Seminarul 2 Algoritmul simplex. Metoda celor 2 faze

1) Se consideră problema:

$$\inf \left\{ 3x_1 - x_2 - x_3 + x_4 \right\}$$

$$\begin{cases} x_1 + x_2 - x_3 + 3x_4 = 2 \\ -2x_1 + x_2 + 2x_3 - x_4 = -1 \end{cases}$$

$$x_i \ge 0, \quad i = \overline{1, 4}.$$

a) Să se verifice dacă baza $B = (A^2 A^3)$ este primal admisibilă.

$$B = \begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix}, \text{ inverse: } \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ -\frac{1}{3} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \not\geq 0.$$

b) Să se scrie tabloul simplex pentru $B = (A^1 A^2)$ și să se rezolve problema.

	\bar{x}	x_1	x_2	x_3	x_4
x_1	1	1	0	-1	<u>4</u> 3
x_2	1	0	1	0	<u>5</u> 3
	2	0	0	-2	<u>4</u> 3

2) Să se rezolve problema

$$\inf \left\{ -2x_1 - x_2 + 2x_3 \right\}$$

$$\begin{cases} x_1 - x_3 \le 2 \\ -x_1 + x_2 + 2x_3 = 1 \end{cases}$$

$$x_i \ge 0, \quad i = \overline{1, 3}.$$

3) Să se rezolve problema cu metoda celor două faze:

$$\inf \left\{ x_1 - 2x_2 + 2x_3 - 3x_4 \right\}$$

$$\left\{ 2x_1 + x_2 - 3x_3 - 3x_4 = -1 - x_1 + 3x_2 + 2x_3 + x_4 = 1 \right.$$

$$x_i \ge 0, \quad i = \overline{1, 4}.$$

Faza I

	\bar{x}	x_1	x_2	x_3	x_4	x_5	x_6
<i>x</i> ₃	<u>4</u> 11	$-\frac{7}{11}$	0	1	10 11	<u>3</u> 11	11
x_2	1 11	<u>1</u> 11	1	0	$-\frac{3}{11}$	$-\frac{2}{11}$	<u>3</u> 11
	0	0	0	0	0	-1	-1

Faza II

	\bar{x}	x_1	x_2	x_3	x_4
<i>x</i> ₃	<u>4</u> 11	$-\frac{7}{11}$	0	1	10 11
x_2	<u>1</u> 11	<u>1</u> 11	1	0	$-\frac{3}{11}$
	<u>6</u> 11	$-\frac{27}{11}$	0	0	<u>59</u> 11

	\bar{x}	x_1	x_2	x_3	x_4
<i>x</i> ₄	<u>2</u> 5	$-\frac{7}{10}$	0	11 10	1
x_2	<u>1</u> 5	$-\frac{1}{10}$	1	<u>3</u> 10	0
	$-\frac{8}{5}$	13 10	0	$-\frac{59}{10}$	0

Problema are optimul $-\infty$.

4) Să se rezolve problema cu metoda celor două faze:

$$\inf \left\{ 2x_1 - 3x_2 + x_3 \right\}$$

$$\begin{cases} 2x_1 + x_2 - 3x_3 = 6 \\ x_1 + x_2 + 2x_3 = -2 \end{cases}$$

$$x_i \ge 0, \quad i = \overline{1,3}.$$

Faza I

Problema nu admite soluții.

5) Să se rezolve problema cu metoda celor două faze:

$$\inf \left\{ -x_1 + x_2 - 2x_3 - 3x_4 \right\}$$

$$\left\{ 4x_1 - x_2 - 3x_3 + 2x_4 = 8 \right.$$

$$\left. x_1 + 3x_2 + 2x_3 + x_4 = 3 \right.$$

$$\left. 2x_1 - 7x_2 - 7x_3 = 2 \right.$$

$$\left. x_i \ge 0, \ i = \overline{1, 4}. \right.$$

Faza I

	\bar{x}	x_1	x_2	x_3	x_4	x_5	x_6	<i>x</i> ₇
x_5	8	4	-1	-3	2	1	0	0
<i>x</i> ₆	3	1	3	2	1	0	1	0
<i>x</i> ₇	2	2	-7	-7	0	0	0	1
	13	7	-5	-8	3	0	0	0

	\bar{x}	x_1	x_2	x_3	x_4	x_5	x_6	<i>x</i> ₇
<i>X</i> 5	4	0	13	11	2	1	0	-2
<i>x</i> ₆	2	0	<u>13</u> 2	11 2	1	0	1	$-\frac{1}{2}$
x_1	1	1	$-\frac{7}{2}$	$-\frac{7}{2}$	0	0	0	1/2
	6	0	<u>39</u> 2	33 2	3	0	0	$-\frac{7}{2}$

	\bar{x}	x_1	x_2	x_3	x_4	x_5	x_6	x_7
x_5		ll .	0					-1
<i>x</i> ₄	2	0	<u>13</u> 2	11 2	1	0	1	$-\frac{1}{2}$
x_1	1	1	$-\frac{7}{2}$	$-\frac{7}{2}$	0	0	0	1/2
	0	0	0	0	0	0	-3	-2

Faza II