§ Exponential Input

Problem 1: a) Find a solution of $\dot{x} + 2x = e^{3t}$ of the form Be^{3t} . Then find the general solution.

b) Now do the same for the complex-valued differential equation $\dot{x} + 2x = e^{3it}$.

Answer:

a)
$$\chi(t) = Be^{3t}$$

 $\dot{\chi}(t) = 3Be^{3t}$
 $e^{3t} = 3Be^{3t} + 2Be^{3t}$
 $B = \frac{1}{5}$
 $\chi(t) = \frac{1}{5}e^{3t}$
 $\dot{\chi} + 2x = 0 \rightarrow \chi_1(t) = Ce^{-at}$
 $\chi(t) = \frac{1}{5}e^{3t} + Ce^{-at}$

b)
$$\chi(t) = Be^{3it}$$

 $\dot{\chi}(t) = 3iBe^{3it}$
 $\dot{z}^{3it} = 3iBe^{3it} + 2Be^{3it}$
 $1 = 3iB + 2B$
 $B = \frac{1}{2+3i} = \frac{2-3i}{13}$
 $\chi_{p}(t) = (\frac{2}{13} - \frac{3}{13}i)e^{3it} + Ce^{-2t}$
 $\chi(t) = (\frac{2}{13} - \frac{3}{13}i)e^{3it} + Ce^{-2t}$