

(11)Publication number:

2003-100937

(43) Date of publication of application: 04.04.2003

(51)Int.CI.

H01L 23/12 H01L 25/00 H05K 1/14 H05K 3/36 H05K 3/46

(21)Application number: 2001-292788

(71)Applicant : HITACHI LTD

(22)Date of filing:

26.09.2001

(72)Inventor: KURIYAMA SATORU

TAGAMI TOMONORI

SEKINE KENJI ONISHI MASAMI KAGAYA OSAMU **ISOBE ATSUSHI**

(54) HIGH-FREQUENCY MODULE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a high-frequency module that can reduce a board area and improve heat radiation properties. SOLUTION: In the high-frequency module, first and second boards 10 and 20 are provided, a group of first circuit elements is arranged at a recess 30 formed on the first board 10, a group of second circuit elements is arranged on the second board 20, the first and second boards 10 and 20 have electrode terminals 60-a and 60-b for enabling electric coupling when vertically connected, and the first and second boards 10 and 20 are vertically connected, thus providing a structure for forming the high-frequency module. Further, the high-frequency module has a structure for transmitting heat that is dissipated from the group of the first circuit elements to a heat radiation section 40 via a through hole w 50-a for connecting the bottom surface of the recess 30 to the heat radiation section 40 that is formed on the lower surface of the first board 10.

LEGAL STATUS

[Date of request for examination]

29.03.2004

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

BEST AVAILABLE COPY

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision

THIS PAGE BLANK (USPTO)

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

THIS PAGE BLANK (USPTO)

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号 特開2003—100937

(P2003-100937A) (43)公開日 平成15年4月4日(2003.4.4)

(51)Int.Cl. 7	識別記号	FΙ			テーマコート' (き	参考
H01L 23/12	301	H01L 23/12	301	J	5E344	
		25/00	1	В	5E346	
25/00		H05K 1/14	•	A		
HO5K 1/14		3/36	i	A		
3/36		3/46		N		
	審査請	求 未請求 請求	項の数19 OL	(全15]	頁) 最終頁に続	売く
(21)出願番号	特願2001-292788(P2001-292788) (71)出願人	000005108			
			株式会社日立製	作所		
(22)出願日	平成13年9月26日(2001.9.26)		東京都千代田区神田駿河台四丁目 6 番地			
		(72)発明者	栗山 哲			
					置一丁目280番地	
			株式会社日立製	作所中央	2研究所内	
		(72)発明者	田上 知紀			
			東京都国分寺市	東恋ケ鷺	量一丁目280番地	
			株式会社日立製	作所中央	中研究所内	
		(74)代理人	100075096			
	·		弁理士 作田	康夫		
			最終頁に続く			

(54)【発明の名称】高周波モジュール

(57)【要約】

【課題】 基板面積の小型化及び放熱性の向上が可能な 高周波モジュールを提供する。

【解決手段】 本発明の高周波モジュールは、第1の基板10と第2の基板20を有し、第1の基板10の上面に形成された凹部30に第1の回路累子群を配置し、第2の基板20の上面に第2の回路累子群を配置し、第1の基板10と第2の基板20は上下に接続した場合に電気的結合を可能ならしめる電極端子60-a、60-bを有し、第1の基板10と第2の基板20とを上下に接続することにより高周波モジュールを形成する構造を有し、更に第1の回路累子群から放出される熱を、凹部30の底面と第1の基板10の下面に形成された放熱部40とを接続する貫通孔50-aを介して放熱部40に伝達する構造を有することを特徴とする。

図 1

BEST AVAILABLE COPY

【請求項1】第1の基板と、前記第1の基板上に配置さ れた第1の回路素子と、前記第1の基板の前記第1の回 路素子が配置された面の反対側の面に形成された放熱部 と、前記第1の回路素子が配置された面と前記放熱部と の間を貫通し前記第1の回路素子から放出される熱を前 記放熱部に伝達する第1の貫通孔と、前記放熱部が形成 された面の反対側の面に形成された第1の接続点とを含 んでなる第1の回路ブロックと、

第2の基板と、前記第2の基板上に配置された第2の回 10 路素子と、前記第2の基板の前記第2の回路素子が配置 された面の反対側の面に形成された第2の接続点とを含 んでなる第2の回路ブロックとを具備してなり、

前記第1の回路ブロックおよび前記第2の回路ブロック は、互いに接続可能に構成され、前記第1の回路ブロッ クと前記第2の回路ブロックとが接続されることによ り、前記第1の回路素子が収容される封止された凹部が 形成されると共に、前記第1の接続点と前記第2の接続 点とが接触して前記第1の回路素子と前記第2の回路素 子とが電気的に接続される構造を有することを特徴とす 20 る高周波モジュール。

【請求項2】請求項1に記載の高周波モジュールにおい て、

前記第1の回路素子は回路面が接着面と反対となるよう に前記第1の基板上に配置された半導体能動素子を含 み、前記第2の回路素子は受動部品を含むことを特徴と する高周波モジュール。

【請求項3】請求項1または2のいずれかに記載の高周 波モジュールにおいて、

前記第1の回路ブロックは第2の貫通孔を有し、前記第 30 1の回路素子と前記第1の接続点とが前記第2の貫通孔 で接続され、

前記第2の回路ブロックは第3の貫通孔を有し、前記第 2の回路素子と前記第2の接続点とが前記第3の貫通孔 で接続されていることを特徴とする高周波モジュール。

【請求項4】請求項1乃至3のいずれかに記載の高周波 モジュールにおいて、

前記第2の回路ブロックは、前記第2の回路素子が配置 されている面と反対側の面に接地電極を有することを特 徴とする高周波モジュール。

【請求項5】請求項1乃至4のいずれかに記載の高周波 モジュールにおいて、

前記放熱部は、前記第1の基板より熱伝導の高い金属材 料により構成されていることを特徴とする高周波モジュ ール。

【請求項6】基板が上下にブロック分割可能に形成さ れ、下側の基板に能動素子がフェイスアップ実装され、 上側の基板に受動索子が実装され、前記下側の基板に形 成されたサーマルビアにより前記能動素子から放出され る熱が前記下側の基板の下面から放熱されるように構成 50

されていることを特徴とする高周波モジュール。

【請求項7】第1の基板と、前記第1の基板に形成され た凹部と、前記凹部内に配置された第1の回路素子と、 前記第1の基板の前記凹部が形成された面の反対側の面 に形成された放熱部と、前記凹部の底面と前記放熱部と の間を貫通し前記第1の回路素子から放出される熱を前 記放熱部に伝達する第1の貫通孔と、前記放熱部が形成 された面の反対側の面に形成された第1の接続点とを含 んでなる第1の回路ブロックと、

第2の基板と、前記第2の基板上に配置された第2の回 路素子と、前記第2の基板の前記第2の回路素子が配置 された面の反対側の面に形成された第2の接続点とを含 んでなる第2の回路ブロックとを具備してなり、 前記第1の回路ブロックおよび前記第2の回路ブロック は、互いに接続可能に構成され、前記第1の回路ブロッ クと前記第2の回路ブロックとが接続されることによ り、前記第1の接続点と前記第2の接続点とが接触して 前記第1の回路素子と前記第2の回路素子とが電気的に 接続される構造を有することを特徴とする高周波モジュ ール。

【請求項8】第1の基板と、前記第1の基板上に配置さ れた第1の回路素子と、前記第1の基板の前記第1の回 路索子が配置された面の反対側の面に形成された放熱部 と、前記第1の回路素子が配置された面と前記放熱部と の間を貫通し前記第1の回路素子から放出される熱を前 記放熱部に伝達する第1の貫通孔と、前記放熱部が形成 された面の反対側の面に形成された第1の接続点とを含 んでなる第1の回路ブロックと、

第2の基板と、前記第2の基板に形成された凹部と、前 記第2の基板の前記凹部が形成された面の反対側の面に 配置された第2の回路素子と、前記第2の基板の前記第 2の回路素子が配置される面と反対側の面に形成された 第2の接続点とを含んでなる第2の回路ブロックとを具 備してなり、

前記第1の回路ブロックおよび前記第2の回路ブロック は、互いに接続可能に構成され、前記第1の回路ブロッ クと前記第2の回路ブロックとが接続されることによ り、前記第1の接続点と前記第2の接続点とが接触して 前記第1の回路素子と前記第2の回路素子とが電気的に 接続される構造を有することを特徴とする高周波モジュ 一ル。

【請求項9】請求項7または8のいずれかに記載の高周 波モジュールにおいて、

前記高周波モジュールは前記第2の回路ブロックと同様 の構成を有する第3の回路ブロックを有し、前記第1の 回路ブロックに対し前記第2の回路ブロックおよび前記 第3の回路ブロックが接続されてなることを特徴とする 髙周波モジュール。

【請求項10】請求項7乃至9のいずれかに記載の高周 波モジュールにおいて、

40

前記第1の回路索子は回路面が接着面と反対となるよう に前記第1の基板上に配置された半導体能動素子を含 み、前記第2の回路素子は受動部品を含むことを特徴と する高周波モジュール。

【請求項11】請求項10に記載の高周波モジュールにおいて、

前記第1の回路索子は、さらに受動部品を含むことを特徴とする高周波モジュール。

【請求項12】請求項11に記載の高周波モジュールにおいて、

前記受動部品がSAW索子であることを特徴とする高周 波モジュール。

【請求項13】第1の基板と、前記第1の基板上に配置された第1の回路素子と、前記第1の基板の前記第1の回路素子が配置された面の反対側の面に形成された放熱部と、前記第1の回路素子が配置された面と前記放熱部との間を貫通し前記第1の回路素子から放出される熱を前記放熱部に伝達する第1の貫通孔と、前記放熱部が形成された面の反対側の面に形成された第1の接続点とを含んでなる第1の回路ブロックと、

第2の基板と、前記第2の基板上に配置された第2の回路素子と、前記第2の基板の前記第2の回路素子が配置された面の反対側の面に形成された第2の接続点とを含んでなる第2の回路ブロックと、

第3の基板と、前記第3の基板に内蔵された第3の回路 索子と、前記第3の基板の第1の表面に形成された第3 の接続点と、前記第3の基板の前記第1の表面の反対側 の第2の表面に形成された第4の接続点とを含んでなる 第3の回路ブロックとを具備してなり、

前記第1の回路ブロック、前記第2の回路ブロック、お 30 よび前記第3の回路ブロックは、前記第1の回路ブロックと前記第2の回路ブロックとの間に前記第3の回路ブロックが介在するようにして互いに接続可能に構成され、前記第1の回路ブロック、前記第2の回路ブロック、および前記第3の回路ブロックが接続されることにより、前記第1の回路素子が収容される封止された凹部が形成されると共に、前記第1の接続点と前記第3の接続点とが接触し、前記第2の接続点と前記第4の接続点とが接触して、前記第1の回路素子と前記第2の回路素子と前記第3の回路素子とが電気的に接続される構造を 40 有することを特徴とする高周波モジュール。

【請求項14】第1の基板に第1の回路索子を導電性接続材料により実装して第1の回路ブロックを形成する工程と、

第2の基板上面に第2の回路素子を導電性接続材料により実装し、前記第2の基板の前記第2の回路素子が実装された側の面を封止して第2の回路ブロックを形成する工程と、

前記第1の回路ブロックと前記第2の回路ブロックとを接続し、前記第1の基板の前記第1の回路案子が実装さ 50

れた側の面に形成された第1の接続点と前記第2の基板の前記第2の回路素子が形成された側とは反対側の面に 形成された第2の接続点とを導電性接続材料により電気 的に接続する工程とを含むことを特徴とする高周波モジュールの製造方法。

【請求項15】第1の基板に第1の回路素子を導電性接続材料により実装して第1の回路ブロックを形成する工程と、

前記第1の回路ブロックと第2の基板とを接続し、前記 10 第1の基板の前記第1の回路素子が実装された側の面に 形成された第1の接続点と前記第2の基板に形成された 第2の接続点とを導電性接続材料により電気的に接続す る工程と、

前記第1の回路ブロックに接続された前記第2の基板の前記第2の接続点が形成された側とは反対側の面に第2の回路素子を導電性接続材料により実装し、前記第2の基板の前記第2の回路素子が実装された側の面を封止して第2の回路ブロックを形成する工程とを含むことを特徴とする高周波モジュールの製造方法。

20 【請求項16】第1の基板と、前記第1の基板上に配置された第1の回路素子と、前記第1の基板の前記第1の回路素子が配置された面の反対側の面に形成された放熱部と、前記第1の回路素子が配置された面と前記放熱部との間を貫通し前記第1の回路素子から放出される熱を前記放熱部に伝達する第1の貫通孔と、前記放熱部が形成された面の反対側の面に形成された第1の接続点とを含んでなる第1の回路ブロックを作成する工程と、

第2の基板と、前記第2の基板に形成された第2の接続 点とを含んでなる第1の用途の第2の回路ブロックを作 成する工程と、

第2の基板と、前記第2の基板に形成された第2の接続点とを含んでなり、前記第1の用途の第2の回路ブロックと同様の回路パターンを有する第2の用途の第2の回路ブロックを作成する工程と、

前記第1の用途の製品が要求される場合は、前記第1の 用途の第2の回路ブロックを前記第1の回路ブロックに 接続して第1の用途の高周波モジュールを製造し、前記 第2の用途の製品が要求される場合は、前記第2の用途 の第2の回路ブロックを前記第1の回路ブロックに接続 して第2の用途の高周波モジュールを製造する工程とを 含み、

前記第1の回路ブロックおよび前記第2の回路ブロックは、互いに接続可能に構成され、前記第1の回路ブロックと前記第2の回路ブロックとが接続されることにより、前記第1の回路素子が収容される封止された凹部が形成されると共に、前記第1の接続点と前記第2の接続点とが接触して前記第1の回路素子と前記第2の回路ブロックに形成される第2の回路素子とが電気的に接続される構造を有することを特徴とする高周波モジュールの製造方法。

【請求項17】請求項16に記載の高周波モジュールの 製造方法において、

前記第1の用途の第2の回路ブロックを作成する工程または前記第2の用途の第2の回路ブロックを作成する工程は、さらに、前記第2の基板上の前記第2の接続点が形成された面の反対側の面に第2の回路素子を実装する工程を含むことを特徴とする高周波モジュールの製造方法。

【請求項18】アンテナと、

ベースバンド部と、

高周波モジュールとを有し、

前記高周波モジュールは、

第1の基板と、前記第1の基板上に配置された第1の回路素子と、前記第1の基板の前記第1の回路素子が配置された面の反対側の面に形成された放熱部と、前記第1の回路素子が配置された面と前記放熱部との間を貫通し前記第1の回路素子から放出される熱を前記放熱部に伝達する第1の貫通孔と、前記放熱部が形成された面の反対側の面に形成された第1の接続点とを含んでなる第1の回路ブロックと、

第2の基板と、前記第2の基板上に配置された第2の回路素子と、前記第2の基板の前記第2の回路素子が配置された面の反対側の面に形成された第2の接続点とを含んでなる第2の回路ブロックとを具備してなり、

前記第1の回路ブロックおよび前記第2の回路ブロックは、互いに接続可能に構成され、前記第1の回路ブロックと前記第2の回路ブロックとが接続されることにより、前記第1の回路素子が収容される封止された凹部が形成されると共に、前記第1の接続点と前記第2の接続点とが接触して前記第1の回路素子と前記第2の回路素 30 子とが電気的に接続される構造を有し、

前記ベースバンド部から出力された信号を前記高周波モジュールで増幅し、増幅された高周波信号を前記アンテナを介して送信する機能を有することを特徴とする高周波携帯通信端末。

【請求項19】請求項18に記載の高周波携帯通信端末 において、

前記高周波携帯通信端末はさらに、前記アンテナから受けた高周波信号を前記高周波モジュールで中間周波数信号に変換し、変換された信号を前記ベースバンド部に入 40 力する機能を有することを特徴とする高周波携帯通信端末。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、高周波移動体通信 用端末に用いられる高周波モジュールに関し、特に高周 波モジュールの小型化および放熱性向上に関する。

[0002]

【従来の技術】従来の高周波モジュールの構造として、 特開平9-283700号公報にその一例が開示されている。同 50

公報の図1の符号を参照して説明する。2はガラスを主成分とする多層基板であり、5は半導体素子であり、6はコンデンサ、抵抗などの受動部品である。半導体素子5は多層基板2上面に形成された開放型凹部11内に樹脂ないし半田系の接続ペースト12により固定され、樹脂13により封止されている。14はケースであり、多層基板2上面に半導体素子5や受動部品6を搭載あるいは実装した後、多層基板2上面を覆うように取り付けられ、封止樹脂などによって封止される。開放型凹部11の底面と多層10基板2の裏面に形成された接地金属面9とは放熱用貫通孔8により接続され、半導体素子5から放出される熱を放熱用貫通孔8を介し、接地金属面9に伝えることにより高周波モジュールの放熱性を高めている。

【0003】他の従来の高周波モジュールの構造として、特開2000-12770号公報にその一例が開示されている。同公報の図1の符号を参照して説明する。15は第1の半導体素子であり、23a、23bは第2の半導体素子であり、400は第1の配線基板であり、21は第2の配線基板であり、26は封止樹脂であり、12は第1の誘電体基板11の上面に形成された凹部であり、14は外部接続用端子であり、13は第1の配線基板11の上面の凹部12以外の部分に形成された上面部接続端子であり、22は上面接続端子13に対応するように第2の配線基板21の裏面に形成された下面部接続端子であり、31は異方導電接着剤である。

【0004】第1の半導体素子15は第1の配線基板11に形成された凹部12に絶縁性接着剤16によって接着され、ボンディングワイヤ17を介し第1の配線基板11に形成された導電パターンに電気的に接続され、第1の構造体10が形成しされている。第2の半導体素子23a、23bは第2の配線基板に絶縁性接着剤16によって接着され、ボンディングワイヤ17を介し第2の配線基板21に形成された導電パターンに電気的に接続され、封止樹脂により第2の配線基板21の上面が封止しされ、第2の構造体20が形成されている。

【0005】第1の構造体10と第2の構造体20とが上下 に接続され、上面接続端子13と下面接続端子22とが異方 導電接着剤31により接続されることにより、第1の構造 体10と第2の構造体20とが電気的に接続される。

【0006】さらに他の従来の高周波モジュールの構造として、特開2000-174204号公報にその一例が開示されている。同公報の図7の符号を参照して説明する。19は第1の半導体素子であり、29は第2の半導体素子であり、11は金属ベースであり、1は金属ベース11の上面に形成された第1の誘電体基板であり、2は第2の誘電体基板であり、12は金属カバーであり、4は第1の誘電体基板1の上面に形成された凹部であり凹部4の底面には金属ベース11が露出しており、120はチップコンデンサなど気密封止の必要のない高周波回路デバイスである。

【0007】第1の半導体素子19は第1の誘電体基板1 に形成された凹部4の底面に露出している金属ベース11

に実装され、ボンディングワイヤ10を介し第1の誘電体基板1に形成された第1のDC線路17に電気的に接続されている。第2の誘電体基板2は第1の誘電体基板1の上面に積層され、第2の半導体素子29は第2の誘電体基板2の上面に実装され、ボンディングワイヤ20を介し第2の誘電体基板2に形成された第2のDC線路27に電気的に接続されている。第1のDC線路17と第2のDC線路27とはピアホール8を介して電気的に接続されている。

【0008】金属カバー12により第2の誘電体基板2の 上面は気密封止され、チップコンデンサなど気密封止の 10 必要のない高周波回路デバイス120は第1の誘電体基板1 の金属カバー12で封止された以外の部分に実装されてい る。

【0009】さらに他の従来の高周波モジュールの構造として、特開2000-31331号公報にその一例が開示されている。同公報の図3および図5の符号を参照して説明する。21は能動素子である第1トランジスタであり、22は能動素子である第2トランジスタであり、60はキャップであり、13はキャップ60の下面に形成されたグランド端子であり、61はサーマルピアであり、4、5は受動素子であり、25はカバーであり、17、18はバンプ電極等を機械的かつ電気的に接続するためのパッドであり、19、20はパッド17および18との電気的接続を取るための内部ピアである。

【0010】第1トランジスタ21および第2トランジスタ22がそれぞれバンプを介して接続されたバッド17および18とグランド端子13との間にはサーマルビア61が熱的かつ電気的に接続されている。キャップ60はキャビティを全体的に覆うように接着されている。カバー25に覆われた受動索子4および5は、内部ビア19、20、およびバッド17、18を介して第1トランジスタ21および第2トランジスタ22と電気的に接続されている。

[0011]

【発明が解決しようとする課題】特開平9-283700号公報の例においては、半導体素子および受動部品は多層基板上面にのみ搭載あるいは実装されているため、回路構成用部品の搭載部を考慮すると基板面積が大きくなるという問題点があった。

【0012】特開2000-12770号公報の構造例を高周波モジュールに適用すれば、複数の半導体素子を立体配置することが可能なため、高周波モジュールの面積の小型化が可能となり、上記の問題点は解決される。しかしながら、この構造では半導体素子から放出される熱を高周波モジュール外部に逃がす構造がなく、更に半導体素子を半田系の接続ペーストなどの導電性接着剤よりも熱伝導率の低い絶縁性接着剤により誘電体基板に接着しているため、高周波モジュールの放熱性が特開平9-283700号公報の構造に比べ低下し、モジュール性能の劣化を引き起こす要因となりうるという問題点があった。

【0013】特開2000-174204号公報の例は、半導体累

子が金属ベースに直接実装されているため半導体累子か ら放出される熱を高効率に逃がすことが可能となり、放 熱性の問題を解決する。また、この構造では複数の半導 体索子を立体的に配置できるため、半導体素子のみつい て考えると面積の小型化が可能である。しかしながら、 チップコンデンサなどの高周波回路デバイスを半導体素 子の実装された第1の誘電体基板上に実装する点は特開 平9-283700号公報の例と同様であり、半導体素子とチッ プコンデンサなどの高周波回路デバイスを有する高周波 モジュールでは面積の小型化が困難となるという問題点 があった。また、金属ベースに直接半導体素子を実装す る構造を有するため、金属ベースの強度を高める必要か ら金属ベースを厚くする必要があり、もってモジュール 質量の増加を招くという問題があった。また、金属ベー スの上面に誘電体基板を形成するため、誘電体基板の下 面に金属面を同時形成する場合に比べて製造過程が複雑 化するという問題点があった。

【0014】特開2000-31331号公報の例は、能動素子である第1および第2トランジスタがサーマルビアを介してグランド端子に接続されているため、ある程度は放熱性の面で有利である。しかし、熱を放出する能動素子がパンプを介してフェイスダウンに接続されているため、フェイスアップ接続に比べると、放熱性がやや不十分であるという問題点があった。

【0015】本発明の目的は、高周波モジュールさらなる小型化が可能であり、放熱性を向上可能であり、かつ 簡便な手法で製造が可能な高周波モジュールを提供する ことにある。

[0016]

30

【課題を解決するための手段】本発明の高周波モジュー ルは、第1の基板と、第1の基板上に配置された第1の 回路索子と、第1の基板の第1の回路索子が配置された 面の反対側の面に形成された放熱部と、第1の回路素子 が配置された面と放熱部との間を貫通し第1の回路累子 から放出される熱を放熱部に伝達する第1の貫通孔と、 放熱部が形成された面の反対側の面に形成された第1の 接続点とを含んでなる第1の回路ブロックと、第2の基 板と、第2の基板上に配置された第2の回路索子と、第 2の基板の第2の回路索子が配置された面の反対側の面 に形成された第2の接続点とを含んでなる第2の回路ブ ロックとを具備してなり、第1の回路ブロックおよび第 2の回路ブロックは、互いに接続可能に構成され、第1 の回路プロックと第2の回路プロックとが接続されるこ とにより、第1の回路累子が収容される封止された凹部 が形成されると共に、第1の接続点と第2の接続点とが 接触して第1の回路索子と第2の回路索子とが電気的に 接続される構造を有することを特徴とするものである。

【0017】本発明の高周波モジュールによれば、第1 の基板に形成された凹部が第2の基板により気密封止さ 50 れ封止型凹部となり、第1の回路累子群が封止型凹部の

40

【0018】また、第1の回路素子群から放出された熱 は第1の回路素子群の配置された封止型凹部の底面から 第1の貫通孔を介し放熱部に伝達されることにより、高 周波モジュールの放熱性を向上されることが可能であ る。

[0019]

【発明の実施の形態】以下、図面を用いて本発明の実施 例として高周波電力増幅器モジュールの構造を詳細に説 10 明する。

<実施例1>図1に本発明の実施例1の断面図を、図2に 実施例1の斜視図を、図3に前記実施例1の回路図を、 各々示す。図1、2において、10は第1の基板であり、30 は第1の基板の上面に形成された凹部であり、40は第1 の基板10の下面に形成された放熱部であり、70-aは凹部 30の底面に形成された第1の接地金属面であり、50-aは 第1の接地金属面70-aと放熱部40とを接続する第1の質 通孔であり、60-aは第1の基板10の上面の凹部30以外の 部分に形成された第1の接続点であり、 80-aは第1の 基板10に形成された第1の伝送線路であり、50-bは第1 の伝送線路80-aと第1の接続点60-aとを接続する第2の 貫通孔であり、100は半導体素子であり、120はボンディ ングワイヤであり、210は第1の回路ブロックである。

【0020】20は第2の基板であり、60-bは第1の基板 10と第2の基板20とを上下に接続した場合に第1の基板 10の上面に形成された第1の接続点60-aと重なる位置に なるように第2の基板20の下面に形成された第2の接続 点であり、80-bは第2の基板20に形成された第2の伝送 線路であり、50-cは第2の伝送線路80-bと第2の接続点 60-bとを接続する第3の貫通孔であり、70-bは第2の基 板20の下面に形成された第2の接地金属面であり、110 は第2の基板20の上面に実装されたコンデンサ、インダ クタ、抵抗などの受動部品であり、130は封止樹脂であ り、220は第2の回路ブロックである。

【0021】図3において、210は第1の回路ブロックで あり、220は第2の回路ブロックであり、200-aは第1の 回路ブロックを構成する第1のトランジスタであり、20 0-bは第1の回路ブロックを構成する第2のトランジス タであり、230-aは入力電力端子であり、230-bは出力電 力端子であり、240-aは第1のトランジスタ200-aの制御 電圧端子であり、240-bは第2のトランジスタ200-bの制 御電圧端子であり、250-aは第1のトランジスタ200-aの 電源電圧端子であり、250-bは第2のトランジスタ200-b の電源電圧端子である。

【0022】半導体素子100はフェイスアップで上記凹 部30の底面に形成された第1の接地金属面70-aに半田ペ ーストあるいは銀ペーストなどの導電性接続ペーストに より固定され、第1、第2のトランジスタ200-a、bのエ ミッタ電極は共に半導体素子100の裏面より第1の接地

【0023】半導体素子100から放出された熱は、第1 の接地金属面70-aから第1の貫通孔50-aを介して放熱部 40に伝達される。第1の貫通孔50-aは直径は0.1mm以上 の円筒状であり、内部は中空であってもよいが、熱伝導 率のよい物質で充填する方が放熱成向上のためには望ま しい。また第1の貫通孔50-aは複数形成され例えば直径 0.1mmの貫通孔の場合、貫通孔中心間距離を0.3mm以下で 千鳥配置するのが望ましい。

【0024】また、第1の基板10は熱伝導率の高いアル ミナセラミック基板からなるのが望ましいが、ガラスセ **ラミックあるいは樹脂からなっても構わない。更に、放** 20 熱部40は第1の基板10より熱伝導率の高い金属材料によ り構成されることを特徴とする。

【0025】受動部品110は第2の基板20の上面に半田 などの導電性接続ペーストにより実装され、第2の基板 20の上面は封止樹脂130により気密封止され(図2では図 示せず)、第2の回路ブロック220が完成する。なお、 **封止樹脂の代わりに樹脂ケースあるいは金属ケースを用** いて第2の基板20の上面を気密封止してもよい。

【0026】第1の回路ブロック210と第2の回路ブロ ック220とを上下に接続し、第1の接続点60-aと第2の 接続点60-bとを半田バンプあるいは銀ペーストなどの導 **電性接続剤あるいは異方性導電性シートにより電気的に** 接続することにより、髙周波電力増幅器モジュールの実 施例1が完成する。

【0027】第1の基板10と第2の基板20とを構成する 素材は異なっても構わないが、同一の素材である方が接 続後の熱膨張収縮など外的要因による第1の接続点60-a と第2の接続点60-bの剥離を防止できるため望ましい。 また、第1の基板10と第2の基板20とを構成する素材を 同一にすることにより、第1の接続点60-aと第2の接続 点60-bを各々形成する過程において、形成位置精度を容 易に向上させることが可能となるのは明白である。

【0028】第1の基板10の上面に形成された凹部30は 第2の基板20の下面に形成された第2の接地金属面70-b で封止され、もって封止型凹部となり、凹部30に配置さ れた前記半導体索子100は第2の回路ブロックの第2の 接地金属面70-bにより自動的に気密封止されることにな る。

【0029】なお、実施例1の説明において第1の回路 ブロック210は便宜的に2段増幅器としたが、1段ある 50 いはそれ以上の増幅器であっても構わない。

【0030】実施例1によれば、半導体素子100と受動部品110とを同一平面上ないし同一基板上に配置せず、上下に分割可能な基板上に配置し、それら基板を勘合する構造を有することにより、半導体素子100と受動部品10の立体配置が可能となる。現在一般的に量産されている6mm×6mmサイズの高周波電力増幅器モジュールの半導体素子以外の回路部分の占める面積は約20mm1であることから、半導体素子を受動部品と別基板に配置することによりモジュール面積を4.5mm×4.5mmサイズ以下に小型化することが可能となる。

【0031】また実施例1によれば、半導体素子100から放出された熱を、半導体素子100の実装された第1の接地金属面70-aから第1の貫通孔50-aを介して熱伝導率の高い金属材料により構成される放熱部40に伝達する構造を有することにより、モジュールの放熱性を向上することが可能となる。

【0032】更に実施例1によれば、第1の回路ブロック210と第2の回路ブロック220とを上下に接続する際、第1の接続点60-aと第2の接続点60-bとを半田バンプあるいは銀ペーストなどの導電性接続剤あるいは異方性導20電性シートにより電気的に接続することにより、第1の接続点60-aと第2の接続点60-bの位置合わせを容易にできるため、接続点の小型化ひいてはモジュール面積の小型化が可能であり、また後述する本発明の高周波モジュールの製造方法を容易にできるという効果もある。

【0033】以下、図面を用いて本発明の高周波モジュールの製造方法の一実施例を詳細に説明する。

【0034】図4に本発明の高周波モジュールの使用方法の実施例の一例として実施例1の高周波電力増幅器モジュールの使用方法の簡略な流れ図を示す。更に、便宜 30的に通信方式としてDCS(送信周波数1.75GHz)とW-CDMA(送信周波数1.95GHz)を例に挙げて説明する。

【0035】図4に示した実施例では、1.7~2.0GHz用の 半導体素子を有する第1の回路ブロックと、DCSの送信 周波数および変調方式で電力増幅器モジュールの最良特性を与える整合回路を有する第2の回路ブロックと、W-CDMAの送信周波数および変調方式で電力増幅器モジュールの最良特性を与える整合回路を有する第2の回路ブロックとを各々製造し、DCSとW-CDMAとで高周波電力増幅器モジュールの売上個数または在庫個数を調査し、各々40の方式に対応する第2の回路ブロックの製造個数を調整することを特徴とする。

【0036】DCS用の第2の回路ブロックとW-CDMA用の第2の回路ブロックとは、これらを構成する容量や伝送線路等の回路定数および伝送線路の線路長が互いに異なるが、回路図としては、いずれも図3の220に示す形となる。すなわち、回路パターンとしては互いに同様である。そのため、DCS用、W-CDMA用、それぞれの第2の回路ブロックを、接続点の固定された共通の第1の回路ブロックに接続可能に設計・製造することが可能である。

【0037】本発明の高周波モジュールの製造方法は、第1の回路ブロック、第2の回路ブロックを個々に製造した後に互いに接続できる構造を有するため、第1の回路ブロック、第2の回路ブロック各々の製造個数の調整が可能となり、よって低コスト化が可能となる効果がある。また更に、機能毎に回路ブロックを製造し接続可能なため、様々なアプリケーションに対する高周波モジュールが短期間で製造可能となる効果もある。尚、第2の回路ブロックを完成させる前に第2の基板20を第1の回路ブロックを完成させる前に第2の基板20を第1の回路ブロックの上に接続し、その後、第2の基板20上面に受動素子110を実装してもよい。この場合、半導体素子100と受動素子110とのトリミングがとりやすくなるという効果がある。

【0038】この製造方法によれば、第1の回路ブロックを複数の異なる通信方式に対応する電力増幅器モジュールで共用でき、複数の通信方式に対応する電力増幅器モジュールの開発・製造コストおよび時間を削減できることが可能となる。また、市場動向に応じて第2の回路ブロックの製造個数を調整することにより電力増幅器モジュールの製造個数を他の通信方式へと容易に振り分けることが可能となり、もって製品在庫調整や出荷個数調整を容易に行うことが可能となる。

【0039】以上では、第1の回路ブロックを共有し、第2の回路ブロックを多様化させる例を挙げたが、本発明の高周波モジュールの使用方法の実施例はこれに限らず、第2の回路ブロックを共有し、第1の回路ブロックを多様化させても構わない。これによれば、第2の回路ブロックを構成する受動素子を電力増幅器モジュール価格に応じて選択し値段別に作製することにより、複数の価格の電力増幅器モジュールを容易に製造することが可能となる。

<実施例2>図5に本発明の実施例2の断面図を、図6に前記実施例2の回路図を、各々示す。実施例2では、第1の回路ブロック210に半導体素子100および直流回路系を、第2の回路ブロックに高周波回路系を各々配置しており、第1の基板10の上面に形成された凹部30の内部に半導体素子100に加えて受動部品110の一部が配置される点が実施例1と異なる。

【0040】実施例2によれば、第1の回路ブロックに 直流回路系を集約させており、一般的に直流回路系は異 なる通信方式・周波数で共用できることが多く、且つ第 2の回路ブロックには高周波回路系のみを作製すればよ いため、高周波電力増幅器モジュールの回路の分割を容 易に行うことが可能となる。実施例2の高周波モジュー ルの使用方法は基本的に実施例1の高周波モジュールの 使用方法と同様である。

〈実施例3〉図7に本発明の実施例3の断面図を示す。 実施例3では、第2の基板20の下面に凹部30が形成され、第1の基板10と前記第2の基板20とが上下に勘合された場合に第1の基板10の上面に搭載された半導体累子 20

30

100を凹部30が封止するような構造を有する点が実施例 1と異なる。

【0041】実施例3では基本的に実施例1と同様の効 果が得られる。実施例3の高周波モジュールの使用方法 は基本的に実施例1の高周波モジュールの使用方法と同 様である。

<実施例4>図8に本発明の実施例4の断面図を、図9に 前記実施例4の回路図を、各々示す。実施例4では、第 1の基板10の上面に少なくとも2つ以上の凹部30-a、30 -bが形成され、凹部30-aの内部に半導体素子100-aが配 置され、凹部30-bの内部に半導体素子100-bが配置さ れ、第1の回路ブロックを形成し、少なくとも2つ以上 の基板20-a、20-bの上面に受動部品110が実装され、各 々封止樹脂130で気密封止され、各々第2、第3の回路 ブロックを形成し、第1の回路ブロック上面に第2、第 3の回路プロックを左右に並べて接続する構造を有する 点が実施例1と異なる。

【0042】実施例4によれば、複数の機能を持つ高周 波モジュールを小型かつ容易に製造することが可能とな

【0043】実施例4の高周波モジュールの適用例を説 明する。実施例4の高周波モジュールの使用方法は、送 信用電力増幅器と受信用電力増幅器とを組み合わせて一 体型の高周波モジュールとする一方で、送信用電力増幅 器とフィルタとを組み合わせて一体型の高周波モジュー ルとすることを特徴とする。ここで送信用電力増幅器と 送信用電力増幅器とフィルタを例に挙げたが、それ以外 の機能を持った部品でも構わない。これによれば、多様 な組合せの高周波モジュールを容易に製造することが可 能となる。

<実施例5>図10に本発明の実施例5の断面図を、図11 に実施例5の回路図を、各々示す。実施例5では、半導 体素子100を配置した第1の回路ブロック210と、高周波 回路系を配置した第2の回路ブロック220-aと、直流回 路系を配置した第3の回路ブロック220-bとが、上から 第2の回路ブロック220-a、第3の回路ブロック220-b、 第1の回路ブロック210の順序で接続される構造を有す る点が実施例1と異なる。また、第3の回路ブロック22 0-bを構成する受動部品260は、第3の回路ブロック220bを構成する第3の基板20-bに内蔵されることを特徴と

【0044】実施例5によれば、半導体素子、直流回路 系、高周波回路系に高周波モジュールの回路を実施例 2 より微細に分割できることにより、各回路ブロックの設 計を容易にすることが可能であり、且つ直流回路系を高 周波回路系と別基板に配置することによりモジュール面 積を実施例1に比べ更に小型化することが可能となる。 実施例5の高周波モジュールの使用方法は基本的に実施 例1の高周波モジュールの使用方法と同様である。

<実施例6>図12に本発明の実施例6の断面図を示す。

実施例6では、半導体素子100を配置された第1の基板 表面に形成された凹部30にSAW素子270を配置し、第1の 基板10は凹部30のSAW素子が配置される面と第1の基板1 0の下面に形成された放熱部40とを接続する第4の貫通 孔50-dを有し、 SAW素子を第2の回路ブロックの配置さ れた第2の基板20により気密封止された構造を有する点 が実施例1と異なる。

【0045】高周波部に使用するSAW素子は、圧電基板 に回転Yカットに切り出したタンタル酸リチウムを用い る。この圧電基板上を伝搬するSAWは、温度上昇に伴 い、0.02dB/℃程度の損失増加が発生してしまう。例え ば損失劣化を0.1dB以下に押さえるには温度上昇を5℃以 内にする必要がある。また40ppm/℃の温度係数を有する ため、SAW素子の温度が上昇すると、周波数特性が低温 側にシフトしてしまう。例えばW-CDMA用分波器の周波数 シフトを0.2MHz以下に押さえるには温度上昇を3℃以内 に押さえる必要がある。

【0046】実施例6によれば、SAWから放出される熱 を第4の貫通孔50-dを介し第1の基板10の下面に形成さ れた放熱部40に伝達されるため、SAWに対する放熱性を 損なわずに電力増幅器と一体化することが可能となる。 【0047】以下、図面を用いて本発明の高周波モジュ ールの製造方法の一実施例を詳細に説明する。

【0048】図13に本発明の実施例1の高周波モジュー ルの製造方法の簡略な流れ図を示す。図13に示した製造 方法は、第2の基板20上面に受動素子110を半田などの 導電性接続ペーストにより実装し、第2の基板20の上面 を封止樹脂130により封止し第2の回路ブロックを形成 し、第1の基板10に形成された凹部30の底面に形成され た第1の接地金属面70-aに半導体素子100を半田ペース トあるいは銀ペーストなどの導電性接続ペーストにより フェイスアップで実装し、ボンディングワイヤ120によ り半導体素子100の上面に形成された電極端子と第1の 基板10に形成された伝送線路とを接続し、第1の回路ブ ロックを形成し、第1の回路ブロックと第2の回路ブロ ックとを上下に接続し、第1の基板10の上面に形成され た第1の接続点60-aと第2の基板の下面に形成された第 2の接続点60-bとを半田バンプあるいは銀ペーストなど の導電性接続剤あるいは異方性導電性シートにより電気 40 的に接続することを特徴とする。

【0049】この製造方法によれば、放熱部40および第 1の貫通孔50-aを第1の基板10の製造時に現在一般的に 用いられている方法により同時形成することが可能とな り、金属ベースの上面に誘電体基板を積層する製造方法 と比較して、高周波モジュールの放熱性を容易に図るこ とが可能となる。

【0050】また、第1の回路ブロックと第2の回路ブ ロックとを接続する前に、第1の回路ブロックを構成す る半導体素子の破壊、非破壊あるいは特性評価が可能と 50 なり、第1の回路ブロックを分別することにより破壊あ (9)

るいは特性が製品条件を満たさない第1の回路ブロックに接続させる第2の回路ブロックをなくすことが可能となり、ひいては第1の回路ブロックと第2の回路ブロックとを接続して完成した高周波モジュールの歩留まりを向上させることが可能となる。

【0051】実施例2乃至6の高周波モジュールの製造方法は、以上で説明した実施例1の高周波モジュールの製造方法と基本的に同様である。ただし、実施例6の高周波モジュールの製造方法では、第1の回路ブロックと第2の回路ブロックとを接続する際に第1の基板10に形 10成された凹部30の内部を窒素ガスなどで充填しSAWの有する金属端子の劣化を防止することが望ましい。

【0052】なお、第1の回路ブロックおよび第2の回路ブロックは各々1個片ずつ製造し接続しても構わないが、製造方法の簡便化からは、複数の第1の回路ブロックの個片が平面内に連結された10cm×10cm程度以上の大きさの第1の回路ブロックシートと、第1の回路ブロックシートと同様の個数の第2の回路ブロックの個片が平面内に連結された第1の回路ブロックシートと同形状の第2の回路ブロックシートと、を製造し接続し、接続後20にダイサーあるいはルータあるいは劈開により切断する方が望ましい。

【0053】また、上記製造方法では第2の基板20の上面を封止樹脂により封止する例を挙げたが、構造の説明で述べた通り、封止樹脂の代わりに樹脂ケースあるいは金属ケースにより封止しても構わない。

【0054】更に、上記製造方法では第2の基板20の上面を封止樹脂により封止した後、第1の回路ブロックと第2の回路ブロックとを上下に接続させる例を挙げたが、第1の回路ブロックと第2の回路ブロックとを接続 30した後、第2の基板20の上面を封止樹脂により封止しても構わない。

【0055】図14に本発明の実施例1の高周波モジュー ルの他の製造方法の簡略な流れ図を示す。図14に示した 製造方法は、第1の基板10に形成された凹部30の底面に 形成された第1の接地金属面70-aに半導体累子100を半 田ペーストあるいは銀ペーストなどの導電性接続ペース トによりフェイスアップで実装し、ボンディングワイヤ 120により半導体素子100の上面に形成された電極端子と 第1の基板10に形成された伝送線路とを接続し、第1の 40 回路ブロックを形成し、受動素子が未実装の第2の基板 20を第1の回路ブロックの上に接続すると共に第1の基 板10の上面に形成された第1の接続点60-aと第2の基板 20の下面に形成された第2の接続点60-bとを半田バンプ あるいは銀ペーストなどの導電性接続剤あるいは異方性 導電性シートにより電気的に接続し、第2の基板20上面 に受動索子110を半田などの導電性接続ペーストにより 実装し、第2の基板20の上面を封止樹脂130により封止 することによって、第2の回路ブロックの形成と共に高 周波モジュール全体を形成することを特徴とする。

【0056】本発明の高周波モジュールの製造方法は、第1の回路ブロックを製造し、第2の回路ブロックを完成させる前に第2の基板20を第1の回路ブロックの上に接続し、その後、受動素子110を第2の基板に実装するため、第1の回路ブロックに実装された半導体素子100と第2の回路ブロックに実装される受動素子との電気的整合性の調整が容易になるという効果がある。この場合も、機能毎に回路ブロックを選択して接続可能である点に変わりはないため、様々なアプリケーションに対する高周波モジュールが短期間で製造可能となる効果があることは言うまでもない。

【0057】図13および14に示す本発明の高周波モジュールの製造方法は、いずれも、第1の回路ブロックと第2の回路ブロックとを各々1つ以上のベンダーから購入し接続できることを特徴とする。この製造方法によれば、第1の回路ブロックおよび第2の回路ブロックの製品仕様を容易に変えることが可能となり、開発・製造コストあるいは開発・製造期間の短縮あるいは第1の回路ブロックと第2の回路ブロックを共に常時適正量入手することが可能となり、ひいては高周波モジュール製造販売事業の安定化を図ることが可能となる。

く実施例 7 > 2015に本発明の実施例 7 の高周波携帯通信端末の構成図を示す。実施例 7 において、300はアンテナ、310はデュブレクサ、320はフィルタ、330は電力増幅器、340はミキサ、350はVCO、360はベースバンド部、370はスピーカー、380はマイク、390は本発明の高周波モジュールであり、上記の実施例 $1 \sim 6$ のような様々な形態を取り得る。

【0058】マイク380を介して入力された音声信号はベースバンド部360にて変換され、VCO 350で生成された局部発振信号と送信側ミキサ340-bで合成され、送信側電力増幅器330-bに入力される。送信側電力増幅器330-bで増幅された音声信号は送信側フィルタ320-bを介してデュブレクサ310に入力され、アンテナ300を介して電波として送信される。一方、アンテナ300を介して受信された電波は、信号としてデュブレクサ310に入力され、受信側フィルタ320-aを介して受信側電力増幅器330-aに入力される。受信側電力増幅器330-aから出力された受信信号は、VCO 350で生成された局部発振信号と受信側ミキサ340-aで合成され、ベースバンド部360にて変換されてスピーカー370から音声として出力される。

【0059】ここで、390-aは本発明の高周波モジュールを高周波携帯通信端末の送信側電力増幅器330-bに適用した場合を示す。この場合、高周波モジュール390-aは、実施例 $1\sim5$ のいずれの形態も取り得るが、とりわけ実施例 1、3、および5の形態が好適である。各実施例において、半導体素子100が送信側電力増幅器330-bとなる。

【0060】また、390-bは本発明の高周波モジュール 50 を高周波携帯通信端末の送信側電力増幅器330-bおよび 10

送信側フィルタ320-bに適用した場合を示す。この場合、高周波モジュール390-bは、実施例2および6の形態を取り得る。実施例2の形態を採用した場合は、半導体素子100が送信側電力増幅器330-bに、受動素子110が送信側フィルタ320-bに、それぞれ相当する。実施例6の形態を採用した場合は、半導体素子100が送信側電力増幅器330-bに、SAW素子270が送信側フィルタ320-bに、それぞれ相当する。

【0061】さらに、390-cは本発明の高周波モジュー ルを高周波携帯通信端末の送信側電力増幅器330-b、送 信側フィルタ320-b、受信側電力増幅器330-a、受信側フ ィルタ320-a、およびデュプレクサ310に適用した場合を 示す。この場合、高周波モジュール390-cは、実施例 2 または6と実施例4とを組み合わせた形態を取り得る。 実施例2と実施例4とを組み合わせた形態を採用した場 合は、半導体素子100-bが送信側電力増幅器330-bに、受 動素子110が送信側フィルタ320-bおよび受信側フィルタ 320-aに、半導体素子100-aが受信側電力増幅器330-a に、それぞれ相当し、送信側フィルタ320-bに相当する 受動素子は凹部30-b内に、受信側フィルタ320-aに相当 する受動素子は凹部30-a内に、それぞれ配置される。実 施例6と実施例4とを組み合わせた形態を採用した場合 は、半導体素子100-bが送信側電力増幅器330-bに、SAW 素子270が送信側フィルタ320-bおよび受信側フィルタ32 0-aに、半導体素子100-aが受信側電力増幅器330-aに、 それぞれ相当し、送信側フィルタ320-bに相当するSAW素 子は凹部30-b内に、受信側フィルタ320-aに相当するSAW 素子は凹部30-a内に、それぞれ配置される。

【0062】実施例7によれば、高周波モジュールの小型化および放熱性向上が図られたため、高周波モジュー30ルを搭載した高周波携帯通信端末の小型化および放熱性向上が可能となる。

【0063】以上の説明では主として高周波移動体通信 用端末に用いられる高周波電力増幅器モジュールに適用 した場合について説明したが、それに限定されるもので はなく、アンテナ・フィルタ・増幅器一体型モジュール など高周波モジュール全般に適応することができる。

[0064]

【発明の効果】本発明の高周波モジュールによれば、高周波モジュールの基板面積の小型化が可能となるという効果がある。また、第1の回路累子群から放出される熱を、凹部底面と第1の基板の下面に形成された放熱部とを接続する第1の貫通孔を介して放熱部に伝達することにより、放熱性の向上が可能であるという効果がある。

【図面の簡単な説明】

【図1】実施例1を示す断面図である。

【図2】実施例1を示す斜視図である。

- 【図3】実施例1を示す回路図である。
- 【図4】実施例1の高周波モジュールの使用方法を示す 簡略な流れ図である。
- 【図5】実施例2を示す断面図である。
- 【図6】実施例2を示す回路図である。
- 【図7】実施例3を示す断面図である。
- 【図8】実施例4を示す断面図である。
- 【図9】実施例4を示す回路図である。
- 【図10】実施例5を示す断面図である。
- 【図11】実施例5を示す回路図である。
- 【図12】実施例6を示す回路図である。
- 【図13】実施例1の製造方法を示す流れ図である。
- 【図14】実施例1の他の製造方法を示す流れ図である。
- 【図15】実施例7の高周波携帯通信端末を示す図である。

【符号の説明】

- 10 第1の基板
- 20 第2の基板
- 20 30 封止型凹部
 - 40 放熱部
 - 50 貫通孔
 - 60 接続点
 - 70 接地金属面
 - 80 伝送線路
 - 100 半導体素子
 - 110 受動部品
 - 120 ボンディングワイヤ
 - 130 封止樹脂
- 30 200 トランジスタ
 - 210 第1の回路ブロック
 - 220 第2の回路ブロック
 - 230 電力端子
 - 240 制御電圧端子
 - 250 電源電圧端子
 - 260 基板内蔵受動素子
 - 270 SAW素子
 - 300 アンテナ
 - 310 デュプレクサ
 - 0 320 フィルタ
 - 330 電力増幅器
 - 340 ミキサ
 - 350 VCO
 - 360 ベースバンド部
 - 370 スピーカー
 - 380 マイク
 - 390 高周波モジュール。

【図2】 【図1】 図1 図2 [図3] 【図5】 図3 図 5 [図7] 図 7 【図6】 図6

BEST AVAILABLE COPY

【図11】

図11

220-b
220-b
220-b
220-b
220-b
220-b
220-b
220-b

【図12】

【図13】

BEST AVAILABLE COPY

【図14】

図14

フロントページの続き

(51)Int.Cl.'

識別記号

H 0 5 K 3/46

FΙ

テーマコード(参考)

H 0 5 K 3/46

Q U

HO1L 23/12

N

(72)発明者 関根 健治

東京都国分寺市東恋ケ窪一丁目280番地

株式会社日立製作所中央研究所内

(72)発明者 大西 正己

東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 加賀谷 修

東京都国分寺市東恋ケ窪一丁目280番地

株式会社日立製作所中央研究所内

(72)発明者 礒部 敦

東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 F ターム(参考) 5E344 AA01 AA22 AA26 BB02 BB06 BB08 CC05 CC24 CD04 DD02 DD06 EE02 EE12 5E346 AA22 AA43 CC17 FF01 GG25 HH17 HH22

.

(15)

3