Author: Cresht June 26th, 2025

Discrete Mathematics (2024 Program) - HCMUS - January 8th, 2025 Semester 1 : Year 2024 - 2025 - Time Duration: 90 minutes

Question 1 (1.5 points)

Given $a_0 = 4$, $a_1 = 24$ and $a_{n+2} = 6a_{n+1} - 9a_n - (4n - 17)2^n$. Calculate a_n in accordance to $n \ (n \ge 0)$.

Question 2 (3.25 points = 1.25pts + 1.25pts + 0.75pts)

Given m = 43615880, n = -22198176, a = 36567 and b = 6886.

- a) Analyze elements m and n so as to find d=(m,n), e=[m,n] and a minimalist form of $\frac{m}{n}$
- b) Use Euclidean Algorithm to find $r,s,u,v\in\mathbb{Z}$ satisfying $\mathbf{l}=ra+sb$ and $\frac{l}{ab}=\frac{u}{a}+\frac{v}{b}$
- c) Describe the integer divisors of m and calculate the possible number of those in m?

Question 3 (3.25 points = 1.25pts + 1pt + 1pt)

- a) Given a binary relation \mathcal{R} on $S = \{1, 2, 3\}$ defined by $\forall x, y \in S$, $x \hat{\mathcal{R}} y \iff (x y)^2 \leq 1$. List all sets $H = \{(x, y) \in S^2 | x \hat{\mathcal{R}} y\}$. Evaluate the following properties: Reflexive, Symmetric, Anti-symmetric and Transitive of relation \mathcal{R} .
- b) Upon $T = \{1, 2, 4, 5, 7, 10, 12, 24, 30\}$, giving ordinal relation Ω identified by $\forall x, y \in T$, $x \hat{\Omega} y \iff y = x$ or containing **even integer k** such that $y = \mathbf{k}\mathbf{x}$ (k depends on x and y). Draw Hasse diagram of (T, Ω) and find smallest largest minimum and maximum (if possible) of (T, Ω) .
- c) Apply b) part of **Question 2** in solving the equation $\overline{6886} \cdot \overline{y} = \overline{238}$ in \mathbb{Z}_{36567} . Derive the solution of the equation $\overline{6886 \times 6} \cdot \overline{x} = \overline{238 \times 6}$ in \mathbb{Z}_n with $\mathbf{n} = 36567 \times 6$

Question 4 (2 points = 1pt + 1pt) Given boolean function f following by boolean variables x, y, z, t identified by

$$f(x, y, z, t) = x \, \overline{y} \, z \, t \vee \overline{x} \, \overline{z} \, t \vee x \, y \, z \, \overline{t} \vee \overline{x} \, y \, \overline{t} \vee x \, \overline{y} \, z \, \overline{t} \vee \overline{x} \, z \, t$$

- a) Draw the Karnaugh map for f and identify its largest implicants (prime implicants).
- b) Find the minimal expressions for f (i.e, the minimized Boolean expressions).