Lesson 4 - Genomics

Sequence mapping part I

Working with Tabular files

- TSV = tab separated values, CSV=comma separated values
- A simple way to store tabular data

```
# View a file without line wrapping
$ less -S table.tsv
# Extract specific column from TSV
$ cut -f 2 table.tsv
# Extract multiple columns from TSV
$ cut -f 2,6,7 table.tsv
# Sort a table by column
$ sort -k 2 table.tsv | less -S
# Get unique values of a column
$ cut -f 2 table.tsv | sort | uniq
# Count occurrences of unique values
$ cut -f 2 table.tsv | sort | uniq -c
```

By the end of this lesson you will...

Understand the concept of sequence mapping and alignment
 https://www.annualreviews.org/doi/full/10.1146/annurev-genom-090413-025358

- Be familiar with the basic Blast algorithm
 - Parameters
 - Outputs

Know how to use Blast from the command line

Imagine we have a big book...

... and we want to search it for a specific sentence

It would be
66 so nice if
something
made sense
for a
Lewis Carroll
Alice in Wonderland change.

- How can we do it in a timely manner?
 - Brute force
 - Indexing
- Do we allow slight changes?
 - e.g.: "it could be so nice if something made sense"
- Do we allow insertions and deletions?
 - e.g.: "it would be so nice if something made a little sense"
- What if the sentence is repeated in several places in the book?

It would be
66 so nice if
something
made sense
for a

Lewis Carroll
Alice in Wonderland change.

Sequence mapping

- Detecting the position of a query sequence within a database (DB) of sequences
- Amino acid or nucleotide alphabet
- Searching for exact matches easier but less useful
- Allowing mismatches and InDels adds complexity

DB and query types

- DB may be:
 - A whole genome sequence (reference)
 - Whole proteome / transcriptome
 - Collection of genes / proteins from multiple organisms (UniProt, RefSeq)

- Query may be:
 - Gene / protein sequence
 - NGS read

Why do we need sequence mapping?

- Determine the origin of an unknown sequence
- Find homologous sequences
- Determine genomic position of a sequence
- Identify genomic variants between samples (variant calling)
- Determine the function of a sequence (annotation)

Sequence mapping - challenges

Large DBs - millions to billions of nucleotides/AAs

• Repetition - biological sequences tend to repeat

Noisy - sequencing errors and real biological variants

Two stages of sequence mapping

1. SEARCH -

Roughly find the position of the query in the DB

2. ALIGN -

Find the exact pairwise alignment of the query and the DB sequences

G	Т	G	Т	Α	С	Α	-	G
G	Т	Α	Т	Α	С	Α	Α	G

Searching for imperfect matches - intuition

A good match should have lots of short **exact** matches, called **seeds**

Local vs. global alignment

- Global alignment try to match entire sequences
 Useful for closely-related sequences of similar size
- Local alignment allow partial matching
 Useful for sequences expected to contain some similarity regions

Global or local?

When mapping short NGS reads to a genome?

1

When mapping proteins to a proteome of a related species?

2

Alignment scoring

Scoring matrix

	Α	G	С	Т
Α	10 -1 -3 -4	-1	-3	-4
G	-1	7	-5	-3
С	-3	-5	9	0
Т	-4	-3	0	8

EEELTKPRLLWALYFNMRDALSSG----VEKPRILYALYFNMRD--SSDE

Gap (InDel) penalty - gap open / gap extension

BLAST - Basic Local Alignment Search Tool

- One of the most popular bioinformatic tools
- BLAST finds regions of similarity between biological sequences.
- Compares nucleotide or protein sequences to sequence databases
- Calculates the statistical significance of DB hits
- Allows searching for **imperfect** sequence matches
- Uses a heuristic algorithm to improve efficiency

BLAST algorithm steps

- 1. Index the DB
- 2. Generate query words
- 3. compute neighbourhood words
- 4. Search the DB for exact word matches seeds
- 5. Elongate and combine seeds to get final alignment
- 6. Score alignment

BLAST - indexing the DB

- Only needed the first time a DB is used
- Mask repetitive and low-complexity regions -

ATATATTTATT → atatatttatt

- Break DB sequences into overlapping words of length W
 - W=3 for amino acids
 - W=11 for nucleotides
- Create a lookup table of words with their positions

WTDFGYPAILKGGTAC	Т

WTD	1		
TDF	2		
•••			
TAC	14		

BLAST - breaking query to words

A query of length *L* produces *L-W+1* **overlapping** words of length *W*

HKM

H K M

H K M

BLAST - finding neighbourhood words

- 1. For each word, find all neighbourhood words
 - = words with one change
- 2. Use a scoring matrix to assign each neighbourhood word a score
- 3. Discard neighbourhood words with score < T

BLAST - finding alignment seeds in DB

- Look for exact matches of query words with the DB words
- Masked regions are ignored

BLAST - seed elongation

Elongate each seed to both directions until a score drop > X is encountered

BLAST - scoring the alignment

Calculate total alignment score

- Discard alignments with score < S
- Remaining alignments are called High scoring Sequence Pairs **HSP**s

BLAST - scoring the alignment

- Calculate alignment bit score
 - Independent of query length
 - Independent of DB size

$$S' = \frac{\lambda S - \ln(K)}{\ln(2)}$$

 Calculate E-value - the number of hits with score >= s that one can expect to find in DB by chance

Smaller E → better hit

$$E = \frac{L \cdot N}{2^{S'}}$$

Why do we use different W for nucleotides and AAs?

```
W_{prot} = 3
W_{nuc} = 11
```

Different alphabet size!

What is the probability to find a match of length 3 by chance?

Protein: $(1/20)^3 = 0.000125$

Nucleotides: $(1/4)^3 = 0.015625$

Lots of "noise" seeds. If we increase to $W=11 \rightarrow (1/4)^{11} = 0.000000238$ Also – DNA sequences are usually longer than protein sequences Smaller W \rightarrow higher sensitivity, but slower runs

Summary – BLAST parameters

- \bullet *W* word size (query and DB)
- T − neighborhood words score cutoff
- \bullet X allowed score drop during seed elongation
- S HSP score cutoff

What would happen if we **increase** T?

BLAST programs

Program	Database	Query
BLASTN	Nucleotide	Nucleotide
BLASTP	Protein	Protein
BLASTX	Protein	Nucleotide translated into protein
TBLASTN	Nucleotide translated into protein	Protein
TBLASTX	Nucleotide translated into protein	Nucleotide translated into protein

The Blast command line software

Commands:

```
blastn , blastp , blastx , tblastn , tblastx , makeblastdb
```

Use the -help flag to get the full usage instructions

```
$ blastn -help | less
```

Creating a blast DB

- Mandatory arguments:
 - DB type nucleotides or proteins
 - Input file path to fasta

Example:

>4466584.3 G1E3M3B04IX1IW Greengenes 263471 16S ribosomal RNA [Microbacterium oxydans] gactATAATTTGTAAATTTCTTGAGATAGAATCATTCGTATTGAATGAGGTCAAATTCTC TAAACTGATTAAGAAGTATAATACTTAGATGCGAGTTATTGCATCACTTAACGGAGAGTT TGATCCTGGCTCAGGATGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGAACGTGAAG TCTGAATTGAGTACTTCGGTATGATATTTGGGTGGAAAGTGGCGGACGGGTGAGTAACAC GTGGGTAACCTGCCTCGAAGTGGGGACAACCATTGGAAACGATGGCTAATACCGCATAGT TCTTTAGATGCATGAGCATTTATAGATAAAACTCTGGTGCTTCGAGAGGGGTCTGCGTCC GATTAGTTAGTTGGTGGGTAAAGGCCTACCAAGACGATGATCGGTAGCTGGTCTGAGAGG ACGATCAGTCACACGGGAACTGAGACACGGTCCagtcgtgggagacaaggcacacagggg ataggnnnnn

>4466584.3|G1E3M3B04IX1IW|Greengenes|265788 16S ribosomal RNA [Microbacterium oxydans] qqctATAATTTGTAAATTTCTTGAGATAGAATCATTCGTATTGAATGAGGTCAAATTCTC TAAACTGATTAAGAAGTATAATACTTAGATGCGAGTTATTGCATCACTTAACGGAGAGTT TGATCCTGGCTCAGGATGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGAACGTGAAG TCTGAATTGAGTACTTCGGTATGATATTTGGGTGGAAAGTGGCGGACGGGTGAGTAACAC GTGGGTAACCTGCCTCGAAGTGGGGACAACCATTGGAAACGATGGCTAATACCGCATAGT TCTTTAGATGCATGAGCATTTATAGATAAAACTCTGGTGCTTCGAGAGGGGTCTGCGTCC GATTAGTTAGTTGGTGGGTAAAGGCCTACCAAGACGATGATCGGTAGCTGGTCTGAGAGG ACGATCAGTCACACGGGAACTGAGACACGGTCCagtcgtggagagacaagacacacagaga atagannnnn

\$ makeblastdb -in (my genome.fa) -dbtype nucl

Running blast queries (e.g. blastn)

- Mandatory arguments
 - Query fasta file with one or more records
 - DB blast DB name
 - Output where to write output
- Other important parameters:
 - o E-value threshold -evalue
 - Max number of DB hits per query -max_target_seqs

Example:

```
$ blastn -query seq.fa -db my_genome.fa -out
blast_result -evalue 0.0001
```

Blast output

- Blast can generate output in multiple formats
- Controlled via the
 - -outfmt parameter

```
-outfmt <String>
 alignment view options:
   0 = Pairwise,
   1 = Query-anchored showing identities,
   2 = Query-anchored no identities,
   3 = Flat query-anchored showing identities,
   4 = Flat guery-anchored no identities,
   5 = BLAST XML
   6 = Tabular,
   7 = Tabular with comment lines,
   8 = Segalign (Text ASN.1),
   9 = Segalign (Binary ASN.1),
  10 = Comma-separated values,
  11 = BLAST archive (ASN.1),
  12 = Segalign (JSON),
  13 = Multiple-file BLAST JSON,
  14 = Multiple-file BLAST XML2,
  15 = Single-file BLAST JSON,
  16 = Single-file BLAST XML2,
  17 = Sequence Alignment/Map (SAM),
  18 = Organism Report
```

Blast output format 0 - pairwise (default)

```
>sp|P19767|INSA7 ECOLI Insertion element IS1 7 protein InsA OS=Escherichia
coli (strain K12) OX=83333 GN=insA7 PE=3 SV=1
Length=91
                              E-value
           itscore Score
Score = 178 bits (452), Expect = 2e-61, Method: Compositional matrix adjust.
 Identities = 84/91 (92%), Positives = 88/91 (97%), Gaps = 0/91 (0%)
Query 1
          MASVSISCPSCSATDGVVRNGKSTAGHQRYLCSHCRKTWQLQFTYTASQPGTHQKIIDMA
                                                                         60
          MAS+SI CPSCSAT+GVVRNGKSTAGHQRYLCS CRKTWQLQFTYTASQPG HQKIIDMA
Sbjct 1
          MASISIRCPSCSATEGVVRNGKSTAGHORYLCSPCRKTWOLOFTYTASOPGKHOKIIDMA
                                                                         60
Query
          MNGVGCRATARIMGVGLNTILRHLKNSGRSR
                                            91
           MNGVGCRA+ARIMGVGLNT+LRHLKNSGRSR
Sbict
          MNGVGCRASARIMGVGLNTVLRHLKNSGRSR
                                            91
```

Blast output format 6 - tabular

- Tab-separated values (TSV)
- Easier to read/parse
- Displayed columns can be configured

```
Fields: query acc.ver, subject acc.ver, % identity, alignment length, mismatches, gap opens, q. start, q. end, s. start
 s. end, evalue, bit score
 15 hits found
                                sp|P0CF12|INSA6 EC0LI
                                                         100.000 91
                                                                                                                   91
sp|A0A385XJ53|INSA9 ECOLI
               189
sp|A0A385XJ53|INSA9 ECOLI
                                sp|P0CF11|INSA5 EC0LI
                                                         100.000 91
                                                                          0
                                                                                                   91
                                                                                                                   91
.66e-66
               189
sp|A0A385XJ53|INSA9 ECOLI
                                sp|P0CF07|INSA1 ECOLI
                                                                                                                   91
                                                         100.000 91
                                                                          0
                                                                                                   91
.66e-66
               189
sp|A0A385XJ53|INSA9 ECOLI
                                sp|A0A385XJ53|INSA9 ECOLI
                                                                  100.000 91
                                                                                                           91
                                                                                                                    1
                                                                                           0
      9.66e-66
sp|A0A385XJ53|INSA9 ECOLI
                                sp|P0CF10|INSA4 ECOLI
                                                         98.901
                                                                                                                    91
.20e-65
               188
sp|A0A385XJ53|INSA9 ECOLI
                                sp|P0CF09|INSA3 ECOLI
                                                         98.901
                                                                                                   91
                                                                                                                    91
.20e-65
               188
```