

Docket No.: M4065.0959/P959

(PATENT)

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of:

Dean A. Klein

Application No.: 10/796,111

Confirmation No.: 2460

Filed: March 10, 2004

Art Unit: 2818

For:

POWER MANAGEMENT CONTROL

AND CONTROLLING MEMORY

REFRESH OPERATIONS

Examiner: Not Yet Assigned

INFORMATION DISCLOSURE STATEMENT (IDS)

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Dear Sir:

Pursuant to 37 CFR 1.56, 1.97 and 1.98, the attention of the Patent and Trademark Office is hereby directed to the references listed on the attached PTO/SB/08. It is respectfully requested that the information be expressly considered during the prosecution of this application, and that the references be made of record therein and appear among the "References Cited" on any patent to issue therefrom.

This Information Disclosure Statement is filed within three months of the U.S. filing date (37 CFR 1.97(b)(1)).

Pursuant to United States Patent and Trademark Office Official Gazette Notice: 05 August 2003 ("Information Disclosure Statements May Be Filed Without Copies of U.S. Patents and Published Applications in Patent Applications filed after June 30, 2003") copies of the U.S. Patent Document references (i.e., references AA-AU7) on the PTO/SB/08 are not provided. Copies of the Foreign Patent Document references (i.e.,

Application No.: 10/796,111 Docket No.: M4065.0959/P959

references BA, BB, and BC) and the Other Prior Art – Non Patent Literature Document References (i.e., references CA – CO6) on the PTO/SB/08 are provided.

In accordance with 37 CFR 1.97(g), the filing of this Information Disclosure Statement shall not be construed to mean that a search has been made or that no other material information as defined in 37 CFR 1.56(a) exists. In accordance with 37 CFR 1.97(h), the filing of this Information Disclosure statement shall not be construed to be an admission that any patent, publication or other information referred to therein is "prior art" for this invention unless specifically designated as such.

It is submitted that the Information Disclosure Statement is in compliance with 37 CFR 1.98 and the Examiner is respectfully requested to consider the listed references.

The Director is hereby authorized to charge any deficiency in the fees filed, asserted to be filed or which should have been filed herewith (or with any paper hereafter filed in this application by this firm) to our Deposit Account No. 04-1073, under Order No. M4065.0959/P959. A duplicate copy of this paper is enclosed.

Dated: June 10, 2004

Respectfully submitted,

Thomas J. D'Amico

Registration No.: 28,371

Michael A. Weinstein

Registration No.: 53,754

DICKSTEIN SHAPIRO MORIN &

OSHINSKY LLP

2101 L Street NW

Washington, DC 20037-1526

(202) 785-9700

Attorneys for Applicant

Sut	stitute for form 1449A/I	PTO		Complete if Known			
				Application Number	10/796,111		
			SCLOSURE	Filing Date	March 10, 2004		
S	STATEMEN	TBY	APPLICANT	First Named Inventor	Dean A. Klein		
	(use as man	v sheets as	: necessary)	Art Unit	2818		
	(444 44			Examiner Name	Not Yet Assigned		
Sheet	1	of	13	Attorney Docket Number	M4065.0959/P0959		

		`	U.S. PA	ATENT DOCUMENTS	
Examiner Initials*	Cite No.1	Document Number Number-Kind Code ² (if known)	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear
	AA	2002/0000666	1/2002	Kozicki et al.	1 iguies Appeal
	AB	2002/0072188	6/2002	Gilton	
	AC	2002/0106849	08/2002	Moore	
	AD	2002/0123169	09/2002	Moore et al.	
	AE	2002/0123170	09/2002	Moore et al.	
	AF	2002/0123248	09/2002	Moore et al.	
	AG	2002/0127886	09/2002	Moore et al.	
	АН	2002/0132417	09/2002	Li	
	ΑI	2002/0160551	10/2002	Harshfield	
	AJ	2002/0163828	11/2002	Krieger et al.	
	AK	2002/0168852	11/2002	Harshfield et al.	
	AL	2002/0190289	12/2002	Harshfield et al.	<u> </u>
	AM	2003/0001229	01/2003	Moore et al.	
	AN	2003/0027416	02/2003	Moore	
	AO	2003/0032254	02/2003	Gilton	<u> </u>
	AP	2003/0038301	02/2003	Moore	
	AQ	2003/0043631	03/2003	Gilton et al.	
•	AR	2003/0045049	03/2003	Campbell et al.	
	AS	2003/0045054	03/2003	Campbell et al.	
	AT	2003/0047765	03/2003	Campbell	
	AU	2003/0047772	03/2003	Li	
	AV	2003/0047773	03/2003	Li	
	AW	2003/0049912	03/2003	Campbell et al.	
	AX	2003/0068861	04/2003	Li	
	AY	2003/0068862	04/2003	Li	
	AZ	2003/0095426	05/2003	Hush et al.	
	AA1	2003/0096497	05/2003	Moore et al.	1
	AB1	2003/0107105	06/2003	Kozicki	
	AC1	2003/0117831	06/2003	Hush	
	AD1	2003/0128612	07/2003	Moore et al.	
	AE1	2003/0137869	07/2003	Kozicki	
	AF1	2003/0143782	07/2003	Gilton et al.	
_	AG1	2003/0155589	08/2003	Campbell et al.	
	AH1	2003/0155606	08/2003	Campbell et al.	
	Al1	2003/0156447	08/2003	Kozicki	
	AJ1	2003/0156463	08/2003	Casper et al.	<u> </u>
	AK1	2003/0209728	11/2003	Kozicki et al	
	AL1	2003/0209971	11/2003	Kozicki et al	
	AM1	2003/0210564	11/2003	Kozicki et al	
		3,622,319	11/1971	Sharp	
		3,743,847	7/1973	Boland	
		4,269,935	5/1981	Masters et al.	
		4,312,938	1/1982	Drexler, et al.	
		4,316,946	1/1982	Masters, et al.	

U. S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. Complete if Known Substitute for form 1449A/PTO 10/796,111 Application Number INFORMATION DISCLOSURE Filing Date March 10, 2004 STATEMENT BY APPLICANT First Named Inventor Dean A. Klein Art Unit 2818 (use as many sheets as necessary) **Examiner Name** Not Yet Assigned Sheet M4065.0959/P0959 2 of 13 Attorney Docket Number AS1 4,320,191 3/1982 Yoshikawa et al. AT1 4,405,710 9/1983 Balasubramanyam et al. AU1 4,419,421 12/1983 Wichelhaus, et al. AV1 4,499,557 2/1985 Holmberg et al. AW1 4,671,618 06/1987 Wu et al. AX1 4,795,657 1/1989 Formigoni et al. AY1 4,800,526 01/1989 Lewis AZ1 4,847,674 7/1989 Sliwa et al. AA2 5,177,567 1/1993 Klersy et al. AB2 |5,219,788 6/1993 Abernathey et al. AC2 5,238,862 8/1993 Blalock et al. Nagasubramanian et al. AD2 5,272,359 12/1993 AE2 5,314,772 5/1994 Kozicki AF2 5,315,131 5/1994 Kishimoto et al. AG2 5,350,484 9/1994 Gardner et al. 11/1994 AH2 |5,360,981 Owen et al. Al2 5,500,532 AJ2 5,512,328 3/1996 Kozicki et al. 4/1996 Yoshimura et al. AK2 5,512,773 4/1996 Wolf et al. AL2 5,726,083 3/1998 Takaishi AM2 5,751,012 5/1998 Wolstenholme et al. AN2 5,789,277 8/1998 Zahorik et al. AO2 5,814,527 9/1998 Wolstenholme et al AP2 5,818,749 10/1998 Harshfield AQ2 5,841,150 11/1998 Gonzalez et al. AR2 |5,846,889 12/1998 Harbison et al. AS2 5,851,882 12/1998 Harshfield AT2 5,869,843 2/1999 Harshfield AU2 5,920,788 Reinberg 7/1999 AV2 5,998,066 12/1999 Block et al. AW2 6,031,287 2/2000 Harshfield 6/2000 AX2 |6,072,716 Jacobson et al. AY2 6,077,729 AZ2 6,177,338 6/2000 Harshfield 1/2001 Liaw et al. AA3 6,117,720 9/2000 Harshfield AB3 6,143,604 11/2000 Chiang et al. AC3 6,236,059 5/2001 Wolsteinholme et al. AD3 6,297,170 10/2001 Gabriel et al. AE3 6,300,684 10/2001 Gonzalez et al. AF3 6,316,784 11/2001 Zahorik et al. AG3 | 6,329,606 12/2001 Freyman et al. AH3 |6,350,679 2/2002 McDaniel et al. Al3 6,376,284 4/2002 Gonzalez et al. AJ3 6,388,324 5/2002 Kozicki et al. AK3 6,391,688 Gonzalez et al. 5/2002 AL3 6,414,376 7/2002 Thakur et al. AM3 6,418,049 7/2002 Kozicki et al. AN3 6,420,725 7/2002 Harshfield

AO3 | 6,423,628

7/2002

Li et al.

Complete if Known Substitute for form 1449A/PTO Application Number 10/796,111 INFORMATION DISCLOSURE March 10, 2004 Filing Date STATEMENT BY APPLICANT First Named Inventor Dean A. Klein 2818 Art Unit (use as many sheets as necessary) Examiner Name Not Yet Assigned

Sheet		3	of	1;	3	Attorney Docket Number	M4065.09	59/P0959
	AP3	6,440,837		8/2002	Hars	nfield		
	$\overline{}$	6,469,364		10/200				
		6,473,332		10/200		iev et al.		
		US 2004/00	35401	2/2004		achandran et al.		
****		US 2003/02				insky et al.		
		US 2003/004				insky et al.		
		US 2003/02				insky et al.		
	AW3	US RE 37,29	59E	7/2001		insky		
	AX3	US 3,271,59	1	9/1966		insky		
		US 3,961,31		6/1976	Klose	e et al.		
	AZ3	US 3,966,31	7	6/1976	Wacl	s et al.		
	AA4	US 3,983,54	2	11/197	6 Ovsh	insky		
	AB4	US 3,988,72	0	10/197	6 Ovsh	insky		
	AC4	US 4,177,47	4	12/1979	9 Ovsh	insky		
		US 4,267,26		5/1981		nan et al.		
		US 4,597,16		7/1986	John	son et al.		
		US 4,608,29		8/1986	Keen	n et al.		
		US 4,637,89		1/1987	Ovsh	insky et al.		
		US 4,646,26		2/1987	Ovsh	insky et al.		
1		US 4,664,93		5/1987	Ovsh	insky		
	AJ4	US 4,668,96	8	5/1987		insky et al.		
	AK4	US 4,670,76	3	6/1987	Ovsh	insky et al.		
		US 4,673,95		6/1987	Ovsh	insky et al.		
		US 4,678,67		7/1987		insky		
		US 4,696,75		9/1987	Ovsh	insky et al.		·
		US 4,698,23		10/198		insky et al.		
		US 4,710,89		12/198	7 Youn	g et al.		
		US 4,728,40		3/1988	Bane	rjee et al.		
		US 4,737,37		4/1988		ens et al.		
		US 4,766,47		8/1988	Ovsh	insky et al.		
		US 4,769,33		9/1988	Ovsh	insky et al.		
		US 4,775,42		10/1988	B Guha	et al.		
<u></u>		US 4,788,59		11/1988		insky et al.		
		US 4,809,04		2/1989		et al.		
	_	US 4,818,71		4/1989		son et al.		
		US 4,843,44		6/1989		insky et al.		
		US 4,845,53		7/1989		et al.		
		US 4,853,78		8/1989		insky et al.	· -	
		US 4,891,33		1/1990		et al.		
		US 5,128,09		7/1992		d et al.		
		US 5,159,66		10/1992		insky et al.		
		US 5,166,75		11/1992		insky et al.		
		US 5,177,56		1/1993		y et al.	_	
		US 5,296,71		3/1994		insky et al.		
		US 5,335,21		8/1994		insky et al.		
		US 5,359,20		10/1994		insky		
		US 5,341,32		8/1994		insky et al.	_	
		US 5,406,50		4/1995		insky et al.		
L	JAL5	US 5,414,27	1	5/1995	Ovsh	insky et al.		

INFORMATION DISCLOSURE STATEMENT BY APPLICANT Filing Date March 10, 2004 First Named Inventor Dean A. Klein Art Ital 2818 Examiner Name Not Yet Assigned Not Yet A	Substitute for form 1449A/PTO							Complete if Known		
STATEMENT BY APPLICANT					د ر		=	Application Number	10/796,1	11
Ant Steel A								Filing Date	March 10), 2004
Examiner Name Not Yet Assigned	S	IAIL	=MENI	BY A	4PI	PLICANI		First Named Inventor	Dean A.	Klein
Sheet				haata aa	2000			Art Unit	2818	
AM5 US 5,534,711		(1	use as many s	neets as	nece	ssary)		Examiner Name		Assigned
AMS US 5,534,711 7/1996 Ovshinsky et al. ANS US 5,534,712 7/1996 Ovshinsky et al. ANS US 5,536,947 7/1996 Ovshinsky et al. APS US 3,343,737 8/1996 Ovshinsky AQS US 5,591,501 1/1997 Ovshinsky et al. ARS US 5,591,501 1/1997 Ovshinsky et al. ARS US 5,591,501 1/1997 Ovshinsky et al. ARS US 5,596,522 1/1997 Ovshinsky ASS US 5,687,112 11/1/1997 Ovshinsky et al. ASS US 5,687,112 11/1/1997 Ovshinsky et al. AUS US 5,825,045 10/1998 Ovshinsky et al. AVS US 5,825,046 10/1998 Ovshinsky et al. AVS US 5,825,046 10/1998 Ovshinsky et al. AVS US 5,912,839 6/1999 Ovshinsky et al. AXS US 6,011,757 1/2000 Ovshinsky et al. AXS US 6,001,757 1/2000 Ovshinsky et al. AXS US 6,007,674 7/2000 Ovshinsky et al. AXB US 6,033,544 1/2000 Ovshinsky et al. AAB US 6,339,544 1/2000 Ovshinsky et al. ABB US 6,429,064 8/2002 Uwicker ABB US 6,429,064 8/2002 Uwicker ABB US 6,429,064 8/2002 Wicker ABB US 6,429,064 1/2002 Vu et al. ABB US 6,429,064 8/2002 Uwicker ABB US 6,501,111 12/2002 Park et al. ABB US 6,501,111 12/2002 Park et al. ABB US 6,501,111 12/2002 Uwery et al. ABB US 6,501,111 12/2003 Hudgens et al. ABB US 6,531,373 3/2003 Gill et al. ABB US 6,531,373 3/2003 Gill et al. ABB US 6,545,287 4/2003 Lowery et al. ABB US 6,545,287 4/2003 Lowery et al. ABB US 6,551,860 4/2003 Lowery et al. ABB US 6,551,860 1/2003 Hudgens et al. ABB US 6,551,867 1/2003 Hudgens et al. ABB US 6,551,867 1/2003 Hudgens et al. ABB US 6,551,867 1/2003 Lowery et al. ABB US 6,550,7091 1/2003 Lowery et al. ABB US 6,550,7094 5/2003 Lowery et al. ABB US 6,550,7094 5/2003 Lowery et al. ABB US 6,569,7097 7/2003 Uwery et al. ABB US 6,550,7094 5/2003 Lowery et al. ABB US 6,560,7097 7/2003 Lowery et al. ABB US 6,560,7097 7/2003 Lowery et al. ABB US 6,560,7097 7/2003 Lowery et al. ABB US 6,560,7099 7/2003 Lowery et al. ABB US 6,560,5099 7/2003 Lowery et al. ABB US 6,560,5099 7/2003 Lowery et al. ABB US 6,560,5099 7/2003 Lowery et al. ABB US	Charal			-£		12		-		
ANS (US 5,534,712 771996 Ovshinsky et al. AOS (US 5,536,947 771996 Novshinsky et al. APS (US 5,543,737 871996 Ovshinsky AQS (US 5,591,501 171997 Ovshinsky et al. ARS (US 5,596,522 171997 Ovshinsky et al. ASS (US 5,687,112 1171997 Ovshinsky et al. ASS (US 5,687,112 1171997 Ovshinsky et al. AUS (US 5,8714,768 271998 Ovshinsky et al. AUS (US 5,8714,768 271999 Ovshinsky et al. AVS (US 5,912,839 671999 Ovshinsky et al. AXS (US 5,912,839 671999 Ovshinsky et al. AXS (US 5,912,839 671999 Ovshinsky et al. AXS (US 6,933,365 871999 Ovshinsky et al. AYS (US 6,011,757 1/2000 Ovshinsky et al. AYS (US 6,011,757 1/2000 Ovshinsky et al. AZS (US 6,087,674 7/2000 Ovshinsky et al. AAG (US 6,11,241 10/2000 Ovshinsky et al. AAG (US 6,411,241 10/2000 Ovshinsky et al. AAG (US 6,429,064 872002 Uwicker AAG (US 6,429,064 872002 Uwicker AAG (US 6,429,064 872002 Wicker AAG (US 6,429,064 872002 Wicker AAG (US 6,462,084 10/2002 Xu et al. AAG (US 6,487,113 11/2002 Park et al. AAG (US 6,511,867 172003 Hudgens et al. AAG (US 6,511,867 172003 Hudgens et al. AAG (US 6,511,867 172003 Lowery et al. AAG (US 6,513,373 372003 Gill et al. AAG (US 6,545,287 472003 Lowery et al. AAG (US 6,551,377 373 372003 Gill et al. AAG (US 6,545,287 472003 Lowery et al. AAG (US 6,567,093 572003 Lowery et al. AAG (US 6,567,094 572003 Lowery et al. AAG (US 6,569,707 772003 Lowery et al. AAG (US 6,569,707 772003 Lowery et al. AAG (US 6,567,094 572003 Lowery et al. AAG (US 6,567,094 57200	Sheet		4	OI		13		Attorney Docket Number	IVI4065.0	959/20959
AO5 US 5,536,947							Ovsh	insky et al.		
APS US 5,543,737										
AG5 US 5,591,501										
AR5 US 5,596,522 11/1997 Ovshinsky et al. AS5 US 5,687,112 11/1997 Ovshinsky AT5 US 5,694,054 12/1997 Ovshinsky et al. AU5 US 5,714,768 21/1998 Ovshinsky et al. AU5 US 5,825,046 10/1998 Czubaty et al. AV5 US 5,825,046 10/1999 Ovshinsky et al. AW5 US 5,912,839 6/1999 Ovshinsky et al. AX5 US 5,933,365 81/1999 Ovshinsky et al. AX5 US 6,011,757 1/2000 Ovshinsky AZ5 US 6,087,674 7/2000 Ovshinsky et al. AX6 US 6,111,241 10/2000 Ovshinsky et al. AX8 US 6,111,241 10/2000 Ovshinsky et al. AX8 US 6,141,241 10/2000 Ovshinsky et al. AX8 US 6,141,241 10/2000 Ovshinsky et al. AX8 US 6,141,241 10/2000 Ovshinsky et al. AX8 US 6,431,341 1/2002 Chiang et al. AX8 US 6,431,341 1/2002 Chiang et al. AX8 US 6,437,383 8/2002 Wicker AX8 US 6,437,383 8/2002 Wicker AX8 US 6,462,984 10/2002 Xu et al. AX9 US 6,462,984 10/2002 Xu et al. AX9 US 6,467,113 11/2002 Park AX9 US 6,507,061 11/2003 Hudgens et al. AX9 US 6,507,061 1/2003 Hudgens et al. AX8 US 6,511,862 1/2003 Hudgens et al. AX8 US 6,511,862 1/2003 Lowery et al. AX9 US 6,551,867 1/2003 Lowery et al. AX9 US 6,551,860 4/2003 Lowery et al. AX9 US 6,551,867 1/2003 Lowery et al. AX9 US 6,553,761 3/2003 Dennison AX9 US 6,553,764 5/2003 Lowery et al. AX9 US 6,557,091 1/2003 Lowery AX9 US 6,567,091 1/2003 Lowery AX9 US 6,567,090 1/2003 Lowery AX9 US 6,567										
AS5 US 5,687,112 11/1997 Ovshinsky AT5 US 5,694,054 12/1997 Ovshinsky et al. AU5 US 5,714,768 2/1998 Ovshinsky et al. AV5 US 5,825,046 10/1998 Czubaty et al. AV5 US 5,921,839 6/1999 Ovshinsky et al. AX5 US 5,933,365 8/1999 Nskirsky et al. AX5 US 6,912,839 6/1999 Ovshinsky et al. AX5 US 6,933,365 8/1999 Nskirsky et al. AX5 US 6,087,674 7/2000 Ovshinsky AZ5 US 6,087,674 7/2000 Ovshinsky et al. AA6 US 6,141,241 10/2000 Ovshinsky et al. AB6 US 6,393,544 1/2002 Chiang et al. AC6 US 6,404,665 6/2002 Lowery et al. AC6 US 6,404,665 6/2002 Lowery et al. AC6 US 6,437,383 8/2002 Xu AF6 US 6,437,383 8/2002 Xu AF6 US 6,437,383 8/2002 Xu AF6 US 6,467,113 11/2002 Park et al. AG6 US 6,460,438 11/2002 Park et al. AI6 US 6,507,061 1/2003 Hudgens et al. AI6 US 6,507,061 1/2003 Hudgens et al. AI6 US 6,511,862 1/2003 Hudgens et al. AI6 US 6,511,862 1/2003 Hudgens et al. AI6 US 6,514,865 1/2003 Lowery et al. AI6 US 6,514,867 1/2003 Lowery et al. AI6 US 6,514,867 1/2003 Lowery et al. AI6 US 6,531,373 3/2003 Gill et al. AI6 US 6,531,373 3/2003 Gill et al. AI6 US 6,531,871 3/2003 Lowery et al. AI6 US 6,551,867 1/2003 Lowery et al. AI7 US 6,589,705 5/2003 Lowery et al. AI8 US 6,550,7061 Over et al. AI8 US 6,507,061 US 0/2003 US 0/2										
AT5 US 5,694,054							Over	iirisky et al.		
AU5 US 5,714,768 2/1998 Czubatyj et al.										
AV5 US 5,825,046 10/1998 Czubatyj et al. AW5 US 5,912,839 6/1999 Ovshinsky et al. AX5 US 5,933,365 8/1999 Klersy et al. AY5 US 6,011,757 1/2000 Ovshinsky et al. AY5 US 6,011,757 1/2000 Ovshinsky et al. AA6 US 6,141,241 10/2000 Ovshinsky et al. AA6 US 6,339,544 1/2002 Chiang et al. AC6 US 6,404,665 6/2002 Lowery et al. AD6 US 6,437,383 8/2002 Wicker AE6 US 6,437,383 8/2002 Xu AF6 US 6,487,383 8/2002 Xu et al. AG6 US 6,480,438 11/2002 Zu et al. AG6 US 6,549,644 10/2002 Xu et al. AG6 US 6,549,644 10/2002 Xu et al. AG6 US 6,540,638 11/2002 Park AH6 US 6,871,113 11/2002 Park et al. AH6 US 6,501,111 12/2002 Lowery AJ6 US 6,501,661 1/2003 Hudgens et al. AK6 US 6,511,867 1/2003 Hudgens et al. AL6 US 6,511,867 1/2003 Lowery et al. AM6 US 6,513,373 3/2003 Lai AM6 US 6,534,781 3/2003 Lai AN6 US 6,534,781 3/2003 Dennison AQ6 US 6,534,781 3/2003 Dennison AQ6 US 6,545,907 4/2003 Lowery et al. AG6 US 6,545,907 4/2003 Lowery et al. AG7 US 6,545,907 4/2003 Lowery et al. AG8 US 6,545,907 4/2003 Lowery et al. AG7 US 6,545,907 4/2003 Lowery et al. AG8 US 6,545,807 4/2003 Lowery et al. AG8 US 6,545,907 4/2003 Lowery et al. AG9 US 6,556,901 4/2003 Lowery et al. AG9 US 6,557,784 5/2003 Lowery et al. AG9 US 6,567,293 5/2003 Lowery et al. AG9 US 6,567,293 5/2003 Lowery AG9 US 6,569,709 7/2003 Lowery AG9 US 6,569,709 7/2003 Lowery AG9 US 6,593,776 7/2003 Lowery AG7 US 6,593,709 7/2003 Lowery AG7 US 6,593,709 7/2003 Maimon et al. AG7 US 6,593,504 9/2003 Chiang et al. AG7 US 6,593,505 9/2003 Chiang et al. AG7 US 6,651,605 9/2003 Chiang et al. AG7 US 6,651,605 9/2003 Maimon et al.										
AWS US 5,912,839										
AX5 US 5,933,365		AW5	US 5,912,8	39						
AZ5 US 6,087,674						8/1999				
AA6										
AB6										
AC6										
AD6										
AE6										
AF6 US 6,462,984 10/2002 Xu et al.								er		
AG6 US 6,480,438								al		
AH6 US 6,487,113 11/2002 Park et al. Al6 US 6,501,111 12/2002 Lowery AJ6 US 6,507,061 1/2003 Hudgens et al. AK6 US 6,511,862 1/2003 Hudgens et al. AL6 US 6,511,867 1/2003 Lowery et al. AL6 US 6,511,867 1/2003 Lowery et al. AM6 US 6,512,241 1/2003 Lai AN6 US 6,514,805 2/2003 Xu et al. AO6 US 6,531,373 3/2003 Gill et al. AP6 US 6,534,781 3/2003 Dennison AQ6 US 6,545,287 4/2003 Chiang AR6 US 6,545,287 4/2003 Lowery et al. AS6 US 6,555,860 4/2003 Lowery et al. AS6 US 6,555,860 4/2003 Lowery et al. AV6 US 6,566,700 5/2003 Xu AV6 US 6,566,700 5/2003 Xu AV7 US 6,567,293 5/2003 Lowery et al. AW6 US 6,569,705 5/2003 Chiang et al. AW6 US 6,570,784 5/2003 Lowery AY6 US 6,576,921 6/2003 Lowery AZ6 US 6,586,761 7/2003 Lowery AZ6 US 6,589,714 7/2003 Maimon et al. AB7 US 6,593,176 7/2003 Dennison AD7 US 6,593,176 7/2003 Dennison AD7 US 6,597,099 7/2003 Wicker AE7 US 6,613,604 9/2003 Maimon et al. AG7 US 6,621,095 9/2003 Maimon et al. AG7 US 6,621,095 9/2003 Chiang et al. AG7 US 6,621,095 9/2003 Maimon et al. AG7 US 6,621,095 9/2003 Maimon et al. AG7 US 6,621,095 9/2003 Chiang et al.	-									
Al6 US 6,501,111 12/2002 Lowery							_			
AJ6 US 6,507,061 1/2003 Hudgens et al. AK6 US 6,511,862 1/2003 Hudgens et al. AL6 US 6,511,867 1/2003 Lowery et al. AM6 US 6,512,241 1/2003 Lai AN6 US 6,512,241 1/2003 Lai AN6 US 6,514,805 2/2003 Xu et al. AN6 US 6,514,805 2/2003 Xu et al. AO6 US 6,534,731 3/2003 Gill et al. AP6 US 6,545,287 4/2003 Dennison AQ6 US 6,545,287 4/2003 Lowery et al. AS6 US 6,555,860 4/2003 Lowery et al. AS6 US 6,555,860 4/2003 Lowery et al. AU6 US 6,566,700 5/2003 Xu AV6 US 6,566,700 5/2003 Lowery et al. AV6 US 6,567,293 5/2003 Lowery et al. AV6 US 6,569,755 5/2003 Lowery et al. AV6 US 6,576,291 6/2003 Lowery AY6 US 6,576,921 6/2003 Lowery AZ6 US 6,576,921 6/2003 Lowery AZ6 US 6,588,714 7/2003 Lowery AZ7 US 6,589,714 7/2003 Maimon et al. AB7 US 6,599,709 7/2003 Dennison AD7 US 6,593,176 7/2003 Dennison AD7 US 6,597,009 7/2003 Dennison AD7 US 6,605,527 8/2003 Dennison et al. AF7 US 6,613,604 9/2003 Maimon et al. AG7 US 6,621,095 9/2003 Chiang et al. AG7 US 6,625,054 9/2003 Dennison et al. AG7 US 6,621,095 9/2003 Dennison et al. AG7 US 6,621,095 9/2003 Chiang et al.									·	
AK6 US 6,511,862 1/2003 Hudgens et al. AL6 US 6,511,867 1/2003 Lowery et al. AM6 US 6,512,241 1/2003 Lai AN6 US 6,514,805 2/2003 Xu et al. AO6 US 6,531,373 3/2003 Gill et al. AP6 US 6,534,781 3/2003 Dennison AQ6 US 6,545,287 4/2003 Chiang AR6 US 6,545,907 4/2003 Lowery et al. AS6 US 6,555,860 4/2003 Lowery et al. AT6 US 6,563,164 5/2003 Lowery et al. AU6 US 6,566,700 5/2003 Xu AV6 US 6,567,293 5/2003 Lowery et al. AW6 US 6,569,705 5/2003 Lowery et al. AX6 US 6,570,784 5/2003 Lowery et al. AX6 US 6,570,784 5/2003 Lowery AY6 US 6,570,921 6/2003 Lowery AZ6 US 6,586,761 7/2003 Lowery AZ6 US 6,589,714 7/2003 Lowery AZ7 US 6,593,176 7/2003 Dennison AD7 US 6,593,176 7/2003 Dennison AD7 US 6,597,009 7/2003 Wicker AE7 US 6,605,505 9/2003 Chiang et al. AG7 US 6,691,604 9/2003 Dennison AG7 US 6,631,604 9/2003 Dennison et al. AG7 US 6,621,095 9/2003 Chiang et al. AG7 US 6,621,095 9/2003 Dennison et al. AG7 US 6,621,095 9/2003 Chiang et al.	-									
AM6 US 6,512,241 1/2003 Lai AN6 US 6,514,805 2/2003 Xu et al. AO6 US 6,531,373 3/2003 Gill et al. AP6 US 6,534,781 3/2003 Dennison AQ6 US 6,545,287 4/2003 Chiang AR6 US 6,545,907 4/2003 Lowery et al. AS6 US 6,555,860 4/2003 Lowery et al. AT6 US 6,563,164 5/2003 Lowery et al. AU6 US 6,566,700 5/2003 Lowery et al. AV6 US 6,566,700 5/2003 Lowery et al. AV6 US 6,569,705 5/2003 Lowery et al. AW6 US 6,569,705 5/2003 Lowery et al. AX6 US 6,570,784 5/2003 Lowery AY6 US 6,570,784 5/2003 Lowery AY6 US 6,586,761 7/2003 Lowery AZ6 US 6,586,761 7/2003 Lowery AZ7 US 6,589,714 7/2003 Maimon et al. AB7 US 6,593,176 7/2003 Dennison AD7 US 6,597,009 7/2003 Wicker AE7 US 6,605,527 8/2003 Dennison et al. AG7 US 6,621,095 9/2003 Chiang et al. AG7 US 6,621,095 9/2003 Dennison et al. AF7 US 6,613,604 9/2003 Maimon et al. AG7 US 6,621,095 9/2003 Chiang et al. AG7 US 6,625,054 9/2003 Chiang et al.		AK6	US 6,511,8	62		1/2003				
AN6 US 6,514,805								ery et al.		
AO6 US 6,531,373 3/2003 Gill et al. AP6 US 6,534,781 3/2003 Dennison AQ6 US 6,545,287 4/2003 Chiang AR6 US 6,545,907 4/2003 Lowery et al. AS6 US 6,555,860 4/2003 Lowery et al. AT6 US 6,563,164 5/2003 Lowery et al. AU6 US 6,566,700 5/2003 Xu AV6 US 6,567,293 5/2003 Lowery et al. AW6 US 6,569,705 5/2003 Chiang et al. AX6 US 6,570,784 5/2003 Lowery AY6 US 6,576,921 6/2003 Lowery AZ6 US 6,586,761 7/2003 Lowery AZ6 US 6,589,714 7/2003 Lowery AZ7 US 6,589,714 7/2003 Maimon et al. AB7 US 6,593,176 7/2003 Dennison AD7 US 6,597,009 7/2003 Dennison AD7 US 6,697,009 7/2003 Maimon et al. AE7 US 6,605,527 8/2003 Dennison et al. AE7 US 6,605,527 8/2003 Maimon et al. AE7 US 6,613,604 9/2003 Maimon et al. AG7 US 6,625,054 9/2003 Chiang et al.										
AP6 US 6,534,781 3/2003 Dennison AQ6 US 6,545,287 4/2003 Chiang AR6 US 6,545,907 4/2003 Lowery et al. AS6 US 6,555,860 4/2003 Lowery et al. AT6 US 6,563,164 5/2003 Lowery et al. AU6 US 6,566,700 5/2003 Xu AV6 US 6,567,293 5/2003 Lowery et al. AW6 US 6,567,293 5/2003 Lowery et al. AW6 US 6,569,705 5/2003 Chiang et al. AX6 US 6,570,784 5/2003 Lowery AY6 US 6,576,921 6/2003 Lowery AZ6 US 6,586,761 7/2003 Lowery AZ7 US 6,589,714 7/2003 Maimon et al. AB7 US 6,590,807 7/2003 Lowery AC7 US 6,593,176 7/2003 Dennison AD7 US 6,597,009 7/2003 Wicker AE7 US 6,605,527 8/2003 Dennison et al. AF7 US 6,613,604 9/2003 Maimon et al. AG7 US 6,621,095 9/2003 Chiang et al. AH7 US 6,625,054 9/2003 Chiang et al.										
AQ6 US 6,545,287	<u> </u>						_			
AR6 US 6,545,907 4/2003 Lowery et al. AS6 US 6,555,860 4/2003 Lowery et al. AT6 US 6,563,164 5/2003 Lowery et al. AU6 US 6,566,700 5/2003 Xu AV6 US 6,567,293 5/2003 Lowery et al. AW6 US 6,569,705 5/2003 Chiang et al. AX6 US 6,570,784 5/2003 Lowery AY6 US 6,576,921 6/2003 Lowery AZ6 US 6,586,761 7/2003 Lowery AZ7 US 6,589,714 7/2003 Maimon et al. AB7 US 6,590,807 7/2003 Dennison AD7 US 6,593,176 7/2003 Dennison et al. AE7 US 6,605,527 8/2003 Dennison et al. AF7 US 6,613,604 9/2003 Maimon et al. AG7 US 6,621,095 9/2003 Chiang et al. AH7 US 6,625,054 9/2003 Chiang et al.										
AS6 US 6,555,860 4/2003 Lowery et al. AT6 US 6,563,164 5/2003 Lowery et al. AU6 US 6,566,700 5/2003 Xu AV6 US 6,567,293 5/2003 Lowery et al. AW6 US 6,569,705 5/2003 Chiang et al. AX6 US 6,570,784 5/2003 Lowery AY6 US 6,576,921 6/2003 Lowery AZ6 US 6,586,761 7/2003 Lowery AZ7 US 6,589,714 7/2003 Maimon et al. AB7 US 6,590,807 7/2003 Lowery AC7 US 6,593,176 7/2003 Dennison AD7 US 6,597,009 7/2003 Wicker AE7 US 6,605,527 8/2003 Dennison et al. AF7 US 6,613,604 9/2003 Maimon et al. AG7 US 6,621,095 9/2003 Chiang et al. AH7 US 6,625,054 9/2003 Lowery et al.	ļ									
AT6 US 6,563,164 5/2003 Lowery et al. AU6 US 6,566,700 5/2003 Xu AV6 US 6,567,293 5/2003 Lowery et al. AW6 US 6,569,705 5/2003 Chiang et al. AX6 US 6,570,784 5/2003 Lowery AY6 US 6,576,921 6/2003 Lowery AZ6 US 6,586,761 7/2003 Lowery AA7 US 6,589,714 7/2003 Maimon et al. AB7 US 6,590,807 7/2003 Lowery AC7 US 6,593,176 7/2003 Dennison AD7 US 6,597,009 7/2003 Wicker AE7 US 6,605,527 8/2003 Dennison et al. AF7 US 6,613,604 9/2003 Maimon et al. AG7 US 6,621,095 9/2003 Chiang et al. AH7 US 6,625,054 9/2003 Lowery et al.										
AU6 US 6,566,700 5/2003 Xu AV6 US 6,567,293 5/2003 Lowery et al. AW6 US 6,569,705 5/2003 Chiang et al. AX6 US 6,570,784 5/2003 Lowery AY6 US 6,576,921 6/2003 Lowery AZ6 US 6,586,761 7/2003 Lowery AA7 US 6,589,714 7/2003 Maimon et al. AB7 US 6,590,807 7/2003 Lowery AC7 US 6,593,176 7/2003 Dennison AD7 US 6,597,009 7/2003 Wicker AE7 US 6,605,527 8/2003 Dennison et al. AF7 US 6,613,604 9/2003 Maimon et al. AG7 US 6,621,095 9/2003 Chiang et al. AH7 US 6,625,054 9/2003 Lowery et al.						5/2003				
AV6 US 6,567,293 5/2003 Lowery et al. AW6 US 6,569,705 5/2003 Chiang et al. AX6 US 6,570,784 5/2003 Lowery AY6 US 6,576,921 6/2003 Lowery AZ6 US 6,586,761 7/2003 Lowery AA7 US 6,589,714 7/2003 Maimon et al. AB7 US 6,590,807 7/2003 Lowery AC7 US 6,593,176 7/2003 Dennison AD7 US 6,597,009 7/2003 Wicker AE7 US 6,605,527 8/2003 Dennison et al. AF7 US 6,613,604 9/2003 Maimon et al. AG7 US 6,621,095 9/2003 Chiang et al. AH7 US 6,625,054 9/2003 Lowery et al.								,		
AW6 US 6,569,705 5/2003 Chiang et al. AX6 US 6,570,784 5/2003 Lowery AY6 US 6,576,921 6/2003 Lowery AZ6 US 6,586,761 7/2003 Lowery AA7 US 6,589,714 7/2003 Maimon et al. AB7 US 6,590,807 7/2003 Lowery AC7 US 6,593,176 7/2003 Dennison AD7 US 6,597,009 7/2003 Wicker AE7 US 6,605,527 8/2003 Dennison et al. AF7 US 6,613,604 9/2003 Maimon et al. AG7 US 6,621,095 9/2003 Chiang et al. AH7 US 6,625,054 9/2003 Lowery et al.		AV6	US 6,567,2	93				ery et al.		
AY6 US 6,576,921 6/2003 Lowery AZ6 US 6,586,761 7/2003 Lowery AA7 US 6,589,714 7/2003 Maimon et al. AB7 US 6,590,807 7/2003 Lowery AC7 US 6,593,176 7/2003 Dennison AD7 US 6,597,009 7/2003 Wicker AE7 US 6,605,527 8/2003 Dennison et al. AF7 US 6,613,604 9/2003 Maimon et al. AG7 US 6,621,095 9/2003 Chiang et al. AH7 US 6,625,054 9/2003 Lowery et al.		AW6	US 6,569,7	05						
AZ6 US 6,586,761 7/2003 Lowery AA7 US 6,589,714 7/2003 Maimon et al. AB7 US 6,590,807 7/2003 Lowery AC7 US 6,593,176 7/2003 Dennison AD7 US 6,597,009 7/2003 Wicker AE7 US 6,605,527 8/2003 Dennison et al. AF7 US 6,613,604 9/2003 Maimon et al. AG7 US 6,621,095 9/2003 Chiang et al. AH7 US 6,625,054 9/2003 Lowery et al.										
AA7 US 6,589,714 7/2003 Maimon et al. AB7 US 6,590,807 7/2003 Lowery AC7 US 6,593,176 7/2003 Dennison AD7 US 6,597,009 7/2003 Wicker AE7 US 6,605,527 8/2003 Dennison et al. AF7 US 6,613,604 9/2003 Maimon et al. AG7 US 6,621,095 9/2003 Chiang et al. AH7 US 6,625,054 9/2003 Lowery et al.										
AB7 US 6,590,807 7/2003 Lowery AC7 US 6,593,176 7/2003 Dennison AD7 US 6,597,009 7/2003 Wicker AE7 US 6,605,527 8/2003 Dennison et al. AF7 US 6,613,604 9/2003 Maimon et al. AG7 US 6,621,095 9/2003 Chiang et al. AH7 US 6,625,054 9/2003 Lowery et al.										
AC7 US 6,593,176 7/2003 Dennison AD7 US 6,597,009 7/2003 Wicker AE7 US 6,605,527 8/2003 Dennison et al. AF7 US 6,613,604 9/2003 Maimon et al. AG7 US 6,621,095 9/2003 Chiang et al. AH7 US 6,625,054 9/2003 Lowery et al.	— —				\dashv					
AD7 US 6,597,009 7/2003 Wicker AE7 US 6,605,527 8/2003 Dennison et al. AF7 US 6,613,604 9/2003 Maimon et al. AG7 US 6,621,095 9/2003 Chiang et al. AH7 US 6,625,054 9/2003 Lowery et al.										
AE7 US 6,605,527 8/2003 Dennison et al. AF7 US 6,613,604 9/2003 Maimon et al. AG7 US 6,621,095 9/2003 Chiang et al. AH7 US 6,625,054 9/2003 Lowery et al.					-					
AF7 US 6,613,604 9/2003 Maimon et al. AG7 US 6,621,095 9/2003 Chiang et al. AH7 US 6,625,054 9/2003 Lowery et al.										
AG7 US 6,621,095 9/2003 Chiang et al. AH7 US 6,625,054 9/2003 Lowery et al.										
AH7 US 6,625,054 9/2003 Lowery et al.					_					
						9/2003				
1 1 212 1		AI7	US 6,642,1	02		11/2003	Xu			

Approved for use through 10/31/2002.OMB 0651-0031
U. S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Subs	Substitute for form 1449A/PTO						Complete if I	Клоwп		
						Application Number	10/796,11	11		
				SCLOSURE	Filing Date	March 10	, 2004			
S	TAT	EMENT	BY /	APPLICANT		First Named Inventor	Dean A. k	Klein		
	0	use as many sh	eets as	necessarv)		Art Unit	2818	2818		
				,		Examiner Name	Not Yet A	ssigned		
Sheet		5	of	13		Attorney Docket Number	M4065.09	959/P0959		
	AJ7	US 6,646,29	97	11/2003	Denr	nison				
		US 6,649,92		11/2003	Denr					
		US 6,667,90		12/2003	Lowery et al.					
		US 6,671,71		12/2003	Ovshinsky et al.					
		US 6,673,70		1/2004		nison et al.				
		US 6,674,11		1/2004		gens et al.				
	AP7	US 6,687,42	27	2/2004		alingam et al.				
	AQ7	US 6,690,02	26	2/2004	Pete	rson				
	AR7	US 6,696,35	55	2/2004	Denr	nison				
	AS7	US 6,687,15	53	2/2004	Lowe	ery				
		US 6,707,71		3/2004	Lowe	ery				
	AU7	US 6,714,95	54	3/2004	Ovst	ninsky et al.				
	1									
	ļ									
	-									
L	1									

		FOREI	GN PATENT	DOCUMENTS		
Examiner Initials*	Cite No. ¹	Foreign Patent Document Country Code ³ -Number ⁴ -Kind Code ⁵ (if known)	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear	T ⁶
	BA	JP-56126916	10/1981	Akira et al.		
	ВВ	WO 97/48032	12/18/1997	Kozicki et al.		
	BC	WO 99/28914	06/10/1999	Kozicki et al.		

Examiner	Date
Signature	Considered

^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant

Applicant's unique citation designation number (optional). ² See attached Kinds Codes of USPTO Patent Documents at www.uspto.gov or MPEP 901.04. ³ Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). ⁴ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the application number of the patent document. ⁵ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ⁶ Applicant is to place a check mark here if English language Translation is attached.

	Substitute for form 1449B/PTC)		Complete if Known			
				Application Number	10/618,824		
	INFORMATION	1 DI	SCLOSURE	Filing Date	July 14, 2003		
	STATEMENT I	3Y /	APPLICANT	First Named Inventor	Terry L. Gilton		
				Group Art Unit	N/A		
	(use as many sh	eets as	necessary)	Examiner Name	Not Yet Assigned		
Shee	t 6	of	13	Attorney Docket Number	M4065.1006/P1006-A		

		OTHER PRIOR ART – NON PATENT LITERATURE DOCUMENTS	
Examiner Initials	Cite No. ¹	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc), date, page(s), volume-issue number(s), publisher, city and/or country where published.	T ²
	CA	Abdel-All, A.; Elshafie, A.; Elhawary, M.M., DC electric-field effect in bulk and thin-film Ge5As38Te57 chalcogenide glass, Vacuum 59 (2000) 845-853.	
	СВ	Adler, D.; Moss, S.C., Amorphous memories and bistable switches, J. Vac. Sci. Technol. 9 (1972) 1182-1189.	
	СС	Adler, D.; Henisch, H.K.; Mott, S.N., The mechanism of threshold switching in amorphous alloys, Rev. Mod. Phys. 50 (1978) 209-220.	
	CD	Afifi, M.A.; Labib, H.H.; El-Fazary, M.H.; Fadel, M., Electrical and thermal properties of chalcogenide glass system Se75Ge25-xSbx, Appl. Phys. A 55 (1992) 167-169.	
	CE	Afifi,M.A.; Labib, H.H.; Fouad, S.S.; El-Shazly, A.A., Electrical & thermal conductivity of the amorphous semiconductor GexSe1-x, Egypt, J. Phys. 17 (1986) 335-342.	
	CF	Alekperova, Sh.M.; Gadzhieva, G.S., Current-Voltage characteristics of Ag2Se single crystal near the phase transition, Inorganic Materials 23 (1987) 137-139.	
	CG	Aleksiejunas, A.; Cesnys, A., Switching phenomenon and memory effect in thin-film heterojunction of polycrystalline selenium-silver selenide, Phys. Stat. Sol. (a) 19 (1973) K169-K171.	
	СН	Angell, C.A., Mobile ions in amorphous solids, Annu. Rev. Phys. Chem. 43 (1992) 693-717.	Т
	CI	Aniya, M., Average electronegativity, medium-range-order, and ionic conductivity in superionic glasses, Solid state Ionics 136-137 (2000) 1085-1089.	
	Cl	Asahara, Y.; Izumitani, T., Voltage controlled switching in Cu-As-Se compositions, J. Non-Cryst. Solids 11 (1972) 97-104.	
	CK	Asokan, S.; Prasad, M.V.N.; Parthasarathy, G.; Gopal, E.S.R., Mechanical and chemical thresholds in IV-VI chalcogenide glasses, Phys. Rev. Lett. 62 (1989) 808-810	
	CL	Axon Technologies Corporation, TECHNOLOGY DESCRIPTION: <i>Programmable Metalization Cell(PMC)</i> , pp. 1-6 (Pre-May 2000).	
	СМ	Baranovskii, S.D.; Cordes, H., On the conduction mechanism in ionic glasses, J. Chem. Phys. 111 (1999) 7546-7557.	
	CN	Belin, R.; Taillades, G.; Pradel, A.; Ribes, M., Ion dynamics in superionic chalcogenide glasses: complete conductivity spectra, Solid state Ionics 136-137 (2000) 1025-1029.	
	со	Belin, R.; Zerouale, A.; Pradel, A.; Ribes, M., Ion dynamics in the argyrodite compound Ag7GeSe5I: non-Arrhenius behavior and complete conductivity spectra, Solid State Ionics 143 (2001) 445-455.	
	СР	Benmore, C.J.; Salmon, P.S., Structure of fast ion conducting and semiconducting glassy chalcogenide alloys, Phys. Rev. Lett. 73 (1994) 264-267.	
	CQ	Bernede, J.C., Influence du metal des electrodes sur les caracteristiques courant-tension des structures M-Ag2Se-M, Thin solid films 70 (1980) L1-L4.	
	CR	Bernede, J.C., Polarized memory switching in MIS thin films, Thin Solid Films 81 (1981) 155-160.	
	cs	Bernede, J.C., Switching and silver movements in Ag2Se thin films, Phys. Stat. Sol. (a) 57 (1980) K101-K104.	
	СТ	Bernede, J.C.; Abachi, T., Differential negative resistance in metal/insulator/metal structures with an upper bilayer electrode, Thin solid films 131 (1985) L61-L64.	
	CU	Bernede, J.C.; Conan, A.; Fousenan't, E.; El Bouchairi, B.; Goureaux, G., Polarized memory switching effects in Ag2Se/Se/M thin film sandwiches, Thin solid films 97 (1982) 165-171.	
	CV	Bernede, J.C. et al., Transition from S- to N-type differential negative resistance in Al-Al2O3-Ag2-xSe1+x thin film structures, Phys.Stat. Sol. (a) 74 (1982) 217-224.	Γ

PTO/SB/08B (10-01)
Approved for use through 10/31/2002.OMB 0651-0031
U. S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. Complete if Known Substitute for form 1449B/PTO **Application Number** 10/618,824 INFORMATION DISCLOSURE July 14, 2003 Filing Date STATEMENT BY APPLICANT Terry L. Gilton First Named Inventor N/A Group Art Unit (use as many sheets as necessary) Examiner Name Not Yet Assigned 7 13 M4065.1006/P1006-A Sheet of Attorney Docket Number

cw	Bondarev, V.N.; Pikhitsa, P.V., A dendrite model of current instability in RbAg4I5, Solid State Ionics 70/71 (1994) 72-76.
CX	Boolchand, P., The maximum in glass transition temperature (Tg) near x=1/3 in GexSe1-x Glasses, Asian Journal of Physics (2000) 9, 709-72.
CY	Boolchand, P.; Georgiev, D.G.; Goodman, B., Discovery of the Intermediate Phase in Chalcogenide Glasses, J. Optoelectronics and Advanced Materials, 3 (2001), 703
CZ	Boolchand, P.; Selvanathan, D.; Wang, Y.; Georgiev, D.G.; Bresser, W.J., Onset of rigidity in steps in chalcogenide glasses, Properties and Applications of Amorphous Materials, M.F. Thorpe and Tichy, L. (eds.) Kluwer Academic Publishers, the Netherlands, 2001, pp. 97-132.
CA1	Boolchand, P.; Enzweiler, R.N.; Tenhover, M., Structural ordering of evaporated amorphous chalcogenide alloy films: role of thermal annealing, Diffusion and Defect Data Vol. 53-54 (1987) 415-420.
CB1	Boolchand, P.; Grothaus, J.; Bresser, W.J.; Suranyi, P., Structural origin of broken chemical order in a GeSe2 glass, Phys. Rev. B 25 (1982) 2975-2978.
CC1	Boolchand, P.; Grothaus, J.; Phillips, J.C., Broken chemical order and phase separation in GexSe1-x glasses, Solid state comm. 45 (1983) 183-185.
CD1	Boolchand, P., Bresser, W.J., Compositional trends in glass transition temperature (Tg), network connectivity and nanoscale chemical phase separation in chalcogenides, Dept. of ECECS, Univ. Cincinnati (October 28, 1999) 45221-0030.
CE1	Boolchand, P.; Grothaus, J, Molecular Structure of Melt-Quenched GeSe2 and GeS2 glasses compared, Proc. Int. Conf. Phys. Semicond. (Eds. Chadi and Harrison) 17 th (1985) 833-36.
CF1	Bresser, W.; Boolchand, P.; Suranyi, P., Rigidity percolation and molecular clustering in network glasses, Phys. Rev. Lett. 56 (1986) 2493-2496.
CG1	Bresser, W.J.; Boolchand, P.; Suranyi, P.; de Neufville, J.P, Intrinsically broken chalcogen chemical order in stoichiometric glasses, Journal de Physique 42 (1981) C4-193-C4-196.
CH1	Bresser, W.J.; Boolchand, P.; Suranyi, P.; Hernandez, J.G., Molecular phase separation and cluster size in GeSe2 glass, Hyperfine Interactions 27 (1986) 389-392.
CI1	Cahen, D.; Gilet, JM.; Schmitz, C.; Chernyak, L.; Gartsman, K.; Jakubowicz, A., Room- Temperature, electric field induced creation of stable devices in CulnSe2 Crystals, Science 258 (1992) 271-274.
CJ1	Chatterjee, R.; Asokan, S.; Titus, S.S.K., Current-controlled negative-resistance behavior and memory switching in bulk As-Te-Se glasses, J. Phys. D: Appl. Phys. 27 (1994) 2624-2627.
CK1	Chen, C.H.; Tai, K.L., Whisker growth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1980) 1075-1077.
CL1	Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936.
CM1	Chen, G.; Cheng, J.; Chen, W., Effect of Si3N4 on chemical durability of chalcogenide glass, J. Non-Cryst. Solids 220 (1997) 249-253.
CN1	Cohen, M.H.; Neale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Non-Cryst. Solids 8-10 (1972) 885-891.
CO1	Croitoru, N.; Lazarescu, M.; Popescu, C.; Telnic, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 781-786.
CP1	Dalven, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl. Phys. 38 (1967) 753-756.
CQ1	Davis, E.A., Semiconductors without form, Search 1 (1970) 152-155.
CR1	Dearnaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films, Rep. Prog. Phys. 33 (1970) 1129-1191.
CS1	Dejus, R.J.; Susman, S.; Volin, K.J.; Montague, D.G.; Price, D.L., Structure of Vitreous Ag-Ge-Se, J. Non-Cryst. Solids 143 (1992) 162-180.
CT1	den Boer, W., Threshold switching in hydrogenated amorphous silicon, Appl. Phys. Lett. 40 (1982) 812-813.

S	ubstitute for form 1449B/PTC)		Complete if Known			
				Application Number	10/618,824		
	NFORMATION	V DIS	SCLOSURE	Filing Date	July 14, 2003		
9	STATEMENT I	BY A	APPLICANT	First Named Inventor	Terry L. Gilton		
				Group Art Unit	N/A		
	(use as many sh	eets as	necessary)	Examiner Name	Not Yet Assigned		
Sheet	8	of	13	Attorney Docket Number	M4065.1006/P1006-A		

Sneet		0	OI	13	Attorney Docket Number	M4065.1006/P1006-A			
	CU1	silicon/nan Cryst. Solid	odispe ds 198	erse metal (SIMAL) s -200 (1996) 829-832	<u>.</u>	electronic properties, J. Non-			
	CV1	Films 110	(1983)	107-113.	·	g2-xSe1+x/n-Si diodes, Thin Solid	1		
	CW1	El Gharras, Z.; Bourahla, A.; Vautier, C., Role of photoinduced defects in amorphous GexSex photoconductivity, J. Non-Cryst. Solids 155 (1993) 171-179.							
	CX1				; Averous, M., Silver ph ms 218 (1992)259-273.	notodissolution in amorphous			
	CY1					s in amorphous GeSe5.5 thin films Sol. (a) 123 (1991) 451-460.			
	CZ1	Phys. 70A	(1996) 507-516.		ss Ge21Se17Te62, Indian J.			
	CA2	materials,	J. Non	-Cryst. Solids 130 (1	991) 85-97.	in amorphous chalcogenide			
	CB2	Non-Cryst.	Solids	s 137-138 (1991) 10:	31-1034.	ses: A unified mechanism, J.			
	CC2	state of this	n films	containing Te As Go	e Si, Vacuum 46 (1995)				
	CD2	of Ge20Bix	(Se80-	x films, Thin Solid Fi	lms 376 (2000) 236-24				
	CE2	chalcogeni	de gla	ss, Vacuum 44 (199	3) 851-855.	thin films of amorphous			
	CF2	43 (1992) 2	253-25	57 .		erties of Se75Ge7Sb18, Vacuum			
	CG2	glasses, Pi	hys. R	ev. Lett. 78 (1997) 4	422-4425.	stiffness threshold in Chalcogenide	1		
	CH2	on the elas (1997) 137	tic, pla -143.	astic and thermal bel	navior of covalent glass	d, P., Role of network connectivity es, J. Non-Cryst. Solids 222			
	CI2	photodiffus	ed am	orphous Ag-GeSe2	thin films, Phys. Rev. B	1.A., Structure and bonding in 3 38 (1988) 12388-12403.			
	CJ2	selenium, l	Phys. 3	Stat. Sol. (a) 64 (198	1) 311-316.	nd crystallization of amorphous			
	CK2	Solids 6 (1	971) 4	9-71.		us semiconductors, J. Non-Cryst.			
	CL2	Materials S	cience	2 (1972) 697-744.		ductors, Annual Review of			
	CM2	synthesize currently A	d by te SAP.	emplating against na	nowires of trigonal Se, .	e nanowires of Ag2Se can be J. Am. Chem. Soc. (2001)			
	CN2	Gosain, D. on reversib 1013-1018	le pha	kamura, M.; Shimizu use transition phenor	, T.; Suzuki, M.; Okano nena in telluride glasse:	o, S., Nonvolatile memory based s, Jap. J. Appl. Phys. 28 (1989)			
	CO2	of Ge-Se c Cryst. Solid	halcog ds 298	jenide glasses below (2002) 260-269.	Tg: elastic recovery a	e, I.; Lucas, J., Indentation creep and non-Newtonian flow, J. Non-			
	CP2	scratchabil 1545-52.	ity of g	jermanium-selenium	chalcogenide glasses,	s, J., Hardness, toughness, and J. Am. Ceram. Soc. 85 (2002)			
	CQ2	Gupta, Y.P	., On e	electrical switching a	nd memory effects in ar	morphous chalcogenides, J. Non-			

PTO/SB/08B (10-01)

Approved for use through 10/31/2002.OMB 0651-0031

U. S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. Complete if Known Substitute for form 1449B/PTO Application Number 10/618,824 INFORMATION DISCLOSURE July 14, 2003 Filing Date STATEMENT BY APPLICANT First Named Inventor Terry L. Gilton Group Art Unit N/A (use as many sheets as necessary) **Examiner Name** Not Yet Assigned

					Examine Ivanie	Not let Assigned			
Sheet		9	of	13	Attorney Docket Number	M4065.1006/P1006-A			
	1	Cryst. Sol. 3	3 (1970)	148-154			Ī		
	CR2				riments on the charge	-controlled switching effect in			
	CR2 Haberland, D.R.; Stiegler, H., New experiments on the charge-controlled switching effect in amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 408-414.								
	CS2								
	CSZ	Haifz, M.M.; Ibrahim, M.M.; Dongol, M.; Hammad, F.H., Effect of composition on the structure and electrical properties of As-Se-Cu glasses, J. Apply. Phys. 54 (1983) 1950-1954.							
	CT2				t. J. Electronics 73 (19	.G.; Owen, A.E., Quantization 92) 911-913.			
	CU2	Hajto, J.; H	u, J.; Sn	ell, A.J.; Turvey, K.;	Rose, M., DC and AC	measurements on metal/a-			
		Si:H/metal r	room ter	nperature quantised	resistance devices, J.	Non-Cryst. Solids 266-269			
		(2000) 1058	3-1061.						
	CV2	Hajto, J.; M	cAuley,	B.; Snell, A.J.; Owen	, A.E., Theory of room	temperature quantized			
						Non-Cryst. Solids 198-200	İ		
		(1996) 825-							
CW2 Hajto, J.; Owen, A.E.; Snell, A.J.; Le Comber, P.G.; Rose, M.J., Analogue men						Analogue memory and			
						, Phil. Mag. B 63 (1991) 349-			
	İ	369.				, , , , , , , , , , , , , , , , , , ,			
	CX2		· One Y	· Fukaya M · Kan J	H Polarized memory	switching in amorphous Se film,	-		
	10,4			s. 13 (1974) 1163-11		ownorming in amorphous oc min,			
	CY2				mory switching phenor	mena in thin films of			
	1012					mena in tilin tilins of			
	CZ2 Helbert et al., Intralevel hybrid resist process with submicron capability, SPIE Vol. 333 SUBMICRON LITHOGRAPHY, pp. 24-29 (1982).								
							ļ		
	CA3	CA3 Hilt, DISSERTATION: Materials characterization of Silver Chalcogenide Programmable							
	Metalization Cells, Arizona State University, pp. Title page-114 (UMI Company, May 1999). CB3 Holmquist et al., Reaction and Diffusion in Silver-Arsenic Chalcogenide Glass Systems, 62 J. AMER.								
							ļ		
	CB3			tion and Diffusion in Sil , pp. 183-188 (March-A		le Glass Systems, 62 J. AMER.			
	CC3	Hong, K.S.;	Speyer	, R.F., Switching beh	avior in II-IV-V2 amor	phous semiconductor systems,			
				<u>116 (1990) 191-200</u>					
	CD3	Hosokawa,	S., Aton	nic and electronic str	uctures of glassy Gex	Se1-x around the stiffness			
		threshold co	ompositi	on, J. Optoelectronic	s and Advanced Mate	rials 3 (2001) 199-214.			
	CE3	Hu, J.; Snell, A.J.; Hajto, J.; Owen, A.E., Constant current forming in Cr/p+a-/Si:H/V thin film							
		devices, J. Non-Cryst. Solids 227-230 (1998) 1187-1191.							
	CF3					nce anomaly near the metal-	 		
		non-metal to	ransition	in Cr-hydrogenated	amorphous Si-V thin-	film devices, Phil. Mag. B. 74			
		(1996) 37-5		, , , , , , , , , , , , , , , , , , , ,		2011000, 1 1 1g. 21 1 1			
	CG3			laito J.: Owen A.F.	Current-induced insta	ability in Cr-p+a-Si:H-V thin film			
				B 80 (2000) 29-43.	Garron madoca mon	ability in or pra citir valin inin			
	СНЗ				nsitized germanium se	lenide photoresist by reactive			
	00				ett., No. 7, pp. 592-59				
	CI3				, K., Electrical and the		-		
	10.0				d State Comm. 8 (1976				
	CJ3	Ishikawa R	· Kikuci	i M. Photovoltaic s	tudy on the photo onh	anced diffusion of Ag in	_		
	000	amorphous	filme of	Ge283 Non-Com	t. Solids 35 & 36 (198	0) 1061 1066			
	СКЗ	Ivetomi L ·	Vachich	ta D. Kalia D.K. In	cipient phase senerat	ion in Ag/Ge/Se glasses:			
	101/3	clustering of	v ası ilsi A a stor	na, r., Nalia, N.N., III me. I. Non Crist So	icipieni pnase separat	ion in Ag/Ge/Se glasses:			
	CL2				lids 262 (2000) 135-14		 		
	CL3				erues of thin selenium	films under pulsed bias, Thin			
	0140	Solid Films	40 (197	/) L 15-L18.		1 25 = 1	<u> </u>		
	СМЗ	Jouille, A.M	., maruc	cni, J., On the DC el	ectrical conduction of	amorphous As2Se7 before			
	10116	switching, F	mys. Sta	at. Sol. (a) 13 (1972)	K105-K109.		<u> </u>		
	CN3	Joullie, A.M	.; Maruc	cni, J., Electrical pro	perties of the amorpho	ous alloy As2Se5, Mat. Res.	l		

S	ubstitute for form 1449B/PTC)		Complete if Known		
				Application Number	10/618,824	
	NFORMATION	I DIS	SCLOSURE	Filing Date	July 14, 2003	
9	STATEMENT B	3Y A	PPLICANT	First Named Inventor	Terry L. Gilton	
				Group Art Unit	N/A	
	(use as many she	eets as r	necessary)	Examiner Name	Not Yet Assigned	
Sheet	10	of	13	Attorney Docket Number	M4065.1006/P1006-A	

Sneet		10	Oī	13	Attorney Docket Number	M4065.1006/P1006-A			
		Bull. 8 (197	73) 433	3-442			$\overline{}$		
	СОЗ	Kaplan, T.;	Adler		itching in amorphous	semiconductors, J. Non-Cryst.			
	CP3	1231-1234	(1993).		-166 J. Non-CRYST. SOLIDS, pp.			
	CQ3 Kawaguchi, T.; Maruno, S.; Elliott, S.R., Optical, electrical, and structural properties of amorphous Ag-Ge-S and Ag-Ge-Se films and comparison of photoinduced and thermally induced phenomena of both systems, J. Appl. Phys. 79 (1996) 9096-9104.								
	CR3			lasui, K., Analysis of ch nalcogenide film, Japn.		nission spectra resulting from Ag 87) 15-21.			
	CS3	(0<=x<=0.5	571) gl	asses, Solid state Ionic	cs 123 (1999) 259-269	conductivity of Agx(GeSe3)1-x			
	СТЗ	GexSe100	-x, J. N	Ion-Cryst. Solids 124 (1990) 186-193.	odiffusion in amorphous			
	CU3			n the origin of p-type co	onductivity in amorpho	ous chalcogenides, J. Non-Cryst.			
	CV3	Kolobov, A 137-138 (1	.V., La 991) 1	teral diffusion of silver 027-1030.		ide films, J. Non-Cryst. Solids			
	CW3 Korkinova, Ts.N.; Andreichin,R.E., Chalcogenide glass polarization and the type of contact Non-Cryst. Solids 194 (1996) 256-259.								
CX3 Kotkata, M.F.; Afif, M.A.; Labib, H.H.; Hegab, N.A.; Abdel-Aziz, M.M., Memory switch amorphous GeSeTl chalcogenide semiconductor films, Thin Solid Films 240 (1994) CY3 Kozicki et al., Silver incorporation in thin films of selenium rich Ge-Se glasses, Intern Congress on Glass, Volume 2, Extended Abstracts, July 2001, pgs. 8-9.									
						Ge-Se glasses, International			
	CZ3					nology Description, February 18,			
	CA4			ki, Axon Technologies gy, Inc., April 6, 2000	Corp. and Arizona Sta	te University, Presentation to			
	CB4	Kozicki et a	al., App	olications of Programm		nges In Metal-Doped e 99-13, 1999, pgs. 298-309.			
	CC4			noscale effects in devidences. Vol. :					
	CD4	Kozicki et a 63 (2002) p	al., Nai ogs 15	noscale phase separat 5-159.	ion in Ag-Ge-Se glass	es, Microelectronic Engineering			
CE4 Lakshminarayan, K.N.; Srivastava, K.K.; Panwar, O.S.; Dumar, A., Amorphous semicon devices: memory and switching mechanism, J. Instn Electronics & Telecom. Engrs 27 (16-19.					ics & Telecom. Engrs 27 (1981)				
	CF4	Lal, M.; Go chalcogeni	yal, N. de gla	, Chemical bond approsses, Indian Journal of	pach to study the mem pure & appl. phys. 29	nory and threshold switching (1991) 303-304.			
	CG4 Leimer, F.; Stotzel, H.; Kottwitz, A., Isothermal electrical polarisation of amorphous GeSe film with blocking Al contacts influenced by Poole-Frenkel conduction, Phys. Stat. Sol. (a) 29 (1975) K129-K132.								
	CH4	Appl. Phys	Lett.	46 (1985) 543-545.		sion of Ag in GexSe1-x glass,			
	CI4	system, Ja	<u>р. Ј. А</u>	ppl. Phys. 11 (1972) 10	<u>657-1662.</u>	effect observed on Se-SnO2			
	CJ4	Matsushita selenium th	, T.; Ya nin film	amagami, T.; Okuda, N s, Jpn. J. Appl. Phys.	1., Polarized memory (11 (1972) 606.	effect observed on amorphous			
	CK4	Mazurier, F V2O5 base	.; Lev	y, M.; Souquet, J.L, Re ses, Journal de Physiq	versible and irreversibue IV 2 (1992) C2-185	ole electrical switching in TeO2- 5 - C2-188.			
	CL4	McHardy e	t al., T	he dissolution of metal	s in amorphous chalco	ogenides and the effects o			

Su	bstitute for form 1449B/PT	0		Complete if Known		
				Application Number	10/618,824	
11	NFORMATIO	N DIS	CLOSURE	Filing Date	July 14, 2003	
l s	STATEMENT	BY AF	PPLICANT	First Named Inventor	Terry L. Gilton	
				Group Art Unit	N/A	
(use as many sheets as necessary)				Examiner Name	Not Yet Assigned	
Sheet	11	of	13	Attorney Docket Number	M4065.1006/P1006-A	

Sneet		11	OI	13	Attorney Docket Number 10/4065, 1006/P1006-A			
f .	1	electron ar	d ultrav	iolet radiation, 20 J.	Phys. C.: Solid State Phys., pp. 4055-4075 (1987)f			
	CM4	Messoussi	, R.; Be	rnede, J.C.; Benhida,	, S.; Abachi, T.; Latef, A., Electrical characterization And Phys. 28 (1991) 253-258.	of		
	CN4	Mitkova, M	.; Boolc	hand, P., Microscopi	c origin of the glass forming tendency in chalcogenic	des		
	and constraint theory, J. Non-Cryst. Solids 240 (1998) 1-21. CO4 Mitkova, M.; Kozicki, M.N., Silver incorporation in Ge-Se glasses used in programmable metallization cell devices, J. Non-Cryst. Solids 299-302 (2002) 1023-1027.							
	CP4	(1973) 423	-432.		nduction in (AgxCu1-x)2Se, J. Phys. Soc. Japan 34			
	CQ4	Miyatani, S	y., Ele	ctrical properties of	Ag2Se, J. Phys. Soc. Japan 13 (1958) 317.			
	CR4	(1959) 996	-1002.		a-Ag2Te and beta-Ag2Se, Journal Phys. Soc. Japan	14		
	CS4	(1968) 1-1	7.		aining transition metal ions, J. Non-Cryst. Solids 1			
	CT4	transitions	in chalc	ogenide thin films, Jp	M.; Suzuki, M., Nonvolatile memory based on phase on. J. Appl. Phys. 32 (1993) 564-569.			
	CU4	nonvolatile Appl. Phys	memor . 39 (20	y cell based on rever 00) 6157-6161.	F.; Imai, Y.; Kitagawa, A.; Suzuki, M., Submicron rsible phase transition in chalcogenide glasses, Jpn.	J.		
	CV4	Nang, T.T. parameters	; Okuda s of Gex	, M.; Matsushita, T.; Se1-x amorphous th	Yokota, S.; Suzuki, A., Electrical and optical in films, Jap. J. App. Phys. 15 (1976) 849-853.			
	CW4	Narayanan	, R.A.; /	Asokan, S.; Kumar, A	A., Evidence concerning the effect of topology on work glasses, Phys. Rev. B 54 (1996) 4413-4415.			
	CX4	Neale, R.G	i.; Aselti	ne, J.A., The applica on electron dev. Ed-2	tion of amorphous materials to computer memories,			
	CY4	Ovshinsky	S.R.; F	itzsche, H., Reversib	ole structural transformations in amorphous Mettalurgical transactions 2 (1971) 641-645.			
	CZ4	Ovshinsky,	S.R., F		witching phenomena in disordered structures, Phys.	.		
	CA5	Owen, A.E	.; LeCo	nber, P.G.; Sarrabay	rouse, G.; Spear, W.E., New amorphous-silicon witching device, IEE Proc. 129 (1982) 51-54			
	CB5	Owen, A.E in amorpho	.; Firth, ous chal	A.P.; Ewen, P.J.S., F cogenide semicondu	Photo-induced structural and physico-chemical changetors, Phil. Mag. B 52 (1985) 347-362.	ges		
	CC5			mber, P.G.; Hajto, J. ctronics 73 (1992) 89	; Rose, M.J.; Snell, A.J., Switching in amorphous 97-906.			
	CD5	Micron Stru	ıctures,	Nanostructure Physi	resists for High Resolution Lithography and Sub- ics and Fabrication, pp. 447-451 (M. Reed ed. 1989)).		
	CE5	Phys. Lett.	14 (196	9) 280-282.	conduction in semiconducting glass diodes, App.			
	CF5				eld induced memory switching in thin films of the Phys. Lett. 19 (1971) 221-223.			
	CG5	Popescu, C of structure	C., The e	effect of local non-un halcogenide glasses	iformities on thermal switching and high field behavi	or		
	CH5	Popescu, C	C.; Croite	oru, N., The contribut on-Cryst. Solids 8-10	tion of the lateral thermal instability to the switching			
	CI5	Popov, A.I.	; Geller	I.KH.; Shemetova, \	V.K., Memory and threshold switching effects in a) 44 (1977) K71-K73.			
	CJ5	Prakash, S	.; Asoka		asily reversible memory switching in Ge-As-Te			
	CK5		.; Sivar	ama Sastry, G., Elect	tronic switching in Ge-Bi-Se-Te glasses, Mat. Sci. ar	nd		

Sut	bstitute for form 1449B/PTC			Complete if Known		
				Application Number	10/618,824	
١N	NFORMATION	1 DI	SCLOSURE	Filing Date	July 14, 2003	
S	TATEMENT I	3Y /	APPLICANT	First Named Inventor	Terry L. Gilton	
				Group Art Unit	N/A	
	(use as many sho	eets as	necessary)	Examiner Name	Not Yet Assigned	
heet	12	of	13	Attorney Docket Number	M4065.1006/P1006-A	

CL5	Ramesh, K.; Asokan, S.; Sangunni, K.S.; Gopal, E.S.R., Electrical Switching in germanium telluride glasses doped with Cu and Ag, Appl. Phys. A 69 (1999) 421-425.	
CM5	Rose,M.J.;Hajto,J.;Lecomber,P.G.;Gage,S.M.;Choi,W.K.;Snell,A.J.;Owen,A.E., Amorphous silicon analogue memory devices, J. Non-Cryst. Solids 115 (1989) 168-170.	
CN5	Rose,M.J.;Snell,A.J.;Lecomber,P.G.;Hajto,J.;Fitzgerald,A.G.;Owen,A.E., Aspects of non-volatility in a -Si:H memory devices, Mat. Res. Soc. Symp. Proc. V 258, 1992, 1075-1080.	
CO5	Schuocker, D.; Rieder, G., On the reliability of amorphous chalcogenide switching devices, J. Non-Cryst. Solids 29 (1978) 397-407.	
CP5	Sharma, A.K.; Singh, B., Electrical conductivity measurements of evaporated selenium films in vacuum, Proc. Indian Natn. Sci. Acad. 46, A, (1980) 362-368.	
CQ5	Sharma, P., Structural, electrical and optical properties of silver selenide films, Ind. J. Of pure and applied phys. 35 (1997) 424-427.	
CR5	Shimizu et al., <i>The Photo-Erasable Memory Switching Effect of Ag Photo-Doped Chalcogenide Glasses</i> , 46 B. CHEM SOC. JAPAN, No. 12, pp. 3662-3365 (1973).	
CS5	Snell, A.J.; Lecomber, P.G.; Hajto, J.; Rose, M.J.; Owen, A.E.; Osborne, I.L., Analogue memory effects in metal/a-Si:H/metal memory devices, J. Non-Cryst. Solids 137-138 (1991) 1257-1262.	
CT5	Snell, A.J.; Hajto, J.;Rose, M.J.; Osborne, L.S.; Holmes, A.; Owen, A.E.; Gibson, R.A.G., Analogue memory effects in metal/a-Si:H/metal thin film structures, Mat. Res. Soc. Symp. Proc. V 297, 1993, 1017-1021.	
CU5	Steventon, A.G., Microfilaments in amorphous chalcogenide memory devices, J. Phys. D: Appl. Phys. 8 (1975) L120-L122.	
CV5	Steventon, A.G., The switching mechanisms in amorphous chalcogenide memory devices, J. Non-Cryst. Solids 21 (1976) 319-329.	
CW5	Stocker, H.J., Bulk and thin film switching and memory effects in semiconducting chalcogenide glasses, App. Phys. Lett. 15 (1969) 55-57.	
CX5	Tanaka, K., lonic and mixed conductions in Ag photodoping process, Mod. Phys. Lett B 4 (1990) 1373-1377.	
CY5	Tanaka, K.; lizima, S.; Sugi, M.; Okada, Y.; Kikuchi, M., Thermal effects on switching phenomenon in chalcogenide amorphous semiconductors, Solid State Comm. 8 (1970) 387-389.	
CZ5	Thornburg, D.D., Memory switching in a Type I amorphous chalcogenide, J. Elect. Mat. 2 (1973) 3-15.	
CA6	Thornburg, D.D., Memory switching in amorphous arsenic triselenide, J. Non-Cryst. Solids 11 (1972) 113-120.	
СВ6	Thornburg, D.D.; White, R.M., Electric field enhanced phase separation and memory switching in amorphous arsenic triselenide, Journal(??) (1972) 4609-4612.	
CC6	Tichy, L.; Ticha, H., Remark on the glass-forming ability in GexSe1-x and AsxSe1-x systems, J. Non-Cryst. Solids 261 (2000) 277-281.	
CD6	Titus, S.S.K.; Chatterjee, R.; Asokan, S., Electrical switching and short-range order in As-Te glasses, Phys. Rev. B 48 (1993) 14650-14652.	
CE6	Tranchant,S.;Peytavin,S.;Ribes,M.;Flank,A.M.;Dexpert,H.;Lagarde,J.P., Silver chalcogenide glasses Ag-Ge-Se: lonic conduction and exafs structural investigation, Transport-structure relations in fast ion and mixed conductors Proceedings of the 6th Riso International symposium. 9-13 September 1985.	
CF6	Tregouet, Y.; Bernede, J.C., Silver movements in Ag2Te thin films: switching and memory effects, Thin Solid Films 57 (1979) 49-54.	
CG6	Uemura, O.; Kameda, Y.; Kokai, S.; Satow, T., Thermally induced crystallization of amorphous Ge0.4Se0.6, J. Non-Cryst. Solids 117-118 (1990) 219-221.	
CH6	Uttecht, R.; Stevenson, H.; Sie, C.H.; Griener, J.D.; Raghavan, K.S., Electric field induced filament formation in As-Te-Ge glass, J. Non-Cryst. Solids 2 (1970) 358-370.	

Su	bstitute for form 1449B/PTC	,		Complete if Known		
				Application Number	10/618,824	
11	NFORMATION	1 DI	SCLOSURE	Filing Date	July 14, 2003	
l s	STATEMENT E	3Y /	APPLICANT	First Named Inventor	Terry L. Gilton	
				Group Art Unit	N/A	
	(use as many she	eets as	necessary)	Examiner Name	Not Yet Assigned	
Sheet	13	of	13	Attorney Docket Number	M4065.1006/P1006-A	

	CI6	Viger, C.; Lefrancois, G.; Fleury, G., Anomalous behaviour of amorphous selenium films, J. Non-Cryst. Solids 33 (1976) 267-272.	
	CJ6	Vodenicharov, C.; Parvanov,S.; Petkov,P., Electrode-limited currents in the thin-film M-GeSe-M system, Mat. Chem. And Phys. 21 (1989) 447-454.	
	CK5	Wang, SJ.; Misium, G.R.; Camp, J.C.; Chen, KL.; Tigelaar, H.L., High-performance Metal/silicide antifuse, IEEE electron dev. Lett. 13 (1992)471-472.	
	CL5	Weirauch, D.F., Threshold switching and thermal filaments in amorphous semiconductors, App. Phys. Lett. 16 (1970) 72-73.	
	СМ6	West, W.C.; Sieradzki, K.; Kardynal, B.; Kozicki, M.N., Equivalent circuit modeling of the Ag As0.24S0.36Ag0.40 Ag System prepared by photodissolution of Ag, J. Electrochem. Soc. 145 (1998) 2971-2974	
	CN6	West, W.C., Electrically erasable non-volatile memory via electrochemical deposition of multifractal aggregates, Ph.D. Dissertation, ASU 1998	
	CO6	Zhang, M.; Mancini, S.; Bresser, W.; Boolchand, P., Variation of glass transition temperature, Tg, with average coordination number, <m>, in network glasses: evidence of a threshold behavior in the slope dTg/d<m> at the rigidity percolation threshold (<m>=2.4), J. Non-Cryst. Solids 151 (1992) 149-154.</m></m></m>	
			-
	_		
ļ			
-	 		
			-
	-		

Examiner	Date	
Signature	Considered	

^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

¹Applicant's unique citation designation number (optional). ²Applicant is to place a check mark here if English language Translation is attached.