MCS - LDS Sam Robbins

An overview of first order logic

1 Predicates and atomic formulae

Whereas the fundamental building block in propositional logic is the propositional variable, with first order logic it is the **predicate** (we have already been introduced to predicates when we studied relations)

A **predicate symbol** (or **relation symbol**) is just a symbol with an associated arity e.g., P might be defined as a predicate symbol with arity r

Given a predicate symbol P of arity r and some variables $x_1, x_2, ..., x_r$ (where it might be the case that some of these variables are the same), the formula

$$P(x_1, x_2, ..., x_r)$$

is an atomic formula of first order logic

In order to know whether this atomic formula is **true** or **false**, we need to be given an r-ary relation P' over some domain D, say, and values $v_1, v_2, ..., v_r$ from D for $x_1, x_2, ..., x_r$

2 Atomic formula: an example

Suppose T is the ternary relation symbol. Then

is an atomic formula

Now let T' be the following ternary relation on \mathbb{N}

$$\{(u, v, w) : u, v, w \in \mathbb{N}, u = 2v \text{ and w is even}\}\$$

and consider the interpretation (or model) of T(x, y, x) in T' with x=6 and y=3. This is true

In this case, we write $(T', x = 6, y = 3) \models T(x, y, x)$ or sometimes $(\mathbb{N}, T', x = 6, y = 3) = T(x, y, x)$

2.1 Lecture example

$$(u, v, w) = (6, 3, 6)$$

This is in T' as the last digit is even and the first digit is twice the second digit

3 Building formula

Given some atomic formulae, we can build more complicated formulae from these atomic formulae by using the usual connectives of propositional logic, namely \neg , \land , \lor , \Rightarrow and \Leftrightarrow . For example,

$$E(x_1, x_2) \vee (T(x_1, x_1, x_3) \Rightarrow \neg E(x_2, x_3))$$

is a formula of first-order logic, where E is a predicate symbol of arity 3, and x_1 , x_2 and x_3 are variables. In order to interpret this formula, we need a binary relation for E, a ternary relation for T and values for x_1 , x_2 and x_3 . The domains of the relations for E and T must be the same.

Is the following interpretation true?

$$E = \{(u_1, u_2) \in \mathbb{N}^2 : u_1 \le u_2\}, T = \{(u_1, u_2, u_3) \in \mathbb{N}^3 : u_1 \cdot u_2 = u_3\}$$

and $x_1 = 3, x_2 = 2$ and $x_3 = 9$

This is not true as $F \lor T \Rightarrow F$, which is false.

Not only do we allow formulae such at $P(x_1, x_2, ..., x_r)$ as atomic formulae, but we are also allowed formulae of the form x = y, where x and y are variables (this constitutes all atomic formulae)

The semantics of x=y is that this atomic formula is true only if the value of x is equal to the value of y (in an interpretation)

MCS - LDS Sam Robbins

Example 3.1

Let E be a binary predicate symbol. Consider the formula

$$(E(x, y) \land E(y, z)) \Rightarrow \neg(x = z)$$

(We sometimes abbreviate $\neg(x = z)$ by $x \neq z$)

If E is interpreted as:

$$E = \left\{ (x, y) \in \mathbb{N}^2 : x < y \right\}$$

and x=5, y=7 and z=11 then is the formula true in this interpretation?

E(x, y) is true as 5 < 7E(y, z) is true as 7 < 11 $\neg(x=z)$ is true as $5 \neq 11$

So the whole formula is true

More on building formulae

Formulae built from atomic formulae are called quantifier-free formula and the free variables are those variables appearing in a formula

4 **Quantifiers**

Given a formula with free variables, we can now "quantify" over these variables using the universal quantifier (or the for-all quantifier) \forall and the existential quantifier (or the exists quantifier) \exists

Suppose that $\phi(x)$ is a quantifier-free formula with one free variable x. Then $\forall x \phi(x)$ is a formula of first order logic and has no free variables. The variable x is a **bound** variable in $\forall x \phi(x)$

4.1 Example

Suppose that Q is a unary relation symbol. Consider the formula $\forall x Q(x)$. Is it true for the following interpretations?

- Interpret Q as the relation $Q = \{u \in \mathbb{N} : u \text{ is even}\}\$ This is not true as there are odd natural numbers
- Interpret Q as the relation $Q\{u \in \mathbb{N} : u \text{ has a square root}\}\$ This is true as every natural number is a square root

Then thinking about the formula $\exists x Q(x)$ and the relation $Q = \{u \in \mathbb{N} : u \text{ is even}\}$, it is then true as 2 is even.

A formula e.g. $\neg(\forall x Q(x))$ is the same as $\exists x \neg Q(x)$

More complicated formulae

We can apply quantifiers to quantifier-free formula even when there is more than one free variable in the formula. Let $\phi(x_1, x_2, ..., x_r)$ be a quantifier free formula with free variables $x_1, x_2, ..., x_r$. Then the following are two examples of formulae of first order logic.

$$\forall x_1 \phi(x_1, x_2, \dots, x_r) \quad \exists x_3 \phi(x_1, x_2, \dots, x_r)$$

The first has free variables $x_2,...,x_r$ and bound variable x_1 (as it is outside the ϕ); and the second has free variables $x_1, x_2, x_4, ..., x_r$ and bound variable x_3

An interpretation of such formulae are as before except that relations and values for the free variables have to be supplied in order for any interpretation to make sense.

5.1 Examples

• If $\phi(x)$ is the formula $\forall y(x = y \lor E(x, y))$ and $E = \{(u, v) \in \mathbb{N}^2 : u < v\}$ then

$$(E, x = 0) \models \phi(x)$$

$$\forall y(0 = y \lor E(0, y))$$

MCS - LDS Sam Robbins

 $\forall y(0 = y \lor 0 < y)$ True as only natural numbers is either 0 or > 0

but

$$(E, x = v) \models \neg \phi(x)$$
 wherever $v \neq 0$

• If $\phi(x)$ is the formula $\exists y E(y, x)$ and $E = \{(u, v) \in \mathbb{N}^2 : u < v\}$ then we have

$$(E, x = 0) \models \neg \phi(x)$$

but

$$(E, x = v) \models \phi(x)$$
 wherever $v \neq 0$

6 More complicated formulae

We can also apply quantifiers to formulae already involving quantifiers.

Consider the formula $\forall y(x = y \lor E(x, y))$. There is one free variable and we can quantify over this free variable; like this

$$\exists x \forall y (x = y \lor E(x,y))$$

Let the binary relation $E = \{(u, v) \in \mathbb{N}^2 : u < v\}$

For formula above to be **true** in this interpretation, we need that there exists some value $u \in \mathbb{N}$ for x such that for any value $v \in \mathbb{N}$ for y, we have that $u = v \vee E(u, v)$; that is, either u = v or u < v

There clearly does exist such a value u, namely u = 0. However, if $E = \{(u, v) \in \mathbb{Z}^2 : u < v\}$ then the formula is **false** as given any value for x, there is always some integer that is strictly less than this value for x

We can also build new formula, using the usual **propositional connectives**, from existing formulae that involve **quantifiers**. Consider the formula

$$\exists x \forall y (x = y \lor E(x, y)), \text{ and } \exists x \forall w (x = w \lor E(w, x))$$

If we **interpret** E as $\{(u, v) \in \mathbb{N}^2 : u < v\}$ then is the following formula true?

$$\exists x \forall y (x = y \lor E(x, y)) \land \exists x \forall w (x = w \lor E(w, x))$$

What if we interpret E as

$$\{(u, v) \in \{0, 1, \dots, 9\} \times \{0, 1, \dots, 9\} : u < v\}$$

Notice how the same variable, x, is quantified twice in the same formula yet the two quantifications are entirely separate!