Exercise 1 Intro to Deep Learning: Nadav Eisen & Yonatan Miroshnik

May 30, 2024

Practical Part:

- 2.a. For every character in the 9 character peptide, I gave it a unique index, and from that I created a one-hot embedding for each character based on this unique index. Each 9 character length peptide is thus represented by a 180 bit long binary number of the consecutive one-hot embeddings of each character in the peptide.
- 2.b. The input dimension, as explained above, is a 180 bit long input. The offered neural network set up has a problem in our need to decide the size of the hidden layers and thus the number of weights, if we decide on a hidden linear layer size similar to the input, we start seeing overfitting at some point.

- 2.c. We propose reducing the hidden layer size to 128, this makes the model overfit less and thus produces better training results.
 - 2.d. The final test loss result is: 0.1439

The totally linear model(similar to the previous one, without the middle ReLU layer) learns the problem well, but stops bettering itself through training

at a former phase.

2.e. We first go over the spike protein as given and divide it into all possible consecutive 9-peptides, we then pass it through the trained network, and return the most confidently positive peptides of the prediction, our resulting peptides are: NLREFVFKN, LLIVNNATN, FDNPVLPFN

Question 1:

From basic linear algebra, we know that any linear functions $f \in Hom(\mathbb{R}^n, \mathbb{R}^k)$, and $g \in Hom(\mathbb{R}^k, \mathbb{R}^m)$ can be represented by matrices $A \in M_{n \times k}(\mathbb{R}), B \in M_{k \times m}(\mathbb{R})$ appropriately, such that for all $x \in \mathbb{R}^n$:

$$(f \circ q)(x) = (A \circ B)(x) = (AB)(x)$$

And the multiplication of matrices AB is also a matrix, and therefore also a linear function $\in Hom(\mathbb{R}^n, \mathbb{R}^m)$. For any affine $f: \mathbb{R}^n \to \mathbb{R}^k$, $g: \mathbb{R}^k \to \mathbb{R}^m$ can be represented as f(x) = Ax + c, g(x) = Bx + d where $A \in M_{n \times k}(\mathbb{R})$, $B \in M_{k \times m}(\mathbb{R})$ and $c \in \mathbb{R}^n$, $d \in \mathbb{R}^k$, such that for any $x \in \mathbb{R}^n$:

$$(f \circ q)(x) = f(Bx + d) = A(Bx + d) + c = (AB)x + (Ad + c)$$

From this form, since AB is a matrix and Ad+c is a vector in the image dimension, we can see that $f\circ g$ is an affine transformation

Question 2:

 \mathbf{a}

To find the gradient descent step, we of course need to find the gradient. We know that:

$$\frac{df}{dx} = 20(x-1), \frac{df}{dy} = \frac{1}{5}(y+1)$$

Therefore:

$$\nabla f \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 100 \left(x - 1 \right) \\ y + 1 \end{pmatrix} = \begin{bmatrix} 20 & \\ & \frac{1}{5} \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} -20 \\ \frac{1}{5} \end{pmatrix}$$

Therefore the gradient descent step from x^k to x^{k+1} is:

$$x^{k+1} = x^k - t\nabla f\left(x^k\right) = x^k - t\left(\begin{bmatrix} 20 \\ \frac{1}{5} \end{bmatrix} x^k + \begin{pmatrix} -20 \\ \frac{1}{5} \end{pmatrix}\right)$$
$$= \begin{bmatrix} 1 - 20t \\ 1 - \frac{t}{5} \end{bmatrix} x^k + \begin{pmatrix} 20t \\ -\frac{t}{5} \end{pmatrix}$$

Where t is the step size, or the learning reate.

b)

We can see of course that the function reaches a minimum at x=1,y=-1, because it reaches $f\begin{pmatrix}1\\-1\end{pmatrix}=0$ and otherwise it is bounded from below by 0.

From the GD step we saw in the last section, we can see that every coordinate of x^k is independent in every step, such that:

$$x_1^{k+1} = 20t + x_1^k \left(1 - 20t\right)$$

$$x_2^{k+1} = -\frac{t}{5} + x_2^k \left(1 - \frac{t}{5} \right)$$

For any series of the form $a_0 = x$ and $a_{k+1} = a_k x + b$, we can see that:

$$a_0 = x$$

$$a_1 = ax + b$$

$$a_2 = a^2x + ab + b$$

$$a_3 = a^3x + a^2b + ab + b$$

We can therefore see recursively that $a_k = a^k x + \frac{a^k - 1}{a - 1}b$, as $a_0 = x + \frac{1 - 1}{a - 1}b = x$, and recursively:

$$a_{k+1} = a\left(a^k x + \frac{a^k - 1}{a - 1}b\right) = a^{k+1} x + \sum_{i=1}^{k-1} a^i b + b$$
$$= a^{k+1} x + \sum_{i=0}^{k-1} a^i b = a^{k+1} x + \frac{a^{k+1} - 1}{a - 1}b$$

Therefore, we can see that:

$$x_1^k = (1 - 20t)^k x_1^0 + \frac{1 - (1 - 20t)^k}{20t} 20t$$
$$= (1 - 20t)^k (x_1^0 - 1) + 1$$

And:

$$x_2^k = \left(1 - \frac{t}{5}\right)^k x_2^0 + \frac{\left(1 - \frac{t}{5}\right)^k - 1}{-\frac{t}{5}} \left(-\frac{t}{5}\right)$$
$$= \left(1 - \frac{t}{5}\right)^k \left(x_2^0 + 1\right) - 1$$

Therefore, we can see that these series converge for all x^0 iff |1-20t|, $\left|1-\frac{t}{5}\right| < 1$, and therefore $t < 10, \frac{1}{10}$, or just $t < \frac{1}{10}$.

Therefore, the maximal learning rate is $\frac{1}{10}$, such that when $t = \frac{1}{10}$, x_1^k bounces back and forth between x_1^0 and $1 + \left(1 - x_1^0\right)$, and when $t > \frac{1}{10}$ the series x_1^k is unbounded.

 $\mathbf{c})$

The value 10, as this creates a very large gradient on the x coordinate which requires a small step size in order to converge.

d)

As we saw with the series:

$$x_1^k = (1 - 20t)^k (x_1^0 - 1) + 1$$

$$x_2^k = \left(1 - \frac{t}{5}\right)^k \left(x_2^0 + 1\right) - 1$$

In general, the y coordinate takes the longest to converge, as for almost all $t < \frac{1}{10}$ we have $|1-20t| < \left|1-\frac{t}{5}\right|$, and therefore $(1-20t)^k$ converges faster than $\left(1-\frac{t}{5}\right)^k$.

Question 3:

If α_p is the predicted angle, and α_r is the real angle, we can use the following loss function to predict the distance between them:

$$L_{\alpha_r}(\alpha_p) = (\sin(\alpha_p) - \sin(\alpha_r))^2 + (\cos(\alpha_p) - \cos(\alpha_r))^2$$

This is a smooth function with a very intuitive geometric meaning: we know that the unit vector with the angle α_p is $\hat{\alpha_p} = (\cos{(\alpha_p)}, \sin{(\alpha_p)})$, and the unit vector with the angle is α_r is $\hat{\alpha_r} = (\cos{(\alpha_r)}, \sin{(\alpha_r)})$. The distance between these vectors is roughly equivalent to the distance between the angles, whose square is:

$$\|\hat{\alpha_p} - \hat{\alpha_r}\|_2^2 = \left(\sin\left(\alpha_p\right) - \sin\left(\alpha_r\right)\right)^2 + \left(\cos\left(\alpha_p\right) - \cos\left(\alpha_r\right)\right)^2 = L_{\alpha_r}\left(\alpha_p\right)$$

Question 4:

$$\mathbf{a}$$
)

$$\frac{d}{dx}\left(f\left(x+y,2x,z\right)\right) = \frac{d}{dx}\left(f\circ\left(x+y,2x,z\right)\right) = (Df)_{(x+y,2x,z)}\begin{pmatrix}1\\2\\0\end{pmatrix}$$

$$\frac{d}{dx}\left(f_{1}\left(f_{2}\left(...f_{n}\left(x\right)\right)\right)\right)=f'_{1}\left(f_{2}\left(...f_{n}\left(x\right)\right)\right)\left(\frac{d}{dx}\left(f_{2}\left(...f_{n}\left(x\right)\right)\right)\right)=$$

$$=f'_{1}\left(f_{2}\left(...f_{n}\left(x\right)\right)\right)\left(f_{2}'\left(...f_{n}\left(x\right)\right)\right)\left(\frac{d}{dx}\left(f_{3}\left(...f_{n}\left(x\right)\right)\right)\right)=...$$

... =
$$(f_1, (f_2, ..., f_n, (x)))) (f_2, (..., f_n, (x))) ... (f_{n-1}, (f_n, (x))) (f_n, (x))$$

c)

$$\frac{d}{dx}\left(f_{1}\left(x,f_{2}\left(x,...f_{n-1}\left(x,f_{n}\left(x\right)\right)\right)\right)\right)=$$

$$=\frac{d\left(f_{1}\left(x,f_{2}\left(x,...f_{n-1}\left(x,f_{n}\left(x\right)\right)\right)\right)\right)}{d\left(x,f_{2}\left(x,...f_{n-1}\left(x,f_{n}\left(x\right)\right)\right)\right)}\frac{d\left(x,f_{2}\left(x,...f_{n-1}\left(x,f_{n}\left(x\right)\right)\right)\right)}{dx}=$$

$$= (Df_1)_{(x, f_2(x, \dots f_{n-1}(x, f_n(x))))} \begin{pmatrix} 1 \\ \frac{d}{dx} \left(f_2(x, \dots f_{n-1}(x, f_n(x))) \right) \end{pmatrix}$$
$$= \left((\nabla f_1)_{(x, f_2(x, \dots f_{n-1}(x, f_n(x))))} \right) +$$

+
$$\left((\nabla f_1)_{(x,f_2(x,...f_{n-1}(x,f_n(x))))} \right)_2 \left(\frac{d}{dx} \left(f_2(x,...f_{n-1}(x,f_n(x))) \right) \right) = ...$$

... =
$$\left((\nabla f_1)_{(x, f_2(x, \dots f_{n-1}(x, f_n(x))))} \right)_1 + \left((\nabla f_1)_{(x, f_2(x, \dots f_{n-1}(x, f_n(x))))} \right)_2$$

$$\left(\left((\nabla f_2)_{(x,f_3(x,...f_{n-1}(x,f_n(x))))}\right)_1 +$$

$$+ \left((\nabla f_2)_{(x,f_3(x,\dots f_{n-1}(x,f_n(x))))} \right)_2 \left(\dots + \left((\nabla f_{n-1})_{(x,f_n(x))} \right)_1 + \left((\nabla f_{n-1})_{(x,f_n(x))} \right)_2 f_n`(x) \right) \right)$$

d)

$$\frac{d}{dx} (f (x + g (x + h (x)))) = \frac{d (f (x + g (x + h (x))))}{d (x + g (x + h (x)))} \frac{d (x + g (x + h (x)))}{dx}$$

$$= f' (x + g (x + h (x))) \left(1 + \frac{d}{dx} g (x + h (x))\right) =$$

$$= f' (x + g (x + h (x))) \left(1 + \frac{dg (x + h (x))}{d (x + h (x))} \frac{d (x + h (x))}{dx}\right) =$$

$$= f' (x + g (x + h (x))) (1 + g' (x + h (z)) (1 + h' (x)))$$