Annexe B

La théorie des erreurs

B.1 L'erreur absolue et l'erreur relative

B.1.1 L'erreur absolue

Définition. L'**erreur absolue** commise sur le nombre x lorsqu'on lui substitue une valeur approchée \bar{x} est la différence Δx :

$$\Delta x = x - \bar{x} \tag{B.1}$$

ou

$$\bar{x} = x - \Delta x \tag{B.2}$$

Dans la pratique, on connaît la valeur approchée \bar{x} , et non pas l'erreur, mais seulement un majorant ε de cette erreur. Dit autrement, on est en mesure d'affirmer que x satisfasse à la double inégalité :

$$\bar{x} - \varepsilon < x < \bar{x} + \varepsilon$$
 (B.3)

ce qui se lit : « \bar{x} est une valeur approchée de x avec une erreur inférieure à ε , ou avec une incertitude égale à ε ».

Dire que \bar{x} est une valeur approchée par défaut de x, l'erreur étant inférieure à ε , c'est dire que x satisfasse la double inégalité :

$$\bar{x} < x < \bar{x} + \varepsilon$$
 (B.4)

Dire que \bar{x} est une valeur approchée par excès de x, l'erreur étant inférieure à ε , c'est dire que x satisfasse la double inégalité :

$$\bar{x} - \varepsilon < x < \bar{x}$$
 (B.5)

B.1.2 L'erreur relative

Définition. L'**erreur relative** commise sur le nombre x lorsqu'on lui substitue une valeur approchée \bar{x} est le quotient :

$$\frac{\Delta x}{x} = \frac{x - \bar{x}}{x} = 1 - \frac{\bar{x}}{x} \tag{B.6}$$

de l'erreur absolue Δx par la valeur exacte x.

De l'encadrement

$$0 < |\bar{x}| - \varepsilon < |x| < |\bar{x}| + \varepsilon \tag{B.7}$$

on en déduit $\frac{|\Delta x|}{x} < \frac{\varepsilon}{|\bar{x}|-\varepsilon}$; il en résulte que $\frac{\varepsilon}{|\bar{x}|-\varepsilon}$ est un majorant de l'erreur relative.

B.2 Premier problème de la théorie des erreurs

B.2.1 Erreur systématique et erreur due au calcul

f étant une fonction donnée, par exemple de trois variables, et \bar{x}, \bar{y} et \bar{z} des valeurs approchées des nombres x,y et z, lorsqu'on prend $\bar{\omega}=f(\bar{x},\bar{y},\bar{z})$ pour valeur approchée du nombre $\omega=f(x,y,z)$, on commet une erreur dit **erreur systématique**, $e_1=\omega-\bar{\omega}$.

Pour diverses raisons, il arrive souvent que l'on ne sache pas calculer exactement $\bar{\omega}$ et que l'on doive se contenter d'une valeur approchée ω^* de ce nombre. La différence $e_2 = \bar{\omega} - \omega^*$ est dite **erreur due au calcul**.

L'erreur totale commise s'écrit :

$$e = (\omega - \bar{\omega}) + (\bar{\omega} - \omega^*) = e_1 + e_2$$

$$e = \omega - \omega^*$$
(B.8)

On en déduit :

$$|e| \le |e_1| + |e_2| \tag{B.9}$$

Si on sait calculer un majorant α_1 de $|e_1|$ et un majorant α_2 de $|e_2|$, on peut affirmer que $\alpha_1 + \alpha_2$ est un majorant de |e|.

Remarque importante. Il n'existe pas de méthode générale pour majorer l'erreur due au calcul.

Remarque. La formule des accroissements finis permet de majorer l'erreur systématique.

B.2.2 Erreur systématique sur le calcul du nombre $\omega = f(x)$

1. La formule des accroissements finis, appliquée à la fonction f sur $[x, \bar{x}]$, donne

$$f(x) - f(\bar{x}) = (x - \bar{x}) f'(\xi) \text{ avec } \xi \in]x, \bar{x}[$$
 (B.10)

et

$$|\omega - \bar{\omega}| = |x - \bar{x}| |f'(\xi)| \tag{B.11}$$

On obtient ainsi un majorant ε_{ω} de $\omega - \bar{\omega}$ en multipliant un majorant ε_{α} de $x - \bar{x}$ par un majorant de $|f'(\xi)|$; d'où la formule

$$\varepsilon_{\omega} = A\varepsilon_{\alpha}$$
 (B.12)

dans laquelle A désigne un majorant de |f'(x)| sur un champ qui contient $|x, \bar{x}|$.

2. Plus généralement, la formule de Taylor montre que, si l'on prend pour valeur approchée du nombre $f\left(x\right)=f\left(\bar{x}+\Delta x\right)$ la somme suivante :

$$f(\bar{x}) = f(\bar{x}) + \frac{\Delta x}{1!} f'(\bar{x}) + \dots + \frac{\Delta x}{n!} f^{(n)}(\bar{x})$$
 (B.13)

on commet une erreur qui a pour expression

$$\frac{\Delta x^{n+1}}{(n+1)!} f^{(n+1)}(\xi) \text{ avec } \xi \in]x, \bar{x}[$$
 (B.14)

Si l'on connaît un majorant A de $\left|f^{(n+1)}\left(\xi\right)\right|$ sur un champ qui contient $]x,\bar{x}[$, on peut affirmer que la valeur absolue de l'erreur est inférieure à :

$$A\frac{\left|\Delta x\right|^{n+1}}{(n+1)!}\tag{B.15}$$

B.2.3 Erreur systématique sur le calcul du nombre $\omega = f\left(x,y,z\right)$

La formule des accroissements finis s'écrit, en désignant par M et \bar{M} les points (x,y,z) et $(\bar{x},\bar{y},\bar{z})$

$$f(M) - f(\bar{M}) = (x - \bar{x}) f'_x(P) + (y - \bar{y}) f'_y(P) + (z - \bar{z}) f'_z(P)$$
 (B.16)

P désignant le segment de droite $M\bar{M}$.

On en déduit que

$$|\omega - \bar{\omega}| = |x - \bar{x}| |f_x'(P)| + |y - \bar{y}| |f_y'(P)| + |z - \bar{z}| |f_z'(P)|$$
(B.17)

ce qui montre que si $\varepsilon_x, \varepsilon_y, \varepsilon_z$ désignent respectivement des majorants de $|x - \bar{x}|$, $|y - \bar{y}|, |z - \bar{z}|$ un majorant ε_ω de $|\omega - \bar{\omega}|$ est fourni par la formule :

$$\varepsilon_{\omega} = A\varepsilon_x + B\varepsilon_y + C\varepsilon_z \tag{B.18}$$

dans laquelle A, B, C désignent respectivement des majorants de $|f'_x(x,y,z)|$, $|f'_y(x,y,z)|$, $|f'_z(x,y,z)|$ sur un champ qui contient le segment de droite défini par les points M(x,y,z) et $\bar{M}(x,y,z)$.

Remarque importante. Cette formule fournit une majoration de l'erreur commise sur $\omega = f(x,y,z)$ aussi bien sur x,y,z sont des variable indépendantes qui si ce sont des fonctions d'une même variable t. Dit autrement, $\omega = f(x(t), y(t), z(t)) = g(t)$.

B.2.4 Formulaire des erreurs

À partir des fonctions f(x,y,z) convenablement choisies, la formule $\varepsilon_{\omega} = A\varepsilon_x + B\varepsilon_y + C\varepsilon_z$ va permettre de majorer les erreurs systématiques commises dans les opérations les plus souvent utilisées.

La somme

$$\omega = x + y$$

$$\Rightarrow A = B = 1$$

$$\Rightarrow \varepsilon_{\omega} = \varepsilon_{x} + \varepsilon_{y}$$
(B.19)

Cette relation est valable quelle que soit la somme.

La différence

$$\omega = x - y$$

$$\Rightarrow A = B = 1$$

$$\Rightarrow \varepsilon_{\omega} = \varepsilon_{x} - \varepsilon_{y}$$
(B.20)

Cette relation est valable quelle que soit la différence.

Règle

On obtient un majorant de l'erreur absolue commise sur une somme ou sur une différence en additionnant des majorants des erreurs absolues commises sur les termes.

Produit

$$\omega = xy$$

$$\Rightarrow \begin{cases} A = \sup |y| \\ B = \sup |x| \end{cases}$$

$$\Rightarrow \varepsilon_{\omega} = \sup |y| \varepsilon_{x} + \sup |x| \varepsilon_{y}$$
(B.21)

Comme $\sup |y| \le y + \varepsilon_y$ et $\sup |x| \le x + \varepsilon_x$, on commet une erreur au plus égale à $2\varepsilon_x\varepsilon_y$, donc négligeable dans la pratique, en écrivant

$$\varepsilon_{\omega} = |y| \, \varepsilon_x + |x| \, \varepsilon_y \tag{B.22}$$

On en déduit, en divisant les deux membres par $|\omega| = |x| \, |y|$, la formule pratique :

$$\frac{\varepsilon_{\omega}}{|\omega|} = \frac{\varepsilon_x}{|x|} + \frac{\varepsilon_y}{|y|} \tag{B.23}$$

relation qui s'étend de proche en proche au cas du produit d'un nombre quelconque de facteurs.

Quotient

$$\omega = \frac{x}{y}$$

$$\Rightarrow \begin{cases} A = \sup \left| \frac{1}{y} \right| = \frac{1}{\inf |y|} \\ B = \sup \left| \frac{x}{y^2} \right| = \frac{\sup |x|}{\inf y^2} \end{cases}$$

$$\Rightarrow \varepsilon_{\omega} = \frac{1}{\inf |y|} \varepsilon_x + \frac{\sup |x|}{\inf y^2} \varepsilon_y$$
(B.24)

Dans la pratique, on commet une erreur négligeable en écrivant

$$\varepsilon_{\omega} = \frac{1}{|y|} \varepsilon_x + \frac{|x|}{y^2} \varepsilon_y \tag{B.25}$$

On en déduit, en divisant les deux membres par $|\omega|=\frac{|x|}{|y|}$, la formule pratique

$$\frac{\varepsilon_{\omega}}{|\omega|} = \frac{\varepsilon_x}{|x|} + \frac{\varepsilon_{\omega}}{|y|} \tag{B.26}$$

Règle

Dans la pratique, on obtient un majorant de l'erreur relative commise sur un produit ou un quotient en additionnant des majorants des erreurs relatives commises sur les termes.

Logarithme

$$\Omega = \ln X \Rightarrow \begin{cases}
A = \frac{1}{\inf|X|} \\
\varepsilon_{\Omega} = \frac{1}{\inf|X|} \varepsilon_{X}
\end{cases}$$
(B.27)

Dans la pratique, on écrit

$$\varepsilon_{\Omega} = \frac{\varepsilon_X}{|X|} \tag{B.28}$$

Soit une expression de la forme $\omega=x^{\alpha}y^{\beta}z^{\gamma}$ dans laquelle $\alpha,\beta,\gamma\in\mathbb{R}$. On obtient alors :

$$\ln \omega = \alpha \ln x + \beta \ln y + \gamma \ln z \tag{B.29}$$

d'où

$$\varepsilon_{\omega} = |\alpha| \frac{\varepsilon_x}{|x|} + |\beta| \frac{\varepsilon_y}{|y|} + |\gamma| \frac{\varepsilon_z}{|z|}$$
 (B.30)

B.3 Deuxième problème de la théorie des erreurs

Avec quelle approximation suffit-il de connaître les données d'un calcul pour en déduire le résultat de ce calcul avec une erreur inférieure à un nombre donné α ?

On cherche des majorants ε_x , ε_y , ε_z de $|x - \bar{x}|$, $|y - \bar{y}|$, $|z - \bar{z}|$ tels que, en calculant une valeur approchée ω^* de $\bar{\omega} = f(\bar{x}, \bar{y}, \bar{z})$, on obtient une valeur approchée de $\omega = f(x, y, z)$ avec une erreur inférieure à α .

- 1. De l'erreur tolérée α , on fait deux parts :
 - **a.** α_2 est consacrée à l'erreur due au calcul $|\bar{\omega} \omega^*|$;
 - **b.** α_1 est consacrée à l'erreur systématique $|\omega \bar{\omega}|$ qui vérifie $|\omega \bar{\omega}| \le A\varepsilon_x + B\varepsilon_y + C\varepsilon_z$.
- 2. On calcule un majorant A de $|f_x'(x,y,z)|$ assez largement pour qu'il convienne sur le segment de droite défini par les deux points (x,y,z) et $(\bar x,\bar y,\bar z)$, bien que ce segment ne soit connu que d'une manière approximative. On calcule de même le majorant B et C de $|f_y'(x,y,z)|$ et $|f_z'(x,y,z)|$.
- 3. A, B, C et α_1 étant connus, il reste à choisir trois nombres positifs $\varepsilon_x, \varepsilon_y, \varepsilon_z$ vérifiant la condition $A\varepsilon_x + B\varepsilon_y + C\varepsilon_z \le \alpha_1$.

Remarque importante. Il n'est pas nécessaire que $\alpha_1 = \alpha_2$.

Exemple. On pose $x=\sqrt{2},\,y=\sqrt{3}$ et $z=\pi.$ Quelle approximation est suffisante pour calculer le nombre $\omega=\frac{\sqrt{3}-\sqrt{2}}{\pi}$ avec une erreur inférieure à 10^{-4} ?

$$\omega = f(x, y, z) = \frac{x - y}{z} \Rightarrow \begin{cases} f'_x = \frac{1}{z} = A \\ f'_y = \frac{1}{-z} = B \\ f'_x = -\frac{x - y}{-z^2} = C \end{cases}$$
(B.31)

$$\varepsilon_{\omega} = A\varepsilon_x + B\varepsilon_y + C\varepsilon_z \tag{B.32}$$

$$A = B = \frac{1}{\inf|z|}$$

$$C = \frac{\sup|x-y|}{\inf z^2}$$
(B.33)

or $\pi > 3$ c'est-à-dire $z \Rightarrow A = B = \frac{1}{3}$. De plus, $\sqrt{3} - \sqrt{2} < 0, 4$ (avec $\sqrt{3} < 1, 8$ et $\sqrt{2} > 1, 4$).

$$\Rightarrow C = \frac{0,4}{3^2} = \frac{0,4}{9} \tag{B.34}$$

L'erreur systématique est inférieure à $\frac{1}{3}\varepsilon_x + \frac{1}{3}\varepsilon_y + \frac{0.4}{9}\varepsilon_z$, donc *a fortiori* de $0, 4\varepsilon_x + 0, 4\varepsilon_y + 0, 05\varepsilon_z < \frac{4}{3}\omega$.

L'erreur tolérée α est 10^{-4} . On fait deux parts égales. Dit autrement, on choisit ε_x , ε_y , ε_z telles que :

$$0.4\left(\varepsilon_x + \varepsilon_y\right) + 0.05\varepsilon_z < 5 \times 10^{-5} \tag{B.35}$$

et on fera la division avec une erreur inférieure à 5×10^{-5} .

 $\varepsilon_x = \varepsilon_y = \varepsilon_z = 5 \times 10^{-5}$ conviennent visiblement. On peut ainsi utiliser les valeurs approchées $\bar{x}, \bar{y}, \bar{z}$ de $\sqrt{3}, \sqrt{2}, \pi$ données par une table à quatre décimales.

$$\begin{vmatrix}
\bar{x} = 1,7321 \\
\bar{y} = 1,4142 \\
\bar{z} = 3,1416
\end{vmatrix} \Rightarrow \frac{\bar{x} - \bar{y}}{\bar{z}} = \frac{0,3179}{3,1416} \approx 0,10119...$$
(B.36)

En conclusion, le nombre $\omega^*=0,1012$ est une valeur approchée du nombre $\frac{\sqrt{3}-\sqrt{2}}{\pi}$ avec une erreur systématique à 10^{-4} .

B.4 Les erreurs statistiques

L'erreur est la différence entre la valeur mesurée et la valeur exacte, mais, en statistique, on ignore la valeur exacte. On a deux types d'incertitudes possibles : 1. les erreurs systématiques 2. les erreurs .

B.4.1 Incertitudes absolues et relatives

L'incertitude absolue (due aux appareils de mesure) permet de connaître l'approximation du dernier chiffre significatif de celle-ci :

$$\begin{array}{l}
 x - \Delta x \le x \le x + \Delta x \\
 \Rightarrow x = x \pm \Delta x
 \end{array}
 \tag{B.37}$$

L'incertitude relative vaut alors :

$$\frac{\Delta x}{x} \tag{B.38}$$

B.4.2 Erreurs statistiques

Dans la plupart des mesures, on peut estimer l'erreur due à des phénomènes aléatoires par une série de n mesures $x_1, x_2, \ldots, x_i, \ldots, x_n$.

La valeur de la moyenne arithmétique sera alors :

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{B.39}$$

et l'écart type (qui est un estimateur biaisé) vaut :

$$\sigma^2 = \bar{\Delta x} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$$
 (B.40)

et l'écart type (estimateur sans biais) vaut :

$$\sigma^{*2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu)^2$$
 (B.41)

et de l'écart quadratique moyen c'est-à-dire l'écart type de la moyenne, vaut :

SE =
$$\frac{\sigma}{\sqrt{n}} = \frac{1}{\sqrt{n}} \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu)^2}$$
 (B.42)

Après un grand nombre de mesures indépendantes, la distribution des erreurs sur une mesure suit une loi normale telle que l'on puisse écrire :

- 1. $\hat{x}_i \sigma < x_i < \hat{x}_i + \sigma$ (68 % des valeurs);
- 2. $\hat{x}_i 2\sigma < x_i < \hat{x}_i + 2\sigma$ (95 % des valeurs);
- 3. $\hat{x_i} 3\sigma < x_i < \hat{x_i} + 3\sigma$ (99 % des valeurs).

9

B.4.3 Propagation des erreurs statistiques

Soit une mesure $x\pm\Delta x$ et $y=f\left(x\right)$ une fonction de x. Quelle est l'incertitude sur y ?

Lorsque Δx est petit, f(x) est remplacé au voisinage de x par sa tangente :

$$\Delta y = \left| \frac{\mathrm{d}f}{\mathrm{d}x} \right| \Delta x \tag{B.43}$$

mais si y dépend de plusieurs grandeurs x,z,t mesurées avec les incertitudes $\Delta x,$ $\Delta z, \Delta t$:

$$y = f(x, z, t) \tag{B.44}$$

alors l'erreur minimale possible est alors la différentielle totale exacte :

$$\Delta y = \left| \frac{\partial f}{\partial x} \right| \Delta x + \left| \frac{\partial f}{\partial z} \right| \Delta z + \left| \frac{\partial f}{\partial t} \right| \Delta t \tag{B.45}$$

ce qui conduit à :

Bibliographie