

Relational Algebra & Calculus

Relational Query Languages

- Query languages: Allow manipulation and retrieval of data from a database.
- Relational model supports simple, powerful QLs:
 - Strong formal foundation based on logic.
 - Allows for much optimization.
- Query Languages != programming languages!
 - QLs not expected to be "Turing complete".
 - QLs not intended to be used for complex calculations.
 - QLs support easy, efficient access to large data sets.

Formal Relational Query Languages

- Two mathematical Query Languages form the basis for "real" languages (e.g. SQL), and for implementation:
 - <u>Relational Algebra</u>: More operational (procedural), very useful for representing execution plans.
 - <u>Relational Calculus</u>: Lets users describe what they want, rather than how to compute it: Non-operational, declarative.

Preliminaries

- * A query is applied to *relation instances*, and the result of a query is also a relation instance.
 - Schemas of input relations for a query are fixed.
 - The schema for the result of a given query is also fixed! - determined by definition of query language constructs.
- Positional vs. named-field notation:
 - Positional notation easier for formal definitions, named-field notation more readable.
 - Both used in SQL

Example Instances

R1

sid	<u>bid</u>	day
22	101	10/10/96
58	103	11/12/96

- "Sailors" and "Reserves" relations for our examples.
- We'll use positional or named field notation, assume that names of fields in query results are `inherited' from names of fields in query input relations.

S1

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

S2

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

Relational Algebra

- Basic operations:
 - Selection (σ) Selects a subset of rows from relation.
 - <u>Projection</u> (π) Deletes unwanted columns from relation.
 - $\underline{Cross-product}$ (\times) Allows us to combine two relations.
 - *Set-difference* (—) Tuples in reln. 1, but not in reln. 2.
 - *Union* (U) Tuples in reln. 1 and in reln. 2.
- * Additional operations:
 - Intersection, *join*, division, renaming: Not essential, but (very!) useful.
- Since each operation returns a relation, operations can be *composed*: algebra is "closed".

Projection

- Deletes attributes that are not in projection list.
- * Schema of result contains exactly the fields in the projection list, with the same names that they had in the input relation.
- Projection operator has to eliminate *duplicates*! Why?
 - Note: real systems typically don't do duplicate elimination unless the user explicitly asks for it (by DISTINCT). Why not?

	R
sname	rating
yuppy	9
lubber	8
guppy	5
rusty	10

 $\pi_{sname,rating}(S2)$

age 35.0 55.5

 $\pi_{age}(S2)$

Selection

- Selects rows that satisfy selection condition.
- No duplicates in result! Why?
- * Schema of result identical to schema of input relation.
- What is Operator composition?
- Selection is distributive over binary operators
- Selection is commutative

		1	
sid	sname	rating	age
28	yuppy	9	35.0
58	rusty	10	35.0

$$\sigma_{rating>8}(S2)$$

sname	rating
yuppy	9
rusty	10

$$\pi_{sname,rating}(\sigma_{rating} > 8^{(S2)})$$

Union, Intersection, Set-Difference

- * All of these operations take two input relations, which must be *union-compatible*:
 - Same number of fields.
 - Corresponding' fields have the same type.
- ❖ What is the *schema* of result?

sid	sname	rating	age
22	dustin	7	45.0

$$S1-S2$$

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0
44	guppy	5	35.0
28	yuppy	9	35.0

$$S1 \cup S2$$

sid	sname	rating	age
31	lubber	8	55.5
58	rusty	10	35.0

$$S1 \cap S2$$

Cross-Product (Cartesian Product)

- ❖ Each row of S1 is paired with each row of R1.
- * Result schema has one field per field of S1 and R1, with field names `inherited' if possible.
 - *Conflict*: Both S1 and R1 have a field called *sid*.

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	22	101	10/10/96
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	22	101	10/10/96
31	lubber	8	55.5	58	103	11/12/96
58	rusty	10	35.0	22	101	10/10/96
58	rusty	10	35.0	58	103	11/12/96

• Renaming operator: $\rho(C(1 \rightarrow sid1, 5 \rightarrow sid2), S1 \times R1)$

Joins: used to combine relations

* Condition Join: $R \bowtie_{c} S = \sigma_{c} (R \times S)$

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	58	103	11/12/96

$$S1 \bowtie_{S1.sid} < R1.sid$$
 $R1$

- * Result schema same as that of cross-product.
- ❖ Fewer tuples than cross-product, might be able to compute more efficiently
- ❖ Sometimes called a *theta-join*.

Join

* <u>Equi-Join</u>: A special case of condition join where the condition *c* contains only *equalities*.

sid	sname	rating	age	bid	day
22	dustin	7	45.0	101	10/10/96
58	rusty	10	35.0	103	11/12/96

$$S1 \bowtie_{sid} R1$$

- * Result schema similar to cross-product, but only one copy of fields for which equality is specified.
- * Natural Join: Equijoin on all common fields.

Properties of join

- Selecting power: can join be used for selection?
- * Is join commutative? $S1 \bowtie R1 = R1 \bowtie S1$?
- * Is join associative? $S1 \bowtie (R1 \bowtie C1) = (S1 \bowtie R1) \bowtie C1$?
- Join and projection perform complementary functions
- Lossless and lossy decomposition

Division

Not supported as a primitive operator, but useful for expressing queries like:

Find sailors who have reserved <u>all</u> boats.

- \diamond Let *A* have 2 fields, *x* and *y*; *B* have only field *y*:
 - $A/B = \{\langle x \rangle | \exists \langle x, y \rangle \in A \ \forall \langle y \rangle \in B\}$
 - i.e., *A/B* contains all *x* tuples (sailors) such that for *every y* tuple (boat) in *B*, there is an *xy* tuple in *A*.
 - *Or*: If the set of *y* values (boats) associated with an *x* value (sailor) in *A* contains all *y* values in *B*, the *x* value is in *A/B*.
- * In general, x and y can be any lists of fields; y is the list of fields in B, and $x \cup y$ is the list of fields of A.

Examples of Division A/B

sno	pno
s1	p1
s1	p2
s1	p3
s1	p4
s2	p1
s2	p2
s3	p2
s4	p2
s4	p4

4 s4 A/B2

pno		pno
p2		p2
B1	ı	p4
D1		B2
		DZ
sno		

pno
p1
p2
p4
В3

A/B3

Example of Division

- Find all customers who have an account at all branches located in Chville
 - Branch (bname, assets, bcity)
 - Account (bname, acct#, cname, balance)

Example of Division

R1: Find all branches in Chville

R2: Find (bname, cname) pair from Account

R3: Customers in r2 with every branch name in r1

$$r1=\pi_{bname}(\sigma_{bcity='Chville'}Branch)$$
 $r2=\pi_{bname,cname}(Account)$
 $r3=r2\div r1$

Expressing A/B Using Basic Operators

- Division is not essential op; just a useful shorthand.
 - Also true of joins, but joins are so common that systems implement joins specially.
- ❖ *Idea*: For *A/B*, compute all *x* values that are not `disqualified' by some *y* value in *B*.
 - *x* value is *disqualified* if by attaching *y* value from *B*, we obtain an *xy* tuple that is not in *A*.

Disqualified x values:
$$\pi_{\chi}((\pi_{\chi}(A) \times B) - A)$$

A/B:
$$\pi_{\chi}(A)$$
 – all disqualified tuples

Given relational schema:

Sailors (sid, sname, rating, age)

Reservation (sid, bid, date)

Boats (bid, bname, color)

- 1) Find names of sailors who've reserved boat #103
- 2) Find names of sailors who've reserved a red boat
- 3) Find sailors who've reserved a red or a green boat
- 4) Find sailors who've reserved a red <u>and</u> a green boat
- 5) Find the names of sailors who've reserved all boats

Summary of Relational Algebra

- The relational model has rigorously defined query languages that are simple and powerful.
- Relational algebra is more operational; useful as internal representation for query evaluation plans.
- ❖ Several ways of expressing a given query; a query optimizer should choose the most efficient version.

Relational Calculus

- * Comes in two flavors: <u>Tuple relational calculus</u> (TRC) and <u>Domain relational calculus</u> (DRC).
- Calculus has variables, constants, comparison ops, logical connectives and quantifiers.
 - TRC: Variables range over (i.e., get bound to) tuples.
 - <u>DRC</u>: Variables range over *domain elements* (= field values).
 - Both TRC and DRC are simple subsets of first-order logic.
- * Expressions in the calculus are called *formulas*. An answer tuple is essentially an assignment of constants to variables that make the formula evaluate to *true*.

Domain Relational Calculus

* Query has the form:

$$\left\{ \langle x1, x2, ..., xn \rangle \mid p(\langle x1, x2, ..., xn \rangle) \right\}$$

- * *Answer* includes all tuples $\langle x1, x2, ..., xn \rangle$ that make the *formula* $p(\langle x1, x2, ..., xn \rangle)$ be *true*.
- * Formula is recursively defined, starting with simple atomic formulas (getting tuples from relations or making comparisons of values), and building bigger and better formulas using the logical connectives.

DRC Formulas

* Atomic formula:

- $\langle x1, x2, ..., xn \rangle \in Rname$, or $X \circ p Y$, or $X \circ p$ constant
- *op* is one of <,>,=, \le , \ge , \ne

* Formula:

- an atomic formula, or
- $\neg p, p \land q, p \lor q$, where p and q are formulas, or
- $\exists X(p(X))$, where X is a domain variable or
- $\forall X(p(X))$, where X is a domain variable.
- ❖ The use of quantifiers $\exists X$ and $\forall X$ is said to \underline{bind} X.

Free and Bound Variables

- ❖ The use of quantifiers $\exists X$ and $\forall X$ in a formula is said to <u>bind</u> X.
 - A variable that is not bound is <u>free</u>.
- Let us revisit the definition of a query:

$$\left\{ \langle x1, x2, ..., xn \rangle \mid p(\langle x1, x2, ..., xn \rangle) \right\}$$

❖ There is an important restriction: the variables x1, ..., xn that appear to the left of `|' must be the *only* free variables in the formula p(...).

Find all sailors with a rating above 7

$$\{\langle I, N, T, A \rangle | \langle I, N, T, A \rangle \in Sailors \land T > 7\}$$

- ❖ The condition $\langle I, N, T, A \rangle \in Sailors$ ensures that the domain variables I, N, T and A are bound to fields of the same Sailors tuple.
- * The term $\langle I, N, T, A \rangle$ to the left of `|' (which should be read as *such that*) says that every tuple $\langle I, N, T, A \rangle$ that satisfies T > 7 is in the answer.
- Modify this query to answer:
 - Find sailors who are older than 18 or have a rating under 9, and are called 'Joe'.

Find sailors rated > 7 who have reserved boat #103

$$\{\langle I, N, T, A \rangle | \langle I, N, T, A \rangle \in Sailors \land T > 7 \land \exists Ir, Br, D \left(\langle Ir, Br, D \rangle \in Reserves \land Ir = I \land Br = 103\right)\}$$

- * We have used $\exists Ir, Br, D$ (...) as a shorthand for $\exists Ir (\exists Br (\exists D(...)))$
- ❖ Note the use of ∃ to find a tuple in Reserves that `joins with' the Sailors tuple under consideration.

Find sailors rated > 7 who've reserved a red boat

$$\left\{ \langle I, N, T, A \rangle | \langle I, N, T, A \rangle \in Sailors \land T > 7 \land \\ \exists Ir, Br, D \left(\langle Ir, Br, D \rangle \in Reserves \land Ir = I \land \\ \exists B, BN, C \left(\langle B, BN, C \rangle \in Boats \land B = Br \land C = 'red' \right) \right\}$$

- Observe how the parentheses control the scope of each quantifier's binding.
- This may look cumbersome, but with a good user interface, it could be intuitive. (MS Access, QBE)

Find sailors who've reserved all boats

$$\left\{ \langle I, N, T, A \rangle \mid \langle I, N, T, A \rangle \in Sailors \land \\ \forall B, BN, C \left(\neg \left(\langle B, BN, C \rangle \in Boats \right) \lor \\ \left(\exists Ir, Br, D \left(\langle Ir, Br, D \rangle \in Reserves \land I = Ir \land Br = B \right) \right) \right\}$$

* Find all sailors I such that for each 3-tuple $\langle B,BN,C\rangle$ either it is not a tuple in Boats or there is a tuple in Reserves showing that sailor I has reserved it.

Find sailors who've reserved all boats (again!)

$$\begin{cases}
\langle I, N, T, A \rangle | \langle I, N, T, A \rangle \in Sailors \land \\
\forall \langle B, BN, C \rangle \in Boats \\
(\exists \langle Ir, Br, D \rangle \in Reserves(I = Ir \land Br = B))
\end{cases}$$

- Simpler notation, same query. (Much clearer!)
- ❖ To find sailors who've reserved all red boats:

$$\cdots \mid C \neq 'red' \vee \exists \langle Ir, Br, D \rangle \in \text{Re} serves (I = Ir \wedge Br = B)$$

Any other way to specify it? Equivalence in logic

Unsafe Queries, Expressive Power

- ❖ It is possible to write syntactically correct calculus queries that have an infinite number of answers! Such queries are called <u>unsafe</u>.
 - e.g., $\{S \mid \neg \{S \in Sailors\}\}$
- ❖ It is known that every query that can be expressed in relational algebra can be expressed as a safe query in DRC / TRC; the converse is also true.
- * <u>Relational Completeness</u>: Query language (e.g., SQL) can express every query that is expressible in relational algebra/calculus.

Exercise of tuple calculus

Given relational schema:

Sailors (<u>sid</u>, sname, rating, age) Reservation (<u>sid</u>, bid, date) Boats (<u>bid</u>, bname, color)

- 1) Find all sialors with a rating above 7.
- 2) Find the names and ages of sailors with a rating above 7
- 3) Find the sailor name, boal id, and reservation date for each reservation
- 4) Find the names of the sailors who reserved all boats.

Summary of Relational Calculus

- * Relational calculus is non-operational, and users define queries in terms of what they want, not in terms of how to compute it. (Declarativeness.)
- Algebra and safe calculus have same expressive power, leading to the notion of relational completeness.