LeNet-5

Computer Vision & Augmented Reality 연구실 학부연구생 강 준 구

1 2021-11-12

Contents

- ▶ Implementing LeNet-5 CNN Architecture
- Comparison
- Future work

LeNet-5(1998)

LeNet-5 Architecture

Computer Vision & Augmented Reality Lab

Implementing LeNet-5

import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D, AveragePooling2D from tensorflow.keras.layers import Flatten, Dense from tensorflow.keras.layers import ZeroPadding2D LeNet5=Sequential() LeNet5.add(ZeroPadding2D(padding=2)) LeNet5.add(Conv2D(filters=6,kernel_size=5,padding='valid',strides=1,activation='tanh')) LeNet5.add(AveragePooling2D(pool_size=2,strides=2)) LeNet5.add(Conv2D(filters=16,kernel_size=5,padding='valid',strides=1,activation='tanh')) LeNet5.add(AveragePooling2D(pool size=2,strides=2)) LeNet5.add(Flatten()) LeNet5.add(Dense(units=120,activation='tanh')) LeNet5.add(Dense(units=84,activation='tanh')) LeNet5.add(Dense(units=10,activation='softmax')) LeNet5.build(input shape=(None,28,28,1)) LeNet5.summary()

Model: "sequential"

Layer (type)	Output Shape	Param #	
zero_padding2d (Zer	oPadding2 (None,	32, 32, 1) 0	
conv2d (Conv2D)	(None, 28, 28	3, 6) 156	_
average_pooling2d (A	AveragePo (None,	14, 14, 6) 0	
conv2d_1 (Conv2D)	(None, 10, 1	10, 16) 2416	
average_pooling2d_1	I (Average (None,	5, 5, 16) 0	
flatten (Flatten)	(None, 400)	0	
dense (Dense)	(None, 120)	48120	
dense_1 (Dense)	(None, 84)	10164	
dense_2 (Dense)	(None, 10)	850	

Total params: 61,706 Trainable params: 61,706 Non-trainable params: 0

3D Visualization of a Convolutional Neural Network (cmu.edu)

https://github.com/engineerjkk/DeepLearning_from_Scratch/blob/main/Final_LeNet.ipynb

InPut -> C1 : feature maps

CAU

C1 -> S2 feature maps

Subsampling

7	3	5	2
8	7	1	6
4	9	3	9
0	8	4	5

7+	3+8+7	
	4	
Aver	age pooling	

6.2	5		

S2: f.maps 6@14 x 14

C1: f.maps

Subsampling C3->S4

11 2021-11-12

Comparison

20

Epoch

60

80

100

accuracy: 0.9857

accuracy: 0.9955

0.05

0.00

Future work

AlexNet

