2,2-tetrafluor oethoxy) phenoxy,
 - 3-trifluoromethyl thio phenoxy, 3-trifluoromethyl thio benzyloxy, and
- 20 trifluoromethylthio;

R₆, R₁₁, R₃₁, and R₃₂ are independently selected from the group consisting of chloro, fluoro, hydrido, pentafluoroethyl, 1,1,2,2-tetrafluoroethoxy, and trifluoromethyl;

R7 is selected from the group consisting of hydrido, fluoro, and

25 trifluoromethyl:

 R_{30} is-selected from the group consisting of chloro, ethyl, methyl.

propyl, fluoro, heptafluoropropyl, 1,1,1,3,3,3-hexafluoropropyl, isobutyl, isopropyl, pentafluoroethyl, 2,2,3,3,3-pentafluoropropyl,

- 1,1,3,3,3-pentafluoropropyl, 1,1,2,2,3-pentafluoropropyl, sec-butyl,
- 30 1,1,2,2-tetrafluoroethoxy, 2,2,2-trifluoroethoxy, 2,2,2-trifluoroethyl, trifluoromethoxy, and trifluoromethyl.

10

15

20

25

6. The compound as recited in Claim 5 or a pharmaceutically acceptable salt thereof, wherein;

n is the integer 1:

A is selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, 4-chloro-3ethylphenoxycyclohexyl, 3-trifluoromethoxyphenoxycyclohexyl, 3trifluoromethylcyclohexyl, 4-trifluoromethylcyclohexyl, 3.5-bistrifluoromethylevelohexyl, adamantyl, 3-trifluoromethyladamantyl, norbornyl, 3-trifluoromethylnorbornyl, norbornenyl, 7-oxabicyclo[2.2.1]heptan-2-yl. bicyclo[3.1.0]hexan-6-yl, 2-tetrahydrofuranyl, 3-tetrahydrofuranyl, 2-tetrahydropyranyl, 3-tetrahydropyranyl, 4-tetrahydropyranyl, 2-tetrahydrothienyl, and 3-tetrahydrothienyl, wherein a ring carbon other than the ring carbon at the point of attachment of A to Z may be optionally substituted with oxo provided that no more than one ring carbon is substituted by oxo at the same time, ring carbon and nitrogen atoms adjacent to the carbon atom at the point of attachment may be optionally substituted with R₉ or R₁₃, a ring carbon or nitrogen atom adjacent to the R₉ position and two atoms from the point of attachment may be substituted with R₁₀, a ring carbon or nitrogen atom adjacent to the R₁₃ position and two atoms from the point of attachment may be substituted with R₁₂, a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R₁₀ position may be substituted with R₁₁, a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R_{12} position may be substituted with R_{32} , and a ring carbon or nitrogen atom four atoms from the point of attachment and adjacent to the R₁₁ and R₃₂ positions may be substituted with R₃₁;

R₁ is selected from the group consisting of trifluoromethyl, chlorodifluoromethyl, and pentafluoroethyl;

R2 is hydrido, pentafluoroethyl, and trifluoromethyl;

R₃ is selected from the group consisting of hydrido, methyl, trifluoromethyl, and difluoromethyl

Y is methylene:

Z is a covalent single bond:

R₄ and R₈ are independently selected from the group consisting of hydrido and fluoro:

Ro and R13 are fluoro;

R₅. R₁₀ and R₁₂ are independently selected from the group consisting
of 5-bromo-2-fluorophenoxy. 4-chloro-3-ethylphenoxy, cyclopentyl, 2.3-dichlorophenoxy, 3.4-dichlorophenoxy. 3-difluoromethoxyphenoxy, 3.5-dimethylphenoxy, 3.4-dimethylphenoxy, 3-ethylphenoxy, 3-ethyl-5-methylphenoxy, 4-fluoro-3-methylphenoxy, 4-fluorophenoxy, 2-furyl, isobutyl, isopropoxy, 3-isopropylphenoxy, 3-methylphenoxy, pentafluoroethyl, 3-pentafluoroethylphenoxy, 3-tert-butylphenoxy, 1,1,2,2-tetrafluoroethoxy, 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, 2-(5,6,7,8-tetrahydronaphthyloxy).trifluoromethoxy, 3-trifluoromethylbenzyloxy, 3-trifluoromethylphenoxy, 1,1-bis-trifluoromethyl-1-hydroxymethyl, trifluoromethylthio, and 3-trifluoromethylthiophenoxy;

---- R₆, R₁₁, R₃₁, and R₃₂ are independently selected from the group consisting of chloro, fluoro, hydrido, pentafluoroethyi, 1,1,2,2-tetrafluoroethoxy, and trifluoromethyl;

R₇ is selected from the group consisting of hydrido and fluoro.

25

7. The compound as recited in Claim 5 or a pharmaceutically acceptable salt thereof, wherein;

n is the integer 1;

10

15

20

25

A is selected from the group consisting of cyclopropyl, cyclobutyl. cyclopentyl, cyclohexyl, 4-methylcyclohexyl, 4-chloro-3ethylphenoxycyclohexyl, 3-trifluoromethoxyphenoxycyclohexyl, 3trifluoromethylcyclohexyl, 4-trifluoromethylcyclohexyl, 3,5-bistrifluoromethylcyclohexyl, adamantyl, 3-trifluoromethyladamantyl, norbornyl, 3-trifluoromethylnorbornyl, norbornenyl, 7-oxabicyclo[2.2.1]heptan-2-yl, bicyclo[3.1.0]hexan-6-vl, 2-tetrahydrofuranyl, 3-tetrahydrofuranyl, 2-tetrahydropyranyl, 3-tetrahydropyranyl, 4-tetrahydropyranyl, 2-tetrahydrothienyl, and 3-tetrahydrothienyl, wherein a ring carbon other than the ring carbon at the point of attachment of A to Z may be optionally substituted with oxo provided that no more than one ring carbon is substituted by oxo at the same time, ring carbon and nitrogen atoms adjacent to the carbon atom at the point of attachment may be optionally substituted with R₉ or R₁₃, a ring carbon or nitrogen atom adjacent to the Ro position and two atoms from the point of attachment may be substituted with R₁₀. a ring carbon or nitrogen atom adjacent to the R_{13} position and two atoms from the point of attachment may be substituted with R₁₂, a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R_{10} position may be substituted with R₁₁, a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R₁₂ position may be substituted with R₃₂, and a ring carbon or nitrogen atom four atoms from the point of attachment and adjacent to the R₁₁ and R₃₂ positions may be substituted with R₃₁;

R₁ is selected from the group consisting of trifluoromethyl, chlorodifluoromethyl, and pentafluoroethyl;

R₂ is hydrido, pentafluoroethyl, and trifluoromethyl;

R₃ is selected from the group consisting of hydrido, methyl, trifluoromethyl, and difluoromethyl

10

15

20

Y is a covalent single bond;

Z is methylene:

 R_4 and R_8 are independently selected from the group consisting of hydrido and fluoro;

Ro and R₁₃ are fluoro;

R₅, R₁₀ and R₁₂ are independently selected from the group consisting of 5-bromo-2-fluorophenoxy, 4-chloro-3-ethylphenoxy, cyclopentyl, 2,3-dichlorophenoxy, 3,4-dichlorophenoxy, 3-difluoromethoxyphenoxy, 3,5-dimethylphenoxy, 3,4-dimethylphenoxy, 3-ethylphenoxy, 3-ethylphenoxy, 3-ethylphenoxy, 4-fluoro-3-methylphenoxy, 4-fluorophenoxy, 2-furyl, isobutyl, isopropoxy, 3-isopropylphenoxy, 3-methylphenoxy, pentafluoroethyl, 3-pentafluoroethylphenoxy, 3-tert -butylphenoxy, 1,1,2,2-tetrafluoroethoxy, 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, 2-(5,6,7,8-tetrahydronaphthyloxy),trifluoromethoxy, 3-trifluoromethoxybenzyloxy, 3-trifluoromethoxyphenoxy, trifluoromethyl, 3-trifluoromethylbenzyloxy, 1,1-bis-trifluoromethyl-1-hydroxymethyl, trifluoromethylthio, and 3-trifluoromethylthiophenoxy;

R₆, R₁₁, R₃₁, and R₃₂ are independently selected from the group consisting of chloro, fluoro, hydrido, pentafluoroethyl, 1,1,2,2-tetrafluoroethoxy, and trifluoromethyl;

R₇ is selected from the group consisting of hydrido and fluoro.

10

15

8. The compound as recited in Claim 2 having the formula of:

or a pharmaceutically acceptable salt thereof, wherein:

n is an integer selected from 1 through 2:

A is selected from the group consisting of C3-C8 alkyl, C3-C8 alkenyl, C3-C8 alkynyl, C3-C8 haloalkyl, C3-C8 haloalkyl, C3-C6 alkoxy C1-C2 alkyl, and C3-C8 hydroxyhaloalkyl, wherein each member of group A may be optionally substituted at any carbon up to and including 6 atoms from the point of attachment of A to Z with one or more of the group consisting of R33, R34, R35, and R36 with the provisos that R33, R34, R35, and R36 must not be attached to the carbon directly linking A to Z and that R33, R34, R35, and R36 must be selected from other than aryl and heteroaryl when substituting the carbon 2 atoms from Z wherein Z is a single covalent bond;

R₁ is selected from the group consisting of haloalkyl and haloalkoxymethyl;

R₂ is selected from the group consisting of hydrido, aryl, alkyl, alkenyl, haloalkyl, haloalkoxy, haloalkoxyalkyl, perhaloaryl, perhaloaralkyl, perhaloaryloxyalkyl, and heteroaryl;

20 R₃ is selected from the group consisting of hydrido, aryl, alkyl, alkenyl, haloalkyl, and haloalkoxyalkyl;

10

15

25

30

Y and Z are independently selected from the group consisting of a covalent single bond, oxy and alkylene;

R₄ and R₈ are independently selected from the group consisting of hydrido and halo:

R₅, R₆, R₇, R₃₃, R₃₄, R₃₅, and R₃₆ are independently selected from the group consisting of hydrido, alkyl, halo, haloalkyl, haloalkoxy, aryl, alkylthio, arylamino, arylthio, aroyl, arylsulfonyl, aryloxy, aralkoxy, heteroaryloxy, alkoxy, aralkyl, cycloalkoxy, cycloalkylalkoxy, cycloalkylalkanoyl, heteroaryl, cycloalkyl, haloalkylthio, hydroxyhaloalkyl, heteroaralkoxy, heterocyclyloxy, aralkylaryl, heteroaryloxyalkyl, heteroarylthio, and heteroarylsulfonyl;

R₄ and R₅, R₅ and R₆, R₆ and R₇, and R₇ and R₈ are independently selected to form spacer pairs wherein a spacer pair is taken together to form a linear moiety having from 3 through 6 contiguous atoms connecting the points of bonding of said spacer pair members to form a ring selected from the group consisting of a cycloalkenyl ring having 5 through 8 contiguous members, a partially saturated heterocyclyl ring having 5 through 8 contiguous members, a heteroaryl ring having 5 through 6 contiguous members, and an aryl with the proviso that no more than one of the group consisting of spacer pairs R₄ and

20 R₅, R₅ and R₆, R₆ and R₇, and R₇ and R₈, is used at the same time;

9. The compound as recited in Claim 8 or a pharmaceutically acceptable salt thereof, wherein;

n is the integer 1;

A is selected from the group consisting of ethyl, 1-propenyl, propyl, isopropyl, butyl, 2-butenyl, 3-butenyl, sec-butyl, isobutyl, 2-methylpropenyl, 1-pentyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 2-pentyl, 1-methyl-2-butenyl, 1-methyl-3-butenyl, 3-pentyl, 1-ethyl-2-propenyl, 2-methylbutyl, 2-methyl-2-butenyl, 2-methyl-3-butenyl, 3-methylbutyl, 3-methyl-2-butenyl, 3-methyl-3-butenyl, 1-hexyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl, 2-hexyl, 1-methyl-2-pentenyl, 1-methyl-3-pentenyl, 1-methyl-3-pentenyl, 1-methyl-1-pentenyl, 1-methyl-1-pentenyl, 1-methyl-1-pentenyl, 1-methyl-1-pentenyl, 1-methyl-1-pentenyl, 1-methyl, 1

25

30

ethyl-2-butenyl, 1-ethyl-3-butenyl, 1-propyl-2-propenyl, 1-heptyl, 2-heptenyl, 3-heptenyl, 4-heptenyl, 5-heptenyl, 6-heptenyl, 2-heptyl, 1-methyl-2-hexenyl, 1-methyl-3-hexenyl, 1-methyl-4-hexenyl, 1-methyl-5-hexenyl, 3-heptyl, 1ethyl-2-pentenyl, 1-ethyl-3-pentenyl, 1-ethyl-4-pentenyl, 1-butyl-2-propenyl, 1-octyl, 2-octenyl, 3-octenyl, 4-octenyl, 5-octenyl, 6-octenyl, 7-octenyl, 2-5 octyl, 1-methyl-2-heptenyl, 1-methyl-3-heptenyl, 1-methyl-4-heptenyl, 1methyl-5-heptenyl, 1-methyl-6-heptenyl, 1-methyl-4-heptenyl, 1-methyl-6heptenyl, 1-methyl-2-heptenyl, 3-octyl, 1-ethyl-2-hexenyl, 1-ethyl-3-hexenyl, 1-ethyl-4-hexenyl, 1-ethyl-5-hexenyl, 1-pentyl-2-propenyl, 4-octyl, 1-propyl-2-pentenyl, 1-propyl-3-pentenyl, 1-propyl-4-pentenyl, 1-butyl-2-butenyl, 1-10 butyl-3-butenyl, 2,2-difluoropropyl, 4-trifluoromethyl-5,5,5-trifluoropentyl, 4-trifluoromethylpentyl, 5.5.6.6.6-pentafluorohexyl, and 3.3.3trifluoropropyl, wherein each member of group A may be optionally substituted at any carbon up to and including 6 atoms from the point of attachment of A to Z with one or more of the group consisting of R₃₃, R₃₄, 15 R_{35} , and R_{36} with the provisos that R_{33} , R_{34} , R_{35} , and R_{36} must not be attached to the carbon directly linking A to Z and that $R_{33},\,R_{34},\,R_{35}$, and R_{36} must be selected from other than aryl and heteroaryl when substituting the carbon 2 atoms from Z wherein Z is a single covalent bond;

R₁ is selected from the group consisting of trifluoromethyl, 1,1.2,2-tetrafluoroethoxymethyl, trifluoromethoxymethyl, difluoromethyl, chlorodifluoromethyl, and pentafluoroethyl;

R₂ is selected from the group consisting of hydrido, methyl, ethyl, phenyl, 4-trifluoromethylphenyl, trifluoromethoxymethyl, 1,1,2,2-tetrafluoroethoxymethyl, difluoromethyl, pentafluoroethyl, trifluoromethyl, and 2,2,3,3,3-pentafluoropropyl;

R₃ is selected from the group consisting of hydrido, phenyl, 4-trifluoromethylphenyl, methyl, trifluoromethyl, difluoromethyl, and chlorodifluoromethyl;

Y and Z are independently selected from a covalent single bond and methylene;

R₄ and R₈ are independently selected from the group consisting of hydrido and fluoro;

R₅, R₃₃, R₃₄, R₃₅, and R₃₆ are independently selected from the group consisting of benzyloxy, 5-bromo-2-fluorophenoxy, 4-bromo-3-fluorophenoxy, 3-bromobenzyloxy, 4-bromophenoxy, 4-butoxyphenoxy, 3-chlorobenzyloxy, 2-chlorophenoxy,

4-chloro-3-ethylphenoxy, 4-chloro-3-methylphenoxy.

2-chloro-4-fluorophenoxy, 4-chloro-2-fluorophenoxy, 4-chlorophenoxy,

3-chloro-4-ethylphenoxy, 3-chloro-4-methylphenoxy,

3-chloro-4-fluorophenoxy, 4-chloro-3-fluorophenoxy, 4-chlorophenylamino, 5-chloropyrid-3-yloxy, cyclobutoxy, cyclobutyl, cyclohexylmethoxy, cyclopentoxy, cyclopentyl, cyclopentylcarbonyl, cyclopropylmethoxy, 2,3-dichlorophenoxy, 2,4-dichlorophenoxy, 2,4-dichlorophenyl.

3,5-dichlorophenyl, 3,5-dichlorobenzyl, 3,4-dichlorophenoxy,

3,4-difluorophenoxy,2,3-difluorobenzyloxy, 3,5-difluorobenzyloxy,
 difluoromethoxy, 3,5-difluorophenoxy, 3,4-difluorophenoxy,
 2,3-difluorophenoxy, 2,4-difluorophenoxy,
 3,5-dimethoxyphenoxy,3-dimethylaminophenoxy,
 3,4-difluorophenoxy,
 3,5-dimethylaminophenoxy,

3.5-dimethylbenzyloxy, 3.5-dimethylphenoxy, 3.4-dimethylphenoxy,

20 1,3-dioxolan-2-yl, 3-ethylbenzyloxy, 3-ethylphenoxy, 4-ethylaminophenoxy, 3-ethyl-5-methylphenoxy, 4-fluoro-3-methylbenzyl, 4-fluorobenzyloxy,

2-fluoro-3-methylphenoxy, 3-fluoro-4-methylphenoxy, 3-fluorophenoxy,

3-fluoro-2-nitrophenoxy, 2-fluoro-3-trifluoromethylbenzyloxy,

3-fluoro-5-trifluoromethylbenzyloxy, 2-fluorophenoxy, 4-fluorophenoxy,

2-fluoro-3-trifluoromethylphenoxy, 2-fluorobenzyloxy,
4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy, 2-furyl, 3-furyl,
heptafluoropropyl, 1,1,1,3,3,3-hexafluoropropyl,
2-hydroxy-3,3,3-trifluoropropoxy, isobutoxy, isobutyl, 3-isoxazolyl,
4-isoxazolyl, 5-isoxazolyl, isopropoxy, 3-isopropylbenzyloxy,

3-isopropylphenoxy, isopropylthio, 4-isopropyl-3-methylphenoxy, 3-isothiazolyl, 4-isothiazolyl, 5-isothiazolyl, 3-methoxybenzyl, 4-methoxyphenylamino, 3-methylbenzyloxy, 4-methylbenxyloxy, 3-methylphenoxy, 3-methyl-4-methylthiophenoxy, 4-methylphenoxy, 1-methylpropoxy, 2-methylpyrid-5-yloxy, 4-methylthiophenoxy,

15

20

30

2-naphthyloxy, 2-nitrophenoxy, 4-nitrophenoxy, 3-nitrophenyl, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, pentafluoroethyl, pentafluoroethylthio, 2.2,3,3,3-pentafluoropropyl, 1,1,3,3,3-pentafluoropropyl, 1,1,2,2,3-pentafluoropropyl, phenoxy, phenylamino, 1-phenylethoxy, 4-propylphenoxy, 4-propoxyphenoxy, thiophen-3-yl,tert -butoxy, 3-tert -butylphenoxy, 4-tert -butylphenoxy, 1,1,2,2-tetrafluoroethoxy, tetrahydrofuran-2-yl, 2-(5,6,7,8-tetrahydronaphthyloxy), thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, thiophen-2-yl, 2.2.2-trifluoroethoxy, 2,2,2-trifluoroethyl, 3,3,3-trifluoro-2-hydroxypropyl, trifluoromethoxy, 3-trifluoromethoxybenzyloxy, 4-trifluoromethoxybenzyloxy, 4-trifluoromethoxyphenoxy, 3-trifluoromethoxyphenoxy, trifluoromethyl, 3-trifluoromethylbenzyloxy, 1,1-bis-trifluoromethyl-1-hydroxymethyl. 3-trifluoromethylbenzyl, 3,5-bis-trifluoromethylbenzyloxy, 4-trifluoromethylphenoxy, 3-trifluoromethylphenoxy, 3-trifluoromethylphenyl, 2,3,4-trifluorophenoxy, 2,3,5-trifluorophenoxy, 3,4,5-trimethylphenoxy, 3-difluoromethoxyphenoxy, 3-pentafluoroethylphenoxy, 3-(1,1,2,2-tetrafluoroethoxy)phenoxy,

R6 is selected from the group consisting of chloro, fluoro, hydrido, pentafluoroethyl, 1,1,2,2-tetrafluoroethoxy, and trifluoromethyl;

3-trifluoromethylthiophenoxy, 3-trifluoromethylthiobenzyloxy, and

R7 is selected from the group consisting of hydrido, fluoro, and trifluoromethyl.

25 10. The compound as recited in Claim 9 or a pharmaceutically acceptable salt thereof, wherein:

n is the integer 1;

trifluoromethylthio;

A is selected from the group consisting of 1-propenyl, propyl, isopropyl, butyl, 2-butenyl, 3-butenyl, sec-butyl, isobutyl, 2-methylpropenyl, 1-pentyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 2-pentyl, 1-methyl-2-butenyl, 1-methyl-3-butenyl, 3-pentyl, 1-ethyl-2-propenyl, 2-methylbutyl, 2-methyl-2-butenyl, 2-methyl-3-butenyl, 3-methylbutyl, 3-methyl-2-butenyl, 3-methyl-3-butenyl, 1-hexyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl, 1-

15

methyl-2-pentenyl, 1-methyl-3-pentenyl, 1-methyl-4-pentenyl, 3-hexyl, 1ethyl-2-butenyl, 1-ethyl-3-butenyl, 1-propyl-2-propenyl, 1-ethyl-2-pentenyl, 1-ethyl-3-pentenyl, 1-ethyl-4-pentenyl, 1-butyl-2-propenyl, 1-ethyl-2-hexenyl, 1-ethyl-3-hexenyl, 1-ethyl-4-hexenyl, 1-ethyl-5-hexenyl, 1-pentyl-2propenyl, 1-propyl-2-pentenyl, 1-propyl-3-pentenyl, 1-propyl-4-pentenyl, 1butyl-2-butenyl, 1-butyl-3-butenyl, 2,2-difluoropropyl, 4-trifluoromethyl-5,5,5-trifluoropentyl, 4-trifluoromethylpentyl, 5,5.6.6.6-pentafluorohexyl. and 3,3,3-trifluoropropyl, wherein each member of group A may be optionally substituted at any carbon up to and including 6 atoms from the point of attachment of A to Z with one or more of the group consisting of R33, R34. 10 R_{35} , and R_{36} with the provisos that R_{33} , R_{34} , R_{35} , and R_{36} must not be attached to the carbon directly linking A to Z and that $R_{33},\,R_{34},\,R_{35},$ and R_{36} must be selected from other than aryl and heteroaryl when substituting the carbon 2 atoms from Z wherein Z is a single covalent bond;

R₁ is selected from the group consisting of trifluoromethyl, chlorodifluoromethyl, and pentafluoroethyl;

R₂ is hydrido, pentafluoroethyl, and trifluoromethyl;

R₃ is selected from the group consisting of hydrido, methyl, trifluoromethyl, and difluoromethyl

Y is a covalent single bond; 20

Z is methylene;

R₄ and R₈ are independently selected from the group consisting of hydrido and fluoro:

R₅, R₃₃, R₃₄, R₃₅, and R₃₆ are independently selected from the group consisting of 5-bromo-2-fluorophenoxy, 4-chloro-3-ethylphenoxy, 25 cyclopentyl, 2.3-dichlorophenoxy, 3.4-dichlorophenoxy, 3difluoromethoxyphenoxy, 3.5-dimethylphenoxy, 3.4-dimethylphenoxy, 3-ethylphenoxy, 3-ethyl-5-methylphenoxy, 4-fluoro-3-methylphenoxy,

4-fluorophenoxy, 2-furyl, isobutyl, isopropoxy, 3-isopropylphenoxy, 3-methylphenoxy, pentafluoroethyl, 3-pentafluoroethylphenoxy, 3-tert - butylphenoxy, 1,1,2,2-tetrafluoroethoxy.

3-(1,1,2,2-tetrafluoroethoxy)phenoxy, 2-(5,6,7,8-tetrahydronaphthyloxy), trifluoromethoxy, 3-trifluoromethoxybenzyloxy, 3-trifluoromethoxyphenoxy, trifluoromethyl, 3-trifluoromethylbenzyloxy, 1,1-bis-trifluoromethyl-1-hydroxymethyl, trifluoromethylthio, and 3-trifluoromethylthiophenoxy:

R₆ is selected from the group consisting of fluoro and hydrido:

R₇ is selected from the group consisting of hydrido and fluoro.

11. The compound as recited in Claim 9 or a pharmaceutically acceptable salt thereof, wherein;

n is the integer 1;

A is selected from the group consisting of 1-propenyl, propyl, isopropyl, butyl, 2-butenyl, 3-butenyl, sec-butyl, isobutyl, 2-methylpropenyl, 1-pentyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 2-pentyl, 1-methyl-2-butenyl, 1-15 methyl-3-butenyl, 3-pentyl, 1-ethyl-2-propenyl, 2-methylbutyl, 2-methyl-2butenyl, 2-methyl-3-butenyl, 3-methylbutyl, 3-methyl-2-butenyl, 3-methyl-3butenyl, 1-hexyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl, 2-hexyl, 1methyl-2-pentenyl, 1-methyl-3-pentenyl, 1-methyl-4-pentenyl, 3-hexyl, 1ethyl-2-butenyl, 1-ethyl-3-butenyl, 1-propyl-2-propenyl, 1-ethyl-2-pentenyl, 20 1-ethyl-3-pentenyl, 1-ethyl-4-pentenyl, 1-butyl-2-propenyl, 1-ethyl-2-hexenyl, 1-ethyl-3-hexenyl, 1-ethyl-4-hexenyl, 1-ethyl-5-hexenyl, 1-pentyl-2propenyl,1-propyl-2-pentenyl, 1-propyl-3-pentenyl, 1-propyl-4-pentenyl, 1butyl-2-butenyl, 1-butyl-3-butenyl, 2.2-difluoropropyl, 4-trifluoromethyl-5,5,5-trifluoropentyl, 4-trifluoromethylpentyl, 5,5,6,6,6-pentafluorohexyl, 25 and 3,3,3-trifluoropropyl, wherein each member of group A may be optionally

attachment of A to Z with one or more of the group consisting of R_{33} , R_{34} , R_{35} , and R_{36} with the provisos that R_{33} , R_{34} , R_{35} , and R_{36} must not be

substituted at any carbon up to and including 6 atoms from the point of

attached to the carbon directly linking A to Z and that R₃₃, R₃₄, R₃₅, and R₃₆

must be selected from other than aryl and heteroaryl when substituting the carbon 2 atoms from Z wherein Z is a single covalent bond;

R₁ is selected from the group consisting of trifluoromethyl, chlorodifluoromethyl, and pentafluoroethyl:

R₂ is hydrido, pentafluoroethyl, and trifluoromethyl;

R₃ is selected from the group consisting of hydrido, methyl. trifluoromethyl, and difluoromethyl

Y is methylene;

Z is a covalent single bond;

10 R₄ and R₈ are independently selected from the group consisting of hydrido and fluoro;

R₅, R₃₃, R₃₄, R₃₅, and R₃₆ are independently selected from the group consisting of 5-bromo-2-fluorophenoxy, 4-chloro-3-ethylphenoxy, cyclopentyl, 2.3-dichlorophenoxy, 3,4-dichlorophenoxy, 3-

- difluoromethoxyphenoxy, 3,5-dimethylphenoxy, 3,4-dimethylphenoxy, 3-ethylphenoxy, 3-ethyl-5-methylphenoxy, 4-fluoro-3-methylphenoxy, 4-fluorophenoxy, 2-furyl, isobutyl, isopropoxy, 3-isopropylphenoxy, 3-methylphenoxy, pentafluoroethyl, 3-pentafluoroethylphenoxy, 3-tert butylphenoxy, 1,1,2,2-tetrafluoroethoxy,
- 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, 2-(5,6,7,8-tetrahydronaphthyloxy), trifluoromethoxy, 3-trifluoromethoxybenzyloxy, 3-trifluoromethoxyphenoxy, trifluoromethyl, 3-trifluoromethylbenzyloxy, 1,1-bis-trifluoromethyl-1-hydroxymethyl, trifluoromethylthio, and 3-trifluoromethylthiophenoxy;

R₆ is selected from the group consisting of fluoro and hydrido:

25 R₇ is selected from the group consisting of hydrido and fluoro.

12. The compound as recited in Claim 1 having the formula of:

$$R_1$$
 R_2
 R_3
 R_3
 R_4
 R_5

or a pharmaceutically acceptable salt thereof, wherein;

n is an integer selected from 1 through 2;

A and Q are independently selected from the group consisting of $-CH_2(CR_{37}R_{38})_v - (CR_{33}R_{34})_u - T - (CR_{35}R_{36})_w - H.$

AQ-1H
$$R_6$$
 AQ-2 R_{11} R_{31} R_{5} R_{1} R_{2} R_{10} R_{32} R_{4} R_{12} R_{8} and R_{9} R_{13}

with the provisos that one of A and Q must be AQ-1H and that one of A and Q must be selected from the group consisting of AQ-2 and

10 $-\text{CH}_2(\text{CR}_{37}\text{R}_{38})_{v}$ - $(\text{CR}_{33}\text{R}_{34})_{u}$ - $\text{T-}(\text{CR}_{35}\text{R}_{36})_{w}$ -H;

T is selected from the group consisting of a single covalent bond, O, S, S(O), $S(O)_2$, $C(R_{33})=C(R_{35})$, and C=C:

v is an integer selected from 0 through 1 with the proviso that v is 1 when any one of R₃₃, R₃₄, R₃₅, and R₃₆ is aryl or heteroaryl;

u and w are integers independently selected from 0 through 6;

A₁ is C(R₃₀);

10

15

20

D₁, D₂, J₁, J₂ and K₁ are independently selected from the group consisting of C, N. O, S and a covalent bond with the provisos that no more than one of D₁, D₂, J₁, J₂ and K₁ is a covalent bond, no more than one of D₁, D₂, J₁, J₂ and K₁ is O, no more than one of D₁, D₂, J₁, J₂ and K₁ is S, one of D₁, D₂, J₁, J₂ and K₁ must be a covalent bond when two of D₁, D₂, J₁, J₂ and K₁ are O and S, and no more than four of D₁, D₂, J₁, J₂ and K₁ are N;

 B_1 , B_2 , D_3 , D_4 , J_3 , J_4 and K_2 are independently selected from the group consisting of C, $C(R_{30})$, N, O, S and a covalent bond with the provisos that no more than 5 of B_1 , B_2 , D_3 , D_4 , J_3 , J_4 and K_2 are a covalent bond, no more than two of B_1 , B_2 , D_3 , D_4 , J_3 , J_4 and K_2 are O, no more than two of B_1 , B_2 , D_3 , D_4 , $D_$

 B_1 and D_3 , D_3 and J_3 , J_3 and K_2 . K_2 and J_4 , J_4 and D_4 , and D_4 and B_2 are independently selected to form an in-ring spacer pair wherein said spacer pair is selected from the group consisting of $C(R_{33})=C(R_{35})$ and N=N with the provisos that AQ-2 must be a ring of at least five contiguous members, that no more than two of the group of said spacer pairs are simultaneously $C(R_{33})=C(R_{35})$, and that no more than one of the group of said spacer pairs is N=N unless the other spacer pairs are other than $C(R_{33})=C(R_{35})$, O, N, and S;

15

20

25

 R_1 is selected from the group consisting of haloalkyl and haloalkoxymethyl;

R₂ is selected from the group consisting of hydrido, aryl, alkyl, 'alkenyl, haloalkyl, haloalkoxy, haloalkoxyalkyl, perhaloaryl, perhaloaryloxyalkyl, and heteroaryl;

R₃ is selected from the group consisting of hydrido, aryl, alkyl, alkenyl, haloalkyl, and haloalkoxyalkyl;

Y is selected from the group consisting of a covalent single bond, $(CH_2)_q$ wherein q is an integer selected from 1 through 2, and $(CH_2)_j$ -O-

10 (CH₂)_k wherein j and k are integers independently selected from 0 through 1;

Z is selected from the group consisting of covalent single bond, $(CH_2)_q \text{ wherein q is an integer selected from 1 through 2, and } (CH_2)_j \text{-O-} (CH_2)_k \text{ wherein j and k are integers independently selected from 0 through 1};$

R₃₀ is selected from the group consisting of hydrido, alkoxy, alkoxyalkyl, halo, haloalkyl, alkylamino, alkylthio, alkylthioalkyl, alkyl, alkenyl, haloalkoxy, and haloalkoxyalkyl with the proviso that R₃₀ is selected to maintain the tetravalent nature of carbon, trivalent nature of nitrogen, the divalent nature of sulfur, and the divalent nature of oxygen;

R₃₀, when bonded to A₁, is taken together to form an intra-ring linear spacer connecting the A₁-carbon at the point of attachment of R₃₀ to the point of bonding of a group selected from the group consisting of R₁₀, R₁₁, R₁₂, R₃₁, and R₃₂ wherein said intra-ring linear spacer is selected from the group consisting of a covalent single bond and a spacer moiety having from 1 through 6 contiguous atoms to form a ring selected from the group consisting of a cycloalkyl having from 3 through 10 contiguous members, a cycloalkenyl having from 5 through 10 contiguous members, and a heterocyclyl having from 5 through 10 contiguous members;

 R_{30} , when bonded to A_1 , is taken together to form an intra-ring branched spacer connecting the A_1 -carbon at the point of attachment of R_{30} to the points of bonding of each member of any one of substituent pairs selected from the group consisting of substituent pairs R_{10} and R_{11} , R_{10} and R_{31} .

5 R₁₀ and R₃₂, R₁₀ and R₁₂, R₁₁ and R₃₁, R₁₁ and R₃₂, R₁₁ and R₁₂, R₃₁ and R₃₂, R₃₁ and R₁₂, and R₃₂ and R₁₂ and wherein said intra-ring branched spacer is selected to form two rings selected from the group consisting of cycloalkyl having from 3 through 10 contiguous members, cycloalkenyl having from 5 through 10 contiguous members, and heterocyclyl having from 5 through 10 contiguous members;

 $R_4, R_5, R_6, R_7, R_8, R_9, R_{10}, R_{11}, R_{12}, R_{13}, R_{31}, R_{32}, R_{33}$

R₃₄, R₃₅, and R₃₆ are independently selected from the group consisting of hydrido, carboxy, heteroaralkylthio, heteroaralkoxy, cycloalkylamino, acylalkyl, acylalkoxy, aroylalkoxy, heterocyclyloxy, aralkylaryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, perhaloaralkyl, aralkylsulfonyl, 15 aralkylsulfonylalkyl, aralkylsulfinyl, aralkylsulfinylalkyl, halocycloalkyl, halocycloalkenyl, cycloalkylsulfinyl, cycloalkylsulfinylalkyl, cycloalkylsulfonyl, cycloalkylsulfonylalkyl, heteroarylamino, Nheteroarylamino-N-alkylamino, heteroarylaminoalkyl,haloalkylthio, alkanoyloxy, alkoxy, alkoxyalkyl, haloalkoxylalkyl, heteroaralkoxy, 20 cycloalkoxy, cycloalkenyloxy, cycloalkoxyalkyl, cycloalkylalkoxy, cycloalkenyloxyalkyl, cycloalkylenedioxy, halocycloalkoxy, halocycloalkoxyalkyl, halocycloalkenyloxy, halocycloalkenyloxyalkyl, hydroxy, amino, thio, nitro, lower alkylamino, alkylthio, alkylthioalkyl, arylamino, aralkylamino, arylthio, arylthioalkyl, heteroaralkoxyalkyl, 25 alkylsulfinyl, alkylsulfinylalkyl, arylsulfinylalkyl, arylsulfonylalkyl, heteroarylsulfinylalkyl, heteroarylsulfonylalkyl, alkylsulfonyl, alkylsulfonylalkyl, haloalkylsulfinylalkyl, haloalkylsulfonylalkyl, alkylsulfonamido, alkylaminosulfonyl, amidosulfonyl, monoalkyl amidosulfonyl, dialkyl amidosulfonyl, monoarylamidosulfonyl, 30 arylsulfonamido, diarylamidosulfonyl, monoalkyl monoaryl amidosulfonyl, arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, heteroarylsulfonyl, heteroarylsulfonyl, heteroarylsulfonyl, alkanoyl, alkanoyl, alkanoyl, alkanoyl, aroyl, heteroaroyl, aralkanoyl, heteroaralkanoyl, haloalkanoyl, alkyl, alkenyl, alkynyl, alkenyloxy, alkenyloxyalky, alkylenedioxy, haloalkylenedioxy, cycloalkyl, cycloalkylalkanoyl, cycloalkenyl, lower cycloalkylalkyl, lower cycloalkenylalkyl, halo, haloalkyl, haloalkenyl, haloalkoxy, hydroxyhaloalkyl, hydroxyaralkyl, hydroxyalkyl, hydoxyheteroaralkyl, haloalkoxyalkyl, aryl, heteroaralkynyl, aryloxy, aralkoxy, aryloxyalkyl, saturated heterocyclyl, partially saturated heterocyclyl, heteroaryl, heteroaryloxy, heteroaryloxyalkyl, arylalkenyl, heteroarylalkenyl, carboxyalkyl, carboalkoxy, alkoxycarboxamido, alkylamidocarbonylamido, arylamidocarbonylamido, carboalkoxyalkyl, carboalkoxyalkenyl, carboaralkoxy, carboxamido, carboxamidoalkyl, cyano, carbohaloalkoxy, phosphono, phosphonoalkyl, diaralkoxyphosphono, and diaralkoxyphosphonoalkyl with the provisos that

15 R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, R₁₁, R₁₂, R₁₃, R₃₁, R₃₂, R₃₃, R₃₄, R₃₅, and R₃₆ are each independently selected to maintain the tetravalent nature of carbon, trivalent nature of nitrogen, the divalent nature of sulfur, and the divalent nature of oxygen, that no more than three of the R₃₃ and R₃₄ substituents are simultaneously selected from other than the group consisting of of hydrido and halo, and that no more than three of the R₃₅ and R₃₆ substituents are simultaneously selected from other than the group consistubg of hydrido and halo;

R₉, R₁₀, R₁₁, R₁₂, R₁₃, R₃₁, and R₃₂ are independently selected to be oxo with the provisos that B₁, B₂, D₃, D₄, J₃, J₄ and K₂ are independently selected from the group consisting of C and S, no more than two of R₉, R₁₀, R₁₁, R₁₂, R₁₃, R₃₁, and R₃₂ are simultaneously oxo, and that R₉, R₁₀, R₁₁, R₁₂, R₁₃, R₃₁, and R₃₂ are each independently selected to maintain the tetravalent nature of carbon, trivalent nature of nitrogen, the divalent nature of sulfur, and the divalent nature of oxygen;

10

R₄ and R₅, R₅ and R₆, R₆ and R₇. R₇ and R₈, R₉ and R₁₀, R₁₀ and R₁₁, R₁₁ and R₃₁, R₃₁ and R₃₂. R₃₂ and R₁₂. and R₁₂ and R₁₃ are independently selected to form spacer pairs wherein a spacer pair is taken together to form a linear moiety having from 3 through 6 contiguous atoms connecting the points of bonding of said spacer pair members to form a ring selected from the group consisting of a cycloalkenyl ring having 5 through 8 contiguous members, a partially saturated heterocyclyl ring having 5 through 8 contiguous members, a heteroaryl ring having 5 through 6 contiguous members, and an aryl with the provisos that no more than one of the group consisting of spacer pairs R₄ and R₅, R₅ and R₆, R₆ and R₇, and R₇ and R₈, is used at the same time and that no more than one of the group consisting of spacer pairs R₉ and R₁₀, R₁₀ and R₁₁, R₁₁ and R₃₁, R₃₁ and R₃₂, R₃₂ and R₁₂, and R₁₂ and R₁₃ is used at the same time;

R9 and R₁₁, R9 and R₁₂, R9 and R₁₃, R9 and R₃₁, R9 and R₃₂,

R₁₀ and R₁₂, R₁₀ and R₁₃, R₁₀ and R₃₁, R₁₀ and R₃₂, R₁₁ and R₁₂, R₁₁

and R₁₃, R₁₁ and R₃₂, R₁₂ and R₃₁, R₁₃ and R₃₁, and R₁₃ and R₃₂ are independently selected to form a spacer pair wherein said spacer pair is taken together to form a linear spacer moiety selected from the group consisting of a covalent single bond and a moiety having from 1 through 3 contiguous atoms

to form a ring selected from the group consisting of a cycloalkyl having from 3 through 8 contiguous members, a cycloalkenyl having from 5 through 8 contiguous members and a partially saturated heterocyclyl having from 5 through 8 contiguous members with the provisos that no more than one of said group of spacer pairs is used at the same time;

R₃₇ and R₃₈ are independently selected from the group consisting of hydrido, alkoxy, alkoxyalkyl, hydroxy, amino, thio, halo, haloalkyl, alkylamino, alkylthio, alkylthioalkyl, cyano, alkyl, alkenyl, haloalkoxy, and haloalkoxyalkyl.

5

10

15

13. The compound as recited in Claim 12 having the formula of:

or a pharmaceutically acceptable salt thereof, wherein;

n is an integer selected from 1 through 2;

A is selected from the group consisting of C3-C10 cycloalkyl. C5-C10 cycloalkenyl, C4-C9 saturated heterocyclyl, and C4-C9 partially saturated heterocyclyl, wherein each ring carbon may be optionally substituted with R₃₀, a ring carbon other than the ring carbon at the point of attachment of A to Z may be optionally substituted with oxo provided that no more than one ring carbon is substituted by oxo at the same time, ring carbon and nitrogen atoms adjacent to the carbon atom at the point of attachment may be optionally substituted with R₉ or R₁₃, a ring carbon or nitrogen atom adjacent to the R₉ position and two atoms from the point of attachment may be substituted with R₁₀, a ring carbon or nitrogen atom adjacent to the R₁₃ position and two atoms from the point of attachment may be substituted with R₁₂, a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R₁₀ position may be substituted with R₁₁, a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R₁₂ position may be substituted with R₃₂, and a ring carbon or nitrogen atom four atoms from

10

25

the point of attachment and adjacent to the R_{11} and R_{32} positions may be substituted with R_{31} ;

 D_1 , D_2 , J_1 , J_2 and K_1 are independently selected from the group consisting of C, N, O, S and a covalent bond with the provisos that no more than one of D_1 , D_2 , J_1 , J_2 and K_1 is a covalent bond, no more than one of D_1 , D_2 , J_1 , J_2 and K_1 is O, no more than one of D_1 , D_2 , J_1 , J_2 and K_1 is S, one of D_1 , D_2 , J_1 , J_2 and K_1 must be a covalent bond when two of D_1 , D_2 , J_1 , J_2 and J_1 , J_2 , J_1 , J_2 and J_1 , J_2 , J_1 , J_2

R₁ is selected from the group consisting of haloalkyl and haloalkoxymethyl;

R₂ is selected from the group consisting of hydrido, aryl, alkyl, alkenyl, haloalkyl, haloalkoxy, haloalkoxyalkyl, perhaloaryl, perhaloaryloxyalkyl, and heteroaryl;

15 R₃ is selected from the group consisting of hydrido, aryl, alkyl, alkenyl, haloalkyl, and haloalkoxyalkyl;

Y and Z are independently selected from the group consisting of a covalent single bond, oxy and alkylene;

R₄ and R₈ are independently selected from the group consisting of

hydrido and halo;

R9 and R13 are halo;

R₅, R₆, and R₇ are independently selected from the group consisting of hydrido, alkyl, halo, haloalkyl, haloalkoxy, aryl, alkylthio, arylamino, arylthio, aroyl, arylsulfonyl, aryloxy, aralkoxy, heteroaryloxy, alkoxy, aralkyl, cycloalkoxy, cycloalkylalkoxy, cycloalkylalkanoyl, heteroaryl, cycloalkyl, haloalkylthio, hydroxyhaloalkyl, heteroaralkoxy, heterocyclyloxy, aralkylaryl, heteroaryloxyalkyl, heteroarylthio, and heteroarylsulfonyl;

10

15

25

30

R₄ and R₅, R₅ and R₆, R₆ and R₇, and R₇ and R₈ are independently selected to form spacer pairs wherein a spacer pair is taken together to form a linear moiety having from 3 through 6 contiguous atoms connecting the points of bonding of said spacer pair members to form a ring selected from the group consisting of a cycloalkenyl ring having 5 through 8 contiguous members, a partially saturated heterocyclyl ring having 5 through 8 contiguous members, a heteroaryl ring having 5 through 6 contiguous members, and an aryl with the proviso that no more than one of the group consisting of spacer pairs R₄ and

R₅, R₅ and R₆, R₆ and R₇, and R₇ and R₈, is used at the same time;

R₁₀, R₁₁, R₁₂, R₃₁, and R₃₂ are independently selected from the group group consisting of alkyl, halo, haloalkyl, haloalkoxy, aryl, alkylthio, arylamino, arylthio, aroyl, arylsulfonyl, aryloxy, aralkoxy, heteroaryloxy, alkoxy, aralkyl, cycloalkoxy, cycloalkylalkoxy, cycloalkylalkanoyl, heteroaryl, cycloalkyl, haloalkylthio, hydroxyhaloalkyl, heteroaralkoxy, heterocyclyloxy, aralkylaryl, heteroaryloxyalkyl, heteroarylthio, and heteroarylsulfonyl;

R₃₀ is selected from the group consisting of alkoxy, alkoxyalkyl, halo, haloalkyl, alkylamino, alkylthio, alkylthioalkyl, alkyl, alkenyl, haloalkoxy, and haloalkoxyalkyl.

20 14. The compound as recited in Claim 13 or a pharmaceutically acceptable salt thereof, wherein;

n is the integer 1;

A is selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclopent-2-enyl, cyclopent-3-enyl, cyclohexyl, 4-methylcyclohexyl, 4-chloro-3-ethylphenoxycyclohexyl, 3-trifluoromethoxyphenoxycyclohexyl, 3-trifluoromethylcyclohexyl, 4-trifluoromethylcyclohexyl, 3,5-bis-trifluoromethylcyclohexyl, adamantyl, 3-trifluoromethyladamantyl, norbornyl, 3-trifluoromethylnorbornyl, norbornenyl, 7-oxabicyclo[2.2.1]heptan-2-yl, bicyclo[3.1.0]hexan-6-yl, cyclohex-2-enyl, cyclohex-3-enyl, cycloheptyl, cyclohept-2-enyl, cyclohept-3-enyl, cyclooctyl, cyclooct-2-enyl, cyclooct-3-enyl, cyclooct-4-enyl, 2-

morpholinyl, 3-morpholinyl, 4-morpholinyl, 1-piperazinyl, 2-piperazinyl, 1piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-piperidinyl, 1-pyrrolidinyl, 2pyrrolidinyl, 3-pyrrolidinyl, 2-dioxanyl, 2H-2-pyranyl, 2H-3-pyranyl, 2H-4pyranyl, 4H-2-pyranyl, 4H-3-pyranyl, 4H-4-pyranyl, 2H-pyran-2-one-3-yl, 2H-pyran-2-one-4-yl, 2H-pyran-2-one-5-yl, 4H-pyran-4-one-2-yl, 4H-pyran-5 4-one-3-yl, 2-tetrahydrofuranyl, 3-tetrahydrofuranyl, 2-tetrahydropyranyl, 3tetrahydropyranyl, 4-tetrahydropyranyl, 2-tetrahydrothienyl, and 3tetrahydrothienyl, wherein each ring carbon may be optionally substituted with R₃₀, a ring carbon other than the ring carbon at the point of attachment of A to Z may be optionally substituted with oxo provided that no more than one ring 10 carbon is substituted by oxo at the same time, ring carbon and nitrogen atoms adjacent to the carbon atom at the point of attachment may be optionally substituted with R9 or R13, a ring carbon or nitrogen atom adjacent to the R9 position and two atoms from the point of attachment may be substituted with R_{10} , a ring carbon or nitrogen atom adjacent to the R_{13} position and two 15 atoms from the point of attachment may be substituted with R₁₂, a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R₁₀ position may be substituted with R₁₁, a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R₁₂ position may be substituted with R₃₂, and a ring carbon or nitrogen atom four atoms from 20 the point of attachment and adjacent to the R₁₁ and R₃₂ positions may be substituted with R31;

D₁, D₂, J₁, J₂ and K₁ are independently selected from the group consisting of C, N, O, S and a covalent bond to form the group consisting of 2-thienyl, 3-thienyl, 2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4-imidazolyl, 3-pyrazolyl, 4-pyrazolyl, 1,2,4-triazol-3-yl, 1,2,4-triazol-5-yl, 1,2,4-oxadiazol-3-yl, 1,2,4-oxadiazol-3-yl, 1,3,4-oxadiazol-3-yl, 3-isothiazolyl, 5-isothiazolyl, 2-oxazolyl, 2-thiazolyl, 3-isoxazolyl, 5-isoxazolyl, 3-pyridyl, 4-pyridyl, 2-pyrazinyl, 2-

20

pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 3-pyridazinyl, 4-pyridazinyl, 1,3,5-triazin-2-yl, 1,2,4-triazin-3-yl, 1,2,4-triazin-5-yl, 1,2,4-triazin-6-yl, 1,2,3-triazin-4-yl, 1-indolizinyl, 7-indolizinyl, 1-isoquinolyl, and 2-quinolyl, wherein a ring carbon atom adjacent to the carbon atom at the point of attachment may be optionally substituted with R₄ or R₈, a ring carbon atom adjacent to the R₄ position and two atoms from the point of attachment may be substituted with R5, a ring carbon atom adjacent to the R₈ position and two atoms from the point of attachment may be substituted with R₇, and a ring carbon atom three atoms from the point of attachment and adjacent to the R₅ and R₇ positions may be substituted with R₆;

R₁ is selected from the group consisting of trifluoromethyl, 1.1.2.2-tetrafluoroethoxymethyl, trifluoromethoxymethyl, difluoromethyl, chlorodifluoromethyl, and pentafluoroethyl;

R₂ is selected from the group consisting of hydrido. methyl. ethyl. propyl, butyl, vinyl, phenyl, 4-trifluoromethylphenyl, 1,1,2,2-tetrafluoroethoxymethyl, trifluoromethoxymethyl, difluoromethyl, pentafluoroethyl, trifluoromethyl, and 2,2,3,3,3-pentafluoropropyl;

R₃ is selected from the group consisting of hydrido, phenyl, 4-trifluoromethylphenyl, methyl, ethyl, vinyl, trifluoromethyl, trifluoromethyl, difluoromethyl, chlorodifluoromethyl, and pentafluoroethyl;

Y and Z are independently selected from the group consisting of a covalent single bond, oxy, and methylene with the proviso that only one of Y and Z are simultaneously oxy;

25 R₄ and R₈ are independently selected from the group consisting of hydrido and fluoro;

Ro and R13 are fluoro;

 R_5 , R_{10} and R_{12} are independently selected from the group consisting

- of 4-aminophenoxy, benzyl, benzyloxy,
- 5-bromo-2-fluorophenoxy, 4-bromo-3-fluorophenoxy,
- 4-bromo-2-nitrophenoxy, 3-bromobenzyloxy, 4-bromobenzyloxy,
- 5 4-bromophenoxy, 5-bromopyrid-2-yloxy, 4-butoxyphenoxy, chloro,
 - 3-chlorobenzyl, 2-chlorophenoxy, 4-chlorophenoxy,
 - 4-chiero-3-ethylphenoxy. 3-chiero-4-fluorobenzyl, 3-chloro-4-fluorophenyl,
 - 3-chloro-2-fluorobenzyloxy, 3-chlorobenzyloxy, 4-chlorobenzyloxy,
 - 4-chloro-3-methylphenoxy, 2-chloro-4-fluorophenoxy,
- 10 4-chloro-2-fluorophenoxy, 4-chlorophenoxy, 3-chloro-4-ethylphenoxy,
 - 3-chloro-4-methylphenoxy, 3-chloro-4-fluorophenoxy.
 - 4-chloro-3-fluorophenoxy, 4-chlorophenylamino, 5-chloropyrid-3-yloxy,
 - 2-cyanopyrid-3-yloxy, 4-cyanophenoxy, cyclobutoxy, cyclobutyl,
 - cyclohexoxy, cyclohexylmethoxy, cyclopentoxy, cyclopentyl.
- cyclopentylcarbonyl, cyclopropyl, cyclopropylmethoxy, cyclopropoxy,
 - 2.3-dichlorophenoxy, 2.4-dichlorophenoxy, 2,4-dichlorophenyl,
 - $3, 5\hbox{-dichlorophenyl}, 3, 5\hbox{-dichlorobenzyl}, 3, 4\hbox{-dichlorophenoxy},$
 - 3,4-difluorophenoxy, 2,3-difluorobenzyloxy, 2,4-difluorobenzyloxy,
 - 3,4-difluorobenzyloxy, 2,5-difluorobenzyloxy, 3,5-difluorophenoxy,
- 20 3,4-difluorophenyl, 3,5-difluorobenzyloxy, 4-difluoromethoxybenzyloxy,
 - 2,3-difluorophenoxy, 2,4-difluorophenoxy, 2.5-difluorophenoxy,
 - $3.5 \hbox{-} dimethoxy phenoxy, 3.5 \hbox{-} dimethylamin ophenoxy, 3.5 \hbox{-} dimethyl phenoxy.}\\$
 - 3.4-dimethylphenoxy, 3.4-dimethylbenzyl, 3.4-dimethylbenzyloxy,
 - 3,5-dimethylbenzyloxy, 2,2-dimethylpropoxy, 1,3-dioxan-2-yl,
- 25 1,4-dioxan-2-yl, 1,3-dioxolan-2-yl, ethoxy, 4-ethoxyphenoxy,
 - 4-ethylbenzyloxy, 3-ethylphenoxy, 4-ethylaminophenoxy,
 - 3-ethyl-5-methylphenoxy, fluoro, 4-fluoro-3-methylbenzyl,
 - 4-fluoro-3-methylphenyl, 4-fluoro-3-methylbenzoyl, 4-fluorobenzyloxy,
 - 2-fluoro-3-methylphenoxy, 3-fluoro-4-methylphenoxy, 3-fluorophenoxy,
- 30 3-fluoro-2-nitrophenoxy, 2-fluoro-3-trifluoromethylbenzyloxy,
 - 3-fluoro-5-trifluoromethylbenzyloxy, 4-fluoro-2-trifluoromethylbenzyloxy,
 - $\hbox{$4$-fluoro-$3$-trifluoromethylbenzyloxy, 2-fluorophenoxy, 4-fluorophenoxy,}$
 - 2-fluoro-3-trifluoromethylphenoxy, 2-fluorobenzyloxy,
 - 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy,

- 4-fluoropyrid-2-yloxy, 2-furyl, 3-furyl, heptafluoropropyl.
- 1,1,1,3,3,3-hexafluoropropyl, 2-hydroxy-3,3,3-trifluoropropoxy,
- 3-iodobenzyloxy, isobutyl, isobutylamino, isobutoxy, 3-isoxazolyl, ₁₀
- 4-isoxazolyl, 5-isoxazolyl, isopropoxy, isopropyl, 4-isopropylbenzyloxy,
- 5 3-isopropylphenoxy, 4-isopropylphenoxy, isopropylthio.
 - 4-isopropyl-3-methylphenoxy, 3-isothiazolyl, 4-isothiazolyl,
 - 5-isothiazolyl, 3-methoxybenzyl, 4-methoxycarbonylbutoxy,
 - 3-methoxycarbonylprop-2-enyloxy, 4-methoxyphenyl,
 - 3-methoxyphenylamino, 4-methoxyphenylamino, 3-methylbenzyloxy,
- 4-methylbenzyloxy, 3-methylphenoxy, 3-methyl-4-methylthiophenoxy,
 - 4-methylphenoxy, 1-methylpropoxy, 2-methylpyrid-5-yloxy,
 - 4-methylthiophenoxy, 2-naphthyloxy, 2-nitrophenoxy, 4-nitrophenoxy,
 - 3-nitrophenyl, 4-nitrophenylthio, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl,
 - pentafluoroethyl, pentafluoroethylthio, 2.23.33-pentafluoropropyl,
- 15 1,1,3,3,3-pentafluoropropyl, 1,1,2,2,3-pentafluoropropyl, phenoxy,
 - phenylamino, 1-phenylethoxy, phenylsulfonyl, 4-propanoylphenoxy,
 - propoxy, 4-propylphenoxy, 4-propoxyphenoxy, thiophen-3-yl, sec-butyl,
 - 4-sec-butylphenoxy, tert -butoxy, 3-tert -butylphenoxy, 4-tert -butylphenoxy,
 - 1.1.2.2-tetrafluoroethoxy, tetrahydrofuran-2-yl.
- 20 2-(5,6,7,8-tetrahydronaphthyloxy), thiazol-2-yl, thiazol-4-yl, thiazol-5-yl.
 - thiophen-2-yl, 2,3,5-trifluorobenzyloxy, 2,2,2-trifluoroethoxy,
 - 2,2,2-trifluoroethyl, 3,3,3-trifluoro-2-hydroxypropyl, trifluoromethoxy,
 - 3-trifluoromethoxy benzyloxy, 4-trifluoromethoxy benzyloxy,
 - 3-trifluoromethoxyphenoxy, 4-trifluoromethoxyphenoxy, trifluoromethyl,
- 25 3-trifluoromethylbenzyloxy, 4-trifluoromethylbenzyloxy,
 - 2,4-bis-trifluoromethylbenzyloxy, 1,1-bis-trifluoromethyl-1-hydroxymethyl,
 - 3-trifluoromethylbenzyl, 3,5-bis-trifluoromethylbenzyloxy,
 - 4-trifluoromethylphenoxy, 3-trifluoromethylphenoxy,
 - 3-trifluoromethylphenyl, 3-trifluoromethylthiobenzyloxy,
- 30 4-trifluoromethylthiobenzyloxy, 2.3.4-trifluorophenoxy.
 - 2,3,4-trifluorophenyl, 2,3.5-trifluorophenoxy, 3,4.5-trimethylphenoxy.
 - 3-difluoromethoxy phenoxy, 3-pental luoroethyl phenoxy.
 - 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, 3-trifluoromethylthiophenoxy, and trifluoromethylthio;

R₆, R₁₁, R₃₁, and R₃₂ are independently selected from the group consisting of chloro, fluoro, hydrido, pentafluoroethyl, 1,1,2.2-

R₇ is selected from the group consisting of hydrido, fluoro, and trifluoromethyl;

R₃₀ is selected from the group consisting of chloro.

ethoxy, ethyl, fluoro, heptafluoropropyl, 1,1,1,3,3,3-hexafluoropropyl, isobutyl, isobutoxy, isopropoxy, isopropyl, isopropylthio, methyl, pentafluoroethyl, 2,2,3,3,3-pentafluoropropyl, 1,1,3,3,3-pentafluoropropyl, 1,1,2,2,3-pentafluoropropyl, propoxy, propyl, sec-butyl, tert-butoxy, 1,1,2,2-tetrafluoroethoxy, 2,2,2-trifluoroethoxy, 2,2,2-trifluoroethyl, trifluoromethoxy, and trifluoromethyl.

15. The compound as recited in Claim 14 or a pharmaceutically acceptable salt thereof, wherein;

n is the integer 1;

A is selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, 4-chloro-3-

- ethylphenoxycyclohexyl. 3-trifluoromethoxyphenoxycyclohexyl, 3-trifluoromethylcyclohexyl, 4-trifluoromethylcyclohexyl, 3,5-bis-trifluoromethylcyclohexyl. adamantyl, 3-trifluoromethyladamantyl, norbornyl, 3-trifluoromethylnorbornyl, norbornenyl, 7-oxabicyclo[2.2.1]heptan-2-yl, bicyclo[3.1.0]hexan-6-yl, cycloheptyl, cyclooctyl. 2-morpholinyl, 3-
- 25. ___morpholinyl, 4-morpholinyl, 1-piperazinyl, 2-piperazinyl, 1-piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-piperidinyl, 1-pyrrolidinyl, 2-pyrrolidinyl, 3-pyrrolidinyl, 2-dioxanyl, 4H-2-pyranyl, 4H-3-pyranyl, 4H-4-pyranyl, 4H-pyran-4-one-2-yl, 4H-pyran-4-one-3-yl, 2-tetrahydrofuranyl, 3-tetrahydrofuranyl, 2-tetrahydropyranyl, 4-
- tetrahydropyranyl, 2-tetrahydrothienyl, and 3-tetrahydrothienyl, wherein each ring carbon may be optionally substituted with R₃₀, a ring carbon other than the ring carbon at the point of attachment of A to Z may be optionally

10

15

20

substituted with oxo provided that no more than one ring carbon is substituted by oxo at the same time, ring carbon and nitrogen atoms adjacent to the carbon atom at the point of attachment may be optionally substituted with R_9 or R_{13} , a ring carbon or nitrogen atom adjacent to the R_9 position and two atoms from the point of attachment may be substituted with R_{10} , a ring carbon or nitrogen atom adjacent to the R_{13} position and two atoms from the point of attachment may be substituted with R_{12} , a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R_{10} position may be substituted with R_{11} , a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R_{12} position may be substituted with R_{32} , and a ring carbon or nitrogen atom four atoms from the point of attachment and adjacent to the R_{11} and R_{32} positions may be substituted with R_{31} ;

D₁, D₂, J₁, J₂ and K₁ are independently selected from the group consisting of C, N, O, S and a covalent bond to form the group consisting of 2-thienyl, 3-thienyl, 2-furyl, 3-furyl, 2-pyrrolyl, 3-pyπolyl, 2-imidazolyl, 4-imidazolyl, 3-pyrazolyl, 4-pyrazolyl, 2-oxazolyl, 2-thiazolyl, 3-isoxazolyl, 5-isoxazolyl, 2-pyridyl, 4-pyridyl, 2-pyrazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 3-pyridazinyl, 4-pyridazinyl, 1,3,5-triazin-2-yl, 1-indolizinyl, 7-indolizinyl, 1-isoquinolyl, and 2-quinolyl, wherein a ring carbon atom adjacent to the carbon atom at the point of attachment may be optionally substituted with R₄ or R₈, a ring carbon atom adjacent to the R₄ position and two atoms from the point of attachment may be substituted with R₅, a ring carbon atom adjacent to the R₈ position and two atoms from the point of attachment may be substituted with R₇, and a ring carbon atom three atoms

20

ł

from the point of attachment and adjacent to the R_5 and R_7 positions may be substituted with R_6 ;

R₁ is selected from the group consisting of trifluoromethyl, 1,1,2,2-tetrafluoroethoxymethyl, trifluoromethoxymethyl, difluoromethyl, chlorodifluoromethyl, and pentafluoroethyl:

R₂ is selected from the group consisting of hydrido, methyl, ethyl, phenyl, 4-trifluoromethylphenyl, trifluoromethoxymethyl, 1,1,2.2-tetrafluoroethoxymethyl, difluoromethyl, pentafluoroethyl, trifluoromethyl, and 2,2,3,3,3-pentafluoropropyl;

10 R₃ is selected from the group consisting of hydrido, phenyl,
4-trifluoromethylphenyl, methyl, trifluoromethyl, difluoromethyl, and
chlorodifluoromethyl;

Y and Z are independently selected from a covalent single bond and methylene;

15 R₄ and R₈ are independently selected from the group consisting of hydrido and fluoro;

R₉ and R₁₃ are fluoro;

R₅, R₁₀ and R₁₂ are independently selected from the group consisting of benzyloxy, 5-bromo-2-fluorophenoxy, 4-bromo-3-fluorophenoxy, 3-bromobenzyloxy, 4-bromophenoxy, 4-butoxyphenoxy, 3-chlorobenzyloxy,

- 2-chlorophenoxy, 4-chloro-3-ethylphenoxy, 4-chloro-3-methylphenoxy,
- 2-chloro-4-fluorophenoxy, 4-chloro-2-fluorophenoxy, 4-chlorophenoxy,
- 3-chloro-4-ethylphenoxy, 3-chloro-4-methylphenoxy,
- 3-chloro-4-fluorophenoxy, 4-chloro-3-fluorophenoxy, 4-chlorophenylamino,
- 5-chloropyrid-3-yloxy, cyclobutoxy, cyclobutyl, cyclohexylmethoxy, cyclopentoxy, cyclopentyl, cyclopentylcarbonyl, cyclopropylmethoxy,
 - 2.3-dichlorophenoxy, 2,4-dichlorophenoxy, 2,4-dichlorophenyl,
 - 3,5-dichlorophenyl, 3,5-dichlorobenzyl, 3,4-dichlorophenoxy,
 - 3,4-difluor ophenoxy,2,3-difluor obenzyloxy,3,5-difluor obenzyloxy,
- difluoromethoxy, 3,5-difluorophenoxy, 3,4-difluorophenyl,

- 2.3-difluorophenoxy, 2,4-difluorophenoxy, 2.5-difluorophenoxy,
- 3,5-dimethoxyphenoxy,3-dimethylaminophenoxy, 3.4-dimethylbenzyloxy,
- 3.5-dimethylbenzyloxy, 3.5-dimethylphenoxy, 3.4-dimethylphenoxy,
- 1,3-dioxolan-2-yl, 3-ethylbenzyloxy. 3-ethylphenoxy. 4-ethylaminophenoxy.
- 5 3-ethyl-5-methylphenoxy, 4-fluoro-3-methylbenzyl, 4-fluorobenzyloxy,
 - 2-fluoro-3-methylphenoxy, 3-fluoro-4-methylphenoxy, 3-fluorophenoxy,
 - 3-fluoro-2-nitrophenoxy, 2-fluoro-3-trifluoromethylbenzyloxy,
 - 3-fluoro-5-trifluoromethylbenzyloxy, 2-fluorophenoxy, 4-fluorophenoxy,
 - 2-fluoro-3-trifluoromethylphenoxy, 2-fluorobenzyloxy,
- 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy, 2-furyl, 3-furyl, heptafluoropropyl, 1,1.1.3.3,3-hexafluoropropyl,
 - 2-hydroxy-3.3.3-trifluoropropoxy, isobutoxy, isobutyl, 3-isoxazolyl,
 - 4-isoxazolyl, 5-isoxazolyl, isopropoxy, 3-isopropylbenzyloxy,
 - 3-isopropylphenoxy, isopropylthio, 4-isopropyl-3-methylphenoxy,
- 3-isothiazolyl, 4-isothiazolyl, 5-isothiazolyl, 3-methoxybenzyl,
 - 4-methoxyphenylamino, 3-methylbenzyloxy, 4-methylbenxyloxy, 3-
 - methylphenoxy, 3-methyl-4-methylthiophenoxy, 4-methylphenoxy,
 - 1-methylpropoxy, 2-methylpyrid-5-yloxy, 4-methylthiophenoxy,
 - 2-naphthyloxy, 2-nitrophenoxy, 4-nitrophenoxy, 3-nitrophenyl, 2-oxazolyl,
- 4-oxazolyl, 5-oxazolyl, pentafluoroethyl, pentafluoroethylthio,
 - 2.2,3,3,3-pentafluoropropyl, 1,1,3,3,3-pentafluoropropyl,
 - 1,1,2,2,3-pentafluoropropyl, phenoxy, phenylamino, 1-phenylethoxy,
 - 4-propylphenoxy, 4-propoxyphenoxy, thiophen-3-yl,tert -butoxy,
 - 3-tert -butylphenoxy, 4-tert -butylphenoxy, 1.1.2.2-tetrafluoroethoxy.
- 25 tetrahydrofuran-2-yl, 2-(5,6,7,8-tetrahydronaphthyloxy), thiazol-2-yl,
 - thiazol-4-yl, thiazol-5-yl, thiophen-2-yl, 2.2.2-trifluoroethoxy,
 - 2,2,2-trifluoroethyl, 3,3,3-trifluoro-2-hydroxypropyl, trifluoromethoxy,
 - 3-trifluoromethoxybenzyloxy, 4-trifluoromethoxybenzyloxy,
 - 4-trifluoromethoxyphenoxy, 3-trifluoromethoxyphenoxy, trifluoromethyl,
- 30 3-trifluoromethylbenzyloxy, 1.1-bis-trifluoromethyl-1-hydroxymethyl.
 - 3-trifluoromethylbenzyl, 3.5-bis-trifluoromethylbenzyloxy,
 - 4-trifluoromethylphenoxy, 3-trifluoromethylphenoxy,
 - 3-trifluoromethylphenyl, 2.3,4-trifluorophenoxy, 2.3,5-trifluorophenoxy,
 - 3,4,5-trimethylphenoxy, 3-difluoromethoxyphenoxy,
- 35 3-pentafluoroethylphenoxy, 3-(1.1.2.2-tetrafluoroethoxy)phenoxy,

10

20

25

3-trifluoromethylthiophenoxy, 3-trifluoromethylthiobenzyloxy, and trifluoromethylthio;

R₆, R₁₁, R₃₁, and R₃₂ are independently selected from the group consisting of chloro, fluoro, hydrido, pentafluoroethyl. 1,1,2,2tetrafluoroethoxy, and trifluoromethyl;

R7 is selected from the group consisting of hydrido. fluoro. and trifluoromethyl;

R₃₀ is selected from the group consisting of chloro, ethyl, fluoro, heptafluoropropyl, 1,1,1,3,3,3-hexafluoropropyl, isobutyl, isopropyl, methyl, pentafluoroethyl, 2.2.3.3.3-pentafluoropropyl, 1.1.3.3.3-pentafluoropropyl. 1,1,2,2,3-pentafluoropropyl, propyl, sec-butyl, 1,1,2,2-tetrafluoroethoxy, 2.2,2-trifluoroethoxy, 2,2,2-trifluoroethyl, trifluoromethoxy, and trifluoromethyl.

16. The compound as recited in Claim 15 or a pharmaceutically acceptable salt 15 thereof, wherein;

n is the integer 1;

A is selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, 4-chloro-3ethylphenoxycyclohexyl, 3-trifluoromethoxyphenoxycyclohexyl, 3trifluoromethylcyclohexyl, 4-trifluoromethylcyclohexyl, 3,5-bistrifluoromethylcyclohexyl, adamantyl, 3-trifluoromethyladamantyl, norbornyl, 3-trifluoromethylnorbornyl, norbornenyl, 7-oxabicyclo[2.2.1]heptan-2-yl, bicyclo[3.1.0]hexan-6-yl, 2-tetrahydrofuranyl, 3-tetrahydrofuranyl, 2tetrahydropyranyl, 3-tetrahydropyranyl, 4-tetrahydropyranyl, 2tetrahydrothienyl, and 3-tetrahydrothienyl, wherein a ring carbon other than the ring carbon at the point of attachment of A to Z may be optionally substituted with oxo provided that no more than one ring carbon is substituted by oxo at the same time, ring carbon and nitrogen atoms adjacent to the carbon atom at the point of attachment may be optionally substituted with R9 or R13, a ring 30 carbon or nitrogen atom adjacent to the R9 position and two atoms from the

10

15

20

point of attachment may be substituted with R_{10} , a ring carbon or nitrogen atom adjacent to the R_{13} position and two atoms from the point of attachment may be substituted with R_{12} , a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R_{10} position may be substituted with R_{11} , a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R_{12} position may be substituted with R_{32} , and a ring carbon or nitrogen atom four atoms from the point of attachment and adjacent to the R_{11} and R_{32} positions may be substituted with R_{31} ;

D₁, D₂, J₁, J₂ and K₁ are independently selected from the group consisting of C, N, O, S and a covalent bond to form the group consisting of 2-thienyl, 3-thienyl, 2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4-imidazolyl, 3-pyrazolyl, 4-pyrazolyl, 2-thiazolyl, 3-isoxazolyl, 5-isoxazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 3-pyridazinyl, 4-pyridazinyl, and 1,3,5-triazin-2-yl, wherein a ring carbon atom adjacent to the carbon atom at the point of attachment may be optionally substituted with R₄ or R₈, a ring carbon atom adjacent to the R₄ position and two atoms from the point of attachment may be substituted with R5, a ring carbon atom adjacent to the R₈ position and two atoms from the point of attachment may be substituted with R7, and a ring carbon atom three atoms from the point of attachment and adjacent to the R₅ and R₇ positions may be substituted with R₆;

R₁ is selected from the group consisting of trifluoromethyl, chlorodifluoromethyl, and pentafluoroethyl;

R₂ is hydrido, pentafluoroethyl, and trifluoromethyl;

 $R_{3} \ is \ selected \ from \ the \ group \ consisting \ of \ hydrido, \ methyl,$ $trifluoromethyl, \ and \ difluoromethyl$

Y is a covalent single bond:

Z is methylene;

5 R₄ and R₈ are independently selected from the group consisting of hvdrido and fluoro:

R₉ and R₁₃ are fluoro;

R₅, R₁₀ and R₁₂ are independently selected from the group consisting of 5-bromo-2-fluorophenoxy, 4-chloro-3-ethylphenoxy, cyclopentyl,

2,3-dichlorophenoxy, 3,4-dichlorophenoxy, 3-difluoromethoxyphenoxy,

3,5-dimethylphenoxy, 3,4-dimethylphenoxy, 3-ethylphenoxy,

3-ethyl-5-methylphenoxy, 4-fluoro-3-methylphenoxy, 4-fluorophenoxy,

2-furyl, isobutyl, isopropoxy, 3-isopropylphenoxy, 3-methylphenoxy,

pentafluoroethyl, 3-pentafluoroethylphenoxy, 3-tert -butylphenoxy,

1,1,2,2-tetrafluoroethoxy, 3-(1,1,2,2-tetrafluoroethoxy)phenoxy,

2-(5,6,7,8-tetrahydronaphthyloxy),trifluoromethoxy,

3-trifluoromethoxybenzyloxy, 3-trifluoromethoxyphenoxy, trifluoromethyl,

3-trifluoromethylbenzyloxy, 1,1-bis-trifluoromethyl-1-hydroxymethyl,

R₆, R₁₁, R₃₁, and R₃₂ are independently selected from the group consisting of chloro, fluoro, hydrido, pentafluoroethyl, 1,1,2,2-tetrafluoroethoxy, and trifluoromethyl;

trifluoromethylthio, and 3-trifluoromethylthiophenoxy;

R₇ is selected from the group consisting of hydrido and fluoro.

25 17. The compound as recited in Claim 15 or a pharmaceutically acceptable salt thereof, wherein:

n is the integer 1;

A is selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, 4-chloro-3-

30 ethylphenoxycyclohexyl, 3-trifluoromethoxyphenoxycyclohexyl, 3-

10

15

20

25

trifluoromethylcyclohexyl, 4-trifluoromethylcyclohexyl, 3.5-bistrifluoromethylcyclohexyl, adamantyl, 3-trifluoromethyladamantyl, norbornyl. 3-trifluoromethylnorbornyl, norbornenyl, 7-oxabicyclo[2.2.1]heptan-2-yl, bicyclo[3.1.0]hexan-6-yl, 2-tetrahydrofuranyl, 3-tetrahydrofuranyl, 2tetrahydropyranyl, 3-tetrahydropyranyl, 4-tetrahydropyranyl, 2tetrahydrothienyl, and 3-tetrahydrothienyl, wherein a ring carbon other than the ring carbon at the point of attachment of A to Z may be optionally substituted with exo provided that no more than one ring carbon is substituted by exo at the same time, ring carbon and nitrogen atoms adjacent to the carbon atom at the point of attachment may be optionally substituted with R9 or R13, a ring carbon or nitrogen atom adjacent to the R9 position and two atoms from the point of attachment may be substituted with R₁₀, a ring carbon or nitrogen atom adjacent to the R₁₃ position and two atoms from the point of attachment may be substituted with R₁₂, a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R₁₀ position may be substituted with R₁₁, a ring carbon or nitrogen atom three atoms from the point of attachment and adjacent to the R₁₂ position may be substituted with R₃₂, and a ring carbon or nitrogen atom four atoms from the point of attachment and adjacent to the R_{11} and R_{32} positions may be substituted with R_{31} ;

D₁, D₂, J₁, J₂ and K₁ are independently selected from the group consisting of C. N. O. S and a covalent bond to form the group consisting of 2-thienyl, 3-thienyl, 2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4-imidazolyl, 3-pyrazolyl, 4-pyrazolyl, 2-thiazolyl, 3-isoxazolyl, 5-isoxazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 3-pyridazinyl, 4-pyridazinyl, and 1,3,5-triazin-2-yl, wherein a ring carbon atom adjacent to the carbon atom at the point of attachment may be optionally substituted with R₄ or R₈, a ring carbon atom adjacent to the R₄ position and two atoms from the point of attachment may be substituted with

R5, a ring carbon atom adjacent to the R_8 position and two atoms from the point of attachment may be substituted with R_7 , and a ring carbon atom three atoms from the point of attachment and adjacent to the R_5 and R_7 positions may be substituted with R_6 ;

R₁ is selected from the group consisting of trifluoromethyl, chlorodifluoromethyl, and pentafluoroethyl;

R2 is hydrido, pentafluoroethyl, and trifluoromethyl:

 R_3 is selected from the group consisting of hydrido, methyl, trifluoromethyl, and difluoromethyl

10 Y is methylene;

Z is a covalent single bond;

 R_4 and R_8 are independently selected from the group consisting of hydrido and fluoro;

R₉ and R₁₃ are fluoro;

of 5-bromo-2-fluorophenoxy, 4-chloro-3-ethylphenoxy, cyclopentyl, 2,3-dichlorophenoxy, 3,4-dichlorophenoxy, 3-difluoromethoxyphenoxy, 3,5-dimethylphenoxy, 3,4-dimethylphenoxy, 3-ethylphenoxy, 3-ethyl-5-methylphenoxy, 4-fluoro-3-methylphenoxy, 4-fluorophenoxy, 2-furyl, isobutyl, isopropoxy, 3-isopropylphenoxy, 3-methylphenoxy, pentafluoroethyl, 3-pentafluoroethylphenoxy, 3-tert -butylphenoxy, 1,1,2,2-tetrafluoroethoxy, 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, 2-(5,6,7,8-tetrahydronaphthyloxy),trifluoromethoxy, 3-trifluoromethoxybenzyloxy, 3-trifluoromethyl-1-hydroxymethyl, 3-trifluoromethylbenzyloxy, 1,1-bis-trifluoromethyl-1-hydroxymethyl,

trifluoromethylthio, and 3-trifluoromethylthiophenoxy;

R₆, R₁₁, R₃₁, and R₃₂ are independently selected from the group consisting of chloro, fluoro, hydrido, pentafluoroethyl, 1,1,2,2tetrafluoroethoxy, and trifluoromethyl;

R₇ is selected from the group consisting of hydrido and fluoro.

5

15

20

- 18. A compound as recited in Claim 1, or a pharmaceutically acceptable salt thereof, wherein said compound is selected from the group consisting of:
 - 3-[[3-(4-chloro-3-ethylphenoxy)phenyl](cyclohexylmethyl)amino]-1,1,1-trifluoro-2-propanol;
 - 3-[[3-(4-chloro-3-ethylphenoxy)phenyl](cyclopentylmethyl)amino]-1,1,1-trifluoro-2-propanol;
 - 3-[[3-(4-chloro-3-ethylphenoxy)phenyl](cyclopropylmethyl)amino]-1,1,1-trifluoro-2-propanol;
 - 3-[[3-(4-chloro-3-ethylphenoxy)phenyl][(3-trifluoromethyl)cyclohexylmethyl]amino]-1,1,1-trifluoro-2-propanol;
 - 3-[[3-(4-chloro-3-ethylphenoxy)phenyl][(3-pentafluoroethyl)cyclohexylmethyl]amino]-1,1,1-trifluoro-2-propanol;
 - 3-[[3-(4-chloro-3-ethylphenoxy)phenyl][(3-trifluoromethoxy)cyclohexylmethyl]amino]-1,1,1-trifluoro-2-propanol;
 - 3-[[3-(4-chloro-3-ethylphenoxy)phenyl][[3-(1,1,2,2-
- 25 tetrafluoroethoxy)cyclo-hexylmethyl]amino]-1,1,1-trifluoro-2-propanol;
 - 3-[[3-(3-trifluoromethoxyphenoxy)phenyl](cyclohexylmethyl)amino]-1,1,1-trifluoro-2-propanol;
 - 3-[[3-(3-trifluoromethoxyphenoxy)phenyl](cyclopentylmethyl)amino]-1,1,1-trifluoro-2-propanol;
 - 3-[[33-trifluoromethoxyphenoxy)phenyl](cyclopropylmethyl)amino]-1,1,1-trifluoro-2-propanol;
 - 3-[[3-(3-trifluoromethoxyphenoxy)phenyl][(3-trifluoromethyl)cyclohexyl-methyl]amino]-1,1,1-trifluoro-2-propanol;

3-[[3-(3-trifluoromethoxyphenoxy)phenyl][(3-pentafluoroethyl)cyclohexylmethyl]amino]-1,1,1-trifluoro-2-propanol; 3-[[3-(3-trifiuoromethoxyphenoxy)phenyl]](3trifluoromethoxy)cyclohexyl-methyl]amino]-1,1,1-trifluoro-2-propanol; 3-[[3-(3-trifluoromethoxyphenoxy)phenyl][[3-(1,1,2,2-5 tetrafluoroethoxy)cyclo-hexylmethyl]amino]-1,1,1-trifluoro-2-propanol; 3-[[3-(3-isopropylphenoxy)phenyl](cyclohexylmethyl)amino]-1,1,1trifluoro-2-propanol; 3-[[3-(3-isopropylphenoxy)phenyl](cyclopentylmethyl)amino]-1,1,1trifluoro-2-propanol; 10 3-[[3-(3-isopropylphenoxy)phenyl](cyclopropylmethyl)amino]-1,1.1trifluoro-2-propanol: 3-[[3-(3-isopropylphenoxy)phenyl][(3-trifluoromethyl)cyclohexylmethyl]amino]-1,1,1-trifluoro-2-propanol; 3-[[3-(3-isopropylphenoxy)phenyl][(3-pentafluoroethyl)cyclohexyl-15 methyllaminol-1,1,1-trifluoro-2-propanol; 3-[[3-(3-isopropylphenoxy)phenyl][(3-trifluoromethoxy)cyclohexylmethyl]amino]-1,1,1-trifluoro-2-propanol; 3-[[3-(3-isopropylphenoxy)phenyl][[3-(1.1.2,2-tetrafluoroethoxy)cyclohexyl]methyl]amino]-1,1,1-trifluoro-2-propanol; 20 3-[[3-(2,3-dichlorophenoxy)phenyl](cyclohexylmethyl)amino]-1,1,1trifluoro-2-propanol; 3-[[3-(2,3-dichlorophenoxy)phenyl](cyclopentylmethyl)amino]-1,1,1trifluoro-2-propanol; 3-[[3-(2,3-dichlorophenoxy)phenyl](cyclopropylmethyl)amino]-1,1,1-25 trifluoro-2-propanol; 3-[[3-(2,3-dichlorophenoxy)phenyl][(3-trifluoromethyl)cyclohexylmethyl]amino]-1,1,1-trifluoro-2-propanol; 3-[[3-(2,3-dichlorophenoxy)phenyl][(3-pentafluoroethyl)cyclohexylmethyllamino]-1,1,1-trifluoro-2-propanol; 30 3-[[3-(2.3-dichlorophenoxy)phenyl][(3-trifluoromethoxy)cyclohexylmethyl amino |-1,1,1-trifluoro-2-propanol; 3-[[3-(2,3-dichlorophenoxy)phenyi][[3-(1,1,2,2-tetrafluoroethoxy)cyclo-

hexvlmethyl]amino]-1,1,1-trifluoro-2-propanol;

10

15

20

25

- 3-[[3-(4-fluorophenoxy)phenyl](cyclohexylmethyl)amino]-1,1,1-trifluoro-2-propanol; 3-[[3-(4-fluorophenoxy)phenyl](cyclopentylmethyl)amino]-1.1,1-trifluoro-2-propanol; 3-[[3-(4-fluorophenoxy)phenyl](cyclopropylmethyl)amino]-1,1,1-trifluoro-2-propanol; 3-[[3-(4-fluorophenoxy)phenyl][(3-trifluoromethyl)cyclohexylmethyl]amino]-1,1,1-trifluoro-2-propanol: 3-[[3-(4-fluorophenoxy)phenyl][(3-pentafluoroethyl)cyclohexylmethyl]amino]-1,1,1-trifluoro-2-propanol; 3-[[3-(4-fluorophenoxy)phenyl][(3-trifluoromethoxy)cyclohexylmethyl]amino]-1,1,1-trifluoro-2-propanol: 3-[[3-(4-fluorophenoxy)phenyl][[3-(1,1,2.2-tetrafluoroethoxy)cyclohexylmethyl]amino]-1,1,1-trifluoro-2-propanol; 3-[[3-(3-trifluoromethoxybenzyloxy)phenyl](cyclohexylmethyl)amino]-1,1,1-trifluoro-2-propanol; 3-[[3-(3-trifluoromethoxybenzyloxy)phenyl](cyclopentylmethyl)amino]-1,1,1-trifluoro-2-propanol; 3-[[3-(3-trifluoromethoxybenzyloxy)phenyl](cyclopropylmethyl)amino]-1,1,1-trifluoro-2-propanol; 3-[[3-(3-trifluoromethoxybenzyloxy)phenyl][(3trifluoromethyl)cyclohexyl-methyl]amino]-1,1,1-trifluoro-2-propanol; 3-[[3-(3-trifluoromethoxybenzyloxy)phenyl][(3pentafluoroethyl)cyclohexyl-methyl]amino]-1,1,1-trifluoro-2-propanol; 3-[[3-(3-trifluoromethoxybenzyloxy)phenyl][(3trifluoromethoxy)cyclohexyl-methyl]amino]-1,1,1-trifluoro-2-propanol; 3-[[3-(3-trifluoromethoxybenzyloxy)phenyl][[3-(1,1,2,2tetrafluoroethoxy)-cyclohexylmethyl]amino]-1,1,1-trifluoro-2-propanol; 3-[[3-(3-trifluoromethylbenzyloxy)phenyl](cyclohexylmethyl)amino]-1,1,1-trifluoro-2-propanol; 3-[[3-(3-trifluoromethylbenzyloxy)phenyl](cyclopentylmethyl)amino]-1,1,1-trifluoro-2-propanol;
 - 3-[[3-(3-trifluoromethylbenzyloxy)phenyl](cyclopropylmethyl)amino]-1,1,1-trifluoro-2-propanol;

- 3-[[3-(3-trifluoromethylbenzyloxy)phenyl][(3-trifluoromethyl)cyclohexylmethyl]amino]-1,1,1-trifluoro-2-propanol;
- 3-[[3-(3-trifluoromethylbenzyloxy)pnenyl][(3-pentafluoroethyl)cyclohexylmethyl]amino]-1,1,1-trifluoro-2-propanol;
- 5 3-[[3-(3-trifluoromethylbenzyloxy)phenyl][(3-trifluoromethoxy)cyclohexyl-methyl]amino]-1,1,1-trifluoro-2-propanol:
 - 3-[[3-(3-trifluoromethylbenzyloxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy)cyclo-hexylmethyl]amino]-1.1,1-trifluoro-2-propanol;
 - 3-[[[(3-trifluoromethyl)phenyl]methyl](cyclohexyl)amino]-1,1,1-trifluoro-2-propanol;
 - 3-[[[(3-pentafluoroethyl)phenyl]methyl](cyclohexyl)amino]-1,1,1-trifluoro-2-propanol;
 - 3-[[[(3-trifluoromethoxy)phenyl|methyl](cyclohexyl)amino]-1,1,1-trifluoro-2-propanol;
- 3-[[[3-(1,1,2,2-tetrafluoroethoxy)phenyi]methyl](cyclohexyl)amino]1,1,1-trifluoro-2-propanol;
 - 3-[[[(3-trifluoromethyl)phenyl]methyl](4-methylcyclohexyl)amino]-1,1,1-trifluoro-2-propanol;
- 3-[[[(3-pentafluoroethyl)phenyl]methyl](4-methylcyclohexyl)amino]-1,1.1-20 trifluoro-2-propanol;
 - 3-[[[(3-trifluoromethoxy)phenyl]methyl](4-methylcyclohexyl)amino]-1,1,1-trifluoro-2-propanol;
 - 3-[[[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl](4-methylcyclohexyl)amino]-1,1,1-trifluoro-2-propanol;
- 25 3-[[(3-trifluoromethyl)phenyl]methyl](3-trifluoromethylcyclohexyl)amino]-1,1,1-trifluoro-2-propanol;
 - 3-[[[(3-pentafluoroethyl)phenyl]methyl](3-trifluoromethylcyclohexyl)amino]-1,1,1-trifluoro-2-propanol;
- 30 trifluoromethylcyclohexyl)amino]-1,1,1-trifluoro-2-propanol;

3-[[[(3-trifluoromethoxy)phenyl]methyl](3-

- 3-[[[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl](3-trifluoromethylcyclohexyl)amino[-1,1,1-trifluoro-2-propanol;
- 3-[[[(3-trifluoromethyl)phenyl]methyl][3-(4-chloro-3-ethylphenoxy)cyclo-hexyl]amino]-1,1,1-trifluoro-2-propanol;

```
3-[[[(3-pentafluoroethyl)phenyl|methyl||3-(4-chloro-3-ethylphenoxy)cyclo-
      hexyl]amino]-1,1,1-trifluoro-2-propanol;
             3-[[(3-trifluoromethoxy)phenyl]methyl][3-(4-chioro-3-
      ethylphenoxy)cyclo-hexyl]amino]-1,1,1-trifluoro-2-propanol;
             3-[[[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl] [3-(4-chloro-3-
 5
      ethylphenoxy)-cyclohexyl]amino]-1,1,1-trifluoro-2-propanol:
             3-[[[(3-trifluoromethyl)phenyl|methyl](3-phenoxycyclohexyl)amino]-
      1,1,1-trifluoro-2-propanol;
             3-[[[(3-pentafluoroethyl)phenyl]methyl](3-phenoxycyclohexyl)amino]-
      1,1,1-trifluoro-2-propanol;
10
             3-[[(3-trifluoromethoxy)phenyl]methyl](3-phenoxycyclohexyl)amino]-
      1.1.1-trifluoro-2-propanol:
             3-[[[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl](3-
      phenoxycyclohexyl)amino]-1,1,1-trifluoro-2-propanol;
             3-[[[(3-trifluoromethyl)phenyl]methyl](3-isopropoxycyclohexyl)amino]-
15
      1,1,1-trifluoro-2-propanol;
             3-[[[(3-pentafluoroethyl)phenyl]methyl](3-isopropoxycyclohexyl)amino]-
      1,1,1-trifluoro-2-propanol;
             3-[[[(3-trifluoromethoxy)phenyl]methyl](3-isopropoxycyclohexyl)amino]-
20
      1,1,1-trifluoro-2-propanol;
             3-[[[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl](3-
      isopropoxycyclohexyl)-amino]-1,1,1-trifluoro-2-propanol:
             3-[[[(3-trifluoromethyl)phenyl]methyl](3-
      cyclopentyloxycyclohexyl)amino]-1,1,1-trifluoro-2-propanol;
             3-[[[(3-pentafluoroethyl)phenyl]methyl](3-
25
      cyclopentyloxycyclohexyl)amino]-1,1,1-trifluoro-2-propanol;
             3-[[[(3-trifluoromethoxy)phenyl]methyl](3-
      cyclopentyloxycyclohexyl)amino]-1,1,1-trifluoro-2-propanol;
             3-[[[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl](3-
      cyclopentyloxycyclohexyl)-amino]-1,1.1-trifluoro-2-propanol;
30
              3-[[[(2-trifluoromethyl)pyrid-6-yl]methyl](3-
      isopropoxycyclohexyl)amino|-1,1,1-trifluoro-2-propanol;
              3-[[[(2-trifluoromethyl)pyrid-6-yl]methyl](3-cyclopentyloxycyclohexyl)-
      amino]-1,1,1-trifluoro-2-propanol;
```

```
3-[[[(2-trifluoromethyl)pyrid-6-yl|methyl](3-phenoxycyclohexyl)aminol-
      1.1.1-trifluoro-2-propanol;
             3-[[[(2-trifluoromethyl)pyrid-6-yl]methyl](3-
      trifluoromethylcyclohexyl)amino]-1,1,1-trifluoro-2-propanol;
             3-[[[(2-trifluoromethyl)pyrid-6-yl]methyl][3-(4-chloro-3-
 5
      ethylphenoxy)cyclo-hexyl]amino]-1,1,1-trifluoro-2-propanol;
             3-[[[(2-trifluoromethyl)pvrid-6-yl]methyl][3-(1,1,2,2-
      tetrafluoroethoxy)cyclo-hexyl]amino]-1,1,1-trifluoro-2-propanol;
             3-[[[(2-trifluoromethyl)pyrid-6-yl]methyl](3-pentafluoroethylcyclohexyl)-
      aminol-1,1,1-trifluoro-2-propanol;
10
             3-[[[(2-trifluoromethyl)pyrid-6-yl]methyl](3-trifluoromethoxycyclohexyl)-
      amino]-1,1,1-trifluoro-2-propanol:
             3-[[[(3-trifluoromethyl)phenyl]methyl][3-(4-chloro-3-
      ethylphenoxy)propyl]-amino]-1,1,1-trifluoro-2-propanol;
             3-[[[(3-pentafluoroethyl)phenyl]methyl][3-(4-chloro-3-
15
      ethylphenoxy)propyl]-amino]-1,1,1-trifluoro-2-propanol;
             3-[[[(3-trifluoromethoxy)phenyl]methyl][3-(4-chloro-3-
      ethylphenoxy)propyl]-amino]-1,1,1-trifluoro-2-propanol;
             3-[[[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl] [3-(4-chloro-3-
      ethylphenoxy)-propyl]amino]-1,1,1-trifluoro-2-propanol;
20
             3-[[[(3-trifluoromethyl)phenyl]methyl][3-(4-chloro-3-ethylphenoxy)-2,2,-
      di-fluroropropyl]amino]-1,1,1-trifluoro-2-propanol;
             3-[[[(3-pentafluoroethyl)phenyl]methyl][3-(4-chloro-3-ethylphenoxy)-2.2,-
      di-fluroropropyl]amino]-1,1,1-trifluoro-2-propanol;
             3-[[[(3-trifluoromethoxy)phenyl]methyl][3-(4-chloro-3-ethylphenoxy)-
25
      2,2,-di-fluroropropyl]amino]-1,1,1-trifluoro-2-propanol;
             3-[[[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl] [3-(4-chloro-3-
      ethylphenoxy)- 2,2,-difluroropropyl]amino]-1,1,1-trifluoro-2-propanol;
             3-[[[(3-trifluoromethyl)phenyl]methyl][3-(isopropoxy)propyl]amino]-
      1,1,1-trifluoro-2-propanol;
30
             3-[[[(3-pentafluoroethyl)phenyl]methyl][3-(isopropoxy)propyl]amino]-
      1,1,1-trifluoro-2-propanol;
              3-[[[(3-trifluoromethoxy)phenyl]methyl][3-(isopropoxy)propyl]amino]-
```

1,1,1-trifluoro-2-propanol;

3-[[]3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl][3-(isopropoxy)propyl]amino] -1,1,1-trifluoro-2-propanol; and 3-[[[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl][3-(phenoxy)propyl]amino] -1,1,1-trifluoro-2-propanol.

- 19. A pharmaceutical composition comprising a compound of one of claims 1 through 18 together with a pharmaceutically acceptable carrier.
- 20. A method of treating coronary artery disease or other CETP-mediated

 disorders in a subject by administering a therapeutically effective amount of a compound of one of claims 1 through 18.
- 21. A method of preventing coronary artery disease or other CETP-mediated

 disorders in a subject by administering a therapeutically effective amount of a compound of one of claims 1 through 18.
- 22. A method of treating or preventing cerebral vascular accident (CVA) or
 20 other CETP-mediated disorders in a subject by administering a
 therapeutically effective amount of a compound of one of claims 1 through
 18.
 - 23. A method of treating or preventing dyslipidemia and other CETP-mediated disorders in a subject by administering a therapeutically effective amount of a compound of one of claims 1 through 18.

PCT/US 99/22123

. CLASSIFICATION OF SUBJECT MATTER PC 7 C07C217/52 C07C C07C215/16 C07C215/76 C07C215/50 C07C217/82 C07C217/54 C07D213/74 C070309/14 A61K31/135 A61K31/33 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) CO7C CO7D A61K IPC 7 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search (erms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication where appropriate, of the relevant passages Relevant to claim No. X US 2 700 686 A (JOSEPH B. DICKEY ET AL.) 1 25 January 1955 (1955-01-25) cited in the application column 12-13; examples 22-29 DUNN C ET AL: "THE SYNTHESIS OF Α 1 FLUORINE-CONTAINING PTERINS" TETRAHEDRON, NL, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM. vol. 52, no. 40, page 13017-13026 XP002063653 ISSN: 0040-4020 page 13024, paragraph 2 Α WO 96 04249 A (STANFORD RES INST INT :UNIV 1 GLASGOW (GB); CANCER RES CAMPAIGN TECH) 15 February 1996 (1996-02-15) claims 12,13,16 -/--Χ. Further documents are listed in the continuation of box C X Patent family members are listed in annex Special categories of cited documents : "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory, underlying the "A" document defining the general state of the lart which is not considered to be of particular relevance. invention earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other, such docudocument reterring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled other means in the art. document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 12 January 2000 21/01/2000 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016 Rufet, J

Intern -al Application No PCT/US 99/22123

C (C:-	NIAN DOCUMENTS CONSIDERED TO THE	PCT/US 99/22123					
C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT Category Citation of document, with indication where appropriate, of the relevant passages Relevant							
	a december that modeling where appropriate, of the relevant passage	Relevant to slaim No.					
A _	EP 0 801 060 A (PFIZER) 15 October 1997 (1997-10-15) cited in the application abstract	. 1,19-23					
\ .	GB 2 305 665 A (MERCK & CO INC) 16 April 1997 (1997-04-16) cited in the application abstract: claims 1-17	1,19-23					
	EP 0 818 197 A (BAYER AG) 14 January 1998 (1998-01-14) cited in the application abstract: claim 1	1,19-23					
,							
	t						
	,						

ational application No

PCT/US 99/22123

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)	
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:	
1. X Claims Nos.: 20-23 because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claims 20-23 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.	
2. X Claims Nos.: 1-19 because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically: see FURTHER INFORMATION sheet PCT/ISA/210	
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).	
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)	
This International Searching Authority found multiple inventions in this international application, as follows:	
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.	
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.	
As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:	
·	
No required additional search fees were timely paid by the applicant, Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:	
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees,	

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 1-19

Present claims 1-19 relate to an extremely large number of possible compounds/compositions.

In fact, the claims contain so many options, variables and provisos that a lack of clarity (and/or conciseness) within the meaning of Article 6 PCT arises to such an extent as to render a meaningful search of the claims impossible. Consequently, the search has been carried out for those parts of the application which do appear to be clear (and/or concise), namely the formula (I) of claim 1 wherein:

R1 = CF3
R2 = R3 = Hydrogen
Z = Y = CH2 or bond
A = aromatic ring A01 with free sites (R4-R8)
the other ring Q attached via Y on the Nitrogen atom is a cycloalkyl
ring, a condensed polycycloalkyl ring, or an alkyl, alkenyl or alkynyl
group with free sites.

It is stressed that this scope covers the majority of the examples.

The applicant's attention is drawn to the fact that claims, or parts of claims. relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

.ormation on patent family members

Intern hal Application No PCT/US 99/22123

		itent document I in search report		Publication date	1	Patent family member(s) -	Publication date
	US	2700686	Α	25-01-1955	NONE		
	WO	9604249	Α	15-02-1996	US	5721265 A	24-02-1998
					CA	2196900 A	15-02-1996
					ΕP	0775117 A	28-05-1997
					, JP	10506104 T	16-06-1998
	ΕP	0801060	Α	15-10-1997	CA	2201988 A	09-10-1997
					JP	. 10036348 A	10-02-1998
					US	5843972 A	01-12-1998
	GB	2305665	Α	16-04-1997	US	5714506 A	03-02-1998
	ΕP	0818197	Α	14-01-1998	 DE	19627431 A	15-01-1998
					BG	'101748 A	30-04-1998
					BR	9703890 A	03-11-1998
					CA	22 09 825 A	08-01-1998
	1				CN	1174196 A	25-02-1998
					CZ	9702144 A	14-01-1998
					HR	970333 A	30-04-1998
					HU	9701157 A	30-03-1998
			•	•	JP	10167967 A	23-06-1998
					NO	973143 A	09-01-1998
					PL	320953 A	19-01-1998
		1			SG	46781 A	20-02-1998
					SK	92597 A	06-05-1998
					US	5932587 A	03-08-1999

THIS PAGE BLANK (USPTO)