

The course topics

What will you learn in this course?

Machine Week 3: Wor Assignment Project Exam Help Learning

https://tutorcs.com

Week 7: Dependency Parsing Chat: cstutorcs

Week 8: Language Model and Natural Language Generation

NLP **Techniques**

NLP and

Week 9: Information Extraction: Named Entity Recognition

Week 10: Advanced NLP: Attention and Reading Comprehension

Week 11: Advanced NLP: Transformer and Machine Translation

Week 12: Advanced NLP: Pretrained Model in NLP

Advanced **Topic**

Week 13: Future of NLP and Exam Review

Lecture 7: Parsing

- 1. Linguistic Structure
- 2. Dependency Structure
- 3. Dependenting and Broject Exam Help
- 4. Transition-based Dependency Parsing
- 5. Deep Learn https://dtptpercercyparsing

WeChat: cstutorcs

Computer Language

Assignment Project Exam Help

Tokenisation

A token can be a variable or function name, an operator or a number.

Parsing Computer Language

Assignment Project Exam Help

The parser turns a list of tokens into a tree of nodes – logical order

Parsing Natural Language (Human Language)

Q: Can we apply this in a human (natural) language?

A: Possible! But it is much more difficult than parsing computer language!
Assignment Project Exam Help

https://tutorcs.com
No types for words Why?

- No brackets around phrases Cstutorcs Ambiguity!

Natural Language: Linguistic Structure

Let's try to categorise the given words (Part of Speech Tags)

However, Language is **more than just a "bag of words".** Grammatical rules apply to combine:

- words into phrases
- phrases into bigger phrases

Natural Language: Linguistic Structure

Let's try to categorise the given words (Part of Speech Tags)

However, Language is **more than just a "bag of words".** Grammatical rules apply to combine:

- words into phrases
- phrases into bigger phrases

Example: a sentence includes **a subject** and **a predicate**. The **subject** is noun phrase and the **predicate** is a verb phrases.

Natural Language: Linguistic Structure

Phrase Structure Grammar = Context-free Grammar (CFG)

However, Language is **more than just a "bag of words".** Grammatical rules apply to combine:

- words into phrases
- phrases into bigger phrases

Example: a sentence includes **a subject** and **a predicate**. The **subject** is noun phrase and the **predicate** is a verb phrases.

Natural Language: Linguistic Structure

Phrase Structure Grammar = Context-free Grammar (CFG)

However, Language is **more than just a "bag of words".** Grammatical rules apply to combine:

- words into phrases
- phrases into bigger phrases

Parsing

 Associating tree structures to a sentence, given a grammar (Context Free Grammar or <u>Dependency Grammar</u>)
 will talk about this soon!

Parsing Natural Language (Human Language)

Q: Can we apply this in a human (natural) language?

A: Possible! But it is much more difficult than parsing computer language!

Assignment Project Exam Help

https://tutorcs.com
No types for words Why?

- No brackets around phrases Cstutorcs
- Ambiguity!

Syntactic Ambiguities

Grammars are declarative

They don't specify how the parse tree will be constructed Assignment Project Exam Help

Ambiguity

- 1. Prepositional Phrases PP/hattashment ambiguity
- 2. Coordination Scope
- 3. Gaps
- 4. Particles or Prepositions Cstutorcs
- 5. Gerund or adjective

There are many more ambiguities...

Syntactic Ambiguities – PP attachment Ambiguity

I saw the man with the telescope Assignment Project Exam Help

Syntactic Ambiguities – PP attachment Ambiguity Multiply

- A key parsing decision is how we 'attach' various constituents
 - PPs, adverbial or participial phrases, infinitives, coordinations Assignment Project Exam Help

Syntactic Ambiguities – Coordination Scope Ambiguity

I ate red apples and bananas Assignment Project Exam Help

https://tutorcs.com

Syntactic Ambiguities - Gaps

She never saw a dog and did not smile Assignment Project Exam Help

Syntactic Ambiguities – Particles or Prepositions

Some verbs are followed by adverb particles.

(e.g. put on, take off, give away, bring up, call in)
Assignment Project Exam Help
She ran up a large bill

https://tutorcs.com

She ran up a large hill
WeChat: cstutorcs

Difference between an adverb particle and a preposition.

- the **particle** is closely tied to its verb to form idiomatic expressions
- the **preposition** is closely tied to the noun or pronoun it modifies.

Syntactic Ambiguities – Gerund or Adjective

Dancing shoes gap provide nice

https://tutorcs.com

Gerund Adjective

When and Where do we use Parsing?

Syntactic Analysis checks whether the generated tokens form a meaningful expression Assignment Project Exam Help

- Humans communicate complex ideas by composing words together into bigger unitatops we tration the special participation.
- We need to understand sentence structure in order to be able to interpret language confectly: cstutorcs
- Grammar Checking
- Question Answering
- Machine Translation
- Information Extraction
- Text Classification
- Chatbot

... and many others

Two main views of linguistic structure

Constituency Grammar (a.k.a context-free grammar, phrase structure grammar)

- Noam Chomsky (1928)
- Immedia Assignamental Psroject Exam Help
- Insists on classification and distribution

https://tutorcs.com

• Lucien Tesniere (1893 – 1954) CStutorcs

- Functional dependency relations
- Emphasises the relations between syntactic units, thus adding meaningful links (semantics)

Two main views of linguistic structure

Constituency grammars

One-to-one-or-more correspondence. For every word in a sentence, there is at least one node in the syntactic structure that corresponds to that word.

Dependency grammars

one-to-one relation; for every word in the sentence, there is exactly one node in the syntactic structure that corresponds to that word

Two main views of linguistic structure

Constituency grammars

One-to-one-or-more correspondence. For every word in a sentence, there is at least one node in the syntactic structure that corresponds to that word.

Dependency grammars

one-to-one relation; for every word in the sentence, there is exactly one node in the syntactic structure that corresponds to that word

Constituency Grammar

- A basic observation about syntactic structure is that groups of words can act as single units
- · Such groups signiment control of stitle x tam Help
- Constituents tend to have **similar internal structure**, and behave similarity with **tempost to pother weits.com**

Examples

- noun phrases (NP) WeChat: cstutorcs
 - she, the house, Robin Hood and his merry men, etc.
- verb phrases (VP)
 - blushed, loves Mary, was told to sit down and be quiet, lived happily ever after
- prepositional phrases (PP)
 - on it, with the telescope, through the foggy dew, etc.

A sample context-free grammar

Assignment Project Exam Help

I prefer talmorning flight

WeChat: cstutorcs

- 1. Starting unit: words are given a category (part-of-speech)
- 2. Combining words into phrases with categories
- 3. Combining phrases into bigger phrases recursively

A sample context-free grammar

- Starting unit: words are given a category (part-of-speech)
- 2. Combining words into phrases with categories

Assignment Project Exam Help

I, prefer/tatomorning, flight

PRP VBP DT NN WeChat: cstutorcs

NN

A sample context-free grammar

I, prefer, a, morning, flight

Passig Minen P Project Exam Help

	<u> </u>
Grammar rule	Example
S → NPVP https://tutorcswGromorning flight	
$NP \rightarrow Pronoun$	I
NP → Proper-Ne Chat: cstartercs	
$NP \rightarrow Det Nominal$	a flight
Nominal → Nominal Noun	morning flight
$Nominal \rightarrow Noun$	flights
$VP \rightarrow Verb$	do
$VP \rightarrow Verb NP$	want + a flight
$VP \rightarrow Verb NPPP$	leave + Melbourne + in the morning
$VP \rightarrow VerbPP$	leaving + onThursday
PP → Preposition NP	from + Sydney

A sample context-free grammar

- 1. Starting unit: words are given a category (part-of-speech)
- 2. Combining words into phrases with categories

Assignment Pint biogerphases racursive Help

I, prefer/tutor,cmorning, flight

A sample context-free grammar

A sample context-free grammar

Treebanks

Corpora where each sentence is annotated with a parse tree

- Treebanks are generally created by
 - · parangsignment elimitests Exam Help
 - having human annotators correct the result
- This requires detailed an hoteltion cylidelines for annotating different grammatical constructions
- Penn Treebank is a popular treebank for English (Wall Street Journal section)

Two main views of linguistic structure

Constituency grammars

One-to-one-or-more correspondence. For every word in a sentence, there is at least one node in the syntactic structure that corresponds to that word.

Dependency grammars

one-to-one relation; for every word in the sentence, there is exactly one node in the syntactic structure that corresponds to that word

Lecture 7: Parsing

- 1. Linguistic Structure
- 2. Dependency Structure
- 3. Dependentigrangen Exam Help
- 4. Transition-based Dependency Parsing
- 5. Deep Learn https://depticercymarsing

WeChat: cstutorcs

Dependency Structure

Syntactic structure: lexical items linked by binary asymmetrical relations

("arrows") called **dependencies**

Assignment Project Exam Help

Red – modifier, dependent, child, subordinate

Hat - head, governor, parent, regent

Compound — **dependency relations** (e.g. subject, prepositional object, etc)

^{*}Head determines the syntactic/semantic category of the construct

^{*}The arrows are commonly typed with the name of grammatical relations

Dependency Parsing

Represents Lexical/syntactic dependencies between words

A sentence is parsed by choosing for each word what other word (inchaisignomentalepiecettexam Help

Dependencies for me tree (connected acyclic, single-head)

How to make the dependencies a tree - Constraints

Only one word is a dependent of ROOT (the main predicate of a sentence)
 Don't want cycles A > B, B > A Orcs

Dependency Grammar/Parsing History

Panini's grammar (4th century BCE)

The notion of dependencies between grammatical units

Assignment Project Exam Help Ibn Maḍā' (12th century)

The first grammarian to use the term dependency in the grammatical sense https://tutorcs.com

Sámuel Brassai, Franz Kern, Heimann Hariton Tiktin (1800 - 1930)

The dependency seems to have coexisted side by side with that of phrase structure

Lucien Tesnière (1959)

Was dominant approach in "East" in 20th Century (Russia, China, ...) Good for free-er word order languages

David Hays (1962)

The great development surrounding dependency-based theories has come from computational linguistics

Dependency Grammar/Parsing

Some people draw the arrows one way; some the other way!

• Tesnière had them point from read to dependent...

Usually add a fake ROOT so every word is a dependent of precisely 1 other node

Projectivity vs Non-Projectivity

- There are no crossing dependency arcs when the words are laid out in their linear order, with all arcs above the words
- Dependencies parallel to a CFG tree must be projective
 - Forming dependencies by taking 1 child of each category as head
- But dependency theory normally does allow non-projective structures to account for displaced constituents

Dependency Grammar/Parsing

Figure 1: A projective dependency graph.

Figure 2: Non-projective dependency graph.

Projectivity vs Non-Projectivity

- There are no crossing dependency arcs when the words are laid out in their linear order, with all arcs above the words
- Dependencies parallel to a CFG tree must be projective
 - Forming dependencies by taking 1 child of each category as head
- But dependency theory normally does allow non-projective structures to account for displaced constituents

Dependency Relations

The following list shows the 37 universal syntactic relations used in Universal Dependencies v2.

Assignment Project Exam Help

• acl: clausal modifier of noun (adjectival clause)

• fixed: fixed multiword expr

- advcl: adverbial clause modifier
- advmod: adverbial modifier S://tutorcs.com.indirect object
- appos: appositional modifier
- aux: auxiliary
- case: case markin WeChat: cstutores nominal modifier
- cc: coordinating conjunction
- ccomp: clausal complement
- clf: classifier
- compound: compound
- conj: conjunct
- cop: copula
- csubj: clausal subject
- dep: unspecified dependency
- det: determiner
- discourse: discourse element
- dislocated: dislocated elements
- expl: expletive

- list: list
- mark: marker
- nsubj: nominal subject
- nummod: numeric modifier

flat: flat multiword expression

- obj: object
- ob1: oblique nominal
- orphan: orphan
- parataxis: parataxis
- punct: punctuation
- reparandum: overridden disfluency
- root:root
- vocative: vocative
- xcomp: open clausal complement

Dependency Relations with annotations

- The idea of dependency structure goes back a long way
- [Universal Dependencies: http://universaldependencies.org/;
 cf. March 884 21993 211 Person 12 Person
- Starting off, bullding treepark seems of slower and less useful than building a grammar
- But a treebank gives us many things
 - Reusability of the labor
 - Many parsers, part-of-speech taggers, etc. can be built on it
 - Valuable resource for linguistics
 - Broad coverage, not just a few intuitions
 - Frequencies and distributional information
 - A way to evaluate systems

Dependency Parsing

Exercise – Let's do it together!

- Simpler to parse than context-free grammars
Assignment Project Exam Help

ROOT I prefer a morning flight

ROOT Unionised workers are usually better paid than their non-union counterparts

Lecture 7: Parsing

- 1. Linguistic Structure
- 2. Dependency Structure
- 3. Dependent supported Exam Help
- 4. Transition-based Dependency Parsing
- 5. Deep Learn https://dtptpercercymarsing

WeChat: cstutorcs

Methods of Dependency Parsing

- Dynamic programming
 Extension of the CYK algorithm to dependency parsing (Eisner, 1996)

 Assignment Project Exam Help
- Graph-based Dependency Parsing
 Create a Minimum Spanning Tree for a sentence
 McDonald et al.'s (2005) MSTParser scores dependencies independently using an Machine Learning classifier
- Transition-based Dependency Parsing (Nivre 2008)
- Neural Dependency Parsing

Graph-based dependency parsers

MST Parser (McDonald et al., 2005)

- Projectivitsignment Project Exam Help
 - English dependency trees are mostly projective (can be drawn without crossing dependencies)
 - Other languages are not

WeChat: cstutorcs

- Idea
 - Dependency parsing is equivalent to search for a maximum spanning tree in a directed graph
 - Chu and Liu (1965) and Edmonds (1967) give an efficient algorithm for finding MST for directed graphs

Graph-based dependency parsers

Compute a score for every possible dependency for each edge

Assignment Project Exam Help

e.g., picking the head for "big"

Graph-based dependency parsers

- Compute a score for every possible dependency for each edge
 - Then add an edge from each word to its highest-scoring candidate head
 - · And Accepted the sound process of the Exage Harly

e.g., picking the head for "big"

Graph-based dependency parsers

Consider the sentence "Lisa saw Bart"

Assignment Project Exam Help

https://tutorcs.com

Methods of Dependency Parsing

Assignment Project Exam Help Graph-based

Dependency Parsing //tutorcs.com

Transition-based

greedy algorithm

Dependency Parsing

- Non-deterministic dependency parsing Build a complete graph with the Build a tree by applying a sequence of
- directed/weighted edges
- Find the highest scoring tree from a complete dependency graph

- - transition actions
- Find the highest scoring action sequence that builds a legal tree

Lecture 7: Parsing

- 1. Linguistic Structure
- 2. Dependency Structure
- 3. Dependentigemental Exam Help
- 4. Transition-based Dependency Parsing
- 5. Deep Learn https://dutoercomarsing

WeChat: cstutorcs

Greedy transition-based parsing (Nivre 2008)

- A simple form of greedy discriminative dependency parser
- Transition: Spignation that respect for a dependent relation between each pair of words (e.g. Left-Arc, Shift, etc.)
- Design a dumbert but really fast algorithmand let the machine learning (deep learning) do the rest.
- Eisner's algorithm (Dynamic Programming-based Dependency Parsing) searches over many different dependency trees at the same time.
- A transition-based dependency parser only builds one tree, in one left-toright sweep over the input

Transition-based parsing – The arc-standard algorithm

- A sequence of bottom up actions
 - Roughly like "shift" or "reduce" in a shift-reduce parser, but the "reduce" is a shift-reduce parser, but the on left or right

• It is implemented in most practical transition- based dependency parsers, including **MaltParser**. The arc-standard algorithm is a simple algorithm for transition-based dependency parsing.

Transition-based parsing

Transition-based parsing – The arc-standard algorithm

Stack Buffer

Assignment Project Exam Help

Dependency Graph https://tutorcs.com

WeChat: cstutorcs

Transition-based parsing – The arc-standard algorithm

ROOT Assignment Project Example Flight

Dependency Graph https://tutorcs.com

WeChat: cstutorcs

- Initial configuration:
 - All words are in the buffer.
 - The stack is empty or starts with the ROOT symbol
 - The dependency graph is empty.

flight

Transition-based parsing – The arc-standard algorithm

Stack Buffer

ROOT

Assignment Project Exam Helporning

Dependency Graph https://tutorcs.com

WeChat: cstutorcs

Possible Transition

Shift

 Push the next word in buffer onto the stack

Left-Arc

- Add an arc from the topmost word to the 2nd-topmost word on the stack
- Remove 2nd word from stack

- Add an arc from the 2nd-topmost word to the topmost word on the stack
- Remove the topmost word from stack

Transition-based parsing – The arc-standard algorithm

ROOT cannot have incoming arc

Buffer

ROOT Assignment Project Example flight

Dependency Graph https://tutorcs.com

WeChat: cstutorcs

Left Arc and Right Arc require 2 elements in stack to be applied

Possible Transition

Shift

 Push the next word in buffer onto the stack

Left-Arc

- Add an arc from the topmost word to the 2nd-topmost word on the stack
- Remove 2nd word from stack

- Add an arc from the 2nd-topmost word to the topmost word on the stack
- Remove the topmost word from stack

Transition-based parsing – The arc-standard algorithm

Stack Buffer

ROOT

Assignment Project Exam

Dependency Graph https://tutorcs.com

WeChat: cstutorcs

Possible Transition

Shift

 Push the next word in buffer onto the stack

Left-Arc

- Add an arc from the topmost word to the 2nd-topmost word on the stack
- Remove 2nd word from stack

Right-Arc

flight

- Add an arc **from the 2nd-topmost word to the topmost word** on the stack
- Remove the topmost word from stack

Transition-based parsing – The arc-standard algorithm

ROOT ROOT Project Exam He Prorning flight

Dependency Graph https://tutorcs.com

WeChat: cstutorcs

Possible Transition

Shift

 Push the next word in buffer onto the stack

Left-Arc

- Add an arc from the topmost word to the 2nd-topmost word on the stack
- Remove 2nd word from stack

- Add an arc from the 2nd-topmost word to the topmost word on the stack
- Remove the topmost word from stack

Transition-based parsing – The arc-standard algorithm

ROOT Project Exam Helporning flight

Dependency Graph https://tutorcs.com

WeChat: cstutorcs

Possible Transition

Shift

 Push the next word in buffer onto the stack

Left-Arc

- Add an arc from the topmost word to the 2nd-topmost word on the stack
- Remove 2nd word from stack

- Add an arc from the 2nd-topmost word to the topmost word on the stack
- Remove the topmost word from stack

Transition-based parsing – The arc-standard algorithm

Possible Transition

Shift

 Push the next word in buffer onto the stack

Left-Arc

- Add an arc from the topmost word to the 2nd-topmost word on the stack
- Remove 2nd word from stack

- Add an arc from the 2nd-topmost word to the topmost word on the stack
- Remove the topmost word from stack

Transition-based parsing – The arc-standard algorithm

Possible Transition

 Push the next word in buffer onto the stack

Left-Arc

- Add an arc from the topmost word to the 2nd-topmost word on the stack
- Remove 2nd word from stack

- Add an arc from the 2nd-topmost word to the topmost word on the stack
- Remove the topmost word from stack

Transition-based parsing – The arc-standard algorithm

Possible Transition

 Push the next word in buffer onto the stack

Left-Arc

- Add an arc from the topmost word to the 2nd-topmost word on the stack
- Remove 2nd word from stack

- Add an arc **from the 2nd-topmost word to the topmost word** on the stack
- Remove the topmost word from stack

Transition-based parsing – The arc-standard algorithm

Possible Transition

Shift

Push the next word in buffer onto the stack

Left-Arc

- Add an arc from the topmost word to the 2nd-topmost word on the stack
- Remove 2nd word from stack

- Add an arc from the 2nd-topmost word to the topmost word on the stack
- Remove the topmost word from stack

Transition-based parsing – The arc-standard algorithm

Possible Transition

Shift

 Push the next word in buffer onto the stack

Left-Arc

- Add an arc from the topmost word to the 2nd-topmost word on the stack
- Remove 2nd word from stack

- Add an arc from the 2nd-topmost word to the topmost word on the stack
- Remove the topmost word from stack

Transition-based parsing – The arc-standard algorithm

Possible Transition

Shift

 Push the next word in buffer onto the stack

Left-Arc

- Add an arc from the topmost word to the 2nd-topmost word on the stack
- Remove 2nd word from stack

- Add an arc from the 2nd-topmost word to the topmost word on the stack
- Remove the topmost word from stack

Transition-based parsing – The arc-standard algorithm

Possible Transition

Shift

 Push the next word in buffer onto the stack

Left-Arc

- Add an arc from the topmost word to the 2nd-topmost word on the stack
- Remove 2nd word from stack

- Add an arc from the 2nd-topmost word to the topmost word on the stack
- Remove the topmost word from stack

Transition-based parsing – The arc-standard algorithm

Possible Transition

Shift

 Push the next word in buffer onto the stack

Left-Arc

- Add an arc from the topmost word to the 2nd-topmost word on the stack
- Remove 2nd word from stack

- Add an arc from the 2nd-topmost word to the topmost word on the stack
- Remove the topmost word from stack

Transition-based parsing – The arc-standard algorithm

- Terminal configuration:
 - The buffer is empty.
 - The stack contains a single word.

Transition-based parsing

(a) Arc-standard: *is* and *example* are eligible for arcs. https://tutorcs.com

(b) Arc-eager: example and with are eligible for arcs.

(c) Easy-first: All unreduced tokens are active (bolded).

Transition-based parsing – The arc-standard algorithm

Start: $\sigma = [ROOT], \beta = w_1, ..., w_n, A = \emptyset$

- 1. Shift Assignment Project Exam Help
- 2. Left-Arc_r $\sigma|w_i|w_j$, β , $A \rightarrow \sigma|w_j$, β , $A \cup \{r(w_j,w_i)\}$ https://tutorcs.com
- 3. Right-Arc_r $\sigma[w_i]w_i$, β , $A \rightarrow \sigma[w_i$, β , $A \cup \{r(w_i, w_i)\}$

WeChat: cstutorcs

Finish: $\sigma = [w]$, $\beta = \emptyset$

How to choose the next action?

Transition-based parsing

How to choose the next action?

Stand back, You know machine learning!

Goal: Predict the next transition (class), given the current configuration.

Assignment Project Exam Help

- We let the parser run on gold-standard trees.
- Every time the lette shoute the right thing'.
- We collect all (tonfiguration, transition) pairs and train a classifier on them.
- When parsing unseen sentences, we use the trained classifier as a guide.

What if the number of pairs is far too large?

Feature Representation

 Define a set of features of configurations that you consider to be relevant for the task of predicting the next transition.

Example: word to be the stackength by o words in the buffer

Describe every configuration in terms of a feature vector.

- In practical systems, we have thousands of features and hundreds of transitions.
- There are several machine-learning paradigms that can be used to train a guide for such a task
- Examples: perceptron, decision trees, support-vector machines, memory-based learning

Transition-based Parsing

Evaluation of Dependency Parsing

correct deps Accuracy Project Exam Help

https://tutorcs.com
Unlabeled attachment score (UAS) = head

Labeled attachment & Gre (LAS) & Stedd Gha Tabel

Transition-based Parsing

Evaluation of Dependency Parsing

Gold Standarde Chat: cstu Parsed (assume this is what you classified)

1	2	she	nsubj
2	0	saw	root
3	5	the	det
4	5	video	nn
5	2	lecture	obj

	-		
1	2	she	nsubj
2	0	saw	root
3	4	the	det
4	5	video	nsubj
5	2	lecture	ccomp

Transition-based Parsing

Evaluation of Dependency Parsing

Gold Standarde Chat: cstuParsed (assume this is what you classified)

1	2	she	nsubj
2	0	saw	root
3	5	the	det
4	5	video	nn
5	2	lecture	obj

1	2	she	nsubj
2	0	saw	root
3	4	the	det
4	5	video	nsubj
5	2	lecture	ccomp

Unlabeled attachment score (UAS) = 4 / 5= 80%

Labeled attachment score (LAS) = 2 / 5= 40%

Lecture 7: Parsing

- 1. Linguistic Structure
- 2. Dependency Structure
- 3. Dependent grangest Exam Help
- 4. Transition-based Dependency Parsing
- 5. Deep Learning Dased Dependency Parsing

WeChat: cstutorcs

Distributed Representations

- Represent each word as a d-dimensional dense vector (i.e., word embedding)
 - Similar words are expected to have close vectors.
 - NNAppignamento Paroj coste Examping Le Proun).
- Meanwhile, parties seed the test (POS) and dependency labels are also represented as d-dimensional vectors.
- The smaller discrete sets also exhibit many semantical similarities Wechat: CSTULOTCS

Neural Dependency Parsing (Chen & Manning, 2014)

Neural Dependency Parsing

on PTB + Stanson adependence to Project Exam Help

	•				J							
Parser	Dev Test		Speed	Parser		De	ev	Te	st	Speed		
	UAS	LAS	IUAS,	LAS	/(sent/s)	·CC	S.Com Standard	UAS	LAS	UAS	LAS	(sent/s)
standard	90.2	87.8	89.4	87.3	142601	CS	standard	82.4	80.9	82.7	81.2	72
eager	89.8	87.4	89.6	87.4	34		eager	81.1	79.7	80.3	78.7	80
Malt:sp	89.8	87.2	80/30	86.	21 ⁴⁶⁹ CS	1111	Malt:eager	82.4	80.5	82.4	80.6	420
Malt:eager	89.6	86.9	89.4	86.8	448	CCI	Malt:eager	81.2	79.3	80.2	78.4	393
MSTParser	91.4	88.1	90.7	87.6	10		MSTParser	84.0	82.1	83.0	81.2	6
Our parser	92.0	89.7	91.8	89.6	654		Our parser	84.0	82.4	83.9	82.4	936

Chen, D., & Manning, C. (2014). A fast and accurate dependency parser using neural networks. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 740-750).

• PTB: English Penn Treebank

• CTB: Chinese Penn Treebank

Dependency Parsing Trends – Penn Treebank

RANK	MODEL	LAS 1	UAS	POS	PAPER	CODE	RESULT	YEAR
1	Label Attention Layer + HPSG + XLNet	96.26	97.42	97.3	Rethinking Self-Attention: Towards Interpretability in Neural Parsing	0	∌	2019
2	Deep Biaffine + ABS \$12	1919	len	t P	rejected Examed elp	0	€	2016
3	HPSG Parser (Joint)	95.72	97.20	97.3	Head-Driven Phrase Structure Grammar Parsing on Penn Treebank	0	Ð	2019
4	ACE	tţp	$S_{97.2}$	tui	OTICS COM f Embeddings for Structured Prediction	0	Ð	2020
5	MFVI	V ⁵ e ⁴		at:	Second-Order Neural Dependency Parsing with Message	0	Ð	2020
6	CVT + Multi-Task + Large	95.02	96.61		Semi-Supervised Sequence Modeling with Cross-View Training	O	Ð	2018
7	CVT + Multi-Task	94.83	96.44		Semi-Supervised Sequence Modeling with Cross-View Training	O	∌	2018
8	SpanRel	94.7			Generalizing Natural Language Analysis through Span- relation Representations	0	Ð	2019
9	CRFPar	94.49	96.14		Efficient Second-Order TreeCRF for Neural Dependency Parsing	0	Ð	2020
10	Left-to-Right Pointer Network	94.43	96.04	97.3	Left-to-Right Dependency Parsing with Pointer Networks	0	∌	2019

Semi-Supervised Sequence Modeling with Cross-View Training (Clark, 2018)

Dependency Parsing Trends – Penn Treebank

RANK	MODEL	LAS 1	UAS	POS	PAPER	CODE	RESULT	YEAR
1	Label Attention Layer + HPSG + XLNet	96.26	97.42	97.3	Rethinking Self-Attention: Towards Interpretability in Neural Parsing	0	∌	2019
2	Deep Biaffine + ABS \$12	1919	len	t P	rejected Examed elp	0	€	2016
3	HPSG Parser (Joint)	95.72	97.20	97.3	Head-Driven Phrase Structure Grammar Parsing on Penn Treebank	0	Ð	2019
4	ACE	tţp	$S_{97.2}$	tui	OTICS COM f Embeddings for Structured Prediction	0	Ð	2020
5	MFVI	V ⁵ e ⁴		at:	Second-Order Neural Dependency Parsing with Message	0	Ð	2020
6	CVT + Multi-Task + Large	95.02	96.61		Semi-Supervised Sequence Modeling with Cross-View Training	O	Ð	2018
7	CVT + Multi-Task	94.83	96.44		Semi-Supervised Sequence Modeling with Cross-View Training	O	∌	2018
8	SpanRel	94.7			Generalizing Natural Language Analysis through Span- relation Representations	0	Ð	2019
9	CRFPar	94.49	96.14		Efficient Second-Order TreeCRF for Neural Dependency Parsing	0	Ð	2020
10	Left-to-Right Pointer Network	94.43	96.04	97.3	Left-to-Right Dependency Parsing with Pointer Networks	0	∌	2019

Reference for this lecture

- Deng, L., & Liu, Y. (Eds.). (2018). Deep Learning in Natural Language Processing. Springer.
- Rao, D., & McMahan, B. (2019). Natural Language Processing with PyTorch: Build Intelligent Language Applications Using Deep Learning. "O'Reilly Media, Inc.".
- Manning, C.A. Manning, C.D. & Schüppen (1999). Foundations of statistical natural language processing. MIT press. ASSIGNMENT Project EXAM HE P
- Nivri, J (2016). Transition-based dependency parsing, lecture notes, Uppsala Universitet
- Manning, C 2017, Natural Language Processing with Deep Learning, lecture notes, Stanford University https://tutorcs.com
- Chen, D., & Manning, C. (2014). A fast and accurate dependency parser using neural networks. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 740-750).
- Eisner, J. M. (1996, August). Three new probabilistic models for dependency parsing: An exploration. In Proceedings of the 16th conference on Computational linguistics-Volume 1 (pp. 340-345). Association for Computational Linguistics.