一. 解. 属子	一般,属于单因素方差分析问题,水平数 Y=3,重复试验次数 n=n=n,=5,即样本数 n=15;						
	Tr.= \$ Xbj	Tt."=(字M)"	\$\frac{5}{1} \times \times 1				
被燒	33.37	[1]3.5569	222.7114				
多	33.397	1115.359607	223.07 95				
貓	33.32	1110,2224	222.0445/6				
Σ	2 5 Xy = 00.087	23 Tt = 3337. 138909	23 25 Xy = 667.827877)				

$$\frac{\partial \hat{f}_{1}}{\partial \hat{f}_{2}} = \sum_{t=1}^{n_{t}} \sum_{j=1}^{n_{t}} (X_{tj} - \overline{X})^{2} = \sum_{t=1}^{n_{t}} \sum_{j=1}^{n_{t}} X_{tj} - \frac{1}{n} \left(\sum_{t=1}^{n_{t}} X_{tj} \right)^{2} = \frac{(100.087)^{2}}{(100.087)^{2}} = 6.00070 \text{ s}$$

$$\frac{\partial \hat{f}_{1}}{\partial \hat{f}_{2}} = \sum_{t=1}^{n_{t}} \frac{1}{n_{t}} \left(\sum_{t=1}^{n_{t}} X_{tj} \right)^{2} - \frac{1}{n} \left(\sum_{t=1}^{n_{t}} X_{tj} \right)^{2} = \sum_{t=1}^{n_{t}} X_{tj} + \sum_{t=1}^{n_{t}} \left(\sum_{t=1}^{n_{t}} X_{tj} \right)^{2} - \frac{1}{n} \left(\sum_{t=1}^{n_{t}} X_{tj} \right)^{2} = \sum_{t=1}^{n_{t}} X_{tj} + \sum_{t=1}^{n_{t}} \left(\sum_{t=1}^{n_{t}} X_{tj} \right)^{2} = \sum_{t=1}^{n_{t}} X_{tj} + \sum_{t=1}^{n_{t}} \left(\sum_{t=1}^{n_{t}} X_{tj} \right)^{2} - \frac{1}{n} \left(\sum_{t=1}^{n_{t}} X_{tj} \right)^{2} = \sum_{t=1}^{n_{t}} X_{tj} + \sum_{t=1}^{n_{t}} \left(\sum_{t=1}^{n_{t}} X_{tj} \right)^{2} = \sum_{t=1}^{n_{t}} \left(\sum_{t=1}^{n_{t}} X_{tj} \right)^{2} = \sum_{t=1}^{n_{t}} \left(\sum_{t=1}^{n_{t}} X_{tj} \right)^{2} - \frac{1}{n} \left(\sum_{t=1}^{n_{t}} X_{tj} \right)^{2} = \sum_{t=1}^{n_{t}} \left(\sum_{t=1}^{n_{t}} X_{tj} \right)^{2} = \sum_{t=1}^{n_{t}} \left(\sum_{t=1}^{n_{t}} X_{tj} \right)^{2} - \frac{1}{n} \left(\sum_{t=1}^{n_{t}} X_{tj} \right)^{2} = \sum_{t=1}^{n_{t}} \left(\sum_{t=1}^{n_{t}} X_{tj} \right)^{2} - \frac{1}{n} \left(\sum_{t=1}^{n_{t}} X_{tj} \right)^{2} = \sum_{t=1}^{n_{t}} \left(\sum_{t=1}^{n_{t}} X_{tj} \right)^{2} = \sum_{t=1}^{n_{t}} \left(\sum_{t=1}^{n_{t}} X_{tj} \right)^{2} - \frac{1}{n} \left(\sum_{t=1}^{n_{t}} X_{tj} \right)^{2} = \sum_{t=1}^{n_{t}} \left(\sum_{t=1}^{n_{t}} X_{tj} \right)^{2} = \sum_{t=1}$$

刻=1.05时, 方是分析如下:

20(-1.072)3	DEN ITTE			
活来 源	商症和	触费	均方房差丰方和	Funti=SASB2
纽帕	QZA = 0.0006/05	Y-1=2	$S_A^2 = G_A^2/2 = 0.00030525$	1
组内	$Q_E^2 = 0.000952$	11-7=12	SE= PE/12= 0.00000794	
為和	Q_T = 0.0007057	n-1=14		1

二解本聚属于两因素重复试验的方套新问题,由条件知 /=2, S=2, t=5, n=20, 由所给数据列表计算如下:					
B	日本主义(WAZEN/IEA/17) 	则还,却亦什我 (=2,S:	=2,t=5,n=20,f	的信数据列表针	算如下
A	В,	β,	Th= 新名XMK	[二有名》)	S X XXX
A_1	26,24,17,25,26	20, 19, 20, 23, 22	ta	53824	5456
	(128) (6384)	(lo4) 10816 =	232	77027	37>6
	17,22,18,21,17	14,13,17,16,\$2		27009	004
A ₂	(95), 9025)	L727, 5/84	167	27889	288
T 2 5 1		104 +7z=176	T-ZZZ XXX	\$\frac{1}{\text{tr}} \rightarrow \frac{1}{\text{tr}} \rightarr	京京 是 Kingk
T.g.=	t/	10	= 399	vi t offi	= 83371
T;=(30976	2 Tr. = 30705		
19-14台台人的	 (354 + 9025=254)	108/6/5/84 30/16	月 ()		
2 (16384+9025=25409)	10816+5184=16000	声	tk)2=25409+1	1600 = 41409]
	-				

#, $T_{1} = \frac{1}{27} \frac{1}{27}$

 \hat{Q}_{AXB} = \hat{Q}_{A} - \hat{Q}_{A} - \hat{Q}_{B} - \hat{Q}_{E} =376.95 - 211.25 - 110.45 - 55.2 = 0.05, 于是得方是分析表面下:

	岛群布	自由度	均方离差转和	Fwa _	显着性
因素A	$\theta_{A}^{2} = 21 .25$	Y-1=1	$S_{A}^{2} = \Omega_{A}^{2}/I = 211.25$	$S_A^2/S_E^2 = 61.23/88$	高度显著
因養B	Ot= 110.45	S- =	$S_{B}^{2} = \theta_{B}^{2} / = 10.45$	Se'/SE = 32.01449	高度呈著
支至作用AxB	Q2AXB=0.05	(H)·(SH)=	Saxb=Qaxb/1=0.05	$S_{AXB}^{2}/S_{E}^{2} = 0.01449$	无显著
保差E	ti=55.2	rsct-1) =16	$S_{E}^{2} = \theta_{E}^{2} / 16 = 3.45$		
為和	Ot= 376.95	rst- = 9			

当以=0.05时, 直表得Faosc1,16)=4.49<61.23188, Fa.05c1,16)=4.49<32.01449, Fa.05(1,16)=4.49>0.01449

因的,能直观的认为确酸钠的溶解重量 外对水温X的回归是用性的。

(2)	1 Xt	13t	1 Xt	\int_{t}^{t}	The	
	0	66.7	0	4448.89	0	
	4	11.1	16	5055,2	284.4	
	lo	76.3	100	5821.69	763	
	15	80-6	215	6496.36	1209	
	21	85.7	441	7344.49	1799.7_	
	29	92.9	841	8630.41	2694.1	
	36	99.4	1296	9880.36	3578.4	
	51	113.6	260	12904.96	5793.6	
	68	125.	4624	[5650.0]	8506.8	
9 公日	234	811.4	10144	76232.38	24629	

(3)当X=80时,1的预测值为了=67.54+0.87×80=13.14

$$L_{yy} = \sum_{t=1}^{9} j_{t}^{2} - 9T^{2} = 76232.38 - 9 \times (90.16)^{2} = 3072.95$$

$$\tilde{\mathcal{L}}_{E} = L_{yy} - \hat{\beta}_{i} \cdot L_{xy} = 3072.95 - 0.87 \times 3531.36 = 0.6668, \quad \hat{\mathcal{G}}^{2} = \frac{0.6668}{1 - 2} = \frac{0.6668}{7} = 0.095$$

$$T = \frac{1 - \hat{\beta}_{E}}{\sqrt{\frac{\hat{\Omega}_{E}}{n - 2}} \left[1 + \frac{1}{n} + \frac{(x - \bar{\lambda})^{2}}{L_{xx}}\right]} \sim t_{cn-2} = t_{c1}$$

给定置信度1-d=0.95时,全个{17≤tong(7)}=1-d=0.95

... 当
$$X = 80$$
 时,置信度为95/的划的预测区间为: [$\hat{j} - t_{0.025}(7) \cdot \sqrt{\hat{f}^{*}[1+\frac{1}{12}+\frac{(X-X)^{2}}{12}]}$, $\hat{j} + t_{0.025}(7) \cdot \sqrt{\hat{f}^{*}[1+\frac{1}{12}+\frac{(X-X)^{2}}{12}]}$

$$= [|37.069| , |37.2|09]$$

四解: 四	TA	0	1/2	1
. . .	P	4	山	1

X(<u>주</u>)=	±A+	13	·cl-A)

A = A = A = 0
*A-net X(全)=豆, 1011
当A=O时,XC子)=豆, P{A=O}=豆
. LL P P1A=立1=3
· · · · · · · · · · · · · · · · · · ·
当A=5时,XC多)=4十年,P{A=生}=3

X(多)的布律为						
$\chi(\frac{\lambda}{3})$	1 2	1ts	13/2			
P	1 3	13	<u></u>			

当A=1时,X(季)=士,P{A=1}=士

一维和函数: Fcx;至)={ } , 本次< 华

F(大,大2;0,至)=P{A=X1, 1-A=X2}

(A)=A, Xc至)=HA, 二维随机变量(A, I-A)的标准为,

(A, -A)	(0,1)	(立, 之)	(1,0)
Р	⊥a Ta	13	1/3

(2) $M_X(t) = E[Xct] = E[Acost + CI-A) \cdot start] = \frac{1}{3} start + \frac{1}{3} [\pm ast + \pm start] + \frac{1}{3} cost$

A	0	2 \$	1
Xety	stnt	1 cost + 1 start	∠ost _
P	1 3	1/3	1 3

 $Rx(t_1,t_2) = \frac{1}{3} x \left[\frac{1}{3} x \left[\frac{1}{2} \cos t_1 + \frac{1}{2} x \sin t_2 \right] + \frac{1}{3} \cos t_1 \cdot \cos t_2 \right]$

- = \$stat. statz + \$x \$\pm\$ (cost, + stat,) c costz + statz) + \$\pm\$ cost, costz
- = 3 stati. stati + 12 cost, cost, + T2 cost, stati + T2 cost, cost, + T2 stati, + T2 stati, cost, + T2 stati, cost, + T2 stati, + T2
- = 5 stati stat, + 5 costi cost, + 12 costi state + 12 stati cost2
- $=\frac{5}{12}(\cos(t_1+t_2)+\frac{1}{12}\sin(ct_1+t_2)$

cos catb) = cosacosb - smastrob

str(atb) = stracabt cosastrb.

(05 (a-6) = cosa cosb + strastrob

$$\frac{1}{2} \underbrace{A}_{\text{int}}^{\text{int}} E(A) = \frac{1}{2}, \quad D_{CA} = \frac{1}{12}$$

$$f_{C\Phi} = \int_{0}^{\frac{1}{2}} \underbrace{A}_{\text{int}}^{\text{int}} E(A) = \frac{1}{2} \underbrace{A}_{\text{int}}^{\text{int}} E(A) = \underbrace$$

= tx=xxx cosculti-uti)= t cos weti-ti)= t cos weti-ti)

·· Rxcz)= t ws(wz)

X:Mxct)为常数,Rxct,t)乃为て有关

· Xct)具科稳性.

(2)
$$\langle X_{ct} \rangle = \lim_{t \to \infty} \int_{0}^{t} A \omega s(w_{o}t + \underline{\Phi}) dt = \lim_{t \to \infty} \int_{0}^{t} S_{tn}(w_{o}t + \underline{\Phi}) \int_{0}^{t} = \lim_{t \to \infty} \int_{0}^{t} \left[S_{tn}(w_{o}t + \underline{\Phi}) - S_{tn}(w_{o}t + \underline{\Phi}) \right] dt$$

$$= \lim_{t \to \infty} \int_{0}^{t} A \omega s(w_{o}t + \underline{\Phi}) dt = \lim_{t \to \infty} \int_{0}^{t} \left[S_{tn}(w_{o}t + \underline{\Phi}) - S_{tn}(w_{o}t + \underline{\Phi}) \right] dt$$

$$= \lim_{t \to \infty} \int_{0}^{t} A \omega s(w_{o}t + \underline{\Phi}) dt = \lim_{t \to \infty} \int_{0}^{t} \left[S_{tn}(w_{o}t + \underline{\Phi}) - S_{tn}(w_{o}t + \underline{\Phi}) \right] dt$$

$$= \lim_{t \to \infty} \int_{0}^{t} A \omega s(w_{o}t + \underline{\Phi}) dt = \lim_{t \to \infty} \int_{0}^{t} \left[S_{tn}(w_{o}t + \underline{\Phi}) - S_{tn}(w_{o}t + \underline{\Phi}) \right] dt$$

$$= \lim_{t \to \infty} \int_{0}^{t} A \omega s(w_{o}t + \underline{\Phi}) dt = \lim_{t \to \infty} \int_{0}^{t} S_{tn}(w_{o}t + \underline{\Phi}) dt$$

$$= \lim_{t \to \infty} \int_{0}^{t} A \omega s(w_{o}t + \underline{\Phi}) dt = \lim_{t \to \infty} \int_{0}^{t} S_{tn}(w_{o}t + \underline{\Phi}) dt$$

$$= \lim_{t \to \infty} \int_{0}^{t} A \omega s(w_{o}t + \underline{\Phi}) dt = \lim_{t \to \infty} \int_{0}^{t} S_{tn}(w_{o}t + \underline{\Phi}) dt$$

$$= \lim_{t \to \infty} \int_{0}^{t} A \omega s(w_{o}t + \underline{\Phi}) dt = \lim_{t \to \infty} \int_{0}^{t} S_{tn}(w_{o}t + \underline{\Phi}) dt$$

$$= \lim_{t \to \infty} \int_{0}^{t} A \omega s(w_{o}t + \underline{\Phi}) dt = \lim_{t \to \infty} \int_{0}^{t} S_{tn}(w_{o}t + \underline{\Phi}) dt$$

$$= \lim_{t \to \infty} \int_{0}^{t} A \omega s(w_{o}t + \underline{\Phi}) dt$$

$$= \lim_{t \to \infty} \int_{0}^{t} A \omega s(w_{o}t + \underline{\Phi}) dt$$

$$= \lim_{t \to \infty} \int_{0}^{t} A \omega s(w_{o}t + \underline{\Phi}) dt$$

$$= \lim_{t \to \infty} \int_{0}^{t} A \omega s(w_{o}t + \underline{\Phi}) dt$$

$$= \lim_{t \to \infty} \int_{0}^{t} A \omega s(w_{o}t + \underline{\Phi}) dt$$

$$= \lim_{t \to \infty} \int_{0}^{t} A \omega s(w_{o}t + \underline{\Phi}) dt$$

$$= \lim_{t \to \infty} \int_{0}^{t} A \omega s(w_{o}t + \underline{\Phi}) dt$$

$$= \lim_{t \to \infty} \int_{0}^{t} A \omega s(w_{o}t + \underline{\Phi}) dt$$

$$= \lim_{t \to \infty} \int_{0}^{t} A \omega s(w_{o}t + \underline{\Phi}) dt$$

$$= \lim_{t \to \infty} \int_{0}^{t} A \omega s(w_{o}t + \underline{\Phi}) dt$$

·· Xcto具有数多料型的各层历经性。

$$\begin{split} \langle \chi_{ct} \rangle \cdot \chi_{ct+\tau} \rangle &= \lim_{T \to \infty} + \int_{0}^{T} A^{2} \cos(\omega t + \overline{x}) \cdot \cos(\omega t + \tau) + \underline{x} dt \\ &= \lim_{T \to \infty} + \int_{0}^{T} \int_{0}^{T} \cos(\omega t + \tau) + \underline{x} dt + \int_{0}^{T} \cos(\omega t) dt = \lim_{T \to \infty} + \int_{0}^{T} \cdot T \cdot \cos(\omega t) \\ &= A^{2} \cdot \cos(\omega t) + \Re(c\tau) \end{aligned}$$

··Xct)不具有相关函数的各态历经性.

六. 解: (1): Rxcr)= 1+ = cost, Sxcw)= from e-tem Rxcr) de ... Sxcw = [to e-47w. [1+ \frac{1}{2} ast] dt = 2\pi Scw) + \frac{1}{2}[Scw+1) + Scw-1)] 频响应函数 Haw = → www , x= LC X Srcw = How ? Sxcw = 2 - [2 x Scw) + 2 Scw + 2 Scw + 2 Scw + 3] = 228cw) + 2 [ScW+1) + ScW+)]

(2)
$$R_{T(CD)} = \alpha f^{-1} \left[S_{T(CW)} \right] = 1 + \frac{\alpha^{\frac{1}{2}}}{2(\alpha^{\frac{1}{2}}+1)} \cdot \text{OrST} \cdot \alpha = \frac{1}{RC}$$

(2) $R_{T(CD)} = \alpha f^{-1} \left[S_{T(CW)} \right] = 1 + \frac{\alpha^{\frac{1}{2}}}{2(\alpha^{\frac{1}{2}}+1)} \cdot \text{OrST} \cdot \alpha = \frac{1}{RC}$

(3) $R_{T(CD)} = \alpha f^{-1} \left[S_{T(CW)} \right] = 1 + \frac{\alpha^{\frac{1}{2}}}{2(\alpha^{\frac{1}{2}}+1)} \cdot \text{OrST} \cdot \alpha = \frac{1}{RC}$

(4) $R_{T(CD)} = \alpha f^{-1} \left[S_{T(CW)} \right] = 1 + \frac{\alpha^{\frac{1}{2}}}{2(\alpha^{\frac{1}{2}}+1)} \cdot \text{OrST} \cdot \alpha = \frac{1}{RC}$

(4) $R_{T(CD)} = \alpha f^{-1} \left[S_{T(CW)} \right] = 1 + \frac{\alpha^{\frac{1}{2}}}{2(\alpha^{\frac{1}{2}}+1)} \cdot \text{OrST} \cdot \alpha = \frac{1}{RC}$

(5) $R_{T(CD)} = \alpha f^{-1} \left[S_{T(CW)} \right] = 1 + \frac{\alpha^{\frac{1}{2}}}{2(\alpha^{\frac{1}{2}}+1)} \cdot \text{OrST} \cdot \alpha = \frac{1}{RC}$

(6) $R_{T(CD)} = \alpha f^{-1} \left[S_{T(CW)} \right] = 1 + \frac{\alpha^{\frac{1}{2}}}{2(\alpha^{\frac{1}{2}}+1)} \cdot \text{OrST} \cdot \alpha = \frac{1}{RC}$

(7) $R_{T(CD)} = \alpha f^{-1} \left[S_{T(CW)} \right] = 1 + \frac{\alpha^{\frac{1}{2}}}{2(\alpha^{\frac{1}{2}}+1)} \cdot \text{OrST} \cdot \alpha = \frac{1}{RC}$

(8) $R_{T(CD)} = \alpha f^{-1} \left[S_{T(CW)} \right] = 1 + \frac{\alpha^{\frac{1}{2}}}{2(\alpha^{\frac{1}{2}}+1)} \cdot \text{OrST} \cdot \alpha = \frac{1}{RC}$

(9) $R_{T(CD)} = \alpha f^{-1} \left[S_{T(CW)} \right] = 1 + \frac{\alpha^{\frac{1}{2}}}{2(\alpha^{\frac{1}{2}}+1)} \cdot \text{OrST} \cdot \alpha = \frac{1}{RC}$

(14) $R_{T(CD)} = \alpha f^{-1} \left[S_{T(CW)} \right] = 1 + \frac{\alpha^{\frac{1}{2}}}{2(\alpha^{\frac{1}{2}}+1)} \cdot \text{OrST} \cdot \alpha = \frac{1}{RC}$

(15) $R_{T(CD)} = \alpha f^{-1} \left[S_{T(CW)} \right] = 1 + \frac{\alpha^{\frac{1}{2}}}{2(\alpha^{\frac{1}{2}}+1)} \cdot \alpha = \frac{1}{RC}$

(16) $R_{T(CD)} = \alpha f^{-1} \left[S_{T(CW)} \right] = 1 + \frac{\alpha^{\frac{1}{2}}}{2(\alpha^{\frac{1}{2}}+1)} \cdot \alpha = \frac{1}{RC}$

(17) $R_{T(CD)} = \alpha f^{-1} \left[S_{T(CW)} \right] = 1 + \frac{\alpha^{\frac{1}{2}}}{2(\alpha^{\frac{1}{2}}+1)} \cdot \alpha = \frac{1}{RC}$

(18) $R_{T(CD)} = \alpha f^{-1} \left[S_{T(CW)} \right] = 1 + \frac{\alpha^{\frac{1}{2}}}{2(\alpha^{\frac{1}{2}}+1)} \cdot \alpha = \frac{1}{RC}$

(19) $R_{T(CD)} = \alpha f^{-1} \left[S_{T(CW)} \right] = 1 + \frac{\alpha^{\frac{1}{2}}}{2(\alpha^{\frac{1}{2}+1)}} \cdot \alpha = \frac{1}{RC}$

(19) $R_{T(CD)} = \alpha f^{-1} \left[S_{T(CW)} \right] = 1 + \frac{\alpha^{\frac{1}{2}}}{2(\alpha^{\frac{1}{2}+1)}} \cdot \alpha = \frac{1}{RC}$

(19) $R_{T(CD)} = \alpha f^{-1} \left[S_{T(CW)} \right] = 1 + \frac{\alpha^{\frac{1}{2}}}{2(\alpha^{\frac{1}{2}+1)}} \cdot \alpha = \frac{1}{RC}$

(2) $R_{T(CD)} = \alpha f^{-1} \left[S_{T(CW)} \right] = 1 + \frac{\alpha^{\frac{1}{2}}}{2(\alpha^{\frac{1}{2}+1)}} \cdot \alpha = \frac{1}{RC}$

(2) $R_{T(CW)} = \alpha f^{-1} \left[S_{T(CW)} \right] = 1 + \frac{\alpha^{\frac{1}{2}}}{2($

时一步转拾校产矩阵化的光素全大子墨,所以的马氏经是遍历的.

(2) 絕对根本:
$$P\{X_3=0\} = P_3^{(2)} = \stackrel{+}{\xi_1} P_2^{(2)} \cdot P_3^{(2)} = \stackrel{+}{\xi_1} P\{X_2=\xi\} \cdot P_{13}^{(2)} = \stackrel{+}{\xi_1} P\{X_3=\xi\} \cdot P_{13}^{(2)} = \stackrel{+}{\xi_1} P\{X_3=\xi\} \cdot P\{X$$

多位松子: P{X=2, X3=1, X5=4}= = = 10 Pa Pa Pa C3-1>.P14 C5-3> = $P_{1}(\omega)$. $P_{2}(\omega)$. $P_{14}(\omega)$. $\sum_{k=1}^{4} P_{12}(k) = \pm x \hat{\uparrow} x \hat{\uparrow} x (\frac{1}{2} + 0 + \frac{1}{2} + \frac{1}{3}) = \frac{1}{81}$

$$P\{X_{(n_1)}=t\} = P_t^{(n)}, \quad P_t^{(n_2)} = \sum_{t \in E} P_t^{(o)} \cdot P_{t,t}^{(n_2)} \Rightarrow P_t^{(o)} \cdot P_{t,t}^{(n_1)} \cdot P_{t,t}^{(n_2)} = P_t^{(o)} \cdot P_{t,t}^{(n_1)} \cdot P_{t,t}^{(n_2)} \cdot P_{t,t}^{($$

