JAO praca domowa

Bartosz Kucypera

2 kwietnia 2023

Zadanie 1.2

Dla danego alfabetu A oraz języka $L \subseteq A^*$ zdefinujmy SquareLen(L) jako

 $\{w \in \{1\}^* | \text{liczba słów długości } | w | \text{w } L \text{ jest kwadratem liczby naturalnej} \}$

Wykaż, że klasa języków regularnych nie jest zamknięta ze względu na operację SquareLen.

Żeby pokazać, że klasa języków regularnych nie jest zamknięta ze względu na operację SquareLen, wystarczy, że znjadziemy język regularny który operacja SquareLen przeprowadzi na język nie-regualrny. Niech $A = \{a, b\}$, oraz niech $L \subseteq A^*$ opisany wyrażeniem regularnym aa^*b^* .

Zauważmy, że dla każdego n > 0 istnieje dokładnie n słów długości n należących do L.

Niech L' = SquareLen(L). Do L' należą słowa złożne z samych jedynek o długościach kwadratów kolejnych liczb naturalnych.

Wystarczy pokazać, że L' nie jest językiem regularnym. Skorzystajmy, więc z Lematu o pompowaniu dla języków regularnych.

Załóżmy, że L' jest językiem regularnym. Istnieje więc takie n_0 , że $\forall w \in L'$, jeśli $|w| \geq n_0$ to istnieje podział w na podsłowa x, y, z takie, że

$$w = xyz$$
$$y \neq \epsilon$$
$$|xy| \le n_0$$
$$\forall k \ge 0, xy^k z \in L$$

Weźmy, więc takie w_1 , że $|w_1| \ge n_0$. Z lematu o pompowaniu wynika, że istnieje takie c > 0 (c = |y|, y z lematu), że $\forall k \in \mathbb{N}$ istnieją słowa długości $|w_1| + k * c$ należące do L'. Niech $x_k = \sqrt{|w_1| + k * c}$ ($x_k \in \mathbb{N}$ dzięki konstrukcji L'). Musi zachodzić

$$(x_k+1)^2 - x_k^2 = 2x_k + 1 \le c$$

Różnica kolejnych długości słów z L' musi być nie większa niż c, bo istnieje w L' słowo długości x_k^2+c (z konstrukcji L' wiemy, że jeśli istnieje w L' słowo długości n^2 to kolejną liczbą naturalną dla której istnieje w L' słowo mające długość równą niej, jest $(n+1)^2$). Czyli $\forall k \in \mathbb{N}, 2x_k+1 \leq c$. Takie c oczywiście nie istnieje, bo $\lim_{k\to\infty} 2x_k+1=\infty$. Wnioskujemy nie wprost, że L' nie jest regularne, czyli klasa języków regularnych nie jest zamknięta względem operacji SquareLen.