MA3701 Optimización Profesor: Alejandro Jofré Auxiliar: Benjamín Vera Vera

Auxiliar 1

Introducción y Ejemplos 6 de agosto de 2025

P1. (conjuntos convexos) Decimos que $C \subseteq \mathbb{R}^n$ es *convexo* si

$$\forall x,y \in C, \lambda \in [0,1]: \lambda x + (1-\lambda)y \in C.$$

Demuestre que la intersección de conjuntos convexos es convexa.

P2. (funciones convexas) Una función $f: \mathbb{R}^n \to \mathbb{R}$ se dice convexa si

$$\forall x, y \in \mathbb{R}^n, \lambda \in [0, 1] : f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y).$$

Además, dada $f: \mathbb{R}^n \to \mathbb{R}$ (no necesariamente convexa) y $z \in \mathbb{R}$, se define el conjunto de subnivel z asociado a f como

$$\Gamma_z(f) = \{ x \in \mathbb{R}^n : f(x) \le z \}.$$

Demuestre que si $f: \mathbb{R}^n \to \mathbb{R}$ es convexa, entonces para todo $z \in \mathbb{R}$, $\Gamma_z(f)$ es convexo.

P3. (epígrafo) Dada una función $f: \mathbb{R}^n \to \mathbb{R}$, definimos su epígrafo por

$$epi(f) = \{(x, z) \in \mathbb{R}^n \times \mathbb{R} : f(x) < z\}.$$

- a) Demuestre que f es convexa si y solo si epi(f) es convexo.
- b) Sea $\{f_i\}_{i\in I}$ familia de funciones $f_i: \mathbb{R}^n \to \mathbb{R}$ convexas tales que para $x \in \mathbb{R}^n$, $\sup_{i \in I} f_i(x)$ existe (por ejemplo, si I finito). Pruebe que $f: \mathbb{R}^n \to \mathbb{R}$ dada por

$$f(x) = \sup_{i \in I} f_i(x)$$

es convexa.

- **P4.** (propuesto) Sea $f: I \subseteq \mathbb{R} \to \mathbb{R}$ diferenciable. Pruebe que las siguientes afirmaciones son equivalentes:
 - (1) f convexa en I.
 - (2) f' no-decreciente en I.
 - (3) $\forall x, y \in I : f(y) \ge f(x) + f'(x)(y x)$.
 - (4) En el caso $f \in C^2(I)$, $\forall x \in I$, $f''(x) \ge 0$.