NO	PART		,	SCHEME			MARKS	
1	(a)(i)		protons = 18-				1	M1
		Therefore,						
		Nucleon nu						
			= 16 + 1	6 = 32				
	1-11:1	32 **2-					4	2.42
	(a)(ii)	$^{32}_{16}X^{2-}$					1	M2
	(b)	mass of C	$= \frac{12}{44} x 41.98$	0 a				
ĺ		mass of C	$-\frac{44}{44}$ $\times 41.90$	oy			_	
		mass of C	r = 11.45g	•••••	••••••	•••••	1	M3
		mass of II	$=\frac{2}{18}x6.45g$	~				
		mass of H	I=0.7167g			•••••	1	M4
			mass of samp			Н		
		mass of 0 mass of 0	1	M5				
		muss of o	_	1413				
			С	Н	0			
		mass	11.45	0.7167	7.643			
		mole	$=\frac{11.45}{12}$	$=\frac{0.7167}{1}$	$=\frac{7.6433}{16}$		1	M6
			= 0.9542	= 0.7167	= 0.4777			
		Mole	$=\frac{0.9542}{}$	0.7167	0.4777	J		
		ratio	$\begin{array}{c} -0.4777 \\ = 2 \times 2 \end{array}$	0.4777 = 1.5 x 2	0.4777 = 1 x 2			
			= 4	= 3	= 2			
			•			•		
		Empirical fo	rmula: C 4 H 3 (O ₂			1	M7
		_ 1	mass					
		$mol = \frac{1}{mol}$	ar mass					
			mass					
		molar mas	$ss = \frac{mol}{mol}$					
		_	41 5 <i>a</i>		1			
		molar mas	$ss = \frac{41.5 \ g}{0.25} =$	166 <i>gmol</i> -	-1			
	$(C_4H_3O_2)n = 166$						1	M8
		(C4113O2)	n = 2				1	IVIO
		Molecular f	ormula: C₈H 6	O ₄			1	M9

(c)(i)	$density = \frac{mass\ of\ solution}{volume\ of\ solution}$		
	mass of solution = density x volume of solution mass of solution = 1.329 $gml^{-1}x1000 ml$ mass of solution = 1329 g	1	M10
	$\% w/w = \frac{mass \ of \ solute}{mass \ of \ solution} \ x \ 100$		
	$\% w/w = \frac{571.6 g}{1329 g} x 100 \dots$		
	= 43.01 %	1	M11
(c)(ii)	$mol\ H_2SO_4 = \frac{571.6g}{98.1gmol^{-1}}$		
	$mol H_2SO_4 = 5.8267 \ mol$	1	M12
	Mass of solvent= mass of solution-mass of solute = 1329 - 571.6 = 757.4 g @		
	= 0.7574 kg	1	M13
	$Molality = \frac{mol \ of \ solute}{mass \ of \ solvent \ (kg)}$	1	M14
	$Molality = \frac{5.827mol}{0.7574 (kg)}$		
	$= 7.693m @molkg^{-1}$	1	M15
(d)(i)	$\% \ yield = \frac{actual \ yield}{theoretical \ yield} \ x \ 100$	1	M16
	$78.1 = \frac{120 \ g}{theoretical \ yield} \ x \ 100$		
	theoretical yield = $153.65 g$	1	M17
	$mol\ P_4S_3 = \frac{153.65\ g}{220.3gmol^{-1}} = 0.6975\ mol$	1	M18

		MAX	21	
		TOTAL	22	
		$= 0.5024 \ mol \ P_4 \dots = 0.5024 \ mol \ P_4$	1	M22
		$= 0.6976 mol P_4 \dots$ mol of $P_4 left = 1.2 mol - 0.6976 mol$	1	M21
		$0.2616 \ mol \ S_8 \equiv 0.2616 \ mol \ S_8 x \ \frac{8 \ mol \ P_4}{3 \ mol S_8}$		
((d)(ii)	$3 \ mol \ S_8 \equiv 8 \ mol \ P_4$		
		$mass S_8 = 0.2616 \ mol \ x \ 256.8 \ gmol^{-1}$ = 67.18 $g \dots \dots \dots \dots \dots \dots$	1	M20
		= $0.2616 mol S_8$	1	M19
		$0.6975mol \ P_4 S_3 \ \equiv \ 0.6975mol \ P_4 S_3 x \ \frac{3 \ mol S_8}{8 \ mol \ P_4 S_3}$		
		$8 mol P_4 S_3 \equiv 3 mol S_8$		

NO	PART	SCHEME	MARKS	
2	(a)(i)	$\Delta E = R_H \left(\frac{1}{n_i^2} - \frac{1}{n_f^2} \right) @ = 2.18 \times 10^{-18} \left(\frac{1}{6^2} - \frac{1}{2^2} \right)$	1	M1
		$= -4.844 x 10^{-19} J$ (unit insist)	1	M2
	(a)(ii)	Visible region	1	М3
	(b)(i)	3d orbitals (any two answer)	1	M4
		d_{yz} d_{xy} d_{xy} d_{xy} d_{xy} d_{xy}	2 (shape and label)	M5 M6
	(b)(ii)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ²	1	M7
	(c)	Expected electronic configuration: 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁴	1	M8
		Actual electronic configuration: 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ⁵	1	M9
		Half-filled 3d ⁵ orbital is more stable than partially orbital 3d ⁴	1	M10
		TOTAL	10	

NO	PART	SCHEME	MARKS	
3	(a)(i)	[S=C=N] [S=C-N:] Structure I Structure II Structure III	1 1 1	M1 M2 M3
	(a)(ii)	$\begin{bmatrix} (0) & (0) & (-1) \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \end{bmatrix} = \begin{bmatrix} (+1) & (0) & (-2) \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \end{bmatrix} = \begin{bmatrix} (-1) & (0) & (0) \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \end{bmatrix}$ Structure II Structure III		
		correct all formal charge	1	M4
		Structure I	1	M5
		Structure I have lower formal charge and the negative charge (-1) is at the most electronegative atom, Nitrogen	1	М6
	(a)(iii)	Molecular Geometry – Linear Bond Angle - 180 ⁰	1	M7 M8
	(a)(iv)		1	M9
		П	1 (Correct overlap: 2 σ bond) 1 (2 Π bond) 1 (Label sp, sp2 @ 2p for N, sp2 @ 3p for S)	M10 M11 M12
		OR		

	П П		
(b)	The open hexaganol structure of the ice accounts for the fact that ice is less dense than water due to larger volume of ice. OR	1	M13 M14
	When ice melts, some of the hydrogen bonds are broken. This allows the water molecules to be more compactly arranged, resulting in decrease in volume. When volume decreases, density increases. Therefore, water has a higher density than ice.	1	

(c)(i)	e Mg ²⁺ e Mg ²⁺ e mobile sea of valence electron	1 (Drawing) 1 (Label)	M15
(c)(ii)	Aluminium has 3 valence electrons, sodium has one. The higher the number of valence electrons, the stronger the metallic bonds. @ The size of aluminium is smaller than sodium. The smaller the atom, the stronger the metallic bonds.	1	M17
	TOTAL	17	

NO	PART	SCHEME	MARKS	
4	(a) (i)	$P_T = P_{02} + P_{H20} @ P_{02} = (770 - 35.5)mmHg \dots$	1	M1
		$= 734.5 mmHg \qquad \dots$	1	M2
		$734.5mmgHg x \frac{1 atm}{760 mmHg}$		
		= 0.966 atm		
	(a) (ii)	$n_{02} = \frac{P_{02}V}{RT}$ @ = $\frac{0.966 \ atm \ x \ 0.25 \ L}{0.08206 \ x \ 299.15 \ K}$	1	М3
	() ()	$= 9.84 \times 10^{-3} \ mol \dots$	1	M4
		$2KCIO_3$ (s) $\rightarrow 2KCI$ (s) + $3O_2$ (g)	1	
		$3 \text{ mol } O_2 \equiv 2 \text{ mol } KClO_3$	1	
		$9.84 \times 10^{-3} mole \equiv 6.56 \times 10^{-3} \text{ mol KCIO}_3$	1	M5
		Mass = $6.56 \times 10^{-3} \text{ mol KClO}_3 \times (122.6 \text{ gmol}^{-1})$		
		= 0.804g	1	М6
	(b)	Propanone has higher vapour pressure than propanol	1	M7
		Intermolecular forces of propanone are weaker than propanol, so easier to vapourised to form vapour	1	M8
		Propanol – Hydrogen bond Propanone – van der Waals forces (Dipole- dipole forces)	1 1	M9 M10
		TOTAL	10	
		MAX	9	

NO	PART		MARKS				
5	(a)	$[NO_2]_i = \frac{0.5 mol}{5L}$					
			2NO ₂ (g) :	⇒ 2NO (g)	$(g) + O_2(g)$		
		Initial (M)	0.1	0	0		
		Change (M)	-2x	+2x	+x		
		Equilibrium	0.1-2 <i>x</i>	2 <i>x</i>	x		
		(M)				1	M1
		At equilibrium; $[NO_2] = \frac{0.2 mol}{5L}$ $0.1 - 2x = 0.04$				1	
		<i>x</i> = 0.03				1	M2
		$\mathbf{K}_{c} = \frac{[NO]^{2}[O_{2}]}{[NO_{2}]^{2}} \mathbf{@}$ $= \frac{(2 \times 0.03)^{2}(0.00)}{(0.1 - 2(0.03))^{2}}$				1	M3
		= 0.0675				1	M4
	(b)	$\alpha = [] change [] initial = 2(0.03)$	<u>se</u> @ I			1	M5
		0.1				_	
		= 0.6	•••••	•••••		1	M6
	(c)	Increase temper	ature			1	M7
		The forward rea temperature of t shift to the right	1	M8			
		Reduce pressure	1	M9			
		By decrease pres position will shif increase the nun	t to the right to	o increase th	e pressure by	1	M10
		OR					

Remove NO or O ₂ Because concentration NO or O ₂ decrease, the equilibrium position will shift to favour the production of NO		
OR		
Addition of NO ₂		
Because concentration NO_2 increase, the system will consume the added NO_2 , the equilibrium position will shift to favour the production of NO		
(Choose only two)		
TOTAL	10	
MAX	9	

NO	PART	SCHEME					MARKS	
6	(a)(i)		NH ₃ (aq)	+H ₂ O(l)	\Rightarrow NH ₄ ⁺ (aq) + OH ⁻ (aq)		
		[]Initial(M)	0.1	-	0	0		
		[]change(M)	-x	-	+x	+x		
		[]Equilibrium(M)	0.1-x	-	х	х		
		$K_b = \frac{[NH_4^+][OH_3]}{[NH_3]}$ 1.8 x 10 ⁻⁵ = Assume Kb is Hence $[OH^-] = x =$ $pOH = -\log pOH = -\log pOH = 2.87$ $pH = 14 - po pH = 14 - 2$ $pH = 11.13$	$\frac{x^2}{0.1 - x}$ @ very small $1.3416 x$ [OH^-] [1.3416 OH	l, x is very 10 ⁻³ M		n 0.10-x = 0.1	1 1 1	M1 M2 M3

	a(ii)	When addition 25 ml HCl, equivalence point was achieves, produce salt NH ₄ Cl and water.	1	M5
		NH ₄ ⁺ is strong conjugate acid from weak base, it will hydrolysis with water.		
		NH_4^+ (aq) + H_2O (I) \Rightarrow NH_3 (aq) + H_3O^+ (aq)	1	М6
		The production of H₃O⁺ ions , causes pH of the solution is less than 7.		
		NH ₄ Cl is a acidic salt.	1	M7
	(a)(iii)	рН	1 (Shape)	M8
		pH < 7.00	1 (eq. point <7)	M9
		pH < 7.00 Equivalence point	1 (label & axes)	M10
		25ml		
		Volume of HCl added (mL)		
(b)		$Ba(NO_3)_2(aq) \to Ba^{2+}(aq) + 2NO_3^{-}(aq)$		
		$[Ba^{2+}]_{new}$		
		$M_1 V_1 = M_2 V_2$ $0.025 Mx 20 ml = M_2 x 50 ml$		
		$M_2 = 0.01 M$	1	M11
		$NaF(aq) \rightarrow Na^{+}(aq) + F^{-}(aq)$		
		$[F^-]_{new}$		
		$M_1V_1 = M_2V_2$		
		$0.03 Mx 30 ml = M_2 x 50 ml$		
		$M_2 = 0.018 M$	1	M12

$BaF_2(s) \leftrightharpoons Ba^{2+}(aq) + 2F^{-}(aq)$	1	M13
$Q_{sp} = [Ba^{2+}][F^-]^2 @$	1	M14
$= (0.01)(0.018)^2$		
$= 3.24 \times 10^{-6}$	1	M15
$Q_{sp} > K_{sp}$		
The solution is supersaturated in which the concentration of ions are too large. Thus, precipitate . BaF₂ will form until Q _{sp} = K _{sp}	1	M16
TOTAL	16	
MAX	14	