Moderately-Balanced Representation Learning for Orthogonal Estimation on Average Treatment Effect

Anonymous Authors

1 Experiments

The final full results for 1000 IHDP and 100 Twins experiments are reported in Table 1. The mark * indicates that the baseline models did not report relevant results.

As a supplementary note, the outcome takes a binary value for Twins experiments. So the factual outcome loss in Eqn (6) will be

$$\mathcal{L}_{fo} = -\frac{1}{N} \sum_{m=1}^{N} [y_m \log f(\Phi(\mathbf{z}_m)) + (1 - y_m) \log(1 - f(\Phi(\mathbf{z}_m)))].$$

2 Assumptions

Assumption 1 (SUTVA). The potential outcomes for any individual are not affected by the treatment assignment of other individuals.

Assumption 2 (Strong Ignorability). Given the covariates \mathbb{Z} , the potential outcomes are independent of the treatment assignment $D: (Y(0), Y(1)) \perp \!\!\! \perp D \mid \mathbb{Z}$.

Assumption 3 (Overlap). The probability of treatment assignment for any unit is positive: $0 < Pr(D = d \mid \mathbf{Z} = \mathbf{z}) < 1, \forall d \in \{0,1\}$ and $\mathbf{z} \in \mathcal{Z}$.

Assumption 4 (Consistency). The potential outcome for treatment d of each unit is equal to the observed factual outcome if the actual treatment is d: $(Y(d) = Y^F) \mid D = d, \forall d \in \{0,1\}.$

3 Proofs

We skip the proofs of Proposition 1 since it can be seen in [Chernozhukov *et al.*, 2018]. In the following, we prove Proposition 2 and Property 1.

3.1 Proof of Proposition 2

Proof. The score functions stated in the Eqn. (2) and Eqn. (3) in the main paper are

$$\psi_1(W, \theta^i, \rho) = \theta^i - g(i, \mathbf{Z})$$

$$- (Y - g(i, \mathbf{Z})) \frac{iD + (1 - i)(1 - D)}{im(\mathbf{Z}) + (1 - i)(1 - m(\mathbf{Z}))};$$

$$\psi_2(W, \theta^i, \rho) = \theta^i - g(i, \mathbf{Z})$$

$$- (Y(i) - g(i, \mathbf{Z})) \frac{((D - m(\mathbf{Z})) - \mathbb{E}\left[\nu \mid \mathbf{Z}\right])^2}{\mathbb{E}\left[\nu^2 \mid \mathbf{Z}\right]}.$$

We then check if the orthogonal condition (Definition 1) holds for $\psi_1(W, \theta^i, \rho)$.

$$\partial_{g}\psi_{1}(W,\theta^{i},\rho) = -1 + \frac{iD + (1-i)(1-D)}{im(\mathbf{Z}) + (1-i)(1-m(\mathbf{Z}))};$$

$$\partial_{m}\psi_{1}(W,\theta^{i},\rho) = (Y - g(i,\mathbf{Z}))\frac{D}{m(\mathbf{Z})^{2}}, if i = 1;$$

$$\partial_{m}\psi_{1}(W,\theta^{i},\rho) = -(Y - g(i,\mathbf{Z}))\frac{1-D}{(1-m(\mathbf{Z}))^{2}}, if i = 0.$$

If i=1 and under the noise conditions $\mathbb{E}\left[\nu\mid\mathbf{Z}\right]=0$ and $\mathbb{E}\left[\xi\mid D,\mathbf{Z}\right]=0$, then we have

$$\mathbb{E}\left[\partial_{g}\psi_{1}(W, \theta^{1}, \rho) \mid \mathbf{Z}\right] \mid_{(g,m)=(g_{0}, m_{0}), \theta^{1}=\theta_{0}^{1}}$$

$$= -1 + \mathbb{E}\left[\frac{D}{m_{0}(\mathbf{Z})} \mid \mathbf{Z}\right]$$

$$= -1 + \mathbb{E}\left[\frac{D - m_{0}(\mathbf{Z}) + m_{0}(\mathbf{Z})}{m_{0}(\mathbf{Z})} \mid \mathbf{Z}\right]$$

$$= -1 + \mathbb{E}\left[\frac{\nu + m_{0}(\mathbf{Z})}{m_{0}(\mathbf{Z})} \mid \mathbf{Z}\right]$$

$$= -1 + \frac{\mathbb{E}\left[\nu \mid \mathbf{Z}\right]}{m_{0}(\mathbf{Z})} + 1$$

$$= 0.$$

$$\mathbb{E}\left[\partial_{m}\psi_{1}(W, \theta^{1}, \rho) \mid \mathbf{Z}\right] \mid_{(g,m)=(g_{0},m_{0}), \theta^{1}=\theta_{0}^{1}}$$

$$= \mathbb{E}\left[\left(Y - g_{0}(i, \mathbf{Z})\right) \frac{D}{m_{0}(\mathbf{Z})^{2}} \mid \mathbf{Z}\right]$$

$$= \mathbb{E}\left[\mathbb{E}\left[\left(Y - g_{0}(i, \mathbf{Z})\right) \frac{D}{m_{0}(\mathbf{Z})^{2}} \mid D, \mathbf{Z}\right] \mid \mathbf{Z}\right]$$

$$= \mathbb{E}\left[\mathbb{E}\left[\xi \frac{D}{m_{0}(\mathbf{Z})^{2}} \mid D, \mathbf{Z}\right] \mid \mathbf{Z}\right]$$

$$= \mathbb{E}\left[\mathbb{E}\left[\xi \mid D, \mathbf{Z}\right] \frac{D}{m_{0}(\mathbf{Z})^{2}} \mid \mathbf{Z}\right]$$

$$= 0.$$

Table 1: The full results of 1000 IHDP and 100 Twins experiments.

Method	IHDP In-sample		IHDP Out-of-sample		Twins In-sample		Twins Out-of-sample	
	$\sqrt{\epsilon_{PEHE}}$	ϵ_{ATE}	$\sqrt{\epsilon_{PEHE}}$	ϵ_{ATE}	AUC	ϵ_{ATE}	AUC	ϵ_{ATE}
OLS/LR ₁	$5.8 \pm .3$	$.73 \pm .04$	$5.8 \pm .3$	$.94 \pm .06$	$.660 \pm .005$	$.004 \pm .003$	$.500 \pm .028$	$.007 \pm .006$
OLS/LR ₂	$2.4 \pm .1$	$.14 \pm .01$	$2.5 \pm .1$	$.31 \pm .02$	$.660 \pm .004$	$.004 \pm .003$	$.500 \pm .016$	$.007 \pm .006$
k-NN	$2.1 \pm .1$	$.14 \pm .01$	$4.1 \pm .2$	$.79 \pm .05$	$.609 \pm .010$	$.003\pm.002$	$.492 \pm .012$	$.005\pm.004$
BART	$2.1 \pm .1$	$.23 \pm .01$	$2.3 \pm .1$	$.34 \pm .02$	$.506 \pm .014$	$.121 \pm .024$	$.500 \pm .011$	$.127 \pm .024$
CF	$3.8 \pm .2$	$.18 \pm .01$	$3.8 \pm .2$	$.40 \pm .03$	*	$.029 \pm .004$	*	$.034 \pm .008$
CEVAE	$2.7 \pm .1$	$.34 \pm .01$	$2.6 \pm .1$	$.46 \pm .02$	$.845 \pm .003$	$.022 \pm .002$	$.841 \pm .004$	$.032 \pm .003$
SITE	$.69 \pm .0$	$.22 \pm .01$	$.75 \pm .0$	$.24 \pm .01$	$.862 \pm .002$	$.016 \pm .001$	$.853 \pm .006$	$.020 \pm .002$
GANITE	$1.9 \pm .4$	$.43 \pm .05$	$2.4 \pm .4$	$.49 \pm .05$	*	$.006 \pm .002$	*	$.009 \pm .008$
BLR	$5.8 \pm .3$	$.72 \pm .04$	$5.8 \pm .3$	$.93 \pm .05$	$.611 \pm .009$	$.006 \pm .004$	$.510 \pm .018$	$.033 \pm .009$
BNN	$2.2 \pm .1$	$.37 \pm .03$	$2.1 \pm .1$	$.42 \pm .03$	$.690 \pm .008$	$.006 \pm .003$	$.676 \pm .008$	$.020 \pm .007$
TARNet	$.88 \pm .0$	$.26 \pm .01$	$.95 \pm .0$	$.28 \pm .01$	$.849 \pm .002$	$.011 \pm .002$	$.840 \pm .006$	$.015 \pm .002$
CFR-WASS	$.71 \pm .0$	$.25 \pm .01$	$.76 \pm .0$	$.27 \pm .01$	$.850 \pm .002$	$.011 \pm .002$	$.842 \pm .005$	$.028 \pm .003$
Dragonnet	$1.3 \pm .4$	$.14 \pm .01$	$1.3 \pm .5$	$.20 \pm .05$	*	$.006 \pm .005$	*	$.006 \pm .005$
MBRL	$.522\pm.007$	$.121 \pm .005$	$.565\pm.008$	$.133\pm.005$	$.879\pm.000$	$.003 \pm .000$	$.874\pm.001$	$.007 \pm .001$
$MBRL+\theta_1^i$	$.522\pm.007$	$.102\pm.004$	$.565\pm.008$	$.166 \pm .007$	$.879\pm.000$	$.003\pm.000$	$.874\pm.001$	$.008 \pm .000$
MBRL+ $\theta_2^{\hat{i}}$	$.522\pm.007$	$.114\pm.005$	$.565\pm.008$	$.204\pm.008$	$.879\pm.000$	$.003\pm.000$	$.874\pm.001$	$.006 \pm .001$

If i=0 and under the noise conditions $\mathbb{E}\left[\nu\mid\mathbf{Z}\right]=0$ and $\mathbb{E}\left[\xi\mid D,\mathbf{Z}\right]=0$, then we have

$$\begin{split} & \mathbb{E}\left[\partial_g \psi_1(W, \theta^0, \rho) \mid \mathbf{Z}\right] \mid_{(g,m)=(g_0,m_0),\theta^0=\theta_0^0} \\ & = -1 + \mathbb{E}\left[\frac{1-D}{1-m_0(\mathbf{Z})} \mid \mathbf{Z}\right] \\ & = -1 + \mathbb{E}\left[\frac{1-D-m_0(\mathbf{Z})+m_0(\mathbf{Z})}{1-m_0(\mathbf{Z})} \mid \mathbf{Z}\right] \\ & = -1 + \mathbb{E}\left[\frac{-\nu+1-m_0(\mathbf{Z})}{1-m_0(\mathbf{Z})} \mid \mathbf{Z}\right] \\ & = -1 - \frac{\mathbb{E}\left[\nu \mid \mathbf{Z}\right]}{1-m_0(\mathbf{Z})} + 1 \\ & = 0. \end{split}$$

$$\begin{split} & \mathbb{E}\left[\partial_{m}\psi_{1}(W,\theta^{0},\rho)\mid\mathbf{Z}\right]\mid_{(g,m)=(g_{0},m_{0}),\theta^{0}=\theta^{0}_{0}} \\ & = \mathbb{E}\left[-(Y-g_{0}(i,\mathbf{Z}))\frac{1-D}{(1-m_{0}(\mathbf{Z}))^{2}}\mid\mathbf{Z}\right] \\ & = \mathbb{E}\left[\mathbb{E}\left[-(Y-g_{0}(i,\mathbf{Z}))\frac{1-D}{(1-m_{0}(\mathbf{Z}))^{2}}\mid D,\mathbf{Z}\right]\mid\mathbf{Z}\right] \\ & = \mathbb{E}\left[\mathbb{E}\left[-\xi\frac{1-D}{(1-m_{0}(\mathbf{Z}))^{2}}\mid D,\mathbf{Z}\right]\mid\mathbf{Z}\right] \\ & = \mathbb{E}\left[-\mathbb{E}\left[\xi\mid D,\mathbf{Z}\right]\frac{1-D}{(1-m_{0}(\mathbf{Z}))^{2}}\mid\mathbf{Z}\right] \\ & = 0. \end{split}$$

We then check if the orthogonal condition (Definition 1) holds for $\psi_2(W, \theta^i, \rho)$.

$$\partial_m \psi_2(W, \theta^i, \rho) = (Y(i) - g(i, \mathbf{Z})) \frac{2((D - m(\mathbf{Z})) - \mathbb{E}\left[\nu \mid \mathbf{Z}\right])}{\mathbb{E}\left[\nu^2 \mid \mathbf{Z}\right]}$$

$$\partial_g \psi_2(W, \theta^i, \rho) = -1 + \frac{((D - m(\mathbf{Z})) - \mathbb{E}\left[\nu \mid \mathbf{Z}\right])^2}{\mathbb{E}\left[\nu^2 \mid \mathbf{Z}\right]}$$

Using the noise condition $\mathbb{E}\left[\nu \mid \mathbf{Z}\right] = 0$, we have

$$\begin{split} & \mathbb{E}\left[\partial_{g}\psi_{2}(W,\theta^{i},\rho)\mid\mathbf{Z}\right]\mid_{(g,m)=(g_{0},m_{0}),\theta^{i}=\theta_{0}^{i}} \\ & = -1 + \mathbb{E}\left[\frac{\left((D-m_{0}(\mathbf{Z}))-\mathbb{E}\left[\nu\mid\mathbf{Z}\right]\right)^{2}}{\mathbb{E}\left[\nu^{2}\mid\mathbf{Z}\right]}\mid\mathbf{Z}\right] \\ & = -1 + \frac{1}{\mathbb{E}\left[\nu^{2}\mid\mathbf{Z}\right]}\mathbb{E}\left[\left((D-m_{0}(\mathbf{Z}))-\mathbb{E}\left[\nu\mid\mathbf{Z}\right]\right)^{2}\mid\mathbf{Z}\right] \\ & = -1 + \frac{1}{\mathbb{E}\left[\nu^{2}\mid\mathbf{Z}\right]}\mathbb{E}\left[\left(D-m_{0}(\mathbf{Z})\right)^{2} + \left(\mathbb{E}\left[\nu\mid\mathbf{Z}\right]\right)^{2} \\ & - 2(D-m_{0}(\mathbf{Z}))\mathbb{E}\left[\nu\mid\mathbf{Z}\right]\mid\mathbf{Z}\right] \\ & = -1 + \frac{1}{\mathbb{E}\left[\nu^{2}\mid\mathbf{Z}\right]}\left[\mathbb{E}\left[\nu^{2}\mid\mathbf{Z}\right] + \left(\mathbb{E}\left[\nu\mid\mathbf{Z}\right]\right)^{2} - 2\left(\mathbb{E}\left[\nu\mid\mathbf{Z}\right]\right)^{2}\right] \\ & = -1 + \frac{1}{\mathbb{E}\left[\nu^{2}\mid\mathbf{Z}\right]}\left[\mathbb{E}\left[\nu^{2}\mid\mathbf{Z}\right] - \left(\mathbb{E}\left[\nu\mid\mathbf{Z}\right]\right)^{2}\right] \\ & = -1 + \frac{\mathbb{E}\left[\nu^{2}\mid\mathbf{Z}\right]}{\mathbb{E}\left[\nu^{2}\mid\mathbf{Z}\right]} = 0. \end{split}$$

By the model setup $Y = g_0(D, \mathbf{Z}) + \xi$, we have the underlying relation for the potential outcome Y(i) that $Y(i) = g_0(i, \mathbf{Z}) + \xi$. Using the noise condition $\mathbb{E}\left[\xi \mid D, \mathbf{Z}\right] = 0$, we have

$$\mathbb{E}\left[\partial_{m}\psi_{2}(W,\theta^{i},\rho)\mid\mathbf{Z}\right]\mid_{(g,m)=(g_{0},m_{0}),\theta^{i}=\theta^{i}_{0}}$$

$$=\mathbb{E}\left[\mathbb{E}\left[\xi\frac{2((D-m_{0}(\mathbf{Z}))-\mathbb{E}\left[\nu\mid\mathbf{Z}\right])}{\mathbb{E}\left[\nu^{2}\mid\mathbf{Z}\right]}\mid D,\mathbf{Z}\right]\mid\mathbf{Z}\right]$$

$$=\mathbb{E}\left[\frac{2((D-m_{0}(\mathbf{Z}))-\mathbb{E}\left[\nu\mid\mathbf{Z}\right])}{\mathbb{E}\left[\nu^{2}\mid\mathbf{Z}\right]}\mathbb{E}\left[\xi\mid D,\mathbf{Z}\right]\mid\mathbf{Z}\right]$$

$$=0.$$

Therefore, the noise conditions $\mathbb{E}\left[\xi \mid D, \mathbf{Z}\right] = 0$ and $\mathbb{E}\left[\nu \mid \mathbf{Z}\right] = 0$ are sufficient for the score functions ψ_1 and ψ_2 satisfying the orthogonal condition.

3.2 Proof of Property 1

Proof. Using the noise condition $\mathbb{E}\left[\xi\mid D,\mathbf{Z}\right]=0$, we have

$$\mathbb{E}\left[(Y - g_0(D, \mathbf{Z}))(D - m_0(\mathbf{Z}))\right]$$

$$= \mathbb{E}\left[\mathbb{E}\left[(Y - g_0(D, \mathbf{Z}))(D - m_0(\mathbf{Z})) \mid D, \mathbf{Z}\right]\right]$$

$$= \mathbb{E}\left[(D - m_0(\mathbf{Z}))\mathbb{E}\left[(Y - g_0(D, \mathbf{Z})) \mid D, \mathbf{Z}\right]\right]$$

$$= \mathbb{E}\left[(D - m_0(\mathbf{Z}))\mathbb{E}\left[\xi \mid D, \mathbf{Z}\right]\right]$$

$$= 0.$$

References

[Chernozhukov et al., 2018] Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney Newey, and James Robins. Double/debiased machine learning for treatment and structural parameters. *The Econometrics Journal*, 21(1):C1–C68, 2018.

[Huang et al., 2021] Yiyan Huang, Cheuk Hang Leung, Xing Yan, and Qi Wu. Higher-order orthogonal causal learning for treatment effect. arXiv preprint arXiv:2103.11869, 2021.