Speech Emotion Classification

•••

Support Vector Machine vs. Deep Learning

Qiyang Ma, Nathaniel Lounsbury, Christopher Woloshyn

Introduction

- Classify emotions from an audio file input.
- Train an SVM Classifier.
- Train Deep Learning architectures.
- Assess robustness by introducing noise to the data.
- Compare results.

https://www.verywellmind.com/an-overview-of-the-types-of-emotions-4163976

*Also Neutral

No noise

Preprocessing

- Toronto Emotion Speech Set (TESS).
 - 2800 files.
 - o 2 actors.
 - o 7 emotions.

- Light noise
- Mel Frequency Cepstral Coefficients (MFCC).
 - Based on human audio perception (phonemes).
 - Compared with wavelet function.
 - Consistently produces the best results.*
- Multiple Preprocessed datasets.
 - No noise.
 - Light random noise.
 - Heavy random noise.

^{*} https://research.ijcaonline.org/volume101/number12/pxc3898271.pdf

Support Vector Machine

- Parameters
 - \circ C = 50
 - Kernel = Radial Basis Function ('rbf')
 - Gamma = 'scale'
- Results (MFCC Pre; 7 Labels, 5-fold)
 - .99 accuracy with no noise
 - .99 accuracy with light noise
 - .98 accuracy with heavy noise
- Results (Wavelet Pre; 7 Labels, 5-fold)
 - .93 accuracy with no noise
 - .91 accuracy with light noise
 - .80 accuracy with heavy noise

Preprocessing comparison of 20 SVMs each.

Deep Learning

- Multi-layer Perceptron (MLP)
- Convolutional Neural Network (CNN)
- Results (MLP)
 - .90 accuracy with no noise
 - .70 accuracy with light noise
 - .43 accuracy with heavy noise
- Results (CNN)
 - .96 accuracy with no noise
 - .58 accuracy with light noise
 - .09 accuracy with heavy noise

Conclusions

- MFCC preprocessing outperforms the wavelet function.
- Support Vector Machine is quite robust against adding noise.
- Deep learning completely breaks down when adding noise.
 - MLP outperforms CNN when noise is added to the system.
 - CNN extracts features from three dimensional inputs (e.g. images).

No noise

Light noise

Heavy noise

Questions!