2000.2

,

•

L G 가 .

< >

< >

. •1

. ARIMA • 3

1. ARIMA •3

2. • 5

3. • 9

. WA R • 13

1. VA R •13

2. •14

3. •19

. •24

< > • 26

< • >

<	-1 >	ARIMA	• 4
<	-2 >	ARIMA(2,1,4)	•7
<	-3 >	ARIMA(2,1,4)	R.W. RMSPE • 7
<	-4 >	ARIMA(2,1,5)	•8
<	-5 >	ARIMA(2,1,5)	R.W. RMSPE •8
<	-6 >	ARIMA(2,1,4)	• 9
<	-7 >	ARIMA(2,1,1)	•10
<	-8 >	ARIMA(2,1,1)	R.W. RMSPE • 10
<	-9 >	ARIMA(2,1,5)	•11
<	-10 >	ARIMA(2,1,5)	R.W. RMSPE • 11
<	-11 >	ARIMA(2,1,5)	•12
<	-1 >	VA R	•15
<	-2 >		• 15
<	-3 >		•16
<	-4 >	Akaike & Schw	arz •16
<	-5 >		.17
<	-6 >	VA R	R.W. RMSPE •18
<	-7 >	VA R	•19
<	-8 >	VA R	• 19
<	-9 >		•20
<	-10 >		•20
<	-11 >	Akaike & Schw	arz •21
<	-12 >		•21
<	-13 >	VA R	R.W. RMPSE •23
<	-14 >	VA R	•23
<	-1 >	> /	• 6
<	-2 >	> /	• 9
<	-1 >	> VAR	•18
<	-2 >	> VAR	•22

< >

ARIMA VAR

.

ARIMA

VAR ,

ARIMA(2,1,4)

ARIMA(2,1,5) .

ARIMA 가

ARIMA(2,1,4) 1 1120

ARIMA(2,1,5) 1 1130

VAR .

/ , , 가 VAR , , 가

/ , , VAR

i

VA R 1100 1

VA R 2000 12 1060

VAR 가

가

ii

가 가 . (Out-of-sample) 가

가 가 가 가 ARIMA VAR

ARIMA VAR
(Random walk)
.

ARIMA , VAR

. ARIMA

1. ARIMA

Box Jenkins¹⁾ ARIMA(Autoregressive Integrated Moving Average)
, ARIMA (Autoregressive Integrated Moving Average)

M A
.

ARIMA

ARIMA フト ARIMA (p,d,q) ,

(1) ARIMA(p,d,q)

 $Y_t ? t d$ $W_t ? t$ W_t $ARMA(p,q)^{3)}$ ARIMA(p,d,q) .

(B)
$${}^{d}Y_{t} = + (B)_{t}$$

, B $Y_{t} = Y_{t-1}, B^{2} = Y_{t-2}, {}^{d} = (1-B)^{d}$
(B) = 1 - ${}_{1}B$ - ${}_{2}B^{2}$ - ... ${}_{p}B^{p}$
(B) = 1 - ${}_{1}B$ - ${}_{2}B^{2}$ - ... ${}_{q}B^{q}$

ARIMA(p,d,q) t

2) $(P(Y)_{t}, ..., (Y_{t+k}) = P(Y_{t+m}, ..., Y_{t+m+k}))$,

3) ARMA(p,q) $Y_t ? p$ AR , $_t ? p q$ MA $Y_t = + \ _1 Y_{t-1} + \ldots + \ _p Y_{t-p} + \ _t - \ _1 \ _{t-1} - \ldots - \ _q \ _{t-q}$ AR(p) ? p p , MA(q) ? p q

¹⁾ Box, George E. P., and Gwilym M. Jenkins. (1976)

(2)

가

.

< -1 > ARIMA

$$\begin{array}{c} \text{R M S E} \\ \text{(Root of Mean Square Error)} \end{array} \qquad \begin{array}{c} \text{R M S E} \\ \text{(T:} \qquad , ^{\wedge}_{t} : \text{ ARIMA} \end{array} \qquad) \end{array} \qquad \begin{array}{c} \text{R M S E7} \\ \text{7} \\ \end{array} \qquad \qquad \begin{array}{c} \text{T} \\ \text{(Mean Absolute Percent Error)} \end{array} \qquad \begin{array}{c} \text{M A P E} \\ \text{(T:} \qquad , ^{\wedge}_{t} : \text{ ARIMA} \end{array} \qquad) \end{array} \qquad \begin{array}{c} \text{M A P E7} \\ \text{(T:} \qquad , ^{\wedge}_{t} : \text{ ARIMA} \end{array} \qquad) \end{array} \qquad \begin{array}{c} \text{M A P E7} \\ \text{(T:} \qquad , ^{\wedge}_{t} : \text{ ARIMA} \end{array} \qquad) \end{array}$$

Bartlett ()
$$t = \frac{ ^{\bigwedge_{k} - 0}}{ s_{\,\hat{l}}} \qquad (_{k} = 0) \qquad 7 \\ t \qquad k = 1, 2, 3 \qquad 1.25$$
 ()
$$(^{\bigwedge_{k} = \frac{ ^{\bigwedge_{t-k}}}{ \bigwedge_{\hat{l}}^{2}} , \quad s_{\,\hat{l}} = \sqrt{\frac{ (1 + 2^{\frac{k-1}{2}})}{T} }) \qquad k \qquad 4 \qquad 1.6$$
 7 \tag{ \text{ } \te

4) A R I M A 가 가 가 .

Box-Price $Q = T \frac{\kappa}{k=1} \Lambda_k^2 = \frac{2}{\kappa-p-q} \qquad (\kappa = 0) \qquad 7h \qquad ,$ $(T: , K: acf) \qquad 7h \qquad .$ $Ljung-Box \qquad (T: , K: acf) \qquad (\kappa = 0) \qquad 7h \qquad .$ $(T: , K: acf) \qquad (K = 0) \qquad 7h \qquad .$

(3)

ARIMA(p,d,q)

(Point estimation) 가 .

RMSE(Root of Mean Square Error)

가

RMSPE(Root of Mean Square Percent Simulation Error)

RMSPE = 100 × $\sqrt{\left(-\frac{Y - e^{-} - Y}{Y + t}\right)^{2}/T}$

RMSPE

가 %

RMSE

가 RMSPE가 .

2.

, 1997 5 27 2000

2 11 .

2000 1 14 2000 2 11 (RMPSE)

(1) ARIMA(2,1,4)

ARIMA(2,1,4)

5) $Y_t 7 d$, d $Y_t I(d)$

Ljung-Box, Box-Pierce, Bartlett 가

< -2 > ARIMA(2,1,4)

		가	가
Ljung-Box	Q (196) = 213.9487 : 0.1222	0.05	
Box-Pierce	Q(196) = 197.3679 : 0.3608	0.05	
Bartlett	t (k=1) = -0.5245 t (k=2) = -0.3893 t (k=3) = 0.0939 t (k=4) = -0.4811	t(k=1) : 1.25 t(k=2) : 1.25 t(k=3) : 1.25 t(k=4) : 1.6	

RMSPE

ARIMA(2,1,4)

< -3> 2000 2 11

20, 15, 10, 5, 4, 3, 2, 1

RMSPE

ARIMA 20, 10, 5, 4, 3, 2

< -3 > ARIMA(2,1,4) R.W. RMSPE

	20	15	10	5	4	3	2	1
ARIMA(2,1,4)	0.4305	0.4460	0.5968	0.4290	0.3652	0.5479	0.3730	0.5636
R.W.	0.5430	0.4435	0.6012	0.7492	0.7628	0.9229	0.5009	0.4482

(2) ARIMA(2,1,5)

ARIMA(2,1,5)

$$WON/\$_{t} = 1.3187 WON/\$_{t-1} - 0.8444 WON/\$_{t-2} + {}_{t} - 1.2400 {}_{t-1}$$

$$(30.8841) (-23.3346) (-22.4427)$$

+ 0.5707_{t-2} + 0.3848_{t-3} - 0.4925_{t-4} + 0.1695_{t-5} (9.2610) (6.7883) (-8.8592) (4.0213)

 $R^2 = 0.9838$, MAPE = 0.3203

Ljung-Box, Box-Pierce, Bartlett 가

< -4 > AR IMA(2,1,5)

		가	가
L j ung-Box	Q (196) = 210.5111 : 0.1526	0.05	
Box-Pierce	Q(196) = 192.7962 : 0.4297	0.05	
Bartlett	t (k=1) = 0.2081 t (k=2) = -0.1860 t (k=3) = -0.4415 t (k=4) = 1.0416	t(k=1) : 1.25 t(k=2) : 1.25 t(k=3) : 1.25 t(k=4) : 1.6	

RMSPE

ARIMA(2,1,5)

< -5> 2000 2 11

20, 15, 10, 5, 4, 3, 2, 1

RMSPE

ARIMA 20, 10, 5, 4, 3, 2

< -5 > ARIMA(2,1,5) R.W. RMSPE

	20	15	10	5	4	3	2	1
AR IMA (2, 1, 5)	0.4292	0.4719	0.5506	0.4719	0.4516	0.6381	0.4101	0.5491
R.W.	0.5430	0.4435	0.6012	0.7492	0.7628	0.9229	0.5009	0.4482

(3)

$$ARIMA(2,1,5)$$
 $ARIMA(2,1,4)$ $RMSPE$ $<$ -6> .

< -6 > ARIMA(2,1,4)

	(/)		(/)
2000.02.14	1116.45	2000.02.28	1120.58
2000.02.15	1119.66	2000.02.29	1120.65
2000.02.16	1120.30	2000.03.02	1120.57
2000.02.17	1120.87	2000.03.03	1120.43
2000.02.18	1121.02	2000.03.06	1120.33
2000.02.21	1120.76	2000.03.07	1120.33
2000.02.22	1120.36	2000.03.08	1120.41
2000.02.23	1120.12	2000.03.9	1120.49
2000.02.24	1120.15	2000.03.10	1120.52
2000.02.25	1120.37	2000.03.13	1120.49

3.

1981 4 1999 12 / ARIMA , ARIMA(2,1,1) ARIMA(2,1,5) 가

(1) ARIMA(2,1,1)

ARIMA(2,1,1)

$$(WON/\$)_t = 0.4098 \quad (WON/\$)_{t-1} - 0.2925 \quad (WON/\$)_{t-2} + __t + 0.4071_{t-1}$$

$$(3.3895) \quad (-3.1720) \quad (3.3891)$$

$$R^2 = 0.9735, \quad MAPE = 0.1170$$

Ljung-Box, Box-Pierce, Bartlett

Bartlett t

가 4 가 가 .

< -7 > AR IMA(2,1,1)

		가	가
L j ung-Box	Q (56) = 37.7738 : 0.9541	0.05	
Box-Pierce	Q(56) = 35.5789 : 0.9683	0.05	
Bartlett	t (k=1) = -0.1943 t (k=2) = -0.1059 t (k=3) = 0.0426 t (k=4) = -1.8533	t(k=1) : 1.25 t(k=2) : 1.25 t(k=3) : 1.25 t(k=4) : 1.6	가 t (k=4)가

RMSPE ARIMA(2,1,1)

< -8> 1999 12

12, 10, 8, 6, 4, 3, 2, 1 RMSPE ARIMA 12, 8, 4, 1

< -8 > ARIMA(2,1,1) R.W. RMSPE

	12	10	8	6	4	3	2	1
AR IMA (2, 1, 1)	2.2423	2.1750	2.0983	3.8907	2.3367	3.7722	4.6159	1.3646
R.W.	2.8048	2.0752	2.9014	2.3664	2.8700	3 . 4731	4.5873	3.5336

(2) ARIMA(2,1,5)

$$WON/\$_{t} = -0.7379 WON/\$_{t-1} - 0.6275 WON/\$_{t-2} + {}_{t} + 1.6091_{t-1}$$

$$(-7.4342) (-6.3783) (15.8014)$$

+ 1.4009
$$_{t-2}$$
 + 0.3644 $_{t-3}$ - 0.4365 $_{t-4}$ - 0.3974 $_{t-5}$ (7.7256) (1.8984) (-3.0192) (-5.4312)

$$R^2 = 0.9766$$
, MAPE = 0.1347

Ljung-Box, Box-Pierce, Bartlett 가

.

< -9 > ARIMA(2,1,5)

		가	가
Ljung-Box	Q (56) = 13.0852 : 0.9999	0.05	
Box-Pierœ	Q(56) = 11.8965 : 1.0000	0.05	
Bartlett	t(k=1) = -0.1101 t(k=2) = 0.0708 t(k=3) = 0.1571 t(k=4) = 0.0286	t(k=1) : 1.25 t(k=2) : 1.25 t(k=3) : 1.25 t(k=4) : 1.6	

RMSPE

ARIMA(2,1,5)

< -10> 1999 12

12, 10, 8, 6, 4, 3, 2, 1

< -10 > ARIMA(2,1,5) R.W. RMSPE

	12	10	8	6	4	3	2	1
ARIMA(2,1,5)	2.1722	2.2225	2.4220	4.8697	2.2525	2.6085	5.0974	1.6934
R.W.	2.8048	2.0752	2.9014	2.3664	2.8700	3.4731	4.5873	3.5336

RMSPE ARIMA 12, 8, 4, 3, 1

.

(3)

ARIMA(2,1,1) ARIMA(2,1,5)

.

< -11 > AR IMA(2,1,5)

	(/)		(/)
2000.01	1130.76	2000.07	1144.97
2000.02	1123.34	2000.08	1139.63
2000.03	1134 . 98	2000.09	1138.77
2000.04	1149.43	2000.10	1142.76
2000.05	1137.81	2000.11	1140.36
2000.06	1137.32	2000.12	1139.63

. VAR

1. VAR(Vector Autoregressive Model)

Sims⁶⁾ VAR フト

n

VA R

,

VA R フト プ

VAR .

VA R .

$$X_{t} = A(L)X_{t-1} + t$$

$$= \sum_{j=1}^{k} A_{j}X_{t-j} + t$$

$$X_{t} : n \times 1 ,$$

$$A(L) = \sum_{j=1}^{k} J_{j}^{j-1} : k (n \times n)$$

VAR Akaike, Schwarz 10) (lag length)

7)

가 8) 1

. DF ADF . 9) 가

, DF ADF , 가가 . 가

10) · , 1998, , , p265 .

⁶⁾ Sims, C. A. 1980, Macroeconomics and Reality, Econometrica, 48, 1 48.

 $\binom{\wedge}{t}$ 7 \dagger (White noise)¹¹⁾ 7 \dagger ${\sf VA}\ {\sf R}$ j가 k 12) 가 가 VA R VAR(Chain Rule of Forecasting) 가 VAR2. (1) VA R 가 가 가0 11) 가 가 X_t Y_t 12) (Granger's causality test) $Y_{i=1}^{t=m}$ $_{i}X_{t-i} + _{j=1}^{m}$ $_{j}Y_{t-j} + _{1t}$ $Y_{i=1}^{m}$ $_{iX_{t-i}}^{m} + _{j=1}^{m}$ $_{jY_{t-j}}^{m} + _{2t}$

 $_{i} = 0$

•

/ ,

Granger-Causality / /

가 , 가 VAR .

< -1 > V A R

/ WON/\$ [www.bok.or.kr]
3 CBR [www.ksda.or.kr]
LIBOR USR [quotes.reuters.com]
KOSPI 가 KOSPI [www.korea-stock.com]

) : 1997 5 27 2000 2 11

, / , , 가

1

< -2>

D F	ADF (lag=4)
-1.6539	-1.5155
-19.3357	-16.2166
-1.9614	-1.9480
-20.3889	-14.1266
-1.4731	-1.5870
-22.6059	-12.5669
	-1.6539 -19.3357 -1.9614 -20.3889 -1.4731

) 630 H $_{\circ}$: = 0 (= 5%) -3.4191 . D L O G W O N $_{t}$ = Log(WON/\$) $_{t}$ - Log(WON/\$) $_{t-1}$ DDI I $_{t}$ = (CBR $_{t}$ - USR $_{t}$) - (CBR $_{t-1}$ - USR $_{t-1}$) DKOSP I $_{t}$ = KOSPI $_{t}$ - KOSPI $_{t-1}$

/ 가

, E C M VA R

.

15

가

< -3>

		: L00	$G W O N_t = +$	DII _t +	KOSPI _t + t		
	DF				ADF	(lag =	6)
	_{DF} = -2.2369 > -3	3.47			_{ADF} = -1	.8871 >	-3.51
)	가 3	가200	DF, ADF		1	1 0 %	-3.47, -3.51 .

(2) VA R

Lag

, , 가 3 VA R , Akaike, Schwarz 26 . < -14> Akaike Lag 가 가 가 , Schwarz Lag가 26 가

< -4 > Akaike & Schwarz

lag	24	25	26	27	28
Akaike	-5.4596	-5.4884	-5.5179	-5.5209	-5.5250
Schwarz	-4.9280	-4.9343	-4.9412	-4.9215	-4.9029

) V A R . .

가 VAR
, 가 가 10%
, 가 가 가 가 가 가 다 Chain Rule

< -5>

가			F-	
DLOGWD DDII DDII DLOGWD	가 . 가 .		15.8630 12.9214	0.00000 0.00000
DKOSPI DDII DDII DKOSPI	가 . 가 .		1.46457 0.99280	0.06574 0.47572
DKOSPI DLOGWD DLOGWD DKOSPI	가 . 가 . 가 .		1.67193 1.48582	0.02056 0.05875
) 0.1 10% 630 , 26	가 . ·			
1997 5 27 2000 1 , 가	11 · , 가		VAR ¹³⁾	,
・ [IRF-A4] 0.0040%, 3 0.0015% フト フト	1 %		1 가	0.0020%, 2
[IRF-A8] 0.0056, 3 0.3265, 4	1 % - 0 . 1797	가	1	-0.5684, 2 가
[IRF-A3] 가 -0.0060%, 4 0.0180	1 %	가		2 -0.0020%,

13) VAR 14) (_t) X_t

1)

VAR $Xt = (In - A(L))^{-1}_{t} = D(L)_{t}$ $(D(L) = D_{j}L^{j}, D_{0} = I_{n})$ $\vdots X_{t} D_{j}, D_{1}, D_{2}, ..., D_{k}$ $7 \vdots$

< -1 > V A R

Response to One S.D. Innovations

RMSPE

 ${\sf VA}\ {\sf R}$

-6> 2000 2 11

21, 18, 15, 12, 9, 6, 3, 1

-6 > VARR.W. RMSPE

	21	18	15	12	9	6	3	1
VAR(a)	4.0784	1.1000	2.1335	2.6416	0.5945	0.7086	1.1811	0.5519
VAR(b)	3.6716	1.2833	2.3521	2.3793	0.6381	0.6407	1.0684	0.4919
R.W.	1.7055	0.5551	0.3674	0.4406	0.6307	0.7162	0.9229	0.4482

⁾ VAR(a) , VAR(b)

RMSPE VAR(a) 9 6 ,

VAR(b) 6 .

(3)

가 VAR(a)

.

< -7 > VAR

	(/)		(/)
2000.02.14	1108.11	2000.02.28	1109.20
2000.02.15	1103.69	2000.02.29	1097.42
2000.02.16	1109.60	2000.03.02	1095.74
2000.02.17	1119.63	2000.03.03	1092.49
2000.02.18	1115.90	2000.03.06	1096.79
2000.02.21	1108.64	2000.03.07	1098.99
2000.02.22	1105.46	2000.03.08	1105.20
2000.02.23	1103.36	2000.03.09	1105.96
2000.02.24	1109.38	2000.03.10	1104.73
2000.02.25	1109.93	2000.03.13	1102.49

3.

(1)

VAR / ,

가

< -8 > V A R

/\$	WON/\$		[www.bok.co.kr]
	CURRENT		[www.bok.co.kr]
KOSPI	KOSPI		[www.ksda.or.kr]
DOW JONES	D O W	CNN FN	[www.cnnfn.com]

) : 1990 1 1999 11 .

가

D F, ADF 가

1

< -9 >

	DF	ADF
LOGWON	-1.71629	-2.10461
DLOGWON	-6.11511	-4.57648
CURRENT	17.92272	5.69367
R R	0.67295	0.66640

) 100 H_{\circ} : = 0 (alpha = 5%) -3.73 -0.62 .

DLOGWON_t = Log(WON/\$)_t - Log(WON/\$)_{t-1}

Current:
$$RR = \frac{KOSPI_{t}}{KOSPI_{t-1}} / \frac{DOW_{t}}{DOW_{t-1}}$$

가 가 , DF $\mathsf{A}\,\mathsf{D}\,\mathsf{F}$ 가 ADF ${\sf VA}\ {\sf R}$

> -10 > <

		: log(V	$VON/\$)_t = +$	$Current_t + RR_t +$	t	
	DF			ADF	(lag = 6	5)
	_{D F} = -3.9630 < -	3.59		_{ADF} = -	1.9311 > -3	3.32
)	가3	가100	DF, ADF		10%	-3.59, -3.32 .

(2) VA R

, 가 3 VAR

Lag 12 .

Akaike Lag 13 Schwarz Lag 12 가 Akaike Lag 기

Schwarz Lag 12 .

< -11 > Akaike & Schwarz

lag		10	11	12	13	14	
Akaike Schwarz		0.4911 1.2361	0.2126 1.0370	0.1113 1.0158	0.0882 1.0739	0.1373 1.2052	
)	V A R	R		A R			

가 VA R

, 가 5%

.

가 9 % 가 가 (53%)

.

< -12 >

가		F-	
CURRENT DLOGWON	가 .	1.7116	0.0793
DLOGWON CURRENT	가 .	2.7723	0.0033
CURRENT R R	가 .	3.1875	0.0009
DDII CURRENT	가 .	0.9140	0.5369
R R DLOGWON	가 .	1.6588	0.0919
DLOGWON RR	가 .	4.9368	4.6E-06

) 0.05 5% /f . 1990 1 1999 11 , 12 .

1990 1 1999 11 VA R 가 가 가 [IRF-B4] 가 1 % 1 % / 가 1 % , 3 가 2 7 7 3 6 , 1 가 가 가 [IRF-B7] 1 % 1 % 가 1 % -0.0149% , 3 0.0091%, 1 0.0109%, 3 0.01% VAR-2 > Response to One S.D. Innovations [IRF-B1] Response of DLOGWON to DLOGWON [IRF-B2] Response of DLOGWON to CURRENT [IRF-B3] Response of DLOGWON to RR [IRF-B4] Response of CURRENT to DLOGWON [IRF-B5] Response of CURRENT to CURRENT [IRF-B6] Response of CURRENT to RR [IRF-B7] Response of RR to DLOGWON [IRF-B9] Response of RR to CURRENT [IRF-B9] Response of RR to RR ${\sf V} {\sf A} {\sf R}$ VARV A R

[IRF-B8] プ1 プ フト フト コープト フト コープト コープ・0.0005%, 3 -0.0002% , 1 0.0014%, 3 0.006%

R M S P E VA R

.

< -13> 1999 11 12, 10, 8, 6, 4, 3, 2, 1

RMSPE VAR(a) VAR(b) 12 1

.

< -13 > VAR R.W. RMSPE

	12	10	8	6	4	3	2	1
VAR(a)	7.4757	7.7848	7.6047	5.4741	7.0849	1.1894	4.2487	2.3246
VAR(b)	7.3943	7.4491	6.6360	4.6088	5.7142	1.1830	4.8195	2.2449
R.W.	8.3372	2.2210	3.2640	1.3114	1.0534	1.1064	1 . 4654	2.4061

) VAR(a) , VAR(b)

(3)

VAR(b) VAR(a) RMPSE 가

AMP SE 7

4 2000 12 1060

.

< -14 > VAR

	(/)		(/)
1999.12	1140.10	2000.07	1104.70
2000.01	1120.99	2000.08	1102.28
2000.02	1120.74	2000.09	1114.54
2000.03	1152.99	2000.10	1105.87
2000.04	1155.22	2000.11	1080.41
2000.05	1125.80	2000.12	1061.15
2000.06	1115.57	2001.01	1044.71

ARIMA VAR

ARIMA(2,1,4)ARIMA(2,1,5) 가 ARIMA ARIMA(2,1,4) 1 1120 ARIMA(2,1,5) 1 1130 VAR 가 ${\sf VA}\ {\sf R}$ ${\sf VA}\ {\sf R}$ 1100 $\mathsf{VA}\ \mathsf{R}$ 1 $\mathsf{VA}\ \mathsf{R}$ 2000 12 1060

가

24

VAR

, 가

- , 1998, ,

, 1997,

· , 1995, RATS , , 927-1101

- Bilson, J. F. O. 1978, Rational expectations and the exchange rate. In H. G. Johnson and J. A. Frenkel (eds), The Economics of Exchange Rates, Reading, MA, Addison-Wesley
- Box, George E. P., and Gwilym M. Jenkins. 1976, Time Series Analysis: Forecasting and Control, rev. ed. San Francisco, Holden-Day
- Branson, W. H. 1979, Exchange rate dynamics and monetary policy. In A. Lindbeck(ed.), Inflation and Employment in Open Economics, North Holland
- Dornbusch, R. 1976, Expectations and exchange dynamics. Journal of Political Economy, 85, 1161-1176
- Dornbusch, R. 1988, Purchasing Power Parity, The New Palgrave: A Dictionary of Economics, New York, Stockton Press
- Frenkel, J. A. 1976, A monetary approach to the exchange rate: doctrinal aspects and empirical evidence. Scandinavian Journal of Economics, 78, 200-224
- Frankel, J. A. 1979, Tests of rational expectations in the foreign exchange markets. Southern Economic Journal, 46, 1083-1101
- Frankel, J. A. 1983, Monetary and portfolio balance models of exchange rate determination. In J. Bhandari and B. Putnam(eds.), Economic Interdependence and Flexible Exchange Rates, Cambridge, MA, MIT Press

- Frankel, J. A. 1984, Tests of menetary and portfolio-balance models of exchange rate determination. In J. Bilson and R. Marston(eds), Exchange rate Theory and Practice, University of Chicago Press. Chicago
- Hooper, P. and Morton, J. 1982, Fluctuations in the dollar: a model of nominal and real exchange rate determination, Journal of International Money and Finance, 1, 39-56
- Meese, R. A. and Rogoff, K. 1983, Empirical exchange rate models of the seventies: do they fit out of sample? Journal of International Economics, 14, 324
- Sims, C. A. 1980, Macroeconomics and Reality, Econometrica, 48, 1-48