13. Übungsblatt

- (1) SCHWACHE KONVERGENZ IN $\ell^2(\mathbb{N})$: Eine Folge $(x_n)_{n\in\mathbb{N}}$ in einem Banachraum X konvergiert schwach gegen ein $x\in X$, falls $\langle x^*, x_n-x\rangle\to 0$ für alle $x^*\in X^*$.
 - (a) Zeigen Sie, dass $(e_n)_{n\in\mathbb{N}}$, e_n der n-te Standardbasisvektor, in $\ell^2(\mathbb{N})$ schwach, aber nicht in der Norm, gegen Null konvergiert.
 - (b) Zeigen Sie, dass eine Folge $(x_n)_{n\in\mathbb{N}}$ in $\ell^2(\mathbb{N})$ genau dann schwach gegen ein $x\in\ell^2(\mathbb{N})$ konvergiert, wenn es ein C>0 gibt mit $||x_n||\leq C$ und für alle $j\in\mathbb{N}, x_n(j)\to x(j)$ für $n\to\infty$ gilt (mit der Notation $x_n=(x_n(j))_{j\in\mathbb{N}}$).

 Hinweis: $(\ell^2(\mathbb{N}))^*=\ell^2(\mathbb{N})$ und der Satz von Banach-Steinhaus.
- (2) NORM SELBSTADJUNGIERTER OPERATOREN: Es sei X ein Hilbertraum und $A \in L(X)$ ein selbstadjungierter Operator.
 - (a) Zeigen Sie, dass $4\operatorname{Re}\langle Ax,y\rangle=\langle A(x+y),x+y\rangle-\langle A(x-y),x-y\rangle$ für alle $x,y\in X$.
 - (b) Verwenden Sie die obige Formel um $||A|| = \sup\{\langle Ax, x \rangle : ||x|| = 1\}$ zu zeigen.
- (3) BILD KOMPAKTER OPERATOREN: Seien X, Y Banachräume und $A \in L(X, Y)$ ein kompakter Operator.
 - (a) Zeigen Sie, dass rg(A) separabel ist (Beweisen Sie zuerst allgemeiner Satz 7.10 aus der Vorlesung).
 - (b) Zeigen Sie, dass rg(A) genau dann abgeschlossen ist, wenn A endlichen Rang hat (Hinweis: Satz von der offenen Abbildung)
- (4) Neumann-Reihe: Sei X ein Banachraum und $A \in L(X)$ mit ||A|| < 1. Zeigen Sie, dass gilt

$$(I - A)^{-1} = \sum_{n=0}^{\infty} A^n$$

und

$$||(I-A)^{-1}|| \le \frac{1}{1-||A||}.$$

- (5) CHARAKTERISIERUNG ORTHOGONALER PROJEKTIONEN: Sei X ein Hilbertraum, $Y \subset X$ ein abgeschlossener Unterraum und $P \in L(X)$ ein beschränkter Operator mit $\operatorname{rg}(P) = Y$ und $P^2 = P$. Zeigen Sie, dass die folgenden Aussagen äquivalent sind.
 - (a) P ist die orthogonale Projektion auf Y.
 - (b) $P = P^*$
 - (c) ||P|| = 1

Hinweis für die Implikation (c) \Rightarrow (a): Verwenden Sie dass für $x \in M^{\perp}$ und $t \in (0,1)$ die Beziehung $P(tx + (1-t)Px) = tPx + (1-t)P^2x = Px$ gilt und den "Satz von Pythagoras", d.h. $||x + y||^2 = ||x||^2 + ||y||^2$ für $x, y \in X$ mit $x \perp y$.