

עבודה 4

AM 7:59 בשעה 30/12 **הגשה:**

מתרגל אחראי: בנימין ברנד

הוראות כלליות:

- כל עוד לא נאמר אחרת, כאשר הנכם מתבקשים לתאר אלגוריתם יש לספק את הבאות:
 - 1. תיאור מילולי של האלגוריתם
 - 2. הוכחת נכונות
 - 3. ניתוח זמן ריצה
 - אלגוריתם עם זמן ריצה אקספוננציאלי לא נחשב יעיל ולכן בדרך כלל לא יתקבל.
 - יש לרשום פתרון בדף התשובות הנלווה לעבודה.
 - לתשומת לבכם, המקום שהוקצה בדף התשובות הינו פי 1.5 מהמקום המומלץ.
 - Submission System הגשה אך ורק דרך מערכת

שאלה 1

 $S \in V$ ארף מכוון, ו- $W: E \to \mathbb{R}$ פונקציית משקל על צלעות הגרף. בנוסף נתון צומת מקור יהי

.נתון כי ב-G לא קיימים מעגלים שליליים

לכל $v\in V$ נסמן ב- $\alpha(s,v)$ את אורך מסלול קצר ביותר מבין כל המסלולים הקלים ביותר מ-s ל-כל $v\in V$ את אורך מסלול קצר ביותר מבין כל המסלולים מ-s ל-v במשקל (s,v).

 $.\alpha(G) = \max_{v \in V} \alpha(s, v)$ נסמן

. איטרציות lpha(G)+1 איטרציות לאחר לכל היותר מבטיח כי האלג' עוצר אשר מבטיח בלמן-פורד אשר בלמן

lpha(G)+1 הוכיחו את נכונות האלג' לאחר השינוי שהצעתם, והוכיחו כי מס' האיטרציות חסום ע"י

. הערה: שימו לב כי $\alpha(G)$ לא נתון בקלט

שאלה 2

. רשת זרימה N = (G, c, s, t)

s-t סימון: עבור $S \subset V$ כך ש- $S \in S$ ו- $S \notin S$ נגדיר את החתך להיות החתך להיות החתך ($S,V\setminus S$). נשים לב כי זהו חתך ברשת הזרימה.

.N יהיו S_1,S_2 חתכים ברשת

 $S_1 \cup S_2$ ואת האיחוד של החתכים להיות החתך של החתכים להיות החתך אות האיחוד ואת האיחוד של החתכים להיות נגדיר את החיתוך של

N נסמן ב- \mathcal{F} את קבוצת כל חתכי ה-t המינימליים של הרשת

<u>סעיף א</u>

 $S_1\cap S_2\in \mathcal{F}$ וגם $S_1\cup S_2\in \mathcal{F}$ הוכיחו כי $S_1,S_2\in \mathcal{F}$ אזי מתקיים איז כלומר, אם הוכיחו כי

<u>סעיף ב</u>

נסמן

$$S_{max} = \bigcup_{S \in \mathcal{F}} S$$
 $S_{min} = \bigcap_{S \in \mathcal{F}} S$

 S_{max}, S_{min} את מוצא את מקסימלית זרימה מהינתן זרימה אשר בהינתן אשר בהינתן אינת

O(|V| + |E|) על האלגוריתם לרוץ בזמן

הוכיחו נכונותו, ונתחו זמן ריצה.

שאלה 3

. בנוסף, נתונה f עבור רשת זרימה N = (G, c, s, t) עבור רשת זו. N = (G, c, s, t)

תארו אלגוריתם אשר בהינתן מס' טבעי k קובע האם ניתן להגדיל את הקיבול של k קשתות ברשת כך שגודל זרימת מקסימום ברשת יגדל. כלומר, לאחר הגדלת הקיבול של k קשתות מתקבלת רשת זרימה חדשה בה קיימת זרימה בגודל גדול ממש מ-|f|.

 $O(|E|\log|V|)$ על האלגוריתם לרוץ בזמן

O(|V| + |E|) הערה: קיים אלגוריתם עבור בעיה זו הרץ בזמן

<u>שאלה 4</u>

N=(G=(V,E),c,s,t) נתבונן בשלב כלשהו בריצה של אלגוריתם דיניץ על רשת הזרימה g, ואת ברימה ברשת בתחילת השלב בg, את הזרימה החוסמת שנמצאת ב L_f במהלך השלב ב-g, ואת הזרימה המעודכנת בסוף השלב ב-g, מתקיים g בסוף השלב ב-g, מתקיים בסוף השלב.

:סימון

. (הרשת השיורית בתחילת השלב). N_f בגרף G_f שב- S_f ממן ב- $\delta_f(s,v)$ את המרחק של $S_f(s,v)$ שב- S_f (הרשת השיורית בסוף השלב). $\delta_f(s,v)$ את המרחק של S_f את המרחק של S_f מסמן ב- S_f את המרחק של S_f את המרחק של S_f מסמן ב- S_f את המרחק של S_f את ה

יהי $v\in V$ צומת כך ש-v נגיש מ-s ברשת השיורית N_f . בנוסף, נתון כי $v\in V$ מסלול לא רווי מ- $v\in V$ ברשת השכבות v מתקיים כי לפחות השכבות v מרימה v במילים אחרות, לכל מסלול v מ-v ברשת השכבות v מתקיים כי לפחות השכבות v מחת מקשתות המסלול רוויה בזרימה החוסמת v.

 $\delta_{f'}(s,v) > \delta_f(s,v)$ הוכיחו כי מתקיים

, הבהרה: בשאלה זו רשת השכבות אינה "קטומה" החל מהשכבה של צומת t כפי שמופיע בחלק מהספרות. כלומר, היא מכילה גם צמתים (ואת הקשתות המתאימות) עבור צמתים שמרחקם מt גדול ממש ממרחק.

בהצלחה!