matriz es $n \times n$). Escriba una conclusión respecto a la relación entre la invertibilidad de una matriz de $n \times n$ y si las columnas de la matriz generan todo \mathbb{R}^n .

7. Recuerde de problemas anteriores que $\mathbf{w} = c_1 \mathbf{v}_1 + \dots + c_k \mathbf{v}_k$; es decir, \mathbf{w} está en gen $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ siem-

pre que $\mathbf{c} = \begin{pmatrix} c_1 \\ \vdots \\ c_k \end{pmatrix}$ es una solución al sistema de ecuaciones cuya matriz aumentada es

 $[v_1, \ldots, v_k | w].$

a) Para el siguiente conjunto de vectores, muestre que cualquier \mathbf{w} en \mathbb{R}^4 estará en el espacio generado por el conjunto de vectores pero habrá un número infinito de maneras de escribir \mathbf{w} como una combinación lineal del conjunto de vectores; es decir, habrá un número infinito de maneras de elegir los coeficientes c_1, \ldots, c_k .

$$\left\{ \begin{pmatrix} 3 \\ -7 \\ 4 \\ -2 \end{pmatrix}, \begin{pmatrix} -2 \\ 0 \\ -7 \\ 2 \end{pmatrix}, \begin{pmatrix} 7 \\ 2 \\ 9 \\ 1 \end{pmatrix}, \begin{pmatrix} 14 \\ -5 \\ 27 \\ -5 \end{pmatrix}, \begin{pmatrix} 1 \\ -5 \\ 0 \\ -1 \end{pmatrix} \right\}$$

- b) Para cada w dada:
 - i) Resuelva el sistema para encontrar los coeficientes necesarios para escribir w como una combinación lineal del conjunto de vectores y escriba las soluciones en términos de variables arbitrarias naturales (es decir, las variables correspondientes a las columnas en la rref sin pivotes).
 - ii) Establezca variables arbitrarias iguales a cero y escriba w como una combinación lineal de los vectores en el conjunto.
 - iii) Verifique que w es igual a la combinación lineal que encontró:

$$\mathbf{w} = \begin{pmatrix} 23 \\ -15 \\ 33 \\ -5 \end{pmatrix} \qquad \mathbf{w} = \begin{pmatrix} -13 \\ 18 \\ -45 \\ 18 \end{pmatrix}$$

- c) A partir de los resultados del inciso b), ¿qué vectores del conjunto original no fueron necesarios al escribir w como combinación lineal del conjunto de vectores? ¿Por qué? ¿Cómo pueden reconocerse en la forma escalonada por renglones reducidos de la matriz cuyas columnas son el conjunto de vectores?
- d) Considere el subconjunto de los vectores originales obtenido eliminando los vectores no necesarios. Demuestre que cada vector no necesario está en el espacio generado por este subconjunto de vectores. Argumente la razón por la que cualquier vector \mathbf{w} en \mathbb{R}^4 estará en el espacio generado por este subconjunto de vectores y por la que los coeficientes de la combinación lineal son únicos.
- e) Repita los incisos a) a d) para el siguiente conjunto de vectores y los vectores w dados en \mathbb{R}^3 .

$$\left\{ \begin{pmatrix} 10\\8\\-5 \end{pmatrix}, \begin{pmatrix} 0\\2\\7 \end{pmatrix}, \begin{pmatrix} -10\\4\\19 \end{pmatrix}, \begin{pmatrix} -6\\-7\\1 \end{pmatrix}, \begin{pmatrix} 32\\32\\-5 \end{pmatrix} \right\} \qquad \mathbf{w} = \begin{pmatrix} 26\\31\\17 \end{pmatrix} \qquad \mathbf{w} = \begin{pmatrix} 2\\20\\52 \end{pmatrix}$$