Jun. 26, 2001

Sheet 4 of 17

Jun. 26, 2001

Sheet 5 of 17

Jun. 26, 2001

Sheet 6 of 17

US 6,253,313 B1

ř

Jun. 26, 2001

Sheet 7 of 17

Jun. 26, 2001

Sheet 8 of 17

US 6,253,313 B1

.

didners of the

Jun. 26, 2001

Sheet 9 of 17

FIG. 12

Jun. 26, 2001

Sheet 10 of 17

FIG. 13

FIG. 14

Jun. 26, 2001

Sheet 11 of 17

US 6,253,313 B1

.

•

.

Jun. 26, 2001

Sheet 12 of 17

US 6,253,313 B1

The second second

· Abriddedels des-

Jun. 26, 2001

Sheet 13 of 17

Jun. 26, 2001

Sheet 14 of 17

Jun. 26, 2001

Sheet 15 of 17

FIG. 19

FIG. 20

Jun. 26, 2001

Sheet 16 of 17

Jun. 26, 2001

Sheet 17 of 17

FIG. 22a

	SC	5 M		
OPCODE	PL	CI	PID	ISW

FIG. 22b

SC	S M	
CI	PL	REG ID

FIG. 22c

S C	S M	
CI	PL	CC ID

FIG. 22d

ADX	PID	Cl	MISC
1	t .	ļ	

PARALLEL PROCESSOR SYSTEM FOR PROCESSING NATURAL CONCURRENCIES AND METHOD THEREFOR

This is a divisional of U.S. Ser. No. 08/254,687, filed Jun. 5 6, 1994, now U.S. Pat. No 5,517,628, which is a divisional of Ser No 08/093,794, filed Jul. 19, 1993, now abandoned, which is a continuation of Ser No. 07/913,736, filed Jul 14, 1992, now abandoned, which is a continuation of Ser No 07/560,093, filed Jul. 30, 1990, now abandoned, which is a 10 divisional of Ser. No 07/372,247, filed Jun 26, 1989, now U.S. Pat. No. 5,021,945, which is a divisional of Ser No. 06/794,221, filed Oct 31, 1985, now US Pat No 4,847,

BACKGROUND OF THE INVENTION

1 Field of the Invention

This invention generally relates to parallel processor computer systems and, more particularly, to parallel processor computer systems having software for detecting natural 20 concurrencies in instruction streams and having a plurality of processor elements for processing the detected natural concurrencies

2 Description of the Prior Art

Almost all prior art computer systems are of the "Von Neumann" construction. In fact, the first four generations of computers are Von Neumann machines which use a single large processor to sequentially process data. In recent years, a fifth generation computer which is not of the Von Neumann type One characteristic of the so-called fifth generation computer relates to its ability to perform parallel computation through use of a number of processor elements. With the advent of very large scale integration (VLSI) technology, the economic cost of using a number of individual processor elements becomes cost effective

Whether or not an actual fifth generation machine has yet been constructed is subject to debate, but various features have been defined and classified. Fifth-generation machines 40 should be capable of using multiple-instruction, multipledata (MIMD) streams rather than simply being a single instruction, multiple-data (SIMD) system typical of fourth generation machines. The present invention is of the fifthgeneration non-Von Neumann type. It is capable of using 45 MIMD streams in single context (SC-MIMD) or in multiple context (MC-MIMD) as those terms are defined below. The present invention also finds application in the entire computer classification of single and multiple context SIMD multiple context, single-instruction, single data (SC-SISD and MC-SISD) machines

While the design of fifth-generation computer systems is fully in a state of flux, certain categories of systems have been defined. Some workers in the field base the type of 55 machine graph or architecture. computer upon the manner in which "control" or "synchronization" of the system is performed The control classification includes control-driven, data-driven, and reduction (or demand) driven The control-driven system utilizes a centralized control such as a program counter or a master 60 processor to control processing by the slave processors An example of a control-driven machine is the Non-von-1 machine at Columbia University In data-driven systems, control of the system results from the actual arrival of data required for processing An example of a data-driven 65 machine is the University of Manchester dataflow machine developed in England by Ian Watson Reduction driven

systems control processing when the processed activity demands results to occur. An example of a reduction processor is the MAGO reduction machine being developed at the University of North Carolina, Chapel Hill The characteristics of the non-von-1 machine, the Manchester machine, and the MAGO reduction machine are carefully discussed in Davis, "Computer Architecture," IEEÉ Spectrum, November, 1983. In comparison, data-driven and demanddriven systems are decentralized approaches whereas control-driven systems represent a centralized approach The present invention is more properly categorized in a fourth classification which could be termed "time-driven" Like data-driven and demand-driven systems, the control system of the present invention is decentralized. However, like the control driven system, the present invention conducts processing when an activity is ready for execution

Most computer systems involving parallel processing concepts have proliferated from a large number of different types of computer architectures In such cases, the unique nature of the computer architecture mandates or requires either its own processing language or substantial modification of an existing language to be adapted for use To take advantage of the highly parallel structure of such computer architectures, the programmer is required to have an intimate knowledge of the computer architecture in order to write the necessary software. As a result, preparing programs for these machines requires substantial amounts of the users effort, money and time

Concurrent to this activity, work has also been progressconsiderable effort has been directed towards the creation of 30 ing on the creation of new software and languages, independent of a specific computer architecture, that will expose (in a more direct manner), the inherent parallelism of the computation process. However, most effort in designing supercomputers has been concentrated in developing new hardware with much less effort directed to developing new

Davis has speculated that the best approach to the design of a fifth-generation machine is to concentrate efforts on the mapping of the concurrent program tasks in the software onto the physical hardware resources of the computer architecture Davis terms this approach one of "task-allocation" and touts it as being the ultimate key to successful fifthgeneration architectures He categorizes the allocation strategies into two generic types "Static allocations" are performed once, prior to execution, whereas "dynamic allocations" are performed by the hardware whenever the program is executed or run The present invention utilizes a static allocation strategy and provides task allocations for a given program after compilation and prior to execution The (SC-SIMD and MC-SIMD) machines as well as single and 50 recognition of the "task allocation" approach in the design of fifth generation machines was used by Davis in the design of his "Data-driven Machine-II" constructed at the University of Utah. In the Data-driven Machine-II, the program was compiled into a program graph that resembles the actual

> Task allocation is also referred to as "scheduling" in Gaiski et al, "Essential Issues in Multi-processor Systems," Computer, June, 1985 Gajski et al set forth levels of scheduling to include high level, intermediate level, and low level scheduling. The present invention is one of low-level scheduling, but it does not use conventional scheduling policies of "first-in-first-out", "round-robin", "shortest type in job-first", or "shortest-remaining-time" Gajski et al also recognize the advantage of static scheduling in that overhead costs are paid at compile time However, Gajski et al's recognized disadvantage, with respect to static scheduling, of possible inefficiencies in guessing the run time profile of

each task is not found in the present invention Therefore, the conventional approaches to low-level static scheduling found in the Occam language and the Bulldog compiler are not found in the software portion of the present invention Indeed, the low-level static scheduling of the present invention provides the same type, if not better, utilization of the processors commonly seen in dynamic scheduling by the machine at run time Furthermore, the low-level static scheduling of the present invention is performed automatically without intervention of programmers as required (for example) in the Occam language

Davis further recognizes that communication is a critical feature in concurrent processing in that the actual physical topology of the system significantly influences the overall performance of the system

For example, the fundamental problem found in most data-flow machines is the large amount of communication overhead in moving data between the processors. When data is moved over a bus, significant overhead, and possible access to the bus. For example, the Arvind data-flow machine, referenced in Davis, utilizes an I-structure stream in order to allow the data to remain in one place which then becomes accessible by all processors. The present invention, in one aspect, teaches a method of hardware and software 25 based upon totally coupling the hardware resources thereby significantly simplifying the communication problems inherent in systems that perform multiprocessing

Another feature of non-Von Neumann type multiprocessor systems is the level of granularity of the parallelism 30 being processed. Gajski et al term this "partitioning." The goal in designing a system, according to Gajski et al, is to obtain as much parallelism as possible with the lowest amount of overhead The present invention performs concurrent processing at the lowest level available, the "per 35 instruction" level. The present invention, in another aspect, teaches a method whereby this level of parallelism is obtainable without execution time overhead

Despite all of the work that has been done with multiprocessor parallel machines, Davis (Id. at 99) recognizes 40 that such software and/or hardware approaches are primarily designed for individual tasks and are not universally suitable for all types of tasks or programs as has been the hallmark with Von Neumann architectures 'The present invention sets forth a computer system and method that is generally 45 suitable for many different types of tasks since it operates on the natural concurrencies existent in the instruction stream at a very fine level of granularity

All general purpose computer systems and many special monitor/control programs which support the processing of multiple activities or programs. In some cases this processing occurs simultaneously; in other cases the processing alternates among the activities such that only one activity controls the processing resources at any one time. This latter 55 case is often referred to as time sharing, time slicing, or concurrent (versus simultaneous) execution, depending on the particular computer system. Also depending on the specific system, these individual activities or programs are usually referred to as tasks, processes, or contexts In all 60 cases, there is a method to support the switching of control among these various programs and between the programs and the operating system, which is usually referred to as task switching, process switching, or context switching. Throughout this document, these terms are considered 65 synonymous, and the terms context and context switching are generally used

The present invention, therefore, pertains to a non-Von Neumann MIMD computer system capable of simultaneously operating upon many different and conventional programs by one or more different users. The natural concurrencies in each program are statically allocated, at a very fine level of granularity, and intelligence is added to the instruction stream at essentially the object code level The added intelligence can include, for example, a logical processor number and an instruction firing time in order to provide the time-driven decentralized control for the present invention. The detection and low level scheduling of the natural concurrencies and the adding of the intelligence occurs only once for a given program, after conventional compiling of the program, without user intervention and prior to execution The results of this static allocation are executed on a system containing a plurality of processor elements. In one embodiment of the invention, the processors are identical. The processor elements, in this illustrated embodiment, contain no execution state information from degradation of the system, can result if data must contend for 20 the execution of previous instructions, that is, they are context free In addition, a plurality of context files, one for each user, are provided wherein the plurality of processor elements can access any storage resource contained in any context file through total coupling of the processor element to the shared resource during the processing of an instruction. In a preferred aspect of the present invention, no condition code or results registers are found on the individual processor elements

SUMMARY OF INVENTION

The present invention provides a method and a system that is non-Von Neumann and one which is adaptable for use in single or multiple context SISD, SIMD, and MIMD configurations. The method and system is further operative upon a myriad of conventional programs without user inter-

In one aspect, the present invention statically determines at a very fine level of granularity, the natural concurrencies in the basic blocks (BBs) of programs at essentially the object code level and adds intelligence to the instruction stream in each basic block to provide a time driven decentralized control. The detection and low level scheduling of the natural concurrencies and the addition of the intelligence occurs only once for a given program after conventional compiling and prior to execution At this time, prior to program execution, the use during later execution of all instruction resources is assigned

In another aspect, the present invention further executes purpose computer systems have operating systems or 50 the basic blocks containing the added intelligence on a system containing a plurality of processor elements each of which, in this particular embodiment, does not retain execution state information from prior operations. Hence, all processor elements in accordance with this embodiment of the invention are context free Instructions are selected for execution based on the instruction firing time Each processor element in this embodiment is capable of executing instructions on a per-instruction basis such that dependent instructions can execute on the same or different processor elements. A given processor element in the present invention is capable of executing an instruction from one context followed by an instruction from another context. All operating and context information necessary for processing a given instruction is then contained elsewhere in the system

It should be noted that many alternative implementations of context free processor elements are possible. In a nonpipelined implementation each processor element is mono-

lithic and executes a single instruction to its completion prior to accepting another instruction.

In another aspect of the invention, the context free processor is a pipelined processor element, in which each instruction requires several machine instruction clock cycles to complete In general, during each clock cycle, a new instruction enters the pipeline and a completed instruction exists the pipeline, giving an effective instruction execution time of a single instruction clock cycle However, it is also possible to microcode some instructions to perform compli- 10 cated functions requiring many machine instruction cycles. In such cases the entry of new instructions is suspended until the complex instruction completes, after which the normal instruction entry and exit sequence in each clock cycle continues. Pipelining is a standard processor implementation 15 technique and is discussed in more detail later

The system and method of the present invention are described in the following drawing and specification

DESCRIPTION OF THE DRAWING

Other objects, features, and advantages of the invention will appear from the following description taken together with the drawings in which:

software of the present invention;

FIG. 2 is a graphic representation of a sequential series of basic blocks found within the conventional compiler output;

FIG 3 is a graphical presentation of the extended intelligence added to each basic block according to one embodi- 30 ment of the present invention;

FIG 4 is a graphical representation showing the details of the extended intelligence added to each instruction within a given basic block according to one embodiment of the present invention;

FIG. 5 is the breakdown of the basic blocks into discrete execution sets;

FIG 6 is a block diagram presentation of the architectural structure of apparatus according to a preperred embodiment 40 of the present invention;

FIGS 7a-7c represent an illustration of the network interconnections during three successive instruction firing

FIGS 8-11 are the flow diagrams setting forth features of 45 the software according to one embodiment of the present invention:

FIG. 12 is a diagram describing one preferred form of the execution sets in the TOLL software:

FIG 13 sets forth the register file organization according 50 to a preferred embodiment of the present invention:

FIG 14 illustrates a transfer between registers in different levels during a subroutine call;

FIG 15 sets forth the structure of a logical resource driver (LRD) according to a preferred embodiment of the present invention;

FIG. 16 sets forth the structure of an instruction cache control and of the caches according to a preferred embodiment of the present invention;

FIG 17 sets forth the structure of a PIQ buffer unit and a PIO bus interface unit according to a preferred embodiment of the present invention;

FIG. 18 sets forth interconnection of processor elements through the PE-LRD network to a PIQ processor alignment 65 circuit according to a preferred embodiment of the present invention;

6

FIG. 19 sets forth the structure of a branch execution unit according to a preferred embodiment of the present inven-

FIG 20 illustrates the organization of the condition code storage of a context file according to a preferred embodiment of the present invention;

FIG. 21 sets forth the structure of one embodiment of a pipelined processor element according to the present invention; and

FIGS. 22(a) through 22(d) set forth the data structures used in connection with the processor element of FIG. 21

GENERAL DESCRIPTION

1. Introduction

In the following two sections, a general description of the software and hardware of the present invention takes place The system of the present invention is designed based upon a unique relationship between the hardware and software components. While many prior art approaches have primarily provided for multiprocessor parallel processing based upon a new architecture design or upon unique software algorithms, the present invention is based upon a unique hardware/software relationship The software of the present invention provides the intelligent information for the routing FIG 1 is the generalized flow representation of the TOLL 25 and synchronization of the instruction streams through the hardware. In the performance of these tasks, the software spatially and temporally manages all user accessible resources, for example, general registers, condition code storage registers, memory and stack pointers. The routing and synchronization are performed without user intervention, and do not require changes to the original source code Additionally, the analysis of an instruction stream to provide the additional intelligent information for controlling the routing and synchronization of the instruction stream is performed only once during the program preparation process (often called "static allocation") of a given piece of software, and is not performed during execution (often called "dynamic allocation") as is found in some conventional prior art approaches. The analysis effected according to the invention is hardware dependent, is performed on the object code output from conventional compilers, and advantageously, is therefore programming language independent

In other words, the software, according to the invention, maps the object code program onto the hardware of the system so that it executes more efficiently than is typical of prior art systems. Thus the software must handle all hardware idiosyncrasies and their effects on execution of the program instructions stream For example, the software must accommodate, when necessary, processor elements which are either monolithic single cycle or pipelined

2 General Software Description

Referring to FIG. 1, the software of the present invention, generally termed "TOLL," is located in a computer processing system 160 Processing system 160 operates on a standard compiler output 100 which is typically object code or an intermediate object code such as "p-code" The output of a conventional compiler is a sequential stream of object code instructions hereinafter referred to as the instruction stream Conventional language processors typically perform the following functions in generating the sequential instruction stream:

- 1 lexical scan of the input text,
- 2 syntactical scan of the condensed input text including symbol table construction,
- performance of machine independent optimization including parallelism detection and vectorization, and

7

4 an intermediate (PSEUDO) code generation taking into account instruction functionality, resources required, and hardware structural properties

In the creation of the sequential instruction stream, the conventional compiler creates a series of basic blocks (BBs) 5 which are single entry single exit (SESE) groups of contiguous instructions. See, for example, Alfred v Aho and Jeffery D. Ullman, Principles of Compiler Design, Addison Wesley, 1979, pg. 6, 409, 412-413 and David Gries, Compiler Construction for Digital Computers, Wiley, 1971. The 10 conventional compiler, although it utilizes basic block information in the performance of its tasks, provides an output stream of sequential instructions without any basic block designations. The TOLL software, in this illustrated embodiment of the present invention, is designed to operate on the 15 formed basic blocks (BBs) which are created within a conventional compiler In each of the conventional SESE basic blocks there is exactly one branch (at the end of the block) and there are no control dependencies. The only relevant dependencies within the block are those between 20 the resources required by the instructions

The output of the compiler 100 in the basic block format is illustrated in FIG 2 Referring to FIG 1, the TOLL software 110 of the present invention being processed in the computer 160 performs three basic determining functions on the compiler output 100 These functions are to analyze the resource usage of the instructions 120, extend intelligence for each instruction in each basic block 130, and to build execution sets composed of one or more basic blocks 140 The resulting output of these three basic functions 120, 130, and 140 from processor 160 is the TOLL software output 150 of the present invention.

As noted above, the TOLL software of the present invention operates on a compiler output 100 only once and without user intervention. Therefore, for any given program, 35 the TOLL software need operate on the compiler output 100 only once

The functions 120, 130, 140 of the TOLL software 110 are, for example, to analyze the instruction stream in each basic block for natural concurrencies, to perform a translation of the instruction stream onto the actual hardware system of the present invention, to alleviate any hardware induced idiosyncrasies that may result from the translation process, and to encode the resulting instruction stream into an actual machine language to be used with the hardware of the present invention. The TOLL software 110 performs these functions by analyzing the instruction stream and then assigning processor elements and resources as a result thereof In one particular embodiment, the processors are context free. The TOLL software 110 provides the "synchronization" of the overall system by, for example, assigning appropriate firing times to each instruction in the output instruction stream

Instructions can be dependent on one another in a variety of ways although there are only three basic types of dependencies. First, there are procedural dependencies due to the actual structure of the instruction stream; that is, instructions may follow one another in other than a sequential order due to branches, jumps, etc. Second, operational dependencies are due to the finite number of hardware elements present in 60 the system. These hardware elements include the general registers, condition code storage, stack pointers, processor elements, and memory. Thus if two instructions are to execute in parallel, they must not require the same hardware element unless they are both reading that element (provided of course, that the element is capable of being read simultaneously). Finally, there are data dependencies

8

between instructions in the instruction stream. This form of dependency will be discussed at length later and is particularly important if the processor elements include pipelined processors. Within a basic block, however, only data and operational dependencies are present.

The TOLL software 110 must maintain the proper execution of a program. Thus, the TOLL software must assure that the code output 150, which represents instructions which will execute in parallel, generates the same results as those of the original serial code. To do this, the code 150 must access the resources in the same relative sequence as the serial code for instructions that are dependent on one another; that is, the relative ordering must be satisfied. However, independent sets of instructions may be effectively executed out of sequence

In Table 1 is set forth an example of a SESE basic block representing the inner loop of a matrix multiply routine. While, this example will be used throughout this specification, the teachings of the present invention are applicable to any instruction stream. Referring to Table 1, the instruction designation is set forth in the right hand column and a conventional object code functional representation, for this basic block, is represented in the left hand column.

TABLE 1

	OBJECI CODE	INSTRUCTION	
	LD R0 (R10) +	10	
	LD R1, (R11) +	I1	
	MM RO, R1, R2	12	
)	ADD R2, R3, R3	13	
	DEC R4	I 4	
	BRNZR LOOP	I5	

The instruction stream contained within the SESE basic block set forth in Table 1 performs the following functions. In instruction 10, register R0 is loaded with the contents of memory whose address is contained in R10. The instruction shown above increments the contents of R10 after the address has been fetched from R10 The same statement can be made for instruction II, with the exception that register R1 is loaded and register R11 is incremented. Instruction 12 causes the contents of registers R0 and R1 to be multiplied and the result is stored in register R2. In instruction I3, the contents of register R2 and register R3 are added and the result is stored in register R3. in instruction 14, register R4 is decremented. Instructions I2, I3 and I4 also generate a set of condition codes that reflect the status of their respective execution In instruction 15, the contents of register R4 are indirectly tested for zero (via the condition codes generated by instruction I4). A branch occurs if the decrement operation produced a non-zero value; otherwise execution proceeds with the first instruction of the next basic block

Referring to FIG 1, the first function performed by the TOLL software 110 is to analyze the resource usage of the instructions In the illustrated example, these are instructions I0 through I5 of Table I The TOLL software 110 thus analyzes each instruction to ascertain the resource requirements of the instruction

This analysis is important in determining whether or not any resources are shared by any instructions and, therefore, whether or not the instructions are independent of one another. Clearly, mutually independent instructions can be executed in parallel and are termed "naturally concurrent." Instructions that are independent can be executed in parallel and do not rely on one another for any information nor do they share any hardware resources in other than a read only manner.

the basic block. In the preferred embodiment of the invention, this is the assignment of an instruction's execution time relative to the execution times of the other instructions in the stream, the assignment of a processor number on which the instruction is to execute and the assignment of any so-called static shared context storage mapping information that may be needed by the instruction

10

On the other hand, instructions that are dependent on one another can be formed into a set wherein each instruction in the set is dependent on every other instruction in that set. The dependency may not be direct. The set can be described by the instructions within the set, or conversely, by the resources used by the instructions in the set Instructions within different sets are completely independent of one another, that is, there are no resources shared by the sets Hence, the sets are independent of one another

In the example of Table 1, the TOLL software will 10

determine that there are two independent sets of dependent instructions: Set 1: CC1: I0, I1, I2, I3

Set 2: CC2: I4, I5 As can be seen, instructions I4 and I5 are independent of 15 instructions I0-I3 In set 2, I5 is directly dependent on I4. In set 1, 12 is directly dependent on I0 and I1 Instruction I3 is directly dependent on I2 and indirectly dependent on I0 and

The TOLL software of the present invention detects these independent sets of dependent instructions and assigns a condition code group of designation(s), such as CC1 and CC2, to each set. This avoids the operational dependency that would occur if only one group or set of condition codes were available to the instruction stream

In other words, the results of the execution of instructions 10 and 11 are needed for the execution of instruction 12 Similarly, the results of the execution of instruction I2 are needed for the execution of instruction I3 In performing this analyses, the TOLL software 110 determines if an instruction will perform a read and/or a write to a resource This functionality is termed the resource requirement analysis of the instruction stream

It should be noted that, unlike the teachings of the prior art, the present invention teaches that it is not necessary for dependent instructions to execute on the same processor element The determination of dependencies is needed only to determine condition code sets and to determine instruction firing times, as will be described later The present invention can execute dependent instructions on different processor elements, in one illustrated embodiment, because of the context free nature of the processor elements and the total coupling of the processor elements to the shared resources, such as the register files, as will also be described

The results of the analysis stage 120, for the example set forth in Table 1, are set forth in Table 2

TABLE 2

INSTRUCTION	FUNCTION
10	Memory Read, Reg Write, Reg Read & Write
I 1	Memory Read, Reg. Write, Reg. Read & write
12	Two Reg Reads, Reg Write Set Cond Code (Set #1)
<u>I3</u>	Two Reg. Reads, Reg. Write, Set Cond Code (Set #1)
I 4	Read Reg, Reg. Write Set Cond Code (Set #2)
I5	Read Cond Code (Set #2)

In Table 2, for instructions IO and II, a register is read and written followed by a memory read (at a distinct address), followed by a register write Likewise, condition code writes and register reads and writes occur for instructions I2 through I4 Finally, instruction I5 is a simple read of a condition code storage register and a resulting branch or

The second step or pass 130 through the SESE basic block 100 is to add or extend intelligence to each instruction within

In order to assign the firing time to an instruction, the temporal usage of each resource required by the instruction must be considered In the illustrated embodiment, the temporal usage of each resource is characterized by a "free time" and a "load time." The free time is the last time the resource was read or written by an instruction The load time is the last time the resource was modified by an instruction. If an instruction is going to modify a resource, it must execute the modification after the last time the resource was used, in other words, after the free time If an instruction is going to read the resource, it must perform the read after the last time the resource has been loaded, in other words, after 20 the load time

The relationship between the temporal usage of each resource and the actual usage of the resource is as follows If an instruction is going to write/modify the resource, the last time the resource is read or written by other instructions (i.e., the "free time" for the resource) plus one time interval will be the earliest firing time for this instruction The "plus one time interval' comes from the fact that an instruction is still using the resource during the free time. On the other hand, if the instruction reads a resource, the last time the resource is modified by other instructions (i.e., the load time for the resource) plus one time interval will be the earliest instruction firing time. The "plus one time interval" comes from the time required for the instruction that is performing the load to execute.

The discussion above assumes that the exact location of the resource that is accessed is known This is always true of resources that are directly named such as general registers and condition code storage However, memory operations may, in general, be to locations unknown at compile time In 40 particular, addresses that are generated by effective addressing constructs fall in this class In the previous example, it has been assumed (for the purposes of communicating the basic concepts of TOLL) that the addresses used by instructions I0 and I1 are distinct If this were not the case, the TOLL software would assure that only those instructions that did not use memory would be allowed to execute in parallel with an instruction that was accessing an unknown location in memory.

The instruction firing time is evaluated by the TOLL software 110 for each resource that the instruction uses These "candidate' firing times are then compared to determine which is the largest or latest time. The latest time determines the actual firing time assigned to the instruction At this point, the TOLL software 110 updates all of the resources' free and load times, to reflect the firing time assigned to the instruction The TOLL software 110 then proceeds to analyze the next instruction

There are many methods available for determining interinstruction dependencies within a basic block. The previous discussion is just one possible implementation assuming a specific compiler-TOLL partitioning. Many other compiler-TOLL partitionings and methods for determining interinstruction dependencies may be possible and realizable to one skilled in the art. Thus, the illustrated TOLL software uses a linked list analysis to represent the data dependencies within a basic block Other possible data structures that could be used are trees, stacks, etc

11

Assume a linked list representation is used for the analysis and representation of the inter-instruction dependencies Each register is associated with a set of pointers to the instructions that use the value contained in that register For the matrix multiply example in Table 1, the resource usage is set forth in Table 3:

TABLE 3

Resource	Loaded By	Read By	10
RO	10	I 2	
R1	11	I 2	
R2	[2	I3	
R3	L 3	13, 12	
R4	I4	15	
R10	I 0	IO	15
R11	11	I 1	

Thus, by following the "Read by" links and knowing the resource utilization for each instruction, the independencies of Sets 1 and 2, above, are constructed in the analyze 20 Each of the instructions in the sequential instruction stream in a basic block can be performed in the assigned time

For purposes of analyzing further the example of Table 1, it is assumed that the basic block commences with an arbitrary time interval in an instruction stream, such as, for example, time interval T16 In other words, this particular 25 basic block in time sequence is assumed to start with time interval T16. The results of the analysis in stage 120 are set forth in Table 4

IABLE 4

REG	10	I 1	12	13	I 4	I5
R0	T16		T17			
R1		I16	117			
R2			<u>T17</u>	T 18		
R3				<u>T18</u>		
R4					116	
CC1			I17	T18		
CC2						<u>T17</u>
R10	I 16					
R11		I16				

The vertical direction in Table 4 represents the general registers and condition code storage registers. The horizontal direction in the table represents the instructions in the basic block example of Table 1. The entries in the table 45 represent usage of a register by an instruction. Thus, instruction 10 requires that register R10 be read and written and register R0 written at time T16, the start of execution of the basic block.

Under the teachings of the present invention, there is no 50 reason that registers R1, R11, and R4 cannot also have operations performed on them during time T16. The three instructions, I0, I1, and I4, are data independent of each other and can be executed concurrently during time T16. Instruction 12, however, requires first that registers R0 and 55 R1 be loaded so that the results of the load operation can be multiplied. The results of the multiplication are stored in register R2. Although, register R2 could in theory be operated on in time T16, instruction I2 is data dependent upon the results of loading registers R0 and R1, which occurs 60 during time T16 Therefore, the completion of instruction 12 must occur during or after time frame T17 Hence, in Table 4 above, the entry T17 for the intersection of instruction I2 and register R2 is underlined because it is data dependent Likewise, instruction I3 requires data in register R2 which 65 first occurs during time T17 Hence, instruction I3 can operate on register R2 only during or after time T18

12

Instruction I5 depends upon the reading of the condition code storage CC2 which is updated by instruction I4 The reading of the condition code storage CC2 is data dependent upon the results stored in time T16 and, therefore, must occur during or after the next time, T17.

Hence, in stage 130, the object code instructions are assigned "instruction firing times" (IFTs) as set forth in Table 5 based upon the above analysis

TABLE 5

OBJECT CODE INSTRUCTION	INSTRUCTION FIRING TIME (IFT)
IO	T16
I1	116
I 2	T17
I3	T18
14	I16
15	117

Each of the instructions in the sequential instruction stream in a basic block can be performed in the assigned time intervals As is clear in Table 5, the same six instructions of Table 1, normally processed sequentially in six cycles, can be processed, under the teachings of the present invention, in only three firing times: T16, T17, and T18 The instruction firing time (IFT) provides the "time-driven" feature of the present invention

The next function performed by stage 130, in the illustrated embodiment, is to reorder the natural concurrencies in the instruction stream according to instruction firing times (IFTs) and then to assign the instructions to the individual logical parallel processors It should be noted that the reordering is only required due to limitations in currently available technology If true fully associative memories were available, the reordering of the stream would not be required and the processor numbers could be assigned in a first come, first served manner. The hardware of the instruction selection mechanism could be appropriately modified by one skilled in the art to address this mode of operation.

For example, assuming currently available technology, and a system with four parallel processor elements (PEs) and a branch execution unit (BEU) within each LRD, the processor elements and the branch execution unit can be assigned, under the teachings of the present invention, as set forth in Table 6 below It should be noted that the processor elements execute all non-branch instructions, while the branch execution unit (BEU) of the present invention executes all branch instructions. These hardware circuitries will be described in greater detail subsequently.

TABLE 6

Logical Processor Number	T16	117	T18
0	10	12	13
1	I1	_	
2	I4	_	
3	-	_	_
BEU		I5 (delay)	

Hence, under the teachings of the present invention, during time interval T16, parallel processor elements 0, 1, and 2 concurrently process instructions I0, I1, and I4 respectively. Likewise, during the next time interval T17, parallel processor element 0 and the BEU concurrently process instructions I2 and I5 respectively And finally, during time interval T18, processor element 0 processes instruction I3. During instruction firing times T16, T17, and T18, parallel processors.

sor element 3 is not utilized in the example of Table 1. In actuality, since the last instruction is a branch instruction, the branch cannot occur until the last processing is finished in time T18 for instruction I3. A delay field is built into the processing of instruction I5 so that even though it is pro- 5 cessed in time interval T17 (the earliest possible time), its execution is delayed so that looping or branching out occurs after instruction I3 has executed.

In summary, the TOLL software 110 of the present illustrated embodiment, in stage 130, examines each indi- 10 vidual instruction and its resource usage both as to type and as to location (if known) (e.g., Table 3) It then assigns instruction firing times (IFTs) on the basis of this resource usage (e.g., Table 4), reorders the instruction stream based upon these firing times (e.g., Table 5) and assigns logical 15 processor numbers (LPNs) (e.g., Table 6) as a result thereof

The extended intelligence information involving the logical processor number (LPN) and the instruction firing time (IFT) is, in the illustrated embodiment, added to each instruction of the basic block as shown in FIGS 3 and 4 As 20 will also be pointed out subsequently, the extended intelligence (EXT) for each instruction in a basic block (BB) will be correlated with the actual physical processor architecture of the present invention. The correlation is performed by the hardware may contain less, the same as, or more physical processor elements than the number of logical processor elements.

The Shared Context Storage Mapping (SCSM) information in FIG 4 and attached to each instruction in this 30 illustrated and preferred embodiment of the invention, has a static and a dynamic component. The static component of the SCSM information is attached by the TOLL software or compiler and is a result of the static analysis of the instruction stream. Dynamic information is attached at execution 35 time by a logical resource drive (LRD) as will be discussed later.

At this stage 130, the illustrated TOLL software 110 has analyzed the instruction stream as a set of single entry single exit (SESE) basic blocks (BBs) for natural concurrencies 40 that can be processed individually by separate processor elements (PEs) and has assigned to each instruction an instruction firing time (IFT) and a logical processor number (LPN) Under the teachings of the present invention, the instruction stream is thus pre-processed by the TOLL soft- 45 ware to statically allocate all processing resources in advance of execution This is done once for any given program and is applicable to any one of a number of different program languages such as FORTRAN, COBOL, PASCAL, BASIC, etc.

Referring to FIG 5, a series of basic blocks (BBs) can form a single execution set (ES) and in stage 140, the TOLL software 110 builds such execution sets (ESs). Once the TOLL software identifies an execution set 500, header 510 and/or trailer 520 information is added at the beginning 55 and/or end of the set In the preferred embodiment, only header information 510 is attached at the beginning of the set, although the invention is not so limited

Under the teachings of the present invention, basic blocks generally follow one another in the instruction stream There 60 may be no need for reordering of the basic blocks even though individual instructions within a basic block, as discussed above, are reordered and assigned extended intelligence information. However, the invention is not so limited Each basic block is single entry and single exit (SESE) 65 with the exit through a branch instruction Typically, the branch to another instruction is within a localized neighbor-

hood such as within 400 instructions of the branch. The purpose of forming the execution sets (stage 140) is to determine the minimum number of basic blocks that can exist within an execution set such that the number of "instruction cache faults" is minimized. In other words, in a given execution set, branches or transfers out of an execution set are statistically minimized. The TOLL software in stage 140, can use a number of conventional techniques for solving this linear programming-like problem, a problem which is based upon branch distances and the like. The purpose is to define an execution set as set forth in FIG. 5 so that the execution set can be placed in a hardware cache, as will be discussed subsequently, to minimize instruction cache faults (i.e., transfers out of the execution set)

What has been set forth above is an example, illustrated using Tables 1 through 6, of the TOLL software 110 in a single context application. In essence, the TOLL software determines the natural concurrencies within the instruction streams for each basic block within a given program The TOLL software adds, in the illustrated embodiment, an instruction firing time (IFT) and a logical processor number (LPN) to each instruction in accordance with the determined natural concurrencies All processing resources are statically allocated in advance of processing The TOLL software of the present invention can be used in connection with a system hardware It is important to note that the actual 25 number of simultaneously executing different programs, each program being used by the same or different users on a processing system of the present invention as will be described and explained below.

3 General Hardware Description

Referring to FIG 6, the block diagram format of the system architecture of the present invention, termed the TDA system architecture 600, includes a memory subsystem 610 interconnected to a plurality of logical resource drivers (LRDs) 620 over a network 630 The logical resource drivers 620 are further interconnected to a plurality of processor elements 640 over a network 650. Finally, the plurality of processor elements 640 are interconnected over a network 670 to the shared resources containing a pool of register set and condition code set files 660. The LRDmemory network 630, the PE-LRD network 650, and the PE-context file network 670 are full access networks that could be composed of conventional crossbar networks, omega networks, banyan networks, or the like. The networks are full access (non-blocking in space) so that, for example, any processor element 640 can access any register file or condition code storage in any context (as defined hereinbelow) file 660. Likewise, any processor element 640 can access any logical resource driver 620 and any logical resource driver 620 can access any portion of the memory 50 subsystem 610 In addition, the PE-LRD and PE-context file networks are non-blocking in time. In other words, these two networks guarantee access to any resource from any resource regardless of load conditions on the network. The architecture of the switching elements of the PE-LRD network 650 and the PE-context file network 670 are considerably simplified since the TOLL software guarantees that collisions in the network will never occur The diagram of FIG. 6 represents an MIMD system wherein each context file 660 corresponds to at least one user program

The memory subsystem 610 can be constructed using a conventional memory architecture and conventional memory elements. There are many such architectures and elements that could be employed by a person skilled in the art and which would satisfy the requirements of this system For example, a banked memory architecture could be used (High Speed Memory Systems, A. V. Pohm and O. P. Agrawal, Reston Publishing Co, 1983)

15

The logical resource drivers 620 are unique to the system architecture 600 of the present invention Each illustrated LRD provides the data cache and instruction selection support for a single user (who is assigned a context file) on a timeshared basis. The LRDs receive execution sets from 5 the various users wherein one or more execution sets for a context are stored on an LRD The instructions within the basic blocks of the stored execution sets are stored in queues based on the previously assigned logical processor number For example, if the system has 64 users and 8 LRDS, 8 users 10 would share an individual LRD on a timeshared basis The operating system determines which user is assigned to which LRD and for how long. The LRD is detailed at length subsequently

The processor elements 640 are also unique to the IDA 15 system architecture and will be discussed later These processor elements in one particular aspect of the invention display a context free stochastic property in which the future state of the system depends only on the present state of the system and not on the path by which the present state was 20 achieved. As such, architecturally, the context free processor elements are uniquely different from conventional processor elements in two ways First, the elements have no internal permanent storage or remnants of past events such as general purpose registers or program status words. Second, 25 the elements do not perform any routing or synchronization functions These tasks are performed by the TOLL software and are implemented in the LRDs. The significance of the architecture is that the context free processor elements of the present invention are a true shared resource to the LRDs In 30 another preferred particular embodiment of the invention wherein pipelined processor elements are employed, the processors are not strictly context free as was described previously

Finally, the register set and condition code set files 660 35 registers were its own internal registers can also be constructed of commonly available components such as AMD 29300 series register files, available from Advanced Micro Devices, 901 Thompson Place, P.O. Box 3453, Sunnyvale, Calif 94088 However, the particular configuration of the files 660 illustrated in FIG 6 is unique 40 under the teachings of the present invention and will be

The general operation of the present invention, based upon the example set forth in Table 1, is illustrated with respect to the processor-context register file communication 45 in FIGS. 7a, 7b, and 7c As mentioned, the time-driven control of the present illustrated embodiment of the invention is found in the addition of the extended intelligence relating to the logical processor number (LPN) and the 4 FIG 7 generally represents the configuration of the processor elements PE0 through PE3 with registers R0 through R5, , R10 and R11 of the register set and condition code set file 660.

In explaining the operation of the TDA system architec- 55 ture 600 for the single user example in Table 1, reference is made to Tables 3 through 5. In the example, for instruction firing time T16, the context file-PE network 670 interconnects processor element PE0 with registers R0 and R10, processor element PE1 with registers R1 and R11, and 60 processor element PE2 with register R4. Hence, during time T16, the three processor elements PE0, PE1, and PE2 process instructions I0, I1, and I4 concurrently and store the results in registers R0, R10, R1, R11, and R4. During time T16, the LRD 620 selects and delivers the instructions that 65 can fire (execute) during time T17 to the appropriate processor elements Referring to FIG 7b, during instruction

firing time I17, only processor element PE0, which is now assigned to process instruction I2 interconnects with registers R0, R1, and R2 The BEU (not shown in FIGS 7a, 7b, and 7c) is also connected to the condition code storage. Finally, referring to FIG. 7c, during instruction firing time

16

I18, processor element PE0 is connected to registers R2 and

Several important observations need to be made First, when a particular processor element (PE) places results of its operation in a register, any processor element, during a subsequent instruction firing time (IFT), can be interconnected to that register as it executes its operation. For example, processor element PE1 for instruction I1 loads register R1 with the contents of a memory location during IFT T16 as shown in FIG. 7a. During instruction firing time T17, processor element PE0 is interconnected with register R1 to perform an additional operation on the results stored therein. Under the teachings of the present invention, each processor element (PE) is "totally coupled" to the necessary registers in the register file 660 during any particular instruction firing time (IFT) and, therefore, there is no need to move the data out of the register file for delivery to another resource; e g. in another processor's register as in some conventional approaches

In other words, under the teachings of the present invention, each processor element can be totally coupled, during any individual instruction firing time, to any shared register in files 660 In addition, under the teachings of the present invention, none of the processor elements has to contend (or wait) for the availability of a particular register or for results to be placed in a particular register as is found in some prior art systems. Also, during any individual firing time, any processor element has full access to any configuration of registers in the register set file 660 as if such

Hence, under the teachings of the present invention, the intelligence added to the instruction stream is based upon detected natural concurrencies within the object code The detected concurrencies are analyzed by the TOLL software, which in one illustrated embodiment logically assigns individual logical processor elements (LPNs) to process the instructions in parallel, and unique firing times (IFTs) so that each processor element (PE), for its given instruction, will have all necessary resources available for processing according to its instruction requirements In the above example, the logical processor numbers correspond to the actual processor assignment, that is, LPN0 corresponds to PE0, LPN1 to PE1, LPN2 to PE2, and LPN3 to PE3. The invention is not so limited since any order such as LPN0 to PE1, LPN1 to instruction firing time (IFT) as specifically set forth in FIG: 50 PE2, etc could be used. Or, if the TDA system had more or less than four processors, a different assignment could be used as will be discussed.

The timing control for the TDA system is provided by the instruction firing times, that is, the system is time-driven As can be observed in FIGS. 7athrough 7c, during each individual instruction firing time, the TDA system architecture composed of the processor elements 640 and the PE-register set file network 670, takes on a new and unique particular configuration fully adapted to enable the individual processor elements to concurrently process instructions while making full use of all the available resources. The processor elements can be context free and thereby data, condition, or information relating to past processing is not required, nor does it exist, internally to the processor element. The context free processor elements react only to the requirements of each individual instruction and are interconnected by the hardware to the necessary shared registers