Heat Equation: Existence and Uniqueness

MSO-203B

Indian Institute of Technology, Kanpur kaushik@iitk.ac.in

November 9, 2016

Introduction

Heat Equation

We will be interested in the question of existence and uniqueness of the equation:

We want our solution $u(x, t) \to 0$ as $x \to \infty$.

Solution via Separation of Variable

Solution of the Heat Equation

We look for solution u(x, t) = X(x)T(t) of the Heat equation satisfying the Initial and Boundary conditions. Hence one has,

$$u_{xx} = X''(x)T(t)$$
 and $u_t = X(x)T'(t)$

and hence we have.

$$\frac{T'(t)}{T(t)} = \frac{X''(x)}{X(x)} = -\lambda$$

and the BC becomes

$$u(0,t)=X(0)T(t)=0$$

and

$$u(1, t) = X(1)T(t) = 0$$

Solution via Separation of Variable

Solution of the Heat Equation

Taking T(t) = 0 we will get u(x, t) = 0 which contradicts the fact the Initial conditions.

Solution via Separation of Variable

Solution of the Heat Equation

Taking T(t) = 0 we will get u(x, t) = 0 which contradicts the fact the Initial conditions.

Non-trivial Solution

If f(x) is not zero for all 0 < x < 1 then T(t) cannot be zero and the equations are satisfied only if

$$X(0)=X(1)=0$$

and so the problem boils down to solving

$$X''(x) + \lambda X(x) = 0$$
 for $0 < x < 1$

with the condition that X(0) = X(1) = 0

4014914714717

Analysis of the SL problem

• When $\lambda < 0$ then there are no eigenfunctions.

Analysis of the SL problem

- \bullet When $\lambda < 0$ then there are no eigenfunctions.
- When $\lambda = 0$ there are still no eigenfunctions.

Analysis of the SL problem

- When $\lambda < 0$ then there are no eigenfunctions.
- When $\lambda = 0$ there are still no eigenfunctions.
- When $\lambda > 0$ we have, $X(x) = A\cos(\sqrt{\lambda}x) + B\sin(\sqrt{\lambda}x)$ which gives $\lambda_n = n^2\pi^2$ for $n \in \mathbb{N}$ and the eigenfunctions are $X_n(x) = B_n\sin(n\pi x)$.

Analysis of the SL problem

- When $\lambda < 0$ then there are no eigenfunctions.
- When $\lambda = 0$ there are still no eigenfunctions.
- When $\lambda > 0$ we have, $X(x) = A\cos(\sqrt{\lambda}x) + B\sin(\sqrt{\lambda}x)$ which gives $\lambda_n = n^2\pi^2$ for $n \in \mathbb{N}$ and the eigenfunctions are $X_n(x) = B_n\sin(n\pi x)$.

Solving for T(t)

Since the nontrivial solutions arose for $\lambda_n = n^2 \pi^2$ we have

$$T'(t) = -n^2 \pi^2 T(t)$$

whose solutions are

$$T_n = c_n \exp(-n^2 \pi^2 t)$$
 for $n \in \mathbb{N}$

Incorporating the boundary conditions

Using the Principle of Superposition we have,

$$u(x,t) = \sum_{n=0}^{\infty} u_n(x,t) = \sum_{n=0}^{\infty} B_n \sin(n\pi x) \exp(n^2 \pi^2 t)$$

Incorporating the boundary conditions

Using the Principle of Superposition we have,

$$u(x,t) = \sum_{n=0}^{\infty} u_n(x,t) = \sum_{n=0}^{\infty} B_n \sin(n\pi x) \exp(n^2 \pi^2 t)$$

The Final Solution

Using Fourier Sine series we have,

$$u(x,t) = \sum_{n=0}^{\infty} B_n \sin(n\pi x) \exp(n^2 \pi^2 t)$$

where $B_n = 2 \int_0^1 \sin(m\pi x) f(x) dx$.

Uniqueness Theorem

The Heat equation given by

$$u_t = c^2 u_{xx}; \text{ in } (0,1) \times (0,\infty)$$

 $u(x,0) = f(x); \text{ for } x \in (0,1)$
 $u(0,t) = u(1,t) = 0; \text{ for } t \in (0,\infty)$

has atmost one solution in $u \in C_1^2(\overline{(0,1) \times (0,\infty)})$.

7 / 9

Proof of uniqueness Theorem

Consider the two solution u_1 and u_2 in $C_1^2((0,1)\times(0,\infty))$ to the Heat equation.

Define, $v = u_1 - u_2$ then one had that v satisfies

$$egin{aligned} v_t &= c^2 v_{ ext{xx}}; & ext{in } (0,1) imes (0,\infty) \ v(x,0) &= 0; & ext{for } x \in (0,1) \ v(0,t) &= v(1,t) = 0; & ext{for } t \in (0,\infty) \end{aligned}$$

Proof of uniqueness Theorem

Consider the two solution u_1 and u_2 in $C_1^2((0,1)\times(0,\infty))$ to the Heat equation.

Define, $v = u_1 - u_2$ then one had that v satisfies

$$egin{aligned} v_t &= c^2 v_{ ext{xx}}; & ext{in } (0,1) imes (0,\infty) \ & v(x,0) &= 0; & ext{for } x \in (0,1) \ & v(0,t) &= v(1,t) &= 0; & ext{for } t \in (0,\infty) \end{aligned}$$

Auxiliary Function

Define $V:(0,\infty)\to\mathbb{R}$ as follows:

$$V(t) = \int_0^1 v^2(x, t) dt$$

Proof of Uniqueness Theorem

We have, $V'(t)=2\int_0^1 vv_t dt=2\int_0^1 vv_{xx} dt$ which implies that

$$V'(t) = -2 \int_0^1 v_x^2 dt \le 0$$

which would imply V(0) = 0 by the initial conditions hence V = 0.