Avaliação Prática

Ethernet

Objetivo

Neste laboratório, você irá configurar VLANs em um switch cisco.

Cenário A

Neste atividade, você vai trabalhar com a seguinte topologia que está configurada no arquivo lab02a.pkt:

Ao longo deste laboratório, o X e Y usados na imagem devem ser substituídos usando sua matrícula da seguinte forma:

Exemplo

2019004569: X = 60 e Y = 90

2019004509: X = idade e Y = 90, no caso de um dos dois últimos dígitos ser igual a 0, você deve usar sua idade.

1. Configuração dos switches

Passo 1: Configurar SW1

(I) Clique em SW1 e, em seguida, na guia CLI. Digite os seguintes comandos:

Switch>enable
Switch#config terminal
Switch(config)#vlan X
Switch(config-vlan)#name nome_que_vc_escolher
Switch(config-vlan)#exit
Switch(config)#vlan Y
Switch(config-vlan)#name nome_que_vc_escolher
Switch(config-vlan)#exit
Switch(config-vlan)#exit
Switch(config)#exit

- a. O que aparece após o último comando? Explique e mostre imagem.
- (II) Atribua as portas do switch às VLANs. Lembre-se de que cada VLAN é vista como um domínio de broadcast separado.

E antes de configurar, lembre-se de que as portas do switch podem ser de acesso ou trunk.

Uma porta de acesso é atribuída a uma única VLAN. Essas portas são configuradas para portas de switch que se conectam a dispositivos com uma placa de rede normal, por exemplo, um PC em uma rede. Uma porta de trunk, por outro lado, é uma porta que pode ser conectada a outro switch ou roteador. Essa porta pode transportar tráfego de várias VLANs.

Portanto, em nosso caso, configuraremos as interfaces de switch fa 0/1 e fa 0/2 como portas de acesso para conectar aos nossos PCs. Aqui, a interface fa 0/1 é atribuída à VLAN X, enquanto a interface fa 0/2 é atribuída à VLAN Y.

A interface fa0/3 será configurada como porta trunk, pois será usada para transportar tráfego entre as duas VLANs por meio dos dois comutadores.

Faça como mostrado abaixo:

Switch>enable Switch#config terminal Switch(config)#int fa0/1 Switch(config-if)#switchport mode access Switch(config-if)#switchport access vlan X Switch(config-if)#exit

Switch(config)#int fa0/2 Switch(config-if)#switchport mode access Switch(config-if)#switchport access vlan Y Switch(config-if)#exit

Switch(config)#int fa 0/3 Switch(config-if)#switchport mode trunk Switch(config-if)#exit Switch(config)#exit

Switch# show running-config

b. O que aparece após o último comando? Explique e mostre imagem.

Passo 2: Configurar SW2

Repitas os mesmos passos realizados para a configuração de SW1. E responda as mesmas perguntas.

2. Configuração dos PCs

Passo 1: Atribua endereços IP estáticos aos quatro PCs localizados em VLANs separadas. PC1 e PC3 caem na VLAN X, enquanto PC2 e PC4 caem na VLAN Y.

PC1: IP address 192.168.1.10 Subnet mask 255.255.255.0
PC2: IP address 192.168.1.11 Subnet mask 255.255.255.0
PC3: IP address 192.168.1.12 Subnet mask 255.255.255.0
PC4: IP address 192.168.1.13 Subnet mask 255.255.255.0

3. Teste de conectividade

c. Ping PC2 do PC1. O que acontece? O que aparece na camada 2 do pacote quando ele chega no SW1? Explique e mostre imagem da janela *PDU* information do modo simulação.

- d. Ping PC4 do PC1. O que acontece? O que aparece na camada 2 do pacote quando ele chega no SW1? Explique e mostre imagem da janela *PDU information* do modo simulação.
- e. Ping PC3 do PC1. O que acontece? O que aparece na camada 2 do pacote quando ele chega no SW1? Explique e mostre imagem da janela *PDU information* do modo simulação.

Cenário B

Neste atividade, você vai trabalhar com a seguinte topologia que você deve criar do zero em um novo arquivo lab02b.pkt:

Neste cenário, vamos criar duas VLANs baseadas no endereço IP de acordo com a tabela abaixo:

PC	IP/24	Comutador	Porta	Id VLAN	Nome
			comutador		VLAN
PC1	192.168.10.1	C1	Eth0/1	10	Vlan10
PC2	192.168.20.2	C1	Eth0/2	20	Vlan20
PC3	192.168.10.3	C2	Eth0/1	10	Vlan10
PC4	192.168.20.4	C2	Eth0/2	20	Vlan20
C1 e C2 são co	nectados pelas	1	Default Vlan		

a. Teste: PC1 pinga PC3 e PC2 pinga PC4. Qual o resultado?

b. Por que?

1. Porta Trunk

Para que os pacotes possam passar de C1 para C2 (e vice-versa), temos que adicionar uma etiqueta em cada pacote. Para isso, precisamos configurar as portas Eth0/8 de C1 e C2 com o padrão 802.11q.

No C1, na aba CLI, digite:

Switch enable

Switch# configure terminal Switch(config)# interface fastEthernet 0/8 Switch(config-if)# **switch mode trunk** Switch(config-if)# switchport trunk allowed vlan 10-20 Switch(config-if)# **end** Switch#

Switch#show interfaces trunk

Faça a mesma coisa no SW C2.

c. Repita os testes ping realizados antes. O que você observa?

2. Roteamento entre Vlans

(I) Sem passarela virtual

Para que as estações das duas Vlans possam se comunicar entre si, adicionaremos um roteador, componente de nível 3 que permite que quadros sejam roteados de uma rede para outra.

Para fazer isso:

- Adicione um roteador genérico
- Conecte o roteador ao switch duas vezes conforme dados da tabela abaixo.
- Configure os dois links adicionados.

No roteador, você deve configurar os dois links adicionados em duas portas do roteador, a eth0/0 e eth1/0.

	Link1	Link2
Switch	Eth0/10	Eth0/11
Roteador	Eth0/0	Eth1/0
Passarelas	192.168.10.254	192.168.20.254
Vlan	Vlan10	Vlan20

Execute no terminal CLI do roteador:

Routeur> enable

Router# configure terminal

Router(config)# interface fastEthernet 0/0

Router(config-subif)# ip address 192.168.10.254 255.255.255.0

Router(config-subif)# exit

Router(config)# interface fastEthernet 1/0

Router(config-subif)#ip address 192.168.20.254 255.255.255.0

Router(config-subif)#end

Routeur# show running-config

- d. Você consegue fazer ping de estações de uma rede para aquelas de outra rede? Caso negativo, o que precisa ser feito?
- e. Qual o limite da solução apresentada, ou seja, comunicação entre vlans sem passarela virtual?

(II) Com passarela virtual

Em casos onde existe limitação de portas nos dispositivos podemos criar uma passarela virtual, ou seja, desta vez vamos usar uma única placa de rede física e 2 (ou mais, se necessário) gateways virtual. O objetivo é sempre o mesmo, a implementação do roteamento inter Vlan.

Para isso faça:

- Conecte o roteador ao switch usando um único cabo reto conforme dados da tabela abaixo.
- Configure o switch C1 para que ele deixe os quadros Vlan 10 e Vlan 20 passarem em direção ao roteador.
- Configure duas interfaces virtuais na interface real do roteador.

	Link trunk entre roteador e switch		
Switch	Eth0/9	Vlan10	
		Vlan20	
Roteador	Eth0/0	192.168.10.254	
		192.168.20.254	

Para criar duas interfaces de gateway virtual (fastEthernet 0/0.1 e 0/0.2) mapeadas para somente uma placa de rede física do roteador, execute os comandos abaixo.

Roteador

Routeur> Enable

Router # configure terminal

Router(config)# interface fastEthernet 0/0

Router(config)# no ip address

Router(config-subif)#exit

Router(config)# interface fastEthernet 0/0.1

Router(config-subif)# encapsulation dot1Q 10

Router(config-subif)# ip address 192.168.10.254 255.255.255.0

routeur (config-if)# no shutdown

Router(config-subif)#exit

Router(config)#interface fastEthernet 0/0.2

Router(config-subif)#encapsulation dot1Q 20

Router(config-subif)#ip address 192.168.20.254 255.255.255.0

routeur (config-if)# no shutdown

Router(config-subif)# end

Router # show running-config

Switch C1

Switch> enable

Switch# configure terminal

Switch(config)# interface fastEthernet 0/9

Switch(config-if)# switchport mode trunk

Switch(config-if)# end

Switch# show running-config

f. Complete a configuração e teste o ping entre as duas vlans.