CLIPPEDIMAGE= JP404342468A

PAT-NO: JP404342468A

DOCUMENT-IDENTIFIER: JP 04342468 A

TITLE: REFRACTORY FOR CONTINUOUS CASTING AND ITS PRODUCTION

PUBN-DATE: November 27, 1992

INVENTOR-INFORMATION:

NAME

SASAKI, KIMIAKI

TANAKA, SEIJIRO

OGUCHI, MASAO

ASSIGNEE-INFORMATION:

NAME

COUNTRY

KAWASAKI REFRACT CO LTD

N/A

APPL-NO: JP03113250

APPL-DATE: May 17, 1991

INT-CL (IPC): C04B035/58;C04B035/00;C04B035/10;C04B035/58

;C04B035/58

;B22D011/04 ;B22D011/10

ABSTRACT:

PURPOSE: The invention relates to a refractory applied to a continuous casting facility and to a method for producing the refractory, and the object of the invention is to provide the refractory capable of resisting against the long time casting of various metals such as carbon steel, stainless steel and high alloy steel and having excellent corrosion resistance.

CONSTITUTION: A refractory for continuous casting is characterized by compounding the mixture of two to four kinds of main raw materials selected from a boron nitride(BN) raw material, a silicon nitride (Si<SB>3</SB>N<SB>4</SB>) raw material, an aluminum nitride (AIN) raw material and an alumina (AI<SB>2</SB>O<SB>3</SB>) raw material with 1-15wt.% of a

spinel

(MgO.Al<SB>2</SB>O<SB>3</SB>) raw material. A method for producing the refractory comprises molding the powder of a mixture of the main raw mixture with the spinel (MgO.Al<SB>2</SB>O<SB>3</SB>) raw material and subsequently sintering the molded product at a sintering temperature of 1600-1950°C in

non-oxidative atmosphere.

COPYRIGHT: (C)1992,JPO&Japio

(19)日本国特新庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平4-342468

(43)公開日 平成4年(1992)11月27日

(51) Int.Cl. ⁵		識別記	識別記号		FΙ		技術表示簡		
C 0 4 B	35/58	102	2 A W F						
	35/00 35/10 35/58								
		101	Α						
		102	Y	8821-4G					
					審査請求	未請求	: 諸求項の数2(全 6 頁) 最終頁に続く		
(21)出顧番号		特顧平3-113250			(71)	出願人	000199821		
							川崎炉材株式会社		
(22)出顧日		平成3年(1991	月17日			兵庫県赤穂市中広字東沖1576番地の2			
					(72)	発明者	佐々木 王明		
							兵庫県赤穂市中広字東沖1576番地の2 川		
							崎炉材株式会社内		
					(72)	発明者	田中 征二郎		
							兵庫県赤穂市中広字東沖1576番地の2 川		
							崎炉材株式会社内		
					(72)	発明者	小口 征男		
					·		兵庫県赤穂市中広字東沖1576番地の2 川		
							崎炉材株式会社内		
					(74)	代理人	弁理士 福井 豊明		
					(14)		71 Law 1871 St. 74		

(54) 【発明の名称】 連続鋳造用耐火物及びその製造方法

(57)【要約】

【目的】 連続鋳造設備に適用される耐火物とその製造 方法に関し、炭素鋼、ステンレス鋼及び高合金鋼等の種 々の金属の長時間鋳込みに耐えうる耐食性に優れた耐火 物を提供することを目的とするものである。

【構成】 窒化硼素 (BN) 質原料、窒化珪素 (Si3 N₄) 質原料、窒化アルミニウム (A1N) 質原料及び アルミナ (A 12 O3) 質原料から選ばれる2~4種類 の主原料混合物に対し、スピネル(MgO・Al 2 ○3) 質原料1~15重量%を配合してなる構成の連 続鋳造用耐火物であり、その製造に際しては上記主原料 混合物及びスピネル (MgO・Alz Oz) 質原料の混 合粉末を成形した後、得られた成形体を非酸化性雰囲気 中で1600~1950℃の焼結温度で焼結させる構成 とする。

【特許請求の範囲】

【請求項1】 窒化硼素 (BN) 質原料、窒化珪素 (S 1_3 N₄) 質原料、窒化アルミニウム (A 1 N) 質原料 及びアルミナ (A 1_2 O $_3$) 質原料から選ばれる $2\sim 4$ 種類の主原料混合物に対し、スピネル (MgO・A 1_2 O $_3$) 質原料 $1\sim 15$ 重量%を配合してなることを特徴とする連続鋳造設備用耐火物。

【請求項2】 上記主原料混合物及びスピネル(MgO・Al2 O3)質原料の混合粉末を成形した後、得られた成形体を非酸化性雰囲気中で1600~1950℃の 10 焼結温度で焼結させることを特徴とする連続鋳造用耐火物の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は耐火物に関し、特に連続 鋳造設備に適用される耐火物とその製造方法に関するも のである。

[0002]

【従来の技術】水平連続鋳造設備において、例えばブレークリング等のタンディッシュと鋳型を連結する部材に 20 使用される耐火物としては、従来から珪素 (Si) 質原料の成形体を直接窒化する反応焼結法で得られる窒化珪素質 (Si3N4) 耐火物や、電気炉内の成形型に収めた窒化硼素質 (BN) 原料を加圧しながら成形するホットブレス焼結法で得られる窒化硼素質 (BN) 耐火物が採用されてきた。

【0003】上記2種類の耐火物のうち、窒化珪素質 (SinNi)耐火物は機械的強度に優れる反面、熱膨 張率が比較的大きいために、鋳造の開始初期に溶鋼より 受ける熱衝撃によって割れに至る欠点がある。また窒化 30 硼素質 (BN)耐火物は耐熱衝撃性に優れ、しかも溶鋼 との濡れ性が小さいものの、ホットプレス焼結法により 製造されるため、成形体の形状が成形型に依存すること となり、適用される装置に合わせて形状を自由に設計できず、特に複雑な形状の場合、成形型の製造コストが高騰することとなる。さらに、機械的強度および硬度が劣るために、溶鋼の通過時に受ける摩耗作用によって大きく損耗される欠点がある。

[0005]

【発明が解決しようとする課題】しかしながら上記特開 昭56-120575号公報に記載の耐火物は一般的な 50

炭素鋼の連続鋳造には充分な耐熱衝撃性を有するが、炭素鋼の長時間鋳造や、特にステンレス鋼の鋳造に対しては、母相を形成する窒化珪素が選択的に溶損され、このような損傷に伴うピレット表面性状の悪化を招いたり、耐火物が破損し、ブレークアウトを生じる原因ともなり、長時間の安定鋳造が極めて困難であった。

【0006】また、上記特公昭58-30265号公報で開示された、窒化珪素、窒化硼素、窒化アルミニウムの各原料を配合した耐火物も耐食性の点で繋があり、上記特開昭60-51669号公報で開示された酸化アルミニウムを含有させることにより耐食性を一定程度向上させることができるが、これもステンレス鋼の長時間鋳込に対しては依然耐食性に不満がのこる。しかも、上記いずれの耐火物においてもアルミニウム成分が多くなるので熱膨張率が大きくなり、耐熱衝撃性の劣化が著しく、耐熱衝撃性の向上を目的として添加した窒化硼素の効果が薄れるという逆効果につながりかねない。

【0007】よって、例えば水平連続鋳造設備用プレークリング等に適用される連続鋳造用耐火物としては、特に耐熱衝撃性に優れ、溶鋼と濡れ難いこと、耐食性と耐摩耗性が大きいこと、および高度な寸法精度が要求されるために加工が容易であることなどの各特性を満たすことがまたれている。本発明はこのような種々の課題を解決するためになされたものであって、水平連続鋳造用プレークリングに求められる基本的な特性を満足し、特に炭素鋼はもとよりステンレス鋼及び高合金鋼の長時間鋳込みに耐えうる耐食性に優れた耐火物を提供することを目的とするものである。

[0008]

【課題を解決するための手段】上記の目的を達成するために本発明は以下の手段及び方法を採用する。すなわち、窒化硼素(BN)質原料、窒化珪素(SinN4)質原料、窒化アルミニウム(A1N)質原料及びアルミナ(A12O3)質原料から選ばれる2~4種類の主原料混合物に対し、スピネル(MgO・A12O3)質原料1~15重量%を配合してなる連続鋳造設備用耐火物であり、該連続鋳造用耐火物の製造方法としては、まず上記各構成成分を均一に混合し、成形した後、得られた成形体を非酸化性雰囲気下で1600~1950℃の焼結温度で焼結する。

【0009】尚、上記室化硼素(BN)質原料、窒化珪素(SinN4)質原料、窒化アルミニウム(AlN)質原料及びアルミナ(Al2On)質原料の各配合量は本発明においては特に限定しないが、望ましい配合量の一例として、上記4種のうち例えば、窒化硼素(BN)質原料、窒化珪素(SinN4)質原料、窒化τルミニウム(AlN)質原料5~70重量%、窒化τルミニウム(AlN)質原料25~75重量%、窒化アルミニウム(AlN)質原料3~35重量%とすることが望まし

3

41

[0010]

【作用】本発明では上記主原料混合物に、スピネル(M g 〇・A 1 2 〇3) 質原料 1~ 1 5 重量%を複合添加混 合し、これを成形し、さらに非酸化性雰囲気下で焼結し たところ、焼結性が著しく向上し、組織の緻密化が認め られ、また、強度および耐熱衝撃性の改善が見出され、 さらに主要な特性である耐食性についても改善された。

【0011】ここで、主原料粉末および焼結条件を限定 した理由およびその具体的構成について以下に詳細に説 10 明する。上記室化硼素質原料は得られる焼結体の耐熱衝 撃性を向上させる作用を有し、例えばその配合量が5重 量%未満とすると相対的に窒化珪素質原料の配合量が多 くなり、そのために焼結体の耐熱衝撃性が低下し、ま た、強度が必要以上に高くなるために機械加工性も低下 する一方で、70重量%を超える配合量とすると、焼結 体中の上記室化珪素質原料が相対的に不足して、必要な 強度の維持が困難になる。なお、上記室化硼素質原料中 に包含される酸化硼素 (B2 O3) を主体とするフラッ れが1重量%未満の場合、焼結性に乏しく、逆に5重量 **%以上になると焼結体の高温特性を劣化させることにな** り、好ましくない。

【0012】次に窒化珪素質原料は上記窒化硼素質原料 との直接的な反応はしないが、得られる焼結体の機械的 強度を向上させる作用があるが、その一方で過量に配合 されると、焼結体の強度が必要以上に高くなり、安定し た機械加工性が失われ、しかも耐熱衝撃性も劣化するの で好ましくない。従ってその配合量は例えば25~75 重量%の範囲が好適とされ、25重量%未満では強度お 30 よび耐摩耗性の向上が焼結体の特性に反映されにくく、 水平連続鋳造用プレークリングとしての使用に耐えられ ず、損傷が大きくなる傾向にあって好ましくなく、一 方、75重量%を超える配合量とすると焼結体の強度が 必要以上に高くなり、安定した機械加工性が失われ、し かも耐熱衝撃性も劣化するので好ましくない。

【0013】さらに、窒化アルミニウム質原料は後述す るスピネル質原料とともに焼結体の緻密性を向上させる 作用を有し、例えばその添加量は3~35重量%の範囲 確に表れず、逆に15重量%を超えると焼結体の熱膨張 係数が大きくなって耐熱衝撃性が劣化するとともに溶鋼 に対する耐食性が低下するので好ましくない。

【0014】さらに主原料としてのアルミナ(Ala O 3)質原料は、焼結体の溶鋼に対する耐食性を一段と向 上させる効果があるが、その反面、過量に配合すると耐 熱衝撃性を低下させることとなり、上記他の物質とのバ ランスを考慮して配合量とすることが望ましい。また、 MgO・Al₂O₃ の添加量は1~15重量%が好適で あり、1重量%未満の添加量では、上記AlNの場合と 50 気中1800℃でホットプレス(200kg f / cm² 荷

同様に溶鋼に対する耐食性が低下し、逆に15重量%を 超えると高温特性の劣化を招くこととなり、好ましくな

【0015】本発明において、AlN及びMgO・Al 2 O3 を複合添加したことによって焼結体の緻密性が向 上した理由については、次のように考えられる。すなわ ち、AlN及びMgO・Al2 O3はともに一部がSi 3 N. の焼結助剤としての役割を果たし組織構成粒子が 強固に結合することになる。また各成分粒子間に介在 し、気孔を通して溶鋼が焼結体組織に侵入するのを抑制 する役割を果たすものである。またAIN及びMg〇・ Al₂O₃の残部は上記Sl₃N₄に固溶し、Sl₃N 4 自体の溶鋼、特にステンレス鋼に対する耐食性の著し い増大に寄与する。

【0016】本発明においては、上記AlN及びMgO A1. O。は別々に添加しても一定の効果をうること ができるものの、両者を同時に添加することによって上 記効果がより一層顕著に発揮され、焼結体の組織の緻密 化及び耐食性の向上につながることが確認された。ま クス成分は、 $1\sim5$ 重量%含有するものが好ましく、こ 20 た、上記各原料は粒径約 $0\cdot\cdot 2\sim 10$ μ mの粉末で配合 することが望ましい。

> 【0017】次に焼結条件について温度が1600℃未 満では緻密な焼結体を得ることが困難となり、1950 ℃を超えるとSi₃ N₄ の分解が起こり、やはり緻密な 焼結体が得られない。そして、焼結雰囲気については常 圧もしくは加圧のいずれでも良いが、得られる焼結体の 性能面および経済性からいえば、3~10kg/cm²の窒 素加圧が好ましい。

【0018】以上の条件によって得られた焼結体は歉 密、かつ、高強度を有し、施盤、フライス盤等による機 械加工性が良好であり、種々の形状を持った水平連続鉄 造用プレークリングへの加工ができる。

[0019]

【実施例】以下、本発明に関し実施例をもとに説明す

(1)物性值測定試験

BN粉末、Sia Na 粉末およびAIN及びMgO・A 1. O3 粉末を表1に示す割合で配合し、これに有機物 バインダー(例えば本実施例ではポリビニールアルコー が適当であり、3重量%未満ではAINの添加効果が明 40 ル)を添加した後、24時間混合した。この粉末混合物 を500×50Hmmの円柱状のテストピースに成形し、 その後、窒素雰囲気中1800℃で焼結した。本発明に かかる実施例No. 1~8に対し、比較例として示したN 0. 9~14は上記本発明を構成する各物質の作用を明 らかとするための供試体である。

> 【0020】次に得られた焼結体を、評価試験用所定寸 法に切り出し、密度、抗折強度、耐熱衝撃性およびSU S304に対する耐食性試験を実施し、各試験の測定値 を表2に示す。尚、実施例No. 6a及び6bは窒素雰囲

重)及びHIP (1500kgf/cm² 荷重)焼結をおこなった試料であり、これらの製造方法によって得られた焼結体はより一層緻密化、高密度化が見られ、本発明による効果が顕著となる。

【0021】表2によれば、抗折強度はNo. 13に見られる程の高い抗折強度では成形後の機械加工性が極めて低く実用には適さず、No. 1~8の本発明に係る実施例*

*品程度の強度が適当と評価できる。また耐食性はNo. 1 ~8の本発明に係る実施例品はいずれも向上したことを示しており、耐熱衝撃性で一部No. 9~13までの比較例品に劣るが、総合的な耐用性の向上が期待でき、これらの結果から所期の効果は明らかである。

6

[0022]

【表1】

	No.	BN	Si. N.	AIN	MgO AlzO,
	1	2 5	6 7	5	3
実施	2	2 5	5 0	20	5
	3	18	4 7	3 0	5
	4	2 5	5 0	15	1 0
	5	2 0	4 5	2 5	1 0
	6	2 5	5 5	15	5
6 4	6 a	2 5	5 5	1 5	5
	6 b	2 5	5 5	1 5	5
	7	3 0	5 7	1 0	3
	8	15	6 7	15	3
比	9	3 0	7 0		-
	10	3 0	5 8	12	
較	11	3 0	6 2	_	8
	12	2 5	5 6	2	17
例	13	3	7.7	15	5
	1 4	8 0	9	8	3

単位は重量%

[0023]

【表2】

8

	Na	在 (g/cm²	度)	抗折強度 (kgf/mm²)	耐熱衝撃性 △T(℃)	耐食性 (1550°C×8h) 溶損指數(SUS 304)‡
宴	1	2. () 1	1.4	700	6 4
	2	1. 9	8 6	9	650	5 4
准	3	2.	1 2	10	600	4 8
	4	2. (3	1.2	650	5 3
	5	2. (8 (1 1	600	6 1
	В	2. (5 0	11	600	2 1
	6 a	2. 3	2 5	18	600	1 6
	6 b	2.	3 0	20	600	1 5
9 4	7	1.	B 6	9	750	3 3
	8	2.	1 4	17	600	7 2
比	9	1.	7 9	5	800	100
	10	1.	7 4	5	750	8 4
較	1 1	1.	7 2	4	750	8 B
	12	2.	0 7	6	650	7 4
(N	1 3	2.	7 8	3 6	500	183
	14	1.	4 1	3	950	9 4

*溶損指数は比較例9の溶損量を100としたときの相対的な指数で表す。

【0024】(2)実機使用試験

BN粉末25重量%、S13 N4 粉末55重量%および AlN粉末15重量%及びMgO・Al2 O3 粉末5重 量%からなる混合粉末に有機物パインダーを外掛け5重 量%添加し、成形した後、窒素雰囲気中1820℃で焼 央に90㎜四方の角孔を穿孔した厚さ22㎜の角状プレ ークリングを加工した。これを実際に水平連続鋳造設備 のタンディッシュと鋳型との管にセットし、引抜連続2 m/分および引抜長さ200mの条件でステンレス鋼 (SUS304) の角ビレットを30 t 鋳込んだ結果、 完鋳することができた。その際、ブレークリングの割れ は全く認められず、また溶損も軽微なものであった。な お、比較のために反応焼結室化硼素(BN)-窒化珪素 (Si N4)質プレークリングを用いて同時平行で連 続鋳造を行ったところ、完鋳はできたが、プレークリン 40 グ内周部の組織剥離を伴った損耗速度の増大が原因でビ レット表面性状が悪化した。

【0025】尚、上記物性値測定試験、及び実機使用試 験ではアルミナ質原料を添加した例を示さなかったが、 該アルミナ質原料の適正な配合によりさらに耐食性が向 上することは明らかである。さらに本発明にかかる連続 鋳造用耐火物は上記実施例のような水平式の連続鋳造設 結して得られた焼結体から、1 2 5mm四方の正方形の中 30 備だけでなく、垂直式の連続鋳造設備にも適用できるこ とは勿論、非鉄金属の鋳造に供する耐火物としても使用 することができることはいうまでもない。

[0026]

【発明の効果】以上のように本発明によれば、表記の配 合量で配合した窒化アルミニウム (A1) 質原料及びス ピネル (MgO・Ala Oa) 原料が焼結体内で均質分 布することにより、より観察で均質な組織を持ち、耐熱 衝撃性に優れ、溶鋼と濡れ難く、耐食性と耐摩耗性にも 優れ、高度な寸法精度での機械加工が可能な連続鋳造用 耐火物を製造することができる。これによって、従来材 質とは異なり、長時間の鋳込に対しても安定した操業が 可能になった。

フロントページの続き

(51) Int. Cl. 5

識別記号 广内整理番号

FΙ

技術表示箇所

C 0 4 B 35/58

104 A 8821-4G

Y 8821-4G

// B 2 2 D 11/04

114

7217-4E

11/10 3 6 0 G 8823-4E