ECON 6170 Problem Set 1

Gabe Sekeres

August 30, 2024

Exercise 7 from Notes The claim is true.

Proof. WLOG, assume that $\sup S \ge \sup T$. $\max \{ \sup S, \sup T \} = \sup S$. By definition, $\sup S \ge s \ \forall \ s \in S$. Also since $\sup S \ge \sup T$, $\sup S \ge \sup T \ge t \ \forall \ t \in T$. Thus, since $\sup S \ge s \ \forall \ s \in S$ and $\sup S \ge t \ \forall \ t \in T$, $\sup S$ is an upper bound of $S \cup T$, and so $\sup S \ge \sup(S \cup T)$.

It remains to show that $\sup S$ is the least upper bound of $S \cup T$. This follows directly from the ε -ball definition of supremum. $\forall \varepsilon > 0, \exists s \in S \text{ s.t. } s + \varepsilon > \sup S$. If it were the case that $\sup S \ge \sup(S \cup T)$, then $\exists \varepsilon' > 0 \text{ s.t. } \sup S = \sup(S \cup T) + \varepsilon$. However, choosing $\varepsilon < \varepsilon', \exists s \in S \text{ s.t. } s + \varepsilon > \sup S \Rightarrow s > \sup S - \varepsilon > \sup(S \cup T)$. This is a contradiction, so $\sup S$ is the least upper bound of $S \cup T$, and since suprema are unique, $\sup(S \cup T) = \max\{\sup S, \sup T\}$.

Exercise 1

(i) $\sup(A+B) = \sup A + \sup B$

Proof. Take some $a+b \in A+B$. Since $a \le \sup A$ and $b \le \sup B$, $a+b \le \sup A+\sup B$. Thus, $\sup A+\sup B$ is an upper bound of A+B. It remains to show that $\sup A+\sup B$ is the least upper bound of A+B. FSOC, assume that $\sup(A+B) < \sup A+\sup B$. Choose $\varepsilon = (\sup A+\sup B-\sup(A+B))/3$. By the ε -ball definition of suprema, $\exists \ a \in A$ and $b \in B$ s.t. $a+\varepsilon > \sup A$ and $b+\varepsilon > \sup B$. $a+b \in A+B$ by definition, but since $\varepsilon = (\sup A+\sup B-\sup(A+B))/3$, $a+b > \sup A+\sup B-2\varepsilon > \sup(A+B)$. This is a contradiction, so $\sup A+\sup B$ is the least upper bound of A+B, and since suprema are unique, $\sup(A+B)=\sup A+\sup B$.

Alternative Topological Proof:¹

Proof. Consider the closure of A, denoted \overline{A} , where $\overline{A} = A \cup \partial A$, the union of A and the boundary of A, as well as \overline{B} . Since the closure contains the union of all sequences in the set, $\sup(A) \in \overline{A}$, and $\sup(A) = \sup(\overline{A})$. Similarly, $\sup(B) = \sup(\overline{B}) \in \overline{B}$. Also note that $\sup(A+B) = \sup(\overline{A}+\overline{B}) \in \overline{A}+\overline{B}$. Also note that since $a \le \sup(\overline{A}) \ \forall \ a \in \overline{A}$ and $b \le \sup(\overline{B}) \ \forall \ b \in \overline{B}$, $a+b \le \sup(\overline{A}) + \sup(\overline{B}) \ \forall \ a+b \in \overline{A}+\overline{B}$. Thus, since $\sup(\overline{A}) + \sup(\overline{B}) \in \overline{A}+\overline{B}$, $\sup(\overline{A}) + \sup(\overline{B}) = \sup(\overline{A}+\overline{B})$, since suprema are unique, and so $\sup A + \sup B = \sup(A+B)$.

(ii) $\sup(A - B) = \sup A - \inf B$

Proof. Take some $a-b\in A-B$. Since $a\leq\sup A$ and $b\geq\inf B$, $a-b\leq\sup A-\inf B$. Thus, $\sup A-\inf B$ is an upper bound of A-B. It remains to show that $\sup A-\inf B$ is the least upper bound of A-B. FSOC, assume that $\sup A-\inf B>\sup (A-B)$. Choose $\varepsilon=(\sup A-\inf B>\sup (A-B))/3$. By the ε -ball definition of suprema and infima, $\exists \ a\in A$ and $b\in B$ s.t. $a+\varepsilon>\sup A$ and $b-\varepsilon<\inf B$. Thus, $a-b\in A-B$ by definition, but we have that $a-b>\sup A-\inf B-2\varepsilon>\sup (A-B)$. This is a contradiction, so $\sup A-\inf B$ is the least upper bound of A-B, and since suprema are unique $\sup (A-B)=\sup A-\inf B$.

¹Because Topology is fun!

Exercise 2

(i) $\sup_{a \in A} \inf_{b \in B} f(a, b) \le \inf_{b \in B} \sup_{a \in A} f(a, b)$

Proof. By the ε -ball definition of suprema, $\forall \varepsilon > 0$, $\exists a' \in A$ s.t. $\inf_{b \in B} f(a', b) + \varepsilon > \sup_{a \in A} \inf_{b \in B} f(a, b)$. Also, from the definition of infima, we have that $\inf_{b \in B} f(a', b) \leq \inf_{b \in B} \sup_{a \in A} f(a, b)$. Combining, we get that

$$\sup_{a \in A} \inf_{b \in B} f(a,b) - \varepsilon < \inf_{b \in B} f(a',b) \leq \inf_{b \in B} \sup_{a \in A} f(a,b)$$

and since this is true $\forall \varepsilon > 0$, we have that $\sup_{a \in A} \inf_{b \in B} f(a, b) \leq \inf_{b \in B} \sup_{a \in A} f(a, b)$.

(ii) Consider the function $f:[0,1]^2\to\mathbb{R}$ where

$$f(a,b) = \begin{cases} 0 & a \neq 0, b = 0 \\ 0 & a \neq 1, b = 1 \\ 1 & \text{otherwise} \end{cases}$$

 $\inf_{b\in B} f(a,b)=0$ since given any a, either b=0 or b=1 will attain f(a,b)=0, so the left side is $\sup_{a\in A} 0=0$. However, $\sup_{a\in A} f(a,b)=1$, since given any b, a choice of a=0 or a=1 will attain f(a,b)=1, so the left side is $\inf_{b\in B} 1=1$. Thus, $\sup_{a\in A} \inf_{b\in B} f(a,b)<\inf_{b\in B} \sup_{a\in A} f(a,b)$.