

Candidato: David García Callejas

Plaza: Profesor Lector

Código: 00049501, 00049503

Departamento: Biología Evolutiva, Ecología y Ciencias Ambientales

Sección: Ecología

Presentación docente

Asignatura

Ecologia de comunitats i ecosistemes - Biología, 3er Curso

Asignaturas relacionadas

Ecologia de Ecosistemes i Biogeoquimica - CCAA, Optativa Avenços en Ecologia de Poblacions i Comunitats - M.Sc. Ecologia

Metabolismo y relaciones alométricas

Sección del plan docente:

UT3: El consum i el processament de la matèria orgànica

Contexto de la clase

UT2 - La producció primaria

UT3 - El consum i el processament de la matèria orgànica

UT4 - La descomposició i els descomponedors

Prácticas asociadas:

Mediciones de masa corporal y tasa metabólica basal - laboratorio Estimación de exponentes alométricos - ordenador

Metabolismo y relaciones alométricas

Índice

Alometrías

Tasas metabólicas

- Alometrías en individuos: Masa corporal
- Alometrías en poblaciones: densidad poblacional, equivalencia energética

$$Y = \beta x^{\alpha}$$

- De manera general denominadas *leyes de potencias*: variables que se expresan como la potencia de otras.
- Las leyes de potencias son ubicuas en la naturaleza
 - o frecuencia de terremotos: ley de Gutenberg-Richter
 - o distribución de salarios: ley de Pareto
 - o frecuencia de palabras en lenguajes: ley de Zipf

$$Y = \beta x^{\alpha}$$

En Ecología:

Relaciones por las cuales atributos moleculares, fisiológicos, ecológicos o de historia de vida (Y) se relacionan con otros parámetros \mathbf{x} de los organismos, elevados a una potencia α .

Marquet et al. (2005)

• Relaciones no lineales

- Relaciones no lineales
- ¿Podemos transformarlas para trabajar de manera más sencilla?
- Linearizamos usando logaritmos

$$Y = \beta x^{\alpha}$$

$$log(Y) = log(\beta) + \alpha \cdot x$$

 α < 0, decreciente

 α = **0**, constante

 $0 < \alpha < 1$, creciente sub-lineal

 α = 1, creciente lineal

 $\alpha > 1$, creciente super-lineal

Sibly et al. (2012)

$$Y = \beta x^{\alpha}$$

$$log(Y) = log(\beta) + \alpha \cdot x$$

link a código R

El metabolismo se define como la transformación de energía y materiales por un organismo. La tasa metabólica fija la demanda de recursos de un organismo y la distribución de recursos a todas las funciones biológicas. En consecuencia, la tasa metabólica es la tasa biológica fundamental: es literalmente la velocidad de la vida

Sibly et al. (2012)

Energía adquirida ≠ tasa metabólica

English et al. (2024)

Acrónimo (inglés)	Aplicable a	Explicación
BMR	endotermos	descanso, no en digestión, sin estrés térmico
SMR	ectotermos	como BMR, a temperatura definida
RMR	endo/ecto	como BMR, menos estricta
FMR	endo/ecto	gasto energético en condiciones normales
MMR	endo/ecto	gasto en condiciones de máximo esfuerzo

	Acrónimo (inglés)	Aplicable a	Explicación
>	BMR	endotermos	descanso, no en digestión, sin estrés térmico
	SMR	ectotermos	como BMR, a temperatura definida
	RMR	endo/ecto	como BMR, menos estricta
	FMR	endo/ecto	gasto energético en condiciones normales
	MMR	endo/ecto	gasto en condiciones de máximo esfuerzo

¿Cómo medimos la tasa metabólica de un organismo?

- Consumo de O₂ por unidad de tiempo en condiciones controladas
- Producción de CO₂ por unidad de tiempo en condiciones controladas

Unidades:

energía por unidad de tiempo: vatios (julios/seg), ml O₂/tiempo

La relación entre la masa corporal y la tasa metabólica de un organismo sigue una alometría

- La alometría fundamental es aquella entre masa corporal y tasa metabólica de un organismo
- Primeros estudios cuantitativos: 1883, Max Rubner
- Disipación de calor del organismo refleja la tasa metabólica
- Superficie corporal escala en 2/3 con la masa (volumen) corporal
- Por tanto, un exponente de 2/3 para la alometría masa-tasa metabólica es una hipótesis parsimoniosa

$$B = aM^{2/3}$$

- La alometría fundamental es aquella entre masa corporal y tasa metabólica de un organismo
- Primeros estudios cuantitativos: 1883, Max Rubner
- Disipación de calor del organismo refleja la tasa metabólica
- Superficie corporal escala en 2/3 con la masa (volumen) corporal
- Por tanto, un exponente de 2/3 para la alometría masa-tasa metabólica es una hipótesis parsimoniosa

$$B = aM^{2/3}$$

- La alometría fundamental es aquella entre masa corporal y tasa metabólica de un organismo
- Primeros estudios cuantitativos: 1883, Max Rubner
- Disipación de calor del organismo refleja la tasa metabólica
- Superficie corporal escala en 2/3 con la masa (volumen) corporal
- Por tanto, un exponente de 2/3 para la alometría masa-tasa metabólica es una hipótesis parsimoniosa

$$B = aM^{2/3}$$

Extra 1: Regla de Bergmann Extra 2: Tamaño máximo de un organismo

 $\alpha \approx 2/3$

Rubner (1883)

 $\alpha \approx 2/3$

 $\alpha \approx 3/4$

Kleiber (1932)

 $\alpha \approx 2/3$

WAL

 $\alpha \approx 3/4$

Rubner (1883)

Kleiber (1932)

- Modelo de West, Brown y Enquist (1997)
 - La estructura fractal de las redes de distribución de recursos en el organismo (e.g. sangre) determina el exponente de la alometría

Relación masa corporal - tasa metabólica basal en diferentes organismos

$$B = aM^{3/4}$$

$$log(B) = log(a) + 3/4 M$$

- La tasa metabólica basal *B* escala con exponente **sub-lineal** con la masa corporal *M*, en todo el árbol de la vida
- Factores externos (e.g. temperatura) también influencian la relación

$$B = aM^{3/4}$$

- La tasa metabólica basal *B* escala con exponente **sub-lineal** con la masa corporal *M*, en todo el árbol de la vida
- Factores externos (e.g. temperatura) también influencian la relación

$$B = aM^{3/4} \cdot e^{-E/kT}$$

E = energía de activación k = constante de Boltzmann T = temperatura

Factores que influencian la alometría de masa corporal

factores ecológicos

- temperatura
- otros: hábitat,dieta...

¿qué medimos?

BMR, SMR, FMR...

$$B = aM^{3/4}$$

variabilidad taxonómica

¿cómo lo medimos?

36.6 meters

Otras relaciones alométricas

pulsaciones por minuto $\propto M^{-1/4}$

esperanza de vida $\propto M^{1/4}$

tasa de crecimiento $\propto M^{-1/4}$

altura (árbol) $\propto M^{1/4}$

- Las poblaciones se componen de un número variable de individuos
- ¿Máximo número de individuos en un área determinada?

- Las poblaciones se componen de un número variable de individuos
- ¿Máximo número de individuos en un área determinada?
- Proporcional a la cantidad de recursos dividida por el consumo de recursos de un individuo

 $N \propto R/U$

N = número de individuos por unidad de área
 R = recursos disponibles por unidad de área
 U = consumo medio de recursos por individuo

idea?

N = número de individuos por unidad de área
 R = recursos disponibles por unidad de área
 U = consumo medio de recursos por individuo

$$N \propto R/U$$

 $U \approx Tasa\ metabólica\ B$

$$B = aM^{3/4}$$

R = recursos disponibles por unidad de área a = constante de normalización

$$N \propto R/U$$
 $N \propto R/aM^{3/4};$ $U \approx Tasa\ metabólica\ B$ $N \propto c/M^{3/4};$ $N \propto c/M^{3/4};$ $N \propto cM^{-3/4}$

R = recursos disponibles por unidad de área a = constante de normalización c = R/a

 $N \propto cM^{-3/4}$

• La densidad poblacional *N* escala negativamente con exponente sub-lineal con la masa corporal *M*

Price et al. (2010)

En plantas

 $\alpha \approx$ -3/4

Marquet *et al.* (2005)

En mamíferos

consumidores primarios (blanco): $\alpha \approx -3/4$

consumidores secundarios (negro): $\alpha \approx -1$

Marquet et al. (2005)

En mamíferos

consumidores primarios (blanco): $\alpha \approx -3/4$

consumidores secundarios (negro): $\alpha \approx -1$

Otros estudios: $\alpha \approx -2/3$ o más cercano a cero en otros grupos (e.g. aves)

La diferencia entre densidades poblacionales de especies de menor a mayor tamaño es mayor para exponentes más negativos

link a código R

¿Podemos estimar el gasto energético total de una población cualquiera?

¿Podemos estimar el gasto energético total de una población cualquiera?

¿Podemos estimar el gasto energético total de una población cualquiera?

$$\left. \begin{array}{l} B \propto aM^{3/4} \\ N \propto cM^{-3/4} \end{array} \right\}$$

¿Podemos estimar el gasto energético total de una población cualquiera?

$$B \propto aM^{3/4}$$
 $N \sim cM^{-3/4}$

¿Podemos estimar el gasto energético total de una población cualquiera?

$$B \propto aM^{3/4}$$

$$N \sim cM^{-3/4}$$

$$N \cdot B \propto M^{0}$$

 $N \cdot B \propto M^0$

- El consumo total de energía de una población $N \cdot B$ debería ser, para un amplio rango de especies, invariante respecto a la masa corporal M
- Regla de equivalencia energética (Damuth 1987)

Regla de equivalencia energética

Regla de equivalencia energética

$$N \cdot B \propto d \cdot M^{-\beta} \cdot M^{3/4}$$

"Dado que la alometría tiene un exponente estadísticamente indistinguible de cero, la productividad de los ecosistemas estudiados es independiente del tamaño de los organismos vegetales" (Enquist et al. 1998)

Regla de equivalencia energética

- La evidencia actual no es conclusiva, pero en general existen muchas desviaciones respecto a las predicciones
- Dependiente de muchos factores externos y asunciones
 - Teóricas: consumo de recursos y patrones de gasto energético comparable entre taxones, no considera interacciones bióticas
 - Prácticas: dificultades de cuantificación en diferentes contextos ecológicos

Puntos clave (1)

- Las alometrías son relaciones no lineales entre parámetros ecológicos
- La alometría fundamental a nivel de individuo relaciona masa corporal y tasa metabólica en reposo:

$$B = aM^{3/4}$$

- El exponente de la relación se mantiene de manera aproximada en una gran diversidad de organismos
- Diversos factores pueden alterar esta relación general, especialmente la temperatura ambiental

Puntos clave (2)

• A nivel de poblaciones ecológicas, la densidad poblacional muestra una alometría negativa con la masa corporal, dada una capacidad de carga determinada

$$N \propto cM^{-3/4}$$

- La variabilidad en el exponente de esta relación es aún mayor que a nivel individual
- A partir de esta relación se puede derivar el gasto energético total de una población, y su relación con la masa corporal media. Si los exponentes alométricos se ajustan a 3/4 y -3/4, se cumple la *regla de equivalencia energética*

$$N \cdot B \propto M^0$$

 Esta regla general se ha mostrado que no se cumple tan ampliamente, con una serie de limitaciones importantes - es una línea de investigación activa hoy día

Puntos clave (3)

- Estas relaciones alométricas son la base de la *Teoría Metabólica de la Ecología*
- Es una teoría general, basada en principios fundamentales de la física, la química y la biología
- Predice patrones ecológicos a nivel de individuos y poblaciones, además de otras extensiones
- "[...] desviaciones de las predicciones teóricas permiten evaluar la importancia de factores diferentes al tamaño corporal y la temperatura en los procesos biológicos" (Marquet et al. 2014)
- "La Teoría Metabólica de la Ecología proporciona un marco de referencia común para comparar patrones de organismos que, a pesar de acarrear historias evolutivas y contextos ecológicos variables, obedecen unos principios fundamentales comunes ligados al metabolismo, la masa corporal, y la temperatura." (Marquet et al. 2014)

1) &BMR?

$$B(W) = a(W/Kg)M(Kg)^{3/4};$$

 $a = 0.14$ (ectotermos)

$$B = 634,5 \ W \approx 13100 \ kcal/día$$

 $B_{FMR} \approx 3*B = 1903,5 \ W \approx 40000 \ kcal/día$

2) ¿Kg vegetación/día? (bonus)

1903,5 J/s * 86400 s/d ≈ 164 MJ/d contenido energético vegetación ≈ 8 MJ/kg

$$I_a = 164 \, MJ/d / 8 \, MJ/kg = 20.5 \, kg/d$$

3) ¿Área mínima necesaria? (bonus)

$$NPP_a = 1 kg/m^2/a\tilde{n}o \approx 0,00274 kg/m^2/dia$$

 $NPP_{ac} = NPP_a * 0,25 * 0,3 \approx 0,0002055$
 $kg/m^2/dia$

$$HR_a = I_a (kg/d) / NPP_{ac} (kg/m^2/d) =$$

$$20.5 / 0.0002055 \approx 99756 \text{ m}^2 \approx 0.1 \text{km}^2$$

¿Qué simplificaciones hemos asumido?

36.6 meters

Lecturas adicionales

https://github.com/garciacallejas/UB teaching resources/tree/master/UB Ecology/UT3/resources

- Capítulos 2, 7, 11
 - o ¿diferencias entre endo/ectotermos?
 - inúmero de especies y diversificación?

Siguiente clase

- Transferencia de energía entre organismos: interacciones tróficas y eficiencias de conversión
- Control de abundancias: Cascadas tróficas

Referencias

- Damuth, J. (1987). Interspecific allometry of population density in mammals and other animals: the independence of body mass and population energy-use. *Biological Journal of the Linnean Society*, *31*(3), 193-246.
- English, H. M., Börger, L., Kane, A., & Ciuti, S. (2024). Advances in biologging can identify nuanced energetic costs and gains in predators. *Movement Ecology*, 12(1), 7.
- Enquist, B. J., Brown, J. H., & West, G. B. (1998). Allometric scaling of plant energetics and population density. *Nature*, 395(6698), 163-165.
- Marquet, P. A., Quiñones, R. A., Abades, S., Labra, F., Tognelli, M., Arim, M., & Rivadeneira, M. (2005). Scaling and power-laws in ecological systems. *Journal of Experimental Biology*, 208(9), 1749-1769.
- Marquet, P. A., Allen, A. P., Brown, J. H., Dunne, J. A., Enquist, B. J., Gillooly, J. F., ... & West, G. B. (2014). On theory in ecology. *BioScience*, 64(8), 701-710.
- Price, C. A., Gilooly, J. F., Allen, A. P., Weitz, J. S., & Niklas, K. J. (2010). The metabolic theory of ecology: prospects and challenges for plant biology. *New Phytologist*, 188(3), 696-710.
- Sibly, R. M., Brown, J. H., & Kodric-Brown, A. (Eds.). (2012). *Metabolic ecology: a scaling approach*. John Wiley & Sons.
- West, G. B., Brown, J. H., & Enquist, B. J. (1997). A general model for the origin of allometric scaling laws in biology. *Science*, 276(5309), 122-126.