Diagramas E-R, Relacional y Normalización

BDDA

UT3

Laurent/Rubén

¿Qué es?

Representación esquemática de la problemática que debemos plasmar en la BD.

Se divide en varias fases.

- 1º análisis de los requisitos
- 2º modelo lógico
- 3º modelo conceptual y normalización
- 4º paso a tablas (al ordenador)

El análisis de requisitos lo hacen los analistas en contacto con la empresa.

En nuestro caso serán textos con los requisitos.

¿Qué es?

Modelo lógico estudiaremos el entidad-relación. Más usado para bases de datos SQL.

Es una forma de interpretar el texto y plasmarlo en esquemas. Para ello hay elementos fijos que veremos a continuación.

Modelo conceptual es el paso previo a crear la BD. Es una aproximación a lo que serán las tablas partiendo del esquema y requisitos recogidos anteriormente.

Se verá tras el diagrama E-R

Elementos del diagrama E-R

Entidades

Son los objetos del texto. Se trata de buscar los sustantivos.

Se representan mediante un rectángulo.

EJ: Necesitamos crear una Base de Datos que almacene los datos de los alumnos, como su DNI, nombre, apellidos, dirección y teléfono.

El sustantivo es alumno

Alumno

Entidades

Dos tipos de entidades. Fuertes y débiles.

Fuertes existen solas. Las débiles necesitan de la fuerte para existir. Es decir, si borro la fuerte se elimina la débil.

Se representan con un doble rectángulo. Podemos seguir con el ejemplo anterior.

Los alumnos viven con sus tutor/es legales. Es decir información de familia o responsables.

Entidades

El rombo y las líneas nos unen esas relaciones. El rombo debe contener el verbo que les une. En este caso no lo completo para que no ocupe tanto.

En este caso, si borramos los datos del alumno se borrarán los del tutor/a legal. Por ello se llama entidad débil, no sobrevive en la BD sola.

Los campos a guardar de cada entidad. Pueden ser de varios tipos.

- Obligatorios/Opcionales → Deben existir (ejemplo PK, Not null) vs no hace falta que existan(puede ser Null)
- Atómicos/compuestos → Un único elemento vs se puede descomponer en varios atributos a su vez
- Monovaluado/Multivaluado → Contiene un valor vs contiene varios
- Derivados, calculados o almacenados → El valor proviene de otros cálculos

Mejor verlo con el ejemplo de alumno. Voy a señalar los atributos del ejercicio.

Necesitamos crear una Base de Datos que almacene los datos de los alumnos, como su <u>DNI</u>, <u>nombre</u>, <u>apellidos</u>, <u>dirección</u> y <u>teléfono</u>.

En este ejemplo tenemos todos los tipos de atributos mencionados anteriormente.

Atributos obligatorios los podemos considerar todos menos el teléfono. Si son alumnos pequeños pueden no tenerlo.

DNI, Nombre y Teléfono son atributos simples o atómicos.

Dirección y Apellidos dependerá del diseño, pero deberían ser compuestos:

Apellido → 1º apellido y 2º apellido

Dirección → Calle, Nº Portal, Piso, Puerta.

Generalmente no se pone en un string toda la información, es más práctico separarlo y tener distintas columnas para búsquedas en nuestra tabla.

Todos los atributos tienen un valor con la excepción del teléfono móvil. Podemos guardar varios teléfonos de un alumno, el fijo y el móvil.

Entidad y atributos

En el ejemplo anterior hemos visto que es una entidad y como la relacionamos con los atributos.

Hay atributos que pueden quedar vacíos, por ejemplo piso. En caso de vivir una vivienda casa no hay número de piso. No se puede indicar todas las restricciones en el diagrama, en esos casos se dejan escritas para plasmarlas en el modelo conceptual

Atributos de una relación

El ejemplo de los apuntes es muy claro. No solo pueden tener atributos las entidades, sino que la relación que las une, el rombo, puede tener atributos a guardar.

En el ejemplo, no podemos poner nota al alumno o a la asignatura, sino a la unión de ambos. Si indicamos nota en la asignatura no tendría relación con el alumno y viceversa. Por ello, las relaciones tienen atributos. El alumno para esa asignatura tiene un nota concreta.

Relaciones grado

El grado indica cuantas entidades tienen relación. El concepto más complejo es la relación reflexiva. Consigo mismo.

Por ejemplo, un empleado puede ser responsable y tener a cargo otros empleados. Ese caso es una reflexiva, porque guardamos los mismos tipos de datos. Todos son empleados.

El resto la binaria y ternaria son relaciones entre dos o tres entidades. Más entidades no es habitual.

Relaciones cardinalidad

Indica la cantidad que le corresponde a una entidad de la otra entidad.

Ejemplo inicial. Un alumno deberá tener 1 tutor legal o más, obligatoriamente 1. Un tutor legal puede tener 1 o más alumn@s a su cargo, una familia numerosa. Recordemos que son entidad débil, si no hay alumnos no existe la entidad de tutor/a.

Relaciones cardinalidad

Generalmente se escribe la cardinalidad de entidades. Es muy similar el concepto. En lugar de indicar en el rombo, en la relación, lo indicamos al lado de la entidad. Y se marca el valor mínimo y máximo que puede tener. Los valores son 0, 1 o N. N significa más de 1, no se concreta el número. En nuestro ejemplo quedaría así:

Relaciones cardinalidad

Como se muestra en los apuntes hay distinta forma de representar en el diagrama la cardinalidad. Dependerá del software a utilizar, en caso de hacerlo a mano lo normal es como en el ejemplo que os indico.

Software para Diagrama E/R

https://sourceforge.net/projects/dia-installer/files/latest/download

Podéis seleccionar otro, este es gratuito y sencillo.

Software para Modelo relacional

Para el modelo relacional utilicé draw.io que permite almacenar los diagramas en drive directamente.

https://app.diagrams.net/

Aquí una explicación de como instalarlo en drive. Aunque se puede utilizar sin realizar estos pasos de forma directa desde el enlace anterior.

Elementos del diagrama E-R Extendido

¿Qué es?

Similar pero permite indicar con mayor exactitud las restricciones.

Se añaden nuevos elementos para el diagrama.

Exclusividad: Una entidad puede participar en dos relaciones. Pero solamente puede elegir "un camino".

Por ejemplo, un profesor o se dedica a impartir clases o a recibirlas, no ambas.

Exclusividad: Otro ejemplo. A un profesor lo contratan o está trabajando con Beca. No puede elegir ambos caminos.

Exclusión: Puede ir por ambas relaciones, pero en el caso de ser profesor de una asignatura no puede ser alumno. Este caso muestra un profesor que puede estar matriculado, pero no en las asignaturas que imparte, puede elegir ambos caminos siempre que no coincidan en el mismo curso.

Inclusividad: Implica obligación de ir por un camino debo ir también por el otro con una restricción. Ejemplo, un profesor puede impartir siempre que reciba 3 o más cursos. Vemos que aparecen más números en el modelo extendido, antes solamente 0,1,N.

Inclusión: Es obligatorio haber participado en la relación que comparto. Es decir, un profesor puede impartir un curso siempre y cuando lo haya recibido antes.

Relación ISA exclusiva parcial

Relación ISA solapada parcial

Especialización exclusiva/total: Solamente puede elegirse una opción. Heredan atributos de la entidad padre y tienen los suyos propios.

Especialización exclusiva/total: Solamente puede elegirse una opción (exclusiva) y todos los empleados se ven reflejados en fijos o temporales. Heredan atributos de la entidad padre y tienen los suyos propios.

Agregación

Representa relación "parte de". Permite que una entidad abstracta pueda relacionarse con otra como una relación normal. Las entidades agregadas nunca son débiles ni tienen atributos identificadores, heredan de la relación que las define.

Ejemplo: Profesor imparte una asignatura en el aula. Esa relación es una agregación que se relaciona con la incidencia en el aula.

Relación más abstracta que la ternaria. Ternaria las 3 entidades participan de forma simultánea de la relación. En la agregación es más abstracta. Una primera relación binaria, "independiente", que puede unirse a otra entidad.

Ternaria ej: **Cliente, Producto** y **Vendedor**. Una relación ternaria llamada "Compra" podría describir que un **Cliente** compró un **Producto** a través de un **Vendedor**. Aquí, los tres participan en una interacción conjunta.

Agregación ej: Supongamos una relación llamada "Proyectos" que involucra a las entidades **Empleado** y **Cliente**. Ahora, quieres modelar que un **Gerente** supervisa un conjunto de proyectos (es decir, la relación entre **Empleado** y **Cliente**). Aquí, trata la relación "Proyectos" como una entidad para poder conectarla con la entidad **Gerente**.

MODELO RELACIONAL

Elementos del modelo

Relación: Estructura más importante. Puede ser una entidad del modelo E-R o una relación entre entidades. Se representa como una TABLA. Los atributos son las columnas de la tabla.

Dominio: Valor que puede tener el atributo. Un tipo de datos o una enumeración por ejemplo.

Atributo: propiedad de la que se guarda información en la tabla acompañada de su dominio

Tupla: Cada fila de la relación, de la tabla.

Restricciones aceptadas

Clave primaria (PK): un atributo o varias. Representación inequívoca. Única y not null por ser PK

Clave única (Unique): Identificar atributo que no puede tener valores repetidos

Valor No Nulo (VNN): No puede ser NULL

Clave ajena (FK): Identifica un atributo, o conjunto, que es PK en otra tabla. En caso de borrado o actualización se indica:

Borrado/modificación cascada: Se borra de la tabla principal (PK), se borra o modifica en la FK.

Bor/Mod restringida: No deja borrar o modificar la FK.

Bor/Mod a nulos: Si se modifica la PK las FK pasan a valor nulo.

Bor/Mod por defecto: Si se borra la PK las FK pasan a tener valor indicado por defecto.

Restricción de valor (CHECK): condiciones a cumplir por el valor del atributo

Restricciones de integridad (ASSERTIONS): Otras restricciones que no se pueden completar con los anteriores.

Paso a tablas

Entidades: Cada entidad será una tabla.

VEHÍCULO(matrícula:dom_matrícula, marca:dom_marca, modelo:dom_modelo, cilindarada_dom_cilindrada, fecha_fab:fecha)

RI:

PK (matrícula)

VNN (modelo)

VNN (marca)

VNN (cilindrada)

Según los apuntes:

VEHÍCULO(matrícula, marca, modelo, cilindrada, fecha_fab)

VEHÍCULO		
matrícula	PK	
marca	VNN	
modelo	VNN	
cilindrada	VNN	
fecha_fab		

Entidad débil: Absorbe como FK la PK de la entidad fuerte

ALUMNO(dni: dom_dni, nombre:dom_nombre) PK(dni)

TUTOR/A(dni:dom_dni, nombre: dom_nombre, apellido: dom_apllido)

RI

PK(dni, nombre, apellido)

FK(dni) --> ALUMNO

Atributos: Se convierten en campos. No tiene orden definido pero se ponen los que forma la PK primero

- Atributos compuestos se descomponen en simples
- Atributos derivados no se convierten en campos se hará desde la BD
- Atributos multivaluados se convierten en una nueva relación (TABLA)

https://jorgesanchez.net/manuales/gbd/diseno-logico-relaciona | I.html

Relaciones 1:1

Una tabla absorbe la PK de la otra como FK y el atributo de la relación. Elige el diseñador de la BD.

En tabla Nombre_2 atributo alternativo_e1 es incorrecto y debería ser alternativo_e2

POLITÉCNICO ESTELLA

Relaciones 1:1

Ilustración 55. Transformación de una relación cero a uno. Es parecido al caso 1 a n, pero la clave externa pasa a ser clave alternativa (por ello tiene tres restricciones)

La que es (0,1) puede existir o no, por lo tanto absorbe el atributo y la FK.

Relaciones 1:1

Varias alternativas, la más común, unir todo en una tabla.

Relaciones 1:N

La tabla de muchos absorbe el atributo de la relación y la clave ajena apunta a la otra entidad. Se llama propagación de clave y no podrá ser nula

Relaciones 1:N

En caso de ser (0,1) simplemente indicamos la FK y no decimos VNN o NN

POLITÉCNICO ESTELLA

Relaciones N:M

La relación es una tabla con 2 PK que a su vez son FK

POLITÉCNICO ESTELLA

Relaciones N:M

La relación es una tabla con 2 PK que a su vez son FK

Elaboración de diagramas E-R y paso del diagrama E-R a modelo Relacional

PDF explicativo

PDF añadido en los recursos del tema.

Normalización

¿Qué es?

Proceso que elimina la redundancia de datos, asegura la integridad y facilita el manejo.

DEPENDENCIAS: Se dice que x depende de y si para un único valor de y se obtiene un único valor de x.

1FN, Primera forma normal

Cada tupla, cada fila, debe tener un valor único y atómico. No pueden existir atributos multivaluados

Cliente										
ID Cliente Nombre Apellido Teléfono							Cliente			
123	Rachel	Ingram	555-861-2025		ID Cliente	Nombre	Apellido	Teléfono 1	Teléfono 2	Teléfono 3
123	nacriei	ingrain			123	Rachel	Ingram	555-861-2025		
456	James	Wright	555-403-1659 555-776-4100	-	456	James	Wright	555-403-1659	555-776-4100	
789	Cesar	Dure	555-808-9633		789	Cesar	Dure	555-808-9633		

			Teléfon	o del cliente
	Cliente		ID Cliente	Teléfono
ID Cliente	Nombre	Apellido	123	555-861-2025
123	Rachel	Ingram		
456	James	Wright	456	555-403-1659
789			456	555-776-4100
789	'89 Cesar Dure	Dure	789	555-808-9633

2 Soluciones. Aumentar campos o crear una tabla nueva. Tabla nueva PK compuesta. Mejor solución crear nueva tabla.

Debe cumplir 1FN y, en caso de ser PK compuesta, el resto de atributos dependen de la totalidad de la PK compuesta, no de una parte. Si la PK es un solo atributo no hay que realizar la 2FN.

Titulo	Formato	Autor	Precio	Editorial
1984	Texto	George Orwell	15	Planeta
1984	Ebook	George Orwell	10	Planeta
El ángel negro	Texto	John Verdon	18	Alguna

Titulo + formato → precio, pero el resto solo dependen del título

Titulo	Autor	Editorial	
1984	George Orwell	Planeta	
El ángel negro	John Verdon	Alguna	

Titulo	Formato	Precio
1984	Papel	10
1984	Ebook	15
El ángel negro	John Verdon	18

Se divide en dos tablas, ahora cada atributo depende de la totalidad de la clave.

2FN, Primera forma normal

Titulo	Autor	Editorial
1984	George Orwell	Planeta
El ángel negro	John Verdon	Alguna

Titulo	Formato	Precio
1984	Papel	10
1984	Ebook	15
El ángel negro	John Verdon	18

Se divide en dos tablas, ahora cada atributo depende de la totalidad de la clave.

Se parte de que 1FN y 2FN se deben cumplir. Los atributos únicamente tendrán dependencia de la clave primaria.

	Cod_Alumno	Nombre	Teléfono	Dirección	Código Curso	Nombre Curso	Duración en horas	
	Al_001	Thor	976111111	Asgard	CUR-01	Estudios Asgardianos	100	
	Al_002	Tony	976222222	Torre Stark	CUR-02	Tecnología Avanzada	490	
	Al_003	Bruce	976333333	Dentro de Hulk	CUR-03	Diversión con Rayos Gamma	200	
Cod_Alumno	Nombre	Teléfono	Dirección	Código Curso		Código Curso	Nombre Curso	Horas
Al_001	Thor	976111111	Asgard	CUR-01		CUR-01	Estudios Asgardianos	100
Al_002	Tony	976222222	Torre Stark	CUR-02		CUR-02	Tecnología Avanzada	490
Al 003	Bruce	976333333	Interior de Hulk	CUR-03		CUR-03	Diversión con Rayos Gamma	200

https://www.youtube.com/watch?v=d7-wtp_IWGs

Un ejemplo muy obvio, se separan en tablas.

FNBC

Está en 3FN y cualquier atributo que tiene dependencia la tiene de la totalidad de la clave primaria. Más restrictiva que 3FN y generalmente es suficiente con 3FN

DNI ¿?	Asignatura ¿?	Tutor¿?	notas
1	Lenguaje	Eva	5
1	Matemáticas	Andrés	6
3	Lenguaje	Eva	10
2	Matemáticas	Julio	8

Resultado 2 tablas.

Tutorias (<u>DNI, Tutor</u>, notas) Asignaturas_tutor(Asigantura, <u>Tutor</u>)

Es un concepto sutil, muy parecido a 3FN, aquí hay varias dos posibles combinaciones de claves candidatas. En caso de usar las 3 como clave 3FN sería correcta.

DNI-Asignatura como clave

DNI-Tutor como clave \rightarrow la elegimos como clave y será una tabla.

Eliminar dependencias multivaluadas que llevan a redundancia de datos. La 4FN elimina esa redundancia.

Permutaciones de envíos de pizzas

Restaurante	Variedad de Pizza	Área de envío
Vincenzo's Pizza	Corteza gruesa	Springfield
Vincenzo's Pizza	Corteza gruesa	Shelbwille
Vincenzo's Pizza	Corteza fina	Springfield
Vincenzo's Pizza	Corteza fina	Shelbwille
Elite Pizza	Corteza fina	Capital City
Elite Pizza	Corteza rellena	Capital City
A1 Pizza	Corteza gruesa	Springfield
A1 Pizza	Corteza gruesa	Shelbyville
A1 Pizza	Corteza gruesa	Capital City
A1 Pizza	Corteza rellena	Springfield
A1 Pizza	Corteza rellena	Shelbyville
A1 Pizza	Corteza rellena	Capital City

Variedades por restaurante

	Restaurante	Variedad de pizza		
	Vincenzo's Pizza	Corteza gruesa		
	Vincenzo's Pizza	Corteza fina		
	Elite Pizza	Corteza fina		
	Elite Pizza	Corteza rellena		
	A1 Pizza	Corteza gruesa		
	A1 Pizza	Corteza rellena		

Áreas de envío por restaurante

<u>Área de envío</u>
Springfield
Shelbyville
Capital City
Springfield
Shelbyville
Capital City

La primera tabla es correcto que los 3 valores forman un valor único. Pero al ser multivaluada hay redundancia que podemos evitar separando en dos tablas.

Todas las dependencia de join dependen de la clave primaria

- Divide una tabla en tres o más.
- Se puede encontrar en una relación muchos a muchos a muchos.
- FN polémica (depende de la situación).

Una tabla no está en 5FN si hay una descomposición de esa tabla que muestre la misma información que la original.

	Store	Supplier	Product
	West Main Street	J&J Supplies	Large Widget
20	West Main Street	J&J Supplies	Small Widget
	West Main Street	Wholesale R Us	Basket
	West Main Street	Wholesale R Us	Bowl
	Hartford Ave #12	J&J Supplies	Large Widget
	Hartford Ave #12	J&J Supplies	Small Widget
	Hartford Ave #12	J&J Supplies	Medium Widget
	Hartford Ave #12	J&J Supplies	Huge Widget
	Hartford Ave #12	J&J Supplies	Non Widget
	Hartford Ave #12	Wholesale R Us	Basket
	Hartford Ave #12	Wholesale R Us	Bowl
	Hartford Ave #12	Wholesale R Us	Container

Todas las dependencia de join dependen de la clave primaria

Puedo hacer un join entre las nuevas tablas y obtener la misma información que en la anterior. Menos datos.

FIN UT3