Study of Chemical Potential Effects on Hadron by Lattice QCD

劉玉斌

Department of Physics Nankai University

China Lattice QCD Collaboration

Ying Chen, Chuan Liu, Yu-Bin Liu, Xiang-Qian Luo ,Jian-Ping Ma, Jian-Bo Zhang

Supported by NSCF (10375031)

Contents

-₀ introduction
1. about Lattice QCD
(♠). what is Lattice QCD
(♠). why do we use Lattice QCD
(♠). what can be studied on Lattice till now
(♠). what can not be studied on Lattice yet
2. about our study
(♠). idea
(♠). idea
(♠). methods
(♠) for study finite chemical potential
□₀ formulae for
(♣) hadron mass
(♣) chiral condensate
□₀ simulation parameters

四。

五。

simulation results

discussions and summary

-. introduction

1. about Lattice QCD

(1). Minkowski space—>Euclidean space

$$(x^{0} \longrightarrow -ix^{4} \quad x^{4} \in \mathbf{R} \quad)$$

$$S^{(eucl.)} = S_{G}^{(eucl.)} + S_{F}^{(eucl.)}$$

$$S_{G}^{(eucl.)} = \frac{1}{4} \int d^{4}x \operatorname{Tr} \left[F_{\mu\nu} F_{\mu\nu} \right]$$

$$S_{F}^{(eucl.)} = \int d^{4}x \bar{\psi} (\gamma_{\mu} D_{\mu} + M) \psi$$

$$\langle O \rangle = \frac{\int dA_{\mu} d\bar{\psi} d\psi O e^{-S^{(eucl.)}}}{\int dA_{\mu} \bar{\psi} d\psi e^{-S^{(eucl.)}}}$$

$$x_{\mu} \longrightarrow n_{\mu} a$$

$$M \longrightarrow \frac{1}{a} \hat{M}$$

$$\psi(x) \longrightarrow \frac{1}{a^{\frac{3}{2}}} \hat{\psi}(n)$$

$$\int d^{4} x \longrightarrow a^{4} \sum_{n}$$

$$\partial_{\mu} \psi(x) \longrightarrow \frac{1}{a^{\frac{5}{2}}} \hat{\partial}_{\mu} \hat{\psi}(n)$$

$$\hat{\partial}_{\mu} \hat{\psi}(n) = \frac{1}{2} \left[\hat{\psi}(n + \hat{\mu}) - \hat{\psi}(n - \hat{\mu}) \right]$$

(2). gauge action and link variables

$$S_G^{Latt.} = \beta \sum_{P} \left[1 - \frac{Tr}{2} (U_P + U_P^{\dagger}) \right] \qquad \beta = \frac{1}{g^2}$$

$$U_{\mu\nu} = e^{iga^2 F_{\mu\nu}(n)}$$

$$F_{\mu\nu}(n) = \frac{1}{a} \left[(A_{\nu}(n + \hat{\mu}) - A_{\nu}(n)) - (A_{\mu}(n + \hat{\nu}) - A_{\mu}(n)) \right]$$

$$\downarrow \alpha = 0$$

$$S_G^{Latt.} \Longrightarrow S_G^{Cont.} = \frac{1}{4} \int d^4 x F_{\mu\nu}(x) F_{\mu\nu}(x)$$

(3). fermion action

$$S_F^{Latt.}[\bar{\psi}, \psi, U] = (\hat{M} + 4r) \sum_{n} \bar{\psi}(n)\psi(n) - \frac{1}{2} \sum_{n,\mu} \left[\bar{\psi}(n)(r - \gamma_{\mu})U_{\mu}(n)\psi(n + \hat{\mu}) + \bar{\psi}(n + \hat{\mu})(r + \gamma_{\mu})U_{\mu}^{\dagger}(n)\psi(n) \right]$$

(Wilson fermion action K. G. Wilson 1975)

$$\downarrow a = 0$$

$$S_F^{Latt.} \Longrightarrow S_F^{Cont.} = \int d^4x \bar{\psi}(x) (\gamma_\mu D_\mu + M) \psi x$$

$$\uparrow a = 0, \ r = 0, \psi(n) = T(n) \chi(n)$$

$$\downarrow (T^{\dagger}(n) \gamma_\mu T(n + \hat{\mu}) = \eta_\mu(n) \mathbf{1})$$

$$S_F^{Latt.} = \hat{M} \sum_{n} \bar{\chi}(n) \chi(n) + \frac{1}{2} \sum_{n,\mu} \eta_{\mu}(n) \left[\bar{\chi}_{\mu}(n) U_{\mu}(n) \chi(n+\hat{\mu}) - \bar{\chi}_{\mu}(n) U_{\mu}^{\dagger}(n-\hat{\mu}) \chi(n-\hat{\mu}) \right]$$

(staggered fermion action H. Kluberg-Stern et. al. 1983)

(4). what can be studied on Lattice

zero temperature and finite temperature

- $(^{\circ} _{\smile} ^{\circ})$ hadron mass (π, ρ)
- $(^{\circ}{}_{\smile}{}^{\circ})$ energy, string tension and potential
- $(^{\circ}{_{\smile}}{^{\circ}})$ chiral condensate
- (5). what can not be studied
- $(^{\circ}_{\frown}^{\circ})$ odd flavors
- (°¬°) finite density

$$S_F^{Latt.} = \hat{M} \sum_{n} \bar{\chi}(n) \chi(n)$$

$$+ \frac{1}{2} \sum_{n,\sigma=1}^{\sigma=3} \eta_{\sigma}(n) \left[\bar{\chi}_{\sigma}(n) U_{\sigma}(n) \chi(n+\hat{\sigma}) - \bar{\chi}_{\sigma}(n) U_{\sigma}^{\dagger}(n-\hat{\sigma}) \chi(n-\hat{\sigma}) \right]$$

$$+ \frac{1}{2} \sum_{n} \eta_{t}(n) \left[\bar{\chi}_{t}(n) U_{t}(n) e^{a\mu} \chi(n+\hat{t}) - \bar{\chi}_{t}(n) U_{t}^{\dagger}(n-\hat{t}) e^{-a\mu} \chi(n-\hat{t}) \right]$$

$$D(U, \hat{\mu})_{n,m} = ma\delta_{n,m} + \frac{1}{2} \sum_{\sigma=x,y,z} \eta_{\sigma}(n) \left[U_{\hat{\sigma}}(n) \delta_{n+\hat{\sigma},m} - U_{\hat{\sigma}}^{\dagger}(n-\hat{\sigma}) \delta_{n-\hat{\sigma},m} \right]$$

$$+ \frac{1}{2} \eta_{t}(n) \left[U_{\hat{t}}(n) e^{\hat{\mu}} \delta_{n+\hat{t},m} - U_{\hat{t}}^{\dagger}(n-\hat{t}) e^{-\hat{\mu}} \delta_{n-\hat{t},m} \right]$$

$$\langle O \rangle = \frac{\int [dU] O \Delta e^{-S_G}}{\int [dU] \Delta e^{-S_G}}$$

$$\Delta = \prod_{i=1}^{N_f} \det \left[D(\hat{\mu}_i) \right] \quad (D = D^{\dagger}(\mu_i = 0); D \neq D^{\dagger}(\mu_i \neq 0))$$

$$\langle O(U) \rangle = \frac{\langle O(U)e^{i\varphi} \rangle_{S_{eff}}}{\langle e^{i\varphi} \rangle_{S_{eff}}}$$

2. about our study

- $(^{\circ}_{\frown}^{\circ})$ Lattice approach to $\mu \neq 0$ is very difficult SU(3) Lattice QCD (action become complex)
- $(^{\circ}_{\smile})$ SU(2) accessible but still difficult
 - N. Nakamura, Phys. Lett. **B149**, 391 (1984)
 - S. Hands et al., Nucl. Phys. **B557** 327 (1999)
 - Y. Liu, et al., Non-Per. Meth. and Latt. QCD 132 2001
 - S. Muroya, et al., Nucl. Phys. B(Proc. Suppl)94, 469 (2001)

- C. T. H.Davies et al., Phys. Lett. **B256**, 68 (1991)
- J. B. Kogut et al., Phys. Rev. **D51**, 1282 (1995)
- M.-P. Lombardo et al., Phys. Rev. **D54**, 2303 (1996)

♥ behavior of SU(3) Lattice QCD simulation at zero chemical potential

$$\chi_{S} = \left(\frac{\partial}{\partial \mu_{u}} + \frac{\partial}{\partial \mu_{d}}\right) \left(\langle n_{u} \rangle + \langle n_{d} \rangle\right)$$

$$\chi_{V} = \left(\frac{\partial}{\partial \mu_{u}} - \frac{\partial}{\partial \mu_{d}}\right) \left(\langle n_{u} \rangle - \langle n_{d} \rangle\right)$$

$$\chi_{q} = \frac{1}{V} \langle Q^{2} \rangle$$

$$(\langle n_{u(d)} \rangle = \frac{1}{V_s \beta} \frac{\partial}{\partial \mu_{u(d)}} lnZ$$
; Q: topological charge)

- S. Gottieb et al., Phys. Rev. **D47**,3619 (1993); **D55**,6852 (1997)
- Y. Liu et al., Soryushiron Kenkyu (Kyoto) 103/1 A73 (2001)
- MENG Xiang-Fei, Y. Liu HEP and NP 1222 A30 (2006)

idea and methods for our study

$$\frac{M(\mu)}{T}\Big|_{\mu} = \frac{M}{T}\Big|_{\mu=0} + \left(\frac{\mu}{T}\right) \frac{\partial M}{\partial \mu}\Big|_{\mu=0} + \left(\frac{\mu}{T}\right)^{3} \frac{T}{2} \frac{\partial^{2} M}{\partial \mu^{2}}\Big|_{\mu=0} + O\left[\left(\frac{\mu}{T}\right)^{3}\right] \frac{\langle \bar{\psi}\psi\rangle(\mu)}{T^{3}}\Big|_{\mu} = \frac{\langle \bar{\psi}\psi\rangle}{T^{3}}\Big|_{\mu=0} + \left(\frac{\mu}{T}\right) \frac{1}{T^{2}} \frac{\partial \langle \bar{\psi}\psi\rangle}{\partial \mu}\Big|_{\mu=0} + \left(\frac{\mu}{T}\right)^{2} \frac{1}{2T} \frac{\partial^{2}\langle \bar{\psi}\psi\rangle}{\partial \mu^{2}}\Big|_{\mu=0} + O\left[\left(\frac{\mu}{T}\right)^{3}\right]$$

$$\frac{\partial M}{\partial \mu}\Big|_{\mu=0}\;,\; \frac{\partial^2 M}{\partial \mu^2}\Big|_{\mu=0}\;;\; \frac{\partial \gamma}{\partial \mu}\Big|_{\mu=0}\;,\; \frac{\partial^2 \gamma}{\partial \mu^2}\Big|_{\mu=0}\;;\; \frac{\partial \langle \bar{\psi}\psi\rangle}{\partial \mu}\Big|_{\mu=0}\;,\; \frac{\partial^2 \langle \bar{\psi}\psi\rangle}{\partial \mu^2}\Big|_{\mu=0}$$

- * QCD-TAQRO collab. Nucl. Phys. B (Proc.Suppl.) 63, 460 (1998)
- * QCD-TAQRO collab. Nucl. Phys. B (Proc.Suppl.) 73, 477 (1999)
- $*~QCD\text{-}TAQRO~collab.~hep\mbox{-}lat/0110223~(Lattice~2001)$
- $*~QCD\text{-}TAQRO~collab.~Phys.~Rev.~D~\mathbf{65},~0145XX.~(2002)$
- * QCD-TAQRO collab. Nucl. Phys. A 698, 395 (2002)

二。formulae

suppose that a hadronic correlator dominated by hadronic pole:

$$C(x) = \sum_{y,z,t} \langle H(x,y,z,t) H(0,0,0,0)^{\dagger} \rangle = A \left(e^{-\hat{M}\hat{x}} + e^{-\hat{M}(L_x - \hat{x})} \right)$$

where $\hat{M} = aM$, $\hat{x} = \frac{x}{a}$, $A = \frac{\hat{\gamma}}{2\hat{M}}$ (γ is hadron coupling) the first derivative with respect to chemical potential

$$C(x)^{-1}\frac{\partial C(x)}{\partial \hat{\mu}} = A^{-1}\frac{\partial A}{\partial \hat{\mu}} + \frac{\partial \hat{M}}{\partial \hat{\mu}} \left[\left(\hat{x} - \frac{L_x}{2} \right) \tanh \left\{ \hat{M} \left(\hat{x} - \frac{L_x}{2} \right) \right\} - \frac{L_x}{2} \right]$$

and second derivative

$$\begin{split} C(x)^{-1} & \frac{\partial^2 C(x)}{\partial \hat{\mu}^2} = A^{-1} \frac{\partial^2 A}{\partial \hat{\mu}^2} \\ & + \left(2A^{-1} \frac{\partial A}{\partial \hat{\mu}} \frac{\partial \hat{M}}{\partial \hat{\mu}} + \frac{\partial^2 \hat{M}}{\partial \hat{\mu}^2} \right) \left[\left(\hat{x} - \frac{L_x}{2} \right) \tanh \left\{ \hat{M} \left(\hat{x} - \frac{L_x}{2} \right) \right\} - \frac{L_x}{2} \right] \\ & + \left(\frac{\partial \hat{M}}{\partial \hat{\mu}} \right)^2 \left[\left(\hat{x} - \frac{L_x}{2} \right)^2 + \frac{L_x^2}{4} - L_x \left(\hat{x} - \frac{L_x}{2} \right) \tanh \left\{ \hat{M} \left(\hat{x} - \frac{L_x}{2} \right) \right\} \right] \end{split}$$

on Lattice, the hadron correlator:

$$\langle H(n)H(0)^{\dagger}\rangle = \langle G\rangle$$

where G is the meson propagator part

$$G = \operatorname{Tr}\left[g\left(\hat{\mu}_{u}\right)_{n:0} \Gamma g\left(\hat{\mu}_{d}\right)_{0:n} \Gamma^{\dagger}\right]$$

 $g(\hat{\mu})$ is the quark propagator at finite chemical potential, and Γ is the Dirac matrix which specifies the spin of the meson. The quark propagator is related to the Dirac operator $D[U;\hat{\mu}]$ in the background gauge field configuration U as

$$g(\hat{\mu}) = D(\hat{\mu})^{-1}$$

$$\langle O \rangle = \frac{\int [dU] O \Delta e^{-S_G}}{\int [dU] \Delta e^{-S_G}}$$

where S_G is the gluonic action and Δ is the fermion determinant,

$$\Delta = \prod_{i=1}^{N_f} \det \left(D\left(\hat{\mu}_i\right) \right)$$

for two light flavors fermion, i.e., $N_f=2$. Δ can be written as

$$\Delta = \det \left(D(\hat{\mu}_u) \right) \det \left(D(\hat{\mu}_d) \right)$$

the first and the second derivatives are

$$\frac{\partial}{\partial \hat{\mu}} \left\langle H(n)H(0)^{\dagger} \right\rangle = \left\langle \dot{G} + G \frac{\dot{\Delta}}{\Delta} \right\rangle - \left\langle G \right\rangle \left\langle \frac{\dot{\Delta}}{\Delta} \right\rangle$$

and

$$\frac{\partial^{2}}{\partial \hat{\mu}^{2}} \left\langle H(n)H(0)^{\dagger} \right\rangle = \left\langle \ddot{G} + 2\dot{G}\frac{\dot{\Delta}}{\Delta} + G\frac{\ddot{\Delta}}{\Delta} \right\rangle - 2\left\langle \dot{G} + G\frac{\dot{\Delta}}{\Delta} \right\rangle \left\langle \frac{\dot{\Delta}}{\Delta} \right\rangle - \left\langle G \right\rangle \left[\left\langle \frac{\ddot{\Delta}}{\Delta} \right\rangle - 2\left\{ \left\langle \frac{\dot{\Delta}}{\Delta} \right\rangle \right\}^{2} \right]$$

for Isoscalar chemical potential channel channel

$$\hat{\mu}_S = \hat{\mu}_u = \hat{\mu}_d$$

$$\frac{\partial}{\partial \hat{\mu}} \operatorname{Re} \left\langle H(n) H(0)^{\dagger} \right\rangle = 0$$

$$\frac{\partial^{2}}{\partial \hat{\mu}^{2}} \operatorname{Re} \left\langle H(n)H(0)^{\dagger} \right\rangle = 4\operatorname{Re} \left\langle \operatorname{Tr} \left[\left(g\dot{D}g\dot{D}g \right)_{n:0} \Gamma \gamma_{5}g_{n:0}^{\dagger} \gamma_{5}\Gamma^{\dagger} \right] \right\rangle \\
- 2\operatorname{Re} \left\langle \operatorname{Tr} \left[\left(g\ddot{D}g \right)_{n:0} \Gamma \gamma_{5}g_{n:0}^{\dagger} \gamma_{5}\Gamma^{\dagger} \right] \right\rangle \\
- 2\operatorname{Re} \left\langle \operatorname{Tr} \left[\left(g\dot{D}g \right)_{n:0} \Gamma \gamma_{5} \left(g\dot{D}g \right)_{n:0}^{\dagger} \gamma_{5}\Gamma^{\dagger} \right] \right\rangle \\
+ 8 \left\langle \operatorname{Im}\operatorname{Tr} \left[\left(g\dot{D}g \right)_{n:0} \Gamma \gamma_{5}g_{n:0}^{\dagger} \gamma_{5}\Gamma^{\dagger} \right] \operatorname{Im}\operatorname{Tr} \left[\dot{D}g \right] \right\rangle \\
+ 2\operatorname{Re} \left\{ \left\langle \operatorname{Tr} \left[g_{n:0}\Gamma \gamma_{5}g_{n:0}^{\dagger} \gamma_{5}\Gamma^{\dagger} \right] \left(\operatorname{Tr} \left[\ddot{D}g \right] - \operatorname{Tr} \left[\dot{D}g\dot{D}g \right] + 2\operatorname{Tr} \left[\dot{D}g \right]^{2} \right) \right\rangle \\
- \left\langle \operatorname{Tr} \left[g_{n:0}\Gamma \gamma_{5}g_{n:0}^{\dagger} \gamma_{5}\Gamma^{\dagger} \right] \right\rangle \left\langle \operatorname{Tr} \left[\ddot{D}g \right] - \operatorname{Tr} \left[\dot{D}g\dot{D}g \right] + 2\operatorname{Tr} \left[\dot{D}g \right]^{2} \right\rangle \right\}$$

for Isovector chemical potential channel

$$\hat{\mu}_V = \hat{\mu}_u = -\hat{\mu}_d$$

$$\frac{\partial}{\partial \hat{\mu}} \operatorname{Re} \left\langle H(n) H(0)^{\dagger} \right\rangle = -2 \operatorname{ReTr} \left[\left(g \dot{D} g \right)_{n:0} \Gamma \gamma_5 g_{n:0}^{\dagger} \gamma_5 \Gamma^{\dagger} \right]$$

$$\frac{\partial^{2}}{\partial \hat{\mu}^{2}} \operatorname{Re} \left\langle H(n)H(0)^{\dagger} \right\rangle = 4 \operatorname{Re} \left\langle \operatorname{Tr} \left[\left(g\dot{D}g\dot{D}g \right)_{n:0} \Gamma \gamma_{5} g_{n:0}^{\dagger} \gamma_{5} \Gamma^{\dagger} \right] \right\rangle \\
- 2 \operatorname{Re} \left\langle \operatorname{Tr} \left[\left(g\ddot{D}g \right)_{n:0} \Gamma \gamma_{5} g_{n:0}^{\dagger} \gamma_{5} \Gamma^{\dagger} \right] \right\rangle \\
+ 2 \operatorname{Re} \left\langle \operatorname{Tr} \left[\left(g\dot{D}g \right)_{n:0} \Gamma \gamma_{5} \left(g\dot{D}g \right)_{n:0}^{\dagger} \gamma_{5} \Gamma^{\dagger} \right] \right\rangle \\
+ 2 \operatorname{Re} \left\{ \left\langle \operatorname{Tr} \left[g_{n:0} \Gamma \gamma_{5} g_{n:0}^{\dagger} \gamma_{5} \Gamma^{\dagger} \right] \left(\operatorname{Tr} \left[\ddot{D}g \right] - \operatorname{Tr} \left[\dot{D}g\dot{D}g \right] \right) \right\rangle \\
- \left\langle \operatorname{Tr} \left[g_{n:0} \Gamma \gamma_{5} g_{n:0}^{\dagger} \gamma_{5} \Gamma^{\dagger} \right] \right\rangle \left\langle \operatorname{Tr} \left[\ddot{D}g \right] - \operatorname{Tr} \left[\dot{D}g\dot{D}g \right] \right\rangle \right\}$$

chiral condensate on lattice

$$\left\langle \bar{\psi}\psi\right\rangle = \operatorname{Re}\left\langle G\right\rangle$$

for Isoscalar chemical potential channel

$$G = \frac{1}{2} \left\{ \operatorname{Tr} \left[g(\hat{\mu}_u) \right] + \operatorname{Tr} \left[g(\hat{\mu}_d) \right] \right\} = \operatorname{Tr} \left[g(\hat{\mu}_S) \right]$$

$$\frac{\partial}{\partial \hat{\mu}} \operatorname{Re} \left\langle G \right\rangle = 0$$

$$\begin{split} \frac{\partial^{2}}{\partial \hat{\mu}^{2}} & \operatorname{Re} \left\langle G \right\rangle = \\ & 2 \operatorname{Re} \left\langle \operatorname{Tr} \left[g \dot{D} g \dot{D} g \right] \right\rangle - \operatorname{Re} \left\langle \operatorname{Tr} \left[g \ddot{D} g \right] \right\rangle \\ & + 4 \left\langle \operatorname{Im} \operatorname{Tr} \left[g \dot{D} g \right] \operatorname{Im} \operatorname{Tr} \left[\dot{D} g \right] \right\rangle \\ & + \left\langle \operatorname{Re} \operatorname{Tr} \left[g \right] \circ \left(2 \operatorname{Re} \operatorname{Tr} \left[\ddot{D} g \right] - 2 \operatorname{Re} \operatorname{Tr} \left[\dot{D} g \dot{D} g \right) \right] - 4 \left\{ \operatorname{Im} \operatorname{Tr} \left[\dot{D} g \right] \right\}^{2} \right) \right\rangle_{\mathrm{matrix}} \end{split}$$

for Isovector chemical potential channel

$$G = \frac{1}{2} \left\{ \operatorname{Tr} \left[g(\hat{\mu}_u) \right] + \operatorname{Tr} \left[g(\hat{\mu}_d) \right] \right\} = \frac{1}{2} \left\{ \operatorname{Tr} \left[g(\hat{\mu}) \right] + \operatorname{Tr} \left[g(-\hat{\mu}) \right] \right\}$$
$$\frac{\partial}{\partial \hat{\mu}} \operatorname{Re} \left\langle G \right\rangle = 0$$

$$\begin{split} \frac{\partial^2}{\partial \hat{\mu}^2} \mathrm{Re} \left\langle \left. G \right\rangle \right| &= 2 \mathrm{Re} \left\langle \left. \mathrm{Tr} \left[g \dot{D} g \dot{D} g \right] \right\rangle - \mathrm{Re} \left\langle \left. \mathrm{Tr} \left[g \ddot{D} g \right] \right\rangle \right. \\ &+ \left. \left\langle \left. \mathrm{ReTr} \left[g \right] \circ \left\{ 2 \mathrm{ReTr} \left[\ddot{D} g \right] - 2 \mathrm{ReTr} \left[\dot{D} g \dot{D} g \right] \right\} \right\rangle_{cc} \end{split}$$

$$\langle A \circ B \rangle_{cc} = \langle AB \rangle - \langle A \rangle \langle B \rangle$$

四。simulation results

Simulation parameters (Lattice size= $16 \times 8^2 \times 4$)

ma	β	#conf.	T/T_C
0.0125	5.26	300	0.985
	5.34	300	1.098
0.0170	5.26	300	0.977
	5.34	300	1.089
0.0250	5.20	300	0.888
	5.26	300	0.963
	5.28	300	0.990
	5.29	300	1.003
	5.30	300	1.017
	5.32	300	1.045
	5.34	300	1.074
	5.36	300	1.104
	5.40	300	1.165

For two light flavors of staggered fermion, the critical coupling β_c is carried out at $N_t=4$, i.e.,

$$\beta_c = 5.271$$
 for $ma = 0.0125$, and $\beta_c = 5.288$ for $ma = 0.025$

Our simulations are carried out with the R-algorithm. The time step of molecular dynamics is taken as $\delta = 0.01$.

To evaluate the trace, 'Tr', the Z_2 noise method is used, and the number of noise vectors is two hundred.

Hadronic correlators are measured by using the corner-type wall source after Coulomb gauge fixing in each x-plane, and we choose three quark masses, ma = 0.0125, 0.017, 0.025.

screening mass of the pseudoscalar meson (ma = 0.025)

$$\frac{M(\mu)}{T}\bigg|_{\mu} = \frac{M}{T}\bigg|_{\mu=0} + \left(\frac{\mu}{T}\right) \frac{\partial M}{\partial \mu}\bigg|_{\mu=0} + \left(\frac{\mu}{T}\right)^2 \frac{T}{2} \frac{\partial^2 M}{\partial \mu^2}\bigg|_{\mu=0} + O\left[\left(\frac{\mu}{T}\right)^3\right]$$

the first order response of the pseudoscalar meson correlator at $\beta=5.26$ and $\beta=5.34$ (ma=0.0170)

$$C(x)^{-1} \frac{\partial C(x)}{\partial \hat{\mu}} = A^{-1} \frac{\partial A}{\partial \hat{\mu}} + \frac{\partial \hat{M}}{\partial \hat{\mu}} \left[\left(\hat{x} - \frac{L_x}{2} \right) \tanh \left\{ \hat{M} \left(\hat{x} - \frac{L_x}{2} \right) \right\} - \frac{L_x}{2} \right]$$

$$\frac{\partial}{\partial \hat{\mu}_S} \operatorname{Re} \left\langle H(n) H(0)^{\dagger} \right\rangle = 0$$

$$\frac{\partial}{\partial \hat{\mu}_{V}} \operatorname{Re} \left\langle H(n)H(0)^{\dagger} \right\rangle = -2 \operatorname{ReTr} \left[\left(g \dot{D} g \right)_{n:0} \Gamma \gamma_{5} g_{n:0}^{\dagger} \gamma_{5} \Gamma^{\dagger} \right]$$

$$\mu_S = \mu_u = \mu_d , \ \mu_V = \mu_u = -\mu_d$$

the second order response of the pseudoscalar meson correlator at $\beta = 5.26$ and $\beta = 5.34$ (ma = 0.0125)

$$C(x)^{-1} \frac{\partial^2 C(x)}{\partial \hat{\mu}^2} = A^{-1} \frac{\partial^2 A}{\partial \hat{\mu}^2}$$

$$+ \left(2A^{-1} \frac{\partial A}{\partial \hat{\mu}} \frac{\partial \hat{M}}{\partial \hat{\mu}} + \frac{\partial^2 \hat{M}}{\partial \hat{\mu}^2}\right) \left[\left(\hat{x} - \frac{L_x}{2}\right) \tanh\left\{\hat{M}\left(\hat{x} - \frac{L_x}{2}\right)\right\} - \frac{L_x}{2}\right]$$

$$+ \left(\frac{\partial \hat{M}}{\partial \hat{\mu}}\right)^2 \left[\left(\hat{x} - \frac{L_x}{2}\right)^2 + \frac{L_x^2}{4} - L_x\left(\hat{x} - \frac{L_x}{2}\right) \tanh\left\{\hat{M}\left(\hat{x} - \frac{L_x}{2}\right)\right\}\right]$$

 \hat{M}^2 and $\frac{\partial^2 \hat{M}^2}{\partial \hat{\mu}_S^2}$ of the pseudoscalar meson versus quark mass ma $\beta=5.26$ and $\beta=5.34$, the symbols plotted at ma=0.0 are the values extrapolated to m=0.0

$$C(x) = \sum_{y,z,t} \langle H(x,y,z,t)H(0,0,0,0)^{\dagger} \rangle = A \left(e^{-\hat{M}\hat{x}} + e^{-\hat{M}(L_x - \hat{x})} \right)$$

the second order response of pseudoscalar meson at ma = 0.025

$$\begin{split} C(x)^{-1} & \frac{\partial^2 C(x)}{\partial \hat{\mu}^2} = A^{-1} \frac{\partial^2 A}{\partial \hat{\mu}^2} \\ & + \left(2A^{-1} \frac{\partial A}{\partial \hat{\mu}} \frac{\partial \hat{M}}{\partial \hat{\mu}} + \frac{\partial^2 \hat{M}}{\partial \hat{\mu}^2} \right) \left[\left(\hat{x} - \frac{L_x}{2} \right) \tanh \left\{ \hat{M} \left(\hat{x} - \frac{L_x}{2} \right) \right\} - \frac{L_x}{2} \right] \\ & + \left(\frac{\partial \hat{M}}{\partial \hat{\mu}} \right)^2 \left[\left(\hat{x} - \frac{L_x}{2} \right)^2 + \frac{L_x^2}{4} - L_x \left(\hat{x} - \frac{L_x}{2} \right) \tanh \left\{ \hat{M} \left(\hat{x} - \frac{L_x}{2} \right) \right\} \right] \end{split}$$

at $\beta = 5.26$, ma = 0.0170 in isovector chemical potential channel

$$\frac{M(\mu_V)}{T}\Big|_{\mu_V} = (1.4024 \pm 0.0008) + (-0.0005 \pm 0.0010) \left(\frac{\mu_V}{T}\right) - (1.31 \pm 0.04) \left(\frac{\mu_V}{T}\right)^2 + O\left[\left(\frac{\mu_V}{T}\right)^3\right]$$

0.0123	1.287 (34)			1.299(20)					
0.0170	1.287(54)			1.312(17)					
$ma \setminus \beta$	5.20	5.26	5.28	5.29	5.30	5.32	5.34	5.36	5.40
0.0250	1.450	1.320	1.365	1.383	1.51	1.299	1.352	1.311	1.387
	(56)	(29)	(34)	(28)	(36)	(13)	(52)	(27)	(27)

the second order response of vector meson at $\beta=5.34$ and ma=0.025, and free quark response at ma=0.025

the behavior of chiral condensate

$$\frac{\langle \bar{\psi}\psi\rangle(\mu_S)}{T^3}\bigg|_{\mu_S} = (17.16 \pm 0.11) - (25.0 \pm 4.1) \left(\frac{\mu_S}{T}\right)^2 + O\left[\left(\frac{\mu_S}{T}\right)^3\right]
\frac{\langle \bar{\psi}\psi\rangle(\mu_V)}{T^3}\bigg|_{\mu_V} = (17.16 \pm 0.11) - (22.6 \pm 3.0) \left(\frac{\mu_V}{T}\right)^2 + O\left[\left(\frac{\mu_V}{T}\right)^3\right]$$

五。discussions and summary

- [I]. Method to extract 1st and 2nd order responses of hadron to chemical potential
- $N_f = 2$ staggered fermion action
- R-algorithm $L = 16 \times 8 \times 8 \times 4$
- [II]. behavior of pseudoscalar meson to μ_S \odot $T < T_C$
- * small 2nd order response of mass (positive)
- ullet chiral limit o consistent with 0
- ullet persistence of N-G boson nature at small μ_S
- $\odot T > T_C$

presence of hadronic state in pseudoscalar meson channel

- \clubsuit growth of $\frac{\partial^2 \hat{M}}{\partial \hat{\mu}_S^2}$
- liberation from N-G boson nature
- μ_S influence enhances mass

III]. behavior of pseudoscalar meson to μ_V

- \odot 1st order responses are very weak at both $T > T_C$ and $T < T_C$
- $\odot T < T_C$
- A large 2nd order response of mass (negative)

$$\frac{M(\mu_V)}{T}\Big|_{\mu_V} = (1.4024 \pm 0.0008) + (-0.0005 \pm 0.0010) \left(\frac{\mu_V}{T}\right) - (1.31 \pm 0.04) \left(\frac{\mu_V}{T}\right)^2 + O\left[\left(\frac{\mu_V}{T}\right)^3\right]$$

$$(ma = 0.017, \beta = 5.26)$$

- $\odot T > T_C$
- ♣ 2nd order responses become weak

[IV]. behavior of vector meson

- \odot there are no large changes for vector meson mass at both $T > T_C$ and $T < T_C$
- ⊙ there are large noise, High statistical simulations shall be required to clarify the behavior for vector meson.

[V]. behavior of chiral condensate to μ_S and μ_V

- \odot 1st order responses are 0 for both μ_S and μ_V
- \odot small 2nd order responses (negative) of $\langle \bar{\psi}\psi \rangle$ in low temperature and high temperature, and have same behavior of 2nd order responses for μ_S and μ_V channel
- \odot large 2nd order responses of $\langle \bar{\psi}\psi \rangle$ (negative) near T_C

$$\frac{\langle \bar{\psi}\psi\rangle(\mu_S)}{T^3}\Big|_{\mu_S} = (17.16 \pm 0.11) - (25.0 \pm 4.1) \left(\frac{\mu_S}{T}\right)^2 + O\left[\left(\frac{\mu_S}{T}\right)^3\right]
\frac{\langle \bar{\psi}\psi\rangle(\mu_V)}{T^3}\Big|_{\mu_V} = (17.16 \pm 0.11) - (22.6 \pm 3.0) \left(\frac{\mu_V}{T}\right)^2 + O\left[\left(\frac{\mu_V}{T}\right)^3\right]
(ma = 0.025, \beta = 5.29)$$

outlook

 $(^{\circ}_{\asymp}{}^{\circ})$ vector meson $(^{\circ}_{\asymp}{}^{\circ})$ other physical quantities

$$\left. \frac{\partial Q(\mu)}{\partial \mu} \right|_{\mu} \; ; \; \left. \frac{\partial^2 Q(\mu)}{\partial \mu^2} \right|_{\mu}$$

 $({}^{\odot}_{\asymp}{}^{\odot})$ for nucleon

 $({}^{\odot}_{symp}{}^{\odot})$ large lattice size (for example $N_t > 6$)

新春愉快!

謝 謝!