Discrete Morse theory erratum

This page is devoted to errors and typos in the book Discrete Morse Theory, published by AMS press, 2019.

page	line	Comments
98	24	$\operatorname{null}(\partial_p) - \operatorname{rank}(\partial_p) = \operatorname{null}(\partial'_p) - \operatorname{rank}(\partial'_p) \text{ should be}$ $\operatorname{null}(\partial_p) - \operatorname{rank}(\partial_{p+1}) = \operatorname{null}(\partial'_p) - \operatorname{rank}(\partial'_{p+1})$
102	11	the inequality is reversed. It should read $b_i \leq m_i$.
105	-10	"is" should be "in"
107	8	τ is critical, not γ
107	-2	f_t should be h_t
119	-3	In definition 5.5, last line, the roles of k and i are switched.
121	-3	σ_p should be $\sigma^{(p)}$
150	Ex 6.4	Assume $n > 1$
153	Ex	x_4 should be x_0 in the diagram
	6.10	
153	Prob	Assume $n > 0$
176	6.12	C should be V
176	Prob 7.10	G should be K
181	1.10	In both Prob 7.21 and Prob 7.22, G should be T
194	15	It should read $f(\tilde{\sigma}_i) \leq f(\tau) \leq f(\sigma_i)$
199	16	$V \circ V$ should be $V \circ \partial$
201	-3	k_p^{∞} should be k_p^{Φ}
		I I