Bharath Chowdhary Nagam

https://www.linkedin.com/in/bharath-chowdhary-n-9aba24114/

n.bharath.chowdhary@gmail.com (+31) 644640182

CURRENT RESEARCH

PhD Topic: Searching for extremely rare objects in the Universe.

Description: To research and develop novel image classification algorithm to find strong gravitational lenses from KiDS and Euclid (upcoming) data.

EMPLOYMENT

PhD student

Rijks Universiteit Groningen,

Data Science and Systems Complexity,

Dec 2020 - current

EXPERIENCE

ASML, The Netherlands

Design Engineer, Metrology Department

Jan 2018 - Dec 2020

Master Thesis- Constraining Orbital Parameters of J1407b

Leiden University, The Netherlands

Dec 2016 - Aug 2017

Internship - Optimal Energy solution for earth bound and interplanetary

trajectories

University of La Rioja, Spain

July 2016- Sep 2016

EDUCATION

TU Delft, Delft, The Netherlands

Master of Science (M.Sc), Aerospace Engineering(Space Exploration)

2015- July, 2017 CGPA: 8.00/10.00

CIT, TN, India

Bachelor of Engineering, (Mechanical Engineering)

2011-May, 2015 CGPA: 9.0/10.0

TECHNICAL SKILLS

Languages: Python (4+ years), Matlab (5+ years).

 $\textbf{Tools/Libraries} \ : \quad \text{Numpy, Astropy, Scikit-Learn, TensorFlow(Python), Keras,} \\$

OpenCV.

Familiar: C, C++, Git, SVN.

Relevant Experience in Astronomy

- Removal of stellar noise in RV signal using Gaussian Process
- Created a sample project using **Generative Adversarial Networks (GAN)** along with CNN to detect exoplanet in Direct Imaging data

• Characterization of J1407b (exoplanet with giant ring system) using Transit, RV and Direct Imaging data

$\begin{array}{c} \textbf{Experience in} \\ \textbf{ASML} \end{array}$

- [2018] Developing functional code for mathematical modelling in Matlab
- \bullet [2018] Predict drift in grid plate using Gaussian Process (A ML based statisctical technique) with ${\bf Python}$
- [2019] Predicting the broken actuators in half dome mirror using Convolutional Neural Networks.

CERTIFICATION.

- Machine Learning by Stanford University on Coursera
- Neural Networks and Deep Learning on Coursera (Logistic Regression with Deep Learning, Deep Neural Nets)
- Hyper Parameter tuning, Regularization and Optimization on Coursera
- Convolutional Neural Networks on Coursera (Deep Convolutions, Residual Networks, YOLO, Face Recognition)
- Sequence Models on Coursera (RNN, LSTM, GRU, Machine Translation)
- TensorFlow in practice specialization on Coursera

FAMILIAR TOPICS

- Computer Vision
- Semi-supervised learning
- Clustering
- \bullet Linear and Logistic Regression
- Support Vector Machines
- Anomaly Detection
- Deep Neural Networks
- \bullet Bias and Variance Regularisation
- Natural Language Processing

HOBBIES

- Star Gazing
- Playing Tennis