Методы оптимизации Лекция 1: Введение. Выпуклые множества

Александр Катруца

Физтех-школа прикладной математики и информатики Московский физико-технический институт

5 сентября 2022 г.

О чём этот курс?

Теория: сентябрь — середина октября

- Выпуклые множества и функции
- Условия оптимальности
- Основы теории двойственности

Методы и приложения: середина октября — середина декабря

- Постановки задач оптимизации
- Методы решения задач без ограничений
- Методы решения задач с простыми ограничениями
- Линейное программирование
- Задачи конической оптимизации и SDP

▶ Лекция и семинар каждую неделю

- ▶ Лекция и семинар каждую неделю
- Отчётность

- Лекция и семинар каждую неделю
- Отчётность
- ▶ Репозиторий со слайдами лекций: https://github.com/amkatrutsa/optimization-fivt

- ▶ Лекция и семинар каждую неделю
- Отчётность
- Репозиторий со слайдами лекций: https://github.com/amkatrutsa/optimization-fivt
- ► Репозиторий со старыми семинарами: https://github.com/amkatrutsa/seminars-fivt

Отзывы о курсе год назад

Как Вы оцениваете лекции по курсу Методы оптимизации?	Что Вам больше всего понравилось в лекциях?	Что Вам больше всего НЕ понравилось в лекциях?
7	Мнгомерное дифференцирование	С презентации доказательства не заходят, хочется на доске расписывать
8	Структурированность изложения	Хотелось бы побольше доказательств и теор. фактов
9	Всё прикреплялось примерами, что способствовало лёгкому восприятию темы.	Большая часть лекций было онлайн.
3	Не смотрел	Не смотрел
9	Лектор хорошо взаимодействует с аудиторией и добивается понимания материала	Ничего критичного (мб, что были ошибки в слайдах, но их исправили и всё супер ()
9	Примеры задач	Все понравилось

▶ Больше примеров задач: оптимизация на многообразиях, робастная оптимизация

- ▶ Больше примеров задач: оптимизация на многообразиях, робастная оптимизация
- Больше методов решения: специфика использования смешанной точности

- ▶ Больше примеров задач: оптимизация на многообразиях, робастная оптимизация
- Больше методов решения: специфика использования смешанной точности
- Меньше времени уделим долгим доказательствам

- ▶ Больше примеров задач: оптимизация на многообразиях, робастная оптимизация
- Больше методов решения: специфика использования смешанной точности
- Меньше времени уделим долгим доказательствам
- Больше примеров комбинации теоретических результатов и пакетов для решения задач: cvxpy, pymanopt, apex, etc

Литература

Основная книга

S. Boyd and L. Vandenberghe *Convex Optimization* https://web.stanford.edu/~boyd/cvxbook/

Теория

- ▶ Ю.Е. Нестеров Введение в выпуклую оптимизацию
- A. Nemirovski Lecture notes on Modern Convex Optimization
- S. Bubeck Convex Optimization: Algorithms and Complexity
- R. T. Rockafellar Convex analysis

Методы и приложения

- J. Nocedal, S. J. Wright Numerical Optimization
- P. E. Gill, W. Murray, M. H. Wright Practical optimization
- ▶ Б.Т. Поляк Введение в оптимизацию

• Формализация задачи выбора элемента из множества

- Формализация задачи выбора элемента из множества
- ▶ Обоснование правильности принятия решения

- Формализация задачи выбора элемента из множества
- Обоснование правильности принятия решения
- Разнообразные приложения:

- Формализация задачи выбора элемента из множества
- ▶ Обоснование правильности принятия решения
- Разнообразные приложения:
 - машинное обучение: классификация, кластеризация, регрессия

- Формализация задачи выбора элемента из множества
- Обоснование правильности принятия решения
- Разнообразные приложения:
 - машинное обучение: классификация, кластеризация, регрессия
 - молекулярное моделирование

- Формализация задачи выбора элемента из множества
- ▶ Обоснование правильности принятия решения
- Разнообразные приложения:
 - машинное обучение: классификация, кластеризация, регрессия
 - молекулярное моделирование
 - выбор активов (portfolio optimization)

- Формализация задачи выбора элемента из множества
- Обоснование правильности принятия решения
- Разнообразные приложения:
 - машинное обучение: классификация, кластеризация, регрессия
 - молекулярное моделирование
 - выбор активов (portfolio optimization)
 - оптимальное управление

- Формализация задачи выбора элемента из множества
- Обоснование правильности принятия решения
- Разнообразные приложения:
 - машинное обучение: классификация, кластеризация, регрессия
 - молекулярное моделирование
 - выбор активов (portfolio optimization)
 - оптимальное управление
 - обработка сигналов

- Формализация задачи выбора элемента из множества
- Обоснование правильности принятия решения
- Разнообразные приложения:
 - машинное обучение: классификация, кластеризация, регрессия
 - молекулярное моделирование
 - выбор активов (portfolio optimization)
 - оптимальное управление
 - обработка сигналов
 - робототехника

- Формализация задачи выбора элемента из множества
- Обоснование правильности принятия решения
- Разнообразные приложения:
 - машинное обучение: классификация, кластеризация, регрессия
 - молекулярное моделирование
 - выбор активов (portfolio optimization)
 - оптимальное управление
 - обработка сигналов
 - робототехника
 - и другие

Основные этапы использования методов оптимизации при решении реальных задач:

1. Определение целевой функции

- 1. Определение целевой функции
- 2. Определение допустимого множества решений

- 1. Определение целевой функции
- 2. Определение допустимого множества решений
- 3. Постановка и анализ оптимизационной задачи

- 1. Определение целевой функции
- 2. Определение допустимого множества решений
- 3. Постановка и анализ оптимизационной задачи
- 4. Выбор наилучшего алгоритма для решения поставленной задачи

- 1. Определение целевой функции
- 2. Определение допустимого множества решений
- 3. Постановка и анализ оптимизационной задачи
- 4. Выбор наилучшего алгоритма для решения поставленной задачи
- 5. Реализация алгоритма и проверка его корректности

$$\begin{aligned} \min_{\mathbf{x} \in X} f_0(\mathbf{x}) \\ \text{s.t. } f_i(\mathbf{x}) &= 0, \ i = 1, \dots, p \\ f_j(\mathbf{x}) &\leq 0, \ j = p+1, \dots, m, \end{aligned}$$

$$\begin{aligned} \min_{\mathbf{x} \in X} f_0(\mathbf{x}) \\ \text{s.t. } f_i(\mathbf{x}) &= 0, \ i = 1, \dots, p \\ f_j(\mathbf{x}) &\leq 0, \ j = p+1, \dots, m, \end{aligned}$$

 $ightharpoonup \mathbf{x} \in \mathbb{R}^n$ — искомый вектор

$$\begin{aligned} \min_{\mathbf{x} \in X} f_0(\mathbf{x}) \\ \text{s.t. } f_i(\mathbf{x}) = 0, \ i = 1, \dots, p \\ f_j(\mathbf{x}) \leq 0, \ j = p+1, \dots, m, \end{aligned}$$

- $ightharpoonup \mathbf{x} \in \mathbb{R}^n$ искомый вектор
- $lackbox{lack} f_0(\mathbf{x}): \mathbb{R}^n o \mathbb{R}$ целевая функция

$$\begin{aligned} \min_{\mathbf{x} \in X} f_0(\mathbf{x}) \\ \text{s.t. } f_i(\mathbf{x}) = 0, \ i = 1, \dots, p \\ f_j(\mathbf{x}) \leq 0, \ j = p+1, \dots, m, \end{aligned}$$

- $ightharpoonup \mathbf{x} \in \mathbb{R}^n$ искомый вектор
- $lackbox{lack} f_0(\mathbf{x}): \mathbb{R}^n
 ightarrow \mathbb{R}$ целевая функция
- $lackbox{lack} f_k(\mathbf{x}): \mathbb{R}^n o \mathbb{R}$ функции ограничений

$$\begin{aligned} \min_{\mathbf{x} \in X} f_0(\mathbf{x}) \\ \text{s.t. } f_i(\mathbf{x}) &= 0, \ i = 1, \dots, p \\ f_j(\mathbf{x}) &\leq 0, \ j = p+1, \dots, m, \end{aligned}$$

- $lackbox{x} \in \mathbb{R}^n$ искомый вектор
- $lackbox{
 ightharpoonup} f_0(\mathbf{x}): \mathbb{R}^n o \mathbb{R}$ целевая функция
- $lackbox{f F}_k({f x}): \mathbb{R}^n
 ightarrow \mathbb{R}$ функции ограничений

Пример: выбор объектов для вложения денег и определение в какой объект сколько вкладывать

- х размер инвестиций в каждый актив
- $lacktriangledown f_0$ суммарный риск или вариация прибыли
- f_k бюджетные ограничения, min/max вложения в актив, минимально допустимая прибыль

Определение

Точка \mathbf{x}^* называется точкой глобального минимума, если $f(\mathbf{x}) \geq f(\mathbf{x}^*)$ для всех \mathbf{x} из допустимого множества.

Определение

Точка \mathbf{x}^* называется точкой глобального минимума, если $f(\mathbf{x}) \geq f(\mathbf{x}^*)$ для всех \mathbf{x} из допустимого множества.

Определение

Точка \mathbf{x}^* называется точкой **локального** минимума, если $f(\mathbf{x}) \geq f(\mathbf{x}^*)$ для всех \mathbf{x} из окрестности точки \mathbf{x}^* и допустимого множества.

Определение

Точка \mathbf{x}^* называется точкой глобального минимума, если $f(\mathbf{x}) \geq f(\mathbf{x}^*)$ для всех \mathbf{x} из допустимого множества.

Определение

Точка \mathbf{x}^* называется точкой **локального** минимума, если $f(\mathbf{x}) \geq f(\mathbf{x}^*)$ для всех \mathbf{x} из окрестности точки \mathbf{x}^* и допустимого множества.

Альтернативная запись задачи

$$\mathbf{x}^* = \operatorname*{min}_{\mathbf{x} \in \mathcal{X}} f_0(\mathbf{x})$$

s.t. $f_i(\mathbf{x}) = 0, \ i = 1, \dots, p$
 $f_j(\mathbf{x}) \leq 0, \ j = p+1, \dots, m,$

Как решать?

В общем случае:

- ▶ NP-полные
- ▶ рандомизированные алгоритмы: время vs. стабильность

Как решать?

В общем случае:

- ▶ NP-полные
- ▶ рандомизированные алгоритмы: время vs. стабильность

НО определённые классы задач могут быть решены быстро!

Как решать?

В общем случае:

- ▶ NP-полные
- ▶ рандомизированные алгоритмы: время vs. стабильность

НО определённые классы задач могут быть решены быстро!

- ▶ Линейное программирование
- Задача наименьших квадратов
- Задача о малоранговом приближении матрицы
- Выпуклая оптимизация

История развития

- ▶ 1940-ые линейное программирование
- ▶ 1950-ые квадратичное программирование
- ▶ 1960-ые геометрическое программирование
- ▶ 1990-ые полиномиальные методы внутренней точки для задач конической оптимизации
- 2000-ые релаксации комбинаторных задач и робастная оптимизация
- 2010-ые стохастические методы, невыпуклые задачи и глобальная оптимизация

lacktriangle Решение задач огромной размерности $(\sim 10^8-10^{12})$

- ightharpoonup Решение задач огромной размерности ($\sim 10^8 10^{12}$)
- Распределённая оптимизация

- ightharpoonup Решение задач огромной размерности ($\sim 10^8 10^{12}$)
- Распределённая оптимизация
- Быстрые методы высокого порядка

- ightharpoonup Решение задач огромной размерности ($\sim 10^8-10^{12})$
- Распределённая оптимизация
- Быстрые методы высокого порядка
- Стохастические алгоритмы: масштабируемость vs. точность

- ightharpoonup Решение задач огромной размерности $(\sim 10^8-10^{12})$
- Распределённая оптимизация
- Быстрые методы высокого порядка
- Стохастические алгоритмы: масштабируемость vs. точность
- ▶ Невыпуклые задачи определённой структуры

- ightharpoonup Решение задач огромной размерности $(\sim 10^8-10^{12})$
- Распределённая оптимизация
- Быстрые методы высокого порядка
- Стохастические алгоритмы: масштабируемость vs. точность
- ▶ Невыпуклые задачи определённой структуры
- Приложения выпуклой оптимизации

$$\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^\top \mathbf{x}$$

s.t. $\mathbf{a}_i^{\top} \mathbf{x} \leq b_i, \ i = 1, \dots, m$

$$\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^{\top} \mathbf{x}$$

s.t.
$$\mathbf{a}_i^{\top} \mathbf{x} \leq b_i, \ i = 1, \dots, m$$

нет аналитического решения

$$\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^\top \mathbf{x}$$

s.t.
$$\mathbf{a}_i^{\top} \mathbf{x} \leq b_i, \ i = 1, \dots, m$$

- нет аналитического решения
- существуют эффективные алгоритмы

$$\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^\top \mathbf{x}$$

s.t.
$$\mathbf{a}_i^{\top} \mathbf{x} \leq b_i, \ i = 1, \dots, m$$

- нет аналитического решения
- существуют эффективные алгоритмы
- разработанная технология

$$\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^ op \mathbf{x}$$

s.t.
$$\mathbf{a}_i^{\top} \mathbf{x} \leq b_i, \ i = 1, \dots, m$$

- нет аналитического решения
- существуют эффективные алгоритмы
- разработанная технология
- ▶ симплекс-метод для решения таких задач входит в Тор-10 алгоритмов XX века

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2,$$

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2,$$

где $\mathbf{A} \in \mathbb{R}^{m \times n}$ и $\mathbf{b} \in \mathbb{R}^m$, где m > n.

 определение решения переопределённой системы линейных уравнений

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2,$$

- определение решения переопределённой системы линейных уравнений
- ▶ совместность не гарантируется

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2,$$

- определение решения переопределённой системы линейных уравнений
- совместность не гарантируется
- lacktriangle имеет аналитическое решение: $\mathbf{x}^* = (\mathbf{A}^{ op} \mathbf{A})^{-1} \mathbf{A}^{ op} \mathbf{b}$

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2,$$

- определение решения переопределённой системы линейных уравнений
- совместность не гарантируется
- lacktriangle имеет аналитическое решение: $\mathbf{x}^* = (\mathbf{A}^{ op}\mathbf{A})^{-1}\mathbf{A}^{ op}\mathbf{b}$
- ▶ существуют эффективные алгоритмы

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2,$$

- определение решения переопределённой системы линейных уравнений
- совместность не гарантируется
- lacktriangle имеет аналитическое решение: $\mathbf{x}^* = (\mathbf{A}^ op \mathbf{A})^{-1} \mathbf{A}^ op \mathbf{b}$
- существуют эффективные алгоритмы
- разработанная технология

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2,$$

- определение решения переопределённой системы линейных уравнений
- совместность не гарантируется
- lacktriangle имеет аналитическое решение: $\mathbf{x}^* = (\mathbf{A}^{ op} \mathbf{A})^{-1} \mathbf{A}^{ op} \mathbf{b}$
- существуют эффективные алгоритмы
- разработанная технология
- имеет статистическую интерпретацию

Малоранговое приближение (low-rank approximation)

$$\min_{\mathbf{X} \in \mathbb{R}^{m \times n}} \|\mathbf{A} - \mathbf{X}\|_F$$
 s.t. $\mathsf{rank}(\mathbf{X}) \leq k$

Эта задача имеет аналитическое решение

Teopeмa (Eckart-Young, 1993)

Пусть $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$ — сингулярное разложение (SVD) матрицы \mathbf{A} , где $\mathbf{U} = [\mathbf{U}_k, \mathbf{U}_{r-k}] \in \mathbb{R}^{m \times r}$, $\mathbf{\Sigma} = \mathrm{diag}(\sigma_1, \ldots, \sigma_k, \ldots, \sigma_r)$, $\mathbf{V} = [\mathbf{V}_k, \mathbf{V}_{r-k}] \in \mathbb{R}^{n \times r}$ и $r = \mathrm{rank}(\mathbf{A})$. Тогда решение задачи можно записать в виде:

$$\mathbf{X} = \mathbf{U}_k \hat{\mathbf{\Sigma}} \mathbf{V}_k^{\top},$$

где
$$\hat{oldsymbol{\Sigma}} = \mathrm{diag}(\sigma_1, \ldots, \sigma_k)$$
.

Сжатие: toy problem

- **▶** Изображение $493 \times 700 \times 3$
- ▶ Каков эффективный ранг матрицы для каждого цвета?

lacktriangle Коэффициент сжатия $\frac{3 imes (493 imes 10 + 10 + 10 imes 700)}{493 imes 700 imes 3} = 0.035$

▶ Коэффициент сжатия $\frac{3 \times (493 \times 50 + 50 + 50 \times 700)}{493 \times 700 \times 3} = 0.173$

▶ Коэффициент сжатия $\frac{3 \times (493 \times 100 + 100 + 100 \times 700)}{493 \times 700 \times 3} = 0.346$

lacktriangle Коэффициент сжатия $rac{3 imes (493 imes 150+150+150 imes 700)}{493 imes 700 imes 3}=0.519$

Определение ранга

- Убывание сингулярных чисел связано с ошибкой аппроксимации
- ightharpoonup Выбор ранга по величине сингулярного числа σ_k

Код доступен тут

Сжатие: real problem

График взят отсюда

 Современные нейросети содержат миллиарды оптимизируемых параметров

Сжатие: real problem

График взят отсюда

- Современные нейросети содержат миллиарды оптимизируемых параметров
- Для масштабирования моделей необходимо снижать внутреннюю размерность слоёв

Сжатие: real problem

График взят отсюда

- Современные нейросети содержат миллиарды оптимизируемых параметров
- Для масштабирования моделей необходимо снижать внутреннюю размерность слоёв
- Многие методы сжатия основаны на малоранговой аппроксимации, см обзор

Выпуклая оптимизация (convex optimization)

$$egin{aligned} \min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x}) \ & ext{s.t.} \ f_i(\mathbf{x}) \leq 0, \ i = 1, \dots, m \ & \mathbf{A}\mathbf{x} = \mathbf{b} \end{aligned}$$

Выпуклая оптимизация (convex optimization)

$$\min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x})$$

s.t. $f_i(\mathbf{x}) \leq 0, \ i = 1, \dots, m$
 $\mathbf{A}\mathbf{x} = \mathbf{b}$

 $ightharpoonup f_0, f_i$ — выпуклые функции:

$$f(\alpha {\bf x}_1+\beta {\bf x}_2) \leq \alpha f({\bf x}_1)+\beta f({\bf x}_2),$$
 где $\alpha,\beta \geq 0$ и $\alpha+\beta=1.$

Выпуклая оптимизация (convex optimization)

$$\min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x})$$

s.t. $f_i(\mathbf{x}) \leq 0, \ i = 1, \dots, m$
 $\mathbf{A}\mathbf{x} = \mathbf{b}$

▶ f_0, f_i — выпуклые функции:

$$f(\alpha \mathbf{x}_1 + \beta \mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + \beta f(\mathbf{x}_2),$$

где
$$\alpha, \beta \geq 0$$
 и $\alpha + \beta = 1$.

нет аналитического решения

Выпуклая оптимизация (convex optimization)

$$\min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x})$$

s.t. $f_i(\mathbf{x}) \leq 0, \ i = 1, \dots, m$
 $\mathbf{A}\mathbf{x} = \mathbf{b}$

▶ f_0, f_i — выпуклые функции:

$$f(\alpha \mathbf{x}_1 + \beta \mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + \beta f(\mathbf{x}_2),$$

где
$$\alpha, \beta \geq 0$$
 и $\alpha + \beta = 1$.

- нет аналитического решения
- существуют эффективные алгоритмы

Выпуклая оптимизация (convex optimization)

$$\min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x})$$

s.t. $f_i(\mathbf{x}) \leq 0, \ i = 1, \dots, m$
 $\mathbf{A}\mathbf{x} = \mathbf{b}$

 $ightharpoonup f_0, f_i$ — выпуклые функции:

$$f(\alpha \mathbf{x}_1 + \beta \mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + \beta f(\mathbf{x}_2),$$

где
$$\alpha, \beta \geq 0$$
 и $\alpha + \beta = 1$.

- нет аналитического решения
- существуют эффективные алгоритмы
- ▶ часто сложно «увидеть» задачу выпуклой оптимизации

Выпуклая оптимизация (convex optimization)

$$\min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x})$$

s.t. $f_i(\mathbf{x}) \leq 0, \ i = 1, \dots, m$
 $\mathbf{A}\mathbf{x} = \mathbf{b}$

▶ f_0, f_i — выпуклые функции:

$$f(\alpha \mathbf{x}_1 + \beta \mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + \beta f(\mathbf{x}_2),$$

где
$$\alpha, \beta \geq 0$$
 и $\alpha + \beta = 1$.

- нет аналитического решения
- существуют эффективные алгоритмы
- ▶ часто сложно «увидеть» задачу выпуклой оптимизации
- существуют приёмы для преобразования задачи к стандартному виду

Ralph Tyrrell Rockafellar (born 1935)

The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity.

Ralph Tyrrell Rockafellar (born 1935)

The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity.

Локальный оптимум является глобальным

Ralph Tyrrell Rockafellar (born 1935)

The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity.

- Локальный оптимум является глобальным
- ▶ Необходимое условие оптимальности является достаточным

Ralph Tyrrell Rockafellar (born 1935)

The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity.

- Локальный оптимум является глобальным
- Необходимое условие оптимальности является достаточным

Вопросы:

Ralph Tyrrell Rockafellar (born 1935)

The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity.

- Локальный оптимум является глобальным
- ▶ Необходимое условие оптимальности является достаточным

Вопросы:

Любую ли задачу выпуклой оптимизации можно эффективно решить?

Ralph Tyrrell Rockafellar (born 1935)

The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity.

- Локальный оптимум является глобальным
- Необходимое условие оптимальности является достаточным

Вопросы:

- Любую ли задачу выпуклой оптимизации можно эффективно решить?
- Можно ли эффективно решить невыпуклые задачи оптимизации?

▶ От простого к сложному

- ▶ От простого к сложному
- ▶ От общего к частному

- ▶ От простого к сложному
- ▶ От общего к частному
- Чем больше информации о задаче вам известно, тем быстрее вы можете её решить

- ▶ От простого к сложному
- От общего к частному
- Чем больше информации о задаче вам известно, тем быстрее вы можете её решить
- Распараллеленные модификации методов могут существенно ускорить процесс решения задачи

Определение

Множество $C\subseteq\mathbb{R}^n$ называется выпуклым, если для всех $\alpha\in[0,1]$ и любых $\mathbf{x},\mathbf{y}\in\mathcal{C}$ выполнено

$$\alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in \mathcal{C}.$$

Определение

Множество $C\subseteq\mathbb{R}^n$ называется выпуклым, если для всех $\alpha\in[0,1]$ и любых $\mathbf{x},\mathbf{y}\in\mathcal{C}$ выполнено

$$\alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in \mathcal{C}.$$

Примеры

Многоугольники

Определение

Множество $C\subseteq\mathbb{R}^n$ называется выпуклым, если для всех $\alpha\in[0,1]$ и любых $\mathbf{x},\mathbf{y}\in\mathcal{C}$ выполнено

$$\alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in \mathcal{C}.$$

Примеры

- Многоугольники
- Гиперплоскости

Определение

Множество $C\subseteq\mathbb{R}^n$ называется выпуклым, если для всех $\alpha\in[0,1]$ и любых $\mathbf{x},\mathbf{y}\in\mathcal{C}$ выполнено

$$\alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in \mathcal{C}.$$

Примеры

- Многоугольники
- Гиперплоскости
- Шары в любой норме и эллипсоиды

Определение

Множество $C\subseteq\mathbb{R}^n$ называется выпуклым, если для всех $lpha\in[0,1]$ и любых $\mathbf{x},\mathbf{y}\in\mathcal{C}$ выполнено

$$\alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in \mathcal{C}.$$

Примеры

- Многоугольники
- Гиперплоскости
- Шары в любой норме и эллипсоиды
- ▶ Симметричные положительно определённые матрицы

Теорема

Пересечение конечного или бесконечного числа выпуклых множеств C_i является выпуклым множеством:

$$\mathcal{C} = \bigcap_{i \in \mathcal{I}} \mathcal{C}_i.$$

Теорема

Пересечение конечного или бесконечного числа выпуклых множеств C_i является выпуклым множеством:

$$\mathcal{C} = \bigcap_{i \in \mathcal{I}} \mathcal{C}_i.$$

Доказательство

▶ Рассмотрим $\mathbf{x}, \mathbf{y} \in \mathcal{C} \to \mathbf{x}, \mathbf{y} \in \mathcal{C}_i, \forall i \in \mathcal{I}$

Теорема

Пересечение конечного или бесконечного числа выпуклых множеств C_i является выпуклым множеством:

$$\mathcal{C} = \bigcap_{i \in \mathcal{I}} \mathcal{C}_i.$$

- lackbox Рассмотрим $\mathbf{x},\mathbf{y}\in\mathcal{C}
 ightarrow\mathbf{x},\mathbf{y}\in\mathcal{C}_i,orall i\in\mathcal{I}$
- ▶ Построим точку $\mathbf{z} = \alpha \mathbf{x} + (1 \alpha) \mathbf{y}$, $\alpha \in [0, 1]$

Теорема

Пересечение конечного или бесконечного числа выпуклых множеств C_i является выпуклым множеством:

$$\mathcal{C} = \bigcap_{i \in \mathcal{I}} \mathcal{C}_i.$$

- lackbox Рассмотрим $\mathbf{x},\mathbf{y}\in\mathcal{C}
 ightarrow\mathbf{x},\mathbf{y}\in\mathcal{C}_i,orall i\in\mathcal{I}$
- lacktriangle Построим точку $\mathbf{z} = \alpha \mathbf{x} + (1 \alpha) \mathbf{y}$, $\alpha \in [0, 1]$
- lacktriangle Так как все \mathcal{C}_i выпуклы, то $\mathbf{z} \in \mathcal{C}_i, \ orall i \in \mathcal{I}$

Теорема

Пересечение конечного или бесконечного числа выпуклых множеств C_i является выпуклым множеством:

$$\mathcal{C} = \bigcap_{i \in \mathcal{I}} \mathcal{C}_i.$$

- lackbox Рассмотрим $\mathbf{x},\mathbf{y}\in\mathcal{C}
 ightarrow\mathbf{x},\mathbf{y}\in\mathcal{C}_i,orall i\in\mathcal{I}$
- lacktriangle Построим точку $\mathbf{z} = \alpha \mathbf{x} + (1 \alpha) \mathbf{y}$, $\alpha \in [0, 1]$
- lacktriangle Так как все \mathcal{C}_i выпуклы, то $\mathbf{z} \in \mathcal{C}_i, \ orall i \in \mathcal{I}$
- lacktriangle Следовательно, $\mathbf{z} \in \mathcal{C}$ и \mathcal{C} выпукло

Теорема

Образ выпуклого множества при линейном отображении является выпуклым множеством.

Доказательство

lacktriangle Пусть ${\mathcal C}$ — выпуклое множество и ${f x},{f y}\in{\mathcal C}$

Теорема

Образ выпуклого множества при линейном отображении является выпуклым множеством.

- lacktriangle Пусть ${\mathcal C}$ выпуклое множество и ${f x},{f y}\in{\mathcal C}$
- lacktriangle Пусть f линейное отображение вида $f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$

Теорема

Образ выпуклого множества при линейном отображении является выпуклым множеством.

- lacktriangle Пусть ${\mathcal C}$ выпуклое множество и ${f x},{f y}\in{\mathcal C}$
- lacktriangle Пусть f линейное отображение вида $f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$
- lacktriangle Покажем, что $lpha f(\mathbf{x}) + (1-lpha) f(\mathbf{y}) \in f(\mathcal{C})$, где $lpha \in [0,1]$

Теорема

Образ выпуклого множества при линейном отображении является выпуклым множеством.

- lacktriangle Пусть ${\mathcal C}$ выпуклое множество и ${f x},{f y}\in{\mathcal C}$
- lacktriangle Пусть f линейное отображение вида $f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$
- lacktriangle Покажем, что $lpha f(\mathbf{x}) + (1-lpha) f(\mathbf{y}) \in f(\mathcal{C})$, где $lpha \in [0,1]$
- Действительно,

$$\alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}) = \alpha(\mathbf{A}\mathbf{x} + \mathbf{b}) + (1 - \alpha)(\mathbf{A}\mathbf{y} + \mathbf{b}) = \mathbf{A}(\alpha\mathbf{x} + (1 - \alpha)\mathbf{y}) + \mathbf{b} = \mathbf{A}\mathbf{z} + \mathbf{b} = f(\mathbf{z}),$$

где
$$\mathbf{z} = \alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in \mathcal{C}$$
.

Теорема

Сумма Минковского выпуклых множеств является выпуклым множеством.

Теорема

Сумма Минковского выпуклых множеств является выпуклым множеством.

Доказательство

▶ Пусть $\mathcal{C}_1, \mathcal{C}_2$ — выпуклые множества. Рассмотрим $\mathcal{C} = \mathcal{C}_1 + \mathcal{C}_2 = \{\mathbf{x}_1 + \mathbf{x}_2 \mid \mathbf{x}_1 \in \mathcal{C}_1, \ \mathbf{x}_2 \in \mathcal{C}_2\}$

Теорема

Сумма Минковского выпуклых множеств является выпуклым множеством.

- ▶ Пусть $\mathcal{C}_1, \mathcal{C}_2$ выпуклые множества. Рассмотрим $\mathcal{C} = \mathcal{C}_1 + \mathcal{C}_2 = \{\mathbf{x}_1 + \mathbf{x}_2 \mid \mathbf{x}_1 \in \mathcal{C}_1, \ \mathbf{x}_2 \in \mathcal{C}_2\}$
- lackbox Пусть $\hat{f x}=\hat{f x}_1+\hat{f x}_2$ и $ilde{f x}= ilde{f x}_1+ ilde{f x}_2$ лежат в ${\cal C}$. Покажем, что в ${\cal C}$ лежит точка $lpha\hat{f x}+(1-lpha) ilde{f x}$

Теорема

Сумма Минковского выпуклых множеств является выпуклым множеством.

- ▶ Пусть C_1, C_2 выпуклые множества. Рассмотрим $C = C_1 + C_2 = \{\mathbf{x}_1 + \mathbf{x}_2 \mid \mathbf{x}_1 \in C_1, \ \mathbf{x}_2 \in C_2\}$
- ▶ Пусть $\hat{\mathbf{x}} = \hat{\mathbf{x}}_1 + \hat{\mathbf{x}}_2$ и $\tilde{\mathbf{x}} = \tilde{\mathbf{x}}_1 + \tilde{\mathbf{x}}_2$ лежат в \mathcal{C} . Покажем, что в \mathcal{C} лежит точка $\alpha\hat{\mathbf{x}} + (1 \alpha)\tilde{\mathbf{x}}$
- $$\begin{split} & \hspace{-0.5cm} \text{ Действительно,} \\ & \hspace{-0.5cm} \alpha \hat{\mathbf{x}} \! + \! (1 \! \! \alpha) \tilde{\mathbf{x}} \! = \! [\alpha \hat{\mathbf{x}}_1 \! + \! (1 \! \! \alpha) \tilde{\mathbf{x}}_1] \! + \! [\alpha \hat{\mathbf{x}}_2 \! + \! (1 \! \! \alpha) \tilde{\mathbf{x}}_2] = \mathbf{y}_1 \! + \! \mathbf{y}_2, \\ & \hspace{-0.5cm} \text{где } \mathbf{y}_1 \in \mathcal{C}_1 \text{ и } \mathbf{y}_2 \in \mathcal{C}_2 \text{ в силу выпуклости множеств } \mathcal{C}_1, \mathcal{C}_2. \end{split}$$

Теорема

Сумма Минковского выпуклых множеств является выпуклым множеством.

Доказательство

- ▶ Пусть C_1, C_2 выпуклые множества. Рассмотрим $C = C_1 + C_2 = \{\mathbf{x}_1 + \mathbf{x}_2 \mid \mathbf{x}_1 \in C_1, \ \mathbf{x}_2 \in C_2\}$
- lackbox Пусть $\hat{f x}=\hat{f x}_1+\hat{f x}_2$ и $ilde{f x}= ilde{f x}_1+ ilde{f x}_2$ лежат в ${\cal C}$. Покажем, что в ${\cal C}$ лежит точка $lpha\hat{f x}+(1-lpha) ilde{f x}$
- m Действительно, $lpha \hat{f x} + (1-lpha) \hat{f x} = [lpha \hat{f x}_1 + (1-lpha) \hat{f x}_1] + [lpha \hat{f x}_2 + (1-lpha) \hat{f x}_2] = {f y}_1 + {f y}_2,$ где ${f y}_1 \in \mathcal{C}_1$ и ${f y}_2 \in \mathcal{C}_2$ в силу выпуклости множеств $\mathcal{C}_1, \mathcal{C}_2$.

Следствие

Линейная комбинация выпуклых множеств — выпуклое множество

Определение

Перспективным отображением называется функция $f:\mathbb{R}^n o \mathbb{R}^{n-1}$ такая что

$$f(\mathbf{x})=egin{bmatrix} x_1/x_n\ x_2/x_n\ dots\ x_{n-1}/x_n \end{bmatrix}\in\mathbb{R}^{n-1},$$
 где $x_n>0.$

Определение

Перспективным отображением называется функция $f:\mathbb{R}^n o \mathbb{R}^{n-1}$ такая что

$$f(\mathbf{x})=egin{bmatrix} x_1/x_n\ x_2/x_n\ dots\ x_{n-1}/x_n \end{bmatrix}\in\mathbb{R}^{n-1},$$
 где $x_n>0.$

Теорема

Перспективное отображение выпуклого множества $\mathcal C$ есть выпуклое множество

Определение

Перспективным отображением называется функция $f:\mathbb{R}^n o \mathbb{R}^{n-1}$ такая что

$$f(\mathbf{x})=egin{bmatrix} x_1/x_n\ x_2/x_n\ dots\ x_{n-1}/x_n \end{bmatrix}\in\mathbb{R}^{n-1},$$
 где $x_n>0.$

Теорема

Перспективное отображение выпуклого множества $\mathcal C$ есть выпуклое множество

Определение

Перспективным отображением называется функция $f:\mathbb{R}^n o \mathbb{R}^{n-1}$ такая что

$$f(\mathbf{x})=egin{bmatrix} x_1/x_n\ x_2/x_n\ dots\ x_{n-1}/x_n \end{bmatrix}\in\mathbb{R}^{n-1},$$
 где $x_n>0.$

Теорема

Перспективное отображение выпуклого множества $\mathcal C$ есть выпуклое множество

$$lackbox$$
 Пусть $\mathbf{x},\mathbf{y}\in\mathcal{C}$ и $f(\mathbf{x})=rac{\mathbf{x}}{x_n},f(\mathbf{y})=rac{\mathbf{y}}{y_n}$

Перспективное отображение (perspective map)

Определение

Перспективным отображением называется функция $f: \mathbb{R}^n \to \mathbb{R}^{n-1}$ такая что

$$f(\mathbf{x})=egin{bmatrix} x_1/x_n\ x_2/x_n\ dots\ x_{n-1}/x_n \end{bmatrix}\in\mathbb{R}^{n-1},$$
 где $x_n>0.$

Теорема

Перспективное отображение выпуклого множества $\mathcal C$ есть выпуклое множество

Доказательство

- ▶ Пусть $\mathbf{x}, \mathbf{y} \in \mathcal{C}$ и $f(\mathbf{x}) = \frac{\mathbf{x}}{x_n}, f(\mathbf{y}) = \frac{\mathbf{y}}{y_n}$
- Рассмотрим $\mathbf{z} = \alpha f(\mathbf{x}) + (1-\alpha)f(\mathbf{y})$, где $\alpha \in [0,1]$. Найдите такое $\theta \in [0,1]$ что $\frac{\theta \mathbf{x} + (1-\theta)\mathbf{y}}{\theta x_n + (1-\theta)y_n} = \alpha \frac{\mathbf{x}}{x_n} + (1-\alpha)\frac{\mathbf{y}}{y_n}$.

Определение

Дробно-линейным отображением называется функция

$$f(\mathbf{x}) = \frac{\mathbf{A}\mathbf{x} + \mathbf{b}}{\mathbf{c}^{\top}\mathbf{x} + d}, \quad \text{dom } f = {\mathbf{x} \mid \mathbf{c}^{\top}\mathbf{x} + d > 0},$$

где $\mathbf{A} \in \mathbb{R}^{m imes n}$.

Определение

Дробно-линейным отображением называется функция

$$f(\mathbf{x}) = \frac{\mathbf{A}\mathbf{x} + \mathbf{b}}{\mathbf{c}^{\top}\mathbf{x} + d}, \quad \text{dom } f = {\mathbf{x} \mid \mathbf{c}^{\top}\mathbf{x} + d > 0},$$

где $\mathbf{A} \in \mathbb{R}^{m \times n}$.

Теорема

Дробно-линейное отображение выпуклого множества $\mathcal C$ есть выпуклое множество

Определение

Дробно-линейным отображением называется функция

$$f(\mathbf{x}) = \frac{\mathbf{A}\mathbf{x} + \mathbf{b}}{\mathbf{c}^{\top}\mathbf{x} + d}, \quad \text{dom } f = {\mathbf{x} \mid \mathbf{c}^{\top}\mathbf{x} + d > 0},$$

где $\mathbf{A} \in \mathbb{R}^{m \times n}$.

Теорема

Дробно-линейное отображение выпуклого множества $\mathcal C$ есть выпуклое множество

Доказательство

Определение

Дробно-линейным отображением называется функция

$$f(\mathbf{x}) = \frac{\mathbf{A}\mathbf{x} + \mathbf{b}}{\mathbf{c}^{\top}\mathbf{x} + d}, \quad \text{dom } f = {\mathbf{x} \mid \mathbf{c}^{\top}\mathbf{x} + d > 0},$$

где $\mathbf{A} \in \mathbb{R}^{m \times n}$.

Теорема

Дробно-линейное отображение выпуклого множества $\mathcal C$ есть выпуклое множество

Доказательство

lacktriangle Рассмотрим линейную функцию $g(\mathbf{x}) = egin{bmatrix} \mathbf{A} \ \mathbf{c}^{ op} \end{bmatrix} \mathbf{x} + egin{bmatrix} \mathbf{b} \ d \end{bmatrix}$

Определение

Дробно-линейным отображением называется функция

$$f(\mathbf{x}) = \frac{\mathbf{A}\mathbf{x} + \mathbf{b}}{\mathbf{c}^{\top}\mathbf{x} + d}, \quad \text{dom } f = {\mathbf{x} \mid \mathbf{c}^{\top}\mathbf{x} + d > 0},$$

где $\mathbf{A} \in \mathbb{R}^{m \times n}$.

Теорема

Дробно-линейное отображение выпуклого множества $\mathcal C$ есть выпуклое множество

Доказательство

- lacktriangle Рассмотрим линейную функцию $g(\mathbf{x}) = egin{bmatrix} \mathbf{A} \\ \mathbf{c}^{ op} \end{bmatrix} \mathbf{x} + egin{bmatrix} \mathbf{b} \\ d \end{bmatrix}$
- ▶ Перспективное отображение образа функции g совпадает с образом дробно-линейного отображения.

Определение

Множество $\mathcal K$ называется конусом, если для любого $\mathbf x\in\mathcal K$ и произвольного числа $\theta\geq 0$ выполнено $\theta\mathbf x\in\mathcal K$.

Определение

Множество $\mathcal K$ называется выпуклым конусом, если для любых точек $\mathbf x_1, \mathbf x_2 \in \mathcal K$ и любых чисел $\theta_1 \geq 0, \; \theta_2 \geq 0$ выполнено $\theta_1 \mathbf x_1 + \theta_2 \mathbf x_2 \in \mathcal K$.

Определение

Множество $\mathcal K$ называется конусом, если для любого $\mathbf x\in\mathcal K$ и произвольного числа $\theta\geq 0$ выполнено $\theta\mathbf x\in\mathcal K$.

Определение

Множество $\mathcal K$ называется **выпуклым** конусом, если для любых точек $\mathbf x_1, \mathbf x_2 \in \mathcal K$ и любых чисел $\theta_1 \geq 0, \ \theta_2 \geq 0$ выполнено $\theta_1 \mathbf x_1 + \theta_2 \mathbf x_2 \in \mathcal K$.

Важные конусы

Определение

Множество $\mathcal K$ называется конусом, если для любого $\mathbf x\in\mathcal K$ и произвольного числа $\theta\geq 0$ выполнено $\theta\mathbf x\in\mathcal K$.

Определение

Множество $\mathcal K$ называется выпуклым конусом, если для любых точек $\mathbf x_1, \mathbf x_2 \in \mathcal K$ и любых чисел $\theta_1 \geq 0, \; \theta_2 \geq 0$ выполнено $\theta_1 \mathbf x_1 + \theta_2 \mathbf x_2 \in \mathcal K$.

Важные конусы

Неотрицательный октант

$$\mathbb{R}^n_+ = \{ \mathbf{x} \in \mathbb{R}^n \mid x_i \ge 0, \ i = 1, \dots, n \} \to \mathsf{LP}$$

Определение

Множество $\mathcal K$ называется конусом, если для любого $\mathbf x\in\mathcal K$ и произвольного числа $\theta\geq 0$ выполнено $\theta\mathbf x\in\mathcal K$.

Определение

Множество $\mathcal K$ называется **выпуклым** конусом, если для любых точек $\mathbf x_1, \mathbf x_2 \in \mathcal K$ и любых чисел $\theta_1 \geq 0, \ \theta_2 \geq 0$ выполнено $\theta_1 \mathbf x_1 + \theta_2 \mathbf x_2 \in \mathcal K$.

Важные конусы

- lackbox Неотрицательный октант $\mathbb{R}^n_+=\{\mathbf{x}\in\mathbb{R}^n\mid x_i\geq 0,\; i=1,\ldots,n\}
 ightarrow\mathsf{LP}$
- lacktriangle Конус второго порядка $\{(\mathbf{x},t)\in\mathbb{R}^n imes\mathbb{R}_+\mid \|\mathbf{x}\|_2\leq t\} o$ SOCP

Определение

Множество $\mathcal K$ называется конусом, если для любого $\mathbf x\in\mathcal K$ и произвольного числа $\theta\geq 0$ выполнено $\theta\mathbf x\in\mathcal K$.

Определение

Множество $\mathcal K$ называется **выпуклым** конусом, если для любых точек $\mathbf x_1, \mathbf x_2 \in \mathcal K$ и любых чисел $\theta_1 \geq 0, \ \theta_2 \geq 0$ выполнено $\theta_1 \mathbf x_1 + \theta_2 \mathbf x_2 \in \mathcal K$.

Важные конусы

- ightharpoonup Неотрицательный октант $\mathbb{R}^n_+=\{\mathbf{x}\in\mathbb{R}^n\mid x_i\geq 0,\; i=1,\ldots,n\}
 ightarrow\mathsf{LP}$
- lacktriangle Конус второго порядка $\{(\mathbf{x},t)\in\mathbb{R}^n imes\mathbb{R}_+\mid \|\mathbf{x}\|_2\leq t\} o$ SOCP
- lacktriangle Конус симметричных положительно полуопределённых матриц $\mathbf{S}^n_+ o \mathsf{SDP}$

Выпуклая оболочка (convex hull)

Определение

Выпуклой оболочкой множества $\mathcal X$ называется такое множество $\mathrm{conv}(\mathcal X)$, что

- ightharpoonup оно является пересечением всех выпуклых множеств, содержащих $\mathcal X$
- lacktriangle оно содержит все выпуклые комбинации точек из ${\mathcal X}$

$$conv(\mathcal{X}) = \left\{ \sum_{i=1}^{k} \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in \mathcal{X}, \sum_{i=1}^{k} \theta_i = 1, \theta_i \ge 0 \right\}$$

ightharpoonup оно является минимальным по включению выпуклым множеством, содержащим $\mathcal X$

▶ При постановке задачи допустимое множество получилось невыпуклым

- При постановке задачи допустимое множество получилось невыпуклым
- ▶ Можно заменить само множество его выпуклой оболочкой

- При постановке задачи допустимое множество получилось невыпуклым
- Можно заменить само множество его выпуклой оболочкой
- Решить задачу на этом множестве

- ▶ При постановке задачи допустимое множество получилось невыпуклым
- Можно заменить само множество его выпуклой оболочкой
- Решить задачу на этом множестве
- Восстановить некоторым образом приближённое решение из исходной области

▶ Постановки задач оптимизации: целевая функция, допустимое множество, ограничения

- Постановки задач оптимизации: целевая функция, допустимое множество, ограничения
- ▶ Примеры задач оптимизации и приложения

- Постановки задач оптимизации: целевая функция, допустимое множество, ограничения
- Примеры задач оптимизации и приложения
- Выпуклые множества

- Постановки задач оптимизации: целевая функция, допустимое множество, ограничения
- Примеры задач оптимизации и приложения
- Выпуклые множества
- ▶ Способы определения является ли множество выпуклым

Литература

Optimization for machine learning.

MIT Press, 2012.

Tamás Terlaky, Miguel F Anjos, and Shabbir Ahmed.

Advances and trends in optimization with engineering applications.

SIAM, 2017.

Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust optimization, volume 28.

Princeton university press, 2009.

Amir Beck.

First-order methods in optimization.

SIAM, 2017.

P-A Absil, Robert Mahony, and Rodolphe Sepulchre.
Optimization algorithms on matrix manifolds.
In Optimization Algorithms on Matrix Manifolds. Princeton University Press, 2009.