### Practicum #05 – Guideline Module

Introduction to Digital System - Odd Term 2016/2017

| Name          | Mochamad Aulia Akbar Praditomo |
|---------------|--------------------------------|
| NPM           | 1606827145                     |
| Asistant Code | AMB                            |

The Question part will have red color and your Answer will have green color. (Except for K-Map problem, you can color it by your own to show the selection rule).



Image 1 7-Segment display contains seven light emitting diodes (LEDs)

In this tutorial, we will try to design a 7-segment decoder using Karnaugh Map and write a Verilog Program to implement the resulting logic equation. Seven LEDs in 7-segment display can be arranged in a pattern to form different digits as shown in Image 1. Digital watches that you wear use similar 7-segment display using liquid crystal rather than LEDs. Seven segment display come in two flavors: common anode and common cathode. A common anode 7-segment display has all of the anodes tied together while a common cathode 7-segment display has all the cathodes tied together as shown in Image 1.

The BASYS boards have four common anode 7-segment display, which meadns that all the anodes are tied together and connected through a pnp transistor to +3.3V. A different FPGA output pin is connected through a  $100\Omega$  current-limiting resistor to each of cathodes, a-g, plus a decimal point. In the common anode case, an output 0 will turn on a segment and an output 1 will turn it off.



Image 2 7-segment display in BASYS

# Complete the following table that shows output cathode values for each segment a-g nedded to display all hex values from 0-F

| Number to<br>Display (x) | а | b | С | d | е | f | g |
|--------------------------|---|---|---|---|---|---|---|
| 0                        | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 1                        | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
| 2                        | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| 3                        | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
| 4                        | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
| 5                        | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
| 6                        | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 7                        | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| 8                        | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 9                        | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| Α                        | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| b                        | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| С                        | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
| d                        | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
| Е                        | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| F                        | 0 | 1 | 1 | 1 | 0 | 0 | 0 |



The problem now is to design a hex to 7-segment decoder, called IDS\_Lab05\_hex7seg.v as shown in the following figure. The input is a 4-bit hex number, x[3:0], and the output are the 7-segment values a-g given the truth table above. We can make a Karnough Map for each segment and then write logic equations for the segments a-g.



Image 3 Implementation of a-g

### Complete the following Karnaugh Map for assignment of 7-segment display a-g.



а



b



C

| √x1x( | )  |    |    |    |
|-------|----|----|----|----|
| x3x2  | 00 | 01 | 11 | 10 |
| 00    | 0  | 1  | 0  | 0  |
| 01    | 1  | 0  | 1  | 0  |
| 11    | 0  | 0  | 1  | 0  |
| 10    | 0  | 0  | 0  | 1  |

d



е



f



g

#### Fill the following equation for each assignment!

| Assignment | Equation                                                                                                        |
|------------|-----------------------------------------------------------------------------------------------------------------|
| а          | (x0 & ~x1 & ~x2 & ~x3)   (~x0 & ~x1 & x2 & ~x3)<br>  (x0 & ~x1 & x2 & x3)   (x0 & x1 & ~x2 & x3)                |
| b          | (x0 & ~x1 & x2 & ~x3)   (~x0 & x1 & x2)   (x0 & x1 & x3)   (~x0 & x2 & x3)                                      |
| С          | ~x0 & x1 & ~x2 & ~x3   x1 & x2 & x3   ~x0 & x2 & x3                                                             |
| d          | (x0 & ~x1 & ~x2 & ~x3)   (~x0 & ~x1 & x2 & ~x3)   (~x0 & x1 & x2 & ~x3)   (~x0 & x1 & x2 & x2)                  |
| е          | (~x3 & x0)   (~x3 & x2 & ~x1)   (~x2 & ~x1 & x0)                                                                |
| f          | (x0 & ~x2 & ~x3)   (x1 & ~x2 & ~x3)   (x0 & x1 & ~x3)   (x0 & ~x1 & x2 & x3)                                    |
| g          | (~x1 & ~x2 & ~x3)   (x0 & x1 & x2 & ~x3)   (~x0 & x1 & x2 & ~x3)   (~x0 & x1 & x2 & ~x3)   (~x0 & x1 & x2 & x3) |

Now you are ready to write the Verilog program for the 7-segment decoder. The following are the starter code that you can use!

Continue the implementation of Verilog module above, don't forget to create the test fixture!

## Make sure you have test your module and the following file already exist: IDS\_Lab05\_hex7seg.v and IDS\_Lab05\_hex7seg\_test.v

#### Now complete your implementation by creating IDS Lab05 hex7seg top.v

Now, create Implementation Constraint File and Generate Programming File!

hint: on the left side of 7-segment display, there exist pin number for a to g, and bellow each segment, exists anode pin number. You can also find pin number for dot point (dp) there.

**Look at your board and see the magic!**