МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

ІКНІ Кафедра **ПЗ**

3BIT

до лабораторної роботи № 2 **На тему:** "Синтез та моделювання в середовищі Proteus мультиплексора та демультиплексора"

3 дисципліни: "Архітектура комп'ютера"

 Тема роботи: Синтез та моделювання в середовищі Proteus мультиплексора та демультиплексора.

Мета роботи: закріпити практичні навички моделювання логічних схем в середовищі системи програм Proteus; поглибити знання про основні типи комбінаційних схем: шифратори, дешифратори, мультиплексори і демультиплексори; опанувати їх синтез; дослідити роботу синтезованих схем в системі програм Proteus.

Індивідуальне завдання

Варіант 22.

№	z0/a0	0	1	0	1	0	1	0	1	f0, КГц	Пріоритет
	z1/a1	0	0	1	1	0	0	1	1		
	z2/a2	0	0	0	0	1	1	1	1		
22		d_3	d_4	d_0	d_1	d_2	0	0	0	110	F ₅ , F ₇ , F ₁ , F ₄ , F ₃ , F ₆ , F ₂

Синтезувати схеми: шифратора, дешифратора, мультиплексора і демультиплексора; опанувати їх синтез; дослідити роботу синтезованих схем в системі програм Proteus.

Теоретичні відомості

Шифратори, дешифратори, мультиплексори і демультиплексори поряд з суматорами та компараторами належать до основних типів комбінаційних цифрових схем (пристроїв). У комбінаційних пристроях (цифрових автоматах без пам'яті) вихідні сигнали в кожний момент часу повністю визначаються комбінацією поточних значень на входах і не залежать від попередніх значень вхідних сигналів.

Шифратор (encoder, coder, CD) $m \times n$ - це цифровий пристрій, призначений для перетворення вхідного m-розрядного унітарного коду у вихідний n-розрядний двійковий позиційний код. Двійковий код, що має завжди тільки одну одиницю, а решта - нулі, називається унітарним. При активізації одного з входів (появі на ньому одиниці) на виходах шифратора формується код, що відображає номер активного входу. Повний двійковий шифратор має m = 2n входів і n виходів, в неповного шифратора m < 2n. Умовні графічні позначення шифратора на схемах наведені на рис. n

Рис. 2.1. Умовні графічні позначення шифратора: а - на функціональних схемах; б - на електричних принципових схемах

Дешифратор (decoder, DC) n×m - це цифровий пристрій, призначений для перетворення вхідного п-розрядного двійкового позиційного коду у вихідний m-розрядний унітарний код. Як бачимо, дешифратор виконує функцію, обернену функції шифратора.

Якщо m = 2n, то дешифратор ε повним, в неповного дешифратора m < 2n. Умовні графічні позначення дешифратора на схемах наведені на рис. 2.5.

Рис. 2.5. Умовні графічні позначення дешифратора: а – на функціональних схемах; б – на електричних принципових схемах

Мультиплексор (multiplexer, MUX) - це комбінаційний цифровий пристрій, призначений для комутування (перемикання) логічних сигналів від одного з п інформаційних X-входів на єдиний D-вихід. Номер конкретного інформаційного входу, який повинен під'єднуватися до виходу в певний момент часу, вказується за допомогою адресних A-входів. Зв'язок між числом адресних входів q та числом інформаційних входів п визначається співвідношенням $2q \ge n$. Приклад умовних графічних позначень мультиплексора "4 в 1" наведено на рис. 2.7.

Чотиривходовий мультиплексор описується таблицею істинності (табл. 2.3), де A1, A0 - адресні входи; X3, X2, X1, X0 - інформаційні входи; D – спільний інформаційний вихід.

Рис. 2.7. Умовні графічні позначення мультиплексора "4 в 1": а – на функціональних схемах; б – на електричних принципових схемах

Хід виконання лабораторної роботи

Почну зі синтезу схеми шифратора.

Для початку, складу таблицю для проміжних змінних:

$$\begin{array}{l} H5 = F5 \\ H7 = \neg F5 \wedge F7 \\ H1 = \neg F5 \wedge \neg F7 \wedge F1 \\ H4 = \neg F5 \wedge \neg F7 \wedge \neg F1 \wedge F4 \\ H3 = \neg F5 \wedge \neg F7 \wedge \neg F1 \wedge \neg F4 \wedge F3 \\ H6 = \neg F5 \wedge \neg F7 \wedge \neg F1 \wedge \neg F4 \wedge \neg F3 \wedge F6 \\ H2 = \neg F5 \wedge \neg F7 \wedge \neg F1 \wedge \neg F4 \wedge \neg F3 \wedge \neg F6 \wedge F2 \end{array}$$

Тепер запишемо вихідні сигнали пріоритетного лінійного шифратора відповідно до проміжних змінних:

$$X0 = H1 \lor H3 \lor H5 \lor H7,$$

 $X1 = H2 \lor H3 \lor H6 \lor H7,$
 $X2 = H4 \lor H5 \lor H6 \lor H7.$

№	F ₇	F_6	F ₅	F ₄	F ₃	F_2	F_1	z_2/a_2	z_1/a_1	z_0/a_0
0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1	0	0	1
2	0	0	0	0	0	1	0	0	1	0
3	0	0	0	0	1	0	0	0	1	1
4	0	0	0	1	0	0	0	1	0	0
5	0	0	1	0	0	0	0	1	0	1
6	0	1	0	0	0	0	0	1	1	0
7	1	0	0	0	0	0	0	1	1	1

$$\begin{split} T &= 1/110 K \Gamma u = 1/110000 = 0.00000909 = 9.09 u \\ \tau &= T/64 = 0.00000909 / 8 = 0.00000113 \end{split}$$

Схема лінійного шифратора 8х3:

Таблиця вхідних та вихідних аналізів лінійного шифратора:

Бінарні стрічки:

- X2: 01101010 - X1: 00100111

- X0: 01110100

За допомогою графіка спостерігаємо, що пріоритет є наступним: F_5 , F_7 , F_1 , F_4 , F_3 , F_6 , F_2 .

Лінійний дешифратор 3х8:

\mathbb{Z}_2	Z_1	Z_0	V_7	V_6	V_5	V_4	V_3	V_2	V_1	V_0	d
0	0	0	0	0	0	0	1	0	0	0	d_3
0	0	1	0	0	0	1	0	0	0	0	d_4
0	1	0	0	0	0	0	0	0	0	1	d_0
0	1	1	0	0	0	0	0	0	1	0	d_1
1	0	0	0	0	0	0	0	1	0	0	d_2
1	0	1	0	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0	0

$$\begin{split} &V_0 = d_0 = \neg Z_2 \, \bigwedge \, Z_1 \, \bigwedge \, \neg Z_0 \\ &V_1 = d_1 = \neg Z_2 \, \bigwedge \, Z_1 \, \bigwedge \, Z_0 \\ &V_2 = d_2 = Z_2 \, \bigwedge \, \neg Z_1 \, \bigwedge \, \neg Z_0 \\ &V_3 = d_3 = \neg Z_2 \, \bigwedge \, \neg Z_1 \, \bigwedge \, \neg Z_0 \\ &V_4 = d_4 = \neg Z_2 \, \bigwedge \, \neg Z_1 \, \bigwedge \, Z_0 \\ &V_5 = 0 \\ &V_6 = 0 \\ &V_7 = 0 \end{split}$$

Частота генератора Z0 = 110k * 4 = 440kЧастота генератора Z1 = 110k * 2 = 220kЧастота генератора Z2 = 110k = 110k

Схема дешифратора 3х8:

Графік дешифратора 3х8:

За допомогою отриманого графіка виконання схеми лінійного дешифратора бачимо, що часові діаграми вхідних та вихідних сигналів на кожному з восьми проміжків відповідають заданій таблиці істинності дешифратора. Отже, моделювання було виконано правильно.

Мультиплексор "5 в 1":

a_1	a_0	f
0	0	d_3
0	1	d_4
1	0	d_0
1	1	d_1
0	0	d_2
0	1	0
1	0	0
1	1	0
	0 0 1 1 0 0	0 0 0 1 1 0 1 1 0 0 0 1 1 0

ДДНФ мультиплексора "5 в 1":

$$F(a_2, a_1, a_0) = (d_3 \neg a_2 \neg a_1 \neg a_0) + (d_4 \neg a_2 \neg a_1 a_0) + (d_0 \neg a_2 a_1 \neg a_0) + (d_1 \neg a_2 a_1 a_0) + (d_2 a_2 \neg a_1 \neg a_0).$$

Частота генератора A0 = 110k * 4 = 440k

Частота генератора A1 = 110k * 2 = 220k

Частота генератора A2 = 110k

Тривалість сигналу для генераторів D0...D4 = T/64 = 0.00000909 / 64 = 142n

Стрічка для генератора D0 = 01000000

Стрічка для генератора D1 = 01100000

Стрічка для генератора D2 = 01110000

Стрічка для генератора D3 = 01111000

Стрічка для генератора D4 = 01111100

Синтезована схема лінійного мультиплексора "5 в 1":

Графік "Multiplexer":

За допомогою отриманого графіка виконання схеми мультиплексора бачимо, що часові діаграми вхідних та вихідних сигналів на кожному з восьми проміжків відповідають заданій таблиці істинності мультиплексора. Отже, моделювання було виконано правильно.

Демультиплексор "1 в 5":

a_2	a_1	a_0	y_4	y_3	y_2	y ₁	y_0
0	0	0	0	\mathbf{d}_3	0	0	0
0	0	1	$\mathbf{d_4}$	0	0	0	0
0	1	0	0	0	0	0	$\mathbf{d_0}$
0	1	1	0	0	0	\mathbf{d}_1	0
1	0	0	0	0	\mathbf{d}_2	0	0
1	0	1	0	0	0	0	0
1	1	0	0	0	0	0	0
1	1	1	0	0	0	0	0

ДДНФ демультиплексора "1 в 5":

```
y_4 = D \neg a_2 \neg a_1 a_0
y_3 = D \neg a_2 \neg a_1 \neg a_0
y_2 = D a_2 \neg a_1 \neg a_0
y_1 = D \neg a_2 a_1 a_0
y_0 = D \neg a_2 a_1 \neg a_0
```

Частота генератора A0 = 110k * 4 = 440k

Частота генератора A1 = 110k * 2 = 220k

Частота генератора A2 = 110k

Тривалість сигналу генератора D = T/64 = 0.00000909 / 64 = 142n Бінарна стрічка для генератора D = 00111100

Схема демультиплексора "1 в 5":

Графік сигналів генераторів та виходів демультиплексора "5 в 1":

За допомогою отриманого графіка виконання схеми демультипексора бачимо, що часові діаграми вхідних та вихідних сигналів на кожному з восьми проміжків відповідають заданій таблиці істинності дешифратора. Отже, моделювання було виконано правильно.

Висновок

У ході виконання цієї лабораторної роботи я закріпив практичні навики моделювання логічних схем в середовищі Proteus. Також, я вивчив основні типи комбінаційних схем: шифратор, дешифратор, мультиплексор, демультиплексор, та опанував їх синтез.

До того ж, я проаналізував роботу синтезованих схем в програмі Proteus, змоделював графіки цих схем згідно з індивідуальним варіантом.