TABLE 2.1 Values (some approximate) of several functions important for

analysis of algorithms	n in	3.6.106	$9.3 \cdot 10^{157}$				
	Zn	103	$1.3 \cdot 10^{30}$				
	m _E	103	10^{6}	109	10^{12}	10^{15}	1018
	n ²	102	10^{4}	10^{6}	10^{8}	10^{10}	10^{12}
	n log ₂ n	$3.3 \cdot 10^{1}$	$6.6 \cdot 10^{2}$	$1.0 \cdot 10^4$	$1.3 \cdot 10^5$	$1.7 \cdot 10^{6}$	$2.0 \cdot 10^{7}$
	n	101	10^{2}	10^{3}	104	10^{5}	106
	log ₂ п	W	9'9	10	13		20
	encia Plan	9	10^{2}	103	104	105	106

Input size -> 2n $\log_2 n \rightarrow \log_2 2n = \log_2 2 + \log_2 n$ = $1 + \log n \Rightarrow \text{increases by } 1$ $n \rightarrow 2n \Rightarrow doubled$ $n \log n \rightarrow 2n \log 2n = 2n (\log_2 2 + \log_2 n)$ $= 2n(1+\log_2 n) \Rightarrow \text{more than}$ two-fold $n^2 \Rightarrow (2n)^2 = 4n^2 \Rightarrow \text{four-fold increase}$ $n^3 \rightarrow (2n)^3 = 8n^3 \Rightarrow eight-foldincrease$ 2ⁿ } Exponential Growth functions.

→ A computer that solves 10¹² operations per second, to execute 2¹⁰⁰ operations ⇒ 4 × 10¹⁰ years

100 | takes much longer

ALGORITHM Sequential Search (Alo. .. n-1], K) // searches for the search key, K in the array A by sequential search / Input: Array A [o. n-1] and a seasch key 'k' £ 0 while i < n and A[i] + K do i Litl if i<n return ? else return -1 Input size ->n Basic Operation - Key comparison Worst-Case -> C worst (n) = n Best - Case => C best (n) = 1 Average Case Efficiency For a typical or random input,

P -> probability of finding the .

a successful search

1-P -> probability of an unsuccessful search.

For a successful search, the probability of the first match occurring at position i is

L for every i

 $C_{avg}(n) = \left[1 \cdot \frac{P}{n} + 2 \cdot \frac{P}{n} + 3 \cdot \frac{P}{n} + \cdots\right]$

+, n(1-P)

 $= P[1+2+3+\cdots + n] + n(1-p)$

 $= \frac{P}{x} \frac{x(n+1)}{2} + n(1-P)$

 $C_{avg}(n) = \frac{p(n+1)}{2} + n(1-p)$

For a successful search, P = 1 $C_{avg}(n) = \frac{n+1}{2}$ For an unsuccessful search, p=0Cavg(n)=n

ASYMPTOTIC NOTATIONS & BASIC EFFICIENCY CLASSES

OBig-oh Notation (or) O-notation:

A function t(n) is said to be in O(g(n)), if t(n) is bounded above by some constant multiple of g(n) for all large n i.e.; there exists some positive constant c' and some non-negative integral,

 $t(n) \leqslant cg(n)$ for all normo $= t(n) \in O(g(n))$

FIGURE 2.1 Big-oh notation: $t(n) \in O(g(n))$.

$$t(n) = 100n + 5$$

 $g(n) = n^2$

for all n > 5

101 n

$$t(n) \leq cg(n)$$

where C= 101

n > 5

$$=) \quad t(n) \in O(g(n)) \quad \text{where } c=101$$

$$n=5$$

 $\eta_0 = 5$

Hence Proved by definition

Valle 1 3 Option -2

$$t(n) = 100n + 5$$
 $g(n) = n^2$

100n + 5n for all n ≥1

105n

105n < 105n2

$$\Rightarrow$$
 $t(n) \leq c q(n)$

=> t(n) < c g(n) where c= 105, no=1

Hence Proved by definition

Flexibility to choose c' and n'Order of growth of \leq Order of growth of +(n') $+(n') \in O(g(n))$

FIGURE 2.2. Big-omega notation: $t(n) \in \Omega(g(n))$.

$$f(n) = n^3$$

$$g(n) = n^2$$

$$n^3 \geqslant n^2$$
 for $n > 0$

$$=) \left(t(n) \in \Omega \left(g(n) \right) \right) \quad \text{where } c = 1$$

$$n_0 = c$$

$$n_0 = c$$

Hence Proved by definition