1 Differentiation

1.1 Derivatives of Measures

Theorem 1. Suppose μ is a complex Borel measure on \mathbb{R}^1 and

$$f(x) = \mu((-\infty, x)) \text{ for } x \in \mathbb{R}^1$$
 (1)

If $x \in \mathbb{R}^1$ and A is a complex number, TFAE

- (a) f is differentiable at x and f'(x) = A.
- (b) For all $\epsilon > 0$, there exists $\delta > 0$ such that

$$\left|\frac{\mu(I)}{m(I)} - A\right| < \epsilon \tag{2}$$

for every open segment I that contains x and whose length is less than δ . Note m is the Lebesgue measure on \mathbb{R}^1 .

Definition 1.1. Let us fix a dimension k, denote the open ball with center $x \in \mathbb{R}^k$ and radius r > 0 by

$$B(x,r) = \{ y \in \mathbb{R}^k : |y - x| < r \}$$

We associate to any Borel measure μ on \mathbb{R}^k the quotients:

$$(Q_r\mu)(x) = \frac{\mu(B(x,r))}{m(B(x,r))}$$

Where m is the Lebesgue measure on \mathbb{R}^k .

We define the **symmetric derivative** to be

$$(D\mu)(x) = \lim_{r \to 0} (Q_r\mu)(x)$$

Definition 1.2. Using the same notation as above we define the **maximal function** $M\mu$, for $\mu \geq 0$, to be defined by

$$(M\mu)(x) = \sup_{0 < r < \infty} (Q_r\mu)(x)$$

Remark. The maximal function of a complex Borel measure μ is, by definition, its total variation $|\mu|$.

Proposition 1. The functions $M\mu: \mathbb{R}^k \to [0, \infty]$ are lower semicontinuous, hence measurable.

Proof. Assume $\mu \geq 0$, and let $\lambda > 0$ and $E = \{M\mu > \lambda\}$. Fix $x \in E$. Then there is an r > 0 such that:

$$\mu(B(x,r)) = tm(B(x,r))$$
 for some $t > \lambda$

Indeed since $\sup_{0 < r < \infty} \frac{\mu(B(x,r))}{m(B(x,r))} > \lambda$. So for some r, we have $\frac{\mu(B(x,r))}{m(B(x,r))} > \lambda$. Letting $t = \frac{\mu(B(x,r))}{m(B(x,r))}$ gives us the desired result.

Furthermore there is a $\delta > 0$ such that:

$$(r+\delta)^k < \frac{r^k t}{\lambda}$$

If $|y-x| < \delta$, then $B(y,r+\delta) \supseteq B(x,r)$. Therefore

$$\mu(B(y,r+\delta)) \ge \mu(B(x,r)) = tm(B(x,r)) = t\left[\frac{r}{(r+\delta)^k}m(B(y,r+\delta)) > \lambda m(B(y,r+\delta))\right]$$

Thus $B(x, \delta) \subseteq E$. So E is open.

Lemma 2. If W is the union of a finite collection of balls $B(x_i, r_i)$, with $i \le i \le N$. Then there is a set $S \subseteq \{1, ..., N\}$ so that:

(a) the balls $B(x_i, r_i)$ with $i \in S$ are disjoint,

(b)

$$W \subseteq \bigcup_{i \in S} B(x_i, 3r_i),$$

$$m(W) \le 3^k \sum_{i \in S} m(B(x_i, r)i).$$

Proof. Order the balls $B_i = B(x_i, r_i)$ such that $r_1 \ge r_2 \ge \cdots \ge r_N$. Put $i_1 = 1$, discard all the B_j that intersect with B_{i_1} . Let B_{i_2} the first of our remaining balls, and discard all B_j with $j > i_2$ that intersect B_{i_2} , and let B_{i_3} be the first of the remaining ones, etc...

This process stops after a finite number of steps, since we only have a finite collection of balls, and we let $S = \{i_1, i_2, \ldots\}$. (a) holds by definition and (c) follows from (b) since $m(B(x_i, 3r_i)) = 3^k m(B(x_i, r_i))$.

So we just need to show (b). But notice for every discarded B_j , $B_j \cap B_i \neq \emptyset$ for some $i \in S$, where $r_i > r_j$. Assume that $X \in B_j \cap B_i$. We see that for all $x \in B_j$ we have:

$$\begin{aligned} |x-x_i| &\leq |x-X| + |X-x_i| \\ &\leq |x-x_j| + |x_j-X| + |X-x_i| \\ &< r_j + r_j + r_i \text{ since } x, X \in B_j \text{ and } X \in B_i \\ &< 3r_i \text{ since } r_j \leq r_i \end{aligned}$$

So we see that $B_j \subseteq B(x_i, 3r_i)$. This gives us (b).

The maximal theorem

Theorem 3. If μ is a complex Borel measure on \mathbb{R}^k and λ is a positive number, then

$$m\{M\mu > \lambda\} \le 3^k \lambda^{-1}||\mu|| \tag{i}$$

Here $||\mu|| = |\mu|(\mathbb{R}^k)$ and $m\{M\mu > \lambda\}$ is an abbreviation of $m(\{x \in \mathbb{R}^k : (M\mu)(x) > \lambda\})$

Proof. Fix μ and λ . Let K be a compact subset of the open set $\{M\mu > \lambda\}$. Each $x \in K$ is the center of an open ball B for which

$$|\mu|(B) > \lambda m(B)$$

Some finite collection of these B's covers K and Lemma 2 tells us there is a disjoint subcollection $\{B_1, \ldots, B_n\}$ such that:

$$m(K) \le 3^k \sum_{1}^n m(B_i) \le 3^k \lambda^{-1} \sum_{1}^n |\mu|(B_i) \le 3^l \lambda^{-1} ||\mu||$$

The disjointess of the B_i 's was used in the last inequality. So (i) follows by taking the supremum over all compact $K \subseteq \{M\mu > \lambda\}$.

Weak L^1 If $f \in L^1(\mathbb{R}^k)$ and $\lambda > 0$, then

$$m\{|f| > \lambda\} \le \lambda^{-1}||f||_1$$

because, if we let $E = \{|f| > \lambda\}$, we have:

$$\lambda m(E) \le \int_{R} |f| dm \le \int_{\mathbb{R}^k} |f| dm = ||f||_1$$

Definition 1.3. Any measurable function f for which:

$$\lambda m\{|f| > \lambda\}$$

is a bounded funtion of λ on $(0,\infty)$ is said to belong to **weak** L^1

So from above we see that the weak L^1 contains L^1 . But it is also larger since for example if we let $f = \frac{1}{x}$ on (0,1), then for any $\lambda > 0$, we have

$$\frac{1}{x} > \lambda \iff x < \frac{1}{\lambda}$$

So we have $\lambda \cdot m\{|f| > \lambda\} \le \lambda \cdot m(0, \frac{1}{\lambda}) = 1 < \infty$. So $\frac{1}{x}$ is weak L^1 .

Definition 1.4. We associate to each $f \in L^1(\mathbb{R}^k)$ its maximal function $Mf: \mathbb{R}^k \to [0, \infty]$ by setting

$$(Mf)(x) = \sup_{0 < r < \infty} \frac{1}{m(B_r)} \int_{B(x,r)} |f| \ dm$$

If we identify f with the measure μ given by $d\mu = f \ dm$, we see that this defintion agrees with the previously defined $M\mu$. So theorem 3 states that the "maximal operator" M sends L^1 to weak L^1 , with abound (namely 3^k) that depends only on the space \mathbb{R}^k , i.e. For every $f \in L^1(\mathbb{R}^k)$ and every $\lambda > 0$

$$m\{Mf > \lambda\} \le 3^k \lambda^{-1} ||f||_1$$

Lebesgue points

Definition 1.5. If $f \in L^1(\mathbb{R}^k)$, any $x \in \mathbb{R}^k$ for which it is true that

$$\lim_{r \to 0} \frac{1}{m(B_r)} \int_{B(x,r)} |f(y) - f(x)| \ dm(y) = 0$$

is called a **Lebesgue point** of f.

For example this equation holds if f is continuous at the point x. More generally this equation holds, if the averages of |f - f(x)| are not too small on the balls centered at x, i.e. The Lebesgue points of f are the points where f doesn't oscillate too much.

Theorem 4. If $f \in L^1(\mathbb{R}^k)$, then almost every $x \in \mathbb{R}^k$ is a Lebesgue point of f.

Proof. Let

$$(T, f)(x) = \frac{1}{m(B_r)} \int_{B(x,r)} |f - f(x)| dm \text{ for } x \in \mathbb{R}^k, r > 0$$

Put

$$(Tf)(x) = \lim_{r \to 0} \sup_{x \to 0} (T_r f)(x)$$

Pick y > 0, let $n \in \mathbb{N}^*$. By a theorem from chap 3, there exists $g \in C(\mathbb{R}^k)$ so that $||f - g||_1 < \frac{1}{n}$. Let h = f - g. Since g is continuous, Tg = 0, and since:

$$(T_r h)(x) = \frac{1}{B_r} \int_{B(x,r)} |h - h(x)| dm$$

$$\leq \frac{1}{B_r} \int_{B(x,r)} (|h| + |h(x)|) dm$$

$$= (\frac{1}{B_r} \int_{B(x,r)} |h| dm) + |h(x)|$$

So we have:

$$Th \leq Mh + |h|$$

But since $T_r f \leq T_r g + T_r h$ it follows that

$$Tf < Mh + |h|$$

Therefore

$$\{Tf > 2y\} \subseteq \underbrace{\{Mh > y\} \cup \{|h| > y\}}_{E(y,n)}$$

Since $||h||_1 < \frac{1}{n}$, by theorem 3 we can see that

$$m(E(y,n)) \le \frac{3^k + 1}{yn}$$

Note $\{Tf > 2y\}$ is independent of n. Hence

$$\{Tf > 2y\} \subseteq \bigcap_{n=1}^{\infty} E(y,n)$$

This intersection has measure zero, so $\{Tf > 2y\}$ is a subset of a set of measure zero. So since Lebesgue measure is complete $\{Tf > 2y\}$ is measurable and has measure zero. This is true for all y > 0 so Tf = 0 a.e.

So note if $(Tf)(x) = \limsup_{r\to 0} (T_r f)(x) = 0$, then since $(T_r f)(x) \ge 0$ we see that this means that $0 \le \liminf (T_r f)(x) \le \limsup (T_r f)(x) = 0$.

So we have $\lim_{r\to 0} (T_r f)$ exists and is equal to zero, so x is a Lebesgue point. So almost every point $x\in\mathbb{R}^k$ is a Lebesgue point of f.

Definition 1.6. Recall that by the Radon-Nikodym theorem if μ is a positive σ -finite measure on a σ -algebra \mathcal{M} in a set X, and λ is a complex measure on \mathcal{M} such that $\lambda \ll \mu$:

$$\lambda(E) = \int_{E} f d\mu$$

For some $f \in L^1(\mu)$

f is called the Radon-Nikodym derivative of μ with respect to m and is denoted

$$f = \frac{d\lambda}{d\mu}$$

Theorem 5. Suppose μ is a complex Borel measure on \mathbb{R}^k , and $\mu \ll m$. Let f be the Radon-Nikodym derivative of μ with respect to m. Then $D\mu = f$ a.e. [m], and

$$\mu(E) = \int_{E} (D\mu) \ dm$$

for all Borel sets $E \subseteq \mathbb{R}^k$.

Proof.

$$\mu(E) = \int_{E} f \ dm$$

For all Borel sets $E \subseteq \mathbb{R}^k$.

Let x be a Lebesgue point and $\Gamma_r = \frac{1}{B_r} \int_{B(x,r)} f \ dm$. Then we have:

$$0 \le |\Gamma_r - f(x)| = \left| \frac{1}{B_r} \int_{B(x,r)} (f - f(x)) \, dm \right| \le \frac{1}{B_r} \int_{B(x,r)} |f - f(x)| \, dm$$

Taking limits we see that

$$f(x) = \lim_{r \to 0} \frac{1}{m(B_r)} \underbrace{\int_{B(x,r)} f \, dm}_{\mu(B(x,r))} = \lim_{r \to 0} \frac{\mu(B(x,r))}{m(B_r)} = (D\mu)(x)$$

Thus $(D\mu)(x)$ exists and equals to f(x) at every Lebesgue point of f, so a.e.

Nicely shirinking sets

Definition 1.7. Suppose $x \in \mathbb{R}^k$. A sequence $\{E_i\}$ of Borel sets in \mathbb{R}^k is said to **shrink to** x **nicely** if there is a number $\alpha > 0$ with the following property:

There is a sequence of balls $B(x, r_i)$ with $\lim r_i = 0$, such that $E_i \subseteq B(x, r_i)$ and:

$$m(E_i) \ge \alpha m(B(x, r_i))$$
 for $i = 1, 2, 3, ...$

Theorem 6. Associate to each $x \in \mathbb{R}^k$ a sequence $\{E_i(x)\}$ that shrinks to x nicely, and let $f \in L^1(\mathbb{R}^k)$. Then

$$f(x) = \lim_{i \to \infty} \frac{1}{m(E_i(x))} \int_{E_i(x)} f \ dm$$

At every Lebesgue point of f.

Proof. Let x be a Lebesgue point of f and let $\alpha(x)$ and $B(x, r_i)$ be the positive number and the balls associate with $\{E_i(x)\}$. Since $E_i(x) \subseteq B(x, r_i)$ we have:

$$\int_{E_i(x)} |f - f(x)| \ dm \le \int_{B(x, r_i)} |f - f(x)| \ dm$$

Furthermore, $\alpha m(B(x, r_i)) \leq m(E_i) \iff \frac{\alpha}{m(E_i)} \leq \frac{1}{m(B(x, r_i))}$. Putting this all together we get:

$$\frac{\alpha}{m(E_i)} \int_{E_i(x)} |f - f(x)| \ dm \le \frac{1}{m(B(x, r_i))} \int_{B(x, r_i)} |f - f(x)| \ dm$$

Since x is a Lebesgue point RHS converges to 0, so the LHS also converges to zero by squeeze.

Corollary 6.1. If $f \in L^1(\mathbb{R}^1)$ and

$$F(x) = \int_{-\infty}^{x} f \ dm, \ for \ x \in \mathbb{R}$$

then F'(x) = f(x) at every Lebesgue point of f.

Proof. Let x be a Lebesgue point, and $\{\delta_i\}$ be a sequence of positive numbers that converges to 0. Letting $E_i(x) = [x, x + \delta_i]$, the previous theorem tells us that

$$f(x) = \lim_{i \to \infty} \frac{1}{\delta_i} \int_x^{x+\delta_i} f \ dm = \lim_{i \to \infty} \frac{1}{\delta_i} \left(\int_{-\infty}^{x+\delta_i} f \ dm - \int_{-\infty}^x f \ dm \right) = \lim_{i \to \infty} \frac{F(x+\delta_i) - F(x)}{\delta_i}$$

Since $\{\delta_i\}$ is any sequence of positive numbers converging to zero we have:

$$f(x) = \lim_{h \to 0^+} \frac{F(x+h) - F(x)}{h}$$

Likewise letting $G_i(x) = [x - \delta_i, x]$ we get

$$f(x) = \lim_{i \to \infty} \frac{F(x - \delta_i) - F(x)}{\delta_i} = \lim_{h \to 0^-} \frac{F(x + h) - F(x)}{h}$$

So we have:

$$f(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = F'(x)$$
 at every Lebesgue point of f

Metric density

Definition 1.8. Let E be a Lebesgue measurable subset of \mathbb{R}^k . The **metric density** of E at a point $x \in \mathbb{R}^k$ is defined to be

 $\lim_{r\to 0}\frac{m(E\cap B(x,r))}{m(B(x,r))} \text{ if this limit exists.}$

If we let f be the characteristic function of E, and apply Theorem 5, we see that the metric density of E is 1 at almost every point of E and is 0 at almost every point of E^c .

Indeed let x be a Lebesgue point if $\mu(B(x,r)) = \int_{B(x,r)} f \ dm = m(E \cap B(x,r))$, it is clear that $\mu \ll m$ and so we have:

$$\lim_{r\to 0}\frac{m(E\cap B(x,r))}{m(B(x,r))}=\lim_{r\to 0}\frac{\mu(B(x,r))}{m(B(x,r))}=(D\mu)(x)=f(x)=\begin{cases} 1 \text{ if } x\in E\\ 0 \text{ if } x\not\in E \end{cases}$$

Corollary 6.2. If $\epsilon > 0$, there is no set $E \subseteq \mathbb{R}^1$ such that

$$\epsilon < \frac{m(E \cap I)}{m(I)} < 1 - \epsilon$$

For every segment I.

Proof. Let $\epsilon > 0$ assume that that such a $E \subseteq \mathbb{R}^1$ exists. Let x be a Lebesgue point, from what we have seen in the definition of metric density we know that there is a R such that:

$$\left|\frac{m(E\cap(x-R,x+R))}{m(x-R,x+R)} - 0\right| < \epsilon \text{ if } x \notin E$$

$$\left|\frac{m(E\cap(x-R,x+R))}{m(x-R,x+R)} - 1\right| < \epsilon \text{ if } x \in E$$

I.e.

$$\frac{m(E\cap(x-R,x+R))}{m(x-R,x+R)}<\epsilon \text{ or } 1-\epsilon<\frac{m(E\cap(x-R,x+R))}{m(x-R,x+R)}$$

We now look at differentiation of measures that are singular wrt m.

Theorem 7. Associate to each $x \in \mathbb{R}^k$ a sequence $\{E_i(x)\}$ that shrinks to x nicely. If μ is a complex Borel measure and $\mu \perp m$, then

$$\lim_{i \to \infty} \frac{\mu(E_i(x))}{m(E_i(x))} = 0 \text{ a.e. } [m]$$

Proof. By the Jordan decomp theorem we just need to show that this is true with $\mu \geq 0$. In that case as we have seen in previous theorems:

$$\frac{\alpha(x)\mu(E_i(x))}{m(E_i(x))} \le \frac{\mu(E_i(x))}{m(B(x,r_i))} \le \frac{\mu(B(x,r_i))}{m(B(x,r_i))}$$

So if we can show that $(D\mu)(x) = 0$ a.e. [m], we will prove the result by taking limits in the above inequality.

The upper derivative $\bar{D}\mu$ is defined by:

$$(\bar{D}\mu)(x) = \lim_{n \to \infty} \left[\sup_{0 < r < 1/n} (Q_r\mu)(x) \right] \text{ for } x \in \mathbb{R}^k$$

Is a Borel function.

Choose $\lambda > 0$ and $\epsilon > 0$. Since $\mu \perp m$, μ is concentrated on a set of Lebesgue measure 0. The regularity of μ shows that there is a compact set Km with m(K) = 0, and $\mu(K) > ||\mu|| - \epsilon$.

Define $\mu_1(E) = \mu(K \cap E)$, for any Borel set $E \subseteq \mathbb{R}^k$, and put $\mu_2 = \mu - \mu_1$. Then $||\mu_2|| < \epsilon$, and for every x outside K,

$$(\bar{D}(\mu))(x) = (\bar{D}(\mu_2))(x) \le (M\mu_2)(x).$$

Hence

$$\{\bar{D}\mu > \lambda\} \subset K \cup \{M\mu_2 > \lambda\},\$$

And

$$m\{\bar{D}\mu > \lambda\} \le 3^k \lambda^{-1} ||\mu_2|| < 3^k \lambda^{-1} \epsilon$$

Since this holds for all $\epsilon > 0$ and $\lambda > 0$, we find that $\bar{D}\mu = 0$ a.e. [m], so

$$(D\mu)(x) = 0 \ a.e.[m]$$

Which gives us our result.

Corollary 7.1. Suppose that to each $x \in \mathbb{R}^k$ is associated to some sequence $\{E_i(x)\}$ that shrinks to x nicely, and that μ is a complex Borel measure on \mathbb{R}^k . Let $d\mu = f$ $dm + d\mu_s$ be the Lebesgue decomposition of μ wrt m. Then

$$\lim_{i \to \infty} \frac{\mu(E_i(x))}{m(E_i(x))} = f(x) \ a.e.[m]$$

In particular, $\mu \perp m$ if and only if $(D\mu)(x) = 0$ a.e. [m]

Proof. Let $\mu_a(E) = \int_E f \ dm$, then recall that $\mu = \mu_a + \mu_s$, and

$$\begin{cases} \mu_a \ll m \\ \mu_s \perp m \end{cases}$$

Then from theorem 5

$$\lim_{i \to \infty} \frac{\mu_a(E_i(x))}{m(E_i(x))} = f(x) \ a.e.[m]$$

On the other hand from theorem 7

$$\lim_{i \to \infty} \frac{\mu_s(E_i(x))}{m(E_i(x))} = 0 \ a.e.[m]$$

So we have

$$\lim_{i \to \infty} \frac{\mu(E_i(x))}{m(E_i(x))} = \lim_{i \to \infty} \frac{\mu_a(E_i(x)) + \mu_s(E_i(x))}{m(E_i(x))} = \lim_{i \to \infty} \frac{\mu_a(E_i(x))}{m(E_i(x))} + \lim_{i \to \infty} \frac{\mu_s(E_i(x))}{m(E_i(x))} = f(x) \ a.e.[m]$$

(Indeed if we let A, B be the sets where the first two equations fail, then our result fails on $A \cup B$, which is the union of two measure zero sets, and so is a measure zero set, so this equality is true almost everywhere).

Theorem 8. If μ is a positive Borel measure on \mathbb{R}^k and $\mu \perp m$, then

$$(D\mu)(x) = \infty \ a.e.[\mu] \tag{\dagger}$$

Proof. There is a Borel set $S \subseteq \mathbb{R}^k$ with m(S) = 0 and $\mu(\mathbb{R}^k \setminus S) = 0$, and there are open sets $V_j \supseteq S$ with $m(V_j) < \frac{1}{j}$, for j = 1, 2, 3, ...

For N = 1, 2, 3, ..., let E_N be the set of all $x \in S$ to which correspond radii $r_i = r_i(x)$, with $\lim r_i = 0$ such that

$$\mu(B(x,r_i)) < Nm(B(x,r_i)). \tag{\dagger\dagger}$$

Then (†) holds for all $s \in S \setminus \bigcup_N E_N$.

Fix N and j, for the moment. Every $x \in E_N$ is in the center of a ball $B_x \subseteq V_j$, that satisfies $(\dagger \dagger)$. Let β_x be the open ball with center x whose radius is $\frac{1}{3}$ of that of B_x . The union of the β_x is an open set $W_{j,N}$ such that $E_N \subseteq W_{j,N} \subseteq V_j$

Let $K \subseteq W_{j,N}$ be compact. Finitely many β_x cover K. Lemma 2 shows that there is a finite set $F \subseteq E_N$ such that:

- (a) $\{\beta_x : x \in F\}$ is a disjoint collection, and
- (b) $K \subseteq \bigcup_{x \in F} B_x$

Therefore

$$\mu(K) \le \sum_{x \in F} \mu(B_x)$$

$$< N \sum_{x \in F} m(B_x)$$

$$= 3^k N \sum_{x \in F} m(\beta_x)$$

$$\le 3^k N m(V_j)$$

$$< 3^k N/j$$

This is true for any compact subset of $W_{j,N}$, since $W_{j,N}$ is open furthermore μ is a positive Borel measure on \mathbb{R}^k , so it is regular, therefore we have:

$$\mu(W_{j,N}) = \sup\{\mu(K) \colon K \subseteq W_{j,N} \text{ is compact }\} < 3^k N/j$$

Now let $\Omega_N = \bigcap_i W_{j,N}$, then $E_N \subseteq \Omega_N$, and Ω_N is a G_δ (so is measurable), and $\mu(\Omega_N) = 0$, and so:

$$(D\mu)(x) = \infty$$
 for all $x \in S \setminus \bigcup_{N} \Omega_N$

Since $\bigcup_N \Omega_N$ is a set of measure zero, we have the desired result.

1.2 The Fundamental Theorem of Calculus

Problems with the FTC when extending to the Lebesgue integral

(a) Let

$$f(x) = \begin{cases} x^2 \sin(x^{-2}) & \text{if } x \neq 0 \\ 0 & \text{otherwise} \end{cases}$$

Then f is differentiable at every point, but

$$\int_0^1 |f'(t)| \ dt = \infty$$

So $f' \notin L^1$. But we still have:

$$f(x) = \lim_{\epsilon \to 0} \int_{\epsilon}^{x} f'(t) \ dt = \int_{0}^{x} f'(t) \ dt$$

(b) Suppose f is continuous on [a,b], f is differentiable at almost every point of [a,b] and $f' \in L^1$ on [a,b]. Do these assumptions imply that $f(x) - f(a) = \int_a^x f'$

NO!

Choose $\{\delta_n\}$ so that $1 = \delta_0 > \delta_1 > \cdots$, where $\delta_n \to 0$, we define the sets E_n recursively. Put $E_0 = [0,1]$ and if $n \ge 0$ and E_n is constructed so that it is the union of 2^n disjoint closed intervals, each of length $2^{-n}\delta_n$.

Delete a segment in the center of each of the 2^n intervals, so that each 2^{n+1} intervals have length $2^{-(n+1)}\delta_{n+1}$, and let E_{n+1} be the union of these 2^{n+1} intervals. So we have $E_1 \supseteq E_2 \supseteq \ldots$, and $m(E_n) = \delta_n$ for all n. Now let

$$E = \bigcap_{n=1}^{\infty} E_n$$

Note since each E_n is the finite union of closed sets, they are closed so E is also closed, it is also bounded since it is contained in [0,1]. So E is compact and $m(E) = \lim_{n \to \infty} m(E_n) = \lim_{n \to \infty} \delta_n = 0$. Put

$$g_n = \delta_n^{-1} \chi_{E_n}$$
 and $f_n(x) = \int_0^x g_n(t) dt$ for $n = 0, 1, 2, \dots$

So note $f_n(0) = 0$ and $f_n(1) = \delta_n^{-1} \int_0^1 \chi_{E_n} = \delta_n^{-1} m(E_n) = 1$. Each f_n is a monotonic function which is constant on each segment in E_n^c . If I is one of the 2^n interval whose union is E_n , then

$$\int_{I} g_n(t) \ dt = \int_{I} g_{n+1}(t) \ dt = 2^{-n}.$$

Therefore we see that

$$f_{n+1}(x) = f_n(x)$$
 for $x \notin E_n$

Now note that

$$|f_n(x) - f_{n+1}(x)| \le \int_I |g_n - g_{n+1}| < 2^{-(n-1)} \text{ for } x \in E_n$$

So $\{f_n\}$ converges uniformly to a continuous monotonic function f, with f(0) = 0, f(1) = 1, and f'(x) = 0 for all $x \notin E$. Since m(E) = 0, we see that f' = 0 almost everywhere. So

$$f(x) \neq \int_0^x f'$$
 in general

Definition 1.9.

Remark. Now we see that if $f' \in L^1$ and that

$$f(x) - f(a) = \int_{a}^{x} f'$$
 (FTC)

Then there is a measure μ defined by $d\mu = f' dm$. Since $\mu \ll m$, we know that there corresponds to each $\epsilon > 0$ a $\delta > 0$ such that $|\mu|(E) < \epsilon$, whenever E is a union of disjoint segments whose total length is less than δ . Since $f(y) - f(x) = \mu((x,y))$ if $a \le x < y \le b$, it follows that the next definition is necessary for (FTC).

A complex function f, defined on an interval I = [a, b] is said to be **absolutely continuous** on I (or f is AC on I) if for all $\epsilon > 0$ there is a $\delta > 0$ such that

$$\sum_{i=1}^{n} |f(\beta_i) - f(\alpha_i)| < \epsilon$$

For all nm and any disjoint collection of segments $(\alpha_1, \beta_1), \ldots, (\alpha_n, \beta_n)$ in I whose length satisfy

$$\sum_{i=1}^{n} (\beta_i - \alpha_i) < \delta$$

Remark. Such an f is continuous since we can choose n = 1.

Theorem 9. Let I = [a, b] and $f: I \to \mathbb{R}$ be continuous and nondecreasing. TFAE

- (a) f is AC on I
- (b) f maps sets of measure 0 to sets of measure of 0.
- (c) f is differentiable a.e. on $I, f' \in L^1$ and

$$f(x) - f(a) = \int_a^x f'(t) \ dt \ for \ (a \le x \le b)$$

Proof. \bullet $(a) \Rightarrow (b)$

Let \mathcal{M} denote the σ -algebra of all Lebesgue measurable subsets of \mathbb{R} . Assume f is AC on I, pick $E \subseteq I$ so that $E \in \mathcal{M}$ and m(E) = 0. We will show that $f(E) \in \mathcal{M}$ and m(f(E)) = 0. WLOG we assume that $E \subseteq (a,b)$. Choose $\epsilon > 0$ and let $\delta > 0$ be as in definition 1.9. There is an open set V with $m(V) < \delta$, so that $E \subseteq V \subseteq I$. Let (α_i, β) be the disjoint segment whose union is V, then $\sum (\beta_i - \alpha_i) < \delta$ and so

$$\sum |f(\beta_i) - f(\alpha_i)| < \epsilon \tag{dagger}$$

We know that this holds for every partial sum of this series, so it holds for the whole series, even if \dagger is an infite sum. Since $E \subseteq V$, $f(E) \subseteq \bigcup [f(\alpha_i), f(\beta_i)]$. The Lebesgue measure of this union is $\sum |f(\beta_i) - f(\alpha_i)| < \epsilon$. So f(E) is a subset of a borel set of arbitrarily small measure. Since Lebesgue measure is complete, we see that $f(E) \in \mathcal{M}$ and m(f(E)) = 0.

• $(b) \Rightarrow (c)$

Define

$$g(x) = x + f(x)$$
 for $(a \le x \le b)$.

So note that if the f-image of some segment of length η has length η' , then the g-image of this segment has length $\eta + \eta'$ (Indeed $m([x+f(x),y+f(y)]) = x-y+f(x)-f(y) = \eta+\eta'$). So we see that g satisfies condition (b). Now suppose $E \subseteq I$, $E \in \mathcal{M}$. Then $E = E_1 \cup E_0$ where $m(E_0) = 0$ and E_1 is F_{σ} , by a previous theorem. Thus E_1 is a countable union of compact set and so is $g(E_1)$ since g is continuous. Since $m(g(E_0)) = 0$, we have $g(E) = g(E_1) \cup g(E_0)$ so we conclude that $g(E) \in \mathcal{M}$.

Therefore we can define

$$\mu(E) = m(g(E))$$
 for $E \subseteq I$ and $E \in \mathcal{M}$

Now let x < y, we see that $f(x) \le f(y)$ therefore g(x) = x + f(x) < y + f(y) = g(y), so this function is 1 to 1. Therefore disjoint sets in I have disjoint g-images. The countable additivity of m shows that μ is a positive bounded measure on \mathcal{M} . Furthermore since g satisfies (b) wew see that $\mu \ll m$ so

$$d\mu = h \ dm$$

for some $h \in L^1(m)$, by Radon-Nikodym.

If E = [a, x], then g(E) = [g(a), g(b)] we have

$$g(x) - g(a) = m(g(E)) = \mu(E) = \int_{E} h \ dm = \int_{a}^{x} h(t) \ dt$$

So

$$f(x) - f(a) = (g(x) - g(a)) - (x - a) = \int_{a}^{x} (h(t) - 1) dt$$

Thus f'(x) = h(x) - 1 a.e. [m], by Theorem 6.1.

• $(c) \Rightarrow (a)$ This is shown in the remark from definition 1.9

Theorem 10. Suppose $f: I \to \mathbb{R}$ is AC and I = [a, b]. Define

$$F(x) = \sup \sum_{i=1}^{N} |f(t_i) - f(t_{i-1})| \ (a \le x \le b)$$

where the supremum is taken over all N and over all choices of $\{t_i\}$ such that

$$a = t_0 < t_1 < \dots < t_N = x$$

The functions F, F + f, F - f are then nondecreasing and AC on I.

Proof. If for $\{t_i\}$ with the above property and $x < y \le b$ then

$$F(y) \ge |f(y) - f(x)| + \sum_{i=1}^{N} |f(t_i) - f(t_{i-1})|$$

So $F(y) \ge |f(y) - f(x)| + F(x)$. In particular

$$F(y) \ge f(y) - f(x) + F(x)$$
 and $F(y) \ge f(x) - f(y) + F(x)$

So F, F + f, F - f. Now we only need to show that F is AC on I since the sum of two AC functions is AC. If $(\alpha, \beta) \subseteq I$ then

$$F(\beta) - F(\alpha) = \sum_{i=1}^{n} |f(t_i) - f(t_{i-1})|$$

Note that $\sum (t_i - t_{i-1}) = \beta - \alpha$.

Now let $\epsilon > 0$ and associate $\delta > 0$ to f and ϵ like in 1.9, choose disjoint segments $(\alpha_j, \beta_j) \subseteq I$ with $\sum (\beta_j - \alpha_j) < 0$, it follows that

$$\sum_{i} (F(\beta_j) - F(\alpha_j)) \le \epsilon$$

Thus F is AC on I

Definition 1.10. The function F defined in the theorem above is called the **total variation function** of f. If f is any (complex) function on I (AC or not), and $F(b) < \infty$, then f is said to have **bounded variation** on I and F(b) is the **total variation** of f on I.

We have reached our main objective:

Theorem 11. If f is a complex function that is AC on I, then f is differentiable at almost all points of I, $f' \in L^1(m)$ and

$$f(x) - f(a) = \int_{a}^{x} f'(t) dt$$

Proof. We just need to prove this for real f. Let F be its total variation function and define:

$$f_1 = \frac{1}{2}(F+f)$$
 and $f_2 = \frac{1}{2}(F-f)$

We apply theorem 9 to f_1 and f_2 , and since

$$f = f_1 - f_2$$

We get

$$f(x) - f(a) = (f_1(x) - f_1(a)) - (f_2(x) - f_2(a))$$

$$= \int_a^x f_1'(t) dt - \int_a^x f_2'(t) dt$$

$$= \int_a^x (f_1' - f_2')(t) dt$$

By a previous theorem we $f' = f'_1 - f'_2$ a.e. and we get our desired result.

Theorem 12. If $f:[a,b] \to \mathbb{R}$ is differentiable at every point of [a,b] and $f' \in L^1$ on [a,b], then

$$f(x) - f(a) = \int_{a}^{x} f'(t) dt$$

Proof. We just need to prove this for x = b. Fix $\epsilon > 0$, by a theorem from chap 2 we know there exists a lower semicontinuous function g on [a, b] such that g > f' and

$$\int_{a}^{b} g(t) dt < \int_{a}^{b} f'(t) dt + \epsilon$$

For any $\eta > 0$ we define

$$F_{\eta}(x) = \int_{a}^{x} g(t) dt - f(x) + f(a) + \eta(x - a)$$

We keep η fixed. For each $x \in [a, b)$ there corresponds a $\delta_x > 0$ such that

$$g(t) > f'(x)$$
 and $\frac{f(t) - f(x)}{t - x} < f'(x) + \eta$

For all $t \in (x, x + \delta_x)$. Since g is lower semicontinuous and g(x) > f'(x). For any such t we therefore have

$$F_{\eta}(t) - F_{\eta}(x) = \int_{x}^{t} g(s) \, ds - [f(t) - f(x)] + \eta(t - x) > (t - x)f'(x) - (t - x)(f'(x) + \eta) + \eta(t - x) = 0$$

Since $F_{\eta}(a)=0$ and F_{η} is continuous there is a last point $x\in[a,b]$ at which $F_{\eta}(x)=0$. If x< b, the preceding computation implies that $F_{\eta}(t)>0$ for $t\in(x,b]$. In any case, $F_{\eta}(b)\geq0$. Since this holds for every $\eta>0$ we see that

$$f(b) - f(a) \le \int_a^b g(t) dt < \int_a^b f'(t) dt + \epsilon$$

Since ϵ was arbitrary we conclude that

$$f(b) - f(a) \le \int_a^b f'(t) dt$$

Furthermore -f also satisfies the hypothesis of the theorem so the same inequality holds with -f in the place of f, and these two inequalities give us the desired result.

1.3 Differentiable Transformations

Index

absolutely continuous, 8

Lebesgue point, 3

 $\begin{array}{c} \text{maximal function, 1, 2} \\ \text{metric density, 5} \end{array}$

Radon-Nikodym derivative, 3

shrink to x nicely, 4 symmetric derivative, 1

total variation, 10

weak, 2 weak L^1 , 2