

Connotation: A Dash of Sentiment Beneath the Surface Meaning

Con•notation

"com-" ("together or with") | "notare" ("to mark")

Con • notation

"com-" ("together or with") | "notare" ("to mark")

- Commonly understood cultural or emotional association that some word carries, in addition to its explicit or literal meaning (denotation).
- Generally described as positive or negative.

"Decrease in deforestation drives the trend, but emissions from energy and agriculture grow."

"Decrease in deforestation drives the trend, but emissions from energy and agriculture grow."

The production and discharge of something

"Decrease in deforestation drives the trend, but emissions from energy and agriculture grow."

The production and discharge of something

"Decrease in deforestation drives the trend, but emissions from energy and agriculture grow."

The production and discharge of something, esp. gas or radiation

Learning the General Connotation

"Decrease in **deforestation** drives the trend, but **emissions** from energy and agriculture grow."

Negatively connotative in general

Con • notation

"com-" ("together or with") | "notare" ("to mark")

- Commonly understood cultural or emotional association that some word carries, in addition to its explicit or literal meaning (denotation).
- Generally described as positive or negative.

Neutral

surfing scientist grid rose header blister emission salt bedbug

Learning the General Connotation

- Data
- Linguistic insights
- Graph representation
- Inference algorithms
- Evaluations

Data

Web-driven data

Google Web IT (Brants and Franz (2006))

- N-grams (I <= n <= 5)</p>
- Frequency of occurrences
- ▶ Example: "prevent financial malware 4130"
- Dictionary-drive data

WordNet (George A. Miller (1995))

Synsets: synonyms, antonyms

Learning the General Connotation

- Data
- Linguistic insights
 - Graph representation
 - Inference algorithms
 - Evaluations

- Semantic prosody
- Semantic parallelism of coordination
- Distributional similarity
- Semantic relations

- Semantic prosody
- Semantic parallelism of coordination
- Distributional similarity
- Semantic relations

Semantic Prosody

Sinclair (1991,2004), louw (1993)

enjoy music			enjoy blisters				
Web	Images	Maps	Shopping	Web	Images	Maps	Shopp
About 930,000,000 results (0.28 seconds)			About 2,650,000 results (0.36 seconds)				

Selectional Preference on Connotation

prevent^{Pred} → [prevent]^{Pred} [bedbugs]^{Arg}

Selectional Preference on Connotation

A predicate that has selectional preference on the connotative polarity of some of its semantic arguments.

Connotative Predicate:

A predicate that has selectional preference on the connotative polarity of some of its semantic arguments.

Connotative Predicates	Sentiment of	Preference on	Examples
	predicate	arguments	
suffer	negative	negative	"suffering from cough"
cure	positive	negative	"cure backache"
cause	neutral	negative	"caused CO ₂ emissions"

Connotative Predicate:

A predicate that has selectional preference on the connotative polarity of some of its semantic arguments.

Connotative Predicates	Sentiment of	Preference on	Examples
	predicate	arguments	
suffer	negative	negative	"suffering from cough"
cure	positive	negative	"cure backache"
cause	neutral	negative	"caused CO ₂ emissions"

20 Positive Connotative Predicates

20 Negative Connotative Predicates

Accomplish	Desire	Alleviate	Eradicate
Achieve	Enhance	Accuse	Mitigate
Advance	Enjoy	Avert	Overcome
Advocate	Improve	Avoid	Prevent
Admire	Praise	Cause	Prohibit
Applaud	Promote	Complain	Protest
Appreciate	Respect	Condemn	Refrain
Compliment	Save	Criticize	Suffer
Congratulate	Support	Detect	Tolerate
Develop	Win	Eliminate	Withstand

Feng et al. 2011

- Semantic prosody [Corpus: GoogleNgram]
 - ► [enjoy]^{Pred} [music]^{Arg}, [prevent]^{Pred} [begbugs]^{Arg}

- Semantic prosody [Corpus: GoogleNgram]
 - "enjoy * ";"prevent * "

Pattern" * and * ", e.g., "music and wine"

- Semantic prosody [Corpus: GoogleNgram]
 - "enjoy * ";"prevent * "
- Semantic parallelism of coordination [Corpus: GoogleNgram]
 - Pattern " * and * ", e.g., "music and wine"
- Distributional similarity [Corpus : GoogleNgram]
 - "findings"—"potentials" > "findings"—"modifications"

- Semantic prosody [Corpus: GoogleNgram]
 - "enjoy * ";"prevent * "
- Semantic parallelism of coordination [Corpus: GoogleNgram]
 - Pattern "* and * ", e.g., "music and wine"
- Distributional similarity [Corpus : GoogleNgram]
 - "findings"—"potentials" > "findings"—"modifications"
- Semantic relations [Corpus:WordNet]
 - Synonyms
 - Antonyms

Learning the General Connotation

- Data
- Linguistic insights
- Graph representation
 - Inference algorithms
 - Evaluations

- Graph G = (V, E)
 - $V = \{Pred\} \cup \{Arg\}$
 - ▶ E1: Pred Arg

$$PMI(p, a) = \log_2 \frac{P(p, a)}{P(p)P(a)}$$

- Graph G = (V, E)
 - $V = \{Pred\} \cup \{Arg\}$
 - ▶ E1: Pred Arg

$$PMI(p, a) = \log_2 \frac{P(p, a)}{P(p)P(a)}$$

 \rightarrow E2: Arg – Arg

$$CosineSim(\overrightarrow{a_1}, \overrightarrow{a_2}) = \frac{\overrightarrow{a_1} \cdot \overrightarrow{a_2}}{||\overrightarrow{a_1}|| ||\overrightarrow{a_2}||}$$

- Graph G = (V, E)
 - $V = \{Pred\} \cup \{Arg\}$
 - ► E1: Pred Arg

$$PMI(p, a) = \log_2 \frac{P(p, a)}{P(p)P(a)}$$

 \triangleright E2: Arg – Arg

$$CosineSim(\overrightarrow{a_1}, \overrightarrow{a_2}) = \frac{\overrightarrow{a_1} \cdot \overrightarrow{a_2}}{||\overrightarrow{a_1}|| ||\overrightarrow{a_2}||}$$

"a₁ and w₁"
$$\rightarrow$$
 PMI(a₁, w₁)

"a₁ and w₂" \rightarrow PMI(a₁, w₂)

...

"a₁ and w₃" \rightarrow PMI(a₁, w_n)

$$\overrightarrow{a_1} := \begin{bmatrix} PMI(a_1, w_1) \\ PMI(a_1, w_2) \\ \dots \\ PMI(a_1, w_n) \end{bmatrix}$$

Learning the General Connotation

- Data
- Linguistic insights
- Graph representation
- Inference algorithms
 - Evaluations

Inference Algorithm

Algorithms Linguistic Insights Semantic Prosody HITS/PageRank Semantic Parallelism **Label Propagation** of Coordination **Integer Linear Distributional Programing Similarity** W **Semantic Relations Belief Propagation**

Inference Algorithm

Algorithms Linguistic Insights Semantic Prosody HITS/PageRank Semantic Parallelism **Label Propagation** of Coordination **Integer Linear Distributional Programing Similarity** W **Semantic Relations Belief Propagation**

ILP: Problem Formulation

 \blacktriangleright For each unlabeled word i,

```
solve x_i, y_i, z_i \in \{0, 1\},

x_i \rightarrow \text{positive},

y_i \rightarrow \text{negative},

z_i \rightarrow \text{neutral};

x_i + y_i + z_i = 1.
```

ILP: Problem Formulation

 \blacktriangleright For each unlabeled word i,

```
solve x_i, y_i, z_i \in \{0, 1\},

x_i \rightarrow \text{positive},

y_i \rightarrow \text{negative},

z_i \rightarrow \text{neutral};

x_i + y_i + z_i = 1.
```

- Initialization (Hard constraints)
 - ▶ Positive seed predicates (e.g. "achieve") $\rightarrow x_i = 1$
 - Negative seed predicates (e.g. "prevent") $\rightarrow y_i = 1$

Maximize

$$F = \Phi^{prosody} + \Phi^{coord} + \Phi^{neu}$$

Maximize

$$F = \Phi^{prosody} + \Phi^{coord} + \Phi^{neu}$$

Maximize

$$F = \Phi^{prosody} + \Phi^{coord} + \Phi^{neu}$$

$$F = \Phi^{prosody} + \Phi^{coord} + \Phi^{neu}$$

$$\Phi^{prosody} = \sum_{i,j}^{\mathcal{R}^{pred}} w_{i,j}^{pred} (d_{i,j}^{++} + d_{i,j}^{--} - d_{i,j}^{+-} - d_{i,j}^{-+})$$

$$\Phi^{coord} = \sum_{i,j}^{\mathcal{R}^{coord}} w_{i,j}^{coord} (d_{i,j}^{++} + d_{i,j}^{--} + d_{i,j}^{00})$$

$$\Phi^{neu} = \alpha \sum_{i,j}^{\mathcal{R}^{pred}} w_{i,j}^{pred} \cdot z_{j}$$

$$F = \Phi^{prosody} + \Phi^{coord} + \Phi^{neu}$$

$$\Phi^{prosody} = \sum_{i,j}^{\mathcal{R}^{pred}} w_{i,j}^{pred} (d_{i,j}^{++} + d_{i,j}^{--} - d_{i,j}^{+-} - d_{i,j}^{-+})$$

$$\Phi^{coord} = \sum_{i,j}^{\mathcal{R}^{coord}} w_{i,j}^{coord} (d_{i,j}^{++} + d_{i,j}^{--} + d_{i,j}^{00})$$

$$\Phi^{neu} = \alpha \sum_{i,j}^{\mathcal{R}^{pred}} w_{i,j}^{pred} \cdot z_{j}$$

ILP: Soft Constraints

Predicate – Argument

$$w^{pred}(p, a) = \frac{freq(p, a)}{\sum\limits_{(p, x) \in \mathcal{R}^{pred}} freq(p, x)}$$

Argument – Argument

$$w^{coord}(a_1, a_2) = CosSim(\overrightarrow{a_1}, \overrightarrow{a_2}) = \frac{\overrightarrow{a_1} \cdot \overrightarrow{a_2}}{||\overrightarrow{a_1}|| ||\overrightarrow{a_2}||}$$

$$\Phi^{prosody} = \sum_{i,j}^{\mathcal{R}^{pred}} w_{i,j}^{pred} (d_{i,j}^{++} + d_{i,j}^{--} - d_{i,j}^{+-} - d_{i,j}^{-+})$$

$$\Phi^{coord} = \sum_{i,j} w_{i,j}^{coord} (d_{i,j}^{++} + d_{i,j}^{--} + d_{i,j}^{00})$$

ILP: Hard Constraints

Semantic relations

 Antonym pairs will not have the same positive or negative polarity.

$$\forall (i,j) \in \mathcal{R}^{ant}, \ x_i + x_j \le 1, \ y_i + y_j \le 1$$

Synonym pairs will not have the opposite polarity.

$$\forall (i,j) \in \mathcal{R}^{syn}, \ x_i + y_j \le 1, \ x_j + y_i \le 1$$

Inference Algorithm

Algorithms Linguistic Insights Semantic Prosody HITS/PageRank Semantic Parallelism **Label Propagation** of Coordination **Distributional Integer Linear Programing Similarity** W **Semantic Relations Belief Propagation**

Graph

LEMMA

Graph

Graph

Problem Formulation

- $G^{Lemma + Sense} = (V, E)$
- Nodes (random variables)
 - $V = \{v_1, v_2, ..., v_n\}$
 - ▶ Unobserved variables: $\Upsilon = \{Y_1, Y_2, ..., Y_n\}, y_i$
- Typed edges
 - $E = \{e(v_i, v_j, v_k)\}$ where $v_i, v_j \in V$, $T_k \in T$
 - ► T = {pre-arg, arg-arg, arg-syn, syn-syn}
- Neighborhood function
 - $N_v = \{u \mid e(u, v) \subseteq E\}$
- Labels
 - L = $\{+, -\}$, y_i denotes the label of Y_i .

Pairwise Markov Random Fields

$$P(y \mid x) = \frac{1}{Z(x)} \prod_{y_i \in Y} \psi_i(y_i) \prod \psi_{ij}^t(y_i, y_j)$$

An assignment to all the unobserved variables

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{Y_i \in Y} \psi_i(y_i) \prod \psi_{ij}^t(y_i, y_j)$$

An assignment to all the unobserved variables

$$P(y|x) = \frac{1}{Z(x)} \prod_{Yi \in Y} \psi_i(y_i) \prod \psi_{ij}^t(y_i, y_j)$$

Variables with known labels

$$P(y \mid x) = \frac{1}{Z(x)} \prod_{Yi \in Y} \psi_i(y_i) \prod \psi_{ij}^t(y_i, y_j)$$
Prior mapping:

Prior mapping: y_i refers to Y_i 's label ψ_i is prior mapping.

$$P(y \mid x) = \frac{1}{Z(x)} \prod_{Yi \in Y} \psi_i(y_i) \prod \psi_{ij}^t(y_i, y_j)$$
Prior mapping: Compatibility mapping: $L \to \mathbb{R}_{\geq 0}$ $L \times L \to \mathbb{R}_{\geq 0}$

Loopy Belief Propagation

Message passing

$$m_{i \to j}(y_i) = \alpha \sum_{y_i \in L} (\psi_{ij}^t(y_i, y_j) \psi_i(y_i) \prod_{Y_k \in Ni \cap Y \setminus Y_i} m_{k \to i}(y_i)), \forall y_j \in L$$

Belief

$$b_i(y_i) = \beta \psi_i(y_i) \prod_{Y_j \in Ni \cap Y} m_{j \to i}(y_i), \forall y_i \in L$$

Loopy Belief Propagation

- Initialize "message" between all node pairs connected by an edge.
- Initialize priors for all nodes
- Integrative message passing until all messages stop changing

$$m_{i \to j}(y_i) = \alpha \sum_{y_i \in L} (\psi_{ij}^t(y_i, y_j) \psi_i(y_i) \prod_{Y_k \in N_i \cap Y \setminus Y_i} m_{k \to i}(y_i)), \forall y_j \in L$$

Compute beliefs.

$$b_i(y_i) = \beta \psi_i(y_i) \prod_{Y_j \in Ni \cap Y} m_{j \to i}(y_i), \forall y_i \in L$$

Assign the label

$$L_i \leftarrow \max_i b_i(y_i)$$