

Universidade Federal de Santa Catarina Centro Tecnológico

Departamento de Informática e Estatística Curso de Graduação em Ciências da Computação

Sistemas Digitais

INE 5406

Aula 2-P

Simulação gate-level de um somador completo com o ModelSim.

Prof. José Luís Güntzel guntzel@inf.ufsc.br

Colaboração: Vinícius Livramento (Est. Docência 2010/1) vini@inf.ufsc.br

www.inf.ufsc.br/~guntzel/ine5406/ine5406.html

Introdução à Linguagem VHDL

Exemplo: um Full Adder

LIBRARY ieee; USE ieee.std_logic_1164.all;

ENTITY somador1bit IS

PORT (cin, a, b : IN STD_LOGIC;

s, cout : OUT STD_LOGIC);

END somador1bit;

ARCHITECTURE comportamento OF somador1bit IS BEGIN

s <= a XOR b XOR cin;
cout <= (a AND b) OR (a AND cin) OR (b AND cin);
END comportamento;</pre>

Fluxo de Projeto para FPGAs

Sistemas Digitais - semestre 2010/2

Experimento 1: descrição/compilação e simulação de um SC

Preparação dos Estímulos para a Simulação

Solução trivial (ingênua): Transformar a tabela-verdade em formas de onda

cin	а	b	cout	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Observações:

- 1. Preencher a mão as waveforms (formas de onda) esperadas para as saídas para confrontá-la com o resultado da simulação.
- 2.T deve ser maior que "longest tpd" reportado pelo Quartus II.

Experimento 1: descrição/compilação e simulação de um SC

- A verificação será feita por meio de simulação no nível lógico com atrasos com a ferramenta ModelSim da Mentor Graphics, versão Altera. (O ModelSim chama este tipo de simulação de "gate level simulation".)
- As próximas transparências mostram como configurar o ModelSim-Altera e como realizar a simulação.

Definir o caminho do Modelsim-Altera

Abrir a ferramenta Modelsim-Altera

Iniciar simulação "Gate-Level"

Iniciar simulação "Gate-Level"

Alterar opções de simulação

Adicionar os sinais às "waveforms"

Alterar a unidade de tempo das "waveforms"

Alterar o "zoom range" das "waveforms"

Arquivo de estímulos de entrada


```
#força a entrada cin para 0 no tempo 0 ns
#força cin para 1 no tempo 80 ns, repete a cada 160 ns
force /cin 0 0 ns, 1 80 ns -r 160 ns
force /a      0 0 ns, 1 40 ns -r 80 ns
force /b      0 0 ns, 1 20 ns -r 40 ns
```


Criar novo arquivo de estímulos de entrada

Salvar arquivo de estímulos de entrada

Executar arquivo de estímulos de entrada

Executar 100ns de simulação

Executar mais 100ns de simulação

Analisar os resultados da simulação

Executar arquivo de estímulos de entrada

Executar 100ns de simulação

Analisar os resultados da simulação

