Übungen zu *Moleküle, Kerne, Teilchen, Festkörper - Physik IV*Woche 02 (11.4. – 15.4.2016) Ausgabe 14.4.2016
(Max. 24 Pkte)

Sommersemester 2016 Abgabe 21.4.2016

1.	(1 Pkt) Was ist ein Fermigas? □ Ein Gas aus Fermionen mit ganzzahligem Spin □ Ein Gas des Elementes Fermium □ Ein Gas wechselwirkungsfreier Teilchen mit halbzahligem Spin □ Ein Gas paarweise wechselwirkender Teilchen mit ganzzahligem Spin
2.	(2 Pkte) Wie definiert sich der Spaltbarkeitsparameter? Erklären Sie, warum die Naive Lösung der Weizsäcker Massenformel hier zu niedrige Werte für Spontanspaltung ergibt □ A2/N □ Z2/A □ A/Z □ Z/A2 □ N2/A
3.	(1 Pkt) Ab welcher Masse wird alpha-Zerfall wichtig? □ A>150 □ A>210 □ Z>47 □ immer
4.	(1 Pkt) Die Eindringtiefe von 5 MeV alpha-Teilchen in Wasser ist ungefähr □ 70µm □ 1 mm □ 1 cm □ 4 cm
5.	(1 Pkt) Der Bragg-Peak □ ist unabhängig von der Teilchenenergie □ tritt für massive geladene Teilchen auf □ tritt nur bei α-Strahlung auf □ gibt den Stoßwirkungsquerschnitt als Funktion der Energie an
6.	(1 Pkt) Durch welche Wechselwirkung werden α -Teilchen hauptsächlich abgebremst?
7.	(1 Pkt) Welche Regel beschreibt den direkten Zusammenhang zwischen Zerfallskonstante und Reichweite (log λ vs. log R) von α -Strahlung?
8.	(1 Pkt) Wie ändert sich die Zerfallskonstante eines α -Emitters bei steigender E_{α} ?
9.	(4 Pkte) Nennen Sie 2 Methoden zur Messung von α -Strahlung und erklären Sie die Funktionsweise
10.	. (3 Pkte) Berechnen Sie die Rückstoßenergie des Tochterkerns nach Aussendung eines alpha-Teilchens (E_{α} = 5 MeV) beim Zerfall eines Uran-238-Kerns.

11. (8 Pkte) Ein hypothetisches Element emittiert ein α-Teilchen der Energie 5,00 MeV und hat nach Zerfall die Ordnungszahl $Z_2 = 90$. Das zu durchtunnelnde Potential beträgt 31 MeV. Die Masse des emittierten α-Teilchens beträgt 3727,379 MeV/c².

Nach der WKB-Näherung und Integration lässt sich die Gamow-Gleichung

$$(T_{\alpha} \approx e^{-G})$$
 mit

$$G = \frac{2}{\hbar} \sqrt{\frac{2m}{E_{\alpha}}} \frac{Z_1 Z_2 e^2}{4\pi \varepsilon_0} \gamma(x)$$

berechnen.

Dabei ist
$$\gamma(x) = \arccos(\sqrt{x}) - \sqrt{x(1-x)}$$
 und $x = \frac{R}{R} = \frac{E_{\alpha}}{V}$

- a. Berechnen Sie T_{α} für das hypothetische Element.
- b. Welche Zerfallskonstante in Sekunden und folglich welche HWZ in Jahren ergibt sich?

Benötigte physikalische Größen

$$\hbar = 1,054571726 \cdot 10^{-34} J \cdot s$$
$$e = 1,602176565 \cdot 10^{-19} C$$

$$c = 299792458 \frac{m}{s}$$

$$\varepsilon_0 = 8,85418781762 \cdot 10^{-12} \frac{As}{Vm}$$

Benötige Umrechnungen: