# ÓBUDAI EGYETEM KANDÓ KÁLMÁN VILLAMOSMÉRNÖKI KAR AUTOMATIKA INTÉZET

# ELEKTRONIKA I.

# MINTAPÉLDÁK

Összeállította: Dr. Iváncsyné Csepesz Erzsébet

# Diódák, Zener diódák

1) Egy valóságos rétegdióda munkaponti adatait méréssel határoztuk meg:

a dióda nyitóirányú feszültsége:  $U_d = 0.6 \text{ V}$  a dióda nyitóirányú árama:  $I_d = 1 \text{ mA}$ 

a termikus feszültség értéke:  $U_T = 26 \text{ mV}$ 

Számítsa ki a dióda visszáramát!

$$I_d = I_0 \left( e^{\frac{U_d}{U_T}} - 1 \right)$$
  $I_0 = \frac{I_d}{e^{\frac{U_d}{U_T}} - 1} = \frac{10^{-3}}{e^{\frac{0.6}{26 \cdot 10^{-3}}} - 1}$   $I_0 = 9,5 \cdot 10^{-14} \text{ A}$ 

2) Mekkora előtét ellenállást kell a diódával sorba kapcsolni, ha a telepfeszültség  $U_t = 2.7$  V, és azt szeretnénk, hogy a diódán  $I_d = 5$  mA áram folyjon át? A dióda nyitóirányú feszültségét a dióda-egyenletből számolja ki, ha a dióda visszárama  $I_0 = 1 \cdot 10^{-14}$  A és a termikus feszültség  $U_T = 26$ mV!



$$I_{d} = I_{0} \left( e^{\frac{U_{d}}{U_{T}}} - 1 \right) \qquad I_{d} \cong I_{0} e^{\frac{U_{d}}{U_{T}}}$$

$$U_{d} = U_{T} \ln \frac{I_{d}}{I_{0}} = 26 \cdot 10^{-3} \ln \frac{5 \cdot 10^{-3}}{1 \cdot 10^{-14}}$$

$$U_{d} = 0.7 \text{ V}$$

$$U_{t} - I_{d}R - U_{d} = 0$$

$$R = \frac{U_t - U_d}{I_d} = \frac{2.7 - 0.7}{5 \cdot 10^{-3}} = 400 \ \Omega$$

Mekkora a dióda dinamikus ellenállása a fenti munkapontban?

$$r_d = \frac{du_d}{di_d}\Big|_{I_{MUM}}$$
  $r_d = \frac{U_T}{I_d} = \frac{26 \cdot 10^{-3}}{5 \cdot 10^{-3}} = 5.2 \ \Omega$ 

3) Adott az alábbi diódás kapcsolás. Rajzolja le a **kimenet időfüggvényét**, ha a bemenetekre adott jelek:  $u_1 = 5 \cdot \sin \omega t$  és  $u_2 = 5 \cdot \sin (\omega t + \pi)!$  A diódák ideálisak!





4) Számítsa ki az  $R_t$  terhelő ellenálláson eső  $U_{ki}$  feszültséget! A diódák teljesen egyformák!

A dióda maradékárama:

$$I_o = 10^{-14} \,\mathrm{A}$$

A termikus feszültség:

$$U_T = 26 \text{ mV}$$



$$I_d = I - I_t = 3.8 \cdot 10^{-3} - 10^{-3} = 2.8 \cdot 10^{-3} A = 2.8 \text{ mA}$$

$$I_d = I_0 \left( e^{\frac{U_d}{U_T}} - 1 \right)$$

$$U_d = U_T \ln \left( \frac{I_d}{I_0} + 1 \right) = 26 \cdot 10^{-3} \ln \left( \frac{2.8 \cdot 10^{-3}}{10^{-14}} + 1 \right) = 0.685 V$$

$$U_{ki} = 3U_d = 2,055 \text{ V}$$

5) Határozza meg az áramgenerátor áramát, ha a kimeneti feszültség:  $U_{ki}=2{,}055~\mathrm{V},$ és a diódák teljesen egyformák!

$$I_o = 10^{-14} \,\mathrm{A}$$
  
 $U_T = 26 \,\mathrm{mV}$ 

$$\begin{array}{c|c}
I_d \downarrow & U_d \\
\downarrow & \downarrow & U_d \\
\downarrow & \downarrow & U_d
\end{array}$$

$$\begin{array}{c|c}
U_{ki} \\
\downarrow & \downarrow & U_d
\end{array}$$

$$\begin{array}{c|cccc}
 & U_{ki} = 3U_d = 2,055 \text{ V} \\
 & U_d & U_{di} & U_$$

6) Mennyit változik a dióda nyitóirányú feszültsége, ha árama a 10-szeresére nő  $(I_{d2} = 10I_{d1})$ ?

A termikus feszültség:  $U_T = 26 \text{ mV}$ .

$$I_{d1} = I_0 e^{\frac{U_{d1}}{U_T}}$$

$$I_{d2} = 10I_{d1} = I_0 e^{\frac{U_{d2}}{U_T}}$$

$$\frac{I_{d2}}{I_{d1}} = 10 = \frac{e^{\frac{U_{d2}}{U_T}}}{e^{\frac{U_{d1}}{U_T}}}$$

$$\ln 10 = \frac{U_{d2} - U_{d1}}{U_T}$$

$$\Delta U_d = U_{d2} - U_{d1} = U_T \ln 10 = 26 \cdot 10^{-3} \cdot 2,3 = 59,8 \ mV$$

7) Rajzoljon egy Zener diódás feszültségstabilizátort és határozza meg a megadott elemek értékeinek segítségével az  $I_{be}$  bemeneti és az  $I_z$  Zener áram értékét!

a tápfeszültség: Adatok:

$$U_{be} = 20 \text{ V}$$

a Zener feszültség:

$$U_Z = 13 \text{ V}$$

az előtétellenállás értéke:

$$R_E = 100 \ \Omega$$

a terhelőellenállás értéke:

$$R = 300 \Omega$$



$$I_{be} = \frac{U_{be} - U_Z}{R_E} = \frac{20 - 13}{100} = 70 \text{ mA}$$

$$I_t = \frac{U_t}{R} = \frac{U_Z}{R} = \frac{13}{300} = 43,3 \text{ mA}$$

$$I_{be} = I_t + I_Z \qquad I_Z = I_{be} - I_t = 0,07 - 0,0433 = 0,0267 \text{ A}$$

$$I_Z = 26,7 \text{ mA}$$

8) Határozza meg az ábrán látható elemi feszültségstabilizátor előtét ellenállásának nagyságát!



#### Adatok:

A tápfeszültség:  $U_{be} = 15 \text{ V} \pm 3 \text{ V}$  a terhelő áram:  $I_t = 0....20 \text{ mA}$  a Zener dióda névleges feszültsége:  $U_{ZN} = 6,2 \text{ V}$  a Zener dióda névleges árama:  $I_{ZN} = 5 \text{ mA}$  a Zener dióda dinamikus ellenállása:  $r_z = 10 \Omega$  a Zener dióda megengedett disszipációs teljesítménye:  $P_{dmax} = 600 \text{mW}$ 

$$I_{be} = I_Z + I_t$$

A Zener áramának maximális értéke:

$$I_{Zmeg} = \frac{P_{d \text{ max}}}{U_{ZN}} = \frac{600 \cdot 10^{-3}}{6.2} \cong 97 \text{ mA}.$$

A Zeneren akkor folyik maximális áram, ha a bemeneti feszültség maximális és a terhelő áram minimális értékű:  $U_{bemax} = 18 \text{ V}$ ,  $I_{tmin} = 0$ .

$$\begin{split} I_{be} &= \frac{U_{be} - U_{Z}}{R} & I_{Z} = I_{be} - I_{t} \\ I_{Z \max} &= \frac{U_{be \max} - U_{ZN}}{R} - I_{t \min} = \frac{18 - 6.2}{R} - 0 \end{split}$$

$$R \ge \frac{U_{be\,max} - U_{ZN}}{I_{Zmeg}} = \frac{18 - 6.2}{97 \cdot 10^{-3}} = 121.6\Omega \cong 120 \ \Omega$$

A Zeneren akkor folyik a legkisebb áram, ha a bemeneti feszültség minimális és a terhelő áram maximális értékű:  $U_{bemin} = 12 \text{ V}$ ,  $I_{tmax} = 20 \text{ mA}$ .

$$I_{Z \min} = \frac{U_{be \min} - U_{ZN}}{R} - I_{t \max} = \frac{12 - 6.2}{R} - 20 \cdot 10^{-3}$$

A Zener minimális árama:  $I_{zmin} = I_{zN} = 5 \text{ mA}.$ 

$$R \le \frac{U_{bemin} - U_{ZN}}{I_{Z,min} + I_t} = \frac{12 - 6.2}{5 \cdot 10^{-3} + 20 \cdot 10^{-3}} = 232 \ \Omega \cong 230 \ \Omega$$

$$120 \Omega \le R \le 230 \Omega$$

$$R = 180 \Omega$$

Mekkora lesz a kimeneti feszültség  $\Delta U_{ki}$  változása, ha a bemeneti feszültség  $\Delta U_{be} = 2$  V-ot változik?

$$\Delta U_{ki} = \Delta U_{be} \frac{r_Z}{R + r_Z} = 2 \frac{10}{190} = 105 \ mV \ .$$

Mekkora a kimeneti feszültség  $\Delta U_{ki}$  változása, ha a terhelő áram  $\Delta I_t = 5\text{mA-t}$  változik?

$$r_{Z} = \frac{\Delta U_{ki}}{\Delta I_{\star}}$$

$$\Delta U_{ki} = -r_Z \Delta I_t = -50 \ mV$$

9) Rajzoljon fel egy diódás szinteltoló áramkört 2 db diódával!

A diódák nyitóirányú feszültsége:  $U_0$ .

Rajzolja le az  $u_{be}(\boldsymbol{\omega}t)$  bemeneti és az  $u_{ki}(\boldsymbol{\omega}t)$  kimeneti feszültség időfüggvényeket!



10) Rajzoljon fel egy soros diódás csúcsegyenirányítót!

Rajzolja le a bemeneti és a kimeneti feszültség időfüggvényét, ha

 $u_{be}(\omega t) = 5 \sin \omega t \text{ [V]!}$ 



11) Rajzoljon fel egy Zener diódás szinteltoló áramkört!

A bemenetre kapcsolt feszültség:  $u_{be} = 20 \sin \omega t$  [V]

a Zener dióda feszültsége:  $U_Z = 5 \text{ V}$ 

a Zener dióda nyitóirányú feszültsége:  $U_0 = 0.6 \text{ V}$ 

Rajzolja le léptékhelyesen az  $u_{be}(\omega t)$  bemeneti és az  $u_{ki}(\omega t)$  kimeneti feszültség időfüggvényeket! Határozza meg a kimeneti feszültség amplitúdóit!



12) Adott az alábbi Zener diódás határoló kapcsolás.

A bemeneti feszültség:  $u_{be} = 8\sin \omega t$  [V]

A diódák nyitóirányú feszültsége:  $U_0 = 0.7 \text{ V (nem változik!)}$ 

a letörési feszültségük:  $U_{Z1} = U_{Z2} = 3.3 \text{ V}$ 

Rajzolja le a be- és a kimenet időfüggvényét!

$$+\hat{U}_{ki} = U_{Z2} + U_0 = 3.3 + 0.7 = 4V$$
  $-\hat{U}_{ki} = -(U_{Z1} + U_0) = -(3.3 + 0.7) = -4V$ 





# Tranzisztorok, tranzisztoros erősítő kapcsolások

- **13**) Határozza meg egy bipoláris tranzisztor földelt emitteres áramerősítési tényezőjét (*B*), ha az alábbi adatokat ismeri:
  - a bázisáram:  $I_B = 100 \,\mu\text{A}$  a kollektoráram:  $I_C = 1 \,\text{mA}$
  - a kollektor-bázis maradékáram:  $I_{CBO} = 10 \,\mu\text{A}!$

$$I_C = BI_B + (1+B)I_{CB0}$$
  $B = 9$ 

**14)** Rajzolja le a bipoláris tranzisztor földelt emitteres, kisjelű, fizikai helyettesítő képét!



**15**) Rajzolja le a bipoláris tranzisztor földelt emitteres bemeneti és kimeneti karakterisztikáját!



**16)** Határozza meg az ábrán látható tranzisztoros erősítő kapcsolás munkaponti adatait!

#### Adatok:

A tápfeszültség:  $U_t = 10 \text{ V}$  a tranzisztor bázis-emitter feszültsége:  $U_{BE} = 0.7 \text{ V}$  az emitter ellenállás:  $R_E = 2 \text{ k}\Omega$  a kollektor ellenállás:  $R_C = 5 \text{ k}\Omega$  a bázisosztó ellenállásai:  $R_I = 73 \text{ k}\Omega$   $R_2 = 27 \text{ k}\Omega$ 

A tranzisztor nagyjelű áramerősítési tényezője: B = 300



17) Határozza meg az ábrán látható tranzisztoros erősítő kapcsolás munkaponti adatait!

# Adatok:

A tápfeszültség:  $U_{tl} = + 15 \text{ V}$   $U_{t2} = - 5 \text{ V}$  a tranzisztor bázis-emitter feszültsége:  $U_{BE} = 0.6 \text{ V}$  az emitter ellenállás:  $R_E = 3 \text{ k}\Omega$  a kollektor ellenállás:  $R_C = 5.1 \text{ k}\Omega$  A tranzisztor nagyjelű áramerősítési tényezője:  $R_C = 5.0 \text{ k}\Omega$ 

 $U_R = 0$ 



$$U_{E} = U_{B} - U_{BE} = -0.6 V$$

$$U_{RE} = U_{E} - U_{t2} = -0.6 - (-5) = 4.4 V$$

$$I_{E} = \frac{U_{RE}}{R_{E}} = \frac{4.4}{3 \cdot 10^{-3}} = 1.46 \text{ mA}$$

$$I_{E} \approx I_{C}$$

$$U_{RC} = I_{C}R_{C} = 1.46 \cdot 10^{-3} \cdot 5.1 \cdot 10^{3} = 7.45 V$$

$$U_{C} = U_{t1} - U_{RC} = 15 - 7.45 = 7.55 V$$

$$U_{CE} = U_{C} - U_{E} = 7.55 - (-0.6) = 8.15 V$$

18) Határozza meg az alábbi földelt emitteres kapcsolás kollektor áramát! Számítsa ki az erősítő fokozat feszültségerősítését  $(A_u)$ , bemeneti  $(R_{be})$  és kimeneti  $(R_{ki})$  ellenállását sávközépen! Adja meg a feszültségerősítést dB-ben is!



$$T = BC \ 182C, \ \beta = 250$$
 $R_E = 3 \ k\Omega$ 
 $R_C = 5,1 \ k\Omega$ 
 $R_t = 10 \ k\Omega$ 
 $C_2 = 10 \ \mu F$ 
 $C_E = 47 \ \mu F$ 
 $U_{BEmp} = 0,6 \ V$ 
 $U_{t1} = +15 \ V$ 
 $U_{t2} = -5 \ V$ 

$$U_T = 26 \text{ mV}$$

A kapcsolás kisjelű fizikai helyettesítő képe:



$$U_{B} = 0$$

$$U_{E} = U_{B} - U_{BE} = -0.6 \text{ V}$$

$$U_{RE} = U_{E} - (U_{t2}) = -0.6 - (-5) = 4.4 \text{ V}$$

$$I_{E} = \frac{U_{RE}}{R_{E}} = \frac{4.4}{3 \cdot 10^{3}} = 1.46 \text{ mA}$$

$$I_{E} \approx I_{C} = 1.46 \text{ mA}$$

$$g_{m} = \frac{I_{C}}{U_{T}} = \frac{1.46 \cdot 10^{-3}}{26 \cdot 10^{-3}} = 56 \text{ mS}$$

$$r_{E} = \frac{U_{T}}{I_{C}} = \frac{26 \cdot 10^{-3}}{1.46 \cdot 10^{-3}} = 17.8 \Omega$$

$$R_{C} \times R_{t} = \frac{5.1 \cdot 10^{3} \cdot 10 \cdot 10^{3}}{(5.1 + 10) \cdot 10^{3}} = 3.37 \text{ k}\Omega$$

$$A_{u} = -g_{m}(R_{C} \times R_{t}) = -\frac{R_{C} \times R_{t}}{r_{E}} = -189.13$$

$$A_{u}[dB] = 201g|A_{u}| = 45.53 \text{ dB}$$

$$R_{be} \approx r_{B} = \beta r_{E} = 250 \cdot 17.8 = 4.45 \text{ k}\Omega$$

$$R_{bi} \approx R_{C} = 5.1 \text{ k}\Omega$$

19) Határozza meg az ábrán látható tranzisztoros közös emitterű erősítő kapcsolás kollektor áramának ( $I_C$ ) értékét, valamint a kapcsolás feszültségerősítésének ( $A_u$ ), bemeneti ellenállásának ( $R_{be}$ ) és kimeneti ellenállásának ( $R_{ki}$ ) nagyságát!

#### Adatok:

a tranzisztor típusa: 2N5086

váltakozó áramú áramerősítési tényezője:  $\beta = 300$ 

a bázisosztó ellenállásai:  $R_1 = 73 \text{ k}\Omega$ 

 $R_2 = 27 \text{ k}\Omega$ 

 $U_T = 26 \text{ mV}$ 

 $U_t = 10 \text{ V}$ 

az emitterellenállás:  $R_E = 2 \text{ k}\Omega$ 

az emitter hidegítőkondenzátor:  $C_E = 47 \mu F$ 

a kollektorellenállás:  $R_C = 5 \text{ k}\Omega$ 

a terhelőellenállás:  $R_t = 10 \text{ k}\Omega$ 

a bemeneti csatolókondenzátor:  $C_1 = 10 \mu F$ 

a kimeneti csatolókondenzátor:  $C_2 = 10 \mu F$ 

a tranzisztor bázis-emitter feszültsége:  $U_{BEmp} = 0.7 \text{ V}$ 

a termikus feszültség:

tápfeszültség:



A kapcsolás kisjelű fizikai helyettesítő képe:



$$U_B = U_t \frac{R_2}{R_1 + R_2} = 10 \frac{27 \cdot 10^3}{27 \cdot 10^3 + 73 \cdot 10^3} = 2,7 V$$

$$U_E = U_B - U_{BE} = 2.7 - 0.7 = 2 \text{ V}$$

$$U_{RE} = U_E = 2 \text{ V}$$

$$I_E = \frac{U_{RE}}{R_E} = \frac{2}{2 \cdot 10^3} = 1 \, mA$$

$$g_m = \frac{I_C}{U_T} = \frac{1 \cdot 10^{-3}}{26 \cdot 10^{-3}} = 38 \text{ mS}$$
  $r_E = \frac{U_T}{I_C} = \frac{26 \cdot 10^{-3}}{1 \cdot 10^{-3}} = 26 \Omega$ 

$$A_{u} = -g_{m}(R_{C} \times R_{t}) = -\frac{R_{C} \times R_{t}}{r_{E}} = -38 \cdot 10^{-3} \frac{5 \cdot 10^{3} \cdot 10 \cdot 10^{3}}{(5+10)10^{3}} = -126$$

$$R_{be} = (R_{1} \times R_{2}) \times \beta r_{E} = 5,588 \, k\Omega$$

$$R_{ki} \approx R_{C} = 5 \, k\Omega$$

**20**) Határozza meg az ábrán látható tranzisztoros közös emitterű erősítő kapcsolás kollektor áramának ( $I_C$ ) értékét, valamint a kapcsolás feszültségerősítésének ( $A_u$ ), bemeneti ellenállásának ( $R_{be}$ ) és kimeneti ellenállásának ( $R_{ki}$ ) nagyságát!

#### Adatok:

a tranzisztor típusa: 2N5086 váltakozó áramú áramerősítési tényezője:  $\beta = 300$ a bázisosztó ellenállásai:  $R_1 = 73 \text{ k}\Omega$  $R_2 = 27 \text{ k}\Omega$ az emitter ellenállás:  $R_E = 2 \text{ k}\Omega$ a kollektor ellenállás:  $R_C = 5 \text{ k}\Omega$ a terhelő ellenállás:  $R_t = 10 \text{ k}\Omega$ a bemeneti csatolókondenzátor:  $C_1 = 10 \ \mu F$ a kimeneti csatolókondenzátor:  $C_2 = 10 \ \mu F$ a tranzisztor bázis-emitter feszültsége:  $U_{BEmp} = 0.7 \text{ V}$ a termikus feszültség:  $U_T = 26 \text{ mV}$  $U_t = 10 \text{ V}$ tápfeszültség:



A kapcsolás kisjelű, fizikai helyettesítő képe:



A tranzisztor  $i_C$  kollektorárama az  $R_E$  emitterellenálláson létrehozza az  $u_v = u_{RE}$  visszacsatolt feszültséget, amely az  $u_1 = u_{BE}$  feszültséggel sorba kapcsolódik: összegük az  $u_{be}$  bemeneti feszültség.

Ez a kapcsolás SOROS-ÁRAM visszacsatolást valósít meg.

$$U_{B} = U_{t} \frac{R_{2}}{R_{1} + R_{2}} = 10 \frac{27 \cdot 10^{3}}{27 \cdot 10^{3} + 73 \cdot 10^{3}} = 2,7 V$$

$$U_{E} = U_{B} - U_{BE} = 2,7 - 0,6 = 2 V$$

$$U_{RE} = U_{E} = 2 V$$

$$I_{E} = \frac{U_{RE}}{R_{E}} = \frac{2}{2 \cdot 10^{3}} = 1 mA$$

$$r_{E} = \frac{U_{T}}{I_{C}} = \frac{26 \cdot 10^{-3}}{1 \cdot 10^{-3}} = 26 \Omega$$

$$A_{u} \cong -\frac{R_{C} \times R_{t}}{R_{E}} = \frac{5 \cdot 10^{3} \cdot 10 \cdot 10^{3}}{(5 + 10) \cdot 10^{3}} \cdot \frac{1}{2 \cdot 10^{3}} = -1,6$$

$$R_{be} = (R_{1} \times R_{2}) \times \beta(r_{E} + R_{E}) = 19,09 k\Omega$$

$$R_{ki} \approx R_{C} = 5 k\Omega$$

**21**) Határozza meg az ábrán látható tranzisztoros közös kollektorú erősítő kapcsolás  $A_u$  feszültségerősítésének,  $R_{be}$  bemeneti ellenállásának, valamint  $R_{ki}$  kimeneti ellenállásának értékét!

#### Adatok:

a tranzisztor típusa: BC182  $\beta = 200$ váltakozóáramú áramerősítési tényezője: a bázisosztó ellenállásai:  $R_1 = 12,4 \text{ k}\Omega$  $R_2 = 2.6 \text{ k}\Omega$ az emitterellenállás:  $R_E = 1 \text{ k}\Omega$  $R_t = 3 \text{ k}\Omega$ a terhelőellenállás:  $C_I = 10 \mu F$ a bemeneti csatolókondenzátor: a kimeneti csatolókondenzátor:  $C_2 = 10 \ \mu F$ a tranzisztor bázis-emitter feszültsége:  $U_{BEmp} = 0.7 \text{ V}$ a termikus feszültség:  $U_T = 26 \text{ mV}$  $I_E = 2 \text{ mA}$ a tranzisztor munkaponti emitterárama: tápfeszültség:  $U_t = 15 \text{ V}$ 



A kapcsolás kisjelű helyettesítő képe:



Az  $R_E$  emitterellenállás  $u_v = u_{RE}$  feszültsége a tranzisztor  $u_I = u_{BE}$  feszültségével sorba kapcsolódik, összegük az  $u_{be}$  bemeneti feszültség. A visszacsatoló tag, azaz az emitterellenállás feszültsége az  $u_{ki}$  kimeneti feszültség.

Ez a kapcsolás SOROS-FESZÜLTSÉG visszacsatolást valósít meg.

A kapcsolás eredő feszültségerősítése:

$$A_{u}^{'} = \frac{A_{u}}{1+H} = \frac{A_{u}}{1+A_{u}B_{u}}$$

A visszacsatolatlan rendszer feszültségerősítése:

$$A_{u} = \frac{u_{ki}}{u_{1}} = \frac{i_{C}(R_{E} \times R_{t})}{u_{BE}} = \frac{g_{m}u_{BE}(R_{E} \times R_{t})}{u_{BE}} = g_{m}(R_{E} \times R_{t}) = \frac{1}{13} \cdot \frac{10^{3} \cdot 3 \cdot 10^{3}}{(10^{3} + 3 \cdot 10^{3})} = 58$$

A visszacsatoló tag feszültségerősítése:

$$B_{u} = \frac{u_{v}}{u_{ki}} = \frac{u_{ki}}{u_{ki}} = 1$$

$$A_{u}^{'} = \frac{A_{u}}{1+H} = \frac{A_{u}}{1+A_{u}B_{u}} = \frac{58}{59} = 0.98$$

$$R_{be}^{'} = R_{1} \times R_{2} \times (r_{B} + r_{B}g_{m}(R_{E} \times R_{t})) = R_{1} \times R_{2} \times \left(\beta r_{E} + \beta r_{E} \frac{1}{r_{E}}(R_{E} \times R_{t})\right)$$

$$R_{be}^{'} = R_{1} \times R_{2} \times \beta (r_{E} + (R_{E} \times R_{t})) \cong 2.1 k\Omega$$

$$R_{ki}' = \frac{R_{ki}}{1 + H_{ii}}$$

$$R_{ki} = R_E$$

$$A_{u\ddot{u}} = g_m R_E$$
$$B_{u\ddot{u}} = 1$$

$$H_{ii} = A_{uii}B_{uii} = g_{m}R_{E}$$

$$R_{ki}' = \frac{R_{ki}}{1 + H_{ii}} = \frac{R_{E}}{1 + g_{m}R_{E}} = r_{E} \times R_{E} \cong 13 \Omega$$

22) Határozza meg az alábbi kapcsolás  $R_E$  munkapont beállító elemének értékét, ha  $I_t = 1$  mA! Határozza meg a terhelő ellenállás  $R_{tmin}$  minimális, valamint az  $R_{tmax}$  maximális értékét, amelynél még áramgenerátorként működik a kapcsolás!



#### Adatok:

$$U_{BE} = 0.6 \text{ V}$$
  
 $U_t = 15 \text{ V}$   
 $U_Z = 5.6 \text{ V}$   
 $R_I = 2 \text{ k}\Omega$ 

$$U_B = U_Z$$
  
 $U_B = 5.6 \text{ V}$   
 $U_E = U_B - U_{BE} = 5.6 - 0.6 = 5 \text{ V}$   
 $U_{RE} = U_E$   
 $I_E \cong I_t$   
 $R_E = \frac{U_{RE}}{I_E} = \frac{5}{10^{-3}} = 5 k\Omega$ 

$$R_{tmin} = 0$$

Az áramgenerátorként való működés feltétele, hogy a tranzisztor kollektor-bázis diódája zárt maradjon:

 $U_{BC} \le 0$ , tehát  $U_C > U_B$ .

$$U_t - I_t R_t = U_C$$

 $U_t - I_t R_t \ge U_B$  Ebből a feltételből határozható meg a terhelő ellenállás maximális értéke:

$$R_{t \max} \le \frac{U_t - U_B}{I_t} \le \frac{15 - 5.6}{10^{-3}} \le 9.4 \ k\Omega$$

23) Írja fel a záróréteges térvezérlésű tranzisztor (JFET)  $I_{DS} = f$  ( $U_{GS}$ ) összefüggését! Adja meg az összefüggésben szereplő betűk jelentését!

$$I_{DS} = I_{DSS} \left( 1 - \frac{U_{GS}}{U_0} \right)^2$$

 $I_{DS}$ : JFET drain-source árama

 $U_{GS}$ : vezérlőfeszültség  $I_{DSS}$ : JFET telítési árama

 $U_0$ : JFET elzáródási feszültsége

**24)** Rajzolja fel a záróréteges térvezérlésű tranzisztor (*JFET*) transzfer és kimeneti karakterisztikáját!



25) Definiálja a *JFET* meredekségét, és adja meg kiszámításának módját!

$$S = g_{m} = \frac{dI_{DS}}{dU_{GS}} = \frac{\Delta I_{DS}}{\Delta U_{GS}} \qquad g_{m} = \frac{dI_{DSS} \left(1 - \frac{U_{GS}}{U_{0}}\right)^{2}}{dU_{GS}} = -\frac{2I_{DSS}}{U_{0}} \left(1 - \frac{U_{GS}}{U_{0}}\right)$$

**26**) Rajzolja fel a fizikai működés ismeretében a záróréteges térvezérlésű tranzisztor (*JFET*) földelt source-ú, kisjelű, kisfrekvenciás, dinamikus helyettesítő képét!



Az  $r_{DS} = \frac{\Delta U_{DS}}{\Delta I_{DS}} \bigg|_{U_{GS} = \acute{a}ll.}$  kimeneti dinamikus ellenállás nagy értéke miatt sokszor elhanyagolható.

**27**) Rajzolja fel a növekményes *MOSFET* transzfer és kimeneti karakterisztikáját! (A tengelyekre felmért mennyiségeknek, a karakterisztikák jellemző pontjainak, valamint a paraméterként használt mennyiségeknek a jelöléséről ne feledkezzen meg!)



**28**) Határozza meg az ábrán látható *JFET*-es földelt source-ú erősítő munkaponti adatait és a feszültségerősítését!



#### Adatok:

$$U_t = +15 \text{ V}$$

$$U_G = -2.5 \text{ V}$$

$$R_D = 3 \text{ k}\Omega$$

$$R_G = 1 \text{ M}\Omega$$

$$R_t = 10 \text{ k}\Omega$$

$$R_g = 50 \text{ }\Omega$$

$$I_{DSS} = 10 \text{ mA}$$
$$U_o = -5 \text{ V}$$

$$I_{DS} = I_{DSS} \left( 1 - \frac{U_{GS}}{U_0} \right)^2 = 10 \cdot 10^{-3} \left( 1 - \frac{-2.5}{-5} \right)^2 = 2.5 \text{ mA}$$

$$U_{DS} = U_t - I_{DS} R_D = 15 - 2.5 \cdot 10^{-3} \cdot 3 \cdot 10^3 = 7.5 \text{ V}$$

$$g_m = -\frac{2I_{DSS}}{U_0} \left( 1 - \frac{U_{GS}}{U_0} \right) = -\frac{20 \cdot 10^{-3}}{-5} \left( 1 - \frac{-2.5}{-5} \right) = 2 \ mS$$

$$A_u = -g_m (R_D \times R_t) = -2.10^{-3} (3.10^3 \times 10.10^3) = -4.6$$

Rajzolja meg léptékhelyesen az  $u_{ki}$  és  $u_{DS}$  időfüggvényeket, ha  $u_{be} = 0.1$  sin  $\omega t$  [V]!



**29**) Állítsa be a *JFET* munkapontját  $I_{DSmp} = 10$  mA-re!



### Adatok:

$$U_t = 20 \text{ V}$$

$$R_G = 1 \text{ M}\Omega$$

$$R_D = 1 \text{ k}\Omega$$

$$R_t = 10 \text{ k}\Omega$$

 $I_{DSS} = 15 \text{ mA}$  rövidzárási áram  $U_o = -5 \text{ V}$  elzáródási feszültség

A  $C_1$  és  $C_2$  csatolókondenzátorok végtelen nagy értékűnek tekinthetők. Rajzolja le a kapcsolás váltakozó áramú (kisjelű) fizikai helyettesítő képét!



Határozza meg a kapcsolás  $A_u$  feszültségerősítésének értékét! Adja meg a feszültségerősítés nagyságát dB-ben is!

$$U_G = 0$$

$$I_{DS} = I_{DSS} \left( 1 - \frac{U_{GS}}{U_0} \right)^2$$

$$U_{GS} = \left(1 - \sqrt{\frac{I_{DS}}{I_{DSS}}}\right)U_0 = \left(1 - \sqrt{\frac{10 \cdot 10^{-3}}{15 \cdot 10^{-3}}}\right)(-5) = -0.917 V$$

$$U_{RS} = \left|U_{GS}\right| = 0.917 V$$

$$R_S = \frac{U_{RS}}{I_D} = \frac{0.917}{10 \cdot 10^{-3}} = 0.0917 \cdot 10^3 = 91.7 \ \Omega$$

$$U_{DS} = U_t - I_{DS}R_D - I_{DS}R_S = 20 - 10 \cdot 10^{-3} \cdot 10^3 - 10 \cdot 10^{-3} \cdot 91,7 = 9,083 V$$

$$g_m = -\frac{2I_{DSS}}{U_0} \left( 1 - \frac{U_{GS}}{U_0} \right) = -\frac{30 \cdot 10^{-3}}{-5} \left( 1 - \frac{-0.917}{-5} \right) = 4.89 \cdot 10^{-3} \text{ S}$$

$$A_u = -g_m(R_D \times R_t) = -4,89 \cdot 10^{-3} \left( \frac{10^3 \cdot 10 \cdot 10^3}{10^3 + 10 \cdot 10^3} \right) = -4,44$$

$$A_u[dB] = 201g|A_u| = 12,94 \text{ dB}$$

Határozza meg az  $R_{be}$  bemeneti és az  $R_{ki}$  kimeneti ellenállás nagyságát!

$$R_{be} \cong R_G$$

$$R_{ki} \cong R_D$$

**30**) Határozza meg az ábrán látható tranzisztoros differencia-erősítő kapcsolás munkaponti adatait és a feszültségerősítésének nagyságát szimmetrikus vezérlés esetén!



### Adatok:

$$U_t = \pm 15 \text{ V}$$

$$R_{C1} = R_{C2} = R_C = 5 \text{ k}\Omega$$

$$R_{EE} = 3.6 \text{ k}\Omega$$

$$R_t = 10 \text{ k}\Omega$$

$$U_{BE} = 0.6 \text{ V}$$

$$\beta_1 = \beta_2 = 200$$

$$U_T = 26 \text{ mV}$$

$$U_{B1} = U_{B2} \cong 0$$

$$U_{EE} = U_B - U_{BE} = 0 - 0.6 = -0.6 V$$

$$U_{REE} = U_{EE} - (-U_t) = -0.6 - (-15) = 14.4 V$$

$$I_{EE} = \frac{U_{REE}}{R_{EE}} = \frac{14.4}{3.6 \cdot 10^3} = 4 \text{ mA}$$

$$I_{C1} = I_{C2} = I_C = \frac{I_{EE}}{2} = 2 \text{ mA}$$

$$r_E = \frac{U_T}{\frac{I_{EE}}{2}} = \frac{26 \cdot 10^{-3}}{2 \cdot 10^{-3}} = 13 \Omega$$

$$r_E = r_{E1} = r_{E2}$$

$$g_m = \frac{1}{r_E} = 77 \text{ mS}$$

$$A_{us} = -g_m \left( R_C \times \frac{R_t}{2} \right) = -77 \cdot 10^{-3} \cdot \frac{5 \cdot 10^3 \cdot 5 \cdot 10^3}{5 \cdot 10^3 + 5 \cdot 10^3} = -190$$

$$A_{us}[dB] = 20 lg |A_{us}| = 45,57 dB$$

$$R_{bes} \cong 2r_B = 2\beta r_E = 5200 \,\Omega$$

# Műveleti erősítőkkel megvalósított kapcsolások

**31)** Határozza meg az ábrán látható erősítő kapcsolás feszültségerősítését (a lineáris tartományban)!



$$R_{I} = 1 \text{ k}\Omega$$

$$R_{2} = 10 \text{ k}\Omega$$

$$+U_{t} = +10 \text{ V}$$

$$-U_{t} = -10 \text{ V}$$

Rajzolja meg a kimeneti feszültség léptékhelyes időfüggvényét, ha:

**a)** 
$$u_{be}(t) = 1.5 \sin \omega t [V]$$

**b**) 
$$u_{be}(t) = 0.5 \sin \omega t [V]$$



**32**) Határozza meg az ábrán látható, műveleti erősítővel megvalósított **neminvertáló** erősítő  $A_u$  feszültségerősítését!



### Adatok:

$$R_1 = 10 \text{ k}\Omega$$
  
 $R_2 = 90 \text{ k}\Omega$   
 $U_{kimax} = +U_t = +15 \text{ V}$   
 $U_{kimin} = -U_t = -15 \text{ V}$ 

$$A_u = 1 + \frac{R_2}{R_1} = 1 + \frac{90 \cdot 10^3}{10 \cdot 10^3} = 10$$

Rajzolja le az  $u_{be}$  bemeneti és az  $u_{ki}$  kimeneti feszültség időfüggvényét, ha

*a*) 
$$u_{be} = 0.5 \sin \omega t [V],$$

b) 
$$u_{be} = 1 + 1 \sin \omega t [V]!$$



33) Határozza meg az alábbi kapcsolás kimeneti feszültségének értékét!



Különbségképző kapcsolás

A szuperpozíció szerint:

$$u_{ki} = u_{ki1} + u_{ki2}$$

a) Legyen  $u_{be2} = 0$ , ekkor a kimeneti feszültség:

$$u_{ki1} = -\frac{R_2}{R_1} u_{be1}$$

b) Legyen  $u_{be1} = 0$ , ekkor a kimeneti feszültség:

$$u_{ki2} = \left(1 + \frac{R_2}{R_1}\right) u_{be2} \frac{R_4}{R_3 + R_4}$$

$$u_{ki} = u_{ki1} + u_{ki2} = -\frac{R_2}{R_1} u_{be1} + \left(1 + \frac{R_2}{R_1}\right) u_{be2} \frac{R_4}{R_3 + R_4}$$

$$u_{ki} = -\frac{20 \cdot 10^3}{10 \cdot 10^3} u_{be1} + \left(1 + \frac{20 \cdot 10^3}{10 \cdot 10^3}\right) u_{be2} \frac{20 \cdot 10^3}{10 \cdot 10^3 + 20 \cdot 10^3}$$

$$u_{ki} = -2u_{be1} + 2u_{be2}$$

$$U_{ki} = -2U_{be1} + 2U_{be2} = -2 + 2(-2) = -6$$

**34)** Határozza meg az ábrán látható összegző kapcsolás kimeneti feszültségét a táblázat *a*) és a *b*) oszlopában megadott bemeneti feszültségek esetén!



#### Adatok:

$$+U_t = + 10 \text{ V}$$

$$-U_t = -10 \text{ V}$$

$$R_1 = 1 \text{ k}\Omega$$

$$R_2 = 10 \text{ k}\Omega$$

$$R_v = 10 \text{ k}\Omega$$

|          | <i>a</i> ) | <b>b</b> ) |
|----------|------------|------------|
| $U_1$    | 1 V        | 1 V        |
| $U_2$    | 2 V        | - 2 V      |
| $U_{ki}$ | - 10 V     | - 8 V      |

$$U_{ki} = -R_{v} \left( \frac{U_{be1}}{R_{1}} + \frac{U_{be2}}{R_{2}} \right)$$

a) 
$$U_{ki} = -10 \cdot 10^3 \left( \frac{1}{10^3} + \frac{2}{10 \cdot 10^3} \right) = -12 V$$

Mivel a műveleti erősítő tápfeszültsége  $U_t = \pm 10 \text{ V}$ , ezért a kimeneti feszültség sem lehet nagyobb ennél az értéknél, tehát:

$$U_{ki} = -10 \text{ V}.$$

**b**) 
$$U_{ki} = -10 \cdot 10^3 \left( \frac{1}{10^3} + \frac{(-2)}{10 \cdot 10^3} \right) = -8 V$$

35) Határozza meg az ábrán látható műveleti erősítős áramgenerátor terhelő ellenállásának minimális és maximális értékét!



### Adatok:

$$U_t = \pm 10 \text{ V}$$

$$U_{be} = -5 \text{ V}$$

$$R_2 = 7.5 \text{ k}\Omega$$

$$R_{tmin} = 0$$

$$I_{be} = \frac{U_{be}}{R_2} = \frac{-5}{7.5 \cdot 10^3} = -0.67 \text{ mA}$$

$$I_{be} = I_t$$

$$U_{Rtmax} = U_{ki}$$
  $U_{ki} = U_t$ 

$$R_{t \text{ max}} = \frac{|U_{Rt \text{ max}}|}{|I_t|} = \frac{10}{0.67 \cdot 10^{-3}} = 15 \text{ } k\Omega$$

**36)** Mekkora az  $A_{u0}$  feszültségerősítés és az  $U_R$  referenciafeszültség értéke, ha a komparátor transzfer karakterisztikája a következő:



### Megoldás:

$$\Delta U_{be} = 0.02V$$
$$\Delta U_{ki} = 20V$$
$$U_{R} = 2V$$

$$A_{u0} = -\frac{\Delta U_{ki}}{\Delta U_{be}} = -\frac{20}{0,02} = -1000$$

37) Rajzolja le az ábrán látható ideális műveleti erősítővel megvalósított **hiszterézismentes**, **neminvertáló** komparátor transzfer karakterisztikáját, valamint az  $u_{be}$  bemeneti és az  $u_{ki}$  kimeneti feszültség időfüggvényét, ha  $u_{be} = 8\sin\omega t [V]!$ 



### Adatok:

$$U_{ref} = -3 \text{ V}$$

$$U_H = (+U_{kimax}) = +10 \text{ V}$$

$$U_L = (-U_{kimax}) = -10 \text{ V}$$

$$R_I = 10 \text{ k}\Omega$$

$$R_2 = 10 \text{ k}\Omega$$



38) Rajzoljon egy ideális invertáló hiszterézises nullkomparátort! Számítsa ki a komparátor  $U_f$  felső, és  $U_a$  alsó billenési szintjeit! Rajzolja le a kapcsolás transzfer karakterisztikáját!



## Adatok:

$$U_H = (+U_{kimax}) = +15 \text{ V}$$
  
 $U_L = (-U_{kimax}) = -15 \text{ V}$   
 $R_I = 1 \text{ k}\Omega$   
 $R_2 = 9 \text{ k}\Omega$ 

$$U_f = U_H \frac{R_1}{R_1 + R_2} = 15 \cdot \frac{10^3}{1 \cdot 10^3 + 9 \cdot 10^3} = 1,5 \text{ V}$$

$$U_a = U_L \frac{R_1}{R_1 + R_2} = -15 \frac{10^3}{1 \cdot 10^3 + 9 \cdot 10^3} = -1,5 V$$



**39**) Rajzoljon egy **ideális invertáló hiszterézises** komparátort! Számítsa ki a komparátor billenési szintjeit! Rajzolja le a kapcsolás transzfer karakterisztikáját!



## Adatok:

$$U_{ref} = 5 \text{ V}$$
  
 $U_H = (+U_{kimax}) = +15 \text{ V}$   
 $U_L = (-U_{kimax}) = -15 \text{ V}$   
 $R_I = 1 \text{ k}\Omega$   
 $R_2 = 9 \text{ k}\Omega$ 

$$U_f = U_{ref} \frac{R_2}{R_1 + R_2} + U_H \frac{R_1}{R_1 + R_2} = 5 \frac{9 \cdot 10^3}{10^3 + 9 \cdot 10^3} + 15 \frac{10^3}{10^3 + 9 \cdot 10^3} = 6 V$$

$$U_a = U_{ref} \frac{R_2}{R_1 + R_2} + U_L \frac{R_1}{R_1 + R_2} = 5 \frac{9 \cdot 10^3}{10^3 + 9 \cdot 10^3} - 15 \frac{10^3}{10^3 + 9 \cdot 10^3} = 3 V$$



40) Adott az alábbi komparátor kapcsolás:



Adatok:

$$R_{I} = 10 \text{ k}\Omega$$
  
 $R_{2} = 52.5 \text{ k}\Omega$   
 $R_{3} = R_{I} \times R_{2}$   
 $R_{4} = 1.8 \text{ k}\Omega$   
 $U_{Z} = 5.6 \text{ V}$   
 $U_{ref} = 4.9 \text{ V}$   
 $U_{d} = 0.6 \text{ V}$ 

Határozza meg  $u_{ki}$  legnagyobb és legkisebb értékét! (+ $U_{kimax}$ = $U_H$ ; - $U_{kimax}$ = $U_L$ )

$$U_H = U_Z = 5,6 \text{ V}$$

$$U_L = -U_d = -0.6 \text{ V}$$

Határozza meg az alsó és a felső billenési szintet ( $U_a$ ,  $U_f$ ), és a hiszterézis nagyságát ( $U_h$ )!

$$U_{f} = U_{H} \frac{R_{1}}{R_{1} + R_{2}} + U_{ref} \frac{R_{2}}{R_{1} + R_{2}} = 5.6 \frac{10 \cdot 10^{3}}{10 \cdot 10^{3} + 52.5 \cdot 10^{3}} + 4.9 \frac{52.5 \cdot 10^{3}}{10 \cdot 10^{3} + 52.5 \cdot 10^{3}} = 5.012 V$$

$$U_{a} = U_{L} \frac{R_{1}}{R_{1} + R_{2}} + U_{ref} \frac{R_{2}}{R_{1} + R_{2}} = -0.6 \frac{10 \cdot 10^{3}}{10 \cdot 10^{3} + 52.5 \cdot 10^{3}} + 4.9 \frac{52.5 \cdot 10^{3}}{10 \cdot 10^{3} + 52.5 \cdot 10^{3}} = 4.02 V$$

$$U_h = U_f - U_a = 5,012 - 4,02 = 0,992 V$$

Rajzolja le a kapcsolás transzfer karakterisztikáját!



41) Rajzoljon egy neminvertáló hiszterézises komparátort, és annak transzfer karakterisztikáját! Határozza meg az alsó és a felső billenési szintet  $(U_a, U_f)$ , valamint a hiszterézis nagyságát  $(U_h)$ !

#### Adatok:

$$U_{ref} = 5 \text{ V}$$
  
 $U_H = (+U_{kimax}) = +15 \text{ V}$   
 $U_L = (-U_{kimin}) = -15 \text{ V}$   
 $R_I = 1 \text{ k}\Omega$   
 $R_2 = 10 \text{ k}\Omega$ 





$$\begin{split} U_f &= \frac{U_{ref} - U_L \frac{R_1}{R_1 + R_2}}{\frac{R_2}{R_1 + R_2}} = U_{ref} \bigg( 1 + \frac{R_1}{R_2} \bigg) - U_L \frac{R_1}{R_2} = 5 \bigg( 1 + \frac{10^3}{10 \cdot 10^3} \bigg) - \bigg( -15 \bigg) \frac{10^3}{10 \cdot 10^3} = 7 \, V \\ U_a &= \frac{U_{ref} - U_H \frac{R_1}{R_1 + R_2}}{\frac{R_2}{R_1 + R_2}} = U_{ref} \bigg( 1 + \frac{R_1}{R_2} \bigg) - U_H \frac{R_1}{R_2} = 5 \bigg( 1 + \frac{10^3}{10 \cdot 10^3} \bigg) - 15 \frac{10^3}{10 \cdot 10^3} = 4 \, V \\ U_h &= U_f - U_a = \frac{R_1}{R_2} \bigg( U_H - U_L \bigg) = 7 - 4 = 3 \, V \end{split}$$

**42**) Rajzoljon egy **invertáló** nullkomparátort! Korlátozza a kimeneti feszültséget  $U_{kimin} = -1$ V és  $U_{kimax} = 5$  V közé diódák segítségével! A diódák nyitóirányú feszültsége  $U_d = 0.6$ V.



$$\begin{split} &U_{ki\,\text{max}} - U_1 = U_d \\ &U_1 = U_{ki\,\text{max}} - U_d = 5 - 0, 6 = 4, 4\,V \\ &U_2 - U_{ki\,\text{min}} = U_d \\ &U_2 = U_d + U_{ki\,\text{min}} = 0, 6 + \left(-1\right) = -\,0, 4\,V \end{split}$$