Appendix B.2 Relations - Condensed Notes

A **Binary Relation** R on two sets A and B is a subset of the Cartesian product $A \times B$, symbolically as $R \subseteq A \times B$.

If $(a, b) \in R$, we sometimes write a R b.

When we say R is a binary relation on a set A, we mean that $R \subseteq A \times A$.

Ex: let R be the " \leq " relation on \mathbb{N} , so $R = \{(a,b) \in \mathbb{N} \times \mathbb{N} : a < b\}$.

A binary relation $R \subseteq A \times A$, is **reflexive** if $(a, a) \in R$.

Ex: The "=" and " \leq " are reflexive relations on $\mathbb N$ but "<" is not.

A binary relation R is *symmetric* if $(a,b) \in R \implies \exists (b,a) \in R$.

Ex: The "=" is symmetric relation, but "\le " and " \le " are not.

A binary relation R is *transitive* if $(a,b),(b,c) \in R \implies (a,c) \in R$.

Ex: The relations "=", "\le ", and "<" are transitive.

The relation $R = \{(a,b) : a,b \in \mathbb{N} \text{ and } a = b-1\}$ is not transitive as 3 R 4 and 4 R 5 do not imply 3 R 5.

A relation R that is reflexive, symmetric, and transitive is an *equivalence relation*.

If R is an equivalence relation on a set A, then for $a \in A$, the **equivalence class** of a is $[a] = \{b \in A : a R b\}$, or the set of all elements equivalent to a.

Theorem: An Equivalence Relation is the Same as a Partition

- (1) Let the equivalence classes of any equivalence relation R on a set A form a partition of A.
- (2) Any partition of A determines an equivalence on A for which the sets in the partition are the equivalence classes.

Proof:

(1) Equivalence classes of any relation R on a set A form a partition of A

We must show that the equivalence classes are nonempty, pairwise disjoint sets whose union is A.

As R is reflexive, $a \in [a]$ so the equivalence classes are nonempty.

Further, as $\forall a \in A$ belongs to the equivalence class [a], the union of all equivalence classes is A.

To show that the equivalence classes are pairwise disjoint, if [a], [b] have an element c in common, they are the same set. Suppose that aRc and bRc.

By the symmetry and transitivity property of equivalence relations, aRb.

Thus, $\forall x \in [a]$, we have that xRa.

By transitivity, xRb.

Thus $[a] \subset [b]$ and that $[b] \subset [a]$.

It follows that [a] = [b].

- \therefore An equivalence class of a set A is also a partition of A.
- (2) Any partition of A determines an equivalence on A for which the sets in the partition are the equivalence classes.

Let $A = \{A_i\}$ be a partition of A and define $B = \{(a, b) : \exists i \ni a \in A_i \text{ and } b \in B_i\}$.

Suppose that R is an equivalence relation A, so we must prove the three qualitites of equivalence relations.

Reflexivity: Since $a \in A_i \implies aRa$.

Symmetry: If aRb, then\$a and b are in the same set A_i , so bRa.

Transitivity: If aRb and bRc, then all three elements must be in the same set A_i .

As the three properties of equivalence relations are satisfied,

 \therefore A partition of A is also an equivalence class of a set A.

Partial Order

A binary relation R on a set A is **antisymmetric** if aRb and bRa implies a = b.

Ex: The \leq relation on $\mathbb N$ is antisymmetric, since $a \leq b$ and $b \leq a$ implies a = b.

A relation that is reflexive, antisymmetric, and transitive is a *partial order*.

The set that a partial order is defined on is a partially ordered set.

In a partial ordered set A, there may be no single *maximal* element from the relation R. Instead, there may be several maximal elements.

Ex: A collection of different-sized boxes may have multiple maximal boxes that don't fit inside any other box.

Total Relation

A relation R on a set A is a **total relation** if $\forall a, b \in A$, we have aRb, bRa, or both, with every pairing of elements of A is related by R.

Ex: The relation " \leq " is a total order on the natural numbers.

The relation "is a descendant of" is not a total order on the set of all people as two individuals may not be descendants from one or the other.

A partial order that is also a total relation is a *total order* or *linear order*.

A total relation that is transitive, but not reflexive and antisymmetric, is a total preorder.