FACULDADE DE ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO – UNICAMP EA-042/044 – 2.PROVA – 21/11/2007

 Seja um produto cuja estrutura de fabricação está esquematizada na figura a seguir; os números ao lado dos arcos indicam a quantidade utilizada do componente em cada unidade da etapa posterior Ex.: Uma unidade do componente I utiliza 2 unidades do componente III.

O quadro a seguir mostra os custos de preparação (A), os custos unitários de produção(c), e os custos unitários de estocagem (h) para o componente I. O tempo de fabricação de um lote deste componente é de uma semana, e o estoque inicial é de 10 unidades.

 t	7	8	9	10
A^{t}	30	30	35	35
c^t	5,0	5,0	5,1	5,1
h ^t	0,6	0,6	0,8	0,7

O quadro a seguir mostra os custos de preparação (A), os custos unitários de produção(c), os custos de estocagem (h), os estoques iniciais(e), e os tempos de fabricação dos lotes (T) em semanas. Todos estes custos são constantes no tempo.

Componente	A	c	h	е	T
II	30	6	0,2	15	1
III	20	3	0,3	50	2
IV	50	2	0,1	20	2

O quadro a seguir mostra as demandas semanais previstas do produto.

Semana	7	8	9	10
Demanda	45	60	30	40

Determine os planos de produção dos componentes:

- a) Componente I através do método de Wagner-Whittin.
- b) Componente II através do método de Silver-Meal.
- c) Componente III através do método de lote-por-lote.
- d) Componente IV através do método lote-por-lote.

2) Seja um projeto composto das atividades dada na tabela a seguir.

Ativid.	Ativ.	Duração	Duração	Duração	Duração	α
	Preced.	Otimista	esperada	pessimista	mínima	
		(mês) A	(mês) ∽	(mês)	(mês)	
Ą	-	2	4	6	2	1
A B	-	4	5 . :	6	3	2
(C)	A, B	2	6	10	1	4
D	A, B	3	6	9	2	2
Ê	C, A	3	4	5	3	3
É F	B, E	5	9 .	13	2	5
G	F	3	8	11	3	4
H	D, F	2	4	6	2	4

- a) Montar o grafo representativo do projeto.
- b) Utilizando o método CPM e adotando como a duração das atividades a duração esperada, determine a duração total do projeto e as atividades críticas.
- c) Sendo α_i o custo para apressar a atividade i em um mês. Quanto custaria apressar o projeto em 4 meses e quais as atividades seriam alteradas?
- d) Através do método PERT determine a duração total esperada e o seu desvio padrão.