# PREDICTING BETA-CAROTENE CONTENT IN PLASMA

Project 2

Zaide Montes Dmytro Perepolkin



GROUP 1 LUND UNIVERSITY LUND, SWEDEN HTTPS://LU.SE

```
#install.packages("corrgram")
library(tidyverse)
library(broom)
library(corrgram) # visualisation of correlations
library(lmtest) # more linear regression tools
library(hrbrthemes) #ggplot styling
library(GGally) # Pair plot
library(ggplot2) # ggplot 2
library(hrbrthemes) # theme for ggplot
library(kableExtra)
library(leaps)
library(glmnet)
library(patchwork)
library(plotmo)
library(randomForest) # for random forest chapter
library(pls) # for principal component regression
library(rsample) # for cross-validation
library(modelr) # evaluation of models
library(splines)
ggplot2::theme_set(theme_classic())
extrafont::loadfonts(device = "all", quiet = TRUE)
knitr::opts_chunk$set(dev = 'png')
options(device = function(file, width, height) {
 png(tempfile(), width = width, height = height)
})
```

## 1 Introduction

### 1.1 Data description

The dataset is from gamlss.data package (Harrell 2002). It is a cross-sectional study to investigate the relationship between personal characteristics and dietary factors, and plasma concentrations.

An original data frame has 315 observations of the following variables

| Variable             | Description                                             |
|----------------------|---------------------------------------------------------|
| age                  | age(years)                                              |
| sex                  | sex, 1=male, 2=female                                   |
| smokstat             | smoking status 1=never, 2=former, 3=current Smoker      |
| bmi                  | body mass index weight/(height^2)                       |
| vituse               | vitamin use 1=yes, fairly often, 2=yes, not often, 3=no |
| calories             | number of calories consumed per day                     |
| fat                  | grams of fat consumed per day                           |
| fiber                | grams of fiber consumed per day                         |
| alcohol              | number of alcoholic drinks consumed per week            |
| cholesterol          | cholesterol consumed (mg per day)                       |
| betadiet             | dietary beta-carotene consumed (mcg per day)            |
| $\mathtt{retdiet}^1$ | dietary retinol consumed (mcg per day)                  |
| betaplasma           | plasma beta-carotene (ng/ml)                            |
| $retplasma^2$        | plasma retinol (ng/ml)                                  |

We import the data

```
plasma_df <- read_csv("data/plasma.txt", show_col_types = FALSE)</pre>
```

Observational studies have suggested that low dietary intake or low plasma concentrations of retinol, beta-carotene, or other carotenoids might be associated with increased risk of developing certain types of cancer... We designed

<sup>&</sup>lt;sup>1</sup>Not present in the current version of the dataset

 $<sup>^2</sup>$ Not present in the current version of the dataset

#### 1 Introduction

a cross-sectional study to investigate the relationship between personal characteristics and dietary factors, and plasma concentrations of retinol, beta-carotene and other carotenoids. (Harrell 2002)

glmnet requires a model-matrix as the model specification. A model matrix is a matrix with a column for each predictor (i.e. x-variable) in the model (including the extra columns for polynomials, dummy variables etc), and each row is for a unique observation. Sometimes the model-matrix includes a column for the intercept, in glmnet it should (typically) not.

```
#head(plasma_df)
x <- model.matrix(log(betaplasma) ~ ., plasma_df)[, -1]
#head(x)
y <- log(plasma_df$betaplasma)
#head(y)</pre>
```

#### 2.1 Ridge regression

```
# Grid of lambdas
grid <- 10^seq(5, -2, length = 100) #grid

# Run ridge regression (alpha =0) for each lambda in grid
ridge.mod <- glmnet(x, y, alpha = 0, lambda = grid)</pre>
```

The ridge.mod contains 13 rows and 100 columns corresponding to the number of  $\lambda$  values we created earlier.

```
# Prepare for cross validation by splitting the data in training and validation set
set.seed(42)
train <- sample(1:nrow(x), nrow(x) / 2)
test <- (-train)
y.test <- y[test]

# Fit ridge regression on the training data, for our grid of lambda
ridge.mod <- glmnet(x[train, ], y[train], alpha = 0,
    lambda = grid, thresh = 1e-12)</pre>
```

```
# Find predictions for our testdata for a specific lambda (here lambda =4)
ridge.pred <- predict(ridge.mod, s = 4, newx = x[test, ])</pre>
```

The MSE for the  $\lambda=4$  is 0.4227268. Figure 2.1 shows the ridge model coefficients are approaching to zero.

```
#plot(ridge.mod,xvar="lambda",lwd=1.5)
plot_glmnet(ridge.mod,xvar="lambda",lwd=1.5)
```



Figure 2.1: The ridge regression coefficients are displayed for the Plasma data set, as a function of  $\,$ .

```
set.seed(1)
cv.out <- cv.glmnet(x[train, ], y[train], alpha = 0)
plot(cv.out)</pre>
```



Figure 2.2: A graph of the ridge model coefficients for different lambdas. The dashed lines are the log values corresponding to the min (left dashed line) and 1 (right dashed line).

```
# Choose the best:
bestlam <- cv.out$lambda.min</pre>
```

The best lambda is  $\lambda = 0.2841768$ .

```
out <- glmnet(x, y, alpha = 0, lambda = grid)
ridge.coef <- predict(out, type = "coefficients",
    s = bestlam)

ridge.coef %>% as.matrix() %>% as.data.frame() %>%
    rownames_to_column()%>%
    arrange(-abs(s1)) %>%
    filter(!str_detect(rowname, "Intercept")) %>%
    ggplot()+geom_col(aes(x=s1,y=fct_reorder(rowname, abs(s1))))+
    labs(y="Coefficient", x="value")
```



Figure 2.3: Coefficients for the ridge model under best lambda

```
# MSE associated with this lambda
ridge.pred <- predict(ridge.mod, s = bestlam,
    newx = x[test, ])
ridge.test.mse <- mean((ridge.pred - y.test)^2)</pre>
```

The MSE turns out to be 0.4320415.

## 2.2 Lasso regression

Figure 2.4 shows the coefficients against the penalty  $\lambda$ .

```
plot_glmnet(lasso.mod,label=TRUE,xvar="lambda",lwd=1.5)
plot_glmnet(lasso.mod,label=TRUE,lwd=1.5)
```

```
set.seed(1)
cv.out <- cv.glmnet(x[train, ], y[train], alpha = 1)
plot(cv.out)</pre>
```



Figure 2.4: The Lasso regression coefficients



Figure 2.5: Cross-validated penalty for lasso model.

The Figure 2.5 illustrates the cross validation process for picking the best lambda in lasso regression. The dashed lines are the log  $\lambda$  values corresponding to the  $\lambda_{min}$  (left dashed line) and  $\lambda_{1se}$  (right dashed line)

```
bestlam2 <- cv.out$lambda.min
```

The best lambda value that minimizes the test MSE turns out to be  $\lambda = 0.0073745$ .

```
# compute the test error for this choice of lambda or MSE associated with this lambda
lasso.pred <- predict(lasso.mod, s = bestlam2,
    newx = x[test, ])
lasso.test.mse <- mean((lasso.pred - y.test)^2)</pre>
```

The test MSE turns out to be 0.4807286.

```
out <- glmnet(x, y, alpha = 1, lambda = grid)

lasso.coef <- predict(out, type = "coefficients",
    s = bestlam2)

lasso.coef %>% as.matrix() %>% as.data.frame() %>%
    rownames_to_column()%>%
    arrange(-abs(s1)) %>%
    filter(!str_detect(rowname, "Intercept")) %>%
    ggplot()+geom_col(aes(x=s1,y=fct_reorder(rowname, abs(s1))))+ labs(y="Coefficient", x=gplot(y=geom_col(aes(x=s1,y=fct_reorder(rowname, abs(s1))))+ labs(y="Coefficient", x=gplot(y=geom_col(aes(x=s1,y=fct_reorder(rowname, abs(s1))))+ labs(y="Coefficient", x=gplot(y=geom_col(aes(x=s1,y=fct_reorder(rowname, abs(s1))))+ labs(y="Coefficient", x=gplot(y=geom_col(aes(x=s1,y=fct_reorder(rowname, abs(s1))))+ labs(y="Coefficient", x=gplot(y=gplot(y=geom_col(aes(x=s1,y=fct_reorder(rowname, abs(s1)))))+ labs(y="Coefficient", x=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(y=gplot(
```



Figure 2.6: Coefficients for the lasso model under best lambda

The variance of ridge regression is slightly lower than the variance of the lasso. Consequently, the minimum MSE of ridge regression is slightly smaller than that of the lasso. In addition, the models generated from the lasso were much easier to interpret than those produced by ridge regression. The lasso yields sparse models that involve only a subset of the variables. Hence, depending on the value of  $\lambda$ , the lasso can produce a model involving reduced variables. In contrast, ridge regression will always include all of the variables in the model, although the magnitude of the coefficient estimates will depend on  $\lambda$ . In the lasso regression we observed that the variables that influenced more in the model are the sex, vituse, smokestat, bmicat (Figure 2.6). To sum up, the lasso should perform better in a setting where a relatively small number of predictors have significant coefficients, and the remaining predictors have very small coefficients or that equal zero. In contrast, the ridge regression will perform better when the response is a function of many predictors, all with roughly equal-sized coefficients.

## 2.3 Principle component regression

```
pcr_mod <- pls::pcr(log(betaplasma)~., data=plasma_df, scale=TRUE, validation="CV")
#summary(pcr_mod)</pre>
```

Figure 2.7 shows the out-of-fold (cross-validated) MSEP for each number of components in the PCR.

```
validationplot(pcr_mod, val.type = "MSEP", main="")
```



Figure 2.7: Cross-validated MSE for PCR model.

The number of principal components suffice to explain most of the variability in the data, as well as the relationship with the response belong to 8 components. Let's perform CV on the training dataset and see if we can reduce the model even further.



Figure 2.8: MSE for PCR model cross-validated on the training dataset.

The figure Figure 2.8 indicates that performing PCR with 3 as number of components can results in substantial improvement over least squares. Thus, we select the lowest number of components which minimizes MSE.

```
pcr.pred <- predict(pcr.fit, x[test, ], ncomp = 3)
pcr.test.mse <- mean((pcr.pred - y.test)^2)</pre>
```

The test MSE for the PCR is 0.4074666.

In conclusion, All three methods offer some improvement over least squares. However, PCR and ridge regression slightly outperform the lasso regression. Thus, although PCR tends to work exceptionally well in many practical settings, this method only allows models to be developed based on a small set of features. Thus, PCR is more closely related to ridge regression than to lasso.

## 3 Random Forest

We will now use the random forest algorithm implemented in randomForest package in R.

The parameter mtry in random forest algorithm determines how many columns are consered for each split. We will have to cross-validate this parameter to make sure we are not overfitting to our dataset. We will now determine the best value of mtry parameter to use in our random forest model. Figure 3.1 shows the out-of-fold MSE for the models with different mtry.

```
mtry = 3  00B error = 0.5737914
Searching left ...
mtry = 2  00B error = 0.5744733
-0.001188488 0.05
Searching right ...
mtry = 4  00B error = 0.5856382
-0.02064658 0.05

mtry  00BError
2  2 0.5744733
3  3 0.5737914
4  4 0.5856382
```



Figure 3.1: Cross-validated tuning of parameter mtry

The Figure 3.2 shows the predicted values against the true values for the test portion of our dataset.

rf.mse <- mean((rf\_pred-y.test)^2)</pre>



Figure 3.2: Predicted vs true values for random forest algorithm

The test MSE for random forest is 0.3815397, which is pretty impressive. As for any tree-based algorithm, interpretability is usually an issue. We can use the special function in the randomForest package to see which variables were most frequently used in the tree splits (Figure 3.3).

```
varimp_m <- importance(rf_fit) #matrix form
varImpPlot(rf_fit, main="")</pre>
```



Figure 3.3: Variable importance plot for random forest with mtry 12

It seems like fiber, cholesterol, calories, quetelet, and fat are the most important variables for predicting the level of beta-carotene in plasma.

## 4 Non-linear effects

Now we are proceeding to developing a model for predicting the Greenhouse gas emissions using the non-linear effects, namely *splines*.

The Berkeley Earth data (Temp\_BE.csv) provides the annual anomalies from the global mean temperature, calculated from the period Jan 1951-Dec 1980, which amounted to  $14.105^{\circ}$ C with 95% CI ( $14.080^{\circ}$ C,  $14.130^{\circ}$ C).

```
TEMPBE_df <- read_csv("data/Temp_BE.csv", show_col_types = FALSE) %>%
  mutate(abs_temp=14.105+anomaly_1y) %>%
  select(year, abs_temp)

GHG_df <- read_csv("data/GHG_1880_2014.csv", show_col_types = FALSE) %>%
  rename(GHG=KYOTOGHG) %>%
  mutate(GHG_cum=cumsum(replace_na(GHG, 0)))

GHG_TEMP_df <- left_join(GHG_df, TEMPBE_df, by="year")

ns_mod <- lm(GHG_cum~ns(abs_temp, df=4), data=GHG_TEMP_df)

lm_mod <- lm(GHG_cum~abs_temp, data=GHG_TEMP_df)</pre>
```

Compare spline to linear model in Figure 4.1

```
color="mediumpurple4",linewidth=0.5,
            lty="dashed",alpha=0.8) +
  geom_line(data=predns_df,aes(y=fit - 2*se.fit) ,
            color="mediumpurple4",linewidth=0.5,
            lty="dashed",alpha=0.8)+
  labs(x="Absolute temperature, °C", y="GHG emission, Gg CO2/yr")
GHG_TEMP_df %>% ggplot(aes(x=abs_temp,y=GHG_cum))+
  geom_point(shape=21,alpha=0.5) +
  geom_line(data=predlm_df,aes(y=fit),
            color="mediumpurple4",linewidth=1.5) +
  geom_line(data=predlm_df,aes(y=fit + 2*se.fit) ,
            color="mediumpurple4",linewidth=0.5,
            lty="dashed",alpha=0.8) +
  geom_line(data=predlm_df,aes(y=fit - 2*se.fit) ,
            color="mediumpurple4",linewidth=0.5,
            lty="dashed",alpha=0.8)+
  labs(x="Absolute temperature, °C", y="GHG emission, Gg CO2/yr")
```



Figure 4.1: Original data with the fitted values (including standard error)

We compare the fitted vs the actual values in Figure 4.2.

```
predns_df %>% ggplot(aes(x=fit,y=GHG_cum))+
  geom_point(shape=21,alpha=0.5) +
  geom_abline(slope=1, intercept = 0)+
  labs(x="Fitted", y="Actual")
```

```
predlm_df %>% ggplot(aes(x=fit,y=GHG_cum))+
  geom_point(shape=21,alpha=0.5) +
  geom_abline(slope=1, intercept = 0)+
  labs(x="Fitted", y="Actual")
```



Figure 4.2: Fitted vs actual values

Now we tune the spline model changing the degrees of freedom and measuring the outof-fold error. Figure 4.3 shows ten-fold cross-validated mean squares errors for splines with various degrees of freedom fit to the data.



Figure 4.3: Out-of-fold MSE for different values of df

The first component is the raw cross-validation estimate of prediction error. The second component is the adjusted cross-validation estimate. The adjustment is designed to compensate for the bias introduced by not using leave-one-out cross-validation.

```
ns_mod3 <- lm(GHG_cum~ns(abs_temp, df=3), data=GHG_TEMP_df)
ns_mod8 <- lm(GHG_cum~ns(abs_temp, df=8), data=GHG_TEMP_df)</pre>
```

Compare splines of different complexity Figure 4.4



Figure 4.4: Original data with the fitted values (natural splines with df 3 and 8)

Figure Figure 4.4 compares a natural cubic spline with 3 degrees of freedom, purple line, to a degree-8 polynomial, red line, on the data set. The flexibility in the degree-8 polynomial produces  $\dots$ 

# References

Harrell, Frank. 2002. "Plasma Retinol and Beta-Carotene Dataset." 2002. https://hbiostat.org/data/repo/plasma.html.