Let $X_1, X_2, ..., X_n$ be a random sample from the normal distribution with mean μ and variance $\sigma^2 = 2$.

$$H_0: \mu \leq 3$$
 $H_1: \mu > 3$

Idea: Look at \overline{X} and reject H_0 in favor of H_1 if \overline{X} is "large".

i.e. Look at \overline{X} and reject H_0 in favor of H_1 if $\overline{X} > c$ for some value c.

Let $X_1, X_2, ..., X_n$ be a random sample from the normal distribution with mean μ and variance $\sigma^2 = 2$.

Your Decision

fail to reject

fail to reject

Type I or Type II error which is worse?

- This totally depends on how you set up your hypotheses and what is at stake.
- The null hypothesis is assumed to be true and the alternate hypothesis is what you are out to show.

You are a potato chip manufacturer and you want to ensure that the mean amount in 15 ounce bags is at least 15 ounces.

$$H_0: \mu \leq 15$$

$$H_1: \mu > 15$$

You are an angry consumer group and you want to show that the chip company is cheating its customers.

$$H_0: \mu \ge 15$$

$$H_1: \mu < 15$$

You are a potato chip manufacturer and you want to ensure that the mean amount in 15 ounce bags is at least 15 ounces.

$$H_0: \mu \leq 15$$
 $H_1: \mu > 15$

Type I error:

The true mean is ≤ 15 but you concluded it was > 15. You are going to save some money because you won't be adding chips but you are risking a lawsuit!

You are a potato chip manufacturer and you want to ensure that the mean amount in 15 ounce bags is at least 15 ounces.

$$H_0: \mu \leq 15$$
 $H_1: \mu > 15$

Type II error:

The true mean is > 15 but you concluded it was ≤ 15 . You are going to be spending money increasing the amount of chips when you didn't have to.

random sample

sample mean X

decision (potentially with error)

Question:

What is the probability that we will make a Type I or Type II error?

random sample

sample mean X

decision (potentially with error)

Related Question:

Can we control this error?