기초 선형대수 (Spectral Property – 고유값/고유벡터/행렬의 인수분해)

들어가며

Question 1)

데이터 집합이 다음과 같다. 어떤 것이 더 나은 표현인가? 더 나은 표현이라는 것은 무슨 의미인가?

들어가며

Question 2)

데이터 집합을 표현할 때, x축 y축이 모두 필요한가?

다양한 선형변환

- $R^n \to R^m(R^n)$ 으로의 대표적인 선형변환
 - 회전변환

• 반사변환

• 사영변환

$R^2 \longrightarrow R^2$ 의 회전변환

회전연산자의 특징

- 1. 벡터의 방향이 변한다.
- 2. 벡터의 길이는 변하지 않는다.

$R^2 \rightarrow R^2$ 의 반사변환

$R^2 \rightarrow R^2$ 의 사영변환

그러면 선형변환의 결과로 벡터의 방향은 바뀌지 않고, 벡터의 길이가 바뀌는 선형변환은 무엇이 있을까?

고유값과 고유벡터

- 정방행렬 A 에 대하여, 스칼라(scala)인 λ 와 영이 아닌 벡터 \mathbb{V} 에 대해 $A\mathbb{V} = \lambda\mathbb{V}$ 를 만족하는 경우, $\lambda \vdash A$ 의 고유값(eigenvalue), $\mathbb{V} \vdash \mathbb{U}$ 대응하는 고유벡터(eigenvector) 라고 한다.
- λ 가 행렬 A 의 고유값이면, 대응하는 고유벡터는 무수히 많다.
- 집합 $\{v: Av = \lambda v\}$ 는 벡터공간이며 고유값 λ 에 대응하는 고유공간(eigenspace)이라 한다.

고유값과 고유벡터 예제

•
$$A = \begin{bmatrix} 4 & 0 & 1 \\ 2 & 3 & 2 \\ 1 & 0 & 4 \end{bmatrix}$$
의 고유값 중하나는 $\lambda = 5$ 이고, 이에 대응하는 고유벡터 $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ 이다.

•
$$A = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & 1 & 2 \end{bmatrix}$$
의 고유값 중하나는 $\lambda = 0$ 이고, 이에 대응하는 고유벡터 $\mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ 이다.

• A 를 대각행렬이라고 하자. $A = diag(\lambda_1, ..., \lambda_n)$ 의 고유벡터와 고유값은? 표준 기저 벡터 $e_1, ..., e_n$ 는 고유벡터이고, 대각원소인 $\lambda_1, ..., \lambda_n$ 은 고유값이다.

고유값과 고유벡터의 계산

행렬 A 의 고유값을 λ, 대응하는 고유벡터를 ♥ 라고 하자.

- $A \mathbb{V} = \lambda \mathbb{V} \rightarrow (A \lambda I_n) \mathbb{V} = \mathbb{O}$ 즉, 특성방정식 $\det(A \lambda I_n) = 0$ 을 만족시키는 λ 를 구하면 된다.
 - 2×2 의 경우는 $\det(A \lambda I_2) = \lambda^2 tr(A)\lambda + \det(A) = 0$ 을 만족시켜주는 λ 를 구하면 된다.

• 행렬 $A = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}$ 의 고유값과 그에 대응하는 고유벡터?

고유벡터 예제

- 행렬 $A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}$ 의 고유값과, 그에 대응하는 고유벡터를 구하여라. 그리고 고유공간을 그 래프로 그려라.
 - tr(A) = 6, det(A) = 5 이므로 $\lambda^2 6\lambda + 5 = (\lambda 1)(\lambda 5) = 0$ 을 만족시키는 λ 의 값은 1, 5 이다. (대칭행렬이기 때문에 고유벡터는 orthogonal)

유사성

• 역행렬이 존재하는 행렬을 가역행렬이라고 한다.

• 가역행렬 S 에 대해 $S^{-1}AS = B$ 가 만족되면 두 정방행렬 A와 B는 "유사 혹은 닮은(similar) 행렬"이라고 한다.

• 유사행렬(similar matrix)들은 동일한 고유값을 가진다.

대각화 가능성

• 만약 어떤 정방행렬 A 가 대각행렬 D 와 유사행렬이면, 즉 대각행렬 D 에 대해 $S^{-1}AS = D$ 를 만족하는 가역행렬 S가 있으면, A는 "대각화 가능하다(diagonalizable)" 라고 한다.

• $n \times n$ 행렬 A가 대각화 가능 \Leftrightarrow A가 n개의 일차독립인 고유벡터를 갖는 것

- n개의 일차독립인 고유벡터를 갖는 $n \times n$ 행렬 A를 대각화하는 법
 - A 의 n 개의 일차독립인 고유벡터 $s_1, ..., s_n$ 을 구한다.
 - 행렬 $S = [S_1 \cdots S_n]$ 을 구성한다.
 - 행렬 $S^{-1}AS$ 는 $\mathbb{S}_1,...,\mathbb{S}_n$ 에 각각 대응하는 고유값을 대각성분으로 하는 대각행렬이 될 것이다.

대각화 가능성 예제

행렬
$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$
 은 고유값 $\lambda = 1$, $\lambda = 2$ 를 갖는다.

$$\lambda = 1$$
 에 대응하는 고유공간의 기저벡터는 $\mathbb{S}_1 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$

$$\lambda=2$$
 에 대응하는 고유공간의 기저벡터는 $s_2=\begin{bmatrix} -1\\0\\1 \end{bmatrix}$, $s_3=\begin{bmatrix} 0\\1\\0 \end{bmatrix}$ 이다.

3개의 기저벡터는 일차독립이므로
$$A$$
 는 대각화 가능하고 $S = \begin{bmatrix} -2 & -1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$

$$S^{-1}AS = \begin{bmatrix} -1 & 0 & -1 \\ 1 & 0 & 2 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} -2 & -1 & 0 \\ 1 & 0 & 2 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} = D \neq \text{CMTYP} \text{ Exp.}$$

대각화 가능과 고유값 사이의 관계

• 먼저, 대각행렬 $D = diag(\lambda_1, ..., \lambda_n)$ 의 행렬의 고유값은 $\lambda_1, ..., \lambda_n$ 이다. **행렬 A 와 D 가 유사행렬**이이라고 하자. 즉, 가역행렬 S 에 대하여, $S^{-1}AS = D$ 라고 하자. 그리고 D 가 대각행렬이므로, A 는 대각화 가능하다. A 의 고유값은 D 의 고유값, 즉 D 의 대각원소들이다. 그리고 S 의 열들은 일차 독립이며 A 의 고유벡터들이 된다.

직교대각화 가능

 \bullet 정사각행렬 S에 대하여, $S^T = S^{-1}$ 인 경우, A를 **직교행렬**이라고 한다.

• 정사각행렬 A에 대해서, $D = S^T AS$ 를 만족하는 대각행렬 D와, 직교행렬 S가 존재하면 A는 직교대각화 가능(orthogonally diagonalizable) 하다고 한다.

• 정사각행렬 A 가 직교대각화 가능 \iff 정사각행렬 A 가 대칭행렬

행렬의 인수분해

정수는 인수분해된다. 예를들어 12 = 3×4처럼, 12는 3과 4로 인수분해된다.

마찬가지로 행렬도 A = BC처럼 인수분해 될 수 있다.

예를들어,
$$\begin{bmatrix} 2 & 6 & 2 \\ -3 & -8 & 0 \\ 4 & 9 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ -3 & 1 & 0 \\ 4 & -3 & 7 \end{bmatrix} \begin{bmatrix} 1 & 3 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$
이렇게 인수분해 될 수 있다.

행렬 A를 인수분해하여, 행렬 A와 가장 비슷하고(similar), 크기가 작은 행렬을 A대신 사용하려고 한다.

여러가지 행렬의 인수분해

• LU 분해 (LU Decomposition)

• 스펙트럼 분해 (Spectrum Decomposition) or 고유값 분해

• 특이값 분해 (Singular Value Decomposition)

LU 분해

- LU분해는 행렬을 아래의 두 행렬로 인수분해한다.
 - 하부삼각행렬(행렬의 대각선의 윗부분이 모두 0)
 - 상부삼각행렬(행렬의 대각선의 아랫부분이 모두 0)

• LU분해를 통하여 Linear Systems 문제를 간단하게 해결할 수 있다.

LU 분해 예제

하부삼각행렬 상부삼각행렬

$$\begin{bmatrix} 2 & 0 & 0 \\ -3 & 1 & 0 \\ 4 & -3 & 7 \end{bmatrix} \begin{bmatrix} 1 & 3 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}$$
 처럼 풀고자하는 식을 다시 쓸수 있다.

먼저,
$$\begin{bmatrix} 1 & 3 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$
 으로 정의하자.

LU 분해 예제

그러면 우리가 풀고자 하는 식은,
$$\begin{bmatrix} 2 & 0 & 0 \\ -3 & 1 & 0 \\ 4 & -3 & 7 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}$$
으로 다시 쓸 수 있다.

즉, $2y_1 = 2$, $-3y_1 + y_2 = 2$, $4y_1 - 3y_2 + 7y_3 = 3$ 을 풀면 된다. 즉 $y_1 = 1$, $y_2 = 5$, $y_3 = 2$ 가 된다.

식을 다시 써 보면,
$$\begin{bmatrix} 1 & 3 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \\ 2 \end{bmatrix}$$
 가 된다.

즉, $x_1 + 3x_2 + x_3 = 1$, $x_2 + 3x_3 = 5$, $x_3 = 2$ 을 풀면 된다. 즉 $x_1 = 2$, $x_2 = -1$, $x_3 = 2$ 가 된다.

이 예제는 행렬 A를 하부삼각행렬, 상부삼각행렬로 인수분해하면, 선형계 AXX = \mathbb{D} 는 풀이과정이 쉬워진다는 것을 명확히 보여주고 있다.

LU 분해

• 정사각행렬 A가 하부삼각행렬 L과 상부삼각행렬 U의 곱 A = LU 로 되는 인수분해를 LU 분해 또는 LU 인수분해(LU factorization) 라고 부른다.

• 일반적으로 모든 정사각행렬 A가 LU 분해를 갖지 않으며, LU 분해가 존재하여도 LU 분해가 유일하지도 않다.

스펙트럼 분해

• 행렬 A가 $S = [s_1 \cdots s_n]$ 로 직교대각화되는 대칭행렬이고, $\lambda_1, \dots, \lambda_n$ 은 각각 s_1, \dots, s_n 에 대응하는 A의 고유값이라고 하면, 행렬 $D = S^T A S$ 는 대각성분이 A의 고유값인 대각행렬이 된다.

•
$$A = SDS^T = \begin{bmatrix} \mathbb{S}_1 & \cdots & \mathbb{S}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_n \end{bmatrix} \begin{bmatrix} \mathbb{S}_1^T \\ \vdots \\ \mathbb{S}_n^T \end{bmatrix} = \lambda_1 \mathbb{S}_1 \mathbb{S}^T + \cdots + \lambda_n \mathbb{S}_n \mathbb{S}_n^T$$
와 같이 표현 가능하다.

이 공식을 A 의 스펙트럼 분해(spectral decomposition) 또는 A의 고유값 분해(eigenvalue decomposition) 라고 한다.

특이값 분해

● SVD는 모든(any) 행렬에 대하여 적용가능한 분해(정수와 비교하면 인수분해) 기법이기 때문에, 행렬의 분해에 가장 널리 사용되는 기법이다.

• $n \times n$ 행렬 A 가 대칭행렬이 아니면, 고유값 분해는 존재하지 않는다. 일반적인 경우에 대한 행렬의 인수분해를 위해서 특이값 분해(Singular Value Decomposition)를 사용한다.

• 디지털화된 정보의 압축, 저장, 전송에 활용

특이값 분해

• 행렬 A가 계수 k인 $m \times n$ 행렬일 때, $A = U \Sigma V^T$ 로 인수분해된다.

- $U: m \times m$, $\Sigma: m \times n$, $V: n \times n$
- ullet $V = [lackbreak v_1 \ \cdots \ lackbreak v_n] 는 <math>A^TA$ 를 직교대각화한다. 즉, V 의 컬럼은 A^TA 의 고유벡터들이다. $lackbreak v_i$ 는 orthonomal.
- $\lambda_1, ..., \lambda_k$ 가 V 의 열벡터에 대응하는 A^TA 의 영이 아닌 고유값일 때, Σ 의 영이 아닌 대각성분은 $\sigma_1 = \sqrt[]{\lambda_1}, ..., \sigma_k = \sqrt[]{\lambda_k}$ 이다. 이 대각성분들을 특이값(singular value)이라고 한다. k는 A의 계수이다.
- V 의 열벡터는 $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_k > 0$ 을 만족시키도록 배열되어 있다.
- $\{u_1, ..., u_k\}$ 는 col(A)의 정규직교기저이다. u_i 는 orthonormal.

A^TA , AA^T

- $A^T A$ (임의의 행렬 A)
 - $A^T A = V \Sigma^T U^T U \Sigma V^T = V (\Sigma^T \Sigma) V^T = V D V^T$
 - $D = \Sigma^T \Sigma$ 이기 때문에 D의 대각성분은 singular value의 제곱
 - $(A^TA)V = VDV^TV = VD$
 - 위의 식에 의하여 $\underline{A^TA}$ 의 고유값은 \underline{V} 의 대각성분들이 되고, \underline{V} 의 columns은 $\underline{A^TA}$ 의 고유벡터가 된다.
- AA^T (임의의 행렬 A)
 - $AA^T = U\Sigma V^T V\Sigma^T U^T = U\Sigma^T \Sigma U^T = UDU^T$
 - $D = \Sigma^T \Sigma$ 이기 때문에 D의 대각성분은 singular value의 제곱
 - $(AA^T)U = UDU^TU = UD$
 - 위의 식에 의하여 AA^T 의 고유값은 U의 대각성분들이 되고, U의 columns은 AA^T 의 고유벡터가 된다.
- A^TA 의 eigenvector는 PCA에서의, A의 공분산 행렬의 주성분이다.

특이값 분해 예제

- 행렬 $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$ 의 특이값분해를 구하라.
 - A^TA 의 고유값을 구한다. $\lambda_1 = 3$, $\lambda_2 = 1$
 - 특이값을 구한다. $\sigma_1=\sqrt{\lambda_1}=\sqrt{3}$, $\sigma_2=\sqrt{\lambda_2}=\sqrt{1}$
 - A^TA 의 고유벡터를 구한다. $(\mathbb{V}_1, ..., \mathbb{V}_n)$
 - $\frac{1}{\sigma_i} A \mathbf{v}_i = \mathbf{u}_i$ 를 구한다. $(\mathbf{u}_1, ..., \mathbf{u}_m)$

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$= U\Sigma V^T$$

$$= \begin{bmatrix} \sqrt{6} & 0 & -\frac{1}{\sqrt{3}} \\ \frac{\sqrt{6}}{6} & -\frac{\sqrt{2}}{2} & \frac{1}{\sqrt{3}} \\ \frac{\sqrt{6}}{6} & \sqrt{2} & \frac{1}{\sqrt{3}} \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \sqrt{2} & \sqrt{2} \\ \frac{2}{\sqrt{2}} & \frac{2}{\sqrt{2}} \\ \frac{2}{\sqrt{2}} & \frac{\sqrt{2}}{2} \end{bmatrix}$$

4 =

 U_1

 Σ_1

 V_1^T

• 영블록을 인수로 하는 곱을 없애보자.

$$A = U\Sigma V^T = \begin{bmatrix} \mathbf{w}_1 & \cdots & \mathbf{w}_k & | & \mathbf{w}_{k+1} & \cdots & \mathbf{w}_m \end{bmatrix} \begin{bmatrix} \sigma_1 & \cdots & 0 & & & \\ \vdots & \ddots & \vdots & & O_{k\times(n-k)} \\ 0 & \cdots & \sigma_k & & & O_{(m-k)\times(n-k)} \end{bmatrix} \begin{bmatrix} \mathbf{v}_1 & \vdots & & & \\ \mathbf{v}_k^T & & & & \\ - & \mathbf{v}_{k+1}^T & \vdots & & \\ \vdots & & & & \\ V_n^T \end{bmatrix}$$

$$A = U_1 \Sigma_1 V_1^T = \begin{bmatrix} \mathbf{u}_1 & \cdots & \mathbf{u}_k \end{bmatrix} \begin{bmatrix} \sigma_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_k \end{bmatrix} \begin{bmatrix} \mathbf{v}_1^T \\ \vdots \\ \mathbf{v}_k^T \end{bmatrix}$$

• $U_1 : m \times k$, $\Sigma_1 : k \times k$, $V_1^T : k \times n$

● A 의 축소된 특이값 확장(reduced singular expansion)

$$\bullet \ \ A = U_1 \Sigma_1 V_1^T = \begin{bmatrix} \mathbf{u}_1 & \cdots & \mathbf{u}_k \end{bmatrix} \begin{bmatrix} \sigma_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_k \end{bmatrix} \begin{bmatrix} \mathbf{v}_1^T \\ \vdots \\ \mathbf{v}_k^T \end{bmatrix} = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \cdots + \sigma_k \mathbf{u}_k \mathbf{v}_k^T$$

• 이 결과는 모든 행렬에 적용된다.

축소된 SVD 예제

• 행렬
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 의 축소된 특이값분해를 구하라.

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$= U_1 \Sigma V_1^T$$

$$= \begin{bmatrix} \sqrt{6} & 0 \\ 3 & \sqrt{2} \\ \sqrt{6} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \sqrt{2} & \sqrt{2} \\ 2 & 2 \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{bmatrix}$$

- LSA(LSI)는 document data의 숨겨진 의미(hidden concept)를 찾아내는 기법이다.
- LSA는 각각의 문서(document)와 단어(word)를 벡터로 표현한다. 벡터내에서 각각의 element는 숨겨진 의미가 될 것이다.

 d_1 : Romeo and Juliet.

 d_2 : Juliet: O happy dagger!

 d_3 : Romeo died by dagger.

 d_4 : "Live free or die", that's the motto of New-Hampshire

 d_5 : Did you know, New-Hampshire is in New-England

Query: dies and dagger

- 3번 문서는 쿼리에 대해서 1등이 될 것이다.
- 2번, 4번 문서는 그 다음이 될 것이다.
- 1번, 5번 문서는?

✓ 사람들이 인식하기로는 문서 1번이 문서 5번 보다 주어진 쿼리에 더 맞는 문서이다. 컴퓨터도 이러한 추론 과정을 할 수 있을까? 즉 숨겨진 의미를 찾을 수 있을까?

matrix A:

doc-doc matrix

1번 문서에는 romeo, juliet, 2번 문서에는 juliet, happy, dagger 즉 겹쳐지는 것이 1개이므로 B[1,2] = B[2,1] = 1

matrix A:

matrix A^T :

matrix $\mathbf{B} = AA^T$ doc-doc matrix

문서 i와 문서 j가 b개 의 공통 단어를 가지고 있으면 B[i,j] = b

matrix $AA^{T}(B)$:

```
[[2, 1] 1, 0, 0],
[1] 3, 1, 0, 0],
[1, 1, 3, 1, 0],
[0, 0, 1, 4, 1],
[0, 0, 0, 1, 1]]
```

word-word matrix

juliet은 1번, 2번 문서에서 나오고, dagger는 2, 3번 문서에서 나온다. 즉 겹쳐지는 것이 1개이므로 C[2,4] = B[4,2] = 1

matrix $C = A^T A$ word-word matrix

즉, 단어 i와 단어 j가 c 개의 문서에서 함께 발생했으면 C[i,j]=c

matrix A^T :

matrix A:

matrix $A^TA(C)$:

```
[[2, 1, 0, 1, 0, 1, 0, 0], [1, 2, 1, 1] 0, 0, 0, 0], [0, 1, 1, 1, 0, 0, 0, 0], [1, 1] 1, 2, 0, 1, 0, 0], [0, 0, 0, 0, 1, 1, 1, 1], [1, 0, 0, 1, 1, 2, 1, 1], [0, 0, 0, 0, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 1, 1, 1, 2]]
```

SVD 사용!

 $A = U\Sigma V^T$, U = B의 eigenvectors이고, V = C의 eigenvectors이다.

$$\Sigma = \begin{bmatrix} 2.285 & 0 & 0 & 0 & 0 \\ 0 & 2.010 & 0 & 0 & 0 \\ 0 & 0 & 1.361 & 0 & 0 \\ 0 & 0 & 0 & 1.118 & 0 \\ 0 & 0 & 0 & 0 & 0.797 \end{bmatrix}$$

singular value

Reduced SVD 사용!

 $A_k = S_k \Sigma_k U_k^T$, 모든 singular value를 사용할 수 없고, 작은 것들은 제외한다.

k개의 특이값만 남기는 것이다. 즉 k개의 "hidden concepts"만 남긴다.

$$\Sigma_2 = \left[\begin{array}{cc} 2.285 & 0\\ 0 & 2.010 \end{array} \right]$$

```
array([[ 0.39615277, 0.28005737],
        0.31426806, 0.44953214],
        0.17823952, 0.26899154],
        0.43836375, 0.36850831],
```

[0.26388058, -0.34592143],

[0.52400482, -0.24640466],

[0.26388058, -0.34592143],

[0.32637322, -0.45966878]])

romeojuliethappydaggerlivediefreenew-hampshire

```
Word vector \Sigma_2 V_2^T =
```

$$\Sigma_2 V_2^T =$$

```
array([[ 0.90532712, 0.56298763],
         0.71819615, 0.90367568],
         0.40733041, 0.54074246],
         1.00179178, 0.74079687],
         0.60304575, -0.6953914 ],
        1.19750713, -0.49533699],
        0.60304575, -0.6953914 ],
        0.74586005, -0.92405295]])
```

romeojuliethappydaggerlivediefreenew-hampshire

Word vector의 scatter

$$\Sigma_2 = \left[\begin{array}{cc} 2.285 & 0 \\ 0 & 2.010 \end{array} \right]$$

 d_2 d_3 d_4 d_5

Document vector

```
U_2\Sigma_2 = \text{array}([[ \ 0.71042084, \ \ 0.7295895 \ ], \\ [ \ 0.93087134, \ \ 1.08703198], \\ [ \ 1.35852135, \ \ 0.40216102], \\ [ \ 1.37813921, \ -1.39791629], \\ [ \ 0.32637322, \ -0.45966878]])
```

 $egin{array}{c} d_1 \ d_2 \ d_3 \ d_4 \end{array}$

 d_{5}

Document vector의 scatter

Word / Document vector의 scatter

$$q = \frac{q_1 + q_2}{2}$$

cosine similarity =
$$\frac{d_i \cdot q}{|d_i||q|}$$

query : dagger, die

Word / Document / Query vector의 scatter