Corrigé de l'examen de Probabilités du lundi 26 mars 2018

Exercice I- [12 points]

- **1.** [1,5pt] $X_1(\Omega) = \{0,1\}$ avec $P([X_1 = 1]) = P(R_1) = \frac{1}{1+3} = \frac{1}{4}$ et $P([X_1 = 0]) = P(B_1) = \frac{3}{4}$ donc X_1 suit la loi de Bernoulli $\mathcal{B}(1/4)$ d'où $\mathbb{E}(X_1) = 1/4$.
- **2.** a) [1pt] $P([X_2=0]/[X_1=0]) = P(B_2/B_1)$. Or, si on a tiré une boule bleue au premier tirage, après celui-ci, on a 3+2=5 boules bleues et toujours 1 boule rouge, soit 6 boules en tout. On a donc $P([X_2=0]/[X_1=0]) = P(B_2/B_1) = \frac{5}{6}$. D'autre part $P([X_1=0] \cap [X_2=0])$

0]) =
$$P([X_1 = 0]) \times P([X_2 = 0]/[X_1 = 0]) = \frac{3}{4} \times \frac{5}{6}$$
, soit $P([X_1 = 0] \cap [X_2 = 0]) = \frac{5}{8}$.

2. b) [2pts] On a $(X_1, X_2)(\Omega) = \{(0; 0), (0; 1), (1; 0), (1; 1)\}$ avec $p_{0,0} = P([X_1 = 0] \cap [X_2 = 0]) = \frac{5}{8}$ d'après a). On a alors $p_{0,1} = P([X_1 = 0] \cap [X_2 = 1]) = P([X_1 = 0]) - p_{0,0} = \frac{3}{4} - \frac{5}{8} = \frac{1}{8}$. De même, Si on a tiré une boule rouge au premier tirage, après celui-ci, on a 1 + 2 = 3 boules rouges et toujours 3 boules bleues, donc encore 6 boules en tout et $P([X_2 = 0]/[X_1 = 1]) = P(B_2/R_1) = \frac{3}{6}$, donc $p_{1,0} = P([X_1 = 1] \cap [X_2 = 0]) = P([X_1 = 1])P([X_2 = 0]/[X_1 = 1]) = \frac{1}{8}$ et

$$p_{1,1} = P([X_1 = 1]) - p_{1,0} = \frac{1}{4} - \frac{1}{8} = \frac{1}{8}.$$

Finalement, $p_{0,0} = \frac{5}{8}$ et $p_{0,1} = p_{1,0} = p_{1,1} = \frac{1}{8}$.

On a alors
$$P([X_2 = 0]) = p_{0,0} + p_{1,0} = \frac{5}{8} + \frac{1}{8} = \frac{3}{4}$$
 et $P([X_2 = 1]) = p_{0,1} + p_{1,1} = \frac{1}{8} + \frac{1}{8} = \frac{1}{4}$.

Ainsi, X_2 a même loi que X_1 . Si X_1 et X_2 étaient indépendantes, on aurait $P([X_1 = 0] \cap [X_2 = 0]) = P([X_1 = 0])P([X_2 = 0])$, soit $\frac{5}{8} = \frac{9}{16}$, ce qui est faux, donc X_1 et X_2 ne sont pas indépendantes.

2. c)
$$[1,5pt]$$
 $S_2(\Omega) = \{0,1,2\}$, avec $P([S_2 = 0]) = p_{0,0} = \frac{5}{8}$, $P([S_2 = 1]) = p_{0,1} + p_{1,0} = \frac{2}{8}$ et $P([S_2 = 2]) = p_{1,1} = \frac{1}{8}$. $\mathbb{E}(S_2) = \mathbb{E}(X_1) + \mathbb{E}(X_2) = 2\mathbb{E}(X_1)$, soit $\mathbb{E}(S_2) = \frac{1}{2}$.

- **3.** a) [1pt] $[S_n = k]$ signifie qu'à l'issue du tirage n, il y a 2n + 4 boules, dont 2k + 1 rouges (et 2(n-k) + 3 bleues). On a $k \ge 0$ et $n-k \ge 0$, donc $S_n(\Omega) = [0,n]$.
- **3.** b) [2pts] D'après a), on a $P([X_{n+1}=1]/[S_n=k]) = \frac{2k+1}{2n+4}$ pour tout k entier tel que $0 \le k \le n$. On applique alors les probabilités totales à $[X_{n+1}=1]$, avec le système complet d'événements de probabilités non nulles $([S_n=k])_{0 \le k \le n}$:

$$P([X_{n+1} = 1]) = \sum_{k=0}^{n} P([X_{n+1} = 1]/[S_n = k])P([S_n = k]) = \sum_{k=0}^{n} \frac{2k+1}{2n+4}P([S_n = k])$$

puis, en séparant la somme en deux,

$$P([X_{n+1}=1]) = \frac{2}{2n+4} \sum_{k=0}^{n} kP([S_n=k]) + \frac{1}{2n+4} \sum_{k=0}^{n} kP([S_n=k]) = \frac{2\mathbb{E}(S_n) + 1}{2n+4}.$$

3. c)
$$[1pt]$$
 En utilisant 3.b), on a $P([X_{n+1} = 1]) = \mathbb{E}(X_{n+1}) = \frac{2\mathbb{E}(S_n) + 1}{2n+4}$, puis $\mathbb{E}(S_{n+1}) = \mathbb{E}(S_n) + \mathbb{E}(X_{n+1}) = \frac{(2n+6)\mathbb{E}(S_n) + 1}{2n+4}$ et on a bien $\mathbb{E}(S_{n+1}) = \frac{n+3}{n+2}\mathbb{E}(S_n) + \frac{1}{2n+4}$.

3. d)
$$[1pt]$$
 • Pour $n=1$, on a $\mathbb{E}(S_1)=\mathbb{E}(X_1)=\frac{1}{4}$ donc la propriété est vraie.

• Si
$$\mathbb{E}(S_n) = \frac{n}{4}$$
, alors $\mathbb{E}(S_{n+1}) = \frac{n+3}{n+2} \frac{n}{4} + \frac{1}{2n+4} = \frac{n(n+3)+2}{4n+8}$ avec $n(n+3)+2 = n^2 + 3n + 2 = (n+1)(n+2)$, donc $\mathbb{E}(S_{n+1}) = \frac{(n+1)(n+2)}{4(n+2)}$, soit $\mathbb{E}(S_{n+1}) = \frac{n+1}{4}$.

3. e)
$$[1pt] X_{n+1}(\Omega) = \{0; 1\}$$
 et $P(X_{n+1} = 1) = \mathbb{E}(S_{n+1}) - \mathbb{E}(S_n) = \frac{n+1}{4} - \frac{n}{4} = \frac{1}{4}$. Ainsi, $P([X_{n+1} = 0]) = \frac{3}{4}$ et $[les X_n \text{ ont toutes même loi}]$.

Exercice II- [6 points]

- 1. Les lancers sont mutuellement indépendants : T suit une loi géométrique de paramètre p, soit $T(\Omega) = \mathbb{N}^*$ et $P([T=n]) = p(1-p)^{n-1}$. La probabilité que les lancers ne donnent jamais Pile est $1 \sum_{n=1}^{+\infty} p(1-p)^{n-1} = 1 p\frac{1}{1-(1-p)} = 0$ [1pt].
- **2.** Si T=1, le joueur gagne au premier coup et on a G=-a+ka.
- Si T = n, le joueur a perdu n-1 fois. Il a parié, lors de ces défaites, $-a(1+k+\cdots+k^{n-1})$. Il gagne à la fin $k^n a$ puisque sa dernière mise est $k^{n-1}a$. On a donc

$$G = -a\frac{k^{n} - 1}{k - 1} + k^{n}a = \frac{a}{k - 1} + k^{n}a\frac{k - 2}{k - 1}.$$

Cette formule est également vraie si n=1. On a G=f(T) avec $f(n)=\frac{a}{k-1}+k^na\frac{k-2}{k-1}$ pour tout $n\in\mathbb{N}^*$ [2pts].

- 3. Par le théorème de transfert, G admet une espérance si, et seulement si, la série $\left(\sum_{n\geq 1} f(n)P([T=n])\right)$ converge absolument, donc converge car ses termes sont > 0.
 - On a $\sum_{n=1}^{+\infty} \frac{a}{k-1} p(1-p)^{n-1} = \frac{a}{k-1}$.
 - La série $\left(\sum_{n\geq 1} k^n a \frac{k-2}{k-1} p(1-p)^{n-1}\right)$ converge si, et seulement si, k(1-p) < 1 (ce nombre

est > 0). Dans ce cas, on a

$$\mathbb{E}(G) = \frac{a}{k-1} + \frac{apk(k-2)}{k-1} \sum_{n=1}^{+\infty} (k(1-p))^{n-1} = \frac{a}{k-1} + \frac{apk(k-2)}{k-1} \frac{1}{1-k(1-p)} = a \frac{1-k(1-p)+pk(k-2)}{(k-1)(1-k(1-p))}$$

On a
$$1-k(1-p)+pk(k-2)=pk^2-pk+1-k=(pk-1)(k-1)$$
, donc $\boxed{\mathbb{E}(G)=a\frac{pk-1}{1-k(1-p)}}$ [3pts].

Exercice III- [14 points]

1.
$$f$$
 est positive, continue sur $\mathbb{R} \setminus \{0,1\}$ et $\int f(x) dx = \int_0^1 k(2x+1) dx = k \left[x^2 + x\right]_0^1 = 2k = 1$ donc $\int f$ est une densité pour $k = \frac{1}{2}$. $\mathbb{E}(X) = \int x f(x) dx = k \int_0^1 x(2x+1) dx = k \left[\frac{2x^3}{3} + \frac{x}{2}\right]_0^1 = \frac{1}{2}\left(\frac{2}{3} + \frac{1}{2}\right)$, soit $\int \mathbb{E}(X) = \frac{7}{12}$. $\mathbb{E}(X^2) = \int x^2 f(x) dx = k \int_0^1 x^2 (2x+1) dx = k \left[\frac{2x^4}{4} + \frac{x^3}{3}\right]_0^1 = \frac{1}{2}\left(\frac{1}{2} + \frac{1}{3}\right) = \frac{5}{12}$ et $\operatorname{var}(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 = \frac{5}{12} - \left(\frac{7}{12}\right)^2 = \frac{5 \times 12 - 49}{144}$, soit $\int \operatorname{var}(X) = \frac{11}{144}$. $\int \operatorname{var}(X) dx = k \int \int x^2 (2x+1) dx = k \int x^2 (2x+1) dx = k \int \int x^2 (2x+1) dx = k \int \int x^2 (2x+1) dx = k \int x^2 ($

b)
$$[1pt] F_X(x) = \int_{-\infty}^x f(t) dt = \begin{cases} 0 & \text{si } x < 0 \\ \int_0^x k(2t+1) dt = \frac{1}{2} \left[t^2 + t \right]_0^x = \frac{x^2 + x}{2} & \text{si } x \in [0, 1[d'où \int_0^1 k(2t+1) dt = 1 & \text{si } x \ge 1 \end{cases}$$

$$F_X(x) = \frac{x^2 + x}{2} \mathbb{I}_{[0,1[}(x) + \mathbb{I}_{[1,+\infty[}(x)$$

c)
$$[2,5pts]$$
 Si $t < 0$, $P([Z \le t]) = 0$. Si $t \in [0,1]$, $P([Z \le t]) = P([-\sqrt{t} \le X \le \sqrt{t}]) = F_X(\sqrt{t}) - F_X(-\sqrt{t}) = F_X(\sqrt{t}) = \frac{t + \sqrt{t}}{2}$. Enfin, si $t \ge 1$, $P([Z \le t]) = P([X^2 \le t]) = 1$. On a donc bien $F_Z(t) = \frac{1}{2}(t + \sqrt{t}) \mathbb{I}_{[0,1[}(t) + \mathbb{I}_{[1,+\infty[}(t)])]$.

On a alors
$$f_Z(t) = F_Z'(t) = \frac{1}{2} \left(1 + \frac{1}{2\sqrt{t}} \right) \mathbb{I}_{]0,1[}(t)$$
, puis $\mathbb{E}(Z) = \mathbb{E}(X^2) = \frac{5}{12}$.

2. a)
$$[1pt] f_X(x) = \int g(x,y) dy = \mathbb{I}_{]0,1[}(x) \int_0^1 (x+y) dy = \mathbb{I}_{]0,1[}(x) \left[xy + \frac{y^2}{2} \right]_{y=0}^{y=1} = \left(x + \frac{1}{2} \right) \mathbb{I}_{]0,1[}(x) = \int g(x,y) dy = \mathbb{I}_{]0,1[}(x) \int_0^1 (x+y) dy = \mathbb{I}_{]0,1[}(x) \left[xy + \frac{y^2}{2} \right]_{y=0}^{y=1} = \left(x + \frac{1}{2} \right) \mathbb{I}_{]0,1[}(x) = \int g(x,y) dy = \mathbb{I}_{]0,1[}(x) \int_0^1 (x+y) dy = \mathbb{I}_{]0,1[}(x) \left[xy + \frac{y^2}{2} \right]_{y=0}^{y=1} = \left(x + \frac{1}{2} \right) \mathbb{I}_{]0,1[}(x) = \int g(x,y) dy = \mathbb{I}_{]0,1[}(x) \int_0^1 (x+y) dy = \mathbb{I}_{]0,1[}(x) \int_0^1$$

 $\frac{1}{2}(2x+1)\,\mathbb{I}_{]0,1[}(x). \text{ Comme } x \text{ et } y \text{ jouent le même rôle dans } g, \boxed{X \text{ et } Y \text{ ont même loi de densité } f}$

b)
$$f_Y^{X=x}(y) = \frac{g(x,y)}{f_X(x)} = \frac{2(x+y)}{2x+1} \mathbb{I}_{]0,1[}(y) \text{ pour } x \in]0,1[$$
. On a alors $\mathbb{E}^{X=x}(Y) = \int_0^1 \frac{2(xy+y^2)}{2x+1} dy = \frac{2}{2x+1} \left[\frac{xy^2}{2} + \frac{y^3}{3} \right]_{y=0}^{y=1} = \frac{2}{2x+1} \left(\frac{x}{2} + \frac{1}{3} \right), \text{ soit } \left[\mathbb{E}^{X=x}(Y) = \frac{3x+2}{3(2x+1)} \right] \text{ et on a bien } \left[\mathbb{E}^X(Y) = \frac{3X+2}{3(2X+1)} \right] = \frac{2}{3(2X+1)}$

c) On a
$$f_X(x)f_Y(y) = \frac{1}{4}(2x+1)(2y+1)\mathbb{I}_{]0,1[}(x)\mathbb{I}_{]0,1[}(y) \neq g(x,y) \operatorname{car} \frac{(2x+1)(2y+1)}{4} \neq x+y.$$

$$\mathbb{E}(XY) = \int_0^1 \int_0^1 xy(x+y) \, dx \, dy = \int_0^1 \left[\frac{x^2y^2}{2} + x\frac{y^3}{3} \right]_{y=0}^{y=1} \, dx = \int_0^1 \left(\frac{x^2}{2} + \frac{x}{3} \right) \, dx = \left[\frac{x^3}{6} + \frac{x^2}{6} \right]_0^1 = \frac{1}{3} \operatorname{et} \operatorname{cov}(X,Y) = \frac{1}{3} - \frac{49}{144} = \frac{48 - 49}{144}, \operatorname{soit} \left[\operatorname{cov}(X,Y) = -\frac{1}{144} \right] [1,5pt].$$

3.
$$f_{S_2}(s) = \int g(x, s - x) dx = \int s \mathbb{I}_{]0,1[}(x) \mathbb{I}_{]0,1[}(s - x) dx$$
 où $\mathbb{I}_{]0,1[}(s - x) = 1$ si $0 < s - x < 1$,

$$\begin{array}{c} \text{soit } s-1 < x < s \text{ et }]0,1[\cap]s-1,s[= \left\{ \begin{array}{cc}]0,s[& \text{si } s \in]0,1[\\]s-1,1[& \text{si } s \in [1,2[\\ \emptyset & \text{si } s \leq 0 \text{ ou } s \geq 2 \end{array} \right. . \end{array} \right.$$

Pour
$$s \in]0, 1[$$
, $f_S(s) = \int_0^s s \, dx = s^2$; Pour $s \in]1, 2[$, $f_S(s) = \int_{s-1}^1 s \, dx = s(1 - (s - 1)) = s(2 - s)$ d'où $f_S(s) = s^2 \mathbb{I}_{]0,1[}(s) + s(2 - s) \mathbb{I}_{[1,2[}(s)]$ [2pts].

$$\mathbb{E}(S) = \mathbb{E}(X + Y) = \mathbb{E}(X) + \mathbb{E}(Y) = 2 \times \frac{7}{12}, \text{ donc } \mathbb{E}(S) = \frac{7}{6}$$
 [1pt].

Exercice IV- [8 points]

1. [3pts] X suit la loi $\mathcal{N}(80; 15^2)$ donc $X^* = \frac{X - 80}{15}$ suit la loi normale $\mathcal{N}(0; 1)$.

•
$$P([X > 50]) = P\left(\left[X^* > \frac{50 - 80}{15}\right]\right) = P([X^* > -2]) = 0, 5 + \Phi(2) = 0, 5 + 0, 477 = \boxed{0,977}$$

•
$$P([65 < X < 95]) = P\left(\left[\frac{65 - 80}{15} < X^* < \frac{95 - 80}{15}\right]\right) = P([-1 < X^* < 1]) = 2\Phi(1) = 0.682$$

•
$$P([X > 110]) = P\left(\left[X^* > \frac{110 - 80}{15}\right]\right) = P([X^* > 2]) = 0, 5 - \Phi(2) = \boxed{0,023}$$

2. [1pt] On a ici
$$\mathbb{E}(S_n) = n\mathbb{E}(X) = 80n$$
 et $\operatorname{var}(S_n) = n \times 15^2$ donc $\sigma(S_n) = 15\sqrt{n}$

3. [4pts] On veut $P([S_n > 1000]) \le 0,01$. Or $\frac{S_n - 80n}{15\sqrt{n}}$ suit la loi $\mathcal{N}(0,1)$, donc on cherche le plus grand n pour lequel $P\left(\left[X^* > \frac{1000 - 80n}{15\sqrt{n}}\right]\right) \le 0,01$, soit $\Phi\left(\frac{1000 - 80n}{15\sqrt{n}}\right) \ge 0,49$ soit $\frac{1000 - 80n}{15\sqrt{n}} \ge 2,31$ ou $80n + 34,65\sqrt{n} - 1000 \le 0$ (équation du deuxième degré en \sqrt{n}). On trouve $\sqrt{n} \approx 3,32$ et donc n = 11. En mettant 10 personnes maximum, il y aura donc une probabilité de surcharge inférieure à 1%.