LOAN DOCUMENT INVENTORY LEVEL at Operable Units 5,8,9, DOCUMENT IDENTIFICATION H **DISTRIBUTION STATEMENT A** Approved for Public Release Distribution Unlimited DISTRIBUTION STATEMENT THE SHOTELD NTIS UNANNOUNCER JUSTIFICATION DISTRIBUTION/ AVAILABILITY CODES AVAILABILITY AND/OR SPECIAL DATE ACCESSIONED DISTRIBUTION STAMP DATE RETURNED 20010116 015 REGISTERED OR CERTIFIED NUMBER DATE RECEIVED IN DTIC PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-FDAC

DTIC JUN 90 70A

DOCUMENT PROCESSING SHEET
LOAN DOCUMENT

PREVIOUS EDITIONS MAY BE USED TOOK IS EDUCALISTED.

DTIC QUALITY EXCHED 1

United States Air Force

BIOVENTING AT OPERABLE UNITS 5, 8, 9, 10, AND 11

DRAFT

Loring Air Force Base SEMIANNUAL PERFORMANCE REPORT

January-June 1998

November 1998 Revision C

Defense technical information center REQUEST FOR SCIENTIFIC AND TECHNICAL REPORTS

Ti	AFCEE Collection	3	
	######################################	500,000,000,000,000,000,000,000,000,000	
1,	Roport Availability (Please check one box)	2s. Number of	2b. Forwarding Data
X	This report is available. Complete sections 2a - 2f.	Copies Forwarded	
	This report is not available. Complete section 3.	1 each	July/2000
	Distribution Statement (Please check ONE DOX)	2 5 5 5 days 6 7	o diametra solan etatamenais
	Directive 5230.24, "Distribution Statements on Technical Document cribed briefly below. Technical documents MUST be assigned a distri		ioni idalion statement, es
M	DISTRIBUTION STATEMENT A: Approved for public re	lease. Distribution is u	nlimited.
	DISTRIBUTION STATEMENT B: Distribution authorized	to U.S. Government A	gencies only.
	DISTRIBUTION STATEMENT C: Distribution authorized contractors.	to U.S. Government A	Agencies and their
C	DISTRIBUTION STATEMENT D: Distribution authorized DoD contractors only.	to U.S. Department of	Defanse (DoD) and till
T.	DISTRIBUTION STATEMENT E: Distribution sufficients and components only.	in U.S. Department of	Dakorsa (Deb)
	DISTRIBUTION STATEMENT F: Further dissummation indicated below or by higher entholity.	only as directed by the	ventrolling DeD o Ves
	DISTRIBUTION STATEMENT X: Distribution authorized individuals or enterprises eligible to obtain export-control Directive 5230.25, Withholding of Unclassified Technical	led technical data in ac	cordance with DoD
2d.	Reason For the Above Distribution Statement (in scoor	dance with DoD Directive 52	230.24)
		•	
Žė,	Controlling Office	27. Date of Distri	bution Statement
	HQ AFUEG	15 Nov	2000
3. 7	his report is NOT forwarded for the following reasons	The state of the s	
3	t was previously forwarded to DTIC on(de	ne) and the AD number	***************************************
J	t will be published at a later date. Enter approximate dat	e if known.	
4	n accordance with the provisions of DeD Disertive 3200." Scause:	12, the requested door	ment is not supplied
4,01	engerin berinder i ver i vet i 1960 beste filosofie beste filosofie filosofi	ensimente en entre en entre de salates especias en especialmente en entre en entre en entre en entre en entre e En entre entre en entre en entre en entre en entre en entre en entre entre en entre en entre en entre en entre	re i tensiti kenn mempennisti tida enem a masea patika diliki mai a a asara dan minata pilita na papa papa ninasa .
. دون	Called Colored Hall Systematic day are not considerable control or supposed to the Called Hall Hall Hall Hall Hall Hall Hall Hal	Barrann Alexandrea worldschildstratistes (document decree era	Laborarium rasportularity, and fina, bir anapaganin insura, paulings, and wave
n 511673 Figur	or Type Negge Signal	######################################	
	WALL FRANK	Sec Pharmacanin	
211	2-536 1437 2-536 - 1437	M. derice DA	01-04-0613

United States Air Force

Bioventing at Operable Units 5, 8, 9, 10, and 11

DRAFT

Loring Air Force Base

SEMIANNUAL PERFORMANCE REPORT

January-June 1998

November 1998

Revision C

Loring Air Force Base

BIOVENTING AT OPERABLE UNITS 5, 8, 9, 10, AND 11

SEMIANNUAL PERFORMANCE REPORT

January-June 1998

DRAFT

Prepared for:
Department of the Air Force
Air Force Center for Environmental Excellence (AFCEE)
Brooks Air Force Base, Texas 78235-5328

Prepared by:
Bechtel Environmental, Inc.
151 Lafayette Drive
Oak Ridge, Tennessee 37830

Contract No. F41624-94-D-8072 Job No. 22784

> November 1998 Revision C

Prepared	Jeff W. Sus	11/10/98
		Date 11/10/98
Approved	BEI Project Engineer	Date
Approved	When for R.L. Putterson	11/10/98
	BEI Project Manager	/ Date

CONTENTS

FIGURES TABLES ACRONYMS AND INITIALISMS UNITS OF MEASURE 1.0 INTRODUCTION 2.0 SYSTEM MAINTENANCE 3.0 SYSTEMS OPERATION 3.1 OPERATIONS SUMMARY 3.1.1 Air Flow Rates 3.1.2 Soil Gas Monitoring 3.1.3 Respiration Testing	ıge
TABLES ACRONYMS AND INITIALISMS UNITS OF MEASURE 1.0 INTRODUCTION 2.0 SYSTEM MAINTENANCE 3.0 SYSTEMS OPERATION 3.1 OPERATIONS SUMMARY 3.1.1 Air Flow Rates 3.1.2 Soil Gas Monitoring	V
ACRONYMS AND INITIALISMS UNITS OF MEASURE	
UNITS OF MEASURE. 1.0 INTRODUCTION 2.0 SYSTEM MAINTENANCE 3.0 SYSTEMS OPERATION 3.1 OPERATIONS SUMMARY. 3.1.1 Air Flow Rates 3.1.2 Soil Gas Monitoring	
1.0 INTRODUCTION 2.0 SYSTEM MAINTENANCE 3.0 SYSTEMS OPERATION 3.1 OPERATIONS SUMMARY 3.1.1 Air Flow Rates 3.1.2 Soil Gas Monitoring	
2.0 SYSTEM MAINTENANCE 3.0 SYSTEMS OPERATION 3.1 OPERATIONS SUMMARY 3.1.1 Air Flow Rates 3.1.2 Soil Gas Monitoring	
3.0 SYSTEMS OPERATION 3.1 OPERATIONS SUMMARY 3.1.1 Air Flow Rates 3.1.2 Soil Gas Monitoring	
3.1 OPERATIONS SUMMARY 3.1.1 Air Flow Rates 3.1.2 Soil Gas Monitoring	
3.1.1 Air Flow Rates 3.1.2 Soil Gas Monitoring	
3.1.2 Soil Gas Monitoring	
3.2 LESSONS LEARNED SUMMARY	9
3.2.1 Well Seal Leaks	
3.2.2 Flow Rates	
3.2.3 Inundation of AIWs	
3.2.4 Soil Gas Monitoring	
3.3 RAINFALL DATA	
4.0 AUTO HOBBY SHOP.	
4.1 OPERATIONS	
4.2 CONCLUSIONS AND RECOMMENDATIONS	
5.0 BASE EXCHANGE SERVICE STATION	22
5.1 OPERATIONS	
5.2 CONCLUSIONS AND RECOMMENDATIONS	22
6.0 ENTOMOLOGY SHOP	28
6.1 OPERATIONS	
6.2 CONCLUSIONS AND RECOMMENDATIONS	28
7.0 FORMER JET ENGINE TEST CELL	34
7.1 OPERATIONS	
7.2 CONCLUSIONS AND RECOMMENDATIONS	
8.0 FIRE TRAINING AREA	
8.1 OPERATIONS	
8.2 CONCLUSIONS AND RECOMMENDATIONS	
9.0 FUEL TANK FARM BIOVENT/BIOSLURP	
9.1 OPERATIONS	45 45

10.0 FUEL TANK FARM II	50
10.1 OPERATIONS	50
10.2 CONCLUSIONS AND RECOMMENDATIONS	50
11.0 NOSE DOCK AREA #1	58
11.1 OPERATIONS	58
11.2 CONCLUSIONS AND RECOMMENDATIONS	58
12.0 NOSE DOCK AREA #2	63
12.1 OPERATIONS	
12.2 CONCLUSIONS AND RECOMMENDATIONS	
13.0 NOSE DOCK AREA #3	66
13.1 OPERATIONS	
13.2 CONCLUSIONS AND RECOMMENDATIONS	
14.0 NOSE DOCK AREA #4	71
14.1 OPERATIONS	
14.2 CONCLUSIONS AND RECOMMENDATIONS	71
15.0 NOSE DOCK AREA #5	76
15.1 OPERATIONS	76
15.2 CONCLUSIONS AND RECOMMENDATIONS	76
16.0 NOSE DOCK AREA #6	81
16.1 OPERATIONS	
16.2 CONCLUSIONS AND RECOMMENDATIONS	81
17.0 NOSE DOCK AREA #7	84
17.1 OPERATIONS	84
17.2 CONCLUSIONS AND RECOMMENDATIONS	84
18.0 NOSE DOCK AREA #8	88
18.1 OPERATIONS	88
18.2 CONCLUSIONS AND RECOMMENDATIONS	88
19.0 POWER PLANT DRAINAGE PIPE	93
19.1 OPERATIONS	93
19.2 CONCLUSIONS AND RECOMMENDATIONS	
REFERENCES	R-1

APPENDIXES

A Respiration Data and Calculations

FIGURES

Figure	Title	Page
1-1	Bioventing Process Operation Decision Chart	3
1-2	Bioventing Conceptual Model	
3-1	Monthly Air Flow	
3-2	Monthly and Cumulative Rainfall Amounts	16
4-1	AHS Biovent System Layout and Average Wellhead Flow	
4-2	AHS Groundwater/Air Flow Relations Along North/South Section	
5-1	BXSS Biovent System Layout and Average Wellhead Flow	
5-2	BXSS Groundwater/Air Flow Relations Along North/South Section	
6-1	ES Biovent System Layout and Average Wellhead Flow	30
6-2	ES Groundwater/Air Flow Relations Along West/East Section	
7-1	FJETC Biovent System Layout and Average Wellhead Flow	
7-2	FJETC Groundwater/Air Flow Relations Along North/South Section (Westline).	
7-3	FJETC Groundwater/Air Flow Relations Along North/South Section (Eastline)	39
8-1	FTA Biovent System Layout and Average Wellhead Flow	41
8-2	FTA Groundwater/Air Flow Relations Along North/South Section	44
9-1	FTF Biovent System Layout and Average Wellhead Flow	
9-2	FTF Groundwater/Air Flow Relations Along North/South Section	
	of East and West Lines	
10-1	FTF II Biovent System Layout and Average Wellhead Flow	
10-2	FTF II Groundwater/Air Flow Relations - AST 7810 Area	
10-3	FTF II Groundwater/Air Flow Relations - AST 7820 Area	56
10-4	FTF II Groundwater/Air Flow Relations - AST 7830	57
11-1	NDA Biovent Systems Layout	
11-2	Air Flow vs. Depth to Groundwater at NDA-1	
13-1	Air Flow vs. Depth to Groundwater at NDA-3	
13-2	Air Flow vs. Depth to Groundwater at NDA-3	
14-1	Air Flow vs. Depth to Groundwater at NDA-4	
14-2	Air Flow vs. Depth to Groundwater at NDA-4	
15-1	Air Flow vs. Depth to Groundwater at NDA-5	
15-2	Air Flow vs. Depth to Groundwater at NDA-5	80
17-1	Air Flow vs. Depth to Groundwater at NDA-7	
18-1	Air Flow vs. Depth to Groundwater at NDA-8	90
18-2	Air Flow vs. Depth to Groundwater at NDA-8	91
19-1	PPDP Biovent System Layout and Average Wellhead Flow	
19-2	PPDP Groundwater/Air Flow Relations - Westline	
19-3	PPDP Groundwater/Air Flow Relations - Eastline	99

TABLES

Table	Title	Page
1-1	Biovent System Summary	2
3-1	Results from the Summer and Fall 1996/1997 Respiration Testing	
3-2	Summary of Site-Specific Recommendations	
3-3	Precipitation Data Caribou, Maine	15
4-1	AHS Air Flow and Monitoring Point Data	
4-2	AHS Groundwater Level Data	
5-1	BXSS Air Flow and Monitoring Point Data	25
5-2	BXSS Groundwater Level Data.	
6-1	ES Air Flow and Monitoring Point Data	31
6-2	ES Groundwater Level Data	
7-1	FJETC Air Flow and Monitoring Point Data	36
7-2	FJETC Groundwater Level Data	
8-1	FTA Air Flow and Monitoring Point Data	
8-2	FTA Groundwater Level Data	43
9-1	FTF Air Flow and Monitoring Point Data	47
9-2	FTF Groundwater Level Data	48
10-1	FTF II Air Flow and Monitoring Point Data	53
10-2	FTF II Groundwater Level Data	54
11-1	NDA-1 Air Flow and Monitoring Point Data	60
11-2	NDA-1 Groundwater Level Data	61
12-1	NDA-2 Air Flow and Monitoring Point Data	64
12-2	NDA-2 Groundwater Level Data	65
13-1	NDA-3 Air Flow and Monitoring Point Data	67
13-2	NDA-3 Groundwater Level Data	70
14-1	NDA-4 Air Flow and Monitoring Point Data	72
14-2	NDA-4 Groundwater Level Data	
15-1	NDA-5 Air Flow and Monitoring Point Data	77
15-2	NDA-5 Groundwater Level Data	78
16-1	NDA-6 Air Flow and Monitoring Point Data	82
16-2	NDA-6 Groundwater Level Data	83
17-1	NDA-7 Air Flow and Monitoring Point Data	85
17-2	NDA-7 Groundwater Level Data	87
18-1	NDA-8 Air Flow and Monitoring Point Data	89
18-2	NDA-8 Groundwater Level Data	92
19-1	PPDP Air Flow and Monitoring Point Data	96
19-2	PPDP Groundwater Level Data	

ACRONYMS AND INITIALISMS

AFB Air Force Base

AFCEE Air Force Center for Environmental Excellence

AHS Auto Hobby Shop **AIW** air injection well

BEI Bechtel Environmental, Inc. bgs below ground surface

BVbiovent points

BXSS Base Exchange Service Station COE U.S. Army Corps of Engineers

ES **Entomology Shop**

FJETC Former Jet Engine Test Cell

FTA Fire Training Area **FTF** Fuel Tank Farm

GAC granular-activated carbon

MP monitoring point **NDA** Nose Dock Area

O&M operations and maintenance

OU operable unit

PLC programmable logic control Power Plant Drainage Pipe **PPDP PRG** preliminary remediation goal **TPH** total petroleum hydrocarbon **TVH** total volatile hydrocarbon VMvapor monitoring point

Vehicle Maintenance Building **VMB**

UNITS OF MEASURE

ft foot ft^3 cubic foot kg kilogram lb pound mg milligram

parts per million ppm

parts per million volatiles ppmv pounds per square inch psi

scfm standard cubic feet per minute

1.0 INTRODUCTION

This semiannual bioventing report presents information gathered from operation and maintenance (O&M) activities performed by Bechtel Environmental, Inc. (BEI) on the bioventing systems at Loring Air Force Base (AFB), Maine. Work was conducted under Contract No. F41624-94-D-8072, Delivery Order 0005, for the Air Force Center for Environmental Excellence (AFCEE). This report covers the of O&M activities at 16 bioventing systems from January 1 through June 30, 1998. Table 1-1 summarizes operations at each bioventing site, including the number of air injection wells (AIWs), monitoring points (MPs), and oxygen sensors. Table 1-1 also includes the oxygen utilization rate ranges determined from field tests performed during the summer and fall 1996, spring and fall 1997, and spring 1998 respiration tests at each site.

The objective of this report is to present operations data and an evaluation of bioventing system performance, including site status, problems identified, and recommendations. Operations guidelines, summarized in Figure 1-1, facilitate identification of required system changes during normal operations and when remediation is nearing completion.

A pilot-scale treatability study at the Base Exchange Service Station (BXSS) (Earth Tech 1995) indicated that bioventing was a viable remedial technology for petroleum-contaminated soils at Loring AFB. The BXSS treatability study report presented preliminary information and established basic design parameters. Based on the BXSS treatability study, bioventing was selected as the preferred removal action treatment technology at 16 sites in 5 operable units (OUs) at Loring AFB. Bioventing systems were installed and started at four sites in the fall of 1995:

- Former Jet Engine Test Cell (FJETC)
- Fire Training Area (FTA)
- Power Plant Drainage Pipe (PPDP)
- Vehicle Maintenance Building (VMB)

These four units were turned over to AFCEE on February 1, 1996, with BEI performing O&M. At the same time, BEI also took over O&M for the BXSS site, which had been operating since the fall of 1993. The U.S. Army Corps of Engineers (COE) installed additional MPs and AIWs and made system modifications at the BXSS site during the summer and fall of 1996.

The other 11 sites were constructed and began operation in the fall of 1996. BEI began performing O&M for these units on December 1, 1996. These 11 sites are:

- Auto Hobby Shop (AHS)
- Entomology Shop (ES)
- Fuel Tank Farm (FTF)
- Nose Dock Areas (NDA) 1 through 8

Table 1-1 Biovent System Summary

		Total		Total	
	Number of	Number	Number of	operation	O ₂ utilization
Site	AIWs	of MPs ²	O ₂ sensors ²	(days)3	rate %/hr⁴
AHS	19	20	5	575	0.04-7.5
BXSS	7	12	0	833	0.08-1.3
ES	7	13	1	620	0.01
FJETC	13 ¹	8	1	699	0.08 - 0.72
FTA	16	38	1	820	0.04-1.54
FTF	20	15	4	344	0.4-3.03
FTF II	37	17	. 7	253	0.01-2.8
NDA-1	24	10	1	580	0.11-5.1
NDA-2	23	10	1	564	0.7
NDA-3	21	5	1	603	not tested⁵
NDA-4	36	15	1	527	0.05-0.77
NDA-5	29	7	1	526	0.05-7.2
NDA-6	4	4	2	609	0.1
NDA-7	4	2	1	605	not tested ⁵
NDA-8	23	3	1	611	not tested⁵
PPDP	18	24	1	804	0.05-1.7

¹Two wells which never registered any flow were replaced in July 1997.

²Number of MPs represents the total number of MPs (with and without oxygen sensors).

³As of June 30, 1998.

⁴Range of values from summer and fall 1996, spring and fall 1997, and winter and spring 1998 measurements. Respiration test ranges for each MP tested are presented in Section 3.1.

⁵Not tested due to high water and/or no air flow.

Figure 1-1 Bioventing Process Operation Decision Chart

An additional bioventing system constructed at the FTF (designated FTF II) during June through August 1997 began operation on August 28, 1997. The installation documentation (e.g., geologic logs, monitoring well completion logs, and as-built drawings) is included in *Bioventing at Operable Units 5*, 8, 10, and 11, Removal Action Report, Addendum 2.

Experience gained at Loring AFB enhances understanding of how the biovent systems operate in relationship to site-specific hydrogeology. Figure 1-2 is a conceptual model of a typical bioventing site. In general, each site consists of glacial till (either natural and/or worked) and lenses of higher-permeability material (e.g., gravel, sand) containing perched water. The overburden groundwater table is usually below the area being treated by bioventing, so most groundwater influences on air injection are likely caused by perched groundwater (historic water table depths determined the depths of the screens). Perched water also affects the collection of soil gas samples in MPs.

Advective air flow occurs primarily in regions of higher permeability. In regions of lower permeability, soils are aerated through diffusive transport. Even when soil gas samples cannot be drawn, it is likely that aeration is occurring and supporting biodegradation, but at a reduced rate.

Documents pertaining to bioventing system design, testing, installation, and O&M include:

- Final Remedial Investigation Reports, Operable Units 5, 8, 9, 10, and 11 (CDM 1996, ABB-ES 1995a, ABB-ES 1995b, ABB-ES 1994, ABB-ES 1996, respectively)
- Test Plan and Technical Protocol for a Field Treatability Test for Bioventing (AFCEE 1992)
- Long-Term Bioventing Treatability Study, Loring AFB, Base Exchange Service Station (Earth Tech 1995)
- Operation and Maintenance Manuals for Nose Dock Area & Service Station (Patrick St. Peter & Sons Inc. 1997)
- Design Analysis Report, Operable Units 5, 9, 10, and 11 (URS 1995a)
- Bioventing and Excavation Specifications for Former Jet Engine Test Cell, Fuel Tank Farm, Vehicle Maintenance Building, Power Plant Drainage Pipe, and Entomology Shop (URS 1995b)
- Bioventing at Operable Units 5, 8, 9, 10, and 11—Removal Action Report (BEI 1996a)
- Operation and Maintenance Plan for Bioventing at Operable Units 5, 8, 9, 10, and 11 (BEI 1996b)
- Excavations in OUs 5, 8, 9, 10, and 11—Removal Action Report (BEI 1996c)
- Bioventing at OUs 5, 8, 9, 10, and 11 Removal Action Work Plan, Addendum #1 (BEI 1996d)
- Bioventing Semiannual Report (BEI 1996e)
- Bioventing Alternatives Technical Memorandum (BEI 1996f)

Figure 1-2 Bioventing Conceptual Model

- 1996 Monthly Bioventing Reports (BEI 1996g through j)
- Bioventing Semiannual Report (BEI 1997a)
- Bioventing Removal Action Report, Addendum 1 (BEI 1997b)
- Bioventing at OUs 5, 8, 9, 10, and 11 Removal Action Work Plan, Addendum 2 (BEI 1997c)
- 1997 Monthly Bioventing Reports (BEI 1997d through o)
- Bioventing Semiannual Performance Report August December 1997. May (BEI 1998a)
- 1998 *Monthly Bioventing Reports* (BEI 1998b through g)

2.0 SYSTEM MAINTENANCE

Routine weekly, monthly, and time-driven maintenance activities performed in accordance with work plan specifications included checking lubrication levels, air dryer desiccant levels, and blower drive belts; changing blower lubricant at specified intervals; draining fluids from air dryer tanks; and adding desiccant as needed.

No major equipment problems occurred during this period. The programmable logic control (PLC) boards at FTF were found to be malfunctioning in December 1997 when the system was being changed from bioslurp mode to biovent mode for winter operation. The system was repaired and restarted in January 1998.

The systems at NDA-4 and NDA-5 were shut down from September to December 1, 1997 due to construction by Depot Roads, a COE subcontractor removing fuel lines. The piping network at NDA-1 was joined with NDA-3, and the piping at NDA-4 was joined with NDA-5 on January 19, 1998. The blowers at NDA-3 and NDA-4 were shut down and the systems run with blowers at NDA-1 and NDA-5 to save operations costs in response to recommendations made in the previous semiannual report.

Spring confirmation soil sampling recommended in the last semiannual report is scheduled to begin in July 1998, therefore this data will not be presented within this report.

3.0 SYSTEMS OPERATION

Key operational activities observed over the first 28 months are discussed in Section 3.1. Section 3.2 summarizes problems encountered and sitewide lessons learned since startup. Section 3.3 presents rainfall data.

Operational data collected during this reporting period include monthly flow measurements taken at each AIW, monthly soil gas sampling results from MPs, and in situ respiration results from the spring 1998 tests. Data downloaded from oxygen sensors are included in the data tables as monthly averages; daily readings are available in the project files.

3.1 OPERATIONS SUMMARY

3.1.1 Air Flow Rates

The rate of air flow to the wellheads determines the rate at which oxygen is supplied to the subsurface. The wellhead flow rate is a function of soil characteristics (e.g., permeability and saturation). Generally, soils with lower permeability result in lower flow rates at a given pressure. Since injection pressure is directly related to flow rate, an increase in pressure results in increased flow rates. If the injection pressure is too high, however, the soil may fracture and create macropathways for the air, thus negating any benefit for increased air flow. The maximum allowable injection pressure varies due to varying soil types and the depth of the AIW screen interval, but it is generally kept less than 5 psi (equivalent of approximately 8 ft of overburden pressure). Overburden pressures for each AIW were calculated at the depth of the top of the screen; a soil density of 100 lb/ft³ was assumed. These values are provided in the site-specific data tables presented in Sections 4.0 through 19.0.

Figure 3-1 plots total monthly air flow at each site since startup. In general, there was a downturn in monthly total flow at each system between March and April 1998 related primarily to snowmelt and greater than normal precipitation. Although 1998 precipitation levels remained above normal through June, warmer temperatures and increased evapotranspiration beginning in late May through June resulted in the drying of soils and subsequent air uptake. NDAs 1, 3, 4, 7, and 8 continued to have some AIWs which are nonfunctional or are accepting flows at a rate too low to measure. Further discussion of this is included in site-specific sections presented later in this report.

3.1.2 Soil Gas Monitoring

Soil gases are sampled to quantify subsurface aeration rates. AFCEE protocol recommends maintaining an oxygen level of at least 5 percent, the level required to maintain oxygen-limited aerobic degradation (AFCEE 1992); this level is used as a reference point for operation of the biovent systems. Oxygen levels are measured either by taking soil gas samples from the MPs or by in situ oxygen meters. If oxygen levels are found to be below 5 percent at any MP, flow rates from adjacent AIWs are increased to raise oxygen concentrations at that location (see Figure 1-1).

In many instances, soil gas in the MPs cannot be sampled; the lack of soil gas can be attributed to high water table, soil saturation, low-permeability soil, screen clogging, or frozen tubing. Historically, the most successful MP sampling has occurred during the months of June through October when the water table has subsided and evapotranspiration rates have increased.

Figure 3-1 Monthly Air Flow

3.1.3 Respiration Testing

In situ respiration tests are performed semiannually, generally in the late spring or early summer and fall; the MPs freeze during the winter and water levels are high in the spring, which make it difficult to perform respiration tests from November to May. Respiration tests were performed in some of the oxygen sensors during January 1998 in response to recommendations made in the previous semiannual report. The systems were shut down and the oxygen sensors reprogrammed to collect readings every 30 minutes. Only a few oxygen sensors produced data due to the majority having high oxygen at the start, therefore resulting in no change and no rate to calculate.

The in situ respiration tests are conducted in accordance with design specifications (URS 1995b) and AFCEE protocol (AFCEE 1992). MPs that produce soil gas samples with oxygen levels close to ambient conditions are not good candidates for respiration tests. MPs selected for the respiration test are chosen only after the air injection has been turned off for a minimum of 24 hours and a soil gas sample from each MP is analyzed to determine a representative oxygen and carbon dioxide concentration (these soil gas samples are referred to as *pretest* samples). A 1 to 3 percent concentration of helium in air is injected as a tracer for 2 h; after this injection period, the air/helium source is discontinued. Soil gas samples are taken and analyzed by field instruments for oxygen, carbon dioxide, helium, and total volatile hydrocarbons (TVH). Generally the test is concluded once oxygen levels go below 5 percent or 72 hours have passed.

Oxygen utilization rates are then calculated based on the initial linear portion of the curve, typically the first 8 to 12 hours. Biovent system operations will continue until a site's oxygen utilization rate matches background levels. At Loring AFB, the background oxygen utilization rate was found to be 0.1 percent/hour (2.4 percent/day) or less. Table 3-1 summarizes all in situ respiration tests run in 1996, 1997, and 1998. Biodegradation rates calculated for the winter and spring 1998 respiration results are included in Table 3-1.

3.2 LESSONS LEARNED SUMMARY

System performance has improved over the past year because of increased system operation knowledge. Challenges encountered over the past 2 years have included well seal leaks, inaccurate flow measurements, inundation of AIWs, lack of soil gas samples, and adverse weather conditions. These items are discussed in more detail in the first and second semiannual reports (BEI 1996e and 1997a).

3.2.1 Well Seal Leaks

Well seal leaks were eliminated either by limiting the injection pressure to 5 psi or less or by removing the AIW from use. This was successful, and no previously installed seals were compromised in the past 12 months. As the winter progressed, injection pressures were monitored carefully to maintain sealed wells, especially during spring thaw. When the well seals were fully hydrated, pressure was increased but kept at 5 psi or less.

							D	
Site	Monitoring Point	Oxygen Utilization Rate (% / hour)	Oxygen Utilization Rate (% / hour)	Corrected Oxygen ¹	Corrected Oxygen	Oxygen Utilization	Corrected Oxygen	Biodegradation Rate ²
AHS	MP-1-5	Not installed	7.5	Cuitzation Nate (787 Hour)	Othication Rate (% / nour)	Kate (% / hour)	Utilization Rate (%/hour)	(mg TPH/kg soil/day)
!	MP-2-13	Not installed	900	- 00	0.75	water	na	na
	MD 4.5	Mod installed	0.20	0.003	0.04	no flow	na	na
	MD 4 13	Not installed	E 6	ָב <u>.</u>	0.15	0.20	0.19	3.3
	C -4-1N	Not installed	0.04	0.05	0.05	0.08	0.08	4.
	MF-5BG-4	Not installed	Ĕ	0.98	na	0.95	0.95	16.3
	MP-6-4	Not installed	ŧ	ŧ	ŧ	0.21	helium not used ³	
	MP-6-5	Not installed	t	ŧ	ŧ	0 0	helium not mend	9 6
	MP-8-15	Not installed	ţ	ŧ	: 1	20.0	Deen John Illings	S.O.
	MP-9-6.5	Not installed	: 12	ŧ	€ 1	0.14	nelium not used	2.4
	average			- 0	E C	90.0	0.08	1.4
RXSS	VM-1-5	0.41	2.0	0.50	0.25	0.24	0.33	4.1
2	VM-2-5		7.0	0.48	0.46	0.38	0.40	6.8
	140 4 DE	1.0	= .	0.49	ŧ	0.46	0.48	na
	MP-1-3.5	ב י	ţ	ť	ŧ	0.31	0.30	5.1
	MP-1-7.5	0.32	4.0	0.08	0.12	water	e c	
	MP-2-8.5	1.3	1.1	0.11	0.25	0.13	77.0	5 C
	MP-3-3.5	ť	ŧ	ţ	ŧ		r ec	T T
	MP-4BG-8	ŧ	60	Wateriot	: (0.00	00.0	4.1
	average =	69 0	0.70	0.38	000	0.0	0.0	па
C.	MP-2.3	Not installed	21.0	62.0	0.20	0.24	0.25	3.9
	MP-2-14	Not installed	5 5	ואס ווסא/עונ	na C	High oxygen	na	па
	1 - 7 - IW	Not installed	0.0	High oxygen/nt	0.00	High oxygen	ВП	na
	0.0-0-10	NOT INSTAIRED	Not installed	Not installed	0.01	High oxygen	па	БП
CIETO	average -	777			0.01			
2	MP-0-3	Ĕ	ŧ	ŧ	ŧ	0.12	0.10	1.7
		Ĕ	0.66	0.31	0.70	0.87	0.85	14.5
i	average =				77 442	0.50	0.48	1.8
⋖	MP-1-6	E	ŧ	0.22	na	0.18	0.19	33
	MP-2-3	Ĕ	ŧ	ţ	ŧ	0.95	0.88	15.1
	MP-3-6	ŧ	ŧ	t	ŧ	0.31	0.21	98
	MP-4BG	ŧ	ŧ	ıt	ŧ	0.21	0.30	
	MP-5-3	ŧ	ŧ	ŧ	ŧ	0.31	0.30	
	MP-9-3	ŧ	2.4	0.60	0.43	1.60	1.54	28.4
	MP-9-10	ŧ	ŧ	ť	ŧ	0.14	0.10	4.7
	MP-10-3	ŧ	0.89	0.32	E .	0.42	3000	1.1
	MP-11-3	ŧ	1.45	0.39	0.19	0.43	0.00	7 6
	MP-12-6	0.17	0.23	0.18	0.03	60 0	27:00	, t
	MP-13-6	ŧ	ŧ	Ĕ	t	0.00	9.00	. T
	MP-14-8.5	0.31	0.26	0.19	0.14	0.10	0.00	/· c
	MP-15-10	ŧ	ŧ	ţ	, t	0.17	0.23	ກິຕ
	average =	0.24	1.05	0.32	0.20	0.30	2.0	7.7
FTF	MP-2-15	Not installed	0.77	No flow		Destroyed	0.40	0.0
	MP-3-10	Not installed	0.4	Water		Destroyed	3 6	<u>מ</u>
	MP-7-2.5	ŧ	E	t	: =	3.2		E ;
	average ==	-	0.59	:	=	3.5	3.03	51.9
FTF II	MP-3-5.5	Not installed	Not installed	Not installed	2.81	water	80	60
	MP-9-6	ŧ	ŧ	į	ŧ		5 L C C C C C C C C C C C C C C C C C C	9 •
	MP-13-5.5	Not installed	Not installed	A Contract total		5	neilum not used	0.2
						10000		

9

Resptbl4.xls 11/10/98

NDA-1	MP-1-3-5.5	Not installed	Ż	0.12	na	High oxygen	na	en en
	MP-1-4-8	Not installed	4.2	Water	na	Water	na	กล
	MP-1-6-5	Not installed	4.0	0.16	0.34	0.12	0.11	1.9
	MP-1-6-8	Not installed	5.1	Water	0.76	0.46	0.45	7.7
	average ≖		4.65	0.14	0.55	0.29	0.28	4.8
NDA-2	MP-2-2-5	Not installed	0.07	High oxygen	na	High oxygen	na	па
	MP-2-2-8	Not installed	0.07	High oxygen	กล	High oxygen	na	na
NDA-3				No points availabl	No points available for respiration testing due to 'No flow' or Water	ue to 'No flow' or Water		
NDA-4	MP-4-2BG	ŧ	t	ut	0.05	Water	na	na
	MP-4-4	ŧ	ŧ	ŧ	0.77	Water	na	na
					0.41	na	na	na
NDA -5		Not installed	7.2	Water/nt	na	Water	na	na
	MP-5-4-7.5	Not installed	3.63	High oxygen/nt	na	High oxygen	па	na
NDA-6	MP-6-2BG-7	Not installed	Tr.	0.04	0.06	0.14	0.10	1.7
	MP-6-3-8.5	Not installed	0.014	WaterInt	na	Water	na	па
NDA-7				No points availabl	No points available for respiration testing due to 'No flow' or Water	le to 'No flow' or Water		
NDA -8				No points available for	respiration testing due to	No points available for respiration testing due to 'No flow'/Water/High oxygen	The second secon	
PPDP	MP-1-3	ŧ	ıt u	at at	ţ	1.19	1.16	19.9
	MP-2-3	0.65	ŧ	No flow/nt	na	0.26	0.27	4.6
	MP-2-6	ŧ	ŧ	ŧ	ŧ	0.10	0.08	1.4
	MP-3-3	1.7	1.2	0.98	na	1.45	1.43	24.5
	MP-3-6	0.73	0.46	0.45	0.65	0.32	0.31	5.3
	MP-4-3	0.45	0.15	0.17	0.22	0.25	0.26	4.5
	MP-5-3	ŧ	ŧ	at at	ŧ	0.52	0.53	9.1
	MP-6-3	0.56	0.19	0.11	0.09	0.19	0.19	3.3
	MP-8-3					0.10	0.05	6.0
	MP-9-8.5	Not installed	Not installed	Not installed	0.40	0.27	0.24	1.4
	average =	0.82	0.50	0.24	0.34		0.45	7.7

¹Oxygen utilization rate corrected as follows:

a) Determine helium loss per hour (all helium data was used to determine slope);

nt = not tested

- b) Correct helium decay by dividing helium loss per hour
- by 2.8 (difference in diffusion rate of helium and oxygen);
- c) subtract corrected helium decay from initial oxygen utilization rate.

 K_d = degradation rate (mg TPH/kg soil/day)

K_o = corrected oxygen utilization rate (%/hour)

A = Air filled porosity per kg of soil, calculated (0.192)

R = Ratio of TPH mineralization to oxygen required (1:3.5 for hexane)

Do = Density of oxygen at 68° F (1,300 mg/L)

[Equation and values from URS 1995b (Section 02020)]

 $K_{\omega} = \frac{K_o \times A \times R \times D_o}{100} \times 24$ 2 Hydrocarbon biodegradation rate = (K_{d})

³ Test performed on oxygen sensor in January 1998. Test was performed by recording oxygen levels after system shutdown. Helium could not be used.

3.2.2 Flow Rates

Initial flow measurements were unreliable because of the measurement method being used. A flow meter demonstration performed during the summer of 1996 to evaluate different flow measuring devices (BEI 1996e) indicated that a Dwyer® in-line rotometer provided the most accurate flow readings. All AIWs were retrofitted with these instruments and are working well under all conditions.

3.2.3 Inundation of AIWs

During the spring and summer, inundation of the AIWs is a major inhibitor of air injection. This problem is anticipated to continue because groundwater levels fluctuate seasonally. However, if constant pressure at a high enough level to overcome the hydrostatic head above the top of screen is applied to an AIW, air will eventually make its way into the subsurface. This scenario is relevant only if a minority of the total number of wells are inundated. During periods of rising groundwater levels, attention will be paid to injection pressures and flow rates. If water levels completely inundate most of the site's AIWs, the system will be turned off until groundwater levels subside because only a small volume of soil designed per treatment is being treated.

3.2.4 Soil Gas Monitoring

For several reasons, soil gas samples have generally been difficult to collect—well point screened in tight soil, MP inundation, clogged screen, compromised tubing, or frozen tubing—and no better collection method has been found. As recommended in the first half-1997 semiannual report, new MPs were added to several sites on July 25–29, 1997; mid-month monitoring of these new MPs began in August 1997. Depth to water within the MPs will be determined when practical. Following the summer 1998 confirmation soil sampling and evaluation, recommendations to install new MPs where improvement in the operation of current MPs is not believed possible or an alternative remedial action (i.e., excavation with ex situ treatment) will be made.

Soil gas samples collected in May 1997 from AHS, BXSS, ES, FJETC, and FTA were considered suspect because of consistently high oxygen and low carbon dioxide levels. Air samples were collected in May from several locations that did not yield samples before or after the month of May.

In addition, high oxygen levels were noted at locations with historically low levels (i.e., FJETC-MP7-3 and FTA-MP9-3). Both of these anomalies suggest leaks in the sampling equipment; for example, the lid to the jar on the air sampling device may have been leaking, thus diluting the soil gas sample with ambient air. The entire sampling system has been checked for leaks, and new tubing has been installed. All soil gas monitoring data will be compared with historic data as an additional verification step.

3.2.5 General

Biovent systems running during the winter are expected to run similarly to previous winters and, therefore, will be run at reduced air flow rates for select sites. As spring thaw begins, attention will be focused on water levels and the pressures required to maintain air injection. Oxygen sensors will be monitored during the winter, and winter respiration tests at select oxygen sensor locations will be conducted, weather permitting. MPs will not be sampled until spring thaw.

Respiration tests scheduled for fall 1998 will include all MPs tested in the past and additional sites where respiration tests have not yet been performed—the exception being any biovent systems shut down due to the confirmation sampling results. MPs will be selected on the basis of soil gas sample collectibility.

The site-specific sections that follow provide evaluations and recommendations. Table 3-2 summarizes the recommendations in the subsequent sections.

3.3 RAINFALL DATA

Table 3-3 tabulates rainfall data recorded at the weather station in Caribou, Maine, over the past 6 months, and Figure 3-2 illustrates monthly totals and cumulative values for the past 2 and a half years. The graph clearly shows that cumulative precipitation during January through October 1996, January through December 1997, and January through June 1998 has exceeded historical normal levels. Combined with snowmelt, these high levels may have had an impact on several of the biovent systems as noted in previous semiannual reports. Saturated soils have caused air injection rates to be lower than design flow, and several MPs were affected by saturation levels, resulting in reduction of monitoring data.

Table 3-2 Summary of Site-Specific Recommendations

Site	Recommendation
AHS	Functioning well, biodegradation rates are decreasing. Install two new AIWs near northwest side of background MP-5BG.
BXSS	Continue bioventing until an evaluation of soil samples collected in the summer of 1998 is completed.
ES	Continue bioventing until an evaluation of soil samples collected in the summer of 1998 is completed.
FJETC	Continue bioventing until an evaluation of soil samples collected in the summer of 1998 is completed.
FTA	Continue bioventing until an evaluation of soil samples collected in the summer of 1998 is completed.
FTF	Begin bioslurp mode as soon as groundwater fluctuations and levels decrease/subside.
FTF II	No changes recommended.
NDAs	Continue bioventing until an evaluation of soil samples collected in the summer of 1998 is completed.
PPDP	No changes recommended. Evaluate soil samples collected during the summer of 1998.
General	Perform respiration tests in both MPs and oxygen sensors in the fall of 1998 without helium as a tracer. Historical results show that dispersion of injected air has negligible effect on determining biodegradation rates.

Table 3-3 Precipitation Data Caribou, Maine (1/98 - 6/98)

0.01 1-Feb-98 0 1-Apr-88 0.13 1-Apr-88 0.13 1-Apr-88 0.13 1-Apr-88 0.13 1-Apr-88 0.13 1-Apr-88 0.13 1-Apr-88 0.14 1-Apr-88 0.05	January Precipitation (in.)	n (in.)	February Precipitation (in.)	March Precipitation (in	(in.)	April Precipitation (in)		May Precipitation (in)		(ni) Osocialistica (in)	
0.01 2-Feb-98 0 2-Mar-98 0.03 2-Apr-98 0.26 2-Mary-98 0.15 4-Feb-98 0 4-Apr-98 0.04 4-Apr-98 0.05 4-Mary-98 0.15 5-Feb-98 0 4-Apr-98 0.01 4-Apr-98 0.05 4-Mary-98 0.15 7-Feb-98 0 6-Apr-98 0.05 7-Apr-98 0 7-Mary-98 0.15 7-Feb-98 0 6-Apr-98 0.05 7-Apr-98 0 7-Mary-98 0.15 10-Feb-98 0 10-Mary-98 0.18 10-Apr-98 0 10-Mary-98 0.05 11-Feb-98 0 11-Apr-98 0.01 11-Apr-98 0 10-Mary-98 0.07 11-Feb-98 0 11-Apr-98 0.01 11-Apr-98 0 11-Mary-98 0.07 11-Feb-98 0 11-Apr-98 0.01 11-Amry-98 0 11-Mary-98 0.07 11-Feb-98 0 11-Apr-98 0.01 11-Mary-98 <	1-Jan-98	0	1-Feb-98 0	1-Mar-98	0.35	1-Apr-98	0.13	1-Mav-98	c	1-[110-98	0.08
0 3-Feb-98 0 3-Ma-98 0 3-Apr-98 0.43 3-May-98 0.15 5-Feb-98 0 5-Apr-98 0.01 5-Apr-98 0.43 3-May-98 0.15 7-Feb-98 0 5-Apr-98 0 5-May-98 5-May-98 0.15 7-Feb-98 0 5-Mar-98 0.05 5-Apr-98 0 6-May-98 0.55 9-Feb-98 0 7-Apr-98 0.02 6-May-98 6-May-98 0.55 9-Feb-98 0 1-Apr-98 0.05 8-May-98 9-May-98 0.09 11-Feb-98 0.34 12-May-98 0.01 11-Apr-98 0 11-May-98 0.01 11-Feb-98 0.34 12-May-98 0 11-May-98 0 11-May-98 0.02 11-Feb-98 0.34 12-May-98 0 11-May-98 0 11-May-98 0.02 11-Feb-98 0.34 12-May-98 0 11-May-98 0 11-May-98 0.02	2-Jan-98	0.01	2-Feb-98 0	2-Mar-98	0.03	2-Apr-98	0.26	2-Mav-98	0.25	2-lun-98	9 0
0.01 4-Feb-98 0 4-Apr-98 0 4-Apr-98 0 4-Apr-98 0 4-Apr-98 0 4-Apr-98 0 1-Apr-98 0 1-Apr-	3-Jan-98	0	3-Feb-98 0	3-Mar-98	0	3-Apr-98	0.43	3-May-98	0.14	3-7nn-98	0.41
0.15 5-Feb-98 0 5-Mar-98 0 5-Apr-98 0 5-May-98 0.15 7-Feb-98 0 6-Mar-98 0 6-May-98 0 6-May-98 0.15 7-Feb-98 0 7-Mar-98 0.05 7-Apr-98 0 7-May-98 0.05 10-Feb-98 0 1.18 0.05 7-Apr-98 0 7-May-98 0.09 11-Feb-98 0 11-Mar-98 0.01 11-Apr-98 0 11-May-98 0.01 11-Feb-98 0 11-Mar-98 0.01 11-Apr-98 0 11-May-98 0.02 11-Feb-98 0 11-Mar-98 0.01 11-Apr-98 0 11-May-98 0.01 11-Feb-98 0 11-Mar-98 0.07 11-Apr-98 0 11-May-98 0.02 15-Feb-98 0 11-Mar-98 0.07 11-Apr-98 0 11-May-98 0.02 15-Feb-98 0 11-Mar-98 0.07 11-Apr-98 0 11-M	4-Jan-98	0.01	4-Feb-98 0	4-Mar-98	0.01	4-Apr-98	0	4-May-98	0.04	4-Jun-98	0.09
0.5 6-Feb-98 0 6-Mar-98 0 11-Mar-98 0 11	5-Jan-98	0.15	5-Feb-98 0	5-Mar-98	0	5-Apr-98	0	5-May-98	90.0	5-Jun-98	0.19
0.15 7-Feb-98 0 7-Mar-98 0.05 7-Apr-98 0.02 7-May-98 0.95 8-Feb-98 0 9-Mar-68 1.05 8-Apr-98 0 7-May-98 0.05 10-Feb-98 0 10-Mar-98 0.05 1.44 9-Apr-98 0 10-May-98 0.09 11-Feb-98 0 11-Mar-98 0.01 11-Apr-98 0 11-May-98 0.01 12-Feb-98 0 11-Mar-98 0.01 11-Apr-98 0 11-May-98 0.02 15-Feb-98 0 14-Mar-98 0.04 14-Apr-98 0 11-May-98 0.01 15-Feb-98 0 14-Mar-98 0.07 15-Apr-98 0 14-May-98 0.02 16-Feb-98 0 16-Mar-98 0.07 15-Apr-98 0 15-Mar-98 0.02 16-Feb-98 0 16-Mar-98 0 16-Mar-98 0 16-Mar-98 0 16-Mar-98 0 16-Mar-98 0 16-Mar-98 0	6-Jan-98	0.5	6-Feb-98 0	6-Mar-98	0	6-Apr-98	0	6-May-98	0.05	6-Jun-98	0.04
0.95 8-Feb-98 0 8-Mar-88 0.05 8-Apr-98 0 8-May-98 0.55 9-Feb-98 0 1.18 9-Apr-98 0 10-May-98 0.09 11-Feb-98 0 11-Mar-98 0.01 11-Apr-98 0 11-May-98 0.04 13-Feb-98 0.34 11-Mar-98 0.01 11-Apr-98 0 11-May-98 0.07 14-Feb-98 0.34 11-Mar-98 0.04 14-Apr-98 0 11-May-98 0.01 14-Feb-98 0 14-Mar-98 0.04 14-Apr-98 0 11-May-98 0.01 15-Feb-98 0 14-Mar-98 0.07 15-May-98 0 15-May-98 0.02 15-Mar-98 0 15-Mar-98 0.07 15-May-98 0 15-May-98 0.02 15-Mar-98 0 15-Mar-98 0 15-May-98 0 15-May-98 0.02 15-Mar-98 0 15-Mar-98 0 15-May-98 0 15-May-98 <td>7-Jan-98</td> <td>0.15</td> <td>7-Feb-98 0</td> <td>7-Mar-98</td> <td>0.05</td> <td>7-Apr-98</td> <td>0.02</td> <td>7-May-98</td> <td>0.35</td> <td>7-Jun-98</td> <td>0</td>	7-Jan-98	0.15	7-Feb-98 0	7-Mar-98	0.05	7-Apr-98	0.02	7-May-98	0.35	7-Jun-98	0
0.55 9-Feb-98 0 9-Mar-98 1.18 9-Apr-98 0 9-May-98 0.09 10-Feb-98 0 10-Mar-98 0.18 10-Apr-98 0 10-May-98 0.04 11-Feb-98 0 11-Mar-98 0.01 11-Apr-98 0 12-May-98 0.04 12-Feb-98 0 12-Mar-98 0 12-May-98 13-May-98 0.01 14-Feb-98 0 14-Mar-98 0 12-May-98 13-May-98 0.01 15-Feb-98 0 14-Mar-98 0 14-Mar-98 0 14-Mar-98 0.01 15-Feb-98 0 14-Mar-98 0 15-Mar-98	8-Jan-98	0.95	8-Feb-98 0	8-Mar-98	0.05	8-Apr-98	0	8-May-98	0.28	8-Jun-98	0
0.09 10-Feb-98 0 10-Mar-98 0.18 10-Apr-98 0 10-May-98 0 11-Feb-98 0.34 11-Mar-98 0.01 11-Apr-98 0 11-Mar-98 0.24 13-Feb-98 0.34 12-Mar-98 0.04 13-Apr-98 0 13-Mar-98 0.01 14-Feb-98 0.0 14-Mar-98 0.04 14-Apr-98 0 14-Mary-98 0.01 14-Feb-98 0 15-Mary-98 0 14-Mary-98 0 14-Mary-98 0.02 15-Feb-98 0 16-Mary-98 0 15-Mary-98 0 15-Mary-98<	9-Jan-98	0.55	9-Feb-98 0	9-Mar-98	1.18	9-Apr-98	0	9-May-98	0.38	9-Jun-98	0
0 11-Feb-98 0 11-May-98 0.01 11-Apr-98 0 11-May-98 0.24 12-Feb-98 0.34 12-Mar-98 0 12-Apr-98 0 12-May-98 0.01 14-Feb-98 0 14-Mar-98 0.07 15-Apr-98 0 14-May-98 0.01 14-Feb-98 0 14-Mar-98 0.07 15-Apr-98 0 14-May-98 0 15-Feb-98 0 15-Mar-98 0.07 15-Apr-98 0.01 15-May-98 0 15-Feb-98 0 15-Mar-98 0 17-Apr-98 0.01 15-May-98 0.02 15-Feb-98 0.91 18-Mar-98 0 17-Apr-98 0.46 15-May-98 0.02 15-Feb-98 0.91 19-Mar-98 0.16 20-Apr-98 0 19-May-98 0.04 20-Feb-98 0.05 21-Mar-98 0.16 20-Apr-98 0 22-Mar-98 0.09 22-Feb-98 0.01 23-Apr-98 0.05 23-Apr-98	10-Jan-98	60.0	10-Feb-98 0	10-Mar-98	0.18	10-Apr-98	0	10-May-98	0	10-Jun-98	0
0 12-Feb-98 0.34 12-Mar-98 0 12-Apr-98 0 12-May-98 0.24 13-Feb-98 0 13-Mar-98 0 13-Apr-98 0 15-May-98 0.01 14-Feb-98 0 15-Mar-98 0.04 14-Apr-98 0 14-May-98 0 15-Feb-98 0 15-Mar-98 0.07 15-Apr-98 0 14-May-98 0 17-Feb-98 0 15-May-98 0 15-May-98 0 15-May-98 0 17-Feb-98 0 16-Mar-98 0 16-May-98 0 15-May-98 0 18-Feb-98 0 18-Mar-98 0 18-May-98 0 18-May-98 0.02 20-Feb-98 0.21 20-Mar-98 0 21-May-98 0 18-May-98 0.04 21-Feb-98 0.05 21-Mar-98 0 21-May-98 0 22-May-98 0.09 22-Feb-98 0.01 22-Mar-98 0 22-May-98 0 22-May	11-Jan-98	0	11-Feb-98 0	11-Mar-98	0.01	11-Apr-98	0	11-May-98	0	11-Jun-98	0
0.24 13-Feb-98 0 13-May-98 0 13-May-98 0 13-May-98 0 13-May-98 0 13-May-98 0 14-May-98 0 15-May-98	12-Jan-98	0		12-Mar-98	0	12-Apr-98	0	12-May-98	0	12-Jun-98	0
0.01 14-Feb-98 0 14-May-98 0.04 14-Apr-98 0 14-May-98 0 15-Feb-98 0 15-May-98 0.07 15-Apr-98 0 15-May-98 0 16-Feb-98 0 16-May-98 0 16-May-98 0 15-May-98 0 17-Feb-98 0 17-May-98 0 16-May-98 0 16-May-98 0.02 18-Feb-98 0.91 19-Mar-98 0 16-May-98 0 16-May-98 0.02 19-Feb-98 0.91 19-Mar-98 0.16 20-Apr-98 0 19-May-98 0.04 20-Feb-98 0.05 21-Mar-98 0.16 20-Apr-98 0 22-May-98 0.09 22-Feb-98 0.01 22-Mar-98 0 23-Apr-98 0 23-May-98 0.09 25-Feb-98 0.01 24-Mar-98 0 25-May-98 0 26-May-98 0 25-Feb-98 0.01 24-Mar-98 0 25-May-98 0	13-Jan-98	0.24	13-Feb-98 0	13-Mar-98	0	13-Apr-98	0	13-May-98	0	13-Jun-98	0.02
0 15-Feb-98 0 15-Mar-98 0.07 15-Apr-98 0 15-May-98 0 16-Feb-98 0 16-Mar-98 0.01 16-Apr-98 0.01 16-May-98 0 17-Feb-98 0 17-Mar-98 0 17-May-98 0.74 17-May-98 17-May-98 0.02 18-Feb-98 0.91 19-Mar-98 0.16 20-Apr-98 0 18-May-98 0.03 20-Feb-98 0.21 20-Mar-98 0.16 20-Apr-98 0 21-May-98 0.04 20-Feb-98 0.05 21-Mar-98 0.16 20-Apr-98 0 21-May-98 0.09 22-Feb-98 0.01 22-Mar-98 0.39 22-Apr-98 0 22-May-98 0.09 25-Feb-98 0.01 24-Apr-98 0.06 25-May-98 0.09 25-Feb-98 0.01 25-Mar-98 0.04 25-May-98 0 25-Feb-98 0.01 27-Apr-98 0.04 27-May-98 0 27-Feb-98 <td>14-Jan-98</td> <td>0.01</td> <td>14-Feb-98 0</td> <td>14-Mar-98</td> <td>0.04</td> <td>14-Apr-98</td> <td>0</td> <td>14-May-98</td> <td>0</td> <td>14-Jun-98</td> <td>0</td>	14-Jan-98	0.01	14-Feb-98 0	14-Mar-98	0.04	14-Apr-98	0	14-May-98	0	14-Jun-98	0
0 16-Feb-98 0 16-Mar-98 0 16-Apr-98 0.01 16-May-98 0.01 17-May-98 0.01 18-May-98 0.01 18-May-98 0.02 18-May-98 0.02 18-May-98 0.03 18-May-98 0.04 1	15-Jan-98	0	15-Feb-98 0	15-Mar-98	0.07	15-Apr-98	0	15-May-98	0	15-Jun-98	0.74
0 17-Feb-98 0 17-Mar-98 0 17-May-98 17-May-98	16-Jan-98	0	16-Feb-98 0	16-Mar-98	0	16-Apr-98	0.01	16-May-98	0	16-Jun-98	0.2
0 18-Feb-98 0 18-Mar-98 0 18-Apr-98 0 18-May-98 0.02 19-Feb-98 0.91 19-Mar-98 0.16 20-Apr-98 0 19-May-98 0.04 20-Feb-98 0.21 20-Mar-98 0.16 20-Apr-98 0 20-May-98 0.04 21-Feb-98 0.05 21-Mar-98 0.39 22-Apr-98 0 21-May-98 0.09 22-Feb-98 0.01 24-Mar-98 0 24-Apr-98 0.34 24-May-98 0.09 25-Feb-98 0.01 24-Mar-98 0.34 25-Apr-98 0.06 25-May-98 0.09 25-Feb-98 0.17 26-Mar-98 0.34 26-Apr-98 0.06 25-May-98 0 27-Feb-98 0.17 26-Mar-98 0.22 27-Apr-98 0.04 27-May-98 0 28-Feb-98 0.01 28-Mar-98 0.01 28-Apr-98 0 29-May-98 0 28-Mar-98 0.01 28-Apr-98 0 29-May-	17-Jan-98	0	17-Feb-98 0	17-Mar-98	0	17-Apr-98	0.46	17-May-98	0	17-Jun-98	0.01
0.02 19-Feb-98 0.91 19-Mar-98 0 19-Apr-98 0 19-May-98 0.04 20-Feb-96 0.21 20-Mar-98 0.16 20-Apr-98 0.48 20-May-98 0.04 20-Feb-96 0.21 20-Mar-98 0.16 20-Apr-98 0.48 20-May-98 0 21-Feb-98 0.05 21-Mar-98 0.39 22-Apr-98 0 21-May-98 0.09 22-Feb-98 0.01 24-Mar-98 0.34 24-Mar-98 0.34 24-Mar-98 0.09 25-Feb-98 0.17 26-Mar-98 0.34 26-Apr-98 0.06 25-Mar-98 0 26-Feb-98 0.17 26-Mar-98 0.22 27-Apr-98 0.04 27-Mar-98 0 27-Feb-98 0.01 28-Mar-98 0.01 28-Apr-98 0.04 27-Mar-98 0 28-Feb-98 0.01 28-Apr-98 0.04 29-Mar-98 0.01 29-Apr-98 0 29-Mar-98 0 29-Apr-98 0 29-Mar-98	18-Jan-98	0	18-Feb-98 0	18-Mar-98	0	18-Apr-98	0	18-May-98	0	18-Jun-98	0.04
0.04 20-Feb-98 0.21 20-Mar-98 0.16 20-Apr-9B 0.48 20-May-9B 0 21-Feb-96 0.05 21-Mar-9B 0 21-Apr-9B 0 21-May-9B 0 22-Feb-9B 0.05 22-Mar-9B 0.39 22-Apr-9B 0 22-May-9B 0.09 23-Feb-9B 0.01 24-Mar-9B 0 24-Mar-9B 0.34 24-May-9B 0.09 25-Feb-9B 0.01 24-Mar-9B 0 25-Mar-9B 0.06 25-May-9B 0 26-Feb-9B 0.17 26-Mar-9B 0.34 26-Apr-9B 0.06 25-May-9B 0 27-Feb-9B 0.01 27-Mar-9B 0.22 27-Apr-9B 0.04 27-May-9B 0 28-Feb-9B 0.01 28-Mar-9B 0.01 28-Apr-9B 0.04 28-May-9B 0 28-Mar-9B 0.01 28-Apr-9B 0.04 29-May-9B 0 28-Mar-9B 0.05 29-Apr-9B 0 29-May-9B 0	19-Jan-98	0.02		19-Mar-98	0	19-Apr-98	0	19-May-98	0.01	19-Jun-98	0
0 21-Feb-98 0.05 21-Mar-98 0 21-Apr-98 0 21-May-98 0 22-Feb-98 0 22-Mar-98 0.39 22-Apr-98 0 22-May-98 0.09 23-Feb-98 0 23-Mar-98 0 23-Mar-98 0 23-May-98 0.97 24-Feb-98 0.01 24-Mar-98 0 24-Mar-98 0.34 24-May-98 0.09 25-Feb-98 0.17 26-Mar-98 0 0 26-Mar-98 0 27-Feb-98 0.01 27-Mar-98 0.22 27-Apr-98 0.04 27-Mar-98 0 28-Feb-98 0.01 28-Mar-98 0.01 28-Mar-98 0 28-Mar-98 0.03 28-Feb-98 0 28-Mar-98 0 29-Mar-98	20-Jan-98	0.04		20-Mar-98	0.16	20-Apr-98	0.48	20-May-98	0	20-Jun-98	0.04
0 22-Feb-98 0 22-Mar-98 0.39 22-Apr-98 0 22-May-98 0.09 23-Feb-98 0.01 24-Mar-98 0 24-Apr-98 0 24-May-98 0.09 24-Feb-98 0.01 24-Mar-98 0 24-Apr-98 0.34 24-May-98 0.09 25-Feb-98 0.01 25-Mar-98 0.06 25-May-98 0 26-May-98 0 26-Feb-98 0.17 26-Mar-98 0.34 26-Apr-98 0 26-May-98 0 27-Feb-98 0.01 27-Mar-98 0.01 27-Apr-98 0 28-May-98 0.03 28-Feb-98 0 28-Mar-98 0 29-Apr-98 0 29-May-98 0.03 28-Feb-98 0 29-Mar-98 0 29-Apr-98 0 29-May-98 0.03 29-Mar-98 0 29-Apr-98 0 29-May-98 0 29-May-98 0 29-May-98 0 29-May-98 0 29-May-98 0 29-May-98<	21-Jan-98	0		21-Mar-98	0	21-Apr-98	0	21-May-98	0.63	21-Jun-98	0
0.09 23-Feb-98 0 23-Mar-98 0 23-Apr-98 0 23-Apr-98 0 23-May-98 0.97 24-Feb-98 0.01 24-Mar-98 0 24-Apr-98 0.34 24-May-98 0.09 25-Feb-98 0.07 25-Mar-98 0.06 25-May-98 0 0 26-Feb-98 0.17 26-Mar-98 0.34 26-Apr-98 0 26-May-98 0 27-Feb-98 0.01 27-Mar-98 0.01 27-May-98 0 28-May-98 0.03 28-Feb-98 0 28-Mar-98 0.01 28-Apr-98 0 29-May-98 0.03 29-Mar-98 0 29-Apr-98 0 29-May-98 0.17 30-Mar-98 0 0 29-Apr-98 0 29-May-98	22-Jan-98	0	22-Feb-98 0	22-Mar-98	0.39	22-Apr-98	0	22-May-98	0.47	22-Jun-98	0
0.97 24-Feb-98 0.01 24-May-98 0.34 24-May-98 0.09 25-Feb-98 0.92 25-Mar-98 0 25-Apr-98 0.06 25-May-98 0 26-Feb-98 0.17 26-Mar-98 0.34 26-Apr-98 0 26-May-98 0 27-Feb-98 0.01 27-Mar-98 0.02 27-Apr-98 0 27-May-98 0 28-Feb-98 0.01 28-Mar-98 0 28-Mar-98 0 29-Mar-98 0 29-Mar-98 0.03 29-Mar-98 0 29-Apr-98 0 29-Mar-98 0 29-Mar-98 0	23-Jan-98	0.09		23-Mar-98	0	23-Apr-98	0	23-May-98	0.42	23-Jun-98	0
0.09 25-Feb-98 0.92 25-Mar-98 0 25-Apr-98 0.06 25-May-98 0 26-Feb-98 0.17 26-Mar-98 0.34 26-Apr-98 0 26-May-98 0 27-Feb-98 0.01 27-Mar-98 0.04 27-May-98 0 28-Feb-98 0 28-Mar-98 0.01 28-Apr-98 0 0.03 29-Mar-98 0 29-Apr-98 0 29-May-98 0.17 30-Mar-98 0.06 30-Apr-98 0 30-May-98	24-Jan-98	0.97		24-Mar-98	0	24-Apr-98	0.34	24-May-98	90.0	24-Jun-98	0
0 26-Feb-98 0.17 26-Mar-98 0.34 26-Apr-98 0 26-May-98 0 27-Feb-98 0.01 27-Mar-98 0.02 27-Apr-98 0.04 27-May-98 0 28-Feb-98 0 28-Mar-98 0.01 28-Apr-98 0 28-May-98 0.03 29-Mar-98 0 29-Apr-98 0 29-May-98 0.17 30-Mar-98 0.06 30-Apr-98 0 30-May-98	25-Jan-98	0.09		25-Mar-98	0	25-Apr-98	90.0	25-May-98	0.09	25-Jun-98	0
0 27-Feb-98 0.01 27-May-98 0.04 27-May-98 0 28-Feb-98 0 28-Mar-98 0.01 28-Apr-98 0 28-May-98 0.03 29-Mar-98 0 29-Apr-98 0 29-May-98 0.17 30-Mar-98 0.06 30-Apr-98 0 30-May-98	26-Jan-98	0		26-Mar-98	0.34	26-Apr-98	0	26-May-98	0.2	26-Jun-98	0.1
0 28-Feb-98 0 28-Mar-98 0.01 28-Apr-98 0 28-May-98 0.03 29-Mar-98 0 29-Apr-98 0 29-May-98 0.17 30-Mar-98 0.06 30-Apr-98 0 30-May-98	27-Jan-98	0		27-Mar-98	0.22	27-Apr-98	0.04	27-May-98	0	27-Jun-98	0
0.03 29-Mar-98 0 29-Apr-98 0 29-May-98 0 30-May-98 0 30-Mar-98 0 30-May-98	28-Jan-98	0		28-Mar-98	0.01	28-Apr-98	0	28-May-98	0	28-Jun-98	0
0.17 30-Mar-98 0.06 30-Apr-98 0	29-Jan-98	0.03		29-Mar-98	0	29-Apr-98	0	29-May-98	0.03	29-Jun-98	0.01
	30-Jan-98	0.17		30-Mar-98	90'0	30-Apr-98	0	30-May-98	0	30-Jun-98	1.27
31-Jan-98 0 31-Mar-98	31-Jan-98	0		31-Mar-98	0.36			31-May-98	0.15		
Total: 4.07 2.62 3.51 2.23 3.61	Total:	4.07	2.62		3.51		2.23		3.61		3 22

Source: National Oceanic Atmospheric Administration, National Weather Service, Caribou, Maine Note: Reported "trace" amounts of rain were listed as zero precipitation.

		Month	Monthly Rainfall (inches)	(Se			Cumula	Cumulative Rainfall (inches)	thes)	
Month	Normal ¹	1995	1996	1997	1998	Normal	1995	1996	1997	1998
Jan	2.42	5.60	4.05	3.60	4.07	2.42	5.60	4.05	3.60	4.07
Feb	1.92	2.70	2.69	2.52	2.62	4.34	8.30	6.74	6.12	69.9
Mar	2.43	2.23	1.74	2.47	3.51	6.77	10.53	8.48	8,59	10.20
Apr	2.45	2.12	3.59	1.68	2.23	9.22	12.65	12.07	10.27	12.43
May	3.07	2.46	3.52	5.02	3.61	12.29	15.11	15.59	15.29	16.04
Jun	2.91	1.18	3.42	4.37	3.22	15.20	16.29	19.01	19.66	19.26
Jul	4.01	1.48	6.32	2.64		19.21	17.77	25.33	22.30	
Aug	4.07	2.94	2.66	4.12		23.28	20.71	27.99	26.42	
Sep	3.45	1.90	3.81	2.67		26.73	22.61	31.80	29.09	
Oct	3.10	5.13	3.41	1.31		29.83	27.74	35.21	30.40	
Nov	3.55	4.88	1.49	2.08		33.38	32.62	36.70	32.48	
Dec	3.22	1.79	3.72	2.81		36.60	34.41	40.42	35.29	

¹ Normal represents historical average for the month.

Figure 3-2 Monthly and Cumulative Rainfall Amounts

4.0 AUTO HOBBY SHOP

4.1 OPERATIONS

Figure 4-1 presents the average flow at each AIW. In general, the AIWs located at the AHS operated per design throughout the first half of 1998 (Table 4-1).

4.2 CONCLUSIONS AND RECOMMENDATIONS

Soil gas samples were not collected at MPs from January through April at all biovent sites due to winter conditions. Table 4-2 presents the monthly AIW groundwater data, including a graph showing the February, April, and June groundwater levels in the AIWs located along the north-south section identified on Figure 4-1. It is evident that groundwater saturation at the AHS was not a problem; only AIW-1 and AIW-2 had groundwater levels approaching the top of the screen. Figure 4-2 presents monthly groundwater levels and air injection rates along the north-south transect for 1998. Monthly and normal rainfall totals have been added for correlation with the water and air data. All AIWs accepted air except AIW-2 (May airflow = zero), which is located near the south end of the AHS.

Data presented in Table 4-1 indicate that active respiration is occurring at MPs 5 and 6. Background location MP 5 continues to exhibit the greatest volatile readings (422 ppmv) and the lowest oxygen readings (1.4 percent).

Respiration tests performed on June 23, 1998 included four MPs, one of which was a new location not previously tested. Three winter respiration tests were performed using the oxygen sensors in MPs 6-4, 6-5, and 8-15. Winter respiration tests were performed in January simply by turning off the biovent system and collecting readings from the oxygen sensor every hour. Respiration data and results for the respiration tests are shown on Figures A-1 through A-4 (Appendix A). MP 1-5 and 2-13 tested in 1996 and 1997 were not tested this time due to water saturation and high oxygen, respectively. MPs 4-13, 6-5, 8-15, and 9-6.5 were at background levels, indicating that biodegradation may be complete. The oxygen utilization rate at MP 5BG was 0.95 percent/hour in June, unchanged from 0.98 percent a year ago. This constant reading is an indication that the air from AIWs 7 and 6 has not affected or reached this area. The remaining respiration tests were at 0.21 percent per hour or less, a level not much greater than background.

The biovent system had operated for a total of 575 days through June 30, 1998.

Overall Recommendation for AHS: Most of the site is operating per design, and most MPs are providing data. No significant operational changes to the air flow settings or improvements to MPs are recommended for the AHS site at this time; therefore, the system should remain in operation until all areas of the site reflect background conditions. The distance to the potentially contaminated soils near MP-5BG is beyond the radius of influence of the nearest AIWs; therefore, two new AIWs are recommended to be added between boreholes BH2 and BH3 and BH4 (Figure 4-1).

22784/043/FIG3-3.DGN

Figure 4-1
AHS Biovent System Layout and Average Wellhead Flow

Table 4 - 1 AHS Air Flow and Monitoring Point Data

Air	Screen Interval	Overburden	Design			Individual Well	Individual Well Head Flow (scfm)			
Injection		Ā	Air Flow							Average
weil			(scim)	January 1998	February 1998	March 1998	April 1998	May 1998	June 1998	Jan - Jun
AIW-1	14 21	9.7	3.8	3.8	3.8	3.8	3.4	3.2	3.8	3.6
AIW-2	15 22	10.4	3.0	e	en	6	2.7	Ho.	2.8	2.9
AIW-3	15 22	10.4	3.0	e	8	6	2.8	2.7	e	2.9
AIW-4	14 22	9.7	3.8	3.8	3.8	3.8	3.5	3.8	3.7	3.7
AIW-5	13 21	9.0	3.8	3.8	3.8	3.8	3.5	3.8	3.8	3.8
AIW-6	13 20	9.0	4.5	4.5	4.5	4.5	4.1	•	4.5	4.4
AIW-7	8 15	5.6	3.0	6	9	2.6	3		6	2.9
AIW-8	6 13	4.2	1.5	1.5	1.5	1.5	1.5	1.5	1.5	5:
AIW-9	10 17	6.9	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8
A!W-10	6 10	4.2	1.3	0	1.3	1.3	1.3	1.3	1.3	- -
AIW-11	7 14	4.9	2.0	2	2	4:	1.9	7	2	1.9
AIW-12	12 19	8.3	3.0	e	es	1.6	1.4	2	2.1	2.2
AIW-13	8	5.6	2.8	2.8	2.8	1.9	2.4	2.8	2.8	2.6
AIW-14	11 18	9.7	3.0	0	frozen	6	2.4	2	n	2.1
AIW-15	9 16	6.3	2.8	2.8	2.8	2.5	2.5	2.8	2.8	2.7
AIW-16	15 23	10.4	3.8	off	off	Ju	Off	JJ0	1.5	5.
AIW-17	5 10	3.5	2.0	2	2	7	2	2	7	2.0
AIW-18	11	4.2	2.0	2	2	2	2	2	2	2.0
AIW-19	7	4.9	2.0	2	2	2	2	2	2	2.0
Total air flow:	1,4		53.9	45.8	47.1	46.5	45.2	43.7	50.4	
Pressure (psi):	**			3.4	2.1	2.1	1.8	2	2.3	

Oint (in bigs) Debtoom Notes: O ₂ (%) CO ₂ (%) (pmm) O ₂ (%) CO ₂ (%) TVH TVH No Soil Gas Somples Collected Somples	Monitoring		Screen Interval								Soil Gas Sa	Soil Gas Sampling Results							
top bostom Notes: O ₂ (%) CO2,(%) (ppm/l) O ₂ (%) CO2,(%) (ppm/l) O ₂ (%) O ₂	Point	i C	(u pas)		STROW Jar	-		February 1998		March 19	98 TVH	Apr. Apr	ii 1998 ii 1998		May 1998	T/AE		June 1998	1
5 5.5 No Soil Gas		to		Notes:	02 (%)2			%)2 CO2 (%) (ppm		(%) ² CO ₂ (%)	(hudd)	O2 (%)2 CC)	0, (%)	CO ₂ (%)	(bpmv)	O ₂ (%) ²	CO ₂ (%)	(vmdd)
10 10.5 10	2-1-5	5	5.5		No	o Soil Gas	_	No Soil Gas	Н	No Soil G	38	No		-	no flow			water	
3 3.5	0-1-10	7	10.5		Samp	les Collected		Samples Collected		Samples Coll	ected	Sample	s Collected		no flow			water	
13 13.5 13	P-2-3	e	3.5		due to W	finter Conditions	3	tue to Winter Conditions		due to Winter Co	onditions	due to Win	ler Conditions		no flow			water	
13 13.5 13	2-2-8	60	8.5											20.6	0.3	19	20.0	0.3	0.7
5 5.5 5.	2-2-13	13	13.5											20.8	0.0	7	20.4	0.0	1.7
10 105 3 35 O ₂ Util Rate = 0.19%hr ⁴ 4 9 O ₂ Util Rate = 0.19%hr ⁴ 4 4 4.5 O ₂ Util Rate = 0.02%hr ⁴ 5 5.5 O ₂ Util Rate = 0.02%hr ⁴ 6 4.5 O ₂ Util Rate = 0.02%hr ⁴ 7 5 5 O ₂ Util Rate = 0.02%hr ⁴ 8 6.5 O ₂ Util Rate = 0.02%hr ⁴ 9 0 ₂ Util Rate = 0.19%hr ⁴ 15.9 na na 13.2 na na 16.4 na na 16.4 15.5 O ₂ Util Rate = 0.14%hr ⁴ 16.0 na na 16.5 na na 18.5 16.5 O ₂ Util Rate = 0.14%hr ⁴ 18.3 na na 18.5 na na 18.5 na na 18.5 19.4 na na 18.5 na na 18.5 19.4 na na 19.4	2-3-5	S	5.5												no flow			no flow	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 3.5 O ₂ Util. Rate = 0.09%/hr² 4 4 9 O ₂ Util. Rate = 0.02%/hr² 3 3.5 O ₂ Util. Rate = 0.02%/hr² 4 4.5 O ₂ Util. Rate = 0.02%/hr² 5 5.5 O ₂ Util. Rate = 0.02%/hr² 6 5.5 O ₂ Util. Rate = 0.02%/hr² 7 O ₂ Util. Rate = 0.02%/hr² 8 8.5 O ₂ Util. Rate = 0.02%/hr² 16.0 na na 15.5 na na na 18.4 na na 18.3 10 10.5 O ₂ Util. Rate = 0.02%/hr² 18.3 na na 18.5 na na 18.5 na na 18.5 15 O ₂ Util. Rate = 0.04%/hr² 19.0 na na 18.5 na na 19.4 na na 19.4 15 15.5 O ₂ Util. Rate = 0.09%/hr² 15 O ₂ Util. Rate = 0.00%/hr² 15 O ₃ Util. Rate = 0.00%/hr² 16 O ₃ Util. Rate = 0.00%/hr² 17 O ₃ Util. Rate = 0.00%/hr² 18 O ₃ Util. Rate = 0.00%/hr² 19 O ₃ Util. Rate = 0.00%/hr² 19 O ₃ Util. Rate = 0.00%/hr² 19 O ₃ Util. Rate = 0.00%/hr² 10 O ₃ Util. Rate = 0.00%/hr² 10 O ₃ Util. Rate = 0.00%/hr² 10 O ₃	2-3-10	5	10.5												no flow			water	
4 4 9 9.5 O ₂ Util Rate = 0.05%/hr² 13.5 O ₂ Util Rate = 0.05%/hr² 14.4 na na 113.2 na na 16.4 na na 16.4 na na 16.4 na na na 16.4 na na na 16.4 na 18.5 na na na na 19.4 na na na na 19.4 na na 19.4 na na 19.4 na 19.4 na na 19.4 na	2-4-3	6	3.5	O ₂ Util. Rate = 0.19%/hr											no flow		16.5	2.2	261
4 9 O ₂ Uill. Rate = 0.09%/hr² 3 3.5 S.5 O ₂ Uill. Rate = 0.02%/hr² 16.4 na 13.2 na 16.4 na 16.4 4 4.5 O ₂ Uill. Rate = 0.02%/hr² 16.0 na na 15.5 na na 16.4 na na 16.4 4 4.5 O ₂ Uill. Rate = 0.02%/hr² 16.0 na na 15.5 na na 16.4 na na 16.4 4 4.5 O ₂ Sensor 17.9 na na 16.2 na na 16.5 15 15.5 O ₂ Uill. Rate = 0.14%/hr² 19.0 na na 18.5 na na 18.5 6.5 7 O ₂ Uill. Rate = 0.09%/hr² 19.0 na na 18.5 na 19.4 na 19.4	6-4-6	6	9.5									-			no flow			water	
4 9 0 0 Util Rate = 0.95%/hr² 8 8.5 9 0.5 Util Rate = 0.21%/hr² 4 4.5 9 0.5 Util Rate = 0.02%/hr² 15 5.5 15 0.2 Util Rate = 0.02%/hr² 16 0.5 O ₂ Util Rate = 0.02%/hr² 18 3 na na 18.5 na na na 18.5 na	2-4-13	5	13.5	O ₂ Util. Rate = 0.08%/hr4										20.5	6.0	6.5	18.5	1.3	5.9
3 3.5 8 8.5 O ₂ UBl. Rate = 0.02% In ⁴ 14.4 na na 13.2 na na 16.4 na 16.4 na na ma 16.5 na na 16.5 na na 16.3 na na 16.5 na na 19.4 na 19.4 na 19.4 na na 16.5 na na 16.5 na na 16.5 na na 16.5 na na 19.4 na 19.4	-5BG-4	*	6	O ₂ Util. Rate = 0.95%/hr		1								4.0	16.8	422	1.4	20.0	
8 8.5 O ₂ UBI Rate = 0.02%/hr ⁴ 16.0 na na 13.2 na na 16.4 na na 16.4 16.4 16.5 na na 16.4 16.5 na na 16.4 16.5 na na	-6-3	3	3.5												no flow			no flow	
4 4.5 O ₂ UBI. Rate = 0.23%/n/r ⁴ 16.0 na na 13.2 na na 16.4 na na 16.4 na na 16.4 4 16.4 16.0 na na 16.4 na na 16.5 na na 19.4 na na na 19.4 na na na 19.5 na na na 19.4 na	8-9-	80	8.5												no flow			water	
5 5.5 O ₂ Ubil. Rate = 0.02%/hr* 16.0 na na 15.6 na maff na na maff 4 4.5 5 O ₂ Sensor 17.9 na na 18.4 na 18.4 na 18.3 10 10.5 O ₂ Sensor 18.3 na na 18.3 na na 18.5 na na 18.5 6.5 7 O ₂ Ubil. Rate = 0.08%/hr* 19.0 na 18.5 na na 19.4	-6-4	4	4.5	O ₂ Util. Rate = 0.21%/hr ⁸	14.4	na na	13.	2			2		na na	15.2	E	g	13.1	au	e
4.5 5 4 4.5 O ₂ Sensor 17.9 na na 18.2 na na 18.3 10 10.5 O ₂ Usil Rate = 0.14%/nt ⁴ 19.0 na na 18.5 na na 19.4 6.5 7 O ₂ Uill Rate = 0.08%/nt ² 19.4 na 19.4 na 19.4	2-6-5	S	5.5	O ₂ Util. Rate = 0.02%/hr ⁸	16.0	na na	15.	2			2	maif	na na	maif	20	80	malf	B	æ
4 4.5 O ₂ Sensor 17.9 na na 18.2 na na 18.4 na na 18.3 12 10 10.5 O ₂ UIII Rate = 0.14%/nir 19.0 na na 18.5 na na 19.2 na na 19.4 19.4 19.4 19.4 19.5 na na 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4	27-4.5	4	5						-						no flow			no flow	
10 10.5 O ₂ Sensor 18.3 na na 18.3 na na 18.5 na na 18.5 na na 19.4 19.4 na na 19.4 15.5 O ₂ Uill Rate = 0.14% In ² 19.0 na na 18.5 na na 19.4 19.4 na na 19.4	2-B-4	4	4.5	O ₂ Sensor	17.9	_		80			92	18.3	20 US	16.7	80	2	15.3	na na	an an
15 15.5 O ₂ Uill Rate = 0.14%/nr ¹ 19.0 na na 18.5 na na 19.2 na na 19.4 6.5 7 O ₂ Uill Rate = 0.09%/nr ²	2-8-10	5	10.5	O ₂ Sensor	18.3	na na	18.	er.	_		2	18.5	na na	18.5	2	ē	18.5	2	ē
6.5	2-8-15	15	15.5	O ₂ Util. Rate = 0.14%/hr ⁵	19.0	an an	- 18	82	_		2		na na	19.4	=	82	17.2	2	8
	MP-9-6.5	9	5 7	O ₂ Util. Rate = 0.08%/hr*											no flow		18.7	9.0	9.0

¹ Maximum pressure before potential for fracturing of soil. Conservative value calculated at top of screen assuming density of soil is 100 lbs/ft².

² The monthly O₂ sensor results is the average for month.

NOTE: AIWs that are noted to be "off" have been shutdown due to well seal leaks.

⁹ Messured from top of casing.

⁴ Test performed on 6/23/98.

⁵ Test performed on this oxygen sensor in January 1999 (see Table 3-1 footnote 3).

⁶ Test performed on this oxygen sensor in January 1999 (see Table 3-1 footnote 3).

⁶ Days = below ground surface, nr = no reading, na = not applicable, no = not operational, malf = malfunction.

Table 4-2 AHS Groundwater Level Data

Auto Hobby Shop Groundwater Levels from January through June 1998

Well No.	Well Depth below TOC	Top of Screen below TOC	Jan-98	Feb-98	Mar-98	Apr-98	May-98	Jun-98
AIW-1	21	14	21:	21	16.2	15	14.3	14.9
AIW-2	22	15	22.	22	16.3	14.8	13.7	14.9
AIW-3	22	15	22	22	16.8	15.6	15.3	16.
AIW-4	22	: 14	22	22	16	14.7	13.4	14.3
AIW-5	21	13	21	21	21	21.	13.9	14.3
AIW-6	20	13	19.5	20	17.7	16.4	15.7	16.3
AIW-7	15	8	15	15	14.7	13.7	12.3	13.2
AIW-8	13.5	6 ,	13.5	13.5	13.1	10.9	9.9	10.6
AIW-9	17	10	17.	17	15.5	14.3	13.8	14.3
AIW-10	10	6	10	10	10.4	10	10	10
AIW-11	14	7	14	14	14.3	14	13.4	14
AIW-12	19	12	19	19	19.1	18.9	17.6	18.9
AIW-13	15	8	15	15:	14.9	18	12.9	13.6
AIW-14	18	11	18	18	17.5	17.3	17.2	17.6
AIW-15	16	9	16	16	15.5	15.7	15.2	11
AIW-16	23	15	23	23	12.9	13.8	13.5	14.6
AIW-17	10	5	10	10	9.1	8.7	8.4	8.8
AIW-18	11	6	11	11	8.9	9.5	9.4	9.7
AIW-19	12	7	12	12	9.1	9.5	10	10.2

Bolded value indicates groundwater depth is at or above the top of screen.

Groundwater Levels along North / South Transect at Auto Hobby Shop (see Figure 4-1 for transect)

Well No.	Elevation at	Approx elev.	Elevation	Elevation	Elevation	Depth to	Elevation	Depth to	Elevation
	top of casing	of ground	of water - FEB.	of water - APR.	of water - JUN.	top of	of TOS	bottom of	of BOS
	(ft amsi)	(2 ft < TOC)	(ft amsi)	(ft amsl)	(ft amsl)	screen (ft)	(ft amsl)	screen (ft)	(ft amsl)
AIW-19	672.69	670.69	660.69	663.19	662.49	7	665.69		
AIW-18	676.27	674.27	665.27	666.77	666,57	6	670.27		665.27
AIW-17	671.41	669.41	661.41	662.71	662.61	5	666.41		661.41
AIW-8	675.20	673.20	661.70	664,30	664.60	6	669.20		662.20
AIW-9	675.09	673.09	658.09	660.79	660.79	10			658.09
AIW-12	675.41	673.41	656.41	656.51	656,51	12		19	656.41
AIW-2	675.70	673.70	653.70	660.90	660.80	15	660.70		653.70
AIW-1	675.45	673.45			660.55		661.45		654.45

North / South Cross Section at Auto Hobby Shop

Figure 4-2 AHS Groundwater/Air Flow Relations Along North/South Section

5.0 BASE EXCHANGE SERVICE STATION

5.1 OPERATIONS

The BXSS, located in OU 5, consists of 7 AIWs and 12 MPs (Figure 5-1). The biovent system pilot test originally installed in the fall of 1993 (Earth Tech 1995) consisted of three AIWs (designated as biovent points, or BVs) and six MPs (designated as vapor monitoring points, or VMs). During the summer/fall of 1996, four additional AIWs and six MPs were installed to complete the system; the newly expanded system was started up in October 1996. BEI assumed O&M responsibilities in February 1995, and the BXSS system had operated 833 days through June 30, 1998.

Table 5-1 provides individual AIW air flow data for the BXSS bioventing system. Soil gas samples were not collected from January through April due to winter conditions. Most MPs produced soil-gas samples in May and June. The lower screened interval (8 to 8.5 ft bgs) in the VMs did not produce air samples in May, but 2 out of the 3 VMs (VM-1 and VM-3) produced soil-gas in June. Over the last year, VM-2 has only allowed soil-gas samples to be collected during November 1997.

5.2 CONCLUSIONS AND RECOMMENDATIONS

Water levels in the AIWs and BVs in April through June were elevated but only partially inundating through the reporting period (Table 5-2 and Figure 5-2), the exception being water levels near the top of the BV-2 screen from March through May. The water levels had no effect on the air injection rates on any BV or AIW (Table 5-1).

Respiration tests performed at six monitoring stations (Figures A-5 through A-8) showed that oxygen utilization rates ranged from 0.07 to 0.48 percent/hour. Oxygen utilization rates noted at three stations previously tested (VM-1-5, VM-2-5, and MP-2-8.5) were relatively unchanged. The most significant change has occurred in the background MP. The last respiration test conducted here in the fall of 1996 was 1.3 percent/hour which was significantly higher than the 0.07 percent/hour noted in June (Figure A-7). This drop along with oxygen levels of 18.8 and 16.8 percent during May and June, respectively, suggests sufficient biodegradation may have occurred in this area. The background MP is on the outer fringe of the radius of influence from AIW-3.

In general, oxygen levels have increased in most MPs since samples were first taken in September 1996. VM-1-5 and VM-2-5 continue to indicate that enhanced biodegradation is occurring (i.e., low oxygen levels and high oxygen utilization rates). Oxygen levels ranged from 0.9 to 7.0 percent in VM-1-5 and VM-2-5 during operation in May and June (see Table 5-1). The oxygen utilization rate in VM-1-5 and VM-2-5 was 0.40 and 0.48 percent/hour, respectively, which is indicative of active respiration. In addition, TVH levels could not be measured at either VM during May and June due to flame out.

A respiration rate of 0.5 percent/hour, corresponding to a total petroleum hydrocarbon (TPH) degradation rate of approximately 9 mg TPH/kg soil/day, suggests that the site should be at values near 500 mg/kg within one season (assuming initial concentrations around 1600 mg/kg). Since operation of the biovent system has been occurring at the BV wells for over 800 days and nearly two full summers at the AIW area, the BXSS should have TPH values below preliminary remediation goals (PRGs). Since oxygen utilization rates at the VMs have been somewhat constant throughout the bioventing period, it appears that biodegradation is limited (i.e., due to lack of supplied air or an abundance of moisture).

Overall Recommendation for BXSS: During the winter months, the air injection rate should be kept at the design flow rate in the BV wells to maximize the potential for aeration of the deeper intervals. Soil samples will have been collected by the end of the summer of 1998. Sampling locations are included near the BXSS Wetland (high headspace sampling sites; see Figure 5-1) and the background MP4BG area. If bioventing is continued, it is recommended that one or more AIWs be added near the high headspace readings noted in the last semiannual report (see Figure 5-1 for the proposed location). If TPH concentrations have not declined significantly from initial conditions (i.e., less than 30 percent decrease) or PRGs have been met, bioventing should cease and other remedial options should be evaluated. A lack of a decrease in TPH concentrations is likely due to oxygen-limiting conditions (low-permeability soils) as indicated in VM-1 and VM-2.

Figure 5-1
BXSS Biovent System Layout and Average Wellhead Flow

Table 5-1 BXSS Air Flow and Monitoring Point Data

Air	Screen Inte	rval Overbu	Overburden Design			Individual We	Individual Well Head Flow (scfm)		
Injection	f/bgs	Pressure ²	ure ² Air Flow	· · · · · · · · · · · · · · · · · · ·					Average
Well	top1 bot	bottom [†] (psi		January 1998	February 1998	March 1998	April 1998	May 1998	June 1998 Jan - Jun
BV-1	9.3	9.5 6.5	5 2	3	3	3	2	2	e
8V-2	8.3	8.4 5.8	2	8	9	8	2	2	e en
BV-3	5.5	25.7 3.8	2	8	e	6	7	e	m
AIW-1	7	12 4.5	2	2	2	2	2	2	
AIW-2	o	14 6.3	2	2	2	7	8	2	7
AIW-3	æ	13 5.6	3	2	2	7	2	2	N
AIW-4	. 8	11 4.2	2	2	2	2	2	2	2
Total air flow:	w:		14	17.0	17.0	17.0	14.0	15.0	17.0
Pressure (psi)	÷			2.2	2.6	2.2	7	1.8	1.8

					- Andrews					-			
Monitoring	Scree	Screen Interval				Soil Gas San	Soil Gas Sampling Results						
Point		(# bgs)		January 1998	February 1998	March 1998	April 1998		May 1998			June 1998	·
				HVT		TVH	TVH			TVH			TVH
	top	pottom		$O_2 (\%)^2 CO_2 (\%) (ppmv)$		O ₂ (%) CO ₂ (%) (ppmv)	O ₂ (%) CO ₂ (%) (ppmv) O ₂ (%) CO ₂ (%) (ppmv)	0, (%)	CO ₂ (%) (bbmv)		O ₂ (%) CO ₂ (%)		(nmdd)
VM-1-5	2	5.5	O ₂ Util. Rate = 0.40%/hr ³	No Soil Gas	No Soil Gas	No Soil Gas	No Soil Gas	7.0	2.5	flame out	4.7	10.7	flame out
VM-1-8	80	8.5		Samples Collected	Samples Collected	Samples Collected	Samples Collected		no flow		5.3	2.1	lame out
VM-2-5	2	5.5	O ₂ Util. Rate = 0.48%/hr³	due to Winter Conditions	due to Winter Conditions	due to Winter Conditions	due to Winter Conditions	1.3	7.5	flame out	6.0		flame out
VM-2-8	80	8.5							no flow			no flow	
VM-3-5	r0	5.5						19.7	0.0	0.0	20.5	0.0	9.4
VM-3-8	80	8.5							No flow		20.5	0.0	8.9
MP-1-3.5	3.5	4	O ₂ Util. Rate = 0.30%/hr ³						No flow		13.3	6.2	43
MP-1-7.5	7.5	8	O ₂ Util. Rate = 0.12%/hr ³					20.7	6.0	0.22	18.0	4.1	1.2
MP-2-3.5	3.5	4					A CONTRACTOR OF THE CONTRACTOR	19.5	1.3	0	20.0	-	3.4
MP-2-8.5	8.5	Ø	O ₂ Util. Rate = 0.14%/hr ³					19.8	6.0	2.8	18.2	6.0	9.5
MP-3-3.5	3.5	4	O ₂ Util. Rate = 0.08%/hr ³				The same of the sa		water	-	17.3	3.3	Ξ
MP-4BG-8	8	8.5	O ₂ Util. Rate = 0.07%/hr3					18.8	2.5	0.3	16.8	2.8	. 9

¹ Measured from top of casing in AIW wells only. MPs measured from ground surface.
² Maximum pressure before potential for fracturing of soil. Calculated at top of screen assuming density of soil is 100 lbs/ft².
³ Test performed on 6/25/98.
bgs = below ground surface, nr = no reading

NOTE: Flame out occurs due to low oxygen levels.

Base Exchange Service Station Groundwater Levels from January through June 1998

Well No.	Well Depth below TOC ¹	Top of Screen : below TOC ¹	Jan-98	Feb-98	Mar-98	Apr-98	May-98	Jun-98
BV-1	29.5	9.3	10.6	11	11	8.3	8.6	8.9
BV-2	30	9.8	9.9	9.9	9.2	8.7	9.3	11
BV-3	25.7	5.5	10.7	11.1	9.2	8.8	8.9	B.9
AIW-1	15	7	15	15	15	8.9	9.8	10.4
AJW-2	17	9 .	17	17	11.2	10.4	10.9	11
AIW-3	16	8	16	16:	12.2	9.9	11:	11.1
AIW-4	. 14	. 6	14	14	14	14.3	14.4	14

Depth at BV wells are from ground surface. Depth to groundwater from TOC located approximately 1.5 ft bgs.
nc = not collected
 Bolded value indicates groundwater depth is at or above the top of screen.

Groundwater Levels along North / South Transect at BXSS (see Figure 5-1 for transect)

Well No.	Elevation at	Approx elev.	Elevation	Elevation	Elevation	Depth to	Elevation	Depth to	Elevation
	top of casing	of ground	of water - FEB.	of water - APR.	of water - JUN.	top of	to TOS	bottom of	to BOS
	(ft amsl)	(ft amsi)2	(ft amsl)	(ft amsl)	(ft amsl)	screen (ft)	(ft amsi)	screen (ft)	(ft amsl)
BV-2	698.36	699.29	688.46	690.06	689.46	9.8	689.49	30	669.29
BV-3	699.18	700.21	688.08	690.48	688.18	5.5	694.71	25.7	674.51
AIW-1	702.56	702.76	687.56	693.66	692.16	7	695.56	12	690.56
AIW-2	703.77	703.97	686.77	693.37	692.77	9	694.77	14	689.77
AIW-3	702.86	703.06	686.86	692.96	691.76	8	694.86	13	689.86

² Ground surface elevation estimated to be approximately 0.2 ft above the riser.

North / South Cross Section at BXSS

Figure 5-2 BXSS Groundwater/Air Flow Relations Along North/South Section

6.0 ENTOMOLOGY SHOP

6.1 OPERATIONS

The ES, located in OU 10, consists of 7 AIWs and 13 MPs (Figure 6-1). BEI installed the ES biovent system in the summer of 1996, startup was in September 1996, and O&M began in October 1996. Three new MPs were added to the system in July 1997 due to lack of monitoring data. The system operated a total of 620 days through June 30, 1998.

The average air flow in AIWs-2,-3, -5, and -6 was between 1.1 and 2.4 scfm (below the design flow rate of 3 scfm) during the reporting period. AIWs-1, -4, and -7 had zero air injection flow rates. Only MP-5-9.5 was unable to supply soil gas samples during May and June (Table 6-1). All other MPs are producing air samples.

6.2 CONCLUSIONS AND RECOMMENDATIONS

Figure 6-2 illustrates the air flow and groundwater level relationship along the west/east cross section identified on Figure 6-1. Groundwater level measurements show that AIW-2 was fully inundated with water for the entire period from January through June (Table 6-2). AIW-2 continually takes air near the design rate even if the water is at or slightly above the top of the screen. High water levels during March through May resulted in zero air flow into AIW-2. AIW-3 was fully inundated in January and April, and AIW-7 was inundated in April; otherwise, the remaining AIWs had no groundwater inundation. AIWs-1, -4, and -7 have not accepted air since operation began. Groundwater appears to remain at or below the bottom of the screen most of the time; therefore, extremely impermeable soils may surround the filter pack at each of these wells.

High oxygen levels were observed at all of the MPs (17.4 to 20.9 percent) during the reporting period. The facts that oxygen levels remain high, carbon dioxide levels remain low, and oxygen utilization rates (taken in fall 1997) are at background levels indicate that oxygenation is occurring in the soils and that biodegradation may be nearing completion. A lack of MP data still remains for the deeper sediment at MP-4. No respiration tests were performed due to saturation or high oxygen levels.

Overall Recommendation for ES: It appears that biodegradation is not occurring in the vicinity of the MPs producing soil gas samples. High oxygen levels noted in these MPs may be indicating that the source of contaminants is depleted. MP-5-9.5 and MP-6-8.5 have provided information on soils immediately adjacent to the former ES. Although it appears these soils are not contaminated, it is still unknown whether soils located below the former ES basement have been affected by the air injection. It is recommended that the air injection rate at AIWs adjacent to the basement remain at an increased level during the remainder of operations at the ES. Confirmation

sampling throughout the ES site including the soils below the former basement will occur in August 1998. If petroleum contamination still exists under the former basement, a residual risk assessment may be performed to determine if further action is necessary. If further action is required, installation of additional AIW's or excavation and ex situ soil vapor extraction will be evaluated. Soils located away from the former basement appear to be approaching cleanup goals based on oxygen levels. Soil sampling results, if below PRGs, will support system shutdown. The ES building is currently targeted for use to house the Jet Engine Building Shop soil vapor extraction system/equipment. Assuming TPH levels have decreased but elevated TCE levels remain, another option would be to hook the AIWs up to the Jet Engine Buildup Shop soil vapor extraction system and extract volatiles.

Figure 6-1
ES Biovent System Layout and Average Wellhead Flow

Table 6 - 1 ES Air Flow and Monitoring Point Data

	Design		_
	Air Flow		•
January 1998	(scfm)	(psi) (scfm)	
0	3	7.2 3	15.3 7.2 3
က	60	7.0 3	15.1 7.0 3
က	8	5.2 3	12.5 5.2 3
0	3	7.0 3	7.0 3
0	е	9.0	18 9.0 3
3	8	7.9 3	16.4 7.9 3
0	6	6.9	15 6.9 3
9.0	21	21	21
3.5			

Monitoring	Screen Interval	val							Soil G	Soil Gas Sampling Results	Results							
Point	(ft bas)			January 1998		Februs	February 1998	Ma	March 1998		April 1998	6		May 1998		T ₁ ,a	June 1998	
					TVH		TVH			TVH		TVH			TVH			TVH
	top botton	ttom	0	$O_2 (\%)^2 CO_2 (\%) (ppmv)$		O2 (%)2 CC	$O_2 (\%)^2 CO_2 (\%)$ (ppmv) $O_2 (\%)^2 CO_2 (\%)$ (ppmv) $O_2 (\%)^2 CO_2 (\%)$ (ppmv)	O ₂ (%) ² (3O ₂ (%) (p)	omv) O ₂ ((%) ² CO ₂ (%)		O ₂ (%) ₂	CO2 (%)	(bbmv)	O ₂ (%) ₂	CO ₂ (%)	(bpmv)
MP-1-3	က	3.5		No Soil Gas		No S	No Soil Gas	No	No Soil Gas		No Soil Gas	as.	20.0	0.4	9.1	19.6	0.7	7.3
MP-1-9	0	9.5	_	Samples Collected	pet	Samples	Samples Collected	Samp	Samples Collected		Samples Collected	ected		NO flow			no flow	
MP-1-15	15	15.5		due to Winter Conditions	litions	due to Wint	due to Winter Conditions	due to W.	due to Winter Conditions		due to Winter Conditions	uditions		NO flow		20.7	0.0	42
MP-2-3	: !en	3.5	1										20.7	0.3	96.4	20.3	0.3	130
MP-2-9	ь	9.5												no flow			no flow	
MP-2-14	14	14.5											20.9	0.1	71.2	20.4	0.2	166
MP-3BG-11	6.5	11.5 Background location	E											no flow		20.0	0.2	22
MP-4-3	က	3.5												water		18.8	2.8	39
MP-4-9	o	9.5											16.3	3.9	275	20.1	0.5	2.5
MP-4-15	15	15.5												no flow			no flow	
MP-5-5.5	5.5	9												no flow			no flow	
MP-5-9.5	9.5	10											20.9	0.0	က	20.1	0.2	1.2
MP-6-8.5	8.5	9 O ₂ Sensor		20.4 na	ē	20.1	na na	16.9	na	na 13	13.5 na	na	17.9	na	Bu	17.4	na	na

⁴ Maximum pressure before potential for fracturing of soil. Calculated at top of screen assuming density of soil is 100 lbs/ft².

² The monthly O₂ sensor results is the average for month. See biovent monthly reports for daily values.

bgs = below ground surface, na = not applicable

Table 6-2 ES Groundwater Level Data

Entomology Shop Groundwater Levels from January through June 1998

Well No.	Well Depth below TOC	Top of Screen below TOC	Jan-98	Feb-98	Mar-98	Apr-98	May-98	Jun-98
AIW-1	16.3	11.3	16.3	16.3	16.3	16.3	16.3	16.3
AIW-2	16.1	11.1	6.8	8.1	3.9	4.2	6.6	9.5
AIW-3	13.5	8.5	8.3	9.7	13.5	7.3	8.7	8.6
AIW-4	16.1	11.1	16.1	16.1	16.1	16.1	16.1	16.1
AIW-5	19	14	19	19	19	19	19	19
AIW-6	17.4	12.4	17.4	17.4	17.4	17.4	17.4	17.4
AIW-7	16	11	16	16	16	10.4	13.3	14.8

Bolded value indicates groundwater depth is at or above the top of screen.

Groundwater Levels along West / East Transect at Entomology Shop (see Figure 6-1 for transect)

Well No.		Elevation of ground			Elevation of water - JUN.		Elevation to TOS	Depth to bottom of	Elevation to BOS
	(ft amsi)	surface	(ft amsl)	(ft amsl)	(ft amsl)	screen (ft)	(ft amsl)	screen (ft)	(ft amsi)
AIW-1	713.5	712.3	697.2	697.2	697.2	11.3	702.2	16.3	697.2
AIW-6	714.8	713.7	697.4	697.4	697.4	12.4	702.4	17.4	697.4
AIW-7	715.3	714.0	699.3	704.9	700.5	11	704.3	16.0	699.3
AIW-3	715.5	714.3	705.8	708.2	706.9	8.5	707.0	13.5	702.0

West / East Cross Section at Entomology Shop

Figure 6-2 ES Groundwater/Air Flow Relations Along West/East Section

7.0 FORMER JET ENGINE TEST CELL

7.1 OPERATIONS

The FJETC, located in OU 5, consists of 13 AIWs and 8 MPs (Figure 7-1). BEI installed FJETC biovent system in the fall of 1995; MP-8, containing an oxygen sensor, was added to the system in July 1997. This oxygen sensor was added to the north-central portion of the site because of the lack of monitoring data in this area (as a result of inundated MPs) and the presence of fuel in nearby MP-1. Since BEI assumed responsibility for O&M, this biovent system has operated 699 days through June 30, 1998. The system was down during portions of the summer and early fall 1996 due to high groundwater levels and in May 1997 due to a malfunction of the high water level switch in the desiccant tank. Two new replacement AIWs were drilled and installed (AIW-1A and AIW-12A) at the end of July 1997. These AIWs were added to increase the air flow in the northern end of FJETC. The two new AIWs have worked well since their startup in November.

During June and July 1997, most of the AIWs did not accept flow or were shut down due to high groundwater levels. Between August 1997 and February 1998, most of the AIWs accepted air at or near the design rate. Since February, the air flow has decreased by 50 percent and approximately half the wells now do not accept air (Table 7-1). Table 7-2 illustrates February, April, and June water levels along two transects that are shown on Figure 7-1. Figures 7-2 and 7-3 present monthly groundwater levels and flow rates for each AIW located along the two transects.

Fuel was not found in MP-1-4 as observed in early summer of 1996 and July through November 1997. Soil gas collected in June from MP-1-4 did contain low oxygen at 13.2 percent. High water levels limited the collection of soil gas samples from MP-2 through MP-5 during May and June. MP-6 and MP-7 produced soil gas samples during May and June. A respiration test was performed at MP-6 and MP-7 in June as illustrated in Figure A-9 in Appendix A.

7.2 CONCLUSIONS AND RECOMMENDATIONS

In general, high water levels exist in the central and northern parts of the FJETC site (Table 7-2). This elevated groundwater has greatly reduced the amount of soil originally planned for treatment. The high oxygen level noted in MP-6 may be indicative of oxygenation of unsaturated soils and subsequent successful biodegradation. Very low oxygen levels (7.6 to 12.8 during this reporting period) in MP-8 suggest that contaminated soils still remain along with the potential of free-phase petroleum.

Overall Recommendation for FJETC: It is recommended that the system be allowed to run until confirmation soil samples have been collected throughout FJETC. Sampling is planned for August or September 1998. This information will be used to determine whether to continue or propose an alternative cleanup method (i.e., excavation or bioslurping). In addition, evaluate surface runoff features and relationship to the gravel beds just southeast of the FJETC biovent building. Implement surface water management practices (i.e., polyliner) if it is thought that groundwater levels can be lowered.

22784/043/FIG3-11.DGN

Figure 7-1
FJETC Biovent System Layout and Average Wellhead Flow

Table 7 - 1 FJETC Air Flow and Monitoring Point Data

Screen Interval	Overburden	n Design				Individual Well Head Flow (scfm)	ad Flow (scfm)			
	Pressure	Air Flow							4	Average
bottom	(bsi)	(scfm)	January 1998	966	February 1998	March 1998	April 1998	May 1998	June 1998 Jan - Jun	Jan - Jun
12.8	5.4	က	3		3	3	3	3	3	3.0
	5.5	က	1.7		2		•	0	0	1.0
	4.8	က	6		8	0	•	1.3	6	1.9
•	4.1	က	က		8	#o	0	off	#o	2.0
1.8	8.4	က	0		0	0	0.5	0	0	0.1
œ	4.7	60	6		2.8	0	0	0	0	1.0
12.8	5.5	e	6		3	0	0	0	0	1.0
~	1.4	е	8		87	2	e	8	6	2.8
13.8	6.2	ო	8		8	1.5	0	0	0	1.3
8.5	4	6	6		9	3	3	3	က	3.0
2.8	5.4	က	0.5		0.8	0	0	0	0	0.2
13.8	6.2	6	6		8	1.5	2	8	6	2.6
80	5.4	3	3		3	1.5	0	0		1.4
1		39	32.2		32.6	13.5	13.5	13.3	16.0	
			3.4		3.3	2.7	2.7	2.4	3.4	

en Int	terval								So	oil Gas Sam	pling Resul	S							
(sgc			Jar	nuary 1998		February 1998	8		March 1998			April 1998			May 1998			June 1998	
				TVH			TVH			TVH			TVH			TVH			TVH
top bo	ottom		0,2 (%)2 (CO ₂ (%) (ppmv)		CO ₂ (%)	(bbmv)	O ₂ (%) ²	CO ₂ (%)	(vmdd)	O ₂ (%) ²	CO ₂ (%)	(bpmv)	O ₂ (%) ²	CO2 (%)	(bbmv)	02 (%)2	CO ₂ (%)	(vmqq)
4	4.5		N	o Soil Gas		No Soil Gas			No Soil Gas			No Soil Gas			water		13.2	5.2	5.2 flame out
2.4	80	Background location	Samp	ales Collected	Sa	mptes Collect	pel	Sa	mples Collect	pe	Sar	nples Collect	pe		water			water	
9	6.5		due to M	Vinter Conditions	due to	Winter Conc	litions	due to	Winter Cond	fitions	due to	Winter Conc	litions		water			water	
φ	6.5														no flow			no flow	
9	6.5														no flow			no flow	
ო	3.5	2 Util. Rate = 0.08%/hr3													water		17.8	3.6	7.1
e	3.5 0	2 Util. Rate = 0.85%/hr3		The state of the s		-									water		3.1	10.7	flame out
7.5	80	O ₂ sensor	12.8	na na	12.3	Ba	2	11.7	Bu	E C	10.2	e e	æ	9.0	па	na	9.7	EL.	20
	Screen Int top by top by 2.4 6 6 6 6 8 3 7.5	Inter	bottom 4.5 8 Background location 6.5 6.5 6.5 3.5 O ₂ Util. Rate = 0.08%/hr² 3.5 O ₂ Util. Rate = 0.85%/hr² 8 O ₂ sensor	bottom O ₂ (%) ² 4.5 8 Background location Gamp 6.5 6.5 6.5 6.5 3.5 O ₂ Util: Rate = 0.08%/hr² 3.5 O ₂ Util: Rate = 0.08%/hr² 8 O ₂ sensor 12.8	Interval Dottom Dottom	Dottom	Dottom	Dottom	Dottom	Dottom	Dottom	Dottom	Dottom	Debtorn Deptorn Dept	TVH Point 1998 Pebruary 1998 Pebruary 1998 March 1998 April 1999 April 1999 April 1999 April 1999 April 1999 TVH T	Debtorn Deptorn Dept	TVH Point 1998 Pebruary 1998 Pebruary 1998 March 1998 April 1999 April 1999 April 1999 April 1999 April 1999 TVH T	Debtorn Debt	Soli Gas Sampling Results

¹ Maximum pressure before potential for fracturing of soil. Calculated at top of screen assuming density of soil is 100 lbs.ff.².

The monthly O₂ sensor results is the average for month. See biovent monthly reports for daily values.

Test performed on 7/1/98.

or = no reading, bgs = below ground surface, no = not operational.

NOTE: AIW's that are noted to be "off" have been shutdown due to well seal leaks.

NOTE: Flame out occurs due to low oxygen levels.

Former Jet Engine Test Cell Groundwater Levels from January through June 1998

	DOL MORE							
NW-1	15.1	8.6	15.3	74	12.3	7.2	8	8.3
NW.2	15.0	0	3	7	7	6.9	11	14.2
IIW-3	138	2.0	8.8	9.8	7.5	8.15	8.3	6
AIW-4	8.0	0.4	3.9	4.4	2.1	3.4	2.65	2.8
4M/S	13.8	7.8	13	13	13	9.75	68	12.8
NW-6	141	6.9	5	13	13	8.7	0	13.3
AIW-7	15.0	0.6	7		=	7.5	9.6	13.2
41W-8	9	3.6	5.5	5.7	3.4	3.3	3.9	4.2
41W-9	15.8	10.7	51	15	15	9.3	11.4	14.6
IW-10	10.3	3.8	6.9	7	4.4	4.4	5.1	5.3
IW-11	14.8	96	4	7	4	11.4	10.8	11.8
IW-12	15.8	10.7	10.7	10.5	7.5	6.31	7.5	7.3
AIW-13	15.0	8.8	*	14	141	7.2		11.3

Groundwater Levels along North / South (Westline) Transect at FJETC

Well No.	Elevation at	Elevation					ı		Elevation
	top of casing	of ground	of water - FEB.	of water - APR.	of water - JUN.	top of	to TOS	bottom of	to BOS
	(R emst)	(if amel)							(fi sms!)
AIM-13	765.21							148	750.41
AIW-12	765.60							15	750
Arw-10	765.82	763.99	756.62	761.42	760.52	3.6	762.02	10.3	755.52
AIW-8	764.56								755 96
AIWE	763.43							13.8	749 53

Groundwater Levels along North / South (Eastline) Transect at FJETC

	top of	to TOS	pottom of	to BOS
(R amst)	screen (ff)	(R amed)	Screen (ft)	(R amsi)
756.27	6.0		14.9	
751.07	66	755.372	14.8	750.479
756.12	8.7	756.622	-	751.747
780.62	7	759.42	;	
750.34	9.7	154.4		
	756.12 760.62 750.34	756.12 8.7 760.62 4 750.34 8.7	8.7	786 12 87 756 622 136 780 62 4 759 42 80 750 34 87 754 44 136

North / South Cross Section at FJETC - Westline (see Figure 7-1 for transect)

North / South Cross Section at FJETC - Eastline (see Figure 7-1 for transect)

Figure 7-2 FJETC Groundwater/Air Flow Relations Along North/South Section (Westline)

Figure 7-3 FJETC Groundwater/Air Flow Relations Along North/South Section (Eastline)

8.0 FIRE TRAINING AREA

8.1 OPERATIONS

The FTA, located in OU 8, consists of 16 AIWs and 38 MPs (Figure 8-1). BEI installed the FTA biovent system in the fall of 1995. Since BEI assumed responsibility for the bioventing O&M, the system had operated 820 days through June 30, 1998. The only oxygen sensor (MP-16) was installed in July 1997, as shown in Figure 8-1. Minor interruptions for respiration testing and general maintenance have occurred since startup. Several power outages have also occurred at this site since startup, resulting in brief shutdowns.

Injection flows are typically held at or slightly above the design flow rate of 3 scfm in each AIW. AIW-2 has not accepted injected air since system startup. AIWs-1, -12, -14, and -16 have consistently been below the design flow rate, typically one-half of the 3 scfm or less. AIWs-12, -14, and -16 are all located in the southern end around the former fire pit; this area is also where most of the inundated MPs exist. The overall system injection pressure fluctuated between 2 and 4.2 psi (Table 8-1) throughout the reporting period. The typical pressure was near 3.7 psi, but the rate was reduced to 2 psi during the wet period in April in order not to compromise the well seals.

8.2 CONCLUSIONS AND RECOMMENDATIONS

Only 11 of the 38 FTA MPs did not produce soil gas samples. Unexpectedly, 6 of the 11 nonproductive MPs have bottom of screen depths at 3.5 ft bgs (see Table 8-1). A clay lens may be intersecting these shallow MPs. Table 8-2 presents groundwater levels in AIWs and a cross-sectional view of the generalized water table for February, April, and June 1998. It is clear that groundwater levels are not a problem at this site—only one of the AIWs had water greater than 1 ft above the bottom of the 5- and 6-ft screens. Figure 8-2 presents the groundwater levels and air flows per AIW along the north-south cross section on Figure 8-1. The average and normal monthly rainfall curve has been added to the first two AIW graphs on Figure 8-2 for comparison to groundwater levels.

Thirteen respiration tests were run in June; the pretest oxygen level ranged from 3.7 to 17.9 percent (Figures A-10 and A-16). Pretest oxygen levels are those measured after the system has been shut down for a minimum of 24 hours before helium and air are injected. Seven of the 13 tests were performed on MPs that did not have any previous respiration test data (see Table 3-1). In general, all oxygen utilization rates in MPs previously tested showed levels similar to 1997 rates. Most of the new tests (MPs not previously tested) indicated that biodegradation is still occurring.

Overall Recommendation for FTA: No changes to the system are recommended; in general, the system appears to be operating as designed. Comparison of the spring 1998 oxygen utilization rates with the previous reports shows that biodegradation is still occurring although contamination may remain in various locations throughout the site. A decline in oxygen utilization rates since startup suggests enhanced biodegradation has occurred. Soil samples that will be collected during the summer of 1998 should be evaluated as soon as possible. Delineation of contaminated soils should be made with this information and soils that remain above PRGs should be evaluated for another remedial alternative (i.e., excavation and disposal in LF-3).

loring\(\text{L-1995}\)

22784/043/FIG3-12.DGN

Figure 8-1 FTA Biovent System Layout and Average Wellhead Flow

Data
Point
itoring
d Mon
low an
AirFl
FTA
8-1
Table

	Jun	7 0	0	0 0	0 6	2.5	30	2.5	3 0	3.0	2.8	6	15	2.8	4.0	0	-		
	Average							:								_	:		
	Jue 1998	ç	! c	· "		m	67		• •	(7)			1.5	2.2	0	~	-	35.9	3.8
	}	h			1			: 1			1								
					-			1			-			:	_	_			
								-			į			-					
	May 1998	_		. 67	67	60	63		6	60	6	. 67	1,2	off	0	6	-	32.2	2.5
	Ma	۱									!								
													_						
											-								
	April 1998	0		. 60	2		3	3	8	6	2		rζ	3	0	9	-	31.5	2
Individual Well Head Flow (scfm)	April					•				•••		•	-		_	•••		3	.,
lead Flo		ŀ															-		
al Well F																			
ndividu	1998				-			-										_	
	March 1998	ľ	0	e	6	6	e	0	9	6	7	6	2	6	1.2	e	1.4	34.6	4.2
					-														
I		-	_								-			-					
	1998	ľ															-		
	February 1998	-	0	က	6	6	ဗ	6	e	e	9	က	1 0	က	0.8	e	-	37.3	3.7
		١																	
		-						-						_			-		
	866	l															:		
	January 199	-	0	က	9	6	က	က	က	e	က	က	4.	6	0.5	6	Ξ	37.0	3.7
	, 12													!					
_	M (-					_				-								
Design	Air Flow (scfm)	က	60	e	n	6	က	e	က	က	က	က	6	6	6	က	က	48	
nepur	(isd)	5	_	-	č	_	_		·		-	_	61	-	_	_	-		
Overburden	bottom Pressure¹ (psi)	4.8	*	4	4	Ġ	5.	4	₹	2.5	'n	2.7	ë	÷	က်	5	e,		
erval	bottom	11.8	11.3	11.8	11.1	12.3	12.1	11.3	11.8	G	8.6	8.8	9.5	8.8	9.3	12.3	8.0		
Screen Interval	fVbgs top	6.9	6.4	6.9	. 1.0	7.4	7.2	6.4	6.9	4 .	6.4	3.9	4.6	2.8	4.4	7.4	6.9		
Š	Well																	flow:	(bsi):
Air		4JW-1	AIW-2	AIW-3	AIW-4	4IW-5	4IW-6	4IW-7	4IW-8	4IW-9	UW-10	11W-11	IW-12	IW-13	IW-14	JW-15	JW-16	Total air flow:	Pressure (psi)
	Injection	Ì	1	1	1	`		1	1	1	∢	•	∢	∢	⋖	⋖	•		4
			_	_	_		_	_	_	_	_	_	_	_	-	-	_	_	_

Monkoring	screen Interval	terval						Soil	Gas Sampl	Soil Gas Sampling Results							
Point	y)	(u pas)		Januar	January 1998	Febru	February 1998	March 1998		. April 1998			May 1998			June 1998	
S					TVH		TVH							TVH			
	dot	top bottom		O ₂ (%) ⁴ CO ₂ (%)		O ₂ (%), CO ₂ (%)	(%) (ppmv)	O ₂ (%) ² CO ₂ (%) ((bbmv)	$O_2 (\%)^2 CO_2 (\%)$	(hmdd)	0, (%)	CO ₂ (%)	(bbmv)	O ₂ (%) ²	CO ₂ (%)	(bpmv)
MP-1-3	6	3.5		No Sc	No Soil Gas	No S	No Soil Gas	No Soil Gas		No Soil Gas			water			water	
MP-1-6	9	6.5	O ₂ Util. Rate = 0.19%/hr³	Samples	Samples Collected	Samples	Samples Collected	Samples Collected		Samples Collected	Pe	16.8	3.4	283	14.2		318
MP-1-10	9	10.5		due to Winte	due to Winter Conditions	due to Wint	due to Winter Conditions	due to Winter Conditions	ons	due to Winter Conditions	tions		no flow		17.8	1	201
MP-2-3	က	3.5	O ₂ Util. Rate = 0.88%/hr³				7,000					4	water		6		flame ou
MP-2-6	9	6.5											no flow		9		forme out
MP-2-10	\$	10.5										49.0	0.4	38.6	18.0	0.0	13.2
MP-3-3	6	3.5	The state of the s										no flow	3	2	and done	
MP-3-6	49	6.5	O, Util. Rate = 0.21%/hr³								Mrs		no flow		40.5		ŏ
MP-2-10		10.5										9 55	NO IO	,	5.5		5 ;
OI-C-IM	2	3	F 20000			MARKET ALL ALL ALL ALL ALL ALL ALL ALL ALL AL		- come de company de la compan				19.0	0.5	422	19.6	9.0	7.6
MP-48G-4.4	4.4	2	-									11.7	2.0	1.8	10.8	2.5	flame out
MP-5-3	e	3.5	O ₂ Util. Rate = 0.30%/hr²										water		13.9	9.4	8127
MP-5-6	9	6.5											water			no flow	
MP-6-3	m	3.5						THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COL				20.7	0.0	13	20.9	0.0	c
MP-6-10	9	10.5										20.2	10	8	20.4	0.0	
MP-7-3	6	3.5	AND THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER, OF STREET					The state of the s		And the second s			wafer		18.7	2.4	4
MP-7-6	9	6.5											no flow		10.4		. 4
MP.R.3		3.5									 			-		5 6	5
MP-8-6		6											Water		0.00	0.0	97
		2	O 160 Date - 4 540/ A.J.										MOI ON		6.02	0.0	4.0
2-5-IW	"	6.0											water		3.7	13.7	flame ou
MP-9-10	2	10.5	i									19.6	6.0	478	18.0	4.	1020
MP-10-3	m	3.5	O ₂ Util. Rate = 0.39%/hr²		-							13.1	6.5	295	10.5	8.6	flame out
MP-10-6	9	6.5											water			no flow	
MP-11-3	60	3.5	O ₂ Util. Rate = 0.42%/hr²									20.0	0.5	21.7	15.1	2.0	9.6
MP-11-6	9	6.5										20.1	9.0	1.4	18.9	0.3	9
MP-11-10	9	10.5			•							20.6	0.2	3.9	19.3	0.0	4
MP-12-3	6	3.5											no flow			no flow	
MP-12-6	9	6.5	O ₂ Util. Rate = 0.09%/hr²									19.1	1.3	13.2	17.1	1.9	28
MP-12-10	8.5	6										19.5	0.8	11.3		no flow	
MP-13-3	က	3.5											no flow			no flow	:
MP-13-6	9	6.5	O ₂ Util. Rate = 0.1%/hr										no flow		7.7	8.0	flame out
MP-13-10	7	7.5											no flow			no flow	
MP-14-3	en	3.5											water			no flow	:
MP-14-6	9	6,5											water		10.6	4.9	flame out
MP-14-8.5	8.5	ch	O ₂ Util. Rate = 0.23%/hr²									19.5	0.7	53.3	16.9	1.1	34
MP-15-3	က	3.5											no flow		1.3	15.9	flame out
MP-15-6	9	6.5											water			water	
MP-15-10	6	9.5	o Cell	AND DESCRIPTION OF THE PROPERTY AND PROPERTY									по пом		17.9	6.0	233
MP-16-8.5	8.5	6	O ₂ sensor	malf na	a na	21.0	na na	20.9 na	e C	malf na	82	malf	ac	2	malf	Па	

NOTE: AIWs that are noted to be "off" have been shutdown due to well seal teaks.

⁴ Maximum pressure before potential for fracturing of soil. Calculated at top of screen assuming density of soil is 100 lbs/ft².
² The monthly O₂ sensor results is the average for month. See biovent monthly reports for daily values.
³ Test performed on 6/29/98 and 6/30/98.
maff = maffunctioned, no data, nr = no reading.

Table 8-2 FTA Groundwater Level Data

Fire Training Area Groundwater Levels from January through June 1998

Well No.	Well Depth below TOC	Top of Screen below TOC	Jan-98	Feb-98	Mar-98	Apr-98	May-98	Jun-98
AIW-1	14.1	9.0	13:	13	13	13	13	1;
AIW-2	13.6	8.5	12.5	12.5	12.5	12.5	12.5	12.5
AIW-3	14.1	9.0	13	13	13	13	13	13
AIW-4	13.5	8.3	12.3	12.3	12.3	8.2	12.3	12.3
AIW-5	14.2	9.1	13.5	13.5	13.5	13.5	13.5	13.5
AIW-6	14.1	9.0	13.3	13.3	13.3	13.3	13.3	13.3
AJW-7	13.5	8.4	12.5	12.5	12.5	12.5	12.5	12.5
AIW-8	13.8	8.7	13	13	13	13	13	13
AIW-9	11.4	6.3	10.2	10.2	10.2	10.2	10	10.2
AIW-10	11.9	6.8	11	11!	11	11	11	11
AlW-11	10.9	5.8	10	10	10	10	10	11
AIW-12	11.5	6.4	10.7	10.7	10.7	10.7	10.7	10.
AIW-13	10.6	4.4	10	10	10	10	10	10
AIW-14	11.4	6.3	10.5	10.5	10.5	10.5	10.5	10.
AIW-15	14.3	9.2	13.5	13.5	13.5	13.5	13.5	13.
AIW-16	12.0	6.9	11	11	11	11	11	1

Bolded value: indicates water level is at or above the top of the screen.

Groundwater Levels along North / South Transect at Fire Training Area (see Figure 8-1 for transect location)

Well No.		Elevation of	Elevation				Elevation	Depth to	Elevation
	top of casing	ground	of water - FEB.	of water - APR.	of water - JUN.	top of	to TOS	bottom of	to BOS
	(ft amsl)	surface	(ft amst)	(ft amsl)	(ft amsl)	screen (ft)	(ft amsi)	screen (ft)	(ft amsl)
AJVV-1	732.05	729.96	719.05	719.05	719.05	9.0	723.06	13.9	718.16
AIW-2	732.75	730.69	720.25	720.25	720.25	8.5	724.29	13.4	719.39
AIW-3	733.83	731.75	720.83	720.83	720.83	9.0	724.85	13.9	719.95
AIW-4	736.02	733.85	723.72	727.82	723.72	8.3	727.75	13.3	722.75
AIW-6	736.82	735.02	723.52	723.52	723.52	9.0	727.82	13.9	722.92
AIW-7	738.04	736.01	725.54	725.54	725.54	8.4	729.61	13.3	724.71
AIW-8	739.45	737.67	726.45	726.45	726.45	8.7	730.77	13.6	725.87
AIW-9	740.07	737.90	729.87	729.87	729.87	6.3	733.80	11.2	728.90
AIW-10	739.79	737.93	728.79	728.79	728.79	6.8	733.03	11.7	728.13
AIW-11	739.82	737.88	729.82	729.82	729.82	5.8	733.98	10.7	729.08

North / South Cross Section at Fire Training Area

9.0 FUEL TANK FARM BIOVENT/BIOSLURP

9.1 OPERATIONS

The FTF bioslurp/biovent system installed at OU 11 is made up of 17 bioslurp wells, 21 biovent wells, and 1 single-elevation and 7 dual-elevation MPs (15 MPs); 4 of the dual-elevation MPs have oxygen sensors (Figure 9-1). The FTF system ran from August 16 to August 23 1997 in the bioslurp mode; however, did not run in bioslurp mode during the first half of 1998. When Depot Roads completed work late in November and the system was changed back to the bioventing mode for winter operation, damage to the PLC boards in the control system was discovered. The cause for the damage could not be determined, but moisture leakage into the control panel was suspected. The system was repaired and operation resumed in January 1998, at which time was started up in the bioventing mode. Since BEI assumed responsibility for the bioventing O&M shortly after installation in November 1996, the system had operated in bioventing mode 344 days through June 30, 1998.

9.2 CONCLUSIONS AND RECOMMENDATIONS

BV-4 continues to contain groundwater above the top of the screen resulting in zero air flow into the well. During April and May, the total air flow into the online AIWs was extremely low (9.1 and 3.7 scfm, respectively). The design total flow rate is 55.6 scfm (Table 9-1). Pressure to the system was essentially held constant between 2 and 2.9 psi. More than half the wells (11 of 20) did not accept air in April versus only 2 wells accepting air in May. Leaking well seals resulted in shutting down two AIWs in April, five in May, and two in June (indicated as "off" in Table 9-1). It appears that higher water levels during April through June have had a pronounced effect on the air flow (Table 9-2 and Figure 9-2).

Several of the MPs (6 out of 11) were destroyed during the 1997 Depot Roads remediation work. Only one of the remaining five functioning MPs produced data (MP-7, during June). MP-7 indicates that contaminants exist in this area. A respiration test was performed at this MP in June. An oxygen utilization rate of approximately 3 percent/hour was calculated, although this rate is based on minimal data (only three measurements) and minimal air flow from this MP. The high CO₂ levels and flameout conditions also indicate contamination is likely present. The four oxygen sensors were inundated with water during the entire 6-month reporting period.

Overall Recommendation for FTF: Change to bioslurp mode as soon as groundwater levels begin to stabilize. Collect groundwater levels monthly at a minimum and biweekly if possible to establish pattern and cycle. Install up to nine new AIWs where needed throughout the FTF II area. In addition, move up to four existing oxygen sensors to new locations.

Figure 9-1
FTF Biovent System Layout and Average Wellhead Flow

Table 9-1 FTF Air Flow and Monitoring Point Data

Air	Screen	Screen Interval	Overburden	Design		A STATE OF THE PARTY OF THE PAR	Individual Well F	ndividual Well Head Flow (scfm)		
Injection	sgq/JJ		Pressure ²	Air Flow						Average
Well	top	bottom	(isd)	(scfm)	January 1998	February 1998	March 1998	April 1998	May 1998	June 1998 Jan - Jun
BV-2	13	20	9.0	က	1	1.8	0	0	0	0 0.5
BV-3	13	18	9.0	e	0	0	0	0	0	0.0
BV-4	12	19	8.3	2.7	0	0	0	0	0	0.0
BV-5	12	9	83	2.7	0	0.8	0	0	0	0 0.1
BV-6	S	13	3.5	3.7	0	0	0	0	2.6	3 0.9
BV-7	ø	18	4.2	3.4	3.4	3.4	1.5	-	1.1	1.9 2.1
87-8	9	16	4.2	2.2	0	0	0	0	0	0.0
BV-11	7	4	6.4	9.1	0	0	0	off	off	off 0:0
BV-14	7	14	9.4	1.6	0	0	0	-	0	0 0.2
BV-17	9	9	4.2	3.4	3.4	3.4	2	0	Jo	off 2.2
BV-19	=	19	9.7	2.7	2.7	2.7	2.7	1.3	0	2.2 1.9
BV-20	13	20	9.0	က	ю	m	8	off	off	3.0
8V-21	15	20	10.4	9.1	1.6	1.6	1.6	0.8	0	1.6 1.2
BS-1	13	20	9.0	e	က	6	8	4,1	0	3 2.2
85-5	11	18	9.7	၈	0	0	0	0	0	0.0
BS-7	6	16	6.3	က	0	0	0	0	0	0.0
BS-10	9	16	4.2	က	m	60	ю	4.9	off	2.2 2.6
BS-11	5.5	15.5	3.8	60	м	m	1.6	1.7	Jo	2.6 2.4
BS-14	6	16	6.3	m	m	60	0	0	0	0 1.0
BS-15	11	18	7.6	3	3	3	3	0	0	0 1.5
Total air flow:	low:			55.6	30.1	31.7	21.4	9.1	3.7	19.5
Pressure (psi)	osi):				2.9	2.9	2.6	2	2.4	2.7

Monitoring	Screen Interval	nterval				Soil Gas San	Soil Gas Sampling Results			I
Point	(# pgs)			January 1998 TVH	February 1998 TVH	March 1998 TVH	April 1998 TVH	May 1998 TVH	7	June 1998 TVH
r F	top b	bottom		O ₂ (%) ² CO ₂ (%) (ppmv)	O ₂ (%) ² CO ₂ (%) (ppmv)	$O_2 (\%)^2 CO_2 (\%)$ (ppmv)	O_{2} (%) ² CO_{2} (%) (ppmv) O_{2} (%) ² CO_{2} (%) (ppmv) O_{2} (%) ² CO_{2} (%) (ppmv)	$O_2 (\%)^2 CO_2 (\%)$ (ppmv)	$O_2 (\%)^2 CO_2 (\%)$	d)
MP-1-10 MP-1-15	15	10.5		No Soil Gas Samples Collected	No Soil Gas Samples Collected	No Soil Gas Samples Collected	No Soil Gas Samples Collected	water no flow		water no flow
MP-2-10	5 4	10.5		due to Winter Conditions	due to Winter Conditions	due to Winter Conditions	due to Winter Conditions	destroyed	0.6	destroyed
MP-3-10	5	10.5						destroyed		destroyed
MP-3-15	15	15.5		-1				destroyed	-	destroyed
MP-4BG-6	8	=	Background location					no flow		no flow
MP-5-3	3	3.5	THE REAL PROPERTY AND ADDRESS OF THE PERSON					destroyed	0	destroyed
MP 5-7.5	7.5	œ						destroyed	-	destroyed
MP-6-6.3	6.3	89 89	O ₂ Sensor	Water covering sensor	Water covering sensor	Water covering sensor	Water covering sensor	Malfunction	2	Malfunction
MP-6-9.2	9.2	9.7	O ₂ Sensor	Water covering sensor	Water covering sensor	Water covering sensor	Water covering sensor	Water covering sensor	Water	Water covering sensor
MP-7-2.5	2.5	က	3 O ₂ Util. Rate = 3.03%/hr²					water	10.8	10.2 flame out
MP-7-6.5	6.5	7						water	9.0	4.3 flame out
MP-8-6.25	6.25	6.75	O ₂ Sensor	Water covering sensor	Water covering sensor	Water covering sensor	Water covering sensor	Water covering sensor	Water	Water covering sensor
MP-8-12.7	12.7	13.2	O ₂ Sensor	Water covering sensor	Water covering sensor	Water covering sensor	Water covering sensor	Water covering sensor	Water	Water covering sensor

¹ All wells are in a bioventing mode (BV = biovent & BS = bioslurp).
³ Maximum pressure before potential for fracturing of soil. Calculated at top of screen assuming density of soil is 100 lbs/ft³.
³ Test performed on 6/29/98.

NOTE: Flame out occurs due to low oxygen levels.

NOTE: AIWs that are noted to be "off" have been shutdown due to well seal leaks.

Fuel Tank Farm Well Water Levels from January through June 1998

Well No.	Well Depth	Top of Screen	Jan-98	Feb-98	Mar-98	Apr-98		May-98
	DOI MOIS	Delow IOC				e Po		
BV-2	R	2	18.5	8	17.2	88		3
BV-3	9	22	17.9	18	18	18		60
BV-4	6)	12	1.1	7'8	7.3	6.3	5	
87.5	-69	12	19.6	19	19.7	17.3		12.1
87.6	13	9	2.9	13	E	1		6.9
67-7	16		10.1	11.5	10	60		9.2
87-8	16	90	18.3	16.5	14.8	13.7		96
BV-11	=	1	6.9	7.2	7.6	7.5	2	
BV-14	3	7	13.1	12.8	13.4	12.8		9.43
BV-17	9	90	9	16	5.2	3.8	-	
BV-19	-	=	5	19	19	16.4		4.75
BV-20	R	5	8	8	8	20.6		7.65
BV-24	8	5	8	8	8	8		8
BS-1	8	23	R	8	8	18.6		16.8
85-5	48	13	18.7	60	18	18	-	4 45
BS-7	16	65	10.6	12.8	10.4	14.9		3.75
BS-10	16	80	7.5	9.5	7.7	9.6	3.8	Ľ
BS-11	15.5	5.5	11.5	12.9	2	6.7	3.5	
BS-14	9	60	11.8	11.3	9.8	6.45	2	
BS-15	40	=	19.5	19.6	18.2	187		2

Nots 1: The depth to water at BV-5 in April 1998 was not taken. The value 4 ft was used because a number is needed for the graph. No number is assumed to be zero in exces.

loided value: indicates water level is at or above the top of the screen.

Groundwater Levels along North / South (Westline) Transect at FTF (see Figure 9-1 for transect)

Well No.	Elevation at		Elevation		Elevation		F	Depth to	Elevation
	top of casing	ground elev	of water - FEB.	of water - APR.	of water - JUN.	top of	to TOS	bottom of	to BOS
	(R emst)	(2 < TOC)	(ft amed)		(fr smst)		Г	screen (ft)	(ft armst)
BV-21	701.65					15		8	
87-19	696.48					Ξ	687.48	19	679.48
8V-17	289	8	1881	633.1	631.9	9	169	16	88
BV-14	692.91					7	685.91	*	678.91

North / South Cross Section at FTF - Westline

Groundwater Levels along North / South (Eastline) Transect at FTF (see Figure 9-1 for transect)

Well No.	Elevation at		Elevation	Elevation		Depth to	Elevation	Depth to	Elevation
	top of casing of ground	8	of water - FEB.	of water - APR.	of water - JUN.	to dat	to TOS	bottom of	to BOS
	(Ramel)		(R armst)	(R amsd)		acreen (ft)	(f ame!)	Screen (ft)	(R amsl)
87-3	701.86	98.669			682.5		13 688.86	181	683.86
BV-4	698.30	696.3						19	679
87-6	697.72	695.72					12 685 72	0	678 72
67-7	697.38	695.38						16	6813
BV-8	693.71	17.169	877.21	680.01	880.38		8 687.71	16	677.71
BV-11	683.47	891.47					7 CBG 47	11	A 070

North / South Cross Section at FTF - Eastline

Figure 9-2 FTF Groundwater/Air Flow Relations Along North/South Section of East and West Lines

10.0 FUEL TANK FARM II

10.1 OPERATIONS

The FTF II, located in OU 11, consists of 37 AIWs and 24 MPs (6 with oxygen sensors) (Figure 10-1). BEI installed the FTA biovent system in the summer of 1997 and started operation on August 28, 1997. BEI assumed responsibility for the bioventing O&M in October 1997. The system operated until September 20, when it was shut down due to construction activities by Depot Roads, a subcontractor to COE. The system was restarted on October 31, 1997 and has run continuously since that time. Through June 30, 1998 the system has operated for a total of 253 days.

The number of AIWs accepting air steadily increased from 2 at startup in September to 24 in December. Since then, the number of functioning AIWs has decreased dramatically. Injection flow rates in wells accepting air are typically near the design flow rate of 3 scfm (Table 10-1). The overall system injection pressure was held between 2.4 and 3.3 psi throughout the reporting period.

10.2 CONCLUSIONS AND RECOMMENDATIONS

Table 10-2 presents groundwater levels in AIWs and cross-sectional views of the generalized water table. Water tables were elevated from April through June resulting in AIW water levels to cover more than half the screened interval in a majority of wells. Figures 10-2 through 10-4 present the January through June groundwater levels and air flows per AIW located along the cross sections on Figure 10-1. Initially, low groundwater levels were typical, but a general increase in the water level is noted during the spring and early summer months. As the water table drops, air flow typically increases. The average and normal monthly rainfall curve has been added to the AIW graphs for comparison to groundwater levels.

The oxygen sensors worked well during the winter months, but high water has inundated these locations also. Five of the 6 oxygen sensors produced data during one or more months within the reporting period (see Table 10-1). Oxygen levels ranged from a low 1.8 to a high of 20.7 percent during the reporting period. No MPs could be sampled during May and June due to no flow or high water. Winter conditions prevented sampling during January through April. As on all biovent sites, only oxygen sensor data could be collected during winter months because standard MPs are inaccessible.

One respiration tests was run in January where the oxygen level was initially around 18 percent. The test result of 0.01 percent oxygen/hour was typical of background levels (Figure A-18). The oxygen level did get down to near 14 percent by the end of the respiration test. A lower oxygen level (5.7 percent) was noted during operations in April. Respiration tests could not be run in June because all but one of the MPs were inundated with water or fuel. Fuel was noted in MP-8-5, MP-9-4, MP-10-7, and MP-11. Fuel was not visible but odor was noted in 7 intervals within 5 MPs (MP-2, -4, -6, -8, and -13).

Overall Recommendation for FTF Π : No changes to the system are recommended because it has not been running for any length of time within ideal conditions (i.e., low saturation levels).

Figure 10-1
FTF II Biovent System Layout and Average Wellhead Flow

-: V										
		ciecii illicival	lian indiano				moividual yen head ribw	(scini)		
Injection		ft/bgs	ď.	Air Flow						Average
Well		top bottom	(psi) n	(scfm)	January 1998	February 1998	March 1998	April 1998	May 1998	June 1998 Jan - Jun
AIW-1		5.9 15.7	4.1	3	3	3	2.9	2.75	3	2.7 2.9
AIW-2			4.5	e	0	6	5.6	#0°	JJ o	0 1.5
AIW-3		6.6 16.3	4.6	67	0	0	0	0	0	0.0
AIW.4		6.4 16.2	4.4	9	0	11	0	Jo.	10	:
AIW-5		6.5 16.2	4.5	6	0	0	•	0	0	
AIW-6	-	6.5 16.2	4.5	n	0	0	•	0	-	
AIW-7		6.3 16.3	4.4	6	6	3	2.9	2	3	
AIW-8	_	6.5 16.3	10.4	e	0	0	•	•	0	_
AIW-9	_	6.5 16.2	4.5	n	2	1.3	1.1	0	0	
AIW-10	0	6.6 16.3	4.6	r	0	0.8	0	0	0	-
AIW-11	_	6.9 16.7	8.4	e	. 0	•	•	0	off	
AIW-12	2	6.8 16.5	4.7	6	0	0	0	0	0.5	
AIW-13		6.7 16.4	4.7	г	0	0	0	0	-	
AIW-14	•	6.5 16.2	4.5	6	۰	0	•	•	•	
AIW-15	z.	6.6 16.3	9.4	6	•	0	-	•	Ju Ju	
AIW-1		6.5 16.2	4.5	6	0	0	0	0	0	
AIW-17	7	6.6 16.7	9.4	е.	•	7	•	•	0	
AIW-18	80	6.5 16.3	4.5	гэ	0	0	0	0	0	
AIW-1	GD.	6.6 16.3	9.4	6	0	0	0.5	0	0	
AIW-20	0	6.5 16.2	4.5	6	0	0.5	0.5	0	0	
AIW-2	-	6.6 16.3	4.6	e	•	0	0	jjo	JJ0	_
AIW-22	2	6.6 16.3	4.6	m	e	3	no.	flo	Jlo J	
AIW-23		6.5 16.3	4.5	6	٥	0	0	0.5	0	
AIW-24	-	6.6 16.3	4.6	6	e	e	off	2	off	
AIW-25	2	6.5 16.3	4.5	m	9		1.7	0	0	
AIW-26	9	6.6 16.3	4.6	m	e	e	e	0	0	
AIW-27	7	6.6 16.3	9.4		3	•	6	jjo	gjo	
AIW-28	&	_	9.	r)	n	en	m	0	oiff	
AIW-2	6	_	9.9	m	m	ro .	2.9	m	æ.:	
AIW-3	0		4.6	6	0	0	Jo	0	Jo.	-
AIW-31	-		5.5	60	0	0	•	0	0	0.0
AIW-3	2		4.5	m	-	0.5	0	•	Jo	
AIW-3:	3		7.7	m	-	0	0	-	0	-
AIW-34	*	6.5 16.5	4.5	6	1.4	1.2	1.1	5.1	-	
AIW-35	2		4.4	63	e	e	10	Tio.	JL O	
AIW-36	9	6.4 16.5	4.4	60	e	•	•	J o	off	
AIW-3	7		4.6	3	3	3	2	2	2.6	
Total	air flow:			111	41.4	45.5	34.5	14.8	13.9	15.2
Pressu	Pressure (psi):				3	2.8	3.3	2.4	2.9	2.9

											Sc	il Gas San	Soil Gas Sampling Results	ts							
Point े	Screen Interval	nterval			January 1998	₹	in the state of th	February 1998	י אעד א		March 1998	Ψ.		April 1998	TVH		. May 1998	HVI		June 1998	TVH
	top	bottom		02 (%)3	1 ₂ (%) ² CO ₂ (%)	(ppmv)		O ₂ (%) ² CO ₂ (%) (ppmv)	(bpmv)	0, (%)2	O ₂ (%) ² CO ₂ (%) (ppmv)	(ppmv)	O ₂ (%) ²	O ₂ (%) ² CO ₂ (%)	(bbmv)	02 (%)2	O ₂ (%) ² CO ₂ (%) (ppmv)	(ppmv)	0, (%)2	O ₂ (%) ² CO ₂ (%) (ppmv)	(mdd)
MP-1-5	s	5.5	O ₂ Sensor	water	na na	па	water	na	er.	water	ac	138	water	BU	ua	Wate	Water covering sensor	BOL	Water	Water covering sensor	301
MP-2-4.5	4.5	9															no flow			water	i
2-2-8.5	8.5	œ															no flow			water	
MP-3-5.5	5.5	9															water			water	
MP-3-6	9	6.5	O ₂ Sensor	2.0	80	eL.	maff	80	er.	water	80	82	water	80	2	Wate	Water covering sensor	BOL	Water	Water covering sensor	30
MP-4-5.5	5.5	9															water			water	
MP-4-9.5	9.5	10			No Soil Gas			No Soil Gas			No Soil Gas		_	No Soil Gas			water			water	
MP-5-5.0	5.5	9		Sa	Samples Collected	fed	SS	Samples Collected	ted	Sai	Samples Collected	pa.	San	Samples Collected	pa		water			water	
MP-5-9.5	5.6	9		due to	due to Winter Conditions	litions	due t	due to Winter Conditions	litions	due to	due to Winter Conditions	Hons	due to	due to Winter Conditions	ltions		no flow			no flow	
-6-3.5	3.5	4															no flow			water	
AP-6-9.5	9.5	9															water			water	
MP-7-6	9	6.5	O ₂ Sensor	6.	82	2	malf	na	80	water	118	2	water	80	ם	Wate	Water covering sensor	sor	Water	Water covering sensor	101
MP-8-9	6	9.5	O ₂ Sensor	water	en En	138	16.0	200	2	7	EL.	2	water	\$2	na	Wate	Water covering sensor	SOF	Water	Water covering sensor	50r
MP-8-5.5	5.5	9															water			water	
MP-8-12.5	12.5	13															water			water	
-9-4.5	4.5	5															no flow			water	
MP-9-6	9	6.5	O ₂ Util. Rate = 0.01%/hr	18.1	an a	18	15.3	81	Ē	12.0	na	2	5.7	Ē	na	Wate	Water covering sensor	isor	Water	Water covering sensor	30
MP-10-7.5	7.5	80															water			water	
MP-10-11.5	11.5	12															water			water	
MP-11-6	9	6.5	O ₂ Sensor	20.7	80	E	19.2	8 E	22	16.1	10	2	15.0	20	Ē	8.6	20	20	13.2	800	5
2-12-4.5	4.5	2	THE PERSON OF TH														won on			no flow	1
7-12-8.5	8.5	6															water			water	
7-13-5.5	5.5	9															water			water	
7-14-5.5	5.5	9															water			water	

^{*}Maximum pressure before potential for fracturing of soil. Calculated at top of ecreen assuming density of soil is 100 lbs/ft.

*O.; result represents daily average for month.

*Test performed on this oxygen sensor in January 1998 (see Table 3-1 footnote 3).

na * not applicable; maif * maifunctioned.

53

Elevation to TOS (8 arms)

1998 Groundwater Levels along East/West Transect at FTF II - AST 7810

Fuel Tank Farm Groundwater Levels from February through July 1997

Well No	Well Dapth below TOC	Top of Screen	Ser-Se	Feb-98	Mar-26	Apr.98		May-98
¥.1	15.7	8 9	12.7	12.8	13.2	11.1	1	7.8
ASW.2	16.3	9	16.3	13.4	13.6	6.0	ľ	
¥3	163		10.7	13.8	13.1	6.3	ľ	L
N.4	16.2	3	15.7	16.2	-	9.15	٦	
N.5	16.2	6.5	13.8	16.2	13.1	4.0		-
	18.2	6.5	90	13.5	12.6	6.0		
N-7	16.3	63	18.3	16.3	63	6.3		9
AW.8	163	9	6.4	13.2	12.7	9.5		
AW 9	16.2	6.9	12.9	12.9	12.4			9.5
4NV-10	16.3	99	12.0	132	13.8	8.0		7.8
AIW 11	16.7		16.7	18.7	18.7	1.1		9.2
LIW-12	16.5	8.8	15.3			=		8
LIW 13	16.4	20	10.4	16.4	104	12.7		8.5
UW 14	16.2	59	16.2	16.2	16.2	10.	ALANS MINISTER IN	
IM 15	16.3	. 90	16.3	63	1	11.4	63	Γ
. W. 18	16.2	9	16.2	16.2	2	93		
LW 17	16.7	90	15.3	15.00	13.8	10.2		8.2
W 18	16.3	92	12.7	-	**	9.7		6.8
LW-19	16.3	•	16.3	16.3	16.3	63		8.5
NW-20	16.2	9.0	138	14.5	12.8	8		40
LW-21	16.3		15.3	140	10.4		2.8	г
4.22	16.3	90	13	13.1	14.2	6.1	-	Г
LIW-23	16.3	5.50	14.4	142	13	7.8		2
WW.24	16.3		15.4	9		*	2.6	Г
UM-25	16.3		16.3	16.3	16.3	0		2
UM-26	16.3		16.3	16.3	16.3	101		9
1.27	16.3		15.5	15.2	14.8	1.1	ž	Г
UW-28	16.3		16.3	16.3	16.3	-1.1	3	Г
LW-29	16.4		16.4	16.4	10.8	7.5	-	9.0
LW-30	16.3	99	16.3	16.3	16.3	7.5	-	Г
LM 31	16.2	9	16.2	16.2	16.2	10.6	٦	8
LM4.32	16.3		16.3	16.3		=	-	80
4/W/33	16.3	63	16.3	16.3	16.3	16.3	-	10.2
4W.34	16.5	9.9	16.5	18.5	16.5	16.55	Ī	0.3
AW-35	16.7	3	16.7	16.7	16.7		3	П
¥.36	16.5	3	16.5	16.5	16.5	11.7	10	Ψ.
44.7	10.1		•			•		г

1998 Groundwater Levels along East/West Transect at FTF II - AST 7820

habe: indicates water lavel is at or above the top of the screen.

EastWest Cross Section at FTF - AST 7810 (see Figure 10-1 for transect location)

100 100 100 100 100 100 100 100 100 100	South		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
***			,
+W	-	/:	1
/	,		
		/	

EastWest Cross Section at FTF - AST 7820 (see Figure 10-1 for transect location)

Figure 10-2 FTF II Groundwater/Air Flow Relations - AST 7810 Area

Figure 10-3 FTF II Groundwater/Air Flow Relations - AST 7820 Area

FTF II Groundwater/Air Flow Relations - AST 7830 Figure 10-4

57

11.0 NOSE DOCK AREA #1.

11.1 OPERATIONS

COE installed the 8 NDA biovent systems in OU 5 during the fall of 1996 and initiated system startup in October and November. The COE biovent removal action report for these systems presents relevant data. BEI began formal O&M on December 1, 1996. Since BEI assumed responsibility for O&M, the NDA-1 system had operated 580 days through June 30, 1998. NDA-1 and NDA-3 were connected together on January 19, 1998 under the blower located at NDA-1.

11.2 CONCLUSIONS AND RECOMMENDATIONS

Individual wellhead flow has been monitored since December 1996, allowing long-term performance to be evaluated. Figure 11-1 (foldout) presents the biovent system AIW and MP layouts for all of the NDAs. Table 11-1 presents the wellhead flow measurements and soil gas results for NDA-1. For comparison, Figure 11-1 presents the average air flow rate per well over the reporting period along with MP oxygen data.

As depicted on Figure 11-1, most AIWs (15 of 24) averaged above 50 percent of the well-specific design flows; only AIWs-1-3, 1-5, 1-21, 1-22, and 1-24 did not allow any air to be injected during the reporting period. This condition is similar to the 6-month period prior to this reporting period, although air flow was extremely low in May. Figure 11-2 includes graphs that illustrate the fluctuating groundwater levels and air flow at specific wells identified along the cross section on Figure 11-1. Table 11-2 lists all of the groundwater levels at each AIW.

The deep zones of MPs-1-1, 1-3, and 1-4 remain inundated with water. The lowest oxygen levels at NDA-1 were noted at MP-1-6 (1.1 to 1.3 percent). AIW-1-21, north of MP-1-6, has typically been at zero air flow. Nearby AIWs-1-9 and 1-10 were fully inundated during the months of April and May. Once AIW-1-9 and 1-10 came online, the oxygen level increased to 18.3 percent (see Month of June results in Table 11-1).

Respiration testing was performed on MP-1-6-5 and MP-1-6-8 (Figure A-19). Both results, 0.11 and 0.45 percent/hour, respectively, are lower than noted during the fall of 1997 (Table 1-3 or Figure 11-1). The MP 1-6-8 results indicate that biodegradation is still occurring. MP 1-6-5 rate is similar to the spring 1997 rate of 0.16 percent/hour. The oxygen utilization rate at MP 1-6-5 was at 0.34 in the fall of 1997. This fluctuation cannot be explained. An average of these three readings at MP 1-6-5 may be more accurate. In this case, the average rate of 0.2 percent/hour would indicate that the soils are very close to being considered at background levels.

Overall Recommendation for NDA-1: An increase in air flow near MP-1-6 is recommended, primarily by increasing air flow into AIW-1-9, AIW-1-10, and AIW-1-23. Confirmation soil samples to be collected throughout NDA-1 in 1998 should be evaluated to determine whether bioventing should be continued or another alternative should be considered.

Table 11-1 NDA-1 Air F and Monitoring Point Data

Plassuration Air Flow January 1988 February 1988 March 1988 Activity Air Flow January 1988 February 1988 March 1988 Air Flow June 1988 J	Air	Screen	Screen Interval	Overburden	Design			Individual We	Individual Well Head Flow (scfm)			
Log bottom Cost Light operation Cost of the cost Light operation	Injection			Pressure ²	Air Flow						the section of the section of the section of	Average
1. 1. 1. 1. 1. 1. 1. 1.	Well	top	bottom	(psi)	(sctm)	January 1998	February 1998	March 1998	April 1998	May 1998		Jan - Jun
6 21 42 140 111 111 110 115 11 115	AIW-1	12		8.3	15.0	6	11	12	13	10	12	11.2
13 24 80 130 0 0 0 0 0 0 0 0 0	AIW-2	9		4.2	14.0	11	+	10	12	4	11.5	10.9
7 18 4.9 130 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 14 14 14 14 15 14 14 14 15 14 15 14	AIW-3	13		9.0	13.0	0	0	0	0	0	0	0.0
1475 273 78 130 0	AIW-4	7		4.9	13.0	13	13	12	13	12.5	13	12.8
18.75 28.75 13.0 13.0 13.0 13.0 13.0 13.0 13.0 14.5 14.5 1	AIW-5	11.3		7.8	13.0	0	0	0	0	0	0	0.0
15 20 104 130 145	AIW-6	18.75		13.0	13.0	13	13	13	13	-	5	11.0
16 26 11.1 13.0 10 10 95 0 95 10 10 95 10 10 95 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 10 10 10 10	AIW-7	15		10.4	13.0	4.5	4.5		8	0	7	3.3
12 23 8.3 10.0 11 11	AIW-8	16		11.1	13.0	12	13	13	60	•	9.5	9.3
12 23 8.3 10.0 11 11	AIW-9	12		8.3	10.0	10	t t	10	Ó	off	0	9.6
17 28 118 120 9 9 8 0 0 0 0 0 0 0 0 0 0 6 6 1 </th <td>AIW-10</td> <td>12</td> <td></td> <td>8.3</td> <td>10.0</td> <td>10</td> <td>10</td> <td>10</td> <td>60</td> <td>off</td> <td>10</td> <td>9.6</td>	AIW-10	12		8.3	10.0	10	10	10	60	off	10	9.6
16 27 111 120 2 0 1 5 0 5 6 7 0 0 6 8 6 1 6 6 6 7 1 0 0 9 1 </th <td>AIW-11</td> <td>17</td> <td></td> <td>11.8</td> <td>12.0</td> <td>o</td> <td>o</td> <td>60</td> <td>0</td> <td>0</td> <td>0</td> <td>4.3</td>	AIW-11	17		11.8	12.0	o	o	60	0	0	0	4.3
16 27 11,1 12,0 12 12 12 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 1 <t< th=""><td>AIW-12</td><td>16</td><td></td><td>11.1</td><td>12.0</td><td>2</td><td>0</td><td>-</td><td>'n</td><td>0</td><td>S</td><td>2.2</td></t<>	AIW-12	16		11.1	12.0	2	0	-	'n	0	S	2.2
15 26 10.4 12.0 12 12 12 12 13 14 15 14 14 14 14 14 14	AIW-13	16		111	12.0	12	12	12		0	9	8.2
10 21 69 110 11 11 11 11 11 11	AIW-14	15		10.4	12.0	12	12	12	60	0	8.5	8.8
13 24 9.0 11.0 11 4 0	AIW-15	1		6.9	11.0	+	+	o	10	0	o	8.3
14 25 97 110 11 11 11 0	AIW-16	13		9.0	11.0	11	11	11	11	0	-	9.5
14 24 97 110 11 11 11 4 0 9 14 25 97 110 11 11 11 4 0 0 4 125 235 87 110 0 <td>AIW-17</td> <td>4</td> <td></td> <td>9.7</td> <td>11.0</td> <td></td> <td>+</td> <td>11</td> <td>0</td> <td>0</td> <td>0</td> <td>5.5</td>	AIW-17	4		9.7	11.0		+	11	0	0	0	5.5
14 25 9.7 11.0 11 11 4 0 4 6 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 6 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4	AIW-18	4		9.7	11.0	-1-	1	11	10	0	6	8.7
125 23.5 8.7 11.0 9 10 0 <t< th=""><td>AIW-19</td><td>4</td><td>i</td><td>9.7</td><td>11.0</td><td>11</td><td>11</td><td>11</td><td>4</td><td>0</td><td>4</td><td>6.8</td></t<>	AIW-19	4	i	9.7	11.0	11	11	11	4	0	4	6.8
12 23 8.3 10.0 0<	AIW-20	12.5		8.7	11.0	6	5	ហ	0	0	2	4.3
13 24 90 10.0 0 </th <td>AIW-21</td> <td>12</td> <td></td> <td>8.3</td> <td>10.0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0.0</td>	AIW-21	12		8.3	10.0	0	0	0	0	0	0	0.0
13 24 9.0 10.0 10 9.5 10 0 <t< th=""><td>AIW-22</td><td>13</td><td>1</td><td>9.0</td><td>10.0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>jjo .</td><td>0</td><td>0.0</td></t<>	AIW-22	13	1	9.0	10.0	0	0	0	0	jjo .	0	0.0
13 24 90 10.0 0 </th <td>AIW-23</td> <td>13</td> <td></td> <td>9.0</td> <td>10.0</td> <td>10</td> <td>9.5</td> <td>10</td> <td>0</td> <td>Ho.</td> <td>0</td> <td>5.9</td>	AIW-23	13		9.0	10.0	10	9.5	10	0	Ho.	0	5.9
191.5 191.6 191.5 193.0 182.0 134.0 33.5 3.5 (psi): 2.8 2.7 2.5 3.1 2.5	AIW-24	13		9.0	10.0	0	0	0	0	0	0	0.0
2.8 2.7 2.5 3.1 2.5	Total air flo	W.			281.0	191.5	193.0	182.0	134.0	33.5	140.5	
	Pressure (p.	si):				2.8	2.7	2.5	3.1	2.5	3.2	

Monitoring	Screen Interval	nterval										Soil Gas S	Soil Gas Sampling Results	suits							
Point	(ft bas)				January 1998	38		February 1998	1998		March 1998	98		April 1998			May 1998			June 1998	
						ΣH			HVT.			TVH			TVH			TVH			TVH
	top	bottom		O ₂ (%) ³	O ₂ (%) ³ CO ₂ (%) (ppmv)	(ppmv		o)3 CO2 (\wdd) (%	(%)	3 CO ₂ (%	(ppmv)	02 (%)3	$O_2(\%)^3$ $CO_2(\%)$ (ppmv) $O_2(\%)^3$ $CO_2(\%)$ (ppmv) $O_2(\%)^3$ $CO_2(\%)$ (ppmv)	(ppmv)	02 (%)3	$O_2(\%)^3$ CO ₂ (%)		(ppmv) O_2 (%) ³ CO ₂ (%)	CO ₂ (%)	(bpmv)
MP 1-1-6.5	6.5	7														20.7	0.0	2.1	20.6	0.0	18
AP 1-1-13.5	13.5	4					_										мон оп			no flow	
MP 1-2-7-L	7	7	O ₂ Sensor	16.9	BU	EL .	15.7	au .	па	18.7	E.	BC	19.7	ng.	BC	17.3	e u	na	18.1	E .	na L
MP 1-3-5.5	5.5	9														17.2	0.3	0.5	19.7	0.2	0.3
MP 1-3-11.5	11.5	12			No Soil Gas	ý		No Soil Gas	Gas		No Soil Gas	as		No Soil Gas	S		mo flow			water	
MP 1-4-8	80	8.5	THE RESERVE THE RE	ű	Samples Collected	cted		Samples Collected	ollected		Samples Collected	lected	S	Samples Collected	cted		water			water	
MP 1-4-13	13	13.5		due t	due to Winter Conditions	nditions	ਚ ਚ	due to Winter Conditions	Conditions	due	due to Winter Conditions	onditions	que	due to Winter Conditions	nditions		water			water	
MP 1-5BG-7	7	7.5	Background location														water			woll on	
MP 1-6-5	S.	5.5	5.5 O ₂ Util. Rate = 0.11%/hr*													1.3	6.8	flame out	18.3	1.1	0.3
MD 1.6.8	α	8.5	8.5 O, Util. Rate = 0.45%/hr*	_												-	88	flame out	a	* *	6100

NOTE: AIWs that are noted to be "off" have been shutdown due to well seal leaks.

NOTE: Flame out occurs due to low oxygen levels.

00

Measured from top of casing.
 Maximum pressure before potential for fracturing of soil. Calculated at top of screen assuming density of soil is 100 lbs/ft².
 O₂ result represents daily average for month.
 Test performed on 6/25/98.
 read a not applicable

WELL NO	Well Depth	Top of Screen					Groun	dwater Dep	Groundwater Depth Below TOC (ft)	C (ft)				
	below TOC	below TOC	Jul-97	Aug-97	Sep-97	Oct-97	Nov-97	Dec-97	Jan-98	Feb-98	Mar-98	Apr-98	May-98	36-unf
	(#)	(£)												
AIW-1	22	12	22.4	22	22	22	22	22	22	22	22	22	22.3	22
AIW-2	21	9	8.6	9.9	14.1	11.7	8.2	9.7	11.1	11.3	7	7.7	8.3	9.4
AIW-3	24	13	19.9	19.3	24	24	21.5	24	24	24	24	24	!	24
AIW-4	18	7	10.8	12.8	10.25	18	10.1	13	15	15.3	9.2	9.6	6.6	9.9
AIW-5	21.3	11.3	14.7	12.9	16.2	16.7	14.9	15.3	16	16.5	15.3	15.5		15.3
AIW-6	29.75	18.75	22.9	25.9	29.75	29.75	29.75	29.75	29.75	29.75	29.75	23.2		22.7
AIW-7	30	15	30	25.8	30	9	င္က	30	30		30	30	30	30
AIW-8	26	16	26	26	26	26	26	26	26		26	26	19.8	26
AIW-9	23	12	11	11.5	11.1	off	off	11.3	11.3	23	23	6	11	12.9
AIW-10	23	12	12.4	11.6	11.4	off	off	11.8	11.4	11.4	23	10.5	11.2	11.7
AIW-11	28	17	22.1	28	25	28	28	28	28	28	28	28	18	22
AIW-12	27	16	16.1	14.3	17.3	21.2	18.4	19	17.1	17.9	27	27	14.9	27
AIW-13	27	16	20.2	23.9	18.8	27	27	20.6	27	24	27	27	16	17
AIW-14	26	15	21.7		56	26	26	26	26	26	56	26	17.8	21.1
AIW-15	21	10	21.5	21	21	21	21	21	21	21	21	21	18.4	21
AIW-16	24	13	17.7		24	24	24	24	24	24	24	24	16.4	17.8
AIW-17	25	14	21.6		25	25	25	25	25	25	25	25	16.6	21.1
AIW-18	24	14	10.3	24	24	24	24	24	24	24	24	24	14.9	15.3
AIW-19	25	14	23.3	23.6	25	25	25	25	25	25	25	25	17.4	20.4
AIW-20	23.5	12.5	19.9	21.4	23.5	23.5	23.5	21.7	23.5	23.5	23.5	17.9	11.2	15.7
AIW-21	23	12	23	23	23	23	23	23	23	23	23	13.1	12.2	23
AIW-22	24	13	15.6	20.1	24	24	24	24	24	24	24	24	19.2	21.1
AIW-23	24	13	20.9		24	24	24	24	24	24	24	24	12.6	-
AIW-24	24	13	23	23.1	24	24	24	24	24	24	24	24	19.8	22.7

Bolded value indicates water level is at or above the top of the screen. TOC = top of casing.

Figure 11-2 Air Flow vs. Depth to Groundwater at NDA-1

12.0 NOSE DOCK AREA #2

12.1 OPERATIONS

COE installed the 8 NDA biovent systems in OU 5 during the fall of 1996 and initiated system startup in October and November. The COE biovent removal action report for these systems presents relevant data. BEI began formal O&M on December 1, 1996. Since BEI assumed responsibility for O&M, the NDA-2 system had operated 580 days through June 30, 1998.

12.2 CONCLUSIONS AND RECOMMENDATIONS

MP 2-2 continues to exhibit high oxygen and low carbon dioxide levels, suggesting either that contamination does not exist or that the MPs may be short-circuiting via permeable zones (Table 12-1). Either of these scenarios are possible due to the fact that the oxygen levels, when measurable, have always been above 20 percent. MP 2-2 lies approximately 100 ft to the west of MP 1-6, which had the lowest oxygen levels in NDA-1 (see Figure 11-1). This difference in oxygen levels supports the conceptual model (Figure 1-2) that perched lenses may be avenues to the movement of injected air. The oxygen level of 20.7 percent recorded at MP 2-2 in June was recorded after the system had been shut down for several days. All other MPs except the oxygen sensor at MP 2-11 had no flow or water; therefore, no data could be collected from these points. Water levels are listed on Table 12-2. The oxygen levels at the MP 2-11 oxygen sensor remained similar to those in the last half of 1997. A low oxygen level in MP 2-11 coupled with the low system-wide air injection rates during May, suggests that biodegradation is occurring in the vicinity of MP 2-11. High groundwater has not caused problems at NDA-2 AIWs—during the reporting period, only AIW-2 was fully inundated (March and April).

Respiration tests could not be performed in June due to saturated MPs.

Overall Recommendation for NDA-2: High oxygen levels may indicate that cleanup is complete in these areas. Perform fall respiration test at MP 2-11 which contains an oxygen sensor. Soil samples to be collected throughout NDA-2 in 1998 should be evaluated to determine whether bioventing should be continued.

Table 12-1 NDA-2 Air Frow and Monitoring Point Data

Air	Screen	Screen Interval	Overburden	Design			Individual Well	Individual Well Head Flow (ecfm)			
Injection			Pressure ²	Air Flow			The state of the s	mas Morros		Acceptance to 19 4 Communication	
Well	top	bottom1	(isd)	(scfm)	January 1998	February 1998	March 1998	April 1998	May 1998	Average Average	Averag
AIW-1	14		9.7	11.0	11	1	11	9	Section 1	acci eine	
AIW-2	11		7.8	9.0	on:	: 0				3 7 (
AIW-3	7		4.9	11.0	11	. =			- 0	00 (
AIW-4	Ξ		7.6	9.0	0	C			0.00	a .	
AIW-5	13.5		9.4	11.0	=	. =		> 0	5 (0 ;	
AIW-6	9		6.9	9.0	6	: o	- ur	nc	7 4	4.01	
AIW-7	5	1	9.0	10.0	10	10	10		0	5	
AIW-8	10.5		7.3	10.0	10	5	2 5	÷ 5	- u	on \$	
AIW-9	60		4.2	12.0	0	2 0	? c	2 0	n	2 (
AIW-10	Ŧ	:	7.6	9.0	6	6	10			0	
AIW-11	4		2.8	9.0	0	4	2 σ	n a	0.0	Э	
AIW-12	80		5.6	10.0	10	- 0		n ac	- 6	D (
AIW-13	12		8.3	10.0	10	10	10	10	23	2 9	
AIW-14	=		7.6	9.0	0	· on	? o	2 σ	0.0	2 0	
AIW-15	6		6.3	12.0	12	12	, 2	7		D 5	
AIW-16	9		6.9	12.0	0	0	20			71.	
AIW-17	6		6.3	8.0	60	•) C		•	-	
AIW-18	6		6.3	8.0	80) ec	o a	- 4	xo \$	
AIW-19	60		4.2	10.0	10	10	, 50		5	E .	
AIW-20	9.5		9.9	10.0	10	. 4	5 5	5	1 10	n (
AIW-21	6		6.3	10.0	10	2	? cc	2 ~	~ 0	2 6	
AIW-22	80		5.6	8.0	80	600	0		3.6		
AIW-23	7	18	6.4	7.0				o ^	n. c	יו פו	
Total air flow:	:MC			224.0	182.0	186.0	166.5	143.0	589	700	- 1
Pressure (ps	S);				3.6	en en	2.5	3.5°		163.5	
									4.0	0.0	

onitoring	Screen Interval	sterval									Soil Gas S	Soil Gas Sampling Results	suits							
	(u pas)				January 1998 T	H∑L	Fet	February 1998 TVH		March 1998	1998		April 1998	7 FA		May 1998	,× '		June 1998	ř.
C	top	bottom		O ₂ (%) ₃	O ₂ (%) ³ CO ₂ (%) (ppmv)		0,2 (%)3	$O_2(\%)^3$ $CO_2(\%)$ (ppmv) $O_2(\%)^3$ $CO_2(\%)$ (ppmv) $O_2(\%)^3$ $CO_2(\%)$ (ppmv)	V) O2 (V	(%) ³ CO ₂ ('	(wmdd) (%	O ₂ (%) ³	CO ₂ (%)	(vmdd)	O ₂ (%)3	$O_2(\%)^3$ $CO_2(\%)$ (ppmv) $O_2(\%)^3$ $CO_2(\%)$	(bpmv)	0, (%)		(hpmv)
	60	8.5							_							water				
	13	13.5			No Soil Gas		N	No Soil Gas	<u> </u>	No Soil Gas	Gas		No Soil Gae			DO BOW			Male	
	5	5.5		Sar	Samples Collected		Samo	Samples Collected		Samples Collected	ollected	Ü	Samples Collected	tod	30.5	200	1000	100	Water	
	80	8.5		due to	due to Winter Conditions	SL	due to W	due to Winter Conditions	_	due to Winter Conditions	Conditions	dia	due to Winter Conditions	ditions	20.5	9 6	2.4	20.5	9 6	0.0
	8	8.5							1					2	200	000	*:	20.7	0.0	5
	15	15.5														water			water	
	80	6.5														MOII OII			water	
	12	12.5														water			MO! OU	
	80	8.5							<u> </u>							MOHOW DE			10 10W	:
	14.5	15	O ₂ Sensor	17.0	na na	80	18.7	80	44.	2.4	2	45.7				MOI ON			MOI IOM	***************************************

⁴ Measured from top of casing.

² Maximum pressure before potential for fracturing of soil. Calculated at top of screen assuming density of soil is 100 lbs/ft².

³ O₂ result represents daily average for month.

		Groundw	Groundwater Depth Below TOC (ft)	w TOC (ff)				
Aug-97 Sep-97 Oct-97		ž	Dec-97 Jan-98	98 Feb-98	Mar-98	Apr-98	May-98	Jun-98
		25 25	25	25 25	30	107	10.4	40
14.5		1	15.1	22 16.3	11	B. 1	4. 0	5 4
20.35	20.35				15.8	60	17.7	1 0
14.6	14.6				12.5	11.7	7 0	140
23.5	23.5	5		23.5 23.5	23.5	18	17.1	23.5
	21	21 21	21		21	19.7	15.9	21
24	24	24 24	24	24 24	24	23.2	21.4	24
21.5	21.5	21.5 21.5	21.5	21.5	21.5	19.4	16.9	20.2
13	13				13	13	13	13
22		22 22	22		22	17.5	22	22
			15	15 15	8.2	11.7	6.3	6.4
19		19 19	10		19	19	19	19
23			23	23 23	23	14.2	13.9	20.6
22		22 22	22	22 22	22	20.3	19.5	22
19			19		19	19	19	5
	20	20 20	20	20 20	20	20	20	20
20	20		20		20	18.1	17.8	18.6
20	20	20 20	20	20 20	20	18	14.8	17.9
12.5 13.4 11.	13.4	11.1 8.9	9.7	-	8.2	11.4	13.1	15.2
20.5 20.5 20.		20.5 20.5	20.5	20.5 20.5	20.5	18.8	17.9	19.9
20 20 2	20	20 20			20	20	20	20
19	19	19 19	19		19	19	17.3	18.1
18 18 1	18	18 18	18		18	18	17.8	

Bolded value indicates water level is at or above the top of the screen. TOC = top of casing.

13.1 OPERATIONS

COE installed the 8 NDA biovent systems in OU 5 during the fall of 1996 and initiated system startup in October and November. The COE biovent removal action report for these systems presents relevant data. BEI began formal O&M on December 1, 1996. Since BEI assumed responsibility for O&M, the NDA-3 system had operated 603 days through June 30, 1998. NDA-1 and NDA-3 were connected together on January 19, 1998 under the blower located at NDA-1.

13.2 CONCLUSIONS AND RECOMMENDATIONS

As during the last reporting period, no MP data could be collected; saturated soils around the screens prevented respiration tests from being performed (Table 13-1). The low oxygen level in MP 3-3 may also be evidence of low level biodegradation. As shown on Figures 13-1 and 13-2, AIWs located along the transect (identified on Figure 11-1) were partially inundated or dry; Table 13-2 lists the 1998 groundwater levels. When an AIW did accept air, the air flow rate was typically greater than 50 percent of the design rate. AIWs-3-5, 3-9, and 3-11 through 3-21 did not show improvement from the last two reporting periods (all of 1997), typically not allowing any air flow (Figure 11-1 and Table 13-1). AIWs-3-14 and 3-21 were fully inundated with water during several months. Other AIWs not allowing air had minimal inundation, possibly attributable to low-permeability or saturated soils surrounding the screens.

Confirmation sampling will be performed during the summer of 1998.

Overall Recommendation for NDA-3: Soil samples collected throughout NDA-3 should be evaluated to determine whether bioventing should be continued for the entire NDA-3 area or portions thereof. A higher density of soil sampling (areally) is planned for the ineffective AIW area of NDA-3 (AIWs-3-11 through 3-19).

Table 13-1 NDA-3 Air Flow and Monitoring Point Data

	Average	Jan - Jun	33	80	55	3.3	0.0	5.8	5.0	6.5	0.0	2.7	0.0	0.0	0.0	7.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	1	June 1998	JJo	0	. 0	4.5	0	9		#o	0	0	0	0	0	Jo	0	0	0	0	0	0	0	15.5	3.2
		May 1998	off	0	0	0	0	9	2	off	0	0	0	0	0	Jo Diff	0	0	0	0	0	0	•	11.0	2.5
ad Elong (softm)	To the manufacture of the second seco	April 1998	0	0	0	2	0	80	5	80	0	0	0	0	0	o	0	0	0	0	0	0	0	33.0	3.1
(min a) mal profit Holy (minipal	III II AA IBAAA IBAAAA IBAAA IBAAAA IBAAA IBAAA IBAAA IBAAA IBAAA IBAAA IBAAA IBAAA IBAAA IBAAAA IBAAA IBAAAA IBAAA IBAAAA IBAAA IBAAA IBAAA IBAAA IBAAA IBAAA IBAAA IBAAAA IBAAA IBAAAA IBAAAAA IBAAAAA IBAAAAA IBAAAAA IBAAAAA IBAAAAA IBAAAAA IBAAAAA IBAAAAA IBAAAAAA IBAAAAA IBAAAAA IBAAAAAA IBAAAAAAA IBAAAAAAAA	March 1998	0	7	=		0	80	9	0	0	9	0	•	0	e	0	0	0	0	0	0	0	38.0	2.5
		February 1998	JJo	7.5	-	4	0	8	es.	•	0	S	0	o	0	69	0	0	0	0	0	0	0	56.5	2.7
		January 1998	10	€	#	5	0	5	ıc.	6	٥	89	0	0	0	6	0	0	0	0	0	0	0	0.89	2.9
Design	Air Flow	(sctm)	11	1	1	co.	S	6	ı,	6	9	5	9	9	9	6	6	0	6	6	6	9	9	179	
Overburden	Pressure ²	(bsi)	12.5	12.5	12.5	9.7	9.0	6.3	5.6	5.5	9.7	11.1	6.4	11.1	11.1	10.4	10.4	10.4	9.7	10.4	4.01	12.5	12.5		
ı	٠,	bottom	28	28	28	21	23	19	18	16.5	24	56	25.5	58	56	25	25	25	25	25	25	28	28		
Screen Interval		top	18	18	18	=	13	6	80	6	4	16	~	16	16	15	15	15	4	15	15	18		L.	
Air	Injection	Well	AIW-1	AIW-2	AIW-3	AIW-4	AIW-5	AIW-6	AIW-7	AIW-8	AIW-9	AIW-10	AIW-11	AIW-12	AIW-13	AIW-14	AIW-15	AIW-16	AIW-17	AIW-18	AIW-19	A!W-20	A!W-21	Total air flow:	Pressure (psi):

g.	Screen Interval	interval									Soil Gas	Soil Gas Sampling Results	Results							
Point	(ft bgs)				January 1998	8 TVH		February 1998	ΗΛΙ	W	March 1998 TVH		April 1998	98 TVH		May 1998	17/1		June 1998	. H/\F
	top	bottom	print.	O ₂ (%) ³	O ₂ (%) ³ CO ₂ (%) (ppmv)	(vmdd)	O ₂ (%) ³	CO ₂ (%) ((bpmv)	O ₂ (%) ³	O ₂ (%) ³ CO ₂ (%) (ppmv) O ₂ (%) ³ CO ₂ (%) (ppmv) O ₂ (%) CO ₂ (%) (ppmv) O ₂ (%) CO ₂ (%) (ppmv) O ₂ (%) (ppmv)	mv) O ₂ (%)3 CO2 (%	vmdd) (s) O ₂ (%) ³	CO2 (%)	(hmdd)	O ₂ (%) ³	CO2 (%)	(vmdd)
MP 3-1-5.5	5.5	9			No Soil Gas	**		No Soil Gas		_	No Soil Gas	_	No Soil Gas	Sas		no flow			water	
WP 3-1-11.5	11.5	12		ű	Samples Collected	ted	Sa	Samples Collected		Sam	Samples Collected		Samples Collected	llected		water			water	
MP 3-2-8.0	60	8.5		due t	due to Winter Conditions	ditions	due to	due to Winter Conditions	SUC	due to	due to Winter Conditions		due to Winter Conditions	onditions		no flow			no flow	-
MP3-2-14.0	14	14.5														water			water	
AP 3-3-11.5	11.5	12	O ₂ Sensor	17.0	na	æ	16.7	na	na	19.1	na	15.7	.7 na	na	14.7		2	13.6	E.	6

NOTE: AIWs that are noted to be "off" have been shutdown due to well seal leaks.

⁴ Measured from top of casing.

² Maximum pressure before potential for fracturing of soil. Calculated at top of screen assuming density of soil is 100 lbs/ft².

³ O₂ result represents daily average for month.
na = not applicable

Figure 13-1 Air Flow vs. Depth to Groundwater at NDA-3

See Figure 11-1 for transect location.

Figure 13-2 Air Flow vs. Depth to Groundwater at NDA-3

WELL NO	Well Depth	Top of Screen					Groun	Groundwater Depth Below TOC (ft)	th Below TC	C (#)				
	below TOC (ft)	below TOC (ff)	Jul-97	Aug-97	Sep-97	Oct-97	Nov-97	Dec-97	Jan-98	Feb-98	Mar-98	Apr-98	May-98	Jun-98
AIW-1	28	18	15.9	22.1	25.15	25.2	28	28	28	28	28	20.6	14.7	17.5
AIW-2	28	18	24	28	28	28	28	28	28	28	28	22.4	18.7	23.5
AIW-3	28	18	21.8	28	28	28	78	28	28	28	28	22.2	19.9	22.5
AIW-4	21	-	20	21	21	21	21	21	21	21	16.6	15.2	13.6	17.9
AIW-5	23	13	23	23	23	23	23	23	23	23	23	20.8	13.4	23
AIW-6	19	6	14.6	12.1	15.05	16.2	16	15.9	16.6	15.9	19	14.8	14.4	14.3
AIW-7	18	&	13.4	14.3	14.5	14.1	13.3	14.1	14.6	13.4	14.8	13.2	12	12.3
AIW-8	16.5	6.5	11.1	11.7	=	11	9.5	11.6	10.7	11.1	16.5	11.8	9.5	10
AIW-9	24	14	24	24	24	24	24	24	24	24	12.4	23.3	19.5	23.7
AIW-10	5 8	16	25.8	56	25.7	56	26	26	25.7	26	26	25.6	22.9	26
AIW-11	25.5	7	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5	24.7	25.5
AIW-12	56	16	26	56	26	56	56	26	26	26	26	26	26.5	26.1
AIW-13	56	16	26	26	26	26	56	26	56	26	26	26	26	26.4
AIW-14	25	15	13.8	12.9	13.5	14.4	13.6	16.9	14.2	14.2	25	14.65	6.9	7.1
AIW-15	25	15	25	. 25	25	25	25	25	25	25	25	25	22.9	25
AIW-16	25	15	23.7	25	25	25	25	25	25	23.5	20.6	23.3	20.1	22.8
AIW-17	25	14	19.2	21.1	23.7	24.3	25	24.5	23.2	19.8	16.3	18.2	16.3	17.7
AIW-18	25	15	17.5	21	22.8	22.1	21.7	22.1	21.4	17.1	16.1	17.1	14.2	17
AIW-19	25	15	17.7	20.6	22.25	21.4	21.1	22.2	22.5	17.9	16.4	17.15	14.6	17.1
AIW-20	28	18	28	28	28	28	28	28	28	27.6	28	25.8	22.4	28.2
AIW-21	28	18	12.6	15	12.9	14.2	13.5	14	14.8	13.5	13.7	12	=	12.7
	,		4 -1 -007	FOOT 17 !!										

NR = not recorded because system down March 21, 1997 to April 15, 1997 with electrical problems. Bolded value indicates water level is at or above the top of the screen. TOC = top of casing.

14.1 OPERATIONS

COE installed the 8 NDA biovent systems in OU 5 during the fall of 1996 and initiated system startup in October and November. The COE biovent removal action report for these systems presents relevant data. BEI began formal O&M on December 1, 1996. Since BEI assumed responsibility for O&M, the NDA-4 system had operated 527 days through June 30, 1998. The entire system was shut down during October and November 1997 because nearby construction had damaged the air hoses. NDA-4 and NDA-5 were connected together on January 19, 1998 under the blower located at NDA-5.

14.2 CONCLUSIONS AND RECOMMENDATIONS

Approximately half of the 36 AIWs averaged 0 scfm throughout the reporting period (Table 14-1). After a year and a half of operation, the western boundary and northeast arm have not accepted air or have accepted air at a low unmeasurable rate (see Figure 11-1). AIWs located in the east side of the western arm and the area just east of the support building accepted air typically below the design rate for portions of the reporting period, a reduction when compared to typical 1997 flows. As shown on Figure 11-1, elevated groundwater levels in the AIWs were common during the reporting period, but only a few wells were fully inundated (i.e., AIW 4-2, 4-4, 4-11, 4-23, 4-24, and 4-25). Saturated conditions are shown along the AIW east arm groundwater cross section presented on Figure 11-1. Figures 14-1 and 14-2 includes graphs that illustrate the fluctuating groundwater and air flow at all wells along the cross section. Table 14-2 provides 1998 groundwater levels at each AIW.

Due to wet conditions in May and June, no MPs produced soil gas samples. Only the oxygen sensor at MP 4-6 provided oxygen data (see Table 14-1). Respiration tests could not be performed at any NDA-4 MPs due to high water levels and saturated soils. Petroleum odor was noted in the deep (16 ft bgs) zone at MP 4-1. Confirmation sampling will be performed during the summer of 1998.

Overall Recommendation for NDA-4: Bioventing should continue until confirmation sampling is complete. The confirmation soil sampling data should be evaluated as soon as it becomes available. If contamination does exist, additional MPs should be installed and the system left running for another 6 to 12 months. Ex situ bioventing is another remedial alternative.

Table 14-1 NDA-4 Air Flow and Monitoring Point Data

			Pressure ²	Air Flow			March 1998 Ann	Andrew Co.			Average
				Air Flow			March 1998				verage
njection				The second secon			March 1998				
Well	top1 bo	bottom	(bsi)	(scfm)	January 1998	February 1998		April 1998	May 1998	June 1998	Jan - Jun
AIW-1	14	24	9.7	10	6	6	10	6	5	10	8.7
AIW-2	•0	18	5.6	8	0	0	. 0	0	0	0	0.0
AIW-3	9	16	4.2	œ	7	0	0	6	•	7	4.5
AIW-4	=	21	7.6	0	0	v	0	0	off	yo	1.3
AIW-5	Ŧ	21	7.6	00	o	œ	٥	0	0	0	4.5
AIW-6	80	18	5.6	60	80	vo.	1	80	•	7	6.5
AIW-7	-	21	7.6		8	9		0	0	0	3.5
AIW-8	6	19	6.3	00	0	•	•	0	0	0	0.0
AIW-9	60	18	5.6	00	*	0	0	0	-)Jo	1.0
AIW-10		18	5.6		0	0	0	0	0	#o	0.0
AIW-11	7	17	6.4	80	e	0	•	0	Jo	off	0.8
AIW-12	9	12	4.2	10	*	8	•	S	JJo	₩o	2.8
AIW-13	80	12	4.2	20	0	0	0	0	0	6	0.5
AIW-14	9	13	4.2	9	*	0	•	0	0	0	0.7
AIW-15	9	=	4.2	•	un	•	0	0	0	JJ0	1.8
AIW-18	•	12	4.2	2		0	0	0	so.	10	2.3
AIW-17	9	=	4.2	•	0	0	0	0	0	₹	0.7
AIW-18	9	12	4.2	9	0	0	0	0	0	0	0.0
AIW-19	9	12	4.2	9	0	o	0	0	0	0	0.0
AIW-20	16	56	11.1	=	0	0	•	0	0	0	0.0
AIW-21	12	22	8.3	=	0	0	0	0	0.5	0	0.1
AIW-22	15	25	10.4	9	0	0	0	0	0	0	0.0
AIW-23	15	25	10.4	10	0	0	0	•	0	0	0.0
AIW-24	15	25	10.4	9	0	0	0	0	0	0	0.0
AIW-25	15	25	10.4	10	0	0	0	0		•	0.0
AIW-28	7	15	8.4	9	0	9	0	69	2	ຄ	3.0
AIW-27	9	*	4.2	9	0	0	0	0	0	0	0.0
AIW-28	80	16	5.8	7	0	0	0	0	0	0	0.0
AIW-29	90	‡	4.2	9	6	0	80	80	ø	9	5.0
AIW-30	9	13	4.2	2	ĸ	0	0	0	JJo	Ju off	1.3
AIW-31	9	13	4.2	25	ç	2	0	en	s.	s	3.3
AIW-32	12	22	8.3	s,	0	0	•	0	0	0	0.0
AIW-33	16	58	11.1	s	0	0	0	0	0	0	0.0
AIW-34	16	26	11.1	ĸ	0	0	0	0	0	0	0.0
AIW-35	16	58	17.1	so.	0	0	0		0	0	0.0
AIW-36		89	3.5	. 5	7	0	0	0	7	8.5	3.8
Total sir flow:				263	88.0	52.0	39.0	43.0	39.5	58.5	
Pressure (psi):					2.6	5.	2.4	2.3	2.7	2.0	

Monitoring									So	oil Gas San	Soil Gas Sampling Results	ts							
Point	Screen Interval	nterval		J	January 1998 TVH		February 1998 TVH		March 1998	TVH		April 1998	Ι		May 1998	TVH		June 1998	TVH
	top	bottom		O ₂ (%) ³	CO ₂ (%) (bbmv	0 02 ((%) (ppmv) \mathbf{O}_2 (%) 3 \mathbf{CO}_2 (%) (ppmv) \mathbf{O}_1 (%) 3 \mathbf{CO}_2 (%) (ppmv) \mathbf{O}_2 (%) 4 \mathbf{CO}_2 (%) (ppmv)	0 ((%) ₃ CO ₂ (%)	(bbmv)	0, (%)	CO ₂ (%)		0,2 (%)3	O ₂ (%) ³ CO ₂ (%)	(vmqq)	O ₂ (%) ³	CO2 (%)	-
MP 4-1-7.0	6.9	1		-	No Soil Gas		No Soil Gas		No Soil Gas			No Soil Gas			water			water	
AP 4-1-16.0	15.5	16		Sar	Samples Collected		Samples Collected		Samples Collected	90	San	Samples Collected	90		water			water	
IP 4-2BG-5.0	20	10		due to Winter	Winter Conditions	_	due to Winter Conditions		due to Winter Conditions	litions .	due to	due to Winter Conditions	litions		water			water	
MP 4-3-4.0	3.5	+													water			water	
4-4-10.0	9.5	10													no flow			water	
MP 4-5-5.0	4.5	3													woll on			no flow	
AP 4-6-15	15	15	O ₂ Sensor	18.0	na na	18.3	.3 rsa nsa	_	18.5 na	ם	malf	ш	18	matt	па	BL	maff	เกล	
AP 4-7-8.0	7.5	80													no flow			water	
4-7-15.0	14.5	15													water			no flow	
MP 4-8-8.0	7.5	60													no flow			water	
4-8-15.0	14.5	15													no flow			water	
MP 4-9-8.5	80	8.5						_							no flow			water	
MP 4-9-16.0	15.5	16						_							woff on			woll on	
MP 4-10-8.0	7.5	80													no flow			water	
MP4-10-15.0	14.5	5											,		no flow			no flow	

NOTE: AIW's that are noted to be "off" have been shutdown due to well seal leaks.

¹ Measured from top of easing.
² Maximum pressure before potential for fracturing of soil. Calculated at top of screen assuming density of soil is 100 lbs/ft².
³ O₂ result represents daily average for month.
na = not applicable

Figure 14-1 Air Flow vs. Depth to Groundwater at NDA-4

See Figure 11-1 for transect location.

Figure 14-2 Air Flow vs. Depth to Groundwater at NDA-4

(f) (f) Jul-97 Aug-97 Sep-97 Oct-97 24 14 22.2 24 14 18 18 18 18 18 18 18 18 18 18 18 18 18 18 NR NR 18 NR NR 19 NR NR 12 NR NR NR 12 NR NR NR 12 NR NR </th <th></th> <th></th> <th>Srou</th> <th>Groundwater Depth Below 100 (#)</th> <th>th Below 1</th> <th>£ 00</th> <th></th> <th></th> <th></th> <th>-</th>			Srou	Groundwater Depth Below 100 (#)	th Below 1	£ 00				-
24 14 22.2 24 24 18 8 13.2 17.5 18 16 6 11 14.5 18 21 11 17.3 21 14.5 18 11 17.3 21 19.2 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 10 19 19 19 19 11 20.6 20.8 21 17.7 12 6 8 17.7 10.7 12 6 8.5 8.5 9.5 12 6 8.7 10.7 17.4 12 6 8.7 10.7 17.4 12 6 8.7 10.7 17.4 12 15 12.5 14.5 <td< th=""><th>Aug-97</th><th></th><th>Š</th><th>Dec-97</th><th>Jan-98</th><th>Feb-98</th><th>Mar-98</th><th>Apr-98</th><th>May-98</th><th>Jun-98</th></td<>	Aug-97		Š	Dec-97	Jan-98	Feb-98	Mar-98	Apr-98	May-98	Jun-98
18 8 13.2 17.5 18 16 6 11 14.3 14.5 14.5 21 11 14.3 14.5 14.5 14.5 21 11 17.3 21 14.5 14.5 18 8 18 18 18 19.0 18 8 18 18 17.2 17.2 17 7 7 12.3 13.8 66 10.1 12 6 6 8.9 10.2 10.1 17.2 12 6 8 10.2 10.1 </td <td></td> <td>70</td> <td>ON ON</td> <td></td> <td>10</td> <td></td> <td></td> <td></td> <td></td> <td></td>		70	ON ON		10					
16 6 11 14.3 14.5 21 11 9.8 12.4 10.35 21 11 17.3 21 19.2 21 11 20.6 20.8 21 18 8 18 18 19 18 8 18 12.2 10.3 18 8 18 18 12.2 18 8 18 16.2 17.7 17 7 12.3 13.8 66 9.2 12 6 8 10.2 10.1 17.7 12 6 8.9 10.2 10.1 11.4 <t< td=""><td></td><td>1 2</td><td></td><td>707</td><td>47 0</td><td></td><td>47</td><td>0.12</td><td>16.7</td><td>19.2</td></t<>		1 2		707	47 0		47	0.12	16.7	19.2
21 11 9.8 17.4 10.35 21 11 17.3 21 10.2 21 11 17.3 21 10.2 18 8 18 18 18 19 19 19 19 19 19 19 19 19 19 18 8 18 18 18 18 8 18 12 19 18 8 18 18 19 12 6 9 17 17 12 6 8.7 10.2 10.1 11 6 8.9 10.2 10.1 12 6 8.7 10.7 10.7 12 6 8.7 10.7 10.7 12 6 8.7 10.7 10.7 12 15 12.5 14.5 14.9 12 15 12.4 12.9 1		2 4			7.11	4.2	Ω	15.4	4.7	16.45
21 11 9.8 12.4 10.35 18 8 1 16 18 18 19 19 19 19 19 19 19 19 19 19 19 18 18 18 18 18 11 18 18 19 19 19 19 19 19 19 19 19 18 18 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 10	5.4	C.4.0			4.8	12.2	16	4.1	11.9	14.2
21 11 173 21 192 18 8 18 18 18 19 11 20.6 20.8 21 19 9 19 19 19 18 8 18 18 18 18 8 18 18 12.2 18 8 18 18 12.2 12 6 8 10.3 17.7 17.2 12 6 8 10.2 10.1 13.7 12 6 8.7 10.2 10.1 12 6 8.7 10.2 10.1 12 6 8.7 7.6 7.2 12 6 8.7 7.6 7.2 12 6 8.7 10.7 17.4 12 6 8.7 10.7 17.4 12 6 8.7 17.5 11.4 12 6 8.7 17.5 11.4 12 15 15 14.5 11.9 14 6 12.4 13.8 16.5 11.9 14 6 12.4 13.3 14.5 14.5 13 <td>12.4</td> <td></td> <td></td> <td>_</td> <td>10.2</td> <td>12</td> <td>7.5</td> <td>7.1</td> <td>5.5</td> <td>4.4</td>	12.4			_	10.2	12	7.5	7.1	5.5	4.4
18 8 18 </td <td></td> <td>19.2</td> <td>NR NR</td> <td>21</td> <td>19.9</td> <td>21</td> <td>21</td> <td>21</td> <td>12.9</td> <td>14.3</td>		19.2	NR NR	21	19.9	21	21	21	12.9	14.3
21 11 20.6 20.8 21 19 9 19 19 19 19 18 8 18 18 18 19 19 18 8 18 18 19 19 19 19 18 8 12.4 16.3 17.7 17.7 17.7 17.7 17.7 17.7 17.7 17.7 17.7 17.8 17.7 17.9 17.2 17.9 1		18	NR NR		18	18	18	18	18	18
19 9 19 19 19 19 18 8 18 18 18 18 18 18 8 124 16.3 17.7 12.2 18 8 12.4 16.3 17.7 17.7 12 6 5.5 8.5 8.5 9.2 12 6 8.9 10.2 10.1 13.7 11 6 8.9 10.2 10.1 12 6 8.9 10.2 10.1 12 6 8.7 10.2 10.1 12 6 8.7 10.2 10.1 22 12 12 14.9 17.6 17.9 25 15 15 14.9 15.5 14.9 25 15 15 15.5 14.9 15.7 14 6 7.8 15.5 14.9 15.7 14 6 7.8 6.7 6.1 1 13 6 8 12.5 14.9 15.7 13 6 7.8 6.7 6.1 1 13 6 8.5 7.8 6.1 1 26		21			21	21	21	21	186	20 75
18 8 18 18 18 12.2 12.2 12.2 12.2 12.2 12.2 12.2 12.2 17.7 17.8 17.7 17.8		19			19.6	19	10	0	0	100
18 8 12.4 16.3 17.7 17 7 12.3 13.8 6.6 12 6 6 8.5 9.2 12 6 8.7 9.9 13.7 13 6 10.3 13.7 9.5 11 6 7.6 9.5 7.2 12 6 8.7 10.7 9.5 12 6 8.7 10.7 9.5 12 6 8.7 10.7 11.4 12 6 8.7 10.7 14.5 25 15 15 15.5 16.2 25 15 15 15.5 16.3 14 6 15.7 11.9 9.5 14 6 12.4 13.3 13 14 6 7.8 7.8 7.5 13 6 8.5 7.8 7.5 13 6 8.5 7.8		12.2			126	6.1	2 2	ά α	0	- a
17 7 12.3 13.8 6.6 12 6 8.8 8.5 9.2 12 6 8.9 13 13.7 13 6 10.3 13 13.7 11 6 8.9 10.2 10.1 12 6 8.9 10.2 10.1 12 6 8.7 10.7 9.5 12 6 8.7 10.7 9.5 26 16 7.6 7.6 7.2 25 16 8.7 17.5 18.2 25 15 15 14.5 14.5 14 6 15.4 14.5 14.5 14 6 12.4 13.3 14.5 14 6 7.8 6.1 13 6 8.5 7.8 7.5 13 6 8.5 7.8 7.5 14 6 16 22 22	-	17.7		15.9	13.4	16.5	2 0	2 0	10.0	10.0
12 6 5.5 8.5 9.2 12 6 8 8.7 9.9 13 6 10.3 13.7 13.7 11 6 8.9 10.2 10.1 12 6 8.9 10.2 10.1 12 6 8.7 10.7 9.5 12 6 8.7 10.7 9.5 12 6 8.7 10.7 11.4 25 16 17.5 17.5 17.9 25 15 15 14.9 9.5 14 6 12.4 13.3 13 14 6 12.4 13.3 13 14 6 7.8 6.7 6.1 13 6 7.8 6.7 6.1 13 6 8.5 7.8 7.5 26 16 22 22 22 26 16 21.8 22.7				12.2	12.4	200	7 7	0	2	10.43
12 6 89 9.9 13 6 10.3 13.7 11 6 8.9 10.2 10.1 12 6 8.9 10.2 10.1 12 6 8.9 10.2 10.1 12 6 8.7 10.7 9.5 12 6 8.7 10.7 11.4 25 15 15 14.9 15.5 14 6 12.4 13.3 13 15 13.8 16.2 14.9 9.5 14 6 7.8 6.7 6.1 13 6 7.8 6.7 6.1 13 6 7.8 6.7 6.1 22 12 22 22 22 24 16 22 22 22 26 16 22.8 25.7 25.9 26 16 22.6 23.9 26		°			1.7.1		0.7	0.0	0.0	
13 6 10.3 13 13.7 11 6 8.9 10.2 10.1 11 6 8.9 10.2 10.1 11 6 7.6 9.5 10.1 12 6 8.7 9.5 22 12 16 17 17.6 17.9 25 15 15 14.9 25 25 15 13.8 16 15.7 14 6 12.4 13.3 13 14 6 7.8 6.1 13 6 7.8 6.1 13 6 7.8 6.1 13 6 7.8 6.1 22 12 22 22 24 16 8.5 7.8 6.1 25 16 22 22 22 26 16 22 23.3 26 1 26 16 21.8 22.7 25 1 26 16 21.6 22.6 23.9 1	-	3.6			71	72	11.3	8.1	6.5	6.1
13 6 8.9 10.1 13.7 11 6 8.9 10.2 10.1 12 6 8.7 6 9.5 12 6 8.7 10.7 9.5 12 6 8.7 10.7 9.5 12 6 9 11.5 11.4 12 16 17 17.5 18.2 25 15 15 14.5 14.9 14 6 12.4 13.3 13 14 6 12.4 13.3 13 14 6 7.8 6.1 13 6 7.8 6.1 13 6 8.5 7.8 6.1 13 6 8.5 7.8 6.1 22 12 22 22 22 24 16 22 22 22 25 16 22 23.3 26 26 16 22.6 23.3 26 26 16 21.6 22.6 23.9 26 16 22.6 23.9 27 22.6 23.9 28 16 22.6		9.0			8.1	6.3	7	12	6.9	8.3
11 6 8.9 10.2 10.1 12 6 7.6 7.2 7.2 12 6 8.7 10.7 9.5 12 6 8.7 10.7 9.5 12 6 9 11.5 11.4 26 16 17 17.6 17.9 25 15 15 14.5 14.9 25 15 13.8 16 15.7 15 1 10.7 11.9 9.5 14 6 12.4 13.3 13 14 6 7.8 6.1 1 13 6 7.8 6.7 6.1 13 6 7.8 6.7 6.1 25 12 22 22 22 13 6 7.8 6.7 6.1 13 6 7.8 6.7 6.1 26 16 22 23.3 26 26 16 22 23.3 26 26 16 21.8 22.7 25 26 16 21.6 22.6 23.9 26 16 22.6 23.9		13.7		11.1	11.6	11.5	6	13	6.6	10.7
12 6 7.8 7.6 7.2 11 6 8.7 10.7 9.5 12 6 8.7 10.7 9.5 12 6 9 11.5 11.4 26 16 17 17.6 17.9 25 12 16.2 17.5 18.2 25 15 15 14.9 25 25 15 13.8 16 15.7 15 7 10.7 11.9 9.5 14 6 12.4 13.3 13 14 6 7.8 6.1 12 13 6 7.8 6.1 12 13 6 8.5 7.8 6.1 13 6 8.5 7.8 7.5 22 16 22 22 22 24 16 21.8 22.7 25 26 16 21.8 22.7 25 26 16 21.6 23.9 25 25.6 23.9	_	10.1	NR NR	9.5	9.3	7.7	11	7.1	8.4	4.6
11 6 7.6 9 7.2 12 6 8.7 10.7 9.5 12 6 9 11.5 11.4 26 16 17 17.6 17.9 22 12 16.2 17.5 18.2 25 15 23.3 25.8 25 25 15 15 14.9 25 25 15 13.8 16.3 25 15 7 10.7 11.9 9.5 14 6 12.4 13.3 13 14 6 12.4 13.3 13 14 6 7.8 6.1 14 6 7.8 6.1 13 6 8.5 7.5 13 6 8.5 7.8 7.5 22 12 22 22 22 26 16 21.8 22.7 25 26 16 21.6 23.9 26 16 22.6 23.9		7.2	NR NR	8.7	8.2	5.3	6.4	6.2		5.9
12 6 8.7 10.7 9.5 12 6 9 11.5 11.4 26 16 17 17.6 17.9 22 12 16.2 17.5 18.2 25 15 23.3 25.8 25 25 15 15 14.9 25 25 15 15 14.9 16.3 25 15 13.8 16 15.7 14 6 12.4 13.3 13 14 6 12.4 13.3 13 14 6 7.8 6.1 14 6 7.8 6.1 13 6 7.8 6.1 13 6 8.5 7.8 7.5 22 12 22 22 26 16 21.8 22.7 25 26 16 21.8 22.7 25 26 16 21.6 23.9 27 25.6 23.9		7.2	NR NR	8.6	8.1	7.8	1	11	100	
12 6 9 11.5 11.4 26 16 17 17.6 17.9 22 12 16.2 17.5 18.2 25 15 23.3 25.8 25 25 15 15 14.5 14.9 25 15 13.8 16.3 16.3 25 15 13.8 16 15.7 14 6 12.4 13.3 13 16 8 12.5 14 6.1 13 6 7.8 6.1 6.1 13 6 8.5 7.8 6.1 22 12 22 22 22 26 16 21.8 22.7 25 26 16 21.8 22.7 25 26 16 21.6 22.6 23.9		9.5	NR NR	10.5	9.7	8.4	7.4	73	7 9	10
26 16 17 17.6 17.9 22 12 16.2 17.5 18.2 25 15 23.3 25.8 25 25 15 15 14.5 14.9 25 15 13.8 16.3 25 15 13.8 16 15.7 15 7 10.7 11.9 9.5 16 8 12.4 13.3 13 14 6 12.4 13.3 13 14 6 7.8 6.1 6.1 13 6 7.8 6.7 6.1 13 6 8.5 7.8 7.5 22 12 22 22 26 16 21.8 22.7 25 26 16 21.6 22.7 25 26 16 21.6 22.6 23.9		11.4		10.9	9.3	9.1	7.6	7.8	7.6	10.4
22 12 16.2 17.5 18.2 25 15 23.3 25.8 25 25 15 15 14.5 14.9 25 15 13.8 16.3 16.3 25 15 13.8 16 15.7 15 7 10.7 11.9 9.5 16 8 12.4 13.3 13 16 8 12.5 14 6.1 14 6 7.8 5.8 6.2 13 6 7.8 6.1 6.1 13 6 8.5 7.8 7.5 22 12 22 22 22 26 16 21.8 22.7 25 26 16 21.6 22.7 23.9		17.9	NR NR	18.3	18.2	17.5	18.6	18.9	16.8	19.7
25 15 23.3 25.8 25 25 15 15 14.5 14.9 25 15 13.8 16.3 16.3 25 15 13.8 16 15.7 15 7 10.7 11.9 9.5 14 6 12.4 13.3 13 16 8 12.5 14 6.1 14 6 7.8 5.8 6.2 13 6 7.8 6.1 6.1 13 6 8.5 7.8 7.5 22 12 22 22 22 26 16 21.8 22.7 25 26 16 21.8 22.7 25 26 16 21.6 22.7 23.9 26 16 21.6 22.6 23.9			NR NR	17.8	15.1	15.9	15.8	16.8	15.7	17.6
25 15 15 14.5 14.9 25 15 13.8 15.7 16.3 25 15 13.8 16 16.7 15 7 10.7 11.9 9.5 14 6 12.4 13.3 13 16 8 12.5 14 6.2 13 6 7.8 5.8 6.1 13 6 7.8 6.1 6.1 13 6 8.5 7.8 7.5 22 12 22 22 22 26 16 21.8 22.7 25 26 16 21.6 22.6 23.9 26 16 21.6 22.6 23.9				25	25	25	25	22.2	184	217
25 15 13.8 15.5 16.3 25 15 13.8 16 15.7 15 7 10.7 11.9 9.5 14 6 12.4 13.3 13 16 8 12.5 14 12.6 14 6 7.8 5.8 6.2 13 6 7.8 6.7 6.1 13 6 8.5 7.8 7.5 22 12 22 22 22 26 16 21.8 22.7 25 26 16 21.6 22.7 25 26 16 21.6 22.7 25 26 16 21.6 22.7 25	14.5	14.9	NR NR	14	15	13.4	14.9	15.1	15.1	16.2
25 15 13.8 16 15.7 15 7 10.7 11.9 9.5 14 6 12.4 13.3 13 16 8 12.5 14 12.6 14 6 7.8 5.8 6.2 13 6 7.8 6.7 6.1 13 6 8.5 7.8 7.5 22 12 22 22 22 26 16 21.8 22.7 25 26 16 21.6 22.7 25 26 16 21.6 22.6 23.9		16.3	NR NR	14.1	16.6	13.7	14.5	14.4	14.6	16.9
15 7 10.7 11.9 9.5 14 6 12.4 13.3 13 16 8 12.5 14 12.6 14 6 7.8 5.8 6.2 13 6 7.8 6.7 6.1 13 6 8.5 7.8 7.5 22 12 22 22 22 26 16 21.8 22.7 25 26 16 21.6 22.7 25 26 16 21.6 22.6 23.9		15.7	NR NR	16.1	16.3	14.9	12.4	12	13.9	14.4
14 6 12.4 13.3 13 16 8 12.5 14 12.6 14 6 7.8 6.2 6.1 13 6 8.5 7.8 6.1 22 12 22 22 22 26 16 22 23.3 26 26 16 21.8 22.7 25 26 16 21.8 22.7 25 26 16 21.6 22.6 23.9		9.5	NR NR	13.9	13.4	10.5	13.9	15	15.1	15
16 8 12.5 14 12.6 14 6 7.8 5.8 6.2 13 6 7.8 6.7 6.1 22 12 22 22 22 26 16 22 23.3 26 26 16 21.8 22.7 25 26 16 21.6 22.7 25 26 16 21.6 22.6 23.9		13	NR NR	13.7	12.1	11.7	11.9	12.3	12	13.9
14 6 7.8 5.8 6.2 13 6 7.8 6.1 6.1 22 12 22 22 22 26 16 22 23.3 26 26 16 21.8 22.7 25 26 16 21.8 22.7 25 26 16 21.6 22.6 23.9		12.6	AN NR	13.6	11.9	16	16	16	12.1	13.4
13 6 7.8 6.7 6.1 13 6 8.5 7.8 7.5 22 12 22 22 22 26 16 22 23.3 26 26 16 21.8 22.7 25 26 16 21.6 22.6 23.9		6.2	AN NR	14	80	14	14	80	8	8.3
13 6 8.5 7.8 7.5 22 12 22 22 22 26 16 22 23.3 26 26 16 21.8 22.7 25 26 16 21.6 22.6 23.9			AR NR	7.1	80	13	13	13	9	5.7
22 12 22 22 22 22 22 22 22 23.3 26 22 23.3 26 22 23.3 26 22 22.7 25 22.7 25 25 25 23.9 26 22 23.9 26 22.6 22.6 23.9 <td< td=""><td></td><td></td><td></td><td>8.2</td><td>8.1</td><td>13</td><td>13</td><td>13</td><td>6</td><td>13</td></td<>				8.2	8.1	13	13	13	6	13
26 16 22 23.3 26 26 16 21.8 22.7 25 26 16 21.6 22.6 23.9			AN NR	22	18.6	22	22	22	22	22
26 16 21.8 22.7 25 26 16 21.6 22.6 23.9			AN NR	26	26	26	26	22.1	19.9	22.6
26 16 21.6 22.6 23.9			AR NR	26	26	26	26	21.8	0 61	216
			AN NR	24.9	25.3	26	56	20.9	19.5	216
AIW-36 8 5.9 5.9 NR	ĸ			CC	oc	α	α	α	0	1

Bolded value indicates water level is at or above the top of the screen.

NR = not recorded because system down October and November due to construction in area.

TOC = top of casing.

15.1 OPERATIONS

COE installed the 8 NDA biovent systems in OU 5 during the fall of 1996 and initiated system startup in October and November. The COE biovent removal action report for these systems presents relevant data. BEI began formal O&M on December 1, 1996. Since BEI assumed responsibility for O&M, the NDA-5 system had operated 526 days through June 30, 1998. The entire system was shut down during October and November 1997 because nearby construction had damaged the air hoses. NDA-4 and NDA-5 were connected together on January 19, 1998 under the blower located at NDA-5.

15.2 CONCLUSIONS AND RECOMMENDATIONS

AIWs accepting air during the reporting period were typically either at zero flow or close to the design rate (Table 15-1). AIWs 5-2, 5-5, and 5-20 have not accepted air since startup in December 1996. AIWs-5-6, 5-8, 5-10, and 5-21 were essentially ineffective during the reporting period. Since these wells are scattered throughout NDA-5, there are no significant areas not receiving air. Table 15-2 provides 1998 AIW groundwater levels. Partially saturated AIWs were predominantly located in the northern end of NDA-5, in close proximity to NDA-4 (i.e., AIWs-5-6, 5-7, and 5-9). Figures 15-1 and 15-2 includes graphs that illustrate the fluctuating groundwater levels and air flow at all wells along the cross section identified in Figure 11-1.

MP 5-4 was the only MP sampled during April and May due to the saturated conditions of the soils. The oxygen sensor malfunctioned each month and is planned to be replaced. No respiration tests were performed due to a high oxygen level in MP 5-4 and saturated conditions in all other MPs. Confirmation sampling will be performed during the summer of 1998.

Overall Recommendation for NDA-5: Bioventing should continue until confirmation sampling is complete. The confirmation soil sampling data should be evaluated as soon as it becomes available. If contamination does exist, additional MPs should be installed and the system left running for another 6 to 12 months. Ex situ bioventing is another remedial alternative.

Table 15-1 NDA-5 Air Flow and Monitoring Point Data

Continue Principle Princ	Air	Screen Interval	Overburden	Design	Individual Well Head Flow (sefm)		
Column C	Injection			Air Flow			
6 8 3.5 9 7.5 0 <th>Well</th> <th></th> <th></th> <th>(scfm)</th> <th>January 1998 February 1998 March 1998</th> <th></th> <th>Average</th>	Well			(scfm)	January 1998 February 1998 March 1998		Average
6 9 35 9	AIW-1	5 8	3.5	6			1998 Jan - Ju
6 9 42 9	AIW-2	5	3.5	o	200	80	3
9 11 5 6	AIW-3	9	4.2	6) o	0	0.0
14 45 6	AIW-4	9	4.2	9		0	4.3
7 13 4.9 6 0	AIW-5	8 14	5.6	9	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2 5	2
7 13 49 6	AfW-6	7 13	8.4	9		0	0
7 13 49 7 7 0	AIW-7	7 13	4.9	9	0	BO	
7 13 4,9 7 7 6	AIW-8	7 13	6.4	9	200		3
7 13 4.9 7 6	AIW-9	7 13	6.3	7	2	9	•••
6 12 42 6	AIW-10	7 13	4.9	7	2		5.2
7 13 49 7 7 6	AIW-11	6 12	4.2	9) (C		
6 11 42 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	AIW-12	7 13	9.	_			
6 11 42 6 6 6 10 42 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	AIW-13	6 11	4.2	9	7 0		
6 10 42 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	AIW-14	6 11	4.2	90	, c		
6 10 42 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	AIW-15	6 10	4.2	7	200		
6 11 42 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	AIW-16	6 10	4.2	7	7 7 7		1
6 10 42 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	AIW-17	6 11	4.2	7	7		
6 10 42 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	AIW-18	6 10	4.2	7	1		
6 10 42 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AIW-19	6 10	4.2	7	7 7 7		:
6 9 42 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AIW-20	6 10	4.2	7			
6 10 42 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	AIW-21	6	4.2	9		- 4	
6 11 42 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	AIW-22	6 10	4.2	7	7 7		:
5 8 3.5 6 6 6 6 6 6 6 6 0ff 0ff <td>AIW-23</td> <td>6 11</td> <td>4.2</td> <td>9</td> <td></td> <td></td> <td></td>	AIW-23	6 11	4.2	9			
6 9 42 6 6 6 5 6 9 0f 0f 0f 0f 6 6 6 6 6 6 6 6 6 6 6 6 6 6	AIW-24	2	3.5	9	7 66		
5 8 3.5 6 7 7 8	AIW-25	6 9	4.2	9	0 0		_
4 7 28 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 7 2 3 1 5 6 6 7 3 1 5 6 7 3 1 3 1 4 2 3 1 4 4 5 5 5 5 6 6 6 7 9 9 9 1 1 2 3 1 4 2 5 9 0 0 1 0 1 0	AIW-26	90	3.5	9	, c		
4 7 2.8 5 5 5 5 6 7 0f	AIW-27	4	2.8	ıc) w		
4 6 2.8 5 5 6 4 2.5 off off off off 2.5 of 2.5 off off off off 2.5 off off off off off 2.5 off off off off 2.5 off off off off off off off off off of	AIW-28	4	2.8	9	, u		
189 147.5 108.0 95.0 102.5 78.5 88.0	AIW-29	4 6	2.8	0	o •	the recess	
785	Total air flo-	W.		189	147.5 108.0 06.0		
	Pressure (ps	÷			0.00 0.00		0.

					ı		*	- 20 - 1	Soil (Soil Gas Sampling Results	g Results			ı					
		January 1998		TVH	Febru	February 1998	17/11	Ma	March 1998		. Apr	. April 1998) 		May 1998			June 1998	
		O ₂ (%) ³ CO ₂ (%)		o (nudo	(%), CC	d) (%) ^z	o (nudo	(%)3 C	TVH (ppmv) 0, (%) CO2 (%) (ppmv) 0, (%) CO3 (%) (ppmv) 0, (%) CO3 (%) (ppmv) 0, (%) CO3 (%) (ppmv) 0, (ppmv)	ppmv) O,	(%) ₃ C(0) (%) (0	TVH ppmv)	O, (%) ³	CO. (%)	HVT (ppud)	61/0/19	1%	TVH
																	2 (10)	(%) 200	(Allied)
										_					Water			water	
	O ₂ Sensor*	19.0	au	2	Math	Mattunction		M	Malfunction		Mak	Malfundion			no flow			water	
i i							1			1	Wall	ותנוכתסוו		- 1	Mairunction			Malfunction	
		o. cN	No Soil Gas		N	No Soil Can	_	1	0 10 0					20.4	0.0	11.7	19.8	3.0	3.8
		Sample	Samples Collected		Samples	Samples Collected		Samo	Samulae Collected		Compo	No Soil Gas			woll on			water	
		due to Winter Conditions	er Conditio	22	due to Winter Conditions	ar Condition		die to MA	die to Minter Conditions		dire to the	Carriples Collected			MOH OH			water	

¹ Measured from top of casing.
² Maximum pressure before potential for fracturing of soil. Calculated at top of screen assuming density of soil is 100 lbs/ft².
³ O₂ result represents daily average for month.
In = no reading

NOTE: AIWs that are noted to be "off" have been shutdown due to well seal leaks.

WELL NO	Well Depth	Top of Screen					Groun	dwater Dep	Groundwater Depth Below TOC (ft	C (ft)				
	below TOC (ft)	below TOC (ft)	76-Inc	Aug-97	Sep-97	Oct-97	Nov-97	Dec-97	Jan-98	Feb-98	Mar-98	Apr-98	May-98	Jun-98
AIW-1	æ	5	7.3			NR.	R	8	8	5.3	7.3	8.5		
AIW-2	Φ.	2	8	æ	8	A.	A.	80	8	8				
AIW-3	6	9	8.8			Ä.	X.	6	6	7.9	6	6.9		
AIW-4	=	9	8.6		80	A.	£	11	11	11	8.1	1		တ်
AIW-5	14	80	8.7	13.3	13.9	Z.	A.	12.1	14	12.7	7.4	9.4		1
AIW-6	13	7	10.6	7.1	6.4	R.	R.	13	6.9	5.8	8.5	13		
AIW-7	13	7	9.3	13	13	Z.	N.	13	13	7.2	13	13		
AIW-8	13	7	1	11.9	13	ĸ	R	11.6	12	11.5	11.6	11.6		13
AIW-9	13	7	10.9	12	13.9	Z.	A.	11.4	12	9	13	13		13
AIW-10	13	7	7.8	11.7	13	AR.	NR.	11.2	11.9	5	nt	13	-	5.4
AIW-11	12	9	8.5	10.4	9.5	N.	N.	9.7	11.6	12	12	6.7	-	.6
AIW-12	13	7	10.4	13	13	R	NR	13	10.9	6.6	6.9	8.8		13
AIW-13	F	9	1	1	-	R	R.	11	1	11	=	1	11	1
AIW-14	-	9	10.6	11	11.3	Z.	NR.	11	10.8	6.8	8.4	7	5.4	5.4
AIW-15	10	9	9	10	9	Z.	Z.	10	10	10	10	10		9
AIW-16	10	မ	10	10	9	X.	A.	10	10	10	10	10		10
AIW-17	11	9	8.7	9.5	11	N.	R	9.4	9.6	8.3	11	7.1	-	8.6
AIW-18	10	9	10	10	9	R	A.	10	10	10	10	10	10	10
AIW-19	10	9	9	10	10	R	R	10	10	10	8.7	10		10
AIW-20	10	9	9.3	10	10	R.	R	10	. 10	9.9	8.7	10		0
AIW-21	6	9	တ	6	o	X.	Ä	6	6	6	6	0		10
AIW-22	10	9	10	10	10	NR.	R	10	10	10	10	10		-
AIW-23	-	မ	8.3	11		R.	품	11	11	11	9.6	11		7.7
AIW-24	ဆ	ഹ	8	ω		R	A A	80	æ	8	00	80		
AIW-25	6	9	6	6		Ä	A.	6	6	0	6	0		7.1
AIW-26	∞	2	8	80		X X	Æ	8	80	80	00	80		8
AIW-27	7	4	7	7		R	R	7	7	7	5.6	7		7
AIW-28	7	4	7	7	7	Ä	R.	7	7	7	7	7	9.9	6.3
AIW-29	9	4	5.7	9	9	X R	NR.	9	9	9	2	9		

Bolded value indicates water level is at or above the top of the screen. TOC = top of casing.

See Figure 11-1 for transect location.

Figure 15-1 Air Flow vs. Depth to Groundwater at NDA-5

NOTE: See Figure 11-1 for transect location.

Figure 15-2 Air Flow vs. Depth to Groundwater at NDA-5

16.1 OPERATIONS

COE installed the 8 NDA biovent systems in OU 5 during the fall of 1996 and initiated system startup in October and November. The COE biovent removal action report for these systems presents relevant data. BEI began formal O&M on December 1, 1996. Since BEI assumed responsibility for O&M, the NDA-6 system had operated 609 days through June 30, 1998. A new oxygen sensor (MP-6-4-5.5) was installed near AIW-6-2 (Figure 11-1, foldout) on July 29, 1997.

16.2 CONCLUSIONS AND RECOMMENDATIONS

Only one of the four AIWs is operating (AIW-2); the other three were turned off at the request of researchers at the University of Maine at Orono (Table 16-1). Currently, a graduate student writing a master's thesis on bioventing has been granted use of NDA-6 for research purposes. Operation, therefore, is conducted in conjunction with research activities at the site. No modifications are anticipated to occur to this system. Monthly air flow readings and MP data are presented on Table 16-1. AIW-6-2 operated close to design through this reporting period. Water levels for the AIWs are presented on Table 16-2. AIW-6-1 and 6-3 were inundated with water during the majority of the reporting period.

A respiration test was performed at MP-6-2BG in June. The oxygen utilization rate was determined to be 0.1 percent/hour, which is representative of background levels (Figure A-20). The new oxygen sensor added to NDA-6 produced monthly oxygen readings of 19.1, 16.3, 17.3, and 16.9 percent from October through December 1997. Oxygen levels noted in January, February, and March were 3.7, 4.5, and 1.4, respectively. There is no explanation for the dramatic decline in oxygen concentrations. Fuel has been noted previously in MPs installed by the research student in the area of AIW-6-2. These new levels are indicative of biodegradation. As noted in the last semiannual report, the background location appears to be within contaminated soils; the oxygen levels are unusually low (11.5 and 12.9 percent). No volatiles were noted, and carbon dioxide levels are relatively low. It is possible that these concentrations may be indicative of background since the respiration test indicates that an oxygen utilization rate similar to background conditions exist. Confirmation sampling will be performed during the summer of 1998.

Overall Recommendation for NDA-6: It is recommended to return all AIWs to operation as soon as possible. Confirmation soil samples collected throughout NDA-6 should be evaluated. If AIWs 6-1, 6-3, and 6-4 are ineffective and residual contamination is found, the site may be excavated.

Table 16-1 NDA-6 Air Flow and Monitoring Point Data

Air	Screen Interval		Overburden	Design			Individual Well H	Individual Well Head Flow (scfm)		
Injection			Pressure ² A	Air Flow						AVA
Well	top	bottom1	(bsi)	(scfm)	January 1998	February 1998	March 1998	April 1998	May 1998	June 1998 Jan - Jun
AIW-1	8	18	5.6	7	Дo	off	off	Jo	JJO	100
AIW-2	80	18	5.6	7	7	7	5	0	40	· co
AIW-3	80	18	5.6	7	ĵio J	to off	off	Off	200	
AIW-4	8	18	5.6	7	off	off	Jo	July Off	00	200
Total air flow:	OW:			28	7.0	7.0	5.0	0.0	5.0	0.5
Pressure (psi)	nsi):				2.2	2.2	23	2.1	- 61	3.0

Monitoring												Soil Gas Sampling Results	pling Result	S						ı	
Point Screen interval	Screen In	nterval			January 1998	8 TVH	€ :	February 1998	TVH 1		March 1998 TV	3 TVH		April 1998	HAL		May 1998	HVT		June 1998	Į.
	top	top bottom		02 (%)3	CO ₂ (%)	(vmdd)	0, (%)	CO ₂ (%)	(bpmv)	0,2 (%)3	CO ₂ (%)	(hmdd)	O ₂ (%) ³	$\mathbf{Q}_{1}(\%)^{3} \mathbf{CO}_{2}(\%) (\text{spmv}) \mathbf{O}_{2}(\%)^{3} \mathbf{CO}_{2}(\%) (\text{spmw}) \mathbf{O}_{2}(\%)^{3} \mathbf{OO}_{2}(\%) (\text{spmw}) \mathbf{O}_{2}(\%)^{3} \mathbf{OO}_{2}(\%) (\text{spmw}) (\text{spmw}) (\text{spmw}) (\text{spmw}) (\text{spmw}) (\text{spmw}) (\text{spmw}) (\text{spmw}) $	(bpmv)	O2 (%)3	CO ₂ (%)	(bpmv)	O ₂ (%)³	CO ₂ (%)	(bpmv)
MP 6-1-4	4		4 O ₂ Sensor	3.7	na	20	4.5	8	na Bu	1.4	4.5 na na 1.4 na na	na	Water	Water covering sensor	sor	Water	Water covering sensor	180r	Water	Water covering sensor	nsor
MP 6-2BG-7.0	7	12	-2BG-7.0 7 12 O ₂ Util. Rate = 0.10%/hr*					No Soil G	as Sample	s Collected	No Soil Gas Samples Collected du to Winter Conditions	Conditions				14.9	14.9 1.3 0	0	12.3	2.4	0
MP 6-3-8	80	8.5															no flow			water	
MP 6-4-5.5	5.5	9	O ₂ Sensor	14.6	BC	85	12.6	ē	B	12.8	82	an Bu	13.9	na 12.6 na na 12.8 na na 13.9 na na 15.2	ē	15.2	82	82	15.2	118	2

¹ Measured from top of casing.

Maximum pressure before potential for fracturing of soil. Calculated at top of screen assuming density of soil is 100 lbs/ft².

A₂ result represents daily average for month.

Test performed on 6/27/98.

NOTE: AIWs that are noted to be "off" have been shutdown due to well seal leaks.

Table 16-2 NDA-6 Croundwater Level Data

		_		_	_
	Jun-98	5.5	11	9.9	9.6
	May-98	4.9	10.3	5.9	9.6
	Apr-98	4.3	7.1	5.57	6.6
	Mar-98	6.3	9.5	7.6	11
C (ft)	Feb-98	7.8	11.2	6	11.5
Groundwater Depth Below TOC (ft)	Jan-98	7.7	10.9	10.2	11.5
Jwater Dept	Dec-97	æ	1	8.8	11.4
Ground	Nov-97	7.6	11.3	8.5	11.4
	Oct-97	7.7	11.6	9.9	11.5
	Sep-97	7.2	11.55	6.2	11.5
	Aug-97	7.4	11.8	6.45	10.2
	Jul-97	7.3	11.6	5.9	9.7
Top of Screen	below TOC (ft)	8	ھ	∞	8
Well Depth	below TOC (ft)	18	18	18	18
WELL NO		AlW-1	AIW-2	AIW-3	AIW-4

Bolded value indicates water level is at or above the top of the screen. TOC = top of casing.

17.1 OPERATIONS

COE installed the 8 NDA biovent systems in OU 5 during the fall of 1996 and initiated system startup in October and November. The COE biovent removal action report for these systems presents relevant data. BEI began formal O&M on December 1, 1996. Since BEI assumed responsibility for O&M, the NDA-7 system had operated 605 days through June 30, 1998.

17.2 CONCLUSIONS AND RECOMMENDATIONS

Table 17-1 presents the flow at each of the four AIWs since startup. No samples have been collected from MP 7-1 since startup due to no flow or saturated conditions. Oxygen data was collected each month from oxygen sensor MP 7-2 (Table 17-1).

All four AIWs have been partially inundated with groundwater from January through June (Figure 17-1). It appears that AIW-7-1 and 7-4 remain ineffective. Table 17-2 contains the depths to groundwater at each of the four AIWs. Only AIW-7-2 accepted air during the entire 6 months. AIW-7-3 accepted air in all months except May and June. Confirmation sampling will be performed during the summer of 1998.

Overall Recommendation for NDA-7: The 1998 confirmation soil sample results should be evaluated to advise status of continued bioventing or alternative remediation.

Table 17-1 NDA-7 Air Flow and Monitoring Point Data

Air	Screen Interval	rval O	Overburden	Design			Individual Well	Individual Well Head Flow (scfm)		
Injection		o.	Pressure ² Air Flow	Air Flow						Average
Well	top	bottom	(isd)	(scfm)	January 1998	February 1998	March 1998	April 1998	May 1998	June 1998 Jan - Jun
AIW-1	9	21	4.2	6	7	0	0	0	0	0
AIW-2	9	21	4.2	6	8	6	i	o	The state of the s	6
AIW-3	9	21	4.2	ø	6	6	6	9	JU O	0
AIW-4	9	21	4.2	6		0	Jio	0	0	0.5
Total air flow:	OW.			36	24.0	18.0	18.0	14.0	7.0	9.5
Pressure (psi):	si):				2.4	3.1	3.1	2.7	2.2	3.6

Monitoring	Screen Interval	terval								Soil	Soil Gas Sampling Results	ng Results								
Point	(ft bgs)			January 199	8 TVH	B1 3	February 1998	H∕T	13 X × N	ा १८० March 1998	TVH	April 1998	pril 1998	TVH		May 1998	ΗVI		June 1998	HVT
	top	bottom	O ₂ (%) ³	O ₂ (%) ³ CO ₂ (%)	(hudd)	O ₂ (%) ³	CO ₂ (%)	(bpmv)	O ₂ (%) ³	$\mathbf{O}_{2}(\%)^{3} CO_{2}(\%)$ (ppmv)	ppmv) C), (%) ³ (50, (%)	(bbmv)	0,2 (%)3	CO ₂ (%)	(bpmv)	O ₂ (%) ³	CO ₂ (%)	(ppmv)
MP 7-1-7.0	7	7.5				No	soil Gas Sam	ples Collects	ed due to Wi	No Soil Gas Samples Collected due to Winter Conditions						no flow			water	
MP 7-2-4.5	4.5	5 O ₂ Sensor	14.9	na R	82	15.8	2	80	16.4	15.8 na na 16.4 na na 17.4 na na 18.7 na na na	82	17.4	**	2	18.7	10	2	19.3	19.3 na na	2

NOTE: AIWs that are noted to be "off" have been shutdown due to well seal leaks.

¹ Measured from top of casing.
² Maximum pressure before potential for fracturing of soil. Calculated at top of screen assuming density of soil is 100 lbs/ft².
³ O₂ result represents daily average for month.

9

15

2

Depth to H20 (ft bgs)

25

May

Αp

Mar

Feb

Jan

See Figure 11-1 for transect location.

Figure 17-1 Air Flow vs. Depth to Groundwater at NDA-7

Table 17-2 NDA-7 Groundwater Level Data

Š	Well Depth	Top of Screen					Ground	Groundwater Depth Below TOC (ft)	th Below TC	C (ft)				
pe	below TOC (ft)	below TOC (ft)	26-Inf	Aug-97	Sep-97	Oct-97	Nov-97	Dec-97	Jan-98	Feb-98	Mar-98	Apr-98	May-98	Jun-98
	21	9	9.5	15.6	19.2	19.7	18.5	18.5	21	21	21	16.5	15	
	21	9	10	15		16.3	10.3	14.3		1,	12.9	12.3	12.3	12.8
	21	9	6	14.7	10.1	10.2	14.4		11.2	10.9	11.1	13.8	8.8	
	21	9	6	12.1	17.85	18.5		18.3		20.1	19.9	14.8	13.8	15

TOC = top of casing.

18.1 OPERATIONS

COE installed the 8 NDA biovent systems in OU 5 during the fall of 1996 and initiated system startup in October and November. The COE biovent removal action report for these systems presents relevant data. BEI began formal O&M on December 1, 1996. Since BEI assumed responsibility for O&M, the NDA-8 system had operated 611 days through June 30, 1998. Monthly air flow and MP soil gas sampling results are presented on Table 18-1.

18.2 CONCLUSIONS AND RECOMMENDATIONS

The majority of the AIWs to the north of the support building and AIWs-22 and -23 have remained ineffective and do not accept air or accept air at a low unmeasurable rate. These areas have been at zero air flow during the entire 1997 season and the first half of 1998. The total flow entering the AIWs located south of the support building has decreased from fall 1997 levels by about 50 percent. Only AIWs-8-11, 8-16, 8-17, 8-18, and 8-19 remained at design air flow rates through the reporting period. As shown on Figures 11-1, 18-1 and 18-2, the AIWs south of the support building (AIW 8-11 and above) were inundated with groundwater to levels typically greater than half of the screen from March through June. These levels were also noted in the AIWs to the north of the support building, but with a more harsh effect on air flow. It is likely that soil conditions in the north end of NDA-8 may include a thicker clay layer that may extend across the entire screened interval. Table 18-2 provides depths to groundwater in each AIW during 1998.

Oxygen levels in MPs 8-3 and 8-4 indicate that oxygen is abundant (typically greater than 18 percent), possibly at levels representing clean conditions. The June level noted in MP-8-3 (20.5 percent) was taken after the system had been shut down for more than 12 hours, which would be expected if the soils were not contaminated. MP-8-2 remains unusable, most likely within the same saturated soils that affect the ineffective AIWs. It is unclear why MP-8-4 indicates high levels of oxygen with none of the surrounding AIWs accepting air; it is possible that the soils surrounding this MP may not be contaminated.

No respiration tests were performed due to high oxygen in MP-8-3 and water in MP 8-2. Confirmation sampling will be performed during the summer of 1998.

Overall Recommendation for NDA-8: The recommendation is to evaluate another remedial technology applicable to the entire site because of the lack of air injection in the northern end and the high water levels in the southern end of NDA-8. Shallow soils (i.e., upper 10 ft) in the southern end may have been remediated. Confirmation soil sampling results will determine the extent of any remaining contamination.

Table 18-1 NDA-8 Air Frew and Monitoring Point Data

		, -	0	. c	vi c) C	, c	9 0	, 0	, c	9 6	<u>ء</u> ز	, c	b n	, 0	9 1		r o	0 0	, c		, (o . c	, c	Į.	_
	, arang	,	۳	- (vi c	<i>•</i>	o 0	o c	· c	o c	9 0	· •	rq	· •		•	ŕ	, 0	ni a	, 5	0	9 6	9 0	,	9 6	1	
H	<u>۷</u>	98		-				_	_			:			-			1			•			-		-	
		June 1998 Jan - Jun	٥	0		0	> <	•	0	0	0	מי כ	۱ ۱	٠ د	o u	3 4	, ,	Ş	2 5	5 5	2 0	, ,	١ ٥			840	3.2
Н		=				1									1			:			:			i			
			ı			1									-												
Н			ŀ				_		ŀ	_		:			t			t			-		_	+		1	
			ı						-			1									-						
		1998			_	-			į			146		20-		- 10					İ					6	
		May 1998	ľ	, ,	, ,		, ,	, ,	;	, c	, ,		, 1	- 7	0	5 ~	2	+		=	σ	• •	, ,	l	•	, 5	2.7
Н			ı						i												1			İ		l	
						1						j															
			ľ																								
н		~																									
É.		April 1998	c			0			0			-			, J			10	2 0	, p	6		, ,	c		8.0	2.4
v (scfr		Apn	١						İ																	4	
d Flov			l			-									1			İ									
II Hea			-			+		_	<u>:</u>	_		1			-						H					-	
ual We			ı			-						1															
Individual Well Head Flow (scfm)		866	ľ																								
=		March 1998	2	4	0	c	0	0	0	0	0	4.5	6.5	0	0	un	9	6	, 2	2	6	0	-	0	0	610	3.1
		M	l																								
			l																								
			Ī			İ						T						-									
		98				-															-						
		February 1998	5.5	4	0	0	0	0	0	0	0	9	7	4	7	'n	6	0	0	9	6	8		0		0.	3.1
		Februa	4													^			•							6	3
			ı						!																		
,			-	_			_		<u> </u>			-			-			-						<u> </u>			
		1998													ĺ												
		January 1998	2	S	0	0	0	0	0	0	0	8	7	က	7	00	œ	5	9	9	6	80	က	0	0	99.0	3.3
i		Jai													!												
40 - 0						!			!			1															
uf.	MC	(c)								_	_				 		-										
Design	Air Flow	(scfn	10	10	9	10	2	9	6	89	7	8	7	7	^	80	6	9	9	9	o	80	8	7	7	197	
len	B ²		-	_	_	-			-	-								-	_								
Overburden	Pressure	(psi)	9.7	9.7	9.0	9.0	8.3	8.3	7.6	6.9	7.8	6.9	6.3	5.6	6.3	6.4	4.9	4.9	4.2	4.2	7.6	7.8	6.3	6.9	8.3		
ó		-				1																					
rval		bottom	56	58	25	25	24	24	23	22	23	22	21	20	21	19	19	10	18	18	23	23	21	22	24		
Screen Interval				_	_	-			:	_		!															
Scree		top	14	14	13	5	12	12	Ŧ	10	F	5	6	æ	6	7	7	7	9	80	=	÷.	0	5	12		
																										r flow:	(bsi):
Air	ection	Well	W-1	W-2	W-3	N.	W-5	W-6	W-7	W-8	6-WI	W-10	W-11	AIW-12	W-13	W-14	W-15	W-16	W-17	W-18	W-19	W-20	W-21	W-22	W-23	Total air flow:	Pressure (psi)
	Ę	>	X	ď	¥	ď	¥	¥	K	₹	¥	₹	¥	¥	¥	A	¥	¥	¥	Y	¥	¥	A	A	¥	۴	ă
						_																		_			╝

ing											Soil (Soil Gas Sampling Results	ng Results								
	Screen Interval	ıterval			January 1998	8 HVT	K	February 1998	HVF	N	March 1998	8 TVH	, A	April 1998	H/VI	🍦 🚊 May 1998	/lay 1998	TĀ.	Г	June 1998	Ē
4)	top	bottom	methodology of the control of the co	O ₂ (%) ³	O ₂ (%) ³ CO ₂ (%) (ppmv)	(hbmv)	O ₂ (%) ³	CO ₂ (%)	(bpmv)	O ₂ (%) ³	0, (%) CO, (%) (ppmv) 0, (%) CO, (%) (ppmv) 0, (%) CO, (%) (ppmv) 0, (%) CO, (%) (ppmv) 0, (%) (ppmv)	ppmv) C) ₂ (%) ³ C	O ₂ (%)	(hbmv)	O ₂ (%)³	CO ₂ (%)	(vmdd)	O ₂ (%)³	CO ₂ (%)	(hudd)
	œ	8.5					No S	oil Gas Samp	ifes Collecte	M of eub be	No Soil Gas Samples Collected due to Winter Conditions	SU				_	no flow			water	
	80	8.5														20.6	0.0	00	20.5	0.0	9.0
	9.5	10 02	O ₂ Sensor	19.1	na	En .	19.5		80	18.4	na na 18.4 na na	80	9.0	na na		18.5	2	82	19.0	1	80

¹ Measured from top of casing.

² Maximum pressure before potential for fracturing of soil. Calculated at top of screen assuming density of soil is 100 fbs/ft².

³ Amp a.1 was not installed.

⁴ MP B.1 was not installed.

na = not applicable

Figure 18-1 Air Flow vs. Depth to Groundwater at NDA-8.

Figure 18-2 Air Flow vs. Depth to Groundwater at NDA-8

WELL NO	Well Depth	Top of Screen					Ground	Iwater Dept	Groundwater Depth Below TOC (ft)	C (ff)				
	below TOC (ft)	below TOC (ft)	26-InC	Aug-97	Sep-97	Oct-97	Nov-97	Dec-97	Jan-98	Feb-98	Mar-98	Apr-98	May-98	Jun-98
AIW-1	26	14	13	16	16.7	18.6	18.5	18.5	18.8	19.2	19.2	17.5	16	17.4
AIW-2	56	4	14.3	15.6	17.7	28	26	26	92	26	26	18.4	16.5	18
AIW-3	25	13	14.8	18.9	21.8	22.6	22	22.1	23.2	24.4	24.4	15.8	14.5	17.3
AIW-4	25	13	12.4	17.3	19.4	20.1	18.7	18.6	20.4	20.5	17.5	13.8	12.5	. 15
AIW-5	24	12	14.2	16.5	19.3	20.2	19	19.5	20.1	20.5	20.3	14.3	14	15.7
AIW-6	24	12	13.4	17.4	19.9	20.7	19.7	19.9	20.3	21.1	20.6	14.4	14.1	16.
AIW-7	23	=	16.2	20.2	23	23	23.3	23.6		23	23	17.6	17	19.2
AIW-8	22	10	12.8	15.7	16.2	16.9	15.3	16.1		17	15.3	13.5	12.9	14.4
AIW-9	23	1	10.8	15.6	18.3	19.1	17.4	17.9	19.1	19.9	19.1	6.6	10.5	14
AIW-10	22	10	13.3	15.6	16.4	16.9	15	18.9	16.8	16.7	14.8	14.2	13.5	14
AIW-11	21	o	11.9	14.1	14	10.4	10.3	11.2	13	12.3	10.1	10.3	12.7	14.6
AIW-12	20	80	9.8	13.2	12.5	13.6	11.8	12.9	14.3	14.6	10	9.5	7.3	10.8
AIW-13	21	6	10.5	13	10.3	10.6	10.2	13	21	21	5.8	8.7	7.2	12.4
AIW-14	19	7	10.1	14.8	17	17.8	17.5	17.5	18.2	18.3	17.8	10.6	11.2	
AIW-15	19	7	4.6	9.6	9.3	9.7	8.3	0	10.6	10.4	10.4	12.6	12.5	15
AIW-16	19	7	14.1	15.1	15	15.2	14.9	15	19	15.4	14	15	15.1	15
AIW-17	18	9	6.9	7.3	7.2	7	7.1	7.3	7.7	7.9	6.3	7.2	7.1	7.2
AIW-18	8	ဖ	7	ω	7.5	80	7	7.8	8.3	8.4	9	9	7.5	7.5
AIW-19	23	1	12.4	12.6	12.4	12.6	12.4	12.5	12	13	11.8	12.7	12.5	12.
AIW-20	23	-	12	13.6	10.9	10.8	10.1	12.9	13	12.5	9.4	8.3	=	12.4
AIW-21	21	0	10.6	14.1	13.9	14.8	13	14	. 21	19	21	7.3	6	11.9
AIW-22	22	10	9.7	14.2	14.3	15.25	13.4	14.4	22	17.4	12.3	7.3	8.5	9.5
AIW-23	24	12	10.6	16.9	20.6	21.3	18.3	19.6	24	24	13	8.2	8.6	10.8

Bolded value indicates water level is at or above the top of the screen. TOC = top of casing.

19.0 POWER PLANT DRAINAGE PIPE

19.1 OPERATIONS

The PPDP, located in OU 9, consists of 18 AIWs and 24 MPs (Figure 19-1). BEI installed the PPDP biovent system in the fall of 1995. During July 1997 three new MPs—one (MP-10) with oxygen sensors and two (MP-9-3.5 and MP-9-8.5) without oxygen sensors—were installed in accordance with the recommendations made in the previous semiannual report. These areas did not contain sufficient soil gas data to evaluate biodegradation activity. Since BEI assumed responsibility for the bioventing O&M, the system has operated 804 days as of June 30, 1998. This system was down during portions of the summer of 1996 due to high water levels, but has since operated continuously with only minor interruptions for respiration testing and general maintenance.

System flows were typically at the design flow rate of 4 scfm (Table 19-1) with a slight downturn on several AIWs during April through June. Groundwater levels shown in Table 19-2 confirm that several screens were fully inundated during March and April. April total air flow was the lowest monthly total for the 6-month reporting period. System injection pressures were not raised above 3.4 psi.

19.2 CONCLUSIONS AND RECOMMENDATIONS

In general, the contaminated area is being aerated at air flow rates equal to or slightly below the 4 scfm design rate. The most easterly AIW (AIW-6) has remained ineffective since May 1997 (zero flow). As mentioned above, air flow has not been impeded by partial inundations and even fully inundated conditions as illustrated on Figures 19-2 and 19-3 (air flow on Table 19-1). Low oxygen levels taken in May and June were recorded in MP-1-3, MP-3-3, MP-3-6, MP-5-3, and MP-9-8.5 (readings of 10.7, 1.3, 14.4, 8.2, and 14.4 percent oxygen, respectively). The remaining MPs either had oxygen readings greater than 17 percent or yielded no data because of saturation/no flow.

Respiration tests were run at the previous 6 locations with data and 4 new locations (Figures A-21 through A-25). Three of the 6 respiration tests performed at MPs with prior history showed a decrease in respiration, thus indicating degradation is occurring (MP-2-3, MP-3-6, and MP-9-8.5). Active biodegradation remains at MP-3-3. Elevated TVH readings were again noted in MP-9-8.5 (see Table 19-1). It appears that approximately 3 ft of unsaturated contaminated soils (located below the 1995 removal; see Figure 19-1) are the probable source of the volatiles. Contaminated saturated soils may exist below these unsaturated soils, thus continually providing volatiles. Even MP-9-3.5, located in the backfill, has elevated TVH readings noted during the respiration tests. Unfortunately, both AIW-8 and AIW-10 (each screened to about 11.8 ft bgs) are partially inundated most of time to a depth of 8 ft bgs. Confirmation sampling will be performed during the summer of 1998.

loring\L-1995

Overall Recommendation for PPDP: No changes are recommended since the AIWs are working as designed and contaminated soils still are believed to remain, based on low oxygen readings and elevated carbon dioxide and TVH readings. Oxygen utilization rates show a general decline, likely attributable to the ongoing biodegradation. Confirmation soil samples should be evaluated as soon as possible.

PPDP Biovent System Layout and Average Wellhead Flow

Table 19-1 PPDP Air Flow and Monitoring Point Data

	Average	- Jun	1.7	2.0	3.5	4.0	1.4	0.0	4.0	4.0	0.5	4.0	3.0	4.0	3.7	0.4	4.0	1.4	3.5	4.0		_
	Aw	June 1998 Jan - Jun	0	0	3.1	4	0	0	4	4	0	₹	2	4	3.7	4	4	0	4	4	44.8	2.2
		May 1998	0		3.4	4	-	•	denote of the cut of t	4	0	4	2.3	4	4	4	4	0		4	46.7	2.4
Individual Well Head Flow (scfm)		April 1998	0	2	2.6	*	0	0	*	4	0	*	1.6	4	2.4	4	4	0	1.8	4	41.9	2.5
Individual Well H		March 1998	3	6	4	*	2.2	0	4	4	1.2	4	4	4	4	4	4	2.2	4	4	59.6	3.4
		February 1998	3.7	3.2	4	4	2.7	0	4	4	-	4	4	4	4	*	4	3.2	4	4	61.8	3.4
		January 1998	3.6	3.2	4	4	2.7	0	4	4	-	4	4	4	4	4	4	8	4	4	61.5	3.4
Design	Air Flow	(scfm)	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	72	
Overburden	Pressure*	(bsi)	6.2	6.2	4.7	3.2	8.4	8.4	2.2	5.4	5.4	5.4	4.8	4.8	4.8	3.4	3.8	6.2	8.4	3.3		
Screen Interval	sõe	top bottom	9 13.8	.9 13.8	.8 11.8	9.5	.9 11.8	9 11.8	2 8.1	.8 11.8	.8 11.8	11.8	.9 11.8	9 11.8	9 11.8	9.6	.5 10.5	.9 13.8	9 11.8	7. 9.7		
Air Scre	Injection (1/bgs		AIW-1 8	AIW-2 8.	AIW-3 6.	AIW-4	AIW-5 6.	AIW-6 6.	AIW-7	AIW-8 7.	AIW-9 7.	AIW-10 7.	AIW-11 6.	AIW-12 6.	AIW-13 6.	AIW-14 4.	AIW-15 5.	AIW-16 8.	AIW-17 6.	AIW-18 4.	Total air flow:	Pressure (psi):

January 1998 February 1998 TVH	TVH
$O_2 (\%)^2 CO_2 (\%)$ (ppmv) $O_2 (\%)^2 CO_2 (\%)$ (ppmv)	(hudd)
O ₂ Util. Rate = 1.16%/hr ^e No Soil Gas No Soil Gas	No Soil Gas
Samples Collected Samples Collected	
due to Winter Conditions due to Winter Conditions	due to Winter Conditions
O ₂ Util. Rate = 0.27%/hr³	1.27%/hr³
O ₂ Util. Rate = 0.08%/hr ³	1.08%/hr³
O ₂ Util. Rate = 1.43%/hr ⁴	.43%/hr*
O ₂ Util. Rate = 0.31%/hr*	1.31%/hr*
O ₂ Util. Rate = 0.26%hr*	1.26%/hr²
O ₂ Util. Rate = 0.53%/hr*	1.53%/hr*
O₂ Util. Rate ≈ 0.19%/hr³	1.19%/hr³
Background location	cation
O ₂ Util. Rate = 0.05%/hr³	1.05%/hr³
O ₂ Util. Rate = 0.24%/hr*	1.24%/hr*
O, Sensor malf na na malf	

⁴ Maximum pressure before potential for fracturing of soil. Calculated at top of screen assuming density of soil is 100 lbs/ft².

² The monthly O₂ sensor results is the average for month. See biovent monthly reports for daily values.

NOTE: AIWs that are noted to be "off" have been shutdown due to well seal leaks.

NOTE: Flame out occurs due to low oxygen levels.

³ Test performed on 6/29/98.
⁴ Test performed on 6/24/98.
bgs = below ground surface, malf = malfunctioned.

Power Plant Discharge Pipe Groundwater Levels from January through June 1998

	Delow IOC	DOI MOIO						
UW-1	15.9	10.8	15	15	10	14.7	9.8	9.3
VW-2	15.9		15	- 2	10	15	12	118
IW.3	13.9	8.7	13	13.	8	9.5	7.5	11.3
MM-4	11.3	8	60	6	7.2	6.3	60	7.7
IW.5	13.9	80	13	5	8	13.1	12.6	12.4
9MI	13.9	80	13	13	80	13	13	13
UM-7	10.3	20	9.5	9.5	8.5	80	98	8.6
IW-8	13.7	6.5	=	10.9	-	10.9	10.9	-
WW-9	13.8	60	13	13	6	13	13	13.7
IW-10	13.9	8.7	123	125	11.1		11.2	11.
IW-11	13.9	88	5	5	80	13	13	13
IW-12	13.8	7.99	13	13	10.2	50	96	9.2
JW-13	13.7	90	<u>e</u>	13	6	8.5	8.6	9.3
AIW-14	11.8	8.7	80	=	7.8	7.3	8	83
W-15	12.7	7.5	10.4	11.7	7.7	6.7	7.5	7.6
IW-16	16.0	10.9	15	15	10	15	6	8.3
W-17	13.7	980	12.9	11.7	10 6	8	10.5	10.1
4IW-18	11.7	9.4	8.7	50	7	6.2	7.4	7.3

Groundwater Levels along North / South (Westline) Transect at PPDP

Well No	Flevetion of Elevation of		Elecation			l		ı	
					Elevation		Elevation	Depth to	Elevation
	top of casing	ground			of water - JUN.	lo od	to TOS		to BOS
	(frame)	(A mad)	(flame)	(R arred)	(frame)	_	(R amal)	acreen (ft)	(Barnet)
AIW-6	681.98	680.11	96.99	10	668.98	80	673 18		REA OR1
AIWL7	681.29			672.79	No.		-	İ	÷
AW.8	690.78		669.88	98 699		9.5	:	-	
AIW-10	680.25			889.25				1	ì
AIW+12	680.79	ŀ		871.29	-	7	872 NO	****	
AIW-14	680.43	678.64	669.43	673.13		67	1	:	i
AIW-15	15089			673.81			1	1	
AIW-16	680.28			865.28		-		18	
AIW-1	690.55	678.63	965.55	965.85	671.25		669 75	1	664.65

Groundwater Levels along North / South (Eastline) Transect at PPDP

Well No.	Elevation at		Elevation		Elevation		Elevation		Depth to	Elevation		Flevetion
	top of casing of ground		of water - FEB.		of water - APR.		of water - JUN.		to dot	to TOS	bottom of	to BOS
	(fr email)		(fi armsd)		(if armst)		(# smst)		screen (ft)	(R arrel)		(farmer))
AW-5	682.25			689.25		669.15		669.85			13.6	
AW4	682.05			672.75		875.75		674.35	100	i		670.75
AIW-18	681.67	1		672.57		675.47		674.37	80	1		į
AW417	681.83			670.13		673.83		67173	8	-	i	;
AIW-3	681.65		-	668.65		872.15		670.35				1
AIW-2	681.81	679.75		19 899	-	688.61		669.71	10.8	8 670.81	6.55	
AIW-1	680.55			685.55		965.85	-	87125	101	İ		1

North / South Cross Section at PPDP - Eastline (see Figure 19-1 for transect location)

Figure 19-2 PPDP Groundwater/Air Flow Relations - Westline

Figure 19-3 PPDP Groundwater/Air Flow Relations - Eastline

REFERENCES

- ABB-ES (ABB-Environmental Services, Inc.), 1994. Remedial Investigation Report, OU-10. Installation Restoration Program. Loring AFB. August.
- ABB-ES, 1995a. Remedial Investigation Report, OU-8. Installation Restoration Program. Loring AFB. February.
- ABB-ES, 1995b. Remedial Investigation Report, OU-9. Installation Restoration Program. Loring AFB. January.
- ABB-ES, 1996. Remedial Investigation Report, OU-11. Installation Restoration Program. Loring AFB. February.
- AFCEE (Air Force Center for Environmental Excellence), 1992. Test Plan and Technical Protocol for a Field Treatability Test for Bioventing. May.
- BEI (Bechtel Environmental, Inc.), 1996a. Bioventing at OUs 5, 8, 9, 10, and 11 Removal Action Report. April.
- BEI, 1996b. Operation and Maintenance Plan for Bioventing at OUs 5, 8, 9, 10, and 11. January.
- BEI, 1996c. Excavations in OUs 5, 8, 9, 10, and 11 Removal Action Report. February.
- BEI, 1996d. Bioventing at OUs 5, 8, 9, 10, and 11 Removal Action Work Plan, Addendum No. 1. November.
- BEI, 1996e. Bioventing Semiannual Report. October.
- BEI, 1996f. Bioventing Alternatives Technical Memorandum. October.
- .BEI, 1996g j. Monthly Bioventing Reports. September through December.
- BEI, 1997a. Bioventing Semiannual Report. August.
- BEI, 1997b. Addendum No. 1 to Bioventing Removal Action Report. May.
- BEI, 1997c. Expansion of the OU 11 Bioventing System, Addendum No. 2 to the RAWP Bioventing at Operable Units 5, 8, 9, 10, and 11. September.
- BEI, 1997d o. Monthly Bioventing Reports. January through December.
- BEI, 1998a. Bioventing Semiannual Performance Report August December 1997. May.

- BEI, 1998b g. Monthly Bioventing Reports. January through June.
- BEI, 1998h. Field Sampling Plan Remediation of the Biovent, VMB, RNSA, and Base Laundry Sites. Revision 0. August.
- CDM (Camp Dresser McKee), 1996. Remedial Investigation Report, OU-5. Installation Restoration Report. Loring AFB. February.
- Earth Tech, 1995. Long-Term Bioventing Treatability Study, Technical Report, Loring AFB, Base Exchange Service Station. August.
- Patrick St. Peter & Sons Inc., 1997. Operation and Maintenance Manuals for Nose Dock Area & Service Station.
- URS (URS Consultants, Inc.), 1995a. Design Analysis Report, OUs 5, 9, 10, and 11. June.
- URS, 1995b. Bioventing and Excavation Specifications for Former Jet Engine Test Cell, Fuel Tank Farm, Vehicle Maintenance Building, Power Plant Drainage Pipe, and Entomology Shop. June.

APPENDIX A

A-1	Spring 1998 Respiration Test Results for MP-4-3 and MP-4-13 at the AHS
A-2	Spring 1998 Respiration Test Results for MP-5BG and MP-9-6.5 at the AHS
A-3	Winter 1998 Respiration Test Results for MP-6-4 and MP-6-5 at the AHS
A-4	Winter 1998 Respiration Test Results for MP-8-15 at the AHS
A-5	Spring 1998 Respiration Test Results for VM-1-5 at the BXSS
A-6	Spring 1998 Respiration Test Results for VM-2-5 and MP-1-3.5 at the BXSS
A-7	Spring 1998 Respiration Test Results for MP-3-3.5 and MP-4BG at the BXSS
A-8	Spring 1998 Respiration Test Results for MP-2-8.5 at the BXSS
A-9	Spring 1998 Respiration Test Results for MP-6-3 and MP-7-3 at the FJETC
A-10	Spring 1998 Respiration Test Results for MP-5-3 and MP-10-3 at the FTA
A- 11	Spring 1998 Respiration Test Results for MP-9-3 and MP-9-10 at the FTA
A-12	Spring 1998 Respiration Test Results for MP-11-3 and MP-12-6 at the FTA
A-13	Spring 1998 Respiration Test Results for MP-13-6 and MP-1-6 at the FTA
A-14	Spring 1998 Respiration Test Results for MP-2-3 and MP-3-6 at the FTA
A-15	Spring 1998 Respiration Test Results for MP-14-8.5 and MP-15-10 at the FTA
A-16	Spring 1998 Respiration Test Results for MP-4BG at the FTA
A-17	Spring 1998 Respiration Test Results for MP-7-2.5 and MP-7-6.5 at the FTF
A-18	Winter 1998 Respiration Test Results for MP-9-6 at the FTF II
A-19	Spring 1998 Respiration Test Results for MP-1-6-5 and MP-1-6-8 at NDA-1
A-20	Spring 1998 Respiration Test Results for MP-6-2BG at the NDA-6
A-21	Spring 1998 Respiration Test Results for MP-2-3 and MP-2-6 at the PPDP
A-22	Spring 1998 Respiration Test Results for MP-6-3 and MP-8-3 at the PPDP
A-23	Spring 1998 Respiration Test Results for MP-4-3 and MP-9-9 at the PPDP
A-24	Spring 1998 Respiration Test Results for MP-3-3 and MP-3-6 at the PPDP
A-25	Spring 1998 Respiration Test Results for MP-1-3 and MP-5-3 at the PPDP

Time ¹			MP-4-3					MP-4-13		
(hrs)	02	CO2	TVH (p	pmv)	Helium	O ₂	CO2	TVH (p	pmv)	Helium
	(%)	(%)	FID	PID	(%)	(%)	(%)	FID	PID	(%)
Pretest ²	16.5	2.2	261	2	-	18.5	1.3	6	2	-
0.0	20.4	0.1	,6	20	1.7	20.6	0	2	4	1.8
1.0	20.2	0.3	7	5	1.7	20.5	0	3	1	2.3
2.0	19.9	0.4	5	3	1.5	20.5	0	2	1	2.2
4.0	19.4	0.6	15	13	1.4	20.2	0.1	6	2	1.9
6.5	19	0.7	16	80	1.4	20	0.3	4	2	1.9
8.5	18.7	0.9	9	82	1.4	19.9	0.3	3	3	2
9.7	18.5	0.9	6	68	1.5	19.8	0.3	2	4	1.8
17.5	17.3	1.2	14	21	1.3	19.5	0.4	1	4	1.6
24.2	16.8	1.3	14	5	0.95	19.7	0.5	1	0	1.2
49.8	13.6	1.8	25	6	0.68	19	0.6	7	3	0.81
70.5	12.2	2	102	35	0.6	17.8	0.9	16	1	0.74
91.8	7.5	2.7	fo	12	0.76	17.4	1.1	13	3	0.59
120.2	6.7	2.7	fo	40	0.42	16.4	1.2	7	2	0.47
163.3	2.1	3.8	fo	21	nt	15.2	1.4	0	0	nt
		Er	nd of Test				Er	nd of Test		

¹ Test began on 6/23/98 at 1300 hrs.

Pretest sample is collected before air/helium injection and after system was shutdown on 6/22/98 at 1715 hrs.
 Note: Typical background oxygen utilization rates = 0.06 - 0.10 %/hr.

Figure A-1 Spring 1998 Respiration Test Results for MP-4-3 and MP-4-13 at the AHS

fo = flame out

Time ¹			MP-5BG					MP-9-6.5		
(hrs)	O ₂	CO2	TVH (p	pmv)	Helium	02	CO ₂	TVH (p	pmv)	Helium
	(%)	(%)	FID	PID	(%)	(%)	(%)	FID	PID	(%)
Pretest ²	1.4	20	fo	5	-	18.5	0.8	1	1	
0.0	19.9	0.4	319	17	1.9	20.6	0	5	22	1.9
1.0	16.9	1.8	637	3	1.9	20.5	0.1	2	1	2.1
2.0	14.7	3	612	3	2	20.5	0.2	3	1	2
4.0	12.3	4.6	557	7	1.9	20.2	0.3	26	8	1.9
6.5	10.7	6.3	fo	10	1.8	20	0.4	1	2	1.8
8.5	10.1	7	fo	14	1.8	19.9	0.5	1	3	2.1
9.7	9.7	7.4	fo	12	1.7	19.8	0.5	1	3	1.8
17.5	5.5	9.8	fo	4	1.6	19.5	0.6	4	0	1.9
24.2	3.5	10.6	fo	5	1.1	19.7	0.6	1	1	1.3
49.8	0.7	13	fo	7	1	19	0.8	20	10	0.96
70.5		E	nd of test			13.8	1.1	5	1	0.91
91.8						12.1	1.3	4	3	0.93
120.2						10.2	1.4	0	1	0.75
163.3					İ	7.2	1.8	fo	0	n
							Ε	nd of test		

¹ Test began on 06/23/98 at 1300 hrs.

Figure A-2 Spring 1998 Respiration Test Results for MP-5BG and MP-9-6.5 at the AHS

fo = flame out

² Pretest sample is collected before air/helium injection and after system is shutdown for a minimum of 24 hrs. Note: Typical background oxygen utilization rates = 0.06 - 0.10 %/hr.

	Time MP-6-4	MP-6-5
	(days) O ₂	02
	%	. %
System off 2-10-98 1000 hrs	0 16.97	15.805
	1 15.96	15.675
	2 14.19	15.283
System on 2-13-98 1415 hrs	3 6.3333	14.891
	4: 7.0933	14.63
	5 8.2333	14.368
	6 9.75	14.499
	7 10.133	14.499
	8 9.88	14.368
	9 7.3466	13.976

Note: Both MPs contain oxygen sensors. The test was performed by simply turning off the blower and automatically recording the oxygen levels every hour.

	Time	MP-8-15
	(hrs)	O ₂
		%
System off 2-10-98 1000 hrs	0	19.389
	1	19.137
	2	18.885
	4	18.507
	6	18.13
	8	17.752
	10	17.374
	12	16.996
	18	15.989
	24	15.234
	36	13.597
	48	12.338
System on 2-13-98 1415 hrs	72	10.827
	77	14.856
	79	16.745
	81	18.381
	87	18.885

Note: Both MPs contain oxygen sensors. The test was performed by simply turning off the blower and automatically recording the oxygen levels every hour.

Time ¹			VM-1-5					VM-1-8		
(hrs)	O ₂	CO2	TVH (p	pmv)	Helium	O ₂	CO2	TVH (p	pmv)	Heliun
	(%)	(%)	FID	PID	(%)	(%)	(%)	FID	PID	(%)
Pretest ²	4.7	10.7	fo	6		5.3	2.1	fo	129	
0.0	20.1	0.1	60	10	2.1	20.4	0	37	16	2.1
1.0	18.7	8.0	774	109	1.9	20.7	0	60	14	0.36
2.0	17.9	1.1	650	102	1.9		Aba	ndoned te	st	
4.0	17.6	1.4	404	74	1.9	du	e to high	O ₂ and v	ery	
6.2	16.5	2.1	340	53	2.2	lo	w flow (<	< 3 L/min)	
8.0	16.3	2.2	415	62	2.5					
10.3	15.7	2.6	227	67	2.3					
20.2	15.3	3	92	33	2.4					
30.5	14.6	3.3	46	16	2.1					
52.5	14.1	3.8	9	20	2.1					
79.1	13.5	4.1	4	75	1.9					
115.7	12.8	3.9	8	18	nt					
		Er	nd of Test							

¹ Test began on 6/25/98 at 1145 hrs.

² Pretest sample is collected before air/helium injection and after system was shutdown on 6/24/98 at 1800 hrs. Note: Typical background oxygen utilization rates = 0.06 - 0.10 %/hr.

Figure A-5 Spring 1998 Respiration Test Results for VM-1-5 at the BXSS

Time ¹			VM-2-5					MP-1-3.5		
(hrs)	02	CO ₂	TVH (p	pmv)	Helium	02	CO ₂	TVH (p	pmv)	Helium
	(%)	(%)	FID	PID	(%)	(%)	(%)	FID	PID	(%)
Pretest ²	0.9	14	fo	229	-:	13.3	6.2	43	11	
0.0	19.2	0.6	1882	302	2	20.3	0.3	13	7	1.6
1.0	15.8	1.8	4260	473	1.6	19.4	0.6	21	9	1.3
2.0	14.2	2.2	4312	543	1.7	19.4	0.9	32	8	1.1
4.0	14.6	2.5	3270	473	1.9	18.3	1.4	16	5	1.1
6.2	13.5	3.5	3800	510	2	17.9	1.9	39	11	1.3
8.0	13.4	2.5	3100	364	2.2	17.6	2.1	10	29	1.2
10.3	12.9	3.6	1960	323	2.4	16.9	2.4	20	69	0.99
20.3	10.5	5	fo	185	2.1	15.4	2.8	9	42	0.68
30.6	11.1	4.4	fo	248	2	12.1	3.9	33	34	0.85
52.5	9.9	6	fo	125	2.1	16.5	1.9	23	44	0.11
79.1	8.9	6.6	fo	370	2.2		Er	nd of Test		
115.7	7	7.5	fo	25	nt					
		E	nd of Test							

¹ Test began on 6/25/98 at 1145 hrs.

Pretest sample is collected before air/helium injection and after system was shutdown on 6/24/98 at 1800 hrs.
Note: Typical background oxygen utilization rates = 0.06 - 0.10 %/hr.

Figure A-6 Spring 1998 Respiration Test Results for VM-2-5 and MP-1-3.5 at the BXSS

fo = flame out

Time ¹		- 3	MP-3-3.5					MP-4BG		
(hrs)	02	CO ₂	IVH (p	pmv)	Helium	O ₂	CO2	IVH (ppmv)		Helium
	(%)	(%)	FID	PID	(%)	(%)	(%)	FID	PID	(%)
Pretest ²	17.3	3.3	1	11	-	16.8	2.8	2	2	
0.0	20.5	0.1	6	2	1.7	20.1	0.4	12	4	2.2
1.0	20.4	0.3	5	2	1.3	20	0.4	14	3	2.5
2.0	20.3	0.4	9	3	0.95	20	0.5	10	3	2.2
4.0	19.8	0.8	6	1	0.61	19.5	8.0	10	2	3
5.8	19.5	1	7	2	0.37	19.4	1	14	5	2.3
8.0	19	1.2	5	14	0.23	19	1.2	9	33	2.9
18.0	18.7	1.5	2	15	0.01	18.9	1.4	6	24	2.2
28.5	17.9	2	6	14	0	18.4	1.5	9	6	2.4
50.4	18.2	2.1	4	13	0	18	1.8	7	34	2.2
76.9	17.8	2.4	1	3	0	17.3	2.3	10	35	1.9
113.5		Er	nd of Test		*	16.2	2.6	11	15	nt
							Er	nd of Test		

¹ Test began on 6/25/98 at 1400 hrs.

Pretest sample is collected before air/helium injection and after system was shutdown on 6/24/98 at 1800 hrs.
 Note: Typical background oxygen utilization rates = 0.06 - 0.10 %/hr.

Figure A-7 Spring 1998 Respiration Test Results for MP-3-3.5 and MP-4BG at the BXSS

fo = flame out

Time ¹			MP-2-8.5			
(hrs)	O ₂	CO ₂	IVH (p	pmv)	Helium	
1	(%)	(%)	FID	PID	(%)	
Pretest ²	18.2	0.9	10	9	-	
0.0	20.2	0.1	14	5	2	
1.0	20 .	0.3	9	3	1.6	
2.0	19.9	0.3	10	2	1.7	
4.0	19.1	0.5	14	2	1.9	
5.8	19.1	0.5	12	3	2	
8.0	18.6	0.6	12	21	2.2	
18.0	17.9	0.7	7	20	2.4	
28.5	16.5	0.8	10	14	2.1	
50.4	14.9	0.9	8	50	2	
76.8	12.5	1.1	4	10	2.1	
113.5	9.2	1.2	fo	8	2.2	
		E	nd of Test			

¹ Test began on 6/25/98 at 1400 hrs.

² Pretest sample is collected before air/helium injection and after system was shutdown on 6/24/98 at 1800 hrs. Note: Typical background oxygen utilization rates = 0.06 - 0.10 %/hr.

Figure A-8 Spring 1998 Respiration Test Results for MP-2-8.5 at the BXSS

fo = flame out

Time ¹			MP-6-3			MP-7-3					
(hrs)	O ₂	CO2	TVH (p	pmv)	Helium	02	CO2	TVH (p	pmv)	Helium	
	(%)	(%)	FID	PID	(%)	(%)	(%)	· FID	PID	(%)	
Pretest ²	17.8	3.6	7	17	-	3.1	10.7	fo	30	_	
0.0	20.6	0	12	9	1.8	20.6	0	24	9	1.7	
1.0	20.2	0	6	8	1.9	19.5	0.5	33	11	1.8	
2.0	20.2	0.1	8	17	2	19	0.7	23	9	1.9	
4.0	20	0.2	13	132	1.6	17.6	1.3	54	18	1.3	
6.0	19.7	0.2	10	7	1.5	16.5	1.5	26	7	1.4	
8.0	19.5	0.3	15	15	1.5	13.8	. 3	60	52	1.5	
11.5	19.1	0.3	7	200	1.2	10.3	4.4	45	40	1.1	
24.5	18.2	0.4	3	nt	0.6	6.9	5.7	fo	nt	0.4	
48.0	16.7	0.5	4	160	0.2	1.3	9.7	fo	nt	0.2	
:		Er	nd of Test				Er	nd of Test			

¹ Test began on 7/1/98 at 0945 hrs.

Pretest sample is collected before air/helium injection and after system was shutdown on 6/30/98 at 0900 hrs.
 Note: Typical background oxygen utilization rates = 0.06 - 0.10 %/hr.

Figure A-9 Spring 1998 Respiration Test Results for MP-6-3 and MP-7-3 at the FJETC

Time ¹			MP-5-3					MP-10-3		
(hrs)	O ₂	CO ₂	TVH (p	pmv)	Helium	O ₂	CO ₂	TVH (p	pmv)	Helium
	(%)	(%)	FID	PID	(%)	(%)	(%)	FID	PID	(%)
Pretest ²	13.9	9.4	8127	72	- [10.5	9.8	fo	25	-
0.0										
0.7	16.1	1.3	1429	75	0.73	19.5	0.5	29	8	2.3
1.0	16.6	1.2	1260	79	0.48	19.2	0.5	27	5	2
2.2	14.2	2.5	1871	45	0.51	18.6	1.1	59	8	2.3
4.5	15.8	2.9	1575	74	0.44	17.5	1.5	73	11	1.8
7.0	13.7	4.1	2129	75	0.28	16.6	2.3	48	7	1.7
9.0	13.5	4.5	2221	96	0.22	16	2.5	45	20	1.5
21.5	15.7	4.4	fo	101	0.04	13.7	3.9	22	4	0.59
43.0	14.5	4.7	fo	128	0.43	8.9	5.7	fo	16	0.1
71.0	15.2	5.3	440	35	0	8.1	6.2	fo	44	0.01
		Er	nd of Test				Er	nd of Test		

¹ Test began on 6/29/98 at 1330 hrs.

² Pretest sample is collected before air/helium injection and after system was shutdown on 6/28/98 at 1830 hrs. Note: Typical background oxygen utilization rates = 0.06 - 0.10 %/hr.

Figure A-10 Spring 1998 Respiration Test Results for MP-5-3 and MP-10-3 at the FTA

fo = flame out

Time ¹			MP-9-3					MP-9-10		
(hrs)	02	CO2	TVH (p	pmv)	Helium'	O ₂	CO2	TVH (p	pmv)	Helium
, ,	(%)	(%)	FID	PID	(%)	(%)	(%)	FID	PID	(%)
Pretest ²	3.7	13.7	fo	206	-	18	1.4	1020	175	
0.0										
0.7	16.9	1	197	56	2.4	19.9	0.2	98	30	2.2
1.0	16.6	0.9	138	38	2.5	19.5	0.3	119	39	2.3
2.2	13.4	2	232	71	2.3	19.5	0.4	113	37	2.6
4.5	9.6	3.3	fo	87	1.7	19.1	0.5	255	48	1.8
7.0	7.1	4.5	fo	120	1.5	18.8	0.6	219	50	1.7
9.0	6.3	5.3	fo	139	1.2	18.6	0.7	225	55	1.6
21.5	3.6	7.7	fo	212	0.56	18.5	1	262	69	0.68
43.0	2.2	10.1	fo	121	0.24	18	1.1	313	78	0.39
71.0	1.2	9.4	fo	512	0.91	17.6	2	352	102	0.29
		Е	nd of Test				E	nd of Test		

¹ Test began on 6/29/98 at 1330 hrs.

Pretest sample is collected before air/helium injection and after system was shutdown on 6/28/98 at 1830 hrs. Note: Typical background oxygen utilization rates = 0.06 - 0.10 %/hr.

Figure A-11 Spring 1998 Respiration Test Results for MP-9-3 and MP-9-10 at the FTA

fo = flame out

Time ¹			MP-11-3					MP-12-6		
(hrs)	O ₂	CO2	TVH (p	pmv)	Helium	O ₂	CO ₂	TVH (p	pmv)	Heliun
	(%)	(%)	FID	PID	(%)	(%)	(%)	FID	PID	(%)
Pretest ²	15.1	2	10	7	-1	17.1	1.9	29	12	
0.0	20.5	0	10	5	0.79	20.5	0	8	5	0.92
1.0	19.7	0.2	12	. 12	0.88	20.4	0.2	11	2	0.84
2.0	19.3	0.3	14	4	0.88	20.3	0.2	11	0	0.88
4.0	18.4	0.5	11	6	0.84	20.2	0.3	11	4	0.91
6.0	17.6	0.6	12	2	0.78	20.3	0.4	16	2	0.97
8.0	16.8	0.8	11	5	0.75	19.8	0.5	14	6	1.1
13.2	14.6	1.2	13	nt	0.42	19.3	0.5	14	nt	1.1
22.5	13.5	1.5	9	2	0.19	19.1	0.6	13	4	1.1
47.3	9.2	2.8	fo	7	0	18.1	0.9	16	5	1
72.5	7.6	3.8	fo	nt	0.1	16.4	1	12	12	1
		Er	d of Test				En	d of Test		

¹ Test began on 6/30/98 at 0930 hrs.

Pretest sample is collected before air/helium injection and after system was shutdown on 6/28/98 at 1830 hrs. Note: Typical background oxygen utilization rates = 0.06 - 0.10 %/hr.

Figure A-12 Spring 1998 Respiration Test Results for MP-11-3 and MP-12-6 at the FTA

fo = flame out

Time ¹			MP-13-6					MP-1-6		
(hrs)	O ₂	CO2	TVH (p	pmv)	Helium	02	CO2	TVH (p	pmv)	Heliun
1	(%)	(%)	FID	PID	(%)	(%)	(%)	FID	PID	(%
Pretest ²	7.7	8	fo	38		14.2	3.8	318	111	
0.0	20.2	0.2	23	22	0.7	20.3	0.4	115	41	0.78
1.0	20	0.4	35	34	0.74	20	0.6	206	84	0.76
2.0	19.7	0.5	35	10	0.77	19.7	0.8	208	46	0.73
4.0	19.7	0.6	31	9	0.71	19.4	11	208	53	0.73
6.0	19.7	0.5	45	21	0.71	19.2	1.2	220	55	0.79
8.0	19.1	0.7	36	14	0.8	18.6	1.3	180	61	0.81
13.2	18.8	0.8	36	nt	0.83	17.8	1.3	174	nt	0.91
22.5	18.6	1	34	10	0.93	16.7	1.8	222	68	0.86
47.3	17.6	1	117	27	0.66	14.4	1.9	165	96	0.71
72.5	16.7	0.9	78	78	0.85	12.1	2	112	132	0.8
		Er	nd of Test				Er	d of Test		

¹ Test began on 6/30/98 at 0930 hrs.

Pretest sample is collected before air/helium injection and after system was shutdown on 6/28/98 at 1830 hrs.
Note: Typical background oxygen utilization rates = 0.06 - 0.10 %/hr.

Figure A-13 Spring 1998 Respiration Test Results for MP-13-6 and MP-1-6 at the FTA

fo = flame out

Time ¹			MP-2-3					MP-3-6		
(hrs)	02	CO ₂	TVH (p	pmy)	Helium	O ₂	CO ₂	TVH (p	(vmq	Helium
	(%)	(%)	FID	PID	(%)	(%)	(%)	FID	PID	(%)
Pretest ²	9.3	2.4	fo	3	-!	12.5	1.4	81	28	,
0.0	19.7	0.5	17	6	2.1	19.3	0.6	11	4	2
1.0	18.8	1	32	16	1.8	18.5	0.9	7	20	1.7
2.0	17.8	1.3	16	10	1.7	18.1	1.1	11	7	1.8
4.0		Lost f	ow in MP	-2-3		17.8	1.1	13	15	1.6
6.0					-	17.6	1.2	12	10	1.7
8.0	1					17.4	1.2	16	60	2
11.1						17.2	1	27	nt	1.9
20.5						17	1.2	15	4	1.5
48.5	14.8	2	52	24	1	16.6	1.2	34	32	1.5
72.5	15.5	1.7	19	121	1.3	13.6	1.3	62	102	0.4
96.5	13.2	1.3	70	240	0.3	15.8	1.1	20	312	1
		Er	d of Test					nd of Test		•

¹ Test began on 6/30/98 at 1145 hrs.

Pretest sample is collected before air/helium injection and after system was shutdown on 6/28/98 at 1830 hrs.
Note: Typical background oxygen utilization rates = 0.06 - 0.10 %/hr.

Figure A-14 Spring 1998 Respiration Test Results for MP-2-3 and MP-3-6 at the FTA

fo = flame out

Time ¹		R	NP-14-8.5					MP-15-10		
(hrs)	O ₂	CO2	TVH (p	pmv)	Helium	O ₂	CO ₂	TVH (p	pmv)	Helium
	(%)	(%)	FID	PID	(%)	(%)	(%)	FID	PID	(%)
Pretest ²	16.9	1.1	34	18	-:	17.9	0.9	233	63	-
0.0	20.1	0.1	10	12	2.1	20	0.3	55	22	2.4
1.0	20	0.2	12	21	2.1	19.9	0.4	64	33	1.7
2.0	19.8	0.3	16	21	2	19.8	0.4	70	35	1.5
4.0	19.7	0.2	20	16	1.6	19.5	0.5	101	40	1.5
6.0	18.9	0.4	27	17	2.6	18.9	0.5	112	49	1.5
8.0	18.4	0.4	22	45	2.3	18.8	0.6	96	117	1.3
13.2	17.9	0.5	20	nt	2.4	18.4	0.6	93	nt	1.2
20.2	17.2	0.5	16	7	2.3	17.8	0.7	113	44	0.94
48.5	13.9	0.6	15	14	1.7	16	0.9	130	74	0.41
72.5	10.5	0.7	fo	nt	1.3	15.1	0.8	94	140	0.2
96.5	7.8	0.8	fo	nt	1.1	14.1	0.9	91	240	0.1
		Er	nd of Test				Er	nd of Test		

¹ Test began on 6/30/98 at 1145 hrs.

Pretest sample is collected before air/helium injection and after system was shutdown on 6/28/98 at 1830 hrs.
Note: Typical background oxygen utilization rates = 0.06 - 0.10 %/hr.

Figure A-15 Spring 1998 Respiration Test Results for MP-14-8.5 and MP-15-10 at the FTA

fo = flame out

Time ¹			MP-4BG			
(hrs)	02	CO2	TVH (p	(vmq	Helium	
	(%)	(%)	FID	PID	(%)	
Pretest ²	10.8	2.5	fo	2	-	
0.0	20.1	0.3	5	13	2.6	
1.0	19.6	0.7	7	17	2.5	
2.0	18.9	1.3	5	7	2.3	
4.0	18.2	1.4	5	2	2.4	
6.5	17.6	1.8	6	20	2.4	
9.6	17.1	1.9	6	nt	2.4	
18.8	17	1.9	6	2	2	
44.0	16.3	2.1	5	4	1.3	
69.0	15.3	2.1	11	32	0.9	
92.0	14.6	2.1	6	16	0.8	
		Er	d of Test			

¹ Test began on 6/30/98 at 1300 hrs. fo = flame out
² Pretest sample is collected before air/helium injection and after system was shutdown on 6/28/98 at 1830 hrs. Note: Typical background oxygen utilization rates = 0.06 - 0.10 %/hr.

Figure A-16 Spring 1998 Respiration Test Results for MP-4BG at the FTA

Time ¹			MP-7-2.5					MP-7-6.5		
(hrs)	O ₂	CO2	TVH (p	pmv)	Helium:	O ₂	CO2	TVH (p	PID 125 255 nt ed ore minima	Helium
	(%)	(%)	FID	PID	(%)	(%)	(%)	FID	PID	(%)
Pretest ²	10.8	10.2	8300	180	-!	9	4.3	fo	125	
0.0	18.2	1.5	>4.75%	475	2.6	16.1	2	>1.21%	255	2.7
1.3	14.2	2.4	fo	375	2	18.3	1	nt	nt	n
2.2	20.5	0	1900	110	0.1		Tes	t Abandon	ed	
1		Tes	t Abandon	ed		(air fle	ow stop	ped therefo	ore minima	al
		(r	no air flow)				fir	al sample)	
į	(3	rd samp	le very lov	v air)	İ					
!										
į										

¹ Test began on 6/29/98 at 1100 hrs.

² Pretest sample is collected before air/helium injection and after system was shutdown on 6/26/98 at 1630 hrs. Note: Typical background oxygen utilization rates = 0.06 - 0.10 %/hr.

Figure A-17 Spring 1998 Respiration Test Results for MP-7-2.5 and MP-7-6.5 at the FTF

fo = flame out

	Time	MP-9-6
	(days)	O ₂
		%
System off 2-10-98 1000 hrs	(0. 17.73
	•	1 16.667
		2 16.40
System on 2-13-98 1415 hrs	:	16.137
		16.27
		16.005
		15.74
	7	15.212
	8	14.55

Note: Both MPs contain oxygen sensors. The test was performed by simply turning off the blower and automatically recording the oxygen levels every hour.

Time ¹			MP-1-6-5			Time ¹		٨	IP-1-6-8.5		
(hrs)	02	CO ₂	TVH (p	pmv)	Helium	(hrs)	O ₂	CO2	TVH (p	pmv)	Helium
	(%)	(%)	FID	PID	(%)		(%)	(%)	FID	PID	(%)
Pretest ²	18.3	1.1	3	4	-	Pretest ²		4.1	fo	83.8	
0.0	20.5	0	10	3	1.6	0.0	19.3	0.5	1.44%	270	2.2
1.2	20.3	0.1	13	3	1.9	1.2	15.4	1.4	3.80%	133	2
2.0	20.4	0.1	8	2	1.6	2.0	13.5	2	fo	124	2.8
4.0	20.2	0.2	9	2	1.2	4.0	15.2	1.4	fo	128	1.6
6.0	20.1	0.3	7	2	1.5	6.0	9.5	2.9	fo	159	2.2
8.0	20.2	0.3	7	1	1.1	8.0	11	2.6	fo	199	2.2
12.0	19.1	0.5	8	2	1.2	12.0	13.4	2.4	fo	350	1.9
26.5	17.3	1	5	1	0.71	26.5	7.6	3.9	fo	157	2.6
50.1	14.1	1.9	2	2	0.31	50.1	10.5	3.3	fo	211	1.4
82.1	10.8	2.8	2	3	0.1	50.4	10.8	3.2	fo	235	1.2
94.8	9.6	3.2	fo	2	0.03						
119.3	7.2	4.1	fo	0	nt	Maria alem					
		Er	nd of Test								

¹ Test began on 6/25/98 at 0835 hrs.

Pretest sample is collected before air/helium injection and after system was shutdown on 6/22/98 at 1510 hrs.
Note: Typical background oxygen utilization rates = 0.06 - 0.10 %/hr.

Figure A-19 Spring 1998 Respiration Test Results for MP-1-6-5 and MP-1-6-8.5 at NDA-1

Time ¹		٨	MP-6-2BG		
(hrs)	O ₂	CO2	TVH (pmv)	Helium
	(%)	(%)	FID	PID	(%)
Pretest ²	12.3	2.4	0	0	
0.0					
0.5	20.5	0.2	6	2	1.7
1.6	20.1	0.5	32	4	1
2.6	19.9	0.5	8	2	1.2
4.5	19.7	0.6	20	5	1
7.1	19.5	0.8	20	13	0.84
22.5	18.9	1.1	10	18	0.86
33.5	18.6	1.2	7	11	0.54
46.3	18.1	1.3	4	3	0.46
58.8	17.4	1.5	11	3	0.56
72.0	17.6	1.4	1	3	0.5
96.0	16.1	2.1	3	2	0.53
119.0	18.6	1.1	17	20	0.26
		E	nd of Test		

¹ Test began on 6/27/98 at 0900 hrs.

Pretest sample is collected before air/helium injection and after system was shutdown on 6/24/98 at 1100 hrs.
Note: Typical background oxygen utilization rates = 0.06 - 0.10 %/hr.

Figure A-20 Spring 1998 Respiration Test Results for MP-6-2BG at the NDA-6

fo = flame out

Time ¹			MP-2-3					MP-2-6		
(hrs)	O ₂	CO2	TVH (p	pmv)	Helium	O ₂	CO2	TVH (p	pmv)	Helium
	(%)	(%)	FID	PID	(%)	(%)	(%)	FID	PID	(%)
Pretest ²	9.8	3.2	fo	8	-	13.8	1.7	151	25	-
0.0					1					
0.3	20.1	0	36	11	2.4	20	0	40	9	2.4
1.5	19.7	0.4	29	6	2.3	19.9	0.2	39	7	2.3
3.0	19	0.5	22	8	1.9	19.6	0.4	73	10	1.7
4.5	18.7	0.6	32	8	1.9	19.6	0.4	78	14	1.6
6.0	18.2	0.8	22	16	2.2	19.3	0.5	62	16	1.8
9.5	17.8	1	49	4	2.8	19.1	0.5	119	10	1.9
14.1	16.8	1.3	41	12	2.6	18.7	0.7	97	15	1.7
23.8	16.4	1.5	36	8	2.3	19	0.6	water	water	water
48.2	13.6	2.3	51	3	2		Er	nd of Test		
71.2	12.2	2	58	16	1.8					
		Er	nd of Test							
				_						_

¹ Test began on 6/29/98 at 0900 hrs.

Pretest sample is collected before air/helium injection and after system was shutdown on 6/22/98 at 1720 hrs.
 Note: Typical background oxygen utilization rates = 0.06 - 0.10 %/hr.

Figure A-21 Spring 1998 Respiration Test Results for MP-2-3 and MP-2-6 at the PPDP

Time ¹			MP-6-3					MP-8-3		
(hrs)	02	CO ₂	TVH (p	pmv)	Helium	O ₂	CO ₂	TVH (p	pmv)	Helium
1	(%)	(%)	FID	PID	(%)	(%)	(%)	FID	PID	(%)
Pretest ²	8.1	0.8	fo	2	-	15.5	2.6	6	2	
0.0										
0.3	20.2	0	2	3	2.4	20.4	0	2	3	2.2
1.4	20	0	6	2	2.5	20.2	0.1	2	3	2
3.0	19.6	0.1	8	3	1.9	20	0.2	5	2	1.2
4.3	20.6	0	6	3	0.29	20.6	0	9	4	0.25
6.0	19	0.2	9	2	2.3	19.7	0.3	7	3	1.3
9.5	18.4	0.3	14	1	2.4	19.4	0.5	7	1	0.86
14.0	17.5	0.4	19	7	2.6	18.7	0.7	11	7	0.61
23.8	16.5	0.5	7	0	2	18.7	1	2	0	0.2
48.2	12.8	0.8	5	0	1.7	16.9	1.2	4	1	0.01
71.2	9.8	1.1	fo	11	1.4	16.7	1.3	7	23	0
		E	nd of Test				Er	nd of Test		

¹ Test began on 6/29/98 at 0900 hrs.

Pretest sample is collected before air/helium injection and after system was shutdown on 6/22/98 at 1720 hrs. Note: Typical background oxygen utilization rates = 0.06 - 0.10 %/hr.

Figure A-22 Spring 1998 Respiration Test Results for MP-6-3 and MP-8-3 at the PPDP

fo = flame out

Time ¹			MP-4-3					MP-9-9		
(hrs)	O ₂	CO2	TVH (p	pmv)	Helium,	02	CO2	TVH (p	pmv)	Helium
	(%)	(%)	FID	PID	(%)	(%)	(%)	FID	PID	(%)
Pretest ²	13.1	. 1	4	1	-!	17.5	1.8	1511	5	-
0.0	20.1	0	8	4	2	20.1	0	38	7	2.1
1.0	20	0.1	9	3	2.1	19.9	0.3	210	3	1.1
2.0	19.8	0.1	9	2	2.2	19.7	0.4	255	2	1
4.0	19.5	0.2	11	2	2.2	19.4	0.6	216	2	1
6.0	18.8	0.3	12	20	2.3	18.2	1	389	18	1
8.1	18.1	0.4	13	6	2.2	17.9	1.2	382	8	0.86
9.1	17.9	0.4	13	6	2.4	17.9	1.3	460	8	0.8
13.2	16.9	0.5	17	20	2.1	17.1	1.5	506	28	0.82
21.5	15.3	0.8	18	1	1.8	17.1	1.7	325	3	0.44
50.0	9.9	1.3	fo	2	1.1	12.1	4	fo	3	0.37
72.4	5.1	2.3	fo	2	1.2	16.7	2.3	316	1	0.19
120.0		Er	nd of Test			14.2	2.8	268	3	0.1
							Er	d of Test		

¹ Test began on 6/24/98 at 1000 hrs.

Pretest sample is collected before air/helium injection and after system was shutdown on 6/22/98 at 1720 hrs.
Note: Typical background oxygen utilization rates = 0.06 - 0.10 %/hr.

Figure A-23 Spring 1998 Respiration Test Results for MP-4-3 and MP-9-9 at the PPDP

fo = flame out

Time ¹			MP-3-3					MP-3-6		
(hrs)	02	CO2	TVH (p	pmv)	Helium	02	CO ₂	TVH (p	pmv)	Helium
, ,	(%)	(%)	FID	PID	(%)	(%)	(%)	FID	PID	(%)
Pretest ²	1.2	11.6	fo	15	-	12.2	1.4	279	7	-
0.0	19.3	0.6	61	59	2.3	19.5	0.2	50	42	2.3
1.0	16.3	1.8	129	28	1.9	19.1	0.4	66	5	2.1
2.0	14.5	2.5	209	18	1.9	18.7	0.5	70	4	2.1
4.0	11.9	3.2	fo	13	1.9	18.4	0.6	68	3	2.4
6.0	8.9	4.3	fo	31	1.9	17.6	0.7	34	21	2
8.1	6.4	4.8	fo	59	1.7	16.8	0.8	49	20	2.1
9.1	5.5	5.1	fo	90	1.6	16.6	0.9	48	17	1.9
13.2	2.4	6	fo	105	1.6	15.8	1	59	26	2.1
21.5		E	nd of Test	:		13.7	1.1	67	4	1.6
50.0					1	10.5	1.5	fo	8	0.81
72.4						7.2	2	fo	6	0.79
99.3						6.1	2.2	fo	9	0.71
119.6				1100		6.9	2.1		5	0.45
							E	nd of Test		

¹ Test began on 6/24/98 at 1000 hrs.

Pretest sample is collected before air/helium injection and after system was shutdown on 6/22/98 at 1720 hrs.
Note: Typical background oxygen utilization rates = 0.06 - 0.10 %/hr.

Figure A-24 Spring 1998 Respiration Test Results for MP-3-3 and MP-3-6 at the PPDP

Time ¹			MP-1-3					MP-5-3		
(hrs)	02	CO ₂	TVH (p	pmv)	Helium '	02	CO ₂	TVH (p	pmv)	Heliur
	(%)	(%)	FID	PID	(%)	(%)	(%)	FID	PID	(%
Pretest ²	12.7	10.3	fo	5	-:	10.2	6.2	fo	6	
0.0	19.4	1	267	25	2	20.1	0	49	24	1.4
1.0	16.6	2.2	813	3	1.8	19.7	0.5	76	5	1.5
2.0	12.2	3.6	1906	17	2.1	18.8	1.1	155	14	1.5
4.0	9.5	4.8	fo	69	1.8	18.2	1.4	220	18	1.5
6.0	9.5	5.3	fo	105	1.4	16.8	2.3	140	70	1.6
8.7	8.4	6.6	fo	32	1.3	15.6	2.8	122	56	1.7
10.3	8.1	7.8	fo	7	1.3	15.1	3.1	107	24	1.7
18.0	8.6	7.1	fo	105	1	15.2	2.6	87	6	1.1
47.0		Er	nd of Test			18.4	0.9	369	92	0.21
69.2					1	18.2	1.1	337	25	0.21
							Er	d of Test		
		-								

¹ Test began on 6/24/98 at 1300 hrs.

Pretest sample is collected before air/helium injection and after system was shutdown on 6/22/98 at 1720 hrs.
 Note: Typical background oxygen utilization rates = 0.06 - 0.10 %/hr.

Figure A-25 Spring 1998 Respiration Test Results for MP-1-3 and MP-5-3 at the PPDP

fo = flame out

Loring Air Force Base Comments/Responses Semi-Annual Biovent Performance Report, Jan-Jun 1998

Reviewer: Peter Forbes

Response	No response required.	Flameout is caused primarily from low oxygen levels. Low oxygen levels are typically caused by active biodegradation and/or displacement due to methane.	The word final will be deleted. Draft or some other derivative of draft will be retained if that is the case.	Three primary recommendations were made in the last semiannual report. (1) Spring/summer confirmation sampling, (2) combine NDA blowers, and (3) winter respiration. A new paragraph at the end of section 2.0 explains confirmation sampling was scheduled to begin in July 1998 therefore the data will not be presented in this report and the following statement was added to the end of the last sentence in the third paragraph in section 2.0 and the end of the second sentence in the first paragraph of section 3.1.3: "in response to recommendations made in the previous semiannual report".
Comments	<u>Item 1:</u> General: Additional monitoring points or air injection wells are recommended for some sites. Let's discuss the cost and schedule for this work.	$\underline{\text{Item 2:}} \;\; \text{General: What causes "flame out" during measurement of TVH?} \;.$	Item 3, Section 1: I suggest a technical review of the listed references to achieve grammatical consistency. Some are listed as Final Report while others are listed as Report, Final. I suggest we drop the word "final" from the title of all the referenced reports. All the reports are final and it is only an indicator of report status.	Item 4, Section 2. Combining NDA-2 & NDA-3 and NDA-4 & NDA-5 are mentioned here in the maintenance section. We should also include a statement that these actions are in response or fulfillment of recommendations made in the previous semi-annual report. The response to all other recommendations should also be addressed in this report in the appropriate section.

Comments	Response
Item 5, Table 3-3. The data are for 1998. Change the date in the title.	Title changed to (1/98 - 6/98).
Item 6, Section 4.2, Auto Hobby Shop: Add the location identifier "BH" to the numbers in the last sentence for consistency with Figure 4-1.	Comment incorporated.
Item 7, Section 4.2: I agree with the recommendation for additional injection wells.	No response required.
Item 8, Section 5.2, BX Service Station: Change "affect" to "effect" in the first paragraph.	Comment incorporated.
Item 9, Section 5.2. I agree with the recommendations.	No response required.
Item 10, Section 6.2, Entomology Shop: Re-write the sentence that begins "If contamination still exists". If petroleum contamination still exists under the former basement, a residual risk assessment may be performed to determine if further action is necessary. If further action is required, installation of additional AIWs or excavation and ex-situ soil vapor extraction will be evaluated.	Comment incorporated.

Item 11, Section 7.2, FJETC: I agree with the written recommendations at this site. Are there any recommendations that will enable the system to run better through this winter? FJETC biovent but this winter?	Typically the winter oxygen injection rates are near design levels. The following recommendation has been added: "In addition, evaluate surface runoff features and relationship to the gravel beds just southeast of the FJETC biovent building. Implement surface water management practices (i.e., polyliner) if it is thought that groundwater levels can be lowered."
<u>Item 12, Section 8.2, Fire Training Area:</u> I agree with the recommendations.	se required.
Item 13, Section 9.1, Fuel Tank Farm: Review this paragraph for system installed at accuracy and verb tense.	The first sentence has been restructured to say "The FTF bioslurp/biovent system installed at OU11 is made up of 17 bioslurp wells, 21 biovent wells, and"
Item 14, Section 9.2, Fuel Tank Farm: There are not enough useful monitoring points at this site. Do we have any oxygen sensors to spare? where needed three sensors to spare?	The following recommendation has been added: "Install up to 9 new AIWs where needed throughout the FTF II area. In addition, move up to 4 existing oxygen sensors to new locations."
Item 15, Section 9.2, Fuel Tank Farm: Table 9-1 indicates BV-11, BV-17, BV-20, BS-10 and BS-11 are "off" in April, May and June. Please explain in this section. Also missing the M in March and the format for June is different than the other months. A footnote will be added in factor of an and the injection was shut off at E order to allow the wells to added to last column	A footnote will be added to the bottom of the table that states that air injection was shut off at BV-11, BV-17, BV-20, BS-10, and BS-11 in order to allow the wells to fully hydrate before they were compromised. The June heading is different on purpose because the average flow was added to last column 'June 1998' has been squeezed in now.
Item 16, Section 9.2, Fuel Tank Farm, Figure 9-1: The figure indicates and MP Data table and MP Data table	This reason was added to the text in Section 9.2 and to all of the Air Flow and MP Data tables when appropriate.

Comments	Response
Item 17, Section 10, Fuel Tank Farm II: The column heading for June is different from the other months in Figure 10-1. Check this on all the air flow figures.	See response to Item 15.
Item 18, Figure 11-1, NDA: Add notes to the figure indicating the biovent support buildings at NDA-3 and NDA-4 were shut down in January 1998. Also show the newly established connections between the systems.	Notes and the newly established connections have been added to Figure 11-1.
Item 19, Section 11, NDA-1: I agree with the recommendations. After we evaluate the confirmation sample data, we will probably recommend new AIWs and MPs as well as shutting down portions of the system.	No response required.
Item 20, Section 12.2, NDA-2: Change MP-2 to MP 2-2 and MP-6 to MP 1-6 which corresponds to the labels used in the figures and tables.	Comment incorporated.
Item 21, Section 12.2, NDA-2. Monitoring point MP-2-11 has an oxygen sensor and should be used to perform a respiration test this fall. The confirmation data indicate that MP 2-11 is located in an area of contamination. The reduced oxygen levels at MP 2-11 are also evidence of low level biodegradation.	The 7 th and 8 th sentences of Section 12.2 now read: "The oxygen levels at the MP 2-11 oxygen sensor remained similar to those in the last half of 1997. A low oxygen level in MP 2-11 coupled with the low system-wide air injection rates during May suggest that biodegradation is occurring in the vicinity of MP 2-11."

Response	The following sentence has been added after the first sentence of Section 13.2: "The low oxygen level in MP 3-3 may also be evidence of low level biodegradation."	The oxygen sensor is still malfunctioning. The decision to replace was deferred till the confirmation sampling evaluations are complete. The recommendations text matches the NDA-5 text.	No response required.	Your sentence has been added to the end of the recommendations text. Don't think it lets on to the fact that we already know the outcome.
Comments	Item 22, Section 13.2, NDA-3: Low oxygen levels measured by the oxygen sensor at MP 3-3 indicate biodegradation is occurring there.	Item 23, Section 14.2, NDA-4: Table 14-1 indicates the oxygen sensor at MP 4-6 is malfunctioning. Has it been repaired or replaced? If it hasn't, we should discuss the location of additional monitoring points when we evaluate the confirmation sample data. The overall recommendation should be similar to that which is stated in Section 15.2, NDA-5.	Item 24, Section 15.2, NDA-5: I agree with the recommendation. Additional monitoring points will be needed if the system will run for any additional length of time.	Item 25, Section 16.2, NDA-6: Since we already excavated this site due to the ineffective AIWs, we should state: If AIWs 6-1, -3 and -4 are ineffective and residual contamination is found the site may be excavated. In fact, we found high levels of petroleum contamination near the former valve pits, in an unmapped storm drain line and under the adjacent taxiway. These may explain the low oxygen levels measured in the monitoring points.

q	Kesponse	Comment incorporated. All but last sentence of the recommendations was deleted.	Comment incorporated.	MP 8-1 was not installed as indicated in the last semiannual report. A footnote at the bottom of this table will be added to identify this.	Similar situation as FTA but both of these locations are quite far from the identified contamination. All biovent sites did not have proposed confirmation sampling in the background area. NDA-6 likely should have had confirmation sampling in the background area too. It may be possible to add some locations in these areas before the end of the season.	Comment incorporated. The NDA identifier and the location number will be added to the text.
of more and of	Comments	Item 26, Section 17.2, NDA-7: The confirmation data indicate the site meets cleanup goals. I recommend we state only that we will evaluate the site after the data are evaluated.	Item 27, Section 18.2, NDA-8: I agree with the recommendation. Change "effect" to "affect" in the second paragraph.	Item 28, Table 18-1: Where are the data for MP 8-1?	Item 29, Section 19, Power Plant Drainage Pipe: I agree with the recommendation. The soil gas monitoring point data indicates residual contamination. The confirmation data indicates we have met cleanup goals. It cannot be decommissioned until the regulators agree with our assessment. What about the indication of contamination at the background location? I think we should have sampled there also.	<u>Item 30, General:</u> Please edit the text to use the long identifiers from Figure 11-1 when referencing the monitoring points in the Nose Dock Area.

Reviewer: E. Thomas Joy (540) 557-6065

Response			New term has not been added to text.	Comment incorporated.	Comment incorporated.		
Comments	1. Clarity and Organization	The document is clearly written and well organized. WPI's review was greatly facilitated by the document's format, in which narrative sections, figures, and tables are grouped together for each bioventing system. General recommendations for enhancing the clarity of the document include:	Use the term monitoring point boring (MPB) and monitoring point (MP) to differentiate between the boring in which the monitoring point is located and the actual monitoring point.	Refer to air injection wells (AIWs) and MPs in all of the Nose Dock Areas by their complete designations, which should include the Nose Dock Area number as the first digit.	If applicable, on figures containing air flow vs. depth to ground water information, indicate that the data shown are only from the AIWs included in the section (transect) shown on the Site Layout diagram.	These and other recommendations for enhancing the clarity of the document are identified in the following specific comments section.	

Comments	Document
	Response
2. Completeness	
The document is complete.	No response required.
3. Technical Issues	
In general, the conclusions presented in this document are conservative and suggest continuing present actions until the results of soil testing can be evaluated. WPI agrees with this approach, given the difficulties experienced in obtaining soil gas samples. If soil samples indicate that remedial goals are not being attained, evaluation of alternative remedial methods will be advisable. Several technical issues pertaining to individual bioventing systems are identified in the following specific comments section.	No response required.
Item 1, Page 17, Figure 4-1. AIW-7 is indicated as being at design flow, but it is actually below the design flow listed in Table 4-1. AIW-17 is indicted as being above design flow, but it is actually at the design flow listed in Table 4-1. WPI recommends changing the	Comment incorporated.
Item 2, Page 23, Figure 5-1: Air injection (bioventing) wells BV-1, BV-2, and BV-3 are indicated as being below design flow, but they are actually above the design flows listed in Table 5-1. WPI recommends changing the designations on the figure to agree with those in the table.	Comment incorporated.

Liem 3, Page 27, 3rd paragraph, Line 6. The sentence states, "AIW-3 was partially inundated in January and April" However, Table 6-2 and Figure 6-2 indicate that AIW-3 was entirely inundated in January and April. WPI recommends addressing this discrepancy. Item 4, Page 39, 5th paragraph, Lines 6&7. The paragraph states that the Fire Training Area (FTA) bioventing system is operating as designed, that biodegradation appears to be occurring, and that background rates may soon be obtained. It then concludes that, based on the results of soil sampling in the summer of 1998, soils remaining above preliminary remediation goals (PRGs) should be evaluated for another remedial alternative. WPI recommends reconsidering or explaining this conclusion because it does not appear to be supported by preceding statements. Item 5, Page 57, 6th paragraph, Lines 1&2. (A) The test states, "An This increase in air flow near MP-6 is recommended, primarily by increasing air flow into AIWs 6, 4, and 2." This recommendation is confusing, because these wells are not located near MP-1-6. WPI recommends	Response Comment incorporated. The second and third sentences of the 5 th paragraph have been reworded to say: "Comparison of the Spring
(B) In order to prevent confusion, WPI recommends referring to AIWs and MPs in all of the Nose Dock Area by their complete designations, which should include the Nose Dock Area number as the first digit.	Comment incorporated.

Response	The "4" was inadvertently left off some of the MP identifiers and has been corrected. All MP identifiers have been coded in the following manner: MP followed by the NDA site #, next the MP sequential number or location identifier, and finally the depth.	See above.	The "6" is an error and should have been an "L". This has been corrected.	See response to A (item #6).
Comments ·	Item 6, Page 58, Figure 11-1: (A) The legend indicates that monitoring points with O ₂ sensors are designated by a circle with the bottom half filled in and also by the letters "MP" followed by three groups of digits, e.g., MP-1-2-7. The use of these designators is not consistent on the figure. Some MPs indicated by half-filled circles are labeled with an "MP" followed by only two groups of digits, and in the data boxes for the individual bioventing systems, many monitoring points that apparently do not contain O ₂ sensors are labeled with an "MP" followed by three groups of digits. WPI recommends addressing this issue.	(B) The confusion described above appears to originate from the practice of using the term "monitoring point" and the designation "MP" to refer to both the actual monitoring point and the boring in which the monitoring point is located. WPI recommends using the terms monitoring point boring (MPB) and monitoring point (MP) to differentiate between the two.	(C)In the data box for NDA-1, one monitoring point is labeled MP-1-2-7-6. WPI recommends changing this to MP-1-2-7.6, if appropriate. If not, the final digit "6" should be explained.	(D)In the data box for NDA-4, the initial digit "4" was apparently left out of the last several monitoring point designations. WPI recommends addressing this issue.

Response	Comment incorporated.	All but the last sentence was deleted in response to comments made by Peter Forbes.	Sentence was removed since it is explained in the confirmation Field Sampling Plan.
Comments	Item 7, Page 83, 3rd paragraph, Lines 3&4: The text states, "Both AIW-7-1 and AIW-7-2 accepted air during the entire 6 months, although AIW-3 had problems in May and June (zero flow)." WPI recommends revising this sentence as follows to conform to Table 17-1: "Only AIW-7-2 accepted air during the entire 6 months. AIW-7-3 accepted air in all months except May and June."	Item 8, Page 83, 4th paragraph, Line 2: The text refers to "newly available oxygen sensor data," but it is not clear if this is a reference to data presented in Table 17-1. WPI recommends addressing this issue.	Item 9, Page 87, 2nd paragraph, Lines 3-5: The text states, "These areas are being sampled at a greater frequency of borings than the other portions of NDA-8 as shown on Figure 11-1." The meaning of this sentence is unclear and does not appear to be applicable to information presented on Figure 11-1. WPI recommends revising the sentence for clarity.

Comments	Response
Item 10, Page 94, Figure 19-1. AIW-3 and AIW-17 are indicated as being at design flow, but they are actually below the design flow listed in Table 17-1. WPI recommends changing the designations on the figure to agree with those in the table.	Design flow is 4 scfm. The figure has been revised accordingly.
Item 11: If applicable, on figures containing air flow vs. depth to ground water information, indicate that the data shown are only from the AIWs included in the section (transect) shown on the Site Layout diagram.	Comment incorporated.