Wykonał: Radosław Smoter

Grupa: 14

Nr: 27

Numer zadania: 4

Przykład: 62

Prowadzący: Prof. dr hab. inż. Volodymyr Samotyy

Politechnika Krakowska

Wydział Inżynierii Elektrycznej i Komputerowej

Sprawozdanie: Wstęp do Programowania

Spis treści

Polecenie	1
Kod programu	
Vyniki	
Opis Programu	
Vnioski	

Polecenie

Obliczyć wartość funkcji jednoargumentowej. Z wartości y wybieramy dwie (trzy) cyfry i wyświetlamy wynik w systemach: dwójkowym, ósemkowym i szesnastkowym. Dla poszczególnych zadań wybieramy cyfry zgodnie z tabelą.

Zadanie	Суfгу
62	3, 5, 6

Funkcja: $y = \frac{5}{3 + lg^2(x)}$.

Dziedzina: x=1.2.

Kod programu

(1) wp_smoter_r_4.c

```
#include "handleConvertions.h"
int main(void)
{
   double x = 1.2; // Value as domain
   extern double doMath(double);
   extern void showValues(double);

   double funcVal = doMath(x); // Math function result
   if (funcVal == NAN) return -1; // Handle NAN exception
   showValues(funcVal);
   return 0;
}
```

(2) handleConvertions.h

```
#include "math.h"
#include "decToBin.h"
 * Do a mathematical function
  * Parameter: value as domain
double doMath(double x) {
 double log1 = log(x);
  if (isnan(log1)) return NAN;
  return 5 / (3 + pow(log1 / log(10), 2));
}
  * Select k-th digit from number n
  * Parameters: number, digit number
unsigned short int selectDigit(double n, int k) {
 // Format number into scientific notation
  // without maintaining the powerset
  // e.g. abc.def --> a.bcdef * 10^0 <=> a.bcdef
 while (n < 0)
    n *= 10;
 while (n > 10)
    n /= 10;
  // Transform from form a.bcdef into a.bcdef * 10^{(k-1)}
  // e.g. for the first digit it is a.bcdef * 10^0
  // for the fifth, a.bcdef * 10^4
  for (int i = 0; i < k - 1; i++)
    n *= 10;
```

```
// Cast n into integer; return wanted digit
  // e.g. (a.bcdef * 10^0) % 10 = a
 // (a.bcdef * 10^4) % 10 = e
 return (int)n % 10;
 * Show a value in various counting systems:
  * In bin, oct and hex
 * Parameter: value
void showValues(double val) {
  // Number of digit to choose from val (from left)
 unsigned short int digitPlace[] = { 3, 5, 6 };
  // Chosen digits
 unsigned short int digits[3];
  // Choose digits from val
 for (int i = 0; i < 3; i++) {
   digits[i] = selectDigit(val, digitPlace[i]);
  // Full value
 printf("%10s%20.12f\n","Value:", val);
  // Counting system
 printf("%10s%10s%10s%10s\n", "bin", "oct", "dec", "hex");
 extern void decToBin(unsigned long int);
  for (int i = 0; i < 3; i++)
    // As bin
   decToBin(digits[i]);
    // As oct
    printf("%100", digits[i]);
    // As dec
    printf("%10i", digits[i]);
    // As hex
    printf("%10X", digits[i]);
   printf("\n");
 }
}
```

(3) decToBin.h

```
#include "stdio.h"

// Utility function
// Check if number is even
int isEven(long int n) { return n % 2; }

/*
    * Convert decimal integer to binary form
    * Integer must be positive
    * Parameters:
    * integer (dec)
*/
void decToBin(unsigned long int n)
```

```
{
  int remainder[65]; // Remainders of division (n % 2)
  int i = 0; // Current index
  do {
    remainder[i] = isEven(n);
  } while ((n /= 2) > 0);
  // Determine how many zeros to add to remainder to maintain format in eights
  // with zeros in the beginning, if needed
  while(i % 8)
    remainder[i] = 0;
    i++;
  }
  char bin[65]; // Binary form of n
  // Flip remainder
// Add '0' to every integer so it becomes it's corresponding character
  for (int j = 0; j < i; j++) { bin[j] = remainder[i - j - 1] + '0'; }
  // End as string
  bin[i] = '\0';
  // Print formatted verion onto the terminal
  printf("%10s", bin);
```

Wyniki

Value:	1.663190		
bin	oct	dec	hex
00000110	6	6	6
00000001	1	1	1
00001001	11	9	9

Opis Programu

(1) Funkcja doMath()

Prototyp:

double doMath(double)

Parametry:

• wartość jako dziedzina

Działanie:

Oblicza wartość funkcji matematycznej. Najpierw oblicza wartość logarytmu $\log(x)$. Jeśli x nie mieści się w dziedzinie logarytmu, to zwraca $N\!A\!N$. W innym przypadku oblicza i zwraca wartość wyrażenia.

Efekt:

Oblicza wartość działania matematycznego, $\frac{5}{3+lg^2(x)}$, dla podanego parametru.

(2) Funkcja showValues()

Prototyp:

void showValues(double)

Parametry:

Wartość

Działanie:

Pokazuje wartość z parametru w różnych systemach liczenia: dwójkowym, ósemkowym, dziesiętnym, szesnastkowym. Za pomocą funkcji selectDigit(), wybiera z parametru cyfry o pożądanyn położeniu, licząc od lewej strony. Dalej, wypisuje w sformatowany sposób wartość całej liczby; wcześniej uzyskane cyfry w odpowiednich systemach liczbowych.Funkcją decToBin() w systemie binarnym; funkcjami printf() ze specyfikatorami "o" - system ósemkowy, "i" - dziesiętny, "X" - szesnastkowy.

Efekt:

Wypisanie 3-ciej, 5-tej, 6-tej cyfry podanego parametru w systemach dwójkowym, ósemkowym, dziesiętnym, szesnastkowym.

(3) Funkcja selectDigit()

Prototyp:

unsigned short int selectDigit(double, int)

Parametry:

- Liczba
- Numer cyfry

Działanie:

Najpierw, przesuwa miejsce dziesiętne dostarczonej liczby do postaci z notacji wykładniczej, nie zachowując potęgi (tj. $liczba\cdot 10^{^0}$). Dalej przesuwa miejsce przecinka do k-tej pozycji mnożąc przez 10^{k-1} . Funkcja zwraca resztę z dzielenia takiej liczby przez 10.

Efekt:

Podanie k-tej cyfry liczby n.

(4) Funkcja isEven()

Prototyp:

int isEven(long int)

Parametry:

Liczba całkowita

Działanie:

Zwraca resztę z dzielenia liczby n przez 2.

Efekt:

Określenie parzystości liczby.

(5) Funkcja decToBin()

Prototyp:

void decToBin(unsigned long int)

Parametry:

Liczba całkowita

Działanie:

Dla każdego dodatniego n, od drugiej iteracji $(n \div 2)$ zapisuje resztę z dzielenia do tablicy remainder. Dalej populuje remainder zerami nieznaczącymi (dla działań), do postaci wielokrotności liczby 8 ilości miejsc zajmowanych w tablicy. Później odwraca tablicę oraz dodaje

'0', które zamienia liczby z postaci [0,1] do korespondującej postaci ASCII dla ich wartości znakowych ['0', '1']. Kończy tablicę przez '\0', by była przyjazna operacjom na napisach. Wypisuje sformatowaną wersję za pomocą printf().

Efekt:

Zamiana liczby na postać binarną i wypisanie jej to terminala.

Wnioski

Wyrażenie matematyczne jest poprawnie obliczone.

Value: 1.663190781037

Na tej podstawie można stwierdzić, że przedstawione liczby również są poprawnie wybrane.