Conclusion

误差

误差类型

• 模型误差

• 观测误差

• 截断误差: 算法不可能无限迭代,只能近似到一定程度

• 舍入误差: 计算机表示的数位有限

绝对误差

 $e(x) = x - x^*$ 近似值和绝对值的差

绝对误差限

 $|e(x)| \leq \eta$

有效数字

n 位有效数字 则相对误差限 $\delta \leq rac{1}{2a_1} imes 10^{-(n-1)}$

相对误差限为 $\delta \leq rac{1}{2(a_1+1)} imes 10^{-(n-1)}$ 则有n位有效数字

求近似值

不动点迭代

- 1. 二分法
 - 1. 零点存在定理/存在唯一
 - 1. 验证连续性
 - 2. 零点存在与否
 - 2. 终止条件 $|rac{(b-a)}{2^{k+1}}|<\epsilon$ AKA $k>rac{log(b-a)-log\epsilon}{log2}-1$
- 2. 不动点迭代
- 3. 牛顿迭代:一种特殊的不动点迭代法
 - 1. 验证二阶连续性 单根 $f''(x) \neq 0$ -> 平方收敛
 - 2. m重根情况 构造 $f(x) = (x x_0)^m g(x)$
 - 3. $x_{k+1} = x_k m \frac{f(x)}{f'(x_k)}$

- 1. 收敛条件 : $|\varphi'(x)| \leq 1$
- 2. 收敛值
- 3. 停机
- 4. 初值

收敛定理

全局收敛

函数 $\varphi(x)$ 满足

- 1. $\forall x \in [a,b], \varphi(x) \in [a,b]$
- 2. \exists 常数 L, 使得 $\forall x \in [a,b]$, 有 $|\varphi'(x)| \leq L < 1$

局部收敛

 x^* 是方程x=arphi(x)的根 arphi'(x) 在 x^* 附近连续且|arphi'(x)|<1

则迭代过程 $x_{k+1} = \varphi(x_k)$ 在 x^* 附近具有局部收敛性

收敛速度

$$|\varphi'(x)| < |\varphi'(y)|$$

 $\varphi(x)$ 的收敛速度更快

收敛率

若存在常数 $p \ge 1$ $c \ne 0$ (($p > 1, c \ne 0$) or (p = 1, c < 1))使得

$$lim_{k o\infty}rac{|e_{k+1}|}{|e_k|^p}=c$$

称为 $x_{k+1}=\varphi(x_k)$ 是 p 阶收敛的

p=1 c=1 次线性收敛

设 $\varphi(x)$ 在 $x=\varphi(x)$ 的根 x^* 附近有连续 ${\sf p}$ 阶导数 则对于迭代过程 $x_{k+1}=\varphi(x_k)$

- 1. $\varphi'(x^*) \neq 0$ 线性收敛
- 2. $\varphi'(x^*) = 0 \ \varphi''(x^*) \neq 0$ 平方收敛
- 3. $arphi'(x^*)=arphi''(x^*)=\cdots=arphi^{p-1}(x^*)=0$ $arphi^p(x^*)
 eq 0$ p阶收敛

p越大 收敛越快

p阶导数值越小 收敛越快

二分法

二分法事前估计

$$|x-x^*|\leq \frac{1}{2^{k+1}}(b-a)$$

不动点迭代

局部收敛定理:

 x^* 是方程 s=arphi(x) 的根 $s=arphi'(x) \; ext{在} \; x^* \; ext{附近连续且} \, |arphi'(x^*)| < 1$

则迭代 $x_{k+1}=arphi(x_k)$ 在 x^* 附近具有**局部收敛性**

牛顿迭代(切线法)

初值敏感

$$x_{k+1} = x_k - rac{f(x_k)}{f'(x_k)}$$

定义域单根 二阶导不为0 则局部收敛

牛顿迭代法的二阶收敛率为 $\frac{1}{2}|f''(x^*)/f'(x^*)|$

简化牛顿法

$$x_{k+1}=x_k-rac{f(x_k)}{f'(x_0)}$$

只计算初值导数

弦截法

取
$$f'(x_k)pprox rac{f(x_k)-f(x_{k-1})}{x_k-x_{k-1}}$$

$$x_{k+1} = x_k - rac{f(x_k)}{f(x_k) - f(x_{k-1})} imes (x_k - x_{k-1})$$

割线代替切线

牛顿下山法

扩大初值选取范围

$$x_{k+1} = x_k - \lambda rac{f(x_k)}{f'(x_k)} \ \ \lambda \in (0,1]$$

 λ 为下山因子

选取合适的下山因子 满足 $|f(x_k)| < |f(x_{k-1})|$

从 2^{-n} 数列中选取条件的

数值解法

范数

范数性质

- 1. 非负性
- 2. 齐次性
- 3. 满足三角不等式

 R^n 中不同范数等价

向量范数

依坐标收敛和依向量收敛等价

$$\lim_{k o \infty} x^{(k)} = x^* \Leftrightarrow \lim_{k o \infty} \|x^{(k)} - x^*\| = 0$$

矩阵范数

相容范数定义

相容性 $||A \cdot B|| \le ||A|| \cdot ||B||$

算子范数的定义: $\forall A \in R^{n \times n} \ \|x\| \neq R^n$ 中的向量范数

$$\|A\|_p = \sup_{x \in R^n, x
eq 0} rac{\|Ax\|_p}{\|x\|_p}$$

$$\|A\|_1=\max_{1\leq j\leq n}\sum_{i=1}^n|a_{ij}|$$
 最大列和
$$\|A\|_2=\lambda_1 \qquad A^T\cdot A$$
最大特征值
$$\|A\|_\infty=\max_{1\leq i\leq n}\sum_{j=1}^n|a_{ij}| \qquad$$
最大行和

谱半径 $ho(A) = \max_{1 \leq i \leq n} |\lambda_i|$

$$ho(A) \leq \|A\|$$
成立

$$ho(A) < 1 \Leftrightarrow \lim_{k o \infty} A^k = 0$$

Gauss消去法

消元+回代

列主元消去:每次消元后 把绝对值最大元素所在的行换上来

LU分解

如果所有顺序主子式均不为零 则存在唯一分解式 $A=L\cdot D\cdot R$ 单位下三角X非奇异对角X单位 $\mathbf{k}=\mathbf{a}$

Doolittle分解	Crout分解	Cholesky分解	
$A = L \cdot (DR) = L \cdot U$	$A = (LD) \cdot R = ilde{L} \cdot ilde{U}$	$A = L \cdot L^T$ (A对称 正定)	

如果
$$A = A^T$$
 则 $A = LDL^T$

计算过程

```
while n+1<len(A):
    A[n+1:,n]/=A[n,n+1:]
    A[n+1:,n+1:]-=A[n+1:,n]*A[n+1:,n+1:]</pre>
```

追赶法

求解过程稳定 只需要5n-4次乘法

基于特定格式对于LU分解的结论

改进平方根

优化掉了开方

 $A = LDL^T$

迭代法

Jacobi

$$A = D + N$$
 $Ax = b$
 $(D + N)x = b$
 $Dx = -Nx + b$
 $x = -D^{-1}Nx + D^{-1}b$
 $B_{Jacobi} = -D^{-1}N$
 $g_{Jacobi} = D^{-1}b$

Gauss-Seidel

Jacobi迭代的基础上 每次迭代使用最新的值

$$A = D + L + U$$
 $Dx^{k+1} = -Lx^{k+1} - Ux^k + b$ $x^{k+1} = -(D+L)^{-1}Ux^k + (D+L)^{-1}b$

收敛性

判断条件 依次

- 1. A严格占优
- 2. ||B|| < 1
- 3. $\rho(B) < 1$

(基本定理) x = Bx + g 收敛 等价于 $\rho(B) < 1$

都不满足 说明不确定是否收敛

插值

多项式插值

$$p_2(x) = a_0 + a_1 x + a_2 x^2$$

反插值法

构造反函数进行插值

Lagrange 插值法

构造插值基函数 $l_i(x_j) = \delta_{ij} = (i == j)$

$$\omega(x) = \prod_{j=0}^n (x-x_j)$$

$$l_i(x) = rac{\omega(x)}{(x-x_i)\omega'(x_i)}$$

线性插值

$$L_1(x) = y_0 l_0(x) + y_1 l_1(x) = y_0 rac{x - x_1}{x_0 - x_1} + y_1 rac{x - x_0}{x_1 - x_0}$$

抛物线插值

$$L_2(x) = y_0 l_0(x) + y_1 l_1(x) + y_2 l_2(x)$$

Newton 插值法

减少增加数据时的计算开销

牛顿插值基函数组

1,
$$(x-x_0)$$
, \cdots , $\prod_{i=0}^{n-1} (x-x_i)$

差商

- $f[x_i]=f_i$ $y=f(x)|_{x=x_i}$ 的零阶差商 $f[x_i.x_{i+1}]=\frac{f[x_{i+1}]-f[x_i]}{x_{i+1}-x_i}$ y=f(x) 在 x_i,x_{i+1} 处一阶差商 $f[x_i.x_{i+1},x_{i+2}]=\frac{f[x_{i+1},x_{i+2}]-f[x_i,x_{i+1}]}{x_{i+2}-x_i}$ 二阶差商

$$N_n(x) = N_{n-1} + f[x_0, x_1, \cdots, x_n] \prod_{j=0}^{n-1} (x - x_j)$$

插值余项

 $R_n(x) = f(x) - p_n(x)$ 为插值多项式的插值余项/误差

$$R_n(x)=f(x)-p_n(x)=rac{f^{n+1}(\zeta)}{(n+1)!}\omega(x)\;\zeta\in[a,b]$$

线性插值多项式余项	抛物线插值多项式余项
$R_1(x) = rac{f''(\zeta)}{2!}(x-x_0)(x-x_1)$	$R_2(x) = rac{f'''(\zeta)}{3!}(x-x_0)(x-x_1)(x-x_2)$

Hermite插值

两个互异点通过微商值构造不超过3次的插值多项式

基函数	x_0	x_1	x_0	x_1
$h_0(x)$	1			
$h_1(x)$		1		
$H_0(x)$			1	
$H_1(x)$				1

$$H(x) = y_0 h_0(x) + y_1 h_1(x) + m_0 H_0(x) + m_1 H_1(x)$$

根据函数值和微商值 可假设 $h_0(x) = (a + bx)(x - x_1)^2$

$$h_0(x) = (1 + 2l_1(x))l_0^2(x)$$

$$h_1(x) = (1 + 2l_0(x))l_1^2(x)$$

根据函数值和微商值 可假设 $H_0(x)=a(x-x_0)(x-x_1)^2$

$$H_0(x) = (x - x_0)l_0^2(x)$$

$$H_1(x) = (x - x_1)l_1^2(x)$$

最小二乘法

拟合评价准则

- 残差最大绝对值 $\max_{1 \leq i \leq n} |e_i|$ 最小
- 残差绝对值之和 $\sum_{i=1}^{n} |e_i|$ 最小 残差平方和 $\sum_{i=1}^{n} e_i^2$ 最小(最小二乘法)

 $A^TAx = A^Tb$ 为 Ax = b 的法方程组或正则方程组(normal equation)

数据线性化

原函数	线性化	数据变动
$y=c_1e^{c_2t}$	$Y = {\rm ln} c_1 + c_2 t$	$(t_i,y_i)\Rightarrow (t_i, \mathrm{ln} y_i)$
$y=c_1t^{c_2}$	$Y={ m ln}c_1+c_2{ m ln}t$	$(t_i,y_i)\Rightarrow (\mathrm{ln}t_i,\mathrm{ln}y_i)$

数值积分

插值性求积公式

$$\int_a^b f(x) \mathrm{dx} pprox \sum_{k=0}^n f(x_k) \cdot \int_a^b l_k(x) \mathrm{dx}$$

误差 $-\frac{h^3}{12}f''(c)$

等距节点插值

$$\int_a^b f(x) dx \approx (b-a) \sum_{k=0}^n f(x_k) \cdot c_k^{(n)}$$

Newton-Cotes公式 $c_k^{(n)}$ 为Newton-Cotes系数

梯形公式

n=1
$$c_0^{(1)}=c_1^{(1)}=rac{1}{2}$$

$$\int_a^b f(x)\mathrm{dx} pprox T = (b-a)[rac{1}{2}f(a) + rac{1}{2}f(b)]$$

Simpson公式

n=2
$$c_0^{(2)}=c_2^{(2)}=rac{1}{6}$$
 $c_1^{(2)}=rac{4}{6}$
$$\int_a^b f(x)\mathrm{d}\mathbf{x} pprox S=(b-a)[rac{1}{6}f(a)+rac{4}{6}f(rac{a+b}{2})+rac{1}{6}f(b)]$$

代数精度

$$f(x) = x^i$$

满足 $\int_a^b f(x) \mathrm{d} \mathbf{x} = \sum_{k=0}^n f(x_k) \cdot A_k$ 的最大 i 为代数精度次数

截断误差

方法与 **插值余项** 相同

$$R = egin{cases} -rac{(b-a)^3}{12}f''(\eta), &$$
 梯形公式余项 $R_T \ -rac{1}{2880}(b-a)^5f^{(4)}(\eta), & ext{Simpson}$ 余项 R_S

复合求积

梯形公式

区间n等分

$$egin{aligned} T_n &= rac{h}{2}[f(a) + 2\sum_{i=1}^{n-1}f(x_i) + f(b)] \ R_{T_n} &= -rac{b-a}{12}\cdot h^2\cdot f''(\eta) \end{aligned}$$

Simpson

区间n等分后会取2n个值

即如果只有8个值 Simpson公式只能4等分 梯形公式可以8等分

$$egin{align} S_n &= rac{h}{6}[f(a) + 2\sum_{i=1}^{n-1}f(x_i) + 4\sum_{i=0}^{n-1}f(x_{i+1/2}) + f(b)] \ &R_{S_n} - rac{b-a}{2880} \cdot h^4 \cdot f^{(4)}(\eta) \ \end{aligned}$$