Intervalos de admisibilidad y marcos *KC*

MITAC, Agosto 2025 29 de julio de 2025

Juan Carlos Monter Cortés

Universidad de Guadalajara

≥ juan.monter2902@alumnos.udg.mx

github.com/JCmonter

Contenido

Información preliminar

Intervalos de admisibilidad

Marcos KC

- A
- (A, \leqslant)

- (A, \leqslant, \lor, o) o $(A, \leqslant, \land, 1)$
- $(A, \leqslant, \bigvee, \bigwedge, 0, 1)$

- A
- (A, \leqslant)

- $(A, \leqslant, \lor, \circ)$ o $(A, \leqslant, \land, 1)$
- $(A, \leq, \bigvee, \bigwedge, 0, 1)$

Un marco es una retícula completa que cumple cierta ley distributiva (ley distributiva de marcos), es decir,

- A
- (A, \leqslant)

- $(A, \leqslant, \lor, \circ)$ o $(A, \leqslant, \land, 1)$
- $(A, \leq, \bigvee, \bigwedge, 0, 1)$

Un marco es una retícula completa que cumple cierta ley distributiva (ley distributiva de marcos), es decir,

$$(A, \leqslant, \bigvee, \land, o, 1), \quad a \land \bigvee X = \bigvee \{a \land x \mid x \in X\}$$

- A
- (A, \leqslant)

- $(A, \leqslant, \lor, \circ)$ o $(A, \leqslant, \land, 1)$
- $(A, \leqslant, \bigvee, \bigwedge, 0, 1)$

Un marco es una retícula completa que cumple cierta ley distributiva (ley distributiva de marcos), es decir,

$$(A,\leqslant,\bigvee,\land,\mathtt{0},\mathtt{1}),\quad a\land\bigvee X=\bigvee\{a\land x\mid x\in X\}$$

$$\mathbf{Frm} = \begin{cases} A, & \text{marcos} \\ f, & \text{morfismo de marcos} \end{cases}$$

00000

¿Por qué estudiamos los marcos?

• Estructuras simples.

- Estructuras simples.
- Existen herramientas que facilitan el estudio de los marcos.

- Estructuras simples.
- Existen herramientas que facilitan el estudio de los marcos.
- Correspondencias biyectivas.

- Estructuras simples.
- Existen herramientas que facilitan el estudio de los marcos.
- Correspondencias biyectivas.
- Buen comportamiento categórico.

- Estructuras simples.
- Existen herramientas que facilitan el estudio de los marcos.
- Correspondencias biyectivas.
- Buen comportamiento categórico.
- La topología de un espacio (OS) es un marco.

- Estructuras simples.
- Existen herramientas que facilitan el estudio de los marcos.
- Correspondencias biyectivas.
- Buen comportamiento categórico.
- La topología de un espacio (OS) es un marco.
- **Loc** = **Frm**^{op} está en relación con **Top**.

- Estructuras simples.
- Existen herramientas que facilitan el estudio de los marcos.
- Correspondencias biyectivas.
- Buen comportamiento categórico.
- La topología de un espacio (OS) es un marco.
- **Loc** = **Frm**^{op} está en relación con **Top**.

Frm proporciona correspondencias biyectivas interesantes

Frm proporciona correspondencias biyectivas interesantes Congruencias \leftrightarrow Conjuntos implicativos \leftrightarrow Núcleos

Frm proporciona correspondencias biyectivas interesantes Congruencias \leftrightarrow Conjuntos implicativos \leftrightarrow Núcleos

Frm proporciona correspondencias biyectivas interesantes Congruencias \leftrightarrow Conjuntos implicativos \leftrightarrow Núcleos

Definición:

Sea $A \in \mathbf{Frm}$ y $j: A \to A$, decimos que j es un núcleo si:

- 1. *j* infla.
- 2. *j* es monótona.
- 3. *j* es idempotente.
- 4. *j* respeta ínfimos finitos.

Un cociente de un marco A es un marco B equipado con un morfismo suprayectivo $f: A \rightarrow B$.

Un cociente de un marco A es un marco B equipado con un morfismo suprayectivo $f: A \rightarrow B$.

Si $A \in \mathbf{Frm} \ y \ j \in NA$, entonces $A_j \in \mathbf{Frm}$.

$$A_j = \{a \in A \mid j(a) = a\}.$$

Un cociente de un marco A es un marco B equipado con un morfismo suprayectivo $f:A\to B$.

Si $A \in \mathbf{Frm} \ y \ j \in NA$, entonces $A_j \in \mathbf{Frm}$.

$$A_j = \{a \in A \mid j(a) = a\}.$$

• A_j es un cociente de A.

Un cociente de un marco A es un marco B equipado con un morfismo suprayectivo $f:A\to B$.

Si $A \in \mathbf{Frm} \ y \ j \in NA$, entonces $A_j \in \mathbf{Frm}$.

$$A_j = \{a \in A \mid j(a) = a\}.$$

- A_i es un cociente de A.
- ¿Qué es un cociente compacto?

 $a \in A \in \mathbf{Frm}$ definimos

 $a \in A \in \mathbf{Frm}$ definimos

$$u_a(x) = a \lor x$$
, $v_a(x) = a \succ x$, $w_a(x) = ((x \succ a) \succ a)$

$$x \in A$$

 $a \in A \in \mathbf{Frm}$ definimos

$$u_a(x) = a \lor x$$
, $v_a(x) = a \succ x$, $w_a(x) = ((x \succ a) \succ a)$

 $x \in A$

• *A_{ua}* "cociente cerrado"

00000

Otros "tipos" de cocientes

 $a \in A \in \mathbf{Frm}$ definimos

$$u_a(x) = a \lor x$$
, $v_a(x) = a \succ x$, $w_a(x) = ((x \succ a) \succ a)$

 $x \in A$

- A_u "cociente cerrado"
- *A_{v_a}* "cociente abierto"

 $a \in A \in \mathbf{Frm}$ definimos

$$u_a(x) = a \lor x$$
, $v_a(x) = a \succ x$, $w_a(x) = ((x \succ a) \succ a)$

 $x \in A$

- A_{u_a} "cociente cerrado"
- A_{va} "cociente abierto"
- A_{wa} "cociente regular"

 $a \in A \in \mathbf{Frm}$ definimos

$$u_a(x) = a \lor x$$
, $v_a(x) = a \succ x$, $w_a(x) = ((x \succ a) \succ a)$

 $x \in A$

- *A*_{*ua*} "cociente cerrado"
- A_v "cociente abierto"
- A_{wa} "cociente regular"

Núcleos ↔ Sublocales ↔ Subespacios

 $a \in A \in \mathbf{Frm}$ definimos

$$u_a(x) = a \lor x$$
, $v_a(x) = a \succ x$, $w_a(x) = ((x \succ a) \succ a)$

 $x \in A$

- A_{u_a} "cociente cerrado" \leftrightarrow sublocal cerrado.
- A_{ν_a} "cociente abierto" \leftrightarrow sublocal abierto.
- A_{w_a} "cociente regular" \leftrightarrow sublocal regular.

Núcleos ↔ Sublocales ↔ Subespacios

Teoría de marcos

Núcleos

Filtros de admisiblidad

Si $F \in A^{\wedge}$, entonces

$$u_d \leqslant v_F \leqslant w_F$$

para
$$d = v_F(o)$$
, $v_F = f^{\infty}$.

Información con los intervalos

Si $F \in A^{\wedge}$, entonces

$$u_d \leqslant v_F \leqslant w_F$$

para
$$d = v_F(o)$$
, $v_F = f^{\infty}$.

Información con los intervalos

• $[v_F, w_F] \subseteq NA$ es el intervalo de admisibilidad.

Si $F \in A^{\wedge}$, entonces

$$u_d \leqslant v_F \leqslant w_F$$

para $d = v_F(0)$, $v_F = f^{\infty}$.

Información con los intervalos

- $[v_F, w_F] \subseteq NA$ es el intervalo de admisibilidad.
- Si $j \in [v_F, w_F]$, A_j es compacto.

Intervalos de admisibilidad

Si $F \in A^{\wedge}$, entonces

$$u_d \leqslant v_F \leqslant w_F$$

para $d = v_F(o)$, $v_F = f^{\infty}$.

Información con los intervalos

- $[v_F, w_F] \subseteq NA$ es el intervalo de admisibilidad.
- Si $j \in [v_F, w_F]$, A_j es compacto.
- Arreglado $\Leftrightarrow v_F \leqslant u_d$

Intervalos de admisibilidad

Si $F \in A^{\wedge}$, entonces

$$u_d \leqslant v_F \leqslant w_F$$

para $d = v_F(o)$, $v_F = f^{\infty}$.

Información con los intervalos

- $[v_F, w_F] \subseteq NA$ es el intervalo de admisibilidad.
- Si $j \in [v_F, w_F]$, A_j es compacto.
- Arreglado $\Leftrightarrow v_F \leqslant u_d$
- $(\mathbf{fH}) \Leftrightarrow \forall j \in [v_F, w_F], j = u_\bullet y \bullet \in A.$

Intervalos de admisibilidad

Si $F \in A^{\wedge}$, entonces

$$u_d \leqslant v_F \leqslant w_F$$

para $d = v_F(o)$, $v_F = f^{\infty}$.

Información con los intervalos

- $[v_F, w_F] \subseteq NA$ es el intervalo de admisibilidad.
- Si $j \in [v_F, w_F]$, A_j es compacto.
- Arreglado $\Leftrightarrow v_F \leqslant u_d$
- (**fH**) $\Leftrightarrow \forall j \in [v_F, w_F], j = u_{\bullet} \text{ y } \bullet \in A.$
- $(\mathbf{aju}) \Leftrightarrow [v_F, w_F] = \{*\} y * = u_\bullet \text{ para } \bullet \in A.$

Marcos KC

 $S \in \mathsf{Top}$ es KC si todo conjunto compacto es cerrado. S es US si cada sucesión convergente tiene exactamente un límite al cual converge.

$$T_2 \Rightarrow KC \Rightarrow US \Rightarrow T_1$$

Marcos KC

 $S \in \mathsf{Top}$ es KC si todo conjunto compacto es cerrado. S es US si cada sucesión convergente tiene exactamente un límite al cual converge.

$$T_2 \Rightarrow KC \Rightarrow US \Rightarrow T_1$$

Definición

 $A \in Frm$ es KC si todo cociente compacto de A es cerrado.

Marcos KC

 $S \in \mathsf{Top}$ es KC si todo conjunto compacto es cerrado. S es US si cada sucesión convergente tiene exactamente un límite al cual converge.

$$T_2 \Rightarrow KC \Rightarrow US \Rightarrow T_1$$

Definición

 $A \in Frm \ es \ KC \ si \ to do \ cociente \ compacto \ de \ A \ es \ cerrado.$

Equivalentemente

$$A_F = u_d$$

para algún $d \in A$ y $F \in A^{\wedge}$.

 $KC \Rightarrow Arreglado$

 $KC \Rightarrow Arreglado$

Proposición

 $Si A es KC entonces A_j es KC para todo j \in NA.$

 $KC \Rightarrow Arreglado$

Proposición

 $Si A es KC entonces A_j es KC para todo j \in NA.$

Proposición

Si A es KC, entonces $A es T_1$.

De hecho

 $KC \Rightarrow Arreglado$

Proposición

 $Si A es KC entonces A_i es KC para todo j \in NA.$

Proposición

SiA es KC, entonces A es T_1 .

De hecho

La topología máximo compacta

Consideremos $S = \{x, y\} \cup \mathbb{N}^2 \operatorname{con} x, y \notin \mathbb{N}^2 \operatorname{y} \operatorname{sea}$

$$R_n = \{(m, n) \mid m \in \mathbb{N}\}$$

Definimos

$$OS = PN^2 \cup U \cup V$$

donde

$$\mathcal{U} = \{ U \subseteq S \mid x \in U \text{ y } \forall n \in \mathbb{N}, U \cap R_n \text{ es cofinito} \}$$

$$\mathcal{V} = \{ \mathbf{V} \subseteq \mathbf{S} \mid y \in \mathbf{V} \ \mathbf{y} \ \exists \mathbf{F} \subseteq \mathbb{N} \ \text{finito tal que} \ \forall n \notin \mathbf{F}, \mathbf{R}_n \subseteq \mathbf{V} \}$$

OS es una topología..

Propiedades de OS

- OS es T_1 .
- *OS* no es (**H**).
- OS es compacto.
- 0*S* es (**aju**).
- 0*S* es *KC*.
- OS es 2-arreglado.

El ejemplo de Paseka y Smarda

Consideremos $A \in \operatorname{Frm} y A_r = \{a \in A \mid \neg \neg a = a\}$. Definimos

$$K(A) = \{(u, v) \mid u \in A, v \in A_r, u \leqslant v\}$$

 $K(A) \in Frm.$

Propiedades de K(A)

- Si A es (**H**) y $\neg m$ = 0 para m máximo, K(A) es (**H**).
- Si A es compacto, entonces K(A) es compacto.
- *K*(*A*) no es subajustado

De manera adicional, sea A = [0, 1] con la topología usual. Entonces

- OI es (**H**).
- OI es compacto.
- K(OI) es compacto y (**H**).
- K(OI) no es subajustado.
- K(OI) no es espacial.

Existe marcos Hausdorr y compactos que no son espaciales.

Bibliografía I

- P. T. Johnstone, *Stone spaces*, Cambridge Studies in Advanced Mathematics, vol. 3, Cambridge University Press, Cambridge, 1982. MR 698074
- J. Monter; A. Zaldívar, El enfoque locálico de las reflexiones booleanas: un análisis en la categoría de marcos [tesis de maestría], 2022. Universidad de Guadalajara.
- J. Paseka and B. Smarda, T_2 -frames and almost compact frames. Czechoslovak Mathematical Journal (1992), 42(3), 385-402.
- J. Picado and A. Pultr, *Frames and locales: Topology without points*, Frontiers in Mathematics, Springer Basel, 2012.

Bibliografía II

- J. Picado and A. Pultr, Separation in point-free topology, Springer, 2021.
- RA Sexton, A point free and point-sensitive analysis of the patch assembly, The University of Manchester (United Kingdom), 2003.
- RA Sexton, Frame theoretic assembly as a unifying construct, The University of Manchester (United Kingdom), 2000.
- RA Sexton and H. Simmons, *Point-sensitive and point-free* patch constructions, Journal of Pure and Applied Algebra **207** (2006), no. 2, 433-468.

Bibliografía III

- H. Simmons, An Introduction to Frame Theory, lecture notes, University of Manchester. Disponible en línea en https://web.archive.org/web/20190714073511/http://staff.cs.manchester.ac.uk/~hsimmons.
- H. Simmons, Regularity, fitness, and the block structure of frames. Applied Categorical Structures 14 (2006): 1-34.
- H. Simmons, The lattice theoretic part of topological separation properties, Proceedings of the Edinburgh Mathematical Society, vol. 21, pp. 41–48, 1978.

Bibliografía IV

- H. Simmons, *The Vietoris modifications of a frame*. Unpublished manuscript (2004), 79pp., available online at http://www.cs.man.ac.uk/hsimmons.
- 🔋 A. Wilansky, Between T1 and T2, MONTHLY (1967): 261-266.
- A. Zaldívar, *Introducción a la teoría de marcos* [notas curso], 2025. Universidad de Guadalajara.