Teil I

Wahrscheinlichkeitstheorie

Wahrscheinlichkeiten

1.1 Grundbegriffe

Def. 1.1 (Ereignisraum). Ereignisraum oder Grundraum $\Omega \neq \emptyset$ ist Menge aller möglichen Ergebnisse des Zufallsexperiments. Seine Elemente $w \in \Omega$ heissen Elementarereignisse.

<u>Bmk:</u> Kann sowohl endlich als auch unendlich sein, z.B. $\Omega_1 = \{1, 2, 3, 4, 5, 6\}$ für einen Würfelwurf, aber $\Omega_2 = \{t \mid t \geq 0\} = \mathbb{R}^+$ für die Lebensdauer einer Glühbirne.

Weiter kann der Ereignisraum auch aus Funktionen bestehen, so z.B. $\Omega_3 = \{f \mid f : \}$ $[0,\infty)\to\mathbb{R}$ für die Entwicklung eines Aktienkurses. **Def. 1.2** (Potenzmenge, Ereignis). Die *Potenzmenge* von Ω wird mit 2^{Ω} oder

mit $\mathcal{P}(\Omega)$ bezeichnet und ist die Menge aller Teilmengen von Ω . Ein *Ereignis* ist ein solches Element der Potenzmenge, also $A \in \mathcal{P}(\Omega)$. Die Klasse aller beobachtbaren Ereignisse ist \mathcal{F} , ebenfalls eine Teilmenge der Potenzmenge.

In einem $diskreten\ Wahrscheinlichkeitsraum$ ist Ω endlich oder abzählbar, damit ist oft $\mathcal{F}=2^{\Omega}$ und man unterscheidet beobachtbare und prinzipielle Ereignisse nicht. Ist Ω hingegen überabzählbar, dann muss \mathcal{F} eine echte Teilklasse von 2^{Ω} sein.

Def. 1.3 (σ -Algebra). Ein Mengensystem \mathcal{F} ist eine σ -Algebra, falls (i) $\Omega \in \mathcal{F}$ (ii) für jedes $A \in \mathcal{F}$ ist auch Komplement $A^{\complement} \in \mathcal{F}$.

(iii) für jede Folge $(A_n)_{n\in\mathbb{N}}$ mit $A_n\in\mathcal{F}$ für alle $n\in\mathbb{N}$ ist auch $\bigcup_{n=1}^{\infty}A_n\in\mathcal{F}$.

 \implies Die Potenzmenge 2^{Ω} ist immer eine σ -Algebra. Dasselbe Experiment kann oft durch verschiedene Tupel (Ω, \mathcal{F}) beschrieben werden. (wobei die Wahl von \mathcal{F} von Ω abhängt).

A0) $P[A] \ge 0 \quad \forall A \in \mathcal{F}$

Def. 1.4 (Wahrscheinlichkeitsmass). Ein Wahrscheinlichkeitsmass ist eine

A2) $P[\bigcup_{i=1}^{\infty} A_i] = \sum_{i=1}^{\infty} P[A_i]$ für disjunkte Ereignisse A_i .

- Aus den Axiomen A1 und A2 lassen sich die folgenden Rechenregeln herleiten:
- $P[A^{\complement}] = 1 P[A]$ • $P[\emptyset] = 0$ und $P[\Omega] = 1$
 - $P[A \cup B] = P[A] + P[B] P[A \cap B]$

• $A \subseteq B \implies P[A] \le P[B]$

A1) $P[\Omega] = 1$

Abbildung $P: \mathcal{F} \to [0,1]$ mit folgenden Axiomen:

Diskrete Wahrscheinlichkeitsräume

Annahme: Ω ist endlich oder abzählbar unendlich und $\mathcal{F}=2^{\Omega}$. Hier kann man das Wahrscheinlichkeitsmass definieren, in dem man die Wahrscheinlichkeiten der

Elementarereignisse addiert.

Ist $\Omega = \{\omega_1, \ldots, \omega_N\}$ endlich mit $|\Omega| = N$ und sind alle ω_i gleich wahrscheinlich,

also $p_i = 1/N$, so nennt man Ω einen Laplace Raum und P ist die diskrete Gleichverteilung. Die Wahrscheinlichkeit eines Ereignisses kann dann wie folgt berechnet werden:

$$P[A] = \frac{\text{Anz. Elementarereignisse in } A}{\text{Anz. Elementarereignisse in } \Omega} = \frac{|A|}{|\Omega|}$$
 Die diskrete Gleichverteilung existiert nur, falls Ω endlich und nicht abzählbar

unendlich ist.

Def. 1.5 (Bedingte Wahrscheinlichkeit). A, B Ereignisse und P[A] > 0. Die

1.3 Bedingte Wahrscheinlichkeiten

bedingte Wahrscheinlichkeit von B unter der Bedingung A ist definiert als $P[B \mid A] := \frac{P[B \cap A]}{P[A]}$

$$P[B \mid A] := \frac{1}{P[A]}$$
A ist $P[\cdot \mid A]$ wieder ei

Bei fixierter Bedingung A ist $P[\cdot \mid A]$ wieder ein Wahrscheinlichkeitsmass auf $(\Omega, \mathcal{F}).$ \implies Multiplikationsregel: $P[A \cup B] = P[B \mid A] \cdot P[A]$ und Additionsregel: $P[A \cup B] =$

$$\Rightarrow$$
 Multiplikationsregel: $P[A \cup B] = P[B \mid A] \cdot P[A]$ und Additionsregel: $P[A \cup B] = P[A] + P[B] - P[A \cap B]$

Satz 1.1 (Satz der totalen Wahrscheinlichkeit). Sei A_1, \ldots, A_n eine Zerle-

gung von Ω in paarweise disjunkte Ereignisse, d.h. $\bigcup_{i=1}^n A_i = \Omega$ und $A_i \cap A_k =$ $\emptyset \ \forall i \neq k$. Dann gilt: $P[B] = \sum_{i=1}^{n} P[B \mid A_i] \cdot P[A_i]$

Beweis. Da
$$B \subseteq \Omega \implies B \cap \Omega = B = B \cap (\bigcup_{i=1}^n A_i) = \bigcup_{i=1}^n (B \cap A_i)$$
. Weiter sind alle Mengen der Art $(B \cap A_i)$ paarweise disjunkt, was bedeutet, dass $(B \cap A_i)$ eine disjunkte Zerlegung von B bilden. Damit folgt dann

$$P[B] = P\left[\bigcup_{i=1}^{n} (B \cap A_i)\right] = \sum_{i=1}^{n} P[B \cap A_i] = \sum_{i=1}^{n} P[B \mid A_i] \cdot P[A_i]$$

$$P[B] = P\left[\bigcup_{i=1}^{n} (B \cap A_i)\right] = \sum_{i=1}^{n} P[B \cap A_i] = \sum_{i=1}^{n} P[B \mid A_i] \cdot P[A_i]$$

Bedingte Wahrscheinlichkeiten in mehrstufigen Experimenten können oft als Wahrscheinlichkeitsbäume dargestellt werden.

Satz 1.2 (Satz von Bayes). Sei A_1, \ldots, A_n eine Zerlegung von Ω mit $P[A_i] > 0$ für $i = 1 \dots n$ und B ein Ereignis mit P[B] > 0, dann gilt für jedes k

$$P[A_k \mid B] = \frac{P[B \mid A_k] \cdot P[A_k]}{\sum_{i=1}^{n} P[B \mid A_i] \cdot P[A_i]}$$

Beweis. Verwende Definition der bedingten Wahrscheinlichkeit, wende im Zähler die Multiplikationsregel und im Nenner den Satz der totalen Wahrscheinlichkeit an.

1.4 Unabhängigkeit

Def. 1.6 (Unabhängigkeit von 2 Ereignissen). Zwei Ereignisse A, B heissen stochastisch unabhängig falls $P[A \cap B] = P[A] \cdot P[B]$. Ist P[A] = 0 oder P[B] =0, so sind zwei Ereignisse immer unabhängig. Ist $P[A] \neq 0$, dann gilt folgende

Aquivalenz: $A, B \text{ sind unabhängig } \iff P[B \mid A] = P[B]$

Analoges gilt falls $P[B] \neq 0$.

Analoges gilt falls
$$P[B] \neq 0$$
.

Def. 1.7 (allgemeine Unabhängigkeit). Ereignisse A_1, \ldots, A_n heissen stochastisch unabhängig, falls für jede endliche Teilfamilie die Produktformel gilt. D.h.

Diskrete Zufallsvariablen und Verteilungen In diesem Kapitel ist $\Omega \neq \emptyset$ abzählbar oder endlich und $\mathcal{F} = 2^{\Omega}$ die Potenzmenge von Ω , und damit das Wahrscheinlichkeitsmass P gegeben durch seine Gewichte $p_i = P[\omega_i]$ für alle i. Grundbegriffe 2.1

 $P\left[\bigcap_{i=1}^m A_{k_i}\right] = \prod_{i=1}^m P[A_{k_i}]$

Bemerkung: Auch wenn muan abzählbar viele Ereignisse zulässt, muss die Produktformel trotzdem nur für alle endlichen Teilfamilien gelten. Paarweise unabhängigkeit impliziert nicht totale Unabhängigkeit, so können z.B. A, B, C alle paarweise un-

für ein $m \in \mathbb{N}$ und $\{k_1, \dots, k_m\} \subseteq \{1, \dots, n\}$ gilt immer

abhängig sein, aber zusammen sind sie dennoch abhängig.

 \mathcal{F} -messbar sein muss.

funktion I_A von A definiert durch

Def. 2.1 (diskrete Zufallsvariable). Eine reellwertige diskrete Zufallsvariable auf Ω ist eine Funktion $X:\Omega\to\mathbb{R}$ mit abzählbarem Wertebereich $\mathcal{W}(X)=$

$$\{x_1,\ldots,x_n\}.$$
• die Verteilungsfunktion von X ist die Abbildung $F_X:\mathbb{R}\to[0,1]$ und ist

definiert durch
$$t\mapsto F_X(t):=P[X\leq t]:=P[\{\omega\mid X(\omega)\leq t\}]$$

• die diskrete Dichte von X ist die Funktion
$$p_X: \mathcal{W}(X) \to [0,1]$$
 und ist definiert durch

$$p_X(x_k) := P[X = x_k] = P[\{\omega \mid X(\omega) = x_k\}]$$
 für $k = 1, 2$
In unserem Fall mit Ω abzählbar und $\mathcal{F} = 2^{\Omega}$ ist jede Funktion $X : \Omega \to \mathbb{R}$ eine Zufallsvariable. Sind Ω, \mathcal{F} allgemeiner, dann muss die obige Definition der Verteilung so angepasst werden, dass die Menge $\{X \leq t\}$ ein beobachtbares Ereignis für jedes t ist, also in \mathcal{F} ist. Das bedeutet, dass die Funktion X im allgemeinen Fall

Def. 2.2 (Indikatorfunktion). Für jede Teilmenge $A \subseteq \Omega$ ist die *Indikator*-

 $I_A(\omega) := \begin{cases} 1 & \text{falls } \omega \in A \\ 0 & \text{falls } \omega \in A^{\complement} \end{cases}$

In unserem Fall ist
$$I_A$$
 für jedes $A \subseteq \Omega$ eine Zufallsvariable.

Eigenschaften der Dichte und Verteilungsfunktion

- \bullet die Verteilung F_X ist vollständig durch die Dichte p_X festgelegt, nämlich: $F_X(t)=P[X\leq t]=\sum_{k~{
 m mit}~x_k\leq t}\{X=x_k\}$

• für jedes $x_k \in \mathcal{W}(X)$ gilt $0 \le p_X(x_k) \le 1$ und $\sum_{x_k \in \mathcal{W}(X)} p_X(x_k) = 1$.

- ist W nichtleer und abzählbar und $f: W \to \mathbb{R}$ eine Funktion zwischen 0 und 1 für jedes $w_k \in \mathcal{W}$ mit $\sum_{w_k \in \mathcal{W}} f(w_k) = 1$, dann kann man einen Wahrscheinlichkeitsraum (Ω, \mathcal{F}, P) und darauf eine Zufallsvariable X konstruie-
- ren, deren Gewichtsfunktion gerade die Funktion f ist. Dazu genügt bspw. $\Omega := \mathcal{W}, \ \mathcal{F} := 2^{\Omega} \text{ und } X(\omega) = \omega.$
 - Die Verteilung beschreibt das stochastische Verhalten einer Zufallsvariable.
 - Das ist dasjenige Wahrscheinlichkeitsmass μ_X auf \mathbb{R} , das durch $\mu_X(B) :=$ $P[X \in B]$ definiert ist. Ist X diskrete Zufallsvariable $\implies \mu_X$ heisst diskrete Verteilung. Damit kann man die Verteilung μ_X und die Gewichtsfunktion p_X

direkt miteinander identifizieren: der einzige Unterschied besteht darin, dass

 μ_X als Argumente Teilmengen von $\mathcal{W}(\mathcal{X})$ hat, p_X hingegen Elemente von $\mathcal{W}(X)$. Folgende Formel beschreibt ihren Zusammenhang:

$$\mu_X(B) = P[X \in B] = \sum_{x_k \in B} p_X(x_k)$$
 für $B \subseteq \mathcal{W}(X)$

2.2Erwartungswerte

Def. 2.3 (Erwartungswert). Sei X eine diskrete Zufallsvariable mit Gewichtsfunktion $p_X(x)$, dann ist der Erwartungswert definiert als

$$\mathbb{E}[X]:=\sum_{x_k\in\mathcal{W}(X)}x_K\cdot p_X(x_k)$$
sofern diese Reihe absolut konvergiert. Ansonsten existiert der Erwartungswert

nicht. Man kann den Erwartungswert auch als Summe über Ω schreiben, falls er exisitert, denn dann gilt:

$$\mathbb{E}[X] = \sum_{\omega_i \in \Omega} X(\omega_i) P[\{\omega_i\}] = \sum_{\omega_i \in \Omega} p_i X(\omega_i)$$
 weitere Umformung existiert im Skript. Seite 43)

(eine weitere Umformung existiert im Skript, Seite 43)

Satz 2.1 (Erwartungswert von Funktionen von ZV). Sei X eine diskrete

mit existentem Erwartungswert. Dann gilt:

Zufallsvariable mit Gewichtsfunktion
$$p_X(x)$$
 und $Y = g(X)$ für eine Funktion $g: \mathbb{R} \to \mathbb{R}$. Dann gilt
$$\mathbb{E}[Y] = \mathbb{E}[g(X)] = \sum_{x_k \in \mathcal{W}(X)} g(x_k) \cdot p_X(x_k)$$

sofern die Reihe absolut konvergiert. Damit genügt es, die Verteilung von X zu kennen, man muss nicht extra die Ver-

teilung von Y zuerst bestimmen, um den Erwartungswert von Y zu berechnen. Satz 2.2 (Eigenschaften des Erwartungswerts). Seien X, Y Zufallsvariablen

(i) Monotonie: $X \leq Y \implies \mathbb{E}[X] \leq \mathbb{E}[Y]$ wobei dies bedeutet, dass $X(\omega) \leq$ $Y(\omega)$ für alle ω .

(ii) **Linearität:** für beliebige $a, b \in \mathbb{R}$ gilt: $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$ (iii) nimmt X nur Werte aus $\mathbb{N}_0 = \{0, 1, 2, \dots\}$ annimmt, dann gilt:

$$\mathbb{E}[X] = \sum_{i=1}^{\infty} P[X \ge j] = \sum_{l=0}^{\infty} [P_X \ge l]$$

Def. 2.4 (Varianz & Standardabweichung). Sei X eine diskrete ZV mit $\mathbb{E}[X^2] < \infty$

 $Var[X] := \mathbb{E}[(X - \mathbb{E}[X])]$

dann definieren wir die Varianz von X als

und die Standardabweichung von X als

$$\sigma(X) = \operatorname{sd}(X) := \sqrt{\operatorname{Var}[X]}$$

Beides sind Streuungsmasse für die Verteilung von X

Schreiben wir $m_X := \mathbb{E}[X]$ und definieren die Funktion $g(x) := (x - m_X)^2$, dann erhalten wir $Var[X] = \sum_{x_k \in W(X)} (x_k - m_X)^2 \cdot p_X(x_K)$

$$p_X(x_K)$$

 $(x_1, \dots, x_n) \mapsto F(x_1, \dots, x_n) := P[X_1 \le x_1, \dots, X_n \le x_n]$ Sind X_1, \ldots, X_n diskrete Zufallsvariablen, so definiert man ihre gemeinsame Gewichtsfunktion $p: \mathbb{R}^n \to [0,1]$ durch $p(x_1,\ldots,x_n) := P[X_1 = x_1,\ldots,X_n = x_n]$. Es ist klar, dass $p(x_1,\ldots,x_n)=0$ falls das Ereignis (x_1,\ldots,x_n) nicht im gemeinsamen Wertebereich liegt.

Gemeinsame Verteilungen & Unabhängige Zufallsvariablen

Def. 2.5 (Gemeinsame Verteilung & Dichte). Seien X_1, \ldots, X_n Zufallsvariablen. Die gemeinsame Verteilungsfunktion von X_1, \ldots, X_n ist die Abbildung

Lemma 2.1. Die Varianz von Zufallsvariablen hat folgende Eigenschaften:

(i) $Var[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$

(ii) $Var[aX + b] = a^2 \cdot Var[X]$

 $F:\mathbb{R}^n\to[0,1]$ definiert durch

gegeben durch

2.3

Aus der gemeinsamen Gewichtsfunktion p erhält man die gemeinsame Verteilungsfunktion:

Verteilungsfunktion F. Dann ist die Randverteilung von X gegeben durch

 $F_X: \mathbb{R} \to [0,1] \text{ mit } x \mapsto F_X(x) := P[X \le x] = P[X \le x, Y < \infty] = \lim_{y \to \infty} F(x,y)$

Sind X, Y diskrete Zufallsvariablen mit $W(Y) = \{y_1, y_2, \dots\}$ und gemeinsamer Gewichtsfunktion p(x,y), so ist die Gewichtsfunktion der Randverteilung von X

 $F(x_1,\ldots,x_n) = \sum_{y_1 \le x_1,\ldots,y_n \le x_n} p(y_1,\ldots,y_n)$ Def. 2.6 (Randverteilung). Sein X,Y Zufallsvariablen mit der gemeinsamen

$$=\sum_{y_j\in\mathcal{W}(Y)}P[X=x,Y=y_j]$$

$$=\sum_{y_j\in\mathcal{W}(Y)}p(x,y_j)\quad\text{für }x\in\mathcal{W}(X)$$
 Analoge Aussagen gelten natürlich für Y .
Für Vektoren von diskreten Zufallsvariablen (X_1,\ldots,X_n) definiert man die Randverteilungen für jeden möglichen $Teilvektor$ von (X_1,\ldots,X_n) . Es gibt also eindimensionale, aber auch multi-dimensionale Randverteilungen!

 $p_X : \mathcal{W}(X) \to [0, 1] \text{ mit } x \mapsto p_X(x) = P[X = x]$

nen der Randverteilungen als Zeilen- bzw. Spaltensummen der gemeinsamen Gewichtsfunktionen, wie das folgende Bespiel illustriert:

 $p_Y(y)$

3	$p_X(x)$		
)	$\frac{1}{2}$		
-	$\frac{1}{2}$		
-			
nicht ohr			

Aus den Randverteilungen kann man jedoch r ne Weiteres die gemeinsame Verteilung herleiten, dazu fehlt Information über die Abhängigkeitsstruktur der Zufallsvariable.

Bei zweidimensionalen diskreten Zufallsvariablen erhält man die Gewichtsfunktio-

Def. 2.7 (Unabhängigkeit). Zufallsvariablen X_1, \ldots, X_n heissen unabhängig, falls gilt $F(x_1,\ldots,x_n)=F_{X_1}(x_1)\cdots F_{X_n}(x_n)$ Folgendes Lemma gibt den Zusammenhang zu unabhängigen Ereignissen: **Lemma 2.2.** Die diskreten Zufallsvariablen X_1, \ldots, X_n sind unabhängig

 \iff für beliebige Teilmengen $B_i \subseteq \mathcal{W}(X_i), i = 1 \dots n$ sind die Ereignisse $A_i :=$

 $\{X_i \in B_i\}$ für $i = 1 \dots n$ unabhängig \iff für beliebige Teilmengen $B_i \subseteq \mathcal{W}(X_i), i = 1 \dots n$ gilt:

$$P[X_1 \in B_1, \dots, X_n \in B_n] = \prod_{i=1}^n P[X_i \in B_i]$$

Satz 2.3 (Funktionen auf Zufallsvariablen). Seien X_1, \ldots, X_n diskrete unabhängige Zufallsvariablen und $f_i: \mathbb{R} \to \mathbb{R}$ irgendwelche Funktionen. Sei weiter $Y_i := f_i(X_i)$ für $1 \leq 1 \leq n$. Dann sind die Zufallsvariablen Y_1, \ldots, Y_n ebenfalls unabhängig.

2.4 Funktionen von mehreren Zufallsvariablen

Sind X_1, \ldots, X_n diskrete Zufallsvariablen, dann ist $Y = g(X_1, \ldots, X_n)$ wieder eine

Zufallsvariable für eine Funktion
$$g: \mathbb{R}^n \to \mathbb{R}$$
.

Satz 2.4. Seien X_1, \dots, X_n diskrete Zufallsvariablen mit endlichen Erwartungswerten. Sei $Y = a + \sum_{i=0}^{n} b_i X_i$ für Konstanten a, b_i . Dann gilt:

$$\mathbb{E}[Y] = a + \sum_{i=0}^{n} b_i \mathbb{E}[X_i]$$

finiert als

 $Cov(X,Y) := \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$ **Def. 2.9** (Korrelation). Die Korrelation von X und Y ist definiert durch

$$\rho(X,Y) := \begin{cases} \frac{Cov(X,Y)}{\sigma(X)\sigma(Y)} & \text{falls } \sigma(X)\sigma(Y) > 0\\ 0 & \text{sonst} \end{cases}$$

 $\sigma(X)\sigma(Y)$, und damit folgt für die Korrelation $-1 \le \rho(X, Y) \le 1$ Wir haben bereits gesehen, dass der Erwartungswert linear ist. Für die Varianz ist

Satz 2.5 (Wertebereich der Korrelation). Seien X,Y wie in der Definition der Kovarianz, dann folgt aus der Cauchy-Schwarz Ungleichung, dass $|Cov(X,Y)| \leq$

Def. 2.8 (Kovarianz). Seien X, Y Zufallsvariablen auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{F}, P) mit endlichen Erwartungswerten. Dann ist die Kovarianz de-

Korollar 2.1 (Summenformel für Varianzen).

dies nicht ganz so einfach. Es gilt:

$$\operatorname{Var}\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} \operatorname{Var}[X_{i}] + 2 \cdot \sum_{i < j} \operatorname{Cov}(X_{i}, X_{j})$$

Ist Cov(X,Y) = 0, so nennt man X und Y **unkorreliert**. \Longrightarrow Linearität der Varianz gilt nur für unkorrelierte Zufallsvariablen. Für Produkte von Zufallsvariablen gilt:

 $\mathbb{E}\left[\prod_{i=1}^n X_i\right] = \prod_{i=1}^n \mathbb{E}[X_i]$ Insbesondere sind X_1, \ldots, X_n paarweise unkorreliert und und daher gilt

Satz 2.6 (Produkte von Zufallsvariablen). Seien X_1, \ldots, X_n diskrete Zufallsvariablen mit endlichen Erwartungswerten. Falls X_1, \ldots, X_n unabhängig sind,

$$\operatorname{Var}\left[\sum_{i=1}^n X_i\right] = \sum_{i=1}^n \operatorname{Var}[X_i]$$
 sofern die Varianzen existieren und endlich sind.

Bemerkung: Es gilt die Implikationskette: unabhängig ⇒ paarweise unabhängig \implies unkorreliert

Dann ist auch ihre Summe Z := X + Y diskret. Damit können wir die Gewichts-

Bemerkung: Es gibt keine allgemeine Produktregel für Varianzen!

Seien X, Y diskrete Zufallsvariablen mit gemeinsamer Gewichtsfunktion p(x, y).

dann gilt

Faltung

funktion von Z beschreiben durch $p_Z(z) = P[Z = z] = \sum_{x_k \in \mathcal{W}(X)} P[X = x_k, Y = z - x_k] = \sum_{x_k \in \mathcal{W}(X)} p(x_k, z - x_k)$

oder analog via Symmetrie =
$$\sum_{y_j \in \mathcal{W}(Y)} p(z - y_j, y_j)$$
. Dies ist ein völlig allgemeines Resultat. Sind nun X und Y unabhängig, dann gilt bekanntlich $p(x, y) = p_X(x)$.

 $p_Z(z) = \sum_{x_k \in \mathcal{W}(X)} p_X(x_k) \cdot p_Y(z - x_k) = \sum_{y_j \in \mathcal{W}(Y)} p_X(z - y_j) \cdot p_Y(y_j)$

und schreiben dies kurz als
$$p_Z = p_X * p_Y = p_Y * p_X$$
.

 $p_Y(y)$. Damit folgt die bekannte Faltung der Gewichtsfunktionen p_X und p_Y :

 $p_X(x) \quad \forall x \in \mathcal{W}(X).$

2.5Bedingte Verteilungen Hier haben wir die gemeinsame Verteilung zweier Zufallsvariablen und wollen In-

formationen, die wir über eine der beiden Zufallsvariablen haben, ausnutzen um

eine genauere Aussage über die andere Zufallsvariable zu machen.

Def. 2.10 (bedingte Gewichtsfunktion). X, Y diskrete ZV mit gemeinsamer Gewichtsfunktion p(x, y). Die bedingte Gewichtsfunktion von X, gegeben dass Y =y, ist definiert als

$$p_{X\mid Y}(x\mid y):=P[X=x\mid Y=y]=\frac{P[X=x,Y=y]}{P[Y=y]}=\frac{p(x,y)}{p_Y(y)}$$
 für $p_Y(y)>0$ und 0 sonst.

Lemma 2.3 (Kriterium für Unabhängigkeit). Aus der Charakterisierung

der Unabhängigkeit folgt sofort: X und Y sind unabhängig \iff für alle y mit $p_Y(y)>0$ gilt: $p_{X\mid Y}(x\mid y)=$

Eine symmetrische Aussage gilt natürlich, wenn X und Y vertauscht werden.

Bemerkung: Man kann auch auf ein Ereignis bedingen, welches man dann mithilfe einer Indikatorvariable in eine Zufallsvariable verwandelt (siehe Beispiel Seite 64)

Wichtige Diskrete Verteilungen 3 Diskrete Gleichverteilung 3.1

Die diskrete Gleichverteilung existiert nur auf einer endlichen Menge. Sie gehört zu einer ZV X mit Wertebereich W und Gewichtsfunktion

 $p_X(x_k) = P[X = x_k] = \frac{1}{N} \text{ für } k = 1, \dots, N$

die Folge von Ereignissen als Folge von 0 und 1 codieren. Dies werden wir für die

3.2 Unabhängige 0-1 Experimente

Wir betrachten eine Folge gleichartiger Experimente, die alle nur mit Erfolg oder

Misserfolg enden können und betrachten die Ereignisse $A_i = \{\text{Erfolg beim } i\text{-ten Exp}\}$ Wir nehmen an, dass alle A_i unabhängig sind und dass $P[A_i] = p$ für alle i. Wir

können nun eine Indikatorfunktion $Y_i = I_{A_i}$ für jedes i definieren, und danach

nächsten Verteilungen brauchen.

Wir machen ein einziges 0-1 Experiment und nennen das Ergebnis $X \implies X \sim$

Bernoulli-Verteilung

• Wertebereich: $W(X) = \{0, 1\}$

• Gewichtsfunktion: $p_X(x) := \begin{cases} P[X=1] = p & \text{falls } x = 1 \\ P[X=0] = 1 - p & \text{falls } x = 0 \end{cases}$

also insgesamt $p_X(x) = p^x(1 - y)$

• Erwartungswert: $\mathbb{E}[X] = p$ • Varianz: Var[X] = p(1-p)

Binomialverteilung

Beschreibt die Anzahl der Erfolge bei n unabhängigen 0-1 Experimenten mit Er-

folgsparameter p. Sei X die Anzahl der Erfolge $\implies X \sim Bin(n,p)$.

• Wertebereich: $W(X) = \{0, 1, 2, ..., n\}$ • Gewichtsfunktion: $p_X(k) = P[X = k] = \binom{n}{k} p^k (1-p)^{n-k}$ für $k = 0, 1, \dots, n$

• Erwartungswert: $\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[Y_i] = np$ • Varianz: $Var[X] = \sum_{i=1}^{n} Var[Y_i] = np(1-p)$

Für die Binomialverteilung existiert eine Rekursionsformel: $p(k+1,n) = \frac{p}{1-n} \frac{n-k}{k+1} p(k,n)$

• Erwartungswert: $P[X > l] = (1 - p)^l$ $\implies \mathbb{E}[X] = \sum_{l=0}^{\infty} P[X > l] = \sum_{l=0}^{\infty} (1 - p)^l = \frac{1}{1 - (1 - p)} = \frac{1}{p}$

3.5 Geometrische Verteilung

• Varianz: $Var[X] = \frac{1-p}{n^2}$

Wir betrachten eine unendliche Folge von unabhängigen 0-1 Experimenten mit Erfolgsparameter p und warten auf den ersten Erfolg. Sei $X = \inf\{i \in \mathbb{N} \mid A_i \text{ tritt}\}$

ein $\} = \inf\{i \in \mathbb{N} \mid Y_i = 1\}$ die Wartezeit $\implies X \sim Geom(p)$.

• Wertebereich: $W(X) = \{1, 2, \dots\} = \mathbb{N}$

• Gewichtsfunktion: $p_X(k) = P[X = k] = p(1-p)^{k-1}$ für k = 1, 2, 3...

• Summe von n unabhängigen bernoulli-verteilten ZV mit gleichem Parameter

<u>Gesucht:</u> Anzahl Käufe, bis man alle Bilder/Coupons besitzt. \rightarrow Sei X_i die Anzahl Käufe bis zum i-ten verschiedenen Bild, unter Annahme dass man

berechnen.

3.6

Coupon Collector Problem

 $X = \inf \left\{ k \in \mathbb{N} \mid \sum_{i=1}^{k} I_{A_i} = r \right\} = \inf \left\{ k \in \mathbb{N} \mid \sum_{i=1}^{k} Y_i = r \right\}$ Wir schreiben $X \sim NB(r, p)$

Betrachten wir erneut eine unendliche Folge von unabhängigen 0-1 Experimenten

Negativbinomiale Verteilung

mit Erfolgsparameter p. Nun interessiert uns allerdings die Wartezeit auf den r-ten Erfolg, wobei $r \in \mathbb{N}$. Dies ist eine Verallgemeinerung der geometrischen Verteilung,

schon i-1 Bilder besitzt. $\implies X_i$ sind geometrisch verteilt, und $X = \sum_{i=1}^n$. Dann kann die Linearität des Erwartungswert ausgenutzt werden, um $\mathbb{E}[X]$ zu

welche den Spezialfall r=1 abdeckt. Die Zufallsvariable X lässt sich schreiben als

• Wertebereich:
$$\mathcal{W}(X) = \{r, r+1, r+2, \dots\}$$

• Gewichtsfunktion: $p_x(k) = P[X = k] = \binom{k-1}{r-1} p^r (1-p)^{k-r}$

 - Sind ZV $X_1, \dots, X_r \sim Geom(p)$ und unabhängig $\implies \sum_{i=1}^{r} X_i =: X \sim NB(r, p)$

• Erwartungswert:
$$\mathbb{E}[X] = \sum_{i=1}^{r} \mathbb{E}[X_i] = \frac{r}{p}$$

• Varianz: $\operatorname{Var}[X] = \sum_{i=1}^{r} \operatorname{Var}[X_i] = \frac{r(1-p)}{p^2}$

Hypergeometrische Verteilung 3.7

Wir unterscheiden zwei Arten von Gegenständen. Gegeben sind n Gegenstände,

X diese Anzahl $\implies X \sim Hypergeometric(n, m, r)$.

- Wertebereich: $W(X) = \{0, 1, \dots, \min(m, r)\}$ • Gewichtsfunktion: $p_X(k) = \frac{\binom{r}{k}\binom{n-r}{m-k}}{\binom{n}{m}}$ für $k \in \mathcal{W}(X)$.
- Erwartungswert: $\mathbb{E}[X] = \frac{rm}{r}$
 - Varianz: $Var[X] = \frac{(n-r)nm(n-m)}{(2n-r)^2(n-1)}$

Bemerkung: Die Varianz der hypergeometrischen Verteilung ist sehr schwierig herzuleiten, und wird im Skript genau wie der Erwartungswert gar nicht aufgeführt.

r davon von Typ 1 und n-r von Typ 2. Man zieht nun m Gegenstände ohne Zurücklegen und interessiert sich für die Anzahl der Gegenstände von Typ 1. Sei

3.8 Poisson-Verteilung

Die Poisson-Verteilung erhält man nicht aus einem konkreten Experiment, sondern durch einen Grenzübergang aus der Binomialverteilung \implies gut zur Modellierung von seltenen Ereignissen. Man schreibt $X \sim \mathcal{P}(\lambda)$ für ein $\lambda \in (0, \infty)$

- Wertebereich: $W(X) = \{0, 1, 2, ...\} = \mathbb{N}_0$

 - Gewichtsfunktion: $p_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}$ für k = 0, 1, 2, ...

 - Varianz: $Var[X] = \lambda$

• Erwartungswert: $\mathbb{E}[X] = \lambda$

Herleitung

Sei X_n für jedes n eine ZV mit $X \sim Bin(n,p)$ und $np_n = \lambda$ und damit $p_n = \frac{\lambda}{n}$

welches für $n \to \infty$ gegen 0 geht. Bekanntlich gilt $P[X_n = k] = \binom{n}{k} p_n^k (1 - p_n)^{n-k}$

$$= \frac{n!}{k!(n-k)!} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{-k}$$

$$= \frac{n!}{k!(n-k)!} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{-k}$$

$$= \frac{\lambda^k}{n(n-1)\cdots(n-k+1)}$$

$$\frac{n!}{(-k)!} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{-k}$$

$$-k$$

$$\frac{1}{n} \cdot \left(1 - \frac{\lambda}{n}\right)^n \cdot (1 - \frac{\lambda}{n})^n \cdot (1 - \frac{\lambda}{n$$

 $= \frac{\lambda^k}{k!} \cdot \underbrace{\frac{n(n-1)\cdots(n-k+1)}{n^k}}_{-1 \text{ für } n \to \infty} \cdot \underbrace{\left(1 - \frac{\lambda}{n}\right)^n}_{-1 \text{ für } n \to \infty} \cdot \underbrace{\left(1 - \frac{\lambda}{n}\right)^{-k}}_{-1 \text{ für } n \to \infty} (3)$

(1)

(2)

wobei die Klammern den Grenzwert für $n \to \infty$ und k fixiert angeben. Damit sehen wir, folgendes Resultat:

$$\lim_{n\to\infty}P[X_n=k]=e^{-\lambda}\frac{\lambda^k}{k!}=P[X=k]$$
 Damit lässt sich die oft komplizierte Binomialverteilung relativ gut approxi-

mieren, wenn $\lambda = np$. Man verwendet als Faustregel, dass die Approximation verwendet werden kann, wenn $np^2 \leq 0.05$

Def. 4.1 (**Zufallsvariable**). Sein (Ω, \mathcal{F}, P) ein Wahrscheinlichkeitsraum. Eine Zufallsvariable (ZV) auf Ω ist eine messbare Funktion $X:\Omega\to\mathbb{R}$, das bedeutet,

Allgemeine Zufallsvariablen 4

4.1 Grundbegriffe

dass die Menge $\{X \leq t\} = \{\omega \mid X(\omega) \leq t\}$ für jedes t ein beobachtbares Ereignis, also $\in \mathcal{F}$ sein muss.

Die Verteilungsfunktion (VF) von X ist die Abbildung $F_X : \mathbb{R} \to [0,1]$ mit

$$t \mapsto F_X(t) := P[X \le t] := P[\{\omega \mid X(\omega) \le t\}]$$

Wir betrachten nur messbare Zufallsvariablen in dieser Vorlesung.

Satz 4.1 (Eigenschaften der Verteilungsfunktion).
$$F_X$$
 hat folgende Eigenschaften:

(i) F_X ist wachsend und rechtsstetig: $F_X(s) \leq F_X(t)$ für $s \leq t$ und $F_X(u) \rightarrow f(s)$ $F_X(t)$ für $u \to t$ mit u > t.

(ii) $\lim_{t\to\infty} F_X(t) = 0$ und $\lim_{t\to\infty} F_X(t) = 1$

Das stochastische Verhalten einer ZV X wird durch die Verteilung beschrieben,

d.h. das Wahrscheinlichkeitsmass μ_X , welches durch $\mu_X(B) = P[X \in B]$ definiert ist. Sobald die Verteilungsfunktion F_X bekannt ist, ist das Mass μ_X festgelegt,

Anstelle der Gewichtsfunktion aus dem diskreten Fall verwenden wir die Dichte-

nämlich durch den Zusammenhang

$$-\infty$$
 t])

 $F_X(t) = \mu_X\left((-\infty, t]\right)$

funktion, sofern diese existiert. **Def. 4.2** (**Dichtefunktion**). Eine ZV X mit Verteilungsfunktion $F_X(t) = P[X \le t]$

t] heisst (absolut) stetig mit Dichtefunktion $f_X: \mathbb{R} \to [0, \infty)$, falls gilt

 $F_X(t) = \int f_X(s) ds$ für alle $t \in \mathbb{R}$.

Begriff stetig mit Dichte.

Bemerkung: X heisst stetig, falls F_X nur stetig ist. Eine ZV X mit einer Dichte hat aber eine VF F_X , die fast überall differenzierbar ist. Dafür verwenden wir den

 $P[a < X \le b] = P[X \le b] - P[X \le a] = F_X(b) - F_X(a) = \int_{-\infty}^{\infty} f_X(s) \, ds$ $\implies P[X \in B] = \int_{B} f_X(s) \, ds$ und betrachtet man nun einen Grenzwert, so erhält man $\lim_{\varepsilon \to 0^+} P[t - \varepsilon < X \le t + \varepsilon] = \lim_{\varepsilon \to 0^+} \int_{t - \varepsilon}^{t + \varepsilon} f_X(s) \ ds = 0 = P[X = t]$ Damit ist die Punktwahrscheinlichkeit an jedem Punkt = 0. Jedoch gilt für kleine ε (wir verwenden hier $\varepsilon = dt$) das Folgende: $P[X \in (t, t + dt]] = f_X(t)dt$

Satz 4.2 (Eigenschaften der Dichte). Die Dichtefunktion f_X hat folgende

(ii) $\int_{-\infty}^{\infty} f_X(s) ds = 1$ (dies folgt aus Eigenschaft (ii), 2. GW von der Verteilungs-

In beinahe allen praktischen Beispielen ist f_X zusätzlich stetig oder zumindest

Die Dichtefunktion ist beinahe analog zur Gewichtsfunktion für diskrete Zufallsva-

riablen, jedoch unterscheidet sie sich in Punktwahrscheinlichkeiten. Es gilt

(i) $f_X \ge 0$ und $f_X = 0$ ausserhalb des Wertebereichs $\mathcal{W}(X)$

Vom diskreten zum stetigen Fall kommt man , indem Summen durch Integrale und die Gewichtsfunktion durch die Dichte ersetzt.

Wichtige stetige Verteilungen

In allen vernünftigen Situationen gilt also der folgende Zusammenhang zwischen

4.2

Gleichverteilung

Dichtefunktion und Verteilung:

Eigenschaften:

stückweise stetig.

- Gleichverteilung auf Intervall [a, b] modelliert die zufällige Wahl eines Punktes in [a,b]• Wertebereich: W(X) = [a, b]
 - Dichtefunktion: $f_X(t) = \begin{cases} \frac{1}{b-a} & \text{für } a \leq t \leq b \\ 0 & \text{sonst} \end{cases}$ • Verteilungsfunktion: $F_X(t) = \begin{cases} 0 & \text{für } t < a \\ \frac{t-a}{b-a} & \text{für } a \le t \le b \\ 1 & \text{für } t > b \end{cases}$
- Notation: $X \sim \mathcal{U}(a, b)$ wobei das \mathcal{U} für uniform steht. Ein wichtiger Spezialfall ist $\mathcal{U}(0,1)$, wodurch die Formeln auch etwas einfacher aussehen.

Exponentialverteilung

Vereteilung und ist ebenfalls ein Modell für Wartezeiten oder Lebensdauer • Wertebereich: $W(X) = [0, \infty)$

Exponentialverteilung mit Parameter $\lambda > 0$ ist stetiges Analogon zur geometrischen

- Dichtefunktion: $f_X(t) = \begin{cases} \lambda e^{-\lambda t} & \text{für } t \ge 0 \\ 0 & \text{für } t < 0 \end{cases}$
 - Verteilungsfunktion: $F_X(t) = \int_{-\infty}^t f_X(s) ds = \begin{cases} 1 e^{-\lambda t} & \text{für } t \ge 0 \\ 0 & \text{für } t < 0 \end{cases}$ • Notation: $X \sim Exp(\lambda)$
- die Verteilung ist gedächtnislos $\implies P[X > t + s \mid X > s] = P[X > t]$

Analog zur geometrischen Verteilung ein Modell für Wartezeiten oder Lebensdauer.

Gamma-Verteilung

Die Gamma-Verteilung ist eine Verallgemeinerung der Exponentialverteilung mit Parametern $\alpha, \lambda > 0$. Sie wird in der Warteschlangentheorie verwendet.

- Wertebereich: $W(X) = \mathbb{R}^+$
 - Dichtefunktion: $f(x) = \frac{1}{\Gamma(\alpha)} \lambda^{\alpha} x^{\alpha-1} e^{-\lambda x}$ für $z \ge 0$.
 - Erwartunsgwert: $\mathbb{E}[X] = \frac{\alpha}{\lambda}$
 - Notation: $X \sim Ga(\alpha, \lambda)$

• Varianz: $Var[X] = \frac{\alpha}{\lambda^2}$

wobei die Gamma-Funktion die reelle Erweiterung der Fakultätsfunktion ist:

$$\Gamma(\alpha) := \int_{0}^{\infty} u^{\alpha - 1} e^{-u} \ du \qquad \text{für } \alpha > 0$$

Bemerkung: Die Gamma-Funktion mit Parameter $\alpha = 1$ entspricht exakt der Exponentialfunktion. Eine Summe von n unabhängigigen Zufallsvariablen mit Verteilung

Normalverteilung oder Gauss-Verteilung nimmt zwei Parameter $\mu \in \mathbb{R}, \sigma^2 > 0$.

4.2.4Normalverteilung

 $Exp(\lambda)$ ist $Ga(n,\lambda)$ -verteilt.

Ihre Dichte ist symmetrisch um μ und hat eine glockenförmige Gestalt.

- Wertebereich: $W(X) = \mathbb{R}$
- Dichtefunktion: $f_X(t) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(t-\mu)^2}{2\sigma^2}}$ für $t \in \mathbb{R}$

 - Erwartungswert: $\mathbb{E}[X] = \mu$ und Varianz: $\operatorname{Var}[X] = \sigma^2$
- Verteilungsfunktion: entspricht dem Integral von der Dichtefunktion über dem Intervall $[-\infty, t)$, es existiert jedoch kein geschlossener Term.
 - Notation: $X \sim \mathcal{N}(\mu, \sigma^2)$

Mit einer Normalverteilung können z.b: die Streuung von Messwerten um ihren Mittelwert, Gewichte bzw. Grössen in Bevölkerungen, Leistungen in IQ-Tests und viele mehr modelliert werden. Der Grund für die Wichtigkeit der Normalverteilung liegt im Zentralen Grenzwertsatz, der in Kapitel 5 besprochen wird.

4.2.5Standard-Normalverteilung

Die Standard-Normalverteilung gibt die beiden Parameter vor: $\mu = 0$ und $\sigma^2 = 1$.

- Dichtefunktion: $\varphi(t) = \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}$
- Verteilungsfunktion: Wieder existiert kein geschlossener Ausdruck, jedoch ist das Integral tabelliert:

$$\Phi(t) = \int_{-\infty}^{t} \varphi(s) \, ds = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-\frac{s^2}{2}} \, ds$$

<u>Wichtig:</u> $X \sim \mathcal{N}(\mu, \sigma^2) \implies \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)$. Daraus folgt unmittelbar, dass es ausreicht, nur die Werte von $\Phi(t)$ zu tabellieren, denn es gilt:

$$F_X(t) = P[X \le t] = P\left[\frac{X - \mu}{\sigma} \le \frac{t - \mu}{\sigma}\right] = \Phi\left(\frac{t - \mu}{\sigma}\right)$$

4.3Erwartungswerte

 $(in \mathbb{R}).$

Eine beliebige reellwertige ZV X kann immer durch eine Folge diskreter ZV approximiert werden. Ist bspw. $X \ge 0$, dann kann man

$$X_N := \sum_{k=1}^{n2^n} \frac{k-1}{2^n} I_{\left\{\frac{k-1}{2^n} \le X \le \frac{k}{2^n}\right\}} + nI_{\left\{X \ge n\right\}}$$

für $X_n \nearrow X$ wählen und erhält den Erwartungswert als

$$\mathbb{E}[X] := \lim_{n \to \infty} \mathbb{E}[X_n]$$

Für allgemeine Zufallsvariablen zerlegt man $X = X^+ - X^- := \max(X,0)$

Erwartungswert berechnen: Ist X stetigt mit einer Dichte $f_X(x)$, so gilt (sofern konvergent):

 $\max{(-X,0)}$ mit $X^+,X^-\geq 0$ und setzt dann $\mathbb{E}[X]=\mathbb{E}[X^+]-\mathbb{E}[X^-]$. Sind diese beiden Erwartungswerte nicht endlich, so existiert der Erwartungswert von X nicht

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) dx$$

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) \, dx$$

<u>Cauchy-Verteilung:</u> $\mathcal{W}(X) = \mathbb{R}$ mit Dichte $f_X(x) = \frac{1}{\pi} \frac{1}{1+x^2}$ und Verteilung $F_X(x) = \frac{1}{\pi} \frac{1}{1+x^2}$ $\frac{1}{2} + \frac{1}{\pi} \arctan(x)$. Es gilt, dass für zwei unabhängige, $\mathcal{N}(0,1)$ -verteilte ZV X, Y ihr Quotient Z:=X/Y gerade Cauchy-verteilt ist. Die Charakteristik liegt darin, dass

die Dichte für $|x| \to \infty$ sehr langsam gegen 0 geht, d.h. auch sehr grosse Werte nocht mit substantieller Wahrscheinlichkeit angenommen werden. Ein Erwartungswert existiert nicht.

Satz 4.3. Seien X und Y = g(X) zwei ZV. Ist X stetig mit Dichte $f_X(x)$ dann

 $\mathbb{E}[Y] = \mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) \cdot f_X(x) \, dx$ Weitere Eigenschaften für Erwartungswerte gelten analog zum diskreten Fall, einzig die konkreten Berechnungen unterscheiden sich.

Momente & Absolute Momente 4.4

gilt (sofern das Integral konvergiert)

Def. 4.3 (Moment). Sei X eine Zufallsvariable und $p \in R_+$. Wir definieren:

- das p-te absolute Moment von X durch $M_o := \mathbb{E}[|X|^p]$ (kann ∞ sein)
- falls $M_n < \infty$ für ein n, dann ist das n-te Moment von X durch $m_n := \mathbb{E}[X^n]$ definiert.

Damit folgt sofort:

Korollar 4.1. $M_n < \infty$ für $n \in \mathbb{N} \implies |m_n| \leq M_n$

Hat X eine Dichte f_X , dann gilt zudem für das absolute Moment

 $M_p = \int_0^\infty |x|^p f_X(x) \ dx$

Gilt dann
$$M_n < \infty$$
 für ein $n \in \mathbb{N}$, dann können wir auch das n -te Moment per Integral bestimmen:

$$m_n = \int_{-\infty}^{\infty} x^n f_X(x) \ dx$$

Sei X ZV und $p, q \in R_+$. Dann:

satz 4.4. Sei X ZV und
$$p, q \in R_+$$
. Dann:

Satz 4.4. Set
$$A \ge V$$
 und $p, q \in R_+$. Dann:

$p \le q \land M_q < \infty \implies M_p < \infty$

4.5 Gemeinsame Verteilungen, Unabhängige Zufallsvariablen

Def. 4.4 (Gemeinsame Verteilung). Die gemeinsame Verteilungsfunktion von

 $n \text{ ZV } X_1, \ldots, X_n \text{ ist die Abbildung } F: \mathbb{R}^n \to [0,1] \text{ mit:}$

$$I \ Z \ V \ A_1, \dots, A_n$$
 ist the Abbilding $F : \mathbb{R} \to [0,1]$ lint:

$$(x_1, \dots, x_n) \mapsto F(x_1, \dots, x_n) := P[X_1 \le x_1, \dots, X_n \le x_n]$$

Lässt sich
$$F$$
 für eine Funktion $f: \mathbb{R}^n \to [0, \infty)$ schreiben als $x_{\underline{r}} \qquad x_{\underline{r}}$

dann heisst
$$f(x_1, \ldots, x_n)$$
 die gemeinsame Dichte von X_1, \ldots, X_n .

Korollar 4.2 (Eigenschaften der Dichte). Für die gemeinsame Dichte von

Koronar 4.2 (Eigenschaften der Dichte). Für die ger
$$X_1, \ldots, X_n$$
 gilt:

(i) $f(x_1, \ldots, x_n) \ge 0$ und = 0 ausserhalb $\mathcal{W}(X_1, \ldots, X_n)$

(ii) $\iiint\limits_{\mathbb{R}^n} f(x_1, \dots, x_n) dx_n \dots dx_1 = 1$

(iii) $P[(X_1,\ldots,X_n)\in A]=\iiint\limits_{(x_1,\ldots,x_n)\in A}f(x_1,\ldots,x_n)dx_n\ldots dx_1 \text{ für } A\subseteq\mathbb{R}^n.$

Def. 4.5 (Randverteilung). Haben X, Y die gemeinsame Verteilungsfunktion F, dann sind $F_X: \mathbb{R} \to [0,1]$ und $F_Y: \mathbb{R} \to [0,1]$ die Verteilungsfunktionen der

 $F(x_1,\ldots,x_n)=\int_{-\infty}^{\infty}\cdots\int_{-\infty}^{\infty}f(t_1,\ldots,t_n)dt_n\ldots dt_1$

 $y \mapsto F_Y(y) := P[Y \le y] = P[X < \infty, Y \le y] = \lim_{x \to \infty} F(x, y)$ Haben X, Y eine gemeinsame Dichte f, dann haben auch die Randverteilungen Dichten $f_X : \mathbb{R} \to [0, \infty)$ und $f_Y : \mathbb{R} \to [0, \infty)$ mit

 $x \mapsto F_X(x) := P[X \le x] = P[X \le x, Y < \infty] = \lim_{y \to \infty} F(x, y)$

 $f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$ $f_X(x) = \int f(x,y)dy$

Def. 4.6 (Unabhängigkeit). Die ZV X_1, \ldots, X_n heissen unabhängig LLRA $F(x_1,\ldots,x_n)=F_{X_1}(x_1)\cdots F_{X_n}(x_n).$

Hat man stetige Zufallsvariablen mit Dichten, dann ist die gemeinsame Dichtefunktion das Produkt der Randdichten, also $f(x_1,\ldots,x_n)=f_{X_1}(x_1)\cdots f_{X_n}(x_n)$

 $E[X_1] = E[E[X_1 \mid X_2]] = \int E[X_1 \mid X_2](x_2) f_{X_2}(x_2) dx_2$

Funktionen und Transformationen von Zufallsvariablen

4.6 Bedingte Verteilungen usw

Def. 4.7 (Bedingte Dichte und Erwartungswert).

Randverteilung von X bzw. Y und sind definiert als:

 $f_{X_1|X_2}(x_1 \mid x_2) = \frac{f_{X_1,X_2}(x_1,x_2)}{f_{X_2}(x_2)}$

 $E[X_1 \mid X_2](x_2) = \int x_1 f_{X_1 \mid X_2}(x_1 \mid x_2) \ dx_1$ Mit Trick:

 $= \int \int x_1 f_{X_1, X_2}(x_1, x_2) dx_1 dx_2$

Anm. $E[X_1 \mid X_2](x_2) = E[X_1 \mid X_2 = x_2]$

4.7

Summen Für Z = X + Y suchen wir die Verteilungsfunktion $F_Z(z) = P[Z \le z] = P[X + Y \le z]$ z]. Dies kann man als Punktemenge im \mathbb{R}^2 auffassen, nämlich $A_z:=\{(x,y)\in$

 $\mathbb{R}^2 \mid x+y \leq z$. Damit ist $F_Z(z) = P[(X,Y) \in A_z]$. Damit erhält man

 $F_Z(z) = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f(x,y) \ dy \ dx$ Substituiere nun $v = x + y \Rightarrow y = v - x, dy = dv$ so erhält man

$$F_Z(z) = \int_{-\infty}^{\infty} \int_{-\infty}^{z} f(x, v - x) \ dv \ dx = \int_{-\infty}^{z} \int_{-\infty}^{\infty} f(x, v - x) \ dx \ dv$$

 $\implies f_Z(z) = \frac{d}{dz} F_Z(z) = \int_{-\infty}^{\infty} f(x, z - x) \ dx = \int_{-\infty}^{\infty} f(z - y, y) \ dy$

womit wir also auch die Dichte erhalten haben. Das letzte Gleichheitszeichen gilt wegen Symmetrie zwischen X, Y. Sind X, Y unabhängig, so gilt $f(x,y) = f_X(x)$.

 $f_Y(y)$ und dann ist f_Z die Faltung von f_X und f_Y .

Transformationen Sei X ZV mit Verteilung und Dichte. Sei $g: \mathbb{R} \to \mathbb{R}$ messbare Funktion. Betrachte

man dieses Problem wie folgt:

mit $A_q := \{s \in \mathbb{R} \mid g(s) \leq t\}$. Die Dichtefunktion (falls existent) erhält man dann durch Ableiten der Verteilung.

 $F_Y(t) = P[Y \le t] = P[g(X) \le t] = \int_{A_g} f_X(s) \ ds$

Awendung der Transformation

Satz 4.5. Sei F stetige, streng-monoton wachsende Verteilungsfunktion mit Umkehrfunktion F^{-1} . Dann:

Y = g(X), wir suchen Verteilung und Dichte (falls existent) von Y. Allgemein löst

kehrfunktion
$$F^{-1}$$
. Dann:

 $X \sim \mathcal{U}(0,1) \quad \wedge \quad Y = F^{-1}(X) \implies Y \text{ hat Verteilungsfunktion } F.$

Verteilung F.

Dieser Satz erlaubt die Konstruktion einer Zufallsvariablen Y mit einer gewünschten Verteilungsfunktion X, wenn man eine Zufallsvariable $X \sim \mathcal{U}(0,1)$ zur Hand hat. Damit kann man beispielsweise eine Verteilung mit einem Computer simulieren. Ein

Zufallszahlengenerator produziert in einem gewissen Sinn eine Folge von $\mathcal{U}(0,1)$ -

verteilten Zufallsvariablen. $\implies F^{-1}(Zufallszahlengenerator)$ simuliert also die

5 Ungleichungen und Grenzwertsätze

Wahrscheinlichkeit & Konvergenz 5.1

Def. 5.1 (Konvergenz in Wahrscheinlichkeit). Sei X_1, X_2, \ldots und Y ZV auf

gemeinsamen Wahrscheinlichkeitsraum.

(i) X_1, X_2, \ldots konvergiert gegen Y in Wahrscheinlichkeit falls

 $\forall \varepsilon > 0. \quad \lim_{n \to \infty} P[|X_n - Y| > \varepsilon] = 0$

(ii) Für p > 0 konvergiert die Folge X_1, X_2, \ldots gegen Y in L^p falls $\lim_{n \to \infty} \mathbb{E}[|X_n - Y|^p] = 0$

$$\lim_{n\to\infty} \mathbb{E}[|X_n - Y|^p] = 0$$
(iii) X_1, X_2, \dots konvergiert gegen Y P -fast sicher falls

 $P\left[\lim_{n\to\infty}X_n=Y\right]=P\left[\left\{\omega\in\Omega\mid \lim_{n\to\infty}X_n(\omega)=Y(\omega)\right\}\right]=1$

Def. 5.2 (Konvergenz in Verteilung). Seien X_1, X_2, \ldots , und Y ZV auf möglich verschiedenen Wahrscheinlichkeitsräumen mit Verteilungsfunktionen F_1, F_2, \ldots

und F_Y . Dann konvergiert X_1, X_2, \ldots gegen Y in Verteilung falls $\lim_{n \to \infty} F_n(x) = F_Y(x) \qquad \text{für alle } x \in R, \text{wo } F_Y \text{ stetig ist}$

Ungleichungen

Satz 5.1. Es gilt folgende Äquivalenz:

Satz 5.2 (Markov-Ungleichung). Sei X eine Zufallsvariable und $g: \mathcal{W}(X) \to$

 X_1, X_2, \ldots konvergiert in Verteilung gegen $Y \iff \lim_{n \to \infty} \mathbb{E}[f(X_n)] = \mathbb{E}[f(Y)]$ für je

rianz. Für jedes b > 0 gilt dann: $P[|Y - \mathbb{E}[Y]| \ge b] \le \frac{\operatorname{Var}[Y]}{b^2}$ Beweis. Wähle $X:=|Y-\mathbb{E}[Y]|$ und $g(x)=x^2$ für $x\geq 0 \implies \mathbb{E}[g(Y)]=$ Var[Y]. Gesetz der grossen Zahlen

Wir betrachten nun Folgen von Zufallsvariablen mit dem gleichen Erwartungswert

folgt unmittelbar:

und der gleichen Varianz. Uns interessiert das Verhalten des arithmetischen Mittel dieser Folge von Zufallsvariablen.

 $[0,\infty)$ eine wachsende Funktion. Für jedes $c\in\mathbb{R}$ mit g(c)>0 gilt dann:

 $P[X \ge c] \le \frac{\mathbb{E}[g(X)]}{g(c)}$

Bemerkung: Insbesondere gilt der satz für die Identitätsfunktion g=id. Daraus

Satz 5.3 (Chebyshev-Ungleichung). Sei Y Zufallsvariable mit endlicher Va-

Satz 5.4 (Schwaches Gesetz der grossen Zahlen). Sei X_1, X_2, \ldots eine Folge von unabhängigen ZV mit $\mathbb{E}[X_i] = \mu$ und Varianz $\mathrm{Var}[X_i] = \sigma^2$. Sei $\overline{X_n} = 0$ $\frac{1}{n}\sum_{i=1}^{n}X_{i}$. Dann konvergiert $\overline{X_{n}}$ für $n\to\infty$ in Wahrscheinlichkeit/stochastisch gegen μ .

Beweis. Betrachte Linearität des EW: $\mathbb{E}[\overline{X_n}] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}[X_i] = \mu$. Da die ZV paar-

weise unkorreliert sind, gilt auch die Linearität der Varianz und somit $Var[\overline{X_n}]$ $\frac{1}{n}\sum_{i=1}^{n} \operatorname{Var}[X_i] = \frac{\sigma^2}{n}$. Die Chebyshev-Ungleichung liefert damit:

$$P\left[|\overline{X_n} - \mu| > \varepsilon\right] \le \frac{\operatorname{Var}[\overline{X_n}]}{\varepsilon^2} = \frac{\sigma^2}{n \cdot \varepsilon^2}$$
 Dieser Term geht für jedes beliebige $\varepsilon > 0$ gegen 0, was *Def. 5.1 (i)* entspricht.

Bemerkung 1: Es genügt bereits, wenn X_i nur paarweise unkorreliert sind.

Bemerkung 2: Die Existenz des Erwartungswerts ist essentiell, damit das Gesetz gilt: So existiert bspw kein Erwartungswert für die bereits eingeführte Cauchy-Verteilung. Damit konvergiert $n \mapsto \overline{X_n}(\omega)$ nicht, denn Summen von Cauchy-verteilte

Zufallsvariablen sind wiederum Cauchy-verteilt.

Monte-Carlo-Integration

Wir wollen für $h:[0,1]^d\to\mathbb{R}$ ein Integral $I:=\int_{[0,1]^d}h(\vec{x})\ d\vec{x}$ berechnen, welches auch numerisch schwer lösbar ist. Dafür können wir I als einen Erwartungswert

auffassen. Sei
$$d=1.$$
 Ist $U \sim \mathcal{U}(0,1),$ dann gilt

 $\mathbb{E}[h(U)]) = \int_{\mathbb{D}} h(x) f_U(x) \ dx = \int_0^1 h(x) \ dx = I$ Die letzte Gleichheit gilt, weil die Dichte von U auf [0,1] konstant 1 ist, und sonst 0.

Deshalb können wir mit einem Zufallszahlengenerator eine Folge U_1, U_2, \ldots generieren mit $U_i \sim \mathcal{U}(0,1)$ und den Wert von I mit dem schwachen GGZ approximieren: $\overline{h(U_n)} = \frac{1}{n} \sum_{i=1}^{n} h(U_i)$

$$h(U_i)$$

Damit ist aber auch gleich klar, wieso man eine stärkere Aussage möchte, denn der berechnete Wert liegt nur mit grosser Wahrscheinlichkeit sehr nahe bei I, aber man weiss nicht, ob eine feste Realisierung ω in dieser guten Approximationsmenge

Satz 5.5 (Starkes Gesetz der grossen Zahlen). Sei X_1, X_2, \ldots eine Folge von unabhängigen Zufallsvariablen mit gleicher Verteilung und EW μ endlich.

Für das arithmetische Mittel $\overline{X_n} := \frac{1}{n} \sum_{i=1}^n X_i$ gilt dann, dass $\overline{X_n}$ *P-fast sicher*

 $\lim_{n\to\infty} P\left[\frac{S_n-n\mu}{\sigma\sqrt{n}}\leq x\right] = \Phi(x) \qquad \forall x\in\mathbb{R}$ Für praktische Anwendungen existieren zwei alternative Notationen: $\bullet \ P[S_n^*\leq x]\approx \Phi(x) \quad \text{für n gross}$

 $P\left[\left\{\omega \in \Omega \mid \overline{X_n}(\omega) \underset{n \to \infty}{\longrightarrow} \mu\right\}\right]$

Für die Monte-Carlo Integration bedeutet dies, dass unserer berechneter Wert mit Wahrscheinlichkeit 1 nahe bei I liegt. Schlechte Approximationen sind zwar

Wir bezeichnen unabhängige gleichverteilte Zufallsvariablen als i.i.d. für indepen-

Satz 5.6 (Zentraler Grenzwert). Sei X_1, X_2, \ldots eine Folge von i.i.d. ZV mit

EW μ und Varianz σ^2 . Für die Summe $S_n = \sum_{i=1}^n X_i$ gilt dann:

• S_n^* approx. $\mathcal{N}(0,1)$ für n gross wobei S_n^* die $Standardisierung\ von\ S_n$ gennant wird:

vobei
$$S_n^*$$
 die $Standardisierung von S_n gennant wird:
$$S_n^* = \frac{S_n - n\mu}{\sigma\sqrt{n}} = \frac{S_n - \mathbb{E}[S_n]}{\sqrt{\operatorname{Var}[S_n]}}$$$

(P.f.s.) gegen μ konvergiert, also

möglich, aber mit Wahrscheinlichkeit 0.

dent identically distributed.

Korollar 5.1.

5.4

Zentraler Grenzwertsatz

Daraus folgt $S_n \sim \mathcal{N}(n\mu, n\sigma^2)$ und $\overline{X_n} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$, wobei beide Verteilungen nur approximativ gelten. **Häufige Anwendung:** Approximation der Binomialverteilung durch Normalver-

teilung weil die Binomialverteilung mühsam zu berechnen ist. Ist $S_n \sim Bin(n,p)$

dann können wir approxmativ sagen, dass $S_n \sim \mathcal{N}(np, np(1-p))$. Fügen wir noch eine additiven Konstante $+\frac{1}{2}$ dazu, die sogenannte Kontinuitätskorrektur, so wird das Resultat noch genauer. Dies lässt sich intuitiv dadurch rechtfertigen, dass sich die Binomialverteilung besser approximieren lässt, wenn man die Normalverteilungsdichte unter den "Stäbenßentriert, statt am linken/rechten Rand zu betrachten. Damit gilt:

$$P[a < S_n \le b] = P\left[\frac{a - np}{\sqrt{np(1-p)}} < S_n^* \le \frac{b - np}{\sqrt{np(1-p)}}\right]$$
$$\approx \Phi\left(\frac{b + \frac{1}{2} - np}{\sqrt{np(1-p)}}\right) - \Phi\left(\frac{a + \frac{1}{2} - np}{\sqrt{np(1-p)}}\right)$$

5.5 Grosse Abweichungen & Chernoff-Schranken

momenterzeugende Funktion definiert als

 $M_X(t) := \mathbb{E}[e^{tX}] \quad \text{ für } t \in \mathbb{R}$

Def. 5.3 (momenterzeugende Funktion). Für eine Zufallsvariable X ist die

Diese ist wohldefiniert auf
$$[0, \infty]$$
, kann aber den Wert unendlich annehmen.

Satz 5.7. Seien X_1, \ldots, X_n i.i.d. für welche die momenterzeugende Funktion

Teil II Statistik

 $P[S_n \ge b] \le \exp\left(\inf_{t \in \mathbb{R}} (n \log M_X(t) - tb)\right)$

Diese Aussage ist zwar stark und liefert ziemlich genaue Abschätzungen, ist allerdings nicht praktisch wegen der momenterzeugenden Funktion. Diese schätzen wir

Satz 5.8 (Chernoff Schranken). Seien X_1, \ldots, X_n unabhängig mit $X_i \sim Be(p_i)$

 $P[S_n \ge (1+\delta)\mu_n] \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu_n}$

und $S_n = \sum_{i=1}^n X_i$. Sei $\mu_n := \mathbb{E}[S_n] = \sum_{i=1}^n p_i$ und $\delta > 0$. Dann gilt:

Statistische Grundideen

sendes (Verteilungs-)Modell

im folgenden Satz nach oben ab:

Man unterscheidet im Grunde zwei Formen der Statistik:

 $M_X(t)$ für alle $t \in \mathbb{R}$ endlich ist. Dann gilt für jedes $b \in \mathbb{R}$:

- Die deskriptive Statistik beschäftigt sich hauptsächlich mit graphischer Auf-
- bereitung der Daten etc. • Die induktive Statistik sucht für eine gesammelte Menge an Daten ein pas-

Wir unterscheiden $Daten x_1, \ldots, x_n$ (generell Zahlen) und den generierenden Mechanismus X_1, \ldots, X_n (Zufallsvariablen, also Funktionen auf Ω). Die Gesamtheit der Beobachtungen x_1, \ldots, x_n oder Zufallsvariablen X_1, \ldots, X_n nennt man oft

für die wir ein Modell suchen. \implies durch Parameter $\vartheta \in \Theta$ (möglicherweise hoch-dimensional). Dazu betrachtet man einge ganze Familie von Wahrscheinlichkeitsräumen. Der Grundraum (Ω, \mathcal{F}) ist fest und für jeden Parameter ϑ aus dem Pa-

Stichprobe mit Stichprobenumfang n.Ausgangspunkt ist oft ein Datensatz x_1, \ldots, x_n aus einer Stichprobe X_1, \ldots, X_n

rameterraum Θ hat man ein Wahrscheinlichkeitsmass P_{ϑ} auf dem Grundraum. Dies gibt uns also einen Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, P_{\vartheta})$ für jedes $\vartheta \in \Theta$. Wir be-

- trachten dann die Daten x_1, \ldots, x_n als Ergebnisse von Zufallsvariablen X_1, \ldots, X_n und versuchen daraus Rückschlüsse über ϑ zu ziehen.

und die Familie $(P_{\vartheta})_{\vartheta\in\Theta}$

- Das Vorgehen erfolgt in 5 Schritten:
- 1. Deskriptive Statistik um sich einen Überblick zu verschaffen
- 2. Wahl eines (parametrischen) Modells \rightarrow spezifiziere eine Parametermenge Θ
- 3. Schätzung der Parameter aufgrund der Daten mithilfe eines Schätzers 4. Kritische Modellüberprüfung und Anpassung → überprüft ob Daten gut zu
- 5. Aussagen über die Zuverlässigkeit \rightarrow wie gut passt das Modell? kann auch Konfidenzbereich anstelle eines einzelnen Parameters angeben.
- Dieses Vorgehen nennt man parametrische statistische Analyse.

Schätzer

Wir suchen ein Modell für eine Stichprobe X_1, \ldots, X_n und haben einen Parameterraum Θ (oft $\subseteq \mathbb{R}^m$) und für jedes $\vartheta \in \Theta$ einen Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, P_{\vartheta})$.

Wir wollen daher die Paramter $\vartheta_1, \dots, \vartheta_m$ bestimmen.

gewähltem Paramter ϑ passen mittels geeignetem statistischen Test

riable der Form $T_j := t_j(X_1, \dots, X_n)$ für eine Schätzfunktion $t_j : \mathbb{R}^n \to \mathbb{R}$. Def. 7.2 (Schätzwert). Ein Schätzwert ist das Ergenis einer konkreten Berech-

Def. 7.1 (Schätzer). Ein Schätzer T_j für einen Parameter ϑ_j ist eine Zufallsva-

 $T_j(\omega) = t_j(x_1, \ldots, x_n)$ und liefert damit einen Wert für genau einen Parameter Damit ist ein Schätzer also eine Funktion, die eine Berechnungs methode angibt und

nung, eine Zahl. Sie entsteht durch Einsetzen konkreter Daten in einen Schätzer:

ein Schätzwert ist ein Ergebnis einer solchen konkreten Berechnung. Der Einfachheit halber schreiben wir oft $T = (T_1, \ldots, T_m)$ und $\vartheta = (\vartheta_1, \ldots, \vartheta_m)$. Wir betrachten nun einige wünschenswerte Eigenschaften für Schätzer:

Def. 7.3 (Eigenschaften von Schätzern). Sei T ein Schätzer. • T ist **erwartungstreu**, falls $\mathbb{E}_{\vartheta}[T] = \vartheta$ gilt. T schätzt im Mittel also richtig • der Bias ist definiert als $\mathbb{E}_{\vartheta}[T] - \vartheta \implies$ ein erwartungstreuer Schätzer hat

keinen Bias. • der mean-squared-error (MSE) ist definiert als

 $MSE_{\vartheta}[T] := \mathbb{E}_{\vartheta}[(T - \vartheta)^2] = Var_{\vartheta}[T] + (\mathbb{E}_{\vartheta}[T] - \vartheta)^2$ \implies für erwartungstreue Schätzer ist MSE = Varianz • eine Folge $T^{(n)}$ von Schätzern heisst konsistent für ϑ , falls $T^{(n)}$ für $n \to \infty$ in P_{ϑ} -Wahrscheinlichkeit gegen ϑ konvergiert, d.h. für jedes $\vartheta \in \Theta$ gilt:

 $\lim_{n\to\infty} P_{\vartheta} \left[|T^{(n)} - \vartheta| > \varepsilon \right] = 0 \quad \forall \varepsilon > 0$

stetigen Fall, der diskrete Fall verläuft analog (man verwendet Gewichtsfunktion

gemeinsamen Dichtefunktion $f(x_1, \ldots, x_n; \vartheta)$. Oft sind die X_i sogar i.i.d. mit individueller Dichtefunktion $f_X(x;\vartheta)$ und man erhält die gemeinsame Dichtefunktion

Maximum-Likelihood Methode 7.1

Man unterscheidet den diskreten und stetigen Fall. Wir betrachten hier nur den

statt Dichtefunktion). In einem Modell P_{ϑ} sind dann die Zufallsvariablen X_1, \ldots, X_n stetig mit einer

als Produkt (dies wird später nützlich): $f(x_1,\ldots,x_n;\vartheta)=P_{\vartheta}[X_1=x_1,\ldots,X_n=x_n]=\prod_{i=1}^n f_X(x_i;\vartheta)$

$$J(x_1,\ldots,x_n,v) = I_{\vartheta[X_1-x_1,\ldots,X_n-x_n]} - \prod_{i=1} J_X(x_i,$$

Beachte, dass die erste Gleichheit auch im allgemeinen Fall gilt, während die zweite Gleichheit nur für i.i.d. ZV gilt. **Def. 7.4** (Likelihood-Funktion). Die *Likelihood*-Funktion *L* ist definiert durch

 $L(x_1, \dots, x_n; \vartheta) := \begin{cases} p(x_1, \dots, x_n; \vartheta) & \text{diskreter Fall} \\ f(x_1, \dots, x_n; \vartheta) & \text{stetiger Fall} \end{cases}$

Die Funktion $\log L(x_1, \dots, x_n; \vartheta)$ ist dann die log-Likelihood-Funktion (natürlicher Logarithmus)

Für eine Stichprobe X_1, \ldots, X_n gibt die Likelihood-Funktion die Wahrscheinlich-

keit, dass im Modell P_{ϑ} unsere Stichprobe gerade die Werte x_1, \ldots, x_n , die wir beobachtet haben, liefert. Die Idee der Maximum-Likelihood Funktion besteht nun darin, dass wir die beobachteten Werte x_1, \ldots, x_n als sehr wahrscheinlich betrach-

ten. Konkret "definieren" wir diese Ergebnis als das wahrscheinlichste Ergebnis, das auftauchen kann. Aus diesem Grund maximieren wir die Likelihood-Funktion nach dem Parameter ϑ :

Def. 7.5 (Maximum-Likelihood-Schätzer). Der *ML-Schätzer* T für ϑ ist da-

Im Allgemeinen versucht man, dises Maximum analytisch zu finden, z.B. durch Differenzieren. Es kann aber auch vorkommen, dass die Likelihood-Funktion nicht differenzierbar ist. In diesem Fall muss man iterativ vorgehen, z.B. mit der Newton-Methode als Iterationsverfahren.

durch definiert, dass er die Funktion $\vartheta \mapsto L(X_1, \dots, X_n; \vartheta)$ als Funktion von ϑ

Bemerkung: Normalerweise arbeiten wir mit i.i.d. Zufallsvariablen $X_i \implies$ Likelihood-Funktion L ist ein Produkt. Verwenden wir aber $\log L$, so können wir die log-Likelihood-Funktion als Summe schreiben, was das Differenzieren erleichtert. Dies funktioniert, da log: $(0,\infty) \to \mathbb{R}$ streng monoton wachsend ist. Das bedeutet konkret, dass jedes Maximum/Minimum von L auch eines von $\log L$ ist.

Der Momentenmethode liegt die Idee zugrunde, dass die Momente einer Zufallsva-

Momentenmethode

maximiert.

riable bzw. einer Wahrscheinlichkeitsverteilung durch Stichprobenmomente geschätz werden können. Sei dazu X_1, \ldots, X_n eine Stichprobe und $\Theta \subseteq \mathbb{R}^m$ der Parameterraum. Für jeden

keitsraum $(\Omega, \mathcal{F}, P_{\vartheta})$. **Def. 7.6** (Empirisches Moment). Für $k \in \{1, ..., m\}$ sei das k-te empirische Moment oder Stichprobenmoment \widehat{m}_k der Realisierungen (x_1, \ldots, x_n) definiert durch $\widehat{m}_k(x_1,\ldots,x_n) := \frac{1}{n} \sum_{i=1}^n x_i^k$

Parameter $\vartheta = (\vartheta_1, \dots, \vartheta_m) \in \Theta$ sei X_1, \dots, X_n i.i.d. unter dem Wahrscheinlich-

(i)
$$\mathbb{E}_{\vartheta}[|X_1|^m] < \infty$$
 für jedes $\vartheta \in \Theta$

- (ii) Für jedes $k \in \{1,\dots,m\}$ ist das k-te Moment $m_k^\vartheta := \mathbb{E}_\vartheta[X_1^k]$ der Stichpro-
- benvariablen eine bekannte Funktion des Parametervektors ϑ . Konkret:

$$\forall k \in \{1, \dots, m\}. \ \exists \ g_k : \Theta \to \mathbb{R} \ (\text{borel-messbar}). \ \forall \vartheta \in \Theta. \quad m_k^{\vartheta} = g_k(\vartheta_1, \dots, \vartheta_n).$$

Methode 1. Für gegebene Realisierungen x_1, \ldots, x_n bestimmen für jedes $k \in \{1, \ldots, m\}$

Beachte, dass wir aufgrund der Tatsache, dass die X_i i.i.d. sind, diese Eigenschaften nur für X_1 überprüfen müssen. Sind diese Annahmen erfüllt, so kann man die

Annahmen

- das k-te empirische Moment.
- 2. Stelle ein Gleichungssystem für die Unbekannten Paramter $\vartheta_1, \ldots, \vartheta_m$ auf, in dem das k-te empirische Moment dem k-ten Moment gleichgesetzt wird, also:

$$\widehat{m}_k(x_1,\ldots,x_n) = g_k(\vartheta_1,\ldots,\vartheta_m)$$
 $k=1,\ldots,m$

3. Überprüfe, ob dieses LGS eine eindeutige Lösung besitzt. Dann entspricht die

Momentenmethode nach dem folgenden Schema anwenden.

Def. 7.7 (Momenten-Schätzer). Der Vektor $\widehat{\vartheta}(X_1,\ldots,X_n)$ heisst *Momenten*-

Lösung $\vartheta = \vartheta(x_1, \dots, x_n) \in \Theta$ unserer Schätzung für die Paramter ϑ .

Schätzer des Parameters ϑ .

Beispiel: Normalverteilte Stichprobenvariablen Sei X_1, \ldots, X_n i.i.d. $\mathcal{N}(\mu, \sigma^2)$ -verteilt mit unbekanntem Parameter $\vartheta = (\mu, \sigma^2)$ und in diesem Fall gilt $g_1(\mu, \sigma^2) = \mu$ und $g_2(\mu, \sigma^2) = \mu^2 + \sigma^2$. Damit berechnen wir den

 $T_1 = \frac{1}{n} \sum_{i=1}^n X_i =: \overline{X_n}$

$$T_2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X_n})^2$$
 Dieser Schätzer $T = (T_1, T_2)$ ist im Allgemeinen der Momementenschätzer für $(E_{\vartheta}[X], \operatorname{Var}_{\vartheta}[X])$. Dieser ist aber nicht erwartungstreu, denn es gilt $\mathbb{E}_{\vartheta}[T_2] = \frac{n-1}{n} \operatorname{Var}_{\vartheta}[X]$. Man kann aber durch eine kleine Modifikation einen erwartungs-

 $(E_{\vartheta}[X], \operatorname{Var}_{\vartheta}[X])$. Dieser ist aber nicht erwartungstreu, denn es gilt $\mathbb{E}_{\vartheta}[T_2]$ = $\frac{n-1}{n} \operatorname{Var}_{\vartheta}[X]$. Man kann aber durch eine kleine Modifikation einen erwartungstreuen Schätzer $T' = (T'_1, T'_2)$ mit $T'_1 = T_1$ und $T'_2 = S^2$, der empirischen Stichprobenvarianz.

$$S^2 := \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X}_n)^2$$

Verteilungsaussagen

ML-Schätzer für $\vartheta = (\mu, \sigma^2)$:

Es gibt sehr wenige allgemeingültige Aussagen über Verteilungen von Schätzern. Da diese aber von grosser Wichtigkeit in der Statistik sind, verschafft man sich einen approxmativen Zugang über die Normalverteilung. Schätzer sind nämlich

häufig Funktion einer Summe von i.i.d. Zufallsvariablen im Modell P_{ϑ} . Diese Summe ist nach dem ZGS approximativ normalverteilt unter P_{ϑ} . Für normalverteilte Stichproben existieren nämlich exakte Aussagen. Zuerst führen wir aber zwei neue

Verteilungen ein:

 χ^2 -Verteilung Die χ^2 -Verteilung mit n Freiheitsgraden (bezeichnet mit χ^2_n) ist eine stetige Verteilung einer Zufallsvariablen X. Es gibt folgenden Zusammenhang mit der Normal-

verteilung:

Lemma 7.1. $(\forall i \in \{1, \dots, n\}. \quad Z_i \sim \mathcal{N}(0, 1) \land Z_i \text{ i.i.d.}) \implies \left(\sum_{i=1}^n Z_i^2\right) \sim \chi_n^2$ Zudem ist die χ^2 -Verteilung ein Spezialfall der Gamma-Verteilung, es gilt nämlich:

Zudem ist die
$$\chi^2$$
-Verteilung ein Spezialfall der Gamma-Verteilung, es gilt nämlich

Lemma 7.2. $X \sim \chi_n^2 \Longleftrightarrow X \sim Ga(\frac{n}{2}, \frac{1}{2})$

Damit ist eine
$$\chi_2^2$$
-Verteilung gerade die Exponentialverteilung mit $\lambda = \frac{1}{2}$. Sei $X \sim \chi_n^2$, dann gilt:

• Wertebereich: $\mathcal{W}(X) = \mathbb{R}_0^+$

- Erwartungswert: $\mathbb{E}[X] = n$
- Varianz: Var[X] = 2n
- Dichtefunktion:

erklärt.

$$f_X(x) = \begin{cases} \frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})} y^{\frac{n}{2} - 1} e^{-\frac{1}{2}y} & \text{für } x \ge 0\\ 0 & \text{für } x < 0 \end{cases}$$

Die χ^2 -Verteilung ermöglicht ein Urteil über die Kompabilität eines funktionalen Zusammenhangs mit empirischen Messpunkten. So kann bspw. bestimmt werden, ob eine Gerade, Logarithmhus oder eine Parabel die gesammelten Daten am besten

t-Verteilung Die t-Verteilung mit n Freiheitsgraden gehört zu einer stetigen Zufallsvariablen

folgt der t-Verteilung.

Z. Sie entsteht durch die standarisierte Schätzfunktion des Stichprobenmittelwerts normalverteilter Daten, wenn bei der Standarisierung des Mittelwerts die Varianz (weil sie nicht bekannt ist) durch die Stichprobenvarianz abgeschätzt werden muss.

Die standardisierte Schätzfunktion ist dann nicht mehr normalverteilt, sondern

• Varianz: für n > 2 gilt: $Var[Z] = \frac{n}{n-2}$

Sei $Z \sim t_n$. Dann hat Z folgende Eigenschaften: • Dichtefunktion:

$$f_Z(z) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \cdot \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{z^2}{n}\right)^{-\frac{n+1}{2}}$$

$$\sqrt{n\pi \cdot 1} \left(\frac{1}{2}\right) \left(\frac{n}{2}\right)$$
 \implies für $n = 1$ ist dies eine Cauchy-Verteilung \implies Erwartungswert existiert für $n = 1$ nicht.

 $z \in \mathbb{R}$

• für $n \to \infty$ erhält man eine $\mathcal{N}(0,1)$ -Verteilung

• Erwartungswert: für n > 1 gilt: $\mathbb{E}[Z] = 0$

• Faustregel: ab n = 30 Freiheitsgraden kann man die t-Verteilung durch die Normalverteilung approximieren

Die t-Verteilung kann auch anders hergeleitet werden, Seien $X \sim \mathcal{N}(0,1)$ und $Y \sim \chi_n^2$ unabhängig. Dann ist $Z := \frac{X}{\sqrt{\frac{1}{n}Y}}$ t-verteilt mit n Freiheitsgraden.

Satz 7.1 (Normalverteilte Stichproben). Seien X_1, \ldots, X_n i.i.d. $\sim \mathcal{N}(\mu, \sigma^2)$. Dann gilt:

(i) $\overline{X_n} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$ und normalisiert $\frac{\overline{X_n} - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$ (ii) $\frac{n-1}{\sigma^2}S^2 = \left(\frac{1}{\sigma^2}\sum_{i=1}^n (X_i - \overline{X_n})^2\right) \sim \chi_{n-1}^2$

(iii) $\overline{X_n}$ und S^2 sind unabhängig. (iv) $\frac{\overline{X_n} - \mu}{S/\sqrt{n}} = \frac{\frac{\overline{X_n} - \mu}{\sigma/\sqrt{n}}}{S/\sigma} = \frac{\frac{\overline{X_n} - \mu}{\sigma/\sqrt{n}}}{\sqrt{\frac{1}{n-1}} \frac{n-1}{2} S^2} \sim t_{n-1}$

Die Hauptaussage dieses Satzes ist (iii). (i) ist schon bekannt und (iv) folgt unmittelbar aus der Herleitung der t-Verteilung.

mit $\vartheta \in \Theta$ die unsere möglichen Modelle beschreiben. \implies Grundproblem besteht

Falls keine Alternative explizit definiert ist, so wählen wir $\Theta_A = \Theta \setminus \Theta_0$. Wir

Tests

Ausganspunkt: Stichprobe X_1, \ldots, X_n und Familie von Wahrscheinlichkeiten P_{ϑ}

darin, Entscheidung zwischen zwei konkurrierenden Modelkassen zu treffen: der Hypothese oder Nullhypothese $\Theta_0 \subset \Theta$ oder der Alternative $\Theta_A \subseteq \Theta$. Dabei muss zwingend $\Theta_0 \cap \Theta_A = \emptyset$ gelten. Man Schreibt $H_0 : \vartheta \in \Theta_0$ und $H_A : \vartheta \in \Theta_A$.

- unterscheiden: • einfache Hyptohesen bestehen aus einem einzelnen Wert, also z.B. $\Theta_0 = \{\vartheta_0\}$
 - zusammengesetzte Hypothesen bestehen aus mehreren Werten

Ein Test ist im Allgemeinen eine Entscheidungsregel, die zu gegebenen Daten x_1, \ldots, x_n einen Wert $\{0,1\}$ liefert und dieser ist $1 \iff$ die Nullhypothese soll abgelehnt werden. Formal:

ist definiert durch die Zufallsvariable
$$I_{\{t(x_1,\dots,x_n)\in K\}}$$
 d.h. man verwirft die Hypothese genau dann, wenn der realisierte Wert $t(x_1,\dots,x_n)$

Die Zufallsvariable $T = t(X_1, \dots, X_n)$ heisst Teststatistik. Die Entscheidungsregel

Def. 8.1 (Test, Teststatistik). Ein Test besteht aus

• einer Abbildung $t: \mathbb{R}^n \to \mathbb{R}, (x_1, \dots, x_n) \mapsto t(x_1, \dots, x_n)$

• und einem kritischen Bereich oder Verwerfungsbereich $K \subseteq \mathbb{R}$.

im Verwerfungsbereich K liegt.

Arten von Fehlern • Fehler 1. Art: Hypothese zu Unrecht abgelehnt $\implies \vartheta \in \Theta_0$ und $T \in K$

⇒ man würde gerne beide Fehler-Wahrscheinlichkeiten minimieren. Dazu sollte

Für eine Realisierung ω gilt $t(x_1,\ldots,x_n)=t(X_1(\omega),\ldots,X_n(\omega))=T(\omega)$. Weil T eine Zufallsvariable ist, ist der Raum $\{T \in K\} \subseteq \Omega$ messbar. Damit kann für jedes

• Fehler 2. Art: Hypothese zu Unrecht nicht verworfen, d.h. die Hypothese wird akzeptiert obwohl sie falsch ist. $\implies \vartheta \in \Theta_A$ und $T \notin K$.

Modell P_{ϑ} die Wahrscheinlichkeit $P_{\vartheta}[T \in K]$ betrachtet werden.

- $\vartheta \mapsto P_{\vartheta}[T \in K]$ auf Θ_0 möglichst klein sein, aber gleichzeitig möglichst gross in Θ_A . \Longrightarrow oft nicht möglich, deshalb folgendes Verfahren:
 - 1. Man wählt ein Signifikanzniveau $\alpha \in (0,1)$ und kontrolliert die Wahrscheinlichkeit eines Fehlers erster Art durch α :

 $\beta:\Theta_A\to[0,1]$

$$\sup_{\vartheta\in\Theta_0}P_\vartheta[T\in K]\le\alpha$$
2. Man versucht die Wahrscheinlichkeit für einen Fehler zweiter Art $P_\vartheta[T\notin K]$

 $\vartheta \mapsto \beta(\vartheta) := P_{\vartheta}[T \in K]$

Damit ergibt sich der Zusammenhang $1 - \beta(\vartheta) = P_{\vartheta}[T \in K]$. ⇒ asymmetrisches Vorgehen führt dazu, dass es schwieriger ist, eine Hypothe-

für $\vartheta \in \Theta_A$ zu minimieren. Dazu maximiert man die Macht des Tests

se zu verwerfen, als diese zu behalten. Das führt zu folgendem Verhalten in der Statistik:

In einem Test verwendet man als Hypothese immer die Negation der eigentlich gewünschten Aussage.

Aufgrund der Asymmetrie kann es durchaus vorkommen, dass bei Vertauschen von

Konstruktion von Tests 8.1 **Def. 8.2** (Likelihood-Quotient). Sei $L(x_1, \ldots, x_n; \vartheta)$ die Likelihood Funktion

und
$$\vartheta_0 \in \Theta_0$$
 und $\vartheta_A \in \Theta_A$. Dann definieren wir den Likelihood-Quotienten als
$$R(x_1, \dots, x_n; \vartheta_0, \vartheta_a) := \frac{L(x_1, \dots, x_n; \vartheta_0)}{L(x_1, \dots, x_n; \vartheta_A)}$$

Hypothese und Alternative unterschiedlich entschieden wird.

Je kleiner dieser Quotient wird, desto wahrscheinlicher sind die Beobachtungen im Modell P_{ϑ_a} im Gegensatz zum Modell $P_{\vartheta_0}. \implies$ wähle als Teststatistik T= $R(X_1,\ldots,X_n;\vartheta_0,\vartheta_A)$ und als kritischen Bereich K:=[0,c). Sind Hypothese und

Alternative jeweils einfach, so ist diesr Test optimal:

 $R(x_1, \dots, x_n) := \frac{\sup_{\vartheta \in \Theta_0} L(x_1, \dots, x_n; \vartheta)}{\sup_{\vartheta \in \Theta_A} L(x_1, \dots, x_n; \vartheta)}$ $\widetilde{R}(x_1, \dots, x_n) := \frac{\sup_{\vartheta \in \Theta_0} L(x_1, \dots, x_n; \vartheta)}{\sup_{\vartheta \in (\Theta_A \cup \Theta_0)} L(x_1, \dots, x_n; \vartheta)}$

formaler bedeutet dies für jeden anderen Test (T', K'):

$$R(x_1, \dots, x_n) := \frac{\sup_{\vartheta \in \Theta_0} L(x_1, \dots, x_n; \vartheta)}{\sup_{\vartheta \in \Theta_A} L(x_1, \dots, x_n; \vartheta)}$$
$$\widetilde{R}(x_1, \dots, x_n) := \frac{\sup_{\vartheta \in \Theta_0} L(x_1, \dots, x_n; \vartheta)}{\sup_{\vartheta \in \Theta_0} L(x_1, \dots, x_n; \vartheta)}$$

Satz 8.1 (Neyman-Pearson-Lemma). $\Theta_0 = \{\vartheta_0\}, \Theta_A = \{\vartheta_A\}$. Sei die Teststatistik $T:=(X_1,\ldots,X_n;\vartheta_0,\vartheta_A)$ mit K:=[0,c) und sei $\alpha^*:=P_{\vartheta_0}[T\in K]=$ $P_{\theta_0}[T < c]$. Dann ist der Likelihood-Quotienten-Test mit T und K im folgenden

jeder andere Test mit Signifikanzniveau $\alpha \leq \alpha^*$ hat kleinere Macht des Tests,

was bedeutet, dass die Wahrscheinlichkeit für einen Fehler 2. Art grösser ist. Etwas

 $P_{\vartheta_0}[T' \in K] \le \alpha^* \implies P_{\vartheta_A}[T' \in K] \le P_{\vartheta_A}[T \in K]$

In den allermeisten Fällen sind weder Hypothese noch Alternative einfach. Um dennoch ein systematisches Vorgehen zu liefern, verallgemeinern wir zuerst den

Nun wählt man eine dieser beiden Quotienten als Teststatistik T_0 mit einem kritischen Bereich $K_0 := [0, c_0)$. C_0 muss dabei so gewählt werden, dass der Test ein gewähltes Signifikanzniveau einhält. Oft kann man auch durch Umformen eine einfachere Teststatistik finden, in dem

man versucht, eine Beziehung der Art "Quotient klein genau dann, wenn ... "herzuleiten. Diese Bedingung kann man dann als Teststatistik verwenden. Schlussendlich

braucht man noch die Verteilung von T unter der Hypothese H_0 , um den kritischen Bereich K passend zum gewünschten Signifikanzniveau zu finden. 8.2 p-Wert

Def. 8.3 (*p*-Wert). ei $\Theta_0 = \{\vartheta_0\}$. Dann ist der *p*-Wert die Wahrscheinlichkeit,

Sinne optimal:

Likelihood-Quotienten:

einen mindestens so extremen Wert der Teststatistik zu erhalten, falls die Nullhypothese wahr ist. Die Alternativhypothese bestimmt dabei, was als "extremer" gilt. Haben wir also Daten (x_1, \ldots, x_n) gesammelt und betrachten wir den Wert der

Teststatistik $t(x_1, \ldots, x_n)$, so interessiert es uns, wie extrem dieser Wert unter Annahme der Nullhypothese ist. Bemerkung: Der p-Wert gibt \mathbf{nicht} an, wie wahrscheinlich die Nullhypothese bei

Lemma 8.1. Am p-Wert kann direkt der Testentscheid abgelesen werden, liegt er unter dem Signifikanzniveau α , wird die Nullhypothese verworfen, ansonsten nicht.

Dies lässt sich wie folgt begründen: Ist der p-Wert kleiner als α , dann liegt der

Test für den Erwartungswert einer Normalverteilung mit bekannter Varianz der Grundgesamtheit. Seien also $X_1, \ldots, X_n \sim \mathcal{N}(\vartheta, \sigma^2)$ -verteilt (i.i.d.) für bekanntes

8.3 z-Test

 $\sigma > 0$.

Erhalt dieses Wertes ist!

• Hypothese: $H_0: \vartheta = \vartheta_0$ • Teststatistik:

beobachtete Wert der Teststatistik sicher im Verwerfungsbereich.

$$T = \frac{\overline{X}_n - \vartheta_0}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)$$
 unter P_{ϑ_0}

$\overline{\text{Alternative } H_A}$	Kritischer Bereich
$\theta < \theta_0$	$(-\infty, z_{\alpha})$
$\vartheta > \vartheta_0$	(z_{1-lpha},∞)
$\vartheta \neq \vartheta_0$	$(-\infty, z_{\alpha/2}) \cup (z_{1-\alpha/2}, \infty)$

• Kritische Bereiche (zum Signifikanzniveau $\alpha \in (0,1)$) kann au Tabelle abgelesen werden: Dabei bezeichnet z_{α} das α -Quantil der Standardnormalverteilung. Man findet es, indem man in der Tabelle der Standardnormalverteilung nach $\Phi^{-1}(\alpha)$ sucht. Aus Symmetriegründen gilt $z_{\alpha} = -z_{1-\alpha}$.

$$\Phi(z_{\alpha}) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z_{\alpha}} e^{-x^{2}/2} dx = \alpha$$

8.4 *t*-Test

Test für den Erwartungswert einer Normalverteilung mit unbekannter Varianz. Seien also $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2)$ -verteilt (i.i.d.) für unbekanntes $\sigma > 0$.

• Teststatistik:

• **Hypothese:** $H_0: \mu = \mu_0$. Formal präziser wäre $\Theta_0 = \{ \vartheta = (\mu_0, \sigma) \mid \sigma > 0 \}$

$$T = \frac{\overline{X}_n - \mu_0}{S/\sqrt{n}} \sim t_{n-1}$$
 unter P_{μ_0} , wobei $S^2 :=$ empirische Stichprobenvaria

• Kritische Bereiche (zum Signifikanzniveau $\alpha \in (0,1)$) kann aus Tabelle abgelesen werden:

Alternative H_A	Kritischer Bereich
$\mu < \mu_0$	$(-\infty, t_{n-1,\alpha})$
$\mu > \mu_0$	$(t_{n-1,1-lpha},\infty)$
$\mu \neq \mu_0$	$(-\infty, t_{n-1,\alpha/2}) \cup (t_{n-1,1-\alpha/2}, \infty$

Dabei bezeichnet $t_{m,\alpha}$ das α -Quantil der t_m -Verteilung. Aus Symmetriegründen gilt $t_{m,\alpha}=-t_{m,1-\alpha}$:

$$\int_{-\infty}^{t_{m,\alpha}} f_m(x) \ dx = \alpha$$

wobei f_m die Dichte der t_m Verteilung ist. Diesen Wert erhält man aus einer Tabelle zur t-Verteilung.

8.5 Gepaarte Zweistichproben-Tests für Normalverteilungen

Seien $X_1, \ldots, X_n, Y_1, \ldots, Y_n$ Zufallsvariablen, so dass (X_i, Y_i) natürliche Paare bil-

- den. Bezeichnen wir nun $Z_i := X_i Y_i$.

 bekannte Varianz: Falls $Z_1, \ldots, Z_n \sim \mathcal{N}(\vartheta, \sigma^2)$ (i.i.d.) für bekanntes $\sigma > 0$,
 - dann kann z-Test analog zu Kapitel 8.3 angewendet werden.

 unbekannte Varianz: Falls $Z_1, \ldots, Z_n \sim \mathcal{N}(\mu, \sigma^2)$ (i.i.d.) für unbekanntes $\sigma >$

8.6 Ungepaarte Zweistichproben-Tests für Normalverteilungen

0, dann kann t-Test analog zu Kapitel 8.4 angewendet werden.

Seien $X_1, \ldots, X_n \sim \mathcal{N}(\mu_X, \sigma_X^2)$ (i.i.d.) und $Y_1, \ldots, Y_m \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$ (i.i.d.), so dass alle X_i, Y_j unabhängig.

8.6.1 Normalverteilungen mit bekannten Varianzen Seien also σ_X, σ_Y bekannt.

• **Hypothese:** $H_0: \mu_X - \mu_Y = \mu_0$ (bspw. $\mu_0 = 0$)

- Teststatistik:

$$T = \frac{\overline{X}_n - \overline{Y}_m - \mu_0}{\sqrt{\frac{\sigma_X^2}{T} + \frac{\sigma_Y^2}{T}}} \sim \mathcal{N}(0, 1) \quad \text{für } P_{\mu_0}$$

Die kritischen Bereiche zum Signifikanzniveau sind analog zur Tabelle aus Kapitel 8.3.

Normalverteilungen mit unbekannten aber gleichen Varianzen

Sei also $\sigma_X = \sigma_Y = \sigma$ für $\sigma > 0$ unbekannt.

 $S^{2} := \frac{(n-1)S_{X}^{2} + (m-1)S_{Y}^{2}}{n+m-2}$

• **Hypothese:** $\mu_X - \mu_Y = \mu_0$ (bspw. $\mu_0 = 0$)

- The state of the
- Teststatistik:

$$T = \frac{\overline{X}_n - \overline{Y}_m - \mu_0}{S\sqrt{\frac{1}{n} + \frac{1}{m}}} \sim t_{n+m-2} \quad \text{unter } P_{\mu_0}$$
• Kritische Bereiche: analog zu Tabellae aus Kapitel 8.4, jedoch ist nun die

- Anzahl der Freiheitsgrade n+m-2 und nicht mehr n-1. Dabei benutzen wir für die Varianz ein gewichtetes Mittel aus den Stichprobenvarianzen S_X, S_Y , definiert als

Wir guchen aug einer Familie

den wahren Parameter enthält.

Wir suchen aus einer Familie $(P_{\vartheta})_{\vartheta\in\Theta}$ von Modellen eines, welches zu unserern Daten passt. Da es aber extrem schwierig ist, einen Parameter ϑ genau zu schätzen, suchen wir nun eine (zufällige) Teilmenge des Parameterbereichs, der hoffentlich

Konfidenzbereiche

Def. 9.1 (Konfidenzbereich). Ein Konfidenzbereich für ϑ zu Daten x_1, \ldots, x_n ist eine Menge $C(x_1, \ldots, x_n) \subseteq \Theta$. Damit ist $C(X_1, \ldots, X_n)$ eine zufällige Teil-

menge
$$\Theta$$
. Dieses C heisst Konfidenzbereich zum Niveau $1-\alpha$, falls für alle $\vartheta \in \Theta$ gilt:

 $P_{artheta}[artheta \in C(X_1,\ldots,X_n)] \geq 1-lpha$

nicht der Fall und man kann nur approximative Angaben machen, z.B. mit dem $Zentralen\ Grenzwertsatz$

9.1 Zusammenhang von Kondifenzbereichen und Tests
Wir zeigen im Folgenden, dass beide Konzept grundlegend zusammenhängen und

Wahrscheinlichkeit erwischt. Kennt man die Verteilung genau genug, so kann man exakte Konfidenzintervalle zu einem Signfikanzniveau angeben. Oft ist dies jedoch

ineinander überführt werden können.

Sei $C(X_1,\ldots,X_n)$ ein Konfidenzbereich für ϑ zum Niveau $1-\alpha$. Wir wollen

die Hypothese $H_0: \vartheta = \vartheta_0$ testen. Dazu definieren wir einen Test $I_{\{\vartheta_0 \notin C(X_1,\dots,X_n)\}}$

 $I_{\{\vartheta_0\notin C(X_1,\dots,X_n)\}}$ der H_0 ablehnt $\iff v_0$ liegt nicht in $C(X_1,\dots,X_n)$. Damit folgt aus der Ein-

gegeben. Damit haben wir einen kritischen Bereich K_{ϑ_0} , so dass die Nullhypothese genau dann abgelehnt wird, wenn $(X_1, \ldots, X_n) \in K_{\vartheta_0}$ für jedes ϑ_0 . Weiter gilt wegen dem Niveau α , dass für jedes $\vartheta_0 \in \Theta$ gilt $P_{\vartheta_0}[(X_1,\ldots,X_n)\in K_{\vartheta_0}]\leq \alpha$

Sei umgekehrt für jede einfache Hypothese $\Theta_0 = \{\vartheta_0\}$ ein Test zum Niveau α

 $P_{\vartheta}[\vartheta_0 \notin C(X_1,\ldots,X_n)] = 1 - P_{\vartheta}[\vartheta_0 \in C(X_1,\ldots,X_n)] \le \alpha$

Dieser Test hat also gerade Signifikanzniveau α . Aus dem Konfidenzbereich für ϑ erhalten wir also eine Familie von Tests, nämlich für jede einfache Hypothese

Damit können wir für das Niveau
$$1-\alpha$$
 folgende Teilmenge $C(X_1,\ldots,X_n)$ von Θ definieren:
$$\vartheta \in C(X_1,\ldots,X_n) : \iff (X_1,\ldots,X_n) \in K_\vartheta$$
 Dies ist ein Konfindenzbereich für das Niveau $1-\alpha$, denn es gilt für jedes $\vartheta \in \Theta$
$$P_{\vartheta}[\vartheta \in C(X_1,\ldots,X_n)] = P_{\vartheta}[(X_1,\ldots,X_n) \notin K_{\vartheta}]$$

 $=1-P_{\vartheta}[(X_1,\ldots,X_n)\in K_{\vartheta}]$

Nützlich 10

Median berechnen: Die Vertilungsfunktion muss = 0.5 sein. Also sei $F_X(x) = 0.5$,

dann ist x der Median.

Falls
$$X_i \sim \mathcal{N}(\mu, \sigma^2)$$
, dann

Falls
$$X_i \sim \operatorname{Fol}(\lambda)$$
, dann S

Falls
$$X_i \sim \mathcal{N}(\mu, \sigma^2)$$
, dann

Falls $X_i \sim \mathcal{N}(\mu, \sigma^2)$, dann

Falls
$$X_i \sim \mathcal{N}(\mu, \sigma^2)$$
, dann

Falls
$$X_i \sim \text{Poi}(\lambda)$$
, dann $S_n \sim \text{Poi}(n \cdot \lambda)$
Falls $X_i \sim \mathcal{N}(\mu, \sigma^2)$, dann

$$\overline{X_n} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n}),$$

facheit von $\Theta_0 = \{\vartheta_0\}$ für jedes $\vartheta \in \Theta_0$:

 $\Theta_0 = \{\vartheta_0\}$ mit $\vartheta_0 \in \Theta$ genau einen Test.

$$\overline{X_n}$$
 \sim

$$\overline{X_n} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n}), \quad \overline{\frac{X_n - \mu}{\sigma/\sqrt{n}}} \sim \mathcal{N}(0, 1)$$

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) \ dx, \quad \mathbb{E}[X^k] = \int_{-\infty}^{\infty} x^k \cdot f_X(x) \ dx \quad (vgl. Satz 4.3)$$

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) \ dx, \quad \mathbb{E}[X^k] = \int_{-\infty}^{\infty} x^k \cdot f_X(x) \ dx \quad \text{(vgl. Satz 4.3)}$$
 Die Likelihoodmethode ist eigentlich die gemeinsame Dichte (Produkt falls unabhängig).

Stichprobenmittel:

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

$$X_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 Stichprobenvarianz:

 $S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} \left(X_{i} - \overline{X}_{n} \right)^{2}$

Das Stichprobenmittel und die Stichprobenvarianz werden oft als Schätzer in Ko-

fidenzbereichen verwendet.

11 Satz von Bayes

$$P[A \mid B] = \frac{P[A \cap B]}{P[B]} = \frac{P[B \mid A] \cdot P[A]}{P[B \mid A] \cdot P[A] + P[B \mid \overline{A}] \cdot P[\overline{A}]}$$

Maximum Likelihood Schätzer 12.1

 \bullet Falls Zufallsvariablen i. i. d., dann $\log L$ bestimmen

Momentenschätzer

Likehood-Funktion L bestimmen

Schätzer Rezepte

- L (log L) maximieren: ableiten von L (log L) und gleich 0 setzen.
- ⇒ Funktion, die Parameter schätzt

Verteilung bestimmen

- - Theoretische Momente bestimmen (meistens nur erstes Moment = $\mathbb{E}[X]$)
 - ⇒ Funktion, die Parameter schätzt.

13 p-Wert

12

12.2

Beispiel: Hintergrundfarbe einer Webseite ändern und schauen, ob sich die Besuchs-

dauer von Nutzern verändern.
$$\mu=20$$

• Nullhypothese
$$H_0$$
: $\mu=20$ nach der Änderung

• Gleichstellen mit empirischen Momenten (meistens nur erstes Moment)

- Alternative H_A : $\mu > 20$ nach der Änderung Signifikanzniveau: $\alpha = 0.05$
- Stichprobe: $n = 100, \overline{X} = 25, (\sigma)$
- p-Wert: $P[\overline{X} \ge 25 \mid H_0 \text{ ist wahr}]$
- Falls p-Wert $< \alpha$: H_0 verwerfen (und H_A akzeptieren)

 $\bullet \ \alpha$ grösser \iff Fehler 1. Art grösser \iff Fehler 2. Art kleiner \iff Macht

 α kleiner \iff Fehler 1. Art kleiner \iff Fehler 2. Art grösser \iff Macht

Falls p-Wert $\geq \alpha$: H_0 nicht verwerfen (keine Aussage)

Der p-Wert ist **nicht** $P[H_0 \text{ ist wahr} | \text{Stichprobe}]$

14 Tests

Zusammenhänge α (Signifikanzniveau), Fehler 1. Art, β (Macht), Fehler 2. Art

grösser

kleiner

- Achtung: Bei kleinen Datenmengen kann eine Normalverteilungsapproximation ungenau werden. Deshalb immer diskrete Werte verwenden. Fehler 2.Art (1-Macht)
- Fehler 1.Art (Niveau) 0.04 werfungsbereich 5 10 15 Anzahl 20 25 30

Begriffe

Modell: z.B. Unter P_{φ} sind die X_i i.i.d. $\sim \text{Poi}(\lambda)$, i = 1, ..., 6, λ unbekannt.

Teststatistik: Hilfsfunktion bei statistischen Tests. Kann zum Beispiel mittels Likelih Quotienten-Vorgehen gefunden werden.

Nullhypothese

• Modell

14.1

- Alternativhypothese
- Teststatistik
- Verwerfungsbereich
- beobachteter Wert der Teststatistik
- Testentscheid
- eventuell p-Wert

Wichtig:

Falls beobachtetes Ergebnis im Verwerfungsbereich: H_0 wird abgelehnt, H_A wird

angenommen. Falls beobachtetes Ergebnis nicht im Verwerfungsbereich: H_0 wird nicht abgelehnt

p-Wert ist so wie die Signifikanz des Testresultats.

• Verteilung der Teststatistik unter der Nullhypothese

(keine Aussage über Annahme!), keine Aussage über H_A p-Wert: kleinstes Niveau, auf dem der Test die Nullhypothese noch verwirft.

A small p-value (typically ≤ 0.05) indicates strong evidence against the null hypothesis, so you reject the null hypothesis.

Auch: Falls $H_0: p = 123, H_A: p < 123$ Mit Statistik $P_{H_0}[T \leq \text{Beobachteter Wert}].$

you fail to reject the null hypothesis. Beispiel Teststatistik mit Likelihood-Quotienten fin-15den

A large p-value (> 0.05) indicates weak evidence against the null hypothesis, so

$X_i \sim \operatorname{Poi}(\lambda)$

Teststatistik:
$$T = \sum_{i=1}^{6} X_i$$
, denn

$$R(x_1, \dots, x_6; \lambda_0, \lambda_A) = \frac{L(x_1, \dots, x_6; \lambda_0)}{L(x_1, \dots, x_6; \lambda_A)} = \frac{e^{-6\lambda_0} \prod_{i=1}^6 \frac{\lambda_0^{x_i}}{x_i!}}{e^{-6\lambda_A} \prod_{i=1}^6 \frac{\lambda_A^{x_i}}{x_i!}}$$

$$= e^{-6(\lambda_0 - \lambda_A)} \left(\frac{\lambda_0}{\lambda_A}\right)^{\sum_{i=1}^6 x_i}$$

$$= \text{const.}(\lambda_0, \lambda_A) \left(\frac{\lambda_0}{\lambda_A}\right)^{\sum_{i=1}^6 x_i}.$$

Da $\lambda_0 < \lambda_A$, wird $R(x_1, \dots, x_6; \lambda_0, \lambda_A)$ klein, genau dann, wenn $\sum_{i=1}^6 x_i$ gross ist. Statt des komplizierten Quotienten wählen wir als Teststatistik also

$$T = \sum_{i=1}^6 X_i.$$

16 Konfidenzintervall berechnen

- \bullet Gegeben: Teststatistik T.
- \bullet Schätze ϑ mit einem Schätzer. Zum Beispiel $\mu :$ Stichprobenmittel oder $\sigma :$ Stichprobenvarianz.
- \bullet Setze den geschätzten Wert von ϑ in T ein und bestimme die Verteilung. Achtung: Die Zufallsvariable ist frei.
- Konfidenzintervall mit Niveau $1-\alpha$: Bereich in der neuen Verteilung, die die Fläche $1-\alpha$ hat. ACHTUNG: Bereich soll als Bereich der Zufallsvariable angegeben sein, bevor sie in die Teststatistik eingeben wird, sodass sie im Niveaubereich liegt.