Surveymetodik Introduktion till LyX, BibTEX och knitR

Måns Magnusson

Avd. Statistik, LiU

Översikt

- 1 L_YX
 - Demonstration av L_YX
- 2 BiBT_FX och referenser
 - Demonstration av BiBT_EX, referenser och L_YX
- 3 knitr och reproducible research
 - Demonstration av knitR i LyX

Varför denna föreläsning?

- Ge verktyg för att skriva en matematisk/statistisk uppsats
- Underlätta källhänvisningar och referenshantering
- Ge verktyg för vetenskaplighet / reproducerbarhet
- Integrering av R med dokument / HTML m.m. blir allt vanligare.
- Alternativ till Word LATEX är stort inom matematiska ämnen
- Ge smakprov, vissa delar passar bättre för vissa behov

Section 1

L_YX

Vad är L_YX?

- Grafiskt gränsnitt för LATEX (som R och R-Studio)
- WhatYouWantIsWhatYouGet istället för WhatYouSeeIsWhatYouGet.
- Skapar både dokument (och presentationer med beamer)
- Open Source och finns för alla operativsystem (laddas ned här)
- Går att versionshantera (till skillnad mot Word)

Fördelar och nackdelar

■ Fördelar:

- Mycket bra hantering av matematik
- Passar bra för att skriva uppsatser / akademiska texter
- Open source / gratis
- Smidigt alternativ till LATEX som är vanligt inom matematikämnen

Nackdelar

- Mindre vanligt utanför akademin / matematiska / teknologiska ämnen
- Sämre språkgranskning än word
- Kan ibland ha buggar

Subsection 1

Demonstration av LyX

Section 2

BiBT_EX och referenser

Vad är BiBT_EX?

- Hantera referens och källhänvisningar korrekt
- Samlar referenser i en eller flera filer
- Alla litteratursöksidor kan skapa bibTex-referenser direkt
- Integrerat med LyX och LaTEX (och Word)
- Finns för Mac (BibDesk), PC (kommer med LyX) och Linux (?).

Subsection 1

Demonstration av BiBTEX, referenser och LyX

Section 3

knitr och reproducible research

Reproducible research

- Vetenskap måste vara reproducerbar
 - Enkelt att granska varandras arbeten och reproducera analyser
 - Enkelt att identifiera felaktigheter
- I statistiska analyser innebär detta bland annat
 - väl dokumenterad kod
 - integrera analyserna i dokumentet

För- och nackdelar

- Det bästa verktyget för detta idag är knitR.
- Fördelar:
 - Reproducerbara analyser (återkommande analyser)
 - Korrigerade fel rättas i hela dokumentet automatiskt
 - Sparar (ofta) tid
 - Kan påbörja rapporten innan datainsamlingen är klar
- Nackdelar:
 - Kräver initialt mer arbete
 - Kan vara jobbigt att hitta buggar i R-koden

knitR

- Paket till R för att integrera R kod och dokument (HTML/Markdown, LATEX/LYX)

 (för Word finns R2DOCX här)
- Kör först R-koden och "byter ut" koden mot resultatet
 - Figurer
 - Löpande text
 - Tabeller
- Finns integrerat i R-Studio
- Går att använda med Python, SAS m.fl. (men mer komplicerat)
- Exempeldokument till uppsatsen finns att tillgå här: LyX, BiBTeX
- Tips!
 - Se till att koden ger det ni vill i R-studio först.
 - Gör det mesta i R och använd sedan source()

knitR: Exempel

■ knitr har 'chunks' med R-kod som börjar med «»= och slutar med @

```
<<>>=
    # R-kod
    x <- 50
    print(x)
@
```

■ Vilket ger:

```
x <- 50
print(x)
## [1] 50
```

knitR: Exempel II

- För att 'styra' output används 'options' echo och eval
- Samtliga 'options' finns här
- Exempel:

```
<<echo=FALSE, eval=TRUE>>=

# R-kod

x <- 50

print(x)

@
```

```
## [1] 50
```

knitR: \Sexpr{} och tabeller

- För att sätta in enskilda värden i L γX Infoga \rightarrow Anpassade insättningar \rightarrow S / R uttryck
- Kommandot är \Sexpr{# R-variabel här})
- För att sätta in tabeller används R-paketet xtable.
 - Skriver om datatypen till LATEX-kod eller HTML
 - Kan styra utseendet med argument i funktionen xtable().
 - Fungerar på ett flertal objekt i R som table, data.frame och lm.
- Paketet måste läsas in i dokumentet
- Kräver option results='asis' i knitr chunken

knitR: Tabellexempel

```
<<echo=FALSE, eval=TRUE, results='asis'>>=
# R-kod
library(xtable)
data(iris)
xtable(head(iris,n=7))
@
```

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.10	3.50	1.40	0.20	setosa
2	4.90	3.00	1.40	0.20	setosa
3	4.70	3.20	1.30	0.20	setosa
4	4.60	3.10	1.50	0.20	setosa
5	5.00	3.60	1.40	0.20	setosa
6	5.40	3.90	1.70	0.40	setosa
7	4.60	3.40	1.40	0.30	setosa

knitR: figurer

- Figurer skapas i R, sparas som pdf och läggs automatiskt in i dokumentet
- För att styra figurers storlek och placering används fig.height, fig.width och fig.align
 - fig.height och fig.width anger storlek med default = 7.
 - fig.align kan använda 'left', 'right' och 'center'

knitR - Exempel på figurer

```
<<echo=FALSE, fig.height=2.5, fig.width=4, fig.align='center'>>=
# R-kod
data(iris)
plot(iris[['Sepal.Length']], iris[['Sepal.Width']])
@
```


Subsection 1

Demonstration av knitR i LyX

<u>Re</u>ferenser