MC-Test: Discrete Optimization WS 2013/14 (fake) 24.12.2013

Matr.no.	
Name	

Hinweise:

- Immediately complete the first page with your name and matriculation number
- Keep the exam sheets closed until told by an instructor to begin with the exam
- Check for completeness of the exam sheets (XX pages, XX questions)
- Make sure that in the top left corner all sheets bear the same number. If not, please ask a supervisor.
- Carefully read each question before answering
- Any attempt of cheating leads to immediate failing of the exam
- All questions assume notation and methodology as taught in the lecture.
- This is **not** an openbook exam! You are only allowed to use pen, pencil, ruler, and eraser. No calculator of any kind is allowed.
- No mobile phones! Making use of a mobile phone is interpreted as cheating!
- \bullet Tick exactly *one* answer.
- No tick counts as a wrong answer.

Example The following questions are about (Integer) Linear Programming as covered in class.
Question 1 Which of the following linear programs is in standard form according to our definition. $a \sqsubseteq \max c^T x \text{ s.t. } Ax \leq b$ $b \sqsubseteq \min c^T x \text{ s.t. } Ax \geq b$ $c \sqsubseteq \max c^T x \text{ s.t. } Ax \leq b, x \geq 0$ $d \sqsubseteq \min c^T x \text{ s.t. } Ax = b$
 Question 2 Which of the following statements is wrong? a For most pivoting rules, problem instances are known which make the (primal) Simplex algorithm take an exponential time. b It is not known whether the (dual) Simplex algorithm always terminates in polynomial time. c For many pivoting rules, degeneracies might lead to cycling of the (primal) Simplex algorithm. d The (primal) Simplex algorithm can be proven to terminate in polynomial time.
 Question 3 In the context of primal and dual linear programs, which of the following statements is true? a The primal simplex algorithm starts from a corner of the primal feasible region and jumps to a 'better' neighboring corner until no neighboring corner is 'better'. b The primal simplex algorithm starts with an arbitrary (possibly non-feasible) corner and walks towards the optimum vertex. c The dual simplex walks along the boundary of the primal feasible region. d The dual simplex algorithm starts from a corner of the primal feasible region and jumps to a 'better' neighboring corner until no neighboring corner is 'better'.
Question 4 Consider non-degenerate primal linear programs in \mathbb{R}^2 . Which of the following statements is true? a_{\square} The primal simplex algorithm performs $O(1)$ steps before reaching the optimum solution. b_{\square} There are problem instances which require the primal simplex algorithm to visit $\Omega(2^n)$ vertices c_{\square} Starting from a feasible corner, the primal simplex algorithm performs at most $O(n)$ steps before reaching the optimum vertex. d_{\square} There are problem instances which require the primal simplex algorithm to visit $\Omega(n^2)$ vertices
Question 5 What is the dual of the primal linear program max c^Tx s.t. $Ax \leq b$ $a \sqsubseteq \min b^Ty$ s.t. $A^Ty \geq c$ $b \sqsubseteq \min b^Ty$ s.t. $A^Ty = c$ $c \sqsubseteq \min b^Ty$ s.t. $A^Ty = c$, $y \geq 0$ $d \sqsubseteq \min b^Ty$ s.t. $A^Ty \leq c$

 Question 6 Which of the following statements is wrong? a The dual simplex algorithm starts with a vertex which is optimal for the constraints defining that vertex. b The number of steps the dual simplex performs is always equal to the number of steps the primal simplex algorithm performs on the same problem instance. c The objective function value of the dual linear program is equal to the optimum value of the primal linear program. d Once the dual simplex reaches a corner which is feasible for all constraints, the optimum has been reached. 	
 Question 7 In the context of primal and dual linear programs, which of the following statements is true? a If the primal linear program has arbitrarily large objective function value, the dual linear program cannot be feasible. b If the primal linear program is feasible, the dual linear program must be feasible. c If the primal linear program is infeasible, also the dual linear program is infeasible. d If the primal linear program has arbitrarily large objective function value, the dual linear program must be feasible. 	
Question 8 Consider a linear program max c^Tx , $Ax \leq b$ and its dual. Let v_P^{frac} be the objective function value of the optimum fractional solution to the primal LP, v_P^{int} the objective function value of the optimum integral solution to the primal LP; accordingly define v_D^{frac} and v_D^{int} . Which of the following relation holds? $a \bigsqcup_{P} v_P^{int} \leq v_P^{frac} \leq v_D^{int} \leq v_D^{int}$ $b \bigsqcup_{P} v_P^{int} = v_P^{frac} = v_D^{frac} \leq v_D^{int}$ $c \bigsqcup_{P} v_P^{int} \leq v_P^{frac} = v_D^{frac} \leq v_D^{int}$ $d \bigsqcup_{P} v_P^{int} \leq v_P^{frac} = v_D^{frac} \leq v_D^{int}$	
Question 9 We consider linear programming instances in dimension n with m constraints, $m \gg n$. Which of the following statements is true? $a \sqsubseteq \text{There are LP instances where the polytope characterizing the feasible region has about \binom{m}{n} vertices. b \sqsubseteq \text{The polytope characterizing the feasible region has at most } n^{1000}m^{9999} vertices. c \sqsubseteq \text{There are LP instances where the polytope characterizing the feasible region has about \binom{n}{m} vertices. d \sqsubseteq \text{The polytope characterizing the feasible region has to be empty as } m \gg n.$	

Example

The following questions are about network flow problems as covered in class.

Assume we are given a maxFlow problem instance. Which of the following statements is true? a For any feasible flow f of value v(f) there exists a cut of capacity v(f). b There are maxFlow problem instances where the capacity of the minimum cut is less than the optimum flow value. c A feasible flow f of value v(f) is maximum iff there exists a cut of capacity v(f). d There are maxFlow problem instances where the capacity of the minimum cut is more than the optimum flow value.	
 Question 11 How does the successive shortest path minCostFlow algorithm proceed? a ☐ In each round, it searches in the residual network for the path which equalizes most surplus with demand. b ☐ In each round, it searches in the residual network for the cheapest path connecting a surplus node to a demand node, and then sending as much flow as possible across that path. c ☐ Flow is sent around a cycle of minimum cost. d ☐ In each round, the path of maximum bottleneck value is used for augmentation. 	
 Question 12 For the cycle cancelling minCostFlow algorithm, what is the idea of proving that for any non-optin flow, a negative-cost cycle exists in the residual network? a We consider the nodes reachable from the surplus nodes and their induced cut. b We consider the flow difference f − f* where f* is an optimal minCost flow and f the current flow. c We consider the nodes reachable from the demand nodes and their induced cut. d We consider the flow difference f* − f where f* is an optimal minCost flow and f the current flow. 	nal
 Question 13 Which of the following arguments suffices to prove optimality of the flow found by Ford-Fulkers after termination? a Since there is no more augmenting path in the residual network of the last flow, it has to be optimal. b Optimality follows from the fact that NP ≠ P. c When the algorithm terminates, the cut induced by the set of nodes reachable from the source/sink s has capacity equal to the flow value after termination. Since the former is an upper bound on the flow value, optimality follows. d Any algorithm which terminates produces an optimal result. 	son

Assume we are given a maxFlow problem instance. Which of the following statements is wrong? a Capacity Scaling guarantees that the Ford-Fulkerson Algorithm terminates in polynomial time. b In the Ford-Fulkerson-Algorithm, any rule for choosing an augmenting path amongst the possible augmenting paths guarantees termination of FF. c Capacity Scaling guarantees that the Ford-Fulkerson Algorithm terminates in polynomial time, independent of the size of the numbers (capacities) appearing the the problem instance. d The Shortest Augmenting Path (Edmonds-Karp-Algorithm) strategy guarantees that the Ford-Fulkerson Algorithm terminates in polynomial time.
 Question 15 Which of the following arguments suffices to prove termination of Ford-Fulkerson for a network where all edges have finite capacity? a ☐ In each iteration the flow increases by at least one. Since the value of the flow is bounded by the sum of the capacities of the edges leaving the source/sink s, FF has to terminate. b ☐ Termination follow from the fact that NP ≠ P. c ☐ In each iteration the flow increases by at least one, hence FF terminates. d ☐ Any algorithm terminates in finite time.
 Question 16 Assume we are given a maxFlow problem instance. Which of the following statements is wrong? a Capacity Scaling is a refinement of the Ford-Fulkerson algorithm. b There are maxFlow instances where no non-zero flow exists. c The Ford-Fulkerson algorithm can compute finite time the maximum flow for this problem instance. d There is always a non-zero flow in the network.
 Question 17 Assume we are given a minCostFlow problem instance. Which of the following statements is wrong? a There are minCostFlow problem instances where feasible non-zero flows exist but no feasible flow which satisfies all demands and supplies. b There might be several optimal flows for a minCostFlow problem instance. c There is alwas a feasible flow satisfying all demands and supplies. d Some minCostFlow instances might have no feasible non-zero flow at all.
 Question 18