ME581 Homework 1

Due: 11:59, 09/07/2022

Instructions:

- The following problems are to be documented, solved, and presented in a Jupyter notebook.
- Save the notebook as a single PDF, then upload and submit the PDF in Gradescope

 Write your own codes for Bisection, Newton and Secant methods

Problem 1

- a) Plot the function f(x) = 1 2*ln(x) to verify the presence of zeros in the interval (1,2). Label the exact location of $p = e^{(1/2)}$.
- b) Perform the first five iterations of the **bisection method** and verify that each approximation satisfies the theoretical error bound of the bisection method.
- c) Check if the error decreases or increases in each iteration. Plot the error versus number of iterations.
- d) As conclusion, list and discuss any two limitations of the bisection method based on the type of function analyzed. Give examples.

Problem 2 1

Approximate 1/48 (up to 5 decimal places) using **bisection method** to the equation $\frac{1}{r} - 48 = 0$. Include plots of:

- a) Approximated value vs Iteration number;
- b) Absolute error vs. Iteration number.

Problem 3

The equation $x^3 - 15 = 0$ has a root on the interval (2,3), namely $p = \sqrt[3]{15}$.

- a) Perform five iterations of Newton's method.
- b) For $n \ge 1$, **print** the comparison of $|p_n p_{n-1}|$ with $|p_{n-1} p|$ and $|p_n p|$.
- c) For $n \ge 1$, **print** computation of the ratio $|p_n p|/|p_{n-1} p|^2$ and show that this value approaches |f''(p)/2f'(p)|.

Problem 4

For each of the functions given below, use the **Newton's method** algorithm to approximate **all real roots**. Use an absolute tolerance of 10^{-6} as a stopping condition. For each of the roots **plot** the logarithm of the absolute error $|e_n|$ at each iteration n against the logarithm of the absolute error at the previous iteration. Use this plot to calculate the order of convergence.

a)
$$f(x) = e^x + x^2 - x - 7$$

b)
$$f(x) = x^3 - x^2 - 9x + 4$$

c)
$$f(x) = 1.08 - 1.03x + \ln(x)$$

Problem 5

The function $f(x) = 81x^4 + 27x^3 - 9x^2 + 3x - 22$ has a zero at x = 2/3. Using starting value of $p_0 = 0$, perform ten iterations of **Newton's method** to approximate the solution.

- a) Plot Absolute error versus Iteration number.
- **b)** What is the order of convergence?
- c) What is the multiplicity of the zero at x = 2/3

Problem 6

It was observed that **Newton's method** provides quadratic convergence towards roots of multiplicity equal to one. How does the **secant method** perform under such circumstances? Each of the following functions has a zero at the specified location. Perform 25 iterations applying the **secant method**. Does the sequence generated by the secant method converge with $\alpha \approx 1.618$ or has the order dropped to $\alpha = 1$?

(a)
$$f(x) = x^2(1 - cos(x))$$
 has a zero at $x = 0$. Use $p_0 = -1$ and $p_1 = 2.5$.

(b)
$$f(x) = 81x^4 + 27x^3 - 9x^2 + 3x - 22$$
 has a zero at $x = 2/3$. Use $p_0 = 0$ and $p_1 = 0.5$.

Problem 7

- a) Verify that the equation $x^4 18x^2 + 45 = 0$ has a root on the interval (1,2). Perform four iterations of the **Newton's method**, using the starting value $p_0 = 1$. Given that the exact value of the root is $x = \sqrt{3}$, compute the absolute error in the approximations just obtained. What is the apparent order of convergence?
- b) Verify that the equation $x^4 18x^2 + 45 = 0$ also has a root on the interval (3,4). Perform four iterations of the **secant method**, using the starting values $p_0 = 3$ and $p_1 = 4$. Compute the absolute error in each approximation, given the exact value of the root, $x = \sqrt{15}$. What is the order of convergence?
- c) Explain clearly the difference in the convergence behavior between parts a) and b)?