Exercises from Abstract Algebra by I. N. Herstein

Exercise 2.1.18 If G is a finite group of even order, show that there must be an element $a \neq e$ such that $a = a^{-1}$.

Proof. First note that $a=a^{-1}$ is the same as saying $a^2=e$, where e is the identity. I.e. the statement is that there exists at least one element of order 2 in G. Every element a of G of order at least 3 has an inverse a^{-1} that is not itself – that is, $a\neq a^{-1}$. So the subset of all such elements has an even cardinality (/size). There's exactly one element with order 1: the identity $e^1=e$. So G contains an even number of elements -call it 2k- of which an even number are elements of order 3 or above – call that 2n where n< k- and exactly one element of order 1. Hence the number of elements of order 2 is

$$2k - 2n - 1 = 2(k - n) - 1$$

This cannot equal 0 as 2(k-n) is even and 1 is odd. Hence there's at least one element of order 2 in G, which concludes the proof.

Exercise 2.1.21 Show that a group of order 5 must be abelian.

Proof. Suppose G is a group of order 5 which is not abelian. Then there exist two non-identity elements $a,b \in G$ such that $a*b \neq b*a$. Further we see that G must equal $\{e,a,b,a*b,b*a\}$. To see why a*b must be distinct from all the others, not that if a*b=e, then a and b are inverses and hence a*b=b*a. Contradiction. If a*b=a (or a), then a0 (or a0) and a1 are distinct with everything. Contradiction. We know by supposition that $a*b \neq b*a$. Hence all the elements $\{e,a,b,a*b,b*a\}$ are distinct.

Now consider a^2 . It can't equal a as then a = e and it can't equal a * b or b * a as then b = a. Hence either $a^2 = e$ or $a^2 = b$. Now consider a * b * a. It can't equal a as then b * a = e and hence a * b = b * a. Similarly it can't equal b. It also can't equal a * b or b * a as then a = e. Hence a * b * a = e.

So then we additionally see that $a^2 \neq e$ because then $a^2 = e = a * b * a$ and consequently a = b * a (and hence b = e). So $a^2 = b$. But then $a * b = a * a^2 = a^2 * a = b * a$. Contradiction. Hence starting with the assumption that there exists an order 5 abelian group G leads to a contradiction. Thus there is no such group.

Exercise 2.1.26 If G is a finite group, prove that, given $a \in G$, there is a positive integer n, depending on a, such that $a^n = e$.

Proof. Because there are only a finite number of elements of G, it's clear that the set $\{a, a^2, a^3, \ldots\}$ must be a finite set and in particular, there should exist some i and j such that $i \neq j$ and $a^i = a^j$. WLOG suppose further that i > j (just reverse the roles of i and j otherwise). Then multiply both sides by $\left(a^j\right)^{-1} = a^{-j}$ to get

$$a^i * a^{-j} = a^{i-j} = e$$

Thus the n = i - j is a positive integer such that $a^n = e$.

Exercise 2.1.27 If G is a finite group, prove that there is an integer m > 0 such that $a^m = e$ for all $a \in G$.

Proof. Let n_1, n_2, \ldots, n_k be the orders of all k elements of $G = \{a_1, a_2, \ldots, a_k\}$. Let $m = \text{lcm}(n_1, n_2, \ldots, n_k)$. Then, for any $i = 1, \ldots, k$, there exists an integer c such that $m = n_i c$. Thus

$$a_i^m = a_i^{n_i c} = (a_i^{n_i})^c = e^c = e$$

Hence m is a positive integer such that $a^m = e$ for all $a \in G$.

Exercise 2.2.3 If G is a group in which $(ab)^i = a^i b^i$ for three consecutive integers i, prove that G is abelian.

Proof. Let G be a group, $a,b \in G$ and i be any integer. Then from given condition,

$$(ab)^{i} = a^{i}b^{i}$$

 $(ab)^{i+1} = a^{i+1}b^{i+1}$
 $(ab)^{i+2} = a^{i+2}b^{i+2}$

From first and second, we get

$$a^{i+1}b^{i+1} = (ab)^i(ab) = a^ib^iab \Longrightarrow b^ia = ab^i$$

From first and third, we get

$$a^{i+2}b^{i+2} = (ab)^{i}(ab)^{2} = a^{i}b^{i}abab \Longrightarrow a^{2}b^{i+1} = b^{i}aba$$

This gives

$$a^{2}b^{i+1} = a(ab^{i})b = ab^{i}ab = b^{i}a^{2}b$$

Finally, we get

$$b^i aba = b^i a^2 b \Longrightarrow ba = ab$$

This shows that G is Abelian.

Exercise 2.2.5 Let G be a group in which $(ab)^3 = a^3b^3$ and $(ab)^5 = a^5b^5$ for all $a, b \in G$. Show that G is abelian.

Proof. We have

$$(ab)^3 = a^3b^3$$
, for all $a, b \in G$
 $\Longrightarrow (ab)(ab)(ab) = a(a^2b^2)b$
 $\Longrightarrow a(ba)(ba)b = a(a^2b^2)b$
 $\Longrightarrow (ba)^2 = a^2b^2$, by cancellation law.

Again,

$$(ab)^5 = a^5b^5$$
, for all $a, b \in G$
 $\Longrightarrow (ab)(ab)(ab)(ab)(ab) = a(a^4b^4)b$
 $\Longrightarrow a(ba)(ba)(ba)(ba)b = a(a^4b^4)b$
 $\Longrightarrow (ba)^4 = a^4b^4$, by cancellation law.

Now by combining two cases we have

$$(ba)^4 = a^4b^4$$

$$\Rightarrow ((ba)^2)^2 = a^2 (a^2b^2) b^2$$

$$\Rightarrow (a^2b^2)^2 = a^2 (a^2b^2) b^2$$

$$\Rightarrow (a^2b^2) (a^2b^2) = a^2 (a^2b^2) b^2$$

$$\Rightarrow a^2 (b^2a^2) b^2 = a^2 (a^2b^2) b^2$$

$$\Rightarrow b^2a^2 = a^2b^2, \text{ by cancellation law.}$$

$$\Rightarrow b^2a^2 = (ba)^2, \text{ since } (ba)^2 = a^2b^2$$

$$\Rightarrow b(ba)a = (ba)(ba)$$

$$\Rightarrow b(ba)a = b(ab)a$$

$$\Rightarrow ba = ab, \text{ by cancellation law.}$$

It follows that, ab = ba for all $a, b \in G$. Hence G is abelian

Exercise 2.2.6c Let G be a group in which $(ab)^n = a^n b^n$ for some fixed integer n > 1 for all $a, b \in G$. For all $a, b \in G$, prove that $(aba^{-1}b^{-1})^{n(n-1)} = e$.

Proof. We start with the following two intermediate results. (1) $(ab)^{n-1} = b^{n-1}a^{n-1}$. (2) $a^nb^{n-1} = b^{n-1}a^n$. To prove (1), notice by the given condition for all $a, b \in G$ $(ba)^n = b^na^n$, for some fixed integers n > 1. Then, $(ba)^n = b^na^n \Longrightarrow b.(ab)(ab)....(ab).a = b (b^{n-1}a^{n-1}) a$, where (ab) occurs n-1 times $\Longrightarrow (ab)^{n-1} = b^{n-1}a^{n-1}$, by cancellation law. Hence, for all $a, b \in G$

$$(ab)^{n-1} = b^{n-1}a^{n-1}.$$

To prove (2), notice by the given condition for all $a, b \in G$ $(ba)^n = b^n a^n$, for some fixed integers n > 1. Then we have

$$(ba)^n = b^n a^n$$

$$\Longrightarrow b \cdot (ab)(ab) \dots (ab) \cdot a = b \left(b^{n-1} a^{n-1} \right) a, \text{ where } (ab) \text{ occurs } n-1 \text{ times}$$

$$\Longrightarrow (ab)^{n-1} = b^{n-1} a^{n-1}, \text{ by cancellation law}$$

$$\Longrightarrow (ab)^{n-1} (ab) = \left(b^{n-1} a^{n-1} \right) (ab)$$

$$\Longrightarrow (ab)^n = b^{n-1} a^n b$$

$$\Longrightarrow a^n b^n = b^{n-1} a^n b, \text{ given condition}$$

$$\Longrightarrow a^n b^{n-1} = b^{n-1} a^n, \text{ by cancellation law}.$$

Therefore for all $a, b \in G$ we have

$$a^n b^{n-1} = b^{n-1} a^n$$

In order to show that

$$(aba^{-1}b^{-1})^{n(n-1)} = e$$
, for all $a, b \in G$

it is enough to show that

$$(ab)^{n(n-1)} = (ba)^{n(n-1)}, \quad \forall x, y \in G.$$

Step 3 This is because of

$$(ab)^{n(n-1)} = (ba)^{n(n-1)} \Longrightarrow (ba)^{-1} \Big)^{n(n-1)} (ab)^{n(n-1)} = e$$

$$\Longrightarrow (a^{-1}b^{-1})^{n(n-1)} (ab)^{n(n-1)} = e$$

$$\Longrightarrow \Big(\big(a^{-1}b^{-1}\big)^n \Big)^{n-1} ((ab)^n) (n-1) = e$$

$$\Longrightarrow \Big((ab)^n \big(a^{-1}b^{-1}\big)^n \Big)^{n-1} = e, \text{ by (1)}$$

$$\Longrightarrow \big(aba^{-1}b^{-1}\big)^{n(n-1)} = e, \text{ (given condition)}$$

Now, it suffices to show that

$$(ab)^{n(n-1)} = (ba)^{n(n-1)}, \quad \forall x, y \in G.$$

Now, we have

$$(ab)^{n(n-1)} = (a^n b^n)^{n-1}, \text{ by the given condition}$$

$$= (a^n b^{n-1} b)^{n-1}$$

$$= (b^{n-1} a^n b)^{n-1}, \text{ by } (2)$$

$$= (a^n b)^{n-1} (b^{n-1})^{n-1}, \text{ by } (1)$$

$$= b^{n-1} (a^n)^{n-1} (b^{n-1})^{n-1}, \text{ by } (1)$$

$$= (b^{n-1} (a^{n-1})^n) (b^{n-1})^{n-1}$$

$$= (a^{n-1})^n b^{n-1} (b^{n-1})^{n-1}, \text{ by } (2)$$

$$= (a^{n-1})^n (b^{n-1})^n$$

$$= (a^{n-1}b^{n-1})^n, \text{ by } (1)$$

$$= (ba)^{n(n-1)}, \text{ by } (1).$$

This completes our proof.

Exercise 2.3.17 If G is a group and $a, x \in G$, prove that $C\left(x^{-1}ax\right) = x^{-1}C(a)x$

Proof. Note that

$$C(a) := \{ x \in G \mid xa = ax \}.$$

Let us assume $p \in C(x^{-1}ax)$. Then,

$$p(x^{-1}ax) = (x^{-1}ax) p$$

$$\Longrightarrow (px^{-1}a) x = x^{-1}(axp)$$

$$\Longrightarrow x(px^{-1}a) = (axp)x^{-1}$$

$$\Longrightarrow (xpx^{-1}) a = a(xpx^{-1})$$

$$\Longrightarrow xpx^{-1} \in C(a).$$

Therefore,

$$p \in C(x^{-1}ax) \Longrightarrow xpx^{-1} \in C(a).$$

Thus,

$$C\left(x^{-1}ax\right) \subset x^{-1}C(a)x.$$

Let us assume

$$q \in x^{-1}C(a)x$$
.

Then there exists an element y in C(a) such that

$$q = x^{-1}yx$$

Now,

$$y \in C(a) \Longrightarrow ya = ay.$$

Also,

$$q\left(x^{-1}ax\right) = \left(x^{-1}yx\right)\left(x^{-1}ax\right) = x^{-1}(ya)x = x^{-1}(ya)x = \left(x^{-1}yx\right)\left(x^{-1}ax\right) = \left(x^{-1}yx\right)q.$$

Therefore,

$$q\left(x^{-1}ax\right) = \left(x^{-1}yx\right)q$$

So,

$$q \in C\left(x^{-1}ax\right)$$
.

Consequently we have

$$x^{-1}C(a)x \subset C\left(x^{-1}ax\right).$$

It follows from the aforesaid argument

$$C\left(x^{-1}ax\right) = x^{-1}C(a)x.$$

This completes the proof.

Exercise 2.3.16 If a group G has no proper subgroups, prove that G is cyclic of order p, where p is a prime number.

Proof. Case-1: G=(e), e being the identity element in G. Then trivially G is cyclic. Case-2: $G \neq (e)$. Then there exists an non-identity element in G. Let us consider an non-identity element in G, say $a \neq (e)$. Now look at the cyclic subgroup generated by a, that is, $\langle a \rangle$. Since $a \neq (e) \in G, \langle a \rangle$ is a subgroup of G. If $G \neq \langle a \rangle$ then $\langle a \rangle$ is a proper non-trivial subgroup of G, which is an impossibility. Therfore we must have

$$G = \langle a \rangle$$
.

This implies, G is a cyclic group generated by a. Then it follows that every non-identity element of G is a generator of G. Now we claim that G is finite. \Box

Exercise 2.4.36 If a > 1 is an integer, show that $n \mid \varphi(a^n - 1)$, where ϕ is the Euler φ -function.

Proof. Proof: We have a > 1. First we propose to prove that

$$Gcd(a, a^n - 1) = 1.$$

If possible, let us assume that $Gcd(a, a^n - 1) = d$, where d > 1. Then d divides a as well as $a^n - 1$. Now, d divides $a \Longrightarrow d$ divides a^n . This is an impossibility, since d divides $a^n - 1$ by our assumption. Consequently, d divides 1, which implies d = 1. Hence we are contradict to the fact that d > 1. Therefore

$$Gcd(a, a^n - 1) = 1.$$

Then $a \in U_{a^n-1}$, where U_n is a group defined by

$$U_n := \{\bar{a} \in \mathbb{Z}_n \mid \operatorname{Gcd}(a, n) = 1\}.$$

We know that order of an element divides the order of the group. Here order of the group U_{a^n-1} is $\phi(a^n-1)$ and $a \in U_{a^n-1}$. This follows that o(a) divides $\phi(a^n-1)$.

Exercise 2.5.23 Let G be a group such that all subgroups of G are normal in G. If $a, b \in G$, prove that $ba = a^j b$ for some j.

Proof. Let G be a group where each subgroup is normal in G. let $a, b \in G$.

$$\langle a \rangle \triangleright G \Rightarrow b \cdot \langle a \rangle = \langle a \rangle \cdot b.$$

 $\Rightarrow b \cdot a = a^j \cdot b \text{ for some } j \in \mathbb{Z}.$

(hence for $a_1b \in G$ $a^jb = b \cdot a$).

Exercise 2.5.30 Suppose that |G| = pm, where $p \nmid m$ and p is a prime. If H is a normal subgroup of order p in G, prove that H is characteristic.

Proof. Let G be a group of order pm, such that $p \nmid m$. Now, Given that H is a normal subgroup of order p. Now we want to prove that H is a characterestic subgroup, that is $\phi(H) = H$ for any automorphism ϕ of G. Now consider $\phi(H)$. Clearly $|\phi(H)| = p$. Suppose $\phi(H) \neq H$, then $H \cap \phi(H) = \{e\}$. Consider $H\phi(H)$, this is a subgroup of G as H is normal. Also $|H\phi(H)| = p^2$. By lagrange's theorem then $p^2 \mid pm \Longrightarrow p \mid m$ - contradiction. So $\phi(H) = H$, and H is characterestic subgroup of G

Exercise 2.5.31 Suppose that G is an abelian group of order $p^n m$ where $p \nmid m$ is a prime. If H is a subgroup of G of order p^n , prove that H is a characteristic subgroup of G.

Proof. Let G be an abelian group of order p^nm , such that $p \nmid m$. Now, Given that H is a subgroup of order p^n . Since G is abelian H is normal. Now we want to prove that H is a characterestic subgroup, that is $\phi(H) = H$ for any automorphism ϕ of G. Now consider $\phi(H)$. Clearly $|\phi(H)| = p^n$. Suppose $\phi(H) \neq H$, then $|H \cap \phi(H)| = p^s$, where s < n. Consider $H\phi(H)$, this is a subgroup of G as H is normal. Also $|H\phi(H)| = \frac{|H||\phi(H)|}{|H\cap\phi(H)|} = \frac{p^{2n}}{p^s} = p^{2n-s}$, where 2n-s > n. By lagrange's theorem then $p^{2n-s}|p^nm \Longrightarrow p^{n-s}|m \Longrightarrow p \mid m$ -contradiction. So $\phi(H) = H$, and H is characterestic subgroup of G.

Exercise 2.5.37 If G is a nonabelian group of order 6, prove that $G \simeq S_3$.

 $ab^2 \neq e, b, ab, b^2, a$. So, we have got another element distinct from the other. So, now $G = \{e, a, b, b^2, ab, ab^2\}$. Also, ba must be equal to one of these elements. But $ba \neq e, a, b, b^2$. Also if ba = ab, the group will become abelian. so $ba = ab^2$. So what we finally get is $G = \langle a, b \mid a^2 = e = b^3, ba = ab^2 \rangle$. Hence $G \cong S_3$. \square

Exercise 2.5.43 Prove that a group of order 9 must be abelian.

Proof. We use the result from problem 40 which is as follows: Suppose G is a group, H is a subgroup and |G| = n and $n \nmid (i_G(H))!$. Then there exists a normal subgroup $K \setminus P$ neq $\{e\}$ and $K \subseteq H$. So, we have now a group G of order 9. Suppose that G is cyclic, then G is abelian and there is nothing more to prove. Suppose that G s not cyclic, then there exists an element G order 3, and G are in a normal subgroup G and G and G are in a normal subgroup, hence has no non-trivial subgroup, so G and G are in a normal subgroup. Now since G is not cyclic any non-identity element is of order 3. So Let G and G are in a normal G and hence G are in a normal subgroup. Now Let G and hence G is normal subgroup. Now Let G and hence G is a normal subgroup if its powers. Now Let G and hence G is a normal subgroup if its powers. Now Let G and hence G is a normal subgroup if its powers. Now Let G and hence G is a normal subgroup if its powers. Now Let G and hence G is a normal subgroup if its powers. Now Let G and hence G is a normal subgroup. Since G is a normal subgroup if its powers. Now Let G is a normal subgroup if its powers. Now Let G is a normal subgroup if its powers. Now Let G is a normal subgroup if its powers. Now Let G is a normal subgroup if its powers. Now Let G is a normal subgroup if its powers. Now Let G is a normal subgroup if its powers. It is the only possibility and hence G is a normal subgroup if its powers. It is the only possibility and hence G is a normal subgroup if its powers.

Exercise 2.5.44 Prove that a group of order p^2 , p a prime, has a normal subgroup of order p.

Proof. We use the result from problem 40 which is as follows: Suppose G is a group, H is a subgroup and |G| = n and $n \nmid (i_G(H))!$. Then there exists a normal subgroup $K \neq \{e\}$ and $K \subseteq H$.

So, we have now a group G of order p^2 . Suppose that the group is cyclic, then it is abelian and any subgroup of order p is normal. Now let us suppose that G is not cyclic, then there exists an element a of order p, and $A = \langle a \rangle$. Now $i_G(A) = p$, so $p^2 \nmid p!$, hence by the above result there is a normal subgroup K, non-trivial and $K \subseteq A$. But |A| = p, a prime order subgroup, hence has no non-trivial subgroup, so K = A. so A is normal subgroup.

Exercise 2.5.52 Let G be a finite group and φ an automorphism of G such that $\varphi(x) = x^{-1}$ for more than three-fourths of the elements of G. Prove that $\varphi(y) = y^{-1}$ for all $y \in G$, and so G is abelian.

Proof. Let us start with considering b to be an arbitrary element in A.

1. Show that $|A \cap (b^{-1}A)| > \frac{|G|}{2}$, where

$$b^{-1}A = \left\{ b^{-1}a \mid a \in A \right\}$$

First notice that if we consider a map $f: A \to b^{-1}A$ defined by $f(a) = b^{-1}a$, for all $a \in A$, then f is a 1-1 map and so $\left|b^{-1}A\right| \ge |A| > \frac{3}{4}|G|$. Now using inclusion-exclusion principle we have

$$\left|A \cap \left(b^{-1}A\right)\right| = |A| + \left|b^{-1}A\right| - \left|A \cup \left(b^{-1}A\right)\right| > \frac{3}{4}|G| + \frac{3}{4}|G| - |G| = \frac{1}{2}|G|$$

2. Argue that $A \cap (b^{-1}A) \subseteq C(b)$, where C(b) is the centralizer of b in G.

Suppose $x \in A \cap (b^{-1}A)$, that means, $x \in A$ and $x \in b^{-1}A$. Thus there exist an element $a \in A$ such that $x = b^{-1}a$, which gives us $xb = a \in A$. Now notice that $x, b \in A$ and $xb \in A$, therefore we get

$$\phi(xb) = (xb)^{-1} \Longrightarrow \phi(x)\phi(b) = (xb)^{-1} \Longrightarrow x^{-1}b^{-1} = b^{-1}x^{-1} \Longrightarrow xb = bx$$

Therefore, we get xb = bx, for any $x \in A \cap (b^{-1}A)$, that means, $x \in C(b)$.

3. Argue that C(b) = G. We know that centralizer of an element in a group G is a subgroup (See Page 53). Therefore C(b) is a subgroup of G. From statements 1 and 2, we have

$$|C(b)| \ge |A \cap (b^{-1}A)| > \frac{|G|}{2}$$

We need to use the following remark to argue C(b) = G from the above step. Remark. Let G be a finite group and H be a subgroup with more then |G|/2 elements then H = G.

Proof of Remark. Suppose |H|=p Then by Lagrange Theorem, there exist an $n\in\mathbb{N}$, such that |G|=np, as |H| divide |G|. Now by hypothesis $p>\frac{G}{2}$ gives us,

$$p>\frac{|G|}{2}\Longrightarrow np>\frac{n|G|}{2}\Longrightarrow n<2\Longrightarrow n=1$$

Therefore we get H = G.

Now notice that C(b) is a subgroup of G with C(b) having more than |G|/2 elements. Therefore, C(b) = G.

4. Show that $A \in Z(G)$.

We know that $x \in Z(G)$ if and only if C(a) = G. Now notice that, for any $b \in A$ we have C(b) = G. Therefore, every element of A is in the center of G, that means, $A \subseteq Z(G)$.

5. Show that Z(G) = G.

As it is given that $|A| > \frac{3|G|}{4}$ and $A \leq |Z(G)|$, therefore we get

$$|Z(G)| > \frac{3}{4}|G| > \frac{1}{2}|G|.$$

As Z(G) is a subgroup of G, so by the above Remark we have Z(G)=G. Hence G is abelian.

6. Finally show that A = G.

First notice that A is a subgroup of G. To show this let $p, q \in A$. Then we have

$$\phi(pq) = \phi(p)\phi(q) = p^{-1}q^{-1} = (qp)^{-1} = (pq)^{-1}$$
, As G is abelian.

Therefore, $pq \in A$ and so we have A is a subgroup of G. Again by applying the above remark. we get A = G. Therefore we have

$$\phi(y) = y^{-1}$$
, for all $y \in G$

Exercise 2.6.15 If G is an abelian group and if G has an element of order m and one of order n, where m and n are relatively prime, prove that G has an element of order mn.

Proof. Let G be an abelian group, and let a and b be elements in G of order m and n, respectively, where m and n are relatively prime. We will show that the product ab has order mn in G, which will prove that G has an element of order mn

To show that ab has order mn, let k be the order of ab in G. We have $a^m = e$, $b^n = e$, and $(ab)^k = e$, where e denotes the identity element of G. Since G is abelian, we have

$$(ab)^{mn} = a^{mn}b^{mn} = e \cdot e = e.$$

Thus, k is a divisor of mn.

Now, observe that $a^k = b^{-k}$. Since m and n are relatively prime, there exist integers x and y such that mx + ny = 1. Taking kx on both sides of the equation, we get $a^{kx} = b^{-kx}$, or equivalently, $(a^k)^x = (b^k)^{-x}$. It follows that $a^{kx} = (a^m)^{xny} = e$, and similarly, $b^{ky} = (b^n)^{mxk} = e$. Therefore, m divides ky and n divides kx. Since m and n are relatively prime, it follows that mn divides k. Hence, k = mn, and k has order k order k. This completes the proof. k

Exercise 2.7.7 If φ is a homomorphism of G onto G' and $N \triangleleft G$, show that $\varphi(N) \triangleleft G'$.

Proof. We first claim that $\varphi(N)$ is a subgroup of G'. To see this, note that since N is a subgroup of G, the identity element e_G of G belongs to N. Therefore, the element $\varphi(e_G) \in \varphi(N)$, so $\varphi(N)$ is a non-empty subset of G'.

Now, let $a',b' \in \varphi(N)$. Then there exist elements $a,b \in N$ such that $\varphi(a) = a'$ and $\varphi(b) = b'$. Since N is a subgroup of G, we have $a,b \in N$, so $ab^{-1} \in N$. Thus, we have

$$\varphi(ab^{-1}) = \varphi(a)\varphi(b^{-1}) = a'b'^{-1} \in \varphi(N),$$

which shows that $a', b' \in \varphi(N)$ implies $a'b'^{-1} \in \varphi(N)$. Therefore, $\varphi(N)$ is a subgroup of G'.

Next, we will show that $\varphi(N)$ is a normal subgroup of G'. Let $\varphi(N) = N'$, a subgroup of G'. Let $x' \in G'$ and $h' \in N'$. Since φ is onto, there exist elements $x \in G$ and $h \in N$ such that $\varphi(x) = x'$ and $\varphi(h) = h'$.

Since N is a normal subgroup of G, we have $xhx^{-1} \in N$. Thus,

$$\varphi(xhx^{-1}) = \varphi(x)\varphi(h)\varphi(x^{-1}) = x'h'x'^{-1} \in \varphi(N),$$

which shows that $x' \in G'$ and $h' \in N'$ implies $x'h'x'^{-1} \in \varphi(N)$. Therefore, $\varphi(N)$ is a normal subgroup of G'. This completes the proof.

Exercise 2.8.12 Prove that any two nonabelian groups of order 21 are isomorphic.

Proof. By Cauchy's theorem we have that if G is a group of order 21 then it has an element a of order 3 and an element b of order 7. By exercise 2.5.41 we have that the subgroup generated by b is normal, so there is some i=0,1,2,3,4,5,6 such that $aba^{-1}=b^i$. We know $i\neq 0$ since that implies ab=a and so that b=e, a contradiction, and we know $i\neq 1$ since then ab=ba and this would imply G is abelian, which we are assuming is not the case. Now, a has order 3 so we must have $b=a^3ba^{-3}=b^{i^3}\mod 7$, and so i is restricted by the modular equation $i^3\equiv 1\mod 7$

\boldsymbol{x}	$x^3 \mod 7$
2	1
3	6
4	1
5	6
6	6

Therefore the only options are i=2 and i=4. Now suppose G is such that $aba^{-1}=b^2$ and let G' be another group of order 21 with an element c of order 3 and an element d of order 7 such that $cdc^{-1}=d^4$. We now prove that G and G' are isomorphic. Define

$$b: G \to G'$$
$$a \mapsto c^{-1}$$
$$b \mapsto d$$

since a and c^{-1} have the same order and b and d have the same order this is a well defined function. Since

$$\phi(a)\phi(b)\phi(a)^{-1} = c^{-1}dc$$

$$= (cd^{-1}c^{-1})^{-1}$$

$$= (d^{-4})^{-1}$$

$$= d^{4}$$

$$= (d^{2})^{2}$$

$$= \phi(b)^{2}$$

 ϕ is actually a homomorphism. For any $c^id^j \in G'$ we have $\phi\left(a^{-i}b^j\right) = c^id^j$ so ϕ is onto and $\phi\left(a^ib^j\right) = c^{-i}d^j = e$ only if i = j = 0, so ϕ is 1-to-l. Therefore G and G' are isomorphic and so up to isomorphism there is only one nonabelian group of order 21.

Exercise 2.8.15 Prove that if p > q are two primes such that $q \mid p - 1$, then any two nonabelian groups of order pq are isomorphic.

Proof. For a nonabelian group of order pq, the structure of the group G is set by determining the relation $aba^{-1}=b^{k^{\frac{p-1}{q}}}$ for some generator k of the cyclic group. Here we are using the fact that $k^{\frac{p-1}{q}}$ is a generator for the unique subgroup of order q in U_p (a cyclic group of order m has a unique subgroup of order d for each divisor d of m). The other possible generators of this subgroup are $k^{\frac{l(p-1)}{q}}$ for each $1 \leq l \leq q-1$, so these give potentially new group structures. Let G' be a group with an element c of order q, an element d of order p with structure defined by the relation $cdc^{-1}=d^{k^{\frac{l(p-1)}{q}}}$. We may then define

$$\phi: G' \to G$$
$$c \mapsto a^l$$
$$d \mapsto b$$

since c and a^l have the same order and b and d have the same order this is a well defined function. Since

$$\begin{split} \phi(c)\phi(d)\phi(c)^{-1} &= a^l b a^{-l} \\ &= b^{\left(k^{\frac{p-1}{q}}\right)^l} \\ &= b^{k^{\frac{l(p-1)}{q}}} \\ &= \phi(d)^{k^{\frac{l(p-1)}{q}}} \end{split}$$

 $\phi\left(c^{i}d^{j}\right)=a^{li}b^{j}=e$ only if i=j=0, so ϕ is 1-to-l. Therefore G and G' are isomorphic and so up to isomorphism there is only one nonabelian group of order pq.

Exercise 2.9.2 If G_1 and G_2 are cyclic groups of orders m and n, respectively, prove that $G_1 \times G_2$ is cyclic if and only if m and n are relatively prime.

Proof. The order of $G \times H$ is n. m. Thus, $G \times H$ is cyclic iff it has an element with order n. m. Suppose $\gcd(n.m) = 1$. This implies that g^m has order n, and analogously h^n has order m. That is, $g \times h$ has order n. m, and therefore $G \times H$ is cyclic.

Suppose now that $\gcd(n.m) > 1$. Let g^k be an element of G and h^j be an element of H. Since the lowest common multiple of n and m is lower than the product n.m, that is, $\operatorname{lcm}(n,m) < n$. m, and since $\left(g^k\right)^{lcm(n,m)} = e_G$, $\left(h^j\right)^{lcm(n,m)} = e_H$, we have $\left(g^k \times h^j\right)^{lcm(n,m)} = e_{G \times H}$. It follows that every element of $G \times H$ has order lower than n.m, and therefore $G \times H$ is not cyclic.

Exercise 2.10.1 Let A be a normal subgroup of a group G, and suppose that $b \in G$ is an element of prime order p, and that $b \notin A$. Show that $A \cap (b) = (e)$.

Proof. If $b \in G$ has order p, then (b) is a cyclic group of order p. Since A is a subgroup of G, we have $A \cap (b)$ is a subgroup of G. Also, $A \cap (b) \subseteq (b)$. So $A \cap (b)$ is a subgroup of (b). Since (b) is a cyclic group of order p, the only subgroups of (b) are (e) and (b) itself.

Therefore, either $A \cap (b) = (e)$ or $A \cap (b) = (b)$. If $A \cap (b) = (e)$, then we are done. Otherwise, if $A \cap (b) = (b)$, then $A \subseteq (b)$. Since A is a subgroup of G and $A \subseteq (b)$, it follows that A is a subgroup of (b).

Since the only subgroups of (b) are (e) and (b) itself, we have either A = (e) or A = (b). If A = (e), then $A \cap (b) = (e)$ and we are done. But if A = (b), then $b \in A$ as $b \in (b)$, which contradicts our hypothesis that $b \notin A$. So $A \neq (b)$.

Hence $A \cap (b) \neq (b)$. Therefore, $A \cap (b) = (e)$. This completes our proof. \square

Exercise 2.11.6 If P is a p-Sylow subgroup of G and $P \triangleleft G$, prove that P is the only p-Sylow subgroup of G.

Proof. let G be a group and P a sylow-p subgroup. Given P is normal. By sylow second theorem the sylow-p subgroups are conjugate. Let K be any other sylow-p subgroup. Then there exists $g \in G$ such that $K = gPg^{-1}$. But since P is normal $K = gPg^{-1} = P$. Hence the sylow-p subgroup is unique.

Exercise 2.11.7 If $P \triangleleft G$, P a p-Sylow subgroup of G, prove that $\varphi(P) = P$ for every automorphism φ of G.

Proof. Let ϕ be an automorphism of G. Let P be a normal sylow p-subgroup. $\phi(P)$ is also a sylow-p subgroup. But since P is normal, it is unique. Hence $\phi(P) = P$.

Exercise 2.11.22 Show that any subgroup of order p^{n-1} in a group G of order p^n is normal in G.

Proof. Proof: First we prove the following lemma.

Lemma: If G is a finite p-group with |G| > 1, then Z(G), the center of G, has more than one element; that is, if $|G| = p^k$ with $k \ge 1$, then |Z(G)| > 1.

Proof of the lemma: Consider the class equation

$$|G| = |Z(G)| + \sum_{a \notin Z(G)} [G : C(a)],$$

where C(a) denotes the centralizer of a in G. If G = Z(G), then the lemma is immediate. Suppose Z(G) is a proper subset of G and consider an element $a \in G$ such that $a \notin Z(G)$. Then C(a) is a proper subgroup of G. Since C(a) is a subgroup of a p-group, [G:C(a)] is divisible by p for all $a \notin Z(G)$. This implies that p divides $|G| = |Z(G)| + \sum_{a \notin Z(G)} [G:C(a)]$.

Since p also divides |G|, it follows that p divides |Z(G)|. Hence, |Z(G)| > 1.

This proves our lemma.

We will prove the result by induction on n. If n=1, the G is a cyclic group of prime order and hence every subgroup of G is normal in G. Thus, the result is true for n=1. Suppose the result is true for all groups of order p^m , where $1 \leq m < n$. Let H be a subgroup of order p^{n-1} . Consider $N(H) = \{g \in H : gH = Hg\}$. If $H \neq N(H)$, then $|N(H)| > p^{n-1}$. Thus, $|N(H)| = p^n$ and N(H) = G. In this case H is normal in G. Let H = N(H). Then Z(G), the center of G, is a subset of H and $Z(G) \neq \{e\}$. By Cauchy's theorem and the above Claim, there exists $a \in Z(G)$ such that o(a) = p. Let $K = \langle a \rangle$, a cyclic group generated by a. Then K is a normal subgroup of G of order G. Now, $|H/K| = p^{n-2}$ and $|G/K| = p^{n-1}$. Thus, by induction hypothesis, H/K is a normal subgroup of G/K.

Exercise 3.2.21 If σ, τ are two permutations that disturb no common element and $\sigma \tau = e$, prove that $\sigma = \tau = e$.

Proof. Note that $\sigma\tau=e$ can equivalently be phrased as τ being the inverse of σ . Our statement is then equivalent to the statement that an inverse of a nonidentity permutation disturbs at least one same element as that permutation. To prove this, let σ be a nonidentity permutation, then let $(i_1 \cdots i_n)$ be a cycle in σ . Then we have that

$$\sigma(i_1) = i_2, \sigma(i_2) = i_2, \dots, \sigma(i_{n-1}) = i_n, \sigma(i_n) = i_1,$$

but then also

$$i_1 = \tau(i_2), i_2 = \tau(i_3), \dots, i_{n-1} = \tau(i_n), i_n = \tau(i_1),$$

i.e. its inverse disturbs i_1, \ldots, i_n .

Exercise 4.1.19 Show that there is an infinite number of solutions to $x^2 = -1$ in the quaternions.

Proof. Let x = ai + bj + ck then

$$x^{2} = (ai + bj + ck)(ai + bj + ck) = -a^{2} - b^{2} - c^{2} = -1$$

This gives $a^2 + b^2 + c^2 = 1$ which has infinitely many solutions for -1 < a, b, c < 1.

Exercise 4.1.34 Let T be the group of 2×2 matrices A with entries in the field \mathbb{Z}_2 such that det A is not equal to 0. Prove that T is isomorphic to S_3 , the symmetric group of degree 3.

Proof. The order of T is $2^4 - 2^3 - 2^2 + 2 = 6$; we now find those six matrices:

$$A_{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad A_{2} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$A_{3} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \quad A_{4} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

$$A_{5} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \quad A_{6} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

with orders 1, 2, 2, 2, 3, 3 respectively. Note that S_3 is composed of elements

with orders 1, 2, 2, 2, 3, 3 respectively. Also note that, by Problem 17 of generate S_3 . We also have that $\begin{pmatrix} 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$, that $\begin{pmatrix} 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \end{pmatrix} = id$

Now we can check that $\tau(A_2)=\begin{pmatrix}1&2\end{pmatrix}, \tau(A_5)=\begin{pmatrix}1&2&3\end{pmatrix}$ induces an isomorphism. We compute

$$\tau(A_{1}) = \tau(A_{2}A_{2}) = \tau(A_{2}) \tau(A_{2}) = id$$

$$\tau(A_{3}) = \tau(A_{5}A_{2}) = \tau(A_{5}) \tau(A_{2}) = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 3 \end{pmatrix}$$

$$\tau(A_{4}) = \tau(A_{2}A_{5}) = \tau(A_{2}) \tau(A_{5}) = \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 3 \end{pmatrix}$$

$$\tau(A_{6}) = \tau(A_{5}A_{5}) = \tau(A_{5}) \tau(A_{5}) = \begin{pmatrix} 1 & 3 & 2 \end{pmatrix}$$

Thus we see that τ extendeds to an isomorphism, since A_2 and A_5 generate T, so that $\tau(A_iA_j) = \tau(A_i)\tau(A_j)$ follows from writing A_i and A_j in terms of A_2 and A_5 and using the equlities and relations shown above.

Exercise 4.2.5 Let R be a ring in which $x^3 = x$ for every $x \in R$. Prove that R is commutative.

Proof. To begin with

$$2x = (2x)^3 = 8x^3 = 8x.$$

Therefore $6x = 0 \quad \forall x$. Also

$$(x+y) = (x+y)^3 = x^3 + x^2y + xyx + yx^2 + xy^2 + yxy + y^2x + y^3$$

and

$$(x-y) = (x-y)^3 = x^3 - x^2y - xyx - yx^2 + xy^2 + yxy + y^2x - y^3$$

Subtracting we get

$$2\left(x^2y + xyx + yx^2\right) = 0$$

Multiply the last relation by x on the left and right to get

$$2(xy + x^2yx + xyx^2) = 0$$
 $2(x^2yx + xyx^2 + yx) = 0$.

Subtracting the last two relations we have

$$2(xy - yx) = 0.$$

We then show that $3(x+x^2) = 0 \forall x$. You get this from

$$x + x^{2} = (x + x^{2})^{3} = x^{3} + 3x^{4} + 3x^{5} + x^{6} = 4(x + x^{2}).$$

In particular

$$3(x+y+(x+y)^2) = 3(x+x^2+y+y^2+xy+yx) = 0$$

we end-up with 3(xy+yx)=0. But since 6xy=0, we have 3(xy-yx)=0. Then subtract 2(xy-yx)=0 to get xy-yx=0.

Exercise 4.2.6 If $a^2 = 0$ in R, show that ax + xa commutes with a.

Proof. We need to show that

$$a(ax + xa) = (ax + xa)a$$
 for $a, x \in R$.

Now,

$$a(ax + xa) = a(ax) + a(xa)$$
$$= a2x + axa$$
$$= 0 + axa = axa.$$

Again,

$$(ax + xa)a = (ax)a + (xa)a$$
$$= axa + xa2$$
$$= axa + 0 = axa.$$

It follows that,

$$a(ax + xa) = (ax + xa)a$$
, for $x, a \in R$.

This shows that ax + xa commutes with a. This completes the proof.

Exercise 4.2.9 Let p be an odd prime and let $1 + \frac{1}{2} + ... + \frac{1}{p-1} = \frac{a}{b}$, where a, b are integers. Show that $p \mid a$.

Proof. First we prove for prime p=3 and then for all prime p>3. Let us take p=3. Then the sum

$$\frac{1}{1} + \frac{1}{2} + \ldots + \frac{1}{(p-1)}$$

becomes

$$1 + \frac{1}{3-1} = 1 + \frac{1}{2} = \frac{3}{2}.$$

Therefore in this case $\frac{a}{b} = \frac{3}{2}$ implies $3 \mid a$, i.e. $p \mid a$. Now for odd prime p > 3. Let us consider $f(x) = (x-1)(x-2)\dots(x-(p-1))$. Now, by Fermat,

we know that the coefficients of f(x) other than the x^{p-1} and x^0 are divisible by p. So if,

$$f(x) = x^{p-1} + \sum_{i=0}^{p-2} a_i x^i$$
 and $p > 3$.

Then $p \mid a_2$, and

$$f(p) \equiv a_1 p + a_0 \pmod{p^3}$$

But we see that

$$f(x) = (-1)^{p-1} f(p-x)$$
 for any x ,

so if p is odd,

$$f(p) = f(0) = a_0,$$

So it follows that:

$$0 = f(p) - a_0 \equiv a_1 p \pmod{p^3}$$

Therefore,

$$0 \equiv a_1 \pmod{p^2} .$$

Hence,

$$0 \equiv a_1 \pmod{p}$$
.

Now our sum is just $\frac{a_1}{(p-1)!} = \frac{a}{b}$. It follows that p divides a. This completes the proof.

Exercise 4.3.1 If R is a commutative ring and $a \in R$, let $L(a) = \{x \in R \mid xa = 0\}$. Prove that L(a) is an ideal of R.

Proof. First, note that if $x \in L(a)$ and $y \in L(a)$ then xa = 0 and ya = 0, so that

$$xa - ya = 0$$
$$(x - y)a = 0,$$

i.e. L(a) is an additive subgroup of R. (We have used the criterion that H is a subgroup of G if for any $h_1, h_2 \in H$ we have that $h_1h_2^{-1} \in H$.

Now we prove the conclusion. Let $r \in R$ and $b \in L(a)$, then ba = 0, and so xba = 0 which by associativity of multiplication in R is equivalent to

$$(xb)a = 0,$$

so that $xb \in L(a)$. Since R is commutative, (1) implies that (bx)a = 0, so that $bx \in L(a)$, which concludes the proof that L(a) is an ideal.

Exercise 4.3.25 Let R be the ring of 2×2 matrices over the real numbers; suppose that I is an ideal of R. Show that I = (0) or I = R.

Proof. Suppose that I is a nontrivial ideal of R, and let

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

where not all of a, b, cd are zero. Suppose, without loss of generality – our steps would be completely analogous, modulo some different placement of 1 s in our matrices, if we assumed some other element to be nonzero – that $a \neq 0$. Then we have that

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) = \left(\begin{array}{cc} a & b \\ 0 & 0 \end{array}\right) \in I$$

and so

$$\left(\begin{array}{cc} a & b \\ 0 & 0 \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) = \left(\begin{array}{cc} a & 0 \\ 0 & 0 \end{array}\right) \in I$$

so that

$$\left(\begin{array}{cc} x & 0 \\ 0 & 0 \end{array}\right) \in I$$

for any real x. Now, also for any real x,

$$\left(\begin{array}{cc} x & 0 \\ 0 & 0 \end{array}\right) \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) = \left(\begin{array}{cc} 0 & x \\ 0 & 0 \end{array}\right) \in I.$$

Likewise

$$\left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right) \left(\begin{array}{cc} 0 & x \\ 0 & 0 \end{array}\right) = \left(\begin{array}{cc} 0 & 0 \\ 0 & x \end{array}\right) \in I$$

and

$$\left(\begin{array}{cc} 0 & 0 \\ 0 & x \end{array}\right) \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right) = \left(\begin{array}{cc} 0 & 0 \\ x & 0 \end{array}\right)$$

Thus, as

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) = \left(\begin{array}{cc} a & 0 \\ 0 & 0 \end{array}\right) + \left(\begin{array}{cc} 0 & b \\ 0 & 0 \end{array}\right) + \left(\begin{array}{cc} 0 & 0 \\ c & 0 \end{array}\right) + \left(\begin{array}{cc} 0 & 0 \\ 0 & d \end{array}\right)$$

and since all the terms on the right side are in I and I is an additive group, it follows that

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

for arbitrary a, b, c, d is in I, i.e. I = R Note that the intuition for picking these matrices is that, if we denote by E_{ij} the matrix with 1 at position (i, j) and 0 elsewhere, then

$$E_{ij} \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix} E_{nm} = a_{j,n} E_{im}$$

Exercise 4.4.9 Show that (p-1)/2 of the numbers $1, 2, \ldots, p-1$ are quadratic residues and (p-1)/2 are quadratic nonresidues $\mod p$.

Proof. To find all the quadratic residues mod p among the integers $1, 2, \ldots, p-1$, we compute the least positive residues modulo p of the squares of the integers $1, 2, \ldots, p-1$.

Since there are p-1 squares to consider, and since each congruence $x^2 \equiv a \pmod{p}$ has either zero or two solutions, there must be exactly $\frac{(p-1)}{2}$ quadratic residues mod p among the integers $1, 2, \ldots, p-1$. The remaining

$$(p-1) - \frac{(p-1)}{2} = \frac{(p-1)}{2}$$

positive integers less than p-1 are quadratic non-residues of mod p.

Exercise 4.5.16 Let $F = \mathbb{Z}_p$ be the field of integers $\mod p$, where p is a prime, and let $q(x) \in F[x]$ be irreducible of degree n. Show that F[x]/(q(x)) is a field having at exactly p^n elements.

Proof. In the previous problem we have shown that any for any $p(x) \in F[x]$, we have that

$$p(x) + (q(x)) = a_{n-1}x^{n-1} + \dots + a_1x + a_0 + (q(x))$$

for some $a_{n-1}, \ldots, a_0 \in F$, and that there are p^n choices for these numbers, so that $F[x]/(q(x)) \leq p^n$. In order to show that equality holds, we have to show that each of these choices induces a different element of F[x]/(q(x)); in other words, that each different polynomial of degree n-1 or lower belongs to a different coset of (q(x)) in F[x].

Suppose now, then, that

$$a_{n-1}x^{n-1} + \dots + a_1x + a_0 + (q(x)) = b_{n-1}x^{n-1} + \dots + b_1x + b_0 + (q(x))$$

which is equivalent with $(a_{n-1}-b_{n-1})^{n-1}+\cdots(a_1-b_1)\,x+(a_0-b_0)\in(q(x)),$ which is in turn equivalent with there being a $w(x)\in F[x]$ such that

$$q(x)w(x) = (a_{n-1} - b_{n-1})^{n-1} + \cdots + (a_1 - b_1)x + (a_0 - b_0).$$

Degree of the right hand side is strictly smaller than n, while the degree of the left hand side is greater or equal to n except if w(x) = 0, so that if equality is hold we must have that w(x) = 0, but then since polynomials are equal iff all of their coefficient are equal we get that $a_{n-1} - b_{n-1} = 0, \ldots, a_1 - b_1 = 0, a_0 - b_0 = 0$, i.e.

$$a_{n-1} = b_{n-1}, \dots, a_1 = b_1, a_0 = b_0$$

which is what we needed to prove.

Exercise 4.5.23 Let $F = \mathbb{Z}_7$ and let $p(x) = x^3 - 2$ and $q(x) = x^3 + 2$ be in F[x]. Show that p(x) and q(x) are irreducible in F[x] and that the fields F[x]/(p(x)) and F[x]/(q(x)) are isomorphic.

Proof. We have that p(x) and q(x) are irreducible if they have no roots in \mathbb{Z}_7 , which can easily be checked. E.g. for p(x) we have that p(0) = 5, p(1) = 6, p(2) = 6, p(3) = 4, p(4) = 6, p(5) = 4, p(6) = 4, and similarly for q(x).

We have that every element of F[x]/(p(x)) is equal to $ax^2 + bx + c + (p(x))$, and likewise for F[x]/(q(x)). We consider a map $\tau : F[x]/(p(x)) \to F[x]/(q(x))$ given by

 $\tau (ax^2 + bx + c + (p(x))) = ax^2 - bx + c + (q(x)).$

This map is obviously onto, and since $|F[x]/(p(x))| = |F[x]/(q(x))| = 7^3$ by Problem 16, it is also one-to-one. We claim that it is a homomorphism. Additivity of τ is immediate by the linearity of addition of polynomial coefficient, so we just have to check the multiplicativity; if $n = ax^2 + bx + c + (p(x))$ and $m = dx^2 + ex + f + (p(x))$ then

$$\tau(nm) = \tau \left(adx^4 + (ae + bd)x^3 + (af + be + cd)x^2 + (bf + ce)x + cf + (p(x)) \right)$$

$$= \tau \left(2adx + 2(ae + bd) + (af + be + cd)x^2 + (bf + ce)x + cf + (p(x)) \right)$$

$$= \tau \left((af + be + cd)x^2 + (bf + ce + 2ad)x + (cf + 2ae + 2bd) + (p(x)) \right)$$

$$= (af + be + cd)x^2 - (bf + ce + 2ad)x + cf + 2ae + 2bd + (q(x))$$

$$= adx^4 - (ae + bd)x^3 + (af + be + cd)x^2 - (bf + ce)x + cf + (q(x))$$

$$= (ax^2 - bx + c + (q(x))) \left(dx^2 - ex + f + (q(x)) \right)$$

$$= \tau(n)\tau(m).$$

where in the second equality we used that $x^3 + p(x) = 2 + p(x)$ and in the fifth we used that $x^3 + q(x) = -2 + q(x)$

Exercise 4.5.25 If p is a prime, show that $q(x) = 1 + x + x^2 + \cdots + x^{p-1}$ is irreducible in Q[x].

Proof. Lemma: Let F be a field and $f(x) \in F[x]$. If $c \in F$ and f(x+c) is irreducible in F[x], then f(x) is irreducible in F[x]. Proof of the Lemma: Suppose that f(x) is reducible, i.e., there exist non-constant $g(x), h(x) \in F[x]$ so that

$$f(x) = g(x)h(x).$$

In particular, then we have

$$f(x+c) = q(x+c)h(x+c).$$

Note that g(x+c) and h(x+c) have the same degree at g(x) and h(x) respectively; in particular, they are non-constant polynomials. So our assumption is wrong. Hence, f(x) is irreducible in F[x]. This proves our Lemma.

Now recall the identity

$$\frac{x^p - 1}{x - 1} = x^{p-1} + x^{p-2} + \dots + x^2 + x + 1.$$

We prove that f(x+1) is \$ —textbffirreducible in $\mathbb{Q}[x]$ and then apply the Lemma to conclude that f(x) is irreducible in $\mathbb{Q}[x].3$ \$ Note that

$$f(x+1) = \frac{(x+1)^p - 1}{x}$$
$$= \frac{x^p + px^{p-1} + \dots + px}{x}$$
$$= x^{p-1} + px^{p-2} + \dots + p.$$

Using that the binomial coefficients occurring above are all divisible by p, we have that f(x+1) is irreducible $\mathbb{Q}[x]$ by Eisenstein's criterion applied with prime p.

Then by the lemma f(x) is irreducible $\mathbb{Q}[x]$. This completes the proof. \square

Exercise 4.6.2 Prove that $f(x) = x^3 + 3x + 2$ is irreducible in Q[x].

Proof. Let us assume that f(x) is reducible over $\mathbb{Q}[x]$. Then there exists a rational root of f(x). Let p/q be a rational root of f(x), where $\gcd(p,q)=1$. Then f(p/q)=0. Now,

$$f(p/q) = (p/q)^3 + 3(p/q) + 2$$
$$\Longrightarrow (p/q)^3 + 3(p/q) + 2 = 0$$
$$\Longrightarrow p^3 + 3pq^2 = -2q^3$$
$$\Longrightarrow p(p^2 + 3q^2) = -q^3$$

It follows that, p divides q which is a contradiction to the fact that gcd(p,q) = 1. This implies that f(x) has no rational root. Now we know that, a polynomial of degree two or three over a field F is reducible if and only if it has a root in F. Now f(x) is a 3 degree polynomial having no root in \mathbb{Q} . So, f(x) is irreducible in $\mathbb{Q}[x]$. This completes the proof.

Exercise 4.6.3 Show that there is an infinite number of integers a such that $f(x) = x^7 + 15x^2 - 30x + a$ is irreducible in Q[x].

Proof. Via Eisenstein's criterion and observation that 5 divides 15 and -30, it is sufficient to find infinitely many a such that 5 divides a, but $5^2 = 25$ doesn't divide a. For example $5 \cdot 2^k$ for $k = 0, 1, \ldots$ is one such infinite sequence.

Exercise 5.1.8 If F is a field of characteristic $p \neq 0$, show that $(a+b)^m = a^m + b^m$, where $m = p^n$, for all $a, b \in F$ and any positive integer n.

Proof. Since F is of characteristic p and we have considered arbitrary two elements a, b in F we have

$$pa = pb = 0$$

$$\implies p^n a = p^n b = 0$$

$$\implies ma = mb = 0.$$

Now we know from Binomial Theorem that

$$(a+b)^m = \sum_{i=0}^m \binom{m}{i} a^i b^{m-i}$$

Here

$$\left(\begin{array}{c} m\\i\end{array}\right) = \frac{m!}{i!(m-i)!}.$$

Now we know that for any integer n and any integer k satisfying $1 \le k < n, n$ always divides $\binom{n}{k}$. So in our case for i in the range $1 \le i < m, m$ divides $\binom{m}{i}$. It follows that p divides $\binom{m}{i}$, for i satisfying $1 \le i < m$, since $m = p^n$ for any integer n. Therefore other than the terms a^m and b^m in the expansion $\sum_{i=0}^m \binom{m}{i} a^i b^{m-i}$ will vanish due to char p nature of F. Hence we have

$$\sum_{i=0}^m \left(\begin{array}{c} m \\ i \end{array}\right) a^i b^{m-i} = a^m + b^m$$

This follows that, for all $a, b \in F$

$$(a+b)^m = a^m + b^m.$$

This completes the proof.

Exercise 5.2.20 Let V be a vector space over an infinite field F. Show that V cannot be the set-theoretic union of a finite number of proper subspaces of V.

Proof. Assume that V can be written as the set-theoretic union of n proper subspaces U_1, U_2, \ldots, U_n . Without loss of generality, we may assume that no U_i is contained in the union of other subspaces.

Let $u \in U_i$ but $u \notin \bigcup_{j \neq i} U_j$ and $v \notin U_i$. Then, we have $(v + Fu) \cap U_i = \emptyset$, and $(v + Fu) \cap U_j$ for $j \neq i$ contains at most one vector, since otherwise U_j would contain u.

Therefore, we have $|v + Fu| \le |F| \le n - 1$. However, since n is a finite natural number, this contradicts the fact that the field F is finite.

Thus, our assumption that V can be written as the set-theoretic union of proper subspaces is wrong, and the claim is proven.

Exercise 5.3.7 If $a \in K$ is such that a^2 is algebraic over the subfield F of K, show that a is algebraic over F.

Proof. Since a^2 is algebraic over F, there exist a non-zero polynomial f(x) in F[x] such that $f(a^2) = 0$. Consider a new polynomial g(x) defined as $g(x) = f(x^2)$. Clearly $g(x) \in F[x]$ and $g(a) = f(a^2) = 0$.

Exercise 5.3.10 Prove that $\cos 1^{\circ}$ is algebraic over \mathbb{Q} .

Proof. Since $(\cos(1^{\circ}) + i\sin(1^{\circ}))^{360} = 1$, the number $\cos(1^{\circ}) + i\sin(1^{\circ})$ is algebraic. And the real part and the imaginary part of an algebraic number are always algebraic numbers.

Exercise 5.4.3 If $a \in C$ is such that p(a) = 0, where $p(x) = x^5 + \sqrt{2}x^3 + \sqrt{5}x^2 + \sqrt{7}x + \sqrt{11}$, show that a is algebraic over \mathbb{Q} of degree at most 80.

Proof. Given $a \in \mathbb{C}$ such that p(a) = 0, where

$$p(x) = x^5 + \sqrt{2}x^3 + \sqrt{5}x^2 + \sqrt{7}x + \sqrt{11}$$

Here, we note that $p(x) \in \mathbb{Q}(\sqrt{2}, \sqrt{5}, \sqrt{7}, \sqrt{11})$ and

$$\begin{split} [Q(\sqrt{2},\sqrt{5},\sqrt{7},\sqrt{11}):\mathbb{Q}] &= [Q(\sqrt{2},\sqrt{5},\sqrt{7},\sqrt{11}):Q(\sqrt{2},\sqrt{5},\sqrt{7})] \cdot [\mathbb{Q}(\sqrt{2},\sqrt{5},\sqrt{7}):\mathbb{Q}(\sqrt{2},\sqrt{5})] \\ & \cdot [\mathbb{Q}(\sqrt{2},\sqrt{5}):\mathbb{Q}(\sqrt{2})] \cdot [\mathbb{Q}(\sqrt{2}):\mathbb{Q}] \\ &= 2 \cdot 2 \cdot 2 \cdot 2 \\ &= 16 \end{split}$$

Here, we note that p(x) is of degree 5 over $\mathbb{Q}(\sqrt{2}, \sqrt{5}, \sqrt{7}, \sqrt{11})$. If a is root of p(x), then

$$[Q(\sqrt{2},\sqrt{5},\sqrt{7},\sqrt{11},a):\mathbb{Q}] = [Q(\sqrt{2},\sqrt{5},\sqrt{7},\sqrt{11}):Q(\sqrt{2},\sqrt{5},\sqrt{7},\sqrt{11})]\cdot 15$$

and $[Q(\sqrt{2}, \sqrt{5}, \sqrt{7}, \sqrt{11}): Q(\sqrt{2}, \sqrt{5}, \sqrt{7}, \sqrt{11})] \leq 5$. We get equality if p(x) is irreducible over $Q(\sqrt{2}, \sqrt{5}, \sqrt{7}, \sqrt{11})$. This gives

$$[Q(\sqrt{2}, \sqrt{5}, \sqrt{7}, \sqrt{11}, a) : \mathbb{Q}] \le 16 \cdot 5 = 80$$

Exercise 5.5.2 Prove that $x^3 - 3x - 1$ is irreducible over \mathbb{Q} .

Proof. Let $p(x) = x^3 - 3x - 1$. Then

$$p(x+1) = (x+1)^3 - 3(x+1) - 1 = x^3 + 3x^2 - 3$$

We have 3|3,3|0 but $3 \nmid 1$ and $3^2 \nmid 3$. Thus the polynomial is irreducible over \mathbb{Q} by 3-Eisenstein criterion.

Exercise 5.6.14 If F is of characteristic $p \neq 0$, show that all the roots of $x^m - x$, where $m = p^n$, are distinct.

Proof. Let us consider $f(x) = x^m - x$. Then $f \in F[x]$. Claim: f(x) has a multiple root in some extension of F if and only if f(x) is not relatively prime to its formal derivative, f'(x).

Proof of the Claim: Let us assume that f(x) has a multiple root in some extension of F. Let y be a multiple root of f(x). Then over a splitting field, we have

$$f(x) = (x - y)^n g(x)$$
, for some integer $n \ge 2$.

Here g(x) is a polynomial such that $g(y) \neq 0$. Now taking derivative of f we get

$$f'(x) = n \cdot (x - y)^{n-1} g(x) + (x - y)^n g'(x)$$

here g'(x) implies derivative of g with respect to x. Since we have $n \geq 2$, this implies $(n-1) \geq 1$. Hence, (1) shows that f'(x) has y as a root. Therefore, f(x) is not relatively prime to f'(x). We now prove the other direction. Conversely, let us assume that f(x) is not relatively prime to f'(x). Let y is a root of both f(x) and f'(x). Since y is a root of f(x), we can write

$$f(x) = (x - y) \cdot g(x)$$

for some polynomial g(x), then taking derivative of f(x) we have

$$f'(x) = g(x) + (x - y) \cdot g'(x)$$

where g'(x) is the derivative of g(x) with respect to x. Since y is a root of f'(x) also we have

$$f'(y) = 0$$

Then we have

$$f'(y) = g(y) + (y - y) \cdot g'(y)$$

$$\Longrightarrow f'(y) = g(y)$$

$$\Longrightarrow g(y) = 0.$$

This implies y is a root of g(x) also. Therefore we have

$$q(x) = (x - y) \cdot h(x)$$

for some polynomial h(x). Now form (2) we have

$$f(x) = (x - y)^2 \cdot h(x).$$

This follows that y is a multiple root of f(x). Therefore, f(x) has a multiple root in some extension of the field F. This completes the proof of the Claim.

In our case, $f(x) = x^m - x$, where $m = p^n$. Now we calculate the derivative of f. That is

$$f'(x) = mx^{m-1} - 1 = -1 \pmod{p}.$$

By the above condition it follows that, f' has no root same as f, that is, f(x) and f'(x) are relatively prime. Hence, f(x) has no multiple root in F. Since $f(x) = x^m - x$ is a polynomial of degree m, it follows that f(x) has m distinct roots in F, where $m = p^n$. This completes the proof.