The Influence of Organizational Structure on Software Quality: An Empirical Case Study

Nachiappan Nagappan Microsoft Research Redmond, WA, USA nachin@microsoft.com Brendan Murphy
Microsoft Research
Cambridge, UK
bmurphy@microsoft.com

Victor R. Basili
University of Maryland
College Park, MD, USA
basili@cs.umd.edu

Presentation by Etan Kissling 18.05.2010

SOFTWARE METRICS

Code Churn

- Software change history
- Large / recent changes

- Total added, modified and deleted LOC
- Number of times that a binary was edited
- Number of consecutive edits

Code Complexity

- Gathered from code itself
- Multiple complexity values
- Cyclomatic complexity
- Fan-In / Fan-Out of functions
- Lines of Code
- Weighted methods per class
- Depth of Inheritance
- Coupling between objects
- Number of subclasses
- Total global variables

Dependencies

- Components that a class uses
- Both data and call dependencies

- Incoming / outgoing direct / indirect dependencies to a binary
- Layer information: Distance of a binary from the system kernel

Code coverage

Degree to which the source code is tested

Statement coverage

Has each node in the program been executed?

A testing suite which includes $f \circ \circ (7, 1)$ would cover all statements of this code.

Branch coverage

Has each control structure been evaluated both to true and false?

```
foo (x: INTEGER; y: INTEGER): INTEGER
       local
               c: INTEGER
       do
              c := y
               if x > 5 and y > 0 then
                      C := X
              end
              Result := x * c
       end
foo(7, 1) and foo(7, 0) together would
cover this branch completely
```

Pre-release defects

- Number of pre-release bugs found in a binary
- Strong relationship between development defects per module and field defects per module

ORGANIZATIONAL METRICS

Total edits = 250

Total Engineers Editing = 32

Total Ex-Engineers (edited) = 0

Number of Engineers

- Touched a binary
- Still employed by the company

The more people who touch the code the lower the quality

Number of Ex-Engineers

- Touched a binary
- Left the company

 A large loss of team members affects the knowledge retention and thus quality

Edit Frequency

Number of edits

The more edits to components the higher the instability and lower the quality

Depth of Master Ownership (DMO)

- Level of ownership
- More than 75% of the edits done by engineers which report to the owner

The lower level is the ownership the better is the quality

Total edits = 250

Total Engineers Editing = 32

Total Ex-Engineers (edited) = 0

Percentage of Org contributing to development

Number of people reporting at the DMO level

Master owner org size

 The more cohesive are the contributors (organizationally) the higher is the quality

Level of Organizational Code Ownership

- If there is an owner:
 Percent of edits from the owner's organization
- If there is no owner:
 Percent of edits from the organization which made the majority of edits

 The more cohesive are the contributions (edits) the higher is the quality

Overall Organization Ownership

Number of people at the DMO level making edits

Total Engineers Editing

 The more the diffused contribution to a binary the lower is the quality

Organization Intersection Factor

 Number of different organizations that contribute greater than 10% of edits

 The more diffused the different organizations contributing code, the lower is the quality

Total edits = 250

Total Engineers Editing = 32

Total Ex-Engineers (edited) = 0

CASE STUDY

Case study

- Windows Vista:
 3404 binaries
 50+ Million LOC
- Access to people management software to build tree maps for organizational metrics
- 50 random splits:
 2/3 to build prediction model
 1/3 to verify prediction accuracy

Precision and recall

		Predicted		
		Not Failure-prone	Failure-prone	
Actual	Not failure-prone	Α	В	
	Failure-prone	С	D	

$$Precision = \frac{d}{b+d}$$
 Percentage of correct failure-prone predictions

$$Recall = \frac{d}{c+d}$$
 Percentage of correctly identified failure-prone binaries

Comparization

Model	Precision	Recall
Organizational Structure	86.2%	84.0%
Code Churn	78.6%	79.9%
Code Complexity	79.3%	66.0%
Dependencies	74.4%	69.9%
Code Coverage	83.8%	54.4%
Pre-Release Bugs	73.8%	62.9%

Threats to validity

- Internal validity:
 Influence of study to Windows
- Construct validity:
 Errors in measurement
- External validity:
 All data from one software system