Теория групп. Лекция 5

Штепин Вадим Владимирович

3 октября 2019 г.

Классические действия групп на множествах

Следствия утв. $Shift(\omega,\omega')=St(\omega')s=sSt(\omega), s\in Shift(\omega,\omega')$ —произвольный элемент.

Следствие.

Если ω, ω' — элементы одной орбиты, то $St(\omega)$ и $St(\omega')$ сопряжены.

Доказательство

$$\exists s:\ s(\omega)=\omega'$$
 и $st(\omega')=sSt(\omega)s^{-1}$ ч.т.д.

Следствие.

Пусть $G(\omega)$ — орбита элемента ω .

 $|G(\omega)|=|G:St(\omega)|=rac{|G|}{|St(\omega)|}.$ Последнее равенство верно при условии, что G- конечно.

Доказательство

Фиксируем $\omega \in \Omega$.

Тогда, $aSt(\omega) \to a(\omega) \in G(\omega)$ — биекция, так как $aSt(\omega) = bSt(\omega) \Leftrightarrow a^{-1}b \in St(\omega) \Leftrightarrow a^{-1}b \in St(\omega)$ $a^{-1}b(\omega) = \omega \Leftrightarrow a(\omega) = b(\omega).$

Значит, число левых смежных классов равно $|G(\omega)|$.

Два левых смежных класса по стабилизатору ω совпадают тогда, и только тогда, когда соответствующие им элементы Ω равны $(a(\omega) = b(\omega))$.

Упражнение. Проверить, что мощность орбиты не зависит от выбора представителя.

$\mathbf{2}$ Формула орбит

Пусть $|\Omega| < \inf$

Пусть $\Omega = \Omega_1 \cup \Omega_2 \cup ... \cup \Omega_s$ — разбиение на попарно различные классы (орбиты).

В каждой орбите выберем по представителю $a_i \in \Omega_i$.

$$|\Omega|=\sum\limits_{i=1}^{s}|\Omega_{i}|=\sum\limits_{i=1}^{s}|G:St(a_{i})|$$
 Классические действия

1. Действие G на себя левыми сдвигами. $\Omega = G, I_a(x) = ax$ — левый сдвиг.

 I_a — действие, так как $I_{ab} = I_a(I_b(x)) = abx$.

 $KerI = \{a \in G \mid ax = x\} = \{e\} \Rightarrow I$ — точное (эффективное).

I — свободное, так как $\forall a \neq e \ a\omega = \omega$ — не выполнено $\forall \omega \in G$.

Пусть не так, значит $a\omega = \omega$. Умножим на $\omega^{-1} \Rightarrow a = e$. Противоречие.

 $ImI \sim G/KerI = G \Rightarrow G \leq S(G).$

Если |G| = n, $S(G) \sim S_n$.

Вывод. Конечная группа $G \sim G' \leq S_n$ — теорема Кэли.

2. Действие G на себя сопряжением.

$$I_a:G \to S(G),\ I_a(x)=axa^{-1}=x^{a^{-1}}.$$
 Это действие, так как $I_{ab}(x)=abx(ab)^{-1}=abxb^{-1}a^{-1}=I_a(I_b(x)).$

$$G(x)=\{I_a(x)\mid a\in G\}=axa^{-1}\mid G=x^G$$
—класс сопряженных элементов, порожденный $G.$

$$St(x)=\{a\in G\mid axa^{-1}=x\}=\{a\in G\mid ax=xa\}=C_G(x)$$
— централизатор элемента $x\in G$.

<u>Опр.</u> **Централизатор элемента** x — стационарная подгруппа x при действии сопряжением.

 $|G(x)| = |G:St(x)| \Rightarrow |x^G| = |G:C_G(x)|$ — мощность класса сопряженных элементов равна индексу централизатора любого элемента этого класса.

$$KerI = \{a \in G \mid axa^{-1} = x \ \forall x \in G\} = \{a \in G \mid ax = xa \ \forall x \in G\}.$$

$$Z(G) = \{a \in G \mid ax = xa \ \forall x \in G\}$$
. Тогда $Z(G) \triangleleft G$

Утв. $C_G(x)$ — наибольшая подгруппа H в G, что $x \in Z(H)$

I — точное $\Leftrightarrow G$ имеет тривиальный центр.

Iникогда не бывает свободна, так как $\forall a \in G \ I_a(e) = e$

Утв. Если G- конечно, то $\frac{G}{ord(x)}$: $|x^G|$

Доказательство

$$|x^G| = |G: C_G(x)|$$
. $\langle x \rangle \leq G$ — конечно.

 $|\langle x \rangle| = ord(x),$ очевидно $\langle x \rangle \leq C_G(x) \Rightarrow |C_G(x)|$: $ord(x) \Rightarrow C_G(x) = nord(x), \ n \in N-$ по теореме Лагранжа.

$$|x^G| = \frac{|G|}{nord(x)}$$

3 Автоморфизм

Опр. Всякий изоморфизм $\phi: G \to G$ называется **автоморфизм** группы G.

 $\overline{\mathrm{O}}$ чевидно, что множество автоморфизмов группы — группа относительно композиции. Aut(G) — группа автоморфизмов.

 $I_a(x) = axa^{-1}$ — автоморфизм.

$$I_a(xy) = I_a(x)I_a(y)$$
, так как $I_a(xy) = (xy)^{a^{-1}} = y^{a^{-1}}x^{a^{-1}} = I_a(x)I_a(y)$

Опр. Множество всех автоморфизмов вида $I_a(x) = axa^{-1}$ — внутренние автоморфизмы.

Было проверено, что множество внутренних автоморфизмов образует группу относительно композиции.

Утв. $Inn(G) \sim G/Z(G)$

Доказательство

$$Z(G) = KerI, ImI = \{I_a \mid I_a(x) = axa^{-1}\} = Inn(G).$$

 $I:G \to S(G), \ I:G \to Inn(G), \ a \to Ia.$ По основной теореме о гомоморфизме $Inn(G) \sim G/Z(G)$

Замечание Группы Aut(G) и Im(G) могут быть различны.

Пример.

Пусть G – абелева. Тогда $I_a(x) = axa^{-1} = x$. Однако автоморфизм, сопоставляющий числу его обратное, не является внутренним.

Замечание

В случае неабелевой группы $J_a(x) = x^a$ — не действие.

Формула классов

Утв. $|G| = |Z(G)| + \sum_{i=1}^r |G: C_G(a_i)|$, где a_i — представитель тех классов сопряженных элементов, содержащих > 1 элемент.

Доказательство

$$x \in Z(G) \Rightarrow |x^G| = 1, \ x^G = \{axa^{-1} \mid a \in G\} = x.$$

Пусть
$$x \notin Z(G)$$
. Покажем, что $|x^G| > 1$.

$$\exists a \in G : ax \neq xa \Leftrightarrow axa^{-1} \neq x$$
 и $axa^{-1} \in x^G$.

 $\exists a \in G: ax \neq xa \Leftrightarrow axa^{-1} \neq x$ и $axa^{-1} \in x^G$. Пусть в G имеется r классов сопряженных, содержащих > 1 элемент.

$$|G| = |Z(G)| + \sum_{i=1}^{r} |G : C_G(a_i)|.$$

Опр. Конечная группа G — это p-группа, если $\exists k \in N, |G| = p^k, p$ -простое.

Теорема

Всякая p-группа имеет нетривиальный центр $Z(G) \neq \{e\}$

Доказательство.

- 1. $G = Z(G) \Rightarrow Z(G)$ нетривиален.
- 2. $G \neq Z(G) \Rightarrow r \geq 1$ в формуле классов. Значит, $C_G(a_i) \leq G \Rightarrow |C_G(a_i)| = p^{l_i}, \ 0 \leq l_i < q^{l_i}$ n — мощность централизатора (теорема Лагранжа). Или, что эквивалентно, орбита элемента a_i нетривиальна.

$$|Z(G)| = |G| - \sum\limits_{i=1}^r rac{p^n}{p^{l_i}} = |G| - \sum\limits_{i=1}^r p^{n-l_i}$$
 — делится на p . Значит, $|Z(G)|$ делится на p .

$$|Z(G)| \neq 0$$
, так как $e \in Z(G)$.

Теорема

Если G — неабелева конечная группа, то G/Z(G) не циклическая.

Доказательство

Пусть Z = Z(G) и $G/Z = \langle aZ \rangle$, aZ—порождающий элемент. Пусть $x, y \in G$ —произвольные. $x \in a^l Z$, $y \in a^k Z \Rightarrow \exists z_1 \in Z$, $z_2 \in Z$ и $xy = a^l z_1 a^k z_2 = yx$ —противоречие.

Теорема

Если
$$|G|=p^2$$
, то G — абелева

Доказательство

Если
$$G = Z(G) \Rightarrow G$$
 — абелева.

Пусть
$$Z(G) \neq G \Rightarrow Z(G) \triangleleft G$$
, значит либо

- 1. |Z(G)|=p Тогда |G/Z(G)|=p— циклическая $\Rightarrow G$ абелева (так как в противном случае G/Z(G) не циклична)
- 2. $|Z(G)|=p^2$. Тогда G=Z(G)