Electeng101

Alexander Bailey

 $E\text{-}mail: \verb| alexkingstonbailey@gmail.com| \\$

Contents

1	Fundamentals of Electrical and Digital Systems			1
	1.1	Electricity as Energy		1
		1.1.1	Charge	1
		1.1.2	Current	1
		1.1.3	Voltage	2
		1.1.4	Resistance	3
		1.1.5	Power	4
	1.2	Circuit Definitions		4
	1.3	Components		5
		1.3.1	Ideal Wire	5
		1.3.2	Voltage and Current Sources	5
	1.4	Tools		5
		1.4.1	KCL	5
		1.4.2	KVL	6
		1.4.3	Terminal Behaviour	7
		1.4.4	Equivalent Resistance	7
		1.4.5	Voltage and Current Division	8
	1.5	Model	${f s}$	8
2	2 SMART Engineering			9
3	B Electricity Supply			9

1 Fundamentals of Electrical and Digital Systems

1.1 Electricity as Energy

The fundamental concept that underpins the modern electrical 'cycle' is:

Energy is used to separate charges i.e the chemical reaction in a cell. This becomes the electric potential energy of the circuit

Separation of charge causes a difference in electric potential energy. When this difference is applied to a closed circuit, charge will move around the circuit. The movement of charge through is called a current.

1.1.1 Charge

Electric charge is the physical property of matter that causes it to experience a force when placed in an electromagnetic field. (q or Q)

We (thanks to Benjamin Franklin) typically describe charge as having two states: postive (like a proton) and negative (like an electron). These are not inherent to the universe but are just what we have defined. Of course, the classic line is: 'Like charges repel, opposite charges attract'. Modeling the wire as a pipe carrying water, charge would be the amount of water.

We model the strength of the electrostatic force as proportional to the charge of both particles and inversely proportional to the radius squared. This is known as Coulomb's Law.

$$F \propto \frac{q_1 q_2}{r^2}$$

Charge is measured in Coulombs (symbol C). 1C is is equivalent to approximately 6.3×10^{18} electrons.

1.1.2 Current

Current is the rate of flow of charge represented by i or I.

$$I = \frac{4}{t}$$
or
 $I = \frac{dq}{dt}$

Current is defined numerically as the number of charges flowing through a particular point in one second. Mathematically, it is the derivative of the total number of charges q passing through a given section over time t (written as $\frac{dq}{dt}$). Current thusly has units of Coulombs per second (Cs⁻¹) but Electrical Engineers have given this another name, the Ampere (A).

Ampere also gave us the name current!

Current gives Electrical Engineers an idea of how fast energy is being used instead of how much energy it has received¹. In the water analogy, current would be the speed of the water in the pipe.

¹ Note that most electrical devices require a continuous supply of energy to function so speed is generally much more useful than amount

Conventional Current

Benjamin Franklin believed that electrical current was carried by positive charge 'carriers', this led to *centuries* of engineers using the wrong direction for current... Now we still use conventional current. BUT, electron flow is still in the other direction. Because of relative motion, a movement of negative charge in one direction is the **same thing** as a movement of positive charge in the other direction. Hence, it does not matter (for most things).

Double-subscript notation

This notation indicates the directions charges are flowing in the order of from and to.

 I_{ab}

 I_{ab} is the current flowing from a to b.

Example

$$i=0.5\,\mathrm{A}t=8\,\mathrm{min}=60\times8\,\mathrm{seconds}=480\,\mathrm{seconds}$$

$$i=\frac{dq}{dt}$$

$$\Longrightarrow q=\int_0^{480}0.5dt=[0.5t]_0^{480}$$

$$\therefore q=240\,\mathrm{C}$$

1.1.3 Voltage

Voltage is the difference in electrical potential energy of each unit of charge between two points represented by v or V.

Because a voltage is a difference, we must know what point in the circuit that the difference is measured relative to for it to make sense. Voltage is commonly called a potential difference (PD) and has units Joules per Coulomb (JC^{-1}). Physically, it is the amount of energy lost or gained between two points. Using our water analogy, voltage would be the pressure of the water in the pipe.

Alessandro Volta decided that Joules per Coulomb (${\rm JC}^{-1}$) was too difficult

and gave us the *Volt* (symbol V). Additionally, every voltage must be accompanied by a *voltage arrow*. This removes the ambiguity in which direction voltage is measured. The voltage arrow points in the direction of a *potential rise*.

The voltage at A, with respect to B, is V_{AB} .

Common Reference or Ground

Voltages are always measured between two points. It is convenient to define a reference where we can talk about voltages 'at' a component. The location of ground is arbitrary and does not affect the actual voltages in the circuit. The 'triangle' ground is for digital circuits while the 'line' ground is for analog circuits.

Example

$$v = 2 - 6$$

$$v = iR$$

$$-4 = 2i$$

$$i = -2$$

1.1.4 Resistance

When electrical charge flows through a material, it must lose energy as it repels and collides with other charges. The amount of energy lost depends on how 'difficult' it is for the charge to flow. This difficulty depends on many factors including: stability of valence electrons, temperature, length and area. These properties are summarised by *resistance*.

$$v = i \times R$$

From Ohm's Law, the amount of energy lost by the charges through a resistor is proportional to the rate at which charges slow through it. The constant of proportionality R from Ohm's Law is known as resistance. From this law, we can see resistance has units of Resistance has $\frac{V}{A}$. We call this Ohms and give it the symbol Omega (Ω) .

Thinner materials have a higher resistance!

Conductance

Conductance is the inverse of resistance and has the symbol G. It has units of Siemens symbol S. It mostly exists so that you can add parallel

conductances i.e for 2 2S resistors in parallel, we have a conductance of 4S. With conductance, we would write Ohm's Law as $i = \nu G$.

The Passive-Sign Convention

When using Ohm's law there is an implicit sign convention that cannot be described by just the positive and negative symbols. A current is taken to be in the direction of a voltage drop. This makes sense because charges can only lose energy through a resistor.

1.1.5 Power

Power is the rate at which electric charges gain or lose electric potential energy. Given that voltage is the difference in energy per Q and current is the no. of Q per sec, we can easily derive an equation for power:

$$P = IV P = \frac{dE}{dt}$$

Dimensionally, this quantity would be measured in Js⁻1 (Joules per Second). This quantity is named the *Watt* (symbol W) named after James Watt for his work with steam engines.

Watt is the unit of power?

There is an assumed sign convention with power. If V and I are in opposite directions then p = vi otherwise p = -vi. This is the passive-sign convention again. Sticking to that, a negative power is power supplied.

1.2 Circuit Definitions

Here are some conventions used to describe all circuits:

load 'destination' of the electricity i.e. a lightbulb topology the nature of the connections between components nodes the point where two or more components meet loop a closed path starting and eventually returning to a node

When we are discussing values in a circuit, voltage is 'across' a component, current is 'through'. This means the voltage through a branch but we could also talk about the voltage 'at' a component. 'at' means the PD is measured from the point to ground.

Circuit Topologies

Closed

The circuit has both flow of charge and energy transfer.

Open

No electric potential means no flow of charge and no energy transfer. The circuit could be disrupted, i.e there is an air gap with (theoretically) infinite resistance.

Short

The circuit (or circuit section) has a 0v potential difference. This could mean a path of lower resistance meant no voltage 'went' down that path or that voltages cancelled etc.

1.3 Components

1.3.1 Ideal Wire

Ideal Wire has a resistance of 0Ω . This means that no energy is lost when a current goes through it. This is obviously useful as a model for electrical engineering but causes problems with some cases. For example, connecting an ideal wire across the terminal of a voltage source creates a theoretically *infinite* amount of energy.

1.3.2 Voltage and Current Sources

These sources can receive or output an *infinite* amount of energy without deviating from their specification. These are good models in most well-designed engineering applications because the sources are designed to operate within their limits.

Ideal Voltage Sources maintain a constant voltage across its terminals. This means it will draw (or supply) whatever current is necessary to maintain that voltage. Meaning the current is dependent on the topology of the circuit. Don't connect them in parallel.

Ideal Current sources don't actually exist. But they maintain a constant current through its terminals regardless of voltage. This behaviour means that the voltage across it depends on the topology of the circuit.

1.4 Tools

There are a number of mathematical tools that we have developed to make solving circuits easier.

1.4.1 KCL

Kirchoff's Current Law describes the behaviour of current in a circuit, it is:

The algebraic sum of the currents leaving any point in a circuit equals zero.

This means the amount of charge arriving at any point in one second **must** equal the amount of charge leaving that point in one second. Therefore,

$$\sum I_{in} = \sum I_{out}$$

If we don't know the current direction, just make them all leaving and it the maths will show us if a current is entering because it will be negative. The general process is hence:

- 1. Assign current directions
- 2. Assign directions for voltages
- 3. Form an equation in terms of i_n
- 4. Substitute unknowns for knowns using Ohm's Law

1.4.2 KVL

Kirchoff's Voltage Law describes the behaviour of voltages in a circuit, it is: By the conservation of energy, energy gained in a circuit equals the energy lost. Therefore, the total voltage rises must equal the total voltage drops. Hence,

The algebraic sum of the voltage rises around a loop in a circuit equals zero

Once again, if we assume a direction we can solve for the unknown directions. The process for KVL is generally:

- 1. Assign voltage polarities
- 2. Identify Loops
- 3. Form equations (taking voltage rises as positive)

| Example

Assign Voltage Polarities,

Loop 1:
$$5 - (2I_1) - (-4I_2) - 3 = 0$$

Loop 2:
$$3 - (4I_2) - (-6I_3) = 0$$

Loop 3:
$$5 - (2I_1) - (-6I_3) = 0$$

Then you can solve simultaneously using KCL

KCL:
$$-I_1 - I_2 = I_3$$

1.4.3 Terminal Behaviour

To analyse a circuit (determine current and voltage through every component), we need Kirchoff's laws and the *terminal behaviour* of the components. From these, useful shortcuts and 'tricks' have been developed.

1.4.4 Equivalent Resistance

Equivalent Resistance is a way of helping us model the behaviour of a circuit as a resistor. This is a simplification we can make, modelling a load as a static resistor value (no matter what the load actually is). We can do this because from the source's 'perspective', it cannot tell the load apart from this fixed resistance.

In Series

$$r = r_1 + r_2 + \dots + r_n = \sum_{k=1}^{N} r_k$$

In Parallel

$$r = \frac{1}{\frac{1}{r_1} + \frac{1}{r_2} + \dots + \frac{1}{r_n}} = \frac{1}{\sum_{k=1}^{N} \frac{1}{r_k}}$$

In series, r is always larger than any one of the components. In parallel, r is smaller than the smallest resistor contributing to the resistance.

Series means there is only one path for the charges to flow through them (connected end-to-end)

Parallel components have both of their ends connected together

We can use a systematic method to simplify compound circuits i.e.

- 1. Begin as far away as possible from the source or component
- 2. Replace series or parallel resistors with equivalent resistors
- 3. Continue moving left and simplifying until we are left with only one

1.4.5 Voltage and Current Division

Voltage Division is an easy way to find the voltage over resistors in series. A voltage divider is two (or more) resistors in series so $v_{\rm in}$ is related to $v_{\rm out}$ by a ratio dependent on the resistance.

So for two resistors, where v_1 is the voltage drop on the first resistor and v_2 is the voltage drop on the second resistor:

$$v_1 = (\frac{R_1}{R_1 + R_2})V_s$$
$$v_2 = (\frac{R_2}{R_1 + R_2})V_s$$

So for N resistors:

$$v_p = \left(\frac{R_p}{R_1 + R_2 + \dots + R_p}\right) V_s$$

Current Division is an easy way to find the *current* over resistors in parallel. Current in a current divider is related to a very similar ratio.

So for N resistors:

$$v_p = (\frac{\frac{1}{R_p}}{\frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_p}})I$$

1.5 Models

In Electrical Engineering (EE), a model is a description that communicates

- Physical Characteristics
- Electrical Function
- Magnitude

Models allow you to more easily handle complex systems. They compart-

-8-

Some EE models include:

- Component Symbols
- Schematics
- Block Diagrams

DCD I arranta

mentalise systems into smaller sub-systems. In circuit diagrams, component symbols are models of the actual components. We can then focus on our actual engineering instead of why we are doing what we are doing (leave that to the physicists).

Mathematical Models, such as Ohm's Law, are still models. They simplify our calculations by making an approximation.

2 SMART Engineering

Systems of Monitoring, Analysis, and Response Technologies

3 Electricity Supply