A Universal Turing Machine

class 17

A limitation of Turing Machines:

Turing Machines are "hardwired"

they execute only one program

Real Computers are re-programmable

Solution: Universal Turing Machine

Attributes:

- Reprogrammable machine
- · Simulates any other Turing Machine

Universal Turing Machine simulates any other Turing Machine M

Input of Universal Turing Machine:

Description of transitions of M

Initial tape contents of M

Description of MWe describe Turing machine M as a string of symbols:

We encode M as a string of symbols

Alphabet Encoding

Encoding: 1 11 111 1111

State Encoding

States: q_1 q_2 q_3 q_4 ...

Encoding: 1 11 111 1111

Head Move Encoding

Move: L R

Encoding: 1 11

Transition Encoding

Transition: $\delta(q_1, a) = (q_2, b, L)$

Encoding: 10101101101

separator

Machine Encoding

Transitions:

 $\delta(q_1, a) = (q_2, b, L)$ $\delta(q_2, b) = (q_3, c, R)$

Encoding:

10101101101 00 1101101110111011

separator

Tape 1 contents of Universal Turing Machine:

encoding of the simulated machine $\,M\,$ as a binary string of 0's and 1's

A Turing Machine is described with a binary string of 0's and 1's

Therefore:

The set of Turing machines forms a language:

each string of the language is the binary encoding of a Turing Machine

12

Language of Turing Machines

```
(Turing Machine 1)
L = { 010100101,
                         (Turing Machine 2)
     00100100101111,
     111010011110010101,
     ..... }
```

Countable Sets

Infinite sets are either: Countable

or

Uncountable

Countable set:

Any finite set or

Any Countably infinite set:

There is a one to one correspondence

between

elements of the set

Natural numbers

Example: The set of even integers is countable

Even integers: 0, 2, 4, 6, ...

Correspondence:

Positive integers: 1, 2, 3, 4, ...

2n corresponds to n+1

Example: The set of rational numbers

is countable

Rational numbers: $\frac{1}{2}$, $\frac{3}{4}$, $\frac{7}{8}$, ...

Naïve Proof

Rational numbers:

Correspondence:

Positive integers: 1, 2, 3, ...

Doesn't work:

we will never count numbers with nominator 2: Better Approach

$$\frac{1}{4} \longrightarrow \frac{1}{2}$$

 $\frac{2}{2}$

$$\frac{1}{1} \longrightarrow \frac{1}{2}$$

We proved:

the set of rational numbers is countable by describing an enumeration procedure

Definition

Let S be a set of strings

An enumeration procedure for S is a Turing Machine that generates all strings of S one by one

and

Each string is generated in finite time

strings
$$s_1, s_2, s_3, \ldots \in S$$

Enumeration Machine for s

output s_1, s_2, s_3, \ldots

finite time: t_1, t_2, t_3, \ldots

Example:

The set of all strings $\{a,b,c\}^+$ is countable

Proof:

We will describe an enumeration procedure

Produce the strings in lexicographic order:

Naive procedure:

a aa aaa aaaa

Doesn't work:

strings starting with $\,b\,$ will never be produced

Better procedure: Proper Order

1. Produce all strings of length 1

2. Produce all strings of length 2

3. Produce all strings of length 3

4. Produce all strings of length 4

.....

length 1 aa abacProduce strings in baProper Order: length 2 bbbccacbccaaa aab length 3 *aac*

Theorem: The set of all Turing Machines is countable

Proof: Any Turing Machine can be encoded with a binary string of 0's and 1's

Find an enumeration procedure for the set of Turing Machine strings

37

Enumeration Procedure:

Repeat

- Generate the next binary string of O's and 1's in proper order
- Check if the string describes a Turing Machine

if YES: print string on output tape

if NO: ignore string

Uncountable Sets

39

Definition: A set is uncountable if it is not countable

40

Theorem:

Let S be an infinite countable set

The powerset 2^S of S is uncountable

Proof:

Since S is countable, we can write

$$S = \{s_1, s_2, s_3, \ldots\}$$

Elements of S

42

Elements of the powerset have the form:

$$\{s_1, s_3\}$$

$$\{s_5, s_7, s_9, s_{10}\}$$

.....

We encode e with a binary				•	er set			
Powerset Encoding								
element	s_1	s_2	s_3	s_4	•••			
{ <i>s</i> ₁ }	1	0	0	0	•••			
$\{s_2, s_3\}$	0	1	1	0	•••			
$\{s_1, s_3, s_4\}$	1	0	1	1				

Let's assume (for contradiction) that the powerset is countable.

Then: we can enumerate

the elements of the powerset

Powerset element	Encoding							
t_1	1	0	0	0	0	•••		
t_2	1	1	0	0	0			
t_3	1	1	0	1	0	•••		
t_4	1	1	0	0	1			
							16	

Take the powerset element whose bits are the complements in the diagonal

 t_1 1 0 0 0 0 ... t_2 1 1 0 0 0 ... t_3 1 1 0 1 0 ... t_4 1 1 0 0 1 ...

New element: 0011...

(birary complement of diagonal)

The new element must be some t_i of the powerset

However, that's impossible:

from definition of t_i

the i-th bit of $\,t_i\,$ must be the complement of itself

Contradiction!!!

Since we have a contradiction:

The powerset 2^S of S is uncountable

50

An Application: Languages

Example Alphabet : $\{a,b\}$

The set of all Strings:

 $S = \{a,b\}^* = \{\lambda, a, b, aa, ab, ba, bb, aaa, aab, \dots\}$ infinite and countable

Example Alphabet : $\{a,b\}$

The set of all Strings:

 $S = \{a,b\}^* = \{\lambda,a,b,aa,ab,ba,bb,aaa,aab,...\}$ infinite and countable

A language is a subset of S:

 $L = \{aa, ab, aab\}$

__

Example Alphabet : $\{a,b\}$

The set of all Strings:

 $S = \{a,b\}^* = \{\lambda, a, b, aa, ab, ba, bb, aaa, aab, ...\}$ infinite and countable

The powerset of S contains all languages:

$$2^{S} = \{\{\lambda\}, \{a\}, \{a,b\}, \{aa,ab,aab\}, \dots\}$$

$$L_{1} \quad L_{2} \quad L_{3} \quad L_{4} \quad \dots$$

uncountable

Languages: uncountable

Turing machines: countable

There are more languages than Turing Machines

54

Conclusion:

There are some languages not accepted by Turing Machines

(These languages cannot be described by algorithms)

