# K Nearest Neighbor Classification



# Instance-Based Learning

# KNN: Alternate Terminologies

- Instance Based Learning
- Lazy Learning
- Case Based Reasoning
- Exemplar Based Learning



## What is k-NN?

- A powerful classification algorithm used in pattern recognition.
- K- nearest neighbors stores all available cases and classify new cases based on similarity measure(eg. Distance function)
- It is one of the top data mining algorithm used today.
- A non-parametric lazy learning algorithm (instance based learning method)



## Basic Idea

- $\blacktriangleright$  k-NN classification rule is to assign to a test sample the majority category label of its k nearest training samples
- In practice, k is usually chosen to be odd, so as to avoid ties
- The k = 1 rule is generally called the nearest-neighbor classification rule



# Definition of Nearest Neighbor



- (a) 1-nearest neighbor
- (b) 2-nearest neighbor (c) 3-nearest neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x



# Algorithm





# Step I:

- Start with a dataset with known categories.
- Cluster the data





## Step3:

- Classify the new sample based on the nearest annotated cell, k-NN
- If k=1, only one nearest neighbour is used
- In this case, the category is GREEN
- If k=11, 11 nearest neighbours will be used and the category is still GREEN



- k = II, a new sample is midway between red and green
- Pick the category that "gets the most votes"
- In this case:
- 7 nn are RED
- 3 nn are ORANGE
- I nn is GREEN
- Most votes are for RED,
   So, final assignment is RED



## Nearest-Neighbor Classifiers: Issues

- The value of k, the number of nearest neighbors to retrieve
- Choice of Distance Metric to compute distance between records
- Computational complexity
  - Size of training set
  - Dimension of data



## Value of K

- ▶ Choosing the value of k:
  - If k is too small, sensitive to noise points
  - If k is too large, neighborhood may include points from other classes

Rule of thumb:

K = sqrt(N)

N: number of training points





# How to choose k?

- There are no pre-defined statistical methods to find the most favorable value of K.
- Initialize a random K value and start computing.
- Choosing a small value of K leads to unstable decision boundaries.
- The substantial K value is better for classification as it leads to smoothening the decision boundaries.
- Derive a plot between error rate and K denoting values in a defined range. Then choose the K value as having a minimum error rate.



## Distance Metrics

#### Minkowsky:

$$D(x,y) = \left(\sum_{i=1}^{m} |x_i - y_i|^r\right)^{\frac{1}{r}} \qquad D(x,y) = \sqrt{\sum_{i=1}^{m} (x_i - y_i)^2} \qquad D(x,y) = \sum_{i=1}^{m} |x_i - y_i|$$

$$D(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^{m} (x_i - y_i)^2}$$

$$D(x,y) = \sum_{i=1}^{m} |x_i - y_i|$$

$$D(x,y) = \sum_{i=1}^{m} \frac{|x_i - y_i|}{|x_i + y_i|}$$

**Chebychev:** 
$$D(x,y) = \max_{i=1}^{m} |x_i - y_i|$$

Quadratic: 
$$D(x,y) = (x - y)^T Q(x - y) = \sum_{j=1}^m \left(\sum_{i=1}^m (x_i - y_i)q_{ji}\right)(x_j - y_j)$$
  
definite  $m \times m$  weight matrix

#### **Mahalanobis:**

$$D(x, y) = [\det V]^{1/m} (x - y)^{\mathrm{T}} V^{-1} (x - y)$$

V is the covariance matrix of  $A_1..A_m$ , and  $A_i$  is the vector of values for attribute j occuring in the training set instances 1..n.

Correlation: 
$$D(x,y) = \frac{\sum_{i=1}^{m} (x_i - \overline{x_i})(y_i - \overline{y_i})}{\sqrt{\sum_{i=1}^{m} (x_i - \overline{x_i})^2 \sum_{i=1}^{m} (y_i - \overline{y_i})^2}}$$

$$\overline{x}_i = \overline{y}_i$$
 and is the average value for attribute *i* occurring in the training set.

Chi-square:  $D(x,y) = \sum_{i=1}^{m} \frac{1}{sum_i} \left( \frac{x_i}{size_x} - \frac{y_i}{size_y} \right)^2$ 

sum; is the sum of all values for attribute i occurring in the training set, and  $size_x$  is the sum of all values in the vector x.

Kendall's Rank Correlation:  

$$sign(x)=-1, 0 \text{ or } 1 \text{ if } x < 0,$$
  
 $x = 0, \text{ or } x > 0, \text{ respectively.}$ 

**Kendall's Rank Correlation:** 
$$D(x,y) = 1 - \frac{2}{n(n-1)} \sum_{i=1}^{m} \sum_{j=1}^{i-1} \operatorname{sign}(x_i - x_j) \operatorname{sign}(y_i - y_j)$$

#### 0. Look at the data



Say you want to classify the grey point into a class. Here, there are three potential classes - lime green, green and orange.

## 1. Calculate distances



Start by calculating the distances between the grey point and all other points.

## 2. Find neighbours

#### Point Distance



Next, find the nearest neighbours by ranking points by increasing distance. The nearest neighbours (NNs) of the grey point are the ones closest in dataspace.

#### 3. Vote on labels



Vote on the predicted class labels based on the classes of the k nearest neighbours. Here, the labels were predicted based on the k=3 nearest neighbours.

# Problem 1

| XI<br>( acid durability,<br>seconds) | X2<br>(strength,<br>kg/sq.meter) | Y<br>(Classification) |
|--------------------------------------|----------------------------------|-----------------------|
| 7                                    | 7                                | Bad                   |
| 7                                    | 4                                | Bad                   |
| 3                                    | 4                                | Good                  |
|                                      | 4                                | Good                  |

Now the factory produces a new paper tissue that pass laboratory test with X1 = 3 and X2 = 7. Without another expensive survey, can we guess what the classification of this

new tissue is?

| $(7-3)^2 +$ | (7-7) <sup>2</sup> |  |  |
|-------------|--------------------|--|--|
| $(7-3)^2 +$ | (4-7) <sup>2</sup> |  |  |
| $(3-3)^2 +$ | (4-7) <sup>2</sup> |  |  |
| $(1-3)^2 +$ | (4-7) <sup>2</sup> |  |  |

| $(7-3)^2 +$ | (7-7) <sup>2</sup> | 16 |  |
|-------------|--------------------|----|--|
| $(7-3)^2 +$ | (4-7) <sup>2</sup> | 25 |  |
| $(3-3)^2 +$ | (4-7) <sup>2</sup> | 9  |  |
| $(1-3)^2 +$ | (4-7) <sup>2</sup> | 13 |  |

| $(7-3)^2 +$ | (7-7) <sup>2</sup> | 16 | 3 |  |
|-------------|--------------------|----|---|--|
| $(7-3)^2 +$ | (4-7) <sup>2</sup> | 25 | 4 |  |
| $(3-3)^2 +$ | (4-7) <sup>2</sup> | 9  | I |  |
| $(1-3)^2 +$ | (4-7) <sup>2</sup> | 13 | 2 |  |

\_\_\_\_\_\_

k=3

| $(7-3)^2$ + | $(7-7)^2$          | 16 | 3 | Bad  |
|-------------|--------------------|----|---|------|
| $(7-3)^2 +$ | (4-7) <sup>2</sup> | 25 | 4 | X    |
| $(3-3)^2 +$ | (4-7) <sup>2</sup> | 9  |   | Good |
| $(1-3)^2 +$ | (4-7) <sup>2</sup> | 13 | 2 | Good |

k=3

| $(7-3)^2 +$ | (7-7) <sup>2</sup> | 16 | 3 | Bad  |
|-------------|--------------------|----|---|------|
| $(7-3)^2 +$ | (4-7) <sup>2</sup> | 25 | 4 | X    |
| $(3-3)^2 +$ | (4-7) <sup>2</sup> | 9  |   | Good |
| $(1-3)^2 +$ | (4-7) <sup>2</sup> | 13 | 2 | Good |