

# Radionuclidic Standardization by Primary Methods

An Overview

R. Collé

Ionizing Radiation Division
Physics Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899 USA





## **Primary Standardizations**

means

## Realization of the SI unit Becquerel

- Direct measure number of nuclear transformations per unit time
  - Only in terms of base SI units of frequency, time, mass (sometimes length)
    - No use of other radioactivity calibration or standard
      - Sometimes called "direct" or "absolute" (sic)



Who are we?

And what do we do?



## Highest authority in USA

- for <u>setting</u> physical measurement <u>standards</u>
- and ensuring accurate measurements



#### **OUR ROLES**

#### primary objectives

- develop and maintain national standards through primary standardizations
- develop secondary standards and transfer standards;
- disseminate standards;

and *provide mechanisms* for insuring the quality of measurements

#### principal elements of what we do

- basic & applied research
  - includes technology & method development
- standards (SRMs) and calibrations
- proficiency testing (MQA)
- international intercomparisons & collaborations



#### Metrology

- ⇒ 130<sup>+</sup> nuclides
- $\Rightarrow$  > 30 systems

#### **Standards**

- ⇒ 60<sup>+</sup> nuclides
- ⇒ 9 natural matrix (multi-nuclide)
- $\Rightarrow$  500 1000 units per year
- ⇒ by over 200 users
- ⇒ \$300K \$600K USD in sales per year (depends on availability)
- ⇒ 20 users buy 10 or more SRMs per year

#### **Calibrations**

- $\Rightarrow$  > 100 routine per year
- $\Rightarrow$  20 30 nuclides; many geometries
- $\Rightarrow$  \$ 100K 200K USD per year
- ⇒ few special \$ 30 \$ 100K USD **EACH**

#### **MQA** programs

- ⇒ 17 unique
- $\Rightarrow$  from monthly to 2x per year

#### Our measurement methods and instruments include:

- Basic (primary) standardizations
- Secondary standardization methods
- Routine measurements (e.g., for monitoring, QC, etc.)
- Ancillary measurements (e.g., for impurity analyses, research, etc.)



Who are our users?

And how do we know their needs?

Many ..... domestically & other countries

### International and National Radioactivity Measurements "Traceability Tree"



#### Traceability of Radioactivity Measurements in the U.S.





### Our principal product...

solution standards of radionuclides



#### Radionuclides standardized at NIST

| H-3   | Fe-55 | Sr-90   | Sb-124  | Ce-141  | Hg-197 | Th-229 |
|-------|-------|---------|---------|---------|--------|--------|
| Be-10 | Co-56 | Nb-93   | I-124   | Ce-144  | Au-198 | Th-230 |
| C-14  | Mn-56 | Nb-94   | I-125   | Pm-147  | TI-201 | Th-232 |
| F-18  | Co-57 | Nb-95   | Sb-125  | Gd-148  | Hg-203 | U-232  |
| Na-22 | Co-58 | Zr-95   | Te-125m | Eu-152  | Pb-203 | U-234  |
| Na-24 | Fe-59 | Mo-99   | I-126   | Gd-153  | TI-204 | U-235  |
| Al-26 | Co-60 | Tc-99   | Xe-127  | Sm-153  | Bi-207 | Np-237 |
| P-32  | Cu-62 | Tc-99m  | I-129   | Eu-154  | Po-208 | U-238  |
| P-33  | Ni-63 | Pd-103  | I-130   | Eu-155  | Po-209 | Pu-238 |
| S-35  | Zn-65 | Ru-106  | I-131   | Eu-156  | Bi-210 | Pu-239 |
| CI-36 | Ga-67 | Ag-108m | Ba-131  | Ho-166  | Po-210 | Pu-240 |
| Ar-37 | Se-75 | Cd-109  | Xe-131m | Ho-166m | Pb-210 | Pu-241 |
| Ar-39 | Kr-79 | Ag-110m | Ba-133  | Yb-169  | At-211 | Am-241 |
| K-40  | Sr-82 | In-111  | Xe-133  | Lu-177  | Bi-214 | Pu-242 |
| K-42  | Kr-85 | In-113m | Xe-133m | Re-184  | Pb-214 | Am-243 |
| Ca-45 | Sr-85 | Sn-113  | Cs-134  | Re-186  | Rn-222 | Cm-243 |
| Sc-46 | Rb-86 | Sn-117m | Cs-137  | Re-188  | Ra-223 | Cm-244 |
| V-49  | Y-88  | Sn-121m | Ce-139  | W-188   | Ra-226 |        |
| Cr-51 | Sr-89 | I-123   | Ba-140  | lr-192  | Ra-228 |        |
| Mn-54 | Y-90  | Te-123m | La-140  | Au-195  | Th-228 |        |

#### 2007 Schedule for NEI Program

| January   | I-131  | 4401, lot 32 | 0.8 GBq | 30 MBq  |
|-----------|--------|--------------|---------|---------|
| February  | Mo-99  | 4412, lot 31 | 3.0 GBq | 75 MBq  |
| March     | open   |              |         |         |
| April     | Ga-67  | 4416, lot 27 | 0.4 GBq | 20 MBq  |
| May       | Tc-99m | 4410, lot 32 | 7.4 GBq |         |
| June      | TI-201 | 4404, lot 29 | 0.4 GBq | 33 MBq  |
| July      | open   |              |         |         |
| August    | In-111 | 4417, lot 26 | 0.4 GBq | 19 MBq  |
| September | Xe-133 | 4415, lot 30 | 7.4 GBq | 740 MBq |
| October   | Y-90   | 4427, lot 10 | 0.2 GBq | 19 MBq  |
| November  | open   |              |         |         |
| December  | I-125  | 4407, lot 31 | 0.8 GBq | 6 MBq   |

#### NIST Standard Reference Materials (SRMs) for Radionuclides Used in Nuclear Medicine and Biology

| Radionuclide            | SRM ID       | Last Issued   | Radionuclide   | SRM ID       | Last Issued    |
|-------------------------|--------------|---------------|----------------|--------------|----------------|
| Chromium-51             | 4400N        | July 1992     | Xenon-133      | 4415, lot 29 | September 2005 |
| Iodine-131              | 4401, lot 32 | January 2006  | Gallium-67     | 4416, lot 27 | April 2006     |
| Tin-113-indium-<br>113m | 4402C        | October 1980  | Indium-111     | 4417, lot 25 | August 2005    |
| Strontium-85            | 4403B        | April 1977    | Mercury-203    | 4418A        | November 1976  |
| Thallium-201            | 4404, lot 28 | June 2005     | Ytterbium-169  | 4419C        | October 1986   |
| Gold-198                | 4405B        | August 1978   | Lead-203       | 4420B        | November 1984  |
| Phosphorus-32           | 4406O        | October 1997  | Gold-195       | 4421A        | December 1979  |
| <b>Iodine-125</b>       | 4407, lot 31 | December 2005 | Chlorine-36    | 4422A        | April 1980     |
| Cobalt-57               | 4408F        | July 1995     | Strontium-90   | 4423A        | November 1985  |
| Selenium-75             | 4409D        | August 1981   | Sulfur-35      | 4424A        | October 1988   |
| Technetium-99m          | 4410, lot 32 | May 2006      | Samarium-153   | 4425D        | July 2002      |
| Iron-59                 | 4411B        | January 1979  | Strontium-89   | 4426A        | April 1995     |
| Molybdenum-99           | 4412, lot 31 | February 2006 | Yttrium-90     | 4427, lot 9  | October 2005   |
| Mercury-197             | 4413A        | May 1976      | Gadolinium-153 | 4428A        | October 1998   |
| Iodine-123              | 4414C        | June 1980     |                |              |                |

#### Natural Matrix SRMs

#### for Environmental Radioactivity Measurement



- Rocky Flat Soil I
- River Sediment
- Peruvian Soil
- Human Lung
- Human Liver
- Lake Sediment
- Ocean Sediment
- Bone Ash
- Shell Fish

#### Many other geometries for standards & calibrations

- Spiked sources (soils, synthetic urine, water)
- Filter sources
- Point Sources
- Marinelli beakers
- Radioactive gas ampoules
- Polyethlene encapsulated radon emanation sources
- Large area sources
- Dose vials
- Brachytherapy sources

Alpha-Particle Emitters Including Mixed Alpha Beta-Particle Emitters
X- and γ-ray Emitters

Customers include: Department of Defense, Department of Energy, Environmental Protection Agency, Nuclear Regulatory Agency, National Aeronautics and Space Agency, Department of Homeland Security, Nuclear power industry, Source & instrument manufacturers, Radiopharmacies, etc..

#### Radioactivity Measurement Assurance Programs (MQAs)

Nuclear Energy Institute – Radiopharmaceuticals (33 years)

Nuclear Energy Institute – Power Station Radiochemistry (19 years)

NIST Radiochemistry Intercomparison Program (NRIP) (8 years)

#### Primary methods (Pommé Classification)

#### realization of the SI unit Becquerel

not based or referenced to other standards or calibrations) \*

#### high-geometry methods

- • $4\pi$  or  $2\pi$  proportional counting of particles
- •internal gas counting with length-compensated tubes
- • $4\pi\gamma$  counting with large NaI(Tl) or CsI(Tl) sandwich detectors
- •liquid scintillation (LS) counting
- •and both classical and cryogenic calorimetry

#### defined-solid-angle methods

•use strictly controlled geometric constructions incorporating a large variety of detectors with known detection efficiencies

#### classical coincidence counting methods

- including the variants of anticoincidence, sum-peak, and correlation counting,
- LS-based triple-to-double-coincidence ratio (TDCR) method.
  - \* Exceptions: efficiency tracing by <sup>3</sup>H-standard CNET & coincidence counting (e.g. <sup>99</sup>Tc w/ <sup>60</sup>Co)coinicidence)

## 55Fe

primary standardization by microcalorimetry

linked to SRM

international intercomparison

## NIST Uncertainty Analysis for <sup>55</sup>Fe Microcalorimetric Standardization of NIST Solution Standards

|      |                                                |            | Relative standard<br>uncertainty |
|------|------------------------------------------------|------------|----------------------------------|
| Item | Uncertainty component                          | Assessment | contribution on massic           |
|      |                                                | Туре       | activity of 55Fe (%)             |
| 1    | Measurement precision for 13 independent       |            |                                  |
|      | calorimetric determinations of the power of    | A          | 0.25                             |
|      | solid source C; includes precision in the      |            |                                  |
|      | calibrations & baseline measurements for each  |            |                                  |
|      | determination; std. dev mean for v=12 degrees  |            |                                  |
|      | freedom (passes Normal test)                   |            |                                  |
| 2    | Gravimetric (mass) linkage of source C to      |            |                                  |
|      | NIST standard solutions                        | В          | 0.07                             |
| 3    | Activity loss in source C preparation          | В          | 0.15                             |
| 4    | Power calibration of calorimeter, includes any |            |                                  |
|      | systemic heat losses                           | В          | 0.05                             |
| 5    | Possible heat defect / excess effects          | В          | 0.1                              |
| 6    | 55Fe decay corrections during calorimetric     |            |                                  |
|      | measurements                                   | В          | 0.02                             |
| 7    | 55Fe decay corrections from calorimetric       | В          | 0.08                             |
|      | reference time to BIPM reference time.         |            |                                  |
| 8    | Average energy per decay for 55Fe (to convert  |            |                                  |
|      | calorimetric power to activity)                | В          | 0.17                             |
|      | COMBINED STANDARD UNCERTAINT                   | ΓV         | 0.39                             |

#### Results (without the outlier value)

International comparison of activity measurements of a solution of <sup>55</sup>Fe Preliminary results; January 2007



#### <sup>63</sup>Ni international intercomparison





| Nuclide                    | Method                                   | relative<br>standard<br>uncertainty | Confirmatory Measurement                                                                                                                                                          | Difference (%)                 |
|----------------------------|------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| <sup>63</sup> Ni           | 4π LS TDCR (NIST)                        | 0.16 %                              | 4πβ LS TDCR (LNHB)<br>4πβ LS CNET (NIST)                                                                                                                                          | -0.31<br>-0.77                 |
| <sup>55</sup> Fe<br>(NIST) | 4π calorimetry (linked by LS)            | 0.39 %                              | 4π LS TDCR (Polatom)<br>4π LS TDCR (LNHB)                                                                                                                                         | -0.87<br>-0.43                 |
| <sup>55</sup> Fe (BIPM)    | 4π calorimetry (linked by LS)            | 0.39 %                              | weighted mean value of 15 NMI labs                                                                                                                                                | -0.37                          |
| <sup>210</sup> Pb          | 4παβ LS CNET                             | 1.2 %                               | $4\pi\alpha\beta(LS)$ -γ(NaI) anticoin. counting $^{210}$ Po $\alpha$ spect. (102 a $^{209}$ Po tracer) $^{210}$ Po $\alpha$ spect. (128 a $^{209}$ Po tracer) HPGe photon spect. | +0.7<br>-3.0<br>-1.3<br>+4.7   |
| <sup>241</sup> Pu          | 4πβ LS CNET                              | 1.9 %                               | LS ( $^{241}$ Am ingrowth)<br>$4\pi\beta$ LS TDCR (NIST)<br>$4\pi\beta$ LS TDCR (LNHB)                                                                                            | +1.2<br>-7.9 *<br>-7.7 *       |
| <sup>210</sup> Pb          | 4παβ LS CNET                             | 1.2 %                               | compare to NPL standard (5 methods) see Table2                                                                                                                                    | -0.3                           |
| <sup>90</sup> Sr           | 4πβ LS TDCR                              | 0.51 %                              | 4πβ LS CNET                                                                                                                                                                       | + 0.09                         |
| <sup>241</sup> Am          | 4πα LS                                   | 0.22 %                              | $4\pi\alpha$ LS (independent) $4\pi\alpha$ LS (independent)                                                                                                                       | -0.05<br>-0.01<br>-0.15        |
| <sup>229</sup> Th          | 4παβ(LS)-γ(NaI) anticoincidence counting | 0.28 %                              | $4\pi\alpha\beta$ LS CNET $4\pi\alpha\beta$ LS TDCR $2\pi$ α proportional counting HPGe photon spectrometry                                                                       | -0.09<br>-1.7<br>-0.09<br>+2.1 |

<sup>\*</sup> Values are discrepant, and not considered to have confirmed

# 38 years of <sup>63</sup>Ni results





| Nuclide                    | Method                                   | relative<br>standard<br>uncertainty | Confirmatory Measurement                                                                                                                                                      | Difference<br>(%)              |
|----------------------------|------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| <sup>63</sup> Ni           | 4π LS TDCR (NIST)                        | 0.16 %                              | $4\pi\beta$ LS TDCR (LNHB)<br>$4\pi\beta$ LS CNET (NIST)                                                                                                                      | -0.31<br>-0.77                 |
| <sup>55</sup> Fe<br>(NIST) | $4\pi$ calorimetry (linked by LS)        | 0.39 %                              | 4π LS TDCR (Polatom)<br>4π LS TDCR (LNHB)                                                                                                                                     | -0.87<br>-0.43                 |
| <sup>55</sup> Fe<br>(BIPM) | $4\pi$ calorimetry (linked by LS)        | 0.39 %                              | weighted mean value of 15 NMI labs                                                                                                                                            | -0.37                          |
| <sup>210</sup> Pb          | 4παβ LS CNET                             | 1.2 %                               | 4παβ(LS)-γ(NaI) anticoin. counting <sup>210</sup> Po α spect. (102 a <sup>209</sup> Po tracer) <sup>210</sup> Po α spect. (128 a <sup>209</sup> Po tracer) HPGe photon spect. | +0.7<br>-3.0<br>-1.3<br>+4.7   |
| <sup>241</sup> Pu          | 4πβ LS CNET                              | 1.9 %                               | LS ( $^{241}$ Am ingrowth)<br>$4\pi\beta$ LS TDCR (NIST)<br>$4\pi\beta$ LS TDCR (LNHB)                                                                                        | +1.2<br>-7.9 *<br>-7.7 *       |
| <sup>210</sup> Pb          | 4παβ LS CNET                             | 1.2 %                               | compare to NPL standard (5 methods) see Table2                                                                                                                                | -0.3                           |
| <sup>90</sup> Sr           | 4πβ LS TDCR                              | 0.51 %                              | 4πβ LS CNET                                                                                                                                                                   | + 0.09                         |
| <sup>241</sup> Am          | 4πα LS                                   | 0.22 %                              | $4\pi\alpha$ LS (independent) $4\pi\alpha$ LS (independent)                                                                                                                   | -0.05<br>-0.01<br>-0.15        |
| <sup>229</sup> Th          | 4παβ(LS)-γ(NaI) anticoincidence counting | 0.28 %                              | $4\pi\alpha\beta$ LS CNET $4\pi\alpha\beta$ LS TDCR $2\pi$ α proportional counting HPGe photon spectrometry                                                                   | -0.09<br>-1.7<br>-0.09<br>+2.1 |

<sup>\*</sup> Values are discrepant, and not considered to have confirmed





#### Calorimetry

#### 13 independent determinations

#### LS intercomparisons

776 activity ratios; variables include:

- 3 counters
- 3 scintillators
- 44 matched cocktails
- 4 distinct aq. fraction (+Fe) compositions
- 2 NIST solution dilutions
- 97 days of aging



Results of the international comparison of activity concentration of a solution of 55Fe by a participant for each method. The arithmetic mean value (—), the sample standard deviation (- -) and the standard deviation of the mean  $(\cdot \cdot \cdot)$  are also drawn.



| Nuclide                    | Method                                   | relative<br>standard<br>uncertainty | Confirmatory Measurement                                                                                                                                                          | Difference<br>(%)              |
|----------------------------|------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| <sup>63</sup> Ni           | $4\pi$ LS TDCR (NIST)                    | 0.16 %                              | 4πβ LS TDCR (LNHB)<br>4πβ LS CNET (NIST)                                                                                                                                          | -0.31<br>-0.77                 |
| <sup>55</sup> Fe<br>(NIST) | 4π calorimetry (linked by LS)            | 0.39 %                              | 4π LS TDCR (Polatom)<br>4π LS TDCR (LNHB)                                                                                                                                         | -0.87<br>-0.43                 |
| <sup>55</sup> Fe<br>(BIPM) | 4π calorimetry (linked by LS)            | 0.39 %                              | weighted mean value of 15 NMI labs                                                                                                                                                | -0.37                          |
| <sup>210</sup> Pb          | 4παβ LS CNET                             | 1.2 %                               | $4\pi\alpha\beta(LS)$ -γ(NaI) anticoin. counting $^{210}$ Po $\alpha$ spect. (102 a $^{209}$ Po tracer) $^{210}$ Po $\alpha$ spect. (128 a $^{209}$ Po tracer) HPGe photon spect. | +0.7<br>-3.0<br>-1.3<br>+4.7   |
| <sup>241</sup> Pu          | 4πβ LS CNET                              | 1.9 %                               | LS ( $^{241}$ Am ingrowth)<br>$4\pi\beta$ LS TDCR (NIST)<br>$4\pi\beta$ LS TDCR (LNHB)                                                                                            | +1.2<br>-7.9 *<br>-7.7 *       |
| <sup>210</sup> Pb          | 4παβ LS CNET                             | 1.2 %                               | compare to NPL standard (5 methods) see Table2                                                                                                                                    | -0.3                           |
| <sup>90</sup> Sr           | 4πβ LS TDCR                              | 0.51 %                              | 4πβ LS CNET                                                                                                                                                                       | + 0.09                         |
| <sup>241</sup> Am          | 4πα LS                                   | 0.22 %                              | $4\pi\alpha$ LS (independent) $4\pi\alpha$ LS (independent)                                                                                                                       | -0.05<br>-0.01<br>-0.15        |
| <sup>229</sup> Th          | 4παβ(LS)-γ(NaI) anticoincidence counting | 0.28 %                              | $4\pi\alpha\beta$ LS CNET $4\pi\alpha\beta$ LS TDCR $2\pi$ α proportional counting HPGe photon spectrometry                                                                       | -0.09<br>-1.7<br>-0.09<br>+2.1 |

<sup>\*</sup> Values are discrepant, and not considered to have confirmed

Comparison of the NIST and NPL <sup>210</sup>Pb standards by five measurement methods.

| method                                                      | NPL / NIST ratio | relative<br>standard<br>uncertainty |
|-------------------------------------------------------------|------------------|-------------------------------------|
| NPL and NIST certified values from primary standardizations | 0.037484         | 1.5 %                               |
| 4πγ(NaI)                                                    | 0.037373         | 0.56 %                              |
| HPGe spectrometry.                                          | 0.036542         | 0.71 %                              |
| $4\pi\alpha\beta(LS)$                                       | 0.037249         | 0.17 %                              |
| <sup>210</sup> Po assay (2πα spect.)                        | 0.03736          | 0.75 %                              |
| Si(Li) low-energy spectrometry                              | 0.0381           | 1.9 %                               |



| Nuclide                    | Method                                   | relative<br>standard<br>uncertainty | Confirmatory Measurement                                                                                                                                                          | Difference (%)                 |
|----------------------------|------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| <sup>63</sup> Ni           | $4\pi$ LS TDCR (NIST)                    | 0.16 %                              | 4πβ LS TDCR (LNHB)<br>4πβ LS CNET (NIST)                                                                                                                                          | -0.31<br>-0.77                 |
| <sup>55</sup> Fe<br>(NIST) | 4π calorimetry (linked by LS)            | 0.39 %                              | 4π LS TDCR (Polatom)<br>4π LS TDCR (LNHB)                                                                                                                                         | -0.87<br>-0.43                 |
| <sup>55</sup> Fe<br>(BIPM) | 4π calorimetry (linked by LS)            | 0.39 %                              | weighted mean value of 15 NMI labs                                                                                                                                                | -0.37                          |
| <sup>210</sup> Pb          | 4παβ LS CNET                             | 1.2 %                               | $4\pi\alpha\beta(LS)$ -γ(NaI) anticoin. counting $^{210}$ Po $\alpha$ spect. (102 a $^{209}$ Po tracer) $^{210}$ Po $\alpha$ spect. (128 a $^{209}$ Po tracer) HPGe photon spect. | +0.7<br>-3.0<br>-1.3<br>+4.7   |
| <sup>241</sup> Pu          | 4πβ LS CNET                              | 1.9 %                               | LS ( <sup>241</sup> Am ingrowth)<br>4πβ LS TDCR (NIST)<br>4πβ LS TDCR (LNHB)                                                                                                      | +1.2<br>-7.9 *<br>-7.7 *       |
| <sup>210</sup> Pb          | 4παβ LS CNET                             | 1.2 %                               | compare to NPL standard (5 methods) see Table2                                                                                                                                    | -0.3                           |
| <sup>90</sup> Sr           | 4πβ LS TDCR                              | 0.51 %                              | 4πβ LS CNET                                                                                                                                                                       | + 0.09                         |
| <sup>241</sup> Am          | 4πα LS                                   | 0.22 %                              | 4πα LS (independent) 4πα LS (independent)                                                                                                                                         | -0.05<br>-0.01<br>-0.15        |
| <sup>229</sup> Th          | 4παβ(LS)-γ(NaI) anticoincidence counting | 0.28 %                              | $4\pi\alpha\beta$ LS CNET $4\pi\alpha\beta$ LS TDCR $2\pi$ α proportional counting HPGe photon spectrometry                                                                       | -0.09<br>-1.7<br>-0.09<br>+2.1 |

<sup>\*</sup> Values are discrepant, and not considered to have confirmed

90Sr

<sup>241</sup>Am

| Nuclide                    | Method                                                 | relative<br>standard<br>uncertainty | Confirmatory Measurement                                                                                                                                                      | Difference<br>(%)              |
|----------------------------|--------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| <sup>63</sup> Ni           | $4\pi$ LS TDCR (NIST)                                  | 0.16 %                              | 4πβ LS TDCR (LNHB)<br>4πβ LS CNET (NIST)                                                                                                                                      | -0.31<br>-0.77                 |
| <sup>55</sup> Fe<br>(NIST) | $4\pi$ calorimetry (linked by LS)                      | 0.39 %                              | $4\pi$ LS TDCR (Polatom)<br>$4\pi$ LS TDCR (LNHB)                                                                                                                             | -0.87<br>-0.43                 |
| <sup>55</sup> Fe (BIPM)    | $4\pi$ calorimetry (linked by LS)                      | 0.39 %                              | weighted mean value of 15 NMI labs                                                                                                                                            | -0.37                          |
| <sup>210</sup> Pb          | 4παβ LS CNET                                           | 1.2 %                               | 4παβ(LS)-γ(NaI) anticoin. counting <sup>210</sup> Po α spect. (102 a <sup>209</sup> Po tracer) <sup>210</sup> Po α spect. (128 a <sup>209</sup> Po tracer) HPGe photon spect. | +0.7<br>-3.0<br>-1.3<br>+4.7   |
| <sup>241</sup> Pu          | 4πβ LS CNET                                            | 1.9 %                               | LS ( $^{241}$ Am ingrowth)<br>$4\pi\beta$ LS TDCR (NIST)<br>$4\pi\beta$ LS TDCR (LNHB)                                                                                        | +1.2<br>-7.9 *<br>-7.7 *       |
| <sup>210</sup> Pb          | 4παβ LS CNET                                           | 1.2 %                               | compare to NPL standard (5 methods) see Table2                                                                                                                                | -0.3                           |
| <sup>90</sup> Sr           | 4πβ LS TDCR                                            | 0.51 %                              | 4πβ LS CNET                                                                                                                                                                   | + 0.09                         |
| <sup>241</sup> Am          | 4πα LS                                                 | 0.22 %                              | $4\pi\alpha$ LS (independent) $4\pi\alpha$ LS (independent)                                                                                                                   | -0.05<br>-0.01<br>-0.15        |
| <sup>229</sup> Th          | $4\pi\alpha\beta(LS)$ -γ(NaI) anticoincidence counting | 0.28 %                              | 4παβ LS CNET 4παβ LS TDCR 2π α proportional counting HPGe photon spectrometry                                                                                                 | -0.09<br>-1.7<br>-0.09<br>+2.1 |

<sup>\*</sup> Values are discrepant, and not considered to have confirmed



## <sup>229</sup>Th

| Nuclid                    | e Method                                                       | relative<br>standard<br>uncertainty | Confirmatory Measurement                                                                                                                                                      | Difference (%)                 |
|---------------------------|----------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| <sup>63</sup> Ni          | 4π LS TDCR (NIST)                                              | 0.16 %                              | 4πβ LS TDCR (LNHB)<br>4πβ LS CNET (NIST)                                                                                                                                      | -0.31<br>-0.77                 |
| <sup>55</sup> Fe<br>(NIST | 4π calorimetry (linked by LS)                                  | 0.39 %                              | 4π LS TDCR (Polatom)<br>4π LS TDCR (LNHB)                                                                                                                                     | -0.87<br>-0.43                 |
| <sup>55</sup> Fe<br>(BIPM | 4π calorimetry (linked by LS)                                  | 0.39 %                              | weighted mean value of 15 NMI labs                                                                                                                                            | -0.37                          |
| <sup>210</sup> Pb         | 4παβ LS CNET                                                   | 1.2 %                               | 4παβ(LS)-γ(NaI) anticoin. counting <sup>210</sup> Po α spect. (102 a <sup>209</sup> Po tracer) <sup>210</sup> Po α spect. (128 a <sup>209</sup> Po tracer) HPGe photon spect. | +0.7<br>-3.0<br>-1.3<br>+4.7   |
| <sup>241</sup> Pu         | 4πβ LS CNET                                                    | 1.9 %                               | LS ( $^{241}$ Am ingrowth)<br>$4\pi\beta$ LS TDCR (NIST)<br>$4\pi\beta$ LS TDCR (LNHB)                                                                                        | +1.2<br>-7.9 *<br>-7.7 *       |
| <sup>210</sup> Pb         | 4παβ LS CNET                                                   | 1.2 %                               | compare to NPL standard (5 methods) see Table2                                                                                                                                | -0.3                           |
| <sup>90</sup> Sr          | 4πβ LS TDCR                                                    | 0.51 %                              | 4πβ LS CNET                                                                                                                                                                   | + 0.09                         |
| <sup>241</sup> Am         | 4πα LS                                                         | 0.22 %                              | $4\pi\alpha$ LS (independent) $4\pi\alpha$ LS (independent)                                                                                                                   | -0.05<br>-0.01<br>-0.15        |
| <sup>229</sup> Th         | $4\pi\alpha\beta(LS)$ - $\gamma(NaI)$ anticoincidence counting | 0.28 %                              | $4\pi\alpha\beta$ LS CNET $4\pi\alpha\beta$ LS TDCR $2\pi$ α proportional counting HPGe photon spectrometry                                                                   | -0.09<br>-1.7<br>-0.09<br>+2.1 |

<sup>\*</sup> Values are discrepant, and not considered to have confirmed



#### Features of our standardization work

Available "transfer standards" (SRMs, etc.) are based on identified "needs"

Standardized by primary method

Usually at least one confirmatory determination

Establish links to previous calibrations, if possible

Develop & maintain secondary calibrations

Uncertainties (k = 2) typically < 1 %

u(k = 1) few tenths of %

Comparisons with other metrology labs

**N.B.** — "National Standards" are <u>not artifacts</u> but are our (NIST's) ability to perform primary standardizations with our instruments, procedures, people, etc...