Московский государственный технический университет имени Н.Э. Баумана

ЭКЗАМЕНАЦИОННЫЙ ЛИСТ

« <u>16</u> » <u>июня</u> 20 <u>20</u> г.	по дисциплине	Моделирование
Начало <u>09</u> : <u>00</u>	билет 3	группа <u>И</u> У7-6/Е
окончание 10:20	студент Лугов	30 Q.M.
оценка	экзаменатор	Градов В.М.
	(подпись)	

БИЛЕТ №3

- 1. Опишите постановки задач для ДУЧП.
- 2. Используя определение аппроксимации, основанное на понятии невязки, найти порядок аппроксимации производной функции на сетке $\omega_h = \{x_n : x_n = nh, n = nh, n$ 0 ... *N*}.. Привести выкладки.

$$u''_{n} \approx \frac{u_{n-1} - 2u_{n+1} + u_{n+1}}{h^2}$$

1) ДУЧП- дифрореренциальное уравнение в гастнох производногх На их основе строятся математические модели, позволяющие описовать на их основе стролься математические модели, позволяющие описовать поля различной физической природог. В качестве независимог переменног в ВучП оботно вотступают пространственное и временное характеристики модели. Пошк решения осуществляется в некоторой области \$2 (t, x,y, z), при этом на границе данной области ставятся дополнительное условия двух везов: условия, поставленное в начальной момент времени — начальное; условия, поставленное на границе пространственной области - краевое. Различают спедующие видо задач: Задача (заданя только начальноге условия)

• Краевае задача (заданя Только краевые условия) • Смешанная краевае задача (заданы оба типа условий)

llpumep

постановки одномерной по пространову задачи:
$$\frac{\partial u(x,t)}{\partial t} = a \frac{\partial^2 u(x,t)}{\partial x^2} + f(x,t) + o < x < \ell, o < t < To.$$

- Нагальное условие: $u(x,0) = \mu(x)$.
 Разлигают три Типа граничноги условий:

 первого рода (формируются путем задания функции) $u(0,t) = \mu_1(t)$, $u(l,t) = \mu_2(t)$.
 - второго рода (задаются производной от искомой функции) $\frac{\partial u}{\partial x}\Big|_{x=0} = \varphi(t).$
 - Третвего рода (задаются искомой дункцией и ее производной) $d\frac{\partial u}{\partial x} + \beta u = \varphi(t).$

Московский государственный технический университет имени Н.Э. Баумана

ЭКЗАМЕНАЦИОННЫЙ ЛИСТ

« <u>10</u> » <u>июня</u> 20 <u>20</u> г.	по дисциплине	Моделирование
Начало <u>09</u> : <u>00</u>	билет _ 3	группа <u>И97-6115</u>
окончание <u>/0</u> : <u>20</u>	студент 19	говой Д. М.
оценка	экзаменатор	Градов В.М.
2)		юдпись)
$2) \qquad u_n^{"} \approx \frac{u_{n-1} - 2u_n}{b^2}$	+ Un+1	
h ²	A TRUE 164	
Haugem Hebeszky: $\psi = \frac{1}{2}$ $u_{n-1} = u_n - hu'_n + \frac{h^2}{2}u''_n - \frac{h^3}{6}u'''_n$ $u_{n+1} = u_n + hu'_n + \frac{h^2}{2}u''_n + \frac{h^3}{6}u'''_n$ $+ u_n + hu'_n + \frac{h}{2}u''_n + \frac{h^3}{6}u'''_n + \frac{h}{6}u'''_n$	$+O(h^4)$ = $u_n - hu$	in + \frac{h^2}{2}u"n - \frac{h^3}{6}u" + O(h4) - 2un+
+ $u_n + hu'_n + \frac{h^2}{2}u''_n + \frac{h^3}{6}u'''_n + O($ Annpokeumausus npouzbognoù	"	+0/14)

The