FLUID-CONVEYING PENDULUM

Added mass

Added damping

No effect

ANGULAR ROTATION THEOREM

$$T_{Solid-Fluid} = \frac{\partial}{\partial t} \int_{\text{Fluid domain}} x^2 M \dot{\theta} dV + \int_{\text{Fluid boundaries}} (x^2 M \dot{\theta}) (\underline{U}.\underline{\mathbf{n}}) dS$$

Intermediate velocity: $\dot{ heta}$ Frozen in time 0

Any velocity:
$$\dot{\theta}(t)$$
 $\frac{M}{3}\ddot{\theta}$

$$T_{Solid-Fluid} = \frac{M}{3}\ddot{\theta} + MU_R\dot{\theta}$$

THE FLUID-CONVEYING PENDULUM AT **ANY** REDUCED VELOCITY

Added mass Added Coriolis damping

THE FLUID-CONVEYING PENDULUM AT ANY REDUCED VELOCITY

FLUID-CONVEYING PENDULUM AT ANY REDUCED VELOCITY

MODELS FOR FLUID SOLID INTERACTIONS

MODELS FOR FLUID SOLID INTERACTIONS

THE FLUID-CONVEYING PENDULUM : ANY REDUCED VELOCITY

THE FLUID-CONVEYING PENDULUM : ANY REDUCED VELOCITY

