Problem Set 3

Course: Mathematical Physics II (Winter 2022)

Due Date: 5:00 PM - Thursday, 19th of Esfand 1400

Problem 1. Consider the Hilbert space \mathbb{C}^2 and the vectors

$$|0\rangle = \begin{pmatrix} i \\ i \end{pmatrix}, \quad |1\rangle = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Normalize these vectors and then calculate the probability $|\langle 0|1\rangle|^2$.

Problem 2. Consider the Hilbert space \mathbb{R}^n . Let $x, y \in \mathbb{R}^n$. Show that

$$\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 = 2(\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2)$$

Note that

$$\|\mathbf{x}\|^2 := \langle \mathbf{x} | \mathbf{x} \rangle$$
.

Problem 3. Consider the three vectors:

$$|\psi_1\rangle = \frac{1}{\sqrt{3}} |+\rangle + i \frac{\sqrt{2}}{\sqrt{3}} |-\rangle$$

$$|\psi_2\rangle = \frac{1}{\sqrt{5}} |+\rangle - \frac{2}{\sqrt{5}} |-\rangle$$

$$|\psi_3\rangle = \frac{1}{\sqrt{2}} |+\rangle + e^{i\pi/4} \frac{1}{\sqrt{2}} |-\rangle$$

Use bra-ket notation (not matrix notation) to solve the following problems. Note that $\langle +|+\rangle = 1, \langle -|-\rangle = 1, \langle +|-\rangle = 0.$

- 1. For each of the ψ_i above, find the normalized vector ϕ_i that is orthogonal to it.
- 2. Calculate the inner products $\langle \psi_i | \psi_i \rangle$ for *i* and *j* = 1, 2, 3.

Problem 4. Let $|0\rangle$, $|1\rangle$ be an orthonormal basis in the Hilbert space \mathbb{C}^2 . Let

$$|\psi\rangle = \cos(\theta/2)|0\rangle + e^{i\phi}\sin(\theta/2)|1\rangle$$

Where $\theta, \phi \in \mathbb{R}$.

- 1. Find $\langle \psi | \psi \rangle$.
- 2. Find the probability $|\langle 0|\psi\rangle|^2$.
- 3. Assume that

$$|0
angle = egin{pmatrix} 1 \ 0 \end{pmatrix}$$
 , $|1
angle = egin{pmatrix} 0 \ 1 \end{pmatrix}$.

Find the 2 \times 2 matrix $|\psi\rangle\langle\psi|$ and calculate the eigenvalues.

Problem 5. Consider the Hilbert space \mathcal{H} of the 2 \times 2 matrices over the complex numbers with the scalar product

$$\langle A|B\rangle := tr(AB^{\dagger}), \quad A,B \in \mathcal{H}.$$

Show that the rescaled Pauli matrices $\mu_j := \frac{1}{\sqrt{2}} \sigma_j$, j = 1, 2, 3

$$\mu_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \mu_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \mu_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

plus the rescaled 2×2 identity matrix

$$\mu_0 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

form an orthonormal basis in the Hilbert space \mathcal{H} .