Автоматическое извлеченье ключевых слов и словосочетаний из электронных документов на русском языке

Студент: Барсуков Никита Михайлович

Руководитель: Барышников Марина Юрьевна

Цель работы

Разработка программного обеспечения для извлечения ключевых слов (КС) и словосочетаний из электронного документа на русском языке.

Задачи:

- 1. Анализ существующих методов извлечения КС
- 2. Отбор и изучение выбранного алгоритма
- 3. Разработка архитектуры решения
- 4. Выбор инструментов
- 5. Реализация программного обеспечения
- 6. Проведение экспериментов

Классификация методов

Метод	По обучению	Лингвистические ресурсы	Матаппарат распозонования
Yake	Не требует обучения	Не использует	Гибридный
Rake	Не требует обучения	Не использует	Структурный / Графовый
Kea	Не требует обучения	На основе корпусов	Нейросетевой
TF-IDF	Не требует обучения	На основе корпусов	Статистический

Критерии

Справка: Подходит, не подходит по критерию

Метод	Не требует наличия корпусов текстов	Умеет извлекать многокомпонентные КС	Не привязан к предметной области применения
Yake	+	-	+
Rake	+	+	+
Kea	-	+	-
TF-IDF	-	-	+

Выбор алгоритма

Для реализации ПО был выбран метод «Yake»

Учитывает:

- 1. Расположение кандидата в документе;
- 2. Связь термина с контекстом;
- 3. Его форму написания;

До этого не использовался для извлечения КС из документов на русском языке

Н-граммы

H-граммой на алфавите V называют произвольную цепочку длинной N. На пример последовательность из слов или словосочетаний

Исходный текст: Автоматическое извлечение ключевых слов Примеры н-грамм:

- Униграмма:
 - Автоматическое, извлечение, ключевых, слов;
- Биграмма:
 - Автоматическое извлечение, извлечение ключевых, ключевых слов;
- Триграммы:
 - Автоматическое извлечение ключевых, извлечение ключевых слов;
- Н грамма (н = 4)
 - Автоматическое извлечение ключевых слов.

Yake

Ограничения:

- Минимальный размер теста не менее 50 слов.
- Текст содержит описание одного предметного объекта
- Обязательное наличие шумовых слов

Метод извлечения КС

Предварительная обработка текста

Подсчет оценки термина

Вычисление н-грамм

Архитектура ПО

При проектировании использовался шаблон MVC – Модель-представлениеконтролер

- Модель это компонента отвечающая за предоставление данных конкретным элементам системы
- представление это отображение состояния внутренний системы
- Контроллер это связующее звено между представлением и моделью, обрабатывает действия пользователя, полученные от представления и отдает команды модели.

Схема архитектуры

Исследование

- Выборка:
 - 30 электронных документов
- Критерии оценки
 - Процент пересечения (1)
 - Средний процент пересечения (2)
 - Минимальный процент пересечения (3)
 - Максимальный процент пересечения (4)
- Условия:
 - Текс документа содержит в себе только одну тему
 - Документ написан на русском языке
 - Документы формата PDF
 - Должен содержать не менее 50 слов

$$R = \frac{N_{doc}}{N_{cross}} \quad (1)$$

$$R_{mid} = \frac{\sum_{0}^{N} R}{N} \quad (2)$$

$$R_{min} = \min_{n \to N} (R_n)$$
 (3)

$$R_{max} = \max_{n \to N} (R_n)$$
 (4)

Сравнение с другими алгоритмами

Результаты сравнения

Метрики	Yake(mod)	Textrank	Rake
Максимальный % пересечения	100%	71%	50%
Средний % пересечения	42%	25%	2%
Минимальный % пересечения	0%	0%	0%

Исследование н-грамм

Документ: Идентификация личности по фрактальной размерности отпечатков пальцев и системы контроля и управления доступом

Ссылка на документ: https://cyberleninka.ru/article/n/identifikatsiya-lichnosti-po-fraktalnoy-razmernosti-otpechatkov-paltsev-i-sistemy-kontrolya-i-upravleniya-dostupom.pdf

Ключевые слова: биометрия, отпечаток пальца, фрактал, фрактальная размерность, идентификация и аутентификация личности, СКУД.

Результат работы алгоритма от N

```
-kontrolya-i-upravleniya-dostupom.pdf
Метод: yakemodified
размерности, личности, пальцев, Dcp, фрактальной, отпечатков, идентификации, значение, пользователь,
 системы, распознавания, For, СКУД, среднее, биометрические, log, Доклады, число, Lmax, часть
Документ работы: identifikatsiya-lichnosti-po-fraktalnoy-razmernosti-otpechatkov-paltsev-i-sistemy
 -kontrolya-i-upravleniya-dostupom.pdf
Метод: yakemodified
фрактальной размерности, размерности, личности, отпечатков пальцев, размерности отпечатков, идентификации
 личности, пальцев, распознавания личности, Dcp, фрактальной, отпечатков, идентификации, значение,
 пользователь, системы, распознавания, For, СКУД, значение фрактальной, Доклады ТУСУРа
Документ работы: identifikatsiya-lichnosti-po-fraktalnoy-razmernosti-otpechatkov-paltsev-i-sistemy
 -kontrolya-i-upravleniya-dostupom.pdf
Метод: yakemodified
гребней и впадин, размерности отпечатков пальцев, фрактальной размерности отпечатков, размерности,
 личности, отпечатков пальцев, идентификации личности, пальцев, распознавания личности, Dcp, фрактальной,
  отпечатков, идентификации, значение фрактальной размерности, значение, пользователь, системы,
 распознавания, For, размерности Минковского
```

Документ работы: identifikatsiya-lichnosti-po-fraktalnoy-razmernosti-otpechatkov-paltsev-i-sistemy

Дальнейшее развитее

- Добавить процесс преобразование терминов к начальной форме
- Добавить автоматическое определение языка

Заключение

В результате выполнения работы поставленная цель была достигнута, а также были решены следующие задачи:

- 1. Проведен анализ методов извлечения ключевых слов;
- 2. Отобран метод по выбранные критерями;
- 3. Проработана модификация;
- 4. Разработана архитектура ПО;
- 5. Выбраны инструменты реализации
- 6. Реализовано программное обеспечение
- 7. Проведено тестирование работы
- 8. Проведены исследования