Lecture 3 Rootfinding

T. Gambill

Department of Computer Science University of Illinois at Urbana-Champaign

February 14, 2012

Root Finding

Given a function f(x), find x so that f(x) = 0

Rootfinding

Goals:

- Find roots to equations
- Compare usability of different methods
- Compare convergence properties of different methods
- bracketing methods
- Bisection Method
- Newton's Method
- Secant Method
- (opt) fixed point iterations
- (opt) special Case: Roots of Polynomials

T. Gambill (UIUC) CS 357 February 14, 2012 3 / 40

Roots of f(x)

• Any single valued equation g(x) = h(x) can be written as f(x) = g(x) - h(x) = 0

Example

- Find x so that $\cos(x) = x$
- That is, find where $f(x) = \cos(x) x = 0$

Analyze your Application

- Is the function complicated to evaluate?
 - ► lots of expressions?
 - singularities?
 - simplify? polynomial?
- How accurate does our root need to be?
- How fast/robust should our method be?

1

From this, you can pick the right method...

Basic Root Finding Strategy

- Plot the function
 - Get an initial guess
 - Identify problematic parts
- Start with the initial guess and iterate

Iteration

We need to study some iterations.

- iteratively finding a root to an equation
- iteratively finding the solution to an algebraic system
- iteratively finding solutions to Ordinary Differential Equations (ODEs)

• ...

Bracket Basics

bó lai

- A root x is bracketed on [a, b] if f(a) and f(b) have opposite sign.
- Changing signs does not guarantee bracketed, however: singularity

Bracket Algorithm

```
given: f(x), x_m in, x_m ax, n
```

Listing 1: Bracket Algorithm

```
1
2
3 dx = (x_max - x_min)/n
4 x_left = x_min
5 i=0
6
7 while i < n:
8     i = i + 1
9     x_right = x_left + dx
10     if (f(x) changes sign in [x_left,x_right]):
11         save [x_left,x_right]# as an interval with a root
12     x_left = x_right</pre>
```

Testing Sign

```
f(a) \times f(b) < 0

Should we use?

fa = myfunc(a);

fb = myfunc(b);

if(fa*fb<0)

(save)

end
```


Better Sign Test

Nope. Underflow...

```
sign()
```

Use Python's sign function

```
import numpy as np
fa = myfunc(a);
fb = myfunc(b);

if np.sign(fa) != np.sign(fb):
    (save)
```


Moving forward...

Bracketing is fine. But we need to find the actual root:

- Bisection
- Newton's Method
- Secant Method
- Fixed Point Iteration

Process:

- Implement the bracket algorithm to get a visual and brackets
- search brackets with these methods

Bisection

Given $f: \mathbb{R} \to \mathbb{R}$ and $f \in C([a,b])$ and $sign(f(a)) \neq sign(f(b))$ by the Intermediate Value Theorem we know we have a bracketed root on the interval [a,b]. Bisection Method: halve the interval while continuing to bracket the root.

Bisection (2)

For the bracket interval [a, b] the midpoint is

$$x_m = \frac{1}{2}(a+b)$$

idea:

- split bracket in half
- select the bracket that has the root
- goto step 1

Bisection Algorithm

```
1 import numpy as np
 2 from scipy import optimize
 3 import pprint
 5 def bisection(f.a1.b1.tol):
       a = a1
       b = b1
       sfb = np.sign(f(b))
 9
       k=1
10
      print('
                              b
                                     x mid f(x mid) width')
11
      while b - a > tol:
12
           x = (a+b)/2
13
           v = f(x)
14
           sfx = np.sign(y)
15
          w = np.abs(b-a)
16
           print('%5d %10.6f %10.8f %10.8f %11.8f %11.8f' % (k,a,b,x,v,w))
17
           if sfx == 0 :
18
               a = x
19
               b = x
               break
20
21
22
23
24
25
26
           elif sfx == sfb:
               b = x
           else:
               a = x
           k = k + 1
27
28 def f(x):
29
       return x - x^{**}(1./3.) - 2
30
31 if
       name == " main ":
32
       bisection(f, 3., 4., 1.e-3)
```

Bisection Example

Solve with bisection:

$$x - x^{1/3} - 2 = 0$$
 solution from Matlab:3.521379706804568

```
f(x mid) width
k
               h
                          x mid
    3.000000 4.00000000 3.50000000 -0.01829449 1.00000000
    3.500000 4.00000000
                        3.75000000
                                    0.19638375
                                                0.50000000
    3.500000 3.75000000 3.62500000
                                   0.08884159
                                                0.25000000
    3.500000 3.62500000
                        3.56250000
                                   0.03522131
                                                0.12500000
5
    3.500000 3.56250000
                        3.53125000
                                    0.00845016
                                                0.06250000
6
    3.500000 3.53125000
                        3.51562500
                                   -0.00492550
                                                0.03125000
    3.515625 3.53125000
                        3.52343750
                                    0.00176150
                                                0.01562500
    3.515625 3.52343750 3.51953125 -0.00158221
                                                0.00781250
9
    3.519531 3.52343750 3.52148438
                                    0.00008959
                                                0.00390625
10
    3.519531 3.52148438 3.52050781 -0.00074632
                                                0.00195312
```


Analysis of Bisection

Let $\delta_n = x_{b_n} - x_{a_n}$ be the size of the bracketing interval $[x_{a_n}, x_{b_n}]$ with x_n the middle of the n^{th} stage of bisection. If r is the bracketed root then

$$|x_n-r|\leqslant rac{1}{2}\delta_n$$
 where

$$\delta_1 = b - a = ext{initial bracketing interval}$$
 $\delta_2 = rac{1}{2}\delta_1$

$$\delta_3 = \frac{1}{2}\delta_2 = \frac{1}{4}\delta_1$$

:

$$\delta_n = \left(\frac{1}{2}\right)^{n-1} \delta_1$$
 thus

$$|x_n - r| \leqslant \left(\frac{1}{2}\right)^n \delta_1$$

T. Gambill (UIUC)

Analysis of Bisection

$$\frac{\delta_{n+1}}{\delta_1} = \left(\frac{1}{2}\right)^n = 2^{-n} \qquad \text{or} \qquad n = \log_2\left(\frac{\delta_1}{\delta_{n+1}}\right)$$

n	$rac{\delta_{n+1}}{\delta_1}$	function evaluations	
5	3.1×10^{-2}	7	
10	9.8×10^{-4}	12	
20	9.5×10^{-7}	22	
30	9.3×10^{-10}	32	
40	9.1×10^{-13}	42	
50	8.9×10^{-16}	52	

Remember the game Twenty questions?

Convergence Criteria

An automatic root-finding procedure needs to monitor progress toward the root and stop when current guess is close enough to the desired root.

- Convergence checking will avoid searching to unnecessary accuracy.
- Check how closeness of successive approximations

$$|x_k - x_{k-1}| < \delta_x$$

• Check how close f(x) is to zero at the current guess.

$$|f(x_k)| < \delta_f$$

Which one you use depends on the problem being solved

Convergence Criteria on x versus f(x)

Is x_k a sufficient approximation of a root at r? What if r = 1 and $x_k = 100$?

Alternative view

We have two views for finding roots

- Find r such that f(r) = 0
- Compute $r = f^{-1}(0)$

The two views give us two ways to determine errors.

Condition Number of Problem

Given a function $G : \mathbb{R} \to \mathbb{R}$, suppose we wish to compute y = G(x). How sensitive is the solution to changes in x? We can measure this sensitivity in two ways:

- Absolute Condition Number = $\lim_{h\to 0} \frac{|G(x+h)-G(x)|}{|h|}$
- Relative Condition Number = $\lim_{h\to 0} \frac{\frac{|G(x+h)-G(x)|}{|G(x)|}}{\frac{|h|}{|x|}}$

Condition numbers much greater than one mean that the problem is inherently sensitive.

21 / 40

T. Gambill (UIUC) CS 357 February 14, 2012

Condition Number Example

Given the problem of finding a root of a function $f : \mathbb{R} \to \mathbb{R}$, consider the absolute condition number applied to the problem of computing $f^{-1}(0)$.

Absolute Condition Number
$$=\lim_{h\to 0}\frac{|f^{-1}(0+h)-f^{-1}(0)|}{|h|}$$

$$=\frac{df^{-1}(y)}{dy}\bigg|_{y=0} \text{ and from Calculus}$$

$$=\frac{1}{\frac{df(x)}{dx}\bigg|_{x=x}}$$

We conclude that the root finding problem is inherently sensitive to change if $\left|\frac{df(r)}{dx}\right|\approx 0$.

22 / 40

T. Gambill (UIUC) CS 357 February 14, 2012

Condition Number Example

Given the problem of finding a root of a function $f : \mathbb{R} \to \mathbb{R}$, consider the absolute condition number applied to the problem of computing f(r) where r is a root of f.

Absolute Condition Number
$$= \lim_{h \to 0} \frac{|f(r+h) - f(r)|}{|h|}$$
$$= \frac{df(x)}{dx} \Big|_{x=r}$$

We conclude that the root finding problem is inherently sensitive to change if $\left|\frac{df(r)}{dx}\right| >> 1$.

Convergence Criteria Compared

If f'(x) is small near the root, it is easy to satisfy tolerance on f(x) for a large range of Δx .

If f'(x) is large near the root, it is possible to satisfy the tolerance on Δx when |f(x)| is still large.

Convergence rate of a root finding iteration

- Let $e_n = x^* x_n$ be the error.
- In general, a sequence is said to converge with rate if r is the largest real for which the limit below is finite.

$$\lim_{n\to\infty}\frac{|e_{n+1}|}{|e_n|^r}=C$$

Special Cases:

- If r = 1 and C = 1, then the rate is sublinear
- If r = 1 and C < 1, then the rate is *linear*
- If r > 1 (i.e. r = 1 and C = 0), then the rate is superlinear
- If r = 2 and C > 0, then the rate is *quadratic*

T. Gambill (UIUC) CS 357 February 14, 2012

Convergence rate of the bisection method

When the bisection method "converges" it can be shown that,

Bisection Method

The bisection method converges with rate r = 1 and C = 0.5.

Example

Convergence Rate

- \bullet 10⁻², 10⁻³, 10⁻⁴, 10⁻⁵...
- $2 10^{-2}, 10^{-4}, 10^{-6}, 10^{-8}...$
- $3 10^{-2}, 10^{-3}, 10^{-5}, 10^{-8}...$
- \bullet 10⁻², 10⁻⁴, 10⁻⁸, 10⁻¹⁶...
- \bullet 10^{-2} , 10^{-6} , 10^{-18} , ...

Example

Convergence Rate

- **1** 0^{-2} , 10^{-3} , 10^{-4} , 10^{-5} ... (linear with $C = 10^{-1}$)
- 10^{-2} , 10^{-4} , 10^{-6} , 10^{-8} ... (linear with $C = 10^{-2}$)
- \bullet 10⁻², 10⁻⁴, 10⁻⁸, 10⁻¹⁶...(quadratic)
- $\mathbf{5}$ 10^{-2} , 10^{-6} , 10^{-18} , ... (cubic)
 - Linear: Adds equal number of digits of accuracy at each step
 - Quadratic: Doubles the number of digits at each step

T. Gambill (UIUC) CS 357 February 14, 2012 27 / 40

Performing Division

- Ever wondered how a computer process performs division?
- "Long" division requires lookup, subtraction, shifts
- Generates one digit and a time. Can we do better?

To answer this, we need to look at faster methods than bisection

Newton's Method

For a current guess x_k , use $f(x_k)$ and the slope $f'(x_k)$ to predict where f(x) crosses the x axis.

29 / 40

February 14, 2012

Newton's Method

Expand f(x) in Taylor Series around x_k

$$f(x_k + \Delta x) = f(x_k) + \Delta x \left. \frac{df}{dx} \right|_{x_k} + \frac{(\Delta x)^2}{2} \left. \frac{d^2 f}{dx^2} \right|_{x_k} + \dots$$

Substitute $\Delta x = x_{k+1} - x_k$ and neglect 2^{nd} order terms to get

$$f(x_{k+1}) \approx f(x_k) + (x_{k+1} - x_k)f'(x_k)$$

where

$$f'(x_k) = \left. \frac{df}{dx} \right|_{x_k}$$

30 / 40

T. Gambill (UIUC) CS 357 February 14, 2012

Newton's Method

Goal is to find x such that f(x) = 0. Set $f(x_{k+1}) = 0$ and solve for x_{k+1}

$$0 = f(x_k) + (x_{k+1} - x_k)f'(x_k)$$

or, solving for x_{k+1}

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Newton's Method Algorithm

```
initialize: x_1 = \dots
for k = 2, 3, ...
  x_k = x_{k-1} - f(x_{k-1})/f'(x_{k-1})
  if converged, stop
end
```


Newton's Method Example

Solve:

$$x - x^{1/3} - 2 = 0$$

First derivative is

$$f'(x) = 1 - \frac{1}{3}x^{-2/3}$$

The iteration formula is

$$x_{k+1} = x_k - \frac{x_k - x_k^{1/3} - 2}{1 - \frac{1}{3}x_k^{-2/3}}$$

Newton's Method Example

```
1 import numpy as np
2 from scipy import optimize
3 import pprint
4
5 def newton(f,fp, x,tol):
      k = 1
      print(' k x k fp(x k) f(x k)')
      print('%5d %22.20f %11.8f %11.8g' % (k,x,fp(x),f(x)))
      k = k + 1
10
      while np.abs(f(x)) > tol:
11
          x = x - f(x)/fp(x)
12
         print('%5d %22.20f %11.8f %11.8g' % (k.x.fp(x).f(x)))
13
          k = k + 1
14
15
16 def f(x):
17
      return x - x^{**}(1./3.) - 2.
18
19 def fp(x):
      return 1. - x^{**}(-2./3.)/3.
20
21
22
23
24 if
       name == " main ":
      newton(f, fp, 3., 1.e-25)
```

Newton's Method Example

$$x_{k+1} = x_k - \frac{x_k - x_k^{1/3} - 2}{1 - \frac{1}{3}x_k^{-2/3}}$$

The approximate true root = 3.52137970680457046412926

```
        k
        x_k
        fp(x_k)
        f(x_k)

        1 3.0000000000000000000
        0.83975005
        -0.44224957

        2 3.52664429313903271535
        0.85612976
        0.0045067918

        3 3.52138014739732829739
        0.85598641
        3.7714141e-07

        4 3.52137970680457090822
        0.85598640
        2.6645353e-15

        5 3.52137970680456779959
        0.85598640
        0
```

Conclusion

- Newton's method converges much more quickly than bisection
- Newton's method requires an analytical formula for f'(x)
- The algorithm is simple as long as f'(x) is available.
- Iterations are not guaranteed to stay inside an ordinal bracket.

T. Gambill (UIUC) CS 357 February 14, 2012 35 / 40

Divergence of Newton's Method

Since

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

the new guess, x_{k+1} , will be far from the old guess whenever $f'(x_k) \approx 0$

Newton's Method: Convergence

Recall

Convergence of a method is said to be of order r if there is a constant ${\cal C}$ such that

$$\lim_{k\to\infty}\frac{|e_{k+1}|}{|e_k|^r}=C$$

If Newton's method converges then it is of order 2 (quadratic) when $f'(x_*) \neq 0$. (assuming f'' is continuous) For ξ_k between x_k and x_*

$$f(x_*) = f(x_k) + (x_* - x_k)f'(x_k) + \frac{1}{2}(x_* - x_k)^2 f''(\xi_k) = 0$$

So

$$\frac{f(x_k)}{f'(x_k)} + x_* - x_k + \frac{1}{2}(x_* - x_k)^2 \frac{f'''(\xi_k)}{f'(x_k)} = 0$$

Then

$$x_* - x_{k+1} + \frac{1}{2}(x_* - x_k)^2 \frac{f''(\xi_k)}{f'(x_k)} = 0$$

Thus

$$\frac{|x_* - x_{k+1}|}{|x_* - x_k|^2} = \frac{1}{2} \left| \frac{f''(\xi_k)}{f'(x_k)} \right| \to \frac{1}{2} \left| \frac{f''(x_*)}{f'(x_*)} \right| \text{ as } x_k \to x_*$$

Reciprocal Approximation

- Consider the task of computing 1/q for some q without using division.
- We can write this as: find the root x of f(x) = 1/(xq) 1 = 0.
- What is Newton's Method for this?
- $f'(x) = -1/(x^2q)$. Thus

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

or

$$x_{n+1} = x_n - \left(\frac{1/(x_n q) - 1}{-1/(x_n^2 q)}\right)$$

Reciprocal Approximation

- Consider the task of computing 1/q for some q without using division.
- We can write this as: find the root x of f(x) = 1/(xq) 1 = 0.
- What is Newton's Method for this?
- $f'(x) = -1/(x^2q)$. Thus

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

or

$$x_{n+1} = x_n - \left(\frac{1/(x_n q) - 1}{-1/(x_n^2 q)}\right) \frac{x_n^2 q}{x_n^2 q}$$

$$x_{n+1} = x_n + x_n - x_n^2 q = 2x_n - x_n^2 q = 2x_n - x_n^2 q$$

Example: Compute 1/3 = 0.01010101... binary

- Find the bracket:
- 1/2 > 1/3 > 1/4
- $x_1 = 1/4$
- 2 $x_2 = 2x_1 x_1^2 q = 1/2 3/16 = 5/16 = 0.0101$ (binary)

In 3 steps, computed 16 bits in 1/3

How many binary digits are computed in the next step?

39 / 40

T. Gambill (UIUC) CS 357 February 14, 2012

Instructor Notes

• Modification of Newton's Method for root finding when $\frac{df}{dx}(root)=0$. Use the formula,

$$x_{n+1} = x_n - m * \frac{f(x_n)}{f'(x_n)}$$

where m is the multiplicity of the root.

• or solve
$$0 = g(x) = \frac{f(x)}{f'(x)}$$

40 / 40

T. Gambill (UIUC) CS 357 February 14, 2012