Since $C + \|C\| \cdot Id \ge 0$ by Thm.1.11, C is regular. Let $C = C_0 + N$ where $C_0 \in Z(E)^d$ and $N \in Z(E)$. Since $C \ge ReB$ by what we just proved, it follows that $N \ge ReM$.

Let $f \in E_+$, $\phi \in E_+'$ satisfy $\langle f, \phi \rangle = 0$. Then for all $\alpha \in \mathbb{R}$, $\langle \text{Re}(e^{i\alpha}B)f, \phi \rangle = \lim_{t \neq 0} 1/t \langle \text{Re}(e^{i\alpha}e^{tB})f, \phi \rangle \leq \lim_{t \neq 0} 1/t \langle e^{tC}f, \phi \rangle = \langle Cf, \phi \rangle$. Thus $C - \text{Re}(e^{i\alpha}B)$ satisfies the positive minimum principle (P) for all $\alpha \in \mathbb{R}$. It follows from Thm. 1.11 that $C - \text{Re}(e^{i\alpha}B) + (\|C\| + \|B\|) \text{Id} \geq 0$ for all $\alpha \in \mathbb{R}$. Applying the band projection onto $Z(E)^d$ on both sides of this inequality one obtains that $|B_0| = \sup_{\alpha \in \mathbb{R}} \text{Re}(e^{i\alpha}B) \leq C_0$ (since $|T| = \sup_{\alpha \in \mathbb{R}} \text{Re}(e^{i\alpha}T)$ for all $T \in L^T(E)$, see C-I,Sec.7).

We have proved that ReM \leq N and $|B_O| \leq C_O$. This implies that Re((sign \overline{f})Bf) = Re((sign \overline{f})B $_O$ f) + (ReM) $|f| \leq C_O|f| + N|f| = C|f|$ for all $f \in E$. It follows from Thm.4.2 that $(e^{tB})_{t\geq 0}$ is dominated by $(e^{tC})_{t\geq 0}$.

<u>Remark</u>. The proof of Thm. 4.17 shows that any semigroup dominating a semigroup whose generator is bounded and regular has a bounded generator as well.

Example 4.19. Let $E = \ell^p$ (1 $\leq p < \infty$) or c_0 and $B \in \ell^r(E)$ be given by the matrix (b_{ij}) . The generator A of the modulus semigroup of $(e^{tB})_{t \geq 0}$ is given by the matrix (a_{ij}) where $a_{ij} = |b_{ij}|$ when $i \neq j$ and $a_{ii} = \text{Re } b_{ii}$.

A related question is under which condition a semigroup $(S(t))_{t\geq 0}$ is dominated by some positive semigroup. Of course, a necessary condition is that every S(t) is a regular operator. On an AL-space this condition is automatically satisfied. But Kipnis (1974) gives an example of a strongly continuous semigroup on ℓ^1 which is not dominated. On the other hand, it has been independently shown by Kipnis (1974) and Kubokawe (1975) that every contraction semigroup on an L^1 -space possesses a modulus semigroup (which is contractive as well).