

Untersuchung eines aktiven Latentwärmespeichersystems basierend auf einem rotierenden Trommel-Wärmeübertrager zur Dampferzeugung

Abschlusspräsentation zur Masterarbeit 07.09.2023

Leon Sengün

Gliederung

- Motivation
- Latentwärmespeicher
- Konzept der Rotating Drum
- Versuchsaufbau
- Versuchsergebnisse
- Fazit & Ausblick

entwärmespeicher 🔪 Rotating Drum 🗦 Versuchsaufbau 🗦 Versuchs

Motivation

Quelle: NRW.Energy4Climate, https://www.umsicht.fraunhofer.de/de/presse-medien/pressemitteilungen/2022/waermewende-industrie.html Universität Stuttgart

Motivation Latentwärmespeicher Rotating Drum Versuchsaufbau Versuchsergebnisse Fazit & Ausblid

Erneuerbare Energien: Angebot zeitlich variabel

Gesamte Nettostromerzeugung in Deutschland in Woche 35 2023

Energy-Charts.info; Datenquelle: ENTSO-E, AG Energiebilanzen; Letztes Update: 08/29/2023, 1:35 PM GMT+2

Motivation Latentwärmespeicher Rotating Drum Versuchsaufbau Versuchsergebnisse Fazit & Ausblick

Prozessdampf: vielseitig nutzbarer
 Energieträger

- Einsatz in:
 - Papierherstellung
 - Chemischer Industrie
 - Lebensmittelverarbeitung

- Ziele der Arbeit:
 - Aufbau & Inbetriebnahme eines
 Versuchsstands zur thermischen
 Energiespeicherung & Dampferzeugung
 - Durchführung & Analyse erster Versuche

Prozesswärmebedarf

■ 250-500°C

■ >500°C

5

Quelle: SolSteam Ergebnisbericht, https://elib.dlr.de/125012/1/Schlussbericht%20SolSteam.pdf

■ 100-250°C

<100 °C

on Latentwärmespeicher Rotating Drum Versuchsaufbau Versuchsergebnisse Fazit & Ausblic

Prinzip

- Nutzung Phasenwechselenthalpie
- Herausforderung: Geringe Wärmeleitfähigkeit von Phasenwechselmedien
- Passiver Lösungsansatz:
 - Vergrößerung der Erstarrungsoberfläche
 - Z. B. Rippenrohr-Wärmeübertrager
- Aktiver Lösungsansatz:
 - Trennung flüssiger & fester Phase durch Entfernung erstarrter Schicht
 - · Z. B. Rotating Drum

Rippenrohr-Wärmeübertrager (passiv)

Quelle: J. Vogel, M. Keller, und M. Johnson, "Numerical modeling of large-scale finned tube latent thermal energy storage systems", doi: 10.1016/j.est.2020.101389.

Rotating Drum

Funktionsprinzip aktiver Latentwärmespeicher

PCM:

hier: Eutektische

und Natriumnitrat

Quelle: J. Tombrink und D. Bauer, "Simulation of a rotating drum heat exchanger for latent heat storage using a quasistationary analytical approach and a numerical transient finite difference scheme", doi: 10.1016/j.applthermaleng.2021.117029.

Motivation Latentwärmespeicher Rotating Drum Versuchsaufbau Versuchsergebnisse Fazit & Ausblic

Universität Stuttgart 07.09.2023

8

Motivation > Latentwärmespeicher > Rotating Drum > Versuchsaufbau > Versuchsergebnisse > Fazit & Ausblick

Ausgangszustand

Fertige Versuchsanlage

9

Motivation Latentwärmespeicher Rotating Drum Versuchsaufbau Versuchsergebnisse Fazit & Ausblid

Qualitativ

• Normalzustand bei Entladung: PCM erstarrt & wird abgeschabt:

Universität Stuttgart 07.09.2023

10

Motivation > Latentwärmespeicher > Rotating Drum > Versuchsaufbau > Versuchsergebnisse > Fazit & Ausblic

Qualitativ

- Instabiles Abschaben begrenzt Versuchsdauer
 - Verursacht durch lokalen Kontaktverlust der Schaberklinge:

Universität Stuttgart 07.09.2023

11

Motivation 🔷 Latentwärmespeicher 🤇 Rotating Drum 🔵 Versuchsaufbau 🧲 Versuchsergebnisse 🔪 Fazit & Ausblid

Qualitativ

• Erstarrendes PCM haftet an Trommel ab $n = 5 \text{ min}^{-1}$

 $n < 5 \,\mathrm{min^{-1}}$

12

Latentwärmespeicher Rotating Drum Versuchsaufbau Versuchsergebnisse Fazit & Ausbli

Qualitativ

- Materialstau durch PCM-Ablösung vor Schaberkontakt (auch "Plattenbildung")
 - Tritt auf bis $n = 15 \text{ min}^{-1}$

 $n = 20 \, \mathrm{min}^{-1}$

 $n = 15 \, \text{min}^{-1}$

13

Latentwärmespeicher Rotating Drum Versuchsaufbau Versuchsergebnisse Fazit & Ausblic

Quantitativ

Versuch Nr.	1	2	3	4
Anpresskraft Schaber	Niedrig	Hoch	Hoch	Moderat
Materialstärke Schaberklinge	0,5 mm	0,5 mm	1,0 mm	1,0 mm
Kontaktwinkel γ	45°	45°	45°	30°
Anzahl Anläufe	2	3	3	3
Gesamte Versuchsdauer [s]	241	270	378	592

- Entladeleistung: $\dot{Q}_{\rm H_2O} = \dot{m}_{\rm Dampf}[h(p_2, T_2) h(p_1, T_1)]$
- Entladene thermische Energie: $E_{\rm t,H_2O} = \int_{t_1}^{t_2} \dot{Q}_{\rm H_2O} \; dt$

Entladene Energie E_{t,H_2O} der durchgeführten Versuche, in kWh

Versuch Nr.	1	2	3	4
Anlauf 1	0.59	0.70	1.29	2.18
Anlauf 2	1.39	1.08	1.91	0.96
Anlauf 3	-	0.33	0.10	1.44
Summe	1.99	2.10	3.30	4.58

14

Latentwärmespeicher > Rotating Drum > Versuchsaufbau > Versuchsergebnisse > Fazit & Ausblid

Quantitativ - Kühlleistung

- Kühlleistung: $\dot{Q}_{\rm CW} = m_{\rm CW} \, c_{\rm p,CW} (T_{\rm CW}) \, \frac{dT_{\rm CW}}{dt}$
- Durch Kühlwasser abgeführte thermische Energie:

$$E_{\text{t,CW}} = m_{\text{CW}} \, \bar{c}_{\text{p,CW}} \left(T_{\text{CW, end}} - T_{\text{CW, start}} \right)$$

Vergleich E_{t,H_2O} mit $E_{t,CW}$:

tivation > Latentwärmespeicher > Rotating Drum > Versuchsaufbau > Versuchsergebnisse > Fa

Quantitativ – Versuch 4 von 4

Universität Stuttgart 07.09.2023

16

atentwärmespeicher 〉 Rotating Drum 💙 Versuchsaufba

Vergleich mit Simulation

Versuchsergebnisse

Quelle Simulationsdaten: J. Tombrink und D. Bauer, "Demand-based process steam from renewable energy: Implementation and sizing of a latent heat thermal energy storage system based on the Rotating Drum Heat Exchanger", *Appl. Energy*, Bd. 321, 2022, doi: 10.1016/j.apenergy.2022.119325.

otivation Latentwärmespeicher Rotating Drum Versuchsaufbau Versuchsergebnisse Fazit & Ausblid

Verlustrechnung

Heißtank & Rohrleitung:

18

Vergleich mit Theorie:

Bezeichnung	Becken	Heißtank	Rohrleitung	Gesamt
$\dot{Q}_{ m L}$, theoretisch [kW]	0.97	1.01	0.11	2.09
$\dot{Q}_{ m L}$, real [kW]	3.41	1.57	0.56	5.54
Verhältnis real / theoretisch	3,52	1,56	5,07	2,64

Motivation 💙 Latentwärmespeicher 🔪 🛘 Rotating Drum 💙 Versuchsaufbau 💙 Versuchsergebnisse 🔪 🗡 Fazit & Ausblick

- Fazit:
 - Versuchsstand aufgebaut & in Betrieb genommen
 - Prinzip der Rotating Drum erfolgreich zur Dampferzeugung validiert
 - Maximal 4,6 kWh entladen
 - Versuch mit Simulation vergleichbar

- Ausblick:
 - Sensitivitätsanalyse auf Grundlage der Fehlerrechnung
 - Wärmedämmung verbessern, Wärmebrücken reduzieren
 - Zuverlässigeres Abschaben durch steiferen Schaber, härtere Klinge
 - Durchflussmessung PCM

Universität Stuttgart 07.09.2023

19

Vielen Dank!

Leon Sengün

E-Mail st175388@stud.uni-stuttgart.de
https://github.tik.uni-stuttgart.de/Leon-Senguen/Masterarbeit_V2

Deutsches Zentrum für Luft- und Raumfahrt

Institut für technische Thermodynamik Pfaffenwaldring 38-40, 70569 Stuttgart

Universität Stuttgart

Institut für Thermodynamik der Luft- und Raumfahrt Pfaffenwaldring 31, 70569 Stuttgart

entwärmespeicher > 💎 Rotating Dr

Versuchsaufbau

21

tion > Latentwärmespeicher > Rotating Drum > Versuchsaufbau > Versuchsergebnisse

Quantitativ - Versuch 1

ivation > Latentwärmespeicher > Rotating Drum > Versuchsaufbau > Versuchsergebnisse

Quantitativ – Versuch 2

vation > Latentwärmespeicher > Rotating Drum > Versuchsaufbau > Versuchsergebnisse > Fazit 8

Quantitativ - Versuch 3

on > Latentwärmespeicher > Rotating Drum > Versuchsaufbau > Versuchsergebnisse >

Quantitativ – Versuch 4

ition > Latentwärmespeicher > Ro

Fehlerfortpflanzung aus Messunsicherheiten

