. . . "

Abstract

Compound of the general formula (I)

 $X(B)_{m}$ (I)

wherein

- X is an m-valent unit and
- B are identical or different and denote K-R, wherein

K is a bond or is $A^1-(A^2-A^3)_k$ -sp, wherein

 A^1 is $(CH_2)_1Y(CH_2)_2$, wherein

Y is >C=O, >NH, -O-, -S- or a bond,

t is an integer from 0 to 6 and

u is an integer from 0 to 6,

A² is -NHCO-, -CONH-, -OCONH- or SCONH-, or is -CO-,

A³ is $(CH_2)_r$, $O(CH_2)_r$, $NH(CH_2)_r$, $S(CH_2)_r$ or $-(CHQ)_r$, wherein

r is an integer from 1 to 6 and

Q is a substituted or unsubstituted alkyl or aryl group,

sp is a divalent spacer or a bond, and

k is an integer from 5 to 100, and

R is hydrogen; a ligand suitable for specific bonding to a receptor; a marker molecule; or a catalytically active group; and

m is at least 2,

with the proviso that

- (1) in the compound at least one R is not hydrogen,
- (2) there are at least two K that are not a bond, and
- (3) X, B and m are so selected that an intermolecular association of the K in liquid phase by the formation of hydrogen bonds is possible, with formation of aggregates that present on the surface a plurality of R that are not hydrogen, and
- (4) the molar mass of the fragment $X(K)_m$ is less than 20,000.