Core-Periphery Patterns

Bruno Barsanetti

Economic Geography FGV EPGE

The Core-Periphery Model

- ► Krugman (JPE 1991), "Increasing returns and economic geography"
 - ► foundational paper of New Economic Geography
 - ▶ we follow Fujita, Krugman and Venables (1999), ch. 5
- ► Core periphery patterns: concentration of activity in one region
 - about symmetry breaking
 - ideally, studied in a featureless space
 - trade-off between agglomeration and dispersion forces
 - agglomeration force: increasing returns in production
 - dispersion force: costly transportation

Setting

- ► Two sectors:
 - monopolistically competitive M
 - ▶ iceberg costs: T > 1 good ships $\rightarrow 1$ good arrives
 - implicit assumption: CRS in transportation
 - perfectly competitive A
 - no transportation costs, numeraire
- ► Two factors:
 - ightharpoonup mobile workers (in M), of mass L
 - ▶ increasing returns, Dixit-Stiglitz
 - ightharpoonup immobile farmers (in A), of mass 1
 - ightharpoonup constant returns, 1 farmer \rightarrow 1 ag good
- ▶ Two regions: $r \in \{1, 2\}$
 - ▶ identical endowments of $\frac{1}{2}$ farmers

Wages and incomes

- \triangleright w_r : nominal wages
- \triangleright λ : share of workers in region r=1
- ► Incomes are:

$$Y_1 = \frac{1}{2} + \lambda L w_1$$
$$Y_2 = \frac{1}{2} + (1 - \lambda) L w_1$$

Preferences over M

$$M_r = \left(\int_0^{n_r} m_r(i)^{\frac{\sigma-1}{\sigma}} di + \int_0^{n_{-r}} m_r(i)^{\frac{\sigma-1}{\sigma}} di\right)^{\frac{\sigma}{\sigma-1}}$$

- \triangleright n_r : number of varieties produced in region r
- $ightharpoonup m_r(i)$ consumption in r of the variety i
- \triangleright σ is the elasticity of substitution
 - $ightharpoonup \sigma = 1$: isoelastic (Cobb-Douglas)
 - $ightharpoonup \sigma
 ightarrow 1$: perfect substitutes
 - $ightharpoonup \sigma = 0$: perfect complementary (Leontief)
 - ightharpoonup assume $\sigma > 1$

Demand for *M*

- ightharpoonup Minimize expenditure holding M_r fixed
- ightharpoonup p(i) price of domestic good, Tp(i) price of import
- ► The solution satisfies:

$$m_r(i) = \left(\frac{p(i)}{P_r}\right)^{-\sigma} M_r$$

$$P_r = \left(\int_0^{n_r} p(i)^{1-\sigma} di + T^{1-\sigma} \int_0^{n_{-r}} p(i)^{1-\sigma} di\right)^{\frac{1}{1-\sigma}}$$

▶ add *T* to the price in first equation if an import

Price indexes – simplified

- left In equilibrium, $p(i) = p_r$ for every variety produced in r
- ► This implies that the price indexes simplify as

$$P_{1} = \left(n_{1}p_{1}^{1-\sigma} + n_{-r}T^{1-\sigma}p_{-r}^{1-\sigma}\right)^{\frac{1}{1-\sigma}}$$

$$P_{2} = \left(n_{1}T^{1-\sigma}p_{1}^{1-\sigma} + n_{2}p_{2}^{1-\sigma}\right)^{\frac{1}{1-\sigma}}$$

Profit maximization condition

- ► *M* firms use labor to produce the final good
 - monopolistically behavior
 - ightharpoonup marginal cost: w_r
 - ightharpoonup fixed cost: Fw_r
- Firms choose prices to maximize profits:

$$p(i)^{1-\sigma}D(i) - w_r p(i)^{-\sigma}D(i) - w_r F$$

▶ Due to the constant elasticity assumption, price is a mark up of wages:

$$p(i) = p_r = \frac{\sigma}{\sigma - 1} w_r$$

Zero profit condition

- Let q be the production of the firm
- ► From the zero profit condition:

$$0 = (p(i) - w_r)q - w_r F$$

$$\Rightarrow q = F(\sigma - 1)$$

- \blacktriangleright Hence, each firm hires σF workers
- ▶ Note that firm size does not depend on wages, equal in both regions

Price indexes – further simplified

▶ Since firm employment is constant, the number of varieties are:

$$n_1 = \frac{\lambda L}{\sigma F}, \quad n_2 = \frac{(1-\lambda)L}{\sigma F}$$

► This implies that the price indexes further simplify as

$$P_{1} = \frac{\sigma}{\sigma - 1} \left(\frac{L}{\sigma F}\right)^{\frac{1}{1 - \sigma}} \left(\lambda w_{1}^{1 - \sigma} + (1 - \lambda) T^{1 - \sigma} w_{2}^{1 - \sigma}\right)^{\frac{1}{1 - \sigma}}$$

$$P_{2} = \frac{\sigma}{\sigma - 1} \left(\frac{L}{\sigma F}\right)^{\frac{1}{1 - \sigma}} \left(\lambda T^{1 - \sigma} w_{1}^{1 - \sigma} + (1 - \lambda) w_{2}^{1 - \sigma}\right)^{\frac{1}{1 - \sigma}}$$

Real wages

- ► Isoelastic preferences between the goods
 - \blacktriangleright μ : expenditure share on M
- ► Real wages are thus:

$$\omega_r = w_r P_r^{-\mu}$$

Wage equation

- ► Connects wages to income and aggregate price levels
- ▶ Derived through the demand for goods. Since each firm produces $q = F(\sigma 1)$,

$$F(\sigma - 1) = p_r^{-\sigma} \mu P_r^{\sigma - 1} Y_r + p_r^{-\sigma} T^{1 - \sigma} \mu P_{-r}^{\sigma - 1} Y_{-r}$$

► Since prices are a markup of wages, $p_r = \left(\frac{\sigma}{\sigma - 1}\right) w_r$, we have:

$$w_r = \frac{(\sigma - 1)^{\frac{\sigma - 1}{\sigma}}}{\sigma} \left(\frac{\mu}{F}\right)^{\frac{1}{\sigma}} \left(P_r^{\sigma - 1} Y_r + T^{1 - \sigma} P_{-r}^{\sigma - 1} Y_{-r}\right)^{\frac{1}{\sigma}}$$

CP equilibrium

- Instantaneous: 8 equations, 8 unknowns, λ fixed
- ► Income, price, (nominal) wage, and real wage equations

$$Y_{1} = \frac{1}{2} + \lambda L w_{1}, \quad Y_{2} = \frac{1}{2} + (1 - \lambda) L w_{1}$$

$$P_{1} = \kappa_{p} \left(\lambda w_{1}^{1-\sigma} + (1 - \lambda) T^{1-\sigma} w_{2}^{1-\sigma} \right)^{\frac{1}{1-\sigma}}, \quad P_{2} = \kappa_{p} \left(\lambda T^{1-\sigma} w_{1}^{1-\sigma} + (1 - \lambda) w_{2}^{1-\sigma} \right)^{\frac{1}{1-\sigma}}$$

$$w_{1} = \kappa_{w} \left(P_{1}^{\sigma-1} Y_{1} + T^{1-\sigma} P_{2}^{\sigma-1} Y_{2} \right)^{\frac{1}{\sigma}}, \quad w_{1} = \kappa_{w} \left(T^{1-\sigma} P_{1}^{\sigma-1} Y_{1} + P_{2}^{\sigma-1} Y_{2} \right)^{\frac{1}{\sigma}}$$

$$\omega_{1} = w_{1} P_{1}^{-\mu}, \quad \omega_{2} = w_{2} P_{2}^{-\mu}$$

Assumption on dynamics (we focus on stable equilibria):

$$\dot{\lambda} \propto \omega_1 - \omega_2$$

CP bifurcation: low transportation costs break symmetry

Historical evidence for the CP model

- ➤ Sumerian takeoff in the Uruk period (4000-3100 BC)
- Symmetry: similar settlement sizes across Mesopotamia
- Growth of Sumer, especially Uruk, and decline of other regions
- Lower trade costs: domestication of donkey
- ► Trade of manufacturing from Sumer

The dawn of civilization: Metal trade and the rise of hierarchy

Fluckiger, Larch, Ludwig, Pascali working paper 2024

Urban revolution

- ▶ Urban revolution: explosion of cities, trade, states, hierarchies
- ► In Eurasia, it occurred during the Bronze Age (3,300-1,200 BC)
- ▶ What is the role of trade? Hypothesis: road knots (Ramsay 1890)
- ► Similar argument as in Fujita and Mori (JDE 1996)

This paper

- ▶ Idea: use the location of copper and tin mine to find these road knots
- Combine several georeferenced datasets
- ▶ Identification: use deposits to build an IV, show lack of pre-trends in panel
- Main finding: grid cells near road knots more likely to concentrate cities and arch. sites in the Bronze Age
- ▶ Suggest a political economy mechanism: ability to tax merchants

Data and sample

- ► Sample: Old World, 1 × 1 degree grid
- ► Main outcome variables:
 - 1. presence of any pre-1300 cities: > 10 k inhabitants, from Reba et al (2016) and HYDE 3.1
 - 2. archaeological sites: Atlas of World Archaeology (Bahn 2000) and Pleiades
- ► Other important data sources:
 - cropland in different historical periods (Klein et al 2010)
 - ▶ land productivity: net primary production (NPP, amount of biomass supported by geoclimate)
 - based on arch. data, location of Bronze Age copper and tin mines
 - location of mineral deposits (US Geological Survey)

Identifying road knots

- ► Step 1: find transport costs for the Bronze Age period
 - use archaeological artifacts to measure trade flows
 - ightharpoonup split grids according to being land, river, or sea, and assume transport costs $\alpha=(\alpha_s,\alpha_r,\alpha_l)$
 - for each α , estimate a gravity equation by Poisson pseudo-maximum likelihood:

$$x_{od} = e^{\delta log LC_{od}(\alpha) + \beta_o + \beta_d + \epsilon_{od}}$$

where $logLC_{od}$ is the least-cost between grids o and d

• choose α that maximizes the log-likelihood

$$\hat{\alpha} = (1, 2, 6)$$

- ▶ Step 2: calculate LCPs between each mine and cropland grid up to 10,000 km (by sea) away
- ► Step 3: find weighted (by cropland area) sum of LCPs crossing the cell
- ▶ Use NPP and deposits in steps 2–3 to construct an IV

Least cost paths between mines and cropland

Roadknots and Bronze Age Cities

Instrumental variable construction

Instrumental variable distribution

Empirical Strategy

- Cross-section: compare presence of cities with road knots
 - ▶ why could the OLS be biased?
 - use the IV to rely only on physical variation
- ► Panel: archaeological sites by period
 - sample period: Paleolithic, Neolithic, Bronze Age
 - interact road knots with the Bronze Age
 - ► IV: also interacted
 - allows cell (and time) fixed effects
 - event study estimates: evaluate pre-trends

Cross-sectional results

	Any City by 1300 BC (×100)							IHS #Cities
	OLS (1)	2SLS (2)	2SLS (3)	2SLS (4)	2SLS (5)	2SLS (6)	2SLS (7)	2SLS (8)
	OLS	Panel A: Second stage						
Transit index	0.379 (0.090)*** [0.141]***	0.437 (0.137)*** [0.203]**	0.440 (0.157)*** [0.225]*	0.406 (0.143)*** [0.204]**	0.397 (0.123)*** [0.176]**	0.411 (0.132)*** [0.191]**	0.403 (0.148)*** [0.203]**	0.005 (0.002)** [0.003]*
Proximity mines	, ,		-0.009 (0.077) [0.095]				-1.178 (0.484)** [0.691]*	-0.014 (0.007)** [0.010]
Proximity croplands				0.118 (0.070)* [0.096]			1.510 (0.553)*** [0.810]*	0.018 (0.008)** [0.011]
Sea					0.220 (0.183) [0.184]		0.222 (0.176) [0.179]	0.002 (0.002) [0.002]
River					0.285 (0.289) [0.377]		0.189 (0.292) [0.346]	0.004 (0.003) [0.004]
Mountains					-0.377 (0.190)** [0.246]		-0.405 (0.260) [0.351]	-0.005 (0.003) [0.004]
Centrality						-0.045 (0.026)* [0.037]	-0.045 (0.026)* [0.035]	-0.001 (0.000) [0.000]
		Panel B: First stage						
IV Transit index		0.714 (0.047)*** [0.073]***	0.616 (0.045)*** [0.069]***	0.648 (0.046)*** [0.070]***	0.623 (0.049)*** [0.074]***	0.689 (0.048)*** [0.074]***	0.518 (0.048)*** [0.072]***	0.518 (0.048)*** [0.072]***
Continent fixed effects Area grid cell Observations Mean dependent variable First-stage F-stat (5×5 grids) First-stage F-stat (Conley 1000km)	Yes Yes 10,970 0.419	Yes Yes 10,970 0.419 228.2 94.31	Yes Yes 10,970 0.419 186.1 79.31	Yes Yes 10,970 0.419 198.8 84.67	Yes Yes 10,970 0.419 159 70.40	Yes Yes 10,970 0.419 205.9 86.39	Yes Yes 10,970 0.419 115.6 51.60	Yes Yes 10,970 0.004 115.6 51.60

Panel results: Archaeological Atlas

Panel results: Pleiades data

- ► Note: it is not the Uruk expansion!
- ► Illustrative example: Assur

Taking stock

- Economic geography is very spiked!
 - unlike physical geography, which is not so much
 - hence, there must be some break of symmetry
- ► The core-periphery explains well how this occurs
 - very deep model, mechanisms are nuanced
 - reinforcing patterns which depend on increasing returns to scale
 - trade costs play a crucial role here
- ► There is great historical evidence supporting it
 - but we still lack more tightly connected econometric evidence
 - but it is a hard problem, due to identification and data