METHOD FOR PLATING CERAMIC WIRING BOARD

Patent number:

JP10270831

Publication date:

1998-10-09

Inventor:

MIZUKOSHI HIROYUKI; CHIKARAISHI TAKAHIRO

Applicant:

HITACHI LTD

Classification:

- international:

C23C18/52; C23C28/02; H01L23/12; H05K3/24;

C23C18/16; C23C28/02; H01L23/12; H05K3/24; (IPC1-

7): H05K3/24; C23C18/52; C23C28/02; H01L23/12

- european:

Application number: JP19970075006 19970327 Priority number(s): JP19970075006 19970327

Report a data error here

Abstract of JP10270831

PROBLEM TO BE SOLVED: To uniformly form a plated Au film on a plated Ni film with high adhesion after a Pb activating film containing Pb is formed on a ceramic wiring board by an electroless Ni/Au plating method. SOLUTION: After a sintered W conductor 2 on a ceramic wiring board 1 is subjected to Pd activation and a plated Ni film 3 containing B is formed on the conductor 2, a substitutional plated Au film 8 or a plated Ni film containing P is formed. Then heat treatment is performed at a temperature of 600-800 deg.C and a plated Ni film 5 containing P and a substitutional plate Au film 6 are formed. Finally, heat treatment is performed at a temperature of 300-400 deg.C. When the above-mentioned method is used, a substitutional plated Au film which has high adhesion and can secure high connection reliability for parts can be formed uniformly.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-270831

(43)公開日 平成10年(1998)10月9日

(51) Int.Cl. ⁶	識別記号	F I	
H05K 3/24		H 0 5 K 3/24 C	
C 2 3 C 18/52		C 2 3 C 18/52 B	
28/02		28/02	
H01L 23/12		H01L 23/12 Q	
		審査請求 未請求 請求項の数2 〇L (全 4]	頁)
(21)出願番号	特願平9-75006	(71)出願人 000005108	
		株式会社日立製作所	
(22)出顧日	平成9年(1997)3月27日	東京都千代田区神田駿河台四丁目 6 番地	<u> </u>
		(72)発明者 水越 浩幸	
		神奈川県秦野市堀山下1番地 株式会社	ŁĦ
		立製作所汎用コンピュータ事業部内	
		(72)発明者 力石 隆弘	
		神奈川県秦野市堀山下1番地 株式会社	田
		立製作所汎用コンピュータ事業部内	
		(74)代理人 弁理士 小川 勝男	

(54) 【発明の名称】 セラミック配線板のめっき方法

(57)【要約】

【課題】本発明は、セラミック配線板上の無電解Ni/Auめっき方法に係りPbを含有するPd活性化膜を形成した後のNiめっき膜上に、ムラなくかつ密着性良好なAuめっき膜を形成することを目的とする。

【解決手段】セラミック配線板1のW焼結導体2上にPd活性化を行った後、Bを含有するNiめっき膜3を形成した後、置換型Auめっき膜(b)8又はPを含有するNiめっき膜(b)9を施す。その後、600~800℃の熱処理、次いで、Pを含有するNiめっき膜

(a) 5及び置換型Auめっき膜(a) 6を形成し、最後に300~400℃での熱処理を施す。上記方法によりムラなく密着性良好で部品接続信頼性を確保できる置換型Auめっきを形成することができる。

2 5

【特許請求の範囲】

【請求項1】W又はMoの焼結導体を有するセラミック配線板において、Pbを含有するPd活性化液で活性化した後、Bを含有する還元型Niめっきを形成、置換型Auめっきを形成し、600~800℃の熱処理を行い、Pを含有する還元型Niめっきを形成し、次いで置換型Auめっきを形成し、300~400℃での熱処理を施すことを特徴とするNi/Auめっき方法。

【請求項2】上記配線板のBを含有する還元型Niめっき後、あらかじめPを含有する還元型Niめっきを形成した後、600~800℃の熱処理を行い、再度Pを含有するNiめっきを形成し、次いで置換型Auめっきを形成し、300~400℃での熱処理を施すことを特徴とするNi/Auめっき方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、LSi等の部品を搭載するセラミック配線板の無電解Ni/Auめっき方法に係わり、特に密着性よくかつむらのないAuめっき膜を形成するめっき方法に関する。

[0002]

【従来の技術】セラミック配線板の入出力端子には、L Si等の部品を搭載、接続のためにめっき膜が形成される。このめっき膜形成で一般的なものが無電解Ni/A uめっきである。

【0003】従来の技術の無電解Ni/Auめっきでは、W又はMo等の焼結導体上にPd活性膜を形成し、その後、Bを含有する還元型Niめっきを形成、その後、下地とめっきの密着性確保のため600~800℃の熱処理を行う。次いで、Pを含有する還元型Niめっきを施した後、置換性Auめっきを形成していた。関連のある公知例としては、特公平6-84546号公報がある。

[0004]

【発明が解決しようとする課題】従来技術の場合、Bを含有するNiめっき後の600~800℃の熱処理により、Pd/Pb化合物がNiめっき表面に偏析してくる。このPd/Pb化合物は、その上に形成するPを含有するNiめっきの触媒毒となり、その偏析した部分でのAuめっきむら及び密着性の劣化となる問題があった

【0005】本発明の目的は、前述した従来技術の問題を解決し、セラミック配線板のNiめっき膜上での、Auムラのないかつ密着性の良好なAuめっき膜を形成するセラミック配線板のめっき方法を提供することにある。

[0006]

【課題を解決するための手段】本発明によれば、前述の目的を達成するために、Bを含有する還元型Niめっき上に、予め、無電解Auめっきを施してから600~8

00℃の熱処理を行うものである。このときのAuめっきの膜厚は、0.01~0.05μmとする。又、Bを含有する還元型Niめっき上にPを含有する還元型Niめっきを0.1~0.5μm施し後、600~800℃の熱処理行う方法でも同様の効果が得られる。

【0007】その後、Pを含有する還元型Niめっきを 0.5~1μm形成した後、置換型Auめっきを0.1 ~0.2μm形成させる。この後、300~400℃の 熱処理を施す。

【0008】Bを含有する還元型Niめっき後に、置換型Auめっきあるいは、Pを含有する還元型Niめっきを施してから、600~800℃で熱処理を行うことにより、Pd/Pbの化合物の偏析を抑制することができる。さらには、次いで形成するPを含有するNiめっきに対してもPd/Pbが触媒毒とならず、粒界の小さいNiめっき膜が形成することができる。これにより、置換型Auめっきを形成するのに、むらなく、かつ密着性のよいAuめっき膜を形成することができる。

【0009】また、Auめっき後で300~400℃の 熱処理を実施するが、Auめっき膜自身が下地のNiと 熱拡散により密着性確保するのに必要な働きがある。一 方、600~800℃の熱処理については、Niめっき 膜と下地メタライズ(W又はMo)との密着性を向上さ せる働きがあるため必要となる。

[0010]

【発明の実施の形態】

(実施例1)セラミック配線板1上にあるW焼結導体2の表面にBを含有する還元型Niめっき膜3を3~4μm形成する。めっきの前処理としては、90℃,10ω t%のNaOH溶液に30分の浸漬、水洗後、W焼結導体へNiめっきを形成するためのPbを含有するPd活性化処理(日本カニゼン製活性化No3液、60℃、5分浸漬)を行う。これは、W焼結導体上へは直接還元型Niめっきの反応がスタートしないためである。又、Pbを含有する活性化液を選定したのは、Pb化合物がめっきすべきパターン以外へのPdの触媒活性をなくす働きがあるものと考えられるためである。水洗後、Bを含有するNiめっき液(日本カニゼン製、SB-55-1)にて、60℃、約25分間浸漬することにより、W焼結導体上へNiめっき膜を形成する。これを図1に示す

【0011】さらに、750℃、10分還元雰囲気にて熱処理を行い、下地のWとNiめっき膜とを相互拡散させることで密着性を図る。ところが図2に示すようにPd/Pb化合物4として偏析する。この後、Pを含有する還元型Niめっき(a):日本カニゼン製シューマーS680、2分、90℃処理5約1μm及び置換型Auめっき(a):EEJA製レクトロレスプレップ、90℃、10分処理6を約0.1μm形成したのち、Auめ

っき膜を下地Niとの密着性を図るため300~400 ℃での熱処理還元雰囲気、30分を施したときに前述の 偏析したPd/Pb化合物が触媒毒となって図3に示す ようなAuめっきのむら7を生じ、密着性劣化を引き起 こす。

【0012】そこで、本発明では、Bを含有する還元型

Niめっきの後、水洗をした後、置換型Auめっき (b) 8: EEJA製レクトロレスプレップ、90°C、 約5分を0.01~0.05 mm形成してから、600 ~800℃での熱処理を行うことでAuがNiとの相互 拡散するため、表面上へのPd/Pbの偏析を抑制する ことができる。これを図4に示す。この後Pを含有する 還元型Niめっき(a)及び置換型Auめっき(a)を

形成した後、300~400℃での熱処理を施しても、 前述のようなAuめっきのむら7が発生せず、又、密着 性を確保することが可能となる。図5に実施例1での最 終的なめっき膜構成を示す。

【0013】(実施例2)実施例1では、Bを含有した 還元型Niめっき膜3を形成後、置換型Auめっき膜 (b) 8を形成したが、Pを含有する還元型Niめっき (b) 9:日本カニゼン製、シューマーS680,90 ℃を0.1~0.5µm施した後、600~800℃で の熱処理を行う。ここでは、Ni-PのめっきがNi-Bのめっきと相互拡散する際に、Pd/Pbの表面上へ の偏析を抑制することができる。この図を図6に示す。 この後、再度Pを含有するNiめっき膜(a)を0.5 μm、及び置換型Auめっき膜(a)を形成した後、密 着性を図るため300~400℃での熱処理を行った場 合、前述のようなAuめっきむら7が発生せず、密着性 良好なAuめっき膜を得ることができる。図7には、実 施例2でのめっき膜の構成を示した。

[0014]

【発明の効果】本発明により、セラミック配線板上の無 電解Ni/Auめっき方法において、Pbを含有するP d活性化膜上に形成したNiめっき上のAuめっきの形 成において、部品接続信頼性を確保できるAuめっき膜 をむらなく析出することができる。

【図面の簡単な説明】

【図1】セラミック配線板へのNiめっき膜形成後断面 図である。

【図2】熱処理後のセラミック配線板の断面図(従来) である。

【図3】Auめっき及び熱処理後のセラミック配線板の 断面図(従来)である。

【図4】置換Auめっき(b)を採用したセラミック配 線板の熱処理後の断面図(本発明による工法)である。

【図5】実施例1による最終的なめっき膜構成断面図で ある。

【図6】還元型Ni-Pめっき(b)を採用したセラミ ック配線板の熱処理後の断面図 (本発明による工法)で

【図7】実施例2による最終的なめっき膜構成断面図で ある。

【符号の説明】

1…セラミック配線板、 2…W焼結導 体、3…Bを含有するNiめっき膜、 4...Pd /Pb化合物、5…Pを含有するNiめっき膜(a)、 6…置換型Auめっき膜(a)、7…Auめっきム ラ、 8…置換型Auめっき膜

(b)、9…Pを含有する還元型Niめっき膜(b)。

【図2】

01

【図1】

【図3】

23

212

【図4】

214

36

【図5】

【図6】

T 5

【図7】

197

