## Introduction to Bioinformatics

**JTMS-19** 

Marc-Thorsten Hütt

Felix Jonas

mhuett@constructor.university

fjonas@constructor.university

#### session Wed, October 9, 2024

Key idea of probability models (repeated), multiple sequence alignment, final exam: first preview

#### What is this session about?

One key idea of probability models is revisited. An algorithm for multiple sequence alignment is introduced. A first preview version of the final exam is discussed.

How can you revise the material after the session?

Read Durbin et al. chapters 6.1-6.4

alternative reading: Hütt/Dehnert chapter 3.2.2

... from the previous lecture probability models revisited, multiple sequence alignment Marc-Thorsten Hütt, Felix Jonas IntroBioinfo – Session 5



A: For each position p of the query, find the list or words of length w scoring more than T when paired with the word starting at p:



query sequence: QLNFSAGW

(1) parameters

word length w = 2 score threshold T = 8

(2) determine all words of length w in the query sequence:

QL LN NF FS SA AG GW

(3) for each word determine a word list with an alignment score larger than (or equal to) the threshold T:

QL: QL=11, QM=9, HL=8, ZL=9

LN: LN=9, LB=8

NF: NF=12, AF=8, NY=8, DF=10, ...

•••



C: For each word match («hit»), extend ungapped alignment in both directions. Stop when S decreases by more than X from the highest value reached by S.





#### heuristic methods of sequence alignment

#### FastA = fast Alignment

D.J. Lipman and W.W.R. Pearson. Rapid and sensitive protein similarity searches. *Science*, 227:1435–1441, 1985.

W.R. Pearson and D.J. Lipman. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA, 85:2444-2448, 1988.

#### **BLAST = Basic Local Alignment Search Tool**

S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic local alignment search tool. *J. Mol. Biol.*, 215:403–410, 1990.

[a good introduction to these methods: Frédérique Galisson, The fasta and blast programs, 2002]





remark on step 1

# Query Sequence: WATSNANDCRICK ktup = 1

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|
| W | Α | Т | S | Ν | Α | Ν | D | С | R  | 1  | С  | Κ  |    |    |

Hashtable or lookup table:

| Α | С  | D | 1  | Κ  | Ν | R  | S | Т | W |
|---|----|---|----|----|---|----|---|---|---|
| 2 | 9  | 8 | 11 | 13 | 5 | 10 | 4 | 3 | 1 |
| 6 | 12 |   |    |    | 7 |    |   |   |   |

remark on step 1

## Target Sequence: BASEBALLANDCRICKET



... summary/repetition of probability models probability models revisited, multiple sequence alignment Marc-Thorsten Hütt, Felix Jonas IntroBioinfo – Session 5

### **Concepts from statistics**

(probabilities, transition probabilities, Markov models)

#### General idea:

Probability models can be seen as 'generators' of signal (e.g., DNA sequences) that can then be compared to real-life signals.

Probability models contain parameters.

Each 'run' of a probability model will give you (generally speaking) a different output. Observing a large number of such outputs may allow you to extract the underlying parameters.

In the case of Markov models, these parameters are transition probabilities from one state (e.g., symbol in a sequence) to the next.

#### **Training:**

Parameter estimation from data.

#### Scoring:

What is the probability that a given model can produce a given sequence?





#### DNA sequence from *Jurassic Park*

| >JurassicPa | ark DinoDNA | from the bo | ook Jurassio | : Park     |            |
|-------------|-------------|-------------|--------------|------------|------------|
| gcgttgctgg  | cgtttttcca  | taggctccgc  | cccctgacg    | agcatcacaa | aaatcgacgc |
| ggtggcgaaa  | cccgacagga  | ctataaagat  | accaggcgtt   | tccccctgga | agctccctcg |
| tgttccgacc  | ctgccgctta  | ccggatacct  | gtccgccttt   | ctcccttcgg | gaagcgtggc |
| tgctcacgct  | gtaggtatct  | cagttcggtg  | taggtcgttc   | gctccaagct | gggctgtgtg |
| ccgttcagcc  | cgaccgctgc  | gccttatccg  | gtaactatcg   | tcttgagtcc | aacccggtaa |
| agtaggacag  | gtgccggcag  | cgctctgggt  | cattttcggc   | gaggaccgct | ttcgctggag |
| atcggcctgt  | cgcttgcggt  | attcggaatc  | ttgcacgccc   | tcgctcaagc | cttcgtcact |
| ccaaacgttt  | cggcgagaag  | caggccatta  | tcgccggcat   | ggcggccgac | gcgctgggct |
| ggcgttcgcg  | acgcgaggct  | ggatggcctt  | ccccattatg   | attcttctcg | cttccggcgg |
| cccgcgttgc  | aggccatgct  | gtccaggcag  | gtagatgacg   | accatcaggg | acagcttcaa |
| cggctcttac  | cagcctaact  | tcgatcactg  | gaccgctgat   | cgtcacggcg | atttatgccg |
| caagtcagag  | gtggcgaaac  | ccgacaagga  | ctataaagat   | accaggcgtt | tcccctggaa |
| gcgctctcct  | gttccgaccc  | tgccgcttac  | cggatacctg   | teegeettte | tecetteggg |
| ctttctcatt  | gctcacgctg  | taggtatctc  | agttcggtgt   | aggtcgttcg | ctccaagctg |
| acgaaccccc  | cgttcagccc  | gaccgctgcg  | ccttatccgg   | taactatcgt | cttgagtcca |
| acacgactta  | acgggttggc  | atggattgta  | ggcgccgccc   | tataccttgt | ctgcctcccc |
|             |             | acctcgacct  |              |            |            |
| ccaagaattg  | gagccaatca  | attcttgcgg  | agaactgtga   | atgcgcaaac | caacccttgg |
| ccatcgcgtc  | cgccatctcc  | agcagccgca  | cgcggcgcat   | ctcgggcagc | gttgggtcct |
| gcgcatgatc  | gtgctagcct  | gtcgttgagg  | acccggctag   | gctggcgggg | ttgccttact |
| atgaatcacc  | gatacgcgag  | cgaacgtgaa  | gcgactgctg   | ctgcaaaacg | tctgcgacct |
| atgaatggtc  | ttcggtttcc  | gtgtttcgta  | aagtctggaa   | acgcggaagt | cagcgccctg |
|             |             |             |              |            |            |

Boguski, M.S.

A Molecular Biologist Visits Jurassic Park. (1992) BioTechniques 12(5):668-669).

#### elementary analysis of pair probabilities



#### elementary analysis of pair probabilities





#### follow-up: "The Lost World"

>LostWorld DinoDNA from the book The Lost World qaattccqqa aqcqaqcaaq aqataaqtcc tqqcatcaqa tacaqttqqa qataaqqacq gacgtgtggc agctcccgca gaggattcac tggaagtgca ttacctatcc catgggagcc atggagttcg tggcgctggg ggggccggat gcgggctccc ccactccgtt ccctgatgaa gccqqaqcct tcctqqqqct qqqqqqqqc qaqaqqacqq aqqcqqqqq qctqctqqcc tectaceee ceteaggeeg egtgteeetg gtgeegtggg cagacaeggg taetttgggg acceccagt gggtgeegee egecacceaa atggageeee eccactacet ggagetgetg caacccccc ggggcagccc ccccatccc tectecgggc cectactgcc acteagcage gggcccccac cctgcgaggc ccgtgagtgc gtcatggcca ggaagaactg cggagcgacg gcaacgccgc tgtggcgccg ggacggcacc gggcattacc tgtgcaactq qqcctcaqcc tgcgggctct accaccgcct caacggccag aaccgcccgc tcatccgccc caaaaagcgc ctgcgggtga gtaagcgcgc aggcacagtg tgcagccacg agcgtgaaaa ctgccagaca tecaecaeca etetqtqqcq teqeaqeece atqqqqqaee ecqtetqeaa caacatteae geetgeggee tetaetacaa actgeaceaa gtgaacegee eeeteacgat gegeaaagae ggaatccaaa cccgaaaccg caaagtttcc tccaagggta aaaagcggcg cccccgggg gggggaaacc ceteegeeac egegggaggg ggegeteeta tggggggagg gggggaecee totatqcccc ccccqccqcc cccccqqcc qccqccccc ctcaaaqcqa cqctctqtac geteteggee eegtggteet ttegggeeat tttetgeeet ttggaaacte eggagggttt tttggggggg gggcgggggg ttacacggcc cccccggggc tgagcccgca gatttaaata ataactctga cgtgggcaag tgggccttgc tgagaagaca gtgtaacata ataatttgca cctcggcaat tgcagagggt cgatctccac tttggacaca acagggctac tcggtaggac cagataagca ctttqctccc tqqactqaaa aagaaaggat ttatctqttt qcttcttqct gacaaatccc tgtgaaaggt aaaagtcgga cacagcaatc gattatttct cgcctgtgtg aaattactgt gaatattgta aatatatata tatatatata tatatctgta tagaacagcc teggaggegg catggaceca gegtagatea tgetggattt gtactgeegg aatte

#### follow-up: "The Lost World"



#### follow-up: "The Lost World"

```
>sp P23770 GAT2 XENLA TRANSCRIPTION FACTOR XGATA-2 (GATA BINDING FACTOR-2)
 pir C41602 transcription factor GATA-2 - African clawed frog
 gb AAA49723.1 (M76564) GATA binding factor-2 [Xenopus laevis]
          Length = 452
 Score = 193 bits (485), Expect = 4e-48
 Identities = 92/124 (74%), Positives = 103/124 (82%)
 Frame = +1
Query: 436 EARECVMARKNCGATATPLWRRDGTGHYLCNWASACGLYHRLNGQNRPLIRPKKRLRVSK 615
                                             ACGLYH++NGONRPLI+PK+RL ++
           E RECV
                     NCGATATPLWRRDGTGHYLCN
Sbjct: 263 EGRECV----NCGATATPLWRRDGTGHYLCN---ACGLYHKMNGQNRPLIKPKRRLSAAR 315
Ouery: 616 RAGTVCSHERENCOTSTTTLWRRSPMGDPVCNNIHACGLYYKLHOVNRPLTMRKDGIOTR 795
                     NCQTSTTTLWRR+ GDPVCN
                                              ACGLYYKLH VNRPLTM+K+GIQTR
           RAGT C+
Sbjct: 316 RAGTCCA----NCOTSTTTLWRRNANGDPVCN---ACGLYYKLHNVNRPLTMKKEGIOTR 368
Query: 796 NRKV 807
          NRK+
Sbjct: 369 NRKM 372
```

#### Markov chains as a tool for studying CpG islands

| + | A     | C     | G     | T     | - | A     | C     | G     | T     |
|---|-------|-------|-------|-------|---|-------|-------|-------|-------|
| A | 0.180 | 0.274 | 0.426 | 0.120 | A | 0.300 | 0.205 | 0.285 | 0.210 |
| C | 0.171 | 0.368 | 0.274 | 0.188 | C | 0.322 | 0.298 | 0.078 | 0.302 |
| G | 0.161 | 0.339 | 0.375 | 0.125 | G | 0.248 | 0.246 | 0.298 | 0.208 |
| T | 0.079 | 0.355 | 0.384 | 0.182 | T | 0.177 | 0.239 | 0.292 | 0.292 |

$$S(x) = \log\left(\frac{P(x \mid \text{model } +)}{P(x \mid \text{model } -)}\right) = \log\left(\frac{P(B)\prod_{i=1}^{L} a_{x_{i-1}x_{i}}^{+}}{P(B)\prod_{i=1}^{L} a_{x_{i-1}x_{i}}^{-}}\right) = \sum_{i=1}^{L} \log\left(\frac{a_{x_{i-1}x_{i}}^{+}}{a_{x_{i-1}x_{i}}^{-}}\right) = \sum_{i=1}^{L} \beta_{x_{i-1}x_{i}}$$

a number for each sequence x
 → histogram of score values S(x)
 for many sequences x

a number for each dinucleotide

→ table of "log-likelihoods"

#### Markov chains as a tool for studying CpG islands

| $\mathcal{B}(\log_2)$ | А      | С     | G     | Т       |
|-----------------------|--------|-------|-------|---------|
| A                     | -0.740 | 0.419 | 0.580 | -0.803  |
| С                     | -0.913 | 0.302 | 1.812 | -0.0685 |
| G                     | -0.624 | 0.461 | 0.331 | -0.730  |
| Т                     | -1.169 | 0.573 | 0.393 | -0.679  |

table of "log-likelihoods"





Multiple sequence alignment probability models revisited, multiple sequence alignment Marc-Thorsten Hütt, Felix Jonas IntroBioinfo – Session 5





#### Sum of pairs (SP) score



$$\alpha_{i_1,i_2,\dots,i_N} = \max \left\{ \begin{array}{l} G_0 \\ G_1 \\ G_2 \\ \vdots \\ G_{N-1} \end{array} \right. ,$$

$$G_0 = \alpha_{i_1 - 1, i_2 - 1, i_3 - 1, \dots, i_N - 1} + S\left(x_{i_1}^1, x_{i_2}^2, x_{i_3}^3, \dots, x_{i_N}^N\right)$$

$$G_{1} = \begin{cases} \alpha_{i_{1}, i_{2}-1, i_{3}-1, \dots, i_{N}-1} + S\left(-, x_{i_{2}}^{2}, x_{i_{3}}^{3}, \dots, x_{i_{N}}^{N}\right) \\ \alpha_{i_{1}-1, i_{2}, i_{3}-1, \dots, i_{N}-1} + S\left(x_{i_{1}}^{1}, -, x_{i_{3}}^{3}, \dots, x_{i_{N}}^{N}\right) \\ \vdots \\ \alpha_{i_{1}-1, i_{2}-1, i_{3}-1, \dots, i_{N}} + S\left(x_{i_{1}}^{1}, x_{i_{2}}^{2}, x_{i_{3}}^{3}, \dots, -\right) \end{cases}$$

$$G_2 = \begin{cases} \alpha_{i_1, i_2, i_3 - 1, \dots, i_N - 1} + S\left(-, -, x_{i_3}^3, \dots, x_{i_N}^N\right) \\ \alpha_{i_1 - 1, i_2, i_3, \dots, i_N - 1} + S\left(x_{i_1}^1, -, -, \dots, x_{i_N}^N\right) \\ \vdots \end{cases}$$

. . .



0



$$d = -\log \frac{S - S_{rand}}{S_{max} - S_{rand}}$$

|       | prot1   | prot2    | prot3    |
|-------|---------|----------|----------|
| prot1 | 0       | 1.30429  | 0.75107  |
| prot2 | 1.30429 | 0        | 0.393446 |
| prot3 | 0.75107 | 0.393446 | 0        |



prot2 KYFHKAGNQHSPT prot3 KYFHKAGNGH--T prot1 KEFH---NGH--T

# The CLUSTAL\_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools

Julie D. Thompson, Toby J. Gibson<sup>1</sup>, Frédéric Plewniak, François Jeanmougin\* and Desmond G. Higgins<sup>2</sup>

#### **ABSTRACT**

CLUSTAL X is a new windows interface for the widely-used progressive multiple sequence alignment program CLUSTAL W. The new system is easy to use, providing an integrated system for performing multiple sequence and profile alignments and analysing the results. CLUSTAL X displays the sequence alignment in a window on the screen. A versatile sequence colouring scheme allows the user to highlight conserved features in the alignment. Pull-down menus provide all the options required for traditional multiple sequence and profile alignment. New features include: the ability to cut-and-paste sequences to change the order of the alignment, selection of a subset of the sequences to be realigned, and selection of a sub-range of the alignment to be realigned and inserted back into the original alignment. Alignment quality analysis can be performed and low-scoring segments or exceptional residues can be highlighted. Quality analysis and realignment of selected residue ranges provide the user with a powerful tool to improve and refine difficult alignments and to trap errors in input sequences. CLUSTAL X has been compiled on SUN Solaris, IRIX5.3 on Silicon Graphics, Digital UNIX on DECstations, Microsoft Windows (32 bit) for PCs, Linux ELF for x86 PCs, and Macintosh PowerMac.



**Figure 1.** The CLUSTAL X window in multiple alignment mode. An alignment of some EFTU proteins is displayed. Low-scoring segments are highlighted using a white character on a black background. Exceptional residues are shown as a white character on a grey background. The quality analysis reveals two anomalously low scoring regions, ruler positions 16–25 in EFTU\_ODOSI and 61–71 in EFTU\_MYCPN. These were found to be caused by frameshift errors. Two more sequences (EFTU\_RICPR and EFTU\_SPIPL), not shown here, have 4-residue sequencing errors in this region which CLUSTAL X will also highlight.

# Crystal Structure of the Potassium Channel KirBac1.1 in the Closed State

Anling Kuo, <sup>1</sup> Jacqueline M. Gulbis, <sup>2</sup> Jennifer F. Antcliff, <sup>3</sup> Tahmina Rahman, <sup>1</sup> Edward D. Lowe, <sup>1</sup> Jochen Zimmer, <sup>1</sup> Jonathan Cuthbertson, <sup>1</sup> Frances M. Ashcroft, <sup>3</sup> Takayuki Ezaki, <sup>4</sup> Declan A. Doyle <sup>1</sup>\*

K<sup>+</sup> channels are involved in a wide range of physiological processes, such as propagation of the action potential, cardiac function, K<sup>+</sup> reabsorption in the kidney, and hormone regulation (1, 2). This diversity is possible because many different signals can open or close K<sup>+</sup> channels, a process known as gating. The signals are received by domains attached to the pore-forming subunit.

We present a complete K<sup>+</sup> channel structure that shows the nature of the physical link coupling domains that receive gating signals to the transmembrane helices.

20 JUNE 2003 VOL 300 SCIENCE www.sciencemag.org

# Crystal Structure of the Potassium Channel KirBac1.1 in the Closed State

Anling Kuo, <sup>1</sup> Jacqueline M. Gulbis, <sup>2</sup> Jennifer F. Antcliff, <sup>3</sup> Tahmina Rahman, <sup>1</sup> Edward D. Lowe, <sup>1</sup> Jochen Zimmer, <sup>1</sup> Jonathan Cuthbertson, <sup>1</sup> Frances M. Ashcroft, <sup>2</sup> Takayuki Ezaki, <sup>4</sup> Declan A. Doyle <sup>18</sup>

#### **EXTRACELLULAR**



INTRACELLULAR

Crystal Structure of the Potassium Channel KirBac1.1 in the Closed State

Anling Kuo, <sup>1</sup> Jacqueline M. Gulbis, <sup>2</sup> Jennifer F. Antcliff, <sup>3</sup> Tahmina Rahman, <sup>1</sup> Edward D. Lowe, <sup>1</sup> Jochen Zimmer, <sup>1</sup> Jonathan Cuthbertson, <sup>1</sup> Frances M. Ashcroft, <sup>3</sup> Takayuki Ezaki, <sup>4</sup> Declan A. Doyle <sup>1\*</sup>



# Crystal Structure of the Potassium Channel KirBac1.1 in the Closed State

Anling Kuo, <sup>1</sup> Jacqueline M. Gulbis, <sup>2</sup> Jennifer F. Antcliff, <sup>3</sup> Tahmina Rahman, <sup>1</sup> Edward D. Lowe, <sup>1</sup> Jochen Zimmer, <sup>1</sup> Jonathan Cuthbertson, <sup>1</sup> Frances M. Ashcroft, <sup>3</sup> Takayuki Ezaki, <sup>4</sup> Declan A. Doyle <sup>18</sup>





# Crystal Structure of the Potassium Channel KirBac1.1 in the Closed State

Anling Kuo, <sup>1</sup> Jacqueline M. Gulbis, <sup>2</sup> Jennifer F. Antcliff, <sup>3</sup> Tahmina Rahman, <sup>1</sup> Edward D. Lowe, <sup>1</sup> Jochen Zimmer, <sup>1</sup> Jonathan Cuthbertson, <sup>1</sup> Frances M. Ashcroft, <sup>3</sup> Takayuki Ezaki, <sup>4</sup> Declan A. Doyle <sup>1</sup>\*



```
KirBac1.1
Human Kir1.1
Human Kir2.1
Human Kir3.1
Human Kir3.4
Human Kir4.1
Human Kir5.1
Human Kir6.2
Human Kir7.1
KcsA
MthK
Shaker
KirBac1.1
Human Kir1.1
Human Kir2.1
Human Kir3.1
Human Kir3.4
Human Kir4.1
Human Kir5.1
Human Kir6.2
Human Kir7.1
KcsA
MthK
Shaker
```

|              | 50                                                                                                                                     |                                                                                                                                                                | 70                                                                                                                                                 |                                                                                                                                         |                                                      |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| REVIAYGMPASV |                                                                                                                                        | SWPVFFASLA                                                                                                                                                     |                                                                                                                                                    | ALLYOLGDAPI                                                                                                                             | 89                                                   |
| FGNVEAOSRFIF |                                                                                                                                        |                                                                                                                                                                |                                                                                                                                                    |                                                                                                                                         | 106                                                  |
| OFINVGEKGORY | LADIFTTCVDI                                                                                                                            | RWRWMLVIFC                                                                                                                                                     | LAFVLSWLFFO                                                                                                                                        | CVFWLIALLH                                                                                                                              | 110                                                  |
| OHGNLGSETSRY |                                                                                                                                        |                                                                                                                                                                |                                                                                                                                                    |                                                                                                                                         | 109                                                  |
| HHGNVOETYRY  |                                                                                                                                        |                                                                                                                                                                |                                                                                                                                                    |                                                                                                                                         | 115                                                  |
| RMEHIADKRFLY | المتناقص الناو                                                                                                                         |                                                                                                                                                                |                                                                                                                                                    |                                                                                                                                         | 93                                                   |
| YFKHIFGEWGSY |                                                                                                                                        | _                                                                                                                                                              |                                                                                                                                                    |                                                                                                                                         |                                                      |
| AHKNIREOGRE  | المتناه والمتناه المتناء                                                                                                               |                                                                                                                                                                |                                                                                                                                                    |                                                                                                                                         |                                                      |
| QMDGAQRGLAY  |                                                                                                                                        |                                                                                                                                                                |                                                                                                                                                    |                                                                                                                                         |                                                      |
| MAPMLSGLLAR  |                                                                                                                                        |                                                                                                                                                                |                                                                                                                                                    |                                                                                                                                         |                                                      |
| MVL          |                                                                                                                                        |                                                                                                                                                                |                                                                                                                                                    |                                                                                                                                         |                                                      |
|              | A T T T T K V U D L K                                                                                                                  |                                                                                                                                                                | . ппп лим литт                                                                                                                                     | SIMGERFIEGE                                                                                                                             | 44                                                   |
|              | CT OTT CDTT VA                                                                                                                         |                                                                                                                                                                | PET PECCONI PCC                                                                                                                                    | TATIVE A FACCE                                                                                                                          | 122                                                  |
| (            |                                                                                                                                        | SMRELGLLIF                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                         | 422                                                  |
| Turret       |                                                                                                                                        | smrelgllife helix Fi                                                                                                                                           | lter l                                                                                                                                             | Inner helix                                                                                                                             |                                                      |
| Turret       | Pore                                                                                                                                   | smrelgllie<br>helix Fi                                                                                                                                         | lter l                                                                                                                                             | Inner helix                                                                                                                             | )                                                    |
| Turret       | Pore<br>QSPPG <mark>FVGAFF</mark>                                                                                                      | smrelgllif<br>helix Fi<br>110<br>fsvetla <mark>tvo</mark>                                                                                                      | Iter<br>SYGDMHPQTV                                                                                                                                 | Inner helix<br>130<br>VYAHAIATLEI                                                                                                       | )<br>131                                             |
| Turret  N    | Pore<br>QSPPGFVGAFF<br>ENINGLTSAFL                                                                                                     | SMRELGLLIF<br>helix Fi<br>110<br>FSVETLATVO<br>FSLETQVTIO                                                                                                      | Iter<br>SYGDMHPQTV<br>SYGFRCVTEQCA                                                                                                                 | Inner helix<br>130<br>VYAHAIATLEI<br>ATAIFLLIFQS                                                                                        | 131<br>164                                           |
| Turret  ON   | Pore<br>QSPPGFVGAFF<br>ENINGLTSAFL<br>SEVNSFTAAFL                                                                                      | SMRELGLLIF  helix Fi  110  FSVETLATVG  FSLETQVTIG  FSIETQTTIG                                                                                                  | lter<br>SYGDMHPQTV<br>SYGFRCVTEQCA<br>SYGFRCVTDECE                                                                                                 | Inner helix<br>130<br>YYAHAIATLEI<br>ATAIFLLIFQS<br>PIAVFMVVFQS                                                                         | 131<br>164<br>165                                    |
| Turret  O N  | Pore  QSPPGFVGAFF  ENINGLTSAFL  SEVNSFTAAFL  ANVYNFPSAFL                                                                               | SMRELGLLIF<br>Chelix Fi<br>110<br>FSVETLATVO<br>FSLETQVTION<br>FSIETQTTION<br>FFIETEATION                                                                      | Iter  SYGDMHP QTV SYGFRCVTEQCA SYGFRCVTDECE SYGYRYITDKC                                                                                            | Inner helix<br>130<br>YYAHAIATLEI<br>ATAIFLLIFQS<br>PIAVFMVVFQS<br>PEGIILFLFQS                                                          | 131<br>164<br>165<br>166                             |
| Turret  O N  | Pore  QSPPGFVGAFF  ENINGLTSAFL  SEVNSFTAAFL  ANVYNFPSAFL  ENLSGFVSAFL                                                                  | SMRELGLLIF<br>Chelix Fi<br>110<br>FSVETLATVO<br>FSLETQVTION<br>FSIETQTTION<br>FFIETEATION<br>FSIETETTION                                                       | Iter  SYGDMHPQTV SYGFRCVTEQCA SYGFRCVTDECE SYGYRYITDKCE SYGFRVITEKCE                                                                               | Inner helix 130 VYAHAIATLEI ATAIFLLIFQS PIAVFMVVFQS PEGIILFLFQS PEGIILLLVQA                                                             | 131<br>164<br>165<br>166<br>172                      |
| Turret  O N  | Pore QSPPGFVGAFF ENINGLTSAFL SEVNSFTAAFL ANVYNFPSAFL ENLSGFVSAFL VQVHTLTGAFL                                                           | SMRELGLLIF<br>chelix Fi<br>110<br>FSVETLATVO<br>FSLETQTTIO<br>FFIETEATION<br>FSLESQTTION                                                                       | Iter  YGDMHPQTV  YGFRCVTEQCA  YGFRCVTDECE  YGFRVITDKCE  YGFRVITEKCE  YGFRVISEECE                                                                   | Inner helix 130 YYAHAIATLEI ATAIFLLIFQS PIAVFMVVFQS PEGIILFLFQS PEGIILLLVQA PLAIVLLIAQL                                                 | 131<br>164<br>165<br>166<br>172                      |
| Turret  O N  | Pore  QSPPGFVGAFF ENINGLTSAFL SEVNSFTAAFL ANVYNFPSAFL ENLSGFVSAFL VQVHTLTGAFL DNVHSFTGAFL                                              | SMRELGLLIF  helix Fi  110  FSVETLATVO  FSLETQVTIC  FFIETEATIC  FSLESQTTIC  FSLETQTTIC  FSLETQTTIC                                                              | Iter  YGDMHPQTV YGFRCVTEQC YGFRCVTDCE YGGYRYITDKCE YGFRVITEKCE YGFRVITEKCE YGFRVISEECE YGFRYISEECE                                                 | Inner helix 130 VYAHAIATLEI ATAIFLLIFQS PEGIILFLFQS PEGIILLLVQA PLAIVLLIAQL GVAVLMVILQS                                                 | 131<br>164<br>165<br>166<br>172<br>151               |
| Turret  O N  | Pore  QSPPGFVGAFF ENINGLTSAFL SEVNSFTAAFL ANVYNFPSAFL ENLSGFVSAFL VQVHTLTGAFL DNVHSFTGAFL TSIHSFSSAFL                                  | SMRELGLLIF<br>2 helix Fi<br>110<br>FSVETLATVE<br>FSLETQVTIE<br>FSIETETIE<br>FSIETETIE<br>FSLETQTTIE<br>FSLETQTTIE<br>FSLETQTTIE<br>FSIEVQVTIE                  | Iter  SYGDMHPQTV SYGFRCVTEQCE SYGFRCVTDECH SYGFRVITEKCH SYGFRVITEKCH SYGFRVITEKCH SYGFRVITEKCH SYGFRVITEKCH SYGFRVITECCH SYGFRVITECCH SYGFRVITECCH | Inner helix 130 VYAHAIATLEI ATAIFLLIFQS PEGIILFUS PEGIILLUQA PLAIVLLIAQL GVAVLMVILQS PLAILSLIVQN                                        | 131<br>164<br>165<br>166<br>172<br>151<br>154        |
| Turret  O N  | Pore QSPPGFVGAFF ENINGLTSAFL SEVNSFTAAFL ANVYNFPSAFL ENLSGFVSAFL VQVHTLTGAFL DNVHSFTGAFL TSIHSFSSAFL KYITSFTAAFS                       | SMRELGLLIF  chelix Fi  110  FSVETLATVO  FSLETQTTIO  FFIETEATIO  FSLETQTTIO  FSLETQTTIO  FSLETQTTIO  FSLETQTTIO  FSLETQTTIO  FSLETQTTIO  FSLETQTTIO  FSLETQTTIO | Iter  YGDMHPQTV  YGFRCVTEQCA  YGFRCVTDECE  YGYRYITDKCE  YGFRVITEKCE  YGFRYISEECE  YGYRCVTEECE  YGGRMVTEECE  YGTMFPSGDCE                            | Inner helix 130 YYAHAIATLEI ATAIFLLIFQS PIAVFMVVFQS PEGIILFLFQS PEGIILLLVQA PLAIVLLIAQL SVAVLMVILQS PLAILSLIVQM                         | 131<br>164<br>165<br>166<br>172<br>151               |
| Turret  O N  | Pore  QSPPGFVGAFF  ENINGLTSAFL  SEVNSFTAAFL  ANVYNFPSAFL  ENLSGFVSAFL  VQVHTLTGAFL  DNVHSFTGAFL  TSIHSFSSAFL  KYITSFTAAFS  AQLITYPRALW | SMRELGLLIF  chelix Fi  110  FSVETLATVG  FSLETQTTIG  FFIETEATIG  FSLESQTTIG  FSLETQTTIG  FSLETQTTIG  FSLETQTTIG  FSLETQTTIG  FSLETQTTIG  WSVETATTVG             | Iter  YGDMHP QTV  YGFRCVTEQCE  YGFRCVTDECE  YGYRYITDKCE  YGFRVITEKCE  YGFRVISEECE  YGYRCVTEECE  YGGRMVTEECE  YGTMFPSGDCE  YGDLYP VTI               | Inner helix 130 VYAHAIATLEI ATAIFLLIFQS PIAVFMVVFQS PEGIILFLFQS PEGIILLLVQA PLAIVLLIAQL SVAVLMVILQS PLAILSLIVQN PSAIALLAIQM             | 131<br>164<br>165<br>166<br>172<br>151<br>154        |
| Turret  O N  | Pore QSPPGFVGAFF ENINGLTSAFL SEVNSFTAAFL ANVYNFPSAFL ENLSGFVSAFL VQVHTLTGAFL DNVHSFTGAFL TSIHSFSSAFL KYITSFTAAFS AQLITYPRALW           | SMRELGLLIF  chelix Fi  110  FSVETLATVE FSLETQTTIE FSLESQTTIE FSLETQTTIE FSLETQTTIE FSLETQTTIE FSLETQTTIE FSLETQTTIE WSVETATTVE WTFVTIATVE                      | Iter  YGDMHPQTV  YGFRCVTEQCE  YGFRCVTDECE  YGFRVITDKCE  YGFRVITEKCE  YGFRVITEKCE  YGFRVITECE  YGFRVTEECE  YGGRMVTEECE  YGTMFPSGDCE  YGDVSPSTE      | Inner helix 130 YYAHAIATLEI ATAIFLLIFQS PIAVFMVVFQS PEGIILFLFQS PEGIILLLVQA PLAIVLLIAQL EVAVLMVILQS PLAILSLLVQN PSAIALLAIQM LWGRCVAVVVM | 131<br>164<br>165<br>166<br>172<br>151<br>154        |
| Turret  O N  | Pore QSPPGFVGAFF ENINGLTSAFL SEVNSFTAAFL ANVYNFPSAFL ENLSGFVSAFL VQVHTLTGAFL DNVHSFTGAFL TSIHSFSSAFL KYITSFTAAFS AQLITYPRALW           | SMRELGLLIF  chelix Fi  110  FSVETLATVE FSLETQTTIE FSLESQTTIE FSLETQTTIE FSLETQTTIE FSLETQTTIE FSLETQTTIE FSLETQTTIE WSVETATTVE WTFVTIATVE                      | Iter  YGDMHPQTV  YGFRCVTEQCE  YGFRCVTDECE  YGFRVITDKCE  YGFRVITEKCE  YGFRVITEKCE  YGFRVITECE  YGFRVTEECE  YGGRMVTEECE  YGTMFPSGDCE  YGDVSPSTE      | Inner helix 130 YYAHAIATLEI ATAIFLLIFQS PIAVFMVVFQS PEGIILFLFQS PEGIILLLVQA PLAIVLLIAQL EVAVLMVILQS PLAILSLLVQN PSAIALLAIQM LWGRCVAVVVM | 131<br>164<br>165<br>166<br>172<br>151<br>154<br>153 |

Slide helix

**Outer helix**