NUTAN COLLEGE OF INSCRIPTION AND INTERNAL ADDRESS ADDR

NUTAN MAHARASHTRA VIDYA PRASARAK MANDAL'S

NUTAN COLLEGE OF ENGINEERING & RESEARCH (NCER)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING - ARTIFICIAL INTELLIGENCE

Experiment No: 03

Code 01:import pandas as pd from sklearn.model selection import train test split from sklearn.metrics import accuracy score from sklearn.neighbors import KNeighborsClassifier # Load the dataset file = "diabetes.csv" df = pd.read csv(file)# Separate features and target variable data = df.valuesX, y = data[:, :-1], data[:, -1]print(f"Feature shape: {X.shape}, Target shape: {y.shape}") # Split the dataset into training and testing sets X train, X test, y train, y test = train test split(X, y, test size=0.3, random state=1) print(f"Training feature shape: {X train.shape}, Testing feature shape: {X test.shape}") print(f"Training target shape: {y train.shape}, Testing target shape: {y test.shape}") # Initialize and fit the KNN model

model = KNeighborsClassifier()

model.fit(X train, y train)

NUTAN COLLEGE OF DATA STATE OF THE PROPERTY OF

NUTAN MAHARASHTRA VIDYA PRASARAK MANDAL'S

NUTAN COLLEGE OF ENGINEERING & RESEARCH (NCER)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING - ARTIFICIAL INTELLIGENCE

```
# Make predictions

y_predict = model.predict(X_test)

# Calculate and print accuracy

accuracy = accuracy_score(y_test, y_predict)

print("Dataframe:\n", df.head()) # Print only the first few rows for clarity

print("Accuracy: {:.2f}%".format(accuracy * 100))
```

Code 01 Output:-

```
Feature shape: (768, 8), Target shape: (768,)
Training feature shape: (537, 8), Testing feature shape: (231, 8)
Training target shape: (537,), Testing target shape: (231,)
    Pregnancies Glucose BloodPressure SkinThickness Insulin
                                                                  BMI \
                    148
                                    72
                                                   35
                                                             0 33.6
             6
1
             1
                     85
                                    66
                                                   29
                                                             0 26.6
2
             8
                    183
                                    64
                                                   0
                                                             0 23.3
3
             1
                     89
                                    66
                                                   23
                                                            94 28.1
                    137
                                    40
                                                   35
                                                           168 43.1
   DiabetesPedigreeFunction Age Outcome
0
                              50
                      0.627
1
                      0.351
                              31
                                        0
2
                      0.672
                              32
                                        1
3
                      0.167
                              21
                                        0
                              33
                      2.288
Accuracy: 77.06%
```

Code 02:-

import numpy as np import pandas as pd from sklearn.model_selection import train_test_split

```
# Define arrays for X and y
X = np.array([
    [1, 2, 3],
    [4, 5, 6],
    [7, 8, 9],
    [10, 11, 12],
    [13, 14, 15],
```


NUTAN MAHARASHTRA VIDYA PRASARAK MANDAL'S

NUTAN COLLEGE OF ENGINEERING & RESEARCH (NCER)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING - ARTIFICIAL INTELLIGENCE

```
[16, 17, 18],
  [19, 20, 21],
  [22, 23, 24],
  [25, 26, 27],
  [28, 29, 30]
])
y = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
# Converting to pandas DataFrame for consistency
df = pd.DataFrame(X, columns=['Feature1', 'Feature2', 'Feature3'])
df['Target'] = y
# Separating features and target variable
X = df.iloc[:, :-1] # Features
y = df.iloc[:, -1] # Target variable
# Spliting the dataset into training and testing sets
X train, X test, y train, y test = train test split(X, y, test size=0.3, random state=0)
# Print the training and testing sets
print("X train:")
print(X train)
print("\nX_test:")
print(X test)
print("\ny train:")
print(y_train)
print("\ny test:")
print(y test)
```

Code 02 Output:-

NUTAN MAHARASHTRA VIDYA PRASARAK MANDAL'S

NUTAN COLLEGE OF ENGINEERING & RESEARCH (NCER)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING - ARTIFICIAL INTELLIGENCE

X_tra			
	aturel		Feature3
9	28	29	30
1	4	5	6
6	19	20	21
7	22	23	24
3	10	11	12
0	1	2	3
5	16	17	18
X_tes	t:		
Fe	aturel	Feature2	Feature3
2	7	8	9
8	25	26	27
4	13	14	15
y tra	in:		
-	10		
1	2		
6	7		
7	8		
3	4		
Θ	1		
5	6		
Name:	Target	, dtype: i	nt64
y tes	t:		
	3		
	9		
	5		
4			