Project ID: C22-M001-03785 Report No.: AA-22-07618_ONC Date Reported: Dec 27, 2022

ACTOnco® + Report

PATIENT	
Identifier: 劉文忠	Patient ID: 13895391
Date of Birth: Nov 29, 1958	Gender: Male
Diagnosis: Mixed small cell neuroendocrine carcinoma and invasive urothelial carcinol	ma
ORDERING PHYSICIAN	
Name: 顏厥全醫師	Tel: 886-228712121
Facility: 臺北榮總	
Address: 臺北市北投區石牌路二段 201 號	
SPECIMEN	
Specimen ID: S11193384A Collection site: Urinary bladder	Type: FFPE tissue
Date received: Dec 14, 2022 Lab ID: AA-22-07618	D/ID: NA

ABOUT ACTOnco®+

The test is a next-generation sequencing (NGS)-based assay developed for efficient and comprehensive genomic profiling of cancers. This test interrogates coding regions of 440 genes associated with cancer treatment, prognosis and diagnosis. Genetic mutations detected by this test include small-scale mutations like single nucleotide variants (SNVs), small insertions and deletions (InDels) (≤ 15 nucleotides) and large-scale genomic alterations like copy number alterations (CNAs). The test also includes an RNA test, detecting fusion transcripts of 13 genes.

SUMMARY FOR ACTIONABLE VARIANTS VARIANTS/BIOMARKERS WITH EVIDENCE OF CLINICAL SIGNIFICANCE

Genomic	Probable Effects in Patient's Cancer Type		Probable Sensitive in Other Cancer Types	
Alterations/Biomarkers	Sensitive Resistant			
Not detected				

VARIANTS/BIOMARKERS WITH POTENTIAL CLINICAL SIGNIFICANCE

Genomic Alterations/Biomarkers	Possibly Sensitive	Possibly Resistant
	Erdafitinib, Infigratinib, Lenvatinib,	
FGFR1 Amplification	Pazopanib, Ponatinib, Regorafenib,	Palbociclib, Ribociclib
	Sunitinib	

Note:

- The above summary tables present genomic variants and biomarkers based on the three-tiered approach proposed by US FDA for reporting tumor profiling NGS testing. "Variants/biomarkers with evidence of clinical significance" refers to mutations that are widely recognized as standard-of-care biomarkers (FDA level 2/AMP tier 1). "Variants/biomarkers with potential clinical significance" refers to mutations that are not included in the standard of care but are informational for clinicians, which are commonly biomarkers used as inclusion criterial for clinical trials (FDA level 3/AMP tier 2).
- The therapeutic agents and possible effects to a given drug are based on mapping the variants/biomarkers with ACT Genomics clinical knowledge database. The mapping results only provide information for reference, but not medical recommendation.
- Please refer to corresponding sections for more detailed information about genomic alteration and clinical relevance listed above.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 1 of 52

Project ID: C22-M001-03785 Report No.: AA-22-07618_ONC Date Reported: Dec 27, 2022

ACTOnco® + Report

TESTING RESULTS

VARIANT(S) WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Allele Frequency
KMT2D	Splice donor	45.4%
KMT2D	I1208fs	45.0%
TP53	E285*	77.5%

- Copy Number Alterations

Chromosome	Gene	Variation	Copy Number
Chr17	RNF43	Homozygous deletion	0
Chr1	ARID1A	Heterozygous deletion	1
Chr10	PTEN	Heterozygous deletion	1
Chr13	BRCA2	Heterozygous deletion	1
Chr16	TSC2	Heterozygous deletion	1
Chr17	FLCN, RAD51C, TP53	Heterozygous deletion	1
Chr18	SMAD4	Heterozygous deletion	1
Chr19	ERCC1	Heterozygous deletion	1
Chr22	CHEK2, NF2	Heterozygous deletion	1
Chr4	FBXW7	Heterozygous deletion	1
Chr9	CDKN2A, PTCH1, TSC1	Heterozygous deletion	1
Chr8	FGFR1	Amplification	7

- Fusions

Fusion Gene & Exon	Transcript ID
	No fusion gene detected in this sample

- Immune Checkpoint Inhibitor (ICI) Related Biomarkers

Biomarker	Results
Tumor Mutational Burden (TMB)	3.2 muts/Mb
Microsatellite Instability (MSI)	Microsatellite stable (MSS)

Note:

- Variant(s) enlisted in the SNV table may currently exhibit no relevance to treatment response prediction. Please refer to INTERPRETATION for more biological information and/or potential clinical impacts of the variants.
- Loss of heterozygosity (LOH) information was used to infer tumor cellularity. Copy number alteration in the tumor was determined based on 83% tumor purity.
- For more therapeutic agents which are possibly respond to heterozygous deletion of genes listed above, please refer to APPENDIX for more information.
- TMB was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The threshold for high mutation load is set at ≥ 7.5 mutations per megabase. TMB, microsatellite status and gene copy number deletion cannot be determined if calculated tumor purity is < 30%.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 2 of 52

ACTOnco® + Report

THERAPEUTIC IMPLICATIONS

TARGETED THERAPIES

Genomic Alterations	Therapies	Effect
Level 3B		
FGFR1 Amplification	Erdafitinib, Infigratinib, Ponatinib, Regorafenib, Sunitinib	sensitive
Level 4		
FGFR1 Amplification	Lenvatinib, Pazopanib	sensitive
FGFR1 Amplification	Palbociclib, Ribociclib	resistant

Therapies associated with benefit or lack of benefit are based on biomarkers detected in this tumor and published evidence in professional guidelines or peer-reviewed journals.

Level	Description	
1	FDA-recognized biomarkers predictive of response or resistance to FDA approved drugs in this indication	
2	Standard care biomarkers (recommended by the NCCN guideline) predictive of response or resistance to FDA approved drugs in this indication	
зА	Biomarkers predictive of response or resistance to therapies approved by the FDA or NCCN guideline in a different cancer type	
3B	Biomarkers that serve as inclusion criteria for clinical trials (minimal supportive data required)	
4	Biomarkers that show plausible therapeutic significance based on small studies, few case reports, or preclinical studies	

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 3 of 52

Project ID: C22-M001-03785 Report No.: AA-22-07618_ONC Date Reported: Dec 27, 2022

ACTOnco® + Report

IMMUNE CHECKPOINT INHIBITORS (ICIs)

No genomic alterations detected to confer sensitivity or lack of benefit to immune checkpoint therapies.

- Other Biomarkers with Potential Clinical Effects for ICIs

Genomic Alterations	Potential Clinical Effects
	Not detected

Note: Tumor non-genomic factors, such as patient germline genetics, PDL1 expression, tumor microenvironment, epigenetic alterations or other factors not provided by this test may affect ICI response.

CHEMOTHERAPIES

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to chemotherapies.

HORMONAL THERAPIES

Genomic Alterations	Therapies	Effect	Level of Evidence	Cancer Type
FGFR1	Letrozole	Resistant	Clinical	Estrogen-receptor positive breast cancer
Amplification	Tamoxifen	Resistant	Preclinical	Breast cancer

OTHERS

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to other therapies.

Note:

Therapeutic implications provided in the test are based solely on the panel of 440 genes sequenced. Therefore, alterations in genes not covered in this panel, epigenetic and post-transcriptional and post-translational factors may also determine a patient's response to therapies. In addition, several other patient-associated clinical factors, including but not limited to, prior lines of therapies received, dosage and combinations with other therapeutic agents, patient's cancer types, sub-types, and/or stages, may also determine the patient's clinical response to therapies.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 4 of 52

Project ID: C22-M001-03785 Report No.: AA-22-07618_ONC Date Reported: Dec 27, 2022

VARIANT INTERPRETATION

KMT2D I1208fs, Splice donor

Biological Impact

KMT2D (Lysine methyltransferase 2D) gene encodes the histone methyltransferase MLL2, which methylates lysine residue 4 on the tail of histone H3 (H3K4) and regulates gene expression via modulating chromatin structures^[1]. KMT2D mutations have been reported in bladder cancer, diffuse large B cell lymphoma (DLBCL), non-Hodgkin lymphoma, and acute myeloid leukemia^{[2][3][4][5]}, and deletion of KMT2D has been reported to lead to genomic instability in vitro^[6].

I1208fs mutation results in a change in the amino acid sequence beginning at 1208, likely to cause premature truncation of the functional KMT2D protein (UniProtKB). This mutation is predicted to lead to a loss of KMT2D protein function, despite not being characterized in the literature. KMT2D c.10355+1G>C is a variant located at the splice donor region, which may result in the exon skipping.

Therapeutic and prognostic relevance

A study of non-small cell lung cancer patients (n=194) indicated that patients harboring mutant KMT2D had shorter overall survival and progression-free survival compared with patients with wild-type KMT2D. However, this correlation had not found in small cell lung cancer patients^[7].

Low levels of KMT2D expression was associated with better overall survival in pancreatic ductal adenocarcinoma (PDAC)^[8], esophageal squamous cell carcinoma (ESCC)^[9], and better disease-free survival in prostate cancer^[10]. However, low expression of KMT2D had been reported to correlate with advanced stages and imatinib resistance in chronic myeloid leukemia (CML)^[11].

TP53 E285*, Heterozygous deletion

Biological Impact

TP53 encodes the p53 protein, a crucial tumor suppressor that orchestrates essential cellular processes including cell cycle arrest, senescence and apoptosis^[12]. TP53 is a proto-typical haploinsufficient gene, such that loss of a single copy of TP53 can result in tumor formation^[13].

E285* mutation results in a premature truncation of the p53 protein at amino acid 285 (UniProtKB). This mutation is predicted to lead to a loss of p53 function, despite not having characterized in the literature. Loss of the second wild-type allele resulted in the biallelic inactivation of the gene.

Therapeutic and prognostic relevance

Despite having a high mutation rate in cancers, there are currently no approved targeted therapies for TP53 mutations. A phase II trial demonstrated that Wee1 inhibitor (AZD1775) in combination with carboplatin was well tolerated and showed promising anti-tumor activity in TP53-mutated ovarian cancer refractory or resistant (< 3 months) to standard first-line therapy (NCT01164995)^[14].

In a retrospective study (n=19), advanced sarcoma patients with TP53 loss-of-function mutations displayed improved progression-free survival (208 days versus 136 days) relative to patients with wild-type TP53 when treated with pazopanib^[15]. Results from another Phase I trial of advanced solid tumors (n=78) demonstrated that TP53 hotspot mutations are associated with better clinical response to the combination of pazopanib and vorinostat^[16].

Advanced solid tumor and colorectal cancer patients harboring a TP53 mutation have been shown to be more sensitive to bevacizumab when compared with patients harboring wild-type TP53^{[17][18][19]}. In a pilot trial (n=21), TP53-negative breast cancer patients demonstrated increased survival following treatment with bevacizumab in combination with chemotherapy agents, Adriamycin (doxorubicin) and Taxotere (docetaxel)^[20]. TP53 mutations were correlated with poor

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **5** of **52**

Project ID: C22-M001-03785 Report No.: AA-22-07618 ONC

Date Reported: Dec 27, 2022

survival of advanced breast cancer patients receiving tamoxifen or primary chemotherapy[21][22]. In a retrospective study of non-small cell lung cancer (NSCLC), TP53 mutations were associated with high expression of VEGF-A, the primary target of bevacizumab, offering a mechanistic explanation for why patients exhibit improved outcomes after bevacizumab treatment when their tumors harbor mutant TP53 versus wild-type TP53[23].

ARID1A Heterozygous deletion

Biological Impact

The AT-rich interactive domain 1A (ARID1A) gene encodes the BAF250A protein, a component of the SWI/SNF chromatin remodeling complex that plays a role in various cellular functions, including DNA repair, DNA synthesis, and transcription^{[24][25]}. Haploinsufficiency of ARID1A is associated with tumor formation in some cancers^[26]. Inactivation of ARID1A is commonly observed in ovarian, endometrial, uterine, and, gastric cancers[27][28][29][30][31].

Therapeutic and prognostic relevance

ARID1A is the most frequently mutated genes in ovarian clear cell carcinoma and several synthetic lethality hypothesisbased therapeutic targets in ARID1A mutated cancer are in development. For examples, 1) EZH2 inhibitor[32][33]; 2) AKT-inhibitors MK-2206 and perifosine, as well as PI3K-inhibitor buparlisib^[34]; 3) multiple kinase inhibitor, dasatinib^[35].

Some preclinical evidences suggested that reduced ARID1A expression confers resistance to several HER2/PI3K/mTOR signaling cascade inhibitors such as AZD8055 and trastuzumab, through activation of annexin A1 expression[36]. Loss or decreased expression of ARID1A has been reported to associate with resistance to platinumbased chemotherapies, shorter overall survival and lower complete response rate in ovarian cancer patients[37][38].

Low expression of ARID1A is a significant and independent prognostic factor for poor disease-free and overall survival in breast cancer patients[39][40]. Besides, loss of ARID1A expression was more frequently seen in mismatch repair (MMR)-deficient colorectal cancers, predominantly in tumor with MLH1 promoter hypermethylation[41]. Positive ARID1A expression could independently predict worse overall survival in stage IV CRC patients compared with negative ARID1A expression[42].

ARID1A mutation has been determined as an inclusion criterion for the trials evaluating olaparib efficacy in metastatic biliary tract cancer (NCT04042831), and niraparib efficacy in melanoma (NCT03925350), pancreatic cancer (NCT03553004), or any malignancy, except prostate cancer (NCT03207347).

The preclinical study discovered that ARID1A deficiency sensitized some tumors to PARP inhibitor drugs, such as olaparib, rucaparib, talazoparib, and veliparib, which block DNA damage repair pathways[43].

BRCA2 Heterozygous deletion

Biological Impact

The BRCA2 gene encodes a tumor suppressor involved in the homologous recombination pathway for double-strand DNA repair^[44]. BRCA2 has been implicated as a haploinsufficient gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological functions [45]. BRCA2 germline mutations confer an increased lifetime risk of developing breast, ovarian, prostate and pancreatic cancer, limited reports of related gastric cancer, and Fanconi anemia subtype D1-associated risk of brain cancer, medulloblastoma, pharyngeal cancer, chronic lymphocytic leukemia and acute myeloid leukemia[46]. Somatic mutations in BRCA2 are highest in colorectal, non-small cell lung cancer (NSCLC), and ovarian cancers^[47].

Therapeutic and prognostic relevance

The U.S. FDA has approved olaparib in advanced ovarian cancer under several settings including (1) first-line maintenance treatment for patients with deleterious or suspected deleterious germline or somatic BRCA mutation who

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 6 of 52

Project ID: C22-M001-03785 Report No.: AA-22-07618 ONC

Date Reported: Dec 27, 2022

ACTOnco® + Report

are in complete or partial response to first-line platinum-based chemotherapy[48]; (2) in combination with bevacizumab as first-line maintenance treatment for patients who are in complete or partial response to first-line platinum-based chemotherapy and whose cancer is associated with homologous recombination deficiency (HRD)-positive status^[49]; (3) maintenance treatment for patients with recurrent ovarian cancer who are in complete or partial response to platinumbased chemotherapy[50][51]. In addition, olaparib has also been approved in patients with deleterious or suspected deleterious germline BRCA-mutated, HER2-negative breast cancer who have been treated with chemotherapy in either neoadjuvant, adjuvant, or metastatic setting[52] and germline BRCA-mutated metastatic pancreatic cancer[53]. Of note, in May 2020, the U.S. FDA approved olaparib for the treatment of adult patients with metastatic castration-resistant prostate cancer (mCRPC) who carry mutations in homologous recombination repair (HRR) genes, including BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, RAD54L, and progressed following prior treatment with enzalutamide or abiraterone acetate(NCT02987543)[54].

Rucaparib has been approved for the maintenance treatment of adult patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer who are in a complete or partial response to platinum-based chemotherapy^[55]. NCCN guidelines recommend rucaparib as recurrence therapy for patients with BRCA-mutated ovarian cancer, who have been treated with two or more lines of chemotherapies[56]. In May 2020, the U.S. FDA also approved rucaparib to treat adult patients with a deleterious BRCA mutation-associated metastatic castration-resistant prostate cancer (mCRPC) who have been treated with androgen receptor-directed therapy and a taxane-based chemotherapy (TRITON2, NCT02952534). Moreover, NCCN guidelines recommend rucaparib as maintenance therapy following prior platinumbased therapy for patients with metastatic pancreatic cancer harboring germline or somatic BRCA mutation.

The U.S. FDA has approved niraparib for the maintenance treatment of patients with advanced epithelial ovarian, fallopian tube, or primary peritoneal cancer who are in response to first-line platinum-based chemotherapy and patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer who are in response to platinum-based chemotherapy^{[57][58]}. Besides, NCCN guidelines recommend niraparib as maintenance therapy for ovarian cancer patients with BRCA mutations. The U.S. FDA also approved talazoparib for patients with deleterious or suspected deleterious germline BRCA-mutated, HER2 negative locally advanced or metastatic breast cancer[59].

CDKN2A Heterozygous deletion

Biological Impact

The Cyclin-Dependent Kinase Inhibitor 2A (CDKN2A) gene encodes the p16 (p16INK4a) and p14 (ARF) proteins. p16INK4a binds to CDK4 and CDK6, inhibiting these CDKs from binding D-type cyclins and phosphorylating the retinoblastoma (RB) protein whereas p14 (ARF) blocks the oncogenic activity of MDM2 by inhibiting MDM2-induced degradation of p53^{[60][61][62]}. CDKN2A has been reported as a haploinsufficient tumor suppressor with one copy loss that may lead to weak protein expression and is insufficient to execute its original physiological functions [63]. Loss of CDKN2A has been frequently found in human tumors that result in uncontrolled cell proliferation[64][65].

Therapeutic and prognostic relevance

Intact p16-Cdk4-Rb axis is known to be associated with sensitivity to cyclin-dependent kinase inhibitors[66][67]. Several case reports also revealed that patients with CDKN2A-deleted tumors respond to the CDK4/6-specific inhibitor treatments[68][69][70]. However, there are clinical studies that demonstrated CDKN2A nuclear expression, CDKN2A/CDKN2B co-deletion, or CDKN2A inactivating mutation was not associated with clinical benefit from CDK4/6 inhibitors, such as palbociclib and ribociclib, in RB-positive patients[71][72][73]. However, CDKN2A loss or mutation has been determined as an inclusion criterion for the trial evaluating CDK4/6 inhibitors efficacy in different types of solid tumors (NCT02693535, NCT02187783).

The phase II TAPUR trial demonstrated clinical benefits to palbociclib monotherapy in advanced NSCLC or head and neck cancer harboring a CDKN2A mutation or copy number loss. However, pancreatic and biliary cancer patients harboring a CDKN2A mutation or copy number loss did not demonstrate an objective response or stable disease when

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 7 of 52

Project ID: C22-M001-03785 Report No.: AA-22-07618_ONC Date Reported: Dec 27, 2022

ACTOnco® + Report

treated with palbociclib monotherapy for 16 weeks (DOI: 10.1200/JCO.2021.39.15 suppl.6043)[74][75].

Notably, the addition of several CDK4/6 inhibitors to hormone therapies, including palbociclib in combination with letrozole, ribociclib plus letrozole, and abemaciclib combines with fulvestrant, have been approved by the U.S. FDA for the treatment of ER+ and HER2- breast cancer^{[67][76][77]}.

In a Phase I trial, a KRAS wild-type squamous non-small cell lung cancer (NSCLC) patient with CDKN2A loss had a partial response when treated with CDK4/6 inhibitor abemaciclib^[69]. Administration of combined palbociclib and MEK inhibitor PD-0325901 yield promising progression-free survival among patients with KRAS mutant non-small cell lung cancer (NSCLC) (AACR 2017, Abstract CT046). Moreover, MEK inhibitor in combination with CDK4/6 inhibitor demonstrates significant anti-KRAS-mutant NSCLC activity and radiosensitizing effect in preclinical models^[78].

A retrospective analysis demonstrated that concurrent deletion of CDKN2A with EGFR mutation in patients with non-small cell lung cancer (NSCLC), predicts worse overall survival after EGFR-TKI treatment^[79].

CHEK2 Heterozygous deletion

Biological Impact

The checkpoint kinase 2 (CHEK2 or CHK2) gene encodes a serine/threonine protein kinase involved in transducing DNA damage signals that are required for both the intra-S phase and G2/M checkpoints^[80]. CHEK2 heterozygosity has been shown to cause haploinsufficient phenotypes that can contribute to tumorigenesis through inappropriate S phase entry, accumulation of DNA damage during replication, and failure to restrain mitotic entry^{[81][82]}. CHEK2 aberrations are associated with glioblastoma, breast, ovarian, prostate, colorectal, gastric, thyroid, and lung cancers^{[83][84][85][86][87]}.

Therapeutic and prognostic relevance

In May 2020, the U.S. FDA approved olaparib for the treatment of adult patients with metastatic castration-resistant prostate cancer (mCRPC) who carry mutations in homologous recombination repair (HRR) genes, including BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, RAD54L, and progressed following prior treatment with enzalutamide or abiraterone acetate (NCT02987543)^[54].

In a phase II trial (TBCRC 048; NCT03344965), 7 metastatic breast cancer patients harboring only germline mutations in CHEK2 were not responded to olaparib treatment (SD: n=3, PD: n=4) $^{[88]}$. Furthermore, in another phase II trial (TRITON2; NCT02952534), 12 mCRPC patients harboring CHEK2 alteration had limited response to rucaparib treatment. One patient with co-occurring ATM alteration had a radiographic partial response (n=1/9 evaluable patients). The prostate-specific antigen response rate was 16.7% (n=2/12), and the 6-month clinical benefit rate was 37.5% (n=3/8) $^{[89]}$.

In addition, CHEK2 has been determined as an inclusion criterion for the trials evaluating olaparib efficacy in advanced solid tumors (NCT03297606; CAPTUR trial), rucaparib efficacy in ovarian cancer (NCT01968213)^[55], and prostate cancer (NCT02952534, NCT03533946)^[89], niraparib efficacy in metastatic esophageal/gastroesophageal junction (GEJ)/proximal gastric adenocarcinoma (NCT03840967), melanoma (NCT03925350), pancreatic cancer (NCT03553004, NCT03601923), prostate cancer (NCT02854436), and any malignancy, except prostate (NCT03207347), and talazoparib efficacy in HER2-negative solid tumors (NCT02401347), prostate cancer (NCT03148795), and lung cancer (NCT03377556), respectively.

ERCC1 Heterozygous deletion

Biological Impact

The Excision Repair Cross-Complementation Group 1 (ERCC1) gene encodes a non-catalytic component of a structure-specific DNA repair endonuclease that is responsible for 5' incision. This endonuclease is a heterodimer

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **8** of **52**

Project ID: C22-M001-03785 Report No.: AA-22-07618 ONC

Date Reported: Dec 27, 2022

containing ERCC1 and ERCC4 and is involves in recombinational DNA repair and in the repair of inter-strand crosslinks (ICL). In addition, ERCC1 participates in the processing of anaphase bridge-generating DNA structures. Other genes associated with the nucleotide excision repair pathway includes ERCC1-5, CDK7, DDB1-2, XPA, and XPC[90]. ERCC1 haploinsufficiency is associated with tumorigenesis in the mouse model^[91].

Therapeutic and prognostic relevance

Loss of expression of ERCC1 has long been implicated in increased sensitivity towards cisplatin in non-small cell lung cancer (NSCLC) and ovarian carcinoma^{[92][93][94][95]}. PARP inhibitors demonstrated anti-tumor activity against ERCC1deficient non-small cell lung cancer (NSCLC) cell line[96][97][98]. Preclinical studies also showed that inhibiting topoisomerase I and PARP1 in combination, as was demonstrated with the combination of ABT-888 and CPT-11, may result in the synergistic decrease in tumor regression for women with triple-negative breast cancer (TNBC)[99].

FBXW7 Heterozygous deletion

Biological Impact

The F-box/WD repeat-containing protein 7 (FBXW7) gene encodes a protein that belongs to the SCF (SKP1-CUL1-Fbox protein) E3 ligase complex. FBXW7 is recognized as a tumor suppressor which is involved in the negative regulation of oncogenes such as c-Myc $^{[100][101]}$, c-Jun $^{[102]}$, cyclin E $^{[103]}$, Notch family members $^{[104][105]}$, Aurora-A $^{[106]}$, mTOR^[107], KLF5^[108], and MCL-1^[109]. Inactivating FBXW7 mutation or copy number loss may result in the accumulation of oncoproteins and therefore lead to malignant transformation[110]. FBXW7 is a haploinsufficient tumor suppressor gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological functions[108][109][111]

Therapeutic and prognostic relevance

Clinical efficacy of mTOR inhibitors was seen in patients harboring aberrations in the FBXW7 gene (one patient with refractory fibrolamellar hepatocellular carcinoma, and one patient with lung adenocarcinoma)[112][113]. Moreover, in vitro assay also suggested that loss or inactivation of FBXW7 may confer sensitivity to mTOR inhibitor[107].

Preclinical studies suggested that mutations or loss of FBXW7 were associated with regorafenib and oxaliplatin resistance in CRC cell lines and gefitinib resistance in lung cancer cells[114][115][116][117].

Retrospective studies have indicated that a relatively low expression level of FBXW7 is an independent prognostic marker of poor survival for patients with hepatocellular carcinoma, lung adenocarcinoma and squamous cell carcinoma^{[118][116]}.

FGFR1 Amplification

Biological Impact

The fibroblast growth factor receptor 1 (FGFR1) gene encodes a receptor tyrosine kinase that plays crucial roles in cellular proliferation, survival, migration and angiogenesis[119][120]. Several studies have demonstrated that FGFR1 amplification correlates with FGFR1 overexpression [121][122][123][124][125][126]. Overexpression of FGFR1 has also been shown to enhance both ligand-dependent, and independent activation of downstream signaling pathways such as the phosphoinositide-3 kinase (PI3K) and the extracellular signal-regulated kinase 1/2 (ERK1/2) cascades[127][128][129]. Amplification of FGFR1 has been associated with early relapse, and poor survival, specifically in ER+ breast cancer^{[127][130]}, and may be associated with progression of breast cancer from in situ-to-invasive transition^[131].

FGFR1 amplifications have been reported in various types of cancer, including lung cancer^[132], breast cancer^[127], oral squamous cell carcinoma (OSCC)[133], prostate cancer[134], and esophageal cell carcinoma[135]. Besides, activating mutations (C381R and N330I) have been identified in giant cell lesions of the jaw^[136].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 9 of 52

Project ID: C22-M001-03785 Report No.: AA-22-07618_ONC Date Reported: Dec 27, 2022

ACTOnco® + Report

Therapeutic and prognostic relevance

Non-selective TKI-targeting inhibitors such as pazopanib, regorafenib, and ponatinib are multi-kinase inhibitors with inhibitory activities towards FGFR1^{[137][138]}.FGFR1 mutations, amplifications, and fusions, have been determined as an inclusion criteria for a trial examining pemigatinib efficacies in advanced malignancies including solid tumor, endometrial carcinoma, gastric carcinoma, multiple myeloma, myeloproliferative neoplasm, squamous cell lung carcinoma, and urothelial carcinoma (FIGHT-101; NCT02393248).

To date, Erdafitinib (BALVERSATM), is the first and only pan-FGFR kinase inhibitor approved by U.S. FDA, for the treatment of patients with locally advanced or metastatic bladder cancer with FGFR3 mutations or FGFR2/FGFR3 fusions. Addition of the erdafitinib to palbociclib/fulvestrant induced complete responses of FGFR1-amplified/ER+ patient-derived-xenografts^[139].

In a phase II clinical trial (TAPUR; NCT02693535), heavily pre-treated patients with metastatic breast cancer harboring FGFR1 amplification and/or mutation were treated with sunitinib, resulting in two partial responses (ORR=7%) and five stable diseases at 16+ weeks, with a disease control rate of 29% (Cancer Res (2021) 81 (13_Supplement): CT173.).

A case report of a patient with HR+, HER2- breast cancer harboring FGFR1 amplification responded well to pazopanib^[140]. Another clinical study demonstrated that three patients with metastatic colorectal cancer achieved partial responses to regorafenib treatment, and all of them harbored FGFR1 amplification^[141].

FGFR1 amplification has been selected as an inclusion criteria for the trial examining erdafitinib, ponatinib, regorafenib, sunitinib, and infigratinib efficacies in multiple tumor types (NCT03390504, NCT03473743, NCT03238196, NCT02272998, NCT02795156, NCT02693535, NCT04233567, NCT02150967).

Several small molecule FGFR inhibitors such as AZD-4547 and NVP-BGJ398 (Infigratinib) are under clinical evaluation, although mainly in the early stages of trials^[142]. Infigratinib has shown antitumor activity and manageable safety profile in patients with a variety of solid tumors, including FGFR1-amplified squamous cell lung cancer (sqNSCLC) and FGFR3-mutant bladder/urothelial cancers^[143]. Meanwhile, Dovitinib, a potent FGFR inhibitor, in combination with fulvestrant showed promising clinical activity in the FGF pathway-amplified postmenopausal patients with HR+, HER2-advanced breast cancer^[144].

In ER-positive breast cancer, FGFR1 amplification has been implicated as an acquired mechanism of resistance to endocrine therapies^[145], such as letrozole, 4-hydroxytamoxifen, and anastrozole-containing regimen^{[146][127][147]}. Besides, FGFR1/2 amplification or activating mutations were detected in ctDNA from post-progression ER-positive breast cancer patients after the fulvestrant plus palbociclib treatment. According to the subgroup analysis from MONALEESA-2 clinical trial, ER-positive breast cancer patients with FGFR1 amplification exhibited a shorter progression-free survival when treated with letrozole plus ribociclib^[139].

Meanwhile, in non-small cell lung carcinoma (NSCLC), FGFR1 is considered as an alternative acquired mechanism of resistance to EGFR tyrosine kinase inhibitors^[148]. For example, upregulated FGFR1-FGF2 autocrine loop was identified in a gefitinib-resistant cell model^[149], and focal FGFR1 amplification was observed in an NSCLC patient who developed resistance to osimertinib treatment^[150].

The BOLERO-2 clinical trial (everolimus plus exemestane) suggested that FGFR1 amplification and CCND1 amplification may be correlated with lessened progression-free survival (PFS) with the mTOR inhibitor everolimus^{[151][152]}.

In preclinical study, thyroid cancer cell with FGFR1 amplification is sensitive to lenvatinib treatment^{[153][154]}. Ponatinib, a multi-targeted tyrosine kinase inhibitor, demonstrated anti-proliferative activity in lung cancer, breast cancer, and Ewing's sarcoma cells overexpressing FGFR1^{[155][137][156]}.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

Project ID: C22-M001-03785 Report No.: AA-22-07618_ONC Date Reported: Dec 27, 2022

ACTOnco® + Report

FLCN Heterozygous deletion

Biological Impact

The FLCN gene encodes the tumor suppressor, Folliculin, a GTPase activating protein (GAP) for RagC/D GTPase proteins involved in amino acid sensing and signaling to mTORC1^[157]. FLCN has been implicated as a haploinsufficient gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological functions^{[158][159]}. Inactivation of the FLCN gene by mutation or deletion results in the activation of the mTOR pathway and AKT signaling^{[160][161]}. Germline mutation of the FLCN gene causes the Birt-Hogg-Dubé syndrome, a rare disorder that is characterized by benign hamartomatous skin lesions and an increased risk of pneumothorax and renal tumors^[162].

Therapeutic and prognostic relevance

In a prospective Phase 2 study, four anaplastic thyroid cancer (ATC)/ poorly differentiated thyroid cancer (PDTC) patients who had PI3K/mTOR/AKT alterations, including TSC2, FLCN or NF1, showed impressive progression-free survival (PFS) of 15.2 months after receiving everolimus^[163]. mTOR inhibition via rapamycin also demonstrated potential in inhibiting the growth of renal cells deficient in FLCN in the preclinical setting^[164].

NF2 Heterozygous deletion

Biological Impact

The neurofibromin (NF2) gene encodes the protein Merlin, a tumor suppressor that functions as a negative regulator of the PI3K/AKT/mTOR pathway^{[165][166][167]}. NF2 is a haploinsufficient tumor suppressor gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological functions^[168]. Inactivation germline mutations in the NF2 are associated with the hereditary neurofibromatosis type 2, a disorder characterized by the growth of noncancerous tumors in the nervous system^{[165][169]}. Somatic mutations or deletion of NF2 are frequently observed in human cancers, including 20-50% of pleural mesotheliomas^[170], 6% papillary renal cell carcinoma, 5% pancreas cancer, and 4% melanoma (cbioPortal; June 2015), and less frequently in other cancers^[171].

Therapeutic and prognostic relevance

Genomic alterations with activating effects on the mTOR signaling pathway have been identified to confer sensitivity to everolimus across multiple cancer types^{[172][151][152][173]}. There are at least two case studies indicating the clinical efficacy of everolimus in bladder cancer and urothelial carcinoma^{[174][175]}, both harboring NF2 truncating mutations. Preclinical evidence has shown the efficacy of MEK1/2 inhibitor selumetinib in KRAS-mutant thyroid cancer model with NF2 loss^[176].

Analysis of afatinib-plus-cetuximab-resistant biopsy specimens revealed a loss-of-function alteration in genes that modulate mTOR signaling pathway, including NF2 and TSC1^[177].

PTCH1 Heterozygous deletion

Biological Impact

The PTCH1 (protein patched homolog 1) gene encodes a multi-pass transmembrane receptor for sonic hedgehog (shh), a tumor suppressor that acts to repress shh signaling in the absence of ligand^[178]. Inactivation of PTCH1 results in hedgehog ligand-independent activation of SMO, causing a downstream activation of the pathway and lead to the neoplastic growth^{[179][180]}. Recurrent PTCH1 mutations have been reported in sporadic basal cell carcinoma (BCCs) and medulloblastoma^{[181][182][183][184]}. Germline PTCH1 mutations are associated with the nevoid basal cell carcinoma syndrome (NBCCS, Gorlin syndrome), predisposing patients to basal cell carcinoma and medulloblastoma^[182]. PTCH1 is a haploinsufficient tumor suppressor gene with one copy loss may be sufficient to promote tumor development in mice^{[179][185]}.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 11 of 52

Project ID: C22-M001-03785 Report No.: AA-22-07618_ONC Date Reported: Dec 27, 2022

ACTOnco® + Report

Therapeutic and prognostic relevance

Vismodegib and sonidegib are small molecule inhibitors of SMO approved by the U.S. FDA for the treatment of patients with basal cell carcinoma^{[186][187][188][189]}. A heavily pretreated patient with metastatic medulloblastoma harboring loss-of-heterozygosity and somatic mutation of PTCH1 showed rapid regression of the tumor after treated with vismodegib^[190]. Furthermore, a phase II study demonstrated that vismodegib treatment results in extended progression-free survival (PFS) in patients with loss-of-heterozygosity, SHH-driven medulloblastoma^[191]. In the phase II MyPathway trial, three advanced solid tumors patients harboring PTCH1 loss-of-function mutations had partial responses to vismodegib treatment^[192]. In a clinical study, two patients with Sonic Hedgehog (SHH) activated medulloblastoma harboring PTCH1 loss-of-function mutations demonstrated partial responses to sonidegib treatment^[193].

PTEN Heterozygous deletion

Biological Impact

The phosphatase and tensin homolog deleted on chromosome ten (PTEN) gene encodes a lipid/protein phosphatase that is important for the regulation of cell proliferation, survival, homologous recombination and maintenance of genomic integrity^[194][195]. PTEN acts as an essential tumor suppressor by antagonizing the PI3K/AKT/mTOR signaling pathway^[196]. PTEN is a haploinsufficient tumor suppressor gene, in which having only one copy of the wild-type allele does not produce enough protein product to execute wild-type functions^{[13][197][198]}. Germline loss-of-function PTEN mutations are found in approximately 80% of patients with Cowden syndrome, a disorder that is associated with high-penetrance breast and thyroid cancer^{[199][200][201]}. Somatic mutations or monoallelic loss of PTEN is regularly observed in a significant fraction of human cancers, including sporadic breast cancer, colon cancer, endometrial cancer, prostate cancer, and glioblastoma^{[202][203][204][205][206]}.

Therapeutic and prognostic relevance

Somatic loss of PTEN results in aberrant activation of PI3K/AKT/mTOR signaling pathway and provides a mechanistic rationale for PI3K pathway inhibitors treatment^{[207][208]}. Preclinical studies demonstrated that PTEN deficiency was associated with increased sensitivity to PI3K pathway inhibitors in selected cancer subtypes^{[209][210][211][212][213][214]}. Although early clinical data indicated that PTEN loss was associated with improved response and survival in solid tumor patients treated with mTORC1 inhibitor, everolimus^{[172][215][216]}, several phase II trials showed no clinical benefit of everolimus or temsirolimus treatment in patients with advanced solid tumors harboring PTEN loss^{[217][218][219]}.

Several groups found that PTEN loss was generally associated with poor response to trastuzumab therapy, whether this agent was administered in the neoadjuvant, adjuvant, or metastatic settings [220][221][222][223][224]. Also, loss of PTEN expression in advanced colorectal cancer (CRC) has been linked with resistance to anti-EGFR mAbs like cetuximab and panitumumab [225][226][227][228][229][230]. Preclinical studies showed that loss of PTEN expression in EGFR mutant cells was associated with decreased sensitivity to EGFR TKIs, erlotinib and gefitinib [231][232]. Inhibition of the PI3K/AKT/mTOR signal pathway has been shown to be an effective strategy to radiosensitize NSCLC cells harboring the EGFR activating mutation that acquires resistance to both TKIs due to PTEN loss or inactivation mutations [233]. Loss or biallelic inactivation of PTEN is associated with resistance to anti-PD-1 checkpoint blockade therapies, including pembrolizumab and nivolumab in melanoma and leiomyosarcoma patients [234][236][236].

PTEN loss of function mutation has been determined as an inclusion criterion for the trial evaluating olaparib efficacy in metastatic biliary tract cancer (NCT04042831); talazoparib efficacy in HER2-negative solid tumors (NCT02401347); rucaparib efficacy in prostate cancer (NCT02952534, NCT03533946), and niraparib efficacy in breast cancer (NCT04508803) or any malignancy (except prostate) cancer (NCT03207347). Clinical data also suggested that PTEN deficient cancers may be sensitive to olaparib^[237]. However, in a phase II trial (NCT02286687), 13 patients with advanced solid tumors harboring PTEN mutation or loss (by IHC) had limited response to talazoparib treatment; only one patient with PTEN mutation had prolonged SD (Mol Cancer Ther 2018;17(1 Suppl):Abstract nr A096; NCT02286687). Besides, in a phase I trial (NCT00749502), no association between loss of PTEN expression and the efficacy of niraparib was identified in patients with castration-resistant prostate cancer^[238].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 12 of 52

Project ID: C22-M001-03785 Report No.: AA-22-07618_ONC Date Reported: Dec 27, 2022

ACTOnco® + Report

In a preclinical study, PTEN null cancer cells were sensitive to rucaparib treatment in vitro[239].

RAD51C Heterozygous deletion

Biological Impact

The RAD51C (RAD51 paralog C) encodes a member of the RAD51 protein family involved in the late phase of homologous recombination DNA repair. Germline mutations in RAD51C have been shown to confer increased susceptibility to ovarian cancer and head and neck squamous cell carcinoma (HNSCC)^{[240][241][242][243][244]}. Amplification of RAD51C has been implicated in tumor progression^{[245][246]}. RAD51C is a haploinsufficient gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological function^[247].

Therapeutic and prognostic relevance

In May 2020, the U.S. FDA approved olaparib for the treatment of adult patients with metastatic castration-resistant prostate cancer (mCRPC) who carry mutations in homologous recombination repair (HRR) genes, including BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, RAD54L, and progressed following prior treatment with enzalutamide or abiraterone acetate^[54].

A preclinical study using gastric cancer xenograft model showed that RAD51C deficiency caused sensitivity to PARP inhibitor olaparib^[248].

RAD51C loss of function mutation has been determined as an inclusion criterion for the trials evaluating rucaparib efficacy in ovarian cancer or prostate cancer^{[55][89]}; talazoparib efficacy in HER2-negative breast cancer (NCT03148795), and niraparib efficacies in pancreatic cancer (NCT03553004).

RNF43 Homozygous deletion

Biological Impact

Ring finger protein 43 (RNF43) gene encodes a transmembrane E3 ubiquitin ligase that inhibits Wnt signaling pathway by downregulation of Frizzled receptor^{[249][250][251]}. Loss-of-function mutations of RNF43 have been reported in ovarian, colorectal, endometrial, gastric, cholangiocarcinoma, and pancreatic cancers^{[252][253][254][255][256][257][258]}. In colorectal cancer, mutations of RNF43 is mutually exclusive with APC truncation mutations^[253].

Therapeutic and prognostic relevance

Loss-of-function mutations of RNF43 was reported to correlate with higher recurrence rate in colorectal cancer^[259]. Lower expression of RNF43 has been reported to associate with shorter overall survival in gastric cancer^{[260][261]} and intrahepatic cholangiocarcinoma^[262].

SMAD4 Heterozygous deletion

Biological Impact

The SMAD family member 4 (SMAD4) gene encodes a transcription factor that acts as a downstream effector in the TGF- β signaling pathway. Upon phosphorylated and activated by serine-threonine receptor kinase, Smad4 is the Co-Smad which recruits other activated R-Smad proteins to the Smad transcriptional complex and regulate TGF- β -targeted genes^[263]. Smad4 has been identified as a haploinsufficient gene with one copy loss may lead to a weak protein expression and is insufficient to execute its original physiological function^[264]. SMAD4 germline mutations are associated with juvenile polyposis syndrome (JPS)^{[265][266][267][268]}. Somatic mutations of SMAD4 are commonly observed in pancreatic cancer^[269], colorectal cancer (CRC)^{[267][270][271]}, and less frequently seen in other cancers such as lung adenocarcinoma^[272], head and neck cancer^{[273][274]}, and cutaneous squamous cell carcinoma^[275].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 13 of 52

Project ID: C22-M001-03785 Report No.: AA-22-07618_ONC Date Reported: Dec 27, 2022

ACTOnco® + Report

Therapeutic and prognostic relevance

In Chinese patients with metastatic colorectal cancer, SMAD4 or NF1 mutations are suggested as a potential biomarker for poor prognosis to cetuximab-based therapy^[276]. Preclinical data demonstrated that depletion of SMAD4 by shRNA knockdown increased clonogenic survival and cetuximab resistance in HPV-negative head and neck squamous cell carcinoma cells^[277].

SMAD4 is also suggested as a predictive marker for 5-fluorouracil-based chemotherapy in colorectal cancer (CRC)^{[278][279]}. CRC patients with normal SMAD4 diploidy exhibited three-fold higher benefit of 5-FU/mitomycin-based adjuvant therapy when compared with those with SMAD4 deletion^[280].

Results from clinical and meta-analyses showed that loss of SMAD4 in CRC, pancreatic cancer was correlated with poor prognosis^{[281][282][283][284][285][286][287][288]}. In cervical cancer patients, weak cytoplasmic SMAD4 expression and absent nuclear SMAD4 expression were shown to be significantly associated with poor disease-free and overall 5-year survival^[289].

TSC1 Heterozygous deletion

Biological Impact

The tuberous sclerosis complex 1 (TSC1) gene encodes a tumor suppressor, hamartin, a key negative regulator of the mammalian target of rapamycin (mTOR) pathway^{[290][291]}. Mutations in TSC1/TSC2 tumor suppressor genes that result in inactivation of the complex are commonly found in patients with tuberous sclerosis^{[292][293][294]}, while LOH in TSC1/TSC2 has been identified in head and neck squamous cell carcinoma (HNSCC)^[295]and endometrial cancer^[296]. Loss of single TSC1 allele (haploinsufficiency) may provide a growth advantage to bladder epithelial cells, contributing to bladder cancer development^[297]. Both TSC1 and TSC2 mutations cause the autosomal dominant genetic disorder tuberous sclerosis complex (TSC), in which individuals develop a variety of benign but often progressive neoplasms^[298].

Therapeutic and prognostic relevance

Genomic alterations with activating effects of the mTOR signaling pathway (including deletion/inactivation of TSC1/TSC2) have been shown to confer sensitivity to everolimus across multiple neoplasms, such as bladder tumors^[174], gastric, sarcoma, thyroid cancer, and HNSCC^[173]. There were case reports demonstrated the efficacy of sirolimus in malignant uterine perivascular epithelioid cell tumors (PEComa) patients harboring mutations/deletions in TSC1 and TSC2 genes, and temsirolimus in PEComa patients with hyperactivated mTOR pathway. Genomic profiling analysis of GOG248, a Phase II study of temsirolimus or temsirolimus and alternating megestrol acetate and tamoxifen for advanced endometrial cancer showed that mutations in AKT1, TSC1 and TSC2 may predict clinical benefit from temsirolimus^[218]. Recent studies indicate that there are mTORC1-independent signaling pathways downstream of hamartin-tuberin, which may represent new therapeutic targets^[299].

Everolimus has been approval by the U.S. FDA for Tuberous Sclerosis Complex (TSC)-associated renal angiomyolipoma and Tuberous Sclerosis Complex (TSC)-associated subependymal giant cell astrocytoma (SEGA). This approval is based on the results from EXIST-1, EXIST-2, and Study 2485 trials (NCT00789828, NCT00790400, and NCT00411619).

TSC2 Heterozygous deletion

Biological Impact

The tuberous sclerosis complex 2 (TSC2) gene encodes a protein called tuberin, which interact with a protein called hamartin (encoded by the TSC1 gene). This hamartin-tuberin tumor suppressor complex plays a critical role in growth control as a negative regulator of the mammalian target of rapamycin (mTOR) pathway^{[290][291]}. Mutations in TSC1/TSC2 tumor suppressor genes that result in inactivation of the complex are commonly found in patients with tuberous sclerosis complex^{[292][293][294]}, while the loss of heterozygosity (LOH) in TSC1/TSC2 has been identified in head and neck

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **14** of **52**

Project ID: C22-M001-03785 Report No.: AA-22-07618_ONC Date Reported: Dec 27, 2022

ACTOnco® + Report

squamous cell carcinoma (HNSCC)^[295]and endometrial cancer^[296]. TSC2 deletion, splicing-mutant, and inactivating mutations such as A1141T, G305V, S1514X, and R1032X, has been identified in TSC2-null hepatocellular carcinoma (HCC) cell lines, patient-derived xenograft, and primary tumors. Mutations in the TSC1 and TSC2 genes cause the autosomal dominant genetic disorder tuberous sclerosis complex (TSC)^[298].

Therapeutic and prognostic relevance

Genomic alterations with activating effects of the mTOR signaling pathway (including deletion/inactivation of TSC1/TSC2) have been shown to confer sensitivity to everolimus across multiple cancer types, such as bladder cancer, gastric cancer, sarcoma, thyroid cancer, hepatocellular carcinoma (HCC) as well as head and neck squamous cell carcinoma (HNSCC)^{[174][173][300]}. Results from one Phase II study of advanced endometrial cancer showed that mutations in AKT1, TSC1, and TSC2 might predict sensitivity to temsirolimus^[218]. Recent studies indicated that there are mTORC1-independent signaling pathways downstream of hamartin-tuberin, which may represent new therapeutic targets^[299].

Everolimus has been approval by the U.S. FDA for Tuberous Sclerosis Complex (TSC)-associated renal angiomyolipoma and Tuberous Sclerosis Complex (TSC)-associated subependymal giant cell astrocytoma (SEGA). This approval is based on the results from EXIST-1, EXIST-2, and Study 2485 trials (NCT00789828, NCT00790400, and NCT00411619).

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 15 of 52

Project ID: C22-M001-03785 Report No.: AA-22-07618_ONC Date Reported: Dec 27, 2022

ACTOnco® + Report

US FDA-APPROVED DRUG(S)

Abemaciclib (VERZENIO)

Abemaciclib is a cyclin-dependent kinase 4/6 (CDK4/6) inhibitor. Abemaciclib is developed and marketed by Eli Lilly under the trade name VERZENIO.

- FDA Approval Summary of Abemaciclib (VERZENIO)

	Breast cancer (Approved on 2021/10/12)
MONARCH E	HR+/HER2-
NCT03155997	Abemaciclib + tamoxifen/aromatase inhibitor vs. Tamoxifen/aromatase inhibitor [IDFS at 36
	months(%): 86.1 vs. 79.0]
MONADOU 2[301]	Breast cancer (Approved on 2018/02/26)
MONARCH 3 ^[301] NCT02246621	HR+/HER2-
NC102240021	Abemaciclib + anastrozole/letrozole vs. Placebo + anastrozole/letrozole [PFS(M): 28.2 vs. 14.
MONADOU 0[77]	Breast cancer (Approved on 2017/09/28)
MONARCH 2 ^[77]	HR+/HER2-
NCT02107703	Abemaciclib + fulvestrant vs. Placebo + fulvestrant [PFS(M): 16.4 vs. 9.3]
MONARCH 1 ^[302] NCT02102490	Breast cancer (Approved on 2017/09/28)
	HR+/HER2-
	Abemaciclib [ORR(%): 19.7 vs. 17.4]

Dasatinib (SPRYCEL)

Dasatinib is an oral Bcr-Abl tyrosine kinase inhibitor (inhibits the "Philadelphia chromosome") and Src family tyrosine kinase inhibitor. Dasatinib is produced by Bristol-Myers Squibb and sold under the trade name SPRYCEL.

- FDA Approval Summary of Dasatinib (SPRYCEL)

	Chronic myeloid leukemia (Approved on 2010/10/28)
DASISION ^[303] NCT00481247	Chromic ingeloid ledkelina (Approved on 2010/10/20)
	Dasatinib vs. Imatinib [ORR(%): 76.8 vs. 66.2]
[304] NCT00123474	Chronic myeloid leukemia (Approved on 2007/11/08)
	Dasatinib [ORR(%): 63.0]
[305] NCT00123487	Acute lymphocytic leukemia (Approved on 2006/06/28)
	Dasatinib [ORR(%): 38.0]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 16 of 52

Project ID: C22-M001-03785 Report No.: AA-22-07618_ONC Date Reported: Dec 27, 2022

ACTOnco® + Report

Erdafitinib (BALVERSA)

Erdafitinib is a kinase inhibitor that binds to and inhibits enzymatic activity of FGFR1, FGFR2, FGFR3 and FGFR4 based on in vitro data. Erdafitinib also binds to RET, CSF1R, PDGFRA, PDGFRB, FLT4, KIT, and VEGFR2. Erdafitinib is developed and marketed by Janssen under the trade name BALVERSA.

- FDA Approval Summary of Erdafitinib (BALVERSA)

0, 1 51 6664	Bladder urothelial carcinoma (Approved on 2019/04/12)
Study BLC2001	FGFR2/3 fusion or FGFR3 mutation
NCT02365597	Erdafitinib [ORR(%): 32.2]

Everolimus (AFINITOR)

Everolimus, a derivative of sirolimus, works as an inhibitor of mammalian target of rapamycin complex 1 (mTORC1) and blocks mTORC1-mediated downstream signals for cell growth, proliferation, and survival. Everolimus is developed and marketed by Novartis under the trade name AFINITOR.

- FDA Approval Summary of Everolimus (AFINITOR)

RADIANT-4 ^[306] NCT01524783	Lung or gastrointestinal neuroendocrine tumor (Approved on 2016/02/26)
	Everolimus vs. Placebo [PFS(M): 11 vs. 3.9]
BOLERO-2 ^[307]	Breast cancer (Approved on 2012/07/20)
NCT00863655	ER+/HER2-
NC10000000	Everolimus + exemestane vs. Placebo + exemestane [PFS(M): 7.8 vs. 3.2]
	Tuberous sclerosis complex (tsc)-associated renal angiomyolipoma (Approved on
EXIST-2	2012/04/26)
NCT00790400	
	Everolimus vs. Placebo [ORR(%): 41.8 vs. 0]
RADIANT-3[215]	Pancreatic neuroendocrine tumor (Approved on 2011/05/05)
NCT00510068	
NC100310000	Everolimus vs. Placebo [PFS(M): 11 vs. 4.6]
EXIST-1 ^[308]	Subependymal giant cell astrocytoma (Approved on 2010/10/29)
NCT00789828	Everolimus vs. Placebo [ORR(%): 35.0]
DECODD 4[309]	Renal cell carcinoma (Approved on 2009/05/30)
RECORD-1 ^[309] NCT00410124	-
	Everolimus vs. Placebo [PFS(M): 4.9 vs. 1.9]

Infigratinib (TRUSELTIQ)

Infigratinib a kinase inhibitor. Infigratinib is developed and marketed by QED Therapeutics, Inc. under the trade name TRUSELTIQ.

- FDA Approval Summary of Infigratinib (TRUSELTIQ)

CBGJ398X2204	Cholangiocarcinoma (Approved on 2021/05/28)	
	FGFR2 fusion	
NCT02150967	Infigratinib [ORR(%): 23.0, DOR(M): 5]	

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 17 of 52

Project ID: C22-M001-03785 Report No.: AA-22-07618_ONC Date Reported: Dec 27, 2022

ACTOnco® + Report

Lenvatinib (LENVIMA)

Lenvatinib is a multiple kinase inhibitor against the VEGFR1, VEGFR2 and VEGFR3. Lenvatinib is marketed by Eisai Inc. under the trade name LENVIMA.

- FDA Approval Summary of Lenvatinib (LENVIMA)

KEYNOTE-775 (Study 309) NCT03517449	Endometrial carcinoma (Approved on 2021/07/22)
	MSS/pMMR
	Pembrolizumab + lenvatinib vs. Investigator's choice of doxorubicin or paclitaxel [PFS(M): 6.6
	vs. 3.8, OS(M): 17.4 vs. 12]
KEYNOTE 446	Endometrial carcinoma (Approved on 2019/09/17)
KEYNOTE-146	MSS/pMMR
NCT02501096	Pembrolizumab + lenvatinib [ORR(%): 38.3, DOR(M): NR]
DEEL EQT[310]	Hepatocellular carcinoma (Approved on 2018/08/16)
REFLECT ^[310]	
NCT01761266	Lenvatinib vs. Sorafenib [OS(M): 13.6 vs. 12.3]
OF LEOT[311]	Renal cell carcinoma (Approved on 2016/05/13)
SELECT ^[311]	
NCT01136733	Lenvatinib+ everolimus vs. Everolimus [PFS(M): 14.6 vs. 5.5]
SELECT ^[312] NCT01321554	Thyroid cancer (Approved on 2015/02/13)
	Lenvatinib vs. Placebo [PFS(M): 18.3 vs. 3.6]

Niraparib (ZEJULA)

Niraparib is an oral, small molecule inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase-1 and -2 (PARP-1, -2). Niraparib is developed and marketed by Tesaro under the trade name ZEJULA.

- FDA Approval Summary of Niraparib (ZEJULA)

PRIMA NCT02655016	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2020/04/29)
	Niraparib vs. Placebo [PFS (overall population)(M): 13.8 vs. 8.2]
NOVA ^[58] NCT01847274	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/03/27)
	Niraparib vs. Placebo [PFS (overall population)(M): 11.3 vs. 4.7]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 18 of 52

ACTOnco® + Report

Olaparib (LYNPARZA)

Olaparib is an oral, small molecule inhibitor of poly (ADP-ribose) polymerase-1, -2, and -3 (PARP-1, -2, -3). Olaparib is developed by KuDOS Pharmaceuticals and marketed by AstraZeneca under the trade name LYNPARZA.

- FDA Approval Summary of Olaparib (LYNPARZA)

OlympiA NCT02032823	Her2-negative high-risk early breast cancer (Approved on 2022/03/11)
	HER2-/gBRCA mutation
	Olaparib vs. Placebo [invasive disease-free survival (IDFS)(M):]
DDO5	Prostate cancer (Approved on 2020/05/19)
PROfound ^[54]	HRR genes mutation
NCT02987543	Olaparib vs. Enzalutamide or abiraterone acetate [PFS(M): 5.8 vs. 3.5]
DAOL A 4[49]	Ovarian cancer (Approved on 2020/05/08)
PAOLA-1 ^[49]	HRD+
NCT02477644	Olaparib + bevacizumab vs. Placebo + bevacizumab [PFS(M): 37.2 vs. 17.7]
DOI 0[53]	Pancreatic adenocarcinoma (Approved on 2019/12/27)
POLO ^[53]	gBRCA mutation
NCT02184195	Olaparib vs. Placebo [ORR(%): 23.0 vs. 12.0, PFS(M): 7.4 vs. 3.8]
SOLO-1 ^[48]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2018/12/19)
NCT01844986	gBRCA mutation or sBRCA mutation
NC101044900	Olaparib vs. Placebo [PFS(M): NR vs. 13.8]
Ol : A D [52]	Breast cancer (Approved on 2018/02/06)
OlympiAD ^[52] NCT02000622	HER2-/gBRCA mutation
NC102000622	Olaparib vs. Chemotherapy [PFS(M): 7 vs. 4.2]
SOLO-2/ENGOT-Ov21[313]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/08/17)
	gBRCA mutation
NCT01874353	Olaparib vs. Placebo [PFS(M): 19.1 vs. 5.5]
Study40 [314]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/08/17)
Study19 ^[314] NCT00753545	-
NC100/53545	Olaparib vs. Placebo [PFS(M): 8.4 vs. 4.8]

Palbociclib (IBRANCE)

Palbociclib is an oral, cyclin-dependent kinase (CDK) inhibitor specifically targeting CDK4 and CDK6, thereby inhibiting retinoblastoma (Rb) protein phosphorylation. Palbociclib is developed and marketed by Pfizer under the trade name IBRANCE.

- FDA Approval Summary of Palbociclib (IBRANCE)

PALOMA-2 ^[315] NCT01740427	Breast cancer (Approved on 2017/03/31)
	ER+/HER2-
	Palbociclib + letrozole vs. Placebo + letrozole [PFS(M): 24.8 vs. 14.5]
PALOMA-3 ^[316] NCT01942135	Breast cancer (Approved on 2016/02/19)
	ER+/HER2-
	Palbociclib + fulvestrant vs. Placebo + fulvestrant [PFS(M): 9.5 vs. 4.6]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 19 of 52

ACTOnco® + Report

Pazopanib (VOTRIENT)

Pazopanib is an oral, small molecule, multi-kinase inhibitor that targets receptor tyrosine kinase including vascular endothelial growth factor receptor-1, -2, -3 (VEGFR-1, -2, -3), platelet-derived growth factor receptor- α , - β (PDGFR- α , - β), c-kit, fibroblast growth factor-1 and -3 (FGFR-1, -3), thereby inhibiting angiogenesis. Pazopanib is developed and marketed by GlaxoSmithKline under the trade name VOTRIENT.

- FDA Approval Summary of Pazopanib (VOTRIENT)

PALETTE ^[317] NCT00753688	Sarcoma (Approved on 2016/04/26)
	Pazopanib vs. Placebo [PFS(M): 4.6 vs. 1.6]
VEG105192 ^[318]	Renal cell carcinoma (Approved on 2009/10/19)
NCT00334282	
	Pazopanib vs. Placebo [PFS(M): 9.2 vs. 4.2]

Ponatinib (ICLUSIG)

Ponatinib is an oral, small molecule, multi-kinase inhibitor designed to inhibit the activity of the tyrosine kinase ABL, including the T315I mutated ABL as well. Ponatinib is developed and marketed by ARIAD under the trade name ICLUSIG.

- FDA Approval Summary of Ponatinib (ICLUSIG)

PACE ^[319] NCT01207440	Chronic phase chronic myeloid leukemia (Approved on 2014/03/12)
	Ponatinib [MCyR(%): 55]
PACE ^[319] NCT01207440	Accelerated phase chronic myeloid leukemia (Approved on 2014/03/12)
	Ponatinib [MaHR(%): 57]
DA OF[319]	Blast phase chronic myeloid leukemia (Approved on 2014/03/12)
PACE ^[319] NCT01207440	-
	Ponatinib [MaHR(%): 31]
PACE ^[319] NCT01207440	Philadelphia-positive acute lymphoblastic leukemia (Approved on 2014/03/12)
	Ponatinib [MaHR(%): 41]

Regorafenib (STIVARGA)

Regorafenib is a multi-kinase inhibitor which targets angiogenic, stromal and oncogenic receptor tyrosine kinases (RTKs). Regorafenib is developed and marketed by Bayer HealthCare Pharmaceuticals under the trade name STIVARGA.

- FDA Approval Summary of Regorafenib (STIVARGA)

RESORCE ^[320] NCT01774344	Hepatocellular carcinoma, Hepatocellular carcinoma (Approved on 2017/04/27)
	-
	Bsc vs. Placebo [OS(M): 10.6 vs. 7.8]
GRID ^[321] NCT01271712	Gastrointestinal stromal tumor (Approved on 2013/02/25)
	Regorafenib vs. Placebo [PFS(M): 4.8 vs. 0.9]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 20 of 52

Project ID: C22-M001-03785 Report No.: AA-22-07618_ONC Date Reported: Dec 27, 2022

ACTOnco® + Report

CORRECT ^[322]	Colorectal cancer (Approved on 2012/09/27)
NCT01103323	-
NC101103323	Regorafenib vs. Placebo [OS(M): 6.4 vs. 5]

Ribociclib (KISQALI)

Ribociclib is a cyclin-dependent kinase (CDK) inhibitor specifically targeting cyclin D1/CDK4 and cyclin D3/CDK6, thereby inhibiting retinoblastoma (Rb) protein phosphorylation. Ribociclib is developed by Novartis and Astex Pharmaceuticals and marketed by Novartis under the trade name KISQALI.

- FDA Approval Summary of Ribociclib (KISQALI)

MONAL FEO A 0[76]	Breast cancer (Approved on 2017/03/13)
MONALEESA-2 ^[76]	HR+/HER2-
NCT01958021	Ribociclib vs. Letrozole [PFS(M): NR vs. 14.7]

Rucaparib (RUBRACA)

Rucaparib is an inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase-1, -2 and -3 (PARP-1, -2, -3). Rucaparib is developed and marketed by Clovis Oncology under the trade name RUBRACA.

- FDA Approval Summary of Rucaparib (RUBRACA)

TRITONO	Prostate cancer (Approved on 2020/05/15)
TRITON2 NCT02952534	gBRCA mutation or sBRCA mutation
NC102952554	Rucaparib [ORR(%): 44.0, DOR(M): NE]
	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2018/04/06)
ARIEL3[55]	-
NCT01968213	Rucaparib vs. Placebo [PFS (All)(M): 10.8 vs. 5.4, PFS (HRD)(M): 13.6 vs. 5.4, PFS
	(tBRCA)(M): 16.6 vs. 5.4]

Sonidegib (ODOMZO)

Sonidegib is a Hedgehog signaling pathway inhibitor by blocking its key component, smoothened (smo). Sonidegib is developed and marketed by Novartis under the trade name ODOMZO.

- FDA Approval Summary of Sonidegib (ODOMZO)

BOI T [188]	Basal cell carcinoma (Approved on 2015/07/24)
202.	
NCT01327053	Sonidegib [ORR(%): 58.0]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 21 of 52

Project ID: C22-M001-03785 Report No.: AA-22-07618_ONC Date Reported: Dec 27, 2022

ACTOnco® + Report

Sunitinib (SUTENT)

Sunitinib is an oral, small molecule, multi-kinase inhibitor that targets receptor tyrosine kinase including platelet-derived growth factor receptor- α , - β (PDGFR- α , - β), vascular endothelial growth factor receptors-1, -2, -3 (VEGFR-1, -2, -3), c-kit, Fms-like tyrosine kinase-3 (FLT3), colony stimulating factor receptor type 1 (CSF-1R), and the glial cell-line derived neurotrophic factor receptor (RET), thereby inhibiting angiogenesis. Sunitinib is developed and marketed by Pfizer under the trade name SUTENT.

- FDA Approval Summary of Sunitinib (SUTENT)

[323][324][325]	Pancreatic cancer (Approved on 2011/05/20)
NCT00428597	Sunitinib vs. Placebo [PFS(M): 10.2 vs. 5.4]
[326][327]	Renal cell carcinoma (Approved on 2007/02/02)
NCT00083889	Sunitinib vs. Ifn-α [PFS(W): 47.3 vs. 22]
[328][329][327]	Renal cell carcinoma (Approved on 2007/02/02)
NCT00077974	Sunitinib [ORR(%): 34.0]
[329][327]	Renal cell carcinoma (Approved on 2007/02/02)
NCT00054886	Sunitinib [ORR(%): 36.5]
[330]	Gastrointestinal stromal tumor (Approved on 2006/01/26)
NCT00075218	Sunitinib vs. Placebo [TTP(W): 27.3 vs. 6.4]

Talazoparib (TALZENNA)

Talazoparib is an inhibitor of poly (ADP-ribose) polymerase (PARP) enzymes, including PARP1 and PARP2. Talazoparib is developed and marketed by Pfizer under the trade name TALZENNA.

- FDA Approval Summary of Talazoparib (TALZENNA)

EMBRACA ^[59]	Breast cancer (Approved on 2018/10/16)
NCT01945775	HER2-/gBRCA mutation
NC101945775	Talazoparib vs. Chemotherapy [PFS(M): 8.6 vs. 5.6]

Temsirolimus (TORISEL)

Temsirolimus is a soluble ester of sirolimus (rapamycin, brand-name drug Rapamune) and functions as an inhibitor of mammalian target of rapamycin complex (mTORC). The inhibitory molecular mechanism is similar to Everolimus. Temsirolimus is developed by Wyeth Pharmaceuticals and marketed by Pfizer under the trade name TORISEL.

- FDA Approval Summary of Temsirolimus (TORISEL)

[331]	Renal cell carcinoma (Approved on 2007/05/30)	, and the second
	-	
NCT00065468	Temsirolimus vs. Ifn-α [OS(M): 10.9 vs. 7.3]	

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 22 of 52

Project ID: C22-M001-03785 Report No.: AA-22-07618_ONC Date Reported: Dec 27, 2022

ACTOnco® + Report

Vismodegib (ERIVEDGE)

Vismodegib is a cyclopamine-competitive antagonist and acts as a first-in-class Hedgehog signaling pathway inhibitor by blocking its key component smoothened (smo). Vismodegib is developed by Genentech and marketed by Roche under the trade name ERIVEDGE.

- FDA Approval Summary of Vismodegib (ERIVEDGE)

ERIVANCE BCC ^[186]	Basal cell carcinoma (Approved on 2012/01/30)
	-
NCT00833417	Vismodegib [ORR (mBCC)(%): 30.3, ORR (laBCC)(%): 42.9]

D=day; W=week; M=month

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 23 of 52

Project ID: C22-M001-03785 Report No.: AA-22-07618_ONC Date Reported: Dec 27, 2022

ACTOnco® + Report

ONGOING CLINICAL TRIALS

Trials were searched by applying filters: study status, patient's diagnosis, intervention, location and/or biomarker(s). Please visit https://clinicaltrials.gov to search and view for a complete list of open available and updated matched trials.

No trial has been found.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **24** of **52**

ACTOnco® + Report

SUPPLEMENTARY INFORMATION OF TESTING RESULTS DETAILED INFORMATION OF VARIANTS WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Exon	cDNA Change	Accession Number	COSMIC ID	Allele Frequency	Coverage
KMT2D	Splice donor	-	c.10355+1G>C	NM_003482	-	45.4%	1738
KMT2D	I1208fs	11	c.3623del	NM_003482	-	45.0%	131
TP53	E285*	8	c.853G>T	NM 000546	COSM44388	77.5%	306

- Copy Number Alterations

Observed copy number (CN) for each evaluated position is shown on the y-axis. Regions referred to as amplification or deletion are shown in color. Regions without significant changes are represented in gray.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **25** of **52**

ACTOnco® + Report

OTHER DETECTED VARIANTS

Gene	Amino Acid Change	Exon	cDNA Change	Accession Number	COSMIC ID	Allele Frequency	Coverage
ADGRA2	V431M	9	c.1291G>A	NM_032777	-	19.1%	2289
ALK	V163L	1	c.487G>T	NM_004304	-	50.0%	212
AXIN1	R739C	9	c.2215C>T	NM_003502	-	52.1%	702
CDK8	A430T	13	c.1288G>A	NM_001260	-	9.6%	2046
FANCD2	147M	3	c.141C>G	NM_001018115	-	91.1%	101
FLT4	A1206S	27	c.3616G>T	NM_182925	-	48.6%	514
LIG1	R94H	5	c.281G>A	NM_000234	COSM6701040	9.1%	552
MITF	G472E	10	c.1415G>A	NM_198159	COSM149418	12.2%	931
MUC16	Splice region	-	c.38948-3C>T	NM_024690	-	31.4%	2459
SDHB	P237S	7	c.709C>T	NM_003000	-	12.1%	1002
TNFRSF14	T218I	6	c.653C>T	NM_003820	-	92.1%	329

Note:

- This table enlists variants detected by the panel other than those with clinical relevance (reported in Testing Result section).

The clinical impact of a genetic variant is determined according to ACT Genomics in-house clinical knowledge database. A negative result does not necessarily indicate absence of biological effect on the tumor. Some variants listed here may possibly have preclinical data or may show potential clinical relevance in the future.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **26** of **52**

Project ID: C22-M001-03785 Report No.: AA-22-07618_ONC Date Reported: Dec 27, 2022

ACTOnco® + Report

TEST DETAILS

SPECIMEN RECEIVED AND PATHOLOGY REVIEW

Collection date: Dec 03, 2022Facility retrieved: 臺北榮總

H&E-stained section No.: S11193384A

Collection site: Urinary bladderExamined by: Dr. Yun-An Chen

- 1. The percentage of viable tumor cells in total cells in the whole slide (%): 90%
- 2. The percentage of viable tumor cells in total cells in the encircled areas in the whole slide (%): 90%
- 3. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the whole slide (%): 10%
- 4. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the encircled areas in the whole slide (%): 10%
- 5. Additional comment: N/A
- Manual macrodissection: Not performed
- The outline highlights the area of malignant neoplasm annotated by a pathologist.

RUN QC

Panel: ACTOnco®+

DNA test

- Mean Depth: 863x
- Target Base Coverage at 100x: 94%

RNA test

Average unique RNA Start Sites per control GSP2: 124

LIMITATIONS

- This test does not provide information of variant causality and does not detect variants in non-coding regions that could affect gene expression. This report does not report polymorphisms and we do not classify whether a mutation is germline or somatic.
 Variants identified by this assay were not subject to validation by Sanger or other technologies.
- 2. The possibility cannot be excluded that certain pathogenic variants detected by other sequencing tools may not be reported in the test because of technical limitation of bioinformatics algorithm or the NGS sequencing platform, e.g. low coverage.
- 3. This test has been designed to detect fusions in 13 genes sequenced. Therefore, fusion in genes not covered by this test would not be reported. For novel fusions detected in this test, Sanger sequencing confirmation is recommended if residue specimen is available.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 27 of 52

Project ID: C22-M001-03785 Report No.: AA-22-07618 ONC

Date Reported: Dec 27, 2022

NEXT-GENERATION SEQUENCING (NGS) METHODS

DNA test

Extracted genomic DNA was amplified using primers targeting coding exons of analyzed genes and subjected to library construction. Barcoded libraries were subsequently conjugated with sequencing beads by emulsion PCR and enriched using Ion Chef system. Sequencing was performed according to Ion Proton or Ion S5 sequencer protocol (Thermo Fisher Scientific).

Raw reads generated by the sequencer were mapped to the hg19 reference genome using the Ion Torrent Suite. Coverage depth was calculated using Torrent Coverage Analysis plug-in. Single nucleotide variants (SNVs) and short insertions/deletions (InDels) were identified using the Torrent Variant Caller plug-in. VEP (Variant Effect Predictor) was used to annotate every variant using databases from Clinvar, COSMIC and Genome Aggregation database. Variants with coverage ≥ 20, allele frequency ≥ 5% and actionable variants with allele frequency ≥ 2% were retained. This test provides uniform coverage of the targeted regions, enabling target base coverage at 100x ≥ 85% with a mean coverage ≥ 500x.

Variants reported in Genome Aggregation database with > 1% minor allele frequency (MAF) were considered as polymorphisms. ACT Genomics in-house database was used to determine technical errors. Clinically actionable and biologically significant variants were determined based on the published medical literature.

The copy number alterations (CNAs) were predicted as described below:

Amplicons with read counts in the lowest 5th percentile of all detectable amplicons and amplicons with a coefficient of variation ≥ 0.3 were removed. The remaining amplicons were normalized to correct the pool design bias. ONCOCNV (an established method for calculating copy number aberrations in amplicon sequencing data by Boeva et al., 2014) was applied for the normalization of total amplicon number, amplicon GC content, amplicon length, and technology-related biases, followed by segmenting the sample with a gene-aware model. The method was used as well for establishing the baseline of copy number variations.

Tumor mutational burden (TMB) was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The TMB calculation predicted somatic variants and applied a machine learning model with a cancer hotspot correction. TMB may be reported as "TMB-High", "TMB-Low" or "Cannot Be Determined". TMB-High corresponds to ≥ 7.5 mutations per megabase (Muts/Mb); TMB-Low corresponds to < 7.5 Muts/Mb. TMB is reported as "Cannot Be Determined" if the tumor purity of the sample is < 30%.

Classification of microsatellite instability (MSI) status is determined by a machine learning prediction algorithm. The change of a number of repeats of different lengths from a pooled microsatellite stable (MSS) baseline in > 400 genomic loci are used as the features for the algorithm. The final output of the results is either microsatellite Stable (MSS) or microsatellite instability high (MSI-H).

Extracted RNA was reverse-transcribed and subjected to library construction. Sequencing was performed according to Ion Proton or Ion S5 sequencer protocol (Thermo Fisher Scientific). To ensure sequencing quality for fusion variant analysis, the average unique RNA Start Sites (SS) per control Gene Specific Primer 2 (GSP 2) should be ≥ 10.

The fusion analysis pipeline aligned sequenced reads to the human reference genome, identified regions that map to noncontiguous regions of the genome, applied filters to exclude probable false-positive events and, annotated previously characterized fusion events according to Quiver Gene Fusion Database, a curated database owned and maintained by ArcherDX. In general, samples with detectable fusions need to meet the following criteria: (1) Number of unique start sites (SS) for the GSP2 ≥ 3; (2) Number of supporting reads spanning the fusion junction ≥ 5; (3) Percentage of supporting reads spanning the fusion junction ≥ 10%; (4) Fusions annotated in Quiver Gene Fusion Database.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 28 of 52

ACTOnco® + Report

DATABASE USED

- Reference genome: Human genome sequence hg19
- COSMIC v.92
- Genome Aggregation database r2.1.1
- ClinVar (version 20210404)
- ACT Genomics in-house database
- Quiver Gene Fusion Database version 5.1.18

Variant Analysis:

醫檢師陳韻仔 博士 Yun-Yu Chen Ph.D. 檢字第 015647 號 Yun Yu Chen

Sign Off

解剖病理專科醫師王業翰 Yeh-Han Wang M.D. 病解字第 000545 號

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 29 of 52

ACTOnco® + Report

GENE LIST SNV & CNV

ABCB1*	ABCC2*	ABCG2*	ABL1	ABL2	ADAMTS1	ADAMTS13	ADAMTS15	ADAMTS16	ADAMTS18	ADAMTS6	ADAMTS9
ADAMTSL1	ADGRA2	ADH1C*	AKT1	AKT2	AKT3	ALDH1A1*	ALK	AMER1	APC	AR	ARAF
ARID1A	ARID1B	ARID2	ASXL1	ATM	ATR	ATRX	AURKA	AURKB	AXIN1	AXIN2	AXL
B2M	BAP1	BARD1	BCL10	BCL2*	BCL2L1	BCL2L2*	BCL6	BCL9	BCOR	BIRC2	BIRC3
BLM	BMPR1A	BRAF	BRCA1	BRCA2	BRD4	BRIP1	BTG1	BTG2*	BTK	BUB1B	CALR
CANX	CARD11	CASP8	CBFB	CBL	CCNA1	CCNA	CCNB1	CCNB2	CCNB3	CCND1	CCND2
CCND3	CCNE1	CCNE2	CCNH	CD19	CD274	CD58	CD70*	CD79A	CD79B	CDC73	CDH1
CDK1	CDK12	CDK2	CDK4	CDK5	CDK6	CDK7	CDK8	CDK9	CDKN1A	CDKN1B	CDKN2A
CDKN2B	CDKN2C	CEBPA*	CHEK1	CHEK2	CIC	CREBBP	CRKL	CRLF2	CSF1R	CTCF	CTLA4
CTNNA1	CTNNB1	CUL3	CYLD	CYP1A1*	CYP2B6*	CYP2C19*	CYP2C8*	CYP2D6	CYP2E1*	CYP3A4*	CYP3A5*
DAXX	DCUN1D1	DDR2	DICER1	DNMT3A	DOT1L	DPYD	DTX1	E2F3	EGFR	EP300	EPCAM
EPHA2	ЕРНА3	EPHA5	ЕРНА7	EPHB1	ERBB2	ERBB3	ERBB4	ERCC1	ERCC2	ERCC3	ERCC4
ERCC5	ERG	ESR1	ESR2	ETV1	ETV4	EZH2	FAM46C	FANCA	FANCC	FANCD2	FANCE
FANCF	FANCG	FANCL	FAS	FAT1	FBXW7	FCGR2B	FGF1*	FGF10	FGF14	FGF19*	FGF23
FGF3	FGF4*	FGF6	FGFR1	FGFR2	FGFR3	FGFR4	FH	FLCN	FLT1	FLT3	FLT4
FOXL2*	FOXP1	FRG1	FUBP1	GATA1	GATA2	GATA3	GNA11	GNA13	GNAQ	GNAS	GREM1
GRIN2A	GSK3B	GSTP1*	GSTT1*	HGF	HIF1A	HIST1H1C*	HIST1H1E*	HNF1A	HR	HRAS*	HSP90AA1
HSP90AB1	HSPA4	HSPA5	IDH1	IDH2	IFNL3*	IGF1	IGF1R	IGF2	IKBKB	IKBKE	IKZF1
IL6	IL7R	INPP4B	INSR	IRF4	IRS1	IRS2*	JAK1	JAK2	JAK3	JUN*	KAT6A
KDM5A	KDM5C	KDM6A	KDR	KEAP1	КІТ	KMT2A	КМТ2С	KMT2D	KRAS	LCK	LIG1
LIG3	LMO1	LRP1B	LYN	MALT1	MAP2K1	MAP2K2	MAP2K4	MAP3K1	MAP3K7	MAPK1	МАРКЗ
MAX	MCL1	MDM2	MDM4	MED12	MEF2B	MEN1	MET	MITF	MLH1	MPL	MRE11
MSH2	MSH6	MTHFR*	MTOR	MUC16	MUC4	MUC6	МИТҮН	MYC	MYCL	MYCN	MYD88
NAT2*	NBN	NEFH	NF1	NF2	NFE2L2	NFKB1	NFKBIA	NKX2-1*	NOTCH1	NOTCH2	<i>NOTCH3</i>
NOTCH4	NPM1	NQ01*	NRAS	NSD1	NTRK1	NTRK2	NTRK3	PAK3	PALB2	PARP1	PAX5
PAX8	PBRM1	PDCD1	PDCD1LG2	PDGFRA	PDGFRB	PDIA3	PGF	PHOX2B*	PIK3C2B	PIK3C2G	PIK3C3
PIK3CA	PIK3CB	PIK3CD	PIK3CG	PIK3R1	PIK3R2	PIK3R3	PIM1	PMS1	PMS2	POLB	POLD1
POLE	PPARG	PPP2R1A	PRDM1	PRKAR1A	PRKCA	PRKCB	PRKCG	PRKCI	PRKCQ	PRKDC	PRKN
PSMB8	PSMB9	PSME1	PSME2	PSME3	PTCH1	PTEN	PTGS2	PTPN11	PTPRD	PTPRT	RAC1
RAD50	RAD51	RAD51B	RAD51C	RAD51D	RAD52	RAD54L	RAF1	RARA	RB1	RBM10	RECQL4
REL	RET	RHOA	RICTOR	RNF43	ROS1	RPPH1	RPTOR	RUNX1	RUNX1T1	RXRA	SDHA
SDHB	SDHC	SDHD	SERPINB3	SERPINB4	SETD2	SF3B1	SGK1	SH2D1A*	SLC19A1*	SLC22A2*	SLCO1B1*
SLCO1B3*	SMAD2	SMAD3	SMAD4	SMARCA4	SMARCB1	SMO	SOCS1*	SOX2*	SOX9	SPEN	SPOP
SRC	STAG2	STAT3	STK11	SUFU	SYK	SYNE1	TAF1	TAP1	TAP2	TAPBP	TBX3
TEK	TERT	TET1	TET2	TGFBR2	TMSB4X*	TNF	TNFAIP3	TNFRSF14	TNFSF11	TOP1	TP53
ILK											
TPMT*	TSC1	TSC2	TSHR	TYMS	U2AF1	UBE2A*	UBE2K	UBR5	UGT1A1*	USH2A	VDR*

^{*}Analysis of copy number alterations NOT available.

FUSION

			FCFD4									
	BRAF	ECED	FGFR1	FGFR2	FGFR3	MET	NRG1	NTRK1	NTRK2	NTRK3	RET	ROS1

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **30** of **52**

ACTOnco® + Report

APPENDIX

POSSIBLE THERAPEUTIC IMPLICATIONS FOR HETEROZYGOUS DELETION

Gene	Therapies	Possible effect
CDKN2A	Abemaciclib, Palbociclib, Ribociclib	sensitive
ARID1A	Dasatinib, Niraparib, Olaparib, Rucaparib, Talazoparib	sensitive
FBXW7	Everolimus, Temsirolimus	sensitive
FLCN	Everolimus, Temsirolimus	sensitive
NF2	Everolimus, Temsirolimus	sensitive
TSC1	Everolimus, Temsirolimus	sensitive
TSC2	Everolimus, Temsirolimus	sensitive
BRCA2	Niraparib, Olaparib, Rucaparib, Talazoparib	sensitive
CHEK2	Niraparib, Olaparib, Rucaparib, Talazoparib	sensitive
ERCC1	Niraparib, Olaparib, Rucaparib, Talazoparib	sensitive
PTEN	Niraparib, Olaparib, Rucaparib, Talazoparib	sensitive
RAD51C	Niraparib, Olaparib, Rucaparib, Talazoparib	sensitive
PTCH1	Sonidegib, Vismodegib	sensitive
SMAD4	Cetuximab	resistant
PTEN	Erlotinib, Gefitinib, Cetuximab, Panitumumab, Trastuzumab	resistant
FBXW7	Gefitinib, Regorafenib	resistant

SIGNALING PATHWAYS AND MOLECULAR-TARGETED AGENTS

1: Everolimus, Temsirolimus

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 31 of 52

ACTOnco® + Report

1: Palbociclib, Ribociclib, Abemaciclib

Receptor Tyrosine Kinase/Growth Factor Signalling

1: Ponatinib, Lenvatinib, Pazopanib, Erdafitinib, Infigratinib; 2: Dasatinib, Ponatinib, Pazopanib, Erdafitinib, Sunitinib, Regorafenib; 3: Ponatinib, Lenvatinib, Pazopanib, Erdafitinib, Sunitinib; 4: Ponatinib, Sunitinib, Lenvatinib, Pazopanib,

Erdafitinib; 5: Sunitinib; 6: Dasatinib, Regorafenib, Ponatinib, Lenvatinib, Pazopanib, Erdafitinib, Sunitinib

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-501

AG4-QP4001-02(07) page 32 of 52

ACTOnco® + Report

1: Olaparib, Niraparib, Rucaparib, Talazoparib; 2: Ponatinib

1: Sonidegib, Vismodegib

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-501

AG4-QP4001-02(07) page 33 of 52

Project ID: C22-M001-03785 Report No.: AA-22-07618_ONC Date Reported: Dec 27, 2022

ACTOnco® + Report

DISCLAIMER

法律聲明

本檢驗報告僅提供專業醫療參考,結果需經專業醫師解釋及判讀。基因突變資訊非必具備藥物或治療有效性指標,反之亦然。本檢驗報 告提供之用藥指引不聲明或保證其臨床有效性,反之亦然。本基因檢測方法係由本公司研究開發,已經過有效性測試。

本檢驗報告非經本公司許可,不得私自變造、塗改,或以任何方式作為廣告及其他宣傳之用途。

本公司於提供檢驗報告後,即已完成本次契約義務,後續之報告解釋、判讀及用藥、治療,應自行尋求相關專業醫師協助,若需將報告移件其他醫師,本人應取得該醫師同意並填寫移件申請書,主動告知行動基因,行動基因僅能配合該醫師意願與時間提供醫師解說。

醫療決策需由醫師決定

任何治療與用藥需經由醫師在考慮病患所有健康狀況相關資訊包含健檢、其他檢測報告和病患意願後,依照該地區醫療照護標準由醫師獨立判斷。醫師不應僅依據單一報告結果(例如本檢測或本報告書內容)做決策。

基因突變與用藥資訊並非依照有效性排序

本報告中列出之生物標記變異與藥物資訊並非依照潛在治療有效性排序。

證據等級

藥物潛在臨床效益(或缺乏潛在臨床效益)的實證證據是依據至少一篇臨床療效個案報告或臨床前試驗做為評估。本公司盡力提供適時及 準確之資料,但由於醫學科技之發展日新月異,本公司不就本報告提供的資料是否為準確、適宜或最新作保證。

責任

本檢驗報告僅提供專業醫療參考,本公司及其員工不對任何由使用本報告之內容引起的直接、間接、特殊、連帶或衍生的損失或損害承擔責任。

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **34** of **52**

Project ID: C22-M001-03785 Report No.: AA-22-07618 ONC

Date Reported: Dec 27, 2022

ACTOnco® + Report

REFERENCE

- PMID: 25998713; 2015, Nat Rev Cancer; 15(6):334-46 1. Hijacked in cancer: the KMT2 (MLL) family of methyltransferases.
- PMID: 24476821; 2014, Nature;507(7492):315-22 Comprehensive molecular characterization of urothelial bladder carcinoma.
- PMID: 21804550; 2011, Nat Genet; 43(9):830-7 Analysis of the coding genome of diffuse large B-cell lymphoma.
- PMID: 21796119: 2011. Nature: 476(7360): 298-303 4. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma.
- PMID: 28609655; 2017, Cancer Cell;31(6):755-770.e6 MLL2, Not MLL1, Plays a Major Role in Sustaining MLL-Rearranged Acute Myeloid Leukemia.
- PMID: 26883360; 2016, Genes Dev;30(4):408-20 Mutation of cancer driver MLL2 results in transcription stress and genome instability.
- PMID: 29627316; 2018, Clin Lung Cancer; 19(4):e489-e501 7 KMT2D Mutation Is Associated With Poor Prognosis in Non-Small-Cell Lung Cancer.
- PMID: 27280393; 2016, Cancer Res;76(16):4861-71 Reduced Expression of Histone Methyltransferases KMT2C and KMT2D Correlates with Improved Outcome in Pancreatic Ductal Adenocarcinoma.
- PMID: 29532228; 2018, J Cancer Res Clin Oncol;144(6):1025-1035 High MLL2 expression predicts poor prognosis and promotes tumor progression by inducing EMT in esophageal squamous cell carcinoma.
- PMID: 29269867; 2018, Oncogene;37(10):1354-1368 10. Histone methyltransferase KMT2D sustains prostate carcinogenesis and metastasis via epigenetically activating LIFR and KLF4.
- PMID: 29483845; 2018, Cancer Cell Int;18():26 MLL2/KMT2D and MLL3/KMT2C expression correlates with disease progression and response to imatinib mesylate in chronic myeloid leukemia.
- PMID: 24739573; 2014, Nat Rev Cancer;14(5):359-70 12. Unravelling mechanisms of p53-mediated tumour suppression.
- 13. PMID: 21125671; 2011, J Pathol;223(2):137-46 Haplo-insufficiency: a driving force in cancer.
- PMID: 27998224: 2016. J Clin Oncol:34(36):4354-4361 14. Phase II Study of WEE1 Inhibitor AZD1775 Plus Carboplatin in Patients With TP53-Mutated Ovarian Cancer Refractory or Resistant to First-Line Therapy Within 3 Months.
- 15. PMID: 26646755; 2016, Ann Oncol;27(3):539-43 TP53 mutational status is predictive of pazopanib response in advanced sarcomas.
- PMID: 25669829: 2015. Ann Oncol:26(5):1012-8 16. Phase I study of pazopanib and vorinostat: a therapeutic approach for inhibiting mutant p53-mediated angiogenesis and facilitating mutant p53 degradation.
- PMID: 27466356; 2016, Mol Cancer Ther;15(10):2475-2485 TP53 Alterations Correlate with Response to VEGF/VEGFR Inhibitors: Implications for Targeted Therapeutics.
- 18. PMID: 23670029; 2013, Oncotarget;4(5):705-14 P53 mutations in advanced cancers: clinical characteristics, outcomes, and correlation between progression-free survival and bevacizumab-

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 35 of 52

Project ID: C22-M001-03785 Report No.: AA-22-07618_ONC Date Reported: Dec 27, 2022

ACTOnco® + Report

containing therapy.

- PMID: 17145525; 2006, Semin Oncol;33(5 Suppl 10):S8-14
 Bevacizumab in combination with chemotherapy: first-line treatment of patients with metastatic colorectal cancer.
- 20. PMID: 21399868; 2011, Int J Oncol;38(5):1445-52 p53, HER2 and tumor cell apoptosis correlate with clinical outcome after neoadjuvant bevacizumab plus chemotherapy in breast cancer.
- PMID: 20549698; 2011, Int J Cancer;128(8):1813-21
 p53 status influences response to tamoxifen but not to fulvestrant in breast cancer cell lines.
- PMID: 10786679; 2000, Cancer Res;60(8):2155-62
 Complete sequencing of TP53 predicts poor response to systemic therapy of advanced breast cancer.
- PMID: 25672981; 2015, Cancer Res;75(7):1187-90
 VEGF-A Expression Correlates with TP53 Mutations in Non-Small Cell Lung Cancer: Implications for Antiangiogenesis Therapy.
- 24. PMID: 10757798; 2000, Mol Cell Biol;20(9):3137-46
 The human SWI-SNF complex protein p270 is an ARID family member with non-sequence-specific DNA binding activity.
- PMID: 25387058; 2015, Annu Rev Pathol;10():145-71
 SWI/SNF chromatin remodeling and human malignancies.
- PMID: 23208470; 2013, Cancer Discov;3(1):35-43
 ARID1A mutations in cancer: another epigenetic tumor suppressor?
- PMID: 20826764; 2010, Science; 330(6001):228-31
 Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma.
- PMID: 20942669; 2010, N Engl J Med;363(16):1532-43
 ARID1A mutations in endometriosis-associated ovarian carcinomas.
- PMID: 21590771; 2011, J Pathol;224(3):328-33
 Loss of BAF250a (ARID1A) is frequent in high-grade endometrial carcinomas.
- PMID: 21412130; 2011, Am J Surg Pathol;35(5):625-32
 Mutation and loss of expression of ARID1A in uterine low-grade endometrioid carcinoma.
- PMID: 22037554; 2011, Nat Genet;43(12):1219-23
 Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer.
- PMID: 26125128; 2015, Expert Opin Ther Targets;19(11):1419-22
 Potential therapeutic targets in ARID1A-mutated cancers.
- PMID: 29093822; 2017, Gynecol Oncol Res Pract;4():17
 EZH2 inhibition in ARID1A mutated clear cell and endometrioid ovarian and endometrioid endometrial cancers.
- PMID: 24979463; 2014, Oncotarget;5(14):5295-303
 Loss of ARID1A expression sensitizes cancer cells to PI3K- and AKT-inhibition.
- PMID: 27364904; 2016, Mol Cancer Ther;15(7):1472-84
 Synthetic Lethal Targeting of ARID1A-Mutant Ovarian Clear Cell Tumors with Dasatinib.
- PMID: 27172896; 2016, Clin Cancer Res;22(21):5238-5248
 Loss of ARID1A Activates ANXA1, which Serves as a Predictive Biomarker for Trastuzumab Resistance.
- PMID: 22101352; 2012, Mod Pathol;25(2):282-8
 Loss of ARID1A expression is related to shorter progression-free survival and chemoresistance in ovarian clear cell carcinoma.
- 38. PMID: 24459582; 2014, J Gynecol Oncol;25(1):58-63

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 36 of 52

Project ID: C22-M001-03785 Report No.: AA-22-07618_ONC Date Reported: Dec 27, 2022

ACTOnco® + Report

Decreased ARID1A expression is correlated with chemoresistance in epithelial ovarian cancer.

- PMID: 26770240; 2015, J Breast Cancer;18(4):339-46
 Loss of Tumor Suppressor ARID1A Protein Expression Correlates with Poor Prognosis in Patients with Primary Breast Cancer.
- PMID: 21889920; 2012, Cancer Epidemiol;36(3):288-93
 Frequent low expression of chromatin remodeling gene ARID1A in breast cancer and its clinical significance.
- 41. PMID: 25311944; 2014, Hum Pathol;45(12):2430-6 Immunohistochemical detection of ARID1A in colorectal carcinoma: loss of staining is associated with sporadic microsatellite unstable tumors with medullary histology and high TNM stage.
- PMID: 25561809; 2014, World J Gastroenterol;20(48):18404-12
 Clinicopathologic and prognostic relevance of ARID1A protein loss in colorectal cancer.
- PMID: 26069190; 2015, Cancer Discov;5(7):752-67
 ARID1A Deficiency Impairs the DNA Damage Checkpoint and Sensitizes Cells to PARP Inhibitors.
- PMID: 11239455; 2001, Mol Cell;7(2):263-72
 BRCA2 is required for homology-directed repair of chromosomal breaks.
- PMID: 17597348; 2007, Ann Surg Oncol;14(9):2510-8
 Heterogenic loss of the wild-type BRCA allele in human breast tumorigenesis.
- PMID: 22193408; 2011, Nat Rev Cancer;12(1):68-78
 BRCA1 and BRCA2: different roles in a common pathway of genome protection.
- 47. PMID: 27283171; 2016, J Natl Compr Canc Netw;14(6):795-806
 The Relevance of Hereditary Cancer Risks to Precision Oncology: What Should Providers Consider When Conducting Tumor Genomic Profiling?
- PMID: 30345884; 2018, N Engl J Med;379(26):2495-2505
 Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer.
- PMID: 31851799; 2019, N Engl J Med;381(25):2416-2428
 Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer.
- PMID: 28884698; 2017, Lancet Oncol;18(9):e510
 Correction to Lancet Oncol 2017; 18: 1274-84.
- 51. PMID: 22452356; 2012, N Engl J Med;366(15):1382-92
 Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer.
- PMID: 28578601; 2017, N Engl J Med;377(6):523-533
 Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation.
- PMID: 31157963; 2019, N Engl J Med;381(4):317-327
 Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer.
- PMID: 32343890; 2020, N Engl J Med;382(22):2091-2102
 Olaparib for Metastatic Castration-Resistant Prostate Cancer.
- 55. PMID: 28916367; 2017, Lancet;390(10106):1949-1961
 Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial.
- 56. PMID: 28882436; 2017, Gynecol Oncol;147(2):267-275
 Antitumor activity and safety of the PARP inhibitor rucaparib in patients with high-grade ovarian carcinoma and a germline or somatic BRCA1 or BRCA2 mutation: Integrated analysis of data from Study 10 and ARIEL2.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 37 of 52

Project ID: C22-M001-03785 Report No.: AA-22-07618_ONC Date Reported: Dec 27, 2022

ACTOnco® + Report

- PMID: 31562799; 2019, N Engl J Med;381(25):2391-2402
 Niraparib in Patients with Newly Diagnosed Advanced Ovarian Cancer.
- PMID: 27717299; 2016, N Engl J Med;375(22):2154-2164
 Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer.
- PMID: 30110579; 2018, N Engl J Med;379(8):753-763
 Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation.
- 60. PMID: 17055429; 2006, Cell;127(2):265-75
 The regulation of INK4/ARF in cancer and aging.
- 61. PMID: 8521522; 1995, Cell;83(6):993-1000

 Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest.
- 62. PMID: 9529249; 1998, Cell;92(6):725-34
 ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways.
- 63. PMID: 16115911; 2005, Clin Cancer Res;11(16):5740-7
 Comprehensive analysis of CDKN2A status in microdissected urothelial cell carcinoma reveals potential haploinsufficiency, a high frequency of homozygous co-deletion and associations with clinical phenotype.
- PMID: 7550353; 1995, Nat Genet;11(2):210-2
 Frequency of homozygous deletion at p16/CDKN2 in primary human tumours.
- 65. PMID: 24089445; 2013, Clin Cancer Res;19(19):5320-8 The cell-cycle regulator CDK4: an emerging therapeutic target in melanoma.
- 66. PMID: 27849562; 2017, Gut;66(7):1286-1296
 Palbociclib (PD-0332991), a selective CDK4/6 inhibitor, restricts tumour growth in preclinical models of hepatocellular carcinoma.
- 67. PMID: 25524798; 2015, Lancet Oncol;16(1):25-35

 The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study.
- 68. PMID: 28283584; 2017, Oncologist;22(4):416-421
 Clinical Benefit in Response to Palbociclib Treatment in Refractory Uterine Leiomyosarcomas with a Common CDKN2A Alteration.
- 69. PMID: 27217383; 2016, Cancer Discov;6(7):740-53 Efficacy and Safety of Abemaciclib, an Inhibitor of CDK4 and CDK6, for Patients with Breast Cancer, Non-Small Cell Lung Cancer, and Other Solid Tumors.
- PMID: 26715889; 2015, Curr Oncol;22(6):e498-501
 Does CDKN2A loss predict palbociclib benefit?
- 71. PMID: 25501126; 2015, Clin Cancer Res;21(5):995-1001
 CDK 4/6 inhibitor palbociclib (PD0332991) in Rb+ advanced breast cancer: phase II activity, safety, and predictive biomarker assessment.
- 72. PMID: 27542767; 2016, Clin Cancer Res;22(23):5696-5705
 A Phase I Study of the Cyclin-Dependent Kinase 4/6 Inhibitor Ribociclib (LEE011) in Patients with Advanced Solid Tumors and Lymphomas.
- 73. PMID: 24797823; 2014, Oncologist;19(6):616-22
 Enabling a genetically informed approach to cancer medicine: a retrospective evaluation of the impact of comprehensive tumor profiling using a targeted next-generation sequencing panel.
- 74. PMID: 35050752; 2020, JCO Precis Oncol;4():757-766
 Palbociclib in Patients With Non-Small-Cell Lung Cancer With CDKN2A Alterations: Results From the Targeted Agent and Profiling Utilization Registry Study.
- 75. PMID: 35100714; 2019, JCO Precis Oncol;3():1-8

CAP ACCREDITED

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 38 of 52

Project ID: C22-M001-03785 Report No.: AA-22-07618_ONC Date Reported: Dec 27, 2022

ACTOnco® + Report

Palbociclib in Patients With Pancreatic and Biliary Cancer With CDKN2A Alterations: Results From the Targeted Agent and Profiling Utilization Registry Study.

- PMID: 27717303; 2016, N Engl J Med;375(18):1738-1748
 Ribociclib as First-Line Therapy for HR-Positive, Advanced Breast Cancer.
- 77. PMID: 28580882; 2017, J Clin Oncol;35(25):2875-2884
 MONARCH 2: Abemaciclib in Combination With Fulvestrant in Women With HR+/HER2- Advanced Breast Cancer Who Had Progressed While Receiving Endocrine Therapy.
- 78. PMID: 26728409; 2016, Clin Cancer Res;22(1):122-33

 Coadministration of Trametinib and Palbociclib Radiosensitizes KRAS-Mutant Non-Small Cell Lung Cancers In Vitro and In Vivo.
- 79. PMID: 31401335; 2019, Transl Oncol;12(11):1425-1431
 Concomitant Genetic Alterations are Associated with Worse Clinical Outcome in EGFR Mutant NSCLC Patients Treated with Tyrosine Kinase Inhibitors.
- PMID: 21088254; 2011, Clin Cancer Res;17(3):401-5
 Tumor suppressor CHK2: regulator of DNA damage response and mediator of chromosomal stability.
- PMID: 15261141; 2004, Cancer Cell;6(1):45-59
 Chk1 is haploinsufficient for multiple functions critical to tumor suppression.
- PMID: 15539958; 2005, Cell Cycle;4(1):131-9
 Chk1 is essential for tumor cell viability following activation of the replication checkpoint.
- 83. PMID: 23296741; 2013, Fam Cancer;12(3):473-8
 The risk of gastric cancer in carriers of CHEK2 mutations.
- 84. PMID: 24713400; 2014, Hered Cancer Clin Pract; 12(1):10
 A risk of breast cancer in women carriers of constitutional CHEK2 gene mutations, originating from the North Central Poland.
- PMID: 25583358; 2015, Int J Cancer;137(3):548-52
 CHEK2 mutations and the risk of papillary thyroid cancer.
- PMID: 12052256; 2002, Breast Cancer Res;4(3):R4
 Mutation analysis of the CHK2 gene in breast carcinoma and other cancers.
- PMID: 15125777; 2004, Mol Cancer;3():14
 CHK2 kinase expression is down-regulated due to promoter methylation in non-small cell lung cancer.
- 88. PMID: 33119476; 2020, J Clin Oncol;38(36):4274-4282
 TBCRC 048: Phase II Study of Olaparib for Metastatic Breast Cancer and Mutations in Homologous Recombination-Related Genes.
- 89. PMID: 32086346; 2020, Clin Cancer Res;26(11):2487-2496
 Non-BRCA DNA Damage Repair Gene Alterations and Response to the PARP Inhibitor Rucaparib in Metastatic Castration-Resistant Prostate
 Cancer: Analysis From the Phase II TRITON2 Study.
- PMID: 19023283; 2008, Nat Rev Mol Cell Biol;9(12):958-70
 Transcription-coupled DNA repair: two decades of progress and surprises.
- 91. PMID: 21952828; 2012, Cell Mol Life Sci;69(5):727-40
 Haploinsufficiency in mouse models of DNA repair deficiency: modifiers of penetrance.
- 92. PMID: 12114432; 2002, Clin Cancer Res;8(7):2286-91
 Low ERCC1 expression correlates with prolonged survival after cisplatin plus gemcitabine chemotherapy in non-small cell lung cancer.
- 93. PMID: 18024864; 2007, J Clin Oncol;25(33):5172-9
 ERCC1 genotype and phenotype in epithelial ovarian cancer identify patients likely to benefit from paclitaxel treatment in addition to platinum-based therapy.

CAP

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 39 of 52

Project ID: C22-M001-03785 Report No.: AA-22-07618_ONC Date Reported: Dec 27, 2022

ACTOnco® + Report

- PMID: 1433335; 1992, J Natl Cancer Inst;84(19):1512-7
 ERCC1 and ERCC2 expression in malignant tissues from ovarian cancer patients.
- 95. PMID: 8040325; 1994, J Clin Invest;94(2):703-8
 Messenger RNA levels of XPAC and ERCC1 in ovarian cancer tissue correlate with response to platinum-based chemotherapy.
- 96. PMID: 23275151; 2013, Carcinogenesis;34(4):739-49
 PARP inhibition selectively increases sensitivity to cisplatin in ERCC1-low non-small cell lung cancer cells.
- 97. PMID: 23934192; 2013, Oncogene;32(47):5377-87
 A high-throughput screen identifies PARP1/2 inhibitors as a potential therapy for ERCC1-deficient non-small cell lung cancer.
- PMID: 30589644; 2019, J Clin Invest;129(3):1211-1228
 PARP inhibition enhances tumor cell-intrinsic immunity in ERCC1-deficient non-small cell lung cancer.
- 99. PMID: 25774912; 2015, PLoS One;10(3):e0119614
 Protein expression of DNA damage repair proteins dictates response to topoisomerase and PARP inhibitors in triple-negative breast cancer.
- 100. PMID: 15498494; 2004, Curr Biol;14(20):1852-7
 A nucleolar isoform of the Fbw7 ubiquitin ligase regulates c-Myc and cell size.
- PMID: 15103331; 2004, EMBO J;23(10):2116-25
 Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7.
- 102. PMID: 16023596; 2005, Cancer Cell;8(1):25-33
 The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase.
- PMID: 11533444; 2001, Science;294(5540):173-7
 Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase.
- 104. PMID: 11461910; 2001, J Biol Chem;276(38):35847-53
 The Notch intracellular domain is ubiquitinated and negatively regulated by the mammalian Sel-10 homolog.
- 105. PMID: 11425854; 2001, J Biol Chem;276(37):34371-8
 Functional interaction between SEL-10, an F-box protein, and the nuclear form of activated Notch1 receptor.
- 106. PMID: 16863506; 2006, Cancer Sci;97(8):729-36 Fbxw7 contributes to tumor suppression by targeting multiple proteins for ubiquitin-dependent degradation.
- 107. PMID: 18787170; 2008, Science;321(5895):1499-502 FBXW7 targets mTOR for degradation and cooperates with PTEN in tumor suppression.
- 108. PMID: 20484041; 2010, Cancer Res;70(11):4728-38
 The Fbw7 tumor suppressor targets KLF5 for ubiquitin-mediated degradation and suppresses breast cell proliferation.
- PMID: 21368833; 2011, Nature; 471(7336):104-9
 SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction.
- 110. PMID: 18094723; 2008, Nat Rev Cancer;8(2):83-93
 FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation.
- 111. PMID: 23032637; 2012, Cancer Inform;11():157-71 Haploinsufficiency of Tumor Suppressor Genes is Driven by the Cumulative Effect of microRNAs, microRNA Binding Site Polymorphisms and microRNA Polymorphisms: An In silico Approach.
- 112. PMID: 24586741; 2014, PLoS One;9(2):e89388
 FBXW7 mutations in patients with advanced cancers: clinical and molecular characteristics and outcomes with mTOR inhibitors.
- 113. PMID: 24360397; 2014, Lung Cancer;83(2):300-1

CAP

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **40** of **52**

Project ID: C22-M001-03785 Report No.: AA-22-07618_ONC Date Reported: Dec 27, 2022

ACTOnco® + Report

Temsirolimus therapy in a patient with lung adenocarcinoma harboring an FBXW7 mutation.

- 114. PMID: 27399335; 2017, Oncogene;36(6):787-796
 FBW7 mutations mediate resistance of colorectal cancer to targeted therapies by blocking Mcl-1 degradation.
- 115. PMID: 25860929; 2015, Oncotarget;6(11):9240-56
 FBXW7-mutated colorectal cancer cells exhibit aberrant expression of phosphorylated-p53 at Serine-15.
- 116. PMID: 29633504; 2018, Mol Oncol;12(6):883-895
 FBXW7 deletion contributes to lung tumor development and confers resistance to gefitinib therapy.
- 117. PMID: 28522751; 2017, Cancer Res;77(13):3527-3539
 Targeting FBW7 as a Strategy to Overcome Resistance to Targeted Therapy in Non-Small Cell Lung Cancer.
- 118. PMID: 24884509; 2014, Mol Cancer;13():110

 Fbxw7 is an independent prognostic marker and induces apoptosis and growth arrest by regulating YAP abundance in hepatocellular carcinoma.
- PMID: 21047773; 2010, Mol Cancer Res;8(11):1439-52
 Roles of fibroblast growth factor receptors in carcinogenesis.
- PMID: 20094046; 2010, Nat Rev Cancer; 10(2):116-29
 Fibroblast growth factor signalling: from development to cancer.
- 121. PMID: 16380503; 2005, Mol Cancer Res;3(12):655-67
 Comprehensive profiling of 8p11-12 amplification in breast cancer.
- 122. PMID: 7927944; 1994, Int J Cancer;59(3):373-8
 Expression of the FGFR1 gene in human breast-carcinoma cells
- 123. PMID: 10086345; 1999, Oncogene;18(10):1903-10
 Differential expression assay of chromosome arm 8p genes identifies Frizzled-related (FRP1/FRZB) and Fibroblast Growth Factor Receptor 1 (FGFR1) as candidate breast cancer genes.
- 124. PMID: 19147748; 2009, Clin Cancer Res;15(2):441-51
 Molecular characterization of breast cancer with high-resolution oligonucleotide comparative genomic hybridization array.
- 125. PMID: 17157792; 2006, Cancer Cell;10(6):529-41 Genomic and transcriptional aberrations linked to breast cancer pathophysiologies.
- 126. PMID: 9331099; 1997, Cancer Res;57(19):4360-7
 Mapping of DNA amplifications at 15 chromosomal localizations in 1875 breast tumors: definition of phenotypic groups.
- 127. PMID: 20179196; 2010, Cancer Res;70(5):2085-94 FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer.
- PMID: 15863030; 2005, Cytokine Growth Factor Rev;16(2):139-49
 Cellular signaling by fibroblast growth factor receptors.
- 129. PMID: 23418312; 2013, Cancer Discov;3(3):264-79
 Fibroblast growth factor receptor inhibitors as a cancer treatment: from a biologic rationale to medical perspectives.
- PMID: 17397528; 2007, Breast Cancer Res;9(2):R23
 FGFR1 amplification in breast carcinomas: a chromogenic in situ hybridisation analysis.
- PMID: 22863309; 2012, Breast Cancer Res;14(4):R115
 FGFR1 is amplified during the progression of in situ to invasive breast carcinoma.
- 132. PMID: 21160078; 2010, Sci Transl Med;2(62):62ra93
 Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **41** of **52**

Project ID: C22-M001-03785 Report No.: AA-22-07618_ONC Date Reported: Dec 27, 2022

ACTOnco® + Report

- PMID: 16807070; 2007, Oral Oncol;43(1):60-6
 Recurrent FGFR1 amplification and high FGFR1 protein expression in oral squamous cell carcinoma (OSCC).
- 134. PMID: 14614009; 2003, Clin Cancer Res;9(14):5271-81
 Gene amplifications associated with the development of hormone-resistant prostate cancer.
- PMID: 12147242; 2002, Biochem Biophys Res Commun;296(1):152-5
 Gene amplification profiling of esophageal squamous cell carcinomas by DNA array CGH.
- 136. PMID: 30385747; 2018, Nat Commun;9(1):4572
 TRPV4 and KRAS and FGFR1 gain-of-function mutations drive giant cell lesions of the jaw.
- 137. PMID: 22238366; 2012, Mol Cancer Ther;11(3):690-9
 Ponatinib (AP24534), a multitargeted pan-FGFR inhibitor with activity in multiple FGFR-amplified or mutated cancer models.
- PMID: 26224133; 2015, Cancer Metastasis Rev;34(3):479-96
 Fibroblast growth factor receptor signaling in hereditary and neoplastic disease: biologic and clinical implications.
- PMID: 30914635; 2019, Nat Commun;10(1):1373
 Aberrant FGFR signaling mediates resistance to CDK4/6 inhibitors in ER+ breast cancer.
- PMID: 29223982; 2017, J Natl Compr Canc Netw;15(12):1456-1459
 Pazopanib Sensitivity in a Patient With Breast Cancer and FGFR1 Amplification.
- 141. PMID: 33224274; 2020, Ther Adv Med Oncol;12():1758835920965842
 Clinical and molecular distinctions in patients with refractory colon cancer who benefit from regorafenib treatment.
- PMID: 30011957; 2018, Cells;7(7):
 Current Status of Fibroblast Growth Factor Receptor-Targeted Therapies in Breast Cancer.
- 143. PMID: 27870574; 2017, J Clin Oncol;35(2):157-165
 Evaluation of BGJ398, a Fibroblast Growth Factor Receptor 1-3 Kinase Inhibitor, in Patients With Advanced Solid Tumors Harboring Genetic
 Alterations in Fibroblast Growth Factor Receptors: Results of a Global Phase I, Dose-Escalation and Dose-Expansion Study.
- 144. PMID: 28183331; 2017, Breast Cancer Res;19(1):18
 Phase II, randomized, placebo-controlled study of dovitinib in combination with fulvestrant in postmenopausal patients with HR+, HER2-breast cancer that had progressed during or after prior endocrine therapy.
- 145. PMID: 32723837; 2020, Clin Cancer Res;26(22):5974-5989

 Acquired FGFR and FGF Alterations Confer Resistance to Estrogen Receptor (ER) Targeted Therapy in ER⁺ Metastatic Breast
- 146. PMID: 22879364; 2012, Mol Cancer Ther;11(10):2301-5
 Discordant cellular response to presurgical letrozole in bilateral synchronous ER+ breast cancers with a KRAS mutation or FGFR1 gene
- PMID: 26021831; 2015, BMC Cancer;15():442
 Multiple gene aberrations and breast cancer: lessons from super-responders.
- 148. PMID: 29455669; 2018, Mol Cancer;17(1):53 EGFR-TKIs resistance via EGFR-independent signaling pathways.
- 149. PMID: 23536707; 2013, Mol Cancer Res;11(7):759-67 Activation of the FGF2-FGFR1 autocrine pathway: a novel mechanism of acquired resistance to gefitinib in NSCLC.
- PMID: 26473643; 2015, J Thorac Oncol;10(12):1736-44
 Mechanisms of Acquired Resistance to AZD9291: A Mutation-Selective, Irreversible EGFR Inhibitor.
- 151. PMID: 26503204; 2016, J Clin Oncol;34(5):419-26

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **42** of **52**

Project ID: C22-M001-03785 Report No.: AA-22-07618_ONC Date Reported: Dec 27, 2022

ACTOnco® + Report

Correlative Analysis of Genetic Alterations and Everolimus Benefit in Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Advanced Breast Cancer: Results From BOLERO-2.

- 152. PMID: 24833916; 2014, Breast Cancer (Dove Med Press);6():43-57

 Use of mTOR inhibitors in the treatment of breast cancer: an evaluation of factors that influence patient outcomes.
- 153. PMID: 25295214; 2014, J Thyroid Res;2014():638747
 Antitumor activity of lenvatinib (e7080): an angiogenesis inhibitor that targets multiple receptor tyrosine kinases in preclinical human thyroid cancer models
- 154. PMID: 26062443; 2015, Oncotarget;6(24):20160-76
 Genomic characterization of a large panel of patient-derived hepatocellular carcinoma xenograft tumor models for preclinical development.
- 155. PMID: 23563700; 2013, Oncol Rep;29(6):2181-90
 Novel FGFR inhibitor ponatinib suppresses the growth of non-small cell lung cancer cells overexpressing FGFR1.
- 156. PMID: 26179511; 2015, Clin Cancer Res;21(21):4935-46
 Deep Sequencing in Conjunction with Expression and Functional Analyses Reveals Activation of FGFR1 in Ewing Sarcoma.
- 157. PMID: 24095279; 2013, Mol Cell;52(4):495-505
 The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1.
- 158. PMID: 26342594; 2016, Fam Cancer;15(1):127-32 Birt-Hogg-Dubé syndrome: novel FLCN frameshift deletion in daughter and father with renal cell carcinomas.
- PMID: 23223565; 2013, J Clin Pathol;66(3):178-86
 Birt-Hogg-Dube syndrome: clinicopathological features of the lung.
- 160. PMID: 19850877; 2009, Proc Natl Acad Sci U S A;106(44):18722-7 Homozygous loss of BHD causes early embryonic lethality and kidney tumor development with activation of mTORC1 and mTORC2.
- 161. PMID: 24908670; 2014, Hum Mol Genet;23(21):5706-19
 Folliculin (Flcn) inactivation leads to murine cardiac hypertrophy through mTORC1 deregulation.
- 162. PMID: 15956655; 2005, J Natl Cancer Inst;97(12):931-5
 High frequency of somatic frameshift BHD gene mutations in Birt-Hogg-Dubé-associated renal tumors.
- 163. PMID: 29301825; 2018, Clin Cancer Res;24(7):1546-1553 Genomic Correlates of Response to Everolimus in Aggressive Radioiodine-refractory Thyroid Cancer: A Phase II Study.
- 164. PMID: 26418749; 2015, Oncotarget;6(32):32761-73
 Flcn-deficient renal cells are tumorigenic and sensitive to mTOR suppression.
- 165. PMID: 25893302; 2016, Oncogene;35(5):537-48 Role of Merlin/NF2 inactivation in tumor biology.
- 166. PMID: 19451229; 2009, Mol Cell Biol;29(15):4235-49
 Loss of the tumor suppressor gene NF2, encoding merlin, constitutively activates integrin-dependent mTORC1 signaling.
- 167. PMID: 19451225; 2009, Mol Cell Biol;29(15):4250-61 NF2/merlin is a novel negative regulator of mTOR complex 1, and activation of mTORC1 is associated with meningioma and schwannoma growth.
- 168. PMID: 17655741; 2007, Brain Pathol; 17(4):371-6 Role of NF2 haploinsufficiency in NF2-associated polyneuropathy.
- PMID: 19545378; 2009, Orphanet J Rare Dis;4():16
 Neurofibromatosis type 2 (NF2): a clinical and molecular review.
- 170. PMID: 21642991; 2011, Nat Genet;43(7):668-72

CAP ACCREDITED 行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 43 of 52

Project ID: C22-M001-03785 Report No.: AA-22-07618_ONC Date Reported: Dec 27, 2022

ACTOnco® + Report

The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma.

- 171. PMID: 24393766; 2014, Oncotarget;5(1):67-77NF2/merlin in hereditary neurofibromatosis 2 versus cancer: biologic mechanisms and clinical associations.
- 172. PMID: 27091708; 2016, J Clin Oncol;34(18):2115-24
 Molecular Alterations and Everolimus Efficacy in Human Epidermal Growth Factor Receptor 2-Overexpressing Metastatic Breast Cancers:
 Combined Exploratory Biomarker Analysis From BOLERO-1 and BOLERO-3.
- 173. PMID: 26859683; 2016, Oncotarget;7(9):10547-56
 Next-generation sequencing reveals somatic mutations that confer exceptional response to everolimus.
- 174. PMID: 22923433; 2012, Science; 338(6104):221
 Genome sequencing identifies a basis for everolimus sensitivity.
- 175. PMID: 25630452; 2015, Eur Urol;67(6):1195-1196
 Exceptional Response on Addition of Everolimus to Taxane in Urothelial Carcinoma Bearing an NF2 Mutation.
- 176. PMID: 26359368; 2015, Cancer Discov;5(11):1178-93
 NF2 Loss Promotes Oncogenic RAS-Induced Thyroid Cancers via YAP-Dependent Transactivation of RAS Proteins and Sensitizes Them to MFK Inhibition
- 177. PMID: 24813888; 2014, Cell Rep;7(4):999-1008 Acquired resistance of EGFR-mutant lung adenocarcinomas to afatinib plus cetuximab is associated with activation of mTORC1.
- 178. PMID: 8906794; 1996, Nature; 384(6605):176-9
 Biochemical evidence that patched is the Hedgehog receptor.
- PMID: 12016144; 2002, Carcinogenesis;23(5):727-33
 Unbalanced overexpression of the mutant allele in murine Patched mutants.
- PMID: 11130178; 2000, Cell Mol Life Sci;57(12):1720-31
 Hedgehog signalling in cancer.
- 181. PMID: 8782823; 1996, Nat Genet;14(1):78-81 The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas.
- 182. PMID: 8658145; 1996, Science;272(5268):1668-71 Human homolog of patched, a candidate gene for the basal cell nevus syndrome.
- PMID: 9422511; 1998, Nature;391(6662):90-2
 Activating Smoothened mutations in sporadic basal-cell carcinoma.
- 184. PMID: 22832583; 2012, Nature;488(7409):100-5 Dissecting the genomic complexity underlying medulloblastoma.
- 185. PMID: 10738305; 2000, Genes Chromosomes Cancer;28(1):77-81 Evidence that haploinsufficiency of Ptch leads to medulloblastoma in mice.
- PMID: 22670903; 2012, N Engl J Med;366(23):2171-9
 Efficacy and safety of vismodegib in advanced basal-cell carcinoma.
- 187. PMID: 28511673; 2017, BMC Cancer;17(1):332
 Long-term safety and efficacy of vismodegib in patients with advanced basal cell carcinoma: final update of the pivotal ERIVANCE BCC study.
- 188. PMID: 25981810; 2015, Lancet Oncol;16(6):716-28
 Treatment with two different doses of sonidegib in patients with locally advanced or metastatic basal cell carcinoma (BOLT): a multicentre, randomised, double-blind phase 2 trial.
- 189. PMID: 31545507; 2020, Br J Dermatol;182(6):1369-1378

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **44** of **52**

Project ID: C22-M001-03785 Report No.: AA-22-07618_ONC Date Reported: Dec 27, 2022

ACTOnco® + Report

Long-term efficacy and safety of sonidegib in patients with advanced basal cell carcinoma: 42-month analysis of the phase II randomized, double-blind BOLT study.

- PMID: 19726761; 2009, N Engl J Med;361(12):1173-8
 Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449.
- 191. PMID: 26169613; 2015, J Clin Oncol;33(24):2646-54
 Vismodegib Exerts Targeted Efficacy Against Recurrent Sonic Hedgehog-Subgroup Medulloblastoma: Results From Phase II Pediatric Brain Tumor Consortium Studies PBTC-025B and PBTC-032.
- 192. PMID: 29320312; 2018, J Clin Oncol;36(6):536-542
 Targeted Therapy for Advanced Solid Tumors on the Basis of Molecular Profiles: Results From MyPathway, an Open-Label, Phase IIa Multiple Basket Study.
- PMID: 34409296; 2021, Neurooncol Adv;3(1):vdab097
 Clinical and molecular analysis of smoothened inhibitors in Sonic Hedgehog medulloblastoma.
- 194. PMID: 17218262; 2007, Cell;128(1):157-70Essential role for nuclear PTEN in maintaining chromosomal integrity.
- 195. PMID: 18794879; 2008, Oncogene;27(41):5443-53 PTEN: a new guardian of the genome.
- 196. PMID: 18767981; 2009, Annu Rev Pathol;4():127-50 PTEN and the PI3-kinase pathway in cancer.
- 197. PMID: 11553783; 2001, Proc Natl Acad Sci U S A;98(20):11563-8Haploinsufficiency of the Pten tumor suppressor gene promotes prostate cancer progression.
- PMID: 20400965; 2010, Nat Genet;42(5):454-8
 Subtle variations in Pten dose determine cancer susceptibility.
- 199. PMID: 9467011; 1998, Hum Mol Genet;7(3):507-15 Mutation spectrum and genotype-phenotype analyses in Cowden disease and Bannayan-Zonana syndrome, two hamartoma syndromes with germline PTEN mutation.
- 200. PMID: 24136893; 2013, J Natl Cancer Inst;105(21):1607-16
 Cowden syndrome and the PTEN hamartoma tumor syndrome: systematic review and revised diagnostic criteria.
- PMID: 21430697; 2011, Nat Rev Cancer;11(4):289-301
 PTEN loss in the continuum of common cancers, rare syndromes and mouse models.
- 202. PMID: 18455982; 2008, Cell;133(3):403-14 Tenets of PTEN tumor suppression.
- PMID: 9393738; 1997, Cancer Res;57(23):5221-5
 MMAC1/PTEN mutations in primary tumor specimens and tumor cell lines.
- 204. PMID: 9829719; 1998, Clin Cancer Res;4(11):2577-83 Loss of heterozygosity and mutational analysis of the PTEN/MMAC1 gene in synchronous endometrial and ovarian carcinomas.
- PMID: 9582022; 1998, Oncogene;16(13):1743-8
 Analysis of PTEN and the 10q23 region in primary prostate carcinomas.
- 206. PMID: 9671321; 1998, Oncogene;17(1):123-7
 Allelic loss of chromosome 10q23 is associated with tumor progression in breast carcinomas.
- PMID: 11504908; 2001, Proc Natl Acad Sci U S A;98(18):10314-9
 Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 45 of 52

Project ID: C22-M001-03785 Report No.: AA-22-07618 ONC

Date Reported: Dec 27, 2022

ACTOnco® + Report

- 208 PMID: 23714559: 2013. Am Soc Clin Oncol Educ Book:(): Targeting the PI3K/AKT/mTOR pathway: biomarkers of success and tribulation.
- PMID: 20231295; 2010, J Biol Chem; 285(20):14980-9 209. Phosphoinositide 3-kinase pathway activation in phosphate and tensin homolog (PTEN)-deficient prostate cancer cells is independent of receptor tyrosine kinases and mediated by the p110beta and p110delta catalytic subunits.
- PMID: 23287563; 2013, Clin Cancer Res;19(7):1760-72 210 Targeting activated Akt with GDC-0068, a novel selective Akt inhibitor that is efficacious in multiple tumor models.
- 211 PMID: 17047067; 2006, Cancer Res;66(20):10040-7 Inhibition of mammalian target of rapamycin or apoptotic pathway induces autophagy and radiosensitizes PTEN null prostate cancer cells.
- PMID: 22422409; 2012, Clin Cancer Res;18(6):1777-89 PIK3CA/PTEN mutations and Akt activation as markers of sensitivity to allosteric mTOR inhibitors.
- 213 PMID: 22662154; 2012, PLoS One;7(5):e37431 Genotype-dependent efficacy of a dual PI3K/mTOR inhibitor, NVP-BEZ235, and an mTOR inhibitor, RAD001, in endometrial carcinomas.
- PMID: 23136191: 2012. Clin Cancer Res:18(24):6771-83 214. Phosphoinositide 3-kinase (PI3K) pathway alterations are associated with histologic subtypes and are predictive of sensitivity to PI3K inhibitors in lung cancer preclinical models.
- PMID: 21306238; 2011, N Engl J Med;364(6):514-23 215. Everolimus for advanced pancreatic neuroendocrine tumors.
- PMID: 23582881; 2013, Eur Urol;64(1):150-8 216. Phase 2 trial of single-agent everolimus in chemotherapy-naive patients with castration-resistant prostate cancer (SAKK 08/08).
- PMID: 28330462; 2017, BMC Cancer;17(1):211 Prospective phase II trial of everolimus in PIK3CA amplification/mutation and/or PTEN loss patients with advanced solid tumors refractory to standard therapy.
- PMID: 27016228; 2016, Gynecol Oncol;141(1):43-8 218 Tumor mutational analysis of GOG248, a phase II study of temsirolimus or temsirolimus and alternating megestrol acetate and tamoxifen for advanced endometrial cancer (EC): An NRG Oncology/Gynecologic Oncology Group study.
- PMID: 26951309; 2016, J Clin Oncol;34(14):1660-8 219. Randomized Open-Label Phase II Trial of Apitolisib (GDC-0980), a Novel Inhibitor of the PI3K/Mammalian Target of Rapamycin Pathway, Versus Everolimus in Patients With Metastatic Renal Cell Carcinoma.
- 220. PMID: 15324695; 2004, Cancer Cell;6(2):117-27 PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients.
- PMID: 20813970: 2010. Am J Pathol:177(4):1647-56 221. PTEN, PIK3CA, p-AKT, and p-p70S6K status: association with trastuzumab response and survival in patients with HER2-positive metastatic breast cancer
- 222. PMID: 21135276; 2011, J Clin Oncol;29(2):166-73 Loss of phosphatase and tensin homolog or phosphoinositol-3 kinase activation and response to trastuzumab or lapatinib in human epidermal growth factor receptor 2-overexpressing locally advanced breast cancers.
- PMID: 21594665; 2011, Breast Cancer Res Treat;128(2):447-56 Evaluation of the association of PIK3CA mutations and PTEN loss with efficacy of trastuzumab therapy in metastatic breast cancer.
- PMID: 17936563; 2007, Cancer Cell;12(4):395-402 A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer.
- 225. PMID: 18700047; 2008, BMC Cancer;8():234 Potential value of PTEN in predicting cetuximab response in colorectal cancer: an exploratory study.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 46 of 52

Project ID: C22-M001-03785 Report No.: AA-22-07618_ONC Date Reported: Dec 27, 2022

ACTOnco® + Report

226. PMID: 17940504; 2007, Br J Cancer;97(8):1139-45

PTEN loss of expression predicts cetuximab efficacy in metastatic colorectal cancer patients.

227. PMID: 19398573; 2009, J Clin Oncol;27(16):2622-9

PTEN expression and KRAS mutations on primary tumors and metastases in the prediction of benefit from cetuximab plus irinotecan for patients with metastatic colorectal cancer.

228. PMID: 19953097; 2010, Br J Cancer;102(1):162-4

PTEN status in advanced colorectal cancer treated with cetuximab.

229. PMID: 27605871; 2016, World J Gastroenterol;22(28):6345-61

Mechanisms of resistance to anti-epidermal growth factor receptor inhibitors in metastatic colorectal cancer.

230. PMID: 24666267; 2014, Acta Oncol;53(7):852-64

The predictive value of KRAS, NRAS, BRAF, PIK3CA and PTEN for anti-EGFR treatment in metastatic colorectal cancer: A systematic review and meta-analysis.

231. PMID: 19351834; 2009, Cancer Res;69(8):3256-61

PTEN loss contributes to erlotinib resistance in EGFR-mutant lung cancer by activation of Akt and EGFR.

232. PMID: 23133538; 2012, PLoS One;7(10):e48004

Modeling of tumor progression in NSCLC and intrinsic resistance to TKI in loss of PTEN expression.

233. PMID: 23592446; 2013, J Cell Biochem;114(6):1248-56

mTOR inhibitors radiosensitize PTEN-deficient non-small-cell lung cancer cells harboring an EGFR activating mutation by inducing autophagy.

234. PMID: 26645196; 2016, Cancer Discov;6(2):202-16

Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy.

235. PMID: 28228279; 2017, Immunity;46(2):197-204

Loss of PTEN Is Associated with Resistance to Anti-PD-1 Checkpoint Blockade Therapy in Metastatic Uterine Leiomyosarcoma.

236. PMID: 30150660; 2018, Nat Genet;50(9):1271-1281

Genomic correlates of response to immune checkpoint blockade in microsatellite-stable solid tumors.

237. PMID: 21468130; 2011, Nat Rev Clin Oncol;8(5):302-6

Treatment with olaparib in a patient with PTEN-deficient endometrioid endometrial cancer.

238. PMID: 23810788; 2013, Lancet Oncol;14(9):882-92

The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: a phase 1 dose-escalation trial.

239. PMID: 23565244; 2013, PLoS One;8(4):e60408

PARP inhibition sensitizes to low dose-rate radiation TMPRSS2-ERG fusion gene-expressing and PTEN-deficient prostate cancer cells.

240. PMID: 20400964; 2010, Nat Genet;42(5):410-4

Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene.

241. PMID: 21990120; 2012, Hum Mutat;33(1):95-9

Analysis of RAD51C germline mutations in high-risk breast and ovarian cancer families and ovarian cancer patients.

242. PMID: 21616938; 2011, Hum Mol Genet;20(16):3278-88

RAD51C is a susceptibility gene for ovarian cancer.

243. PMID: 22538716; 2012, Nat Genet;44(5):475-6; author reply 476

Germline RAD51C mutations confer susceptibility to ovarian cancer.

244. PMID: 24315737; 2014, Oral Oncol;50(3):196-9

RAD51C--a new human cancer susceptibility gene for sporadic squamous cell carcinoma of the head and neck (HNSCC)

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 47 of 52

Project ID: C22-M001-03785 Report No.: AA-22-07618_ONC Date Reported: Dec 27, 2022

ACTOnco® + Report

- 245. PMID: 11034073; 2000, Cancer Res;60(19):5371-5
 17q23 amplifications in breast cancer involve the PAT1, RAD51C, PS6K, and SIGma1B genes.
- PMID: 11034067; 2000, Cancer Res;60(19):5340-4
 Multiple genes at 17q23 undergo amplification and overexpression in breast cancer.
- 247. PMID: 20471405; 2010, Mutat Res;689(1-2):50-8
 Rad51C is essential for embryonic development and haploinsufficiency causes increased DNA damage sensitivity and genomic instability.
- 248. PMID: 23512992; 2013, Mol Cancer Ther;12(6):865-77 RAD51C-deficient cancer cells are highly sensitive to the PARP inhibitor olaparib.
- 249. PMID: 24532711; 2014, Genes Dev;28(4):305-16 The R-spondin/Lgr5/Rnf43 module: regulator of Wnt signal strength.
- 250. PMID: 26863187; 2016, Nature;530(7590):340-3
 Visualization of a short-range Wnt gradient in the intestinal stem-cell niche.
- 251. PMID: 25891077; 2015, Mol Cell;58(3):522-33
 Dishevelled promotes Wnt receptor degradation through recruitment of ZNRF3/RNF43 E3 ubiquitin ligases.
- PMID: 26257827; 2015, Genome Med;7(1):87
 Mutational landscape of mucinous ovarian carcinoma and its neoplastic precursors.
- PMID: 25344691; 2014, Nat Genet;46(12):1264-6
 RNF43 is frequently mutated in colorectal and endometrial cancers.
- 254. PMID: 24816253; 2014, Nat Genet;46(6):573-82
 Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer.
- PMID: 22561520; 2012, Nat Genet;44(6):690-3
 Exome sequencing of liver fluke-associated cholangiocarcinoma.
- 256. PMID: 23847203; 2013, Proc Natl Acad Sci U S A;110(31):12649-54 Inactivating mutations of RNF43 confer Wnt dependency in pancreatic ductal adenocarcinoma.
- PMID: 24293293; 2014, J Pathol;232(4):428-35
 Whole-exome sequencing of pancreatic neoplasms with acinar differentiation.
- 258. PMID: 26924569; 2016, J Pathol;239(2):133-8
 Frequent PTPRK-RSPO3 fusions and RNF43 mutations in colorectal traditional serrated adenoma.
- 259. PMID: 29756208; 2018, J Pathol;245(4):445-455 Impact of loss-of-function mutations at the RNF43 locus on colorectal cancer development and progression.
- 260. PMID: 26184844; 2015, Cell Physiol Biochem;36(5):1835-46
 RNF43 Inhibits Cancer Cell Proliferation and Could be a Potential Prognostic Factor for Human Gastric Carcinoma.
- 261. PMID: 28446252; 2017, Stem Cell Res Ther;8(1):98
 Ring finger protein 43 associates with gastric cancer progression and attenuates the stemness of gastric cancer stem-like cells via the Wnt-β/catenin signaling pathway.
- 262. PMID: 26980022; 2016, Hum Pathol;52():47-54
 Ring finger protein 43 expression is associated with genetic alteration status and poor prognosis among patients with intrahepatic cholangiocarcinoma.
- PMID: 25935112; 2015, Trends Biochem Sci;40(6):296-308
 Structural determinants of Smad function in TGF-β signaling.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 48 of 52

Project ID: C22-M001-03785 Report No.: AA-22-07618_ONC Date Reported: Dec 27, 2022

ACTOnco® + Report

- 264. PMID: 19014666; 2008, Pathogenetics;1(1):2 Smad4 haploinsufficiency: a matter of dosage.
- PMID: 9545410; 1998, Am J Hum Genet;62(5):1129-36
 A gene for familial juvenile polyposis maps to chromosome 18q21.1.
- 266. PMID: 8553070; 1996, Science;271(5247):350-3 DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1.
- 267. PMID: 8673134; 1996, Nat Genet;13(3):343-6
 Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers.
- 268. PMID: 18662538; 2008, Cell;134(2):215-30 TGFbeta in Cancer.
- PMID: 9135016; 1997, Cancer Res;57(9):1731-4
 Tumor-suppressive pathways in pancreatic carcinoma.
- PMID: 23139211; 2013, Cancer Res;73(2):725-35
 SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer.
- PMID: 22810696; 2012, Nature;487(7407):330-7
 Comprehensive molecular characterization of human colon and rectal cancer.
- 272. PMID: 25890228; 2015, World J Surg Oncol;13():128
 Clinical outcome and expression of mutant P53, P16, and Smad4 in lung adenocarcinoma: a prospective study.
- PMID: 19841540; 2009, J Clin Invest;119(11):3208-11
 Smad4: gatekeeper gene in head and neck squamous cell carcinoma.
- 274. PMID: 15867212; 2005, Clin Cancer Res;11(9):3191-7

Differences in Smad4 expression in human papillomavirus type 16-positive and human papillomavirus type 16-negative head and neck squamous cell carcinoma.

- PMID: 25589618; 2015, Clin Cancer Res;21(6):1447-56
 Genomic analysis of metastatic cutaneous squamous cell carcinoma.
- 276. PMID: 29703253; 2018, BMC Cancer;18(1):479
 SMAD4 and NF1 mutations as potential biomarkers for poor prognosis to cetuximab-based therapy in Chinese metastatic colorectal cancer
- 277. PMID: 28522603; 2017, Clin Cancer Res;23(17):5162-5175
 SMAD4 Loss Is Associated with Cetuximab Resistance and Induction of MAPK/JNK Activation in Head and Neck Cancer Cells.
- PMID: 16144935; 2005, Clin Cancer Res;11(17):6311-6
 SMAD4 levels and response to 5-fluorouracil in colorectal cancer.
- 279. PMID: 24384683; 2014, Br J Cancer;110(4):946-57 Loss of Smad4 in colorectal cancer induces resistance to 5-fluorouracil through activating Akt pathway.
- PMID: 12237773; 2002, Br J Cancer;87(6):630-4
 SMAD4 is a predictive marker for 5-fluorouracil-based chemotherapy in patients with colorectal cancer.
- 281. PMID: 25749173; 2015, Transl Oncol;8(1):18-24
 A Meta-Analysis of SMAD4 Immunohistochemistry as a Prognostic Marker in Colorectal Cancer.
- 282. PMID: 19478385; 2009, Cell Oncol;31(3):169-78
 Presence of a high amount of stroma and downregulation of SMAD4 predict for worse survival for stage I-II colon cancer patients.
- 283. PMID: 25681512; 2015, J Clin Pathol;68(5):341-5

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **49** of **52**

Project ID: C22-M001-03785 Report No.: AA-22-07618_ONC Date Reported: Dec 27, 2022

ACTOnco® + Report

Smad4 inactivation predicts for worse prognosis and response to fluorouracil-based treatment in colorectal cancer.

- 284. PMID: 26861460; 2016, Clin Cancer Res;22(12):3037-47
 Reduced Expression of SMAD4 Is Associated with Poor Survival in Colon Cancer.
- PMID: 26947875; 2016, Transl Oncol;9(1):1-7
 Prognostic Value of SMAD4 in Pancreatic Cancer: A Meta-Analysis.
- PMID: 25760429; 2015, Pancreas;44(4):660-4
 SMAD4 expression predicts local spread and treatment failure in resected pancreatic cancer.
- PMID: 22504380; 2012, Pancreas;41(4):541-6
 SMAD4 genetic alterations predict a worse prognosis in patients with pancreatic ductal adenocarcinoma.
- PMID: 19584151; 2009, Clin Cancer Res; 15(14):4674-9
 SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer.
- 289. PMID: 18425078; 2008, Mod Pathol;21(7):866-75
 Expression of Smad2 and Smad4 in cervical cancer: absent nuclear Smad4 expression correlates with poor survival.
- 290. PMID: 21157483; 2011, Nat Rev Mol Cell Biol;12(1):21-35 mTOR: from growth signal integration to cancer, diabetes and ageing.
- 291. PMID: 12271141; 2002, Proc Natl Acad Sci U S A;99(21):13571-6 Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling.
- 292. PMID: 9242607; 1997, Science;277(5327):805-8 Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34.
- PMID: 8269512; 1993, Cell;75(7):1305-15
 Identification and characterization of the tuberous sclerosis gene on chromosome 16.
- 294. PMID: 1303246; 1992, Nat Genet;2(1):37-41 Linkage of an important gene locus for tuberous sclerosis to a chromosome 16 marker for polycystic kidney disease.
- 295. PMID: 18538015; 2008, BMC Cancer;8():163
 Involvement of TSC genes and differential expression of other members of the mTOR signaling pathway in oral squamous cell carcinoma.
- PMID: 28339086; 2017, Int J Oncol;50(5):1778-1784
 Identification of novel mutations in endometrial cancer patients by whole-exome sequencing.
- 297. PMID: 20610279; 2010, Urol Oncol;28(4):409-28
 Bladder cancer or bladder cancers? Genetically distinct malignant conditions of the urothelium
- PMID: 17005952; 2006, N Engl J Med;355(13):1345-56
 The tuberous sclerosis complex.
- 299. PMID: 26412398; 2015, Sci Rep;5():14534
 PAK2 is an effector of TSC1/2 signaling independent of mTOR and a potential therapeutic target for Tuberous Sclerosis Complex.
- 300. PMID: 25724664; 2015, Mol Cancer Ther;14(5):1224-35 Loss of Tuberous Sclerosis Complex 2 (TSC2) Is Frequent in Hepatocellular Carcinoma and Predicts Response to mTORC1 Inhibitor Everolimus.
- PMID: 28968163; 2017, J Clin Oncol;35(32):3638-3646
 MONARCH 3: Abemaciclib As Initial Therapy for Advanced Breast Cancer.
- 302. PMID: 28533223; 2017, Clin Cancer Res;23(17):5218-5224

 MONARCH 1, A Phase II Study of Abemaciclib, a CDK4 and CDK6 Inhibitor, as a Single Agent, in Patients with Refractory HR+/HER2-

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **50** of **52**

Project ID: C22-M001-03785 Report No.: AA-22-07618_ONC Date Reported: Dec 27, 2022

ACTOnco® + Report

Metastatic Breast Cancer.

- PMID: 20525995; 2010, N Engl J Med;362(24):2260-70
 Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia.
- 304. PMID: 18541900; 2008, J Clin Oncol;26(19):3204-12
 Intermittent target inhibition with dasatinib 100 mg once daily preserves efficacy and improves tolerability in imatinib-resistant and -intolerant chronic-phase chronic myeloid leukemia.
- 305. PMID: 17496201; 2007, Blood;110(7):2309-15

 Dasatinib induces rapid hematologic and cytogenetic responses in adult patients with Philadelphia chromosome positive acute lymphoblastic leukemia with resistance or intolerance to imatinib: interim results of a phase 2 study.
- 306. PMID: 26703889; 2016, Lancet;387(10022):968-977

 Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study.
- PMID: 22149876; 2012, N Engl J Med;366(6):520-9
 Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer.
- 308. PMID: 23158522; 2013, Lancet;381(9861):125-32
 Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial.
- 309. PMID: 18653228; 2008, Lancet;372(9637):449-56
 Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial.
- 310. PMID: 29433850; 2018, Lancet;391(10126):1163-1173
 Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial.
- 311. PMID: 26482279; 2015, Lancet Oncol;16(15):1473-1482
 Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial.
- 312. PMID: 25671254; 2015, N Engl J Med;372(7):621-30
 Lenvatinib versus placebo in radioiodine-refractory thyroid cancer.
- 313. PMID: 28754483; 2017, Lancet Oncol;18(9):1274-1284

 Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial.
- 314. PMID: 27617661; 2016, Lancet Oncol;17(11):1579-1589
 Overall survival in patients with platinum-sensitive recurrent serous ovarian cancer receiving olaparib maintenance monotherapy: an updated analysis from a randomised, placebo-controlled, double-blind, phase 2 trial.
- PMID: 27959613; 2016, N Engl J Med;375(20):1925-1936
 Palbociclib and Letrozole in Advanced Breast Cancer.
- PMID: 26030518; 2015, N Engl J Med;373(3):209-19
 Palbociclib in Hormone-Receptor-Positive Advanced Breast Cancer.
- 317. PMID: 22595799; 2012, Lancet;379(9829):1879-86
 Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial.
- 318. PMID: 20100962; 2010, J Clin Oncol;28(6):1061-8
 Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial.
- PMID: 24180494; 2013, N Engl J Med;369(19):1783-96
 A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **51** of **52**

Project ID: C22-M001-03785 Report No.: AA-22-07618_ONC Date Reported: Dec 27, 2022

ACTOnco® + Report

320. PMID: 27932229; 2017, Lancet;389(10064):56-66

Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial.

321. PMID: 23177515; 2013, Lancet; 381(9863): 295-302

Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial.

322. PMID: 23177514; 2013, Lancet;381(9863):303-12

Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial.

323. PMID: 27924459; 2016, Target Oncol;11(6):815-824

Patient-Reported Outcomes and Quality of Life with Sunitinib Versus Placebo for Pancreatic Neuroendocrine Tumors: Results From an International Phase III Trial.

324. PMID: 27836885; 2017, Ann Oncol;28(2):339-343

Sunitinib in pancreatic neuroendocrine tumors: updated progression-free survival and final overall survival from a phase III randomized study.

325. PMID: 21306237; 2011, N Engl J Med;364(6):501-13

Sunitinib malate for the treatment of pancreatic neuroendocrine tumors.

326. PMID: 17227905; 2007, Oncologist;12(1):107-13

Food and Drug Administration drug approval summary: Sunitinib malate for the treatment of gastrointestinal stromal tumor and advanced renal cell carcinoma.

327. PMID: 27238653; 2016, Eur Urol;70(6):1006-1015

Early Tumour Shrinkage: A Tool for the Detection of Early Clinical Activity in Metastatic Renal Cell Carcinoma.

328. PMID: 16757724; 2006, JAMA;295(21):2516-24

Sunitinib in patients with metastatic renal cell carcinoma.

329. PMID: 25577718; 2015, Eur Urol;67(5):952-8

Depth of remission is a prognostic factor for survival in patients with metastatic renal cell carcinoma.

330. PMID: 17046465; 2006, Lancet;368(9544):1329-38

Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial.

331. PMID: 17538086; 2007, N Engl J Med;356(22):2271-81

Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **52** of **52**