Лабораторная работа 3.2.5

Свободные и вынужденные колебания в электрическом контуре

Шилов Артем Б01-306

30 октября 2024 г.

1. Ход работы

1.1. Измерение периодов свободных колебаний

Соберем установку с рисунка 1, выставим R = 0 Ом, L = 100 мГн, C = 0 нФ, однако контур сам по себе обладает некоторым C_0 , благодаря которому в контуре реализуются свободные колебания

Измерим с помощью осцилографа период затухающих колебаний 10T=656 мкс, по периоду колебаний вычисляем значение емкости C_0 , по формуле

$$C_0 = rac{T^2}{4\pi^2 L} = 1{,}09\,\mathrm{н} \Phi$$

Изменяя емкость С проведем измерения 10 периодов

С, нф	1.09	2.09	4.09	6.09	8.09	10.09
T, MKC						
T_{theor} , MKC	65.6	90.8	127.1	155.1	178.7	199.6

1.2. Критическое сопротивление и декремент затухания

Рассчитаем C, при котором собственная частота колебаний $\nu=1/(2\pi\sqrt{LC})=6500\,\Gamma$ ц, $C=6\,\mathrm{H}$ ф. Для выбранных L и C расчитаем критическое сопротивление контура $R_{cr}=8168\,\mathrm{Om}$ по формуле $R_{cr}=2\sqrt{L/C}$

Установим на магазине емкость, близкую к расчитанной увеличивая сопротивление до критической, пронаблюдаем картину затухающих колебаний. При сопротивлении $R=6\,\mathrm{kOm}$ колебательный режим переходит в апериодический.

Измения сопротивление запишем зависимость логарифмического декремента от сопротивления

R,Ом	410	600	800	1000	1200	1600
U_1	588	660	470	610	360	550
U_2	400	370	250	250	150	140
U_3	284	220	140	100	70	40
U_4	192	130	_	40	_	_
θ	0.35	0.54	0.61	0.91	0.82	1.31

1.3. Свободное колебание на фазовой плоскости

Проведем аналогичные измерение, но уже на фазовой плоскости и запишем результату в таблицу.

R,Ом	410	600	800	1000	1200	1600
U_1	21	20	20	19	18	17
U_2	14	12	10	8	6	4
U_3	10	7	5	3	2	1
θ	0.37	0.52	0.69	0.92	1.10	1.42

1.4. Исследование резонансных кривых

Выставим значение емкости C=6 нф и сопротивление R=410 Ом (на этом моменте мы вспомнили, что забыли про C_0 и не учитывали его в течение всей лабораторной работы, поэтому нужно пересчитать частоту, $\nu_{res}=6015\,\Gamma$ ц, критическое сопротивление $R_{cr}=7511\,\mathrm{Om})$

Изменяя частоту генератора вблизи резонансной частоты, находим резонансную частоту $\nu=6010$ Γ ц и ее амплитуду $2U_{res}=16.7\,\mathrm{B}.$

Снимем АЧХ вблизи резонанса

ν , Γ ц	5300	5390	5480	5570	5660	5750	5840
2U, B	7	7.8	8.9	10.2	11.7	13.7	15.2
u, Гц	5930	6020	6110	6200	6290	6380	6470
2U, B	16.4	16.6	16.2	15	13.8	12.6	11
$ u, \Gamma$ ц	6560	6650	6740	6830	6920	7010	7100
2U, B	10.2	9.4	8.5	8.1	7.7	7.1	6.7

1.5. Обработка результатов

1. Из секции 3.1 построим график $T_{exp} = f(T_{theor})$

Из графика видно, что результаты совпали, погрешность < 1% 2. Построим график $1/\theta^2=f[1/R^2]$

Коэффициент наклона $K=1320000\pm70000~{
m Om^2}$

Зная коэффициент наклона, найдем R_{cr} , по формуле $R_{cr}=2\pi\sqrt{K}=7200\pm200\,{\rm Om}$, что близко с теоретическим значением $R_{cr}=7511\,{\rm Om}$

- 3. Расчитаем добротность для максимального и минимального значения θ и теоретическое с теми же параметрами.
 - Вычисление добротности контура по секции 3.2:

$$Q(\theta_{min}) = 8.97 \qquad Q(\theta_{max}) = 2.40$$

• Вычисление добротности контура по секции 3.3:

$$Q(\theta_{min}) = 8.49$$
 $Q(\theta_{max}) = 2.21$

• Вычисление добротности контура теоретически:

$$Q(\theta_{min}) = 9.16 \qquad Q(\theta_{max}) = 2.34$$

4. По секции 3.4 построим АЧХ в масштабе $U/U_{res} = f(\nu/\nu_{res})$

5. Рассчитаем добротность по формуле $Q = \nu_{res}/2\Delta\Omega, \, Q = 7.91$

2. Вывод

В ходе эксперимента было установлено, что с учетом емкости системы экспериментальные значения периодов идеально совпадают с теоретически рассчитанными. Кроме того, удалось зафиксировать

зависимость логарифмического декремента затухания от активного сопротивления цепи, при этом погрешность измерений составила около 5%. Критическое сопротивление, при котором колебания переходят в апериодический режим, было определено тремя методами: теоретически $R_{\rm kp}=7.5~{\rm k}\Omega$, по наклону графика зависимости логарифмического декремента от сопротивления $R_{\rm kp}=7.2\pm0.2~{\rm k}\Omega$, а также наблюдением за изменением характера колебаний $R_{\rm kp}=6~{\rm k}\Omega$. Результаты расчетов добротности сведены в таблицу:

	Свободные колебания			Вынужденные колебания			
R, Om	$f(LCR)$ $f(\nu)$ Спираль		АЧХ	ФЧХ	Нарастание	Затухание	
410	9.16	8.97	8.49	7.91	-	-	-
1600	2.34	2.4	2.21	-	-	-	-

Как видим, все добротности хорошо совпали.