山东大学	计算机科学与	<u>技术</u> 学	院
	计算机组成与设计	课程实验报告	

学号:	姓名:	班级:

实验题目: RAM 扩展实验

实验学时: 2 实验日期: 2023.03.28

实验目的:

- 1、了解 FPGA 中 RAMIpm_ram_dq 的功能;
- 2、掌握 lpm_ram_dq 的参数设置和使用方法;
- 3、掌握 Ipm_ram_dq 作为随机存储器 RAM 的仿真测试方法,工作特性和读写方法。
- 4、验证 FPGA 中 LPM RAM 的功能。

硬件环境:

Quartus II 13.1

Windows 10

软件环境:

- 1. 实验室台式机
- 2. 计算机组成与设计实验箱

实验内容与设计:

1、实验内容

在 FPGA 中利用嵌入式阵列块 EAB 可以构成存储器,RAM 的结构如下图。

数据从 ram_dp0 的左边 D[7..0]输入,从右边 Q[7..0]输出,R/W 为读/写控制信号端。

当输入数据和地址准备好以后,在 inclock 是地址锁存时钟,当信号上升沿到来时,地址被锁存,数据写入存储单元。数据的读出控制是从 A[7..0]输入存储单元地址,在 CLK 信号上升沿到来时,该单元数据从 Q[7..0]输出。

R/W 是读/写控制端, 低电平时进行读操作, 高电平时进行写操作;

CLK 是读/写时钟脉冲信号;

DATA[7..0]是 RAM_dq0 的 8 位数据输入端;

A[7..0]是 RAM 的读出和写入地址;

Q[7..0]是 RAM_dq0 的 8 位数据输出端。

2、实验原理图 实验电路图:

3、实验步骤

(1) 设计 RAM

按图 7-1 输入电路图,进行编译、引脚锁定、向 FPGA 配置下载,并往 RAM 中写入相关数据,往 RAM 写入数据可以在一开始就写入,也可以在后面使用相关硬件写入。

(2) 定制 RAM 元件

首先完成存放数据 ROM 的设计。利用 MegaWizard Plug-In Manager 定制程序存储器 RAM 宏功能块,并将以上的数据文件加载于此 RAM 中。

(3) 原理图输入:设计原理图如下:

(4) 管脚锁定

如图点击,进行分配引脚工作,下载示例工程文件(图 7)至实验台上的 FPGA,选择实验台模式为 1,通过键 1、键 2输入 RAM 的 8位数据(选择实验台工作模式 1),键 3、键 4输入存储器的 8位地址。键 8控制读/写允许,低电平时读允许,高电平时写允许;键 7(CLKO)产生读/写时钟脉冲,即生成写地址锁存脉冲,对 lpm_ram_dq 进行写/读操作。下为引脚分配示例图:

<u> </u> a[7]	Input	PIN_39	3	B3_N0	PIN_39	2.5 V (default)	8mA (default)		
👊 a[6]	Input	PIN_42	3	B3_N0	PIN_42	2.5 V (default)	8mA (default)		
_ a[5]	Input	PIN_83	5	B5_N0	PIN_83	2.5 V (default)	8mA (default)		
_ a[4]	Input	PIN_77	5	B5_N0	PIN_77	2.5 V (default)	8mA (default)		
🖫 a[3]	Input	PIN_74	5	B5_N0	PIN_74	2.5 V (default)	8mA (default)		
🖫 a[2]	Input	PIN_70	4	B4_N0	PIN_70	2.5 V (default)	8mA (default)		
_ a[1]	Input	PIN_65	4	B4_N0	PIN_65	2.5 V (default)	8mA (default)		
🔑 a[0]	Input	PIN_60	4	B4_N0	PIN_60	2.5 V (default)	8mA (default)		
_ CLK0	Input	PIN_58	4	B4_N0	PIN_58	2.5 V (default)	8mA (default)		
_ d[7]	Input	PIN_84	5	B5_N0	PIN_84	2.5 V (default)	8mA (default)		
Ļ d[6]	Input	PIN_34	2	B2_N0	PIN_34	2.5 V (default)	8mA (default)		
_ d[5]	Input	PIN_75	5	B5_N0	PIN_75	2.5 V (default)	8mA (default)		
🖫 d[4]	Input	PIN_67	4	B4_N0	PIN_67	2.5 V (default)	8mA (default)		
- d[3]	Input	PIN_66	4	B4_N0	PIN_66	2.5 V (default)	8mA (default)		
🛼 d[2]	Input	PIN_64	4	B4_N0	PIN_64	2.5 V (default)	8mA (default)		
<u></u> d[1]	Input	PIN_55	4	B4_N0	PIN_55	2.5 V (default)	8mA (default)		
🔑 d[0]	Input	PIN_52	3	B3_N0	PIN_52	2.5 V (default)	8mA (default)		
🖐 q[7]	Output	PIN_80	5	B5_N0	PIN_80	2.5 V (default)	8mA (default)	2 (default)	
ss q[6]	Output	PIN_85	5	B5_N0	PIN_85	2.5 V (default)	8mA (default)	2 (default)	
🖔 q[5]	Output	PIN_73	5	B5_N0	PIN_73	2.5 V (default)	8mA (default)	2 (default)	
35 q[4]	Output	PIN_76	5	B5_N0	PIN_76	2.5 V (default)	8mA (default)	2 (default)	
º\\$ q[3]	Output	PIN_71	4	B4_N0	PIN_71	2.5 V (default)	8mA (default)	2 (default)	
ut q[2]	Output	PIN_72	4	B4_N0	PIN_72	2.5 V (default)	8mA (default)	2 (default)	
" q[1]	Output	PIN_68	4	B4_N0	PIN_68	2.5 V (default)	8mA (default)	2 (default)	
∰ q[0]	Output	PIN_69	4	B4_N0	PIN_69	2.5 V (default)	8mA (default)	2 (default)	
in_ r	Input	PIN_53	3	B3_N0	PIN_53	2.5 V (default)	8mA (default)		
< <new node="">></new>									

4、实验结果、

由于我们引脚设置,键 8 表示的意思是读写选择,即低电平是读操作,高电平是写操作,而键 7 则是时钟脉冲,键 3 和数键是地址位,数码 8 和数码 7 则是相应的输出,一开始时我们选择地址为 15(十六进制数),由于此时还未写入数据,所以数码 8 和数码 7 显示 0。

之后我们往地址为15(十六进制数)的内存单元写入数据,此时需将键8置为高电平,同时

我们往地址为 15(十六进制数)的内存单元写入 15(十六进制数)。

此时 RAM 中数据为:

之后我们选择读操作,将键 8 置为低电平,同时选择地址为 FF(十六进制数)的内存单元,由上图可知,地址为 FF(十六进制数)的内存单元中存储的数据为 FF(十六进制数),而数码 8 和数码 7 显示也为 FF(十六进制数),测试正确。

最后我们选择读操作,并选择地址为 02(十六进制数)的内存单元,由上图可见,地址为 02(十六进制数)的内存单元中所存储的数据为 22(十六进制数),而我们的数码 8 和数码 7 显示的数据也为 22,测试正确。

结论分析与体会:

通过这次实验,我体会到了 RAM 作为随机存取存储器的特点,可以随时读写,而且速度很快,相比于 ROM 多了写数据的功能。我们可以在一开始就往 RAM 中写入数据,也可以后面使用相关硬件来写入,同时我们可以使用用 tool 中的 In-system Memory Content Editor 对 ROM/RAM 内容进行可视化编辑修改,同时检查写入是否正确。