Basic RL Settings

• Given π , estimate $v^{\pi} := \mathbb{E}_{s \sim \mu}[V^{\pi}(s)]$

- Given π , estimate $v^{\pi} := \mathbb{E}_{s \sim \mu}[V^{\pi}(s)]$
- Alg outputs v; evaluated by $|v v^{\pi}|$

- Given π , estimate $v^{\pi} := \mathbb{E}_{s \sim \mu}[V^{\pi}(s)]$
- Alg outputs v; evaluated by $|v v^{\pi}|$
- Data: trajectories starting from $s_1 \sim \mu$ using π (i.e., $a_h = \pi(s_h)$)

$$\{(s_1^{(i)}, a_1^{(i)}, r_1^{(i)}, s_2^{(i)}, \dots, s_H^{(i)}, a_H^{(i)}, r_H^{(i)})\}_{i=1}^n$$

(for simplicity, assume process terminates in H time steps)

- Given π , estimate $v^{\pi} := \mathbb{E}_{s \sim \mu}[V^{\pi}(s)]$
- Alg outputs v; evaluated by $|v v^{\pi}|$
- Data: trajectories starting from $s_1 \sim \mu$ using π (i.e., $a_h = \pi(s_h)$)

$$\{(s_1^{(i)}, a_1^{(i)}, r_1^{(i)}, s_2^{(i)}, \dots, s_H^{(i)}, a_H^{(i)}, r_H^{(i)})\}_{i=1}^n$$

(for simplicity, assume process terminates in H time steps)

• Algorithm: output $\frac{1}{n} \sum_{i=1}^{n} \sum_{h=1}^{H} \gamma^{h-1} r_h^{(i)}$

- Given π , estimate $v^{\pi} := \mathbb{E}_{s \sim \mu}[V^{\pi}(s)]$
- Alg outputs v; evaluated by $|v v^{\pi}|$
- Data: trajectories starting from $s_1 \sim \mu$ using π (i.e., $a_h = \pi(s_h)$)

$$\{(s_1^{(i)}, a_1^{(i)}, r_1^{(i)}, s_2^{(i)}, \dots, s_H^{(i)}, a_H^{(i)}, r_H^{(i)})\}_{i=1}^n$$

(for simplicity, assume process terminates in H time steps)

- Algorithm: output $\frac{1}{n} \sum_{i=1}^{n} \sum_{h=1}^{H} \gamma^{h-1} r_h^{(i)}$
- Guarantee: w.p. at least 1δ , $|v v^{\pi}| \le \frac{R_{\text{max}}}{1 \gamma} \sqrt{\frac{1}{2n}} \ln \frac{2}{\delta}$
 - Depends on value range & sample size
 - No dependence on anything else, e.g., state/action spaces

• Want to optimize $v^{\pi} := \mathbb{E}_{s \sim \mu}[V^{\pi}(s)]$; have parameterized π_{θ} .

- Want to optimize $v^{\pi} := \mathbb{E}_{s \sim \mu}[V^{\pi}(s)]$; have parameterized π_{θ} .
- For each θ , roll-out trajectories using π_{θ} to estimate $v^{\pi_{\theta}}$

- Want to optimize $v^{\pi} := \mathbb{E}_{s \sim \mu}[V^{\pi}(s)]$; have parameterized π_{θ} .
- For each θ , roll-out trajectories using π_{θ} to estimate $v^{\pi_{\theta}}$
- Pick a bunch of θ , estimate return, pick the best

- Want to optimize $v^{\pi} := \mathbb{E}_{s \sim \mu}[V^{\pi}(s)]$; have parameterized π_{θ} .
- For each θ , roll-out trajectories using π_{θ} to estimate $v^{\pi_{\theta}}$
- Pick a bunch of θ , estimate return, pick the best
- In general, reduce to 0-th order optimization
 - e.g., CMA-ES for RL

- Want to optimize $v^{\pi} := \mathbb{E}_{s \sim \mu}[V^{\pi}(s)]$; have parameterized π_{θ} .
- For each θ , roll-out trajectories using π_{θ} to estimate $v^{\pi_{\theta}}$
- Pick a bunch of θ , estimate return, pick the best
- In general, reduce to 0-th order optimization
 - e.g., CMA-ES for RL
- Guarantee: depends on optimization

• Want to optimize $v^{\pi} := \mathbb{E}_{s \sim \mu}[V^{\pi}(s)]$, tabular state space

- Want to optimize $v^{\pi} := \mathbb{E}_{s \sim \mu}[V^{\pi}(s)]$, tabular state space
- Sampling oracle: can generate $s' \sim P(s, a)$ for any (s, a)

- Want to optimize $v^{\pi} := \mathbb{E}_{s \sim \mu}[V^{\pi}(s)]$, tabular state space
- Sampling oracle: can generate $s' \sim P(s, a)$ for any (s, a)
- Use a total of $n|S \times A|$ samples: n samples per (s, a)

- Want to optimize $v^{\pi} := \mathbb{E}_{s \sim \mu}[V^{\pi}(s)]$, tabular state space
- Sampling oracle: can generate $s' \sim P(s, a)$ for any (s, a)
- Use a total of $n|S \times A|$ samples: n samples per (s, a)
- Estimate transition probabilities

- Want to optimize $v^{\pi} := \mathbb{E}_{s \sim \mu}[V^{\pi}(s)]$, tabular state space
- Sampling oracle: can generate $s' \sim P(s, a)$ for any (s, a)
- Use a total of $n|S \times A|$ samples: n samples per (s, a)
- Estimate transition probabilities
- Plan in the estimated model

- Want to optimize $v^{\pi} := \mathbb{E}_{s \sim \mu}[V^{\pi}(s)]$, tabular state space
- Sampling oracle: can generate $s' \sim P(s, a)$ for any (s, a)
- Use a total of $n|S \times A|$ samples: n samples per (s, a)
- Estimate transition probabilities
- Plan in the estimated model
- Guarantee (will analyze later) depends on:
 - Sample size, value range
 - Horizon (error compounding)
 - \circ $|S \times A|$ ("curse of dimensionality")

Categorization of RL settings

• Policy evaluation: given π , estimate its value.

- Policy evaluation: given π , estimate its value.
 - Estimate $v^{\pi} := \mathbb{E}_{s \sim \mu}[V^{\pi}(s)]$ e.g., alg outputs v; evaluated by $|v - v^{\pi}|$

- Policy evaluation: given π , estimate its value.
 - Estimate $v^{\pi} := \mathbb{E}_{s \sim \mu}[V^{\pi}(s)]$ e.g., alg outputs v; evaluated by $|v - v^{\pi}|$
 - Estimate the entire value function e.g., alg outputs V; evaluated by $||V V^{\pi}||_{\infty}$

- Policy evaluation: given π , estimate its value.
 - Estimate $v^{\pi} := \mathbb{E}_{s \sim \mu}[V^{\pi}(s)]$ e.g., alg outputs v; evaluated by $|v - v^{\pi}|$
 - Estimate the entire value function e.g., alg outputs V; evaluated by $||V V^{\pi}||_{\infty}$
- Policy optimization

- Policy evaluation: given π , estimate its value.
 - Estimate $v^{\pi} := \mathbb{E}_{s \sim \mu}[V^{\pi}(s)]$ e.g., alg outputs v; evaluated by $|v - v^{\pi}|$
 - Estimate the entire value function e.g., alg outputs V; evaluated by $||V V^{\pi}||_{\infty}$
- Policy optimization
 - Optimize $v^{\pi} := \mathbb{E}_{s \sim \mu}[V^{\pi}(s)]$ e.g., alg outputs π ; evaluated by $v^* - v^{\pi}$

- Policy evaluation: given π , estimate its value.
 - Estimate $v^{\pi} := \mathbb{E}_{s \sim \mu}[V^{\pi}(s)]$ e.g., alg outputs v; evaluated by $|v - v^{\pi}|$
 - Estimate the entire value function e.g., alg outputs V; evaluated by $||V V^{\pi}||_{\infty}$
- Policy optimization
 - Optimize $v^{\pi} := \mathbb{E}_{s \sim \mu}[V^{\pi}(s)]$ e.g., alg outputs π ; evaluated by $v^* - v^{\pi}$
 - No particular initial state e.g., alg outputs π ; evaluated by $||V^* V^{\pi}||_{\infty}$

Passively given

- Passively given
 - For policy optimization: usually needs to be exploratory e.g., fixed number of samples from each (s,a)

- Passively given
 - For policy optimization: usually needs to be exploratory e.g., fixed number of samples from each (s,a)
 - For policy evaluation of π
 - Data generated w/ π: on-policy (somewhat easy)
 - Data generated w/ π' : off-policy (requires counter-factual reasoning)

- Passively given
 - For policy optimization: usually needs to be exploratory e.g., fixed number of samples from each (s,a)
 - For policy evaluation of π
 - Data generated w/ π: on-policy (somewhat easy)
 - Data generated w/ π' : off-policy (requires counter-factual reasoning)
- Collect own data

- Passively given
 - For policy optimization: usually needs to be exploratory e.g., fixed number of samples from each (s,a)
 - For policy evaluation of π
 - Data generated w/ π: on-policy (somewhat easy)
 - Data generated w/ π' : off-policy (requires counter-factual reasoning)
- Collect own data
 - Can ask for sample from any (s,a): powerful, unrealistic

- Passively given
 - For policy optimization: usually needs to be exploratory e.g., fixed number of samples from each (s,a)
 - For policy evaluation of π
 - Data generated w/ π : on-policy (somewhat easy)
 - Data generated w/ π' : off-policy (requires counter-factual reasoning)
- Collect own data
 - Can ask for sample from any (s,a): powerful, unrealistic
 - Can only roll-out trajectories: exploration!

Monte-Carlo

Monte-Carlo

- e.g., roll-out trajectories to estimate return
- e.g., policy gradient, evolutionary strategies
- e.g., Monte-Carlo tree search

Monte-Carlo

- e.g., roll-out trajectories to estimate return
- e.g., policy gradient, evolutionary strategies
- e.g., Monte-Carlo tree search
- Often no dependence on state space
- No compounding error
- Learning signals can be sparse
- Local optimal (sometimes)

Dynamic programming

Dynamic programming

- e.g., use data to approximately solve Bellman Equation
- e.g., estimate a transition model, then do planning

Dynamic programming

- e.g., use data to approximately solve Bellman Equation
- e.g., estimate a transition model, then do planning
- "Curse of dimensionality" (dependence on state space)
- Error compounds over time
- Leverage immediate signals to learn
- Global optimality (sometimes)

Manageable state spaces?

Yes: tabular RL

Manageable state spaces?

Yes: tabular RL

No: function approximation. Approximate what?

- Model?
- Value function?
- Policy?

Quick Recap of MDP results

Notations

 $\bullet \ \forall f \in \mathbb{R}^{|\mathcal{S} \times \mathcal{A}|} \ \text{, let } \pi_f = (s \mapsto \arg\max_{a \in \mathcal{A}} f(s,a)) \ \text{, } V_f = (s \mapsto \max_{a \in \mathcal{A}} f(s,a))$

Notations

- $\bullet \ \forall f \in \mathbb{R}^{|\mathcal{S} \times \mathcal{A}|} \ , \ \text{let} \ \pi_f = (s \mapsto \arg\max_{a \in \mathcal{A}} f(s,a)) \ , \ V_f = (s \mapsto \max_{a \in \mathcal{A}} f(s,a))$
- Bellman (optimality) op: $(\mathcal{T}f)(s,a) := R(s,a) + \gamma \langle P(s,a), V_f \rangle$

Notations

- $\bullet \ \forall f \in \mathbb{R}^{|\mathcal{S} \times \mathcal{A}|} \ , \ \text{let} \ \pi_f = (s \mapsto \arg\max_{a \in \mathcal{A}} f(s,a)) \ , \ V_f = (s \mapsto \max_{a \in \mathcal{A}} f(s,a))$
- Bellman (optimality) op: $(\mathcal{T}f)(s,a) := R(s,a) + \gamma \langle P(s,a), V_f \rangle$

Results

• \mathscr{T} is a γ -contraction under ℓ_{∞} : $\|\mathscr{T}f_1 - \mathscr{T}f_2\|_{\infty} \leq \gamma \|f_1 - f_2\|_{\infty}$ (therefore value iteration enjoys exponential convergence)

Notations

- $\bullet \ \forall f \in \mathbb{R}^{|\mathcal{S} \times \mathcal{A}|} \ , \ \text{let} \ \pi_f = (s \mapsto \arg\max_{a \in \mathcal{A}} f(s,a)) \ , \ V_f = (s \mapsto \max_{a \in \mathcal{A}} f(s,a))$
- Bellman (optimality) op: $(\mathcal{T}f)(s,a) := R(s,a) + \gamma \langle P(s,a), V_f \rangle$

Results

- \mathscr{T} is a γ -contraction under \mathscr{C}_{∞} : $\|\mathscr{T}f_1 \mathscr{T}f_2\|_{\infty} \leq \gamma \|f_1 f_2\|_{\infty}$ (therefore value iteration enjoys exponential convergence)
- Loss of acting greedily according to an approximate Q-value function $f: \|V^* V^{\pi_f}\|_{\infty} \le 2 \frac{\|Q^* f\|_{\infty}}{1 \gamma}$

Notations

- $\bullet \ \forall f \in \mathbb{R}^{|\mathcal{S} \times \mathcal{A}|} \ , \ \text{let} \ \pi_f = (s \mapsto \arg\max_{a \in \mathcal{A}} f(s,a)) \ , \ V_f = (s \mapsto \max_{a \in \mathcal{A}} f(s,a))$
- Bellman (optimality) op: $(\mathcal{T}f)(s,a) := R(s,a) + \gamma \langle P(s,a), V_f \rangle$

Results

- \mathscr{T} is a γ -contraction under \mathscr{C}_{∞} : $\|\mathscr{T}f_1 \mathscr{T}f_2\|_{\infty} \leq \gamma \|f_1 f_2\|_{\infty}$ (therefore value iteration enjoys exponential convergence)
- Loss of acting greedily according to an approximate Q-value function $f: \|V^* V^{\pi_f}\|_{\infty} \le 2 \frac{\|Q^* f\|_{\infty}}{1 \nu}$
- Advantage decomposition of value difference:

$$V^{\pi'}(s) - V^{\pi}(s) = \frac{1}{1 - \gamma} \mathbb{E}_{s' \sim \eta_s^{\pi'}} [A^{\pi}(s', \pi')]$$

$$Q^{\pi}(s', \pi'(s')) - V^{\pi}(s')$$

Useful tools

• Hoeffding's inequality: for independent r.v.'s X_1, \ldots, X_n bounded in [a, b], w.p. at least $1 - \delta$, the empirical average deviates from the true mean by at most $(b - a)\sqrt{\frac{1}{2n}\ln\frac{2}{\delta}}$.

Useful tools

- Hoeffding's inequality: for independent r.v.'s X_1, \ldots, X_n bounded in [a, b], w.p. at least 1δ , the empirical average deviates from the true mean by at most $(b a)\sqrt{\frac{1}{2n}\ln\frac{2}{\delta}}$.
- Union bound: Pr[union of events] ≤ sum of Pr[event].

Useful tools

- Hoeffding's inequality: for independent r.v.'s X_1, \ldots, X_n bounded in [a, b], w.p. at least 1δ , the empirical average deviates from the true mean by at most $(b a)\sqrt{\frac{1}{2n}\ln\frac{2}{\delta}}$.
- Union bound: Pr[union of events] ≤ sum of Pr[event].
- Hölder's inequality: for any $u, v \in \mathbb{R}^d$ and any norm, dual norm pair $\|.\|$ and $\|.\|_*$,

$$|\langle u, v \rangle| \le ||u|| \cdot ||v||_*$$

Special cases

$$\| \cdot \|_{2}$$
 and $\| \cdot \|_{2}$

$$\circ \|.\|_1$$
 and $\|.\|_{\infty}$

$$||x||_* := \sup_{\|y\|=1} y^\top x$$