Everything

DISCLAIMER

Questo è un file che contiene una lista di tutti i teoremi, osservazioni, definizioni, esempi, lemmi, corollari, formule e proposizioni **senza alcuna dimostrazione**, di conseguenza molte informazioni risulteranno essere senza alcun contesto se già non si conosce la materia. Detto questo, buona lettura.

Algebra relazionale

Definizione 1

- Dominio
 - A insieme finito o infinito
 - A, in algebra relazionale, è detto dominio

Definizione 2

- Prodotto cartesiano
 - $n \in \mathbb{N}$
 - D_1, \ldots, D_n domini
 - $D_1 \times \ldots \times D_n := \{v_1, \ldots, v_n) \mid v_1 \in D_1, \ldots, v_n \in D_n\}$ è detto **prodotto** cartesiano dei domini $D_1, \ldots D_n$

Definizione 3

- Relazione
 - $n \in \mathbb{N}$
 - D_1, \ldots, D_n domini
 - $k \in [1, n]$
 - $R \subseteq D_1 \times ... \times D_k$ è detta relazione di grado k
 - $-(t_1,\ldots,t_k)\in R$ è detta tupla di cardinalità k
 - $\forall i \in [1, k] \quad (t_1, \dots, t_k)[i] = t_i$
 - $\forall a, b \in [1, k] \mid a < b \quad (t_1, \dots, t_k)[a, b] = (t_a, \dots, t_b)$

- Schema relazionale
 - $n \in \mathbb{N}$
 - D_1, \ldots, D_n domini
 - $R \subseteq D_1 \times \ldots \times D_n$ relazione
 - $R(A_1, ..., A_n)$ è detto schema relazionale
 - -R, in algebra relazionale, è categorizzata tramite **attributi**, denotati con A_i , nomi con i quali si etichettano le colonne della tabella, dunque uno schema relazionale è l'insieme delle etichette

- $\forall i \in [1, n] \quad \text{dom}(A_i) := D_i$ è detto **dominio di** A_i $- \forall i \in [1, n] \quad A_i \in \text{dom}(A_i)$
- Istanza di una relazione
 - $n \in \mathbb{N}$
 - D_1, \ldots, D_n domini
 - $k \in [1, n]$
 - $R \subseteq D_1 \times \ldots \times D_k$ relazione
 - $R(A_1, \ldots, A_n)$ schema relazionale
 - D_1, \ldots, D_k , l'insieme delle tuple di R, è detta istanza della relazione R

Operazioni

- Proiezione
- !!! RISCRIVI > $n \in \mathbb{N}$ > D_1, \ldots, D_n domini > $R \subseteq D_1 \times \ldots \times D_n$ relazione > $R(A_1, \ldots, A_n)$ schema relazionale > $a, b \in [1, n] \mid a < b >$ $\pi_{A_a, \ldots, A_b}(R) := D_a \times \ldots \times D_b$ è detta **proiezione di** R, associata ad uno schema relazionale $R(A_a, \ldots, A_b)$
- Selezione
 - $n \in \mathbb{N}$
 - D_1, \ldots, D_n domini
 - $R \subseteq D_1 \times \ldots \times D_n$ relazione
 - $R(A_1, \ldots, A_n)$ schema relazionale
 - C espressione booleana
 - $\sigma_C(R) \subseteq D_1 \times ... \times D_n$ è detta selezione di R
 - corrisponde all'insieme delle righe della tabella che rendono la condizione ${\cal C}$ vera
- Rinominazione
 - $n \in \mathbb{N}$
 - D_1, \ldots, D_n domini
 - $R \subseteq D_1 \times \ldots \times D_n$ relazione
 - $R(A_1, \ldots, A_n)$ schema relazionale
 - $R' = \rho_{A'_1 \leftarrow A_1}(R)$, dove ρ è detto operatore di rinominazione
 - R^\prime sarà uno schema relazionale con la stessa istanza di R,ma con A_1 rinominato con A_1^\prime
- Unione
 - $n \in \mathbb{N}$
 - $D_1, ..., D_n, D'_1, ..., D'_n$ domini $| \forall i \in [1, n] \ D_i = D'_i$
 - $R_1 \subseteq D_1 \times \ldots \times D_n$ relazione
 - $R_2 \subseteq D'_1 \times \ldots \times D'_n$ relazione
 - $R_1(A_1, \ldots, A_n)$ schema relazionale
 - $R_2(A_1', \ldots, A_n')$ schema relazionale
 - r_1 istanza di R_1

- r_2 istanza di R_2
- $r_1 \cup r_2 := \{t \mid t \in r_1 \lor t \in r_2\}$ è detta unione delle istanze r_1 e r_2
 - dunque, l'unione di istanze è definita solamente per istanze con stesso numero di attributi, e attributi con stesso dominio

• Differenza

- $n \in \mathbb{N}$
- $D_1, \ldots, D_n, D'_1, \ldots, D'_n$ domini $| \forall i \in [1, n] \quad D_i = D'_i$
- $R_1 \subseteq D_1 \times \ldots \times D_n$ relazione
- $R_2 \subseteq D'_1 \times \ldots \times D'_n$ relazione
- $R_1(A_1,\ldots,A_n)$ schema relazionale
- $R_2(A'_1,\ldots,A'_n)$ schema relazionale
- r_1 istanza di R_1
- r_2 istanza di R_2
- $r_2 r_1 := \{t \mid t \in r_2 \land t \notin r_1\}$ è detta differenza delle istanze r_1 e r_2
 - dunque, la differenza di istanze è definita solamente per istanze con stesso numero di attributi, e attributi con stesso dominio

• Intersezione

- $n \in \mathbb{N}$
- $D_1, ..., D_n, D'_1, ..., D'_n$ domini $| \forall i \in [1, n] \quad D_i = D'_i$
- $R_1 \subseteq D_1 \times \ldots \times D_n$ relazione
- $R_2 \subseteq D_1' \times \ldots \times D_n'$ relazione
- $R_1(A_1, \ldots, A_n)$ schema relazionale
- $R_2(A'_1,\ldots,A'_n)$ schema relazionale
- r_1 istanza di R_1
- r_2 istanza di R_2
- $r_1 \cap r_2 := r_2 (r_2 r_1)$ è detta intersezione delle istanze r_1 e r_2
 - dunque, la differenza di istanze è definita solamente per istanze con stesso numero di attributi, e attributi con stesso dominio

• Prodotto cartesiano

- $n \in \mathbb{N}$
- $D_1, \ldots, D_n, D'_1, \ldots, D'_n$ domini $| \forall i \in [1, n] \quad D_i = D'_i$
- $R_1 \subseteq D_1 \times \ldots \times D_n$ relazione
- $R_2 \subseteq D'_1 \times \ldots \times D'_n$ relazione
- $R_1(A_1, \ldots, A_n)$ schema relazionale
- $R_2(A_1', \ldots, A_n')$ schema relazionale
- r_1 istanza di R_1
- r_2 istanza di R_2
- $r_1 \times r_2 := \{(t_1,t_2) \mid t_1 \in r_1 \wedge t_2 \in r_2\}$ è detto prodotto cartesiano delle istanze r_2 e r_2

- Hp
 - $-n \in \mathbb{N}$

 - $-R_1 \subseteq D_1 \times \ldots \times D_B \times \ldots \times D_n$ relazione

- $-R_2 \subseteq D_1' \times \ldots \times D_B' \times \ldots \times D_n'$ relazione
- $-R_1(A_1,\ldots,B,\ldots,A_n)$ schema relazionale
- $-R_2(A'_1,\ldots,B,\ldots,A'_n)$ schema relazionale
- $-r_1$ istanza di R_1
- $-\ r_2$ istanza di R_2

• Oss

- in questa situazione, si verifica che $r_1 \times r_2$ conterrà delle tuple senza significato, poiché esiste un attributo con stesso nome in R_1 e in R_2 , ovvero B
- per risolvere questo problema, spesso l'operatore × viene utilizzato congiuntamente a ρ, σ e π
 - * infatti, per ottenere un prodotto cartesiano con significato è necessario prima rinominare l'attributo in comune in uno dei due schemi relazionali, per differenziarli, e dunque $R'_2 = \rho_{B' \leftarrow B}(R_2)$, e sia r'_2 l'istanza di R'_2
 - e dunque $R'_2 = \rho_{B' \leftarrow B}(R_2)$, e sia r'_2 l'istanza di R'_2 * successivamente, facendo $r_1 \times r'_2$, si otterra un'istanza contenente delle tuple ancora senza significato, che sarà possibile rimuovere selezionando attraverso $\sigma_{B'=B}(r_1 \times r'_2)$
 - * infine, a questo punto si avranno due colonne perfettamente identiche, e dunque è sufficiente proiettare prendendo solo una delle colonne tra B e B', e quindi $\pi_{A_1,...,B,...,A_n,A'_1,...,\hat{B'},...,A'_n}(\sigma_{B=B'}(r_1 \times r'_2))$ è il prodotto cartesiano cercato

Def

- Join naturale
 - $n \in \mathbb{N}$
 - $D_1, \ldots, D_n, D'_1, \ldots, D'_n$ domini $| \forall i \in [1, n] \quad D_i = D'_i$
 - $R_1 \subseteq D_1 \times \ldots \times D_n$ relazione
 - $R_2 \subseteq D_1' \times \ldots \times D_n'$ relazione
 - $R_1(A_1, \ldots, A_n)$ schema relazionale
 - $R_2(A'_1,\ldots,A'_n)$ schema relazionale
 - r_1 istanza di R_1
 - r_2 istanza di R_2
 - $r_1\bowtie r_2$ è detto join naturale di r_1 e r_2 !!! SCRIVERE BENE LA DEFINIZIONE
 - dunque, il join naturale costituisce il prodotto cartesiano "con significato" discusso precedentemente SCRIVERE BENE LA DEFINIZIONE
 - dunque, il join naturale costituisce il prodotto cartesiano "con significato" discusso precedentemente

Teorema 1

!!! 4.30

- Hp
 - $-n \in \mathbb{N}$
 - $-D_1,\ldots,D_n,D_1,\ldots,D_n'$ domini $|\forall i\in[1,n]$ $D_i=D_i'$
 - $-R_1 \subseteq D_1 \times \ldots \times D_n$ relazione

```
-R_2 \subseteq D_1' \times \ldots \times D_n' \text{ relazione}
-R_1(A_1, \ldots, A_n) \text{ schema relazionale}
-R_2(A_1', \ldots, A_n') \text{ schema relazionale}
-∄A \in \{A_1, \ldots, A_n, A_1', \ldots, A_n'\} \mid ∃A' \in \{A_1, \ldots, A_n, A_1', \ldots, A_n'\} : A = A', \text{ dunque gli attributi di } R_1 \text{ ed } R_2 \text{ sono tutti distinti}
-r_1 \text{ istanza di } R_1
-r_2 \text{ istanza di } R_2
• Th
-r_1 \times r_2 = r_1 \bowtie r_2
```

Teoria relazionale

Definizione 7

- Dipendenza funzionale
 - $n \in \mathbb{N}$
 - D_1, \ldots, D_n domini
 - $R \subseteq D_1 \times \ldots \times D_n$ relazione
 - $R(A_1, \ldots, A_n)$ schema relazionale
 - $X, Y \subseteq R(A_1, \ldots, A_n) \mid X, Y \neq \emptyset$
 - $X \to Y$ è detta dipendenza funzionale su R- X è detto determinante, Y è detto determinato
 - r istanza di R soddisfa $X \to Y \iff \forall t_1, t_2 \in R$ $t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$
- Istanza legale
 - $n, k \in \mathbb{N}$
 - D_1, \ldots, D_n domini
 - $R \subseteq D_1 \times \ldots \times D_n$ relazione
 - $R(A_1, \ldots, A_n)$ schema relazionale
 - F_1, \ldots, F_k dipendenze funzionali su R
 - $F = \{F_1, \dots, F_k\}$
 - r istanza di R legale su $F \iff \forall i \in [1,k]$ r soddisfa F_i

- Chiusura di un insieme di dipendenze funzionali
 - $n, k \in \mathbb{N}$
 - D_1, \ldots, D_n domini
 - $R \subseteq D_1 \times \ldots \times D_n$ relazione
 - $R(A_1, \ldots, A_n)$ schema relazionale
 - F_1, \ldots, F_k dipendenze funzionali su R
 - $F = \{F_1, \dots, F_k\}$
 - $L = \{r \text{ istanza di } R \mid r \text{ legale su } F\}$
 - $F^+ := \bigcap_{r \in L} \{\text{dipendenze funzionali in } r \}$

- -ovvero, è l'insieme delle dipendenze funzionali derivabili da ogni istanza legale su ${\cal F}$
- -di fatto, ogni istanza legale in L soddisferà ogni dipendenza funzionale in ${\cal F}^+$

```
• Hp
-n, k \in \mathbb{N}
-D_1, \dots, D_n \text{ domini}
-R \subseteq D_1 \times \dots \times D_n \text{ relazione}
-R(A_1, \dots, A_n) \text{ schema relazionale}
-F_1, \dots, F_k \text{ dipendenze funzionali su } R
-F = \{F_1, \dots, F_k\}
• Th
-F \subseteq F^+
```

Teorema 4

```
• Hp
 -n, k \in \mathbb{K} 
 -D_1, \dots, D_n \text{ domini} 
 -R \subseteq D_1 \times \dots \times D_n \text{ relazione} 
 -R(A_1, \dots, A_n) \text{ schema relazionale} 
 -X, Y \subseteq R(A_1, \dots, A_n) \mid Y \subseteq X 
 -F_1, \dots, F_k \text{ dipendenze funzionali su } R 
 -F = \{F_1, \dots, F_k\} 
• Th
 -X \to Y \in F^+
```

Assiomi di Armstrong

- Assiomi di Armstrong
 - $n, k \in \mathbb{N}$
 - D_1, \ldots, D_n domini
 - $R \subseteq D_1 \times \ldots \times D_n$ relazione
 - $R(A_1, \ldots, A_n)$ schema relazionale
 - F_1, \ldots, F_k dipendenze funzionali su R
 - $F = \{F_1, \dots, F_k\}$
 - F^A è l'insieme delle dipendenze funzionali ottenute partendo da F applicando gli assiomi di Armstrong
 - $\forall X, Y \subseteq R(A_1, \dots, A_n) \quad X \to Y \in F \implies X \to Y \in F^A$
 - $\forall X,Y\subseteq R(A_1,\ldots,A_n)$ $Y\subseteq X\implies X\to Y\in F^A$ è detto assioma della riflessività

- $\forall X,Y,Z\subseteq R(A_1,\ldots,A_n)$ $X\to Y\in F^A\implies XZ\to YZ\in F^A$ è detto assioma dell'aumento
- $\forall X,Y\subseteq R(A_1,\ldots,A_n)$ $X\to Y,Y\to Z\in F^A\implies X\to Z\in F^A$ è detto assioma della transitività

• **Hp** $-n,k \in \mathbb{N}$ $-D_1,\ldots,D_n \text{ domini}$ $-R \subseteq D_1 \times \ldots \times D_n \text{ relazione}$ $-R(A_1,\ldots,A_n) \text{ schema relazionale}$ $-F_1,\ldots,F_k \text{ dipendenze funzionali su } R$ $-F = \{F_1,\ldots,F_k\}$ • **Th** $-F \subset F^A$

Teorema 6

- **Hp** $-n, k \in \mathbb{N}$ $-D_1, \dots, D_n \text{ domini}$ $-R \subseteq D_1 \times \dots \times D_n \text{ relazione}$ $-R(A_1, \dots, A_n) \text{ schema relazionale}$ $-X, Y, Z \subseteq R(A_1, \dots, A_n)$ $-F_1, \dots, F_k \text{ dipendenze funzionali su } R$ $-F = \{F_1, \dots, F_k\}$
- $F = \{F_1, \dots, F_k\}$ Th
 $X \to Y, X \to Z \in F^A \implies X \to YZ \in F^A$ è detta regola dell'unione

Teorema 7

- **Hp** $-n, k \in \mathbb{N}$ $-D_1, \dots, D_n \text{ domini}$ $-R \subseteq D_1 \times \dots \times D_n \text{ relazione}$ $-R(A_1, \dots, A_n) \text{ schema relazionale}$ $-X, Y, Z \subseteq R(A_1, \dots, A_n)$ $-F_1, \dots, F_k \text{ dipendenze funzionali su } R$ $-F = \{F_1, \dots, F_k\}$ **Th**
- Teorema 8
 - **Hp** $-n, k \in \mathbb{N}$ $-D_1, \dots, D_n \text{ domini}$ $-R \subseteq D_1 \times \dots \times D_n \text{ relazione}$ $-R(A_1, \dots, A_n) \text{ schema relazionale}$

 $X \to Y \in F^A \land Z \subseteq Y \implies X \to Z \in F^A$ è detta regola della decomposizione

$$\begin{array}{l} -X,Y,Z\subseteq R(A_1,\ldots,A_n)\\ -F_1,\ldots,F_k \mbox{ dipendenze funzionali su }R\\ -F=\{F_1,\ldots,F_k\} \end{array}$$
• Th
$$-X\to Y,WY\to Z\in F^A \implies XW\to Z\in F^A \mbox{ è detta regola della pseudotransitività}$$

• Hp
$$\begin{array}{l} -n,k\in\mathbb{N}\\ -i,j\in[1,n]\mid i< j\\ -D_1,\ldots,D_n \text{ domini}\\ -R\subseteq D_1\times\ldots\times D_n \text{ relazione}\\ -R(A_1,\ldots,A_n) \text{ schema relazionale}\\ -A_i,\ldots,A_j\subseteq R(A_1,\ldots,A_n)\\ -F_1,\ldots,F_k \text{ dipendenze funzionali su }R\\ -F=\{F_1,\ldots,F_k\} \end{array}$$
• Th
$$\begin{array}{l} -X\to A_i\ldots A_j\in F^A\iff \forall h\in[i,j] \quad X\to A_h\in F^A \end{array}$$

Definizione 10

- Chiusura di un insieme di attributi
 - $n, k \in \mathbb{N}$
 - D_1, \ldots, D_n domini
 - $R \subseteq D_1 \times \ldots \times D_n$ relazione
 - $R(A_1, \ldots, A_n)$ schema relazionale
 - $X \subseteq R(A_1,\ldots,A_n)$
 - F_1, \ldots, F_k dipendenze funzionali su R
 - $F = \{F_1, \ldots, F_k\}$
 - $X_F^+:=\{A\in R(A_1,\ldots,A_n)\mid X\to A\in F^A\}$ è detta chiusura di X rispetto ad F
 - $-\,$ ovvero, è l'insieme degli attributi funzionalmente dipendenti da Xattraverso l'applicazione degli assiomi di Armstrong

• Hp
$$\begin{array}{l} -n,k\in\mathbb{N}\\ -D_1,\ldots,D_n \text{ domini}\\ -R\subseteq D_1\times\ldots\times D_n \text{ relazione}\\ -R(A_1,\ldots,A_n) \text{ schema relazionale}\\ -X,Y\subseteq R(A_1,\ldots,A_n)\\ -F_1,\ldots,F_k \text{ dipendenze funzionali su }R\\ -F=\{F_1,\ldots,F_k\} \end{array}$$
• Th
$$\begin{array}{l} -X\to Y\in F^A \iff Y\subseteq X_F^+ \end{array}$$

```
• Hp
      -n, k \in \mathbb{N}
      -D_1,\ldots,D_n domini
      -R \subseteq D_1 \times \ldots \times D_n relazione
      -R(A_1,\ldots,A_n) schema relazionale
      -X \subseteq R(A_1,\ldots,A_n)
      -F_1,\ldots,F_k dipendenze funzionali su R
      - F = \{F_1, \dots, F_k\}
• Th
      -X \subseteq X_F^+
```

Teorema 12

```
• Hp
      -n, k \in \mathbb{N}
     – D_1, \ldots, D_n domini
     -R \subseteq D_1 \times \ldots \times D_n relazione
     -R(A_1,\ldots,A_n) schema relazionale
     - F_1, \dots, F_k dipendenze funzionali su R
      -F = \{F_1, \dots, F_k\}
• Th
      -F^+ = F^A
```

Teorema 13

```
• Input
```

```
-n, k \in \mathbb{N}
      -D_1,\ldots,D_n domini
     -R \subseteq D_1 \times \ldots \times D_n relazione
     -R(A_1,\ldots,A_n) schema relazionale
     -X\subseteq R(A_1,\ldots,A_n)
      -F_1,\ldots,F_k dipendenze funzionali su R
      - F = \{F_1, \dots, F_k\}
• Output
```

$- Z = X_F^+$

$$-Z := X$$

$$\begin{split} - & S := \{A \in R(A_1, \dots, A_n) \mid \exists Y, V \subseteq R(A_1, \dots, A_n), Y \rightarrow V \in F : A \in V \land Y \subseteq Z\} \\ - & \text{ while } S \nsubseteq Z : \\ & * & Z = Z \cup S \\ & * & S = \{A \in R(A_1, \dots, A_n) \mid \exists Y, V \subseteq R(A_1, \dots, A_n), Y \rightarrow V \in F : A \in V \land Y \subseteq Z\} \end{split}$$

- Oss
 - l'algoritmo calcola X_E^+
 - di fatto, il loop while applica gli assiomi di Armstrong

Definizione 11

• Insiemi di dipendenze funzionali equivalenti

```
• n, k, h \in \mathbb{N}
```

- D_1, \ldots, D_n domini
- $R \subseteq D_1 \times \ldots \times D_n$ relazione
- $R(A_1, \ldots, A_n)$ schema relazionale
- $F_1, \ldots, F_k, G_1, \ldots, G_h$ dipendenze funzionali su R
- $F = \{F_1, \ldots, F_k\}$
- $G = \{G_1, \dots, G_h\}$
- $F \equiv G \iff F^+ = F^+$, e F e G sono detti **equivalenti**

```
• Hp
-n, k, h \in \mathbb{N}
-D_1, \dots, D_n \text{ domini}
-R \subseteq D_1 \times \dots \times D_n \text{ relazione}
-R(A_1, \dots, A_n) \text{ schema relazionale}
-F_1, \dots, F_k, G_1, \dots, G_h \text{ dipendenze funzionali su } R
-F = \{F_1, \dots, F_k\}
-G = \{G_1, \dots, G_h\}
• Th
-F \xrightarrow{A} G \iff G \subseteq F^+
```

Terza forma normale

Definizione 12

- Chiave e superchiave di una relazione
 - $n \in \mathbb{N}$
 - D_1, \ldots, D_n domini
 - $R \subseteq D_1 \times \ldots \times D_n$ relazione
 - $R(A_1, \ldots, A_n)$ schema relazionale
 - $X \subseteq R(A_1, ..., A_n)$ è detta superchiave di $R \iff \forall r$ istanza di $R \quad \forall t_1, t_2 \in r \quad t_1[X] = t_2[X] \implies t_1 = t_2$
 - X è detta chiave di $R \iff X$ è la chiave di R con minor numero di attributi

- Hp $-n \in \mathbb{N}$ $-D_1, \dots, D_n \text{ domini}$ $-R \subseteq D_1 \times \dots \times D_n \text{ relazione}$ $-R(A_1, \dots, A_n) \text{ schema relazionale}$ $-K \subseteq R(A_1, \dots, A_n)$
- Th
 - -K superchiave di $R \iff K \to R \in F^+$
 - K chiave di $R \iff K$ superchiave di $R \land \nexists K' \subseteq K \mid K' \to R \in F^+$

• **Hp**

$$-n, k \in \mathbb{N}$$

$$-D_1, \dots, D_n \text{ domini}$$

$$-R \subseteq D_1 \times \dots \times D_n \text{ relazione}$$

$$-R(A_1, \dots, A_n) \text{ schema relazionale}$$

$$-X \subseteq R(A_1, \dots, A_n)$$

$$-F_1, \dots, F_k \text{ dipendenze funzionali su } R$$

$$-F = \{F_1, \dots, F_k\}$$
• **Th**

$$-X_F^+ = R \iff X \text{ superchiave di } R$$

Teorema 17

• Hp
$$-n, k \in \mathbb{N}$$

$$-D_1, \dots, D_n \text{ domini}$$

$$-R \subseteq D_1 \times \dots \times D_n \text{ relazione}$$

$$-R(A_1, \dots, A_n) \text{ schema relazionale}$$

$$-F_1, \dots, F_k \text{ dipendenze funzionali}$$

$$-F = \{F_1, \dots, F_k\}$$

$$-X = \bigcap_{F_i := A \to B \in F} R - (B - A)$$
• Th
$$-X_F^+ = R \iff X \text{ chiave unica in } R$$

Definizione 13

- Attributo primo
 - $n \in \mathbb{N}$
 - D_1, \ldots, D_n domini
 - $R \subseteq D_1 \times \ldots \times D_n$ relazione
 - $R(A_1, \ldots, A_n)$ schema relazionale
 - $X \in R(A_1, ..., A_n)$ è **primo** $\iff \exists K \subseteq R(A_1, ..., A_n)$ chiave di $R \mid X \in K$

- Terza forma normale
 - $n, k \in \mathbb{N}$
 - D_1, \ldots, D_n domini
 - $R \subseteq D_1 \times \ldots \times D_n$ relazione
 - $R(A_1, \ldots, A_n)$ schema relazionale
 - $K \subseteq R(A_1, \dots, A_n)$ chiave di R
 - F_1, \ldots, F_k dipendenze funzionali su R
 - $F = \{F_1, \dots, F_k\}$
 - R è in terza forma normale $\iff \forall A \in R(A_1, \ldots, A_n), X \subseteq R(A_1, \ldots, A_n) \mid X \to A \in F^+, A \notin X \quad A \in K \lor K \subseteq X$

- ovvero, per ogni dipendenza funzionale non banale in F^+ , o il determinante è superchiave, o il determinato è primo
- la terza forma normale garantisce che non ci siano problemi di ridondanza, dunque non vi sono problemi di inserimento, di aggiornamento e di eliminazione

- Hp
 - $-n, k \in \mathbb{N}$
 - $-D_1,\ldots,D_n$ domini
 - $-R \subseteq D_1 \times \ldots \times D_n$ relazione
 - $-R(A_1,\ldots,A_n)$ schema relazionale
 - $-K \subseteq R(A_1,\ldots,A_n)$ chiave di R
 - $-F_1,\ldots,F_k$ dipendenze funzionali su R
 - $F = \{F_1, \dots, F_k\}$
- Th
 - R in terza forma normale $\iff \forall X, Y \subseteq R(A_1, \dots, A_n) \mid Y := A_i \dots A_j, X \to Y \in$ $F^+, Y \not\subseteq X \quad \forall h \in [i,j] \quad A_h \in K \vee K \subseteq X$, dunque basta decomporre $X \to Y \in F^+$ e controllare gli $A_i \dots A_j$

Definizione 15

- Dipendenza parziale
 - $n, k \in \mathbb{N}$
 - D_1, \ldots, D_n domini
 - $R \subseteq D_1 \times \ldots \times D_n$ relazione
 - $R(A_1, \ldots, A_n)$ schema relazionale
 - $K \subseteq R(A_1, \ldots, A_n)$ chiave di R
 - F_1, \ldots, F_k dipendenze funzionali su R
 - $F = \{F_1, \dots, F_k\}$
 - $A \in R(A_1, \ldots, A_n)$
 - $X \subseteq R(A_1, \dots, A_n) \mid X \to A \in F^+, A \notin X$
 - $X \to A \in F^+$ è detta dipendenza parziale su $R \iff A$ non primo e $X \subset K$ - in particulare $X \neq K$

• Dipendenza transitiva

- $n, k \in \mathbb{N}$
- D_1, \ldots, D_n domini
- $R \subseteq D_1 \times \ldots \times D_n$ relazione
- $R(A_1, \ldots, A_n)$ schema relazionale
- F_1, \ldots, F_k dipendenze funzionali su R• $F = \{F_1, \ldots, F_k\}$
- $A \in R(A_1, \ldots, A_n)$
- $X \subseteq R(A_1, \dots, A_n) \mid X \to A \in F^+, A \notin X$
- $X \to A \in F^+$ è detta dipendenza parziale su $R \iff A$ non primo e $\forall K \subseteq R(A_1, \dots, A_n)$ chiave di $R \quad K \cap X = \varnothing \vee X \subset K$
 - in particolare $\forall K \subseteq R(A_1, \dots, A_n)$ chiave di $R \mid X \neq K$

```
• Hp
      -n, k \in \mathbb{N}
      -D_1,\ldots,D_n domini
     -R \subseteq D_1 \times \ldots \times D_n relazione
      -R(A_1,\ldots,A_n) schema relazionale
      -K \subseteq R(A_1, \ldots, A_n) chiave di R
      -F_1,\ldots,F_k dipendenze funzionali su R
     - F = \{F_1, \dots, F_k\}
```

-R in terza forma normale $\iff \nexists X, Y \subseteq R(A_1, \ldots, A_n) \mid X \to Y \in F^+$ dipendenza parziale o $X \to Y \in F^+$ dipendenza transitiva

Definizione 16

- Forma Normale di Boyce-Codd
 - $n, k \in \mathbb{N}$
 - D_1, \ldots, D_n domini
 - $R \subseteq D_1 \times \ldots \times D_n$ relazione
 - $R(A_1, \ldots, A_n)$ schema relazionale
 - $K \subseteq R(A_1, \ldots, A_n)$ chiave di R
 - F_1, \ldots, F_k dipendenze funzionali su R
 - $F = \{F_1, \dots, F_k\}$
 - R è in forma normale di Boyce-Codd $\iff \forall X \subseteq R(A_1, \dots, A_n), X$ determinante $\exists K \subseteq R(A_1, \dots, A_n)$ superchiave $| X \subseteq K$
 - questa forma normale preserva le dipendenze funzionali soddisfatte da ogni istanza legale di ogni sottoschema di R, senza perdita di informazioni
 - inoltre, permette di ricostruire attraverso il join naturale ogni istanza legale di ogni sotto schema di R, senza aggiunta di informazioni

Teorema 20

```
• Hp
     -n, k \in \mathbb{N}
     -D_1,\ldots,D_n domini
     -R \subseteq D_1 \times \ldots \times D_n relazione
     -R(A_1,\ldots,A_n) schema relazionale | R in forma normale di Boyce-Codd
     -F_1,\ldots,F_k dipendenze funzionali su R
     - F = \{F_1, \dots, F_k\}
• Th
     - R in terza forma normale
```

- Ricoprimento
- !!! DEFINISCI SOTTOSCHEMA
 - $n, N \in \mathbb{N}$

- D_1, \ldots, D_n domini
- $R \subseteq D_1 \times \ldots \times D_n$ relazione
- $R(A_1, \ldots, A_n)$ schema relazionale
- R_1, \ldots, R_N sottoschemi di R
- R_1,\ldots,R_N sottoschenn an R• R_1,\ldots,R_N ricoprimento di $R\iff\bigcup_{i=1}^N R_i=R$

• Decomposizione

- $n, N \in \mathbb{N}$
- D_1, \ldots, D_n domini
- $R \subseteq D_1 \times \ldots \times D_n$ relazione
- $R(A_1, \ldots, A_n)$ schema relazionale
- $C := \{R_1, \dots, R_N\}$ ricoprimento di R
- $\forall \rho \subseteq C$ ρ è detto decomposizione di R

• Proiezione di un insieme di dipendenze su un sottoschema

- $n, k, h \in \mathbb{N}$
- D_1, \ldots, D_n domini
- $R \subseteq D_1 \times \ldots \times D_n$ relazione
- $R(A_1, \ldots, A_n)$ schema relazionale
- F_1, \ldots, F_k dipendenze funzionali su R
- $F = \{F_1, \dots, F_k\}$
- $\rho = R_1, \dots, R_h$ decomposizione di R
- $i \in [1, h]$
- $R_i \in \rho$ sottoschema di R in ρ
- $\pi_{R_i}(F) := \{X \to Y \in F^+ \mid XY \subseteq R_i\}$ è detta proiezione di F su R_i
 - $\pi_{R_i}(F)$ è l'insieme delle dipendenze funzionali in F che hanno determinante e determinato in R_i

• Preservazione di un insieme di dipendenze funzionali

- $n, k, h \in \mathbb{N}$
- D_1, \ldots, D_n domini
- $R \subseteq D_1 \times \ldots \times D_n$ relazione
- $R(A_1, \ldots, A_n)$ schema relazionale
- F_1, \ldots, F_k dipendenze funzionali su R
- $F = \{F_1, \ldots, F_k\}$
- $\rho = R_1, \dots, R_h$ decomposizione di R
- $G = \bigcup \pi_{R_i}(F)$
- ρ preserva $F \iff F \equiv G$

- Hp
 - $-n, k, h \in \mathbb{N}$
 - $-D_1,\ldots,D_n$ domini
 - $-R \subseteq D_1 \times \ldots \times D_n$ relazione
 - $-R(A_1,\ldots,A_n)$ schema relazionale

-
$$F_1, \ldots, F_k$$
 dipendenze funzionali su R
- $F = \{F_1, \ldots, F_k\}$
- $\rho = R_1, \ldots, R_h$ decomposizione di R
- $G = \bigcup_{i=1}^h \pi_{R_i}(F)$

 $-\rho$ preserva $F \iff G^+ \supseteq F$

Teorema 22

- Input
 - $-\ n,k,h\in\mathbb{N}$
 - $-D_1,\ldots,D_n$ domini
 - $-R \subseteq D_1 \times \ldots \times D_n$ relazione
 - $-\ R(A_1,\ldots,A_n)$ schema relazionale
 - $-X \subseteq R(A_1,\ldots,A_n)$
 - F_1,\ldots,F_k dipendenze funzionali su R
 - $F = \{F_1, \dots, F_k\}$
 - $-\rho = R_1, \dots, R_h$ decomposizione di R

$$-G = \bigcup_{i=1}^{n} \pi_{R_i}(F)$$

• Output

$$-Z = X_G^+$$

- Algoritmo
 - !!! **TODO**
- Oss
 - l'algoritmo calcola X_G^+ senza calcolare F^+
 - $\ast\,$ il calcolo di F^+ ha costo computazionale esponenziale

- Input
 - $-n, k, h \in \mathbb{N}$
 - $-D_1,\ldots,D_n$ domini
 - $-R \subseteq D_1 \times \ldots \times D_n$ relazione
 - $-\ R(A_1,\ldots,A_n)$ schema relazionale
 - F_1, \ldots, F_k dipendenze funzionali su R- $F = \{F_1, \ldots, F_k\}$ $\rho = R_1, \ldots, R_h$ decomposizione di R

 - $-G = \bigcup \pi_{R_i}(F)$
- Output
 - True/False
- Algoritmo
 - for $X \to Y$ in F: * if $Y \nsubseteq X_G^+$:
 - · return False
 - return True

• Oss

- l'algoritmo controlla se ρ preserva F- per lemma precedente $Y\subseteq X_G^+\Longrightarrow X\to Y\in G^A=G^+$ allora $\exists X\to Y\in F\mid Y\nsubseteq X_G^+\Longrightarrow X\to Y\notin G^+\Longrightarrow F\nsubseteq G^+\Longrightarrow \rho$ non preserva F per dimostrazione precedente

 * per calcolare X_G^+ viene utilizzato l'algoritmo precedentemente mostrato, che non richiede il calcolo di F^+