Massive Data Algorithmics

Lecture 6: Interval Trees

Interval Management

Problem:

- Maintain N intervals with unique endpoints dynamically such that stabbing query with point x can be answered efficiently

- As in (one-dimensional) B-tree case we are interested in
 - O(N/B) space
 - $O(\log_B N)$ update
 - $O(\log_B N + T/B)$

Interval Management: Static Solution

- Sweep from left to right maintaining persistent B-tree
 - Insert interval when left endpoint is reached
 - Delete interval when right endpoint is reached

- ullet Query x answered by reporting all intervals in B-tree at time x
 - O(N/B) space
 - $O(\log_B N)$ update
 - $O(\log_B N + T/B)$

Internal Interval Trees

- Base tree on endpoints slab X_v associated with each node v
- Interval stored in highest node v where it contains midpoint of X_v
- Intervals I_v associated with v stored in
 - Left slab list sorted by left endpoint (search tree)
 - Right slab list sorted by right endpoint (search tree)
- Linear space and $O\log n$) update

Internal Interval Trees

- Query with x on left side of midpoint of X_{root}
 - Search left slab list left-right until finding non-stabbed interval
 - Recurse in left child
- $\bullet \Rightarrow O(\log N + T)$ query bound

- Natural idea:
 - Block tree
 - Use B-tree for slab lists
- Number of stabbed intervals in large slab list may be small (or zero)
 - We can be forced to do I/O in each of $O(\log N)$ nodes

• Idea:

- Decrease fan-out to $\Theta(\sqrt{B}) \Rightarrow$ height remains $O(\log_B N)$
- $\Theta(\sqrt{B})$ slabs define $\Theta(B)$ multislabs
- Interval stored in two slab lists (as before) and one multislab list
- Intervals in small multislab lists collected in underflow structure
- Query answered in v by looking at 2 slab lists and not $O(\log B)$

• Idea:

- Decrease fan-out to $\Theta(\sqrt{B}) \Rightarrow$ height remains $O(\log_B N)$
- $\Theta(\sqrt{B})$ slabs define $\Theta(B)$ multislabs
- Interval stored in two slab lists (as before) and one multislab list
- Intervals in small multislab lists collected in underflow structure
- Query answered in v by looking at 2 slab lists and not $O(\log B)$

• Idea:

- Decrease fan-out to $\Theta(\sqrt{B}) \Rightarrow$ height remains $O(\log_B N)$
- $\Theta(\sqrt{B})$ slabs define $\Theta(B)$ multislabs
- Interval stored in two slab lists (as before) and one multislab list
- Intervals in small multislab lists collected in underflow structure
- Query answered in v by looking at 2 slab lists and not $O(\log B)$

- \bullet Base tree: Weight-balanced B-tree with branching parameter $1/4\sqrt{B}$ and leaf parameter B on endpoints
 - Interval stored in highest node v where it contains slab boundary
- Each internal node *v* contains:
 - Left slab list for each of $\Theta(\sqrt{B})$ slabs
 - Right slab list for each of $\Theta(\sqrt{B})$ slabs
 - $\Theta(B)$ multislab lists

- Interval in set I_v of intervals associated with v stored in
 - Left slab list of slab containing left endpoint
 - Right slab list of slab containing right endpoint
 - Widest multislab list it spans
- If < B intervals in multislab list they are instead stored in underflow structure (\Rightarrow contains $= B^2$ intervals)

- Base tree: Weight-balanced B-tree with branching parameter $1/4\sqrt{B}$ and leaf parameter B on endpoints
 - Interval stored in highest node v where it contains slab boundary
- Each internal node *v* contains:
 - Left slab list for each of $\Theta(\sqrt{B})$ slabs
 - Right slab list for each of $\Theta(\sqrt{B})$ slabs
 - $\Theta(B)$ multislab lists

- Interval in set I_v of intervals associated with v stored in
 - Left slab list of slab containing left endpoint
 - Right slab list of slab containing right endpoint
 - Widest multislab list it spans
- If < B intervals in multislab list they are instead stored in underflow structure (\Rightarrow contains $= B^2$ intervals)

- Each leaf contains < B/2 intervals (unique endpoint assumption)
 - Stored in one block
- Slab lists implemented using B-trees
 - $O(1+T_v/B)$ query
 - Linear space
 - * We may wasted a block for each of the $\Theta(\sqrt{B})$ lists in node
 - * But only $\Theta(\frac{N}{R\sqrt{R}})$ internal nodes
- Underflow structure implemented using static structure
 - $O(\log_R B^2 + T_v/B) = O(1 + T_v/B)$ query
 - Linear space
- Linear space

- Query with x
 - Search down tree for x while in node v reporting all intervals in I_v stabbed by x
- In node v
 - Query two slab lists
 - Report all intervals in relevant multislab lists
 - Query underflow structure

- Visit $O(\log_B N)$ nodes
- Query slab lists $O(1+T_{\nu}/B)$
- Query multislab lists $O(1+T_v/B)$
- Query underflow structure $O(1 + T_v/B)$

$$\Rightarrow O(\log_B N + T_v/B)$$

- Update ignoring base tree update/rebalancing:
 - Search for relevant node: $O(\log_B N)$
 - Update two slab lists: $O(\log_B N)$
 - Update multislab list or underflow structure

- Update of underflow structure in O(1) I/Os amortized:
 - Maintain update block with $\leq B$ updates
 - Check of update block adds O(1) I/Os to query bound
 - Rebuild structure when B updates have been collected using $O(B^2/B\log_B B^2) = O(B)$ I/Os (Global Rebuilding)
- \Rightarrow Update in $O(\log_B N)$ I/Os amortized

Note:

- Insert may increase number of intervals in underflow structure for some multislab to B
- Delete may decrease number of intervals in multislab to B
- \Rightarrow Need to move B intervals to/from multislab/underflow structure
- We only move
 - Intervals from multislab list when decreasing to size B/2
 - Intervals to multislab list when increasing to size B
 - \Rightarrow O(1) I/Os amortized used to move intervals

Base Tree Update

- Before inserting new interval we insert new endpoints in base tree using $O(\log_B N/B)$ I/Os
 - Leads to rebalancing using splits
 - \Rightarrow Boundary in v becomes boundary in parent(v)
 - \Rightarrow Intervals need to be moved

- Move intervals (update secondary structures) in O(w(v)) I/Os
 - \Rightarrow O(1) amortized split bound (weight balanced B-tree)
 - $\Rightarrow O(\log_B N/B)$ amortized insert bound

- When v splits we may need to move O(w(v)) intervals
 - Intervals in v containing boundary
 - Intervals in parent(v) with endpoints in X_v containing boundary

• Intervals move to two new slab and multislab lists in parent(v)

- Moving intervals in v in O(w(v)) I/Os
 - Collected in left order (and remove) by scanning left slab lists
 - Collected in right order (and remove) by scanning right slab lists
 - Removed multislab lists containing boundary
 - Remove from underflow structure by rebuilding it
 - Construct lists and underflow structure for v and v similarly

- Moving intervals in parent(v) in O(w(v)) I/Os
 - Collect in left order by scanning left slab list
 - Collect in right order by scanning right slab list
 - Merge with intervals collected in $v \Rightarrow$ two new slab lists
 - Construct new multislab lists by splitting relevant multislab list
 - Insert intervals in small multislab lists in underflow structure

- Split in O(1) I/Os amortized
 - Space: O(N/B)
 - Query: $O(\log_B N/B + T/B)$
 - Insert: $O(\log_B N/B)$ I/Os amortized
- Deletes in $O(\log_B N/B)$ I/Os amortized using global rebuilding:
 - Delete interval as previously using $O(\log_B N/B)$ I/Os
 - Mark relevant endpoint as deleted
 - Rebuild structure in $O(\log_B N/B)$ after N/2 deletes
- Note: Deletes can also be handled using fuse operations

Summary/Conclusion: Interval Management

- ullet Interval management corresponds to simple form of 2d range search
 - Diagonal corner queries
- We obtained the same bounds as for the 1d case
 - Space: O(N/B)
 - Query: $O(\log_B N/B + T/B)$
 - Update: $O(\log_B N/B)$

Summary/Conclusion: Interval Management

- Main problem in designing structure:
 - Binary \rightarrow large fan-out
- Large fan-out resulted in the need for
 - Multislabs and multislab lists
 - Underflow structure to avoid O(B)-cost in each node
- General solution techniques:
 - Filtering: Charge part of query cost to output
 - Bootstrapping:
 - * Use $O(B^2)$ size structure in each internal node
 - * Constructed using persistence
 - * Dynamic using global rebuilding
 - Weight-balanced B-tree: Split/fuse in amortized O(1)