Dampling Technique 63 a. Pls. cut. 4. 2. 35. 14 2 13 2.2 T 6.3 20.0 15 5.8 32.5 18 11.5 22.5 15 6.3 34.7 16 12.6 T 5.6 31.4 16 8.6 24.0 15 7.7 . T 4.7 20.2 14 5.1 17.6 15 3.5 37.5 19 28.2 33.2 17 9.4 22.1 16 6.6 33.0 15 15.3 21.1 15 47 37.5 16 17.3 14.7 12 1.5 23.5 13 4.3 15.4 12 1.8 22.7 13 3.8 21.0 17 6.8 23.7 15 6.0 21.2 13 6.5 21.6 17 53 . T 11.3 T 86 17.5 13 3.0 188 14 3.5 28.5 16 13.6 257 14 72 26.5 16 8.8 T 10.4 T 19.1 16.2 12 3.1 18.6 16 3.7 352 17 16.9 28.6 17 10.0 30.3 15 7.7 . 7 14.3 32.2 17 11.8 . 1 12.7 . 1 18.3 24.2 15 67 270 17 103 25 6 15 69 · T 95 · T 12.7 253 15 7.8 28.0 15 5.6 16.8 14 3.4 33.5 19 15.0 37.5 19 24.1 36.0 18 14.5 31.5 18 14.7 27.0 16 11.9 38 4 18 20 9 32 3 18 16 7 25 6 13 6.1 41 2 19 23 5 35 6 16 29 2 38 0 19 20 9 27 9 15 7 6 21 3 16 47 25 5 16 8 4 15.5 15 3.6 _____ 28.5 18 8.9 21.6 16 2.6 37.4 19 14.9 26.1 16 8.3 29.5 16 8.3 27.7 17 10 8 _____ 12.2 13 1.3 28.8 16 10.5 18.2 16 3.4 _____ 31.3 16 11.3 8.4 11 10 30.3 16 9.9 31.0 18 11.3 _____ 277 15 7.5 7 11.9 237 17 4.3 28.3 16 8.7 - 320 1711.1 23.2 16 6.7 18.8 15 H.7 16.3 14 3.3 41.8 18 23.6 . T 16.5 32.2 17 10.9 21.5 14 5.1 . T 6.9 240 15 8.1 10 167 15 45 23.3 17 9.2 13 7 11 2.4 165 14 58 18.6 16 4:5 23.3 16 5.2 T 12:1 25.8 15 5.2 ____ 23.7 16 6.5 247 14 69 11 19.7 14 40 19.2 15 43 33.0 17 11.4 . T 6.1 _____ 27.7 16 7.6 T 15.8 30.1 15 9.3 36.7 18 24.6 30.7 16 9.3 38.1 20 29.1 29.0 17 15.6 22.6 15 63 12.1 12 1.9 13.0 13 3.1 - 16.4 11 1.8 25.6 17 9.4 36.3 18 15.0 T 13.8 T 8.8 8.2 10 0.4 287 16 10.4 30.0 17 11.5 19.7 16 5.1 25.3 16 6.8 28.7 16 8.7 36.0 18 17.9 32.0 16 10.2 40.5 18 18.3 22.8 16 6.3 T 7.2 31.7 17 10.8 22.7 15 5 6 24.5 15 5.1 34.3 17 13.4 24.2 16 5.5 425 18 22.5 20.3 16 5 6 15 3 13 2.7 20.8 16 4.6 31.5 17 16.5 25.8 15 8.1 24.2 15 8.2 28.1 15 4.2 22.3 15 5.4 20.5 16 4.8 28.6 15 9.0 32.5 17 10.4 19.3 15 3.9 24.8 i5 8.3 26.7 i8 7.6 18.9 13 5.5 11 0 14 1.5 27 0 16 7 0 22 4 15 57 27 6 16 9 4 15 0 13 2 1 26 4 17 8 9 · T 5.3 27 3 18 14 5 23 1 14 4 4 34 4 16 20 7 22.0 15 4 b 13 0 14 27 21 b 14 45 T 2.2 21.5 14 5.0 410 18 21.0 350 17 11.0 201 16 57 250 17 12.2 32.0 16 13 4 33 7 18 14 6 20.2 15 3.9 22.7 15 6.1 248 16 6.6 23.7 17 6.8 24.7 16 5.0 273 17 5.1 35.0 16 16.0 203 15 6.7 25.5 18 8.9 21.7 16 6.4 248 16 72 374 19 15 6 36.5 19 13.7 40.8 19 22.1 38.2 18 15 4 21.0 15 4 4 2 15 16.0 13 2.1 21.0 14 3.4 244 16 72 35 1 17 16.4 T 13.0 349 17 13.6 20.0 15 44 22.0 15 5.3 . T 4.8 353 16 15.4 22.0 14 3.6 242 15 9.3 27.3 16 9.6 25.2 17 9.0

T 11.2 28.3 16 89 25.6 17 7.3 21.2 17 6.0 20.7 16 16.4. 22 340 16 10 7 310 17 12 8 320 17 9 2 230 17 4 7 317 18 14 5 16 7 10 2 4 26 5 16 6 4 43 3 16 14 8 24 6 16 60 418 19 225 T 13 3 33 4 16 9 4 360 17 128 21 3 15 47 261 16 77 T 62 25 216 10 2 28 5 17 15 5 225 17 55 T 25 15 3 15 28 T 62 124 325 18 14 5 24 0 15 4 3 227 14 5 5 206 16 5 0 390 16 57 137 11 20 34 4 17 126 402 16 162 - 238 14 46 262 16 97 33.3 16 9 4 36 6 19 177 . T 5 9 30 7 20 11 1 36.2 18 12.5 240 17 8.6 34 4 17 14 1 37 7 18 20 1 33 4 18 15 1 35.2 18 260 380 16 17 3 27.9 15 63 33.7 16 9.5 245 14 5.4 9.0 9 07 31.1 17 11.3 . T 10.8 33.2 16 14.5 _____ 35.6 17 16.8 . T 8.5 35.9 18 20.3 257 16 65 262 16 77 227 16 65 248 16 86 348 17 16.4 - 279 16104 370 2023 8 276 16 51 282 17 67 -26.8 17 7.6 305 18 74 103 10 15 26 6 17 9.7 25.8 15 6.2 16.0 13 19 14.3 14 1.9 Tyo 26.3 16 70 496 1930 9 307 1711 192 14 31 326 17126 303 17 107 247 15 52 30217 101 . + 110 - 446 19260 33.8 18 11.9 36.0 17129 242 16 99 18.0 15 48 374 18 25.6 31.3 17 15.6 43.5 17 227 F T 14.4 38.6 19 16.7 36.5 17 11.1 263 17 9.0 23.7 15 6.5 6.8 9 0.5 277 17 13.9 33.1 16 12 6 19.7 15 4.1 49.7 19342 403 18 14.9 . T 59 34 4 17 14.5 23.5 15 6.4 28.7 17 8.7 32 9 1.0 21.5 15 6.0 17.0 14 2.5 18.2 16 5.0 26.3 16 6.8 28.8 16 10.2 20.5 16 19 4 43.5 17 20.2 37.5 18 14.3 29.2 17 11.6 33.0 18 14.8 33 40.0 18 14.5 19.8 16 6.9 14.2 13 3.1 12.3 12 1.6 13.7 13 1.7 33.2 16 7.6 18.5 15 4.1 23.5 16 4.8 22.0 13 3.7 261 16 6.7 29.7 18 16.8 286 17 140 285 16 118 238 16 65 91 12 10 30 1 16 11.2 11 0 13 28 . T 43 23.8 14 6.1 25.3 16 10 6 287 18 117 20-7 15 66 11:2 13 1.6 203 15 5.2 11.1 11 1.1 148 11 25 25.0 16 7.4 20.5 14 46 18.0 14 28 165 13 2.1 31.8 17 13.9 21.8 17 5.1 37 26.1 16 6.8 35.3 17 17.0 19.7 13 H.H = 22.0 16 H.H 28.7 16 9.5 T 15.1 24.3 15 69 242 16 7.8 25.0 17 9.9 242 15 H.H 37 39.0 19 17.4 317 17 11.2 250 16 10.0 30.7 17 11.6 24.8 15 74 1 13.7 317 17 17 16 . T 21 33 4 17 73 228 15 5.8 205 15 6.5 38 39 39 31.0 17 82 278 17 11.5 21.6 15 6.6 203 14 37 272 16 10 1 18 8 15 49 250 16 5.0 30 7 16 10 5 361 17 15 8 297 17 10.0 19 6 17 4.6 41 6 18 201 27 2 18 74 244 16 41 261 17 11·1 14·0 14 3·0 33·31] 14·1 22·2 15 4·1 23·5 16 50 19·2 15 6·1 T 99 208 16 5·4 240 16 8.0 43.4 17 29.3 39.6 18 14.7 T 4.7 19.7 15 3.6 27.5 11.8 14.3 12 1.2 10.4 13 2.4 35.0 16 9.5 19.7 13 3.9 38.2 17 12.4 39.4 17 16.5 15.3 15 3.7 21.8 15 5.3 26.7 17 7.9 26.0 18 13.9 29.2 16 13.0 24.1 16 6.9 25.3 16 76 · T 10.8 30.3 17 7.6

1	45	24.0	15	6-1	25.5	16	6.7	100	-		286	וח	8.3	33.1	if	16.0	30 5	19	160	360	17 1	1 - 5	37.0	18 19	0 3	0.2	17 13	3.7 3	3.7	18 13	. 7	423	E 2		
	46		T	6.4	25.7	17	10.8	30.7	16 1	15.1	20.7	10	5.5	47.3	17	26.5	29.8	15	8.9	294	17 1	3.3	17.2	15 3	7 3	1 - 8	19 11	1.4 2	25.4	19 8	7 3	30.2	18 1	0 8	
1	41	30.3	17	8.4	27.7	17	7.6	28.0	15	8-1	36.3	18F	19.0	20.7	15	4.9	22.1	15	3.8	23.5	17	7.7	23.4	17	P-8 3	9.7	1918	.9 2	25.0	16 8	.2 -	_			
1	48	21.0	14	4.1	27.4	17	9.5	32.1	18 1	6.6		T	7.4	28.7	17	13.5	23.5	15	6.4	25.8	16	9.4	25.6	17	3.2		1 17	1.2 3	2.5	18 10).3	29.7	171	45	
	40	24.6	in	8.6	25.1	15	8.9	27.3	14	7.2		T	3.1	96	12	1:4	16.8	10	3.8	15.4	16	2.2	30.2	17 10).2 2	4.6	10 4	. J K	0.0	14 0	.2	23.2	14	6.9	
	50	32.5	16	11.5	27.2	17	9-8	22.0	16	10.2	32.2	16	11.5		\mathcal{T}	57	28 0	16	4.3	18.0	13	23	31.2	17 10	ח פיכ	5.2	IN OF	t J Z	.0	110	1 1	200	0	1.0	
į.	51	37.1	17	14.7	30.5	17	11 .0	30.0	17	11-1				14.7	13	2.4			-	31.5	17 1	2.0		1 2	-1 2	21:7	15 4	7 2	0 3	16 10 F,	0	20.4	15	5.2	
1	52	27:0	16	8.5	24.0	16	7.4	-	Ť	9.1	29.5	17	12.8	22.8	16	4.8				22-4	15	7.2				32.2	18 11	· H 3	603	16 12	9	20.5	.,	J.3	
f	53	32.0	15	9.6	37.0	17	12.8	277	17	7.8	16.8	15	31	23.0	16	7.3	9.9	וט	1.9	10.9	19	2.0	14.5	12 2)·1 K	0.0	14 0	0 1	UL	10 0		-0		11	
į	54			_	-			-18.2	15	5.2	20.4	14	5.6	12-2	15	2.4		-		19.4	14	3.4	8.1	12	0.7 2	26.4	17 9	1.8	9.6	10 0	1		1	1.4	
	55	-			- 15.5	15	47		T	7.3	23.7	15	5.1	18.0	15	5.0	21.8	17	5.3	16.3	13	2.3	177	14 .	3.8	16.8	13 3	5.0 2	8.0	10 4		K4.0	T	4.4	
	56	25.8	17	8.6	29.7	17	10.6		T	8.0	27.9	18	9.1	17.3	14	3.4	10.0	12	1.2		7	1.7				27.0	16 10	0.81	18.1	13 0	O.O	201		9.1	
	57				17.2	16	4.2	13.4	14	2.5				22-1	15	4.5				10.2	13	0.9			7	20.3	15 3	3.1	21.0	14 1	+4	3U.H	10 1	1.4	
	58	11.7	11	1.3	18.0	12	2.9	15.0	1H	2.7	15.2	15	3.9	26.0	17	6.4	15.0	14	3.5	18-8	19	42	14.0	10 2	5.6	58.1	16 (F	0.8 2	22.8	16 (0.0	Ω.3	1	2 6 H. O	
	59	11.7	T	9.5	19.0	15	4.8		T	9.4	19.5	10	5.2	ı C oı		2.4		-		10.8	14	3.0	24.8	16	0.1	23.3	15 G	1.8 2	0.0	14 0	7	25.0	IF.	0.0	
	60	Name and			28.1	16	14-3	7.8	10	1.0	11.4	10	1.7	10.1	14	2.6	12-1	10	1.4				14.1	14 1	C. 0 K	_0.7	10	7. D V	JF 0	10	10	KU 0	114	7 0	
	61	-	Ŧ		30.6	17	12.6	17.2	16	3.6	21.5	17	6.0	18.7	16	4.9	27.R	77	4.7		. 6	0.00	CHU	17	3 2	CZ. 0	'1	1.1	01	1 12	2.6		7	7 0 5 . o	
	62	19.3	15	H-0	20.4	16	4.8		П		30.1	18	10.3	26.3	17	8.1	222	7	9.5	14.7	10	2.8	16.0	10	1.2	200	12 1	2 1	2 2	1 10	. 0	2~~	18 2	1.7	
-	63				14.2	13	2.7	-		-	21.4	15	0.5	19.7	10	4-1	1-38	1	6.6	15.0	114	Z.H	17.8	.1	5.0	EC.E	17 6	0.4	1.2	15	h ~	20.3	18 1	3.1	
Н	64	32.2	16	11.4		T	5.1	17.9	10	47			2.0	12:3	11	1.0		7	2.9	14.6	12	2 ~	20.7	16	7	0.0	10 6	3.1.	ZH-U	7	2.0	33.n	F	2.2	
	65		-		14.5	13	3.0	14.2	14	3.6	15.2	11	3.2	12.5	12	2.2	7	de	1	10.0	F	12.1	10.0	.1	5.0	1.1.9	10 0	2.2	20.0	18 16	75	16.3	14	3.5	
	66	36.3	17	16.8	27.5	16	9.7	28.8	16	9.0	16.0	14	H-1	220	16	4.9	"	2.5		02.0	7	E 0	24 8	10	8.0	5.4	15	1.0 2	28.1	16	8.0	20.5	17	~1.3	
	67	36.3 29.7 19.6	16	8 8	340	17	18.4	29.0	16	8.0	11.0	11	2.9	22.8	/6	H.9			Te .	20.5	15	5.0	15.5	15	3.2	13.0	13 2	2.5	22.1	ומו	b.5	32.~	17	0.0	
	68	19.6	10	43	26.0	16	7.4	14.0	144	3.8	19.5	10	0.3	7.0	YF	U-1-	2 2:2	15	4.1	14.~	15	5.0	1.5	15	3.3	30.5	F	5.1		T	L:c3	23. H	16	5.8	
	64	30.0		0.2	18.0	14	4.1	30.0	16	6.0	24.2	. r	1.0	02.2	17	4.2	20.4	15	6.3	271	17	~.3	14.0	10		20.2	16 4		18.8	15	5.2	245	ות	4.9	
		30.0	10	4.2	21.0	10	0.0	H	1	0.8	221	10	3.0	15.2	13	3.8	12.2	13	1.1	28.2	16	5.5	2 0 2	15	3. h	30.7	FINE	0.0	30.8	F 12)-1	25.7	15	6.2	
	71	125	. 0		- 16.0	14	3.3	29.8	, la	. 2 5	CO.H	16	J.0	13.3	13	1. 6	20.6	11,	4.0	26.5	16	3.0	27.3	14	7.1	28.5	FI I	3.1	37.0	10	6.1	26.0	19	7.4	
	72	23.3	10	10.0	41.7	20	CH-0	14.0	13	2.2	26.H	15	5.5	16.5	14	2.6	10 2	14	3.6	353	18	13.4	22.8	15	5.4	27.6	18	5Q 8	34.2	18 11	.7	21.8	16	49	
	73	0.	.1	2.0	2/3	18	4.0	11.8	12	1.1.	10.0	15	5.1	10.0	10	1.1	19 ~	T	20	18 0	12	2.0	10.3	15	3.4	E-85	16	8.7	32-7	18 1	0.1	26.0	14	6.4	
	74		114	. 4. 4	31 4	10	11.0	11.9	IR	I. W	19.0	.5	b.4	14.0	15	2.0	32.7	F	16.8	17.L	15	5.1	21.7	16	b 4	3 o.h	18 1	0.5	31.5	17 18	3.4	27.4	16 1	1.8	
	75		16	10	- 01.7	12	10.0	22.5	,,	1.4	22.0	10	7 1	20.2	F	9.5	24.2	17	7.8	1.77	T	1.4	20.1	14	h. h.	22.5	15	6.0	28.3	16 9	: วี	26.3	16	8.2	
	76	200	16	06	28.~	15 ×	13.8	23.7	.6	0.6	0 0	10	0.0	21.5	14	5.H	22.0	15	6-1	28.8	17	6.7	26.2	15	5.4	260	F	8.5		T 2	0.4	22.5	15	7.5	
	77	28.0	15	8.4	12.4	17	1.0	23.1	10	4.0	9.0	11	1.0	28.2	F	10.3	237	16	7.1	247	16	5.7	24.4	14	5.6	34.6	16 1	8.6 1	2.1	12	1.7	23.7	17	8.0	
	78	20.1	13	0 17	20.0	F	0 2	18.0	15	3.7	35.2	F	16.2	2.0-2	15	8.2		T	2.9	28:3	17	7.0	21.2	13	4.6	21.2	15F	อ์∙3 a	1.3	14	6.0	25.8	16	10.8	
	79	10.0	, 2		50 M	10	13.2	18.0	16	3.0	12.1	17:	2.5	15 n	14	2.4	22.7	14	6.6	17.2	14	2.8	25.6	16	5.3	21.9	15 H	4.5	8 · q	10	1.1	246	17	6.7	
	81	10.0	7	1.4	272	16	00	25.2	11.	1. 1	11 2	12	1.1.	27.7	17	10.3	24.2	15	5.7	1 ~	T	5.7	24.3	15	5.6	22.4	18	5.1	39.8	172	1.5	22-5	17	8.2	
	82	9	T	35	26 ~	10	12.5	28.8	16	8.0	21 ~1	17	7.8	304	17	12.5	157	13	2.4	04	T	4.0	16.2	14	3.0	17.3	16	4.0	28.0	17 11	. 4		1		
	RR	35-5	16	11.00	38.5	18	16.0	337	F	15.h	14.8	13	26	-	T	6.5	17:5	1h	3.6	265	17	6.4	17.0	14.	4.5	10.8	11	1.42	25.9	16F S	3.3	23.1	17	77	
	84		7	10.1	35.1	16	10:4	36.5	17	11.6	31.1	FY	10.2	20.3	13	35	19.5	15	2.7	26.5	18	8.4	1			25.4	15	6.4	28.8	16	9.3	17.0	15	3.8	
	U M		-	101	00.1	10	10 14	900	17	IH. D	01.1	-	10 0				1														1.				