Homework 05 Galois Correspondence of Covering Space

Algebraic Topology - Winter 2021

Due: March 04, 2021, 11:59 pm

1. Consider the following commuting diagram between path-connected spaces.

- (a) Show that if ℓ_2 and ℓ_3 are covering maps then so is ℓ_1 .
- (b) Find some non-trivial conditions for ℓ_1 and ℓ_2 under which if ℓ_1 and ℓ_2 are covering maps then so is ℓ_3 . Why does *your* proof not work for arbitrary ℓ_1 and ℓ_2 .
- 2. Classify connected covers, up to isomorphism of covers, of each of the following spaces:
 - (a) \mathbb{RP}^2 ,
 - (b) $\mathbb{RP}^2 \times \mathbb{RP}^2$,
 - (c) the Mobius strip,
 - (d) (optional) $\mathbb{RP}^2 \vee \mathbb{RP}^2$.
- 3. Let *n* be a positive integer greater than 1. Denote by $\bigvee_n S^1$ the wedge of *n* circles at a point.
 - (a) Construct a covering map $\ell: X \to \bigvee_2 S^1$ where $X \simeq \bigvee_n S^1$.
 - (b) Conclude that there exists an inclusion $\mathbb{F}_n \hookrightarrow \mathbb{F}_2$ where \mathbb{F}_k denotes the free group on k generators.¹
 - (c) Determine generators and index of $\operatorname{im}(\pi_1(\ell))$ inside \mathbb{F}_2 .
 - (d) (optional) For what positive integers m does there exist an inclusion $\mathbb{F}_m \hookrightarrow \mathbb{F}_n$.
 - (e) (optional) Show that every subgroup of a free group is free.

¹See also the ping-pong lemma.

Suggested exercises for practice from Hatcher

Pg. 79 1, 2, 4, 8, 10

Pg. 80 11, 12, 13, 14

Pg. 81 21, 22