Predicate Logic

- The connectives $^{\sim}$, $^{\sim}$, $^{\sim}$, $^{\sim}$, and $^{\sim}$ are not enough to prove or disprove all types of logical statements.
- For example:
 - All UOW math courses are fun,
 - Math 221 is a UOW math course,
 - Therefore, Math 221 is fun.
- This is correct, but we cannot determine its validity with the tools we have so far.
- We need to be able to manage words such as "all" and "some."
- **Predicate:** a sentence that contains a finite number of variables and becomes a statement when values are substituted.
- The **domain** of a variable is the set of all possible values it can be.
- The **truth set** is the subset of the domain that makes the predicate true.
- Predicates of one value are denoted: p(x), q(x)
- Notation:

Symbol	Name	Example
R	Set of all real numbers	Can be integers, fractions, etc
Q	Set of all rational numbers	Can be written as a fraction.
Z	Set of integers	Whole numbers2, -1, 0, 1, 2,
N	Set of natural numbers	Counting numbers 1, 2, 3,
€	Contention	"Is contained in," "belongs to," "is a member of"
A	Universal quantifier	"For all"
Э	Existential quantifier	"There exists"
∋	Such that	

Exercise:

The predicate p(x): "x is a positive integer strictly less than 5" with dom_p = \mathbb{Z} has truth set {..., -2, -1, 0, 1, 2, 3, 4}.

Exercise:

The predicate q(x): " $x^2 > x$ " with dom_q = $\mathbb R$ has truth set.

$$\{x: x^2 > x \} = \{x: x < -1 \text{ or } x > 1 \}$$

= $\{x: |x| > 1 \}$
= $(-\infty, -1) \cup (1, \infty)$

The Universal Quantifier ∀

- One way to change a predicate into a statement is to assign values to the variables.
- Another way is to add quantifiers.

Exercise:

- a) "All humans are mortal."
- b) "All real numbers have a nonnegative square."

a) \forall Humans x, x is martal b) $\forall x \in \mathbb{R}$, $x^2 > 0$

- Universal statement: has the form, $\forall x \in D$, p(x).
- It is true IFF (if and only if) p(x) is true for every x ∈ D if at least one x ∈ D can be found that makes p(x) false, the statement is false.
- Such an x is called a counterexample (contrapositive).

Exercise:

 $\forall x \in \mathbb{R}, x^2 > x$.

This is false if $x = \frac{1}{2}$ (counterexample)

Exercise:

Write using \forall .

- a) All dogs are animals
- b) Every integer greater than zero has a prime factor.

a) \forall dogs $x \in \{\{\{1, 1\}\}\}\}$ b) \forall $\mathbb{Z} \times \{\{\{1, 1\}\}\}\}$ $= \{\{1, 1\}\}\}$

Exercise:

Let $D = \{1, 2, 3, 4, 5\}.$

- a) Show that the statement $\forall x \in D, x^2 \ge x$ is true.
- b) Show that the statement $x \in D$, $\frac{1}{x}$ is false.

The Existential Quantifier 3

Exercise:

- a) "There is a cat in my house."
- b) "There are integers m and n such that m + n = mn."

a) I A cat x I x is in my house.
b) I min E Z I min = mn

- Existential statement: has the form $\exists x \in D \ni p(x)$.
- It is true IFF (if and only if) p(x) is true for at least one $x \in D$.
- It is false IFF p(x) is false for all $x \in D$.

Exercise:

Write using \exists .

- a) There exists a real number whose square is negative.
- b) Some person is a vegetarian.

a) Ix & R x x2<0 b) I Person X x x is vegetarian

Exercise:

Show that the statement " $\exists m \in \mathbb{Z} \ni m^2 = m$ " is true.

Let m=1, m \(\mathbb{Z}\)

12 = 1

.. This statement is true

Exercise:

Let $E = \{5, 6, ..., 10\}$. Show that the statement "" $\exists m \in E \ni m2 = m$ " is false.

 $5^{2} \neq 5$, $6^{2} \neq 6$, $7^{2} \neq 7$, ..., $10^{2} \neq 10$: This is false

Exercise:

Rewrite using informal language.

- a) $\forall x \in \mathbb{R}, x^2 \ge 0$
- b) $\exists m \in \mathbb{Z} \ni m^2 = m$
- c) \forall Students s, \exists Math subject $y \ni s$ likes y
- d) $\forall x \in \mathbb{R}, x^2 \neq -1$

a) For all real numbers, the Square of that number is a positive int.
b) There exists a number in the set of integers where its square is equal to itself.
c) For all students, there exists a math subject where the student likes that math subject.
d) For all real numbers, the square of that number cannot equal -1.

Negation of Quantifiers

- Consider the statement, "all mathematicians wear glasses."
 - What is the negation of the statement?
 - It is natural to think it's "no mathematician wears glasses," but that's not correct.
- The negation is: "there exists a mathematician who does not wear glasses."
- If just one counterexample can be found, the original statement is false.

Negation of a Universal Statement

• The negation of the statement:

$$\forall x \in D, p(x)$$

• This is logically equivalent to the statement:

$$\forall x \in D, \sim p(x)$$

• Symbolically:

$$\sim$$
($\forall x \in D, p(x)$) $\equiv \forall x \in D, \sim p(x)$

Exercise:

Write negations:

- a) No computer hacker is over 40
- b) ∀ Primes p, p is odd
- c) \forall People x, if x is blonde, then x has blue eyes.

a) There exists a computer hacker over 46.

b) There exists a prime number that is even

\(\frac{1}{2} p \in \xi p \alpha \text{inter} \frac{1}{2} \text{in} \)

\(\frac{1}{2} p \in \xi \text{son } \text{son }

- Consider the statement "some fish breathe air."
- What is the negation of this statement?
- It is, "no fish breathes air."
- You might think it should be "some fish do not breathe air," but this and the original statement can both be true at the same time.

Negation of Existential Statements

The negation of the statement:

$$\exists \ x \in D \ni p(x)$$

• This is logically equivalent to the statement:

$$\exists \ x \in D \ni \sim p(x)$$

Symbolically:

$$\sim (\exists x \in D \ni p(x)) \equiv \forall x \in D \ni \sim p(x)$$

Exercise:

Write negations.

- a) \exists A triangle whose sum of angles is 200 degrees.
- b) There is a woman who is 120 years old.
- c) $\exists x \in \mathbb{R} \ni x^2 = -1$

a) $\forall x \in \{\text{triangles}\} \ni \text{Sum of angles} \neq 200°$ b) $\forall \text{woman } x \in \{\text{women 3}, x \not = 120 \text{ years ald }\}$ c) $\forall x \in \mathbb{R}, x^2 \neq -1$

Summary

- The negation of "all are" is "at least one is not."
- The negation of "at least one sis" is "all are not."

Exercise:

Write negations and decide which statements are true.

- a) $\exists x \in \mathbb{R} \ni 3x = 1$
- b) $\forall \ \xi \in \mathbb{R}, \ \forall \ x \in \mathbb{Z}, \ \exists \ y \in \mathbb{Q} \ni \xi > 0 \Rightarrow | \ x y | < \xi$

a)
$$\sim (3 \times \epsilon \mathbb{R} \times 3 \times \epsilon \mathbb{R}, 3 \times \epsilon \mathbb{R}, 3 \times \epsilon \mathbb{R})$$