Linear Regression

Maria-Florina Balcan 03/25/2019

From Discrete to Continuous Labels

Classification

Sports

Science
News

Anemic cell Healthy cell

Y = Topic

Y = Diagnosis

Regression

Stock Market Prediction

Regression Tasks

11 am

12 pm

1 pm

2 pm

Weather Prediction

3 pm

5 pm

6 pm

Estimating Contamination

Supervised Learning

Goal: Construct a predictor $f: X \to Y$ to minimize a risk (error measure) err(f).

Typical Error Measures

Classification:

$$err(f) = P(f(X) \neq Y)$$

Probability of Error

Regression:

$$err(f) = E[(f(X) - Y)^2]$$

Mean Squared Error

Linear Regression

$$\hat{\mathbf{f}}_{n}^{L} = \arg\min_{\mathbf{f} \in F_{L}} \frac{1}{n} \sum_{i=1}^{n} (\mathbf{f}(\mathbf{X}_{i}) - \mathbf{Y}_{i})^{2}$$

Least Squares Estimator

 F_L - Class of Linear functions

Uni-variate case:

$$f(X) = \beta_1 + \beta_2 X$$

Multi-variate case:

$$f(X) = f(X^{(1)}, ..., X^{(p)}) = \beta_1 X^{(1)} + \beta_2 X^{(2)} + \dots + \beta_p X^{(p)}$$

=
$$X\beta$$
 where $X = [X^{(1)} ... X^{(p)}], \beta = [\beta_1 ... \beta_p]^T$

Least Squares Estimator

$$\hat{f}_{n}^{L} = \arg\min_{f \in F_{L}} \frac{1}{n} \sum_{i=1}^{n} (f(X_{i}) - Y_{i})^{2}$$

$$\hat{\beta} = \arg\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} (X_i \beta - Y_i)^2$$

$$\hat{\mathbf{f}}_{\mathbf{n}}^{\mathbf{L}}(\mathbf{X}) = \mathbf{X}\hat{\boldsymbol{\beta}}$$

= arg min
$$\frac{1}{n} (\mathbf{A}\beta - \mathbf{Y})^{\mathrm{T}} (\mathbf{A}\beta - \mathbf{Y})$$

$$\mathbf{A} = \begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix} = \begin{bmatrix} X_1^{(1)} & \dots & X_1^{(p)} \\ \vdots & \ddots & \vdots \\ X_n^{(1)} & \dots & X_n^{(p)} \end{bmatrix} \qquad \mathbf{Y} = \begin{bmatrix} \mathbf{Y}_1 \\ \vdots \\ \mathbf{Y}_n \end{bmatrix}$$

$$\mathbf{Y} = \left| egin{array}{c} \mathbf{Y}_1 \ dots \ \mathbf{Y}_n \end{array}
ight|$$

Least Squares Estimator

$$\hat{\beta} = \arg\min_{\beta} \frac{1}{n} (\mathbf{A}\beta - \mathbf{Y})^{\mathrm{T}} (\mathbf{A}\beta - \mathbf{Y}) = \arg\min_{\beta} J(\beta)$$

$$J(\beta) = (\mathbf{A}\beta - \mathbf{Y})^{\mathrm{T}} (\mathbf{A}\beta - \mathbf{Y})$$

$$\frac{\partial J(\beta)}{\partial \beta}\Big|_{\widehat{\beta}} = 0$$

Normal Equations

$$(\mathbf{A}^{T}\mathbf{A})\widehat{\boldsymbol{\beta}} = \mathbf{A}^{T}\mathbf{Y}$$

$$p \times p \quad p \times 1$$

$$p \times 1$$

If $(\mathbf{A}^{\mathrm{T}}\mathbf{A})$ is invertible,

$$\hat{\beta} = (\mathbf{A}^{T}\mathbf{A})^{-1}\mathbf{A}^{T}\mathbf{Y}$$
 $\hat{\mathbf{f}}_{n}^{L}(\mathbf{X}) = \mathbf{X}\hat{\beta}$

Geometric Interpretation

$$\hat{\mathbf{f}}_{n}^{L}(\mathbf{X}) = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{A}^{T}\mathbf{A})^{-1}\mathbf{A}^{T}\mathbf{Y}$$

Difference in prediction on training set:

$$\hat{\mathbf{f}}_{\mathbf{n}}^{\mathbf{L}}(\mathbf{A}) - \mathbf{Y} =$$

$$\mathbf{A}^{\mathrm{T}}(\hat{\mathbf{f}}_{\mathrm{n}}^{\mathrm{L}}(\mathbf{A}) - \mathbf{Y}) = 0$$

 $\hat{f}_n^L(\mathbf{A})$ is the orthogonal projection of \mathbf{Y} onto the linear subspace spanned by the columns of \mathbf{A} .

Revisiting Gradient Descent

Even when $(\mathbf{A}^T \mathbf{A})$ is invertible, might be computationally expensive if \mathbf{A} is huge.

$$\hat{\beta} = \arg\min_{\beta} \frac{1}{n} (\mathbf{A}\beta - \mathbf{Y})^{\mathrm{T}} (\mathbf{A}\beta - \mathbf{Y}) = \arg\min_{\beta} J(\beta)$$

Gradient Descent since $J(\beta)$ is convex

Initialize: β^0

Update:
$$\beta^{t+1} = \beta^t - \frac{\alpha}{2} \frac{\partial J(\beta)}{\partial \beta} \Big|_t$$

$$= \beta^t - \alpha \mathbf{A}^T (\mathbf{A} \beta^t - \mathbf{Y})$$

$$0 \text{ if } \beta^t = \hat{\beta}$$

Stop: when some criterion met, e.g. fixed # iterations, or $\frac{\partial J(\beta)}{\partial \beta}\Big|_{\beta^t} < \epsilon$

Effect of step-size α

Large $\alpha \Rightarrow$ Fast convergence but larger residual error Also possible oscillations

Small $\alpha \Rightarrow$ Slow convergence but small residual error

Least Squares and MLE

Intuition: Signal plus (zero-mean) Noise model

$$Y = f^*(X) + \epsilon = X\beta^* + \epsilon \qquad \epsilon \sim N(0, \sigma^2 \mathbf{I})$$

$$Y \sim N(X\beta^*, \sigma^2 \mathbf{I})$$

$$\widehat{\beta}_{MLE} = \arg\max_{\beta} \log p(\{(X_i, Y_i)\}_{i=1}^n \mid \beta, \sigma^2, X)$$

$$\log \text{ likelihood}$$

$$= \arg\min_{\beta} \sum_{i=1}^{n} (X_i \beta - Y_i)^2 = \hat{\beta}$$

Least Square Estimate is same as Maximum Likelihood Estimate under a Gaussian model!

Regularized Least Squares and MAP

$$\widehat{\beta}_{MAP} = \arg\max_{\beta} \log p(\{(X_i, Y_i)\}_{i=1}^n \mid \beta \sigma^2) + \log p(\beta)$$

$$\log \text{ likelihood} \qquad \log \text{ prior}$$

I) Gaussian Prior

Ridge Regression

Regularized Least Squares and MAP

$$\widehat{\beta}_{MAP} = \arg\max_{\beta} \log p(\{(X_i, Y_i)\}_{i=1}^n \mid \beta\sigma^2) + \log p(\beta)$$

$$\log \text{ likelihood} \qquad \log \text{ prior}$$

$$\text{II) Laplace Prior}$$

$$\beta_i \sim \text{Laplace}(0, t) \text{ [iid]} \qquad p(\beta_i) \propto e^{-|\beta_i|/t}$$

$$\widehat{\beta}_{MAP} = \arg\min_{\beta} \sum_{i=1}^n (Y_i - X_i\beta)^2 + \lambda ||\beta||_1$$

$$\text{constant}(\sigma^2, t)$$

Prior belief that β is Laplace with zero-mean biases solution to "small" β