Пример: сфера

Пример

На сфере S^{n-1} можно задать дифференциальную структуру разными естественными атласами, например

- 2*n* ортогональных проекций;
- две стереографические (центральные) проекции

Проверять гладкость отображений перехода будет проще, если заметить, что карты гладко продолжимы на открытые области в \mathbb{R}^n .

На самом деле проверять определение вручную не нужно, так как сфера — гладкое подмногообразие в \mathbb{R}^n (об этом позже)

Определение гладкого отображения

Пусть M^m , N^n — гладкие многообразия, $f: M \to N$ — непрерывное отображение.

Определение

Пусть $\varphi \colon U \to \mathbb{R}^m$ и $\varphi \colon V \to \mathbb{R}^n$ — карты в M и N.

Координатное представление f в картах φ и ψ — это отображение

$$f_{\varphi,\psi} = \psi \circ f \circ \varphi^{-1} : \varphi(f^{-1}(V)) \to \mathbb{R}^n$$

Определение

Отображение f гладкое, если все его координатные представления гладкие (в том смысле, который определён для \mathbb{R}^n).

Пусть M^m , N^n — гладкие многообразия, $f: M \to N$ — непрерывное отображение.

Определение

 $f\colon M o N$ гладкое в точке $x \in M$, если существуют такие карты $\varphi\colon U o \mathbb{R}^m$ и $\psi\colon V o \mathbb{R}^n$, что $x \in U$, $f(x) \in V$, и координатное представление $f_{\varphi,\psi}$ гладкое в окрестности точки $\varphi(x)$.

Пусть M^m , N^n — гладкие многообразия, $f: M \to N$ — непрерывное отображение.

Определение

 $f\colon M o N$ гладкое в точке $x\in M$, если существуют такие карты $\varphi\colon U o \mathbb{R}^m$ и $\psi\colon V o \mathbb{R}^n$, что $x\in U$, $f(x)\in V$, и координатное представление $f_{\varphi,\psi}$ гладкое в окрестности точки $\varphi(x)$.

Лемма (Свойства гладких отображений)

① Гладкость в точке не зависит от выбора карт φ и ψ , содержащих x и f(x).

Пусть M^m , N^n — гладкие многообразия, $f: M \to N$ — непрерывное отображение.

Определение

 $f\colon M o N$ гладкое в точке $x \in M$, если существуют такие карты $\varphi\colon U o \mathbb{R}^m$ и $\psi\colon V o \mathbb{R}^n$, что $x \in U$, $f(x) \in V$, и координатное представление $f_{\varphi,\psi}$ гладкое в окрестности точки $\varphi(x)$.

- Гладкость в точке не зависит от выбора карт φ и ψ , содержащих x и f(x).

Пусть M^m , N^n — гладкие многообразия, $f: M \to N$ — непрерывное отображение.

Определение

 $f\colon M o N$ гладкое в точке $x\in M$, если существуют такие карты $\varphi\colon U o \mathbb{R}^m$ и $\psi\colon V o \mathbb{R}^n$, что $x\in U$, $f(x)\in V$, и координатное представление $f_{\varphi,\psi}$ гладкое в окрестности точки $\varphi(x)$.

- Гладкость в точке не зависит от выбора карт φ и ψ , содержащих x и f(x).
- В определении гладкости можно рассматривать не все карты, а только карты из фиксированных атласов М и N.

Пусть M^m , N^n — гладкие многообразия, $f: M \to N$ — непрерывное отображение.

Определение

f: M o N гладкое в точке $x \in M$, если существуют такие карты $\varphi \colon U o \mathbb{R}^m$ и $\psi \colon V o \mathbb{R}^n$, что $x \in U$, $f(x) \in V$, и координатное представление $f_{\varphi,\psi}$ гладкое в окрестности точки $\varphi(x)$.

- Гладкость в точке не зависит от выбора карт φ и ψ , содержащих x и f(x).
- f гладкое оно гладкое в каждой точке.
- 3 В определении гладкости можно рассматривать не все карты, а только карты из фиксированных атласов М и N.
- Для открытых множеств $M \subset \mathbb{R}^m$ и $N \subset \mathbb{R}^n$ определение гладкости эквивалентно обычному (которое для \mathbb{R}^n).

Пусть M^m , N^n — гладкие многообразия, $f: M \to N$ — непрерывное отображение.

Определение

f:M o N гладкое в точке $x\in M$, если существуют такие карты $\varphi\colon U o \mathbb{R}^m$ и $\psi\colon V o \mathbb{R}^n$, что $x\in U$, $f(x)\in V$, и координатное представление $f_{\varphi,\psi}$ гладкое в окрестности точки $\varphi(x)$.

- Гладкость в точке не зависит от выбора карт φ и ψ , содержащих x и f(x).
- В определении гладкости можно рассматривать не все карты, а только карты из фиксированных атласов М и N.
- **4** Для открытых множеств $M \subset \mathbb{R}^m$ и $N \subset \mathbb{R}^n$ определение гладкости эквивалентно обычному (которое для \mathbb{R}^n).
- Тожественное отображение гладкое.

Пусть M^m , N^n — гладкие многообразия, $f: M \to N$ — непрерывное отображение.

Определение

f:M o N гладкое в точке $x\in M$, если существуют такие карты $\varphi\colon U o \mathbb{R}^m$ и $\psi\colon V o \mathbb{R}^n$, что $x\in U$, $f(x)\in V$, и координатное представление $f_{\varphi,\psi}$ гладкое в окрестности точки $\varphi(x)$.

- Гладкость в точке не зависит от выбора карт φ и ψ , содержащих x и f(x).
- f гладкое оно гладкое в каждой точке.
- В определении гладкости можно рассматривать не все карты, а только карты из фиксированных атласов М и N.
- **4** Для открытых множеств $M \subset \mathbb{R}^m$ и $N \subset \mathbb{R}^n$ определение гладкости эквивалентно обычному (которое для \mathbb{R}^n).
- **5** Тожественное отображение гладкое.
- Композиция гладких отображений гладкое.

Определение

Диффеоморфизм — гладкая биекция между гладкими многообразиями, у которой обратное отображение тоже гладкое. Два многообразия диффеоморфны, если существует диффеоморфизм между ними.

Очевидно, диффеоморфность — отношение эквивалентности.

Определение

Диффеоморфизм — гладкая биекция между гладкими многообразиями, у которой обратное отображение тоже гладкое. Два многообразия диффеоморфны, если существует диффеоморфизм между ними.

Очевидно, диффеоморфность — отношение эквивалентности.

Лемма

У диффеоморфных многообразий размерности равны.

Доказательство.

Координатное представление диффеоморфизма $f: M^m \to N^n$ — диффеоморфизм между областями в \mathbb{R}^n и \mathbb{R}^m .

Дифференцируя и применяя производную композиции, получаем изоморфизм векторных пространств \mathbb{R}^m и \mathbb{R}^n .

Значит, m = n.

Лемма (важная характеризация карт)

Карты многообразия M^n- в точности диффеоморфизмы между открытыми областями в M и открытыми областями в \mathbb{R}^n .

Лемма (важная характеризация карт)

Карты многообразия $M^n - B$ точности диффеоморфизмы между открытыми областями B M и открытыми областями B \mathbb{R}^n .

Следствие

Диффеоморфизм $f:M\to N$ индуцирует биекцию между картами M и N таким образом:

карте $\psi \colon V \to \mathbb{R}^n$ многообразия N соответствует карта $\psi \circ f \colon f^{-1}(V) \to \mathbb{R}^n$ многообразия M.

Таким образом, диффеоморфизм — изоморфизм дифференциальных структур.

Количество гладких структур

Пусть M^n – гладкое многообразие.

- Если n < 4, то \exists единственная (с точностью до диффеоморфизма) гладкая структура на M.
- Если n > 4, то число гладких структур на M конечно.
- Если n = 4, то число гладких структур на M может быть бесконечно.
- Ни об одном гладком 4-многообразии мы не знаем, конечно ли число гладких структур на нем.
- На \mathbb{R}^n , $n \neq 4$, \exists единственная гладкая структура.
- На \mathbb{R}^4 число гладких структур несчетно.

Эквивалентность (соприкосновение) кривых

Пусть M^n – гладкое многообразие и $p \in M$.

Рассм. всевозможные гладкие кривые $\alpha\colon (-arepsilon,arepsilon) o M$ т.ч. lpha(0)=p.

Определение

Назовем две такие кривые α и β эквивалентными, если существует карта (U,φ) на M такая, что $p\in U$ и

$$(\varphi \circ \alpha)'(0) = (\varphi \circ \beta)'(0)$$

7 / 15

Эквивалентность (соприкосновение) кривых

Пусть M^n – гладкое многообразие и $p\in M$. Рассм. всевозможные гладкие кривые $\alpha\colon (-\varepsilon,\varepsilon)\to M$ т.ч. $\alpha(0)=p$.

Определение

Назовем две такие кривые α и β эквивалентными, если существует карта (U,φ) на M такая, что $p\in U$ и

$$(\varphi \circ \alpha)'(0) = (\varphi \circ \beta)'(0)$$

Лемма

Свойство эквивалентности кривых не зависит от карты: если оно верно для одной карты φ , содержащей p, то оно верно для любой карты ψ , содержащей p.

Док-во: Пусть $\gamma\colon (-\varepsilon,\varepsilon)\to M$ – гладкая кривая, $\gamma(0)=p$, (U,φ) и (V,ψ) – две карты, содержащие точку p. Тогда

$$\psi \circ \gamma = (\psi \circ \varphi^{-1}) \circ (\varphi \circ \gamma). \tag{1}$$

$$(\psi \circ \gamma)'(0) = d_{\varphi(p)}(\psi \circ \varphi^{-1}) \cdot (\varphi \circ \gamma)'(0). \tag{2}$$

16 февраля 2022 г.

7 / 15

Касательный вектор и его координатное представление

Определение

Касательный вектор многообразия M в точке p — класс эквивалентности кривых по вышеуказанному отношению эквивалентности.

Касательное пространство M в точке p — множество всех касательных векторов в точке p.

Обозначение касательного пространства: $T_p M$.

Структуру векторного пространства на $T_p M$ определим позже.

Определение

Пусть $v \in T_p M$, (U, φ) – карта, $p \in U$.

Рассмотрим вектор

$$v_{\varphi} := (\varphi \circ \alpha)'(0) \in \mathbb{R}^n$$

где α – любая кривая, представляющая v.

Вектор v_{φ} – координатное представление касательного вектора v в карте φ .

Его координаты – координаты v в карте φ .

По определению v_{φ} не зависит от выбора кривой α , представляющей вектор v.

Координаты вектора в карте, замена координат

Определение

Пусть $v \in T_p M$, (U, φ) – карта, $p \in U$.

Координаты v в карте (U,φ) – координаты вектора φ в стандартном базисе \mathbb{R}^n .

Лемма

Пусть (U,φ) и (V,ψ) – две карты, содержащие точку $p\in M$, $v\in T_pM$. Пусть $f=\psi\circ\varphi^{-1}$ – отображение перехода.

Тогда координатные представления v в картах φ и ψ связаны соотношением:

$$v_{\psi} = d_{\varphi(p)} f(v_{\phi}).$$

Док-во: См. пункт (2) доказательства леммы о независимости понятия эквивалентности кривых от выбора карты.

Из леммы следует второе определение касательного вектора.

Определение

Касательный вектор в точке p — отображение v из множества всех карт, содержащих p, в \mathbb{R}^n ($\varphi\mapsto v_\varphi$) такое, что для любых двух карт φ и ψ верно равенство из предыдущего свойства:

$$v_{\psi} = d_{\varphi(p)} f(v_{\varphi}).$$

9/15

Вектор задается своими координатами

Лемма

Для любой карты (U,φ) , содержащей p, соответствие $v\mapsto v_{\varphi}$ – биекция между T_pM и \mathbb{R}^n .

Инъективность следует из определения эквивалентности кривых. Сюръективность: Пусть $\xi \in \mathbb{R}^n$. Рассмотрим кривую

$$\widehat{\gamma} : (-\varepsilon, \varepsilon) \to \mathbb{R}^n, \qquad \widehat{\gamma}(t) = \varphi(p) + \xi t.$$

Тогда для вектора $v=[\gamma]$, где $\gamma(t)=\varphi^{-1}\circ\widehat{\gamma}(t)$, имеем $v_{\varphi}=\xi$.

Структура векторного пространства на $T_p M$

Определение

Пусть $v,w\in T_pM$, φ – карта в окрестности p. Определим сумму $v+w\in T_pM$ как такой вектор из T_pM , что

$$(v+w)_{\varphi}=v_{\varphi}+w_{\varphi}$$

(складываем координаты и в карте и берём вектор с полученными координатами).

Аналогично определяется умножение касательного вектора на число $\lambda \in \mathbb{R}$: $(\lambda v)_{\varphi} = \lambda(v_{\varphi})$.

- Определение корректно (вектор с такими свойствами существует и единственен).
- Определение не зависит от выбора карты φ . Это следует из линейности правила пересчёта координат касательного вектора при замене карты.
- Координатное представление $v\mapsto v_{\varphi}$ изоморфизм векторных пространств T_pM и \mathbb{R}^n .

Касательное расслоение

Определение

Касательным расслоением гладкого многообразия M^n называется множество

$$T(M) = \bigsqcup_{p \in M} T_p(M).$$

Касательные пространства вида $T_p M$ называются слоями касательного расслоения T(M).

Теорема

T(M) является гладким многообразием размерности 2n.

Док-во: Пусть (U, φ) – карта на M. Положим

$$T(U) = \bigsqcup_{p \in U} T_p(M).$$

Зададим отображение $\Phi_U\colon T(U) o \mathbb{R}^{2n}$: Для $v\in T_pM$, где $p\in U$, определяем

$$\Phi_U(v) = (\varphi(p), v_{\varphi}) \in \mathbb{R}^n \times \mathbb{R}^n.$$

 Φ_U биективно отображает T(U) на открытое множество $\varphi(U) \times \mathbb{R}^n$ в \mathbb{R}^{2n} .

Касательное расслоение

Зададим топологию на T(M):

 $X\subseteq T(M)$ открыто \iff для любой карты (V,ψ) на M множество $\Phi_V(X\cap T(V))$ открыто в \mathbb{R}^{2n} .

Это топология, так как Φ_V – биекция, то есть Φ_V сохраняет объединения и пересечения.

Касательное расслоение

Зададим топологию на T(M):

 $X\subseteq T(M)$ открыто \iff для любой карты (V,ψ) на M множество $\Phi_V(X\cap T(V))$ открыто в \mathbb{R}^{2n} .

Это топология, так как Φ_V – биекция, то есть Φ_V сохраняет объединения и пересечения.

Гладкий атлас на T(M) – это множество $\{(T(U), \Phi_U)\}$ по всем картам (U, φ) на M.

- ullet эти карты покрывают T(M).
- ullet Пусть $(T(U),\Phi_U)$ и $(T(V),\Phi_V)$ карты на T(M), порождаемые картами (U,φ) и (V,ψ) на M. Тогда функция перехода имет вид

$$\Phi_V \circ \Phi_U^{-1} = (\psi \circ \varphi^{-1}, d_{\varphi(p)}(\psi \circ \varphi^{-1})),$$

и согласованность карт в T(M) следует из согласованности карт в M.

• Φ_U – гомеоморфизм.

Дифференциал отображения в точке

Пусть M^m , N^n — гладкие многообразия, $f:M\to N$ — гладкое отображение, $p\in M$.

Определение

Дифференциал (касательное отображение) f в точке p — отображение

$$d_p f: T_p M \to T_{f(p)} N$$
,

определяемое следующим образом:

Для $v \in T_p M$, представленного кривой α , $d_p f(v)$ — вектор из $T_{f(p)} N$, представленный кривой $f \circ \alpha$.

Корректность и т.д.

Теорема

- ullet d_pf определено корректно;
- ullet Для карт ϕ и ψ в окрестностях p и f(p)

$$(d_p f(v))_{\psi} = d_{\phi(p)} f_{\phi,\psi}(v_{\phi}), \qquad \forall v \in T_p M$$

(координатное представление дифференциала — дифференциал координатного представления).

В правой части стоит обычный дифференциал в \mathbb{R}^n .

Корректность и т.д.

Теорема

- ullet d_pf определено корректно;
- Q $d_p f$ линейное отображение из $T_p M$ в $T_{f(p)} N$.
- ullet Для карт ϕ и ψ в окрестностях p и f(p)

$$(d_p f(v))_{\psi} = d_{\phi(p)} f_{\phi,\psi}(v_{\phi}), \qquad \forall v \in T_p M$$

(координатное представление дифференциала — дифференциал координатного представления).

В правой части стоит обычный дифференциал в \mathbb{R}^n .

Замечание

В случае, когда M и N — открытые области в \mathbb{R}^m и \mathbb{R}^n , определение дифференциала согласовано с обычным, с учетом стандартных изоморфизмов $T_p\mathbb{R}^m\cong\mathbb{R}^m$ и $T_p\mathbb{R}^n\cong\mathbb{R}^n$.

Это следует из третьего утверждения теоремы для тождественных карт.