Lecture14: CMOS amplifiers (1)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Information and Communications
Gwangju Institute of Science and Technology

Homework#2-1

Problem1:

Plot the IV characteristics.

Answer:

- For a positive V_X , we have a resistance of $R_1 + R_2$
- For a negative V_X , we have $I_X = 0$.

Homework#2-2

Problem1:

— We wish to design a circuit that exhibits the input/output characteristic shown below. Using 1-k Ω resistors, ideal diodes, and other components, construct the circuit.

Answer:

Homework#2-3 (1/2)

Problem3:

- We studied the depletion approximation for the pn junction.
- In the MOS structure, we can also consider the depletion region in the p-type substrate, whose acceptor density is N_A .
- When the electric field <u>in the oxide</u> is E_{ox} , calculate the length of the depletion region, W_{depl} .
- Then, what is the potential difference between the interface and the substrate?
- (Neglect the electrons in this problem.)

Homework#2-3 (2/2)

Answer:

- When the oxide field is E_{ox} , the surface field (in silicon) is $\frac{\epsilon_{ox}}{\epsilon_{si}}E_{ox}$.
- The electric field changes in the depletion region, with a ratio of $-q \frac{N_A}{\epsilon_{si}}$.
- At the end of the depletion region, the electric filed must vanish.
- Therefore,

$$\frac{\epsilon_{ox}}{\epsilon_{si}} E_{ox} - q \frac{N_A}{\epsilon_{si}} W_{depl} = 0$$

Comment:

Then, how about the potential difference across the depletion region?

CMOS

- 9's complementary of 123?
 - **876**
- Complementary MOS
 - Here we have an NMOSFET.
 - A device where the transport is dominated by holes

Why is it important?

Why amplifiers?

- Signal amplification
 - Usually, signals are "weak." (in the μ V or mV range)
 - It is too small for reliable processing.
 - If the signal magnitude is made larger, processing is much easier.

Amplifier

"Weak" signal

- Desirable properties
 - Low power consumption
 - High speed operation
 - Low noise

Impedances (1/3)

- A MOSFET with three terminals
 - Looking into the gate, we see the infinite impedance.
 - (Strictly valid at the low-frequency range)

Impedances (2/3)

- A MOSFET with three terminals
 - Looking into the drain, we see r_0 if the source is ac grounded.

Impedances (3/3)

- A MOSFET with three terminals
 - Looking into the source, we see $1/g_m$ if the gate is ac grounded and channel-length modulation is neglected.

Reading your textbook

- Sec. 17. 1 has been partially covered.
- On April 27, we will cover Sec. 17. 2.
 - Operating point analysis and design
 - Up to p. 759