Crittografia e Combinatoria

Amati Pierluigi

24 febbraio 2020

Indice

1	Intr	oduzione	J
2	Teo	ria dei numeri	2
	2.1	Divisibilità	4
	2.2	Teorema dei numeri primi	٠
	2.3	Teorema fondamentale dell'aritmetica	٠

1 Introduzione

La **crittologia** è lo studio dei metodi per mantenere sicure le comunicazioni che avvengono in un canale *non sicuro*.

Essa si suddivide in **crittografia**, che studia la progettazione di tali metodi, e **crittanalisi**, che invece si occupa di infrangerli.

In generale in una comunicazione un messaggio \mathbf{m} viene cifrato all'origine attraverso un algoritmo di cifratura ENC e una chiave di cifratura \mathbf{k} e viene decifrato alla destinazione con un algoritmo di decifratura DEC (idealmente ENC^{-1}) e una chiave di decifratura \mathbf{k} . L'algoritmo di cifratura è solitamente noto a tutte le parti, ma è la chiave ad essere segreta.

$$ENC(m,k) = c$$

$$DEC(c, k) = m$$

Ipotizzando una comunicazione tra Alice e Bob, dove entrambi possiedono le chiavi di cifratura, un soggetto esterno malintenzionato, Eve (a.k.a. Evil), potrebbe:

- leggere il messaggio;
- trovare la chiave e quindi decifrare tutti i messaggi scambiati tra Alice e Bob;
- alterare un messaggio in modo tale da far sembrare che sia effettivamente spedito da una delle due parti;
- fingersi una delle due parti.

Tipologie di cifratura Esistono principalmente due tipologie di cifratura:

- la cifratura **simmetrica**, in cui la chiave di cifratura è identica alla chiave di decifratura;
- la cifratura **asimmetrica**, in cui la chiave di cifratura (generalmente pubblica) è differente dalla chiave di decifratura (privata).

2 Teoria dei numeri

2.1 Divisibilità

Definizione Siano $a, b \in \mathbb{N}$, con $a \neq 0$, si dice che a divide b (a|b) se esiste $k \in \mathbb{N}$ tale che b = ak. In altre parole, b è un multiplo di a.

Proprietà (dimostrazioni¹)

- $\bullet a | a$
- $\bullet \ a|0$
- 1|b
- se $a|b \in b|c$, allora a|c
- se $a|b \in a|c$, allora a|(sb+tc), con $s,t \in \mathbb{N}$

¹[Trappe p.64]

2.2 Teorema dei numeri primi

Sia $\Pi(x)$ la quantità di numeri primi < x, definita $\Pi(x) \simeq \frac{x}{\ln{(x)}}$,

$$\Rightarrow \lim_{x \to \infty} \frac{\Pi(x) \ln(x)}{x}.$$

2.3 Teorema fondamentale dell'aritmetica

Enunciato Ogni numero $n \in \mathbb{N}$ è un prodotto di numeri primi.

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_s^{\alpha_s}$$

Si dice fattorizzazione la ricerca di tale insieme di numeri primi.

Definizione Si dice Massimo Comun Divisore tra a e b, il più grande numero intero che divide <math>a e b [gcd(a,b)].

Algoritmo di Eulero

Identità di Bezout