Objectifs

- Reconnaître une situation de proportionnalité.
- Savoir compléter un tableau de proportionnalité.
- Appliquer un pourcentage.
- Calculer un taux de pourcentage.
- Utiliser une échelle.

I. Rappel

1) Grandeurs proportionnelles

Définition

Deux grandeurs sont **proportionnelles** lorsqu'on peut calculer les valeurs de l'une en multipliant les valeurs de l'autre par un même nombre non nul. ce nombre est appelé **coefficient de proportionnalité**.

Méthode

Pour identifier une situation de proportionnalité, on calcule les quotients des nombres de la seconde ligne par les nombres de la première ligne.

Exemple

On s'intéresse à la distance parcourue à vélo par Aurélie pendant trois jours.

	Lundi	Mardi	Mercredi
Temps (en h)	2	3	5
Distance parcourue (en km)	42	63	105

 $42 \div 2 = 63 \div 3 = 105 \div 5 = 21$, ici les grandeurs «temps» et «distance parcourue» sont proportionnelles. Chaque heure elle parcoure 21 km, 21 est le coefficient de proportionnalité.

Exemple

Dans ce tableau on a reporté le nombre de cotés de certains polygones et leur nombre de diagonales.

	Quadrilatère	Pentagone	Hexagone
Nombre de côtés	4	5	6
Nombre de diagonales	2	5	9

 $2 \div 4 = 0.5, 5 \div 5 = 1$, donc le nombre de côtés d'un polygone n'est pas proportionnel à son nombre de diagonales.

2) Compléter un tableau de proportionnalité

Exemple

On veut remplir le tableau de proportionnalité suivant :

♀emps (h)	4	6	10
Distance parcourue(km)	10		

Par passage à l'unité

Méthode

En 4 heures, nous parcourons 10 km.

En 1 heure, nous parcourrons donc 4 fois moins de distance à savoir $10 \div 4 = 2,5$ km.

En 6 heures, nous parcourrons donc 6 fois plus de temps qu'en 1 heure à savoir $2.5 \times 6 = 15 \text{km}$.

En résumé :

:4 ×6				
Temps (h)	4	1	6	10
Distance parcourue (km)	10	2,5	15	

Avec le coefficient multiplicateur

Méthode

On cherche par quel nombre on multiplie 4 pour obtenir 10. $4 \times ... = 10$. C'est le nombre 2,5 $(10 \div 4)$. $6 \times 2,5 = 15$.

Temps (h)	4	6	×2.5
Distance parcourue(km)	10	15	

En utilisant les propriétés de la proportionnalité

Propriété

Dans un tableau de proportionnalité, on peut :

- multiplier/diviser une colonne par un nombre;
- ajouter/soustraire des colonnes entre elles.

II. Pourcentages

1) Appliquer un pourcentage

Définition

Un pourcentage traduit une situation de proportionnalité.

Un pourcentage est une proportion exprimée sur un total de 100 (de dénominateur égal à 100).

Exemple

«Dans une confiture, il y a 60 % de fruits»

- La masse de fruits est proportionnelle à la masse totale de confiture.
- \Rightarrow Il y a 60g de fruits pour 100g de confiture.

Propriété

P est un nombre positif.

Pour calculer P% d'une quantité, on multiplie cette quantité par $\frac{P}{100}$.

Exemple

Calculer 20% de 50 revient à multiplier 50 par $\frac{20}{100}$:

$$50 \times \frac{20}{100} = 50 \times 0.2 = 10$$

20% de 50 vaut 10.

2) Calculer un taux de pourcentage

Exemple

Dans un collège, il y a 800 élèves et 200 sont externes. Quel est le pourcentage d'externes?

Nombre d'externes	200	P
Nombre d'élèves	800	100

Ce tableau est un tableau de proportionnalité. Le coefficient de proportionnalité est 4 ($800 \div 200$).

4

Calcul de $P : 100 \div 4 = 25$.

Il y a 25% d'externes.

III. Notion d'échelle

Définition

- Sur un plan à l'échelle, les longueurs sur le plan sont proportionnelles aux longueurs dans la réalité.
- L'échelle d'un plan est est le quotient de la longueur sur le plan par la longueur réelle correspondante, lorsque ces longueurs sont exprimées dans la même unité.

Exemples

- 1 Un plan est à l'échelle 1/2000. Cela signifie que 1 cm sur le plan représente 20 m (2000 cm) dans la réalité. Les longueurs du plan sont 2000 fois plus petites que les longueurs réelles.
- 2 Un schéma est à l'échelle 50. Cela signifie que 1 cm sur le schéma représente 0,02 cm dans la réalité. Les longueurs du plan sont 50 fois plus grandes que les longueurs réelles.
- 3 Sur une carte, 3 cm représentent 12 km dans la réalité. Quelle est l'échelle de la carte?

12 km = 1200000 cm.

$$\frac{3}{1\,200\,000} = \frac{1}{400\,000}$$

L'échelle de cette carte est 1/400000.

Remarques

- Une échelle n'a pas d'unité.
- L'échelle d'un plan est est le nombre par lequel on multiplie les longueurs réelles pour obtenir les longueurs sur le plan, dans la même unité.