

Systems Engineering

J. Christopher Garner
Electrical Subsystems Lead
NRL
202-767-9075
garner@ssdd.nrl.navy.mil

FAME In-Process Systems Engineering

- Establish Systems Engineering and Integration Team
 - Lead Scientists and Engineers for Each Subsystem, Science Team Chair, Project Scientist, System Engineering Advisors
- SEIT Identifies, Integrates and Validates Requirements
- SEIT Tracks Performance/cost Metrics: Mass, Power, RF Margin, CPU Usage
- Protects Management's Cost, Technical and Schedule Goals

FAME SEIT Systems Engineering and Integration Team

Systems Engineering Insight

- SEIT Team Horizontal Structure Provides Insight to All Project Aspects
- Communication Between Team Members Facilitated By:
 - FAME USNO Website
 - Provides Access to Technical Memo's, Documents (Released and Drafts), Referenced Documents, Meeting Presentations, Design Review Material
 - Weekly SEIT Teleconference (NRL, USNO, LMMS, Others)
 - Technical Interchange Meetings
 - Every Six Weeks, Alternates Between NRL and LMMS
 - Module Reviews
 - Prior to Breadboard Electronics, Review Requirements Allocation, Conceptual Design
 - Peer Reviews
 - SEIT and Outside "Experts" Review Subsystem Design in Detail
 - Subcontractor Design Reviews
 - For Major Procurements; CCD's, Optics, Bus Components
 - Formal Design Reviews
 - Systems Requirements Review December 2000
 - Instrument Preliminary Design Review May 2001
 - Preliminary Design Review October 2001

Peer Review Summary

Electrical Power Subsystem

- 10/10/01 Dr. George Dakermanji APL, Ms. Karen Stewart, Mr. Joe Bolek GSFC

Flight Software

- 5/14-17/01 Mr. D. Oswald, J. VanGaasbeck, E. Andrews

- 10/16/01 IVV Mr. Madhu. Rao, Paul Kirsch, Jack Abraham SAIC

CTDH

- 10/16/01 Mr. John Ruffa, Joe Bolek GSFC, Mr. Tim Meehan, Mr. G.Flach

Mr. Noel Elliot NRL, Mrs. Amy Hurley NRL

Radio Frequency

- 10/12/01 Mr. Gil Herlich NRL, Mr. Paul Morth APL, Mr. Adan Rodriguez GSFC

ADCS

- 10/12/01 Mr. Martin Houghton, Joe Bolek GSFC, Mr. Wayne Dellinger,

Ms. Robin Vaughn, JHU/APL

Thermal Control Subsystem

- 10/12/01 Dr. Wes Ousley GSFC, Mr. George Flach, Mr. Russ Barnes NRL

Mechanisms

- 10/11/01 Mr. Ed Devine Swales, Mr. Roger Farley, Mr. Joe Bolek GSFC,

Mr. Russ Barnes, Mr. Bill Purdy NRL

Structures

- 10/10/01 Mr. Ted Sholar, Steve Vernon APL, Roger Farley GSFC

Reaction Control Subsystem

- 10/10/01 Mr. Gary Davis, Joe Bolek GSFC, Dr. Larry Mosher APL,

Mr. R. Wojnar NRL

Requirements Allocation & Verification

FAME Requirements

<u>Allocation</u>

Mission

- Near GEO Orbit
- 5 Year Life
- Radiation: 18 krad Total Dose

Mechanical

- Shade the Instrument
- 7425-10 Launch Loads, 10 ft. Fairing
- Sun Shield Flatness
- Spin Axis Alignment
- Long Term Stability

Thermal

- FPA < 90°C
- Electronics 0 50°C
- Instrument Interface 0 -40°C
- MLI Flatness 0.25" Over

Radio

- 2kbps Uplink
- 500kbps Downlink
- CCSDS
- 1 kbps Emergency Downlink
- STDN/NRL Compatible

Science

- Position, Proper Motion, Parallaxes Of 40 Million Stars
- Accuracy of 50 μAs @ 9th vismag
- Accuracy of 500μAs @ 15th vismag

MODA

- Operate FAME On Orbit
- Real-Time, and Stored Commanding
- Telemetry Display
- Archive Data
- Analyze & Reduce Data
- Produce Star Catalogs

Flight SW

- Resource Management
- Science/Engineering Data Collection
- Guidance Navigation & Control
- Attitude Determination
- FDIR

Instrument

- Dual Aperature Telescope
- CCD Array Using TDI
- Basic Angle Stability

ADCS& RCS

- Spin Period 40 +/-4 min
- Sun Angle 35 +/- 5 deg
- Precession of Spin Axis Using Solar Pressure
- Cross Scan Accuracy
- In Scan Accuracy

CT&DH

- Execute, Store Commands
- Provide Telemetry
- Provide Science Data Buffer
- Instrument Control
- Star Catalog

EPOS

- 500W EOL
- Energy Storage
- Power Distribution
- Ordnance Control

System Trade Studies Performed

Trade	Options	Status	Result
Sun Angle	35°, 45°, 50°	Closed	35±5°
Precession Backup	Torque Rods, Thrusters	Closed	_
Measurement of Bright Stars	Filters, Start/Stop Tech.	Open	Torque rods
Orbit	Geostationary vs GeoSync Drifting	Closed	105º W, Drifting Eccentric Orbit
Solar Array/Sun Shield	Single vs Multiple Hinges	Closed	OBE-Descope Fixed Solar Array
Data Rates (Function of Science Data)	RF Output/Ground ANT Characteristics	Closed	500 kbps,13 m Antenna
Ground Station Location	BP, DSN, Others	Closed	BP Primary Augmented by DSN
AKM Hole	Leave Open or Cover	Closed	OBE-Descope, No Hole In Descope Design

System Performance Metrics

Performance Metrics Tracking

Performance Metric Budgets Tracked By Systems Engineering

Metric Freque	How Tracked ncy	<u>Responsible</u>	<u>Update</u>
- Mass	Excel Spreadsheet	Ron Mader	Daily, Weekly
- Power	Excel Spreadsheet	Chris Garner	As Required
- CPU	Excel Spreadsheet	Ray Caperoon	As Required
- RF	Excel Spreadsheets	Ed Becker	As Required

PDR Performance Metrics (1 of 7)

Mass

Margins

- Uncertainty in Estimates (Held at Subsystem Level)
- 25% Added to Propellants, 20% on New Designs, 10% on Design Mods, 5% on Off-the-shelf Hardware

- Reserve

- LV Throw Weight Less Mass Est. With Uncertainty (Held at System Level)
- 20% of Observatory Mass (Less Apogee Kick Motor) Desired

PDR Performance Metrics - Mass

(2 of 7)
FAME Performance Metric - M

PDR Performance Metrics-Mass (3 of 7)

Subsystem/Component	Mass Estimate	Uncertainty	Mass W/Uncertainty	Uncertainty
	(Kg)	(Kg)	(Kg)	(%)
Flight Vehicle	1038.76	85.09	1123.85	8.19%
Instrument Assembly	193.60	38.80	232.40	20.04%
Interstage Assembly	557.13	9.06	487.39	1.63%
S/C Bus	288.03	37.23	314.18	12.93%
GFE on Instrument	9.07	2.27	11.34	25.03%
S/C Mechanical	93.64	11.03	104.67	11.78%
S/C Bus RCS Dry	23.34	1.61	24.95	6.90%
S/C Bus RCS Propellant	39.92	9.98	49.90	25.00%
S/C Bus ADCS	9.18	0.46	9.64	4.99%
S/C Bus Mechanisms	21.21	1.96	23.17	9.24%
S/C Bus EPS	46.90	5.78	52.68	12.32%
S/C Bus RF	11.61	1.09	12.69	9.39%
S/C Bus CT&DH	18.28	1.58	19.86	8.64%
S/C Bus TCS	14.88	1.47	16.62	9.88%

Launch Vehicle Capability (7425-10)	1110.00	(Kg)
Mass Estimate	1038.76	(Kg)
Estimated Margin	71.24	(Kg)
Contingency Mass	85.09	(kg)
Reserve	-13.8	(kg)

PDR Performance Metrics-Power (4 of 7)

- Power
 - Instrument Carries 20% Design Contingency
 - S/C Bus Carries 20% Design Contingency

FAME Performance Metric - Pc

PDR Performance Metrics-Power (5 of 7)

- Power Margins
 - + Margin for All Mission Phases
 - (Peak Loads Are msec Duration and Will Be Supported by Battery)

PDR Performance Metrics - RF Margins (7 of 7)

- RF Link Budget
 - 3 dB Margin on All Links Required

<u>LINK</u>	DATA RATE (kbps)	<u>ANTENNA</u>	<u>ORBIT</u>	MARGIN (dB)
Uplink	2	Fore/Aft	GEO	10.6
Downlink	1	Side	GEO	13.6
Downlink	500	Fore/Aft	GEO	3.2
Downlink	250	Fore/Aft	GEO	2.5
Ranging		Fore/Aft	GEO	10.9

Note 1 Side Antenna Are Helix

Note 2 Fore/Aft Antenna Are Waveguide

Note 3 Occurs At Crossover Area Between Fore & Aft Antennas

Interface Identification & Control

S/C Bus to Instrument Electrical Power Interface Block

S/C Bus to Instrument Electrical Control & Data Interface Block

Type M - Telemetry Discete - Level

S/C Bus to Instrument Interface Summary Interface Wire Count

From	То	Type	Wire Count
FSC - IF Card	CCX/AP IF Controller Card #1	Α	6
CCX/AP IF Controller Card #1	FSC - IF Card	В	2
CCX/AP IF Controller Card #1	FSC - IF Card	С	8
CCX/AP IF Controller Card #1	FSC - IF Card	D	8
FSC - IF Card	CCX/AP IF Controller Card #2	Α	6
CCX/AP IF Controller Card #2	FSC - IF Card	В	2
CCX/AP IF Controller Card #2	FSC - IF Card	С	8
CCX/AP IF Controller Card #2	FSC - IF Card	D	8
FSC - IF Card	CCX/AP IF Controller Card #3	Α	6
CCX/AP IF Controller Card #3	FSC - IF Card	В	2
CCX/AP IF Controller Card #3	FSC - IF Card	С	8
CCX/AP IF Controller Card #3	FSC - IF Card	D	8
Oscillator Control Logic	FSC - IF Card	E	2
Oscillator Control Logic	FSC - IF Card	F	2
RIU (Serial)	Heater & Inst HK Controller Card	G	6
RIU and/or FSC Crit (TBD)	Instrument (exact destination TBD)	Н	8
RIU and/or FSC Crit (TBD)	Instrument (exact destination TBD)	1	0
Heater & Inst HK Controller Card	RIU (Serial)	J	6
Instrument (exact source TBD)	RIU (Passive Analog)	K	24
Instrument (exact source TBD)	RIU (Active Analog)	L	4
Instrument (exact source TBD)	RIU (Discrete)	М	0
		Total	124

S/C Bus to Instrument Data/Control Interface

Туре	Name	Signal		Wire Count	Word Size	Clock Rate		
		1	2	3	4		(bits)	Hz
4	CCD Control	Clock	Data	Enable	=	6	33	12,500,000
3	Buffer_Ready	CTS	-	-	-	2	-	~0.50
	CCD 1d Window Data	Clock	Data	Enable	Channel_Act	8	64	12,500,000
0	CCD 2d/Raw Window Data	Clock	Data	Enable	Channel Act	8	64	12,500,000
	Time_Synch_Epoch	Pulse	-	-	-	2	-	~0.10
-	Frame_Synch_Epoch	Pulse	-	-	-	2	-	4096 * row_interval
(J	Commands Serial	Clock	Data	Enable	-	6	17	125,000
Η	Commands Low Level	Pulse	-	-	-	n*2	-	per signal
	Commands High Level	Pulse	-	-	-	m * 2	-	per signal
	Telemetry Serial	Clock	Data	Enable	-	6	16	125,000
K	Telemetry Passive Ana	Resistance	-	-	_	r*2	-	per signal
_	Telemetry Active Ana	Voltage	-	-	_	s*2	-	per signal
М	Telemetry Discretes	Level	-	-	-	t*2	-	per signal
votes:	Type A, C, D, G, J Type A Type B Type C Type C Type D	ype A Odd Parity, Parity Bit is last bit transmitted per word ype B Buffer Ready (clear to send) is active for the duration while the buffer is available for loading ype C Channel Active will remain active on the binned data interface for the duration of a buffer download ype C Channel Active will become active 300 micro-seconds (TBR) prior to transmission of binned data						
	Type D Type H	Channel Active will become active and envelope each frame with a minimum of TBD clock cycles between frames Defined Signals (n = 4): 1 - Instrument Reset A, 2 - Instrument Reset B,						
	Type I Type K Type L	3 - Oscillator A select, 4 - Oscillator B Select Defined Signals (m = 0): TBD Defined Signals (r = 12): 1 to 12 - Instrument Assembly Temperatures Defined Signals (s = 2): 1 - +5V monitor A, 2 - +5V monitor B						
	Type M Defined Signals (t = 0): TBD							

Observatory to Launch Vehicle Electrical Interface Summary

- T-0 Umbilical
 - Power
 - Data
- Loopback for Separation Confirmation

S/C Bus to Instrument Mechanical Interface

- Spacecraft Bus to instrument (NCST-ICD-FM001)
 - Observatory Coordinate System
 - Mechanical Interface Drawing (FM-IC-0005)
 - Instrument Envelope
 - Instrument Fields of View
 - Star Tracker and Antenna Fields of View
 - Instrument to Spacecraft Bus Mounting
 - Star Tracker and Antenna Mounting Interface
 - Instrument Mass Allocation
 - Instrument Center of Mass Requirements (Long/Lateral)
 - Instrument Moments & Products of Intertia
 - Instrument to S/C Bus Mounting Hardware
 - Alignment Accuracies, Responsibilities
 - Reference Structural Design Requirements

S/C Bus to Instrument Mechanical Interface Summary

- S/C Bus to Instrument Thermal Interfaces
 - Surface Optical Properties
 - Nominal Operating Temperature Ranges
 - Short Term Thermal Stability Without Eclipse
 - Thermal Stability Including Eclipse
- Conduction Between S/C Bus and Instrument
- Temperature of Instrument At Interface
- Temperature of S/C Bus At Interface
- Star Tracker/Antenna Thermal Interfaces

Observatory to Launch Vehicle Mechanical Interface Summary

- Delta 7425-10 Launch Vehicle Fairing Envelope
- Delta 7425-10 Payload Adapter Interface

Protoflight Box Test Flow

- Ambient Thermal Cycle & Test
- EMI (If Required)
- Ambient Thermal Cycle & Test
- Conformal Coat & Stake Boards
- Start Acceptance Test Program
- Ambient & Thermal Cycle Tests
- 3 Axis Random Vibration
- Ambient Tests
- Thermal Vacuum Or Thermal Cycles
- Ambient Test
- Complete Burn-In
- Buyoff
- Delivery For System Integration

System Test Outline

- Protoflight Observatory & Flight Vehicle
 - Vibro-Acoustic Testing (Flight +3dB for 1 min/axis)
 - Thermal Vacuum
 - Magnetic Balance
 - EMI/EMC
 - Spin Balance/Mass Properties
 - Pyroshock
 - Electrical Functional & Performance Tests
 - Sensor Alignment (Pre-Test, Post Vibro-Acoustic, Post TVAC)
 - Released Test Procedures
 - Test Sequence, Test Levels & Tolerances
 - Test Article & Test Facility Configuration
 - Responsibilities

Verification Program

J. Christopher Garner
Systems Engineer
NRL
202-767-9075
garner@ssdd.nrl.navy.mil

Requirements Allocation & Verification

FAME Requirements Verification-Verification Matrices

- Goal Is to Assure That Observatory Hardware and Software Will Perform The Required Mission
- To Achieve Goal:
 - Established Complete Set of Performance, Design, Interface and Safety Requirements
 - Verification Matrices
 - Establish Traceability From Requirements Documents to Design Implementation
 - Identify Methods to Verify Each Requirement
 - Individual Observatory Subsystems Responsible for Performing Verification and Documenting Evidence That Boxes/Subsystems Comply With Subsystem Requirements Document
 - Systems Engineering Performs Verification and Documents Evidence That the Observatory Design Complies With Mission Requirements Document

FAME Requirements Verification - Buyoff Procedure

- Utilize NRL Buy-Off Procedure to Support Verification
 - Buyoff Is A Formal Processs For Reviewing, At Pre-Defined Phases, The Work Performed Which Demonstrates Compliance and Establishes Requirements Traceability
 - Performed for Each Box/Subsystem Component And At Selected System Assembly Milestones
 - Ensures All Related Engineering Drawings Have Been Released
 - Verifies H/W Built and Tested to Approved Engineering Requirements
 - Verifies That All Discrepancies, Anomalies, and Nonconformances Have Been Documented and Dispositioned
 - Summarizes Verifications Completed to Level Of Buyoff
 - Copy of Buyoff Package Is Maintained by QA (TBR) to Support Verification and Future Inquiries

Verification Plan

- Verification Methods
 - Analysis
 - Inspection
 - Demonstration or Measurement
 - Simulation
 - Test
- Specific Tests, Analyses, and Inspections Are Presented In Subsystem, System Test Presentations

FAME Requirements Verification - Flight · Conduct Peer Reviews Oftware IV&V

- - Selected Peer Review of Detailed Design & Unit Code
 - Level of Effort Set at 3 Hours Per Week Per Team Member
- NASA/IV&V Effort Is in Its Initial Phase
 - IV&V Is Working With the FSW Team and Reviewing **Documentation**
 - Project Plan Being Worked
 - Long Term Memorandum of Agreement Is Being Worked
- Conduct Independent Reviews
 - NRL Internal Review Performed 5/2001 by Non-Fame **Contractors With Spacecraft SW Domain Expertise**
 - Covered Development Approach, SW Re-Use Strategies, **Design Issues and Test Approach**
- FAME FSW Intermediate Design Review
 - FSW Team Is Planning a Program Supported Intermediate Design Review Focused on the FSW Development Approach, Requirements Baseline, Preliminary Design, Test Approach and Processor Throughput Analysis Results

System Issues/Concerns Summary

Issue	Description	Possible Solutions
Mass Margins	 Current Mass Reserves Not Acceptable Potential for Mass Growth 	Weight SavingsDescopesDifferent Launch Vehicle
Inertia Properties	 Tight Requirements for Transverse Moments of Inertia Tight Requirements for Products of Inertia 	Large Balance MassesAdditional Trim Masses
Optical Properties	 Not All Parameters of Surfaces Available Degradation Properties Unknown (Uniformity) 	 Continue Test Program Size Trim Tabs to Accommodate Worst Case Conditions
Error Budget	 Ability to Meet All Requirements Some Requirements Verified by Analysis Only 	• May Need to Relax/Trade Error Budget Requirements
Optical Thermal Stability	• Time Constant/Stability of Optical System	• Analysis/Modeling of Error Sources

System Issues/Concerns Summary

- Mass Margins Inadequate
- Power Margins Positive
- RF Margins Good
- Processor Margins ?

System Reliability

FAME Reliability Approach

- Maximize Science Return for Given Cost And Schedule
- Selective Subsystem Redundancy to Insure 5 Year Mission
 - Select Subsystems Single String Where Experience Is Low Risk
- Perform Reliability Analyses to Identify "Mission Ending" Effects
 - Adjust Designs Where Possible to Shift Effect From "Mission Ending" to "Degraded Mission"
- Test At Box, Subsystem and System Level
- Strive to Identify and Strengthen "Weak Links" to Mission Success

Reliability Requirements/Analysis

- Original Requirements for Reliability Analyses:
 - Reliability Prediction
 - Reliability Model Included in Charts
 - Reliability Is Estimated With Preliminary Card/parts Count Method, Heritage Hardware
 - Failure Modes and Effects Analysis (FMEA) At S/C Bus to Instrument Interface
 - Worst Case Analysis (Informal)
 - To Be Performed As Schematic Drawings Are Generated
- NASA Subsequent Request to Included The Following Analyses
 - Fault Tree Analysis
 - FMEA At Critical Interfaces
 - Probabilistic Risk Assessment

Reliability Analysis Flow

FAME Reliability Block Diagram

$$\begin{array}{l} \text{Mechanisms} \\ \text{R}_6 \text{= 0.99213} \end{array}$$

MATHEMATICAL MODEL LEGEND

MATHEMATICAL MODEL

RELIABILITY PREDICTION

 R_{FAME} = Reliability of the FAME R_{F} Spacecraft for 5 Year (43,800 hour) mission. R_{T}

R_i = Reliability of the ith FAME subsystem

$$\mathbf{R}_{\text{FAME}} = \mathbf{\Pi} \mathbf{R}_{\text{i}}$$
 for i = 1 to 9

R₁ through R₉ calculations are given in subsequent diagrams.

$$R_{EAME} = 0.68611$$

Reliability Block Diagram -

MATHEMATICAL MODEL LEGEND

 R_{ADCS} = Reliability of the ADCS for 5 Year (43,800 hour) mission. R_i = Reliability of the ith ADCS subsystem $\lambda i = Failure rate of ith unit in$ failures per billion hours (FITS). Tm = Mission time = 43,800 hours DC = Duty cycle (1.0 unless otherwise noted).

Kd = Standby failure rate multiplier = 0.1

MATHEMATICAL MODEL

1 of 2 required

 $R_{ADCS} = R1 \times R2 \times R3 \times R4 \times R5$ R1 = (R1a) + (Ln(R1a)/Ln(R1b))*(R1a)(1-(R1b)) R1 = 0.96121R2 = (R2a) + (R2b)X(1-R2a)R3 = (R3a) + (R3b)X(1-R3a)R5 = (R5a) + (R5b)X(1-53a)Ria or ib of the form: $exp[-(\lambda i) X Tm X (DC + Kd(1 - DC))]$

RELIABILITY PREDICTION

 $R_{ADCS} = 0.95941$ R2 = 0.99878R3 = 0.99948R4 = 0.99987R5 = 0.99999

FAILURE RATE SOURCE

IMU - Vendor Data (Litton) Star Tracker - Clementine TAM - TLD **EMT - Vendor Data (ITHACO)**

Reliability Block Diagram - RCS

MATHEMATICAL MODEL LEGEND

 R_{RCS} = Reliability of the RCS for 5 Year (43,800 hour) mission. R_i = Reliability of the ith RCS subsystem λi = Failure rate of ith unit in failures per billion hours (FITS). Tm = Mission time = 43,800 hours

MATHEMATICAL MODEL

 $\mathbf{R}_{\mathrm{RCS}} = {}_{\mathbf{1}}\Pi^{\mathbf{10}}\,\mathbf{Ri}$

R1, R2, R3, R4, R6, and R7 of the form: $exp[-(\lambda i) \times Qty \times Tm]$ R5, R8, R9, and R10 of the form: $exp[-(\lambda i) \times Qty \times Cycles]$

RELIABILITY PREDICTION

 $R_{RCS} = 0.98990$

FAILURE RATE SOURCE

EED - ICM All others - Clementine

Reliability Block Diagram - Interstage

MATHEMATICAL MODEL LEGEND

R_{Interstage} = Reliability of the Interstage

MATHEMATICAL MODEL

 $R_{Interstage} = R1$

R1 of the form: exp[-(λ/cycle) X Cycles] **RELIABILITY PREDICTION**

 $R_{\text{Interstage}} = 0.98000$

FAILURE RATE SOURCE

Clementine Spacecraft

Reliability Block Diagram - CT&DH and RIU

DC = 0

MATHEMATICAL MODEL LEGEND

 $R_{CTDH\&RIU}$ = Reliability of CT&DH and RIU Subsystems for 5 Year mission.

R_i = Reliability of the ith CT&DH and RIU unit

 $\lambda i = Failure rate of ith unit in failures per billion hours (FITS).$

Tm = Mission time = 43,800 hours

DC = Duty cycle (1.0 unless otherwise noted).

Kd = Standby failure rate multiplier = 0.1

 $\begin{array}{l} R_{\text{CTDH&RRIU}} = \text{RA1 X RA2 X RA3} \\ \text{RA1} = (_{1}\Pi^{6}\text{Ria}) + \\ (\text{Ln}(_{1}\Pi^{6}\text{Ria})/\text{Ln}(_{1}\Pi^{6}\text{Rib}))*(_{1}\Pi^{6}\text{Ria})(1-(_{1}\Pi^{6}\text{Rib}))*(1-(1)) \\ \text{RA2} = (\text{R7a}) + (\text{R7b})(1-(\text{R7a})) \\ \text{RA3} = (\text{R8a}) + (\text{R8b})(1-(\text{R8a})) \\ \text{RA4} = (\text{R9a}) + (\text{Ln}(\text{R9a})/\text{Ln}(\text{R9b}))*(\text{R9a})(1-\text{R1 through R9 of the form:} \\ \text{exp[-(λi) X Tm X (DC + Kd(1-DC))]} \end{array}$

RELIABILITY PREDICTION

 $R_{CTDH\&RIU} = 0.97602$ RA1 = 0.98626 RA2 = 0.99989 RA3 = 0.99896RA4 = 0.99076

FAILURE RATE SOURCE

217F Parts Count Failure Rate Analysis

Reliability Block Diagram - EPS

MATHEMATICAL MODEL LEGEND

 $R_{\rm eps}$ = Reliability of the Electrical Power Subsystem for 5 Year (43,800 hour) mission. $R_{\rm i}$ = Reliability of the ith EPS subsystem λi = Failure rate of ith unit in failures per billion hours (FITS). Tm = Mission time = 43,800 hours

MATHEMATICAL MODEL

 $R_{EPS} = R1 \times R2 \times R3 \times R4 \times R5 \times R6$

R1 through R6 of the form: $exp[-(\lambda i) X Tm]$

RELIABILITY PREDICTION

 $R_{EPS} = 0.89190$

FAILURE RATE SOURCE

Battery - Clementine All others - ICM

Reliability Block Diagram -

MATHEMATICAL MODEL LEGEND

 R_{MECH} = Reliability of the Mechanism **Subsystem for 5 Year** (43,800 hour) mission. R_i = Reliability of the ith Mechanism subsystem λi = Failure rate of ith unit in failures per billion hours (FITS). Tm = Mission time = 43,800 hours DC = Duty cycle (1.0 unless otherwise noted) and R5 of the form:

MATHEMATICAL MODEL

 $R_{MECH} = RA1 X RA2 X RA3 X RA4 X RA5$ RA1 = (R1a) + (R1b)(1 - (R1a)) $RA2 = (R2^3) + 3X (R2^2)(1-R2)$ RA3 = R3a X R3b X R3cRA4 = (R4a) + (R4b)(1 - (R4a)) $RA5 = R5^6$ R1 through R3 of the form: $exp[-(\lambda i) X Tm X DC]$

exp[-(λi) X Cycles]

RELIABILITY PREDICTION

 $R_{MECH} = 0.99213$ RA1 = 0.99999RA2 = 0.99998RA3 = 0.99220RA4 = 0.99999RA5 = 0.99997

FAILURE RATE SOURCE

Trim Mass, Area, and Tabs - 217F for Stepper Motor Pin Puller - Vendor Data **Marmon Clamp - Clementine**

Reliability Block Diagram - Thermal

Applies to:	
Star Tracker Heaters	2
Magnetometer Heaters	2
Thruster Valve Heaters	2
Sun Sensor Heaters	2
Trim Area Motor Heaters	2
Trim Tab Motor Heaters	2
AKM Heaters	2
CATBED Heaters	2
RCS Tank Heaters	2
RCS Lines/Comps Heaters	2
Instrument Survival Heaters	52
Spacecraft Survival Heaters	2
Electronics Deck Heaters	3

Total 27

MATHEMATICAL MODEL LEGEND

$R_{Thermal}$ = Reliability of the Thermal Subsystem for 5 Year (43,800 hour) mission. R_i = Reliability of the ith Thermal Subsystem λi = Failure rate of ith unit in failures per billion hours (FITS). Tm = Mission time = 43,800 hours

MATHEMATICAL MODEL

 $R_{\text{Thermal}} = R^{27}$

RELIABILITY PREDICTION

 $R_{\text{Thermal}} = 0.99999$

R = (R1aXR2a) + (R1bXR2b)X(1-(R1aXR2a)) R1 and R2 of the form: exp[-(λi) X Tm]

FAILURE RATE SOURCE

Heater - ICM Thermostat - 217F

Reliability Block Diagram - RF Function

MATHEMATICAL MODEL LEGEND

 R_{RF} = Reliability of the RF Subsystem for 5 Year (43,800 hour) mission. R_i = Reliability of the ith RF unit λi = Failure rate of ith unit in (FITS). Tm = Mission time = 43,800 hours DC = Duty cycle (1.0 unless otherwise noted.

Kd = Standby failure rate multiplier = 0.1

MATHEMATICAL MODEL

 $\begin{array}{lll} R_{RF} = RA1 \ X \ R4 \ X \ R5 \ X \ R6 \ X \ R7 & R_{RF} = 0.99385 \\ RA1 = (_{1}\Pi^{3}Ria) + (_{1}\Pi^{3}Rib)(1 - (_{1}\Pi^{3}Ria)) & RA1 = 0.99999 \\ R5 = R5a + R5b \ X \ (1 - R5a) & R5 = 0.99957 \\ R6 = (R6a) + (Ln(R6a)/Ln(R6b))*(R6a)(1 - (R6b)) & R6 = 0.99976 \\ R1 \ through \ R7 \ of \ the \ form: \\ exp[-(\lambda i \) \ X \ Tm \ X \ (DC + Kd(1 - DC))] & FAILURE \ RATE \ SOURCE \\ \end{array}$

DSPSE Spacecraft

RELIABILITY PREDICTION

Reliability Block Diagram -Instrument

MATHEMATICAL MODEL LEGEND

R_{instrument} = Reliability of the Instrument for 5 Year (43,800 hour) mission. **R**_i = Reliability of the ith Instrument $\lambda i = Failure rate of ith unit in$ failures per billion hours (FITS). Tm = Mission time = 43,800 hours

MATHEMATICAL MODEL

R_{Instrument} = R1 X R2 X R3 X Rstring R1 = R1a + R1b X (1-R1a)R2 = R2a + R2b X (1-R2a) $R3 = R3a + R3b \times (1-R3a)$ RString = exp[-($_{4}\Sigma^{13} \lambda i$) X Tm] R1 through R13 of the form: $exp[-(\lambda i) X Tm]$

RELIABILITY PREDICTION

 $R_{Instrument} = 0.85884$ R1 = 0.99989R2 = 0.99989R3 = 0.99999RString = 0.85904

FAILURE RATE SOURCE

Lockheed Martin Data

FAME Fault Tree Analysis

- Fault Tree Starts With "Loss of Mission" As the Top Block
 - Key Is Understanding What Defines "Loss of Mission"
 - Understand the Design of the System and How It Will Be Operated
 - Postulate Faults That Could Result in Loss of Mission
- Faults Are Logically Combined and Further Decomposed Until Lowest Desired Level Is Reached
- Lowest Level Should Overlap and Be Consistent With the FMEA.
 Typically the Component Major Function Level
- Requirements for Contingency Procedure and Onboard Fault Detection and Correction Should Be Included to Show Where Action Is Required...
- The Fault Tree Provides a Graphical Format for Organizing Postulated Failures, Understanding Their Consequences on the System, and Understanding Their Relationship to Other Systems and Subsystems

FAME FTA - Loss of Mission

FAME System Fault Tree @ Instrument PDR

FAME System Level Fault Tree

FAME FTA Loss of Power at Instrument PDR

FAME FTA Loss of Power (Present Design)

FAME Failure Modes & Effects Analysis

- Initial FMEA's Will Examine S/C Bus to Instrument Interfaces
 - Subsequent FMEA's Will Examine Critical Observatory Interfaces
- Failure Modes Are Identified and Their Failure Effects Classified According to Their Severity or Affect on the S/C Bus, instrument and Mission
 - Category I
 - Total/Major Loss of Observatory
 - Loss of Critical Power Bus
 - Category II
 - Loss of Redundancy Within the S/C Bus or the FAME Instrument
 - Loss of 30V DPA/APA A Power
 - Category III
 - Acceptable, But Degraded Production of Data of Partial Loss of Redundancy
 - Loss of 1 of 13 CCDs
 - Category IV
 - Failure is Not Sufficiently Serious to Affect Data or Redundancy

FAME FMEA Worksheet

Item	Failure Mode	Local Effects	System Effect	Criticall y
PDU to DPA Power Feed	DPA DC-DC Converter Short to Ground	Open Fuse In PDU	Loss of Redundancy	II
PDU to ADA Power Feed	APA DC-DC Converter Short to Ground	Open Fuse In PDU	Loss of Redundancy	П
PDU to Instrument Survival Heater	Heater Short to Ground	Open Fuse In PDU	Loss of Redundant FSC	II
FSC to Aperature Door 1/2 A Paraffin Actuator	Heater Short to Ground	Open Fuse In PDU	Loss of Redundant FSC	II
FSC to Aperature Door 1/2 B Paraffin Actuator	Heater Short to Ground	Open Fuse In PDU	Loss of Redundant FSC	II
FSC to Instrument CCD Control Clock Line	Line Short to Ground	Loss of Data Channel	Loss of 6 CCD Data	II
FSC to Instrument Serial Command Line	Line Short to Ground	Loss of Cmd Line	Loss of Redundancy	II
1030FAME PDR Sys Eng 58	Line Short to Ground	Loss of Cmd	Loss of	- 11

Systems Reliability Backup

FAME FTA-Loss of Comm

FAME FTA Inability to Point Instrument At

FAME FTA Over/Under Temperature at Instrument PDR

FAME FTA Over/Under Temperature (Present

