OPTIMIZATION FOR AI

GLOBAL AND MULTI-OBJECTIVE OPTIMIZATION

Luca Manzoni

DIFFERENTIAL EVOLUTION, PARTICLE SWARM OPTIMISATION, AND ANT COLONY OPTIMISATION

DIFFERENTIAL EVOLUTION

DIFFERENTIAL EVOLUTION: IDEAS

- Differential evolution (DE) was invented in 1997 by Storn and Price
- Used for the solution of real-valued optimisation problems
- The approach is evolutionary, but different from GA for two main reasons:
 - The way new individuals are generated
 - The selection process

NOTATION

- The search space is \mathbb{R}^m for some $m \in \mathbb{N}$
- We still have a population of solution consisting of n individuals
- The i^{th} individual is a vector $\mathbf{x}_i = (x_{i,1}, ..., x_{i,m}) \in \mathbb{R}^m$

DIFFERENTIAL MUTATION

- \blacksquare Select one candidate solution \mathbf{x}_i from the current population
- Select three other vectors \mathbf{a} , \mathbf{b} , \mathbf{c} from the current population (in the original formulation \mathbf{a} , \mathbf{b} , \mathbf{c} , and \mathbf{x}_i are all distinct)
- Compute the "donor" vector for \mathbf{x}_i as $\mathbf{v}_i = a + F \cdot (b c)$ where $F \in [0,2]$ is called the mutation factor

BINOMIAL CROSSOVER

- The solution x_i and the "donor" vector v_i are combined in a "trial" vector u_i
- \mathbf{u}_i is defined, for each coordinate $j \in \{1, ..., m\}$, as $u_{i,j} = \begin{cases} v_{i,j} & \text{if } \mathrm{rnd}_{i,j} \leq p_{\mathrm{CR}} \text{ or } I_{\mathrm{rnd}} = j \\ x_{i,j} & \text{otherwise} \end{cases}$
- Where $p_{\rm CR}$ is the crossover probability, $I_{\rm rnd} \in \{1,\ldots,m\}$ is a randomly selected index, and ${\rm rnd}_{i,j}$ are random numbers in [0,1]

DE: SELECTION

- Given the parent x_i and the "trial" vector u_i , selection is done by keeping only the individual with the best fitness:
 - \mathbf{x}_i is kept if the $f(\mathbf{x}_i) < f(\mathbf{u}_i)$ (in a minimisation problem)
 - \mathbf{u}_i replaces \mathbf{x}_i otherwise
- This mutation/crossover/selection process is repeated for all individuals in the population to produce a new population of solutions

GRAPHICAL REPRESENTATION

Computing the "donor vector"

Donor vector and \mathbf{x}_i

Possible trial vectors and the original vector \mathbf{x}_i

TAXONOMY

- The described scheme is sometimes called DE/rand/I with the meaning:
 - DE: self-explanatory
 - rand: the first vector of the differential mutation is selected uniformly at random across all the individuals
 - I: the donor vector is created using only one differential mutation

TAXONOMY

Best individual found so far

NAME

DIFFERENTIAL MUTATION

DE/best/I

$$\mathbf{v}_i = \mathbf{x}_{\text{best}} + F \cdot (\mathbf{b} - \mathbf{c})$$

DE/current-to-best/1

$$\mathbf{v}_i = \mathbf{x}_i + F \cdot (\mathbf{x}_{\text{best}} - \mathbf{x}_i) + F \cdot (\mathbf{b} - \mathbf{c})$$

DE/rand/2

$$\mathbf{v}_i = \mathbf{a} + F \cdot (\mathbf{b} - \mathbf{c}) + F \cdot (\mathbf{d} - \mathbf{e})$$

DE/rand-to-best/1

$$\mathbf{v}_i = \mathbf{a} + F \cdot (\mathbf{x}_{\text{best}} - \mathbf{a}) + F \cdot (\mathbf{b} - \mathbf{c})$$

ADAPTIVE DE (JADE)

- Introduced in 2009 by Zhang and Sanderson
- New mutation strategy
- External archive of sub-optimal solutions
- Dynamic update of hyper-parameters
- See https://ieeexplore.ieee.org/abstract/document/5208221

PARTICLE SWARM OPTIMIZATION

PSO: IDEAS

- Particle Swarm Optimisation (PSO) is part of a family of bioinspired optimisation methods called swarm intelligence
 - Individuals are simple agents with limited capabilities (i.e., no "intelligent" agents).
 - Any intelligent behaviour emerges from the interactions of the simple agents
- See: swarm of birds, colony of ants, colony of bees. Linked to the ideas of "superorganism"

PSO: IDEAS

- PSO, like the other method we will see, is based on the exchange of information among different individuals (particles) that are part of the population (swarm)
- It is inspired by the collective movement of a group of animals (e.g., flock of birds, school of fishes, swarm of bees, etc)

PSO: DEFINITION

- The search space is m-dimensional, usually \mathbb{R}^m
- \blacksquare The swarm is composed of n particles.
 - $\mathbf{x}_i(t)$ is the **position** of the i^{th} particle of the swarm at time t
 - \mathbf{v}_i^t is the **velocity** of the i^{th} particle of the swarm at time t
- At each (discrete) time step, the position of the particle is updated as $\mathbf{x}_i(t+1) = \mathbf{x}_i(t) + \mathbf{v}_i(t)$

PSO: DEFINITION

- The update of the velocity is more involved and keep track of three factors:
 - Inertia: the particle cannot change direction immediately
 - Social attraction: try to follow the swarm
 - Cognitive attraction: try to follow what the particle knows

VELOCITY COMPONENTS

Social attraction:

Attraction towards the best position g found so far in the entire swarm—

New velocity: $\mathbf{v}_i(t+1)$

Inertia: $w\mathbf{v}_i(t)$

Current velocity

Cognitive attraction:

Attraction towards the best position \mathbf{b}_i found so far by the current particle

Usually each component of the velocity is bounded (in absolute value) between $[v_{\min}, v_{\max}]$

PSO: VELOCITY UPDATE

The formula for the velocity update is:

$$\mathbf{v}_i(t+1) = w \cdot \mathbf{v}_i(t) + c_{\text{soc}} \cdot \mathbf{r}_1 \otimes (\mathbf{g} - \mathbf{x}_i(t)) + c_{\text{cog}} \cdot \mathbf{r}_2 \otimes (\mathbf{b}_i - \mathbf{x}_i(t))$$

- \mathbf{r}_1 and \mathbf{r}_2 are random vectors from $[0,1]^m$ and \otimes denotes the Hadamard product
- $c_{\text{soc}} \in \mathbb{R}^+$ is the social factor
- $c_{\text{cog}} \in \mathbb{R}^+$ is the cognitive factor
- $w \in \mathbb{R}^+$ is the inertia weight

PSO: PARAMETERS

- $c_{\rm soc} \in \mathbb{R}^+$ is the **social factor**, it modulates the attraction towards the global best (i.e., the best solution found so far by the entire swarm). Usually $c_{\rm soc} = 1.49445$.
- $c_{\rm cog} \in \mathbb{R}^+$ is the **cognitive factor**, it modulates the attraction towards the local best (i.e., the best solution found so far by the current particle). Usually $c_{\rm cog} = 1.49445$.
- $w \in \mathbb{R}^+$ is the **inertia weight**, it is used to balance global and local search. It is usually decremented linearly from 0.9 to 0.4

BOUNDARY CONDITIONS

Invisible/Damping

SELECTION OF PSO PARAMETERS

- The settings for PSO are problem-dependent. To optimise them there are three main approaches:
 - Differential investigation of the impacts of the different settings
 - "Good enough" defaults
 - Self-tuning PSO that automatically adjust the parameters

ANT COLONY OPTIMIZATION

ACO: IDEAS

- Stigmergy is a mechanism of indirect coordination mediated by the environment
 - Stigmergy can allow for complex behaviours without need of planning, control, or direct communication
 - Stigmergy allows the collaboration of very simple agents,
 lacking memory, intelligence, or even awareness of each other
- Standard example: ants' pheromone trails

STIGMERGY IN NATURE: THE DOUBLE BRIDGE EXPERIMENT

STIGMERGIC SYSTEM

- A Stigmergic system has three main characteristics:
 - A global environment that is only partially perceivable by the agents
 - A set of agents that populate the environment with no single agent having complete knowledge of the system's state
 - Complexity emerging from the interaction of the previous to aspects that cannot be predicted or reduced to their simpler components

ANT COLONY OPTIMIZATION

- Ant Colony Optimization (ACO) is inspired by the collective behaviour of ants and usually employed to solve problems on graphs
- ACO relies on stigmergy and simulated pheromone trails:
 - Pheromone left by ants in the search space evaporate over time
 - Pheromone traces guide the behaviour of the ants and, unless reinforced, evaporate over time
 - Ants are stochastic solution building procedures exploiting both simulated pheromone and available heuristic information about the problem being solved

ANT COLONY OPTIMIZATION

ACO FORTHETSP

- We have a complete graph G of m nodes, representing m cities
- The edge between nodes i and j has weight/length $d_{i,j}$
- We want fo find the Hamiltonian circuit in G that minimises the sum of the weights of all the edges in the circuit (i.e., the shortest Hamiltonian circuit)

CONSTRUCTION OF THE SOLUTIONS

- $au_{i,j}(t)$ is the amount of pheromones on the edge (i,j) at time t
- $\eta_{i,j} = \frac{1}{d_{i,j}}$ is the heuristic information that we have on each edge
- \mathcal{N}_i^k is the set of cities that the ant k has yet to visit when it is in city i
- An ant in city i will select which is the next city to visit according to a probability distribution based on some heuristic information and on the amount of pheromones.

CONSTRUCTION OF THE SOLUTIONS

Each ant will start on a city and visit all cities selecting city j as the next one (in \mathcal{N}_i^k) with probability

$$p_{i,j}^k(t) = \frac{(\tau_{i,j}(t))^{\alpha}(\eta_{i,j})^{\beta}}{\sum_{\ell \in \mathcal{N}_i^k} (\tau_{i,\ell}(t))^{\alpha}(\eta_{i,\ell})^{\beta}}$$

• Where α and β are parameters controlling how important are the pheromones and the heuristic information, respectively

UPDATE OF THE PHEROMONES

- Let L_k be the length of the solution found by ant k (for $k \in \{1,...,n\}$)
- We define $\Delta \tau_{i,j}^k$ as $\frac{1}{L_k}$ if (i,j) is part of the solution of ant k and 0 otherwise
- Then we update the pheromone trails as

$$\tau_{i,j}(t+1) = (1-\rho)\tau_{i,j}(t) + \sum_{k=1}^{n} \Delta \tau_{i,j}^{k}$$

• Where $\rho \in [0,1]$ is a parameter used to decide how fast the pheromones evaporates

EFFECT OF THE UPDATE

- Edges that are part of better solutions (shortest length) receive more pheromones
- Edges that are part of more solutions receives more pheromones
- More pheromones make the edge more desirable
- If an edge is more desirable its probability of being selected increases