MATH 110AH (Algebra)

September 28, 2022

1 9.23 Friday Week 0

Groups were invented by Évariste Galois circa 1830 to discuss symmetries in mathematical objects. For instance, the group G of "symmetries of equilateral triangles" contains a total of $3 \cdot 2 = 6$ elements consisting of rotations and reflections.

Theorem 1.1

Finite simple groups are classified.

Proving things about the integers

Try to use "simple" facts about the integers to prove complicated ones. Recall the number systems:

- the integers $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$,
- the rational numbers $\mathbb{Q} = \left\{ \frac{a}{b} : a, b \in \mathbb{Z}, b \neq 0 \right\}$, and
- the real numbers \mathbb{R} contains \mathbb{Q} , $\sqrt{2}$, π , . . . , "all the points on the line."

Definition 1.2

A **field** \mathbb{F} (e.g. \mathbb{Q} , \mathbb{R} , \mathbb{C} , not \mathbb{Z}) is a set with elements $0, 1 \in \mathbb{F}$, $0 \ne 1$, and operators + (addition) and (multiplication), where for all $x, y \in \mathbb{F}$, $x + y, xy \in \mathbb{F}$, such that

- 1. + is associative, commutative, 0 is its identity, and has inverses. That is,
 - $\forall x, y, z \in \mathbb{F} : (x + y) + z = x + (y + z),$
 - $\forall x, y \in \mathbb{F} : x + y = y + x$,
 - $\forall x \in \mathbb{F} : 0 + x = x$, and
 - $\forall x \in \mathbb{F} \exists y \in \mathbb{F} : x + y = 0$, and writing y = -x.
- 2. · is associative, commutative, 1 is its identity, and nonzeros have inverse. That is,
 - $\forall x, y, z \in \mathbb{F} : (xy)z = x(yz),$
 - $\forall x, y \in \mathbb{F} : xy = yx$,
 - $\forall x \in \mathbb{F} : 1 \cdot x = x$, and
 - $\forall x \in \mathbb{F} : x \neq 0 \Rightarrow \exists y \in \mathbb{F} : xy = 1$.
- 3. Distributive law: $\forall x, y, z \in \mathbb{F} : x(y+z) = xy + xz$.

Definition 1.3

An **ordered field** (for example, \mathbb{R} , \mathbb{Q} , not \mathbb{C}) \mathbb{F} is a field with a given subset $P \subset \mathbb{F}$ called the positive elements such that

- 1. for all $x \in \mathbb{F}$, exactly one of $x \in P$, x = 0, $-x \in P$ is true (we say $x \in \mathbb{F}$ is negative if $-x \in P$), and
- 2. for all $x, y \in P$, x + y, $xy \in P$.

How to use these axioms to prove inequalities

Definition 1.4

For an ordered field \mathbb{F} , we say for x, $y \in \mathbb{F}$ that x < y if y - x = y + (-x) is positive (so x is positive iff x > 0).

Likewise $x \le y$ if y - x is positive or 0.

Lemma 1.5

- 1. For any $x, y \in \mathbb{R}$, exactly one of x < y, x = y, x > y is true.
- 2. 1 is positive.
- 3. For $a, b, c \in \mathbb{R}$, if a < b then a + c < b + c.
- 4. If $a, b, c \in \mathbb{R}$, $a \ge 0$, and $b \ge c$, then $ab \ge ac$.

Proof.

- 1. y x is either positive, negative, or 0.
- 2. Note that $1 \neq 0$. Then either 1 is positive or -1 is positive. If -1 is positive then $(-1)^2 = 1$ is positive, resulting in a contradiction.
- 3. Note that (b + c) (a + c) = b a is positive.
- 4. Note that for all $a \in \mathbb{R}$ we have $0 \cdot a = 0$. Then

$$a(b-c) \ge 0$$

$$ab - ac \ge 0$$

$$ab \ge ac.$$

The big property of the integers is the inductive or well-ordering principle

The integers \mathbb{Z} are a subset of \mathbb{Q} (or \mathbb{R}). There are $0, 1 \in \mathbb{Z}$ and if $x, y \in \mathbb{Z}$ then $x + y, xy, -x \in \mathbb{Z}$.

Theorem 1.6: Well-ordering principle

Let $\mathbb{Z}^+ = \{x \in \mathbb{Z} : x > 0\} = \{1, 2, 3, 4, \dots\}$. Let *S* be a nonempty subset of \mathbb{Z}^+ . Then *S* contains a smallest element, that is,

$$\exists \, x \in S \, \forall \, y \in S : x \leq y.$$

An example of what we can prove using this is:

Proposition 1.7

There is no integer N with 0 < N < 1.

Proof. Let $S = \{n \in \mathbb{Z} : 0 < n < 1\}$. Let $S \neq \emptyset$, then by the well-ordering principle S has a smallest element N. Since N < 1, $N^2 < N \cdot 1 = N$. Since N^2 is also an integer, this is a contradiction. Then $S = \emptyset$, that is, there is no integer $N \in (0,1)$. □

Theorem 1.8: Induction

For each $n \in \mathbb{Z}^+$, let P(n) be a statement that could be true or false. Suppose P(1) is true and that for any $n \in \mathbb{Z}^+$, if P(n) is true then P(n+1) is true. Then P(n) is true for all $n \in \mathbb{Z}^+$.

Proof. Let $S = \{n \in \mathbb{Z}^+ : P(n) \text{ is false}\}$. Suppose $S \neq \emptyset$, then by the well-ordering principle S has a smallest element N. Since P(1) is true, $N \neq 1$. Then N > 1. Then $N \geq 2$ since there are no integers in (1,2). Then $N - 1 \in \mathbb{Z}^+$. Since P(N) would be true if P(N - 1) were true, P(N - 1) is not true. Then $N - 1 \in S$, a contradiction. Then $S = \emptyset$. □

2 9.26 Monday Week 1

Lemma 2.1

For every $x \in \mathbb{R}$, $0 \cdot x = 0$.

Proof. By the distributive law, 0 = 0 + 0, so for any $x \in \mathbb{R}$, we have

$$0 \cdot x = (0+0) \cdot x$$
$$0 \cdot x + (-(0 \cdot x)) = (0+0) \cdot x + (-(0 \cdot x))$$
$$0 = 0 \cdot x.$$

Lemma 2.2

For every $x \in \mathbb{R}$, $(-1) \cdot x = -x$.

Proof. Note that $0 = 0 \cdot x = (1 + (-1)) \cdot x = 1 \cdot x + (-1) \cdot x = x + (-1) \cdot x$. Adding -x to both sides, we have $-x = (-1) \cdot x$.

Lemma 2.3

For any $x, y, z \in \mathbb{R}$ with $x \neq 0$, if xy = xz, then y = z.

Proof. We know, since $x \neq 0$, there exists a real number \overline{x} such that $x\left(\frac{1}{x}\right) = 1$. Then if xy = xz, then $\left(\frac{1}{x}\right)xy = \left(\frac{1}{x}\right)xz$, so $1 \cdot y = 1 \cdot z$, that is, y = z.

Proving things about the integer, gcd, prime factorization

Definition 2.4

For integers x and y, we say $x \mid y$ or "x divides y" or "y is a multiple of x" if $\exists z \in \mathbb{Z} : xz = y$. That is, if $x \neq 0$, $\frac{y}{x}$ is an integer.

Remark For any $x \in \mathbb{Z}$, $1 \mid x$. Also, for any $x \in \mathbb{Z}$, $x \mid 0$ since $x \cdot 0 = 0$.

Also, if *x* is a nonzero integer then any integer *m* with $m \mid x$ has $|m| \leq |x|$.

Example 2.5. The integers dividing $10 = 2 \cdot 5$ are -10, -5, -2, -1, 1, 2, 5, 10.

Remark One fact about \mathbb{R} is the Archimedean property: for every $x \in \mathbb{R}$, there exists an integer y with x < y. It follows, by multiplying by -1, $\forall x \in \mathbb{R} \ \exists \ y \in \mathbb{Z} : y < x$.

Notation For any $x \in \mathbb{R}$, $\lfloor x \rfloor :=$ the largest integer $\leq x$ and $\lceil x \rceil :=$ the smallest integer $\geq x$.

This follows form well-ordering that a subset of *Z*, bounded below and not empty, has a smallest element.

Definition 2.6

A subset $S \subset \mathbb{R}$ is **bounded below** if $\exists a \in \mathbb{R} \ \forall x \in S : x \geq a$.

Theorem 2.7: Division algorithm

Let x be a positive integer and y any integer. Then there are (unique) integers q and r such that y = qx + r, and $0 \le r \le x - 1$.

Proof. Let $q = \left\lceil \frac{y}{x} \right\rceil (\in \mathbb{Z})$. Define $r = y - qx (\in \mathbb{Z})$. Clearly, y = qx + r. Here $q \le \frac{y}{x}$, so $qx \le y$ (since x > 0), so $r \ge 0$.

Also, $q+1>\frac{y}{x}$. So (since x>0) qx+x>y, so r=y-qx< x. Since $r\in\mathbb{Z}, r\leq x-1$.

Definition 2.8

A positive integer p is **prime** if p > 1 and the only positive integers dividing p are 1 and p.

Definition 2.9

For integers x and y not both 0, the **greatest common divisor** = gcd(x, y) is the largest integer that divides x and y.

That makes sense because $1 \mid x$ and $1 \mid y$, and (if $y \neq 0$), any integer dividing y is $\leq |y|$.

Theorem 2.10: Euclid, 300 BCE

For any integers x, y, not both 0, there are integers m, n with gcd(x, y) = mx + ny.

Proof. The hypothesis and conclusion do not change if x or y is multiplied by −1. Assume $x, y \ge 0$. By switching x and y if needed, assume $0 \le x \le y$ and y > 0 since they are not both 0.

We prove this by induction on y.

For y = 1, we have x = 0 or x = 1, and the conclusion is true: $gcd(0, 1) = 1 = 0 \cdot 0 + 1 \cdot 1$ and $gcd(1, 1) = 1 = 0 \cdot 1 + 1 \cdot 1$.

Suppose now that $y \ge 2$ and the result holds for smaller y's. If x = 0 then $gcd(0, y) = y = 0 \cdot 0 + 1 \cdot y$. If x = y then $gcd(x, y) = y = 0 \cdot x + 1 \cdot y$.

Now assume 0 < x < y. Then the division algorithm gives y = qx + r where $q, r \in \mathbb{Z}$ and $0 \le r \le x - 1$. Then gcd(x, y) = gcd(r, x) because an integer divides both x and y iff it divides r = y - qx. Using induction, gcd(x, y) = gcd(r, x) = mr + nx for some $m, n \in \mathbb{Z}$. Then gcd(x, y) = m(y - qx) + nx = (n - mq)x + my.

Then induction is complete.

The Euclidean algorithm for the gcd

Let us compute gcd(45, 66). Here $66 = 1 \cdot 45 + 21$ where q = 1 and r = 21, so gcd(45, 66) = gcd(21, 45). Next, $45 = 2 \cdot 21 + 3$, so gcd(21, 45) = gcd(3, 21). Next, $21 = 7 \cdot 3 + 0$, so gcd(3, 21) = gcd(0, 3) = 3.

Theorem 2.11

Every positive integer can be written as a product of (finitely many) prime numbers $n = \prod_{i=1} = p_1 \cdots p_r$, where p_1, \dots, p_r are prime and $r \ge 0$.

Note. By convention, 1 is the product of 0 prime numbers.

Proof. We use induction on $n \in \mathbb{Z}^+$.

The theorem is true for n = 1.

Suppose that n > 1 and that the theorem holds for smaller positive integers. If n is prime, we are done. Otherwise, there is an integer m, 1 < m < n, with $m \mid n$. Then both m and $\frac{n}{m}$ are positive integers < n. So they are both products of primes. So $n = m \left(\frac{n}{m} \right)$ is a product of primes.

Lemma 2.12

If a prime number p divides the product mn of integers, then $p \mid m$ or $p \mid n$.

Proof. Suppose that $p \mid mn$ and $p \nmid m$. We want to show that $p \mid n$.

Since $p \nmid m$, gcd(p, m) = 1. So by Euclidean algorithm, we write 1 = pu + mv for some integers u, v.

We can also write mn = pw for some $w \in \mathbb{Z}$. So, multiplying 1 = pu + mv by n, we have n = npu + mnv = p(nu + wv). So $p \mid n$.

3 9.28 Wednesday Week 1

Theorem 3.1: Unique factorization of integers, Euclid

Every positive integer n can be written *uniquely* as a product of prime numbers, that is, $n = \prod_{i=1}^r p_i$ where $p_1, \dots p_r$ are prime. The uniqueness is up to reordering of the p_i 's.

Proof. We use (from last time) if a prime number p divides mn (for some $m, n \in \mathbb{Z}$), then $p \mid m$ or $p \mid n$. We showed existence of a prime factorization of $n \in \mathbb{Z}^+$.

For uniqueness: suppose $n = \prod_{i=1}^{r} p_i = \prod_{i=1}^{s} q_i$ with p_i 's and q_i 's all prime and $r, s \ge 0$.

If r = 0, then n = 1. Then s = 0: a product of ≥ 1 prime number is ≥ 2 since each prime is ≥ 2 .

Otherwise, r > 0. Then p_1 makes sense and it is prime. Then p_1 divides $n = \prod_{i=1}^{s} q_i$. By previous result, p_1 must divide q_i for some $1 \le i \le s$. By reordering the q_i 's, we can assume that i = 1. Since q_i is prime and $p_1 > 1$, we must have $p_1 = q_1$. Then

$$p_1\left(\prod_{i=2}^r p_i\right) = q_1\left(\prod_{i=2}^s q_i\right) = p_1\left(\prod_{i=2}^s q_i\right).$$

Since $p_1 \neq 0$, it follows that $\prod_{i=2}^r p_i = \prod_{i=2}^s q_i$.

That finishes the proof, by induction on r.

Equivalence relations

Definition 3.2

The **product** of two sets A and B, $A \times B$, is the set of ordered pairs (a, b) where $a \in A$ and $b \in B$. Here $(a_1, b_1) = (a_2, b_2)$ iff $a_1 = a_2$ and $b_1 = b_2$.

 $|A \times B| = |A| |B|$ if A, B are finite sets.

Definition 3.3

A **relation** of a set *A* with a set *B* is a subset $R \subseteq A \times B$. We write aRb to mean that $(a,b) \in R$.

Example 3.4. A function $f: A \to B$ determines a relation, the **graph** $R = \{(a, f(a)) : a \in A\}$.

Definition 3.5

An **equivalence relation** on a set *A* is a relation $R \subseteq A \times A$ such that it is

- 1. reflexive $(\forall a \in A : aRa)$,
- 2. symmetric $(\forall a, b \in A : aRb \Rightarrow bRa)$, and
- 3. transitive $(\forall a, b, c \in A : aRb \land bRc \Rightarrow aRc)$.

Example 3.6. For any set A, **equality** is an equivalence relation on A.

Example 3.7. Triangles in \mathbb{R}^2 under **congruence** (studied by Euclid): we say that a triangle a is "congruent"

to triangle *b* if there is an **isometry** $f: \mathbb{R}^2 \to \mathbb{R}^2$ that maps *a* to *b*.

Example 3.8. The relation on $\mathbb{Z} \times \{\mathbb{Z} \setminus \{0\}\}$ given by $(a, b) \sim (c, d)$ if ad = bc. In fact this relation is equivalent to $\frac{a}{b} = \frac{c}{d} \in \mathbb{Q}$. This equivalence relation "ensures" that $\frac{1}{3} = \frac{2}{6} = \frac{3}{9} = \cdots$. It is a way to constructing \mathbb{Q} from \mathbb{Z} .

Definition 3.9

Let \sim be an equivalence relation on a set A. For each element a let \overline{a} or [a], the **equivalence class of** a, be the set $\{b \in A : a \sim b\}$ ($\subseteq A$).

Let \overline{A} be the set of subsets of A of the form \overline{a} for some $a \in A$. \overline{A} , or A/\sim , is called the set of **equivalence** classes for \sim .

Define a function $f: A \to \overline{A}$ (depending on \sim) by $f(a) = \overline{a} \in \overline{A}$. This is the **natural** or **canonical surjection** associated to \sim .

Example 3.10. For the relation from Example 3.8 on $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ A, we can define $\mathbb{Q} = A/\sim$.

Example 3.11. Define an equivalence relation on \mathbb{Z} by $a \sim b$ if a - b is even. Some equivalence classes are

$$\overline{0} = \{b \in \mathbb{Z} : 0 \sim b\} = \{\dots, -4, -2, 0, 2, 4, \dots\}$$
 $\overline{1} = \{\dots, -3, -1, 1, 3, \dots\}$
 $\overline{5} = \overline{1}$

Definition 3.12

 $\mathbb{Z}/2 := \mathbb{Z}/\sim$ for the relation in Example 3.11. Note that this set has exactly 2 elements.

Proposition 3.13

Let \sim be an equivalence relation on a set A. Then $A = \bigsqcup_{u \in \overline{A}} u$.

Proof. First we show that $A = \bigcup_{u \in \overline{A}} u$. For each $u \in \overline{A}$, u is a subset of \overline{A} . Then $\bigcup_{u \in \overline{A}} u \subseteq A$. Conversely let $a \in A$. Then $a \in \overline{a}$ by reflexivity of \sim . So $A = \bigcup_{u \in \overline{A}} u$.

Next we show that given $u, b \in \overline{A}$, if $u \neq v$ then $u \cap v = \emptyset$. Equivalently, we show that if $u, v \in \overline{A}$ and $u \cap v \neq \emptyset$ then u = v. The assumption means that there is an element $a \in A$ such that $a \in u$ and $a \in v$. By definition of \overline{A} , $u = \overline{b}$ and $v = \overline{c}$ for some $b, c \in A$. Since $a \in u = \overline{b}$ and $a \in v = \overline{c}$, $b \sim a$ and $c \sim a$. By symmetry and transitivity, $b \sim a \sim c \Rightarrow b \sim c$.

To show that $\overline{b} = \overline{c}$, pick any element $e \in \overline{b}$, that is, $b \sim e$, $c \sim b \sim e$ so $c \sim e$. Then $e \in \overline{c}$. The same proof shows that any element in \overline{c} is also in \overline{b} . Then $\overline{b} = u = v = \overline{c}$.