Basis EOS (EFT WET)

Basis used by the EOS package

Sectors

The effective Lagrangian is defined as

$$\mathcal{L}_{\text{eff}} = -\mathcal{H}_{\text{eff}} = \sum_{O_i = O_i^{\dagger}} C_i O_i + \sum_{O_i \neq O_i^{\dagger}} \left(C_i O_i + C_i^* O_i^{\dagger} \right).$$

sb

WC name	Operator	Type
b->s::c1	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_L\gamma^\mu T^a c_L)(\bar{c}_L\gamma_\mu T^a b_L)$	C
b->s::c2	$rac{4ar{G_F}}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_L\gamma^\mu c_L)(ar{c}_L\gamma_\mu b_L)$	\mathbf{C}
b->s::c3	$\frac{4\bar{G_F}}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_L\gamma^\mu b_L)\sum_q(\bar{q}\gamma_\mu q)$	\mathbf{C}
b->s::c4	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_L\gamma^\mu T^ab_L)\sum_q(\bar{q}\gamma_\mu T^aq)$	\mathbf{C}
b->s::c5	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_L\gamma^{\mu_1}\gamma^{\mu_2}\gamma^{\mu_3}b_L)\sum_q(\bar{q}\gamma_{\mu_1}\gamma_{\mu_2}\gamma_{\mu_3}q)$	\mathbf{C}
b->s::c6	$-\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_L\gamma^{\mu_1}\gamma^{\mu_2}\gamma^{\mu_3}T^ab_L)\sum_q(\bar{q}\gamma_{\mu_1}\gamma_{\mu_2}\gamma_{\mu_3}T^ab_L)$	q)C
b->s::c7	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e}{16\pi^2}m_b(\bar{s}_L\sigma_{\mu\nu}b_R)F^{\mu\nu}$	\mathbf{C}
b->s::c7'	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e}{16\pi^2}m_b(ar{s}_R\sigma_{\mu u}b_L)F^{\mu u}$	\mathbf{C}
b->s::c8	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{g_s}{16\pi^2} m_b (\bar{s}_L \sigma_{\mu\nu} T^a b_R) G^{a\mu\nu}$	\mathbf{C}
b->s::c8'	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{g_s}{16\pi^2}m_b(\bar{s}_R\sigma_{\mu\nu}T^ab_L)G^{a\mu\nu}$	\mathbf{C}
b->see::c9	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_L\gamma^\mu b_L)(\bar{e}\gamma_\mu e)$	\mathbf{C}
b->see::c9'	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_R\gamma^\mu b_R)(\bar{e}\gamma_\mu e)$	\mathbf{C}
b->see::c10	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2} (\bar{s}_L \gamma^{\mu} b_L) (\bar{e}\gamma_{\mu}\gamma_5 e)$	\mathbf{C}
b->see::c10'	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_R\gamma^\mu b_R)(\bar{e}\gamma_\mu\gamma_5 e)$	\mathbf{C}
b->see::cS	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2} m_b(\bar{s}_L b_R)(\bar{e}e)$	\mathbf{C}
b->see::cS'	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_Rb_L)(\bar{e}e)$	\mathbf{C}
b->see::cP	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_Lb_R)(\bar{e}\gamma_5e)$	\mathbf{C}
b->see::cP'	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2} m_b(\bar{s}_R b_L)(\bar{e}\gamma_5 e)$	\mathbf{C}
b->see::cT	$\frac{4G_F}{\sqrt{2}}V_{ub}\frac{e^2}{16\pi^2}(\bar{s}\sigma_{\mu\nu}b)(\bar{e}\sigma_{\mu\nu}e)$	\mathbf{C}
b->see::cT5	$\frac{4G_F}{\sqrt{2}}V_{ub}\frac{e^2}{16\pi^2}(\bar{s}\sigma_{\mu\nu}b)(\bar{e}\sigma_{\mu\nu}\gamma_5e)$	\mathbf{C}
b->smumu::c9	$rac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}(ar{s}_L\gamma^\mu b_L)(ar{\mu}\gamma_\mu\mu)$	\mathbf{C}
b->smumu::c9'	$\frac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2} (\bar{s}_R \gamma^{\mu} b_R)(\bar{\mu}\gamma_{\mu}\mu)$	\mathbf{C}
b->smumu::c10	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_L\gamma^\mu b_L)(\bar{\mu}\gamma_\mu\gamma_5\mu)$	\mathbf{C}

WC name	Operator	Type
b->smumu::c10'	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_R\gamma^\mu b_R)(\bar{\mu}\gamma_\mu\gamma_5\mu)$	C
b->smumu::cS	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_L b_R)(\bar{\mu}\mu)$	\mathbf{C}
b->smumu::cS'	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_Rb_L)(\bar{\mu}\mu)$	\mathbf{C}
b->smumu::cP	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_L b_R)(\bar{\mu}\gamma_5\mu)$	\mathbf{C}
b->smumu::cP'	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_Rb_L)(\bar{\mu}\gamma_5\mu)$	\mathbf{C}
b->smumu::cT	$\frac{4G_F}{\sqrt{2}}V_{ub}\frac{e^2}{16\pi^2}(ar{s}\sigma_{\mu\nu}b)(ar{\mu}\sigma_{\mu\nu}\mu)$	\mathbf{C}
b->smumu::cT5	$\frac{4\ddot{G}_F}{\sqrt{2}}V_{ub}\frac{e^2}{16\pi^2}(\bar{s}\sigma_{\mu\nu}b)(\bar{\mu}\sigma_{\mu\nu}\gamma_5\mu)$	С

ubenu

WC name	Operator	Type
b->uenue::cVL	$-rac{4G_F}{\sqrt{2}}V_{ub}(ar{u}_L\gamma^\mu b_L)(ar{e}_L\gamma_\mu u_{eL})$	C
b->uenue::cVR	$-\frac{4G_F}{\sqrt{2}}V_{ub}(\bar{u}_R\gamma^\mu b_R)(\bar{e}_L\gamma_\mu\nu_{eL})$	\mathbf{C}
b->uenue::cSR	$-\frac{4G_F}{\sqrt{2}}V_{ub}(\bar{u}_Lb_R)(\bar{e}_R\nu_{eL})$	\mathbf{C}
b->uenue::cSL	$-\frac{4G_F}{\sqrt{2}}V_{ub}(\bar{u}_Rb_L)(\bar{e}_R\nu_{eL})$	\mathbf{C}
b->uenue::cT	$-rac{4ar{G_F}}{\sqrt{2}}V_{ub}(ar{u}_R\sigma^{\mu u}b_L)(ar{e}_R\sigma_{\mu u} u_{eL})$	\mathbf{C}

${\tt ubmunu}$

WC name	Operator	Type
b->umunumu::cVL	$-\frac{4G_F}{\sqrt{2}}V_{ub}(\bar{u}_L\gamma^\mu b_L)(\bar{\mu}_L\gamma_\mu\nu_{\mu L})$	C
b->umunumu::cVR	$-\frac{4G_F}{\sqrt{2}}V_{ub}(\bar{u}_L\gamma^{\mu}b_L)(\bar{\mu}_L\gamma_{\mu}\nu_{\mu L})$ $-\frac{4G_F}{\sqrt{2}}V_{ub}(\bar{u}_R\gamma^{\mu}b_R)(\bar{\mu}_L\gamma_{\mu}\nu_{\mu L})$	\mathbf{C}
b->umunumu::cSR	$-\frac{4G_F}{\sqrt{2}}V_{ub}(\bar{u}_Lb_R)(\bar{\mu}_R\nu_{\mu L})$	\mathbf{C}
b->umunumu::cSL	$-\frac{4G_F^2}{\sqrt{2}}V_{ub}(\bar{u}_R b_L)(\bar{\mu}_R \nu_{\mu L}) \\ -\frac{4G_F}{\sqrt{2}}V_{ub}(\bar{u}_R \sigma^{\mu\nu} b_L)(\bar{\mu}_R \sigma_{\mu\nu} \nu_{\mu L})$	\mathbf{C}
b->umunumu::cT	$-\frac{4G_F}{\sqrt{2}}V_{ub}(\bar{u}_R\sigma^{\mu\nu}b_L)(\bar{\mu}_R\sigma_{\mu\nu}\nu_{\mu L})$	C