Waveform Uncertainty Notation and Equations

1) Definition of the discontinuity correction frequency:

$$\frac{\partial^2}{\partial f^2} \left(\Delta A_{\mu}(f_{COR};\theta) \right) = -10^{-6}$$

2) Definition of amplitude difference between models μ :

$$\Delta A_{\mu}(f;\theta) = \begin{cases} \frac{|\mu_{IMR}(f;\theta)| - |\mu_{EOB}(f;\theta)|}{|\mu_{IMR}(f;\theta)|} & f \leq f_{COR} \\ \Delta A_{\mu}(f_{COR};\theta) & f > f_{COR} \end{cases}$$

3) Definition of raw phase difference between models μ :

$$\Delta \phi_{\mu}(f;\theta) = \begin{cases} \tan^{-1} \left(\frac{\operatorname{Im}[\mu_{IMR}(f;\theta)]}{\operatorname{Re}[\mu_{IMR}(f;\theta)]} \right) - \tan^{-1} \left(\frac{\operatorname{Im}[\mu_{EOB}(f;\theta)]}{\operatorname{Re}[\mu_{EOB}(f;\theta)]} \right) & f \leq f_{COR} \\ \Delta \phi_{\mu}(f_{COR};\theta) & f > f_{COR} \end{cases}$$

4) Definition of residual phase difference between models μ :

$$\Delta\Phi_{\mu}(f;\theta) = \begin{cases} \Delta\phi_{\mu}(f;\theta) - (2\pi t_0 f + \phi_0) & f \leq f_{COR} \\ \Delta\Phi_{\mu}(f_{COR};\theta) & f > f_{COR} \end{cases}$$

5) Chebyshev polynomial series approximation of model amplitude difference:

$$\Delta A_{\mu}(f;\theta) \approx \Delta A_{T}(f;a,f_{COR},\Delta A_{\mu}(f_{COR};\theta)) = \begin{cases} \sum_{i=0}^{N-1} a_{i}T_{i}(f) & f \leq f_{COR} \\ \Delta A_{\mu}(f_{COR};\theta) & f > f_{COR} \end{cases}$$

6) Chebyshev polynomial series approximation of model residual phase difference:

$$\Delta\Phi_{\mu}(f;\theta) \approx \Delta\Phi_{T}(f;b,f_{COR},\Delta\Phi_{\mu}(f_{COR};\theta)) = \begin{cases} \sum_{i=0}^{N-1} b_{i}T_{i}(f) & f \leq f_{COR} \\ \Delta\Phi_{\mu}(f_{COR};\theta) & f > f_{COR} \end{cases}$$

7) Definition of model amplitude uncertainty:

$$\delta A_{\mu}(f) = \sqrt{\frac{\sum_{i=1}^{N} \left(\Delta A_{\mu}(f; \theta_{i}) - \overline{\Delta A_{\mu}}(f)\right)}{N}}$$

8) Definition of model residual phase uncertainty:

$$\delta\Phi_{\mu}(f) = \sqrt{\frac{\sum_{i=1}^{N} \left(\Delta\Phi_{\mu}(f;\theta_{i}) - \overline{\Delta\Phi_{\mu}}(f)\right)}{N}}$$

9) Likelihood function of a waveform model with added waveform uncertainty parameters:

$$\mathcal{L}(h|\theta,\alpha,\beta) = \prod_{j} \frac{1}{2\pi P(f_{j})} \exp\left(-2\Delta f \frac{|h(f_{j}) - \mu(f_{j};\theta) \left(1 + \Delta A_{\delta}(f_{j}; \{f_{n},\alpha_{n}\})\right) \exp\left[i\Delta\Phi_{\delta}(f_{j}; \{f_{n},\beta_{n}\})\right]|^{2}}{P(f_{j})}\right)$$

10) Definitions of α and β parameters from waveform uncertainties:

$$\alpha_n \sim \mathcal{N}(0, \delta A(f_n))$$
 $\beta_n \sim \mathcal{N}(0, \delta \Phi(f_n))$

Notation Key	
Symbol	Description
Δ	Waveform Difference
δ	Waveform Uncertainty
A	Waveform Amplitude
ϕ	Waveform Phase
Φ	Residual Waveform Phase
$\mid \mu \mid$	Waveform Model
IMR	IMRPhenomPv2_NRTidalv2
EOB	SEOBNRv4T_surrogate
θ	Source Parameters
f	Frequency
f_{COR}	Discontinuity Correction Frequency
T_n	Chebyshev Polynomial of the First Kind
N	Number of Terms
ϕ_0	Overall Phase Shift
t_0	Overall Time Shift
\mathcal{L}	Likelihood
h	Gravitational Wave Strain
P	Power Spectral Densities (PSD)
Δf	Frequency Bin Spacing
a	Amplitude Difference Chebyshev Coefficients
b	Phase Difference Chebyshev Coefficients
α_n	Amplitude Uncertainty Spline Parameters
β_n	Phase Uncertainty Spline Parameters
$\int f_n$	Frequency Nodes
\mathcal{N}	Normal Distribution