MATH 2023 – Multivariable Calculus

Lecture #16 Worksheet

لسما

April 9, 2019

Problem 1. Let f be a scalar field, \mathbf{F} be a vector field. Rewrite them using ∇ , and state whether each expression is meaningful.

- (a) $\operatorname{curl} f$
- (b) grad f
- (c) $\operatorname{div} \mathbf{F}$
- (d) grad \mathbf{F}
- (e) $\operatorname{curl}(\operatorname{grad} f)$
- (f) $\operatorname{div}(\operatorname{grad} f)$
- (g) $\operatorname{grad}(\operatorname{div} \mathbf{F})$
- (h) grad(div f)
- (j) $\operatorname{curl}(\operatorname{curl}(\operatorname{curl} \mathbf{F}))$
- (i) $\operatorname{div}(\operatorname{div}(\operatorname{div}\mathbf{F}))$
- (k) $(\text{grad } f) \times (\text{curl } \mathbf{F})$
- (l) $\operatorname{div}(\operatorname{curl}(\operatorname{grad} f))$

Problem 2. All vector fields of the form $\mathbf{F} = \nabla g$ satisfies $\nabla \times \mathbf{F} = \mathbf{0}$.

All vector fields of the form $\mathbf{F} = \nabla \times \mathbf{G}$ satisfies $\nabla \cdot \mathbf{F} = 0$.

Are there any equations that all functions of the form $f = \nabla \mathbf{G}$ must satisfy?

Probelm 3. Prove the following identities:

(a)
$$\nabla \cdot (f\mathbf{F}) = (\nabla f) \cdot \mathbf{F} + f(\nabla \cdot \mathbf{F})$$

(b)
$$\nabla \cdot (\mathbf{F} \times \mathbf{G}) = (\nabla \times \mathbf{F}) \cdot \mathbf{G} - \mathbf{F} \cdot (\nabla \times \mathbf{G})$$

(c)
$$\nabla \times (\nabla \times \mathbf{F}) = \nabla(\nabla \cdot \mathbf{F}) - \nabla^2 \mathbf{F}$$

Problem 4. Let f(x,y), g(x,y) have continuous partial derivatives, and C, D as in Green's Theorem. Recall that **n** is the **unit normal vector** of C away from D.

(a) Use the second form of Green's Theorem to prove the **Green's first identity**:

$$\iint_D f \nabla^2 g dA = \oint_C f(\nabla g) \cdot \mathbf{n} ds - \iint_D \nabla f \cdot \nabla g dA$$

(b) Use this to prove **Green's second identity**

$$\iint_D (f\nabla^2 g - g\nabla^2 f) dA = \oint_C (f\nabla g - g\nabla f) \cdot \mathbf{n} ds$$

(c) If g is **harmonic function**, show that

$$\oint_C (\nabla g) \cdot \mathbf{n} ds = 0$$