Game Theory, Fall 2022 Problem Set 1

Zhuoyuan He and Sihao Tang*

1. ST Exercise 3.2.¹

Soln: There are two players, the kicker (player 1) and the goalie (player 2). Each has two strategies, L or R, where obviously L denotes "left" and R denotes "right". Thus, the strategy space is $S_i = \{L, R\}$ for i = 1, 2. Suppose the winner obtains payoff 1 and the loser obtains payoff -1. Then, we have $v_1(L, R) = v_1(R, L) = v_2(L, L) = v_2(R, R) = 1$ and $v_1(L, L) = v_1(R, R) = v_2(L, R) = v_2(R, L) = -1$. The matrix is in Figure 1.

Player 2
$$L \quad R$$
Player 1 $L \quad -1, 1 \quad 1, -1$

$$R \quad 1, -1 \quad -1, 1$$

Figure 1: The normal form game for Question 1

2. ST Exercise 3.3.

Soln: There are two players, 1 and 2. The strategy space for player i is $S_i = \{S, C\}$, where S represents Sutro Tower and C represents Coit Tower. Suppose meeting up yields payoff 1 to each of the players and not meeting up yields -1. Therefore, $v_i(S,S) = v_i(C,C) = 1$ and $v_i(S,C) = v_i(C,S) = -1$ for i = 1,2. The matrix is in Figure 2.

3. ST Exercise 3.4.

Soln: Its game matrix is in Figure 3, where S stands for stag and H stands for hare.

^{*}Special thanks go to Peixuan Fu and Shuang Wu, who wrote the last version of these solutions.

¹ "ST" refers to our textbook: Game Theory: An Introduction by Steven Tadelis.

Figure 2: The normal form game for Question 2

Player 2
$$S H$$
Player 1 $\begin{bmatrix} S & 3,3 & 0,1 \\ H & 1,0 & 1,1 \end{bmatrix}$

Figure 3: The normal form game for Question 3

- 4. Consider the first/second price auction environment we covered in class. Instead of 2 bidders, assume there are n bidders with value v_1, \ldots, v_n .
 - (a) Extend the first price auction to this case. As usual, if more than one bidder bid the same highest price, a winning bidder is randomly drawn from them with equal probabilities. (Use this tie breaking rule also for the next question).

Soln: There are n bidders, $N = \{1, 2, ..., n\}$. Every bidder can bid a nonnegative price $b_i \geq 0$. Thus, bidder i's strategy space is $S_i = [0, +\infty)$. The payoff function for bidder i is

$$v_i(b_i, b_{-i}) = \begin{cases} \frac{v_i - b_i}{|\{j|b_j = b_i\}|}, & \text{if } b_i \ge b_j \text{ for all } j, \\ 0, & \text{otherwise.} \end{cases}$$

(b) Extend the second price auction to this case.

Soln: The set of players and strategy space are the same as first price auction, $N = \{1, 2, ..., n\}$, and $S_i = [0, +\infty)$, for $i \in N$. The payoff function for player i is

$$v_i(b_i, b_{-i}) = \begin{cases} \frac{v_i - \max_{j \neq i} b_j}{|\{j|b_j = b_i\}|}, & \text{if } b_i \geq b_j \text{ for all } j, \\ 0, & \text{otherwise.} \end{cases}$$

- 5. ST Exercise 4.3.
 - (a) **Soln:** There are two players, 1 and 2. The strategy space for player i is $S_i = \{0, 1, 2\}$. The game matrix is in Figure 4.
 - (b) It is easy to check that none of player 1's strategy is strictly dominated. For player 2, $b_2 = 0$ is strictly dominated by $b'_2 = 2$.

	Player 2		
	0	1	2
0	1.5, 2.5	0,4	0,3
Player 1 1	2,0	1, 2	0,3
2	1,0	1,0	0.5, 1.5

Figure 4: The normal form game for Question 5

(c) In the first round, 0 for player 2 is deleted. In the second round, $b_1 = 0$ for player 1 is strictly dominated by $b'_1 = 2$, and thus is deleted. In the third round, $b_2 = 1$ for player 2 is strictly dominated by $b'_2 = 2$. Hence it is deleted in this round. In the last round, $b_1 = 1$ for player 1 is strictly dominated by $b'_1 = 2$. Therefore, only $\{2\} \times \{2\}$ survives IESDS.

6. ST Exercise 4.5.

Soln: There are two players in the game. We delete all strictly dominated strategies in each round. In the first round, U for player 1 is strictly dominated by M. In the second round, C for player 2 is strictly dominated by R. Hence $\{M, D\} \times \{L, R\}$ survives iterated deletion of strictly dominated strategies.

	Player 2		
	L	C	R
U	6,8	2,6	8, 2
Player 1 M	8, 2	4, 4	9,5
D	8, 10	4, 6	6, 7

Figure 5: The normal form game for Question 6