概率论与数理统计实验

一、实验目标

掌握 python 基本开发技能,学习、理解概率论的相关知识,能够对概率论的相关模型进行实验验证并进行可视化展示,加深对相关知识点的直观认识。

- 二、实验环境、内容及要求
- 1. 开发环境: Python 3.7(tkinter) + Numpy + Scipy + matplotlib, 采用可视化设计, 有菜单界面, 参考下图:

<u>NV</u>	概率统	计教学演	示实验,	研制者:	陈振洲					_	×
第1章	第2章	第3章	第4章	第5章	第6章	第7章	第8章	关于			

2. 利用蒙特卡洛方法计算圆周率并展示结果,参考下图:

3. 验证泊松定理并展示,对于泊松分布固定的λ,随着二项分布 n 的增加,二项分布逐渐收敛于泊松分布,参考下图:。

4. 给定参数μ, σ, 展示对应的正态分布概率密度图; 通过动态调整参数μ或σ, 展示图像的变化, 参考下图:

5. 生成正态分布的样本,验证大数定律。画图展示随着样本容量的增加,随机变量的算术平均依概率收敛到数学期望,参考下图:

三、作业提交

- 1. 实验报告一份 (pdf 格式, 附源代码), 提交到砺儒平台。文件命名格式: 学号+姓名+实验报告。
- 2. 源代码电子版, 学委收齐后交给我。"文件夹"命名格式: 学号+姓名+源代码 (不要压缩)。