Devoir à la maison n°08 : corrigé

Problème 1 — Moyenne arithmético-géométrique

Partie I – Etude du cas général

1. Soit $n \in \mathbb{N}^*$.

$$v_n - u_n = \frac{\left(\sqrt{v_{n-1}} - \sqrt{u_{n-1}}\right)^2}{2} \ge 0$$

donc $u_n \leq v_n$.

2. Soit $n \in \mathbb{N}^*$. Alors

$$u_{n+1} - u_n = \sqrt{u_n}(\sqrt{v_n} - \sqrt{u_n}) \ge 0$$
 $v_{n+1} - v_n = \frac{u_n - v_n}{2} \le 0$

Ceci prouve que les suites $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ sont respectivement croissante et décroissante.

3. Soit $n \in \mathbb{N}^*$.

$$v_{n+1} - u_{n+1} - \frac{v_n - u_n}{2} = u_n - \sqrt{u_n v_n} = \sqrt{u_n} (\sqrt{u_n} - \sqrt{v_n}) \le 0$$

donc

$$v_{n+1} - u_{n+1} \le \frac{v_n - u_n}{2}$$

4. Tout d'abord, $u_n \leq v_n$ pour tout $n \in \mathbb{N}$ donc $v_n - u_n \geq 0$ pour tout $n \in \mathbb{N}$. Ensuite $v_1 - u_1 \leq \frac{v_1 - u_1}{2^{1-1}}$. Supposons qu'il existe $n \in \mathbb{N}^*$ tel que $v_n - u_n \leq \frac{v_1 - u_1}{2^{n-1}}$. Alors

$$v_{n+1} - u_{n+1} \le \frac{v_n - u_n}{2} \le \frac{|a - b|}{2^{n+1}}$$

Par récurrence, $v_n - u_n \le \frac{v_1 - u_1}{2^{n-1}}$ pour tout $n \in \mathbb{N}^*$.

5. Le théorème des gendarmes garantit que $\lim_{n\to+\infty} v_n - u_n = 0$. Puisque (u_n) et (v_n) sont respectivement croissante et décroissante à partir du rang 1, elles sont adjacentes à partir du rang 1 et convergent vers une limite commune M(a,b).

Partie II - Propriétés de la moyenne arithmético-géométrique

On reprend les deux suites (u_n) et (v_n) de la partie I.

- Notons (u'_n) et (v'_n) les suites de premiers termes respectifs u'₀ = b et v'₀ = a et vérifiant les mêmes relations de récurrence que les suites (u_n) et (v_n). La partie I montre que (u'_n) et (v'_n) convergent toutes deux vers M(b, a). Par ailleurs, on vérifie sans peine que u₁ = u'₁ et v₁ = v'₁. Les suites (u_n) et (u'_n) d'une part et les suites (v_n) et (v'_n) d'autre part sont égales à partir du rang 1. Ceci montre que les suites (u'_n) et (v'_n) convergent également vers M(a, b). Par unicité de la limite, M(a, b) = M(b, a).
- 2. On vérifie sans peine que les suites (λu_n) et (λv_n) vérifient les mêmes relation de récurrence que les suites (u_n) et (v_n) . En effet, pour tout $n \in \mathbb{N}$,

$$\lambda u_{n+1} = \lambda \sqrt{u_n v_n}$$

$$= \sqrt{\lambda^2 u_n v_n} \quad \text{car } \lambda \text{ est } positif$$

$$= \sqrt{(\lambda u_n)(\lambda v_n)}$$

$$\lambda v_{n+1} = \lambda \frac{u_n + v_n}{2}$$

$$= \frac{\lambda u_n + \lambda v_n}{2}$$

La partie I montre alors que les suites (λu_n) et (λv_n) convergent vers la même limite $M(\lambda a, \lambda b)$. Mais comme les suites (u_n) et (v_n) convergent toutes deux vers M(a,b), les suites (λu_n) et (λv_n) convergent également vers $\lambda M(a,b)$. Par unicité de la limite, on obtient $M(\lambda a, \lambda b) = \lambda M(a,b)$.

- 3. Puisque (u_n) et (v_n) sont respectivement croissante et décroissante à partir du rang 1 et convergent vers M(a,b), $u_n \le M(a,b) \le v_n$ pour tout $n \in \mathbb{N}^*$. En particulier, $u_1 \le M(a,b) \le v_1$, ce qui donne le résultat escompté.
- **4.** Les suites (u_{n+1}) et (v_{n+1}) sont de premier terme \sqrt{ab} et $\frac{a+b}{2}$ et suivent les mêmes relations de récurrence que (u_n) et (v_n) donc convergent vers $M\left(\sqrt{ab},\frac{a+b}{2}\right)$. Par ailleurs, ce sont des suites extraites de (u_n) et (v_n) donc elles convergent vers M(a,b). On en déduit que $M(a,b) = M\left(\sqrt{ab},\frac{a+b}{2}\right)$.

Partie III – Étude d'une fonction

- 1. En reprenant les deux suites (u_n) et (v_n) de la partie I avec a=1 et b=0, on prouve sans peine que la suite (u_n) est constamment nulle à partir du rang 1. On en déduit que F(0)=0. La question **II.3** montre que $1 \le M(1,1) \le 1$ i.e. F(1)=1.
- 2. Soit $(a, b) \in (\mathbb{R}_+)^2$. Les suites (u_n) et (v_n) définies dans la partie I sont positives donc leur limite commune l'est également i.e. $M(a, b) \ge 0$. On en déduit que pour tout $x \in \mathbb{R}_+$, $F(x) = M(1, x) \ge 0$.
- **3.** Soit $(x, x') \in (\mathbb{R}_+)^2$ tel que $x \le x'$. On définit les suites (u_n) , (v_n) , (u'_n) et (v'_n) telles que $u_0 = 1$, $v_0 = x$, $u'_0 = 1$ et $v'_0 = x'$ et vérifiant pour tout $n \in \mathbb{N}$

$$u_{n+1} = \sqrt{u_n v_n}$$
 $v_{n+1} = \frac{u_n + v_n}{2}$ $u'_{n+1} = \sqrt{u'_n v'_n}$ $v'_{n+1} = \frac{u'_n + v'_n}{2}$

On prouve par récurrence que pour tout $n \in \mathbb{N}$, $u_n \le u'_n$ et $v_n \le v'_n$. Par ailleurs, les suites (u_n) et (v_n) convergent vers F(x) tandis que les suites (u'_n) et (v'_n) convergent vers F(x'). Par passage à la limite, $F(x) \le F(x')$. Ceci prouve la croissance de F sur \mathbb{R}_+ .

- **4. a.** Il suffit d'appliquer la question **II.3** avec a = 1 et b = x.
 - **b.** On rappelle que F(1) = 1. A l'aide de l'inégalité de la question précédente, on a donc pour tout $x \in]1, +\infty[$,

$$\frac{\sqrt{x} - 1}{x - 1} \le \frac{F(x) - F(1)}{x - 1} \le \frac{1}{2}$$

et pour tout $x \in [0, 1[$,

$$\frac{1}{2} \le \frac{F(x) - F(1)}{x - 1} \le \frac{\sqrt{x} - 1}{x - 1}$$

ou encore pour tout $x \in]1, +\infty[$,

$$\frac{1}{\sqrt{x-1}} \le \frac{F(x) - F(1)}{x-1} \le \frac{1}{2}$$

et pour tout $x \in]0,1[$

$$\frac{1}{2} \le \frac{F(x) - F(1)}{x - 1} \le \frac{1}{\sqrt{x} + 1}$$

Le théorème des gendarmes permet alors d'affirmer que $\lim_{x\to 1^-}\frac{F(x)-F(1)}{x-1}=\lim_{x\to 1^+}\frac{F(x)-F(1)}{x-1}=\frac{1}{2}$ et donc $\lim_{x\to 1}\frac{F(x)-F(1)}{x-1}=\frac{1}{2}$. Finalement, F est dérivable en 1 et $F'(1)=\frac{1}{2}$.

5. a. Soit $x \in \mathbb{R}_{\perp}$.

$$F(x) = M(1, x)$$

$$= M\left(\sqrt{x}, \frac{1+x}{2}\right) \qquad \text{d'après II.4}$$

$$= M\left(\frac{1+x}{2}, \sqrt{x}\right) \qquad \text{d'après II.1}$$

$$= \frac{1+x}{2}M\left(1, \frac{2\sqrt{x}}{1+x}\right) \qquad \text{d'après II.2}$$

$$= \frac{1+x}{2}F\left(\frac{2\sqrt{x}}{1+x}\right)$$

b. Puisque F est croissante et positive, elle admet une limite finie ℓ à droite en 0. Or $\lim_{x\to 0^+} \frac{2\sqrt{x}}{1+x} = 0^+$ donc la question précédente montre que $\ell = \frac{\ell}{2}$ et donc $\ell = 0$. Il s'ensuit que $\lim_{0^+} F = 0 = F(0)$ donc F est continue en 0.

D'après la question III.4.a, $F(x) \ge \sqrt{x}$ pour tout $x \in \mathbb{R}_+^*$. Il s'ensuit que pour tout $x \in \mathbb{R}_+^*$,

$$\frac{\mathrm{F}(x) - \mathrm{F}(0)}{x - 0} = \frac{\mathrm{F}(x)}{x} \ge \frac{1}{\sqrt{x}}$$

Par théorème de minoration, $\lim_{x\to 0^+} \frac{F(x)-F(0)}{x-0} = +\infty$ donc F n'est pas dérivable en 0. On peut même dire que la courbe représentative de F admet une tangente verticale en l'origine.

- **6.** a. Pour tout $x \in \mathbb{R}_+$, $F(x) \ge \sqrt{x}$ donc, par théorème de minoration, $\lim_{\infty} F = +\infty$.
 - **b.** Soit $x \in \mathbb{R}_+^*$.

$$F(x) = M(1, x)$$

$$= xM\left(\frac{1}{x}, 1\right) \qquad \text{d'après II.2}$$

$$= xM\left(1, \frac{1}{x}\right) \qquad \text{d'après II.1}$$

$$= xF\left(\frac{1}{x}\right)$$

c. D'après la question précédente, pour tout $x \in \mathbb{R}_+^*$

$$\frac{F(x)}{x} = F\left(\frac{1}{x}\right)$$

et

$$\lim_{x \to +\infty} F\left(\frac{1}{x}\right) = \lim_{u \to 0^+} F(u) = 0$$

donc
$$\lim_{x \to +\infty} \frac{F(x)}{x} = 0$$
 i.e. $F(x) = o(x)$.

d. Soit $x \in \mathbb{R}_+^*$. D'après la question III.5.a

$$F(x) = \frac{1}{2}(1+x)F\left(\frac{2\sqrt{x}}{1+x}\right)$$

Mais d'après la question III.6.b

$$F\left(\frac{2\sqrt{x}}{1+x}\right) = \frac{2\sqrt{x}}{1+x}F\left(\frac{1+x}{2\sqrt{x}}\right)$$

On en déduit le résultat voulu.

e. D'après la question précédente, pour tout $x \in \mathbb{R}_+^*$,

$$\frac{F(x)}{\sqrt{x}} = F\left(\frac{1+x}{2\sqrt{x}}\right)$$

Or $\lim_{x\to +\infty} \frac{1+x}{2\sqrt{x}} = +\infty$ et $\lim_{u\to +\infty} F(u) = +\infty$ donc $\lim_{x\to +\infty} \frac{F(x)}{\sqrt{x}} = \lim_{x\to +\infty} F\left(\frac{1+x}{2\sqrt{x}}\right) = +\infty$. Ceci signifie que $\sqrt{x} = o(F(x))$.

7. from matplotlib.pyplot import plot

from math import sqrt
from numpy import logspace

```
def F(x,eps) :
    u=1
    v=x
    while abs(uv)>eps :
        u,v=sqrt(u*v),(u+v)/2
    return (u+v)/2
```

```
x=logspace(3,1,1000)
y=[F(t,1e3) for t in x]
plot(x,y)
y=[sqrt(t) for t in x]
plot(x,y)
y=[(1+t)/2 for t in x]
plot(x,y)
```

