

Relatedness part 2: Realised relatedness or

Why are some siblings more alike than others?

Magnus Dehli Vigeland

Statistical methods in genetic relatedness and pedigree analysis

NORBIS course, 13th – 17th of June 2022, Oslo

Meiotic recombination

- Genetic distance between two loci:= average # crossovers/ meiosis
- Units:
 - 1 Morgan (M) = 1 crossover per meiosis
 - 1 centiMorgan (cM) = 0.01 M
- The human genome: Ca 30 Morgan

Rule of thumb: One crossover per chromosome arm

Realised sharing between siblings

Variation in realised IBD coefficients

1000 simulations


```
> library(ibdsim2)
> x = nuclearPed(2)
> s = ibdsim(x, N = 1000)
> k = realisedKappa(s, ids = 3:4)
> ribd::showInTriangle(k)
```


Variation in realised inbreeding

1000 simulations

- R-package: ibdsim2
- Decode recombination map
- All 22 human autosomes

Variation depends on the genome

Indistinguishable relationships?

$$\kappa_0 = 0.5
\kappa_1 = 0.5
\kappa_2 = 0$$

$$\kappa_1 = 0.5$$

$$\kappa_2 = 0$$

Simulated IBD distributions

Conclusion

In theory often distinguishable! In practice quite hard.

The probability of zero IBD

N'th cousins	P(zero IBD)
first	0.0 %
second	0.0 %
third	1.5 %
fourth	28 %
fifth	67 %

Third cousins: Expected fraction of the genome with IBD = 1:

$$k_1 = \frac{1}{64}$$

Two individuals can have a common ancestor without being genetically related

Distant cousins share either nothing or quite a bit

Relatedness: Summary

- Measuring relatedness with increasing precision:
 - the kinship/inbreeding coefficient φ
 - the IBD coefficients $\kappa = (\kappa_0, \kappa_1, \kappa_2)$
- Each coefficient is
 - the probability of observing a certain IBD pattern in a random locus
 - the expected proportion of the genome in this state
- IBD is not a pointwise phenomenon: Always in segments
 - determined by meiotic crossovers
 - consequence: Variation in the realised IBD!
- Family relation

 → genetic relation

So...what does it mean to be related?

- Pedigree based definition: $\varphi > 0$ <u>potentially</u> having alleles IBD
- Genomic definition (realised relatedness):
 <u>actually</u> having alleles IBD

