Problem Set 6 CSSS 505/ SOC 512

Due: February 17, 2021

1.	Let Y be a uniform random variable on the interval [2,10].				
	(a)	Compute the expected value $(E[Y])$.			
	(b)	Compute the variance $(Var[Y])$.			
2.		suple has 4 pets, let X denote the number of cats. Assume cats and dogs are ned to families with the probability of receiving a cat being 0.3.			
	(a)	Write down the probability distribution of X . Hint: start by writing down the sample space and count the number of ways each event could occur. Slide 10 from Lecture 6 should be helpful.			
	(b)	Compute the expected value $(E[X])$.			
	(c)	Compute the variance $(Var[X])$.			
3.	Toss	a coin 4 times, let X denote the number of heads.			

- (a) Write down the probability distribution of X. Hint: start by writing down the sample space and count the number of ways each event could occur. Slide 10 from Lecture 6 should be helpful.
- (b) Compute the expected value (E[X]).
- (c) Compute the variance (Var[X]).
- 4. John pays \$40 per year for towing insurance. He thinks the probability that he will need to have his car towed is 10% and the probability that he will need to have it towed more than once is zero. Without insurance the cost of towing is \$100, but the cost is zero if insured. Let X=John's expenses next year for towing and/or insurance.
 - (a) If he buys insurance, what is the value of X?
 - (b) If he doesn't buy insurance, what two values can X take?
 - (c) Find E[X] for both (a) and (b). Should he buy the insurance?
- 5. Let X represent the number of jobs held during the past year for students at a school, and suppose X has the following probability distribution:

X-Value	0	1	2	3	4
$P(X=x_i)$	0.15	0.28	0.36	0.10	0.11

(a) What is the probability that a randomly selected student has fewer than two jobs?

- (b) Find P(X > 0).
- (c) Find P(X > 2).
- 6. Suppose that E[X] = 10 and Var[X] = 5. Compute the following:
 - (a) E[2X + 3]
 - (b) E[-X]
 - (c) $Var\left[\frac{X}{n}\right]$
 - (d) Var[0.1X]
 - (e) Var[10X + 3]
- 7. Are the following valid probability distributions? If so, copute E[X] and Var[X]:

Table 1: Part (a)

X-Value	0	1	2	3	4
$P(X=x_i)$	0.05	0.08	0.36	0.10	0.10

Table 2: Part (b)

X-Value	0	1	10
$P(X=x_i)$	0.77	0.20	0.03