

Installation

AutoGluon (GitHub) requires pip > 1.4 (upgrade by pip install -U pip). More installation options. AutoGluon supports Python 3.7 to 3.9. Installation is available for Linux, MacOS, and Windows.

```
| pip install autogluon
```

Classification & Regression

MultiModalPredictor finetunes foundation models for solving classification and regression problems with image, text, and tabular features. Here, we use a simplified version petfinder_for_tutorial from the PetFinder dataset. MultiModalPredictor automatically analyzes the columns in the input dataframe to detect categorical, numerical, text, and images (stored as paths).

```
import pandas as pd
train_data = pd.read_csv(
   'petfinder_for_tutorial/train.csv', index_col=0)
test_data = pd.read_csv(
   'petfinder_for_tutorial/test.csv', index_col=0)
```

To train the model, just call '.fit()'. We also support customization (docs).

```
from autogluon.multimodal import MultiModalPredictor
predictor = MultiModalPredictor(
    problem_type="classification",
    label="AdoptionSpeed"
)
predictor.fit(train_data)
predictor.fit_summary() # Summarize the model
```

To evaluate on the validation data and run inference

```
predictor.evaluate(test_data) # Evaluation
predictor.predict(test_data) # Inference
```

Named-Entity Recognition

MultiModalPredictor supports named-entity recognition. We use MIT movies corpus to demonstrate the usage, which can be downloaded from train.csv and test.csv.

Object Detection

To use MultiModalPredictor for object detection, please first install additional dependencies by

```
| mim install mmcv-full
| pip install mmdet
| pip install pycocotools-windows # if windows users
```

MultiModalPredictor supports common object detection data formats such as VOC and COCO. Here we use the dataset tiny_motorbike_coco to demonstrate how to use MultiModalPredictor. The predictor natively supports json files in the COCO-format.

```
train_path = "./Annotations/trainval_cocoformat.json"
test_path = "./Annotations/test_cocoformat.json"

from autogluon.multimodal import MultiModalPredictor
model = "faster_rcnn_r50_fpn_2x_coco"
predictor = MultiModalPredictor(
    problem_type="object_detection",
    # Set the backbone. This is optional.
    hyperparameters={
        "model.mmdet_image.checkpoint_name": model,
    },
    sample_data_path=train_path,
)
```

To train an object detector,

```
predictor.fit(train_path)
```

More options for the **fit** method (docs):

```
predictor.fit(train_path,
    # Limit the training time, in second
    time_limit=600,
    # Use a separate dataset to tune models.
    tuning_data=val_data
)
```

Once trained, we can evaluate it on the test set to obtain metrics,

```
| predictor.evaluate(test path)
```

We can also predict on any image and visualize the detected bounding boxes with its confidence scores.

```
pred = predictor.predict({"image": [test_image]})
```


Matching

MultiModalPredictor implements a flexible twin-tower architecture that can solve text-text, image-image, and text-image matching problems (docs). Example of extracting embeddings for semantic text matching:

```
Tpip install ir_datasets # Install dataset package
from autogluon.multimodal import MultiModalPredictor
from autogluon.multimodal import utils
import ir datasets
import pandas as pd
dataset = ir_datasets.load("beir/figa/dev")
docs_df = pd.DataFrame(dataset.docs_iter()) \
            .set_index("doc_id")
model = "sentence-transformers/all-MiniLM-L6-v2"
predictor = MultiModalPredictor(
    problem_type="text_similarity",
    hyperparameters={
        "model.hf_text.checkpoint_name": model,
doc_embedding = predictor.extract_embedding(docs_df)
q embedding = predictor.extract embedding([
    "what happened when the dot com bubble burst?"
similarity = utils.compute_semantic_similarity(
    q_embedding, doc_embedding
# Get the most relevant document
docs_df['text'].iloc[similarity.argmax().numpy()]
```

In addition, you can finetune the matching model via relevance data. Here, we demonstrate the use-case via the Flickr30K image-text matching dataset preprocessed in the dataframe format: flickr30k.zip.

```
import pandas as pd
train_data = pd.read_csv("train.csv", index_col=0)
tdata = pd.read_csv("test.csv", index_col=0)
```

To finetune model, just specify the "query" and "response" keys when creating predictor and pick "image_text_similarity" as problem type.

- MultiModalPredictor also supports features like knowledge distillation (docs), efficient finetuning (docs), and HPO (docs).
- For deployment, check Tutorial.
- For other use-cases, check Tabular Predictor and TimeSeries Predictor.
- Check the latest version of this cheat sheet.
- Any questions? Ask here
- Like what you see? Consider starring AutoGluon on GitHub and following us on twitter to get notified of the latest updates!