P1 de Álgebra Linear I – 2001.1 Data: 9 de abril de 2001.

Nome:	Matrícula:
Assinatura:	Turma:

Questão	Valor	Nota	Revisão
1a	0.5		
1b	1.0		
1c	0.5		
1d	1.0		
1e	0.5		
1f	0.5		
1g	0.5		
1h	1.0		
2a	0.5		
2b	0.5		
2c	1.0		
2d	0.5		
3a	1.0		
3b	1.0		
Total	10.0		

Instruções:

- \bullet Não é permitido usar calculadora. Mantenha o celular desligado.
- Justifique todas as respostas. Escreva de forma clara, legível e organizada.
- Em cada uma das questões da prova não haverá pontuação parcial Verifique cuidadosamente suas respostas.
- Faça a prova na sua turma.

1) Consider as retas

$$r_1 = \{(1,1,1) + t(4,0,-2), t \in \mathbb{R}\}, r_2 = \{(1-2t,1,t), t \in \mathbb{R}\}.$$

- a) Estude a posição relativa das retas r_1 e r_2 , isto é, descubra se são paralelas, reversas ou concorrentes. (0.5 pts)
- b) Calcule a distância entre as retas r_1 e r_2 . (1.0 pts)
- c) Encontre um ponto P de r_1 tal que a distância de P a r_2 seja igual a distância entre r_1 e r_2 . (0.5 pts)
- d) Determine a área do paralelogramo com vértices (1,1,1), (5,1,-1) (pontos de r_1) e $(1,1,0) \in r_2$ (não é dado o quarto vértice). (1.0 pts)
- e) Determine o paralelogramo com vertices (1,1,1), (5,1,-1) (pontos de r_1), $(1,1,0) \in r_2$ e o quarto vértice em r_2 . (0.5 pts)
- f) Considere o plano π que contém as duas retas r_1 e r_2 . Determine dois vetores paralelos ao plano π que não sejam colineares. (0.5 pts)
- g) Determine o vetor normal do plano π . (0.5 pts)
- h) Determine as equações cartesianas e paramétricas do plano π . (0.5 + 0.5 pts)
 - 2) Considere a reta r dada pelas equações

$$x + y + z = 1$$
, $x - y - z = 1$

e o ponto P = (1, 0, 1).

- a) Determine o vetor diretor de r. (0.5 pts)
- b) Determine as equações paramétricas de r. (0.5 pts)
- c) Encontre um ponto A de r tal que o vetor \overline{AP} seja ortogonal ao vetor diretor de r. (1.0 pts)
- \mathbf{d} Calcule a distância de P à reta r. (0.5 pts)

3) Considere os planos definidos abaixo:

$$\Pi = \{(x, y, z) \mid 2x + y - z = 1\}, \quad \Pi' = \{(x, y, z) \mid x + 3y - z = -1\}$$

- a) Encontre um terceiro plano Π'' tal que a interseção dos três planos Π , Π' e Π'' seja um único ponto. (1.0 pts)
- b) Encontre um terceiro plano Π'' (diferente de Π e Π') tal que a interseção dos três planos Π , Π' e Π'' planos seja uma reta. (1.0 pts)