

Will the Online Shopper Purchase?

Group 7

A0231906J HUANG, HAI-HSIN A0231947Y TSAO, KAI-TING A0231971E XIANG ZISHAN A0232012E GUAN ZHILING A0231904M KUAN JU LIN

Background & Problem Statement

- E-commerce has been a booming market these years.
- As shown in the figure, people are more and more accustomed to shopping online.
- In Singapore, about 3.3 million people shop in the e-commerce market and the expected revenue from the market in 2021 is USD 2,793m.
- To predict whether a user is going to make a purchase based on data from a user's current session.

Exploratory Data Analysis

Missing Data

	Total	Percent		Total	Percent
Administrative	0	0.0	SpecialDay	0	0.0
Administrative_Duration	0	0.0	PageValues	0	0.0
Weekend	0	0.0	ExitRates	0	0.0
VisitorType	0	0.0	BounceRates	0	0.0
TrafficType	0	0.0	ProductRelated_Duration	0	0.0
Region	0	0.0	ProductRelated	0	0.0
Browser	0	0.0	Informational_Duration	0	0.0
OperatingSystems	0	0.0	Informational	0	0.0
Month	0	0.0	Revenue	0	0.0

• There are no missing data

Target Variable

- Dataset is imbalance
- Uncompleted transaction: 0.845255
- Completed transaction: 0.154745

EDA: Bivariate Analysis

Find the relationship between "Visitor Type" and "Revenue"

Find the relationship between "Weekend" and "Revenue"

Imbalanced Categorical Features

EDA: Heat Map

- "Revenue" and "PageValues" has a positive relationship
- "Revenue" and "BouceRates" has a negative relationship
- "Revenue" and "ExitRates" has a negative relationship

EDA: Correlation

Compare "Administrative" and "Administrative_Duration"

Compare "Informational" and "Informational_Duration"

Compare "ProductRelated" and "ProductRelated_Duration"

Feature Engineering: Average page view duration

Calculate the time spent by each customer on one page

Administrative_Duration

Administrative

Informational_Duration

Informational

ProductRelated_Duration

ProductRelated

- 1. Replace with 0 if number of pages visited is 0.
- 2. Drop the original columns
- 3. New feature names: Avg_Administrative_Duration, Avg_Informational_Duration, Avg_ProductRelated_Duration

Feature Engineering: Categories Grouping

For Categorical variables with many categories, we group the categories with lower counts into one.

only 4 categories left in Operating System.

Feature Engineering: Categories Grouping

For Categorical variables with many categories, we group the categories with lower counts into one.

Feature Selection

Dropped "Traffic type" and "Region" because:

- 1. Lower correlation to "Revenue" according to heatmap.
- 2. Low feature importance according to the random forest naïve model we ran.
- 3. There are many categories in both "Traffic type" and "Region".

Feature Selection

THE TOP 8 INFLUENTIAL FEATURES:

PageValues
BounceRates
ExitRates
Avg_Administrative_Duration
Month_Nov
Avg_ProductRelated_Duration
Avg_Informational_Duration
VisitorType_Returning_Visitor

Feature Selection

INDEPENDENT VARIABLES

BounceRates

ExitRates

PageValues

SpecialDay

Avg_Administrative_Duration

Avg_Informational_Duration

Avg_ProductRelated_Duration

Month

OperatingSystems

Browser

VisitorType

Weekend

DEPENDENT VARIABLES

Revenue

NUMERIC

ATEGORICAL

Categorical Variables

Numeric Variables

One hot encoding

We used "Pandas get_dummies" and "Scikit-learn label encoder" to encode categorical features into dummy variables

Standardization

We used "Scikit-learn StandardScaler" to calculate the Z-score of the numeric variables

Train test split

We split the data into training and validation data set with the ratio of 0.7 and 0.3.

Imbalanced data handling

There are less customers who had finalized with transactions, so we use "Synthetic Minority Oversampling Technique" (SMOTE) to increase the data points of the purchase class.

BEFORE SMOTE

Train purchase class = 1336
Train non purchase class = 7295
Test purchase class = 572
Test non purchase class = 3127

AFTER SMOTE

Train purchase class = 7295
Train non purchase class = 7295
Test purchase class = 572
Test non purchase class = 3127

Model Introduction

Ensemble learning:

by combining multiple weak learners, a strong learner is created.

Boosting

LightGBM XGBoost

Bagging

Random Forest

Why LightGBM?

- LightGBM is a fast, distributed, high-performance gradient boosting framework based on decision tree algorithm, used for ranking, classification and many other learning tasks.
- LightGBM carries out leaf-wise growth that results in more loss reduction and in turn higher accuracy while being faster.

Advantages:

- Faster training speed and higher efficiency
- Lower memory usage
- Better accuracy
- Support of parallel and GPU learning
- Capable of handling large-scale data

Hyperparameter Tuning

GridSearchCV

It helps to loop through predefined hyperparameters and fit the estimator (model) on the training set. So, in the end, we can select the best parameters from the listed hyperparameters.

Pros vs Cons

Manually input parameter; trial and error

BUT save computation time than Randomized Search

Implementation

```
grid = GridSearchCV(estimator=lightgbm, param_grid=params, scoring='roc_auc', cv=5, verbose=1)
```

Parameters Tuned

```
'max_depth': [1, 3, 6, 8, 10]
'num_leaves':[30, 40, 50]
'learning_rate': [0.01, 0.05, 0.1]
'min_child_samples':[10, 15, 20]
```


LightGBM – parameters after tuning

Parameters tuned	Why this parameter	Best parameter		
max_depth	To prevent overfitting, we set as 10.	10		
num_leaves	We increased the number of leaves to better capture the patterns of data.	50		
learning_rate	Control the shrinkage rate.	0.1		
min_child_samples	We loosen the minimum number of data needed for a leaf to 10 to better capture the patterns of data.	10		

LightGBM - evaluation

Accuracy on the test set: 0.870

AUC on the test set: 0.918

Classification report:

	precision	recall	f1-score	Support
0	0.95	0.89	0.92	3127
1	0.56	0.75	0.64	572
accuracy			0.87	3699
macro avg	0.75	0.82	0.78	3699
weighted avg	0.89	0.87	0.88	3699

Why XGBoost?

REASON 1

Traditional boosting methods are prone to overfitting, but XGBoost overcomes this problem because of the **optimized regularization**.

REASON 2

The power of XGBoost has been proved and recognized by the community. It is often adopted by the winning teams of Data competitions.

Hyperparameter Tuning

Implementation

grid =
GridSearchCV(estimator=xgboost,
param_grid=params,
scoring='roc_auc', cv=5, verbose=1)

Parameters Tuned

'max_depth': [24, 26, 28, 30]
'n_estimators':[100, 150, 200, 250]
'learning_rate': [0.001, 0.01, 0.1]
'min_child_weight':[0.5, 1, 2]

XGBoost-Parameters

Parameters tuned	Why this parameter	Best parameter	
n_estimators	Control the number of boosting rounds, to be better capture the underlying pattern.	250	
max_depth	Maximum tree depth for base learner. Help us better capture the underlying pattern as well.	30	
learning_rate	Control the shrinkage rate.	0.1	
min_child_weight	Minimum sum of instance weight(hessian) needed in a child. Loosen to better capture the patterns of data.	0.5	

XGBoost - evaluation

Accuracy on the test set: 0.874

AUC on the test set: 0.915

Classification report:

	precision	recall	f1-score	Support	
0	0.95	0.90	0.92	3127	
1	0.57	0.72	0.64	572	
accuracy			0.87	3699	
macro avg	0.76	0.81	0.78	3699	
weighted avg	0.89	0.87	0.88	3699	

Why Random Forest?

REASON 1

Decision trees are helpful and intuitive ways to classify data, but they are prone to overfitting. To reduce overfitting, we use random forests.

REASON 2

By creating more decision tree, each tree receives a vote in terms of how to classify. In this way, the classification returned by the most trees is very likely to be the most accurate.

Hyperparameter Tuning

Implementation

grid = GridSearchCV(estimator=rf_clf,
param_grid=params,
scoring='roc_auc', cv=5, verbose=1)

Parameters Tuned

'max_depth': [24, 26, 28, 30, 32]

'n_estimators':[100, 200, 250, 300, 350]

'max_samples': [0.1, 0.5, 0.9]

Random Forest-Parameters

Parameters tuned	Why this parameter	Best parameter
estimators	The number of trees in the forest.	250
max_depth	The maximum depth of the tree. Default is nodes are expanded until all leaves are pure.	32
max_samples	The ratio of samples to draw from X to train each base estimator.	0.9

Random Forest-Evaluation

Accuracy on the test set: 0.869

AUC on the test set: 0.916

Classification report:

	precision	recall	f1-score	Support
0	0.95	0.89	0.92	3127
1	0.56	0.75	0.64	572
accuracy			0.87	3699
macro avg	0.75	0.82	0.78	3699
weighted avg	0.89	0.87	0.88	3699

Evaluation Metrics

AUC (Area Under Curve)

Measures the **ability** of a classifier to distinguish between **classes**

Care equally about positive and negative classes

Recall

TP/(TP+**FN**)

FN: user with buying intention wrongly labeled as non-buy

FP: user not buying wrongly labeled as buying

Tradeoff: cost of **losing** potential customer vs waste of **marketing efforts**

Assumption: Customer churn is more costly

Model Comparison

	LightGBM		XGBoost		RandomForest	
	Train	Test	Train	Test	Train	Test
Accuracy	0.957	0.870	1.000	0.874	1.000	0.867
ROC-AUC	0.994	0.918	1.000	0.915	1.000	0.916
Precision	0.947	0.559	1.000	0.573	1.000	0.557
Recall	0.968	0.748	1.000	0.724	1.000	0.748
F1 score	0.957	0.640	1.000	0.640	1.000	0.638
	ROC-AUC Precision Recall	Train Accuracy 0.957 ROC-AUC 0.994 Precision 0.947 Recall 0.968	Train Test Accuracy 0.957 0.870 ROC-AUC 0.994 0.918 Precision 0.947 0.559 Recall 0.968 0.748	TrainTestTrainAccuracy0.9570.8701.000ROC-AUC0.994 0.918 1.000Precision0.9470.5591.000Recall0.968 0.748 1.000	TrainTestTrainTestAccuracy0.9570.8701.000 0.874 ROC-AUC0.994 0.918 1.0000.915Precision0.9470.5591.000 0.573 Recall0.968 0.748 1.0000.724	TrainTestTrainTestTrainAccuracy0.9570.8701.000 0.874 1.000ROC-AUC0.994 0.918 1.0000.9151.000Precision0.9470.5591.000 0.573 1.000Recall0.968 0.748 1.0000.7241.000

Recommendation by features importance

Recommendation by features importance

Webpage related features

Improve UI/UX design

Conduct A/B testing

Visitor Type

Precision marketing strategy

Customer churn & retention

Seasonality in purchase

Time-varied promotional campaigns

Thank you for your attention

