BÀI TẬP TOÁN RỜI RẠC 2

Câu 1. Cho đồ thị G = (V, E) gồm n đỉnh. Hãy chọn phương án đúng:

- A. Đường đi trong G đi qua n cạnh của nó gọi là đường đi Hamilton..
- B. Đường đi trong G đi qua n đỉnh, mỗi đỉnh đúng 1 lần gọi là đường đi Hamilton..
- C. Đường đi trong G đi qua mỗi đỉnh của nó không quá 1 lần gọi là đường đi Hamilton..
- D. Đường đi đơn của G thường gọi là đường đi Hamilton...
- E. Các phương án khác đều sai..

Câu 2. Cho đồ thị G = (V, E). Hãy chọn phương án đúng trong các phương án sau:

- A. Đường đi đơn trong G đi qua các cạnh của nó gọi là đường đi Euler..
- B. True Đường đi đơn trong G chứa tất cả các cạnh của nó gọi là đường đi Euler..
- ${f C}$. Đường đi đơn của ${f G}$ đi qua mỗi đỉnh của nó không quá 1 lần gọi là đường đi Euler..
- D. Đường đi đơn của G thường gọi là đường đi Euler..
- E. Các phương án khác đều sai..

Câu 3. Cho đồ thị vô hướng G = (V, E) gồm n
 đỉnh và m cạnh. Điều kiện cần và đủ để G là đồ thị nửa Euler:

- A. G liên thông và mọi đỉnh của nó đều có bậc lẻ..
- \mathbf{B} . G liên thông và có $\mathbf{m} = \mathbf{n}$ -1 cạnh..
- C. Tồn tại một thành phần liên thông của G là đồ thị Euler..
- **D**. G liên thông và chứa không quá 2 đỉnh bậc lẻ...
- E. Các phương án khác đều sai..

Câu 4. Cho đồ thị có hướng G = (V, E) gồm n
 đỉnh và m cạnh. Điều kiện cần và đủ để G là đồ thị nửa Hamilton:

- A. G liên thông yếu và mọi đỉnh của nó đều có các bán bậc lẻ...
- **B**. G liên thông yếu và có m = n-1 cạnh..
- C. Tồn tại một thành phần liên thông mạnh của G là đồ thị Hamilton...
- D. Không có điều kiện cần và đủ để xác định sự tồn tại của đường đi Hamilton...
- E. Các phương án khác đều sai..

Câu 5. Cho đồ thị vô hướng G = (V, E) gồm n đỉnh và m cạnh. Điều kiện cần và đủ để G là đồ thị nửa Euler:

- A. G liên thông và mọi đỉnh của nó đều có bậc lẻ..
- **B**. G liên thông và có m = n-1 cạnh..
- C. Tồn tại một thành phần liên thông của G là đồ thi Euler..
- D. G liên thông và chứa không quá 2 đỉnh bậc lẻ...
- E. Các phương án khác đều sai..

Câu 6. Cho đồ thị G = (V, E) gồm n đỉnh. Hãy chọn phương án đúng:

- **A**. Chu trình bắt đầu tại đỉnh v đi qua tất cả các đỉnh còn lại của G, mỗi đỉnh 1 lần rồi quay trở về v gọi là chu trình Hamilton..
- **B**. Chu trình trong G đi qua mỗi đỉnh của nó không quá 1 lần gọi là chu trình Hamilton..
- C. Chu trình trong G đi qua mỗi cạnh của nó không quá 1 lần gọi là chu trình Hamilton..
- D. Chu trình trong G gồm n cạnh gọi là chu trình Hamilton..
- E. Các phương án khác đều sai..

Câu 7. Cho đồ thị có hướng G = (V, E) gồm n đỉnh và m cạnh. Điều kiện cần và đủ để G là đồ thị nửa Hamilton:

- A. G liên thông yếu và mọi đỉnh của nó đều có các bán bậc lẻ..
- **B**. G liên thông yếu và có m = n-1 cạnh..
- C. Tồn tại một thành phần liên thông mạnh của G là đồ thị Hamilton..
- D. Không có điều kiện cần và đủ để xác định sự tồn tại của đường đi Hamilton..
- E. Các phương án khác đều sai..

Câu 8. Cho đồ thị vô hướng G = (V, E) gồm n
 đỉnh và m cạnh. Điều kiện cần và đủ để G là đồ thị Euler:

- A. G không chứa đỉnh bậc lẻ..
- \mathbf{B} . G liên thông và có $\mathbf{m} = \mathbf{n}$ cạnh..
- C. G liên thông và mọi đỉnh của nó đều có bậc chẵn..
- **D**. Mọi thành phần liên thông của G là đồ thị Euler..
- E. Các phương án khác đều sai..

Câu 9. Cho đơn đồ thị vô hướng G gồm 5 đỉnh và 6 cạnh dưới dạng danh sách cạnh. Hãy chọn phương án đúng trong các phương án sau:

Đỉnh	Đỉnh kề
4	0
2	1
4	3
3	0
2	3
0	2
1	0

- A. G không phải là đồ thị Euler nhưng là nửa Euler..
- **B**. G không phải là đồ thị nửa Euler..
- C. G là đồ thi Euler..
- **D**. G không phải là đồ thị Euler..
- E. Các phương án khác đều sai..

Câu 10. Cho đơn đồ thị có hướng G gồm 5 đỉnh và 7 cạnh dưới dạng danh sách cạnh. Hãy chọn phương án đúng trong các phương án sau:

Đỉnh	Đỉnh kề
2	1
1	5
3	1
2	3
5	3
3	2
5	2

- A. G là đồ thị nửa Euler..
- B. G không phải là đồ thị nửa Euler..
- C. G là đồ thi Euler..
- **D**. G không phải là đồ thị Euler..
- E. Các phương án khác đều sai..

Câu 11. Cho đơn đồ thị có hướng G gồm 5 đỉnh và 6 cạnh dưới dạng danh sách cạnh. Hãy chọn phương án đúng trong các phương án sau:

Đỉnh	Đỉnh kề
1	5
4	3
5	1
4	2
5	3
3	2

- A. G không liên thông yếu nên không phải là đồ thị nửa Euler..
- B. G không phải là đồ thị Euler..
- C. G là đồ thi Euler..
- D. G không phải là đồ thị Euler nhưng là đồ thị nửa Euler...
- E. Các phương án khác đều sai..

Câu 12. Cho đơn đồ thị có hướng G gồm 5 đỉnh và 6 cạnh dưới dạng danh sách cạnh. Hãy chọn phương án đúng trong các phương án sau:

Đỉnh	Đỉnh kề
1	2
2	1
3	4
5	3
2	5
1	3

- A. G không liên thông yếu nên không phải là đồ thị nửa Euler..
- B. G không phải là đồ thị Euler..
- C. G là đồ thi Euler..
- D. G không phải là đồ thị Euler nhưng là đồ thị nửa Euler..
- E. Các phương án khác đều sai..

Câu 13. Cho đơn đồ thị có hướng G gồm 5 đỉnh và 9 cạnh dưới dạng danh sách cạnh. Cho đơn đồ thị có hướng G gồm 5 đỉnh và 9 cạnh dưới dạng danh sách cạnh: Sử dụng thuật toán liệt kê tất cả các chu trình Hamilton của G bắt đầu tại đỉnh s=4. Hãy chọn phương án đúng trong các phương án sau:

Đỉnh	Đỉnh kề
2	1
1	5
3	1
4	5
4	
2	5
1	3
3 5	5
5	2

- A. Số lương các chu trình Hamilton của G là 3..
- B. Số lượng các chu trình Hamilton của G là 2..
- C. Số lượng các chu trình Hamilton của G là 1..
- D. Số lượng các chu trình Hamilton của G là 0..
- E. Các phương án khác đều sai..

Câu 14. Cho đơn đồ thị vô hướng G gồm 5 đỉnh và 6 cạnh dưới dạng danh sách cạnh. Sử dụng thuật toán tìm đường đi Euler E của G bắt đầu tại đỉnh bậc lẻ với số thứ tự nhỏ nhất. Các đỉnh xuất hiện trong E theo thứ tự khi thực hiện thuật toán là:

Đỉnh	Đỉnh kề
Dilli	риш ке
3	4
1	5
1	4
2	3
2	5
3	5

- **A**. $E = \{3, 2, 5, 3, 4, 1, 5\}..$
- **B**. $E = \{3, 4, 1, 5, 2, 3, 5\}..$
- **C**. $E = \{3, 5, 1, 4, 3, 2, 5\}..$
- **D**. $E = \{3, 2, 5, 1, 4, 3, 5\}..$
- E. Các phương án khác đều sai..

Câu 15. Cho đơn đồ thị có hướng G gồm 5 đỉnh và 6 cạnh dưới dạng danh sách cạnh. Sử dụng thuật toán tìm đường đi Euler E của G. Các đỉnh xuất hiện trong E theo thứ tự

khi thực hiện thuật toán là:

Đỉnh	Đỉnh kề
4	3
3	5
5	2
2	1
1	4
4	5

- **A**. $E = \{4, 5, 2, 1, 4, 3, 5\}..$
- **B**. $E = \{5, 2, 1, 4, 3, 5, 4\}..$
- **C**. $E = \{5, 2, 1, 4, 5, 3, 4\}..$
- **D**. $E = \{4, 3, 5, 2, 1, 4, 5\}..$
- E. Các phương án khác đều sai..

Câu 16. Cho đơn đồ thị vô hướng G gồm 5 đỉnh và 6 cạnh dưới dạng danh sách cạnh. Sử dụng thuật toán tìm đường đi Euler E của G bắt đầu tại đỉnh bậc lẻ với số thứ tự nhỏ nhất. Các đỉnh xuất hiện trong E theo thứ tự khi thực hiện thuật toán là:

Đỉnh	Đỉnh kề
3	4
1	5
1	4
2	3
2	5
3	5

- **A**. $E = \{3, 2, 5, 3, 4, 1, 5\}..$
- **B**. $E = \{3, 4, 1, 5, 2, 3, 5\}..$
- **C**. $E = \{3, 5, 1, 4, 3, 2, 5\}..$
- **D**. $E = \{3, 2, 5, 1, 4, 3, 5\}..$
- E. Các phương án khác đều sai..

Câu 17. Cho đơn đồ thị vô hướng G gồm 5 đỉnh dưới dạng ma trận kề. Hãy chọn phương án đúng trong các phương án sau:

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

- A. G là đồ thi Euler..
- B. G không phải là đồ thị Euler nhưng là nửa Euler..
- C. G không phải là đồ thị Euler..
- D. G không phải là đồ thị nửa Euler..
- E. Các phương án khác đều sai..

Câu 18. Cho đơn đồ thị vô hướng G gồm 5 đỉnh dưới dạng ma trận kề. Hãy chọn phương án đúng trong các phương án sau:

$$\begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

- A. G liên thông và chỉ có hai đỉnh 2 và 5 với bậc lẻ nên là đồ thị nửa Euler.
- B. G liên thông và chỉ có hai đỉnh 2 và 3 với bác lẻ nên là đồ thi nửa Euler..
- C. G liên thông và chỉ có hai đỉnh 3 và 4 với bậc lẻ nên là đồ thị nửa Euler..
- **D**. G không phải là đồ thị nửa Euler cũng không phải là đồ thị Euler..
- E. Các phương án khác đều sai..

Câu 19. Cho đơn đồ thị có hướng G gồm 5 đỉnh dưới dạng ma trận kề. Sử dụng thuật toán liệt kê tất cả các chu trình Hamilton H của G bắt đàu tại đỉnh s=2. Các đỉnh xuất hiện theo thứ tự khi thực hiện thuật toán trong H đầu tiên được liệt kê là:

$$\begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

A.
$$H = \{2, 5, 4, 1, 3\}...$$

B.
$$H = \{2, 5, 1, 4, 3\}$$
.. **C**. $H = \{2, 3, 1, 4, 5\}$.

D. $H = \{2, 5, 1, 3, 4\}..$

E. Các phương án khác đều sai..

Câu 20. Cho đơn đồ thị vô hướng G gồm 5 đỉnh dưới dạng ma trận kề. Hãy chọn phương án đúng trong các phương án sau:

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

- **A**. G là đồ thị Euler..
- B. G không phải là đồ thị Euler nhưng là nửa Euler..
- C. G không phải là đồ thị Euler..
- **D**. G không phải là đồ thị nửa Euler..
- E. Các phương án khác đều sai..

Câu 21. Cho đơn đồ thị vô hướng G gồm 5 đỉnh dưới dạng ma trận kề. Sử dụng thuật toán tìm đường đi Euler E của G bắt đầu tại đỉnh bậc lẻ với số thứ tự nhỏ nhất. Các đỉnh xuất hiện trong E theo thứ tự khi thực hiện thuật toán là:

$$\begin{bmatrix} 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

- **A**. $E = \{2, 4, 3, 2, 5, 1, 3\}..$
- **B**. $E = \{2, 3, 1, 5, 2, 4, 3\}.$
- C. $E = \{2, 5, 1, 3, 2, 4, 3\}..$
- **D**. $E = \{2, 3, 4, 2, 5, 1, 3\}.$
- E. Các phương án khác đều sai..

Câu 22. Cho đơn đồ thị vô hướng G gồm 5 đỉnh dưới dạng ma trận kề. Hãy chọn phương án đúng trong các phương án sau:

$$\begin{bmatrix} 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \end{bmatrix}$$

- A. G liên thông và chỉ có hai đỉnh 2 và 5 với bậc lẻ nên là đồ thị nửa Euler.
- B. G liên thông và chỉ có hai đỉnh 2 và 3 với bậc lẻ nên là đồ thị nửa Euler..
- C. G liên thông và chỉ có hai đỉnh 3 và 4 với bậc lẻ nên là đồ thị nửa Euler..
- **D**. G không phải là đồ thi nửa Euler cũng không phải là đồ thi Euler...
- E. Các phương án khác đều sai..

Câu 23. Cho đơn đồ thị có hướng G gồm 5 đỉnh dưới dạng ma trận kề. Sử dụng thuật toán liệt kê tất cả các chu trình Hamilton H của G bắt đàu tại đỉnh s=2. Các đỉnh xuất hiện theo thứ tự khi thực hiện thuật toán trong H đầu tiên được liệt kê là:

$$\begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ \end{bmatrix}$$

- **A**. $H = \{2, 5, 4, 1, 3\}$.. **B**. $H = \{2, 5, 1, 4, 3\}$.. **C**. $H = \{2, 3, 1, 4, 5\}$.

- **D**. $H = \{2, 5, 1, 3, 4\}...$
- E. Các phương án khác đều sai..

Câu 24. Cho đơn đồ thi vô hướng G gồm 5 đỉnh dưới dang ma trân kề. Sử dung thuật toán tìm chu trình Euler E của G bắt đầu tại đỉnh s=1. Các đỉnh xuất hiện trong E theo thứ tự khi thực hiện thuật toán là:

$$\begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

- **A**. $E = \{1, 2, 3, 4, 5, 3, 1\}..$
- **B**. $E = \{1, 3, 5, 4, 3, 2, 1\}..$
- C. $E = \{1, 2, 3, 5, 4, 3, 1\}..$
- **D**. $E = \{1, 3, 4, 5, 3, 2, 1\}..$
- E. Các phương án khác đều sai..

Câu 25. Cho đơn đồ thị có hướng G gồm 5 đỉnh dưới dạng ma trận kề. Sử dụng thuật toán tìm chu trình Euler E của G bắt đầu tại đỉnh s=1. Các đỉnh xuất hiện trong E theo thứ tự khi thực hiện thuật toán là:

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \end{bmatrix}$$

- **A**. $E = \{1, 4, 2, 1, 5, 3, 4, 5, 1\}.$
- **B**. $E = \{1, 4, 5, 3, 4, 2, 1, 5, 1\}..$
- **C**. $E = \{1, 5, 3, 4, 2, 1, 4, 5, 1\}..$
- **D**. $E = \{1, 5, 1, 4, 5, 3, 4, 2, 1\}..$
- E. Các phương án khác đều sai..

Câu 26. Cho đơn đồ thị có hướng G gồm 5 đỉnh dưới dạng ma trận kề. Hãy chọn phương án đúng trong các phương án sau:

$$\begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

- A. G không phải là đồ thi nửa Euler..
- B. G không phải là đồ thị Euler nhưng là nửa Euler..
- C. G là đồ thị Euler..
- **D**. G không phải là đồ thị Euler cũng không phải là đồ thị nửa Euler...
- E. Các phương án khác đều sai..

Câu 27. Cho đơn đồ thị có hướng G gồm 5 đỉnh dưới dạng ma trận kề. Hãy chọn phương án đúng trong các phương án sau:

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

- A. G không phải là đồ thị nửa Euler..
- B. G không phải là đồ thị Euler nhưng là nửa Euler...
- C. G là đồ thi Euler..
- D. G không phải là đồ thị Euler cũng không phải là đồ thị nửa Euler..
- E. Các phương án khác đều sai..

Câu 28. Cho đơn đồ thị có hướng G gồm 5 đỉnh dưới dạng ma trận kề. Sử dụng thuật toán tìm chu trình Euler E của G bắt đầu tại đỉnh s=1. Các đỉnh xuất hiện trong E

theo thứ tự khi thực hiện thuật toán là:

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \end{bmatrix}$$

- **A**. $E = \{1, 4, 2, 1, 5, 3, 4, 5, 1\}.$
- **B**. $E = \{1, 4, 5, 3, 4, 2, 1, 5, 1\}..$
- **C**. $E = \{1, 5, 3, 4, 2, 1, 4, 5, 1\}..$
- **D**. $E = \{1, 5, 1, 4, 5, 3, 4, 2, 1\}..$
- E. Các phương án khác đều sai..

Câu 29. Cho đơn đồ thị có hướng G gồm 5 đỉnh dưới dạng ma trận kề. Sử dụng thuật toán tìm đường đi Euler E của G. Các đỉnh xuất hiện trong E theo thứ tự khi thực hiện thuật toán là:

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

- **A**. $E = \{2, 4, 1, 5, 2, 3, 5\}..$
- **B**. $E = \{2, 3, 5, 2, 4, 1, 5\}.$
- C. $E = \{1, 5, 2, 3, 5, 4, 2\}..$
- **D**. $E = \{5, 2, 4, 1, 5, 2, 3\}..$
- E. Các phương án khác đều sai..

Câu 30. Cho đơn đồ thị có hướng G gồm 5 đỉnh dưới dạng ma trận kề. Sử dụng thuật toán tìm đường đi Euler E của G. Các đỉnh xuất hiện trong E theo thứ tự khi thực hiện thuật toán là:

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

- **A**. $E = \{2, 4, 1, 5, 2, 3, 5\}..$
- **B**. $E = \{2, 3, 5, 2, 4, 1, 5\}.$
- C. $E = \{1, 5, 2, 3, 5, 4, 2\}..$
- **D**. $E = \{5, 2, 4, 1, 5, 2, 3\}...$
- E. Các phương án khác đều sai...

Câu 31. Cho đơn đồ thị có hướng G gồm 5 đỉnh dưới dạng ma trận kề. Sử dụng thuật toán tìm đường đi Euler E của G. Các đỉnh xuất hiện trong E theo thứ tự khi thực hiện thuật toán là:

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

- **A**. $E = \{2, 4, 1, 5, 2, 3, 5\}..$
- **B**. $E = \{2, 3, 5, 2, 4, 1, 5\}.$
- **C**. $E = \{1, 5, 2, 3, 5, 4, 2\}..$
- **D**. $E = \{5, 2, 4, 1, 5, 2, 3\}..$
- E. Các phương án khác đều sai..

Câu 32. Cho đơn đồ thị có hướng G gồm 5 đỉnh dưới dạng ma trận kề. Sử dụng thuật toán tìm đường đi Euler E của G. Các đỉnh xuất hiện trong E theo thứ tự khi thực hiện thuật toán là:

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

- **A**. $E = \{2, 4, 1, 5, 2, 3, 5\}..$
- **B**. $E = \{2, 3, 5, 2, 4, 1, 5\}.$
- **C**. $E = \{1, 5, 2, 3, 5, 4, 2\}..$
- **D**. $E = \{5, 2, 4, 1, 5, 2, 3\}..$
- E. Các phương án khác đều sai..

Câu 33. Cho đơn đồ thị vô hướng G gồm 5 đỉnh dưới dạng danh sách kề. Hãy chọn phương án đúng trong các phương án sau:

Đỉnh	Danh sách kề
0	3, 4
1	3, 4
2	3
3	0, 1, 2, 4
4	0, 1, 3

- A. G liên thông và có hai đỉnh 1 và 5 với bậc lẻ nên là đồ thị nửa Euler..
- B. G liên thông và có hai đỉnh 1 và 3 với bậc lẻ nên là đồ thị nửa Euler..
- C. G liên thông và có hai đỉnh 3 và 4 với bậc lẻ nên là đồ thị nửa Euler..
- **D**. G không phải là đồ thị nửa Euler..
- E. Các phương án khác đều sai..

Câu 34. Cho đơn đồ thị có hướng G gồm 5 đỉnh dưới dạng danh sách kề. Hãy chọn phương án đúng trong các phương án sau:

Đỉnh	Danh sách kề
0	1
1	2
2	3
3	4
4	0

- A. G là đồ thị Euler..
- B. G không phải là đồ thị Euler..
- C. G không phải là đồ thị Euler nhưng là nửa Euler..
- D. G không phải là đồ thị nửa Euler..
- E. Các phương án khác đều sai..

Câu 35. Cho đơn đồ thị vô hướng G gồm 5 đỉnh dưới dạng danh sách kề. Sử dụng thuật toán tìm chu trình Euler E của G bắt đầu tại đỉnh s=5. Các đỉnh xuất hiện trong E theo thứ tự khi thực hiện thuật toán là:

Đỉnh	Danh sách kề
0	2, 3
1	3, 4
2	0, 4
3	0, 1
4	1, 2

- **A**. $E = \{5, 2, 1, 4, 2, 3, 5\}..$
- **B**. $E = \{5, 2, 4, 1, 2, 3, 5\}..$
- **C**. $E = \{5, 3, 2, 1, 4, 2, 5\}.$
- **D**. $E = \{5, 3, 2, 4, 1, 2, 5\}..$
- E. Các phương án khác đều sai..

Câu 36. Cho đơn đồ thị có hướng G gồm 5 đỉnh dưới dạng danh sách kề. Hãy chọn phương án đúng trong các phương án sau:

Đỉnh	Danh sách kề
0	1
1	2
2	3
3	4
4	0

- A. G là đồ thị Euler..
- **B**. G không phải là đồ thị Euler..
- C. G không phải là đồ thị Euler nhưng là nửa Euler..
- **D**. G không phải là đồ thị nửa Euler..
- E. Các phương án khác đều sai..

Câu 37. Cho đơn đồ thị vô hướng G gồm 5 đỉnh dưới dạng danh sách kề. Sử dụng thuật toán tìm chu trình Euler E của G bắt đầu tại đỉnh s=5. Các đỉnh xuất hiện trong E theo thứ tự khi thực hiện thuật toán là:

Đỉnh	Danh sách kề
0	2, 4
1	2, 3, 4
2	0, 1, 3, 4
3	1, 2, 4
4	0, 1, 2, 3

- **A**. $E = \{5, 1, 3, 2, 4, 2, 5, 3, 4, 5\}..$
- **B**. $E = \{5, 1, 3, 4, 2, 5, 3, 2, 4, 5\}..$
- C. $E = \{5, 3, 2, 4, 2, 5, 1, 3, 4, 5\}.$
- **D**. $E = \{5, 3, 4, 2, 4, 5, 1, 3, 2, 5\}.$
- E. Các phương án khác đều sai..

Câu 38. Cho đơn đồ thị vô hướng G gồm 5 đỉnh dưới dạng danh sách kề. Sử dụng thuật toán tìm đường đi Euler E của G bắt đầu tại đỉnh bậc lẻ với số thứ tự nhỏ nhất. Các đỉnh xuất hiện trong E theo thứ tự khi thực hiện thuật toán là:

Đỉnh	Danh sách kề
0	2, 3, 4
1	2, 4
2	0, 1, 3
3	0, 2
4	0, 1

- **A**. $E = \{1, 3, 4, 1, 5, 2, 3\}..$
- **B**. $E = \{1, 3, 2, 5, 1, 4, 3\}.$
- **C**. $E = \{1, 5, 2, 3, 1, 4, 3\}..$
- **D**. $E = \{1, 4, 3, 1, 5, 2, 3\}..$
- E. Các phương án khác đều sai..

Câu 39. Cho đơn đồ thị có hướng G gồm 5 đỉnh dưới dạng danh sách kề. Sử dụng thuật toán liệt kê tất cả các chu trình Hamilton của G bắt đàu tại đỉnh s=3. Hãy chọn phương án đúng trong các phương án sau:

Đỉnh	Danh sách kề
0	2, 3
1	3, 4
2	0
3	0, 1
4	1

- A. Số lượng các chu trình Hamilton của G là 0...
- B. Số lượng các chu trình Hamilton của G là 1..
- C. Số lượng các chu trình Hamilton của G là 2..
- D. Số lượng các chu trình Hamilton của G là 3..
- E. Các phương án khác đều sai..

Câu 40. Cho đơn đồ thị vô hướng G gồm 5 đỉnh dưới dạng danh sách kề. Sử dụng thuật toán liệt kê tất cả các chu trình Hamilton H của G bắt đàu tại đỉnh s=5. Các đỉnh xuất hiện theo thứ tự khi thực hiện thuật toán trong H đầu tiên được liệt kê là:

Đỉnh	Danh sách kề
0	4, 3
1	3, 2
2	1
3	0, 1
4	0

A.
$$H = \{5, 1, 4, 2, 3\}$$
.. **D**. $H = \{5, 3, 2, 4, 1\}$..

A.
$$H = \{5, 1, 4, 2, 3\}$$
.. **B**. $H = \{5, 1, 4, 2, 3\}$. **C**. $H = \{5, 2, 3, 4, 1\}$.. **D**. $H = \{5, 3, 2, 4, 1\}$.. **E**. Các phương án khác đều sai..