ESC201T: Introduction to Electronics

Lecture 21: Diode Model For Circuit Analysis

B. Mazhari Dept. of EE, IIT Kanpur

Diode Model: Forward Bias

$$I = I_S \times \left\{ e \times p \left(\frac{V_d}{n V_T} \right) - 1 \right\}$$

For dc and low frequency ac circuits, the effect of diode capacitance can be neglected

Diode Model: Reverse Bias

Because of capacitance, a diode even though reverse biased, can carry significant current momentarily

Example

Transient Response

Diode does not switch off instantly but remains conducting for a period called reverse recovery time which is sum of storage and fall delay times..

Analysis using non-linear diode model is not easy

$$V_S = IR + V_O \quad (1)$$

$$I = I_S \times \left\{ \exp\left(\frac{V_O}{nV_T}\right) - 1 \right\} (2)$$

$$\Rightarrow V_O = nV_T \times \ln(\frac{I}{I_S} + 1) \quad (3)$$

$$\Rightarrow V_S = IR + nV_T \times \ln(\frac{I}{I_S} + 1) \quad (4)$$

Iterative Method:

$$V_S = IR + V_O \quad (1)$$

$$I = I_S \times \left\{ \exp\left(\frac{V_O}{nV_T}\right) - 1 \right\} (2)$$

Assume

$$V_{o} = 0.6 \text{V}$$

Calculate

$$I = \frac{V_S - V_O}{R}$$

Re-calculate

$$V_O = nV_T \times \ln(I/I_S + 1)$$

Convergence:

$$\frac{\Delta I}{I} \le \varepsilon$$

$$I = I_S \times \{ \exp(\frac{V}{V_T}) - 1 \}$$

$$I_S = 2 \times 10^{-15} A$$

$$V_T = kT / q \approx 26 \text{ mV} \text{ at T} = 300 \text{K}$$

Assume V_{o}

$$V_0 = 0.5$$

$$V_{\rm O} = 0.5$$
 $V_{\rm O} = 0.711$

$$V_{\rm O} = 0.707$$

$$I = \frac{V_S - V_O}{R}$$

$$I = 1.5 \times 10^{-3}$$
 $I = 1.289 \times 10^{-3}$ $I = 1.293 \times 10^{-3}$

$$I = 1.289 \times 10^{-3}$$

$$I = 1.293 \times 10^{-3}$$

$$V_O = nV_T \times \ln(I/I_S + 1)$$

$$V_0 = 0.711$$

$$V_{\rm O} = 0.711$$
 $V_{\rm O} = 0.707$

$$V_{\rm O} = 0.707$$

CONVERGENCE

$$I = I_S \times \{ \exp(\frac{V}{V_T}) - 1 \}$$

$$I_S = 2 \times 10^{-15} A$$

$$V_T = kT / q \cong 26 \text{ mV} \text{ at T} = 300 \text{K}$$

Assume V_{o}

$$V_0 = 1.0$$
 $V_0 = 0.7$

$$V_{\rm O} = 0.7$$

$$V_{\rm O} = 0.707$$

$$I = \frac{V_S - V_O}{R}$$

$$I = 1.0 \times 10^{-3}$$
 $I = 1.3 \times 10^{-3}$

$$I = 1.3 \times 10^{-3}$$

$$I = 1.293 \times 10^{-3}$$

$$V_O = nV_T \times \ln(I/I_S + 1)$$

$$V_0 = 0.7$$

$$V_{\rm O} = 0.7$$
 $V_{\rm O} = 0.707$

$$V_{\rm O} = 0.707$$

CONVERGENCE to the same Result

Graphical Method: Method of Load Line

$$I = I_S \times \left\{ \exp\left(\frac{V_O}{nV_T}\right) - 1 \right\}$$

 $V_O = 0.77V$; I = 0.12A

For hand analysis of circuits, we need simpler models!

What is a model?

"A model is a representation for a PURPOSE"

Depending on the purpose, an element can have several different models

In general, there is a tradeoff between Accuracy and Complexity of model

What is the use of a less accurate model?

1. A simpler model makes analysis easier

The results of analysis are easier to understand

3. The results of analysis can be used easily to carry out the design

Design the circuit such that:

$$\frac{V_2}{V_S} = 0.2$$
 at 1kHz frequency

$$\frac{R_2}{R_1 + R_2} = 0.2 \qquad \Rightarrow \qquad \frac{R_1}{R_2} = 4$$

Try doing the design with this expression:

$$\frac{V_2}{V_S} = \frac{R_2 + j\omega L_2}{R_2 + j\omega L_2 + (R_1 + j\omega L_1) \frac{j\omega C_2 R_2 - \omega^2 L_2 C_2 + 1}{j\omega C_1 R_1 - \omega^2 L_1 C_1 + 1}}$$

Role of simple model in design cycle

- •Analysis using a non-linear diode model is relatively difficult and time consuming.
- •It also does not give a symbolic expression that can provide insight and help in the design of the circuit.

Need SIMPLER and LINEAR Device Models

What should we take as diode drop?....0.7V?

$$I = I_S \times \{ \exp(\frac{V}{V_T}) - 1 \}$$

$$I_S = 2 \times 10^{-15} A$$

$$V_T = kT / q \cong 26 \text{ mV} \text{ at T} = 300 \text{K}$$

 $R: 10\Omega \rightarrow 1M\Omega$

Simple 0.7V model would predict: I =

 $(100mA - 1\mu A)$

Different Diode: ~1N4148

$$I = I_S \times \{ \exp(\frac{V}{nV_T}) - 1 \}$$

 $I_S = 5.9 \times 10^{-9} A ; n = 1.91$

Constant diode voltage approximation becomes worse as applied voltage approaches the diode drop!

$$I = \frac{V_S - V_D}{R}$$

$$\Delta I = -\frac{\Delta V_D}{R}$$

$$\frac{\Delta I}{I} = -\left(\frac{\Delta V_D}{V_S - V_D}\right)$$

As
$$V_s$$
 approaches $V_D \rightarrow \left(\frac{\Delta I}{I}\right)$ increases

Error was ~9% with 1.7 V but 63% with 0.8V supply

A better Diode Model

Piece-Wise Linear Model

 \boldsymbol{V}_{γ} is called cut-in or turn-on voltage and depends on nature of diode and range of current considered

For most of our analysis, we will take V_{γ} = 0.7V and r_{f} ~10 Ω

Even Simpler Diode Models

Ideal diode model

Diode Models

$$I = I_S \times \{ \exp(\frac{v_d}{V_T}) - 1 \}$$

Accuracy

Use the simplest model that will yield results with desired accuracy

Use the simplest model that will yield results with desired accuracy

Example

Find the current through the diode using ideal diode model

If it is not evident whether diode is forward or reverse biased then we can assume that it is forward biased, carry out analysis and then check if current through the diode is in appropriate direction. If not, diode is reverse biased and we carry out analysis again.

$$-2 m A + \frac{-10}{5 K} + i_D = 0$$

Current is positive, so our assumption is correct

Assume forward bias

Example

Find the current through the 5K resistor using ideal diode model

Assume forward bias

$$i_D = 4.5 m A$$

But this cannot be, so our assumption is incorrect

Assume reverse bias

Design Cycle

Design the following circuit

Design Cycle

Assuming ideal diode model

Carry out simulations to fine tune the design

Initial design

Final Design

