General Export Model

S ISO Set using ISO screws

SPECIFICATIONS

3 hrs 6 hrs

Req	uirem

Ante-AC 100 V, 110 V, 120 V, 127 V, 220 V or 240 V 50/60 Hz

Consumption: 90 W

Response:

Track System: 4-track stereophonic and monophonic

7" (18 cm) maximum Real Size:

7 1/2 ips, 3 3/4 ips, 1 7/8 ips Tape Speed: (19 cm/s, 9.5 cm/s, 4.8 cm/s) Tape speed

Recording Time: (with 1,800 ft, tape) Frequency

4-track stereo 4-track mono 1.5 hrs 3 hrs 7 ½ ips (19 cm/s) 3 % ips (9.5 cm/s)

3 hrs

(with SONY SLH tape) $20\!\sim\!30,\!000$ Hz at 7 $^{-1/2}$ ips (19 cm/s) $20\!\sim\!20,\!000$ Hz at 3 $^{-3/4}$ ips (9.5 cm/s)

20~20,000 Hz at 3 3/4 ips (9.5 cm/s) (with standard tape) 20~25,000 Hz at 7 3/4 ips (9.5 cm/s) 30~17,000 Hz at 3 3/4 ips (9.5 cm/s) 30~9,000 Hz at 1 7/8 ips (4.8 cm/s)

Signal-to-Noise

Batio: 56 dB (with SLH tape) 53 dB (with standard tape)

Flutter

and Wow:

0.06 % at 7 1/2 ips (19 cm/s) 0.10 % at 3 3/4 ips (9.5 cm/s) 0.20 % at 1 7/8 ips (4.8 cm/s)

Recording Bias Approx. 160 kHz Frequency:

Two MIC inputs

Impedance: low impedance Maximum sensitivity: 0.2 mV (-72 dB)

Two AUX Inputs

impedance: 100 kΩ

Maximum sensitivity: 0.06 V (-22 dB) REC/PB connector

Impedance: 10 kΩ

Input level: 17.4 mV (-33 dB)

Outputs: Two LINE Outputs

.100 kΩ Load impedance:

Output level: 0.775 V (0 dB) HEADPHONE Output

Load impedance:

12.5 mV (-36 dB) at Output level:

1 of level switch 31 mV (-28 dB) at

2 of level switch

Distortion

1.2 %

Semiconductors: 45 transistors, 1 integrated circuit, 27 diodes

17 9/16 (W) x8 7/8 (H) x 18 1/8 (D) Dimensions:

(446 x 225 x 460 mm)

Weight: 43 1b (19.5 kg)

TABLE OF CONTENTS

Section	<u>Title</u> <u>Pa</u>	ge Sectio	<u>n</u>	<u>Title</u>	Page
	Specifications	ı .	4-2-1.	Record Amp. Circuit Board .	37~39
			4-2-2.	Record Equalizer Circuit Board	d 40~41
1. GENE	RAL DESCRIPTION		4-2-3.	Playback Amp. Circuit Board	42 ~ 44
		_	4-2-4.	Bias OSC Circuit Board	45 ~ 47
. 1-1.	Block Diagram		4-2-5.	Servo Control Circuit Board .	48
1-2.	Major Parts Locations		4-2-6.	Relay Circuit Board	49~51
1-3.	Switch Location	5	4-2-7.	Power Supply Circuit Board .	52~54
			4-2-8.	ESP Circuit Board	
2. DISAS	SSEMBLY		4-2-9.	Reverse Switch Circuit Board	57
2-1.	Cabinet Removal	7 4	-3.	Level Diagram	58
2-2.	Head Deck Removal				
2-3.	Record Equalizer Circuit Board Removal	5.	ELECT	TRICAL PARTS LIST	59~64
2-4.	Reverse Switch Circuit Board	6.	EXPLO	DDED VIEWS	
	Removal	8 6	-1.	Packing	65
3. ADJU	STMENT PROCEDURES	- 6	-2.	Cabinet - top view	
J. AD00			-3.	Head Deck - top view	
3-1.	Mechanical Adjustments		-4 .	Amplifier Chassis — top view -	
3-2,	Electrical Adjustments 1	9 ~ 32 6	-5.	Chassis – top view – (1)	
		. 6	-6.	Chassis – top view – (2)	72
DIAG	RAMS	6	-7.	Chassis - top view - (3)	73
4-1.	Schematic Diagram	6	-8.	Chassis - bottom view	74
4-1-i.					
4-1-3.	Circuit			WARES	
4-1-2.	System Control Circuit 3	5 ~ 36	Hardw	are Nomenclature	75
4-2.	Mounting Diagram				

SECTION 1 GENERAL DESCRIPTION

1-1. BLOCK DIAGRAM

1-2. MAJOR PARTS LOCATIONS

Cabinet - Top View -

Cabinet - Side Views -

Chassis - Bottom View -

1-3. SWITCH LOCATION

S614 (upper side) PLAY,FF-STOP switch (4) S605 (lower side) PLAY,FF-STOP switch (2)

SECTION 2 DISASSEMBLY

2-1. Cabinet Removal

Fig. 2-1.

2-2. Head Deck Removal

- 1. Remove the FWD and REV lamps.
- 2. Remove the five screws shown in Fig. 2-2. Lift off the head deck.

Fig. 2-2. Head deck removal

2-3. Record Equalizer Circuit Board Removal

Fig. 2-3. Record equalizer circuit board removal

Note: After reattaching, make the equalizer switch (S107) position adjustment (See page 15).

2-4. Reverse Switch Circuit Board Removal

Fig. 2-4. Reverse switch circuit board removal

Note: Pay attention not to cut the head lead wires.

CAUTION:

- Install the playback and bias osc. circuit boards, after the levers are perfectly hooked to the holes of the slider of the slide switches.
- The lead wire of microswitch has a connector, which is connected to the other lead wire with a special jig.
 - If the lead wire is cut or the connector is damaged, solder the lead directly to the microswitch terminal with an insulating tape wound around the terminal.
- 3) Never put the unit upside down on the hard plate with the head cover removed. The pin of the tape shifter, the shut-off arm pin, the tension armand others will be bent because of the weight of the unit. If it is necessary to put the unit upside down, put it on a soft cloth with the head cover attached.
- 4) When replacing the chassis, cut threads on it with a hexagon tapping screw.

SECTION 3 ADJUSTMENT PROCEDURES

3-1. MECHANICAL ADJUSTMENTS

Fig. 3-1. Adjusting parts locations (1)

Fig. 3-2. Adjusting parts locations (2)

Note:

When the unit is set to FWD, REV, FF, REW, or
REC mode with the no tape threaded, hold the both
actuator plins so that the AUTO SHUT-OFF switch is,
activated is rubber band or a piece of masking tape willhold the actuator as though tape were threaded on the

3-1-1. PLAY-FF, STOP Switch (S604, 612) Position Adjustment

Make the following adjustments by loosening the two microswitch holding screws. See Fig. 3-3. After that, apply lock paint to them.

- STOP mode (Lock arm B is locked)
 Make sure that the actuator of microswitch is
 perfectly pushed with the plate spring as shown
 in Fig. 3-3.
- FWD or REV mode (Lock arm B is released.)
 The actuator of microswitch should not be pushed by the plate spring at all.
- STOP to FWD (or REV) mode
 \$604 should be released approximately one
 second after \$612 is released.

Fig. 3-3. PLAY-FF, STOP switch (S604, 612) position adjustment

3-1-2. AUTO SHUT-OFF Switch (S609, 618) Position Adjustment

- Make sure that the bent portion of the actuator pin is positioned vertically against the chassis.
 If necessary, adjust by bending the base of the pin.
- Loosen the two microswitch holding screws. Adjust the position of the microswitch so that the switch is turned ON by the actuator pin at the position shown in Fig. 3-4.
- 3. Apply lock paint to the screws.

Note

Adjust for both AUTO SHUT-OFF switch in the same way.

Fig. 3-4. AUTO SHUT-OFF switch (S609, 618)
position adjustment

3-1-3. Brake Solenoid (PM602) Position Adjustment

- Turn OFF the power. Unhook either end of the spring and loosen the four solenoid holding screws. See Fig. 3-5.
- 2. Push the solenoid shaft to the full with a hand in the direction shown by the arrow. Adjust the position of the solenoid so that the clearance between the timing lever and the lock lever is 0 to 0.5 mm (1/64). Make this adjustment perfectly otherwise an unusual noise is produced because of the vibration of the brake lever.
- Hook the spring again and turn ON the power.
 Change the mode from FWD (REV) to STOP and vice versa several times. Make sure that the unusual noise is not produced. Adjust the position of the solenoid, if necessary.
- 4. Apply lock paint to the screws.

Fig. 3-5. Brake solenoid (PM602) position adjustment

3-1-4. PLAY,FF-STOP Switch (S605, 614) Position Adjustment

- Place the unit in the FF or REW mode, to energize the brake solenoid. Check to see that the
 actuator of microswitch is perfectly pushed
 with the plate spring and also that the no
 clearance between the microswitch and the plate
 spring is obtained as shown in Fig. 3-6.
 If necessary, adjust the position of the micro
 - switch by loosening the two switch holding screws.
- 2. Apply lock paint to the screws.

Note:

Be careful not to turn OFF the microswitch with the solenoid energized, as the thermistor (Pth601) on the relay circuit board will be damaged because of an unusual current.

Fig. 3-6. PLAY, FF-STOP switch (S605, 614) position adjustment

3-1-5. PLAY,FF-STOP Switch (S602, 610) Position Adjustment

- Place the unit in the FF or REW mode, to energize the brake solenoid. Check to see that the actuator of microswitch is perfectly pushed with the timing lever as shown in Fig. 3-7.
 If necessary, adjust the position of the microswitch by loosening the two switch holding screws.
- 2. Apply lock paint to the screws.

Fig. 3-7. PLAY, FF-STOP switch (S602, 610) position adjustment

3-1-6. Pinch Roller Solenoid (PM601) Position. Adjustment

- Loosen the three solenoid holding screws shown in Fig. 3-8.
- 2. Place the unit in the FWD or REV mode to energize the solenoid. Adjust the position of the solenoid so that the clearance between the pinner roller pressure adjusting plate and the plunger solenoid drive arm is 0.5 mm (1/64") to 1 mm (3/64"). Tighten the screws. The solenoid shaft should be attracted straight on the line and in parallel with the solenoid.
- 3. Apply lock paint to the screws.

Fig. 3-8. Pinch roller solenoid (PM601) position adjustment

3-1-7. Lock Arm Bracket Position Adjustment

- Make sure that the clearance between the lock arm (A) and the lock arm (B) is 0.5 ~ 1 mm (1/64 ~ 3/64) in the FWD (or REV) mode. In the STOP mode the clearance between the lock arm (A) and the lock arm (B) should be approximately 1 mm (3/64). See Fig. 3-9.
- Loosen the two lock arm bracket holding screws, if necessary. See Fig. 3-9.
- Adjust the position of the lock arm bracket.
 Tighten the screws.
- 4. Apply lock paint to the screws.

Fig. 3-9. Lock arm bracket position adjustment

3-1-8. Reel Table Height Adjustment

- 1. Use a 7 inch reel.
- 2. Thread the tape along the tape path. Place the unit in the FWD mode. If the tape touches either flange of the reel, adjust the reel table height by loosening the two set screws with an allen werench. Here the both upper and lower clearances between the tape and the reel flange should be the same.
- Tighten the set screws.

Fig. 3-10. Reel table height adjustment

3-1-9. Servo Control Circuit Board Position Adjustment

- Loosen the two servo control circuit board holding screws shown in Fig. 3-11. Set the tape speed switch to the 9.5 cm/s (3-3/4 ips) position (center).
- Thread the tape along the tape path. Place the unit in the FWD mode. Adjust the position of the serve control circuit board together with the heat sink so, that the TAPE SPEED is 9.5 cm/s. Tighten the screws.

- Make sure that the tape speed changes definitely, when the TAPE SPEED switch is slowly changed to the 4.8 cm/s, 9.5 cm/s and 19 cm/s positions. Readjust the position of the servo control circuit board, if necessary.
- 4. Apply lock paint to the screws.

Fig. 3-11. Servo control circuit board position adjustment

3-1-10. FWD and REV Back Tension Torque Adjustment

Note:

Instructions in []are applied to the REV back tension torque adjustment.

- Place a 7" reel with string wound several turns counterclockwise [clockwise] onto the FWD [REV] supply reel table. Tie the string to the spring scale.
- Measure the back tensions by pulling the 0 to 400 g (14 oz) spring scale at approximately 9.5 cm/s (3.3/4 ips) speed in FWD [REV] mode. See Fig. 3-12.
 It should be 200 to 240 g.cm (2.78 to 3.32 oz. inch).
- Adjust the slider of R609 by loosening the screws, if necessary.

Fig. 3-12. FWD and REV back tension torque adjustment

Fig. 3-13. Back tension torque adjusting parts location

3-1-11. FF and Rewind Back Tension Torque Adjustment

Note:

Instructions in [] are applied to the REW back tension adjustment.

- 1. Place a 7" reel with string wound several turns counterclockwise [clockwise] on the hub onto the FWD [REV] supply reel table. Tie the string to the spring scale.
- 2. Measure the back tension by pulling the 0 to 400 g (14 oz) spring scale at approximately 9.5 cm/s (3-3/4 ips) speed in FF [REW] mode. See Fig. 3-12. It should be 60 to 80 g.cm (0.83 to 1.1 oz inch).
- 3. Adjust the slider of R608 by loosening the screw, if necessary.

3-1-12. Brake Torque Adjustment

This adjustment should be performed for both supply and take-up sides.

Note:

Instructions in [] are applied to the take-up brake torque adjustment.

- 1. Place the unit in the STOP mode.
- 2. Place a 7" reel with string wound several turns counterclockwise [clockwise] on the hub onto

the reel table. Tie the string to a spring scale.

- 3. Pull the scale in the direction shown by the red arrow, making sure that the string does not touch either flange of the reel. The reel table will rotate counterclockwise [clockwise]. Take a reading only when the reel table is in steady motion.
- 4. The scale reading should be 900 g.cm (12.5 ozinch) to 1,200 g.cm (16.7 ozinch).
- 5. Rewind the string by turning the reel clockwise [counterclockwise].
- 6. Turn string several times clockwise [counter-clockwise] on the hub onto the reel table.
- 7. Pull the scale in the direction shown by the black arrow, making sure that the string does not touch either flange of the reel.

 The reel table will rotate clockwise [counter-clockwise]. Take a reading only when the reel table is in steady motion.
- 8. The scale reading should be 300 g.cm (4.17 ozinch) to 400 g.cm (5.55 ozinch)
- 9. If the satisfied results are not obtained, adjust by changing the hooking position of spring.

Specification:

Brake Torque of Supply Reel
in clockwise turning300-400 g.cm
(4.17-5.55 oz.nch)
in counterclockwise turning
900-1,200 g.cm
(12.5-16.7 oz.nch)

Brake Torque of Take-up Reel in clockwise turning 900-1,200g. cm (12.5-16.7 ozin ch)

(4.17-5.55 ozinch)

Fig. 3-14. Brake torque adjustment

3-1-13. Direction Change Stopper Position Adjustment

- 1. Loosen the stopper holding screw,
- Place the unit in the FWD (or REV) mode. Adjust the position of the direction change stopper so that the clearance between the stopper and the tape direction change lever is 4 mm (5/32").
- Change the mode from FWD to REV and vice versa several times. Make sure that the position of the pinch roller changes when the mode is changed.
- 4. Apply lock paint to the screws.

Fig. 3-15. Direction change stopper position adjustment

3-1-14. Pinch Roller Pressure Adjustment

1. Make a loop in a piece of string and attach the 0 to 1,600 g (3 ib 8 oz) spring scale around the base of the pinch roller shaft. See Fig. 3-16. Pull the scale. The pulling direction should be aligned with the pinch roller shaft and the capstan. Check the reading when the pinch roller just stops rotating. It should be 1,200 to 1,400 g (42 to 49 oz). If necessary, change the hooking position of the spring.

Fig. 3-16. Pinch roller pressure adjustment

3-1-15. Direction Switch Joint Rod Stroke Adjustment

- Place the unit in the STOP mode. Push the tip
 of the direction switch lever slowly in the
 direction shown by the arrow in Fig. 3-17 as
 far as the slide switches on the playback and the
 bias osc. circuit boards are changed. (Do not
 move the position of switch).
- Push the REV button. Make sure that the tip of the lever is pushed moreover by 0.5~1 mm (1/64~3/64") in the direction shown by the arrow by the solenoid.
- Change the mode from the FWD to REV and vice versa several times and make sure that the slide switches are changed perfectly.
- Change the position of direction switch joint rod to the direction change lever if necessary.

Fig. 3-17. Direction switch joint rod stroke adjustment

3-1-16. FWD-REV Switch (S601, 619) Position Adjustment

- 1. Loosen the two screws.
- Place the unit in the REV mode to energize the direction change solenoid.
- Adjust the position of the microswitch so that the actuator is perfectly pushed with the joint plate. Tighten the screws.
- 4. Apply lock paint to the screws,

Fig. 3-18. FWD/REV switch (S601, 619) position adjustment

3-1-17. Record Button Block Adjustment

- See Fig. 3-19. Place the unit in the STOP mode. Check to see that the clearance between the REC button block and the record arm holder is 0.5 (1/64") to 1 mm (3/64"). If necessary, adjust the position of the REC arm holder by loosening the screws.
- Make sure that the slide switches (\$103, 104)
 on the bias circuit board are perfectly switched,
 when the REC button is locked. Readjust the
 clearance between the REC button block and
 the REC arm holder, if necessary.
- 3. Apply lock paint to the screws.

Fig. 3-19. Record button block adjustment

3-1-18. REC Lock Pull Rod Adjustment

- Piace the unit in the STOP mode. Turn the split nut clockwise until the tip of the REC lock pull rod is in contact with the REC lock rod. Moreover, turn the split aut slowly one or two times after the tip of the pull rod is in contact with the REC lock rod. Press the nut by using a pilers.
- 2. Make sure the followings.
 - a) Lock the REC button in the STOP mode. The REC button is released when the FWD or REV button is pushed.
 - b) Lock the REC button slowly in the STOP mode. The REC lamp lights before the button is locked.
 - c) Lock one of the two REC buttons in the STOP mode. The button is released when another is locked.
- 3. Apply contact cement to the nut.

Fig. 3-20. REC lock pull rod adjustment

3-1-19. Equalizer Switch (S107) Position Adjustment

- Loosen the two screws as shown in Fig. 3-21, Set the tape speed switch to the 9.5 cm/s (center) position.
- Move the screws so that the equalizer switch is set at the 9.5 cm/s (center) position.
- Change the tape speed switch to the 4.8 cm/s, 9.5 cm/s and 19 cm/s positions and vice versa several times. Make sure that the equalizer, switch is definitely changed.
- 4. Apply lock paint to the screws.

Fig. 3-21. Equalizer switch (S107) position adjustment

3-1-20. PLAY-FF, STOP Switch (S613, 620) Position Adjustment

- Place the unit in the STOP mode. See Fig. 3-22.
 Make sure that the distance between the
 plunger joint plate and the leaf A of the leaf
 switch is 0 to 0.5 mm (1/64), and also that the
 leaves A and B are in contact with each other
 completely. If necessary, adjust the switch
 position by loosening the screws.
- Place the unit in the FWD (or REV) mode, to energize the pinch roller solenoid. Make sure that the leaves A and C are perfectly in contact with each other.
- 3. Apply lock paint to the screws.

Fig. 3-22. PLAY-FF, STOP switch (S613, 620) position adjustment

3-1-21. PLAY Switch (S615, 616) Position Adjustment

 Make sure that \$615 (\$616) is turned ON when the FWD (or REV) button is pushed and also that it is turned OFF when the button is released. If necessary, adjust the position of PLAY switch \$615 (or \$616) by loosening the screw A (or screw B) in Fig. 3-23. Make sure that the switch is not turned ON by the play of the FWD button.

2. Apply lock paint to the screws A and B.

Fig. 3-23. PLAY switch (S615, 616) position

3-1-22 Adjustments after Head Replacement

For FWD Direction

When replacement of more than two heads are required, leave one of them unremoved for the reference of adjustments. Do not remove all the heads at the same time.

A) Playback Head Replacement

- Replace the playback head by removing the angle adjusting screws. See Fig. 3-26.
 Do not move the height and zenith adjusting screws.
 - Play back the alignment tape (J-19-A2).
 Make the azimuth and angle adjustments.
 See page 23.
 - Paint the head core with black ink as shown in Fig. 3-24.

Fig. 3-24. Head zenith and height adjustment

- 4. After the ink dried, run the tape in the FWD direction for 20 to 30 seconds. Watch the ink on the core fading away. When the same wide amount of the faded away part cannot be obtained at every point, turn the zenith and height adjusting screws in the direction shown by the arrows. See Fig. 3-24.
 - Repeat this step several times until the satisfied result is obtained. After the adjustment clean the core with a soft cloth dampened with denatured alcohol.
- 5. For the record head tracking adjustment, connect a VTVM and a 100 kΩ resistor in parallel with the LINE OUT jack, deliver the 1 kHz signal (-60 dB) to the MIC jack. Set the MONITOR switch to the TAPE position. Place the unit in a normal stereo record mode. Turn the record head zenith and height adjusting screws in the same amount of the same direction so that the same maximum output can be obtained at both channels.
- Play back the alignment tape (J-19-A2), and make the playback azimuth adjustment again.
- Make the playback level and equalizer adjustments. See page 23 and 24.
- 8. Apply lock paint to the adjusting screws.
- B) Record/Erase Head Replacement
- Remove the azimuth adjusting screw and the head holding screw (with spring). Replace the head with the mounting plate. Do not move the zenith and height adjusting screws.
- Make the record head azimuth adjustment. See page 25.

- Paint the record/erase head cores with ink as shown in Fig. 3-24.
- 4. After the lisk dried, run the tape in the FWD direction for 20 to 30 seconds. Watch the ink on the core fading away. When the link does not fade away in the same wide amount at every point, turn the zanith and height adjusting screws in the direction shown by the arrows. See Fig. 3-24. Repeat this step several times until the satisfied result is obtained. After adjustment clean the cores with a soft cloth dampened with denatured alcohol.
- Make the record head azimuth adjustment again.
 See page 25.
- Make the record head track adjustment. See page 25.
- Make the record bias adjustment, overall frequency response and erase ratio Measurement.
- Make sure that the positioning relation between the head core and the tape is correct. See Fig. 3-25.
- 9. Apply lock paint to the adjusting screws,

For REV Direction

The tape guide (4), which is used for the REV tape path adjustment, should not be adjusted in the head replacement.

The adjustments after playback and record/erase head replacement are the same in procedure as in the FWD head replacement.

Fig. 3-25. Head adjustment

Checks After Mechanical Adjustment

1. Torque Check

FWD, REV torque ... more than 200 g. cm (2.78 oz. inch)

FF, REW torque more than 100 g. cm (1.39 oz. inch)

FWD, REV back tension

FF. REW back tension

· · · · · · · · · · · 60 - 80 g. cm* (0.83-1.1 oz. inch)

· : adjustable

- After making adjustments, clean the following parts with a soft cloth dampened with denatured alcohol; head core, tape guide, pinch roller, scrape filter roller, brake contact part of the reel table.
- 3. Tape Contact Check of Scrape Filter Roller
 - a) Thread a 7-inch tape along the tape path and set the tape speed switch to the 4.8 cm/s position.
 - b) Run the tape. Make sure that the scrape filter roller is rotating. Stop the roller by fingers. Make sure that the roller starts rotating again when taking off the fingers from the roller. If necessary, adjust the position of the scrape filter roller by loosening the screw.
- 4 Wow and Flutter Measurement
 - Make measurements at the beginning and the end of the tape. The measurement may be done with the unit set to either FWD and REV mode.

*At 19 cm/s (7-1/2 ips) and 9.5 cm/s (3-3/4 ips) tape speed

Steps

- Connect a wow meter and a 100-kΩ resistor in parallel with the LINE OUT jack.
- (2) Set the MONITOR switch to TAPE.
- (3) Play back the alignment tape indicated below.
- (4) Make sure that the satisfied result is obtained on the wow meter.

tape speed	specification	remarks
19 cm/s (7-½ ips)	less than 0.12 % (RMS)	Play back SONY alignment tape WS-19-7
9.5 cm/s (3-% ips)	less than 0.15 % (RMS)	Play back SONY alignment tape WS-9-7

*At 4.8 cm/s (1.7/8 ips) tape speed

Steps

- (1) Set the record volume controls to the position specified in Precaution (8) on page 19.
- (2) Connect a wow meter and a 100-kΩ resistor in parallel with the LINE OUT jack.
- (3) Set the MONITOR switch to TAPE.
- (4) Deliver a 3-kHz signal of -60 dB (-10 dB) to the MIC (AUX) jack.
- (5) Record the signal on the blank tape.
- (6) Make sure that the satisfied result is obtained on the wow meter.

Specification : less than 0.40 % (RMS)

3-2. ELECTRICAL ADJUSTMENTS

Precaution:

Before making adjustment, make sure to read the following carefully.

(1) Equipment to be required are as follows:

Audio oscillator (AF OSC) Attenuator (ATT)

VTVM

Oscilloscope

Digital frequency counter SONY alignment tape

*J-19-A2 (for head azimuth and angle adj.)

*J-19-F2 (for 19cm/s level and equalizer adj.)

*I-9-F1 (for 9.5 cm/s level and equalizer adj.)
*SPC-47 (for tape speed adj.)

Fixed resistors 600Ω , 300Ω , $10 k\Omega$, $100 k\Omega$

 SONY alignment tapes contain the following information in the sequence indicated.

mark fort	ist	2ed	Jwd	4ch.	Sth	6th	7th
J-19-A2			12	.5 kNz10 c	16		
	400 Hz	400112	(Q k lik	12.5 kHz	7 kHz	80 Hz	40 fts
J-19-F2	0.78	-10 dB	111 438	-10 dB	-1043	-10 dB	-1042
	5340	400 Hz	400 Hz	5 kHz	3 kHz	200 Hs	80 Hz
J-9-F1	-10 JB	0.48	- 10 dB	~10 JB	-1043	-10 dB	-1048
SPC-47				4 kHz, 0 4B			

- (3) Make sure to demagnetize the record/erase and playback heads with a soft cloth dampened with denatured alcohol.
- (4) Make sure to demognetize the record/erase and playback heads by using a head demagnetizer.
- (5) Equipment Connection

Input side

Output side

(6) Input and output levels are specified as follows, unless otherwise specified.

Normal input level MICRO- PHONE AUX IN Signal source impedance 300Ω $10 k\Omega$ Input signal level $-60 \, \mathrm{dB}$ $-10 \, \mathrm{dB}$

(0.775 mV)

(0.245 V)

Normal output level

(7) The switches should be set to the following position, unless otherwise specified:

*TAPE SPEED ----- 19cm/s (7½ ips)

*TAPE SELECT --- NORMAL

*AUTO REV ----- NON REV

(8) The record volume controls should be set to the following position, unless otherwise specified.

*MIC volume control (In using the MIC jack)
Turn the AUX volume controls fully control
turn the AUX volume controls fully control
SOURCE and deliver a l kHz signal of -604B
(0.775 mV) to the MIC jack. Adjust the MIC
volume controls so that the VTVM reads
of B(0.775 V).

*AUX volume control (In using the AUX IN jack)

Turn the MIC volume controls fully counterclockwise, set the MONITOR switch to SOURCE and deliver a 1 kHz signal of -10 dB (0.245 V) to the AUX IN Jack. Adjust the AUX volume controls so that the VTVM reads 0 dB (0.775 V).

(9) The adjustments should be performed in the sequence, unless otherwise specified.

Fig. 3-26. Adjusting parts location (1)

Fig. 3-27. Adjusting parts location (2)

Fig. 3-28. Adjusting parts location (3)

Items	Remarks	Procedures			
1. DC B + Voltage Adjustment	Test Setup: **Proposed Specification: 24 ± 0.5 V** **Proposed Specification: 24 ± 0.5 v** **Proposed R603 (DC B+ voltage adj.) voltmeter **Proposed Specification: 24 ± 0.5 v** **Note: Make sure that ac power source voltage**	 (1) Place the unit in the STOP mode. (2) Adjust R603 to obtain 24 ± 0.5 V on the voltmeter (20 kΩ/V). CAUTION: Do not short-circuit between B⁺ circuit and ground, or transistor Q602 will be broken. 			
2. Tape Speed Adjustment	is correct. Test Setup: frequency counter PB Amp COUNTER The state of the stat	(1) Play back the beginning of SONY alignment tape SPC-47 in horizontal position. (2) Adjust R901, R903 and R905 for the counter reading shown in the table below.			
		tape speed allowable adjusting range parts			
	SPC-47 LINE OUT jack	19 cm/s (7-1/2 ips) 4000 Hz ± 5 Hz R901 10 kΩ (B)			
	Switch Setting:	9.5 cm/s (3-3/4 ips) 2000 Hz ± 3 Hz R903 20 kΩ (B) 4.8 cm/s (1-7/8 ips) 1000 Hz ± 2 Hz R905 50 kΩ (B)			
	tape speed counter reading 19 cm/s $4000 \pm 40 \text{ Hz} (\pm 1 \%)$ 9.5 cm/s $2000 \pm 20 \text{ Hz} (\pm 1 \%)$ 4.8 cm/s $1000 \pm 20 \text{ Hz} (\pm 2 \%)$	 (3) Make sure that the specifications shown in left table is satisfied at the beginning and end of tap in forward and reverse mode, with the unitplace in both horizontal and vertical position. Note: Take the reading of a frequency counterafter more than 5 seconds since the sem 			
3. Capstan	Test Setup:	fixed resistor has been finished to turn. (1) Place the unit in the STOP mode.			
Bearing Position Adjustment	C911 10 µ 160 V Specification: voltmeter reading maximum	 (2) Loosen the two capstan bearing holding screws. (3) Adjust the position of the capstan bearing to that the voltmeter reads a maximum. (4) Tighten the screws and apply lock paint to the screws. 			

Items	Remarks	Procedures
4. ESP	Test Setup:	(1) Set the AUTO REV switch to CONT REV.
Adjustment	 Connect a voltmeter (20 kΩ/V) between checking point and ground. 	(2) Deliver a 1 kHz of -43 dB (5.5 mV) to R-CH LINE OUT jack.
		(3) Place the unit in the forward mode.
	checking point R717 reverse voltmeter	(4) Adjust R711 to obtain 10±0.5 V on the voltmeter. Note: Read after the indication of the voltmeter has been steady.
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	D703 Set at DC 50 V range	 (5) Thread a blank tape. (6) Change the input level from -43 dB (5.5 mV) to -33 dB (17 mV).
	ge adj. (2) Deliver 1 kHz signal to R-CH LINE OUT jack.	(7) After passing more than 3 seconds since the level is changed, adjust R717 so that the tape transport direction will reverse at 6 10 seconds after changing to -63 dB (0.56 mV) from -33 dB (17 mV) again.
	AF one ottenustor 100 κΩ I kitz ttenustor LINE OUT (R) Specification:	 (8) Repeat the above steps (2) through (7) so that the tape transport direction will be able to reverse surely in opposite direction. (9) With the AUTO REV switch set to REV position, repeat the above steps (6) and (7) and make sure that the tape transport direction of the unit reverses.
	Voltage at checking point	(10) When changing the AUTO REV switch to NON REV, make sure that the tape transport direction of the unit does not reverse.
5. VU Meter Calibration	Test Setup:	(1) Deliver a 1 kHz signal of -60 dB (0.775 mV) to the MIC jack.
	AF osc REC, LINE Amp 100 kΩ NIC lack LINE OUT lack	(2) Place the unit in the stereo-record mode. (3) Adjust the MIC volume control for 0 dB (0.775 V) on the VTVM. (4) Adjust R334 and R434 so that the pointer of VU
	Witch Setting:	meter stays at 0 ± 0.5 VU on the meter. (5) When changing the frequency from 1 kHz to 100 Hz and 10 kHz, make sure that the VU meter reads between -1 and +1 on the meter. Vulneter
	MONITOR switch SOURCE Specification: 0 ± 0.5 on the VU meter scale when the line	100 %
	output is 0 dB (0.775 V).	

items	Remarks	Procedures
6. Płayback Head Azimuth ane Angle Adjustment	Test Setup: PB Amp 100 kΩ LINE OUT jack Switch Setting: MONITOR switch TAPE Specification: Screw position where the maximum output is obtained. Notes: (1) Before the adjustment, make sure that the head comes in contact with the tape normally in forward mode.	(1) Play back the SONY alignment tape J-J9-A2 (12.5 kHz). (2) Adjust the playback head azimuth adjusting screw for the maximum output on the VTVM. Note: If the maximum value for both channels can not be obtained at the same angle of the sorcew, take the mid between the two angles and make sure that the defference between the output obtained by turning the screw from the maximum output position and the each maximum output position and the each maximum output is within 0.5 dB (3) Loosen the playback head angle adjusting screws. (4) Slightly, hold the supply reel table by the hand (5) Adjust by moving the playback head in the direction shown by the arrows (See Fig. 3-26), that the best fluctuation is the least at the maximum output and the playback output does not increase more than 0.5 dB. (6) Repeat the above steps (1) and (2). Apply lock paint to the azimuth and angle adjusting screws.
7. Playback Level Adjustment	Test Setup: PB Amp 100 kΩ LINE OUT jack Switch Setting: MONITOR switch	(1) Set the TAPE SELECT switch to NORMAL. (2) Play back the 1st tone (400 Hz, 0 dB) of the SONY algament tape J-19-12. (3) Adjust R316, R317, R416 and R417 for 0 dB (0.775 V) on the VTVM. R316 (L-CH forward run) R317 (L-CH reverse run). R417 (R-CH reverse run). (4) When changing the TAPE SELECT switch to SPECIAL, make sure that the VTVM reads between -2.5 dB and -1.5 dB (0.58 V and 0.64 V).

		Items			Rema	rks				Procedures	
	8.	Playback	Test Se	tup:					(1)	Set the TAPE SPEED switch to 19cm/s (7-1/2 ips).	
		Equalizer Adjustment	Sam	e as Item	7				(2)	Play back the 2nd (400 Hz) and 3rd (10 kHz) tones	
			Switch :	Setting:						of SONY alignment tape J-19-F2.	
			MON	NITOR 8	witch	. , TA	PE		(3)	Adjust R319, R320, R419 and R420 so that the playback output of the 3rd tone is the same as	
			Specific	ation:						that of the 2nd tone.	
	1		Devi	iation aga	inst 400 H	z of 2nd t	one			R319 (L-CH forward run) R419 (R-CH forward run)	
				at-19	cm/s tape spee	d with J-19-	F2			R320 (L-CH reverse run)	
			tape tone	3rd	4th	Sth	6th	7th		R420 (R-CH reverse run)	
			frequency	10 kHz	12.5 kHz	7 kHz	80 Hz	40 Hz + 5 dB	(4)	Play back the 4th (12.5 kHz), 5th (7 kHz), 6th	
			output L level R	±2dB	±2dB	±2dB	+3 dB +1 dB	+ 5 dB O dB		(80 Hz) and 7th (40 Hz) tones of SONY alignment tape J-19-F2 in order.	
									(6)	Make sure that the each deviation against 400 Hz	
									(3)	of 2nd tone is within specification shown in the	
										left table.	
			Deviation	n against	400 Hz o	f 3rd tone			(6)	Set the TAPE SPEED switch to 9.5cm/s	
				at 9.5 ca	m/s tape speed	with J-9-F1		1		(3-3/4 ips).	
			tape tone	4th	Sth	6th	7th		(7)	Play back the 3rd (400 Hz) and 4th (5 kHz) tones of SONY alignment tape J-9-F1.	
			frequency output L	S kHz	3 kHz	200 Hz	80 Hz	1	(8)	Adjust R321 and R421 so that the playback output	
			level R	±2 dB	± 2 dB	±2 dB	± 2 dB)		of the 4th tone is the same as that of 3rd tone.	
			Notes:							R321 (L-CH forward run)	
					m/s (7-1/2 i		zer adjusti	nent		R421 (R-CH forward run)	
i					performed stment sho				(9)	Play back the 5th (3 kHz), 6th (200 Hz) and 7th (80 Hz) tones of SONY alignment tape J-9-F1	
			b		I and R-CI					in order.	
i			-		erence bet	tween the	forward	and	(10)	Make sure that the each deviation against 3rd	
ì					nodes sho					(400 Hz) tone is within ±2 dB as shown in the left table.	
	9.	Record Head	Test Se	tup:					(1)	Deliver a 15 kHz of -80 dB (77.5 μV) to the MIC	
		Azimuth and	AF as	· .	REC Amp		Dian	k tape		jack.	
i		Angle Adjustment	` (∼)		\rightarrow	€ →		(2)	Place the unit in the forward (reverse) mode.	
ļ			· ·	/ L)	(3)	Adjust the record head aizmuth adjusting screw	
			,	AIC jack			V)	VM		for the maximum output on the VTVM.	
				- r	PB Amp	100	kΩ L			Note: If the screw is turned more than 1 turn, make the record head track adjustment again.	
						→	—			The maximum value for both channels can	
			J =	_		LINE O	UT jack			not be obtained at the same angle of the	
			Control	/Switch 5	Setting:					screw, take the mid between the two angles and make sure that the difference between	
			*Record	d volume	control :				١.	the output obtained by turning the screw	
				sı	pecified po	sition on	page 19			from the maximum output position and	
			*MONI	TOR swit	tch		TAPE	:		the each maximum output is within 2 dB.	

items	Remarks	Procedures
Record Head Azimuth and Angle Adjustment	Specification: *Screw position where the maximum output is obtained.	(4) Slightly, hold the supply recl table by the hand. (5) Make sure that the playback output does not increase more than 3 dB. If not, adjust by moving the record head in the direction shown by the arrows (See Fig. 3-26) so that the level fluctuation is the least at the maximum output.
		(6) Apply lock paint to the azimuth and angle adjusting screws. Output within 2 dB within 2 dB within 2 dB adjusting point screw angle
10. Record Head Track Adjustment	Test Setup: AF 200 AF 200 FR Amp 100 KΩ FR Amp 100 KΩ FR Amp 100 KΩ Ame phase 45' 90' 90' (EXTH) Control/Switch Setting: *Record volume control *Specification: *Lissajous figure on scope within 45' *Playback output maximam Notes: (1) Before the adjustment, make sure that the beight of head is normal against the tape in the forward mode.	(1) Thread a blank tape. (2) Place the unit in the record mode. (3) Deliver a l kHz signal of -60 dB (0.775 mV) to the MIC jack. (4) Adjust the record head azimuth adjusting screw so that the lissious figure on the scope is within 45. (5) Carefully noting how many turns the screw is turned, adjust the record head height adjusting screw for the maximum output on the VTVM. (6) Turn the record head zenith adjusting screw in the same direction by the same turns as noted in the above step (3). Note: If the maximum value for both channels can not be obtained at the same angle of the screw, take the mid between the two angles and then makes sure that the sevel difference from the each maximum value is less than 1 dB. (7) Check the record head azimuth adjustment.

Items	Remarks	Procedures
Record Head Track Adjustment	(2) Perform this adjustment after that for the playback head was done.	
11. Dummy Coil Adjustment	Test Setup: AF osc REC Amp 100 κΩ Control/Switch Setting: "Record volume control Specified position on page 19	(1) Thread a blank tape. (2) Deliver a 20 kHz signal of -80 dB (77.5 µV) to the MIC jack. (3) Place the unit in the stereo-record mode. (4) Note the VTVM reading. (5) Place only L-CH in the record mode. (6) Adjust L504 slowly so that the VTVM reading is the same as the value obtained in the step 4. L504 (L-CH forward run) L508 (L-CH freezer run)
12. Reverse Bias Frequency Adjustment	"MONITOR switch TAPE Test Setup: VTVM L-CH checking point checking point	1.505 (R-CH reverse run) (1) Place the unit in the reverse-stereo record mode. (2) Adjust C509 so that the VTVM reads a minimum (less than - 10 dB). Note: If the minimum value for both channels can not be obtained at the same angle of the trimmer capacitor, take the mid between the two angles. After the adjustment, make sure that the VTVM reads less than - 10 dB. (3) Arply lock paint to the trimmer capacitor.
	playback amp circuit based bias osc circuit board circuit board bo	(3) Apply lock paint to the training expected.
	fully counterclockwise Specification: Less than -10 dB Note: Perform after the trap coll adjustment.	

ltems	Remarks	Procedures
13.Record Bias Adjustment	Test Setup: AF one REC Amp blank tape MIC Jack VTVM	(1) Turn CS10, CS11, CS12 and CS13 clockwise to the full and return them approximately three times. (2) Thread a blank tape. (3) Deliver a 1 kHz signal of -80 dB (77.5 µV) to the MIC jack.
	PB Amp 100 kΩ LINE OUT jack	(4) Place the unit in the stereo-record mode. (5) Slowly, turn C510, C511, C512 and C513 clockwise, and the VTVM reading will go up and reach a maximum.
	Control/Switch Setting: *Record volume control specified position on page 19 *MONITOR switch TAPE Specification: 10 +1 dB at peak bias point	So note the VTVM reading. C510 (L-CH forward run) C511 (R-CH forward run) C512 (L-CH revense run) C513 (R-CH revense run) (6) Change the input signal frequency from 1 kHz to 18 kHz.
	*0 ± 2 dB playback output of 18 kHz signal Note: The adjustment should be performed for both L-CH and R-CH in forward and reverse modes.	(7) Turn C510, C511, C512 and C513 further dock- wise so that the VTVM reading is the same as the value noted in the step (5). Note: Make sure that the VTVM reading does not fall more than i dB from the maximum output obtained in the step (5). (8) Apply lock paint to the trimmer capacitors.
14. Trap Coil and Bias Leakage Adjustment	Test Setup: A) Trap coil adjustment VTVM	A) Trap Coil Adjustment Set the record volume control (MIC and AUX) counterclockwise to the full. Place the unit in the stereo-record mode. Adjust L507 and L508 so that the VTVM con-
	checking point checking point	nected netween the checking point and ground reads a minimum (less than -10 dB).
	playback amp circuit based circuit board end of cir	

B) Bias leakage adjustment	B) Bias Leakage Adjustment
VTVM	(f) Set the record volume control (MIC and AUX clockwise to the full.
REC Amp	(2) Place the unit in the stereo-record mode.
100000	(3) Set the MONITOR switch to TAPE.
LINE OUT jack	(4) Adjust 1.301 and 1.401 so that the VTVM read a minimum (less than -35 dB).
Specification:	(5) Change the MONITOR switch to SOURCE an make sure that the VTVM reads less than -35 dB
Less than -10 dB (Trap Coil Adjustment)	L301 (L-CH forward run) L401 (R-CH forward run)
Less than -35 dB (Bias Leakage Adjustment)	D401 (N-CH 101 ward Tall)
Notes:	-
(1) Use a non-metallic screwdriver.	
(2) Do not use shielded wire as the lead of the VTVM.	
Test Setup: Same as Item 13	(1) Deliver a 1 kHz signal of -60 dB (0.775 mV) to the MIC jack.
Control/Switch Setting:	(2) Set the TAPE SPEED switch to 19 cm/s (7-1/2 ips)
	(3) Place the unit in the stereo-record mode.
MONITOR switch TAPE	(4) Adjust R127, R128, R227 and R228 so that th VTVM reads 0 dB (0.775 V).
Specification:	R127 (L-CH forward run)
0 ± 1 dB Playback output at 19 cm/s (7-1/2 ips) tape speed	R 227 (R-CH forward run) R 128 (L-CH reverse run) R 228 (R-CH reverse run)
0 ± 2 dB Playback output at 9.5 cm/s	
(3-3/4 ips) and 4.8 cm/s (1-7/8 ips) tape speed	(5) When changing the TAPE SPEED switch t 9.5 cm/s (3-3/4 ips) and 4.8 cm/s (1-7/8 ips
* The level difference between channels at 9.5 cm/s and 4.8 cm/s tape speed	make sure that the VTVM reads 0 ± 2 dB an that the difference between L-CH and R-CH i within 2 dB.
· ·	(6) When changing a mode from stereo to monaural
mode and monaural-record mode	make sure that difference between them within 1 dB.
both L-CH and R-CH in forward and	
reverse modes.	
	Specification: Less than -10 dB (Trap Coil Adjustment) Less than -25 dB (Bias Leakage Adjustment) Notes: (1) Use a non-metallic screwdriver. (2) Do not use shielded wire as the lead of the VTVM.

Items	Remarks	Procedures
16. Play back S/N Ratio	Test Setup:	(1) Play back the 1st tone (400 Hz) of SONY alignment tape (J-19-F2).
Measurement	C PB Amp	(2) Note the VTVM reading.
	100 kΩ	(3) Remove the alignment tape.
	J-19-F2 LINE OUT jack	(4) Hold the both actuators so that the shut-off switch is activated (a rubber band or piece of masking tape will hold the actuator as though tape were threaded on the unit).
	Switch Setting:	(5) Place the unit in the FWD or REV mode withou the tape threaded.
	MONITOR switch	(6) Note the VTVM reading.
	Specification:	(7) Make sure that the level difference between
	more than 48 dB in both FWD and REV modes	step (2) and step (6) is more than 48 dB. (8) Reverse the power plug to the AC outlet and repeat the step (1) through the step (6).
		(9) Make sure that the level difference is also more than 48 dB.
17. Erașe Ratio Measurement	Test Setup:	(1) Thread a blank tape.
	AF osc blank tepe	(2) Deliver a 1 kHz signal of -50 dB (2.45 mV) to the MIC jack.
	RECAMP	(3) Record the signal on the tape, noting where the reading begins for a later reference.
	\$300 Ω VTVM	(4) Disconnect the audio oscillator.
	PB Amp 100 κΩ	 (5) Rewind a half of the recorded tape. (6) Terminate the MIC jack with a 300 Ω resistor
	₽ BPF - O	(7) Erase the tape by recording with no input signal
	LINE OUT jack	(8) Rewind again to the beginning of the recording
		(9) Place the unit in the playback mode.
	Control/Switch Setting: *Record volume control	(10) Play back the tape, reading the VTVM, and mak sure that the difference between the two parts i more than 60 dB, and that the level fluctuation width is within 5 dB. If not, check the tape path adjustment.
	Specification:	
	*Erase ratio more than 60 dB	
	*Level fluctuation width within 5 dB	
	l .	

TC-580 TC-580

Items	Remarks	Procedures
Overall S/N Ratio Measurement	Specification: *more than 45 dB at 19 cm/s tape speed *more than 41 dB at both 9.5 cm/s and 4.8 cm/s tape speed.	
22.Overall Distortion Measurement	Test Setup: AF osc PEC Amp ION A\(\Omega \) LINE OUT Jack Control/Switch Setting: *Record volume control	(1) Thread a blank tape. (2) Deliver a 1 kHz signal of -60 dB (0.775 mV) to the MIC jack. (3) Place the unit in the record mode. (4) Make sure that the distortion meter reads less than 1 %.

SECTION 4 DIAGRAMS

SIGNATOR SW (R)

4-1-2. System Control Circuit

TC-580 TC-580

4-1-2. System Control Circuit

-35-

-36-

4-2. MOUNTING DIAGRAM

4-2-1. Record Amp. Circuit Board

- Conductor Side -

Printed Circuit Board Part No. 1-581-040-11

4-2-1. Record Amp. Circuit Board

- Conductor Side -

- Component Side -

TC-580

4-2-2. Record Equalizer Circuit Board

- Conductor Side -

Printed Circuit Board Part No. 1-581-041-11 - Component Side -

TC-580

4-2-3. Playback Amp. Circuit Board

- Component Side -

- Conductor Side -

Printed Circuit Board Part No. 1-581-038-11

4-2-4. Bias OSC Circuit Board

- Conductor Side -

Printed Circuit Board Part No. 1-581-039-11

TC-580 TC-580

- Component Side -

4-2-5. Servo Control Circuit Board

- Conductor Side -

Printed Circuit Board Part No. 1-581-005-12

- Component Side -

4-2-6. Relay Circuit Board - Conductor Side -

Printed Circuit Board Part No. 1-581-044-12

- Component Side -

TC-580

4-2-7. Power Supply Circuit Board

- Component Side -

- Conductor Side -

TC-580 TC-580

4-2-8. ESP Circuit Board

- Conductor Side -

Printed Circuit Board Part No. 1-581-042-11 - Component Side -

2SC632A, 2SC634A

.

10D-05

4-2-9. Reverse Switch Circuit Board - Conductor Side --

Printed Circuit Board Part No. 1-581-045-11

- Component Side -

TC-580

4-3. LEVEL DIAGRAM

Playback

Record

SECTION 5

ELECTRICAL PARTS LIST

Ref. No.	Part No.	Description	Ref. No.	Part No.	Descri	ption
MOUNTE	D CIRCUIT	BOARDS		RES	ISTORS	
	X-34970-61	record amp		All re	sistors are ¼ W a	nd carbon type,
	X-34970-62	record equalizer		unles	s otherwise indic	ated.
	X-34970-63	playback amp				
	X-34970-64	bias osc	R101, 201	1-242-719	82 kΩ	
	X-34970-65	power supply	R102, 202	1-242-655	180 Ω	
	X-34970-66	relay	R103, 203	1-242-713	47 kΩ	
	X-34970-67	ESP	R104, 204	1-242-719-09	82 kΩ	low noise
	X-34970-68	servo control	R105, 205	1-242-705-09	22 kΩ	low noise
	X-34970-69	reverse switch	R106, 206	1-242-695	8.2 kΩ	
			R107, 207	1-242-687	3.9 kΩ	
PRINTED	CIRCUIT B	OARDS	R108, 208	1-242-645	68 Ω	
			R109, 209	1-242-705-09	22 kΩ	low noise
	1-581-005	servo control	R110, 210	1-242-719-09	82 kΩ	low noise
	1-581-038	playback amp	R111, 211	1-242-687	3.9 kΩ	
	1-581-039	bias osc	R112, 212	1-242-695	8.2 kΩ	
	1-581-040	record amp	R113, 213	1-242-645	68 Ω	
	1-581-041	record equalizer	R114, 214	1-242-699	12 kΩ	
	1-581-042	ESP	R115, 215	1-242-673	1 kΩ	
	1-581-043	power supply	R116, 216	1-242-733-09	330 kΩ	low noise
	1-581-044	relay	R117, 217	1-242-709-09	33 kΩ	low noise
	1-581-045	reverse switch	R118, 218	1-242-706	24 kΩ	
			R119, 219	1-242-681	2.2 kΩ	
REC AMI	CIRCUIT		R120, 220	1-242-647	82 Ω	
			R121, 221	1-242-695	8.2 kΩ	
	SEMIC	CONDUCTORS	R122, 222	1-242-677	1.5 kΩ	
			R123, 223	1-242-743	820 kΩ	
Q101, 201		transistor, 2SC632A	R124, 224	1-242-683	2.7 kΩ	
Q102, 202		transistor, 2SA678	R125, 225	1-242-679	1.8 kΩ	
Q103, 203		transistor, 2SC634A	R126, 226	1-242-695	8.2 kΩ	
Q104, 204		transistor, 2SC634A	R127, 227	1-222-775	22 kΩ(B)	semi-fixed
Q105, 205		transistor, 2SC634A	R128 228	1-222-775	22 kΩ(B)	semi-fixed
			R129, 229	1-242-707-09	27 kΩ	low noise
	CAPA	CITORS	R130, 230	1-242-701	15 kΩ	
			R131, 231	1-242-699	12 kΩ	
C101, 201	1-121-416	100 μF 25 V electrolytic	R132, 232	1-242-675	1.2 kΩ	
C102, 202	1-121-398	10 μF 25 V electrolytic	R133, 233	1-242-671	820 Ω	
C103, 203	1-121-398	10 μF 25 V electrolytic	R134, 234	1-244-693	6.8 kΩ	
C104, 204	1-121-398	10 μF 25 V electrolytic				
C105, 205	I-121-413	100 μF 6.3 V electrolytic	REC EQ	JALIZER CIR	CUIT	
C106, 206	1-121-416	100 μF 25 V electrolytic				
C107, 207	1-121-398	10 μF 25 V electrolytic		MICROI	NDUCTORS	
C108, 208	1-121-416	100 μF 25 V electrolytic				
C109, 209	1-121-398	10 μF 25 V electrolytic	L101, 201	1-407-492	1 mH	
C110, 210	1-121-413	100 μF 6.3 V electrolytic	L102, 202	1-407-492	1 mH	
C111, 211	1-121-398	10 μF 25 V electrolytic	L103, 203	1-407-496	2.2 mH	
C112, 212	1-105-667-12	0.0033µF 50 V mylar	L104, 204	1-407-495	1.8 mH	
C113, 213	1-127-093	0.47 µF 25 V electrolytic, alox		1-407-496	2.2 mH	
C114, 214	1-121-398	10 μF 25 V electrolytic				
C115, 215	1-121-398	10 μF 25 V electrolytic				

Ref. No.	Part No.	Description	Ref. No.	Part No.	Description	
	CAPACITORS			CK CIRCUIT		
C120, 220	1-106-041-12	0.047 µF 50 V mylar	ERH101,10	2 8-828-629-20	head, record/erase (ER	P102 - 2902)
C121, 22	1-106-037-12	0.033 µF 50 V mylar	PH103,104	8-829-142-20	head, playback (PP	102 - 4202)
C122, 222	1-105-682-12	0.056 µF 50 V mylar	PL1, 2	1-518-093-21	lamp, 2 V	
C123, 223	1-105-682-12	0.056 µF 50 V mylar				
C124, 224	1-105-686-12	0.12 μF 50 V mylar	PLAYBAC	K AMP CIRC	UIT	
C125, 225	C125, 225 1-121-395 4.7 µF 25 V electrolytic			SEMICON	DUCTORS	
	RESI	STORS				
		<u> </u>	Q301, 401		transistor 2SC632A	
R140, 240	1-242-685	3.3 kΩ ¼ W carbon	Q302, 402		transistor 2SC632A	
R141, 24		4.7 kΩ ¼ W carbon	Q303, 403		transistor 2SC634A	
R142, 24		4.7 kΩ ¼ W carbon	Q364, 404		transistor 2SC634A	
			Q305, 405		transistor 2SC634A	
	SW	TTCH	Q306, 406		transistor 2SC634A	
	-		D301, 401		diode 1T-22	
\$107	1-514-634	slide; EQUALIZER	D302		diode . 10D-05	
			D303		diode 1T244-47	(
AMP CE	IASSIS CIRCUI	T .				
				COIL & TR	ANSFORMER	
	CAPA	CITORS				
			L301, 401	1-409-130 coi	l, trap; 2 mH	
C126, 226	1-107-139	220 pF 50 V silvered mica	T301, 401	1-427-209 tra	nsformer, output	
	RESI	STORS		CAPA	CITORS	
R135, 235	1-222-498	10 kΩ(D) variable, MIC	C301, 401	1-121-404	33 μF 25 V electro	olytic
R136, 236	1-222-497	30 kΩ(B) variable, AUX	C302, 402	1-121-395	4.7 μF 25 V electro	olytic
R137, 23	1-244-697	10 kΩ ¼ W carbon	C303, 403	1-105-833-12	0.01 μF 50 V mylar	
			C304, 404	1-105-821-12	0.001 µF 50 V mylar	
	JA	CKS	C305, 405	1-121-471	10 μF 16 V electr	olytic
	_		C306, 406	1-121-402	33 μF 10 V electr	olytic
J101, 201	1-507-142	phono; AUX IN	C307, 407	1-107-113	18 pF 50 V silvere	d mica
J102, 202	1-507-281	MIC	C308, 408	1-121-471	10 μF 16 V electr	olytic
1103, 203	1-507-142	phono; LINE OUT	C309, 409	1-105-821-12	0.001 µF 50 V mylar	
J104	1-507-282	binaural; HEADPHONE	C310, 410	1-121-398	10 μF 25 V electr	olytic
J105	1-509-359	connector; REC/PB	C311, 411	1-102-098	470 pF 50 V ceram	ic
			C312, 412	1-121-410	47 μF 25 V electr	olytic
	SWIT	CHES	C313, 413	1-121-398	10 μF 25 V electr	olytic
			C314, 414	1-105-821-12	0.001 µF 50 V mylar	
S105	1-514-836	lever; MONITOR	C315, 415	1-107-113	18 pF 50 V silvere	d mica
S106	1-514-836	lever; MONITOR	C316, 416	1-121-409	47 μF 16 V electr	olytic
S107		described in REC EQUALIZER	C317, 417	1-107-244	470 pF 50 V silvere	ed mica
		CIRCUIT	C318, 418	1-121-398	10 μF 25 V electr	olytic
S108	1-514-867	lever; TAPE SELECT	C319, 419	1-121-398	10 μF 25 V electr	olytic
S109	1-514-768	lever; HEADPHONE LEVEL	C320, 420	1-121-391	1 μF 50 V electr	olytic
			C321; 421	1-121-471	10 μF 16 V. electr	
	MISCEL	LANEOUS	C322, 422	1-107-133	120 pF 50 V silver	d mica
PL3, 4	1-518-093-21 la	amp, 2 V				
ME1, 2	1-524-082-11 п	neter, VU				

Ref. No.	Part No.	Descrip	tion		Ref. No.	Part No.	Descrip	otion
RESISTORS			BIAS OS	C CIRCUIT				
All resistors are 1/4 W and carbon type,			oė.		SEMICON	DUCTORS		
	unles	s otherwise indic	ated.					
					Q501~506		transistor 2	SC634A
R301, 401	1-242-673	1 kΩ						
R302, 402	1-242-731	270 kΩ				COILS & TF	RANSFORMER	₹ .
R303, 403	1-242-715-09	56 kΩ	low noise					
R304, 404	1-242-727-09	180 kΩ	low noise		L501	1-407-195	microinductor,	, 1 mH
R305, 405	1-242-705	22 kΩ			L502	1-407-195	microinductor	, 1 mH
R306, 406	1-242-661	330 Ω			L503	1-407-284	variable induct	or, 1 mH
R307, 407	1-242-729-09	220 kΩ	low noise		L504	1-407-284	variable induct	or, 1 mH
R308, 408	1-242-689	4.7 kΩ			L505	1-407-284	variable induct	or,1 mH
R309, 409	1-242-689	4.7 kΩ			L506	I-407-284	variable induct	or, 1 mH
R310, 410	1-242-713-09	47 kΩ	low noise		L507	1-407-239	variable induct	or, 3.3 mH
R311, 411	1-242-705	22 kΩ			L508	1-407-239	variable induct	or, 3.3 mH
R312, 412	1-242-701	15 kΩ			T501	1-433-140	transformer, bi	ias osc
R313, 413	1-242-681	2.2 kΩ						
R314, 414	1-242-647	82 Ω				CAPA	CITORS	
R315, 415	1-242-725	150 kΩ						
R316, 416	1-221-979	22 kΩ (B)	semi-fixed		C501	1-121-398	10 μF 25 V	electrolytic
R317, 417	1-221-979	22 kΩ (B)	semi-fixed		C502	1-105-833-12	0.01 μF 50 V	mylar
R318, 418	1-242-703	18 kΩ			C503	1-105-841-12	0.047 μF 50 V	mylar
R319, 419	1-222-701	10 kΩ (B)	semi-fixed		C504	1-107-252	390 pF 1000	V silvered mica
R320, 420	1-222-701	10 kΩ (B)	semi-fixed		C505	1-121-404	33 μF 25 V	electrolytic
R321, 421	1-222-701	10 kΩ (B)	semi-fixed		C506	1-105-825-12	0.0022 µF 50	V mylar
R322, 422	1-242-697	10 kΩ			C507	1-105-825-12	0.0022 μF 50 V	√ mylar
R323, 423	1-242-713	47 kΩ			C508	1-107-144	100 pF 1000	V silvered mica
R324, 424	1-242-732	300 kΩ			C509	1-141-034	30~200 pF	trimmer
R325, 425	1-242-709	33 kΩ			C510	1-141-034	30∼200 pF	trimmer
R326, 426	1-242-713	47 kΩ			C511	1-141-034	30∼200 pF	trimmer
R327, 427	1-242-682	2.4 kΩ			C512	1-141-034	30~200 pF	trimmer
R328, 428	1-242-713	47 kΩ			C513	1-141-034	30~200 pF	trimmer
R329, 429	1-242-695	8.2 kΩ			C514	1-107-018		V silvered mica
R330, 430	1-242-681	2.2 kΩ			C515	1-107-018	270 pF 500	V silvered mica
R331, 431	1-242-663	390 Ω						
R332, 432	1-242-713	47 kΩ				RESIS	TORS	
R333, 433	1-242-681	2.2 kΩ						
R334, 434	1-221-997	2.2 kΩ (B) 560 Ω	semi-fix ed				sistors are ¼ W as	
R335, 435 R336, 436	1-242-667	15 Ω				unless	otherwise indica	ited.
R337, 437	1-242-629	100 kΩ						
	1-242-721	100 k22 12 kΩ			R501	1-242-617	4.7 Ω	
R338, 438	1-242-699	12 kΩ 10 kΩ			R502	1-242-617	4.7 Ω	
R339, 439	1-242-697	10 K32			R503	1-242-711	39 kΩ ·	
	CHIT	CH			R504	1-242-625	10 Ω	
	SWI	CH			R505	1-242-691	5.6 kΩ	
S102	1-514-813	slide; DIRE	CTION		R506	1-242-689	4.7 kΩ	
5102	1-314-613	side; DIKE	CHON		R507 R508	1-242-721	100 kΩ	
					R508	1-242-697	10 kΩ 22 kΩ	
						1-242-705	22 K12 56 kΩ	
					R510 R511	1-242-715	39 kΩ	
					R511		39 kΩ 1.5 kΩ	
					K312	1-242-677	1.3 KM	

	Ref. No.	Part No.	Descript	ion	Ref. No.	Part No.	Descr	iption
	R513	1-242-705	22 kΩ		RY601	1-515-127	relay, DC24	v
	R514	1-242-689	4.7 kΩ					
	R515	1-242-651	120 Ω		RELA	Y CIRCUIT		
	R516	1-242-625	10 Ω					
	R517	1-242-625	- 10 Ω			SEMICON	DUCTORS	
190	R518	1-242-625	10Ω					
					D604		diode	10D-6
		SW	ITCHES		D605		diode	10D-2
					D606		diode	10D-2
	S101	1-514-813		CTION	D610		diode	10D-2
	S102		discribed in PB	AMP CIRCUIT	Th601		thermistor	
	S103	1-514-813	slide; REC					
	S104	1-514-813	slide; REC			CAPA	CITOR	
	POWER S	UPPLY CIR	CUIT		C604	1-121-810	$470\mu{ m F}$ 50	V electrolytic
		SEMICO	NDUCTORS			RES	SISTOR	
	Q601		transistor 25	D291	R607	1-242-725	150 kΩ ' ¾\	V carbon
	Q602		transistor 25	C634A				
	Q603		transistor 25	C634A		MISCELI	ANEOUS	
	D601-1			0-2				
	D601-2			0.2	CP605~60	8 1-231-057		component C-R
	D602		diode 10	D-2			0.033 μF	
	D603			D-05	RY602	1-515-127	relay, DC24	v
	D608			1263-40				
	D609		diode 10	D-05	MECHAN	ICAL CHASSI	S CIRCUII	
		CAPA	ACITORS			SEMICO	NDUCTORS	<u>.</u>
	C601	1-121-398	10 μF 25 V	electrolytic	D607, 611		diode	10D-6
	-C602	1-121-388	1000 μF 35 V	electrolytic				`
	C603	1-121-388	1000 µF 35 V	electrolytic		TRANS	FORMER	
	C610	1-121-405	33 μF 50 V	electrolytic				
	C611	1-121-404	33 μF 25 V	electrolytic	T601	1-441-729	power	
		RE	SISTORS			CAPA	CITORS	
		. All :	resistors are ¼ W an	d carbon type,	C605	1-121-709	220 μF 200	V electrolytic
		unle	ss otherwise indica	ted.	C606	1-117-082	4 μF 250	V metalized paper
					C607	1-117-082	4 μF 250	V metalized paper
	R601	1-242-701	15 k Ω		C608	1-105-839-12	0.033 μF 50	V mylar
	R602	1-242-697	10 kΩ		C609	1-105-839-12	0.033 μF 50	V mylar
	R603	1-221-630	20 kΩ(B)	semi-fixed	C610		described in	POWER SUPPLY CIRCUIT
	R604	1-242-697	10 kΩ		C611			POWER SUPPLY CIRCUIT
	R605	1-242-707	27 kΩ		C612	1-117-082		V metalized paper
	R606	1-244-825	10 Ω 1/2W		C617	1-121-416	100 μF 25	V electrolytic
	R610	1-244-057	220 Ω 1/2W					
	R611	1-206-127	470 Ω 2 W	wirewound				
		MISCEI	LANEOUS			RES	ISTORS	
		MICCEL			R608	1-227-092	1 kΩ 10	W wirewound (semi-fiexd)
	CP601~604	1-231-057	encapsulated co	mponent C-R				
			0.035 ptr =					

Ref. No.	Part No.	Description	Ref. No.	Part No.	Descrip	tion
R609 R618	1-227-134 1-242-639	150 Ω . 15 W wirewound (semi-fixed) 39 Ω %W carbon	ESP CIRC	UIT		
		4		SEMICON	DUCTORS	
	SWIT	CHES				
			Q701			C632A
S601	1-514-864	micro; FWD-REV (1)	Q702~713			C634A
	1-514-864	micro; PLAY, FF-STOP (1)	D701)D-05)D-05
S603	1-514-866	lever; POWER	D702			
S604	1-514-864	micro; PLAY-FF, STOP(1)	D703 D704			Г-22)D-05
S605	1-514-864	micro; PLAY, FF-STOP(2)				
S606	1-514-865	micro; STOP	D705 D706			Г-22 1D-05
S607	1-514-865	micro; FF(1)				
S608	1-514-865	micro; PLAY(1)	D707)D-05
S609	1-514-864	micro; AUTO SHUT-OFF (1)	D708			D-05
S610	1-514-864	micro; PLAY, FF-STOP(3)	D709		diode 1	F-22
S611	1-514-864	micro; FF(2)		CARA	CITORS	
S612	1-514-864	micro; PLAY-FF, STOP(2)		CAPA	CITORS	
8613	1-514-706	leaf; PLAY-FF, STOP(3)	CEO.		0.01 50.11	
S614	1-514-864	micro; PLAY, FF-STOP(4)	C701	1-105-673-12	0.01 μF 50 V	mylat
8615	1-514-699	leaf; PLAY(2)	C702	1-105-679-12	0.033 µF 50 V	mylar
8616	1-514-699	leaf; PLAY(3)	C703	1-105-661-12	0.001 µF 50 V	mylar
8617	1-514-633	lever; CONT, REV/REV/REV OFF	C704	1-121-398	. 10 μF 25 V	
S618	1-514-864	micro; AUTO SHUT-OFF (2)	C705	1-121-391	1 μF 50 V	
S619	1-514-864	micro; FWD-REV(2)	C706	1-107-139	220 pF 50 V	silvered mica
S620	1-514-707	leaf; PLAY-FF, STOP(4)	C707	1-121-398	10 μF 25 V	electrolytic
	MISCELL	ANEOUS	C708	1-121-391	1 UF 50 V	electrolytic
	MISCELL	ANEOUS	C709	1-121-403	33 μF 16 V	electrolytic
ances con			C710	1-121-416	100 μF 25 V	electrolytic
CP609~613	1-231-057	encapsulated component C-R 0.033 μF + 120 Ω	C711 C712	1-121-391 1-121-391	1 μF 50 V 1 μF 50 V	electrolytic electrolytic
CP614~617	1.101.624	·	C712	1-121-391	0.01 µF 50 V	
CP014~01/	1-101-554	encapsulated component C-R 0.1 μF + 120 Ω	C714	1-105-676-12	0.01 µF 50 V	mylar mylar
CP618~621	1 221 057		C/14	1-103-610-12	0.016 µF 30 V	myaar
		encapsulated component C-R $0.033 \mu\text{F} + 120 \Omega$		RESI	STORS	
CP622, 623	1-101-534	encapsulated component C-R 0.1 μF + 120 Ω		Ali res	sistors are ¼ W ar	id carbon type,
PM601 .	1-454-075	plunger solenoid		unless	otherwise indica	ted.
PM602, 603	1-454-074	plunger solenoid				
CNJ601	1-509-341	AC OUTLET	R701	1-242-713	47 kΩ	
			R702	1-242-681	2.2 kΩ	
VS601	1-509-427	socket, power voltage selector	R703	1-242-707	27 kΩ	
FI	1-532-100	fuse, 2A	R704	1-242-723-09	120 kΩ	low noise
	1-533-048	holder, fuse	R705	1-242-723-09	120 kΩ	low noise
	1-534-487	cord, power	R706	1-242-705-09	22 kΩ	low noise
	1-535-045	terminal, contact; printed circuit board	R707	1-242-689	4.7 kΩ	
	1-535-046	receptacle	R708	1-242-727-09	180 kΩ	low noise
	1-536-029	terminal, 4P mold	R709	1-242-707-09	27 kΩ	low noise
	1-536-181	terminal strip 2L1	R710	1-242-737-09	470 kΩ	low noise
	1-536-183	terminal strip 2L3	R711	1-221-663	2 kΩ(B)	semi-fixed
M1	8-836-214-01	motor, capstan (UC-214G)	R712	1-242-697	10 kΩ .	
M2, 3	8-836-624-07	motor, reel (UC-624K)	R713	1-242-675	1.2 kΩ	
			.R714	1-242-709	33 kΩ	
			R715	1-242-737	470 kΩ	

Ref. No.	Part No.	Desc	ription	Ref. No.	Part No.	Descrip	otion
R716	1-242-691	5.6 kΩ			CAPA	CITORS	
R717	1-221-664	100 kΩ(B)	semi-fixed				
R718	1-242-705	22 kΩ		C901	1-105-843-12	0.068 µF 50 V	mylar mylar
R719	1-242-713	47 kΩ		C902	1-108-551-11	0.15 µF 50 V	mylar .
R720	1-242-745	1 ΜΩ		C903	1-105-821-12	0.001 µF 50 V	mylar
R721	1-242-721	100 kΩ		C904	1-121-398	10 μF 25 V	electrolytic
R722	1-242-713	47 kΩ		C905	1-121-398	10 µF 25 V	/ electrolytic
R723	1-242-705	22 kΩ		C906	1-121-416	100 µF 25 V	electrolytic .
R724	1-242-707	27 kΩ		C907	1-121-403	33 µF 16 V	/ electrolytic
R725	1-242-701	15 kΩ		C908	1-121-409	47 μF 16 V	/ clectrolytic
R726	1-242-685	3.3 kΩ		C909	1-127-306	6.8 μF 16 V	electrolytic, alox
R727	1-242-717	68 kΩ		C910	1-105-835-12	0.015 F 50 V	mylar
R728	1-242-737	470 kΩ		C911	1-121-818	10 μF 160 V	electrolytic
R729	1-242-633	22 Ω					
R730	1-242-673	1 kΩ			RESI	STORS	
R731	1-242-705	22 kΩ					
R732	1-242-713	47 kΩ			All r	esistors are ¼ W	and carbon type,
R733	1-242-745	1 MΩ			unle:	ss otherwise indi	ated.
R734	1-242-713	47 kΩ					
R735	1-242-705	22 kΩ		R901	1-221-401	10 kΩ(B)	sem i-fixed
R736	1-242-707	27 kΩ		R902	1-242-709	33 kΩ	
R737	1-242-701	15 kΩ		R903	1-221-952	20 kΩ (B)	semi-fixed
R738	1-242-699	12 kΩ		R904	1-242-717	68 kΩ	
R739	1-242-721	100 kΩ		R905	1-221-953	50 kΩ(B)	semi-fixed
R740	1-242-633	22 Ω		R906	1-242-724	130 kΩ	
R741	1-242-689	4.7 kΩ		R907	1-242-691	5.6 kΩ	
R742	1-242-705	22 kΩ		R908	1-242-680	2 kΩ	
R743	1-242-721	100 kΩ		R909	1-242-689	4.7 kΩ	
R744	1-242-673	1 kΩ		R910	1-242-639	39 Ω	
R745	1-242-705	22 kΩ		R911	1-244-867	560 Ω 1/2	W
				R912	1-242-697	10 kΩ	
SER VO	CONTROL C	IRCUIT		R913	1-242-691	5.6 kΩ	
				R914	1-242-683	2.7 kΩ	
	SEMICO	ONDUCTORS		R915	1-242-677	1.5 kΩ	
				R916	1-242-702	16 kΩ	
Q901		transistor	2SC867	R917	1-242-689	. 4.7 kΩ	
D901		diode	10D-2	R918	1-242-657	220 Ω	
D902-2		diode	CD-2	R919	1-242-705	22 kΩ	
D903:2		diode	CDR-2				
IC901		integrated o	ircuit CX-032		SW	ттсн	
				S901	1-514-323	slide; TAI	PE SPEED

When ordering replacement parts you should use PART NUMBER listed on the Parts List or shown in the Exploded View.

The reference number should not be used for ordering purposes.

SECTION 6 EXPLODED VIEWS

6-1. PACKING

6-2, CABINET - TOP VIEW --

6-5. CHASSIS - TOP VIEW - (1)

6-7. CHASSIS - TOP VIEW - (3)

3-472-278

3-497-157 bracket (A), ESP printed circuit boar

3-497-158 bracket (B), ESP printed circuit box

6-8. CHASSIS - BOTTOM VIEW -1-227-134-11 1-227-092-14 resistor, wireresistor, wirewours 1 k\O 10 W (R608) H-fixed R609 -3-497-163 - attached to resistor, wirewound; semi-fixed R60 1-454-074 solenoid, plunger (PM602) 3-497-162 bracket, wir. 1-117-082-11 capacitor, MP 4 uF 250 V 1-117-082 3-497-174-02 pin, plunger X-34970-21 |aver ess'y, d. 2-825-006 3-497-159 heat sink: 0.901 250867 2-832-00-bushing, i ⊕ PSW3×6-----1-535-045 3-497-160 bracket, he 2-832-004 3-472-278 clamp, wire @ PS 4 x 8 ⊕ PSW3 x 8 3-472-194 retainer, micro

X-34970-67 mounted circl 3-497-161 cushion, prin

TC-580

No. 1 OCT, 1971

SUPPLEMENT

SUBJECT: CIRCUIT DESCRIPTION

CIRCUIT DESCRIPTION

The following describes operation of main circuit:

1. RECORD AMP CIRCUIT

First stage of the record amplifier comprises NPN and PNP type transistors connected in parallel. This circuit improves linearity characteristics of record amplifier for MIC jack input signals.

Approximately 50 dB linearity can be obtained. Therefore, can record signals with greater input level (approximately -10 dB, 0.25 V to MIC jack) with low distortion. Linearity for conventional circuit which has only one transistor is approximately 30 dB.

2 MUTING CIRCUIT

During direction change of tape transport (about three seconds), from the time when tape stops moving until tape motion reverses and recoveres to normal tape speed, B + voltage of bias oscillator is cut off in record mode and the muting circuits (Q306 and Q406) of playback amplifier are activated in playback mode.

When turning POWER switch ON, the multivibrator (Q504 and Q505) is kept stable as follows:

POWER switch is turned ON.

Initial current through C505 turns Q505 ON.

Decressed collector voltage of Q505 turns Q504 OFF.

After C505 has been charged, Q505 base bias is applied through R507.

Q505 is kept ON.

Decreased collector voltage Decreased collector voltage of Q506 keps Q306 and of Q505 keeps Q506 OFF.

Playback amplifier normal- Q503 is kept ON and sup-

oscillator.

ly works.

plies B+ voltage to bias

When changing the unit from FWD mode to REV mode or vice versa, this circuit acts as follows:

Fig. 1. Muting circuit

3. SYSTEM CONTROL

3-1. Tape transport direction changing operation

When REV pushbutton is pushed, S616 turns ON and then Q708 turns ON, Since Q713 is already kept activated, current flows through direction relay RY601 (REV relay) and RY601 is energized. Then contacts of RY601 short-circuit Q708. Therefore RY601 is kept energized in REV mode. Direction change solenoid PM603 is energized by contacts of RY601. Initial energizing voltage for RM603 is 170 volts de and then the voltage is changed to 30 volts do by S601 which RM603 actuates. When FWD pushbutton is pushed in REV playback mode, S615 turns ON. Q713 turns OFF and cuts current flow into RY601. Also tape transport direction can be changed by controlling voltage applied at point "a" and "b" in Fig. 2 from ESP circuit.

Fig. 2. System control circuit

3-2. Brake solenoid PM602

When FWD button is pushed, S608 turns ON. Then high voltage (about 170 volts dc) rectified by D604 is applied to PM602 through S605. PM602 is energized.

3-3. Reel motor circuit

The motor current flows as follows:

46 V or 80 V terminals of power transformer

→ \$612 → \$609 → contacts

of relay RY602 → reel motors M2, M3

→ \$610 → 0 V terminal of power transformer

3-4. Pinch roller solenoid PM601

When S602 is turned ON by solenoid PM602, high voltage (about 170 volts dc) rectified by D604 is applied to PM601 through S604. PM601 is energized.

3-5. Solenoid operating voltage

Solenoids (for brake, pinch roller, and tape direction) are emergized by high voltage (about 170 volts do) and kept energized by low voltage (about 30 volts do).

3-6. S612

This switch supplies a high reel-motor-driving voltage (80 volts ac) to make strong tape tension in a starting moment, because of tape slack elimination. When pressing FWD or REV button, S612 supplies 80 volts as for about one second until pinch roller solenoid PM601 actuates S612. After solenoid PM601 has actuated S612, S613 supplies 46 volts ac for normal tape tension.

Fig. 3. Reel motor circuit

4. ESP (ELECTRIC SENSORY PERCEPTOR) CIRCUIT

Model TC-580 employs ESP circuit to reverse automatically tape travel direction in approximately eight seconds after signals from tape tracks 3 and 4 are over during playback operation. ESP circuit detects both signals from R-CH LINE OUT and R-CH

head terminal of reverse track. If ESP circuit operates by signal only from LINE OUT, you may not enjoy a music from the beginning after ESP automatic reverse operation.

4-1. When no signal recorded part of tape beginning is played in forward playback mode:

Fig. 4. ESP circuit (1)

RY601 DIRECTION relay: de-energized

PM603 DIRECTION CHANGE solenoid : de-energized

DC positive bias applied through R715 holds Q704 ON in no signal input.

4-2. When signal recorded part of tape is played in forward playback mode:

Fig. 5. ESP circuit (2)

RY601 DIRECTION relay: de-energized PM603 DIRECTION CHANGE solenoid: de-energized

Input signal turns Q704 OFF. Q704 collector voltage turns Q706 ON and holds Q707 ON.

43. When signal recorded part of tape is over:

Fig. 6. ESP circuit (3)

RY601 DIRECTION relay: energized PM603 DIRECTION CHANGE solenoid: energized

No-signal input turns Q704 ON. C710 discharges through R717 and Q704 for about six seconds. After that, Q707 turns OFF. The contacts of energized R7601 energize PM603 and cut off B + voltage for transistors Q705 through Q707. One of the RY601-contacts, however, turns Q713 ON and holds itself (R7601) energized.

4-4. After tape transport direction has been changed:

The contacts of energized RY601 cut off B + voltage for transistors Q705 through Q707, and supply B + voltage for transisotrs Q709 through Q711. In the reverse playback mode, Q709 through Q711 act in the same way as Q705 through Q707.

5. AC SERVO CIRCUIT

The Model TC-580 employs ac servo amplifier circuit and keeps tape speed constant.

5-1. Principle

See block diagram in Fig. 7. Motor speed determined by voltage Em can be changed by voltage Er.

E (fixed) = Em + Er

When motor speed becomes faster or slower than intended speed according to external disturbances, the intended motor speed can be obtained again by changing voltage Er, or by changing resistance R. The frequency generator FG in the motor detects motor speed deviation. Servo amplifier changes existance R becording to the deviation. Tc-580 uses impedance R between collector and emitter of transistor Q901 instead of resistance R as shown in Fig. 8. Impedance R can be changed by the base voltage. The motor speed can be kept stable by controlling the base voltage for the motor speed deviation. The bridge type rectifier comprising four diodes makes current flow through transistor Q901 in the direction shown by the arrow in Fig. 8.

Fig. 7. Servo control system block diagram

Fig. 8. Q901 instead of resistance R

Fig. 9. Servo amplifier outline

5-2. Servo amplifier operation

Servo amplifier which changes impedance R operates as follows: See Fig. 9 and Fig. 10.

- Sine wave signal generated by frequency generator FG is transfered to bases of Q1 and Q2.
 Since base bias voltages of Q1 and Q2 are set to saturation region, sine wave signal is waveshaped to square wave signal shown by (A) in Fig. 10.
- 2) Square wave signal from Q2 is amplified by Q3, Q4 and Q5. It is transfered to differentiating circuit comprising C1 and R1 and is waveshaped to pulse shown by (B) in Fig. 10. Then it is transfered to base of Q6.
- 3) De voltage Vs stabilized by Q12 is divided by R3 and R4. Then it is transfered to base of Q8 and keeps the emitter voltage Ek of Q8 (also that of Q7) constant.
- 4) Vs also charges C2 according to the time constant decided by C2 and R2. The charged voltage is applied to collector of Q6.
 When pulse shown by (B) in Fig. 10 is transfered to base of Q6, Q6 repeats ON and OFF states. C2 discharges while Q6 makes current flow as shown by the arrow (1) in Fig. 9. Thus sawtooth wave signal shown by (C) in Fig. 10 is obtained at collector of Q6.

Fig. 10. Waveform at each point

- 5) The sawtooth wave signal is supplied to base of Q7. Since the emitter voltage Ek is kept constant, Q7 turns ON only when the peak value of sawtooth wave signal is greater than Ek. When Q7 turns ON, the negative pulse shown by (D) in Fig. 10, appears at collector of Q7.
- 6) This pulse is amplified by Q9, Q10 and Q11, and its polarity is inverted. The positive pulse is transfered to the integrator comprising R5 and C3, and is waveshaped as shown by (E) in Fig. 10. After being amplified by Q13 and Q14, it is transfered to base of Q901. And this base voltage charges impedance between collector and emitter of Q901 and controls motors speed.

5-3. Motor speed deviation from intended value

1) When motor speed becomes faster (Fig. 11);

Switching speed of Q6 becomes faster since frequency of frequency generator FG increases. Collector voltage of Q6 is grounded before it becomes greater than emitter voltage Ek (constant) because of short charging time for C2. The peak value of the sawtooth wave signal at base of Q7 is less shan Ek. Thus Q7 turns OFF, and base voltage of Q901 decreases since the pulse is not supplied to base of Q9. When impedance R becomes greater, motor voltage Em decreases and motor speed decreases to the intended,

Fig. 11. When motor speed becomes faster

Switching speed of Q6 becomes slower since frequency of frequency generator FG decreases. Collector voltage of Q6 is grounded after it becomes greater than emitter voltage of Q7 because of sufficient charging time for C2. The peak value of the sawtooth wave signal at base

When motor speed becomes slower (Fig. 12);

of Q7 is higher than Ek. Thus Q7 turns ON for T seconds, and base voltage of Q901 increases since the pulse is supplied to base of Q9, when impedance R becomes less, motor voltage Em increases and motor speed, increases to the intended speed. Thus by changing the time T motor speed is controlled.

Time T is determined by charging-time of C2 (the inclination of the sawtooth wave). In this ac servo circuit, the time constant (C2 x R2) for charging time is determined by R2 for the specified tape speed.

3) Circuit operation when motor starts running; Just after the power switch is turned ON, Q6 is still turned OFF since signal is not supplied from the frequency generator (motor is not running). C2 is charged rapidly, and greater voltage than Ek is applied to base of Q7. When base voltage of Q901 increases, ac voltage is applied to the motor and the motor starts running rapidly. In the FF mode, the servo circuit does not work and ac voltage is applied to the motor directly.

Then motor rotates at full speed.

Fig. 12. When motor speed becomes slower

SEQUENCE OF SWITCH OPERATION

Note: The number in circle shows the sequence of switch operation when the mode is changed.

SONY CORPORATION

1J0577-1

TC-580

General Export Model USA Model

SUPPLEMENT

No. 2 NOVEMBER, 1971

SUBJECT: MINOR CHANGE OF FUNCTION SELECTOR MECHANISM APPLICABLE SERIAL NO.: 13961 and later (General Export) 13001 and later (USA)

1. DESCRIPTION

Leaf switches 8615 and 8616 were changed and accordingly the function selector assembly was changed as per Fig. 1 on Page 2.

Parts Omitted:

Part No.	Description	
3-497-184-	bracket (A), leaf switch	
3-497-185-	bracket (B), leaf switch	
1-514-699-	switch, leaf (S615, S616)	2 pcs.

Parts Added:

Part No.	Description	
3-472-194-	retainer, microswitch	
3-497-287-	cushion, button	2 pcs.
1-514-423-	microswitch	2 pcs.

2. ADJUSTMENT

No adjustment is required. Therefore, 3-1-21 PLAY Switch (S615, S616) Position Adjustment on Page 16 of TC-580 SERVICE MANUAL is not required for the set having Serial No. 13001, 13961 and later.

Fig. 1 Function selector

SONY CORPORATION

Printed in Japan