Introduction to Recommender Systems

Isabelle Augenstein

augenstein@di.ku.dk @IAugenstein

http://isabelleaugenstein.github.io/

Web Science Course 26 February 2019

UNIVERSITY OF COPENHAGEN

This Lecture

- Problem Setting
- Real-World Examples
- Basic Representations and Scoring
- Evaluation

Example 1

Example 2

Example 3

Many Real-World Examples

Problem Setting

	Fargo	Splash	Titanic	Frozen	Juno	Gladiator
John	4				5	1
Mary	5		4			
Lars				2	4	5
Mette		3		3		

Utility / Ratings matrix: user-item pairs & their ratings

 $Y: U \times M \rightarrow R$

Non-Personalised Recommendation

- Popularity-Based Recommendation
- Demographics-Based Recommendation
- Item Co-Occurrence

Problem Setting: Content-Based Filtering

Fargo: Fargo is a 1996 black comedy-crime film written, produced, and directed by Joel and Ethan Coen. Frances McDormand stars as (...)

Splash: Splash is a 1984 American fantasy romantic comedy film directed by Ron Howard, written by Lowell Ganz and Babaloo Mandel, and starring (...)

Titantic: Titanic is a 1997 American epic romance and disaster film directed, written, co-produced and co-edited by James Cameron. A fictionalized (...)

Content-Based Filtering: Overall Approach

Distance Function: $d(f(m_i), g(m_j) = d(x_i, x_j)$

Content-Based Filtering: Vector Construction

TF-IDF score of word t in document d:

$$tf_{t,d} \cdot idf_{t,D} = \frac{n_{t,d}}{\sum_{t' \in d} n_{t',d}} \cdot log \frac{|D|}{|\{d \in D : t \in d\}|}$$

 $n_{t,d}$: number of times term t occurs in document d

|D|: number of documents in dataset

 $|\{d \in D : t \in d\}|$: number of documents where t appears

→ Words of highest TF-IDF 'characterise' the document

Vector Distance Functions

Euclidian Distance

$$d([x_1, x_2, ..., x_n], [y_1, y_2, ..., y_n]) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$

Vector Distance Functions

Most Common: Cosine Similarity

$$\theta([x_1, x_2, ..., x_n], [y_1, y_2, ..., y_n]) = \frac{x \circ y}{\sqrt{x \circ x} \sqrt{y \circ y}}$$

signifies dot product

Vector Distance Functions

Euclidian Distance

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Cosine Similarity

$$\theta(x,y) = \frac{x \circ y}{\sqrt{x \circ x} \sqrt{y \circ y}}$$

Euclidian vs. Cosine: https://cmry.github.io/notes/euclidean-v-cosine

User-Based Collaborative Filtering

- Step 1: Users are similar if they share similar items
- Step 2: Items from similar users are good recommendations

User-Based Collaborative Filtering Example

	i_1	i_2	i_3	i_4	i_5
u_1	8	1	?	2	7
u_2	2	?	5	7	5
u_3	5	4	7	4	7
u_4	7	1	7	3	8
u_5	1	7	4	6	5
u_6	8	3	8	3	7

Count-Based

$$f(u_l, u_k) = \frac{\sum_j |r(u_l, i_j) - r(u_k, i_j)|}{\text{# items}}$$

Pearson Correlation

$$f(u_l, u_k) = \frac{cov(u_l, u_k)}{\sigma(u_l)\sigma(u_k)}$$

- How similar are u_1 and u_2?
- How similar are u_1 and u_5?

Collaborative Filtering Scoring Functions

- Count-Based
- Pearson Correlation
- L2-Normalised Euclidian Distance
- Cosine Similarity

Collaborative Filtering Scoring Functions

Count-Based

$$f(u_l, u_k) = \frac{\sum_j |r(u_l, i_j) - r(u_k, i_j)|}{\text{# items}}$$

Euclidian Distance

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Pearson Correlation

$$f(u_l, u_k) = \frac{cov(u_l, u_k)}{\sigma(u_l)\sigma(u_k)}$$

Cosine Similarity

$$\theta(x,y) = \frac{x \circ y}{\sqrt{x \circ x} \sqrt{y \circ y}}$$

Item-Based Collaborative Filtering

- Step 1: Items are similar if they share similar users
- Step 2: Items more similar to the user's items are good recommendations

Item-Based Collaborative Filtering Example

	i_1	i_2	i_3
u_1	2	?	3
u_2	5	2	?
u_3	3	3	1
u_4	?	2	2

- How similar are u_1 and u_2?
- How similar are u 1 and u 3?
- How similar are u_2 and u_3?

User vs. Item-Based Collaborative Filtering

Image credit: https://medium.com/@cfpinela/recommender-systems-user-based-and-item-based-collaborative-filtering-5d5f375a127f

Personalised Recommendation

- Content-Based Filtering
- Collaborative Filtering
 - User-Based
 - Item-Based

Evaluation

- Mean Absolute Error
- Root Mean Squared Error
- Precision, Recall, F1

Evaluation: Mean Absolute Error

$$MAE = \frac{\sum_{(i,j)} |p(u_i, m_j) - r(u_i, m_j)|}{n}$$

n: number of ratings of items over all users

 $p(u_i, m_j)$: predicted rating of user u_i on item m_j

 $r(u_i, m_i)$: gold rating

lower = better

Evaluation: Root Mean Squared Error

$$RMSE = \sqrt{\frac{1}{n} \sum_{(i,j)}^{N} (p(u_i, m_j) - r(u_i, m_j))^2}$$

n: number of ratings of items over all users

 $p(u_i, m_j)$: predicted rating of user u_i on item m_j

 $r(u_i, m_i)$: gold rating

lower = better

Evaluation: Precision, Recall, F1

	Relevant	Irrelevant
Recommended	TP	FP
Not recommended	FN	TN

Precision (P):
$$\frac{TP}{TP+FP}$$
; Recall (R): $\frac{TP}{TP+FN}$

$$F1 = \frac{2PR}{P+R}$$

higher = better

Evaluation

- Mean Absolute Error
- Root Mean Squared Error
- Precision, Recall, F1

Summary – This Lecture

- Problem Setting
 - Real-World Examples
- Basic Representations and Scoring
 - Non-Personalised Recommendation
 - Popularity-Based Recommendation
 - Demographics-Based Recommendation
 - Item Co-Occurrence
 - Personalised Recommendation
 - Content-Based Filtering
 - Collaborative Filtering
 - User-Based
 - Item-Based
- Evaluation

Next Lecture

- Machine Learning Based Recommender Systems
- Latent User and Item Representations
- Brief Introduction to Representation Learning
- Context-Dependent Recommendation

Thank you!

augenstein@di.ku.dk @lAugenstein http://isabelleaugenstein.github.io/