WYKŁAD 4

Normalizacja schematów logicznych relacji

Plan wykładu

- Motywacja
- Normalizacja
- Postacie normalne
- Dekompozycje

Motywacja (1)

Dana jest następująca relacja Dostawcy :

Unikalny_ atrybut	Nazwisko	Adres	Produkt	Cena
	Kowalski	ul. Krucza 10	chipsy	1,50
	Kowalski	ul. Krucza 10	orzeszki	3,50
	Kowalski	ul. Krucza 10	gruszki	4,50
	Nowak	ul. Malwowa 4	chipsy	2,00
	Nowak	ul. Malwowa 4	orzeszki	4,00

Motywacja (2)

- Załóżmy, że atrybut Nazwisko jest unikalny, tj. nie ma dwóch dostawców o tym samym nazwisku.
- Cechy relacji Dostawca:
 - redundancja danych problem spójności danych
 - anomalia wprowadzania danych
 - anomalia usuwania danych
 - anomalia uaktualniania danych
- Rozwiązaniem: dekompozycja relacji Dostawca na dwie relacje: Dostawca i Dostawy

Nazwisko	Adres	Produkt	Cena
Kowalski	ul. Krucza 10	chipsy	1,50
Kowalski	ul. Krucza 10	orzeszki	3,50
Kowalski	ul. Krucza 10	gruszki	4,50
Nowak	ul. Malwowa 4	chipsy	2,00
Nowak	ul. Malwowa 4	orzeszki	4,00

Motywacja (3)

Dekompozycja bez utraty informacji

Dostawca

Nazwisko	Adres
Kowalski	ul. Krucza 10
Nowak	ul. Malwowa 4

Dostawy

Nazwisko	Produkt	Cena
Kowalski	chipsy	1,50
Kowalski	orzeszki	3,50
Kowalski	gruszki	4,50
Nowak	chipsy	2,00
Nowak	orzeszki	4,00

Atrybut połączeniowy : NAZWISKO

Struktury danych (1)

- 1. Baza danych jest zbiorem relacji
- 2. Schemat relacji R, oznaczony przez R(A1, A2, ..., An), składa się z nazwy relacji R oraz listy atrybutów A1, A2, ..., An
- 3. Liczbę atrybutów składających się na schemat relacji R nazywamy stopniem relacji
- 4. Każdy atrybut Ai schematu relacji R posiada domenę, oznaczoną jako dom(Ai)
- 5. Domena definiuje zbiór wartości atrybut relacji poprzez podanie typu danych
- 6. Relacją r o schemacie R(A1, A2, ..., An), oznaczoną r(R), nazywamy zbiór n-tek (krotek) postaci r={t1, t2,..., tm}.
- Pojedyncza krotka t jest uporządkowaną listą n wartości t=<v1, v2, ..., vn>, gdzie vi, 1<i<n, jest elementem dom(Ai) lub specjalną wartością pustą (NULL)
- i-ta wartość krotki t, odpowiadająca wartości atrybutu Ai, będzie oznaczana przez t[Ai]
- Relacja r(R) jest relacją matematyczną stopnia n zdefiniowaną na zbiorze domen dom(A1), dom(A2),..., dom(An) będącą podzbiorem iloczynu kartezjańskiego domen definiujących R: r(R) ⊆ dom(A1) x dom(A2) x ... x dom(An)

Zależności funkcyjne (1)

Zależność funkcyjna (FD)

Dana jest relacja r o schemacie R. X, Y są podzbiorami atrybutów R. W schemacie relacji R, X wyznacza funkcyjnie Y, lub Y jest funkcyjnie zależny od X, co zapisujemy $X \rightarrow Y$, wtedy i tylko wtedy, jeżeli dla dwóch dowolnych krotek t1, t2 takich, że t1[X] = t2[X] zachodzi zawsze t1[Y] = t2[Y], gdzie ti[X] oznacza wartość atrybutu X1 krotki ti

Przykłady:

- 1. Nazwisko → Adres
- 2. {Nazwisko, Towar} → Cena

Nazwisko	Adres	Produkt	Cena
Kowalski	ul. Krucza 10	chipsy	1,50
Kowalski	ul. Krucza 10	orzeszki	3,50
Kowalski	ul. Krucza 10	gruszki	4,50
Nowak	ul. Malwowa 4	chipsy	2,00
Nowak	ul. Malwowa 4	orzeszki	4,00

Zależności funkcyjne (2)

- Zależność funkcyjna określa zależność pomiędzy atrybutami.
 Jest to własność semantyczna, która musi być spełniona dla dowolnych wartości krotek relacji.
- Relacje które spełniają nałożone zależności funkcyjne nazywamy instancjami legalnymi
- Zależność funkcyjna jest własnością schematu relacji R, a nie konkretnego wystąpienia relacji
- Z zależności funkcyjnej wynika, że jeżeli t1 [X] = t 2[X] i X → Y, to zachodzi zawsze t1[Y] = t2[Y]

Normalizacja

- Proces normalizacji relacji można traktować jako proces, podczas którego schematy relacji posiadające pewne niepożądane cechy są dekomponowane na mniejsze schematy relacji o pożądanych własnościach
- Proces normalizacji musi posiadać trzy dodatkowe własności:

Własność zachowania atrybutów - żaden atrybut nie zostanie zagubiony w trakcie procesu normalizacji

Własność zachowania informacji - dekompozycja relacji nie prowadzi do utraty informacji

Własność zachowania zależności - wszystkie zależności funkcyjne są reprezentowane w pojedynczych schematach relacji

Pojęcia podstawowe (1)

- Nadkluczem (superkluczem) schematu relacji R = {A1,A2,...,An}
 nazywamy zbiór atrybutów S ⊆ R, który jednoznacznie identyfikuje
 wszystkie krotki relacji r o schemacie R. Innymi słowy, w żadnej relacji r o
 schemacie R nie istnieją dwie krotki t1, t2 takie, że t1[S] = t2[S]
- Kluczem K schematu relacji R nazywamy minimalny nadklucz, to znaczy taki nadklucz, że nie istnieje K' ⊂ K będący nadkluczem schematu R
- Kluczem schematu Dostawy {Nazwisko, Produkt, Cena}

Dostawy

Nazwisko	Produkt	Cena
Kowalski	chipsy	1,50
Kowalski	orzeszki	3,50
Kowalski	gruszki	4,50
Nowak	chipsy	2,00
Nowak	orzeszki	4,00

Klucz podstawowego schematu relacji DOSTAWCA

Pojęcia podstawowe (2)

- Klucze potencjalne (ang. candidate keys)
 - Klucz podstawowy (primary key)
 - Klucz drugorzędny (secondary key)
- Atrybuty:
 - atrybuty podstawowe: atrybut X jest podstawowy w schemacie R jeżeli należy do któregokolwiek z kluczy schematu R
 - atrybuty wtórne: atrybut X jest wtórny w schemacie R jeżeli nie należy do żadnego z kluczy schematu R

normalizacja (1)

Zapewnienie, że każda informacja jest reprezentowana w modelu encji tylko raz

Relacja jest w pierwszej postaci normalnej (1PN 1NF) wtedy i tylko wtedy, gdy nie ma powtarzających się grup i każdy atrybut jest w postaci atomowej.

Relacja jest w drugiej postaci normalnej (2PN 2NF) wtedy i tylko wtedy, gdy: jest w pierwszej postaci normalnej i każdy niekluczowy atrybut jest zależny od wszystkich części klucza głównego.

Relacja jest w trzeciej postaci normalnej (3PN 3NF) wtedy i tylko wtedy, gdy: jest w drugiej postaci normalnej i żaden atrybut, nie będący kluczem, nie jest funkcjonalnie związany żadnym innym atrybutem, nie będącym również kluczem.

normalizacja – receptura (2)

1PN

Każdy atrybut musi mieć jedną wartość dla każdego wystąpienia jego encji w danym momencie czasu

Przejście z postaci 0PN do 1PN:

- usunięcie wielowartościowych atrybutów z encji w 0PN i utworzenie dla niej nowej encji
- skopiowanie unikalnego identyfikatora do nowej encji będzie on prawdopodobnie stanowił część identyfikatora unikalnego dla tej nowej encji

2PN

Wartość każdego atrybutu musi zależeć od całego identyfikatora jego encji. Przejście z postaci 1PN do 2PN:

- usunięcie wszystkich częściowo zależnych atrybutów i utworzenie dla nich nowej encji
- skopiowanie części identyfikatora z encji pierwotnej (od której zależne są usunięte atrybuty) do tej nowej encji

3PN

Wartość każdego atrybutu nie może zależeć od niczego innego poza identyfikatorem unikalnym

Przejście z postaci 2PN do 3PN:

należy usunąć atrybuty niezależne i wtawić je do nowej encji

Uwaga: ta nowa encja potrzebuje identyfikatora unikalnego

pierwsza postać normalna 1NF (1)

Definicja

Schemat relacji R znajduje się w pierwszej postaci normalnej(1NF), jeżeli wartości atrybutów są atomowe (niepodzielne)

Relacja Pleć w 1NF

Pleć	lmię
Męska	Jan
Męska	Piotr
Męska	Zenon
Żeńska	Anna
Żeńska	Eliza
Żeńska	Maria

pierwsza postać normalna 1NF (3)

- Pierwsza postać normalna zabrania definiowania złożonych atrybutów, które są wielowartościowe
- Relacje, które dopuszczają definiowanie złożonych atrybutów nazywamy relacjami zagnieżdżonymi (ang. nested relations)
- W relacjach zagnieżdżonych każda krotka może zawierać inną relację
- Pracownicy (idPrac, Nazwisko, {Projekty (nr, godziny)})

Pracownicy

	IdPrac	Nazwisko	Proj	ekty	Relacja
			ŋŗ	godziny	zagnieżdżona
	1234567	Kowalski	/1	32,5	
	/	\	/ 2	7,5	_
- /	6655443	Nowak	3	40,5	
- 1	4343435	Kruczek	1	20	\
			2	20	
\	3333333	Morzy	1	10	
\		/	2	10	
			3	10 /	
1			\ 4	10/	
Rela	cja zewnęti	rzna			

pierwsza postać normalna 1NF (4)

- Dana jest relacja R, zawierająca inną relację P
- Dekompozycja relacji R do zbioru relacji w 1NF:
 - Utwórz osobną relację dla relacji zewnętrznej
 - Utwórz osobną relację dla relacji wewnętrznej (zagnieżdżonej), do której dodaj klucz relacji zewnętrznej
 - Kluczem nowej relacji wewnętrznej (klucz relacji wewnętrznej + klucz relacji zewnętrznej)
- Dekompozycja relacji Pracownicy:

Pracownicy (IdPrac, Nazwisko)

Uczestnicy (IdPrac, Nr, Godziny)

druga postać normalna 2NF (1)

Pełna zależność funkcyjna

Zbiór atrybutów Y jest w pełni funkcyjnie zależny od zbioru atrybutów X w schemacie R, jeżeli $X \to Y$ i nie istnieje podzbiór $X' \subset X$ taki, że $X' \to Y$ Zbiór atrybutów Y jest częściowo funkcyjnie zależny od zbioru atrybutów X w schemacie R, jeżeli $X \to Y$ i istnieje podzbiór $X' \subset X$ taki, że $X' \to Y$

Druga postać normalna

Dana relacja *r* o schemacie *R* jest w drugiej postaci normalnej (2NF), jeżeli żaden atrybut wtórny tej relacji nie jest częściowo funkcyjnie zależny od żadnego z kluczy relacji *r*

druga postać normalna 2NF (2)

Definicja 2NF!

druga postać normalna 2NF (3)

Uczestnictwo'

fd1: {IdPrac, NrProj} → Funkcja

Pracownicy

IdPrac ENAME

fd5: {IdPrac} → Nazwisko

Projekty

NrProj NazwaProj Lokalizacja

fd6: {NrProj} → NazwaProj fd7: {NrProj} → Lokalizacja

 $\{fd1, fd2, fd3, fd4, fd5, fd6, fd7\}$ + $\equiv \{fd1, fd5, fd6, fd7\}$ + bo: $fd1 \Rightarrow fd2, fd3, fd4, zgodnie z regułą poszerzenia$

trzecia postać normalna 3NF (1)

Pracownicy-PP

klucz

ANOMALIA

- Redundancji danych
- Wprowadzania danych
- Usuwania danych
- Uaktualniania danych

Nazwisko	Instytut	Wydział
Brzeziński	I.Informatyki	Elektryczny
Morzy	I.Informatyki	Elektryczny
Koszlajda	I.Informatyki	Elektryczny
Królikowski	I.Informatyki	Elektryczny
Babij	ElektroEnerg.	Elektryczny
Kordus	ElektroEnerg.	Elektryczny
Sroczan	ElektroEnerg.	Elektryczny

Klucz: Nazwisko

Zależności funkcyjne: Nazwisko → Instytut

Nazwisko → Wydział

Instytut → Wydział

trzecia postać normalna 3NF (2)

Przechodnia zależność funkcyjna

Zbiór atrybutów Y jest przechodnio funkcyjnie zależny od zbioru atrybutów X w schemacie R, jeżeli X → Y i istnieje zbiór atrybutów Z, nie będący podzbiorem żadnego klucza schematu R taki, że zachodzi X → Z i Z → Y

Zależność funkcyjna $X \rightarrow Y$ jest zależnością przechodnią jeżeli istnieje podzbiór atrybutów Z taki, że zachodzi $X \rightarrow Z$, $Z \rightarrow Y$ i nie zachodzi $Z \rightarrow X$ lub $Y \rightarrow Z$

trzecia postać normalna 3NF (3)

DEFINICJA

Dana relacja ro schemacie R jest w trzeciej postaci normalnej (3NF), jeżeli dla każdej zależności funkcyjnej $X \rightarrow A \le R$ spełniony jest jeden z następujących warunków:

- X jest nadkluczem schematu R, lub
- A jest atrybutem podstawowym schematu R

trzecia postać normalna 3NF (4)

Pracownicy-PP-1

Nazwisko	Instytut		
Brzeziński	I.Informatyki		
Morzy	I.Informatyki		
Koszlajda	I.Informatyki		
Królikowski	I.Informatyki		
Babij	ElektroEnerg.		
Kordus	ElektroEnerg.		
Sroczan	ElektroEnerg.		

Pracownicy-PP-2

Instytut	Wydział
I.Informatyki	Elektryczny
	Elektryczny
ElektroEnerg.	Elektryczny

ANGMALIA

- Redundancji danych
- Wprowadzania danych
- Usuwania danyah
- Uaktualniania danych

przykład procesu normalizacji

UNF	1NF	2NF	3NF
	Relacja R jest w pierwszej postaci normalnej (1NF) wtedy i tylko wtedy, gdy wszystkie użyte dziedziny zawierają tylko atomowe wartości	Relacja R jest w drugiej postaci normalnej (2NF) wtedy i tylko wtedy gdy jest w postaci 1NF oraz każdy niekluczowy atrybut jest w pełni funkcyjnie zależny od klucza głównego	Relacja R jest w trzeciej postaci normalnej (3NF) wtedy i tylko wtedy, gdy jest w 2NF oraz każdy niekluczowy atrybut jest nietranzytywnie (tylko bezpośrednio) zależny od klucza głównego
Zapewnij, aby wszystkie encje były jednoznacznie identyfikowane przez kombinację atrybutów i/lub ich związki	Usuń powtarzające się atrybuty lub grupy atrybutów i rozłóż atrybuty	Usuń wszystkie atrybuty, które zależą tylko od części jednoznacznego identyfikatora	Usuń atrybuty zależne od atrybutów, które nie są częścią jednoznacznego identyfikatora
UNF	1NF	2NF	3NF
LOT data godzina numer lotu nazwa linii lotniczej nazwa lotniska typ samolotu pojemność samolotu osoba 1 rola 1 osoba 2	LOT data godzina numer lotu nazwa linii lotniczej nazwa lotniska typ samolotu pojemność samolotu ZAŁOGA nazwisko imię rola	LOT data godzina TRASA numer lotu nazwa linii lotniczej nazwa lotniska typ samolotu pojemność samolotu ZAŁOGA nazwisko imię rola	LOT data godzina TRASA numer lotu SAMOLOT typ samolotu pojemność samolotu LINIA nazwa linii lotniczej LOTNISKO nazwa lotniska ZALOGA rola OSOBA nazwisko imię

postać Boyce-Codd'a (1)

 Postać normalna Boyce-Codďa stanowi warunek dostateczny 3NF, ale nie konieczny

Schemat relacji jest w 1NF i posiada:

- Dwa klucze: K1 i K2
- Atrybuty podstawowe: Id_Własności, Województwo, Id_gruntu
- Atrybuty wtórne: Obszar, Cena, Stopa_podatku.

postać Boyce-Codd'a (1)

 Postać normalna Boyce-Codďa stanowi warunek dostateczny 3NF, ale nie konieczny

- fd1: zależności od klucza
- fd2: zależności od klucza
- fd3: Wojewódz. → Stopa_podatku
- fd4: obszar → Wojewódz.
- fd5: obszar → Cena

Stopa_podatku (częściowo funkcyjnie zależna)

postać Boyce-Codd'a (2)

postać Boyce-Codd'a (3)

Grunty-1

Grunty-1A

postać Boyce-Codd'a (3)

Dana relacja r o schemacie R jest w postaci normalnej Boyce'aCodd'a (BCNF), jeżeli dla każdej zależności funkcyjnej X → A w R spełniony jest następujący warunek: X jest nadkluczem schematu R.

W tym przypadku, zachodzi konieczność dekompozycji relacji Grunty-1A na dwa schematy relacji: Grunty1A1 (Id_Własności, Id_Gruntu, Obszar) oraz Grunty1A2 (Obszar, Województwo).

zależności wielowartościowe (1)

Loty

Lot	Dzień_tygodnia	Typ_samolotu
106	poniedziałek	134
106	czwartek	154
106	poniedziałek	154
106	czwartek	134
206	środa	747
206	piątek	767
206	środa	767
206	piątek	747

3NF BCNF

Problem modyfikacji!

Języki

Nazwisko	Język_obcy	Język_prog.
Nowak	angielski	Basic
Nowak	włoski	Fortran
Nowak	angielski	Fortran
Nowak	włoski	Basic
Nowak	czeski	Basic
Nowak	czeski	Fortran

3NF BCNF

Problem modyfikacji!

modyfikacja relacji

 Lot 106 będzie dodatkowo odbywał się w Środę i na tę linię wprowadzamy, dodatkowo, nowy typ samolotu – 104

10	١T٧
	· · y

Lot	Dzień-tygodnia	Typ-samolotu
106	poniedziałek	134
106	czwartek	154
106	poniedziałek	154
106	czwartek	134
106	poniedziałek	104
106	czwartek	104

5 nowych krotek

 106
 poniedziałek
 104

 106
 czwartek
 104

 106
 środa
 134

 106
 środa
 154

 106
 środa
 104

Utrudniona pielęgnacja!

zależności wielowartościowe (1)

6 nowych krotek

Języki

Nazwisko	Język_obcy	Język_prog.
Nowak	angielski	Basic
Nowak	włoski	Fortran
Nowak	angielski	Fortran
Nowak	włoski	Basic
Nowak	czeski	Basic
Nowak	czeski	Fortran

Utrudniona pielęgnacja!

dekompozycja

Lot-1

Dzień-tygodnia	
poniedziałek	
czwartek	
środa	
piątek	
środa	

Lot-2

Lot	Typ-samolotu
106	134
106	154
206	747
206	767
106	104

Język-1

Nazwisko	Język_obcy	
Nowak	angielski	
Nowak	włoski	
Nowak	czeski	
Nowak	francuski	

Język-2

Nazwisko	Język_prog.
Nowak	Basic
Nowak	Fortran
Nowak	C++

zależności wielowartościowe (2)

- Zależności wielowartościowe są konsekwencją wymagań pierwszej postaci normalnej, która nie dopuszcza, aby krotki zawierały atrybuty wielowartościowe
- Zależność wielowartościowa występuje w relacji r(R) nie dlatego, że na skutek zbiegu okoliczności tak ułożyły się wartości krotek, lecz występuje ona dla dowolnej relacji r o schemacie R dlatego, że odzwierciedla ona ogólną prawidłowość modelowanej rzeczywistości

Lot→→ Dzień-tygodnia Lot→→ Typ-samolotu Nazwisko→→ Język-obcy Nazwisko→→ Język-programowania

Loty

Lot	Dzień_tygodnia	Typ_samolotu
106	poniedziałek	134
106	czwartek	154
106	poniedziałek	154
106	czwartek	134

Języki

Nazwisko	Język_obcy	Język_prog.
Nowak	angielski	Basic
Nowak	włoski	Fortran
Nowak	angielski	Fortran
Nowak	włoski	Basic
Nowak	czeski	Basic

zależności wielowartościowe (3)

- Wystąpienie zależności wielowartościowej X→→ Yw relacji o schemacie R = XYZwyraża dwa fakty:
 - Związek pomiędzy zbiorami atrybutów X i Y;
 - Niezależność zbiorów atrybutów Y, Z. Zbiory te są związane ze sobą pośrednio poprzez zbiór atrybutów X

Lot-3

Lot	Dzień-tygodnia	Typ-samolotu
106	poniedziałek	134
106	czwartek	154
106	czwartek	134
206	środa	747
206	piątek	767

czwarta postać normalna 4NF

Relacja ro schemacie R jest w czwartej postaci normalnej (4NF) względem zbioru zależności wielowartościowych MVD jeżeli jest ona w 3NF i dla każdej zależności wielowartościowej $X \rightarrow \rightarrow Y \in MVD$ zależność ta jest trywialna lub X jest nadkluczem schematu.

- Zależność wielowartościowa X→→ Yw relacji r(R) nazywamy zależnością trywialną, jeżeli
 - zbiór Yjest podzbiorem X, lub
 - -XUY=R
- Zależność nazywamy trywialną, gdyż jest ona spełniona dla dowolnej instancji rschematu R

dekompozycja relacji na relacje bez utraty informacji (1)

Dekompozycja na relacje w 3NF
Dana jest relacja r o schemacie R, i dany jest zbiór F zależności funkcyjnych dla R. Niech relacje r1 i r2 o schematach, odpowiednio, R1 i R2, oznaczają dekompozycję relacji r(R). Dekompozycja ta jest dekompozycją bez utraty informacji, jeżeli co najmniej jedna z poniższych zależności funkcyjnych jest spełniona:

 $R1 \cap R2 \rightarrow R1$ $R1 \cap R2 \rightarrow R2$

dekompozycja relacji na relacje bez utraty informacji (2)

Dekompozycja na relacje w 4NF
Dana jest relacja r o schemacie *R*. Niech relacje *r1* i *r2* o schematach, odpowiednio, *R1* i *R2*, oznaczają dekompozycję relacji *r(R)*. Dekompozycja ta jest dekompozycją bez utraty informacji, jeżeli co najmniej jedna z poniższych zależności wielowartościowych jest spełniona:

$$R1 \cap R2 \rightarrow \rightarrow (R1 - R2)$$

 $R1 \cap R2 \rightarrow \rightarrow (R2 - R1)$

dekompozycja relacji na relacje bez utraty informacji (2)

Lot-1

Dzień-tygodnia
poniedziałek
czwartek
środa
piątek
środa

Lot-2

Lot	Typ-samolotu
106	134
106	154
206	747
206	767
106	104

Koniec wykładu 4