

HD3SS6126

ZHCSBS1A - NOVEMBER 2013-REVISED AUGUST 2015

HD3SS6126 USB 3.0 和 USB 2.0 差分开关 2:1/1:2 多路复用/解复用器

1 特性

- 非常适合 USB 应用
 - 适用于 USB 3.0 (超高速 USB 和 USB 2.0 HS/FS/LS)的信号开关
- 三个双向差分对通道多路复用/解复用开关还适用于 DisplayPort、PCIe Gen1/2/3、SATA 1.5/3/6G、 AS 1.5/3/6G 和 XAUI 应用
- 高带宽路径 (SS) 最高支持 10Gbps 的数据速率
- V_{CC} 的工作范围为 3.3V ± 10%
- 高带宽路径 (SS) 上的 -3dB 差分带宽频率最高超过 10GHz
- 使用独特的适配方法在所支持的共模电压范围内保 持恒定通道阻抗
- 出色的高带宽路径动态特性(2.5GHz 时)
 - 串扰 = -35dB
 - 隔音 = -23dB
 - 插入损耗 = −1.1dB
 - 回波损耗 = -11dB
- 3.5mm × 9mm、42 引脚小型晶圆级四方扁平无引 线 (WQFN) 封装 (RUA)
- 激活模式功耗 = 8mW

2 应用

- 台式电脑
- 笔记本电脑
- 平板电脑
- 扩展坞
- 电信
- 电视

3 说明

HD3SS6126 器件是一款针对 USB 应用而设计的高速 无源开关, 用于 将 SuperSpeed USB RX 和 TX 以及 USB 2.0 DP 和 DM 信号从源位置路由到目标位置,反 之亦然。该器件还可用于 DisplayPort、 PCI Express、™SATA、SAS 和 XAUI 应用。 HD3SS6126 器件可用于灌电流应用或拉电流 应用。

器件信息(1)

器件型号	封装	封装尺寸 (标称值)
HD3SS6126	WQFN (42)	9.00mm x 3.50mm

(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。

典型应用图

	目录	I.		
1 2 3 4 5 6	特性	8 9 10	7.2 Functional Block Diagram	
	7.1 Overview 10		7 T T T T T T T T T T T T T T T T T T T	

4 修订历史记录

注: 之前版本的页码可能与当前版本有所不同。

Changes from Original (November 2013) to Revision A

Page

5 Pin Configuration and Functions

Pin Functions

	PIN	1/0	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
GND	10, 14, 17, 19, 21	Supply	Ground
HSA(p)	8	I/O	Port A USB 2.0 positive signal
HSA(n)	7	1/0	Port A USB 2.0 negative signal
HSB(p)	31	I/O	Port B USB 2.0 positive signal
HSB(n)	32	1/0	Port B USB 2.0 negative signal
HSC(p)	33	1/0	Port C USB 2.0 positive signal
HSC(n)	34	I/O	Port C USB 2.0 negative signal
HS_ OE	6	I (Control)	Output Enable H = Power Down L = Normal Operation
NC	1, 2, 3, 4, 5, 18, 35, 36, 37, 38, 39, 40, 41, 42	_	Electrically No Connection
SEL	9	I (Control)	USB 3.0/2.0 Port Selection Control Pins
SSA0(p)	11	I/O	Port A, Channel 0, USB 3.0 Positive Signal
SSA0(n)	12	1/0	Port A, Channel 0, USB 3.0 Negative Signal
SSA1(p)	15	I/O	Port A, Channel 1, USB 3.0 Positive Signal
SSA1(n)	16	1/0	Port A, Channel 1, USB 3.0 Negative Signal
SSB0(p)	29	I/O	Port B, Channel 0, USB 3.0 Positive Signal
SSB0(n)	28	1/0	Port B, Channel 0, USB 3.0 Negative Signal
SSB1(p)	27	I/O	Port B, Channel 1, USB 3.0 Positive Signal
SSB1(n)	26	1/0	Port B, Channel 1, USB 3.0 Negative Signal
SSC0(p)	25	I/O	Port C, Channel 0, USB 3.0 Positive Signal
SSC0(n)	24	1/0	Port C, Channel 0, USB 3.0 Negative Signal
SSC1(p)	23	1/0	Port C, Channel 1, USB 3.0 Positive Signal
SSC1(n)	22	I/O	Port C, Channel 1, USB 3.0 Negative Signal
VDD	13, 20, 30	Supply	3.3-V power supply voltage

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
Supply Voltage	, V _{DD} ⁽²⁾	-0.3	4	V
	Differential I/O, High-bandwidth signal path: SSA0/1(p/n), SSB0/1(p/n), SSC0/1(p/n)	-0.5	4	
Voltage	Differential I/O, Low-bandwidth signal path: HSAp/n), HSB(p/n), HSC(p/n)	-0.5	7	V
	Control pin and single ended I/O	-0.3	$V_{DD} + 0.3$	
Continuous pov	ver dissipation	See Then	mal Information	
Storage temper	rature, T _{stg}	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2000	
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

typical values for all parameters are at $V_{CC} = 3.3 \text{ V}$ and $T_A = 25^{\circ}\text{C}$; all temperature limits are specified by design

			MIN	NOM	MAX	UNIT
V_{DD}	Supply voltage		3.0	3.3	3.6	V
V_{IH}	Input high voltage	Control Pins	2.0		V_{DD}	V
V_{IL}	Input low voltage	Control Pins	-0.1		8.0	V
V _{I/O_Diff}	Differential voltage	Switch I/O differential voltage for High-bandwidth signal path only: SSA0/1(p/n), SSB0/1(p/n), SSC0/1(p/n)	0		1.8	V_{p-p}
V _{I/O_CM}	Common voltage	Switch I/O common mode voltage for High-bandwidth signal path only: SSA0/1(p/n), SSB0/1(p/n), SSC0/1(p/n)	0		2.0	V
T _A	Operating free-air temperature		0		70	°C

²⁾ All voltage values, except differential voltages, are with respect to network ground terminal.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.4 Thermal Information

		HD3SS6126	
	THERMAL METRIC	RUA (WQFN)	UNIT
		42 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	53.8	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	38.2	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	27.4	°C/W
ΨЈТ	Junction-to-top characterization parameter (1)	5.6	°C/W
ΨЈВ	Junction-to-board characterization parameter (1)	27.3	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see *Semiconductor and IC Package Thermal Metrics* application report, SPRA953. Test conditions for Ψ_{JB} and Ψ_{JT} are clarified in the application report.

6.5 Electrical Characteristics – Device Parameters

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN T	YP MAX	UNIT
I _{CC}	Supply current	$V_{DD} = 3.6 \text{ V}$, SEL = V_{DD} /GND; $\overline{OE} = \text{GND}$; Outputs Floating			3 mA
SEL		,			
I _{IH}	Input high current	$V_{DD} = 3.6 \text{ V}, V_{IN} = V_{DD}$		9	μΑ
I _{IL}	Input high current	V _{DD} = 3.6 V, V _{IN} = GND			μA
HS_C	Ē				
I _{IH}	Input high current	$V_{DD} = 3.6 \text{ V}, V_{IN} = V_{DD}$			μA
I _{IL}	Input high current	$V_{DD} = 3.6 \text{ V}, V_{IN} = \text{GND}$		•	μΑ
SSA0	/1, SSB0/1, SSC0/1				
	High-impedance leakage	$V_{DD} = 3.6 \text{ V}, V_{IN} = 2 \text{ V}, V_{OUT} = 2 \text{ V},$ (I _{LK} on open outputs Port B and C)		130	
I _{LK}	current	$V_{DD} = 3.6 \text{ V}, V_{IN} = 2 \text{ V}, V_{OUT} = 2 \text{ V},$ (I _{LK} on open outputs Port A)		4	μA
HSA,	HSB, HSC				
I _{LK}	High-impedance leakage current	$V_{DD} = 3.6 \text{ V}, V_{IN} = 0 \text{ V}, V_{OUT} = 0 \text{ V to 4 V}, \\ HS_\overline{OE}_IN = GND$			μA

6.6 Electrical Characteristics – Signal Switch Parameters

under recommended operating conditions; R_L , R_{SC} = 50 Ω , C_L = 10 pF (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
SSA0/1(p/n	n), SSB0/1(p/n), SSC0/1(p/n) Signal Pa	th			
C _{ON}	Outputs ON capacitance	V _{IN} = 0 V, outputs open, switch ON	1.5		pF
C _{OFF}	Outputs OFF capacitance	V _{IN} = 0 V, outputs open, switch OFF	1		pF
R _{ON}	Output ON resistance	$V_{DD} = 3.3 \text{ V}, V_{CM} = 0 \text{ V} - 2 \text{ V},$ $I_{O} = -8 \text{ mA}$	5	8	Ω
ΔR _{ON}	ON resistance match between pairs of the same channel	$V_{DD} = 3.3 \text{ V}; 0 \text{ V} \le V_{IN} \le 2 \text{ V};$ $I_{O} = -8 \text{ mA}$		0.7	Ω
R _{FLAT_ON}	ON resistance flatness (R _{ON(MAX)} - R _{ON(MIN)}	$V_{DD} = 3.3 \text{ V}; -0 \text{ V} \le V_{IN} \le 2 \text{ V}$		1.15	Ω
		f = 0.3 MHz	-25		dB
R_L	Differential return loss (V _{CM} = 0 V)	f = 2.5 GHz	-11		
	(VCM - 0 V)	f = 4 GHz	-11		
		f = 0.3 MHz	-85		
X _{TALK}	Differential crosstalk	f = 2.5 GHz	-35		dB
	$(V_{CM} = 0 V)$	f = 4 GHz	-33		
		f = 0.3 MHz	-85		dB
O _{IRR}	Differential off-isolation $(V_{CM} = 0 \ V)$	f = 2.5 GHz	-23		
		f = 4 GHz	-21		
	Differential insertion loss	f = 0.3 MHz	-0.43		
IL		f = 2.5 GHz	-1.1		dB
	$(V_{CM} = 0 V)$	f = 4 GHz	-1.3		
BW	Bandwidth	At -3 dB	10		GHz
HSA(p/n), I	HSB(p/n), HSC(p/n) SIGNAL PATH		,	ľ	
C _{ON}	Outputs ON capacitance	V _{IN} = 0 V, Outputs Open, Switch ON	6	7.5	pF
C _{OFF}	Outputs OFF capacitance	V _{IN} = 0 V, Outputs Open, Switch OFF	3.5	6	pF
D	Output ON resistance	$V_{DD} = 3 \text{ V}, V_{IN} = 0 \text{ V},$ $I_{O} = 30 \text{ mA}$	3	6	0
R _{ON}	Output ON resistance	$V_{DD} = 3 \text{ V}, V_{IN} = 2.4 \text{ V},$ $I_{O} = 30 \text{ mA}$	3.4	6	Ω
AD	ON resistance match between pairs	$V_{DD} = 3 \text{ V}; V_{IN} = 0 \text{ V};$ $I_{O} = 30 \text{ mA}$	0.2		0
ΔR _{ON}	of the same channel	$V_{DD} = 3 \text{ V}; V_{IN} = 1.7 \text{ V};$ $I_{O} = -15 \text{ mA}$	0.2		Ω
D	ON resistance flatness	$V_{DD} = 3 \text{ V}; V_{IN} = 0 \text{ V};$ $I_{O} = 30 \text{ mA}$	1		0
R _{FLAT_ON}	$(R_{ON(MAX)} - R_{ON(MIN)})$	$V_{DD} = 3 \text{ V}; V_{IN} = 1.7 \text{ V};$ $I_{O} = -15 \text{ mA}$	1		Ω
X _{TALK}	Differential crosstalk (V _{CM} = 0 V)	R _L = 50 Ω, f = 250 MHz	-40		dB
O _{IRR}	Differential off-isolation (V _{CM} = 0 V)	R _L = 50 Ω, f = 250 MHz	-41		dB
BW	Bandwidth	$R_L = 50 \Omega$	0.9		GHz

6.7 Switching Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SSA0/1(p	o/n), SSB0/1(p/n), SSC0/1(p/n) Signa	l Path				
t _{on}	SEL-to-Switch ton	R_{SC} and $R_L = 50 \Omega$, See Figure 1		70	250	ns
t _{off}	SEL-to-Switch toff	R_{SC} and $R_L = 50 \Omega$, See Figure 1		70	250	ns
t _{PD}	Switch propagation delay	R_{SC} and $R_L = 50 \Omega$, See Figure 3			85	ps
t _{SK(O)}	Interpair output skew (CH-CH)	R_{SC} and $R_L = 50 \Omega$, See Figure 3			20	ps
t _{SK(b-b)}	Intrapair Output Skew (bit-bit)	R_{SC} and $R_L = 50 \Omega$, See Figure 3			8	ps
HSA(p/n)	, HSB(p/n), HSC(p/n) SIGNAL PATH				•	
	SEL to Switch toN	See Figure 2			30	
t _{ON}	HS_OE to Switch toN	See Figure 2			17	ns
	SEL to Switch t _{OFF}	See Figure 2			12	
t _{OFF}	HS_OE to Switch toFF	See Figure 2			10	ns
t _{PD} ⁽¹⁾	Switch propagation delay	See Figure 3		250		ps
t _{SK(O)} ⁽¹⁾	Interpair output skew (CH-CH)			100	200	ps
t _{SK(P)} (1)	Intrapair Output Skew (bit-bit)			100	200	ps

(1) Specified by design

Figure 1. Select to Switch t_{ON} and t_{OFF}

⁽¹⁾ All input pulses are supplied by generators have the following characteristics: PRR \leq 10 MHZ, Z_O = 50 Ω , t_f < 5 ns, t_f < 5 ns. (2) C_L includes probe and jig capacitance.

Figure 2. Turnon (t_{ON}) and Turnoff Time (t_{OFF})

Intrapair skew $t_{SK(b-b)}$ = 0.5 X |($t_4 - t_3$) + ($t_1 - t_2$)|

NOTES:

- 1. Measurements based on an ideal input with zero intrapair skew on the input, i.e. the input at A to B/C or the input at B/C to A
- 2. Interpair skew is measured from lane to lane on the same channel, e.g. C0 to C1
- 3. Intrapair skew is defined as the relative difference from the p and n signals of a single lane

Figure 3. Propagation Delay and Skew

TEXAS INSTRUMENTS

6.8 Typical Characteristics

7 Detailed Description

7.1 Overview

The HD3SS6126 is a USB 3.0 and USB 2.0 differential switch, it is designed to support data rates up to 10 Gbps on high-bandwidth paths (SS), it is also suitable for DisplayPort, PCIe Gen1/2/3, SATA 1.5/3/6G, SAS 1.5/3/6G and XAUI applications. The device uses a unique adaptation method to maintain a constant channel impedance over the supported common-mode voltage range, resulting in an excellent high-bandwidth path dynamic characteristics (at 2.5 GHz; Crosstalk = -35 dB, Isolation = -23 dB, Insertion Loss = -1.1 dB, Return Loss = -1.1 dB).

7.2 Functional Block Diagram

7.3 Feature Description

The HD3SS6126 can be powered by VBUS from the USB Host, and is capable of selecting USB2 independently from USB3. Although the main application of the HD3SS6126 is USB3.0/2.0, the device also supports common interfaces such as PCIe Gen1 and Gen2, DP and SATA/SAS applications. The device is able to support these additional interfaces because of its support of data rates up to 5.4 Gbps and common-mode voltages from 0 V to 2 V with a maximum signal swing of 1.8 V. All of these applications use an 8b or 10b coding technique to achieve DC balance and facilitate terminal equipment.

NOTE

The device may need AC capacitors and additional bias voltage to support the PCIe Gen1 and Gen2 interfaces.

7.4 Device Functional Modes

Table 1. Truth Table USB 3.0 SuperSpeed USB

SEL	USB 3.0 PORT SELECTION			
SEL	SSA0/1	SSB0/1	SSC0/1	
0	To/From SSB0/1	To/From SSA0/1	Off	
1	To/From SSC0/1	Off	To/From SSA0/1	

Table 2. Truth Table USB 2.0 High-Speed, Full-Speed, Low-Speed Path

HS_OE	SEL		USB 2.0 Port Selection	
H9_UE	SEL	HSA	HSB	HSC
0	0	To/From HSB	To/From HSA	Off
0	1	To/From HSC	Off	To/From HSA
1	X	Off	Off	Off

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

A typical application for the HD3SS6126 is a USB 3.0 KVM switch, where one of two USB hosts system can be selected for an USB device. These guidelines are also suitable for PCIe(Gen1,Gen2), SATA, XAUI and DP, since the HD3SS6126 device is fully compatible with these protocols.

8.2 Typical Application

Figure 6. Two Signal Sources to One Destination

Figure 7. One Signal Sources to Two Destination

Typical Application (continued)

8.2.1 Design Requirements

Power supply requirements:

V_{DD} from 3 V to 3.6 V

Control pins requirements

- V_{IH} from 2 V to V_{DD}
- V_{II} from -0.1 V to 0.8 V

Differential pairs requirements:

- V_{I/O Diff} from 0 V to 1.8 Vp-p
- V_{I/O CM} from 0 V to 2 V

T_A Operating free-air temperature from 0°C to 70°C

8.2.2 Detailed Design Procedure

8.2.2.1 Power Supply

The first step is to design the power supply and determine the V_{CC} stability and minimum current required (see *Power Supply Recommendations*).

8.2.2.2 Differential Pairs

All of the interfaces the HD3SS6126 device supports require AC coupling between the transmitter and receiver. TI recommends using 0402-sized capacitors to provide AC coupling, but 0603-sized capacitors are also acceptable. Both 0805-sized capacitors and C-packs should be avoided. Best practice is to place AC-coupling capacitors symmetrically. A capacitor value of 0.1uF is best and the value should be matched for the +/-signal pair. The placement should be along the TX pairs on the system board, which are usually routed on the top layer of the board.

All differential pairs must have a matched impedance according to the implemented protocol: $100-\Omega$ differential ($\pm 10\%$) for PCIe and $90-\Omega$ differential ($\pm 15\%$) for USB 2.0 and USB 3.0.

The control logic can be implemented by use of an external control processor or by using a simple selector switch. TI recommends using $5-k\Omega$ pullup and pulldown resistors on the control signals, if they are included. The control logic must not violate the input voltage parameters outlined in the *Recommended Operating Conditions* table.

8.2.3 Application Curves

9 Power Supply Recommendations

The power supply must provide a constant voltage with a 10% maximum variation of the nominal value, and has to be able to provide at least 3 mA for the HD3SS6126 only (based on the maximum power consumption). It is also possible to provide the power supply from VBUS from the Host, just by including a voltage regulator powered through VBUS. Each V_{CC} pin must have a 0.1- μ F bypass capacitor placed as closely as possible. TI recommends including two extra capacitors in parallel, which should be also placed as closely as possible to the V_{CC} pin. The suggested values for these extra capacitors are 1 μ F and 0.01 μ F.

10 Layout

10.1 Layout Guidelines

Generally, impedance match becomes critical in such high-speed signal applications to avoid reflection. Each differential-signal pair must have a differential impedance of about 90 Ω ±15% (for PCIe or DP, 100 Ω ±10%) with single-end signal impedance about 50 Ω to ground. Usually, Microstrip is used to accomplish impedance match. Four layers are recommended for a low-EMI PCB design. shows physical geometries of differential traces to form Microstrip. In order to better maintain signal integrity, reference the following:

- 1. Route high-speed differential signals on the top layer with a solid ground layer under them to accomplish controlled impedance, while avoiding vias and stubs which may cause impedance discontinuities. If vias must be used, make sure the space of the vias is as minimal as possible.
- Be sure both the length of differential traces and the length of differential signal pairs are matched in order to reduce intrapair skew and interpair skew separately which also does good to low EMI. TI recommends keeping the space of the traces of the differential signal the same across the entire length of the trace to keep impedance match and reduce EMI.
- 3. Route low-speed, but fast-edged control signals on the bottom layer to minimize the crosstalk of the high-speed signal.
- 4. For other adjacent signal traces on the same layer, make distance L ≥ 3 S to facilitate impedance match.
- 5. TI reccommends using 45° bends instead of 90° bends in order to maintain signal integrity and low EMI.

10.2 Layout Examples

Figure 10. PCB Layers Example

Layout Examples (continued)

Figure 11. USB Signals Routing Example

11 器件和文档支持

11.1 社区资源

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.2 商标

E2E is a trademark of Texas Instruments.

PCI Express is a trademark of PCI-SIG.

All other trademarks are the property of their respective owners.

11.3 静电放电警告

这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损伤。

11.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 机械、封装和可订购信息

以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。

重要声明

德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据 JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售都遵循在订单确认时所提供的TI 销售条款与条件。

TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。

TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,客户应提供充分的设计与操作安全措施。

TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。

对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行 复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。

在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。

客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而对 TI 及其代理造成的任何损失。

在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。

TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。

只有那些 TI 特别注明属于军用等级或"增强型塑料"的 TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有法律和法规要求。

TI 己明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要求,TI不承担任何责任。

	产品		应用		
数字音频	www.ti.com.cn/audio	通信与电信	www.ti.com.cn/telecom		
放大器和线性器件	www.ti.com.cn/amplifiers	计算机及周边	www.ti.com.cn/computer		
数据转换器	www.ti.com.cn/dataconverters	消费电子	www.ti.com/consumer-apps		
DLP® 产品	www.dlp.com	能源	www.ti.com/energy		
DSP - 数字信号处理器	www.ti.com.cn/dsp	工业应用	www.ti.com.cn/industrial		
时钟和计时器	www.ti.com.cn/clockandtimers	医疗电子	www.ti.com.cn/medical		
接口	www.ti.com.cn/interface	安防应用	www.ti.com.cn/security		
逻辑	www.ti.com.cn/logic	汽车电子	www.ti.com.cn/automotive		
电源管理	www.ti.com.cn/power	视频和影像	www.ti.com.cn/video		
微控制器 (MCU)	www.ti.com.cn/microcontrollers				
RFID 系统	www.ti.com.cn/rfidsys				
OMAP应用处理器	www.ti.com/omap				
无线连通性	www.ti.com.cn/wirelessconnectivity	德州仪器在线技术支持社区	www.deyisupport.com		

邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122 Copyright © 2016, 德州仪器半导体技术(上海)有限公司

PACKAGE OPTION ADDENDUM

20-May-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
HD3SS6126RUAR	ACTIVE	WQFN	RUA	42	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	0 to 70	HD3SS6126	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

20-May-2016

PACKAGE MATERIALS INFORMATION

www.ti.com 20-May-2016

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
HD3SS6126RUAR	WQFN	RUA	42	3000	330.0	16.4	3.8	9.3	1.0	8.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 20-May-2016

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
HD3SS6126RUAR	WQFN	RUA	42	3000	367.0	367.0	38.0

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.

RUA (R-PWQFN-N42)

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: All linear dimensions are in millimeters

RUA (R-PWQFN-N42)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

重要声明

德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据 JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售都遵循在订单确认时所提供的TI 销售条款与条件。

TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使 用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。

TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,客户应提供充分的设计与操作安全措施。

TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。

对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行 复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。

在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。

客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而对 TI 及其代理造成的任何损失。

在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。

TI 组件未获得用于 FDA Class III (或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使用的特别协议。

只有那些 TI 特别注明属于军用等级或"增强型塑料"的 TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有法律和法规要求。

は田

TI 己明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要求,TI不承担任何责任。

立 口

	产品		巡用		
数字音频	www.ti.com.cn/audio	通信与电信	www.ti.com.cn/telecom		
放大器和线性器件	www.ti.com.cn/amplifiers	计算机及周边	www.ti.com.cn/computer		
数据转换器	www.ti.com.cn/dataconverters	消费电子	www.ti.com/consumer-apps		
DLP® 产品	www.dlp.com	能源	www.ti.com/energy		
DSP - 数字信号处理器	www.ti.com.cn/dsp	工业应用	www.ti.com.cn/industrial		
时钟和计时器	www.ti.com.cn/clockandtimers	医疗电子	www.ti.com.cn/medical		
接口	www.ti.com.cn/interface	安防应用	www.ti.com.cn/security		
逻辑	www.ti.com.cn/logic	汽车电子	www.ti.com.cn/automotive		
电源管理	www.ti.com.cn/power	视频和影像	www.ti.com.cn/video		
微控制器 (MCU)	www.ti.com.cn/microcontrollers				
RFID 系统	www.ti.com.cn/rfidsys				
OMAP应用处理器	www.ti.com/omap				
无线连通性	www.ti.com.cn/wirelessconnectivity	德州仪器在线技术支持社区	www.deyisupport.com		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated