Homework 6

5130309059 李佳骏

taringlee@sjtu.edu.cn

2015.11.22

Exercise 6.5

Prove that for most Boolean function: $f:(0,1^n)^k\to 0,1,\ D(f)=\Omega(n).$

Use the hint: Count the number of protocols of a given cost.

At first, there are at most $2^{2^{nk}}$ Boolean function in the exercise. Now we count the number of different protocol trees with the deep less than l. There are $k2^{2^{(k-1)n}}$ cylinders and the protocol tree's deep less than l at most 2^l cylinders. So, we could calculate the upper bound $k^{2^l}2^{2^{(k-1)n}2^l}=k^{2^l}2^{2^{(k-1)n+l}}$ which exist one-to-one match between protocols and Boolean functions.

Hence we compare at $2^{2^{nk}}$ and $k^{2^l}2^{2^{(k-1)n+l}}$, while l=n-c (constant $c \ge 1$ is enough). the ratio of two values is exponential small enough.

Exercise 6.25

Let A be an n-bit string, and $1 \le j, i \le n$.

Define the 3-argument function SUM – INDEX $(A, j, i) = A[j \oplus i]$, where \oplus denotes bitwise xor. Prove that $D^{\parallel}(\text{SUM} - \text{INDEX}) = \Omega(\sqrt{n})$.

Use the hint: Reduction from INDEX.

This exercise is a special case of **Example 6.22** where k=3. Let A_{\oplus} be a 2 dimensional array of bits, where each dimension has n entries from string A, and satisfied the equation $A_{\oplus}[i_1,i_2]=A[i_1]\oplus A[i_2]$. For every j $(1\leq j\leq 2)$, let i_j be an integer $1\leq i_j\leq n$. Thus A_{\oplus} is represented by $N=n^2$ bits and each i_j by $\log n$ bits. The function SUM – INDEX(i_1,i_2,A_{\oplus}) (replace i,j to i_1,i_2) is defined to be the (i_1,i_2) -th entry of A_{\oplus} , that is $A_{\oplus}[i_1,i_2]$. Hence SUM-INDEX problem is reduced to INDEX problem. and $D^{\parallel}(\text{SUM}-\text{INDEX})=\Omega(\sqrt{n})$.