

NASA Technical Memorandum 4286

1N-43
37991

A Global Data Set of Soil Particle Size Properties

Robert S. Webb, Cynthia E. Rosenzweig,
and Elissa R. Levine

SEPTEMBER 1991

NASA

NASA Technical Memorandum 4286

A Global Data Set of Soil Particle Size Properties

Robert S. Webb

*Goddard Institute for Space Studies
New York, New York*

Cynthia E. Rosenzweig

*Columbia University
New York, New York*

Elissa R. Levine

*Goddard Space Flight Center
Greenbelt, Maryland*

National Aeronautics and
Space Administration

Office of Management
Scientific and Technical
Information Program

1991

Abstract

A standardized global data set of soil horizon thicknesses and textures (particle size distributions) has been compiled from the FAO/UNESCO Soil Map of the World, Vols. 2-10 (1971-81). This data set will be used by the improved ground hydrology parameterization (Abramopoulos *et al.*, 1988) designed for the GISS GCM (Goddard Institute for Space Studies General Circulation Model) Model III. The data set specifies the top and bottom depths and the percent abundance of sand, silt, and clay of individual soil horizons in each of the 106 soil types cataloged for nine continental divisions. When combined with the World Soil Data File (Zobler, 1986), the result is a global data set of variations in physical properties throughout the soil profile. These properties are important in the determination of water storage in individual soil horizons and exchange of water with the lower atmosphere. The incorporation of this data set into the GISS GCM should improve model performance by including more realistic variability in land-surface properties.

Introduction

As land-surface parameterizations in GCMs become more sophisticated, more detailed types of soil data are needed. Realistic models of water movement in the soil layer (e.g. Abramopoulos *et al.*, 1988) require information on variability of physical properties, including differences in the texture of soil horizons and thickness of these different horizons. In the global application of such land-surface parameterizations, the addition of geographic variability in the physical properties of soils, at the very least among the different continents, provides a more accurate description of surface characteristics that influence water movement in the soil profile.

In the modified bucket parameterizations used in the GISS GCM Model II, soil water capacities are calculated as a function of vegetation type (Hansen *et al.*, 1983). More recently, global data sets of available soil water have been compiled using textural information from the upper 30 cm of the soil profile to assign water-holding attributes to the entire soil profile (Bouwman *et al.*, 1991) or the root zone (Henderson-Sellars *et al.*, 1986). In these studies, surficial physical properties are assumed representative of the entire soil profile and then estimates of soil water-holding capacity are assigned as a function of soil type and surficial texture for use in bucket-model calculations. In most soils, the textural class of the underlying horizons are significantly different from the surface texture due to pedogenic processes including degradation, aggradation, or translocation of materials within the soil profile (Buol *et al.*, 1973). The bucket-model approach, however, is not appropriate when calculating water storage and movement throughout the complete soil profile as a function of hydraulic conductivity and matric potential. Furthermore, in a bucket model, infiltration can only be crudely estimated as a function of empirically determined parameters. These parameters, in turn, may unrealistically partition water at the atmosphere/soil interface into water lost as surface runoff versus water stored in the soil.

We have generated a standardized global data set of physical soil properties consisting of soil horizon textures and thicknesses for 106 soil types based on information published by FAO/UNESCO (1971-81). The soil horizons are differentiated over the nine major continental divisions. This data set can be combined with Zobler's (1986; Figure 1) World Soil Data File to generate a global data set of physical properties that maybe used in simulating water movement in GCMs.

The following report explains the decision-making process that went into compiling a standardized data set of texture and associated depth

information, the organization of the data set, and some of its strengths and weaknesses. We then compare three estimates for the potential storage of water in soil calculated using our data set with the field capacities used in the GISS GCM Model II. The three estimates are: 1) potential storage of water in the soil profile, 2) potential storage of water in the root zone, and 3) potential storage of water derived from soil texture.

As investigators compiling a data set of physical soil properties to be used as prescribed surface characteristics in a GCM, we recognize that realistic values of available soil water can only be estimated as a combined function of climate, soil, and vegetation. Such research, though on-going, is beyond the scope of this report.

Data and Methods

The depth and textural (relative percent sand [2-0.05 mm], silt [0.05-0.002 mm], clay [<0.002 mm]) data for 106 soil types were taken from the Morphological, Chemical and Physical Properties Appendices in each of the nine volumes of the FAO-UNESCO Soil Map of the World (1971-81). These appendices listed data for selected soil profiles considered typical for each continental division. For some of the continental divisions the textural and depth data were not available for all of the soil types mapped by Zobler (1986). In other cases, the data were inconsistent or missing for one or more horizons of a soil type.

We elected to include information from the A-, E-, B-, and C-horizons in our data set in recognition that these horizons contribute to the storage and movement of water within the soil profile. We did not include data from the litter (0-) horizon, from bedrock, or from parent material. We used data from the more complete description or the description with greater geographic coverage for those soil types with multiple descriptions of physical properties within a single continent.

Decision Rules

A set of decision rules was adopted to standardize the data set, to check the data for errors and to correct them, and to fill in missing data. Table 1 summarizes the adjustments that were made to data.

- 1) Values were not included from horizons where the sum of percent sand, silt, and clay values was less than 50 or greater than 150 (presumably the result of either measurement or tabulation errors).
- 2) A default basal depth of 3.6 meters was used when no bottom depth was specified for a soil profile. The default depth of 3.6 meters was selected to allow realistic simulation of dynamic hydrology.

3) An average depth was calculated in cases when a depth range was given or the top and bottom depths of contiguous horizons were not the same. Depths reported in inches were converted to metric.

4) To use the particle size information for calculation of hydraulic conductivity and matric potential, the percent sand, silt, and clay data had to sum to 100 percent. To normalize the data to sum to 100 percent, we adjusted the percent clay values, rather than renormalizing all three size classes, because of the greater potential error in the measurement of the clay size class. As long as the summed percent ranged between 80 and 120 percent, the appropriate amount was subtracted/added from the clay fraction. In one case, when the summed percent was more than 120 percent or less than 80 percent, however, the qualitative descriptions of the soil horizons were used as guidelines to determine the proportions of each size class.

5) Interpolation of values as the average of data from bracketing horizons was used to fill in missing data for individual horizons. We elected to be conservative and presuppose continuity of trends within the soil profile rather than prescribe data on the basis of qualitative descriptions. We recognize that assigning values to a B-horizon as the intermediate properties of A- and C-horizons is not representative of many soils but we believe that this is more favorable to defining values arbitrarily.

5a) When qualitative descriptions suggested that adjacent horizons were very similar (e.g., similar horizon nomenclature: Bg1, Bg2, Bg3, ...), data from the adjacent horizon were substituted for the missing data.

6) Extrapolation of values assuming a linear rate of change was used to replace missing values in either the uppermost or lowermost horizon. Once again this is a conservative choice because we assumed continuity of trends between adjacent soil horizons.

7) Adjustments/Corrections were made for obvious tabulation errors and large discrepancies between the qualitative descriptions and percent sand, silt, and clay values. For many of the North Central Asia soils and a few soils from the other continental divisions, the particle size analyses were reported in nonstandard international particle size ranges. These data were converted to standard size ranges (sand > 0.05 mm; silt 0.05-0.002 mm; clay < 0.002 mm) by assuming uniform distributions within each reported size range and partitioning the data proportionally.

Missing Data

A number of soil types from each continent were completely missing data. To fill in the textural or depth data for these cases, we substituted data using the same soil type from a different continental division. The substitution order for each continent was made recognizing

similarities in geology and modern climates. Table 2a lists the hierarchy used to substitute data from a different continent. When data for a soil type were absent from all the continents, data were substituted from an adjacent soil type with similar descriptive characteristics. Table 2b lists these soil types and their replacement soil types. Lithosols were assigned a total thickness of 10 cm and the particle size distributions of the C-horizon of a Eutric Regosol. Rankers were assigned a total thickness of 25 cm and the particle size distributions of the A-horizon of a Humic Cambisol. Histosols by definition are organic material and cannot be described in terms of relative percentage of sand, silt, and clay particle sizes. We assigned Histosols an average thickness of 360 cm and arbitrary distribution of particle sizes summing to 100 percent but not used in any subsequent calculations.

The frequency of occurrence of each of the 106 soil types for each of the nine continental divisions and missing data substitutions are listed in Table 3. In most cases, the potential error associated with substituting data for soil types with missing information is not large. The frequency of occurrence for these soils in Zobler's World Soil Data File rarely exceeds 50 1x1 grid cells, excluding Lithosols, Rankers, and Histosols. The most abundant soil type substituted for was Haplic Yermosol, with 615 1x1 grid cells. Among the continental divisions, the absence of soil properties data was most widespread for Mexico/Central America followed by North-Central Asia. We did not substitute data for the missing values of two minor soil types, Ferric Podzol and Gelic Planosol, since these were not present in the Zobler World Soil Data File.

Soil Profile Thickness

Maximum soil depths in the data set are shown in Table 5 and Figure 2. In many cases, the soil profile thicknesses represent minimum possible values because profile descriptions do not always extend to subsurface bedrock. The soil thicknesses range from 10 cm for Lithosol to 800 cm for Distric Nitosol in Africa. The spatial distribution of soil profile thickness can be summarized as thickest in the well-developed soils of tropical low latitudes and thinnest in the poorly developed soils of high latitudes. The soil profiles are thin in mountainous regions such as the Himalayas and Andes and are thick in mid-latitude peatlands such as those found in northern Europe and North America.

Potential Water Storage Calculations

Using the data set, we have calculated three different estimates of potential storage of water in soil. These estimates can be used as proxies for the amount of water in the soil layer available to plants for

evaporation. They were all estimated as the sum of the amount of water in a soil column with a 1x1 cm cross section.

- 1) An estimate of potential storage of water in the soil profile was calculated. The relative saturation capacities for the different particle-size classes and for peat (Histosols) listed in Table 4a.
- 2) An estimate of potential storage of water in the root zone was also calculated. The root-zone thickness was derived using a) information from the simplified 8-type version of the Matthews (1983) 22-type global vegetation data set (Matthews, 1984; Hansen *et al.*, 1983) and b) estimates of maximum root-zone thicknesses for these eight types (Table 4b; Rosenzweig, *unpub.*). When the soil profile thickness is larger than the maximum root-zone thickness, root-zone thickness is limiting.
- 3) The potential storage of water derived from soil texture was calculated as a function of the textural class (Table 4c) of each horizon within the soil profile. The textural class of each horizon was estimated from the relative amounts of sand, silt, and clay.

These estimates of potential storage of water in soil are compared with the global distribution of the vegetation-dependent water-holding capacity prescribed for the GISS GCM Model II (see Table 6 in Hansen *et al.*, 1983). The water-holding capacities in Model II range from 20 mm for desert vegetation to 650 for cm rainforest vegetation. The spatial patterns of this estimate closely correspond to the mapped patterns in Matthews (1983) 22-type global vegetation data set. Low values are concentrated in subtropical and polar desert regions, whereas high values are associated with low latitude rainforests.

Derived Properties

Potential Storage of Water in the Soil Profile

The potential storage of water at 100 percent saturation represents the maximum amount of water that the soil profile can possibly hold (Table 6; Figure 3a). The values for potential storage of water for the entire soil profile range from 42 mm for Lithosol to 4432 mm for Distric Nitosol. The geographic distribution of this estimate shows that areas of high values closely correspond to areas of thick soil profiles with high clay content resulting from greater soil development; likewise, the areas of low values are associated with thin soil profiles with low clay content.

Distinct features include low values for high latitude Lithosols in northeastern Asia, northern North America, mountainous regions, and central desert areas. Large values are located along the equator in South America, Africa, and south Asia, and in midlatitude peatlands of northern Europe and

North America. The major desert regions are not resolved with this estimate because of the relatively large soil horizon thicknesses, underscoring that potential storage of water in the soil profile is the maximum amount of water that can be stored throughout the soil profile. Overall, the potential storage of water in the entire soil profile over estimates the amount of soil water available for evapotranspiration. Soils are rarely completely saturated throughout the profile.

Potential Storage of Water in the Root Zone

The potential storage of water in the root zone is shown in Figure 3b. This measure indirectly includes climate information as a function of the vegetation data because vegetation coverage and associated root-zone thickness reflect climatic moisture gradients. For example, maximum rooting depths in desert regions are determined by water supply. The values of the potential storage of water in the root zone range from less than 2 mm for desert type vegetation associated with Lithosols, Arenosols, and Xerosols to as large as 1700 mm for Woodland, Evergreen, and Deciduous vegetation associated with Histosols.

For the most part, the mapped pattern of this measure resembles the Matthews (1983) 22-type global vegetation data set. Low values associated with major desert areas are well defined in north Africa and central Asia. The low values farther north correspond to high latitude Lithosols. High values in the moderate-to-high latitudes are often associated with forested, deep organic-rich soils. The low values in tropical rainforest areas of northeastern South America and west-central Africa derive from the moderately shallow maximum rooting depth used for rain forest vegetation.

Potential Storage of Water Derived from Soil Texture

A commonly used estimate of the amount of soil moisture available for evapotranspiration is calculated as a function of texture (Table 7; Figure 3c). This estimate is defined as the amount of water released between *in situ* field capacity and the soil wilting point (usually measured as the difference in water content at soil matric potentials of -0.03 MPa and -0.15 MPa; Soil Science Society of America, 1987). The values for potential storage of water derived from soil texture range from 17 mm for Lithosol to 2160 mm for Histosols. In general, the geographic distribution of this estimate shows that areas of high values also correspond to areas of organic soils or thick soil profiles with high clay content resulting from greater soil development.

Comparisons with the GISS GCM Model II Water-Holding Capacities

Spatial variation in the Model II water-holding capacities (Figure 3d), though consistently lower, resembles the estimate of potential storage of water in the root zone (Figure 3b). The similarities in geographic variability result from both the Model II and the root-zone estimates being derived from Matthews (1983) vegetation data set. The maximum possible water-holding capacity used in Model II of the GISS GCM (650 cm) is significantly smaller than the maximum possible values for either of our three estimates of potential storage of water in soil (1700-4432 cm). The mapped values of water-holding capacities used in Model II are concentrated at the low end of the scale and show much broader and smoother patterns of spatial variability than the three estimates we calculated.

Discussion

The task of generalizing soil properties for GCMs requires transforming very heterogeneous high resolution data into representative homogeneous information at a much lower resolution. Variability in soil physical properties (e.g. texture and thickness) is scale-dependent. While there remains a great deal of variability at the subcontinental scale not captured in our data set, we believe characterizing these properties at the continental scale is a necessary first step to improve current specifications of soil in GCMs.

A number of less-than-satisfactory GCM results have been attributed to inadequate ground hydrology parameterizations and the values used for soil water-holding capacity (Rind, 1988; Rind *et al.*, 1990; Delworth and Manabe, 1988; Kellogg and Zhao, 1988). For example, Rind (1988) has suggested that primitive ground hydrology parameterizations in the GISS GCM have resulted in "too much soil moisture and rainfall" for Canada and the northern USA. The data set we have compiled will be used in an updated version of the improved ground hydrology parameterization that is being incorporated into the current version of the NASA/GISS GCM (Abramopoulos *et al.*, 1988). We expect that GISS GCM experiments using the new ground hydrology scheme and the more realistic soil characteristics from our data set will provide insights into climate model sensitivity to energy/moisture fluxes between the land and atmosphere and lead to improved model performance.

Examination of the differences among our three potential storage of water in soil estimates demonstrates the problems that one may encounter portraying soil moisture as a static, empirically-derived estimate. Soil moisture is an extremely interactive measure reflecting the collective influence of climate, soil properties, and vegetation. Focusing on our

results for northern Africa helps to illustrate this point. When the entire soil profile is considered as a possible reservoir, the soil profile has a relatively large storage capacity. In contrast, when only the maximum rooting depth is considered as a possible reservoir, the soil profile has an extremely small storage capacity. The soil texture-based water-storage estimate represents an intermediate alternative with moderately low storage capacity. The GISS Model II water-holding capacities for the region, also derived from vegetation data, are similar to the values based upon rooting depth. Under current dry conditions, the very small capacity seems intuitively more correct; however, if climate change resulted in regionally wetter conditions, the intermediate or the large capacity would be more appropriate.

In addition to describing our data set of physical property of soils, we have presented estimates for soil moisture as the potential storage of water in the soil profile, the potential storage of water in the root zone, and the potential storage of water derived from soil texture. Nevertheless, we feel it is important to caution that realistic estimates of soil moisture can only be calculated using an interactive climate forcing of moisture supply and demand.

Acknowledgements

We would like to thank the following people for help during the compilation of the data set and preparation of the manuscript. Patrice Pazos and Jeff Jonas were indispensable in their computer graphics assistance. Lex Bouwman gave advice on how to substitute for missing data within our data base. David Rind, Daniel Hillel, and Frank Abramopoulos provided useful discussions and critical reviews of preliminary drafts.

Appendix 1: Description of the Computer Files

The particle size data set has been archived at the National Space Science Data Center, NASA/Goddard Space Flight Center, Greenbelt, MD 20771. The data has been stored in free format as four 106x10x15 dimensioned real*4 arrays: depth, sand, silt, and clay. The first dimension (106) corresponds to the sequence number of the soil types in Zobler's (1986) World Soil Data File. The second dimension (10) corresponds to the volume numbers of the nine major continental divisions in the FAO/UNESCO Soil Map of the World, Vols. 2-10 (1971-81). The third dimension (15) corresponds to the individual horizons with data for each soil type from the Morphological, Chemical and Physical Properties Appendix in each of the nine volumes of the FAO/UNESCO Soil Map of the World (1971-81). The data in the sand, silt, and clay arrays are stored as proportional values for each soil horizon. The arbitrary particle size distribution summing to 100 percent included for Histosols (entries 61-63 in the first dimension of each array) should not be used. Instead, values reflecting the physical properties of organic soils and appropriate for specific research objectives should be inserted.

The data in the depth array are scaled in meters with the first value being 0 m depth for each soil type and the subsequent values the contact depths of contiguous horizons. By definition, the depth array contains one extra value for the third dimension corresponding to the bottom depth of the lowest horizon for each soil type. Within the data set, no soil type had more than 14 soil horizons. In cases when the number of horizons in a soil type was less than 14, we used -1.0 values to flag the end of the record for each soil type. For example, a soil type with 10 horizons has 10 data entries in the sand, silt, and clay arrays, 11 data entries for the depth array, and -1.0 values for entries 11 - 15 in each array (entries 12 - 15 for the depth array).

References

Abramopoulos, F., Rosenzweig, C., and Choudhury, B. (1988) Improved Ground Hydrology Calculations for Global Climate Models (GCMS): Soil Water Movement and Evaporation. *Journal of Climate*, 1, 921-941.

Bouwman, A.F., Fung, I.Y., Matthews, E.E., and John, J.G. (1991) Global model of Nitrous Oxides production from natural soils. *Global Biogeochemical Cycles*, submitted.

Buol, S.W., Hole, F.D., McCracken, R.J. (1973) *Soil Genesis and Classification*. The Iowa State University Press, Ames, Iowa.

Delworth, T.L., and Manabe, S. (1988) The influence of potential evaporation of the variabilities of simulated soil wetness and climate. *Journal of Climate*, 1, 523-547.

FAO-UNESCO (1971-1981) *Soil Map of the World*, 1:5,000,000, Volumes II-X. UNESCO, Paris.

Hansen, J., Russell, G., Rind, D., Stone, P., Lacis, A., Lebedeff, S., Reudy, R., and Travis, L. (1983) Efficient three-dimensional global models for climate studies. *Monthly Weather Review*, 111, 609-662.

Henderson-Sellars, A., Wilson, M.F., Thomas, R., and Dickinson, R.E. (1986) Current Global Land-Surface Data Sets for Use in Climate-Related Studies. NCAR Technical Note NCAR/TN-272+STR.

Kellogg, W.W., and Zhao, Z.C. (1988) Sensitivity of soil moisture to doubling of carbon dioxide in climate modeling experiments, I, North America. *Journal of Climate*, 1, 348-366.

Matthews, E. (1984) Prescription of Land-Surface Boundary Conditions in GISS GCM II: A simple method based on high-resolution vegetation data bases. NASA Technical Memorandum #86096.

Matthews, E. (1983) Global Vegetation and land use: New high-resolution data bases for climate studies. *Journal of Climate and Applied Meteorology*, 22, 474-487.

Petersen, G.W., Cunningham, R.L., Matelski, R.P. (1968) Available moisture within selected Pennsylvania soil series. *Pennsylvania State University Agronomy Series #3*, 21pp.

Rind. D. (1988) The Doubled CO₂ Climate and the Sensitivity of the Modeled Hydrologic Cycle. *Journal of Geophysical Research*, 93 (D5), 5386-5412.

Rind. D., Goldberg, R., Hansen, J., Rosenzweig, C., and Ruedy, R. (1990) Potential evapotranspiration and the likelihood of future drought. *Journal of Geophysical Research*, 95 (D7), 9983-10004.

Soil Science Society of America (1987) Glossary of Soil Science Terms. Soil Science Society of America. Madison, WI.

Webb. R.S. (1990) Late Quaternary Water-Level Fluctuations in the Northeastern United States. Brown University Ph.D. thesis, Providence, RI.

Zobler, L. (1986) A World Soil File for Global Climate Modeling. NASA Technical Memorandum #87802.

Figure Captions

Figure 1. Global distribution of 26 major soil units mapped by Zobler (1986).

Figure 2. Global distribution of soil profile thickness based on maximum soil depth of each soil type.

Figure 3. Global distribution of *a*- the potential storage of water in the soil profile, *b*- the potential storage of water in the root zone, *c*- the potential storage of water derived from soil texture, and *d*- water-holding capacity prescribed for the GISS GCM Model II.

Table 1. Key punching corrections/modifications to each soil type by continent.

Soil Soil Num. Code	Soil Name	North America	Mexico/ Central America	Europe	Africa	South Central Asia	South Central Asia	North East Asia	South East Asia	Australia /South Asia
1 AF	Ferric Acrisol				2,4 4,6			1,3,4,5 1,2,4 1,2,3,4 4	2 5	
2 AG	Gleyic Acrisol				4,5 4,6			1,2,4 1,2,3,4 4	6,7	
3 AH	Humic Acrisol	1,4		1,2,4						
4 AO	Orthic Acrisol									
5 AP	Plinthic Acrisol									
6 BC	Chromic Cambisol	1		1,3 3,4	4,6 4,5 5			2,3,6,7 1	6 5	
7 BD	Dystric Cambisol	1								
8 BE	Eutric Cambisol	1								
9 BF	Ferralsic Cambisol									
10 BG	Gleyic Cambisol									
11 BH	Humic Cambisol									
12 BK	Calcic Cambisol									
13 BV	Vertic Cambisol	4						4,6,7		
14 BX	Gelic Cambisol	4								
15 CG	Glossic Chernozem									
16 CH	Haplic Chernozem	2								
17 CK	Calcic Chernozem	2								
18 CL	Luvic Chernozem	2,4								
19 DD	Dystric Podzoluvisol									
20 DE	Eutric Podzoluvisol									
21 DG	Gleyic Podzoluvisol									
22 E	Rendzina	1	1		1,2,3,4 4 3,4			1,7 1	1,5	
23 FA	Acric Ferralsol				5					
24 FH	Humic Ferralsol				1				1	
25 FO	Orthic Ferralsol				1,4				4	
26 FP	Plinthic Ferralsol									
27 FR	Rhodic Ferralsol									
28 FX	Xanthic Ferralsol									
29 GC	Calcaric Gleysol									
30 GD	Dystric Gleysol									
31 GE	Eutric Gleysol	1,6								
32 GH	Humic Gleysol									
33 GM	Mollie Gleysol	2,4								
34 GP	Plinthic Gleysol									

79	SM	Mollie Solonetz	2, 3, 4	6	4, 7	4	2, 7	2, 4	1	4, 5
80	SO	Orthic Solonetz		2, 6	1					5, 6
81	TH	Humic Andosol		1						1
82	TM	Mollie Andosol								2, 6
83	TO	Ochric Andosol								
84	TV	Vitric Andosol								
85	U	Ranker								
86	VC	Chromic Vertisol								5
87	VP	Pellic Vertisol		1						4, 5, 6
88	WD	Dystric Planosol								
89	WE	Eutric Planosol		1						5
90	WH	Humic Planosol								
91	WM	Mollie Planosol								
92	WS	Solodic Planosol								
93	WX	Gelic Planosol								
94	XH	Haplic Xerosol								
95	XR	Calic Xerosol	4							
96	XL	Luvic Xerosol		1						
97	XY	Gypsic Xerosol								
98	YH	Haplic Yermosol								
99	YK	Calic Yermosol		1						
100	YL	Luvic Yermosol								
101	YT	Takyric Yermosol								
102	YY	Gypsic Yermosol								
103	ZG	Gleyic Solonchak								
104	ZM	Mollie Solonchak								
105	ZO	Orthic Solonchak								
106	ZT	Takyric Solonchak								

KEY

- 1 one or more horizon in soil profile deleted
- 2 default depth for bottom of profile set to 3.6 meters
- 3 depth data for one or more horizons in profile corrected/adjusted
- 4 clay particle size data for one or more horizons in profile normalized to sum to 100 percent
- 5 clay particle size data for one or more horizons in profile interpolated
- 6 particle size data for one or more horizons in profile extrapolated
- 7 particle size data for one or more horizon in profile corrected/adjusted

Table 2a. Hierarchy for substituting for missing data using information from a different continent.

North America	Mexico/ Central America	South America	Europe	Africa	South Central Asia	North Central Asia	Southeast Asia	Australia /Southern Asia
Mexico/CA	S America	Mexico/CA	NC Asia	S America	SE Asia	Europe	SC Asia	SE Asia
Europe	N America	Africa	N America	SC Asia	NC Asia	SC Asia	NC Asia	Africa
NC Asia	Africa	N America	SC Asia	Europe	Africa	SE Asia	Austr/Asia	S America
S America	SC Asia	Austr/Asia	Africa	Austr/Asia	Europe	N America	Africa	SC Asia
Africa	SE Asia	SE Asia	Mexico CA	Mexico CA	Austr/Asia	Austr/Asia	N America	N America
Austr/Asia	Europe	SC Asia	Austr/Asia	SE Asia	Mexico CA	S America	Mexico CA	Mexico CA
SC Asia	Austr/Asia	Europe	S. America	N America	N America	Africa	Europe	Europe
SE Asia	NC Asia	NC Asia	SE Asia	NC Asia	S America	Mexico CA	S America	NC Asia

Table 2b. Substitutions for missing data using other data from adjacent soil type.

Missing Data Soil Types	Replacement Soil Types
<i>1- Direct Substitutions</i>	
Glossic Chernozem (CG)	Haplic Kastanozem (KH)
Plinthic Gleysol (GP)	Plinthic Acrisol (AP)
Gelic Gleysol (GX)	Gelic Regosol (RX)
Vertic Luvisol (LV)	Chromic Luvisol (LC)
Gelic Greyzem (MG)	Orthic Greyzem (MO)
Humic Nitosol (NH)	Eutric Nitosol (NE)
Dystric Planosol (WD)	Eutric Planosol (WE)
Humic Planosol (WS)	Solodic Planosol (WS)
Takytic Yermosol (YT)	Takytic Solonchak (ZT)
Gelic Solonchak (ZG)	Mollie Solonchak (ZM)
<i>2- Special substitution for Europe</i>	
Gelic Solonchak (ZG)	Eutric Gleysol (GE)
<i>3- Substitution of selected horizon of soil type</i>	
Lithosol (i)	10 cm thick C-Horizon of Eutric Regosol
Ranker (U)	25 cm thick A-Horizon of Humic Cambisol
Histsols (OD, OE, OX)	360 cm thick 100% peat layer

Table 3. Summary of frequency of occurrence of each soil type in Zobler World Soil File with numeric and letter codes in parentheses flagging the type of missing data substitution.

Soil Num. Soil Code	Soil Name	North America	Mexico/ Central America	South America	Europe	Africa	South- Central Asia	South- Central Asia	North- Central Asia	South- East Asia	Australia /South Asia
1 AF	Ferric Acrisol	26	1(2)	1(6)		49	1(9)			65	
2 AG	Gleyic Acrisol	12	1(2)						13	9	
3 AH	Humic Acrisol	6	10						17	2	
4 AO	Orthic Acrisol	82	12(4)	113	7(2)	20	12(9)	9(9)	246	7	
5 AP	Plinthic Acrisol	6(6)	1(6)	52(6)		5	2(9)		2		
6 BC	Chromic Cambisol	9(6)			13(8)	24	1(8)	15	9(8)	4	
7 BD	Dystric Cambisol	86(5)	8(7)	16(10)	80	9(7)	16	27(5)	23(7)	16	
8 BE	Eutric Cambisol	116(5)	7(6)	10(6)	69	20	36	14(5)	3	3	
9 BF	Ferralsic Cambisol					11	1(9)			1(9)	
10 BG	Gleyic Cambisol							18(5)	6		
11 BH	Humic Cambisol	7(4)			3				1(6)		
12 BK	Callic Cambisol	1(5)		5(6)	2(6)	10(7)	7	4	14(7)	2	
13 BV	Vertic Cambisol			2		54	6	1	15(5)		
14 BX	Gelic Cambisol	11				9	4(5)	5(5)			
15 CG	Glossic Chernozem								450		
16 CH	Haplic Chernozem	30				73			8(RH)		
17 CK	Callic Chernozem	4				10			58(5)		
18 CL	Luvic Chernozem	15				41			27(5)		
19 DD	Dystric Podzoluvisol					49			29(5)		
20 DE	Eutric Podzoluvisol	8				159			60(5)		
21 DG	Gleyic Podzoluvisol					4			69(5)		
22 E	Rendzina	3		13(2)		25		4(5)	40(5)		
23 FA	Acric Ferralsol		1(4)	56						4(2)	
24 FH	Humic Ferralsol			14(6)		1				8(6)	
25 FO	Orthic Ferralsol			204		208				3	
26 FP	Plinthic Ferralsol						29	1(9)		2(6)	
27 FR	Rhodic Ferralsol						93			9(9)	
28 FX	Xanthic Ferralsol									3	
29 GC	Calcaric Gleysol	1(8)						2(8)		4(8)	
30 GD	Dystric Gleysol	139(5)	1(4)	39	4		1(6)		39(5)	1(6)	
31 GE	Eutric Gleysol	30	2(4)	5	14		6		10(5)	42	
32 GH	Humic Gleysol	1				22		9	10(5)	4(10)	
33 GM	Mollic Gleysol	7	2(2)	6(2)		9(4)		2(2)	43(2)	5(2)	

36	HC	Calcaric Phaeozem	5		4(5)		1(4)
37	HG	Gleyic Phaeozem	6	2	17(5)		1(4)
38	HH	Haplic Phaeozem	25	2			52
39	HL	Luvic Phaeozem	43	16			
40	I	Lithosol	296	37			
41	JC	Calcaric Fluvisol	4	19	108	242	108
42	JD	Dystric Fluvisol	1(2)	164	11	10	4
43	JE	Eutric Fluvisol	39(3)	1(2)	17	14	11(2)
44	JT	Thionic Fluvisol	14(3)	39(3)	3(2)	33(2)	13(7)
45	KH	Haplic Kastanozem	54	11(4)	14	26(7)	7
46	KK	Calcidic Kastanozem	2	32	62(8)	7	2
47	KL	Luvic Kastanozem	123	17(2)	8	99	
48	LA	Albic Luvisol	149	32	1		
49	LG	Chromic Luvisol	27	11(2)	20(2)	12	110
50	LF	Ferric Luvisol	3(4)	42(6)	1(2)		
51	LG	Gleyic Luvisol	1(2)	47	29	44	11(7)
52	LK	Calcidic Luvisol	13(5)	4	1(6)	19(9)	2
53	LO	Orthic Luvisol	48	12(2)	43	13(5)	1
54	LP	Plinthic Luvisol	5(6)	7(2)	7	21(5)	1
55	LV	Vertic Luvisol		5(6)	86	12(9)	38
56	MG	Gleyic Gleyzem	5	1(1)	14	3(5)	6
57	MO	Orthic Gleyzem	5	6	1(LC)	6	2
58	ND	Dystric Nitosol	5(4)	11	1(5MO)	15(5MO)	5(9)
59	NE	Eutric Nitosol	5(4)	9	12(5)	2	4(9)
60	NH	Humic Nitosol					
61	OD	Dystric Histosol	53				
62	OE	Eutric Histosol	7				
63	OX	Gelic Histosol	95				
64	PF	Ferric Podzol	8				
65	PG	Gleyic Podzol					
66	PH	Humic Podzol	3				
67	PL	Leptic Podzol	8				
68	PO	Orthic Podzol	331				
69	PP	Placic Podzol					
70	QA	Albic Arenosol					
71	QC	Cambic Arenosol					
72	QF	Ferralsic Arenosol					
73	QL	Luvic Arenosol					
74	RC	Calcaric Regosol	40	1		2(10)	4
75	RD	Dystric Regosol	3	11(2)	70	1	113

78	SG	Gleyic Solonetz	10		12	1(8)		1(5)	
79	SM	Mollic Solonetz	2	1(6)	13	11	12		36
80	SO	Orthic Solonetz		15	1		11(5)	2	1
81	TH	Humic Andosol		2(9)	1(9)	3(9)	3		
82	TM	Mollic Andosol	1(9)		1(5)	23(5)	6(10)		1
83	TO	Ochric Andosol				4(5)	1(10)	4	
84	TV	Vitric Andosol	21(3)	17	4	5			
85	U	Ranker			2	2			
86	VC	Chromic Vertisol	1		2	1	49		
87	VP	Pellic Vertisol	7	14(4)	12	7	47		
88	WD	Dystric Planosol				30	9		77
89	WE	Eutric Planosol	6(5)	1(4)	34	2	9		8
90	WH	Humic Planosol						4(5)	1
91	WM	Mollic Planosol			15				1(WS)
92	WS	Solodic Planosol		1(4)			12		42
93	WX	Gelic Planosol							
94	XH	Haplic Xerosol	4(8)	1(4)	33	22(8)	43(4)	7	13
95	XX	Calccic Xerosol	3	7(2)	12(6)	43	68	5(6)	30(5)
96	XL	Luvic Xerosol	21	5(2)		14(2)	1(2)	81(2)	74
97	XY	Gypsic Xerosol				3(6)	3		
98	YH	Haplic Yermosol	13(10)	13(7)	34(10)	2(7)	385(7)	42	168(7)
99	YK	Calccic Yermosol	9	1(2)		27(8)	102	123	33
100	YL	Luvic Yermosol	61	10(2)	56(2)		14(10)		86
101	YT	Takyric Yermosol						18(7K)	
102	YY	Gypsic Yermosol				11(7)	28(7)	7	19(7)
103	ZG	Gleyic Solonchak				8(6YK)	2(GE)	5(YK)	6(YK)
104	ZM	Mollic Solonchak						6	2(7YK)
105	ZO	Orthic Solonchak				3(2)	9	32(8)	36
106	ZT	Takyric Solonchak					1(8)		3(2)
									2(6)

Key to substitution codes

- 2 North America 7 South Central Asia
- 3 Mexico/Central America 8 North Central Asia
- 4 South America 9 Southeast Asia
- 5 Europe 10 Australia/South Asia
- 6 Africa Two letter codes refer to Column 2 within table

Table 4a. Maximum relative saturation for different soil classes.

Sand	0.394	(Zobler, unpub.)
Silt	0.537	(Zobler, unpub.)
Clay	0.577	(Zobler, unpub.)
Peat	0.85	(Webb, 1990)

Table 4b. Maximum rooting depth (m) of eight major vegetation types (Rosenzweig, unpub.).

Desert	0.005
Tundra	0.1
Grassland	1.1
Shrub	1.5
Woodland	2.0
Deciduous	2.0
Evergreen	2.0
Rainforest	0.8

Table 4c. Relative amount of available water for different soil textures (Petersen et al., 1968)

Sand	0.04
Loamy Sand	0.08
Sandy Loam,	
Sandy Clay Loam,	
Clay Loam,	
Sandy Clay,	
Silty Clay,	
Clay	0.14
Silty Clay Loam,	
Loam	0.17
Silt Loam,	
Silt	0.20
Organic Soil	0.60

Table 5. Soil thickness for 106 soil types, 9 continents (cm)

Soil Num.	Soil Name	North America	Mexico/ Central America	South America	Europe	Africa	South Central Asia	North Central Asia	South east Asia	South Australia /South Asia
1 AF	Ferric Acrisol	61	360	61	360	210	210	210	210	360
2 AG	Gleyic Acrisol	119	119	150	119	150	90	90	90	150
3 AH	Humic Acrisol	86	190	190	86	180	360	360	360	180
4 AO	Orthic Acrisol	142	250	250	142	183	360	360	360	90
5 AP	Plinthic Acrisol	120	120	120	120	120	360	360	360	360
6 BC	Chromic Cambisol	360	132	132	360	132	360	360	360	137
7 BD	Dystric Cambisol	115	182	66	115	182	182	115	182	66
8 BE	Eutric Cambisol	125	150	150	125	150	137	125	125	120
9 BF	Ferralsic Cambisol	235	235	235	235	235	138	138	138	138
10 BG	Gleyic Cambisol	360	150	150	360	150	150	360	150	150
11 BH	Humic Cambisol	300	300	300	137	360	137	137	137	107
12 BK	Calic Cambisol	360	70	70	360	70	55	360	150	150
13 BV	Vertic Cambisol	130	130	130	151	151	151	151	130	130
14 BX	Gelic Cambisol	98	98	80	98	80	80	80	80	98
15 CG	Glossic Chernozem	360	80	80	360	80	360	360	360	76
16 CH	Haplic Chernozem	360	360	360	160	160	160	160	360	360
17 CK	Calic Chernozem	360	360	360	108	108	108	108	360	360
18 CL	Luvic Chernozem	360	360	360	200	200	200	200	360	360
19 DD	Dystric Podzoluvisol	360	360	360	360	360	360	360	360	360
20 DE	Eutric Podzoluvisol	152	152	152	205	205	205	205	152	152
21 DG	Gleyic Podzoluvisol	150	150	150	150	150	150	150	150	150
22 E	Rendzina	61	61	61	55	55	55	55	61	61
23 FA	Acric Ferralsol	460	460	460	150	460	200	200	200	150
24 FH	Humic Ferralsol	360	360	360	360	360	360	360	360	360
25 FO	Orthic Ferralsol	270	270	270	400	400	140	140	140	122
26 FP	Plinthic Ferralsol	258	258	258	258	258	258	258	258	258
27 FR	Rhodic Ferralsol	130	130	130	360	360	360	360	360	360
28 FX	Xanthic Ferralsol	250	250	250	150	150	150	250	150	150
29 GC	Calcaric Gleysol	100	100	100	100	100	100	100	100	100
30 GD	Dystric Gleysol	360	130	130	360	180	180	360	180	180
31 GE	Eutric Gleysol	107	150	150	360	138	360	120	120	120
32 GH	Humic Gleysol	127	125	125	360	125	360	360	360	360
33 GM	Mollic Gleysol	360	360	360	120	120	122	122	122	122
34 GP	Plinthic Gleysol	120	120	120	120	120	120	120	120	122

79	SM	Mollie Solonetz	360	150	190	150	190	150	190	150
80	SO	Orthic Solonetz	104	104	100	170	100	360	170	360
81	TH	Humic Andosol	110	360	360	110	360	150	110	150
82	TM	Mollie Andosol	360	360	360	360	360	360	360	360
83	TO	Ochric Andosol	130	130	360	130	130	130	130	360
84	TV	Vitric Andosol	175	175	360	150	360	150	150	122
85	U	Ranker	25	25	25	25	25	25	25	25
86	VC	Chromic Vertisol	124	142	142	150	250	183	150	180
87	VP	Pellic Vertisol	244	170	170	210	100	132	210	220
88	WD	Dystric Planosol	200	150	150	200	127	127	200	70
89	WE	Eutric Planosol	200	150	150	200	127	127	200	70
90	WH	Humic Planosol	360	360	360	180	180	180	107	107
91	WM	Mollie Planosol	125	125	125	125	125	125	125	125
92	WS	Solodic Planosol	360	360	360	180	180	180	107	107
93	WX	Gelic Planosol								
94	XH	Haplic Xerosol	360	180	180	360	180	152	360	152
95	XK	Calcic Xerosol	157	157	75	100	75	75	100	152
96	XL	Luvic Xerosol	96	96	96	96	96	96	96	96
97	XY	Gypsic Xerosol	140	140	140	140	140	140	140	140
98	YH	Haplic Yermosol	48	140	48	140	140	140	140	140
99	YK	Calcic Yermosol	117	117	128	360	128	100	360	100
100	YL	Luvic Yermosol	168	168	168	168	178	178	168	178
101	YT	Takyric Yermosol	117	117	128	360	128	100	360	100
102	YY	Gypsic Yermosol	500	500	500	500	500	500	500	500
103	ZG	Gleyic Solonchak	117	117	128	360	128	100	360	100
104	ZM	Mollie Solonchak	150	150	150	150	150	150	150	150
105	ZO	Orthic Solonchak	102	102	102	360	360	360	360	360
106	ZT	Takyric Solonchak	300	99	99	300	99	300	300	300

Table 6. Potential storage of water in the soil profile for the 106 soil types, 9 continents (mm)

Soil Num.	Soil Code	Soil Name	North America	Mexico / Central America	South America	Europe	Africa	South Central Asia	South East Asia	North Asia	South Asia	Australia /South Asia
1	AF	Ferric Acrisol	279	279	1917	279	1917	1001	1001	1001	1001	1834
2	AG	Gleyic Acrisol	592	592	763	592	763	486	486	486	486	671
3	AH	Humic Acrisol	473	1074	1074	473	836	1879	1879	1879	1879	836
4	AO	Orthic Acrisol	658	1130	1130	658	937	1846	1846	1846	1846	393
5	AP	Plinthic Acrisol	581	581	581	581	581	1741	1741	1741	1741	1741
6	BC	Chromic Cambisol	1698	680	680	1698	680	1698	1698	1698	1698	737
7	BD	Dystric Cambisol	569	865	327	569	865	865	569	569	865	327
8	BE	Eutric Cambisol	685	764	764	685	764	595	685	685	1922	563
9	BF	Ferralsic Cambisol	1096	1096	1096	1096	1096	722	722	722	722	722
10	BG	Gleyic Cambisol	1742	651	651	1742	651	651	1742	651	651	651
11	BH	Humic Cambisol	1368	1368	1368	573	573	1596	573	573	573	499
12	BK	Calccic Cambisol	1827	353	353	1827	353	296	1827	1827	790	790
13	BV	Vertic Cambisol	679	679	679	835	835	835	835	835	679	679
14	BX	Gelic Cambisol	508	508	508	376	376	376	376	376	376	508
15	CG	Glossic Chernozem	1661	377	377	1888	377	1888	1888	1888	1888	354
16	CH	Haplic Chernozem	1705	1705	1705	823	823	823	823	823	823	1705
17	CK	Calcic Chernozem	1614	1614	1614	591	591	591	591	591	591	1614
18	CL	Luvic Chernozem	1751	1751	1751	1110	1110	1110	1110	1110	1110	1751
19	DD	Dystric Podzoluvisol	1945	1945	1945	1945	1945	1945	1945	1945	1945	1945
20	DE	Eutric Podzoluvisol	737	737	737	1087	1087	1087	1087	1087	1087	737
21	DG	Gleyic Podzoluvisol	731	731	731	731	731	731	731	731	731	731
22	E	Rendzina	311	311	311	286	286	286	286	286	311	311
23	FA	Acric Ferralsol	2570	2570	2570	774	2570	1092	1092	1092	1092	774
24	FH	Humic Ferralsol	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
25	FO	Orthic Ferralsol	1530	1530	1530	1948	1948	655	655	655	655	681
26	FP	Plinthic Ferralsol	1311	1311	1311	1311	1311	1311	1311	1311	1311	1311
27	FR	Rhodic Ferralsol	683	683	683	1884	1884	1945	1945	1945	1945	1945
28	FX	Xanthic Ferralsol	1379	1379	1379	685	685	685	685	685	685	685
29	GC	Calcaric Gleysol	553	553	553	553	553	553	553	553	553	553
30	GD	Dystric Gleysol	1718	662	662	1718	772	772	1718	772	772	772
31	GE	Eutric Gleysol	599	823	823	2014	1499	716	2014	671	671	671
32	GH	Humic Gleysol	511	677	677	1689	677	1689	1689	1722	1722	1722
33	GM	Mollic Gleysol	2019	2019	2019	2019	2019	2019	2019	2019	2019	2019
34	GP	Plinthic Gleysol	581	581	581	581	581	581	581	573	573	573

37	HG	1126	1126	1969	1969	670
38	HH	1065	1065	1698	1192	1698
39	HL	1065	1770	1115	1115	1770
40	I	968	42	42	42	42
41	JC	Lithosol	718	665	665	513
42	JD	Calcaric Fluvisol	1903	1903	1903	1903
43	JE	Dystric Fluvisol	1008	1008	1609	585
44	JT	Eutric Fluvisol	828	828	649	765
45	KH	Thionic Fluvisol	1661	377	1888	1037
46	KK	Haplic Kastanozem	1907	269	974	1888
47	KL	Calcic Kastanozem	1851	1851	870	354
48	LA	Luvic Kastanozem	1851	912	912	870
49	LC	Albic Luvisol	575	575	733	870
50	LF	Chromic Luvisol	558	917	733	1851
51	LG	Orthic Luvisol	895	895	513	1851
52	LK	Ferric Luvisol	895	1770	1770	1037
53	LO	Gleyic Luvisol	907	907	1037	1037
54	LP	Calic Luvisol	1704	839	1888	1037
55	LV	Orthic Luvisol	910	910	1888	1037
56	MG	Plinthic Luvisol	910	910	1888	1037
57	MO	Vertic Luvisol	1781	1781	1888	1037
58	ND	Gleyic Greyzem	558	917	917	1037
59	NE	Orthic Greyzem	1928	1928	1888	1037
60	NH	Dystric Nitosol	1928	1928	1888	1037
61	OD	Eutric Nitosol	1038	1038	1888	1037
62	OE	Humic Nitosol	1352	1352	1888	1037
63	OX	Dystric Histosol	1352	1352	1888	1037
64	PF	Eutric Histosol	3060	3060	1888	1037
65	PG	Gelic Histosol	3060	3060	1888	1037
66	PH	Ferric Podzol	3060	3060	1888	1037
67	PL	Gleyic Podzol	429	429	1443	1443
68	PO	Humic Podzol	1468	774	1468	1443
69	PP	Leptic Podzol	467	467	774	429
70	QA	Orthic Podzol	1199	1199	1521	429
71	QC	Placic Podzol	1603	1807	1603	258
72	QF	Albic Arenosol	477	477	1603	467
73	QL	Cambic Arenosol	1633	815	1603	467
74	RC	Ferralsic Arenosol	2563	2563	1603	798
75	RD	Luvic Arenosol	674	626	1603	1807
76	RE	Calcaric Regosol	653	653	1603	3273
		Dystric Regosol	490	490	490	502
		Eutric Regosol	1529	1529	700	502

79	SM	Mollie Solonetz	2017	690	690	936	936	690	690
80	SO	Orthic Solonetz	501	501	463	881	1726	881	628
81	TH	Humic Andosol	532	1877	532	1877	693	532	1536
82	TM	Mollie Andosol	1897	1897	1897	1897	1897	1897	1897
83	TO	Ochric Andosol	674	674	1605	674	674	1605	1605
84	TV	Vitric Andosol	851	851	1506	717	717	523	523
85	U	Ranker	116	116	116	116	116	116	116
86	VC	Chromic Vertisol	673	717	762	1285	952	762	973
87	VP	Pellic Vertisol	1298	866	866	1159	552	650	1230
88	WD	Dystric Planosol	1070	730	730	1070	588	588	305
89	WE	Eutric Planosol	1070	730	730	1070	588	588	305
90	WH	Humic Planosol	1663	1663	1663	840	840	552	552
91	WM	Mollie Planosol	631	631	631	631	631	631	631
92	WS	Solodic Planosol	1663	1663	1663	840	840	552	552
93	WX	Gelic Planosol							
94	XH	Haplic Xerosol	1813	787	787	1813	787	807	1813
95	XX	Calcic Xerosol	782	782	347	535	347	535	656
96	XL	Luvic Xerosol	466	466	466	466	466	466	466
97	XY	Gypsic Xerosol	580	580	580	580	580	580	580
98	YH	Haplic Yermosol	209	746	209	746	746	746	746
99	YK	Calcic Yermosol	508	508	609	1657	609	465	1657
100	YL	Luvic Yermosol	731	731	731	731	851	731	851
101	YT	Takyric Yermosol	508	508	609	1657	609	465	1657
102	YY	Gypsic Yermosol	2402	2402	2402	2402	2402	2402	2402
103	ZG	Gleyic Solonchak	508	508	609	2014	609	465	1657
104	ZM	Mollie Solonchak	819	819	819	819	819	819	609
105	ZO	Orthic Solonchak	472	472	1907	1907	1927	1927	819
106	ZT	Takyric Solonchak	1601	543	1601	543	1601	1601	543

Table 7. Potential storage of water derived from soil texture for the 106 soil types, 9 continents (mm)

Soil Soil Num. Code	Soil Name	North America	Mexico/ Central America	South America	Europe	Africa	South- Central Asia	North- Central Asia	South- east Asia	Australia /South Asia
1 AF	Ferric Acrisol	104	104	612	104	612	357	357	357	612
2 AG	Gleyic Acrisol	203	203	255	203	255	153	153	153	255
3 AH	Humic Acrisol	147	323	323	147	306	612	612	612	306
4 AO	Orthic Acrisol	242	425	425	242	311	612	612	612	153
5 AP	Plinthic Acrisol	204	204	204	204	204	612	612	612	612
6 BC	Chromic Cambisol	612	224	224	612	224	612	612	612	233
7 BD	Dystric Cambisol	195	309	112	195	309	309	195	309	112
8 BE	Eutric Cambisol	212	255	255	212	255	233	212	612	204
9 BF	Ferralsic Cambisol	399	399	399	399	399	235	235	235	235
10 BG	Gleyic Cambisol	612	255	255	612	255	255	612	255	255
11 BH	Humic Cambisol	510	510	233	612	233	233	233	233	182
12 BK	Calcic Cambisol	612	119	119	612	119	93	612	255	255
13 BV	Vertic Cambisol	221	221	221	258	258	258	258	221	221
14 BX	Gelic Cambisol	166	166	166	136	166	136	136	136	166
15 CG	Glossic Chernozem	612	136	136	612	136	612	612	612	129
16 CH	Haplic Chernozem	612	612	612	272	272	272	272	612	612
17 CK	Calic Chernozem	612	612	612	184	184	184	184	612	612
18 CL	Luvic Chernozem	612	612	612	340	340	340	340	612	612
19 DD	Dystric Podzoluvisol	612	612	612	612	612	612	612	612	612
20 DE	Eutric Podzoluvisol	259	259	259	348	348	348	348	259	259
21 DG	Gleyic Podzoluvisol	255	255	255	255	255	255	255	255	255
22 E	Rendzina	104	104	104	93	93	93	93	104	104
23 FA	Aeric Ferralsol	782	782	782	255	782	340	340	340	255
24 FH	Humic Ferralsol	612	612	612	612	612	612	612	612	612
25 FO	Orthic Ferralsol	442	442	442	680	680	238	238	238	207
26 FP	Plinthic Ferralsol	439	439	439	439	439	439	439	439	439
27 FR	Rhodic Ferralsol	221	221	221	612	612	612	612	612	612
28 FX	Xanthic Ferralsol	425	425	425	253	253	253	425	253	253
29 GC	Calcaric Gleysol	170	170	170	170	170	170	170	170	170
30 GD	Dystric Gleysol	612	221	221	612	306	306	612	306	306
31 GE	Eutric Gleysol	181	255	255	612	235	612	204	204	204
32 GH	Humic Gleysol	216	212	212	612	212	612	612	612	612
33 GM	Mollic Gleysol	612	612	612	204	204	204	612	612	612
34 GP	Plinthic Gleysol	204	204	204	204	204	204	612	612	612

37	HG	Gleyic Phaeozem	350	612	612	207
38	HH	Haplic Phaeozem	333	612	425	612
39	HL	Luvic Phaeozem	302	612	348	333
40	I	Lithosol	17	17	17	17
41	JC	Calcaric Fluvisol	259	238	238	302
42	JD	Dystric Fluvisol	612	612	612	612
43	JE	Eutric Fluvisol	340	340	204	204
44	JT	Thionic Fluvisol	255	255	204	238
45	KH	Haplic Kastanozem	612	136	612	170
46	KK	Calcic Kastanozem	600	93	136	170
47	KL	Luvic Kastanozem	612	612	612	612
48	LA	Albic Luvisol	201	201	201	323
49	LC	Chromic Luvisol	212	212	328	323
50	LF	Ferric Luvisol	355	355	255	323
51	LG	Gleyic Luvisol	315	315	328	323
52	LK	Calcic Luvisol	612	306	306	323
53	LO	Orthic Luvisol	285	285	285	323
54	LP	Plinthic Luvisol	612	612	612	323
55	LV	Vertic Luvisol	212	212	328	323
56	MG	Gleyic Greyzem	612	612	323	323
57	MO	Orthic Greyzem	612	612	323	323
58	ND	Dystric Nitosol	323	323	263	263
59	NE	Eutric Nitosol	425	425	418	263
60	NH	Humic Nitosol	425	425	418	204
61	OD	Dystric Histosol	2160	2160	2160	204
62	OE	Eutric Histosol	2160	2160	2160	204
63	OX	Gelic Histosol	2160	2160	2160	204
64	PF	Ferric Podzol	181	181	181	181
65	PG	Gleyic Podzol	181	181	612	181
66	PH	Humic Podzol	612	331	331	102
67	PL	Leptic Podzol	173	173	110	102
68	PO	Orthic Podzol	514	514	612	173
69	PP	Placic Podzol	612	612	612	340
70	QA	Albic Arenosol	204	204	1190	340
71	QC	Cambic Arenosol	612	340	612	340
72	QF	Ferralsic Arenosol	1020	1020	1020	187
73	QL	Luvic Arenosol	272	255	272	187
74	RC	Calcaric Regosol	207	207	207	255
75	RD	Dystric Regosol	207	207	207	255
76	RE	Eutric Regosol	612	612	297	255

79	SM	Mollic Solonetz	612	255	255	323	323	255
80	SO	Orthic Solonetz	177	177	170	289	289	612
81	TH	Humic Andosol	187	612	612	187	612	229
82	TM	Mollic Andosol	612	612	612	612	612	612
83	TO	Ochric Andosol	221	221	612	221	221	612
84	TV	Vitrific Andosol	178	178	612	255	255	207
85	U	Ranker	43	43	43	43	43	43
86	VC	Chromic Vertisol	212	241	241	255	425	311
87	VP	Pellic Vertisol	414	289	289	357	170	224
88	WD	Dystric Planosol	340	255	255	340	340	357
89	WE	Eutric Planosol	340	255	255	340	216	216
90	WH	Humic Planosol	612	612	612	306	306	306
91	WM	Mollic Planosol	212	212	212	212	212	119
92	WS	Solidic Planosol	612	612	612	306	306	119
93	WX	Gelic Planosol						119
94	XX	Haplic Xerosol	612	306	306	612	306	182
95	XX	Calccic Xerosol	268	268	127	170	127	182
96	XL	Luvic Xerosol	164	164	164	164	164	212
97	XY	Gypsic Xerosol	238	238	238	238	238	212
98	YH	Haplic Yermosol	82	238	82	238	238	212
99	YK	Calccic Yermosol	199	199	218	612	218	212
100	YL	Luvic Yermosol	285	285	285	285	303	212
101	YT	Takyric Yermosol	199	199	218	612	218	212
102	YY	Gypsic Yermosol	850	850	850	850	850	212
103	ZG	Gleyic Solonchak	199	199	218	612	218	212
104	ZM	Mollic Solonchak	255	255	255	255	255	255
105	ZO	Orthic Solonchak	173	173	173	612	612	173
106	ZT	Takyric Solonchak	510	168	168	510	510	168

Figure 1. Soil Profile Thickness.

MAJOR SOIL UNITS

SOURCE: FAO (1971-81); ZOBLER (1986) NASA/GISS

CAMBISOL	CHERNOZEM	ARENOSOL	RANKER & RENDZINA	HISTOSOL	ICE
LUVISOL	PHAEZOZEM	NITOSOL & ACRISOL	REGOSOL	GLEYSOL	
PODZOLLUVISOL	GREYZEM	VERTISOL	LITHOSOL	FLUVISOL	
PODZOL	KASTANOZEM	FERRALSOL		PLANOSOL	
			XEROSOL		
			YERMOSOL	ANDOSOL	
			SOLONCHAK & SOLONETZ		

Figure 2. Major Soil Units

A) POTENTIAL STORAGE OF WATER IN SOIL PROFILE

B) POTENTIAL STORAGE OF WATER IN ROOT ZONE

NASA/GISS

ICE

0 150 300 450 600 750 800 1050 1200 1350 1500 1650 1800 1850

(MM)

Figure 3a and 3b.

FOLDOUT FRAME

FOLDOOUT FRAME 2

3
FOLDOUT FRAME

EQDOUT FRAME

FOLDOUT FRAME S

FOLDOOUT FRAME

Ball Vol. IV F71-02

FOLDOUT FRAME 7

16

FOLDOUT FRAME

1 APRIL 1971

Fig. 3-2 Phot heliograph Phase C and D program Work Breakdown Structure

C) TEXTURE-BASED POTENTIAL STORAGE OF WATER

D) MODEL II SOIL WATER

NASA/GISS

ICE

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800 1950

(MM)

Figure 3c and 3d.

Report Documentation Page

1. Report No. NASA TM-4286	2. Government Accession No.	3. Recipient's Catalog No.	
4. Title and Subtitle A Global Data Set of Soil Particle Size Properties		5. Report Date September 1991	6. Performing Organization Code 940.0
7. Author(s) Robert S. Webb, Cynthia E. Rosenzweig, and Elissa R. Levine		8. Performing Organization Report No. 91B00202	10. Work Unit No.
9. Performing Organization Name and Address Goddard Institute for Space Studies New York, New York 10025		11. Contract or Grant No.	13. Type of Report and Period Covered Technical Memorandum
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546-0001		14. Sponsoring Agency Code	
15. Supplementary Notes Robert S. Webb: NASA-GISS, New York, New York; Cynthia E. Rosenzweig: Columbia University, New York, New York; and Elissa R. Levine: NASA-GSFC, Greenbelt, Maryland.			
16. Abstract A standardized global data set of soil horizon thicknesses and textures (particle size distributions) has been compiled from the FAO/UNESCO Soil Map of the World, Vols. 2-10 (1971-81). This data set will be used by the improved ground hydrology parameterization (Abramopoulos <i>et al.</i> , 1988) designed for the GISS GCM (Goddard Institute for Space Studies General Circulation Model) Model III. The data set specifies the top and bottom depths and the percent abundance of sand, silt, and clay of individual soil horizons in each of the 106 soil types cataloged for nine continental divisions. When combined with the World Soil Data File (Zobler, 1986), the result is a global data set of variations in physical properties throughout the soil profile. These properties are important in the determination of water storage in individual soil horizons and exchange of water with the lower atmosphere. The incorporation of this data set into the GISS GCM should improve model performance by including more realistic variability in land-surface properties.			
17. Key Words (Suggested by Author(s)) global soil data set, particle size properties, potential water storage		18. Distribution Statement Unclassified - Unlimited	
Subject Category 43			
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of pages 40	22. Price A03

National Aeronautics and
Space Administration
Code NTT-4

Washington, D.C.
20546-0001

BULK RATE
POSTAGE & FEES PAID
NASA
Permit No. G-27

Official Business
Penalty for Private Use, \$300

POSTMASTER: If Undeliverable (Section 158
Postal Manual) Do Not Return
