Probabilistic Generative Models

Probabilistic Generative Models

model the class-conditional densities $p(x/C_k)$, as well as the class priors $p(C_k)$

$$p(C_1|\mathbf{x}) = \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_1)p(C_1) + p(\mathbf{x}|C_2)p(C_2)}$$

class-conditional densities p(x/C)

$$p(\mathbf{x}|y=c,\boldsymbol{\theta}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_c, \boldsymbol{\Sigma}_c)$$

Quadratic discriminant analysis

$$p(y = c | \mathbf{x}, \boldsymbol{\theta}) = \frac{\pi_c |2\pi \boldsymbol{\Sigma}_c|^{-\frac{1}{2}} \exp\left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_c)^T \boldsymbol{\Sigma}_c^{-1} (\mathbf{x} - \boldsymbol{\mu}_c)\right]}{\sum_{c'} \pi_{c'} |2\pi \boldsymbol{\Sigma}_{c'}|^{-\frac{1}{2}} \exp\left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_c)^T \boldsymbol{\Sigma}_{c'}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{c'})\right]}$$

Linear Discriminant Analysis

• covariance matrices are **tied** or **shared** across classes, $\Sigma c = \Sigma$.

$$p(y = c | \mathbf{x}, \boldsymbol{\theta}) \propto \pi_c \exp \left[\boldsymbol{\mu}_c^T \boldsymbol{\Sigma}^{-1} \mathbf{x} - \frac{1}{2} \mathbf{x}^T \boldsymbol{\Sigma}^{-1} \mathbf{x} - \frac{1}{2} \boldsymbol{\mu}_c^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_c \right]$$

$$= \exp \left[\boldsymbol{\mu}_c^T \boldsymbol{\Sigma}^{-1} \mathbf{x} - \frac{1}{2} \boldsymbol{\mu}_c^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_c + \log \pi_c \right] \exp \left[-\frac{1}{2} \mathbf{x}^T \boldsymbol{\Sigma}^{-1} \mathbf{x} \right]$$

$$p(y = c | \mathbf{x}, \boldsymbol{\theta}) = \frac{e^{\boldsymbol{\beta}_c^T \mathbf{x} + \gamma_c}}{\sum_{c'} e^{\boldsymbol{\beta}_{c'}^T \mathbf{x} + \gamma_{c'}}} \qquad \gamma_c = -\frac{1}{2} \boldsymbol{\mu}_c^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_c + \log \pi_c$$

$$\boldsymbol{\beta}_c = \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_c$$

Discriminant Analysis: Parameetr estimation

Models joint probability of observing input and output

$$\log p(\mathcal{D}|\boldsymbol{\theta}) = \left[\sum_{i=1}^{N} \sum_{c=1}^{C} \mathbb{I}(y_i = c) \log \pi_c \right] + \sum_{c=1}^{C} \left[\sum_{i:y_i = c} \log \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_c, \boldsymbol{\Sigma}_c) \right]$$

$$\hat{\boldsymbol{\pi}}_c = \frac{N_c}{N}, \qquad \hat{\boldsymbol{\mu}}_c = \frac{1}{N_c} \sum_{i:y_i=c} \mathbf{x}_i, \quad \hat{\boldsymbol{\Sigma}}_c = \frac{1}{N_c} \sum_{i:y_i=c} (\mathbf{x}_i - \hat{\boldsymbol{\mu}}_c) (\mathbf{x}_i - \hat{\boldsymbol{\mu}}_c)^T$$

- MLE can badly overfit in high dimensions.
- Use a diagonal covariance matrix for each class, which assumes the features are conditionally independent; this is equivalent to using a naive Bayes classifier
- Other approaches: Use MAP and Bayesian approaches

Naïve Bayes Classifier

• Features are conditionally independent given the class label.

$$p(\mathbf{x}|y=c,\boldsymbol{\theta}) = \prod_{j=1}^{D} p(x_j|y=c,\boldsymbol{\theta}_{jc})$$

- "naive" since we do not expect the features to be independent, but results in classifiers that work well
 - model is quite simple and hence it is relatively immune to overfitting, as a lower number of parameters need to be estimated due to independence assumption.
- class-conditional density p(x|y)

Naïve Bayes Classifier

• Features are conditionally independent given the class label.

$$p(\mathbf{x}|y=c,\boldsymbol{\theta}) = \prod_{j=1}^{D} p(x_j|y=c,\boldsymbol{\theta}_{jc})$$

- class-conditional density p(x|y)
 - In the case of real-valued features, we can use the Gaussian distribution: $p(\mathbf{x}|y=c,\boldsymbol{\theta}) = \prod_{j=1}^{D} \mathcal{N}(x_j|\mu_{jc},\sigma_{jc}^2)$, where μ_{jc} is the mean of feature j in objects of class c, and σ_{jc}^2 is its variance.
 - In the case of binary features, $x_j \in \{0, 1\}$, we can use the Bernoulli distribution: $p(\mathbf{x}|y = c, \boldsymbol{\theta}) = \prod_{i=1}^{D} \text{Ber}(x_j|\mu_{jc})$, where μ_{jc} is the probability that feature j occurs in class c.
 - In the case of categorical features, $x_j \in \{1, \ldots, K\}$, we can model use the multinoulli distribution: $p(\mathbf{x}|y=c, \boldsymbol{\theta}) = \prod_{j=1}^{D} \mathrm{Cat}(x_j|\boldsymbol{\mu}_{jc})$, where $\boldsymbol{\mu}_{jc}$ is a histogram over the K possible values for x_j in class c.

Training NBC: ML Estimation

 $p(\mathbf{x}_i, y_i | \boldsymbol{\theta}) = p(y_i | \boldsymbol{\pi}) \prod_i p(x_{ij} | \boldsymbol{\theta}_j) = \prod_c \pi_c^{\mathbb{I}(y_i = c)} \prod_i \prod_c p(x_{ij} | \boldsymbol{\theta}_{jc})^{\mathbb{I}(y_i = c)}$

$$\log p(\mathcal{D}|\boldsymbol{\theta}) = \sum_{c=1}^{C} N_c \log \pi_c + \sum_{j=1}^{D} \sum_{c=1}^{C} \sum_{i:y_i=c} \log p(x_{ij}|\boldsymbol{\theta}_{jc})$$

Bernoulli class condiitonal likelihood

$$\hat{\pi}_c = \frac{N_c}{N} \qquad \hat{\theta}_{jc} = \frac{N_{jc}}{N_c}$$

The method is easily generalized to handle features of mixed type.

NBC: Algorithm

Algorithm 3.1: Fitting a naive Bayes classifier to binary features

```
1 N_c = 0, N_{jc} = 0;
2 for i = 1 : N do
       c = y_i // Class label of i'th example;
      N_c := N_c + 1;
      for j = 1 : D do
         6
                                                0.9
                                                8.0
8 \hat{\pi}_c = \frac{N_c}{N}, \hat{\theta}_{jc} = \frac{N_{jc}}{N}
                                                0.7
                                                0.5
                                                0.4
                                                0.3
                                                0.2
```


Spam Classification example

HAM examples

- d1: {good}
- d2: {very good}

```
P(y=ham) = 2/5
```

SPAM examples

- d3: {bad}
- d4: {very bad}
- d5: {very bad very bad}

$$p(y=spam)=3/5$$

- Test data: d6: {good bad very bad} SPAM OR HAM??
- Vocabulary : V={good, bad, very}
- Use Naive Bayes classifier:
- P(ham | d6)= Π P(word | y=ham) P(y=ham) = P(good | ham) * P(bad | ham) * P(very | ham)

Word frequencies wrt class	P(good y)	P(bad y)	P(very y)
Class 0: y = spam	0/3	3/3	2/3
Class 1: y = ham	2/2	0/2	1/2

- Estimate parameters using ML:
- P(ham | d6)= P(good | ham) * P(bad | ham) * P(very | ham)* P(ham)
- P(spam | d6)= P(good | spam) * P(bad | spam) * P(very | spam)*
 P(spam)
- What is the problem with this?

Discriminative vs Generative

 Generative Models: model the joint distribution p(x, Ck) directly and then normalize to obtain the posterior probabilities.

$$p(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_k)p(C_k)}{p(\mathbf{x})}$$

- Most demanding because it involves finding the joint distribution over both x and Ck. For many applications, x will have high dimensionality, and consequently we may need a large training set. if we only wish to make classification decisions, then it can be wasteful of computational resources.
- Easy to fit? very easy to fit generative classifiers. we can fit a naive Bayes model and an LDA model by simple counting and averaging. logistic regression requires solving a convex optimization problem which is much slower.
- Fit classes separately? In a generative classifier, we estimate the parameters of each class conditional density independently, so we do not have to retrain the model when we add more classes.
- Well-calibrated probabilities? Some generative models, such as naive Bayes, make strong independence assumptions which are often not valid
- Generative models can easily handle unlabelled data and missing features

Classification: Evaluation metrics

Accuracy:
$$\frac{1}{N} \sum_{i=1}^{N} \mathbb{I}[y_i == \hat{y}_i]$$

		Actual Label	
		Positive	Negative
Predicted Label	Positive	True Positive (TP)	False Positive (FP)
	Negative	False Negative (FN)	True Negative (TN)

Accuracy	(TP + TN) / (TP + TN + FP + FN)	The percentage of predictions that are correct		
Precision	TP / (TP + FP)	The percentage of positive predictions that are correct		
Sensitivity (Recall)	TP / (TP + FN)	The percentage of positive cases that were predicted as positive		
Specificity	TN / (TN + FP)	The percentage of negative cases that were predicted as negative		