

大数据分析

大作业系统设计报告

(2019 年度春季学期)

 组
 员
 1160300312 靳贺霖

 组
 员
 1160300314 朱明彦

 学
 院
 计算机学院

 教
 师
 杨东华、王金宝

计算机科学与技术学院

目录

第	1 章	问题描述	3
	1.1	数据	3
	1.2	范围查询	
	1.3	kNN 查询	
	1.4	Reverse kNN 查询	
第	2 章	系统设计	4
第	3 章	系统工作流程	4

分布式空间近似关键字查询系统

第1章 问题描述

1.1 数据

空间对象集合 $D=o_1,o_2,\ldots,o_n$,对于 D 中任意一个对象 $o_i=(loc_i,kw_{i,1},\ldots,kw_{i,m})$,即包含 \mathbb{R}^d 维欧式空间中一个点 loc_i 和一组关键字 $kw_{i,1},\ldots,kw_{i,m}$,记为 $o_i.loc=loc_i$ 和 $o_i.kw=\{kw_{i,1},\ldots,kw_{i,m}\}$ 。**在本项目中主要关注** d=2 **的情况**, \mathbb{R}^2 对于现实中的应用有着很大的价值,但项目中提出的方法可以扩充到任意有限维欧式空间。

1.2 范围查询

输人: $Q = (Q_{rs}, Q_{rt})$,其中 Q_{rs} 是一个空间范围(\mathbb{R}^d 维欧式空间中的超立方体); Q_{rt} 为关键字近似条件, $Q_{rt} = \{(kw_1, \theta_1), \ldots, (kw_K, \theta_K)\}$,其中 θ_i 为阈值。

输出: $O = \{o | o \in D, o.loc \in Q.Q_s, \forall (kw_i, \theta_i) \in Q.Q_t, \exists o.kw_j, \text{ED}(kw_j, kw_i) \leq \theta_i \}$, 其中 $\text{ED}(kw_i, kw_i)$ 表示两个关键字 kw_i 和 kw_j 之间的编辑距离。

1.3 kNN 查询

输入: $Q = (Q_s, Q_t, k)$, 其中 $Q_s = loc$ 是 \mathbb{R}^d 维欧式空间中一个点,即查询发出的位置; $Q_t = \{(kw_1, \theta_1), \dots, (kw_K, \theta_K)\}; k$ 为表示最近邻居的数量。

输出: 对 $O_t = \{o | o \in D, \forall (kw_i, \theta_i) \in Q.Q_t, \exists o.kw_j, \mathrm{ED}(kw_j, kw_i) \leq \theta_i \}$,根据 $|O_t|$ 的大小进行定义,

- 如果 $|O_t| \le k$,则 $O_{kNN} = O_t$ 即为最终结果。
- 如果 $|O_t| > k$, $O_{kNN} = \{o | o \in O_t, \forall o_i \in O_t O, \text{Dis}(loc, o_i) \geq \text{Dis}(loc, o_j)$ 对 $\forall o_j \in O$ 成立 } 并且 $|O_{kNN}| = k$ 。

1.4 Reverse kNN 查询

输入: 与1.3节输入相同,不再赘述。

输出: $O_{RkNN} = \{o_{R_1}, \dots, o_{R_M}\}$,对于 O_{RkNN} 中的任一元素 o_{R_i} 均有 $o_{kNN} \in O_{R_i-kNN}$ 且 $o_{R_i} \in D$,其中 $o_{kNN}.loc = Q_s, o_{kNN}.kw = Q_t$; O_{R_i-kNN} 是以 $(o_{R_i}.loc, o_{R_i}.kw, k)$ 为输入的 kNN 查询结果。

第 2 章 系统设计

主要思路

- 存储部分,类似 Spark、HDFS 进行处理
- 索引和算法部分,两层索引结构,组织不同节点间的索引使用 RT-CAN [3],在本地使用以 R 树为核心,结合 MHR-Tree [1] 进行范围查询,结合 Voronoi Diagrams [2] 进行 kNN 查 询和 Reverse kNN 查询。

第3章 系统工作流程

参考文献

- [1] Li F, Yao B, Tang M, et al. Spatial approximate string search[J]. IEEE Transactions on Knowledge and Data Engineering, 2012, 25(6): 1394-1409.
- [2] Sharifzadeh M, Shahabi C. Vor-tree: R-trees with voronoi diagrams for efficient processing of spatial nearest neighbor queries[J]. Proceedings of the VLDB Endowment, 2010, 3(1-2): 1231-1242.
- [3] Wang J, Wu S, Gao H, et al. Indexing multi-dimensional data in a cloud system [C]//Proceedings of the 2010 ACM SIGMOD International Conference on Management of data. ACM, 2010: 591-602.