Q 1. What is a random experiment? Give an example of a random experiment.

An experiment where the outcome cannot be predicted with certainty.

- **Example 1: Flipping a coin.**
- Example 2: Rolling a 6-sided die.
- **Q 2.** What is a sample space? What is an element?

A collection of ALL POSSIBLE OUTCOMES. Denoted by S (S = sample space)

- Example 1: Flipping a coin \longrightarrow S = {T, H}
- Example 2: Rolling a 6-side die \longrightarrow S = {1, 2, 3, 4, 5, 6}
- **Element: An outcome from the S (sample space)**

Q 3. What is an event? Give an example of an event.

Event: Subset of combinations of outcomes of a sample space. Event is denoted by CAPITAL LETTER: A, B, C, D, ...

- Example 1: Toss 2 coins S = {HH, HT, TH, TT}
- Let event A = at <u>least one head</u> A = {HH, HT, TH}
 B = Exactly one tail B = {HT, TH}

Q 4. What are some rules that can be used to deal with events?

1.
$$\emptyset$$
 = Empty Set (no elements),
= { }

2.
$$A \cup B = \text{All elements of A + All elements of B}$$
 Union/OR

3. $A \cap B$ = Elements in BOTH A and B (A and B overlap)

Intersection/AND

4. A^c = All elements in the sample space that are NOT in A

Complement/NOT Some books use A in complements of A

Q 5. What is a visual way to picture events / sets?

Q 6. What are De Morgan's Laws?

Q 7. What are mutually exclusive events or disjoint events?

No elements in common

Intersection is empty

$$A \cap B = \emptyset$$

No Overlap

A and B are disjoint (nutually ex)

Example 2. In Example 1, are A and B disjoint? Why or why not?

Disjoint because

ANB= Ø

(or No common elements in both A and B)

Remark: $A \cap C = \{4\}$ So A and C are NOT DISJOINT

Example 1. Suppose $S = \{1, 2, 3, 4, 5, 6\}$. We have 3 events defined as follows:

$$A = \{\text{even numbers in } S\} = \{2, 4, 6\}$$

 $B = \{\text{odd numbers in } S\} = \{1, 3, 5\}$
 $C = \{3, 4\}$

Find the following:

(a)
$$A \cup B$$

$$= \{1, 2, 3, 4, 5, 6\}$$

= S

(f)
$$B \cap C$$

(b)
$$A \cap B$$

(g)
$$A^c$$
 = {1, 3, 5}

(c)
$$A \cup C$$

(h) B^c

(d)
$$B \cup C$$

$$= \{1, 3, 4, 5\}$$

(Order doesn't matter)

(i)
$$(A \cup B)^c \cap C$$

$$(A \cup B)^c \cap C$$
 Remak: $S = \emptyset$
= $\emptyset \cap C = \emptyset$

(e)
$$A \cap C$$

(j)
$$A \cap (B \cup C)$$

$$\frac{214,65}{4} \cap \frac{11314,5}{4}$$

$$= \frac{54}{3}$$