ELEC 474

Machine Vision

Lab 5

Epipolar Lines

Tuesday November 5th, 2019

Find the Fundamental Matrix between a stereovision image pair.

Print out the elements of the matrix on the console.

Select a series of points (by mouse click) in one image, and display the corresponding epipolar lines in the other image.

Marking Scheme:

Fundamental Matrix computation: 4 marks

Epipolar Line display: 3 marks

TOTAL: 7 marks

Notes:

- 1. To calculate the Fundamental Matrix, use OpenCV routine **findFundamentalMat**. The input to this routine are two corresponding point sets, one for each image.
- 2. For some variations of **findFundamentalMat** (e.g. those using **FM_RANSAC**), the correspondences between the two input point sets don't have to all be correct, so long as there are at least 7 true positives. The greater the number of true positives in the corresponding point sets, the more likely the resulting Fundamental matrix will be correct and accurate. The results from Lab 4 can be used to determine these true positive correspondences point sets.

3. The routine computeCorrespondEpilines can be used to compute the epipolar line for an input point.
4. Use the routine setMouseCallback to process mouse click input.