(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent 23 04 1997 Bulletin 1997/17

(51) Int CL6: C09D 5/16, C09D 133/14. C09D 135/02, C09D 143/04

- (21) Application number: 94115443.7
- (22) Date of filing: 30.09.1994
- (54) Antifouling coating composition

Anwuchsverhindernde Überzugszusammensetzung

Composition de revêtement anti-salissures

- (84) Designated Contracting States: BE DE DK GB GB IT NI SE
- (30) Priority 30.09.1993 JP 269695/93
- (43) Date of publication of application: 05.04.1995 Bulletin 1995/14
- (73) Proprietor: NOF CORPORATION Tokyo 100 (JP)
- (72) Inventors:
 - Honda, Yoshihiro
 - Kawanishi-shi, Hyogo (JP)
 - Masuoka, Shigeru Kobe-shi, Hyogo (JP)

- · Itoh, Masayasu
- Itami-shi, Hyogo (JP)
- · Taniguchi, Masashige
 - Tsukuba-shi, Ibaraki (JP)
- Fukuda, Shigeo Nishinomiya-shi, Hyogo (JP)
- (74) Representative:
- Hansen, Bernd, Dr. Dipl.-Chem. et al Hoffmann, Eitle & Partner, Patentanwälte.
 - Arabellastrasse 4 81925 München (DE)
- (56) References cited

EP-A- 0 297 505 GB-A- 2 255 343 WO-A-84/02915

US-A- 4 957 989

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention)

Description

5

10

20

35

55

FIELD OF THE INVENTION

The present invention relates to a coating composition for use in preventing the attachment of organisms to the surfaces of structures submerged in seawater.

BACKGROUND OF THE INVENTION

Antifouling paints employing an organotin copolymer and forming a coating film which gradually dissolves away in executions are excellent in the ability to prevent the attachment of marine organisms to the surfaces of ship bottoms, etc. but the use thereof is restricted in recent vers because of the problem of sea collidius.

As a costing composition for eliminating the sea pollution problem is widely used an antifouling paint employing rosin as a soluble resin. Antifouling paints employing polymers containing various hydrolyzable groups incorporated therein have also been proposed. However, these antifouling paints all have not been put to wide practical use. Anong those antifouling paints all have not been put to wide practical use. Anong those antifouling paints all have not been put to wide practical use. Anong those antifouling paints is, for example, an antifouling paint of the hydrolyzable self-polishing type proposed in WO 84/02915 and UP-A-63-215760 which employs a (meth)acrylic ester polymer having triorganosilyl groups in side chains a similar polymer. (The term UP-A* as used never invoxamined published Jaganese patent application.*)

The present inventors made intensive studies on coating films of such an organosilison-containing polymer. As a result, it was found that the artificuling paint employing a polymer modified by only incorporating triorganosity groups in side chains of the molecule as described in the above-cited reference has problems such as the following: (1) the coating film does not show erosion in the rotary test which is the most important test for evaluating hybridyzable antifoculing paints of test for measuring ocating film thickness reduction as erosion rate in which test pieces are fixed to the outer circumferential surface of a cylindrical drum and the drum is rotated in seawater at a peripheral speed of 16 knots); (2) the ceating film does not exhibit satisfactory antifoling properties in exposure test (immersion test) and (3) the coating film does not exhibit satisfactory antifoling properties in exposure test (immersion test) when immersed in seawater. Thus, the antifouling paints of the above-described kind do not have properties required for antifoling paints.

SUMMARY OF THE INVENTION

Accordingly, an object of the present invention is to provide a coating composition giving a coating film which undergoes neither cracking nor peeling and shows moderate hydrolyzability to dissolve into seawater constantly at an adequate rate and which therefore exhibits excellent antifulting property for long term.

As a result of intensive studies made by the present inventors in order to attain the above object, a specific copolymer has been invented. A specific copolymer in which alkoxy- or anyloxypolyethylene glycol groups as well as triorganosilyl groups have been incorporated into side chains of a molecule is used along with antifoulants to prepare a coating composition, this composition gives coating film which undergoes neither cracking nor peeling and shows moderate hydrolyzability to dissolve into seawater constantly at adequate rate and which exhibits excellent antifolding property for long term. The present invention has been completed based on the above astonishing finding.

The present invention is concerned with a coating composition containing as essential components antifoulants and copolymer obtained from monomers mixture comprising a monomer A represented by formula (1):

wherein R¹ to R² each is a group selected from alkyl groups and anyl groups and may be the same or different, and X is an acryloyloxy group, a methacryloyloxy group, a maleinoyloxy group, or a fumaroyloxy group and monomer B represented by formula (2):

$$Y-(CH_0CH_0O)_n-R^4$$
(2)

wherein R4 is an alkyl group or an aryl group, Y is an acryloyloxy group, a methacryloyloxy group, a maleinoyloxy group, or a fumaroyloxy group, and n is an integer of 1 to 25.

DETAILED DESCRIPTION OF THE INVENTION

30

35

50

The coating composition of the present invention contains as one of its essential components copolymer obtained from monomers mixture which comprises at least one monomer A represented by the above-described formula (1) and at least one monomer B represented by the above-described formula (2) and which may optionally contain at least one monomer copolymer/zable therewith (the copolymer is hereinafter referred to as "copolymer AB").

As shown in formula (1), monomer A has in its molecule an acryloyloxy group, a methacyloyloxy group, a maleincyloxy group (mostly in the form of monoalkyl ester with 1-6 carbon atoms), or a fumarcyloxy group (mostly in the form of monoalkyl ester with 1-6 carbon atoms) as an unsaturated group (X) and also has a triorganosityl group.

In the trorganosilyl group, the three allyl or any igroups (R¹ to R³) may be the same or different. Specific examples of these groups include a linear or branched alkyl group having up to 20 carbon atoms (e.g., methyl, ethyl, propyl, and bittyl); acycleadky group (e.g., cyclebaxy) and bestituted exployed any group (e.g., phenyl and naphthyl) and a substituted any! group (e.g., substituted phenyl and substituted naphthyl). Examples of the substituted any! groups substituted with a halogen atom, an ally! group with up to about 18 carbon atoms, an acy! group, an ition orgoup, or an aming orgoup.

Examples of monomer A which has a (meth)acrylotyloxy group in a molecule include trimethylstyl (meth)acrylate, triethylsilyl (meth)acrylate, tri-p-tropylsityl (meth)acrylate, tri-n-butylsilyl (meth)acrylate, tri-p-methylphenylsilyl (meth)acrylate, tri-p-methylph

Other examples of monomer A having a (meth)acryloyloxy group in a molecule include ethyldimethylsilyl (meth) acrylate, n-butyldimethylsilyl (meth)acrylate, diisopropyl-n-butylsilyl (meth)acrylate, n-octyd-in-butylsilyl (meth)acrylate, ylate, diisopropylstearylsilyl (meth)acrylate, dicyclohexylphenylsilyl (meth)acrylate, I-butyldiphenylsilyl (meth)acrylate, and lauryldiphenylsilyl (meth)acrylate.

Examples of monomer A which has a maleinoyloxy or fumaroyloxy group in a molecule include triisopropylsilyl methyl maleate, triisopropylsilyl arnyl maleate, tri-n-butylsilyl n-butyl maleate, b-butyldiphenylsilyl maleate, triisopropylsilyl methyl fumarate, triisopropylsilyl maleate, triisopropylsilyl methyl fumarate, and t-butyl fumarate, triisopropylsilyl maleate, triisopropylsilyl methyl fumarate, and triisopropylsilyl fumarat

As shown in formula (2), monomer B has in its molecule an acryloyloxy group, a methacryloyloxy group, a maleinoyloxy group (mostly in the form of monoalityl ester with 1-6 carbon atoms), or a furnaroyloxy group (mostly in the form of monoalityl ester with 1-6 carbon atoms) group as an unsaturated group (Y) and also has an alkoxy- or anyloxypolyethylene glycol group.

In the alkoxy- or anyloxypolyethylene glycol group, the degree of polymerization (n) of the polyethylene glycol is from 1 to 25. Examples of the alkyl or anyl group (R⁴) include a linear or branched alkyl group having up to 12 carbon atoms (e.g., methyl, ethyl, propyl, and bulyl); a cycloalkyl group (e.g., cyclohaxyl and substituted cyclohaxyl); and an anyl group (e.g., phenyl and naphthyl) and a substituted anyl group (e.g., substituted phenyl and substituted naphthyl). Examples of the substituted anyl groups include anyl groups substituted with a halogen atom, an alkyl group with up to about 18 carbon atoms, an acyl group, a nitro group, or an amino group.

Examples of monomer B which has a (meth)acrylcyloxy group in a molecule include methoxyethyl (meth)acrylate, ethoxyethyl (meth)acrylate, putoxyethyl (meth)acrylate, havoxyethyl (meth)acrylate, havoxyethyl (meth)acrylate, havoxyethyl (meth)acrylate, havoxyethyl (meth)acrylate, ethoxydiethylene glycol (meth)acrylate, ethoxydiethylene glycol (meth)acrylate, and ethoxydiethylene glycol (meth)acrylate.

Examples of monomer B which has a maleinoyloxy or furnarcyloxy group in a molecule include methoxyethyl nbutyl maleate, ethoxydiethylene glycol methyl maleate, ethoxytriethylene glycol methyl maleate, propoxydethylene glycol methyl maleate, butoxyethyl methyl maleate, hoxxoyethyl methyl maleate, methoxyethyl n-butyl furnarate, ethoxydethylene glycol methyl furnarate, ethoxyfinethylene glycol methyl furnarate, propoxydethylene glycol methyl furnarate.

As other monomers copolymerizable with these monomers A and B, use may be made of various virryl monomers such as acrylic esters, methacrylic esters, styrene, virryl esters (e.g., virryl acetate, virryl propionate, virryl butyrate, virryl benzoate), virryllounen, e-methylstyrene, crolonic esters and ifacconic esters

In the monomers mixture, the proportions of monomers A and B and other monomer(s) copolymerizable therewith

may be suitably determined depending on the use of the coating composition. In general, however, it is preferred that the proportion of monomer A is from 1 to 65% by weight, that of monomer B is from 1 to 95% by weight, and that of other monomer(s) copolymerizable therewith is from 0 to 95% by weight on the basis of the total weight of the mono-

Copolymer AB can be obtained by polymerizing such monomers mixture in the presence of a vinyl polymerization initiator by any of various methods such as solution polymerization, bulk polymerization, emulsion polymerization and suspension polymerization in an ordinary way. In preparing a coating composition from copolymer AB, it is advantagoous to dilute the copolymer with an organic solvent to give a polymer solution having an adequate viscosity For this, it is desirable to employ the solution polymerization method of bulk polymerization method.

Examples of the vinyl polymerization initiator include azo compounds such as azobisisobutyronitrile and triphenylmethyliazobenzene; and peroxides such as benzoyl peroxide, di-t-butyl peroxyde, t-butyl peroxybenzoate, and t-butyl peroxylisoprodylcarbonate.

Examples of the organic solvent include aromatic hydrocarbons such as xylene and toluene; aliphatic hydrocarbons such as hxxne and hoptane; esters such as ethyl acetate and butlyl acetate; alcohols such as isopropyl alcohol and butlyl alcohol; ethers such as dioxane and diethyl ether; and ketones such as methyl ethyl ketone and methyl isobutyl ketone. The solvents are used either alone or in combination.

The molecular weight of copolymer AB thus obtained is desirably in the range of from 1,000 to 150,000 in terms of weight-average molecular weight. Too low molecular weights result in difficulties in forming normal coating film, while too high molecular weights result in disadvantages that a single coating operation only gives thin coating film and, hence, coating operations should be conducted in a larger number. It is advantageous that the viscosity of the solution of copolymer AB is 150 P or lower at 25°C. For attaining this, it is preferred to regulate the solid content of the polymer solution to a value in the range of from 5 to 90% by weight, desirably from 15 to 85% by weight.

The antifoulant used as another essential component in the coating composition of the present invention may be any of a wide range of conventionally known antifoulants. The known antifoulants are roughly divided into inorganic compounds, metal-containing organic compounds, and metal-free organic compounds.

25

50

55

Examples of the inorganic compounds include copper compounds such as cuprous oxide, copper powder, copper thiocyanate, copper carbonate, copper chloride, and copper sulfate, zinc sulfate, zinc oxide, nickel sulfate, and copper-nickel alloys.

Examples of the metal-containing organic compounds include organocopper compounds, organonickel compounds, and organozinc compounds, also usable are manely, manzeb, propinely, and the like, Exemples of the organocopper compounds include oxine copper, copper nonylphenoisulfonate, copper bis(ethylenediamine) bis(dodecyl-benzenesulfonate), copper aceditate, copper raphthemate, and copper bis(pentiachlorophenoisla). Examples of the organonickel compounds include nickel alcetate and nickel dimethyldithiocarbamate. Examples of the organozine organosistic compounds include are nickel acetate and nickel dimethyldithiocarbamate, izno pyrithione, and zinc ethylenebis(dithiocarbamate).

Examples of the metal-free organic compounds include N-trihalomethylthiophthalimides, dithiocarbamic acids, Nanylmaleimides, 3-(substituted amino)-1,3-thiazolidine-2,4-diones, dithiocyano compounds, triazine compounds, and others

Examples of the N-trihalomethylthiophthalimides include N-trichforomethylthiophthalimide and N-fluorocichioromethylthiophthalimide. Examples of the dithiocarbamic acids include bis(dimethylthiocarbamoyl) disulfide, ammonium N-methyldithiocarbamate, ammonium ethylenebis(dithiocarbamate), and milneb.

Examples of the N-arylmaleimides include N-(2,4.6-trichlorophenyl)maleimide, N-4-tolylmaleimide, N-3-chlorophenylmaleimide, N-(4-n-butylphenyl)maleimide, N-(4-n-butylphenyl)maleimide, N-(2,3-xylyl)maleimide

Examples of the 3-(substituted amino)-1,3-thiazoidine-2,4-diones include 3-benzylideneamino-1,3-thiazoidine-2,4-dione, 3-(4-y-divensylvenzylideneamino)-1,3-thiazoidine-2,4-dione, 3-(4-y-divensylvenzylideneamino)-1,3-thiazoidine-2,4-dione, 3-(4-y-divensylvenzylideneamino)-1,3-thiazoidine-2,4-dione, 3-(4-y-divenzylideneamino)-1,3-thiazoidine-2,4-dione, 3-(4-y-divenzylideneamino)-1,3-thiazoidine-2,4-divenzylideneamino-1,3-thiazoidine-2,4-dione, 3-(4-y-divenzylideneamino-1)-1,3-thiazoidine-2,4-dione, 3-(4-y-divenzylideneamino-1)-1,3-thiazoidine-2,4-dione, 3-(4-y-divenzylideneamino-1)-1,3-thiazoidine-2,4-divenzylideneamino-1,3-thiazoidine-2,4-divenzylideneamino-1,3-thiazoidine-2,4-divenzylideneamino-1,3-thiazoidine-2,4-divenzylideneamino-1,3-thiazoidine-2,4-divenzylideneamino-1,3-thiazoidine-2,4-divenzylideneamino-1,3-thiazoidine-2,4-divenzylideneamino-1,3-thiazoidine-2,4-divenzylideneamino-1,3-thiazoidi

Examples of the dithiocyano compounds include dithiocyanomethane, dithiocyanoethane, and 2,5-dithiocyanothiophene. Examples of the triazine compounds include 2-methylthio-4-t-butylamino-6-cyclopropylamino-s-triazine

Other examples of the metal-free organic compounds include 2.4,5.6 tetrachloroisophthalonitrile, N.N-dimethyldiorophenylurea, 4,5-dichloro-2--ncyl-4-sichiaroisophan-3-one, N.N-dimethyl-N-phenyl-(N-lluoroidchicomethythiosulfamide, tetramethylthiuram disulfide, 3-iodo-2-propylbutyl carbamate, 2-(methoxycyarbonylamino)benzimidazole, 2,3,5.6-tetrachloro-4-(methylsulfonyl)pyridine, diiodomethyl-p-tolyl sulfone, bis(dimethylcarbamoyl)zine othylone bis (dithicosrbamate) phenyl(bisydinfonylsimulf fichloride, 2-(4-thiazoyl)benzimidazole, and pyridine triphenylboria

One or more antifoulants selected from such antifoulants are employed in the present invention. The antifoulants are used in such an amount that the proportion thereof in the solid contents of the coating composition is usually from 0.1 to 60% by weight, preferably from 1 to 60% by weight. Too small antifoulant amounts do not produce an antifouling effect, while too large antifoulant amounts result in the formation of a coating film which is apt to develop defects such as cracking and peeling and thus becomes less effective in antifouling property.

Additive ingredients may optionally be incorporated into the coating composition of the present invention thus prepared. Exemples of the additive ingredients are colorants such as pigments (e.g., red iron oxide, zinc oxide, titanium dioxide, talc), and dyes, dehumidifiers, and additives ordinarily employed in coating compositions as antisagging agents, amillioding agents, antisettling agents, and antifloaming agents.

For formulating antifouling coating liftin from the coating composition of the present invention on the surface of a structure to be submerged in seawater, use may be made of a method in which the coating composition is applied on the surface in a suitable manner and the solvent is removed by evaporation at ordinary temperature or with heating By this method, a dry coating film can be easily formed or the surface of the structure.

The coating composition of the present invention is applicable to objects required to be protected against the fouling or damage caused by marine organisms, such as ship bottoms, fishing nets, and underwater structures including cooling water pipes, and is also usable for the prevention of sludge diffusion in marine construction works. In such applications, the coating film undergoes neither cracking nor peeling, shows moderate hydrolyzability to dissolve into the seawater constantly at adequate rate, and is hence capable of alfording long-lasting excellent protection against the fouling or damage caused by marine organism attachment.

The present invention will be explained below in more detail by reference to preparation examples (of the present invention), and comparative examples. In these examples, unless otherwise indicated, all parts at yet weight and the molecular weights are given in terms of weight-average molecular weight measured by GPC and calculated for standard polystyrene. Mornmers A (A₁ to A₂) used in the preparation examples are those represented by the above-described formula (1), with the R to R² and X in the formula being specified in Table 2 given below. Further, monomers B (B₁ to B₂) used in the preparation examples are those represented by the above-described formula (2), with the Y n, and R₂ in the formula being specified in Table 2 given below.

Table 1

				160	DIG 1
		Organic (Groups in C	eneral For	mula (1)
		R1	R2	R3	×
ſ	Monomer A ₁	CH ₃	CH ₃	t-C ₄ H ₉	CH ₂ =CHCOO
ı	Monomer A ₂	i-C ₃ H ₇	i-C ₃ H ₇	i-C ₃ H ₇	CH ₂ =CHCOO
ı	Monomer A ₃	n-C ₄ H ₉	n-C ₄ H ₉	n-C ₄ H ₉	CH ₂ =C(CH ₃)COO
ı	Monomer A ₄	C ₆ H ₅	C ₆ H ₅	t-C ₄ H ₉	CH ₂ =C(CH ₃)COO
ı	Monomer A ₅	i-C ₃ H ₇	i-C ₃ H ₇	i-C ₃ H ₇	CH ₂ =C(CH ₃)COO
ı	Monomer A ₆	C ₆ H ₅	C ₆ H ₅	t-C ₄ H ₉	C ₅ H ₁₁ OOCCH=CHCOO (maleinoyloxy group)
ı	Monomer A ₇	n-C ₄ H ₉	n-C ₄ H ₉	n-C ₄ H ₉	C ₅ H ₁₁ OOCCH=CHCOO (fumaroyloxy group)

Table 2

	Organic Groups in General Formula	(2)	
	Y	n	R ⁴
Monomer B ₁	CH ₂ =CHCOO	1	CH ₃
Monomer B ₂	CH ₂ =C(CH ₃)COO	1	CH ₃
Monomer B ₃	CH ₂ =CHCOO	2	C ₂ H ₅
Monomer B ₄	CH ₂ =C(CH ₃)COO	9	C ₆ H ₅
Monomer B ₅	CH ₂ =C(CH ₃)COO	23	C ₄ H ₉
Monomer B ₆	C ₄ H ₉ OOCCH=CHCOO (maleinoyloxy group)	1	CH ₃
Monomer B ₇	CH ₃ OOCCH=CHCOO (fumaroyloxy group)	2	C ₂ H ₅

PREPARATION EXAMPLES 1 TO 5

25

30

35

50

According to the formulations shown in Table 3 given below, solvent a was placed in a flask equipped with a stirrer and heated to a predetermined reaction temperature, following which a liquid muture consisting of monomer A, monomer B, other monomers, and a polymerization catalyst a was introduced dropwise into the flask with stirring or a period of 3 hours. After completion of the addition, the contents were held at that temperature for 30 minutes. A mixture of a solvent b and a polymerization catalyst b was then added dropwise over a period of 20 minutes, and the resulting mixture was stirred at that temperature for 20 minutes.

EP 0 646 630 B1

was added to dilute the reaction mixture. Thus, polymer solutions S_1 to S_5 were obtained. In Table 3, "Perbuyl I" (trade name of NOF Corporation, Japan) given as a polymerization catalyst is t-butyl per-oxylegoropylearonatie.

40 1 1 1 40 1 1 40

Monomer B₆

Monomer B₅

Monomer

ыВ

Monomer

Monomer B

Monomer A,

	Pre	para	Preparation Exampl	[xamp]
	-	2	~	
Xylene	40	40	- 1	
Butyl acetate	ı	10	40	
Monomer A ₁	S	,	ı	
Monomer A ₂	ı	09	1	
Monomer A ₃		ı	22	
Monomer A4	45	,	ı	
Monomer A ₅	ı	ı	ı	
Monomer A ₆	1	1	ı	

Formulation (parts)

5

10

15

20

25

30

35

40

45

50

Table 3 (cont'd)

				repara	tion F	Preparation Example	
			4	2	3	4	ın
Formulation	4	Mother)	ŕ		;		
TOTINGTO CTOIL	Talino	Metnyi metnacrylate	35	20	20	30	ı
(parts)	monomers	n-Butyl methacrylate	ı	ľ	1	ı	ı
		n-Butyl acrylate	ı	,	Ŋ	ı	,
		Octyl acrylate	ı	1	,	10	ı
		Vinyl acetate	,	ı	ı		ı
		Styrene	2	1	1	1	ı
	Polymerization	Polymerization Azobisisobutyronitrile	ı		1		1
	catalyst <u>a</u>	Perbutyl I	2	ч	2	ĸ	ı
	Solvent <u>b</u>	Xylene	10	10	10	10	10
	Polymerization	Polymerization Azobisisobutyronitrile	1		,	ı	٦
	catalyst <u>b</u>	Perbutyl I	٦	-	-	н	,
	Diluent	Xylene	47	48	16	54	48
	solvent	Butyl acetate	ı	,	31	,	,
Reaction Temerature (°C)	erature (°C)		140	134	142	118	80
Solid Content (%)	t (%)		20	20	20	20	20
Molecular We.	Molecular Weight of the Polymer (x1000)	ymer (x1000)	31	28	29	3	40
Polymer Solution	tion		\mathbf{S}_1	25	လိ	S ₄	S

PREPARATION EXAMPLE 6

In a heat- and pressure-resistant vessel were placed monomer A, monomer B, other monomers, and polymerization catalyst a according to the formulation shown in Table 4 given below. The vessel was completely sealed. The contents were then heated to a predetermined reaction temperature with shaking and the shaking was continued at that temperature for 8 hours to complete the reaction. A diluent solvent was then added to dissolve the reaction product with shaking for 1 hour, thereby giving a polymer solution S₆. In Table 4, "Perbuty11" given as a polymerization catalyst has the same meaning as in Table 9.

PREPARATION EXAMPLE 7

55

In a flask equipped with a stirrer were placed solvent a, monomer A, monomer B, other monomers, and polymerization catalyst a according to the formulation shown in Table 4 given below. The contents were heated to a predetermined reaction temperature with stirring and subsequently kept being stirred at that temperature for 6 hours to complete the reaction. The reaction mixture was then diluted with a diluent solvent to obtain a polymer solution S₇.

10		ample																		
15		ion Ex	7		30	•	1	1	1	1	1	1	30	1	1	1	1	1	1	30
		Preparation Example	9		1	ı	ı	1	1	1	1	40	1	1	1	1	1	1	20	ı
20		딦																		
25						tate	-	5	ė,	7	δυ	ç	4	В	В2	Вз	B4	Bs	₃ e	3,
30	Table 4			•	Xylene	Butyl acetate	Monomer A _l	Monomer A2	Monomer A ₃	Monomer Aq	Monomer As	Monomer A ₆	Monomer A,	Monomer E	Monomer B ₆	Monomer B ₁				
35	Tab				ХУJ	But	Mon	Mor	Mor	Mor	Mor	Mor	Mo	Mor	Mo	Mo	Mo	Mo	Mo	Mo
36					ıt la		er A							er B						
40					Formulation Solvent <u>a</u>		Monomer A							Monomer						
45					ation	_														
50					Formul	(parts)														

		Table 4 (cont'd)			
			Preparation Example	on Examp	Je
			9	7	
Formulation	Other	Methyl methacrylate	1	1	
(parts)	monomers	n-Butyl methacrylate	1	ı	
		n-Butyl acrylate	ı	1	
		Octyl acrylate	•	,	
		Vinyl acetate	30	35	
		Styrene	10	Ŋ	
	Polymerization	Polymerization Azobisisobutyronitrile	•	ı	
	catalyst a	Perbutyl I	2	1	
	Diluent	Xylene	86	69	
	solvent	Butyl acetate	•	1	
Reaction Ter	Reaction Temerature (°C)		110	110	
Solid Content (%)	ıt (%)		20	50	
Molecular We	Molecular Weight of the Polymer (x1000)	ymer (x1000)	24	117	
Polymer Solution	ıtion		Se	S ₇	

COMPARATIVE PREPARATION EXAMPLE 1

10

15

20

25

30

35

40

45

50

Polymerization was conducted in the same manner as in Preparation Example 1 except that 100 parts of trinbulyIsily methacrylate was used as a monomer. Thus, polymer solution T₈ was obtained, which was a 50 km/s xylene solution. The molecular weight of the homopolymer obtained was 32,000.

COMPARATIVE PREPARATION EXAMPLE 2

Polymerization was conducted in the same manner as in Preparation Example 1 except that 50 parts of trinbutylsilyl methacrylate and 50 parts of methyl methacrylate were used as a monomer mixture. Thus, polymer solution

T₉ was obtained, which was a 50 wt% xylene solution. The molecular weight of the copolymer obtained was 30,000.

COMPARATIVE PREPARATION EXAMPLE 3

Polymerization was conducted in the same manner as in Preparation Example 1 except that 50 parts of eihoxyethyl acrylate and 50 parts of methyl methacrylate were used as a monomer mixture. Thus, polymer solution T₁₀ was obtained, which was a 50 wife xylene solution. The molecular weight of the copolymer obtained was 31,000.

EXAMPLES 1 TO 20

20

25

30

35

50

55

Polymer solutions S₁ to S₇ each was mixed with other ingredients according to each of the formulations shown in Tables 5 to 9 given below (the figures in the tables are given in terms of percent by weight), and each mixture was homeoenized with a homeomixer at 2,000 pm. Thus, 20 coating compositions were prepared.

In the formulations, "Disparon A630-20X" (trade name of Kusumoto Chemicals Ltd., Japan) and "Bentone SD-2" (trade name of National Lead K.K., Japan) each is an antisagging agent.

Table 5

Example

Table 5 (cont'd)

2 3 4	ı	1	•	7	2 - 2 -	20	7	2		1.3		, E I , S	5. 13	2 ET 'S 5			Pyridine triphenylborane 2,3,5,6-Tetrachloro-4-(methylsulfonyl)pyridine
7	1	1	ı	,	ı	ı	ı		1	1	9	,		14	14	14 -	Pyridine triphenylborane 2,3,5,6-Tetrachloro-4-(methylsulfonyl)pyridine 2-Pyridinethiol-1-oxide zinc salt 2,4,6-Trichlorophenylmaleimide 3-Iodo-2-propynylbutyl carbamate 2inc dimethyldithiocarbamate 2-(Thiocyanomethylthio)benzothiazole Red iron oxide 5inc oxide
	Antifoulant Pyridine triphenylborane	2,3,5,6-Tetrachloro-4-(methylsulfonyl)pyridin	2-Pyridinethiol-1-oxide zinc salt	2,4,6-Trichlorophenylmaleimide	3-Iodo-2-propynylbutyl carbamate	Zinc dimethyldithiocarbamate	2-(Thiocyanomethylthio)benzothiazole	Pigment Talc	Red iron oxide	Zinc oxide	Antisagging Disparon A630-20X	agent Bentone SD-2	Solvent Xylene		Butyl acetate	Butyl acetate Total	Antifoulant Pigment Antisagging agent Solvent

able 6

Example

				-	
Polymer	Polymer solution S ₁	,	,	15	
solution	Polymer solution S ₂	1	30	1	ı
	Polymer solution S ₃	ı	,		ı
	Polymer solution S ₄	40			ı
	Polymer solution S ₅	1	,		ı
	Polymer solution S ₆	2	ı		30
	Polymer solution S ₁	,	'n	20	ı
	Polymer solution \mathtt{T}_{θ}	,	,	,	ı
	Polymer solution T ₉	,	,	,	ı
	Polymer solution \mathtt{T}_{10}	,			•
Antifoulant	Cuprous oxide	25	40	20	1
	Copper thiocyanate	ı			15
	Copper/nickel solid-solution alloy	ı			١
	2,4,5,6-Tetrachloroisophthalonitrile		,	1	1
	N,N-Dimethyldichlorophenylurea	1			١
	4,5-Dichloro-2-n-octyl-4-isothiazoline-3-one	2			1
	N-(Fluorodichloromethylthio)phthalimide	7	1	1	1

Table 6 (cont'd)

			Exa	Example	
		5	9	7	œ
Antifoulant	Pyridine triphenylborane	ı	•	e	1
	2,3,5,6-Tetrachloro-4-(methylsulfonyl)pyridine	ı	ı	,	•
	2-Pyridinethiol-1-oxide zinc salt	,	4		10
	2,4,6-Trichlorophenylmaleimide	,			ı
	3-Iodo-2-propynylbutyl carbamate	ı	ı	,	١
	Zinc dimethyldithiocarbamate	,	,	•	7
	2-(Thiocyanomethylthio)benzothiazole				١
Pigment	Talc		7	ı	1
	Red iron oxide	ı	2	•	٠
	Zinc oxide	ı	2	ı	1
Antisagging	Antisagging Disparon A630-20x	m	m	٣	2
agent	Bentone SD-2	ı	,		٦
Solvent	Xylene	20	2	ω	25
	Butyl acetate	1	10		10
Tot	Total	100	100	100	100

Table 7

			Exa	Example	
		6	10	7	12
1000	() () () () () () () () () ()				
rotymer	Forymer solution ol			ı	
solution	Polymer solution S ₂	ı	10	25	,
	Polymer solution S ₃	,	10	,	ı
	Polymer solution S ₄	,	1		80
	Polymer solution S ₅	ı	30	,	,
	Polymer solution S ₆	,	ı		ı
	Polymer solution S ₂	70	1	,	ı
	Polymer solution T_{θ}	,	1	1	
	Polymer solution ${\tt T_9}$,	1	1	,
	Polymer solution T_{10}	,	1	,	
Antifoulant	Cuprous oxide	20	35	,	,
	Copper thiocyanate	1	1	1	,
	Copper/nickel solid-solution alloy	ı	1	55	,
	2,4,5,6-Tetrachloroisophthalonitrile	1	,	,	
	N,N-Dimethyldichlorophenylurea	,	1	1	•
	4,5-Dichloro-2-n-octyl-4-isothiazoline-3-one	ı	,	1	
	N-(Fluorodichloromethylthio)phthalimide		ı	1	ı

Table 7 (cont'd)

			Exa	Example	
		6	10	11	12
Antifoulant	Pyridine triphenylborane		2	,	ı
	2,3,5,6-Tetrachloro-4-(methylsulfonyl)pyridine	ı	ı	ı	m
	2-Pyridinethiol-1-oxide zinc salt	,	,	ı	ı
	2,4,6-Trichlorophenylmaleimide			•	•
	3-Iodo-2-propynylbutyl carbamate	Ŋ	ı	,	•
	Zinc dimethyldithiocarbamate	,	ı	,	•
	2-(Thiocyanomethylthio)benzothiazole	ı	•	•	٠
Pigment	Talc	ı	٦	•	н
	Red iron oxide	1	ı	ı	П
	Zinc oxide	ı	ı	ı	Н
Antisagging	Antisagging Disparon A630-20X	٣	· M	9	m
agent	Bentone SD-2	ı	1	1	ı
Solvent	Xylene	7	ø	14	7
	Butyl acetate	1	1	ı	4
Tot	Total	100	100	100	100

able 8

			Exa	Example	
		13	14	15	16
Polymer	Polymer solution S_1		20	1	ı
solution	Polymer solution S ₂		ı	1	25
	Polymer solution S ₃	ı	,	1	
	Polymer solution S ₄	,	20	ı	ı
	Polymer solution S_5	,	,	ı	ı
	Polymer solution S_6	,	ı	20	ı
	Polymer solution S ₇	30	,	ı	ı
	Polymer solution T_8	,		ı	1
	Polymer solution \mathbb{T}_9	,	,	ı	,
	Polymer solution \mathtt{T}_{10}				,
Antifoulant	Cuprous oxide	•	1	ı	•
	Copper thiocyanate		•	ı	1
	Copper/nickel solid-solution alloy	1	1	1	1
	2,4,5,6-Tetrachloroisophthalonitrile	1	1	1	2
	N,N-Dimethyldichlorophenylurea	ı	1	1	1
	4,5-Dichloro-2-n-octyl-4-isothiazoline-3-one	ı	1	ı	5
	N-(Fluorodichloromethylthio)phthalimide	ı	1	30	1

Table 8 (cont'd)

			EXS	exampre	-
		13	14	15	16
Antifoulant	Pyridine triphenylborane	,	ı	1	•
	2,3,5,6-Tetrachloro-4-(methylsulfonyl)pyridine	1	1	1	,
	2-Pyridinethiol-1-oxide zinc salt		•	,	10
	2,4,6-Trichlorophenylmaleimide		20	ı	1
	3-Iodo-2-propynylbutyl carbamate	ı		ı	ı
	Zinc dimethyldithiocarbamate	ı	ı	ı	1
	2-(Thiocyanomethylthio)benzothiazole	40	٠	,	7
Pigment	Talc ;	7	ı	1	1
	Red iron oxide	m	1	ı	1
	Zinc oxide	1	1	1	1
Antisagging	Antisagging Disparon A630-20X	m	m	m	m
agent	Bentone SD-2	1	ı	ı	ı
Solvent	Xylene	22	17	17	33
	Butyl acetate	1	ı	1	20
Total	al	100	100	100	100

Table 9

			Exa	Example	1
		17	18	19	20
Polymer	Polymer solution S,		ı	6	
solution	Polymer solution S	1		;	0
	Polymer solution S ₃	1	1	,	2 1
	Polymer solution S _q	45		1	ı
	Polymer solution S ₅	1	1		,
	Polymer solution S_6	1	1		45
	Polymer solution S,		09	,	,
	Polymer solution \mathtt{T}_{8}	1	1	,	ı
	Polymer solution \mathbb{T}_9	,	,	,	1
	Polymer solution \mathbb{T}_{10}	,	,		,
Antifoulant	Cuprous oxide	35			1
	Copper thiocyanate		,	,	,
	Copper/nickel solid-solution alloy			,	,
	2,4,5,6-Tetrachloroisophthalonitrile	,	ı	,	,
	N,N-Dimethyldichlorophenylurea	Ŋ	,	ı	10
	4,5-Dichloro-2-n-octyl-4-isothiazoline-3-one	10	1	,	m
	N-(Fluorodichloromethylthio)phthalimide	1	,		1

20 5 100 Example 10 18 100 15 100 17 2, 3, 5, 6-Tetrachloro-4-(methylsulfonyl)pyridine Table 9 (cont'd) 20 2-(Thiocyanomethylthio)benzothiazole 25 2-Pyridinethiol-1-oxide zinc salt 3-Iodo-2-propynylbutyl carbamate 2,4,6-Trichlorophenylmaleimide Zinc dimethyldithiocarbamate 30 Pyridine triphenylborane 35 Disparon A630-20X Red iron oxide Butyl acetate Bentone SD-2 40 Zinc oxide Xylene Talc 45 Total Antifoulant Antisagging 50 Pigment Solvent agent

COMPARATIVE EXAMPLES 1 TO 3

55

Polymer solutions T₈ to T₁₀ each was mixed with other ingredients according to each of the formulations shown

in Table 10 given below (the figures in the table are given in terms of percent by weight), and each mixture was homogenized with a hornomixer at 2,000 rpm. Thus, three coating compositions were prepared. In the table, "Disparon A60-20X" and "Benton SD-2" are the same as in Tables 5 to 9.

	A630-20X" and	"Ber	nton SE	0-2" are	the s	same	as in	Tabl	es 5	to 9.										
5		اء																		
		ample	2	1	ı	1	ı	ı	1	1	ı	1	35	40	ı	,	ı	ı	ı	ı
10		tive Ex	2	1	ı	1	ı	ı	1	1	1	35	Ι,	40	1	1	1	1	1	1
15		Comparative Example	-	1	,	1	ı	ı	1	1	35	1	ı	40	1	1	ı	ı	ı	1
20		7																	oue	
25	10															5 -	ile		oline-3-	limide
30	Table 10															ion allo	chalonitr	/lurea	-isothiaz	nio)phtha
35	,			Š	. S ₂	. S ₃	S ₄	1 S ₅	ı S ₆	1 S ₇	T ₈	T ₉	1 T ₁₀		ate	Copper/nickel solid-solution alloy	2,4,5,6-Tetrachloroisophthalonitrile	N,N-Dimethyldichlorophenylurea	4,5-Dichloro-2-n-octyl-4-isothiazoline-3-one	N-(Fluorodichloromethylthio)phthalimide
40				Polymer solution S ₁	Polymer solution	Polymer solution S ₃	Polymer solution	Polymer solution S ₅	Polymer solution S ₆	Polymer solution S ₇	Polymer solution T ₈	Polymer solution Tg	Polymer solution T ₁₀	oxide	Copper thiocyanate	nickel so	-Tetrach	nethyldic	hloro-2-	orodichlo
45				Polymer	Polymer	Polymer	Polymer	Polymer	Polymer	Polymer	Polymer	Polymer	Polymer	Cuprous oxide	Copper	Copper/	2,4,5,6	N,N-Dim	4,5-Dic	N-(Fluc
50				Polymer	solution									Antifoulant						

ole 10 (cont'd)

Comparative Example

		1			ŀ
Antifoulant	Pyridine triphenylborane	1			
	2,3,5,6-Tetrachloro-4-(methylsulfonyl)pyridine	•			
	2-Pyridinethiol-1-oxide zinc salt	,	-#	4	4
	2,4,6-Trichlorophenylmaleimide	1			,
	3-Iodo-2-propynylbutyl carbamate	'	•		,
	Zinc dimethyldithiocarbamate	1			,
	2-(Thiocyanomethylthio)benzothiazole	1		1	,
Pigment	Talc		2	7	7
	Red iron oxide		7	7	7
	Zinc oxide		7	2	7
Antisagging	Disparon A630-20X		3	m	т
agent	Bentone SD-2	•		,	,
Solvent	Xylene		2	2	2
	Butyl acetate	7	1.0	10	10
Total		100	100	100	100 10

Each of the coating compositions prepared in Examples 1 to 20 and Comparative Examples 1 to 3 given above was subjected to a film wear test, antificuling performance test, adhesion test, and cracking resistance test according to the methods described below. The results obtained are summarized in Tables 11 to 14 below.

Erosion Test

The coating compositions prepared were stored in an oven at 50°C oven for 2 weeks. Steel panels (100 x 100 x 1 mm) whose back-side surfaces had been coated with an anticorrosve paint were then coated, on the front side, with each coating composition by spraying to provide a thickness of 200 µm on a dry basis. The coating composition applied was dried indoors at 20°C for 1 week to prepare test pieces.

Each test piece was fixed to the outer circumferential surface of a cylindrical drum having a diameter of 50 cm. The resulting drum was immersed in the seawater of Yura Bay, Sumoto, Hyogo, Japan at a depth of 1 m from the sea level and rotated with a motor at such a rate that the peripheral speed of the drum was 16 knots. The reduction in coating film thickness as erosion rate was measured at an interval of 3 months over a period of 18 months. The average erosion rate (µm/month) was calculated. An average erosion rate of 3 µm/month or higher correlates with sufficient antifolium on promance and self-foolishing proporty.

Exposure Test (Antifouling Performance Test)

Sandblasted steel panels (100 x 200 x 1 mm) were coated with a tar-vinyl anticorrosive paint, and were then coated on both sides with each coating composition by spraying twice to provide a thickness of 240 µm on a dry basis for each side. The coated panels were dried for 1 week in a thermo-hygrostatic chamber at 20°C and a humidity of 75% to prepare test blaces.

The test pieces were immersed in the seawater of Aioi Bay, Aioi, Hyogo for 18 months to examine the change with time of the proportion of that area of the coating film which was covered with marine organisms attached thereto.

Adhesion Test

20

25

30

45

50

55

Blasted steel panels were costed twice with a tar-opoxy anticorrosive paint by spraying to provide a thickness of 125 µm on a dry basis for each application, and then further coated with a tar-vnyt sealer cost to provide a thickness of 70 µm on a dry basis. The resulting steel panels were coated with each coating composition by spraying twice to provide a thickness of 100 µm on a dry basis and then dried for 1 week in a thermohygrostatic chamber at 20°C and a humidity of 75% to prepare test pieces.

The test pieces were immersed in artificial seawater. After immersion for each of 3, 6, 9, 12, and 18 months, the test pieces were pulled out of the water and subjected to a crosscut tape test in which the coating film was incised at an interval of 2 mm. Adhesion was evaluated as follows: the test pieces in which the number of unpoeled squares was 25 per 25 are indicated by 0 (acceptance), and those in which that number was 24 or smaller per 25 are indicated by X (rejection).

Cracking Resistance Test

When the test pieces were pulled out of the artificial seawater in the adhesion test, each coating film was visually examined for cracks. Test pieces having no cracks are indicated by 0 (acceptance), while ones having cracks are indicated by X (rejection).

Table 11

		Film thic	Film thickness reduction (µm)	ction (µm)		Average erosion rate
	3 months	6 months	9 months	12 months	18 months	(um/month)
Example 1	18	36	54	75	113	6.3
Example 2	15	29	44	62	93	5.2
Example 3	20	42	63	84	128	7.1
Example 4	12	25	37	20	7.5	4.2
Example 5	25	50	7.5	101	152	8.4
Example 6	. 27	52	84	116	170	4.6
Example 7	35	7.1	105	140	205	11.4
Example 8	20	42	65	88	132	7.3
Example 9	16	32	48	99	97	4.3
Example 10	24	48	72	96	146	8.1
Example 11	22	4.7	70	93	141	7.8
Example 12	25	51	11	105	153	8.5
Example 13	26	55	85	118	171	9.5
Example 14	30	62	94	124	185	10.2
Example 15	1.5	30	46	09	9.1	5.1

Table 11 (cont'd)

					Erosion Test	n Test		
								Average
				Film thich	cness redu	Film thickness reduction (µm)		erosion rate
		3 11	onths	6 months	9 months	3 months 6 months 9 months 12 months 18 months	18 months	(um/month)
Example 16			19	42	09	82	125	6.9
Example 17			12	24	36	49	7.5	4.2
Example 18			23	49	75	101	151	8.4
Example 19			24	52	16	102	149	8.3
Example 20			33	99	100	130	198	11.0
Comparative Example 1	xample	_	œ	15	15	15	15	0.8
Comparative Example 2	xample	2	10	11	12	12	12	0.7
Comparative Example 3	xample	3	0	0	0	0	0	0

able 12

Test)			18 month
Exposure Test (Antifouling Performance Test)	Proportion of area covered	organisms (%)	months 6 months 9 months 12 months 18 months
e Test (Antifo	Proportion of	with marine organisms (%)	s 6 months 9
Exposur			3 month:

		with mari	with marine organisms (%)	(%) SW	
	3 months	6 months	9 months	12 months	18 mon
Example 1	0	0	0	0	0
Example 2	0	0	0	0	0
Example 3	0	0	0	0	0
Example 4	0	0	0	0	0
Example 5	0	0	0	0	0
Example 6	0	0	0	0	0
Example 7	0	0	0	0	0
Example 8	0	0	0	0	0
Example 9	0	0	0	0	0
Example 10	0	0	0	0	0
Example 11	0	0	0	0	0
Example 12	0	0	0	0	0
Example 13	0	0	0	0	0
Example 14	0	0	0	0	0
Example 15	0	0	0	0	C

Table 12 (cont'd)

	Exposure	Test (Ant	fouling Pe	Exposure Test (Antifouling Performance Test)	Test)
		Proportion of area covered	of area co	paranc	
		with mari	with marine organisms (%)	ms (%)	
	3 months	6 months	9 months	3 months 6 months 9 months 12 months 18 months	18 months
Example 16	0	0	0	0	0
Example 17	0	0	0	0	0
Example 18	0	0	0	0	0
Example 19	0	0	0	0	0
Example 20	0	0	0	0	0
Comparative Example 1	0	10	30	20	06
Comparative Example 2	0	15	40	09	80
Comparative Example 3	40	7.0	90	100	100

Table 13

Adhesion Test

		Ad	Adhesion Test	st	
	3 months	6 months	9 months	12 months	18 months
Example 1	0	0	0	С	C
Example 2	0	0	0	· C) C
Example 3	0	0	0	0	0
Example 4	0	0	0	0	0
Example 5	0	0	0	0	0
Example 6	0	0	0	0	0
Example 7	0	0	0	0	0
Example 8	0	0	0	0	0
Example 9	0	0	0	0	0
Example 10	0	0	0	0	0
Example 11	0	0	0	0	0
Example 12	0	0	0	0	0
Example 13	0	0	0	0	0
Example 14	0	0	0	0	0
Example 15	0	0	0	0	0

Table 13 (cont'd)

		Ad	Adhesion Test	st	
	3 months	6 months	9 months	3 months 6 months 9 months 12 months 18 months	18 months
Example 16	0	0	0	0	0
Example 17	0	0	0	0	0
Example 18	0	0	0	0	0
Example 19	0	0	0	0	0
Example 20	0	0	0	0	0
Comparative Example 1	×	×	×	×	×
Comparative Example 2	×	×	×	×	×
Comparative Example 3	×	×	×	×	×

EP 0 646 630 B1

		Cracking	Cracking Resistance Test	Test	
	3 months	6 months	9 months	12 months	18 months
Example 1	0	0	0	0	0
Example 2	0	0	0	0	0
Example 3	0	0	0	0	0
Example 4	0	0	0	0	0
Example 5	0	0	0	0	0
Example 6	0	0	0	0	0
Example 7	0	0	0	0	0
Example 8	0	0	0	0	0
Example 9	0	0	0	0	0
Example 10	0	0	0	0	0
Example 11	0	0	0	0	. 0
Example 12	0	0	0	0	0
Example 13	0	0	0	0	0
Example 14	0	0	0	0	0
Example 15	0	0	0	0	0

EP 0 646 630 B1

Table 14 (cont'd)

		Cracking Resistance Test	Resistance	Test	
	3 months	6 months	9 months	3 months 6 months 9 months 12 months 18 months	18 months
Example 16	0	0	0	0	0
Example 17	0	0	0	0	0
Example 18	0	0	0	0	0
Example 19	0	0	0	0	0
Example 20	0	0	0	0	0
Comparative Example 1	×	×	×	×	×
Comparative Example 2	×	×	×	×	×
Comparative Example 3	×	×	×	×	×

The results in Tables 11 to 14 clearly show that the costing compositions of Comparative Examples 1 to 3 which employed polymer solutions 7, to 1-1₀ were unsatisfactory in both of coating lift in dissolution rate and antifucing performance and were also defective in adhesion and cracking resistance, whereas the coating compositions of Examples 1 to 20 which employed polymer solutions S₁ to S₂ gave satisfactory results in all the tests. These test results prove that the coating compositions of the present invention have excellent performances.

Claims

10

15

20

25

35

40

50

55

A coating composition containing as essential components one or more antifoulants and one or more copolymers
obtainable from a monomer mixture comprising monomer A represented by formula (1):

Wherein \mathbb{R}^1 to \mathbb{R}^3 each is a group selected from alkyl groups, cycloalkyl groups and aryl groups and may be the same or different, and X is an acryloyloxy group, a methacryloyloxy group, a maleinoyloxy group, or a furnarcyloxy group and monomer \mathbb{B} is represented by formula (2)

$$Y-(CH_2CH_2O)_a-R^4$$
 (2)

wherein \mathbb{R}^4 is an alkyl group, a cycloalkyl group or an aryl group, Y is an acryloyloxy group, a methacryloyloxy group or an aryl group. Y is an acryloyloxy group or a furnacryloxy group, a naie involved or 1 to 25. and the amount of antifoulant is from 0.1 to 80% by weight based on the weight of the solid contents of the coating composition.

- A coating composition as claimed in claim 1, wherein said monomer mixture comprises monomer A, monomer B, and other monomer(s) copolymentzable therewith in amounts of from 1 to 95% by weight, from 1 to 95% by weight, and from 0 to 95% weight, respectively.
 - 3. A coating composition as claimed in claims 1 or 2, wherein R¹ to R³ each is a straight chain or branched group having up to 20 carbon atoms, a cycloalityl group, a phenyl group, a substituted phenyl group, a naphthyl group or a substituted naphthyl group and R⁴ is a straight chain or branched alkyl group having up to 12 carbon atoms, a cycloalityl group. a phenyl group, a substituted phenyl group as a pathyl group or a substituted naphthyl group.
 - A coating composition as claimed in claims 1 to 3, wherein the weight average molecular weight of the copolymer is in the range of 1,000 to 150,000.
 - 5. The use of the coating composition as defined in any one of the previous claims on structures submerged in water.

Patentansprüche

 Beschichtungszusammensetzung, die als essentielle Komponenten ein oder mehrere Antifouling-Mittel und ein oder mehrere Copolymere enthält, das erhältlich ist aus einer Monomerenmischung, umfassend Monomer A der Formel (1):

$$x^{1}$$
 $|$
 $x - si - x^{2}$
 $|$
 $|$
 $|$
 $|$
 $|$
 $|$
 $|$
 $|$
 $|$

worin R1 bis R3 jeweils eine Gruppe ist, ausgewählt aus Alkylgruppen, Cycloalkylgruppen und Arylgruppen, und die identisch oder voreinsander verschieden sein können, und X ist eine Arylybrydsyrguppe, eine Methacyloyloxygruppe, eine Maleincyloxygruppe oder eine Furnarcyloxygruppe und ein Monomer B der Formel (2):

$$Y-(CH_2CH_2O)_a-R^4$$
 (2)

worin R4 eine Alkylgruppe, eine Cycloalkylgruppe oder eine Arylgruppe ist, Y ist eine Acrylcyloxygruppe, eine Methacryloyloxygruppe, eine Maleincyloxygruppe oder eine Fumarcyloxygruppe, und n ist eine ganze Zahl von 1 bis 25, und die Menge des Antifouling-Mittels beträgt 0,1 bis 80 Gew.-% auf Basis des Gewichts des Festoffgehalts der Beschichtungszusammensetzung.

- Beschichtungszusammensetzung gemäß Anspruch 1, worin die Monomermischung das Monomer A, das Monomer B und andere damit copolymerisierbare Monomere in Mengen von 1 bis 95 Gew.-%, 1 bis 95 Gew.-%, bzw. 0 bis 95 Gew.-% umfaßt.
- Baschichtungszusammensetzung gemäß Anspruch 1 oder 2, worin R1 bis R3 jaweils eine unverzweigte oder verzweigte Gruppe mit bis zu 20 Kohlenstoftatomen, eine Cycloalkydruppe, eine Phenylgruppe, eine substituierte Phenylgruppe, eine Naphthylgruppe oder eine substituierte Naphthygruppe darstellt, und R4 ist eine unverzweigte oder verzweigte Alkylgruppe mit bis zu 12 Kohlenstoftatomen, eine Cycloalkylgruppe, eine Phenylgruppe, eine substituierte Phenylgruppe, eine Naphthylgruppe of eine substituierte Phenylgruppe, eine Naphthylgruppe of eine substituierte Raphthylgruppe, eine Naphthylgruppe of eine substituierte Naphthylgruppe, eine Naphthylgruppe of eine substitutierte Raphthylgruppe, eine Naphthylgruppe of eine substitutierte Naphthylgruppe, eine Naphthylgruppe of eine substitutierte Naphthylgruppe, eine Naphthylgruppe of eine substitutierte Naphthylgruppe, eine Napht
- Beschichtungszusammensetzung gemäß den Ansprüchen 1 bis 3, worin das Gewichts-Durchschnittsmolekulargewicht des Copolymers im Bereich von 1.000 bis 150.000 liegt.
 - Verwendung der Beschichtungszusammensetzung gemäß mindestens einem der vorhergehenden Ansprüche auf in Seewasser eingetauchten Strukturen.

Revendications

5

10

15

20

40

50

55

 Composition de revôtement contenant comme composants essentiels un ou plusieurs agents de préservation et un ou plusieurs copolymères qui peuvent être obtenus à partir d'un métange de monomères comprenant un monomère A représenté par la formula (1);

$$\begin{array}{cccc}
R^{1} \\
X - Si & -R^{2} \\
\frac{1}{2}3
\end{array}$$
(1)

cans laquelle R1 à R3 représentent chacun un groupe choisi parmi des groupes alkyle, des groupes cycloalkyle et des groupes aryle, et peuvent être identiques ou différents, et X représente un groupe acryloyloxy, un groupe méthacryloyloxy, un groupe maléinoyloxy ou un groupe furnarcyloxy, et un monomère B représenté par la formule (2).

$$Y-(CH_0CH_0O)_0-R^4$$
 (2)

dans laquelle R⁴ représente un groupe alkyle, un groupe cycloalkyle ou un groupe aryle, Y représente un groupe acyloyloxy, un groupe méthacyfoyloxy, un groupe maléinoyloxy ou un groupe fumaroyloxy, n représente un entier de 1 à 25, et la quantité d'agent de préservation est de 0,1 à 80% en poids, calculés sur le poids de la teneur en soilée de la composition de revêtément.

5

25

30

35

45

50

- Composition de revêtement selon la revendication 1, dans laquelle ledit mélange de monomères comprend le monomère A, le monomère e B et d'autres monomères copolymérisables avec ceux-ci, en quantité de 1 à 55% en pods. de 1 à 55% en podis et de 0 à 55% en podis, respectivement.
 - 3. Composition de revêtement selon les revendications 1 ou 2, dans laquelle R¹ à R³ eprésentent chacun un groupe à chaîne droile ou ramifiée comptant jusqu'à 20 atomes de carbone, un groupe cycloalkyle, un groupe phényle, un groupe selonitée, et R² représente un groupe alkyle à chaîne droite ou ramifiée comptant jusqu'à 12 atomes de carbone, un groupe cycloalkyle, un groupe shényle, un groupe shényle substitué, et R² représente un groupe paphyle ou un groupe naphyle substitué, un groupe parkyle substitué, un groupe parkyle substitué, un groupe naphyle substitué, un groupe parkyle substitué, un groupe parkyle substitué, un groupe naphyle substitué, un groupe na
- Composition de revêtement selon les revendications 1 à 3, dans laquelle le poids moléculaire moyen en poids du copolymère se situe dans la plage de 1000 à 150000.
 - Utilisation de la composition de revêtement selon l'une quelconque des revendications précédentes sur des structures immergées dans l'eau.