On predicting wind turbine noise and amplitude modulation using Amiet's theory

Samuel Sinayoko¹ Jeremy Hurault²

¹University of Southampton, ISVR, UK ²Vestas, Isle of Wight, UK

Wind Turbine Noise 2015, Glasgow, 22 April 2015

Introduction

Motivation

Long term objective: Develop an efficient numerical tool for designing low noise wind turbine blades.

Introduction

Strategy

- Propagation: develop and validate noise prediction code based on Amiet's theory for:
 - time averaged spectra
 - amplitude modulation
 - trailing edge noise and inflow noise
- Source: assess existing semi-analytical models against experimental data
- Blade optimization
 - → Current study focuses on first step

Paper key objectives

- Review Amiet's theory and hightlight key challenges
- Present our first comparison against measured data
- Showcase the key advantages of the theory

Outline

- Amiet's theory and prediction methodology
- 2 Results
- 3 Conclusions

Outline

- Amiet's theory and prediction methodology
- Results
- 3 Conclusions

Amiet's theory for solated airfoils

- Amiet 1974, 1975, 1976
- Leading edge noise

$$S'_{pp}(\omega, \mathbf{x}) = B |\Psi_{LE}(\mathbf{K}, k_c)|^2 \Phi_{ww}(\mathbf{K})$$

Amiet's theory for solated airfoils

- Amiet 1974, 1975, 1976
- Leading edge noise

$$S'_{pp}(\omega, \mathbf{x}) = B |\Psi_{LE}(\mathbf{K}, k_c)|^2 \Phi_{ww}(\mathbf{K})$$

Trailing edge noise

$$S'_{pp}(\omega, \mathbf{x}) = A |\Psi_{TE}(\mathbf{K}, k_c)|^2 l_S(\mathbf{K}) S_{qq}(\omega)$$

Key pitfalls

- Common definitions of $|\Psi_{TE}|^2$ become singular for certain observer angles.
- ② Frequency spectrum $S_{qq}(\omega)$ is wall pressure spectrum.

Amiet's theory for rotating blades

Rotating blade element

Amiet's theory for rotating blades

- Split blade into segments larger than l_S
- For each segment, use isolated airfoil theory to estimate the instantaneous PSD $S_{pp}(\omega,t,x)$

$$\Delta\omega S_{pp}(\omega, t, x) = \Delta\omega' S'_{pp}(\omega', t', x')$$
$$\Delta\omega' = D\Delta\omega$$
$$S_{pp}(\omega, t, x) = DS'_{pp}(\omega', t', x')$$

• Integrate over one period $T = 2\pi/\Omega$

$$S_{pp}(\omega) = \frac{1}{T} \int_0^T S_{pp}(\omega, t) dt$$
$$dt = Ddt'$$
$$S_{pp}(\omega, x) = \frac{1}{T} \int_0^T D^2 S_{pp}(\omega, t', x') dt'$$

• Assume blade in rectilinear motion to derive Doppler shift D:

$$D = 1 - M_{BO} \cdot \sigma / (1 + M_{FB} \cdot \sigma)$$

Key pitfalls and remarks

- Amiet's theory provides both averaged PSD and instantaneous PSD.
- ② Doppler shift exponent is 1 for instantaneous PSD and 2 for stationary PSD

$$\begin{split} S_{pp}(\omega,t,\boldsymbol{x}) &= DS'_{pp}(\omega',t',\boldsymbol{x'}) \\ S_{pp}(\omega,\boldsymbol{x}) &= \frac{1}{T} \int_0^T D^2 S_{pp}(\omega,t',\boldsymbol{x'}) dt' \end{split}$$

Pitfall: in blade frame, observer position x' is relative to the retarded source position

$$x_e = x_s + M_{FO}c_0T_e$$

Validation and details in Sinayoko, Kingan and Agarwal (2014).

Aerodynamics

Chordwise Mach number M_{ch} and angle of attack AoA needed for each blade segment.

- Use Blade Element Momentum code PYRO to get M_{ch} and AoA given wind speed and rotation speed;
- Use Xfoil or measurements to get lift and drag coefficients needed by PYRO;
- Use Xfoil to get boundary layer thickness δ^* needed for $S_{q\,q}$ model.

Outline

- Amiet's theory and prediction methodology
- 2 Results
- 3 Conclusions

Test case

Blade geometry: DAN-AERO (Masden et al 2010)

Tower: 58 m

Rotor radius: 40 m

Wind speed: 8.5 m/s

Rotation speed: 18.14 RPM

Absorption coefficients: ISO-96-132 with 10°C and 70% humidity

Results

Results

Effect of turbulence intensity scale

Effect of turbulence intensity scale

Effect of turbulence intensity scale

Amplitude modulation

Amplitude modulation

Outline

- Amiet's theory and prediction methodology
- 2 Results
- 3 Conclusions

Conclusions

Achievements

- Reviewed Amiet's theory
- Code for predicting wind turbine noise using Amiet's theory
- Inflow noise dominates at low frequencies
- Total noise is:
 - Sensitive to axial turbulence intensity level (+2 dBA from 5% to 20%)
 - Insensititive to integral length scale (-0.7 dBA from 20m to 160m)

Conclusions

Achievements

- Reviewed Amiet's theory
- Code for predicting wind turbine noise using Amiet's theory
- Inflow noise dominates at low frequencies
- Total noise is:
 - Sensitive to axial turbulence intensity level (+2 dBA from 5% to 20%)
 - Insensititive to integral length scale (-0.7 dBA from 20m to 160m)

Future work

- Investigate alternative trailing edge frequency spectra;
- Develop new source modelling techniques if needed;
- Improve AM predictions in rotor plane;
- Optimize a wind turbine blade for low noise and/or low AM.

Acknowledgements

Institute of Sound and Vibration Research

Also: Anurag Agarwal, Mitsubishi Heavy Industries, Phil Joseph.

Acknowledgements

Institute of Sound and Vibration Research

Also: Anurag Agarwal, Mitsubishi Heavy Industries, Phil Joseph. Further information

http://www.sinayoko.com

http://bitbucket.org/sinayoko

s.sinayoko@soton.ac.uk

@sinayoko

Acknowledgements

Institute of Sound and Vibration Research

Also: Anurag Agarwal, Mitsubishi Heavy Industries, Phil Joseph. Further information

http://www.sinayoko.com

http://bitbucket.org/sinayoko

s.sinayoko@soton.ac.uk

@sinayoko