Capital Bikeshare Consulting Report

OUR TEAM

Feng Yi

ZHANG Huiyan

PANZHIYONG

Lai ziwei

TABLE OF CONTENTS

Evaluation

Modeling

Conclusion

Recommendations

01

Company Introduction

About Capital Bikeshare

5000+ Bikes

600+ Stations

7 Jurisdictions

365 Days a Year

About Capital Bikeshare

Subscription Plans

Single Trip

US\$1/unlock+US\$0.0 5/min

Annual Membership

US\$7.92/month

Ref: https://ride.capitalbikeshare.com/pricing

Capital Bikeshare History

Ref: https://ride.capitalbikeshare.com/about

CHALLENGES!

50K

2011年

2012年

Month

OKI

18

Hour ★

50K 0K

2013年

Our Datasets

Hourly

Rows: 17,380

Cols: 17

Daily

Rows: 731

Cols: 16

About the key variables

Name	Definition	
Season	1:winter 2:spring 3:summer 4:fall	
Holiday/working day	Is the day a holiday/workingday or not.(1 or 0)	
Weather	Weather conditions(4 degree)	
Temp/Atemp	The standardized temperature/feeling temperature.	
Humidity	The standardized Humidity.	
Windspeed	The standardized windspeed.	
Registered	Registered users' ridership	
Casual	Casual users' ridership	
CNT	Total users	

Data Understanding

Correlations between Variables

Some data explorations

Some data explorations

Some data explorations

3 potential target variable

 We decided to use all of them as target variable, but not together.

feature1	feature	count
obs1		
obs		

feature1	feature	registered
obs1		
obs		

feature1	feature	count
obs1		
obs		

Evaluate the models

 We randomly divide the data set into training set and test set.

Categorical variables data type

• We set the categorical variables as factor.

Irrelevant variables

We delete the irrelevant variables.

instant	feature	count
1		
2		
3		

Linear Regression

Baseline Model

Random Forest

Bagging+Decision Tree

Best Subsets Regression

Model Selections Regression Models

XGboost

Gradient Boosting Regression Tree

Linear Regression

Pros:

- Simple and very easy to interpret the result
- Handle overfitting very in dimension reductions and crossvalidation
- Perform exceptionally well for linearly separable data

Cons:

- Prone to noise and overfitting
- Sensitive to the Outliers
- Prone to multicollinearity

Ref:https://en.wikipedia.org/wiki/Regression_analysis

Pros:

Best Subsets Regression

- Improves generalizability by eliminating unnecessary predictors
- Simple and very easy to interpret the result
- Reproducible and Objective

Cons:

- Computation Limitation
- Theoretical limitation

Random Forest

Random Forest Classifier

Pros:

- Overcome overfitting by averaging the results of different tree models
- Reduce Variance
- Flexible and High Accuracy

Cons:

- High Complexity and less intuitive compared to other tree models
- Harder and time-confusing to construct
- Computation Limitation

Ref:https://medium.com/analytics-vidhya/random-forest-classifier-and-its-hyperparameters-8467bec755f6

Xgboost

Pros:

- Reduce bias and increase accuracy
- Less prone to outliers and overfitting
- Regularization and missing values handling

Cons:

- Difficult interpretation, visualization tough
- Harder to tune as there are too many hyperparameters
- More training time is needed

Ref: https://medium.com/sfu-cspmp/xgboost-a-deep-dive-into-boosting-f06c9c41349

https://towardsdatascience.com/pros-and-cons-of-various-classification-ml-algorithms-3b5bfb3c87d6

3 Target Variables

- CNT
- Registered CNT
- Causal CNT

CNT

Key Figures

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                        19.304
                                   8.757
                                           2.20 0.027506 *
train_bike$season2
                      18.015
                                   4.758
                                           3.78 0.000154 ***
train_bike$season3
                       -14.792
                                   6.129 -2.41 0.015822 *
train_bike$season4
                                   4.151 14.39 < 2e-16 ***
                        59.758
train_bike$hr
                      7.247
                                   0.204 35.53 < 2e-16 ***
train_bike$holiday1
                       -30.143
                                   8.267
                                          -3.64 0.000267 ***
                                           1.66 0.095914 .
train_bike$weekday1
                        8.505
                                   5.108
train_bike$weekday2
                        8.055
                                           1.62 0.104274
                                   4.958
train_bike$weekday3
                       15.389
                                   4.941
                                           3.11 0.001848 **
train_bike$weekday4
                        8.711
                                          1.75 0.079006 .
                                   4.959
                     16.127
train_bike$weekday5
                                          3.25 0.001120 **
                                   4.948
train_bike$weekday6
                       15.109
                                   4.939
                                          3.05 0.002226 **
train bike$weathersit2 13.678
                                   3.238
                                           4.22 2.41e-05 ***
train_bike$weathersit3 -25.776
                                   5.458
                                          -4.72 2.35e-06 ***
train_bike$weathersit4
                        47.094
                                 103.132
                                           0.45 0.647944
train_bike$temp
                       316.409
                                  45.954
                                           6.88 6.05e-12 ***
train_bike$atemp
                     58.914
                                  49.588
                                          1.18 0.234827
train bike$hum
                     -207.326
                                 8.504 -24.38 < 2e-16 ***
train_bike$windspeed
                       24.237
                                  11.909
                                          2.03 0.041844 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 .' 0.1 ' ' 1
Residual standard error: 145.7 on 12146 degrees of freedom
Multiple R-squared: 0.3467,
                              Adjusted R-square : 0.3458
F-statistic: 358.1 on 18 and 12146 DF, p-value: 2.2e-16
```

R Square: 0.3467

Adjusted R Square: 0.3458

Residual Standard Error: 145.7

MSE: 43,807.35

F Statistics:358.1

P-Value: <2.2e-16

AIC: 155,739.2

BIC: 155,887.3

Registered CNT

Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -3.2296 7.6805 -0.42 0.674138 train_bike\$season2 14.2609 4.1737 3.41 0.000636 *** train_bike\$season3 5.3761 -0.37 0.709140 -2.0054 train_bike\$season4 52.8766 3.6411 14.52 < 2e-16 *** train_bike\$hr 6.1588 0.1789 34.42 < 2e-16 *** train_bike\$holiday1 -51.0486 7.2513 -7.04 2.03e-12 *** train_bike\$weekday1 38.9094 4.4804 8.68 < 2e-16 *** train_bike\$weekday2 42.1229 4.3489 9.68 < 2e-16 *** train_bike\$weekday3 48.9088 4.3343 11.28 < 2e-16 *** train_bike\$weekday4 43.5124 4.3497 10.00 < 2e-16 *** train_bike\$weekday5 42.1678 4.3402 9.71 < 2e-16 *** train_bike\$weekdav6 8.6249 4.3323 1.99 0.046522 * train_bike\$weathersit2 9.8287 2.8398 3.46 0.000540 *** 4.7873 train bike\$weathersit3 -27.2875 -5.70 1.23e-08 *** train_bike\$weathersit4 90.4595 16.8461 0.18 0.852269 train_bike\$temp 199.8423 40.3074 4.95 7.22e-07 *** train_bike\$atemp 42.7358 43.4947 0.98 0.325847 train_bike\$hum -136.0931 7.4590 -18.24 < 2e-16 *** train_bike\$windspeed 24.1408 10.4452 2.31 0.020839 * Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 ' ' 0.1 ' ' 1 Residual standard error: 127.8 on 12146 degrees of freedom Multiple R-squared: 0.2847. Adiusted R-squared

F-statistic: 268.5 on 18 and 12146 DF, p-value: < 2.20 16

Key Figures

R Square: 0.2847

Adjusted R Square: 0.2836

Residual Standard Error: 127.8.

MSE: 28,719.25

F Statistics:268.5

P-Value: <2.2e-16

AIC: 15,2549.2

BIC: 152,697.3

Adjusted R-squared 0.4658

Causal CNT

Estimate Std. Error t value Pr(>|t|) (Intercept) 22.53360 2.12665 10.596 < 2e-16 *** train_bike\$season2 3.75462 1.15565 3.249 0.00116 ** train_bike\$season3 -12.78665 1.48859 -8.590 < 2e-16 *** train_bike\$season4 6.88109 1.00818 6.82 9.19e-12 *** train_bike\$hr 1.08838 0.04953 21.973 < 2e-16 *** train_bike\$holiday1 20.90514 2.00781 10.412 < 2e-16 *** 1.24056 -24.508 < 2e-16 *** train_bike\$weekday1 -30.40394 -34.06791 1.20416 -28.291 < 2e-16 *** train_bike\$weekday2 train_bike\$weekday3 -33.51958 1.20011 -27.930 < 2e-16 *** 1.20439 -28.89! < 2e-16 *** train_bike\$weekday4 -34.80104 train_bike\$weekday5 -26.04063 1.20175 -21.669 < 2e-16 *** train_bike\$weekday6 1.19957 5.40@ 6.58e-08 *** 6.48433 train_bike\$weathersit2 3.84985 0.78631 4.896 9.90e-07 *** train bike\$weathersit3 1.51107 1.32554 0.25432 1.140 train_bike\$weathersit4 30.24745 25.04721 0.22722 1.208 train bike\$temp 116.56622 11.16066 10.444 < 2e-16 *** train bike\$atemp 16.17850 12.04319 1.343 0.17918 train bike\$hum < 2e-16 *** -71.23248 2.06532 -34.49 train_bike\$windspeed 0.09638 2.89215 0.033 0.97342 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 ' 0.1 ' ' 1 Residual standard error: 35.38 on 12146 degrees of freedom

F-statistic: 590.3 on 18 and 12146 DF, p-value: < 2.2e-16

Multiple R-squared: 0.4666,

Key Figures

R Square: 0.4666

Adjusted R Square: 0.4658

Residual Standard Error: 35.38

MSE: 3,565.914

F Statistics:590.3

P-Value: <2.2e-16

AIC: 12,1306.1

BIC: 12,1454.2

Method

CNT-Training Set

Best 3 Model:

Temperature; humidity, Hour

Best 4 Model:

Winter; Temperature, humidity, Hour

Best 5

Model:Summer,Winter,Humidity, Hour,Temperature

Best 8 Model:Summer,Winter,Hour Holiday,Weather,Temperature,Humi dity

CNT-Test Set

Registered CNT -Training Set

CNTR Square Performan To Adjusted R Square Perfor

Adjusted R 9

15

10

Number of Variables

5

-2000

4000

Best 3 Model:

Hour, Temperature and Humidity

Best 4 Model:

Winter; Temperature, humidity, Hour

Best 5 Model:

Winter: Temperature, humidity, Hour, Saturday

Best 8 Model: Summer. Winter, Hour, Holiday, Saturday, Weather, Temperature, Humidity

Registered CNT
-Test Set

Causal CNT
-Training Set

Method

Best 3 Model:

Saturday,Temperature,Humidit y

Best 4 Model:

Hour, Saturday, Temperature, Hu midity

Best 5 Model:

Hour, Saturday, Temperature, Humidity, Autumn

Best 8 Model:

Hour, Temperature, Humidity, Monday, Tuesday, Wednesday, Thursday, Friday

Causal CNT
-Test Set

CNT-Training Set
Tree=100 85.02% Var
explained

Tree=400 86.03% Var explained

CNT-Test Set

Tree=100 MSE: 4,834.429

> Tree=400 MSE: 4,748.079

Tree=100 84.75% Var explained

hr hr weekday weekday atemp hum temp season holiday hum weathersit season temp windspeed weathersit atemp windspeed holiday 200 0.0e + 001.5e+08 %IncMSE IncNodePurity

Registered CNT-Training Set 5% Var explained

Registered CNT-Test Set

Tree=100 Minimized MSE: 3,521.261

Tree=400 Minimized MSE: 3,439.367

Casual CNT-Training Set

Tree=100 88.13% Var explained

Tree=400 88.31% Var explained

Casual CNT-Test Set

Tree=100 Minimized MSE: 312.5301

Tree=400 Minimized MSE: 307.3897

CNT-Training Set

CNT-Test Set

CNT-Registered-Training Set

CNT-Registered-Test Set

CNT-Casual-Training Set

CNT-Casual-Test Set

06

Evaluation

Evaluation

CNT

Model	Minimized MSE	Maximized Adjusted R Square	Minimized RMSE
Linear Regression	43,807	35%	145
Best Subsets Regression	21,730	16%	147
Random Forest	4,748	86%	69
XGboost	4724	85%	68

Evaluation

Registered-CNT

Model	Minimized MSE	Maximized Adjusted R Square	Minimized RMSE
Linear Regression	28,719	28%	128
Best Subsets Regression	16,186	14%	127
Random Forest	3,439	85%	58
XGboost	3478	85%	59

Evaluation

Casual-CNT

Model	Minimized MSE	Maximized Adjusted R Square	Minimized RMSE
Linear Regression	3,565	46%	35
Best Subsets Regression	1438	21%	38
Random Forest	307	88%	17
XGboost	339	87%	18

Conclusion

Best Model

Xgboost!

Key Factors

Hour, Working day, Temperature, Humidity, Se ason

Some data explorations

Business Recommendations

Provide more discount packages for causal on Weekdays and registered at Weekends

Put the bike near the working place and dwelling place for the registered users

Carefully choose bike type and build SEO and Google Marketing Analytics to attract customers

Build a large AI
Platform and Database
to improve Customer
experience

THANKS!

Add your email at contact_us@capitalbikesha re.com

CREDITS: This presentation template was created by **Slidesgo**, including icons by Flaticon, and infographics & images by Freepik

Please keep this slide for attribution

