注意:

1.

	 请独立完成,杜绝抄袭; 提交时间: 11-11。
	第5章 树
1.	 选择题 (1)把一棵树转换为二叉树后,这棵二叉树的形态是()。 A. 唯一的 B. 有多种 C. 有多种,但根结点都没有左孩子 D. 有多种,但根结点都没有右孩子
	(2) 由 3 个结点可以构造出多少种不同的二叉树? () A. 2 B. 3 C. 4 D. 5 (3) 一棵完全二叉树上有 1001 个结点,其中叶子结点的个数是 ()。
	A. 250 B. 500 C. 254 D. 501 (4) 一个具有 1025 个结点的二叉树的高 h 为 ()。 A. 11 B. 10 C. 11 至 1025 之间 D. 10 至 1024 之间
	(5) 深度为 h 的满 m 叉树的第 k 层有() 个结点。(1= <k=<h) a.="" m<sup="">k-1 B. m^k-1 C. m^{h-1} D. m^h-1 (6) 利用二叉链表存储树,则根结点的右指针是()。</k=<h)>
号,	A. 指向最左孩子 B. 指向最右孩子 C. 空 D. 非空 (7) 对二叉树的结点从 1 开始进行连续编号,要求每个结点的编号大于其左、右孩子的编 同一结点的左右孩子中,其左孩子的编号小于其右孩子的编号,可采用()遍历实现编号。A. 先序 B. 中序 C. 后序 D. 从根开始按层次遍历
遍历	(8)若二叉树采用二叉链表存储结构,要交换其所有分支结点左、右子树的位置,利用(三) 历方法最合适。

A. 前序 B. 中序 C. 后序 D. 按层次

(9) 在下列存储形式中,() 不是树的存储形式?

(10) 一棵非空的二叉树的先序遍历序列与后序遍历序列正好相反,则该二叉树一定满足
()。
A. 所有的结点均无左孩子 B. 所有的结点均无右孩子
C. 只有一个叶子结点 D. 是任意一棵二叉树
(11)设哈夫曼树中有 199 个结点,则该哈夫曼树中有()个叶子结点。
A. 99 B. 100
C. 101 D. 102
(12) 若 X 是二叉中序线索树中一个有左孩子的结点,且 X 不为根,则 X 的前驱为 ()。
A. X 的双亲 B. X 的右子树中最左的结点
C. X 的左子树中最右结点 D. X 的左子树中最右叶结点
(13) 引入二叉线索树的目的是()。
A. 加快查找结点的前驱或后继的速度 B. 为了能在二叉树中方便的进行插入与删除
C. 为了能方便的找到双亲 D. 使二叉树的遍历结果唯一
(14) 设 F 是一个森林, B 是由 F 变换得的二叉树。若 F 中有 n 个非终端结点,则 B 中右指针域为空的结点有()个。
A. $n-1$ B. n C. $n+1$ D. $n+2$
(15) n (n≥2) 个权值均不相同的字符构成哈夫曼树,关于该树的叙述中,错误的是()。 A. 该树一定是一棵完全二叉树 B. 树中一定没有度为 1 的结点 C. 树中两个权值最小的结点一定是兄弟结点 D. 树中任一非叶结点的权值一定不小于下一层任一结点的权值
2. 应用题 (1) 试找出满足下列条件的二叉树
① 先序序列与后序序列相同 ②中序序列与后序序列相同
③ 先序序列与中序序列相同 ④中序序列与层次遍历序列相同
(2) 设一棵二叉树的先序序列: ABDFCEGH,中序序列: BFDAGEHC ①画出这棵二叉树。 ②画出这棵二叉树的后序线索树。
③将这棵二叉树转换成对应的树(或森林)。

A. 双亲表示法 B. 孩子链表表示法 C. 孩子兄弟表示法 D. 顺序存储表示法

- (3) 假设用于通信的电文仅由 8 个字母组成,字母在电文中出现的频率分别为 0.07, 0.19, 0.02, 0.06, 0.32, 0.03, 0.21, 0.10。
 - ① 试为这8个字母设计赫夫曼编码。
 - ② 试设计另一种由二进制表示的等长编码方案。
 - ③ 对于上述实例,比较两种方案的优缺点。
- (4) 已知下列字符 A、B、C、D、E、F、G 的权值分别为 3、12、7、4、2、8,11, 试填写出其对应哈夫曼树 HT 的存储结构的初态和终态。

3. 算法设计题 (请进行算法分析,并写出相应的函数代码)

以二叉链表作为二叉树的存储结构,编写以下算法:

- (1) 判别两棵树是否相等。
- (2) 计算二叉树最大的宽度(二叉树的最大宽度是指二叉树所有层中结点个数的最大值)。
- (3) 用按层次顺序遍历二叉树的方法,统计树中具有度为1的结点数目。
- (4) 求任意二叉树中第一条最长的路径长度,并输出此路径上各结点的值。