Lista

1- Para o circuito lógico a seguir, determine a expressão lógica correspondente, a tabela verdade, o Mapa de Karnaugh e a expressão lógica simplificada a partir do mapa.

2- Obter a expressão lógica simplificada a partir do Mapa K a seguir

AB	00	01	11	10
00	x	1	0	1
01	0	1	1	0
10	0	1	0	x
11	1	х	0	0

- 3 Projetar um sistema de alarme que deve ser disparado (A=1) se o botão de pânico for pressionado (P=1), o sistema estiver ativado (S=1) e as portas (D) ou janelas (W) estiverem abertas (=0).
 - a) Expressão lógica
 - b) Tabela verdade
 - c) Mapa de Karnaugh
 - d) Circuito Lógico a partir do Mapa de Karnaugh
- 4 Simplificar a expressão usando Mapa de Karnaugh e obter o circuito lógico correspondente à simplificação.

$$Y = [A\bar{B}(C + BD) + \bar{A}\bar{B}]C$$

6 - Obter a expressão lógica simplificada a partir do Mapa K a seguir

АВ	00	01	11	10
00	1	1	X	1
01	0	X	0	0
10	1	0	0	X
11	х	X	0	1

7 - Projetar um sistema de segurança para desligar um veículo (V=1) quando a pressão do sistema de arrefecimento for insuficiente (P=0), ou o motor estiver com temperatura acima da nominal (T=1) sem o sistema auxiliar estar ligado (A=0).

- a) Expressão lógica
- b) Tabela verdade
- c) Mapa de Karnaugh
- d) Circuito Lógico a partir do Mapa de Karnaugh

8 - Simplificar a expressão usando Mapa de Karnaugh e obter o circuito lógico correspondente à simplificação.

$$Y = \bar{A}BC + A\bar{B}\bar{C} + \bar{A}\bar{B}\bar{C} + A\bar{B}C + ABC$$

10 - Obter a expressão lógica simplificada a partir do Mapa K a seguir

∖ AB				
	00	01	11	10
00	0	1	X	0
01	0	1	0	0
10	0	0	0	1
11	1	1	1	0

- 11 Projetar um circuito para o monitoramento de uma bateria de 15 V. A tensão na bateria é convertida em digital e representada por um número binário de 4 bits sendo que cada bit equivale a um degrau de 1V. Os bits, do mais significativo para o menos significativo estão na sequência A,B,C,D. O circuito deve alertar o usuário sempre que a tensão na bateria for menor que 9V.
 - a) Expressão lógica
 - b) Tabela verdade
 - c) Mapa de Karnaugh
 - d) Circuito Lógico a partir do Mapa de Karnaugh
- 12 Simplificar a expressão usando Mapa de Karnaugh e obter o circuito lógico correspondente à simplificação.

$$Y = \overline{(AB + AC)} + \bar{A}\bar{B}C$$

14 - Obter a expressão lógica simplificada a partir do Mapa K a seguir

DE BO	C 00	01	11	10
00	0	0	1	1
01	0	1	1	1
11	1	0	0	0
10	0	1	1	0

- 15 Projetar um circuito para acionar um sinal luminoso e interromper a impressão (S=1) sempre que ocorrer uma das seguintes condições:
 - i) A bandeja de papel estiver vazia (a presença de papel na bandeja é indicada por um nível alto no sinal lógico P);
 - ii) Duas chaves sensoras de papel sendo impresso (Q e R) estiverem acionadas (cada microchave produz sinais lógicos Q e R que vão para o nível alto sempre que um papel estiver passando sobre a chave.
 - a) Expressão lógica
 - b) Tabela verdade
 - c) Mapa de Karnaugh
 - d) Circuito Lógico a partir do Mapa de Karnaugh
- 16 Simplificar a expressão usando Mapa de Karnaugh e obter o circuito lógico correspondente à simplificação.

$$Y = A\bar{B}C(BD + CD) + A\bar{C}$$

18 - Obter a expressão lógica simplificada a partir do Mapa K a seguir

DEBO	00	01	11	10
00	0	0	0	$\begin{vmatrix} 1 & 1 \end{vmatrix}$
01	0	0	0	1
11	1	0	0	0
10	0	1	1	0

19- Projetar um circuito lógico em que a saída seja nível lógico alto no caso de igualdade entre dois números binários de 2 bits $(b_1b_0 e a_1a_0)$.

21 – Nas tabelas-verdade abaixo, A,B,C,D são entradas. Use Mapa de Karnaugh para obter as expressões simplificadas quando

- a) a saída é W
- b) a saída é X
- c) a saída é Y
- d) a saída é Z

Input				Outpu	t		
D	C	В	A	W	X	Y	Z
0	0	0	0	0	0	1	1
0	0	0	1	0	1	1	0
0	0	1	0	0	1	0	1
0	0	1	1	0	0	0	0
0	1	0	0	1	1	1	0
0	1	0	1	1	0	1	1
0	1	1	0	1	0	0	0
0	1	1	1	1	1	0	1
1	0	0	0	1	1	0	1
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	1
1	0	1	1	1	1	0	0
1	1	0	0	0	0	X	X
1	1	0	1	0	1	X	X
1	1	1	0	0	1	X	X
1	1	1	1	0	0	X	X

22 – Simplificar a expressão usando Mapa de Karnaugh e obter o circuito lógico correspondente à simplificação.

$$Z = (A + B + \overline{C}) \cdot (A + \overline{B}) \cdot (\overline{A} + B + C)$$

- 23- Projetar um circuito lógico cuja saída seja nível alto apenas quando a maioria das entradas A, B e C for nível alto.
 - a) Tabela verdade
 - b) Mapa de Karnaugh
 - c) Circuito Lógico a partir do Mapa de Karnaugh
- 24 Para o circuito lógico a seguir, determine a expressão lógica correspondente, a tabela verdade, o Mapa de Karnaugh e a expressão lógica simplificada a partir do mapa.

25 – Obter a expressão lógica simplificada a partir do Mapa K a seguir

B^{CL}	00	01	11	10
00	1	1		
01				
11	1	11		
10	1	1	-1	ı

26 - Simplificar a expressão usando Mapa de Karnaugh e obter o circuito lógico correspondente à simplificação.

$$Y = (A + C) \oplus \overline{(AD + AC)} + AC + C$$

- 27- Projetar um circuito lógico que gera um nível alto na saída sempre que o número binário de 4 bits (ABCD) for maior que 0010 e menor que 1001. O bit A é o mais significativo.
 - a) Tabela verdade
 - b) Mapa de Karnaugh
 - c) Circuito Lógico a partir do Mapa de Karnaugh
- 28 Para o circuito lógico a seguir, determine a expressão lógica correspondente, a tabela verdade, o Mapa de Karnaugh e a expressão lógica simplificada a partir do mapa.

29 – Obter a expressão lógica simplificada a partir do Mapa K, usando Agrupamentos POS (produto da soma) para a tabela verdade a seguir:

A	В	C	S
A 0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

30 – Simplificar a expressão usando Mapa de Karnaugh e obter o circuito lógico correspondente à simplificação.

$$Y = C(A + B) + (B + AC) \oplus (AB)$$

31- Um carro possui os seguintes sensores: câmbio (G =1 para neutro); porta (P=0 para aberta); freio de mão acionado (F=1) e cinto de segurança travado (C=1). Projetar um circuito lógico para permitir a partida (Y=1) nas seguintes condições: o câmbio deve estar na posição neutro. Se a porta estiver aberta, a partida será dada somente se o freio de estacionamento estiver acionado e o cinto de segurança travado.

- a) Expressão lógica
- b) Tabela verdade
- c) Mapa de Karnaugh
- d) Circuito Lógico a partir do Mapa de Karnaugh

32- O sistema de uma biblioteca precisa indicar se um usuário pode apanhar um livro emprestado. A decisão é baseada nos seguintes critérios:

- i) Ninguém pode apanhar livro emprestado se estiver devendo uma multa condição (M=1).
- ii) O número máximo de livros que alguém pode emprestar é seis (condição S=1, se já estiver com 6 livros), exceto se for um estudante do nível A (condição A =1) ou estiver esperando o título há mais de 4 semanas (condição W =1).

Projetar um circuito lógico que sinalize que um estudante pode apanhar o livro emprestado (E=1).

- a) Expressão lógica
- b) Tabela verdade
- c) Mapa de Karnaugh
- d) Circuito Lógico a partir do Mapa de Karnaugh

33- Em determinado computador, o conjunto de letras do alfabeto (A,C,E,G,H,I,K,L,O,P,Q,R,T,U,W) são codificadas em termos dos números HEXADECIMAIS, conforme tabela a seguir. Projetar um circuito para receber esse código na entrada, e apresentar uma saída falsa a cada vez que a informação de entrada corresponder a uma vogal do alfabeto, e uma saída verdadeira, quando a informação corresponder a uma consoante.

Codificação

Codificação		
letra	Número	
	HEXA	
A	F	
C	F D	
A C E G	0	
G	1	
H	C	
Ι	3	
K	2	
L	1 C 3 2 4 5 8 9	
O	5	
P	8	
Q	9	
R	7	
I K L O P Q R T	A	
U	Е	
W	В	

34- Identifique a porta lógica a seguir e explique resumidamente seu funcionamento

