18.785 Analytic Number Theory Problem Set #9

Holden Lee

Problem 1

For $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right]$ let H_{θ} denote the parabolic subgroup fixing the line in \mathbb{R}^2 that forms an angle of θ with the +x axis. Let $k_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$, rotation by θ . Then

$$k_{\theta}^{-1}H_{\theta}k_{\theta}=H_0.$$

However, the matrices fixing the x axis have lower left hand corner 0 so

$$H_0 = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \in \mathrm{SL}_2(\mathbb{R}) \right\}.$$

Hence $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in H_{\theta}$ iff

$$\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \in H_0,$$

i.e. iff the lower left hand corner of the above matrix is 0. By calculation:

$$-a\sin\theta\cos\theta + c\cos^2\theta - b\sin^2\theta + d\sin\theta\cos\theta = 0$$

First consider the case $\theta \neq 0$. Then dividing by $-\sin^2 \theta$ gives

$$a \cot \theta + b - c \cot^2 \theta - d \cot \theta = 0.$$

Putting $z = \cot \theta$, this is equivalent to

$$az + b - cz^{2} - dz = 0$$

$$\iff \frac{az + b}{cz + d} = z,$$

i.e. this is equivalent to $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ fixing $z = \cot \theta$. Since cot is bijective, we've shown that all parabolic subgroups are isotropy subgroups and vice versa, except for H_0 and the isotropy subgroup of ∞ . But in this case, $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_2(\mathbb{Z})$ is in H_0 iff $c \neq 0$, iff $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ fixes ∞ , as needed.

Problem 3

Problem 2

Note

$$||f||_p^p = \int_G |f|^p d\mu = \int_{\{x:|f| \ge 1\}} |f|^p d\mu + \int_{\{x:|f| < 1\}} |f|^p d\mu$$
$$\ge \mu(\{x:|f| \ge 1\}).$$

Hence $f \in L^p(G)$ implies $\mu(\{x : |f| \ge 1\}) < \infty$. Additionally noting that $\max |f|^r < \infty$ since f is bounded, we get

$$||f||_r^r = \int_G |f|^r d\mu = \int_{\{x:|f| \ge 1\}} |f|^r d\mu + \int_{\{x:|f| < 1\}} |f|^r d\mu$$

$$\le \mu(\{x:|f| \ge 1\}) \max |f|^r + \int_{\{x:|f| < 1\}} |f|^p d\mu$$

$$\le \mu(\{x:|f| \ge 1\}) \max |f|^r + \int_G |f|^p d\mu$$

$$< \infty.$$

Hence $f \in L^r(G)$.

Problem 3

By Theorem 8.5.2, f is continuous. By Harish-Chandra (Theorem 8.6.1), there exists a smooth function α with compact support such that $f * \alpha = f$. Young's inequality says that for $p, q, r \in [1, \infty]$ such that $\frac{1}{p} + \frac{1}{q} = \frac{1}{s} + 1$,

$$||f * \alpha||_r \le ||f||_n ||\alpha||_s$$
.

Putting in $q = s = \infty$ gives

$$||f * \alpha||_{\infty} \le ||f||_p ||\alpha||_{\infty}.$$

The L^{∞} norm is just the maximum of the function (provided that the function is continuous). Using $f * \alpha = f$ and the fact that $\max(\alpha) < \infty$ (α is continuous on a compact set), this becomes

$$\max(f) \le ||f||_p \max(\alpha) < \infty.$$

Hence f is bounded. By Problem 2, $f \in L^r(G)$ for $r \ge p$.