RICOH

R1215D SERIES

STEP-UP DC/DC CONTOLLER

NO.EA-134-0604

OUTLINE

The R1215D Series are CMOS-based PWM step-up DC/DC converter controllers with low supply current.

Each of the R1215D Series consists of an oscillator, a PWM comparator circuit, a reference voltage unit, an error amplifier, a reference current unit, a protection circuit, and an under voltage lockout (UVLO) circuit. A low ripple, high efficiency step-up DC/DC converter can be composed of this IC with some external components, or an inductor, a diode, a power MOSFET, resisters, and capacitors.

Maximum duty cycle and the soft start time are easily adjustable with external resistors and capacitors. As for the protection circuit, after the soft-starting time, if the maximum duty cycle is continued for a certain period, the R1215D Series latch the external driver with its off state, or the latch-type protection circuit works.

The delay time for latch the state can be set with an external capacitor.

To release the protection circuit, restart with power-on (Voltage supplier is equal or less than UVLO detector threshold level).

FEATURES

Input Voltage Range	1.8V to 5.5V
Two Options of Basic Oscillator Frequency	Typ.700kHz, 1.4MHz
Built-in Latch-type Protection Function (Output Delay	Time can be set with an external capacitor)
Maximum Duty Cycle/Soft-start time	Adjustable with external capacitors
High Reference Voltage Accuracy	±1.5%
UVLO Threshold level	Typ.1.6V/1.79V by mask option
Small Temperature Coefficient of Reference Voltage	Typ.±150ppm/°C
Package	SON-8 (t = Max. 0.9mm)

APPLICATIONS

- Constant Voltage Power Source for portable equipment.
- Constant Voltage Power Source for LCD and CCD.

BLOCK DIAGRAM

SELECTION GUIDE

In the R1215D Series, the oscillator frequency and UVLO detector threshold can be selected at the user's request.

The selection can be made with designating the part number as shown below;

$$\begin{array}{ccc} R1215D002\underline{x}\text{-}TR\text{-}x \leftarrow \text{Part Number} \\ \uparrow & \uparrow \\ a & b \end{array}$$

Code	Contents
а	Designation of Oscillator Frequency and Detector Threshold A: Oscillator Frequency Typ. 700kHz, UVLO Detector Threshold Typ. 1.79V B: Oscillator Frequency Typ. 1.4MHz, UVLO Detector Threshold Typ. 1.79V E: Oscillator Frequency Typ. 700kHz, UVLO Detector Threshold Typ. 1.60V F: Oscillator Frequency Typ. 1.4MHz, UVLO Detector Threshold Typ. 1.60V
b	Designation of composition of pin plating -F: Lead free plating

PIN CONFIGURATION

PIN DESCRIPTION

Pin No	Symbol	Description
1	EXT	External FET Drive Pin (CMOS Output)
2	GND	Ground Pin
3	DTC	Pin for Setting Maximum Duty Cycle and Soft start time
4	DELAY	Pin for External Capacitor (for Setting Output Delay of Protection)
5	V _{FB}	Feedback Pin for monitoring Output Voltage
6	VREFOUT	Reference Voltage Output Pin
7	AMPOUT	Amplifier Output Pin
8	Vin	Power Supply Pin for the IC

^{*} Tab in the parts have GND level. (They are connected to the reverse side of this IC.)

Do not connect to other wires or land patterns.

ABSOLUTE MAXIMUM RATINGS

(GND=0V)

Symbol	Item	Rating	Unit
Vin	V _{IN} Pin Voltage	6.5	V
V _{EXT}	EXT Pin Output Voltage	-0.3 to V _{IN} +0.3	V
VDLY	DELAY Pin Voltage	-0.3 to V _{IN} +0.3	V
VREFOUT	VREFOUT Pin Voltage	-0.3 to V _{IN} +0.3	V
Vamp	AMPOUT Pin Voltage	-0.3 to V _{IN} +0.3	V
VDTC	DTC Pin Voltage	-0.3 to V _{IN} +0.3	V
V _{FB}	V _{FB} Pin Voltage	-0.3 to V _{IN} +0.3	V
Іамр	AMPOUT Pin Current	±10	mA
IROUT	VREFOUT Pin Current	30	mA
ІЕХТ	EXT Pin Inductor Drive Output Current	±80	mA
Po	Power Dissipation	480	mW
Topt	Operating Temperature Range	-40 to +85	°C
Tstg	Storage Temperature Range	-55 to +125	°C

^{*1} For Power Dissipation, please refer to PACKAGE INFORMATION to be described.

ELECTRICAL CHARACTERISTICS

• R1215D002A Topt=25°C

Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
VIN	Operating Input Voltage		2.0		5.5	V
V _{FB}	V _{FB} Voltage Tolerance	V _{IN} =2.5V	0.985	1.000	1.015	V
$\Delta V_{FB}/\Delta V_{IN}$	V _{FB} Voltage Line Regulation	V _{IN} : from 2.0V to 5.5V		3		mV
ΔV _{FB} /ΔTopt	V _{FB} Voltage Temperature Coefficient	_40°C ≤ Topt ≤ 85°C		±150		ppm/ °C
lғв	V _{FB} Input Current	V _{IN} =5.5V, V _{FB} =0V or 5.5V	-0.1	0	0.1	μА
Av	Open Loop Voltage Gain	V _{IN} =2.5V		100		dB
f⊤	Unity Gain Frequency Band	V _{IN} =2.5V, A _V =0		1.0		MHz
fosc	Oscillator Frequency	VIN=2.5V, VDLY=VFB=0V	595	700	805	kHz
Δfosc/ΔV _{IN}	Oscillator Frequency Line Regulation	V _{IN} : from 2.0V to 5.5V		50		kHz
Δfosc/ΔTopt	Oscillator Frequency Temperature Coefficient	-40°C ≤ Topt ≤ 85°C		±0.3		kHz/ °C
DD1	Supply Current 1	VIN=5.5V, VDLY=VFB=0V		600	1000	μА
VREFOUT	VREFOUT Voltage	VIN=2.5V,IROUT=1mA	1.280	1.300	1.320	V
l ouт	VREFOUT Maximum Output Current	V _{IN} =2.5V	10			mA
$\Delta V_{REFOUT} / \Delta V_{IN}$	VREFOUT Line Regulation	V _{IN} : from 2.0V to 5.5V		5	10	mV
$\Delta V_{REFOUT}/$ ΔI_{ROUT}	VREFOUT Load Regulation	V _{IN} =2.5V, IROUT: from 0.1mA to 5.0mA		6	20	mV
Iым	VREFOUT Short Current Limit	VIN=2.5V, VREFOUT=0V		15		mA
ΔVREFOUT/ Δ Topt	VREFOUT Voltage Temperature Coefficient	-40°C ≤ Topt ≤ 85°C		±150		ppm/ °C
R EXTH	EXT "H" ON Resistance	VIN=2.5V, IEXT=-50mA		2.8	6.0	Ω
REXTL	EXT "L" ON Resistance	VIN=2.5V, IEXT=50mA		1.8	4.0	Ω
tr	EXT Rising Time	VIN=2.5V, CEXT=1000pF		12		ns
tf	EXT Falling Time	VIN=2.5V, CEXT=1000pF		8		ns
IDLY1	DELAY Pin Charge Current	VIN=2.5V, VDLY=VFB=0V	3.0	6.0	8.5	μА
I _{DLY2}	DELAY Pin Discharge Current	VIN=VFB=2.0V, VDLY=0.1V	0.08	0.20	0.36	mA
VDLY	DELAY Pin Detector Threshold	VIN=2.5V, VFB=0V, VDLY=0V to 2V	0.95	1.00	1.05	V
Vuvlo1	UVLO Detector Threshold	VIN=2.5V to 0V, VDLY=VFB=0V	1.70	1.79	1.88	V
V _{UVLO2}	UVLO Released Voltage	VIN=0V to 2.5V, VDLY=VFB=0V	1.78	1.88	1.98	V
V _{HYS}	UVLO Hysteresis Range		0.04	0.09	0.14	V
V _{DTC0}	Duty=0% DTC Pin Voltage	V _{IN} =2.5V	0.28	0.38	0.48	V
V _{DTC20}	Duty=20% DTC Pin Voltage	V _{IN} =2.5V		0.48		V
V _{DTC80}	Duty=80% DTC Pin Voltage	V _{IN} =2.5V		0.92		V
V _{DTC100}	Duty=100% DTC Pin Voltage	V _{IN} =2.5V	0.92	1.02	1.12	V
І АМРН	AMP "H" Output Current	VIN=2.5V, VAMP=1.0V, VFB=0.9V	1.6	3.2	5.8	mA
AMPL	AMP "L" Output Current	VIN=2.5V, VAMP=1.0V, VFB=1.1V	40	85	130	μА

• R1215D002B Topt=25°C

Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
Vin	Operating Input Voltage		2.0		5.5	V
V _{FB}	V _{FB} Voltage Tolerance	V _{IN} =2.5V	0.985	1.000	1.015	V
$\Delta V_{\text{FB}}/\Delta V_{\text{IN}}$	V _{FB} Voltage Line Regulation	V _{IN} : from 2.0V to 5.5V		3		mV
ΔV _{FB} /ΔTopt	V _{FB} Voltage Temperature Coefficient	-40°C ≤ Topt ≤ 85°C		±150		ppm/ °C
l _{FВ}	V _{FB} Input Current	V _{IN} =5.5V, V _{FB} =0V or 5.5V	-0.1	0	0.1	μА
Av	Open Loop Voltage Gain	V _{IN} =2.5V		100		dB
f⊤	Unity Gain Frequency Band	V _{IN} =2.5V, A _V =0		1.0		MHz
fosc	Oscillator Frequency	VIN=2.5V, VDLY=VFB=0V	1.190	1.400	1.610	MHz
Δfosc/ΔVIN	Oscillator Frequency Line Regulation	V _{IN} : from 2.0V to 5.5V		100		kHz
Δfosc/ΔTopt	Oscillator Frequency Temperature Coefficient	-40°C ≤ Topt ≤ 85°C		±0.6		kHz/ °C
I _{DD1}	Supply Current 1	VIN=5.5V, VDLY=VFB=0V		900	1800	μА
VREFOUT	VREFOUT Voltage	Vin=2.5V,Irout=1mA	1.280	1.300	1.320	V
Іоит	VREFOUT Maximum Output Current	V _{IN} =2.5V	10			mA
$\Delta V_{REFOUT} / \Delta V_{IN}$	VREFOUT Line Regulation	V _{IN} : from 2.0V to 5.5V		5	10	mV
ΔV refout/ ΔI rout	VREFOUT Load Regulation	V _{IN} =2.5V, IROUT: from 0.1mA to 5.0mA		6	20	mV
Ішм	VREFOUT Short Current Limit	VIN=2.5V, VREFOUT=0V		15		mA
ΔV _{REFOUT} / Δ Topt	VREFOUT Voltage Temperature Coefficient	-40°C ≦ Topt ≦ 85°C		±150		ppm/ °C
R ехтн	EXT "H" ON Resistance	VIN=2.5V, IEXT=-50mA		2.8	6.0	Ω
REXTL	EXT "L" ON Resistance	Vin=2.5V, Iext=50mA		1.8	4.0	Ω
tr	EXT Rising Time	Vin=2.5V, Cext=1000pF		12		ns
tf	EXT Falling Time	Vin=2.5V, Cext=1000pF		8		ns
I _{DLY1}	DELAY Pin Charge Current	Vin=2.5V, Vdly=Vfb=0V	3.0	6.0	8.5	μА
I _{DLY2}	DELAY Pin Discharge Current	VIN=VFB=2.0V, VDLY=0.1V	0.08	0.20	0.36	mA
VDLY	DELAY Pin Detector Threshold	Vin=2.5V, V _{FB} =0V, V _{DLY} =0V to 2V	0.95	1.00	1.05	V
V _{UVLO1}	UVLO Detector Threshold	VIN=2.5V to 0V, VDLY=VFB=0V	1.70	1.79	1.88	V
V _{UVLO2}	UVLO Released Voltage	VIN=0V to 2.5V, VDLY=VFB=0V	1.78	1.88	1.98	V
V _{HYS}	UVLO Hysteresis Range		0.04	0.09	0.14	V
V _{DTC0}	Duty=0% DTC Pin Voltage	V _{IN} =2.5V	0.28	0.38	0.48	V
V _{DTC20}	Duty=20% DTC Pin Voltage	V _{IN} =2.5V		0.47		V
V _{DTC80}	Duty=80% DTC Pin Voltage	V _{IN} =2.5V		0.93		V
V _{DTC100}	Duty=100% DTC Pin Voltage	V _{IN} =2.5V	0.92	1.02	1.12	V
І АМРН	AMP "H" Output Current	Vin=2.5V, Vamp=1.0V, Vfb=0.9V	1.6	3.2	5.8	mA
I AMPL	AMP "L" Output Current	Vin=2.5V, Vamp=1.0V, Vfb=1.1V	40	85	130	μА

R1215D

• R1215D002E Topt=25°C

Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
VIN	Operating Input Voltage		1.8		5.5	V
V _{FB}	V _{FB} Voltage Tolerance	V _{IN} =2.5V	0.985	1.000	1.015	V
$\Delta V_{\text{FB}}/\Delta V_{\text{IN}}$	V _{FB} Voltage Line Regulation	V _{IN} : from 1.8 V to 5.5V		3		mV
ΔV _{FB} /ΔTopt	V _{FB} Voltage Temperature Coefficient	-40°C ≤ Topt ≤ 85°C		±150		ppm/ °C
l _{FВ}	V _{FB} Input Current	V _{IN} =5.5V, V _{FB} =0V or 5.5V	-0.1	0	0.1	μА
Av	Open Loop Voltage Gain	V _{IN} =2.5V		100		dB
f⊤	Unity Gain Frequency Band	V _{IN} =2.5V, A _V =0		1.0		MHz
fosc	Oscillator Frequency	VIN=2.5V, VDLY=VFB=0V	595	700	805	kHz
Δfosc/ΔV _{IN}	Oscillator Frequency Line Regulation	V _{IN} : from 1.8V to 5.5V		50		kHz
∆fosc/∆Topt	Oscillator Frequency Temperature Coefficient	-40°C ≤ Topt ≤ 85°C		±0.3		kHz/ °C
I _{DD1}	Supply Current 1	VIN=5.5V, VDLY=VFB=0V		600	1000	μА
VREFOUT	VREFOUT Voltage	Vin=2.5V,Irout=1mA	1.280	1.300	1.320	V
Іоит	VREFOUT Maximum Output Current	V _{IN} =2.5V	10			mA
ΔV refout/ ΔV in	VREFOUT Line Regulation	V _{IN} : from 1.8V to 5.5V		5	10	mV
ΔV refout/ ΔI rout	VREFOUT Load Regulation	V _{IN} =2.5V, IROUT: from 0.1mA to 5.0mA		6	20	mV
Інм	VREFOUT Short Current Limit	Vin=2.5V, Vrefout=0V		15		mA
ΔV _{REFOUT} / Δ Topt	VREFOUT Voltage Temperature Coefficient	-40°C ≤ Topt ≤ 85°C		±150		ppm/ °C
R ехтн	EXT "H" ON Resistance	VIN=2.5V, IEXT=-50mA		2.8	6.0	Ω
REXTL	EXT "L" ON Resistance	VIN=2.5V, IEXT=50mA		1.8	4.0	Ω
tr	EXT Rising Time	V _{IN} =2.5V, C _{EXT} =1000pF		12		ns
tf	EXT Falling Time	Vin=2.5V, Cext=1000pF		8		ns
DLY1	DELAY Pin Charge Current	VIN=2.5V, VDLY=VFB=0V	3.0	6.0	8.5	μА
I _{DLY2}	DELAY Pin Discharge Current	VIN=VFB=1.8V, VDLY=0.1V	0.08	0.18	0.36	mA
V _{DLY}	DELAY Pin Detector Threshold	VIN=2.5V, VFB=0V, VDLY=0V to 2V	0.95	1.00	1.05	V
V _{UVLO1}	UVLO Detector Threshold	VIN=2.5V to 0V, VDLY=VFB=0V	1.50	1.60	1.70	V
V _{UVLO2}	UVLO Released Voltage	VIN=0V to 2.5V, VDLY=VFB=0V	1.56	1.67	1.78	V
V _{HYS}	UVLO Hysteresis Range		0.03	0.07	0.11	V
V _{DTC0}	Duty=0% DTC Pin Voltage	V _{IN} =2.5V	0.28	0.38	0.48	V
V _{DTC20}	Duty=20% DTC Pin Voltage	V _{IN} =2.5V		0.48		V
V _{DTC80}	Duty=80% DTC Pin Voltage	V _{IN} =2.5V		0.92		V
V _{DTC100}	Duty=100% DTC Pin Voltage	V _{IN} =2.5V	0.92	1.02	1.12	V
I AMPH	AMP "H" Output Current	VIN=2.5V, VAMP=1.0V, VFB=0.9V	1.6	3.2	5.8	mA
IAMPL	AMP "L" Output Current	Vin=2.5V, VAMP=1.0V, VFB=1.1V	40	85	130	μА

• R1215D002F Topt=25°C

Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
VIN	Operating Input Voltage		1.8		5.5	V
V _{FB}	V _{FB} Voltage Tolerance	V _{IN} =2.5V	0.985	1.000	1.015	V
$\Delta V_{FB}/\Delta V_{IN}$	V _{FB} Voltage Line Regulation	V _{IN} : from 1.8V to 5.5V		3		mV
ΔV _{FB} /ΔTopt	V _{FB} Voltage Temperature Coefficient	-40°C ≤ Topt ≤ 85°C		±150		ppm/ °C
lғв	V _{FB} Input Current	V _{IN} =5.5V, V _{FB} =0V or 5.5V	-0.1	0	0.1	μА
Av	Open Loop Voltage Gain	V _{IN} =2.5V		100		dB
f⊤	Unity Gain Frequency Band	V _{IN} =2.5V, A _V =0		1.0		MHz
fosc	Oscillator Frequency	VIN=2.5V, VDLY=VFB=0V	1.190	1.400	1.610	MHz
$\Delta fosc/\Delta V_{IN}$	Oscillator Frequency Line Regulation	V _{IN} : from 1.8V to 5.5V		100		KHz
Δfosc/ΔTopt	Oscillator Frequency Temperature Coefficient	-40°C ≤ Topt ≤ 85°C		±0.6		KHz/ °C
I _{DD1}	Supply Current 1	VIN=5.5V, VDLY=VFB=0V		900	1800	μА
VREFOUT	VREFOUT Voltage	Vin=2.5V,Irout=1mA	1.280	1.300	1.320	V
І оит	VREFOUT Maximum Output Current	V _{IN} =2.5V	10			mA
$\Delta V_{REFOUT} / \Delta V_{IN}$	VREFOUT Line Regulation	V _{IN} : from 1.8V to 5.5V		5	10	mV
ΔV refout/ ΔI rout	VREFOUT Load Regulation	V _{IN} =2.5V, I _{ROUT} : from 0.1mA to 5.0mA		6	20	mV
Інм	VREFOUT Short Current Limit	VIN=2.5V, VREFOUT=0V		15		mA
ΔV _{REFOUT} / Δ Topt	VREFOUT Voltage Temperature Coefficient	-40°C ≤ Topt ≤ 85°C		±150		ppm/ °C
R ехтн	EXT "H" ON Resistance	VIN=2.5V, IEXT=-50mA		2.8	6.0	Ω
REXTL	EXT "L" ON Resistance	VIN=2.5V, IEXT=50mA		1.8	4.0	Ω
tr	EXT Rising Time	V _{IN} =2.5V, C _{EXT} =1000pF		12		ns
tf	EXT Falling Time	V _{IN} =2.5V, C _{EXT} =1000pF		8		ns
DLY1	DELAY Pin Charge Current	VIN=2.5V, VDLY=VFB=0V	3.0	6.0	8.5	μА
I _{DLY2}	DELAY Pin Discharge Current	VIN=VFB=1.8V, VDLY=0.1V	0.08	0.18	0.36	mA
VDLY	DELAY Pin Detector Threshold	VIN=2.5V, VFB=0V, VDLY=0V to 2V	0.95	1.00	1.05	V
V _{UVLO1}	UVLO Detector Threshold	VIN=2.5V to 0V, VDLY=VFB=0V	1.50	1.60	1.70	V
V _{UVLO2}	UVLO Released Voltage	VIN=0V to 2.5V, VDLY=VFB=0V	1.56	1.67	1.78	V
VHYS	UVLO Hysteresis Range		0.03	0.07	0.11	V
V _{DTC0}	Duty=0% DTC Pin Voltage	V _{IN} =2.5V	0.28	0.38	0.48	V
V _{DTC20}	Duty=20% DTC Pin Voltage	V _{IN} =2.5V		0.47		V
V _{DTC80}	Duty=80% DTC Pin Voltage	V _{IN} =2.5V		0.93		V
V _{DTC100}	Duty=100% DTC Pin Voltage	V _{IN} =2.5V	0.92	1.02	1.12	V
Іамрн	AMP "H" Output Current	VIN=2.5V, VAMP=1.0V, VFB=0.9V	1.6	3.2	5.8	mA
AMPL	AMP "L" Output Current	VIN=2.5V, VAMP=1.0V, VFB=1.1V	40	85	130	μА

TYPICAL APPLICATIONS AND TECHNICAL NOTES

Inductor	LDR655312T-100 (TDK)				
NMOS	CPH6415 (Sanyo)	CPH6415 (Sanyo)			
Diode	CRS02 (Toshiba)				
C1	1.0μF	R1	160kΩ		
C2	1.0μF	R2	20k Ω		
C3	15μF	R3	1k Ω		
C4	1000pF	R4	4.7k Ω		
C5	2200pF	R5	68k Ω		
C6	1.0μF	R6	240k Ω		
C7	1.0μF				

Use a $1\mu F$ or more capacitance value of bypass capacitor between V_{IN} pin and GND, C1 as shown in the typical application above. Connect the capacitor as short as possible to the IC.

- In terms of the capacitor for setting delay time of the latch protection, C2 is shown in typical application above. Latch delay time depends on this C2 value. Refer to the Latch Protection Operation Timing Chart. Set the C2 GND as close as possible to the IC GND.
- Connect a 1μF or more value of capacitor between VouT and GND, C3 as shown in typical application above.
 (10μF to 22μF is the capacitance recommendation range.) If the operation of the composed DC/DC converter may be unstable, use a tantalum type capacitor instead of ceramic type
- Connect a capacitor between V_{REFOUT} and GND, C6 as shown in typical application of the previous page. The capacitance value of C6 is between $0.1\mu F$ and $1.0\mu F$.

Output Voltage Setting Method and Phase Compensation Making Method

• The feedback voltage is controlled into 1.0V. The output voltage can be set with divider resistors for voltage setting, R1 and R2 as shown in typical application of the previous page. Refer to the next formula.

Output Voltage =
$$V_{FB} \times (R1+R2)/R2$$

Output Voltage is adjustable with setting various resistor values combination.

R1+R2 should be equal or less than $500k\Omega$

As for the DC/DC converter, depending on the load current and external components such as L and C, phase may loss around 180°. In such case, phase margin becomes less and may be unstable. To avoid this situation, make the phase margin more. The pole is made with external components L and C.

Fpole~1/
$$\{2\times\pi\times\sqrt{(L\times C3)}\}$$

C4, C5, R3, and R4 shown in the diagram are for making phase compensation. The gain of the system can be set with using these resistors and capacitors. Each value in the diagram is just an example.

R4 and C5 make zero (the backward phase).

Fzero~1/(
$$2\times\pi\times R4\times C5$$
)

Choose the R4 and C5 value so as to make the cutoff frequency of this zero point close to the cutoff frequency of the pole by external components, L and C.

For example, supposed that L=10 μ H and Cout (C3) =15 μ F, the cutoff frequency of the pole is approximately 13kHz. Therefore make the cutoff frequency of the zero point close to 13kHz. Then R4=4.7k Ω and C5=2200pF are appropriate values.

As for setting the gain, the ratio of the composite resistor (RT: RT=R1×R2/(R1+R2)) to R4 is the key. If the R4 against the composite resistor, R_T is large, the gain becomes also large. If the gain is large, the response characteristic is improved, however, too large gain makes the system be unstable.

If the spike noise of V_{OUT} may be large, the spike noise may be picked into V_{FB} pin, and the unstable operation may result. In this case, a resistor R3, shown in typical application of the previous page. The recommended resistance value of R3 is in the range from $1k\Omega$ to $5k\Omega$. Then, noise level will be decreased.

Further, R1 and C4 makes another zero point (the backward phase).

Fzero~
$$1/(2\times\pi\times R1\times C4)$$

Make the cutoff frequency of this zero point be lower than the cutoff frequency of the pole by external components, or, L and C. Herein, R1=160k Ω and C4=1000pF are appropriate values.

- Select the Power MOSFET, the diode, capacitors and the inductor within ratings (Voltage, Current, Power) of this IC. Choose the power MOSFET with low threshold voltage depending on the input voltage to be able to turn on the FET completely. Choose the diode with low VF such as Shottky type with low reverse current IR, and with fast switching speed. When an external transistor is switching, spike voltage may be generated caused by an inductor, therefore recommended voltage tolerance of capacitor connected to Vout is twice as much as the setting voltage or more.
- The soft-start time and the maximum duty cycle setting method

 The soft-start time and the maximum duty cycle can be set with R5, R6, and C7 values connected to the VREFOUT pin and the DTC pin. (Refer to the timing chart: Soft-start operation.)

Output Current and Selection of External Components

<Basic Circuit>

<Circuit through L>

Discontinuous Mode

Continuous Mode

There are two modes, or discontinuous mode and continuous mode for the PWM step-up switching regulator depending on the continuous characteristic of inductor current.

During on time of the transistor, when the voltage added on to the inductor is described as V_{IN} , the current is $V_{IN} \times t/L$. Therefore, the electric power, P_{ON} , which is supplied with input side, can be described as in next formula.

$$Pon = \int_{0}^{ton} V_{IN}^{2} \times t/L dt$$
 Formula 1

With the step-up circuit, electric power is supplied from power source also during off time. In this case, input current is described as $(V_{OUT} - V_{IN}) \times t/L$, therefore electric power, P_{OFF} is described as in next formula.

$$P_{OFF} = \int_{0}^{tf} V_{IN} \times (V_{OUT} - V_{IN}) \times t/L \ dt$$
 Formula 2

In this formula, Tf means the time of which the energy saved in the inductance is being emitted. Thus average electric power, or P_{AV} is described as in the next formula.

$$P_{\text{AV}} = 1/(t_{\text{ON}} + t_{\text{OFF}}) \times \{ \int_0^{t_{\text{ON}}} V_{\text{IN}}^2 \times t \, / \, L \, \, dt + \int_0^{t_{\text{f}}} V_{\text{IN}} \times (V_{\text{OUT}} - V_{\text{IN}}) \times t \, / \, L \, \, dt \} \, ... \\ \text{Formula 3} = 1/(t_{\text{ON}} + t_{\text{OFF}}) \times \{ \int_0^{t_{\text{ON}}} V_{\text{IN}}^2 \times t \, / \, L \, \, dt + \int_0^{t_{\text{f}}} V_{\text{IN}} \times (V_{\text{OUT}} - V_{\text{IN}}) \times t \, / \, L \, \, dt \} \, ... \\ \text{Formula 3} = 1/(t_{\text{ON}} + t_{\text{OFF}}) \times \{ \int_0^{t_{\text{ON}}} V_{\text{IN}}^2 \times t \, / \, L \, \, dt + \int_0^{t_{\text{f}}} V_{\text{IN}} \times (V_{\text{OUT}} - V_{\text{IN}}) \times t \, / \, L \, dt \} \, ... \\ \text{Formula 3} = 1/(t_{\text{ON}} + t_{\text{OFF}}) \times \{ \int_0^{t_{\text{ON}}} V_{\text{IN}}^2 \times t \, / \, L \, \, dt + \int_0^{t_{\text{IN}}} V_{\text{IN}} \times (V_{\text{OUT}} - V_{\text{IN}}) \times t \, / \, L \, dt \} \, ... \\ \text{Formula 3} = 1/(t_{\text{ON}} + t_{\text{ON}}) \times t \, / \, L \, dt \} \, ... \\ \text{Formula 3} = 1/(t_{\text{ON}} + t_{\text{ON}}) \times t \, / \, L \, dt \} \, ... \\ \text{Formula 3} = 1/(t_{\text{ON}} + t_{\text{ON}}) \times t \, / \, L \, dt \} \, ... \\ \text{Formula 3} = 1/(t_{\text{ON}} + t_{\text{ON}}) \times t \, / \, L \, dt \} \, ... \\ \text{Formula 3} = 1/(t_{\text{ON}} + t_{\text{ON}}) \times t \, / \, L \, dt \} \, ... \\ \text{Formula 3} = 1/(t_{\text{ON}} + t_{\text{ON}}) \times t \, / \, L \, dt \} \, ... \\ \text{Formula 3} = 1/(t_{\text{ON}} + t_{\text{ON}}) \times t \, / \, L \, dt \} \, ... \\ \text{Formula 3} = 1/(t_{\text{ON}} + t_{\text{ON}}) \times t \, / \, L \, dt \} \, ... \\ \text{Formula 3} = 1/(t_{\text{ON}} + t_{\text{ON}}) \times t \, / \, L \, dt \} \, ... \\ \text{Formula 3} = 1/(t_{\text{ON}} + t_{\text{ON}}) \times t \, / \, L \, dt \} \, ... \\ \text{Formula 3} = 1/(t_{\text{ON}} + t_{\text{ON}}) \times t \, / \, L \, dt \} \, ...$$

In PWM control, when tf = toff is true, the inductor current becomes continuos, then the operation of switching regulator becomes continuous mode.

In the continuous mode, the deviation of the current is equal between on time and off time.

$$V_{IN} = t_{ON}/L = (V_{OUT} - V_{IN}) \times toff/L$$
 Formula 4

Further, the electric power, P_{AV} is equal to output electric power, $V_{OUT} \times I_{OUT}$, thus,

$$lout = fosc \times Vin^2 \times ton^2 / \{2 \times L \times (Vout - Vin)\} = Vin^2 \times ton / (2 \times L \times Vout) \dots Formula 5$$

When lout becomes more than formula 5, the current flows through the inductor, then the mode becomes continuous. The continuous current through the inductor is described as Iconst, then,

$$lout = fosc \times Vin^2 \times ton^2 / \{2 \times L \times (Vout - Vin)\} + Vin \times lconst / Vout$$
 Formula 6

In this moment, the peak current, ILxmax flowing through the inductor and the driver Tr. is described as follows:

$$ILx max = Iconst + V_{IN} \times t_{ON}/L$$
 Formula 7

With the formula 4,6, and ILxmax is,

$$ILx\,max = V_{\text{OUT}}\,/\,V_{\text{IN}}\,\times\,I_{\text{OUT}}\,+\,V_{\text{IN}}\,\times\,t_{\text{ON}}\,/(2\,\times\,L) \ ...$$
 Formula 8

Therefore, peak current is more than IouT. Considering the value of ILxmax, the condition of input and output, and external components should be selected.

In the formula 7, peak current ILxmax at discontinuous mode can be calculated. Put Iconst=0 in the formula.

The explanation above is based on the ideal calculation, and the loss caused by Lx switch and external components is not included. The actual maximum output current is between 50% and 80% of the calculation. Especially, when the ILx is large, or V_{IN} is low, the loss of V_{IN} is generated with the on resistance of the switch. As for V_{OUT} , Vf (as much as 0.3V) of the diode should be considered.

TIMING CHART

<Soft-start Operation>

The timing chart below describes the state of each pin from the power-on until the IC entering the stable operation.

By raising the voltage of the DTC pin slowly, the switching duty cycle is limited, and prevent the drastic voltage rising (over-shoot) and inrush current.

When the V_{IN} voltage becomes equal or more than the UVLO released voltage (V_{UVLO+}V_{HYS}), V_{REFOUT} operation starts. Following with the increase of the voltage level of V_{REFOUT}, the internal oscillator begins to operate, then the DTC voltage is also rising, then, soft-start operation starts. When the DTC voltage crosses the chopping wave level inside the IC, EXT pin starts switching, then, step-up operation begins. During this term, the output voltage does not reach the set output voltage. Therefore the output of the amplifier is "H". Besides, the protection circuit may work and the IC charges the DELAY pin. Because of this, the soft-start time should be set shorter than the latch protection delay time.

After the initial stage, when the output voltage reaches the set output voltage, the level of AMPOUT becomes the normal state. In other words, the level is determined with the input voltage, the output voltage, and the output current. When the level of AMPOUT becomes falling, charging the DELAY pin stops and discharges to the GND. The soft-start time (the time for the DTC pin voltage becoming to VDTC level) can be estimated with the next formula.

 $t \cong 1/\alpha \times In(V_{DTC} \times \alpha/\beta + 1)$, herein, $\alpha = -1/C7 \times (1/R5 + 1/R6)$, and $\beta = V_{REFOUT}/(C7 \times R5)$.

<Latch Protection Operation>

The operation of Latch protection circuit is as follows: When AMPOUT becomes "H" and the IC detects maximum duty cycle, charge to an external capacitor, C2 of DELAY pin starts. The maximum duty cycle continues and the voltage of DELAY pin reaches delay voltage detector threshold, V_{DLY}, outputs "L" to EXT pin and turns off the external power MOSFET.

To release the latch protection operation, make the supply voltage down to UVLO detector threshold or lower, and make it rise up to the normal input voltage.

Once after becoming the maximum duty cycle, if the duty cycle decreases before latch operation works, the charging the capacitor stops immediately, and the DELAY pin voltage is fixed at GND level with I_{DLY2}.

The delay time of latch protection can be calculated with C2, V_{DLY} , and the delay pin charge current, I_{DLY1} , as in the next formula.

 $t=C2 \times V_{DLY}/I_{DLY1}$

TEST CIRCUITS

Fig.1 Consumption Current Test Circuit

Fig.2 Oscillator Frequency, V_{FB} Voltage, Duty Cycle, EXT rising time/falling time Test Circuit

Fig.3 AMP "L" Output Current/
"H" Output Current Test Circuit

Fig.4 DELAY Pin Charge Current/
Discharge Current Test Circuit

Fig.5 EXT "H" ON Resistance Test Circuit

Fig.6 EXT "L" ON Resistance Test Circuit

Fig.7 DELAY Pin Detector Threshold Test Circuit

Fig.8 UVLO Detector Threshold/Released Voltage Test Circuit

Fig.9 Error AMP Gain/Phase Test Circuit

Fig.10 VREFOUT Voltage Test Current

Fig.11 V_{FB} Leakage Current Test Circuit

TYPICAL CHARACTERISTICS

1) Output Voltage vs. Output Current (Topt=25°C) R1215D002E

P1215D002F Vouτ=9V,Frequency=1.4MHz 9.2 --- 1.8V --- 2.5V --- 5.5V 9.0 8.9 8.8

100

0

2) Efficiency vs. Output Current (Topt=25°C) R1215D002E

R1215D002F

Output Current Iout(mA)

200

300

3) Supply Current vs. Temperature R1215D002A/E

R1215D002B/F

4) V_{FB} Voltage vs. Temperature R1215D002x

5) VREFOUT Voltage vs. Temperature R1215D002x

6) Oscillator Frequency vs. Temperature R1215D002A/E

R1215D002B/F

7) UVLO Detector Threshold / Released Voltage vs. Temperature R1215D002A/B

R1215D002E/F

8) DELAY Pin Charge Current vs. Temperature R1215D002x

9) DELAY Pin Discharge Current vs. Temperature R1215D002x

10) DELAY Pin Detector Threshold vs. Temperature R1215D002x

11) VREFOUT Voltage vs. VREFOUT Current R1215D002x

12) Maximum Duty Cycle vs. DTC Pin Voltage (Topt=25°C)

R1215D002B/F

13) Error Amplifier Frequency Characteristics (Topt=25°C) R1215D002X

Error Amplifier

14) Load Transient Response (Vin=2.5V,Topt=25°C)

R1215D002B/F

15) Power On Response (Vin=2.5V,Topt=25°C,Rout=150 Ω)

R1215D002B/F

• SON-8 Unit: mm

PACKAGE DIMENSIONS

TAPING SPECIFICATION

TAPING REEL DIMENSIONS

(1reel=3000pcs)

POWER DISSIPATION (SON-8)

This specification is at mounted on board. Power Dissipation (P_D) depends on conditions of mounting on board. This specification is based on the measurement at the condition below:

Measurement Conditions

	Standard Land Pattern
Environment	Mounting on Board (Wind velocity=0m/s)
Board Material	Glass cloth epoxy plactic (Double sided)
Board Dimensions	40mm × 40mm × 1.6mm
Copper Ratio	Top side : Approx. 50% , Back side : Approx. 50%
Through-hole	φ0.5mm × 44pcs

Measurement Result

(Topt=25°C,Tjmax=125°C)

	Standard Land Pattern	Free Air
Power Dissipation	480mW	300mW
Thermal Resistance	θja=(125–25°C)/0.48W=208°C/W	333°C/W

Power Dissipation

Measurement Board Pattern

() IC Mount Area (Unit : mm)

RECOMMENDED LAND PATTERN

(Unit: mm)

R1215D SERIES MARK SPECIFICATION

• SON-8

① to ④ : Product Code (refer to Part Number vs. Product Code)

⑤, ⑥ : Lot Number

• Part Number vs. Product Code

Part Number	Product Code				
Part Number	1	@	3	4	
R1215D002A	G	0	1	Α	
R1215D002B	G	0	2	В	
R1215D002E	G	0	3	Е	
R1215D002F	G	0	4	F	