ATGTTCGGCTCCGCCCCCAGCGTCCCGTGGCCATGACGACCGCTCAGAGGGACTCCCTG TTGTGGAAGCTCGCGGGGTTGCTGCGGGAGTCCGGGGATGTGGTCCTGTCTGGCTGTAGC ACCCTGAGCCTGCTGACTCCCACACTGCAACAGCTGAACCACGTATTTGAGCTGCACCTG GGGCCATGGGCCTGGCCAGACAGGCTTTGTGGCTCTGCCCTCCCATCCTGCCGACTCC CCTGTTATTCTTCAGCTTCAGTTTCTCTCGATGTGCTGCAGAAAACACTTTCACTCAAG $\tt CTGGTCCATGTTGCTGGTCCTGGCCCCACAGGGCCCATCAAGATTTTCCCCTTCAAATCC$ CTTCGGCACCTGGAGCTCCGAGGTGTTCCCCTCCACTGTCTGCATGGCCTCCGAGGCATC TACTCCCAGCTGGAGACCCTGATTTGCAGCAGGAGCCTCCAGGCATTAGAGGAGCTCCTC TTCAGCTACAATGCACTGACCGCCTTAGACAGCTCCCTGCGCCTCTTGTCAGCTCTGCGT ${\tt TTCTTGAACCTAAGCCACAATCAAGTCCAGGACTGTCAGGGATTCCTGATGGATTTGTGT}$ GAGCTCCACCATCTGGACATCTCCTATAATCGCCTGCATTTGGTGCCAAGAATGGGACCC TCAGGGGCTGCTCTGGGGGTCCTGATACTGCGAGGCAATGAGCTTCGGAGCCTGCATGGC $\tt CTAGAGCAGCTGAGGAATCTGCGGCACCTGGATTTGGCATACAACCTGCTGGAAGGACAC$ $\tt CGGGAGCTGTCACCACTGTGGCTGGCTGAGCTCCGCAAGCTCTACCTGGAGGGGAAC$ $\verb|CCTCTTTGGTTCCACCCTGAGCACCGAGCACTGCCCAGTACTTGTCACCCCGGGCC|\\$ AGGGATGCTGCTACTGGCTTCCTTCTCGATGGCAAGGTCTTGTCACTGACAGATTTTCAG ACTCACACATCCTTGGGGCTCAGCCCCATGGGCCACCTTTGCCCTGGCCAGTGGGGAGT ${\tt ACTCCTGAAACCTCAGGTGGCCCTGACCTGAGTGACAGCCTCTCCTCAGGGGGTGTTGTG}$ ACCCAGCCCCTGCTTCATAAGGTTAAGAGCCGAGTCCGTGTGAGGCGGGCAAGCATCTCT GAACCCAGTGATACGGACCCCGGAGCCCCGAACTCTGAACCCCTCTCCGGCTGGATGGTTC GTGCAGCACCCGGAGCTGGAGCTCATGAGCAGCTTCCGGGAACGGTTCGGCCGCAAC TGGCTGCAGTACAGGAGTCACCTGGAGCCCTCCGGAAACCCTCTGCCGGCCACCCCCACT

Figure 1A

20

ACTTCTGCACCCAGTGCACCTCCAGCCAGCTCCCAGGGCCCCGACACTGCACCCAGACCT TCACCCCGCAGGAGGAAGCCAGAGGCCCCCAGGAGTCACCACAGAAAATGTCAGAGGAG GGGGAGATGGTGGAACAGGGAGAAGAGGAGGAGGAGGAGGAGGAGGAGCAGGAC CAGAAGGAAGTGGAAGCGGAACTCTGTCGCCCCTTGTTGGTGTCCCCTGGAGGGGCCT GAGGGCATACGGGGCAGGGAATGCTTTCTCAGGGTCACTTCTGCCCACCTGTTTGAGGTG GAACTCCAAGCAGCTCGCACCTTGGAGCGACTGGAGCTCCAGAGTCTGGAGGCAGCTGAG ATAGAGCCGGAGGCCCAGGGCCCAGGGCCCACGGGCTCAGATCTGCTCCCT GGAGCCCCCATCCTCAGTCTGCGCTTCTCCTACATCTGCCCTGACCGGCAGTTGCGTCGC TATTTGGTGCTGGAGCCTGATGCCCACGCAGCTGTCCAGGAGCTGCTTGCCGTGTTGACC CCAGTCACCAATGTGGCTCGGGAACAGCTTGGGGAGGCCAGGGACCTCCTGCTGGGTAGA TTCCAGTGTCTACGCTGTGGCCATGAGTTCAAGCCAGAGGAGCCCAGGATGGGATTAGAC AGTGAGGAAGGCTGGAGGCCTCTGTTCCAAAAGACAGGGAGCGGAAACAGGGAGAGCAGT TTGACAGGGCCAAGAACAGCCCACCTCAGGCACCGAGCACCCGTGACCATGGTAGTTGGA GCCTCAGTCCCCCCCTGAGCGCTGTGGCCTCCGCTCTGTGGACCACCGACTCCGGCTCT TCCTGGATGTTGAGGTGTTCAGCGATGCCCAGGAGGAGTTCCAGTGCTGCCTCAAGGTGC CAGTGGCATTGGCAGGCCACACTGGGGAGTTCATGTGCCTTGTGGTTGTCTGACCGCA GGCTGTACCTGTTGA

Figure 1B.

ATGTTCGGCTCCGCCCCCAGCGTCCCGTGGCCATGACGACCGCTCAGAGGGACTCCCTG TTGTGGAAGCTCGCGGGGTTGCTGCGGGGAGTCCGGGGATGTGGTCCTGTCTGGCTGTAGC ACCCTGAGCCTGCTGACTCCCACACTGCAACAGCTGAACCACGTATTTGAGCTGCACCTG GGGCCATGGGGCCCTGGCCAGACAGGCTTTGTGGCTCTGCCCTCCCATCCTGCCGACTCC CCTGTTATTCTTCAGCTTCAGTTTCTCTTCGATGTGCTGCAGAAAACACTTTCACTCAAG $\tt CTGGTCCATGTTGCTGGTCCTGGCCCCACAGGGCCCATCAAGATTTTCCCCTTCAAATCC$ CTTCGGCACCTGGAGCTCCGAGGTGTTCCCCTCCACTGTCTGCATGGCCTCCGAGGCATC TACTCCCAGCTGGAGACCCTGATTTGCAGCAGGAGCCTCCAGGCATTAGAGGAGCTCCTC TTCAGCTACAATGCACTGACCGCCTTAGACAGCTCCCTGCGCCTCTTGTCAGCTCTGCGT TTCTTGAACCTAAGCCACAATCAAGTCCAGGACTGTCAGGGATTCCTGATGGATTTGTGT GAGCTCCACCATCTGGACATCTCCTATAATCGCCTGCATTTGGTGCCAAGAATGGGACCC TCAGGGGCTGCTCTGGGGGTCCTGATACTGCGAGGCAATGAGCTTCGGAGCCTGCATGGC CTAGAGCAGCTGAGGAATCTGCGGCACCTGGATTTGGCATACAACCTGCTGGAAGGACAC CGGGAGCTGTCACCACTGTGGCTGCTGGCTGAGCTCCGCAAGCTCTACCTGGAGGGGAAC CCTCTTTGGTTCCACCCTGAGCACCGAGCACCTGCCCAGTACTTGTCACCCCGGGCC ${\tt AGGGATGCTGCTACTGGCTTCCTTCTCGATGGCAAGGTCTTGTCACTGACAGATTTTCAG}$ ACTCACACATCCTTGGGGCTCAGCCCCATGGGCCCACCTTTGCCCTGGCCAGTGGGGAGT ACTCCTGAAACCTCAGGTGGCCCTGACCTGAGTGACAGCCTCTCCTCAGGGGGTGTTGTG ${\tt ACCCAGCCCTGCTTCATAAGGTTAAGAGCCGAGTCCGTGTGAGGCGGGCAAGCATCTCT}$ GAACCCAGTGATACGGACCCGGAGCCCCGAACTCTGAACCCCTCTCCGGCTGGATGGTTC GTGCAGCAGCACCCGGAGCTGGAGCTCATGAGCAGCTTCCGGGAACGGTTCGGCCGCAAC

Figure 2A

TGGCTGCAGTACAGGAGTCACCTGGAGCCCTCCGGAAACCCTCTGCCGGCCACCCCCACT ACTTCTGCACCCAGTGCACCTCCAGCCAGCTCCCAGGGCCCCGACACTGCACCCAGACCT TCACCCCGCAGGAGGAAGCCAGAGGCCCCCAGGAGTCACCACAGAAAATGTCAGAGGAG CAGAAGGAAGTGGAAGCGGAACTCTGTCGCCCCTTGTTGGTGTGTCCCCTGGAGGGCCCT GAGGGCGTACGGGGCAGGGAATGCTTTCTCAGGGTCACTTCTGCCCACCTGTTTGAGGTG GAACTCCAAGCAGCTCGCACCTTGGAGCGACTGGAGCTCCAGAGTCTGGAGGCAGCTGAG ATAGAGCCGGAGGCCCAGGGCCCAGGGCCCACGGGCTCAGATCTGCTCCCT GGAGCCCCATCCTCAGTCTGCGCTTCTCCTACATCTGCCCTGACCGGCAGTTGCGTCGC TATTTGGTGCTGGAGCCTGATGCCCACGCAGCTGTCCAGGAGCTGCTTGCCGTGTTGACC CCAGTCACCAATGTGGCTCGGGAACAGCTTGGGGAGGCCAGGGACCTCCTGCTGGGTAGA $\tt TTCCAGTGTCTACGCTGTGGCCATGAGTTCAAGCCAGAGGAGCCCAGGATGGGATTAGAC$ ${\tt AGTGAGGAAGGCTGGAGGCCTCTGTTCCAAAAGACAGAATCTCCTGCTGTGTGTCCTAAC}$ TGTGGTAGTGACCACGTGGTTCTCCTCGCTGTGTCTCGGGGAACCCCCAACAGGGAGCGG AAACAGGGAGAGCAGTCTCTGGCTCCTTCTCCGTTTGCCAGCCCTGTCTGCCACCCTCCT GGCCATGGTGACCACCTTGACAGGGCCAAGAACAGCCCACCTCAGGCACCGAGCACCCGT GACCATGGTAGTTGGAGCCTCAGTCCCCCCCTGAGCGCTGTGGCCTCCGCTCTGTGGAC CACCGACTCCGGCTCTTCCTGGATGTTGAGGTGTTCAGCGATGCCCAGGAGGAGTTCCAGTGCTGCCTCAAGGTGCCAGTGGCATTGGCAGGCCACACTGGGGAGTTCATGTGCCTTGTG GTTGTGTCTGACCGCAGGCTGTACCTGTTGAAGGTGACTGGGGAGATGCGTGAGCCTCCA GCTAGCTGGCTGCAGCTGACCCTGGCTGTTCCCCTGCAGGATCTGAGTGGCATAGAGCTG

25 Figure 2B

Figure 2C.

MFGSAPQRPVAMTTAQRDSLLWKLAGLLRESGDVVLSGCSTLSLLTPTLQQLNHVFELHL
GPWGPGQTGFVALPSHPADSPVILQLQFLFDVLQKTLSLKLVHVAGPGPTGPIKIFPFKS
LRHLELRGVPLHCLHGLRGIYSQLETLICSRSLQALEELLSACGGDFCSALPWLALLSAN
FSYNALTALDSSLRLLSALRFLNLSHNQVQDCQGFLMDLCELHHLDISYNRLHLVPRMGP
SGAALGVLILRGNELRSLHGLEQLRNLRHLDLAYNLLEGHRELSPLWLLAELRKLYLEGN
PLWFHPEHRAATAQYLSPRARDAATGFLLDGKVLSLTDFQTHTSLGLSPMGPPLPWPVGS
TPETSGGPDLSDSLSSGGVVTQPLLHKVKSRVRVRRASISEPSDTDPEPRTLNPSPAGWF
VQQHPELELMSSFRERFGRNWLQYRSHLEPSGNPLPATPTTSAPSAPPASSQGPDTAPRP
SPPQEEARGPQESPQKMSEEVRAEPQEEEEEKEGKEEKEEGEMVEQGEEEAGEEEEEEQD
QKEVEAELCRPLLVCPLEGPEGIRGRECFLRVTSAHLFEVELQAARTLERLELQSLEAAE
IEPEAQAQRSPRPTGSDLLPGAPILSLRFSYICPDRQLRRYLVLEPDAHAAVQELLAVLT
PVTNVAREQLGEARDLLLGRFQCLRCGHEFKPEEPRMGLDSEEGWRPLFQKTGSGNRESS
LWLLRLPALSATLLAMVTTLTGPRTAHLRHRAPVTMVVGASVPPLSAVASALWTTDSGS
SWMLRCSAMPRRSSSAASRCQWHWQATLGSSCALWLCLTAGCTC

Figure 3.

20

 ${\tt MFGSAPQRPVAMTTAQRDSLLWKLAGLLRESGDVVLSGCSTLSLLTPTLQQLNHVFELHL}$ GPWGPGQTGFVALPSHPADSPVILQLQFLFDVLQKTLSLKLVHVAGPGPTGPIKIFPFKS $\verb|LRHLELRGVPLHCLHGLRGIYSQLETLICSRSLQALEELLSACGGDFCSALPWLALLSAN|$ ${\tt FSYNALTALDSSLRLLSALRFLNLSHNQVQDCQGFLMDLCELHHLDISYNRLHLVPRMGP}$ SGAALGVLILRGNELRSLHGLEQLRNLRHLDLAYNLLEGHRELSPLWLLAELRKLYLEGN PLWFHPEHRAATAQYLSPRARDAATGFLLDGKVLSLTDFQTHTSLGLSPMGPPLPWPVGS TPETSGGPDLSDSLSSGGVVTQPLLHKVKSRVRVRRASISEPSDTDPEPRTLNPSPAGWF VQQHPELELMSSFRERFGRNWLQYRSHLEPSGNPLPATPTTSAPSAPPASSQGPDTAPRP SPPQEEARGPQESPQKMSEEVRAEPQEEEEEKEGKEEKEEGEMVEQGEEEAGEEEEEEQD ${\tt QKEVEAELCRPLLVCPLEGPEGVRGRECFLRVTSAHLFEVELQAARTLERLELQSLEAAE}$ IEPEAQAQRSPRPTGSDLLPGAPILSLRFSYICPDRQLRRYLVLEPDAHAAVQELLAVLT PVTNVAREQLGEARDLLLGRFQCLRCGHEFKPEEPRMGLDSEEGWRPLFQKTESPAVCPN ${\tt CGSDHVVLLAVSRGTPNRERKQGEQSLAPSPFASPVCHPPGHGDHLDRAKNSPPQAPSTR}$ DHGSWSLSPPPERCGLRSVDHRLRLFLDVEVFSDAQEEFQCCLKVPVALAGHTGEFMCLV VVSDRRLYLLKVTGEMREPPASWLQLTLAVPLQDLSGIELGLAGQSLRLEWAAGAGRCVL LPRDARHCRAFLEELLDVLQSLPPAWRNCVSATEEEVTPQHRLWPLLEKDSSLEARQFFY LRAFLVEGPSTCLVSLLLTPSTLFLLDEDAAGSPAEPSPPAASGEASEKVPPSGPGPAVR VREQQPLSSLSSVLLYRSAPEDLRLLFYDEVSRLESFWALRVVCQEQLTALLAWIREPWE ELFSIGLRTVIQEALALDR

Figure 4.

>gi|6005788 imidazoline receptor candidate >gi|3462807|gb|AAC33104.1| (AF082516) I-1 receptor candidate protein [Homo sapiens] Length = 1504 5 Score = 68.3 bits (164), Expect = 4e-10 Identities = 69/256 (26%), Positives = 102/256 (38%), Gaps = 26/256 (10%) Query: 107 VLQKTLSLKLVHVAGP-GPTG------PIKIFPFKSLRHLELRGVPLHCLHGLRGIY 156 +L T LK + V+G GP G P + FKSL +E+ 10 Sbjct: 180 ILDFTCRLKYLKVSGTEGPFGTSNIQEQLLPFDLSIFKSLHQVEISHCDAKHIRGLVASK 239 Query: 157 SQLETLICSRSLQALEELL------SACGGDFCSALP-WLALLSANFSYNXX 201 + G + +P W AL + + S+N L TL S +++E+L Sbjct: 240 PTLATLSVRFSATSMKEVLVPEASEFDEWEPEGTTLEGPVTAVIPTWQALTTLDLSHNSI 299 15 Query: 202 XXXXXXXXXXXXXXXXXXXXXHNQVQDCQGFLMDLCELHHLDISYNRLHLVPRMGPSGAALG 261 HN + L L L HLD+SYN+L + + Sbjct: 300 SEIDESVKLIPKIEFLDLSHNGLLVVDN-LQHLYNLVHLDLSYNKLSSLEGLHTKLGNIK 358 Query: 262 VLILRGNELRSLHGLEQLRNLRHLDLAYNLLEGHRELSPLWLLAELRKLYLEGNPLWFHP 321 L L GN L SL GL +L +L +LDL N +E E+ + L L + L NPL Sbjct: 359 TLNLAGNLLESLSGLHKLYSLVNLDLRDNRIEQMEEVRSIGSLPCLEHVSLLNNPLSIIP 418 Query: 322 EHRAATAQYLSPRARD 337 RA + ++R Sbjct: 419 DYRTKVLAQFGERASE 434

Figure 5.

	101	TACGO	TGTGGCCATGAGTTCAAGCCAGAGGAGCCCAGGATGGGATTAGAC 2150	
		1644		1693
5		0151	AGTGAGGAAGGCTGGAGGCCTCTGTTCCAAAAG	2102
		2151	AGTGAGGAAGGCTGGAGGCCTCTGTTCCAAAAG	2183
		1694	AGTGAGGAAGGCTGGAGGCCTCTGTTCCAAAAGACAGAATCTCCTGCTGT	1743
10			·	
		2184	ACAGGGAGCGGAAACAGGGAGAGCAGTCTCTGGCTCCTTCT	2224
15		1794	GAACCCCAACAGGGAGCGGAAACAGGGAGCAGTCTCTGGCTCCTTCT	1843
		2225		2274
20		1844	CCGTTTGCCAGCCTGTCTGCCACCCTCCTGGCCATGGTGACCACCTTGA	1893
14.5 245				
n.				
		2825	TCATCCTTGGAGGCTCGCCAGTTCTTCTACCTTCGGGCGTTCCTGGTTGA	2874
-÷≈ 20		2111		2493
		2111	·	2173
			·	
Reference design the second design that the s		2275	. ATCTGGGCCCCTCCATGACCTTCCACACTGGATGCCTCTTTCCCTGCAGG	2424
****		33/5	ATCIGGGCCCTCCATGACCTTCCACACTGGATGCCTCTTTCCCTGCAGG	3424
		2494	AGG	2496
40		3425	CCCTTCCACCTGCTCGTATCCCTGTTGCTGACTCCGTCCACCCTGTTCC	3474
40		2497		2546

Figure 6.

```
Query= sequence
             (1114 letters)
     Database: newnr
5
               228,478 sequences; 162,186,938 total letters
     Searching......done
                                                                             E
                                                                    Score
10
     Sequences producing significant alignments:
                                                                    (bits) Value
     gb|AAF52305.1| (AE003611) CG9044 gene product [Drosophila melano...
                                                                      127 5e-28
     gi|6005788 imidazoline receptor candidate >gi|3462807|gb|AAC3310...
                                                                       47 0.001
     gb AAF57514.1 (AE003794) CG8595 gene product [Drosophila melano...
15
     >gb AAF52305.1 (AE003611) CG9044 gene product [Drosophila melanogaster]
               Length = 1289
      Score = 127 bits (317), Expect = 5e-28
20
      Identities = 99/321 (30%), Positives = 149/321 (45%), Gaps = 11/321 (3%)
Query: 38 KLAGLLRESGDVVXXXXXXXXXXXXXXXNHVF-----ELHLGPWGPGQTGFVALPSH 91
               +LA LLR++GD +
                                           N F
                                                   E+ G
               ELANLLRQNGDKILSSEFTLTLSGSLLRALNDSFTLIADTEIGTGAGYLQPQSFQVVKPI 67
     Sbjct: 8
     Query: 92 PADSPVILQLQFLFDVLQKTLSLKLVHVAGPGP-TGPIKIFPFKSLRHLELRGVPLHCLH 150
                 A S V LQ + D + QKT LKL + G I I F++LR LE+ + + +
in.
     Sbjct: 68 NAKSSVFPDLQLVHDFVQKTTLLKLTYFPSEHYFEGAIDIAKFRALRRLEVNKINIGQVV 127
****
30
     Query: 151 GLRGIYSQLETLICSRSLQALEELLSACGGDFCSALPWLALLSANFSYNXXXXXXXXX 210
               G++ + QL+ LIC +SL ++++++ CGGD + W L +A+FSYN
Sbjct: 128 GIQPLRGQLQHLICVKSLTSVDDIITRCGGDNSNGFVWNELKTADFSYNSLRSVDTALEF 187
     Query: 211 XXXXXXXXXHNQVQDCQGFLMDLCELHHLDISYNRLHLVPRMGPSGA-ALGVLILRGNE 269
35
                         HN++
                                + L L LD+SYN L +P+
                                                             L + L + N
     Sbjct: 188 AQHLQHLNLRHNKLTSVAA-IKWLPHLKTLDLSYNCLTHLPQFHMEACKRLQLLNISNNY 246
     Query: 270 LRSLHGLEQLRNLRHLDLAYNLLEGHRELSPLWLLAELRKLYLEGNPLWFHPEHRAATAQ 329
+ L + +L L +LDL+ N L H +L PL L L L+GNPL +P+HR ATAO
40
     Sbjct: 247 VEELLDVAKLDALYNLDLSDNCLLEHSQLLPLSALMSLIVLNLQGNPLACNPKHRQATAQ 306
     Query: 330 YLSPRARDAATGFLLDGKVLS 350
               YL
                      A F+LD + L+
     Sbjct: 307 YL--HKNSATVKFVLDFEPLT 325
```

Figure 7A

```
Score = 41.4 bits (95), Expect = 0.054
     Identities = 41/151 (27%), Positives = 62/151 (40%), Gaps = 20/151 (13%)
5
    Query: 814 VDHRLRLFLDVEVFSDAQEEFQCCLKVPVALAGHTGEFMCLVVVSDRRLYLLKVTGEMRE 873
                                                   LVV+S+ + YL++ E +
                +DHRL+L+ F + E F+ K +
     Sbjct: 1018 IDHRLKLYFYQRKFKEDGEHFKWLAKGRIYNEQTQSLGEGLVVMSNCKCYLMEAFAEPHD 1077
     Query: 874 PPASWLQLTLAVPLQDLSGIELGLAGQSLRLEWAAGA-----GRCVLLPRDARHCRAF 926
10
                 Sbjct: 1078 DVAKWLRQVVSVAVNRLVAIDL-----LPWKLGLSFTLKDWGGFVLLLHDMLR---- 1125
     Query: 927 LEELLDVLQSLPPAWRNCVSATEEEVTPQHR 957
                E LL+ LQ +P C + VT H+
15
     Sbjct: 1126 TESLLNYLQQIPLP-EQCKLNHQPSVTLSHQ 1155
     >qi|6005788 imidazoline receptor candidate >gi|3462807|gb|AAC33104.1|
               (AF082516) I-1 receptor candidate protein [Homo sapiens]
20
               Length = 1504
T.
      Score = 68.3 bits (164), Expect = 4e-10
      Identities = 69/256 (26%), Positives = 102/256 (38%), Gaps = 26/256 (10%)
11.
25
Tu
     Query: 107 VLQKTLSLKLVHVAGP-GPTG-----PIKIFPFKSLRHLELRGVPLHCLHGLRGIY 156
               +L T LK + V+G GP G P + FKSL +E+ + GL
     Sbjct: 180 ILDFTCRLKYLKVSGTEGPFGTSNIQEQLLPFDLSIFKSLHQVEISHCDAKHIRGLVASK 239
30
     Query: 157 SQLETLICSRSLQALEELL------SACGGDFCSALP-WLALLSANFSYNXX 201
                                     + G + +P W AL + + S+N
                 T. TT.
                       S +++E+L
     Sbjct: 240 PTLATLSVRFSATSMKEVLVPEASEFDEWEPEGTTLEGPVTAVIPTWQALTTLDLSHNSI 299
Query: 202 XXXXXXXXXXXXXXXXXXXXXXHNQVQDCQGFLMDLCELHHLDISYNRLHLVPRMGPSGAALG 261
                                HN + L L L HLD+SYN+L + + +
     Sbjct: 300 SEIDESVKLIPKIEFLDLSHNGLLVVDN-LQHLYNLVHLDLSYNKLSSLEGLHTKLGNIK 358
     Query: 262 VLILRGNELRSLHGLEQLRNLRHLDLAYNLLEGHRELSPLWLLAELRKLYLEGNPLWFHP 321
                L L GN L SL GL +L +L +LDL N +E E+ + L L + L NPL P
     Sbjct: 359 TLNLAGNLLESLSGLHKLYSLVNLDLRDNRIEQMEEVRSIGSLPCLEHVSLLNNPLSIIP 418
40
     Query: 322 EHRAATAQYLSPRARD 337
                         RA +
               ++R
     Sbjct: 419 DYRTKVLAQFGERASE 434
```

Figure 7B

	FL1-18_SPLICE_VARIANT FL1-18	MFGSAPQRPVAMTTAQRDSLLWKLAGLLRESGD MFGSAPQRPVAMTTAQRDSLLWKLAGLLRESGD
	Drosophila_melanogaster_CG9044	MDPQKITELANLLRQNGD
~	imidazoline_receptor_candidate	MATARTFGPEREAEPAKEARVVGSELVDTYTVYIIQVTDGSHEWTVKHRY
5		*:: : : : *
	FL1-18_SPLICE_VARIANT	VVLSGCSTLSLLTP
	FL1-18	VVLSGCSTLSLLTP
10	Drosophila_melanogaster_CG9044	KILSSEFTLTLSGS
10	<pre>imidazoline_receptor_candidate</pre>	SDFHDLHEKLVAERKIDKNLLPPKKIIGKNSRSLVEKREKDLEVYLQKLL
		: · · · ·
	FL1-18 SPLICE VARIANT	TLQQLNHVFELHLGPWG
	FL1-18	TLQQLNHVFELHLGPWG
15	Drosophila_melanogaster_CG9044	LLRALNDSFTLIADTEIG
	<pre>imidazoline_receptor_candidate</pre>	AAFPGVTPRVLAHFLHFHFYEINGITAALAEELFEKGEQLLGAGEVFAIG
		: * . : : *
	FL1-18_SPLICE_VARIANT	PGQ-TGFVALPSHPADSPVILQLQFLFDVLQKTLSLKLVHVAGPGP
20	FL1-18	${\tt PGQ-TGFVALPSHPADSPVILQLQFLFDVLQKTLSLKLVHVAGPGP}$
	Drosophila_melanogaster_CG9044	TGAGYLQPQSFQVVKPINAKSSVFPDLQLVHDFVQKTTLLKLTYFPSEHY
	imidazoline_receptor_candidate	PLQLYAVTEQLQQGKPTCASGDAKTDLGHILDFTCRLKYLKVSGTEGPFG
		. : . * :* : *. : **: .
25	FL1-18_SPLICE_VARIANT	TGPIKIFPFKSLRHLELRGVPLHCLHGLRGIYSQLETLICSRS
**************************************	FL1-18	TGPIKIFPFKSLRHLELRGVPLHCLHGLRGIYSQLETLICSRS
Topic of a second	Drosophila_melanogaster_CG9044	FEGAIDIAKFRALRRLEVNKINIGQVVGIQPLRGQLQHLICVKS
	imidazoline_receptor_candidate	TSNIQEQLLPFDLSIFKSLHQVEISHCDAKHIRGLVASKPTLATLSVRFS
3 A		.:.: *::*: : *: * * * *
30	FL1-18_SPLICE_VARIANT	LQALEELLSACGGDFCSALPWLALLSANFSYNALT
370	FL1-18	LQALEELLSACGGDFCSALPWLALLSANFSYNALT
	Drosophila melanogaster CG9044	LTSVDDIITRCGGDNSNGFVWNELKTADFSYNSLR
	imidazoline_receptor_candidate	ATSMKEVLVPEASEFDEWEPEGTTLEGPVTAVIPTWQALTTLDLSHNSIS
3 5		* * :::*:*::
	FL1-18_SPLICE_VARIANT	ALDSSLRLLSALRFLNLSHNQVQDCQGFLMDLCELHHLDISYNRLHLVPR
a.	FL1-18	ALDSSLRLLSALRFLNLSHNQVQDCQGFLMDLCELHHLDISYNRLHLVPR
1	Drosophila_melanogaster_CG9044	SVDTALEFAQHLQHLNLRHNKLTSVA-AIKWLPHLKTLDLSYNCLTHLPQ
40	imidazoline_receptor_candidate	EIDESVKLIPKIEFLDLSHNGLLVVD-NLQHLYNLVHLDLSYNKLSSLEG
19		:* ::.: :*:* ** : : * .* **:*** :
Li	FL1-18_SPLICE_VARIANT	-MGPSGAALGVLILRGNELRSLHGLEQLRNLRHLDLAYNLLEGHRELSPL
2 m	FL1-18	-MGPSGAALGVLILRGNELRSLHGLEQLRNLRHLDLAYNLLEGHRELSPL
45	Drosophila melanogaster CG9044	FHMEACKRLQLLNISNNYVEELLDVAKLDALYNLDLSDNCLLEHSQLLPL
	imidazoline_receptor_candidate	-LHTKLGNIKTLNLAGNLLESLSGLHKLYSLVNLDLRDNRIEQMEEVRSI
		: * : .* :* .: :* * :*** * : :: .:
	FL1-18_SPLICE_VARIANT	WLLAELRKLYLEGNPLWFHPEHRAATAQYLSPRARDAATGFLLDGKVLSL
50	FL1-18	WLLAELRKLYLEGNPLWFHPEHRAATAQYLSPRARDAATGFLLDGKVLSL
	Drosophila_melanogaster_CG9044	SALMSLIVLNLQGNPLACNPKHRQATAQYLHKNSATVKFVLDFEPLTK
	imidazoline_receptor_candidate	GSLPCLEHVSLLNNPLSIIPDYRTKVLAQFGERASEVCLDDTVTTE
		* * : * .*** * . : . : . : . ** :

Figure 8A

-	FL1-18_SPLICE_VARIANT FL1-18 Drosophila_melanogaster_CG9044 imidazoline_receptor_candidate	TDFQTHTSLGLSPMGPP-LPWPVGSTPETSGGPDLSDSLSSG TDFQTHTSLGLSPMGPP-LPWPVGSTPETSGGPDLSDSLSSG AEKALTGSQKWRYISGLSHRSPRSTSMSINSSSASINTSDGSQFSSFGSQ KELDTVEVLKAIQKAKEVKSKLSNPEKKGGED-SRLSAAPCI
5		:
10	FL1-18_SPLICE_VARIANT FL1-18 Drosophila_melanogaster_CG9044 imidazoline_receptor_candidate	GVVTQPLLHKVKS-RVRVRRASISEPSDTDGVVTQPLLHKVKS-RVRVRRASISEPSDTD RSVSIRGKNYTLEDNQSMDTSQSSKRISSCKIRTVDIEESSEINTDAASV RPSSSPPTVAPASASLPQPILSNQGIMFVQEEALASSLSSTDS
15	FL1-18_SPLICE_VARIANT FL1-18 Drosophila_melanogaster_CG9044 imidazoline_receptor_candidate	PEPRTLNPSPAGWFVQQHPELPEPRTLNPSPAG
20	FL1-18_SPLICE_VARIANT FL1-18 Drosophila_melanogaster_CG9044 imidazoline_receptor_candidate	ELMSSFRERFGRNWLQYRSHLEPSGNPL ELMSSFRERFGRNWLQYRSHLEPSGNPL MLGIETPQPTERERNESRQLFNEYLGELSGFTEAKNDSEHHNI EVQVVPGSGQIIFLPFTCIGYTATNQDFIQRLSTLIRQAIERQLPAWI
	FL1-18_SPLICE_VARIANT FL1-18 Drosophila_melanogaster_CG9044 imidazoline_receptor_candidate FL1-18_SPLICE_VARIANT FL1-18	: : : : * : : : : : : : : : : : : : : :
35 35	Drosophila_melanogaster_CG9044 imidazoline_receptor_candidate	NTTELSTEERPPDRHEELLRLYASSSNAQDEDP GQGE-EEEEEEEDEEAEEERLALEWALGADEDFLLBHIRILKVLWCFLIH :*
14. 4.0 5.	FL1-18_SPLICE_VARIANT FL1-18 Drosophila_melanogaster_CG9044 imidazoline_receptor_candidate	KEGKEEKEEGEMYEQGEEEAGEEEEEQ-DQKEVEAELCRP KEGKEEKEEGEMYEQGEEEAGEEEEEEQ-DQKEVEAELCRP VSDAESDEETYIVYHEQKPSEVLFLITISSN-FIREKDTLTERT VQGSIRQFAACLVLTDFGIAVFEIPHQESRGSSQHILSSLRFVFCFPHGD:*:
45	FL1-18_SPLICE_VARIANT FL1-18 Drosophila_melanogaster_CG9044 imidazoline_receptor_candidate	LLVCPLEGPEGVRGRECFLRVTSAHLFEVELQAAR LLVCPLEGPEGIRGRECFLRVTSAHLFEVELQAAR KAKWSLKILESCERVRSNTLRINFDTMRKDKQERIY LTEFGFLMPELCLVLKVRHSENTLFIISDAANLHEFHADLRSCFAPQHMA : * * . * :
50	FL1-18_SPLICE_VARIANT FL1-18 Drosophila_melanogaster_CG9044 imidazoline_receptor_candidate	TLERLELQSLEAAEIEPEAQAQRSPRPTGSDLLPGAPIL TLERLELQSLEAAEIEPEAQAQRSPRPTGSDLLPGAPIL CVENTLCQELEKKLRDILSQRDLTEMNISIYRCVNCLTQFTIEQK MLCSPILYGSHTSLQEFLRQLLTFYKVAGGCQERSQGCFPVYLVYSDKRM :

Figure 8B

5	FL1-18_SPLICE_VARIANT FL1-18 Drosophila_melanogaster_CG9044 imidazoline_receptor_candidate	SLRFSYICPDRQLRRYLVLEP-DASLRFSYICPDRQLRRYLVLEP-DASKRYKAKELRCPDCRSVYVAEVTELSSSLSKPS-GEVAAEPKLS VQTAAGDYSGNIEWASCTLCSAVRRSCCAPSEAVKSAAIPYWLLLTPQHL : : . *. : *
10	FL1-18_SPLICE_VARIANT FL1-18 Drosophila_melanogaster_CG9044 imidazoline_receptor_candidate	HAAVQELLAVLTPVTNVAREQLGEARDLLLGRFQCL HAAVQELLAVLTPVTNVAREQLGEARDLLLGRFQCL PAMIVEESPVEELAAAINKEESNSIGKSLASFLFYFDESSFDSNQS NVIKADFNPMPNRGTHNCRNRNSFKLSRVPLSTVLLDPTRSCTQ-PRGAF . : .: : : : : .
15	FL1-18_SPLICE_VARIANT FL1-18 Drosophila_melanogaster_CG9044 imidazoline_receptor_candidate	RCGHEFKPEEPRMGLDSEEGWRP-LFQKTESPAVCP RCGHEFKPEEPRMGLDSEEGWRP-LFQKTGS VVGSSNTDRD-MEFRANESDVDIISNPSQSSIEVLDPNYVQSASRKTSEE ADGHVLELLVGYRFVTAIFVLPHEKFHFLRVYNQLRA-SLQDLKTVVIAK * .* . :
20	FL1-18_SPLICE_VARIANT FL1-18 Drosophila_melanogaster_CG9044 imidazoline_receptor_candidate	NCGSDHVVLLAVSRGTPNRERKQGEQSLAPSPFASPVCHPPGHGDHLDRAGNRESSLWLLLR-LPALSATLLAMVTTLTGPRTAHL-RH RRISQLPHLETIHDEVAK-SKSFIEREFGQLLAEQAQPTTPSTAAPLAPA TPGTGGSPQGSFADGQPAERRASNDQRPQEVPAEALAPAPVEVPAPAPAA
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FL1-18_SPLICE_VARIANT FL1-18 Drosophila_melanogaster_CG9044 imidazoline_receptor_candidate	KNSP-P-QAPSTRDHGSWSLSPPPERCGLRSVDHRLRL RAPVTMVVGASVPP
	FL1-18_SPLICE_VARIANT FL1-18 Drosophila_melanogaster_CG9044 imidazoline_receptor_candidate	FLDVEVFSDAQEEFQCCLKVPVALAGHTGEFMCLVVVSDRRLYLL
	FL1-18_SPLICE_VARIANT FL1-18 Drosophila_melanogaster_CG9044 imidazoline_receptor_candidate	KVTGEMREPPASWLQLTLAVPLQDLSGIELGLAGQSLRLEWAAGAGGSSWMLRCSAMPRRSSSAASRCQWHWQATLGS ATVFGTQPYKFNYSDFNDIDHRLKLYFYQRKFKEDGEHFKWLAKGRI SSVVFYQTPGLEVTACVLLSTKAVYFVLHDGLRRYFSEPLQDFWHQKNTD
45	FL1-18_SPLICE_VARIANT FL1-18 Drosophila_melanogaster_CG9044 imidazoline_receptor_candidate	RCVLLPRDARHCRAFLEELLDVLQSLPPAWRNCVSATEEEVSCALWLCLTAGCTC
50	FL1-18_SPLICE_VARIANT FL1-18 Drosophila_melanogaster_CG9044 imidazoline_receptor_candidate	TPQHRLWPLLEKDSSLEARQFFYLRAFLVEGPSTCLVS AIDLLPWKLGLSFTLKDWGGFVLLLHDMLRTESLLNYLQQIPLPEQCK LTHCFLQHLMVVLSSLERTPSPEPVDKDFYSEFGNKTTGKMENYELIHSS :

Figure 8C

	FL1-18_SPLICE_VARIANT FL1-18	LLLTPSTLFLLDEDAAGSPAEPS
5	Drosophila_melanogaster_CG9044 imidazoline_receptor_candidate	LNHQPSVTLSHQWETIASEPVKMCSLIPSCQWICDQEKSS RVKFTYPSEEEIGDLTFTVAQKMAEPEKAPALSILLYVQAFQVGMPPPGC
	FL1-18_SPLICE_VARIANT FL1-18	PPAASGEASEKVPPSGPGPAVRVREQQPLSSLSS
10	Drosophila_melanogaster_CG9044 imidazoline_receptor_candidate	FEPSLLLITETHLYISGNGKFSWLSDKVQEKP-IQPELSLNQP CRGPLRPKTLLLTSSEIFLLDEDCVHYPLPEFAKEPPQRDRYRLDDGRRV
	FL1-18_SPLICE_VARIANT FL1-18	EVS
15	Drosophila_melanogaster_CG9044 imidazoline_receptor_candidate	LSNLVDVERITDQKYAINFIDETQ RDLDRVLMGYQTYPQALTLVFDDVQGHDLMGSVTLDHFGEVPGGPARASQ . : :
20	FL1-18_SPLICE_VARIANT FL1-18	RLESFWALRVVCQEQLTALLAWIREPWEELFSIGLRTVIQEALALDR
	Drosophila_melanogaster_CG9044 imidazoline_receptor_candidate	NRCEIWKLQFETHANAACCLNVIGKGWEQLFGVPFSLSGTGREVQWQVFVPSAESREKLISLLARQWEALCGRELPVELTG

(* REPRESENTS RESIDUES THAT ARE IDENTICAL IN ALL FOUR PRTEINS; : REPRESENTS RESIDUES THAT ARE OF SIMILAR BIOCHEMICAL CHARACTER IN 3 OUT OF THE 4 PROTEINS; . REPRESENTS RESIDUES THAT ARE OF SIMILAR BIOCHEMICAL CAHARACTER IN 2 OUT OF THE 4 PROTEINS).

Figure 8D

Incyte-2499870 Imidazoline-related Receptor

Figure 9.

FL1 - Imidazoline Receptor

Figure 10.