Codebook

Daniel Escasa

2021 January 27

```
{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE)
```

Introduction

This book is an adjunct to the run_analysis.R script. It describes the data files, variables, and processes necessary to obtain the following:

- 1. a tidy dataset
- 2. training and test sets merged into one
- 3. the measurements on the mean and standard deviation for each measurement
- 4. descriptive activity names to name the activities in the data set
- 5. appropriate labels for the data set with descriptive variable names
- 6. a second, independent tidy data set with the average of each variable for each activity and each subject.

1 The data

The dataset is a zip file

(https://d396qusza40orc.cloudfront.net/getdata%2Fprojectfiles%2FUCI%20HAR%20Dataset.zip) downloaded from the University of California at Irvine (https://www.uci.edu). It extracts to a directory named UCI HAR Dataset. Below is its directory structure:

```
-rw-r--r-- 1 daniel daniel
                              80 Oct 10 2012 activity_labels.txt
-rw-r--r-- 1 daniel daniel
                            2809 Oct 15
                                         2012 features info.txt
-rw-r--r-- 1 daniel daniel 15785 Oct 11 2012 features.txt
-rw-r--r-- 1 daniel daniel 635204 Jan 25 10:37 README.html
-rw-r--r-- 1 daniel daniel
                            4582 Jan 25 10:37 README.md
-rw-r--r-- 1 daniel daniel
                            4453 Dec 10 2012 README.txt
drwx----- 3 daniel daniel
                            4096 Nov 29 2012 test
drwx----- 3 daniel daniel
                            4096 Nov 29
                                         2012 train
```

In UCI HAR Dataset/test are the following files:

```
drwx----- 2 daniel daniel 4096 Nov 29 2012 'Inertial Signals'
-rw-r--r-- 1 daniel daniel 7934 Nov 29 2012 subject_test.txt
-rw-r--r-- 1 daniel daniel 26458166 Nov 29 2012 X_test.txt
-rw-r--r-- 1 daniel daniel 5894 Nov 29 2012 y_test.txt
```

and in the Inertial Signals directory:

```
-rw-r--r-- 1 daniel daniel 6041350 Nov 29
                                           2012 body_acc_x_test.txt
-rw-r--r-- 1 daniel daniel 6041350 Nov 29
                                           2012 body acc y test.txt
-rw-r--r-- 1 daniel daniel 6041350 Nov 29
                                           2012 body_acc_z_test.txt
-rw-r--r-- 1 daniel daniel 6041350 Nov 29
                                           2012 body_gyro_x_test.txt
-rw-r--r-- 1 daniel daniel 6041350 Nov 29
                                           2012 body_gyro_y_test.txt
-rw-r--r-- 1 daniel daniel 6041350 Nov 29
                                           2012 body_gyro_z_test.txt
-rw-r--r-- 1 daniel daniel 6041350 Nov 29
                                           2012 total_acc_x_test.txt
-rw-r--r-- 1 daniel daniel 6041350 Nov 29
                                           2012 total acc y test.txt
-rw-r--r-- 1 daniel daniel 6041350 Nov 29
                                           2012 total_acc_z_test.txt
```

The structure of the UCI HAR Dataset/train directory is similar with the files named *train instead of *test.

1. The file activity labels.txt, as the name implies, is the file of labels of the activities, i.e.:

```
$ cat activity_labels.txt
1 WALKING
2 WALKING_UPSTAIRS
3 WALKING_DOWNSTAIRS
4 SITTING
5 STANDING
6 LAYING
```

- 2. The file features_info.txt describes the entries in features.txt and how they were derived. Large parts of it are highly technical and mainly of academic interest.
- 3. The file features.txt, as the name implies, contains the features of interest. The entries therein will, after some manipulations through mutate(), become the column names for the required tidy summary.txt.
- · Below are the first 15 entries:

```
۷1
                     ٧2
1
    1 tBodyAcc-mean()-X
2
    2 tBodyAcc-mean()-Y
3
    3 tBodyAcc-mean()-Z
4
    4 tBodyAcc-std()-X
5
    5 tBodyAcc-std()-Y
6
    6 tBodyAcc-std()-Z
7
    7
      tBodyAcc-mad()-X
8
    8
      tBodyAcc-mad()-Y
9
    9
      tBodyAcc-mad()-Z
10 10
      tBodyAcc-max()-X
11 11
      tBodyAcc-max()-Y
12 12
      tBodyAcc-max()-Z
13 13
      tBodyAcc-min()-X
14 14
       tBodyAcc-min()-Y
15 15
       tBodyAcc-min()-Z
```

- Further down are features that begin with f. As explained in features_info, the t and f prefixes refer
 to time and frequency domains, respectively.
- Note that the first three contain the string "mean", the next three "std". Those signify that those features will produce the means and standard deviations, respectively, of the measurements.

• Finally, the dataset consists of text files, which means that we have to use tibble::as_tibble(read.table()) and provide column names to enable us to treat the file as data frame.

2 Massaging the data files

2.1 Transforming the features file

Examining the features file reveals some work to be done:

- 1. determining the features that represent means and standard deviations.
- 2. replacing the prefixes t and f with more descriptive Time and Frequency, respectively
- 3. replacing "angle" with "Angle" for consistency in capitalization
- 4. replacing double occurrences of "Body" i.e., "BodyBody" with "Body"
- 5. separating "Acc", "Gyro", "Jerk", and "Mag" from the rest of the feature with dots i.e., ".Acc", ".Gyro", ".Jerk", and ".Mag"
- 6. replacing double occurrences of the dot ("..") with a single dot
- 7. removing a dot at the end of the feature.

This long function chain performs this

```
features <- features %>%
                           = grepl("mean\\(\\)", features$Feature)) %>%
   mutate(Is.Mean
   mutate(Is.Std
                           = grepl("std\\(\\)", features$Feature)) %>%
   mutate(Feature.Variable = make.names(features$Feature, unique = TRUE)) %>%
   mutate(Feature.Variable = gsub("^t", "Time.", Feature.Variable)) %>%
   mutate(Feature.Variable = gsub("\\.t", ".Time.", Feature.Variable)) %>%
   mutate(Feature.Variable = gsub("^f", "Frequency.", Feature.Variable)) %>%
   mutate(Feature.Variable = gsub("\\.f", ".Frequency.", Feature.Variable)) %>%
   mutate(Feature.Variable = gsub("^angle\\.", "Angle.", Feature.Variable)) %>%
   mutate(Feature.Variable = gsub("BodyBody", "Body", Feature.Variable)) %>%
   mutate(Feature.Variable = gsub("Acc", ".Acc", Feature.Variable)) %>%
   mutate(Feature.Variable = gsub("Gyro", ".Gyro", Feature.Variable)) %>%
   mutate(Feature.Variable = gsub("Jerk", ".Jerk", Feature.Variable)) %>%
   mutate(Feature.Variable = gsub("Mag", ".Mag", Feature.Variable)) %>%
   mutate(Feature.Variable = gsub("\\.\\.", ".", Feature.Variable)) %>%
   mutate(Feature.Variable = gsub("\\.\\.", ".", Feature.Variable)) %>%
   mutate(Feature.Variable = gsub("\\.$", "", Feature.Variable)) %>%
   mutate(Feature.Variable = gsub("(^|[\\.])([[:alpha:]])", "\\1\\U\\2",
                    Feature.Variable, perl=TRUE))
```

mutate() rocks!

2.2 Loading the activities

This is a simple matter of invoking tibble::as_tibble(read.table()) on activity_labels.txt, and assigning column names.

2.3 Loading the training dataset

This consists of four steps:

- 1. setting train column names to the rows of features dataset
- 2. adding subject data and activity data to the training dataset
- 3. renaming the V1 columns to Subject.Id in subject_training.txt and to Activity.Id in y_training.txt
- combining the two txt files above with cbind()

2.4 Loading the test dataset

Activity here is the same as in the previous section, applied to the test dataset.

2.5 Merge the training and test datasets

This consists of the following steps:

- 1. adding descriptive activity names from activities
- 2. selecting the mean and std deviation features only.
- 3. grouping by subject and activity.
- 4. merging the training and test datasets using rbind() into a merged dataset

2.6 Creating the tidy summary

The summary() function, applied to the merged training and test databases from the previous section, will create the required tidy_summary file.

2.7 Writing the tidy summary to a file

A simple write.table() applied to tidy_summary wraps up the project.