$MA1522\ Notes\ (AY24/25\ Sem1)$

Michael Yang

Chapter 4: Subspaces Associated to a Matrix

4.1 Column Space, Row Space, and Nullspace

Definition

Let **A** be an $m \times n$ matrix,

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

The **row space** of **A** is the subspace of \mathbb{R}^n spanned by the rows of **A**,

$$Row(\mathbf{A}) = span\{(a_{11} \ a_{12} \ \dots \ a_{1n}), (a_{21} \ a_{22} \ \dots \ a_{2n}), \dots, (a_{m1} \ a_{m2} \ \dots \ a_{mn})\}$$

The **column space** of **A** is the subspace of \mathbb{R}^m spanned by the columns of **A**,

$$\operatorname{Col}(\mathbf{A}) = \operatorname{span} \left\{ \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix}, \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix}, \dots, \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix} \right\}$$

Remark: May write the vectors in row space as column vectors.

Theorem

(Row operations preserve row space)

Suppose A and B are row equivalent matrices. Then Row(A) = Row(B).

Theorem

(Basis for row space)

For any matrix A, the **nonzero rows** of the **reduced row-echelon form** of A form a **basis** for the row space of A.

Theorem

(Row operations preserve linear relations between columns)

Let $\mathbf{A} = (\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_n)$ and $\mathbf{B} = (\mathbf{b}_1 \ \mathbf{b}_2 \ \dots \ \mathbf{b}_n)$ be row equivalent $m \times n$ matrices, where \mathbf{a}_i and \mathbf{b}_i is the *i*-th column of \mathbf{A} and \mathbf{B} , respectively, for $i = 1, \dots, n$. Then for any coefficients c_1, c_2, \dots, c_n ,

$$c_1\mathbf{a}_1 + c_2\mathbf{a}_2 + \dots + c_n\mathbf{a}_n = \mathbf{0}$$

if and only if

$$c_1\mathbf{b}_1 + c_2\mathbf{b}_2 + \dots + c_n\mathbf{b}_n = \mathbf{0}$$

Theorem

(Basis for column space)

Suppose \mathbf{R} is the reduced row-echelon form of a matrix \mathbf{A} . Then the columns of \mathbf{A} corresponding to the pivot columns in \mathbf{R} form a basis for the column space of \mathbf{A} .

The column space is the set of vectors \mathbf{v} such that $\mathbf{A}\mathbf{x} = \mathbf{v}$ is consistent, or the set of vectors \mathbf{v} such that $\mathbf{v} = \mathbf{A}\mathbf{u}$ for some \mathbf{u} ,

$$Col(\mathbf{A}) = {\mathbf{v} = \mathbf{A}\mathbf{u} \mid \mathbf{u} \in \mathbb{R}^k} = {\mathbf{v} \mid \mathbf{A}\mathbf{x} = \mathbf{v} \text{ is consistent}}.$$

Definition

The **nullspace** of a $m \times n$ matrix **A** is the solution space to the homogeneous system $\mathbf{A}\mathbf{x} = \mathbf{0}$ with coefficient matrix **A**. It is denoted as

$$Null(\mathbf{A}) = \{ \mathbf{v} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{v} = \mathbf{0} \}.$$

Whenever we come across a subspace, we are interested in its dimensions.

The **nullity** of **A** is the dimension of the nullspace of **A**, denoted as

$$nullity(\mathbf{A}) = dim(Null(\mathbf{A}))$$

4.2 Rank

Theorem

Let **A** be a $m \times n$ matrix and **R** its reduced row-echelon form.

$$\dim(\operatorname{Col}(\mathbf{A})) = \#$$
 of pivot columns in RREF of \mathbf{A} ,
 $= \#$ of leading entries in RREF of \mathbf{A} ,
 $= \#$ of nonzero rows in RREF of $\mathbf{A} = \dim(\operatorname{Row}(\mathbf{A}))$

Definition

Define the rank of A to be the dimension of its column space or row space

$$rank(\mathbf{A}) = dim(Col(\mathbf{A})) = dim(Row(\mathbf{A}))$$

Theorem

Rank is invariant under transpose,

$$rank(\mathbf{A}) = rank(\mathbf{A}^T)$$

Theorem

The linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ is **consistent** if and only if the rank of \mathbf{A} is equal to the rank of the augmented matrix $(\mathbf{A} \mid \mathbf{b})$,

$$rank(\mathbf{A}) = rank((\mathbf{A} \mid \mathbf{b})).$$

Lemma

Let **A** be a $m \times n$ matrix and **B** a $n \times p$ matrix. The column space of the product **AB** is a subspace of the column space of **A**,

$$\operatorname{Col}(\mathbf{AB})\subseteq\operatorname{Col}(\mathbf{A})$$

Theorem

Let **A** be a $m \times n$ matrix and **B** a $n \times p$ matrix. Then

$$rank(\mathbf{AB}) \le \min\{rank(\mathbf{A}), rank(\mathbf{B})\}$$

Theorem

If **A** and **B** are row equivalent matrices, then $rank(\mathbf{A}) = rank(\mathbf{B})$.

Theorem

(Rank-Nullity Theorem)

Let **A** be a $m \times n$ matrix. The sum of its rank and nullity is equal to the number of columns,

$$rank(\mathbf{A}) + nullity(\mathbf{A}) = n$$

Theorem

(Equivalent Statements of Invertibility)

- 12. **A** is of full rank, $rank(\mathbf{A}) = n$.
- 13. $nullity(\mathbf{A}) = 0$.

Theorem

(Full Rank Equals Number of Columns)

Suppose **A** is a $m \times n$ matrix. The following statements are equivalent.

- 1. **A** is full rank, where the rank is equal to the number of columns, $rank(\mathbf{A}) = n$.
- 2. The rows of **A** spans \mathbb{R}^n , Row(**A**)= \mathbb{R}^n .
- 3. The columns of **A** are linearly independent.
- 4. The homogeneous system $\mathbf{A}\mathbf{x} = \mathbf{0}$ has only the trivial solution, that is, $Null(\mathbf{A}) = \{\mathbf{0}\}$.
- 5. $\mathbf{A}^T \mathbf{A}$ is an invertible matrix of order n.
- 6. **A** has a left inverse.

The reduced row-echelon form of **A** is

$$\mathbf{R} = egin{pmatrix} \mathbf{I}_n \ \mathbf{0}_{(m-n) imes n} \end{pmatrix}$$

Theorem

(Full Rank Equals Number of Rows)

Suppose **A** is a $m \times n$ matrix. The following statements are equivalent.

- 1. **A** is full rank, where the rank is equal to the number of columns, $rank(\mathbf{A}) = m$.
- 2. The columns of **A** spans \mathbb{R}^m , $\operatorname{Col}(\mathbf{A}) = \mathbb{R}^m$.
- 3. The rows of **A** are linearly independent.
- 4. The linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ is consistent for every $\mathbf{b} \in \mathbb{R}^m$.
- 5. $\mathbf{A}\mathbf{A}^T$ is an invertible matrix of order m.
- 6. **A** has a right inverse.

The reduced row-echelon form of A is

$$\mathbf{R} = \begin{pmatrix} 1 & \dots & 0 & \dots & 0 & \dots & 0 & \dots \\ 0 & \dots & 1 & \dots & 0 & \dots & 0 & \dots \\ 0 & \dots & 0 & \dots & 1 & \dots & 0 & \dots \\ \vdots & \dots & \vdots & \dots & \vdots & \dots & \vdots & \dots \\ 0 & \dots & 0 & \dots & 0 & \dots & 1 & \dots \end{pmatrix}$$

Chapter 5: Orthogonality and Least Square Solution

5.1 Orthogonality

Definition

Two vectors \mathbf{u}, \mathbf{v} in \mathbb{R}^n are **orthogonal** if $\mathbf{u} \cdot \mathbf{v} = 0$.

In this case, either one of the vectors is the zero vector, or that they are **perpendicular**.

Definition

A set $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ of vectors is **orthogonal** if $\mathbf{v}_i \cdot \mathbf{v}_j = 0$ for every $i \neq j$, that is, vectors in S are **pairwise orthogonal**.

A set $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ of vectors is **orthonormal** if for all $i, j = 1, \dots, k$,

$$\mathbf{v}_i \cdot \mathbf{v}_j = \begin{cases} 0 & \text{if } i \neq j, \\ 1 & \text{if } i = j. \end{cases}$$

That is, S is **orthogonal**, and all the vectors are **unit vectors**.

Note

Orthogonal set can contain zero vector 0.

Orthonormal set cannot contain 0.

Definition

Let V be a subspace of \mathbb{R}^n . A vector $n \in \mathbb{R}^n$ is **orthogonal** to V if for every \mathbf{v} in V, $\mathbf{n} \cdot \mathbf{v} = 0$, that is, \mathbf{n} is **orthogonal** to every vector in V. We will denote it as $\mathbf{n} \perp \mathbf{V}$.

Theorem

Let V be a subspace of \mathbb{R}^n and $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ be a spanning set for V, $\operatorname{span}(S) = V$. Then a vector \mathbf{w} is **orthogonal** to V if and only if $\mathbf{w} \cdot \mathbf{u}_i = 0$ for all $i = 1, \dots, k$.

Theorem

Let V be a subspace of \mathbb{R}^n and $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ be a spanning set for V. Then \mathbf{w} is **orthogonal** to V if and only if \mathbf{w} is in the nullspace of \mathbf{A}^T , where $\mathbf{A} = (\mathbf{u}_1 \ \mathbf{u}_2 \ \dots \ \mathbf{u}_k)$;

$$\mathbf{w} \perp V \quad \Leftrightarrow \quad \mathbf{w} \in Null(\mathbf{A}^T)$$

Definition

Let V be a subspace of \mathbb{R}^n . The **orthogonal complement** of V is the set of all vectors that are **orthogonal** to V, and is denoted as

$$V^{\perp} = \{ \mathbf{w} \in \mathbb{R}^n \mid \mathbf{w} \cdot \mathbf{v} = 0 \text{ for all } \mathbf{v} \text{ in } V \}$$

6

Theorem

Let V be a subspace of \mathbb{R}^n and $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ be a spanning set for V. Let $\mathbf{A} = (\mathbf{u}_1 \quad \mathbf{u}_2 \quad \dots \quad \mathbf{u}_k)$. Then the **orthogonal complement** of V is the nullspace of \mathbf{A}^T ,

$$V^{\perp} = Null(\mathbf{A}^T)$$

Note

Let **A** be a $m \times n$ matrix. The nullspace of **A** is the orthogonal complement of the row space of **A**,

$$Row(\mathbf{A})^{\perp} = Null(\mathbf{A})$$

5.2 Orthogonal and Orthonormal Bases

Definition

Suppose $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ is an **orthogonal set** of **nonzero** vectors. Then S is linearly independent.

Theorem

Every orthonormal set is linearly independent.

Definition

Let V be a subspace of \mathbb{R}^n . A set $S \subseteq V$ is an **orthogonal basis** (resp, **orthonormal basis**) of V if S is a basis of V and S is an **orthogonal** (resp, **orthonormal**) set.

Theorem

Let $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ be an orthogonal basis for a subspace V of \mathbb{R}^n . Then for any $\mathbf{v} \in V$,

$$\mathbf{v} = \left(\frac{\mathbf{v} \cdot \mathbf{u}_1}{\parallel \mathbf{u}_1 \parallel^2}\right) \mathbf{u}_1 + \left(\frac{\mathbf{v} \cdot \mathbf{u}_2}{\parallel \mathbf{u}_2 \parallel^2}\right) \mathbf{u}_2 + \dots + \left(\frac{\mathbf{v} \cdot \mathbf{u}_k}{\parallel \mathbf{u}_k \parallel^2}\right) \mathbf{u}_k$$

If further S is an **orthonormal basis**, then

$$\mathbf{v} = (\mathbf{v} \cdot \mathbf{u}_1)\mathbf{u}_1 + (\mathbf{v} \cdot \mathbf{u}_2)\mathbf{u}_2 + \dots + (\mathbf{v} \cdot \mathbf{u}_k)\mathbf{u}_k$$

that is,
$$S$$
 orthogonal, $[\mathbf{v}]_s = \begin{pmatrix} \frac{\mathbf{v} \cdot \mathbf{u}_1}{\|\mathbf{u}_1\|^2} \\ \frac{\mathbf{v} \cdot \mathbf{u}_2}{\|\mathbf{u}_2\|^2} \\ \vdots \\ \frac{\mathbf{v} \cdot \mathbf{u}_k}{\|\mathbf{u}_k\|^2} \end{pmatrix}$, S orthonormal, $[\mathbf{v}]_S \begin{pmatrix} \mathbf{v} \cdot \mathbf{u}_1 \\ \mathbf{v} \cdot \mathbf{u}_2 \\ \vdots \\ \mathbf{v} \cdot \mathbf{u}_k \end{pmatrix}$.

Note that this only works if $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ is an orthogonal or orthonormal basis.

Note

Let V be a subspace of \mathbb{R}^n and S an **orthonormal basis** of V. For any $\mathbf{u}, \mathbf{v} \in V$,

- 1. $\mathbf{u} \cdot \mathbf{v} = [\mathbf{u}]_S \cdot [\mathbf{v}]_S$
- 2. $\|\mathbf{u} \mathbf{v}\| = \|[\mathbf{u}]_S [\mathbf{v}]_S\|$

Definition

A $n \times n$ square matrix **A** is **orthogonal** if $\mathbf{A}^T = \mathbf{A}^{-1}$, equivalently, $\mathbf{A}^T \mathbf{A} = \mathbf{I} = \mathbf{A} \mathbf{A}^T$.

Theorem

Let A be a square matrix of order n. The following statements are equivalent.

- 1. A is an orthogonal matrix.
- 2. The **columns** of **A** form an **orthonormal basis** for \mathbb{R}^n .
- 3. The rows of **A** form an **orthonormal basis** for \mathbb{R}^n .

Note

The term 'orthonormal matrix' is not used.

Question

Let W be a subspace of dimension 3. We can never find an orthonormal subset of W containing 4 vectors. (\mathbf{T})

Orthonormal set is linearly independent and if W contains a set of 4 linearly independent vectors, then $3 = \dim(W) \ge 4$, a contradiction. An orthonormal set is linearly independent. Also, if U and V are subspaces such that $U \subseteq V$, then $\dim(U) \le \dim(V)$.

Question

Which is true regarding an orthogonal set S containing 3 non-zero vectors in \mathbb{R}^3 ?

- 1. The set S must be linearly independent (\mathbf{T})
- 2. S is a basis for \mathbb{R}^3 (**T**)
- 3. Each pair of vectors in S are perpendicular to each other (\mathbf{T})
- 4. The set S must span \mathbb{R}^3 (**T**)

Nonzero orthogonal vectors are perpendicular to each other, and is thus linearly independent.

Question

An orthogonal set must be linearly independent. (T)

Orthogonal set can contain the zero vector, which makes the set linearly dependent.

Question

Let
$$S = \left\{ \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix}, \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} \right\}$$
 be a basis for a subspace V in \mathbb{R}^3 . Let $\mathbf{v} = \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix}$. What is the norm of $[\mathbf{v}]_S$, $\| [\mathbf{v}]_S \|$?

 $\sqrt{3^2+4^2}=5$. If S is an orthonormal basis for V, then for any vector $v\in V, \parallel \mathbf{v}\parallel=\parallel [\mathbf{v}]_S\parallel$.

Question

A square matrix **A** of order n is orthogonal if the columns or rows of **A** form an orthogonal basis for \mathbb{R}^n . (**F**)

The columns and/or columns need to form an orthonormal basis, not an orthogonal basis, in order for $\bf A$ to be orthogonal.

5.3 Orthogonal Projection

Theorem

Orthogonal projection theorem

Let V be a subspace of \mathbb{R}^n . Every vector w in \mathbb{R}^n can be decomposed uniquely as a sum

$$\mathbf{w} = \mathbf{w}_p + \mathbf{w}_n$$

where \mathbf{w}_n is orthogonal to V and \mathbf{w}_p is in V. Moreover, if $S = {\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k}$ is an **orthogonal basis** for V, then

$$\mathbf{w}_p = \frac{\mathbf{w} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{w} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 + \dots + \frac{\mathbf{w} \cdot \mathbf{u}_k}{\mathbf{u}_k \cdot \mathbf{u}_k} \mathbf{u}_k.$$

Definition

Define the vector \mathbf{w}_p in the theorem above as the **orthogonal projection** (or just **projection**) of \mathbf{w} onto the subspace V.

Theorem

Best Approximation Theorem

Let V be a subspace of \mathbb{R}^n and \mathbf{w} a vector in \mathbb{R}^n . Let \mathbf{w}_p be the projection of \mathbf{w} onto V. Then \mathbf{w}_p is a vector in V closest to \mathbf{w} ; that is,

$$\parallel \mathbf{w} - \mathbf{w_p} \parallel \leq \parallel \mathbf{w} - \mathbf{v} \parallel$$

for all \mathbf{v} in V.

Definition

Gram-Schmidt Orthogonalization

Let $S = {\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k}$ be a linearly independent set. Let

$$\begin{aligned} \mathbf{v}_1 &= \mathbf{u}_1 \\ \mathbf{v}_2 &= \mathbf{u}_2 - \left(\frac{\mathbf{v}_1 \cdot \mathbf{u}_2}{\parallel \mathbf{v}_1 \parallel^2}\right) \mathbf{v}_1 \\ \mathbf{v}_3 &= \mathbf{u}_3 - \left(\frac{\mathbf{v}_1 \cdot \mathbf{u}_3}{\parallel \mathbf{v}_1 \parallel^2}\right) \mathbf{v}_1 - \left(\frac{\mathbf{v}_2 \cdot \mathbf{u}_3}{\parallel \mathbf{v}_2 \parallel^2}\right) \mathbf{v}_2 \\ &\vdots \\ \mathbf{v}_3 &= \mathbf{u}_3 - \left(\frac{\mathbf{v}_1 \cdot \mathbf{u}_k}{\parallel \mathbf{v}_1 \parallel^2}\right) \mathbf{v}_1 - \left(\frac{\mathbf{v}_2 \cdot \mathbf{u}_k}{\parallel \mathbf{v}_2 \parallel^2}\right) \mathbf{v}_2 - \dots - \left(\frac{\mathbf{v}_{k-1} \cdot \mathbf{u}_k}{\parallel \mathbf{v}_{k-1} \parallel^2}\right) \mathbf{v}_{k-1} \end{aligned}$$

Then $V = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is an **orthogonal** set (of nonzero vectors), and hence,

$$\left\{\frac{\mathbf{v}_1}{\parallel \mathbf{v}_1 \parallel}, \frac{\mathbf{v}_2}{\parallel \mathbf{v}_2 \parallel}, \dots, \frac{\mathbf{v}_k}{\parallel \mathbf{v}_k \parallel}\right\}$$

is an **orthonormal set** such that $\operatorname{span}\{\mathbf{v}_1,\ldots,\mathbf{v}_k\}=\operatorname{span}\{\mathbf{u}_1,\ldots,\mathbf{u}_k\}.$

5.4 QR Factorization

Definition

Suppose now **A** is a $m \times n$ matrix with linearly independent columns, i.e. $rank(\mathbf{A}) = n$. Write

$$\mathbf{A} = (\mathbf{a}_1 \quad \mathbf{a}_2 \quad \dots \quad \mathbf{a}_n).$$

Since the set $S = \{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$ is **linearly independent** we may apply the **Gram-Schmidt process** on S to obtain an **orthonormal set** $\{\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_n\}$. Set

$$\mathbf{Q} = (\mathbf{q}_1 \quad \mathbf{q}_2 \quad \dots \quad \mathbf{q}_n).$$

Recall that for any j = 1, 2, ..., n, span $\{\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_j\} = \text{span}\{\mathbf{q}_1, \mathbf{q}_2, ..., \mathbf{q}_j\}$. In particular, \mathbf{a}_j is in span $\{\mathbf{q}_1, \mathbf{q}_2, ..., \mathbf{q}_j\}$. Thus we may write

$$\mathbf{a}_{j} = r_{1j}\mathbf{q}_{1} + r_{2j}\mathbf{q}_{2} + \dots + r_{jj}\mathbf{q}_{j} + 0\mathbf{q}_{j+1} + \dots + 0\mathbf{q}_{n} = (\mathbf{q}_{1} \quad \dots \quad \mathbf{q}_{j} \quad \dots \quad \mathbf{q}_{n}) \begin{pmatrix} \vdots \\ r_{jj} \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Explicitly,

$$\mathbf{a}_{1} = r_{11}\mathbf{q}_{1} = (\mathbf{q}_{1} \dots \mathbf{q}_{n}) \begin{pmatrix} r_{11} \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$\mathbf{a}_{2} = r_{12}\mathbf{q}_{1} + r_{22}\mathbf{q}_{2} = (\mathbf{q}_{1} \dots \mathbf{q}_{n}) \begin{pmatrix} r_{12} \\ r_{22} \\ \vdots \\ 0 \end{pmatrix}$$

$$\vdots$$

$$\mathbf{a}_{n} = r_{1n}\mathbf{q}_{1} + r_{2n}\mathbf{q}_{2} + \dots + r_{nn}\mathbf{q}_{n} = (\mathbf{q}_{1} \dots \mathbf{q}_{n}) \begin{pmatrix} r_{1n} \\ r_{2n} \\ \vdots \\ r_{nn} \end{pmatrix}$$

Thus, we may write

$$A = (\mathbf{a}_1 \quad \mathbf{a}_2 \quad \dots \quad \mathbf{a}_n)$$

$$= (\mathbf{q}_1 \quad \mathbf{q}_2 \quad \dots \quad \mathbf{q}_n) \begin{pmatrix} r_{11} & r_{12} & \dots & r_{1n} \\ 0 & r_{22} & \dots & r_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & r_{nn} \end{pmatrix}$$

$$= \mathbf{Q}\mathbf{R}$$

for some $m \times n$ matrix **Q** with **orthonormal columns**, and a **upper triangular** $n \times n$ matrix **R**.

Note

$$\mathbf{Q}^T\mathbf{Q} = \mathbf{I}_n.$$

The diagonal entries of **R** are positive, $r_{ii} > 0$ for all i = 1, 2, ..., n.

The upper triangular matrix \mathbf{R} is invertible.

Theorem

(QR Factorization)

Suppose **A** is a $m \times n$ matrix with **linearly independent** columns. Then **A** can be written as **A** = $\mathbf{Q}\mathbf{R}$ for some $m \times n$ matrix **Q** such that $\mathbf{Q}^T\mathbf{Q} = \mathbf{I}_n$ and **invertible** upper triangular matrix **R** with **positive** diagonal entries.

Definition

The decomposition given in the theorem above is called a **QR** factorization of **A**.

Algorithm to QR Factorization

Let **A** be a $m \times n$ matrix with **linearly independent** columns.

- 1. Perform Gram-Schmidt on the columns of $\mathbf{A} = (\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_n)$ to obtain an **orthonormal set** $\{\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_n\}$.
- 2. Set $\mathbf{Q} = {\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_n}.$
- 3. Compute $\mathbf{R} = \mathbf{Q}^T \mathbf{A}$.

Corollary

Suppose **A** is a $m \times n$ matrix with **linearly independent** columns, i.e. $rank(\mathbf{A}) = n$. Then $\mathbf{A}^T \mathbf{A}$ is invertible, and **A** has a **left inverse**; that is, there is a **B** such that $\mathbf{B}\mathbf{A} = \mathbf{A}_n$

5.5 Least Square Approximation

Definition

Let **A** be a $m \times n$ matrix and **b** a vector in \mathbb{R}^m . A vector **u** in \mathbb{R}^n is a **least square solution** of $\mathbf{A}\mathbf{x} = \mathbf{b}$ if for every vector $\mathbf{v} \in \mathbb{R}^n$,

$$\parallel \mathbf{A}\mathbf{u} - \mathbf{b} \parallel \leq \parallel \mathbf{A}\mathbf{v} - \mathbf{b} \parallel$$

Theorem

Let **A** be a $m \times n$ matrix and **b** a vector in \mathbb{R}^m . A vector **u** in \mathbb{R}^n is a **least square solution** to $\mathbf{A}\mathbf{x} = \mathbf{b}$ if and only if **u** is the **projection** of **b** onto the column space of **A**, Col(A).

Theorem

Let **A** be a $m \times n$ matrix and **b** a vector in \mathbb{R}^m . A vector **u** in \mathbb{R}^n is a **least square solution** to $\mathbf{A}\mathbf{x} = \mathbf{b}$ if and only if **u** is a solution to $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$.

Note

Least square solutions are not unique, but projection is unique.

Note

Let **A** be a $m \times n$ matrix and **b** a vector in \mathbb{R}^n . For any choice of **least square solution u**, that is, for any solution **u** of $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$, the projection $\mathbf{A} \mathbf{u}$ is unique.

Theorem

Let **V** be a subspace of \mathbb{R}^n and $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be a **spanning set** for V. Set $\mathbf{A} = (\mathbf{u}_1 \quad \mathbf{u}_2 \quad \dots \quad \mathbf{u}_k)$. Let **w** be a vector in \mathbb{R}^n , and **u** be a least square solution to $\mathbf{A}\mathbf{x} = \mathbf{w}$. Then $\mathbf{w}_p = \mathbf{A}\mathbf{u}$ is the **orthogonal projection** of a vector **w** onto V.

In particular, if $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is a basis for V, then the **orthogonal projection** of a vector \mathbf{w} onto V is

$$\mathbf{w}_p = \mathbf{A} (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{w}.$$

Note

For any $m \times n$ matrix \mathbf{A} and $\mathbf{b} \in \mathbb{R}^n$, $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$ is always consistent. (The rank of $\mathbf{A}^T \mathbf{A}$ is always equal to $(\mathbf{A}^T \mathbf{A} \quad \mathbf{A}^T \mathbf{b})$)

Question

Let **u** be a solution to $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$. Which of the following statement is false?

- \mathbf{u} is a least square solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ (\mathbf{T})
- Au b is orthogonal to the column space of A (T)
- **u** is the unique solution to $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$ (**F**)
- For any vector $\mathbf{v} \in \mathbb{R}^n$, $\| \mathbf{A}\mathbf{u} \mathbf{b} \| \le \| \mathbf{A}\mathbf{v} \mathbf{b} \|$ (T)
- Au is the projection of b onto the column space of A (T)

Question

If **u** is a solution to Ax = b, then **u** is a least square solution to Ax = b. (T)

Question

Suppose $rank(\mathbf{A}) = \text{number of columns of } \mathbf{A}$. Which of the statements is always true?

- $\mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\mathbf{b}$ is the unique least square solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ (F)
- $(\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$ is the unique least square solution to $\mathbf{A} \mathbf{x} = \mathbf{b}$ (T)
- $(\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$ is the unique solution to $\mathbf{A} \mathbf{x} = \mathbf{b} (\mathbf{F})$

Full rank implies $\mathbf{A}^T \mathbf{A}$ is invertible.

6 Eigenanalysis

6.1 Eigenvalues and Eigenvectors

Definition

Let **A** be a **square** matrix of order n. A real number λ is an **eigenvalue** of **A** if there is a **nonzero** vector **v** in \mathbb{R}^n , $\mathbf{v} \neq 0$, such that

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$$
.

In this case, the nonzero vector \mathbf{v} is called an **eigenvector** associated to λ . Let \mathbf{A} be a **square** matrix of order n, the **characteristic polynomial** of \mathbf{A} , denoted as $\text{char}(\mathbf{A})$, is the degree n polynomial

$$\det(x\mathbf{I} - \mathbf{A}).$$

Theorem

Let **A** be a **square** matrix of order n. $\lambda \in \mathbb{R}^n$ is an **eigenvalue** of **A** if and only if the homogeneous system $(\lambda \mathbf{I} - \mathbf{A} \mathbf{x} = \mathbf{0})$ has **nontrivial** solutions.

Theorem

Let **A** be a **square** matrix of order n. λ is an **eigenvalue** of **A** if and only if λ is a **root** of the **characteristic polynomial** $\det(x\mathbf{I} - \mathbf{A})$..

Theorem

(Equivalent statements for invertibility)

14. A square matrix **A** is invertible if and only if $\lambda = 0$ is not an eigenvalue of **A**.

Definition

Let λ be an eigenvalue of A. The algebraic multiplicity of λ is the largest integer r_{λ} such that

$$\det(x\mathbf{I} - \mathbf{A}) = (x - \lambda)^{r_{\lambda}} p(x)$$

for some polynomial p(x). Alternatively, r_{λ} is the **positive integer** such that in the above equation, λ is **not** a **root** of p(x). Suppose **A** is an order n square matrix such that $\det(x\mathbf{I} - \mathbf{A})$ can be **factorized** into **linear** factors completely.

Then we can write

$$\det(x\mathbf{I} - \mathbf{A}) = (x - \lambda_1)^{r_1}(x - \lambda_2)^{r_2} \dots (x - \lambda_k)^{r_{1k}}$$

where $r_1 + r_2 + \cdots + r_k = n$, and $\lambda, \lambda_2, \dots, \lambda_k$ are the **distinct eigenvalues** of **A**.

Then the **algebraic multiplicity** of λ_i is r_i for i = 1, ..., k.

Theorem

The eigenvalues of a triangular matrix are the diagonal entries. The algebraic multiplicity of the eigenvalue is the number of times it appears as a diagonal entry of A.

Definition

The **eigenspace** associated to an eigenvalue λ of **A** is

$$E_{\lambda} = \{ \mathbf{v} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{v} = \lambda \mathbf{v} \} = Null(\lambda \mathbf{I} - \mathbf{A}).$$

The **geometric multiplicity** of an eigenvalue λ is the **dimension** of its associated eigenspace,

$$dim(E_{\lambda}) = nullity(\lambda \mathbf{I} - \mathbf{A})$$

Note

If **A** and **B** are row equivalent order n square matrices, if λ is an eigenvalue of **A**, it is not guaranteed to be an eigenvalue of **B**. If **v** is an eigenvector of **A**, it is not guaranteed to be an eigenvector of **B**.

This is because row operations affect the determinant of the matrix, so eigenvalues and eigenvectors are not preserved.

Note

Let **A** be a $n \times n$ matrix. The characteristic polynomial of **A** is equal to the characteristic polynomial of \mathbf{A}^T . Hence **A** and \mathbf{A}^T has the same eigenvalues.

Let λ be an eigenvalue of \mathbf{A} . The geometric multiplicity of λ as an eigenvalue of \mathbf{A} is equal to its geometric multiplicity as an eigenvalue of \mathbf{A}^T .

6.2 Diagonalizaton

Definition

A square matrix \mathbf{A} of order n is **diagonalizable** if there exists an **invertible** matrix \mathbf{P} such that

$$P^{-1}AP = D$$

is a diagonal matrix, OR

$$\mathbf{A} = \mathbf{P} \mathbf{D} \mathbf{P}^{-1}$$

Definition

A $n \times n$ square matrix **A** is **diagonalizable** if and only if **A** has n **linearly independent eigenvectors**. That is, **A** is **diagonalizable** if and only if

$$\mathbf{P} = (\mathbf{u}_1 \quad \mathbf{u}_2 \quad \dots \quad \mathbf{u}_n), \text{ and } \mathbf{D} = \begin{pmatrix} \mu_1 & 0 & \dots & 0 \\ 0 & \mu_2 & \dots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & \mu_n \end{pmatrix},$$

where μ_i is the **eigenvalue** associated to **eigenvector** \mathbf{u}_i , i = 1, 2, ..., n, $\mathbf{A}\mathbf{u}_i = \mu_i\mathbf{u}_i$, and $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n\}$ is a **basis** for \mathbb{R}^n .

Theorem

(Eigenspaces are linearly independent)

Let **A** be a $n \times n$ square matrix. Let λ_1 and λ_2 be distinct eigenvalues of **A**, $\lambda_1 \neq \lambda_2$. Suppose $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ is a linearly independent subset of eigenspace associated to eigenvalue λ_1 , and $\{\mathbf{v}_1, \dots, \mathbf{v}_m\}$ is a linearly independent subset of eigenspace associated to eigenvalue λ_2 . Then the union $\{\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{v}_1, \dots, \mathbf{v}_m\}$ is linearly independent.

Theorem

(Geometric Multiplicity is no greater than Algebraic multiplicity)

The geometric multiplicity of an eigenvalue λ of a square matrix **A** is no greater than the algebraic multiplicity, that is,

$$1 \leq \dim(E_{\lambda}) \leq r_{\lambda}$$

Theorem

(Equivalent Statements for Diagonalizability)

Let A be a square matrix of order n. The following statements are equivalent.

- 1. **A** is diagonalizable.
- 2. There exists a basis $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ of \mathbb{R}^n of eigenvectors of \mathbf{A} .
- 3. The characteristic polynomial of A splits into linear factors,

$$\det(x\mathbf{I} - \mathbf{A}) = (x - \lambda_1)^{r_{\lambda_1}} (x - \lambda_2)^{r_{\lambda_2}} \dots (x - \lambda_k)^{r_{\lambda_k}}$$

where r_{λ_i} is the **algebraic multiplicity** of λ_i , for i = 1, ..., k, and the **eigenvalues** are **distinct**, $\lambda_i \neq \lambda_j$ for all $i \neq j$, and the **geometric multiplicity** is equal to the **algebraic multiplicity** for each eigenvalue λ_i ,

$$\dim(E_{\lambda_i}) = r_{\lambda_i}$$

Definition

A square matrix A of order n is not diagonalizable if either

- 1. the characteristic polynomial $\det(x\mathbf{I} \mathbf{A})$ does not split into linear factors, or
- 2. there exists an eigenvalue λ such that $\dim(E_{\lambda}) < r_{\lambda}$.

Algorithm to Diagonalization

Let \mathbf{A} be an order n square matrix.

1. Compute the characteristic polynomial. If the characteristic polynomial does not split into linear factors, A is not diagonalizable. Otherwise, write

$$\det(x\mathbf{I} - \mathbf{A}) = (x - \lambda_1)^{r_{\lambda_1}} (x - \lambda_2)^{r_{\lambda_2}} \dots (x - \lambda_k)^{r_{\lambda_k}}$$

2. For each eigenvalue λ_i of \mathbf{A} , $i=1,\ldots,k$, find a basis S_{λ_i} for the eigenspace, that is, find a basis S_{λ_i} for

the solution space of the following linear system,

$$(\lambda_i \mathbf{I} - \mathbf{A}) \mathbf{x} = \mathbf{0}$$

Compute first the eigenspace associated to eigenvalues with algebraic multiplicity greater than 1. If $\dim(E_{\lambda_i}) < r_{\lambda}$, A is not diagonalizable.

- 3. Let $S = \bigcup_{i=1}^k S_{\lambda_i}$. Then $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ is a basis for \mathbb{R}^n consisting of eigenvectors of \mathbf{A} .
- 4. Let $\mathbf{P} = (\mathbf{u}_1 \quad \mathbf{u}_2 \quad \dots \quad \mathbf{u}_n)$, and $\mathbf{D} = diag(\mu_1, \mu_2, \dots, \mu_n)$, where μ_i is the eigenvalue associated to \mathbf{u}_i , $i = 1, \dots, n$,

$$\mathbf{A}\mathbf{u}_i = \mu_i \mathbf{u}_i$$

Then

$$\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1} = (\mathbf{u}_1 \quad \mathbf{u}_2 \quad \dots \quad \mathbf{u}_n) \begin{pmatrix} \mu_1 & 0 & \dots & 0 \\ 0 & \mu_2 & \dots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & \mu_n \end{pmatrix} (\mathbf{u}_1 \quad \mathbf{u}_2 \quad \dots \quad \mathbf{u}_n)^{-1}$$

Question

Suppose A is diagonalizable. Which of the following statement(s) is/are true?

If the diagonal matrix \mathbf{D} is fixed, then the invertible matrix \mathbf{P} is fixed. (\mathbf{F})

If the invertible matrix \mathbf{P} is fixed, then the diagonal matrix \mathbf{D} is fixed. (T)

6.3 Orthogonally Diagonalizable

Definition

An order n square matrix **A** is **orthogonally diagonalizable** if

$$\mathbf{A} = \mathbf{P} \mathbf{D} \mathbf{P}^T$$

for some **orthogonal matrix** P and **diagonal** matrix D.

Theorem

(The Spectral Theorem)

Let A be a $n \times n$ square matrix. A is orthogonally diagonalizable if and only if A is symmetric.

Theorem

(Equivalent statements for orthogonally diagonalizable)

Let A be a square matrix of order n. The following statements are equivalent.

- 1. **A** is orthogonally diagonalizable.
- 2. There exists an orthonormal basis $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ of \mathbb{R}^n of **eigenvectors** of **A**.
- 3. A is a **symmetric** matrix.

A is orthogonally diagonalizable if and only if

$$\mathbf{P} = (\mathbf{u}_1 \quad \mathbf{u}_2 \quad \dots \quad \mathbf{u}_n), \text{ and } \mathbf{D} = \begin{pmatrix} \mu_1 & 0 & \dots & 0 \\ 0 & \mu_2 & \dots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & \mu_n \end{pmatrix}$$

where μ_i is the **eigenvalue** associated to **eigenvector** \mathbf{u}_i , i = 1, ..., n, $\mathbf{A}\mathbf{u}_i = \mu_i \mathbf{u}_i$, and $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n\}$ is an **orthonormal basis** for \mathbb{R}^n .

Theorem

(Eigenspaces of a symmetric matrix is orthogonal)

If **A** is a **symmetric** matrix, then the **eigenspaces** are **orthogonal** to each other. That is, suppose λ_1 and λ_2 are **distinct eigenvalues** of a **symmetric matrix A**, $\lambda_2 \neq \lambda_2$, and \mathbf{v}_i is an eigenvector associated to eigenvalue λ_i , for i = 1, 2. Then $\mathbf{v}_1 \cdot \mathbf{v}_2 = 0$.

Algorithm to Orthogonal Diagonalization

Let \mathbf{A} be an order n symmetric matrix. Since \mathbf{A} is symmetric, it is orthogonally diagonalizable.

1. Compute the characteristic polynomial

$$\det(x\mathbf{I} - \mathbf{A}) = (x - \lambda_1)^{r_{\lambda_1}} (x - \lambda_2)^{r_{\lambda_2}} \dots (x - \lambda_k)^{r_{\lambda_k}}$$

2. For each eigenvalue λ_i of \mathbf{A} , $i=1,\ldots,k$, find a basis S_{λ_i} for the eigenspace, that is, find a basis S_{λ_i} for the solution space of the following linear system,

$$(\lambda_i \mathbf{I} - \mathbf{A}) \mathbf{x} = 0.$$

- 3. Apply Gram-Schmidt process to each basis S_{λ_i} of the eigenspace E_{λ_i} to obtain an orthonormal basis T_{λ_i} . Let $T = \bigcup_{i=1}^k T_{\lambda_i}$. Then $T = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ is an orthonormal basis for \mathbb{R}^n .
- 4. Let $\mathbf{P} = (\mathbf{u}_1 \ \mathbf{u}_2 \ \dots \ \mathbf{u}_n)$, and $\mathbf{D} = diag(\mu_1, \mu_2, \dots, \mu_n)$, where μ_i is the eigenvalue associated to \mathbf{u}_i , $i = 1, \dots, n$, $\mathbf{A}\mathbf{u}_i = \mu_i \mathbf{u}_i$. Then \mathbf{P} is an orthogonal matrix, and

$$\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^T = (\mathbf{u}_1 \quad \mathbf{u}_2 \quad \dots \quad \mathbf{u}_n) \begin{pmatrix} \mu_1 & 0 & \cdots & 0 \\ 0 & \mu_2 & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & \mu_n \end{pmatrix} \begin{pmatrix} \mathbf{u}_1^T \\ \mathbf{u}_2^T \\ \vdots \\ \mathbf{u}_n^T \end{pmatrix}.$$

6.4 Application of Diagonalization: Markov Chain

Theorem

Suppose $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$. Then $\mathbf{A}^m = \mathbf{P}\mathbf{D}^m\mathbf{P}^{-1}$.

Theorem

(Powers of diagonal matrices)

Let
$$\mathbf{D} = \begin{pmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \ldots & d_n \end{pmatrix}$$
 be a diagonal matrix. Then for any positive integer m , $\mathbf{D}^m = \begin{pmatrix} d_1^m & 0 & \cdots & 0 \\ 0 & d_2^m & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \ldots & d_n^m \end{pmatrix}$.

Corollary

(Powers of diagonalizable matrices)

Suppose **A** is **diagonalizable**. Write $\mathbf{A} = \mathbf{P} \begin{pmatrix} \mu_1 & 0 & \cdots & 0 \\ 0 & \mu_2 & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & \mu_n \end{pmatrix} \mathbf{P}^{-1}$. Then for any positive integer k > 0,

$$\mathbf{A}^k = \mathbf{P} \begin{pmatrix} \mu_1^k & 0 & \cdots & 0 \\ 0 & \mu_2^k & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & \mu_n^k \end{pmatrix} \mathbf{P}^{-1}$$

Moreover, if **A** is **invertible**, then the identity above holds for any integer $k \in \mathbb{Z}$.

Definition

- 1. A vector $\mathbf{v} = (v_i)_n$ with **nonnegative** coordinates that add up to 1, $\sum_{i=1}^n v_i = 1$, is called a **probability** vector.
- 2. A stochastic matrix is a square matrix whose columns are probability vectors.
- 3. A Markov chain is a sequence of probability vectors $\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_k, \dots$, together with a stochastic matrix \mathbf{P} such that

$$\mathbf{x}_1 = \mathbf{P}\mathbf{x}_0, \quad \mathbf{x}_2 = \mathbf{P}\mathbf{x}_1, \quad \dots \quad , \quad \mathbf{x}_k = \mathbf{P}\mathbf{x}_{k-1}, \dots$$

A steady-state vector, or equilibrium vector for a stochastic matrix **P** is a probability vector that is an **eigenvector** associated to eigenvalue 1.

Theorem

Let **P** be a $n \times n$ stochastic matrix and

$$\mathbf{x}_0, \quad \mathbf{x}_1 = \mathbf{P}\mathbf{x}_0, \quad \mathbf{x}_2 = \mathbf{P}\mathbf{x}_1, \quad \dots \quad , \quad \mathbf{x}_k = \mathbf{P}\mathbf{x}_{k-1}$$

be a Markov chain for some probability vector \mathbf{x}_0 . If the Markov chain **converges**, it will converge to an **equilibrium vector**.

19

Definition

(Google PageRank Algorithm)

Suppose the set S contains n sites.

We define the **adjacency matrix** for S for be the order n square matrix $\mathbf{A} = (a_{ij})$ where

$$a_{ij} = \begin{cases} 1 & \text{if site } j \text{ has an outgoing link to site } i; \\ 0 & \text{if site } j \text{ does not have an outgoing link to site } i. \end{cases}$$

From the adjacency matrix **A**, we define the **probability transition matrix P** = (p_{ij}) by dividing each entry of **A** by the sum of the entries in the same column; that is

$$p_{ij} = \frac{a_{ij}}{\sum_{k=1}^{n} a_{kj}}$$

Definition

A stochastic matrix is **regular** if for some positive integer k > 0, the matrix power \mathbf{P}^k has positive entries,

$$\mathbf{P}^k = (a_{ij})_n, \quad a_{ij} > 0 \text{ for all } i, j = 1, \dots, n.$$

Theorem

Suppose

$$\mathbf{x}_1 = \mathbf{P}\mathbf{x}_0, \quad \mathbf{x}_2 = \mathbf{P}\mathbf{x}_1, \quad \dots \quad , \quad \mathbf{x}_k = \mathbf{P}\mathbf{x}_{k-1}, \dots$$

is a Markov chain and **P** is a **regular stochastic matrix**. Then The Markov chain **will converge** to the **unique equilibrium vector**.

Algorithm to Computing Equilibrium vector

Let **P** be a $n \times n$ stochastic matrix.

- 1. Find an eigenvector **u** associate to eigenvalue $\lambda = 1$, that is, find a nontrivial solution to the homogeneous system $(\mathbf{I} \mathbf{P})\mathbf{x} = \mathbf{0}$.
- 2. Write $\mathbf{u} = (u_i)$. Then

$$\mathbf{v} = \frac{1}{\sum_{k=1}^{n} u_k} \mathbf{u}$$

will be an equilibrium vector. Indeed, the *i*-th coordinate of \mathbf{v} is $\frac{u_i}{\sum_{k=1}^n u_k}$ and hence, the sum of the coordinates of \mathbf{v} is

$$\sum_{i=1}^{n} \frac{u_i}{\sum_{k=1}^{n} u_k} = \frac{\sum_{k=1}^{n} u_i}{\sum_{k=1}^{n} u_k} = 1$$

Alternatively, the equilibrium eigenvectors are solutions to the equation

$$\begin{pmatrix} \mathbf{P} - \mathbf{I}_n \\ 1 & 1 & \dots & 1 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$

20

where \mathbf{I}_n is the $n \times n$ identity matrix. Here $\begin{pmatrix} \mathbf{P} - \mathbf{I}_n \\ 1 & 1 & \dots & 1 \end{pmatrix}$ is the $(n+1) \times n$ matrix whose first n rows are the matrix $\mathbf{P} - \mathbf{I}_n$, and the last row has all entries 1.

6.5 Application of Orthogonal Diagonalization: Singular Value Decomposition

Theorem

(Singular value decomposition)

Let **A** be a $m \times n$ matrix. Then

$$\mathbf{A} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^T$$

where U is an order m orthogonal matrix, V an order n orthogonal matrix, and the matrix Σ has the form

$$oldsymbol{\Sigma} = egin{pmatrix} \mathbf{D} & \mathbf{0}_{r imes (n-r)} \\ \mathbf{0}_{(m-r) imes r} & \mathbf{0}_{(m-r) imes (n-r)} \end{pmatrix}$$

for some diagonal matrix **D** of order r, where $r \leq \min\{m, n\}$.

Algorithm to Singular Value Decomposition

Let **A** be a $m \times n$ matrix with $rank(\mathbf{A}) = r$.

1. The matrix $\mathbf{A}^T \mathbf{A}$ is a symmetric matrix, and is thus orthogonally diagonalizable. Find the eigenvalues of $\mathbf{A}^T \mathbf{A}$. Arrange the nonzero eigenvalues in descending order (counting multiplicity)

$$\mu_1 \ge \mu_2 \ge \dots \ge \mu_r > 0 = \mu_{r+1} = \dots = \mu_n$$

2. Let $\sigma_i = \sqrt{\mu_i}, i = 1, ..., r$,

$$\sigma_1 = \sqrt{\mu_1} \ge \sigma_2 = \sqrt{\mu_2} \ge \dots \ge \sigma_r = \sqrt{\mu_r}$$

These are the positive singular values of A. Set

$$\Sigma = \begin{pmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_r \\ & \mathbf{0}_{(m-r)\times r} & & \mathbf{0}_{(m-r)\times(n-r)} \end{pmatrix}$$

3. Proceed to find an orthonormal basis $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ of \mathbb{R}^n consisting of eigenvectors of $\mathbf{A}^T \mathbf{A}$ (section 6.3) such that \mathbf{v}_i is an eigenvector associated to μ_i . Set

$$\mathbf{V} = (\mathbf{v}_1 \quad \mathbf{v}_2 \quad \dots \quad \mathbf{v}_n).$$

4. Let $\mathbf{u}_i = \frac{1}{\sigma_i} \mathbf{A} \mathbf{v}_i$ for $i = 1, \dots, r$. Then the set $\{\mathbf{u}_1, \dots, \mathbf{u}_r\}$ is an orthonormal basis for the column space of \mathbf{A} . If r = m, set $\mathbf{U} = (\mathbf{u}_1 \quad \mathbf{u}_2 \quad \dots \quad \mathbf{u}_r)$.

Otherwise, extend $\{\mathbf{u}_1,\ldots,\mathbf{u}_r\}$ to an orthonormal basis for \mathbb{R}^m as such. Find a basis for the solution space of

$$(\mathbf{u}_1 \quad \dots \quad \mathbf{u}_r)^T \mathbf{x} = \mathbf{0}$$

Perform Gram-Schmidt process on the basis found to obtain an orthonormal set $\{\mathbf{u}_{r+1},\ldots,\mathbf{u}_m\}$. This

set is an orthonormal basis for the orthogonal complement of the column space of A.

Then $\{\mathbf{u}_1,\ldots,\mathbf{u}_r,\mathbf{u}_{r+1},\ldots,\mathbf{u}_m\}$ is an orthonormal basis for \mathbb{R}^m . Set

$$\mathbf{U} = (\mathbf{u}_1 \quad \mathbf{u}_2 \quad \dots \quad \mathbf{u}_n).$$

5. Then

$$\mathbf{A} = \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{T} = (\mathbf{u}_{1} \quad \mathbf{u}_{2} \quad \dots \quad \mathbf{u}_{n}) \begin{pmatrix} \sigma_{1} & 0 & \cdots & 0 \\ 0 & \sigma_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_{r} \\ \mathbf{0}_{(m-r)\times r} & \mathbf{0}_{(m-r)\times (n-r)} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1}^{T} \\ \mathbf{v}_{2}^{T} \\ \vdots \\ \mathbf{v}_{n}^{T} \end{pmatrix}$$

Note

$$\mathbf{\Sigma}^{T}\mathbf{\Sigma} = \begin{pmatrix} \mu_{1} & 0 & \dots & 0 & \dots & 0 \\ 0 & \mu_{2} & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \mu_{r} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & \dots & \mu_{n} \end{pmatrix}$$

where $\mu_i, i = 1, ..., n$ is the eigenvalues of $\mathbf{A}^T \mathbf{A}$; that is $\mathbf{A}^T \mathbf{A} = \mathbf{P} \mathbf{\Sigma}^T \mathbf{\Sigma} \mathbf{P}^T$, where $\mathbf{P} = (\mathbf{v}_1 \quad \mathbf{v}_2 \quad ... \quad \mathbf{v}_n)$ and $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ be an orthonormal basis for \mathbb{R}^n of eigenvectors of $\mathbf{A}^T \mathbf{A}$.

Note

 $\mathbf{A}\mathbf{v}_i \neq \mathbf{0}$ for all $i \leq r$ and $\mathbf{A}\mathbf{v}_i = \mathbf{0}$ for all i > r.

Question

 $rank(\mathbf{A}) = n$ if and only if all the singular values of **A** are positive. (?)

 $rank(\mathbf{A}) = m$ if and only if all the singular values of \mathbf{A}^T are positive. (?)

Note

If **A** is a symmetric matrix, then the singular values of **A** are the absolute value of the eigenvalues of **A**.

7 Linear Transformation

7.1 Introduction to Linear Transformation

Definition

A mapping (function) $T: \mathbb{R}^n \to \mathbb{R}^m$, is a **linear transformation** if for all vectors \mathbf{u}, \mathbf{v} in \mathbb{R}^n , and scalars α, β .

$$T(\alpha \mathbf{u} + \beta \mathbf{v}) = \alpha T(\mathbf{u}) + \beta T(\mathbf{v})$$

The Euclidean space \mathbb{R}^n is called the **domain** of the mapping, and the Euclidean space \mathbb{R}^m is called the **codomain** of the mapping.

Equivalently, a mapping $T: \mathbb{R}^n \to \mathbb{R}^m$, is a **linear transformation** if it satisfies the following properties.

1. For any vector **u** in \mathbb{R}^n and scalar α ,

$$T(\alpha \mathbf{u}) = \alpha T(\mathbf{u})$$

2. For any vectors \mathbf{u}, \mathbf{v} in \mathbb{R}^n ,

$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$

By induction, we have that for any vectors $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k$ in \mathbb{R}^n and scalars c_1, c_2, \ldots, c_k ,

$$T(c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \dots + c_k\mathbf{u}_k) = c_1T(\mathbf{u}_1) + c_2T(\mathbf{u}_2) + \dots + c_kT(\mathbf{u}_k)$$

Any $m \times n$ matrix **A** defines a linear transformation $T_{\mathbf{A}} : \mathbb{R}^n \to \mathbb{R}^m$ by multiplication,

$$T_{\mathbf{A}}(\mathbf{u}) = \mathbf{A}\mathbf{u}$$
 for any $\mathbf{u} \in \mathbb{R}^n$

A mapping $\mathbf{T}: \mathbb{R}^n \to \mathbb{R}^m$ is **not a linear transformation** if any of the following statements hold.

- 1. **T** does not map the zero vector to the zero vector, $\mathbf{T}(\mathbf{0}) \neq \mathbf{0}$.
- 2. There is a scalar α and a vector \mathbf{u} in \mathbb{R}^n such that $\mathbf{T}(\alpha \mathbf{u}) \neq \alpha \mathbf{T}(\mathbf{u})$.
- 3. There are vectors \mathbf{u} , \mathbf{v} in \mathbb{R}^n such that $\mathbf{T}(\mathbf{u} + \mathbf{v}) \neq \mathbf{T}(\mathbf{u}) + \mathbf{T}(\mathbf{v})$.

Theorem

(Standard matrix of linear transformation)

A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is a **linear transformation** if and only if there is a **unique** $m \times n$ matrix **A** such that

$$T(\mathbf{u}) = \mathbf{A}\mathbf{u}$$
 for all vectors \mathbf{u} in \mathbb{R}^n .

The matrix \mathbf{A} is given by

$$\mathbf{A} = (T(\mathbf{e}_1) \quad T(\mathbf{e}_2) \quad \dots \quad T(\mathbf{e}_n))$$

where $E = \{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ is the **standard basis** for \mathbb{R}^n . That is, the *i*-th column of **A** is $T(\mathbf{e}_1)$, for $i = 1, \dots, n$.

Definition

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. The unique $m \times n$ matrix **A** such that

$$T(\mathbf{u}) = \mathbf{A}\mathbf{u}$$
 for all \mathbf{u} in \mathbb{R}^n

is called the **standard matrix**, or **matrix representation** of *T*.

Definition

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ be a basis for \mathbb{R}^n . The **representation of** T with **respect to basis** S, denoted as $[T]_S$, is defined to be the $m \times n$ matrix

$$[T]_S = (T(\mathbf{u}_1) \quad T(\mathbf{u}_2) \quad \dots \quad T(\mathbf{u}_n))$$

We are only able to find the standard matrix or the formula of a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ if and only if we are given the image of T on a basis of \mathbb{R}^n .

Theorem

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ be a basis for \mathbb{R}^n . Then for any vector \mathbf{v} in \mathbb{R}^n ,

$$T(\mathbf{v}) = [T]_S[\mathbf{v}]_S$$

that is, the image $T(\mathbf{v})$ is the product of the representation of T with respect to basis S with the coordinates \mathbf{v} with respect to basis S.

Moreover, if **P** is the transition matrix from the standard basis E of \mathbb{R}^n to basis S, then the standard matrix **A** of T is given by

$$\mathbf{A} = [T]_S \mathbf{P}$$

7.2 Range and Kernel of Linear Transformation

Definition

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. The range of T is

$$R(T) = T(\mathbb{R}^n) = \{ \mathbf{v} \in \mathbb{R}^m \mid \mathbf{v} = T(\mathbf{u}) \text{ for some } \mathbf{u} \in \mathbb{R}^n \}$$

Theorem

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. The range of T is a subspace.

Let A be the standard matrix of T. Then the range of T is the column space of A,

$$R(T) = \{ \mathbf{v} = T(\mathbf{u}) \mid \mathbf{u} \in \mathbb{R}^n \} = \{ \mathbf{v} = \mathbf{A}\mathbf{u} \mid \mathbf{u} \in \mathbb{R}^n \} = Col(\mathbf{A})$$

Definition

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. The rank of T is the dimension of the range of T

$$rank(T) = dim(R(T))$$

Let **A** be the standard matrix of T. Then the rank of T is equal to the rank of **A**,

$$\operatorname{rank}(T) = \dim(\operatorname{R}(T)) = \dim(\operatorname{Col}(\mathbf{A})) = \operatorname{rank}(\mathbf{A})$$

Definition

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a **linear transformation**. The set of all vectors in \mathbb{R}^n that maps to the zero vector **0** by T is called the **kernel** of T, and is denoted as

$$\operatorname{Ker}(T) = \{ \mathbf{u} \in \mathbb{R}^n \mid T(\mathbf{u}) = \mathbf{0} \}$$

Theorem

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. The kernel of T is a subspace.

Let A be the standard matrix of T. Then the kernel of T is the nullspace of A,

$$\ker(T) = \{ \mathbf{u} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{u} = T(\mathbf{u}) = \mathbf{0} \} = \text{Null}(\mathbf{A}).$$

Definition

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. The nullity of T is the dimension of the kernel of T,

$$\operatorname{nullity}(T) = \dim(\operatorname{Ker}(T))$$

Let A be the standard matrix of T. Then the nullity of T is equal to the nullity of A,

$$\operatorname{nullity}(T) = \dim(\operatorname{Ker}(T)) = \dim(\operatorname{Null}(\mathbf{A})) = \operatorname{nullity}(\mathbf{A})$$

Definition

A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is **injective**, or **one-to-one** if for every vector \mathbf{v} in the range of $T, \mathbf{v} \in \mathbf{R}(T)$, there is a **unique u** in \mathbb{R}^n such that $T(\mathbf{u}) = \mathbf{v}$.

Alternatively, T is injective if whenever $T(\mathbf{u}_1) = T(\mathbf{u}_2)$, then $\mathbf{u}_1 = \mathbf{u}_2$.

Theorem

A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is injective if and only if the kernel is trivial, $\ker(T) = \{0\}$.

Let **A** be the standard matrix of T. Then T is injective if and only if the homogeneous system $\mathbf{A}\mathbf{x} = \mathbf{0}$ has only the trivial solution.

Theorem

(Full Rank Equals Number of Columns)

Suppose **A** is a $m \times n$ matrix. The following statements are equivalent.

- 1. **A** is full rank, where the rank is equal to the number of columns, $rank(\mathbf{A}) = n$.
- 2. The rows of **A** spans \mathbb{R}^n , Row(**A**)= \mathbb{R}^n .
- 3. The columns of **A** are linearly independent.
- 4. The homogeneous system $\mathbf{A}\mathbf{x} = \mathbf{0}$ has only the trivial solution, that is, $Null(\mathbf{A}) = \{\mathbf{0}\}$.
- 5. $\mathbf{A}^T \mathbf{A}$ is an invertible matrix of order n.

- 6. **A** has a left inverse.
- 7. The linear transformation $T_{\mathbf{A}}: \mathbb{R}^n \to \mathbb{R}^m$, $T_{\mathbf{A}}(\mathbf{v}) = \mathbf{A}\mathbf{v}$ defined by \mathbf{A} is injective.

Note

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. If T is injective, then necessarily $n \leq m$.

Definition

A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is surjective or onto if for every \mathbf{v} in the codomain \mathbb{R}^m , there exists a \mathbf{u} in the domain \mathbb{R}^n such that $T(\mathbf{u}) = \mathbf{v}$. Or equivalently, T is surjective if the range is the codomain, $R(T) = \mathbb{R}^m$.

Let **A** be the standard matrix of T. Then T is surjective if and only if the column space of **A** is equal to \mathbb{R}^m . This means that the rank of **A** is equal to the number of rows.

Theorem

(Full Rank Equals Number of Rows)

Suppose **A** is a $m \times n$ matrix. The following statements are equivalent.

- 1. **A** is full rank, where the rank is equal to the number of columns, $rank(\mathbf{A}) = m$.
- 2. The columns of **A** spans \mathbb{R}^m , $\operatorname{Col}(\mathbf{A}) = \mathbb{R}^m$.
- 3. The rows of **A** are linearly independent.
- 4. The linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ is consistent for every $\mathbf{b} \in \mathbb{R}^m$.
- 5. $\mathbf{A}\mathbf{A}^T$ is an invertible matrix of order m.
- 6. A has a right inverse.
- 7. The linear transformation $T_{\mathbf{A}}: \mathbb{R}^n \to \mathbb{R}^m$, $T_{\mathbf{A}}(\mathbf{v}) = \mathbf{A}\mathbf{v}$ defined by \mathbf{A} is surjective.

Note

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. If T is surjective, then necessarily $n \geq m$.

Theorem

Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then T is both injective and surjective if and only if n = m and the matrix representation of T is invertible.

Theorem

(Equivalent statements for invertibility)

15. The linear transformation $T_{\mathbf{A}}: \mathbb{R}^n \to \mathbb{R}^m$, $T_{\mathbf{A}}(\mathbf{v}) = \mathbf{A}\mathbf{v}$ defined by \mathbf{A} is injective.

15. The linear transformation $T_{\mathbf{A}}: \mathbb{R}^n \to \mathbb{R}^m$, $T_{\mathbf{A}}(\mathbf{v}) = \mathbf{A}\mathbf{v}$ defined by \mathbf{A} is surjective.

Note

A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is **bijective** if it is both **injective** and **surjective**. $T: \mathbb{R}^n \to \mathbb{R}^m$ is bijective if and only if there is a linear transformation $S: \mathbb{R}^n \to \mathbb{R}^n$ such that

$$T(S(\mathbf{x})) = \mathbf{x}$$
 and $S(T(\mathbf{x})) = \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$