Math 158 HW1

Question 1. Let $K_{n:r}$ denote the Kneser graph, whose vertex set is the set of r-element subsets of an n-element set, and where two vertices form an edge if the corresponding sets are disjoint.

(a) Describe $K_{n:1}$ for $n \geq 1$.

Solution. Since $\forall v, u \in V(K_{n:1}), v \cap u = \emptyset$. Thus, $\forall v, u \in V(K_{n:1}), \{v, u\} \in E(K_{n:1})$, which makes $K_{n:1}$ a K_n complete graph.

(b) Draw $K_{4:2}$ and $K_{5:2}$.

Solution. Graphs of $K_{4:2}$ and $K_{5:2}$:

(c) Determine $|E(K_{n:r})|$ for $n \geq 2r \geq 1$.

Solution. For each $v \in V(K_{n:r}, v \text{ forms edges with other vertices whose vertex set is } r \text{ of the other } n-r$ elements that are not in the vertex set of v, which implies that $d_{K_{n:r}}(v) = \binom{n-r}{r}$. Since there are $\binom{n}{r}$ vertices in $K_{n:r}$, by the Handshake Theorem, we have $|E(K_{n:r})| = \binom{n}{r} \binom{n-r}{r}/2$. Question 2. Let G be a digraph such that every vertex has a positive in-degree. Prove that G contains a directed cycle.

Proof. We will prove this by contradiction. Let $v \in V(G)$. Suppose for the sake of contradiction that G does not contain any directed cycle. Starting from v, we can find a path P by tracing back to a vertex with an edge directed to the current vertex we're on. We then add the vertex to P and go to that vertex, and we repeat the previous actions. Since every vertex in G has a positive in-degree, we can always find another vertex that has a directed edge to the current vertex we're on and not in P. However, this makes G have infinitely many vertices, which is a contradiction. Therefore, G contains a directed cycle.

Question 3. Let g be an n-vertex graph with $n \ge 2$ and $\delta(G) \ge (n-1)/2$. Prove that G is connected and the diameter of G is at most two.

Proof. We will first prove that G is connected by contradiction. Suppose for the sake of contradiction that G is disconnected. Let $n=|V(G)|,\ v\in V(G),\ H$ be the component of G that contains v. Since $d_G(v)\geq \delta(G)\geq (n-1)/2$, we have $|V(H)|\geq (n-1)/2+1=(n+1)/2$, which implies that other components in G contain at most n-(n+1)/2=(n-1)/2 vertices. However, this shows that $\Delta(G-V(H))\leq (n-1)/2-1<(n-1)/2$, which contradicts $\delta(G)\geq (n-1)/2$ because H is disconnected to G-V(H). Therefore, G is connected. We will now prove that the diameter of G is at most two. Let $u,w\in V(G)$. If $u\in N(w)$, then $d_G(u,w)=1$. If $u\notin N(w)$, then $N(u),N(w)\in V(G)\setminus\{u,w\}$. Since $|N(u)|,|N(w)|\geq\delta(G)\geq (n-1)/2$, we have $|N(u)|+|N(w)|>n-2=|V(G)\setminus\{u,w\}|$. Hence, $|N(u)|\cap |N(w)|\neq\emptyset$, which means that $d_G(u,w)=2$. Therefore, the diameter of G is at most two.

Question 4. Let P and Q be the longest paths in a connected graph G. Prove that

$$V(P) \cap V(Q) \neq \emptyset$$
.

Proof. We will prove this by contradiction. Let P,Q be the longest paths in a connected graph G, with $\{p_1,p_2,\ldots,p_{n+1}\}$ and $\{q_1,q_2,\ldots,q_{n+1}\}$ as their vertex sets respectively, and n=|E(P)|=|E(Q)|. Suppose for the sake of contradiction that $V(P)\cap V(Q)=\emptyset$. Since G is connected, there must be a path R that starts from p_i and ends at q_j , for some $1\leq i,j\leq n+1$. Let $m=d_G(p_i,q_j)$. Since $p_i\neq q_j$, we have $m\geq 1$. Let P' be the longer path between $p_1p_2\ldots p_i$ and $p_ip_{i+1}\ldots p_{n+1}, Q'$ be the longer path between $q_1q_2\ldots q_j$ and $q_jq_{j+1}\ldots q_{n+1}$. By connecting P',Q', and R, we get a new path S. Since $|E(P')|, |E(Q')|\geq n/2, |E(R)|=m\geq 1$, we have $|E(S)|\geq n+1$, which contradicts that P,Q are the longest paths on G. Therefore, if P,Q are the longest paths in a connected graph, then $V(P)\cap V(Q)\neq\emptyset$.

Question 5. Prove that a graph G of minimum degree at least $k \geq 2$ containing no triangles contains a cycle of length at least 2k.

Proof. Let P be the longest path in G, say $v_1v_2\ldots v_t$. Then $N(v_1)\subseteq V(P)$ or else we get a longer path. Since G does not contain any triangles, if $v_p,v_q\in N(v_1)$ for some p>q, then $p-q\geq 2$. Since $|N(v_1)|\geq \delta(G)\geq k$ and $d_P(v_p,v_q)\geq 2$ for all $v_p,v_q\in N(v_1),\,t\geq 2k$ and v_1 has a neighbor v_i for some $i\geq 2k$. Then, the cycle $v_1v_2\ldots v_iv_1$ has length at least 2k.