Numerical Errors

Part 1: Introduction and Roundoff Errors

Outline (Part 1, Part 2)

- 1.1: Definitions
- 1.2: Roundoff Errors

- 2.1: Truncation Errors
- 2.2: Total Numerical Error

1.1: Definitions

Case Study: Vancouver Stock Exchange

- Vancouver Stock Exchange: index initialized at 1000 in January 1982
- Every time a stock price changed (~2,800 times/day), the index was recalculated to 4 decimals but only printed to 3
- Computer *truncated* 4th digit instead of *rounded*, causing the index to fall by ~1 point/day → ~20 points/month
- Error propagated over time:
 - 12 months: index = 725 instead of 960
 - 22 months: index corrected from 524.811 to 1098.892

Other Case Studies

- Patriot missile defense system failed to intercept a missile due to a number conversion error
- Ariane 5 rocket self-destructed
 36 seconds after liftoff due to an overflow error
- German Parliament makeup changed due to improper rounding

- Accuracy: how closely the computed value agrees with the true value
- Precision: how closely individually computed values agree with each other

A: accurate, imprecise

B: accurate, precise

C: inaccurate, imprecise

D: inaccurate, precise

Absolute error:

$$|E_t| = |true - approx| \tag{3.1}$$

Shortcoming: doesn't account for order of magnitude

• True relative error/percent error:

$$|\mathbf{e}_t| = 100\% * \frac{|true - approx|}{true}$$
 (3.2)

• Example: You walk 100 ft but your phone's GPS measures 99 ft. The next day, you walk 10 ft but the GPS registers 9 ft. Compute and compare E_t and e_t .

	100 ft	10 ft
$\boldsymbol{E_t}$	100 - 99 = 1 ft	10 - 9 = 1 ft
e_t	$100\% * \left \frac{100 - 99}{100} \right = 1\%$	$100\% * \left \frac{10 - 9}{10} \right = 10\%$

- E_t and e_t require knowledge of the true value, but this is unknown in most practical applications
- Introduce percent relative error:

$$|e_a| = 100\% * \left| \frac{present - previous}{present} \right|$$
 (3.3)

• Iterate to a prespecified tolerance (stopping criterion) e_s :

$$|e_a| \le e_s \tag{3.4}$$

• Percent relative error needed to achieve *n* significant digits of accuracy:

$$e_s = (0.5 * 10^{(2-n)})\%$$
 (3.5)

• Example: What e_s is required to achieve 4 digits of accuracy?

$$e_s = (0.5 * 10^{-2})\% = 0.005\%$$

1.2: Roundoff Errors

 Roundoff errors arise because digital computers cannot represent some quantities exactly

- 2 major facets of roundoff errors:
 - Digital computers have *magnitude* and *precision* limits on their ability to represent numbers
 - Certain computations are highly sensitive to roundoff errors

- Bit: binary digit
- Numbers are represented using positional notation

$(523)_{10}$							
100	10	1					
5	2	3					

$(10110)_2 = (22)_{10}$							
16	8	4	2	1			
1	0	1	1	0			

• MATLAB expresses numbers using 64 bits:

- f: mantissa; $0 \le f < 1$
- e: signed exponent; $-1022 \le e \le 1023$
 - Signed exponent: 0 = positive, 1 = negative

- Largest (binary) positive number = $+1.111 \dots 111 \times 2^{+1023}$
 - realmax = $1.7977 * 10^{308}$ (base 10)
- Smallest (binary) positive number = $+1.000 \dots 000 \times 2^{-1022}$
 - realmin = $2.2251 * 10^{-308}$ (base 10)
- Largest (binary) negative number = $-1.111 \dots 111 \times 2^{+1023}$
- Smallest (binary) negative number = $-1.000 \dots 000 \times 2^{-1022}$

$$n = \pm (1 + f) \times 2^e$$

- Finiteness of *f* is a limitation on *precision*
 - 52 bits \rightarrow ~15-16 decimals
- Finiteness of *e* is a limitation on *range*
 - 11 bits \rightarrow -1022 to +1023
- Any numbers that don't meet these limitations must be approximated by ones that do
- Machine epsilon: maximum relative error
 - $eps = 2^{-52} = 2.2204 * 10^{-16}$

- Some circumstances invoking roundoff errors:
 - Subtractive cancellation: subtracting 2 nearly equal numbers
 - Cumulative errors: a small roundoff error can cascade in subsequent computations
 - Adding a large and small number: digits are lost when a small number's mantissa is shifted to the right to be the same scale as the large number