Instituto Federal de Educação, Ciência e Tecnologia do Maranhão Campus São Luís - Monte Castelo Curso de Sistemas de Informação Disciplina Lógica e Matemática Computacional - Prof. Gentil Cutrim Avaliação 1 - 02/05/2023

Aluno:

- 1) [0,5pt] Sendo A e B dois conjuntos quaisquer, é correto afirmar que se
 - a) A \cup B = A, então B é subconjunto de A.
 - b) A B = A, então necessariamente B é vazio.
 - c) A B = B A, então as cardinalidades de A e B são distintas.
 - d) $A \cap B = A \cup B$, então as cardinalidades de A e B são distintas.
 - e) $A \cap B = A$, então B é o conjunto vazio e A é um conjunto não vazio.

Resposta: Letra A

2) [1pt] Uma pesquisa em um supermercado mostrou que, entre 200 consumidores, 75 compram uma marca A de sabão em pó, 40 compram uma marca B e 30 compram uma marca C. Dos entrevistados, 10 compram as três marcas, 20 compram as marcas A e B, 15 compram as marcas A e C e 20 compram as marcas B e C. Com base nestes dados, determine quantos consumidores compraram as marcas A ou C, mas não a marca B.

Resposta: 60

3) [1pt] Diagramas de Venn podem ser usados para três ou mais conjuntos. Hachure (marque com caneta) no diagrama de Venn abaixo de forma a representar a seguinte fórmula: $A - (B \cap C)^{C}$.

- 4) Responda as questões sobre lógica:
 - a) [0,5pt] Escreva a negação da frase "Todos os brasileiros gostam de samba":

Resposta: Existem brasileiros que não gostam de samba.

b) [0,5pt] A frase a seguir é um conhecido ditado popular: "Se não tem cão então caça com gato". Uma frase logicamente equivalente é:

Resposta: Tem cão ou caça com gato

Obseravação: $\sim p \rightarrow q$ é equivalente a $\sim (\sim p)$ OR q

c) [0,5pt] Em uma indústria todos os funcionários têm mais de 30 anos e nenhum funcionário tem mais de 70 anos. A negação dessa proposição é:

Resposta: Pelo menos um funcionário tem menos de 30 anos ou algum funcionário tem mais de 70 anos

Observação: A negação de (p \land q) é (~p \lor ~q), Considere para isso os quantificadores Universal e Existencial.

d) [0,5pt] Julgue o item:

Suponha que seja válida a seguinte proposição:

p: Se Aldo não tem um número de CPF, então ele não pode viajar nem pode abrir uma empresa.

Nessa situação, se Aldo pode abrir uma empresa, então ele já obteve o seu número de CPF.

() Certo () Errado

Resposta: Certo

Observação: $p \rightarrow q$ é equivalente a $not(q) \rightarrow not(p)$ not (c) \rightarrow (not (v) e not (e)) é equivalente a (v OR e) -> c e) [0,5pt] A negação de p \land (p \lor q) é equivalente a:

Resposta: ~p (por Lei da Absorção)

f) [0,5pt] Simplificar a proposição, "ao máximo", utilizando as leis tratadas em sala de aula:

```
~ (p ∨ q) ∨ (~p ∧ q)

Resposta:
(~p and ~q) or (~p and q)
~p and (~q or q)
~p
```

- 5) [0,5pt] Um argumento válido para: "Se João estudou, então Paulo foi aprovado no concurso. Se Paulo foi aprovado no concurso, então Ana não é dentista", é:
 - a) Se João estudou, então Ana é dentista.
 - b) Se João não estudou, então Ana não é dentista.
 - c) Se João não estudou, então Ana é dentista.
 - d) Se João estudou, então Ana não é dentista.
 - e) Se João não estudou, então Paulo não foi aprovado no concurso.

Resposta: Letra D (Lei do Silogismo)

- 6) [1pt] A partir do conjunto de premissas $\{A \to X, C \leftrightarrow X, X \to G\}$, é possível concluir que
 - a) $A \rightarrow C$.
 - b) $C \rightarrow A$.
 - c) $X \rightarrow \neg A$.
 - d) $G \rightarrow \neg A$.
 - e) $\neg X \rightarrow \neg G$.

Resposta: Letra A

$$A \rightarrow X$$

 $C \leftrightarrow X$, assim: $(C \rightarrow X) \land (X \rightarrow C)$
 $X \rightarrow G$
Portanto, $(A \rightarrow C)$, $(A \rightarrow G)$

- 7) [1pt] Qual alternativa apresenta uma tautologia?
 - a) $(A \wedge B) \vee (A \wedge \neg B)$
 - b) $(A \rightarrow B) \land (\neg A \land \neg B)$
 - c) $(A \land B) \leftrightarrow (B \leftrightarrow A)$
 - d) $(A \rightarrow B) \leftrightarrow (\neg B \rightarrow \neg A)$
 - e) $(\neg A \rightarrow \neg B) \lor \neg (A \rightarrow B)$

Resposta: Letra D

A	В	$A \rightarrow B$	¬ B	¬ A	(¬ B) → (¬ A)	(A → B) ↔ ((¬ B) → (¬ A))
V	V	V	F	F	V	V
V	F	F	V	F	F	V
F	V	V	F	V	V	V
F	F	V	V	V	V	V

8) [1pt] Considere seis cidades representadas na ilustração abaixo pelas letras A (São Paulo), B (Brasília), C (São Luís), D (Manaus), E (Recife) e F (Florianópolis). Em uma situação em que um voo de uma empresa de aviação deverá passar pelas seis cidades, passando por cada uma apenas uma vez e começando pelas cidades A (São Paulo) e Brasília, respectivamente, quantos caminhos são possíveis?

Resposta: 1.1.4.3.2.1 = 24 caminhos possíveis

9) [1pt] Um endereço de rede do tipo IPv4 é formado por 32 bits divididos em 4 octetos (8 bits cada). Eles são representados por números de 0 a 255, a exemplo do endereço 217.114.22.150.

Considerando isso, quantos números IPs diferentes podemos ter?

Resposta: 256⁴ ou 2³²