Courseware	Course Info	Discussion	Syllabus	Download R and RStudio	R Tutorials	Readings	Contact Us
Progress	Office Hours	Community					

Question 2

Records at the Center for Disease Control show that the total number of flu cases in Spring, 2009 looked like this:

Date	Day	Flu Cases
April 27	0	73
April 28	1	105
April 29	2	137
April 30	3	257
May 1	4	367
May 2	5	658
May 3	6	898
May 4 f 6	7	1,085

Help

May 5	8	1,490
May 6	9	1,893

An initial examination of the data showed that both an exponential and a logistic growth model fit the data well:

Exponential Model	Logistic Growth Model
a = 76.64	C = 3,273.31
b = 1.46	a = 43.59
R-squared = 0.984	b = 1.57
	R-squared = 0.996

Use the data from the TABLE of Models to answer the following quesitons.

(1/1 point)

2a. Looking at the raw data, what is the rate of change in flu cases from April 30 to May 1? (Report as a proportion rounded to 2 decimal places.)

0.43

0.43

Help

Show Answer

You have used 1 of 1 submissions

(1/1 point)

2b. What is the growth rate for the flu, according to the exponential model? (Report as a proportion rounded to 2 decimal places.)

0.46

0.46

Show Answer

You have used 1 of 1 submissions

(1 point possible)

2c. Predict the number of cases of flu on **Day 14** (when "Day" is equal to 14), using the exponential model. (Round to zero decimal places.)

15324

15324

Answer: 15325

Help

Hide Answer

You have used 1 of 1 submissions

(1/1 point)

2d. Using the logistic model, predict the total number of flu cases on **Day 14**. (Round to zero decimal places.)

3034

3034

Show Answer

You have used 1 of 1 submissions

(1/1 point)

2e. The actual number of flu cases on Day 14 was 4,379. Find the residual of the exponential model prediction. (Round to zero decimal places.)

-10946

Help

Show Answer

You have used 1 of 1 submissions

(1/1 point)

2f. What is the residual of the logistic model prediction for Day 14? (Round to zero decimal places.)

1345

1345

Show Answer

You have used 1 of 1 submissions

(5/5 points)

Based on the residuals of both models, what conclusion would you reach? Fill in the missing blanks.

The better fit statistic of the logistic model suggests that the number of new flu cases will

begin slowing down . Based on this model, we would expect the maximum number of flu cases in the 2009

season to be: 3,273 . However, neither model

does a perfect job of predicting future cases by Day

to determine how the model needs to be adjusted 01:59 PM

 $_{5 \text{ of } 6}$ 14. We will need to observe how the data changes after day 9

Show Answer

You have used 1 of 1 submissions

EdX offers interactive online classes and MOOCs from the world's best universities. Online courses from MITx, HarvardX, BerkeleyX, UTx and many other universities. Topics include biology, business, chemistry, computer science, economics, finance, electronics, engineering, food and nutrition, history, humanities, law, literature, math, medicine, music, philosophy, physics, science, statistics and more. EdX is a non-profit online initiative created by founding partners Harvard and MIT.

© 2015 edX Inc.

EdX, Open edX, and the edX and Open edX logos are registered trademarks or trademarks of edX Inc.

Terms of Service and Honor Code

Privacy Policy (Revised 10/22/2014)

About edX

About

News

Contact

FAQ

edX Blog

Donate to edX

Jobs at edX

Follow Us

Twitter

Facebook

Meetup

in LinkedIn

S+ Google+