VERSUCH NUMMER US1

Scanverfahren in der Ultraschalltechnik

Celina Kortmann celina.kortmann@tu-dortmund.de

Jan Lucca Viola janlucca.viola@tu-dortmund.de

Durchführung: 13.06.2023 Abgabe: 20.06.2023

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Ziel	1
2	Theorie	1
3	Aufbau	1
4	Durchführung 4.1 Untersuchung des Acrylblocks mit dem A-Scan 4.2 Untersuchung des Auflösungsvermögens 4.3 Untersuchung des Acrylblocks mit dem B-Scan 4.4 Untersuchung eines Brustmodells mit einem B-Scan	2 2
5	Auswertung 5.1 Fehlerrechnung	4
6	Diskussion 6.1 Untersuchung des Acrylblocks mit einem A-Scan	5
Lit	eratur	7
	Anhang	9

1 Ziel

2 Theorie

3 Aufbau

Der Versuchsaufbau besteht aus einem Ultraschallechoskop und Ultraschallsonden verschiedener Frequenzen. Die Ultraschallsonden können sowohl für das Impuls-Echo-Verfahren als auch für das Durchschallungsverfahren genutzt werden. Für die Datenaufnahme wird ein Rechner mit dem Programm A-Scan verwendet. In dem Versuch wird ein Acrylblock mit 11 Bohrungen, welcher in Abbildung 1 schematisch dargestellt ist, und ein Brustmodell mittels Ultraschall untersucht.

Abbildung 1: Schematische Darstellung des verwendeten Acrylblocks [5].

4 Durchführung

Zuerst wird der Acrylblock mit einer Schieblehre ausgemessen. Neben der Höhe, Tiefe und Breite des Acrylblocks werden außerdem die Positionen und Durchmesser der Bohrungen bestimmt.

Danach werden für sieben Bohrungen die Laufzeiten mittels des Impuls-Echo-Verfahrens gemessen, um damit die Schallgeschwindigkeit und die Dicke der Anpassungsschicht zu bestimmen.

4.1 Untersuchung des Acrylblocks mit dem A-Scan

Nun werden mittels eines A-Scans die Größe und Positionen aller Bohrungen bestimmt. Dazu wird die 2-MHz-Sonde verwendet. Als Kontaktmittel zwischen dem Acrylblock und der Sonde dient destilliertes Wasser. Danach wird der Acrylblock umgedreht und erneut ein A-Scan von allen Bohrungen aufgenommen.

4.2 Untersuchung des Auflösungsvermögens

Um das Auflösungsvermögen zu bestimmen, werden die beiden benachbarten Bohrungen 1 und 2 mit einer 1-MHz-Sonde und einer 2-MHz-Sonde untersucht und die erhaltenen Graphen dann miteinander verglichen.

4.3 Untersuchung des Acrylblocks mit dem B-Scan

Erneut wird der Acrylblock von beiden Seiten mit einer 2-MHz-Sonde untersucht. Dabei wird ein B-Scan beider Seiten erstellt, um die Abmessungen der Bohrungen zu bestimmen.

4.4 Untersuchung eines Brustmodells mit einem B-Scan

Zuerst wird dei ungefähre Lage der beiden Tumore in dme Brustmodell ertastet. Nun wird mit der 2-MHz-Sonde auf einer gedachten Verbindungslinie zwischen den ertasteten Stellen ein B-Scan aufgezeichnet, welcher sich qualitativ erklären lässt. Hieraus ist auch die Art des Tumors bestimmbar.

5 Auswertung

5.1 Fehlerrechnung

Für die Fehlerrechnung werden folgende Formeln aus der Vorlesung verwendet. für den Mittelwert gilt

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \text{ mit der Anzahl N und den Messwerten x}$$
 (1)

Der Fehler für den Mittelwert lässt sich gemäß

$$\Delta \overline{x} = \frac{1}{\sqrt{N}} \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2} \tag{2}$$

berechnen. Wenn im weiteren Verlauf der Berechnung mit der fehlerhaften Größe gerechnet wird, kann der Fehler der folgenden Größe mittels Gaußscher Fehlerfortpflanzung berechnet werden. Die Formel hierfür ist

$$\Delta f = \sqrt{\sum_{i=1}^{N} \left(\frac{\partial f}{\partial x_i}\right)^2 \cdot (\Delta x_i)^2}.$$
 (3)

Tabelle 1: Abmessungen der einzelnen Bohrungen

Bohrung	Abstand von unten in mm	Abstand von oben mm	Durchmesser d in mm
1	59.0	19.2	1.7
2	60.7	17.5	1.7
3	13.2	60.6	6.0
4	21.7	53.2	5.0
5	30.0	45.6	4.0
6	38.6	38.0	3.0
7	46.6	29.8	3.0
8	54.7	22.8	3.0
9	62.7	13.7	3.0
10	70.7	6.8	3.0
11	15.3	54.4	9.9

5.2 Bestimmung der Schallgeschwindigkeit und der Dicke der Anpassungsschicht

Die Abmessungen der einzelnen Bohrungen befinden sich in Tabelle 1. Die Nummerierung der Bohrungen befinden sich in Abbildung 1.

Um die Schallgeschwindigkeit und die Dicke der Anpassungsschicht zu bestimmen, werden für sieben Bohrungen die Laufzeiten bestimmt. Diese befinden sich in Tabelle 2.

Tabelle 2: Messwerte der Laufzeiten der einzelnen Bohrungen

Bohrung	Laufzeit t in μ s
3	45.4
4	39.9
5	34.4
6	29.0
7	23.0
8	17.1
9	11.1

Nun werden die Abstände der Bohrungen von der oberen Fläche gegen die Hälfte der Laufzeiten aufgetragen (da die Strecke bis zum Loch zweimal durchlaufen wird) und eine Ausgleichsgerade gebildet. Diese befinden sich in Abbildung 2.

Die Schichtdicke entspricht dem Betrag des y-Achsenabschnitt

$$d = |b| = |(-1.1 \pm 0.4) \,\mathrm{mm}| = (1.1 \pm 0.4) \,\mathrm{mm}$$
.

Die Schallgeschwindigkeit in Acryl ergibt sich über die Steigung der Ausgleichsgeraden

$$v = (2.718 \pm 0.025) \, \frac{\text{mm}}{\text{µs}} = (2718 \pm 25) \, \frac{\text{m}}{\text{s}} \, .$$

Abbildung 2: Regression zur Bestimmung der Schallgeschwindigkeit und der Dicke der Anpassungsschicht.

5.3 Untersuchung des Acrylblocks mit einem A-Scan

Die Messwerte des A-Scans von der oberen und unteren Seite des Acrylblocks befinden sich in Tabelle 3. Dabei wurden die Tiefenmessungen mit der Schichtdicke korrigiert. Mithilfe der korrigierten Werte und der gemessenen Gesamthöhe des Blocks $h=79.9\,\mathrm{mm}$ ergibt sich über

$$d = h - a_{\rm ob} - a_{\rm unt}$$

der Durchmesser der einzelnen Bohrungen, welcher ebenfalls in Tabelle 3 dargestellt ist.

Tabelle 3: Messwerte der Tiefe der einzelnen Bohrungen sowie dessen Durchmesser.

		oben		unten	
Bohrung	Tiefe mm	nach Korrektur mm	Tiefe mm	nach Korrektur mm	d mm
1	20.6	19.5	60.4	59.3	1.1
2	19.0	17.9	62.0	60.9	1.1
3	62.0	60.9	14.5	13.4	5.6
4	54.5	53.4	23.0	21.9	4.6
5	46.9	45.8	31.6	30.5	3.6
6	39.5	38.4	40.1	39.0	2.5
7	31.4	30.3	47.9	46.8	2.8
8	23.3	22.2	56.0	54.9	2.8
9	15.2	14.1	64.1	63.0	2.8
10	7.2	6.1		_	
11	55.8	54.7	16.8	15.7	9.5

Die zehnte Bohrung konnte von unten nicht gemessen werden, da die elfte Bohrung direkt

davor liegt und nicht genug Ultraschallwellen zu der zehnten Bohrung transmittiert werden, sodass diese messbar wäre.

5.4 Untersuchung des Auflösungsvermögens

Hier wurden die Bohrungen eins und zwei mit einem A-Scan untersucht. Dabei werden die Untersuchungen mit einer 1-MHz-Sonde und einer 2-MHz-Sonde miteinander verglichen. Die Graphik der 1-MHz-Sonde befindet sich in Abbildung 3 und die der 2-MHz-Sonde in Abbildung 4.

Abbildung 3: Graphik der 1-MHz-Sonde.

Abbildung 4: Graphik der 2-MHz-Sonde.

6 Diskussion

Bei der Messung der Schallgeschwindigkeit kann der experimentelle Wert $v=(2718\pm25)\,\mathrm{m/s}$ mit dem theoretischen Wert 2700 m/s verglichen werden. Die experimentell bestimmte Schallgeschwindigkeit stimmt im Rahmen der Fehlerabweichung mit dem theoretischen Wert überein. Die Abweichung zwischen beiden Werten beträgt 0.6 %.

6.1 Untersuchung des Acrylblocks mit einem A-Scan

Sowohl die Werte des A-Scans als auch die Ergebnisse des B-Scans lassen sich mit den mit der Schieblehre ausgemessenen Werten sowie untereinander vergleichen.

Die Abweichungen des A-Scans zu den mit der Schieblehre gemessenen Werten sind in Tabelle 4 dargestellt.

Tabelle 4: Abweichungen zwischen dem A-Scan und den mit der Schieblehre bestimmten Werten.

	Abweichung der Messungen			
Bohrung	von unten	von oben	Durchmesser	
1	0.5	1.6	35.3	
2	0.3	2.3	35.3	
3	1.5	0.5	6.7	
4	0.9	0.4	8.0	
5	1.7	0.4	10.0	
6	1.0	1.1	16.7	
7	0.4	1.7	7.7	
8	0.4	2.6	7.7	
9	0.5	2.9	7.7	
10	5.9	_	_	
11	2.6	0.6	4.0	

Dass die Messwerte nicht genau übereinstimmen, kann an ungenauen Messungen mit der Schieblehre sowie der Ungenauigkeit der Dicke der Anpassungsschicht liegen, die sich auf die Messergebnisse des A-Scans fortpflanzt. Die Abweichungen sind allgemein bei kleineren Messwerten größer, da bei einer kleinen Größenordnung der Messfehler mehr ins Gewicht fällt. Allgemein lässt sich sagen, dass die Messung mittels Ultraschall/A-Scan vermutlich genauere Ergebnisse liefert.

Literatur

- [1] Charles R. Harris u. a. "Array programming with NumPy". In: *Nature* 585.7825 (Sep. 2020), S. 357–362. DOI: 10.1038/s41586-020-2649-2. URL: https://doi.org/10.1038/s41586-020-2649-2.
- [2] John D. Hunter. "Matplotlib: A 2D Graphics Environment". Version 1.4.3. In: Computing in Science & Engineering 9.3 (2007), S. 90–95. DOI: 10.1109/MCSE.2007.55. URL: http://matplotlib.org/. Current version 3.4.3, DOI: 10.5281/zenodo.5194481.
- [3] Eric O. Lebigot. *Uncertainties: a Python package for calculations with uncertainties.* Version 2.4.6.1. URL: http://pythonhosted.org/uncertainties/.
- [4] The pandas development team. pandas-dev/pandas: Pandas. Version latest. Feb. 2020. DOI: 10.5281/zenodo.3509134. URL: https://doi.org/10.5281/zenodo.3509134.
- [5] Versuchsanleitung zu Versuch Nr. US1 Scanverfahren in der Ultraschalltechnik. Fakultät Physik, TU Dortmund. 2023.
- [6] Pauli Virtanen u. a. "SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python". In: *Nature Methods* 17 (2020), S. 261–272. DOI: 10.1038/s41592-019-0686-2.

Anhang

USI-Scanv	ersahren in der Altrachalltechnik	
. 1. Alsmessun	g des terylloloties 10,1 mm	
Hohe	79,9 mm	
Breite: 10	19,3 mm	
* Trefe: 41	Ann	
l. Bahrung	von unten: 59,0 mm	
	von oben. 19,2 mm	
	Durchmeser (Mumm) 1,7m	m
2 Bohrung	von unten 60,7 mm	
	von oben: 17,5 mm	
	Durchnesser: 1,7 mm	
3. Bohrung	von unten: 13,2 mm	
	von oben: 60,6mm	
	Durchmesser, 6,0 mm	
u. Bohrung	von unten: 21,7mm	
À	von oben: 53,2 mm	
	Durchmesser: 5,0mm	
J. Bohrung	von unten 30,0mm	
5. 150 (1 01 3)	von chen 45,6 mm	
	Durchnesser 4.0 mm	
G. Bohrung	von unter: 38,6 mm	
6 801019	von oben: 38 0mm	
	Durchmester: 3,0 mm	
	von unter: U6,6 mm	
7. Bohrung	von oben: 29,8 mm	
8. Behrung		
	Von oben: 22,8mm	802
	Durchmesser. 3,0 mm	

4. Bohrung	von unter: Oxi+ma	7	
Y .	von oben: 13,7mm		
	Durchmesser 3,0 mm		
10. Bohrung	von unten: 70,7mm		
	von oben: 6,8 mm		
	Durchmessen: 3,0 mm		
· M. Bohrung:	von unten: 15,3 mm		
30/10/9	von oben: 54,4 mm		
00 00 00	Durchmesser: 9,9 mm		
2. Schallgesch			
195 Pupl			
17, 1 215			
23,0 µs	. 7		
29,0 US			
34,4 11.	\$ 5		
39,9 μ	3		
45,4 1	3		
11,1,100	3		
3. A-Scan			
Bohrung	Tiefe	Bohnung	Tiefe
1	19,0mm 20,6mm	8	23,3mm
2	20,6 mm 19,0 mm	9	15,2mm
3	62 0mm	10.	£,2mm.
9	24.2 mm	11	22'8WW
			20 (2) [7]
5	46.9 mm		
6	3915 mm		
F	31,4 mm		Run

441	zucheite:		0 1 3	100
	Bohrung	Tiefe	Bohrung	Tiefe
		60,4mm	1	uz, 9mm
	2	62,0 mm	8	56,0mm
	3	14,5 mm	9	64, Imm
++-	- 9	23,0mm	10	
	5	31.6mm	11	16.8mm
++	6	40, lmm		
3	5. 1 MHZ-S	Sande		
	1. Bohrur		n: G1, 9mm	
		Vonobe	n: 21,2 24,	Gmm
	2. Bohran	a von une	en: G.A. am	n 66,1 mm
		von ak	en: 21,2 mm	
	> Messeina	y ungenall, sch	sdo pension	ilesen
1 4	. B-Scan		Y	
	Bohma	inefe 3	ohrung Tref	e
	1	21,1 mm	Q	9mm
		19,3 mm		Emm
	2	69 Umm.	9 15	8 mm
	3	62, Umm .		8 mm
	3	55.1 mm	10 8,0	Dmm
	3	55,1 mm 47,5 mm	10 8,0	
	3	55,1 mm 47,5 mm 40,1 mm	10 8,0	2 mm
	3 . y . 5 . 6 . Solving	55,1mm 47,5mm 40,1mm	10 8,0 11 56, Bohrung Tie	2 mm
	3 	55,1 mm 47,5 mm 40,1 mm Tiefe 247,60,8 mm	10 8,0 11 56, Bohung Tie	2 mm 2 mm fe 7mm US,7mm
	3 . y . 5 . 6 . Solving	55,1 mm 47,5 mm 40,1 mm TIER 247,60,8 mm 62,2 mm	10 8,0 11 56, Bohrung Tie 7 40	Dmm 2 mm fe 7mm US, Fmm 7mm SG, Umm
	3 	55,1 mm 47,5 mm 40,1 mm TIGE 247,60,8 mm 62,2 mm 14,9 mm	10 8,0 11 56, Bohrung Tie 7 40 8 48,	Dmm 2 mm fe 7mm U8,7mm 4mm SG,Umm
	3 	55,1 mm 47,5 mm 40,1 mm TIER 247,60,8 mm 62,2 mm	10 8,0 11 56, Bohnung Tie 7 40, 8 48, 9 56, 10 64,	Dmm 2 mm fe 7mm US, Fmm 7mm SG, Umm