University of Toronto

Faculty of Applied Science and Engineering

Department of Electrical and Computer Engineering

Final Examination

ECE 241F - Digital Systems December 17, 2012, 2:00 pm - 4:30 pm

Examiners: J. Anderson, K. Truong, B. Wang

ANSWER ALL QUESTIONS ON THESE SHEETS, USING THE BACK SIDE IF NECESSARY

- 1. No calculators or cell phones are allowed.
- 2. The number of marks available for each question is indicated in the square brackets [].
- 3. There are two extra blank pages at the end of the test for rough work.

AIDS ALLOWED: Textbook: Fundamentals of Digital Logic with Verilog Design (any edition, but no photocopies), and ONE 8.5" x 11" sheet of paper with notes of your choosing.

Last Name:			
First Name:	 	 	
Student Number:			
Student Number:		 	

Total Available Marks:

Question	1	2	3	4	5	6	7	8	9	10	Total
Marks	6	11	10	8	8	8	5	7	5	5	73
Available											
Marks											
Achieved											

[6] Q1.

a) Fill in the blanks in the table below: [3]

8-bit 2's complement number	Signed decimal number
	19
11110101	

Specify the range of decimal numbers that can be represented as signed numbers (in 2's complement representation) using a word length of 8 bits.

 to	

b) For the logic circuit shown below, reduce the circuit to achieve the minimum cost (cost = number of gates + number of inputs). Draw your reduced circuit using the basic logic gates (AND, OR and NOT). [3]

[11] Q2.

a) Implement the logic function, $f(a, b, c) = \sum m(2, 4, 6, 7)$ using only 2-to-1 multiplexer(s) and use as few multiplexers as possible. Minterms are indexed from 0 to 7 (inclusive). As an example, minterm 1 corresponds to $\overline{a}\overline{b}c$. [5]

b) A logic function, f is implemented using three 3-LUTs as shown below. Determine the logic functions f_1 , f_2 and f in the minimal sum-of-products (SOP) form in terms of the input variables x, y and z. All 3-LUTs are filled in according to the truth table shown in the box. [4]

$\overline{}$		
	a b c	f
a	0 0 0	
	0 0 1	
	0 1 0	
b	0 1 1	f
	1 0 0	
	1 0 1	
С	1 1 0	
	1 1 1	

$$f_1 =$$

$$f_2 =$$

$$f =$$

c) Implement the logic function, f from b) using two 2-LUTs given below by filling in the truth tables inside the 2-LUTs. [2]

[10] Q3. Consider a sequential digital system with an input w and a clock, and the output z. Starting from an initial reset state, this system examines the value of w in three successive clock cycles, and if an odd number of "0" bits are detected out of these three bits, then the system sets the output z to 1 (for one clock cycle) in the following clock cycle. Otherwise z will be 0. The system then resumes checking the next 3-bits of the data stream w. A partial timing diagram is given below as an example. Draw a state diagram for this FSM. Use as few states as possible in your design.

[8] Q4. Consider the following finite state machine (FSM), with input x and output z.

a) Fill in the state-assigned table that corresponds to this FSM. [2]

Current S	Current State		Next State		
		$\mathbf{x} = 0$	x = 1	Output, z	
Name	y ₂ y ₁ y ₀	$\mathbf{Y_2} \mathbf{Y_1} \mathbf{Y_0}$	Y ₂ Y ₁ Y ₀		
A	0 0 0				
В	0 0 1				
C	0 1 0				
D	0 1 1				
E	1 0 0				

b) Use the two K-maps below to determine the optimized product-of-sums (POS) expressions for the output logic (z) and the next-state logic for state bit Y_1 . [3]

$\setminus xy_2$!			
y_1y_0	00	01	11	10
00				
01				
11				
10				

$\setminus y_2$	\mathbf{y}_1			
y_0	00	01	11	10
0				
1				

 $\mathbf{z} =$

 $Y_1 =$

c) Give the circuit diagram for this FSM that shows all three state flip-flops, but just the next state logic for state bit Y_1 and the output logic (z). [3]	ıte

[8] Q5.

a) Does the below transistor-level circuit have any problems? If yes, explain the problem in no more than 1 sentence. Note: V_{cc} is the voltage level representing logic-1. [2]

ANSWER:

b) Consider the following transistor-level design of a 2-input logic gate. Derive the truth table of the output y in terms of the inputs x_1 and x_2 . Place your answer in the truth table beside the circuit. Indicate (on the truth table) situations where the output is a "weak" 1/0 (if any). [3]

X ₁	X ₂	У	Weak (yes/no)?
0	0		
0	1		
1	0		
1	1		

c) Draw the CMOS transistor circuit for the function f = ab + cd. [3]

[8] Q6. Consider the following 4-bit adder, which uses a modified version of carry look ahead. It is implemented with 2-bit adders.

a) Derive the minimal SOP expression for g_1^* , g_0^* , p_1^* and p_0^* in terms of the input bits. [4]

b) Derive the minimal SOP expression for c4 and c2 in terms of g_1^* , g_0^* , p_1^* , p_0^* and c_0 . [2]

c) Determine the critical path of this adder and the number of gate delays (or levels of gates) in the critical path. [2]

[5] Q7. Consider the following Verilog code.

```
module example (clk, resetn, y);
       input clk, resetn;
       output y;
       reg [2:0] y, Y;
       parameter [2:0] A=3'b000, B=3'b001, C=3'b010, D=3'b011,
                       E=3'b100, F=3'b101, G=3'b110, H=3'b111;
       always @ (y)
       begin
               case (y)
                      A: Y \le B;
                      B: Y \leq C;
                      C: Y \leq D;
                      D: Y \le E;
                      E: Y \leq F;
                      F: Y \leq G;
                      G: Y \leq H;
                      H: Y \leq A;
               endcase
       end
       always @ (posedge clk or negedge resetn)
       begin
               if (resetn == 0) y \leq= A;
               else y \le Y;
       end
endmodule
```

a) Draw the state diagram implemented by the Verilog code. [3]

b) In no more than 1 sentence, what does the Verilog code implement? [2]

[7] Q8.

a) Consider the following circuit which is called a ring oscillator:

Assuming that the inverter delay is 0.5ns and the AND gate delay is 1.5ns, explain the behavior of the circuit when enable = 0, and when enable = 1. Explain your reasoning. [2]

Consider the 4-bit linear-feedback shift register (LFSR) below. The delays in the circuit are as follows:

	Min	Max
$t_{\mathtt{hold}}$	0.5ns	
t_{su}	0.8ns	
t_{cq}	1.0ns	1.2ns
t _{xor}	1.0ns	1.2ns

b) Observe that t_{Δ} is a delay that is added to the arrival time of the clock at the left-most flip-flop. Given that t_{Δ} is 0ns, what is the minimum clock period at which the circuit will operate? Show your work. [2]
c) With t_{Δ} as 0ns, are there any hold-time problems with the circuit? Show your work. [1]
d) Determine a value for t_{Δ} that minimizes the clock period of the circuit, while ensuring that the circuit continues to operate correctly. State the value of t_{Δ} and also the new minimum clock period. Show your work. [2]

[5] Q9. Consider the voltage divider circuit below. Extend the circuit below to realize a 2-input, 1-output digital-to-analog converter (DAC). Your DAC's inputs should be labeled x and y; your DAC's output should be labeled z. The required functionality of the DAC is shown below. **Important:** you may only use inverters, AND gates and transmission gates to realize the DAC.

X	У	Z
0	0	0V
0	1	0.33V
1	0	0.66V
1	1	1V

[5] Q10. Design a 2x2 RAM using D latches and logic gates. As shown in the figure below, the RAM should have separate input and output data ports. The RAM's write enable input (WriteEnable) input is active-high. A partial schematic (with the RAM's read functionality) is shown below. Complete the schematic by adding logic gates and wires to implement the RAM's write functionality.

COMPLETE THE SCHEMATIC:

Extra page, intentionally left blank.

Extra page, intentionally left blank.