- Dịnh lý Green
 - Định hướng đường cong phẳng đơn kín
 - Ứng dụng của định lý Green

- Tích phân đường không phụ thuộc đường đi
 - Định lý cơ bản của tích phân đường
 - Điều kiện để tích phân đường không phụ thuộc đường đi

BỞI HCMUT-CNCP

Đường cong $\overrightarrow{\mathbf{r}}(t)$, $a \le t \le b$, được gọi là **đơn (simple)** nếu nó không tự cắt nhau ở giữa hai đầu mút, tức là

$$a < t_1 < t_2 < b \Longrightarrow \overrightarrow{\mathbf{r}}(t_1)
eq \overrightarrow{\mathbf{r}}(t_2).$$

simple, not closed not simple, C M U T - csimple, not closed closed

not simple, closed

Đường cong $\overrightarrow{\mathbf{r}}(t)$, $a \leq t \leq b$, được gọi là **kín** (**closed**) nếu điểm đầu và điểm cuối của nó trùng nhau, tức là

$$\overrightarrow{\mathbf{r}}(a) = \overrightarrow{\mathbf{r}}(b).$$

- Cho đường cong phẳng đơn kín C và gọi D là miền phẳng được giới hạn bởi C.
- Ta quy ước chiều dương của đường cong phẳng đơn kín C là chiều mà nếu ta đi theo chiều đó thì ta sẽ thấy miền D luôn nằm bên tay trái. Chiều ngược lại được gọi là chiều âm.

40ACN,

Định lý (Green's theorem)

Cho C là đường cong phẳng đơn kín trơn từng khúc và D là miền phẳng giới hạn bởi C. Nếu P và Q có các đạo hàm riêng liên tục trên một miền mở chứa D, thì

$$\oint_C Pdx + Qdy = \pm \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dxdy,$$

trong đó, lấy dấu (+) nếu chiều của C là chiều dương, lấy dấu (-) nếu chiều của C là chiều âm.

BOTHCMUT-CNCP

Ứng dụng tính diện tích hình phẳng

Hê quả

Cho C là đường cong phẳng đơn kín trơn từng khúc, theo chiều dương, và D là miền phẳng giới hạn bởi C. Khi đó, diện tích của miền phẳng D là

$$S(D) = \oint x dy = -\oint y dx = \frac{1}{2} \oint x dy - y dx.$$

BOT HCMUT-CNCP

So sánh với định lý cơ bản của Giải tích hàm một biến

$$\int_a^b F'(x)dx = F(b) - F(a),$$

ta có sự tương tự cho định lý Green:

$$\iint\limits_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \oint\limits_{\text{biên } D} P dx + Q dy$$

BỞI HCMUT-CNCP

Ví dụ

Hãy tính tích phân đường $\oint_C x^4 dx + xydy$, trong đó C là chu vi tam giác có đỉnh là (0,0), (1,0), và (0,1), theo chiều dương.

Hãy tính tích phân đường $\oint_C y^2 dx + 3xy dy$, trong đó C là đường

biên của miền D thuộc nửa trên mặt phẳng Oxy nằm giữa hai đường tròn $x^2 + y^2 = 1$ và $x^2 + y^2 = 4$, theo chiều dương.

Hãy tính tích phân đường
$$\oint_C (3y - e^{\sin x}) dx + (7x + \sqrt{y^4 + 1}) dy$$
, trong đó C là đường tròn $x^2 + y^2 = 9$, theo chiều âm.

TÀI LIỆU SƯU TẬP

BổI HCMUT-CNCP

Hãy tính diện tích của miền được giới hạn bởi đường elip

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

TÀI LIỆU SƯU TẬP

BổI HCMUT-CNCP

KHOACNCD

Định lý

Giả sử $C: \overrightarrow{\mathbf{r}}(t)$, $a \leq t \leq b$ là một đường cong trơn và f là một hàm khả vi có vectơ gradient ∇f liên tục. Khi đó

$$\int_{C} \overrightarrow{\nabla f} \cdot d\overrightarrow{\mathbf{r}} = f(\overrightarrow{\mathbf{r}}(b)) - f(\overrightarrow{\mathbf{r}}(a)).$$

Al Lien 200 L'AL

BŐI HCMUT-CNCP

So sánh với định lý cơ bản của Giải tích hàm một biến

$$\int_a^b f'(x)dx = f(b) - f(a)$$

ta có sự tương tự cho tích phân đường loại 2:

$$\int\limits_{C}\overrightarrow{\nabla f}\cdot d\overrightarrow{r}=f(\text{diểm cuối})-f(\text{diểm đầu})$$

Hãy tính công được thực hiện bởi trường trọng lực

$$\overrightarrow{\mathbf{F}}(x,y,z) = \frac{mMG}{(\sqrt{x^2 + y^2 + z^2})^3}(x,y,z)$$

khi di chuyển một chất điểm có khối lượng m từ điểm (3,4,12) đến điểm (2,2,0).

HD:
$$\overrightarrow{\mathbf{F}} = \overrightarrow{\nabla f}$$
, với $f(x, y, z) = \frac{\mathbf{M}G}{\sqrt{x^2 + y^2 + z^2}}$

- Giả sử C₁ và C₂ là hai đường đi có cùng điểm đầu và điểm cuối.
- Nói chung, ta có

$$\int_{C_1} \overrightarrow{\mathbf{F}} \cdot d\overrightarrow{\mathbf{r}} \neq \int_{C_2} \overrightarrow{\mathbf{F}} \cdot d\overrightarrow{\mathbf{r}}.$$

• Nhưng nếu $\overrightarrow{\mathbf{F}} = \overrightarrow{\nabla f}$, với f nào đó, thì ta có

TAI
$$L \int \overrightarrow{F} d\overrightarrow{r} = \int \overrightarrow{F} d\overrightarrow{r} \cdot \overrightarrow{A} P$$

BC1 HCMUT^{C2}CNCP

Cho $\overrightarrow{\mathbf{F}}$ là một trường vectơ liên tục trên miền D. Ta nói tích phân đường $\int \overrightarrow{\mathbf{F}} \cdot d\overrightarrow{\mathbf{r}}$ là **không phụ thuộc đường đi**

(independent of path) nếu ta luôn có

$$\int_{C_1} \overrightarrow{\mathbf{F}} \cdot d\overrightarrow{\mathbf{r}} = \int_{C_2} \overrightarrow{\mathbf{F}} \cdot d\overrightarrow{\mathbf{r}},$$

với mọi C_1 và C_2 là hai đường đi bất kỳ trong D có cùng điểm đầu và điểm cuối.

- Ta nói miền D là **mở (open)** nếu với mọi điểm P trong D, luôn tồn tại một đĩa tâm P nằm trọn trong D.
- Ta nói miền D là liên thông (connected) nếu hai điểm bất kỳ trong D đều có thể nối với nhau bằng một đường đi trong D.

Một miền phẳng D được gọi là **miền đơn liên** (simply-connected region) nếu D liên thông và mọi đường cong đơn kín trong D đều chỉ bao bọc các điểm thuộc D.

BỞI HCMUT-CNCP

Định lý

Giả sử $\overrightarrow{\mathbf{F}}(x,y) = P(x,y)\overrightarrow{\mathbf{i}} + Q(x,y)\overrightarrow{\mathbf{j}}$ là một trường vectơ khả vi liên tục trên miền mở đơn liên D. Khi đó, 3 mệnh đề sau đây tương đương:

- (a) Tích phân $\int_C \overrightarrow{\mathbf{F}} \cdot d\overrightarrow{\mathbf{r}}$ là không phụ thuộc đường đi trong D.
- (b) $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ trên D.
- (c) Tồn tại hàm số f(x, y) trên D sao cho A

$$B df = Pdx + Qdy trên D.$$

KHOACNCY

Ví du

Tính tích phân đường $I = \int y dx + x dy$ theo đường đi C với điểm

đầu là O(0,0) và điểm cuối là A(1,1) trong từng trường hợp sau:

- C là đoạn thẳng OA.
- ② C là cung parabol $y = x^2$.
- \odot C là 1/4 đường tròn tâm (0,1) bán kính bằng 1.

BỞI HCMUT-CNCP

