Bevis av Arfken (7.10)

Betralite on different
$$\frac{dy}{dx} = -\frac{P(x,y)}{Q(x,y)}$$

=) $P(x,y)dx + Q(x,y)dy = 0$ (1)

Betralita on en function $Y(x,y)$.

Oess differential

 $dy = (\partial_x y)dx + (\partial_y y)dy = 0$

om $P(x,y) = \text{keonstant}$ (2)

For en exalt differential"

galler $\partial_x y = P(x,y)$
 $\partial_y y = Q(x,y)$

villet innebar at (1) och

(2) ar samma problem.

Vad an da f(x,y)! Utnytta att 4= Sd4 och integrera från (Xo, yo) till (x, y). Vali foljande väg:
(1) (x0, y) (2) $f(x,y) = \int_{-\infty}^{\infty} Q(x_{o},y') dy' + \int_{-\infty}^{\infty} P(x',y) dx'$ endast dy dy -delen as dy bidrar effersom endast 2xy dx bidas längs 2. dx=0 längs 1). HEN EN VI Folger vagen y = y ! langs x = xo!

villet shalle visas $konstant = Y(x,y) = \int Q(R_0,y')dy' + \int P(x',y)dx'$ $y_0 \qquad x_0$

Notera att jag är Lite mer noggrann att skilfa på integrationsparametrar och integrationsgranser än vad som gövs i Arflen,