

Statistical and machine learning methods for engineering mechanics

Wengang Mao (Professor at Marine Technology)
Department of Mechanics and Maritime Sciences,
Chalmers University of Technology,
Goteborg, Sweden

Outline of this lecture

- Course objectives
- Teaching format, examination and course schedule
- Definition of various terminologies (AI, ML, Data Science, Deep learning, ...)
- Overview of Machine learning techniques
- Course contents on ML methods
- Other matters

Course objectives

- Teach theories of statistical and machine learning methods
- Deal with two types of data, i.e., independent observations from multi-variables with uncertainties/noises, and strongly dependent observations of time series signals.
- Some practical projects to show how to use the knowledge in this course.
- Since this is a PhD course, it will rather run in a little fast pace. We hope that you should actively seek for literature to understand some concept by yourself. Or I can give your reference for further reading.

2021-10-27

Teaching format and examination

TEACHING, LANGUAGE AND EXAMINATION

LECTURE HOURS AND ROOMS

DISCUSSIONS

Teaching Format

- Mainly composed of lectures (80%): theory + examples
- Project assignments (20% as homework)
- Small exercise when request

Program/language for ML algorithms

- Python: sci-kit + several ML libraries
- R: statistical learning packages
- Others are also encouraged: Tensorflow, Pytorch, Keras

Examination and lectures

- Lectures mainly in the campus (2-4 hours with flexible times and locations)
- Examination is the presentation for the project assignment and seminars

4 2021-10-27

Course schedule and examination

Project assignment (homework)

- 3 projects assignments will be handed out
- You choose 2 of them to finish.
- Replace one with your own project.

Type of class	Date	Time	Room	Teachers	Contents
Week 12, 2021: stu	dy week 1				
Lecture 1	Wed 24/3	14.15-16.00	Zoom	WM	Course contents: Introduction to the course, learning objectives, and criteria for examination
Week 13, 2021: stu	dy week 2				
Lecture 2	Mon 29/3	10.15-12.00	Zoom	WM	Regression and statistical interpretation
Lecture 3	Wed 31/3	14.15-16.00	Zoom	WM	Polynomial and Spline regression
Week 14, 2021: stu	dy week 3				
Lecture 4	Wed 7/4	14.15-16.00	Zoom	WM	Model parameter estimation - gradient
Week 15, 2021: stu	dy week 4				
Lecture 5	Mon 12/4	10.15-12.00	Zoom	WM	Generalized Linear Models and Additive models
Lecture 6	Wed 14/4	14.15-16.00	Zoom	WM	Logistical regression and classification
Week 16, 2021: stu	dy week 5				
Lecture 7	Mon 19/4	10.15-12.00	Zoom	WM	ML algorithms 1- neural network
Lecture 8	Wed 21/4	14.15-16.00	Zoom	WM	ML algorithms 2 - support vector machines
Week 17, 2021: stu	dy week 6				
Lecture 9	Mon 26/4	10.15-12.00	Zoom	WM	ML algorithms 3 - Decision trees and boost methods
Lecture 10	Wed 28/4	14.15-16.00	Zoom	WM	ML algorithms 4 – XGBoost for regression and examples
Week 18, 2021: stu	dy week 7				
Lecture 11	Mon 3/5	10.15-12.00	Zoom	Anders	Time Series 1 - Transformation and Gaussian process
Lecture 12	Wed 5/5	14.15-16.00	Zoom	WM	Time Series 2 – Basic properties of random process
Week 19, 2021: stu	dy week 8				
Lecture 13	Mon 10/5	10.15-12.00	Zoom	WM	Time Series 3 - Time series analysis and model exploration
Lecture 14	Wed 12/5	14.15-16.00	Zoom	WM	Time Series 4 – Autoregressive integrated Moving Average model (1)
Week 20, 2021: stu	dy week 8				
Lecture 15	Mon 17/5	10.15-12.00	Zoom	WM	Time Series 5 - Autoregressive integrated Moving Average model (2)
Lecture 16	Wed 19/5	10.15-12.00	Zoom	WM	Time Series 6 – A few examples of using ARIMA model applications

Definition of various terminologies (Al, ML, Data Science, Deep learning, ...)

6 2021-10-27

- Al is a field of development of intelligent machines that work and react like humans
 - See like a human: image processing;
 - Listening like a human: speech recognition
 - o Feel like human: Sensing, data collection
 - Act like a human: autonomous driving, custom support
 - Adapt like a human: decision make, obstacle avoidance

Al, ML, Deeplearning, Data Science ...

- AI is a program that can sense, reason (model), act and adapt for certain applications. The process is normally done by a machine or a non-living artificial.
- ML refers to algorithms/methods that can establish models to describe performance, scenarios, systems from data
- Deep Learning, a subset or advancement of ML (neural network models), is used when ML cannot fully deliver desired outcomes, e.g., dataset/features too large.
- **Data Science** is about data, a multidisciplinary field focused on drawing INSIGHTS that can help us make better decisions. It is the basis for the AI, ML, Deep Learning, etc.

2021-10-27

AI (history)

The Turing Test (1950s)

- If a machine exhibits intelligent behavior equivalent to, or indistinguishable from, that of a human.
 - o For example, a three-person game "imitation game": Can the evaluator "C" distinguish the human and the machine.
- Google Al Duplex: who is talking to you?

Alan Turing

AI, ML, Deep Learning (history)

10 2021-10-27

Overview of Machine learning techniques

202**2₹/0£2**02

Examples of Machine learning (1)

Examples of Machine learning (2)

Examples of Machine learning (3)

Based on mechanics data, ML can help us build models to predict performance and estimate responses

Machine learning definition

- Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed (Arthur Samuel 1959).
- Well-posed Learning Problem: A computer program is said to *learn* from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E (Tom Mitchell 1998).

- Data types and randomness
 - · Data/observations are often random variables
 - Categorical, logical or numerical data
 - Correlated or independent
 - Retrain your model (with train/test splits) you want to generate a new prediction.
 - The uncertainty of the forecast is just as important as, or even more so, than the forecast.

Types of machine learning

The ML types depends on:

- Learning task of the ML methods
- Discrete the task into mathematical notations
- Information → data
- Input data types (logistic data, categorical data,
- Required output/prediction

Supervised VS unsupervised ML

Classification VS clustering

Supervised	Unsupervised	
Classification	Clustering	
known number of classes based on a training set used to classify future observations	unknown number of classes no prior knowledge used to understand (explore) data	

Re-inforcement learning

Error = (target output - actual output)

Objective: Get as much reward as possible

The key features of reinforcement learning:

- RL finds a compromise through trial and error between exploring new environment and the application of existing knowledge.
- RL explicitly considers the whole problem of a goal-directed agent interacting with an uncertain environment.
- All RL agents have explicit goals, can sense aspects of their environments, and can choose actions to influence their environments.
- The agent should operate in significant uncertain environment.

Game playing

Control Problems

ML – supervised machine learning

In particular, we will focus on

- Supervised machine learning with clear learning outcome/objectives as numbers
- Formulate the learning problem by mathematical models includes:
 - ✓ Input parameters and data
 - ✓ Possible formulas, relationship either as explicit or black box
 - ✓ Clear output variables and values
- Data be of the numerical values (forces, coefficients in a mechanics system)
- Data (values) can be collected independently or in time series format

2021-10-2

Two supervised ML problems

Establish a model to predict of an engineering mechanics model

- Supervised Learning: "right answers" given (or measured)
- ML Regression: to establish a model
- Prediction: use the model and new input to get new output

Two examples of supervised ML methods:

- Predict a ship speed-power model
- Predict a ship's motion (parametric rolling)

Exmample 1: ML for power prediction

- X: ship speed
- Y: ship resistance/power measured
- Both variable may contain errors (random variables)

Example 2: ML for parametric rolling forecast

The two figures

just for illustration

purpose!

Diagram Showing Selection of Wave Length and Ahead Speed

Method 1: the Mathieu Equation

$$\ddot{\phi}(t) + \frac{B}{I_x}\dot{\phi}(t) + \frac{\Delta}{I_x}GM_i(t)\,\phi(t) = 0$$

Course contents on ML methods

202**27/092**02

Course contents with focus on ML (1)

Part I: Basic terminologies of Machine Learning

- OAI, Machine Learning, Data Science, statistical learning
- OSupervised machine learning, Unsupervised, classification, data mining, Clustering
- oUseful toolbox (Python sci-kit learning, R, Tensorflow, Skaggle, etc.)

Part II: Common supervised learning (independent data)

- oLinear regression, Polynominal regression
- Spline regression, Logistical regression
- Support vector machine
- Decision trees, XGBoost, Neural network

Course contents with focus on ML (2)

- Part III: Practical issues to use the common ML methods
 - Feature selection
 - OModel selection
 - Learning diagnostics
 - ○Cross validation, learning rate, training/test/CV dataset
- Part IV: Some more advanced statistical learning methods
 - Generalized additive models (GAM)
 - Generalized linear models (GLM)
 - OMixed effect models (MEM)

Course contents with focus on ML

- Part V: ML for time series signals (correlated data signal)
 - Basic statistics and correlation
 - oTransformation (to Gaussian): Lognormal, exponential, Hermite polynomials
 - OMoving average, AR, ARIMA
- Part VI: Spatial-temporal modelling of Random field (optional)
 - Prepare for data
 - Transformation to Gaussian
 - Model the correlation structure
 - Conditional prediction and simulation

Course literature

- Hastie T., Ribshirani R. and Friedman J. (2003). The elements of statistical learning,
 Data mining, inference and prediction. Springer.
- Shalizi, C.R. (2019). Advanced data analysis from an Elementary point of view. Preprint.
- Shumway, R.H. and Stoffer, D.S. (2016). Time series analysis and its applications with R examples, Fourth edition. Springer.
- Wei, W.W.S. (2006). Time series analysis Univariate and multivariate models, Second edition. Pearson Addison Wesley.

202**2₹√0€/27**0

Other ML algorithms/methods

- 1. Linear regression
- 2. Kernel ridge regression
- 3. Support Vector Machines
- 4. Stochastic Gradient Descent
- 5. Nearest Neighbors
- 6. Decision Trees (XGboost)
- 7. Ensemble methods
- 8. Multiclass and multilabel algorithms
- 9. Neural network models (supervised)

99 202**27/0**922021

Statistical learning algorithms

- Generalized linear model
- Spline models
- Generalized additive model
- Mixed effect model
- Gaussian processes/fields
- Autoregressive model
- Moving average model

Other matters

31 202**2**7/**0**9**2**7021

CHALMERS UNIVERSITY OF TECHNOLOGY