Foundations of Computer Science HW 8

Greg Stewart

April 23, 2018

22.14(a)-(c) Answer True or False

- (a) A bijection must be an injection.
- (b) There is a bijection from \mathbb{Q} to \mathbb{R}
- (c) There is a bijection from \mathbb{Q} to \mathbb{R}

22.18(a)-(c) Prove or Disprove

- (a) \mathbb{Z}^2 is the set of pairs $\{(z_1, z_2) \mid z_1, z_2 \in \mathbb{Z}\}$. \mathbb{Z}^2 is countable.
- (b) \mathbb{Q} is the set of rational numbers, $\mathbb{Q} = \{r \mid r = \frac{a}{b}, a \in \mathbb{Z}, and b \in \mathbb{N}\}$. \mathbb{Q} is countable.
- (c) F is the set of all functions from $\mathbb N$ to $\mathbb N, F=\{f\mid f:\mathbb N\to\mathbb N\}.$ F is countable.

24.5(d)-(f) Give DFA's for the following

- (d) The strings which begin with 10 and end with 01.
- (e) $\mathcal{L} = \{01^{\bullet n} \mid n \ge 0\}$
- (f) The language with all strings whose length is divisible by 3.

25.4(a)-(c) Give a DFA and a CFG for the following

- (a) $\mathcal{L} = \{01^{\bullet n} \mid n \ge 0\}$
- (b) $\mathcal{L} = \{0^{\bullet n} 1^{\bullet n} \mid 0 \le n \le 5\}$
- (c) $\mathcal{L} = \{strings \ which \ end \ in \ a \ 1\}$

25.15(a)-(c) Consider the language $\mathcal{L} = \{\epsilon, 1, 11, 111, \dots\} = \{1\}*$

- (a) Show that the CFG $S \to \epsilon \mid 1 \mid 1S$ generates \mathscr{L} . Give a derivation of 111.
- (b) Show that the CFG $S \to \epsilon \mid 1 \mid SS$ generates \mathscr{L} . Give two different derivations of 111.
- (c) A leftmost (rightmost) derivation replaces the leftmost (rightmost) variable at every step. For the grammar in (b), give left and rightmost derivations of 111.

25.16(a)-(c) Given the CFG $S \to A1B; A \to \epsilon \mid 0A; B \to \epsilon \mid 0B \mid 1B$, Give leftmost and rightmost derivations, and parse trees, of

- (a) 00101
- (b) 1001
- (c) 00011

26.4(a)-(b) Give high-level pseudocode for Turing Machines that solve these problems. In some cases you are asked for a decider. In others, you are asked for a transducer.

- (a) Regular languages: $\mathcal{L}_1 = \{*01*\}$ and $\mathcal{L}_2 = \{*01\}$
- (b) Not CFL: $\mathcal{L} = \{0^{\bullet n} \# 1^{\bullet n} \# 0^{\bullet n}\}$ where # is a punctuation symbol.