Confidence Intervals for the Mean				
Parameter	Assumptions	Formula		
Mean μ	Data normally distributed or n is large $(n > 30)$; σ^2 known	$\mu \in \left(\bar{x} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right)$ with $(100 - \alpha)\%$ confidence		
	n is large $(n > 30)$; σ^2 unknown	$\mu \in \left(\bar{x} \pm z_{\alpha/2} \cdot \frac{s}{\sqrt{n}}\right)$		
	Data normally distributed and n is small; σ^2 unknown	$\bar{x} \pm t_{\alpha/2}(n-1) \cdot \frac{s}{\sqrt{n}}$		
Difference in means $\mu_X - \mu_Y$ Case of 2 independent distributions	Data normally distributed or large samples; σ_X^2, σ_Y^2 known	$(\bar{x} - \bar{y}) \pm z_{\alpha/2} \cdot \sqrt{\frac{\sigma_X^2}{n_X} + \frac{\sigma_Y^2}{n_Y}}$		
	Large samples; σ_X^2, σ_Y^2 unknown	$(\bar{x} - \bar{y}) \pm z_{\alpha/2} \cdot \sqrt{\frac{s_X^2}{n_X} + \frac{s_Y^2}{n_Y}}$		
	Data normally distributed and small samples; $\sigma_X^2, \sigma_Y^2 \text{ unknown but } \sigma_X^2 = \sigma_Y^2$	$(\bar{x} - \bar{y}) \pm t_{\alpha/2}(n_X + n_Y - 2) \cdot \sqrt{s_p^2 \left(\frac{1}{n_X} + \frac{1}{n_Y}\right)}$ where estimate of the pooled variance is $s_p^2 = \frac{(n_X - 1)s_X^2 + (n_Y - 1)s_Y^2}{n_X + n_Y - 2}$		
	Data normally distributed and small samples; $\sigma_X^2, \sigma_Y^2 \text{ unknown and } \sigma_X^2 \neq \sigma_Y^2$	$(\bar{x} - \bar{y}) \pm t_{\alpha/2}(n_X + n_Y - 2) \cdot \sqrt{\frac{s_X^2}{n_X} + \frac{s_Y^2}{n_Y}}$		

Notation:

 $z_{\alpha/2}$ is the $\alpha/2$ critical value of the standard normal distribution

 $t_{\alpha/2}(n-1)$ is the $\alpha/2$ critical value of the t(n-1) distribution

 μ : population mean; σ^2 : population variance

n: sample size; \bar{x} : average of observed sample values; s^2 : variance of observed sample values ($s^2 = 1/(n-1) \cdot \sum_{i=1}^n (x_i - \bar{x})^2$)

Confidence Intervals for a Proportion				
Parameter	Assumptions	Formula		
Proportion p	Data binomially distributed;	$p \in \left(\hat{p} \pm z_{\alpha/2} \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$ with $(100 - \alpha)\%$ confidence		
	n large, i.e., $np \ge 10$ and $n(1-p) \ge 10$			
Difference in proportions $p_X - p_Y$	Data binomially distributed;	$\hat{p}_X - \hat{p}_Y \pm z_{\alpha/2} \cdot \sqrt{\frac{\hat{p}_X \cdot (1 - \hat{p}_X)}{n_X} + \frac{\hat{p}_Y \cdot (1 - \hat{p}_Y)}{n_Y}}$		
Case of 2 independent distributions	large samples	$PX = PY + 2\alpha/2 \cdot \sqrt{\frac{n_X}{n_X} + \frac{n_Y}{n_Y}}$		

Notation:

p: proportion of successes in the population

n: sample size; x: number of successes in the sample; $\hat{p} = \frac{x}{n}$: proportion of successes in the sample

Hypothesis Testing for the Mean

 1^{st} Formulate the hypotheses

2nd Compute test statistic (under the null hypothesis)

 3^{rd} Compute p-value (or compare test statistic with critical value) and draw a conclusion

	For μ with $X \sim N(\mu, \sigma)^{(*)}$	For $\mu_X - \mu_Y$ with $X \sim N(\mu_X, \sigma_X)$ (*) and $Y \sim N(\mu_Y, \sigma_Y)$ (*)
		(For two independent samples)
1 <i>5</i> ‡	$H_0: \mu = \mu_0$	$H_0: \mu_X = \mu_Y$
	$H_a: \mu > \mu_0 \text{ or } H_a: \mu < \mu_0 \text{ or } H_a: \mu \neq \mu_0$	$H_a:\mu_X>\mu_Y \text{ or } H_a:\mu_X<\mu_Y \text{ or } H_a:\mu_X\neq\mu_Y$
2 nd	Use $z=rac{ar x-\mu_0}{\sigma/\sqrt n}$ if σ known or n large (**) or $t=rac{ar x-\mu_0}{s/\sqrt n}$ otherwise	Use $z = \frac{(\bar{x}_X - \bar{x}_Y) - (0)}{\sqrt{\frac{\sigma_X^2}{n_X} + \frac{\sigma_Y^2}{n_Y}}}$ if σ known or n large (**) or $t = \frac{(\bar{x}_X - \bar{x}_Y) - (0)}{\sqrt{\frac{s_X^2}{n_X} + \frac{s_Y^2}{n_Y}}}$ otherwise (***)
3rd	$P(Z \ge z)$ or $P(Z \le z)$ or $2 \cdot P(Z \ge z)$ if σ known or $n > 40$	$P(Z \geq z)$ or $P(Z \leq z)$ or $2 \cdot P(Z \geq z)$ if σ known or $n > 40$
ľ	$P(T \geq t)$ or $P(T \leq t)$ or $2 \cdot P(T \geq t)$ otherwise	$P(T \ge t)$ or $P(T \le t)$ or $2 \cdot P(T \ge t)$ otherwise
	where $Z \sim N(0,1)$ and $T \sim t_{(n-1)}$	where $Z \sim N(0,1)$ and $T \sim t_{(n_X+n_Y-2)}$

Notes:

 μ : population mean; σ^2 : population variance

n: sample size; \bar{x} : average of observed sample values; s^2 : variance of observed sample values $(s^2 = 1/(n-1) \cdot \sum_{i=1}^n (x_i - \bar{x})^2)$

- (*) or apx. Normal if X is not normal but n is large (by the CLT)
- (**) If σ unknown and n is large, use s in place of σ

(***) If have reasons to believe
$$\sigma_X = \sigma_Y = \sigma$$
 then use $T = \frac{(\bar{X}_X - \bar{X}_Y) - (\mu_X - \mu_Y)}{s_p \sqrt{\frac{1}{n_X} + \frac{1}{n_Y}}} \sim t_{(n_X + n_Y - 2)}$ where $s_p = \sqrt{\frac{(n_X - 1)S_X^2 + (n_Y - 1)S_Y^2}{n_X + n_Y - 2}}$

Hypothesis Testing for a Proportion

1st Formulate the hypotheses

2nd Compute test statistic (under the null hypothesis)

3rd Compute p-value (or compare test statistic with critical value) and draw a conclusion

	For p with $X \sim bin(n, p)$	For $p_X - p_X$ with $X \sim bin(n_X, p_X)$ and $Y \sim bin(n_Y, p_Y)$
1 <i>st</i>	$H_0: p = p_0$	$H_0: p_X = p_Y$
	$H_a: p > p_0 \text{ or } H_a: p < p_0 \text{ or } H_a: p \neq p_0$	$H_a: p_X > p_Y \text{ or } H_a: p_X < p_Y \text{ or } H_a: p_X \neq p_Y$
2 <i>nd</i>	$z = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}}$	$z = \frac{\hat{p}_{X} - \hat{p}_{Y}}{\sqrt{\hat{p}_{X}(1 - \hat{p}_{X})/n_{X} + \hat{p}_{Y}(1 - \hat{p}_{Y})/n_{Y}}}$
3rd	$P(Z \ge z)$ or $P(Z \le z)$ or $2 \cdot P(Z \ge z)$	$P(Z \ge z) \text{ or } P(Z \le z) \text{ or } 2 \cdot P(Z \ge z)$
	where $Z \sim N(0,1)$	where $Z \sim N(0,1)$

Notes:

All the hypothesis tests for p on this table assume that n is large (i.e. $np \ge 10$ and $n(1-p) \ge 10$).

p: proportion of successes in the population

n: sample size; x: number of successes in the sample; $\hat{p} = \frac{x}{n}$: proportion of successes in the sample