

Кейс второго этапа Олимпиады

Задание

Планируется сооружение пригородной распределительной электрической сети напряжением 10 кВ. На рисунке 1 показано расположение питающей подстанции (обозначена квадратом) и узлов нагрузки (обозначены точками). Часть территории, на которой проектируется электрическая сеть, покрыта лесом (обозначены ёлочками). Шаг координатной сетки по вертикали и горизонтали составляет 500 метров. Для обеспечения электроснабжения потребителей все узлы нагрузки должны быть присоединены к питающим подстанциям.

Рисунок 1 — Расположение питающих подстанций и узлов нагрузки

Линии электропередачи (ЛЭП) не идеальные и иногда повреждаются. Это приводит к коротким замыканиям (КЗ), отключению потребителей и нарушению электроснабжения. Одинаковый по времени перерыв электроснабжения для разных потребителей приводит к различному ущербу.

Более надежные схемы электроснабжения требуют больших капиталовложений. В менее надежных схемах – больший ущерб от нарушений электроснабжения.

Необходимо выбрать оптимальную схему электроснабжения, обеспечив баланс между капиталовложениями и ущербом от нарушений электроснабжения.

Надёжность электроснабжения

Будем считать, что повреждаться могут только линии электропередачи. Это справедливое допущение, поскольку в реальных электрических сетях линии отключаются значительно чаще, чем другие элементы системы. Это связано с тем, что линии имеют большую длину и наиболее подвержены различным внешним воздействиям. Надежность элемента сети определяется двумя основными показателями: частота отключений и время ремонта.

Частота отключений обозначается \lambda и задается удельной величиной. В последующих примерах будем считать частоту отключений равной 0,05 (год·км) $^{-1}$. Единицы измерения (год·км) $^{-1}$ читаются «раз в год на километр». Это можно понимать так, что линия длиной 1 км отказывает в среднем 1 раз в 20 лет или что линия длиной 20 км отказывает в среднем 1 раз в год. Количество отказов прямо пропорционально длине линии. Для того, чтобы определить частоту отключений линии произвольной длины, надо ее длину умножить на удельную частоту отключений. Например, частота отключений линии длиной 5 км составляет $\lambda = 5.0,05 = 0,25$ год $^{-1}$ (читается «раз в год»).

После того как линия отказала, ремонтная бригада приезжает на место повреждения, выполняет переключения, если это необходимо, затем ремонтирует линию. В примерах будем считать, что время прибытия на место повреждения и выполнение переключений занимает 1 час, время ремонта линии — 5 часов.

Таким образом, после повреждения линия находится в неработоспособном состоянии 1 + 5 = 6 часов. Это означает, что через линию невозможно передавать электроэнергию, и все потребители, находящиеся за местом повреждения, не получают электроэнергию в течение этого времени.

Рассмотрим в качестве первого примера нерезервированную схему, приведенную на рисунке 2.

Рисунок 2 — Нерезервированная схема

В распределительных сетях выключатель (В) располагается в начале отходящей от подстанции (ПС) линии. Если в сети происходит короткое замыкание, выключатель автоматически отключается. В линии 1–2 со стороны узла 1 установлен разъединитель Р12, который ремонтная бригада может размыкать и замыкать вручную. Изначально разъединитель Р12 замкнут.

Рисунок 3 — Состояние схемы после КЗ

За 1 час ремонтная бригада приезжает на место повреждения и отключает разъединитель (Р12) в начале поврежденной линии. После этого на питающей подстанции включают выключатель, и электроснабжение потребителей в узле 1 восстанавливается.

Рисунок 4 – Состояние схемы после оперативных переключений

Потребители 2 и 3 не получают электроэнергию, поскольку линия 1-2 повреждена. За 5 часов выполняют ремонт этой линии и восстанавливают электроснабжение потребителей 2 и 3. Таким образом, при отказе линии 1-2 потребитель 1 отключается на 1 час, а потребители 2 и 3- на 6 часов.

Частота отключений линии 1-2 составляет $\lambda_{1-2}=1,5\cdot0,05=0,075$ год $^{-1}$. Средняя продолжительность перерыва электроснабжения потребителя в год определяется как произведение частоты отключений и продолжительности каждого отключения. Из-за повреждений линии 1-2 средний перерыв электроснабжения в год составляет для 1 потребителя 0,075 часа; для потребителей 2,3-0,45 часа.

Поскольку в рассматриваемой сети разъединитель установлен только в начале линии 1–2, то при коротком замыкании на линии 2–3 переключения будут такие же, как и при КЗ на линии 1–2. Отсоединить линию 2–3 невозможно, поскольку в ней отсутствует разъединитель.

Рисунок 5 — Состояние схемы a) после K3 на линии 2—3, б) после оперативных переключений

Общая продолжительность перерыва электроснабжения для потребителя определяется как сумма продолжительностей перерыва электроснабжения от повреждений всех линий.

Расчет удобно проводить в форме таблицы

Таблица 1 – Расчет продолжительности перерыва электроснабжения в нерезервированной схеме

			Линии					
		ПС-1	1–2	2–3	Σ			
Длина, км		2	1,5	1	-			
λ, 1/год		0,1	0,075	0,05	_			
Время восстановления электроснабжения (часов)								
	1	6	1	1	_			
Потребители	2	6	6	6	_			
	3	6	6	6	_			
Средняя продолжительность перерыва электроснабжения (часов в год)								
	1	0,6	0,075	0,05	0,725			
Потребители	ебители 2		0,45	0,3	1,35			
	3	0,6	0,45	0,3	1,35			

На основе общей продолжительности перерыва электроснабжения определяется ущерб. Пусть удельный ущерб для потребителей 1, 2, 3 составляет соответственно 100, 50, 10 тыс. рублей за час. Тогда для первого потребителя годовой ущерб составит $100 \cdot 0,725 = 72,5$ тыс. руб.; для второго $50 \cdot 1,35 = 67,5$ тыс. руб.; для третьего $10 \cdot 1,35 = 13,5$ тыс. руб.

Тогда суммарный ущерб от недоотпуска электроэнергии всем потребителям в сети составляет 153,5 тыс. руб.

Выключатели, установленные в сети, называются реклоузерами (Рк). Они позволяют автоматически секционировать сеть, что приведет к снижению количества отключений у части потребителей. Рассмотрим схему на рисунке 6.

Рисунок 6 – Нерезервированная схема с реклоузером

Реклоузер установлен в начале линии 1–2. При отказе линии 1–2 или линии 2–3 электроснабжение потребителя 1 не нарушается.

Рисунок 7 — Состояние схемы после КЗ

Расчет для этой схемы приведен в таблице 2.

Таблица 2 — Расчет продолжительности перерыва электроснабжения в нерезервированной схеме с реклоузером

			Линии					
		ПС-1	1–2	2–3	Σ			
Длина, км		2	1,5	1	-			
λ, 1/год		0,1	0,075	0,05	-			
Время восстановления электроснабжения (часов)								
	1	6	0	0	_			
Потребители	2	6	6	6	_			
	3	6 6		6	-			
Средняя продолжительность перерыва электроснабжения (часов в год)								
	1	0,6	0	0	0,6			
Потребители	2	0,6	0,45	0,3	1,35			
	3	0,6	0,45	0,3	1,35			

В нерезервированных схемах при любых КЗ в сети часть потребителей остается отключенной на время ремонта. Для снижения продолжительности перерыва электроснабжения применяют резервированные схемы. Пример петлевой резервированной схемы показан на рисунке 8. Разъединитель Р23 в нормальном режиме разомкнут.

Рисунок 8 – Петлевая резервированная схема

Резервированные схемы всегда работают в разомкнутом режиме, чтобы в случае КЗ на линии отключалась только часть потребителей.

Рисунок 9 — Состояние схемы после КЗ

При отказе линии 1—2 отключится выключатель В1 на подстанции. Потребители узлов 1 и 2 потеряют питание. За время оперативных переключений ремонтная бригада отключит с двух сторон разъединители на линии 1—2 и включит разъединитель Р23, обеспечив питание нагрузки 2 со стороны линии 2—3. Питание потребителя 1 будет восстановлено включением выключателя В1.

Рисунок 10 — Состояние схемы после оперативных переключений

Таким образом, при отказе линии 1–2 потребители узлов 1 и 2 отключаются на 1 час, потребители 3 и 4 не отключаются.

Таблица 3 — Расчет продолжительности перерыва электроснабжения в резервированной петлевой схеме

		ПС-1	1–2	2–3	3–4	4–ПС	Σ
Длина, км		2	1,5	1	1,5	1	_
λ, 1/год		0,2	0,15	0,1	0,15	0,1	_
Время восстанов	Время восстановления электроснабжения (часов)						
	1	1	1	0	0	0	_
Потробитоли	2	1	1	0	0	0	_
Потребители	3	0	0	1	1	1	_
	4	0	0	1	1	1	_
Средняя продол	жительно	сть перерыва :	электроснабже	ения (часов в г	од)		
	1	0,1	0,075	0	0	0	0,175
Потроблитоти	2	0,1	0,075	0	0	0	0,175
Потребители	3	0	0	0,05	0,075	0,05	0,175
	4	0	0	0,05	0,075	0,05	0,175

При использовании в резервированной схеме реклоузеров, возможно автоматическое переключение части схемы или отдельного узла нагрузки на питание с другой стороны. Для этого необходимо не менее 2-х реклоузеров.

Рисунок 11 – Резервированная петлевая схема с реклоузерами

При отказе линии ПС—1 или 1—2 отключается выключатель В1. При отсутствии напряжения все включенные реклоузеры отключаются. В данном случае отключается реклоузер Рк1. После этого включается нормально отключенный реклоузер Рк2 и восстанавливается электроснабжение потребителей узлов 2 и 3. Это занимает несколько секунд. Электроснабжение потребителя 1 восстанавливается за время оперативных переключений.

Рисунок 12 — Состояние схемы a) после K3 на линии 1—2, б) после оперативных переключений

Если отказ на линии 2–3, то отключается реклоузер Рк1. Реклоузер Рк2 включается на короткое замыкание и снова отключается. Электроснабжение потребителей в узле 1 не нарушено. Электроснабжение потребителей в узлах 2 и 3 восстанавливается за время оперативных переключений.

Рисунок 13 — Состояние схемы a) после K3 на линии 2—3, 6) после оперативных переключений

Таблица 4 — Расчет продолжительности перерыва электроснабжения в резервированной петлевой схеме с реклоузерами

				Линии			
		ПС-1	1–2	2–3	3–4	4–ПС	Σ
Длина, км		2	1,5	1	1,5	1	_
λ, 1/год		0,1	0,075	0,05	0,075	0,05	_
Время восстановления электроснабжения (часов)							
	1	1	1	0	0	0	_
Потробитоли	2	0	0	1	0	0	_
Потребители	3	0	0	1	0	0	_
	4	0	0	0	1	1	_
Средняя продоля	жительно	сть перерыва	электроснабж	ения (часов в г	-од)		
	1	0,1	0,075	0	0	0	0,175
Потробитоли	2	0	0	0,05	0	0	0,05
Потребители	3	0	0	0,05	0	0	0,05
	4	0	0	0	0,075	0,05	0,125

Надежное электроснабжение одного узла нагрузки в резервированной сети может быть реализовано за счет установки с двух сторон от него реклоузеров, один из которых замкнут, другой — разомкнут. При отказе любой линии на рисунке 14 электроснабжение потребителя 2 восстанавливается за несколько секунд.

Рисунок 14 — Резервированная петлевая схема с автоматическим вводом резерва для узла нагрузки 2

Линии электропередачи

В пригородных распределительных электрических сетях линии электропередачи, как правило, выполнены в воздушном исполнении.

Провода воздушных линий электропередачи могут быть неизолированными, тогда линия обозначается ВЛ, или изолированными, тогда линия обозначается ВЛЗ (воздушная линия электропередачи с защищенными проводами).

Изолированные провода более дорогие и более надежные. Падение веток на изолированные провода не приводит к коротким замыканиям, на них не образуется наледь, при раскачивании проводов от сильного ветра не происходят короткие замыкания из-за недопустимого сближения проводов разных фаз.

Неизолированные провода подвержены всем перечисленным внешним воздействиями.

Вероятность короткого замыкания на участках ЛЭП, проходящих по лесным просекам, как правило, выше, чем для ЛЭП в городской или открытой местности. Кроме того, прокладка ЛЭП через лес требует дополнительных затрат, связанных с прорубкой просеки.

Проектирование распределительной сети

При составлении схемы необходимо выбрать количество и расположение линий электропередачи, разъединителей, выключателей и реклоузеров. Все узлы нагрузки должны быть связаны с питающей подстанцией через линии электропередачи.

Каждая линия должна быть присоединена к двум узлам. Помимо узлов нагрузки и питающей подстанции можно добавлять дополнительные узлы для разветвления линий.

От подстанции может отходить любое количество линий. В начале линий, отходящих от подстанции, обязательно должны быть установлены выключатели.

Для каждого элемента сети задана стоимость, приведенная к одному году — это сумма, которую необходимо вкладывать каждый год в течение срока окупаемости, чтобы компенсировать затраты на строительство.

Затраты на сооружение и эксплуатацию электрической сети (3) складываются из капиталовложений в строительство (К), издержек на эксплуатацию (И) и компенсации ущерба от нарушения электроснабжения (У). Основной задачей оптимального проектирования распределительной сети является минимизация затрат.

$$3 = K + N + Y \rightarrow min$$

Для линий, реклоузеров, выключателей, разъединителей заданы объединенные значения капиталовложений и издержек, приведенные к одному году (К + И). Ущерб зависит от выбранной схемы электроснабжения и определяется в результате расчета надежности.

Исходные данные

В этом разделе перечислены все необходимые исходные данные для выполнения работы

Схема расположения узлов нагрузки, питающей подстанции и лесной территории показана на рисунке 1.

Удельные частоты отключений ЛЭП с различными проводами, расположенных на различной территории, приведены в таблице 5.

Таблица 5 – Удельные частоты отключений ЛЭП

λ, 1/(год·км)	На открытой территории	В лесу
ВЛ (неизолированный провод)	0,05	0,1
ВЛЗ (изолированный провод)	0,01	0,02

Стоимости сооружения и эксплуатации 1 километра линии на различной территории, приведенные к одному году, указаны в таблице 6.

Таблица 6 – Приведенные к одному году стоимости сооружения и эксплуатации 1 км ЛЭП

Стоимость, тыс. руб. / км	На открытой территории	В лесу
ВЛ (неизолированный провод)	400	450
ВЛЗ (изолированный провод)	500	550

Стоимости установки и эксплуатации коммутационного оборудования, приведенные к одному году, указаны в таблице 7.

Таблица 7 — Приведенные к одному году стоимости коммутационного оборудования

Оборудование	Стоимость, тыс. руб.
Реклоузер, выключатель на ПС	250
Разъединитель	20

Удельный ущерб от нарушения электроснабжения продолжительностью 1 час приведен для всех потребителей в таблице ниже.

Таблица 8 – Удельные ущербы от перерыва электроснабжения

Узел нагрузки	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Уд. ущерб, тыс. руб. / час	50	50	50	100	50	200	50	200	100	100	50	50	50	100

Задание

Для заданного расположения узлов нагрузки необходимо выбрать количество и расположение линий электропередачи, разъединителей, выключателей и реклоузеров. Все узлы нагрузки должны быть связаны с питающей подстанцией через линии электропередачи. При этом необходимо добиться минимальных годовых затрат на сооружение и эксплуатацию электрической сети с учетом ущербов от нарушения электроснабжения. Расчеты капиталовложений и ущербов выполняются для периода 1 год. Результаты должны быть представлены в соответствии с требованиями по оформлению. При решении задания допустимо пользоваться любыми доступными средствами вычисления.

Комментарий к заданию

- Принципы построения электрической сети представлены в задании в упрощенном виде. Реальное проектирование электрических сетей несколько отличается от описанного в задании. Тем не менее, при решении этого задания необходимо руководствоваться только приведенным здесь инструкциями.
- Формальное решение этой задачи и ее полное математическое описание выходят за рамки школьной программы. Полный перебор всех возможных вариантов также нереалистичен. Возможных вариантов очень много и расчет их всех без программирования крайне трудоемкий и длительный процесс.
- Рекомендуется проанализировать задание и сформулировать принципы, по которым целесообразно строить электрическую сеть. На основе этих принципов собрать различные варианты сети и сравнить их между собой.

Требования по оформлению

Итоговый результат решения необходимо занести в Excel файл «Шаблон.xlsx». Таблица узлов заполняется на вкладке «Узлы», таблица линий — на вкладке «Линии». При отсутствии заполненного файла Excel, работа автоматически отклоняется.

Решение оценивается по следующим критериям:

3

1

Полнота теоретического решения

Близость полученного решения к оптимальному

Оформление полученных результатов

Схему необходимо представить в виде таблицы узлов и таблицы линий.

В таблице узлов в первом столбце указывается номер узла, во втором — расстояние от начала координат до узла по горизонтали, в третьем — расстояние от начала координат до узла по вертикали. Узлы нагрузки изначально заполнены в таблице. Дополнительным узлам необходимо присвоить следующие по порядку номера и добавить их в таблицу.

В таблице линий каждая линия задается одной строкой. В первом столбце указывается порядковый номер линии. Во втором и третьем столбцах указывается узел начала и узел конца линии. Нумерация узлов приведена на рисунке схемы.

В четвертом столбце указывается 1, если в линии со стороны узла 1 установлен разъединитель, иначе — 0; в пятом столбце указывается 1, если в линии со стороны узла 2 установлен разъединитель, иначе — 0. В шестом столбце указывается 1, если в линии со стороны узла 1 установлен реклоузер или выключатель, иначе — 0; в седьмом столбце указывается 1, если в линии со стороны узла 2 установлен реклоузер или выключатель, иначе — 0.

В восьмом столбце указывается 1, если разъединитель или реклоузер со стороны узла 1 замкнут или коммутационное оборудование отсутствует, если разомкнут — 0; в девятом столбце указывается 1, если разъединитель или реклоузер со стороны узла 2 замкнут или коммутационное оборудование отсутствует, если разомкнут — 0.

В десятом столбце указывается тип линии электропередачи – ВЛ или ВЛЗ.

Далее приведен пример схемы сети и соответствующие ему таблицы.

Рисунок 15 – Пример схемы

Таблица 9 — Узлы схемы

№ узла	Координата по горизонтали, км	Координата по вертикали, км
1	2	3
1	0	3
2	2	2
3	3	0,5
4	3,5	4
5	5	1,5
6	3	2
7	3,5	2

Узлы 6, 7 — дополнительные

Таблица 10 – Линии схемы

Nº	Узел №1	Узел №2	Разъединитель установлен со стороны узла 1	Разъединитель установлен со стороны узла 2	Реклоузер (выключатель) установлен со стороны узла 1	Реклоузер (выключатель) установлен со стороны узла 2	Линия включена со стороны узла 1	Линия включена со стороны узла 2	Тип ЛЭП ВЛ/ ВЛЗ
1	2	3	4	5	6	7	8	9	10
1	1	2	0	0	1	0	1	1	влз
2	1	4	0	1	1	0	1	1	влз
3	2	6	0	0	1	0	1	1	влз
4	4	7	1	1	0	0	1	0	влз
5	6	3	1	0	0	0	1	1	ВЛ
6	6	7	0	0	0	0	1	1	влз
7	7	5	1	0	0	0	1	1	ВЛ

