Demostraciones ejecutables

Ciclo de charlas CCCC 12 de agosto de 2022

Pablo Barenbaum

Instituto de Ciencias de la Computación FCEyN, UBA, Argentina

Universidad Nacional de Quilmes / CONICET
Argentina

Lógica

Computación

$$\frac{A \text{ form} \quad B \text{ form}}{(A \to B) \text{ form}}$$

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to F}$$

$$\frac{\Gamma \vdash A \to B \qquad \Gamma \vdash A}{\Gamma \vdash B}$$

Deducción natural Gentzen (∼1934)

$$\frac{A \text{ type} \quad B \text{ type}}{(A \to B) \text{ type}}$$

$$\frac{\Gamma, x : A \vdash e : B}{\Gamma \vdash \lambda x. e : A \rightarrow B}$$

$$\frac{\Gamma \vdash e : A \to B \qquad \Gamma \vdash e' : A}{\Gamma \vdash e e' : B}$$

Cálculo- λ simplemente tipado Church (\sim 1940)

Lógica

Computación

Proposición, fórmula

Demostración

??? Normalizar una demostración

??? Lógica de segundo orden

Lógica de primer orden

- :

Tipo, especificación Programa

Ejecutar un programa

Polimorfismo paramétrico (generics)

??? Tipos dependientes

÷

"Isomorfismo de Curry–Howard"
"Correspondencia entre proposiciones y tipos"
"Correspondencia entre pruebas y programas"

¿Para qué estudiar esta correspondencia?

Diseñar lenguajes de programación en los cuales los tipos permitan expresar propiedades sobre el comportamiento de los programas.

```
\begin{array}{lll} \text{inversa} : & \text{Matriz} \to \text{Matriz} \\ \text{inversa} = & \dots \\ \\ & \text{inversa-correcta} : & \forall \text{ (m : Matriz)} \to \text{det m} \neq 0 \\ & \to \text{m * inversa m = id} \\ \\ & \text{inversa-correcta} = \dots \end{array}
```

Más aún: dar programas correctos por construcción.

```
inversa': \forall (m : Matriz) \rightarrow det m \neq 0 \rightarrow \exists (m': Matriz) \times (m * m' = id) inversa' = ...
```

El sistema lógico es consistente. Todos los programas terminan.

Ejemplos: Coq, Agda, Lean, Isabelle, F*, ...

Líneas de trabajo

Colaboradores

Proposiciones clásicas como tipos Proposiciones clásicas como tipos
Tipos cuantitativos Tipos cuantitativos \dots B. Accattoli, D. Kesner, M. Milicich
Notación para reescrituras de orden superior Notación para reescrituras de orden superior E. Bonelli
Cálculo- λ funcional-lógico Cálculo- λ funcional-lógico . F. Giordano, F. Lochbaum, M. Milicich

Proposiciones clásicas como tipos

Las demostraciones se pueden ejecutar.

Pero tienen que ser constructivas.

Ejemplo de demostración no constructiva

P(x): "padezco x"

C(x): "creo que padezco x"

H : "hipocondría"

Postulado. $P(H) \longleftrightarrow \exists x. (C(x) \land \neg P(x))$

"Padezco hipocondría si y sólo si creo que padezco algo que no padezco."

Teorema. $C(H) \rightarrow P(H)$

"Si creo que padezco hipocondría, padezco hipocondría."

Demostración. Supongamos
$$C(H)$$
. Se da $P(H) \vee \neg P(H) \underbrace{P(H) \vee \neg P(H)}_{P(H)}$.

Si P(H), listo.

Si $\neg P(H)$, tenemos $C(H) \land \neg P(H)$. Luego P(H). Absurdo.

Asumiendo C(H), la demostración no exhibe un x tal que $C(x) \land \neg P(x)$.

Proposiciones clásicas como tipos

Lógica clásica

A diferencia de la lógica intuicionista

- ► Admite el principio del tercero excluido.
- ► A priori no constructiva.

¿Se le puede dar una interpretación computacional?

Varios intentos:

```
Cálculo-\lambda simétrico ... F. Barbanera, S. Berardi Cálculo \lambda\mu ... M. Parigot Cálculo \bar{\lambda}\mu\tilde{\mu} ... P.-L. Curien, H. Herbelin ...
```

Cálculo- λ^{PRK}

con T. Freund

$$A^{\oplus} \simeq (A^{\ominus} \to A^+)$$
 $A^{\ominus} \simeq (A^{\oplus} \to A^-)$

Simétrico con respecto a la dualidad de de Morgan.

Confluencia, terminación, semántica de Kripke, extensión a segundo orden.

Tipos cuantitativos

Tipos simples

Tipos cuantitativos

(intersección no idempotente)

Cada subexpresión tiene un tipo.

$$f : Int \rightarrow Int \rightarrow Int$$

$$f n m = n + n$$

e tiene tipo $\implies e$ termina

Captura propiedades estáticas.

Asegurar terminación.

Asegurar invariantes.

Cada subexpresión tiene tantos tipos como veces se usa.

$$\begin{array}{ll} f : & [\texttt{Int, Int}] \rightarrow [] \rightarrow \texttt{Int} \\ f \ n \ m = n + n \end{array}$$

e tiene tipo $\iff e$ termina

Inferencia indecidible.

Captura propiedades dinámicas.

Medir el tiempo de ejecución. Medir el tamaño del resultado.

Tipos cuantitativos

Algunos problemas:

▶ Dar un sistema de tipos cuantitativos para el useful strong call-by-need de Accattoli y Dal Lago.

con B. Accattoli y D. Kesner

Establecer una correspondencia entre derivaciones en sistemas de tipos cuantitativos y secuencias de reducción estratégicas.

con E. Bonelli y M. Milicich

► Estudiar la acción de las traducciones a *continuation-passing style* sobre los tipos cuantitativos.

con D. Kesner y M. Milicich