

Olimpiada Națională de Matematică Etapa Județeană și a Municipiului București, 19 martie 2016 CLASA a X-a

Problema 1. Determinați numerele reale $x \in (2, \infty)$ care sunt soluții ale ecuației

$$\cos(\pi \log_3(x+6)) \cdot \cos(\pi \log_3(x-2)) = 1.$$

Gazeta Matematică

Problema 2. Fie $a,b,c\in\mathbb{C}^*,$ distincte și având același modul, astfel încât

$$a^2 + b^2 + c^2 + ab + ac + bc = 0.$$

Demonstrați că a,b,c reprezintă afixele vârfurilor unui triunghi dreptunghic sau echilateral.

Problema 3. Fie α și β numere reale. Deteminați cea mai mare valoare a expresiei

$$|\alpha x + \beta y| + |\alpha x - \beta y|,$$

în fiecare dintre următoarele cazuri:

- a) $x, y \in \mathbb{R}$, astfel încât $|x| \le 1$ şi $|y| \le 1$;
- b) $x, y \in \mathbb{C}$, astfel încât $|x| \le 1$ și $|y| \le 1$.

Problema 4. a) Demonstrați că există funcții neperiodice $f:\mathbb{R}\to\mathbb{R}$ care verifică egalitatea

$$f(x+1) + f(x-1) = \sqrt{5}f(x)$$
,

pentru orice $x \in \mathbb{R}$;

b) Demonstrați că orice funcție $g:\mathbb{R}\to\mathbb{R}$ care verifică egalitatea

$$g(x+1) + g(x-1) = \sqrt{3}g(x)$$
,

pentru orice $x \in \mathbb{R}$, este periodică.

Timp de lucru 4 ore.

Fiecare problemă este notată cu 7 puncte.