Достаточные статистики

Статистика $T=T(X_n)$ называется достаточной для модели $F(x,\theta), \theta \in \Theta$, если условная плотность $L(x_1,x_2,...,x_n \middle| T(X_n)=t;\theta)$ (или условная вероятность $P\big\{X_1=x_1,...,X_n=x_n \mid T(X_n)=t\big\}$ в дискретном случае) случайного вектора X_n при условии $T(X_n)=t$ не зависит от параметра θ .

Достаточные статистики

Статистика $T=T(X_n)$ называется достаточной для модели $F(x,\theta), \theta \in \Theta$, если условная плотность $L(x_1,x_2,...,x_n \middle| T(X_n)=t;\theta)$ (или условная вероятность $P\big\{X_1=x_1,...,X_n=x_n \mid T(X_n)=t\big\}$ в дискретном случае) случайного вектора X_n при условии $T(X_n)=t$ не зависит от параметра θ .

Свойство достаточности статистики $T(X_n)$ означает, что выборка содержит всю информацию о параметре θ , имеющуюся в выборке и поэтому все заключения, которые можно сделать при наблюдении X_n зависит только от $T(X_n)$.

Достаточные статистики

Статистика $T = T(X_n)$ называется достаточной для модели $F(x,\theta), \theta \in \Theta$, если условная плотность $L(x_1,x_2,...,x_n \middle| T(X_n) = t;\theta)$ (или условная вероятность $P\big\{X_1 = x_1,...,X_n = x_n \middle| T(X_n) = t\big\}$ в дискретном случае) случайного вектора X_n при условии $T(X_n) = t$ не зависит от параметра θ .

Свойство достаточности статистики $T(X_n)$ означает, что выборка содержит всю информацию о параметре θ , имеющуюся в выборке и поэтому все заключения, которые можно сделать при наблюдении X_n зависит только от $T(X_n)$. Следовательно, достаточная статистика дает оптимальный в определенном смысле способ представления статистических данных, что особенно важно при обработке большого объема статистической информации.

Теорема (критерий факторизации)

Для того, чтобы статистика $T(X_n)$ была достаточной для θ , необходимо и достаточно, чтобы функция правдоподобия имела вид

$$L(X_n, \theta) = g(T(X_n); \theta)h(X_n),$$

где функция $g(t,\theta)$ зависит от выборки только через $T(X_n) = t$, а функция $h(X_n)$ не зависит от θ .

Теорема (критерий факторизации)

Для того, чтобы статистика $T(X_n)$ была достаточной для θ , необходимо и достаточно, чтобы функция правдоподобия имела вид

$$L(X_n, \theta) = g(T(X_n); \theta)h(X_n),$$

где функция $g(t,\theta)$ зависит от выборки только через $T(X_n) = t$, а функция $h(X_n)$ не зависит от θ .

Замечание 1. Всякая R-эффективная оценка является одновременно достаточной статистикой.

Однако обратное не всегда верно – достаточная статистика может существовать, но не быть эффективной.

Теорема (критерий факторизации)

Для того, чтобы статистика $T(X_n)$ была достаточной для θ , необходимо и достаточно, чтобы функция правдоподобия имела вид

$$L(X_n, \theta) = g(T(X_n); \theta)h(X_n),$$

где функция $g(t,\theta)$ зависит от выборки только через $T(X_n) = t$, а функция $h(X_n)$ не зависит от θ .

Замечание 1. Всякая R-эффективная оценка является одновременно достаточной статистикой.

Однако обратное не всегда верно – достаточная статистика может существовать, но не быть эффективной.

Замечание 2. Если статистика $T(X_n)$ достаточная, то достаточной является и любая взаимно-однозначная функция $\varphi(T(X_n))$.

$$L(X_n, \theta) = \frac{1}{(\sqrt{2\pi}\sigma)^n} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - \theta)^2} = \frac{1}{(\sqrt{2\pi}\sigma)^n} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n X_i^2 - 2\theta X_i + \theta^2} = \frac{1}{(\sqrt{2\pi}\sigma)^n} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n X_i^2 - 2\theta X_i + \theta^2}$$

$$L(X_n, \theta) = \frac{1}{(\sqrt{2\pi}\sigma)^n} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - \theta)^2} = \frac{1}{(\sqrt{2\pi}\sigma)^n} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n X_i^2 - 2\theta X_i + \theta^2} = \frac{1}{(\sqrt{2\pi}\sigma)^n} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n X_i^2 - 2\theta X_i + \theta^2}$$

$$= \underbrace{\frac{1}{(\sqrt{2\pi\sigma})^n} e^{\frac{\frac{\theta}{\sigma^2} \sum_{i=1}^n X_i - \frac{n\theta^2}{2\sigma^2}}}_{g(T(X_n, \theta))} \cdot \underbrace{e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n X_i^2}}_{h(X_n)} = g(T(X_n, \theta)h(X_n))$$

$$L(X_n, \theta) = \frac{1}{(\sqrt{2\pi\sigma})^n} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - \theta)^2} = \frac{1}{(\sqrt{2\pi\sigma})^n} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n X_i^2 - 2\theta X_i + \theta^2} = \frac{1}{(\sqrt{2\pi\sigma})^n} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n X_i^2 - 2\theta X_i + \theta^2}$$

$$= \underbrace{\frac{1}{(\sqrt{2\pi\sigma})^n} e^{\frac{\frac{\theta}{\sigma^2} \sum_{i=1}^n X_i - \frac{n\theta^2}{2\sigma^2}}}_{g(T(X_n, \theta))} \cdot \underbrace{e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n X_i^2}}_{h(X_n)} = g(T(X_n, \theta)h(X_n))$$

По критерию факторизации $T(X_n) = \sum_{i=1}^n X_i$ - достаточная статистика для параметра θ .

Теорема (Рао-Блекуэлл-Колмогоров)

НОРМД, если она существует, является функцией от достаточной статистики.

Принцип подстановки: пусть параметр θ является функцией (явной или неявной) от некоторых характеристик распределения случайной величины. Подставим в эту функцию выборочные характеристики вместо истинных. Получим оценку параметра θ по принципу подстановки.

Принцип подстановки: пусть параметр θ является функцией (явной или неявной) от некоторых характеристик распределения случайной величины. Подставим в эту функцию выборочные характеристики вместо истинных. Получим оценку параметра θ по принципу подстановки.

Например, пусть известно, что $X \sim N(a, \sigma)$. Для параметров нормального распределения выполняется

$$a = EX$$
, $\sigma = \sqrt{DX}$.

Принцип подстановки: пусть параметр θ является функцией (явной или неявной) от некоторых характеристик распределения случайной величины. Подставим в эту функцию выборочные характеристики вместо истинных. Получим оценку параметра θ по принципу подстановки.

Например, пусть известно, что $X \sim N(a, \sigma)$. Для параметров нормального распределения выполняется

$$a = EX$$
, $\sigma = \sqrt{DX}$.

Значит, в качестве оценок по принципу подстановки можно использовать:

$$a^* = \overline{X}$$
, $\sigma^* = \sqrt{S^2}$.

Принцип подстановки: пусть параметр θ является функцией (явной или неявной) от некоторых характеристик распределения случайной величины. Подставим в эту функцию выборочные характеристики вместо истинных. Получим оценку параметра θ по принципу подстановки.

Например, пусть известно, что $X \sim N(a, \sigma)$. Для параметров нормального распределения выполняется

$$a = EX$$
, $\sigma = \sqrt{DX}$.

Значит, в качестве оценок по принципу подстановки можно использовать:

$$a^* = \overline{X}$$
, $\sigma^* = \sqrt{S^2}$.

Достоинства: простота; все другие известные способы основаны на этом принципе.

Принцип подстановки: пусть параметр θ является функцией (явной или неявной) от некоторых характеристик распределения случайной величины. Подставим в эту функцию выборочные характеристики вместо истинных. Получим оценку параметра θ по принципу подстановки.

Например, пусть известно, что $X \sim N(a, \sigma)$. Для параметров нормального распределения выполняется

$$a = EX$$
, $\sigma = \sqrt{DX}$.

Значит, в качестве оценок по принципу подстановки можно использовать:

$$a^* = \overline{X}$$
, $\sigma^* = \sqrt{S^2}$.

Достоинства: простота; все другие известные способы основаны на этом принципе.

Недостаток: оценка не всегда однозначна.

- метод моментов;

- метод моментов;
- метод максимального правдоподобия.

- метод моментов;
- метод максимального правдоподобия.

Метод моментов

- вместо моментов теоретического распределения подставляются моменты эмпирического распределения.

- метод моментов;
- метод максимального правдоподобия.

Метод моментов

- вместо моментов теоретического распределения подставляются моменты эмпирического распределения.

Пусть для параметра θ известно, что k-й момент $EX^k = h(\theta)$, где h - некоторая функция. Тогда оценка по методу моментов (ММ-оценка) является решением уравнения

$$EX^{k} = h(\theta) \bigg|_{\theta = \theta^{*}} = \overline{X^{k}} = \frac{1}{n} \sum X_{i}^{k}.$$

- метод моментов;
- метод максимального правдоподобия.

Метод моментов

- вместо моментов теоретического распределения подставляются моменты эмпирического распределения.

Пусть для параметра θ известно, что k-й момент $EX^k = h(\theta)$, где h - некоторая функция. Тогда оценка по методу моментов (ММ-оценка) является решением уравнения

$$EX^{k} = h(\theta) \bigg|_{\theta = \theta^{*}} = \overline{X^{k}} = \frac{1}{n} \sum X_{i}^{k}.$$

Замечания.

1. Оценка может быть не единственная (т.к. параметр может быть выражен через различные моменты).

- метод моментов;
- метод максимального правдоподобия.

Метод моментов

- вместо моментов теоретического распределения подставляются моменты эмпирического распределения.

Пусть для параметра θ известно, что k-й момент $EX^k = h(\theta)$, где h - некоторая функция. Тогда оценка по методу моментов (ММ-оценка) является решением уравнения

$$EX^{k} = h(\theta) \bigg|_{\theta = \theta^{*}} = \overline{X^{k}} = \frac{1}{n} \sum X_{i}^{k}.$$

Замечания.

- 1. Оценка может быть не единственная (т.к. параметр может быть выражен через различные моменты).
- 2. Если $\theta = (\theta_1, ..., \theta_k)$, то необходимо решить k уравнений для k различных моментов.

3. Можно рассмотреть более общий случай: Пусть параметр θ удовлетворяет уравнению: $Eg(X) = h(\theta)$, где g - некоторая функция (ранее было $g(X) = X^k$).

3. Можно рассмотреть более общий случай: Пусть параметр θ удовлетворяет уравнению: $Eg(X) = h(\theta)$, где g - некоторая функция (ранее было $g(X) = X^k$). Тогда ММ-оценка θ^* - решение уравнения $\overline{g(X)} = h(\theta^*)$:

g(X) называется пробной функцией.

3. Можно рассмотреть более общий случай: Пусть параметр θ удовлетворяет уравнению: $Eg(X) = h(\theta)$, где g - некоторая функция (ранее было $g(X) = X^k$). Тогда ММ-оценка θ^* - решение уравнения $\overline{g(X)} = h(\theta^*)$:

Теорема 5 (состоятельность метода моментов). Пусть $\theta^* = h^{-1}(\overline{X^k})$ - ММ-оценка параметра θ , причем функция h^{-1} непрерывна. Тогда θ^* состоятельна.

g(X) называется пробной функцией.

3. Можно рассмотреть более общий случай: Пусть параметр θ удовлетворяет уравнению: $Eg(X) = h(\theta)$, где g - некоторая функция (ранее было $g(X) = X^k$). Тогда ММ-оценка θ^* - решение уравнения $\overline{g(X)} = h(\theta^*)$:

g(X) называется пробной функцией.

Теорема 5 (состоятельность метода моментов). Пусть $\theta^* = h^{-1}(\overline{X^k})$ - ММ-оценка параметра θ , причем функция h^{-1} непрерывна. Тогда θ^* состоятельна.

Доказательство. По закону больших чисел, $\overline{X^k} \xrightarrow{p} EX^k$ при $n \to \infty$.

Так как h^{-1} непрерывна, $\theta^* = h^{-1}(\overline{X^k}) \xrightarrow{p} h^{-1}(EX^k) = \theta$.

Пусть известно, что $X \sim U(a,b)$ (равномерное распределение). По свойству распределения,

$$EX = \frac{b+a}{2}, DX = \frac{(b-a)^2}{12}.$$

Пусть известно, что $X \sim U(a,b)$ (равномерное распределение). По свойству распределения,

$$EX = \frac{b+a}{2}, DX = \frac{(b-a)^2}{12}.$$

Система уравнений:

$$\bar{X} = \frac{b+a}{2}$$

$$S = \frac{b-a}{2\sqrt{3}}$$

Пусть известно, что $X \sim U(a,b)$ (равномерное распределение). По свойству распределения,

$$EX = \frac{b+a}{2}, DX = \frac{(b-a)^2}{12}.$$

Система уравнений:

$$\bar{X} = \frac{b+a}{2}$$

$$S = \frac{b-a}{2\sqrt{3}}$$

$$\Rightarrow \begin{cases}
b^* + a^* = 2\bar{X} \\
b^* - a^* = 2S\sqrt{3}
\end{cases}$$

Пусть известно, что $X \sim U(a,b)$ (равномерное распределение). По свойству распределения,

$$EX = \frac{b+a}{2}, DX = \frac{(b-a)^2}{12}.$$

Система уравнений:

$$\bar{X} = \frac{b+a}{2}$$

$$S = \frac{b-a}{2\sqrt{3}}$$

$$\Rightarrow \begin{cases}
b^* + a^* = 2\bar{X} \\
b^* - a^* = 2S\sqrt{3}
\end{cases}
\Rightarrow a^* = \bar{X} - S\sqrt{3}$$

$$b^* = \bar{X} + S\sqrt{3}.$$

Пусть X – дискретная случайная величина,

$$P(X = x_i) = p_i(\theta), i = 1,...,k$$

вид функций $p_i(\theta)$ известен.

ı

Пусть X – дискретная случайная величина,

$$P(X = x_i) = p_i(\theta), i = 1,...,k$$

вид функций $p_i(\theta)$ известен. Имеется выборка v наблюдений над X объема n. Пусть значение x_i наблюдалось с частотой n_i .

Пусть X – дискретная случайная величина,

$$P(X = x_i) = p_i(\theta), i = 1,...,k$$

вид функций $p_i(\theta)$ известен. Имеется выборка v наблюдений над X объема n. Пусть значение x_i наблюдалось с частотой n_i .

Представим выборку как набор частот $v = (n_1, ..., n_k)$

Пусть X – дискретная случайная величина,

$$P(X = x_i) = p_i(\theta), i = 1,...,k$$

вид функций $p_i(\theta)$ известен. Имеется выборка v наблюдений над X объема n. Пусть значение x_i наблюдалось с частотой n_i .

Представим выборку как набор частот $v = (n_1, ..., n_k)$ Вероятность получить выборку:

$$L(\theta, v) = \prod_{i=1}^{k} (p_i(\theta))^{n_i}.$$

Пусть X – дискретная случайная величина,

$$P(X = x_i) = p_i(\theta), i = 1,...,k$$

вид функций $p_i(\theta)$ известен. Имеется выборка v наблюдений над X объема n. Пусть значение x_i наблюдалось с частотой n_i .

Представим выборку как набор частот $v = (n_1, ..., n_k)$ Вероятность получить выборку:

$$L(\theta, v) = \prod_{i=1}^{k} (p_i(\theta))^{n_i}.$$

Функция $L(\theta, v)$ - функция правдоподобия; зависит от неизвестного параметра θ и выборки.

Метод максимального правдоподобия: в качестве оценки θ^* брать то значение, при котором вероятность $L(\theta, v)$ для данной выборки максимальна.

 $heta^*$ - оценка максимального правдоподобия параметра heta.

$$L(\mathbf{X}_n, \theta) = \prod_{i=1}^n f(X_i, \theta).$$

$$L(\mathbf{X}_n, \theta) = \prod_{i=1}^n f(X_i, \theta).$$

$$L(\mathbf{X}_n, \theta) = \prod_{i=1}^n f(X_i, \theta).$$

Оценка максимального правдоподобия — (МП-оценка) в качестве параметра θ берется значение θ^* , в которой $L(\mathbf{X}_n, \theta)$ достигает максимума.

$$L(\mathbf{X}_n, \theta) = \prod_{i=1}^n f(X_i, \theta).$$

Оценка максимального правдоподобия — (МП-оценка) в качестве параметра θ берется значение θ^* , в которой $L(\mathbf{X}_n, \theta)$ достигает максимума.

Замечание. Удобно рассматривать логарифмическую функцию правдоподобия (точки в которых достигается максимум совпадают):

$$\ln L(\mathbf{X}_n, \theta) = \sum_{i=1}^k n_i \ln p_i(\theta)$$
 (для дискретных величин)

$$L(\mathbf{X}_n, \theta) = \prod_{i=1}^n f(X_i, \theta).$$

Оценка максимального правдоподобия — (МП-оценка) в качестве параметра θ берется значение θ^* , в которой $L(\mathbf{X}_n, \theta)$ достигает максимума.

Замечание. Удобно рассматривать логарифмическую функцию правдоподобия (точки в которых достигается максимум совпадают):

$$\ln L(\mathbf{X}_n, \theta) = \sum_{i=1}^k n_i \ln p_i(\theta)$$
 (для дискретных величин)

ИЛИ

$$\ln L(\mathbf{X}_n, \theta) = \sum_{i=1}^n \ln f(X_i, \theta)$$
 (для непрерывных величин).

Свойства ОМП:

- 1. Если существует R-эффективная оценка $T(X_n)$, то $\hat{\theta} = T(X_n)$, так как по критерию эффективности Рао-Крамера $\frac{\partial \ln L(X_n,\theta)}{\partial \theta} = \frac{1}{a(\theta)} \big[T(X_n) \theta \big] = 0 \Rightarrow T(X_n) = \theta.$
- 2. Если существует достаточная статистика $T = T(X_n)$ и $OM\Pi$ существует и единственная, то она является функцией от T . Так как по теореме факторизации $L(X_n,\theta) = g(T(X_n),\theta)h(X_n)$ и максимизация функции правдоподобия эквивалентна максимизации $g(T(X_n);\theta)$ по $\theta \Rightarrow \hat{\theta}$ зависит от $T(X_n)$.
- 3. *ОМП* является инвариантной относительно преобразования параметров, то есть $\hat{\tau}(\theta) = \tau(\hat{\theta})$ если $\tau(\theta)$ взаимнооднозначное преобразование.

Свойства ОМП:

- 4. $OM\Pi$ является асимптотически несмещенной, то есть $M \, \hat{\theta} \to \theta, n \to \infty.$
- 5. Если модель является регулярной, а функция правдоподобия $\forall n \geq 1$ и $X_n \in X$ имеет один локальный максимум, то $\hat{\theta}$ является состоятельной оценкой параметра θ то есть $\hat{\theta} \stackrel{p}{\longrightarrow} \theta, \forall \, \theta \in \Theta$.
- 6. Если F регулярная, а $L(X_n, \theta)$ имеет один максимум, $f(x, \theta)$ трижды дифференцируема и

$$\exists M(x) : \forall \theta \in \Theta \left| \frac{\partial^3 \ln f(x,\theta)}{\partial \theta_i \partial \theta_j \partial \theta_k} \right| < H(x), \text{ то при } n \to \infty$$

 $\sqrt{n}(\widehat{\theta_n}-\theta) \xrightarrow{d} N(0,I^{-1}\big(\theta\big))$, где $I(\theta)$ - информационная матрица Фишера.

Свойства ОМП:

7. Если $\tau(\theta)$ непрерывно дифференцируемая функция от θ и $\hat{\tau}_n = \tau(\hat{\theta})$ - $OM\Pi \ \tau(\theta)$, то

$$\sqrt{n}(\widehat{\tau_n} - \tau(\theta)) \xrightarrow{d} N(0, \sigma_{\tau}^2)$$

$$\sigma_{\tau}^{2} = b^{T}(\theta)I^{-1}(\theta)b(\theta), b(\theta) = \left(\frac{\partial \tau(\theta)}{\partial \theta_{1}}, \dots \frac{\partial \tau(\theta)}{\partial \theta_{r}}\right).$$

-

Предполагается:

1. Вид закона распределения известен;

Предполагается:

- 1. Вид закона распределения известен;
- 2. Плотность вероятности(в случае непрерывного распределения) гладкая функция.

Последовательность решения:

Предполагается:

- 1. Вид закона распределения известен;
- 2. Плотность вероятности(в случае непрерывного распределения) гладкая функция.

Последовательность решения:

- 1. Составляется функция правдоподобия
- 2. Вычисляется логарифм функции правдоподобия

Предполагается:

- 1. Вид закона распределения известен;
- 2. Плотность вероятности(в случае непрерывного распределения) гладкая функция.

Последовательность решения:

- 1. Составляется функция правдоподобия
- 2. Вычисляется логарифм функции правдоподобия
- 3. Оценки параметров получаются в результате решения системы уравнений вида:

$$\frac{\partial \ln L(\mathbf{X}_n, \theta)}{\partial \theta} = 0$$

Предполагается:

- 1. Вид закона распределения известен;
- 2. Плотность вероятности(в случае непрерывного распределения) гладкая функция.

Последовательность решения:

- 1. Составляется функция правдоподобия
- 2. Вычисляется логарифм функции правдоподобия
- 3. Оценки параметров получаются в результате решения системы уравнений вида:

$$\frac{\partial \ln L(\mathbf{X}_n, \theta)}{\partial \theta} = 0$$

4. Проверяется условие максимума функции правдоподобия

$$L(a,\sigma) = \frac{1}{(\sigma\sqrt{2\pi})^n} \exp\left(\sum_{i=1}^n -\frac{(x_i - a)^2}{2\sigma^2}\right)$$

$$L(a,\sigma) = \frac{1}{(\sigma\sqrt{2\pi})^n} \exp\left(\sum_{i=1}^n -\frac{(x_i - a)^2}{2\sigma^2}\right)$$

$$\ln L(a,\sigma) = -n \ln \sigma - n \ln \sqrt{2\pi} - \frac{1}{2\sigma^2} \sum_{i} (x_i - a)^2.$$

$$L(a,\sigma) = \frac{1}{(\sigma\sqrt{2\pi})^n} \exp\left(\sum_{i=1}^n -\frac{(x_i - a)^2}{2\sigma^2}\right)$$

$$\ln L(a,\sigma) = -n \ln \sigma - n \ln \sqrt{2\pi} - \frac{1}{2\sigma^2} \sum_{i} (x_i - a)^2.$$

Уравнения:

$$\frac{\partial}{\partial a} \ln L(a, \sigma) = \frac{2}{2\sigma^2} \sum_{i} (x_i - a) = 0$$

$$L(a,\sigma) = \frac{1}{(\sigma\sqrt{2\pi})^n} \exp\left(\sum_{i=1}^n -\frac{(x_i - a)^2}{2\sigma^2}\right)$$

$$\ln L(a,\sigma) = -n \ln \sigma - n \ln \sqrt{2\pi} - \frac{1}{2\sigma^2} \sum_{i} (x_i - a)^2.$$

Уравнения:

$$\frac{\partial}{\partial a} \ln L(a, \sigma) = \frac{2}{2\sigma^2} \sum_{i} (x_i - a) = 0$$

$$\frac{\partial}{\partial \sigma} \ln L(a, \sigma) = -\frac{n}{\sigma} + \frac{1}{\sigma^3} \sum_{i} (x_i - a)^2 = 0$$

$$1 - \frac{1}{\sigma^3} \sum_{i} (x_i - a)^2 = 0$$

Плотность равномерного распределения

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & else. \end{cases} \Rightarrow$$

Плотность равномерного распределения

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & else. \end{cases} \Rightarrow$$

$$L(\mathbf{X}_{n}, a, b) = \begin{cases} \frac{1}{(b-a)^{n}}, \forall X_{i} \in [a, b] \\ 0, & else. \end{cases}$$

Плотность равномерного распределения

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & else. \end{cases} \Rightarrow$$

$$L(\mathbf{X}_{n}, a, b) = \begin{cases} \frac{1}{(b-a)^{n}}, \forall X_{i} \in [a, b] \\ 0, & else. \end{cases}$$

 $L = \max \iff \forall X_i \in [a,b]$ и $b-a = \min \iff$

Плотность равномерного распределения

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & else. \end{cases} \Rightarrow$$

$$L(\mathbf{X}_{n}, a, b) = \begin{cases} \frac{1}{(b-a)^{n}}, \forall X_{i} \in [a, b] \\ 0, & else. \end{cases}$$

$$L = \max \Leftrightarrow \forall X_i \in [a,b]$$
 и $b-a = \min \Leftrightarrow$
$$a^* = \min(x_i), b^* = \max(x_i)$$