FMI, Info, Anul II, 2021-2022 Fundamentele Limbajelor de programare

Seminar 1 Unificatori

Teorie

O substituție este o funcție parțială de la variabile la termeni, adică $\sigma: V \to Trm_{\mathcal{L}}$. Un unificator pentru doi termeni t_1 și t_2 este o substituție θ astfel încât $\theta(t_1) = \theta(t_2)$. Un unificator ν pentru t_1 și t_2 este un cel mai general unificator dacă pentru orice alt unificator ν pentru t_1 și t_2 , există o substituție μ astfel încât $\nu' = \nu$; μ .

Algoritmul de unificare:

	Lista soluţie	Lista de rezolvat
	S	R
Iniţial	Ø	$t_1 \stackrel{.}{=} t'_1, \dots, t_n \stackrel{.}{=} t'_n$
SCOATE	S	$R',t\stackrel{\cdot}{=}t$
	S	R'
DESCOMPUNE	S	$R', f(t_1, \ldots, t_n) \stackrel{\cdot}{=} f(t'_1, \ldots, t'_n)$
	S	$R', t_1 = t'_1, \dots t_n = t'_n$
REZOLVĂ	S	$R', x \stackrel{.}{=} t$ sau $t \stackrel{.}{=} x, x$ nu apare în t
	$x \doteq t, S[x \leftarrow t]$	$R'[x \leftarrow t]$
Final	\overline{S}	\emptyset

Algoritmul se termină normal dacă $R = \emptyset$ (în acest caz, în S are un unificator pentru termenii din lista inițială R).

Algoritmul este oprit cu concluzia inexistenței unui unificator dacă:

- (i) În R există o ecuație de forma $f(t_1, \ldots, t_n) \stackrel{\cdot}{=} g(t'_1, \ldots, t'_k)$ cu $f \neq g$. Simbolurile de constantă se consideră simboluri de funcție de aritate 0.
- (ii) În R există o ecuație de forma x = t sau t = x și variabila x apare în termenul t.

(S1.1) Considerăm

- x, y, z, u, v variabile,
- a, b, c simboluri de constantă,
- $h,g,(\mbox{\ \ })^{-1}$ simboluri de funcție de aritate 1,

- f, *, + simboluri de funcție de aritate 2,
- p simbol de funcție de aritate 3.

Aplicați algoritmul de unificare de mai sus pentru a găsi un unificator pentru termenii:

1)
$$p(a, x, h(g(y)))$$
 şi $p(z, h(z), h(u))$

2)
$$f(h(a), g(x))$$
 și $f(y, y)$

3)
$$p(a, x, g(x))$$
 și $p(a, y, y)$

4)
$$p(x, y, z)$$
 și $p(u, f(v, v), u)$

5)
$$f(x, f(x, x))$$
 și $f(g(y), f(z, g(a)))$

6)
$$x + (y * y)$$
 si $(y * y) + z$

7)
$$(x*y)*z$$
 şi $u*u^{-1}$

8)
$$x * y \sin u * u^{-1}$$

9)
$$x * y$$
 şi $x * (y * (u * v)^{-1})$

10)
$$x * y ext{ si } y * (u * v)^{-1}$$

11)
$$f(g(x), x)$$
 și $f(y, y)$

12)
$$p(x,z,z)$$
 şi $p(y,y,b)$

13)
$$p(a, u, h(x))$$
 și $p(y, f(y, z), z)$

14)
$$f(x, f(b, x))$$
 și $f(f(y, a), f(b, f(z, z)))$

15)
$$p(x,b,x)$$
 și $p(y,y,c)$

16)
$$f(x,y)$$
, $f(h(x),x)$ și $f(x,b)$

17)
$$f(x, f(x, g(y))), f(u, z)$$
 şi $f(g(y), y)$

18)
$$f(f(x,y),x), f(g(y),z)$$
 şi $f(u,h(z))$

19)
$$f(f(x,y),x), f(v,u)$$
 și $f(u,h(z))$

20)
$$f(f(x,y),x), f(v,u)$$
 și $f(u,z)$

21)
$$f(f(g(x),h(y)),h(z)), f(f(u,h(h(x))),h(y))$$
 și $f(v,w)$

22)
$$p(x,x,z),\,p(f(a,a),y,y)$$
 și $p(f(x,a),b,z)$

23)
$$p(x, x, z), p(f(a, a), y, y)$$
 şi $p(x, b, z)$

24)
$$p(x,x,z)$$
, $p(f(a,a),y,y)$ și $p(x,f(a,a),z)$

25)
$$p(f(x, a), g(y), z), p(f(a, a), z, u)$$
 și $p(v, u, z)$