LING 570: Hw7 Due on Nov 17

All the example files are under dropbox/10-11/570/hw7/examples/.

Q1 (60 points): Write a script, viterbi.sh, that implements the Viterbi algorithm. You should be able to use some functions from your check_hmm.sh in Hw6.

- The format is: viterbi.sh input_hmm test_file output_file
- The input_hmm is a state-emission hmm, which has the same format as the ones specified in Hw6.
- The format of the test_file: each line is an observation (i.e., a sequence of output symbols). For POS tagging, an observation will be a sentence (cf. test.word).
- The format of the output_file (cf. sys): "observ => state_seq lgprob" state_seq is the best state sequence for the observation, and lgprob is $lg\ P(observ, state_seq)$.
- Note:
 - You can assume that the probabilities in the input_hmm have been smoothed already. For instance, if there is no transition probability line from state s_i to s_j , that means that it is impossible to go from s_i to s_j . And if there is no emission line for state s_j and output symbol w_k , that means that s_j cannot generate w_k . Do NOT try to smooth the probabilities in input_hmm.
 - Your code should be able to handle unknown "word" in the observation: let the observation be " o_1 o_2 ... o_n ". For each o_i , if o_i does not appear in the input_hmm at all, o_i is unknown and it can be generated by any state s_j with the probability $P(\langle unk \rangle | s_j)$. You can assume that input_hmm includes emission probability for $P(\langle unk \rangle | s_j)$ for every state s_j that can generate an unknown word.

Q2 (40 points): Build trigram models with wsj_sec0.word_pos as the training data and test the models on the test data test.word. It consists of several steps:

- 1. Run create_3gram_hmm.sh from Hw6 to create hmm from wsj_sec0.word_pos (use the lambdas specified in the table below, and unk_prob_sec22 for $P(\langle unk \rangle | tag)$).
- 2. Run viterbi.sh on test.word to produce an output file with the format "observ => state_seq logprob".
- 3. Write a script, **conv_format.sh**, to convert the format of the output file of Step 2.
 - The command line is "cat file1 | conv_format.sh > file2".
 - file1 is the file created by Step 2, and file2 has the format "w1/t1 w2/t2 ... wn/tn".

- 4. Run calc_tagging_accuracy.pl to calculate the tagging accuracy.

 The format is: calc_tagging_accuracy.pl gold_standard sys_res > sys_res.acc
 gold_standard and sys_res have the format "w1/t1 w2/t2 ... wn/tn" (e.g., test.word_pos).
- 5. Fill out the following table.

For instance, to get the accuracy for the first row, you should run the following commands:

- cat wsj_sec0.word_pos | create_3gram_hmm.sh hmm1 1.0 0 0 unk_prob_sec22
- viterbi.sh hmm1 test.word sys1
- cat sys1 | conv_format.sh > sys1_res
- calc_tagging_accuracy.pl test.word_pos sys1_res > sys1_res.acc 2>&1

Table 1: Tagging accuracy

Expt Id	λ_1	λ_2	λ_3	tagging accuracy
1	1.0	0	0	
2	0.5	0.5	0	
3	0.2	0.8	0	
4	0.1	0.1	0.8	
5	0.2	0.3	0.5	

The submission should include:

- The hw7 note file that includes answers to Q2.
- The source and shell scripts in Q1 and Q2: **viterbi.sh**, **conv_format.sh**, and any scripts called by them.
- The files created in Q2: hmm_i , sys_i , sys_i _res, and sys_i _res.acc, where i is the experiment id in the first column of Table 1.