НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ» ФАКУЛЬТЕТ ІНФОРМАТИКИ ТА ОБЧИСЛЮВАЛЬНОЇ ТЕХНІКИ

Кафедра обчислювальної техніки

КУРСОВА РОБОТА

з дисципліни "Комп'ютерна логіка"

Виконав : Долинний Олександр В	алерійович
Факультет 10 Т	
Γργηα 10-31	
Залікова книжка № 10-3110	
Допущений до захисту Номер технічного завдання — 1100001	 00110
-	(nідпис керівника)
	,

Опис альбому

№ рядка	формат	П	Іозначе.	<i>ННЯ</i>		Найменування		Кількість	Примітка
1									
2						Документація загаль	<u>ьна</u>		
3									
4						розроблена заново	2		
5									
6	A4	ІАЛЦ.	463626.	001 (JA	Опис альбому		1	
7									
8	A4	ІАЛЦ.	4 <i>63626</i>	002	<i>T3</i>	Технічне завдання	7	4	
9									
10	A2	ІАЛЦ.	4 <i>63626</i>	003	<i>32</i>	Керуючий автомат	7.		
11						Схема електрична	!	1	
12						функціональна			
13									
14	A4	ІАЛЦ.	4 <i>63626</i> .	004	ПЗ	Пояснювальна запис	κα	24	
15									
16									
17									
18									
19									
20									
21									
22									
23									
24									
25									
						IAЛЦ.463626.001			
	Арк.	№ докум.	Підпис	Дата		<i>1/</i> 1/1Ц. <i>4UJUZU.UU1</i>	UA		
	зроб. ревір.	Долинний О.В. Поспішний О.С.				Опис альбому	/lim.	A _f	лкуш Аркушів 1
	контр.					Since and only	Hī	yy	"ΚΠΙ" ΦΙΟΤ
п. к Заі	,	Жабін В.І.						Груг	na 10-31

Технічне завдання

Зміст

1. Призначення розроблюваного об'єкта	2
2. Вхідні дані для розробки	2
3. Склад пристроїв	4
4. Етапи і терміни проектування	4
5. Перелік текстової і графічної докиментації	4

					<i>IAЛЦ.463626.002</i>	73		
Зм.	Арк.	№ докум.	Підпис	Дата		_		
Po	зроб.	Долинний О.В.				Літ.	Аркуш	Аркушів
Пер	ревір.	Поспішний О.С			Технічне завдання		1	4
Н. А	контр.						'ТУУ "КПІ"	
За	ாமீ.	Жабін В.І.					Γρупа ΙΟ	7-31

1 Призначення розроблюваного об'єкта

В курсовій роботі необхідно виконати синтез автомата Мілі. Керуючий автомат – це електрична схема, що виконує відображення вхідного сигналу у вихідний по заданому алгоритму. Практичне застосування даного автомата можливе в області обчислювальної техніки.

2 Вхідні дані

Варіант завдання визначається дев'ятьма молодшими розрядами залікової книжки, представлений у двійковій системі числення ($3110_{10}=110000100110_2$):

$$h_9=0$$
, $h_8=0$, $h_7=0$, $h_6=1$, $h_5=0$, $h_4=0$, $h_3=1$, $h_2=1$, $h_1=0$

Порядок з'єднання фрагментів ($h_8h_4h_2 = 001$):

1, 2, 4

Логічні умови $(h_8h_7h_3 = 001)$:

Послідовність керуючих сигналів($h_9h_4h_1 = 000$):

Сигнал тривалістю $2t(h_6h_2 = 11)$:

Y4

Tpuzep($h_6h_5 = 10$):

JK — mpuzep

Логічні елементи($h_3h_2h_1 = 110$):

ЗАБО-HE, 3I

Tun $abmomamy(h_4 = 0)$:

Мілі

Система з чотирьох перемикальних функцій задана таблицею 2.1.

Необхідно виконати сумісну мінімізацію функцій f1, f2, f3. Отримати операторні представлення для реалізації системи функцій на програмувальних логічних матрицях.

Зм.	Арк.	№ докум.	Підп.	Дата

Таблиця 2.1. Система перемикальних функцій

<i>X</i> ₄	<i>X</i> 3	X2	X1	f_1	f_2	f_3	f_4
0	0	0	0	1	1	1	0
0	0	0	1	1	1	0	1
0	0	1	0	1	1	1	1
0	0	1	1	0	0	0	0
0	1	0	0		0	1	0
0	1	0	1	0	0	0	0
0	1	1	0	1		200	0
0	1	1	1			1	1
1	0	0	0	1	0	0	0
1	0	0	1	0	0	0	1
1	0	1	0	0	0	0	0
1	0	1	1	0	0	0	1
1	1	0	0	1	_	1	1
1	1	0	1	1	0	0	0
1	1	1	0	1	1	0	0
1	1	1	1	1	1	1	1

Функцію f4 необхідно представити в канонічних формах алгебр Буля, Жегалкіна, Пірса та Шефера. Визначити належність даної функції до п'яти передповних класів. Виконати мінімізацію функції методами:

- невизначених коефіцієнтів;
- Квайна (Квайна-Мак-Класкі);
- діаграм Вейча.

3 Склад пристроїв

Керуючий автомат.

Керуючий автомат складається з комбінаційної схеми і пам'яті на тригерах. Тип тригерів і елементний базис задані в технічному завданні.

Зм.	Арк.	№ докум.	Підп.	Дата

Програмувальна логічна матриця.

ПЛМ складається із двох (кон'юктивної і диз'юнктивної) матриць, де виходи першої приєднуються на входи другої і дозволяють реалізувати комбінаційні схеми в базисі {I/ABO, I/ABO-HE}.

4 Етапи проектування і терміни їх виконання

- 1) Розмітка станів автомата
- 2) Формування вхідного та вихідного алфавітів
- 3) Побудова графа автомата
- 4) Побудова таблиці переходів
- 5) Побудова структурної таблиці автомата
- 6) Синтез комбінаційних схем для функцій збудження тригерів і вихідних сигналів
 - 7) Побудова схеми автомата в заданому базисі. Курсова робота проектувалась протягом листопада — грудня 2013 року.

5 Перелік текстової і графічної документації

- 1) Титульний лист
- 2) Аркуш з написом «Опис альбому»
- 3) Опис альбому
- 4) Аркуш з написом «Технічне завдання»
- 5) Аркуш з написом «Керуючий автомат. Схема електрична функціональна»
- 6) Керуючий автомат. Схема електрична функціональна
- 7) Аркуш з написом «Пояснювальна записка»
- 8) Пояснювальна записка

Зм.	Арк.	№ докум.	Підп.	Дата

Автомат керуючий Схема електрична функціональна

3. Синтез комбінаційних схем

3.1 Bcmyn

На основі «Технічного завдання ІАЛЦ.463626.002 ТЗ» виконуємо синтез комбінаційних схем.

Умова курсової роботи вимагає представлення функції f₄ в канонічних формах алгебр Буля, Жегалкіна, Пірса і Шефера.

3.2 Представлення функцій f4 в канонічній формі алгебри Буля.

В даній алгебрі визначені функції {І, АБО, НЕ}.

$$\begin{split} &\mathsf{F}_{\mathtt{Д}\mathtt{Д}\mathsf{H}\Phi} \mathtt{=} \overline{\mathsf{X}}_{\mathtt{4}} \overline{\mathsf{X}}_{\mathtt{3}} \overline{\mathsf{X}}_{\mathtt{2}} \mathsf{X}_{\mathtt{1}} \vee \overline{\mathsf{X}}_{\mathtt{4}} \overline{\mathsf{X}}_{\mathtt{3}} \mathsf{X}_{\mathtt{2}} \overline{\mathsf{X}}_{\mathtt{1}} \vee \overline{\mathsf{X}}_{\mathtt{4}} \mathsf{X}_{\mathtt{3}} \mathsf{X}_{\mathtt{2}} \mathsf{X}_{\mathtt{1}} \vee \mathsf{X}_{\mathtt{4}} \overline{\mathsf{X}}_{\mathtt{3}} \overline{\mathsf{X}}_{\mathtt{2}} \mathsf{X}_{\mathtt{1}} \vee \mathsf{X}_{\mathtt{4}} \overline{\mathsf{X}}_{\mathtt{3}} \overline{\mathsf{X}}_{\mathtt{2}} \mathsf{X}_{\mathtt{1}} \vee \mathsf{X}_{\mathtt{4}} \mathsf{X}_{\mathtt{3}} \overline{\mathsf{X}}_{\mathtt{2}} \overline{\mathsf{X}}_{\mathtt{1}} \vee \mathsf{X}_{\mathtt{4}} \mathsf{X}_{\mathtt{3}} \overline{\mathsf{X}}_{\mathtt{2}} \mathsf{X}_{\mathtt{1}} \vee \mathsf{X}_{\mathtt{4}} \mathsf{X}_{\mathtt{3}} \mathsf{X}_{\mathtt{2}} \mathsf{X}_{\mathtt{1}} \mathsf{X}_{\mathtt{3}} \mathsf{X}_{\mathtt{2}} \mathsf{X}_{\mathtt{1}} \mathsf{X}_{\mathtt{1}} \mathsf{X}_{\mathtt{3}} \mathsf{X}_{\mathtt{2}} \mathsf{X}_{\mathtt{1}} \mathsf{X}_{\mathtt{1}} \mathsf{X}_{\mathtt{3}} \mathsf{X}_{\mathtt{2}} \mathsf{X}_{\mathtt{1}} \mathsf{X}_{\mathtt{1}} \mathsf{X}_{\mathtt{3}} \mathsf{X}_{\mathtt{2}} \mathsf{X}_{\mathtt{1}} \mathsf{X}_{\mathtt$$

$$\begin{split} F_{IIKH\Phi} = & (X_4 \vee X_3 \vee X_2 \vee X_1) \ (X_4 \vee X_3 \vee \overline{X_2} \vee \overline{X_1}) \ (X_4 \vee \overline{X_3} \vee X_2 \vee X_1) \ (X_4 \vee \overline{X_3} \vee X_2 \vee \overline{X_1}) \\ & (X_4 \vee \overline{X_3} \vee \overline{X_2} \vee X_1) \ (\overline{X_4} \vee X_3 \vee X_2 \vee X_1) \ (\overline{X_4} \vee \overline{X_3} \vee \overline{X_2} \vee X_1) \ (\overline{X_4} \vee \overline{X_3} \vee \overline{X_2} \vee \overline{X_1}) \ (\overline{X_4} \vee \overline{X_3} \vee \overline{X_2} \vee \overline{X_1}) \end{split}$$

3.3 Представлення функцій f4 в канонічній формі алгебри Жегалкіна.

Зм.	Арк.	№ докум.	Підп.	Дата

3.4 Представлення функцій f4 в канонічній формі алгебри Пірса.

В даній алгебрі визначені функції {АБО-НЕ}.

$$\begin{split} f_{\downarrow} &= & (X_{\downarrow} \vee X_{3} \vee X_{2} \vee X_{1}) \ \, (X_{\downarrow} \vee X_{3} \vee \overline{X_{2}} \vee \overline{X_{1}}) \ \, (X_{\downarrow} \vee \overline{X_{3}} \vee X_{2} \vee X_{1}) \ \, (X_{\downarrow} \vee \overline{X_{3}} \vee X_{2} \vee \overline{X_{1}}) \ \, (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \ \, (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \ \, (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \ \, (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \ \, (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \ \, (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \ \, (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \ \, (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \ \, (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \ \, (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \ \, (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \ \, (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \ \, (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \ \, (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \ \, (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \ \, (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \ \, (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \ \, (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \ \, (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \ \, (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \ \, (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \ \, (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \ \, (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \ \, (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \ \, (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \ \, (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \ \, (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \ \, (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \ \, (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \ \, (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \ \, (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \ \, (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \ \, (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \ \, (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \ \, (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \ \, (\overline{X_{\downarrow}} \vee \overline{X_{3}} \vee \overline{X_{2}} \vee \overline{X_{1}}) \ \, (\overline{X_{\downarrow}} \vee \overline{X_{1}} \vee \overline{X_{1}} \vee \overline{X_{1}} \vee \overline{X_{1}}) \ \, (\overline{X_{\downarrow}} \vee \overline{X_{1}} \vee \overline{X_{1}} \vee \overline{X_{1}}$$

3.5 Представлення функцій f4 в канонічній формі алгебри Шефера

В даній алгебрі визначені функції {І-НЕ}.

$$f4 = \overline{X_{4}} \overline{X_{3}} \overline{X_{2}} X_{1} \vee \overline{X_{4}} \overline{X_{3}} X_{2} \overline{X_{1}} \vee \overline{X_{4}} X_{3} X_{2} X_{1} \vee X_{4} \overline{X_{3}} \overline{X_{2}} X_{1} \vee X_{4} \overline{X_{3}} \overline{X_{2}} X_{1} \vee X_{4} \overline{X_{3}} \overline{X_{2}} \overline{X_{1}} \vee X_{4} X_{3} X_{2} X_{1} = \\ = \overline{\overline{X_{4}}} \overline{\overline{X_{3}}} \overline{X_{2}} X_{1} \vee \overline{X_{4}} \overline{X_{3}} \overline{X_{2}} \overline{X_{1}} \vee \overline{X_{4}} X_{3} X_{2} X_{1} \vee X_{4} \overline{X_{3}} \overline{X_{2}} X_{1} \vee X_{4} \overline{X_{3}} \overline{X_{2}} \overline{X_{1}} \vee X_{4} X_{3} \overline{X_{2}} \overline{X_{1}} \vee X_{4} X_{3} X_{2} X_{1} = \\ = \overline{(X_{4}} \overline{X_{3}} \overline{X_{2}} \overline{X_{1}} \overline{X_{4}} \overline{X_{3}} \overline{X_{2$$

3.6 Визначення належності функції f4 до п'яти передповних класів

- 1. Дана функція зберігає нуль, так як F(0000)=0.
- 2. Дана функція зберігає одиницю, так як F(1111)=1.
- 3. Дана функція не самодвоїсна, так як F(0101)=0, F(1010)=0.
- 4. Дана функція не монотонна, так як F(1100)=1 < F(1101)=0.

Зм.	Арк.	№ докум.	Підп.	Дата

5. Дана форма нелінійна, так як канонічна форма алгебри Жегалкіна, що отримана у підрозділі 3.3 є нелінійним поліномом.

На основі вищесказаного робимо висновок, що функція f4 належить першим двом i не належить останнім трьом передповним класам.

3.7 Мінімізація функції f4 методом невизначених коефіцієнтів

Ідея цього методу полягає у відшуканні ненульових коефіцієнтів при Рівняння для знаходження кожній імпліканті. коефіцієнтів представимо таблицею (таблиця 4.2). Виконаємо викреслення тих рядків на яких функція приймає нульові значення. Викреслимо вже знайдені нульові коефіцієнти в тих рядках таблиці, попередніх ðiū; ЩО залишилися після виконання поглинають ті імпліканти, що розташовані з права від них.

Далі таблицю коефіцієнтів використовуємо як таблицю покриття функції.

Таблиця 4.2. Таблиця невизначених коефіцієнтів

F	X4	X ₃	X_2	X ₁	X_4X_3	X_4X_2	X ₄ X ₁	X_3X_2	X ₃ X ₁	X_2X_1	$X_4X_3X_2$	$X_4X_3X_1$	$X_4X_2X_1$	$X_3X_2X_1$	$X_4X_3X_2X_1$
0	Đ	Ð	0	0	00	00	00	00	00	00	000	000	000	000	0000
1	Đ	0	0	1	00	00	01	00	01	01	000	001	001	001	0001
1	0	0	1	0	00	01	00	01	00	10	001	000	010	010	0010
0	Đ	Đ	1	1	00	01	01	01	01	11	001	001	011	011	0011
0	Đ	1	Đ	Đ	01	00	00	10	10	00	010	010	000	100	0100
0	Đ	1	Đ	1	01	01	01	10	11	01	010	011	001	101	0101
0	Đ	1	1	Đ	01	01	00	11	10	10	011	010	010	110	0110
1	Đ	4	1	1	01	01	01	11	11	11	011	011	011	111	0111
0	1	0	0	0	10	10	10	00	00	00	100	100	100	000	1000
1	1	Ð	0	1	10	10	11	00	01	01	100	101	101	001	1001
0	1	0	1	0	10	11	10	01	00	10	101	100	110	010	1010
1	1	0	1	1	10	11	11	01	01	11	101	101	111	011	1011
1	1	1	Đ	0	11	10	10	10	10	00	110	110	100	100	1100
0	1	1	θ	1	11	10	11	10	11	01	110	111	101	101	1101
0	4	1	1	0	11	11	10	11	10	10	111	110	110	110	1110
1	1	1	1	1	11	11	11	11	11	11	111	111	111	111	1111

$$f_{\text{MДH}\Phi} = \overline{X_4}\overline{X_3}X_2\overline{X_1} \vee X_4X_3\overline{X_2}\overline{X_1} \vee \overline{X_3}\overline{X_2}X_1 \vee X_4X_2X_1 \vee X_3X_2X_1$$

Зм.	Апк	№ докум.	Підп.	Лата

3.8 Мінімізація функції f4 методом Квайна-Мак-Класкі

Виходячи з таблиці істинності функції, запишемо стовнчик ДДНФ (K_0).

- 1) Розіб'ємо К, на групи по наявності аргументів.
- 2) Розіб'ємо кожну групу по наявності аргументів на групи по кількості одиниць у групі.
- 3) Проводимо попарне склеювання між групами, які входять до однієї групи по аргументам та у яких кількість одиниць відрізняється на 1.
 - 4) Робимо поглинання. Результати подаємо на рисунку 4.7.
- 5) Повторюємо пункти 1-4 поки можливо, після цього будуємо таблицю покриття (таблиця 4.3), отримуємо ТДНФ і вибираємо МДНФ як ТДНФ з найменшою ціною.

Рисунок 4.7 – поглинання термів

3.9 Мінімізація функції f4 методом діаграм Вейча

Виконаємо мінімізацію функції методом Вейча (рисунок 4.8). Цей метод дуже зручний при мінімізації функції з кількістю аргументів до чотирьох включно.

Зм.	Арк.	№ докум.	Підп.	Дата

Ταδλυμя 4.3 — παδλυμя ποκρυππя

	0001	0010	0111	1001	1011	1100	1111
0010		\otimes					
1100	\Diamond					\bigcirc	
X001				V			
X111			\Diamond				\bigcirc
10X1				V	V		
1X11					V		V

Кожна клітинка відповідає конституенті, а прямокутник з 2ⁿ клітинок — імпліканті.

	X	3			
X4	12	13	9	8	
7.4	14	15	11	10	X ₂
	6	7	3	2	/\2
	4	5	1	0	
		×	(1		

Рисунок 4.8 - мінімізація функції методом Вейча

Отримаємо МДНФ функції:

$$f_{\text{MДH}\Phi} = \overline{X_4} \overline{X_3} X_2 \overline{X_1} \vee X_4 X_3 \overline{X_2} \overline{X_1} \vee \overline{X_3} \overline{X_2} X_1 \vee X_4 X_2 X_1 \vee X_3 X_2 X_1$$

3.10 Спільна мінімізація функцій f1, f2, f3

Щоб одержати схеми з мінімальними параметрами необхідно виконати сумісну мінімізацію системи функцій та їх заперечень.

Виконаємо мінімізацію системи функцій f_1 , f_2 , f_3 , заданих таблицею істинності (технічного завдання ІАЛЦ.463626.002 ТЗ) методом Квайна-Мак-Класкі (рисунок 4.9).

Зм.	Арк.	№ докум.	Підп.	Дата

K ⁰	K ¹	K ²
0000 {1,2,3}	X000 {1}	XX00 {1}
0001 {1,2}	0X00 {1,3}	0XX0 {1,3}
0010 {1,2,3}	00X0 {1,2,3}	XX00 {1}
0100 {1,3}	000X {1,2}	0XX0 {1,3}
1000 {1}	X100 {1,3}	X1X0 {1}
0110 {1,2,3}	0X10 {1,2,3}	X1X0 {1}
_1100	1X00 {1}	X11X {1,2}
0111 {1,2,3}	01X0_{1,3}	11XX {1}
1101 {1}	X110 {1,2}	X11X {1,2}
_ 1110 _{1,2}	11X0 {1,2}	11XX {1}
1111 {1,2,3}	011X {1,2,3}	
	110X {1}	
	X111 {1,2,3}	
	11X1 {1}	
	111X {1,2}	

Рисунок 4.9 - склеювання та поглинання імплікант

Подальше склеювання не можливе, тому переходимо до побудови таблиці покриття (таблиця 4.4).

Терми, що не поглинулись, внесемо у стовпчик, а у рядок внесемо конституенти одиниці для кожної функції. Виконаєм перекриття конституент Отримаємо МДНФ:

$$\begin{cases} f_1 = \overline{X_4} \overline{X_3} \overline{X_2} \vee \overline{X_2} \overline{X_1} \vee \overline{X_4} \overline{X_1} \vee X_4 X_3 \\ f_2 = \overline{X_4} \overline{X_3} \overline{X_2} \vee \overline{X_4} X_2 \overline{X_1} \vee X_3 X_2 \\ f_3 = \overline{X_3} \overline{X_2} X_1 \vee X_3 X_2 X_1 \vee \overline{X_4} \overline{X_1} \end{cases}$$

3.11 Спільна мінімізація заперечень функцій f1, f2, f3

Виконаємо мінімізацію заперечень невизначених систем функцій f_1 , f_2 , f_3 , заданих таблицею істинності (технічного завдання ІАЛЦ.463626.002 ТЗ) методом методом Квайна-Мак-Класкі.

Зм.	Арк.	№ докум.	Підп.	Дата

Користуючись таблицею істинності випишемо куб ${\rm K}^0$, після склеювання отримуємо куби ${\rm K}^{-1}$ та ${\rm K}^{-2}$, виконуємо поглинання(рисунок 4.10).

 f_1 f₃ f_2 0010 0000 1100 1111 1100 {1,2,3} ٧ V V V V 00X0 {1,2,3} $\langle v \rangle \langle v \rangle$ $\langle \rangle \langle \rangle$ 000X {1,2} V V V X100 {1,3}

V

V

٧

V

V

VVV

(V)

(V)

Таблиця 4.4 - таблиця покриття систем функцій

V

 $\langle V \rangle \langle V \rangle$

٧

V

V

VV

V

{1,2,3}

{1,2}

{1,2,3}

{1,2,3}

{1,2}

{1}

V

{1}

0XX0 \ \{1,3\}

X1X0 {1}

0X10

11X0

011X

X111

XX00

X11X

11XX

Подальше склеювання не можливе, тому переходимо до побудови таблиці покриття (таблиця 4.5).

 \bigcirc

Терми, що не поглинулись, запишемо у стовнчик, а у рядок запишемо конституенти нуля для кожної функції. Виконаємо перекриття конституент.

Отримаємо МДНФ:

$$\begin{cases}
f_1 = \overline{X_4} X_3 \overline{X_2} \vee \overline{X_3} X_2 X_1 \vee X_4 \overline{X_3} X_1 \vee X_4 \overline{X_3} X_2 \\
f_2 = \overline{X_3} X_2 X_1 \vee X_3 \overline{X_2} \vee X_4 \overline{X_3} \\
f_3 = \overline{X_3} X_2 X_1 \vee X_3 X_2 \overline{X_1} \vee \overline{X_2} X_1 \vee X_4 \overline{X_3}
\end{cases}$$

3.12 Одержання операторних форм для комбінаційних схем

Для переходу до інших елементних базисів використовуємо правило де Моргана:

$$X \vee Y = \overline{\overline{X} \cdot \overline{Y}};$$
$$\overline{X \cdot Y} = \overline{X} \vee \overline{Y}.$$

Зм	Δηκ	№ доким	Підп	Лата

K ⁰	K ¹	K ²
0001 {3}	X001 {3}	X0X1 {3}
0100 {1,2}	X100 {2}	X10X {2}
1000 {2,3}	0X01 {3}	XX01 {3}
0011 {1,2,3}	1X00 {2,3}	1X0X {2}
0101 {1,2,3}	00X1 {3}	1XX0 {3}
0110 {2,3}	01X0 {2}	X0X1 {3}
1001 {1,2,3}	10X0 {2,3}	01XX {2}
1010 {1,2,3}	010X {1,2}	10XX {2,3}
1100 {2,3}	100X {2,3}	1XX0 {3}
1011 {1,2,3}	X011 {1,2,3}	01XX {2}
0111 {1,2}	X101 {2,3}	10XX {2,3}
1101 {2,3}	X110 {3}	X10X {2}
1110 {3}	0X11 {1,2}	1X0X {2,3}
	1X01 {2,3}	\$
	1X10 {3}	
	01X1 {1,2}	
	10X1 {1,2,3}	
	11X0 {3}	
	101X {1,2,3}	
	110X {2,3}	

Рисунок 4.10. Склеювання і поглинання імплікант

Зм.	Арк.	№ докум.	Підп.	Дата

Таблиця 4.5 таблиця покриття систем заперечень функцій

3	Olll		8:	5)		. 10	7		8		8 8	9	9				8 8	8	7
	1011		82	S 1	200	_			8:		8 8		- 3	7	_	8 3	8 8	7	
	1101			3	_					_	_	7			\$		Z		
	01.01										7								\leq
Ęj	1001			9						_		7			7			7	
	0001			8 8							3 3				7				- 7.5
	1010	7		\$ S	5 8	7			2.	\$					*	*			
	1100		53.	2	\leq		Ä		i.i.	2	0	_	i i				0 9		100
	1000						ñ				0 0	_		7			0 0		- 10
	1011					_			*				\overline{z}	- 20	7			_	
	1101				\leq				No.	_	_						\leq		- 12
	01.01						i		N/		_	- 1					\subseteq		
92238	1001								S.Y	7	0 0	- 10			_			_	- 12
f_2	0001			F 7	- 3					8					7				
	1010	7		_		_			_							_			
	0010			_					50				\leq			_			
	1100		SV		7			_	50										
	1101				\subseteq					9	9								
	01.01						12		0		(2)		1/2				(0,	- 3	50
F	1001		8: :	S 1		. 2	. 3			9		- 10	. 3			8 -	8 8		: 3
	1010	7	ė:	_		- 2	- 0		7		8 8	7	- 0		8	S	8 8		: 3
	1100		82		7			7	8		3 8	- 9	. 3		G 3		8 8	* *	: 3
	-	3}	7		33	1		02.00	1000	33	33						~	1	S 511
		{1,2,3}	{2,3}	(1,2)	{1,2,3}	{2,3}	(3)	11,23	11,23	112,33	112,	(3)	(2)	(3)	{2}	123	{2,3}	{2,3}	(3)
		1010	0110	XOLO	X011	X101	OLLX	UXII	1110	10X1	101X {1,2,3}	XOX1	XOLX	LOXX	1X0X (2)	DIXX	XXOL	1X01	1X10

Зм.	Арк.	№ докум.	Підп.	Дата

IAЛЦ.463626.004 ПЗ

Арк.

$$\begin{cases} f_1 = (X_4 \sqrt{X}_3 \vee X_2) \cdot (X_3 \sqrt{X}_2 \sqrt{X}_1) \cdot (\overline{X}_4 \vee X_3 \sqrt{X}_1) \cdot (\overline{X}_4 \vee X_3 \sqrt{X}_2) \\ f_2 = (X_3 \sqrt{X}_2 \sqrt{X}_1) \cdot (\overline{X}_3 \vee X_2) \cdot (\overline{X}_4 \vee X_3) \\ f_3 = (X_3 \sqrt{X}_2 \sqrt{X}_1) \cdot (\overline{X}_3 \sqrt{X}_2 \vee X_1) \cdot (X_2 \sqrt{X}_1) \cdot (\overline{X}_4 \vee X_3) \end{cases}$$
 [ABO/I]

$$\begin{cases} f_1 = \overline{(\overline{X_4} \vee \overline{X_3} \vee X_2) \vee (\overline{X_3} \vee \overline{X_2} \vee \overline{X_1}) \vee (\overline{X_4} \vee X_3 \vee \overline{X_1}) \vee (\overline{X_4} \vee X_3 \vee \overline{X_2})} \\ f_2 = \overline{(\overline{X_3} \vee \overline{X_2} \vee \overline{X_1}) \vee (\overline{X_3} \vee \overline{X_2}) \vee (\overline{X_4} \vee \overline{X_3})} \end{cases}$$
 [ABO-HE/ABO-HE]
$$f_3 = \overline{(\overline{X_3} \vee \overline{X_2} \vee \overline{X_1}) \vee (\overline{X_3} \vee \overline{X_2} \vee \overline{X_1}) \vee (\overline{X_2} \vee \overline{X_1}) \vee (\overline{X_4} \vee \overline{X_3})}$$

На основі операторної форми заданого елементного базису [I/ABO-HE] будуємо схему 1 системи перемикальних функцій f_1 , f_2 , f_3 (рисунок 4.11).

$$\begin{cases}
f_1 = \overline{(\overline{X_4} X_3 \overline{X_2} \vee \overline{X_3} X_2 X_1 \vee X_4 \overline{X_3} X_1)} \vee X_4 \overline{X_3} X_2 \\
f_2 = \overline{\overline{X_3} X_2 X_1 \vee X_3 \overline{X_2} \vee X_4 \overline{X_3}} \\
f_3 = \overline{(\overline{X_3} X_2 X_1 \vee X_3 \overline{X_2} \vee \overline{X_2} \overline{X_1})} \vee X_4 \overline{X_3}
\end{cases} [I/ABO-HE]$$

На основі операторної форми заданого елементного базису [I/AБO-HE] будуємо схему 2 системи перемикальних функцій f_1 , f_2 , f_3 (рисунок 4.12).

$$\begin{cases} f_1 = \overline{(\overline{(X_4 \vee \overline{X}_3 \vee X_2) \vee (X_3 \vee \overline{X}_2 \vee \overline{X}_1) \vee (\overline{X}_4 \vee X_3 \vee \overline{X}_1)}) \vee (\overline{X}_4 \vee X_3 \vee \overline{X}_2)} \\ f_2 = \overline{(\overline{X}_3 \vee \overline{X}_2 \vee \overline{X}_1) \vee (\overline{X}_3 \vee X_2) \vee (\overline{X}_4 \vee \overline{X}_3)} \end{cases} [ABO-HE/ABO-HE]$$

$$f_3 = \overline{(\overline{(X_3 \vee \overline{X}_2 \vee \overline{X}_1) \vee (\overline{X}_3 \vee \overline{X}_2 \vee \overline{X}_1) \vee (\overline{X}_2 \vee \overline{X}_1)}) \vee (\overline{X}_4 \vee X_3)}$$

3.13 Одержання операторних форм для реалізації на ПЛМ

Для програмування на ПЛМ використовують нормальні форми [I/AБО та I/AБО-HE].

Побудуймо, мнемонічну схему та карту програмування, використовуючи нормальні форми [I/A60].

Зм.	Арк.	№ докум.	Підп.	Дата

Рисунок 4.11. Схема 1 системи функці \bar{u} f_1 , f_2 , f_3

Рисунок 4.12. Схема 2 системи функцій f_1 , f_2 , f_3

Зм.	Арк.	№ докум.	Підп.	Дата

Всього 4 змінні, 3 функції, 8 термів. Оберемо ПЛМ(4,3,8).

Позначимо терми системи перемикальних функцій.

$$P_2 = \overline{X_2} \overline{X_2}$$

$$P_3 = \overline{X_4} \overline{X_1}$$

$$P_{L}=X_{L}X_{3}$$

$$P_5 = \overline{X_4} X_2 \overline{X_1}$$

$$P_6 = X_3 X_2$$

$$P_7 = X_3 \overline{X}_2 \overline{X}_1$$

$$P_8 = X_3 X_2 X_1$$

Побудуємо мнемонічну схему (рисунок 4.13) та таблицю програмування Π ЛМ ($ma\delta$ лиця 4.6).

Рисунок 4.13. Мнемонічна схема ПЛМ на базисі [І/АБО]

Таблиця 4.6. Карта програмування на базисі [І/АБО]

Входи				№ шини	Виходи		
X ₄	X_3	X_2	X ₁	P_{i}	Y ₁	Y ₂	Y ₃
0	0	0	_	P_1	1	1	0
		0	0	P_2	1	0	0
0	_		0	P_3	1	0	1
1	1			P ₄	1	0	0
0	_	1	0	P_5	0	1	0
_	1	1	_	P_6	0	1	0
	1	0	0	P_7	0	0	1
	1	1	1	P ₈	0	0	1

Зм.	Арк.	№ докум.	Підп.	Дата

Побудуймо, мнемонічну схему та карту програмування, використовуючи нормальні форми [І/АБО-НЕ].

$$\begin{cases} f_1 = \overline{(\overline{X_4}X_3\overline{X_2} \vee \overline{X_3}X_2X_1 \vee X_4\overline{X_3}X_1)} \vee X_4\overline{X_3}X_2 \\ f_2 = \overline{\overline{X_3}X_2X_1 \vee X_3\overline{X_2} \vee X_4\overline{X_3}} \\ f_3 = \overline{(\overline{X_3}X_2X_1 \vee X_3X_2\overline{X_1} \vee \overline{X_2}X_1)} \vee X_4\overline{X_3} \end{cases}$$

Всього 4 змінні, 3 функції, 8 термів. Оберемо ПЛМ(4,3,8).

Позначимо терми системи перемикальних функцій.

 $P_1 = \overline{X}_4 X_3 \overline{X}_2$

 $P_{2}=\overline{X}_{3}X_{2}X_{1} \qquad P_{3}=X_{4}\overline{X}_{3}X_{1} \qquad P_{4}=X_{4}\overline{X}_{3}X_{2}$ $P_{6}=X_{4}\overline{X}_{3} \qquad P_{7}=X_{3}X_{2}\overline{X}_{1} \qquad P_{8}=\overline{X}_{2}X_{1}$

 $P_5 = X_3 \overline{X_2}$

Побудуємо мнемонічну схему (рисунок 4.14) та таблицю програмування Π /М (та δ лиця 4.7).

Рисунок 4.14. Мнемонічна схема ПЛМ на базисі [І/АБО-НЕ]

Зм.	Арк.	№ докум.	Підп.	Дата

Таблиця 4.7. Карта програмування на базисі [І/АБО-НЕ]

Входи				№ шини	Виходи		
X ₄	X_3	X_2	X ₁	P_{i}	Y ₁	Y ₂	Y ₃
0	1	0		P ₁	1	0	0
	0	1	1	P_2	1	1	1
1	0		1	P_3	1	0	0
1	0	1		P ₄	1	0	0
_	1	0		P_5	0	1	0
1	0			P_6	0	1	1
	1	1	0	P ₇	0	0	1
		0	1	P ₈	0	0	1

4 Висновок

Під час виконання курсової роботи були узагальнені та систематизовані знання за курс комп'ютерної логіки, а саме складання комбінаційних та послідовністних схем

У ході роботи був виконаний синтез логічних схем на елементарному базисі ЗАБО-НЕ, ЗІ. У цифровому автоматі використовувалися тригери типу ЈК.

У даній курсовій роботі було виконано структурний та абстрактний синтез автомата по заданій графічній схемі алгоритму. Було зроблено подання функції у канонічних формах алгебр Буля, Пірса, Шефера та Жегалкіна, був зроблений аналіз функції на приналежність до п'яти передповних класів.

У ході проектування курсової роботи були покращені навички мінімізації функцій методами Квайна-Мак-Класкі, методом невизначених коефіцієнтів та методом діаграм Вейча, було зроблено спільну мінімізацію функцій для зменшення складності логічних схем за Квайном.

Операторні форми функцій були побудовані у симуляторі моделювання логічних схем AFDK 3.08. Програмний комплекс дав очікувані позитивні результати.

Внаслідок креслення функціональної схеми автомату були покращені знання з інженерної графіки та навички роботи з векторними графічними редакторами. Кресленик схеми автомату поданий у розділі «Керуючий автомат. Схема електрична функціональна».

Покращилися навички роботи з текстовим редактором, роботи з діючими державними стандартами та конструкторською документацією.

Отриманий цифровий автомат може бути використаний у галузі обчислюваної техніки.

Зм.	Арк.	№ докум.	Підп.	Дата

5 Список літератури

- 1) Жабін В.І., Жуков І.А., Клименко І.А., Ткаченко В.В. Прикладна теорія цифрових автоматів: Навч. Посібник.-К.:Книжкове вид-во НАУ, 2007.-364с.
- 2) Конспект лекцій з комп'ютерної логіки.

Ŀ	Зм.	Арк.	№ докум.	Підп.	Дата