EE 207 (MBP): Question Set 2

1. For an abrupt silicon pn junction at 300 K with $N_a=5\times10^{17}\,\mathrm{cm^{-3}}$ and $N_d=8\times10^{16}\,\mathrm{cm^{-3}}$, what is the built-in voltage V_bi ?

 $(n_i = 1.5 \times 10^{10} \,\mathrm{cm}^{-3} \,\mathrm{at} \,300 \,\mathrm{K.})$

(A) 0.59 V (B) 0.67 V (C) 0.73 V (D) 0.85 V

2. For the conditions given in Q-1, what is the total depletion width W?

(A) $0.530 \,\mu\text{m}$ (B) $0.284 \,\mu\text{m}$ (C) $0.126 \,\mu\text{m}$ (D) $0.098 \,\mu\text{m}$

3. For the conditions given in Q-1, what is W_n (depletion width on the n-side)?

(A) $0.109 \,\mu\text{m}$ (B) $0.084 \,\mu\text{m}$ (C) $0.145 \,\mu\text{m}$ (D) $0.056 \,\mu\text{m}$

4. For the conditions given in Q-1, what is W_p (depletion width on the p-side)?

(A) $0.102 \,\mu\text{m}$ (B) $0.074 \,\mu\text{m}$ (C) $0.122 \,\mu\text{m}$ (D) $0.017 \,\mu\text{m}$

5. For the conditions given in Q-1, what is \mathcal{E}_m , the maximum electric field (magnitude) in equilibrium?

(A) 85 kV/cm (B) 134 kV/cm (C) 215 kV/cm (D) 178 kV/cm

6. For the conditions given in Q-1, what is the slope of the electric field $d\mathcal{E}/dx$ (magnitude) in the depletion region on the n side?

(A) $1.24 \times 10^{10} \text{ V/cm}^2$

(B) $6.56 \times 10^{10} \text{ V/cm}^2$

(C) 3.85 × 10⁹ V/cm²

(D) $7.90 \times 10^9 \text{ V/cm}^2$

7. For the conditions given in Q-1, what is the slope of the electric field $d\mathcal{E}/dx$ (magnitude) in the depletion region on the p side?

(A) $3.42 \times 10^{11} \text{ V/cm}^2$

(B) $6.82 \times 10^{11} \text{ V/cm}^2$

(C) 7.74 × 10¹⁰ V/cm²

(D) $1.25 \times 10^{10} \text{ V/cm}^2$

8. Consider an abrupt silicon pn junction at $T=300\,\mathrm{K}$ with $N_d=10^{17}\,\mathrm{cm}^{-3}$. If $W_p/W_n=3$ in equilibrium, what is N_a ?

(A) $1.11 \times 10^{16} \text{ cm}^{-3}$

(B) $3.33 \times 10^{16} \text{ cm}^{-3}$

(C) 2.5 × 10¹⁶ cm⁻³

(D) $3 \times 10^{17} \text{ cm}^{-3}$

9. Consider an abrupt silicon n^+p junction at 300 K with $N_d=10^{18}\,\mathrm{cm}^{-3}$ and $N_a=10^{16}\,\mathrm{cm}^{-3}$. If the critical field for breakdown \mathcal{E}_c for silicon is 300 kV/cm, what is the reverse breakdown voltage for this junction?

11. For an abrupt silicon pn junction with $N_a=10^{18}\,\mathrm{cm}^{-3}$, $N_d=10^{16}\,\mathrm{cm}^{-3}$, what is dV_{bi}/dT (in mV/°C) at $T=300\,\mathrm{K}$? (Take into account the temperature dependence of V_T as well as n_i^2 . Assume that N_c , N_v , E_g vary slowly with temperature, i.e., they can be treated as constants. At 300 K, $n_i=1.5\times10^{10}\,\mathrm{cm}^{-3}$, $E_g=1.1\,\mathrm{eV}$.)

(A) -0.97 mV/K (B) -1.50 mV/K (C) -0.54 mV/K (D) -2.18 mV/K

12. Consider a reverse-biased p^+n silicon junction at 300 K. We want to design the junction for a breakdown voltage of $V_{\rm BR}=10\,{\rm V}$. What is the maximum value of N_d we can use? (Assume the critical field \mathcal{E}_c for silicon to be $300\,{\rm kV/cm}$ and $V_{\rm bi}\approx 0.8\,{\rm V.}$)

```
(A) 1.8 \times 10^{17} \, \mathrm{cm}^{-3}
```

(B) $2.7 \times 10^{16} \, \text{cm}^{-3}$

(C) $9.6 \times 10^{15} \,\mathrm{cm}^{-3}$

(D) $2.2 \times 10^{15} \, \text{cm}^{-3}$

13. With a forward bias of $0.62\,\mathrm{V}$, a silicon pn diode conducts a current of $0.5\,\mathrm{mA}$. Assume the ideality factor η to be 1 and $T=300\,\mathrm{K}$. What is I_s (the reverse saturation current)?

(A) 3.9×10^{-13} A

(B) $8.1 \times 10^{-14} \,\mathrm{A}$

(C) $7.6 \times 10^{-13} \,\mathrm{A}$

(D) $2.0 \times 10^{-14} \,\mathrm{A}$

14. For the diode described in Q-13, what forward voltage should be applied to obtain a current of 2.5 mA?

(A) 0.72 V (B) 0.76 V (C) 0.66 V (D) 0.61 V

15. The fact that n_i nearly doubles with every 10 °C rise in temperature can be represented by the equation, $n_i = Ke^{\alpha T}$, where T is in Kelvin. What is α ?

(A) 0.0693 (B) 0.693 (C) 0.139 (D) 0.0347

16. For the diode described in Q-13, the applied voltage is $V = 0.62\,\mathrm{V}$. What is the diode current if the temperature increases by 5 °C? (Assume that n_i doubles every 10 °C for silicon. Ignore the other temperature dependencies in I_s , and assume E_g to be constant and equal to $1.1\,\mathrm{eV}$.)

(A) 2 mA (B) 1 mA (C) 1.53 mA (D) 0.67 mA

- 17. Consider an abrupt silicon pn junction under moderate forward bias, with $N_a=10^{17}\,\mathrm{cm}^{-3},\ \tau_p=10\,\mathrm{ns},\ \tau_n=20\,\mathrm{ns},\ \mu_n=1000\,\mathrm{cm}^2/\mathrm{V}\text{-s},\ \mu_p=400\,\mathrm{cm}^2/\mathrm{V}\text{-s},\ T=300\,\mathrm{K}.$ The hole current $I_p(x_n)$ is twice as large as the electron current $I_n(x_p)$. What is N_d ?
 - (A) $4.5 \times 10^{16} \, \mathrm{cm}^{-3}$
 - (B) $1.8 \times 10^{17} \, \text{cm}^{-3}$
 - (C) $7.8 \times 10^{17} \,\mathrm{cm}^{-3}$
 - (D) $9.6 \times 10^{16} \,\mathrm{cm}^{-3}$
- 18. Consider a $p^+ n$ silicon diode with $\mu_p = 500 \,\mathrm{cm^2/V}$ -s, $N_d = 5 \times 10^{16} \,\mathrm{cm^{-3}}$, $\tau_p = 50 \,\mathrm{ns}$, an area of $10^4 \,\mu\mathrm{m^2}$, operating at $T = 300 \,\mathrm{K}$. What is I_s ? $(n_i = 1.5 \times 10^{10} \,\mathrm{cm^{-3}})$
 - (A) 2.08×10^{-14} A
 - (B) 1.15×10^{-15} A
 - (C) 9.80×10^{-15} A
 - (D) $7.66 \times 10^{-14} \,\mathrm{A}$
- 19. For the diode described in Q-18, the applied forward voltage is $V=0.68\,\mathrm{V}$. What is the diode current?
 - (A) 0.30 mA (B) 2.08 mA (C) 7.51 mA (D) 0.66 mA
- 20. For the silicon pn diode shown in the figure, $N_a=5\times 10^{17}\,\mathrm{cm}^{-3}$, $N_d=10^{17}\,\mathrm{cm}^{-3}$, $\tau_p=\tau_n=0.1\,\mu\mathrm{s}$, $\mu_n=1200\,\mathrm{cm}^2/\mathrm{V}\text{-s}$, $\mu_p=400\,\mathrm{cm}^2/\mathrm{V}\text{-s}$, the cross-sectional area is $10^{-4}\,\mathrm{cm}^2$, and $T=300\,\mathrm{K}$. For a forward bias of 0.7 V, what is the diode current? $(n_i=1.5\times 10^{10}\,\mathrm{cm}^{-3}$ at 300 K.)

- (A) 0.42 mA (B) 1.60 mA (C) 0.28 mA (D) 3.73 mA
- 21. The figure shows a structure with a constant doping density. It has the same dimensions as the pn junction structure of Q-20. What voltage should be applied to get the same current as that for the pn junction of Q-20 with a forward bias of $0.7 \,\mathrm{V}$?

- (A) 5.9 mV (B) 1.8 mV (C) 25 mV (D) 40 mV
- 22. The figure shows a structure with a constant doping density. It has the same dimensions as the pn junction structure of Q-20. What voltage should be applied to get the same current as that for the pn junction of Q-20 with a forward bias of 0.7 V?

(A) 15.8 mV (B) 1.56 mV (C) 25.3 mV (D) 2.95 mV