ELSEVIER

#### Contents lists available at ScienceDirect

# Virology

journal homepage: www.elsevier.com/locate/yviro



The complete genome sequence of the *Alphaentomopoxvirus Anomala cuprea entomopoxvirus*, including its terminal hairpin loop sequences, suggests a potentially unique mode of apoptosis inhibition and mode of DNA replication



Wataru Mitsuhashi\*, Kazuhisa Miyamoto, Sanae Wada

National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan

#### ARTICLE INFO

Article history:
Received 1 October 2013
Returned to author for revisions
28 October 2013
Accepted 26 December 2013
Available online 31 January 2014

Keywords: Entomopoxvirus Alphaentomopoxvirus Genome Terminal hairpin loop Apoptosis inhibition DNA replication

#### ABSTRACT

Complete genome sequence of *Anomala cuprea entomopoxvirus*, which belongs to the genus *Alphaentomopoxvirus*, including its terminal hairpin loop sequences, is reported. This is the first genome sequence of *Alphaentomopoxvirus* reported, and hairpin loops in entomopoxviruses have not previously been sequenced. The genome is 245,717 bp, which is smaller than had previously been estimated for *Alphaentomopoxvirus*. The inverted terminal repeats are quite long, and experimental results suggest that one genome molecule has one type of hairpin at one end and another type at the other end. The genome contains unexpected ORFs, e.g., that for the ubiquitin-conjugating enzyme E2 of eukaryotes. The BIR and RING domains found in a single ORF for an inhibitor of apoptosis in baculoviruses and entomopoxviruses occurred in two different, widely separated ORFs. Furthermore, an ORF in the genome contains a serpin domain that was previously found in vertebrate poxviruses for apoptosis inhibition but not in insect viruses.

© 2014 Elsevier Inc. All rights reserved.

## Introduction

The family *Poxviridae* contains two subfamilies: the *Chordopoxvirinae*, whose members infect vertebrates, and the *Entomopoxvirinae*, which infect insects. The *Entomopoxvirinae* is subdivided into the following three genera: *Alphaentomopoxvirus* of Coleoptera, *Betaentomopoxvirus* of Lepidoptera and Orthoptera, and *Gammaentomopoxvirus* of Diptera. The virions of entomopoxviruses (EVs (or EPVs)) are ovoid or brick-shaped (220–265 nm × 270–470 nm) and contain a large, linear, double-stranded DNA of 225–380 kbp (Becker and Moyer, 2007; Skinner et al., 2011) and thus their genomes are generally larger than those of *Chordopoxviruses* (ChPVs) (Becker and Moyer, 2007; Skinner et al., 2011).

To date, most of the viruses of the poxviridae, whose genomes have been fully sequenced are members of *Chordopoxvirinae*; the genome of at least one member of each genus of ChPVs has been sequenced (Hautaniemi et al., 2010; Perera et al., 2010). In contrast, complete genomic sequences have been obtained for only a few EVs, an orthopteran EV (*Melanoplus sanguinipes* EV(MSEV)), whose genus has been unassigned and likely should be established as a new genus, and five lepidopteran EVs (*Amsacta moorei* EV (AMEV), *Adoxophyes* 

honmai EV, Choristoneura biennis EV (CBEV), Choristoneura rosaceana EV (CREV), and Mythimna separata EV (MySEV)), whose genus is Betaentomopoxvirus (Afonso et al., 1999; Bawden et al., 2000; Thézé et al., 2013). Therefore genomic sequences of members of Alphaentomopoxvirus and Gammaentomopoxvirus had not been determined previously. Several features have hampered efforts to obtain complete genomic sequences of EVs. First, long stretches of AT-rich sequences in EVs have been problematic (Perera et al., 2010). Second, it is not easy to mass-rear a sufficient number of some scarab species in order to produce enough virions and to extract sufficiently large amounts of genome DNA from Alphaentomopoxvirus species because of difficulty in dissolving their inclusion bodies, namely, spheroids (Langridge and Roberts, 1977; Mitsuhashi et al., 1997).

Furthermore, little has been reported regarding the sequences external to the perfectly base-paired region of poxviruses, that is, the hairpin loop region sequences, because of the difficulties associated with the cloning or PCR amplification of such regions (Baroudy et al., 1982). Because hairpin loop regions are important during the process of DNA replication in the ChPV, vaccinia virus (VACV) (Smith, 2007; Moss, 2001), the elucidation of the sequences and structures of these regions should lead to understanding of the process of DNA replication in EVs and improve our understanding of this process in ChPVs.

New information regarding the entire genomes of *Alphaento-mopoxvirus* and *Gammaentomopoxvirus* members will contribute

<sup>\*</sup>Corresponding author. Tel.: +81 29 838 6081; fax: +81 29 838 6028. E-mail address: mitsuhas@affrc.go.jp (W. Mitsuhashi).

to a better understanding of EVs themselves, which are less well-studied than are ChPVs, and of the relationships between EVs, ChPVs, and other viruses, and therefore of the evolution of poxviruses. In addition, this new knowledge likely will provide insights into the features and mechanisms of horizontal gene transfer between EVs and organisms, including their host insects. EV genome analyses may yield important clues about interactions between insect viruses and their hosts, including control of host responses. In particular, compared with lepidopteran insects and their parasites, coleopteran insects generally grow slowly and Alphaentomopoxvirus viruses replicate slowly in their coleopteran hosts. These differences suggest the presence of as-yet unknown Alphaentomopoxvirus-specific genetic factors that allow the viruses to adapt or regulate their hosts.

Spheroids are candidate reagents for insect pest control (King et al., 1998). In addition, spindles – another type of inclusion body composed of the EV-encoded protein fusolin and formed in host cells – may improve the efficacy of insecticides containing insect viruses or the bacterium *Bacillus thuringiensis* (Bt) because they enhance infection by insect viruses and the insecticidal activity of Bt spores and their toxin (Mitsuhashi et al., 1998a, 2000; 2014; Mitsuhashi and Miyamoto, 2003; Wijonarko and Hukuhara, 1998; Furuta et al., 2001). Therefore, elucidating the genome of *Alphaentomopoxvirus* species will also positively contribute to these basic and applied issues.

Here we report the full genome sequence, including the terminal hairpin loop structures, of *Anomala cuprea entomopoxvirus* (ACEV), which is the first complete genome sequence of *Alphaentomopoxvirus* reported and the first description of the hairpin loop sequences in *Entomopoxvirinae* members. We also discuss the implications of the role of the hairpin loop with a region adjacent to it in DNA replication, and compare the genome with other poxviruses. Finally, we describe several noteworthy ORFs, including those potentially involved in a unique apoptosis-inhibition system.

## Results and discussion

General features of the genomes

We first obtained a 225-kb contig from which most of the right inverted terminal repeat (ITR) region was missing (see Section 4). Then we have obtained the full length of the right ITR region and have confirmed the sequence of the left ITR region by "additional sequencing and assembly" described in Section 4. On the basis of results from several types of experiment described in Section 4, we have determined the full genome sequence. The left-most nucleotide of the double-stranded region was designated base 1 (nt1). The ACEV genome consists of a double-stranded region, whose size is 245,717 bp and a hairpin loop region of 88 nucleotides adjacent to each terminus of the double-stranded region. The G+C content in the double stranded region is 20.0%, which is within the range of the other EV genomes (17.8–21%) (Afonso et al., 1999; Bawden et al., 2000; Thézé et al., 2013). The genome size of Alphaentomopoxvirus viruses has been reported to be about 260-370 kbp according to results obtained by electron microscopy and sedimentation rates (Becker and Moyer, 2007; Skinner et al., 2011; Langridge and Roberts, 1977). However, our results indicate that the genome of the Alphaentomopoxvirus ACEV is 246 kbp and therefore smaller than had been reported. It is unclear whether this ACEV genome size is atypical among Alphaentomopoxvirus.

ACEV contains 263 putative functional ORFs (Fig. 1; Table 1). ChPV ORFs near the left and right termini of the genome tend to be transcribed towards their respective ends (Upton et al., 1988), but AMEV does not follow this convention (Bawden et al., 2000), and

ACEV and MSEV appear to be intermediate between the two models (Fig. 1; Table 1; Afonso et al., 1999). On the other hand, whereas most ChPV genes in the central region were transcribed toward the center of the genome (Lefkowitz et al., 2006); neither ACEV, MSEV, nor AMEV showed any discernible pattern in this regard (Fig. 1; Table 1; Afonso et al., 1999; Bawden et al., 2000). The two trends in the orientation of gene transcription in ChPV are assumed to reduce collisions between transcription complexes (Perera et al., 2010).

The ACEV genome included the 49 genes (core genes) conserved among poxviruses (Upton et al., 2003). Mammalian ChPVs generally share a co-linear arrangement of these core genes (Skinner et al., 2011; Bawden et al., 2000: Goebel et al., 1990; Massung et al., 1994; Senkevich et al., 1997; Afonso et al., 2000). However their order was not preserved among four EV genomes (Fig. 2), although gene order may have been weakly conserved between ACEV and MSEV (Fig. 2). The gene order of *Betaentomo-poxvirus* has already been reported to be non-co-linear with that of MSEV (Perera et al., 2010; Bawden et al., 2000; Thézé et al., 2013). These reports combined with our present results suggest that the order of these core genes is not conserved between different EV genera.

ITRs

Each ACEV ITR is 22, 978 bp, which is quite long for poxviruses. The ITRs of poxviruses range from < 100 bp to 16 kb (Perera et al., 2010); for example, those of MSEV and AMEV are 7 kb and 9 kb, respectively (Afonso et al., 1999; Bawden et al., 2000). Exceptions to the range in poxviral ITR length are spontaneous mutants of the cow poxvirus, whose ITRs are 21-50 kb (Pickup et al., 1984) and that of 23.8 kb in CREV (Thézé et al., 2013). The ACEV ITR sequence at one terminal, once it is converted comprehensively and reversibly, is perfectly identical to that of the other ITR, Each ACEV ITR contains a series of tandemly repeated sequences, like other poxvirus ITRs. In the very terminus of each ITR, we found a putative concatemer resolution motif (Fig. 3), which is essential for the resolution of concatemeric DNA molecules during ChPV DNA replication (Smith, 2007). This motif spans nucleotides (nts) 117 through 135 downstream of each terminal nucleotide of the ACEV two-DNA strand region, consistent with a report that the motifs have been detected within the 150-bp terminal-most regions of the two DNA strands of ChPV members (Afonso et al., 2006). This is the first detection of a putative concatemer resolution motif among EVs.

# Hairpin loop structures

By "Subsequent PCRs" (see Section 4) for amplifying respective hairpin loop type sequences and the sequencing of these PCR products, we could obtain two types of sequence at each genome end (Fig. 4). Therefore it was found that one type of sequence that had not been detected by the sequencing of nested PCR product from a 37 kb restriction fragment (see Section 4) is also present at the end. The two forms (referred to as types A and B) were inverted and complementary to each other, as is the case for two ChPV species, VACV (strain WR) and the Shope fibroma virus (SFV), and for African swine fever (ASF) virus (family Asfarviridae) (Baroudy et al., 1982, DeLange et al., 1986; González et al., 1986). Poxvirus terminal hairpin loop sequences have been reported only in the two species mentioned above. The sizes of the hairpin loops in ACEV, VACV (strain WR), VACV (strain Copenhagen) (Goebel et al., 1990), SFV, and ASF virus are 88, 104, 101, 64, and 37 bps, respectively. All of these sequences are highly AT rich but did not appear to share homology.



Fig. 1. Linear map of the ACEV genome. ORFs are numbered consecutively from left to right based on the position of the left terminus. ORFs transcribed to the right are shown as open boxes and those transcribed to the left as filled boxes. Nucleotide (base) numbers are listed to the left and right of the diagrams representing a part (24,572 bases) of the genome. Left-most nucleotide of the double-stranded region was designated nucleotide number 1. The figure was illustrated by using PlasDraw (GENETYX Corporation, Tokyo, Japan). ITR: inverted terminal repeat.

The present study revealed the presence of hairpin loop structures and concatemer resolution motifs very near the hairpin loops in an EV, and these "devices" are essential for DNA replication in VACV (Smith, 2007; Moss, 2007). Therefore DNA replication in ACEV is considered to be similar to that in VACV.

Are the hairpin sequences at the two ends of a molecule different or the same?

As mentioned above, two types of hairpin loop sequence that are in a relationship as an inverted repeat (IR), were detected at each terminus of the ACEV genomes. It had not been clearly elucidated whether hairpin loop sequences of two termini of one molecule in poxviruses are in a relationship as IR or whether they are identical because previous analyses of hairpin loops in each viral species or strain were performed by using a DNA sample of each end of a genome that had been separated from the rest of the genome (Baroudy et al., 1982; Moss, 2001, 2007; DeLange et al., 1986). Goebel et al. (1990) reported that they found only one type of hairpin loop sequence in VACV (strain Copenhagen), which was at both ends of the DNA double-stranded region. A model for VACV DNA replication has proposed an IR relationship between the hairpin loop at one genome end and that at the other end (Moss, 2001, 2007; Culyba et al., 2009).

In the electrophoresis of the "Subsequent PCR" products, fluorescence of the type B band derived from the left-telomeric fragment (see Section 4) induced by UV radiation was weaker than that from the right-telomeric fragment (data not shown). Furthermore, in the sequence analysis of the *Escherichia coli* clones harboring the nested PCR products, there was a significant

difference in the type A to type B clone ratio between the leftterminal hairpin loop structure and right-terminal hairpin loop structure: the numbers of type A sequence and type B sequence clones were 20 and 0 at the left hairpin loops, respectively, and those at the right hairpin loops were 14 and 6, respectively (chisquare test, p < 0.01). These results suggest that the number of type A hairpin loops at the left end of the genome sample was greater than that at the right end and also that the number of type B hairpin loops at the left end of the genome sample was less than that at the right end; therefore, it is suggested that there is one type of ACEV genome molecules, each of which possesses two hairpin loops whose sequences are in an IR relationship with each other. The present experimental results suggest that both terminal hairpin sequences differ in one molecule of the poxvirus genome. Our present results support the proposal (Moss, 2001, 2007; Culyba et al., 2009) for an IR relationship between the two hairpin loops in one molecule of the VACV genome in the model for VACV DNA replication.

# Structure/morphogenesis

ORFs sorted according to functional categories are described from this subsection "Structure/morphogenesis" to the subsection "Other functions"; ORFs that can be identified based on their similarities of sequences with known proteins whose functions remain unknown in viruses were regarded as functionally-unknown ORFs and excluded from the subsections. Some ORFs were assigned by our judgment mainly based on the function and structure of their homologs but include ORFs whose categorizations may not be absolute.

**Table 1**Predicted ORFs of the ACEV genome.

| ORF    | Position <sup>a</sup> | aa <sup>b</sup> | Best match <sup>c</sup>                                                                         | E value <sup>c</sup> | Identity <sup>c</sup> | ORF(s) similar<br>to that of ACEV<br>in other<br>known EVs<br>(presence, $\circ$ ;<br>absence, $\times$ ) | Product,<br>function, or<br>structure                        |
|--------|-----------------------|-----------------|-------------------------------------------------------------------------------------------------|----------------------|-----------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| ACV001 | 1498-1070             | 143             | YP_008004312.1, CBEV N1R/                                                                       | 2.00E-15             | 42                    | 0                                                                                                         | MTG-like gene                                                |
| ACV002 | 2418-1687             | 244             | p28-like protein YP_008003947.1, AHEV N1R/                                                      | 7.00E-47             | 60                    | 0                                                                                                         | family protein<br>MTG-like gene                              |
| ACV003 | 3915-5096             | 394             | p28-like protein YP_008004161.1, CBEV N1R/ p28-like protein                                     | 7.00E-92             | 46                    | 0                                                                                                         | family protein<br>N1R/p28-like<br>protein                    |
| ACV004 | 5143-6291             | 383             | YP_008004641.1, CREV N1R/<br>p28-like protein                                                   | 3.00E-94             | 49                    | 0                                                                                                         | N1R/p28-like<br>protein                                      |
| ACV005 | 6338-6820             | 161             | YP_008004161.1, CBEV N1R/<br>p28-like protein                                                   | 6.00E-22             | 41                    | 0                                                                                                         | N1R/p28-like<br>protein                                      |
| ACV006 | 7664–7933             | 90              | YP_008004472.1, CREV N1R/<br>p28-like protein                                                   | 2.00E-12             | 50                    | 0                                                                                                         | N1R/p28-like<br>protein                                      |
| ACV007 | 8180-8956             | 259             | pzo-like protein                                                                                |                      |                       | ×                                                                                                         | hypothetical<br>protein                                      |
| ACV008 | 9005-9391             | 129             | YP_008004089.1, CBEV N1R/<br>p28-like protein                                                   | 0.002                | 33                    | 0                                                                                                         | hypothetical<br>protein                                      |
| ACV009 | 9943-9413             | 177             | p20 like protein                                                                                |                      |                       | ×                                                                                                         | hypothetical<br>protein                                      |
| ACV010 | 10644-9976            | 223             | XP_001662055.1, Aedes aegypti<br>matrix metalloproteinase                                       | 4.00E-06             | 36                    | ×                                                                                                         | matrix<br>metalloprotei-<br>nase                             |
| ACV011 | 10743-11183           | 147             | YP_008004481.1, CREV N1R/<br>p28-like protein                                                   | 7.00E-16             | 38                    | 0                                                                                                         | N1R/p28-like<br>protein                                      |
| ACV012 | 12813-11359           | 485             | YP_008003639.1, MySEV N1R/<br>p28-like protein                                                  | 2.00E-115            | 46                    | 0                                                                                                         | MTG-like gene<br>family protein                              |
| ACV013 | 14277-12850           | 476             | YP_008003639.1, MySEV N1R/<br>p28-like protein                                                  | 2.00E-121            | 49                    | 0                                                                                                         | MTG motif gen                                                |
| ACV014 | 15603-14326           | 426             | YP_008003639.1, MySEV N1R/<br>p28-like protein                                                  | 4.00E-116            | 48                    | 0                                                                                                         | MTG-like gene<br>family protein                              |
| ACV015 | 17201-15768           | 478             | YP_008003639.1, MySEV N1R/<br>p28-like protein                                                  | 6.00E-118            | 48                    | 0                                                                                                         | MTG-like gene<br>family protein                              |
| ACV016 | 18127-17264           | 288             | YP_008003944.1, AHEV N1R/<br>p28-like protein                                                   | 7.00E-70             | 49                    | 0                                                                                                         | MTG-like gene family protein                                 |
| ACV017 | 19216-18521           | 232             | YP_008003781.1, unknown<br>similar to AMEV240 (MySEV)                                           | 8.00E-40             | 38                    | 0                                                                                                         | putative<br>exonuclease<br>RNase T and DN<br>polymerase III  |
| ACV018 | 20424–19237           | 396             | XP_004364154.1, Capsaspora<br>owczarzaki ATCC<br>30864predicted protein                         | 4.00E-11             | 30                    | 0                                                                                                         | leucine-rich<br>repeat gene<br>family protein                |
| ACV019 | 21212–20421           | 264             | NP_065057.1, AMEV<br>hypothetical protein<br>AMVITRO5b                                          | 0.02                 | 26                    | 0                                                                                                         | hypothetical<br>protein                                      |
| ACV020 | 21900–21232           | 223             | XP_004017602.1, PREDICTED:<br>Ovis aries LOW QUALITY<br>PROTEIN: matrix<br>metalloproteinase-17 | 2.00E-04             | 25                    | 0                                                                                                         | hypothetical<br>protein                                      |
| ACV021 | 21930-22373           | 148             |                                                                                                 |                      |                       | ×                                                                                                         | hypothetical<br>protein                                      |
| ACV022 | 22916–22371           | 182             | ADR00582.1, Gossypium hirsutum somatic embryogenesis receptor-like kinase 1 protein             | 0.05                 | 31                    | ×                                                                                                         | hypothetical<br>protein                                      |
| ACV023 | 23113-22943           | 57              | Kiliase i protein                                                                               |                      |                       | ×                                                                                                         | hypothetical<br>protein                                      |
| ACV024 | 23275-23126           | 50              |                                                                                                 |                      |                       | ×                                                                                                         | hypothetical                                                 |
| ACV025 | 27957-23440           | 1506            | ENN70211.1, Dendroctonus ponderosae hypothetical                                                | 0                    | 31                    | 0                                                                                                         | protein<br>putative ATP-<br>binding cassett                  |
| .CV026 | 28152–28913           | 254             | protein YQE_12997, partial<br>XP_002047944.1, Drosophila<br>virilis GJ11638                     | 6.00E-41             | 35                    | ×                                                                                                         | transporter<br>phosphatidic<br>acid<br>phosphatase<br>type 2 |
| ACV027 | 29581-28916           | 222             |                                                                                                 |                      |                       | ×                                                                                                         | hypothetical<br>protein                                      |
| ACV028 | 29703-30509           | 269             | YP_008003624.1, MySEV ser/<br>thr kinase (Cop-B1R)                                              | 2.00E-18             | 31                    | 0                                                                                                         | protein kinase                                               |
| ACV029 | 30556-31101           | 182             | YP_008004440.1, unknown<br>similar to AMEV022 (CREV)                                            | 1.00E-13             | 40                    | 0                                                                                                         | hypothetical<br>protein                                      |

Table 1 (continued)

| ORF    | Position <sup>a</sup> | aa <sup>b</sup> | Best match <sup>c</sup>                                                                                                         | E value <sup>c</sup> | Identity <sup>c</sup> | ORF(s) similar<br>to that of ACEV<br>in other<br>known EVs<br>(presence, ○;<br>absence, ×) | Product,<br>function, or<br>structure                 |
|--------|-----------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------|
| ACV030 | 31673–31458           | 72              |                                                                                                                                 |                      |                       | ×                                                                                          | hypothetical                                          |
| ACV031 | 31762-32040           | 93              |                                                                                                                                 |                      |                       | ×                                                                                          | protein<br>hypothetical                               |
| ACV032 | 32920-32039           | 294             | NP_048265.1, MSEV ALI motif                                                                                                     | 3.00E-18             | 33                    | 0                                                                                          | protein<br>ALI motif gene                             |
| ACV033 | 33337-33002           | 112             | gene family protein(MSV194)                                                                                                     |                      |                       | ×                                                                                          | family protein<br>hypothetical                        |
| ACV034 | 34596-33478           | 373             | BAA25629.1, ACEV fusolin                                                                                                        | 0                    | 100                   | 0                                                                                          | protein<br>fusolin                                    |
| ACV035 | 34885-34640           | 82              |                                                                                                                                 |                      |                       | ×                                                                                          | hypothetical<br>protein                               |
| ACV036 | 34914-35348           | 145             |                                                                                                                                 |                      |                       | ×                                                                                          | hypothetical<br>protein                               |
| ACV037 | 35698-35321           | 126             | NP_064865.1, AMEV<br>hypothetical protein AMV083                                                                                | 6.00E-25             | 59                    | 0                                                                                          | putative<br>membrane<br>protein                       |
| ACV038 | 35703-36215           | 171             |                                                                                                                                 |                      |                       | ×                                                                                          | hypothetical                                          |
| ACV039 | 36933–36199           | 245             | YP_008004337.1, CBEV uracil-<br>DNA glycosylase, DNA                                                                            | 1.00E-68             | 49                    | 0                                                                                          | protein<br>putative uracil<br>DNA glycosylase         |
| ACV040 | 37299-36964           | 112             | polymerase processivity factor<br>YP_008004356.1, CBEV IMV<br>membrane protein entry/<br>fusion complex component<br>(Cop-A21L) | 3.00E-46             | 63                    | 0                                                                                          | UNG IMV membrane protein involved in fusion and entry |
| ACV041 | 37830-37303           | 176             | WP_022119592.1, Firmicutes bacterium CAG:56 na/Pi-                                                                              | 0.004                | 27                    | ×                                                                                          | hypothetical<br>protein                               |
| ACV042 | 37895–38305           | 137             | cotransporter family protein<br>YP_008004034.1, AHEV<br>putative late 16kDa                                                     | 7.00E-50             | 57                    | 0                                                                                          | membrane<br>protein                                   |
| ACV043 | 38461-38306           | 52              | membrane protein (Cop-J5L)                                                                                                      |                      |                       | ×                                                                                          | hypothetical                                          |
| ACV044 | 38508-39047           | 180             | YP_008004030.1, AHEV RNA polymerase RPO18                                                                                       | 1.00E-39             | 46                    | 0                                                                                          | protein<br>putative RNA<br>polymerase                 |
| ACV045 | 39616-39044           | 191             | YP_008004332.1, unknown similar to AMEV226 (CBEV)                                                                               | 6.00E-08             | 43                    | 0                                                                                          | subunit<br>hypothetical<br>protein                    |
| ACV046 | 39604-39771           | 56              |                                                                                                                                 |                      |                       | ×                                                                                          | hypothetical<br>protein                               |
| ACV047 | 40070-40849           | 260             | YP_008004339.1, unknown<br>similar to AMEV233 (CBEV)                                                                            | 2.00E-19             | 46                    | 0                                                                                          | formyltetrahy-<br>drofolate<br>synthetase             |
| ACV048 | 41792-40845           | 316             | WP_002698739.1, Microscilla marina deoxyuridine 5'-triphosphate                                                                 | 6.00E-32             | 32                    | 0                                                                                          | putative<br>dUTPase                                   |
| ACV049 | 41854-42690           | 279             | nucleotidohydrolase family<br>NP_064875.1, AMEV putative<br>mRNA capping enzyme small<br>subunit (AMV093)                       | 1.00E-79             | 53                    | 0                                                                                          | putative mRNA<br>capping enzyme<br>small subunit      |
| ACV050 | 42721-43212           | 164             | Subulific (Filtit 655)                                                                                                          |                      |                       | ×                                                                                          | hypothetical<br>protein                               |
| ACV051 | 43967-43215           | 251             |                                                                                                                                 |                      |                       | ×                                                                                          | hypothetical                                          |
| ACV052 | 43993-44856           | 288             | YP_008003630.1, unknown                                                                                                         | 6.00E-50             | 46                    | 0                                                                                          | protein<br>hypothetical                               |
| ACV053 | 44884-45540           | 219             | similar to AMEV090 (MySEV)<br>YP_717593.1, Clanis bilineata<br>nucleopolyhedrovirus Ld138-                                      | 7.00E-11             | 32                    | ×                                                                                          | protein<br>nicotinamide<br>riboside kinase 1          |
| ACV054 | 45585-46577           | 331             | like protein<br>YP_008003634.1, unknown<br>similar to AMEV096 (MySEV)                                                           | 9.00E-109            | 53                    | 0                                                                                          | hypothetical<br>protein                               |
| ACV055 | 46650-46853           | 68              |                                                                                                                                 |                      |                       | ×                                                                                          | hypothetical<br>protein                               |
| ACV056 | 47946-46948           | 333             | YP_008004471.1, CREV entry-<br>fusion complex component,                                                                        | 2.00E-123            | 56                    | 0                                                                                          | poxvirus<br>myristoyl                                 |
| ACV057 | 48382-47966           | 139             | myristylprotein<br>YP_008004634.1, CREV Ca2+<br>BP                                                                              | 2.00E-36             | 51                    | 0                                                                                          | protein<br>putative calcium<br>binding protein        |
| ACV058 | 48398-48847           | 150             | NP_048167.1, MSEV<br>hypothetical protein MSV096                                                                                | 2.00E-04             | 33                    | 0                                                                                          | hypothetical<br>protein                               |
| ACV059 | 48847-49452           | 202             | -                                                                                                                               | 6.00E-18             | 49                    | 0                                                                                          |                                                       |

Table 1 (continued)

| ORF    | Position <sup>a</sup> | aa <sup>b</sup> | Best match <sup>c</sup>                                                                                 | E value <sup>c</sup> | Identity <sup>c</sup> | ORF(s) similar<br>to that of ACEV<br>in other<br>known EVs<br>(presence, ○;<br>absence, ×) | Product,<br>function, or<br>structure                           |
|--------|-----------------------|-----------------|---------------------------------------------------------------------------------------------------------|----------------------|-----------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
|        |                       |                 | YP_008003931.1, unknown                                                                                 |                      |                       |                                                                                            | hypothetical                                                    |
| ACV060 | 49448-49837           | 130             | similar to AMEV102 (AHEV)                                                                               |                      |                       | ×                                                                                          | protein<br>hypothetical                                         |
| ACV061 | 50517-49840           | 226             | YP_008004037.1, unknown<br>similar to AMEV235 (AHEV)                                                    | 2.00E-69             | 58                    | 0                                                                                          | protein<br>metallopho-<br>sphoesterase<br>domain-<br>containing |
| ACV062 | 50575-50988           | 138             |                                                                                                         |                      |                       | ×                                                                                          | protein<br>hypothetical                                         |
| ACV063 | 52396-51482           | 305             | YP_008003825.1, AHEV N1R/<br>p28-like protein                                                           | 3.00E-57             | 42                    | 0                                                                                          | protein<br>KilA-N domain-<br>containing<br>protein              |
| ACV064 | 52503-53093           | 197             | YP_008004177.1, CBEV<br>hypothetical protein<br>CHBEV_107                                               | 1.00E-31             | 50                    | 0                                                                                          | hypothetical<br>protein                                         |
| ACV065 | 53799-53119           | 227             | CHBEV_107                                                                                               |                      |                       | ×                                                                                          | hypothetical<br>protein                                         |
| ACV066 | 55001–53850           | 384             | NP_048161.1, MSEV putative<br>Molluscum contagiosum virus<br>MC121L (vaccinia A16L)<br>homolog (MSV090) | 9.00E-179            | 68                    | 0                                                                                          | protein<br>putative<br>myristylated<br>membrane<br>protein      |
| ACV067 | 55237-55013           | 75              |                                                                                                         |                      |                       | ×                                                                                          | hypothetical<br>protein                                         |
| ACV068 | 55274-55813           | 180             | NP_048164.1, MSEV putative<br>vaccinia E10R homolog<br>(MSV093)                                         | 2.00E-35             | 65                    | 0                                                                                          | sulfhydryl<br>oxidase                                           |
| ACV069 | 57090-55816           | 425             | Q05894.1, Heliothis armigera entomopoxvirus fusolin                                                     | 5.00E-43             | 48                    | 0                                                                                          | fusolin-like<br>protein                                         |
| ACV070 | 57163-57399           | 79              |                                                                                                         |                      |                       | ×                                                                                          | hypothetical<br>protein                                         |
| ACV071 | 57522-57947           | 142             | NP_048203.1, MSEV putative<br>AMEV G4R homolog (vaccinia<br>A28L) (MSV132)                              | 8.00E-64             | 69                    | 0                                                                                          | membrane<br>protein                                             |
| ACV072 | 57989-58660           | 224             |                                                                                                         |                      |                       | ×                                                                                          | hypothetical<br>protein                                         |
| ACV073 | 58694-60103           | 470             | ERP50118.1, <i>Populus</i><br>trichocarpa hypothetical<br>protein POPTR_0017s00560g                     | 0.003                | 25                    | ×                                                                                          | hypothetical<br>protein                                         |
| ACV074 | 62037-60100           | 646             | YP_008003739.1, MySEV<br>ATPase, NPH1                                                                   | 0                    | 65                    | 0                                                                                          | nucleoside<br>triphosphate<br>phosphohydro-<br>lase I           |
| ACV075 | 62288-62052           | 79              |                                                                                                         |                      |                       | ×                                                                                          | hypothetical<br>protein                                         |
| ACV076 | 62360-64180           | 607             | NP_048126.1,MSEV<br>hypothetical protein MSV055                                                         | 2.00E-08             | 36                    | 0                                                                                          | translation<br>elongation facto<br>eEF-3 like                   |
| ACV077 | 64388-64224           | 55              |                                                                                                         |                      |                       | ×                                                                                          | hypothetical<br>protein                                         |
| ACV078 | 64393-64575           | 61              |                                                                                                         |                      |                       | ×                                                                                          | hypothetical<br>protein                                         |
| ACV079 | 64930-65298           | 123             | XP_001640022.1, Nematostella vectensis predicted protein                                                | 3.00E-09             | 45                    | ×                                                                                          | hypothetical<br>protein                                         |
| ACV080 | 66170-65925           | 82              | received predicted protein                                                                              |                      |                       | ×                                                                                          | hypothetical<br>protein                                         |
| ACV081 | 66830-66267           | 188             | ESO86625.1, <i>Lottia gigantea</i><br>hypothetical protein<br>LOTGIDRAFT_166892                         | 0.001                | 34                    | ×                                                                                          | hypothetical<br>protein                                         |
| ACV082 | 67892-67224           | 223             | YP_008004407.1, unknown<br>similar to AcMNPV orf7<br>(CREV)                                             | 4.00E-35             | 45                    | 0                                                                                          | hypothetical<br>protein                                         |
| ACV083 | 68302-67973           | 110             |                                                                                                         |                      |                       | X                                                                                          | hypothetical<br>protein                                         |
| ACV084 | 68437-68601           | 55              |                                                                                                         |                      |                       | ×                                                                                          | hypothetical<br>protein                                         |
| ACV085 | 68733-72302           | 1190            | NP_064848.1, AMEV DNA-<br>directed RNA polymerase<br>subunit (AMV066)                                   | 0                    | 64                    | 0                                                                                          | DNA-directed<br>RNA polymerase<br>subunit RPO132                |
| ACV086 | 73201-72341           | 287             |                                                                                                         |                      |                       | ×                                                                                          | serpin                                                          |

Table 1 (continued)

| ORF    | Position <sup>a</sup> | aa <sup>b</sup> | Best match <sup>c</sup>                                                                                            | E value <sup>c</sup> | Identity <sup>c</sup> | ORF(s) similar<br>to that of ACEV<br>in other<br>known EVs<br>(presence, $\circ$ ;<br>absence, $\times$ ) | Product,<br>function, or<br>structure                                  |
|--------|-----------------------|-----------------|--------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| ACV087 | 73274–73960           | 229             | XP_001007673.1, Tetrahymena thermophila protein kinase domain containing protein                                   | 6.00E-12             | 33                    | ×                                                                                                         | protein kinase<br>domain<br>containing                                 |
| ACV088 | 74681–73977           | 235             | YP_008003742.1, unknown similar to AMEV200 (MySEV)                                                                 | 3.00E-22             | 38                    | 0                                                                                                         | protein<br>hypothetical<br>protein                                     |
| ACV089 | 74727-75050           | 108             | Similar to ravievedo (Miyoev)                                                                                      |                      |                       | ×                                                                                                         | hypothetical<br>protein                                                |
| ACV90  | 75310-75065           | 82              | YP_008003740.1, unknown<br>similar to AMEV198 (MySEV)                                                              | 3.00E-20             | 57                    | 0                                                                                                         | hypothetical<br>protein                                                |
| ACV91  | 75340-76932           | 531             | YP_008003741.1, MySEV NAD-<br>dependent DNA ligase                                                                 | 4.00E-164            | 51                    | 0                                                                                                         | putative NAD+<br>dependent DNA<br>ligase                               |
| ACV92  | 76952-77392           | 147             | ADJ67808.1,  Hypophthalmichthys molitrix  copper/zinc superoxide  dismutase                                        | 4.00E-46             | 53                    | 0                                                                                                         | superoxide<br>dismutase                                                |
| ACV93  | 78180-77401           | 260             | NP_048258.1, MSEV putative<br>late transcription factor VLTF-<br>2 homolog (vaccinia A1L)<br>(MSV187)              | 3.00E-57             | 44                    | 0                                                                                                         | putative late<br>transcription<br>factor VLTF-2                        |
| ACV94  | 78236–78733           | 166             | YP_008003602.1, unknown<br>similar to AMEV062 (MySEV)                                                              | 2.00E-35             | 45                    | 0                                                                                                         | 4-<br>diphosphocyti-<br>dyl-2-C-methyl-<br>p-erythritol<br>kinase      |
| ACV95  | 78753-80024           | 424             | NP_064996.1, AMEV hypothetical protein AMV214                                                                      | 1.00E-88             | 44                    | 0                                                                                                         | hypothetical<br>protein                                                |
| ACV96  | 80067-80813           | 249             | YP_008004487.1, CREV ss/<br>dsDNA binding protein VP8<br>(Cop-L4R)                                                 | 1.00E-54             | 47                    | 0                                                                                                         | ssDNA/dsDNA<br>binding protein                                         |
| ACV97  | 81554–80820           | 245             | NP_064999.1, AMEV putative<br>myristylated membrane<br>protein (AMV217)                                            | 8.00E-113            | 71                    | 0                                                                                                         | putative<br>myristylated<br>membrane<br>protein                        |
| ACV98  | 81831-82502           | 224             |                                                                                                                    |                      |                       | ×                                                                                                         | hypothetical<br>protein                                                |
| ACV99  | 84092-82518           | 525             | YP_008003758.1, unknown                                                                                            | 9.00E-51             | 31                    | 0                                                                                                         | hypothetical<br>protein                                                |
| ACV100 | 84312-85016           | 235             | similar to AMEV216 (MySEV)<br>YP_008004580.1, CREV RNA<br>polymerase RPO19                                         | 1.00E-51             | 46                    | 0                                                                                                         | DNA-dependent<br>RNA polymerase<br>subunit rpo19                       |
| ACV101 | 85059-85688           | 210             | YP_007317337.1, Procambarus fallax NADH dehydrogenase subunit 5 (mitochondrion)                                    | 0.039                | 33                    | ×                                                                                                         | cation transport<br>ATPase                                             |
| ACV102 | 85718-86332           | 205             | YP_008003717.1, unknown<br>similar to AMEV164 (MySEV)                                                              | 1.00E-59             | 53                    | 0                                                                                                         | tryptophan-rich<br>sensory protein                                     |
| ACV103 | 86350-86826           | 159             | YP_008003995.1, AHEV<br>holliday junction resolvase                                                                | 7.00E-44             | 50                    | 0                                                                                                         | holliday junction<br>resolvase                                         |
| ACV104 | 86837–87061           | 75              | YP_008003714.1, MySEV viral<br>membrane associated, early<br>morphogenesis protein (Cop-                           | 1.00E-25             | 64                    | 0                                                                                                         | virion<br>membrane<br>protein                                          |
| ACV105 | 87110-87679           | 190             | A9L)                                                                                                               |                      |                       | ×                                                                                                         | hypothetical                                                           |
| ACV106 | 87630-88184           | 185             | YP_008003998.1, unknown                                                                                            | 9.00E-06             | 39                    | 0                                                                                                         | protein<br>hypothetical                                                |
| ACV107 | 88204-88470           | 89              | similar to AMEV159 (AHEV)                                                                                          |                      |                       | ×                                                                                                         | protein<br>hypothetical                                                |
| ACV108 | 88562-89914           | 451             | YP_008003979.1, AHEV virion core cysteine protease                                                                 | 3.00E-168            | 56                    | 0                                                                                                         | protein<br>virion core<br>cysteine                                     |
| ACV109 | 91180-89906           | 425             | YP_008003732.1, MySEV                                                                                              | 3.00E-57             | 36                    | 0                                                                                                         | protease<br>FEN1-like                                                  |
| ACV110 | 91213-93228           | 672             | FEN1-like nuclease (Cop-G5R)<br>NP_064956.1, AMEV putative<br>early transcription factor small<br>subunit (AMV174) | 0                    | 69                    | 0                                                                                                         | nuclease<br>putative early<br>transcription<br>factor small<br>subunit |
| ACV111 | 93654–93235           | 140             | YP_008004654.1, unknown similar to AMEV247 (CREV)                                                                  | 4.00E-32             | 50                    | 0                                                                                                         | hypothetical<br>protein                                                |

Table 1 (continued)

| ORF    | Position <sup>a</sup> | aa <sup>b</sup> | Best match <sup>c</sup>                                                                                                              | E value <sup>c</sup> | Identity <sup>c</sup> | ORF(s) similar to that of ACEV in other known EVs (presence, ○; absence, ×) | Product,<br>function, or<br>structure                         |
|--------|-----------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------|
| ACV112 | 94564-93710           | 285             | YP_008004048.1, AHEV IMV heparin binding surface                                                                                     | 3.00E-94             | 53                    | 0                                                                           | putative glycosyl<br>transferase                              |
| ACV113 | 95074-94574           | 167             | protein<br>YP_008003916.1, unknown<br>similar to AMEV098 (AHEV)                                                                      | 8.00E-21             | 42                    | 0                                                                           | hypothetical<br>protein                                       |
| ACV114 | 95114-95452           | 113             | YP_008003729.1, unknown                                                                                                              | 3.00E-23             | 50                    | 0                                                                           | hypothetical                                                  |
| ACV115 | 96689-95460           | 410             | similar to AMEV172 (MySEV)<br>XP_003743508.1, PREDICTED:<br>Metaseiulus occidentalis<br>serine/threonine-protein<br>kinase VRK1-like | 2.00E-31             | 28                    | 0                                                                           | protein<br>putative ser/thr<br>protein kinase                 |
| ACV116 | 96736-97248           | 171             | ENN77264.1, Dendroctonus<br>ponderosae hypothetical<br>protein YQE_06093, partial                                                    | 7.00E-53             | 50                    | ×                                                                           | translation<br>initiation factor<br>elF-4E                    |
| ACV117 | 97305-98429           | 375             | XP_637909.1, Dictyostelium<br>discoideum AX4 hypothetical<br>protein DDB_G0286039                                                    | 2.00E-36             | 32                    | 0                                                                           | inhibitor of<br>apoptosis<br>protein                          |
| ACV118 | 99675-99334           | 114             | protein <i>BBB_</i> G0200055                                                                                                         |                      |                       | ×                                                                           | hypothetical                                                  |
| ACV119 | 100725-100018         | 236             | XP_002399419.1, <i>Ixodes</i> scapularis putative leucinerich repeat (LRR) protein                                                   | 3.00E-08             | 28                    | ×                                                                           | protein<br>leucine-rich<br>repeat protein                     |
| ACV120 | 100825-101892         | 356             | EFN66173.1, Camponotus floridanus G-protein coupled receptor Mth2                                                                    | 4.00E-49             | 33                    | 0                                                                           | G-protein<br>coupled receptor<br>Mth2-like                    |
| ACV121 | 101957-102148         | 64              | receptor Mail2                                                                                                                       |                      |                       | ×                                                                           | hypothetical                                                  |
| ACV122 | 102157-102318         | 54              | BAF79968.1, Closterium<br>ehrenbergii receptor-like                                                                                  | 0.007                | 48                    | ×                                                                           | protein<br>serin/threonine<br>kinase like                     |
| ACV123 | 103556-102648         | 303             | kinase XP_005802524.1, PREDICTED: Xiphophorus maculatus tenascin-like                                                                | 1.00E-12             | 29                    | ×                                                                           | tenascin                                                      |
| ACV124 | 103618-104670         | 351             | tendschi-like                                                                                                                        |                      |                       | ×                                                                           | hypothetical                                                  |
| ACV125 | 104716-105120         | 135             |                                                                                                                                      |                      |                       | ×                                                                           | protein<br>hypothetical                                       |
| ACV126 | 105414-105136         | 93              | YP_008003728.1, unknown                                                                                                              | 3.00E-32             | 59                    | 0                                                                           | protein<br>hypothetical                                       |
| ACV127 | 105443-106021         | 193             | similar to AMEV171 (MySEV) YP_008004006.1, unknown                                                                                   | 5.00E-34             | 42                    | 0                                                                           | protein<br>hypothetical                                       |
| ACV128 | 106324-106019         | 102             | similar to AMEV145 (AHEV)<br>NP_064950.1, AMEV                                                                                       | 6.00E-14             | 41                    | 0                                                                           | protein<br>hypothetical                                       |
| ACV129 | 106507-106731         | 75              | hypothetical protein AMV168                                                                                                          |                      |                       | ×                                                                           | protein<br>hypothetical                                       |
| ACV130 | 108005-106734         | 424             | YP_008004286.1, unknown                                                                                                              | 2.00E-57             | 39                    | 0                                                                           | protein<br>hypothetical                                       |
| ACV131 | 108063-110057         | 665             | similar to AMEV173 (CBEV)<br>YP_008003703.1, P4b                                                                                     | 0                    | 47                    | 0                                                                           | protein<br>putative core                                      |
| ACV132 | 111028-110060         | 323             | precursor (MySEV)<br>NP_064922.1, AMEV                                                                                               | 1.00E-15             | 25                    | 0                                                                           | protein<br>hypothetical                                       |
| ACV133 | 111786-111064         | 241             | hypothetical protein AMV140<br>YP_008003711.1, unknown                                                                               | 4.00E-50             | 47                    | 0                                                                           | protein<br>hypothetical                                       |
| ACV134 | 111848-114739         | 964             | similar to AMEV157 (MySEV)<br>YP_008004269.1, unknown                                                                                | 3.00E-11             | 27                    | 0                                                                           | protein<br>prominin                                           |
| ACV135 | 115429-114707         | 241             | similar to AMEV156 (CBEV)<br>YP_008004003.1, AHEV<br>ATPase/DNA packaging                                                            | 2.00E-75             | 54                    | 0                                                                           | putative ATP/<br>GTP-binding                                  |
| ACV136 | 115469–115879         | 137             | protein<br>YP_008004002.1, unknown                                                                                                   | 0.046                | 35                    | 0                                                                           | protein<br>hypothetical                                       |
| ACV137 | 115894–117282         | 463             | similar to AMEV151(AHEV)<br>YP_008004001.1, AHEV<br>essential ser/thr kinase morph                                                   | 2.00E-133            | 50                    | 0                                                                           | protein<br>putative serine/<br>threonine                      |
| ACV138 | 118076–117285         | 264             | (Cop-F10L)<br>ENH62146.1, Fusarium<br>oxysporum f. sp. cubense race<br>1 Protein roadkill                                            | 6.00E-06             | 29                    | ×                                                                           | protein kinase<br>BTB/POZ<br>domain-<br>containing<br>protein |
| ACV139 | 118576-118091         | 162             | NP_048139.1, MSEV                                                                                                                    | 1.00E-29             | 42                    | 0                                                                           | hypothetical                                                  |
| ACV140 | 118585-121257         | 891             | hypothetical protein MSV068                                                                                                          | 0                    | 51                    | 0                                                                           | protein                                                       |

Table 1 (continued)

| ORF    | ORF Position <sup>a</sup> a    |           | Best match <sup>c</sup>                                                                                          | E value <sup>c</sup> | Identity <sup>c</sup> | ORF(s) similar<br>to that of ACEV<br>in other<br>known EVs<br>(presence, ○;<br>absence, ×) | Product,<br>function, or<br>structure                                    |
|--------|--------------------------------|-----------|------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
|        |                                |           | NP_064917.1, AMEV putative<br>mRNA capping enzyme large                                                          |                      |                       |                                                                                            | putative mRNA<br>capping enzyme                                          |
| ACV141 | 123184-121898                  | 429       | subunit (AMV135)<br>YP_008003832.1, unknown                                                                      | 2.00E-20             | 93                    | 0                                                                                          | large subunit<br>hypothetical                                            |
| ACV142 | 124182-123202                  | 327       | similar to AMEV033 (AHEV)<br>YP_008004011.1, AHEV viral<br>membrane formation (Cop-                              | 1.00E-44             | 39                    | 0                                                                                          | protein<br>virion<br>membrane                                            |
| ACV143 | 124207-127716                  | 1170      | A11R)<br>YP_008004010.1, AHEV P4a<br>precursor                                                                   | 2.00E-84             | 33                    | 0                                                                                          | formation<br>precursor p4a of<br>core protein 4a                         |
| ACV144 | 127960-128997                  | 346       | NP_048251.1, MSEV putative vaccinia L3L homolog                                                                  | 5.00E-89             | 46                    | 0                                                                                          | early gene<br>transcription                                              |
| ACV145 | 129020-130609                  | 530       | (MSV180)<br>NP_064826.1, AMEV<br>hypothetical protein AMV044                                                     | 2.00E-23             | 27                    | 0                                                                                          | related protein<br>hypothetical<br>protein                               |
| ACV146 | 132476-130776                  | 567       | YP_008004155.1, CBEV poly (A) polymerase catalytic                                                               | 0                    | 56                    | 0                                                                                          | putative poly (A) polymerase                                             |
| ACV147 | 132543-133391                  | 283       | subunit VP55 NP_048221.1, MSEV putative NTP pyrophosphohydrolase mutT motif homolog (vaccinia                    | 3.00E-58             | 47                    | 0                                                                                          | large subunit<br>putative NTP<br>pyrophosphohy-<br>drolase mutT<br>motif |
| ACV148 | 134781-133390                  | 464       | D10R) (MSV150) YP_008003599.1, MySEV DNA helicase, transcript release                                            | 1.00E-126            | 48                    | 0                                                                                          | DNA helicase,<br>transcriptional                                         |
| ACV149 | 135112-134804                  | 103       | factor                                                                                                           |                      |                       | ×                                                                                          | elongation<br>hypothetical                                               |
| ACV150 | 137582-135141                  | 814       | YP_008003596.1, MySEV<br>RAP94 RNA pol assoc protein                                                             | 0                    | 49                    | 0                                                                                          | protein<br>putative RNA<br>polymerase<br>associated<br>transcriptional   |
| ACV151 | 137647-138522                  | 292       | YP_008004476.1, unknown                                                                                          | 3.00E-09             | 34                    | 0                                                                                          | specificity factor<br>hypothetical                                       |
| ACV152 | 139526-138525                  | 334       | similar to AMEV053 (CREV)<br>YP_008003875.1, AHEV DNA<br>Topoisomerase type I                                    | 4.00E-126            | 61                    | 0                                                                                          | protein<br>DNA<br>topoisomerase                                          |
| ACV153 | 139572-140396                  | 275       | NP_048132.1, MSEV putative LINE reverse transcriptase                                                            | 6.00E-07             | 29                    | 0                                                                                          | type I<br>reverse<br>transcriptase                                       |
| ACV154 | 140389-141405                  | 339       | (MSV061)<br>NP_048220.1, MSEV putative<br>RPO35 homolog (vaccinia                                                | 1.00E-57             | 39                    | 0                                                                                          | DNA-dependent<br>RNA polymerase                                          |
| ACV155 | 141412-141939                  | 176       | A29L) (MSV149)<br>NP_064822.1, AMEV                                                                              | 6.00E-17             | 37                    | 0                                                                                          | RPO35<br>hypothetical                                                    |
| ACV156 | 143116-141947                  | 390       | NP_048121.1, MSEV                                                                                                | 1.00E-14             | 30                    | 0                                                                                          | protein<br>hypothetical<br>protein                                       |
| ACV157 | 143133-144683                  | 517       | hypothetical protein MSV050                                                                                      |                      |                       | ×                                                                                          | hypothetical<br>protein                                                  |
| ACV158 | 144725-144901                  | 59        |                                                                                                                  |                      |                       | ×                                                                                          | hypothetical<br>protein                                                  |
| ACV159 | 145971-144910                  | 354       | YP_008003700.1, unknown similar to AMEV141(MySEV)                                                                | 2.00E-69             | 44                    | 0                                                                                          | hypothetical<br>protein                                                  |
| ACV160 | 146031-146261                  | 77        | CDI81783.1, Eimeria praecox<br>ubiquitin / ribosomal protein                                                     | 5.00E-40             | 87                    | 0                                                                                          | ubiquitin/<br>ribosomal                                                  |
| ACV161 | 146302-146802                  | 167       | CEP52 fusion protein, putative XP_001021849.1, <i>Tetrahymena thermophila</i> ubiquitinconjugating enzyme family | 4.00E-23             | 42                    | ×                                                                                          | protein<br>ubiquitin-<br>conjugating<br>enzyme E2                        |
| ACV162 | 147134-146829                  | 102       | protein<br>XP_001816367.1, PREDICTED:<br>similar to <i>Tribolium castaneum</i><br>GA19017-PA                     | 6.00E-14             | 49                    | ×                                                                                          | hypothetical<br>protein                                                  |
| ACV163 | 148783-147200                  | 528       | YP_008003730.1, MySEV<br>virion protein (Cop-E6R)                                                                | 1.00E-144            | 50                    | 0                                                                                          | core protein                                                             |
| ACV164 | 148841-151369                  | 843       | YP_008004214.1, CBEV<br>NTPase, DNA primase                                                                      | 0                    | 47                    | 0                                                                                          | putative NTPase                                                          |
| ACV165 | 152009–151377<br>152081–152323 | 211<br>81 | NP_048159.1, MSEV<br>hypothetical protein MSV088                                                                 | 3.00E-34             | 44                    | O ×                                                                                        | hypothetical<br>protein<br>peptidoglycan                                 |
| ACV166 | 152081-152323                  | 81        | nypotneticai protein MSVU88                                                                                      |                      |                       | ×                                                                                          |                                                                          |

Table 1 (continued)

| ORF    | Position <sup>a</sup> | aa <sup>b</sup> | Best match <sup>c</sup>                                                                                                | E value <sup>c</sup> | Identity <sup>c</sup> | ORF(s) similar<br>to that of ACEV<br>in other<br>known EVs<br>(presence, ○;<br>absence, ×) | Product,<br>function, or<br>structure           |
|--------|-----------------------|-----------------|------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------|
|        |                       |                 |                                                                                                                        |                      |                       |                                                                                            | containing                                      |
| ACV167 | 152539-152330         | 70              | YP_008003619.1, MySEV putative thioredoxin                                                                             | 1.00E-15             | 46                    | 0                                                                                          | protein<br>putative<br>thioredoxin              |
| ACV168 | 153368-152565         | 268             | XP_005998662.1, PREDICTED:<br>Latimeria chalumnae matrix                                                               | 7.00E-25             | 39                    | ×                                                                                          | zinc-dependent<br>metalloprotease               |
| ACV169 | 153417-153791         | 125             | metalloproteinase-20-like YP_008003897.1, unknown                                                                      | 2.00E-10             | 40                    | 0                                                                                          | hypothetical                                    |
| ACV170 | 155926-153794         | 711             | similar to AMEV080 (AHEV)<br>YP_008003621.1, MySEV RNA<br>helicase, DExH-NPH-II domain                                 | 0                    | 52                    | 0                                                                                          | protein<br>RNA helicase<br>NPH-II               |
| ACV171 | 155974-156123         | 50              | Helicase, Dexn-Infn-II dollialii                                                                                       |                      |                       | ×                                                                                          | hypothetical<br>protein                         |
| ACV172 | 156136-156573         | 146             | YP_008003932.1, unknown similar to AMEV101 (AHEV)                                                                      | 7.00E-31             | 45                    | 0                                                                                          | capcid protein<br>VP1-like                      |
| ACV173 | 157686-156547         | 380             | Similar to Miviev for (Milev)                                                                                          |                      |                       | ×                                                                                          | hypothetical<br>protein                         |
| ACV174 | 157798-158232         | 145             | YP_008003651.1, unknown<br>similar to AMEV120 (MySEV)                                                                  | 7.00E-18             | 38                    | 0                                                                                          | ATP-dependent<br>DNA ligase                     |
| ACV175 | 158228-158665         | 146             | Similar to Miviev 120 (WySev)                                                                                          |                      |                       | ×                                                                                          | hypothetical<br>protein                         |
| ACV176 | 159683-158622         | 354             | NP_064901.1, AMEV putative<br>protein phosphatase 2C<br>(AMV119)                                                       | 3.00E-108            | 51                    | 0                                                                                          | putative protein<br>phosphatase 2C              |
| ACV177 | 159721-160848         | 376             | YP_008004421.1, CREV<br>tryptophan repeat gene family                                                                  | 2.00E-10             | 28                    | 0                                                                                          | tryptophan<br>repeat gene<br>family protein     |
| ACV178 | 161463-160861         | 201             | YP_008004553.1, CREV entry-<br>fusion complex essential<br>component (Cop-H2R)                                         | 7.00E-93             | 66                    | 0                                                                                          | putative viral<br>membrane<br>protein           |
| ACV179 | 162126–161473         | 218             | AGB75902.1, Vaccinia virus<br>hypothetical protein                                                                     | 8.00E-06             | 33                    | 0                                                                                          | nucleopolyhe-<br>drovirus p26<br>protein        |
| ACV180 | 162174–162992         | 273             | NP_048112.1, MSEV putative<br>poly(A) polymerase small<br>subunit PAP-S homolog<br>(vaccinia J3R) (MSV041)             | 3.00E-19             | 31                    | 0                                                                                          | putative poly (A) polymerase small subunit      |
| ACV181 | 163023-163250         | 76              | (vaccina joh) (movo m)                                                                                                 |                      |                       | ×                                                                                          | hypothetical<br>protein                         |
| ACV182 | 163274–164407         | 378             | NP_001071929.1, Ciona intestinalis zinc finger protein                                                                 | 3.00E-04             | 45                    | 0                                                                                          | RING zinc finger-<br>containing<br>protein      |
| ACV183 | 165276–164410         | 289             | NP_064915.1, AMEV<br>triacylglycerol lipase<br>(AMV133)                                                                | 2.00E-94             | 55                    | 0                                                                                          | lipase                                          |
| ACV184 | 167106–165280         | 609             | YP_008004054.1, AHEV metalloprotease (Cop-G1L)                                                                         | 1.00E-51             | 33                    | 0                                                                                          | putative vaccinia<br>G1L<br>metaloprotease      |
| ACV185 | 167128-167334         | 69              | YP_008004347.1, unknown similar to AMEV241 (CBEV)                                                                      | 0.044                | 36                    | 0                                                                                          | hypothetical<br>protein                         |
| ACV186 | 170245-167690         | 852             | YP_008004202.1, CBEV<br>NTPase/helicase                                                                                | 0                    | 42                    | 0                                                                                          | putative NTPase/<br>helicase                    |
| ACV187 | 172559–170277         | 761             | YP_008004229.1, CBEV VETF-L early transcription factor large                                                           | 0                    | 61                    | 0                                                                                          | putative early<br>transcription<br>factor large |
| ACV188 | 172845-172567         | 93              |                                                                                                                        |                      |                       | ×                                                                                          | subunit<br>hypothetical                         |
| ACV189 | 173380-172973         | 136             | YP_008003909.1, unknown                                                                                                | 9.00E-25             | 44                    | 0                                                                                          | protein<br>hypothetical                         |
| ACV190 | 173508-174554         | 349             | similar to AMEV088 (AHEV)<br>NP_064873.1, AMEV DNA-<br>directed RNA polymerase beta                                    | 3.00E-72             | 49                    | 0                                                                                          | protein<br>DNA-directed<br>RNA polymerase       |
| ACV191 | 174576-175373         | 266             | chain (AMV091) YP_008004541.1, unknown                                                                                 | 1.00E-53             | 43                    | 0                                                                                          | beta chain<br>hypothetical                      |
| ACV192 | 176046-175381         | 222             | similar to AMEV121 (CREV)<br>NP_048136.1, MSEV putative<br>late transcription factor VLTF-<br>3 homolog (vaccinia A2L) | 6.00E-81             | 58                    | 0                                                                                          | protein<br>late transcription<br>factor VLTF-3  |
| ACV193 | 176101–177798         | 566             | (MSV065)                                                                                                               | 0                    | 66                    | 0                                                                                          |                                                 |

Table 1 (continued)

| ORF              | ORF Position <sup>a</sup>      |            | Best match <sup>c</sup>                                                                                   | E value <sup>c</sup> | Identity <sup>c</sup> | ORF(s) similar<br>to that of ACEV<br>in other<br>known EVs<br>(presence, ○;<br>absence, ×) | Product,<br>function, or<br>structure                           |
|------------------|--------------------------------|------------|-----------------------------------------------------------------------------------------------------------|----------------------|-----------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
|                  |                                |            | YP_008003693.1, MySEV trimeric virion coat protein                                                        |                      |                       |                                                                                            | rifampicin<br>resistance                                        |
| ACV194           | 179252-177915                  | 446        | rifampicin res<br>NP_064881.1, AMEV<br>hypothetical protein AMV099                                        | 4.00E-47             | 34                    | 0                                                                                          | protein<br>hypothetical<br>protein                              |
| ACV195           | 179609-179343                  | 89         | nypothetical protein ranvoss                                                                              |                      |                       | ×                                                                                          | hypothetical<br>protein                                         |
| ACV196           | 180027-179686                  | 114        | XP_002020894.1, Drosophila persimilis GL16255                                                             | 5.00E-06             | 40                    | ×                                                                                          | PDGF- and<br>VEGF-related<br>factor 2                           |
| ACV197           | 180604-180299                  | 102        | NP_064959.1, AMEV putative antirepressor (AMV177)                                                         | 3.00E-11             | 47                    | 0                                                                                          | N1R/p28-like<br>protein                                         |
| ACV198           | 181358-181014                  | 115        | YP_008004159.1, CBEV N1R/<br>p28-like protein                                                             | 7.00E-14             | 63                    | 0                                                                                          | N1R/p28-like<br>protein                                         |
| ACV199           | 181524-182261                  | 246        | p20 like protein                                                                                          |                      |                       | ×                                                                                          | hypothetical<br>protein                                         |
| ACV200           | 182383-183948                  | 522        | WP008647708.1, <i>Bacteroides</i> sp. 3_1_23 conserved hypothetical protein                               | 0.021                | 25                    | ×                                                                                          | hypothetical<br>protein                                         |
| ACV201           | 184146-185060                  | 305        | YP_008003953.1, AHEV N1R/<br>p28-like protein                                                             | 3.00E-45             | 41                    | 0                                                                                          | KilA-N domain-<br>containing                                    |
| ACV202           | 185091-185369                  | 93         | AAB96622.1, Heliothis<br>armigera EV 17K ORF                                                              | 5.00E-09             | 50                    | 0                                                                                          | protein<br>KilA-N domain-<br>containing                         |
| ACV203           | 185369-186049                  | 227        | YP_008003520.1, MySEV N1R/<br>p28-like protein                                                            | 8.00E-48             | 52                    | 0                                                                                          | protein<br>KilA-N domain-<br>containing                         |
| ACV204           | 186444-186274                  | 57         |                                                                                                           |                      |                       | ×                                                                                          | protein<br>hypothetical                                         |
| ACV205           | 186489-186758                  | 90         | XP_001604408.1, PREDICTED: Nasonia vitripennis                                                            | 0.005                | 46                    | 0                                                                                          | protein<br>Peritrophin-A<br>domain                              |
| ACV206           | 187171–188058                  | 296        | hypothetical protein<br>LOC100120806<br>NP_065001.1, AMEV putative<br>N-myristoyl transferase<br>(AMV219) | 1.00E-32             | 38                    | 0                                                                                          | containing<br>protein<br>putative<br>N-myristoyl<br>transferase |
| ACV207<br>ACV208 | 190938-188113<br>191034-191360 | 942<br>109 | BAA33399.1, ACEV spheroidin                                                                               | 0                    | 100                   | O<br>×                                                                                     | spheroidin<br>hypothetical                                      |
| ACV209           | 191695-191369                  | 109        |                                                                                                           |                      |                       | ×                                                                                          | protein<br>hypothetical                                         |
| ACV210           | 191759–192295                  | 179        | NP_064798.1, AMEV                                                                                         | 2.00E-32             | 48                    | 0                                                                                          | protein<br>thymidine                                            |
| ACV210<br>ACV211 | 192337-193098                  | 254        | thymidine kinase (AMV016)<br>XP_001306343.1, <i>Trichomonas</i>                                           | 1.00E-07             | 35                    | 0                                                                                          | kinase<br>leucine rich                                          |
| ACVZII           | 132337 133030                  | 234        | vaginalis G3 hypothetical                                                                                 | 1.002-07             | 33                    |                                                                                            | repeat gene<br>family protein                                   |
| ACV212           | 193102-194931                  | 610        | NP_064992.1, AMEV putative<br>DNA polymerase beta/AP<br>endonuclease (AMV210)                             | 0                    | 55                    | 0                                                                                          | putative DNA<br>polymerase<br>beta/AP                           |
| ACV213           | 195261-194932                  | 110        |                                                                                                           |                      |                       | ×                                                                                          | endonuclease<br>hypothetical                                    |
| ACV214           | 196594-195314                  | 427        | YP_008003832.1, unknown                                                                                   | 4.00E-21             | 27                    | 0                                                                                          | protein<br>hypothetical                                         |
| ACV215           | 196962-198131                  | 390        | similar to AMEV033 (AHEV) YP_008004118.1, unknown                                                         | 1.00E-146            | 67                    | 0                                                                                          | protein<br>hypothetical                                         |
| ACV216           | 198575-198150                  | 142        | similar to AMEV020 (CBEV)<br>NP_048208.1, MSEV                                                            | 3.00E-19             | 42                    | 0                                                                                          | protein<br>hypothetical                                         |
| ACV217           | 198824-198582                  | 81         | hypothetical protein MSV137                                                                               |                      |                       | ×                                                                                          | protein<br>hypothetical                                         |
| ACV218           | 199547-198837                  | 237        | YP_008003785.1, MySEV S-S bond formation pathway                                                          | 3.00E-50             | 46                    | 0                                                                                          | protein<br>S-S bond<br>formation                                |
| ACV219           | 199144-199563                  | 140        | protein substrate (Cop-F9L)<br>NP_065026.1, AMEV                                                          | 3.00E-09             | 53                    | 0                                                                                          | pathway protein<br>hypothetical                                 |
| ACV220           | 200053-199553                  | 167        | hypothetical protein AMV244<br>NP_955165.1, Canarypox virus<br>CNPV142 N1R/p28-like                       | 6.00E-05             | 36                    | 0                                                                                          | protein<br>KilA-N domain-<br>containing                         |
| ACV221           | 200725-200066                  | 220        | protein<br>XP_003546035.1, PREDICTED:<br>Glycine max probable LRR                                         | 0.005                | 25                    | ×                                                                                          | protein<br>leucine rich<br>repeat                               |

Table 1 (continued)

| ORF    | Position <sup>a</sup> | aa <sup>b</sup> | Best match <sup>c</sup>                                                                          | E value <sup>c</sup> | Identity <sup>c</sup> | ORF(s) similar<br>to that of ACEV<br>in other<br>known EVs<br>(presence, ○;<br>absence, ×) | Product,<br>function, or<br>structure                     |
|--------|-----------------------|-----------------|--------------------------------------------------------------------------------------------------|----------------------|-----------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------|
|        |                       |                 | receptor-like serine/<br>threonine-protein kinase                                                |                      |                       |                                                                                            | containing<br>protein                                     |
| ACV222 | 201460-200738         | 241             | At2g24230-like<br>XP_001621475.1, Nematostella<br>vectensis hypothetical protein                 | 3.00E-06             | 33                    | ×                                                                                          | hypothetical<br>protein                                   |
| ACV223 | 201526-203310         | 595             | NEMVEDRAFT_v1g144768<br>YP_008004461.1, unknown                                                  | 4.00E-14             | 30                    | 0                                                                                          | putative                                                  |
| ACV224 | 203756-203307         | 150             | similar to AMEV045 (CREV)<br>YP_008003886.1, unknown<br>similar to AMEV072 (AHEV)                | 2.00E-22             | 46                    | 0                                                                                          | glycoprotein B<br>gamma-<br>glutamyl<br>cyclotransferase  |
| ACV225 | 203774-204109         | 112             | NP_048120.1, MSEV                                                                                | 1.00E-20             | 51                    | 0                                                                                          | like<br>hypothetical                                      |
| ACV226 | 204105-207446         | 1114            | hypothetical protein MSV049<br>YP_008004452.1, CREV DNA                                          | 0                    | 42                    | 0                                                                                          | protein<br>DNA polymerase                                 |
| ACV227 | 209055-207868         | 396             | polymerase<br>EFN86490.1, Harpegnathos                                                           | 2.00E-08             | 23                    | ×                                                                                          | hypothetical                                              |
| ACV228 | 209743-209120         | 208             | saltator collagen-like protein 5<br>YP_008003863.1, AHEV NLPc/<br>P60 superfamily protein (Cop-  | 8.00E-58             | 60                    | 0                                                                                          | protein<br>in vivo virulence<br>related protein           |
| ACV229 | 210133-209750         | 128             | G6R)                                                                                             |                      |                       | ×                                                                                          | hypothetical                                              |
| ACV230 | 210213-214166         | 1318            | YP_008004022.1, AHEV RNA<br>polymerase RPO147                                                    | 0                    | 62                    | 0                                                                                          | protein<br>putative RNA<br>polymerase                     |
| ACV231 | 214190-215467         | 426             |                                                                                                  |                      |                       | ×                                                                                          | largest subunit<br>hypothetical                           |
| ACV232 | 215460-216026         | 189             |                                                                                                  |                      |                       | ×                                                                                          | protein<br>hypothetical                                   |
| ACV233 | 216058-216831         | 258             |                                                                                                  |                      |                       | ×                                                                                          | protein<br>hypothetical                                   |
| ACV234 | 217149-216829         | 107             |                                                                                                  |                      |                       | ×                                                                                          | protein<br>hypothetical                                   |
| ACV235 | 217212-218393         | 394             | YP_007630399.1, Edwardsiella<br>tarda C07–087 putative<br>eliminase                              | 2,00E-25             | 30                    | ×                                                                                          | protein right handed beta helix region containing protein |
| ACV236 | 218465–219520         | 352             | WP_009347858.1,<br>Alloprevotella rava<br>hypothetical protein                                   | 6.00E-17             | 38                    | 0                                                                                          | cell wall surface<br>anchor family<br>protein             |
| ACV237 | 219788-219504         | 95              | nypotneticai protein                                                                             |                      |                       | ×                                                                                          | hypothetical<br>protein                                   |
| ACV238 | 220407-221048         | 214             |                                                                                                  |                      |                       | ×                                                                                          | hypothetical<br>protein                                   |
| ACV239 | 221211-221375         | 55              |                                                                                                  |                      |                       | ×                                                                                          | hypothetical                                              |
| ACV240 | 221413-221991         | 193             | XP_004965107.1, PREDICTED:<br>Setaria italica<br>metalloendoproteinase 1-like                    | 3.00E-05             | 28                    | ×                                                                                          | protein<br>zinc-dependent<br>metalloprotease              |
| ACV241 | 222019-222756         | 246             | XP_003746806.1, PREDICTED:<br>Metaseiulus occidentalis<br>72 kDa type IV collagenase-            | 1.00E-08             | 35                    | ×                                                                                          | zinc-dependent<br>metalloprotease                         |
| ACV242 | 222802-223347         | 182             | like ADR00582.1, Gossypium hirsutum somatic embryogenesis receptor-like                          | 0.05                 | 31                    | ×                                                                                          | hypothetical<br>protein                                   |
| ACV243 | 223788-223345         | 148             | kinase 1 protein                                                                                 |                      |                       | ×                                                                                          | hypothetical                                              |
| ACV244 | 223818-224486         | 223             | XP_004017602.1, PREDICTED:<br>Ovis aries LOW QUALITY<br>PROTEIN: matrix<br>metalloprotein see 17 | 2.00E-04             | 25                    | ×                                                                                          | protein<br>hypothetical<br>protein                        |
| ACV245 | 224506-225297         | 264             | metalloproteinase-17<br>NP_065057.1, AMEV<br>hypothetical protein<br>AMVITR05b                   | 0.02                 | 26                    | 0                                                                                          | hypothetical<br>protein                                   |
| ACV246 | 225294-226481         | 396             | XP_004364154.1, Capsaspora<br>owczarzaki ATCC<br>30864predicted protein                          | 4.00E-11             | 30                    | 0                                                                                          | leucine rich<br>repeat gene<br>family protein             |
| ACV247 | 226502-227197         | 232             | 2000-threatered brotein                                                                          | 8.00E-40             | 38                    | 0                                                                                          | ranning protein                                           |

Table 1 (continued)

| ORF    | Position <sup>a</sup> | aa <sup>b</sup> | Best match <sup>c</sup>                                   | E value <sup>c</sup> | Identity <sup>c</sup> | ORF(s) similar<br>to that of ACEV<br>in other<br>known EVs<br>(presence, ○;<br>absence, ×) | Product,<br>function, or<br>structure             |
|--------|-----------------------|-----------------|-----------------------------------------------------------|----------------------|-----------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------|
|        |                       |                 | YP_008003781.1, unknown<br>similar to AMEV240 (MySEV)     |                      |                       |                                                                                            | putative<br>exonuclease<br>RNase T and DNA        |
| ACV248 | 227591-228454         | 288             | YP_008003944.1, AHEV N1R/<br>p28-like protein             | 7.00E-70             | 49                    | 0                                                                                          | polymerase III<br>MTG-like gene<br>family protein |
| ACV249 | 228517-229950         | 478             | YP_008003639.1, MySEV N1R/<br>p28-like protein            | 6.00E-118            | 48                    | 0                                                                                          | MTG-like gene<br>family protein                   |
| ACV250 | 230115-231392         | 426             | YP_008003639.1, MySEV N1R/<br>p28-like protein            | 4.00E-116            | 48                    | 0                                                                                          | MTG-like gene<br>family protein                   |
| ACV251 | 231441-232868         | 476             | YP_008003639.1, MySEV N1R/<br>p28-like protein            | 2.00E-121            | 49                    | 0                                                                                          | MTG motif gene<br>family protein                  |
| ACV252 | 232905–234359         | 485             | YP_008003639.1, MySEV N1R/<br>p28-like protein            | 2.00E-115            | 46                    | 0                                                                                          | MTG-like gene<br>family protein                   |
| ACV253 | 234975–234535         | 147             | YP_008004481.1, CREV N1R/<br>p28-like protein             | 7.00E-16             | 38                    | 0                                                                                          | N1R/p28-like protein                              |
| ACV254 | 235074–235742         | 223             | XP_001662055.1, Aedes aegypti<br>matrix metalloproteinase | 4.00E-06             | 36                    | ×                                                                                          | matrix<br>metalloprotei-<br>nase                  |
| ACV255 | 235775–236305         | 177             |                                                           |                      |                       | ×                                                                                          | hypothetical<br>protein                           |
| ACV256 | 236713-236327         | 129             | YP_008004089.1, CBEV N1R/<br>p28-like protein             | 0.002                | 33                    | 0                                                                                          | hypothetical<br>protein                           |
| ACV257 | 237538–236762         | 259             |                                                           |                      |                       | ×                                                                                          | hypothetical<br>protein                           |
| ACV258 | 238054-237785         | 90              | YP_008004472.1, CREV N1R/<br>p28-like protein             | 2.00E-12             | 50                    | 0                                                                                          | N1R/p28-like<br>protein                           |
| ACV259 | 239380-238898         | 161             | YP_008004161.1, CBEV N1R/<br>p28-like protein             | 6.00E-22             | 41                    | 0                                                                                          | N1R/p28-like<br>protein                           |
| ACV260 | 240575–239427         | 383             | YP_008004641.1, CREV N1R/<br>p28-like protein             | 3.00E-94             | 49                    | 0                                                                                          | N1R/p28-like<br>protein                           |
| ACV261 | 241803-240622         | 394             | YP_008004161.1, CBEV N1R/<br>p28-like protein             | 7.00E-92             | 46                    | 0                                                                                          | N1R/p28-like<br>protein                           |
| ACV262 | 243300-244031         | 244             | YP_008003947.1, AHEV N1R/<br>p28-like protein             | 7.00E-47             | 60                    | 0                                                                                          | MTG-like gene<br>family protein                   |
| ACV263 | 244220-244648         | 143             | YP_008004312.1, CBEV N1R/<br>p28-like protein             | 2.00E-15             | 42                    | 0                                                                                          | MTG-like gene<br>family protein                   |

AMEV, Amsacta moorei entomopoxvirus. CBEV, Choristoneura biennis entomopoxvirus. AHEV, Adoxophyes honmai entomopoxvirus. CREV, Choristoneura rosaceana entomopoxvirus. MySEV, Mythimna separata entomopoxvirus. MSEV, Melanoplus sanguinipes entomopoxvirus.

ChPV homologs in ACEV in the category Structure/morphogenesis are shown in Table 2. The others in this category are thioredoxin (ACV167 (ORF167)) and spheroidin (ACV207; Mitsuhashi et al., 1998b). AMEV and MSEV contain homologs of all ACEV ORFs in this category.

ACV184 is a homolog of VACV G1L, which is a virion core protein that is considered to be a metalloprotease. In addition to ACV184, at least four more ACEV ORFs (ACV010, ACV168, ACV240, and ACV241) were detected as metalloproteases, but their functions are unclear. Therefore, ACEV has more metalloprotease ORFs than do MSEV and AMEV (3 and 1, respectively) (Afonso et al., 1999; Bawden et al., 2000). The four metalloprotease ORFs of unknown function in ACEV showed no similarity to other EV ORFs. As has been suggested for ORFs in MSEV (MSV176 and MSV179), at least ACV010, ACV240 and ACV241 may be extracellular metalloproteases because they all have a His-Glu-2X-His domain and putative signal peptide and show similarities to matrixins (Afonso et al., 1999; Jongeneel et al., 1989; Rawlings and Barrett, 1995). None of the metalloproteases in ACEV showed similarities to the baculovirus metalloprotease, enhancin; AMVITR10 in AMEV is the

only EV ORF to show any, albeit low, similarity to enhancin (Bawden et al., 2000).

## Transcription/RNA modification

In addition to the ChPV homologs present (Table 2), ACEV contains an ORF for NTPase/helicase (ACV186).

Among the ChPV homologs in ACEV (Table 2) is a homolog of BTB/POZ domain-containing protein (ACV138), which does not occur in other EVs. This domain is present near the N-terminus of proteins that contain the Kelch domain in ChPVs, and is known to be involved in protein-protein interactions such as regulation of transcription in eukaryotes (Bardwell and Treisman, 1994). Homologs of all the other ChPV homologs in ACEV in this category are present in AMEV and MSEV. It is interesting that a homolog of VLTF-1, which is essential for VACV replication and is conserved in ChPVs, was not detected in ACEV, AMEV, or MSEV. However, it seems that the transcriptional process is well conserved among

<sup>&</sup>lt;sup>a</sup> The left-most nucleotide of the double-stranded region was designated as base no. 1. Stop codon was not included.

<sup>&</sup>lt;sup>b</sup> Amino acids.

<sup>&</sup>lt;sup>c</sup> The top hit in blastp in NCBI, whose *E* value was less than 0.05, was listed. PSI-BLAST analysis was performed for top hit whose *E* value was less than 0.05, if there were no hits in blastp.



Fig. 2. Gene parity plots between several poxviruses. Forty-nine conserved poxvirus genes (ORFs) (Upton et al., 2003) are plotted. The horizontal and vertical axes represent the relative position of each ORF along the genome in kb. AMEV, Amsacta moorei entomopoxvirus; MSEV, Melanoplus sanguinipes entomopoxvirus; MySEV, Mythimna separata entomopoxvirus; VACV, vaccinia virus Copenhagen; VARV, variola virus. GenBank accession numbers: AMEV, NC\_002520; MSEV, NC\_001993; MySEV, HF679134; VACV, M35027 (Goebel et al., 1990); VARV, NC\_001611 (Shchelkunov et al., 1994, 1996; Shchelkunov and Totmenin, 1995).

ACEV ATTTATTATGA-TAAAAAAA ATTTATAACCCTAGAAAAAA Rabbit fibroma virus ATTTATAGCTCTTAAAAAA Myxoma virus Yaba-like disease virus ATTTATAACTGGAAAAAAA Sheeppox virus ATTTATAGG-CTTAAAAAAA Fowlpox virus ATTTATATA--GTAAAAAAA Swinepox virus ATTTATAAACGGTAAAAAAA Vaccinia virus ATTTAGTGTCTAGAAAAAAA ATTTATAGCCTGTAAAAAA Crocodilepox virus

**Fig. 3.** Alignment of the putative ACEV concatemer resolution motif with those of other poxviruses. The motif is underlined. The analysis was performed by using GENETYX MAC ver.15 (GENETYX Corporation, Tokyo, Japan) and the resultant alignment was slightly modified manually. Asterisks indicate identity among the nine nucleotides, and dots indicate nucleotides that are conserved more than 50% among the nine nucleotides. Genbank accession numbers: Shope (Rabbit) fibroma virus, AF170722 (Willer et al., 1999); myxoma virus, AF170726 (Cameron et al., 1999); Yaba-like disease virus, AY386371 (Brunetti et al., 2003); sheeppox virus, M28823 (Gershon and Black, 1989); fowlpox virus, AJ581527 (Laidlaw and Skinner, 2004); swinepox virus, AF410153 (Afonso et al., 2002); vaccinia virus, AY243312 (Baroudy et al., 1982); crocodilepox virus; DQ356948 (Afonso et al., 2006).

#### Type A

5'-TTTATATTATGGATCAAATGTTTATAAAGCACAATTGCGAGAGTAACTTAATGGACGAGTGCATTTACGTCAAATTAATGTTGATCCATACGAATAAA-3'

#### Type B

## 5'-TTTATTCGTATGGATCAACATTAATTTGACGTAAATGCACTCGTCCATTAAGT TACTCTCGCAATTGTGCTTTATAAACATTTGATCCATAATATAAA-3'

**Fig. 4.** Sequences of hairpin loop regions of the ACEV genome. Two types of sequence (type A, type B) that consist of inverted repeat sequences each other were obtained from each genome terminus. Bold text indicates a hairpin loop sequence, and the 5-nucleotide sequences adjacent to the hairpin loop are in normal font.

ChPVs and ACEV, as is the case for MSEV (Afonso et al., 1999; this study), given that ACEV contained no ORFs for transcription/RNA modification that were not detected in ChPVs.

#### DNA replication/repair

In addition to the ChPV homologs present (Table 2), ACEV contains ORFs for exonuclease RNase T and DNA polymerase III (ACV017), NAD+ dependent DNA ligase (ACV91), reverse transcriptase (ACV153), ATP-dependent DNA ligase (ACV174) and DNA polymerase beta/AP endonuclease (ACV212). AMEV has homologs of all of the ACEV ORFs in this category, but MSEV is missing those of dUTPase (ACV048) and thymidine kinase (ACV210). The presence of the genes for both NAD+ dependent DNA ligase and ATPdependent DNA ligase was a distinguishing feature of EVs including ACEV; almost all viral species, including both ChPVs and insect viruses (except for some kind of iridescent virus), and eukaryotic organisms encode only ATP-dependent DNA ligases (Afonso et al., 1999; Lasko et al., 1990; Lindahl and Barnes, 1992). This pattern suggests that the NAD+ dependent DNA ligase gene in EVs has a prokaryotic origin (Afonso et al., 1999). The thymidine kinase gene is involved in nucleotide metabolism, and is present in other Betaentomopoxvirus species (e.g., CBEV, Choristoneura fumiferana EV, AMEV, and MySEV) (Gruidl et al., 1992; Lytvyn et al., 1992; Thézé et al., 2013) but not in MSEV (Afonso et al., 1999). This finding suggests that DNA replication of Alphaentomopoxvirus and Betaentomopoxvirus members is rather different from that of EVs infecting grasshoppers, including MSEV. MSEV replication may be heavily dependent on host cell nucleotide biosynthesis (Afonso et al., 1999).

# Other functions

In addition to various ChPV homologs (Table 2), ACEV carries ORFs similar to fusolin (ACV034), formyltetrahydrofolate synthetase (ACV047), nicotinamide riboside kinase 1 (ACV053), calcium binding protein (ACV057), metallophosphoesterase domain-containing protein

Table 2 Chordopoxvirus (ChPV) homologs in ACEV.

| Function category              | ACEV ORF         | Length (aa) <sup>a</sup> | VACV ORF <sup>b</sup>                        | Length (aa) | Gene name and/or function (or structure)                  |
|--------------------------------|------------------|--------------------------|----------------------------------------------|-------------|-----------------------------------------------------------|
| Structure/morphogenesis        | ACV037           | 126                      | L5R                                          | 114         | membrane protein                                          |
|                                | ACV040           | 112                      | A21L                                         | 117         | membrane protein involved in fusion and entry             |
|                                | ACV042           | 137                      | J5L                                          | 133         | membrane protein                                          |
|                                | ACV056           | 333                      | G9R                                          | 340         | poxvirus myristoyl protein                                |
|                                | ACV066           | 384                      | A16L                                         | 378         | myristylated membrane protein                             |
|                                | ACV071           | 142                      | A28L                                         | 146         | membrane protein                                          |
|                                | ACV096           | 249                      | L4R                                          | 251         | ssDNA/dsDNA binding protein                               |
|                                | ACV090           | 245                      | L1R                                          | 250         | myristylated membrane protein                             |
|                                | ACV104           | 75                       | A9L                                          | 99          | virion membrane protein (MP)                              |
|                                |                  |                          |                                              |             | * ', ',                                                   |
|                                | ACV108           | 451                      | I7L                                          | 423         | virion core cysteine protease                             |
|                                | ACV109           | 425                      | G5R                                          | 434         | FEN1-like nuclease                                        |
|                                | ACV112           | 285                      | H3L                                          | 324         | glycosyl transferase                                      |
|                                | ACV131           | 665                      | A3L                                          | 644         | core protein                                              |
|                                | ACV135           | 241                      | A32L                                         | 300         | ATP/GTP-binding protein                                   |
|                                | ACV137           | 463                      | F10L                                         | 439         | serine/threonine protein kinase                           |
|                                | ACV142           | 327                      | A11R                                         | 318         | virion membrane formation                                 |
|                                | ACV143           | 1170                     | A10L                                         | 891         | precursor p4a of core protein                             |
|                                | ACV163           | 528                      | E6R                                          | 567         | core protein                                              |
|                                | ACV178           | 201                      | H2R                                          | 189         | viral membrane protein                                    |
|                                | ACV184           | 609                      | G1L                                          | 591         | vaccinia G1L metalloprotease                              |
|                                | ACV193           | 566                      | D13L                                         | 551         | rifampicin resistance protein                             |
|                                | ACV218           | 237                      | F9L                                          | 212         | S–S bond formation pathway protein                        |
| Franscription/RNA modification | ACV044           | 180                      | D7R                                          | 161         | RNA polymerase subunit                                    |
| ranscription/kiva modification |                  |                          |                                              |             |                                                           |
|                                | ACV049           | 279                      | D12L                                         | 287         | mRNA capping enzyme small subunit                         |
|                                | ACV074           | 646                      | D11L                                         | 631         | nucleoside triphosphate phosphohydrolase I                |
|                                | ACV085           | 1190                     | A24R                                         | 1164        | DNA-directed RNA polymerase subunit RPO132                |
|                                | ACV093           | 260                      | A1L                                          | 150         | late transcription factor VLTF-2                          |
|                                | ACV100           | 235                      | A5R                                          | 164         | DNA-dependent RNA polymerase subunit rpo19                |
|                                | ACV110           | 672                      | D6R                                          | 637         | early transcription factor small subunit                  |
|                                | ACV138           | 264                      | List174                                      | 564         | BTB/POZ domain-containing protein                         |
|                                | ACV140           | 891                      | D1R                                          | 844         | mRNA capping enzyme large subunit                         |
|                                | ACV144           | 346                      | L3L                                          | 350         | early gene transcription related protein                  |
|                                | ACV146           | 567                      | E1L                                          | 479         | poly(A) polymerase large subunit                          |
|                                | ACV148           | 484                      | A18R                                         | 493         | DNA helicase, transcriptional elongation                  |
|                                | ACV150           | 814                      | H4L                                          | 795         | RNA polymerase associated transcriptional specificity fac |
|                                | ACV152           | 334                      | H6R                                          | 314         | DNA topoisomerase type I                                  |
|                                | ACV154           | 339                      | A29L                                         | 305         | DNA-dependent RNA polymerase RPO35                        |
|                                | ACV170           | 711                      | I8R                                          | 676         | RNA helicase NPH-II                                       |
|                                | ACV170           | 273                      | J3R                                          | 333         |                                                           |
|                                |                  |                          |                                              |             | poly(A) polymerase small subunit                          |
|                                | ACV187           | 761                      | A7L                                          | 710         | early transcription factor large subunit                  |
|                                | ACV190           | 349                      | A23R                                         | 382         | DNA-directed RNA polymerase beta chain                    |
|                                | ACV192           | 222                      | A2L                                          | 224         | late transcription factor VLTF-3                          |
|                                | ACV230           | 1318                     | J6R                                          | 1286        | RNA polymerase largest subunit                            |
| NATA 11 41 4 4                 | A CT 1000        | 200                      | D4D                                          | 200         | (d)                                                       |
| NA replication/repair          | ACV028           | 269                      | B1R                                          | 300         | ser/thr protein kinase                                    |
|                                | ACV039           | 245                      | D4R                                          | 218         | uracil DNA glycosylase UNG                                |
|                                | ACV048           | 316                      | F2L                                          | 147         | dUTPase                                                   |
|                                | ACV103           | 159                      | A22R                                         | 176         | holliday junction resolvase                               |
|                                | ACV115           | 410                      | B1R                                          | 300         | ser/thr protein kinase                                    |
|                                | ACV147           | 283                      | D10R                                         | 248         | NTP pyrophosphohydrolase mutT motif                       |
|                                | ACV164           | 843                      | D5R                                          | 785         | NTPase                                                    |
|                                | ACV210           | 179                      | J2R                                          | 177         | thymidine kinase                                          |
|                                | ACV226           | 1114                     | E9L                                          | 1006        | DNA polymerase                                            |
| Other functions                | ACV068           | 180                      | E10R                                         | 95          | sulfhydryl oxidase                                        |
| the functions                  |                  |                          | DUKE-205                                     |             |                                                           |
|                                | ACV086           | 287                      |                                              | 222         | serpin                                                    |
|                                | ACV092           | 147                      | A45R                                         | 125         | superoxide dismutase                                      |
|                                | ACV160           | 77                       | CNPV096 <sup>c</sup>                         | 85          | ubiquitin/ribosomal protein                               |
|                                | ACV183           | 289                      | M5L <sup>d</sup>                             | 288         | lipase                                                    |
|                                | ACV196           | 114                      | Vegf-e <sup>e</sup>                          | 132         | vascular endothelial growth factor                        |
|                                | ACV228           | 208                      | G6R                                          | 165         | in vivo virulence related protein                         |
| Inknown                        | ACV003           | 394                      | CNPV169 <sup>c</sup>                         | 332         |                                                           |
|                                | ACV004           | 383                      | CNPV227 <sup>c</sup>                         | 359         |                                                           |
|                                | ACV063           | 305                      | CNPV165                                      | 346         |                                                           |
|                                | ACV179           | 218                      | B2R                                          | 219         |                                                           |
|                                |                  |                          |                                              |             |                                                           |
|                                |                  |                          |                                              |             |                                                           |
|                                | ACV201<br>ACV203 | 305<br>227               | CNPV227 <sup>c</sup><br>CNPV168 <sup>c</sup> | 359<br>358  |                                                           |

<sup>&</sup>lt;sup>a</sup> Amino acids.

b Vaccinia virus homolog. Where no VACV homolog exists, other ChPV homolog is shown.
CORF of canary poxvirus.
ORF of cowpox virus.

<sup>&</sup>lt;sup>e</sup> OFR of orf virus.

(ACV061), fusolin-like protein (ACV069, described in detail in another subsection below), translation elongation factor eEF-3 like (ACV076), protein kinase domain containing protein (ACV087), 4-diphosphocytidyl-2-C-methyl-p-erythritol kinase (ACV94), cation transport ATPase (ACV101), translation initiation factor eIF-4E (ACV116), inhibitor of apoptosis protein (ACV117, described in detail in another subsection below), G-protein coupled receptor Mth2-like rotein (ACV120), serin/threonine kinase like protein (ACV122), tenascin (ACV123), capsid protein VP1-like (ACV172), putative protein phosphatase 2C (ACV176), and Peritrophin-A domain containing protein (ACV205).

## Comparison of ORF content to other EVs

Among the 241 ORFs in ACEV in which each duplicate copy gene in the ITRs is counted as one ORF, 152 ORFs showed similarity to those in other EVs (Table 1), corresponding to a rate of 63.1%. In detail, for AMEV and MSEV, 137 ORFs were similar between ACEV and AMEV, and 128 were similar between ACEV and MSEV. This finding implies that ACEV is taxonomically more closely related to AMEV than MSEV. This assumption is supported by the results of a phylogenetic analysis of EVs based on spheroidin (Perera et al., 2010; Hernández-Crespo et al., 2000).

Among the 22 ORFs in the ACEV ITR region, the rate of detection of similarities to other EVs was 77.3%. Therefore, whether the ORF content in ITR regions has higher diversity than does that in the central region is unclear; this result does not appear to be consistent with the previously reported trend that the majority of novel genes are generally found within poxviral ITRs or toward the genomic termini (Bawden et al., 2000). However, all 49 core genes in poxviruses are contained in the central region bounded by ITRs in ACEV, consistent with the other poxviruses (Perera et al., 2010).

On the other hand, some ORFs that are present in other EV (s) but are missing in ACEV include dual specificity phosphatase (AMV078), CPD photolyase (AMV025 and MSV235), protein tyrosine phosphatase (AMV246) and FALPE (AMV032). ChPVs harbor three of these four proteins; only FALPE (Alaoui-Ismaili and Richardson, 1996; Van Oers and Vlak, 1997) which forms cytoplasmic fibrils in infected cells, which are associated with spheroids, is missing from ChPVs.

# EV gene families

Eight EV gene families have been reported; leucine-rich repeat, alanine-leucine-isoleucine (ALI) motif subgroup 1, ALI motif subgroup 2, tryptophan repeat, methionine-threonine-glycine (MTG), AMV176, KilA-N domain-containing proteins, and serinecysteine-glycine (SCG) (Perera et al., 2010). None of these genes has been functionally characterized, although KilA-N domaincontaining proteins in DNA viruses may play a role in transcription and/or DNA replication (Perera et al., 2010). Among the eight families, ALI motif family subgroup 1, AMV176 family, and SCG family were not found in ACEV (Table 1). As for other EVs such as AMEV and MSEV, the SCG family is missing from AMEV, and MSEV lacks the AMV176 and KilA-N domain-containing protein families. ORFs belonging to the leucine-rich repeat family are ACV018, ACV019, and ACV211, and those that belong to ALI motif family subgroup 2 are ACV003, ACV004, ACV005, ACV006, ACV011, ACV032, ACV197, and ACV198. ACV177 is a member of the tryptophan repeat family. ORFs that belong to the MTG family are ACV001, ACV002, ACV012, ACV013, ACV014, ACV015, and ACV016. ORFs that belong to the KilA-N domain-containing protein family are ACV063, ACV201, ACV202, ACV203, and ACV220. ACEV contains more ALI motif family subgroup 2 and MTG family ORFs (8 and 7, respectively) than do AMEV (4 and 3, respectively) and MSEV (3 and 4, respectively).

## ChPV homologs within the ACEV genome

ACEV ORFs that show similarity to those in ChPVs are shown in Table 2. Among the ORFs similar between ACEV and ChPVs, BTB/POZ domain-containing protein (ACV138) and serpin (ACV086; discussed in detail in another subsection below) are not present in other EVs.

ACV160 corresponds to a ubiquitin/ribosomal protein that is one of the 49 core poxviral proteins. This protein not only plays a role in ubiquitin-mediated protein degradation in eukaryotes but is involved in numerous non-proteolytic functions, including viral budding (Reilly and Guarino, 1996; Hochstrasser, 2009). ACV160 ubiquitin showed an amino acid (aa) identity of up to 89% to a number of eukaryotic ubiquitins, and these high similarities are consistent with those for AMEV and MSEV ubiquitins. However, baculovirus ubiquitins showed somewhat lower identities (approximately 75%) to those in eukaryotes (Reilly and Guarino, 1996).

## Inhibitors of apoptosis

Apoptosis is an important immune response against viral infections in host cells. The ACEV genome does not harbor inhibitor of apoptosis (iap) gene(s) that are typical in structure. ORFs in the IAP family are characterized by the presence of an inhibitor of apoptosis (IAP) repeat (BIR) domain, and many IAPs also contain a C-terminal RING domain (Salvesen and Duckett, 2002; Taylor and Barry, 2006). However, the ACEV genome does contain one ORF (ACV117) that contains a C-terminal BIR domain but not RING and another ORF (ACV182) that contains RING at its C-terminal but not BIR (Fig. 5); we confirmed the locations of these ORFs in the genome sequence by verifying the corresponding reads and reads around the ORFs of the plasmids of a template shotgun library, which had been generated by the sequencer (see Section 4). These two ORFs are distant from each other (Fig. 1); ACV117 is located from 97.3 to 98.4 kb downstream of the left terminus of the two DNA strand region of the genome, whereas ACV182 is located from 163.3 to 164.4 kb downstream of the left terminus. ACV117 also contains a DUF4419 motif (aa 22 through aa 290) and showed highest similarity to a protein in Dictyostelium discoideum (Dictyosteliida: Dictyosteliaceae) (blastp E value, 1e-36). However, ACV182 may not be involved in the apoptosis inhibition but in other functions because RING has been shown to be a domain for a wide range of functions. Furthermore, P35 in baculovirus and its AMEV homolog, P33, represent one type of apoptosis inhibition protein (Means et al., 2007), but this ORF was not present in ACEV.

Interestingly, the ACEV genome has an ORF containing a serpin domain (ACV086), which was detected by using blastp, PSI-BLAST and InterProScan programs (Fig. 5). Serpin-domain-containing genes are absent from the AMEV, MSEV, and other insect viruses



**Fig. 5.** Basic structure of three potential apoptosis inhibition-related ORFs in the ACEV genome. The names of ORFs are listed to the left of the diagrams. HycuNPV-IAP3, an inhibitor of apoptosis (Hycu-IAP3) in *Hyphantria cunea* nucleopolyhedrovirus (Ikeda et al., 2004); BIR, baculoviral inhibition of apoptosis protein repeat domain; RING, really interesting new gene domain; DUF4419, domain of unknown function (DUF4419); Serpin, the domain of serine protease inhibitor.

(Becker and Moyer, 2007; Perera et al., 2010). Serpins inhibit apoptosis and actually function in ChPVs (Taylor and Barry, 2006; Turner and Moyer, 1998). In analyses by using blastp and PSI-BLAST, ACV086 did not show similarity with ChPV serpin sequences. On the other hand, searches using DELTA-BLAST yielded good *E*-values (maximum, 4e-18) between ACV086 and both mammalian and ChPV serpin sequences. These combined results suggest that the ACEV ORF is not closely related to those of the mammalian and ChPV serpins.

The results of the present analysis indicate that ACEV does not harbor an IAP gene typical of those in other insect viruses because the two IAP-characteristic domains in ACEV lie on two different ORFs and that ACEV harbors a serpin gene found in ChPVs. Therefore the system of apoptosis inhibition in ACEV may be different from that in other insect viruses and ChPVs. If the above mentioned difference in status of IAP-associated domains from that in other insect viruses lead to differences in function from that in other insect viruses, the ORF for serpin in ACEV may compensate for the gap.

Another immune-response-related protein, superoxide dismutase (SOD), is functional in AMEV and might act to overcome innate immune responses in the insect gut (Becker et al., 2004). A homologous ORF was found in ACEV (ACV92) but not in MSEV. Furthermore, SOD of VACV and myxoma virus is nonfunctional.

## Ubiquitin-conjugating enzyme

We identified an ORF (ACV161) similar to ubiquitin-conjugating enzyme E2 that was located adjacent to ACEV ubiquitin (ACV160) (Figs. 1 and 6). Ubiquitin-conjugating enzymes have not been found in viruses, except for ASF virus and some giant viruses such as Megavirus chilensis and Acanthamoeba polyphaga mimivirus (Rodriguez et al., 1992; Arslan et al., 2011; Legendre et al., 2011). In addition, we found by analysis using blastp and PSI-BLAST that ubiquitin-conjugating enzyme E2 in a moumouvirus and other species of megaviruses is included in GenBank. The ubiquitinconjugating enzyme E2 is necessary for ubiquitin-mediated protein degradation in eukaryotes (Taylor and Barry, 2006), which is one of the most essential functions in organisms, and a similar system was found in a bacterium (Pearce et al., 2008; Striebel et al., 2009). These findings suggest a virus-host-related function, even if the ORF is not involved in ubiquitin-mediated protein degradation in ACEV.

## ATP-binding cassette protein

ACV025 showed high similarity to ATP-binding cassette proteins (ABC transporter). The most similar protein was an ATPbinding cassette protein in the beetle, Dendroctonus ponderosae (blastp E value, 0; 31% aa identity from aa 5 through 1,504 of ACV025), and other proteins showing high similarity were ATPbinding cassette proteins of insects. Other than AMEV (Bawden et al., 2000). ACEV is the sole virus in which an ATP-binding cassette protein has been documented, although this protein should be present in all organisms. Interestingly, the ACEV ATPbinding cassette protein showed relatively low similarity to that (AMV130) in AMEV: proteins indicated by blastp with default parameters as being similar to ACV025 did not include the ATPbinding cassette protein of AMEV. These findings suggest that the ancestor of the EVs obtained the gene from insect(s), perhaps its host. ACV025 is the largest ORF (1506 aa) in ACEV, as is true for AMEV (1384 aa). The ACEV putative protein consists of TMS-ABC-TMS-ABC domains, and this arrangement is the same as that of the AMEV protein. ATP-binding cassette proteins function as membrane translocators, but some act as ion channels, ion channel regulators, and sensing proteins (Bawden et al., 2000). It is of interest whether the EV ATP-binding cassette protein is functional, and if so, what its function is.

#### Fusolin-like ORF

The ACEV genome harbored two fusolin-group genes, one of which was known previously (ACV034; Mitsuhashi et al., 1997; Takemoto et al., 2008); the novel ORF (ACV069) showed 32% identity at the aa level in the region of aa 14 to 243 to ACV034 by blastp analysis (Fig. 7a). In addition, blastp analysis of the novel ORF revealed a chitin-binding domain 3, which has been conserved in fusolin-group genes. It has not been reported that insect viruses have multiple fusolin-GP37 group genes per genome (Perera et al., 2010; Arif, 1995). Analysis of the hydrophilicity and hydrophobicity of ACV069 revealed a distributed pattern of hydropathy plots that are similar to those of the known fusolins; ACV069 contains a short N-terminal highly hydrophobic region and a relatively long C-terminal hydrophilic region (Fig. 7b). These structural features of ACV069 imply that it is a signal peptide and disrupts the host peritrophic membrane as does the known fusolin, ACV034 (Mitsuhashi et al., 2007; Mitsuhashi and Miyamoto, 2003).

| ACV161      | MDYKQRIMKEISNLQNNKLENIIINIGDTINIIHFILIGYKDTVFENGYYYCKLF      | 55  |
|-------------|--------------------------------------------------------------|-----|
| Tetrahymena | MKFSDTVNRINKEYQRLQKNPVENVL-AIPDPKNMFQWHFCIYGLVDCPFEGGIYHGILS | 59  |
|             | * ** ** ** ** * * * * * * * * * *                            |     |
| ACV161      | LN-KYPVTAPDIMMITPNGLFKPNTKLCIDGLTSHHNETWAITTKLDKILIAFOSFMNDT | 114 |
| Tetrahymena | LPPEYPMKPPSIKILTPNGRFKEGTNICT-SFTNYHPESWOLTWNIEKMLIAMISFMND- | 117 |
| recranymena | * ** * * **** ** * * * * * * * * * * *                       | 11/ |
|             | * ** * * *** ** * * * * * * * * * * * *                      |     |
| ACV161      | IEEEFIGKIHTTITEKKILSKSSIKNNL-ENTEFVKTFKDTDIYRKMIETYNKF       | 167 |
| Tetrahymena | -NDPSAGVVQTSESEKRRLAKKSIIWNIKNDEEFVRLFKPYYKQLNIDPSLFTDPQKLKE | 176 |
|             | * * ** * * * * **                                            |     |
|             |                                                              |     |
| ACV161      | 167                                                          |     |
| Tetrahymena | YEEQMQFQQSTTDHEKKVRNFEKVLFFGASIFLVMCSYLYMKSLK 221            |     |

**Fig. 6.** Alignment of the amino acid sequence of the putative ubiquitin-conjugating enzyme E2 of ACEV with that of *Tetrahymena thermophila* (Ciliophora). The putative ubiquitin-conjugating enzyme E2 (ACV161) of ACEV was compared with that of a species in *Tetrahymena*, which was the most similar to ACV161 according to blastp. GENETYX MAC ver.15 (GENETYX Corporation, Tokyo, Japan) was used to perform the analysis. Asterisks indicate identity between the two amino acids. GenBank accession number: *Tetrahymena thermophila*, XP\_001021849.1



**Fig. 7.** Analyses of an ORF for a putative fusolin-like protein in the ACEV genome. (A) Alignment of the amino acid sequence of ACV069 with that of ACV034 (known ACEV fusolin) and *Heliothis armigera* EV fusolin. GENETYX MAC ver.15 (GENETYX Corporation, Tokyo, Japan) was used to perform the analysis. Asterisks indicate identity among the three amino acids, and dots indicate amino acids that are conserved more than 50% among the three amino acids. Five conserved regions among fusolin/GP37 that have been identified by Vialard et al. (1990) are underlined. HAEV fusolin, *Heliothis armigera* EV fusolin (Dall et al., 1993; GenBank accession number, L08077). (B) Comparison of hydropathy plots among ACV069, ACV034 and L08077. The analysis was performed by using Genetyx-Mac ver.15 (GENETYX Corporation, Tokyo) with default parameters; the Kyte and Doolittle algorithm (1982) was used with an average of five values.

## Nucleotide sequence accession numbers

The GenBank accession numbers of sequences are as follows: ACEV genome (DNA double-stranded region), AP013055; left-terminal hairpin loops, AB787183 and AB787184; and right-terminal hairpin loops, AB787185 and AB787186.

## Conclusion

To discuss EVs at the whole-genome level and obtain a better understanding of EV evolution requires the complete sequence of at least one species in both Alphaentomopoxvirus and Gammaentomopoxvirus. Furthermore, because of the unavailability of these complete genomic sequences, proteome and gene-function analyses of EVs have lagged behind those of ChPVs and baculoviruses. The results of the present study thus have merit in regard to both of these issues. Our present study shows genetically a rather distant relationship between ACEV and the orthopteran EV MSEV and confirms the necessity of creating a new genus for orthopteran EVs. The first elucidation of the terminus at each end of the genome provides a fundamental insight regarding the mode of DNA replication in EVs. The results of the present study suggest various features in EV-host interactions, particularly specific features in EV-scarab beetle host interactions, for example, apoptosis-associated aspects and the presence of a fusolin-like gene. The specificities in EV-scarab beetle host interactions may derive from the circumstances around the larval habitat underground in addition to coleopteran specificity. Future studies to obtain a better understanding of EV-insect host interactions are expected on the basis of the ACEV genome information, and these results will increase our understanding of the coevolution of EVs and their hosts.

Compared with baculoviruses, EVs have been less well-studied regarding their use as pest control agents but they offer some merits in this application. Baculoviruses do not infect all pest species; for example, almost all beetle pest species are unsusceptible to baculoviruses, but a number of beetle species are hosts of EVs. Therefore, EVs are potential control agents for pests that are resistant to baculoviruses. In addition, fusolins of EVs are potential co-agents for viral insecticides and *B. thuringiensis* formulations because of these proteins' ability to enhance viral infectivity and insecticidal activity of *B. thuringiensis*. A better understanding of EV-host interactions and EVs themselves at the molecular level will facilitate the design and development of highly efficient biocontrol strategies and technologies.

## Materials and methods

Virus and DNA preparation

The ACEV isolate (strain CV6M) used in the present study was obtained through an in vivo cloning process (Smith and Crook, 1988) as previously described (Mitsuhashi et al., 2014) and consequently is a clone or nearly clonal.

The strain was propagated in *A. cuprea* larvae in our laboratory, and the DNA was extracted from *A. cuprea* cadavers according to the methods of Mitsuhashi et al. (1997, 2007).

# DNA cloning and sequencing

After ACEV DNA was randomly fragmented by using Hydro-Shear (GeneMachines, San Carlos, CA), the fragments were bluntended by using a Mighty Cloning Kit (TakaRa Bio, Shiga, Japan). Fragments of approximately 2–2.5 kb were gel-purified by using a

MinElute Gel Extraction Kit (QIAGEN, Tokyo, Japan) and cloned into the dephosphorylated *Hinc* II site of pUC118 (TakaRa Bio). Recombinant plasmids were transformed into *E. coli* DH10B cells by electroporation (Gene Pulser, BIORAD, Hercules, CA).

Plasmids were purified from transformed cells by using an alkaline-SDS method and were sequenced using sequencing primers M13-47 and R-8, an ABI PRISM BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA), and the  $3730 \times 1$  DNA Analyzer (Applied Biosystems).

## Sequence assembly

Chromatograms were base-called by using the software, Phred ver. 0.020425.c (CodonCode, Dedham, MA), and vector-associated and low-quality-value sequences in reads were masked by using the software PFP ver. 2.6.2 (Paracel, Pasadena, CA). The resultant sequences were assembled into contigs by using the software CAP4 ver. 2.6.2 (Paracel).

#### Additional sequencing and assembly

A 225-kb contig was obtained from the above-mentioned procedure, and this contig-sequence represented on average a twelve-fold redundancy at each base position. The sequences of five regions (approximate lengths: 300, 600, 300, 3300 and 600 bps) for which the depth of reads was lower than that of the other regions were confirmed by direct-sequencing of PCR products obtained by using (as template) plasmids in the shotgun library.

Early in the present study, we found that two 2370-bp regions (nucleotide (nt) 20,499 to nt 22,868 and nt 222,630 to the terminus (nt 224,999)) in the 225-kb contig are IRs of each other. We therefore speculated that a region from the left terminus (nt 1) to nt 22,868 is an inverted terminal repeat (ITR) and that most of its right counterpart (right terminal ITR) was missing from the contig sequence. It was supposed that the lack of most of the putative right ITR was due to the software's misassembly of right ITR reads into the assembly for the 20.5-kb left ITR region. In reads of the 20.5-kb left ITR, no significant hetero-sequence was observed at each nucleotide position.

We therefore used the following method to obtain the possible missing right ITR sequence and to confirm the left ITR sequence. Virions purified from the spheroids according to Mitsuhashi et al. (1997) were embedded in 0.75% agarose (SeaPlaque GTG, TakaRa Bio) gel in molds. Each of the resulting plugs was twice treated with TE buffer (pH 8.0) and then with proteinase K (final concentration, 50 µg/ml) and 0.1% SDS overnight at 50 °C. Plugs then were treated and extracted DNA was digested with Sacl, according to Sambrook and Russell (2001). The plugs were loaded into wells of a gel of pulsed-field gel electrophoresis and electrophoresis was performed by using the CHEF Mapper System (BIO-RAD, Alfred Nobel Drive, Hercules, CA) according to the manufacturer's manual. The separated DNA fragments (left-most fragment of the genome, 30 kb; right-most fragment, 37 kb) were purified from the gel by using agarase (β-Agarase, TakaRa Bio) and then were treated with S1-nuclease to eliminate hairpin structures. Shotgun library of each terminal fragment was then constructed, inserts within plasmids were sequenced, and contigs were formed, as described above. The assembly of the reads from the shotgun library of the SacI digested left terminal fragment yielded fourteen contigs, and gaps (each shorter than 200 bp) were filled by direct sequencing of PCR products generated by using the 30-kb left terminal fragment as a template. Assembly of the reads from the right fragment yielded a continuous 37-kb sequence that corresponded to the expected 37-kb sequence containing the entire right ITR.

Sequencing of regions external to the double-stranded region of the genome

To sequence the regions linked to the termini of the two DNA strands, we performed nested PCR. Briefly, the first PCR was performed by using a TaKaRa LA PCR Kit (TakaRa Bio) and a single primer (sequence; 5'-TTGATTAATCCATGTAAACCCGT-3') that corresponded to a region just beyond a hairpin loop in the DNA doublestranded region of the 30-kb left or 37-kb right terminal fragment obtained according to the above-mentioned method with the exception of the omission of treatment with S1-nuclease. The second PCR was performed by using a single primer (5'-TGAT-TAATCCATGTAAACCCGTA-3') and the same PCR kit as for the first PCR. The PCR products obtained (ca. 280 bp) were cloned into pT7 Blue vector (Novagen, Madison, Wisconsin), and the plasmids were introduced into E. coli HST08 by electroporation. Purified plasmids of twenty E. coli clones for each terminus of the genome were sequenced by using the primer M13-47 as mentioned above. This process yielded two types of sequence from the right-most (37 kb) fragment as a PCR template, which correspond to the two types of hairpin loops, and only one type of sequence (that is, the same as one of those from the right-most fragment) from the leftmost fragment (30 kb) as a template.

We therefore performed subsequent PCRs (referred to as "Subsequent PCRs") to confirm the complete sequences of the hairpin loop regions. Based on the two types of sequence obtained from the nested PCRs, we synthesized four primers (5'-GTGACA-TAAATGCACTCGTCCA-3'; 5'-GTCAAATTAATGTTGATCCATACG-3'; 5'-CTGAAGCACAATTGCGAGAGT-3'; and 5'-TGTGCTTTATAAA-CATTTGATCCA-3'), and then carried out PCR by using each of the four primers together with a primer (5'-(C)TGAA(or C)AA(or C) TGTAATGTAATGTATTAAC-3') that corresponded to the sequence of the double-stranded region and an extremely high-fidelity PCR kit (PrimeSTAR Max DNA Polymerase, TaKaRa Bio). The PCR products obtained were cloned to pUC118 vector, and the resultant plasmids were introduced into E. coli HST08 by electroporation. Purified plasmids of 10 E. coli clones from each of the four kinds of PCR product were sequenced by using primers M13-47 and RV-M as mentioned above.

#### Confirmation of genome organization

The organization of the ACEV genome determined in the present study was checked in several ways. First, we checked on the restriction site maps (physical maps) of the ACEV genome that were constructed based on the final consensus sequence. Using ACEV genomic DNA as a template, we performed PCRs that were designed to amplify each "putative" region on the final consensus sequence, which consisted of a HindIII, BamHI or PstI site and the regions just upstream and downstream of the target restriction site and directly sequenced the PCR products. We also compared the sizes of the fragments generated by the complete digestion of ACEV genomic DNA with HindIII, BamHI or PstI followed by 0.4% agarose gel electrophoresis with those of putative restriction fragments. The results were that each sequence of the PCR products was identical to that of each corresponding region on the final consensus sequence and that the sizes of the electrophoresed restriction fragments were compatible with those of the putative corresponding "fragments" based on the final consensus sequence (data not shown).

Second, we performed pulsed-field gel electrophoresis of the whole genomic DNA and fragments digested with the enzyme *KpnI*, *PmeI*, *SacI*, *SacII* or *SmaI* and compared their observed sizes, taking into account the particular migration characteristics of ATrich DNA fragments in pulsed-field gel electrophoresis (Maniloff, 1989; Hall and Hink, 1990), with the predicted sizes of the final

(full-length) consensus sequence and putative "restriction fragments". Observed sizes of the whole genome and the restriction fragments were compatible with those from the final consensus sequences (data not shown).

Third, we entrusted ACEV genome sequencing by using a 454/Roche GS FLX pyrosequencing system to Beckman Coulter Genomics (Danvers, MA). The 222-kb sequence that resulted from pyrosequencing corresponded to an inner region of the final consensus sequence generated by using the Sanger method and contained the full poxvirus central region bounded by the two ITRs; the sequence was identical to that with the Sanger method except that pyrosequencing led to a single-nucleotide gap in each of a few homopolymer regions.

#### Analysis

ORFs in ACEV were identified through a two-step process. The first step was to select all candidate ORFs that were both methionine-initiated and greater than 50 amino acids by using a program for 6-frame ORF detection (Genaris, Yokohama, Japan) that is based on the work of Stajich et al. (2002). From this pool of the candidates, we selected ORFs that had no or minimum overlap with other ORFs, with consideration of the status showing the codon skew and codon bias rules of true ORFs in poxviruses indicated by Da Silva and Upton (2005) and favorable results in similarity and domain research performed by using blastp and PSI-BLAST in NCBI, and with InterProScan (Zdobnov and Apweiler, 2001).

#### Acknowledgments

We thank Ayako Sakairi of our institute for her support in our experiments and Masahiko Muraji and Yuichi Katayose of our institute for their advice on the present study. We also thank Bernard Moss of the National Institutes of Health, USA, for his advice on the present study. This work was supported in part by JSPS KAKENHI 21380044.

# References

Afonso, C.L., Tulman, E.R., Delhon, G., Lu, Z., Viljoen, G.J., Wallace, D.B., Kutish, G.F., Rock, D.L., 2006. Genome of crocodilepox virus. J. Virol. 80, 4978–4991.

Afonso, C.L., Tulman, E.R., Lu, Z., Oma, E., Kutish, G.F., Rock, D.L., 1999. The genome of *Melanoplus sanguinipes* entomopoxvirus. J. Virol. 73, 533–552.

Afonso, C.L., Tulman, E.R., Lu, Z., Zsak, L., Kutish, G.F., Rock, D.L., 2000. The genome of fowlpox virus. I. Virol. 74, 3815–3831.

of fowlpox virus. J. Virol. 74, 3815–3831.

Afonso, C.L., Tulman, E.R., Lu, Z., Zsak, L., Osorio, F.A., Balinsky, C., Kutish, G.F., Rock, D.L., 2002. The genome of swinepox virus. J. Virol. 76, 783–790.

Alaoui-Ismaili, M.H., Richardson, C.D., 1996. Identification and characterization of a filament associated protein encoded by the *Amsacta moorei* entomopoxvirus. J. Virol. 70, 2697–2705.

Arif, B.M., 1995. Recent advances in the molecular biology of entomopoxviruses. I. Gen. Virol. 76, 1–13.

Arslan, D., Legendre, M., Seltzer, V., Abergel, C., Claverie, J.M., 2011. Distant Mimivirus relative with a larger genome highlights the fundamental features of Megaviridae. Proc. Natl. Acad. Sci. USA 108, 17486–17491.

Bardwell, V.J., Treisman, R., 1994. The POZ domain: a conserved protein-protein interaction motif. Genes Dev. 8, 1664–1677.

Baroudy, B.M., Venkatesan, S., Moss, B., 1982. Incompletely base-paired flip-flop terminal loops link the two DNA strands of the vaccinia virus genome into one uninterrupted polynucleotide chain. Cell 28, 315–324.

Bawden, A.L., Glassberg, K.J., Diggans, J., Shaw, R., Farmerie, W., Moyer, R.W., 2000. Complete genomic sequence of the *Amsacta moorei* entomopoxvirus: analysis and comparison with other poxviruses. Virology 274, 120–139.

Becker, M.N., Greenleaf, W.B., Ostrov, D.A., Moyer, R.W., 2004. *Amsacta moorei* entomopoxvirus expresses an active superoxide dismutase. J. Virol. 78, 10265–10275.

Becker, M.N., Moyer, R.W., 2007. Subfamily Entomopoxvirinae. In: Mercer, A.A., Schmidt, O., Weber, O. (Eds.), Poxviruses. Birkhauser VerlagBasel, pp. 253–271.

Brunetti, C.R., Amano, H., Ueda, Y., Qin, J., Miyamura, T., Suzuki, T., Li, X., Barrett, J.W., McFadden, G., 2003. Complete genomic sequence and comparative

- analysis of the tumorigenic poxvirus Yaba monkey tumor virus. J. Virol. 77, 13335–13347.
- Cameron, C., Hota-Mitchell, S., Chen, L., Barrett, J., Cao, J.X., Macaulay, C., Willer, D., Evans, D., McFadden, G., 1999. The complete DNA sequence of myxoma virus. Virology 264, 298–318.
- Culyba, M.J., Hwang, Y., Minkah, N., Bushman, F.D., 2009. DNA binding and cleavage by the fowlpox virus resolvase. J. Biol. Chem. 284, 1190–1201.
- Da Silva, M., Upton, C., 2005. Using purine skews to predict genes in AT-rich poxviruses. BMC Genomics 6, 22.
- Dall, D., Sriskantha, A., Vera, A., Lai-Fook, J., Symonds, T., 1993. A gene encoding a highly expressed spindle body protein of *Heliothis armigera* entomopoxvirus. J. Gen. Virol. 74, 1811–1818.
- DeLange, A.M., Reddy, M., Scraba, D., Upton, C., McFadden, G., 1986. Replication and resolution of cloned poxvirus telomeres in vivo generates linear minichromosomes with intact viral hairpin termini. J. Virol. 59, 249–259.
- Furuta, Y., Mitsuhashi, W., Kobayashi, J., Hayasaka, S., Imanishi, S., Chinzei, Y., Sato, M., 2001. Peroral infectivity of non-occluded viruses of *Bombyx mori* nucleopolyhedrovirus and polyhedrin-negative recombinant baculoviruses to silkworm larvae is drastically enhanced when administered with *Anomala cuprea* entomopoxvirus spindles. J. Gen. Virol. 82, 307–312.
- Gershon, P.D., Black, D.N., 1989. A capripoxvirus pseudogene whose only intact homologs are in other poxvirus genomes. Virology 172, 350–354.
- Goebel, S.J., Johnson, G.P., Perkus, M.E., Davis, S.W., Winslow, J.P., Paoletti, E., 1990. The complete DNA sequence of vaccinia virus. Virology 179, 247–266.
- González, A., Talavera, A., Álmendral, J.M., Vinuela, E., 1986. Hairpin loop structure of African swine fever virus DNA. Nucl. Acids Res. 14, 6835–6844.
- Gruidl, M.E., Hall, R.L., Moyer, R.W., 1992. Mapping and molecular characterization of a functional thymidine kinase from *Amsacta moorei* entomopoxvirus. Virology 186, 507–516.
- Hautaniemi, M., Ueda, N., Tuimala, J., Mercer, A.A., Lahdenperä, J., McInnes, C.J., 2010. The genome of Pseudocowpoxvirus: comparison of a reindeer isolate and a reference strain. J. Gen. Virol. 91, 1560–1576.
- Hall, R.L., Hink, W.F., 1990. Physical mapping and field inversion gel electrophoresis of *Amsacta moorei* entomopoxvirus DNA. Arch. Virol. 110, 77–90.
- Hernández-Crespo, P., Veyrunes, J.C., Cousserans, F., Bergoin, M., 2000. The spheroidin of an Entomopoxvirus isolated from the grasshopper *Anacridium aegyptium* (AaEPV) shares low homology with spheroidins from lepidopteran or coleopteran EPVs. Virus Res. 67, 203–213.
- Hochstrasser, M., 2009. Origin and function of ubiquitin-like proteins. Nature 458, 422–429.
- Ikeda, M., Yanagimoto, K., Kobayashi, M., 2004. Identification and functional analysis of *Hyphantria cunea* nucleopolyhedrovirus *iap* genes. Virology 321, 359–371
- Jongeneel, C.V., Bouvier, J., Bairoch, A., 1989. A unique signature identifies a family of zinc-dependent metallopeptidases. FEBS Lett. 242, 211–214.
- King, L.A., Wilkinson, N., Miller, D.P., Marlow, S.A., 1998. Entomopoxviruses In: Miller, L.K., Ball, L.A. (Eds.), The Insect Viruses. Plenum Press, New York and London, pp. 1–29.
- Kyte, J., Doolittle, R.F., 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132.
- Laidlaw, S.M., Skinner, M.A., 2004. Comparison of the genome sequence of FP9, an attenuated, tissue culture-adapted European strain of Fowlpox virus, with those of virulent American and European viruses. J. Gen. Virol. 85, 305–322.
- Langridge, W.H.R., Roberts, D.W., 1977. Molecular weight of DNA from four entomopoxviruses determined by electron microscopy. J. Virol. 21, 301–308.
- Lasko, D.D., Tomkinson, A.E., Lindahl, T., 1990. Eukaryotic DNA ligases. Mutat. Res. 236, 277–287.
- Lefkowitz, E.J., Wang, C., Upton, C., 2006. Poxviruses: past, present and future. Virus Res. 117, 105–118.
- Legendre, M., Santini, S., Rico, A., Abergel, C., Claverie, J.M., 2011. Breaking the 1000gene barrier for Mimivirus using ultra-deep genome and transcriptome sequencing, Virol, J. 8, 99.
- Lindahl, T., Barnes, D.E., 1992. Mammalian DNA ligases. Annu. Rev. Biochem. 61, 251–281.
- Lytvyn, V., Fortin, Y., Banville, M., Arif, B., Richardson, C., 1992. Comparison of the thymidine kinase genes from three entomopoxviruses. J. Gen. Virol. 73, 3235–3240.
- Maniloff, J., 1989. Anomalous values of *Mycoplasma* genome sizes determined by pulse-field gel electrophoresis. Nucl. Acid Res. 17, 1268.
- Massung, R.F., Liu, L.I., Qi, J., Knight, J.C., Yuran, T.E., Kerlavage, A.R., Parsons, J.M., Venter, J.C., Esposito, J.J., 1994. Analysis of the complete genome of smallpox variola major virus strain Bangladesh-1975. Virology 201, 215–240.
- Means, J.C., Penabaz, T., Clem, R.J., 2007. Identification and functional characterization of *AMVp33*, a novel homolog of the baculovirus caspase inhibitor *p35* found in *Amsacta moorei* entomopoxvirus. Virology 358, 436–447.
- Mitsuhashi, W., Asano, S., Miyamoto, K., Wada, S., 2014. Further research on the biological function of inclusion bodies of *Anomala cuprea* entomopoxvirus, with special reference to effect on the insecticidal activity of a *Bacillus thuringiensis* formulation. Pest Manag. Sci. 70, 46–54, http://dx.doi.org/10.1002/ps.3521.
- Mitsuhashi, W., Furuta, Y., Sato, M., 1998a. The spindles of an entomopoxvirus of *Coleoptera* (*Anomala cuprea*) strongly enhance the infectivity of a nucleopolyhedrovirus in *Lepidoptera* (*Bombyx mori*). J. Invertebr. Pathol. 71, 186–188.
- Mitsuhashi, W., Saito, H., Sato, M., Nakashima, N., Noda, H., 1998b. Complete nucleotide sequence of spheroidin gene of *Anomala cuprea* entomopoxvirus. Virus Res. 55, 61–69.

- Mitsuhashi, W., Sato, M., Hirai, Y., 2000. Involvement of spindles of an entomopoxvirus (EPV) in infectivity of the EPVs to their host insect. Arch. Virol. 145, 1465–1471.
- Mitsuhashi, W., Kawakita, H., Murakami, R., Takemoto, Y., Saiki, T., Miyamoto, K., Wada, S., 2007. Spindles of an entomopoxvirus facilitate its infection of the host insect by disrupting the peritrophic membrane. J. Virol. 81, 4235–4243.
- Mitsuhashi, W., Miyamoto, K., 2003. Disintegration of the peritrophic membrane of silkworm larvae due to spindles of an entomopoxvirus. J. Invertebr. Pathol. 82, 34–40.
- Mitsuhashi, W., Saito, H., Sato, M., 1997. Complete nucleotide sequence of the fusolin gene of an entomopoxvirus in the cupreous chafer, *Anomala cuprea* Hope (Coleoptera: Scarabaeidae). Insect Biochem. Mol. Biol. 27, 869–876.
- Moss, B., 2001. Poxviridae: The Viruses and their Replication. In: Fields, B.N., Knipe, D.M., Howley, P.M., Chanock, R.M., Melnick, J., Monath, T.P., Roizman, B., Straus, S.E. (Eds.), Virology. Lippincott-Raven Publishers, Philadelphia, pp. 2849–2883.
- Moss, B., 2007. Poxviridae: The Viruses and their Replication. In: Knipe, D.M., Howley, P.M. (Eds.), Fields Virology, Volume 2. Lippincott Williams & Wilkins, Philadelphia, pp. 2905–2946.
- Pearce, M.J., Mintseris, J., Ferreyra, J., Gygi, S.P., Darwin, K.H., 2008. Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science 322, 1104–1107.
- Perera, S., Li, Z., Pavlik, L., Arif, B., 2010. Entomopoxviruses. In: Asgari, S., Johnson, K. N. (Eds.), Insect Virology. Caister Academic Press, Essex, UK, pp. 83–102.
- Pickup, D.J., Ink, B.S., Parsons, B.L., Hu, W., Joklik, W.K., 1984. Spontaneus deletions and duplications of sequences in the genome of cowpox virus. Proc. Natl. Acad. Sci. USA 81, 6817–6821.
- Rawlings, N.D., Barrett, A.J., 1995. Evolutionary families of metallopeptidases. Methods Enzymol. 248, 183–228.
- Reilly, L.M., Guarino, L.A., 1996. The viral ubiquitin gene of *Autographa californica* nuclear polyhedrosis virus is not essential for viral replication. Virology 218, 243–247
- Rodriguez, J.M., Salas, M.L., Vinuela, E., 1992. Genes homologous to ubiquitinconjugating proteins and eukaryotic transcription factor SII in African swine fever virus. Virology 186, 40–52.
- Salvesen, G.S., Duckett, C.S., 2002. IAP proteins: blocking the road to death's door. Nat. Rev. Mol. Cell Biol. 3, 401–410.
- Sambrook, L., Russell, D.W., 2001. Molecular Cloning, third ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, USA.
- Senkevich, T.G., Koonin, E.V., Bugert, J.J., Darai, G., Moss, B., 1997. The genome of molluscum contagiosum virus: analysis and comparison with other poxviruses. Virology 233, 19–42.
- Shchelkunov, S.N., Blinov, V.M., Resenchuk, S.M., Totmenin, A.V., Olenina, L.V., Chirikova, G.B., Sandakhchiev, L.S., 1994. Analysis of the nucleotide sequence of 53 kbp from the right terminus of the genome of variola major virus strain India-1967. Virus Res. 34, 207–236.
- Shchelkunov, S.N., Totmenin, A.V., 1995. Two types of deletions in orthopoxvirus genomes. Virus Genes 9, 231–245.
- Shchelkunov, S.N., Totmenin, A.V., Sandakhchiev, L.S., 1996. Analysis of the nucleotide sequence of 23.8 kbp from the left terminus of the genome of variola major virus strain India-1967. Virus Res. 40, 169–183.
- Skinner, M.A., Buller, R.M., Damon, I.K., Lefkowitz, E.J., McFadden, G., McLnnes, C.J., Mercer, A.A., Moyer, R.W., Upton, C., 2011. Family Poxviridae. In: King, A.M.Q., Adams, M.J., Carstens, E.B., Lefkowitz, E.J. (Eds.), Virus Taxonomy IX. Elsevier Inc., San Diego and London, pp. 291–309.
- Smith, G.L., 2007. Genus Orthopoxvirus: Vaccinia virus. In: Mercer, A.M., Schmidt, A., Weber, O. (Eds.), Poxviruses. Birkhauser Verlag, Basel, pp. 1–45.
- Smith, I.R.L., Crook, N., 1988. In vivo isolation of baculovirus genotypes. Virology 166, 240–244.
- Stajich, J.E., Block, D., Boulez, K., Brenner, S.E., Chervitz, S.A., Dagdigian, C., Fuellen, G., Gilbert, J.G., Korf, I., Lapp, H., Lehväslaiho, H., Matsalla, C., Mungall, C.J., Osborne, B.I., Pocock, M.R., Schattner, P., Senger, M., Stein, L.D., Stupka, E., Wilkinson, M.D., Birney, E., 2002. The Bioperl toolkit: Perl modules for the life sciences. Genome Res. 12, 1611–1618.
- Striebel, F., Imkamp, F., Sutter, M., Steiner, M., Mamedov, A., Weber-Ban, E., 2009. Bacterial ubiquitin-like modifier Pup is deamidated and conjugated to substrates by distinct but homologous enzymes. Nat. Struct. Mol. Biol. 16, 647–651.
- Takemoto, Y., Mitsuhashi, W., Murakami, R., Konishi, H., Miyamoto, K., 2008. The N-terminal region of an entomopoxvirus fusolin is essential for the enhancement of peroral infection, whereas the C-terminal region is eliminated in digestive juice. J. Virol. 82, 12406–12415.
- Taylor, J.M., Barry, M., 2006. Near death experiences: poxvirus regulation of apoptotic death. Virology 344, 139–150.
- Thézé, J., Takatsuka, J., Li, Z., Gallais, J., Doucer, D., Arif, B., Nakai, M., Herniou, E.A., 2013. New insights into the evolution of *Entomopoxvirinae* from the complete genome sequences of four entomopoxviruses infecting *Adoxophyes honmai*, *Choristoneura biennis*, *Choristoneura rosaceana* and *Mythimna separata*. J. Virol. 87, 7992–8003.
- Turner, P.C., Moyer, R.W., 1998. Control of apoptosis by poxviruses. Semin. Virol. 8, 453–469.
- Upton, C., Slack, S., Hunter, A.L., Ehlers, A., Roper, R.L., 2003. Poxvirus orthologous clusters: toward defining the minimum essential poxvirus genome. J. Virol. 77, 7590–7600.
- Upton, C., Macen, J.L., Maranchuk, R.A., Delange, A.M., McFadden, G., 1988. Tumorigenic poxviruses: Fine analysis of the recombination junctions in

- malignant rabbit fibroma virus, a recombinant between Shope fibroma virus
- and myxoma virus. Virology 166, 229–239. Van Oers, M.M., Vlak, J.M., 1997. The baculovirus 10-kDa protein. J. Invertebr. Pathol. 70, 1–17.
- Vialard, J.E., Yuen, L., Richardson, C.D., 1990. Identification and characterization of a baculovirus occlusion body glycoprotein which resembles spheroidin, an entomopoxvirus protein. J. Virol. 64, 5804–5811.
- Wijonarko, A., Hukuhara, T., 1998. Detection of a virus enhancing factor in the spheroid, spindle, and virion of an entomopoxvirus. J. Invertebr. Pathol. 72,
- Willer, D.O., McFadden, G., Evans, D.H., 1999. The complete genome sequence of shope (rabbit) fibroma virus. Virology 264, 319–343.
- Zdobnov, E.M., Apweiler, R., 2001. InterProScan-an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17, 847–848.