1

ÁCIDO BASE

• Disociación ácido/base débil

- Disólvense 20 cm³ de NH₃(g), medidos a 10 °C e 2 atm (202,6 kPa) de presión, nunha cantidade de auga suficiente para alcanzar 172 cm³ de disolución. A disolución está ionizada nun 4,2 %. Escribe a reacción de disociación.
 - a) Calcula a concentración molar de cada unha das especies existentes na disolución unha vez alcanzado o equilibrio.
 - b) Calcula o pH.
 - c) Calcula a K_b do amoníaco.
 - d) Calcula a Ka do seu ácido conxugado.

Problema modelo baseado nas P.A.U. xuño 10 e xuño 11

Rta.: a) $[NH_3]_e = 0,0096 \text{ mol/dm}^3$; $[OH^-]_e = [NH_4^+]_e = 4,2 \cdot 10^{-4} \text{ mol/dm}^3$; b) pH = 10,6; c) $K_b = 1,8 \cdot 10^{-5}$; d) $K_a = 5,6 \cdot 10^{-10}$.

Datos		Cifras significativas: 3				
Gas:	Volume	$V = 20.0 \text{ cm}^3 = 2.00 \cdot 10^{-5} \text{ m}^3$				
	Presión	$p = 202,6 \text{ Pa} = 2,026 \cdot 10^5 \text{ Pa}$				
	Temperatura	$T = 10 ^{\circ}\text{C} = 283 \text{K}$				
Volum	ne da disolución	$V_{\rm D} = 172 \text{ cm}^3 = 0,172 \text{ dm}^3$				
Grao o	le ionización do NH₃ na disolución	α = 4,20 % = 0,0420				
Produ	to iónico da auga	$K_{\rm w} = 1,00 \cdot 10^{-14}$				
Incóg	nitas					
Conce	ntración de cada unha das especies presentes na disolución	$[\mathrm{NH_3}]_\mathrm{e}, [\mathrm{OH^{\scriptscriptstyle{-}}}]_\mathrm{e}, [\mathrm{NH_4^{\scriptscriptstyle{+}}}]_\mathrm{e}, [\mathrm{H^{\scriptscriptstyle{+}}}]_\mathrm{e}$				
pH da	disolución	pH				
Const	ante de basicidade do NH₃	K_{b}				
Outro	os símbolos					
Disolu	ıción	D				
Conce	ntración (mol/dm³) de base débil que se disocia	x				
Cantio	lade da substancia X	n(X)				
Cantio	lade disociada	$n_{ m d}$				
Cantio	lade inicial	n_0				
Conce	ntración da substancia X	[X]				
Ecua	cións					
Const	ante de basicidade da base: $B(OH)_b(aq) \rightleftharpoons B^{b+}(aq) + b OH^{-}(aq)$	$K_{b} = \frac{\left[B^{b+}\right]_{e} \cdot \left[OH^{-}\right]_{e}^{b}}{\left[B(OH)_{b}\right]_{e}}$				
pН		$pH = -log[H^+]$				
pOH		$pOH = -log[OH^{-}]$				
Produ	to iónico da auga	$K_{\rm w} = [{\rm H^+}]_{\rm e} \cdot [{\rm OH^-}]_{\rm e} = 1,00 \cdot 10^{-14}$ ${\rm p}K_{\rm w} = {\rm pH} + {\rm pOH} = 14,00$				
Grao o	de disociación	$\alpha = \frac{n_{\rm d}}{n_0} = \frac{[s]_{\rm d}}{[s]_0}$				

Solución:

a) Supoñendo comportamento ideal para o gas amoníaco

$$n(NH_3) = \frac{p \cdot V}{R \cdot T} = \frac{2,026 \cdot 10^5 \text{ Pa} \cdot 2,00 \cdot 10^{-5} \text{ m}^3}{8,31 \text{ J·mol}^{-1} \cdot \text{K}^{-1} \cdot 283 \text{ K}} = 1,72 \cdot 10^{-3} \text{ mol } NH_3(g)$$

A concentración da disolución será:

$$[NH_3] = \frac{n(NH_3)}{V_D} = \frac{1,72 \cdot 10^{-3} \text{ mol } NH_3}{0.172 \text{ dm}^3 \text{ D}} = 0,0100 \text{ mol/dm}^3$$

Como o amoníaco é unha base débil, disociarase en auga segundo a ecuación:

$$NH_3(aq) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$$

O grao de disociación α é:

$$\alpha = \frac{[NH_3]_d}{[NH_3]_0}$$

Calcúlase a concentración de amoníaco disociado a partir do grao de ionización:

$$[NH_3]_d = \alpha \cdot [NH_3]_0 = 0.0420 \cdot 0.0100 \text{ mol/dm}^3 = 4.20 \cdot 10^{-4} \text{ mol/dm}^3$$

A concentración do amoníaco no equilibrio é:

$$[NH_3]_e = [NH_3]_0 - [NH_3]_d = 0,0100 \ mol/dm^3 - 4,20 \cdot 10^{-4} \ mol/dm^3 = 0,0096 \ mol/dm^3$$

Pódese calcular a concentración de ións amonio e hidróxido a partir da estequiometría da reacción.

$$[OH^{-}]_{e} = [NH_{4}^{+}]_{e} = [NH_{3}]_{d} = 4,20 \cdot 10^{-4} \text{ mol/dm}^{3}$$

A concentración de ións hidróxeno calcúlase a partir do produto iónico da auga:

$$[H^{+}]_{e} = \frac{K_{w}}{[OH^{-}]_{e}} = \frac{1,00 \cdot 10^{-14}}{4,20 \cdot 10^{-4}} = 2,38 \cdot 10^{-11} \text{ mol/dm}^{3}$$

b) O pH valerá:

$$pH = -\log[H^+] = -\log(2.38 \cdot 10^{-11}) = 10.6$$

Análise: Este pH é consistente co esperado. Se o amoníaco fose unha base forte, o pH dunha disolución $0,01 \text{ mol/dm}^3$ sería pH $\approx 14 + \log 0,01 = 12$. Unha base débil terá un pH menos básico, máis próximo a 7.

c) A constante de equilibrio K_b é:

$$K_{\rm b} = \frac{\left[\text{NH}_{4}^{+} \right]_{\rm e} \cdot \left[\text{OH}^{-} \right]_{\rm e}}{\left[\text{NH}_{3} \right]_{\rm e}} = \frac{4,20 \cdot 10^{-4} \cdot 4,20 \cdot 10^{-4}}{0,009 \text{ 6}} = 1,8 \cdot 10^{-5}$$

d) A ecuación de disociación do ácido conxugado do amoníaco é:

$$NH_4^+(aq) \rightleftharpoons NH_3(aq) + H^+(aq)$$

A expresión da constante de acidez do ácido conxugado do amoníaco é:

$$K_{a} = \frac{\left[NH_{3}\right]_{e} \cdot \left[H^{+}\right]_{e}}{\left[NH_{4}^{+}\right]_{e}}$$

Se multiplicamos a constante de basicidade do amoníaco pola constante de acidez do seu ácido conxugado obtemos:

$$K_{b} \cdot K_{a} = \frac{[NH_{4}^{+}]_{c} \cdot [OH]_{e}}{[NH_{3}]_{c}} \cdot \frac{[NH_{3}]_{c} \cdot [H^{+}]_{e}}{[NH_{4}^{+}]_{c}} = [OH]_{c} \cdot [H^{+}]_{c} = K_{w}$$

 $K_{\rm w}$ é a constante de ionización da auga. $K_{\rm w}=1\cdot 10^{-14}$

$$K_{\rm a} = \frac{K_{\rm w}}{K_{\rm b}} = \frac{1,00 \cdot 10^{-14}}{1.8 \cdot 10^{-5}} = 5,6 \cdot 10^{-10}$$

A maior parte das respostas pode calcularse coa folla de cálculo Quimica (gal)

Cando estea no índice, manteña pulsada a tecla «♠» (maiúsculas) mentres fai clic na cela:

Equilibrio ácido-base

do capítulo:

Equilibrio químico AcidoBase Equilibrio ácido-base

Escriba as fórmulas químicas nas celas brancas con bordo verde, os datos nas celas brancas con bordo azul, e prema nas celas de cor salmón para elixir entre as opcións que se presentan.

A folla intenta escribir a fórmula da especie conxugada. Se o fai mal, corríxaa.

		Base	Ácido conxuga	ado
	Fórmula:	NH ₃	NH ₄	
Grao de disociación	α =	4,2	%	
	pH =			
Concentración	[s] =	0,01	mol/dm³	

Poderá ver:

R E S U L T A D O S												
Concentración	NH_3 +	$H_2O \rightleftharpoons$	NH_{4}^{+} +	OH-								
inicial:	0,0100				mol/dm^3							
en equilibrio:	0,00958		$4,20\cdot 10^{-4}$	$4,20\cdot10^{-4}$	mol/dm^3							
		$[H_3O^+]$	$= 2,38 \cdot 10^{-11}$	mol/dm^3								
pH = 10,62												
pOH = 3,	38 Constante	de basicidade:	K_b	$= 1.84 \cdot 10^{-5}$								
Co	nstante de acidez (do conxugado:	K_a	$= 5,43 \cdot 10^{-10}$								

- 2. Para unha disolución acuosa de concentración 0,200 mol/dm³ de ácido láctico (ácido 2-hidroxipropanoico), calcula:
 - a) A concentración de todas as especies presentes na disolución.
 - b) O grao de ionización do ácido en disolución.

Concentración (mol/dm³) de ácido débil que se disocia

- c) O pH da disolución.
- d) Que concentración debería ter unha disolución de ácido benzoico (C₀H₅COOH) para que tivese o mesmo pH?

Datos: $K_a(CH_3CH(OH)COOH) = 3.2 \cdot 10^{-4}$; $(C_6H_5COOH) = 6.42 \cdot 10^{-5}$; $K_w = 1.0 \cdot 10^{-14}$.

Problema modelo baseado no A.B.A.U. xuño 17

 \boldsymbol{x}

Rta.: a) $[CH_3CH(OH)COO^-]_e = [H^+]_e = 0,00784 \text{ mol/dm}^3$; $[CH_3CH(OH)COOH]_e = 0,192 \text{ mol/dm}^3$; $[OH^-]_e = 1,28 \cdot 10^{-12} \text{ mol/dm}^3$; b) $\alpha = 3,92 \%$; c) pH = 2,11; d) $[C_6H_5COOH]_0 = 0,965 \text{ mol/dm}^3$.

Datos	Cifras significativas: 3
Concentración de ácido láctico	$[C_3H_6O_3]_0 = 0,200 \text{ mol/dm}^3$
Constante de acidez do ácido láctico	$K_{\rm a}({\rm C_3H_6O_3}) = 3{,}20{\cdot}10^{-4}$
Constante de acidez do ácido benzoico	$K_{\rm a}({\rm C_7H_6O_2}) = 6.42 \cdot 10^{-5}$
Produto iónico da auga	$K_{\rm w} = 1,00 \cdot 10^{-14}$
Incógnitas	
Concentracións de todas as especies	[CH ₃ CH(OH)COO ⁻] _e , [H ⁺] _e , [CH ₃ CH(OH)COOH] _e , [OH ⁻] _e
Grao de disociación do ácido láctico	α
pH da disolución de ácido láctico	pН
Concentración da disolución de ácido benzoico do mesmo pH	$[C_6H_5COOH]$
Outros símbolos	

Outros símbolos

Cantidade de substancia disociada

 $n_{\rm d}$

Cantidade inicial

 n_0

Concentración da substancia X

[X]

Concentración inicial de ácido benzoico

 c_0

Ecuacións

Constante de acidez do ácido: $H_aA(aq) \rightleftharpoons a H^+(aq) + A^{a-}(aq)$

 $K_{\mathbf{a}} = \frac{\left[\mathbf{H}^{+}\right]_{\mathbf{e}}^{a} \cdot \left[\mathbf{A}^{\mathbf{a}^{-}}\right]_{\mathbf{e}}}{\left[\mathbf{H}_{\mathbf{a}}\mathbf{A}\right]_{\mathbf{e}}}$

рН

 $pH = -log[H^+]$

pOH

 $pOH = -log[OH^{-}]$

Produto iónico da auga

 $K_{\rm w} = [{\rm H}^{\scriptscriptstyle +}] \cdot [{\rm OH}^{\scriptscriptstyle -}]$ pH + pOH = 14,00

Grao de disociación

$\alpha = \frac{n_{\rm d}}{n_{\rm o}} = \frac{[s]_{\rm d}}{[s]_{\rm o}}$

Solución:

a) O ácido láctico é un ácido débil, e disóciase en auga segundo a ecuación:

$$CH_3CH(OH)COOH(aq) \rightleftharpoons H^+(aq) + CH_3CH(OH)COO^-(aq)$$

Chamando *x* á concentración de ácido que se disocia, pódese escribir:

		CH₃CH(OH)COOH	\rightleftharpoons	H ⁺	CH₃CH(OH)COO⁻	
[X] ₀	Concentración inicial	0,200		0	0	mol/dm³
[X] _d	Concentración disociada ou formada	x	\rightarrow	х	x	mol/dm³
$[X]_e$	Concentración no equilibrio	0,200 - x		x	x	mol/dm³

A constante de equilibrio K_a é:

$$K_{a} = \frac{\left[\text{CH}_{3} - \text{CH}(\text{OH}) - \text{COO}^{-}\right]_{e} \cdot \left[\text{H}^{+}\right]_{e}}{\left[\text{CH}_{3} - \text{CH}(\text{OH}) - \text{COOH}\right]_{e}}$$

Substituíndo as concentracións no equilibrio

$$3,20 \cdot 10^{-4} = \frac{x \cdot x}{0.200 - x}$$

Nunha primeira aproximación pódese supoñer que x é desprezable fronte a 0,200 e resolver a ecuación

$$3,20\cdot10^{-4} \approx \frac{x^2}{0,200}$$

que dá:

$$x \approx \sqrt{0.200 \cdot 3.20 \cdot 10^{-4}} = 0.00800 \text{ mol/dm}^3$$

Ao calcular o grao de ionización

$$\alpha = \frac{[s]_d}{[s]_0} = \frac{0,00800 \text{ mol/dm}^3}{0.200 \text{ mol/dm}^3} = 0,0400 = 4,00 \%$$

Non é desprezable, polo que habería que resolver a ecuación

$$x^2 + 3.20 \cdot 10^{-4} \cdot x - 6.4 \cdot 10^{-5} = 0$$

$$x = \frac{-3,20 \cdot 10^{-4} \pm \sqrt{(3,20 \cdot 10^{-4})^2 - 4 \cdot 6,40 \cdot 10^{-5}}}{2}$$

A solución positiva é:

$$x = 0.00784$$

As concentracións das especies en equilibrio son:

$$[CH_3CH(OH)COO^-]_e = [H^+]_e = x = 0,00784 \text{ mol/dm}^3$$

$$[CH_3CH(OH)COOH]_e = 0,200 - x = 0,192 \text{ mol/dm}^3$$

A concentración de ións hidróxido calcúlase a partir do produto iónico da auga:

$$[OH^{-}]_{e} = \frac{K_{w}}{[H^{+}]_{e}} = \frac{1,00 \cdot 10^{-14}}{0,00784} = 1,28 \cdot 10^{-12} \text{ mol/dm}^{3}$$

b) O grao de ionización vale:

$$\alpha = \frac{[s]_d}{[s]_0} = \frac{0.00784 \text{ mol/dm}^3}{0.200 \text{ mol/dm}^3} = 0.0392 = 3.92 \%$$

c) O pH:

$$pH = -log[H^+] = -log(0,00784) = 2,11$$

d) A disolución de ácido benzoico que ten o mesmo pH terá a mesma concentración de ión hidróxeno, e tamén de ión benzoato, por ser un ácido monoprótico.

$$C_6H_5COOH(aq) \rightleftharpoons H^+(aq) + C_6H_5COO^-(aq)$$

 $[C_6H_5COO^-]_e = [H^+]_e = 0,00784 \text{ mol/dm}^3$

Se non tivésemos esa concentración, poderíase calculala a partir do pH

$$[H^+]_e = 10^{-2,11} = 0,00776 \text{ mol/dm}^3$$

pero perderíanse cifras significativas.

Chamando c_0 á concentración inicial de ácido benzoico, pódese escribir:

		· •				
		C ₆ H ₅ COOH	\rightleftharpoons	H⁺	C ₆ H ₅ COO ⁻	
[X] ₀	Concentración inicial	c_{0}		0	0	mol/dm³
[X] _d	Concentración disociada ou formada	x	\rightarrow	x	x	mol/dm³
[X] _e	Concentración no equilibrio	$c_0 - x$		0,00784	0,00784	mol/dm³

Vese que

$$x = 0.00784 \text{ mol/dm}^3$$

A constante de equilibrio K_a é:

$$K_{a} = \frac{\left[C_{6}H_{5}COO^{-}\right]_{e} \cdot \left[H^{+}\right]_{e}}{\left[C_{6}H_{5}COOH\right]_{e}}$$

Substituíndo o valor da constante e as concentracións no equilibrio, queda

$$6,42 \cdot 10^{-5} = \frac{0,00784 \cdot 0,00784}{c_0 - 0,00784}$$

Despexando

$$[C_6H_5COOH]_0 = c_0 = 0.965 \text{ mol/dm}^3$$

Análise: O resultado ten sentido, porque como o ácido benzoico é máis débil que o ácido láctico (K_a (C_6H_5 CO-OH)) = 6,42·10⁻⁵ < 3,2·10⁻⁴ = K_a (CH₃CH(OH)COOH)), a súa concentración ten que ser maior que 0,200 mol/dm³ para dar o mesmo pH.

A maior parte das respostas pode calcularse coa folla de cálculo Quimica (gal)

Cando estea no índice, manteña pulsada a tecla «♠» (maiúsculas) mentres fai clic na cela:

Equilibrio ácido-base

do capítulo:

Equilibrio químico AcidoBase Equilibrio ácido-base

Escriba as fórmulas químicas nas celas brancas con bordo verde, os datos nas celas brancas con bordo azul, e prema nas celas de cor salmón para elixir entre as opcións que se presentan.

A folla intenta escribir a fórmula da especie conxugada. Se o fai mal, corríxaa.

As concentracións, o grao de disociación e o pH aparecen, na táboa

Para resolver o apartado d) anote o valor do pH, borre os datos facendo clic no botón Borrar datos, e escriba os novos datos.

va os novos datos.			
		Ácido	Base conxugada
	Fórmula:	HC ₆ H₅COO	C ₆ H ₅ COO ⁻
Constante	$K_a =$	$6,42 \cdot 10^{-5}$	de acidez
	pH =	2,11	

Obterá o resultado:

tera o resultado.										
RESULTADOS										
Cifras significativas:										
Concentración	HC ₆ H ₅ COO +	$H_2O \rightleftharpoons$	$C_6H_5COO^- +$	H_3O^+						
inicial:	0,946				mol/dm^3					

O resultado é diferente polo número de cifras significativas do primeiro cálculo. Se tivese elixido 4 cifras, o pH houbese sido 2,106. Con ese dato a concentración inicial sería 0,964 mol/dm³.

Mesturas ácido base

- 1. Calcula:
 - a) O pH dunha disolución de hidróxido de sodio de concentración 0,010 mol/dm³.
 - b) O pH dunha disolución de ácido clorhídrico de concentración 0,020 mol/dm³.
 - c) O pH da disolución obtida ao mesturar 100 cm³ da disolución de hidróxido de sodio de concentración 0,010 mol/dm³ con 25 cm³ da disolución de ácido clorhídrico de concentración 0,020 mol/dm³.

Dato: $K_{\rm w} = 1,0 \cdot 10^{-14}$. (A.B.A.U. xuño 18)

Rta.: a) pH = 12; b) pH = 1,7; c) pH = 11,6.

Datos Cifras significativas: 3

Concentración da disolución de NaOH $[NaOH] = 0,0100 \text{ mol/dm}^3$

Volume que se mestura da disolución de NaOH $V_b = 100 \text{ cm}^3 = 0,100 \text{ dm}^3$

Concentración da disolución de HCl [HCl] = 0,0200 mol/dm³

Volume que se mestura da disolución de HCl $V_a = 25,0 \text{ cm}^3 = 25,0 \cdot 10^{-3} \text{ dm}^3$

Incógnitas

pH da disolución de NaOH pH_b

pH da disolución de HCl pH_a pH da mestura pH_3

Ecuacións

 $pH = -log[H^{+}]$

 $pOH = -log[OH^-]$

Produto iónico da auga $K_{\rm w}=[{\rm H^+}]_{\rm e}\cdot[{\rm OH^-}]_{\rm e}=1,00\cdot10^{-14}$ $pK_{\rm w}=p{\rm H}+p{\rm OH}=14,00$

Solución:

a) O hidróxido de sodio é unha base forte que se disocia totalmente:

$$NaOH(aq) \rightarrow Na^{+}(aq) + OH^{-}(aq)$$

O pOH da disolución de NaOH valerá:

$$pOH = -log[OH^{-}] = -log[NaOH] = -log(0,0100) = 2,000$$

Por tanto o seu pH será:

$$pH = 14,000 - pOH = 14,000 - 2,000 = 12,000$$

b) O ácido clorhídrico é un ácido forte que se disocia totalmente:

$$HCl(aq) \rightarrow H^{+}(aq) + Cl^{-}(aq)$$

O pH da disolución de HCl valerá:

$$pH = -log[H^+] = -log[HCl] = -log(0,0200) = 1,700$$

c) Estúdase a reacción entre o HCl e o NaOH para ver que reactivo está en exceso,

En 25 cm³ da disolución de HCl hai: $n=0.0250~\rm dm^3\cdot 0.0200~\rm mol/dm^3=5.00\cdot 10^{-4}~\rm mol~HCl$ En 100 cm³ da disolución de NaOH hai: $n'=0.100~\rm dm^3\cdot 0.0100~\rm mol/dm^3=1.00\cdot 10^{-3}~\rm mol~NaOH$ Supoñendo volumes aditivos

 $V_t = 25,0 \text{ cm}^3 \text{ D HCl} + 100 \text{ cm}^3 \text{ D NaOH} = 125 \text{ cm}^3 = 0,125 \text{ dm}^3 \text{ de mestura.}$

		HCl	NaOH	\rightarrow	Na⁺	Cl-	H ₂ O	
n_0	Cantidade inicial	5,00.10-4	1,00.10-3		0	0		mol
$n_{ m r}$	Cantidade que reacciona ou se forma	5,00.10-4	5,00.10-4		5,00.10-4	5,00.10-4	5,00.10-4	mol
$n_{ m f}$	Cantidade ao final da reacción	0	5,0.10-4		5,00.10-4	5,00.10-4		mol

A concentración final de hidróxido de sodio é:

$$[NaOH] = 5.0 \cdot 10^{-4} \text{ mol NaOH} / 0.125 \text{ dm}^3 \text{ D} = 4.0 \cdot 10^{-3} \text{ mol/dm}^3$$

O pOH da disolución final valerá:

$$pOH = -log[OH^{-}] = -log[NaOH] = -log(4,0\cdot10^{-3}) = 2,40$$

Por tanto o seu pH será:

$$pH = 14,00 - pOH = 14,00 - 2,40 = 11,60$$

A maior parte das respostas pode calcularse coa folla de cálculo Quimica (gal).

Cando estea no índice, manteña pulsada a tecla «◆» (maiúsculas) mentres fai clic na cela

Estequiometría: cálculos en reaccións químicas

do capítulo

Cálculos elementais

Esteq

Estequiometría: cálculos en reaccións químicas

Escriba as fórmulas químicas nas celas brancas con bordo verde, os datos nas celas brancas con bordo azul, e prema nas celas de cor salmón para elixir entre as opcións que se presentan.

				_	Reactivos →		- F	1	Prod			
	NaOH		HCl			N	JaCl		H ₂ O			
						_						
	Calcular:	a)	pН		disolución	N	VaOH					
		b)	pН		disolución	F	HCl					
		c)	pН		mestura			←				
que s	se precisa	_	para reaccionar con									
	100)	cm ³		disolución	N	VaOH		[NaOH] =	0,01	mol/dm³	
	25	5	cm ³		disolución	F	ICl		[HCl] =	0,02	mol/dm³	
Obte	rá os result	ado	os:									
	NaC	DΗ	+	HC	1			\rightarrow	NaCl	+	H_2O	
1	mol 5,00·	10-	5	,00.1	0^{-4}				$5,00\cdot10^{-4}$		5,00.10	4
					a)		Ţ	H =	12,0]	NaOH		
					b)		ţ	H =	1,70]	HCl		
					c)		Ţ.	H =	11,6			

Cuestións e problemas das <u>Probas de avaliación de Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.

Algúns cálculos fixéronse cunha folla de cálculo de LibreOffice do mesmo autor.

Algunhas ecuacións e as fórmulas orgánicas construíronse coa extensión <u>CLC09</u> de Charles Lalanne-Cassou.

A tradución ao/desde o galego realizouse coa axuda de traducindote, e de o tradutor da CIXUG.

Procurouse seguir as recomendacións do Centro Español de Metrología (CEM).

Consultouse ao Copilot de Microsoft Edge e tivéronse en conta algunhas das súas respostas nas cuestións.

Actualizado: 17/07/24

Sumario

ÁCIDO BASE

Diso	ciación ácido/base débil	. 1
1.	Disólvense 20 cm³ de NH₃(g), medidos a 10 °C e 2 atm (202,6 kPa) de presión, nunha cantidade de auga suficiente para alcanzar 172 cm³ de disolución. A disolución está ionizada nun 4,2 %. Escribe reacción de disociación	
	a) Calcula a concentración molar de cada unha das especies existentes na disolución unha vez al- canzado o equilibrio	
	b) Calcula o pH	
	c) Calcula a K _b do amoníaco	
	d) Calcula a K _a do seu ácido conxugado	
2.	Para unha disolución acuosa de concentración 0,200 mol/dm³ de ácido láctico (ácido 2-hidroxipro-	
	panoico), calcula:	
	a) A concentración de todas as especies presentes na disolución	
	b) O grao de ionización do ácido en disolución	
	c) O pH da disolución	
	d) Que concentración debería ter unha disolución de ácido benzoico (C₀H₅COOH) para que tivese	
	o mesmo pH?	
Mest	turas ácido base	
	Calcula:	
	a) O pH dunha disolución de hidróxido de sodio de concentración 0,010 mol/dm³	
	b) O pH dunha disolución de ácido clorhídrico de concentración 0,020 mol/dm³	
	c) O pH da disolución obtida ao mesturar 100 cm³ da disolución de hidróxido de sodio de concentración 0,010 mol/dm³ con 25 cm³ da disolución de ácido clorhídrico de concentración 0,020 mol/dm³	