数据科学与大数据技术 的数学基础

第七讲

计算机学院 余皓然 2024/5/11

课程内容

Part1 随机化方法

一致性哈希 布隆过滤器 CM Sketch方法 最小哈希 欧氏距离下的相似搜索 Jaccard相似度下的相似搜索

Part2 谱分析方法

主成分分析 奇异值分解 谱图论

Part3 最优化方法

压缩感知

随机化方法

问题与随机化方法回顾

分布式缓存	一致性哈希
从属判断	布隆过滤器
高频元素寻找	CM Sketch方法
不同元素统计	最小哈希
欧氏距离下的相似搜索	JL转换
Jaccard相似度下的搜索	局部敏感哈希

➤ 理解要点 (takeaways)

- 当数据规模巨大时,看似简单的问题可能变得复杂,线性复杂度不可接受
- 随机化方法以较小的空间/时间复杂度近似解决问题,以精确度换空间/时间
- 可以用马尔可夫不等式、切比雪夫不等式等工具刻画方法达到性能的上下界。

课程内容

Part1 随机化方法

一致性哈希 布隆过滤器 CM Sketch方法 最小哈希 欧氏距离下的相似搜索 Jaccard相似度下的相似搜索

Part2 谱分析方法

主成分分析 奇异值分解 谱图论

Part3 最优化方法

压缩感知

主成分分析主成分分析的背景

- ▶ 与JL转换类似,主成分分析 (Principal Component Analysis) 也是一种数据降维的方法
 - ▶ JL转换: 在降维过程中保护数据间的欧几里得距离
 - > 主成分分析:增强降维后数据的可解释性

"principal component analysis"

About 2,730,000 results (0.11 sec)

[PDF] Principal component analysis

H Abdi, LJ Williams - Wiley interdisciplinary reviews ..., 2010 - Wiley Online Library

Principal component analysis (PCA) is a multivariate technique that analyzes a data table in which observations are described by several inter-correlated quantitative dependent ...

☆ Save ワワ Cite Cited by 8306 Related articles All 10 versions

Principal component analysis

S Wold, K Esbensen, P Geladi - Chemometrics and intelligent laboratory ..., 1987 - Elsevier

Principal component analysis of a data matrix extracts the dominant patterns in the matrix in terms of a complementary set of score and loading plots. It is the responsibility of the data ...

☆ Save ⅓ Cite Cited by 10809 Related articles All 14 versions

主成分分析是一种主要的数据降维方式

	沙拉	肉夹馍	蒸鱼	苏打饼干
张三	10	1	2	7
李四	7	2	1	10
王五.	2	9	7	3
赵六	3	6	10	2

可将每行记为一个四维向量,能否对这四个四维向量降维并做数据可视化?可否更好地解释四个数据之间的区别?

	沙拉	肉夹馍	蒸鱼	苏打饼干
张三	10	1	2	7
李四	7	2	1	10
王五.	2	9	7	3
赵六	3	6	10	2

可将每行记为一个<mark>四维向量</mark>,能否对这四个<mark>四维向量</mark>降维并做数据可视化?可否更好地解释四个数据之间的区别?

令
$$\overline{x}$$
 = (5.5,4.5,5,5.5), v_1 = (3,-3,-3,3), v_2 = (1,-1,1,-1),可以将任一行对应的向量近似成:
$$\overline{x} + a_1v_1 + a_2v_2$$

其中,张三的数据对应 $(a_1, a_2) = (1,1)$,即 $\overline{x} + v_1 + v_2 = (9.5, 0.5, 3, 7.5)$

李四的数据对应 $(a_1, a_2) = (1, -1)$, 即 $\overline{x} + v_1 - v_2 = (7.5, 2.5, 1, 9.5)$

王五的数据对应 $(a_1, a_2) = (-1, -1)$,赵六的数据对应 $(a_1, a_2) = (-1, 1)$

	沙拉	肉夹馍	蒸鱼	苏打饼干
张三	10	1	2	7
李四	7	2	1	10
王五.	2	9	7	3
赵六	3	6	10	2

可将每行记为一个<mark>四维向量</mark>,能否对这四个<mark>四维向量</mark>降维并做数据可视化?可否更好地解释四个数据之间的区别?

令
$$\overline{x}$$
 = (5.5,4.5,5,5.5), v_1 = (3,-3,-3,3), v_2 = (1,-1,1,-1),可以将任一行对应的向量近似成:
$$\overline{x} + a_1v_1 + a_2v_2$$

其中,张三的数据对应 $(a_1, a_2) = (1,1)$,即 $\overline{x} + v_1 + v_2 = (9.5,0.5,3,7.5)$

李四的数据对应 $(a_1, a_2) = (1, -1)$,即 $\overline{x} + v_1 - v_2 = (7.5, 2.5, 1, 9.5)$

王五的数据对应 $(a_1, a_2) = (-1, -1)$,赵六的数据对应 $(a_1, a_2) = (-1, 1)$

可用二维向量(a1, a2)近似表示四个数据

	沙拉	肉夹馍	蒸鱼	苏打饼干
张三	10	1	2	7
李四	7	2	1	10
王五.	2	9	7	3
赵六	3	6	10	2

赵六 ● 张三
 王五 ● 李四

 $\uparrow a_2$

四个四维数据

令 \overline{x} = (5.5,4.5,5,5.5), v_1 = (3,-3,-3,3), v_2 = (1,-1,1,-1),可以将任一行对应的向量<mark>近似</mark>成: $\overline{x}+a_1v_1+a_2v_2$

	沙拉	肉夹馍	蒸鱼	苏打饼干
张三	10	1	2	7
李四	7	2	1	10
王五.	2	9	7	3
赵六	3	6	10	2

四个四维数据

隆维

赵六 ● 张三
 王五 ● 李四

令 \overline{x} = (5.5,4.5,5,5.5), v_1 = (3,-3,-3,3), v_2 = (1,-1,1,-1),可以将任一行对应的向量近似成: $\overline{x} + a_1v_1 + a_2v_2$

降维的作用:

一、方便对数据进行可视化(若有更多人的数据,可以看到有哪些类、哪些人之间更相似)

	沙拉	肉夹馍	蒸鱼	苏打饼干
张三	10	1	2	7
李四	7	2	1	10
王五.	2	9	7	3
赵六	3	6	10	2

赵六 ● 张三 王五 ● 李四 四个二维数据

四个四维数据

令 \overline{x} = (5.5,4.5,5,5.5), v_1 = (3,-3,-3,3), v_2 = (1,-1,1,-1),可以将任一行对应的向量近似成: $\overline{x} + a_1v_1 + a_2v_2$

降维的作用:

- 一、方便对数据进行可视化(若有更多人的数据,可以看到有哪些类、哪些人之间更相似)
- 二、通过解释 v_1, v_2 ,解释数据(如 v_1 对应是否喜欢吃素、 v_2 对应是否注重健康,而这些人在是否吃素方面的差异比在是否注重健康方面的差异更大)

	沙拉	肉夹馍	蒸鱼	苏打饼干
张三	10	1	2	7
李四	7	2	1	10
王五.	2	9	7	3
赵六	3	6	10	2

四个四维数据

降维

赵六 ● 张三 王五 ● 李四 a₁

令 \overline{x} = (5.5,4.5,5,5.5), v_1 = (3,-3,-3,3), v_2 = (1,-1,1,-1),可以将任一行对应的向量近似成: $\overline{x} + a_1v_1 + a_2v_2$

(标准化后的) v_1 和 v_2 可称为数据的"主成分",主成分分析关注如何由数据找到 $\overline{x} + a_1v_1 + a_2v_2$

主成分分析: 给定m个n维向量 $x_1, ..., x_m \in \mathbb{R}^n$,分别将它们近似为k个n维向量 $v_1, ..., v_k \in \mathbb{R}^n$ 的 线性组合,即 $x_i \approx \sum_{j=1}^k a_{ij} v_j, i = 1, ..., m$ 。

主成分分析: 给定m个n维向量 $x_1, ..., x_m \in \mathbb{R}^n$,分别将它们<mark>近似为</mark>k个n维向量 $v_1, ..., v_k \in \mathbb{R}^n$ 的线性组合,即 $x_i \approx \sum_{j=1}^k a_{ij} v_j, i = 1, ..., m$ 。

在前例中,是将 x_1, x_2, x_3, x_4 近似为 $\overline{x} + a_{i1}v_1 + a_{i2}v_2$ (i = 1, ..., m)的形式

令
$$\overline{x}$$
 = (5.5,4.5,5,5.5), v_1 = (3,-3,-3,3), v_2 = (1,-1,1,-1),可以将任一行对应的向量近似成:
$$\overline{x} + a_1v_1 + a_2v_2$$

由于 $\bar{x} = \frac{1}{4}(x_1 + x_2 + x_3 + x_4)$,可等价于将 $x_1 - \bar{x}$, $x_2 - \bar{x}$, $x_3 - \bar{x}$, $x_4 - \bar{x}$ 近似为 $a_{i1}v_1 + a_{i2}v_2$ 形式

主成分分析: 给定m个n维向量 $x_1, ..., x_m \in \mathbb{R}^n$,分别将它们近似为k个n维向量 $v_1, ..., v_k \in \mathbb{R}^n$ 的线性组合,即 $x_i \approx \sum_{j=1}^k a_{ij} v_j, i = 1, ..., m$ 。

如何把列向量 x_i 写成矩阵与向量的乘积形式?

主成分分析: 给定m个n维向量 $x_1,...,x_m \in \mathbb{R}^n$,分别将它们近似为k个n维向量 $v_1,...,v_k \in \mathbb{R}^n$ 的线性组合,即 $x_i \approx \sum_{j=1}^k a_{ij} v_j, i=1,...,m$ 。

主成分分析: 给定m个n维向量 $x_1, ..., x_m \in \mathbb{R}^n$,分别将它们近似为k个n维向量 $v_1, ..., v_k \in \mathbb{R}^n$ 的 线性组合,即 $x_i \approx \sum_{j=1}^k a_{ij} v_j, i = 1, ..., m$ 。

	沙拉	肉夹馍	蒸鱼	苏打饼干
张三	10	1	2	7
李四	7	2	1	10
王五.	2	9	7	3
赵六	3	6	10	2

此例中, m = 4, n = 4, k = 2

主成分分析: 给定m个n维向量 $x_1, ..., x_m \in \mathbb{R}^n$,分别将它们<mark>近似为</mark>k个n维向量 $v_1, ..., v_k \in \mathbb{R}^n$ 的 线性组合,即 $x_i \approx \sum_{j=1}^k a_{ij} v_j, i = 1, ..., m$ 。

PCA与JL转换对比

主成分分析 (PCA)

JL转换

矩阵 A

向量 x_i

PCA与JL转换对比

主成分分析 (PCA)

- 1. 降维后可能无法保持原数据间的欧氏距离
- 2. 矩阵V与数据有关,根据数据得到V从而解释数据
- 3. 矩阵V的k个列向量对应的坐标一般有意义

4. 可能降至k = 1或k = 2依然得到有意义的结果

JL转换

- 1. 降维后保持原数据间的欧氏距离
- 2. 矩阵A与数据无关,是随机生成(每次转换结果可能不同)
- 3. 矩阵A的行向量对应的坐标一般无意义
- 4. 根据JL引理, 降维后的维度有下限要求(否则不能保证低失真)

矩阵 A

向量 x_i

主成分分析 (PCA)

若要把若干个二维数据降维成一维数据

主成分分析 (PCA)

若要把若干个二维数据降维成一维数据 即k = 1,有 $\mathbf{x}_i \approx \sum_{j=1}^k a_{ij} \mathbf{v}_j = a_i \mathbf{v}$

主成分分析 (PCA)

若要把若干个二维数据降维成一维数据 即k = 1,有 $\mathbf{x}_i \approx \sum_{j=1}^k a_{ij} \mathbf{v}_j = a_i \mathbf{v}$

主成分分析 (PCA)

若要把若干个二维数据降维成一维数据 即k = 1,有 $\mathbf{x}_i \approx \sum_{j=1}^k a_{ij} \mathbf{v}_j = a_i \mathbf{v}$

主成分分析 (PCA)

若要把若干个二维数据降维成一维数据

即
$$k=1$$
,有 $x_i \approx \sum_{j=1}^k a_{ij} v_j = a_i v$

向量v需要满足:最小化各个点(原数据)到v的垂直距离的平方和

不希望 x_i 与 a_i v欧式距离过大

主成分分析 (PCA)

若要把若干个二维数据降维成一维数据 即k = 1,有 $x_i \approx \sum_{j=1}^k a_{ij} v_j = a_i v$

向量v需要满足:最小化各个点(原数据)到v的垂直距离的平方和

不希望 x_i 与 a_iv 欧式距离过大

线性回归 (属于机器学习中的监督学习)

若采集到五个商品房的面积x与售价y的数据 希望用直线 $y = \theta x$ 近似未知函数 $f: x \to y$ 使得 θx_i 接近于 y_i

主成分分析 (PCA)

若要把若干个二维数据降维成一维数据 即k = 1,有 $x_i \approx \sum_{j=1}^k a_{ij} v_j = a_i v$

向量v需要满足:最小化各个点(原数据)到v的垂直距离的平方和

不希望 x_i 与 a_i v欧式距离过大

线性回归 (属于机器学习中的监督学习)

若采集到五个商品房的面积x与售价y的数据 希望用直线 $y = \theta x$ 近似未知函数 $f: x \to y$ 使得 θx_i 接近于 y_i

主成分分析 (PCA)

若要把若干个二维数据降维成一维数据 即k = 1,有 $x_i \approx \sum_{j=1}^k a_{ij} v_j = a_i v$

向量v需要满足:最小化各个点(原数据)到v的垂直距离的平方和

不希望 x_i 与 a_i v欧式距离过大

线性回归 (属于机器学习中的监督学习)

若采集到五个商品房的面积x与售价y的数据 希望用直线 $y = \theta x$ 近似未知函数 $f: x \to y$ 使得 θx_i 接近于 y_i

斜率 θ 需要满足:最小化 θx_i 到 y_i 的差的平方和

主成分分析 (PCA)

若要把若干个二维数据降维成一维数据 即k = 1,有 $x_i \approx \sum_{j=1}^k a_{ij} v_j = a_i v$

向量v需要满足: 最小化各个点 (原数据) 到v的垂直距离的平方和

不希望 x_i 与 a_i v欧式距离过大

线性回归 (属于机器学习中的监督学习)

若采集到五个商品房的面积x与售价y的数据 希望用直线 $y = \theta x$ 近似未知函数 $f: x \to y$ 使得 θx_i 接近于 y_i

斜率 θ 需要满足:最小化 θx_i 到 y_i 的差的平方和

主成分分析主成分分析问题定义

一、将所有数据"平移",令数据的中点为原点

回顾前例, 令 $\bar{x} = (5.5,4.5,5.5.5), v_1 = (3,-3,-3,3), v_2 = (1,-1,1,-1),$

可以将 x_1, x_2, x_3, x_4 近似为 $\overline{x} + a_{i1}v_1 + a_{i2}v_2$ 的形式,

由于 $\bar{x} = \frac{1}{4}(x_1 + x_2 + x_3 + x_4)$,等价于将 $x_1 - \bar{x}, x_2 - \bar{x}, x_3 - \bar{x}, x_4 - \bar{x}$ 近似为 $a_{i1}v_1 + a_{i2}v_2$ 形式

一、将所有数据"平移",令数据的中点为原点

回顾前例, 令 $\bar{x} = (5.5,4.5,5.5.5), v_1 = (3,-3,-3,3), v_2 = (1,-1,1,-1),$

可以将 x_1, x_2, x_3, x_4 近似为 $\overline{x} + a_{i1}v_1 + a_{i2}v_2$ 的形式,

由于
$$\bar{x} = \frac{1}{4}(x_1 + x_2 + x_3 + x_4)$$
,等价于将 $x_1 - \bar{x}, x_2 - \bar{x}, x_3 - \bar{x}, x_4 - \bar{x}$ 近似为 $a_{i1}v_1 + a_{i2}v_2$ 形式

	沙拉	肉夹馍	蒸鱼	苏打饼干
张三	10	1	2	7
李四	7	2	1	10
王五.	2	9	7	3
赵六	3	6	10	2

	沙拉	肉夹馍	蒸鱼	苏打饼干
张三	4.5	-3.5	-3	1.5
李四	1.5	-2.5	-4	4.5
王五.	-3.5	4.5	2	-2.5
赵六	-2.5	1.5	5	-3.5

每行数据减去 \bar{x} = (5.5,4.5,5,5.5)

每个维度下所有数据之和为0

一、将所有数据"平移",令数据的中点为原点

计算 $\overline{x} = \frac{1}{m}(x_1 + \dots + x_m)$,为每个数据 x_i 计算 $\widetilde{x}_i = x_i - \overline{x}$,然后对 $\widetilde{x}_1, \dots, \widetilde{x}_m$ 做降维即有 $\widetilde{x}_i \approx \sum_{j=1}^k a_{ij} v_j$ 以及 $x_i \approx \overline{x} + \sum_{j=1}^k a_{ij} v_j$

- 一、将所有数据"平移",令数据的中点为原点
- 二、对数据的各维度缩放,减小各维度对应的数字量级不同带来的影响

	身高	体重	年龄
张三	170	65	32
李四	180	70	25
王五.	185	80	28
赵六	165	55	35

平移

张三	-5	-2.5	2
李四	5	2.5	-5
王五.	10	12.5	-2
赵六	-10	-12.5	5

	身高	体重	年龄
张三	1.7	65	32
李四	1.8	70	25
王五.	1.85	80	28
赵六	1.65	55	35

平移

张三	-0.05	-2.5	2
李四	0.05	2.5	-5
王五.	0.1	12.5	-2
赵六	-0.1	-12.5	5

- 一、将所有数据"平移",令数据的中点为原点
- 二、对数据的各维度缩放,减小各维度对应的数字量级不同带来的影响

	身高	体重	年龄
张三	170	65	32
李四	180	70	25
王五.	185	80	28
赵六	165	55	35

平移

张三	-5	-2.5	2
李四	5	2.5	-5
王五.	10	12.5	-2
赵六	-10	-12.5	5

	身高	体重	年龄
张三	1.7	65	32
李四	1.8	70	25
王五.	1.85	80	28
赵六	1.65	55	35

平移

张三	-0.05	-2.5	2
李四	0.05	2.5	-5
王五.	0.1	12.5	-2
赵六	-0.1	-12.5	5

PCA将最小化数据 \tilde{x}_i 到 $\sum_{j=1}^k a_{ij} v_j$ 的距离的平方和,若某维度的数字量级大、对距离的计算影响大

数据预处理

- 一、将所有数据"平移",令数据的中点为原点
- 二、对数据的各维度缩放,减小各维度对应的数字量级不同带来的影响

把数据
$$\tilde{\boldsymbol{x}}_i = (\tilde{x}_{i1}, \dots, \tilde{x}_{in})$$
缩放为 $\left(\frac{1}{\sqrt{\sum_{i=1}^m \tilde{x}_{i1}^2}} \tilde{x}_{i1}, \dots, \frac{1}{\sqrt{\sum_{i=1}^m \tilde{x}_{in}^2}} \tilde{x}_{in}\right)$

张三	-5	-2.5	2
李四	5	2.5	-5
王五.	10	12.5	-2
赵六	-10	-12.5	5

缩放

张三	-0.05	-2.5	2
李四	0.05	2.5	-5
王五.	0.1	12.5	-2
赵六	-0.1	-12.5	5

缩放

数据预处理

- 一、将所有数据"平移",令数据的中点为原点
- 二、对数据的各维度缩放,减小各维度对应的数字量级不同带来的影响

把数据
$$\tilde{\mathbf{x}}_i = (\tilde{x}_{i1}, \dots, \tilde{x}_{in})$$
缩放为 $\left(\frac{1}{\sqrt{\sum_{i=1}^m \tilde{x}_{i1}^2}} \tilde{x}_{i1}, \dots, \frac{1}{\sqrt{\sum_{i=1}^m \tilde{x}_{in}^2}} \tilde{x}_{in}\right)$

张三	-5	-2.5	2
李四	5	2.5	-5
王五.	10	12.5	-2
赵六	-10	-12.5	5

缩放

张三	-0.316	-0.139	0.263
李四	0.316	0.139	-0.657
王五.	0.632	0.693	-0.263
赵六	-0.632	-0.693	0.657

张三	-0.05	-2.5	2
李四	0.05	2.5	-5
王五.	0.1	12.5	-2
赵六	-0.1	-12.5	5

缩放

张三	-0.316	-0.139	0.263
李四	0.316	0.139	-0.657
王五.	0.632	0.693	-0.263
赵六	-0.632	-0.693	0.657

将(已完成预处理的)m个n维向量 $x_1,...,x_m \in \mathbb{R}^n$ 近似为 a_iv , i=1,...,m。

将(已完成预处理的)m个n维向量 $x_1, ..., x_m \in \mathbb{R}^n$ 近似为 $a_i v, i = 1, ..., m$ 。

如何选择向量v?

注意是距离平方和

$$\underset{\mathbf{v}: (\mathbf{v}||=1)}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} \left((\text{distance between } \mathbf{x}_i \text{ and line spanned by } \mathbf{v})^2 \right)$$

单位向量

将(已完成预处理的)m个n维向量 $x_1, ..., x_m \in \mathbb{R}^n$ 近似为 $a_i v, i = 1, ..., m$ 。

可否进一步改写问题?

 $\underset{\mathbf{v}:\|\mathbf{v}\|=1}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} \left((\text{distance between } \mathbf{x}_i \text{ and line spanned by } \mathbf{v})^2 \right)$

将(已完成预处理的)m个n维向量 $x_1,...,x_m \in \mathbb{R}^n$ 近似为 a_iv , i=1,...,m。

 $\underset{\mathbf{v}:\|\mathbf{v}\|=1}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} \left((\text{distance between } \mathbf{x}_i \text{ and line spanned by } \mathbf{v})^2 \right)$

将(已完成预处理的) $m \land n$ 维向量 $x_1, ..., x_m \in \mathbb{R}^n$ 近似为 $a_i v, i = 1, ..., m$ 。

可否进一步改写问题?

$$\underset{\mathbf{v}: \|\mathbf{v}\|=1}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} \left((\text{distance between } \mathbf{x}_i \text{ and line spanned by } \mathbf{v})^2 \right)$$

将(已完成预处理的)m个n维向量 $x_1,...,x_m \in \mathbb{R}^n$ 近似为 $a_iv,i=1,...,m$ 。

可否进一步改写问题?

$$\underset{\mathbf{v}:\|\mathbf{v}\|=1}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} \left((\text{distance between } \mathbf{x}_i \text{ and line spanned by } \mathbf{v})^2 \right)$$

将(已完成预处理的)m个n维向量 $x_1,...,x_m \in \mathbb{R}^n$ 近似为 a_iv , i=1,...,m。

可否进一步改写问题?

 $\underset{\mathbf{v}:\|\mathbf{v}\|=1}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} \left((\text{distance between } \mathbf{x}_i \text{ and line spanned by } \mathbf{v})^2 \right)$

将(已完成预处理的)m个n维向量 $x_1, ..., x_m \in \mathbb{R}^n$ 近似为 $a_i v, i = 1, ..., m$ 。

注意 a_i v中 a_i 也是待求量

$$a_i = ||\mathbf{x}_i|| \cos \theta = ||\mathbf{x}_i|| ||\mathbf{v}|| \cos \theta$$
$$= \langle \mathbf{x}_i, \mathbf{v} \rangle = x_{i1}v_1 + \dots + x_{in}v_n$$

$$(\operatorname{dist}(\mathbf{x}_i \leftrightarrow \operatorname{line}))^2 + \langle \mathbf{x}_i, \mathbf{v} \rangle^2 = \|\mathbf{x}_i\|^2$$

可否进一步改写问题?

 $\underset{\mathbf{v}: \|\mathbf{v}\|=1}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} \left((\text{distance between } \mathbf{x}_i \text{ and line spanned by } \mathbf{v})^2 \right)$

将(已完成预处理的) $m \land n$ 维向量 $x_1, ..., x_m \in \mathbb{R}^n$ 近似为 $a_i v, i = 1, ..., m$ 。

可否进一步改写问题?

 $\underset{\mathbf{v}: \|\mathbf{v}\|=1}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1} \left((\text{distance between } \mathbf{x}_i \text{ and line spanned by } \mathbf{v})^2 \right)$

 $\underset{\mathbf{v}:\|\mathbf{v}\|=1}{\operatorname{argmax}} \frac{1}{m} \sum_{i=1}^{m} \langle \mathbf{x}_i, \mathbf{v} \rangle^2$

因为 $\|x_i\|^2$ 不受v选择的影响,可以从求和中移去

将(已完成预处理的)m个n维向量 $x_1,...,x_m \in \mathbb{R}^n$ 近似为 a_iv , i=1,...,m。

$$\underset{\mathbf{v}: \|\mathbf{v}\|=1}{\operatorname{argmax}} \frac{1}{m} \sum_{i=1}^{m} \langle \mathbf{x}_i, \mathbf{v} \rangle^2$$

将(已完成预处理的)m个n维向量 $x_1,...,x_m \in \mathbb{R}^n$ 近似为 a_iv , i=1,...,m。

分析新问题

$$\underset{\mathbf{v}:\|\mathbf{v}\|=1}{\operatorname{argmax}} \frac{1}{m} \sum_{i=1}^{m} \langle \mathbf{x}_i, \mathbf{v} \rangle^2$$

$$\underset{v:||v||=1}{\operatorname{argmax}} \frac{1}{m} \sum_{i=1}^{m} a_i^2$$

如何理解新目标函数的含义

将(已完成预处理的)m个n维向量 $x_1,...,x_m \in \mathbb{R}^n$ 近似为 a_iv , i=1,...,m。

可以证得 $\bar{a} = \frac{1}{m} \sum_{i=1}^{m} a_i = 0$

因为
$$\frac{1}{m}\sum_{i=1}^{m} a_i = \frac{1}{m}\sum_{i=1}^{m} (x_{i1}v_1 + \dots + x_{in}v_n)$$

由数据已经预处理得 $\frac{1}{m}v_1\sum_{i=1}^m x_{i1} = 0$ 等

$$\underset{\mathbf{v}:\|\mathbf{v}\|=1}{\operatorname{argmax}} \frac{1}{m} \sum_{i=1}^{m} \langle \mathbf{x}_i, \mathbf{v} \rangle^2$$

$$\underset{v:||v||=1}{\operatorname{argmax}} \frac{1}{m} \sum_{i=1}^{m} a_i^2$$

将(已完成预处理的)m个n维向量 $x_1,...,x_m \in \mathbb{R}^n$ 近似为 a_iv , i=1,...,m。

可以证得
$$\bar{a} = \frac{1}{m} \sum_{i=1}^{m} a_i = 0$$

因为
$$\frac{1}{m}\sum_{i=1}^{m}a_{i} = \frac{1}{m}\sum_{i=1}^{m}(x_{i1}v_{1} + \dots + x_{in}v_{n})$$

由数据已经预处理得 $\frac{1}{m}v_1\sum_{i=1}^m x_{i1} = 0$ 等

此时,降维后的数据均值为0

$$\underset{\mathbf{v}:\|\mathbf{v}\|=1}{\operatorname{argmax}} \frac{1}{m} \sum_{i=1}^{m} \langle \mathbf{x}_i, \mathbf{v} \rangle^2$$

$$\underset{v:||v||=1}{\operatorname{argmax}} \frac{1}{m} \sum_{i=1}^{m} a_i^2$$

将(已完成预处理的)m个n维向量 $x_1,...,x_m \in \mathbb{R}^n$ 近似为 a_iv , i=1,...,m。

可以证得
$$\bar{a} = \frac{1}{m} \sum_{i=1}^{m} a_i = 0$$

因为
$$\frac{1}{m}\sum_{i=1}^{m}a_{i} = \frac{1}{m}\sum_{i=1}^{m}(x_{i1}v_{1} + \dots + x_{in}v_{n})$$

由数据已经预处理得 $\frac{1}{m}v_1\sum_{i=1}^m x_{i1} = 0$ 等

此时,降维后的数据均值为0

$$\underset{\mathbf{v}: \|\mathbf{v}\|=1}{\operatorname{argmax}} \frac{1}{m} \sum_{i=1}^{m} \langle \mathbf{x}_i, \mathbf{v} \rangle^2$$

$$\underset{\mathbf{v}:\|\mathbf{v}\|=1}{\operatorname{argmax}} \frac{1}{m} \sum_{i=1}^{m} \langle \mathbf{x}_i, \mathbf{v} \rangle^2 \left| \mathbf{v} \right| \qquad \underset{\mathbf{v}:\|\mathbf{v}\|=1}{\operatorname{argmax}} \frac{1}{m} \sum_{i=1}^{m} (a_i - \bar{a})^2$$

将(已完成预处理的)m个n维向量 $x_1,...,x_m \in \mathbb{R}^n$ 近似为 a_iv , i=1,...,m。

分析新问题

$$\underset{\mathbf{v}:\|\mathbf{v}\|=1}{\operatorname{argmax}} \frac{1}{m} \sum_{i=1}^{m} \langle \mathbf{x}_i, \mathbf{v} \rangle^2$$

即

$$\underset{v:||v||=1}{\operatorname{argmax}} \frac{1}{m} \sum_{i=1}^{m} (a_i - \bar{a})^2$$

新目标函数说明,需选择v使降维后的数据的"方差"尽量大

即: 使降维后数据之间依然可以较好区别开

将(已完成预处理的) $m \land n$ 维向量 $x_1, ..., x_m \in \mathbb{R}^n$ 近似为 $a_i v, i = 1, ..., m$ 。

$$\underset{\mathbf{v}:\|\mathbf{v}\|=1}{\operatorname{argmax}} \frac{1}{m} \sum_{i=1}^{m} \langle \mathbf{x}_i, \mathbf{v} \rangle^2$$

即

$$\underset{v:||v||=1}{\operatorname{argmax}} \frac{1}{m} \sum_{i=1}^{m} (a_i - \bar{a})^2$$

需选择v使降维后的数据的"方差"尽量大

选择v1好还是v2好?

将(已完成预处理的) $m \land n$ 维向量 $x_1, ..., x_m \in \mathbb{R}^n$ 近似为 $a_i v, i = 1, ..., m$ 。

$$\underset{\mathbf{v}:\|\mathbf{v}\|=1}{\operatorname{argmax}} \frac{1}{m} \sum_{i=1}^{m} \langle \mathbf{x}_i, \mathbf{v} \rangle^2$$

即

$$\underset{v:||v||=1}{\operatorname{argmax}} \frac{1}{m} \sum_{i=1}^{m} (a_i - \bar{a})^2$$

需选择v使降维后的数据的"方差"尽量大

选择v1更好

新目标函数角度:降维后数据"方差"更大

将(已完成预处理的) $m \land n$ 维向量 $x_1, ..., x_m \in \mathbb{R}^n$ 近似为 $a_i v, i = 1, ..., m$ 。

$$\underset{\mathbf{v}:\|\mathbf{v}\|=1}{\operatorname{argmax}} \frac{1}{m} \sum_{i=1}^{m} \langle \mathbf{x}_i, \mathbf{v} \rangle^2$$

即

$$\underset{v:||v||=1}{\operatorname{argmax}} \frac{1}{m} \sum_{i=1}^{m} (a_i - \bar{a})^2$$

需选择v使降维后的数据的"方差"尽量大

选择v1更好

新目标函数角度:降维后数据"方差"更大

原目标函数角度: 近似误差平方和更小

 $\underset{\mathbf{v}:\|\mathbf{v}\|=1}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} \left((\text{distance between } \mathbf{x}_i \text{ and line spanned by } \mathbf{v})^2 \right)$

将(已完成预处理的) $m \land n$ 维向量 $\mathbf{x}_1, ..., \mathbf{x}_m \in \mathbb{R}^n$ 近似为 $\sum_{j=1}^k a_{ij} \mathbf{v}_j, i = 1, ..., m$ 。

回顾n=2, k=1情况

想象n=3,k=2情况

将(已完成预处理的) $m \land n$ 维向量 $\mathbf{x}_1, ..., \mathbf{x}_m \in \mathbb{R}^n$ 近似为 $\sum_{j=1}^k a_{ij} \mathbf{v}_j, i = 1, ..., m$ 。

回顾n=2, k=1情况

想象n = 3, k = 2情况

(此例中是未平移的数据)

将(已完成预处理的) $m \land n$ 维向量 $\mathbf{x}_1, ..., \mathbf{x}_m \in \mathbb{R}^n$ 近似为 $\sum_{j=1}^k a_{ij} \mathbf{v}_j, i=1, ..., m$ 。

回顾n=2, k=1情况

想象n = 3, k = 2情况

将(已完成预处理的) $m \land n$ 维向量 $\mathbf{x}_1, ..., \mathbf{x}_m \in \mathbb{R}^n$ 近似为 $\sum_{j=1}^k a_{ij} \mathbf{v}_j, i = 1, ..., m$ 。

回顾n=2, k=1情况

想象n = 3, k = 2情况

将(已完成预处理的) $m \land n$ 维向量 $\mathbf{x}_1, ..., \mathbf{x}_m \in \mathbb{R}^n$ 近似为 $\sum_{j=1}^k a_{ij} \mathbf{v}_j, i = 1, ..., m$ 。

将(已完成预处理的) $m \land n$ 维向量 $\mathbf{x}_1, ..., \mathbf{x}_m \in \mathbb{R}^n$ 近似为 $\sum_{j=1}^k a_{ij} \mathbf{v}_j, i = 1, ..., m$ 。

优化问题?

将(已完成预处理的) $m \land n$ 维向量 $\mathbf{x}_1, ..., \mathbf{x}_m \in \mathbb{R}^n$ 近似为 $\sum_{j=1}^k a_{ij} \mathbf{v}_j, i = 1, ..., m$ 。

优化问题

 $\operatorname{argmin} \frac{1}{m} \sum_{i=1}^{m} (distance \ between \ \boldsymbol{x}_i \ and \ k-dimensional \ subspace \ spanned \ by \ \boldsymbol{v}_1, \dots, \boldsymbol{v}_k)^2$

当k = 1时,即向量v确定的直线

当k = 2时,即向量 v_1, v_2 确定的平面

对向量 $v_1, ..., v_k$ 的要求?

将(已完成预处理的) $m \land n$ 维向量 $\mathbf{x}_1, ..., \mathbf{x}_m \in \mathbb{R}^n$ 近似为 $\sum_{j=1}^k a_{ij} \mathbf{v}_j, i = 1, ..., m$ 。

优化问题

 $\operatorname{argmin} \frac{1}{m} \sum_{i=1}^{m} (distance \ between \ \pmb{x}_i \ and \ k-dimensional \ subspace \ spanned \ by \ \pmb{v}_1, \dots, \pmb{v}_k)^2$

 $v_1, ..., v_k$ 要满足: (1) 都是单位向量,即 $||v_1|| = ... = ||v_k|| = 1;$ (2) 线性独立?

将(已完成预处理的) $m \land n$ 维向量 $\mathbf{x}_1, ..., \mathbf{x}_m \in \mathbb{R}^n$ 近似为 $\sum_{j=1}^k a_{ij} \mathbf{v}_j, i = 1, ..., m$ 。

优化问题

 $\operatorname{argmin} \frac{1}{m} \sum_{i=1}^{m} (distance \ between \ \boldsymbol{x}_i \ and \ k-dimensional \ subspace \ spanned \ by \ \boldsymbol{v}_1, \dots, \boldsymbol{v}_k)^2$

 $v_1, ..., v_k$ 要满足: (1) 都是单位向量,即 $||v_1|| = ... = ||v_k|| = 1;$ (2) 线性独立?

如k=2时,若 v_1 和 v_2 线性相关,说明存在常数c使得 $v_2=cv_1$,那么 v_1 和 v_2 无法确定一个平面

将(已完成预处理的) $m \land n$ 维向量 $\mathbf{x}_1, ..., \mathbf{x}_m \in \mathbb{R}^n$ 近似为 $\sum_{j=1}^k a_{ij} \mathbf{v}_j, i = 1, ..., m$ 。

优化问题

 $\operatorname{argmin} \frac{1}{m} \sum_{i=1}^{m} (distance \ between \ \boldsymbol{x}_i \ and \ k-dimensional \ subspace \ spanned \ by \ \boldsymbol{v}_1, \dots, \boldsymbol{v}_k)^2$

$v_1, ..., v_k$ 要满足: (1) 都是单位向量,即 $||v_1|| = \cdots = ||v_k|| = 1$; (2) 线性独立?

A sequence of vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is said to be *linearly independent* if it is not linearly dependent, that is, if the equation

$$a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \cdots + a_n\mathbf{v}_n = \mathbf{0},$$

can only be satisfied by $a_i = 0$ for $i = 1, \ldots, n$.

将(已完成预处理的) $m \land n$ 维向量 $\mathbf{x}_1, ..., \mathbf{x}_m \in \mathbb{R}^n$ 近似为 $\sum_{j=1}^k a_{ij} \mathbf{v}_j, i = 1, ..., m$ 。

优化问题

 $\operatorname{argmin} \frac{1}{m} \sum_{i=1}^{m} (distance \ between \ \boldsymbol{x}_i \ and \ k-dimensional \ subspace \ spanned \ by \ \boldsymbol{v}_1, \dots, \boldsymbol{v}_k)^2$

夹角900

 $v_1, ..., v_k$ 要满足: (1) 都是单位向量,即 $||v_1|| = ... = ||v_k|| = 1;$ (2) 正交,即 $\langle v_i, v_j \rangle = 0, \forall i \neq j$

正交一定线性独立,线性独立不一定正交

正交向量具有很好的性质, 方便简化数学问题

将(已完成预处理的) $m \land n$ 维向量 $\mathbf{x}_1, ..., \mathbf{x}_m \in \mathbb{R}^n$ 近似为 $\sum_{j=1}^k a_{ij} \mathbf{v}_j, i = 1, ..., m$ 。

优化问题

 $\operatorname{argmin} \frac{1}{m} \sum_{i=1}^{m} (distance \ between \ \pmb{x}_i \ and \ k-dimensional \ subspace \ spanned \ by \ \pmb{v}_1, \dots, \pmb{v}_k)^2$

 $v_1, ..., v_k$ 是一组标准正交向量

将(已完成预处理的) $m \land n$ 维向量 $\mathbf{x}_1, ..., \mathbf{x}_m \in \mathbb{R}^n$ 近似为 $\sum_{j=1}^k a_{ij} \mathbf{v}_j, i = 1, ..., m$ 。

优化问题

 $\operatorname{argmin} \frac{1}{m} \sum_{i=1}^{m} (distance \ between \ \pmb{x}_i \ and \ k-dimensional \ subspace \ spanned \ by \ \pmb{v}_1, \dots, \pmb{v}_k)^2$

$$\operatorname{argmax} \frac{1}{m} \sum_{i=1}^{m} \left\| \sum_{j=1}^{k} a_{ij} \, \boldsymbol{v}_{j} \right\|^{2} \quad \text{即} \quad \operatorname{argmax} \frac{1}{m} \sum_{i=1}^{m} \left(a_{i1}^{2} + \dots + a_{ik}^{2} \right) \quad \text{可用勾股定理以及标准正交向量组的性质证得}$$

将(已完成预处理的) $m \land n$ 维向量 $\mathbf{x}_1, ..., \mathbf{x}_m \in \mathbb{R}^n$ 近似为 $\sum_{j=1}^k a_{ij} \mathbf{v}_j, i = 1, ..., m$ 。

优化问题

 $\operatorname{argmin} \frac{1}{m} \sum_{i=1}^{m} (distance \ between \ \pmb{x}_i \ and \ k-dimensional \ subspace \ spanned \ by \ \pmb{v}_1, \dots, \pmb{v}_k)^2$

$$\operatorname{argmax} \frac{1}{m} \sum_{i=1}^{m} (\langle \boldsymbol{x}_i, \boldsymbol{v}_1 \rangle^2 + \dots + \langle \boldsymbol{x}_i, \boldsymbol{v}_k \rangle^2)$$
 可由 $a_{i1} = \langle \boldsymbol{x}_i, \boldsymbol{v}_1 \rangle, \dots, a_{ik} = \langle \boldsymbol{x}_i, \boldsymbol{v}_k \rangle$ 推得

可以回顾k = 1例子进行理解

主成分分析

主成分分析(Principal Component Analysis, PCA)

给定 $x_1, ..., x_m \in \mathbb{R}^n$ 及维数 $k \geq 1$,求标准正交向量组 $v_1, ..., v_k \in \mathbb{R}^n$ 从而最大化

$$\frac{1}{m}\sum_{i=1}^{m}(\langle x_i, v_1\rangle^2 + \cdots + \langle x_i, v_k\rangle^2).$$

求得的 $v_1, ..., v_k$ 称为原数据的k个主成分

主成分分析效果

高维数据难以可视化,可通过主成分分析得到低维数据再可视化

 \triangleright 步骤一:确定k (如k=1,2,3),通过主成分分析得到数据的k个主成分 $v_1,...,v_k$

高维数据难以可视化, 可通过主成分分析得到低维数据再可视化

 \triangleright 步骤一: 确定k(如k=1,2,3),通过主成分分析得到数据的k个主成分 $v_1,...,v_k$

 \triangleright 步骤二: 为每个数据 x_i , 计算 $a_{i1} = \langle x_i, v_1 \rangle, ..., a_{ik} = \langle x_i, v_k \rangle$

 $a_{i1} \dots a_{ik}$ 即数据 x_i 在每个主成分向量对应的坐标轴上的数值(可以为负值)

高维数据难以可视化,可通过主成分分析得到低维数据再可视化

 \triangleright 步骤一: 确定k(如k=1,2,3),通过主成分分析得到数据的k个主成分 $v_1,...,v_k$

ightharpoonup 步骤二:为每个数据 x_i ,计算 $a_{i1} = \langle x_i, v_1 \rangle, ..., a_{ik} = \langle x_i, v_k \rangle$

 \triangleright 步骤三: a_k 维空间画出数据 x_i 对应的点 $(a_{i1},...,a_{ik})$, 即 $(\langle x_i, v_1 \rangle,...,\langle x_i, v_k \rangle)$

	沙拉	肉夹馍	蒸鱼	苏打饼干
张三	10	1	2	7
李四	7	2	1	10
王五.	2	9	7	3
赵六	3	6	10	2

(在前例中未限定单位向量)

高维数据难以可视化,可通过主成分分析得到低维数据再可视化

 \triangleright 步骤一:确定k(如k=1,2,3),通过主成分分析得到数据的k个主成分 $v_1,...,v_k$

 \blacktriangleright 步骤二:为每个数据 x_i ,计算 $a_{i1} = \langle x_i, v_1 \rangle, ..., a_{ik} = \langle x_i, v_k \rangle$

 \triangleright 步骤三: a_{k} 维空间画出数据 x_{i} 对应的点 $(a_{i1},...,a_{ik})$, 即 $(\langle x_{i},v_{1}\rangle,...,\langle x_{i},v_{k}\rangle)$

分析数据: (1) 解释 $v_1, ..., v_k$ 坐标轴的含义 (如通过查看哪些数据的 a_{i1} 值最大/最小)

A

(2) 看哪些数据在低维空间距离很近、组成类 (clusters)

							u_2
	沙拉	肉夹馍	蒸鱼	苏打饼干			
코 ▷. - '	10	1	2	7		赵六●	● 张三
张三		1	4	,	7友 //		JK
李四	7	2	1	10	降维		a
王五.	2	9	7	3		王五●	● 李四 ^a 1
赵六	3	6	10	2			, ,

可以从一个人的基因推断他的出生地吗?

[HTML] Genes mirror geography within Europe

J Novembre, T Johnson, K Bryc, Z Kutalik, AR Boyko... - Nature, 2008 - nature.com

... levels of **genetic** differentiation among **Europeans**, we find a close correspondence between **genetic** and **geographic** distances; indeed, a **geographical** map of **Europe** arises naturally ...

☆ Save 夘 Cite Cited by 1596 Related articles All 53 versions

可以从一个人的基因推断他的出生地吗?

[HTML] Genes mirror geography within Europe

J Novembre, T Johnson, K Bryc, Z Kutalik, AR Boyko... - Nature, 2008 - nature.com

... levels of **genetic** differentiation among **Europeans**, we find a close correspondence between **genetic** and **geographic** distances; indeed, a **geographical** map of **Europe** arises naturally ...

☆ Save ☑ Cite Cited by 1596 Related articles All 53 versions

分析1387个欧洲人的基因数据,包含每个人的基因组中20万个SNP位点(易发生突变的位点)

如何利用主成分分析?

可以从一个人的基因推断他的出生地吗?

[HTML] Genes mirror geography within Europe

J Novembre, T Johnson, K Bryc, Z Kutalik, AR Boyko... - Nature, 2008 - nature.com

... levels of **genetic** differentiation among **Europeans**, we find a close correspondence between **genetic** and **geographic** distances; indeed, a **geographical** map of **Europe** arises naturally ...

☆ Save ☑ Cite Cited by 1596 Related articles All 53 versions

分析1387个欧洲人的基因数据,包含每个人的基因组中20万个SNP位点(易发生突变的位点)

取m = 1387, n = 2000000, k = 2

取m = 1387, n = 200000, k = 2

取m = 1387, n = 200000, k = 2

将高维数据进行压缩,方便存储、计算

Eigenfaces for recognition

M Turk, A Pentland - Journal of cognitive neuroscience, 1991 - direct.mit.edu

We have developed a near-real-time computer system that can locate and track a subject's head, and then recognize the person by comparing characteristics of the face to those of ...

☆ Save ೨೨ Cite Cited by 20072 Related articles All 34 versions ১৯

将人脸图像(6.5万像素,即n = 65000)压缩至 $100 \sim 150$ 维数据(即 $k = 100 \sim 150$)便于存储、做近似查找等

Dataset For each face there should be a few training examples

All faces should be centered

数据集

图片对应的向量

Mean face $\bar{\mathbf{x}}$

平均向量对应的图片

Top eigenvectors: u_1, \ldots, u_k (visualized as images - eigenfaces)

提取的主成分对应的图片

可将数据集中任一图片对应的向量近似为主成分的线性组合

随着主成分个数的增多,近似造成的损失越少

讨论

什么情况下PCA效果不好?

- ▶ 预处理没做好(如剔除离群数据)
- > 数据本身有非线性结构 (PCA擅长捕捉线性结构)
- 主成分之间限定需要正交,导致后续主成分(如第三、第四个主成分)难以解释

数据本身可以很好地近似成一维数据 (角度)但PCA难以实现

本讲小结

- 主成分分析的背景
- 主成分分析的问题及应用

主要参考资料

Tim Roughgarden and Gregory Valiant <CS 168 - The Modern Algorithmic Toolbox> Lecture Notes

Cameron Musco <COMPSCI 514 - Algorithms for Data Science> Slides

Imdad Ullah Khan <Lecture Notes for Big Data Analytics - Principle Component Analysis>

J. Novembre, et al. <Genes mirror geography within Europe> Paper

谢谢!

