Math 206B Introduction to Numerical Analysis notes based off "Numerical Analysis by R.L. Burden and J.D. Faires" Section 1 which is Numerical Solution of Nonlinear Equations

Charlie Seager

January 29, 2024

2.1 The Bisection Method

Bisection Technique The first technique based on the Intermediate Value Theorem, is called the Bisection or Binary Search method.

Theorem 2.1 Suppose that $f \in C[a,b]$ and $f(a) \cdot f(b) < 0$. The Bisection method generates a sequence $\{p_n\}_{n=1}^{\infty}$ approximating a zero p of f with

$$|p_n - p| \leq \frac{b-a}{2^n}$$
, when $n \geq 1$

Chapter 2.2 Fixed Point Iteration A fixed point for the function is a number at which the value of the function does not change when the function is applied.

Defintion 2.2 The number p is a fixed point for a given function g if g(p) = p.

Theorem 2.3 (i) If $g \in C[a, b]$ and $g(x) \in [a, b]$ for all $x \in [a, b]$, then g has at least one fixed point in [a,b].

(ii) If, in addition g'(x) exists on (a,b) and a positive constraint k; 1 exists with

$$|g'(x)| \le k$$
, for all $x \in (a,b)$

then there is exactly one fixed point in [a,b].

Theorem 2.4 (Fixed Point Theorem) Let $g \in C[a,b]$ be such that $g(x) \in [a,b]$ for all x in [a,b]. Suppose in addition that g' exists on (a,b) and that a constant $0 \in A$ is a constant $0 \in A$.

$$|g'(x)| \le k$$
, for all $x \in (a, b)$

Then for any number p_0 in [a,b], the sequence defined by

$$p_n = g(p_{n-1}), n \ge 1.$$

converges to the unique fixed point p in [a,b].

Corollary 2.5 If g satisfies the hypotheses of Th. 2.4, then bounds for the error involved in using p_n to approximate p are given by

$$|p_n - p| \le k^n max\{p_0 - a, b - p_0\}$$

and

$$|p_n - p| \le \frac{k^n}{1-k} |p_1 - p_0|$$
, for all $n \ge 1$

Chapter 2.3 Newtons Method and Its Extensions

Newtons (or the Newton-Raphson) method is one of the most powerful and well known numerical methods for solving a root-finding problem. There are many ways of introducing Newton's Method.

Theorem 2.6 Let $f \in C^2[a,b]$. If $p \in (a,b)$ is such that f(p) = 0 and $f'(p) \neq 0$ then there exists a $\delta > 0$ such that Newton's Method generates a sequence $\{p_n\}_{n=1}^{\infty}$ converging to p for any initial approximations $p_0 \in [p-\delta, p+\delta]$.

Chapter 2.4 Error Analysis for Iterative Methods In this section we investigate the order of convergence of functional iteration schemes and as a means of obtaining rapid convergence, rediscover Newton's method. We also consider ways of accelerating the convergence of Newton's method in special circumstances. First, however, we need a new procedure for measuring how rapidly a sequence converges.

Defintion 2.7 Order of convergence Suppose $\{p_n\}_{n=0}^{\infty}$ is a sequence that converges to p, with $p_n \neq p$ for all n. If positive constants λ and α exist with

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^{\alpha}} = \lambda$$

then $\{p_n\}_{n=0}^{\infty}$ converges to p of order α with asymptotic error constant λ .

Theorem 2.8 Let $g \in C[a,b]$ be such that $g(x) \in [a,b]$ for all $x \in [a,b]$. Suppose, in addition that g' is continous on (a,b) and a positive constant $k \nmid 1$ exists with

$$|g'(x)| \le k$$
, for all $x \in (a, b)$

If $g'(p) \neq 0$, then for any number $p_0 \neq p$ in [a,b], the sequence

$$p_n = g(p_{n-1})$$
 for $n \ge 1$

converges only linearly to the unique fixed point p in [a,b]

Theorem 2.9 Let p be a solution of the equation $\mathbf{x} = \mathbf{g}(\mathbf{x})$. Suppose that g'(p) = 0 and g'' is continous with |g''(x)| < M on an open interval I containing p. Then there exists a $\delta > 0$ such that for $p_0 \in [p-\delta, p+\delta]$, the sequence defined by $p_n = g(p_{n-1})$ when $n \geq 1$, converges at least quadratically to p. Moreover for sufficiently large values of n.

$$|p_{n+1} - p| < \frac{M}{2}|p_n - p|^2$$

Defintion 2.10 A solution p of f(x) = 0 is a zero of multiplicity m of f if for $x \neq p$ we can write $f(x) = (x - p)^m q(x)$, where $\lim_{x \to p} q(x) \neq 0$.

Theorem 2.11 The function $f \in C^1[a, b]$ has a simple zero at p in (a,b) if and only if f(p) = 0, but $f'(p) \neq 0$

Theorem 2.12 The function $f \in C^m[a,b]$ has a zero of multiplicity m at p in (a,b) if and only if

$$0 = f(p) = f'(p) = f''(p) = \dots = f^{(m-1)}(p)$$
, but $f^{(m)}(p) \neq 0$

Chapter 2.5 Accelerating Convergence Therem 2.8 indicates that it is rare to have the luxury of quadratic convergence. We now consider a technique called Aitken's Δ^2 method that can be used to accelerate the convergence of a sequence that is linearly convergent, regardless of its origin or application.

Defintion 2.13 For a given sequence $\{p_n\}_{n=0}^{\infty}$ the forward difference Δp_n (read "deltap_n") is defined by

$$\Delta p_n = p_{n+1} - p_n \text{ for } n \ge 0$$

Higher powers of the operator Δ are defined recursively by

$$\Delta^k p_n = \Delta(\Delta^{k-1} p_n)$$
 for $k \ge 2$

Theorem 2.14 Suppose that $\{p_n\}_{n=0}^{\infty}$ is a sequence that converges linearly to the limit p and that

$$\lim_{n \to \infty} \frac{p_{n+1} - p}{p_n - p} < 1$$

Then the Aitkeyn's Δ^2 sequence $\{\hat{p}_n\}_{n=0}^{\infty}$ converges to p faster than $\{p_n\}_{n=0}^{\infty}$ in the sense that

$$\lim_{n \to \infty} \frac{\hat{p}_n - p}{p_n - p} = 0.$$

Theorem 2.15 Suppose that x = g(x) has the solution p with $g'(p) \neq 1$. If there exists a $\delta > 0$ such that $g \in C^3[p - \delta, p + \delta]$, then Steffensen's method gives quadratic convergence for any $p_0 \in [p - \delta, p + \delta]$

Chapter 2.6 Zeros of Polynomials and Mullers Method Theorem 2.16 (Fundamental Theorem of Algebra)

If P(x) is a polynomial of degree $n \ge 1$ with real or complex coefficients, the P(x) = 0 has at least one (possibly complex) root.

Corollary 2.17 If P(x) is a polynomial of degree $n \ge 1$ with real or complex coefficients, then there exist unique constants $x_1, x_2, ..., x_k$ possibly complex and unique positive integers $m_1, m_2, ..., m_k$ such that $\sum_{i=1}^k m_i = n$ and

$$P(x) = a_n(x - x_1)^{m_1}(x - x_2)^{m_2}...(x - x_k)^{m_k}$$

Corollary 2.18 Let P(x) and Q(x) be polynomials of degree at most n. If $x_1, x_2, ..., x_k$ with k ; n, are distinct numbers with $P(x_i) = Q(x_i)$ for i = 1, 2, ..., k then P(x) = Q(x) for all values.

Theorem 2.19 (Horners Method) Let

$$P(x) = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0$$

Define $b_n = a_n$ and

$$b_k = a_k + b_{k+1}x_0$$
. for $k = n - 1, n - 2,..., 1,0$.

Then $b_0 = P(x_0)$. Moreover if

$$Q(x) = b_n X^{n-1} + b_{n-1} x^{n-2} + \dots + b_2 x + b_1.$$

then

$$P(x) = (x - x_0)Q(x) + b_0$$

Theorem 2.20 If z = bi is a complex zero of multiplicity m of the polynomial P(x) with real coefficients then $\bar{z} = a - bi$ is also a zero of multiplicty m of the polynomial P(x) and $(x^2 - 2ax + a^2 + b^2)^m$ is a factor of P(x). Chapter 2.7 Survey of Methods and Software