Università degli Studi dell'Insubria Dipartimento di Scienza ed Alta Tecnologia

Esercizi prova scritta del corso di Statistica A

Test 1

Esercizio 1. Siano X_1, \ldots, X_n osservazioni tali che, condizionatamente alla v.a. W, si abbia $X_i|W \stackrel{iid}{\sim} \mathcal{U}(0,W)$ e assegnamo come distribuzione a priori su W una Pareto(a,b), cioè con la seguente densità

$$\pi_W(w) = \frac{ab^a}{w^{a+1}} \, \mathbb{I}_{(b,\infty)}(w)$$

in cui a, b > 0.

- 1. Si calcoli la distribuzione del modello condizionata la parametro W e la distribuzione predittiva a priori per una osservazione.
- 2. Si verifichi se il modello è coniugato e se ne calcoli la posterior.
- 3. Si calcolino i seguenti stimatori a posteriori: A) Valore atteso; B) Mediana; C) Moda.
- 4. Si calcoli la distribuzione predittiva a posteriori per DUE osservazioni sotto le condizioni usuali.
- 5. Si fissino i parametri della prior in modo tale che $\mathbb{E}[W]=25/4$ e $med(W)=2^{1/5}*5$ e si ottenga un intervallo di credibilità al 95% per W supposto che n=10 e che alle osservazioni siano associate le seguenti statistiche

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
10.17	10.98	11.77	13.46	13.42	21.31

Esercizio 2. Supponiamo che $X_i|\Theta = \theta \stackrel{iid}{\sim} Exp(\theta)$.

- 1. Calcolare l'informazione di Fisher di una osservazione e la prior di Jeffreys.
- 2. Verificare se la prior di Jeffreys è propria/impropria e calcolare la distribuzione a posteriori.
- 3. Caclolare lo stimatore media a posteriori e confrontarlo (ove sia possibile) con quello a priori.
- 4. Calcolare la distribuzione predittiva a posteriori per una osservazione.
- 5. Supposto n=20 e $\bar{x}=7.2$ calcolare due distinti intervalli di credibilità a posteriori al 10% per il parametro Θ , basandosi sulla seguente tabella

Test 2

Esercizio 3. Sia X_1, \ldots, X_n osservazioni tali che, condizionatamente alla v.a. β , si abbia $X_i | \beta \stackrel{iid}{\sim} Pareto(\alpha, \beta)$ in cui $\alpha > 0$ è un parametro noto, ciò significa che

$$f_{X_i|\beta}(x|\beta) = \frac{\alpha \beta^{\alpha}}{x^{\alpha+1}} \mathbb{I}_{(\beta,\infty)}(x).$$

Inoltre, assegnamo come distribuzione a priori per β una Pareto(a, b).

- 1. Si calcoli la funzione di verosimiglianza (o distribuzione condizionata) del modello e la distribuzione predittiva a priori per una osservazione.
- 2. Si verifiche se il modello è coniugato e se ne calcoli la posterior.
- 3. Si calcolino i seguenti stimatori a postoeriori: A) Valore atteso; B) Mediana; C) Moda (o stimatore di massima verosimglianza).
- 4. Si calcoli la distribuzione predittiva a posteriori per una nuova osservazione.
- 5. Si calcoli l'intervallo di credibilità al 95% per il parametro β . In particolare, si ottenga l'intervallo di confidenza nel caso in cui $x_{(1)} = b + 1/2$.

Esercizio 4. Sia X_1, \ldots, X_n un campione tale che condizionatamente a $\Theta = \theta$, le osservazioni siano indipendenti e identicamente distribuite con la segente funzione di ripartizione

$$F_{\vartheta}(x) := \mathbb{P}\left(X_i \le x | \Theta = \theta\right) = \left(\frac{x}{10}\right)^{\vartheta} \mathbb{I}_{(0,10)}(x) + \mathbb{I}_{[10,+\infty)}(x)$$

in cui $\vartheta \in (0, +\infty)$.

- 1. Dimostrare che F_{ϑ} è una funzione di ripartizione per ogni $\vartheta > 0$ e calcolare la distribuzione condizionata del modello.
- 2. Calcolare l'informazione di Fisher di una osservazione e la prior di Jeffreys [Suggerimento: si scriva la log-verosimiglianza in funzione di log $(10/X_1)$ e se ne calcoli la distribuzione].
- 3. Verificare se la prior di Jeffreys è propria/impropria e calcolare la distribuzione a posteriori.
- 4. Caclolare lo stimatore media a posteriori.
- 5. Calcolare la distribuzione predittiva a posteriori per una osservazione.

Test 3

Esercizio 5. Supponiamo che $X_i|\alpha \stackrel{iid}{\sim} Pareto(\alpha,\beta)$ in cui $\beta > 0$ è un parametro noto e α è un parametro incognito. Si assegni distribuzione iniziale di α la Gamma(a,b).

- 1. Si calcoli la funzione di verosimiglianza (o distribuzione condizionata) del modello e la distribuzione predittiva a priori per una osservazione.
- 2. Si dimostri che il modello è coniugato e se ne calcoli la posterior.
- 3. Si calcolino i seguenti stimatori a postoeriori: A) Valore atteso; B) Mediana; C) Moda (o stimatore di massima verosimglianza).
- 4. Si calcoli la distribuzione predittiva a posteriori per una nuova osservazione.

Esercizio 6. Supponiamo che $X_i|\Theta=\theta \stackrel{iid}{\sim} Poisson(\theta)$ in cui $\theta>0$ è un parametro incognito.

- 1. Si calcoli la funzione di verosimiglianza (o distribuzione condizionata) del modello e si ottenga la prior di Jeffreys.
- 2. Verificare se la prior di Jeffreys è propria/impropria e calcolare la distribuzione a posteriori.
- 3. Si calcolino i seguenti stimatori a posteriori: A) Valore atteso; B) Moda.
- 4. Si calcoli la distribuzione predittiva a posteriori per una nuova osservazione.

Esercizi aggiuntivi

Esercizio 7. Siano X_1, \ldots, X_n osservazioni tali per cui $X_i | \alpha \sim Pareto(\alpha, \beta)$ in cui $\alpha, \beta > 0$ e β è un parametro noto, cioè

$$f_{X_i|\alpha}(x) = \frac{\alpha \beta^{\alpha}}{x^{\alpha+1}} \mathbb{I}_{(\beta,+\infty)}(x).$$

- 1. Dimostrare che log $(X_i/\beta) \sim Exp(\alpha)$.
- 2. Dimostrare che sono soddisfatte le condizioni di regolarità e che l'informazione di Fisher di una osservazione è $I(\alpha)=1/\alpha^2$ e calcolare la prior di Jeffreys.
- 3. Verificare se la prior di Jeffreys è propria/impropria e calcolare la distribuzione a posteriori.
- 4. Calcolare lo stimatore media a posteriori.
- 5. Calcolare la distribuzione predittiva a posteriori per una osservazione.

Esercizio 8. Supponiamo che $Y_i|\Theta = \theta$ delle osservazioni i.i.d. e che $Y_i^2|\Theta \sim Gamma\left(a, \theta^2\right)$ in cui a è un parametro noto e θ è incognito.

- 1. Si calcoli la funzione di verosimiglianza del modello, in particolare quella di una sola osservazione
- 2. Si trovi una famiglia parametrica di distribuzioni che sia coniugata per il modello.
- 3. Si calcolino i parametri della posteriore la distribuzione predittiva a priori e a posteriori.
- 4. Si calcolino i seguenti stimatori a posteriori: A) Valore atteso; B) Moda.

Esercizio 9. Si assegna il seguente modello bayesiano: le osservazioni X_i condizionatamente al parametro incognito $\Theta = \theta$ sono i.i.d. con distribuzione geometrica di parametro θ e la distribuzione a priori per il parametro è una $Beta(\alpha, \beta)$.

- 1. Si costruisca il modello associato ad n osservazioni (Si specifichi spazio campionario, dei parametri, etc.).
- 2. Si calcoli la distribuzione predittiva a priori.
- 3. Si calcoli la distribuzione a posteriori e quella predittiva a posteriori.
- 4. Si confrontino i risultati con quelli ottenuti per il modello beta-binomiale e si stabilisca quali connessioni esistono tra i due modelli.

Esercizio 10. Siano $X_i|\Theta = \theta \stackrel{iid}{\sim} Bern(\theta), i = 1, ..., n \in \Theta \sim Beta(\alpha, \beta)$. Supponiamo che non si possano osservare esattamente i successi nelle n prove, ma che si sappia solo che si è verificato l'evento $A_{n,s} = \{ \text{su } n \text{ prove sono stati osservati al più } s \text{ successi} \} \text{ con } s < n.$

- 1. Si calcoli la distribuzione condizionata del modello.
- 2. Si calcoli la posterior data l'osservazione $A_{n,s}$, cioè la distribuzione di Θ condizionata a $A_{n,s}$.
- 3. Si calcoli lo stimatore valore atteso a posteriori (dato $A_{n,s}$) e la moda.
- 4. Si calcoli la distribuzione predittiva a posteriori per una nuova osservazione.

Esercizio 11. Supponiamo che $Y_i|\Theta = \theta \stackrel{iid}{\sim} Bern(\theta), i = 1, ..., n$. Indichiamo con π_1 e π_2 , rispettivamente le due densità $Beta(\alpha_1, \beta_1)$ e $Beta(\alpha_2, \beta_2)$, fissato $p \in [0, 1]$ si assegni la seguente prior

- $\pi_\Theta(\theta)=p\pi_1(\theta)+(1-p)\pi_2(\theta).$ 1. Si calcoli la distribuzione predittiva a priori per una osservazione;
- 2. Si calcoli la distribuzione di $\sum_{i=1}^{n} Y_i \sim BetaBin(n, \alpha\beta)$, in particolare nel caso in cui $\beta_2 = \alpha_1$ e $\alpha_2 = \beta_1$.
- 3. Si calcoli la distribuzione a posteriori e la si rappresenti come mistura di distribuzioni Beta.
- 4. Si calcoli lo stimatore valore atteso a posteriori.
- 5. Fissati $\alpha_1 = \beta_2 = 2$, $\beta_1 = \alpha_2 = 8$ e p = 3/4, si confrontino graficamente la densità a priori e la densità a posteriori, supposto di aver osservato 3 successi in 10 prove.

Esercizio 12. Dato un modello statistico in cui le osservazioni X_1, \ldots, X_n , condizionatamente alla v.a. Θ sono i.i.d. con distribuzione $Exp(\theta)$ e la distribuzione a priori di Θ è una $Gamma(\alpha, \beta)$.

- 1. Si calcoli la distribuzione del modello condizionata al parametro Θ e la distribuzione predittiva a priori per una osservazione.
- 2. Si verifichi se il modello è coniugato e se ne calcoli la posterior.
- 3. Si calcolino lo stimatore valore atteso e moda a posteriori per Θ e lo stimatore valore atteso a posteriori per Θ^2 .
- 4. Si calcoli la distribuzione predittiva a posteriori per una osservazione sotto le condizioni usuali.
- 5. Fissati arbitrariamente i parametri della prior, si ottenga un intervallo previsivo al 95% per X_{n+1} date X_1, \ldots, X_n . Supposto che $\alpha = 3, \beta = 5, n = 15$ e che alle osservazioni siano associate le seguenti statistiche

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
0.06	0.35	1.57	1.90	2.44	8.39

si calcoli il valore dell'intervallo previsivo.

Esercizio 13. Supponiamo che le osservazioni Y_i , condizionatamente a μ abbiano una distribuzione $LN(\mu, \sigma^2)$, cioè distribuzione log-normale con la seguente densità

$$f_{\mu,\sigma^2}(y) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left\{-\frac{(\ln y - \mu)^2}{2\sigma^2}\right\} \mathbb{I}_{(0,\infty)}(y)$$

in cui $\sigma^2 > 0$ è un parametro noto e $\mu \sim Gauss(\mu_0, \sigma_0^2)$.

- 1. Si calcoli la distribuzione condizionata del modello e la distribuzione predittiva a priori per una osservazione.
- 2. Si verifichi se il modello è coniugato e se ne calcoli la posterior.
- 3. Si calcolino i seguenti stimatori a posteriori: A) Valore atteso; B) Moda.
- 4. Si calcoli la distribuzione predittiva a posteriori per una nuova osservazione.