Random Projections

2IMW30 - Foundations of data mining TU Eindhoven, Quartile 3, 2016-2017

Anne Driemel

Why reduce the dimension?

Representation of input data often is often high dimensional (images, documents, etc.)

There are two main reasons to reduce the dimension:

- some algorithms have running time exponential in the dimension
- we want to **visualize** inherent structure in the data

Why reduce the dimension?

Representation of input data often is often high dimensional (images, documents, etc.)

There are two main reasons to reduce the dimension:

- some algorithms have **running time** exponential in the dimension
- we want to visualize inherent structure in the data

Overview of this lecture

- Nearest-neighbor searching
- Embedding and Distortion
- Achlioptas' Random Projection
- Projection onto a subspace
- Random Rotation (Expectation)
- Analysis of a fixed distance (Expectation)
- Law of large numbers
- Concentration of measure
- Analysis of a fixed distance
- Analysis of the Distortion
- Alternative Projection Matrix

Nearest neighbor searching

CPU-time to query the k-nearest neighbors vs. dimension of the data

Source: Ashraf M. Kibriya and Eibe Frank "An Empirical Comparison of Exact Nearest Neighbour Algorithms" PKDD 2007

Nearest neighbor searching

CPU-time to query the k-nearest neighbors vs. dimension of the data

Source: Ashraf M. Kibriya and Eibe Frank "An Empirical Comparison of Exact Nearest Neighbour Algorithms" PKDD 2007

Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

Random Projection

Random Projection

Random Projection

Embedding and Distortion

Given a point set $X \in \mathbb{R}^d$, we call a function $f: X \to \mathbb{R}^k$ an **embedding** of X. We define

expansion
$$(f) = \max_{x,y \in X} \frac{\|f(x) - f(y)\|}{\|x - y\|}$$

contraction
$$(f) = \max_{x,y \in X} \frac{\|x - y\|}{\|f(x) - f(y)\|}$$

The **distortion** of f is defined as the product of the expansion and the contraction of f.

Embedding and Distortion

Given a point set $X \in \mathbb{R}^d$, we call a function $f: X \to \mathbb{R}^k$ an **embedding** of X. We define

expansion
$$(f) = \max_{x,y \in X} \frac{\|f(x) - f(y)\|}{\|x - y\|}$$

$$contraction(f) = \max_{x,y \in X} \frac{\|x - y\|}{\|f(x) - f(y)\|}$$

The **distortion** of f is defined as the product of the expansion and the contraction of f.

Note that for all $x, y \in X$ we have

$$\frac{1}{\beta} ||x - y|| \le ||f(x) - f(y)|| \le \alpha ||x - y||$$

where α denotes the expansion and β denotes the contraction

Achlioptas' Random Projection (Algorithm)

Input: set of points $P = \{p_1, \dots, p_n\} \subseteq \mathbb{R}^d$, value of k **Output:** set of points $Q = \{q_1, \dots, q_n\} \subseteq \mathbb{R}^k$

Algorithm:

• Generate a random $k \times d$ matrix \mathbf{R} by choosing

$$r_{i,j} = \begin{cases} +1 & \text{with probability } \frac{1}{2} \\ -1 & \text{with probability } \frac{1}{2} \end{cases}$$

• For each $i=1,\ldots,n$, compute $q_i=\frac{1}{\sqrt{k}}\mathbf{R}p_i$

Achlioptas' Random Projection (Algorithm)

Input: set of points $P = \{p_1, \dots, p_n\} \subseteq \mathbb{R}^d$, value of k **Output:** set of points $Q = \{q_1, \dots, q_n\} \subseteq \mathbb{R}^k$

Algorithm:

• Generate a random $k \times d$ matrix $\mathbf R$ by choosing

$$r_{i,j} = \begin{cases} +1 & \text{with probability } \frac{1}{2} \\ -1 & \text{with probability } \frac{1}{2} \end{cases}$$

• For each $i=1,\ldots,n$, compute $q_i=\frac{1}{\sqrt{k}}\mathbf{R}p_i$

Theorem:

Let $k_0 = \frac{4+2\beta}{\varepsilon^2/2-\varepsilon^3/3}\log n$, for given $\varepsilon, \beta > 0$. If $k \ge k_0$ then with probability at least $1 - \frac{1}{n^\beta}$, we have for all $p_i, p_j \in P$ that

$$|(1-\varepsilon)||p_i - p_j||^2 \le ||q_i - q_j||^2 \le (1+\varepsilon)||p_i - p_j||^2$$

History: Embedding Lemma

Random projections were invented by Johnson and Lindenstrauss.

Lemma (Johnson and Lindenstrauss, 1984):

Given $\varepsilon > 0$ and an integer n, let k be a positive integer $k \ge k_0 = O\left(\frac{\log n}{\varepsilon^2}\right)$. For every set of points

 $P = \{p_1, \dots, p_n\} \subseteq \mathbb{R}^d$ there exists $f : \mathbb{R}^d \to \mathbb{R}^k$ such that for all $p_i, p_j \in P$

$$(1 - \varepsilon) \|p_i - p_j\|^2 \le \|f(p_i) - f(p_j)\|^2 \le (1 + \varepsilon) \|p_i - p_j\|^2.$$

Note: The proof uses a random projection to show that f exists. For historical reasons, the JL-lemma only talks about the existence of f.

Linear Algebra: Rotation

In general:

A matrix is a rotation iff it is orthogonal

$$\mathbf{R} = \left(egin{array}{ccc} r_{1,1} & r_{1,2} & r_{1,3} \ r_{2,1} & r_{2,2} & r_{2,3} \ r_{3,1} & r_{3,2} & r_{3,3} \end{array}
ight) = \left(egin{array}{c} \mathbf{r_1} \ \mathbf{r_2} \ \mathbf{r_3} \end{array}
ight)$$

This means its row vectors are..

- (1) pairwise orthogonal: $\mathbf{r_i} \cdot \mathbf{r_j} = 0$
- (2) unit vectors: $\|\mathbf{r_i}\| = 1$

Furthermore, it holds that ${f R^{-1}}={f R^T}$ and that the length of any vector is preserved under ${f R}$

Project a vector **x** into first dimension:

Transformation matrix:

$$\mathbf{P} = (1 \quad 0)$$

In general:

$$\mathbf{P} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Project a vector **x** into first dimension:

Transformation matrix:

$$\mathbf{P} = (1 \quad 0)$$

In general:

Project a vector **x** into first dimension:

Transformation matrix:

$$\mathbf{P} = (1 \quad 0)$$

In general:

$$\mathbf{P} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline -0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 \end{pmatrix}$$

Project a vector **x** into first dimension:

Transformation matrix:

$$\mathbf{P} = (1 \quad 0)$$

In general:

$$\mathbf{P} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

Linear Algebra: Projection onto subspace

Let F be a k-dimensional linear subspace of ${\rm I\!R}^d$ spanned by orthonormal vectors $\mathbf{u_1}, \dots, \mathbf{u_k}$ and let \mathbf{R} be the projection onto F

Linear Algebra: Projection onto subspace

Let F be a k-dimensional linear subspace of \mathbb{R}^d spanned by orthonormal vectors $\mathbf{u_1}, \dots, \mathbf{u_k}$ and let \mathbf{R} be the projection onto F

Linear Algebra: Projection onto subspace

A projection onto a subspace can be viewed as rotation followed by an axis-orthogonal projection

To see this, let's rewrite $\mathbf{R} = \mathbf{P} \cdot \mathbf{M}$ with

- $-\mathbf{M}$: rotation to align each $\mathbf{u_i}$ with standard basis vector $\mathbf{v_i}$
- $\bf P$: orthogonal projection onto first k coordinates

To find the rotation matrix M, note that for $i = 1, \ldots, k$

$$\mathbf{M} \cdot \mathbf{u_i} = \mathbf{v_i} \quad \Leftrightarrow \quad \mathbf{M^{-1}} \cdot \mathbf{v_i} = \mathbf{u_i} \quad \Leftrightarrow \quad \mathbf{M^T} \cdot \mathbf{v_i} = \mathbf{u_i}$$

- since v_i is the i'th standard basis vector, M^Tv_i is the ith column vector of $\mathbf{M}^{\mathbf{T}}$
- thus, $\mathbf{u_i}$ is the *i*th row vector of \mathbf{M} for $i = 1, \dots, k$

We can think of Achlioptas transformation as a rotation ${\bf M}$ followed by a projection ${\bf P}$ onto the first k dimensions.

$$f(p) = \frac{1}{\sqrt{k}} \mathbf{R} p = \frac{\sqrt{d}}{\sqrt{k}} \frac{1}{\sqrt{d}} \mathbf{R} p = \frac{\sqrt{d}}{\sqrt{k}} \mathbf{P} \mathbf{M} p$$

Example: k = 2, d = 4

$$\mathbf{P} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}\right)$$

$$\mathbf{M} = rac{1}{\sqrt{d}} \left(egin{array}{ccccc} r_{1,1} & r_{1,2} & r_{1,3} & r_{1,4} \ r_{2,1} & r_{2,2} & r_{2,3} & r_{2,4} \ r_{3,1} & r_{3,2} & r_{3,3} & r_{3,4} \ r_{4,1} & r_{4,2} & r_{4,3} & r_{4,4} \end{array}
ight)$$

We can think of Achlioptas transformation as a rotation ${\bf M}$ followed by a projection ${\bf P}$ onto the first k dimensions.

$$f(p) = \frac{1}{\sqrt{k}} \mathbf{R} p = \frac{\sqrt{d}}{\sqrt{k}} \frac{1}{\sqrt{d}} \mathbf{R} p = \frac{\sqrt{d}}{\sqrt{k}} \mathbf{P} \mathbf{M} p$$

Example: k = 2, d = 4

$$\mathbf{P} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}\right)$$

We can think of Achlioptas transformation as a rotation ${\bf M}$ followed by a projection ${\bf P}$ onto the first k dimensions.

$$f(p) = \frac{1}{\sqrt{k}} \mathbf{R} p = \frac{\sqrt{d}}{\sqrt{k}} \frac{1}{\sqrt{d}} \mathbf{R} p = \frac{\sqrt{d}}{\sqrt{k}} \mathbf{P} \mathbf{M} p$$

Example: k = 2, d = 4

$$\mathbf{P} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}\right)$$

$$\mathbf{M} = rac{1}{\sqrt{d}} \left(egin{array}{ccccc} r_{1,1} & r_{1,2} & r_{1,3} & r_{1,4} \ r_{2,1} & r_{2,2} & r_{2,3} & r_{2,4} \ r_{3,1} & r_{3,2} & r_{3,3} & r_{3,4} \ r_{4,1} & r_{4,2} & r_{4,3} & r_{4,4} \end{array}
ight)$$

But is M a rotation?

 ${\bf M}$ is a rotation if and only if the product of ${\bf M}$ and its transpose is the identity (i.e., ${\bf M}$ is orthogonal)

$$\mathbf{M}\mathbf{M}^{\mathbf{T}} = \mathbf{I}$$

$$\frac{1}{\sqrt{d}} \begin{pmatrix} r_{1,1} & r_{2,1} & r_{3,1} & r_{4,1} \\ r_{1,2} & r_{2,2} & r_{3,2} & r_{4,2} \\ r_{1,3} & r_{2,3} & r_{3,3} & r_{4,3} \\ r_{1,4} & r_{2,4} & r_{3,4} & r_{4,4} \end{pmatrix}$$

$$\frac{1}{\sqrt{d}} \begin{pmatrix} r_{1,1} & r_{1,2} & r_{1,3} & r_{1,4} \\ r_{2,1} & r_{2,2} & r_{2,3} & r_{2,4} \\ r_{3,1} & r_{3,2} & r_{3,3} & r_{3,4} \\ r_{4,1} & r_{4,2} & r_{4,3} & r_{4,4} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- (1) each pair of row vectors is orthogonal
- (2) each row vector has unit length

Let $\mathbf{r_i} = \frac{1}{\sqrt{d}}(r_{i,1}, \dots, r_{i,d})$ be the *i*th row vector of \mathbf{M}

 ${\bf M}$ is a rotation if and only if the product of ${\bf M}$ and its transpose is the identity (i.e., ${\bf M}$ is orthogonal)

$$\mathbf{M}\mathbf{M}^{\mathbf{T}} = \mathbf{I}$$

$$\frac{1}{\sqrt{d}} \begin{pmatrix} r_{1,1} & r_{2,1} & r_{3,1} & r_{4,1} \\ r_{1,2} & r_{2,2} & r_{3,2} & r_{4,2} \\ r_{1,3} & r_{2,3} & r_{3,3} & r_{4,3} \\ r_{1,4} & r_{2,4} & r_{3,4} & r_{4,4} \end{pmatrix}$$

$$\begin{pmatrix} r_{1,1} & r_{1,2} & r_{1,3} & r_{1,4} \\ \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$\frac{1}{\sqrt{d}} \begin{pmatrix} r_{1,1} & r_{1,2} & r_{1,3} & r_{1,4} \\ r_{2,1} & r_{2,2} & r_{2,3} & r_{2,4} \\ r_{3,1} & r_{3,2} & r_{3,3} & r_{3,4} \\ r_{4,1} & r_{4,2} & r_{4,3} & r_{4,4} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- (1) each pair of row vectors is orthogonal
- (2) each row vector has unit length

Let $\mathbf{r_i} = \frac{1}{\sqrt{d}}(r_{i,1}, \dots, r_{i,d})$ be the *i*th row vector of \mathbf{M}

 ${\bf M}$ is a rotation if and only if the product of ${\bf M}$ and its transpose is the identity (i.e., ${\bf M}$ is orthogonal)

$$\mathbf{M}\mathbf{M}^{\mathbf{T}} = \mathbf{I}$$

$$\frac{1}{\sqrt{d}} \begin{pmatrix} r_{1,1} & r_{2,1} & r_{3,1} & r_{4,1} \\ r_{1,2} & r_{2,2} & r_{3,2} & r_{4,2} \\ r_{1,3} & r_{2,3} & r_{3,3} & r_{4,3} \\ r_{1,4} & r_{2,4} & r_{3,4} & r_{4,4} \end{pmatrix}$$

$$\frac{1}{\sqrt{d}} \begin{pmatrix} r_{1,1} & r_{1,2} & r_{1,3} & r_{1,4} \\ r_{2,1} & r_{2,2} & r_{2,3} & r_{2,4} \\ r_{3,1} & r_{3,2} & r_{3,3} & r_{3,4} \\ r_{4,1} & r_{4,2} & r_{4,3} & r_{4,4} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- (1) each pair of row vectors is orthogonal
- (2) each row vector has unit length

Let $\mathbf{r_i} = \frac{1}{\sqrt{d}}(r_{i,1}, \dots, r_{i,d})$ be the *i*th row vector of \mathbf{M}

(continued)

Recall that each $r_{i,j}$ is a discrete random variable:

$$r_{i,j} = \begin{cases} +1 & \text{with probability } \frac{1}{2} \\ -1 & \text{with probability } \frac{1}{2} \end{cases}$$

Let's analyze expected values of the matrix entries of $\mathbf{M}\mathbf{M}^{\mathbf{T}}$

We will need the expected value of $r_{i,j}$:

$$\forall i, j : \mathrm{E}[r_{i,j}] = -1 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = 0$$

(continued)

(1) the expected angle between each pair of row vectors is orthogonal: $\forall i \neq j : \mathrm{E}\left[\langle \mathbf{r_i}, \mathbf{r_j} \rangle\right] = 0$

(continued)

(1) the expected angle between each pair of row vectors is orthogonal: $\forall i \neq j : \mathrm{E}\left[\langle \mathbf{r_i}, \mathbf{r_j} \rangle\right] = 0$

Proof:

By linearity of expectation

$$\operatorname{E}\left[\langle \mathbf{r_i}, \mathbf{r_j} \rangle\right] = \operatorname{E}\left[\sum_{t=1}^{d} \frac{r_{i,t}}{\sqrt{d}} \cdot \frac{r_{j,t}}{\sqrt{d}}\right] = \frac{1}{d} \sum_{t=1}^{d} \operatorname{E}\left[r_{i,t} \cdot r_{j,t}\right]$$

(continued)

(1) the expected angle between each pair of row vectors is orthogonal: $\forall i \neq j : \mathrm{E}\left[\langle \mathbf{r_i}, \mathbf{r_i} \rangle\right] = 0$

Proof:

By linearity of expectation

$$\operatorname{E}\left[\langle \mathbf{r_i}, \mathbf{r_j} \rangle\right] = \operatorname{E}\left[\sum_{t=1}^{d} \frac{r_{i,t}}{\sqrt{d}} \cdot \frac{r_{j,t}}{\sqrt{d}}\right] = \frac{1}{d} \sum_{t=1}^{d} \operatorname{E}\left[r_{i,t} \cdot r_{j,t}\right]$$

for $i \neq j$ it holds that $r_{i,t}$ and $r_{j,t}$ are independent random variables, therefore

$$\mathrm{E}\left[\langle \mathbf{r_i}, \mathbf{r_j} \rangle\right] = \frac{1}{d} \sum_{t=1}^{d} \mathrm{E}\left[r_{i,t}\right] \cdot \mathrm{E}\left[r_{j,t}\right] = 0$$

(continued)

(2) the expected squared length of each row vector is 1:

$$\forall i : \mathrm{E}\left[\langle \mathbf{r_i}, \mathbf{r_i} \rangle\right] = 1$$

(continued)

(2) the expected squared length of each row vector is 1:

$$\forall i : \mathrm{E}\left[\langle \mathbf{r_i}, \mathbf{r_i} \rangle\right] = 1$$

Proof:

By linearity of expectation

$$E\left[\langle \mathbf{r_i}, \mathbf{r_i} \rangle\right] = E\left[\sum_{t=1}^{d} \frac{r_{i,t}}{\sqrt{d}} \cdot \frac{r_{i,t}}{\sqrt{d}}\right] = \frac{1}{d} \sum_{t=1}^{d} E\left[r_{i,t}^2\right]$$

(continued)

(2) the expected squared length of each row vector is 1:

$$\forall i : \mathrm{E}\left[\langle \mathbf{r_i}, \mathbf{r_i} \rangle\right] = 1$$

Proof:

By linearity of expectation

$$E\left[\langle \mathbf{r_i}, \mathbf{r_i} \rangle\right] = E\left[\sum_{t=1}^{d} \frac{r_{i,t}}{\sqrt{d}} \cdot \frac{r_{i,t}}{\sqrt{d}}\right] = \frac{1}{d} \sum_{t=1}^{d} E\left[r_{i,t}^2\right]$$

Note that $r_{i,t}^2$ is also a random variable and its expected value is:

$$E[r_{i,t}^2] = (-1)^2 \cdot \frac{1}{2} + (1)^2 \cdot \frac{1}{2} = 1$$

(continued)

(2) the expected squared length of each row vector is 1:

$$\forall i : \mathrm{E}\left[\langle \mathbf{r_i}, \mathbf{r_i} \rangle\right] = 1$$

Proof:

By linearity of expectation

$$E\left[\langle \mathbf{r_i}, \mathbf{r_i} \rangle\right] = E\left[\sum_{t=1}^{d} \frac{r_{i,t}}{\sqrt{d}} \cdot \frac{r_{i,t}}{\sqrt{d}}\right] = \frac{1}{d} \sum_{t=1}^{d} E\left[r_{i,t}^2\right]$$

Note that $r_{i,t}^2$ is also a random variable and its expected value is:

$$E[r_{i,t}^2] = (-1)^2 \cdot \frac{1}{2} + (1)^2 \cdot \frac{1}{2} = 1$$

Therefore, $E[\langle \mathbf{r_i}, \mathbf{r_i} \rangle] = 1$

ullet We proved that ${f M}$ is close to being a rotation on average.

- ullet We proved that ${f M}$ is close to being a rotation on average.
- Therefore, we can think of f as a random rotation followed by an ordinary projection onto the first k coordinates.

$$f(p) = \frac{1}{\sqrt{k}} \mathbf{R} p = \frac{\sqrt{d}}{\sqrt{k}} \frac{1}{\sqrt{d}} \mathbf{R} p = \frac{\sqrt{d}}{\sqrt{k}} \mathbf{P} \mathbf{M} p$$

- ullet We proved that ${f M}$ is close to being a rotation on average.
- Therefore, we can think of f as a random rotation followed by an ordinary projection onto the first k coordinates.

$$f(p) = \frac{1}{\sqrt{k}} \mathbf{R} p = \frac{\sqrt{d}}{\sqrt{k}} \frac{1}{\sqrt{d}} \mathbf{R} p = \frac{\sqrt{d}}{\sqrt{k}} \mathbf{P} \mathbf{M} p$$

 Next we want to analyze the effect of the random projection on a distance between two points

- ullet We proved that ${f M}$ is close to being a rotation on average.
- Therefore, we can think of f as a random rotation followed by an ordinary projection onto the first k coordinates.

$$f(p) = \frac{1}{\sqrt{k}} \mathbf{R} p = \frac{\sqrt{d}}{\sqrt{k}} \frac{1}{\sqrt{d}} \mathbf{R} p = \frac{\sqrt{d}}{\sqrt{k}} \mathbf{P} \mathbf{M} p$$

- Next we want to analyze the effect of the random projection on a distance between two points
- Therefore we analyze for fixed $p_i, p_j \in P$ the expectation of its squared length in the projection

$$\mathbb{E}\left[\|f(p_i) - f(p_j)\|^2\right]$$

Claim: For fixed $p_i, p_j \in P : E[\|f(p_i) - f(p_j)\|^2] = \|p_i - p_j\|^2$

Claim: For fixed $p_i, p_j \in P : E[\|f(p_i) - f(p_j)\|^2] = \|p_i - p_j\|^2$

Proof:

Since f is a linear transformation, we have that

$$E[||f(p_i) - f(p_j)||^2] = E[||f(p_i - p_j)||^2] = E[||f(\alpha)||^2]$$

where $\alpha = (a_1, \dots, a_d) = p_i - p_j$.

Claim: For fixed $p_i, p_j \in P : E[\|f(p_i) - f(p_j)\|^2] = \|p_i - p_j\|^2$

Proof:

Since f is a linear transformation, we have that

$$E[||f(p_i) - f(p_j)||^2] = E[||f(p_i - p_j)||^2] = E[||f(\alpha)||^2]$$

where $\alpha = (a_1, \dots, a_d) = p_i - p_j$.

By the definition of
$$f$$

$$\|f(\alpha)\|^2 = \left\|\frac{\sqrt{d}}{\sqrt{k}}\mathbf{P}\mathbf{M}\alpha\right\|^2 = \frac{d}{k}\|\mathbf{P}\mathbf{M}\alpha\|^2 = \frac{d}{k}\sum_{i=1}^k(\mathbf{r_i}\alpha)^2$$

where $\mathbf{r_i} = \frac{1}{\sqrt{d}}(r_{i,1}, \dots, r_{i,d})$ is the *i*th row vector of \mathbf{M} , as defined earlier.

(continued)

by linearity of expectation

$$E\left[\|f(\alpha)\|^2\right] = E\left[\frac{d}{k}\sum_{i=1}^k (\mathbf{r_i}\alpha)^2\right] = \frac{d}{k}\sum_{i=1}^k E\left[(\mathbf{r_i}\alpha)^2\right]$$

(continued)

by linearity of expectation

$$\mathrm{E}\left[\|f(\alpha)\|^2\right] = \mathrm{E}\left[\frac{d}{k}\sum_{i=1}^k (\mathbf{r_i}\alpha)^2\right] = \frac{d}{k}\sum_{i=1}^k \mathrm{E}\left[(\mathbf{r_i}\alpha)^2\right]$$

by the definition of ${\bf r_i}$ and α

$$E\left[(\mathbf{r_i}\alpha)^2 \right] = E\left[\left(\sum_{j=1}^d \frac{1}{\sqrt{d}} r_{i,j} a_j \right)^2 \right] = E\left[\frac{1}{d} \left(\sum_{j=1}^d r_{i,j} a_j \right)^2 \right]$$

(continued)

by linearity of expectation

$$E\left[\|f(\alpha)\|^2\right] = E\left|\frac{d}{k}\sum_{i=1}^k (\mathbf{r_i}\alpha)^2\right| = \frac{d}{k}\sum_{i=1}^k E\left[(\mathbf{r_i}\alpha)^2\right]$$

by the definition of $\mathbf{r_i}$ and α

$$E\left[(\mathbf{r_i}\alpha)^2 \right] = E\left[\left(\sum_{j=1}^d \frac{1}{\sqrt{d}} r_{i,j} a_j \right)^2 \right] = E\left[\frac{1}{d} \left(\sum_{j=1}^d r_{i,j} a_j \right)^2 \right]$$

We recursively expand the inner quadratic expression

$$\left(\sum_{j=1}^{d} r_{i,j} a_{j}\right)^{2} = (r_{i,1} a_{1})^{2} + 2r_{i,1} a_{1} \left(\sum_{j=2}^{d} r_{i,j} a_{j}\right) + \left(\sum_{j=2}^{d} r_{i,j} a_{j}\right)^{2}$$

$$= \cdot \frac{1}{d} \cdot \sum_{j=1}^{d-1} \sum_{l=j+1}^{d} 2r_{i,j} a_{j} r_{i,l} a_{l}$$

(continued)

Plugging back into the equation..

$$E[(\mathbf{r}_{i}\alpha)^{2}] = E\left[\frac{1}{d}\sum_{j=1}^{d}(r_{i,j}a_{j})^{2} + \sum_{j=1}^{d-1}\sum_{l=j+1}^{d}2r_{i,j}a_{j}r_{i,l}a_{l}\right]$$

Note that $\alpha=(a_1,\ldots,a_d)$ is a fixed vector, so it is not affected by randomness

(continued)

Plugging back into the equation..

$$E[(\mathbf{r}_{i}\alpha)^{2}] = E\left[\frac{1}{d}\sum_{j=1}^{d}(r_{i,j}a_{j})^{2} + \sum_{j=1}^{d-1}\sum_{l=j+1}^{d}2r_{i,j}a_{j}r_{i,l}a_{l}\right]$$

Note that $\alpha = (a_1, \dots, a_d)$ is a fixed vector, so it is not affected by randomness

Therefore, by linearity of expectation

$$E[(\mathbf{r}_{i}\alpha)^{2}] = \frac{1}{d} \sum_{j=1}^{d} a_{j}^{2} E[r_{i,j}^{2}] + \sum_{j=1}^{d-1} \sum_{l=j+1}^{d} 2a_{j}a_{l} E[r_{i,j}r_{i,l}]$$

(continued)

Plugging back into the equation..

$$E[(\mathbf{r_i}\alpha)^2] = E\left[\frac{1}{d}\sum_{j=1}^d (r_{i,j}a_j)^2 + \sum_{j=1}^{d-1} \sum_{l=j+1}^d 2r_{i,j}a_jr_{i,l}a_l\right]$$

Note that $\alpha = (a_1, \dots, a_d)$ is a fixed vector, so it is not affected by randomness

Therefore, by linearity of expectation

$$\mathrm{E}\left[(\mathbf{r_i}\alpha)^2\right] = \frac{1}{d}\sum_{j=1}^d a_j^2 \,\mathrm{E}\left[r_{i,j}^2\right] + \sum_{j=1}^{d-1}\sum_{l=j+1}^d 2a_j a_l \,\mathrm{E}\left[r_{i,j}r_{i,l}\right]$$

$$1 \text{ (as before)} \qquad \qquad 0 \text{ (as before)}$$

(continued)

Plugging back into the equation..

$$E[(\mathbf{r}_{i}\alpha)^{2}] = E\left[\frac{1}{d}\sum_{j=1}^{d}(r_{i,j}a_{j})^{2} + \sum_{j=1}^{d-1}\sum_{l=j+1}^{d}2r_{i,j}a_{j}r_{i,l}a_{l}\right]$$

Note that $\alpha = (a_1, \dots, a_d)$ is a fixed vector, so it is not affected by randomness

Therefore, by linearity of expectation

$$\mathbf{E}\left[(\mathbf{r_i}\alpha)^2\right] = \frac{1}{d} \sum_{j=1}^d a_j^2 \mathbf{E}\left[r_{i,j}^2\right] + \sum_{j=1}^{d-1} \sum_{l=j+1}^d 2a_j a_l \mathbf{E}\left[r_{i,j}r_{i,l}\right]$$
(as before)

$$= \frac{1}{d} \sum_{j=1}^{d} a_j^2 = \frac{1}{d} \|\alpha\|^2$$

(continued)

Plugging back into the equation..

$$\mathrm{E}\left[\|f(\alpha)\|^2\right] = \frac{d}{k} \sum_{i=1}^k \mathrm{E}\left[(\mathbf{r_i}\alpha)^2\right] = \frac{d}{k} \sum_{i=1}^k \frac{1}{d} \|\alpha\|^2 = \|\alpha\|^2$$

(continued)

Plugging back into the equation..

$$\mathrm{E}\left[\|f(\alpha)\|^2\right] = \frac{d}{k} \sum_{i=1}^k \mathrm{E}\left[(\mathbf{r_i}\alpha)^2\right] = \frac{d}{k} \sum_{i=1}^k \frac{1}{d} \|\alpha\|^2 = \|\alpha\|^2$$

Now, plugging back the definition of α

$$E[||f(p_i) - f(p_j)||^2] = ||p_i - p_j||^2$$

Law of Large Numbers

Let X_1, \ldots, X_n be n samples of a random variable X. The law of large numbers states that

$$\Pr\left[\left|\frac{1}{n}\sum_{i=1}^{n}X_{i} - \operatorname{E}\left[X\right]\right| \geq \varepsilon\right] \leq \frac{\operatorname{Var}\left(X\right)}{n \cdot \varepsilon^{2}}$$

The unit hypercube: $[0,1]^d = \{(x_1,\ldots,x_d) \mid x_i \in [0,1]\}$

Random vector $\mathbf{x} = (x_1, \dots, x_d) \in [0, 1]^d$ (choose x_i independently and uniformly random in [0,1])

Consider the squared length $\|\mathbf{x}\|^2 = \sum_{i=1}^d x_i^2$

The unit hypercube: $[0,1]^d = \{(x_1,\ldots,x_d) \mid x_i \in [0,1]\}$

Random vector $\mathbf{x} = (x_1, \dots, x_d) \in [0, 1]^d$ (choose x_i independently and uniformly random in [0,1])

Consider the squared length $\|\mathbf{x}\|^2 = \sum_{i=1}^d x_i^2$

By the law of large numbers we have for high dimensions:

$$L := \frac{\|\mathbf{x}\|^2}{d} = \frac{1}{d} \sum_{i=1}^{d} x_i^2 \sim \frac{1}{3}$$

The unit hypercube: $[0,1]^d = \{(x_1,\ldots,x_d) \mid x_i \in [0,1]\}$

Random vector $\mathbf{x} = (x_1, \dots, x_d) \in [0, 1]^d$ (choose x_i independently and uniformly random in [0, 1])

Consider the squared length $\|\mathbf{x}\|^2 = \sum_{i=1}^d x_i^2$

By the law of large numbers we have for high dimensions:

$$L := \frac{\|\mathbf{x}\|^2}{d} = \frac{1}{d} \sum_{i=1}^{d} x_i^2 \sim \frac{1}{3}$$

⁽ This is the average of a random variable, since x_i are independent and identically distributed

(with
$$E[x_i^2] = \int_0^1 x_i^2 = \left[\frac{1}{3}x^3\right]_0^1 = \frac{1}{3}$$
)

The unit hypercube: $[0,1]^d = \{(x_1,\ldots,x_d) \mid x_i \in [0,1]\}$

Random vector $\mathbf{x} = (x_1, \dots, x_d) \in [0, 1]^d$ (choose x_i independently and uniformly random in [0, 1])

Consider the squared length $\|\mathbf{x}\|^2 = \sum_{i=1}^d x_i^2$ $\sim \frac{d}{3}$

By the law of large numbers we have for high dimensions:

$$L := \frac{\|\mathbf{x}\|^2}{d} = \frac{1}{d} \sum_{i=1}^{d} x_i^2 \sim \frac{1}{3}$$

 $^{(}$ This is the average of a random variable, since x_i are independent and identically distributed

(with
$$E[x_i^2] = \int_0^1 x_i^2 = \left[\frac{1}{3}x^3\right]_0^1 = \frac{1}{3}$$
)

The unit hypercube: $[0,1]^d = \{(x_1,\ldots,x_d) \mid x_i \in [0,1]\}$

Random vector $\mathbf{x} = (x_1, \dots, x_d) \in [0, 1]^d$ (choose x_i independently and uniformly random in [0, 1])

Consider the squared length $\|\mathbf{x}\|^2 = \sum_{i=1}^d x_i^2 \sim \frac{d}{3}$

Distribution of the length of x in low vs. high dimensions

$$d=2$$

17 2IMW30 Foundations of data mining

Failure probability for two fixed points p_i, p_j :

$$\Pr\left[\frac{\|f(p_i) - f(p_j)\|^2}{\|p_i - p_j\|^2} \notin [1 - \varepsilon, 1 + \varepsilon]\right]$$

Failure probability for two fixed points p_i, p_j :

$$\Pr\left[\frac{\|f(p_i) - f(p_j)\|^2}{\|p_i - p_j\|^2}\right) \notin [1 - \varepsilon, 1 + \varepsilon]\right]$$

rewrite this term:

$$\frac{\|f(p_i) - f(p_j)\|^2}{\|p_i - p_j\|^2} = \left(\frac{\|f(p_i - p_j)\|}{\|p_i - p_j\|}\right)^2 = \left\|\frac{f(p_i - p_j)}{\|p_i - p_j\|}\right\|^2$$

Failure probability for two fixed points p_i, p_j :

$$\Pr\left[\frac{\|f(p_i) - f(p_j)\|^2}{\|p_i - p_j\|^2}\right) \notin [1 - \varepsilon, 1 + \varepsilon]\right]$$

rewrite this term:

$$\frac{\|f(p_i) - f(p_j)\|^2}{\|p_i - p_j\|^2} = \left(\frac{\|f(p_i - p_j)\|}{\|p_i - p_j\|}\right)^2 = \left\|\frac{f(p_i - p_j)}{\|p_i - p_j\|}\right\|^2$$

by the linearity of f this term is equal to:

$$\left\| f\left(\frac{p_i - p_j}{\|p_i - p_j\|}\right) \right\|^2$$

Failure probability for two fixed points p_i, p_j :

$$\Pr\left[\frac{\|f(p_i) - f(p_j)\|^2}{\|p_i - p_j\|^2}\right) \notin [1 - \varepsilon, 1 + \varepsilon]\right]$$

rewrite this term:

$$\frac{\|f(p_i) - f(p_j)\|^2}{\|p_i - p_j\|^2} = \left(\frac{\|f(p_i - p_j)\|}{\|p_i - p_j\|}\right)^2 = \left\|\frac{f(p_i - p_j)}{\|p_i - p_j\|}\right\|^2$$

by the linearity of f this term is equal to:

$$\left\| f\left(\frac{p_i - p_j}{\|p_i - p_j\|}\right) \right\|^2$$

define $\alpha = \frac{p_i - p_j}{\|p_i - p_j\|}$ (note that α is a fixed unit vector)

$$\Pr\left[\left\|f\left(\alpha\right)\right\|^{2}\notin\left[1-\varepsilon,1+\varepsilon\right]\right]$$

(continued)

$$\Pr\left[\left\|f\left(\alpha\right)\right\|^{2}\notin\left[1-\varepsilon,1+\varepsilon\right]\right]$$

(continued)

$$\Pr\left[\left\|f\left(\alpha\right)\right\|^{2}\notin\left[1-\varepsilon,1+\varepsilon\right]\right]$$

squared length of the random projection of a unit vector

(continued)

$$\Pr\left[\left\|f\left(\alpha\right)\right\|^{2}\notin\left[1-\varepsilon,1+\varepsilon\right]\right]$$

squared length of the random projection of a unit vector

By the definition of f:

$$||f(\alpha)||^2 = \left\| \frac{\sqrt{d}}{\sqrt{k}} \mathbf{P} \mathbf{M} \alpha \right\|^2 = \frac{d}{k} ||\mathbf{P} \mathbf{M} \alpha||^2$$

(continued)

$$\Pr\left[\left\|f\left(\alpha\right)\right\|^{2}\notin\left[1-\varepsilon,1+\varepsilon\right]\right]$$

squared length of the random projection of a unit vector

By the definition of f:

$$||f(\alpha)||^2 = \left\| \frac{\sqrt{d}}{\sqrt{k}} \mathbf{P} \mathbf{M} \alpha \right\|^2 = \frac{d}{k} ||\mathbf{P} \mathbf{M} \alpha||^2$$

For simplicity, assume M is a proper random rotation.

(continued)

$$\Pr\left[\left\|f\left(\alpha\right)\right\|^{2}\notin\left[1-\varepsilon,1+\varepsilon\right]\right]$$

squared length of the random projection of a unit vector

By the definition of f:

$$||f(\alpha)||^2 = \left\| \frac{\sqrt{d}}{\sqrt{k}} \mathbf{P} \mathbf{M} \alpha \right\|^2 = \frac{d}{k} ||\mathbf{P} \mathbf{M} \alpha||^2$$

For simplicity, assume M is a proper random rotation.

In this case, $\mathbf{M}\alpha$ is a random unit vector

(continued)

$$\Pr\left[\left\|f\left(\alpha\right)\right\|^{2}\notin\left[1-\varepsilon,1+\varepsilon\right]\right]$$

squared length of the random projection of a unit vector

By the definition of f:

$$||f(\alpha)||^2 = \left\| \frac{\sqrt{d}}{\sqrt{k}} \mathbf{P} \mathbf{M} \alpha \right\|^2 = \frac{d}{k} \|\mathbf{P} \mathbf{M} \alpha\|^2$$

For simplicity, assume ${\bf M}$ is a proper random rotation. In this case, ${\bf M}\alpha$ is a random unit vector

squared length of a **random unit vector**, projected onto the first k coordinates

Using concentration of measure, Achlioptas shows the following lemma (we omit the full proof):

Lemma:

Let $r_{i,j}$ be chosen uniformly random from $\{-1,1\}$, then for any $\varepsilon > 0$ and any unit vector $\alpha \in \mathbb{R}^d$,

$$\Pr\left[\|f(\alpha)\|^2 \notin [1-\varepsilon, 1+\varepsilon]\right] < 2 \cdot e^{\left(-\frac{k}{2}(\varepsilon^2/2 - \varepsilon^3/3)\right)}$$

Therefore, choosing

$$k \ge \frac{4 + 2\beta}{\varepsilon^2 / 2 - \varepsilon^3 / 3} \log n$$

is sufficient to ensure

$$\Pr\left[\frac{\|f(p_i) - f(p_j)\|^2}{\|p_i - p_j\|^2} \notin [1 - \varepsilon, 1 + \varepsilon]\right] = \Pr\left[\|f(\alpha)\|^2 \notin [1 - \varepsilon, 1 + \varepsilon]\right] < \frac{2}{n^{2+\beta}}$$

Analysis of the Distortion

Theorem:

Let $k_0 = \frac{4+2\beta}{\varepsilon^2/2-\varepsilon^3/3}\log n$, for given $\varepsilon, \beta > 0$. If $k \ge k_0$ then with probability at least $1 - \frac{1}{n^\beta}$, we have for all $p_i, p_j \in P$ that

$$(1-\varepsilon)\|p_i - p_j\|^2 \le \|f(p_i) - f(p_j)\|^2 \le (1+\varepsilon)\|p_i - p_j\|^2$$

Analysis of the Distortion

Theorem:

Let $k_0 = \frac{4+2\beta}{\varepsilon^2/2-\varepsilon^3/3}\log n$, for given $\varepsilon, \beta > 0$. If $k \ge k_0$ then with probability at least $1 - \frac{1}{n^\beta}$, we have for all $p_i, p_j \in P$ that

$$(1 - \varepsilon) \|p_i - p_j\|^2 \le \|f(p_i) - f(p_j)\|^2 \le (1 + \varepsilon) \|p_i - p_j\|^2$$

Proof:

- there are $\binom{n}{2}$ pairs of points in P
- bound the failure probability for two fixed points:

$$\Pr\left[\frac{\|f(p_i) - f(p_j)\|^2}{\|p_i - p_j\|^2} \notin [1 - \varepsilon, 1 + \varepsilon]\right] < \frac{2}{n^{2+\beta}}$$

• apply the union bound: $\binom{n}{2} \cdot \frac{2}{n^{2+\beta}} < \frac{n^2}{2} \cdot \frac{2}{n^{2+\beta}} = \frac{1}{n^{\beta}}$

Note:

For generating the matrix \mathbf{R} , other distributions are possible. In particular,

Note:

For generating the matrix \mathbf{R} , other distributions are possible. In particular,

$$r_{i,j} = \sqrt{3} \begin{array}{c} +1 & \text{with probability } \frac{1}{6} \\ 0 & \text{with probability } \frac{2}{3} \\ -1 & \text{with probability } \frac{1}{6} \end{array}$$

Note:

For generating the matrix \mathbf{R} , other distributions are possible. In particular,

$$r_{i,j} = \sqrt{3} \begin{array}{c} +1 & \text{with probability } \frac{1}{6} \\ 0 & \text{with probability } \frac{2}{3} \\ -1 & \text{with probability } \frac{1}{6} \end{array}$$

What would be the advantage of this?

Note:

For generating the matrix \mathbf{R} , other distributions are possible. In particular,

$$r_{i,j} = \sqrt{3} \begin{array}{c} +1 & \text{with probability } \frac{1}{6} \\ 0 & \text{with probability } \frac{2}{3} \\ -1 & \text{with probability } \frac{1}{6} \end{array}$$

What would be the advantage of this?

This generates a sparser matrix

Summary

- Nearest-neighbor searching
- Embedding and Distortion
- Achlioptas' Random Projection
- Projection onto a subspace
- Random Rotation (Expectation)
- Analysis of a fixed distance (Expectation)
- Law of large numbers
- Concentration of measure
- Analysis of a fixed distance
- Analysis of the Distortion
- Alternative Projection Matrix

References

- Ashraf M. Kibriya and Eibe Frank: "An Empirical Comparison of Exact Nearest Neighbour Algorithms"
- Dimitris Achlioptas: "Database-friendly random projections: Johnson-Lindenstrauss with binary coins" Journal of Computer and System Sciences 66 (2003), p 671–687
- Sanjoy Dasgupta and Anupam Gupta: "An Elementary Proof of a Theorem of Johnson and Lindenstrauss" Journal Random Structures & Algorithms 22:1 (2003), p 60–65
- Avrim Blum, John Hopcroft, Ravindran Khannan: Foundations of Data Science