

Electrical and Electronic Circuits

chapter 6. Basic RL and RC Circuits

Afarghadan@aut.ac.ir

Objectives of the Lecture

➤ Determining the Time Response of First-Order Circuits

➤ The Source-Free RL Circuit

➤ The Source-Free RC Circuit

> Driven RL Circuits

> Driven RC Circuits

Objective

- Time Response Analysis of First-Order (RC or RL) Circuits
- Examining and analysing the charging or discharging behaviour of inductors and capacitors over time, and deriving a mathematical expression for this behaviour.

The Source-Free RL Circuit

Applying KVL:

$$Ri + v_L = Ri + L\frac{di}{dt} = 0 \qquad \qquad \frac{di}{dt} + \frac{R}{L}i = 0$$

• We can solve for the *natural response* if we know the *initial condition* $i(0)=I_{0}$:

$$i(t) = I_0 e^{\frac{-Rt}{L}} \text{ for } t > 0$$

Natural response of the first order equation

> First solution:

$$\frac{di}{dt} + \frac{R}{L}i = 0 \to \frac{di}{i} = -\frac{R}{L}dt$$

$$\int_{I_0}^{i(t)} \frac{di'}{i'} = \int_0^t -\frac{R}{L} dt'$$

$$\ln i - \ln I_0 = -\frac{R}{L}(t - 0)$$

$$\ln i = -\frac{Rt}{L} + k \rightarrow i = Ae^{-\frac{Rt}{L}}$$

$$i(0) = I_0 \rightarrow i(t) = I_0 e^{\frac{-Rt}{L}}$$

Natural response of the first order equation

- > The second solution: forming the characteristic equation
- Many of the differential equations encountered in circuit analysis have a solution which may be represented by the exponential function or by the sum of several exponential functions.

$$s + \frac{R}{L} = 0 \rightarrow s = -\frac{R}{L}$$

$$i = Ae^{st} \rightarrow i = Ae^{-\frac{Rt}{L}}$$

$$i(0) = I_0 \rightarrow i(t) = I_0 e^{-\frac{Rt}{L}}$$

Example: RL with a Switch

Show that the voltage v(t) will be -12.99 volts at t=200 ms.

The Exponential Response

- ✓ The ratio L/R has the units of seconds, since the exponent -Rt/L must be dimensionless.
- \checkmark The time constant $\tau = L/R$ determines the rate of decay.
- ✓ The larger the value, the slower the function is damped.

$$i(t) = I_0 e^{-t/\tau}$$

$$\frac{i(\tau)}{I_0} = e^{-1} = 0.3679$$
 or $i(\tau) = 0.3679I_0$

The Source-Free RC Circuit

Applying KCL:

$$C\frac{dv}{dt} + \frac{v}{R} = 0$$

$$\frac{dv}{dt} + \frac{1}{RC}v = 0$$

We can solve for the *natural response* if we know the *initial condition* $v(0) = V_0$

$$v(t) = v_0 e^{\frac{-t}{RC}} \text{ for } t > 0$$

RC Natural Response

- The time constant is $\tau = RC$
- The time at which the response has dropped to 37 percent of its initial value

The Source Free RC Circuit

Show that the voltage v(t) is 321 mV at t=200 μ s.

General RL Circuits

The time constant of a single-inductor circuit will be τ =L/Req where Req is the resistance seen by the inductor.

Example:
$$R_{eq} = R_3 + R_4 + \frac{R_1 R_2}{(R_1 + R_2)}$$

General RC Circuits

The time constant of a single-capacitor circuit will be τ =ReqC where Req is the resistance seen by the capacitor.

Example:
$$R_{eq} = R_3 + R_4 + \frac{R_1 R_2}{(R_1 + R_2)}$$

1st Order Response Observations

✓ The voltage on a capacitor or the current through a inductor is the same *prior to* and *after* a switch at t=0.

$$v_C(0^+) = v_C(0^-), \quad i_L(0^+) = i_L(0^-)$$

- ✓ Resistor voltage (or current) prior to the switch $v(0^-)$ can be different from the voltage after the switch $v(0^+)$.
- ✓ All voltages and currents in an RC or RL circuit follow the same natural response $e^{-t/\tau}$.

Example: L and R Current

Find $i_1(t)$ and $i_L(t)$ for t>0.

The Unit Step Function

The unit-step function u(t) is a convenient notation to represent change at t=0:

Switches and Steps

• The unit step models a double-throw switch.

• A single-throw switch is open circuit for t<0, not short circuit.

Modeling Pulses using u(t)

Rectangular pulse

Pulsed sinewave:

• The two circuits shown both have i(t)=0 for t<0 and are also the same for t>0.

• We now have to find both the *natural response* and the *forced* response due to the source $V_{\it 0}$

$$Ri + L\frac{di}{dt} = V_0 u(t)$$

$$Ri + L\frac{di}{dt} = V_0 u(t) \qquad \qquad i(0^+) = 0$$

1. Natural response:

$$Ls + R = 0 \rightarrow s = -\frac{R}{L}$$
 $i_n = Ae^{st} = Ae^{-\frac{Rt}{L}}$

2. Forced response (of the same nature as the source)

$$i_f = K \xrightarrow{Ri + L \frac{di}{dt} = V_0} i_f = \frac{V_0}{R}$$

3. The complete response = natural response + forced response

$$i(t) = Ae^{-\frac{Rt}{L}} + \frac{V_0}{R} \xrightarrow{\text{delight included}} i(t) = \frac{V_0}{R} \left(1 - e^{-\frac{Rt}{L}}\right) u(t)$$

In this circuit, the inductor current is charged exponentially to the final value $\frac{V_0}{R}$.

$$i(t) = \frac{V_0}{R} \left(1 - e^{-\frac{Rt}{L}}\right) u(t)$$

The total response is the combination of the transient/natural response and the forced response:

$$i(t) = \frac{V_0}{R} \left(1 - e^{-\frac{Rt}{L}}\right) u(t)$$

Driven RL Circuits and Initial condition

What if the circuit has both a source and an initial condition

- •Solve the differential equation with the given initial condition:
 - Complete response = Natural response + Forced response
- •Use the principle of superposition:
 - Complete response = Response of the circuit with the source (without the initial condition) + Response of the circuit without the source (with the initial condition)

Driven RL Circuits and Initial condition

Find i(t) if $i(0^{-}) = I_0$:

Superposition:

•Response without the source:

$$i_{sf} = I_0 e^{-Rt/L}$$

•Response with the source:

$$i_d = \frac{V_0}{R} (1 - e^{-Rt/L})$$

•Complete response:

$$i(t) = I_0 e^{-Rt/L} + \frac{V_0}{R} (1 - e^{-Rt/L})$$

Driven RL Circuits and Initial condition

Find i(t) if $i(0^{-}) = I_0$:

$$i' + \frac{R}{L}i = \frac{V_0}{L}, \qquad i(0^+) = I_0$$

$$i_n = Ke^{-Rt/L}$$

$$i_f = \frac{V_0}{R}$$

$$i(t) = Ke^{-Rt/L} + \frac{V_0}{R}$$

$$i(0) = I_0 \to K = I_0 - \frac{V_0}{R}, \qquad i(t) = \frac{V_0}{R} + (I_0 - \frac{V_0}{R})e^{-Rt/L}$$

$$V_{R}$$
 $V_{0}u(t)$
 L_{3}

Example: RL Circuit with Step

Show that $i(t)=25+25(1-e^{-t/2})u(t)$ A

Example: Voltage Pulse

Assuming the given input voltage, find the current i(t).

Response of RL or RC circuit to a pulse train input

Depending on the values of pulse width (τ) , pulse period (T), and the circuit time constant (RC), four different cases arise:

Driven RC Circuits (part 1 of 2)

$$v_C = 20 + 80e^{-t/1.2} V$$

$$i=0.1 + 0.4e^{-t/1.2}$$
 A

Shortcut solution for finding the step response of RL and RC circuits

✓ We have previously calculated the current response for an RL circuit as follows:

$$i(t) = \frac{V_0}{R} + (I_0 - \frac{V_0}{R})e^{-Rt/L}$$

✓ From the following relation, it can generally be shown that the step response of an RC or RL circuit is also obtainable:

$$x(t) = x(\infty) + [x(0^+) - x(\infty)]e^{-t/\tau}$$

Response of First-Order Circuits to AC Sources

• What if there are no DC sources?

- The natural response, which is independent of the source, will have the same form (Ke^{st}) .
- The forced response has the same form as the source but with a different coefficient.

منبع	پاسخ اجباری
K	K'
$K_{1}t + K_{2}$	K't + k''
$Ke^{bt} (b! = s)$	$K'e^{bt}$
$Ke^{bt}(b == s)$	$K'te^{bt}$
Kcos(wt + p)	$K'\cos(wt + p')$

The roots of the characteristic equation of the circuit are s.

Complete response

Another method for solving the following first-order differential equation:

$$x'(t) + ax(t) = Q(t)$$

We multiply both sides of the equation by e^{at} :

$$e^{at}x'(t) + ae^{at}x(t) = e^{at}Q(t)$$
$$\rightarrow (e^{at}x(t))' = e^{at}Q(t)$$

$$\rightarrow x(t) = e^{-at} \int e^{at} Q(t) + c e^{-at}$$

$$forced response$$

$$\uparrow forced response$$

Find $v_{x}(t)$.

Find v(t).

Soloution:

$$v(t) = 12(e^{-t} - e^{-2t})u(t)$$

What if the source value was equal to $12e^{-t}u(t)$?

$$v(t) = 12te^{-t}u(t)$$

Find $i_1(t)$ and $i_2(t)$.

Hint:
$$V_{L_1} = V_{L_2} \rightarrow L_1 i_1' = L_2 i_2' \rightarrow L_1 i_1 = L_2 i_2 + K$$

$$L_1 = 6H, i_1(0) = 2A$$

$$L_2 = 3H, i_2(0) = 1A$$

$$R = 6\Omega$$

Find $v_c(t)$. Suppose keys A and B are initially closed and key A is opened in second 2 and key B is opened in second 1.

Find v(t) if $v_s = u(t)$:

$$\left(1-\frac{5}{9}e^{-\frac{20t}{9}}\right)u(t)$$

And if $v_s = \cos t \ u(t)$

Thanks