Network Metrology: Traffic measurements

This class

- Motivation and definitions
 - Why measure traffic?
 - Which traffic properties to measure?
- Tools for measuring traffic
 - Packet capture
 - Interface counts
 - Flow capture

Why measure traffic?

- Performance analysis
- Anomaly and intrusion detection
- Network engineering

Traffic at different granularities

- IP-level packets
 - Capture per-packet information
- Flows
 - Statistics of packets grouped into flows
- Network interface
 - Statistics of packets that traverse a network interface

IP header

Version	IHL	Type of Service	Total length							
	Identifi	cation	Flags	Fragment offset						
Time to Live Protocol Header c					checksum					
Source Address										
Destination Address										
	Padding									
Data (usually TCP/UDP)										

TCP header

Source Port							Destination Port			
Sequence Number										
Acknowledge Number										
Data Offset		U	А	Р	R	S	F	Window		
	pointer									
	Padding <									
Application data										

Traffic properties

- Number of packets
- Number of bytes
- Packet arrivals
- Flow arrivals
- Flow duration, size
- Flow performance (e.g., RTT, data rate)

PACKET CAPTURE

Packet capture on end systems

- Basic method
 - Capture and record packets passing through an interface

Tools

- tcpdump
 - Command-line packet capture
- libpcap
 - C/C++ library for packet capture
- Wireshark
 - Packet capture and analysis

Parameters: monitored interfaces

Example

-tcpdump -i eth0

Parameters: packet filters

- Packets to collect
 - E.g., TCP port 80 packets or packets to a given IP address
- Part of packets
 - E.g., IP/TCP headers

Example output: tcpdump

Receive window Source IP Source port **Timestamp** Sequence number 11:04:57.409674 IP renataceiraair2.62701 > www.ewr1.nytimes.com.https: Flags [S], seq 631064667, win 65535, options [mss 1460,nop,wscale 5,nop,nop,TS val 2269480396 ecr 0,sackOK,eol], length 0 **Destination IP Destination Port** TCP Flags

Possible measurement artifacts

- Dropped packets are common under high utilization
 - Inspect report of dropped packets
- Other less frequent artifacts
 - Fail to report drops
 - Falsely report drops
 - Duplicate packets
 - Re-ordered packets
 - Misfilter

How to capture packets of a network?

- In broadcast LANs (e.g., WiFi)
 - Set interface in promiscuous mode
 - Then, same as end system packet capture

How to capture packets on point-topoint links?

Port mirroring

- Basic method
 - Copies packets from one or more ports to a mirroring port
 - Run packet capturing tool on host connected to mirroring port

Network Tap

- Basic method
 - Electrical or optical splitter on monitored link
 - Monitoring host with specialized network interface and interface driver

Comparison

Port mirroring

- Pros
 - Easy to setup
 - Low cost
- Cons
 - Hardware and media errors are dropped
 - Packets may be dropped at high utilization

Tap

- Pros
 - Monitor all packets
 - Eliminates risk of dropped packets
- Cons
 - Expensive

High-speed capture with commodity hardware

- Key idea
 - Direct access to NIC (i.e., bypass kernel)
 - Parallelism
- Tools
 - TStat
 - ntop
 - WAND

INTERFACE COUNTS

Interface counts

- Basic method
 - Routers log simple statistics (bytes/packets)
 - Total values since interface initialized
 - Request statistics using SNMP (MIB-II MIB)

Example properties

- Number of In/Out bytes (total, unicast, non-unicast)
- Number of In/Out packets (total, unicast, non-unicast)
- Number of In/Out discarded/corrupted packets

Interface counts: Pros and Cons

Pros

- Supported on all networking equipment
- Little performance impact on routers
- Little storage needs

Cons

- Missing data (SNMP uses UDP)
- Polling makes it hard to synchronize data from multiple interfaces
- Coarse-grained measurements

FLOW CAPTURE

IP Flows

- Set of packets with common properties
 - Definition can vary
 - Traditional 5-tuple: src IP, dst IP, src port, dst port, protocol
 - Packets from one ingress to an egress point
- Packets that are "close" together in time
 - Maximum spacing between packets (e.g., 15 sec, 30 sec)

Flow ≠ application session

- Application session may be composed of multiple flows
- Packets in application session may not follow same links
- Hard to measure application session inside the network

Capturing flow statistics in routers

- Basic method
 - Specify set of properties that define a flow
 - Router log statistics per flow (flow records)
 - Push flow records to collecting process (IPFIX)

Flow records: Flow identifier

- Packet header information
 - Source and destination IP addresses
 - Source and destination TCP/UDP port numbers
 - Other IP & TCP/UDP header fields (e.g., protocol, ToS bits)
- Routing information
 - Input and output interfaces
 - Source and destination IP prefix (mask length)
 - Source and destination autonomous system numbers

Flow records: Flow properties

- Aggregate traffic information
 - Start and finish time of the flow (time of first & last packet)
 - Total number of bytes and number of packets in the flow
 - TCP flags (e.g., logical OR over the sequence of packets)

Collecting flow records

- Route CPU that generates flow records
 - May degrade forwarding performance

- Line card that generates flow records
 - More efficient to support measurement in each line card

- Packet monitor that generates flow records
 - Often requires third party equipment

Flow cache

- Maintain a cache of active flows
 - Storage of byte/packet counts, timestamps, etc.
- Compute a key per incoming packet
 - Concatenation of source, destination, port #s, etc.
- Index into the flow cache based on the key
 - Creation or updating of an entry in the flow cache

Evicting cache entries

Flow timeout

- Remove flows that have not received a packet recently
- Periodic sequencing through the cache to time out flows
- New packet triggers the creation of a new flow

Cache replacement

- Remove flow(s) when the flow cache is full
- Evict existing flow(s) upon creating a new cache entry
- Apply eviction policy (LRU, random flow, etc.)

Long-lived flows

- Remove flow(s) that persist for a long time (e.g., 30 min)
- ... otherwise flow statistics don't become available
- ... and the byte and packet counters might overflow

Packet Sampling

- Packet sampling before flow creation
 - 1-out-of-m sampling of individual packets (e.g., m=100)
 - Creation of flow records over the sampled packets
- Reducing overhead
 - Avoid per-packet overhead on (m-1)/m packets
 - Avoid creating records for a large number of small flows
- Increasing overhead (in some cases)
 - May split some long transfers into multiple flow records

Tools

- In-router capture
 - Cisco NetFlow
 - Juniper JFlow
- Collection and post-processing
 - Flow-tools
 - ntop

Flow monitoring: Pros and Cons

Pros

- More details about traffic compared to counters
- Lower measurement volume than full packet traces
- Available on high-end line cards (Netflow, Jflow)
- Control over overhead via aggregation and sampling

Cons

- Less details than packet capture
 - No individual packet arrival times
 - No information on packet content
- Not uniformly supported (getting better with IPFIX)
- Computation/memory requirements for the flow cache

Using the traffic data in network operations

- Interface counts: everywhere
 - Tracking link utilizations and detecting anomalies
 - Generating bills for traffic on customer links
 - Inference of the offered load (i.e., traffic matrix)
- Packet monitoring: selected locations
 - Analyzing the small time-scale behavior of traffic
 - Troubleshooting specific problems on demand
- Flow monitoring: selective, e.g., network edge
 - Tracking the application mix
 - Direct computation of the traffic matrix
 - Input to denial-of-service attack detection

Summary

- Packet capture
 - Detailed per-packet measurements
 - High collection overhead
- Interface counts
 - Coarse measurements per link
 - Low overhead, widely available
- Flow capture
 - More details than link counts, less than packet captures
 - Medium collection overhead controlled with sampling

References

- P. Tune, M. Roughan, "Internet Traffic Matrices: A Primer", in H. Haddadi, O. Bonaventure (Eds.), Recent Advances in Networking, (2013)
 - http://sigcomm.org/education/ebook/SIGCOMMeBook2013v1_chapte
 r3.pdf
- Jennifer Rexford, Network Measurement Lecture Notes, COS-561, Fall 2018.

