Lead Scoring Case -Study

Presented by

Zuber Nagani

Problem Statement and Solution approach

The company requires to build a model wherein we need to assign a lead score to each of the leads such that the customers with the higher lead score have a higher conversion chance and the customers with the lower lead score have a lower conversion chance. **Solution approach**-

Step 1: Importing and Cleaning Data – Perform EDA

Step-2 Create Dummy Variables for Categorical Variable

Step 3 - Test Train Split

Step-4 Scaling Data Using Standard Scaler

Step-5 Eliminate Highly Correlated Data before Model Building

Step 6: Feature Selection Using RFE

Step 7 Model Building

Step-8 Metrics beyond simply accuracy

Step 9: Plotting the ROC Curve

Step 10A: Finding Optimal Cutoff Point

Step-10B (Optional Step) Precision and Recall

Step 11: Making predictions on the test set

Data Cleaning and Imputation –

Outliers Treatment -

- Outlier Treatment In the Numerical Variables, Outlier were present.
- Capping We capped the values using Quantiles (0.01 and 0.99) in order to get rid of outliers.

Data Cleaning and Imputation –

Categorical Variables- Checked the skewness of Data

- There are many categorical variables in which data was heavily skewed.
- Club the data categories into single category such as "Other" to minimize the number of dummy variables for a single attribute.

• Also, we dropped some of the columns that are highly skewed. (Like – 90%-10%) because it wont help in any new finding.

Data Cleaning and Imputation –

Summary

- Capped Outliers by using quantiles.
- Dropped the columns, having more that 50% null values.
- Imputed null values with appropriate method such as by using mean, median and mode and other metric.
- Replaced "Select" value with NULL and handled thereafter.
- Created new attribute (like "Others") in columns if the values are highly skewed.
- Created Dummy variables for all categorical variables and replaced the original columns.

Test-Train Split

Divided the data set into Test and Train Dataset

- Split Dependent and Independent variables
- Scale data using Standard Scaler
- Drop high correlated data manually before moving to RFE.

Model Building

Logistic Regression

What is achieved by the exercise?

- No multicollinearity . (Less VIF) High significance. (Less P Values)
- High Accuracy.
- Less Complexity. (Eliminate as much feature as possible without compromising much with Accuracy)
- Decent Trade-Off between TPR and FPR (Here we considered higher TPR given FPR is not too high)

Model Building Contd...

Logistic Regression

- Created Model-1 with 15 Features select by RFE as output.
- Overall 7 Model are made iteratively to find most highly significant features to predict the conversion rate.
- For instance, Model-1 metrices are given.
- Accuracy: 88% Accuracy defines the number of correct predictions out of all predictions made. It Means model are 88% accurate of predicting the actually converted customers.
- Since the variable 'Ctry_India' has the highest VIF. We dropped the column, again built the model.

Model Building Contd..

Dep. Variable:	Converted	No. Obser	vations:	6372			
Model: GLM		Df Re	siduals:	6356			
Model Family:	Binomial	Dt	Model:	15			
Link Function:	logit		Scale:	1.0000			
Method:	IRLS	Log-Like	Log-Likelihood:				
Date:	Sun, 31 May 2020	De	viance:	3566.6			
Time:	23:37:13	Pears	on chi2:	8.80e+03			
No. Iterations:	7						
Covariance Type:	nonrobust						
		coef	std err	Z	P> z	[0.025	0.975]
	cons	t -0.7762	0.218	-3.563	0.000	-1.203	-0.349
	TotalVisit	s 0.5057	0.064	7.876	0.000	0.380	0.632
Total Ti	me Spent on Website	e 1.0342	0.050	20.508	0.000	0.935	1.133
	Page Views Per Visi	t -0.6009	0.077	-7.797	0.000	-0.752	-0.450
	Ld_Sr_Direct Traffic	-2.1339	0.195	-10.969	0.000	-2.515	-1.753
	Ld_Sr_Google	e -1.8463	0.197	-9.370	0.000	-2.233	-1.460
	Ld_Sr_Olark Cha	t -2.3180	0.181	-12.800	0.000	-2.673	-1.963
Le	d_Sr_Organic Searcl	n -2.0626	0.224	-9.204	0.000	-2.502	-1.623
	Lst_Act_L_A_Ot	r -0.6501	0.114	-5.693	0.000	-0.874	-0.426
	Ctry_India	a -0.9189	0.164	-5.586	0.000	-1.241	-0.597
	Curnt Occ Ocp Ot	r 0.7045	0.174	4.048	0.000	0.363	1.046

VIF	Features	
12.03	Ctry_India	8
7.00	Ld_Sr_Google	4
5.64	Ld_Sr_Direct Traffic	3
5.50	Obj_Better Career Prospects	14
3.41	Ld_Sr_Organic Search	6
3.09	Tags_Tag_nt_provided	11
2.97	Page Views Per Visit	2
2.49	Ld_Sr_Olark Chat	5
2.42	TotalVisits	0
2.06	Tags_Will revert after reading the email	12
1.66	Lst_Ntbl_Act_SMS Sent	13
1.51	Tags_Ringing	10
1.47	Lst_Act_L_A_Otr	7
1.36	Total Time Spent on Website	1
1.31	Curnt_Occ_Ocp_Otr	9

Logistic Regression

- After the iterative Feature elimination exercise, for 7th model we achieved –
- No multicollinearity (VIF score less than 2 here which is pretty good)
- Simple Model (left with 9 features and every feature is significant)
- High Accuracy (Not compromised much in feature elimination. Overall Model Accuracy comes out to be 86%)

Model Building Contd..

		6372	vations:	No. Observ	Converted I	Dep. Variable:
		6362	siduals:	Df Res	Model: GLM	
		9	Model:	Df	Binomial	Model Family:
		1.0000	Scale:		logit l	Link Function:
		-1978.3	elihood:	Log-Like	IRLS	Method:
		3956.7	viance:	De	Sun, 31 May 2020	Date:
		7.85e+03	on chi2:	Pearso	23:37:14	Time:
					7	No. Iterations:
					nonrobust	Covariance Type:
[0.025 0.975	P> z	Z	std err	coef		
0.914 1.45	0.000	8.581	0.138	1.1846	const	
0.901 1.08	0.000	21.110	0.047	0.9932	ne Spent on Website	Total Tir
-3.396 -2.749	0.000	-18.609	0.165	-3.0726	Ld_Sr_Direct Traffic	
-3.101 -2.47	0.000	-17.440	0.160	-2.7877	Ld_Sr_Google	
-2.486 -1.868	0.000	-13.813	0.158	-2.1771	Ld_Sr_Olark Chat	
-3.324 -2.593	0.000	-15.864	0.186	-2.9580	Sr_Organic Search	Lo
-0.847 -0.419	0.000	-5.786	0.109	-0.6330	Lst_Act_L_A_Otr	
-3.784 -2.846	0.000	-13.866	0.239	-3.3150	Tags_Ringing	
3.961 4.63	0.000	24.996	0.172	4.2976	ter reading the email	Tags_Will revert af
1.619 2.036	0.000	17.174	0.106	1.8270	_Ntbl_Act_SMS Sent	Lst

VIF	Features	
1.56	Lst_Ntbl_Act_SMS Sent	8
1.49	Tags_Will revert after reading the email	7
1.46	Ld_Sr_Direct Traffic	1
1.45	Ld_Sr_Google	2
1.42	Lst_Act_L_A_Otr	5
1.27	Total Time Spent on Website	0
1.25	Tags_Ringing	6
1.21	Ld_Sr_Olark Chat	3
1.21	Ld_Sr_Organic Search	4

Logistic Regression

- **Accuracy** It defines the ability to differentiate the converted and non converted customers correctly. Accuracy is the proportion of actual converted and actual non-converted in all evaluated cases.
- **Sensitivity** -. It is the proportion of actual Converted customers that are correctly predicted as Converted by a model.
- **Specificity** It is the proportion of Non-Converted customers that are correctly predicted as NonConverted by a model.
- **FPR** It is the number of Non-Converted Customers incorrectly identified as Converted.
- Positive predictive value The proportion of actual converted customers as converted
- Negative predictive value The proportion of non-converted customers as non-converted.

Optimal Cutoff Point (Train Model)

- 0.3 is taken as the optimum cutoff point as all the 3 metrices (Sensitivity, Specificity and Accuracy) seems to doing
 pretty good at this point.
- Accuracy 85.9%

- Sensitivity 86.6%
- Specificity 85.5%
- FPR- 14.5%
- Positive predictive value 78%
- Negative predictive value 91%

ROC Curve and FPR-TPR Trade-Off (Train Model)

Probability	Accuracy	Sensitivity	Specificity
0.0%	38.0%	100.0%	0.0%
10.0%	67.7%	96.4%	50.1%
20.0%	84.5%	89.3%	81.5%
30.0%	85.9%	86.6%	85.5%
40.0%	86.9%	82.2%	89.8%
50.0%	86.5%	75.1%	93.4%
60.0%	85.4%	68.7%	95.6%
70.0%	85.4%	66.2%	97.1%
80.0%	84.6%	62.5%	98.1%
90.0%	82.0%	54.0%	99.1%

Here in the given case we should care about TPR (Sensitivity) reaches to 86.6% whereas FPR remains 14.5% for Probability Cut Off as 30%.

ROC is hugging Y axis which is good sign as Model is able to achieve high TPR with low FPR.

Probability	FPR (1-Specificity)	TPR(Sensitivity)
0.0%	100.0%	100.0%
10.0%	49.9%	96.4%
20.0%	18.5%	89.3%
30.0%	14.5%	86.6%
40.0%	10.2%	82.2%
50.0%	6.6%	75.1%
60.0%	4.4%	68.7%
70.0%	2.9%	66.2%
80.0%	1.9%	62.5%
90.0%	0.9%	54.0%
100.0%	0.0%	0.0%

Precision and Recall (Train Model)

At 40% Probability we got decent Precision and Recall tradeoff.

Precision: Probability that a predicted Converted is actually a Converted.

Recall: Probability that an actual Converted case is predicted correctly. (same as sensitivity)

F1-score: Is useful when you want to look at the performance of precision and recall together.

<u>Precision – Recall Trade Off</u>

obability	Precision	Recall	F1 Score	1.0	
0%	38%	100%	55%		
10%	54%	96%	69%	0.8	-
20%	75%	89%	81%		
30%	79%	87%	82%	0.6	
40%	83%	82%	83%		1
50%	88%	75%	81%	0.4	
60%	91%	69%	78%	0.2	_
70%	93%	66%	77%		
80%	95%	63%	75%	0.0	_
90%	97%	54%	69%	0.0 0.2 0.4 0.6 0.8	1.0

Train Vs. Test Model

	Probability	Accuracy	TPR (Sensitivity)	Specificity	FPR (1-Specificity)
Train Model	30.0%	85.9%	86.6%	85.5%	14.5%
Test Model	30.0%	86.70%	88.10%	85.90%	14.0%

ROC Curve

Most Significant Features

If we see the coefficients of all the features of final model, we would find that –

Features				
Tags_Will revert after reading the email	4.3			
Lst_Ntbl_Act_SMS Sent	1.83			
Total Time Spent on Website	0.99			
Lst_Act_L_A_Otr	-0.63			
Ld_Sr_Olark Chat	-2.18			
Ld_Sr_Google	-2.79			
Ld_Sr_Organic Search	-2.96			
Ld_Sr_Direct Traffic	-3.07			
Tags_Ringing				

How to interpret Positive Coefficients?

A positive coefficient simply implies that the probability that the event identified by the Dependent Variable happens increases as the value of the Independent Variable increases. In other words, when the value of the IV increases the probability increases. **How to interpret Negative Coefficients?**

A negative coefficient simply implies that the probability that the event identified by the Dependent Variable happens decreases as the value of the Independent Variable increases. In other words, when the value of the IV increases the probability decreases.

Recommendations

- Take Probability Cut-Off as 30% which will help to contact almost 86.6% (sensitivity) of the Leads with High Conversion chances.
- With the above call, the chance of having Lead as not converted is 14.5% (FPR) which company can bear as the focus is more on Converting as many leads as possible.

- With the given model the initial accuracy is doubled which can be further increased given the Company has an appetite to accept higher Non-Conversion Rate.
- If Company want the Leads to get converted then Leads with below features should be targeted-
- Tags_Will revert after reading the email
- Lst_Ntbl_Act_SMS Sent
- Total Time Spent on Website
- If Company want the Leads to get converted then Leads with below features should **not** be targeted-
- Lst Act L A Otr
- Ld_Sr_Olark Chat
- Ld_Sr_Google
- Ld_Sr_Organic Search
- Ld_Sr_Direct Traffic
- Tags_Ringing