Linear Algebra

1.1 Systems of linear equations

Cvičení 1.1.1. Solve the given system of linear algebraic equations using the Gauss elimination.

Cvičení 1.1.2. Solve the given system of linear algebraic equations dependent on a parameter $\lambda \in \mathbf{R}$.

$$\begin{array}{rcl} \lambda x + y + z & = & 1 \\ a) & x + \lambda y + z & = & 1 \\ x + y + \lambda z & = & 1 \end{array}$$

1.2 Matrices, eigenvalues and eigenvectors

Cvičení 1.2.1. Compute the determinant of the given matrix A and the inverse A^{-1} .

a)
$$\mathbf{A} = \begin{pmatrix} 1 & 6 & -16 \\ -1 & -3 & 10 \\ 1 & 3 & -7 \end{pmatrix}$$
 b) $\mathbf{A} = \begin{pmatrix} 1 & 6 & -16 \\ -1 & -3 & 10 \\ 1 & 3 & -7 \end{pmatrix}$ c) $\mathbf{A} = \begin{pmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{pmatrix}$

Cvičení 1.2.2. Compute the eigenvalues and eigenvectors of the given matrix:

1.
$$\begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$$
 2. $\begin{pmatrix} 4 & 2 \\ -1 & 1 \end{pmatrix}$ 3. $\begin{pmatrix} -3 & 4 & -2 \\ 1 & 0 & 1 \\ 6 & -6 & 5 \end{pmatrix}$ 4. $\begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$

1.3 Linear combination, vector space basis

Cvičení 1.3.1. Are the vectors linearly independent?

Cvičení 1.3.2. Check if the vector \vec{y} is a linear combination of the vector set $\vec{x_1}$, $\vec{x_2}$ and $\vec{x_3}$.

1.
$$\vec{y} = (2, 8, 12)$$
, $\vec{x_1} = (1, 2, 1)$, $\vec{x_2} = (3, 2, -1)$ \vec{a} $\vec{x_3} = (1, 2, 3)$
2. $\vec{y} = (2, 8, 8)$, $\vec{x_1} = (1, 2, 1)$, $\vec{x_2} = (3, 3, 5)$ \vec{a} $\vec{x_3} = (1, -1, 3)$

Cvičení 1.3.3. Express the polynomial $p = x^2 + x + 1$ as a linear combination of the given polynomials

$$p_{1} = 2x + 3$$

$$p_{2} = x^{2} + 2x + 3$$

$$p_{3} = -x^{2} + 2x$$

$$p_{4} = -2x^{2} + x + 2$$

Cvičení 1.3.4. Can the given matrices make a basis of the space $\mathbb{R}^{2\times 2}$? If not, write an arbitrary basis of that space.

$$\begin{pmatrix} 1 & 1 \\ -3 & -4 \end{pmatrix} \quad \begin{pmatrix} 3 & 3 \\ 7 & 2 \end{pmatrix} \quad \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix} \quad \begin{pmatrix} 1 & 6 \\ 10 & 3 \end{pmatrix}$$

Cvičení 1.3.5. Let $V(\Omega)$ be a vector space of continuous functions defined in the given interval Ω . Find out whether the functions $a,b,c\in V(\Omega)$ are linearly independent.

$$a) \ a = e^x, \ b = x, \ x \in \Omega = \mathbf{R},$$

b)
$$a = x^2 + \frac{x}{2} - \frac{1}{2}$$
, $b = \frac{x^2}{3} + \frac{1}{3}$, $c = x^2 + x - 2$, $x \in \Omega = \mathbf{R}$,

c)
$$a = \sin x, b = \cos x, x \in \Omega = [0, 2\pi],$$

d)
$$a = 2\cos 2x$$
, $b = -\cos 2x$, $c = -1$, $x \in \Omega = [-\pi, \pi]$.

1.4 Vector spaces

Cvičení 1.4.1. Ověřte, že zadaná množina je uzavřená pro definované operace sčítání a násobení a dohromady tvoří lineární vektorový prostor.

$$x \oplus y = x \cdot y, \quad \alpha \odot x = x^{\alpha}, \quad x, y \in \mathbf{R}^+$$

Cvičení 1.4.2. Mějme lineární vektorový prostor $M = \{(a,b,c) | a,b,c \in \mathbf{R}\}$ nad tělesem reálných čísel (odpovídá \mathbf{R}^3). Ověřte, že množina $N = \{(a,b,c) | a+2b=0,c \in \mathbf{R}\}$ je jeho podprostorem $N \subset M$.

Cvičení 1.4.3. Mějme lineární vektorový prostor \mathbb{R}^3 . Ověřte, že množina N je jeho podprostorem: $N = \{(a, b, c) | 2a - b - c = 3\}, N \subset \mathbb{R}^3$.

Cvičení 1.4.4. Ověřte, že $M = \{ p \in \mathcal{P} \mid 2p(0) = p(1) \}$ je podprostorem polynomů \mathcal{P} .

Cvičení 1.4.5. Určete, která z následujících množin funkcí spolu s operací sčítání funkcí a operací násobení funkce reálným číslem tvoří vektorový prostor.

- a) množina funkcí ohraničených na [a, b],
- b) množina funkcí rostoucích na [a, b],
- c) množina funkcí monotonních na [a, b],
- d) množina sudých funkcí na [-a, a], a > 0.

Cvičení 1.4.6. Určete, které z číselných množin při sčítání a násobení reálným číslem definovanými přirozeným způsobem tvoří vektorový prostor, a v kladném případě určete jeho nulový vektor.

- a) množina komplexních čísel C,
- b) množina reálných čísel ${f R},$
- c) $množina kladných reálných čísel <math>\mathbb{R}^+$,
- d) množina racionálních čísel Q.

Cvičení 1.4.7. Nechť P je množina posloupností reálných čísel spolu s operací sčítání (součet posloupností) a násobení reálným číslem (násobení posloupnosti reálným číslem). Zjistěte, zda P tvoří vektorový prostor, jestliže

- a) P je množina všech posloupností, které mají limitu 0,
- b) P je množina všech posloupností, které mají limitu 1,
- c) P je množina všech konvergentních posloupností.

Cvičení 1.4.8. Ověřte, zdali množina všech polynomů \mathcal{P}^n nejvýše stupně n tvoří vektorový prostor. Operace sčítání a násobení reálným číslem jsou definovány přirozeně.

1.5 Řešení

```
1.1.1
      a) S = \{(1, 2, 1)\}
      b) S = \{(3, 1, -2, 1)\}
      c) S = \{\frac{1}{2}(t+5, 6t+2, -7t-1, t) \mid t \in \mathbf{R}\}
      d) S = \{(t, 5t - 4s - 9, s, -3t + 3s + 7) | t, s \in \mathbf{R}\}
      e) nemá řešení, S = \emptyset
1.1.2
       \lambda_1 = 0, S_1 = \{(1 - r - s, r, s) \mid r, s \in \mathbf{R}\};
       \lambda_2 = -2, S_2 = \emptyset;
       \lambda_3 \in \mathbf{R} \setminus \{-2, 1\}, S_3 = \{\frac{1}{\lambda + 2}(1, 1, 1)\}
1.2.1 a) \det \mathbf{A} = 9, \mathbf{A}^{-1} = \frac{1}{3} \begin{pmatrix} -3 & -2 & 4 \\ 1 & 3 & 2 \\ 0 & 1 & 1 \end{pmatrix} b) \det \mathbf{A} = 0, \mathbf{A}^{-1} neexistuje c) \det \mathbf{A} = -1,
\mathbf{A}^{-1} = \begin{pmatrix} 1 & -4 & -3 \\ 1 & -5 & -3 \\ -1 & 6 & 4 \end{pmatrix}
1.2.2
      1. \lambda = \{5, -1\}, v = \{(1, 2), (1, -1)\}
      2. \lambda = \{2, 3\}, v = \{(1, -1), (-2, 1)\}
      3. \lambda = \{1, -1, 2\}, v = \{(1, 1, 0), (1, 0, -1), (1, 2, 3)\}
      4. \lambda = \{-1, 2, -2\}, v = \{(-1, -1, 1), (-1, 1, 0), (1, 1, 2)\}
1.3.1 a) ne, b) ano, c) ano
1.3.2 ano, s koeficienty a = (2, -1, 3)
1.3.3 p = \alpha_i p_i, kde koeficienty \vec{\alpha} = \{(-\frac{1}{6}(17t+5), \frac{1}{6}(13t+7), \frac{1}{6}(t+1), t) \mid t \in \mathbf{R}\}
1.3.4 ne, jsou lineárně závislé, báze: \{(\frac{1}{0}, 0), (\frac{0}{0}, 0), (\frac{0}{0}, 0), (\frac{0}{0}, 0)\}
1.3.5
    a) nezávislé
    b) závislé, s koeficienty \vec{\alpha} = \{(-2t, 3t, t) \mid t \in \mathbf{R}\}
    c) nezávislé
    d) závislé, s koeficienty \vec{\alpha} = \{(t, -t, t) \mid t \in \mathbf{R}\}
1.4.1 ano
1.4.2 ano
1.4.3 ne, není uzavřen pro \oplus 1.4.4 ano
1.4.5
    a) ano
    (b) ne, pro rostoucí funkci f(x), není kf(x) pro k < 0 rostoucí
    c) ne, např. pro funkce f(x) = -x a g(x) = x^2 na intervalu [0,1], je f(x) + g(x) nemo-
         notonni
    d) ano
1.4.6
    a) ano, \vec{0} = 0
    b) ano, 0 = 0
    c) ne, pro x \in \mathbf{R}^+, k \in \mathbf{R} neplatí kx \in \mathbf{R}^+
    d) ne, pro x \in \mathbf{Q}, k \in \mathbf{R} neplatí kx \in \mathbf{Q}
1.4.7
    a) ano
    b) ne, \lim ((a) + (b)) = \lim (a) + \lim (b) = 2
    c) ano
```

Metrické, normované prostory, operátory, konvergence

Norma splňuje:

N)
$$||x|| = 0$$

N)
$$||x|| = |\alpha| ||x||$$

$$||x + y|| \le ||x|| + ||y||$$

Metrika je generována normou d(x,y) = ||x-y|| (neplatí opačně), splňuje:

$$M) d(x,y) \geq 0$$

$$M$$
) $d(x,y) = d(y,x)$

$$M) d(x,y) \leq d(x,z) + d(z,y)$$

Cvičení 2.0.1. Ověřte, že množina $M \subset \mathbf{R}^2, M = \{\vec{x} = (a, 2a) | a \in \mathbf{R}\}$ s normou $\|(x_1, x_2)\| = |x_1|$ tvoří normovaný vektorový podprostor.

Cvičení 2.0.2. Ověřte, že množina $M \subset \mathbf{R}^2$ s normou $\|(x_1, x_2)\| = \left(\sqrt{|x_1|} + \sqrt{|x_2|}\right)^2$ tvoří normovaný vektorový podprostor.

Cvičení 2.0.3. Ověřte, že zadané funkce jsou normami nebo metrikami.

1.
$$||u|| = \sqrt{\int_a^b |u(x)| dx}$$
 2. $||u|| = \sqrt{\int_a^b |u(x)|^2 dx}$ 3. $||u|| = \sqrt{\int_a^b |u(x)|^3 dx}$

Cvičení 2.0.4. Ověřte, že množina funkcí $M \subset \mathbf{C}[0,1]$ s normou $||f|| = \int_0^1 |f(x)|^2 dx$ tvoří normovaný vektorový podprostor.

Cvičení 2.0.5. Ověřte, že množina polynomů $M = \{p(x) = ax^2 + bx + c \mid a, b, c \in \mathbf{R}\}$ s normou ||p|| = |p(0)| + |p(1)| + |p(2)| tvoří normovaný vektorový podprostor.

Cvičení 2.0.6. Ověřte, že množina polynomů $M = \{p(x) = ax^2 + 2(a+b)x + b \mid a, b \in \mathbf{R}\}$ s normou ||p|| = |p'(-1) + p'(1)| + |p''(0)| tvoří normovaný vektorový podprostor.

Cvičení 2.0.7. Ověřte, že množina polynomů $M = \{p(x) = ax^2 + bx + b \mid a, b \in \mathbf{R}\}$ s normou ||p|| tvoří normovaný vektorový podprostor.

a)
$$||p|| = |p'(-1) + p'(1)|$$

b)
$$||p|| = |p'(-1) + p'(1)| + |p''(0)|$$

c)
$$||p|| = |p'(-1) + p'(1)| + |p''(0)|^{\frac{1}{2}}$$

d)
$$||p|| = \left(\sqrt{|p'(-1) + p'(1)|} + \sqrt{|p''(0)|}\right)^2$$

Cvičení 2.0.8. Ověřte, že množina polynomů $M=\{p(x)=ax^2+bx+c\,|\,a,b,c\in\mathbf{R}\}$ s normou $\|p\|=|\int\limits_0^1p(x)\,\mathrm{d}x|+\sqrt{p(1)^2+p(0)^2}$ tvoří normovaný vektorový podprostor.

Cvičení 2.0.9. Vypočítejte normu funkcí.

- a) L^1 , L^∞ , a H^1 normu pro funkci f(x) = (x+1)(x-2) na intervalu [-2,3].
- b) $||f||_{L^1([0,2])} a ||f||_{L^{\infty}([0,1])} pro f(x) = -x(x-1)$
- $c)\ \left\|f\right\|_{L^1([0,1])}\ a\ \left\|f\right\|_{L^2([0,1])}\ pro\ f(x)=x^{-\frac{1}{2}}$
- d) $||f||_{L^2([0,2\pi])}$ pro $f(x) = \sin(kx)$ a $f(x) = \cos(kx)$ kde k je libovolné celé číslo.
- e) $||f||_{L^1([-\infty,\infty]} a ||f||_{L^\infty([-\infty,\infty]} pro f(x) = \frac{1}{1+x^2}$
- f) normu v prostoru $H^1([-1,1])$ pro funkce $\sqrt[3]{x}$ a $\sqrt[3]{x^2}$, pro které hodnoty parametru p bude mít funkce x^p konečnou normu?

Cvičení 2.0.10. Ověřte, zda zadaný operátor je symetrický a pozitivně definitní.

a)
$$A(u) = -\frac{\partial u}{\partial x}$$
 na intervalu $\Omega = [0, 1]$, $\text{Tr}(\Omega) = 0$.

b)
$$A(u) = -x \frac{\partial^2 u}{\partial x^2} - y \frac{\partial^2 u}{\partial y^2} + u$$
 $na C_0^2(\Omega), \ \Omega = (0,1)(0,1)$

c)
$$A(u) = \lambda(x,y) \frac{\partial^2 u}{\partial x^2} + \mu(x,y) \frac{\partial^2 u}{\partial y^2} + u$$
 na $C_0^2(\Omega)$, $\Omega = (0,1)(0,1)$

d)
$$A(u) = -4 \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} + u$$
 na $C_0^2(\Omega)$, $\Omega = (-2, 2)(-2, 2)$

e)
$$A(u) = -\frac{\partial}{\partial x} \left(2x \frac{\partial u}{\partial x} \right) - \frac{\partial}{\partial x} \left(4y \frac{\partial u}{\partial y} \right) + u$$
 $na \ C_0^2(\Omega), \ \Omega = (0, 2)(0, 2)$

Cvičení 2.0.11. Ověřte, zda zadaný operátor $A: X \to Y$ je lineární, symetrický a pozitivně definitní na daném prostoru se skalárním součinem Z.

a)
$$A:C^2((0,1))\to L^2((0,1)),\quad A(f)=\left(-\frac{\partial^2 f}{\partial x^2}+f\right),\quad Z=L^2((0,1))$$

b)

$$A:C^2(\Omega)\to L^2(\Omega),\quad A(f)=\left(-\frac{\partial^2 f}{\partial x^2}-\frac{\partial^2 f}{\partial y^2}+f\right),\quad Z=L^2(\Omega),\quad \Omega=\ koule\ v\ {\bf R}^2$$

Cvičení 2.0.12. Ověřte, zda zadaný operátor $A: X \to Y$ je lineární, symetrický a pozitivně definitní na daném prostoru se skalárním součinem Z. Bude potřeba použít nerovnosti $(Af, f)_X \ge c(f', f')_X$ a $(f', f')_X \ge c(f, f)_X$.

$$A:C^2(\Omega)\to L^2(\Omega),\quad A(f)=\left(-2\frac{\partial^2 f}{\partial x^2}-3\frac{\partial^2 f}{\partial u^2}\right),\quad Z=L^2(\Omega),\quad \Omega=[0,1]\times[0,1]$$

b)
$$A:C^2((1,2))\to L^2((1,2)),\quad A(f)=-\frac{\partial}{\partial x}\left(x^2\frac{\partial f}{\partial x}\right)+f,\quad Z=L^2((1,2))$$

Cvičení 2.0.13. Ověřte, zdali je zadaná posloupnost konvergentní v normě L_1 a L_{∞} .

- a) $f_n(x) = \cos(\frac{x}{n}) e^{-x} na [-1, 1]$
- b) $f_n(x) = 2\cos\left(\frac{x}{n}\right)e^x$ na [-1,1]
- c) $f_n(x) = x^2 + \frac{x^n}{n} na [0, 1]$
- d) $f_n(x) = x^n \ na^n[0,1]$
- e) $f_n(x) = x^{\frac{1}{2n-1}} na [-1, 1]$

Cvičení 2.0.14. Vyberte z uvedených normovaných prostorů neúplné a svou volbu podložte stručně okomentovaným příkladem.

$$(Q, \|\cdot\|), (\mathbf{R}, \|\cdot\|), (C, \|\cdot\|_{L_1}), (C, \|\cdot\|_{L_{\infty}}), (L_1, \|\cdot\|_{L_1}), (L_2, \|\cdot\|_{L_2}), (H^1, \|\cdot\|_{H^1})$$

Cvičení 2.0.15. Definujte prostor $H^1(\Omega)$ a normu zavedenou pomocí standardního skalárního součinu.

2.1 Řešení

- 2.0.1 ano uzavřenost pro sčítání, násobení reálnýn číslem, platí norma
- 2.0.2 ne, neplatí N)
- 2.0.3
 - a) norma ne (N)), metrika ano
 - b) norma ano, metrika ano
 - c) norma ne, metrika ano
- 2.0.4 ne, neplatí N)
- 2.0.5 ano
- 2.0.6 ano
- 2.0.8 ano
- 2.0.9
 - a) 1, $\frac{1}{4}$
 - b) $2, \infty$
 - c) $\sqrt{\pi}$
 - $d) \pi, 1$
 - e) ∞ , $\sqrt{(\frac{6}{7})^2 + (6)^2}$, $p > \frac{1}{2}$
- 2.0.10
 - a) ano
 - b) není symetrický, ani poz. def.
 - c) ano, pro $\lambda = konst.$ a $\lambda(y) > 0$, $\mu(x) < 0$
 - d) ano

- e) není symetrický, ani poz. def.
- 2.0.11

 - a) per partesb) Greenova věta
- 2.0.12
 - a) per partes v obou osách
 - b) doplněná nerovnost (Poincareova)
- 2.0.13
 - a) L_1 ano, L_{∞} ano
 - b) L_1 ano, L_{∞} ano
 - c) L_1 ano, L_{∞} ano
 - d) L_1 ano, L_{∞} ne
 - e) L_1 ano, L_{∞} ne

ODR, SODR, standardní fundamentální systém

Cvičení 3.0.1. Určete standardní fundamentální systém řešení soustavy

$$\dot{x}_1 = -x_1 - x_2 + 5x_3
\dot{x}_2 = -2x_1 + 6x_3$$

$$\dot{x}_3 = -2x_1 - x_2 + 6x_3$$

Cvičení 3.0.2. Určete standardní fundamentální systém řešení soustavy

$$\vec{\dot{x}} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 3 & -1 \\ -1 & 2 & 3 \end{pmatrix} \vec{x}.$$

Cvičení 3.0.3. Určete řešení soustavy pomocí standardního fundamentálního systému

$$\dot{x}_1 = x_2 + \cos t,
\dot{x}_2 = -x_1 + 1,$$

které splňuje počáteční podmínky $x_1(0) = 1$ a $x_2(0) = 1$.

Cvičení 3.0.4. Určete řešení soustavy pomocí standardního fundamentálního systému

$$\dot{x}_1 + 5x_1 + x_2 = e^t,
\dot{x}_2 + 3x_2 - x_1 = e^{2t},$$

které splňuje počáteční podmínky $x_1(0) = 1$ a $x_2(0) = 1$.

Cvičení 3.0.5. Určete řešení soustavy pomocí standardního fundamentálního systému

$$\dot{x}_1 = x_2 - 2e^t,
\dot{x}_2 = x_1 + t^2,$$

které splňuje počáteční podmínky $x_1(0) = -2$ a $x_2(0) = 1$.

Cvičení 3.0.6. Určete řešení soustavy pomocí standardního fundamentálního systému

$$\dot{x}_1 = 2x_1 - x_2,
\dot{x}_2 = -x_1 + 2x_2 - 5e^t \sin t,$$

které splňuje počáteční podmínky $x_1(0) = 1 \ a \ x_2(0) = 1.$

Cvičení 3.0.7. Určete řešení soustavy pomocí standardního fundamentálního systému

$$\begin{array}{rcl} \dot{x}_1 & = & -x_1 + x_2 - 2e^{-t}, \\ \dot{x}_2 & = & -6x_1 + 4x_2 - 4e^{-t}, \end{array}$$

které splňuje počáteční podmínky

a)
$$x_1(0) = 1, x_2(0) = 1$$

$$b) x_1(1) = 1, x_2(1) = 1$$

PDR

Cvičení 4.0.8. Řešte metodou sítí rovnici

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = y - x \qquad \quad na \; \Omega \; s \; hranicí \; \Gamma.$$

Oblast Ω je pětiúhelník s vrcholy $V_1[-1,0],\ V_2[-1,1.5],\ V_3[0,1.5],\ V_4[0.5,1]$ a $V_5[-0.5,0].$ Okrajová podmínka je zadána

$$u(x, y) = y$$
 na Γ .

Krok volte 0.5 v obou souřadnicích. Druhou derivaci aproximujte centrální diferencí.

Cvičení 4.0.9. Řešte metodou sítí rovnici

$$2\,\frac{\partial^2 u}{\partial x^2} + 3\,\frac{\partial^2 u}{\partial y^2} + u = (x-y)^2 \qquad \ na\;\Omega = (0,1)\times(0,0.8).$$

Jsou zadány následující okrajové podmínky:

$$u(0,y) = -y$$

$$u(1,y) = 2y$$

$$u(x,0.8) = -0.8 + 2.4x$$

$$u(x,0) = 0$$

Krok volte 0.25 v obou souřadnicích. Derivace aproximujte diferencí 2. řádu.

Cvičení 4.0.10. Řešte úlohu vedení tepla

$$\frac{\partial u}{\partial t} = 0.3 \frac{\partial^2 u}{\partial x^2} + x$$
 $na \Omega = (0, 1) \times (0, 0.4),$

s počáteční podmínkou $u(x,0) = x^2$ pro $x \in [0,1]$

a okrajovými podmínkami u(0,t) = 0, u(1,t) = 1 pro t > 0.

Zvolte prostorový krok 0.25 a časový krok co největší tak, aby numerické schéma bylo stabilní.

Cvičení 4.0.11. Řešte úlohu vedení tepla

$$\frac{\partial u}{\partial t} = 0.2 \frac{\partial^2 u}{\partial x^2} + 2t + x$$
 $na \ \Omega = (0, 1) \times (0, T),$

s počáteční podmínkou u(x,0)=0 pro $x\in[0,1]$ a okrajovými podmínkami $u(0,t)=0,\ u(1,t)=3t$ pro t>0. Zvolte prostorový krok 0.25 a časový krok 0.1. Ověřte, že explicitní numerické schéma bude stabilní a spočtěte aproximaci u(0.75,0.4).