Testes de Hipóteses: Abordagem Clássica

Marcelo S. Lauretto

Escola de Artes, Ciências e Humanidades, Universidade de São Paulo

marcelolauretto@usp.br

São Paulo - Brasil

Problema: Decidir se uma moeda é honesta l

- Suponha que você seja juiz de uma partida de futebol. Antes do início da partida, chama os capitães das duas equipes, para sorteio de quem iniciará a partida com a bola.
- Pelas regras do torneio, a posse inicial de bola é decidida através do lançamento de uma moeda: se a moeda der cara, a equipe à sua esquerda (Time A) inicia com a bola; se der coroa, é a equipe à sua direita (Time B) quem inicia com a bola.
- Ao colocar a mão no bolso, você se dá conta de que esqueceu a moeda.
- O capitão do time B rapidamente retira uma moeda do bolso e a oferece para o sorteio.
- O time A somente concorda com a condição de que a moeda seja "validada" antes de ser oficialmente lançada para decidir a posse de bola.

Problema: Decidir se uma moeda é honesta II

- O sorteio consiste em lançar a moeda 10 vezes sob aproximadamente as mesmas condições e contar a quantidade de caras e coroas.
- Em quais dos resultados abaixo você desconfiaria da procedência da moeda?
 - 5 caras e 5 coroas?
 - 2 6 caras e 4 coroas?
 - 4 caras e 6 coroas?
 - 4 2 caras e 8 coroas?
 - 6 1 cara e 9 coroas?
 - 6 0 caras e 10 coroas?
- Uma pergunta mais geral: Para quais dos possíveis resultados você consideraria que a moeda não é honesta?
 - Para responder a essa questão: Procedimento de teste.

Problema: Decidir se uma moeda é honesta III

- Sob a abordagem de estatística clássica, o procedimento de teste para decidir se a moeda é honesta depende da definição dos seguintes elementos:
 - 1 Condição do experimento e respectiva estatística:
 - Experimento: n lançamentos independentes da moeda (sob aproximadamente as mesmas condições)
 - X: número de caras nos n lançamentos
 - 2 Parâmetro sobre o qual se quer fazer inferência e seu respectivo espaço:
 - Parâmetro p: probabilidade da moeda dar cara em um lançamento.
 - Espaço paramétrico Ω : $p \in [0, 1]$
 - 3 Hipótese a ser testada e hipótese alternativa:
 - $H_0: p = 0.5$ (moeda honesta)
 - H₁: p ≠ 0.5 (moeda tende a dar mais caras ou mais coroas)
 Importante: H₀ e H₁ devem formar uma partição de Ω, ou seja:
 H₀, H₁ ≠ ∅; H₀ ∩ H₁ = ∅; H₀ ∪ H₁ = Ω

Problema: Decidir se uma moeda é honesta IV

- (cont.)
 - 4 Distribuição de probabilidade dos possíveis resultados do experimento:
 - P(X = x|p): probabilidade de x caras em n lançamentos, dado o parâmetro p:

$$P(X = x|p) = \binom{n}{x} p^{x} (1-p)^{n-x}$$

- 5 Região de rejeição (ou região crítica) do teste: Determinado a partir de:
 - P(X = x|p)
 - H₀ e H₁
 - Nível de significância α

Problema: Decidir se uma moeda é honesta V

Distribuição de probabilidade: P(X = x|p = 0.5)
 (X: número de caras em n lançamentos)

Como interpretar (e definir) α ? I

- Tipos de erro em testes de hipótese:
 - Erro do Tipo I: Probabilidade de rejeitar a hipótese quando esta é verdadeira
 - Erro do Tipo II: Probabilidade de n\u00e3o rejeitar a hip\u00f3tese quando esta \u00e9 falsa
 - Poder do teste: Complemento do erro do tipo II, representa a probabilidade de rejeitar corretamente uma hipótese falsa
- Objetivos conflitantes: Baixo Erro do Tipo I implica em alto Erro do Tipo II e vice-versa

Como interpretar (e definir) α ? II

- O valor de α , chamado *nível de significância*, corresponde ao Erro do Tipo I tolerado, e deve ser estipulado de acordo com o problema e com as consequências do erro de rejeitar uma hipótese verdadeira
 - Valores usuais: $\alpha = 0.10, 0.05, 0.01, 0.001$
 - Se as consequências de um Erro do Tipo I são moderadas, pode-se usar $\alpha = 0.1$ (p.ex a moeda da partida de futebol)
 - Se as consequências de um Erro do Tipo I são sérias, deve-se adotar valores mais baixos de α P.ex. em um julgamento: um réu só pode ser condenado se houver forte evidência contra a hipótese de sua inocência (baixo valor de α)
- A Região crítica do teste corresponde ao conjunto de valores de X para os quais a hipótese H₀ será rejeitada, condicionado a Erro do tipo I ≤ α

Regiões Críticas - Distribuições simétricas

Voltando ao problema da moeda: I

- Como definir as hipóteses nula e alternativa?
 (ou seja, como definir se a região crítica é uni ou bilateral?)
- Relembrando:
 - A posse inicial de bola é decidida através do lançamento de uma moeda:
 - se a moeda der cara, a equipe A inicia com a bola
 - se der coroa, é a equipe B quem inicia com a bola
 - O time B ofereceu a moeda para decidir a posse inicial

Voltando ao problema da moeda: Il

- Logo, juiz deve escolher uma das três hipóteses (e respectivas regiões de rejeição):
 - H₀: p = 1/2, H₁: p ≠ 1/2: alta proporção de caras ou de coroas é considerada suspeita
 - Posição mais neutra: moeda é rejeitada se qualquer um dos times puder ser prejudicado por eventual vício na moeda
 - H₀: p ≥ 1/2, H₁: p < 1/2: baixa proporção de caras é considerada suspeita
 - Moeda é rejeitada somente se o time A puder ser prejudicado por eventual vício na moeda
 - H₀: p ≤ 1/2, H₁: p > 1/2: alta proporção de caras é considerada suspeita
 - Moeda é rejeitada somente se o time B puder ser prejudicado por eventual vício na moeda

Voltando ao problema da moeda: III

- Possibilidade 1: Região crítica bilateral (ou bicaudal):
 - **1** Hipótese: $H_0: p = 1/2$ contra $H_1: p \neq 1/2$
 - 2 Nivel de significância: $\alpha = 0.1$

Rejeitamos a moeda se ela fornecer um número de caras muito abaixo ou muito acima do esperado sob a hipótese.

Voltando ao problema da moeda: IV

Binomial Distribution(10, 0.5), alpha=0.1

$$C = \{x \mid P(X \le x | p) \le \alpha/2 \lor P(X \ge x | p) \le \alpha/2\} = \{0, 1, 9, 10\}$$

Voltando ao problema da moeda: V

- Região crítica unilateral (ou unicaudal):
 - 1 Nivel de significância: $\alpha = 0.1$
 - 2 Hipótese: H₀: p ≥ 1/2 contra H₁: p < 1/2 Rejeitamos a hipótese da moeda ser honesta se esta fornecer um número de caras muito abaixo do esperado.

Voltando ao problema da moeda: VI

Binomial Distribution(10, 0.5), alpha=0.1

Falseabilidade (ou Refutabilidade) de Popper

- Karl Raimmund Popper (1902–1994): "Racionalismo Crítico"
 - Oposição ao método indutivo (Dados → Teoria)
- Postulados:
 - Ciência é uma sequência de conjecturas
 - Teorias científicas não podem ser diretamente provadas
 - Teorias são propostas como hipóteses, substituídas por novas hipóteses quando refutadas experimentalmente ("falseadas")
 - O que diferencia as teorias científicas de outras formas de crença é que as primeiras podem ser falseadas
 - \longrightarrow formulação em termos precisos, que definem os resultados esperados.

Falseabilidade (ou Refutabilidade) de Popper

- Tribunais modernos:
 - *In dubio pro reo*: o réu é considerado inocente até que seja provada sua culpa (benefício da dúvida).
 - O benefício da dúvida torna mais difícil condenar um réu.
 - Por outro lado, o veredito de um julgamento nunca pode ser inocente, apenas culpado ou não culpado.
- Na metáfora do tribunal:
 - Uma lei científica é (provisoriamente) aceita pelo tribunal como verdadeira, até que esta seja refutada ou provada errônea por evidência pertinente.
 - Evidência para refutar uma teoria tem a forma de observações empíricas que discordam das conseqüências ou previsões feitas pela teoria em julgamento.
 - Um julgamento justo no tribunal científico:
 - pode assegurar a validade das deduções que levaram a uma prova de falsidade:
 - não pode dar uma certificação ou garantia referente à validade ou boa qualidade da teoria.

- Distribuição Normal Importância:
 - Capaz de descrever vários fenômenos físicos e biológicos
 - Teorema do Limite Central
- Função de densidade de probabilidade (pdf):

$$f(x|\mu,\sigma) = \frac{1}{\sigma(2\pi)^{1/2}} \exp\left(\frac{(x-\mu)^2}{2\sigma^2}\right)$$

- Parâmetros:
 - μ: média da população;
 - σ^2 : variância da população; $\sigma = \sqrt{\sigma^2}$: desvio padrão
- Se as variáveis aleatórias X₁, X₂,..., X_k forem independendes e X_i ~ N(μ_i, σ²_i), (i = 1,...,k), então

$$X_1 + \ldots + X_k \sim N(\mu_1 + \ldots + \mu_k, \ \sigma_1^2 + \ldots + \sigma_k^2).$$

• Se x segue uma distribuição normal, isto é, se $X \sim N(\mu, \sigma^2)$, então

$$z = \frac{(x - \mu)}{\sigma} \sim N(0, 1).$$

N(0,1): Distribuição normal padrão.

É conhecido que

$$P(-1.96 < z < +1.96) = 95\%$$
 e portanto
 $P(\mu - 1.96\sigma < x < \mu + 1.96\sigma) = 95\%$

• Logo, o intervalo $[\mu - 1.96\sigma, \mu + 1.96\sigma]$ fornece um *intervalo de previsão para x*.

Distribuição normal padrão

• Distribuição normal com $\mu = 8, \sigma = 5$

Distribuição Normal - Estimadores

- Valores verdadeiros de μ e σ são quase sempre desconhecidos.
- Suponha que $\mathbf{X} = [X_1, X_2, \dots, X_n]$ seja uma amostra aleatória de uma distribuição Normal com média μ e variância σ^2 (desconhecidos).
- Estimadores de máxima verossimilhança para μ e σ^2 são dados por

$$\hat{\mu} = \overline{X} = \frac{1}{n} \sum_{i=1}^n x_i; \ \hat{\sigma}^2 = \frac{S_X^2}{n}, \ \text{onde} \ S_X^2 = \sum_{i=1}^n \left(x_i - \overline{X}\right)^2.$$

• Estimador *não viesado*¹ para σ^2 :

$$s^2 = \frac{S_\chi^2}{n-1}.\tag{1}$$

$$^{1}E(s^{2})=\sigma^{2}$$

Intervalo de confiança para a média

- Teorema do Limite Central:
 - Se $\textbf{\textit{X}}$ é uma amostra aleatória de tamanho n de uma distribuição qualquer com média μ e variância σ^2 , então a distribuição da média amostral seguirá aproximadamente uma distribuição Normal com média μ e variância σ^2/n (DeGroot, 1986, p. 275).
- Logo, para amostras grandes ou oriundas de uma população com distribuição normal, pode-se obter um intervalo de 95% de confiança para μ por:

$$CI_{95\%} = [Ii(X_n), Is(X_n)]$$

onde

• se σ^2 é conhecida: $li(\mathbf{X}) = \overline{X} - 1.96\sqrt{\sigma^2/n}, \quad ls(\mathbf{X}) = \overline{X} + 1.96\sqrt{\sigma^2/n}$

• se σ^2 é desconhecida:

$$li(\mathbf{X}) = \overline{X} - 1.96\sqrt{s^2/n}$$
, $ls(\mathbf{X}) = \overline{X} + 1.96\sqrt{s^2/n}$ s^2 : estimador não viesado (Eq. 1)

Intervalo de confiança para a média

• Exemplo: Considere a amostra representada pelo histograma abaixo. A linha vertical central (em vermelho) representa a média amostral, e as linhas horizontais azuis representam o intervalo de 95% de confiança para μ .

$$n = 42$$
, $\overline{X} = 25.9$; $\hat{\sigma} = 16.49$; $\hat{\sigma}/\sqrt{42} = 2.54$ $Cl_{95\%} = [20.9, 30.9]$

Intervalo de confiança: definição informal

 Seja X uma amostra aleatória oriunda de uma distribuição de probabilidade com parâmetro p a ser estimado. Um intervalo de confiança para o parâmetro p, com nível de confiança ou coeficiente de confiança γ, é um intervalo [li(X), ls(X)] determinado pelo par de variáveis aleatórias li(X) e ls(X), com a propriedade:

$$P(li(\mathbf{X}) , para todo p .$$

• Interpretação do IC: se coletássemos indefinidamente amostras aleatórias da mesma população e, para cada amostra coletada \boldsymbol{X} , calculássemos $li(\boldsymbol{X})$ e $lu(\boldsymbol{X})$, em $100\gamma\%$ das repetições o valor verdadeiro de p estaria dentro dos intervalos obtidos.

Intervalos de confiança × testes de hipóteses

 Seja X_n uma amostra de uma população com distribuição normal, e considere a hipótese

 $H_0: \mu = \mu_0$ contra a alternativa $A: \mu \neq \mu_0$.

- Uma maneira simples para testar H seria construir um intervalo de confiança com coeficiente γ para μ , e verificar se μ_0 pertence a esse intervalo.
 - Se $\mu_0 \in [li(X_n), ls(X_n)]$: não rejeitamos H_0 ;
 - Se $\mu_0 \notin [li(X_n), ls(X_n)]$: rejeitamos H_0 , com nível de significância α .
- O valor de gama é o complementar do nível de significância desejado, ou seja,

$$\gamma = 1 - \alpha$$
.

• Atenção: somente vale para testes bicaudais ($A: \mu \neq \mu_0$).

Teste Z para a média de uma população (Distribuição normal, variância conhecida)

- Outra forma (um pouco mais geral) de resolver o problema anterior:
- Seja X_n uma amostra de uma população com distribuição normal com média μ desconhecida e variância σ², e considere a hipótese H₀: μ = μ₀.
- Se a hipótese for verdadeira $\mu = \mu_0$, então $\overline{X}_n \sim N(\mu_0, \sigma^2/n)$.
- Logo, a *estatística* $Z = \frac{\overline{X} \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)!!$
- Assim, para testar a hipótese original, basta verificar em qual região da distribuição normal padrão a estatística Z se encontra.

Teste Z (Distribuição normal, variância conhecida)

• Exemplo anterior (assumindo $\sigma = 16.49$):

$$n = 42$$
, $\overline{X} = 25.9$; $\sigma/\sqrt{42} = 2.54$

• Supondo $H_0: \mu = 20$.

$$Z = \frac{25.9 - 20}{2.54} = 2.32$$

Teste bicaudal (*A* : $\mu \neq$ 20): $P(|Z| \ge 2.32) \approx 0.02$

Teste monocaudal ($A: \mu > 20$): $P(Z \ge 2.32) \approx 0.01$

Distribuição t

- Também conhecida pelo nome t de Student, em homenagem a William S. Gosset, que em 1908 publicou seus estudos sobre essa distribuição sob o pseudônimo "Student".
- Definição: Considere duas variáveis aleatórias independentes $Y \sim N(0, 1)$ e $Z \sim \chi^2(n)$.

Seja X a variável aleatória definida pela equação

$$X=\frac{Y}{\sqrt{Z/n}}.$$

Então a distribuição de X é denominada distribuição t com n graus de liberdade.

Função de densidade de probabilidade:

$$f(x|n) = \frac{\Gamma(n+1)/2}{\sqrt{n\pi}} \frac{\Gamma(n/2)}{\Gamma(n/2)} \left(1 + \frac{x^2}{n}\right)^{-(n+1)/2} - \infty < x < \infty.$$

• Média e Variância: Se $X \sim t(n)$: E(X) = 0 (para n > 1), Var(X) = n/(n-2) (para n > 2).

Relação entre a distribuição t e amostras aleatórias de distribuições normais

- Suponha que X₁,..., X_n seja uma amostra aleatória de uma distribuição normal com média μ e variância σ².
- Sejam $Y = \frac{\overline{X} \mu}{\sqrt{\sigma^2/n}}$ e $Z = S_X^2/\sigma^2$, onde $S_X^2 = \sum_{i=1}^m (X_i \overline{X})^2$.
- Então:
 - Y e Z são são independentes;
 - $Y \sim N(0,1)$;
 - $Z \sim \chi^2(n-1)$.
- Logo, da definição da distribuição t segue que a variável

$$T = rac{Y}{\sqrt{Z/(n-1)}} = rac{\overline{X} - \mu}{\sqrt{s^2/n}}, ext{ onde } s^2 = rac{S_X^2}{n-1},$$

segue uma distribuição $t \operatorname{com} n - 1$ graus de liberdade (DeGroot 1986, p.396).

Distribuição t - Exemplos

• $\nu \to +\infty$: a distribuição t converge para a distribuição normal padrão.

Distribuição t - Exemplos

 Comparação entre a distribuição normal padrão e a distribuição t de Student para uma amostra com n = 30. Note a diferença dos valores críticos que determinam a região de significância de 0.05, bilateral.

Teste t para uma amostra (Distribuição normal, variância desconhecida)

- Seja X_1, \ldots, X_n uma amostra de uma população com distribuição normal com média μ desconhecida e variância σ^2 , e considere a hipótese $H_0: \mu = \mu_0$.
- Se a hipótese for verdadeira $\mu = \mu_0$, então $\overline{X} \sim N(\mu_0, \sigma^2/n)$.
- Logo, pelo resultado anterior, a *estatística* $T = \frac{\overline{X} \mu_0}{\sqrt{s^2/n}}$ segue uma distribuição t de Student com n-1 graus de liberdade.
- Assim, para testar a hipótese original, basta verificar em qual região da distribuição t de student a estatística T se encontra.
- No exemplo apresentado anteriormente, supondo H_0 : $\mu=20$.

$$n=42, \ \overline{X}=25.9; \ s^2=271.92; \ \sqrt{s^2/n}=2.54, \ \nu=41$$
 $T=\frac{25.9-20}{2.54}=2.32$

Teste bicaudal ($A: \mu \neq 20$): $P(|T| \geq 2.32) \approx 0.026$ Teste monocaudal ($A: \mu > 20$): $P(T > 2.32) \approx 0.013$

Teste t para uma amostra (Distribuição normal, variância desconhecida)

- Outro exemplo: TCB × uso de contraceptivo
 - Um pesquisador deseja saber se o uso de contraceptivos orais tem efeito sobre a temperatura corporal basal² (TCB) de mulheres na faixa de 18 a 25 anos.
 - Para tal finalidade, ele seleciona uma amostra de 20 mulheres que usam contraceptivos orais, e encontra uma temperatura média $\overline{X} = 36.7^{\circ}C$, com desvio $\hat{\sigma} = 0.5^{\circ}C$.
 - Ele deseja comparar esses dados com aqueles da população de mulheres na mesma faixa etária que não usam contraceptivos orais. A TCB média dessa população (μ₀) é assumida como 36.3°C.
 - Considerando que os dados sejam normalmente distribuídos, existe diferença estatisticamente significativa entre a TCB média de mulheres com uso de contraceptivos orais (μ) e a TCB média de mulheres da população, na mesma faixa etária?

²Temperatura do corpo medida imediatamente após a pessoa acordar, antes de qualquer atividade física

Teste t para uma amostra (Distribuição normal, variância desconhecida)

- Exemplo: TCB × uso de contraceptivo (cont)
- $H_0: \mu = \mu_0 = 36.3$ $\overline{X} = 36.7; \quad s^2 = 0.25; \quad \sqrt{s^2/20} = 0.09; \quad \nu = n-1 = 19$ $T = \frac{36.7 - 36.3}{0.09} = 4.44$ Teste bicaudal ($A: \mu \neq 36.3$): $P(|T| \geq 4.44) \approx 2.8E - 4$

Teste monocaudal ($A: \mu > 36.3$): $P(T \ge 4.44) \approx 1.4E - 4$

Teste t para duas amostras (mesma variância)

- Sejam $X_1, \ldots, X_m, Y_1, \ldots, Y_n$ amostras aleatórias independentes, $X_1, \ldots, X_m \sim N(\mu_1, \sigma^2), Y_1, \ldots, Y_n \sim N(\mu_2, \sigma^2)$ (todos os parâmetros desconhecidos).
- Denote por $S_X^2 = \sum_{i=1}^m (x_i \overline{X})$ e $S_Y^2 = \sum_{j=1}^m (y_j \overline{Y})$.
- Note que $\overline{X} \sim N(\mu_1, \sigma^2/m)$ e $\overline{Y} \sim N(\mu_1, \sigma^2/n)$.
- Como \overline{X} e \overline{Y} são independentes, segue que a diferença $\overline{X} \overline{Y}$ segue uma distribuição normal com média $\mu_1 \mu_2$ e variância $\left(\frac{1}{m} + \frac{1}{m}\right) \sigma^2$.
- Logo, quando $\mu_1 = \mu_2$, a variável

$$Z_1 = \frac{\overline{X} - \overline{Y}}{\left(\frac{1}{m} + \frac{1}{m}\right)^{1/2} \sigma}$$

segue uma distribuição normal padrão.

Teste t para duas amostras (mesma variância)

- Adicionalmente, para quaisquer valores de μ_1, μ_2, σ^2 , as variáveis aleatórias S_X^2/σ^2 e S_Y^2/σ^2 são independentes e possuem distribuições qui-quadrado com m-1 e n-1 graus de liberdade, respectivamente.
- · Logo, a variável aleatória

$$Z_2 = \frac{S_X^2 + S_Y^2}{\sigma^2}$$

possui uma distribuição de qui-quadrado com m + n - 2 graus de liberdade.

- Pelo fato de \overline{X} , \overline{Y} , S_X^2 , S_Y^2 serem independentes (DeGroot, 1986, pg 509), segue que Z_1 e Z_2 são independentes.
- Portanto, quando $\mu_1 = \mu_2$, pela da definição da distribuição t, a estatística

$$T = \frac{Z_1}{[Z_2/(m+n-2)]^{1/2}} = \frac{(m+n-2)^{1/2} (\overline{X} - \overline{Y})}{\left(\frac{1}{m} + \frac{1}{n}\right)^{1/2} \left(S_X^2 + S_Y^2\right)^{1/2}}$$

possui uma distribuição t com m+n-2 graus de liberdade.

Teste t para duas amostras (mesma variância)

- Exemplo: Um pesquisador deseja saber se a concentração de lipídios da espécie de peixe mapará é influenciada por dois diferentes métodos de medição.
- 10 amostras foram medidas pelo método 1, e 12 amostras foram medidas pelo método 2. Assume-se que as amostras são distintas (ou seja, feitas em espécimes diferentes).
- Dados são apresentados na tabela a seguir.
- Para um nível de significância de 0.05, há diferença significativa entre os dois métodos? Em outras palavras, as medidas médias são similares?

Teste t para duas amostras (mesma variância)

Valores da concentração de lipídios da espécie de peixe mapará, medidos por dois diferentes métodos.

	Soxhlet	Blight Dyer
Amostra	(g/100g)	(g/100g)
1	14.8	15.8
2	15.2	16.7
3	16.5	15.9
4	15.9	17.2
5	16.8	16.2
6	14.7	15.3
7	14.6	15.1
8	15.4	15.7
9	15.5	16.6
10	16.9	17.1
11		15.5
12		16.7

$H_0: \mu_1 = \mu_2, \ A = \mu_1 \neq \mu_2$
m = 10, n = 12
$\overline{X} = 15.6, \ \overline{Y} = 16.2$
$S_X^2 = 6.7, \ S_Y^2 = 5.5$
$s_X^2 = 0.74, \ s_Y^2 = 0.50$
T=-1.56
$pv = Pr(T \le -1.56) + Pr(T \ge 1.56) = 0.135$
⇒ diferenças não significativas

Teste t para duas amostras (variâncias distintas)

- Sejam $X_1, \ldots, X_m, Y_1, \ldots, Y_n$ amostras aleatórias independentes, $X_1, \ldots, X_m \sim N(\mu_1, \sigma_1^2), Y_1, \ldots, Y_n \sim N(\mu_2, \sigma_2^2)$ (todos os parâmetros desconhecidos).
- Problema conhecido como problema de Behrens-Fisher.
- Sejam $s_X^2 = \frac{1}{m-1} \sum_{i=1}^m (x_i \overline{X})$ e $s_Y^2 = \frac{1}{n-1} \sum_{j=1}^m (y_j \overline{Y})$ (variâncias amostrais).
- Note que $\overline{X} \sim N(\mu_1, \sigma^2/m)$ e $\overline{Y} \sim N(\mu_1, \sigma^2/n)$.
- Estatística T é dada por:

$$T = rac{\overline{X} - \overline{Y}}{\left(rac{s_X^2}{m} + rac{s_Y^2}{n}
ight)^{1/2}}.$$

Graus de liberdade estimados:

$$\hat{
u} = rac{(g_X + g_Y)^2}{g_X^2/(m-1) + g_Y^2/(n-1)}, \ \ ext{onde} \ g_X = rac{s_X^2}{m}, g_Y = rac{s_Y^2}{n}.$$

Teste t para duas amostras (variâncias distintas)

Valores da concentração de lipídios da espécie de peixe mapará, medidos por dois diferentes métodos.

	Soxhlet	Blight Dyer	
Amostra	(g/100g)	(g/100g)	
1	14.8	15.8	
2	15.2	16.7	
3	16.5	15.9	
4	15.9	17.2	
5	16.8	16.2	
6	14.7	15.3	
7	14.6	15.1	
8	15.4	15.7	
9	15.5	16.6	
10	16.9	17.1	
11		15.5	
12		16.7	

$$H_0: \mu_1 = \mu_2, \ A = \mu_1 \neq \mu_2$$

 $m = 10, \ n = 12$
 $\overline{X} = 15.6, \ \overline{Y} = 16.2$
 $s_X^2 = 0.74, \ s_Y^2 = 0.50$
 $T = -1.53, \ \hat{\nu} = 17$
 $pv = Pr(T \leq -1,53) + Pr(T \geq 1,53) = 0.144$
 \Rightarrow diferencas não significativas

Teste t para duas amostras pareadas

- Sejam X₁,..., X_n, Y₁,..., Y_n amostras aleatórias pareadas medidas observáveis sobre os mesmos indivíduos ou sobre as mesmas condições onde μ₁ e μ₂ são as médias (desconhecidas) das medidas X e Y na população.
- Considere as variáveis aleatórias $D_1 = X_1 Y_1, \dots, D_n = X_n Y_n$. Denote por \overline{D} e por s_D^2 a média e a variância amostrais de D_1, \dots, D_N , respectivamente.
- Se $D_1, \ldots, D_n \sim N(\mu_D, \sigma_D^2)$, então sob a hipótese $H_0: \mu_1 = \mu_2 \equiv H_0: \mu_D = 0$, a estatística

$$T = \frac{\overline{D} - 0}{\sqrt{s_D^2/n}}$$

segue uma distribuição t com n-1 graus de liberdade.

Teste t para duas amostras pareadas

Valores da concentração de lipídios da espécie de peixe mapará, medidos por dois diferentes métodos sobre os mesmos espécimes.

	Soxhlet	Blight Dyer	
Amostra	(g/100g)	(g/100g)	D
1	14.8	15.8	-1.0
2	15.2	16.7	-1.5
3	16.5	15.9	0.6
4	15.9	17.2	-1.3
5	16.8	16.2	0.6
6	14.7	15.3	-0.6
7	14.6	15.1	-0.5
8	15.4	15.7	-0.3
9	15.5	16.6	-1.1
10	16.9	17.1	-0.2

$$H_0: \mu_1 = \mu_2, \ A = \mu_1 \neq \mu_2$$

 $m = 10, \ n = 12$
 $\overline{X} = 15.6, \ \overline{Y} = 16.2, \ \overline{D} = -0.53$
 $s_X^2 = 0.74, \ s_Y^2 = 0.52, \ s_D^2 = 0.53$
 $T = -2.30$
 $pv = Pr(T \le -2.30) + Pr(T \ge 2.30) = 0.047$
 \Rightarrow diferenças significativas para $\alpha = 0.05$.

Distribuição qui-quadrado

Distribuição Gama:

$$f(x|\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{\beta x}, \ x > 0$$

onde $\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x}$.

 $\alpha, \beta >$ 0: parâmetros de forma e de escala.

 Distribuição qui-quadrado: para qualquer inteiro positivo k, a distribuição gama com α = k/2 e β = 1/2 é denominada a distribuição qui-quadrado (χ²) com k graus de liberdade:

$$f(x|k) = \frac{1}{\Gamma(\alpha)} x^{(k/2)-1e^{-x/2}}, \ x > 0.$$

Distribuição qui-quadrado

- Principais propriedades:
 - Se $Y \sim \chi^2(n)$, então E(Y) = n e Var(Y) = 2n.
 - Se $Y_1 \sim \chi^2(n_1)$, $Y_2 \sim \chi^2(n_2)$,..., $Y_k \sim \chi^2(n_k)$, então $Y_1 + Y_2 + ... + Y_k \sim \chi^2(n_1 + n_2 + ... + n_k)$.
 - Se $Y_1, Y_2, ..., Y_k \sim N(0,1)$, então $Y_1^2 + Y_2^2 + ... + Y_k^2 \sim \chi^2(k)$.
- Teorema: Suponha que X_1, \ldots, X_n formam uma amostra aleatória de uma distribuição normal com média μ e variância σ^2 . Então:
 - A média amostral \overline{X} e a variância amostral S_X^2/n são independentes³;
 - $\overline{X} \sim N(\mu, \sigma^2/n)$;
 - $S_X^2/\sigma^2 \sim \chi^2(n-1)$.

 $^{^3}S_X^2 = \sum_{i=1}^n (X_i - \overline{X})^2$

Distribuição qui-quadrado

Teste de qui-quadrado - Ideia Geral

- X_n = x₁, x₂,..., x_n: amostra observada
 E_n = e₁, e₂,..., e_n: valores esperados para x₁, x₂,..., x_n assumindo que a hipótese H₀ fosse verdadeira.
- Estatística qui-quadrado:

$$T = \frac{(x_1 - e_1)^2}{e_1} + \frac{(x_2 - e_2)^2}{e_2} + \ldots + \frac{(x_n - e_n)^2}{e_n}$$
$$= \sum_{i=1}^n \frac{(x_i - e_i)^2}{e_i}$$

- Sob a hipótese H₀, T segue uma distribuição χ² com k graus de liberdade.
 - Logo, uma vez calculada T, pode-se verificar se T está ou não na região crítica de rejeição sob χ^2 .
- Como obter e₁,..., e_n? Como obter k?
 - Depende de cada problema

Testes em tabelas de contingência

- Dados categóricos, categorias excludentes.
- Notação: X: matrix de frequências observadas; p: parâmetros

					_
X ₁₁	<i>X</i> ₁₂		x_{1c}	<i>X</i> ₁ •	
<i>X</i> ₂₁	<i>X</i> ₂₂		<i>X</i> _{1<i>c</i>} <i>X</i> _{2<i>c</i>}	<i>X</i> ₂ •	
:	:	:	:	:	,
<i>X</i> _{<i>r</i>1}	X_{r2}		X_{rc}	$X_{r\bullet}$	
<i>X</i> _{●1}	<i>X</i> •2		X _{●C}	n	

<i>p</i> ₁₁	<i>p</i> ₁₂		p_{1c} p_{2c}	<i>p</i> _{1•}
<i>p</i> ₂₁	p_{22}	• • •	p_{2c}	$p_{2\bullet}$
:	÷	:	:	:
p_{r1}	p_{r2}		p_{rc}	$p_{r\bullet}$
$p_{\bullet 1}$	$p_{\bullet 2}$		$p_{ullet c}$	n

$$X_{i \bullet} = \sum_{j=1}^{c} X_{ij}, X_{\bullet j} = \sum_{i=1}^{r} X_{ij};$$
idem para $p_{i \bullet}, p_{\bullet j}$

Testes de qui-quadrado em tabelas de contingência

					-
<i>X</i> ₁₁	<i>X</i> ₁₂		x_{1c}	<i>X</i> ₁ •	
<i>X</i> ₂₁	<i>X</i> ₁₂ <i>X</i> ₂₂		x_{2c}	<i>X</i> _{2•}	
:	:	:	:	:	,
<i>X</i> _{<i>r</i>1}	X_{r2}		X _{rc}	$X_{r\bullet}$	
<i>X</i> _{●1}	<i>X</i> _{•2}				

<i>p</i> ₁₁	p_{12}		p_{1c}	$p_{1\bullet}$
p_{21}	p_{22}		p_{2c}	$p_{2\bullet}$
:	:	:	:	:
p_{r1}	p_{r2}		p_{rc}	$p_{r\bullet}$
<i>p</i> _{•1}	<i>p</i> •2		$p_{\bullet c}$	n

Independência:

- Duas variáveis categóricas são consideradas simultaneamente.
- p_{ij}: Probabilidade do indivíduo pertencer à i-ésima categoria na 1a variável e à j categoria na 2a variável.
- x_{ij}: Frequência observada de indivíduos pertencentes simultaneamente à categoria i (1a variável) e j (2a variável)
- Hipótese: independência entre variáveis. $H_0: p_{ij} = p_{i \bullet} \times p_{\bullet j}$ $e_{ij} = x_{i \bullet} \times x_{\bullet j}/n$ $k = (r-1) \times (c-1)$

Referências

- DeGroot M.H. (1986). Probability and Statistics, 2nd Ed. Menlo Park, CA: Addison-Wesley
- G.B.Drummond and B.D.Tom (2011). How can we tell if frogs jump further? *Br J Pharmacol* **164**(2): 209 –212.
- Mitchell, T.M. (1997). Machine Learning. McGraw-Hill.
- POPPER, K. (1953). Science: Conjectures and Refutations.

http://poars1982.files.wordpress.com/2008/03/science-conjectures-and-refutations.pdf

Stern, J.M. (2011). Constructive Verification Empirical Induction, and Falibilist Deduction: A Threefold Contrast. *Information* **2**, 635–650.