\mathbf{y}_1	чреждение образова	ния Республик	и Беларусь	
«Гомельский го	сударственный техн	ический униве	рситет им. П.	О. Сухогох

Кафедра "Механика"

Лабораторная работа № 1

По теме: «ИЗУЧЕНИЕ КОНСТРУКЦИИ И ОПРЕДЕЛЕНИЕ ОСНОВНЫХ ПАРАМЕТРОВ ЦИЛИНДРИЧЕСКОГО РЕДУКТОРА»

Выполнил: студент группы ТТ-21 Галицкий И. П. Принял преподаватель Лискович М.И.

Лабораторная работа № 6 ИЗУЧЕНИЕ КОНСТРУКЦИИ И ОПРЕДЕЛЕНИЕ ОСНОВНЫХ ПАРАМЕТРОВ ЦИЛИНДРИЧЕСКОГО РЕДУКТОРА

Цель работы:

- 1. Изучить кинематические схемы, варианты сборки и условные обозначения цилиндрических зубчатых редукторов.
- 2. Ознакомиться с конструкцией цилиндрического зубчатого редуктора, особенностями его разборки и сборки, системой смазки.
- 3. Определить габаритные и присоединительные размеры редуктора.
- 4. Определить геометрические параметры зубчатых колес и передаточные числа передач.
- 5. Определить основную нагрузочную и кинематическую характеристику редуктора, а также показатель технического уровня редуктора.

Теоретическая часть

1. Что называют редуктором?

Редуктор — это механизм, служащий для понижения угловых скоростей и увеличения крутящих моментов и выполненный в виде отдельного агрегата.

- 2. Какие схемы цилиндрических двухступенчатых редукторов Вы знаете? Используются двухступенчатые соосные, двухступенчатые с раздвоенной быстроходной ступенью и двухступенчатые вертикальные редукторы.
- 3. Из каких материалов и какими способами изготовляют корпусы редукторов? Корпуса редукторов, передающих большие мощности при ударных нагрузках, отливают из высокопрочного чугуна или стали. При единичном производстве изготавливают сварными из листовой стали.
- 4. Как смазываются зубчатые передачи и подшипники редукторов?

Смазывание зубчатых передач и подшипников редуктора осуществляется их окунанием в масло, заливаемое внутрь корпуса. Это смазывание применяют при окружных скоростях в зацеплении зубчатых передач.

Смазывание подшипников осуществляется солидолом путём набивания смазочного материала в подшипник вручную при снятой крышке подшипникового узла.

5. Для чего и как производят регулировку подшипников?

Регулировка подшипников производится для минимизации вибрации.

Регулировка подшипников производится путём установки нужного количества прокладок между фланцами подшипника и корпусом редуктора таким образом, чтобы оставался зазор в 0,3-0,5 миллиметров, необходимый для компенсации термического удлинения вала.

						Лист
					Лабораторная работа №1	2
Изм.	Лист	№ докум.	Подпись	Дата		2

Практическая часть

Кинематическая схема редуктора

Таблица 1

Основные параметры редуктора

No			Банина	Ступ	ень	
Л П/П	Наименование параметра	Обозна- чение	Единица - измерения	быстро-	тихо-	
11/11		чение	измерения	ходная	ходная	
1	Тип передачи	_	_	зубчатый	зубчатый	
	Направление зубъев:			_		
2	шестерни	_	_	косое	косое	
	колеса	_	_	косое	косое	
3	Угол исходного контура по ГОСТ 13755–81	В	град	20°	20°	
4	Число зубьев:	подсчитывается				
	шестерни	z _{1,3}	_	26	18	
	колеса	z _{2,4}	_	73	81	
5	Передаточное число:	определяется по формуле				
	ступени	$u_{\mathrm{B,T}}$	_	2,81	4,5	
	редуктора	$u_{\rm peg}$	_	12,	65	
6	Диаметр окружности вершин:		замер	ряется		
	шестерни	$d_{a1,3}$	MM	56,5	60,5	
	колеса	$d_{a2,4}$	MM	151	250	
7	Ширина колеса	$b_{w2,4}$	MM	39,7	59,8	
8	Межосевое расстояние	$a_{w\mathrm{F,T}}$	MM	100	150	
9	Коэффициент ширины колеса	$\Psi_{w\overline{b},T}$	_	3,97	0,47	

						Лисі
					Лабораторная работа №1	2
Изм.	Лист	№ докум.	Подпись	Дата		3

Продолжение таблицы 1

No		Обозна-	Единица	Ступень	
п/п	Наименование параметра	чение	измерения	быстро- ходная	тихо- ходная
10	Модуль торцовый	$m_{t\mathrm{E,T}}$	MM	2,02	3,03
11	Модуль нормальный	$m_{n\mathrm{B,T}}$	MM	2	3
12	Угол наклона зубьев	ß _{Б, Т}	град	8°6′34"	8°6′34"
13	Делительный диаметр:	определяется по формуле			
	шестерни	$d_{1,3}$	MM	52,5	54,5
	колеса	$d_{2,4}$	MM	147,5	245,5
14	Диаметр окружности				
	впадин:		определяется	по формуле	
	шестерни	$d_{f1,3}$	MM	47,5	47,05
	колеса	$d_{f2,4}$	MM	142,5	237,95

Подсчитываем число зубъев шестерён z_1 , z_3 и колёс z_2 , z_4 ; замеряем диаметры окружностей вершин шестерён d_{a1} , d_{a3} и колёс d_{a2} , d_{a4} ; ширину колёс b_{w2} , b_{w4} и межосевые расстояния быстроходной a_{w5} и тихоходной a_{w5} ступеней редуктора. Заносим данные в таблицу.

Рассчитываем по формулам:

1) передаточные числа быстроходной $u_{\rm F}$ и тихоходной $u_{\rm T}$ ступеней и всего ре-

дуктора:
$$u_{\rm E} = \frac{z_2}{z_1} = \frac{73}{26} = 2,81; \quad u_{\rm T} = \frac{z_4}{z_3} = \frac{81}{18} = 4,5;$$
 $u_{\rm peg} = u_{\rm E} \cdot u_{\rm T} = 2,81 \cdot 4,5 = 12,65;$

2) коэффициенты ширины колес быстроходной ψ_{ab} и тихоходной ψ_{aT} ступеней

редуктора:
$$\psi_{a\mathrm{E}} = \frac{b_{w2}}{a_{w\mathrm{E}}} = \frac{39.7}{100} = 3,97; \quad \psi_{a\mathrm{T}} = \frac{b_{w4}}{a_{w\mathrm{T}}} = \frac{69.8}{150} = 0,47;$$

3) торцовые модули быстроходной $m_{t E}$ и тихоходной $m_{t T}$ и тихоходной ступе-

ней редуктора:
$$m_{t\mathrm{E}} = \frac{2a_{w\mathrm{E}}}{z_1 + z_2} = \frac{2 \cdot 100}{26 + 73} = 2,02; \quad m_{t\mathrm{T}} = \frac{2a_{w\mathrm{T}}}{z_3 + z_4} = \frac{2 \cdot 150}{18 + 81} = 3,03;$$

4) выбрать по ГОСТ 9563–60 (табл. 6.1) величины нормальных модулей быстроходной m_{nE} и тихоходной m_{nT} ступеней редуктора, как ближайшие меньшие значения к величинам m_{tE} и тихоходной m_{tT} (учитывая, что угол $\beta = 8^{\circ}-15^{\circ}$, $\cos\beta = 0.99...0.96$).

Изм.	Лист	№ докум.	Подпись	Дата

Модули зацепления (ГОСТ 9563-60)

Ряды	Модуль, мм				
1-й	1; 1,25; 1,5; 2; 2,5; 3; 4; 5; 6; 8; 10; 12; 16; 20				
2-й	1,125; 1,375; 1,75; 2,25; 2,75; 3,5; 4,5; 5,5; 7; 9; 11; 14; 18; 22				

Из данной таблицы: $m_{nb} = 2$; $m_{nT} = 3$.

— рассчитываем с точностью до 1" углы наклона зубьев быстроходной $\beta_{\text{Б}}$ и тихоходной β_{T} ступеней редуктора по формуле:

$$\beta = \arccos \frac{m_n (z_{\text{III}} + z_{\text{K}})}{2a_{\text{Av}}}$$

$$\beta_{\rm B} = \arccos \frac{2 \cdot (26 + 73)}{2 \cdot 100} = 8^{\circ} 6' 34''; \quad \beta_{\rm T} = \arccos \frac{3 \cdot (81 + 18)}{2 \cdot 150} = 8^{\circ} 6' 34''.$$

- рассчитываем по формулам:

1) делительные диаметры шестерен d_1 , d_3 и колес d_2 , d_4 :

$$d = \frac{m_n \cdot z}{\cos \beta}$$

$$d_1 = \frac{2 \cdot 26}{0.99} = 52,5 \text{ mm}; d_3 = \frac{3 \cdot 18}{0.99} = 54,5 \text{ mm}; d_2 = \frac{2 \cdot 73}{0.99} = 147,5 \text{ mm}; d_4 = \frac{3 \cdot 81}{0.99} = 245,5 \text{ mm}.$$

2) диаметры окружностей впадин зубьев шестерен d $_{\rm f1}$, d $_{\rm f3}$ и колес d $_{\rm f2}$, d $_{\rm f4}$:

$$d_f = m_n \left(\frac{z}{\cos \beta} - 2.5 \right)$$

$$d_{f1} = 2 \cdot \left(\frac{26}{0.99} - 2.5\right) = 47.5 \text{ mm}; \ d_{f3} = 3 \cdot \left(\frac{18}{0.99} - 2.5\right) = 47.05 \text{ mm};$$

$$d_{f2} = 2 \cdot \left(\frac{73}{0.99} - 2.5\right) = 142.5 \text{ mm}; \ d_{f4} = 3 \cdot \left(\frac{81}{0.99} - 2.5\right) = 237.95 \text{ mm}.$$

Рис. 6.2. Габаритные и присоединительные размеры цилиндрического редуктора

						Лист
					Лабораторная работа №1	_
Изм.	Лист	№ докум.	Подпись	Дата)

3) определим типы подшипников:

На входной и промежуточный валы установлена по паре шариковых подшипников типа 406, а на выходной — пара шариковых подшипников типа 412.

Вывод: в ходе лабораторной работы:

- изучили кинематические схемы, варианты сборки и условные обозначения цилиндрических зубчатых редукторов;
- ознакомились с конструкцией цилиндрического зубчатого редуктора, особенностями его разборки и сборки, системой смазки;
- определили габаритные и присоединительные размеры редуктора;
- определили геометрические параметры зубчатых колес и передаточные числа передач;
- определили основную нагрузочную и кинематическую характеристику редуктора, а также показатель технического уровня редуктора.

ı	Изм.	Лист	№ докум.	Подпись	Дата