EEE205 – Digital Electronics (II)

Lecture 17

DAC and ADC

Dr. Ming Xu

Dept of Electrical & Electronic Engineering

XJTLU

Interfacing With the Analog World

- □ Transducer
- □ ADC
- □ Computer
- □ DAC

2

Digital to Analog Conversion

- □ The conversion process:
 - Digital code is converted to a proportional voltage/current
 - Reference voltage determines the max DAC output
- □ Analog (pseudo analog) output

Digital to Analog Conversion

- Resolution (step size) = analog full-scale output divided by $2^n 1$, where n is the number of bits.
- □ Analog output = resolution × digital input

4

Digital to Analog Conversion

- □ Bipolar DACs
 - Many DACs produce both positive and negative values
 - 2's complement can be used to represent negative voltages

D/A Converter Circuitry

A summing operational amplifier with a resolution of .625 V. $V_{OUT} = -(V_D + V_C/2 + V_B/4 + V_A/8)$

Input code				
D	С	В	Α	V _{OUT} (volts)
0	0	0	0	0
0	0	0	1	-0.625 ← LSI
0	0	1	0	-1.250
0	0	1	1	-1.875
0	1	0	0	-2.500
0	1	0	1	-3.125
0	1	1	0	-3.750
0	1	1	1	-4.375
1	0	0	0	-5.000
1	0	0	1	-5.625
1	0	1	0	-6.250
1	0	1	1	-6.875
1	1	0	0	-7.500
1	1	0	1	-8.125
1	1	1	0	-8.750
1	1	1	1	-9.375 ← Fu

D/A Converter Circuitry

- ☐ The digital inputs cannot be taken directly from FFs or logic gates
- □ Each digital input controls a semi-conductor switch to a precision reference supply.

D/A Converter Circuitry

□ R/2R ladder

- Circuits with binary weighted resistors cause a problem due to the large difference in R values between LSB and MSB
- The R/2R ladder uses resistances that span only a 2 to 1 range

D/A Converter Circuitry

□ R/2R ladder DAC

DAC Specifications

- ☐ Many DACs are available as ICs or self contained packages. Key specifications are:
 - Resolution
 - Accuracy
 - Offset error
 - Settling time
 - Monotonicity

10

Analog to digital Conversion

- □ ADC digital code represents the analog input
- Generally more complex and time consuming than DAC
- □ Several types of ADC use DAC circuits
- □ The Op amp comparator ADC
 - Variations differ in how the control section continually modifies numbers in the register

Digital Ramp ADC

 \square A binary counter is used as the register and allows clock to increment the counter a step at a time until $V_{AX} \ge V_A$

12

11

Digital Ramp ADC

- □ A/D resolution and accuracy
 - Measurement error is unavoidable

Reducing the step size can reduce but not eliminate potential error

This is called quantization error

Data Acquisition

- Digitizing analog data and transferring to memory is data acquisition
- Acquiring a single data point value is sampling
- Reconstructing a digitized signal

Data Acquisition

Aliasing

- Caused by under sampling
- Harry Nyquist
 - ☐ The sampling frequency must be at least twice the highest input frequency
 - Sampling at a frequency less than twice the input frequency results in under sampling and incorrect reproduction

Successive Approximation ADC

- Widely used ADC
- More complex than digital ramp but has a shorter conversion time
- Conversion time is fixed and not dependent on the analog input
- Many SACs are available as ICs.

Successive Approximation ADC

Flash ADCs

- □ High speed conversion
- □ Much more complex circuitry
 - 6 bit flash ADC requires 63 analog comparators
 - 8 bit flash ADC requires 255 comparators
 - 10 bit flash ADC requires 1023 comparators
- ☐ A 3 bit flash converter is described in figure 11-22
- ☐ Conversion time No clock signal is used, so the conversion is continuous. This makes for very short conversion times, typically under 17 ns.

8

Flash ADCs

Other A/D Conversion Methods

- ☐ There are many other methods of A/D conversion. Each has pros and cons:
 - Up/down digital-ramp ADC (tracking ADC)
 - Dual slope integrating ADC
 - Voltage to frequency ADC
 - Sigma/delta modulation
- ☐ The method used will depend on the application

20