The Choquet integral as a tool for aggregating preferences

Brice Mayag brice.mayag@dauphine.fr

LAMSADE

Doctoral course ULB/ 05 Mars 2012

Plan

- Preliminaries
- MultiAttribute Utility Theory
- An additive model: the Weighted Arithmetic Mean
- A non-additive model: the Choquet integral
 - Capacity identification
- The 2-additive Choquet Integral
- Elicitation of a 2-additive capacity
 - Binary actions and preferential information
 - A characterization of the 2-additive model
 - How to deal with inconsistencies

Plan

- **Preliminaries**
- MultiAttribute Utility Theory
- - Capacity identification
- - Binary actions and preferential information
 - A characterization of the 2-additive model.
 - How to deal with inconsistencies

Doctoral course ULB/ 05 Mars 2012

The context: MultiCriteria Decision Aid (MCDA)

Aim: to help a decision-maker (DM) to select one or more alternatives among several alternatives evaluated on |N| criteria often contradictory.

 \Rightarrow We need to construct a preference relation over the set of all alternatives X

Candidates	1 : Collective Activities	2 : Song	3: Musical intruments
\boldsymbol{a} : Yvanessa		17	70
b: Michaël		17	60
\boldsymbol{c} : Jessica		8	70
d: Frank		8	60
\boldsymbol{e} : Suzanne		10	45
f: Désiré		10	45

Problem: Give a ranking of all the six students.

Maybe a simple problem if we use the weighted sum as aggregation function.

But how to determine the weight of each criterion in this case?

It is not an easy task!

Notations

- DM: Decision-Maker
- X = the set of all alternatives
- $N = \{1, ..., n\}$ the finite set of n criteria
- X_1, \ldots, X_n represent the set of points of view or attributes
- An alternative or option $x=(x_1,\ldots,x_n)$ is identified to an element of $X=X_1\times\cdots\times X_n$

Candidates	1 : Collective Activities	2 : Song	3: Musical intruments
\boldsymbol{a} : Yvanessa		17	70
b: Michaël		17	60
c: Jessica		8	70
d: Frank		8	60
\boldsymbol{e} : Suzanne		10	45
f : Désiré		10	45

Problem: Give a ranking of all the six students.

$$N = \{1, 2, 3\};$$
 $X =$ the set of all students

$$X_1 = [|; |||| ||||| ||||| ||||]; \quad X_2 = [0; 20]; \quad X_3 = [0; 100]$$

$$X' = \{a, b, c, d\} = a \text{ part of } X$$

Plan

- Preliminaries
- MultiAttribute Utility Theory
- 3 An additive model: the Weighted Arithmetic Mean
- 4 A non-additive model: the Choquet integral
 - Capacity identification
- 5 The 2-additive Choquet Integral
- 6 Elicitation of a 2-additive capacity
 - Binary actions and preferential information
 - A characterization of the 2-additive model
 - How to deal with inconsistencies

 Goal: MAUT aims at representing numerically the DM's preferences in the form of a complete preorder \succeq_X with a function $u: X \to \mathbb{R}$ called overall utility function and such that:

$$\forall x, y \in X, \ x \succsim_X \ y \Leftrightarrow u(x) \ge u(y)$$

 The function u is constructed so that the larger the overall utility associated to an alternative is, the greater this alternative is "preferred" by the DM.

MAUT's hypothesis: \succsim_X is representable by an overall utility function u:

$$x \succsim_X y \Leftrightarrow u(x) \ge u(y)$$

In general, we suppose $u = F \circ U$ where

- $U(x) = (u_1(x_1), \ldots, u_n(x_n)),$
- $u_i: X_i \to \mathbb{R}$ is an utility function on i,
- $F: \mathbb{R}^n \to \mathbb{R}$ is an aggregation function.

Hence we have:

$$\forall (x_1,\ldots,x_n)\in X,\ u(x_1,\ldots,x_n):=F(U(x_1,\ldots,x_n))$$

MAUT's hypothesis: \succsim_X is representable by an overall utility function u:

$$\begin{cases} x \succsim_{X} y \Leftrightarrow u(x) \geq u(y) \\ \forall (x_{1}, \ldots, x_{n}) \in X, \ u(x_{1}, \ldots, x_{n}) := F(U(x_{1}, \ldots, x_{n})) \end{cases}$$

Remark

Generally, the utility functions u_i and the aggregation function F are not unique.

MAUT's hypothesis: \succsim_X is representable by an overall utility function u:

$$\begin{cases} x \gtrsim_X y \Leftrightarrow u(x) \geq u(y) \\ \forall (x_1, \dots, x_n) \in X, \ u(x_1, \dots, x_n) := F(U(x_1, \dots, x_n)) \end{cases}$$

Remark

Generally, the construction of utility functions u_i and the determination of the aggregation function F are done separately.

- How to construct u_i?
 It is not an easy task. For instance some models need commensurability between criteria (will be detailed later!).
- How to choose the "best" aggregation function?
 Usually, one use as aggregation function the well-known arithmetic mean (weighted sum).

The Choquet integral

In practice, using MAUT, how to construct a preference relation \succeq_X over X?

- **①** People ask to the DM some preferential information $\succsim_{X'}$ on a reference subset $X' \subset X$
- F is generally characterized by a parameter vector (weight vector, probability distribution...).
- the parameter vector is constructed so that \succeq_X is an extension of $\succeq_{X'}$.
- lacktriangle The model obtained in X' will be then automatically extended to X.

Plan

- Preliminaries
- 2 MultiAttribute Utility Theory
- 3 An additive model: the Weighted Arithmetic Mean
- 4 A non-additive model: the Choquet integral
 - Capacity identification
- The 2-additive Choquet Integral
- 6 Elicitation of a 2-additive capacity
 - Binary actions and preferential information
 - A characterization of the 2-additive model
 - How to deal with inconsistencies

Definition (Additive model)

The additive model is defined by the existence of utility functions $u_i: X_i \to \mathbb{R}$ such that:

$$\forall (x_1,\ldots,x_n) \in X, \quad u(x_1,\ldots,x_n) := \sum_{i\in N} u_i(x_i). \tag{1}$$

The functions u_i can be determined by some methods like UTA.

Definition (Weighted Arithmetic Mean (WAM))

The Weighted Arithmetic Mean or Weighted Sum is a particular case of an additive model.

It is defined by the existence of utility functions $u_i: X_i \to \mathbb{R}$ and real numbers w_i (weight of criterion i) such that:

$$\forall (x_1,\ldots,x_n)\in X, \quad u(x_1,\ldots,x_n):=\sum_{i\in N}w_i\ u_i(x_i). \tag{2}$$

Candidates	1 : Collective Activities	2 : Song	3: Musical intruments
\boldsymbol{a} : Yvanessa		17	70
b: Michaël		17	60
c: Jessica		8	70
d: Frank		8	60
\boldsymbol{e} : Suzanne		10	45
f : Désiré		10	45

- Can you give your preference between a and b?
- Can you give your preference between c and d?

Candidates	1 : Collective Activities	2 : Song	3: Musical intruments
\boldsymbol{a} : Yvanessa		17	70
b: Michaël		17	60
\boldsymbol{c} : Jessica		8	70
d: Frank		8	60
\boldsymbol{e} : Suzanne		10	45
f : Désiré		10	45

$$X' = \{a, b, c, d\}$$

- If two students are good in Song and Musical intruments, then the jury prefers strictly the student who have a best evaluation in Collective Activities. $\Rightarrow b \succ_{X'} a$;
- If two students are bad in Song, then the jury prefers strictly the student who have a best evaluation in Musical intruments. $\Rightarrow c \succ_{X'} d$;

Example (Evaluation of students in the tv program "Star Academy")

Candidates	1 : Collective Activities	z : song	5: Musical intruments
\boldsymbol{a} : Yvanessa		17	70
b: Michaël		17	60
\boldsymbol{c} : Jessica		8	70
d: Frank		8	60
\boldsymbol{e} : Suzanne		10	45
f: Désiré		10	45

$$X' = \{a, b, c, d\}$$
. If $F \equiv$ weighted sum,

$$b \succ_{X'} a \Rightarrow u_1(|||||||||) w_1 + u_3(60) w_3 > u_1(|||||||) w_1 + u_3(70) w_3$$
 (3)

$$c \succ_{X'} d \Rightarrow u_1(|||||||) w_1 + u_3(70) w_3 > u_1(|||||||||) w_1 + u_3(60) w_3$$
 (4)

Conclusion: Weighted Sum \Rightarrow criteria are (preferential) independent i.e. no interaction.

Candidates	1 : Collective Activities	2 : Song	3: Musical intruments
\boldsymbol{a} : Yvanessa		17	70
b: Michaël		17	60
\boldsymbol{c} : Jessica		8	70
d: Frank		8	60
\boldsymbol{e} : Suzanne		10	45
f: Désiré		10	45

Preferential independence means: the preference of b = (||||| |||; 17; 60) over a = (||||| ||; 17; 70) is not influenced by values on criterion 2.

i.e.
$$b = (||||| |||; 17; 60) \succ_{X'} a = (||||| ||; 17; 70)$$

$$\updownarrow$$

$$c = (||||| |||; 8; 60) \succ_{X'} d = (||||| ||; 8; 70)$$

C - - 1: 1 - 4 - -

Preferential independence

The subset $S \subseteq N$ of criteria is said to be preferentially independent of $N \setminus S$ if

for all
$$x_S, y_S \in \prod_{i \in S} X_i$$
, and all $x_{N \setminus S}, z_{N \setminus S} \in \prod_{i \in N \setminus S} X_i$:

$$(x_S, x_{N \setminus S}) \succsim (y_S, x_{N \setminus S}) \Leftrightarrow (x_S, z_{N \setminus S}) \succsim (y_S, z_{N \setminus S})$$
 (5)

Roughly speaking, the preference of $(x_S, x_{N \setminus S})$ over $(y_S, x_{N \setminus S})$ is not influenced by the values of $x_{N \setminus S}$.

Remark

This property is necessary but not sufficient to characterize the additive model.

What we have seen until now ...

- The context: MCDA
 - Construct a relation \succeq_X over N.
- We suppose the MAUT's hypothesis:
 - \succeq_X is representable by an overall utility function u:

$$\begin{cases} x \succsim_X y \Leftrightarrow u(x) \ge u(y) \\ \forall (x_1, \dots, x_n) \in X, \ u(x_1, \dots, x_n) := F(U(x_1, \dots, x_n)) \end{cases}$$

Limits of additive models

Plan

- Preliminaries
- MultiAttribute Utility Theory
- 3 An additive model: the Weighted Arithmetic Mear
- 4 A non-additive model: the Choquet integral
 - Capacity identification
- The 2-additive Choquet Integral
- 6 Elicitation of a 2-additive capacity
 - Binary actions and preferential information
 - A characterization of the 2-additive model
 - How to deal with inconsistencies

The Choquet integral

Definition (Capacity)

A *capacity* (or fuzzy measure) on N is a set function $\mu: 2^N \to [0,1]$ satisfying the three properties:

- $\mathbf{Q} \mu(\mathbf{N}) = 1 \text{ (normality)}$

Interpretation

 $\mu(S)$ can be interpreted as the "weight" of the coalition of criteria S.

Definition (Capacity)

A capacity (or fuzzy measure) on N is a set function $\mu: 2^N \to [0,1]$ satisfying the three properties:

- \bullet $\mu(N) = 1$ (normality)
- $<math>\forall A, B \in 2^N, \ [A \subseteq B \Rightarrow \mu(A) \le \mu(B)]$ (monotonicity).

Additive capacity

 $\mu(S)$ is said to be additive if

$$\mu(S \cup T) = \mu(S) + \mu(T)$$
 whenever $S \cap T = \emptyset$.

In this case it is sufficient to define the n coefficients (weights) $\mu(\{1\}), \ldots, \mu(\{1\})$ to define the capacity entirely.

The Choquet integral

Definition (The Choquet integral)

The Choquet integral of $x:=(x_1,...,x_n)\in\mathbb{R}^n_+$ w.r.t. a capacity μ is defined by:

$$C_{\mu}(x) := \sum_{i=1}^{n} (x_{\tau(i)} - x_{\tau(i-1)}) \ \mu(\{\tau(i), \dots, \tau(n)\})$$
 (6)

where τ is a permutation on N such that $x_{\tau(1)} \leq x_{\tau(2)} \leq \cdots \leq x_{\tau(n-1)} \leq x_{\tau(n)}$, and $x_{\tau(0)} := 0$

Remark

 μ additive $\Rightarrow C_{\mu} \equiv \text{Weighted sum}.$

Grabisch & Labreuche. A decade of Choquet integral (2010). 4OR

Doctoral course ULB/ 05 Mars 2012

The Choquet integral

The Choquet integral

Definition (The Choquet integral)

The Choquet integral of $x:=(x_1,...,x_n)\in\mathbb{R}^n_+$ w.r.t. a capacity μ is defined by:

$$C_{\mu}(x) := \sum_{i=1}^{n} (x_{\tau(i)} - x_{\tau(i-1)}) \ \mu(\{\tau(i), \dots, \tau(n)\})$$
 (7)

where τ is a permutation on N such that $x_{\tau(1)} \leq x_{\tau(2)} \leq \cdots \leq x_{\tau(n-1)} \leq x_{\tau(n)}$, and $x_{\tau(0)} := 0$

Remark

Choquet integral ⇒ to ensure commensurability between criteria

Definition (The Choquet integral)

The Choquet integral of $x:=(x_1,...,x_n)\in\mathbb{R}^n_+$ w.r.t. a capacity μ is defined by:

$$C_{\mu}(x) := \sum_{i=1}^{n} (x_{\tau(i)} - x_{\tau(i-1)}) \mu(\{\tau(i), \dots, \tau(n)\})$$
 (8)

where τ is a permutation on N such that $x_{\tau(1)} \le x_{\tau(2)} \le \cdots \le x_{\tau(n-1)} \le x_{\tau(n)}$, and $x_{\tau(0)} := 0$

Commensurability

Commensurability means that one shall be able to compare any element of one point of view with any element of any other point of view:

For $x_i \in X_i$ and $x_j \in X_j$,

 $u_i(x_i) \ge u_i(x_i) \Leftrightarrow \text{DM considers } x_i \text{ at least as good as } x_i$

Candidates	1 : Collective Activities	2 : Song	3 : Musical intruments
\boldsymbol{a} : Yvanessa		17	70
b: Michaël		17	60
\boldsymbol{c} : Jessica		8	70
d: Frank		8	60
\boldsymbol{e} : Suzanne		10	45
f: Désiré		10	45
			. •

To apply the Choquet integral, we need commensurate scales

Candidates	1 : Collective Activities	2 : Song	3 : Musical intruments
\boldsymbol{a} : Yvanessa	7	17	14
b: Michaël	9	17	12
c: Jessica	7	8	14
d: Frank	9	8	12
\boldsymbol{e} : Suzanne	11	10	9
f: Désiré	12	10	9

The same example with commensurate scales

Candidates	1 : Collective Activities	2 : Song	3: Musical intruments
\boldsymbol{a} : Yvanessa	7	17	14
b: Michaël	9	17	12
\boldsymbol{c} : Jessica	7	8	14
d: Frank	9	8	12
e: Suzanne	11	10	9
f: Désiré	12	10	9

If we consider the capacity $\mu: 2^N \to [0,1]$ defined by:

$$\mu(N) = \mu(\{1,2\}) = 1,$$

 $\mu(\emptyset) = \mu(\{1\}) = 0,$
 $\mu(\{2\}) = \mu(\{3\}) = \mu(\{2,3\}) = \mu(\{1,3\}) = \frac{1}{2},$

then we obtain for the student a:

$$C_{\mu}(U(a)) = 7 + 7 \ \mu(\{2,3\}) + 3 \ \mu(\{2\}) = 12$$

The same example with commensurate scales

Candidates	1 : Collective Activities	2 : Song	3: Musical intruments
\boldsymbol{a} : Yvanessa	7	17	14
b: Michaël	9	17	12
\boldsymbol{c} : Jessica	7	8	14
d: Frank	9	8	12
\boldsymbol{e} : Suzanne	11	10	9
f: Désiré	12	10	9

If we consider the capacity
$$\mu: 2^N \to [0,1]$$
 defined by: $\mu(N) = 1$, $\mu(\emptyset) = 0$, $\mu(\{2\}) = \mu(\{3\}) = \mu(\{2,3\}) = \mu(\{1,3\}) = \frac{1}{2}$, $\mu(\{1\}) = 0$, $\mu(\{1,2\}) = 1$,

$$C_{\mu}(U(a)) = 7 + 7 \ \mu(\{2,3\}) + 3 \ \mu(\{2\}) = 12$$

 $C_{\mu}(U(b)) = 9 + 3 \ \mu(\{2,3\}) + 5 \ \mu(\{2\}) = 13$
 $C_{\mu}(U(c)) = 7 + 1 \ \mu(\{2,3\}) + 6 \ \mu(\{3\}) = 10.5$
 $C_{\mu}(U(d)) = 8 + 1 \ \mu(\{1,3\}) + 3 \ \mu(\{3\}) = 10$

Hence we have now: $b \succ_X a$ and $c \succ_X d$.

Interaction index

Definition

Given a capacity μ , the interaction index for any subset $A \subseteq N$ is defined by

$$\forall A \subseteq N, \quad I(A) := \sum_{K \subseteq N \setminus A} \frac{(n-k-|A|)!k!}{(n-|A|+1)!} \sum_{L \subseteq A} (-1)^{|A|-|L|} \mu(K \cup L). \tag{9}$$

Definition

Let μ be a capacity. The interaction index for any pair of criteria i and j is given by the following expression

$$I_{ij} := \sum_{K \subseteq N \setminus \{i,j\}} \frac{(n-k-2)!k!}{(n-1)!} [\mu(K \cup \{i,j\}) - \mu(K \cup \{i\}) - \mu(K \cup \{j\}) + \mu(K)]$$
 (10)

Definition (Importance index)

Let μ be a capacity. The importance index (Shapley value) for a criterion i is given by the following expression:

$$v_i = \sum_{K \subseteq N \setminus i} \frac{(n-k-1)!k!}{n!} \left(\mu(K \cup i) - \mu(K) \right). \tag{11}$$

Hypothesis for the next sections

We suppose the utility functions u_i are already constructed using the method given in Grabisch and Labreuche (2003).

Preferential information asked

In the context of MAUT based on the Choquet integral, the preferences, from which the capacity is to be determined, can take the form of:

$$x P y \Leftrightarrow C_{\mu}(U(x)) - C_{\mu}(U(y)) \ge \delta_{X_{R}}$$

$$x I y \Leftrightarrow C_{\mu}(U(x)) = C_{\mu}(U(y))$$

$$i \succ_{imp} j \Leftrightarrow v_{i}^{\mu} - v_{j}^{\mu} \ge \delta_{imp}$$

$$i \sim_{imp} j \Leftrightarrow v_{i}^{\mu} = v_{j}^{\mu}$$

$$ij \succ_{int} kl \Leftrightarrow l_{ij}^{\mu} - l_{kl}^{\mu} \ge \delta_{int}$$

$$ij \sim_{int} kl \Leftrightarrow l_{ii}^{\mu} = l_{kl}^{\mu}$$

Doctoral course ULB/ 05 Mars 2012

Linear program to solve

Most of the identification methods proposed in the literature can be stated under the form of an optimization problem:

min or
$$\max \mathcal{F}$$

$$\begin{cases}
\mu(S \cup i) - \mu(S) \geq 0, \forall i \in \mathbb{N}, \forall S \subseteq \mathbb{N} - i, \\
\mu(\mathbb{N}) = 1, \\
C_{\mu}(U(x)) - C_{\mu}(U(y)) \geq \delta_{X_R}
\end{cases}$$

$$\vdots$$

$$C_{\mu}(U(x)) = C_{\mu}(U(y))$$

$$\vdots$$

$$v_i^{\mu} - v_j^{\mu} \geq \delta_{imp}$$

$$\vdots$$

$$v_i^{\mu} = v_j^{\mu}$$

$$\vdots$$

$$l_{ij}^{\mu} - l_{kl}^{\mu} \geq \delta_{int}$$

$$\vdots$$

$$l_{ij}^{\mu} = l_{kl}^{\mu}$$

$$\vdots$$

Some existing methods

According to their objective function and the preferential information they require as input, we have:

- A maximum split approach (Marichal & Roubens)
- Minimum variance and minimum distance approaches (Kojadinovic)
- A less constrained approach (Meyer & Roubens)
- Robust approach (Angillela et al.) using necessary and possible binary relations.

Grabisch et al. A review of methods for capacity identification in Choquet integral based multi-attribute utility theory (2008). EJOR

In general

To compute a capacity μ , one needs to define the 2^n coefficients corresponding to the 2^n subsets of N.

 \Rightarrow Introduction of k-additive models.

What we have seen until now ...

- The context: MCDA
 - Construct a relation ≿_X over N.
- We suppose the MAUT's hypothesis:
 - \succeq_X is representable by an overall utility function u:

$$\begin{cases} x \succsim_X y \Leftrightarrow u(x) \geq u(y) \\ \forall (x_1, \ldots, x_n) \in X, \ u(x_1, \ldots, x_n) := F(U(x_1, \ldots, x_n)) \end{cases}$$

- Limits of additive models
 - Introduction of Choquet integral w.r.t a capacity + identification of a capacity

Plan

- Preliminaries
- 2 MultiAttribute Utility Theory
- 3 An additive model: the Weighted Arithmetic Mear
- A non-additive model: the Choquet integral
 Capacity identification
- The 2-additive Choquet Integral
- 6 Elicitation of a 2-additive capacity
 - Binary actions and preferential information
 - A characterization of the 2-additive model
 - How to deal with inconsistencies

k-additive capacity

Definition (Möbius transform)

Let μ be a capacity on N.

The *Möbius transform* of μ is a function $m:2^N\to\mathbb{R}$ defined by

$$m(T) := \sum_{K \subseteq T} (-1)^{|T \setminus K|} \mu(K) \quad \forall T \in 2^N.$$

Definition (k-additive capacity (Grabisch))

 μ is said to be *k-additive*, k > 0, if its *Möbius transform m* satisfied

- $\exists B \in 2^N \text{ such that } |B| = k \text{ and } m(B) \neq 0.$

2-additive capacity

Definition (2-additive capacity)

 μ is said to be 2-additive if its Möbius transform m satisfied

- $\forall T \in 2^N, \ m(T) = 0 \text{ if } |T| > 2$
- $\exists B \in 2^N \text{ such that } |B| = 2 \text{ and } m(B) \neq 0.$

Doctoral course ULB/ 05 Mars 2012

Lemma

If the coefficients $\mu(\{i\})$ and $\mu(\{i,j\})$ are given for all $i,j \in \mathbb{N}$, then the necessary and sufficient conditions that μ is a 2-additive capacity are:

$$\sum_{\{i,j\}\subseteq N} \mu(\{i,j\}) - (n-2) \sum_{i\in N} \mu(\{i\}) = 1 \text{ (normality)}$$
 (13)

$$\mu(\{i\}) \ge 0, \ \forall i \in N \text{ (nonnegativity)}$$
 (14)

 $\forall A \subseteq N, |A| \ge 2, \forall k \in A$

$$\sum_{i \in A \setminus \{k\}} \left(\mu(\{i, k\}) - \mu(\{i\}) \right) \ge \left(|A| - 2 \right) \mu(\{k\}) \text{ (monotonicity)}. \tag{15}$$

Notations

$$\forall i, j \in \mathbb{N}, i \neq j, \ \mu_{\emptyset} = \mu(\emptyset), \ \mu_i = \mu(\{i\}) \text{ and } \mu_{ii} = \mu(\{i,j\})$$

Definition (2-additive Choquet integral)

For any $x := (x_1, ..., x_n) \in X$, the expression of the 2-additive Choquet is:

$$C_{\mu}((u(x_1),\ldots,u(x_n))) = \sum_{i=1}^{n} v_i u(x_i) - \frac{1}{2} \sum_{\{i,j\} \subseteq N} I_{ij} |u(x_i) - u(x_j)|$$
 (16)

Where

• v_i = the importance of the criterion i (\equiv Shapley index);

$$I_{ij} = \mu_{ij} - \mu_i - \mu_j. \tag{17}$$

• I_{ij} = the interaction index between criteria i and j.

$$v_i = \mu_i + \frac{1}{2} \sum_{k \in N^i} I_{ik}. \tag{18}$$

Example (Evaluation of students in the tv program "Star Academy")

Candidates	1 : Collective Activities	2 : Song	3: Musical intruments
\boldsymbol{a} : Yvanessa	7	17	14
b: Michaël	9	17	12
\boldsymbol{c} : Jessica	7	8	14
d: Frank	9	8	12
e: Suzanne	11	10	9
f : Désiré	12	10	9

$$X' = \{a,b,c,d\}. \text{ If we consider the 2-additive capacity } \mu:2^N \to [0,1] \text{ defined such that: } \mu(N) = 1, \ \mu(\emptyset) = 0, \ \mu(\{2\}) = \mu(\{3\}) = \mu(\{2,3\}) = \mu(\{1,3\}) = \frac{1}{2}, \\ \mu(\{1\}) = 0, \ \mu(\{1,2\}) = 1, \text{ then we have } I_{12} = \frac{1}{2}, \ I_{13} = 0, \ I_{23} = -\frac{1}{2}, \ v_1 = \frac{1}{4}, \\ v_2 = \frac{1}{2}, \ v_3 = \frac{1}{4}:$$

$$C_{\mu}(U(a)) = 7 \ v_1 + 17 \ v_2 + 14 \ v_3 - \frac{1}{2}(I_{12} \ | 7 - 17| + I_{13} \ | 7 - 14| + I_{23} \ | 17 - 14|) = 12$$

$$C_{\mu}(U(b)) = 9 \ v_1 + 17 \ v_2 + 12 \ v_3 - \frac{1}{2}(I_{12} \ | 9 - 17| + I_{13} \ | 9 - 12| + I_{23} \ | 17 - 12|) = 13$$

$$C_{\mu}(U(c)) = 7 \ v_1 + 8 \ v_2 + 14 \ v_3 - \frac{1}{2}(I_{12} \ | 7 - 8| + I_{13} \ | 7 - 14| + I_{23} \ | 8 - 14|) = 10.5$$

$$C_{\mu}(U(d)) = 9 \ v_1 + 8 \ v_2 + 12 \ v_3 - \frac{1}{2}(I_{12} \ | 9 - 8| + I_{13} \ | 9 - 12| + I_{23} \ | 8 - 12|) = 10$$

Another expression of the 2-additive Choquet integral

For any $x := (x_1, ..., x_n) \in X$, the 2-additive Choquet can be expressed by:

$$C_{\mu}(U(x)) = \sum_{l_{ij}>0} I_{ij} \left(u(x_i) \wedge u(x_j)\right) + \sum_{l_{ij}<0} I_{ij} \left(u(x_i) \vee u(x_j)\right) + \sum_{i=1}^{n} u_i(x_i) \left(v_i - \frac{1}{2} \sum_{j \neq j} I_{ij}\right)$$

Interaction index

Interpretation of I_{ij}

- $I_{ij} = 0 \Rightarrow \text{independence between } i \text{ and } j$;
- $I_{ij} > 0 \Rightarrow$ complementary among i and j;

This means that for the DM, both criteria have to be satisfactory in order to get a satisfactory alternative, the satisfaction of only one criterion being useless.

• $I_{ij} < 0 \Rightarrow$ substitutability or redundance among i and j;

This means that for the DM, the satisfaction of one of the two criteria is sufficient to have a satisfactory alternative, satisfying both being useless..

Interest of the 2-additive model

The 2-additive Choquet integral

- is very used in many applications such that
 - the evaluation of discomfort in sitting position (see Grabisch et al. (2002));
 - the construction of performance measurement systems model in a supply chain context (see Berrah and Clivillé (2007), Clivillé et al. (2007));
 - complex system design (Labreuche and Pignon (2007));
- offers a good compromise between flexibility of the model and complexity;
- requires to be able to compare any element of one point of view with any element of any other point of view (commensurateness between criteria);
- The only way to construct the utility functions with the Choquet integral uses the reference levels (Grabisch and Labreuche (2003)).

$$C_{\mu}((u(x_1),\ldots,u(x_n))) = \sum_{i=1}^n v_i u(x_i) - \frac{1}{2} \sum_{\{i,j\} \subseteq N} I_{ij} |u(x_i) - u(x_j)|$$

Remark

• For all $i, j \in N$,

$$C_{\mu}((0,\ldots,0)) = \mu_{\emptyset} = 0$$

$$C_{\mu}((0,\ldots,0,\underbrace{1}_{i},\ldots,0)) = \mu_{i} = v_{i} - \frac{1}{2} \sum_{k \in N, \ k \neq i} l_{ik}$$

$$C_{\mu}((0,\ldots,0,\underbrace{1}_{i},\ldots,0,\underbrace{1}_{j},\ldots,0)) = \mu_{ij} = v_{i} + v_{j} - \frac{1}{2} \sum_{k \in N, \ k \notin \{i,j\}} (l_{ik} + l_{jk})$$

Therefore we set:

$$\begin{cases} (0,\ldots,0) \equiv U(\mathbf{a_0}) \\ (0,\ldots,0,\underbrace{1}_{j},\ldots,0) \equiv U(\mathbf{a_i}) \\ (0,\ldots,0,\underbrace{1}_{j},\ldots,0,\underbrace{1}_{j},\ldots,0) \equiv U(\mathbf{a_{ij}}) \end{cases}$$

a₀, a_i and a_{ii} are called binary actions or binary alternatives.

What we have seen until now . . .

- The context: MCDA
 - Construct a relation ∑_X over N.
- We suppose the MAUT's hypothesis:
 - \succsim_X is representable by an overall utility function u:

$$\begin{cases} x \succsim_X y \Leftrightarrow u(x) \geq u(y) \\ \forall (x_1, \ldots, x_n) \in X, \ u(x_1, \ldots, x_n) := F(U(x_1, \ldots, x_n)) \end{cases}$$

- Limits of additive models
 - Introduction of Choquet integral w.r.t a capacity + identification of a capacity
 - A particular Choquet integral: a 2-additive Choquet integral
 - In the next section: Elicitation of a 2-additive capacity by using binary actions

Plan

- Preliminaries
- MultiAttribute Utility Theory
- 3 An additive model: the Weighted Arithmetic Mear
- A non-additive model: the Choquet integral
 Capacity identification
- 5 The 2-additive Choquet Integral
- Elicitation of a 2-additive capacity
 - Binary actions and preferential information
 - A characterization of the 2-additive model
 - How to deal with inconsistencies

 $\mathbf{0}_i \in X_i \equiv \text{``neutral''} \text{ (unsatisfactory)}$ $\mathbf{1}_i \in X_i \equiv \text{satisfactory}$ DM can identify two reference levels on i:

Definition

A binary action is an element of the set

$$\mathcal{B} = \{\mathbf{0}_{N}, \ (\mathbf{1}_{i}, \mathbf{0}_{N-i}), \ (\mathbf{1}_{ij}, \mathbf{0}_{N-ij}), \ i, j \in N, i \neq j\}$$

where

- $\mathbf{0}_N = (\mathbf{1}_\emptyset, \mathbf{0}_N) =: a_0$ is the action considered neutral on all criteria.
- $(\mathbf{1}_i, \mathbf{0}_{N-i}) =: \mathbf{a}_i$ is an action considered satisfactory on criterion i and neutral on the other criteria.
- $(\mathbf{1}_{ij}, \mathbf{0}_{N-ij}) =: a_{ij}$ is an action considered satisfactory on criteria i and j and neutral on the other criteria.

Binary action in a real application: Site protection

Binary action in a real application: Site protection

Let us consider the aggregation of the subtree System complexity where $1 \equiv$ Skills, $2 \equiv Work load$, $3 \equiv System deployment$:

$$\mathcal{B} = \{a_0, a_1, a_2, a_3, a_{12}, a_{13}, a_{23}\},$$

- a_{13} / a_1 : a system requiring a high working load and better on the other criteria is equivalent to a better system solely on the criterion skills.
- a₁₂ P a₃: DM prefers a system better on Skills even its time deployment is important.
- If Skills is improved in a_{13} , he prefers a_{13} to a_{12} , i.e a_{13} P a_{12}
- a_{13} / a_{23} : a system requiring a too heavy workload but satisfying on the other criteria are of equal importance to a system requiring very high qualifications for its use, although satisfying on the other criteria.
- a₁ / a₂: A good system on Skills is indifferent to a good system on Work load.
- $a_3 P a_0$

4日 > 4周 > 4 至 > 4 至 >

Properties of binary actions

For all $i, j \in N$,

$$C_{\mu}(U(a_0)) = \mu_{\emptyset} = 0$$

$$C_{\mu}(U(a_i)) = \mu_i = v_i - \frac{1}{2} \sum_{k \in N, k \neq i} I_{ik}$$

$$C_{\mu}(U(a_{ij})) = \mu_{ij} = v_i + v_j - \frac{1}{2} \sum_{k \in N, \ k \notin \{i,j\}} (I_{ik} + I_{jk})$$

Why binary actions?

They allow us to:

- have a good specification of the 2-additive model
- determine:
 - the interaction between two criteria
 - the importance of a criterion

DM's preferential information

Using pairwise comparisons, the DM gives a preferential information on \mathcal{B} allowing the construction of these relations:

$$P = \{(x, y) \in \mathcal{B} \times \mathcal{B} : \text{ DM strictly prefers } x \text{ to } y\}$$

$$I = \{(x, y) \in \mathcal{B} \times \mathcal{B} : \text{ DM is indifferent between } x \text{ and } y\}$$

The Choquet integral

Definition

The *ordinal information on* \mathcal{B} is the structure $\{P, I\}$.

Elicitation of a 2-additive capacity

We look for a 2-additive capacity μ such that:

$$\forall x, y \in \mathcal{B}, \ x \ P \ y \Rightarrow C_{\mu}(U(x)) > C_{\mu}(U(y)), \tag{19}$$

$$\forall x, y \in \mathcal{B}, \ x \mid y \Rightarrow C_{\mu}(U(x)) = C_{\mu}(U(y)), \tag{20}$$

$$N = \{1, 2, 3\}, \ \mathcal{B} = \{a_0, a_1, a_2, a_3, a_{12}, a_{13}, a_{23}\}$$

$$P = \{(a_{23}, a_2); (a_2, a_0); (a_{23}, a_{12})\}$$

$$I = \{(a_{13}, a_1); (a_3, a_{12})\}$$

$$\begin{array}{l} C_{\mu}(U(a_{23})) > C_{\mu}(U(a_{2})) \\ C_{\mu}(U(a_{2})) > C_{\mu}(U(a_{0})) \\ C_{\mu}(U(a_{2})) > C_{\mu}(U(a_{0})) \\ C_{\mu}(U(a_{23})) > C_{\mu}(U(a_{12})) \\ C_{\mu}(U(a_{13})) = C_{\mu}(U(a_{12})) \\ C_{\mu}(U(a_{3})) = C_{\mu}(U(a_{12})) \\ \mu_{\emptyset} = 0, \ \mu_{1} \geq 0 \\ \mu_{2} \geq 0, \ \mu_{3} \geq 0 \\ \mu_{12} \geq \mu_{1}, \ \mu_{12} \geq \mu_{2} \\ \mu_{13} \geq \mu_{1}, \ \mu_{13} \geq \mu_{3} \\ \mu_{23} \geq \mu_{2}, \ \mu_{23} \geq \mu_{3} \\ \mu_{12} + \mu_{13} \geq \mu_{1} + \mu_{2} + \mu_{3} \\ \mu_{12} + \mu_{23} \geq \mu_{1} + \mu_{2} + \mu_{3} \\ \mu_{13} + \mu_{23} \geq \mu_{1} + \mu_{2} + \mu_{3} \end{array}$$

2-additive Monotonicity constraints

$$N = \{1, 2, 3\}, \ \mathcal{B} = \{a_0, a_1, a_2, a_3, a_{12}, a_{13}, a_{23}\}$$

$$P = \{(a_{23}, a_2); (a_2, a_0); (a_{23}, a_{12})\}$$

$$I = \{(a_{13}, a_1); (a_3, a_{12})\}$$

$$\begin{array}{l} \mu_{23} > \mu_{2} \\ \mu_{2} > 0 \\ \mu_{23} > \mu_{12} \\ \mu_{13} = \mu_{1} \\ \mu_{3} = \mu_{12} \\ \mu_{\emptyset} = 0, \ \mu_{1} \geq 0 \\ \mu_{12} \geq 0, \ \mu_{3} \geq 0 \\ \mu_{12} \geq \mu_{1}, \ \mu_{12} \geq \mu_{2} \\ \mu_{13} \geq \mu_{1}, \ \mu_{13} \geq \mu_{3} \\ \mu_{23} \geq \mu_{2}, \ \mu_{23} \geq \mu_{3} \\ \mu_{12} + \mu_{13} \geq \mu_{1} + \mu_{2} + \mu_{3} \\ \mu_{12} + \mu_{23} \geq \mu_{1} + \mu_{2} + \mu_{3} \\ \mu_{13} + \mu_{23} \geq \mu_{1} + \mu_{2} + \mu_{3} \end{array}$$

2-additive Monotonicity constraints

The monotonicity relation M on the pairs of criteria

Definition

For
$$(x, y) \in \{(a_i, a_0), i \in N\} \cup \{(a_{ij}, a_i), i, j \in N, i \neq j\},\$$

$$\times M \ y \text{ if } \text{not}(x \ (P \cup I) \ y).$$

M models the natural monotonicity conditions $\mu(\{i\}) \ge 0$ and $\mu(\{i,j\}) \ge \mu(\{i\})$ for a capacity μ

Doctoral course ULB/ 05 Mars 2012

Introduction to the MOPI property

(*) leads to a contradiction with the 2-additivity monotonicity constraint for $A = \{1, 2, 3\}$ and state of nature 1 fixed:

$$\mu_{12} + \mu_{13} \ge \mu_1 + \mu_2 + \mu_3$$

$$\operatorname{since} \left\{ \begin{array}{l} \mu_{12} = \mu_1 \\ \mu_{13} = \mu_3 \end{array} \right. \implies \left. 0 \geq \mu_2. \right.$$

MOnotonicity of Preferential Information (MOPI)

Definition

Let $i, j, k \in N$.

• We call *Monotonicity of Preferential Information in* $\{i, j, k\}$ *w.r.t.* i the following property:

$$\begin{cases} a_{ij} \sim a_i \\ a_{ik} \sim a_k \end{cases} \Rightarrow not(a_j \ TC_P \ a_0)$$
and
$$\begin{cases} a_{ij} \sim a_j \\ a_{ik} \sim a_k \end{cases} \Rightarrow not(a_i \ TC_P \ a_0)$$
and
$$\begin{cases} a_{ij} \sim a_j \\ a_{ik} \sim a_j \end{cases} \Rightarrow not(a_k \ TC_P \ a_0).$$

x TC_P $y \Leftrightarrow \exists$ a path in $(P \cup I \cup M)$ from x to y containing an element of P.

② $\{i,j,k\}$ satisfies MOPI if $\forall l \in \{i,j,k\}, (\{i,j,k\},l)$ -MOPI is satisfied.

We suppose $P \neq \emptyset$.

Theorem (Mayag et al. (Th & Dec 2010))

An ordinal information $\{P,I\}$ is representable by a 2-additive Choquet integral on \mathcal{B} if and only if the following conditions are satisfied:

- $(P \cup I \cup M)$ contains no cycle with a P;
- **2** Any subset K of N such that |K| = 3 satisfies the MOPI property.

Corollaire

For any ordinal information $(P \cup I \cup M)$ such that $I = \emptyset$, there exists an ordinal 2-additive scale on X if and only if $(P \cup M)$ has no strict cycle.

Furthermore any ordinal information s.t. $I = \emptyset$ for which $(P \cup M)$ has no strict cycle, can be represented by a 2-additive capacity with nonnegative interactions.

UNIVERSITÉ PARIS

$$N = \{1, 2, 3, 4, 5, 6\}, I = \{(a_{12}, a_1), (a_{13}, a_4), (a_3, a_4), (a_{45}, a_5), (a_{46}, a_6)\}$$
 and $P = \{(a_2, a_0)\}.$

No strict cycle but a violated MOPI property: $\begin{cases} a_{12} \mid a_1 \\ a_{13} \sim a_3 \end{cases}$ and $a_2 \mid P \mid a_0 \mid$

To solve this problem, DM Modifies $a_{13} \sim a_3$ by changing

- \bullet $a_{13} \mid a_4$ to $a_4 \mid a_{13}$
- \bullet $a_3 \mid a_4$ to $a_4 \mid a_3$

Doctoral course ULB/ 05 Mars 2012

$$N = \{1, 2, 3, 4, 5, 6\}, I = \{(a_{12}, a_1), (a_{45}, a_5), (a_{46}, a_6)\}$$
 and $P = \{(a_2, a_0), (a_4, a_{13}), (a_4, a_3)\}$

After these modifications, we get a new violated MOPI condition:

$$\begin{cases} a_{45} \mid a_5 \\ a_{46} \mid a_6 \end{cases} \text{ and } a_4 \mid P \mid a_3 \mid M \mid a_0 \end{cases}$$

$$N = \{1, 2, 3, 4\}, I = \{(a_{12}, a_1), (a_{13}, a_3), (a_{24}, a_2)\} \text{ and } P = \{(a_2, a_4)\}.$$

No strict cycle but a violated MOPI property:

$$\begin{cases} a_{12} \mid a_1 \\ a_{13} \mid a_3 \end{cases} \text{ and } a_2 \mid P \mid a_4 \mid M \mid a_0$$

If DM changes $(a_2 P a_4)$ to $(a_4 P a_2)$ then a new strict cycle is created

$$a_4 P a_2 I a_{24} M a_4$$
.

$$\textit{N} = \{1, 2, 3, 4, 5, 6\}, \; \textit{I} = \{(\textit{a}_{12}, \textit{a}_{1}), (\textit{a}_{13}, \textit{a}_{3}), (\textit{a}_{45}, \textit{a}_{5}), (\textit{a}_{46}, \textit{a}_{6})\} \; \text{and} \; \textit{P} = \{(\textit{a}_{2}, \textit{a}_{4})\}.$$

No strict cycle but a violated MOPI property:

$$\left\{\begin{array}{c|c} a_{12} & a_1 \\ a_{13} & a_3 \end{array}\right. \text{ and } a_2 \ \mathsf{P} \ a_4 \ M \ a_0.$$

If DM changes $(a_2 P a_4)$ to $(a_4 P a_2)$ then we get a new violated MOPI condition:

$$\begin{cases} a_{45} \mid a_5 \\ a_{46} \mid a_6 \end{cases} \text{ and } a_4 \mid P \mid a_2 \mid M \mid a_0.$$

MOPI property is violated

$$\left\{\begin{array}{ll} a_{ij} \sim a_j \\ a_{ik} \sim a_k \end{array}\right. \Rightarrow a_i \ TC_P \ a_0$$

Our proposition

• Step 1: Compute the set

$$TC_P(a_i) = \{(x, y) \in P \text{ such that } a_i \ TC \times P \ y\}$$

Step 2: Recommendations to DM for each $(x,y) \in TC_P(a_i)$, remove P between x and y, replace it by I or don't do anything.

MOPI property is violated

$$\left\{\begin{array}{ll} a_{ij} \sim a_j \\ a_{ik} \sim a_k \end{array}\right. \Rightarrow a_i \ TC_P \ a_0$$

Proposition

If DM follows the recommendations in STEP 2, then no new inconsistencies are created.

Doctoral course ULB/ 05 Mars 2012

Figure: Algorithm for the treatment of an ordinal information

Thank you!

