CS2102 Database Systems

Slides adapted from Prof. Chan Chee Yong

LECTURE 01
LIGHT INTRODUCTION

Traditional data processing

File processing technique

- Pseudo-code
 - ullet initialize some book-keeping information I
 - \circ open data file F
 - while (F is not empty)
 - \circ read next record r from F
 - $^{\circ}$ if (r satisfies some condition) then
 - $^{\circ}$ do something with r
 - update *I* if necessary
 - \circ do something with I if necessary
 - close file *F*

Traditional data processing

What is a DBMS?

Software for managing data

Advantages of a DBMS

- Data independence
- Efficient data access
- Data integrity & security
- Data administration
- Concurrent access & crash recovery
- Reduced application development time

Study of DBMS

- Database design
 - How to model the data requirements of applications
 - How to organize data using a DBMS
 - <u>Topics</u>: relational model, ER model, schema refinement
- Database programming
 - How to create, query, and update a database
 - How to specify data constraints
 - How to use SQL in applications
 - Topics: SQL, relational algebra/calculus
- DBMS implementation
 - How to build a DBMS (<u>covered in CS3223</u>)

Describing data in a DBMS

- A DBMS allows users to define and query data in terms of a data model
- A data model is a collection of concepts for describing data
- A schema is a description of the structure of a database using a data model
- A schema instance is the content of the database at a <u>particular</u> <u>time</u>

Data models

Types

Network model

General Electric's IDS (1964)

Hierarchical model

IBM's IMS (1966)

- Relational model
 - Commercial RDBMS
 - IBM DB2, Microsoft SQL Server, Oracle, SAP ASE, etc
 - Open-source RDBMS
 - MariaDB, MySQL, SQLite, etc
- Object-oriented model

Object-relational model

ObjectStore (1988)

PostgreSQL (1986)

etc...

Relational DBMS

(image: Software Engineering Daily)

Relational data model

History

- Introduced by Edgar Codd of IBM Research Lab in 1970
- Data is modeled using relations
 - Relations are simply tables with rows & columns

studentID	name	birthDate	сар
3118	Alice	1999-12-25	3.8
1423	Bob	2000-05-27	4.0
5609	Carol	1999-06-11	4.3

Definitions

Degree/Arity: number of columns

• Cardinality : number of rows

Relational data model

Relation schema

- Each relation has a definition called a relation schema
 - Schema specifies attributes and data constraints
 - Data constrains include domain constraints

```
• Students (studentID: integer, name: string,
birthDate: date, cap: numeric)
```

- Each row in a relation is called a tuple/record
 - It has one component for each attribute of relation
 - Example: (1423, "Bob", 2000-05-07, 4.0)

studentID	name	birthDate	сар
3118	Alice	1999-12-25	3.8
1423	Bob	2000-05-27	4.0
5609	Carol	1999-06-11	4.3