Algebraic Theory I

Thomas Fleming

October 25, 2021

Contents

1 Intro to Ring Theory

1

Lecture 25: Review of Test and Intro to Ring Theory

Fri 22 Oct 2021 11:31

Proof of question 6. Let $C_{105} \rtimes_{\alpha} C_5$ and define $\alpha : C_5 \to \operatorname{Aut}(C_{105})$. Recall, we need only show α is the trivial homomorphism. Recall $\operatorname{Aut}(C_{105}) = C_2 \times C_4 \times C_6$. Hence, $|\operatorname{Aut}(C_{105})| = 2 \cdot 4 \cdot 6$ and as $5 \nmid 2 \cdot 4 \cdot 6$, we see every element must map to 1.

1 Intro to Ring Theory

Definition 1.1 (Ring). A ring R is a set equipped with two closed operations + and \times obeying the following properties

- 1. (R, +) forms an abelian group with additive identity, 0.
- 2. There is a multiplicative identity, 1.
- 3. $0 \neq 1$. (This would guarantee the ring is trivial)
- 4. The multiplicative operation is associative : (xy)z = x(yz) for all $x, y, z \in R$.
- 5. The distributive properties hold: x(y+z) = xy + xz and (x+y)z = xz + yz for all $x, y, z \in R$.

A ring for which the multiplication operation is also commutative: xy = yx, will be called a **commutative ring**.

In general not every element $x \in R$ has a multiplicative inverse. We define the special class of elements with inverses the **units** of R and we denote x^{-1} to denote the unique inverse of a unit x.

A (not necessarily commutative) ring in which every nonzero element is a unit is a **division ring**. A commutative ring for which every nonzero element is a unit is a **field**.

Remark. Technically, a ring need not have a multiplicative identity, but almost all of them will be equipped with one. Sometimes we denote a ring without identity to be a rng (no i).

Example. \diamond

Lecture 26: Ring Theory

Mon 25 Oct 2021 11:31

Recall. A ring is a set, an abelian addition and an associative multiplication with identity.

Definition 1.2 (Subring). A subring, R' of R is a subset $R' \subseteq R$ such that R' is closed under its operations and $1 \in R'$.

This object turns out to be mostly uninteresting, so we introduce the following concept.

Definition 1.3 (Ideal). A **left ideal** of the ring R is a nonempty subset $I \subseteq R$ so that $I \leq R$ under addition and $rI \subseteq I$ for all $r \in R$. This second condition is equivalent to for all $x \in I$, $r \in R \Rightarrow rx \in I$.

Right ideals follow the same first condition and for the second condition we have $Ir \subseteq I$ for all $r \in R$. A (two-sided) ideal is a set I which is both a left and a right ideal.

Example. $I = p\mathbb{Z}$ is an ideal of \mathbb{Z} .

 \Diamond

Ideals will play a similar role as that of normal subgroups.

Definition 1.4 (Ring Homomorphisms). If R, R' are rings and $\psi : R \to R'$ is a map. ψ is a **ring homomorphism** if

- $\psi(x+y) = \psi(x) + \psi(y)$ for all $x, y \in R$,
- $\psi(xy) = \psi(x) \psi(y)$ for all $x, y \in R$,
- $\psi(1_R) = 1_{R'}$ (if R, R' are rings with identities).

Example. If $R = \mathbb{Z}/6\mathbb{Z}$. Consider the map $f : \mathbb{Z}/6\mathbb{Z} \to \mathbb{Z}/6\mathbb{Z}$, $x \mapsto 3x$. We see the first two conditions hold under standard modular arithmetic, but the identity condition clearly fails, so we would consider this a ring homomorphism of rings without identity, but it is not a homomorphism of rings with identity. \diamond

Definition 1.5. If R is a ring and $I \subseteq R$ is an ideal. Then, we define $R/I = \{x+I : x \in R\}$, with $(x+I)+(y+I) \coloneqq (x+y)+I$ and $(x+I)(y+I) \coloneqq xy+I$, to be the ring quotient of $R \mod I$.