Introduction to IPv6

Administration de Réseaux

Dino Lopez

http://www.i3s.unice.fr/~lopezpac/

Inspired from

- The presentation "Introduction to IPv6 and its Security" of Ciscohttp://www.montefiore.ulg.ac.be/~leduc/cours/ISIR/ipv6_sec.pdf
- The presentation "APNIC Tutorial: IPv6 Essentials" https://training.apnic.net/docs/TIP601.pdf
- Request For Comments (RFCs)

A bit of history

- 1968 DARPA
 - (Defense Advanced Research Projects Agency) contracts with BBN to create ARPAnet
- 1969 First four nodes
- 1970 Five nodes:
 - UCLA Stanford UC Santa Barbara U of Utah BBN
- 1971 15 nodes, 23 hosts connected
- 1974 TCP specification by Vint Cerf & Bob Kahn
- 1983 TCP/IP
 - On January 1, the Internet counts 1000

Address architecture

- Initially, only 256 networks in the Internet
- Network classes : A, B, C
- 1992 Internet challenges
 - Address space depletion
 - Wasteful allocations
 - Routing chaos, since no aggregation

Classful vs Classless

<u>Classful</u>

Obsolete

- inefficient
- depletion of B space
- too many routes from C space

<u>Classless</u>

Management by RIRs

Source: https://www.apnic.net/

IPv6 history

- August 1990
 - First wakeup call by Solensky in IETF on IPv4 address exhaustion
- December 1994
 - > IPng area were formed within IETF to manage IPng effort [RFC1719]
 - List of technical criteria was defined to choose IPng [RFC1726]
- January 1995
 - > IPng director recommendation to use 128 bit address [RFC1752]
- December 1995
 - First version of IPv6 address specification [RFC1883]
- December 1998
 - Updated version changing header format from 1st version [RFC2460]

IPv4 exhaustion

IPv4 BGP Table

IPv6 improvements

- Large address space → 128-bit addresses
- Management
 - > Stateless autoconfiguration
- Multicast
 - Builting features for multicast groups and new "anycast" group
- Mobile IP
 - > Eliminate triangular routing through Route Optimization
- Virtual Private Networks
 - > Built-in support for ESP/AH encrypted/authenticated VPN protocols
- Built-in support for QoS tagging
- No more broadcast
- No hop-by-hop segmentation
 - Path MTU discovery

IPv4 vs IPv6 header

IPv4 Header IPv6 Header Type of **Total Length** Version IHL Traffic Service Version Flow Label Class **Fragment** Identification **Flags** Offset Next **Payload Length Hop Limit** Time to Live **Header Checksum** Protocol Header Source Address **Destination Address** Source Address **Padding Options** Legend Field's Name Kept from IPv4 to IPv6 Fields Not Kept in IPv6 **Destination Address** Name and Position Changed in IPv6 New Field in IPv6

Source: https://343networks.files.wordpress.com/

IPv6 extension header

- The use of an extension header makes it easy to add new features in IPv6
- The number of extension headers is variable
- The extension header is placed between the main IPv6 header and the payload
- Some values for the Next Header field
 - > 0 Hop-by-hop option
 - > 2 ICMP
 - ▶ 6 TCP
 - > 17 UDP
 - 43 Source routing
 - 44 Fragmentation
 - > 50 Encrypted security payload 51 Authentication
 - 59 Null (No next header)
 - 60 Destination option

Order of Extension Header

- Source node place the EH in the following order
 - > 1. Hop-by-hop
 - > 2. Routing
 - > 3. Fragment
 - > 4. Authentication
 - 5. Encapsulating security payload
 - 6. Destination option
 - > 7. Upper-layer
- Order is important
 - > Only hop-by-hop must be processed at every intermediate node
 - Routing headers must be processed by intermediate routers
 - At the destination, fragmentation must be handled before others

The MTU in IPv6

- Path MTU discovery
 - The sender sends first a packet as big as required by the application layer
 - > If the device receives an ICMP packet with a too big message signaling, the sender must apply the provided MTU size
 - > Each source needs to track the MTU size for each session
- Minimum MTU is 1280.
- Most efficient MTU is 1500
- Maximum datagram size is 64k

IPv6 addresses representation

- Format
 - > x:x:x:x:x:x:x where x is 16 bits hexadecimal field
 - > 2001:0000:130F:0000:0000:09C0:876A:130B
 - Case insensitive
- Leading zeros in a field are optional:
 - > 2001:0:130F:0:0:9C0:876A:130B
- Successive fields of 0 are represented as ::, but only once in an address:
 - > 2001:0:130F::9C0:876A:130B
 - > FF01:0:0:0:0:0:0:1 => FF01::1
 - > 0:0:0:0:0:0:0:1 => ::1
 - > 0:0:0:0:0:0:0:0 => ::
- RFC5952 recommends to use double colons for the rightmost set of :0:
- In an URL
 - http://[2001:db8:4f3a::206:ae14]:8080/index.html
- Prefix representation
 - Just like in IPv4 CIDR

IPv6 addressing model

- Unicast
 - > An identifier for a single interface
- Multicast
 - Identifier for a group of nodes
- Anycast
 - > Identifier for a set of interfaces
 - ➤ Anycast routing → find the closest peer

Global Unicast addresses

- Global Unicast Range
 - Currently: 2000::/3

Global Unicast Addresses

- All five RIRs are given a /12 from the /3 to further distribute within the RIR region
 - > APNIC 2400:0000::/12
 - > ARIN 2600:0000::/12
 - > AfriNIC 2C00:0000::/12
 - > LACNIC 2800:0000::/12
 - Ripe NCC 2A00:0000::/12
- 6to4 Addresses
 - > 2002::/16
 - Designed for a special tunneling mechanism [RFC 3056] to connect IPv6 Domains via IPv4 Clouds
 - > Automatic tunnel transition Mechanisms for IPv6 Hosts and Routers
 - Need 6to4 relay routers in ISP network

IPv6 Local Addresses

- Link-local addresses
 - > Have a limited scope of the link
 - Allow to communicate with anyone on the link (e.g. host or router)
 - Mandatory and automatically configured
 - > fe80::/10

Extended Unique Identifier (EUI-64) format

Local addresses

- In 1995, RFC 1884 reserved the block fec0::/10 for site-local addresses
 - > RFC 3879 (September 2004) deprecated this address range.
- In October 2005, RFC 4193 was published, reserving the address block fc00::/7 for use in private IPv6 networks.
- fc00::/7 is divided into 2 groups
 - > The block fc00::/8 has not been defined yet. Proposed to be managed by an allocation authority.
 - > The block fd00::/8 is defined for /48 prefixes, formed by setting the 40 least-significant bits of the prefix to a randomly generated bit string. This results in the format fdxx:xxxx:xxxx::
 - Some webtools to generate ULA prefix
 - * http://www.sixxs.net/tools/grh/ula/
 - * http://www.goebel-consult.de/ipv6/createLULA

Local addresses

- Unique-Local Addresses used For:
 - Local communications & inter-site VPNs
 - Local devices such as printers, telephones, etc
 - > Site Network Management systems connectivity
- Not routable on the Internet

Examples and Documentation Prefix

- For exemple 3fff:ffff::/32
- For documentation 2001:0DB8::/32

Special addresses

- ::/128
 - Unspecified address
 - > Equivalent to 0.0.0.0 in IPv4
- ::/0
 - > default route
- ::1/128
 - Loopback address
 - Equivalent to 127.0.0.0/8 in IPv4

Stateless autoconfiguration


```
1. RS:
ICMP Type = 133

Src = ::
Dst = All-Routers multicast Address
query= please send RA

2. RA:
ICMP Type = 134

Src = Router Link-local Address
Dst = All-nodes multicast address
Data= options, prefix(es), lifetime, autoconfig flag (no managed flag)
```

RS = Router Solicitation, RA = Router Advertisement

IPv6 Address assignment

IPv4 & IPv6

Manually configured

Assigned via DHCP

IPv6 Only

Stateless configuration

IPv6 Address = /64 prefix + EUI64 (e.g. MAC address)

Auto-generated pseudo-random number (RFC 4941)

IPv6 Address = /64 prefix + Random 64 bits (rfc3041)

IPv4 – IPv6 coexistence

Dual Stack

Recommended Enterprise Co-existence strategy

Tunneling Services

IPv6 over IPv4

Connect Islands of IPv6 or IPv4

Translation Services

Business Partners

Government Agencies
International Sites
Remote Workers
Internet consumers

Connect to the IPv6 community

Source Cisco Systems

@ 2016 Ciana Cristania Ina All rights recorded

20

6in4

- Encapsulate IPv6 packets into IPv4 packets
 - > Interconnect IPv6 islands
- Needs as many tunnels as IPv6 islands we need to reach
 - And as many routes as needed using the tunnel devices as the output interface
 - Difficult to set up

6to4

- Transfer IPv6 packets over IPv4 networks
 - Connect IPv6 islands
 - Migration from IPv4 to IPv6
- Does not need one explicit tunnel per IPv6 island
- 6to4 transition solutions need to employ 6to4 IPv6 addresses
 - 6to4 network -> 2002::/16
- One IPv6 network connects to IPv4 networks with 6to4 routers
 - 6to4 relays to connect to native IPv6 networks

6to4 addressing

- 6to4 networks need to employ 6to4 addresses
 - > The 6to4 tunnel can be configured with an IPv6 address prefixed with 2002:xxxx:xxxx::/16, where the "x" characters represent the IPv4 address of the outgoing device
 - > The 6to4 network can be build on a 2002:xxxx:xxxx::/48 prefix
 - > ipv4="1.2.3.4"; printf "2002:%02x%02x:%02x%02x::1\n" `echo \$ipv4 | tr "." " "
- The route entry to reach a remote IPv6 island must indicate as a gateway, the IPv6 address of the remote 6to4 tunnel device
 - ip -6 route add default via ::192.88.99.1 dev tun6to4 metric 1

IPv6 - Some useful Linux commands

- Add an IPv6 address
 - ip -6 addr add 2001:db8::1/64 dev eth0
- Add a route
 - > ip -6 route add 2001:db8:2::/64 via 2001:db8:1::1 dev eth0
- Enable IPv6 forwarding
 - sysctl net.ipv6.conf.all.forwarding=1
- Create a 6in4 or 6to4 tunnel
 - Create a sit mode tunnel
 - For a 6in4 tunnel, specify the remote IPv4 address
 - For a 6to4, you do not specify the remote IPv4 address. Use "any" instead
 - > ip tunnel add tun6in4 mode sit remote 192.168.0.2 local 192.168.0.1 ttl 64
- Show the IPv6 routing table
 - \rightarrow Ip-6 rs
- Show the neighbors table
 - > ip -6 neigh show

NAT64 - DNS64

