Sequências e Somas - Parte I Matemática Discreta

Prof. MSc. Samy Sá

Universidade Federal do Ceará Campus de Quixadá

26 de fevereiro de 2014

Outline

Prévia: Funções

Sequências

Progressões Aritméticas

Progressões Geométricas

Relações de Recorrência

Algumas Sequências Importantes

Somatórios

Propriedades do Somatório

Mudanças de Índice

Algumas Somas Importantes

Exercícios

Avisos / Tarefas

2 of 53

Outline

Prévia: Funções

Sequências

Progressões Aritméticas Progressões Geométricas

Relações de Recorrência

Algumas Sequências Importantes

Somatórios

Propriedades do Somatório Mudancas de Índice

Algumas Somas Importantes

Exercícios

Avisos / Tarefas

3 of 53

Definição

Função

Sejam S e T dois conjuntos não vazios, uma função de S para T é uma associação que leva cada elemento de S a exatamente um elemento de T. Escrevemos f(a) = b se b é o único elemento de T associado pela função f ao elemento a de S. Se f é uma função de S para T, escrevemos $f: S \to T$.

Exemplo

Dados os conjuntos:

- S = { Aldo, Bia, Carla, Dario, Edu }, clientes de uma locadora; e
- T = { Ação, Comédia, Drama, Romance, Terror }, dos gêneros de filmes disponíveis,

Exemplo

Dados os conjuntos:

- $S = \{$ Aldo, Bia, Carla, Dario, Edu $\}$, clientes de uma locadora; e
- T = { Ação, Comédia, Drama, Romance, Terror }, dos gêneros de filmes disponíveis,

Podemos ter a seguinte função $f: S \to T$ para indicar o gênero favorito de cada cliente da locadora:

```
f = \{(\textit{Aldo, Com\'edia}), (\textit{Bia, A\'ç\~ao}), (\textit{Carla, Drama}), (\textit{Dario, Terror}), (\textit{Edu, Drama})\}.
```

Exemplo

```
f = {(Aldo, Comédia), (Bia, Ação), (Carla, Drama), (Dario, Terror), (Edu, Drama)}.
```

Podemos representá-la com um gráfico:

Exemplo (Não-Função)

Figura: Uma correspondência de elementos que não é função.

				~
11	ef	ın		20
$\mathbf{\nu}$	CI		ı	au
	_		- 3	

Função Injetora _____

Uma função é dita **um para um** ou uma **injeção** se e somente se f(a) = f(b) implica que a = b para quaisquer a, b do domínio de f. Uma função é dita injetora se ela é um para um.

Definição

Função Injetora

Uma função é dita **um para um** ou uma **injeção** se e somente se f(a) = f(b) implica que a = b para quaisquer a, b do domínio de f. Uma função é dita injetora se ela é um para um.

Definição

Função Sobrejetora

Uma função $f: S \to T$ é uma **sobrejeção** se e somente se todo elemento de T é imagem de ao menos um elemento de S. Uma função é dita sobrejetora se ela é uma sobrejeção.

Uma **função** $f: S \rightarrow T$ satisfaz condições no seu domínio S:

- **1.S** Todo elemento do **domínio** tem ao menos uma imagem.
- **2.S** Nenhum elemento do **domínio** pode ter duas imagens.

Uma **função** $f: S \rightarrow T$ satisfaz condições no seu domínio S:

- **1.S** Todo elemento do **domínio** tem ao menos uma imagem.
- **2.S** Nenhum elemento do **domínio** pode ter duas imagens.

Para ser **sobrejetora**, a condição no contra-domínio T:

1.T Todo elemento do **contra-domínio** tem uma imagem inversa.

Uma **função** $f: S \rightarrow T$ satisfaz condições no seu domínio S:

- **1.S** Todo elemento do **domínio** tem ao menos uma imagem.
- **2.S** Nenhum elemento do **domínio** pode ter duas imagens.

Para ser **sobrejetora**, a condição no contra-domínio T:

- **1.T** Todo elemento do **contra-domínio** tem uma imagem inversa.
 - Para ser **injetora**, a condição no contra-domínio T:
- **2.T** Nenhum elemento do **contra-domínio** pode ter duas imagens inversas.

Figura: Diferentes tipos de funções

Outline

Prévia: Funções

Sequências

Progressões Aritméticas Progressões Geométricas

Relações de Recorrência

Algumas Sequências Importantes

Somatórios

Propriedades do Somatório Mudanças de Índice

Algumas Somas Importantes

Exercícios

Avisos / Tarefas

11 of 53

Sequências são listas ordenadas de elementos.

- Importantíssimas em matemática discreta, estruturas de dados e na especificação de diversos algoritmos.
- Buscaremos fórmulas para especificar sequências e somas dos seus termos.
- Sequências são funções (!)

Sequências são listas ordenadas de elementos.

- Importantíssimas em matemática discreta, estruturas de dados e na especificação de diversos algoritmos.
- Buscaremos fórmulas para especificar sequências e somas dos seus termos.
- Sequências são funções (!)

IMPORTANTE!!!

Lembre-se sempre de que a ordem dos elementos importa nessas listas!

Definição

Sequência

Uma sequência é uma função de um subconjunto dos inteiros I para algum outro conjunto S. Normalmente temos $I = \{0, 1, 2, ...\}$ ou $I = \{1, 2, 3, ...\}$. Em cada caso, usamos a notação a_n para nos referirmos à imagem do inteiro n. Chamamos cada a_n de um termo da sequência.

Definição

Sequência

Uma sequência é uma função de um subconjunto dos inteiros I para algum outro conjunto S. Normalmente temos $I = \{0, 1, 2, ...\}$ ou $I = \{1, 2, 3, ...\}$. Em cada caso, usamos a notação a_n para nos referirmos à imagem do inteiro n. Chamamos cada a_n de um termo da sequência.

Constatação:

Uma sequência terá assinatura $f: I \to S$, onde $I \subseteq \mathbb{Z}$.

Escreveremos $\{a_n\}$ para nos referirmos a uma sequência cujos termos serão definidos em função de n.

Exemplo

Cosidere a sequência $\{a_n\}$, onde $a_n = \frac{1}{n}$.

Escreveremos $\{a_n\}$ para nos referirmos a uma sequência cujos termos serão definidos em função de n.

Exemplo

Cosidere a sequência $\{a_n\}$, onde $a_n = \frac{1}{n}$.

A lista dos termos será a₁, a₂, a₃, a₄, ...

Escreveremos $\{a_n\}$ para nos referirmos a uma sequência cujos termos serão definidos em função de n.

Exemplo

Cosidere a sequência $\{a_n\}$, onde $a_n = \frac{1}{n}$.

- A lista dos termos será a₁, a₂, a₃, a₄, ...
- Os valores dos termos serão $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, ...$

Outline

Prévia: Funções

Sequências

Progressões Aritméticas

Progressões Geométricas

Relações de Recorrência

Algumas Sequências Importantes

Somatórios

Propriedades do Somatório

Mudanças de Índice

Algumas Somas Importantes

Exercícios

Avisos / Tarefas

15 of 53

Definição

Progressão Aritmética

Uma progressão aritmética (PA) é uma sequência da forma

$$a_0, a_0 + d, a_0 + 2d, a_0 + 3d, ..., a_0 + nd, ...,$$

onde o termo inicial a_0 e a diferença comum ou (razão aritmética) d são números reais.

Definição

Progressão Aritmética

Uma progressão aritmética (PA) é uma sequência da forma

$$a_0, a_0 + d, a_0 + 2d, a_0 + 3d, ..., a_0 + nd, ...,$$

onde o termo inicial a₀ e a diferença comum ou (razão aritmética) d são números reais.

Constatação:

Uma progressão aritmética é caracterizada pela função f(x) = dx + a. Dizemos que a PA é a análoga discreta de f(x).

Exemplo

A sequência $\{s_n\}$ com $s_n = -1 + 4n$ é uma progressão aritmética.

PERGUNTA:

Qual o primeiro termo da lista?

Exemplo

A sequência $\{s_n\}$ com $s_n = -1 + 4n$ é uma progressão aritmética.

- Qual o primeiro termo da lista? $s_0 = -1 + 4.0 = -1$
- Qual a razão aritmética da PA?

Exemplo

A sequência $\{s_n\}$ com $s_n = -1 + 4n$ é uma progressão aritmética.

- Qual o primeiro termo da lista? $s_0 = -1 + 4.0 = -1$
- Qual a razão aritmética da PA? d = 4

Exemplo

A sequência $\{s_n\}$ com $s_n = -1 + 4n$ é uma progressão aritmética.

- Qual o primeiro termo da lista? $s_0 = -1 + 4.0 = -1$
- Qual a razão aritmética da PA? d = 4
- A lista começa com −1,3,7,11,15,... (é infinita e crescente)

Exemplo

A sequência $\{t_n\}$ com $t_n = -3n + 7$ é uma progressão aritmética.

PERGUNTA:

Qual o primeiro termo da lista?

Exemplo

A sequência $\{t_n\}$ com $t_n = -3n + 7$ é uma progressão aritmética.

- Qual o primeiro termo da lista? $t_0 = -3.0 + 7 = 7$
- Qual a razão aritmética da PA?

Exemplo

A sequência $\{t_n\}$ com $t_n = -3n + 7$ é uma progressão aritmética.

- Qual o primeiro termo da lista? $t_0 = -3.0 + 7 = 7$
- Qual a razão aritmética da PA? d = -3

Exemplo

A sequência $\{t_n\}$ com $t_n = -3n + 7$ é uma progressão aritmética.

- Qual o primeiro termo da lista? $t_0 = -3.0 + 7 = 7$
- Qual a razão aritmética da PA? d = -3
- A lista começa com 7, 4, 1, -2, ... (é infinita e decrescente)

Outline

Prévia: Funções

Sequências

Progressões Aritméticas

Progressões Geométricas

Relações de Recorrência

Algumas Sequências Importantes

Somatórios

Propriedades do Somatório

Mudanças de Índice

Algumas Somas Importantes

Exercícios

Avisos / Tarefas

19 of 53

Progressões Geométicas

Definição

Progressão Geomética

Uma progressão geomética (PG) é uma sequência da forma

$$a_0, a_0.r, a_0.r^2, a_0.r^3, ..., a_0.r^n, ...,$$

onde o termo inicial a_0 e o multiplicador comum (ou razão geomética) r são números reais.

Progressões Geométicas

Definição

Progressão Geomética

Uma progressão geomética (PG) é uma sequência da forma

$$a_0, a_0.r, a_0.r^2, a_0.r^3, ..., a_0.r^n, ...,$$

onde o termo inicial a_0 e o multiplicador comum (ou razão geomética) r são números reais.

Constatação:

Uma progressão geomética é caracterizada pela função $f(x) = ar^x$. Dizemos que a PG é a análoga discreta desta f(x).

Exemplo

A sequência $\{c_n\}$ com $c_n = 2.5^n$ é uma progressão geomética.

PERGUNTA:

Qual o primeiro termo da lista?

Exemplo

A sequência $\{c_n\}$ com $c_n = 2.5^n$ é uma progressão geomética.

- Qual o primeiro termo da lista? $c_0 = 2.5^0 = 2.1 = 2$
- Qual a razão aritmética da PG?

Exemplo

A sequência $\{c_n\}$ com $c_n = 2.5^n$ é uma progressão geomética.

- Qual o primeiro termo da lista? $c_0 = 2.5^0 = 2.1 = 2$
- Qual a razão aritmética da PG? r = 5

Exemplo

A sequência $\{c_n\}$ com $c_n = 2.5^n$ é uma progressão geomética.

- Qual o primeiro termo da lista? $c_0 = 2.5^0 = 2.1 = 2$
- Qual a razão aritmética da PG? r = 5
- A lista começa com 2, 10, 50, 250, 1250, ... (é infinita e crescente)

Exemplo

A sequência $\{d_n\}$ com $d_n = 6.\frac{1}{3}^n$ é uma progressão geomética.

PERGUNTA:

Qual o primeiro termo da lista?

Exemplo

A sequência $\{d_n\}$ com $d_n = 6.\frac{1}{3}^n$ é uma progressão geomética.

- Qual o primeiro termo da lista? $d_0 = 6.\frac{1}{3}^0 = 6.1 = 6$
- Qual a razão aritmética da PG?

Exemplo

A sequência $\{d_n\}$ com $d_n = 6.\frac{1}{3}^n$ é uma progressão geomética.

- Qual o primeiro termo da lista? $d_0 = 6.\frac{1}{3}^0 = 6.1 = 6$
- Qual a razão aritmética da PG? $r = \frac{1}{3}$

Exemplo

A sequência $\{d_n\}$ com $d_n = 6.\frac{1}{3}^n$ é uma progressão geomética.

- Qual o primeiro termo da lista? $d_0 = 6.\frac{1}{3}^0 = 6.1 = 6$
- Qual a razão aritmética da PG? $r = \frac{1}{3}$
- A lista começa com 6, 2, $\frac{2}{3}$, $\frac{2}{9}$, $\frac{2}{27}$, ... (é infinita e decrescente)

Exemplo

A sequência $\{e_n\}$ com $e_n = -1^n$ é uma progressão geomética.

PERGUNTA:

Qual o primeiro termo da lista?

Exemplo

A sequência $\{e_n\}$ com $e_n = -1^n$ é uma progressão geomética.

- Qual o primeiro termo da lista? $e_0 = -1^0 = 1$
- Qual a razão geomética da PG?

Exemplo

A sequência $\{e_n\}$ com $e_n = -1^n$ é uma progressão geomética.

- Qual o primeiro termo da lista? $e_0 = -1^0 = 1$
- Qual a razão geomética da PG? r = −1

Exemplo

A sequência $\{e_n\}$ com $e_n = -1^n$ é uma progressão geomética.

- Qual o primeiro termo da lista? $e_0 = -1^0 = 1$
- Qual a razão geomética da PG? r = −1
- A lista começa com 1, -1, 1, -1, 1, ... (é infinita e não monótona)

Outline

Prévia: Funções

Seguências

Progressões Aritméticas Progressões Geométricas

Relações de Recorrência

Algumas Sequências Importantes

Somatórios

Propriedades do Somatório Mudancas de Índice

Algumas Somas Importantes

Exercícios

Avisos / Tarefas

24 of 53

Motivação: Pode não ser simples determinar uma fórmula fechada para uma sequência...

Exemplo

Considere a sequência: 3, 5, 2, -3, -5, -2, ...

PERGUNTA:

Qual seria o próximo termo da sequência?

Motivação: Pode não ser simples determinar uma fórmula fechada para uma sequência...

Exemplo

Considere a sequência: 3, 5, 2, -3, -5, -2, ...

- Qual seria o próximo termo da sequência? -2 -5 = 3.
- Qual seria o termo seguinte?

Motivação: Pode não ser simples determinar uma fórmula fechada para uma sequência...

Exemplo

Considere a sequência: 3, 5, 2, -3, -5, -2, ...

- Qual seria o próximo termo da sequência? -2 -5 = 3.
- Qual seria o termo seguinte? 3 2 = 5.
- Uma fórmula fechada para esta sequência?

Motivação: Pode não ser simples determinar uma fórmula fechada para uma sequência...

Exemplo

Considere a sequência: 3, 5, 2, -3, -5, -2, ...

PERGUNTA:

- Qual seria o próximo termo da sequência? -2 -5 = 3.
- Qual seria o termo seguinte? 3 2 = 5.
- Uma fórmula fechada para esta sequência?

Constatação:

Parece impossível definir a sequência com uma fórmula fechada.

Definição

Relação de Recorrência

Uma relação de recorrência para a sequência $\{a_n\}$ é uma equação que expressa cada a_n em função de um ou mais termos que o antecedem, ou seja, em termos de $a_0, a_1, ..., a_{n-1}$, para $n \geq k$, onde k é um inteiro não negativo. Dizemos que sequência resolve uma solução da relação de recorrência se seus termos satisfazem a relação de recorrência.

Exemplo

Seja $\{a_n\}$ a sequência que satisfaz a relação de recorrência $a_n = a_{n-1} + 3$ para n = 1, 2, 3, ..., e suponha que $a_0 = 2$.

PERGUNTA:

Quais são os termos a₁, a₂, a₃?

Exemplo

Seja $\{a_n\}$ a sequência que satisfaz a relação de recorrência $a_n = a_{n-1} + 3$ para n = 1, 2, 3, ..., e suponha que $a_0 = 2$.

- Quais são os termos a₁, a₂, a₃?
 - $\circ \ a_1 = a_0 + 3 = 2 + 3 = 5$

Exemplo

Seja $\{a_n\}$ a sequência que satisfaz a relação de recorrência $a_n = a_{n-1} + 3$ para n = 1, 2, 3, ..., e suponha que $a_0 = 2$.

- Quais são os termos a₁, a₂, a₃?
 - $\circ \ a_1 = a_0 + 3 = 2 + 3 = 5$
 - $a_2 = a_1 + 3 = 5 + 3 = 8$

Exemplo

Seja $\{a_n\}$ a sequência que satisfaz a relação de recorrência $a_n = a_{n-1} + 3$ para n = 1, 2, 3, ..., e suponha que $a_0 = 2$.

- Quais são os termos a₁, a₂, a₃?
 - $a_1 = a_0 + 3 = 2 + 3 = 5$
 - $a_2 = a_1 + 3 = 5 + 3 = 8$
 - $a_3 = a_2 + 3 = 8 + 3 = 11$

Exemplo

Seja $\{a_n\}$ a sequência que satisfaz a relação de recorrência $a_n = a_{n-1} + 3$ para n = 1, 2, 3, ..., e suponha que $a_0 = 2$.

PERGUNTA:

- Quais são os termos a₁, a₂, a₃?
 - $a_1 = a_0 + 3 = 2 + 3 = 5$
 - $a_2 = a_1 + 3 = 5 + 3 = 8$
 - $\circ \ a_3 = a_2 + 3 = 8 + 3 = 11$

Constatação:

Foi necessário calcular algum termo anterior antes de cada a_n.

Exemplo

Seja $\{a_n\}$ a sequência que satisfaz a relação de recorrência $a_n = a_{n-1} - a_{n-2}$ para n = 2, 3, 4, ..., e suponha que $a_0 = 3$ e $a_1 = 5$.

PERGUNTA:

Quais são os termos a₂, a₃, a₄?

Exemplo

Seja $\{a_n\}$ a sequência que satisfaz a relação de recorrência $a_n = a_{n-1} - a_{n-2}$ para n = 2, 3, 4, ..., e suponha que $a_0 = 3$ e $a_1 = 5$.

- Quais são os termos a₂, a₃, a₄?
 - $a_2 = a_1 a_0 = 5 3 = 2$

Exemplo

Seja $\{a_n\}$ a sequência que satisfaz a relação de recorrência $a_n = a_{n-1} - a_{n-2}$ para n = 2, 3, 4, ..., e suponha que $a_0 = 3$ e $a_1 = 5$.

- Quais são os termos a₂, a₃, a₄?
 - $a_2 = a_1 a_0 = 5 3 = 2$
 - $a_3 = a_2 a_1 = 2 5 = -3$

Exemplo

Seja $\{a_n\}$ a sequência que satisfaz a relação de recorrência $a_n = a_{n-1} - a_{n-2}$ para n = 2, 3, 4, ..., e suponha que $a_0 = 3$ e $a_1 = 5$.

PERGUNTA:

Quais são os termos a₂, a₃, a₄?

$$a_2 = a_1 - a_0 = 5 - 3 = 2$$

$$\circ \ a_3 = a_2 - a_1 = 2 - 5 = -3$$

$$a_4 = a_3 - a_2 = -3 - 2 = -5$$

Exemplo

Seja $\{a_n\}$ a sequência que satisfaz a relação de recorrência $a_n = a_{n-1} - a_{n-2}$ para n = 2, 3, 4, ..., e suponha que $a_0 = 3$ e $a_1 = 5$.

PERGUNTA:

Quais são os termos a₂, a₃, a₄?

$$a_2 = a_1 - a_0 = 5 - 3 = 2$$

$$a_3 = a_2 - a_1 = 2 - 5 = -3$$

$$a_4 = a_3 - a_2 = -3 - 2 = -5$$

Constatação:

É a sequência 3, 5, 2, -3, -5, -2, 3, 5, ... (motivação).

Definição

Sequência de Fibonacci

A sequência de Fibonacci f_0 , f_1 , f_2 ,... é definida pela relação de recorrência com condições iniciais $f_0 = 0$, $f_1 = 1$ e $f_n = f_{n-1} + f_{n-2}$ para n = 2, 3, 4, ...

PERGUNTA:

Quais são os números f₂, f₃, f₄, f₅, f₆ de Fibonacci?

Definição

Sequência de Fibonacci

A sequência de Fibonacci $f_0, f_1, f_2, ...$ é definida pela relação de recorrência com condições iniciais $f_0 = 0$, $f_1 = 1$ e $f_n = f_{n-1} + f_{n-2}$ para n = 2, 3, 4, ...

- Quais são os números f₂, f₃, f₄, f₅, f₆ de Fibonacci?
 - $\circ \ f_2 = f_1 + f_0 = 1 + 0 = 1$

Definição

Sequência de Fibonacci

A sequência de Fibonacci f_0 , f_1 , f_2 , ... é definida pela relação de recorrência com condições iniciais $f_0 = 0$, $f_1 = 1$ e $f_n = f_{n-1} + f_{n-2}$ para n = 2, 3, 4, ...

PERGUNTA:

Quais são os números f₂, f₃, f₄, f₅, f₆ de Fibonacci?

$$\circ f_2 = f_1 + f_0 = 1 + 0 = 1$$

$$\circ \ f_3 = f_2 + f_1 = 1 + 1 = 2$$

Definição

Sequência de Fibonacci

A sequência de Fibonacci f_0 , f_1 , f_2 , ... é definida pela relação de recorrência com condições iniciais $f_0 = 0$, $f_1 = 1$ e $f_n = f_{n-1} + f_{n-2}$ para n = 2, 3, 4, ...

- Quais são os números f₂, f₃, f₄, f₅, f₆ de Fibonacci?
 - $f_2 = f_1 + f_0 = 1 + 0 = 1$
 - $\circ f_3 = f_2 + f_1 = 1 + 1 = 2$
 - $o f_4 = f_3 + f_2 = 2 + 1 = 3$

Definição

Sequência de Fibonacci

A sequência de Fibonacci f_0 , f_1 , f_2 , ... é definida pela relação de recorrência com condições iniciais $f_0 = 0$, $f_1 = 1$ e $f_n = f_{n-1} + f_{n-2}$ para n = 2, 3, 4, ...

- Quais são os números f₂, f₃, f₄, f₅, f₆ de Fibonacci?
 - $\circ f_2 = f_1 + f_0 = 1 + 0 = 1$
 - $f_3 = f_2 + f_1 = 1 + 1 = 2$
 - $o f_4 = f_3 + f_2 = 2 + 1 = 3$
 - $f_5 = f_4 + f_3 = 3 + 2 = 5$

Definição

Sequência de Fibonacci

A sequência de Fibonacci $f_0, f_1, f_2, ...$ é definida pela relação de recorrência com condições iniciais $f_0 = 0$, $f_1 = 1$ e $f_n = f_{n-1} + f_{n-2}$ para n = 2, 3, 4, ...

PERGUNTA:

Quais são os números f₂, f₃, f₄, f₅, f₆ de Fibonacci?

$$f_2 = f_1 + f_0 = 1 + 0 = 1$$

$$f_3 = f_2 + f_1 = 1 + 1 = 2$$

$$o f_4 = f_3 + f_2 = 2 + 1 = 3$$

$$\circ$$
 $f_5 = f_4 + f_3 = 3 + 2 = 5$

$$f_6 = f_5 + f_4 = 5 + 3 = 8$$

Outline

Prévia: Funções

Seguências

Progressões Aritméticas Progressões Geométricas

Relações de Recorrência

Algumas Sequências Importantes

Somatórios

Propriedades do Somatório Mudanças de Índice

Algumas Somas Importantes

Exercícios

Avisos / Tarefas

30 of 53

Sequências Importantes

nº termo	primeiros 10 termos
n ²	1, 4, 9, 16, 35, 36, 49, 64, 81, 100,
n ³	1, 8, 27, 64, 125, 216, 343, 512, 729, 1000
n ⁴	1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000,
2 ⁿ	2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,
3 ⁿ	3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049,
n!	1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800,
f_n	1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,

Tabela: Algumas sequências importantes.

Outline

Prévia: Funções

Seguências

Progressões Aritméticas
Progressões Geométricas

Relações de Recorrência

Algumas Sequências Importantes

Somatórios

Propriedades do Somatório Mudanças de Índice

Algumas Somas Importantes

Exercícios

Avisos / Tarefas

32 of 53

Envolve a soma de elementos de uma sequência $\{a_n\}$.

- Pode ser qualquer parte da sequência e saltar elementos.
- Utiliza uma variável chamada índice para navegar os termos a serem somados.

Envolve a soma de elementos de uma sequência $\{a_n\}$.

- Pode ser qualquer parte da sequência e saltar elementos.
- Utiliza uma variável chamada índice para navegar os termos a serem somados.

Exemplo

A soma dos termos $a_m, a_{m+1}, ..., a_n$ pode ser expressa como

$$\sum_{j=m}^{n} a_{j}, \quad \sum_{j=m}^{n} a_{j}, \quad \text{or} \quad \sum_{m \leq j \leq n} a_{j}$$

A notação envolve os seguintes elementos:

- j, a variável de índice
- m, o limite inferior do índice
- n, o limite superior do índice
- A função que define os elementos da sequência

Exemplo

$$\sum_{j=m}^{n} a_{j}$$

Exemplo

$$\sum_{j=1}^{100} \frac{1}{j}$$

Exemplo

$$\sum_{j=1}^{100} \frac{1}{j}$$

Constatação:

O somatório envolve os termos $a_1,a_2,a_3,...,a_{100}$ da sequência $\left\{a_j\right\}$ t.q. $a_j=\frac{1}{j}$.

Exemplo

$$\sum_{j=1}^{100} \frac{1}{j}$$

Constatação:

O somatório envolve os termos $a_1, a_2, a_3, ..., a_{100}$ da sequência $\left\{a_j\right\}$ t.q. $a_j = \frac{1}{j}$.

Constatação:

O resultado será a soma $\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{100}$.

Exemplo

$$\sum_{j=1}^{5} j^2$$

Exemplo

$$\sum_{j=1}^{5} j^2$$

Constatação:

O somatório envolve os termos a_1, a_2, a_3, a_4, a_5 da sequência $\left\{a_j\right\}$ t.q. $a_j=j^2$.

Exemplo

$$\sum_{i=1}^{5} j^2$$

Constatação:

O somatório envolve os termos a_1, a_2, a_3, a_4, a_5 da sequência $\left\{a_j\right\} t.q. \ a_j = j^2.$

Constatação:

O resultado será a soma

$$1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 1 + 4 + 9 + 16 + 25 = 55.$$

Exemplo

$$\sum_{k=4}^{8} (-1)^k$$

Exemplo

$$\sum_{k=4}^{8} (-1)^k$$

Constatação:

O somatório envolve os termos $a_4, a_5, ..., a_8$ da sequência $\{a_k\}$ t.q. $a_k = (-1)^k$.

Exemplo

$$\sum_{k=4}^{8} (-1)^k$$

Constatação:

O somatório envolve os termos $a_4, a_5, ..., a_8$ da sequência $\{a_k\}$ t.q. $a_k = (-1)^k$.

Constatação:

O resultado será a soma

$$(-1)^4 + (-1)^5 + (-1)^6 + (-1)^7 + (-1)^8 = 1 + -1 + 1 + -1 + 1 = 1.$$

Outline

Prévia: Funções

Seguências

Progressões Aritméticas Progressões Geométricas

Relações de Recorrência

Algumas Sequências Importantes

Somatórios

Propriedades do Somatório

Mudanças de Índice

Algumas Somas Importantes

Exercícios

Avisos / Tarefas

38 of 53

As regras comuns da aritmética se aplicam a somatórios.

Comutatividade
$$\sum_{j=m}^{n} a_j + b_j = \sum_{j=m}^{n} a_j + \sum_{j=m}^{n} b_j$$

As regras comuns da aritmética se aplicam a somatórios.

Comutatividade
$$\sum_{j=m}^{n} a_j + b_j = \sum_{j=m}^{n} a_j + \sum_{j=m}^{n} b_j$$

Associatividade $\sum_{j=m}^{n} a_j = \sum_{j=m}^{l} a_j + \sum_{j=l+1}^{n} a_j$

As regras comuns da aritmética se aplicam a somatórios.

Comutatividade
$$\sum_{j=m}^{n} a_j + b_j = \sum_{j=m}^{n} a_j + \sum_{j=m}^{n} b_j$$
Associatividade $\sum_{j=m}^{n} a_j = \sum_{j=m}^{l} a_j + \sum_{j=l+1}^{n} a_j$
Distributividade $\sum_{j=m}^{n} ka_j = k \sum_{j=m}^{n} a_j$

$$\sum_{i=m}^{n} a_j + b_j =$$

$$\sum_{j=m}^{n} a_j + b_j = (a_m + b_m) + (a_{m+1} + b_{m+1}) + ...(a_n + b_n)$$

$$\sum_{j=m}^{n} a_j + b_j = (a_m + b_m) + (a_{m+1} + b_{m+1}) + \dots (a_n + b_n)$$

$$\sum_{j=m}^{n} a_j + b_j = (a_m + a_{m+1} + \dots + a_n) + (b_m + b_{m+1} + \dots + b_n)$$

$$\sum_{j=m}^{n} a_j + b_j = (a_m + b_m) + (a_{m+1} + b_{m+1}) + \dots (a_n + b_n)$$

$$\sum_{j=m}^{n} a_j + b_j = (a_m + a_{m+1} + \dots + a_n) + (b_m + b_{m+1} + \dots + b_n)$$

$$\sum_{j=m}^{n} a_j + b_j = \sum_{j=m}^{n} a_j + \sum_{j=m}^{n} b_j$$

$$\sum_{i=m}^{n} a_{j} =$$

$$\sum_{i=m}^{n} a_{i} = a_{m} + a_{m+1} + \dots + a_{n}$$

$$\sum_{j=m}^{n} a_j = a_m + a_{m+1} + \dots + a_n$$

$$\sum_{j=m}^{n} a_j = a_m + a_{m+1} + \dots + a_l + a_{l+1} + \dots + a_n$$

$$\sum_{j=m}^{n} a_j = a_m + a_{m+1} + \dots + a_n$$

$$\sum_{j=m}^{n} a_j = a_m + a_{m+1} + \dots + a_l + a_{l+1} + \dots + a_n$$

$$\sum_{j=m}^{n} a_j = (a_m + a_{m+1} + \dots + a_l) + (a_{l+1} + \dots + a_n)$$

$$\sum_{j=m}^{n} a_{j} = a_{m} + a_{m+1} + \dots + a_{n}$$

$$\sum_{j=m}^{n} a_{j} = a_{m} + a_{m+1} + \dots + a_{l} + a_{l+1} + \dots + a_{n}$$

$$\sum_{j=m}^{n} a_{j} = (a_{m} + a_{m+1} + \dots + a_{l}) + (a_{l+1} + \dots + a_{n})$$

$$\sum_{j=m}^{n} a_{j} = \sum_{j=m}^{l} a_{j} + \sum_{j=l+1}^{n} a_{j}$$

$$\sum_{i=m}^{n} k.a_{j} =$$

$$\sum_{j=m}^{n} k.a_{j} = k.a_{m} + k.a_{m+1} + ... + k.a_{n}$$

$$\sum_{j=m}^{n} k.a_{j} = k.a_{m} + k.a_{m+1} + ... + k.a_{n}$$

$$\sum_{j=m}^{n} a_{j} = k.(a_{m} + a_{m+1} + ... + a_{n})$$

$$\sum_{j=m}^{n} k.a_{j} = k.a_{m} + k.a_{m+1} + ... + k.a_{n}$$

$$\sum_{j=m}^{n} a_{j} = k.(a_{m} + a_{m+1} + ... + a_{n})$$

$$\sum_{j=m}^{n} a_{j} = k \sum_{j=m}^{n} a_{j}$$

Outline

Prévia: Funções

Seguências

Progressões Aritméticas
Progressões Geométricas

Relações de Recorrência

Algumas Sequências Importantes

Somatórios

Propriedades do Somatório

Mudanças de Índice

Algumas Somas Importantes

Exercícios

Avisos / Tarefas

43 of 53

Às vezes pode ser importante mudarmos o índice de um somatório.

Exemplo

Considere a soma
$$\sum_{j=1}^{10} j + \sum_{k=3}^{12} (1-k)$$

Podemos reescrever a soma mudando o índice de uma delas:

$$\sum_{j=1}^{10} j + \sum_{k=3}^{12} (1-k) = \sum_{j=1}^{10} j + \sum_{i=1}^{10} (1-i-2)$$

Às vezes pode ser importante mudarmos o índice de um somatório.

Exemplo

Considere a soma
$$\sum_{j=1}^{10} j + \sum_{k=3}^{12} (1-k)$$

Podemos reescrever a soma mudando o índice de uma delas:

$$\sum_{j=1}^{10} j + \sum_{k=3}^{12} (1-k) = \sum_{j=1}^{10} j + \sum_{i=1}^{10} (1-i-2) = \sum_{j=1}^{10} j + (1-j-2)$$

Às vezes pode ser importante mudarmos o índice de um somatório.

Exemplo

Considere a soma
$$\sum_{j=1}^{10} j + \sum_{k=3}^{12} (1-k)$$

Podemos reescrever a soma mudando o índice de uma delas:

$$\sum_{j=1}^{10} j + \sum_{k=3}^{12} (1-k) = \sum_{j=1}^{10} j + \sum_{i=1}^{10} (1-i-2) = \sum_{j=1}^{10} j + (1-j-2)$$
$$= \sum_{j=1}^{10} -1 = -1 + -1 + \dots + -1 = -10.$$

Para realizar uma mudança do índice *j* para um novo índice *k*:

1. Encontramos uma função tal que f(j) = k.

Para realizar uma mudança do índice *j* para um novo índice *k*:

- **1.** Encontramos uma função tal que f(j) = k.
- 2. Isolamos j na equação cima e obtemos uma função sobre k.

Para realizar uma mudança do índice *j* para um novo índice *k*:

- **1.** Encontramos uma função tal que f(j) = k.
- **2.** Isolamos *j* na equação cima e obtemos uma função sobre *k*.
- **3.** Substituimos as ocorrências de *j* da soma original pela expressão obtida.

Para realizar uma mudança do índice *j* para um novo índice *k*:

- **1.** Encontramos uma função tal que f(j) = k.
- 2. Isolamos *j* na equação cima e obtemos uma função sobre *k*.
- **3.** Substituimos as ocorrências de *j* da soma original pela expressão obtida.

Exemplo

Seja a soma
$$\sum_{j=1}^{3} j^2$$
, desejamos indexá-la com inteiros de 0 a 4.

Para realizar uma mudança do índice *j* para um novo índice *k*:

- **1.** Encontramos uma função tal que f(j) = k.
- 2. Isolamos j na equação cima e obtemos uma função sobre k.
- **3.** Substituimos as ocorrências de *j* da soma original pela expressão obtida.

Exemplo

Seja a soma $\sum_{i=1}^{5} j^2$, desejamos indexá-la com inteiros de 0 a 4.

1. *Encontramos* f(j) = j - 1 = k.

Para realizar uma mudança do índice *j* para um novo índice *k*:

- **1.** Encontramos uma função tal que f(j) = k.
- 2. Isolamos *j* na equação cima e obtemos uma função sobre *k*.
- **3.** Substituimos as ocorrências de *j* da soma original pela expressão obtida.

Exemplo

Seja a soma $\sum_{j=1}^{5} j^2$, desejamos indexá-la com inteiros de 0 a 4.

- **1.** *Encontramos* f(j) = j 1 = k.
- **2.** *Obtemos* j = k + 1.

Para realizar uma mudança do índice *j* para um novo índice *k*:

- **1.** Encontramos uma função tal que f(j) = k.
- 2. Isolamos *j* na equação cima e obtemos uma função sobre *k*.
- **3.** Substituimos as ocorrências de *j* da soma original pela expressão obtida.

Exemplo

Seja a soma $\sum_{j=1}^{3} j^2$, desejamos indexá-la com inteiros de 0 a 4.

- **1.** *Encontramos* f(j) = j 1 = k.
- **2.** *Obtemos* j = k + 1.
- **3.** Substituimos j por k + 1 na soma. $\sum_{i=1}^{3} j^2 = \sum_{k=0}^{3} (k+1)^2$.

Outline

Prévia: Funções

Sequências

Progressões Aritméticas Progressões Geométricas

Relações de Recorrência

Algumas Sequências Importantes

Somatórios

Propriedades do Somatório Mudanças de Índice

Algumas Somas Importantes

Exercícios

Avisos / Tarefas

46 of 53

Algumas Somas Importantes

Soma	Forma fechada
$\sum_{k=0}^{n} ar^{k} \ (r \neq 0)$	$\frac{ar^{n+1}-a}{r-1}, r \neq 1$
$\sum_{k=0}^{n} a + dk$	$\frac{(a+d.0)+(a+d.n))(n+1)}{2}$
$\sum_{k=1}^{n} k$	<u>n(n+1)</u>
$\sum_{k=1}^{n-1} k^2$	<u>n(n+1)(2n+1)</u> 6
$\sum_{k=1}^{n-1} k^3$	$\frac{n^2(n+1)^2}{4}$

Tabela: Algumas somas importantes.

Algumas Somas Importantes

Com base nas somas acima, podemos concluir outras regras...

Exemplo

•
$$\sum_{k=m}^{n} ar^k = \sum_{k=1}^{n} ar^k - \sum_{k=1}^{m-1} ar^k = \frac{ar^{n+1}-a}{r-1} - \frac{ar^m-a}{r-1} = \frac{ar^{n+1}-ar^m}{r-1}, r \neq 1$$

•
$$\sum_{k=m}^{n} k = \sum_{k=1}^{n} k - \sum_{k=1}^{m-1} k = \frac{n(n+1)}{2} - \frac{(m-1)((m-1)+1)}{2} = \frac{n(n+1)-m(m-1)}{2}$$

Outline

Prévia: Funções

Seguências

Progressões Aritméticas Progressões Geométricas

Relações de Recorrência

Algumas Sequências Importantes

Somatórios

Propriedades do Somatório Mudanças de Índice

Algumas Somas Importantes

Exercícios

Avisos / Tarefas

49 of 53

Exercícios

1. Encontre o valor de cada uma das somas:

a)
$$\sum_{j=0}^{8} (1 + (-1)^{j})$$

b)
$$\sum_{j=0}^{s=0} (2.3^j + 3.2^j)$$

c)
$$\sum_{j=0}^{j=0} (3^j - 2^j)$$

2. Mostre que
$$\sum_{j=1}^{n} (a_j - a_{j-1}) = a_n - a_0$$

Exercícios

- 3. Encontre o valor de cada uma das somas:
 - a) $\sum_{k=100}^{200} k$

b)
$$\sum_{k=20}^{70} j^2$$

- **4.** Faça a mudança de índice para *j* começando de 1:
 - a) $\sum_{k=100}^{200} k$
 - **b)** $\sum_{k=20}^{n} j^2$

Outline

Prévia: Funções

Seguências

Progressões Aritméticas Progressões Geométricas

Relações de Recorrência

Algumas Sequências Importantes

Somatórios

Propriedades do Somatório Mudancas de Índice

Algumas Somas Importantes

Exercícios

Avisos / Tarefas

52 of 53

Avisos e Tarefas...

- LC sobre somas infinitas e somas aninhadas (após carnaval)
- LP do próximo tópico Tema a definir (após carnaval)
- Teste 02 em 10/03.