1 Witt vectors

Construction of the witt vectors

Recall that for every prime number *p*, we have the *p-adic valuation map*:

Definition 1.1 (p-adic valuation). $v_p: \mathbb{Z} \to \mathbb{N} \cup \{\infty\}$ is defined by

$$v_p(n) = \begin{cases} \max\{k \in \mathbb{N} : p^k \mid n\} & \text{if } n \neq 0 \\ \infty & \text{if } n = 0 \end{cases}$$

Definition 1.2 (truncation set). Let \mathbb{N} be the set of positive integers and let $S \subseteq \mathbb{N}$ be a subset with the property that $\forall n \in \mathbb{N}$: if d is a divisor of n, then $d \in S$. We then say that S is a *truncation set*.

As a set, we define the *big Witt ring* $\mathbb{W}_S(A)$ to be A^S , we will give it a unique ring structure, such that the *ghost map* is a ring homomorphism.

Definition 1.3 (ghost map). We define $w: W_S(A) \to A^S$ by $(a_n)_{n \in S} \mapsto (w_n)_{n \in S}$ where

$$w_n = \sum_{d|n} da_d^{n/d}$$

Lemma 1.4 Let A be a ring, $a, b \in A$, $v \in \mathbb{N}$, and p a prime number. Then:

$$a \equiv b \mod pA \implies a^{p^v} \equiv b^{p^v} \mod p^{v+1}A.$$

PROOF: We can write $a = b + p\varepsilon$ for some $\varepsilon \in A$, then by the binomial theorem we get:

$$a^{p^o} = (b + p\varepsilon)^{p^o} = \sum_{i=0}^{p^o} \binom{p^v}{i} b^{p^o-i} (p\varepsilon)^i = b^{p^o} + \sum_{i=1}^{p^o} \binom{p^v}{i} b^{p^o-i} p^i \varepsilon^i.$$

Claim. for every $1 \le i \le p^v : v_p(\binom{p^v}{i}) = v - v_p(i)$.

Proof of claim. First, note that $v_p(p^v-i)=v-v_p(i)$. (Indeed: write $i=p^{v_p(i)}\cdot k$ for some $k\in\mathbb{Z},p\nmid k$. Then $p^v-i=p^v-p^{v_p(i)}\cdot k=p^{v_p(i)}\cdot (p^{v-v_p(i)}-k)$, hence $p^{v_p(i)}\mid p^v-i$. But $p^{v_p(i)+1}\nmid p^v-i$, since $p\nmid k$.)

Now we can apply the p-adic valuation to the following equality:

$$i! \cdot \begin{pmatrix} p^{v} \\ i \end{pmatrix} = p^{v} \cdot (p^{v} - 1) \cdot \dots \cdot (p^{v} - (i - 1))$$

$$\implies v_{p} \left(i! \cdot \begin{pmatrix} p^{v} \\ i \end{pmatrix} \right) = v_{p} (p^{v} \cdot (p^{v} - 1) \cdot \dots \cdot (p^{v} - (i - 1)))$$

$$\iff v_{p} (i!) + v_{p} \left(\begin{pmatrix} p^{v} \\ i \end{pmatrix} \right) = v_{p} (p^{v}) + v_{p} (p^{v} - 1) + \dots + v_{p} (p^{v} - (i - 1))$$

$$\iff v_{p} (i!) + v_{p} \left(\begin{pmatrix} p^{v} \\ i \end{pmatrix} \right) = v + v_{p} ((i - 1)!)$$

$$\iff v_{p} \left(\begin{pmatrix} p^{v} \\ i \end{pmatrix} \right) = v + v_{p} ((i - 1)!) - v_{p} (i!)$$

$$\iff v_{p} \left(\begin{pmatrix} p^{v} \\ i \end{pmatrix} \right) = v + v_{p} \left(\frac{(i - 1)!}{i!} \right)$$

$$\iff v_{p} \left(\begin{pmatrix} p^{v} \\ i \end{pmatrix} \right) = v - v_{p} (i)$$

where we use the multiplicativity of the p-adic valuation.

It follows that

$$v_p\left(\binom{p^v}{i}\cdot p^i\right) = v - v_p(i) + i \ge v + 1$$

which means that those summands vanish mod $p^{v+1}A$.

The core of the construction is contained in the following Lemma:

Lemma 1.5 (Dwork) Suppose that for every prime number p there exists a ring homomorphism $\phi_p \colon A \to A$ with the property that $\phi_p(a) \equiv a^p$ modulo pA. Then for every sequence $x = (x_n)_{n \in S}$, the following are equivalent:

- (i) The sequence x is in the image of the ghost map $w : W_S(A) \to A^S$.
- (ii) For every prime number p and every $n \in S$ with $v_p(n) \ge 1$,

$$x_n \equiv \phi_p(x_{n/p})$$
 modulo $p^{v_p(n)}A$.

PROOF: (\Rightarrow) Suppose x is in the image of the ghost map, that means there is a sequence $a = (a_n)_{n \in S}$ such that $x_n = w_n(a)$ for all $n \in S$. We calculate:

$$\phi(x_{n/p}) = \phi(w_{n/p}(a)) = \phi(\sum_{d|n/p} da_d^{n/pd}) = \sum_{d|n/p} d \cdot \phi(a_d^{n/pd})$$

since ϕ is a ring homomorphism and $d \in \mathbb{N}$. Now

$$\sum_{d|n/p} d \cdot \phi(a_d^{n/pd}) \stackrel{(1)}{\equiv} \sum_{d|n/p} d \cdot a_d^{n/d} \qquad \mod p^{v_p(n)} A$$

$$\stackrel{(2)}{\equiv} \sum_{d|n} d \cdot a_d^{n/d} \qquad \mod p^{v_p(n)} A$$

//

so we get

$$\phi(x_{n/p}) \equiv \sum_{d|n} d \cdot a_d^{n/d} = w_n(a) = x_n \quad \text{mod } p^{v_p(n)} A.$$

Proof of (1). First, note that

$$x \equiv y \mod p^m A \implies dx \equiv dy \mod p^{m+v_p(d)} A$$
 (a)

for all $m \in \mathbb{N}$, $d \in \mathbb{Z}$. Now we can write $n/pd = p^{\alpha} \cdot N$ for some $N \in \mathbb{Z}$, $p \nmid N$, $\alpha = v_p(n/pd)$. Now by the assumptions of the lemma we get that $\phi_p(a_d^N) \equiv a_d^{p \cdot N} \mod pA$, so we can calculate:

$$\phi_p(a_d^{n/pd}) \stackrel{\text{def.}}{=} \phi_p(a_d^{p^{\alpha} \cdot N}) = \phi_p(a_d^N)^{p^{\alpha}} \equiv a_d^{(p \cdot N)^{p^{\alpha}}} \mod p^{\alpha+1}A$$

using Lemma 1.4 for the last congruence. Now (a) and the fact that

$$a_d^{(p \cdot N)p^{\alpha}} = a_d^{p \cdot N \cdot p^{\alpha}} \stackrel{\text{def.}}{=} a_d^{p \cdot n/pd} = a_d^{n/d}$$

gives us

$$d \cdot \phi_p(a_J^{n/pd}) \equiv d \cdot a_J^{n/d} \mod p^{\alpha+1+v_p(d)}$$

But

$$\alpha+1+v_p(d)\stackrel{\mathrm{def.}}{=} v_p(n/pd)+1+v_p(d)=v_p(n/d)+v_p(d)=v_p(n)$$

so it follows that for every d

$$d\cdot\phi_p(a_d^{n/pd})\equiv d\cdot a_d^{n/d} \qquad \bmod p^{v_p(n)}$$

which implies (1).

Proof of (2). It suffices to show that if $d \mid n, d \nmid n/p$, the term $d \cdot a_d^{n/d}$ vanishes mod $p^{v_p(n)}A$. But in this case, $v_p(d) = v_p(n)$, hence $d \equiv 0 \mod p^{v_p(n)}A$.

 $(\Leftarrow) \text{ Let } (x_n)_{n \in S} \text{ be a sequence such that } x_n \equiv \phi_p(x_{n/p}) \qquad mod \ p^{v_p(n)} A \ \forall p \text{ prime}, n \in S, v_p(n) \geqslant 1. \text{ Define}$

proofumgebung

$$(a_n)_{n\in S}$$
 with $w_n((a_n)_{n\in S})=x_n$ as follows:
$$a_1\coloneqq x_1$$

and if a_d has been chosen for all $d \mid n$ such that $w_d(a) = x_d$ we see that for every prime $p \mid n$:

$$x_n \equiv \phi_p(x_{n/p}) \mod p^{v_p(n)} A$$

$$= \phi_p(\sum_{d|n/p} d \cdot a_d^{n/pd})$$

$$= \sum_{d|n/p} d \cdot \phi(a_d^{n/pd})$$

because ϕ_p is a ring homomorphism. Using our previous calculations, we see that

$$\sum_{d|n/p} d \cdot \phi(a_d^{n/pd}) \stackrel{(2)}{\equiv} \sum_{d|n/p} d \cdot a_d^{n/d} \quad \mod p^{v_p(n)} A$$

$$\stackrel{(3)}{\equiv} \sum_{d|n} d \cdot a_d^{n/d} \quad \mod p^{v_p(n)} A$$

$$\equiv \sum_{d|n,d\neq n} d \cdot a_d^{n/d} \quad \mod p^{v_p(n)} A$$

In conclusion:

$$p^{v_p(n)} \mid \left(x_n - \sum_{d \mid n, d \neq n} d \cdot a_d^{n/d} \right)$$

for all $p \mid n$. But this implies that

$$n \mid \left(x_n - \sum_{d \mid n, d \neq n} d \cdot a_d^{n/d} \right)$$

hence $\exists a_n \in A$ such that

$$x_n = \sum_{d|n,d\neq n} d \cdot a_d^{n/d} + n \cdot a_n = \sum_{d|n} d \cdot a_d^{n/d}.$$

We will often need the following

Lemma 1.6 If A is a torsion-free ring, the ghost map is injective.

PROOF: Let $a = (a_n)_{n \in S}$ such that w(a) = 0. This means $w_n = 0$ for all $n \in S$. We will prove by induction, that $a_n = 0$ for all $n \in S$. First, $a_1 = w_1 = 0$. And if $a_d = 0$ for all $d \in S$, d < n we see that

$$0 = w_n = \sum_{d \mid n} d \cdot a_d^{n/d} = n \cdot a_n$$

and since A is torsion-free, this implies $a_n = 0$.

Now we can finish the construction of the Witt vectors:

Theorem 1.7 There exists a unique ring structure such that the ghost map

$$w: \mathbb{W}_{S}(A) \to A^{s}$$

is a natural transformation of functors from rings to rings.

Proof:

Corollary 1.8 $w_n : W_S(A) \to A$ is a natural ring homomorphism for all $n \in S$.

Proposition 1.9 \mathbb{W}_S is a functor $CRing \rightarrow CRing$.

The Verschiebung, Frobenius and Teichmüller maps

We have various operations on witt vectors that are of interest.

Definition 1.10 (Restriction map). If $T \subseteq S$ are two truncation sets, the *restriction from S to T*

$$R_T^S \colon \mathbb{W}_S(A) \to \mathbb{W}_T(A)$$

is a natural ring homomorphism.

If $S \subseteq \mathbb{N}$ is a truncation set, $n \in \mathbb{N}$, then

$$S/n := \{d \in \mathbb{N} \mid nd \in S\}$$

is again a truncation set.

Definition 1.11 (Verschiebung). Define

$$V_n \colon \mathbb{W}_{S/n} \to \mathbb{W}_S(A); \ V_n((a_d)_{d \in S/n})_m := \begin{cases} a_d, & \text{if } m = n \cdot a \\ 0, & \text{else} \end{cases}$$

which is called the *n-th Verschiebung map*. Furthermore define

$$\widetilde{V}_n : A^{S/n} \to A^S; \ \widetilde{V}_n((x_d)_{d \in S/n})_m := \begin{cases} n \cdot x_d, & \text{if } m = n \cdot d \\ 0, & \text{else} \end{cases}$$

Lemma 1.12 The Verschiebung map V_n is additive.

Proof:

 $\begin{array}{cccc} \mathbb{W}_{S/n}(A) & \stackrel{w}{\longrightarrow} A^{S/n} \\ & & & \downarrow_{V_n} & & \downarrow_{\widetilde{V_n}} \ commutes. \\ & \mathbb{W}_S(A) & \stackrel{w}{\longrightarrow} A^S \end{array}$

Proof of claim.

Define $\widetilde{F}_n: A^S \to A^{S/n}$ by $\widetilde{F}_n((x_m)_{m \in S})_d = x_{nd}$.

Lemma 1.13 (Frobenius homomorphism) *There exists a unique natural ring homomorphism*

$$F_n: \mathbb{W}_S(A) \to \mathbb{W}_{S/n}(A)$$

such that the diagram

$$\begin{array}{ccc}
\mathbb{W}_{S}(A) & \xrightarrow{w} & A^{S} \\
\downarrow^{F_{n}} & & \downarrow^{\widetilde{F_{n}}} \\
\mathbb{W}_{S/n}(A) & \xrightarrow{w} & A^{S/n}
\end{array}$$

commutes.

We call F_n the *nth Frobenius homomorphism*. The commutativity of the diagram above is equivalent to commutativity of the following diagram for every $d \in S/n$:

remark und definition haben andere font

Proof of Lemma 1.13. easy

Lemma 1.14 Let $n, m \in \mathbb{N}$. Then

$$F_n \circ F_m = F_{nm}$$
.

Proof:

// _ **Definition 1.15** (teichmüller representative). The teichmüller representative is the map

$$\tau \colon A \to \mathbb{W}_S(A)$$

defined by

$$(\tau(a))_m = \begin{cases} a, & \text{if } m = 1\\ 0, & \text{else} \end{cases}$$

Lemma 1.16 The teichmüller map is multiplicative.

PROOF: The map $\widetilde{\tau}: A \to A^S$; $(\widetilde{\tau})_n = a^n$ is multiplicative and there is a commutative diagram

Indeed, $w_n(\tau(a)) = w_n((a, 0, 0, ...)) = a^n$ by definition of w_n .

The comonad structure of witt vectors

We will need the following lemma:

Lemma 1.17 Let $m \in \mathbb{Z}$. If m is a non-zero divisor in A, then it is a non-zero divisor in $\mathbb{W}_S(A)$ as well.

Proof:

$$0 \longrightarrow A \xrightarrow{V_n} \mathbb{W}_S(A) \xrightarrow{R_T^S} W_T(A) \longrightarrow 0$$

which we can extend to the following commutative diagram:

$$0 \longrightarrow A \longrightarrow \mathbb{W}_{S}(A) \longrightarrow \mathbb{W}_{T}(A) \longrightarrow 0$$

$$\downarrow \cdot m \qquad \qquad \downarrow \cdot m \qquad \qquad \downarrow \cdot m$$

$$0 \longrightarrow A \longrightarrow \mathbb{W}_{S}(A) \longrightarrow \mathbb{W}_{T}(A) \longrightarrow 0$$

finish

Corollary 1.18 If A is torsion-free, then $W_S(A)$ is torsion-free as well.

Definition 1.19. $W(A) := W_N(A)$

For the construction of a natural transformation $W(A) \to W(W(A))$ we want to use Lemma 1.5 again. Hence we first show:

Lemma 1.20 Let p be a prime number, let A be any ring. Then the ring homomorphism $F_p \colon \mathbb{W}(A) \to \mathbb{W}(A)$ satisfies $F_p(a) \equiv a^p \mod pA$.

Proposition 1.21 There exists a unique natural transformation

$$\Delta \colon \mathbb{W}(A) \to \mathbb{W}(\mathbb{W}(A))$$

such that $w_n(\Delta(a)) = F_n(A)$ for all $a \in A$, $n \in \mathbb{N}$.

Recall that by 1.8, $w_1 \colon \mathbb{W}(A) \to A$; $(a_n)_{n \in \mathbb{N}} \mapsto a_1$ is a natural transformation $\mathbb{W} \Rightarrow \mathrm{id}_{\mathrm{CRing}}$.

Theorem 1.22 The functor $\mathbb{W}(\cdot)$: CRing \to CRing together with the natural transformations $\Delta \colon \mathbb{W} \Rightarrow \mathbb{W}^2$, $w_1 \colon \mathbb{W} \Rightarrow \mathrm{id}_{\mathrm{CRing}}$ form a comonad $(\mathbb{W}, w_1, \Delta)$.

Proof:

Proof of claim. evaluating the ghost coordinates leads to:

which by 1.21 simplifies to

$$\begin{array}{ccc}
\mathbb{W}(A) & \xrightarrow{F_A} & \mathbb{W}(A)^{\mathbb{N}} \\
\downarrow^{\Delta_A} & & \downarrow^{\Delta_A^{\mathbb{N}}} \\
\mathbb{W}(\mathbb{W}(A)) & \xrightarrow{F_{\mathbb{W}(A)}} & \mathbb{W}(\mathbb{W}(A))^{\mathbb{N}}
\end{array}$$

now it suffices to show for an arbitrary n that the following diagram commutes:

$$\begin{array}{ccc}
\mathbf{W}(A) & \xrightarrow{F_{n_A}} & \mathbf{W}(A) \\
\downarrow^{\Delta_A} & & \downarrow^{\Delta_A} \\
\mathbf{W}(\mathbf{W}(A)) & \xrightarrow{F_{n_{\mathbf{W}(A)}}} & \mathbf{W}(\mathbf{W}(A))
\end{array}$$

evaluating the ghost coordinates again, keeping in mind that by 1.18 and 1.6, $w: \mathbb{W}(\mathbb{W}(A)) \to \mathbb{W}(A)^{\mathbb{N}}$ is injective as well, we get

$$\begin{array}{ccc}
\mathbb{W}(A) & \xrightarrow{F_{n_A}} & \mathbb{W}(A) \\
\downarrow^{\Delta_A} & & \downarrow^{\Delta_A} \\
\mathbb{W}(\mathbb{W}(A)) & \xrightarrow{F_{n_{\mathbb{W}(A)}}} & \mathbb{W}(\mathbb{W}(A)) & F_A \\
\downarrow^{w} & & \downarrow^{w} \\
\mathbb{W}(A)^{\mathbb{N}} & \xrightarrow{\widetilde{F_{n_{\mathbb{W}(A)}}}} & \mathbb{W}(A)^{\mathbb{N}}
\end{array}$$

using the fact that

$$\begin{array}{ccc}
W(A) & \xrightarrow{F_n} & W(A) \\
\downarrow^{\Delta_A} & \xrightarrow{F_{nm}} & \downarrow^{F_m} \\
W(W(A)) & \xrightarrow{w_{nm}} & W(A)
\end{array}$$

which can again be simplified to

$$W(A) \xrightarrow{F_n} W(A)$$

$$\downarrow^{F_m}$$

$$W(A)$$

now this commutes by ???, hence we are finished.

 $\begin{array}{cccc} & & W(A) & & & \\ \text{Claim.} & & \Delta_A & & \text{id}_{W(A)} & & \text{commutes.} \\ & & W(W(A)) & & & & W(A) \end{array}$

Proof of claim. evaluate the ghost coordinates:

we can then simplify to

$$\begin{array}{ccc}
\mathbb{W}(A) & & & \\
\downarrow & & & \\
\mathbb{W}(A)^{\mathbb{N}} & \xrightarrow{w_{1}^{\mathbb{N}}} & A^{\mathbb{N}}
\end{array}$$

now it suffices to show for all n that

$$\begin{array}{ccc}
\mathbb{W}(A) & & \\
F_n \downarrow & & \\
\mathbb{W}(A) & \xrightarrow{w_1} & A
\end{array}$$

commutes, which is true by ??? ($\varepsilon = w_1$).

//

//

$$\mathbb{W}(A)$$
 \downarrow_{Δ_A} commutes.
 $\mathbb{W}(\mathbb{W}(A)) \xleftarrow{\varepsilon_{\mathbb{W}(A)}} \mathbb{W}(A)$

Proof of claim. Let $a \in W(A)$.

$$\varepsilon(\Delta_A(a)) = w_1(\Delta_A(a)) = F_1(a) = a$$
, since $F_1 = \mathrm{id}_{W(A)}$.

This concludes the proof.

The Teichmüller map induces a morphism of comonads

We now consider another example of a comonad; the *free monoid comonad*.

Definition 1.23 (monoid ring). Let R be a ring and let G be a monoid. The *monoid ring* of G over R, denoted R[G] or RG is the set of formal finite sums $\sum_{g \in G} r_g \cdot g$ with addition and multiplication defined by:

maybe ins Kapitel Comonaden als Beispiel schieben

//

П

$$\begin{split} & \sum_{g \in G} r_g \cdot g + \sum_{g \in G} s_g \cdot g \coloneqq \sum_{g \in G} (r_g + s_g) \cdot g \\ & \sum_{g \in G} r_g \cdot g \cdot \sum_{g \in G} s_g \cdot g \coloneqq \sum_{g \in G} (\sum_{k \cdot l = g} r_k \cdot s_l) \cdot g \end{split}$$

Example 1. $R = \mathbb{R}, G = \{x^n \mid n \in \mathbb{N}\} \implies RG = \mathbb{R}[X]$

Remark 1.24. R[G] together with the ring homomorphism $\alpha \colon R \to R[G]$; $r \mapsto r \cdot 1$ and the monoid homomorphism $\beta \colon G \to R[G]$; $g \mapsto 1 \cdot g$ enjoys the following universal property:

$$\alpha(r) \cdot \beta(q) = \beta(q) \cdot \alpha(r) \quad \forall r \in R, q \in G$$

and if (S, α', β') is another such triple with $\alpha'(r) \cdot \beta'(g) = \beta'(g) \cdot \alpha'(r) \quad \forall r \in R, g \in G$, there is a unique monoid homomorphism $\gamma \colon R[G] \to S$ such that the following diagram commutes:

$$R \xrightarrow{\alpha'} R[G] \xleftarrow{\beta'} G$$

Here, γ is defined by $\sum_{g \in G} r_g \cdot g \mapsto \sum_{g \in G} \alpha'(r_g) \cdot \beta'(g)$.

Example 2. Let *S* be a ring, *G* be a monoid. Since there is a unique ring homomorphism $\mathbb{Z} \to S$, each monoid homomorphism $G \to S$ induces a unique ring homomorphism $\mathbb{Z}G \to S$ such that the following commutes:

Now if H is another monoid and $f: G \to H$ a monoid morphism, $G \xrightarrow{f} H \to \mathbb{Z}H$ is a monoid homomorphism, hence it extends uniquely to $f: \mathbb{Z}G \to \mathbb{Z}H$, $\sum_{g \in G} r_g \cdot g \mapsto \sum_{g \in G} r_g \cdot f(g)$. In this way, the free monoid ring construction over \mathbb{Z} is functorial.

Let $G: \mathbf{CRing} \to \mathbf{CMon}, (R, +, \cdot) \mapsto (R, \cdot)$ be the forgetful functor and let $F: \mathbf{CMon} \to \mathbf{CRing}$ be the *free monoid ring functor*, $G \mapsto \mathbb{Z}G$.

Proposition 1.25 There is an adjoint situation $CMon \underbrace{\perp}_{G}$ CRing

Now consider the *teichmüller map* $\tau: A \to \mathbb{W}(A); a \mapsto (a, 0, 0, 0, \dots)$. τ is multiplicative and preserves the unit, hence it extends uniquely to a ring homomorphism

$$\tau \colon \mathbb{Z}A \to \mathbb{W}(A)$$

Theorem 1.26 $\tau: \mathbb{Z}A \to \mathbb{W}(A)$ is a morphism of comonads.