Contents

1	First variation of renormalised energy. $\langle 2018-10-26 \; Fri \rangle$	1
	1.1 The results	1
	1.2 Proofs	3
2	Log term in energy of $f:\overline{\mathbb{H}^2}\longrightarrow\overline{\mathbb{H}^{n+1}}.$	4
3	Commutative diagram revisited	4
4	LATEX in Inkscape: Incompatibility between ghostscript and	
	pstoedit $<\!2018\text{-}03\text{-}30\;Fri\!>$	4
5	LATEX indentation in org-mode $<2018-02-20$ Tue>	4
6	A (decent) map of mathematics $<2017\text{-}10\text{-}17\ Tue>$	4
7	My 2016-2017 internship $<$ 2017-07-31 $Mon>$	4

1 First variation of renormalised energy. <2018-10-26 Fri>

1.1 The results.

I will start by writing down the result before giving the proofs. Let (Σ, i) be a Riemann surface and (M, g) be an asymptotically hyperbolic Riemannian four-manifold. We are interested in critical points of renormalised energy $\mathcal{E}_{\text{norm}}$ because these maps form a special class among harmonic maps whose energy is critical to all pertubation (and not just compact pertubation).

Even though we obtained an explicit formula for renormalised energy where a density appears

$$\mathcal{E}_{\text{norm}} = -4\pi\chi + \int_{\Sigma} \left[2K(f^*g) \sqrt{\det_h f^*g} + \text{Tr}_h f^*g \right] dA_h,$$

it is not easy to compute its variation directly from it. The following approach gives us a formula that although is not explicit, allows us to see the following phenomenon.

Theorem 1 (Critical points of $\mathcal{E}_{norm} = \text{Harmonic} + \text{good germ on the boundary}$). Let $f: (\Sigma, i) \longrightarrow (M, g)$ be a harmonic map from a Riemann surface Σ to a AH Riemannian four-manifold M such that $q(f)_{\bar{g}} = 0$ on $\partial \Sigma$.

There is a boundary quantity $\mathcal{B}_2(f)$ that only concerns the germ of f on $\partial \Sigma$ such that:

f is critical to \mathcal{E}_{norm} if and only if $\mathcal{B}_2(f) = 0$.

We know that the ϵ -energy must be writen as

$$E_{\epsilon}(f) = \frac{1}{\epsilon} \operatorname{length}(\gamma) + \mathcal{E}_{\text{norm}} + O(\epsilon)$$

where γ is the boundary curve of f and the length is taken under the metric \bar{g} . Now given a pertubation $\{f_t\}$ of f_0 , we can recover the variation of $\mathcal{E}_{\text{norm}}$ by looking at the O(1) term of $\frac{dE_{\epsilon}}{dt}(f_t)$. It turns out that in order to compute the variation of E_{ϵ} , we only need to do the following 2 tasks:

- Extend the computation made by Eells-Sampson [?] to manifold with boundary.
- Take care of the variation of the domain of integration $\Sigma_{\epsilon}(f_t) := f_t^{-1}(r \geq \epsilon)$ which also depends on t where r is the boundary defining function (bdf).

Proposition 1.1 (Variation of E_{ϵ}). For any pertubation $\{f_t\}$ of $f:(\Sigma, \partial \Sigma, i) \longrightarrow (M, \partial M, g)$, one has

$$\frac{d}{dt}E_{\epsilon}(f_t) = \int_{\Sigma_{\epsilon}(f_0)} \left\langle \tau(f_0), \frac{df_t}{dt} \right\rangle_g dV_h + \frac{1}{\epsilon^2} \int_{\partial \Sigma_{\epsilon}(f_0)} \left\langle 2\frac{\partial f_0}{\partial n} + \frac{\nabla^g r(f_0)}{|d(r \circ f_0)|_h}, \frac{df_t}{dt} \right\rangle_{\bar{g}} ds_h$$
(1)

where

- h is a metric in the conformal class i of Σ ,
- $\frac{\partial}{\partial n}$ is the h-unit normal vector of $\partial \Sigma_{\epsilon}(f_0)$ in $\Sigma_{\epsilon}(f_0)$,
- $\tau(f_0)$ is the tension field of f_0 with respect to the metric h on Σ and g on M.

Denote $\mathcal{B} := \int_{\partial \Sigma_{\epsilon}(f_0)} \left\langle 2 \frac{\partial f_0}{\partial n} + \frac{\nabla^g r(f_0)}{|d(r \circ f_0|_h)}, \frac{df_t}{dt} \right\rangle_{\bar{g}} ds_h =: \mathcal{B}_0 + \mathcal{B}_1 \epsilon + \mathcal{B}_2 \epsilon^2 + O(\epsilon^3)$ then

- \mathcal{B}_i only depends on the germ of f_0 on $\partial \Sigma$
- $\mathcal{B}_0 = 2 \int_{\partial \Sigma} \left\langle \frac{\partial f_0}{\partial n} + \frac{\nabla^{\bar{g}} r(f_0)}{|\nabla^{\bar{g}} r(f_0)|_{\bar{g}}}, \frac{d f_t}{d t} \right\rangle_{\bar{g}} ds_h = 0$ where n is the $f^*\bar{g}$ -normal vector of Σ on the boundary.

As a straightforward consequence, one has

Proposition 1.2. Given a map $f:(\Sigma,\partial\Sigma,i)\longrightarrow (M,\partial M,g)$, then:

- 1. f_0 is harmonic and $\mathcal{B}_2(f_0) = 0$ if and only if f_0 is a critical point of \mathcal{E}_{norm} .
- 2. The first variation of \mathcal{E}_{norm} can be writen as:

$$\frac{d \mathcal{E}_{\text{norm}}}{dt}(f_t) = \int_{\Sigma} \left\langle \tau(f_0), \frac{df_t}{dt} \right\rangle_g dV_h
+ \lim_{\epsilon \to 0} \frac{1}{\epsilon^2} \left[\int_{\partial \Sigma_{\epsilon}(f_0)} \left\langle 2 \frac{\partial f_0}{\partial n} + \frac{\nabla^g r(f_0)}{|d(r \circ f_0)_h}, \frac{df_t}{dt} \right\rangle_{\bar{g}} ds_h + \int_{\Sigma_{\epsilon}(f_0)} \left\langle \nabla_{\dot{\gamma}}^{\bar{g}} \frac{\dot{\gamma}}{|\dot{\gamma}|_h}, \frac{df_t}{dt} \right\rangle_{\bar{g}} \right]$$

where γ is the boundary curve of f, $\frac{\partial}{\partial n}$ is the h-unit normal vector of $\partial \Sigma_{\epsilon}$ in Σ_{ϵ} .

1.2 Proofs.

We ?? knew that the variation of energy functional can be represented by the tension field, in case of manifolds with boundary, we obtain an additional term from Stokes formula:

$$\frac{d}{dt}E_{\epsilon}(f_{t}) = \frac{d}{dt} \int_{\Sigma_{\epsilon}(f_{0})} \operatorname{Tr}_{h}(f_{t}^{*}g) + \frac{d}{dt} \int_{\Sigma_{\epsilon}(f_{t})} \operatorname{Tr}_{h}(f_{0}^{*}g) \qquad (2)$$

$$= \int_{\Sigma_{\epsilon}(f_{0})} \left\langle \tau(f_{0}), \frac{df_{t}}{dt} \right\rangle_{g} dV_{h} + 2 \int_{\partial\Sigma_{\epsilon}(f_{0})} \left\langle \frac{\partial f_{0}}{\partial n}, \frac{df_{t}}{dt} \right\rangle_{g} + \frac{d}{dt} \int_{\Sigma_{\epsilon}(f_{t})} \operatorname{Tr}_{h}(f_{0}^{*}g) dV_{h} \qquad (3)$$

Equation (1) is a straightforward application of the following lemma for $\Omega_t = \Sigma_{\epsilon}(f_t)$, $F = \text{Tr}_h(f_0^*g)$ and $r_t = r \circ f_t$.

Lemma 2 (Riemannian Cavalieri). Let Ω be a domain in Σ and $\{r_t\}_{t=\overline{0,1}}$ be a family of functions on Ω where dr_t are non-zero and $\Omega_t \subset \Omega$ be subdomains of Ω defined by $\Omega_t = \{r_t \geq \epsilon\}$. Then for any function F on Ω , one has

$$\frac{d}{dt}\Big|_{t=0} \int_{\Omega_t} F dV_h = \int_{\partial \Omega_0} \frac{r_1}{|\nabla^h r_0|_h} F ds_h$$

where $r_1 = \frac{dr_t}{dt}\Big|_{t=0}$.

Proof. Let us prove the lemma in case Ω_t only has one connected component with non-empty interior, since the number of such components does not change for t near 0 (this is because r_0 has no critical point in Ω). Let us also suppose that $r_1 \geq 0$ meaning that the domain Ω_t becomes bigger as t increases from 0. This is because one can always partition the curve $\gamma = \partial \Omega_0$ into pieces where $r_1 > 0$, $r_1 < 0$ or $r_1 = 0$ and the area difference of pieces touching the $r_1 = 0$ parts is of $O(t^2)$.

The difference $\Omega_t \setminus \Omega_0$ is the region where $\epsilon - r_1 t + O(t^2) \leq r_0 \leq \epsilon$, therefore $\Omega_t \setminus \Omega_0$ is of $O(t^2)$ difference from the region $\Phi_t = \{\exp_{\gamma(s)} \frac{\theta r_1 \nabla^h r_0}{|\nabla^h r_0|^2} : \theta \in [0, t], s \in [0, 1]\}$. Therefore

$$\frac{d}{dt}\bigg|_{t=0} \int_{\Omega_t} F dV_h = \frac{d}{dt}\bigg|_{t=0} \int_0^t \int_{\gamma} F \frac{r_1}{|\nabla^h r_0|_h} \text{vol } ds_h d\theta = \int_{\gamma} F \frac{r_1}{|\nabla^h r_0|_h} ds_h.$$

where $\frac{r_1}{|\nabla^h r_0|_h} \operatorname{vol}(s,\theta) ds_h d\theta$ is the pullback of the volume form by exponential map $(s,\theta) \mapsto \exp_{\gamma(s)} \frac{\theta r_1 \nabla^h r_0}{|\nabla^h r_0|_h^2}$, so $\operatorname{vol}(s,0) = 1$.

- 2 Log term in energy of $f:\overline{\mathbb{H}^2}\longrightarrow\overline{\mathbb{H}^{n+1}}$.
- 3 Commutative diagram revisited
- 4 LATEX in Inkscape: Incompatibility between ghostscript and pstoedit <2018-03-30 Fri>
- 5 LATEX indentation in org-mode <2018-02-20 Tue>
- 6 A (decent) map of mathematics <2017-10-17~Tue>
- 7 My 2016-2017 internship $< 2017-07-31 \; Mon >$