Computability Jan 19 2022

Exercise 1

- A. Provide the definition of reducibility, i.e., given sets $A, B \subseteq \mathbb{N}$ define what it means that $A \leq_m B$.
- ▶. Show that if A is not recursive and $A \leq_m B$ then B is not recursive.
- \angle . Show that if A is recursive then $A \leq_m \{1\}$.

Exercise 2

Is there a non-computable total function $f: \mathbb{N} \to \mathbb{N}$ such that f(x) = f(x+1) on infinitely many inputs x, i.e., such that the set $\{x \in \mathbb{N} \mid f(x) = f(x+1)\}$ is infinite? Provide an example or show that such a function cannot exist.

Exercise 3

Say that a function $f: \mathbb{N} \to \mathbb{N}$ is quasi-total if it is undefined on a finite number of inputs, i.e., $\overline{dom(f)}$ is finite. Classify the set $A = \{x \in \mathbb{N} \mid \varphi_x \text{ quasi-total}\}\$ from the point of view of recursiveness, i.e., establish whether A and \overline{A} are recursive/recursively enumerable.

Exercise 4

Classify the set $B = \{x \in \mathbb{N} \mid \exists y > 2x. \ y \in E_x\}$ from the point of view of recursiveness, i.e., establish whether B and \overline{B} are recursive/recursively enumerable.

Note: Each exercise contributes with the same number of points (8) to the final grade.