MATHEMATICS-I

Anushaya Mohapatra

Department of Mathematics
BITS PILANI K K Birla Goa Campus, Goa

September 2, 2024

Lecture 11

Infinite series

Theorem 0.1 (Limit Comparison Test).

Suppose that $a_n > 0$ and $b_n > 0$ for all $n \ge N$ for some $N \in \mathbb{N}$.

- If $\lim_{n\to\infty} \frac{a_n}{b_n} = c > 0$, then $\sum a_n$ and $\sum b_n$ both converge or diverge.
- 2 If $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ and $\sum b_n$ converges then $\sum a_n$ converges.
- If $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$ and $\sum b_n$ diverges then $\sum a_n$ diverges.

Theorem 0.1 (Limit Comparison Test).

Suppose that $a_n > 0$ and $b_n > 0$ for all $n \ge N$ for some $N \in \mathbb{N}$.

- If $\lim_{n\to\infty} \frac{a_n}{b_n} = c > 0$, then $\sum a_n$ and $\sum b_n$ both converge or diverge.
- If $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ and $\sum b_n$ converges then $\sum a_n$ converges.
- If $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$ and $\sum b_n$ diverges then $\sum a_n$ diverges.

Examples: Test the convergence of the following:

(a).
$$\sum_{n=1}^{\infty} \frac{100}{10n+1}$$
, (b). $\sum_{n=1}^{\infty} \frac{1}{2^n+10}$., (c). $\sum_{n=1}^{\infty} \frac{\ln(n)}{n}$.

(d).
$$\sum_{n=1}^{\infty} \frac{1}{n^2 \ln(n)}$$
.

Theorem 0.2 (The Ratio Test).

Let $\sum a_n$ be a series with positive terms and suppose that

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\rho.$$

Theorem 0.2 (The Ratio Test).

Let $\sum a_n$ be a series with positive terms and suppose that

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\rho.$$

Then;

- the series converges if $\rho < 1$,
- **2** the series diverges if $\rho > 1$
- the test is inconclusive if $\rho = 1$.

Test the convergence of the following:

(a).
$$\sum_{n=1}^{\infty} \frac{x^n}{n!}$$
, (b). $\sum_{n=1}^{\infty} \frac{(2n)!}{n!n!}$, (c). $\sum_{n=1}^{\infty} \frac{1}{n^2}$

Theorem 0.3 (The root test).

Let $\sum a_n$ be a series with positive terms and suppose that

$$\lim_{n\to\infty}\sqrt[n]{a_n}=\rho.$$

Theorem 0.3 (The root test).

Let $\sum a_n$ be a series with positive terms and suppose that

$$\lim_{n\to\infty}\sqrt[n]{a_n}=\rho.$$

Then;

- the series converges if $\rho < 1$,
- **2** the series diverges if $\rho > 1$
- the test is inconclusive if $\rho = 1$.

Discuss the convergence of the following:

(a).
$$\sum_{n=1}^{\infty} \frac{1-n}{3n-n^2}$$
, (b). $\sum_{n=1}^{\infty} \frac{3^n}{n^{10}}$, (c). $\sum_{n=1}^{\infty} \left(\frac{n}{n+2}\right)^{n^2}$.

Alternating series

Alternating series:

 A series in which the terms are alternatively positive and negative is called alternating series.

Alternating series

Alternating series:

- A series in which the terms are alternatively positive and negative is called alternating series.
- Any series of the form:

$$\sum_{n=1}^{\infty} (-1)^n a_n$$
 or $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ where $a_n \geq 0$

is an alternating series.

Alternating series

Alternating series:

- A series in which the terms are alternatively positive and negative is called alternating series.
- Any series of the form:

$$\sum_{n=1}^{\infty} (-1)^n a_n$$
 or $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ where $a_n \geq 0$

is an alternating series.

• Examples: $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$, $\sum_{n=1}^{\infty} (-4/3)^n$, $\sum_{n=1}^{\infty} (-1)^n \sqrt{n}$.

The series:

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n = a_1 - a_2 + a_3 - a_4 + \cdots$$

converges, if all three of the following conditions are satisfied:

The series:

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n = a_1 - a_2 + a_3 - a_4 + \cdots$$

converges, if all three of the following conditions are satisfied:

• The a_n 's are positive.

The series:

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n = a_1 - a_2 + a_3 - a_4 + \cdots$$

converges, if all three of the following conditions are satisfied:

- The a_n 's are positive.
- The positive a_n 's are (eventually) non-increasing: $a_n \ge a_{n+1}$ for all $n \ge N$, for some integer N.

The series:

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n = a_1 - a_2 + a_3 - a_4 + \cdots$$

converges, if all three of the following conditions are satisfied:

- The a_n 's are positive.
- The positive a_n 's are (eventually) non-increasing: $a_n \ge a_{n+1}$ for all $n \ge N$, for some integer N.
- **3** $a_n \to 0$ as $n \to \infty$.

• If p > 0, then the alternating p-series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^p} = 1 - \frac{1}{2^p} + \frac{1}{3^p} - \cdots$$

converges.

• If p > 0, then the alternating p-series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^p} = 1 - \frac{1}{2^p} + \frac{1}{3^p} - \cdots$$

converges.

What can you say about the converges of

$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{2+n}{8n} \right) ?$$

Absolute convergence:

• A series $\sum a_n$ is said to **converge absolutely** (be **absolutely convergent**) if the corresponding series of absolute values, $\sum |a_n|$, converges.

Absolute convergence:

• A series $\sum a_n$ is said to **converge absolutely** (be **absolutely convergent**) if the corresponding series of absolute values, $\sum |a_n|$, converges.

Examples:

• $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$ is absolutely convergent for p>1 and for other values of p, the series is not absolutely convergent.

Absolute convergence:

• A series $\sum a_n$ is said to **converge absolutely** (be **absolutely convergent**) if the corresponding series of absolute values, $\sum |a_n|$, converges.

Examples:

• $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$ is absolutely convergent for p > 1 and for other values of p, the series is not absolutely convergent.

Theorem 0.5.

If the series $\sum a_n$ is absolutely convergent then it is convergent.

• If the series $\sum a_n$ is convergent but not absolutely convergent then we say that the series $\sum a_n$ is **conditionally convergent.**

- If the series $\sum a_n$ is convergent but not absolutely convergent then we say that the series $\sum a_n$ is **conditionally convergent.**
- $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$ is conditionally convergent for 0 .

- If the series $\sum a_n$ is convergent but not absolutely convergent then we say that the series $\sum a_n$ is **conditionally convergent.**
- $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$ is conditionally convergent for 0 .
- $\bullet \sum_{n=1}^{\infty} \frac{\cos(n)}{n^{5/2}}$

- If the series $\sum a_n$ is convergent but not absolutely convergent then we say that the series $\sum a_n$ is **conditionally convergent**.
- $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$ is conditionally convergent for 0 .
- $\sum_{n=1}^{\infty} \frac{\cos(n)}{n^{5/2}}$ is absolutely convergent and hence it is convergent.

- If the series $\sum a_n$ is convergent but not absolutely convergent then we say that the series $\sum a_n$ is **conditionally convergent**.
- $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$ is conditionally convergent for 0 .
- $\sum_{n=1}^{\infty} \frac{\cos(n)}{n^{5/2}}$ is absolutely convergent and hence it is convergent.
- $\sum_{n=1}^{\infty} \frac{\sin(2n-1)\pi/2}{n^{3/4}}$

- If the series $\sum a_n$ is convergent but not absolutely convergent then we say that the series $\sum a_n$ is **conditionally convergent.**
- $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$ is conditionally convergent for 0 .
- $\sum_{n=1}^{\infty} \frac{\cos(n)}{n^{5/2}}$ is absolutely convergent and hence it is convergent.
- $\sum_{n=1}^{\infty} \frac{\sin(2n-1)\pi/2}{n^{3/4}}$ is conditionally convergent.

Discuss whether the following series absolutely convergence or conditionally convergence.

(a).
$$\sum_{n=1}^{\infty} (-1)^n \frac{1-n}{3n-n^2}$$
, (b). $\sum_{n=1}^{\infty} (-1)^n \frac{\ln(n)}{n}$

1 The *n*-th Term Test: Unless $a_n \to 0$, the series diverges.

- 1 The *n*-th Term Test: Unless $a_n \to 0$, the series diverges.
- 2 **Geometric series**: $\sum ar^n$ converges if |r| < 1; otherwise it diverges.

- 1 **The** *n***-th Term Test**: Unless $a_n \rightarrow 0$, the series diverges.
- 2 **Geometric series**: $\sum ar^n$ converges if |r| < 1; otherwise it diverges.
- 3 *p*-series: $\sum \frac{1}{n^p}$ converges if p > 1; otherwise it diverges.

- 1 The *n*-th Term Test: Unless $a_n \to 0$, the series diverges.
- 2 **Geometric series**: $\sum ar^n$ converges if |r| < 1; otherwise it diverges.
- 3 *p*-series: $\sum \frac{1}{n^p}$ converges if p > 1; otherwise it diverges.
- 4 **Series with nonnegative terms**: Try the Integral Test, Ratio Test or Root Test. Try comparing to a known series with the Comparison Test.

- 1 The *n*-th Term Test: Unless $a_n \to 0$, the series diverges.
- 2 **Geometric series**: $\sum ar^n$ converges if |r| < 1; otherwise it diverges.
- 3 *p*-series: $\sum \frac{1}{n^p}$ converges if p > 1; otherwise it diverges.
- 4 Series with nonnegative terms: Try the Integral Test, Ratio Test or Root Test. Try comparing to a known series with the Comparison Test.
- 5 Series with some negative terms: Does $\sum |a_n|$ converge? If yes, so does $\sum a_n$, since absolute convergence implies convergence.

- **1 The** *n***-th Term Test**: Unless $a_n \to 0$, the series diverges.
- 2 **Geometric series**: $\sum ar^n$ converges if |r| < 1; otherwise it diverges.
- 3 *p*-series: $\sum \frac{1}{n^p}$ converges if p > 1; otherwise it diverges.
- 4 Series with nonnegative terms: Try the Integral Test, Ratio Test or Root Test. Try comparing to a known series with the Comparison Test.
- 5 Series with some negative terms: Does $\sum |a_n|$ converge? If yes, so does $\sum a_n$, since absolute convergence implies convergence.
- 6 Alternating series: $\pm \sum (-1)^n a_n$; $(a_n \ge 0)$ converges if the series satisfies the conditions of the Alternating Series Test.

1
$$\sum_{n=1}^{\infty} (3)^{n+1} (4)^{-n+1}$$
 Ans:Convergent

1
$$\sum_{n=1}^{\infty} (3)^{n+1} (4)^{-n+1}$$
 Ans:Convergent

1
$$\sum_{n=1}^{\infty} (3)^{n+1} (4)^{-n+1}$$
 Ans:Convergent

2
$$\sum_{n=1}^{\infty} \frac{1+\cos n}{e^n}$$
 Ans: Convergent

1
$$\sum_{n=1}^{\infty} (3)^{n+1} (4)^{-n+1}$$
 Ans:Convergent

$$\sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{n}}{3n+5}$$
 Ans: Conditionally Convergent

$$\sum_{n=1}^{\infty} n \sin \frac{1}{n}$$

1
$$\sum_{n=1}^{\infty} (3)^{n+1} (4)^{-n+1}$$
 Ans:Convergent

2
$$\sum_{n=1}^{\infty} \frac{1+\cos n}{e^n}$$
 Ans: Convergent

$$\sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{n}}{3n+5}$$
 Ans: Conditionally Convergent

$$\sum_{n=1}^{\infty} n \sin \frac{1}{n}$$
 Ans: Divergent

$$\bullet \sum_{n=1}^{\infty} \frac{n^2 \ln(n) + 2}{n^3 + 4}$$

Ans:Divergent

Ans:Absolutely Convergent

Ans: Absolutely Convergent

Ans: Conditionally Convergent

Thank you