# Classificador KNN e DMC

### Savio Lopes Rabelo

Instituto Federal de Educação, Ciência e Tecnologia do Ceará (IFCE)
Programa de Pós-Graduação em Ciência da Computação
Campus Fortaleza – CE – Brasil

saviorabelo.ti@gmail.com

Resumo. Este relatório descreve a implementação do KNN e DMC aplicada à classificação de padrões. A metodologia utilizada para a implementação é constituída por duas fases: treinamento e teste, com cada conjunto sendo composto por 80% e 20% das bases de dados, respectivamente, utilizando também uma busca em grade com validação cruzada k-fold. Foram usadas quatro bases de dados disponíveis online no repositório UCI Machine Learning. Os resultados são bastante satisfatórios, chegando em taxas de acerto em 100% em algumas bases.

# 1. Introdução

KNN (do inglês, *K-Nearest Neighbors*) é um classificador onde o aprendizado é baseado na analogia. O conjunto de treinamento é formado por vetores n-dimensionais e cada elemento deste conjunto representa um ponto no espaço n-dimensional. Para determinar a classe de um elemento que não pertença ao conjunto de treinamento, o classificador KNN procura K elementos do conjunto de treinamento que estejam mais próximos deste elemento desconhecido, ou seja, que tenham a menor distância. Estes K elementos são chamados de K-vizinhos mais próximos. Verifica-se quais são as classes desses K vizinhos e a classe mais frequente será atribuída à classe do elemento desconhecido.

No classificador DMC (Distância Média dos Centróides), para cada classe é assumido um centro de massa (também conhecido como centróide). Um objeto x pertence a uma determinada classe y, quando a distância entre x e o centróide da classe y, for menor que todas as distâncias entre y e as outras classes do espaço de características. O primeiro passo do processo de classificação por distância mínima e o cálculo dos vetores médios (centróides) que representam cada classe por padrões. Para o cálculo da distância, diversas métricas podem ser utilizadas, como por exemplo, a distância Euclidiana.

Abaixo tem-se as métricas mais comuns no cálculo de distância entre dois pontos, sendo que a mais utilizada e a que foi utilizada nesse trabalho foi a distância Euclidiana. Seja  $X=(x_1,x_2,\ldots,x_n)$  e  $Y=(y_1,y_2,\ldots,y_n)$  dois pontos do  $\mathbb{R}^n$ .

A distância Euclidiana entre X e Y é dada por:

$$d(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}.$$
 (1)

A distância Manhattan entre X e Y é dada por:

$$d(x,y) = |x_1 - y_1| + |x_2 - y_2| + \dots + |x_n - y_n|.$$
(2)

A distância Minkowski entre X e Y é dada por:

$$d(x,y) = (|x_1 - y_1|^q + |x_2 - y_2|^q + \dots + |x_n - y_n|^q)^{1/q},$$
(3)

onde  $q \in \mathbb{R}$ .

Esta distância é a generalização das duas distâncias anteriores. Quando q=1, esta distância representa a distância de Manhattan e quando q=2, a distância Euclidiana.

# 2. Metodologia

No primeiro momento foi realizada a separação do conjunto de dados em dois subconjuntos: treinamento e teste. Os valores utilizados para os conjuntos equivalem a 80% do conjunto original para a fase de treinamento e 20% do conjunto original para a fase de teste. Logo depois, os dados foram normalizados para eliminação de redundâncias indesejadas e também foram embaralhados. Por ser um problema com mais de 2 classes, foi exigida uma codificação diferente, Um-versus-Todos (do inglês One-v-All, OvA).

Além disso, também foi utilizada a busca em grade com validação cruzada *k-fold*. A busca em grade é uma busca com o objetivo de encontrar os melhores parâmetros. Já o método de validação cruzada *k-fold* consiste em dividir o conjunto total de dados em k subconjuntos mutuamente exclusivos do mesmo tamanho e, a partir disto, um subconjunto é utilizado para teste e os k-1 restantes são utilizados para estimação dos parâmetros e calcula-se a acurácia do modelo. Este processo é realizado k vezes alternando de forma circular o subconjunto de teste. A Figura abaixo mostra o esquema realizado pelo *k-fold*. Ao final das k iterações calcula-se a acurácia sobre os erros encontrados, obtendo assim uma medida mais confiável sobre a capacidade do modelo de representar o processo gerador dos dados.



Figura 1. Método k-fold

Para a avaliação dos resultados alcançados na classificação, foram utilizados as seguintes métricas: a precisão ou valor preditivo positivo, taxa de sensibilidade ou taxa positiva verdadeira, especificidade ou taxa real negativa e acurácia. As Equações são apresentadas a seguir:

$$Precisao = \frac{VP}{VP + FP},\tag{4}$$

$$Sensibilidade = \frac{VP}{VP + VN},\tag{5}$$

$$Especificidade = \frac{VN}{N} = \frac{VN}{FP + VN},\tag{6}$$

$$Acuracia = \frac{VP + VN}{P + N},\tag{7}$$

onde P e N é o número de padrões de cada classe. VP é o verdadeiro positivo. VN é o verdadeiro negativo. FP é o falso positivo e FN é o falso negativo.

# 3. Conjuntos de Dados

. Para análise comparativas neste estudo, foram usados quatro conjuntos de dados: *Iris Flower Data Set*, *Vertebral Column Data Set*, *Dermatology Data Set* e *Breast Cancer Wisconsin Data Set*; todos disponíveis online no repositório *UCI Machine Learning* [Lichman 2013].

O banco de dados da Íris¹ é o conjunto mais conhecido que se encontra na literatura de reconhecimento de padrões. O conjunto de dados contém 3 classes de 50 instâncias cada, onde cada classe se refere a um tipo de planta de íris. Uma classe é linearmente separável das outras 2 classes.

Informações dos atributos:

- 1. Tamanho da sépala em cm
- 2. Largura da sépala em cm
- 3. Tamanho da pétala em cm
- 4. Largura da pétala em cm
- 5. Classe:
  - (a) Iris Setosa
  - (b) Iris Versicolour
  - (c) Iris Virginica

Já o conjunto de dados da Coluna Vertebral<sup>2</sup> contém seis valores para características biomecânicas usadas para classificar pacientes ortopedistas em 3 classes (normal, hérnia de disco ou espondilolistese) ou 2 classes (normal ou anormal). Foi utilizado nessa prática o conjunto com três classes.

Informações dos atributos:

- 1. Incidência pélvica
- 2. Inclinação pélvica
- 3. Ângulo de lordose lombar

 $<sup>^{1}</sup>Disponivel\ em\ https://archive.ics.uci.edu/ml/datasets/iris$ 

<sup>&</sup>lt;sup>2</sup>Disponível em http://archive.ics.uci.edu/ml/datasets/vertebral+column

- 4. Inclinação sacra
- 5. Raio pélvico
- 6. Grau de espondilolistese
- 7. Classe:
  - (a) Hérnia de Disco (DH)
  - (b) Espondilolistese (SL)
  - (c) Normal (NO)
  - (d) Anormal (AB)

O banco de dados de Dermatologia<sup>3</sup> é constituído de 34 atributos. Esse banco é parte de um estudo que aponta o tipo de Eryhemato-Squamous Disease, uma doença de pele.

Informações dos atributos (valores de 0 a 3, exceto quando indicado):

- 1. Eritema
- 2. Escala
- 3. Fronteiras Definidas
- 4. Coceira
- 5. Fenômeno Koebner
- 6. Pápulas Poligonais
- 7. Pápulas Foliculares
- 8. Envolvimento da Mucosa Oral
- 9. Envolvimento no Joelho e no Cotovelo
- 10. Envolvimento do Couro Cabeludo
- 11. Histórico Familiar (0 ou 1)
- 12. Atributos Histopatológicos

:

- 33. Atributos Histopatológicos
- 34. Idade (Classe de 1 a 6)

E o banco de dados de Câncer de Mama<sup>4</sup> é constituído de 10 atributos. Informações dos atributos:

- 1. Número do código de amostra (número de identificação)
- 2. Clump Espessura (1 10)
- 3. Uniformidade do tamanho da célula (1 10)
- 4. Uniformidade da forma da Célula (1 10)
- 5. Adesão Marginal (1 a 10)
- 6. Tamanho Único de Células Epiteliais (1 10)
- 7. Núcleos Nus (1 10)
- 8. Cromatina Branda (1 a 10)
- 9. Nucleoli Normal (1 10)
- 10. Mitoses (1 10)
- 11. Classe (2 para benigno, 4 para maligno)

<sup>&</sup>lt;sup>3</sup>Disponível em http://archive.ics.uci.edu/ml/datasets/dermatology

<sup>&</sup>lt;sup>4</sup>Disponível em https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+\%280riginal\%29

# 4. Simulações Computacionais

Para realizar os experimentos, foi utilizado um computador com a seguinte configuração: processador Intel(R) Core(TM) i7-6500U a 2.5 GHz com 8 GB de RAM e executando Windowns 10. Além disso, foi utilizado a linguagem de programação MATLAB. Todos os testes foram feitos com 50 realizações em cada base.

No classificador KNN foi utilizado o busca em grade com validação cruzada *k-fold* para encontrar o melhor k, o intervalo variou de 1 até 31, incrementando de 2 em 2. A Tabela 1 mostra os resultados do KNN em todas as bases de dados, levando em consideração as métricas já mencionadas.

|                | Bases de Dados |             |             |              |        |            |  |
|----------------|----------------|-------------|-------------|--------------|--------|------------|--|
| Métricas       | Íris           | Coluna (3C) | Coluna (2C) | Dermatologia | Câncer | Artificial |  |
| Acurácia       | 96,40          | 76,84       | 100,00      | 97,03        | 100,00 | 100,00     |  |
| Taxa Mínima    | 86,67          | 67,29       | 100,00      | 94,59        | 100,00 | 100,00     |  |
| Taxa Máxima    | 100,00         | 87,10       | 100,00      | 100,00       | 100,00 | 100,00     |  |
| Desvio Padrão  | 03,42          | 04,34       | 00,00       | 01,87        | 00,00  | 00,00      |  |
| Sensibilidade  | 96,57          | 73,38       | 100,00      | 96,63        | 100,00 | 100,00     |  |
| Especificidade | 98,19          | 84,41       | 100,00      | 99,43        | 100,00 | 100,00     |  |
| Precisão       | 96,36          | 74,04       | 100,00      | 96,82        | 100,00 | 100,00     |  |
| Tempo (s)      | 40,89          | 81,21       | 89,77       | 115,36       | 262,39 | 20,92      |  |
| Intervalo de k | [3-11]         | [13-27]     | [1]         | [3-13]       | [1]    | [1]        |  |

Tabela 1. Resultados do KNN.

A Tabela 2 mostra os resultados do DMC em todas as bases de dados, levando em consideração as métricas já mencionadas.

|                | Bases de Dados |             |             |              |        |            |  |  |
|----------------|----------------|-------------|-------------|--------------|--------|------------|--|--|
| Métricas       | Íris           | Coluna (3C) | Coluna (2C) | Dermatologia | Câncer | Artificial |  |  |
| Acurácia       | 94,00          | 75,19       | 100,00      | 96,49        | 99,03  | 100,00     |  |  |
| Taxa Mínima    | 83,33          | 66,13       | 100,00      | 90,54        | 97,86  | 100,00     |  |  |
| Taxa Máxima    | 100,00         | 88,71       | 100,00      | 100,00       | 100,00 | 100,00     |  |  |
| Desvio Padrão  | 04,47          | 05,27       | 00,00       | 02,02        | 00,64  | 00,00      |  |  |
| Sensibilidade  | 94,23          | 72,50       | 100,00      | 95,96        | 99,62  | 100,00     |  |  |
| Especificidade | 97,03          | 87,00       | 100,00      | 99,30        | 97,90  | 100,00     |  |  |
| Precisão       | 94,19          | 74,07       | 100,00      | 96,34        | 98,92  | 100,00     |  |  |
| Tempo (s)      | 00,24          | 00,29       | 00,20       | 00,36        | 00,21  | 00,15      |  |  |

Tabela 2. Resultados do DMC.

A Figura 2 apresenta uma matriz de confusão de cada base de dados. Essa matriz é a matriz que ficou mais perto da acurácia.



Figura 2. Matriz de Confusão para o KNN.

A Figura 3 apresenta a superfície de decisão para a base de dados da Íris e da Coluna com o classificador KNN.



Figura 3. Superfície de decisão para Íris e Coluna do classificador KNN.

Na Figura 4 é apresentada a superfície de decisão para três bases artificiais com o classificador KNN.



Figura 4. Superfície de decisão do classificador KNN.

A Figura 5 apresenta uma matriz de confusão de cada base de dados. Essa matriz é a matriz que ficou mais perto da acurácia.



Figura 5. Matriz de Confusão para o DMC.

Na Figura 6 é apresentada o superfície de decisão para três bases com o classificador DMC.



Figura 6. Superfície de decisão do classificador DMC.

#### 5. Resultados

Analisando os experimentos, pode-se visualizar que em geral, os dois classificadores se sai muito bem tanto na classificação de padrões, chegando a taxas de acerto de 100% quase em sua totalidade em algumas bases de dados. A base Iris tem as classes bastante separadas, tornando fácil encontrar retas que separe-as. Já em bases como a Coluna Vertebral e a Dermatologia, onde dados de diferente classes sobrepõem-se, pode-se ver que o desempenho da taxa de acerto decai. Na base do Câncer foi obtido ótimo desempenho. Já com a base de dados gerada artificialmente, o resultado já era esperado obter 100% de acerto, visto que as classes são separáveis uma das outras.

Analisando o tempo computacional, o classificador KNN demorou mais em relação ao DMC, isso pode se dá porque foi utilizada a busca em grade para obter o melhor k, e também dependendo do valor de k, o custo poderá ser ainda maior.

#### Referências

Lichman, M. (2013). UCI machine learning repository. http://archive.ics.uci.edu/ml. Acesso em março de 2019.