CC1

Documents, calculatrices et portables interdits. Chaque réponse doit être accompagnée d'une justification.

Durée: 1h

Exercice 1. a) Tracer la courbe représentative de la fonction $f: x \mapsto |x+1| + |x-2|$.

- b) La fonction f est-elle minorée? Est-elle majorée?
- c) Déterminer l'ensemble des réels x tels que |x+1|+|x-2|<5.

Exercice 2. On considère les fonctions $f: x \mapsto \sqrt{x+1}$ et $g: x \mapsto \frac{1}{x^2} - 1$.

- a) Préciser l'ensemble de définition de f et l'ensemble de définition de g.
- b) Déterminer l'ensemble de définition de $g \circ f$ et calculer $g \circ f(x)$.
- c) Déterminer l'ensemble de définition de $f \circ g$ et calculer $f \circ g(x)$.

Exercice 3. Etudier la limite de la fonction f en a dans les trois cas suivants.

a)
$$f(x) = \frac{-x^4 - x^3 + 2x}{x^4 + x^2 - x}$$
, $a = +\infty$;

b)
$$f(x) = \frac{x-1}{x^2-1}$$
, $a = 1$;

c)
$$f(x) = \frac{\sqrt{x+1} - \sqrt{1-x}}{x}$$
, $a = 0$.

Exercice 4. On considère la fonction u définie sur \mathbb{R} par

$$u(x) = (\sin x)^2 + \sin(x/3) + \cos(x/4)$$
.

Montrer que u est T-périodique, pour une période T à préciser.

Exercice 5. a) Montrer, pour tout $y \in \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi ; k \in \mathbb{Z}\}$, la formule

$$1 + (\tan y)^2 = \frac{1}{(\cos y)^2}.$$

b) Soit $x \in \mathbb{R}$. Trouver une expression simplifiée de $(\cos(\arctan(x)))^2$. En déduire une simplification de $\cos(\arctan(x))$.