Started on	Tuesday, 23 April 2024, 10:56 AM
State	Finished
Completed on	Tuesday, 23 April 2024, 11:02 AM
Time taken	6 mins 25 secs
Grade	10.00 out of 10.00 (100 %)

Question 1
Correct
Mark 1.00 out of 1.00

Solve the knapsack problem for the given parameters.

$$n = 4, c = 6$$

 Item (i)
 1
 2
 3
 4

 w(i)
 2
 1
 5
 4

 p(i)
 9
 7
 15
 14

Which of the items are included in the optimal solution?

Select one or more:

- a. 1
 ✓
- b. 2
- _ c. 3
- ✓ d. 4 ✓

Your answer is correct.

The correct answers are: 1, 4

Question 2	
Correct	
Mark 1.00 c	out of 1.00
Dynami	c Programming is often used for (choose all that apply)
Select o	one or more:
a.	Non-polynomial solution problems
b.	Subproblems where resources are shared
✓ c.	Problems previously solved using divide and conquer that have overlapping subproblems
d.	Optimization problems that involve making a choice that leave one or more subproblems to be solved
Your an	swer is correct.
that l ea	rect answers are: Optimization problems that involve making a choice ve one or more subproblems to be solved, Problems previously solved ivide and conquer that have overlapping subproblems
Question 3	
Mark 1.00 c	out of 1.00
Which o	of the following statements is true about the knapsack prob l em?
a.	It is a decision problem where the goal is to determine the maximum weight that can be put into a knapsack of a given capacity
O b.	It is a decision problem where the goal is to determine if a given set of items can be put into a knapsack of a given capacity
O c.	It is an optimization problem where the goal is to minimize the weight of items that can be put into a knapsack of a given capacity
d.	It is an optimization problem where the goal is to maximize the weight of items that can be put into a knapsack of a given capacity
Your an	swer is correct.

The correct answer is: It is an optimization problem where the goal is to maximize the weight of items that can be put into a knapsack of a given capacity

Correct Mark 1.00 out of 1.00 Every recurrence can be solved using the Master Theorem Select one: True False ✓ The correct answer is 'False'. Question 5 Correct Mark 1.00 out of 1.00 The fractional knapsack problem can be solved using which of the following techniques? Select one: a. Backtracking b. Greedy algorithm ✓ c. Dynamic programming d. Branch and bound	
Every recurrence can be solved using the Master Theorem Select one: True False ✓ The correct answer is 'False'. Question 5 Correct Mark 1.00 out of 1.00 The fractional knapsack problem can be solved using which of the following techniques? Select one: a. Backtracking b. Greedy algorithm ✓ c. Dynamic programming	
Select one: ☐ True ☐ False ✔ The correct answer is 'False'. Question 5 Correct Mark 1.00 out of 1.00 The fractional knapsack problem can be solved using which of the following techniques? Select one: ☐ a. Backtracking ☐ b. Greedy algorithm ✔ ☐ c. Dynamic programming	
Select one: ☐ True ☐ False ✓ The correct answer is 'False'. Question 5 Correct Mark 1.00 out of 1.00 The fractional knapsack problem can be solved using which of the following techniques? Select one: ☐ a. Backtracking ☐ b. Greedy algorithm ✓ ☐ c. Dynamic programming	
 True False ✓ The correct answer is 'False'. Question 5 Correct Mark 1.00 out of 1.00 The fractional knapsack problem can be solved using which of the following techniques? Select one: a. Backtracking b. Greedy algorithm ✓ c. Dynamic programming 	
 False ✓ The correct answer is 'False'. Question 5 Correct Mark 1.00 out of 1.00 The fractional knapsack problem can be solved using which of the following techniques? Select one: a. Backtracking b. Greedy algorithm ✓ c. Dynamic programming 	
The correct answer is 'False'. Question 5 Correct Mark 1.00 out of 1.00 The fractional knapsack problem can be solved using which of the following techniques? Select one: a. Backtracking b. Greedy algorithm ✓ c. Dynamic programming	
The correct answer is 'False'. Question 5 Correct Mark 1.00 out of 1.00 The fractional knapsack problem can be solved using which of the following techniques? Select one: a. Backtracking b. Greedy algorithm ✓ c. Dynamic programming	
Question 5 Correct Mark 1.00 out of 1.00 The fractional knapsack problem can be solved using which of the following techniques? Select one: a. Backtracking b. Greedy algorithm c. Dynamic programming	
Correct Mark 1.00 out of 1.00 The fractional knapsack problem can be solved using which of the following techniques? Select one: a. Backtracking b. Greedy algorithm c. Dynamic programming	
Correct Mark 1.00 out of 1.00 The fractional knapsack problem can be solved using which of the following techniques? Select one: a. Backtracking b. Greedy algorithm c. Dynamic programming	
Correct Mark 1.00 out of 1.00 The fractional knapsack problem can be solved using which of the following techniques? Select one: a. Backtracking b. Greedy algorithm c. Dynamic programming	
The fractional knapsack problem can be solved using which of the following techniques? Select one: a. Backtracking b. Greedy algorithm c. Dynamic programming	
techniques? Select one: a. Backtracking b. Greedy algorithm c. Dynamic programming	
techniques? Select one: a. Backtracking b. Greedy algorithm c. Dynamic programming	
techniques? Select one: a. Backtracking b. Greedy algorithm c. Dynamic programming	
Select one: a. Backtracking b. Greedy algorithm c. Dynamic programming	
 a. Backtracking b. Greedy algorithm ✓ c. Dynamic programming 	
b. Greedy algorithm ✓c. Dynamic programming	
o. Dynamic programming	
○ d. Branch and bound	
Your answer is correct	
The correct answer is: Greedy algorithm	
Question 6	
Mark 1.00 out of 1.00	
Assume we are solving the rod-cutting problem in the book using dynamic programming, and we have a rod of length n that we decide to cut at location	
i. How many subproblems are left after we make this cut	
ii. How many choices do we need to check for each subproblem?	
We are trying to find the maximum profit from the rod lengths that we cut.	
The die drying to find the maximum profit from the real longitie that the eat.	
Select one:	
a. 2 subproblems, n choices we have to check	
b. 1 subproblem, up to n choices we have to check ✓	
c. 3 subproblems, n-1 choices to check	
d. No subproblems, we just solve the problem directly	

Your answer is correct.

The correct answer is: 1 subproblem, up to n choices we have to check

Which of the following algorithms can be used to solve the 0/1 knapsack problem? (The 0/1 knapsack problem means that the items are either completely or no items are filled in a knapsack.)

Select one:

- a. Greedy algorithm
- b. Backtracking
- o. Dynamic programming
- d. Both b and c

 ✓

Your answer is correct.

The correct answer is: Both b and c

Question 8 Correct Mark 1.00 out of 1.00

Select the problems with the technique that can best be used to solve them.

Your answer is correct.

The correct answer is:

Select the problems with the technique that can best be used to solve them.

- 1. Matrix multiplication: [Divide and Conquer]
- 2. Rod cutting: [Dynamic Programming]
- 3. Quicksort: [Divide and Conquer]
- 4. Interval scheduling: [Greedy Strategy]

5 PIVI	Quiz 12: Attempt revi
Question 9	
Correct	
Mark 1.00 c	out of 1.00
Which o	of the following statements is/are incorrect regarding dynamic nming?
Select o	one or more:
✓ a.	Could not minimize redundant calculations ✔
	Problems are solved by combining the solutions to independent sub-problems
_ c.	Could employ recursion and memorization
_ d.	Answers to sub-problems could be stored in a tabular structure
Your an	swer is correct.
The cor	rect answers are: Problems are solved by combining the solutions to
	ndent sub-problems, Could not minimize redundant calculations
Question 1	0
Correct	
Mark 1.00 c	out of 1.00
The diff	ference between Divide and Conquer and Dynamic Programming is:
Select o	one:
○ a.	The depth of recurrence
O b.	The way we solve the base case
O C.	The division of problems and combination of subproblems
d.	Whether the subproblems overlap or not ✔

Your answer is correct.

The correct answer is: Whether the subproblems overlap or not