Using Inside AirBnb Data for price Prediction with Deep Learning Methods

Juan Sebastián Aristizábal Ortiz, Tobias Rinnert

Statistical and Deep Learning WS 21-22 Institute of Statistics University of Göttingen Göttingen, Germany

22.02.2022

- Data Wrangling
- 2 Image analysis
 - Multi Object Detection
 - Correlated colour temperature
 - Brightness
- Project Design
- Price Prediction
 - Deep Neural Net
 - Further methods
- Results
- Conclusions
- Literature

Repeated, Absent, Irrelevant

Repeated and Absent

- "host listings count == "host total listings count"
- "bathrooms"
- "license"
- "calendar updated"

Irrelevant

- Latitude
- Longitude
- Scrape Id

NA Rate > 0.5 & Trustfulness variables

NA Rate > 0.5

- "neighborhood"
- "neighborhood overview",
- "host neighborhood"

Trustfulness variables correlate possible with reviews

- "host about",
- "host response rate",
- "host acceptance rate",
- "host response time"

NA Removal

Initial Dataset

17290 observations

Cleaned Dataset

12175 i.e. 0.2958357% information loss.

- Data Wrangling
- 2 Image analysis
 - Multi Object Detection
 - Correlated colour temperature
 - Brightness
- Project Design
- Price Prediction
 - Deep Neural Net
 - Further methods
- Results
- Conclusions
- Literature

R-CNN Introduction

R-CNN: Regions with CNN features

1. Input image

2. Extract region proposals (~2k)

3. Compute CNN features

4. Classify regions

[Girshick et al.,]

Multi object detection: Example

Correlated color temperature Example 1

CCT Example 2

Brightness

Figure: [Aguirre-Pablo et al., 2017]

3D colour space

$$brightness = \sqrt{R^2 + G^2 + B^2}$$
 (1)

Perceived brightness formula

$$brightness = \sqrt{0.241 * R^2 + 0.691G^2 + 0.068B^2}$$
 (2)

[Dobovizki, 2022]

Perceived brightness results

Figure: Brightness: 122.8

Figure: Brightness: 107.2

Resulting data

- Data set holding data for each picture per host.
 - huge number of columns/variables
- Data set summarizing the results:
 - sums per detected object per host
 - means of brightness and cct per host

- Data Wrangling
- 2 Image analysis
 - Multi Object Detection
 - Correlated colour temperature
 - Brightness
- Project Design
- Price Prediction
 - Deep Neural Net
 - Further methods
- Results
- Conclusions
- Literature

Plan

Way to proceed was dynamic

Given this resources constrain and aiming to fulfill interpretability requirement

- Plan: Use DNN for image scrapping and then employ a regularization model (Lasso) for variable selection.
- Expanded to include further "competitive" models (GBM, Random Forests)

Partitioning and Data Analysis

- We initially worked for Berlin working with a partition of 80:10:10 for train validation and test
- \bullet Then, Munich came \to Berlin 90 : 10 and Munich fully used as test set
- Munich demanded an analysis of the data by the same criteria as Berlin i.e Absence > Na Rates > Irrelevance

Munich data set before 4995

After cleaning: 3222 Lost rate: 0.354955%

- Data Wrangling
- 2 Image analysis
 - Multi Object Detection
 - Correlated colour temperature
 - Brightness
- Project Design
- Price Prediction
 - Deep Neural Net
 - Further methods
- Results
- 6 Conclusions
- Literature

Hyperparameter Tuning

- k fold cross-validation
- Method: adaptive cv
- Results:
 - activation function: TanH
 - dropout: 0.17

[Develop Paper, 2020]

• adaptive learning rate: rmsprop (Root Mean Square Propogation)

DNN Summary

Layer (type)	Output Shape	Param #
dense_184 (Dense)	(None, 189)	12096
dropout_138 (Dropout)	(None, 189)	0
dense_183 (Dense)	(None, 126)	23940
dropout_137 (Dropout)	(None, 126)	0
dense_182 (Dense)	(None, 63)	8001
dropout_136 (Dropout)	(None, 63)	0
dense_181 (Dense)	(None, 1)	64

Total params: 44,101 Trainable params: 44,101 Non-trainable params: 0

Training Curves

Lasso

Models to be trained:

- OLS for reference
- No data preprocessing
- Normalized i.e location and scale
- Normalized i.e location and scale with log(price)

Parameters to tune

- ullet Parameter to tune: λ i.e shrinkage parameter.
- Grid: from 10¹⁰ to 0.01
- best λ : 1.14

[James et al., 2021]

Training times on Berlin data set: circa 3 Minutes

GBM

Models to be trained:

- No data preprocessing
- Normalized i.e location and scale
- Normalized i.e location and scale with log(price)

Tuning was attempted for every parameter.

Computationally prohibitive i.e. failed after 24 hours CPU time

Parameters to tune

- ullet interaction.depth =1
- shrinkage seq(0.001, 0.202, 0.04). Best: 0.001
- n.trees = 5000
- n.minobsinnode 10

[James et al., 2021]

Training times on Berlin Data Set: circa 16 hours.

Random Forests

- No data preprocessing
- Normalized i.e location and scale
- Normalized i.e location and scale with log(price)

Parameters to tune

- mtry = -7 + p/3, p/3, 7 + p/3 with p/3 = 21. Best: 21
- min.node.size = 5

[Hastie et al., 2009]

Training times on Berlin Data Set: circa 3 hours.

- Data Wrangling
- 2 Image analysis
 - Multi Object Detection
 - Correlated colour temperature
 - Brightness
- Project Design
- Price Prediction
 - Deep Neural Net
 - Further methods
- 6 Results
- 6 Conclusions
- Literature

Results Berlin

	RMSE <dbl></dbl>	Rsquared <dbl></dbl>	MAE <dbl></dbl>
OLS	0.5547540	0.3818374	0.4107917
Lasso	0.4935600	0.4465568	0.3757873
Lasso Standard	0.4935600	0.4465568	0.3757873
Boost	0.5088589	0.4297071	0.3963260
RF	0.4085395	0.6140226	0.3083759
RF Centered	0.4087117	0.6139556	0.3084462
Lasso S + log(price)	0.4436540	0.5181270	0.3442663
DNN	0.3807523	0.6436791	0.2860852

Variable Importance Berlin

Results Munich

	RMSE <dbl></dbl>	Rsquared <dbl></dbl>	MAE <dbl></dbl>
OLS	0.6330120	0.2460199	0.4687229
Lasso	0.5868852	0.2998020	0.4312133
Lasso N	0.5868852	0.2998020	0.4312133
Boost	0.6560061	0.2191735	0.4775103
Boost N	0.6575854	0.2427723	0.4705026
RF	0.5270313	0.3860209	0.3767017
RF N	0.5304562	0.3782364	0.3798950
Lasso N-log(price)	0.6404690	0.2869786	0.4614091
Boost N-log(price)	0.5896727	0.3410397	0.4201564
RF N-log(price)	0.5456279	0.4245355	0.3867661
DNN	0.8698481	-0.7196968	0.4800993

Variable Importance Munich Lasso

28 / 34

Variable Importance Munich Boost

Contain_som Coutain_som Coutain_som Coutain Coutain Coutain Coutain Coutain Coutain Coutain Seferors Calculated_boxt_strong, cours_prints_roms accommodates maxomum_minim_supts maxomum_m

20

Fireplace sum

availability_30

host_listings_count availability 90

review scores accuracy

calculated host listings count entire homes

Boost N-log(price)

Importance

80

- Data Wrangling
- 2 Image analysis
 - Multi Object Detection
 - Correlated colour temperature
 - Brightness
- Project Design
- Price Prediction
 - Deep Neural Net
 - Further methods
- Results
- 6 Conclusions
- Literature

Conclusions

Takeaways

- Lacking computational power
- further theoretical analysis: Outliers, Variable Exclusion pre-training
- vary threshold for multi detection model
- increase cluster amount for CCT analysis
- scene identification to exclude pictures not showing the flat

- Data Wrangling
- 2 Image analysis
 - Multi Object Detection
 - Correlated colour temperature
 - Brightness
- Project Design
- Price Prediction
 - Deep Neural Net
 - Further methods
- Results
- 6 Conclusions
- Literature

Literature and further References I

Tomographic particle image velocimetry using smartphones and colored shadows.

Scientific reports, 7(1):3714.

Develop Paper (2020).

Activation function of attention mechanism: adaptive parameterized relu activation function - develop paper.

- Dobovizki, N. (18.01.2022).

 Calculating the perceived brightness of a color.
 - Girshick, R., Donahue, J., Darrell, T., and Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.

Literature and further References II

Hastie, T., Tibshirani, R., and Friedman, J. H. (2009). The elements of statistical learning: Data mining, inference, and prediction / Trevor Hastie, Robert Tibshirani, Jerome Friedman. Springer series in statistics. Springer, New York, 2nd ed. edition.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2021). *An Introduction to Statistical Learning: With Applications in R.* Springer eBook Collection. Springer US and Imprint: Springer, New York, NY, 2nd ed. 2021 edition.