Cargas Patagonia Norte

Paul Sandoval Quilodrán

21 de febrero, 2024

1 Base de datos

Se procesaron las bases de datos de caudal y concentraciones entregas por Brian Reid y Jorge León. Se adjuntan los datos crudos y procesados.

Raw data

- Caudal: Datos horarios de caudal extraídos in situ. Path: /raw_data/FSEQnormas/2. Hidro 2022 FSEQ_EDITED.xlsx.
- Concentración: Datos diarios de concentraciones de DN, DON, DOP, NH4, NOx y PO4. Path: \(\frac{raw_data}{FSEQnormas} \) \(\int \text{info_brian.xlsx.} \)

Procesado

• Caudal: Datos diarios de caudal.

Path: /Timeseries/q.csv

• Concentraciones: Datos diarios de caudal vs concentración.

Path:

```
/Timeseries/Aysen\_q-vs-c.csv.\\/Timeseries/Cisnes\_q-vs-c.csv.\\/Timeseries/Palena\_q-vs-c.csv.\\/Timeseries/Puelo\_q-vs-c.csv.\\/Timeseries/Yelcho\_q-vs-c.csv.
```

No existen datos de caudal en la estación Río Cisnes en Puerto Cisnes para el 26-03-2022 (día de muestreo de concentración). Se chequeó en la base de datos de Brian, en el servicio hidrometeorológico de la DGA y en DGA Satelital.

2 Correlación y ajuste de curvas

La metodología consistió en analizar si existe una correlación significativa entre el caudal - concentraciones y qué función se ajusta mejor a aquella correlación. Para ello se analizaron las correlaciones de pearson, spearman y kendall tau. En caso de existir correlaciones de pearson significativas, se ajusta una recta a la correlación. En caso contrario (pearson y kendall tau), se identifica por inspección visual la función que presenta un mejor ajuste.

Se presenta una tabla y figura de las correlaciones significativas.

Al observar los scatter plot se pueden indentificar ciertos outliers que sería bueno discutir como grupo si efectivamente son datos atípicos a descartar o se mantendrán. En el caso de Río Palena-DOP se realizó el ejercicio de eliminar el dato atípico y recalcular la correlación, resultando en:

Finalmente el resultado del ajuste de las curvas se presenta a continuación:

2.1 Resumen documentos correlación y ajuste de curvas

• Tabla resumen de correlaciones:

Path: $/Results/Resumen_correlaciones.csv.$ correlaciones significativas

Path: $/Results/Resumen_correlaciones.csv$. correlaciones significativas eliminando outlier

Palena-DOP

Path: $/Results/Resumen_final.csv$. correlaciones significativas, curva de ajuste y \mathbb{R}^2

• Figuras:

Path: $/Figures/inspeccion_visual_v0.png$ scatter plot raw data

Path: /Figures/inspeccion_visual_v1.png. scatter plot eliminando outlier Palena-DOP

Path: /Figures/Ajuste_de_curvas.png. scatter con curva ajustada.

3 SIG

Dado que los puntos de medición de cargas es diferente al del caudal se exploraron métodos de transposición de caudales utilizando como variables el área de la cuenca y la precipitación acumulada anual (PMet, Aguayo et al., 2024).

• Puntos de control:

Path: $/GIS/puntos_control.zip$. puntos de control cuyas columnas indican la latitud y longitud de medición de caudal (Q_LAT, QL_ON) y concentración (C_LAT, C_LON)

• Subcuencas:

Path: /GIS/subcatchments.zip. Cuencas asociadas a puntos de medición de caudal (Q) y concentración (C). El shp contiene una columna de área (km²) y la precipitación acumulada anual desde PMet (Aguayo et al., 2024).

• Caudales simulados VIC:

Path: /Timeseries/q_vic. series de tiempo históricos de caudal simulados en subcuencas asociadas a caudal (Q) y concentraciones (C). Chequear Palena-Q ya que la columna tiene muy poca información

4 Códigos

Los códigos utilizados para el procesamiento de la información se encuentran en:

https://github.com/SQPaul/NPLoad