

# **IPv6 Security**

Training Course

December 2017

### Schedule



09:00 - 09:30 Coffee, Tea

11:00 - 11:15 Break

13:00 - 14:00 Lunch

15:30 - 15:45 Break

17:30 End

#### Introductions



- Name
- Number in the list
- Experience with Security and IPv6
- Goals

#### **Overview**



#### Intro

#### **Basic IPv6 protocol Security**

(Basic header, Extension Headers, Addressing)

IPv6 Associated protocols Security (ICMPv6, NDP, MLD, DNS, DHCPv6)

Internet-wide IPv6 Security
(Filtering, DDoS, Transition Mechanisms)

# Legend





understanding



**Attacker** 



**Protecting** 



# Introduction to IPv6 Security

Section 1

# **IPv6 Security Myths (1)**



- 1 2 3 4 5 6 7 8
- IPv6 is more secure than IPv4
- IPv6 has better security and it's built in

#### Reason:

RFC 4294 - IPv6 Node Requirements: IPsec MUST

- RFC 6434 IPv6 Node Requirements: IPsec SHOULD
- IPSec available. Used for security in IPv6 protocols

# **IPv6 Security Myths (2)**



- 1 2 3 4 5 6 7 8
- IPv6 has no NAT. Global addresses used
- I'm exposed to attacks from Internet

#### Reason:

End-2-End paradigm. Global addresses. No NAT

- Global addressing does not imply global reachability
- You are responsible for reachability (filtering)

# **IPv6 Security Myths (3)**



1 2 3 4 5 6 7 8

IPv6 Networks are too big to scan

#### Reason:

- Common LAN/VLAN use /64 network prefix
- 18,446,744,073,709,551,616 hosts

- Brute force scanning is not possible [RFC5157]
- New scanning techniques

# **IPv6 Security Myths (4)**





IPv6 is too new to be attacked

#### Reason:

Lack of knowledge about IPv6 (it's happening!)

- There are tools, threats, attacks, security patches, etc.
- You have to be prepared for IPv6 attacks

# **IPv6 Security Myths (5)**



- 1 2 3 4 5 6 7 8
- IPv6 is just IPv4 with 128 bits addresses
- There is nothing new

#### Reason:

Routing and switching work the same way

- Whole new addressing architecture
- Many associated new protocols

# **IPv6 Security Myths (6)**



1 2 3 4 5 6 7 8

It supports IPv6

#### Reason:

- Q: "Does it support IPv6?"
- A: "Yes, it supports IPv6"

- IPv6 support is not a yes/no question
- Features missing, immature implementations, interoperability issues

# **IPv6 Security Myths (7)**



- 1 2 3 4 5 6 7 8
- My network is IPv4 only
- IPv6 is not a security problem

#### Reason:

Networks only designed and configured for IPv4

- IPv6 available in many hosts, servers, and devices
- Unwanted IPv6 traffic. Protect your network

## **IPv6 Security Myths (8)**



- 1 2 3 4 5 6 7 8
- It's not possible to secure an IPv6 network
- Lack of resources and features

#### Reason:

- Considering IPv6 completely different than IPv4
- Think there are no BCPs, resources or features

- Use IP independent security policies
- There are BCPs, resources and features

#### Conclusions



A change of mindset is necessary

IPv6 is not more or less secure than IPv4

 Knowledge of the protocol is the best security measure



# Basic IPv6 Protocol Security

Section 2



# IPv6 Basic Header and Extension Headers

Section 2.1

#### **Basic IPv6 Header**



Flow Label Traffic Class Version **Next Header Hop Limit** Payload Length Source Address **Destination Address** 

Simplified

- Aligned to 64 bits
- Fixed length (40 bytes)
   New field: Flow Label



# **Basic IPv6 Header: Threats (1)**



• IP spoofing: Using a fake IPv6 source address



 Solution: ingress filtering and RPF (reverse path forwarding)



# **Basic IPv6 Header: Threats (2)**



- Covert Channel
  - Example: Using Traffic Class and/or Flow Label



These values should be expected



- Traffic Class: 0 unless QoS is used
- Flow Label: 0

Solution: inspect packets (IDS / IPS)



# **IPv6 Extension Headers (1)**



Basic IPv6 Header

**Hop-by-hop Options** 

**Destination Options\*** 

Routing

**Fragmentation** 

**IPSec: AH** 

**IPSec: ESP** 

Destination Options\*\*

**Upper Layer** 

- Fixed: Types and order
- Flexible use
- Processed only at endpoints
  - Exceptions: Hop-by-hop (and Routing)
- Only appear once
  - Exception: Destination Options

- \* Options for IPs in routing header
- \*\* Options for destination IP



# **IPv6 Extension Headers (2)**



Flexibility means complexity for security

 Security devices/software should be able to process the full chain of headers

- Firewalls:
  - Must deal with standard EHs
  - Able to filter based on EH



## **IPv6 Extension Headers (3)**



- Routing (43): indicates one or more IPs that should be "visited" in the path
  - Processed by the visited routers





## **IPv6 Extension Headers (4)**



- Hop-by-Hop Options (0): processed by each node in the path
  - If used, goes just after the basic IPv6 header
  - Contains one or more options

| 8 bits      | 8 bits | Variable |
|-------------|--------|----------|
| Next Header | Length | Options  |



## **IPv6 Extension Headers (5)**



- Destination Options (60): To send optional information to the destination host
  - Contains one or more options
  - Could be used twice: routing and destination host

8 bits 8 bits Variable

Next Header Length Options



## **IPv6 Extension Headers (6)**



- Fragment (44): Used by the IPv6 source node to send a packet bigger than the path MTU
  - Destination host processes fragment headers



**M Flag**: 1 = more fragments to come; 0 = last fragment



## **IPv6 Extension Headers (7)**



- Other next header values:
  - IPsec: ESP (50) and AH (51)
  - No Next Header (59)
  - Others: Mobility Header (135), HIP (139), and SHIM6 (140), Experimental (253, 254)
  - Upper layer: TCP (6), UDP (17), IPv6 (41), ICMPv6 (58)



## **Extension Headers Threats (1)**



- Routing Header (Type 0): RH0 can be used for traffic amplification over a remote path
- RH0 Deprecated [RFC 5095]
  - RH1 deprecated, RH2 (MIPv6) & RH3 (RPL) still valid





# **Extension Headers Threats (2)**







## **Extension Headers Threats (3)**



- Trying to bypass security mechanisms
  - Example: fooling RA-Guard
- Any EH

Basic IPv6 Destination Option ICMPv6: RA

Next Header = 60 Next Header = 58

If only looks at Next Header = 60, do not detect the RA

Fragment EH

Basic IPv6 Fragment Destination Options

Next Header = 44 Next Header = 60 Next Header = 58

Basic IPv6 Fragment Destination Options ICMPv6: RA

Next Header = 44 Next Header = 60 Next Header = 58



## Extension Headers Threats: Fragmentation (



Overlapping Fragments

Fragments that overlap because of wrong "fragment offset"

?

Not Sending Last Fragment

Resource consumption, waiting for last fragment

"Atomic" Fragments

Packet with Frag. EH is the only fragment (Frag. Offset and M = 0)



### Extension Headers Solutions: Fragmentation



Overlapping Fragments

Not allowed in IPv6 [RFC5722]

Packets are discarded

Not Sending Last Fragment Timer and discard packets (default 60 secs)

"Atomic" Fragments

**Processed in isolation from any other packets/fragments** [RFC6946]



#### **Extension Headers Solutions**



**Deprecated** [RFC5095] Use of RH0 Do not use or allow **Fragmented NDP** Forbidden [RFC6980] Do not use or allow packets Header chain should go in the first fragment [RFC7112] Other attacks based on EHs Recommendations to avoid/ minimise the problem [RFC7113]

 Require security tools to inspect Header Chain properly



#### **IPsec**



IPSec in IPv6 uses two Security Protocols (EHs):

Authentication Header (AH)

**Provides Integrity** 

MAY be implemented

**Encapsulation Security Payload (ESP)** 

Provides Confidentiality and Integrity

MUST be implemented



## **IPsec Explained**







SA Security Association: info needed for IPsec with 1 host, 1 direction

IKE Internet Key Exchange allows automatic creation of SAs



#### **IPsec Modes**









#### **IPsec: Authentication Header**







#### **IPsec: ESP**









# **IPv6 Packet Generation**

Exercise 2.1

### **Exercise 2.1: IPv6 Packet Generation**



Description: Use Scapy to generate IPv6 packets

#### Goals:

- Get familiar with lab environment
- Learn the basics of Scapy tool
- Learn to generate tailor made IPv6 packets
- Time: 20 minutes

#### Tasks:

- Login in the lab environment
- Generate IPv6 packets following instructions in Exercise Booklet



# IPv6 Addressing Architecture

Section 2.2

### Introduction





340,282,366,920,938,463,463,374,607,431,768,211,456



# **IPv6 Address Scope**







# **IPv6 Network Scanning (1)**



64 bits 64 bits

**Network Prefix** 

Interface ID (IID)

- Network Prefix determination (64 bits)
  - Common patterns in addressing plans
  - DNS direct and reverse resolution
  - Traceroute

- IID determination (64 bits)
  - "brute force" no longer possible



# IPv6 Network Scanning (2)





- IID generated by the node (\* except DHCPv6)
- Consider IID bits "opaque", no value or meaning [RFC7136]
  - How to generate [RFC7217]
  - This method is widely used and standardised [RFC8064]



# **IPv6 Network Scanning (3)**







# **IPv6 Network Scanning (4)**







# Special / Reserved IPv6 Addresses



| Name                          | IPv6 Address  | Comments                                                |
|-------------------------------|---------------|---------------------------------------------------------|
| Unspecified                   | ::/128        | When no address available                               |
| Loopback                      | ::1/128       | For local communications                                |
| IPv6-mapped                   | ::ffff:0:0/96 | Used by Transition mechanisms. Add IPv4 address 32 bits |
| Documentation                 | 2001:db8::/32 | RFC 3849                                                |
| IPv4/IPv6 Translators         | 64:ff9b::/96  | RFC 6052                                                |
| Discard-Only<br>Address Block | 100::/64      | RFC 6666                                                |
| Teredo                        | 2001::/32     | IPv6 in IPv4 Encapsulation Transition Mechanism         |
| 6to4                          | 2002::/16     | IPv6 in IPv4 Encapsulation Transition Mechanism         |
| ORCHID                        | 2001:10::/28  | Deprecated                                              |
| Benchmarking                  | 2001:2::/48   |                                                         |



See: http://www.iana.org/assignments/iana-ipv6-special-registry/

# **Security Tips**



- Use hard to guess IIDs
  - RFC 7217 better than EUI-64
  - RFC 8064 establishes RFC 7217 as the default
- Use IPS/IDS to detect scanning
- Filter packets where appropriate
- Be careful with routing protocols
- Use "default" /64 size IPv6 subnet prefix





# IPv6 Network Scanning

Exercise 2.2

## **Exercise 2.2: IPv6 Network Scanning**



• **Description**: Use available toolsets to scan a subnet

#### Goals:

- Know about two new toolsets: THC-IPV6 and The IPv6 Toolkit
- Learn how to use them to scan a subnet

Time: 15 minutes

#### Tasks:

- Use The IPv6 Toolkit to scan your lab's subnet
- Use THC-IPV6 to scan your lab's subnet



# IPv6 Associated Protocols Security

Section 3



# ICMPv6

Section 3.1

#### Introduction



ICMPv6 [RFC4443] is an integral part of IPv6





#### **ICMPv6** Format



General Format



- Extended Format [RFC4884]
  - Adds a length field
  - For Destination Unreachable, and Time Exceeded



# **ICMPv6 Error Messages**



| Туре                                              | Code                                                           |  |
|---------------------------------------------------|----------------------------------------------------------------|--|
| Destination Ureachable (1)                        | No route to destination (0)                                    |  |
|                                                   | Communication with destination administratively prohibited (1) |  |
|                                                   | Beyond scope of source address (2)                             |  |
|                                                   | Address Unreachable (3)                                        |  |
|                                                   | Port Unreachable (4)                                           |  |
|                                                   | Source address failed ingress/egress policy (5)                |  |
|                                                   | Reject route to destination (6)                                |  |
|                                                   | Error in Source Routing Header (7)                             |  |
| Packet Too Big (2) Parameter = next hop MTU       | Packet Too Big (0)                                             |  |
| Time Evended (2)                                  | Hop Limit Exceeded in Transit (0)                              |  |
| Time Exceeded (3)                                 | Fragment Reassembly Time Exceeded (1)                          |  |
| Parameter Problem (4) Parameter = offset to error | Erroneous Header Field Encountered (0)                         |  |
|                                                   | Unrecognized Next Header Type (1)                              |  |
|                                                   | Unrecognized IPv6 Option (2)                                   |  |
|                                                   | IPv6 First Fragment has incomplete IPv6 Header Chain (3)       |  |



# ICMPv6 security



Security point of view:

**FILTER CAREFULLY** 

Avoids

No ICMPv6 Error Message allowed as Response **Hosts Discovery** 

**Amplification Attacks** 

Packet with MULTICAST destination Address

Echo Reply responding an Echo Request is Optional

Not Recommended

Smurf Attacks



Used in many IPv6related protocols





# NDP

Section 3.2

# Introduction (1)



• NDP [RFC4861] is used on a link





# Introduction (2)



Hop Limit = 255, if not, discard

- NDP has vulnerabilities
  - [RFC3756] [RFC6583]

NDP specification: use IPsec -> impractical, not used

- SEND (SEcure Neighbour Discovery): Not widely available
  - [RFC3971]



# NDP Threats (1)



Neighbor Solicitation/Advertisement Spoofing

- Can be done:
- 1. Sending NS with "source link-layer" option changed
- 2. Sending NA with "target link-layer" option changed
  - Can send unsolicited NA or as an answer to NS

- This is a redirection/DoS attack
- Could be used for a "Man-In-The-Middle" attack





# NDP Threats (2)



NS: Redirection / DoS



**IPv6.Destination IPv6: IP1** 

**NS.Target Addr: IP1** 

NS.Src Link-layer Addr: aa:aa:aa:aa:aa



# NDP Threats (3)



Unsolicited NA: Redirection / DoS



NA.Target Addr.: IP2

NA.Target Link-layer Addr.: aa:aa:aa:aa:aa:aa



## NDP Threats (4)



- NUD Failure
- A malicious node keeps sending fake NAs in response to NUD NS messages
- DoS Attack



# NDP Threats (5)



- DAD DoS Attack
- Attacking node responds all DAD attempts made by a host. Two options:
- 1. **Sending NS**: simulating it's trying DAD with the same address
- 2. Sending NA: simulating it's using the same address

Result: host can't configure the address





# NDP

Exercise 3.2-a

#### **Exercise 3.2-a NDP**



Description: Create packets to poison neighbour cache

#### Goals:

- Practice with Scapy tool
- Learn how to modify the neighbour cache of another host in the same network
- Time: 15 minutes
- Tasks (at least one of them):
  - Generate NS packets that change other host's neighbour cache
  - Generate NA packets that change other host's neighbour cache

# 3.2-a: Neighbour cache attack using NS





# 3.2-a: Neighbour cache attack using NA





# NDP Threats (6)



Malicious Last Hop Router





# NDP Threats (7)



Bogus On-Link Prefix

Attacker sends RA with on-link prefix

 Hosts sending packets to addresses on that prefix don't use a gateway

- DoS attack
  - Can be extended to redirection / MITM



# NDP Threats (8)



Bogus Address Configuration Prefix

- Attacker sends RA with prefix for SLAAC
- Hosts using SLAAC will autoconfigure an address using that prefix

Return packets never reach the host

DoS attack



### NDP Threats (9)



Parameter Spoofing

- Attacker replicates valid RAs but with changed parameters
- Examples:
- 1. Current Hop Limit: small value
- 2. M/O flags set to one (stateful). Pretend DHCPv6

DoS attack



## NDP Threats (10)



#### Spoofed Redirect Message



IPv6.Source: IPr = fe80::a:b:c

**IPv6.Destination: IP1** 

Redirect.Target Addr.: IPa = fe80::a

Redirect.Dst Addr.: 2001:db8::face:b00c



### NDP Threats (11)



#### Neighbour Discovery DoS Attack







## NDP

Exercise 3.2-b

#### **Exercise 3.2-b NDP**



Description: Send RA messages to perform attacks

#### Goals:

- Practice with Scapy tool
- Use RA messages to perform attacks on a link

• Time: 20 minutes

#### Tasks:

Send RA messages with bogus address configuration prefix

## First Hop Security (1)



Security implemented on switches

- There is a number of techniques available:
  - RA-GUARD
  - DHCPv6 Guard
  - IPv6 Snooping (ND inspection + DHCPv6 Snooping)
  - IPv6 Source/Prefix Guard
  - IPv6 Destination Guard (or ND Resolution rate limiter)
  - MLD Snooping



## First Hop Security (2)







**IPv6 Source/ Prefix Guard** 



### First Hop Security (3)





**IPv6 Destination Guard** 



#### Rogue RA Solutions



- Rogue RA could be a big problem
- How to protect:

Manual Configuration
+
Disable autoconfig

**ACLs on switches** 

RA Snooping on switches (RA-GUARD)

Router Preference Option [RFC4191]

**SEND** 

Host packet filtering

**Link Monitoring** 



#### **RA-GUARD**



- RA-GUARD [RFC6105] easiest and available solution
- Only allows RAs on legitimate port(s) on L2 switches



- Requires support on switches
- EHs were used to go through RA-Guard [RFC7113]



## **Filtering**



- ACLs in switches can protect NDP
- Switches should understand Ethernet, IPv6 and ICMPv6:

Ethertype 0x86DD for IPv6

Source/destination MAC address

**Version 6** 

Source/destination IPv6 address

**Next Header** 

ICMPv6 Type and Code



### Filtering Example



```
(config) #ipv6 access-list RA-GUARD
(config-ipv6-acl) #sequence 3 deny icmp any any
router-advertisement
(config-ipv6-acl) #sequence 6 permit ipv6 any any
(config-ipv6-acl) #exit
(config) #interface FastEthernet0/5
(config-if) #ipv6 traffic-filter RA-GUARD in
```



#### **Conclusions / Tips**



NDP is an important, powerful and vulnerable protocol

Some solutions are available to protect NDP

- Recommended: use available ones
  - Check availability and configure them

 Detection (IDS/IPS) could be easier and recommended



# MLD

Section 3.3

#### Introduction



- MLD (Multicast Listener Discovery) is:
  - Multicast related protocol, used in the local link
  - Two versions: MLDv1 and MLDv2
  - Uses ICMPv6
  - Required by NDP and "IPv6 Node Requirements"

IPv6 nodes use it when joining a multicast group



#### MLDv1



Mandatory for all IPv6 nodes (MUST)

**QUERY** 

Router asks for Listeners

**General** 

**Group Specific** 

**REPORT** 

Listeners report themselves

**DONE** 

Listeners indicate they're done





#### MLDv2



- Strongly recommended for all IPv6 hosts (SHOULD)
- Interoperable with MLDv1
- Adds Source-Specific Multicast filters:
  - Only accepted sources; or
  - All sources accepted except specified ones

**QUERY** 

General

**Group Specific** 

**Group Specific and Source Address** 

**REPORT-v2** 

**Sent to FF02::16** 



#### **MLD Details**



- Nodes MUST process QUERY to any of its unicast or multicast addresses
- MLDv2 needs all nodes using MLDv2
- All OSs join (REPORT) to the Solicited Node addresses
- GUA accepted as destination for QUERY => allows direct interaction with listeners
- GUA accepted as source of REPORT => allows remote interaction with routers



### **MLD Threats (1)**



Flooding of MLD messages

Solutions

RAM Exhaustion

**Rate limit MLD states** 

**CPU Exhaustion** 

**Rate limit MLD messages** 

Disable MLD (if not needed)

Traffic Amplification

**Lots of REPORTs** 

**Hosts send REPORTs** 

**Spoofed QUERY** 

Several for each Addr.

Rate limit MLD messages

Windows 8.1 = 8 Msgs.





## **MLD Threats (2)**



Network scanning

**Passive** 

**Active QUERY** 

All Hosts (FF02::1)

Routers (FF02::2, FF02::16)

Windows (FF02::1:3, FF02::C)



### **MLD Solutions (1)**



MLD built-in security

Link-local source address

Hop Limit = 1

Router Alert option in Hop-by-Hop EH

Discard non compliant messages

MLD Snooping [RFC4541]

Switch listens to REPORTs

MLD Table: maps multicast groups to ports that requested

Only allow multicast traffic on ports with listeners



### **MLD Solutions (2)**



- Only allow QUERIES on router's port
  - Kind of MLD-Guard

deny icmp any any mld-query

- Protecting routers
  - Rate limit REPORTs from each host
  - Disable multicast/MLD functionality if not using inter-domain multicast routing





# MLD

Exercise 3.3

#### **Exercise 3.3 MLD**



Description: Network scanning using MLD

#### Goals:

- Know about a new tool: Chiron
- Learn how to use Chiron to scan a network using MLD
- Time: 20 minutes
- Tasks:
  - Scan your network using MLS Query message



# DNS

Section 3.4

### Introduction (1)



- IPv6 and IPv4 have same DNS vulnerabilities
- IPv6 support added in:
  - Communications between elements
  - Stored information (AAAA, PTR)
- Dual-stack means bigger attack surface
  - Protect DNS for IPv4 and IPv6
- Vulnerabilities come from:
  - DNS-related protocols
  - Implementation specifics



### Introduction (2)







**IPv6 DNS Autodiscovery** 

#### **IPv6 DNS Configuration Attacks**



Attacker becomes the DNS server of the Victim

MITM / Neighbour Cache Poisoning

SLAAC

NDP

DHCPv6

Depending on answers to DNS queries:

**MITM Attack** 

**DoS Attack** 





# DHCPv6

Section 3.5

#### Introduction



Pretty similar to DHCPv4

**Client-Server** 

**UDP** 

Relay

Message names change

**SOLICIT** 

**ADVERTISE** 

**REQUEST** 

**REPLY** 

Others...

Servers/relays listen on multicast addresses

FF02::1:2

**All DHCP Relay Agents and Servers** 

FF05::1:3

**All DHCP Servers** 



### **DHCPv6 Details (1)**



• How to trigger the use of DHCPv6?

**Attacker** 

RA with M = 1

**Host asks for Address and DNS** 

**DHCPv6 Server** 

RA with M = 0 / O = 1

**Host asks for DNS** 

**Stateless DHCPv6** 



### **DHCPv6 Details (2)**







### **DHCPv6 Threats (1)**



#### **Privacy considerations:**

- Client information can be obtained from IDs used (like the MAC from Client-ID)
- Server address assignment:
  - Iterative allocation: scanning easier
  - Identifier-based allocation: easier to track activity
  - Hash allocation: better, still allows activity track
  - Random allocation: better privacy



### **DHCPv6 Threats (2)**



- Rogue Server: answer before legitimate server
- DHCPv6 Exhaustion attack can be used beforehand
- Two types:
  - 1. Simple: ADVERTISE answering to SOLICIT
  - 2. Reply Injection: Sending REPLY

- DNS Spoofing: sending wrong DNS server address
- IP Spoofing
- NOT Possible to send wrong Default Gateway

#### **DHCPv6 Solutions**



**DHCPv6** [RFC3315]

**IPsec between Relays and Servers** 

-

IPsec ESP [RFC8213]

Recommends encryption to secure relayto-relay and relay-to-server communication

Secure DHCPv6 (I-D)

**Public Key Crypto** 

**Client-Server** authentication

Client-Server encryption

**DHCPv6-Shield** [RFC7610]

**Protects Clients** 

**Layer 2 ports** 

**DHCPv6 Guard** 

**Vendor's implementation of DHCPv6-Shield** 





# IPv6 Routing protocols

Section 3.6

### Introduction



- We will cover:
- 1. Authentication of neighbours/peers
- 2. Securing routing updates

Route filtering in next section

- Device hardening: same as in IPv4
  - More attention to bugs/updates

## **Neighbours/Peers Authentication**



|        | Authentication Options                                                        | Comments                                                                                                                                                                   |  |
|--------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| RIPng  | <ul> <li>No authentication</li> <li>IPsec (general recommendation)</li> </ul> | <ul> <li>RIPv2-like MD5 no longer available</li> <li>IPSec not available in practice</li> <li>ESP or AH. Manual keys</li> <li>Hash of OSPFv3 values. Shared key</li> </ul> |  |
| OSPFv3 | <ul><li>IPsec [RFC4552]</li><li>Authentication Trailer [RFC7166]</li></ul>    |                                                                                                                                                                            |  |
| IS-IS  | <ul><li>HMAC-MD5 [RFC5304]</li><li>HMAC-SHA [RFC5310]</li></ul>               | <ul> <li>MD5 not recommended</li> <li>Many SHA, or any other hash</li> </ul>                                                                                               |  |
| MBGP   | <ul><li>TCP MD5 Signature Option [RFC2385]</li><li>TCP-AO [RFC5925]</li></ul> | <ul> <li>Protects TCP. Available. Obsoleted</li> <li>Protects TCP. Recommended</li> </ul>                                                                                  |  |



## **Securing Routing Updates**



- IPsec is a general solution for IPv6 communication
  - In practice not easy to use

- OSPFv3 specifically states [RFC4552]:
  - 1. ESP must be used
  - 2. Manual Keying

Other protocols: No options available



### Conclusions



Security options available for IPv6 routing protocols

- Try to use them:
  - Depending on the protocol you use
  - At least at the same level as IPv4



# IPv6 Filtering

Section 4



# Filtering IPv6 Traffic

Section 4.1

### Introduction



- Filtering IPv6 traffic is important: GUA
- Good addressing plan means easier filtering
- Many things still the same
- New ones to take into account:
  - 1. ICMPv6
  - 2. IPv6 Extension Headers
  - 3. Fragments Filtering
  - 4. Transition mechanisms/dual-stack

# Filtering ICMPv6



| Type - Code            | Description             | Action                                          |
|------------------------|-------------------------|-------------------------------------------------|
| Type 1 - all           | Destination Unreachable | ALLOW                                           |
| Type 2                 | Packet Too Big          | ALLOW                                           |
| Type 3 - Code 0 & 1    | Time Exceeded           | ALLOW                                           |
| Type 4 - Code 0, 1 & 2 | Parameter Problem       | ALLOW                                           |
| <b>Type 128</b>        | Echo Reply              | ALLOW for troubleshoot and services. Rate limit |
| <b>Type 129</b>        | Echo Request            | ALLOW for troubleshoot and services. Rate limit |
| Types 131,132,133, 143 | MLD                     | ALLOW if Multicast or MLD goes through FW       |
| Type 133               | Router Solicitation     | ALLOW if NDP goes through FW                    |
| Type 134               | Router Advertisement    | ALLOW if NDP goes through FW                    |
| Type 135               | Neighbour Solicitation  | ALLOW if NDP goes through FW                    |
| Type 136               | Neighbour Advertisement | ALLOW if NDP goes through FW                    |
| Type 137               | Redirect                | NOT ALLOW by default                            |
| <b>Type 138</b>        | Router Renumbering      | NOT ALLOW                                       |



### Filtering Extension Headers



• Firewalls should be able to:

- 1. Recognise and filter some EHs (example: RH0)
- 2. Follow the chain of headers
- 3. Not allow forbidden combinations of headers



### Filtering Fragments: Threats



Upper layer info not in 1st Fragment

Create many Tiny fragments to go through filtering/detection

Fragments Inside Fragments

Several fragmentation headers

Fragmentation inside a tunnel

**External header hides** fragmentation



### Filtering Fragments: Solutions



Upper layer info not in 1st Fragment

All header chain should be in the 1st fragment [RFC7112]

Fragments Inside Fragments

**Should not happen in IPv6** 

Fragmentation inside a tunnel

FW/IPS/IDS should support inspection of encapsulated traffic



### **Transition Mechanisms/Dual-stack**



| Technology             | Filtering Rules                                           |
|------------------------|-----------------------------------------------------------|
| Native IPv6            | EtherType 0x86DD                                          |
| 6in4                   | IP proto 41                                               |
| 6in4 (GRE)             | IP proto 47                                               |
| 6in4 (6-UDP-4)         | IP proto 17 + IPv6                                        |
| 6to4                   | IP proto 41                                               |
| 6RD                    | IP proto 41                                               |
| ISATAP                 | IP proto 41                                               |
| Teredo                 | UDP Dest Port 3544                                        |
| Tunnel Broker with TSP | (IP proto 41) II (UDP dst port 3653 II TCP dst port 3653) |
| AYIYA                  | UDP dest port 5072 II TCP dest port 5072                  |



#### Conclusions



- Packet filtering:
  - Powerful tool to protect your IPv6 network
  - Common practices, same as with IPv4
  - Some new considerations about IPv6

End-to-End needs filtering

ICMPv6 should be wisely filtered

Filtering adapted to IPv6: EHs, TMs



# Filtering IPv6 Traffic

Exercise 4.1

### **Exercise 4.1 IPv6 Packet Filtering**



- Description: Configure IPv6 packet filters
- Goals:
  - Understand IPv6 packet filtering
  - Learn how to use ip6tables on Linux hosts
- Time: 15 minutes
- Tasks:
  - Configure IPv6 packet filtering rules

## 4.1: IPv6 Packet Filtering - Redirect







# Filtering IPv6 Routing Information

Section 4.2

### Introduction



The ideas are the same as with IPv4

- MANRS (www.routingmanifesto.org)
  - Secure and Resilient Internet is a collaborative effort
  - 4 concrete actions for network operators
  - IPv6 and IPv4 BGP

 Good addressing plan, makes route filtering easier within a network



### **MANRS Actions**



Facilitate Global Coordination

**Keep contact information updated: RIPE DB, LIR Portal, PeeringDB** 

Facilitate Routing Information Validation

.. Route Objects

**RPKI** 

Document Policy

**Prevent IP Spoofing** 

**uRPF** 

Ingress Filtering [RFC2827][RFC3704]

Prevent Incorrect Routing Information

Define Routing Policy

Check BGP Announcements (RPKI / ROAs)

BGP Bogon Filtering BGPsec (?)



### **IPv6 BGP Bogon Prefix Filtering**



| Use                                    | Prefix                  |
|----------------------------------------|-------------------------|
| Default                                | ::/0                    |
| Unspecified Address                    | ::/128                  |
| Loopback Address                       | ::1/128                 |
| IPv4-mapped Addresses                  | ::ffff:0.0.0.0/96       |
| IPv4-compatible Addresses (deprecated) | ::/96                   |
| Link-local Addresses                   | fe80::/10 or longer     |
| Site-local Addresses (deprecated)      | fec0::/10 or longer     |
| Unique-local addresses                 | fc00::/7 or longer      |
| Multicast Addresses                    | ff00::/8 or longer      |
| Documentation addresses                | 2001:db8::/32 or longer |
| 6Bone Addresses (deprecated)           | 3ffe::/16, 5f00::/8     |
| ORCHID                                 | 2001:10::/28            |

Team Cymru <a href="http://www.team-cymru.org/bogon-reference-bgp.html">http://www.team-cymru.org/bogon-reference-bgp.html</a>





# Internet Wide IPv6 Security

Section 5

## Introduction (1)



• IPv6 is happening! ...

| RANK | IPV6 % | • | COUNTRY                  |
|------|--------|---|--------------------------|
| 1    | 37.7%  |   | Belgium                  |
| 2    | 26.9%  |   | Greece                   |
| 3    | 21.7%  |   | United States of America |
| 4    | 21.5%  |   | Switzerland              |
| 5    | 19.2%  |   | Germany                  |
| 6    | 19.0%  |   | Trinidad And Tobago      |
| 7    | 17.6%  |   | Luxembourg               |
| 8    | 16.7%  |   | India                    |

| Rank 📤 | Participating<br>Network             | ASN(s)                                                                                                                                                                                                                                   | IPv6<br>deployment |    |
|--------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----|
| 1      | Comcast                              | 7015, 7016, 7725, 7922, 11025, 13367, 13385, 20214, 21508, 22258, 22909, 33287, 33489, 33490, 33491, 33650, 33651, 33652, 33653, 33654, 33655, 33656, 33657, 33659, 33660, 33661, 33662, 33664, 33665, 33666, 33667, 33668, 36732, 36733 | 45.93%             | 18 |
| 2      | ATT                                  | 6389, 7018, 7132                                                                                                                                                                                                                         | 59.38%             | 14 |
| 3      | KDDI                                 | 2516                                                                                                                                                                                                                                     | 27.29%             | 12 |
| 4      | RELIANCE JIO<br>INFOCOMM LTD         | 55836, 64049                                                                                                                                                                                                                             | 77.32%             | 10 |
| 5      | <u>Verizon Wireless</u>              | 6167, 22394                                                                                                                                                                                                                              | 85.82%             | 8  |
| 6      | Charter<br>Communications            | 7843, 10796, 11351, 11426, 11427, 12271, 20001, 20115, 33363                                                                                                                                                                             | 22.32%             | 6  |
| 7      | T-Mobile USA                         | 21928                                                                                                                                                                                                                                    | 83.88%             | 4  |
| 8      | <u>SoftBank</u>                      | 17676                                                                                                                                                                                                                                    | 18.57%             |    |
| 9      | <u>Deutsche</u><br><u>Telekom AG</u> | 3320                                                                                                                                                                                                                                     | 37.24%             | 2  |
| 10     | British Sky<br>Broadcasting          | 5607                                                                                                                                                                                                                                     | 76.32%             |    |



## Introduction (2)



So are IPv6 Security Threats



Source: <a href="http://www.borderware.com">http://www.borderware.com</a>



# DDoS

Section 5.1

### Introduction



DDoS attacks in IPv6?





JUST IN INTEL CHIP FLAW LETS HACKERS EASILY HIJACK FLEETS OF PCS

# First IPv6 Distributed Denial of Service Internet attacks seen

You know IPv6 must finally be making it: The first IPv6 Distributed Denial of Service Internet attacks have been spotted in the wild.



By Steven J. Vaughan-Nichols for Networking (February 20, 2012) - 14:48 GMT (14:48 GMT) | Topic: Networking

## DDoS with IPv6 (1)



DDoS attacks makes use of many factors

- Related with IPv6:
- 1. Using lots of hosts
- 2. Using outdated firmware
- 3. Lacking/poor security measures



# DDoS with IPv6 (2)



- Filter traffic, don't allow free access to all IPv6 addresses
- Update firmware/SW
- Use security measures for IPv6 (this course is a good starting point :-)
- Ingress/egress filtering and RPF

Hierarchical IPv6 address assignment helps





# **IPv6 Transition Mechanisms**

Section 5.2

### Introduction



#### **Examples**

Dual-Stack ..... Native IPv4 and IPv6 at the same time



Translation ..... IPv6 Net towards IPv4 Internet ..... NAT64/DNS64 464XLAT



### **Dual-stack: Threats**



Makes attack surface bigger

IPv6 nodes (commonly) have GUA

One IP version could be used to attack the other

Be careful with "IPv4 only" networks ...



# **IPv4-only Networks (1)**



Different scenarios depending on version used:

**IPv4-only** 

**Dual-stack** 

**IPv6-only** 

From two points of view:

Infrastructure

····· Data service, configuration and network services

**Network hosts** 

**Devices connected to the network** 



# IPv4-only Networks (2)



- IPv4-only infrastructure, dual-stack hosts:
  - VPNs or tunnels
  - Undesired local IPv6 traffic
  - Automatic Transition Mechanisms
  - Problems with rogue RAs

- IPv6-only hosts:
  - Avoids the use of IPv4 for finding IPv6 hosts



### **Tunnelling Threats**



**Tunnel Injection** 

Create spoofed packets that are accepted by tunnel endpoints

Need to know endpoints' IPs and protocols used

**Service Theft** 

Without authorisation, a non-authorised user can use a tunnel relay for free

Specific case of Tunnel Injection

Reflection Attack

IPv6 in IPv4 sent to tunnel end-point

IPv6 is wrong

Tunnel end-point encapsulates in IPv4 using its IP

Specific case of Tunnel Injection

**Bypassing Security Policy** 

**Bypassing Ingress/Egress Filtering** 

Inspection of traffic (FW/IDS/IPS/router) could fail for encapsulated traffic



### **Translation Threats**



- IPsec can't be used end-to-end
- DNSSEC can't be used with DNS64

Possible attacks:

Reflection Attack Pool Depletion Attack ALG CPU Attack



### **Dual-stack Solutions**



Protect IPv6 at the same level as IPv4

Filter end-2-end IPv6 traffic properly

Don't trust on "IPv4-only" networks



## **Tunnelling Solutions**



**Tunnel Injection** 

Apply Ingress/Egress filtering on all tunnel endpoints

**Service Theft** 

Implement authentication

Limit the IP address range that can use the tunnelling service

**Reflection Attack** 

Don't forward/re-encapsulate packets with the encapsulated address not matching receiving network

**Bypassing Security Policy** 

Filter encapsulated traffic in hosts

Disable host encapsulation

Filter encapsulated traffic in network

Bypassing Ingress/Egress Filtering

**Ingress/Egress filtering on tunnel servers** 



### **Translation Solutions**



Reflection Attack

**Support of filtering** 

Pool Depletion Attack

ALG CPU Attack Implementations should protect themselves against exhaustion attacks





# IPv6 Security Tips and Tools

Section 6

#### Introduction



- Best security tool is knowledge
- IPv6 security is a moving target, keep updated

IPv6 is happening: need to know about IPv6 security

- Cybersecurity challenge: Scalability
  - IPv6 is also responsible for Internet growth
  - IPv6 security knowledge needed to tackle the scalability issue

# **Tips**



IPv6 quite similar to IPv4, many reusable practices

IPv6 security compared with IPv4:

No changes with IPv6

**Changes with IPv6** 

**New IPv6 issues** 

#### **Overview: Devices**



Different categories (from RIPE-554):

Host

**IPSec (if needed)** 

RH0 [RFC5095]

Overlapping Frags [RFC5722]

Atomic Fragments [RFC6946]

NDP Fragmentation [RFC6980]

Header chain [RFC7112]

Stable IIDs [RFC8064][RFC7217] [RFC7136]

Disable if not used: LLMNR, mDNS, DNS-SD, IPv6 DNS Autodiscovery, transition mechanisms **Switch** 

**HOST +** 

**IPv6 ACLs** 

**FHS** 

RA-Guard [RFC6105]

**DHCPv6** guard

**IPv6** snooping

IPv6 source / prefix guard

IPv6 destination guard

MLD snooping [RFC4541]

DHCPv6-Shield [RFC7610] Router

HOST +

Ingress Filtering and RPF

OSPFv3

Auth. [RFC4552]

or/and [RFC7166]

IS-IS

[RFC5310]

or, less preferred, [RFC5304]

**MBGP** 

**TCP-AO** [RFC5925]

Obsoleted MD5 Signature Option [RFC2385]

MBGP Bogon prefix filtering

Security Equipment

**HOST +** 

Header chain [RFC7112]

Support EHs Inspection

ICMPv6 fine grained filtering

**Encapsulated Traffic Inspection** 

**IPv6 Traffic Filtering** 

CPE

Router

Security Equipment

# Overview: Network Example





<sup>\*</sup> All Name resolution related protocols

## **IPv6 Support**



IPv6 support is not a yes/no question

- List the features you need
  - Security features are important

• Check if IPv6 is supported for your specific needs

# **Security Tools**



Many existent software/vendors support IPv6

Wireshark The IPv6 Toolkit THC-IPV6

Nmap Scapy

Ettercap Chiron Pholus

#### Feedback!





https://www.ripe.net/training/ipv6security/survey

## RIPE NCC Academy





**Graduate to the next level!** 

http://academy.ripe.net

#### Follow us!





@TrainingRIPENCC

| The End! K |        |       | Край       |              | Y Diwedd      |  |
|------------|--------|-------|------------|--------------|---------------|--|
| äla        | :11    | Соңы  | Վերջ       | Fí           | Finis         |  |
|            | En     |       | Finvezh    | LIOC         | ıgt<br>Кінець |  |
| Konec      | Kraj   | Ë     | nn Fui     | ان nd        | پای           |  |
| Lõpp       | Beigas | Vége  | Son        | An Crío      | Kpaj<br>ch    |  |
| Fine       | הסוף   | Endi  | r<br>Sfârş | it Fi        | n Τέλος       |  |
|            | inde   | Конец | 4          | Slut         | Slutt         |  |
| დასასრული  |        |       | Pabaiga    |              | Olatt         |  |
| Fim        | Am     | aia   | Loppu      | <b>Tmiem</b> | Koniec        |  |

#### **Extra: Smurf Attack**







**IPv4 Smurf Attack** 

**IPv6 Smurf Attack** 

## Extra: DoS / DDoS



 DoS (Denial of Service): Type of attack that is able to make a service or protocol to stop working.

 DDoS (Distributed DoS): Is a type of DoS attack that is performed from several devices.

 Example: send too much traffic to a link, so that the routers can't handle it, overloading them



### **Extra: MITM**



- Man-In-The-Middle attack:
  - The attacker is able to be on the path of the packets



# **Extra: Replay Attacks**



Replay Attacks consist in sending again a previous

packet



Solution: nonce or timestamp (makes packet unique)



# **Extra: Overlapping Fragments**



Normal fragments offset say where the data goes:



Overlapping fragments have wrong offset values:



### **Extra: Hash Function**



- Input: String
- Output: Fixed length series of characters

