IN THE CLAIMS

Please amend the claims as follows:

Claim 1 (Currently Amended): A process for dyeing leather, comprising contacting said leather with a float that comprises at least one dye F which has at least one alkaline activable group of the represented by formula A:

$$\begin{bmatrix} (X)_k \\ \\ \end{bmatrix}_n$$

$$B = S$$

$$O$$

$$O$$

where

denotes the bond to the dye molecule;

X is an electron-attracting radical;

k is 1, 2 or 3;

n is 0 or 1; and

B is a CH=CH₂ group or a CH₂-CH₂-Q group, where Q is an alkaline-detachable group, wherein said float exhibits a pH of from 8.5 to 11, and wherein

which comprises treating the leather with an aqueous float comprising at least one dye

F at a pH of 7.5 to 11

said at least one dye is selected from the group consisting of

$$\underline{Dk^{1}-N=N-[P-N=N-]_{p}Kk^{1}[-N=N-Dk^{2}]_{m}}; \qquad (I)$$

$$Dk^{1}-N=N-Napht^{1}[-N=N-Tk^{1}]_{r}[-N=N-Kk^{1}]_{k}[-N=N-Dk^{2}]_{n};$$
(II)

$$Dk^{1}-N=N-Napht^{1}-N=N-Tk^{1}-N=N-Kk^{1}-N=N-Tk^{2}-N=N-Napht^{2}-N=N-Dk^{2};$$
 (III)

$$\underline{Dk^{1}-N=N-Kk^{1}-N=N-Tk^{1}-N=N-Kk^{2}-N=N-Dk^{2}}; \qquad (IV)$$

$$Dk^{1}-N=N-[P-N=N-]_{p}Napht^{1}[-N=N-R]_{r}-NH-Tr^{1}-NH-Dk^{2};$$
 (V)

$$Dk^{1}-N=N-P-NH-Tr^{1}-NH-R-N=N-Dk^{2}; (VI)$$

$$\underline{Dk^{1}}-\underline{N}=\underline{N}-\underline{Napht^{1}}-\underline{N}=\underline{N}-\underline{Tk^{1}}-\underline{N}=\underline{N}-\underline{P}-\underline{NH}-\underline{Tr^{1}}-\underline{NH}-\underline{Dk^{2}}; \tag{VII}$$

 $\underline{Dk^{1}-N=N-Napht^{1}-NH-Tr^{1}-NH-P-NH-Tr^{2}-NH-Napht^{2}-N=N-Dk^{2}};$ (VIII)

 $\underline{Dk^{1}-N=N-Napht^{1}-NH-Tr^{1}-NH-Tk^{1}-NH-Tr^{2}-NH-Napht^{2}-N=N-Dk^{2}}; \qquad (IX)$

 $\underline{Dk^{1}[-N=N-L]_{k}-NH-Tr^{1}-NH-M-N=N-Napht^{1}-N=N-P-NH-Tr^{2}-NH-[R-N=N-]_{n}Dk^{2};} \quad (X)$

 $\underline{Dk^{1}-N=N-Kk^{1}-N=N-Tk^{1}-NH-Tr^{1}-NH-Dk^{2}};$ (XI)

 $\underline{Dk^{1}}-N=N-[P-N=N-]_{p}R-N=N-Kk^{1}[-N=N-Dk^{2}]_{n}; \qquad (XII)$

 $\underline{Dk}^{1}-N=N-Pyr-A; \qquad (XIII)$

 $Kk^3-N=N-Tk^1-N=N-Kk^1-N=N-A;$ (XIV)

 $Dk^{1}-N=N-P-N=N-Kk^{1}-N=N-R-N=N-Dk^{2};$ (XV), and

a metal complex thereof,

where

k, n, p and r are independently 0 or 1, and for formula II, k+n+r is 1, 2 or 3; m is 0, 1 or 2;

- each of Dk¹ and Dk² independently represents an aromatic amine radical or represents a

 group of formula A where, in each of the formulae I XII and XV, at least one of Dk¹

 and Dk² represents a radical of formula A;
- each of Kk¹ and Kk² independently represents a monovalent, a divalent or a trivalent

 aromatic radical selected from the group consisting of benzene; naphthalene;

 pyrazole; quinoline; diphenylamine; diphenylmethane; pyrimidine; pyridine; and

 diphenyl ether, where each optionally has at least one substituent selected from the

 group consisting

SO₃H, COOH, CN, CONH₂, OH, NH₂, NO₂, halogen, C₁-C₄-alkyl, C₁-C₄-hydroxyalkyl, carboxy-C₁-C₄-alkyl, C₁-C₄-alkyl, C₁-C₄-alkylamino, C₁-C₄-alkylaminocarbonyl, C₁-C₄-alkylaminocarbonyl, C₁-C₄-alkylaminocarbonyl, C₁-C₄-alkylamino, N-(C₁-C₄-alkylamino, N-(C₁-C₄-Alkylamino,

 C_1 - C_4 -alkylaminocarbonyloxy, C_1 - C_4 -dialkylaminocarbonyloxy, C_1 - C_4 -alkylaminocarbonylamino, C_1 - C_4 -dialkylaminocarbonylamino, C_1 - C_4 -alkylaminocarbonylamino, C_1 - C_4 -alkylamino, C_1 - C_4 -

where each of R⁵⁶ and R⁵⁷ independently represent hydrogen; C₁-C₄-alkyl; formyl; C₁-C₄-alkylcarbonyl; C₁-C₄-alkyloxycarbonyl; NH₂-CO-alkylaminocarbonyl; C₁-C₄-alkylaminocarbonyl; C₁-C₄-alkylaminosulfonylamino; di-C₁-C₄-alkylaminosulfonylamino; phenylsulfonylamino which may be substituted on the phenyl ring by 1 or 2 substituents selected from the group consisting of C₁-C₄-alkyl, C₁-C₄-alkoxy and halogen; or a 5- or 6-membered heterocyclyl, which is optionally substituted by 1, 2 or 3 radicals selected from the group consisting of OH, halogen, C₁-C₄-alkyl, C₁-C₄-phenyl, and a 5-membered aromatic heterocyclyl optionally bearing on the nitrogen a phenyl or naphthyl group which can optionally have 1 or 2 radicals selected from the group consisting of OH, SO₃H, C₁-C₄-alkyl, and C₁-C₄-alkoxy;

Kk³ is a monovalent radical selected from the group consisting of benzene, pyrimidine, pyridine, and naphthalene, which optionally has

1 or 2 hydroxysulfonyl groups as substituents,

and optionally 1, 2 or 3 further substituents selected from the group consisting of SO₃H, COOH, CN, CONH₂, OH, NH₂, NO₂, halogen, C₁-C₄-alkyl, C₁-C₄-

hydroxyalkyl, carboxy-C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylamino, C₁-C₄-dialkylamino, C₁-C₄-alkylaminocarbonyl, C₁-C₄-dialkylaminocarbonyl, C₁-C₄-alkylcarbonylamino, N-(C₁-C₄-alkylcarbonyl)-N-(C₁-C₄-alkylcarbonyl)-N-(C₁-C₄-alkylcarbonyl) amino, C₁-C₄-alkylaminocarbonyloxy, C₁-C₄-dialkylaminocarbonyloxy, C₁-C₄-alkylaminocarbonylamino, C₁-C₄-dialkylaminocarbonylamino, phenylaminocarbonylamino, C₁-C₄-dialkylaminocarbonylamino, C₁-C₄-alkoxycarbonylamino, C₁-C₄-hydroxy-C₁-C₄-alkylamino, carboxy-C₁-C₄-alkylamino, phenylcarbonylamino, C₁-C₄-alkylaminosulfonyl, C₁-C₄-alkylsulfonyl, hydroxy-C₁-C₄-alkylsulfonyl, C₁-C₄-alkylsulfonylamino, formamide, and a radical of the formula SO₂NR⁵⁶R⁵⁷,

where R⁵⁶ and R⁵⁷ independently represent hydrogen; C₁-C₄-alkyl; formyl; C₁-C₄-alkylcarbonyl; C₁-C₄-alkoxycarbonyl; NH₂-CO-alkylaminocarbonyl; C₁-C₄-alkylaminocarbonyl; C₁-C₄-alkylaminosulfonylamino; di-C₁-C₄-alkylaminosulfonylamino; phenylsulfonylamino which may be substituted on the phenyl ring by 1 or 2 substituents selected from the group consisting of C₁-C₄-alkyl, C₁-C₄-alkoxy and halogen; or a 5- or 6-membered heterocyclyl, which is optionally substituted by 1, 2 or 3 radicals selected from the group consisting of OH, halogen, C₁-C₄-alkyl, C₁-C₄-phenyl, and a 5-membered aromatic heterocyclyl optionally bearing on the nitrogen a phenyl or naphthyl group which can optionally comprise 1 or 2 radicals selected from the group consisting of OH, SO₃H, C₁-C₄-alkyl, and C₁-C₄-alkoxy;

each of Tk¹ and Tk² independently represents a divalent aromatic radical selected from theg
group consisting of benzene, diphenylamine, biphenyl, diphenylmethane,
2-phenylbenzimidazole, phenylsulfonylbenzene, phenylaminosulfonylbenzene,

stilbene and phenylaminocarbonylbenzene, where each optionally has at least one substituent selected from the group consisting of SO₃H, COOH, OH, NH₂, NO₂, halogen, and C₁-C₄-alkyl;

each of L, M, P and R independently represents a divalent aromatic radical selected from the group consisting of benzene and naphthalene, where each optionally has at least one substituent selected from the group consisting of SO₃H, COOH, CN, CONH₂, OH, NH₂, NO₂, halogen, C₁-C₄-alkyl, C₁-C₄-hydroxyalkyl, carboxy-C₁-C₄-alkyl, C₁-C₄-alkylamino, C₁-C₄-alkylamino, C₁-C₄-alkylaminocarbonyl, C₁-C₄-dialkylaminocarbonyl, C₁-C₄-alkylaminocarbonyl, C₁-C₄-alkylaminocarbonyl)-N- (C₁-C₄-alkylcarbonyl)amino, C₁-C₄-alkylaminocarbonyloxy, C₁-C₄-dialkylaminocarbonyloxy, C₁-C₄-alkylaminocarbonylamino, C₁-C₄-alkylaminocarbonylamino, C₁-C₄-alkylaminocarbonylamino, C₁-C₄-alkylaminocarbonylamino, C₁-C₄-alkylaminocarbonylamino, C₁-C₄-alkylamino, carboxy-C₁-C₄-alkylamino, phenylcarbonylamino, C₁-C₄-alkylsulfonyl, hydroxy-C₁-C₄-alkylsulfonyl, C₁-C₄-alkylsulfonyl, phenylsulfonyl, C₁-C₄-alkylsulfonylamino, phenylsulfonyl, phenylsulfonylamino, formamide, and a radical of the formula SO₂NR⁵⁶R⁵⁷,

where R⁵⁶ and R⁵⁷ independently represent hydrogen; C₁-C₄-alkyl; formyl; C₁-C₄-alkylcarbonyl; C₁-C₄-alkoxycarbonyl; NH₂-CO-alkylaminocarbonyl; C₁-C₄-alkylaminocarbonyl; C₁-C₄-alkylaminosulfonylamino; di-C₁-C₄-alkylaminosulfonylamino; phenylsulfonylamino which may be substituted on the phenyl ring by 1 or 2 substituents selected from the group consisting of C₁-C₄-alkyl, C₁-C₄-alkoxy and halogen; or 5- or 6-membered heterocyclyl, which is optionally substituted by 1, 2 or 3 radicals selected from the group consisting of OH, halogen, C₁-C₄-alkyl, phenyl, and a 5-membered aromatic heterocyclyl optionally bearing on the nitrogen a phenyl or naphthyl group

which can optionally have 1 or 2 of radicals selected from the group consisting of OH, SO₃H, C₁-C₄-alkyl, and C₁-C₄-alkoxy;

- Napht¹, Napht² independently represent a naphthalene radical having 1 or 2 hydroxysulfonyl groups and may optionally have 1, 2 or 3 further substituents selected from the group consisting of OH, NH₂, C₁-C₄-alkylamino, C₁-C₄-dialkylamino, C₁-C₄-alkylamino, phenylsulfonylamino, 4-methylphenylsulfonylamino, C₁-C₄-alkylaminosulfonyl, phenylaminosulfonyl, 4-methylphenylaminosulfonyl, and a NHC(O)R^x radical, where R^x hydrogen, C₁-C₄-alkyl, maleyl or phenyl;
- Pyr represents pyrazole-1,4-diyl which attaches through the nitrogen atom to the A group and optionally has 1 or 2 substituents selected from the group consisting of halogen, C₁-C₄-alkyl, hydroxyl and C₁-C₄-alkoxy; and
- Tr¹, Tr² independently represent a 1,3,5-triazine-2,4-diyl radical which optionally has at least one substituent selected from the group consisting of a halogen atom, a methyl group and a methoxy group.

Claim 2 (Previously Presented): The process according to claim 1, wherein at least one radical X in the formula A is an SO₃H group.

Claim 3 (Previously Presented): The process according to claim 1, wherein B in the formula A is CH=CH₂, a CH₂-CH₂-O-SO₃H group or a CH₂-CH₂-O-C(O)CH₃ group.

Claim 4 (Currently Amended): The process according to claim 1, wherein the group represented by formula A is attached to the dye molecule via an -NH- or -N=N- group.

Claim 5 (Currently Amended): The process according to claim 4, wherein the <u>at least</u> one dye F is selected from <u>the group consisting of dyes of the a phthalocyanine dye series</u>, <u>an</u> anthraquinone <u>dye dyes</u>, <u>an</u> azo <u>dye dyes</u>, <u>a</u> formazan <u>dye dyes</u>, <u>a</u> dioxazine <u>dye dyes</u>, <u>an</u> actidine <u>dye dyes</u>, <u>a</u> xanthene <u>dye dyes</u>, <u>a</u> polymethine <u>dye dyes</u>, <u>a</u> stilbene <u>dye dyes</u>, <u>a</u> sulfur <u>dye dyes</u> and <u>a</u> triarylmethane <u>dye dyes</u>.

Claim 6 (Currently Amended): The process according to claim 1, wherein n [[=]] is 0.

Claim 7 (Currently Amended): The process according to claim 6, wherein the radical at least one group represented by formula A is selected from the following radicals A1 to A12 group consisting of:

Application No. 10/577,776 Reply to Office Action mailed May 28, 2009

Claim 8 (Canceled)

Claim 9 (Currently Amended): The process according to claim 1, wherein which further comprises initially treating the leather is treated with the aqueous float comprising at least one dye F at a pH in the range from 3 to 6.5 prior to said treating and then a pH of at least 7.5 is set in the float.

Claim 10 (Currently Amended): The process according to claim 1, wherein the dyeing is carried out occurs as a one-stage process.

Claim 11 (Currently Amended): The process according to claim 1, wherein the dyeing is carried out occurs before retanning.

Claim 12 (Previously Presented): The process according to claim 1, wherein the dyeing is effected occurs at temperatures in the range from 10 to 60°C.

Claims 13-18 (Canceled).

Claim 19 (Previously Presented): A dyed leather obtainable by a dyeing process according to claim 1.

Claim 20 (Previously Presented): The dyed leather according to Claim 19 for handwear, footwear, automobiles, apparel or furniture.

Claims 21-23 (Canceled)

Claim 24 (New): The process according to claim 1, wherein said float exhibits a pH of from 8.5 to 10.5.

Claim 25 (New): The process according to claim 1, wherein said float exhibits a pH of from 8.5 to 10.

Claim 26 (New): The process according to claim 1, wherein said float exhibits a pH of from 9.5 to 11.

Claim 27 (New): The process according to claim 26, occurring for a time of from 0.5 to 2 hours.

Claim 28 (New): The process according to claim 1, wherein when said contacting is carried out for four hours, said at least one dye exhibits a fixation to said leather of at least 85%, as determined by UV/VIS spectroscopy and HPLC.

Claim 29 (New): The process according to claim 1, wherein when said contacting is carried out for four hours, said at least one dye exhibits a fixation to said leather of at least 90%, as determined by UV/VIS spectroscopy and HPLC.

Claim 30 (New): The process according to claim 1, wherein Q is selected from the group consisting of chlorine; bromine; iodine; $-O-SO_3H$; $-S-SO_3H$; tri- C_1-C_4 -alkylammonium; benzyldi- C_1-C_4 -alkylammonium; N-attached pyridinium; $R^3S(O)_2-$; $R^4S(O)_2-O-$; and $R^5C(O)-O-$, where

each of R³ and R⁴ is independently an alkyl group, a haloalkyl group, a phenyl group, or a substituted phenyl group, and

R⁵ is a hydrogen, an alkyl group, a haloalkyl group, a phenyl group, or a substituted phenyl group.