A Book of Abstract Algebra (2nd Edition)

Chapter 33, Problem 6EC	Bookmark	Show all steps: ON

Problem

Let p be a prime number, and ω a primitive pth root of unity in the field F.

Explain why $b^{sp} = a^{sm}$. Use this to show that $(b^s a^t)^p = a$.

Step-by-step solution

Step 1 of 4

Here, objective is to explain why $b^{sp} = a^{sm}$ and prove that $(b^s a^t)^p = a$.

Comment

Step 2 of 4

Consider the polynomial $x^p - a$.

$$x^p - a = 0$$

$$x = \sqrt[p]{a} \omega$$

Then, the root $d = \sqrt[p]{a}$, ω is the p^{th} root of unity

Comment

Step 3 of 4

Consider the polynomial $x^p - a \in F(x)$

P is a prime and $x^p - a$ is reducible in F(x)

Let, d_1, d_2, \dots, d_p are the roots of $x^p - a$

$$x^{p} - a = (x - d_{1})(x - d_{2}).....(x - d_{p})$$

 $p(x) = (x - d_1)(x - d_2)....(x - d_m)$. p(x) is the product of m number of these factors.

Since, degree p(x) = m

Let the Constant term of above equation is b,

$$b = (d_1 d_2 d_m)$$

$$b = \sqrt[p]{a} \sqrt[p]{a}$$

$$b = \omega^k (\sqrt[p]{a})^m$$

$$b = \omega^k d^m$$

$$b = \left(\sqrt[p]{a}\right)^m \qquad (\because \omega^k = 1)$$

$$b^p = a^m$$

 $b^{sp} = a^{sm}$

Comment

Step 4 of 4

Consider
$$(b^s a^t)^p = (b^{sp} a^{tp})$$

$$= (a^{sm} a^{tp})$$

$$= a^{sm+tp}$$

$$= a \qquad (\because sm + tp = 1)$$

Then, $(b^s a^t)^p = a$

Hence, proved

Comment