Fonctions exponentielles TIE STMG

Table des matières

1	Défi	inition	2
	1.1	Définition : Fonction exponentielle de base a	4
	1.2	Repésentation graphique	,
2	Pro	priétés	
	2.1	Propriétés : Valeurs particulières et relations fonctionnelles	,
	2.2	Méthode : Simplifier une expression	2
	2.3	Variations de la fonction exponentielle	2
	2.4	Méthode : Utiliser une fonction exponentielle pour résoudre un problème	ļ
	2.5	Méthode : Calculer un taux d'évolution moyen	6

1 Définition

On considère la suite géométrique de raison a définie par $u_n = a^n$. Elle est définie pour tout entier naturel n.

En prolongeant son ensemble de définition pour tout les nombres réels positifs, on définit la fonction exponentielle de base a.

Exemple:

Pour une suite géométrique de raison a=2 et de premier terme 1, on a :

$$-u_0=2^0=1$$

$$-u_1=2^1=2$$

$$-u_2=2^2=4$$

$$-u_2 = 2^3 = 8$$

$$-u_3 = 2^3 = 8$$

$$-u_4 = 2^4 = 16$$

Pour la fonction correspondante, on a : $f(4) = 2^4$ mais on a également : $f(1,3) = 2^{1,3}$.

Et de façon générale, $f(x) = 2^x$ pour tout réel x positif. La fonction f est appelée fonction exponentielle de base 2.

FIGURE 1 – Représentation de la fonction 2^x

Propriété:

Pour tout $x \in \mathbb{R}$, on a :

$$a^{-x} = \frac{1}{a^x}$$

L'ensemble de définition des fonctions exponentielles peut ainsi être étendu aux valeurs de x négatives.

1.1 Définition : Fonction exponentielle de base a

La fonction $f(x) = a^x$ définie sur \mathbb{R} , avec a > 0, s'appelle fonction exponentielle de base a.

Exemple:

La fonction exponentielle de base 1,2 est définie sur \mathbb{R} par $f(x)=1,2^x$.

Remarque:

La fonction exponentielle de base a est strictement **positive** sur \mathbb{R} et il est possible de calculer ses valeurs à l'aide de la calculatrice.

FIGURE 2 – Tableau de valeurs de $f(x) = 1.2^x$ sur CASIO

1.2 Repésentation graphique

Voici la représentation graphique de la fonction $f(x) = a^x$ pour plusieurs valeurs de a:

FIGURE 3 – Représentation de a^x pour différentes valeurs de a

2 Propriétés

2.1 Propriétés : Valeurs particulières et relations fonctionnelles

1.
$$a^0 = 1$$
 et $a^1 = a$

2.
$$a^x \times a^y = a^{x+y}$$

Ex:
$$2^5 \times 2^3 = (2 \times 2 \times 2 \times 2 \times 2) \times (2 \times 2 \times 2) = 2^{5+3} = 2^8$$

$$3. \ \frac{a^x}{a^y} = a^{x-y}$$

Ex:
$$\frac{2^5}{2^3} = \frac{(2 \times 2 \times 2 \times 2 \times 2)}{(2 \times 2 \times 2)} = 2^{5-3} = 2^2$$

4. $(a^x)^n = a^{nx}$, avec n un entier relatif.

Ex:
$$(5^3)^2 = (5 \times 5 \times 5)^2 = (5 \times 5 \times 5) \times (5 \times 5 \times 5) = 5^{3 \times 2} = 5^6$$

2.2 Méthode : Simplifier une expression

Simplifier les expressions suivantes :

1.
$$A = 4^{-3} \times 4^{-5}$$

$$A = 4^{-3} \times 4^{-5}$$
$$= 4^{-3+(-5)}$$
$$= 4^{-8}$$

$$2. \ B = \frac{3^3 \times 3^{-2,5}}{9^5}$$

$$B = \frac{3^3 \times 3^{-2,5}}{9^5} = \frac{3^{3-2,5}}{(3^2)^5} = \frac{3^{0,5}}{3^{10}}$$
$$= 3^{0,5-10}$$
$$= 3^{-9,5} = \frac{1}{3^{9,5}}$$

3.
$$C = (4, 8^{-2,1})^3 \times 4, 8^{6,2}$$

$$C = (4, 8^{-2,1})^3 \times 4, 8^{6,2}$$

$$= 4, 8^{-2,1 \times 3} \times 4, 8^{6,2}$$

$$= 4, 8^{-6,3} \times 4, 8^{6,2}$$

$$= 4, 8^{-0,1} = \frac{1}{4, 8^{0,1}}$$

2.3 Variations de la fonction exponentielle

- Si 0 < a < 1 alors $f(x) = a^x$ est décroissante sur $\mathbb R$
- Si a > 1 alors $f(x) = a^x$ est croissante sur \mathbb{R}

FIGURE 4 – Variations de a^x en fonction de la valeur de a

2.3.1 Remarques:

- On retrouve les résultats établis pour la variation des suites géométriques.
- Si a=1 alors la fonction exponentielle est constante. En effet, dans ce cas, $a^x=1^x=1$
- Quel que soit a, la fonction exponentielle passe par le point (0;1). En effet, $a^0=1$.

2.4 Méthode : Utiliser une fonction exponentielle pour résoudre un problème

Suite à une infection, le nombre de bactéries contenues dans un organisme en fonction du temps (en heures) peut être modélisé par la fonction f définie sur [0;10 par]:

$$f(x) = 50000 \times 1,15^x$$

- a) À l'aide de la calculatrice, donner un arrondi au millier près du nombre de bactéries après 3h puis 5h30.
- b) Déterminer les variations de f sur [0; 10].
- c) À l'aide de la calculatrice, déterminer au bout de combien de temps le nombre de bactéries a doublé ?

(a)
$$f(3) = 50000 \times 1,15^3 \approx 76000 \text{ et } f(5,5) = 50000 \times 1,15^{5,5} \approx 108000$$

MAT

FIGURE 5 – Calculs avec la CASIO

(b) a = 1, 15 > 1 donc la fonction $1, 15^x$ est strictement croissante sur [0; 10]. Il en est de même pour la fonction f car 50000 est positif.

FIGURE 6 – Représentation de la fonction 50000×1.15^x

(c) A l'aide de la calculatrice on a : $f(4.96) \approx 100007$. Le nombre de bactéries a doublé à partir de 100000 bactéries, soit au bout d'environ 5h.

FIGURE 7 – Tableau de valeurs de f(x)

2.5 Méthode : Calculer un taux d'évolution moyen

Entre 2012 et 2015, le prix du gaz a augmenté de 25 %.

FIGURE 8 – Tableau de valeurs de f(x)

- a) Calculer le taux d'évolution moyen annuel.
- (a) On note t le taux d'évolution moyen annuel.

Le coefficient multiplicateur correspondant à une augmentation $\operatorname{\mathbf{sur}}$ un an est égal à :

$$1 + \frac{t}{100}$$

Le coefficient multiplicateur correspondant à une augmentation sur trois ans (de 2012 à 2015) est égal à :

$$\left(1 + \frac{t}{100}\right) \times \left(1 + \frac{t}{100}\right) \times \left(1 + \frac{t}{100}\right) = \left(1 + \frac{t}{100}\right)^3$$

Or, sur trois années, le prix a augmenté de 25 % donc ce coefficient multiplicateur est également égal à : 1, 25. Il reste à résoudre :

$$\left(1 + \frac{t}{100}\right)^3 = 1,25$$

$$1 + \frac{t}{100} = 1,25^{\frac{1}{3}}$$

$$\frac{t}{100} = 1,25^{\frac{1}{3}} - 1$$

$$t = 100 \times \left(1,25^{\frac{1}{3}} - 1\right)$$

$$t \approx 7,72$$

Trois augmentations de $7,72\% \Rightarrow$ Une augmentation de 25%. Le taux d'évolution moyen annuel est environ de 7,72%.

Remarque:

 $a^{\frac{1}{n}}$ est appelé la **racine n-ième** de a. On peut également noté $\sqrt[n]{a}$.

On a, par exemple : $x^5 = 56 \Leftrightarrow x = \sqrt[5]{56} \approx 2.2368...$