First attempt at a model - Group 4 (Mayuresh Mali, Divya G Tripathi, Devika Antarkar, Soma Ghosh, Kshitij Pathak) **Import Libraries** In [1]: import sklearn.feature_extraction import pandas as pd import numpy as np import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) import tldextract import matplotlib as plt from pylab import * import re import math from itertools import groupby Read the data In [2]: train_data = pd.read_csv('train_data.csv') train_data_copy = train_data test_data = pd.read_csv('test_data.csv') In [3]: import tldextract def domain_extract(uri): ext = tldextract.extract(uri) if (not ext.suffix): return np.nan else: return ext.domain train_data_copy['domain'] = [domain_extract(DNS_Address) for DNS_Address in train_data_copy['DNS_Address']] del train_data_copy['DNS_Address'] train_data_copy.head() Out[3]: DNS_Type domain dr-beckmann lifeadvicedaily benign benign aixenprovencetourism benign ayto-alcaladehenares In [4]: train_data_copy['domain'] = train_data_copy['domain'].astype(str) **Feature Engineering- Adding few more features** Let me create some features which can be useful such as length of domain name, number of vowels in it, consecutive consonants and digits in the domain name and also since XGBoost needs numeric features, we need to encode the data as numeric. In [5]: # Add a length field for the domain train_data_copy['length'] = [len(x) for x in train_data_copy['domain']] In [6]: train_data_copy.head() Out[6]: DNS_Type domain length dr-beckmann 11 lifeadvicedaily 15 benign 20 aixenprovencetourism benign ayto-alcaladehenares In [7]: # Calculating character entropy import math from collections import Counter def entropy(s): p, lns = Counter(s), float(len(s)) return -sum(count/lns * math.log(count/lns, 2) for count in p.values()) In [8]: def tri_gram(domain): s = []count = 2while count < len(domain):</pre> s.append(domain[count - 2] + domain[count - 1] + domain[count]) count = count + 1**return** s $dataset = \{\}$ $sum_of_frequency = 0.0$ # load trigrams_google into dataset with open("trigram_google.txt") as f: **for** line **in** f: (key, val) = line.split() dataset[key] = float(val) sum_of_frequency += dataset[key] # print sum def calc_freq(trigrams): frequency = sum([dataset.get(trigram, 0) for trigram in trigrams]) / sum_of_frequency return frequency In [9]: # calculate vowels def calc_vowels(y): $num_vowel = 0$ vowels = list('aeiou') **for** char **in** y: if char in vowels: num_vowel += 1 return num_vowel #Calculate number of digits def calc_digits(z): $num_digit = 0$ digits = list('0123456789') for char in z: if char in digits: num_digit += 1 return num_digit In [10]: # Maximum length of Consecutive consonants def consecutive_consonants(string): from itertools import groupby is_vowel = lambda char: char in "aAeEiIoOuU" best = 0listnames = ["".join(g) for v, g in groupby(string, key=is_vowel) if not v] for index in range(len(listnames)): if len(listnames[index]) > best: best = len(listnames[index]) return best In [11]: # Add a entropy field for the domain train_data_copy['entropy'] = [entropy(x) for x in train_data_copy['domain']] In [12]: # Add a trigram field for the domain train_data_copy['trigrams'] = [tri_gram(x) for x in train_data_copy['domain']] In [13]: # Add a trigram frequency field for the domain train_data_copy['trigram_freq'] = [calc_freq(x) for x in train_data_copy['domain']] In [14]: # Add a vowels field for the domain train_data_copy['vowels'] = [calc_vowels(x) for x in train_data_copy['domain']] In [15]: # Add a digits field for the domain train_data_copy['digits'] = [calc_digits(x) for x in train_data_copy['domain']] In [16]: # Add a consec_consonants field for the domain train_data_copy['consec_consonants'] = [consecutive_consonants(x) for x in train_data_copy['domain']] In [17]: train_data_copy['threat_type'] = train_data_copy.DNS_Type.apply(lambda x: 0 if x=='benign' else 1) In [18]: train_data_copy.head() Out[18]: DNS_Type domain length entropy trigrams trigram_freq vowels digits consec_consonants threat_type dr-beckmann 11 3.277613 [dr-, r-b, -be, bec, eck, ckm, kma, man, ann] benign 15 3.056565 benign lifeadvicedaily [lif, ife, fea, ead, adv, dvi, vic, ice, ced, ... smiles 6 2.251629 [smi, mil, ile, les] benign aixenprovencetourism 20 3.684184 [aix, ixe, xen, enp, npr, pro, rov, ove, ven, ... 3 20 3.403702 [ayt, yto, to-, o-a, -al, alc, lca, cal, ala, ... benign ayto-alcaladehenares In [19]: train_data_copy.tail() Out[19]: domain length entropy DNS_Type trigrams trigram_freq vowels digits consec_consonants threat_type [und, nde, der, erc, rci, cir, irc, rcu, 25 3.463465 999995 dga undercircumstancestyranny [suc, uch, cho, hof, ofc, fco, con, 999996 suchofconsentourabuses 22 3.390805 [eme, mek, ekc, kcw, cwk, wkw, 999997 16 2.602217 emekcwkwkmwkykca [cdk, dko, kok, oko, koe, oed, edn, 999998 cdkokoednvlk 12 2.855389 dga [pbo, boo, oow, own, wnx, nxe, xee, 999999 15 3.506891 dga pboownxeeayddcg In [20]: #Rearranging the order of columns train_data_copy = train_data_copy[['domain','DNS_Type','threat_type','length','entropy','trigrams','trigram_freq','v owels','digits','consec_consonants']] In [21]: | train_data_copy.head() Out[21]: DNS_Type threat_type length entropy trigrams trigram_freq vowels digits consec_consonants dr-beckmann 0 11 3.277613 [dr-, r-b, -be, bec, eck, ckm, kma, man, ann] 6 2.251629 [smi, mil, ile, les] smiles 3 aixenprovencetourism 20 3.684184 [aix, ixe, xen, enp, npr, pro, rov, ove, ven, ... 20 3.403702 4 ayto-alcaladehenares [ayt, yto, to-, o-a, -al, alc, lca, cal, ala, ... In [22]: # # selecting rows based on condition # rslt_df = train_data_copy[train_data_copy['trigram_freq'] > 0] # print('\nResult dataframe :\n', rslt_df) **Model attempt 1** In [25]: **from xgboost import** XGBClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, f1_score X = train_data_copy.as_matrix(['length', 'entropy', 'vowels', 'digits','consec_consonants']) y = np.array(train_data_copy['threat_type'].tolist()) # Train on a 80/20 split from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,random_state=0) model = XGBClassifier(silent=False, scale_pos_weight=1, learning_rate=0.1, colsample_bytree = 0.4, subsample = 0.8, objective='binary:logistic', n_estimators=100, $reg_alpha = 0.3,$ max_depth=4, gamma=10) model.fit(X_train, y_train) C:\Users\mayur\AppData\Local\Continuum\anaconda3\lib\site-packages\ipykernel_launcher.py:5: FutureWarning: Method .as _matrix will be removed in a future version. Use .values instead. Out[25]: XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1, colsample_bynode=1, colsample_bytree=0.4, gamma=10, learning_rate=0.1, max_delta_step=0, max_depth=4, min_child_weight=1, missing=None, n_estimators=100, n_jobs=1, nthread=None, objective='binary:logistic', random_state=0, reg_alpha=0.3, reg_lambda=1, scale_pos_weight=1, seed=None, silent=False, subsample=0.8, verbosity=1) In [26]: ##Testing the model y_pred = model.predict(X_test) predictions = y_pred In [27]: #Evaluating predictions accuracy = accuracy_score(y_test, predictions) f_score = f1_score(y_test, predictions) print("Accuracy: %.3f%%" % (accuracy * 100.0)) print("F1_score:", f_score) Accuracy: 88.599% F1_score: 0.8885478273620412 **Model 1: Predictions on test data** In [28]: def test_it(domain): In [29]: # Extracting just the second-level domain name from test data set rows. test_data['newdomain'] = [domain_extract(x) for x in test_data['domain']] #del test_data['domain'] test_data.head() # Adding the features to the test data set testdomain = test_data.newdomain.apply(lambda x : test_it(x)) In [30]: X2 = np.array(testdomain.tolist()) In [31]: ##Testing the model y_pred2 = model.predict(X2) predictions = [round(value) for value in y_pred2] y_pred2 Out[31]: array([0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0]) In [32]: test_data['threat']= y_pred2 In [33]: test_data.threat.value_counts() Out[33]: 0 303 1 197 Name: threat, dtype: int64 Saving the data with predictions to a file In [34]: #Re-encode dga and benign labels test_data['threat'] = test_data.threat.apply(lambda x: 'benign' if x==0 else 'dga') del test_data['newdomain'] In [36]: #Save output to file #os.remove("submission_output3.csv") test_data.to_csv('submission_output3.csv', index=False) We also tried another model with character encoding for letters a-z, numerals 0-9 and special characters to make 40 numbers denoting one for every character of the domain name. But we prefer this model as the accuracy and F1_score are slightly better in this model. We will try different ensemble methods

and feature engineering techniques (such as n-gram probabilities and dictionary check or letter label encodings etc.) in future to improve accuracy of the

model.