## Coxeter groups



- If the root system  $\Pi$  is not a union of non-empty orthogonal sets, it is irreducible
- The elements of Π are called fundamental roots.
- G is connected iff G is irreducible
- If G is a connected positive definite Coxeter graph, it has one of the graphs  $A_n, B_n, D_n, H_2^n, G_2, I_3, I_4, F_4, E_6, E_7, E_8$ .
- G associated with  $A_n$ ,  $B_n$ ,  $D_n$ ,  $G_2$ ,  $F_4$ ,  $E_6$ ,  $E_7$ ,  $E_8$ , satisfies the crystallographic condition, so  $p_{ij}=1,2,3,4,6$ .
- Quadratic form for a graph is  $P=(c_{ij})$  where  $c_{ij}=-\cos(\frac{\pi}{p_{ij}})$  where  $p_{ij}=3$  if two nodes are connected by unlabeled edge and the label if labelled.  $c_{ii}=1$  while  $c_{ij}=0$  if nodes i and j are not connected.
- If  $r_i, r_j \in \Pi$ ,  $\frac{(r_i, r_j)}{||r_i|| \cdot r_j||} = -\cos(\frac{\pi}{p_{ij}})$ . If  $s_i, s_j$  are the reflections associated with  $r_i, r_j$ ,  $|s_i s_j| = p_{ij}$ .

$$S_r(x) = x - 2 \frac{(x,r)}{(r,r)} r$$