

C: NS24

المركز الوطنى للتقويم والامتحانات

الامتحان الوطني الموحد للبكالوريا -الدورة العادية 2008-الموضوع

9	المعامل:
	مدة

الإنجاز:

الرياضيات	المــــادة:
شعبة العلوم الرياضية (أ) و (ب)	الشعب(ة):

التمرين الأول: (3,25 نقطة)

نذکر أن $(\mathbb{C},+, imes)$ حلقة واحدية و $(M_2(\mathbb{R}),+,\cdot)$ فضاء متجهي حقيقي و $(M_2(\mathbb{R}),+, imes)$ جسم تبادلي.

نضع:

$$E = \left\{ M(a,b) = \begin{pmatrix} a & \sqrt{3}b \\ -\frac{1}{\sqrt{3}}b & a \end{pmatrix} / a, b \in \mathbb{R} \right\} \quad \text{if } J = \begin{pmatrix} 0 & \sqrt{3} \\ -\frac{1}{\sqrt{3}} & 0 \end{pmatrix} \quad I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

 $(M_2(\mathbb{R}),+,.)$ فضاء متجهي جزئي من الفضاء المتجهي الحقيقي (E,+,.) فضاء متجهي جزئي

 $\left(\mathrm{E}_{,+,.}
ight)$ بين أن الأسرة $\left(\mathrm{I}_{,\mathrm{J}}
ight)$ أساس في الفضاء المتجهي 0.5

$$E^* = E \setminus \{M(0,0)\}$$
 : حيث $f: \mathbb{C}^* \longrightarrow E^*$ $a+ib \longrightarrow M(a,b)$: 2

 $(M_2(\mathbb{R}), \times)$ اً) بين أن E جزء مستقر من (0.25)

 $\left(\mathbb{E}^*,\times\right)$ بين أن f تشاكل تقابلي من $\left(\mathbb{C}^*,\times\right)$ نحو $\left(\mathbb{C}^*,\times\right)$

بين أن $(E,+,\times)$ جسم تبادلي. (3 $\mid 0,5$

 $(X^3 = X \times X \times X)$ حل في $X \times X = I$ المعادلة : $X \times X \times X$ حيث $X \times X = I$ حل في $X \times X \times X$

التمرين الثاني : (3,75 نقطة)

a عددا عقدیا غیر منعدم و \overline{a} مرافق العدد a

 $\left(G\right)$ $iz^{2}+(a+\overline{a}-i)z-\overline{a}-ia\overline{a}=0$: المعادلة \mathbb{C} المعادلة المعادلة : I

 $\Delta = (a - \overline{a} - i)^2$ هو: (G) هميز المعادلة أي تحقق أن مميز المعادلة المعادلة أي تحقق أن مميز المعادلة الم

 \mathbb{C} ب)حل في المجموعة \mathbb{C} المعادلة (G).

Re(a) = Im(a) (2) إذا و فقط إذا كان Re(a) = Re(a) (4) هو الجزء Re(a) = Re(a) (5) الحقيقي للعدد العقدي Re(a) = Re(a) (6) هو جزءه التخيلي)

[
الصفحة 2 الامتحان الوطني الموحد للبكالوريا 4	الرياضيات	المادة:
(الدورة العادية 2008) الموضوع الموضوع	شعبة العلوم الرياضية (أ) و (ب)	الشعب(ة):
$Re(a) \neq Im(a)$ انفترض أن $O; \vec{u}, \vec{v}$ ، نفترض أن $O; \vec{u}, \vec{v}$ ، $O; \vec{u}, \vec{v}$ ، نفتر النقط $O; \vec{u}, \vec{v}$ ، و $O; \vec{u}, \vec{v}$ التي ألحاقها على التوالي هي $O; \vec{u}, \vec{v}$ ، $O; \vec{u}, \vec{v}$ نعتبر النقط $O; \vec{u}, \vec{v}$ ، $O; \vec{u}, \vec{v}$ التي ألحاقها على $O; \vec{u}, \vec{v}$ ،		
	$\overline{Z} = \frac{(i-1)\overline{a} - i}{i\overline{a} - a}$: تحقق أن	() 0,5
$Im(a) = \frac{1}{2}$ إذا و فقط إذا كان	بین أن النقط A و B و C مستقیمیة	0,5
2	$\operatorname{Im}(a) \neq \frac{1}{2}$ نس في هذا السؤال أن	
$\frac{\pi}{2}$ و راویته R_2 و زاویته R_2	الدوران الذي مركزه A و زاويته R	نعتبر
2	$R_{2}(C) = C' \cup R_{1}(B) = B'$	
	النقطة E منتصف القطعة [BC]	لتكن
	b' و c' لحقي النقطتين 'B' و 'C علم	
دان و ان B'C'=2AE	ن المستقيمين $\left(\mathrm{AE} ight)$ و $\left(\mathrm{C'} ight)$ متعامد	0,75 بين أر
	<u>ثالث :</u> (3 نقط)	التمرين ال
(E) $35u - 96v = 1$	\mathbb{Z}^2 المعادلة التالية	ین - <u>I</u>
لة (E)	عقق أن الزوج (11,4) حل خاص للمعاد	0,25) اند
	(E) تنتج مجموعة حلول المعادلة	2,5 اس
$(F) x^{35} \equiv 2 [97]$	تبر في المجموعة 🛛 المعادلة التالية:	II- نع
	كن x حلا للمعادلة (F)	•
ليان فيما بينهما .	ن أن العدد 97 أولي و أن x و 97 أوا 	*
	$x^{96} \equiv 1[97]$: بين أن	
(=) et (=) 11 Fa=7	$x \equiv 2^{11} [97]$: بين أن	
(F) خوق $x = 2^{11}$ جوق $x = 2^{11}$ جفق) انه إذا كان العدد الصحيح الطبيعي x ي	0,25 بين

نين أن مجموعة حلول المعادلة (F) هي مجموعة الأعداد الصحيحة الطبيعية التي تكتب على (3)

 $k \in \mathbb{N}$ الشكل 11 + 97k حيث

0,5

الصفحة	
3	
4	للبكالوريا دم

C: NS24

الامتحان الوطني الموحد (الدورة العادية 2008) الموضوع

الرياضيات	المادة:
-----------	---------

الشعب (ة): شعبة العلوم الرياضية (أ) و (ب)

0,5

0,5

0,5

0,5

0,5

التمرين الرابع: (10 نقط)

$$f(x)=2x-e^{-x^2}$$
 : المعرفة على \mathbb{R}_+ بما يلي : X المعرفة للمتغير الحقيقي المعرفة على بما يلي : X المنحنى الممثل للدالة X في معلم متعامد ممنظم X المنحنى الممثل للدالة X في معلم متعامد ممنظم X المنحنى الممثل للدالة X في معلم متعامد ممنظم X

المحصل عليها ينهاية
$$\lim_{x\to 10} (f(x)-2x)$$
 أي المحصل النتيجة المحصل عليها أي المحصل عليها أي المحصل النهاية المحصل عليها أي المحصل عليها أي المحصل عليها أي المحصل النهاية المحصل عليها أي المحصل عليها أي المحصل عليها أي المحصل المحصل عليها أي المحصل الم

$$f$$
 الكل x من \mathbb{R}_+ ثم ضع جدول تغيرات الدالة $f'(x)$

$$0 < lpha < 1$$
 ج) بين أن المعادلة $f(x) = 0$ تقبل حلا وحيدا $lpha$ في $lpha$ و أن

$$[0,1]$$
 على المجال المجال $f(x)$ على المجال

$$(\alpha \approx 0,4:$$
 أنشئ المنحنى (C) أنشئ المنحنى (2 0,5

 \mathbb{R}_+ بما يلي : \mathbb{R}_+ المعرفتين على \mathbb{R}_+ بما يلي : \mathbb{R}_+ المعرفتين على بما يلي :

$$g(x) = x^{2} - \int_{0}^{x} e^{-t^{2}} dt \quad \text{s} \qquad \begin{cases} \phi(x) = \frac{1}{x} \int_{0}^{x} e^{-t^{2}} dt \ ; \ x > 0 \\ \phi(0) = 1 \end{cases}$$

$$\left(\forall x \in \mathbb{R}_{+}^{*} \right) \left(\exists c \in \left] 0, x \right[\right) : \frac{1}{x} \int_{0}^{x} e^{-t^{2}} dt = e^{-c^{2}} :$$
بين أن (1) را المبين أن

$$\int_{0}^{1} e^{-t^{2}} dt < 1$$
 : ب) استنتج أن

$$g(\alpha) = \int_0^{\alpha} f(t)dt$$
 :بين أن (2 0,5

$$(\forall x \in \mathbb{R}_+)$$
 ; $g'(x) = f(x)$ و أن: \mathbb{R}_+ و أبين أن الدالة g قابلة للاشتقاق على \mathbb{R}_+

$$[\alpha,1]$$
 قي المجال $[\alpha,1]$ تقبل حلا وحيدا $[\alpha,1]$ في المجال $[\alpha,1]$

(3) أ)بين أن الدالة ϕ متصلة على اليمين في الصفر 0,5

$$(\forall x \in \mathbb{R}_{+}^{*})$$
; $\phi(x) = e^{-x^{2}} + \frac{2}{x} \int_{0}^{x} t^{2} e^{-t^{2}} dt$: باستعمال مكاملة بالأجزاء بين أن : 0,5

$$\left(\forall x \in \mathbb{R}_+^*\right)$$
; $\phi'(x) = -\frac{2}{\mathbf{v}^2} \int_0^x t^2 e^{-t^2} dt$ و أن: \mathbb{R}_+^* و أن: \mathbb{R}_+^* و أن: \mathbb{R}_+^* و أن: \mathbb{R}_+^*

$$\varphi([0,1]) \subset [0,1]$$
 : د) بين أن $0,5$

$$\int_{0}^{x} t^{2} e^{-t^{2}} dt \leq \frac{x^{3}}{3}$$
 : ابین أنه لکل عدد حقیقی x من x عدد حقیقی (4)

	الصفحة
	4 4
C:	NS24

الامتحان الوطنى الموحد للبكالوريا (الدورة العادية 2008)

الرياضيات	المادة:
-----------	---------

الشعب (ة): شعبة العلوم الرياضية (أ) و (ب)

0,5

$$(\forall x \in]0,1[); |\varphi'(x)| \leq \frac{2}{3}$$
 : יי) ייני ווֹט (ס,5

$$\left(\forall x \in \mathbb{R}_{+}^{*}\right)$$
 ; $\phi(x) = x \Leftrightarrow g(x) = 0$: بين أن 0.25

$$\left(\forall n\in\mathbb{N}\right)$$
 ; $u_{n+1}=\phi(u_n)$ و $u_0=\frac{2}{3}$: المعرفة بما يلي المعرفة بما يلي (5)

$$(\forall n \in \mathbb{N})$$
 ; $0 \le u_n \le 1$: بين أن

$$(\forall n \in \mathbb{N})$$
 ; $|u_n - \beta| \le \left(\frac{2}{3}\right)^n$: نبين أن (0.5)

ج) استنتج أن المتتالية
$$\left(u_{n}\right)_{n\geq0}$$
متقاربة و حدد نهايتها. 0,5

التمرين الأول: (3,25 ن) ■(j)(1)—

. $M(0,0)\epsilon E$: لدينا $M(0,0)\epsilon E$ فارغ من $M(0,0)\epsilon E$ لائن

M(c,d) و eta عددين حقيقيين و M(a,b) و M(c,d) مصفوفتين من γ

$$\gamma M(a,b) + \beta M(c,d) = \gamma \begin{pmatrix} a & \sqrt{3}b \\ \frac{-1}{\sqrt{3}}b & a \end{pmatrix} + \beta \begin{pmatrix} c & \sqrt{3}d \\ \frac{-1}{\sqrt{3}}d & c \end{pmatrix}$$

$$= \begin{pmatrix} \gamma a + \beta c & \sqrt{3}(\gamma b + \beta d) \\ \frac{-1}{\sqrt{3}}(\gamma b + \beta d) & \gamma a + \beta c \end{pmatrix}$$

 $= M(\gamma a + \beta c, \gamma b + \beta d) \in E$

إذن :

 $(\forall \gamma, \beta \in \mathbb{R}), (\forall M(a,b), M(c,d) : \gamma M(a,b) + \beta M(c,d) \in E$

 $(M_2(\mathbb{R}),+,\cdot)$ فضاء متجهي جزئي من الفضاء المتجهي $(E,+,\cdot)$: إذن

-(+)(1) ■

من الواضح أن الأسرة (I,J) مولدة للفضاء المتجهي $(E,+,\cdot)$.

. $(\forall M(a,b) \in E$) : M(a,b) = aI + bJ : لأن

Iلتكن lpha I + eta J تأليفة خطية منعدمة للمصفوفتين lpha I

$$\iff \alpha I + \beta J = 0$$

$$\iff \begin{pmatrix} \alpha & \sqrt{3}\beta \\ \frac{-1}{\sqrt{3}}\beta & \alpha \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\Leftrightarrow \alpha = \beta = 0$$

إذن (I, J) أسرة حرة (أو مستقلة خطيا)

و بالتالي (I,J) أساس للفضاء المتجهي (I,J) .

—(j)(2)■

E مصفوفتین من الفضاء المتجهي M(c,d) و M(a,b)

 $M(a,b) \times M(c,d) = (aI + bJ) \times (cI + dJ)$: لينا $= acI + adJ + bcJ + bdJ^2$

و لدينا : ٠

$$\int_{0}^{1} f^{2} = \begin{pmatrix} 0 & \sqrt{3} \\ \frac{-1}{\sqrt{3}} & 0 \end{pmatrix} \times \begin{pmatrix} 0 & \sqrt{3} \\ \frac{-1}{\sqrt{3}} & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -I$$

$$M(a,b) \times M(c,d) = (ac - bd)I + (ad + bc)J$$
$$= M(ac - bd, ad + bc) \in E$$

 $(\mathcal{M}_2(\mathbb{R}), \times)$ إذن E جزء مستقر من

(-)(2) ■

لیکن (a+ib) و (c+id) عددین عقدیین غیر منعدمین.

لدينا:

$$f((a+ib) \times (c+id)) = f((ac-bd) + i(ad+bc))$$

$$= M((ac-bd), (ad+bc))$$

$$= M(a,b) \times M(c,d)$$

$$= f(a+ib) \times f(c+id)$$

. (E^*,\times) نحو (\mathbb{C}^*,\times) نمن f : إذن f

 E^* مصفوفة من M(a,b)

. f(x+iy) = M(a,b) : انحل المعادلة

 \iff M(x,y) = M(a,b)

$$\iff \begin{pmatrix} x & \sqrt{3}y \\ \frac{-1}{\sqrt{3}}y & x \end{pmatrix} = \begin{pmatrix} a & \sqrt{3}b \\ \frac{-1}{\sqrt{3}}b & a \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} x = a \\ y = b \end{cases}$$

 \mathbb{C}^* في تقبل حلا وحيدا في f(x+iy)=M(a,b) إذن المعادلة

. (E^*,\times) نحو (\mathbb{C}^*,\times) نمو إذن f

. (E^*, \times) نحو (\mathbb{C}^*, \times) نحو أنطاكل تقابلي من f

نعلم أن (E,+,·) فضاء متجهي حقيقي

(1) زمرة تبادلية (E,+) زادن

و لدينا كذلك (×,*∑) زمرة تبادلية .

(2). (E^*, \times) زمرة تبادلية لأن f تشاكل تقابلي إذن:

 $\mathscr{M}_2(\mathbb{R})$ بما أن الضرب imes توزيعي بالنسبة للجمع في

 $(\mathscr{M}_2(\mathbb{R}), \times)$ و بما أن E جزء مستقر من

(3) E فإن \times توزيعي بالنسبة للجمع في

من (1) و (2) و (3) نستنتج أن $(E,+,\times)$ جسم تبادلي .

20 من إعداد الأستاذ بدر الدين الفاتحي : () رمضان 2012 الصفحة : 127

التمرين الثاني: (<u>3,75 ن)</u>

-(j)(**1**)(I)■

بعد عملية النشر و التبسيط نحصل على :

$$\Delta = (a - \bar{a} - i)^2$$

-(-(1)(I) ■

 $\Delta = (a - \bar{a} - i)^2$: لدينا

$$z_1=rac{(i-a-ar{a})-(a-ar{a}-i)}{2i}=1+ai$$
 : إذن

$$z_2 = \frac{(i-a-\bar{a}) + (a-\bar{a}-i)}{2i} = \bar{a}i$$

: إذن مجموعة حلول المعادلة (G) تكتب على شكل

 $\mathcal{S} = \{1 + ai \ , \bar{a}i\}$

. 1+ai و $\bar{a}i$: لدينا المعادلة (G) تقبل الحلين

. a=1+ai أو $a=\bar{a}i$: إذا كان a حلا للمعادلة

$$\mathcal{R}e(a) + i \, \mathfrak{T}m(a) = \mathfrak{T}m(a) + i \, \mathcal{R}e(a)$$
 يعني :

$$(1 - \mathfrak{I}m(a)) + i \operatorname{Re}(a) = \operatorname{Re}(a) + i \operatorname{Im}(a) : \mathcal{I}m(a)$$

. $\mathfrak{T}m(a)=\mathcal{R}e(a)$: يان في كانا الحالتين نحصل على

<u>عکسیا</u> :

. a=r+ri ليكن a عددا عقديا مكتوبا على شكل

$$\bar{a}i = (r - ri)i = ri + r = a$$
 : لدينا

. $\bar{a}i$ لأنه مكتوب على شكل a

و بالنالي : $a \iff \mathfrak{T}m(a) = \mathcal{R}e(a)$ حل لـ $a \Leftrightarrow \mathfrak{T}m(a) = \mathcal{R}e(a)$

-(i)(1)(II)■

$$\bar{z} = \left(\frac{\overline{(1+ai)-a}}{i\bar{a}-a}\right) = \frac{(1-\bar{a}i)-\bar{a}}{-ia-\bar{a}} = \frac{1-i\bar{a}-\bar{a}}{-ia-\bar{a}}$$

$$= \frac{1-i\bar{a}-\bar{a}}{-ia-\bar{a}}$$

$$= \frac{1-\bar{a}(i+1)}{-ia-\bar{a}}$$

نضرب البسط و المقام في العدد العقدي (-i) نحصل على :

$$\bar{z} = \frac{-i + \bar{a}(i-1)}{-a + \bar{a}i}$$

الصفحة: 128

$I \times X^3 = I$: المعادلة E لنحل في

$$\Leftrightarrow -J \times J \times X^3 = -J$$

$$\Leftrightarrow -J^2 \times X^3 = -J$$

$$\Leftrightarrow X^3 = -J$$

$$\Leftrightarrow$$
 $(M(a,b))^3 = M(0,-1)$

$$\iff (f(a+ib))^3 = f(-i)$$

$$\Leftrightarrow f((a+ib)^3) = f(-i)$$

$$\Leftrightarrow$$
 $(a+ib)^3 = -i$

. $z^3=-i$: المعادلة (شي يا المعادلة)

.
$$r^3e^{3i heta}=e^{rac{-\pi i}{2}}$$
 : اِذْن $z=re^{i heta}$

$$\Leftrightarrow \begin{cases} r = 1 \\ \theta = \frac{-\pi}{6} + \frac{2k\pi}{3} \end{cases}, \quad k \in \{0, 1, 2\}$$

$$z_0=e^{rac{-\pi}{6}i}=rac{\sqrt{3}}{2}-rac{1}{2}i$$
 : من أجل $k=0$ من أجل

$$E$$
 إذن المصفوفة $M\left(\frac{\sqrt{3}}{2},\frac{-1}{2}\right)$ حل للمعادلة الأولى في

$$z_1=e^{rac{\pi}{2}i}=i$$
 اِذَا كَان $k=1$ فإن $k=1$

E في M(0,1) إذن المصفوفة M(0,1) حل للمعادلة الأولى

$$z_2 = e^{rac{7\pi}{6}i} = rac{-\sqrt{3}}{2} - rac{1}{2}i$$
 : إذا كان $k=2$

$$E$$
 إذن المصفوفة $M\left(\frac{-\sqrt{3}}{2},\frac{-1}{2}\right)$ حل للمعادلة الأولى في

: مجموعة حلول المعادلة $J \times X^3 = I$ في Z تكتب على الشكل خلاصة

$$\mathcal{S} = \left\{ \left(\frac{\sqrt{3}}{2} I - \frac{1}{2} J \right), \left(J \right), \left(\frac{-\sqrt{3}}{2} I - \frac{1}{2} J \right) \right\}$$

EXCEL

-⊕2)■

. [BC] لدينا E هي منتصف القطعة

$$z_E = \frac{z_B + z_C}{2} = \frac{i\overline{a} + ai + 1}{2}$$
 : إذن

$$\frac{z_{c'} - z_{B'}}{z_E - z_A} = \frac{i(1 - a) - (\bar{a} + ia + a)}{\frac{i\bar{a} + ai + 1}{2} - a} : \underline{i\bar{a} + ai + 1}$$

$$= 2\left(\frac{i - 2ai - \bar{a} - a}{i\bar{a} + ai + 1 - 2a}\right)$$

$$= 2i\left(\frac{1 - 2a + \bar{a}i + ai}{i\bar{a} + ai + 1 - 2a}\right)$$

(#)
$$\frac{z_{c'} - z_{B'}}{z_E - z_A} = 2i$$
 : إذن

$$\iff arg\left(\frac{z_{c'}-z_{B'}}{z_E-z_A}\right) \equiv \frac{\pi}{2} [2\pi]$$

$$\iff \overline{\left(\overrightarrow{AE}, \overrightarrow{B'C'}\right)} \equiv \frac{\pi}{2} [2\pi]$$

$$\Leftrightarrow$$
 $(AE) \perp (B'C')$

$$|z_{c'} - z_{B'}| = 2|z_E - z_A|$$
 : إذن

$$\Leftrightarrow$$
 $B'C' = 2AE$

التمرين الثالث: (3,0 ن)

_(T)(T)=

 $35 \times 11 - 96 \times 4 = 1$: لدينا

(E) المعادلة (11,4) حل خاص للمعادلة (E)

 $35 \times 11 - 96 \times 4 = 1$: الدينا حسب السؤال

 $35 \land 96 = 1$: Bezout إذن حسب مبر هنة

. (E) الحل العام للمعادلة (u,v) ليكن

35u - 96v = 1 $35 \times 11 - 96 \times 4 = 1$

$$\Rightarrow$$
 $35(u-11) = 96(v-4)$ \otimes

. ننطلق من كون A(a) و $B(iar{a})$ و $B(iar{a})$ نقط مستقيمية

$$\iff \frac{z_c - z_A}{z_B - z_A} \in \mathbb{R}$$

$$\iff \frac{(1+ai)-a}{i\bar{a}-a} \in \mathbb{R}$$

$$\iff \left(\frac{\overline{(1+ai)-a}}{i\overline{a}-a}\right) = \frac{(1+ai)-a}{i\overline{a}-a}$$

$$\Leftrightarrow \frac{(1-\bar{a}i)-\bar{a}}{-ia-\bar{a}} = \frac{(1+ai)-a}{i\bar{a}-a}$$

$$\Leftrightarrow \frac{(1-\bar{a}i)-\bar{a}}{-ia-\bar{a}} = \frac{(i-a)-ai}{-\bar{a}-ai}$$

$$\Leftrightarrow$$
 $(1-\bar{a}i)-\bar{a}=(i-a)-ai$

$$\Leftrightarrow$$
 $i(a-\bar{a})+(a-\bar{a})=(i-1)$

$$\iff (a - \bar{a}) = \frac{(i-1)}{(i+1)}$$

$$\Leftrightarrow$$
 $\left(2\mathfrak{T}m(a)\right)i = \frac{-2i}{-2} = i$

$$\Leftrightarrow$$
 $\mathfrak{I}m(a) = \frac{1}{2}$

 $\mathcal{R}_1(B) = B'$: ننطلق من الكتابة

(j)(**2**)∎

$$\iff (z_{B'}-z_A)=e^{\frac{-\pi}{2}i}(z_B-z_A)$$

$$\Leftrightarrow$$
 $(b'-a) = -i(i\bar{a}-a)$

$$\Leftrightarrow b' = \bar{a} + ia + a$$

 $\mathcal{R}_2(C) = C'$: بنفس الطريقة ننطلق من الكتابة

$$\iff (z_{\mathcal{C}'}-z_A)=e^{\frac{\pi}{2}i}(z_{\mathcal{C}}-z_A)$$

$$\iff (c'-a) = i(1+ai-a)$$

$$\Leftrightarrow$$
 $c' = i(1-a)$

أجِوبة الدورة العادية 2008 من إعداد الأستاذ بدر الدين الفاتحي : (أصفحة : 129

(2)(II)■ $x \equiv 2^{11}[97]$ لدينا :

 $x^{35} \equiv 2^{11 \times 35} [97]$

$$\Rightarrow x^{35} \equiv 2^{96 \times 4 + 1} [97]$$

$$\implies \boxed{x^{35} \equiv 2^{96 \times 4} \times 2[97]} \ (*)$$

و نعلم أن 97 و 2 عددان أو لبان:

. $2^{96} \equiv 1[97]$: Fermat إذن حسب

 $2^{96 imes 4} imes 2 \equiv 2[97]$: أي $2^{96 imes 4} \equiv 1[97]$ يعني:

 $x^{35} \equiv 2[97]$: نحصل على : بالرجوع إلى المتوافقة (*)

و بالتالي: x حل للمعادلة (F)

-(3)(II)■

في الأسئلة السابقة تمكنا من إثبات التكافؤ التالي:

 $x^{35} \equiv 2[97] \iff x \equiv 2^{11}[97]$

نستعين بالآلة الحاسبة للحصول على:

. $2^{11} \equiv 11[97]$ و منه كذلك : $2^{11} \equiv 2048$

 $x \equiv 11[97]$: الإذن

 $(\exists k \in \mathbb{Z})$: x = 97k + 11 : فأى

و منه : مجموعة حلول المعادلة (F) تكتب على الشكل :

 $S = \{97k + 11 ; k \in \mathbb{Z}\}$

<u>التمرين الرابع: (10 ن)</u>

-(i)(1)(1)

 $\lim_{x \to +\infty} (f(x) - 2x) = \lim_{x \to +\infty} (2x - e^{-x^2} - 2x) = 0$

یعنی أن المستقیم ذو المعادلة y=2x مقارب له (\mathscr{C}) بجوار x=2

(**-**(**1**)(**I**)■

 \mathbb{R}_{\perp} ليكن χ عنصرا من χ

 $f'(x) = 2 + 2xe^{-x^2} > 0$: لدينا

. \mathbb{R}_+ الله تزایدیه قطعا علی f

 $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (2x - e^{-x^2}) = +\infty \quad :$ و لدينا

نستنتج إذن جدول تغيرات f كما يلى :

35/96(v-4) : إذن

 $35 \land 96 = 1$: و بما أن

35/(v-4) . Gauss فإنه حسب

 $(\exists k \in \mathbb{Z})$: v = 35k + 4 : إذن

نعوض v بقيمته في المتساوية \otimes نحصل على :

 $35(u-11) = 96 \times 35k$

u = 96k + 11 : إذن

و بالتالي مجموعة حلول المعادلة (E) تكتب على الشكل:

 $S = \{(96k + 11; 35k + 4) ; k \in \mathbb{Z}\}\$

-(j)(1)(II)■

لدينا 2 و 3 و 5 و 7 هي الأعداد الأولية التي مربعاتها أصغر من 97 و لا أحد من هذه الأعداد يقسم العدد 97 إذن : 97 عدد أولى .

d/97: الآن $x \land 97 = d$

و بما أن 97 عدد أولى فإنه يمتلك قاسمين صحيحين طبيعيين

فقط و هما 97 و 1 .

. d = 1 أو d = 97

. d = 97: نفترض أن

d/x : و منه $x \land 97 = d$ لدينا

 $x^{35} \equiv 0$ [97] : أي $x \equiv 0$ [97] و منه

إذن x ليس حلا للمعادلة (F) و هذا يتناقض مع المعطيات الصريحة.

و بالتالى : d = 1 و منه : d = 1

—(•)(1)(II)**■**

لدينا: $x \land 97 = 1$ و 97 عدد أولى .

 $x^{97-1} \equiv 1[97]$: (Fermat) إذن حسب مبر هنة

. $x^{96} \equiv 1[97]$: أي

_(آا)(آ)=

نعلم أن (£11,4) حل للمعادلة (E) .

و نعلم كذلك أن : $1 = 4 \times 4 = 1$.

(F) لدينا χ حل للمعادلة

(1) $x^{35 \times 11} \equiv 2^{11} [97]$ و منه : $x^{35} \equiv 2[97]$: إذن

و لدينا كذلك حسب نتيجة السؤال :(1) $(\mathbf{1})$ عند حسب نتيجة السؤال المؤل

(2) | $x^{-96\times4} \equiv 1[97]$: إذن

نضرب المتوافقتين (1) و (2) طرفا بطرف نحصل على :

 $x^{35 \times 11 - 96 \times 4} \equiv 2^{11} [97]$

 $x^1 \equiv 2^{11}[97]$ و بالتالى :

من إعداد الأستاذ بدر الدين الفاتحى: (

أجوبة الدورة العادية 2008

الصفحة: 130

) رمضان 2012

-(-)(II) **■**

 $-x^2 < -c^2 < 0$ اِذن : 0 < c < x الدينا

$$e^{-x^2} < e^{-c^2} < 1$$
 : و منه

باستعمال نتيجة السؤال (1) نحصل على:

$$(\forall x > 0) : \frac{1}{x} \int_{0}^{x} e^{-t^{2}} dt < 1$$

 $\int_{0}^{1} e^{-t^{2}} dt < 1$: نحصل على x = 1 ف من أجل

(j)(2)(II) ■

 $\int_0^{\alpha} f(t)dt = \int_0^{\alpha} (2t - e^{-t^2})dt$: ينيا $= 2\int_0^{\alpha} tdt - \int_0^{\alpha} e^{-t^2}dt$ $= \frac{2\alpha^2}{2} - \int_0^{\alpha} e^{-t^2}dt$ $= \alpha^2 - \int_0^{\alpha} e^{-t^2}dt$

-(÷)(2)(II) ■

لدينا : $t \to e^{-t^2}$ دالة متصلة على \mathbb{R} و بالخصوص على x>0 : بحيث [0,x]

[0,x] المجال المجال أصلية h على المجال المجال $h'(x)=e^{-x^2}$: بحيث

لدينا g دالة قابلة للإشتقاق على \mathbb{R}_+ لأنها فرق دالتين قابلتين للإشتقاق و هما h و $x \to x^2$.

$$g(x) = x^2 - h(x)$$
 : و لدينا

$$\Rightarrow g'(x) = 2x - h'(x)$$
$$= 2x - e^{-x^2}$$

= f(x)

 $[0,+\infty[$: لدينا f تزايدية قطعا على f

]0,1[ايدية قطعا على f : إذن

 $\left[-1,2-\frac{1}{e}\right]$ نحو صورته f: نحو منه و منه نامجال]0,1 نحو منه المجال عنه المجال]

 $0 \ \epsilon \left] -1$, $2 - \frac{1}{e} \left[$: إذن $2 - \frac{1}{e} pprox 1,6$: و لدينا

و بالتالى : 0 يمتلك سابقا واحدا في المجال]0,1[بالتقابل [

$$\exists ! \ \alpha \in]0,1[\ : f(\alpha) = 0$$
 : يعني

____(1)(I)■

-(ट)(1)(I)∎

 $lpha \in]0,1[$ و f(lpha)=0 : لدينا

إذا كان $f(x) < f(\alpha)$: فإن $0 < x < \alpha$ إذا كان

f(x) < 0: e f(x) < 0

إذا كان $f(x) > f(\alpha)$ فإن $\alpha < x < 1$ لأن $\alpha < x < 1$

f(x) > 0: e $\int f(x) dx$

]lpha,1[موجبة قطعا على المجال f موجبة قطعا

]0,lpha[سالبة قطعا على المجال f

lpha و تنعدم في f

_3(I)∎

-(j(1)(II)■

[0,x] دالة متصلة على \mathbb{R} و بالخصوص على $t o e^{-t^2}$ الدينا

 $h^{'}(x)=e^{-x^2}$: بحيث [0,x] إذن فهي تقبل دالة أصلية h على المجال

[0,x] و منه h متصلة و قابلة للإشتقاق على المتصلة و

إذن حسب مبر هنة التزايدات المنتهية:

$$(\exists c \in]0, x[) : \frac{h(x) - h(0)}{x - 0} = h'(c)$$

$$\Leftrightarrow (\exists c \in]0,x[) : \frac{1}{r}(h(x)-h(0)) = e^{-c^2}$$

$$\Leftrightarrow$$
 $(\exists c \in]0,x[)$: $\frac{1}{x} \int_{0}^{x} e^{-t^{2}} dt = e^{-c^{2}}$

أجوية الدورة العادية 2008 من إعداد الأستاذ بدر الدين الفاتحي : () رمضان 2012 الصفحة : 131

(€)(2)(II) **■**

(+)(3)(II) ■

 $\varphi(x) = \frac{1}{x} \int_0^x \underbrace{1 \cdot e^{-t^2}}_{\cdot} dt \quad ; \quad x > 0$

$$\begin{vmatrix} = \frac{1}{x} ([uv] - \int uv') \\ = \frac{1}{x} ([te^{-t^2}]_0^x + 2 \int_0^x t^2 e^{-t^2} dt) \\ = e^{-x^2} + \frac{2}{x} \int_0^x t^2 e^{-t^2} dt \end{vmatrix}$$

(£)(3)(II)∎

 $\psi(x) = \int_0^x t^2 e^{-t^2} dt$: نضع

 $\psi'(x) = x^2 e^{-x^2}$: Lui

 $\varphi(x) = e^{-x^2} + \frac{2\psi(x)}{x}$: ننطلق من

 $|\varphi'(x)| = -2xe^{-x^2} + \frac{2x^3e^{-x^2} - 2\psi(x)}{x^2}$ $= -2xe^{-x^2} + 2xe^{-x^2} - \frac{2}{x^2}\psi(x)$ $=\frac{-2}{x^2}\psi(x)$

 $(\forall x>0):\; \phi^{'}(x)<0$: نستنتج أن $\phi^{'}(x)$ نستنتج أن نطلاقا من تعبير \mathbb{R}^+ إذن φ تناقصية على

و بالخصوص φ متصلة و تناقصية على المجال φ

 $=\frac{-2}{r^2}\int_{-r}^{x}t^2e^{-t^2}dt$

. $0 \le x \le 1$ يعنى $x \in [0,1]$ يكن

 $\Rightarrow \quad \varphi(0) \ge \varphi(x) \ge \varphi(1)$

 \Rightarrow $1 \ge \varphi(x) \ge \int_{0}^{1} e^{-t^2} dt > 0$

 $\varphi(x) \in [0,1]$: إذن

 $\varphi([0,1]) \subset [0,1]$ و بالتالي :

 $]\alpha,1[$ لدينا f موجبة على المجال

. $(\forall x \in]\alpha, 1[) : g'(x) = f(x) > 0$: و منه

.]lpha, 1 حلى على الله تزايدية قطعا على g

و منه g تقابل من المجال]lpha,1[نحو المجال g نحو منه و

 $[0,\alpha]$ المجال مالية على المجال و لدينا

. $(\forall x \in [0, \alpha]) : g'(x) = f(x) < 0$: إذن

[0,lpha] يعني و دالة تناقصية على المجال g

 $g(\alpha) < g(0)$: فإن $\alpha > 0$: و بما أن

(1) $g(\alpha) < 0$: أي

 $1-\int_{1}^{1}e^{-t^{2}}dt>0$: ومن السؤال (II) ومن السؤال

(2) g(1) > 0 : يعني

 $0 \in]g(\alpha), g(1)[$ من (2) و (2)

. f بالتقابل]lpha,1[بالتقابل eta في المجال المجال بالتقابل [lpha,lpha]

 $(\exists!\,eta\epsilon]lpha,1[)\;;\;f(eta)=0\;\;\Big|\;:$ أو بتعبير أنيق

(j)(3)(II)■

(1)(1)(1): Lexis (1)(1)(1)

 $(\forall x > 0) \ (\exists c \in]0, x[) : \frac{1}{x} \int_{0}^{x} e^{-t^{2}} dt = e^{-c^{2}}$

0 < c < x : و لدينا كذلك

. $e^{-x^2} < e^{-c^2} < 1$

 $\Leftrightarrow e^{-x^2} < \frac{1}{x} \int_0^x e^{-t^2} dt < 1 \quad ; \quad x > 0$

 \Leftrightarrow $e^{-x^2} < \varphi(x) < 1$; x > 0

 $\lim_{x\to 0^+} (e^{-x^2}) = \lim_{x\to 0} 1 = 1$: بما أن

 $\lim_{x \to 0^+} \varphi(x) = 1 = \varphi(0)$: فإنه بالضرورة

و بالتالي: و دالة متصلة على اليمين في الصفر.

-(j)(**5**(II)■

نستعمل في هذا السؤال البرهان بالترجع

 $0 \le u_0 \le 1$: لدينا n=0 من أجل

. $(\forall n \in \mathbb{N}) \; ; \; 0 \leq u_n \leq 1 \; :$ نفترض أن

$$\Leftrightarrow u_n \in [0,1]$$

$$\Leftrightarrow \quad \varphi(u_n) \in [0,1]$$

 $\varphi([0,1]) \subset [0,1]$: $\dot{\forall}$

$$\Leftrightarrow$$
 $0 \le u_{n+1} \le 1$

 $(orall n \epsilon \mathbb{N}) \; ; \; 0 \leq u_n \leq 1 \; | \; :$ و بالتالي

(÷)(5)(II)**■**

لدينا حسب نتائج الأسئلة السابقة:

دالة متصلة و قابلة للإشتقاق على $lpha^*$.

. \mathbb{R}_+^* بالنسبة للدالة φ على أي مجال من TAF

. $eta \in \mathbb{R}_+^*$ و $u_n \in \mathbb{R}_+^*$: لدينا

إذن حسب مبر هنة التزايدات المنتهية:

: بحیث u_n و β بحیث λ محصور بین β

$$\frac{\varphi(u_n) - \varphi(\beta)}{u_n - \beta} = \varphi'(\lambda)$$

$$\Leftrightarrow$$
 $|\varphi(u_n) - \varphi(\beta)| = |\varphi'(\lambda)||u_n - \beta|$

arphi(eta)=eta (ع) بما أن g(eta)=eta فإنه حسب g(eta)=0 : بما

 $|u_{n+1} - \beta| < |\varphi'(\lambda)| \cdot |u_n - \beta|$ اِذَن

لدينا حسب السؤال(١١)()

 $(\forall x \in]0,1[) ; |\varphi'(x)| \leq \frac{2}{3}$

[0,1[و لدينا u_n عنصرين من $\lambda \in [0,1[$ و لدينا

$$|\varphi'(\lambda)| < \frac{2}{3}$$
 : إذن

 $|\varphi'(\lambda)| \cdot |u_n - \beta| < \frac{2}{3}|u_n - \beta|$ و منه :

 $\overline{|u_{n+1}-eta|<rac{2}{3}|u_n-eta|}$: و بالقالي :

 $-t^2 \le 0$: لدينا

$$\Leftrightarrow e^{-t^2} \le 1$$

$$\Leftrightarrow t^2 e^{-t^2} \le t^2$$

$$\iff \int_0^x t^2 e^{-t^2} dt \le \int_0^x t^2 dt$$

$$\iff \int_0^x t^2 e^{-t^2} dt \le \frac{x^3}{3}$$

(**4**)(**II**) ■

(i)(4)(II)∎

$$0 \le \int_0^x t^2 e^{-t^2} dt \le \frac{x^3}{3}$$
: لدينا

$$0 \le \left| \int_0^x t^2 e^{-t^2} dt \right| \le \left| \frac{x^3}{3} \right| \quad : \psi$$
اذن

$$\left|\frac{2}{x^2}\right| \times \left|\int_0^x t^2 e^{-t^2} dt\right| \le \left|\frac{x^3}{3}\right| \times \left|\frac{2}{x^2}\right|$$
 : و منه

$$|\varphi'(x)| = \left|\frac{2}{x^2}\right| \times \left|\int_0^x t^2 e^{-t^2} dt\right|$$
 : و نعلم أن

$$|\varphi'(x)| \leq \frac{2}{3}|x|$$
 : إذن

|x| < 1 : فإن 0 < x < 1 فإن

$$(\forall x \in]0,1[) ; |\varphi'(x)| \leq \frac{2}{3}$$
 : و بالتالي :

_<u>হ</u>(4)(II)■

$$x > 0$$
 ليكن

 $\varphi(x) = x$: نظلق من الكتابة

$$\Leftrightarrow \frac{1}{x} \int_{0}^{x} e^{-t^2} dt = x$$

$$\iff \int_0^x e^{-t^2} dt = x^2$$

$$\iff x^2 - \int_0^x e^{-t^2} \, dt = 0$$

$$\iff \boxed{g(x) = 0}$$

نحصل على : من أجل
$$(n-1)$$
 نحصل

$$|u_n - \beta| \le \frac{2}{3} |u_{n-1} - \beta|$$

$$\leq \frac{2}{3} \cdot \frac{2}{3} |u_{n-2} - \beta|$$

$$\leq \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} |u_{n-3} - \beta|$$

$$\leq \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} |u_{n-4} - \beta|$$

$$\leq \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} |u_{n-4} - \beta|$$

$$\leq \left(\frac{2}{3}\right)^n |u_0 - \beta|$$

 $0 < \beta < 1$: و بما أن

$$\frac{-1}{3} < \frac{2}{3} - \beta < \frac{2}{3}$$
 : فإن

$$-1 < \frac{2}{3} - \beta < 1$$
 : إذن

$$|u_0 - \beta| < 1$$
 : في

$$\left(\frac{2}{3}\right)^n |u_0 - \beta| < \left(\frac{2}{3}\right)^n$$
 : و منه

$$(\forall n \in \mathbb{N})$$
 ; $|u_n - \beta| \le \left(\frac{2}{3}\right)^n$ و بالنالي : و بالنالي

-(€)(5)(II)■

$$(\forall n \in \mathbb{N})$$
 ; $|u_n - \beta| \le \left(\frac{2}{3}\right)^n$: بما أن

و $\left(\frac{2}{2}\right)^n$ منتالية هندسية تؤول إلى الصفر لأن أساسها عدد موجب أصغر من 1

$$\lim_{n\infty}(u_n-eta)=0$$
 : إذن بالضرورة نستنتج أن

$$\lim_{n \to \infty} (u_n) = \beta$$
 : يعني

و بالتالي :
$$|u_n)_{n\in\mathbb{N}}$$
 متتالية متقاربة و تؤول إلى eta .

= و الحمد لله رب العاطين ■

الصفحة : 134