Exercise 6.6. Controlling an inverted rod pendulum¹

Let us consider the inverted rod pendulum represented on Figure 1, composed of a pendulum placed in unstable equilibrium on a carriage.

Figure 1: Inverted rod pendulum.

The value u is the force exerted on the carriage of mass $m_c = 5$ [kg], s indicates the position of the carriage, θ is the angle between the pendulum. At the tip b of the pendulum of length l = 4 [m] is a fixated mass $m_r = 1$ [kg]. Finally, a is the point of articulation between the rod and the carriage. As seen in Exercise 2.5, the state equations of this system are:

$$\begin{pmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3} \\ \dot{x}_{4} \end{pmatrix} = \begin{pmatrix} x_{3} \\ x_{4} \\ \frac{-m_{r}\sin x_{2}(lx_{4}^{2} - g\cos x_{2})}{m_{c} + m_{r}\sin^{2} x_{2}} \\ \frac{\sin x_{2}((m_{c} + m_{r})g - m_{r}lx_{4}^{2}\cos x_{2})}{l(m_{c} + m_{r}\sin^{2} x_{2})} \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ \frac{1}{m_{c} + m_{r}\sin^{2} x_{2}} \\ \frac{\cos x_{2}}{l(m_{c} + m_{r}\sin^{2} x_{2})} \end{pmatrix} u,$$

$$v = x_{1}$$

where $\mathbf{x} = (s, \theta, \dot{s}, \dot{\theta})^T = (x_1, x_2, x_3, x_4)^T$. The observation equation indicates that only the position of the carriage x_1 is measured.

- 1) Calculate all the operating points of the system.
- 2) Linearize the system around the operating point $\overline{\mathbf{x}} = (0, 0, 0, 0)$ and $\overline{u} = 0$.
- 3) Obtain an output feedback controller which sets all the poles of the looped system to -2: We propose a control in position, which means that the setpoint w corresponds to x_1 . Illustrate by a simulation the behavior of the controller.
- 4) Intentionally omitted.

Solve using Matlab.

 $^{^1\}mathsf{Adapted}\ \mathsf{from}\ \mathsf{https://www.ensta-bretagne.fr/jaulin/automooc.pdf}$