HW3 Report EEG classification

tags: DL and Practice

電控碩一 黃柏叡 309512074

Report

Introduction

使用EEGNet與DeepConvNet處理分類問題,訓練資料的shape為(C=1, H=2, W=750),training資料及testing資料各有1080筆這次作業最主要的目標:

- 利用三種activation functions找出兩個model中最高的accuracy
- 將accuracy的趨向圖像化

Experimental Setup

A. Detail of your model

https://md2pdf.netlify.app 1/6

EEGNet

```
EEGNet(
  (firstconv): Sequential(
    (0): Conv2d(1, 16, kernel_size=(1, 51), stride=(1, 1), padding=(0, 25), bias=False)
    (1): BatchNorm2d(16, eps=le-05, momentum=0.1, affine=True, track_running_stats=True)
  (depthwiseConv): Sequential(
    (0): Conv2d(16, 32, kernel_size=(2, 1), stride=(1, 1), groups=16, bias=False)
    (1): BatchNorm2d(32, eps=le-05, momentum=0.1, affine=True, track running stats=True)
    (2): ELU(alpha=1.0)
    (3): AvgPool2d(kernel_size=(1, 4), stride=(1, 4), padding=0)
    (4): Dropout(p=0.25)
  (separableConv): Sequential(
    (0): Conv2d(32, 32, kernel_size=(1, 15), stride=(1, 1), padding=(0, 7), bias=False)
    (1): BatchNorm2d(32, eps=le-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ELU(alpha=1.0)
    (3): AvgPool2d(kernel_size=(1, 8), stride=(1, 8), padding=0)
    (4): Dropout(p=0.25)
  (classify): Sequential(
    (0): Linear(in features=736, out features=2, bias=True)
```

使用depthwise-separable convolution, 是基於傳統convolution的輕量化版本,可以降低參數數量,提升訓練與evaluate的速度,並且不會影響accuracy的精準度

DeepConvNet

Layer	# filters	size	# params	Activation	Options
Input		(C, T)			
Reshape		(1, C, T)			
Conv2D	25	(1, 5)	150	Linear	$\bmod e = valid, \max norm = 2$
Conv2D	25	(C, 1)	25 * 25 * C + 25	Linear	mode = valid, max norm = 2
BatchNorm			2 * 25		epsilon = 1e-05, $momentum = 0$.
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Conv2D	50	(1, 5)	25 * 50 * C + 50	Linear	$\bmod e = valid, \max norm = 2$
BatchNorm			2 * 50		epsilon = $1e-05$, momentum = 0 .
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Conv2D	100	(1, 5)	50 * 100 * C + 100	Linear	mode = valid, max norm = 2
BatchNorm			2 * 100		epsilon = $1e-05$, momentum = 0 .
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Conv2D	200	(1, 5)	100 * 200 * C + 200	Linear	mode = valid, max norm = 2
BatchNorm			2 * 200		epsilon = 1e-05, momentum = 0.
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Flatten					
Dense	N			softmax	$\max \text{ norm} = 0.5$

https://md2pdf.netlify.app 2/6

傳統的CNN架構 C->(CBAMD)->(CBAMD)->(CBAMD)->fully connected C:Conv2D B:BatchNorm A:Activation function P:MaxPooling D:Dropout

B. Explain the activation function

ReLU

$$ReLU = max(0, x)$$

• Leaky ReLU

$$f(x) = \max(0.01x, x)$$

• ELU

$$f(x) = \left\{ egin{array}{ll} x, & ext{if } x > 0 \ lpha(e^x - 1), & ext{otherwise} \end{array}
ight.$$

這三者的差異出現在input小於0時 在進行backpropagation時,LeakyReLU跟ELU就算input值小於0,仍然會有gradient output,然而此時ReLU梯度即為0。LeakyReLU跟ELU的公式設計就是為了解決當 input小於0時,ReLU會發生的梯度消失問題

Experimental results

https://md2pdf.netlify.app 3/6

A. The highest testing accuracy

- Screenshot with two models
 - EEGNet(Ir=0.0005)

```
epoch290
         acc test:82.87%
epoch300
        loss:0.0037 acc:90.556%
epoch300 acc test:84.17%
epoch310 loss:0.0036 acc:89.444%
epoch310 acc test:83.98%
epoch320 loss:0.0039 acc:90.741%
epoch320 acc test:83.89%
epoch330 loss:0.0038 acc:90.093%
epoch330 acc test:84.91%
epoch340 loss:0.0039 acc:89.630%
epoch340 acc_test:83.61%
epoch350 loss:0.0036 acc:91.574%
epoch350 acc test:83.70%
ReLU best accuracy EEG: 86.66666666666666 %
LeakyReLU best accuracy EEG: 87.5 %
ELU best accuracy EEG: 84.9074074074074 %
```

DeepConvNet(lr=0.001)

```
epoch290 acc test:79.07%
epoch300 loss:0.0017 acc:96.852%
epoch300 acc test:79.63%
epoch310 loss:0.0017 acc:96.481%
epoch310 acc test:80.46%
epoch320 loss:0.0021 acc:95.000%
epoch320 acc test:78.33%
epoch330 loss:0.0018 acc:96.667%
epoch330 acc test:77.22%
epoch340 loss:0.0017 acc:96.574%
epoch340 acc test:80.37%
epoch350 loss:0.0018 acc:96.296%
epoch350 acc test:78.24%
ReLU best accuracy Deep: 85.37037037037037 %
LeakyReLU best accuracy Deep: 84.16666666666667 %
ELU best accuracy Deep: 81.57407407407408 %
```

	ReLU	Leaky ReLU	ELU
EEGNet	86.7%	87.5%	84.9%
DeepConvNet	85.37%	84.17%	81.57%

anything you want to present

o epochs: 350

o optimizer: Adam

criterion: CrossEntropy

o batch size: 64

learning rate for EEGNet: 0.0005

https://md2pdf.netlify.app 4/6

learning rate for DeepConvNet: 0.001

B. Comparison figures

EEGNet(lr=0.0005)

• DeepConvNet(Ir=0.001)

Discussion

Anything you want to share

• Dropout 可以解決overfitting problem。此外,model不能學習到training data的所有特徵(因為 dropout),model學習的是資料的pattern

https://md2pdf.netlify.app 5/6

- 因為一開始讀近來的data是numpy格式,所以需要先用Tensordataset()轉成tensor格式在放入 DataLoader
- data以及model都需要加上 .to(device)才能放入gpu加速運算,tensor可以在gpu跟cpu上運算,而numpy只能在cpu上運算

device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')

https://md2pdf.netlify.app 6/6