

Função inversa

Resumo

Função inversa

Definimos função inversa (f^{-1}) de uma função f do seguinte modo:

$$\forall (a,b) \in f \Leftrightarrow \exists (b,a) \in f^{-1}$$

Ou seja, para todo par ordenado (a, b) pertencente à função f, existe um par ordenado (b, a) correspondente na função inversa f^{-1} .

Condição de existência

A relação inversa de f: A \rightarrow B é uma função f⁻¹: B \rightarrow A, se e somente se, f é uma função bijetora.

Lei de formação

Para encontrarmos a lei de formação de uma função inversa, devemos seguir os seguintes passos:

- I. Na lei de formação de f, devemos trocar o y por x e o x por y.
- II. Depois, devemos isolar o novo y.

Ex: Vamos achar a inversa de f(x) = x + 1.

$$y = x + 1$$

x = y + 1 (trocando x por y e y por x)

$$y = x - 1 = f^{-1}(x)$$

Gráfico

O gráfico de uma f^{-1} é simétrico ao gráfico de f em relação à reta y = x, chamada de função identidade.

Quer ver este material pelo Dex? Clique aqui

Exercícios

- **1.** Sabe-se que a função $f(x) = \frac{x+3}{5}$ é inversível. Assim, $f^{-1}(3)$ é
 - **a)** 3
 - **b)** 4
 - **c)** 6
 - **d)** 12
- 2. Seja f(x) uma função do primeiro grau que intercepta os eixos cartesianos nos pontos (0, 4) e (2, 0). O produto dos coeficientes da função inversa de f(x) é
 - **a)** 2.
 - **b)** -1.
 - **c)** 4.
 - **d)** 2.
- 3. O conjunto imagem de uma função inversível é igual ao domínio de sua inversa. Sendo $f:A\to B$ tal que $f(x)=\frac{2x-1}{x+1}$ uma função real inversível, seu conjunto imagem é:
 - **a)** $\mathbb{R} \{1\}$
 - **b)** $\mathbb{R} \{-1\}$
 - **c)** $\mathbb{R} \{-2\}$
 - **d)** $\mathbb{R} \{0\}$
 - **e)** $\mathbb{R} \{2\}$

- **4.** Se a função $f: \mathbb{R} \{2\} \to \mathbb{R}^*$ é definida por $f(x) = \frac{5}{2-x}$ e f^{-1} sua inversa, então $f^{-1}(-2)$ é igual a:
 - a) $-\frac{1}{2}$
 - **b)** $\frac{9}{2}$
 - c) $-\frac{9}{2}$
 - d) $\frac{1}{2}$
 - e) $\frac{5}{4}$
- **5.** A função real de variável real definida por $f(x) = \frac{2x+3}{4x+1}$ para $x \neq -\frac{1}{4}$ é inversível. Sua inversa g pode ser expressa na forma $g(x) = \frac{ax+b}{cx+d}$, em que a, b,c e d são inteiros.

Nessas condições a soma a + b + c + d é um número inteiro múltiplo de:

- **a)** 6
- **b)** 5
- **c)** 4
- **d)** 3

6. Considere o gráfico da função y = f(x) exibido na figura a seguir.

O gráfico da função inversa $y = f^{-1}(x)$ é dado por

c)

a)

C)

7. A função real de variável real definida por $f(x) = \frac{x+2}{x-2}$ é inversível. Se f^{-1} é sua inversa, então, o valor de $\left[f(0) + f^{-1}(0) + f^{-1}(-1)\right]^2$ é

- **a)** 1
- **b**) 4
- **c)** 9
- **d)** 16

- 8. Seja f: A \rightarrow B uma função dada por f(x) = 2 2x, em que A = [-2, 4] e B = [-6, 6]. É verdade afirmar que
 - a) a função f(x) não possui inversa.
 - **b)** o domínio de f(x) é B.
 - c) f(x) é bijetora.
 - **d)** f(-2) = -6.
 - e) a função inversa de f(x) é $f^{-1}(x) = 2x 2$
- **9.** Dada a função bijetora $f(x) = \frac{3x+2}{x-1}$, $D(f) = \mathbb{R} \{1\}$, o domínio de $f^{-1}(x)$ é
 - $\mathbb{R}-\{3\}$
 - b) \mathbb{R}
 - c) $\mathbb{R}-\{1\}$
 - $\mathbb{R}-\{-1\}$
 - $\mathbb{R} \left\{ -\frac{2}{3} \right\}$
- **10.** Considere a função $g(x) = \frac{x-3}{2x+1}$. O domínio de g(x) e a função inversa de g(x) são, respectivamente:
 - a) $\left\{ x \in \mathbb{R} / x \neq -\frac{1}{2} \right\}$ e $g^{-1}(x) = \frac{x+3}{2x-1}$
 - **b)** $\left\{ x \in \mathbb{R} / x \neq -\frac{1}{2} \text{ e } x \neq 3 \right\} \text{ e } g^{-1}(x) = \frac{-x-3}{2x-1}$
 - c) $\left\{ x \in \mathbb{R} / x \neq -\frac{1}{2} \right\}$ e $g^{-1}(x) = \frac{-x-3}{2x-1}$
 - d) $\left\{ x \in \mathbb{R} / x \neq -\frac{1}{2} \text{ e } x \neq -3 \right\}$ e $g^{-1}(x) = \frac{x+3}{-2x+1}$

Gabarito

1. D

Se f possui inversa, então queremos calcular x tal que f(x) = 3. Assim, vem

$$\frac{x+3}{5} = 3 \Leftrightarrow x = 12.$$

2. B

Seja f(x) = ax + b a lei da função afim cujo gráfico intersecta os eixos cartesianos nos pontos (0, 4) e (2, 0). Como o gráfico de f intersecta o eixo das ordenadas no ponto (0, 4), segue que b = 4. Por outro lado, se (2, 0) é o ponto de interseção com o eixo das abscissas, então

$$0 = a \cdot 2 + 4 \Leftrightarrow a = -2$$
.

Daí, f(x) = -2x + 4 e, assim, a lei da função f^{-1} é tal que

$$x = -2y + 4 \Leftrightarrow 2y = -x + 4 \Leftrightarrow f^{-1}(x) = -\frac{1}{2}x + 2.$$

Portanto, o produto pedido é igual a $-\frac{1}{2} \cdot 2 = -1$.

3. E

Lembrando que é possível definir tantas funções quanto queiramos por meio da lei $f(x) = \frac{2x-1}{x+1}$, vamos supor que o domínio de f seja o conjunto dos números reais x, tal que $x \in \mathbb{R} - \{-1\}$. Assim, temos

$$y = \frac{2x - 1}{x + 1} \Rightarrow yx + y = 2x - 1$$
$$\Rightarrow x(y - 2) = -(y + 1)$$
$$\Rightarrow x = \frac{y + 1}{2 - y}.$$

Portanto, sendo $f^{-1}(x) = \frac{x+1}{2-x}$ a lei da inversa de f, podemos afirmar que a imagem de f é o conjunto dos números reais y tal que $y \in \mathbb{R} - \{2\}$.

4. B

Impondo f(x) = -2, temos

$$-2 = \frac{5}{2-x} \Leftrightarrow 2x - 4 = 5 \Leftrightarrow x = \frac{9}{2}.$$

Portanto, segue que $f^{-1}(-2) = \frac{9}{2}$.

5. C

Se
$$f(x) = \frac{2x+3}{4x+1}$$
, então

$$\begin{split} y &= \frac{2x+3}{4x+1} \Leftrightarrow 4xy+y = 2x+3 \\ &\Leftrightarrow x(4y-2) = -y+3 \\ &\Leftrightarrow x = \frac{y-3}{-4y+2}. \end{split}$$

Portanto, temos $g(x) = \frac{x-3}{-4x+2}$ e, assim, desde que $1-3-4+2=(-1)\cdot(4)$, podemos afirmar que a soma a+b+c+d é um número inteiro múltiplo de 4.

6. C

Lembrando que o gráfico de uma função e o de sua inversa são simétricos em relação à reta y = x, segue-se que o gráfico de $y = f^{-1}(x)$ é o da alternativa [C].

7. C

Tem-se que

$$y = \frac{x+2}{x-2} \Rightarrow yx - 2y = x+2$$
$$\Rightarrow (y-1)x = 2y+2$$
$$\Rightarrow x = \frac{2y+2}{y-1}.$$

Portanto, sendo $f: \mathbb{R}-\{2\} \to \mathbb{R}-\{1\}$, a inversa de $f \notin f^{-1}: \mathbb{R}-\{1\} \to \mathbb{R}-\{2\}$, com $f^{-1}(x) = \frac{2x+2}{x-1}.$

Daí, como f(0) = -1, $f^{-1}(0) = -2$ e $f^{-1}(-1) = 0$, vem $[f(0) + f^{-1}(0) + f^{-1}(-1)]^2 = (-1 + (-2) + 0)^2 = 9.$

8 (

- [A] Falsa, a função admite inversa, pois é bijetora.
- [B] Falsa, o domínio de f(x) é A.
- [D] Falsa, pois f(-2) = 6.
- [E] Falsa, pois a função inversa de f é f⁻¹(x) = (-x + 2)/2.

9. A

Se
$$f(x) = \frac{3x+2}{x-1}$$
, com $D(f) = \mathbb{R} - \{1\}$, então

$$y = \frac{3x+2}{x-1} \Leftrightarrow y(x-1) = 3x+2$$
$$\Leftrightarrow x(y-3) = y+2$$
$$\Leftrightarrow x = \frac{y+2}{y-3}.$$

Portanto, $y-3\neq 0 \Leftrightarrow y\neq 3$ e, assim, $D(f^{-1})=\mathbb{R}-\{3\}$.

10. C

O domínio da função g é o conjunto de valores de x para os quais

$$2x+1\neq 0 \Leftrightarrow x\neq -\frac{1}{2}$$

ou seja,
$$D = \left\{ x \in \mathbb{R}; x \neq -\frac{1}{2} \right\}.$$

A função inversa de g é tal que

$$y = \frac{x-3}{2x+1} \Rightarrow x = \frac{y-3}{2y+1}$$
$$\Rightarrow 2yx - y = -x - 3$$
$$\Rightarrow g^{-1}(x) = \frac{-x-3}{2x-1}.$$