CPSC 340: Machine Learning and Data Mining

Nonlinear Regression Fall 2017

Admin

- Assignment 2 is due tonight.
 - 1 late day to hand it in on Monday, 2 for Wednesday.
- Extra office hours
 - Day before the midterm, October 19th at 4pm (ICICS 246).
- Midterm details:
 - Posted on Piazza, with previous midterms.

Feedback from TAs...

- 1 mark out of 150 on 1 assignment is not a big deal.
- Things that will get you 0 on Assignment 2:
 - Missing name and student number on assignment.
 - Not submitting a .zip file named a2.zip (a .rar file is not a .zip file).
 - Not having a .pdf file in a2.zip called a2.pdf.
 - Using the wrong assignment number on handin.
- Things that will get you 0 on individual questions:
 - Not including code in the .pdf file at the right spot.
 (Though you can just include *changed* parts of code, just say where you make changes.)
- Things that can get you 0 in the course:
 - Submitting someone else's work without citing them.

Summary of Last Lecture (Memorize This)

1. Error functions:

- Squared error is sensitive to outliers.
- Absolute (L₁) error and Huber error are more robust to outliers.
- Brittle (L_{∞}) error is more sensitive to outliers.
- 2. L_1 and L_{∞} error functions are convex but non-differentiable:
 - Finding 'w' minimizing these errors is harder than squared error.
- 3. We can approximate these with convex differentiable functions:
 - L₁ can be approximated with Huber.
 - $-L_{\infty}$ can be approximated with log-sum-exp.
- 4. Gradient descent finds stationary point of differentiable function.
 - "Stationary point" == "critical point" == "a 'w' where ∇ f(w) = 0".
- 5. For convex functions, any stationary point is a global minimum.
 - So gradient descent finds global minimum.

Very Robust Regression

- Non-convex errors can be very robust:
 - Not influenced by outlier groups.

Very Robust Regression

- Non-convex errors can be very robust:
 - Not influenced by outlier groups.
 - But non-convex, so finding global minimum is hard.
 - Absolute value is "most robust" convex loss function.

-> But, "very robust" might pick this local minimum.

Ly error might do something like this.

Very robust" errors should pick this line.

(pause)

Motivation: Non-Linear Progressions in Athletics

Are top athletes going faster, higher, and farther?

• We can adapt our classification methods to perform regression:

- We can adapt our classification methods to perform regression:
 - Regression tree: tree with mean value or linear regression at leaves.

- We can adapt our classification methods to perform regression:
 - Regression tree: tree with mean value or linear regression at leaves.
 - Probabilistic models: fit $p(x_i | y_i)$ and $p(y_i)$ with Gaussian or other model.
 - CPSC 540.

https://en.wikipedia.org/wiki/Multivariate normal distribution

- We can adapt our classification methods to perform regression:
 - Regression tree: tree with mean value or linear regression at leaves.
 - Probabilistic models: fit $p(x_i | y_i)$ and $p(y_i)$ with Gaussian or other model.
 - Non-parametric models:
 - KNN regression:
 - Find 'k' nearest neighbours of x_i.
 - Return the mean of the corresponding y_i.

- We can adapt our classification methods to perform regression:
 - Regression tree: tree with mean value or linear regression at leaves.
 - Probabilistic models: fit $p(x_i | y_i)$ and $p(y_i)$ with Gaussian or other model.
 - Non-parametric models:
 - KNN regression.
 - Could be weighted by distance.
 - Close points 'j' get more "weight" w_{ii}.

- We can adapt our classification methods to perform regression:
 - Regression tree: tree with mean value or linear regression at leaves.
 - Probabilistic models: fit $p(x_i | y_i)$ and $p(y_i)$ with Gaussian or other model.
 - Non-parametric models:
 - KNN regression.
 - Could be weighted by distance.
 - 'Nadaraya-Waston': weight all y_i by distance to x_i. 25

$$y_i = \underbrace{\frac{2}{2^{i-1}}}_{\substack{j=1\\ j=1}} \underbrace{v_{ij}y_j}_{\substack{j=1\\ j=1}}$$

Adapting Counting/

- We can adapt our classification
 - Regression tree: tree with mea >
 - Probabilistic models: fit p(x_i | y
 - Non-parametric models:
 - KNN regression.
 - Could be weighted by distance.
 - 'Nadaraya-Waston': weight all y_i
 - 'Locally linear regression': for each x_i , fit a linear model weighted by distance. (Better than KNN and NW at boundaries.)

- We can adapt our classification methods to perform regression:
 - Regression tree: tree with mean value or linear regression at leaves.
 - Probabilistic models: fit $p(x_i | y_i)$ and $p(y_i)$ with Gaussian or other model.
 - Non-parametric models:
 - KNN regression.
 - Could be weighted by distance.
 - 'Nadaraya-Waston': weight all y_i by distance to x_i.
 - 'Locally linear regression': for each x_i , fit a linear model weighted by distance. (Better than KNN and NW at boundaries.)
 - Ensemble methods:
 - Can improve performance by averaging across regression models.

- We can adapt our classification methods to perform regression.
- Applications:
 - Regression forests for fluid simulation:
 - https://www.youtube.com/watch?v=kGB7Wd9CudA
 - KNN for image completion:
 - http://graphics.cs.cmu.edu/projects/scene-completion
 - Combined with "graph cuts" and "Poisson blending".
 - KNN regression for "voice photoshop":
 - https://www.youtube.com/watch?v=I3I4XLZ59iw
 - Combined with "dynamic time warping" and "Poisson blending".
- But we'll focus on linear models with non-linear transforms.
 - These are the building blocks for more advanced methods.

Motivation: Limitations of Linear Models

• On many datasets, y_i is not a function of x_i .

• Can we use least square to fit non-linear models?

Non-Linear Feature Transforms

Can we use linear least squares to fit a quadratic model?

$$y_{i} = w_{0} + w_{1}x_{i} + w_{2}x_{i}^{2}$$

• You can do this by changing the features (change of basis):

$$X = \begin{bmatrix} 6.2 \\ -0.5 \\ 1 \\ 4 \end{bmatrix}$$

$$Z = \begin{bmatrix} 1 & 0.2 & (0.2)^{2} \\ 1 & -0.5 & (-0.5)^{2} \\ 1 & 1 & (1)^{2} \\ 1 & 4 & (4)^{2} \end{bmatrix}$$

$$Y_{i} = w_{0}^{T} Z_{i}$$

$$= w_{0} Z_{i0} + w_{i} Z_{i1} + w_{2} Z_{i2}$$

$$= w_{0} + w_{i} X_{i} + w_{2} X_{i}^{2}$$

$$Y_{i} = w_{0}^{T} Z_{i}$$

- It's a linear function of w, but a quadratic function of x_i.
- Fit using normal equations with Z instead of X: $w = (Z^TZ)^{-1}(Z^Ty)$

Non-Linear Feature Transforms

General Polynomial Features (d=1)

We can have a polynomial of degree 'p' by using these features:

$$Z = \begin{bmatrix} x_{1} & (x_{1})^{2} & \dots & (x_{n})^{p} \\ x_{2} & (x_{2})^{2} & \dots & (x_{n})^{p} \\ \vdots & \vdots & \vdots & \vdots \\ x_{n} & (x_{n})^{2} & \dots & (x_{n})^{p} \end{bmatrix}$$

- There are polynomial basis functions that are numerically nicer:
 - E.g., Lagrange polynomials (see CPSC 303).

General Polynomial Features

- If you have more than one feature, you include interactions:
 - With p=2, in addition to $(x_{i1})^2$ and $(x_{i2})^2$ you would include $x_{i1}x_{i2}$.

Degree of Polynomial and Fundamental Trade-Off

As the polynomial degree increases, the training error goes down.

- But approximation error goes up: we start overfitting with large 'p'.
- Usual approach to selecting degree: validation or cross-validation.

Beyond Polynomial Transformations

- Polynomials are not the only possible transformation:
 - Exponentials, logarithms, trigonometric functions, etc.

The right non-linear transform will vastly improve performance.

End of Scope for Midterm Material.

Finding the "True" Model

- What if our goal is find the "true" model?
 - We believe that y_i really is a polynomial function of x_i .
 - We want to find the degree of the polynomial 'p'.
- Should we choose the 'p' with the lowest training error?
 - No, this will pick a 'p' that is way too large.
 (training error always decreases as you increase 'p')

Finding the "True" Model

- What if our goal is find the "true" model?
 - We believe that y_i really is a polynomial function of x_i .
 - We want to find the degree of the polynomial 'p'.

- Should we choose the 'p' with the lowest validation error?
 - This will also often choose a 'p' that is too large.
 - Even if true model has p=2, this is a special case of a degree-3 polynomial.
 - If 'p' is too big then we overfit, but might still get a lower validation error.
 - Another example of optimization bias.

Complexity Penalties

- There are a lot of "scores" people use to find the "true" model.
- Basic idea behind them: put a penalty on the model complexity.
 - Want to fit the data and have a simple model.
- For example, minimize training error plus the degree of polynomial.

Let
$$Z_{p} = \begin{cases} 1 & x_{1} & (x_{1})^{3} & - & (x_{1})^{p} \\ 1 & x_{2} & (x_{2})^{3} & - & (x_{2})^{p} \\ 1 & x_{3} & (x_{3})^{3} & - & (x_{n})^{p} \\ 1 & x_{1} & (x_{2})^{3} & - & (x_{n})^{p} \\ 1 & x_{1} & (x_{2})^{3} & - & (x_{n})^{p} \\ 1 & x_{2} & (x_{2})^{3} & - & (x_{n})^{p} \\ 1 & x_{1} & (x_{2})^{3} & - & (x_{2})^{p} \\ 1 & x_{2} & (x_{2})^{3} & - & (x_{2})^{p} \\ 1 & x_{3} & (x_{2})^{3} & - & (x_{2})^{p} \\ 1 & x_{1} & (x_{2})^{3} & - & (x_{2})^{p} \\ 1 & x_{2} & (x_{2})^{3} & - & (x_{2})^{p} \\ 1 & x_{3} & (x_{2})^{3} & - & (x_{2})^{p} \\ 1 & x_{1} & (x_{2})^{3} & - & (x_{2})^{p} \\ 1 & x_{2} & (x_{2})^{3} & - & (x_{2})^{p} \\ 1 & x_{3} & (x_{2})^{3} & - & (x_{2})^{p} \\ 1 & x_{3} & (x_{2})^{3} & - & (x_{2})^{p} \\ 1 & x_{3} & (x_{2})^{3} & - & (x_{2})^{p} \\ 1 & x_{3} & (x_{2})^{3} & - & (x_{2})^{p} \\ 1 & x_{3} & (x_{2})^{3} & - & (x_{2})^{p} \\ 1 & x_{3} & (x_{2})^{2} & - & (x_{2})^{p} \\ 1 & x_{3} & (x_{2})^{2} & - & (x_{2})^{p} \\ 1 & x_{3} & (x_{2})^{2} & - & (x_{2})^{p} \\ 1 & x_{3} & (x_{2})^{2} & - & (x_{2})^{p} \\ 1 & x_{3} & (x_{2})^{p} & - & (x_{2})^{p} \\ 1 & x_$$

- If we use p=4, use "training error plus 4" as error.
- If two 'p' values have similar error, this prefers the smaller 'p'.

Summary

- Tree/probabilistic/non-parametric/ensemble regression methods.
- Non-linear transforms:
 - Allow us to model non-linear relationships with linear models.
- Complexity penalties can counter optimization bias.
 - When we want to find the "true" model.

- Next time:
 - Can we find the "true" features?