processing effort as cost of changing beliefs

or: when unpredictable doesn't mean difficult

Jacob Hoover Vigly

21 February 2025, CLiMB Lab at Stanford

sentence processing

how do we understand what a sentence means?

- sentence unfolds word by word: $\mathbf{u} = u_1, u_2, \dots$
- with each word, refine guess about the meaning, z

sentence processing iterative inference problem

u = Near that bank htere is an otter ...

- observe otterance word by word: $\mathbf{u} = u_1, u_2, \dots$
- with each word, update beliefs about the meaning, z

 u_i causes belief update $\underbrace{p(Z \mid u_{1...i-1})}_{\text{prior}} \overset{u_i}{\leadsto} \underbrace{p(Z \mid u_{1...i-1}, u_i)}_{\text{posterior}}$

How? ...with what processing algorithm?

- important clue: for humans, unexpected words take more effort.
- bigger update = more difficult

incremental processing cost

How? ...with what processing algorithm?

$$p_Z \mapsto p_{Z|u}$$

• important clue: for humans, unexpected words take more effort.

has been formalized as:

precise description of phenomenon, ... but how? what algorithm?

refocus idea: difficult = big update (resource allocation cost)

hypothesis that cost measured as **bits of information gained** about Z

surprisal theory is special case, by two assumptions:

- (a) that $D(p_{Z|u}||p_Z) = surprisal$ (extra term is zero) \leftarrow Let's focus on this one
- (b) that f is linear

incremental processing cost

How? ...with what processing algorithm? $p_Z \stackrel{u}{\mapsto} p_{Z|u}$

- important clue: for humans, unexpected words take more effort.
- bigger update = more difficult

most candidate algorithms don't have this property

- parsing algorithms (Z ranges over trees)
 - non-probabilistic algorithms
 - probabilistic enumerative algorithms
 - neural-parametrized parsing algorithms
- language model inference (e.g. n-gram, RNN, Transforme

... amount of work done during inference doesn't depend on probabilistic properties at all

(so, they don't directly explain this human behavior)

incremental processing cost

How? ...with what processing algorithm? $p_Z \stackrel{u}{\mapsto} p_{Z|u}$

- important clue: for humans, unexpected words take more effort.
- bigger update = more difficult

common algorithms don't scale in surprisal / divergence what kind of algorithm *does*?

those that somehow prioritize more probable hypotheses:

- sampling algorithms
- → *importance sampling* complexity scales in **divergence**:

sampling from q to approx. p: req #samples $\approx e^{\mathrm{D_{KL}}(p\|q)}$ Chatterjee & Diaconis 2018, ... $\approx \mathrm{D}_{\chi^2}(p\|q)$ Agapiou et al. 2017, Sanz-Alonso 2018, ...

Fortance weight $w(z) \propto \frac{\mathrm{d}p}{\mathrm{d}q}(z)$ $\mathrm{cost}(u) = f(\mathrm{D}(p_{Z|u}||p_Z))$

The Plausibility of Sampling as an Algorithmic Theory of Sentence Processing

The Plausibility of Sampling as an Algorithmic Theory of Sentence Processing

Jacob Louis Hoover^{1,2}, Morgan Sonderegger¹, Steven T. Piantadosi³, and Timothy J. O'Donnell^{1,2,4}

$$cost(u) = f(D(p_{Z|u}||p_Z))$$

= $f(surprisal)$ assumption (a) \leftarrow we assumed this held
 \propto surprisal assumption (b) \leftarrow and focused on this one

we show sampling algs may predict

- ⇒ cost increases superlinearly
- ⇒ with increasing variance

but surprisal theory proposes

- ⇒ cost increases linearly
- ⇒ (says nothing about variance)

Empirical question:

what shape is the linking function?

linking function: empirical study

is the mean superlinear? does variance increase? Yes *

better LM ⇒ more superlinear

across LMs

general surprisal theory (Levy '05, Meister '21, Xu '23) cost(u) = f(surprisal(u))

consistent with sampling algorithms' predictions

motivation: sampling mechanisms for processing more precisely what are the empirical predictions?

when surprisal ≠ divergence

now, let's revisit the other assumption: that surprisal = divergence

surprisal theory

$$cost(u) = f(surprisal(u))$$

belief-update theory

$$cost(u) = f(D_{KL}(p_{Z|u}||p_Z))$$

recall motivation: surprisal as measure of size of belief update

$$D_{KL}(p_{Z|u}||p_{Z}) = \operatorname{surprisal}(u) - R(u)$$

$$\mathbb{E}\left[\log \frac{p(z|u)}{p(z)}\right] = \log \frac{1}{p(u)} - \mathbb{E}\left[\log \frac{1}{p(u|z)}\right]$$

when surprisal > KL divergence

surprisal = $D_{KL} + R$

For this application,

let latent Z (meaning) range over strings, representing intended word

- easy to model prior and likelihood
- narrow application where we might expect LM surprisal of the observed string is intuitively inadequate as measure of human processing cost (I'm interested in broader applications to follow!)

surprisal = $D_{KL} + R$

Example:

• After tripping on the rug and falling in front of everyone, I felt deeply _____

condition	target word	surprisal di	ivergend	е	
1. expected	embarrassed	LOW	LOW	••	
2. unexpected	innovative	HIGH	HIGH		
3. expected (typo)	<u>embarrsased</u>	HIGH ≪	LOW		
4. unexpected (typo)	<u>innovaitve</u>	HIGH	HIGH		
	(even with correct noise model)				

surprisal = $D_{KL} + R$

Example:

• After tripping on the rug and falling in front of everyone, I felt deeply

1. expected embarrassed
2. unexpected innovative
3. expected (typo) embarrsased
4. unexpected (typo) innovative

Self-paced reading time study:

- 51 sentences x 4 conditions = 204 unique targets of interest.
- 104 participants on Prolific (post exclusions)

Fit mixed-effect regression models:

- predict human RT
- predict LLM surprisal (separately)
 - surprisals from collection of LLMs

PREDICTIONS OF KL VS SURPRISAL

Does surprisal pattern as expected?

Yes. Surprisal is low in expected condition, but high in others.

Does human RT pattern like surprisal or divergence?

RTs zig-zag, as divergence should predict, contra surprisal.

(WIP with Peng Qian, Morgan Sonderegger, Tim O'Donnell)

typos as a case study

estimating KL and surprisal

in noisy channel

generative model:

context

observation

- **prior** over intended words p(z | context)
 - = LLM next-seq distribution constrained to wordlist

 $\propto p_{\rm LM}({\rm context})\odot {\bf 1}_{\rm wordlist}$

- likelihood of observed string:
 p(u | z)
 - = string-edit distance model $p(D_{\text{Lev}} | z) \cdot p(u | D_{\text{Lev}}, z)$

Z intended word

noisy production (via Levenshtein distance)

observed string

(WIP with Peng Qian, Morgan Sonderegger, Tim O'Donnell)

typos as a case study

estimating KL and surprisal

context

After tripping over the rug in front of everyone at the party, she quickly got up, but her cheeks turned red and she felt deeply

	z	prior
_embarrassed	6.5668e-01	
_ashamed	2.6608e-01	
_guilty	1.60 75e-02	1
_uncomfortable	1.0753e-02	
shy	7.0945e-03	

observation	$w = {\sf embarr}$	assed (expected)	
z	prior	likelihood	posterior
_embarrassed	6.5668e-01	8.9583e-01	1.0000e+00
_embraced	3.6091e-06	9.4480e-16	5.7964e-21
_impressed	6.4865e-05	1.6926e-19	1.8663e-23
_arrested	1.8016e-06	1.6229e-19	4.9701e-25
• • •			

prior over intended words p(z) = LM

likelihood of observed string: $p(u \mid z) = \text{noisy string model}$

estimating KL and surprisal

Estimated KL divergence and surprisal

(WIP with Peng Qian, Morgan Sonderegger, Tim O'Donnell)

typos as a case study

Does surprisal pattern as expected?

Yes. Surprisal is low in expected condition, but high in others.

Does human RT pattern like surprisal or divergence?

RTs zig-zag, as update-size predicts, contra surprisal.

as estimated in our noisy channel model

surprisal theory (Levy '08) cost(u) = f(surprisal(u))

update-size theory

$$cost(u) = f(D_{KL}(p_{Z|u}||p_Z))$$

divergence (information gain) connected to sampling complexity

motivates sampling-based inference algorithms for processing

next steps - better estimates

- for typos
 - more realistic models of typos (using typing statistics)
 - broad-coverage model of KL (not just our materials)
- use character level LMs for prior and likelihood models
 - Giulianelli et al. 2024, <u>Vieira et al. 2024</u>
- more broadly: researcher must answer "what is Z?"
 - unlike surprisal, requires different models depending on task
 - infer intended words? referent? sentiment? etc. (model task effects)

next steps - not just typos

other places where we think surprisal $\gg D_{\rm KL}$ (that is, $R \gg 0$):

any (more interesting) constructions where some target region is processed without difficulty despite being very unpredictable

unexpected ways of communicating expected information

- synonyms: *This living-room furniture set consists of a table, chair, and <u>couch</u>. (vs <u>sofa</u>)*
- epithets: I hate John. From the moment the bastard came in the room

grammatical illusions (as in Yuhan Zhang's talk last week!)

- Moses illusions: *In the biblical story of the Ark, how many animals of each kind did Moses take with him?*
- agreement attraction: The key to all the cabinets are on the table.
- NPI illusions: *The bills that no senator voted for will ever become law.*
- depth-charge illusions: No head injury is too trivial to <u>ignore</u>.

malapropisms

• Sure, if I <u>reprehend</u> (apprehend) anything in this world it is the use of my <u>oracular</u> (vernacular) tongue, and a nice <u>derangement</u> (arrangement) of <u>epitaphs</u> (epithets)! (Sheridan, 1775)

multilingual codeswitching

• "Veux-tu rentrer dans ma bubble?"

next steps - not just typos

other places where we think surprisal $\gg D_{\rm KL}$ (that is, $R \gg 0$):

any (more interesting) constructions where some target region is processed without difficulty despite being very unpredictable

unexpected ways of communicating expected information

- synonyms: This living-room furniture set consists of a table, chair, and <u>couch</u>. (vs <u>sofa</u>)
- epithets: I hate John. From the moment the bastard came in the room

grammatical illusions (as in Yuhan Zhang's talk last weekl)

- Moses illusions: In the biblical story of the Ark, how many animals of each kind did Moses take with him?
- agreement attraction: The key to all the cabinets are on the table.
- NPI illusions: The bills that no senator voted for will ever become law.
- depth-charge illusions: No head injury is too trivial to ignore.

malapropisms

Sure, if I <u>reprehend</u> (apprehend) anything in this world it is the use of my <u>oracular</u> (vernacular) tongue, and a nice <u>derangement</u> (arrangement) of <u>epitaphs</u> (epithets)!
 (Sheridan, 1775)

multilingual codeswitching

"Veux-tu rentrer dans ma bubble?"

thanks to

- you!
- my collaborators: Tim O'Donnell, Peng Qian, Morgan Sonderegger, Steve Piantadosi
- National Science Foundation postdoc grant (SMA-2404644)