DOKO UW

ROZPRZESTRZENIANIE SIĘ EPIDEMII OKIEM FIZYKA

SIS model

Osobnik ponownie jest podatny (susceptible)

SIR model

Osobnik staje się odporny (resistant)

Jak podejść do tego matematycznie?

Jak podejść do tego matematycznie?

$$\Delta S_i = ?$$

 S_i - liczba zdrowych w chwili i

 $I_{m{i}}$ - liczba zarażonych w chwili i

 $oldsymbol{\gamma}$ - szansa zarażenia

 $oldsymbol{\mathcal{Q}}$ - szansa wyzdrowienia

Jak podejść do tego matematycznie?

$$\Delta S_i = (-r S_{i-1} I_{i-1} + a I_{i-1}) \Delta t$$

$$S_i$$
 - liczba zdrowych w chwili i

 $I_{\it i}$ - liczba zarażonych w chwili i

$$m{\gamma}$$
 - szansa zarażenia

 $oldsymbol{a}$ - szansa wyzdrowienia

Jak podejść do tego matematycznie?

$$\Delta S_i = (-r S_{i-1} I_{i-1} + a I_{i-1}) \Delta t$$
Interakcja Zdrowienie

$$S_i$$
 - liczba zdrowych w chwili i γ - szansa zarażenia I_i - liczba zarażonych w chwili i α - szansa wyzdrowienia

Jak podejść do tego matematycznie?

$$\Delta S_i = (-r S_{i-1} I_{i-1} + a I_{i-1}) \Delta t$$

$$\Delta I_i = ?$$

$$S_i$$
 - liczba zdrowych w chwili i

 $I_{\it i}$ - liczba zarażonych w chwili i

$$\gamma$$
 - szansa zarażenia

 $oldsymbol{\mathcal{Q}}$ - szansa wyzdrowienia

Jak podejść do tego matematycznie?

$$\Delta S_i = (-r S_{i-1} I_{i-1} + a I_{i-1}) \Delta t$$

$$\Delta I_i = (+r S_{i-1} I_{i-1} - a I_{i-1}) \Delta t$$

$$S_i$$
 - liczba zdrowych w chwili i

 γ - szansa zarażenia

 $I_{m i}$ - liczba zarażonych w chwili i

 $oldsymbol{\mathcal{Q}}$ - szansa wyzdrowienia

Jak podejść do tego matematycznie?

$$\Delta S_i = (-r S_{i-1} I_{i-1} + a I_{i-1}) \Delta t$$

$$\Delta I_i = (+r S_{i-1} I_{i-1} - a I_{i-1}) \Delta t$$

$$S_i$$
 - liczba zdrowych w chwili i γ - szansa zarażenia I_i - liczba zarażonych w chwili i α - szansa wyzdrowienia

$$S_i = N - I_i$$

 $I_i = I_{i-1} + ((N - I_{i-1}) I_{i-1} - a I_{i-1}) \Delta t$

Proszę uzupełnić kod z symulacją modelu SIS.

$$S_i = N - I_i$$
 $I_i = I_{i-1} + ((N - I_{i-1}) I_{i-1} - a I_{i-1}) \Delta t$
 $r \approx 0.004$
 $a \approx 1.000$

Proszę uzupełnić kod z symulacją modelu SIS.

$$S_{i} = N - I_{i}$$

$$I_{i} = I_{i-1} + ((N - I_{i-1}) I_{i-1} - a I_{i-1}) \Delta t$$

$$r \approx 0.004$$

$$a \approx 1.000$$

Poprawne rozwiązanie:

556c90d1.py

1_sis_sir.py

Poprawne rozwiązanie: **556c90d1.py**

1_sis_sir.py

Jak bardzo różni się od poprzedniego?

$$\Delta S_i = ?$$

$$\Delta I_i = ?$$

$$\Delta R_i = ?$$

 $S_{m{i}}$ - liczba zdrowych w chwili i

 $I_{m i}$ - liczba zarażonych w chwili i

 $R_{m{i}}$ - liczba odpornych w chwili i

 $m{\gamma}$ - szansa zarażenia

 $oldsymbol{a}$ - szansa wyzdrowienia

$$\Delta S_i = ?$$

$$\Delta I_i = (+r S_{i-1} I_{i-1} - a I_{i-1}) \Delta t$$

$$\Delta R_i = ?$$

$$S_i$$
 - liczba zdrowych w chwili i

$$oldsymbol{\gamma}$$
 - szansa zarażenia

$$I_{\it i}$$
 - liczba zarażonych w chwili i

$$oldsymbol{Q}$$
 - szansa wyzdrowienia

$$R_{m{i}}$$
 - liczba odpornych w chwili i

$$\Delta S_i = -r S_{i-1} I_{i-1} \Delta t$$

$$\Delta I_i = (+r S_{i-1} I_{i-1} - \alpha I_{i-1}) \Delta t$$

$$\Delta R_i = ?$$

$$S_i$$
 - liczba zdrowych w chwili i γ - szansa zarażenia

$$I_i$$
 - liczba zarażonych w chwili i $lpha$ - szansa wyzdrowienia

$$R_{m{i}}$$
 - liczba odpornych w chwili i

$$\Delta S_i = -r S_{i-1} I_{i-1} \Delta t$$

$$\Delta I_i = (+r S_{i-1} I_{i-1} - a I_{i-1}) \Delta t$$

$$\Delta R_i = +a I_{i-1} \Delta t$$

$$S_i$$
 - liczba zdrowych w chwili i γ - szansa zarażenia

$$I_i$$
 - liczba zarażonych w chwili i $lpha$ - szansa wyzdrowienia

$$R_i$$
 - liczba odpornych w chwili i

Ostatecznie równania przyjmują postać:

$$S_{i} = N - I_{i} - R_{i}$$

$$I_{i} = I_{i-1} + (r(N - S_{i-1} - R_{i-1}) - a) I_{i-1} \Delta t$$

$$R_{i} = R_{i-1} + a I_{i-1} \Delta t$$

$$S_i$$
 - liczba zdrowych w chwili i γ - szansa zarażenia

$$I_i$$
 - liczba zarażonych w chwili i $lpha$ - szansa wyzdrowienia

$$R_i$$
 - liczba odpornych w chwili i

Proszę zmodyfikować kod SIS do postaci modelu SIR.

$$S_{i} = N - I_{i} - R_{i}$$

$$I_{i} = I_{i-1} + (r(N - S_{i-1} - R_{i-1}) - a) I_{i-1} \Delta t$$

$$R_{i} = R_{i-1} + a I_{i-1} \Delta t$$

$$r \approx 0.002$$

$$a \approx 1.000$$

Proszę zmodyfikować kod SIS do postaci modelu SIR.

$$S_{i} = N - I_{i} - R_{i}$$

$$I_{i} = I_{i-1} + (r(N - S_{i-1} - R_{i-1}) - a) I_{i-1} \Delta t$$

$$R_{i} = R_{i-1} + a I_{i-1} \Delta t$$

$$r \approx 0.002$$

 $a \approx 1.000$ Poprawne rozwiązanie:

c219f506.py

1_sis_sir.py

Poprawne rozwiązanie: c219f506.py

1_sis_sir.py

Sieć typu Erdos-Renyi (ER):

ig.Graph.Erdos_Renyi(n,m)

gdzie "n" to liczba wierzchołków, zaś "m" to liczba krawędzi.

Sieć typu Erdos-Renyi (ER):

ig.Graph.Erdos_Renyi(n,m)

gdzie "n" to liczba wierzchołków, zaś "m" to liczba krawędzi.

Sieć typu Barabasi-Albert (BA):

ig.Graph.Barabasi(n,m)

gdzie "n" to liczba wierzchołków, ale "m" to parametr modelu.

2_grafy.py

Poprawne rozwiązanie:

d9c76665.py

2_grafy.py

Poprawne rozwiązanie:

d9c76665.py

2_grafy.py

- 1. Wybieramy parametry modelu (szansa zarażenia, liczba zarażonych na starcie itd.).
- 2. Losowo wybieramy jeden wierzchołek.
 - a) Jeżeli jest zarażony to z prawdopodobieństwem "a" zdrowieje.
 - b) Jeżeli jest zdrowy, ale ma zarażonego sąsiada to z prawdopodobieństwem "r" również zostaje zarażony.
- 3. Powracamy do kroku 2iego.

Przydatna funkcja: *g.neighbors(node)* – zwraca listę sąsiadów.

- 1. Wybieramy parametry modelu (szansa zarażenia, liczba zarażonych na starcie itd.).
- 2. Losowo wybieramy jeden wierzchołek.
 - a) Jeżeli jest zarażony to z prawdopodobieństwem "a" zdrowieje.
 - b) Jeżeli jest zdrowy, ale ma zarażonego sąsiada to z prawdopodobieństwem "r" również zostaje zarażony.
- 3. Powracamy do kroku 2iego.

Przydatna funkcja: *g.neighbors(node)* – zwraca listę sąsiadów.

Poprawne rozwiązanie:

2712b4ef.py

3_epidemia_animacja.py

Epidemie na sieciach różnego typu

Czy epidemia przebiega tak samo na sieci ER i BA?

4_epidemia_przebieg.py

Epidemie na sieciach różnego typu

Czy epidemia przebiega tak samo na sieci ER i BA?

Poprawne rozwiązanie:

7d2a1023.py

Epidemie na sieciach różnego typu

Poprawne rozwiązanie:

7d2a1023.py

4_epidemia_przebieg.py

Dziękujemy za udział w warsztatach

