

METODY PROGRAMOWANIA 2018/2019 KONWERSJE: ONP ⇔ INF

P_03

Opis

Napisz program w Javie, który będzie realizował następujące operacje:

- 1. Konwertuje wyrażenia arytmetyczne i instrukcje przypisania z notacji INF do ONP.
- Konwertuje wyrażenia arytmetyczne i instrukcje przypisania z ONP do notacji INF, używając minimalną liczbę nawiasów, gwarantującą podczas obliczania wyrażenia w INF taką kolejność operacji jak w wyrażeniu ONP.

Instrukcja przypisania ma postać: *operand = wyrażenie arytmetyczne*.

Wyrażenia arytmetyczne mogą zawierać jedynie:

- a. nawiasy: (,) tylko w notacji INF
- b. operandy: małe litery alfabetu angielskiego
- c. operatory:

Operator	Priorytet	Łączność	Rodzaj operatora
=	0	prawostronna	przypisania
<>	1	lewostronna	relacyjny
+ -	2	lewostronna	addytywny
*/%	3	lewostronna	multiplikatywny
۸	4	prawostronna	potęgowania
~	5	prawostronna	unarny

Wejście

Dane do programu wczytywane są ze standardowego wejścia zgodnie z poniższą specyfikacją. Pierwsza linia wejścia zawiera liczbę całkowitą *z,* oznaczającą liczbę linii zawierających wyrażenia arytmetyczne, których opisy występują kolejno po sobie.

Każda linia zawiera co najmniej 6 znaków i nie przekracza 256 znaków, może mieć jedną z dwóch postaci:

INF: wyrażenie arytmetyczne lub instrukcja przypisania, zapisane w notacji infiksowej

ONP: wyrażenie arytmetyczne lub instrukcja przypisania zapisane w notacji ONP

Przy czym wyrażenia mogą zawierać dowolne znaki. Program najpierw usuwa znaki niewystępujące w wyrażeniach, w tym spacje oraz sprawdza poprawność wyrażeń.

Można założyć, że po usunięciu błędnych symboli wyrażenia wejściowe w postaci **INF** są poprawne jeśli są poprawne w C. Natomiast wyrażenia w postaci **ONP** są poprawne jeśli są obliczalne.

Wyjście

- Wyrażenie poprzedzone na wejściu napisem "INF: " musi być na wyjściu poprzedzone
 napisem "ONP: " i analogicznie wyrażenie poprzedzone na wejściu napisem "ONP: " musi być
 na wyjściu poprzedzone napisem "INF: ". W przypadku błędnego wyrażenia, na wyjściu,
 zamiast skonwertowanego wyrażenia pojawi napis error.
 - W przypadku konwersji wyrażenia w ONP do w INF, wyrażenie w INF <u>musi zawierać</u> minimalną liczbę nawiasów, gwarantującą podczas obliczania taką kolejność operacji (uwzględniając typ łączności i priorytety operatorów) jak w wyrażeniu ONP, np. ONP: xabc**= zostanie przekształcone do INF: x=a*(b*c)

METODY PROGRAMOWANIA 2018/2019 KONWERSJE: ONP ⇔ INF

P_03

- W przypadku wyrażeń w notacji INF, np. INF: (a,+b)/..[c3, program pozostawia jedynie: (a+b)/c, pozostałe znaki, w tym spacje odrzuca, dodatkowo sprawdza poprawność wyrażenia, po czym dokonuje konwersji, wypisując na wyjściu: ONP: ab+c/.
- W przypadku wyrażeń w notacji ONP, np. ONP: (a,b,.).c;-,* program pozostawia jedynie: abc-*, dodatkowo sprawdza, czy wyrażenie jest poprawne, po czym dokonuje konwersji, wypisując na wyjściu: INF: a*(b-c).

Wymagania implementacyjne

Ogólnie jak w poprzednich programach, w szczególności jedynym możliwym importem jest import skanera wczytywania z klawiatury. Tym samym klasę stosu należy zaimplementować samodzielnie.

Przykład danych

wejście:	wyjście:	
10		
ONP: xabc**=	INF: x=a*(b*c)	
ONP: ab+a~a-+	INF: a+b+(~a-a)	
INF: a+b+(~a-a)	ONP: ab+a~a-+	
INF: x=~~a+b*c	ONP: xa~~bc*+=	
INF: t=~a <x<~b< td=""><td>ONP: ta~x<b~<=< td=""></b~<=<></td></x<~b<>	ONP: ta~x <b~<=< td=""></b~<=<>	
INF: (a,+ b)/[c3	ONP: ab+c/	
ONP: (a,b,.).c;-,*	INF: a*(b-c)	
ONP: abc++def++g+++	INF: error	
INF: x=a=b=c	ONP: xabc===	
ONP: xabc===	INF: x=a=b=c	