تمرین دوم

ا- گذرگاه دوطرفه زیر را به عرض N بیت با روش مدل سازی جریان داده $^{'}$ طراحی کنید (اگر OE یک باشد داده روی گذرگاه ارسال می شود و اگر OE صفر باشد داده از گذرگاه دریافت می شود).

راهنمایی: برای اینکه پیادهسازی خود را برای N بیت امکانپذیر کنید؛ از پارامتر در زبان وریلاگ استفاده کنید.

۲- این گذرگاه را با مدلسازی سطح گیت مطراحی کنید. اگر تأخیر گیتهای وارون و بافرسه حالته مطابق با جدول ۱ باشند، با
استفاده از شبیه سازی، تأخیر برای انتقال ۸ بیت را در سه حالت کمینه، عمومی و بیشینه به دست آورید.

جدول ١- جدول تأخير گيتها+

كمينه		عمومي		بيشينه	
Not	Tristate Buffer	Not	Tristate Buffer	Not	Tristate Buffer
2,1	5,4,4	3,2	6,5,5	4,3	7,6,6

+ به ترتیب از چپ به راست تأخیرها برابر است با Fall ،Rise و Turn off

- ۳- با استفاده از گزارشهای تأخیر در روش مدلسازی سطح گیت، تأخیرهای مناسب برای انتقال ۸ بیت را در طراحی مدلسازی جریان داده خود اعمال کنید و طراحی خود را شبیهسازی نمایید.
 - ۴- باتوجهبه تجربیات خود در این تمرین، مدل سازی سطح گیت و مدل سازی جریان داده را با هم مقایسه کنید.

¹ Dataflow Modeling

² Gate-Level Modeling

³ Typical