Exercise (Security of simultaneous message exchange protocol). Analyse security of the following simplistic protocol for simultaneous message exchange

where bits x_1 and x_2 are private protocol inputs and a triple of algorithms (Gen, Com, Open) is a commitment scheme Com with appropriate properties. The dashed line denotes sub-protocol for fixing the commitment parameters. Prove that there exist an efficient simulator for \mathfrak{P}_2 .

Solution.

RIGHT IDEAL IMPLEMENTATION. As the first party \mathcal{P}_1 can refuse to open its input based on the opponents input x_2 , we must consider the idealised functionality where the first party \mathcal{P}_1 is in the dominant position:

HIGH-LEVEL DESCRIPTIONS FOR SIMULATOR CONSTRUCTIONS. The interaction pattern is somewhat different if the second party \mathcal{P}_2 is malicious. Then the corresponding simulator Sim must first provide an input \hat{x}_2 to the trusted third party \mathcal{T} who replies x_1 . After that the simulator must make \mathcal{P}_2^* to believe that honest party opened an input x_1 and the protocol outcome would be (x_1, \hat{x}_2) . As a result, the simulator consists of and input extraction followed by the output equivocation. If the commitment parameters are generated by \mathcal{P}_1 , we get the the simulator

$$\begin{split} & \mathsf{Sim}(\phi_2, x_2) \\ & \left[\begin{array}{l} \mathsf{pk} \leftarrow \mathsf{Gen} \\ & \omega_2 \leftarrow \Omega_2 \\ & \hat{x}_2 \leftarrow \mathcal{K}(\phi_2, x_2, \mathsf{pk}, \omega_2) \\ & \mathsf{Send} \ \hat{x}_2 \ \mathsf{to} \ \mathcal{T} \ \mathsf{and} \ \mathsf{store} \ \mathsf{the} \ \mathsf{reply} \ \mathsf{as} \ x_1 \\ & \mathbf{return} \ \mathcal{E}_\ell(\phi_2, x_1, x_2, \hat{x}_2, \mathsf{pk}, \omega_2) \\ \end{split} \right. \end{split}$$

Note that the input extractor \mathcal{K} and the output equivocator \mathcal{E}_{ℓ} must share inputs and randomness used by \mathcal{P}_2^* or otherwise we cannot assure that the actions of \mathcal{P}_2^* are consistent between both algorithms. The

consistency is essential for getting a simulation with the right output distribution. If commitment parameters are generated by \mathcal{P}_2 then the plumbing between the simulator components changes

but the overall scheme remains the same.

(B) INPUT EXTRACTOR FOR \mathcal{P}_2 . First note that the input extractor for \mathcal{P}_2^* must work in a black-box manner. The reasoning is analogous to the reasoning given for malicious \mathcal{P}_1^* . As \mathcal{P}_2 releases its actual input \hat{x}_2 only after seeing c_{\circ} we must provide some sort of commitment during extraction. However, differently form its opponent \mathcal{P}_2^* reply may freely depend on c_{\circ} and thus the semantics \hat{x}_2 is somewhat different – it is the input which can be later successfully combined with the revealed input x_1 . This means that the quality of input extraction must be considered together with output equivocation. If commitment parameters pk are generated by the opponent \mathcal{P}_1 then the most natural input extraction strategy is following

$$\begin{split} \mathcal{K}(\phi_2, x_2, \mathsf{pk}, \omega_2) \\ & \begin{bmatrix} (c_\circ, d_\circ) \leftarrow \mathsf{Com}_{\mathsf{pk}}(0) \\ \hat{x}_2 \leftarrow \mathcal{P}_2^*(\phi_2, x_2, \mathsf{pk}; \omega_2) \\ \mathbf{return} \ \hat{x}_2 \end{bmatrix} \end{split}$$

where we set \hat{x}_2 to \perp if \mathcal{P}_2^* refuses to communicate after obtaining c_0 . If commitment parameters pk are generated internally by \mathcal{P}_2^* then the most natural input extraction strategy is following

$$\mathcal{K}(\phi_2, x_2, \omega_2)$$

$$\begin{bmatrix} \mathsf{pk} \leftarrow \mathcal{P}_2^*(\phi_2, x_2; \omega_2) \\ (c_\circ, d_\circ) \leftarrow \mathsf{Com}_{\mathsf{pk}}(0) \\ \hat{x}_2 \leftarrow \mathcal{P}_2^*(x_2, \phi_2, \mathsf{pk}; \omega_2) \end{bmatrix}$$

$$\mathbf{return} \ \hat{x}_2$$

Prove the following facts

- If the commitment is perfectly hiding then the protocol output y_1 of \mathcal{P}_1 is the same in the real and ideal world. Note that the output is completely determined by the values $(\phi_2, x_2, \omega_2, x_1)$ and thus can be considered as a deterministic function $y_1(\phi_2, x_2, \omega_2, x_1)$.
- Analyse what changes if we consider the setting with computationally hiding commitments where pk is provided by \mathcal{P}_1 . Show that corresponding distributions must be computationally indistinguishable. How is the corresponding time-bound connected to the running-time of the extractor.
- Show that if the number of possible input values \mathcal{X}_2 is small then the computational distance and statistical distance are equivalent, i.e., likelihood ratio test is efficient.
- (C) LIMITED FORM OF OUTPUT EQUIVOCATION FOR \mathcal{P}_2 . Although the simulator using the input extractor \mathcal{K} can perfectly match the output distribution of honest \mathcal{P}_1 , we need to show closeness of the joint output distribution. This is straightforward for a limited class of malicious adversaries \mathcal{P}_2^* that consist of two

algorithms A and B with isolated states that are sequentially combined

For such adversaries, the output equivocator is following

$$\begin{split} &\mathcal{E}(\phi_2, x_1, x_2, \hat{x}_2, \mathsf{pk}, \omega_2) \\ &\left[\begin{array}{l} \text{Split } \omega_2 \text{ into } \omega_{\mathbf{a}} \text{ and } \omega_{\mathbf{b}} \\ &\mathbf{return } \ \mathcal{B}(\phi_2, x_2, x_1, \hat{x}_2, \omega_{\mathbf{a}}; \omega_{\mathbf{b}}) \end{array} \right. \end{split}$$

The randomness splitting is trivial if algorithms \mathcal{A} and \mathcal{B} have explicit description of the number f used random bits. If this is implicit, we can split the randomness by running \mathcal{A} with ω_2 and set ω_b as the list of unused bits. Thus, the randomness splitting step is relatively efficient.

- Prove that if the commitment is perfectly hiding and the adversary has the structure described above then the joint output distributions in the real and ideal world are identical.
- Interpret the result. For which kind of security goals the malicious adversary \mathcal{P}_2^* might obtain a significant gain is speed or in success. For that note that an isolated adversary \mathcal{B} might completely restore the state of \mathcal{A} is we additionally give him the randomness used to create the commitment decommitment pair (c,d). Are the class of neglected security goals relevant in the practice.
- (D) COMPLETE OUTPUT EQUIVOCATION FOR \mathcal{P}_2 . To protect against all attack goals, we need equivocation algorithm works for malicious adversaries without structural restrictions. Let $\ell \in \mathbb{N}$ be a parameter determines a tradeoff between efficiency and quality of simulation. Then the following algorithm

$$\mathcal{E}_{\ell}(\phi_{2}, x_{1}, x_{2}, \hat{x}_{2}, \mathsf{pk}, \omega_{2})$$
For $i \in \{1, \dots, \ell\}$ do
$$\begin{bmatrix} (c, d) \leftarrow \mathsf{Com}_{\mathsf{pk}}(x_{1}) \\ x_{2}^{*} \leftarrow \mathcal{P}_{2}^{*}(x_{2}, \phi_{2}, \mathsf{pk}; \omega_{2}) \\ \text{if } x_{2}^{*} = \hat{x}_{2} \text{ then return } \mathcal{P}_{2}^{*}(d) \end{bmatrix}$$
return Fail

performs rejection sampling over all possible protocol runs with the opponents input x_1 and \mathcal{P}_2 reply \hat{x}_2 and thus gets the desired output distribution when \mathcal{E} does not fail.

Prove the following facts

- Assume that if the commitment is perfectly hiding and let \hat{x}_2 be the actual input fixed by the input extractor. Estimate the probability that \mathcal{E}_{ℓ} returns Fail as a function of probability $p(\hat{x}_2) = \Pr\left[\mathcal{K} = \hat{x}_2\right]$.
- Let \mathcal{X}_2 be the set of all potential inputs for \mathcal{P}_2 compute the maximal failure probability when \hat{x}_2 is sampled by \mathcal{K} .
- Prove that the statistical difference between joint output distributions is equal to the probability that $\Pr[\mathcal{E}_{\ell} = \mathsf{Fail}].$
- Interpret results. How does the efficiency depend on desired statistical distance
- What changes if the commitment is only computationally hiding.