Correction DL 1: dérivation logarithmique

Approche directe

Pour $n \ge 1$ un entier, on définit la fonction : $f_n : \begin{bmatrix} 0 \\ +\infty \end{bmatrix} \xrightarrow{f} \mathbb{R}$

- **1.** Valeurs de f_n
 - a) (Calculer $f_n(0)$.) Pour *n* entier, avec $n \ge 1$, on a $0^n = 0$. Ainsi $f_n(0) = 0$.
 - b) (En appliquant le théorème des croissances comparées, calculer $\lim f_n$)

On a
$$\forall x \ge 0$$
, $f_n(x) = x^n e^{-x}$. Or pour $x \to +\infty$, on a : $x^n \to +\infty$ $e^{-x} \to 0$.

Il s'agit donc de lever une forme indéterminée $\infty \times 0$.

Par croissances comparées, la limite est 0 (c'est l'exponentielle « qui l'emporte »).

c) (Étudier le signe de f_n sur son domaine de définition.) Pour $x \ge 0$, on a $x^n \ge 0$, d'où $\forall x \ge 0$, $f_n(x) \ge 0$. • $e^{-x} > 0$

De plus, pour x > 0, on a $f_n(x) > 0$.

- **2.** Dérivation de f_n
 - **a)** (Montrer que la fonction f_n est continue et dérivable sur $[0; +\infty[.)]$ (fonction polynomiale) sont de classe \mathcal{C}^{∞} sur $[0; +\infty[$. Les fonctions $u: x \mapsto x^n$ $v: x \mapsto e^{-x}$ (fonction de référence)

Leur produit f_n est donc aussi de classe \mathcal{C}^{∞} sur $[0; +\infty[$. En particulier f_n est continue et dérivable sur $[0; +\infty[$.

b) (Calculer la dérivée f'_n de f_n sous forme factorisée.)

On a
$$\forall x \ge 0$$
, $f_n(x) = x^n e^{-x}$
d'où; $f'_n(x) = \underbrace{nx^{n-1}}_{u'} \underbrace{e^{-x}}_{v} - \underbrace{x^n}_{u} \underbrace{e^{-x}}_{v'=-e^x}$

$$= (nx^{n-1} - x^n) e^{-x} = x^{n-1} (n-x) e^{-x}.$$

3. (En déduire le tableau de signes de f'_n et le tableau de variations de f_n .)

x	0	n		$+\infty$
n-x	+	ф	_	
$x^{n-1} e^{-x}$	+		+	
$f'_n(x)$	+	ф	_	
$f_n(x)$	0	$\int_{-\infty}^{\infty} n^n e^{-n}$		× 0+

4. (Compléter le programme Scilab suivant pour qu'il trace la représentation graphique de f_1 .)

```
complete.sce
XMAX = 5;
                                // borne de droite du dessin
x = linspace(0, XMAX);
                                // les 100 valeurs en abscisses
y = x \cdot * exp(-x);
                                // <- ligne complétée par l'expression de f_1
plot(x,y)
                                // tracer la courbe
```

Approche logarithmique

On définit maintenant, pour $n \ge 1$ entier, la fonction : $\varphi_n : | \]0; +\infty[\rightarrow \mathbb{R}$ $x \mapsto \varphi_n(x) = \ln(f_n(x))$

5. (Justifier que φ_n est bien définie sur $]0; +\infty[$, et qu'elle aussi est continue et dérivable.) Pour x > 0, on a $f_n(x) > 0$ (question 1.c)). La fonction $\varphi_n : x \mapsto \ln(f_n(x))$ est donc bien définie sur $]0; +\infty[$.

Comme les fonctions f_n (d'après 2.a)) sont de classe \mathcal{C}^{∞} , leur composée φ_n l'est aussi. ln (fonction de réf.)

En particulier φ_n est continue et dérivable sur $]0; +\infty[$.

- **6.** (Vérifier l'expression suivante : $\forall x > 0$, $\varphi_n(x) = n \ln(x) x$.) On a bien $\forall x > 0$, $\varphi_n(x) = \ln(x^n e^{-x}) = \ln(x^n) + \ln(e^{-x}) = n \ln(x) - x$.
- 7. (En déduire une écriture simple de la dérivée $\varphi'_n(x)$.)
 On dérive terme-à-terme l'écriture précédente. Il vient : $\forall x > 0$, $\varphi'_n(x) = \frac{n}{x} 1 = \frac{n-x}{x}$.
- 8. (En déduire le tableau de signes de φ'_n et le tableau de variations de φ_n .)

1 11					1 10)
x	0		n		$+\infty$
n-x		+	0	_	
$\frac{1}{x}$		+	•	+	
$\phi'_n(x)$		+	0	_	
$f_n(x)$		/	$n^n e^{-n}$		× _∞

- 9. Conclusion
 - a) (Exprimer f_n en fonction de φ_n .) Pour x > 0, on a $\varphi_n(x) = \ln(f_n(x))$, donc $f_n(x) = \exp(\varphi_n(x))$.
 - b) (Retrouver le tableau de variations de f_n obtenu à la question 3.) La fonction exponentielle est strictement croissante sur \mathbb{R} , donc les variations de f_n sont les mêmes que celles de φ_n . On retrouve ainsi bien le tableau de variations de f_n .

Complément

Pour $n \ge 1$ entier, on considère $g_n : \begin{bmatrix} 0 ; +\infty[\to \mathbb{R} \\ x \mapsto x^n e^{-\frac{x^2}{2}}, \end{bmatrix}$ et on pose $\psi_n = \ln \circ g_n$ sur \mathbb{R}_+^* .

10. (En étudiant ψ_n , trouver en quel point la fonction g_n atteint son maximum sur $[0; +\infty[.)]$

On a
$$\forall x > 0, \psi_n(x) = \ln\left(x^n e^{-\frac{x^2}{2}}\right) = \ln\left(x^n\right) + \ln\left(e^{-\frac{x^2}{2}}\right) = n\ln(x) - \frac{x^2}{2}.$$

Ainsi
$$\psi'_n(x) = \frac{n}{x} - x = \frac{n - x^2}{x} = \frac{\sqrt{n} + x}{x} \left(\sqrt{n} - x\right).$$

On obtient donc le tableau de variations

x	0	\sqrt{n}	$+\infty$
$\sqrt{n}-x$	+	ø -	_
$\psi'_n(x)$	+	φ -	_
$\psi(x)$	$-\infty$	$\frac{1}{\sqrt{\left(\frac{n}{e}\right)^{\frac{n}{2}}}}$	$-\infty$

et le maximum de la fonction $x \mapsto x^n e^{-\frac{x^2}{2}}$ sur \mathbb{R}_+ est atteint en \sqrt{n} .