SPA

Solution to Assignment 1

- 1. Let R, G, B respectively represent the red, green and blue marbles.
 - (a) The sample space is $\Omega = \{RR, RG, RB, GR, GG, GB, BR, BG, BB\}$. Since all outcomes have the same probability, the probability of each point in the sample space is $\frac{1}{9}$.
 - (b) The sample space is $\Omega = \{RG, RB, GR, GB, BR, BG\}$. Since all outcomes have the same probability, the probability of each point in the sample space is $\frac{1}{6}$.
- 2. The evens can be represented as follows:
 - (a) $F \cap E^c \cap G^c$
 - (b) $E \cap F \cap G^c$
 - (c) $E \cup F \cup G$
 - (d) $(E \cap F) \cup (E \cap G) \cup (F \cap G)$
 - (e) $E \cap F \cap G$
 - (f) $E^c \cap F^c \cap G^c$
 - (g) $(E \cap G^c \cap F^c) \cup (E^c \cap G \cap F^c) \cup (E^c \cap G^c \cap F) \cup (E^c \cap F^c \cap G^c)$
 - (h) $E^c \cup F^c \cup G^c$.
- 3. For two events E and F, we have $\mathbb{P}(E) + \mathbb{P}(F) = \mathbb{P}(E \cap F) + \mathbb{P}(E \cup F)$. So

$$\begin{split} \mathbb{P}(E \cap F) &= \mathbb{P}(E) + \mathbb{P}(F) - \mathbb{P}(E \cup F) \\ &\geqslant \mathbb{P}(E) + \mathbb{P}(F) - 1. \end{split}$$

In the case where $\mathbb{P}(E) = 0.9$ and $\mathbb{P}(F) = 0.8$, we get $\mathbb{P}(E \cap F) \ge 0.9 + 0.8 - 1 = 0.7$.

4. Recall that $F_1 = E_1, F_i = E_i \bigcap_{j=1}^{i-1} E_j^c, \ j = 2, \ldots, n$. Since $F_i \subset E_i$, it is easy to see that $\bigcup_{i=1}^n F_i \subset \bigcup_{i=1}^n E_i$. We now show that $\bigcup_{i=1}^n E_i \subset \bigcup_{i=1}^n F_i$. For this, let's take an arbitrary element $\omega \in \bigcup_{i=1}^n E_i$. Suppose ω first enters the sets E_i at index k, that is, $\omega \notin E_1, E_2, \ldots, E_{k-1}$ but $\omega \in E_k$. Then $\omega \in F_k = E_k \bigcap_{j=1}^{k-1} E_j^c$ and thus

 $\omega \in \bigcup_{i=1}^n F_i$. Because $\omega \in \bigcup_{i=1}^n E_i$ is arbitrary, we have shown that $\bigcup_{i=1}^n E_i \subset \bigcup_{i=1}^n F_i$. So $\bigcup_{i=1}^n E_i = \bigcup_{i=1}^n F_i$.

On the other hand, it is not hard to check F_1 , F_2 , ... F_n are mutually disjoint. So by finite additivity, $\mathbb{P}(\bigcup_{i=1}^n E_i) = \mathbb{P}(\bigcup_{i=1}^n F_i) = \sum_{i=1}^n \mathbb{P}(F_i) \leqslant \sum_{i=1}^n \mathbb{P}(E_i)$.

5. We first remark that (a) is equivalent to finding the conditional probability given the condition that the first k-1 customers do not get the prizewinning ticket, and (b) is equivalent to finding a probability without any additional condition.

Let $A_i = \{$ the *i*-th customer gets the prizewinning ticket $\}$. Then the condition in (a) is $A_1^c \cap A_2^c \cap \cdots \cap A_{k-1}^c$. We can obtain by a direct application of classical probability model

$$\mathbb{P}\left(A_k \mid A_1^c \cap A_2^c \cap \dots \cap A_{k-1}^c\right) = \frac{1}{n-k+1}.$$

As for (b), $A_k = A_1^c \cap A_2^c \cap \cdots \cap A_{k-1}^c \cap A_k$ obviously holds. So by the product rule, we have

$$\mathbb{P}(A_k) = \mathbb{P}\left(A_1^c \cap A_2^c \cap \dots \cap A_{k-1}^c \cap A_k\right)$$

$$= \mathbb{P}(A_1^c) \, \mathbb{P}(A_2^c \mid A_1^c) \, \mathbb{P}(A_3^c \mid A_1^c \cap A_2^c) \dots \mathbb{P}\left(A_k \mid A_1^c \cap A_2^c \cap \dots \cap A_{k-1}^c\right)$$

$$= \frac{n-1}{n} \cdot \frac{n-2}{n-1} \cdot \frac{n-3}{n-2} \dots \frac{n-k+1}{n-k+2} \cdot \frac{1}{n-k+1}$$

$$= \frac{1}{n}.$$

 $\mathbb{P}(A_k) = 1/n$ implies that the probability of one customer getting the prizewinning ticket has nothing to do with when he or she buys a lottery ticket.

6. Suppose $X_1 \sim Poi(\lambda_1), X_2 \sim Poi(\lambda_2)$, and X_1 and X_2 are independent.

(a) Then

$$\mathbb{P}(X_1 + X_2 = k) = \sum_{j=0}^{k} \mathbb{P}(X_1 + X_2 = k, X_2 = j)$$

$$= \sum_{j=0}^{k} \mathbb{P}(X_1 = k - X_2 | X_2 = j) \mathbb{P}(X_2 = j)$$

$$= \sum_{j=0}^{k} \mathbb{P}(X_1 = k - j | X_2 = j) \mathbb{P}(X_2 = j)$$

$$= \sum_{j=0}^{k} \mathbb{P}(X_1 = k - j) \frac{\lambda_2^j}{j!} e^{-\lambda_2}$$

$$= \sum_{j=0}^{k} \frac{\lambda_1^{k-j}}{(k-j)!} e^{-\lambda_1} \frac{\lambda_2^j}{j!} e^{-\lambda_2}$$

$$= e^{-\lambda_2} e^{-\lambda_1} \frac{1}{k!} \sum_{j=0}^{k} \frac{k!}{j!(k-j)!} \lambda_1^{k-j} \lambda_2^j$$

$$= e^{-\lambda_2} e^{-\lambda_1} \frac{1}{k!} \sum_{j=0}^{k} {k \choose j} \lambda_1^{k-j} \lambda_2^j$$

$$= \frac{(\lambda_1 + \lambda_2)^k}{k!} e^{-(\lambda_1 + \lambda_2)}.$$

So $X_1 + X_2 \sim Poi(\lambda_1 + \lambda_2)$.

(b) It holds

$$\begin{split} \mathbb{P}(X_1 = k | X_1 + X_2 = n) &= \frac{\mathbb{P}(X_1 = k, X_1 + X_2 = n)}{\mathbb{P}(X_1 + X_2 = n)} \\ &= \frac{\mathbb{P}(X_1 = k, X_2 = n - k)}{\mathbb{P}(X_1 + X_2 = n)} \\ &= \frac{\mathbb{P}(X_1 = k) \mathbb{P}(X_2 = n - k)}{\mathbb{P}(X_1 + X_2 = n)} \\ &= \frac{\frac{\lambda_1^k}{k!} e^{-\lambda_1} \frac{\lambda_2^{n-k}}{(n-k)!} e^{-\lambda_2}}{\frac{(\lambda_1 + \lambda_2)^n}{n!} e^{-(\lambda_1 + \lambda_2)}} \\ &= \binom{n}{k} (\frac{\lambda_1}{\lambda_1 + \lambda_2})^k (\frac{\lambda_1}{\lambda_1 + \lambda_2})^{n-k}. \end{split}$$

Therefore, conditioning on $X_1 + X_2 = n$, X_1 has a binomial distribution with parameters n and $\lambda_1/(\lambda_1 + \lambda_2)$.

7. Note that $\eta = A\xi$, where $A = \begin{bmatrix} \frac{1}{2} & -1 & \frac{1}{2} \\ -\frac{1}{2} & 0 & -\frac{1}{2} \end{bmatrix}$. By the property of *n*-dimensional

normal random vectors, we know that $\boldsymbol{\eta} \sim N(A\boldsymbol{a}, A\boldsymbol{B}A^{\top}).$