

ELL100: INTRODUCTION TO ELECTRICAL ENGG.

Natural Response: Second Order Circuits

Course Instructors:

Manav Bhatnagar, Subashish Dutta, Debanjan Bhaumik, Harshan
Jagadeesh

Department of Electrical Engineering, IITD

Second order Circuits

• The **state** can be represented using a second order differential equation only.

Second order Circuits

• The **state** can be represented using a second order differential equation only.

Second order Circuits

 The state can be represented using a second order differential equation only.

After the switch is toggled the loop equation becomes :

$$L\frac{di}{dt} + Ri + \frac{1}{C} \int idt = 0$$

Differentiating this equation gives

$$L\frac{d^2i}{dt^2} + R\frac{di}{dt} + \frac{i}{C} = 0$$

Solution

$$L\frac{d^2i}{dt^2} + R\frac{di}{dt} + \frac{i}{C} = 0$$

• Similar to the first order circuit case, assume the template Ae^{st}

Solution

$$L\frac{d^2i}{dt^2} + R\frac{di}{dt} + \frac{i}{C} = 0$$

- Similar to the first order circuit case, assume the template Ae^{st}
- Plugging in the template into the differential equation gives

$$s^{2}LAe^{st} + sRAe^{st} + \frac{1}{C}Ae^{st} = 0$$

or
$$Ls^{2} + Rs + \frac{1}{C} = 0$$

Solution(s)

• The quadratic equation in 's' has two solutions

$$s_1 = -\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}}$$

$$s_2 = -\frac{R}{2L} - \sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}}$$

Solution(s)

• The quadratic equation in 's' has two solutions

$$s_1 = -\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}}$$

$$s_2 = -\frac{R}{2L} - \sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}}$$

This gives the general solution as

$$i(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

Initial Conditions

• In order to solve for the two parameters A_1 and A_2 , we need two initial conditions.

Initial Conditions

- In order to solve for the two parameters A₁ and A₂, we need two initial conditions.
- The current through the inductor at $t = 0^+, i(0^+) = 0$
- The voltage across the capacitor at $t = 0^+, v_c(0^+) = V_0$
 - This gives $L \frac{di}{dt}|_{t=0^+} = V_0$
- These two conditions can be used to figure out A_1 and A_2 .

The Nature of the Roots $s^2 + \frac{R}{L}s + \frac{1}{LC} = 0$

$$s^2 + \frac{R}{L}s + \frac{1}{LC} = 0$$

- The two roots s_1 and s_2 can be in one of the following configurations.
- Real Roots

• Distinct
$$L=1$$
 $H,C=1/3$ $F,R=4$ $\Omega,\ s^2+4s+3=0,\ s=-3,-1$ $\xi=\frac{R}{2}\sqrt{\frac{C}{L}}>1$

The Nature of the Roots $s^2 + \frac{R}{L}s + \frac{1}{LC} = 0$

$$s^2 + \frac{R}{L}s + \frac{1}{LC} = 0$$

- The two roots s_1 and s_2 can be in one of the following configurations.
- Real Roots
 - Distinct

• Repeated
$$L=0.5~H, C=0.5~F, R=2~\Omega,~s^2+4s+4=0,~s=-2,-2$$
 $\xi=\frac{R}{2}\sqrt{\frac{C}{L}}=1$

The Nature of the Roots $s^2 + \frac{R}{L}s + \frac{1}{LC} = 0$

$$s^2 + \frac{R}{L}s + \frac{1}{LC} = 0$$

- The two roots s_1 and s_2 can be in one of the following configurations.
- Real Roots
 - Distinct
 - Repeated
- Complex conjugate pairs of roots.

$$L=1\ H, C=1/17\ F, R=2\ \Omega,\ s^2+2s+17=0,\ s=-1\pm 4j$$
 $\xi=\frac{R}{2}\sqrt{\frac{C}{L}}<1$

Real and Distinct Roots

$$L = 1 \ H, C = 1/3 \ F, R = 4 \ \Omega,$$

 $s^2 + \frac{R}{L}s + \frac{1}{LC} = 0 \implies s^2 + 4s + 3 = 0, \ s = -3, -1$

• Thus, the solution is $i(t) = A_1 e^{-t} + A_2 e^{-3t}$

Real and Distinct Roots

$$L = 1 H, C = 1/3 F, R = 4 \Omega,$$

 $s^2 + \frac{R}{L}s + \frac{1}{LC} = 0 \implies s^2 + 4s + 3 = 0, \ s = -3, -1$

- Thus, the solution is $i(t) = A_1 e^{-t} + A_2 e^{-3t}$
- Initial conditions give
 - Initial current $i(0^+) = 0$, $\Longrightarrow A_1 = -A_2$
 - And $L \frac{di}{dt}|_{t=0^+} = V_0, \implies V_0 = -A_1 3A_2 = 2A_1$

Real and Distinct Roots: Overdamped Response

• The value of current is thus, $i(t) = \frac{V_0}{2} \left(e^{-t} - e^{-3t} \right)$

Complex Conjugate Roots

$$L = 1 H, C = 1/17 F, R = 2 \Omega,$$

 $s^2 + \frac{R}{L}s + \frac{1}{LC} = 0 \implies s^2 + 2s + 17 = 0, \ s = -1 \pm 4j$

- When $s = -\alpha \pm j\omega, i(t) = e^{-\alpha t} \left(A_1 e^{j\omega t} + A_2 e^{-j\omega t} \right)$
- With A₁ and A₂ being complex numbers.

Complex Conjugate Roots

$$L = 1 \ H, C = 1/17 \ F, R = 2 \ \Omega,$$

 $s^2 + \frac{R}{L}s + \frac{1}{LC} = 0 \implies s^2 + 2s + 17 = 0, \ s = -1 \pm 4j$

- When $s = -\alpha \pm j\omega, i(t) = e^{-\alpha t} \left(A_1 e^{j\omega t} + A_2 e^{-j\omega t} \right)$
- With A₁ and A₂ being complex numbers.
- Because the current is a real quantity eventually,

$$i(t) = Ae^{-\alpha t}\cos(\omega t + \theta)$$

with A, θ to be calculated from the initial conditions.

For the Example,

$$L = 1 H, C = 1/17 F, R = 2 \Omega,$$

$$s^{2} + \frac{R}{L}s + \frac{1}{LC} = 0 \implies s^{2} + 2s + 17 = 0, \ s = -1 \pm 4j$$

$$i(t) = Ae^{-\alpha t}\cos(\omega t + \theta) = Ae^{-t}\cos(4t + \theta)$$

For the Example,

$$L = 1 H, C = 1/17 F, R = 2 \Omega,$$

$$s^{2} + \frac{R}{L}s + \frac{1}{LC} = 0 \implies s^{2} + 2s + 17 = 0, \ s = -1 \pm 4j$$

$$i(t) = Ae^{-\alpha t}\cos(\omega t + \theta) = Ae^{-t}\cos(4t + \theta)$$

From, the initial condition

$$i(0) = A\cos(\theta) = 0, \implies \theta = -\pi/2, \implies i(t) = Ae^{-t}\sin(4t)$$

• And $L\frac{di}{dt} = \frac{di}{dt}|_{t=0^+} = 4A = V_0$ $A = \frac{V_0}{4}$

Complex Roots: Underdamped Response

• The value of current is thus, $i(t) = \frac{V_0}{4}e^{-t}\sin(4t)$

Repeated Roots

$$L = 0.5 \ H, C = 0.5 \ F, R = 2 \ \Omega,$$

 $s^2 + \frac{R}{L}s + \frac{1}{LC} = 0 \implies s^2 + 4s + 4 = 0, \ s = -2, -2$

• In this case the solution is NOT $i(t) = A_1e^{st} + A_2e^{st} = (A_1 + A_2)e^{st}$

Repeated Roots

$$L = 0.5 \ H, C = 0.5 \ F, R = 2 \ \Omega,$$

 $s^2 + \frac{R}{L}s + \frac{1}{LC} = 0 \implies s^2 + 4s + 4 = 0, \ s = -2, -2$

- In this case the solution is NOT $i(t) = A_1e^{st} + A_2e^{st} = (A_1 + A_2)e^{st}$
- It is not the most general solution for a second order differential equation
- The solution is of the form

$$i(t) = A_1 e^{st} + A_2 t e^{st}$$

For the Example,

$$L = 0.5 H, C = 0.5 F, R = 2 \Omega,$$

$$s^{2} + \frac{R}{L}s + \frac{1}{LC} = 0 \implies s^{2} + 4s + 4 = 0, \ s = -2, -2$$

$$i(t) = A_{1}e^{-2t} + A_{2}te^{-2t}$$

For the Example,

$$L = 0.5 H, C = 0.5 F, R = 2 \Omega,$$

$$s^{2} + \frac{R}{L}s + \frac{1}{LC} = 0 \implies s^{2} + 4s + 4 = 0, \ s = -2, -2$$

$$i(t) = A_{1}e^{-2t} + A_{2}te^{-2t}$$

- From the initial condition
- At $t = 0, i(0) = 0, \implies A_1 = 0$
- Thus, $i(t) = A_2 t e^{-2t}$, $\frac{di}{dt} = A_2 e^{-2t} 2A_2 t e^{-2t}$
- At $t = 0, \frac{di}{dt} = \frac{V_0}{L} = A_2$

Repeated Roots: Critically Damped Response

• The value of current is thus, $i(t) = 2V_0te^{-2t}$

Root Locus

• The two roots s_1 and s_2 change from being imaginary for R=0 to real and distinct as R tends to infinity.

Root Locus Plot

$$s^2 + \frac{R}{L}s + \frac{1}{LC} = 0$$

Root Locus

$$s^2 + \frac{R}{L}s + \frac{1}{LC} = 0$$

- The two roots s_1 and s_2 change from being imaginary for R=0 to real and distinct as R tends to infinity.
- R=0, roots are on the j ω axis: Sustained Oscillations (Undamped)
- $0 < R < 2\sqrt{\frac{L}{C}}$, complex roots: Damped Oscillations (Underdamped)
- $R = 2\sqrt{\frac{L}{C}}$, repeated roots: No Oscillations (Critical Damping)
- $_{R>2\sqrt{\frac{L}{C}}}$, real and distinct roots: No Oscillations (Overdamped)