Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Note: Mitsubishi Electric will continue the business operations of high frequency & optical devices and power devices.

Renesas Technology Corp. Customer Support Dept. April 1, 2003

Mitsubishi Microcomputers

SINGLE-CHIP 32-BIT CMOS MICROCOMPUTER

Description

The M32172F2VFP and M32173F2VFP are 32-bit single-chip RISC microcomputers designed for use in high-reliability vehicle mounted, general industrial, and household equipment. These microcomputers especially are suitable for equipment that requires motor control and communication functions.

For these purposes of use, the microcomputer contains various peripheral functions ranging from 16-channel output related and 18-channel input related timers, two independent channels of A-D and D-A converters, 2-channel Full CANs, and 8-channel serial I/Os. Also included are 10-channel DMAs, 1-channel real-time debugger, and JTAG(boundary scan function). With lower power consumption and low noise characteristics also considered, these microcomputers are ideal for embedded equipment applications.

Features

M32R RISC CPU core

- Uses the M32R family RISC CPU core (Instruction set common to all microcomputers in the M32R family)
- · Five-stage pipelined processing
- Sixteen 32-bit general-purpose registers
- 16-bit/32-bit instructions implemented
- DSP function instructions (sum-of-products calculation using 56-bit accumulator)
- Built-in flash programming boot program
- PLL clock generating circuit Built-in x4 PLL circuit
- Maximum operating frequency of the CPU clock

40MHz(when operating at -40 to +85 $^{\circ}$ C) 32MHz(when operating at -40 to +125 $^{\circ}$ C)

34-channel input/output related timers

The microcomputer incorporates output related timers capable of 2-channel three-phase motor control and input related timers that can interface the microcomputer to position/ phase sensors.

16-bit output related timers16c	:h
16-bit input related timers14c	:h
32-bit input related timers40	:h

- The internal DMAC and A-D converter can be started by a timer.
- Can be interfaced to two channels of PD (Phase Digital)

sensors by using eight channels of input related timers.

 The two channels of input related timers have a pulse encoder function allowing the microcomputer to be interfaced to two channels of position/phase sensors.

Real-time Debugger

- Includes dedicated clock-synchronized serial I/O that can read and write the contents of the internal RAM independently of the CPU.
- Can look up and update the data table in real time while the program is running.
- Can generate a dedicated interrupt based on RTD communication.

Abundant internal peripheral functions

In addition to the timers and real-time debugger, the microcomputer contains the following peripheral functions.

Note: SDI is the acronym of Scalable Debug Interface

Designed to operate at high temperatures

SDI debug function)

To meet the need for use at high temperatures, the microcomputer is designed to be able to operate in the temperature range of -40 to $+125^{\circ}\text{C}$ when CPU clock operating frequency = 32 MHz. When CPU clock operating frequency = 40 MHz, the microcomputer can be used in the temperature range of -40 to $+85^{\circ}\text{C}$.

Note: This does not guarantee continuous operation at 125°C. If you are considering use of the microcom puter at 125°C, please consult Mitsubishi.

Applications

Automobile equipment control (e.g., EV, HEV, and EPS), industrial equipment system control, and high-function OA equipment (e.g., PPC)

Note: The microcomputers presented here are under development and, therefore, are subject to change of specifications, etc.

Fig.1 Block diagram

SINGLE-CHIP 32-BIT CMOS MICROCOMPUTER

Table 1 Outline Performance (1/2)

Functional Block	Features					
M32R CPU core	M32R family CPU core, internally configured in 32 bits					
	Built-in multiplier-accumulator (32 × 16 + 56)					
	Basic bus cycle: 25 ns (CPU clock frequency at 40 MHz, Internal peripheral clock					
	frequency at 20 MHz)					
	Logical address space : 4G bytes, linear					
	General-purpose register : 32-bit register \times 16,Control register: 32-bit register \times 5					
	accumulator : 56 bits					
External data bus	16 bits data bus					
Instruction set	16-bit/32-bit instruction formats					
	83 instructions/ 9 addressing modes					
Internal flash memory	256K bytes					
	Rewrite durability: 100 times					
Internal RAM	M32172F2VFP : 16K bytes					
DMAC	10 channels (DMA transfers between internal peripheral I/Os, between internal peripher					
	I/O and internal RAM, and between internal RAMs)					
	Channels can be cascaded and can operate in combination with internal peripheral I/O					
Multijunction timer	26 channels of multijunction timers.					
	•16-bit output-related timers ×16 channels					
	(continuous, single-shot, single-shot PWM or PWM)					
	•16-bit input-related timers × 6 channels					
	(measurement, event count mode, $\times4$ event count , up/down event count)					
	•32-bit input-related timers \times 4 channels					
	(measurement, new/old captured data retention function available)					
A-D converter	2 independent 10-bit multifunction A-D converters					
	•Input 8 channel x 1, Input 4channel x 1					
	Capable of interrupt conversion during scan					
	•8-bit/10-bit readout function available					
Serial I/O	8 channels (The serial I/Os can be set for synchronous serial I/O or UART.					
	SIO2,3,6,7 are UART mode only)					
Real-time debugger (RTD)	1-channels dedicated clock-synchronized serial					
	The entire internal RAM can be read or rewritten from the outside without CPU					
	intervention					
Interrupt controller	Controls interrupts from internal peripheral I/Os					
	(Priority can be set to one of 8 levels including interrupt disabled)					
Wait controller	Controls wait when accessing 4-channel external extended area					
	(1 to 4 wait cycles inserted + prolonged by external WAIT signal input)					
D-A converter	2channel of 8-bit resolution D-A converters					
	D-A 0 converter: D-A output, any data continuous output function, and 256-byte parameter					
	table available					
	D-A 1 converter : D-A output only					

SINGLE-CHIP 32-BIT CMOS MICROCOMPUTER

Table 1 Outline Performance (2/2)

Function Block	Features
PD interface	Two-channel PD sensor interface circuits
	Built-in 8 channel timers (When not using phase sensors, these timers can be used as
	ordinary input measurement timer or input event counter)
CAN	two channels, each having 16-channel message slots
JTAG	Boundary-Scan function, Built-in SDI debugger function in MITSUBISHI
Clock	Maximum CPU clock: 40MHz (access to CPU, internal ROM, and internal RAM)
	Maximum internal peripheral clock: 20MHz (access to internal peripheral module)
	Maximum external input clock : 10.0MHz, Built-in $ imes$ 4 PLL circuit
Power Supply Voltage	5V (±0.5V) : External I/O
	3.3V (±0.3V) : Internal logic
Operating temperature rang	-40 to +125°C(CPU clock 32MHz, internal peripheral clock 16MHz)
	-40 to +85°C(CPU clock 40MHz , internal peripheral clock 20MHz)
Package	0.5mm pitches / 144-pin plastic LQFP

SINGLE-CHIP 32-BIT CMOS MICROCOMPUTER

Outline of the CPU core

The microcomputer uses the M32R RISC CPU core, and has an instruction set which is common to all microcomputers in the M32R family.

Instructions are processed in five pipelined stages consisting of instruction fetch, decode, execution, memory access, and write back. Thanks to its "out-of-order-completion" mechanism, the M32R CPU allows for clock cycle efficient, instruction execution control.

The M32R CPU internally has sixteen 32-bit general-purpose registers. The instruction set consists of 83 discrete instructions, which come in either a 16-bit instruction or a 32-bit instruction format. Use of the 16-bit instruction format helps to reduce the code size of a program. Also, the availability of 32-bit instructions facilitates programming and increases the performance at the same clock speed, as compared to architectures with segmented address spaces.

Sum-of-products instructions comparable to DSP

The M32R CPU contains a multiplier/accumulator that can execute 32 bits \times 16 bits in one cycle. Therefore, it executes a 32 bit \times 32 bit integer multiplication instruction in three cycles. Also, the M32R CPU supports the following four sum-of-products instructions (or multiplication instructions) for DSP function use.

- (1) 16 high-order register bits \times 16 high-order register bits
- (2) 16 low-order register bits × 16 low-order register bits
- (3) All 32 register bits × 16 high-order register bits
- (4) All 32 register bits × 16 low-order register bits

Furthermore, the M32R CPU has instructions for rounding the value stored in the accumulator to 16 or 32 bits, and instructions for shifting the accumulator value to adjust digits before storing in a register. Because these instructions also can be executed in one cycle, DSP comparable data processing capability can be obtained by using them in combination with high-speed data transfer instructions such as Load & Address Update or Store & Address Update.

Built-in clock multiplier circuit

The clock multiplier circuit multiplies the frequency of the input clock signal by 4 to produce the internal operating clock. When the maximum CPU clock frequency = 40 MHz, the input clock frequency is 10.0 MHz.

Three operation modes

The microcomputer has three operation modes: single-chip mode, external extended mode, and processor mode. These operation modes are changed from one to another by setting the MOD0 and MOD1 pins.

Address space

The logical address is always handled in width of 32 bits, providing a linear address space of up to 4 Gbytes. The address space is divided into the following spaces.

User space

A 2-Gbyte area from H'0000 0000 to H'7FFF FFFF is the user space. Located in this space are the user ROM area, external extended area, internal RAM area, and SFR (Special Function Register) area (internal peripheral I/O registers). Of these, the user ROM area and external extended area are located differently depending on mode settings.

Boot program space

A 1-Gbyte area from H'8000 0000 to H'BFFF FFFF is the boot program area. This space contains the on-board programming program (boot program) used in blank state by the internal flash memory.

System space

A 1-Gbyte area from H'C000 0000 to H'FFFF FFFF is the system area. This space is reserved for use by development tools such as an in-circuit emulator and debug monitor, and cannot be used by the user.

Figure 2. Pin Function Diagram

Table 2 Describition of Fill Fullction (1/4)	escription of Pin Function (1/4)
--	----------------------------------

Туре	Pin Name	Description	Input/Output	Funct	ion					
Power	VCCE	Power supply	_	Supp	lies power	(5 V) to	external I/O ports.			
supply	VCCI	Power supply	_	Supp	lies power	(3.3 V) to	o the internal logic.			
	VDD	RAM power supply	_	Intern	al RAM ba	ackup po	wer supply (3.3 V).			
	FVCC	Flash power supply	_	Intern	al flash m	emory ba	ackup power supply (3.3 V).			
	VSS	Ground	_	Conn	Connect all VSS pins to ground (GND).					
Clock	XIN,	Clock	Input	Clock	input/outp	out pins.	These pins contain a PLL-based			
	XOUT		Output	freque	ency multi	ply-by-4,	so input the clock whose frequency is quarter			
				the or	perating fro	equency.	(XIN input = 10 MHz when CPU clock operates			
				at 40	MHz)					
_ B	BCLK /	System clock	Output	Wher	this signa	al is Svste	em Clock(BCLK), it outputs a clock whose is twice that o			
	WR			when this signal is System Clock(BCLK), it outputs a clock whose is twice that external inpout clock. (BCLK output = 20 MHz when CPU clock operates at 40						
-				MHz). Use this clock when circuits are synchronized externally.						
				When this signal is Write(WR), during external write access it indicates the valid						
			data on the data bus to transfer.							
	OSC-VCC	Power supply	_	Power supply to the PLL circuit. Connect OSC-VCC to the power supply						
	OSC-VSS	Ground	_	Connect OSC-VSS to ground.						
	VCNT	PLL control	Input	This	This pin controls the PLL circuit. Connect a resistor and capacitor to this pin.					
Reset	RESET	Reset	Input	This pin resets the internal circuits.						
Mode	MOD0	Mode	Input	These	e pins set	an opera	tion mode.			
	MOD1			FP	MOD0	MOD1	Mode			
				X	0	0	Single-chip mode			
				Х	0	1	Expanded external mode			
				0	1	0	Processor mode			
				1	1	0	Boot mode			
				X	1	1	(Reserved)			
Address	A12 – A30	Address	Output			I	(A12 – A30) are provided to accommodate two			
bus	7.12 A30	bus	Juipui				bry space (max.) connected external to the chip.			
Dus		bus								
							nd A13 are shared with CS2 and CS3, so that when			
							memory space is reduced, but up to 4 channels of			
					ory space					
Data bus	DB0 – DB15	Data bus	Input/output	This 1	16-bit data	bus con	nects to external device. In the write cycle, of the 16-bit			
				data	bus the va	alid byte p	positions to write are output as BHW/ BHE and BLW/			
				BLE.	In read c	ycle, data	a on the entire 16-bit data bus is read. However, only			
							e positions are transferred to the M32R's internal circuit.			

Table 2.	Description	of Pin	Function	(2/4)
----------	-------------	--------	----------	-------

Туре	Pin type	Description	Input/Output	Function
Bus	CS0, CS1	Chip	output	Chip select signals for external devices.
control	CS2, CS3	select		CS2 and CS3 are shared with A12 and A13.
	RD	Read	output	This signal is output when reading external devices.
	BHW/ BHE	Byte high	output	Indicates the byte positions to which valid are transferred when writing to
		write		external devices. $\overline{BHW}/\overline{BHE}$ and $\overline{BLW}/\overline{BLE}$ correspond to the upper address
	BLW/ BLE	Byte low write	output	side(D0-D7 effective) and the lower address side(D8-D15 effective),respective
	WAIT	Wait	input	If $\overline{\text{WAIT}}$ input is low when the M32R accesses external devices, the wait cycle extended.
	HREQ	Hold	input	This pin is used by an external device to request control of the external bus.
		request		The M32R goes to a hold state when HREQ input is pulled low.
	HACK	Hold	output	This signal indicates to the external device that the M32R has entered a hold
		acknowledge		state and relinquished control of the external bus.
Timer	TIN8 -TIN11, TIN16 -TIN23	•	input	Timer input pins
	TO0 - TO15	Timer output	output	Timer output pins
PD interface	TINOA, TINOB	Timer input	input	Timer input pins for PD interface 0.
	TIN1A, TIN1B	Timer output	output	Timer output pins for PD interface1
D-A	DA0	Analog output	output	Analog output pin of the D-A0 converter.
converter	DA1	Analog output	output	Analog output pin of the D-A1 converter.
A-D	AVCC0	Analog power	_	AVCC0 is the power supply for the A-D and D-A converters.
		upply		Connect AVCC0 to the power supply (5V).
	AVSS0	Analog ground	_	AVSS0 is the analog ground for the A-D and D-A converters.
				Connect AVCC0 to ground.
	VREF0	Reference	input	VREF0 is the reference voltage input pin (5V) for the A-D and D-A converters.
		voltage input		
	AD0IN0 - AD0IN7	Analog input	input	8-channel analog input pin for A-D0 converter
	AD1IN0 - AD1IN3	Analog input	input	4-channel analog input pin for A-D1 converter
	ADOIN8 - ADOIN15, AD1IN4 - AD1IN15	Analog input	nput	20-channel analog input pin for pin level monitor

Mitsubishi Microcomputers

Table 2. Description of Pin Functions (3/4)

Туре	Pin name	Description	Input/output	Function
Interrupt	SBI	System	Input	System break interrupt(SBI) input pin of the interrupt controller
controller		break		
		interrupt		
Serial	SCLKI0/	UART transmit/re	eceive	For UART mode:
I/O	SCLKO0	clock output Input/output		Clock output derived from BRG output by dividing it by 2
	-	or		
	SCLKI1/	CSIO transmit/re	ceive	For CSIO mode:
	SCLKO1	clock		Transmit/receive clock input when external clock is selected
		input/output		Transmit/receive clock output when internal clock is selected
	SCLKI4,	Clock input	Input	For UART mode:
	SCLKI5			Use inhibited (input state)
				For CSIO mode:
				Transmit/receive clock input when external clock is selected
	SCLKO4,	Clock output	output	For UARTmode:
	SCLKO5			Clock output derived from BRG output by dividing it by 2
				For CSIO mode:
				Transmit/receive clock output
	TXD0	Transmit data	output	Transmit data output pin of serial I/O
	- TXD7			
	RXD0	Receive data	input	Receive data input pin of serial I/O
	- RXD7			
Real-	RTDTXD	Transmit data	output	Serial data output pin of the real-time debugger
Time Debugger	RTDRXD	Receive data	input	Serial data input pin of the real-time debugger
	RTDCLK	Clock input	input	Serial data transmit/receive clock input pin of the real-time debugger
	RTDACK	Acknowledge	output	This pin outputs a low pulse synchronously with the real-time debugger's
				first clock of serial data output word. The low pulse width indicates the
				type of the command/data the realtime debugger has received.
Flash-	FP	Flash	Input	This pin protects the flash memory against E/W in hardware.
only		protect		
CAN	CTX0,	Transmit data	output	Data output pin from CAN module.
	CTX1			
	CRX0,	Receive data	Input	Data input pin to CAN module.
	CRX1			

SINGLE-CHIP 32-BIT CMOS MICROCOMPUTER

Table 2. Description of Pin Functions (4/4)

Type	Pin name	Description	Input/output	Function
JTAG	JTMS	Test mode	Input	Test select input for controlling the test circuit's state transition
	JTCK	Clock	Input	Clock input to the debugger module and test circuit.
	JTRST	Test reset	Input	Test reset input for initializing the test circuit asynchronously.
	JTDO	Serial output	Output	Serial output of test instruction code or test data.
	JTDI	Serial input	Input	Serial input of test instruction code or test data.
Input/	P00-P07	Input/output port0	Input/output	Programmable input/output port.
output	P10-P17	Input/output port1	Input/output	Programmable input/output port.
port	P20-P27	Input/output port2	Input/output	Programmable input/output port.
(Note)	P30-P37	Input/output port3	Input/output	Programmable input/output port.
	P41-P47	Input/output port4	Input/output	Programmable input/output port.
	P61-P64	Input/output port6	Input/output	Programmable input/output port.
				(However, P64 is an input-only port)
	P70-P77	Input/output port7	Input/output	Programmable input/output port.
	P82-P87	Input/output port8	Input/output	Programmable input/output port.
	P93-P97	Input/output port9	Input/output	Programmable input/output port.
				(However, P93,P97 is an input-only port)
	P100 -P107	Input/output port10	Input/output	Programmable input/output port.
	P110 -P117	Input/output port11	1 Input/output	Programmable input/output port.
	P124 -P127	Input/output port11	2 Input	Input-only port
	P130 -P137	Input/output port11	3 Input	Input-only port
	P150,P153	3 Input/output port11	5 Input/output	Programmable input/output port.
	P172 -P175	Input/output port11	7 Input/output	Programmable input/output port. (However, P172,P173 is an input-only port)
	P220,	Input/output port12	2 Input/output	Programmable input/output port. (However, P221 is an input-only port)

Note. Input/output port 5 is reserved for future use.

Input/output ports 14,16,18,19,20,and 21do not exist.

Figure 3: Address Space of the M3172F2VFP

Figure 4: Address Space of the M32173F2VFP

Figure 5. SFR Area

Built-in Flash Memory and RAM

The M32172F2VFP contains 256-Kbyte flash memory and 16-Kbyte RAM. The M32173F2VFP contains 256-Kbyte flash memory and 32-Kbyte RAM.

The internal flash memory can be programmed on-board (i.e., while being mounted on the printed circuit board). This means that the same chip as will be used in mass-production can be used directly from the development stage on, allowing for system development without having to change the printed circuit board when proceeding from trial production to mass-production.

Built-in Pseudo-flash Emulation Function

A function is provided that can map 8-Kbyte blocks of the internal RAM beginning with the first address (up to two blocks for the M32172F2VFP or up to 3 blocks for the M32173F2VFP) into areas of the internal flash memory which are divided in units of 8 Kbytes (L banks). In addition, the M32173F2VFP has the function to map 4-Kbyte blocks of the internal RAM beginning with the H'0080 A000 area (up to two blocks) into areas of the internal flash memory which are divided in units of 4 Kbytes (S banks).

This function allows parts of the program which are frequently changed during development to be altered or evaluated without having to reset the microcomputer each time. What's more, when combined with the realtime debugger, this function helps to reduce the program evaluation period, because data in the RAM can be rewritten without requiring any CPU load.

Note 1: If the same bank area is set in multiple pseudo-flash bank registers and the pseudo-flash emulation enable bit is enabled, the corresponding internal RAM area is assigned to either bank register according to the priority FELBANK0 > FELBANK1.

Note 2: When access is made to the 8-Kbyte area (L bank) specified with pseudo-flash bank registers 0 and 1, the internal RAM area is accessed. During pseudo-flash emulation mode, RAM data can read and written to and from both the internal RAM area and the pseudo-flash setup area.

Figure 6. Pseudo-Flash Emulation Areas of the M32172F2VFP (Replaced in Units of 8 Kbytes)

- Note 1: If the same bank area is set in multiple pseudo-flash bank registers and the pseudo-flash emulation enable bit is enabled, the corresponding internal RAM area is assigned to either bank register according to the priority FELBANK0 > FELBANK1 > FELBANK2 > FELBANK0 > FELBANK1.
- Note 2: When access is made to the 8-Kbyte area (L bank) specified with pseudo-flash bank registers 0 2, the internal RAM area is accessed. During pseudo-flash emulation mode, RAM data can read and written to and from both the internal RAM area and the pseudo-flash setup area.

Figure 6. Pseudo-Flash Emulation Areas of the M32173F2VFP (Replaced in Units of 8 Kbytes)

- Note 1: If the same bank area is set in multiple pseudo-flash bank registers and the pseudo-flash emulation enable bit is enabled, the corresponding internal RAM area is assigned to either bank register according to the priority FELBANK0 > FELBANK1 > FELBANK2 > FELBANK0 > FELBANK1.
- Note 2: When access is made to the 4-Kbyte area (S bank) specified with pseudo-flash bank registers 0 and 1, the internal RAM area is accessed. During pseudo-flash emulation mode, RAM data can read and written to and from both the internal RAM area and the pseudo-flash setup area.

Figure 6. Pseudo-Flash Emulation Areas of the M32173F2VFP (Replaced in Units of 4 Kbytes)

SINGLE-CHIP 32-BIT CMOS MICROCOMPUTER

Input/output Ports

The microcomputer has a total of 99 input/output ports P0-P22. (However, P5 is reserved for future use, and ports P14, P16, and P18-21 do not exist.) The input/output ports can be used as input ports or output ports by setting up their direction registers.

Table3. Outline of Input/output Ports

Each input/output port is a dual-function pin shared with otherinternal peripheral I/O or external extended bus signal lines. These pin functions are selected by using the chip operation mode select or the input/output port operation mode registers. These input/output ports are interfaced using a dedicated power supply to allow for connections to the peripheral circuits operating with 5V.

Item	Spec	ificat	on			
Number of Port (Note1)	Т	otal	99 ports			
	P0	:	P00 - P07	(8 lines)		
	P1	:	P10 - P17	(8 lines)		
	P2	:	P20 - P27	(8 lines)		
	P3	:	P30 - P37	(8 lines)		
	P4	:	P41 - P47	(7 lines)		
	P6	:	P61 - P64	(4 lines)		
	P7	:	P70 - P77	(8 lines)		
	P8	:	P82 - P87	(6 lines)		
	P9	:	P93 - P97	(5 lines)		
	P10	:	P100 - P107	(8 lines)		
	P11	:	P110 - P117	(8 lines)		
	P12	:	P124 - P127	(4 lines)		
	P13	:	P130 - P137	(8 lines)		
	P15	:	P150,P153	(2 lines)		
	P17	:	P172 - P175	(4 lines)		
	P22	:	P220,P221,P225	(3 lines)		
	control register.	nput/output ports can be set for input or output mode bitwise by using the input/output port direction of register. (However, P64 is an SBI# input-only port, P97 and P221 are CAN0 input-only ports, and P124–P127, P130–P137, P172, and P173 are input-only ports.)				
Pin function	Dual-functions s	share	ed with peripheral I/C	or external extended signals (or multi-functions shared with		
			h have multiple func	,		
		-	-	ation mode (MOD0 and MOD1 pins)		
changeover	P6-22 : Chan	ged	by setting the input/o	utput port operation mode register (However, peripheral I/O pin		
	funct	ions	are selected using th	e peripheral I/O register.)		

Note 1: P14, P16, and P18-21 do not exist.

Note 2: P0–P4 (except P46) can have their pin functions changed by setting the operation mode register only when the CPU is operating in external extended mode. (When the CPU is operating in single-chip or processor mode, the pin functions are changed by setting CPU operation mode.)

Table 4. CPU Operation Modes and P0-P4 Pin Functions

MOD0	MOD1	Operation mode	P0-P4 pin function
VSS	VSS	Single-chip mode	Input/output port pin
VSS	VCC	External extended mode	External extended signal pin
VCC	VSS	Processor mode (FP pin = VSS)	ŭ ,
VCC	VCC	Reserved (use inhibited)	

Note: VCC and VSS are connected to +5 V and GND, respectively.

Figure 9. Input/output Ports and Pin Function Assignments

SINGLE-CHIP 32-BIT CMOS MICROCOMPUTER

Built-in 10-Channel DMAC

The microcomputer contains 10 channels of DMAC, allowing for data transfer between internal peripheral I/Os, between internal RAM and internal peripheral I/O, and between internal RAMs.

DMA transfer requests can be issued from the user-cre-

ated software, as well as can be triggered by a signal generated by the internal peripheral I/O (A-D converter, timer, or serial I/O).

The microcomputer also supports cascaded connection between DMA channels (starting DMA transfer on a channel at end of transfer on another channel). This makes advanced transfer processing possible without causing any additional CPU load.

Table 5. Outline of the DMAC

Item	Content				
Number of channels	10 channels				
Transfer request	Software trigger				
	 Request from internal peripheral I/O: A-D converter, timer, or serial I/O (reception 				
	•completed, transmit buffer empty)				
	 Cascaded connection between DMA channels possible (Note) 				
Maximum number of times transferred	256 times				
Transferable address space	•64 Kbytes (address space from H'0080 0000 to H'0080 FFFF)				
	•Transfers between internal peripheral I/Os, between internal RAM and internal peripheral IO,				
	and between internal RAMs are supported				
Transfer data size	16 bits or 8 bits				
Transfer method	Single transfer DMA (control of the internal bus is relinquished for each transfer performed),				
	dual-address transfer				
Transfer mode	Single transfer mode				
Direction of transfer	One of three modes can be selected for the source and destination of transfer:				
	•Address fixed				
	Address increment				
	•32-channel ring buffer				
Channel priority	Channel 0 > channel 1 > channel 2 > channel 3 > channel 4 >				
	channel 5 > channel 6 > channel 7 > channel 8 > channel 9				
	(Fixed priority)				
Maximum transfer rate	13.3 Mbytes per second (when internal peripheral clock = 20 MHz)				
nterrupt request	Group interrupt request can be generated when each transfer count register underflows				
Transfer area	64 Kbytes from H'0080 0000 to H'0080 FFFF (Transfer is possible in the entire internal				
	RAM/SFR area)				

Note: The following DMA channels can be cascaded.

DMA transfer on channel 1 started at end of one DMA transfer on channel 0

DMA transfer on channel 2 started at end of one DMA transfer on channel 1

DMA transfer on channel 0 started at end of one DMA transfer on channel 2

DMA transfer on channel 4 started at end of one DMA transfer on channel 3 DMA transfer on channel 6 started at end of one DMA transfer on channel 5

DMA transfer on channel 7 started at end of one DMA transfer on channel 6

DMA transfer on channel 5 started at end of one DMA transfer on channel 7

DMA transfer on channel 9 started at end of one DMA transfer on channel 8

DMA transfer on channel 1-9 started at end of one DMA transfer on channel 9

DMA transfer on channel 5 started at end of all DMA transfers on channel 0 (underflow of transfer count register)

DMA transfer on channel 0-9 started at end of all DMA transfers on channel 1 (underflow of transfer count register)

DMA transfer on channel 8 started at end of all DMA transfers on channel 3 (underflow of transfer count register)

Figure 10. Block Diagram of the DMAC

SINGLE-CHIP 32-BIT CMOS MICROCOMPUTER

Built-in 26-Channel Timers

The microcomputer has total 26 channels of timers, consisting of 16-bit output related timer x 16 channels, 16-bit input related timer x 6 channels, and 32-bit input related timer x 4 channels. Each timer has multiple modes which can be selected according to the purpose of use.

Table 6. Outline of Timers

Name	Type	Number of channels	Content
TMS	Input related	4	6-bit input measurement timer.
(Timer Measure Small)	16-bit timer		New and old captured data hold function available.
	(up counter)		
TML	Input related	4	16-bit input measurement timer.
(Timer Measure Large)	32-bit timer		New and old captured data hold function available.
	(up counter)		
TID	Input related	2	One of three input modes can be selected in software.
(Timer Input Derivation)	16-bit timer		Fixed cycle mode
	(up counter)		Event count mode
			 Multiply-by-4 event count mode
			 Up/down event count mode
ТОМ	output related	16	One of four output modes can be selected in software
(Timer output Modification)	16-bit timer		<no correction="" function=""></no>
	(up counter)		PWM output mode
			 One-shot PWM output mode
			One-shot output mode
			Continuous output mode

Figure 11. Block Diagram of Timers (1/2)

Figure 12. Block Diagram of Timers (2/2)

SINGLE-CHIP 32-BIT CMOS MICROCOMPUTER

Built-in Two Independent A-D Converters

The microcomputer contains two A-D converters with 10-bit resolution (8-channel A-D0 converter and 4-channel A-D1 converter). In addition to individual conversion on each channel, these converters are capable of successive A-D conversions from channel 0 to channel n which are grouped into one. The A-D converted value can be read out in either 10 bits or 8 bits.

In addition to ordinary A-D conversion, the converters sup-

port comparator mode in which the set value and A-D converted value are compared to determine which is larger or smaller than the other.

When A-D conversion is finished, the converters can generated a DMA transfer request, as well as an inter-

The A-D converters are interfaced using a dedicated power supply to allow for connections to the peripheral circuits operating with 5 V.

Table 7 Outline of the A.D. Convertors

Item	Content					
Analog input	A-D0 converter: Analog input-only pin × 8 channels					
	A-D0 converter: Analog input-only pin × 8 channels					
A-D conversion method	Successive approximation method					
Resolution	10 bits (Conversion results can be read out in either 10 or 8 bits)					
Nonlinearity error (Note 1) (Conditions:	Low speed mode	Normal	±2 LSB (Note 2)			
a = 25°, AVCC0,1 = VREF0,1 = 5.12 V)	Double speed	<u>+</u> 2 LSB (Note 2)			
	High-speed mode	× 2 speed	±3LSB (Not	te 2)		
		× 4 speed	±3LSB (Not	te 2)		
Conversion mode	A-D conversion mode,comparator mode					
Operation mode	Single mode, scan mode					
Scan mode	Single -shot scan mode, continuous scan mode					
Conversion start trigger	Software start Started by setting A-D conversion start bit to 1					
	Hardware start	Hardware start				
	A-D0 converter: Input to external pin TIN16, underflow of TOM0_6,					
	A-Do converter: inp	ut to external pin TIN1	6, underflow of TC	DM0_6,		
	·	ut to external pin TIN1 nable event to TOM0_				
	er	•	0-7 (Note 3), end	of A-D1 conversion		
	er A-D1 converter: Inp	nable event to TOM0_	0–7 (Note 3), end of the control of	of A-D1 conversion DM0_6,		
Conversion rate	er A-D1 converter: Inp	nable event to TOM0_out to external pin TIN1	0–7 (Note 3), end of the control of	of A-D1 conversion DM0_6,		
Conversion rate f(BCLK): Internal peripheral clock	er A-D1 converter: Inp ur	nable event to TOM0_ut to external pin TIN1 nderflow to TOM1_6, e	0–7 (Note 3), end of 6, underflow of TC end of A-D0 conver	of A-D1 conversion DM0_6, rsion		
	er A-D1 converter: Inp ur	nable event to TOM0_ut to external pin TIN1 nderflow to TOM1_6, e	0–7 (Note 3), end of 6, underflow of TC and of A-D0 conver Normal	of A-D1 conversion DM0_6, rsion 299 × 1/f (BCLK)		
f(BCLK): Internal peripheral clock	er A-D1 converter: Inp ur	nable event to TOM0_ ut to external pin TIN1 nderflow to TOM1_6, e Low speed mode	0–7 (Note 3), end of 6, underflow of TC end of A-D0 convertible. Normal Double speed	of A-D1 conversion DM0_6, rsion 299 × 1/f (BCLK) 173 × 1/f (BCLK)		
f(BCLK): Internal peripheral clock operating frequency	A-D1 converter: Input	nable event to TOM0_ ut to external pin TIN1 nderflow to TOM1_6, e Low speed mode	0–7 (Note 3), end of 6, underflow of TC end of A-D0 convertible Normal Double speed × 2 speed	of A-D1 conversion DM0_6, rsion 299 × 1/f (BCLK) 173 × 1/f (BCLK) 131 × 1/f (BCLK)		
f(BCLK): Internal peripheral clock operating frequency	A-D1 converter: Inpur Uring single mode (Shortest time)	nable event to TOM0_cut to external pin TIN1 nderflow to TOM1_6, e Low speed mode High-speed mode	0–7 (Note 3), end of 6, underflow of TC end of A-D0 converted Normal Double speed × 2 speed × 4 speed	of A-D1 conversion DM0_6, rsion 299 × 1/f (BCLK) 173 × 1/f (BCLK) 131 × 1/f (BCLK) 89 × 1/f (BCLK)		
f(BCLK): Internal peripheral clock operating frequency	A-D1 converter: Inpur During single mode (Shortest time) During comparator	nable event to TOM0_cut to external pin TIN1 nderflow to TOM1_6, e Low speed mode High-speed mode	0–7 (Note 3), end of 6, underflow of TC and of A-D0 converted Double speed × 2 speed × 4 speed Normal	of A-D1 conversion DM0_6, rsion 299 × 1/f (BCLK) 173 × 1/f (BCLK) 131 × 1/f (BCLK) 89 × 1/f (BCLK) 47 × 1/f (BCLK)		
f(BCLK): Internal peripheral clock operating frequency	A-D1 converter: Inpur During single mode (Shortest time) During comparator	nable event to TOM0_cut to external pin TIN1 nderflow to TOM1_6, e Low speed mode High-speed mode Low speed mode	0–7 (Note 3), end of 6, underflow of TC end of A-D0 convellor Normal Double speed × 2 speed × 4 speed Normal Double speed	of A-D1 conversion DM0_6, rsion 299 × 1/f (BCLK) 173 × 1/f (BCLK) 131 × 1/f (BCLK) 89 × 1/f (BCLK) 47 × 1/f (BCLK) 29 × 1/f (BCLK)		
f(BCLK): Internal peripheral clock operating frequency	A-D1 converter: Inpur During single mode (Shortest time) During comparator mode (Shortest time)	nable event to TOM0_cut to external pin TIN1 nderflow to TOM1_6, e Low speed mode High-speed mode Low speed mode High-speed mode	0-7 (Note 3), end of 6, underflow of TC and of A-D0 converted Normal Double speed × 2 speed × 4 speed Normal Double speed × 2 speed × 4 speed × 2 speed	of A-D1 conversion DM0_6, rsion 299 × 1/f (BCLK) 173 × 1/f (BCLK) 131 × 1/f (BCLK) 89 × 1/f (BCLK) 47 × 1/f (BCLK) 29 × 1/f (BCLK) 23 × 1/f (BCLK)		
f(BCLK): Internal peripheral clock operating frequency (Note 4)	A-D1 converter: Inpur During single mode (Shortest time) During comparator mode (Shortest time)	nable event to TOM0_cut to external pin TIN1 nderflow to TOM1_6, e Low speed mode High-speed mode Low speed mode High-speed mode s finished, when compa	0-7 (Note 3), end of 6, underflow of TC end of A-D0 convellor Normal Double speed × 2 speed × 4 speed Normal Double speed × 2 speed × 4 speed x 2 speed x 3 speed x 4 speed x 4 speed	of A-D1 conversion $DM0_6$, rsion $299 \times 1/f$ (BCLK) $173 \times 1/f$ (BCLK) $131 \times 1/f$ (BCLK) $89 \times 1/f$ (BCLK) $47 \times 1/f$ (BCLK) $29 \times 1/f$ (BCLK) $23 \times 1/f$ (BCLK) $7 \times 1/f$ (BCLK) finished, when single-show		
f(BCLK): Internal peripheral clock operating frequency (Note 4)	A-D1 converter: Input During single mode (Shortest time) During comparator mode (Shortest time) When A-D conversion is scan is finished, or whe	Low speed mode Low speed mode Low speed mode High-speed mode High-speed mode s finished, when companion one cycle of continuation in the companion of the continuation of the continuation in the continuation in the continuation in the continuation in the continuation of the continuation in the continu	0-7 (Note 3), end of 6, underflow of TC end of A-D0 converted Normal Double speed × 2 speed × 4 speed Normal Double speed × 2 speed × 4 speed arate operation is four scan is finished	of A-D1 conversion DM0_6, rsion $299 \times 1/f \text{ (BCLK)}$ $173 \times 1/f \text{ (BCLK)}$ $131 \times 1/f \text{ (BCLK)}$ $89 \times 1/f \text{ (BCLK)}$ $47 \times 1/f \text{ (BCLK)}$ $29 \times 1/f \text{ (BCLK)}$ $23 \times 1/f \text{ (BCLK)}$ $7 \times 1/f \text{ (BCLK)}$ finished, when single-sho		

Note 1: The nonlinearity error is a deviation from the ideal conversion characteristic after offset and full-scale errors have been adjusted to 0.

Note 2: This indicates the accuracy of A-D conversion with respect to the input signal from the analog input-only pin.

Note 3: There are following sources of trigger.
TID0 overflow/underflow, TOM0_7 underflow, and input to external pin TIN18

Note 4: When input clock (XIN) = 10 MHz, f(BCLK) = 20 MHz.

Figure 13. Block Diagram of the A-D0 Converter

Figure 14. Block Diagram of the A-D1 Converter

SINGLE-CHIP 32-BIT CMOS MICROCOMPUTER

8-channel High-speed Serial I/Os

The microcomputer contains eight channels of serial I/Os consisting of four channels that can be set for CSIO mode (clock-synchronized serial I/O) or UART mode (asynchronous serial I/O) and four other channels that can only be set for UART mode.

The SIO has the function to generate a DMA transfer request when data reception is completed or the transmit register becomes empty, and is capable of high-speed serial communication without causing any additional CPU load.

Table 8. Outline of the Serial I/O

Item	Content			
Number of channels	CSIO/UART: 4 channels (SIO0,SIO1,SIO4,SIO5)			
	UART only : 4 channels (SIO2,SIO3,SIO6,SIO7)			
Clock	During CSIO mode : Internal clock / external clock, selectable (Note1)			
	During UART mode: Internal clock only			
Transfer mode	Transmit half-duplex, receive half-duplex, transmit/receive full-duplex			
BRG count sourcef	(BCLK), f(BCLK)/8, f(BCLK)/32, f(BCLK)/256 (When internal clock is selected) (Note2)			
Data format	CSIO mode: Data length = Fixed to 8 bits			
	Order of transfer = Fixed to LSB first			
	UARTmode: Start bit = 1 bit			
	Character length = 7, 8, or 9 bits			
	Parity bit = With or without (even/odd selectable)			
	Stop bit = 1 or 2 bits			
	Order of transfer = Fixed to LSB first			
Baud rate	CSIO mode: 190 bits per second to 2 Mbits per second (when operating with f(BCLK) = 20 MHz)			
	UARTmode: 23 bits per second to 196 Kbits per second (when operating with f(BCLK) = 20 MHz			
Error detection	CSIO mode: Overrun error only			
	UARTmode: Overrun, parity, and framing errors			
	(The error-sum bit indicates which error has occurred)			

Note 1: During CSIO mode, the maximum input frequency of an external clock is f(BCLK) divided by 16.

Note 2: When f(BCLK) is selected for the BRG count source, the BRG set value is subject to limitations.

Figure 15. Block Diagram of the Serial I/O (1/2)

Figure 16. Block Diagram of the Serial I/O (2/2)

CAN Module

The microcomputer contains two Full CAN modules compliant with CAN Specification V2.0B (CAN0 and CAN1), each of which has 16-channel message slots and three mask registers.

Figure 17. Block Diagram of the CANO Module

Figure 18. Block Diagram of the CAN1 Module

PD Interface Module

The microcomputer contains eight-channel event counters which can be used as a dedicated interface circuit for PD (Phase Digital) sensors. When used in combination with PD sensors, this interface module can perform the necessary predictive arithmetic operation during position detection at high speed.

Note: A separate external circuit is required before this interface module can be used in combination with PD sensors.

Figure 19. Block Diagram of the PD Interface Module

D-A Converters

The microcomputer contains two 8-bit D-A converters (D-A0 and D-A1 converters). There are two D-A conversion modes: single mode and continuous mode (D-A1 converter only).

Single mode: In this mode, the D-A converter outputs an analog value corresponding to the value set in the D-A conversion register.

Continuous mode: In this mode, the D-A converter outputs the values set in D-A data registers n (n = 0-255) after successively converting them into analog quantities.

Figure 20. Block Diagram of the D-A0 Converter

Figure 21. Block Diagram of the D-A1 Converter

SINGLE-CHIP 32-BIT CMOS MICROCOMPUTER

8-level Interrupt Controller

The Interrupt Controller controls interrupt requests from each internal peripheral I/O (31 sources) by using eight priority levels assigned to each interrupt source, including interrupts disabled. In addition to these interrupts, it handles System Break Interrupt (SBI), Reserved Instruction Exception (RIE), and Address Exception (AE) as nonmaskable interrupts.

Wait Controller

The Wait Controller supports access to external devices. For access to an external extended area of up to 1 Mbytes (during external extended or processor mode), the Wait Controller controls bus cycle extension by inserting one to four wait cycles or using external WAIT signal input.

Realtime Debugger (RTD)

The Realtime Debugger (RTD) provides a function for accessing directly from the outside to the internal RAM. It uses a dedicated clock-synchronized serial I/O to communicate with the outside.

Use of the RTD communicating via dedicated serial lines allows the internal RAM to be read out and rewritten without having to halt the CPU.

Figure 22. Conceptual Diagram of the Realtime Debugger (RTD)

SINGLE-CHIP 32-BIT CMOS MICROCOMPUTER

CPU Instruction Set

The M32R employs a RISC architecture, supporting a total of 83 discrete instructions.

(1) Load/store instructions

Perform data transfer between memory and registers.

Load LDB Load byte LDUB Load unsigned byte

T'DH Load halfword

LDUH Load unsigned halfword

LOCK Load locked Store ST Store byte STB STH Store halfword UNLOCK Store unlocked

(2) Transfer instructions

Perform register to register transfer or register to immediate

transfer.

LD24 Load 24-bit immediate

T.DT Load immediate MV Move register

MVFC Move from control register MVTC Move to control register Set high-order 16-bit SETH

(3) Branch instructions

Used to change the program flow.

Branch on C-bit BEC Branch on equal BEQZ Branch on equal zero

Branch on greater than or equal zero BGEZ BGT7 Branch on greater than zero

BLBranch and link

BLEZ Branch on less than or equal zero

BLT7 Branch on less than zero Branch on not C-bit BNC BNE Branch on not equal BNEZ Branch on not equal zero

BRA Branch Jump and link JL JTMP Jump

NOP No operation

(4) Arithmetic/logic instructions

Perform comparison, arithmetic/logic operation, multiplication/division, or shift between registers.

Comparison

CMP Compare

CMPT Compare immediate **CMPU** Compare unsigned

Compare unsigned immediate **CMPUI**

Logical operation

AND AND

AND3 AND 3-operand NOT Logical NOT

OR OR

OR3 OR 3-operand XOR Exclusive OR

XOR3 Exclusive OR 3-operand

Arithmetic operation

ADD Add ADD3 Add

3-operand ADDI Add immediate

ADDV Add (with overflow checking)

ADDV3 Add 3-operand ADDX Add with carry NEG Negate

SUB Subtract

Subtract (with overflow checking) SUBV

SUBX Subtract with borrow

Multiplication/division

DIV Divide

DIVU Divide unsigned MUL Multiply REM Remainder

REMU Remainder unsigned

Shift

MACLO

Shift left logical SLL

Shift left logical 3-operand ST.T.3 STITIT Shift left logical immediate

SRA Shift right arithmetic

SRA3 Shift right arithmetic 3-operand SRAI Shift right arithmetic immediate

SRI Shift right logical

SRT₃ Shift right logical 3-operand SRLI Shift right logical immediate

(5) Instructions for the DSP function

Perform 32 bit \times 16 bit or 16 bit \times 16 bit multiplication or sum-of-products calculation. These instructions also perform rounding of the accumulator data or transfer between accumulator and general-purpose register.

MACHI Multiply-accumulate high-order

halfwords Multiply-accumulate low-order

halfwords MACWHI

Multiply-accumulate word and

high-order halfword

MACWLO Multiply-accumulate word and

low-order halfword

Multiply high-order halfwords Multiply low-order halfwords MULHI MULLO MULWHI Multiply word and high-order

halfword

MULWLO Multiply word and low-order

halfword

MVFACHT Move from accumulator high-order word MVFACLO Move from accumulator low-order word MVFACMI Move from accumulator middle-order

word

MVTACHT Move to accumulator high-order word MVTACLO Move to accumulator low-order word

RAC Round accumulator

RACH Round accumulator halfword

(6) EIT related instructions

Start trap or return from EIT processing.

RTE Return from EIT

TRAP Trap

Figure 23. Instructions for the DSP Function

SINGLE-CHIP 32-BIT CMOS MICROCOMPUTER

Package Dimensions Diagram

Detail F

ME

20.4

SINGLE-CHIP 32-BIT CMOS MICROCOMPUTER

MEMO

Mitsubishi Microcomputers

M32172F2VFP M32173F2VFP

SINGLE-CHIP 32-BIT CMOS MICROCOMPUTER

Renesas Technology Corp.

Nippon Bldg.,6-2,Otemachi 2-chome,Chiyoda-ku,Tokyo,100-0004 Japan

· Keep safety first in your circuit designs! -

Misubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- Notes regarding these materials

 These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, belonging to Mitsubishi Electric Corporation or a third party.

 Mitsubishi Electric Corporation assumes no responsibility for any damage, or intringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.

 The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Mitsubishi Electric Corporation without notice of information published by Mitsubishi Electric Corporation without notice of information published by Mitsubishi Electric Corporation without notice of information published by Mitsubishi Electric Corporation without notice of information published by Mitsubishi Electric Corporation without notice of information contained in these materials, including product data, diagrams, charts, programs, and algorithms, prease be sure to evaluate all information as a total system before making a final decision on the applicability of the information contained in these materials, including product data, diagrams, charts, p

- obstraction.
 Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
 Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein

