

Fundada en 1936

CÁLCULO DIFERENCIAL

Centro de Ciencia Básica Universidad Pontificia Bolivariana

Vigilada Mineducación

Fundada en 1936

ENCUENTRO 12.1

Sección 3.5: Derivada de funciones trigonométricas inversas

Derivadas de las funciones trigonométricas inversas

$$\frac{d}{dx}\left(\operatorname{sen}^{-1}x\right) = \frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\left(\csc^{-1}x\right) = -\frac{1}{x\sqrt{x^2 - 1}}$$

$$\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\left(\sec^{-1}x\right) = \frac{1}{x\sqrt{x^2 - 1}}$$

$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$$

$$\frac{d}{dx}\left(\cot^{-1}x\right) = -\frac{1}{1+x^2}$$

$$\frac{d}{dx}\left(\operatorname{sen}^{-1}x\right) = \frac{1}{\sqrt{1-x^2}}$$

Fundada en 1936

Recuerde la definición de la función arco seno:

$$y = \text{sen}^{-1}x$$
 significa sen $y = x$ y $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

Al derivar implícitamente sen y = x respecto a x, obtenemos

$$\cos y \frac{dy}{dx} = 1$$
 o bien $\frac{dy}{dx} = \frac{1}{\cos y}$

Ahora cos $y \ge 0$, debido a que $-\pi/2 \le y \le \pi/2$, de modo que

$$\cos y = \sqrt{1 - \sin^2 y} = \sqrt{1 - x^2}$$

De manera que

$$\frac{dy}{dx} = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - x^2}}$$

El mismo método puede utilizarse para hallar una fórmula para la derivada de *cualquier* función inversa.

La fórmula para la derivada de la función arco tangente se obtiene de manera semejante. Si $y = \tan^{-1} x$, entonces tan y = x. Si derivamos esta última ecuación implícitamente respecto a x, tenemos

Fundada en 1936

$$\sec^{2} y \frac{dy}{dx} = 1$$

$$\frac{dy}{dx} = \frac{1}{\sec^{2} y} = \frac{1}{1 + \tan^{2} y} = \frac{1}{1 + x^{2}}$$

$$\frac{d}{dx}\left(\tan^{-1}x\right) = \frac{1}{1+x^2}$$

En la figura 11 se muestra la gráfica de $f(x) = \tan^{-1}x$ y su derivada $f'(x) = 1/(1+x^2)$. Observe que f es creciente y f'(x) es siempre positiva. El hecho de que $\tan^{-1}x \to \pm \pi/2$ conforme $x \to \pm \infty$ se refleja en el hecho de que $f'(x) \to 0$ a medida que $x \to \pm \infty$.

Tarea: Demostrar las otras derivadas de funciones trigonométricas inversas

Secante inversa: Para |x| > 1 y $0 \le y < \pi/2$ o $\pi/2 < y \le \pi$, $y = \sec^{-1} x$ si y sólo si $x = \sec y$.

Al diferenciar implícitamente la última ecuación obtenemos

$$\frac{dy}{dx} = \frac{1}{\sec y \tan y}. (10)$$

Debido a las restricciones sobre y, tenemos tan $y = \pm \sqrt{\sec^2 y - 1} = \pm \sqrt{x^2 - 1}$, |x| > 1. Por tanto, (10) se vuelve

$$\frac{d}{dx}\sec^{-1}x = \pm \frac{1}{x\sqrt{x^2 - 1}}.$$
 (11)

Es posible deshacernos del signo \pm en (11) al observar en la figura 1.5.17b) que la pendiente de la recta tangente a la gráfica de $y = \sec^{-1} x$ es positiva para x < 1 y positiva para x > 1. Así, (11) es equivalente a

$$\frac{d}{dx}\sec^{-1}x = \begin{cases} \frac{1}{x\sqrt{x^2 - 1}}, & x < -1\\ \frac{1}{x\sqrt{x^2 - 1}}, & x > 1. \end{cases}$$
 (12)

El resultado en (12) puede volver a escribirse en forma más breve usando el símbolo de valor absoluto:

$$\frac{d}{dx}\sec^{-1}x = \frac{1}{|x|\sqrt{x^2 - 1}}.$$
 (13)

Fundada en 1936

b) $y = \sec^{-1}x$ dominio: $(-\infty, -1] \cup [1, \infty)$ rango: $[0, \pi/2) \cup (\pi/2, \pi]$

FIGURA 1.5.17

Las fórmulas para las derivadas de $\csc^{-1}x$ y $\sec^{-1}x$ dependen de las definiciones que se apliquen para estas funciones.

EJEMPLO 5 Derive a) $y = \frac{1}{\text{sen}^{-1}x}$ y b) $f(x) = x \arctan \sqrt{x}$.

SOLUCIÓN

$$\frac{dy}{dx} = \frac{d}{dx} (\text{sen}^{-1}x)^{-1} = -(\text{sen}^{-1}x)^{-2} \frac{d}{dx} (\text{sen}^{-1}x)$$
$$= -\frac{1}{(\text{sen}^{-1}x)^2 \sqrt{1 - x^2}}$$

$$f'(x) = x \frac{1}{1 + (\sqrt{x})^2} \left(\frac{1}{2}x^{-1/2}\right) + \arctan\sqrt{x}$$
$$= \frac{\sqrt{x}}{2(1+x)} + \arctan\sqrt{x}$$

EJEMPLO 4 Derivada del seno inverso

Diferencie $y = \text{sen}^{-1} 5x$.

Solución Con u = 5x, por la primera fórmula en (14) tenemos

$$\frac{dy}{dx} = \frac{1}{\sqrt{1 - (5x)^2}} \cdot \frac{d}{dx} 5x = \frac{5}{\sqrt{1 - 25x^2}}.$$

Fundada en 1936

EJEMPLO 5 Derivada de la tangente inversa

Diferencie $y = \tan^{-1} \sqrt{2x + 1}$.

Solución Con $u = \sqrt{2x + 1}$, por la primera fórmula en (15) tenemos

$$\frac{dy}{dx} = \frac{1}{1 + (\sqrt{2x+1})^2} \cdot \frac{d}{dx} (2x+1)^{1/2}$$

$$= \frac{1}{1 + (2x+1)} \cdot \frac{1}{2} (2x+1)^{-1/2} \cdot 2$$

$$= \frac{1}{(2x+2)\sqrt{2x+1}}.$$

EJEMPLO 6 Derivada de la secante inversa

Diferencie $y = \sec^{-1} x^2$.

Solución Para $x^2 > 1 > 0$, por la primera fórmula en (16) tenemos

$$\frac{dy}{dx} = \frac{1}{|x^2|\sqrt{(x^2)^2 - 1}} \cdot \frac{d}{dx}x^2$$

$$= \frac{2x}{x^2\sqrt{x^4 - 1}} = \frac{2}{x\sqrt{x^4 - 1}}.$$
(17)

Universidad Pontificia Bolivariana

Fundada en 1936

Con ayuda de un dispositivo para graficar obtenemos la gráfica de $y = \sec^{-1} x^2$ que se muestra en la FIGURA 3.7.3. Observe que (17) proporciona una pendiente positiva para x > 1 y una negativa para x < -1.

FIGURA 3.7.3 Gráfica de la función en el ejemplo 6

EJEMPLO 7 Recta tangente

Encuentre una ecuación de la recta tangente a la gráfica de $f(x) = x^2 \cos^{-1} x$ en $x = -\frac{1}{2}$.

Solución Por la regla del producto y la segunda fórmula en (14):

$$f'(x) = x^2 \left(\frac{-1}{\sqrt{1 - x^2}} \right) + 2x \cos^{-1} x.$$

Puesto que $\cos^{-1}(-\frac{1}{2}) = 2\pi/3$, al evaluar las dos funciones f y f' en $x = -\frac{1}{2}$ obtenemos:

$$f\left(-\frac{1}{2}\right) = \frac{\pi}{6} \qquad \leftarrow \text{el punto de tangencia es } \left(-\frac{1}{2}, \frac{\pi}{6}\right)$$

$$f'\left(-\frac{1}{2}\right) = -\frac{1}{2\sqrt{3}} - \frac{2\pi}{3}$$
. \leftarrow la pendiente de la tangente en $\left(-\frac{1}{2}, \frac{\pi}{6}\right)$ es $-\frac{1}{2\sqrt{3}} - \frac{2\pi}{3}$

Por la forma punto-pendiente de la ecuación de una recta, la ecuación sin simplificar de la recta tangente es

$$y - \frac{\pi}{6} = \left(-\frac{1}{2\sqrt{3}} - \frac{2\pi}{3}\right)\left(x + \frac{1}{2}\right).$$

Puesto que el dominio de $\cos^{-1} x$ es el intervalo [-1, 1], el dominio de f es [-1, 1]. El rango correspondiente es $[0, \pi]$. La FIGURA 3.7.4 se obtuvo con ayuda de un dispositivo para graficar.

FIGURA 3.7.4 Recta tangente en el ejemplo 7

Ejemplos

Halle la derivada de cada una de las siguientes funciones. Simplifique donde sea posible.

$$g'(x) = \frac{-1}{\sqrt{1-x}} \frac{1}{2\sqrt{x}}$$

$$g'(x) = \frac{-1}{2\sqrt{x}\sqrt{1-x}}$$

55.
$$h(t) = \cot^{-1}(t) + \cot^{-1}(1/t)$$

$$h'(t) = \frac{-1}{1+t^2} + \frac{-1}{1+\left(\frac{1}{t}\right)^2} - \frac{1}{t^2}$$

$$h'(t) = \frac{-1}{1+t^2} + \frac{t^2}{t^2+1} \frac{1}{t^2} = 0$$

Ejemplos

57.
$$y = x \operatorname{sen}^{-1} x + \sqrt{1 - x^2}$$

$$y' = x \frac{1}{\sqrt{1 - x^2}} + sen^{-1}x + \frac{1}{2\sqrt{1 - x^2}}(-2x)$$

$$y' = \frac{x}{\sqrt{1 - x^2}} + sen^{-1}x - \frac{x}{\sqrt{1 - x^2}}$$

$$y' = sen^{-1}x$$

(X) Sea
$$xy + cos^{-1}(xy^2) = 4$$
, encuentre $y' = \frac{dy}{dx}$

$$xy' + y - \frac{1}{\sqrt{1 - (xy^2)^2}}(x2yy' + y^2) = 0$$

$$xy' + y - \frac{2xy}{\sqrt{1 - x^2y^4}}y' - \frac{y^2}{\sqrt{1 - x^2y^4}} = 0$$

$$y' = \frac{\frac{y^2}{\sqrt{1 - x^2 y^4}} - y}{x - \frac{2xy}{\sqrt{1 - x^2 y^4}}}$$

Ejercicios

49–60 Determine la derivada de cada una de las funciones siguientes. Simplifique donde sea posible.

49.
$$y = \tan^{-1} \sqrt{x}$$

50.
$$y = \sqrt{\tan^{-1}x}$$

51.
$$y = sen^{-1}(2x + 1)$$

53.
$$F(x) = x \sec^{-1}(x^3)$$

56.
$$R(t) = \arcsin(1/t)$$

54.
$$y = \tan^{-1}(x - \sqrt{1 + x^2})$$
 58. $y = \cos^{-1}(\sin^{-1}t)$

58.
$$y = \cos^{-1}(\sin^{-1}t)$$

59.
$$y = \arccos\left(\frac{b + a\cos x}{a + b\cos x}\right), \quad 0 \le x \le \pi, \ a > b > 0$$

60.
$$y = \arctan \sqrt{\frac{1-x}{1+x}}$$

En los problemas 33 y 34, use diferenciación implícita para encontrar dy/dx.

33.
$$tan^{-1} y = x^2 + y^2$$

33.
$$\tan^{-1} y = x^2 + y^2$$
 34. $\sin^{-1} y - \cos^{-1} x = 1$

Universidad

⁻Pontificia

Fundada en 1936

En los problemas 35 y 36, demuestre que f'(x) = 0. Interprete el resultado.

35.
$$f(x) = \operatorname{sen}^{-1} x + \cos^{-1} x$$

36.
$$f(x) = \tan^{-1} x + \tan^{-1}(1/x)$$
.

En los problemas 37 y 38, encuentre la pendiente de la recta tangente a la gráfica de la función dada en el valor indicado de x.

37.
$$y = \operatorname{sen}^{-1} \frac{x}{2}$$
; $x = 1$

38.
$$y = (\cos^{-1} x)^2$$
; $x = 1/\sqrt{2}$

En los problemas 39 y 40, encuentre una ecuación de la recta tangente a la gráfica de la función dada en el valor indicado de x.

39.
$$f(x) = x \tan^{-1} x$$
; $x = 1$

40.
$$f(x) = \text{sen}^{-1}(x-1); \quad x = \frac{1}{2}$$

REFERENCIA

Stewart, J., Cálculo de una variable Trascendentes tempranas, Cengage Learning. Octava edición, 2018.

Zill, G., Cálculo trascendentes tempranas, Mc Graw Hill, cuarta edición.

