

Course: Computer Network Lab

Problem Statements

S.No	Problem Statements	Valuation Parameters
1.	Compare MAC Protocol Performance (802.11a vs 802.11g vs 802.11n) Simulate a wireless network where multiple stations connect to an access point using different IEEE 802.11 standards.	 Create three stations: sta1 (802.11a), sta2 (802.11g), sta3 (802.11n). Measure throughput between each station and an AP using iperf. Analyze the impact of each MAC protocol on performance. Plot the results.
2.	Analyze Collision Impact with Hidden Terminals Simulate a hidden terminal problem where two stations cannot hear each other but both send to the same AP.	 Create two stations and one AP with overlapping but non-mutual range. Enable RTS/CTS mechanism and disable it in another run. Compare performance with and without RTS/CTS. Explain how the MAC protocol handles collisions.
3.	Effect of Distance and Signal Strength on MAC Performance Simulate a wireless network where stations are at different distances from the AP.	 Place sta1 near the AP and sta2 far from the AP. Observe performance degradation over distance. Analyze how MAC layer parameters like signal-to-noise ratio (SNR) affect throughput.
4.	Load Impact on 802.11 MAC Protocol Evaluate how the MAC layer handles traffic when multiple users are active.	 Create 5 stations and 1 AP. Simulate concurrent downloads (using iperf) from AP to all stations. Measure individual and total throughput. Analyze fairness and delay introduced by the MAC protocol.
5.	Bandwidth Sharing Between Stations Using the Same AP	• Configure the AP to support a fixed data rate (e.g., 54 Mbps).

Department of Computer Science and Engineering

	Simulate a scenario where two stations share bandwidth while connected to one AP.	 Measure how this bandwidth is shared among the stations using iperf. Observe MAC-layer retransmissions, collisions, and delays.
6.	Basic Handover between Two Access Points Simulate a network where a mobile station moves from AP1's coverage area to AP2's coverage area.	 Create 2 Access Points (ap1 and ap2) and 1 mobile Station (sta1). Set a movement path where sta1 moves from ap1's range into ap2's range. Capture when the handover occurs. Measure packet loss or delay during handover.
7.	Handover Delay Measurement Measure how long it takes for a handover to complete when a station moves between two APs.	 Setup the network with 2 APs and 1 mobile Station. Start a continuous ping from the station to a remote server or another host. Track the time when packets start dropping and when communication resumes. Calculate the handover delay.
8.	Throughput Degradation During Handover Observe how the throughput between a mobile device and a server is affected during handover.	 Use iperf to measure TCP or UDP throughput between the mobile Station and a Server. Move the Station between AP1 and AP2 during the transmission. Record throughput over time and plot the results.
9.	Impact of Handover on Video Streaming Test how real-time applications (like video streaming) behave during handover.	 Setup a video streaming server (like VLC server) connected to the APs. Let the Station watch a video stream while moving across AP1 and AP2. Observe interruptions, buffering, or delay during handover.

Department of Computer Science and Engineering

Sign Mar	nal Strength nually reduce the signal strength of the to force a handover.	 Create 2 APs and 1 Station. Decrease the transmit power (txpower) of AP1 gradually. Force the Station to roam to AP2 as signal strength drops. Log the events and measure the handover time.
Test	Iti-AP Handover Analysis t roaming in a network of 3 APs laid out row.	 Setup 3 Access Points: ap1, ap2, ap3 along a path. Move the Station across all three APs. Capture handover points and any packet loss. Analyze whether the station always connects to the nearest AP.