Pattern Recognition CS669

ASSIGNMENT 5

Group Number 18

Abhishek Singh Rawat T23191 Arpit Dua T23192 Rohit Kumar Roy S22048 1. Build Bayes classifier using Gaussian mixture model (GMM) with 1, 2, 4 and 8 mixtures on the reduced dimensional representations of Dataset-2 obtained using PCA. • Perform the experiments on different values of l (including l=1), the reduced dimensions in PCA.

Plot of eigenvalues in ascending order during PCA

Inference from the graph:

- 20 seems to be the ideal number of principal components for us to represent the 32 dimensional original data to a lower dimension while retaining as much variance as possible.
- Since we need to consider distinct values of the lower dimensions/principal components hence the graph does not have a continuous line, it has a discrete nature.

Plot of 2-dimensional reduced dimensional representations using PCA.

• Results and Observations for the different number of principal components:

A) PCA components = 32

B) PCA components = 19

C) PCA component = 10

D) PCA component = 1

E) PCA components vs. Accuracy plots:

Maximum Accuracy	0.66
GMM Mixtures	4
PCA components	19

2. Bayes classifier using the density estimated from K-nearest neighbor (KNN) method for Dataset-1 (a)

(a) LS data

Dataset description:

• Linearly separable dataset

• Total sample size: 1500

• Total classes: 3

• Samples in each class: 500

• Dimensionality: each point is 2D

<u>Note</u>: This data description will be valid and hence not mentioned again whenever LS dataset term is used in the report.

• Bayes classifier using the density estimated from K-nearest neighbor (KNN) method for Dataset-1 (a)/ linearly separable dataset for class 1 Vs class 2 Vs class 3 as the values of k varies (1, 2, 6, 12, 18, 32).

Inferences:

- At k=1 we have the decision boundary as the perpendicular bisector of the nearest points. Overall the shape is non linear but it is piecewise linear.
- As the k value increases the decision boundary between the classes becomes more smooth.

• Bayes classifier using the density estimated from K-nearest neighbor (KNN) method for Dataset-1 (a)/ linearly separable dataset for class 1 Vs class 2 as the values of k varies (1, 2, 6, 12, 18, 32).

• Bayes classifier using the density estimated from K-nearest neighbor (KNN) method for Dataset-1 (a)/ linearly separable dataset for class 1 Vs class 3 as the values of k varies (1, 2, 6, 12, 18, 32).

• Bayes classifier using the density estimated from K-nearest neighbor (KNN) method for Dataset-1 (a)/ linearly separable dataset for class 2 Vs class 3 as the values of k varies (1, 2, 6, 12, 18, 32).

b) Bayes classifier using the density estimated from K-nearest neighbor (KNN) method for NLS Dataset-1 (b).

(b) NLS data

Dataset description:

• Non Linearly separable dataset

• Total sample size: 1500

• Total classes: 3

• Samples in each class: 500

• Dimensionality: each point is 2D

<u>Note</u>: This data description will be valid and hence not mentioned again whenever NLS dataset term is used in the report.

• Bayes classifier using the density estimated from K-nearest neighbor (KNN) method for Dataset-1 (b)/ non linearly separable dataset for class 1 Vs class 2 Vs class 3 as the values of k varies (1, 2, 6, 12, 18, 32).

Inferences:

- At k=1 we have the decision boundary as the perpendicular bisector of the nearest points. Overall the shape is non linear but it is piecewise linear.
- As the k value increases the decision boundary between classes becomes more smooth.

• Bayes classifier using the density estimated from K-nearest neighbor (KNN) method for Dataset-1 (b)/non linearly separable dataset for class 1 Vs class 2 as the values of k varies (1, 2, 6, 12, 18, 32)

• Bayes classifier using the density estimated from K-nearest neighbor (KNN) method for Dataset-1 (b)/non linearly separable dataset for class 1 Vs class 3 as the values of k varies (1, 2, 6, 12, 18, 32)

• Bayes classifier using the density estimated from K-nearest neighbor (KNN) method for Dataset-1 (b)/non linearly separable dataset for class 2 Vs class 3 as the values of k varies (1, 2, 6, 12, 18, 32)

(c) KNN for 32D BovW data:

For k-nearest neighbors = 1 the specifics are:

Classification Accuracy: 0.72

Classification Report:

Class 1:

Precision: 0.7955 Recall: 0.7000 F1-Score: 0.7447 Support: 50.0

Class 2:

Precision: 0.6667 Recall: 0.6800 F1-Score: 0.6733 Support: 50.0

Class 3:

Precision: 0.7091 Recall: 0.7800 F1-Score: 0.7429 Support: 50.0

Mean Precision: 0.7237373737373737 Mean Recall: 0.7200000000000001 Mean F1-Score: 0.720268440217882

Confusion Matrix:

[[35 12 3] [3 34 13] [6 5 39]]

For k-nearest neighbors = 3 the specifics are:

Classification Accuracy: 0.7066666666666667

Classification Report:

Class 1:

Precision: 0.6939 Recall: 0.6800 F1-Score: 0.6869 Support: 50.0

Class 2:

Precision: 0.6667 Recall: 0.6800 F1-Score: 0.6733 Support: 50.0

Class 3:

Precision: 0.7600 Recall: 0.7600 F1-Score: 0.7600 Support: 50.0

Mean Precision: 0.7068480725623583 Mean Recall: 0.706666666666667 Mean F1-Score: 0.7067120045337868

Confusion Matrix:

[[34 13 3] [7 34 9] [8 4 38]]

For k-nearest neighbors = 5 the specifics are:

Classification Accuracy: 0.7266666666666667

Classification Report:

Class 1:

Precision: 0.7907 Recall: 0.6800 F1-Score: 0.7312 Support: 50.0

Class 2:

Precision: 0.6545 Recall: 0.7200 F1-Score: 0.6857 Support: 50.0

Class 3:

Precision: 0.7500 Recall: 0.7800 F1-Score: 0.7647 Support: 50.0

Confusion Matrix:

[[34 13 3] [4 36 10] [5 6 39]]

For k-nearest neighbors = 7 the specifics are:

Classification Accuracy: 0.746666666666667

Classification Report:

Class 1:

Precision: 0.8537 Recall: 0.7000 F1-Score: 0.7692 Support: 50.0

Class 2:

Precision: 0.6792 Recall: 0.7200 F1-Score: 0.6990 Support: 50.0

Class 3:

Precision: 0.7321 Recall: 0.8200 F1-Score: 0.7736 Support: 50.0

Confusion Matrix:

[[35 12 3] [2 36 12] [4 5 41]]

For k-nearest neighbors = 9 the specifics are:

Classification Accuracy: 0.7266666666666667

Classification Report:

Class 1:

Precision: 0.8095 Recall: 0.6800 F1-Score: 0.7391 Support: 50.0

Class 2:

Precision: 0.6607 Recall: 0.7400 F1-Score: 0.6981 Support: 50.0

Class 3:

Precision: 0.7308 Recall: 0.7600 F1-Score: 0.7451 Support: 50.0

Confusion Matrix:

[[34 13 3] [2 37 11] [6 6 38]]

3. Apply Fisher linear discriminant analysis (FDA) on Dataset-1 and Dataset-2. Use Bayes classifier using both unimodal Gaussian and GMM.

For LS dataset:

Metrices	Scores
Accuracy	0.9
Precision (Class-wise)	(0.84, 0.86, 1.00)
Mean Precision	0.9047
Recall (Class-wise)	(0.87, 0.84, 1.00)
Mean Recall	0.904
F-measure (Class-wise)	(0.85, 0.85, 1.00)
Mean F-measure	0.904

		Predicted output			
		Class 1 Class 2 Class 3			
	Class 1	131	19	0	
Actual output	Class 2	24	126	0	
	Class 3	0	0	150	

For NLS Dataset:

Decision Boundaries of Unimodal Gaussian Bayes Classifier and 1-dimensional Reduced Representation of Training Data

Metrices	Scores
Accuracy	0.72
Precision (Class-wise)	(0.93, 0.67, 0.58)
Mean Precision	0.73
Recall (Class-wise)	(0.80, 0.80, 0.56)
Mean Recall	0.72
F-measure (Class-wise)	(0.86, 0.73, 0.57)
Mean F-measure	0.904

		Predicted output		
		Class 1 Class 2 Class 3		
	Class 1	121	0	29
Actual output	Class 2	0	120	30
	Class 3	8	58	84

4. Perceptron-based classifier:

4.a) LS Dataset:

Precision, Recall and F1-score on Test set for all LS classes independently:

Class Label	Precision	Recall	F1-score	Total instances
Class 1	1	0.99	1	148
Class 2	0.99	1	1	141
Class 3	1	1	1	161

Confusion Matrix for 450 test data of LS dataset:

		Predicted output			
		Class 1 Class 2 Class 3			
	Class 1	147	1	0	
Actual output	Class 2	0	141	0	
	Class 3	0	0	161	

Accuracy score for test data of all three classes of LS data: Accuracy = 1 (100%).

b) NLS dataset:

Precision, Recall and F1-score on Test set for all NLS classes independently:

Class Label	Precision	Recall	F1-score	Total instances
Class 1	0.97	0.75	0.84	148
Class 2	0.91	0.98	0.94	141
Class 3	0.87	0.99	0.93	161

Confusion Matrix for 450 test data of NLS dataset:

		Predicted output			
		Class 1 Class 2 Class 3			
	Class 1	111	14	23	
Actual output	Class 2	3	138	0	
	Class 3	1	0	160	

Accuracy score for test data of all three classes of NLS data: $\label{eq:Accuracy} Accuracy = 0.9$

c) Perceptron based classifier for 32 Dimensional Bag OF Words representation:

Test Classification Report:

	precision	recall	f1-score	support
jail_cell	0.74	0.50	0.60	50
pagoda	0.47	0.90	0.62	50
rainforest	0.90	0.38	0.54	50
accurac	ey		0.59	150
macro a	vg 0.70	0.59	0.58	150
weighted	avg 0.70	0.59	0.58	150

Test Confusion Matrix:

		Predicted output		
		Class 1 Class 2 Class 3		
	Class 1	25	23	2
Actual output	Class 2	5	45	0
	Class 3	4	27	19

Test Classification Report with PCA:

	precision	recall	f1-score	support
jail_cell	0.21	0.30	0.25	50
pagoda	0.32	0.50	0.39	50
rainforest	0.00	0.00	0.00	50
accuracy			0.27	150
macro avg	0.18	0.27	0.21	150
weighted av	g 0.18	0.27	0.21	150

Test Confusion Matrix with PCA:

			Predicted output	
		Class 1	Class 2	Class 3
	Class 1	15	34	1
Actual output	Class 2	25	25	0
	Class 3	31	19	0

5. Logistic regression classifier on LS Dataset-1 (a)

Dataset description:

• Linearly separable dataset

• Total sample size: 1500

• Total classes: 3

• Samples in each class: 500, each point being 2D

Logistic regression classifier on NLS Dataset-1 (b)

Dataset description:

• Non Linearly separable dataset

• Total sample size: 1500

• Total classes: 3

• Samples in each class: 500

• Dimensionality: each point is 2D

Logistic regression for 32D BovW representation.

LOGISTIC REGRESSION

Classification Accuracy: 0.726666666666667

Classification Report:

Class 1:

Precision: 0.6964 Recall: 0.7800 F1-Score: 0.7358 Support: 50.0

Class 2:

Precision: 0.7391 Recall: 0.6800 F1-Score: 0.7083 Support: 50.0

Class 3:

Precision: 0.7500 Recall: 0.7200 F1-Score: 0.7347 Support: 50.0

Confusion Matrix:

[[39 8 3] [7 34 9] [10 4 36]]

6. SVM-based classifier using (a) linear kernel, (b) polynomial kernel and (c) Gaussian/RBF kernel on Dataset-1 (a) Linearly Separable (LS).

Accuracy: 1.0

Precision per class: [1. 1. 1.]

Mean Precision: 1.0

Recall per class: [1. 1. 1.]

Mean Recall: 1.0

F1 Score per class: [1. 1. 1.]

Mean F1 Score: 1.0

Confusion Matrix:

[[146 0 0]

[0 147 0]

[0 0 157]]

Accuracy: 0.9911111111111112

Precision per class: [0.97333333 1. 1.]
Mean Precision: 0.991111111111112
Recall per class: [1. 0.97278912 1.]
Mean Recall: 0.9911111111111112

F1 Score per class: [0.98648649 0.9862069 1.]

Mean F1 Score: 0.9911111111111112

Confusion Matrix:

[[146 0 0] [4 143 0] [0 0 157]]

Accuracy: 1.0

Precision per class: [1. 1. 1.]

Mean Precision: 1.0 Recall per class: [1. 1. 1.]

Mean Recall: 1.0

F1 Score per class: [1. 1. 1.]

Mean F1 Score: 1.0

Confusion Matrix:

[[146 0 0] [0 147 0]

[0 0 157]]

SVM-based classifier using (a) linear kernel, (b) polynomial kernel and (c) Gaussian/RBF kernel on Dataset-1 (b) Non Linearly Separable (NLS).

Accuracy: 0.91111111111111111

Precision per class: [0.88405797 0.92307692 0.92307692]

Mean Precision: 0.9111111111111111

Recall per class: [0.83561644 0.97959184 0.91719745]

Mean Recall: 0.91111111111111111

F1 Score per class: [0.85915493 0.95049505 0.9201278]

Mean F1 Score: 0.9111111111111111

Confusion Matrix:

[[122 12 12] [3 144 0] [13 0 144]]

Accuracy: 0.8711111111111111

Precision per class: [1. 0.77368421 0.89361702]

Mean Precision: 0.8711111111111111

Recall per class: [0.81506849 1. 0.80254777]

Mean Recall: 0.87111111111111111

F1 Score per class: [0.89811321 0.87240356 0.84563758]

Mean F1 Score: 0.8711111111111111

Confusion Matrix:

[[119 12 15] [0 147 0] [0 31 126]]

Accuracy: 1.0

Precision per class: [1. 1. 1.]

Mean Precision: 1.0 Recall per class: [1, 1, 1,]

Mean Recall: 1.0

F1 Score per class: [1. 1. 1.]

Mean F1 Score: 1.0

Confusion Matrix:

[[146 0 0] [0 147 0] [0 0 157]]

SVM-based classifier using (a) linear kernel, (b) polynomial kernel and (c) Gaussian/RBF kernel on Dataset-2 which has 32D BovW representation.

SVM Linear Kernel

Classification Accuracy: 0.7

Classification Report:

Class 1:

Precision: 0.7111 Recall: 0.6400 F1-Score: 0.6737 Support: 50.0

Class 2:

Precision: 0.6316 Recall: 0.7200 F1-Score: 0.6729 Support: 50.0

Class 3:

Precision: 0.7708
Recall: 0.7400
F1-Score: 0.7551
Support: 50.0

Mean Precision: 0.7045077972709551 Mean Recall: 0.69999999999998 Mean F1-Score: 0.7005611492014415

Confusion Matrix:

[[32 15 3] [6 36 8] [7 6 37]]

SVM Polynomial Kernel

SVM Polynomial Kernel, degree = 1

Classification Accuracy: 0.786666666666666

Classification Report:

Class 1:

Precision: 0.8163 Recall: 0.8000 F1-Score: 0.8081 Support: 50.0

Class 2:

Precision: 0.7708 Recall: 0.7400 F1-Score: 0.7551 Support: 50.0

Class 3:

Precision: 0.7736 Recall: 0.8200 F1-Score: 0.7961 Support: 50.0

Confusion Matrix:

[[40 8 2] [3 37 10] [6 3 41]]

SVM Polynomial Kernel, degree = 2

Classification Accuracy: 0.766666666666667

Classification Report:

Class 1:

Precision: 0.7917 Recall: 0.7600 F1-Score: 0.7755 Support: 50.0

Class 2:

Precision: 0.7170 Recall: 0.7600 F1-Score: 0.7379 Support: 50.0

Class 3:

Precision: 0.7959 Recall: 0.7800 F1-Score: 0.7879 Support: 50.0

Confusion Matrix:

[[38 11 1] [3 38 9] [7 4 39]]

SVM Polynomial Kernel, degree = 5

Classification Accuracy: 0.7

Classification Report:

Class 1:

Precision: 0.8108
Recall: 0.6000
F1-Score: 0.6897
Support: 50.0

Class 2:

Precision: 0.5915 Recall: 0.8400 F1-Score: 0.6942 Support: 50.0

Class 3:

Precision: 0.7857 Recall: 0.6600 F1-Score: 0.7174 Support: 50.0

Mean Precision: 0.7293581307665815 Mean Recall: 0.700000000000001 Mean F1-Score: 0.700420450931559

Confusion Matrix:

[[30 19 1] [0 42 8] [7 10 33]]

SVM RBF Kernel

SVM RBF Kernel: degree = 1, gamma = 0.001, width = 1000.0

Classification Accuracy: 0.64

Classification Report:

Class 1:

Precision: 0.8261 Recall: 0.3800 F1-Score: 0.5205 Support: 50.0

Class 2:

Precision: 0.5056 Recall: 0.9000 F1-Score: 0.6475 Support: 50.0

Class 3:

Precision: 0.8421
Recall: 0.6400
F1-Score: 0.7273
Support: 50.0

Mean Precision: 0.7246033990692412

Mean Recall: 0.64

Mean F1-Score: 0.6317675622888985

Confusion Matrix:

SVM RBF Kernel: degree = 1, gamma = 0.01, width = 100.0

Classification Accuracy: 0.64

Classification Report:

Class 1:

Precision: 0.8261 Recall: 0.3800 F1-Score: 0.5205 Support: 50.0

Class 2:

Precision: 0.5056 Recall: 0.9000 F1-Score: 0.6475 Support: 50.0

Class 3:

Precision: 0.8421 Recall: 0.6400 F1-Score: 0.7273 Support: 50.0

Mean Precision: 0.7246033990692412

Mean Recall: 0.64

Mean F1-Score: 0.6317675622888985

Confusion Matrix:

SVM RBF Kernel: degree = 1, gamma = 0.5, width = 2.0

Classification Accuracy: 0.7133333333333333

Classification Report:

Class 1:

Precision: 0.8108 Recall: 0.6000 F1-Score: 0.6897 Support: 50.0

Class 2:

Precision: 0.6250 Recall: 0.8000 F1-Score: 0.7018 Support: 50.0

Class 3:

Precision: 0.7551 Recall: 0.7400 F1-Score: 0.7475 Support: 50.0

Mean Precision: 0.7303042838757126 Mean Recall: 0.713333333333333 Mean F1-Score: 0.7129614352844843

Confusion Matrix:

[[30 17 3] [1 40 9] [6 7 37]]

SVM RBF Kernel: degree = 1, gamma = 0.1, width = 10.0

Classification Accuracy: 0.64

Classification Report:

Class 1:

Precision: 0.8261 Recall: 0.3800 F1-Score: 0.5205 Support: 50.0

Class 2:

Precision: 0.5056 Recall: 0.9000 F1-Score: 0.6475 Support: 50.0

Class 3:

Precision: 0.8421
Recall: 0.6400
F1-Score: 0.7273
Support: 50.0

Mean Precision: 0.7246033990692412

Mean Recall: 0.64

Mean F1-Score: 0.6317675622888985

Confusion Matrix:

SVM RBF Kernel: degree = 5, gamma = 0.01, width = 100.0

Classification Accuracy: 0.64

Classification Report:

Class 1:

Precision: 0.8261 Recall: 0.3800 F1-Score: 0.5205 Support: 50.0

Class 2:

Precision: 0.5056 Recall: 0.9000 F1-Score: 0.6475 Support: 50.0

Class 3:

Precision: 0.8421 Recall: 0.6400 F1-Score: 0.7273 Support: 50.0

Mean Precision: 0.7246033990692412

Mean Recall: 0.64

Mean F1-Score: 0.6317675622888985

Confusion Matrix:

SVM RBF Kernel: degree = 5, gamma = 0.5, width = 2.0

Classification Accuracy: 0.7133333333333333

Classification Report:

Class 1:

Precision: 0.8108 Recall: 0.6000 F1-Score: 0.6897 Support: 50.0

Class 2:

Precision: 0.6250 Recall: 0.8000 F1-Score: 0.7018 Support: 50.0

Class 3:

Precision: 0.7551
Recall: 0.7400
F1-Score: 0.7475
Support: 50.0

Mean Precision: 0.7303042838757126 Mean Recall: 0.713333333333333 Mean F1-Score: 0.7129614352844843

Confusion Matrix:

[[30 17 3] [1 40 9] [6 7 37]]

SVM RBF Kernel: degree = 5, gamma = 0.1, width = 10.0

Classification Accuracy: 0.64

Classification Report:

Class 1:

Precision: 0.8261 Recall: 0.3800 F1-Score: 0.5205 Support: 50.0

Class 2:

Precision: 0.5056 Recall: 0.9000 F1-Score: 0.6475 Support: 50.0

Class 3:

Precision: 0.8421 Recall: 0.6400 F1-Score: 0.7273 Support: 50.0

Mean Precision: 0.7246033990692412

Mean Recall: 0.64

Mean F1-Score: 0.6317675622888985

Confusion Matrix:

[[19 30 1] [0 45 5] [4 14 32]]

The various values of parameters have been taken along with various degrees so essentially we have done experiments on various values of parameters.