

микроконтроллерный модуль

TE-STM32F417MCU

Руководство пользователя

2012 Короткая ссылка: http://j.mp/TE-STM32F417MCU

Удобство применения и надежность работы увеличивают два внутренних RC-генератора - 16 МГц и 32 КГц.

Быстродействие трех 12-разрядных АЦП – 2,4 MSPS (7,2 MSPS при групповой работе), имеется 12-разрядный ЦАП. Коэффициент энергопотребления равен 230 мкА/МГц. Эти параметры микроконтроллера **STM32F417ZGT6**, вместе с увеличенной памятью программ и данных, открывают новые возможности управления и обработки сигналов.

Модуль **TE-STM32F417MCU** для реализации алгоритмов обработки сигналов и криптографии, хранения данных имеет большую внешнюю оперативную и flash-память. Проверенная схемотехника наиболее сложной части встраиваемой системы, оптимизированная топология платы, наличие функций отладки позволяют использовать модуль **TE-STM32F417MCU** как на этапе разработки, так и в составе серийной системы управления.

ФУНКЦИОНАЛЬНЫЙ СОСТАВ

Набор функциональных блоков модуля **TE-STM32F417MCU** следующий:

- микроконтроллер **STM32F417ZGT6:** 168 МГц Cortex-M4F, 1Мбайт флэш-памяти программ, 192 Кбайт ОЗУ, процессор криптографии, три 12-разрядных АЦП, 12-разрядный ЦАП, Ethernet MAC 10/100, USB FS/HS OTG, 2x CAN, 4x USART, 3x SPI, 3x I²C, SDIO, корпус I QFP144
- внешняя оперативная память PSRAM 16 MB
- внешняя память NAND-flash объемом 64 MB
- разъем JTAG
- три светодиода на линиях портов МК
- линии портов микроконтроллера выведены на две группы контактных площадок
- разъем питания +5,0 В
- размеры платы модуля 72х50 мм

ВВЕДЕНИЕ

TE-STM32F417MCU - многоцелевой модуль компании Терраэлектроника, выполненный на основе 32 -разрядного микроконтроллера

STM32F417ZGT6 компании STMicroelectronics. Примененный МК имеет ядро **Cortex-M4F**, процессор криптографии, контроллер цифровой видеокамеры, порты **Ethernet** и **USB FS/HS OTG**, два порта **CAN**. Ядро **Cortex-M4F** включает блок арифметики с плавающей точкой (FPU), блок защиты памяти (MPU),

обеспечивает выполнение набора DSP-команд. В микроконтроллере процессор и внутренняя память программ работают без тактов ожидания на всех частотах, вплоть до максимальной. Это достигнуто за счет введения специального блока ART AcceleratorTM. На максимальной тактовой частоте 168 МГц быстродействие центрального

процессора составляет 210 DMIPS.
FSMC-контроллер микроконтроллера STM32F417ZGT6

позволяет работать с оперативной памятью SRAM и PSRAM, flash-памятью NOR, NAND, Compact Flash и LCD 8080/6800.

Структура МК линейки STM32 F4

-	ART Accelerator™	Up to 1-Mbyte Flash memory
System		Up to 192-Kbyte SRAM
Power supply 1.2 V regulator POR/PDR/PVD		FSMC/ SRAM/NOR/NAND/CF/ LCD parallel interface
Xtal oscillators 32 kHz + 4 ~26 MHz	ARM Cortex-M4	80-byte + 4-Kbyte backup SRAM
Internal RC oscillators 32 kHz + 16 MHz	108 MHZ	512 OTP bytes
PLL		Connectivity
Clock control	Floating point unit (FPU)	Camera interface
RTC/AWU	Nested vector	3x SPI, 2x I2S, 3x I2C
SysTick timer 2x watchdogs	interrupt controller (NVIC)	Ethernet MAC 10/100 with IEEE 1588
(independent and window)	MPU	2x CAN 2.0B
51/82/114/140 I/Os	JTAG/SW debug/ETM	1x USB 2.0 OTG FS/HS1
Cyclic redundancy check (CRC)	OTAGON GODAGAZINI	1x USB 2.0 OTG FS
	Multi-AHB bus matrix	SDI0
	16-channel DMA	6x USART LIN, smartcard, IrDA, modem control
Control	Crypto/hash processor ²	
2x 16-bit motor control PWM	3DES, AES 256	Analog
Synchronized AC timer	SHA-1, MD5, HMAC	2-channel 2x 12-bit DAC
10x 16-bit timers 2x 32-bit timers	Sint I, mos, Impro	3x 12-bit ADC 24 channels / 2.44 MSPS
	True random number generator (RNG)	Temperature sensor

ЗАЩИТА ОТ ЭЛЕКТРОСТАТИКИ

При работе с модулем **TE-STM32F417MCU** следует соблюдать все правила защиты от электростатического электричества.

ПИТАНИЕ МОДУЛЯ

Для работы модуля **TE-STM32F417MCU** необходимо подключить к разъему X3 внешний источник питания +5,0 В с номинальным током 0,5 A.

ПЕРЕКЛЮЧАТЕЛИ

Кнопка Reset

Кнопка Reset служит для сброса и инициализации микроконтроллера **STM32F417ZGT6**

Переключатель Х2

Переключатель X2 определяет адрес старта микроконтроллера в соответствии с табл. 2

РАЗМЕЩЕНИЕ ЭЛЕМЕНТОВ НА ПЛАТЕ

РАЗЪЕМЫ (СОЕДИНИТЕЛИ)

Разъем питания Х3

Разъем JTAG

Отладочный разъем JTAG представляет собой 20-выводный разъем с ключом

Таблица 1. Выводы разъема JTAG

Номер вывода	Имя сигнала	Номер вывода	Имя сигнала
1	VREF	2	VTARGET
3	NTRST	4	GND
5	TDI	6	GND
7	TMS/SWDIO	8	GND
9	TCK/SWCLK	10	GND
11	RTCK	12	GND
13	TDO/SWO	14	GND
15	RST	16	GND
17	DBGRQ	18	GND
19	DBGACK	20	GND

Таблица 2. Положение переключателя при загрузке программы

X2 (BOOT0)	Область памяти	Функция
0	Main Flash memory	Микроконтроллер стартует из основной флэш-памяти
1 System memory		Микроконтроллер стартует из системной памяти (в этой области записан Bootloader)

Микроконтроллерный модуль TE-STM32F417MCU разработан при поддержке компании STMicroelectronics.

Терраэлектроника является полноправным участником сообщества Texas Instruments DSP Third Party Network хорошо зарекомендовавших себя компаний-разработчиков, предлагающих продукцию, которая помогает заказчикам повысить качество разработки и сократить сроки вывода на рынок конечной продукции. Ссылка:http://j.mp/Tl3rdPNM