1 Matrices

Définition d'une matrice

Une **matrice** est un tableau rectangulaire de nombres. Ces nombres sont rangés horizontalement en lignes et verticalement en colonnes.

Si la matrice possède m lignes et n colonnes, on dit qu'elle est de **type** $m \times n$. De manière générale, une matrice de type $m \times n$ s'écrit :

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \quad \text{ou bien} \quad A = (a_{ij}) \text{ avec } 1 \leqslant i \leqslant m, 1 \leqslant j \leqslant n$$

Les nombres réels a_{ij} sont les **termes** ou les **coefficients** de la matrice.

L'ensemble des matrices de type $m \times n$ se note $M_{m,n}(\mathbb{R})$.

1.1 Soit la matrice
$$A = \begin{pmatrix} 2 & -1 & 0 \\ 0 & 3 & 4 \\ \frac{1}{5} & 1 & 8 \\ 9 & 0 & -\frac{1}{2} \end{pmatrix}$$
.

- 1) Préciser le type de la matrice A.
- 2) Que valent les termes a_{21} , a_{43} et a_{34} ?
- 3) Quels sont les coefficients nuls?

1.2 Écrire la matrice
$$A = (a_{ij})$$
 où $a_{ij} = (-1)^{i+j} 2^i j$ avec $1 \le i, j \le 3$.

Matrices particulières

Une matrice de type $1 \times n$ est appelée matrice ligne.

Une matrice ligne s'écrit $(a_{11} \ a_{12} \ a_{13} \ \dots \ a_{1n})$.

Une matrice de type $m \times 1$ est appelée matrice colonne.

Une matrice colonne s'écrit $\begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \\ \vdots \\ a_{m1} \end{pmatrix}$.

Une matrice de type $n \times n$ est appelée matrice carrée d'ordre n.

Une matrice carrée s'écrit
$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{pmatrix}.$$
L'ensemble des matrices carrées d'ordre n se note M .

L'ensemble des matrices carrées d'ordre n se note $M_n(\mathbb{R})$.

Une matrice carrée A d'ordre n est appelée matrice triangulaire supérieure si $a_{ij} = 0$ pour tout $1 \le i, j \le n$ avec i > j.

Une matrice triangulaire supérieure s'écrit $\begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & \dots & a_{2n} \\ 0 & 0 & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{nn} \end{pmatrix}.$

Une matrice carrée A d'ordre n est appelée matrice triangulaire inférieure si $a_{ij} = 0$ pour tout $1 \le i, j \le n$ avec i < j.

Une matrice qui est à la fois triangulaire supérieure et inférieure est dite matrice diagonale.

Une matrice diagonale s'écrit $\begin{pmatrix} a_{11} & 0 & 0 & \dots & 0 \\ 0 & a_{22} & 0 & \dots & 0 \\ 0 & 0 & a_{33} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{nn} \end{pmatrix}.$

La diagonale de A est l'ensemble des élém

Une matrice diagonale est appelée matrice scalaire si tous les termes de sa diagonale sont égaux.

Une matrice scalaire s'écrit $\begin{pmatrix} \lambda & 0 & 0 & \dots & 0 \\ 0 & \lambda & 0 & \dots & 0 \\ 0 & 0 & \lambda & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \lambda \end{pmatrix}.$

La matrice scalaire d'ordre n qui n'a que des 1 sur la diagonale est appelée matrice identité et se note I_n .

En d'autres termes,
$$I_n = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$
.

1.3 Comment se nomment les matrices suivantes?

1)
$$\begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$
 2) $\begin{pmatrix} -1 & 0 & 0 \\ 5 & 2 & 0 \\ -\frac{1}{3} & 17 & 3 \end{pmatrix}$ 3) $\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$ 4) $\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$ 5) $\begin{pmatrix} 10 \\ -5 \\ 0 \\ 3 \\ 17 \end{pmatrix}$ 6) $\begin{pmatrix} 1 & 3 & -8 & 10 & 5 \\ 0 & 2 & 7 & -4 & 13 \\ 0 & 0 & -5 & 10 & -9 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 3 \end{pmatrix}$ 7) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ 8) $(5 & 0 & -3 & 18 & 14)$ 9) $\begin{pmatrix} 7 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -5 \end{pmatrix}$

Opérations sur les matrices

Addition matricielle

Si A = (a_{ij}) et B = (b_{ij}) sont deux matrices de type $m \times n$, leur somme C = A + B est la matrice de type $m \times n$ définie par $c_{ij} = a_{ij} + b_{ij}$ avec $1 \le i \le m, 1 \le j \le n$.

1.4 Calculer:

1)
$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \end{pmatrix} + \begin{pmatrix} 2 & 3 & 0 \\ -1 & 2 & 5 \end{pmatrix}$$

2) $\begin{pmatrix} 1 & 2 & -1 & 0 \\ 4 & 0 & 2 & 1 \\ 2 & -5 & 1 & 2 \end{pmatrix} + \begin{pmatrix} 3 & -4 & 1 & 2 \\ 1 & 5 & 0 & 3 \\ 2 & -2 & 3 & -1 \end{pmatrix}$

1.5 Démontrer les propriétés de l'addition matricielle :

- 1) commutativité : A + B = B + A
- 2) associativité : (A + B) + C = A + (B + C)
- 3) existence d'un élément neutre : A + 0 = A (0 est la matrice dont tous les termes sont nuls.)
- 4) existence d'un élément inverse : A + (-A) = 0 (-A s'obtient en opposant les termes de A.)

Multiplication d'une matrice par un scalaire

Si $A = (a_{ij})$ est une matrice de type $m \times n$ et λ un nombre réel, leur produit $C = \lambda A$ est la matrice de type $m \times n$ définie par $c_{ij} = \lambda a_{ij}$ avec $1 \leqslant i \leqslant m, 1 \leqslant j \leqslant n$.

1.6 Calculer:

1)
$$3\begin{pmatrix} 1 & 2 & -1 & 0 \\ 4 & 0 & 2 & 1 \\ 2 & -5 & 1 & 2 \end{pmatrix}$$
 2) $-\begin{pmatrix} 1 & 2 & -1 & 0 \\ 4 & 0 & 2 & 1 \\ 2 & -5 & 1 & 2 \end{pmatrix}$

1.7 Démontrer les propriétés de la multiplication d'une matrice par un scalaire :

1)
$$\lambda (A + B) = \lambda A + \lambda B$$

2)
$$(\lambda + \mu) A = \lambda A + \mu A$$

3)
$$(\lambda \mu) A = \lambda (\mu A)$$

4)
$$1 A = A$$

5)
$$0 A = 0$$

6)
$$\lambda 0 = 0$$

 $Multiplication\ matricielle$

Si A = (a_{ij}) est une matrice de type $m \times n$ et B = (b_{ij}) est une matrice de type $n \times p$, leur produit C = AB est la matrice de type $m \times p$ définie par $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$ avec $1 \leq i \leq m, 1 \leq j \leq p$.

Exemple
$$\begin{pmatrix} 3 & 2 \\ 4 & 5 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 0 & -3 \\ 4 & 0 & -1 & 5 \end{pmatrix} = \begin{pmatrix} 11 & 6 & -2 & 1 \\ 24 & 8 & -5 & 13 \\ 4 & 0 & -1 & 5 \end{pmatrix}$$

1.8 Calculer, quand cela est possible, les produits AB et BA suivants :

1)
$$A = \begin{pmatrix} 3 & 2 \\ 1 & 4 \end{pmatrix}$$
 $B = \begin{pmatrix} 0 & 4 & 2 \\ 1 & 1 & 3 \end{pmatrix}$ 2) $A = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $B = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$

3)
$$A = \begin{pmatrix} 2 & 0 & -3 \\ 0 & 0 & 0 \\ -2 & 0 & 3 \end{pmatrix}$$
 $B = \begin{pmatrix} 0 & 3 & 0 \\ 5 & 0 & 7 \\ 0 & 2 & 0 \end{pmatrix}$

4)
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix}$$
 $B = \begin{pmatrix} 1 & 1 & -1 \\ 1 & -2 & 1 \\ -1 & 1 & 0 \end{pmatrix}$

- Soient A une matrice de type 3×7 , B une matrice de type 7×3 et C une matrice de type 7×7 . De quel type sont les matrices suivantes :
 - 1) (AB) C
- 2) B (AC)
- 3) C(BA)
- 4) (AC) B
- 1.10 Démontrer les propriétés de la multiplication matricielle :
 - 1) associativité : (AB) C = A (BC)
 - 2) existence d'un élément neutre : AI = IA = A (I est la matrice identité)
 - 3) distributivité à droite : A(B+C) = AB + AC
 - 4) distributivité à gauche : (A + B) C = AC + BC
 - 5) $A(\lambda B) = (\lambda A) B = \lambda (AB)$
- **1.11** On donne les matrices $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 3 & 2 \\ 0 & 1 & 2 \\ -1 & 4 & 1 \end{pmatrix}$ et $C = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

Calculer:

1) AB

2) AC

3) AB + AC

- 4) B + C
- 5) A(B + C)
- 6) A + B

- 7) $(A + B)^2$
- 8) A^{2}

9) B^2

- 10) $A^2 + 2AB + B^2$
- 11) $A^2 B^2$
- 12) (A + B) (A B)

13) C^2

14) C^3

- 15) C^n où $n \in \mathbb{N}$
- **1.12** Expliquer pourquoi $(A \pm B)^2 \neq A^2 \pm 2 AB + B^2$ et $A^2 B^2 \neq (A + B) (A B)$.
- 1.13 Soient α , β , γ et δ des nombres réels, $A = \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}$ et $B = \begin{pmatrix} \gamma & \delta \\ -\delta & \gamma \end{pmatrix}$. Vérifier que AB = BA.
- **1.14** Soit $A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$. Déterminer toutes les matrices B telles que AB = BA.
- **1.15** On donne $A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. Trouver une matrice B telle que $AB \neq 0$ et BA = 0.

Transposée d'une matrice

Si $A = (a_{ij})$ est une matrice de type $m \times n$, sa **transposée** est la matrice $C = {}^{t}A$ de type $n \times m$ définie par $c_{ij} = a_{ji}$ avec $1 \le i \le n, 1 \le j \le m$. En d'autres termes, la matrice transposée ${}^{t}A$ s'obtient en échangeant les lignes et les colonnes de la matrice A.

1.16 Écrire la transposée des matrices suivantes :

Une matrice qui est égale à sa transposée est dite symétrique.

1.17 On considère les matrices $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix}$ et $B = \begin{pmatrix} 2 & 0 \\ -1 & 1 \\ 2 & 1 \end{pmatrix}$. Calculer :

5)
$${}^{t}A + {}^{t}B$$

1.18 Démontrer les propriétés de la transposée :

$$1) t(A + B) = {}^{t}A + {}^{t}B$$

2)
$$^{t}(\lambda A) = \lambda ^{t}A$$

3)
$$^{t}(AB) = {}^{t}B {}^{t}A$$

Inverse d'une matrice

Une matrice A carrée d'ordre n est dite **inversible** s'il existe une matrice X carrée d'ordre n telle que $AX = XA = I_n$.

La matrice X est appelée matrice inverse de A.

1.19 Montrer que $\begin{pmatrix} -1 & 2 \\ 2 & -3 \end{pmatrix}$ est l'inverse de $A = \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix}$.

1.20 Montrer que si A est inversible, alors son inverse est unique. On la note A^{-1} .

Indication: montrer que si X et Y sont deux matrices inverses de A, alors X = Y.

1.21 Montrer que si A et B sont inversibles, alors $(AB)^{-1} = B^{-1}A^{-1}$.

1.22 Soient
$$A = \begin{pmatrix} 1 & -3 & 2 \\ 2 & 1 & -3 \\ 4 & -3 & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 4 & 1 & 0 \\ 2 & 1 & 1 & 1 \\ 1 & -2 & 1 & 2 \end{pmatrix}$ et $C = \begin{pmatrix} 2 & 1 & -1 & -2 \\ 3 & -2 & -1 & -1 \\ 2 & -5 & -1 & 0 \end{pmatrix}$.

- 1) Vérifier que AB = AC.
- 2) Pourquoi ne peut-on pas simplifier par A cette égalité (B \neq C)?

Réponses

1.1 1)
$$4 \times 3$$

2)
$$a_{21} = 0$$
 $a_{43} = -\frac{1}{2}$ 3) $a_{13} = a_{21} = a_{42} = 0$
 a_{34} n'existe pas

3)
$$a_{13} = a_{21} = a_{42} = 0$$

1.2
$$A = \begin{pmatrix} 2 & -4 & 6 \\ -4 & 8 & -12 \\ 8 & -16 & 24 \end{pmatrix}$$

- 1.3 1) matrice scalaire
- 2) matrice triangulaire inférieure
- 3) matrice carrée

- 4) matrice diagonale
- 5) matrice colonne
- 6) matrice triangulaire supérieure

- 7) matrice idendité I₂
- 8) matrice ligne
- 9) matrice diagonale

1.4 1)
$$\begin{pmatrix} 3 & 5 & 3 \\ -1 & 3 & 9 \end{pmatrix}$$

$$2) \begin{pmatrix} 4 & -2 & 0 & 2 \\ 5 & 5 & 2 & 4 \\ 4 & -7 & 4 & 1 \end{pmatrix}$$

$$1.6 \qquad 1) \begin{pmatrix} 3 & 6 & -3 & 0 \\ 12 & 0 & 6 & 3 \\ 6 & -15 & 3 & 6 \end{pmatrix}$$

1.8 1)
$$AB = \begin{pmatrix} 2 & 14 & 12 \\ 4 & 8 & 14 \end{pmatrix}$$

BA n'existe pas

2)
$$AB = (32)$$
 $BA = \begin{pmatrix} 4 & 8 & 12 \\ 5 & 10 & 15 \\ 6 & 12 & 18 \end{pmatrix}$

3)
$$AB = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 $BA = \begin{pmatrix} 0 & 0 & 0 \\ -4 & 0 & 6 \\ 0 & 0 & 0 \end{pmatrix}$

4)
$$AB = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 $BA = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

- 1.9 1) impossible
- 2) 7×7
- 3) 7×7
- 4) 3×3

1.11 1)
$$\begin{pmatrix} -1 & 17 & 9 \\ 3 & 11 & 7 \\ -4 & 6 & 2 \end{pmatrix}$$
 2) $\begin{pmatrix} 1 & 3 & 6 \\ 2 & 3 & 4 \\ -1 & 0 & 2 \end{pmatrix}$ 3) $\begin{pmatrix} 0 & 20 & 15 \\ 5 & 14 & 11 \\ -5 & 6 & 4 \end{pmatrix}$

$$\begin{array}{cccc}
3) & \begin{pmatrix}
0 & 20 & 15 \\
5 & 14 & 11 \\
-5 & 6 & 4
\end{pmatrix}$$

$$4) \begin{pmatrix} 3 & 4 & 3 \\ 0 & 2 & 3 \\ -1 & 4 & 2 \end{pmatrix}$$

$$4) \begin{pmatrix} 3 & 4 & 3 \\ 0 & 2 & 3 \\ -1 & 4 & 2 \end{pmatrix} \qquad 5) \begin{pmatrix} 0 & 20 & 15 \\ 5 & 14 & 11 \\ -5 & 6 & 4 \end{pmatrix} \qquad 6) \begin{pmatrix} 3 & 5 & 5 \\ 2 & 2 & 3 \\ -2 & 5 & 3 \end{pmatrix}$$

$$\begin{array}{cccc}
 & 6 & 5 & 5 \\
 & 2 & 2 & 3 \\
 & -2 & 5 & 3
\end{array}$$

$$7) \begin{pmatrix} 9 & 50 & 45 \\ 4 & 29 & 25 \\ -2 & 15 & 14 \end{pmatrix}$$

$$8) \begin{pmatrix} 2 & 7 & 11 \\ 3 & 6 & 9 \\ -1 & 1 & 2 \end{pmatrix}$$

7)
$$\begin{pmatrix} 9 & 50 & 45 \\ 4 & 29 & 25 \\ -2 & 15 & 14 \end{pmatrix}$$
 8) $\begin{pmatrix} 2 & 7 & 11 \\ 3 & 6 & 9 \\ -1 & 1 & 2 \end{pmatrix}$ 9) $\begin{pmatrix} 2 & 17 & 12 \\ -2 & 9 & 4 \\ -3 & 5 & 7 \end{pmatrix}$

$$10) \begin{pmatrix} 2 & 58 & 41 \\ 7 & 37 & 27 \\ -12 & 18 & 13 \end{pmatrix}$$

$$10) \begin{pmatrix} 2 & 58 & 41 \\ 7 & 37 & 27 \\ -12 & 18 & 13 \end{pmatrix} \qquad 11) \begin{pmatrix} 0 & -10 & -1 \\ 5 & -3 & 5 \\ 2 & -4 & -5 \end{pmatrix} \qquad 12) \begin{pmatrix} 7 & -18 & 3 \\ 2 & -11 & 3 \\ 12 & -7 & -4 \end{pmatrix}$$

13)
$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

13)
$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$
 14) $\begin{pmatrix} 1 & 3 & 6 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}$ 15) $\begin{pmatrix} 1 & n & \frac{n(n+1)}{2} \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}$

1.14 B =
$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$
 avec $a, b \in \mathbb{R}$

1.15 B =
$$\begin{pmatrix} a & 0 \\ c & 0 \end{pmatrix}$$
 avec $a \in \mathbb{R}^*$ et $c \in \mathbb{R}$.

1.16 1)
$$\begin{pmatrix} 1 & 3 & 0 \\ 2 & -1 & 2 \\ 3 & 5 & 1 \\ -2 & 4 & 7 \end{pmatrix}$$
 2)
$$\begin{pmatrix} 1 & -5 & 3 \\ -5 & 2 & 7 \\ 3 & 7 & 1 \end{pmatrix}$$

$$2) \ \begin{pmatrix} 1 & -5 & 3 \\ -5 & 2 & 7 \\ 3 & 7 & 1 \end{pmatrix}$$

1.17 1)
$$\begin{pmatrix} 6 & 5 \\ 5 & 2 \\ 1 & 3 \end{pmatrix}$$
 2) $\begin{pmatrix} -2 & 1 \\ 5 & 2 \\ 9 & 3 \end{pmatrix}$ 3) $\begin{pmatrix} 6 & 5 & 1 \\ 5 & 2 & 3 \end{pmatrix}$

$$2) \begin{pmatrix} -2 & 1 \\ 5 & 2 \\ 9 & 3 \end{pmatrix}$$

$$3) \begin{pmatrix} 6 & 5 & 1 \\ 5 & 2 & 3 \end{pmatrix}$$

$$4) \begin{pmatrix} 6 & 5 & 1 \\ 5 & 2 & 3 \end{pmatrix}$$

1.22 1)
$$AB = AC = \begin{pmatrix} -3 & -3 & 0 & 1 \\ 1 & 15 & 0 & -5 \\ -3 & 15 & 0 & -5 \end{pmatrix}$$