Assignment-3

Praneeth Kacham 2015CS10600

Question-1

Integer-Program

$$\min_{x} \sum_{e} c_{e} x_{e}$$
s.t.
$$\sum_{e \in P_{i}} x_{e} \ge 1$$

$$x_{e} \in \{0, 1\}$$

Dual of Relaxed problem

$$\max_{y} \sum_{i=1}^{k} y_{i}$$
 s.t.
$$\sum_{i:e \in P_{i}} y_{i} \leq c_{e} \quad \forall e \in E$$

$$y_{i} \geq 0$$

Algorithm 1 Primal-Dual Algorithm for Multi-Cut problem

```
procedure MULTICUT(T=(V,E),r\in V,c_e\geq 0\ \forall e,(s_i,t_i)\ i=1\dots n) F\leftarrow\varnothing while F is not a multi-cut do i \text{ be the index of the unseparated pair } (s_i,t_i) \text{ having highest } depth(lct(s_i,t_i)) Increase y_i such till edge e becomes tight F\leftarrow F\cup\{e\} end while end procedure
```

In reverse delete step, go through the edges in the reverse order in which they are addded to F. Delete an edge e if $F - \{e\}$ is a feasible multi-cut. Return F finally.

Theorem 1.

$$cost(F) = \sum_{e \in F} c_e \le 2 * OPT \tag{1}$$

Proof. Let y be the dual feasible solution given by the algorithm. Hence, $\sum_{i=1}^{k} y_i \leq OPT$. We also have

$$cost(F) = \sum_{e \in F} c_e$$

$$= \sum_{e \in F} \sum_{i: e \in P_i} y_i$$

$$= \sum_{i=1}^k y_i |F \cap P_i|$$
(Since, an edge is added only when tight)

Claim 1. $y_i > 0 \Rightarrow |F \cap P_i| \leq 2$

Proof. Let $a \leadsto b$ denote the set of edges in the path from a to b. Suppose there is an i such that $y_i > 0$ and $|F \cap P_i| > 2$. Let u be the lowest common ancestor of s_i and t_i . Let e be the edge which became tight by increasing y_i . (Note: e might have been deleted from F in deletion step). As $|F \cap P_i| > 2$, we can, without loss of generality assume that $|F \cap (s_i \leadsto u)| \ge 2$. Let e_1 , e_2 be two edges in $|F \cap (s_i \leadsto u)|$ such that e_1 is closer to r that e_2 . Let pair (s_l, t_l) caused the addition of e_1 and $(s_{l'}, t_{l'})$ caused the addition of e_2 . We claim that our reverse deletion step would have deleted the edge e_2 and hence obtain a contradiction. Given that $y_i > 0$, we can conclude that $depth(lct(s_i, t_i)) > depth(lct(s_l, t_l))$ and $depth(lct(s_i, t_i)) > depth(lct(s_{l'}, t_{l'}))$. Otherwise, edges e_1 or e_2 would have been added to F earlier that e and y_i couldn't have been raised. We can also conclude that all the pairs for which e_2 is the earliest separator that has been added to F have their lct depth lower that $depth(lct(s_i, t_i))$. Again, otherwise, e_2 would have been added before e and hence y_i couldn't have been raised. This implies that all those pairs for which e_2 is the earliest separator that has been added to F have e_1 in the path between the nodes. It is also easy to see that e_1 has been added to F after e_2 . Thus, in reverse delete step we observe e_2 after e_1 and hence we will remove e_2 from F as e_1 separates all the pairs which require e_2 . Hence having e_1 and e_2 both in F is a contradiction. Which gives $y_i > 0 \Rightarrow |F \cap P_i| \le 2$.

From the claim above, we have $y_i|F \cap P_i| \leq 2y_i$. Hence, the $cost(F) = \sum_{i=1}^k y_i|F \cap P_i| \leq \sum_{i=1}^k 2y_i \leq 2OPT$.

Question-2

Let F' be the set of all edges initially added by the algorithm. Let F be the set of edges returned by the algorithm which deletes edges in any order i.e., F is a feasible solution for the problem and $\forall e \in F$, $F - \{e\}$ is not feasible. Let C_i be the connected components in the iteration when ith edge is added by the primal-dual algorithm. By, $C_i^G \subseteq C_i$ denotes the connected components whose dual variable is increased in the ith iteration and define $C_i^N = C_i - C_i^G$. Thus, $C_0 = \{\{s_i\}, \{t_i\} | (s_i, t_i) \in \mathcal{P}\}, C_0^G = C_0$ and $C_0^N = \emptyset$. Define graph G_i as follows: vertex set is given by $V_i = \{v_j | j = 1, \ldots, |C_i|\}$ and $E_i = \{(v_k, v_l) | \exists (u, v) \in F, u, v \text{ in different connected components in } C_i\}$.

Claim 2. G_i is a forest for all i.

Proof. It is easy to see that the vertex set of G_i along with the edges F' is a forest. As $F \subseteq F'$, we have that G_i is a forest.

Claim 3. All vertices corresponding to the components C_i^N in the graph G_i have degree ≥ 2 .

Proof. Suppose there is a component in C_i^N with degree 1 in the graph G_i . Given that the component is in C_i^N , we have that the connected coponent doesn't separate any pair (s_i, t_i) . So, the only edge that is coming into the connected component doesn't connect any pair (s_i, t_i) . Hence, this edge can be deleted from F without affecting feasibility. This contradicts the fact that $F - \{e\}$ is unfeasible for all the edges $e \in \{F\}$. Hence, all vertices corresponding to the components C_i^N have a degree ≥ 2 .

Theorem 2. The algorithm is a 2-approximation to steiner-forest problem.

Proof. Using the above claims, the proof that this gives 2-approximation goes exactly like the proof of 2-approximateness of the reverse-deletion algorithm. \Box

Question-4

Define $A \cdot X = \sum_{i,j} a_{ij} x_{ij}$.

Primal SDP

$$\max_{X} \sum_{i < j} w_{ij} (1 - x_{ij})/2$$
s.t.
$$x_{ii} = 1 \quad \forall i$$

$$X \succeq 0$$

Dual

$$\min_{\gamma} \quad \frac{1}{2} \sum_{i < j} w_{ij} + \frac{1}{4} \sum_{i} \gamma_{i}$$
s.t.
$$W + diag(\gamma) \succeq 0$$

We have W is a symmetric matrix with $w_{ii} = 0$. To show weak duality, we need to show that given $X \succeq 0$, $x_{ii} = 1 \ \forall i, W + diag(\gamma) \succeq 0$, we have

$$\frac{1}{2} \sum_{i < j} w_{ij} (1 - x_{ij}) \le \frac{1}{2} \sum_{i < j} w_{ij} + \frac{1}{4} \sum_{i} \gamma_{i}$$

Lemma 3. If X, Y are positive semidefinite matrices, then $X \cdot Y \geq 0$

Proof. Given matrices X, Y we have $X \cdot Y = \operatorname{tr}(X^TY)$. As X, Y are p.s.ds, we can write $X = LL^T$ and $Y = MM^T$. Hence, $\operatorname{tr}(X^TY) = \operatorname{tr}(LL^TMM^T) = \operatorname{tr}(L^TMM^TL) = \operatorname{tr}(L^TM(L^TM)^T) = ||L^TM||_F^2 \geq 0$. Second equality follows from the fact that $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.

Proof.

$$\frac{1}{2} \sum_{i < j} w_{ij} (1 - x_{ij}) \leq \frac{1}{2} \sum_{i < j} w_{ij} + \frac{1}{4} \sum_{i} \gamma_{i}$$

$$\Rightarrow \qquad -\frac{1}{2} \sum_{i < j} w_{ij} x_{ij} \leq \frac{1}{4} \sum_{i} \gamma_{i}$$

$$\Leftrightarrow \qquad -\frac{1}{4} \sum_{i \neq j} w_{ij} x_{ij} \leq \frac{1}{4} \sum_{i} \gamma_{i} \qquad (Since, x_{ij} = x_{ji} \& w_{ij} = w_{ji})$$

$$\Leftrightarrow \qquad -\frac{1}{4} \sum_{i,j} w_{ij} x_{ij} \leq \frac{1}{4} \sum_{i} \gamma_{i} \qquad (Since, w_{ii} = 0)$$

$$\Leftrightarrow \qquad 0 \leq \sum_{i,j} w_{ij} x_{ij} + \sum_{i} \gamma_{i}$$

$$\Leftrightarrow \qquad 0 \leq \sum_{i,j} w_{ij} x_{ij} + \sum_{i} \gamma_{i} x_{ii} \qquad (Since, x_{ii} = 1)$$

$$\Leftrightarrow \qquad 0 \leq (W + diag(\gamma)) \cdot X$$

Given that the last inequality is true as both matrices are p.s.ds, we can follow the bi-implications backward and obtain what is required. \Box

Question-5

Part-a

For each vairable x_i in the satisfiability problem we will have a variable y_i which takes the values from the set $\{-1,1\}$. We also have a variable $y_0 \in \{-1,1\}$. x_i is assigned the truth value TRUE if $y_i\dot{y}_0 = 1$ and FALSE otherwise. Let the first variable in *ith* clause be x_{i_1} and second variable be x_{i_2} . For a clause $x_1 \vee x_2$,

we have the integer expression $\frac{1}{4}(3 + y_0y_1 + y_0y_2 - y_1y_2)$ and similar expressions for other forms of 2-SAT clauses. Let there be n clauses. The following integer program models a Max-2SAT problem.

$$\max_{y} \sum_{i=1}^{n} \frac{1}{4} w_{i} (3 \pm y_{0} y_{i_{1}} \pm y_{0} y_{i_{2}} \pm y_{i_{1}} y_{i_{2}})$$
s.t. $y_{j} \in \{-1, 1\} \ \forall j$

Sign of \pm depends on the corresponding clause.

Part-b

The integer program in part-a can be relaxed to get a Semi-definite program by replacing y_j with vector $\vec{y_j}$ and replacing the product $y_j y_k$ with $\langle \vec{y_j}, \vec{y_k} \rangle$ and adding a condition that $||y_j||^2 = 1$.

Rounding the semi-definite solution:

Let $\vec{y_0}^*, \vec{y_1}^*, \dots, \vec{y_m}^*$ be the optimal semi-definite solution. Pick a random plane given by $a^T x = 0$. Variable y_i is assigned 1 if $a^T \vec{y_i}^* > 0$ and -1 otherwise.

Claim 4. $\forall i, j$, the following hold true

$$E[1 + y_i y_j] \ge 0.878[1 + \langle y_i, y_j \rangle]$$

 $E[1 - y_i y_j] \ge 0.878[1 - \langle y_i, y_j \rangle]$

Proof. We have the following,

$$y_i y_j = \begin{cases} +1 \text{ with probability } 1 - \cos^{-1}(\langle \vec{y_i}^*, \vec{y_j}^* \rangle) / \pi \\ -1 \text{ with probability } \cos^{-1}(\langle \vec{y_i}^*, \vec{y_j}^* \rangle) / \pi \end{cases}$$
 (2)

Hence, $E[1+y_iy_j]=2[1-\cos^{-1}(\langle \vec{y_i}^*,\vec{y_j}^*\rangle)/\pi]=(2/\pi)\cos^{-1}(-\langle \vec{y_i}^*,\vec{y_j}^*\rangle)\geq 0.878(1+\langle \vec{y_i}^*,\vec{y_j}^*\rangle)$. Similarly, we can show that the other inequality is also true.

Theorem 4. Rounding as defined is 0.878 approximate solution for MAX-2-SAT.

Proof. Consider a clause $(x_1 \vee x_2)$. The corresponding expression in terms of $y_i's$ is given by $(3 + y_1y_0 + y_2y_0 - y_1y_2)/4$. Then expression has value 1 if the clause is satisfied and 0 otherwise. The expression can also be written as $((1+y_1y_0)+(1+y_2y_0)+(1-y_1y_2))/4$. But, from the previous claim, $E[((1+y_1y_0)+(1+y_2y_0)+(1-y_1y_2))/4] \geq 0.878((1+\langle \vec{y_1}^*, \vec{y_0}^* \rangle)+(1+\langle \vec{y_2}^*, \vec{y_0}^* \rangle)+(1-\langle \vec{y_1}^*, \vec{y_2}^* \rangle))/4$. Hence, the expected value for integer rounding is $\geq 0.878OPT_SDP \geq 0.878OPT$.

Part-c

We can combine, the 0.75 approx algorithm and MAX-2-SAT algorithm to obtain a better approximation ratio. We have that, for clauses of size greater than 3, 0.789 fraction of them are true in 0.75-approx algorithm and 0.75 fraction for clauses of size ; 3. If, with α probability 0.75 algorithm is run and $(1 - \alpha)$ probability MAX-2-SDP is run, we obtain a min $\{\alpha 0.789, \alpha 0.75 + (1 - \alpha)0.878\}$ algorithm. This is maximized when $\alpha 0.039 = (1 - \alpha)0.878 \Rightarrow \alpha = 22.5/23.5 = 0.957$ and the best approximation is ~ 0.755 .