Maiko Lum

maiko.lum0401@gmail.com | 209-756-6863 | Vestal, NY | www.linkedin.com/in/maikolum

EDUCATION

Boston University, College of Engineering

2021 - 2025

Bachelor of Science in Biomedical Engineering | Minor in Computer Engineering

GPA: 3.43

Coursework: Circuits, Logic Design, Signals and Controls, Computer Organization, Algorithms, Biotransport, BME Data Analysis, Molecular Cell Biology, Thermodynamics, Systems Physiology, Mechanics, Statistics

SKILLS

Laboratory: DNA Sequencing, qPCR, EKG, Gel Electrophoresis

Programming Languages: C++, C#, C, Verilog, MATLAB, Python, MIPS Assembly

Mechanical Design: Autodesk Inventor, OnShape, CAD, Cura, Reconstruct

Language: English (Fluent), Japanese (Fluent)

WORK EXPERIENCE

Boston University Dept. of Electrical & Computer Engineering

Aug 2024 - May 2025

Undergraduate Teaching Fellow – Logic Design

Boston, MA

- Reinforce student understanding of logic design concepts by working with a professor to design and lead labs, demonstrating technologies such as Xilinx Vivado, FPGA boards, and Verilog HDL
- Instruct 80+ students by constructing homework problems, providing support with assignments, debug and host office hours for one-on-one and group help sessions
- Manage workflow of student graders by ensuring grades are logged before deadlines

Boston University School of Medicine Gong Lab

Jun 2022 - May 2025

Undergraduate Research Assistant

Boston, MA

- Experimented with different flow rates and effects on drainage of a human eye giant vacuole (GV) through 3D reconstruction (Reconstruct software) of over 200 GVs to better understand anatomy for micro-invasive surgical treatment of glaucoma
- Evaluate findings against published literature using serial block-face scanning electron microscopy (SBF-SEM)
- Presented work titled Comparison of Giant Vacuoles to the Inner Wall Endothelium of Schlemm's Canal between Normal and Glaucomatous Human Donor Eye at Boston University Undergraduate Research symposium

PROJECTS

3D Successive Over-Relaxation (C, Pthreads)

Apr 2025 - May 2025

- Developed and parallelized a 3D SOR algorithm using pthreads with domain decomposition across x, y, and z axes
- Engineered thread-safe synchronization and dynamic convergence tracking, achieving optimal performance through z-axis partitioning and memory-aware design
- Benchmarked serial vs. multithreaded performance, demonstrating up to 4x speedup and identifying cache locality as critical factor in scalability through testing runtime improvement on large grid simulations

FPGA Board Game: LED Catcher

Apr 2024 - May 2024

- Designed and implemented a real-time LED-catching game on FPGA using Verilog and Vivado, featuring responsive user input and dynamic LED movement
- Built a functional testbench to simulate gameplay logic and validated system performance through hardware testing
- Contributed to game design and display logic, optimizing visual feedback and timing performance

Android Application Game

Apr 2023 - May 2023

- Coordinated with a team of four engineers to draft an Android application, enabling users to swipe incoming opponents through C++ back-end and Java front-end design
- Programmed front-end enhancement, integrating interactive elements and applying collision detection techniques
- Collaborated with back-end developers to establish user manuals, settings, difficulty levels, and character selection

Desk Lamp for Neurodiverse Learning Needs

May 2022 – Jun 2022

- Designed and coded a working prototype of a desk lamp accommodating users with ADHD and learning disabilities, considering given specifications in a group project leveraging a budget of \$400
- Managed creation of prototype enclosure utilizing CAD and operated metal sawing, milling, laser cutting, drilling, and tapping machines and assisted with programming Arduino Nano microcontroller using C

LEADERSHIP

Biomedical Engineering Society (President, 2024 – 2025), Theta Tau Psi Delta Chapter (Treasurer, 2022 – 2023)