PRINTABLE VERSION

Quiz 5

You scored 100 out of 100
Question 1
Your answer is CORRECT.
An outline for a proof of an implication $P\Rightarrow Q$ is provided below: $\begin{array}{c} \text{Proposition. }P\Rightarrow Q\\ \\ \underline{\text{Proof. Suppose }\neg Q.}\\ \underline{\text{Missing steps involving }\neg Q \text{ and }\neg P \text{ and any previously established facts}}\\ \text{Therefore }\neg P. \ \Box \\ \end{array}$ What type of proof was described in the outline?
a) A proof by contrapositive is described in this outline.
b) Wait a minute The proof described in this outline isn't a valid proof technique!
c) A direct proof is described in this outline.
d) A proof by contradiction is described in this outline.
e) A proof by introspection is described in this outline.
Question 2
Your answer is CORRECT.
Suppose a mathematician wants to prove a statement of the form $P \land Q$. However, they wish to do so using a proof by contradiction. Of the following options which could be used as a first step in this proof?
a) \bigcirc Suppose $\neg P \land Q$.
b) \bigcirc Suppose $\neg P$.
c) \bigcirc Suppose $\neg P \land \neg Q$.
d) Suppose ¬Q
e) \odot Suppose $\neg P \lor \neg Q$.
Question 3
Your answer is CORRECT.
Given two sets A and B one can prove $A \subseteq B$ by
a) \bigcirc First supposing $x \notin B$, and then showing $x \in A$.
b) \odot First supposing $x \in A$, and then showing $x \in B$.
c) \bigcirc First supposing $x \in B$, and then showing $x \in A$.
d) \bigcirc First supposing $x \notin A$, and then showing $x \in B$.
e) \bigcirc First supposing $x \in A$, and then showing $x \notin B$.
Ouestion 4

Your answer is CORRECT.
Given two sets A and B one can prove $B \subseteq A$ by
a) \bigcirc First supposing $x \notin B$, and then showing $x \in A$.
b) \bigcirc First supposing $x \notin A$, and then showing $x \in B$.
c) \odot First supposing $x \notin A$, and then showing $x \notin B$.
d) \bigcirc First supposing $x \notin B$, and then showing $x \notin A$.
e) \bigcirc First supposing $x \in A$, and then showing $x \notin B$.
Question 5
Your answer is CORRECT.
A lovely little proof is presented below:
Proposition. If x^2 is an even integer, then x is even.
Proof. Suppose x^2 is even.
A previous result tells us that the if the product of two integers is even, then at least one of the factors is even.
When applied to $x^2 = x \cdot x$, this implies that x is even. \Box
Determine the type of proof used.
a) A proof by contradiction was used.
b) Wait a minute This so-called "proof" did not actually show the Proposition was true. Whoever wrote this deserves 0 points.
c) A proof by indoctrination was used.
d) A direct proof was used.
e) A proof by contrapositive was used.
Question 6
Your answer is CORRECT.
A proposition and an attempt at its proof are presented below.
Proposition. If $A \subseteq X$ and $B \subseteq Y$ then $A \times B \subseteq X \times Y$.
Proof (Direct).
(1) Suppose $A \subseteq X \land B \subseteq Y$.
(2) In order to show $A \times B \subseteq X \times Y$ we will let $(a,b) \in A \times B$ and then conclude $(a,b) \in X \times Y$.
$(3)\ (a,b)\in A imes B\ ext{means}\ a\in A\ \land\ b\in B.$ $(4)\ ext{Since}\ a\in A\subseteq X\ ext{it follows that}\ a\in X.$
(5) Since $b \in B \subseteq Y$ it follows that $b \in Y$.
(6) By Definition of Cartesian Product $(a,b) \in X \times Y$. \square
Identify the mistake, if any, in this proof.
a) There is an error in Line (4) where the definition of subset is misused.
b) Hey, wait a second this proof looks completely correct!

c) There is an error in Line (6) where the definition of Cartesian Product is misused.
d) \bigcirc There is an error in Line (3). The symbol \land should be \lor .
e) \bigcirc There is an error in Line (2). One is not allowed to just "let" $(a,b) \in A \times B$.

Question 7

Your answer is CORRECT.

A proposition and an attempt at its proof are presented below.

Proposition. The set $S=\{x\in\mathbb{Z}\,:\,x^3-x=0\}$ has cardinality |S|=3.

Proof. (Direct)

- (1) We can rewrite the equation $x^3 x = 0$ as x(x-1)(x+1) = 0.
- (2) Because x is an integer, and because $\mathbb{Z} \subset \mathbb{R}$, it follows that x is a real number, too.
- (3) The equation x(x-1)(x+1)=0 only has solutions x=0, x=1, and x=-1.
- (4) The solutions x = 1 and x = -1 can be added to produce the other solution x = 0.
- (5) It follows that $S = \{-1, 0, 1\}.$
- (6) Therefore |S| = 3. \square

One or more lines in this proof are not needed -- the proof works perfectly well without them (in fact, it works better without them). Which lines are not needed?

- a) Only line (4) is not needed. All other lines are needed.
- b) All lines are needed.
- c) Only line (1) is not needed. All other lines are needed.
- d) Only lines (2) and (4) are not needed. All other lines are needed.
- e) Only line (2) is not needed. All other lines are needed.

Question 8

Your answer is CORRECT.

Suppose we want to write a proof by contradiction of the proposition below:

$$\forall a, b, c \in [0, \infty), (ab = c) \Rightarrow (a \le \sqrt{c} \lor b \le \sqrt{c}).$$

Which of the following statements or properties do we need to use when composing this proof?

- a) Suppose ab = c and that either $a > \sqrt{c}$ or $b > \sqrt{c}$.
- **b)** Suppose ab = c and that both $a > \sqrt{c}$ and $b > \sqrt{c}$.
- c) The fact that for real numbers x, y, if x > y then $\sqrt{xy} = \sqrt{x} \cdot \sqrt{y}$.
- d) The fact that for real numbers x, y, if x > y then $\sqrt{xy} = \sqrt{x} \cdot \sqrt{y}$.

Question 9

Your answer is CORRECT.

A proposition is stated below. Take a few moments to carefully read it, and make sure you understand what, exactly, it claims to be true.

$$\exists n \in \mathbb{N}, \ 1+2+\dots+n = \frac{n(n+1)}{2}.$$

Of the following options, which one best describes what needs to be done in order to prove this claim?

a) \bigcirc We need to show the claim is true for an abitrary natural, saying something like "Let $n \in \mathbb{N}$."

b) • We need only check that the claim is true for one, single natural number.
c) The proposition is a famous, unsolved problem. No one knows if it is true or false, and so it is not clear how to describe a proof for this.