Analiza matematyczna - opracowane zagadnienia na egzamin licencjacki *

Michał Tydryszewski (mictyd@mat.uni.torun.pl)

3 lipca 2009

1 Pojęcie granicy ciągu (liczbowego, funkcji, szeregu liczbowego lub funkcyjnego). Podstawowe twierdzenia dotyczące granic ciągów.

1.1 Ciągi liczbowe

Definicja 1.1. Ciągiem nazywamy dowolną funkcję $a:I\to X$, gdzie $I\subset\mathbb{N}$, zaś X dowolnym podzbiorem. Gdy I jest skończony, mówimy, że ciąg jest skończony (oznaczenie $(a_i)_{i\in I}$), gdy I jest nieskończony (czyli równy \mathbb{N}) ciąg nazywa się nieskończonym (oznaczenia jak wcześniej, $(a_i)_{i=1}^{\infty}$, $(a_i)_{i\geqslant 1}$).

Komentarz. Zbiór I jest zbiorem indeksów wyrazów ciągu. W ciągu jest istotna kolejność (w przeciwieństwie do zbiorów), wyrazy mogą się powtarzać. Gdy wyrazami ciągu są liczby, ciąg nazywamy liczbowym. W dalszej części publikacji zdefiniujemy również ciągi funkcyjne.

Niezmiernie ważną własnością ciągu jest zbieżność. Aby zdefiniować pojęcie zbieżności (i granicy) konieczne jest wprowadzenie kilku pojęć:

Definicja 1.2. Otoczeniem punktu A o promieniu ϵ nazywamy otwarty przedział długości 2ϵ i środku w punkcie A (czyli przedział $(A - \epsilon; A + \epsilon)$).

Definicja 1.3. Zwrot prawie wszystkie oznacza "wszystkie poza skończoną ilością".

Komentarz. Ta definicja nie jest bez sensu. Da się ją zrozumieć.

Teraz możemy już zdefiniować pojęcie granicy ciągu liczbowego:

Definicja 1.4. *Granicą ciągu liczbowego* nazywamy liczbę g taką, w której każdym otoczeniu leżą prawie wszystkie wyrazy tego ciągu. Symbolicznie możemy zapisać tę definicję następująco:

$$\bigvee_{\epsilon>0} \exists_{n_0} \bigvee_{n>n_0} |a_n - g| < \epsilon$$

Ciąg posiadający granicę nazywamy zbieżnym. Ten fakt oznaczamy następująco:

$$\lim_{n \to \infty} a_n^{-1} = g \quad \text{bad\'z} \quad a_n \xrightarrow[n \to \infty]{} g,$$

^{*}W tworzeniu niniejszego opracowania korzystałem z notatek sporządzonych na wykładzie z Analizy Matematycznej I prowadzonym przez dr. hab. Mieczysława K. Mentzena oraz z podręcznika "Matematyka 3. Zakres rozszerzony" autorstwa Henryka Pawłowskiego.

¹Z greki limes - granica

a czytamy "ciąg a_n dąży do g, dla n dążącego do nieskończoności".

Komentarz. Jak należy rozumieć zapis symboliczny? Otóż następująco: jakiego byśmy nie wybrali ϵ , to znajdzie się taki wyraz w ciągu, że wszystkie kolejne będą od granicy w odległości mniejszej niż ϵ .

Twierdzenie 1.5. Niech dane będą ciągi zbieżne a_n oraz b_n , niech ich granice wynoszą odpowiednio a i b. Wówczas:

1.
$$\lim_{n\to\infty} (a_n + b_n) = a + b$$

2.
$$\lim_{n \to \infty} (a_n - b_n) = a - b$$

3.
$$\lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b$$

4. $\lim_{n\to\infty}\frac{a_n}{b_n}=\frac{a}{b}$, o ile te działania mają sens ²

Wniosek 1.6. Dla $a_n \xrightarrow[n \to \infty]{} a$ prawdą jest $\forall \lim_{\beta \in \mathbb{R}} \lim_{n \to \infty} (\beta a_n) = \beta a$

Twierdzenie 1.7. Załóżmy, że $a_n \xrightarrow[n \to \infty]{} a$.

1.
$$Je\dot{z}eli \ \forall a_n \geqslant 0 \ oraz \ a \geqslant 0, to \lim_{n \to \infty} \sqrt[k]{a_n} = \sqrt[k]{a} \ dla \ k \in \mathbb{N}.$$

2. Jeżeli
$$k \in \mathbb{N}$$
, k - nieparzyste, to $\lim_{n \to \infty} \sqrt[k]{a_n} = \sqrt[k]{a}$.

3.
$$Je\dot{z}eli \ \forall a_n > 0 \ oraz \ a > 0, to \lim_{n \to \infty} \log_p a_n = \log_p a, \ gdzie \ p \in (0,1) \cup (1,+\infty).$$

4.
$$\lim_{n\to\infty} b^{a_n} = b^a$$
, dla dowolnego $b > 0$.

5.
$$Je\dot{z}eli \ \forall a_n > 0, a > 0 \ oraz \ b_n \underset{n \to \infty}{\longrightarrow} b \ to \lim_{n \to \infty} a_n^{\ b_n} = a^b.$$

Twierdzenie 1.8 (Cauchy'ego). Jeśli ciąg $(a_n)_{n\geq 1}$ jest zbieżny, to

$$\underbrace{\begin{array}{c} \forall \quad \exists \quad \forall \quad |a_n - a_m| < \epsilon \\ \bullet > 0 \quad N \in \mathbb{N} \quad n, m > N \end{array}}_{warunek \ Cauchy'ego}$$

Komentarz. Warunek Cauchy'ego mówi tyle: jakiej byśmy odległości nie wybrali (ϵ) , to znajdzie się taki wyraz ciągu (o indeksie N), po którym wszystkie wyrazy są od siebie w mniejszej odległości, niż wybraliśmy. W zbiorze liczb rzeczywistych zachodzi również implikacja w drugą stronę (czyli równoważność), lecz nie jest to prawdą we wszystkich przestrzeniach metrycznych.

Ciągi spełniające warunek Cauchy'ego nazywają się fundamentalne lub podstawowe.

Definicja 1.9. Ciąg nazywamy monotonicznym, gdy zachodzi jedna z własności:

- Ciąg jest niemalejący³, czyli $a_{n+1} \geqslant a_n$ dla każdego n
 naturalnego.
- Ciąg jest nierosnący⁴, czyli $a_{n+1} \leq a_n$ dla każdego n
 naturalnego.

Definicja 1.10. *Ciąg nazywamy ograniczonym*, gdy jego wszystkie wyrazy zawierają się pomiędzy dwoma pewnymi liczbami rzeczywistymi⁵ (czyli ciąg nie ucieka do nieskończoności):

$$\exists \forall b \leqslant a_n \leqslant c$$

 $^{^2}$ Zwróćmy uwagę, iż jest tu nieskończenie wiele działań i wszystkie muszą być poprawnie określone!

³Ciąg jest rosnący, gdy nierówność jest ostra

⁴Ciąg jest malejący, gdy nierówność jest ostra

 $^{^5}$ Jeśli potrafimy ciąg ograniczyć liczbami rzeczywistymi, to potrafimy też ograniczyć go liczbami całkowitymi

Twierdzenie 1.11. Każdy ciąg monotoniczny i ograniczony jest zbieżny.

Twierdzenie 1.12. Każdy ciąg zbieżny jest ograniczony.

Komentarz. Jeśli wyrazy ciągu mają wartości pomiędzy dwoma liczbami oraz ciąg jest rosnący (lub w inny sposób monotoniczny), to wokół jakiejś liczby wyrazy muszą się koncentrować.

Jeśli ciąg jest zbieżny, to nie ucieka do nieskończoności, więc da się wybrać liczby, które go ograniczają.

Definicja 1.13. Niech dany będzie ciąg $(a_n)_{n\geqslant 1}$ i niech $(k_n)_{n\geqslant 1}$ będzie rosnącym ciągiem liczb naturalnych. Wówczas ciąg $(a_{k_n})_{n\geqslant 1}$ nazywamy podciągiem ciągu $(a_n)_{n\geqslant 1}$.

Twierdzenie 1.14. Każdy podciąg ciągu zbieżnego jest zbieżny, i to do tej samej granicy, co dany ciąg.

Komentarz. Może być udowodnione jako wniosek z komentarza do Twierdzenia Cauchy'ego (1.8).

Twierdzenie 1.15. Z każdego ciągu można wybrać podciąg monotoniczny.

Twierdzenie 1.16 (Bolzano-Weierstrassa). Z każdego podciągu ograniczonego można wybrać podciąg zbieżny.

Komentarz. Podciąg automatycznie jest ograniczony, a skoro jest też monotoniczny, to w konsekwencji zbieżny.

Twierdzenie 1.17 (o trzech ciągach). Niech dane będą ciągi $(a_n), (b_n), (c_n), przy czym \underset{N \in \mathbb{N}}{\exists} \forall a_n \leq b_n \leq c_n$. Jeżeli $\lim_{n \to \infty} a_n = \alpha = \lim_{n \to \infty} c_n$, to $\lim_{n \to \infty} b_n = \alpha$.

Twierdzenie 1.18 (o trzech milicjantach). Jeśli idziesz między dwoma milicjantami zmierzającymi do tego samego komisariatu, to też tam trafisz.

Definicja 1.19. Niech dany będzie ciąg (a_n) . Powiemy, że:

- 1. ciąg (a_n) jest rozbieżny do $+\infty$ jeśli $\bigvee_{M\in\mathbb{R}} \exists_{n_0\in\mathbb{N}} \bigvee_{n>n_0} a_n > M$.
- 2. ciąg (a_n) jest rozbieżny do $-\infty$ jeśli $\bigvee_{M \in \mathbb{R}} \exists \bigvee_{n_0 \in \mathbb{N}} \bigvee_{n > n_0} a_n < M$.

Definiuje się także granice górne i dolne ciągu. Rozpatruje się wtedy wszystkie podciągi danego ciągu (a_n) posiadające granice (właściwe lub nie) i zbiór G tych granic. Granicą górną ciągu (ozn. lim sup a_n ⁶) jest kres górny G, zaś granicą dolną ciągu (ozn. lim inf a_n ⁷) jest kres dolny G.

Bardzo ważnym ciągiem zbieżnym jest $(1 + \frac{1}{n})^n$. Jego granica wynosi w przybliżeniu 2.718281828 i jest oznaczana jako e. Jest wiele ciągów, których granice są związane z tą liczbą, o części z nich mówi twierdzenie:

Twierdzenie 1.20. Niech:

$$(x_n) \underset{n \to \infty}{\longrightarrow} 0, (y_n) \underset{n \to \infty}{\longrightarrow} +\infty \ oraz (x_n y_n) \underset{n \to \infty}{\longrightarrow} \alpha$$

Wtedy:

$$(1+x_n)^{y_n} \underset{n\to\infty}{\longrightarrow} e^{\alpha}.$$

Twierdzenie 1.21 ("Działania na nieskończonościach"). W poniższych tabelkach oznaczone są skrótowo wyniki działań, w nagłówkach są granice ciągów, zaś w komórkach granice odpowiednich ciągów poddanych działaniom. Najpierw odczytujemy wiersz, potem kolumnę. 0⁺ oznacza zbieganie do zera z prawej strony (po wartościach dodatnich), oznaczenie 0⁻ jest analogiczne.

⁶Czytamy "limes superior"

⁷Czytamy "limes inferior"

+	$a\in\mathbb{R}$	$-\infty$	$+\infty$	-	$a \in \mathbb{R}$	$-\infty$	$+\infty$
$b \in \mathbb{R}$	b+a	$-\infty$	$+\infty$	$b \in \mathbb{R}$	b-a	$+\infty$	$-\infty$
$-\infty$	$-\infty$	$-\infty$?	$-\infty$	$-\infty$?	$-\infty$
$+\infty$	$+\infty$?	$+\infty$	$+\infty$	$+\infty$	$+\infty$?

*	a > 0	a < 0	$-\infty$	$+\infty$
b > 0	b*a	b*a	$-\infty$	$+\infty$
b < 0	b*a	b*a	$+\infty$	$-\infty$
$-\infty$	$-\infty$	$+\infty$	$+\infty$	$-\infty$
$+\infty$	$+\infty$	$-\infty$	$-\infty$	$+\infty$

/	a > 0	a < 0	$-\infty$	$+\infty$
b > 0	b/a	b/a	0-	0+
b < 0	b/a	b/a	0+	0-
$-\infty$	$-\infty$	$+\infty$?	?
$+\infty$	$+\infty$	$-\infty$?	?

Ponadto:

$$\frac{1}{0^+} = \infty$$

$$\frac{1}{0^-} = -\infty$$

Osobno należy rozważyć tzw. symbole nieoznaczone $(1^{\infty}, 0^{\infty}, 0^{0}, 0 \cdot \infty, \frac{0}{0}, \frac{\infty}{\infty}, \infty^{0})$. Aby policzyć granice tego typu, należy posiłkować się różnego rodzaju kruczkami.

1.2 Granica funkcji

Weźmy zbiór D: $\emptyset \neq D \subset \mathbb{R}$ oraz $x_o \in \mathbb{R}$.

Definicja 1.22. Powiemy, że x_0 jest punktem skupienia zbioru D, jeżeli istnieje ciąg $D\ni x_n \underset{n\to\infty}{\longrightarrow} x_0$, $\forall x_n \neq x_0$. Punkty zbioru D, które nie są jego punktami skupienia nazywamy punktami izolowanymi.

Definicja 1.23. Powiemy, że $\infty(-\infty)$ jest niewłaściwym punktem skupienia zbioru D, jeżeli istnieje ciąg $(x_n)_{n\geqslant 1}$ wyrazów ze zbioru D taki, że $x_n\to\infty(-\infty)$.

 $f: D \to \mathbb{R}, \ x_n \in \mathbb{R}$ jest punktem skupienia zbioru D, $a \in \mathbb{R}$.

Definicja 1.24 (definicja Heinego granicy funkcji w punkcie). Powiemy, że a jest granicą funkcji f w punkcie x_0 , jeżeli dla dowolnego ciągu $D \ni x_n \to x_0$, $x_n \ne x_0$ zachodzi $f(x_n) \to a$.

Definicja 1.25 (definicja Cauchy'ego granicy funkcji w punkcie). Powiemy, że a jest granicą funkcji f w punkcie x_0 , jeżeli

$$\bigvee_{\epsilon>0} \mathop{\exists}_{\delta>0} \mathop{\forall}_{x\in D} 0 < |x-x_0| < \delta \Rightarrow |f(x)-a| < \epsilon$$

Powyższe definicje Heinego i Cauchy'ego są równoważne. Granicę funkcji w punkcie oznacza się $\lim_{x\to x_n} f(x) = a$. Rozważa się również granice jednostronne:

Definicja 1.26. Powiemy, że a jest lewostronną granicą funkcji f w punkcie x_0 , jeżeli:

$$\forall \exists_{\epsilon > 0} \exists_{\delta > 0} \forall 0 < x_0 - x < \delta \Rightarrow |f(x) - a| < \epsilon$$

Oznaczamy ją $\lim_{x \to x_n^-} f(x) = a$

Definicja 1.27. Powiemy, że a jest prawostronną granicą funkcji f w punkcie x_0 , jeżeli:

$$\bigvee_{\epsilon > 0} \mathop{\exists}_{\delta > 0} \mathop{\forall}_{x \in D} 0 < x - x_0 < \delta \Rightarrow |f(x) - a| < \epsilon$$

4

Oznaczamy ją $\lim_{x \to x_n^+} f(x) = a$

Twierdzenie 1.28. Jeżeli istnieje granica funkcji f w x_0 , to istnieją granice lewostronna i prawostronna oraz wszystkie te trzy granice są równe. I na odwrót, jeśli istnieją granice jednostronne i są równe, to istnieje również zwykła granica.

Analogicznie, jak w przypadku ciągów, definiuje się również granice niewłaściwe:

Definicja 1.29. Powiemy, że ∞ jest granicą funkcji f w x_0 , jeżeli dla dowolnego ciągu $D \ni x_n \to x_0$, $x_n \neq x_0$, $f(x_n) \to \infty$. Oznaczenie: $\lim_{x \to x_0} f(x) = \infty$. Podobnie definiujemy granicę równą $-\infty$, granice jednostronne oraz granice (skończone lub nie) w $\pm \infty$.

Twierdzenie 1.30. Załóżmy, że $\lim_{x \to x_0} f(x) = a$, $\lim_{x \to x_0} g(x) = b$.

- 1. $\lim_{x \to x_0} (f(x) \pm g(x)) = a \pm b$
- 2. $\lim_{x \to x_0} (f(x)g(x)) = ab$
- 3. $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{a}{b}$
- 4. $\lim_{x \to x_0} \alpha(f(x)) = \alpha a$
- 5. $\forall f(x) \ge 0 \Rightarrow \lim_{x \to x_0} \sqrt{f(x)} = \sqrt{a}$
- 6. k $nieparzyste \Rightarrow \lim_{x \to x_0} \sqrt[k]{f(x)} = \sqrt[k]{a}$
- 7. $f: A \to B, \ g: B \to C, \ x_0 \in A, \ y_0 = f(x_0) \in B$ $\lim_{x \to x_0} (g \circ f)(x) = \lim_{y \to y_0} g(y)$

1.3 Szeregi liczbowe

Definicja 1.31. Definiujemy tzw. ciąg sum częściowych ciągu $(a_n)_{n\geqslant 1}$:

$$S_1 = a_1$$

$$S_2 = a_1 + a_2$$

$$S_3 = a_1 + a_2 + a_3$$

÷

$$S_n = a_1 + a_2 + \dots + a_n = \sum_{k=1}^n a_k$$

:

Otrzymany ciąg liczbowy $(S_n)_{n\geqslant 1}$ nazywamy szeregiem liczbowym o wyrazach $(a_n)_{n\geqslant 1}$ i oznaczamy

$$(S_n)_{n\geqslant 1} = \sum_{n=1}^{\infty} a_n$$

Jeżeli ciąg sum częściowych $(S_n)_{n\geqslant 1}$ jest zbieżny, $\lim_{n\to\infty} S_n=A$, to mówimy, że szereg $\sum_{n=1}^{\infty} a_n$ jest zbieżny, jego granicę A nazywamy sumą szeregu i oznaczamy $\sum_{n=1}^{\infty} a_n=A$.

Uwaga~1.32. Symbol $\sum_{n=1}^{\infty} a_n$ jest użyty w dwóch znaczeniach, szeregu i sumy tego szeregu.

Twierdzenie 1.33 (Warunek konieczny zbieżności szeregu). Jeśli szereg $\sum_{n=1}^{\infty} a_n$ jest zbieżny, to $\lim_{n\to\infty} a_n = 0$.

Komentarz. Jak najbardziej logiczne spostrzeżenie - jeśli suma nie ucieka do nieskończoności, to kolejne wyrazy muszą być coraz mniejsze. Nie jest jednak na odwrót (nie jest to warunek wystarczający).

Twierdzenie 1.34 (Warunek Cauchy'ego dla szeregu). Szereg $\sum_{n=1}^{\infty} a_n$ jest zbieżny wtw, gdy

$$\forall \exists_{\epsilon>0} \forall |a_n + a_{n+1} + \dots + a_{n+k}| < \epsilon$$

Twierdzenie 1.35. Kryteria zbieżności szeregów:

1. Kryterium porównawcze

$$\sum_{n=1}^{\infty}a_n, \; \sum_{n=1}^{\infty}b_n, \; b_n\geqslant a_n\geqslant 0, \; \; dla \; \; ka\dot{z}dego \; n\geqslant 1$$

(a) Jeżeli szereg
$$\sum\limits_{n=1}^{\infty}b_n$$
 jest zbieżny, to $\sum\limits_{n=1}^{\infty}a_n$ też jest

(b) Jeżeli szereg
$$\sum\limits_{n=1}^{\infty}a_n$$
 jest rozbieżny, to $\sum\limits_{n=1}^{\infty}b_n$ również

2. Kryterium d'Alamberta

$$\sum_{n=1}^{\infty} a_n, \ a_n > 0, \ n \geqslant 1. \ Załóżmy, \ \dot{z}e \ istnieje \ granica \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = q$$

(a) Jeżeli
$$q < 1$$
 to szereg $\sum_{n=1}^{\infty} a_n$ jest zbieżny

(b) Jeżeli
$$q > 1$$
 to szereg $\sum_{n=1}^{\infty} a_n$ jest rozbieżny

(c) Jeżeli
$$q=1$$
 to o zbieżności szeregu $\sum_{n=1}^{\infty} a_n$ nie możemy (z tego kryterium) nic powiedzieć, bywa różnie

3. Kryterium Cauchy'ego

$$\sum_{n=1}^{\infty} a_n, \ a_n \geqslant 0, \ \ dla \ \ ka\dot{z}dego \ \ n \geqslant 1$$
 Załóżmy, że istnieje granica $\lim_{n \to \infty} \sqrt[n]{a_n} = q$.

(a) Jeżeli
$$q < 1$$
 to szereg $\sum_{n=1}^{\infty} a_n$ jest zbieżny

(b) Jeżeli
$$q > 1$$
 to szereg $\sum_{n=1}^{\infty} a_n$ jest rozbieżny

(c) Jeżeli
$$q=1$$
 to o zbieżności szeregu $\sum\limits_{n=1}^{\infty}a_n$ nie możemy (z tego kryterium) nic powiedzieć, bywa różnie

4. Kryterium Leibniza

Zalóżmy, że dany jest ciąg $(a_n)_{n\geqslant 1}$ monotonicznie zbieżny do zera. Wówczas szereg $\sum_{n=1}^{\infty} (-1)^{n+1}a_n$ jest zbieżny.

5. Kryterium Dirichleta

Załóżmy, że:

$$(a)$$
 $(a_n)_{n\geqslant 1}$ jest ciągiem monotonicznie zbieżnym do zera

(b) szereg
$$\sum_{n=1}^{\infty} b_n$$
 ma ograniczone sumy częściowe

Wówczas szereg
$$\sum_{n=1}^{\infty} a_n b_n$$
 jest zbieżny.

6. Kryterium Abela

Załóżmy, że:

(a) $(a_n)_{n\geqslant 1}$ jest ciągiem zbieżnym monotonicznie

(b) szereg
$$\sum_{n=1}^{\infty} b_n$$
 jest zbieżny

Wówczas szereg $\sum_{n=1}^{\infty} a_n b_n$ jest zbieżny.

Twierdzenie 1.36. Niech dany będzie szereg $\sum_{n=1}^{\infty} a_n$. Jeżeli szereg $\sum_{n=1}^{\infty} |a_n|$ jest zbieżny, to szereg $\sum_{n=1}^{\infty} a_n$ również.

Definicja 1.37. Jeżeli szereg $\sum_{n=1}^{\infty} |a_n|$ jest zbieżny, to mówimy, że szereg $\sum_{n=1}^{\infty} a_n$ jest bezwzględnie zbieżny. Szereg, który jest zbieżny, ale nie jest bezwzględnie zbieżny, nazywa się warunkowo zbieżny.

Twierdzenie 1.38. Kolejne kryteria zbieżności:

1. Kryterium d'Alamberta dla szeregów o wyrazach dowolnych

$$\sum\limits_{n=1}^{\infty}a_n,~a_n\neq 0,~n\geqslant 1.$$
 Załóżmy, że istnieje granica $\lim\limits_{n\to\infty}\frac{|a_{n+1}|}{|a_n|}=q$

- (a) Jeżeli q < 1 to szereg $\sum_{n=1}^{\infty} a_n$ jest bezwzględnie zbieżny
- (b) Jeżeli q>1 to szereg $\sum\limits_{n=1}^{\infty}a_n$ jest rozbieżny
- (c) Jeżeli q=1 to o zbieżności szeregu $\sum\limits_{n=1}^{\infty}a_n$ nie możemy (z tego kryterium) nic powiedzieć, bywa różnie
- 2. Kryterium Cauchy'ego dla szeregów o wyrazach dowolnych

Załóżmy, że istnieje granica $\lim_{n\to\infty} \sqrt[n]{|a_n|} = q$.

- (a) Jeżeli q < 1 to szereg $\sum_{n=1}^{\infty} a_n$ jest bezwzględnie zbieżny
- (b) Jeżeli q > 1 to szereg $\sum_{n=1}^{\infty} a_n$ jest rozbieżny
- (c) $Je\dot{z}eli\ q=1\ to\ o\ zbie\dot{z}ności\ szeregu\ \sum\limits_{n=1}^{\infty}a_n\ nie\ możemy\ (z\ tego\ kryterium)\ nic\ powiedzieć,\ bywa\ różnie$

1.4 Ciagi funkcyjne

Niech D będzie niepustym podzbiorem \mathbb{R} . Przez $\mathcal{F}(D)$ oznaczamy zbiór funkcji określonych na D o wartościach rzeczywistych. Symbolicznie:

$$\emptyset \neq D \subset \mathbb{R}, \mathcal{F}(D) = \{f : D \to \mathbb{R}\}.$$

Definicja 1.39. Ciągiem funkcyjnym nazwiemy dowolną funkcję określoną na \mathbb{N} o wartościach w zbiorze funkcji $\mathcal{F}(D)$.

Oznaczenie: $(f_n)_{n\geqslant 1}$, gdzie każda $f_n:D\to\mathbb{R}$.

Przykład 1.40. 1. $f_n:[0,1]\to\mathbb{R}, f_n(x)=x^n, n\geqslant 1$

2.
$$f_n: [0, 2\pi] \to \mathbb{R}, f_n(x) = \sin(\frac{x}{n}), n \ge 1$$

Definicja 1.41. $\emptyset \neq D \subset \mathbb{R}, (f_n)_{n \geqslant 1}, f: D \to \mathbb{R}$

• Powiemy, że ciąg funkcyjny (f_n) jest punktowo zbieżny do funkcji f, jeżeli:

$$\bigvee_{x \in D} \lim_{n \to \infty} f_n(x) = f(x)$$

7

Oznaczenie: $f_n(x) \to f(x), x \in D$

• Powiemy, że ciąg funkcyjny jest jednostajnie zbieżny do funkcji f, jeżeli:

$$\forall \exists_{\epsilon>0} \forall \forall_{n \in \mathbb{N}} \forall_{n \geqslant N} \forall_{x \in D} |f_n(x) - f(x)| < \epsilon$$

Oznaczenie: $f_n \to f$, $f_n \rightrightarrows f$

Rodzi się pytanie - czym różnią się te definicje? Zapiszmy symbolicznie warunek zbieżności punktowej:

$$\bigvee_{x \in D} \bigvee_{\epsilon > 0} \underset{N \in \mathbb{N}}{\exists} \bigvee_{n \geqslant N} |f_n(x) - f(x)| < \epsilon$$

Jak nietrudno zauważyć, różnicą jest umiejscowienie kwantyfikatora $\forall x \in D$. W zbieżności jednostajnej istnieje jedno N dobre dla każdego $x \in D$, zaś w zbieżności punktowej dla każdego $x \in D$ może być inne N. Zbieżność jednostajna oznacza również zbieżność punktową, lecz nie na odwrót.

Twierdzenie 1.42 (Jednostajny warunek Cauchy'ego). Ciąg funkcyjny $(f_n)_{n\geqslant 1}$ jest jednostajnie zbieżny wtw, gdy

$$\bigvee_{\epsilon>0} \exists \bigvee_{n \in \mathbb{N}} \bigvee_{n,m \geqslant N} \bigvee_{x \in D} |f_n(x) - f_m(x)| < \epsilon$$

Twierdzenie 1.43. Granica jednostajnie zbieżnego ciągu funkcji ciągłych jest funkcją ciągłą.

Definicja funkcji ciągłej znajdzie się dalej. Teraz krótko o szeregach funkcyjnych.

1.5 Szeregi funkcyjne

Definicja 1.44. Szereg funkcyjny ma postać $\sum_{n=1}^{\infty} f_n$, gdzie $f_n: D \to \mathbb{R}$.

W przypadku szeregów funkcyjnych również rozważa się zbieżność punktową i jednostajną, ich definicje są analogiczne do definicji takich zbieżności ciągów funkcyjnych. Jedyną różnicą jest symbol sumy przed f_n . Oznaczenia na zbieżności: $\sum_{n=1}^{\infty} f_n(x) = f(x), x \in D$ - zbieżność punktowa szeregu

$$\sum_{n=1}^{\infty} f_n = f$$
 - zbieżność jendostajna szeregu

Twierdzenie 1.45 (Jednostajny warunek Cauchy'ego dla szeregów funkcyjnych). Szereg funkcyjny jest jednostajnie zbieżny, gdy

$$\bigvee_{\epsilon>0} \mathop{\exists}_{n\geq \mathbb{N}} \mathop{\forall}_{n\geq \mathbb{N}} \mathop{\forall}_{k\in \mathbb{N}} \mathop{\forall}_{x\in D} |f_n(x) + f_{n+1}(x) + \dots + f_{n+k}(x)| < \epsilon$$

Suma jednostajnie zbieżnego szeregu funkcji ciągłych jest funkcją ciągłą.

Definicja 1.46. Powiemy, że szereg funkcyjny $\sum_{n=1}^{\infty} f_n$ jest bezwzględnie jednostajnie zbieżny, jeżeli szereg $\sum_{n=1}^{\infty} |f_n|$ jest jednostajnie zbieżny.

Twierdzenie 1.47. Zalóżmy, że $\forall |f_n(x)| \leq a_n, \ n \geq 1, \ gdzie \sum_{n=1}^{\infty} a_n \ jest \ zbieżny.$ Wówczas szereg $\sum_{n=1}^{\infty} f_n \ jest \ bezwzględnie jednostajnie zbieżny.$

Komentarz. Da się zauważyć analogie między ciągami i szeregami liczbowymi a ciągami i szeregami funkcyjnymi. Również wszystkie warunki Cauchy'ego są do siebie podobne. Jednak nie zmienia to faktu, że jest tego dużo i niekoniecznie (póki co) nam przydatnego.

2 Ciągłość funkcji. Podstawowe własności funkcji ciągłych.

Rozpatrujemy funkcję $f: D \to \mathbb{R}$ i punkt x_0 , gdzie D jest niepustym zbiorem, a punkt x_0 jego elementem.

Definicja 2.1 (Definicja Heinego ciągłości funkcji w punkcie). Powiemy, że f jest *ciągła* w punkcie x_0 , jeżeli dla dowolnego ciągu $D \ni x_n \to x_0$ zachodzi $f(x_n) \to f(x_0)$.

Komentarz. Ta definicja jest na bazie definicji zbieżności ciągu - tworzymy ciąg x_n zbiegający do x_0 . Funkcja jest ciągła, jeśli ciąg wartości $f(x_n)$ zbiega do $f(x_0)$.

Definicja 2.2 (Definicja Cauchy'ego ciągłości funkcji w punkcie). Powiemy, że f jest ciągła w punkcie x_0 , jeżeli

$$\forall \exists_{\epsilon > 0} \exists_{\delta > 0} \forall |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \epsilon$$

Komentarz. Im bliżej punkty są x_0 , to tym bliżej f(x) są $f(x_0)$.

I tu również definicje Cauchy'ego i Heinego są równoważne. Co zapisują te dwie definicje? Intuicyjnie można rozumieć, że funkcja (z podzbioru $\mathbb R$ do podzbioru $\mathbb R$) jest ciągła, gdy jej wykres jest "rysowany ciągłą linią".

Definicja 2.3. Powiemy, że $f:D\to\mathbb{R}$ jest ciągła (w D) jeżeli jest ciągła w każdym punkcie zbioru D, czyli gdy

$$\bigvee_{x_0 \in D} \bigvee_{\delta > 0} \bigvee_{\delta > 0} \bigvee_{x \in D} |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \epsilon$$

Własności funkcji ciągłych:

- Suma, różnica, iloczyn, iloraz oraz złożenie⁸ funkcji jest funkcją ciągłą.
- $f: D \to E \subset \mathbb{R}$, D, E przedziały, f(D) = E, f ściśle monotoniczna. Jeżeli f jest ciągła, to przy powyższych warunkach funkcja odwrotna $f^{-1}: E \to D$ jest również ciągła.
- Ciągły obraz przedziału jest przedziałem.
- Ciągły obraz odcinka domkniętego jest odcinkiem domkniętym.
- Funkcja ciągła określona na odcinku domkniętym jest ograniczona/

Twierdzenie 2.4 (Weierstrassa). Funkcja ciągła na odcinku domkniętym osiąga swoje kresy, tzn. jeżeli $f:[a,b] \to \mathbb{R}$ jest ciągła, to istnieją $c,d \in [a,b]$ takie, że $c=\inf\{f(x): x \in [a,b]\}$, $d=\sup\{f(x): x \in [a,b]\}$.

Twierdzenie 2.5. Niech $f: D \to \mathbb{R}, x_0 \in D$ jest punktem skupienia D. Wówczas f jest ciągła w $D \Leftrightarrow \lim_{x \to x_0} f(x) = f(x_0)$.

Wniosek 2.6. Funkcje wielomianowe, wymierne, funkcja logarytmiczna, funkcje trygonometryczne są ciągłe.

Definicja 2.7 (ciągłości jednostajnej). Niech $f: D \to \mathbb{R}$. Powiemy, że f jest jednostajnie ciągła, jeżeli

$$\bigvee_{\epsilon>0} \mathop{\exists}_{\delta>0} \mathop{\forall}_{x_1 \in D} \mathop{\forall}_{x_2 \in D} |x_1 - x_2| < \delta \Rightarrow |f(x_1) - f(x_2)| < \epsilon$$

Wniosek 2.8. Funkcja jednostajnie ciągła jest ciągła. Nie jest na odwrót!

Twierdzenie 2.9. Każda funkcja ciągła określona na odcinku domkniętym jest jednostajnie ciągła.

 $^{^8{\}rm Oczywiście},$ jeśli funkcje są poprawnie określone na odpowiednich przedziałach