

1) Publication number:

A61F 13/54

0 347 746 B1

(2)

EUROPEAN PATENT SPECIFICATION

- (4) Date of publication of patent specification: 16.12.92 (1) Int. Cl.⁵: A61F 5/441, B32B 5/30, B32B 7/02, B32B 27/12,
- (1) Application number: 89110859.9

2 Date of filing: 15.06.89

Divisional application 92201497.2 filed on 15/06/89.

- Sicomponent material.
- Priority: 23.06.88 US 210672
- 43 Date of publication of application: 27.12.89 Bulletin 89/52
- (45) Publication of the grant of the patent: 16.12.92 Bulletin 92/51
- Designated Contracting States: AT BE CH DE ES FR GB GR IT LI LU NL SE
- (56) References cited:

EP-A- 0 301 491

DE-B- 2 850 227

US-A- 3 340 875 US-A- 3 929 135 US-A- 3 843 478

US-A- 4 725 481

US-A- 4 342 314

- 73 Proprietor: THE PROCTER & GAMBLE COM-**PANY** One Procter & Gamble Plaza Cincinnati Ohio 45202(US)
- Inventor: Ryan, Leslie Darryi 527 Cochran Road Miliville Ohio 45013(US) Inventor: Spahni, Milton Daniel 6131 Jenkins Road Okeana Ohio 45053(US) Inventor: Steinhardt, Mark John 265 Stockton Drive Loveland Ohio 45140(US) Inventor: Baird, James Clark 5465 Kirby Road No.15 Cincinnati Ohio 45223(US)
- (4) Representative: Gibson, Tony Nicholas et al Procter & Gamble (NTC) Limited Whitiey Road Longbenton Newcastle upon Tyne NE12 9TS(GB)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

25

30

35

45

Description

FIELD OF THE INVENTION

This invention relates to films which are exposed to both liquid and gas media, and more particularly to polymeric films through which liquids are transmitted and further provide for odour control.

BACKGROUND OF THE INVENTION

It is often desirable to control, or prevent, the exposure of both liquid and gas media to people. For example, if the liquid is urine or menses, it is desirable to keep the liquid from contacting the skin of the person. Furthermore, it is recognized such liquids often generate malodorous gases which are objectionable.

The prior art has attempted to deal with this problem by absorbing the liquids and/or deodorizing any resultant gases. For example, US Patent 2,690,415, issued to Shuler September 28, 1954, discloses an odour absorbent medium wherein the active is layered in two strata, one on each side of a core of cushion plies. This assembly, which is then sandwiched by an outer covering, however provides no means to control, or contain, any liquids which may generate the gases adsorbed by the active strata.

US Patent 4,342,314, discloses polymeric films providing unidirectional liquid transport. This film can beneficially be used as a topsheet for absorbent products. However, this topsheet film is not a laminate and does not provide an active odour control.

US Patent 3,939,838, issued to Fujinami et al. on February 24, 1976, discloses a catamenial pad which has a deodorant active dispersed throughout an absorbant core. US Patent 2,418,907, issued to Schreiber on April 15, 1947, discloses a sanitary napkin with a deodorant medium disposed in discrete pockets between the topsheet and absorbant core of the napkin. These teachings, however, suffer from the drawback that malodorous gases exiting the absorbant core towards the topsheet may not encounter the active dispersed therethroughout if such gases are generated at an elevation above the deodorant active, or may encounter the border areas between individual pockets of the deodorant. Furthermore, no means to prevent wetting of the deodorant upon fluid entry, and possibly subsequent loss of efficacy, is provided by these teachings.

BRIEF SUMMARY OF THE INVENTION

It is an object of this invention to provide a

material which overcomes the aforementioned problems. Specifically, it is an object of this invention to provide a material which will provide a means for the control of both gases and liquids. More specifically, it is an object of this invention to provide a material which will transmit liquids, and expose any malodors generated by such liquids, or otherwise occurring, to a means of odor control.

The invention comprises a bicomponent film laminate which transmits liquids deposited on the laminate in one direction and exposes an active to malodors attempting to pass through the laminate in the opposite direction. The laminate comprises a first polymeric lamina exhibiting a pattern of discrete apertures and having opposed outwardly and inwardly oriented faces. The invention also comprises a second lamina having an odor control means and an inwardly oriented face associated with the inwardly oriented face of the first lamina and an outwardly oriented face opposed thereto. The second lamina has a pattern of discrete apertures, substantially coinciding with the apertures of the first lamina. The laminate permits liquids deposited on the outwardly oriented face of the first lamina to pass through the discrete apertures without substantially wetting the second lamina and prevents malodors from passing through the laminate in the direction opposite to the direction of liquid transmission without substantial exposure of the gaseous malodors to the outwardly oriented face of the second lamina.

BRIEF DESCRIPTION OF THE DRAWINGS

While the Specification concludes with claims particularly pointing out and distinctly claiming the invention, it is believed that the same will be better understood from the figures taken in conjunction with the following descriptions, wherein like parts are given the same reference number in the figures and similar or analogous parts are designated with a prime symbol or by adding 100 to the reference numeral.

Figure 1 is a cross sectional view of an embodiment of the laminate of the present invention having a formed film first lamina;

Figure 2 is a cross sectional view of a second embodiment of the present invention having a nonwoven material first lamina;

Figure 3 is a perspective view of a catamenial pad incorporating the laminate of the present invention:

Figure 4 is a vertical sectional of one embodiment of the catamenial pad of Figure 3, taken along line 4-4 of Figure 3;

Figure 5 is an enlarged view of the topsheet of the catamenial pad of Figure 4;

Figure 6 is a vertical sectional view of a third

25

30

35

3

embodiment of the catamenial pad of Figure 3, taken along line 4-4 of Figure 3.

DETAILED DESCRIPTION OF THE INVENTION

The invention comprises a bicomponent material adapted to pass fluids in a first direction and simultaneously inhibit or, substantially prevent, the transmission of gaseous malodors in the opposite direction. The gaseous malodors may, but do not necessarily, emanate from the fluids. The invention is particularly well suited for fluids, or liquids, which may originate from the human body including, for example, menses, other vaginal discharges, blood, urine, and perspiration. Such liquids typically exude malodors which are generally classified as amines, mercaptans, fatty acids and the like. As described below, this invention may be advantageously incorporated into articles of manufacture which deal with bodily liquids, including, but not limited to, catamenial pads, panty liners, bandages, diapers, tissues, bedding, adult incontinent products, underarm shields, foot pads and colostomy aids.

The bicomponent material comprises at least two laminae joined to form a unitary laminate. Obviously both laminae must be provided with a cooperating means to permit liquids to pass through the laminae, otherwise the liquids may become trapped between the laminae and possibly result in delamination. Conversely, both laminae should cooperate to prevent malodors from passing through the laminate in the direction opposite that of fluid transmission.

Referring to Figure 1, a first polymeric lamina 10 particularly well suited to these ends and which provides a substrate to which the second lamina 12 is applied is a film, such as a polyolefinic thermoplastic, having a thickness ranging from about 0.01 mm to about 0.3 mm (0.0005 to 0.01 inches). An apertured formed film 10 is desirable due to its inherent tendency to be liquid pervious, yet nonabsorbent. Thus, the surface of the formed film 10 will remain dry and hence more comfortable to the wearer should the invention be utilized as a topsheet in one of the exemplary articles of manufacture noted above. It is also important that the first lamina 10, if utilized as the topsheet of an absorbant article, be compliant, soft-feeling and nonirritating to the skin. Other nonlimiting examples of first laminae 10 include woven and nonwoven materials made of polyester, polypropylene, nylon, polyethylene, rayon, and blends thereof.

Optionally, the outer face of the first lamina 10 may be treated with a surfactant to render this surface more hydrophilic, and thereby result in faster penetration of liquids deposited on the surface through the laminate 14. Surfactants sold by Imperial Chemical Industries of London England

under the names Atmer 645 and Atmer 685 are suitable. Such a treatment may diminish the likelihood that bodily fluids will flow off of the first lamina 10, or topsheet, and stain clothing. Furthermore, any liquids which are not transmitted through the laminate 14 may emit malodors which are not acted on by the second lamina 12 of the invention.

The second lamina 12 provides the principal means for controlling odors associated either with liquids passing through the laminate 14 or originating from other sources. Known means for odor control include adsorption, absorption, and chemical reaction such as chemical neutralization, including complexation, ion-pairing and the like, or chemically breaking down malodorous gases into constituents which are more readily adsorbed or neutralized. Usually such means act to reduce the liquid vapor pressure of the absorbed fluids and the concentrations of malodorous gases near the second lamina 12.

A preferred adsorbtive material for the second lamina 12 is activated charcoal, such as coconut charcoal, having an average particle size of 2-4 microns. An important advantage of an activated charcoal second lamina 12 is that it imparts increased opacity to the laminate 14, causing transmitted liquids to be somewhat hidden from view by preventing light from being transmitted through the laminate 14 and illuminating liquids which have been transmitted through the laminate 14.

Additionally, from about 1 to about 15 weight percent whiteners may be added to the first lamina 10 to further increase opacity and mask the dark coloring of the charcoal, or other active. Whiteners such as titanium dioxide and calcium carbonate are feasible, and are generally limited by the increased tearability and decreased comfort to the skin of the wearer such whiteners impart to the first lamina 10.

Other adsorbtive materials which work to control odors and may be utilized independently of or in conjunction with the activated charcoal second lamina 12 described above include but are not limited to zeolites or molecular sieve products such as sold by the Union Carbide Company of Danbury, Connecticut under the name Abscents, and metal salts of copper, iron, zinc, cobalt and others. An absorbant, such as a polyacrylate absorbant gelling material, may also be used for the second lamina 12.

The second lamina 12 may be joined to the first lamina 10 by mechanical entrapment, adhesion or a combination of both. Adhesive bonding of the laminae provides the advantage that a wide range of materials and forms of materials may be joined by this method.

If adhesive bonding is the selected means to join the two laminae, the adhesive is preferentially applied to the first lamina 10. The adhesive may be

50

25

30

40

45

50

55

applied to the first lamina 10 by spraying from a spray gun having an atomizing nozzle or printing the lamina 10 with the adhesive using a roll coating technique, as is known in the art.

Any means which provides a generally thin, even coating of adhesive, typically about 3.1 to about 3.7 mg per cm² of substrate, is suitable. It is important that the adhesive, or other joining means, not totally encapsulate or obscure the materials of the second lamina 12, and thereby prevent the second lamina 12 from acting on gaseous malodors. The adhesive is preferably pressure sensitive and safe for epidermal and other human application. Adhesives such as the type sold by Dow Corning of Midland, Michigan under the name 355D Silicone and by Eastman Chemical Products, subsidiary of Eastman Kodak, Rochester, New York, under the name Eastobond A-3 have been found to work well.

After the first lamina 10 is coated with adhesive, the material of the second lamina 12, which is typically in a powdered or granular state, is applied to the adhesive. The second lamina 12 material may be applied by such means as brushing, blowing or spraying against the first lamina 10, drawing the first lamina 10 through a fluidized bed of the second lamina 10 or any means of application known in the art which brings the material of the second lamina 12 into contact with the adhesive of the first lamina 10. A coating of approximately 2.2 to approximately 8.8, typically 5.5 mg, of activated charcoal per cm² of second lamina 12 has been found to work well.

If desired, the second lamina 12 could be applied to first lamina 10 as a grid, or network of discrete odor control elements (not shown). This is accomplished by applying the adhesive to first lamina 10 in a desired pattern, such that second lamina 12 adheres to first lamina 10 only at specific discrete sites. This arrangement provides the advantage that less second lamina 12 material may be used, and substantially full coverage of laminate 14 is maintained. If desired, the density of second lamina 12 material applied to the first lamina 10 can be varied throughout the laminate 14.

Alternatively, the laminae may be joined by mechanical entrapment of the materials of the second laminae 12. The first lamina 10 is heated to its melting range, then the second lamina materials 12 are applied, as described above, to the first lamina 10 as it passes between pressure rolls, embedding the materials of second lamina 12 into the first lamina 10. Upon solidification, the second lamina 12 materials are entrapped, or embedded, in the first lamina 10. If desired, the first lamina 10 may be adhesive coated prior to passing between the pressure rolls for further assurance the laminae will be joined into a unitary laminate.

After joining, each lamina has an inwardly oriented face associated with an inwardly oriented face of the other lamina and an outwardly oriented face opposed to the outwardly oriented face of the other lamina. The laminae are preferentially contiguously joined and, depending on the material selected for the first lamina, may be apertured or unapertured.

If the laminate 14 is to be used, for example, in a diaper or catamenial pad, the outwardly oriented face of the first, or polymeric film, lamina 10 is oriented towards the body of the wearer and the inwardly oriented face of the first lamina 10 is oriented towards the core of the diaper or pad. The outwardly oriented face of the second, or deodorizing, lamina 12 is oriented towards the core of the catamenial pad or diaper and the inwardly oriented face of the second lamina 12 is oriented towards the body of the wearer.

To permit transmission through the laminate 14 of any liquids deposited on the outwardly oriented face of the first lamina 10, the laminate 14 must be provided with a pattern of discrete apertures 16. If a formed film, as shown in Figure 1, is used for the first lamina 10, the apertures 16 are preferably provided after the laminae are joined into a unitary laminate 14, as described above, so that the apertures 16 of the laminae are in register, i.e. the apertures 16 of the second lamina 12 substantially coincide with the apertures 16 of the first lamina 10.

Several processes are known and suitable for producing apertures 16 in a formed film laminated structure 14. One such process is to bring the outwardly oriented face of the second lamina 12 into contact with a forming screen which has the desired aperture size and pattern. A vacuum draws the laminate 14 against the forming screen. While the vacuum is applied, a water jet heated to slightly below the melting point of first lamina 10 is passed over the outwardly oriented face of the first lamina 10, perforating and forming the laminate 14 in a configuration corresponding with that of the forming screen.

Circumscribing each perforation, or aperture 16, of the formed film 10 is material, known as cones 22, extruded into the screen and which remains generally perpendicular to the plane of the laminate 14. The cones 22 should have a caliper, defined as the dimension of the cone 22 perpendicular to the plane of the laminate 14, of approximately 0.5 mm (0.02 inches). The cones 22 provide vertical stanchions which prevent liquids deposited on the exterior face of the first lamina 10 and transmitted through laminate 14 from passing back through the laminate 14 from the second lamina 12 towards the first lamina 10. The cones 22, or stanchions, also buffer, or keep, the second

lamina 12 away from any liquids transmitted through the laminate 14.

If a woven or nonwoven material is used for the first lamina 10', as shown in Figure 2, the threedimensional character of the lamina 10' having fibers of about 0.5 to about 6, typically 3, denier will prevent wetting of all but the exteriorly positioned fibers, and keep any inwardly disposed fibers, and the second laminae 12' associated therewith, from being substantially wetted by transmitted liquids. Several means are potentially available to further prevent wetting of the second lamina 12' associated with a woven or nonwoven fibrous first lamina 10'. For example, the fibers of the first lamina 10' which are disposed opposite the outwardly oriented face of the first lamina 10' could be made of an absorbent material, while the fibers of the first lamina 10' disposed near the outwardly oriented face of the first lamina 10' could be made nonabsorbent. Alternatively, a laminate 14' of the invention could be provided, as described above, having an additional first lamina 10' (not shown) substantially adhered to the side of the laminate 14' having second lamina 12'. This provides a thin, sacrificial layer of the first lamina 10' fibers, not having material of the second lamina 12' associated therewith, continuously joined to the second lamina 12' by means of adhesive. The thin sacrificial layer of the first lamina 10' encounters any liquids transmitted through the laminate 14', and provides a standoff distance between such liquids and the second lamina 12', thereby keeping the second lamina 12' substantially dry.

Adhesive may be applied to a woven or non-woven material 10', or any other apertured first lamina 10', as illustrated in Figure 2, by roll printing. The roll pressure must be adjusted to prevent obturating the apertures 16' with the adhesive. Another means to provide adhesive to woven and nonwoven materials is to coextrude the adhesive with the fibers of the materials, using known techniques, so that approximately one-half of the fiber cross-section is composed of adhesive, following which the fibers are formed into a woven or nonwoven lamina 10' using conventional techniques. After forming the fibers into first laminate 10', the material of the second lamina 12' is applied using any of the aforementioned techniques.

A third means (not shown) to substantially prevent wetting of the second lamina 12 of any laminate 14 described herein is to provide a material having high hydrophilicity, such as an absorbant gelling material, typically a polyacrylate, in the vicinity of the outwardly oriented face of the second lamina 12'. This will remove any deposited fluids which pass through the laminate 14, thereby diminishing exposure of such liquids to the second lamina 12 and preventing the liquids from migrating

towards the outwardly oriented face of the second lamina 12 after passing through the laminate 14. A polyacrylate of the type disclosed by U.S. Patent No. 4,654,039 issued to Brandt et al., and which is incorporated herein by reference, is suitable. Such materials often swell, or expand, in the presence of water, therefore care must be taken to associate the polyacrylate with laminate 14 in a position where the polyacrylate can expand without coming into substantial contact with the laminate 14, and particularly second lamina 12.

It may be further possible to incorporate the material of the second lamina into a basis matrix of the first lamina (not shown). For example, an open cell foam sheet can be provided with a density which increases throughout the thickness of the foam sheet. This causes any liquids deposited on the top, or less dense areas, of the foam to be rapidly transmitted via an internal capillary network to the more dense underlying foam areas. The density gradient will prevent any such transmitted liquids from returning to the top surface of the foam, entrapping such liquids in the underlying areas. If desired, absorbant gelling materials, such as polyacrylate, may be provided in the underlying areas of the foam to further ensure rapid transmission of deposited liquids through the upper parts of the foam and prevent the return of such liquids to the top of the foam sheet.

Dispersed throughout the foam sheet, and above the elevation of any absorbant gelling materials, is the second lamina. This second layer is provided during the manufacture of the foam by adding the granular materials before the foam solidifies. The second lamina is preferably positioned at a high elevation within the foam matrix, so that any liquids will be rapidly transmitted past the elevation of the second lamina, keeping the second lamina from being substantially wetted by the liquids. The second lamina must also be above the elevation of any liquids collected in the lower elevation of the foam to prevent wetting from absorbed liquids, as well as liquids being transmitted to the lower elevation. However, malodors emanating from the transmitted liquids, or other sources, will encounter the second lamina as such malodors migrate towards the top of the foam.

A laminate 14 having approximately 5 to approximately 60 percent, open area, typically about 25 percent, is generally sufficient to transmit deposited liquids, while preventing malodor transmission without substantial exposure of the malodors to the second active lamina 12. The percent open area of a fibrous laminate 14' may be varied according to the density and distribution of fibers, while the percent open area of a formed film laminate 14 may be varied by adjusting the size and spacing of the apertures 16.

30

If the invention is to be used in conjunction with liquids or gases which originate from the human body, it may be desirable to associate the laminate 14 with a means for collecting liquids which pass therethrough and/or a means for collecting gases which are prevented from passing therethrough. Several such means will be apparent to one skilled in the art and nonlimiting examples wherein the laminate 14 is executed in a catamenial pad, and relatedly in a diaper or adult incontinent product, having both means to collect transmitted liquids and nontransmitted gases is provided below. A further example of incorporating the laminate 14 of this invention into bedding is provided.

Referring to Figure 3, a catamenial pad 24 comprises a liquid permeable topsheet 26, a liquid impermeable backsheet 28 and an absorbant core means 30 disposed therebetween. As shown in Figure 4, the absorbant core means 30 has a first face and a second face opposed thereto. The backsheet 28 overlays the first opposed face of the core means 30, sealing the sides, ends and bottom of the pad 24 and contacts the undergarment of the wearer when the catamenial pad 24 is in use. The topsheet 26 overlays the second opposed face of the core means 30 and is placed against the body of the wearer when the catamenial pad 24 is in use.

As shown in Figure 5, the topsheet 26 of the pad may be composed of the bicomponent formed film laminate 14 described above, and illustrated by Figure 1, the details of which will not be repeated here. Topsheets 26 having a first lamina 10 constructed according to the teachings of U.S. Patent No. 4,342,314 issued to Radel et al. and U.S. Patent No. 3,929,135 issued to Thompson work well. It is to be recognized that a woven or nonwoven laminate 14, as illustrated by Figure 2, topsheet 26 could be used in place of the formed film topsheet 26. The outwardly oriented face of the first lamina 10 is oriented towards the body of the wearer while the outwardly oriented face of the second lamina 12 is oriented towards the core means 30. It is important that the materials of the first and second laminae provide a topsheet 26 which exhibits good strikethrough and rewet characteristics, permitting liquids, such as menses or other vaginal discharges, to rapidly penetrate the topsheet 26 and preventing such liquids from flowing back through the topsheet 26. These characteristics will present a pad 24 which not only is clean in appearance, but also does not soil clothing or bedding in the vicinity of the pad 24. A catamenial pad 24 having a topsheet 26 of approximately 90 cm², a first lamina 10 of low density polyethylene and a second lamina 12 comprising about 200 to about 800 mg, preferably about 500 mg, activated charcoal has been found to work well and be sufficient to absorb a heavy menstrual discharge of about 40 ml and provide for extended wear periods.

The absorbant core means 30 provides the means to collect liquids deposited on the outwardly oriented face 20 of the first lamina 12, i.e. the top of the catamenial pad 24. The core means 30 should be conformable and nonirritating to the skin. Suitable materials include layers of tissue, such as cellulose wadding, and fibrated comminution pulp, or airfelt. The core means 30 need not have a total absorbant capacity much greater than the total amount of menstrual fluid to be absorbed, and is preferably narrow and thin so as to be comfortable to the wearer. Generally about 6 grams comminuted wood pulp absorbs a heavy menstrual discharge of about 40 ml.

The backsheet 28 may be any flexible, liquid impervious film, preferably low density polyethylene, and prevents liquids absorbed by the core means 30 from soiling the clothing of the wearer. The backsheet 28 should also be impervious to malodorous gases generated by the absorbed liquids so that such malodors do not escape and become noticed by the wearer. A low density polyethylene backsheet 28 of about 0.01 to about 0.05 mm (0.0005 to 0.002 inches) in thickness has been found to work well.

To assemble the pad, the inner surface of the backsheet 28 and the outwardly oriented face 20 of the second lamina 12 are placed in register with opposed sides of the core means 30. The topsheet 26 and backsheet 28 are then wrapped around the core means 30 and secured together along a gas and fluid tight seam, which is formed by any of the means known in the art to be used for this purpose. Such means include gluing, crimping, heat sealing and ultrasonic bonding. One hot melt adhesive which works well is Eastobond A-3, marketed by the Eastman Chemical Products Company. The seam should be leak tight with respect to both the liquids and gases which do not pass back through the topsheet 26 from core means 30. This ensures that both are contained within the confines of the backsheet 28, except, of course, for any gases which are exposed to the deodorizing second lamina 12 and pass through the apertures 16 in the topsheet 26.

Once the catamenial pad 24 has been produced according to the manner described above, or any suitable manner, the pad 24 can be worn by the user. Any menstrual or other fluid discharge which is deposited on the outwardly oriented face of the first lamina 10, or topsheet 26, then passes through the laminate 14 in a first direction to the core means 30, where the liquids are collected. Any malodorous gases generated by the absorbed

liquids are prevented from exiting the sides, ends, and bottom of the pad 24 by the impervious backsheet 28. As the malodors migrate towards the topsheet 26, the gases encounter, or are exposed to, the active of the second lamina 12.

The gases will be adsorbed, or otherwise acted upon, by the active of the second lamina 12 and present a diminished objectionable odor to the wearer. At the same time the cones 22 of the topsheet 26 provides vertical stanchions which keep the outwardly oriented face of the second lamina 12 above the elevation of the absorbed liquids, and generally dry. Only a small amount of malodorous gases, proportional to the topsheet 26 percent open area, will pass through the apertures 16.

A second embodiment of a catamenial pad 224, illustrated in Figure 6, shows the laminate 14 to be disposed between the topsheet 226 and backsheet 228. Preferably the laminate 14 is interposed between topsheet 226 and the second face of absorbant core means 230. This arrangement provides the advantage that the laminate 14 is more closely associated with core means 230. Any menses deposited on topsheet 226 will penetrate therethrough to the the outwardly oriented face of the first lamina 10 of laminate 14. Once the menses are deposited on the laminate 14, transmission through apertures 16 will occur and the menses will be retained by absorbant core means 230. Liquids in the core means 230 will be prevented from passing back through laminate 14 to the topsheet 226, and any malodorous gases which exit the core means 230 will be exposed to odor control lamina 12.

Obviously the laminate 14 of this invention could advantageously be placed at other locations of a catamenial pad. For example, the laminate 14 could be placed within the core means or near the backsheet and still act upon malodorous gases which develop within the catamenial pad and migrate towards second lamina 12.

If desired, a catamenial pad according to the first and third embodiments could be made to selectively incorporate the second lamina 12 at preferred locations. The topsheet 26 of the first embodiment and laminate 14 of the third embodiment could be constructed having first lamina 10 throughout, and second lamina 12 only near the center of the pad where the heaviest menstrual loading typically occurs. Alternatively, the density of the second lamina could be made to vary in accordance with the expected loadings and exposure to malodorous gases which will occur. For example, the second lamina 12 may be very heavily applied near the center of the pad, tapering to a less dense application near the edges of the pad. Other variations in the concentration of second lamina 12 should be utilized in accordance with the expected exposure to malodorous gases.

It will be apparent to one skilled in the art that the shape and size of either catamenial pad discussed above may be altered to yield a diaper, or adult incontinent product (not shown). Such an article has an absorbant core means disposed between a liquid impervious backsheet and a liquid pervious topsheet and is shaped to accommodate the waist and legs of the wearer. The diaper or adult incontinent product may be preformed to the shape of the wearer. A diaper constructed according to the teachings of U.S. Patent No. 3,860,003 issued to Buell works well.

The material of this invention may be advantageously incorporated into the diaper or incontinent pad as the topsheet. This arrangement provides the advantages that any urine or waste material which penetrates into the core means, and emits malodorous gases, will be retained by the core means and the resultant gases will be exposed to the odor control of the second lamina of the material of the topsheet.

The laminate of this invention may also be advantageously incorporated into bedding (not shown), particularly if a nonwoven material, which provides a clothlike feel is selected for the first lamina. A laminate of suitable size is provided and placed over the bed with the first lamina upwardly oriented, towards the person who occupies the bed and the second lamina facing downwards. Any bodily fluids deposited on the bedding will be transmitted through the laminate and away from the skin of the person. Malodors generated by the transmitted fluids will be exposed to the second lamina and hence less noticeable. If desired, an absorbant pad may be placed beneath the laminate.

Various modifications may be made without departure from the spirit and scope of the invention. For example, several combinations of whiteners may be used in the first lamina of the laminate. It is also feasible to incorporate various active agents, including, but not limited to, those described above, in combination, into the second lamina. The catamenial pads described above may be combined to yield a catamenial pad having a bicomponent topsheet, or likewise a diaper or adult incontinent product having a bicomponent topsheet.

Claims

 A bicomponent film laminate (14, 14') which transmits liquids deposited thereon in one direction, said laminate (14, 14') comprising:

(a) a first polymeric lamina (10, 10') exhibiting a pattern of discrete apertures (16, 16')

15

20

25

30

35

45

50

55

therein, said first lamina (10, 10') having an outwardly oriented face and an inwardly oriented face opposed thereto; and

(b) a second active lamina (12, 12') also exhibiting a pattern of discrete apertures (16, 16') substantially coinciding with said discrete apertures (16, 16') of said first lamina (10,10'), said second lamina (12,12') having an inwardly oriented face associated with said inwardly oriented face of said first lamina (10, 10') and an outwardly oriented face opposed thereto whereby said laminate (14, 14') permits liquids deposited on the outwardly oriented face of said first lamina (10, 10') to pass through said discrete apertures (16,16) in said laminate (14,14'); and said laminate (14, 14') being characterized in that said laminate (14,14'), when permitting liquids to pass through said discrete apertures (16, 16'), substantially prevents wetting of said

second lamina (12, 12'); said second lamina (12, 12') comprises an active as an odour control means; and said laminate (14, 14') substantially exposing gazeous malodours, which attempt to pass through said laminate (14, 14') in a direction opposite to the direction of liquid transmission, to said outwardly oriented face of said second

2. A disposable absorbent article (24,124,224) for collecting liquids discharged from a source and substantially containing malodours generated by the collected liquids, said article comprising:

lamina (12, 12').

- (a) an absorbent core means (30,130,230) for absorbing liquids, said core means (30,130,230) having a first face and a second face opposed thereto;
- (b) a liquid impermeable backsheet (28,128,228) having overlaying said first opposed face of said core means (30,130,230)
- (c) a liquid permeable topsheet (26,126,226) overlaying said second opposed face of said core means (30,130,230); and
- (d) the bicomponent film laminate (14,14') according to claim 1, disposed between said topsheet (26,126,226) and said backsheet (28,128,228).
- A disposable absorbent article (24,124,224) according to claim 2 wherein said bicomponent film laminate (14,14') is said liquid permeable topsheet (26,126,226).
- A laminate (14,14') according to claim 1 associated with a means for collecting liquids which

pass therethrough, said means being disposed adjacent the outwardly oriented face of said second lamina (12, 12').

- 5. A laminate (14,14') according to any of the foregoing claims characterized in that said first lamina (10,10') is selected from the group consisting of polyethylene, polyester, polypropylene, nylon, rayon, open cell foam and combinations thereof.
 - 6. A laminate (14,14') according to any of the foregoing claims characterized in that said laminate (14,14') further comprises from about 1 to about 15 weight percent of a whitener disposed in said first lamina (10,10').
 - 7. A laminate (14,14') according to any of the foregoing claims characterized in that said second lamina (12,12') is selected from the group consisting of activated carbon, zeolites, molecular sieves, metal salts and combinations thereof, and preferably further characterized in that said second lamina (12.12') prevents malodour from passing through said laminate (14,14') by means of absorption, adsorption, chemical reaction or combinations thereof.
 - 8. A disposable absorbent article (24,124,224), according to claims 2 or 3 characterized in that said first lamina (10,10') is selected from the group consisting of formed film and nonwoven materials.
- A laminate (14,14') according to any of the foregoing claims characterized in that said second lamina (12,12') imparts increased opacity to said laminate.

Patentansprüche

- Ein Bikomponenten-Folienlaminat (14, 14'), welches darauf abgelegte Flüssigkeiten in eine Richtung leitet, wobei das genannte Laminat (14, 14') umfaßt:
 - (a) eine erste polymerische dünne Schichte (10, 10'), welche ein Muster von Einzel-Öffnungen (16, 16') darin aufweist, wobei die genannte erste dünne Schichte (10, 10') eine auswärts orientierte Oberfläche und eine dazu entgegengesetzt gerichtete einwärts orientierte Oberfläche hat, und
 - (b) eine zweite aktive dünne Schichte (12, 12'), welche ebenso ein Muster von Einzel-Öffnungen (16, 16') aufweist, welche im wesentlichen mit den genannten Einzel-Öffnungen (16,16') der genannten ersten dünnen Schichte (10, 10') koinzidieren, wobei die

15

20

25

30

35

40

45

50

55

genannte zweite dünne Schichte (12, 12') eine mit der genannten einwärts orientierten Oberfläche der genannten ersten dünnen Schichte (10, 10') verbundene einwärts gerichtete Oberfläche und eine dazu entgegengesetzte auswärts gerichtete Oberfläche hat, wodurch das genannte Laminat (14, 14') auf der auswärts orientierten Oberfläche der genannten ersten dünnen Schichte (10, 10') abgelegten Flüssigkeiten erlaubt, durch die genannten Einzel-Öffnungen (16, 16') im genannten Laminat (14, 14') hindurchzugehen; und

wobei das genannte Laminat (14, 14') dadurch gekennzeichnet ist, daß das genannte Laminat (14, 14'), wenn es Flüssigkeiten erlaubt, durch die genannten Einzel-Öffnungen (16, 16') hindurchzugehen, im wesentlichen ein Benetzen der genannten zweiten dünnen Schichte (12, 12') verhindert;

- daß die genannte zweite dünne Schichte (12, 12') ein aktives als ein Geruchskontroll-Mittel umfaßt; und das genannte Laminat (14, 14') im wesentlichen gasförmige üble Gerüche, welche versuchen, durch das genannte Laminat (14, 14') in eine zur Richtung der Flüssigkeitstransmission entgegengesetzte Richtung zur genannten auswärts orientierten Oberfläche hindurchzugehen, der genannten zweiten dünnen Schichte (12, 12') aussetzt.
- Ein wegwerfbarer absorbierender Artikel (24, 124, 224) zum Sammeln von von einer Quelle abgegebenen Flüssigkeiten und zum wesentlichen Halten von durch die gesammelten Flüssigkeiten erzeugten üblen Gerüchen, wobei der genannte Artikel umfaßt:
 - (a) ein absorbierendes Kern-Mittel (30, 130, 230) zum Absorbieren von Flüssigkeiten, wobei das genannte Kern-Mittel (30, 130, 230) eine erste Oberfläche und eine dazu entgegengesetzte zweite Oberfläche aufweist;
 - (b) ein flüssigkeitsundurchlässiges Rückenblatt (28, 128, 228), welches die genannte erste entgegengesetzte Oberfläche des genannten Kern-Mittels (30, 130, 230) überdeckt:
 - (c) ein flüssigkeitsdurchlässiges Deckblatt (26, 126, 226), welches die genannte zweite entgegengesetzte Oberfläche des genannten Kern-Mittels (30, 130, 230) überdeckt; und
 - (d) das Bikomponenten-Folienlaminat (14, 14') nach Anspruch 1, welches zwischen dem genannten Deckblatt (26, 126, 226) und dem genannten Rückenblatt (28, 128, 228) angeordnet ist.

- Ein wegwerfbarer absorbierender Artikel (24, 124, 224) nach Anspruch 2, bei welchem das genannte Bikomponenten-Folienlaminat (14, 14') das genannte flüssigkeitsdurchlässige Deckblatt (26, 126, 226) ist.
- 4. Ein Laminat (14, 14') nach Anspruch 1, welches mit einem Mittel zum Sammeln von Flüssigkeiten, welche hindurchgehen, verbunden ist, wobei das genannte Mittel nahe der auswärts orientierten Oberfläche der genannten zweiten dünnen Schichte (12, 12') angeordnet ist.
- 5. Ein Laminat (14, 14') nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die genannte erste dünne Schichte (10, 10') aus der Gruppe bestehend aus Polyethylen, Polyester, Polypropylen, Nylon, Rayon, offenzelligem Schaum und Kombinationen daraus ausgewählt ist.
- 6. Ein Laminat (14, 14') nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das genannte Laminat (14, 14') weiters ungefähr 1 bis ungefähr 15 Gew.-% eines in der genannten ersten dünnen Schichte (10, 10') angeordneten Weißmachers umfaßt.
- 7. Ein Laminat (14, 14') nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die genannte zweite dünne Schichte (12, 12') aus der Gruppe bestehend aus Aktivkohle, Zeoliten, Molekularsieben, Metallsalzen und Kombinationen daraus ausgewählt ist, und vorzugsweise weiters dadurch gekennzeichnet, daß die genannte zweite dünne Schichte (12, 12') üblen Geruch am Durchgehen durch das genannte Laminat (14, 14') mittels Absorption, Adsorption, chemischer Reaktion oder Kombinationen daraus hindert.
- 8. Ein wegwerfbarer absorbierender Artikel (24, 124, 224) nach den Ansprüchen 2 oder 3, dadurch gekennzeichnet, daß die genannte erste dünne Schichte (10, 10') aus der Gruppe bestehend aus geformter Folie und nicht-gewebten Materialien ausgewählt ist.
- Ein Laminat (14, 14') nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die genannte zweite dünne Schichte (12, 12') dem genannten Laminat angehobene Deckfähigkeit verleiht.

Revendications

1. Un stratifié filmogène biconstituant (14, 14') qui

10

15

20

25

30

35

40

45

50

transmet les liquides déposés sur sa surface dans une direction, ledit stratifié (14, 14') comprenant :

- (a) un premier stratifié polymérique (10, 10') présentant à l'intérieur un dessin d'ouvertures discrètes (16, 16'), ledit premier stratifié (10, 10') ayant une face orientée vers l'extérieur et une face opposée à celleci orientée vers l'intérieur; et
- (b) un second stratifié actif (12, 12') présentant également un motif d'ouvertures discrètes (16, 16') coïncidant à-peu-près avec lesdites ouvertures discrètes (16, 16') dudit premier stratifié (10, 10'), ledit second stratifié (12, 12') ayant une face orientée vers l'intérieur associée avec ladite face orientée vers l'intérieur dudit premier stratifié (10, 10') et une face orientée vers l'extérieur, opposée à celle-ci grâce à quoi, ledit stratifié (14, 14') permet aux liquides déposés sur la face orientée vers l'extérieur dudit premier stratifié (10, 10') de passer à travers ledites ouvertures discrètes (16, 16') dans ledit stratifié (14, 14') : et

ledit stratifié (14, 14') étant caractérisé en ce que ledit stratifié (14, 14'), lorsqu'il permet aux liquides de passer au travers desdites ouvertures discrètes (16, 16'), empêche pratiquement le mouillage dudit second stratifié (12, 12');

ledit second stratifié (12, 12') comprend un élément actif tel qu'un moyen de contrôle des odeurs ; et

ledit stratifié (14, 14') dégageant pratiquement les mauvaises odeurs gazeuses, qui tentent de passer à travers ledit stratifié (14, 14') dans une direction opposée à la direction de transmission des liquides, vers ladite face orientée vers l'extérieur dudit second stratifié (12, 12').

- 2. Un article absorbant à jeter après usage (24, 124, 224) pour recueillir les liquides déchargés à partir d'une source et renfermant pratiquement les mauvaises odeurs engendrées par les liquides recueillis, ledit article comprenant :
 - (a) un moyen d'âme absorbante (30, 130, 230) pour absorber des liquides, ledit moyen d'âme (30, 130 230) ayant une première face et une seconde face opposée à celle-ci :
 - (b) une feuille de fond imperméable aux liquides (28, 128, 228) recouvrant ladite première face opposée dudit moyen d'âme (30, 130, 230);
 - (c) une feuille de dessus perméable aux liquides (26, 126, 226) recouvrant ladite seconde face opposée dudit moyen d'âme

(30, 130, 230); et

- (d) le stratifié filmogène biconstituant (14, 14') conforme à la revendication 1, disposé entre ladite feuille de dessus (26, 126, 226) et ladite feuille de fond (28, 128, 228).
- Un article absorbant à jeter après usage (24, 124, 224) selon la revendication 2, dans lequel ledit stratifié filmogène biconstituant (14, 14') est ladite feuille de dessus perméable aux liquides (26, 126, 226).
- 4. Un stratifié (14, 14') selon la revendication 1, associé avec un moyen pour recueillir les liquides qui le traversent, ledit moyen étant disposé en position adjacente à la face orientée vers l'extérieur dudit second stratifié (12, 12').
- 5. Un stratifié (14, 14') selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit premier stratifié (10, 10') est choisi à partir du groupe constitué de polyéthylène, de polyester, de polypropylène, de nylon, de rayonne, d'une mousse à cellules ouvertes et de combinaisons de ceux-ci.
- 6. Un stratifié (14, 14') selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit stratifié (14, 14') comporte en outre d'environ 1 à environ 15 pour-cent en poids d'un agent de blanchiment disposé dans le premier stratifié (10, 10').
- 7. Un stratifié (14, 14') selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit second stratifié (12, 12') est choisi à partir du groupe constitué de charbon actif, de zéolites, de fractions ... moléculaires, de sels métalliques et de combinaisons de ceuxci, et de préférence caractérisé en outre en ce que ledit second stratifié (12, 12') empêche les mauvaises odeurs de passer à travers ledit stratifié (14, 14') par absorption, adsorption, réaction chimique ou des combinaisons de ceux-ci.
- 8. Un article absorbant à jeter après usage (24, 124, 224), selon les revendications 2 ou 3, caractérisé en ce que ledit premier stratifié (10, 10') est choisi à partir du groupe constitué de films mis en forme et de matériaux nontissés.
- Un stratifié (14, 14') selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit second stratifié (12, 12') communique une opacité accrue audit stratifié.

