Construcción de tablas de valores de conmutación y cálculo de coberturas de seguros de vida en R

Santiago Silva FCE - UBA 2018

1. Introducción y marco teórico

1.1. Valores de conmutación y su cálculo

Al momento de calcular la prima de una cobertura de vida, muerte u otro tipo de seguro personal, resulta útil la utilización de variables auxiliares a efectos de facilitar el cálculo de dichas coberturas. A estas variables auxiliares se las conoce como valores de conmutación.

$$D(x) = l(x).v^{x}$$

$$N(x) = \sum_{t=0}^{w-x-1} D(x+t)$$

$$S(x) = \sum_{t=0}^{w-x-1} N(x+t)$$

$$C(x) = d(x).v^{x+1}$$

$$M(x) = \sum_{t=0}^{w-x-1} C(x+t)$$

$$R(x) = \sum_{t=0}^{w-x-1} M(x+t)$$

Algunas aclaraciones con respecto a la notación:

- 1. l(x): representa el número de personas con vida, de edad x, en un momento dado.
- 2. d(x): representa el numero de personas de edad x que fallecieron antes de alcanzar la edad x + 1.
- 3. v: factor de actualización financiero.

1.2. Definición de coberturas

Ya contando con los valores de conmutación necesarios para efectuar los cálculos de las distintas coberturas, a continuación se definen las mismas (junto con sus respectivas fórmulas de cálculo).

Coberturas de capitales constantes

1.2.1. Capital diferido de vida (o factor de actualización actuarial)

"El factor de actualización actuarial se define como el valor actual actuarial a la edad x del capital unitario pagadero en el momento t; en caso de supervivencia." (Casparri, Metelli y Mutchinik 2012, p. 10)

$$E(x;t) = p(x;t).v^{t} = \frac{l(x+t).v^{x+t}}{l(x).v^{x}} = \frac{D(x+t)}{D(x)}$$
(1)

1.2.2. Capital diferido de muerte

"Es el valor actual actuarial a la edad x del capital unitario pagadero a la edad x+t a los derechohabientes del asegurado, si el fallecimiento del mismo tiene lugar durante el tránsito del t-ésimo año." (Casparri et al. 2012, p.53)

$$A(x;h;1) = q(x;h;1).v^{h+1} = \frac{d(x+h).v^{x+h+1}}{l(x).v^x} \frac{C(x+h)}{D(x)}$$
(2)

1.2.3. Rentas vitalicias constantes

Una renta vitalicia (diferida) es el valor actual de una sucesión de n capitales diferidos de vida, pagaderos a partir de h años luego del momento de contratación, mientras el asegurado continúe con vida. (Casparri et al. 2012)

$$a(x;h;n) = \sum_{t=h}^{h+n-1} p(x;t).v^{t} = \frac{N(x+h) - N(x+h+n)}{D(x)}$$
(3)

1.2.4. Coberturas de muerte

Una cobertura de muerte de riesgo diferido y plazo limitado consiste en el pago del capital asegurado a los derechohabientes, a fin del año en el que se produzca el fallecimiento del asegurado, si este ocurre dentro del plazo comprendido entre los h y h + n años posteriores a la contratación de la cobertura. (Casparri et al. 2012)

$$A(x;h;n) = \sum_{t=h}^{h+n-1} q(x;t;1).v^{t+1} = \frac{M(x+h) - M(x+h+n)}{D(x)}$$
(4)

Coberturas de capitales variables

1.2.5. Coberturas con capitales variables en progresión aritmética

1. Variación positiva igual al primer capital (Increasing)

■ Para coberturas de vida Esta cobertura consiste en una renta vitalicia creciente en progresión aritmética a razón igual al primer capital, a partir del momento h, durante los n años de plazo establecidos. (Casparri et al. 2012)

$$aI(x;h;n) = \frac{S(x+h) - S(x+h+n) - n.N(x+h+n)}{D(x)}$$
 (5)

Para coberturas de muerte La cobertura consiste en el pago a los derechohabientes de un capital asegurado, creciente en progresión aritmética a razón del primer capital, a fin del año de fallecimiento del asegurado, si este ocurre entre los h años posteriores a la contratación hasta los h + n años. (Casparri et al. 2012)

$$AI(x;h;n) = \frac{R(x+h) - R(x+h+n) - n.M(x+h+n)}{D(x)}$$
 (6)

- 2. Variación positiva distinta al primer capital (a razón R)
 Este tipo de coberturas es conceptualmente muy similar a las coberturas de vida y muerte mencionadas en el inciso anterior, con la diferencia que la razón a la cual crecen el/los capitales es un valor R distinto al primer capital.
 - Para coberturas de vida:

$$av(x; h; n; R) = a(x; h; n) + R.aI(x; h + 1; n - 1)$$
(7)

• Para coberturas de muerte:

$$Av(x; h; n; R) = A(x; h; n) + R.AI(x; h + 1; n - 1)$$
(8)

1.2.6. Coberturas con capitales variables en progresión geométrica

$$avg(x;h;n;r) = \sum_{t=h}^{h+n-1} 1 + r^t \cdot v^t \cdot p(x;t)$$
 (9)

$$Avg(x;h;n;r) = \sum_{t=h}^{h+n-1} 1 + r^t \cdot v^{t+1} \cdot q(x;t;1)$$
 (10)

Este tipo de coberturas presenta tres escenarios posibles, dependiendo del valor de la razón de variación r:

1. Tasa de variación r igual a la tasa de interés técnica: r = i Al ser iguales ambas tasas, las sumatorias se convierten en esperanzas limitadas (sumatorias de p(x;t)) en el caso de las coberturas de vida, y en el caso de las coberturas de muerte, se convierten en la probabilidad de fallecer entre la edad x + h y x + h + n, actualizada financieramente un período.

$$avg(x; h; n; r = i) = \sum_{t=h}^{h+n-1} p(x; t)$$
 (11)

$$Avg(x;h;n;r=i) = \sum_{t=h}^{h+n-1} v.q(x;t;1) = v.q(x;h;n)$$
 (12)

- 2. Tasa de variación r mayor a la tasa de interés técnica: r > iSi la tasa de variación es mayor a la técnica, el factor de actualización modificado $v^* = \frac{1+r}{1+v}^t$ es mayor a 1, lo cual causa que la sumatoria sea divergente. Esto no necesariamente imposibilita el cálculo, pero el cálculo de este caso en particular no es abordado en este trabajo.
- 3. Tasa de variación r menor a la tasa de interés técnica: r < i Una tasa de variación menor a la tasa técnica da origen a el factor de actualización modificado v* mencionado en el inciso anterior, que en este caso es menor a 1, por lo cual la sumatoria converge.
 El cálculo se realiza construyendo una nueva tabla de valores de conmutación, utilizando la misma tabla de mortalidad; pero cambiando la tasa de interés técnica por una tasa obtenida a partir de v*. Con esta nueva tabla se calcula la cobertura como si fuera una renta vitalicia (en caso de que la cobertura sea de vida), manteniendo los parámetros x, h y n originales. Para las coberturas de muerte el procedimiento es el mismo, pero se calcula una cobertura de muerte de riesgo diferido y plazo limitado.

2. Explicación del código

2.1. Cálculo y construcción de la tabla de valores de conmutación

A efectos de calcular los distintos valores de conmutación se diseñó la siguiente función crear.tabla().

En primer lugar se parte de una tabla de mortalidad con dos columnas, en la primera se detallan las edades y en la segunda las q(x), es decir las probabilidades de fallecer entre la edad x y x+h (siendo h la próxima edad disponible en la tabla).

Dicha tabla debe ser un objeto de pito data frame o matrix (matriz). Una vez importada la tabla de mortalidad al ambiente de R, crear.tabla() mediante loops for aplica la formula de cálculo y guarda el resultado a un elemento vacío de un vector previamente generado. A continuación se repite el procedimiento para los distintos valores de conmutación, utilizando la formula de cálculo correspondiente, y luego se los une en una única tabla.

Lor argumentos que utiliza crear.tabla son los siguientes:

- tabla: La tabla de mortalidad sobre la cual se desea construir la tabla de valores de conmutación.
- tasa: La tasa de interés (efectiva anual) que se desea utilizar. La tasa predeterminada es la tasa (efectiva anual) técnica (4%).
- 1x.init: El número de l(x) personas inicial, de edad 0. El número predeterminado es 10000000

```
crear.tabla<-function(tabla,tasa=0.04,lx.init=10000000){</pre>
 2
      X<-tabla[,1]
      qx<-tabla[,2]
 4
      lx<-rep(0,length(X))</pre>
 5
      dx<-rep(0,length(X))</pre>
      lx[1] <-lx.init</pre>
      Dx<-rep(0,length(X))</pre>
 8
      Cx<-rep(0,length(X))</pre>
      Nx <-rep(0,length(X))
10
      Mx<-rep(0,length(X))</pre>
11
      Rx<-rep(0,length(X))</pre>
12
      Sx<-rep(0,length(X))</pre>
13
      px1<-1-qx
14
15
      v<-1/(1+tasa)
16
        q1<-function(x){
17
        q1<-match(x,tabla[,2])
18
        return(q1)}
19
      d<-function(x){</pre>
20
        q1(x)*l(x)
21
22
23
24
      1<-function(x){</pre>
        li \leftarrow match((x-1),lx)
        px1i \leftarrow match(x, px1)
25
        1<-li*px1i
26
27
      lx[1] < -lx.init
28
      dx[1]<-lx[1]*qx[1]
29
      for (i in 2:length(X)) {
30
        lx[i]<-lx[i-1]-dx[i-1]
31
32
        dx[i] <-round(qx[i]*lx[i],0)</pre>
33
34
      for (i in 1:length(X)) {
35
        Dx[i] <-round(lx[i] *v^(i-1),0)</pre>
36
        Cx[i] <-round(dx[i] *v^(i),0)</pre>
37
```

```
39
     for(i in X){
40
        Nx[i] <-sum(Dx[i:length(X)])</pre>
41
        Mx[i] <-sum(Cx[i:length(X)])</pre>
42
43
44
     for(i in X){
45
        Sx[i] <-sum(Nx[i:length(X)])</pre>
46
        Rx[i] <-sum (Mx[i:length(X)])</pre>
47
48
49
     Nx[length(X)] <-Dx[length(X)]; Sx[length(X)] <-Dx[length(X)]</pre>
50
     Mx[length(X)] <-Cx[length(X)]; Rx[length(X)] <-Cx[length(X)]</pre>
51
52
     return(tabla.nueva<-data.frame(cbind(X,qx,lx,dx,Dx,Nx,Sx,Cx,Mx,Rx)))
53 }
```

Función: crear.tabla(tabla,tasa,lx.init)

2.2. Cálculo de coberturas

Una vez construida la tabla de valores de conmutación se procedió a programar funciones para hallar los distintos valores de conmutación en la tabla y es en base a estos valores que están construidas las fórmulas de cálculo de las distintas coberturas.

Las funciones para buscar los valores de conmutación en la tabla son las siguientes:

```
D<-function(x,tabla){
2
     D<-tabla[(x+1),5]</pre>
     return(D)}
5
   N<-function(x,tabla){
 6
     N<-tabla[(x+1),6]
     return(N)}
8
9
   S<-function(x,tabla){
10
     S<-tabla[(x+1),7]</pre>
11
     return(S)}
12
13
  C<-function(x,tabla){
14
     C<-tabla[(x+1),8]
15
     return(C)}
16
17
   M<-function(x,tabla){
18
     M<-tabla[(x+1),9]
19
     return(M)}
20
21
  R<-function(x,tabla){
22
     R<-tabla[(x+1),10]
     return(R)}
```

Funciones de búsqueda

Y lo que hacen es valerse de los corchetes "[nro de fila,nro de columna]" para buscar el valor x en la columna correspondiente dentro de la tabla, y devolver

el valor de la misma fila, pero perteneciente a el número de conmutación deseado.

El primer argumento de cada una de estas funciones indica la edad en base a la cual se quiere buscar el valor, y el segundo argumento indica la tabla en la cual buscarlo. Partiendo de estas funciones que permiten buscar valores en la recién creada tabla, se procede a programar las funciones que efectúan el cálculo propiamente dicho para los distintos tipos de cobertura.

Coberturas de capitales constantes

Las funciones que efectúan el cálculo de las mismas están compuestas por cuatro $argumentos^1$:

- x: La edad a la que se contrata la cobertura.
- h: El plazo de diferimiento.
- n: El plazo de cobertura.
- tabla: La tabla de la cual se desea extraer los valores de conmutación.

Luego utilizan esos argumentos en las funciones de búsqueda definidas anteriormente para obener los valores necesarios para cada fórmula de cálculo, según corresponda.

Capital diferido de vida [ver (1)]

```
1
E<-function(x,h,tabla){
    E<-D(x+h,tabla)/D(x,tabla)
    return(E)
}</pre>
```

Función: E(x,h,tabla)

¹Estos argumentos se repiten también en las demás funciones asociadas al cálculo de la cobertura, y poseen el mismo significado que el explicado recientemente.

Rentas vitalicias constantes [ver (3)])

Función: a(x,h,n,tabla)

Coberturas de muerte² [ver (4) y (2)]

Función: A(x,h,n,tabla)

Cobertura de capitales variables

Coberturas con capitales variables en progresión aritmética

- 1. Variación positiva igual al primer capital (Increasing)
 - Para coberturas de vida [ver (5)]

```
1 aI <-function(x,h,n,tabla){
2   o<-x+h+n
3   if(o>=length(tabla[,1])){
4      aI <-S(x+h,tabla)/D(x,tabla)
5   }else { aI <-(S(x+h,tabla)-S(o,tabla)-n*N(o,tabla))/D(x,tabla)}
6   return(aI)
7 }</pre>
```

Función: aI(x,h,n,tabla)

 $^{^2 \}mathrm{El}$ capital diferido de muerte se obtiene a partir de esta función, siendo el caso en que n=1

■ Para coberturas de muerte [ver (6)]

```
Al<-function(x,h,n,tabla){
  o<-x+h+n
  if(o>=length(tabla[,1])){
    Al<-R(x+h,tabla)/D(x,tabla)
} else { Al<-(R(x+h,tabla)-R(o,tabla)-n*M(o,tabla))/D(x,tabla)}
return(Al)
}</pre>
```

Función: AI(x,h,n,tabla)

2. Variación positiva a razón R

Esta función incorpora el argumento R, ya que, como se puede observar en (7) y (8) para efectuar el cálculo solo utiliza el valor de R junto con (3) y (5), o (4) y (6) según corresponda.

■ Para coberturas de vida [ver (7)]

```
1 av<-function(x,h,n,r,tabla){
2 av<-a(x,h,n,tabla)+r*aI(x,h+1,n-1,tabla)
3 return(av)
4 }</pre>
```

Función: av(x,h,n,tabla)

■ Para coberturas de muerte [ver (8)]

```
Av<-function(x,h,n,r,tabla) {
Av<-A(x,h,n,tabla)+r*AI(x,h+1,n-1,tabla)
return(Av)
}
```

Función: Av(x,h,n,tabla)

Coberturas con capitales variables en progresión geométrica

Para el cálculo de este tipo de coberturas se introduce el argumento r, que representa la razón en base a la cual varía la progresión. Para determinar el tipo de fórmula de cálculo a utilizar según el valor de r, se utilizan las estructuras condicionales if y else, las cuales primero evalúan si r < i, luego si r = i y si ninguna de las dos pruebas lógicas arroja un resultado verdadero, concluye que r > i y ejecutan el comando indicado para ese caso.

En el caso en que la razón es menor a la tasa técnica, se crea el objeto v_1 y a partir del mismo se obtiene tasa_2, que es la tasa a partir de la cual se construye la nueva tabla. El valor del argumento lx.init por defecto es el mismo que el valor por defecto utilizado en crear.tabla().

• Coberturas de vida [ver (9)]

```
avg<-function(x,h,n,r,tabla,tasa=0.04){</pre>
2
     if(r<tasa){
       v_1<-(1+r)/(1+tasa)
4
       tasa_2 < -(1/v_1) -1
5
       tabla_2<-crear.tabla(tabla,tasa=tasa_2,lx.init=10000000)
6
       avg <-a(x,h,n,tabla=tabla_2)
78
      else{
9
         avg < -sum(tabla[(x+h+1):(x+h+n),3])/tabla[(x+1),3]
10
         else {print("r>tasa")}
11
12
13
     return(avg)
```

Función: avg(x,h,n,r,tabla)

■ Coberturas de muerte [ver (10)]

```
Avg<-function(x,h,n,r,tabla,tasa=0.04){
2
       if(r<tasa){
       v_1<-(1+r)/(1+tasa)
       tasa_2<-(1/v_1)-1
5
       tabla_2<-crear.tabla(tabla,tasa=tasa_2,lx.init=10000000)
6
       Avg <- A(x,h,n,tabla=tabla_2)
7
     } else{
8
       if(r==tasa){
9
         v<-1/(1+tasa)
10
         Avg < -v * sum(tabla[(x+h+1):(x+h+n),2])
11
       } else {print("r>tasa")}
12
13
     return(Avg)
14|}
```

Función: Avg(x,h,n,r,tabla)

3. Presentación de resultados y conclusiones

3.1. Presentación de resultados

El objetivo principal de este trabajo era diseñar una herramienta para la construcción de tablas de valores de conmutación, a partir de una tabla de mortalidad con solamente dos columnas: X y q(x); y la utilización de las mismas para el cálculo de coberturas de seguros personales.

A efectos de poder comparar resultados, y determinar si la función crear.tabla() contruye las mismas de forma correcta, se parte de una tabla de valores de conmutación completa: "Tabla CSO1980.csv". Se extraen de la misma las columnas correspondientes a X y q(x) y se contruye el data frame ''init.data'':

Importación de datos y creación de "CSO80_valconm"

Luego, se construye la tabla de valores de conmutación ''CSO80_valconm'', utilizando la función crear.tabla() definiendo el argumento tabla con nuestros datos iniciales ''init.data'', utilizando el valor por defecto para el argumento tasa y el valor 10000000 para el argumento lx.init. Al visualizar la tabla recién creada, se obtienen expresados en el Cuadro 1.

Cuadro 1: Valores de conmutación calculados a partir de la tabla de mortalidad Comissioners Standard Ordinary 1980 (CSO 1980)

X	qx	lx	dx	Dx	Nx	Sx	Cx	Mx	Rx
0	0,00418	10000000	41800	10000000	237830366	5049895939	40192	852677	43603205
1	0,00107	9958200	10655	9575192	227830366	4812065573	9851	812485	42750528
2	0,00099	9947545	9848	9197065	218255174	4584235207	8755	802634	41938043
3	0,00098	9937697	9739	8834576	209058109	4365980033	8325	793879	41135409
4	0,00095	9927958	9432	8486460	200223533	4156921924	7752	785554	40341530
5	0,0009	9918526	8927	8152305	191737073	3956698391	7055	777802	39555976
6	0,00085	9909599	8423	7831700	183584768	3764961318	6401	770747	38778174
7	0,0008	9901176	7921	7524080	175753068	3581376550	5788	764346	38007427
8	0,00076	9893255	7519	7228905	168228988	3405623482	5283	758558	37243081
9	0,00074	9885736	7315	6945587	161000083	3237394494	4942	753275	36484523
10	0,00073	9878421	7211	6673507	154054496	3076394411	4684	748333	35731248
11	0,00077	9871210	7601	6412150	147380989	2922339915	4748	743649	34982915
12	0,00085	9863609	8384	6160781	140968839	2774958926	5035	738901	34239266
13	0,00099	9855225	9757	5918793	134808058	2633990087	5634	733866	33500365
14	0,00115	9845468	11322	5685512	128889265	2499182029	6287	728232	32766499
15	0,00133	9834146	13079	5460552	123203753	2370292764	6983	721945	32038267
16	0,00151	9821067	14830	5243548	117743201	2247089011	7613	714962	31316322
17	0,00167	9806237	16376	5034260	112499653	2129345810	8084	707349	30601360
18	0,00178	9789861	17426	4832551	107465393	2016846157	8271	699265	29894011
19	0,00186	9772435	18177	4638412	102632842	1909380764	8296	690994	29194746
20	0,0019	9754258	18533	4451716	97994430	1806747922	8133	682698	28503752
21	0,00191	9735725	18595	4272363	93542714	1708753492	7846	674565	27821054
22	0,00189	9717130	18365	4100195	89270351	1615210778	7451	666719	27146489
23	0,00186	9698765	18040	3935044	85170156	1525940427	7038	659268	26479770
24	0,00182	9680725	17619	3776659	81235112	1440770271	6609	652230	25820502
25	0,00177	9663106	17104	3624793	77458453	1359535159	6169	645621	25168272
26	0,00173	9646002	16688	3479209	73833660	1282076706	5788	639452	24522651
27	0,00171	9629314	16466	3339606	70354451	1208243046	5491	633664	23883199
28	0,0017	9612848	16342	3205668	67014845	1137888595	5240	628173	23249535
29	0,00171	9596506	16410	3077133	63809177	1070873750	5060	622933	22621362
30	0,00173	9580096	16574	2953722	60732044	1007064573	4914	617873	21998429
31	0,00178	9563522	17023	2835204	57778322	946332529	4853	612959	21380556
32	0,00183	9546499	17470	2721305	54943118	888554207	4788	608106	20767597
33	0,00191	9529029	18200	2611851	52221813	833611089	4797	603318	20159491
34	0,002	9510829	19022	2506599	49609962	781389276	4820	598521	19556173
35	0,00211	9491807	20028	2405371	47103363	731779314	4880	593701	18957652
36	0,00224	9471779	21217	2307976	44697992	684675951	4971	588821	18363951
37	0,0024	9450562	22681	2214237	42390016	639977959	5110	583850	17775130
	Continua en la página siguiente								

Cuadro 1 – continuación de la página anterior

X	$egin{array}{c c c c c c c c c c c c c c c c c c c $								
	qx	lx	dx	Dx			Cx	Mx	Rx
38	0,00258	9427881	24324	2123964	40175779	597587943	5269	578740	17191280
39	0,00279	9403557	26236	2037004	38051815	557412164	5465	573471	16612540
40	0,00302	9377321	28320	1953193	36014811	519360349	5672	568006	16039069
41	0,00329	9349001	30758	1872399	34061618	483345538	5923	562334	15471063
42	0,00356	9318243	33173	1794460	32189219	449283920	6143	556411	14908729
43	0,00387	9285070	35933	1719300	30394759	417094701	6398	550268	14352318
44	0,00419	9249137	38754	1646775	28675459	386699942	6635	543870	13802050
45	0,00455	9210383	41907	1576803	27028684	358024483	6898	537235	13258180
46	0,00492	9168476	45109	1509258	25451881	330995799	7140	530337	12720945
47	0,00532	9123367	48536	1444070	23942623	305543918	7387	523197	12190608
48	0,00574	9074831	52090	1381142	22498553	281601295	7623	515810	11667411
49	0,00621	9022741	56031	1320398	21117411	259102742	7884	508187	11151601
50	0,00671	8966710	60167	1261729	19797013	237985331	8141	500303	10643414
51	0,0073	8906543	65018	1205061	18535284	218188318	8459	492162	10143111
52	0,00796	8841525	70379	1150253	17330223	199653034	8804	483703	9650949
53	0,00871	8771146	76397	1097209	16179970	182322811	9189	474899	9167246
54	0,00956	8694749	83122	1045819	15082761	166142841	9614	465710	8692347
55	0,01047	8611627	90164	995982	14036942	151060080	10027	456096	8226637
56	0,01146	8521463	97656	947648	13040960	137023138	10442	446069	7770541
57	0,01249	8423807	105213	900758	12093312	123982178	10818	435627	7324472
58	0,01359	8318594	113050	855296	11192554	111888866	11176	424809	6888845
59	0,01477	8205544	121196	811223	10337258	100696312	11521	413633	6464036
60	0,01608	8084348	129996	768501	9526035	90359054	11882	402112	6050403
61	0,01754	7954352	139519	727061	8757534	80833019	12262	390230	5648291
62	0,01919	7814833	149967	686835	8030473	72075485	12673	377968	5258061
63	0,02106	7664866	161422	647745	7343638	64045012	13117	365295	4880093
64	0,02314	7503444	173630	609715	6695893	56701374	13566	352178	4514798
65	0,02542	7329814	186324	572698	6086178	50005481	13998	338612	4162620
66	0,02785	7143490	198946	536673	5513480	43919303	14371	324614	3824008
67	0,03044	6944544	211392	501661	4976807	38405823	14683	310243	3499394
68	0,03319	6733152	223473	467683	4475146	33429016	14925	295560	3189151
69	0,03617	6509679	235455	434770	4007463	28953870	15121	280635	2893591
70	0,03951	6274224	247895	402927	3572693	24946407	15307	265514	2612956
71	0,0433	6026329	260940	372122	3169766	21373714	15493	250207	2347442
72	0,04765	5765389	274721	342317	2797644	18203948	15684	234714	2097235
73	0,05264	5490668	289029	313467	2455327	15406304	15866	219030	1862521
74	0,05819	5201639	302683	285544	2141860	12950977	15977	203164	1643491
75	0,06419	4898956	314464	258585	1856316	10809117	15960	187187	1440327
76	0,07053	4584492	323344	232679	1597731	8952801	15780	171227	1253140
77	0,07712	4261148	328620	207950	1365052	7355070	15420	155447	1081913
78	0,0839	3932528	329939	184532	1157102	5990018	14887	140027	926466
	Continua en la página siguiente								

13

Cuadro 1 – continuación de la página anterior

X	qx	lx	dx	Dx	Nx	Sx	Cx	Mx	Rx
79	0,09105	3602589	328016	162548	972570	4832916	14231	125140	786439
80	0,09884	3274573	323659	142065	810022	3860346	13502	110909	661299
81	0,10748	2950914	317164	123099	667957	3050324	12722	97407	550390
82	0,11725	2633750	308807	105643	544858	2382367	11910	84685	452983
83	0,12826	2324943	298197	89670	439215	1837509	11059	72775	368298
84	0,14025	2026746	284251	75162	349545	1398294	10136	61716	295523
85	0,15295	1742495	266515	62135	274383	1048749	9138	51580	233807
86	0,16609	1475980	245146	50607	212248	774366	8082	42442	182227
87	0,17955	1230834	220996	40579	161641	562118	7006	34360	139785
88	0,19327	1009838	195171	32012	121062	400477	5949	27354	105425
89	0,20729	814667	168872	24832	89050	279415	4949	21405	78071
90	0,22177	645795	143218	18928	64218	190365	4036	16456	56666
91	0,23698	502577	119101	14163	45290	126147	3227	12420	40210
92	0,25345	383476	97192	10391	31127	80857	2532	9193	27790
93	0,27211	286284	77901	7459	20736	49730	1952	6661	18597
94	0,2959	208383	61661	5221	13277	28994	1485	4709	11936
95	0,32996	146722	48412	3535	8056	15717	1121	3224	7227
96	0,38455	98310	37805	2277	4521	7661	842	2103	4003
97	0,4802	60505	29055	1348	2244	3140	622	1261	1900
98	0,65798	31450	20693	674	896	896	426	639	639
99	1	10757	10757	222	222	222	213	213	213

Al comparar los valores de la tabla generada con la tabla de referencia se observa que los mismos son idénticos.

A continuación se procede a calcular coberturas con las funciones desarrolladas en este trabajo, y comparar resultados con coberturas calculadas en Excel utilizando la tabla de referencia. Los resultados se encuentran resumidos en el Cuadro 2:

COBERTURA	Calculado directamente desde R	Calculado en Excel con la tabla generada en R	Calculado en Excel con la tabla de refencia
E(35;10)	0,6555342	0,6555342	0,6555342
a(35;5;5)	3,7358590	3,7358590	3,7358590
A(35;5;5)	0,0127926	0,0127926	0,0127926
aI(35;5;5)	10,8891500	10,8891502	10,8891502
AI(35;5;5)	0,0393761	0,0393760	0,0393760
av(35;5;5;5)	39,5023100	39,5023146	39,5023146
Av(35;5;5;5)	0,1457097	0,1457097	0,1457097
avg(35;0;10;0,03)	9,4700010	9,4700011	9,4700011
Avg(35;0;10;0,03)	0,0279588	0,0279588	0,0279588
avg(35;0;5;0,04)	4,9775120	4,977512	4,977512
Avg(35;0;5;0,04)	0,01165385	0,01165385	0,0116538

Cuadro 2: Comparación de resultados

Otra ventaja que presenta el calcular las herramientas en R, es que se pueden producir gráficos de distintos tipos, mostrando por ejemplo la variación de la prima pura de una cobertura cuando varía la edad de contratación.

Figura 1: Variación coberturas de vida: a(35,0,10) y muerte: A(35,0,10) ante una variación de la edad de contratación

O la variación de la prima si lo que varía es el plazo por el cual se la contrata, entre otros.

Figura 2: Variación coberturas de vida: aI(35,0,10) y muerte: AI(35,0,10) ante una variación del plazo de contratación

También permite ver de forma discreta y numérica variaciones cuya obtención puede conllevar una mayor complejidad analítica, como por ejemlo la variación de una renta vitalicia "increasing": aI(35,0,10 (o una cobertura de muerte de riesgo inmediato y plazo diferido del mismo tipo).

Figura 3: Variacion coberturas "increasing" de vida: aI(35,0,10) y muerte: AI(35,0,10) ante una variación de la tasa de interés

3.2. Conclusiones

Como se pudo observar, una vez confeccionadas las funciones para la contrucción de tablas y el cálculo de coberturas, la construcción de tablas de valores de conmutación y el cálculo de coberturas de seguros de vida en R se puede realizar de manera rápida y precisa, explotando las capaciades del entorno de R para confeccionar gráficos, exportar resultados y generar informes.

Materiales adjuntos

Anexo 1: Script principal

```
getwd()
    setwd(dir=choose.dir())
    getwd()
 5
 6
    #Defino la funcion para generar la tabla de valores de conmutacion
    crear.tabla<-function(tabla,tasa=0.04,lx.init=10000000){</pre>
 8
 9
      X<-tabla[,1]</pre>
10
      qx<-tabla[,2]
11
      lx<-rep(0,length(X))</pre>
12
      dx<-rep(0,length(X))</pre>
13
      lx[1] <-lx.init
14
      Dx<-rep(0,length(X))</pre>
15
      Cx<-rep(0,length(X))</pre>
16
      Nx<-rep(0,length(X))</pre>
17
      Mx<-rep(0,length(X))</pre>
      Rx<-rep(0,length(X))</pre>
18
19
      Sx<-rep(0,length(X))</pre>
20
21
22
23
      px1<-1-qx
24
25
26
      v<-1/(1+tasa)
      q1<-function(x){
27
28
        q1<-match(x,tabla[,2])
        return(q1)}
29
30
31
      d<-function(x){</pre>
        q1(x)*l(x)
32
33
34
      1<-function(x){</pre>
35
        li \leftarrow match((x-1),lx)
36
        px1i<-match(x,px1)
37
38
        1<-li*px1i
39
40
      lx[1] <-lx.init</pre>
41
      dx[1] < -1x[1] *qx[1]
42
      for (i in 2:length(X)) {
43
        lx[i]<-lx[i-1]-dx[i-1]
44
        dx[i] <-round(qx[i]*lx[i],0)</pre>
45
46
47
48
      for (i in 1:length(X)) {
49
        Dx[i] <-round(lx[i]*v^(i-1),0)</pre>
50
        Cx[i] <-round(dx[i] *v^(i),0)</pre>
51
52
53
      for(i in X){
54
        Nx[i] <-sum(Dx[i:length(X)])</pre>
55
        Mx[i] <-sum(Cx[i:length(X)])</pre>
56
57
```

```
58
         for(i in X){
 59
            Sx[i] <-sum(Nx[i:length(X)])</pre>
 60
            Rx[i] <-sum(Mx[i:length(X)])</pre>
 61
 62
 63
         \label{eq:normalized_normalized} \texttt{Nx} [\texttt{length}(\texttt{X})] < -\texttt{Dx} [\texttt{length}(\texttt{X})] ; \texttt{Sx} [\texttt{length}(\texttt{X})] < -\texttt{Dx} [\texttt{length}(\texttt{X})]
 64
         \texttt{Mx} \left[ \texttt{length} \left( \texttt{X} \right) \right] < -\texttt{Cx} \left[ \texttt{length} \left( \texttt{X} \right) \right] ; \texttt{Rx} \left[ \texttt{length} \left( \texttt{X} \right) \right] < -\texttt{Cx} \left[ \texttt{length} \left( \texttt{X} \right) \right]
 65
 66
 67
         return(tabla.nueva<-data.frame(cbind(X,qx,lx,dx,Dx,Nx,Sx,Cx,Mx,Rx)))
 68 }
 69
 70 ###################################
 71
 72
     ### Funciones de busqueda ###
 73
 74 D<-function(x,tabla){
 75
        D \leftarrow tabla[(x+1),5]
 76
         return(D)}
 77 | N < -function(x, tabla) 
 78
        N \leftarrow tabla[(x+1), 6]
 79
        return(N)}
 80 S<-function(x,tabla){
 81
       S<-tabla[(x+1),7]
 82
        return(S)}
 83 C<-function(x,tabla){
 84
       C<-tabla[(x+1),8]</pre>
 85
        return(C)}
 86 M<-function(x,tabla){
 87
       M \leftarrow tabla[(x+1), 9]
 88
        return(M)}
 89 R<-function(x,tabla){
 90
       R \leftarrow tabla[(x+1),10]
 91
        return(R)}
 92 ### Coberturas de capitales constantes ###
 93 | a < -function(x,h,n,tabla){
 94
         o < -x+h+n
 95
         if(o>=length(tabla[,1])){
 96
            a < -N(x+h,tabla)/D(x,tabla)
 97
 98
         else {
 99
            a \leftarrow (N(x+h, tabla) - N(o, tabla))/D(x, tabla)
100
101
         return(a)
102
103
104 \mid A \leftarrow function(x,h,n,tabla)
105
106
         if(o>=length(tabla[,1])){
107
            A \leftarrow M(x+h, tabla)/D(x, tabla)
108
109
         else{
            \texttt{A} \leftarrow (\texttt{M}(\texttt{x+h}, \texttt{tabla}) - \texttt{M}(\texttt{o}, \texttt{tabla})) / \texttt{D}(\texttt{x}, \texttt{tabla})
110
111
            }
112
         return(A)
113
114
115
116 E<-function(x,h,tabla){
117
         E \leftarrow D(x+h, tabla)/D(x, tabla)
118
         return(E)
119 }
```

```
120
121
    ### Coberturas de capitales variables ###
122
123 aI <-function(x,h,n,tabla){
124
      o < -x+h+n
125
      if(o>=length(tabla[,1])){
126
        aI < -S(x+h,tabla)/D(x,tabla)
127
      }else { aI<-(S(x+h,tabla)-S(o,tabla)-n*N(o,tabla))/D(x,tabla)}
128
      return(aI)
129 }
130
131
132 AI <-function(x,h,n,tabla) {
133
      o < -x+h+n
134
      if(o>=length(tabla[,1])){
135
        AI <-R(x+h, tabla)/D(x, tabla)
136
      }else { AI \leftarrow (R(x+h, tabla) - R(o, tabla) - n * M(o, tabla)) / D(x, tabla)}
137
      return(AI)
138 }
139
140 av <- function(x,h,n,r,tabla){
141
      av \leftarrow a(x,h,n,tabla)+r*aI(x,h+1,n-1,tabla)
142
      return(av)
143
144
145 Av <-function(x,h,n,r,tabla) {
146
      Av \leftarrow A(x,h,n,tabla)+r*AI(x,h+1,n-1,tabla)
147
      return(Av)
148
149
150 avg <-function(x,h,n,r,tabla,tasa=0.04) {
151
      if(r<tasa){
152
        v_1<-(1+r)/(1+tasa)
153
        tasa_2 < -(1/v_1) -1
154
        tabla_2<-crear.tabla(tabla,tasa=tasa_2,lx.init=10000000)
155
        avg <-a(x,h,n,tabla=tabla_2)
156
      } else{
157
        if(r==tasa){
158
           avg < -sum(tabla[(x+h+1):(x+h+n),3])/tabla[(x+1),3]
159
        } else {print("r>tasa")}
160
161
      return(avg)
162 }
163
164
165 Avg <-function(x,h,n,r,tabla,tasa=0.04) {
166
      if(r<tasa){
167
        v_1<-(1+r)/(1+tasa)
        tasa_2<-(1/v_1)-1
168
169
        tabla_2<-crear.tabla(tabla,tasa=tasa_2,lx.init=10000000)
170
        Avg <- A(x,h,n,tabla=tabla_2)
171
      } else{
172
        if(r==tasa){
173
           v<-1/(1+tasa)
174
           Avg < -v * sum(tabla[(x+h+1):(x+h+n),2])
175
        } else {print("r>tasa")}
176
177
      return(Avg)
178 }
```

Anexo 1: Script principal

Anexo 2: Script para presentación de resultados

```
#Obtengo tabla de conmutacion a usar como referencia
   CS01980<-read.csv2("Tabla CS01980.csv",sep=";",skip=2,header=T);View(CS01980)
   data.class(CSO1980)
 5 #Construyo init.data , los datos iniciales a partir de los cuales voy a construir
 la tabla de prueba,
6 #a partir de los datos inicales de la tabla de control
   qx<-CS01980[,11]
 8 X<-CS01980[,1]
  init.data<-cbind(X,qx)
10 #Genero una tabla:
11 CSO80_valconm<-crear.tabla(tabla = init.data,lx.init=10000000)
12
   View(CSO80_valconm)
13
14 ###Calculo de coberturas ###
15
16 E(35,10,CSO80_valconm)
17 a (35,5,5,CSO80_valconm)
18 A(35,5,5,CSO80_valconm)
19 aI (35,5,5,CS080_valconm)
20 AI (35,5,5,CSO80_valconm)
21
   av(35,5,5,5,CSO80_valconm)
22 Av (35,5,5,5,CSO80_valconm)
23 avg(35,0,10,0.03,CSO80_valconm)
24 Avg (35,0,10,0.03,CSO80_valconm)
25
   avg(35,0,5,0.04,CSO80_valconm)
26
  Avg (35,0,5,0.04,CSO80_valconm)
27
28
29
  ### Graficos ###
30
31
   edades<-35:45
32
33
  rtas.vida<-rep(NA,10)
34
     for (i in edades){
35
     rtas.vida[i-34] <-a(i,0,10,CS080_valconm)
36 }
37
38 temp.muerte<-rep(NA,10)
39 for (i in edades){
40
    temp.muerte[i-34] <- A(i,0,10,CSO80_valconm)
41 }
42
43
44
   par(mfrow=c(1,2))
45 plot(edades, rtas. vida, xlim = c(35,45), col="red", xlab = "x: Edad al momento de
       contratacion", ylab = a(x,0,10)", main = "Cobertura de vida")
46
  plot(edades, temp.muerte, xlim = c(35,45), col="blue", xlab = "x: Edad al momento de
       contratacion",ylab = "A(x,0,10)",main = "Cobertura de muerte")
47
48
49 variacion.plazo<-2:10
50 rtas.vida.plazo<-rep(NA,9)
51 for (i in variacion.plazo){
52
    rtas.vida.plazo[i-1] <-a(35,0,i,CSO80_valconm)
53 }; rtas. vida. plazo
54
55 temp.muerte.plazo<-rep(NA,9)
56 for (i in variacion.plazo){
    temp.muerte.plazo[i-1] <-A(35,0,i,CSO80_valconm)
```

```
58|}; temp.muerte.plazo
59
60
61
  par(mfrow=c(1,2))
62 plot(variacion.plazo,rtas.vida.plazo,xlim = c(2,10),col="red",xlab = "n: plazo de
       cobertura", ylab = "a(35,0,n)", main = "Cobertura de vida")
63 plot(variacion.plazo,temp.muerte.plazo,xlim = c(2,10),col="blue",xlab = "n: plazo
       de cobertura", ylab = "A(35,0,n)", main = "Cobertura de muerte")
64
65
66 variacion.tasa<-0.01
67
  rtas.vida.tasa<-rep(NA,10)
68 for (i in 1:10){
    rtas.vida.tasa[i] <-aI(35,5,10,crear.tabla(tabla = init.data,tasa = i*variacion.
         tasa))
70 }; rtas. vida. tasa
71 temp.muerte.tasa<-rep(NA,10)
72 for (i in 1:10){
     temp.muerte.tasa[i] <- AI(35,5,10,crear.tabla(tabla = init.data,tasa = i*variacion
         .tasa))
74 }; temp.muerte.tasa
75
  par(mfrow=c(1,2))
  plot((1:10)*variacion.tasa,rtas.vida.tasa,xlim = c(0.01,0.1),col="red",xlab = "i:
       tasa de interes", ylab = "aI(35,5,10)", main = "Cobertura de vida")
78 plot((1:10)*variacion.tasa,temp.muerte.tasa,xlim = c(0.01,0.1),col="blue",xlab = "
       i: tasa de interes", ylab = "AI(35,5,10)", main = "Cobertura de muerte")
```

Anexo 2: Script para presentación de resultados

- 1. "Script Santiago Silva.R" : el script utilizado en el presente trabajo, en formato .R.
- 2. "Tabla CSO1980.csv": la tabla de referencia.
- 3. "Datos comparación.xlsx": contiene las planillas de cálculos auxiliares utilizados en la comparación de resultados.

Bibliografía y referencias

- [CMM12] María Teresa Casparri, María Alejandra Metelli y Paula Mutchinik. Aplicación de los seguros de personas a la gestión actuarial. Buenos Aires: Eudeba, 2012.
- [Cra12] Michael J Crawley. The R book. John Wiley & Sons, 2012.