

DAAQbank - MCQ

Design and analysis of algorithm (Lovely Professional University)

Scan to open on Studocu

Objective Type Questions with Solutions

1.	Tv	vo main measures for the efficiency of an algorithm are
	a.	Processor and memory
	b.	Complexity and capacity
	c.	Time and space
	d.	Data and space
2.	Th	ne time factor when determining the efficiency of algorithm is measured by
	a.	Counting microseconds
	b.	Counting the number of key operations
	c.	Counting the number of statements
	d.	Counting the kilobytes of algorithm
3.	W	hich of the following case does not exist in complexity theory
	a.	Best case
	b.	Worst case
	c.	Average case
	d.	Null case
4.	Th	ne Knapsack problem where the objective function is to minimize the profit is
	a.	Greedy
	b.	Dynamic 0 / 1
	c.	Back tracking
	d.	Branch & Bound 0/1
5.	Cł	noose the correct answer for the following statements:
	I.	The theory of NP-completeness provides a method of obtaining a polynomial time
for N	Palg	orithms.
	II.	All NP-complete problem are NP-Hard.

	a. I is FALSE and II is TRUE
	b. I is TRUE and II is FALSE
	c. Both are TRUE
	d. Both are FALSE
6.	What is the type of the algorithm used in solving the 8 Queens problem?
	a. Greedy
	b. Dynamic
	c. Branch and Bound
	d. Backtracking
7.	Sorting is not possible by using which of the following methods?
	a. Insertion
	b. Selection
	c. Deletion
	d. Exchange
8.	The upper bound on the time complexity of the nondeterministic sorting algorithm is
	a. $O(n)$
	b. $O(n \log n)$
	c. O(1)
	d. $O(\log n)$
9.	The worst case time complexity of the nondeterministic dynamic knapsack algorithm is
	a. $O(n \log n)$
	b. O(log n)
	c. $O(n^2)$
	\mathbf{d} . $\mathbf{O}(\mathbf{n})$

a. BFS

	c.	DFS
	d.	Both (A) & (C)
11.	. Th	e concept of order Big O is important because
	a.	It can be used to decide the best algorithm that solves a given problem
	b.	It determines the maximum size of a problem that can be solved in a given amount of
		time
	c.	It is the lower bound of the growth rate of algorithm
	d.	Both A and B
12.	Th	ere aresteps to solve the problem
	a.	Seven
	b.	Four
	c.	Six
	d.	Two
13.	·	is the first step in solving the problem
	a.	Understanding the Problem
	b.	Identify the Problem
	c.	Evaluate the Solution
	d.	None of these
14.	·	solution requires reasoning built on knowledge and experience
	a.	Algorithmic Solution
	b.	Heuristic Solution
	c.	Random Solution
	d.	None of these
15.	. Th	e space factor when determining the efficiency of algorithm is measured by
	a.	Counting the maximum memory needed by the algorithm

b. prim's algorithm

b.	Counting the minimum memory needed by the algorithm
c.	Counting the average memory needed by the algorithm
d.	Counting the maximum disk space needed by the algorithm
16. St	raight selection sort is basically a method of repeated
a.	A. interchange
b.	searching
c.	position adjustment
d.	None of the above
17. B	readth first search
a.	Scans each incident node along with its children.
b.	Scans all incident edges before moving to other node.
c.	Issame as backtracking
d.	Scans all the nodes in random order.
18. Tl	ne asymptotic notation for defining the average time complexity is
a	. Equivalence
b	. Symmetric
c	. Reflexive
d	. Both (c) and (d) above.
19. Pr	rims algorithm is based on method
a.	Divide and conquer method
b.	Dynamic programming
c.	Greedy method
d.	Branch and bound
20	is the minimum number of steps that can executed for the given parameters
a.	Average case
b.	Worst case

	c.	Time complexity
	d.	Best case
21.	,	is the maximum number of steps that can executed for the given parameters
		Average case
		Worst case
	c.	
		Best case
))		is the average number of steps that can executed for the given parameters
		Average case
		Worst case
		Time complexity
		Best case
23.	Wł	nich design strategy stops theexecution when it find the solution otherwise starts the
	pro	bblem from top
	a.	Back tracking
	b.	Divide and conquer
	c.	Branch and Bound
	d.	Dynamic programming
24.	Gra	aphical representation of algorithm is
		Pseudo-code
		Graph Coloring
		Flow Chart
		Dynamic programming
. ~	0 ()	
2 5.		1) means computing time is
	a.	Constant
	b.	Quadratic

	c.	Linear
	d.	Cubic
26.	O(1	n) means computing time is
	a.	Constant
	b.	Quadratic
	c.	Linear
	d.	Cubic
27.	O(1	n2) means computing time is
	a.	Constant
	b.	Quadratic
	c.	Linear
	d.	Cubic
28.	O(1	n3) means computing time is
	a.	Exponential
	b.	Quadratic
	c.	Linear
	d.	Cubic
20	0//	
29.		2n) means computing time is
	a.	Constant
		Quadratic
		Linear
	d.	Exponential
30	Tic	ght bound is denoted as
<i>.</i>		Ω
	a.	
	b.	
	c.	22

	d.	O
31.	Up	per bound is denoted as
	a.	Ω
	b.	Θ
	c.	ω
	d.	0
32.	Lo	wer bound is denoted as
	a.	Ω
	b.	Θ
	c.	ω
	d.	0
33.	The	e output of Kruskal and Prims algorithm is
	a.	Maximum spanning tree
		Spanning tree
	c.	Minimum spanning tree
	d.	None of these
34.	BF	S is best compared to DFS in the case of
	a.	The graph's width is large
	b.	The graph's depth is large
	c.	The graph consists of many nodes
	d.	The graph is complex
35.	Wł	nich of the following standard algorithms is not a Greedy algorithm?
	a.	Dijkstra's shortest path algorithm
	b.	Prim's algorithm
	c.	Kruskal algorithm
	d.	Huffman Coding

e. Bellmen Ford Shortest path algorithm

- 36. Which is true statement.
 - a. Breadth first search is shortest path algorithm that works on un-weighted graphs
 - b. Depth first search is shortest path algorithm that works on un-weighted graphs.
 - c. Both of above are true.
 - d. None of above are true.
- 37. From the following algorithm design techniques which one is used to find all the pairs of shortest distances in a graph?
 - a. Backtracking
 - b. Greedy
 - c. Dynamic programming
 - d. Divide and Conquer
- 38. From the following sorting algorithms which has the lowest worst case complexity?
 - a. Bubble sort
 - b. Quick sort
 - c. Merge sort
 - d. Selection sort
- 39. An algorithm is defined as
 - a. a mathematical formula that solves a problem.
 - b. a tempo for classical music played in a coda.
 - c. a logical sequence of a steps that solve a problem.
 - d. a tool that designs computer programs and draws the user interface.
- 40. An algorithm that calls itself directly or indirectly is known as
 - a. Sub algorithm
 - b. Recursion
 - c. Polish notation

- d. Traversal algorithm
- 41. If each node in a tree has value greater than every value in its left sub tree and value less than every value in its right sub tree, the tree is known as
 - a. Complete Tree
 - b. Full Binary Tree
 - c. Binary Search Tree
 - d. Threaded Tree
- 42. Which of the following sorting procedure is the slowest?
 - a. Quick sort
 - b. Heap sort
 - c. Shell sort
 - d. Bubble sort
- 43. A complete binary tree with the property that the value at each node is at least as large as the values at its children is known as
 - a. Binary search tree
 - b. AVL tree
 - c. Completely balanced tree

d. Heap

- 44. Which of the following shows the correct relationship among some of the more common computing times on algorithms
 - a. $O(\log n) \le O(n) \le O(n^* \log n) \le O(2^n) \le O(n^2)$
 - b. $O(n) \le O(\log n) \le O(n^* \log n) \le O(2^n) \le O(n^2)$
 - c. $O(n) \le O(\log n) \le O(n^* \log n) \le O(n^2) \le O(2^n)$
 - **d.** $O(\log n) \le O(n) \le O(n^* \log n) \le O(n^2) \le O(2^n)$
- 45. What is an optimal Huffman code for alphabet**a** of the following set of frequencies a: 05, b:48, c:07, d:17, e:10, f:13
 - a. **1010**

b.	(B)0101
c.	1001
d.	1100
46. W	hich of the following properties are necessary for an Algorithm?
a.	Definiteness
b.	Correctness
c.	Effectiveness
d.	A and C
47. Th	ne running time of Floyd-Warshall algorithm is
a.	Θ (n)
b.	$\Theta(n^3)$
c.	Θ (n ²)
48. Kr	
48. Kr <mark>a.</mark> b. c.	ruskal's algorithm uses and prim's algorithm uses in determining the MST edges,vertex vertex,edges edges,edges
48. Kr <mark>a.</mark> b.	ruskal's algorithm uses and prim's algorithm uses in determining the MST edges,vertex vertex,edges
48. Kr a. b. c. d.	ruskal's algorithm uses and prim's algorithm uses in determining the MST edges,vertex vertex,edges edges,edges
48. Kr a. b. c. d.	ruskal's algorithm uses and prim's algorithm uses in determining the MST edges,vertex vertex,edges edges,edges vertex,vertex
48. Kr a. b. c. d. 49. Th	ruskal's algorithm uses and prim's algorithm uses in determining the MST edges,vertex vertex,edges edges,edges vertex,vertex the time required to search an element in a linked list of length n is
48. Kr a. b. c. d. 49. Th a. b.	ruskal's algorithm uses and prim's algorithm uses in determining the MST edges,vertex vertex,edges edges,edges vertex,vertex the time required to search an element in a linked list of length n is O(log n)
48. Kr a. b. c. d. 49. Th a. b. c.	ruskal's algorithm uses and prim's algorithm uses in determining the MST edges,vertex vertex,edges edges,edges vertex,vertex te time required to search an element in a linked list of length n is O(log n) O(n)
48. Kr a. b. c. d. 49. Th a. b. c. d.	ruskal's algorithm uses and prim's algorithm uses in determining the MST edges,vertex vertex,edges edges,edges vertex,vertex te time required to search an element in a linked list of length n is O(log n) O(n) O(1)
48. Kr a. b. c. d. 49. Th a. b. c. d.	ruskal's algorithm uses and prim's algorithm uses in determining the MST edges, vertex vertex, edges edges, edges vertex, vertex time required to search an element in a linked list of length n is $O(\log n)$ $O(n)$ $O(1)$ $O(n^2)$

- c. P and NP are equal
- d. NP is subset of NP hard