This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

010503288 WPI Acc No: 1996-000239/199601 Related WPI Acc No: 1996-010828 XRAM Acc No: C96-000114 Biologically degradable mineral fibre compsn. - comprises silicon@ dioxide, and oxide(s) of calcium@, magnesium@, sodium@, boron@, phosphorus@, aluminium@, titanium@, iron@, barium@, manganese@ and potassium@. Patent Assignee: ISOVER SAINT-GOBAIN (COMP); GRUENZWEIG & HARTMANN AG (GRUZ) Inventor: HOLSTEIN W; LOHE P; MAUGENDRE S; SCHWAB W Number of Countries: 006 Number of Patents: 006 Patent Family: Applicat No Kind Date Week Kind Date Patent No 199601 19951123 DE 4417230 Α 19940517 A1 DE 4417230 19950516 199613 NO 9600192 19960116 WO 95EP1842 Α NO 96192 Α 19960116 19960116 WO 95EP1842 Α 19950516 199615 FI 9600209 Α 19960116 FI 96209 Α 19960327 ZA 953954 Α 19950516 199619 ZA 9503954 Α 19970812 BR 956228 Α 19950516 BR 9506228 Α WO 95EP1842 19950516 Α 19950516 Α 19961120 CN 95190432 Α 199804 CN 1136307 Priority Applications (No Type Date): DE 4417230 A 19940517; DE 1003169 A Cited Patents: FR 2690438; GB 2083017; WO 8705007; WO 8912032; WO 9209536; WO 9315028 Patent Details: Patent No Kind Lan Pg Main IPC Filing Notes DE 4417230 A1 4 C03C-013/06 Α 15 C03C-000/00 ZA 9503954 Based on patent WO 9531410 BR 9506228 Α C03C-013/00 NO 9600192 Α C03C-013/00 FI 9600209 C03C-000/00 Α C03C-013/00 CN 1136307 Α Abstract (Basic): DE 4417230 A Mineral fibre compsn. comprises (in wt.%): 40-67 SiO2, 20-45 CaO, 0-12 MgO, 0-10 Na2O, 0-15 B2O3, 1-15 Na2O+B2O3, 0-5 P2O5, 0-2 Al2O3, and 0-5 TiO2, Fe2O3, BaO, MnO and K2O. ADVANTAGE - The compsn. is biologically degradable, and is temp. resistant. Dwq.0/1Title Terms: BIOLOGICAL; DEGRADE; MINERAL; FIBRE; COMPOSITION; COMPRISE; SILICON; DI; OXIDE; OXIDE; CALCIUM; MAGNESIUM; SODIUM; BORON; PHOSPHORUS; ALUMINIUM; TITANIUM; IRON; BARIUM; MANGANESE; POTASSIUM Derwent Class: F01; L01 International Patent Class (Main): C03C-000/00; C03C-013/00; C03C-013/06 File Segment: CPI Manual Codes (CPI/A-N): F01-A03; F01-D09; L01-A01B; L01-A05 Derwent Registry Numbers: 1498-U; 1499-U; 1503-U; 1508-U; 1510-U; 1517-U; 1523-U; 1544-U; 1694-U; 1936-U; 1966-U

10/9/1 DIALOG(R)File 351:Derwent WPI (c) 2002 Thomson Derwent. All rts. reserv.

Derwent WPI (Dialog® File 351): (c) 2002 Thomson Derwent. All rights reserved.

© 2002 The Dialog Corporation

19 BUNDESREPUBLIK

DEUTSCHLAND

[®] Offenlegungsschrift[®] DE 44 17 230 A 1

(5) Int. Cl.⁶: C 03 C 13/06 // C03B 37/06 (C03C

// C03B 37/06 (C03C 13/06,3:076)C03C 3:087,3:078,3:089, 3:097

DEUTSCHES PATENTAMT

(21) Aktenzeichen:

P 44 17 230.3

(2) Anmeldetag:

17. 5. 94

(3) Offenlegungstag:

23. 11. 95

(71) Anmelder:

Grünzweig + Hartmann AG, 67059 Ludwigshafen,

(74) Vertreter:

Kador, U., Dipl.-Chem. Dr.rer.nat., Pat.-Anw., 80469 München (72) Erfinder:

Lohe, Peter, 67112 Mutterstadt, DE; Holstein, Wolfgang, Dr., 35315 Homberg, DE; Schwab, Wolfgang, 68723 Plankstadt, DE; Maugendre, Stéphane, Précy sur Oise, FR

Prüfungsantrag gem. § 44 PatG ist gestellt

- Mineralfaserzusammensetzung
- Biologisch abbaubare Mineralfaserzusammensetzung, gekennzeichnet durch folgende Bestandteile in Gewichtspro-

sio ₂	40 bis 67
CaO	20 bis 45
MgO	0 bis 12
Na ₂ O	0 bis 10
B ₂ O ₃	0 bis 15
$Na_{2}O + B_{2}O_{3}$	1 bis 15
P ₂ 0 ₅	0 bis 5
A1 ₂ O ₃	0 bis 2
TiO ₂ , Fe ₂ O ₂ , BaO, MnO, K ₂ O	0 bis 5.

Beschreibung

Die Erfindung bezieht sich auf eine Mineralfaserzusammensetzung, die biologisch abbaubar ist.

Es sind im Stande der Technik einige Mineralfaserzusammensetzungen beschrieben, von denen angegeben wird, daß sie biologisch abbaubar sind.

Die biologische Abbaubarkeit von Mineralfaserzusammensetzungen ist insofern von großer Bedeutung, weil verschiedene Untersuchungen darauf hinweisen, 10 daß Mineralfasern mit sehr kleinen Durchmessern im Bereich von kleiner 3 µm im Verdacht stehen, kanzerogen zu sein, biologisch abbaubare Mineralfasern solcher Dimensionen aber keine Kanzerogenität zeigen.

Neben der biologischen Abbaubarkeit sind jedoch 15 Gewichtsprozent ist besonders bevorzugt. auch die mechanischen und thermischen Eigenschaften der Mineralfasern bzw. der daraus hergestellten Produkte, sowie die Verarbeitbarkeit der Mineralfaserzusammensetzung von ausschlaggebender Bedeutung. Mineralfasern werden beispielsweise in großem Umfang 20 zu Dämmzwecken eingesetzt. Insbesondere für die Verwendung im Industriesektor ist eine ausreichende Temperaturbeständigkeit der Mineralfasern notwendig.

Ferner muß die Mineralfaserzusammensetzung eine Verarbeitbarkeit nach bekannten Verfahren zur Her- 25 stellung von Mineralfasern mit kleinem Durchmesser, wie beispielsweise dem Düsenblasverfahren, ermögli-

Aufgabe der Erfindung ist die Schaffung einer neuen Mineralfaserzusammensetzung, die sich durch biologi- 30 sche Abbaubarkeit auszeichnet, die gute Temperaturbeständigkeit aufweist und sich gut verarbeiten läßt.

Der Erfindung liegt die Erkenntnis zugrunde, daß diese Aufgabe durch eine Mineralfaserzusammensetzung gelöst werden kann, die im wesentlichen aus Silicium- 35 dioxid und Erdalkalioxiden besteht, und die ferner Boroxid enthält.

Es hat sich gezeigt, daß solche Mineralfaserzusammensetzungen die Kombination der notwendigen Eigenschaften, nämlich biologische Abbaubarkeit, Tempe- 40 raturbeständigkeit sowie gute Verarbeitbarkeit erfüllen.

Gegenstand der Erfindung ist eine Mineralfaserzusammensetzung, die biologisch abbaubar ist, die gekennzeichnet ist durch folgende Bestandteile in Gewichtsprozent:

SiO₂	40 bis 67	
CaO	20 bis 45	
MgO	0 bis 12	
Na ₂ O	0 bis 10	•
B_2O_3	0 bis 15	
$Na_2O + B_2O_3$	1 bis 15	
P ₂ O _{5.}	0 bis 5	
Al ₂ O ₃	0 bis 2	
TiO ₂ , Fe ₂ O ₃ , BaO, MnO, K ₂ O	0 bis 5.	

Die erfindungsgemäßen Mineralfaserzusammensetzungen sind nach dem Düsenblasverfahren verziehbar. Die erhaltenen Fasern haben gute Temperaturbestän- 60 digkeit. Überraschenderweise zeigen die Mineralfaserzusammensetzungen biologische Abbaubarkeit.

Der Zusatz von Boroxid bewirkt eine Schmelzpunkterniedrigung und die Ausbildung von Mikrokristallen, die eine bessere Handhabbarkeit bewirken.

Vorzugsweise weisen die erfindungsgemäßen Mineralfaserzusammensetzungen folgende Bestandteile in Gewichtsprozent auf:

SiO₂	45 bis 60
CaO	25 bis 45
MgO	5 bis 10
Na₂O	O bis 5
B ₂ O ₃	1 bis 15
$Na_2O + B_2O_3$	3 bis 10
P ₂ O ₅	Obis 1
Al ₂ O ₃	weniger als 1
TiO ₂ , Fe ₂ O ₃ , BaO, MnO, K ₂ O	Obis 3
Fe ₂ O ₃	weniger als 1.

Ein Gehalt von Siliciumoxid im Bereich von 53 bis 58

Bezüglich des Boroxids wird ein Bereich von 3 bis 8 Gewichtsprozent besonders bevorzugt, insbesondere sind 4 bis 6 Prozent vorteilhaft.

Zur Beurteilung der biologischen Abbaubarkeit wurde die Standardgrießprobe der Deutschen Glasgesellschaft herangezogen. Dies ist eine einfach durchführbare Methode und gibt ein hinreichendes Maß für die biologische Abbaubarkeit. Die Methode ist beschrieben in L. Springer, "Laboratoriumsbuch für die Glasindustrie", 3. Aufl. 1950, Halle/S: W. Knapp Verlag.

Das Temperaturverhalten der Mineralfasern wurde mit der Schwedischen Methode ermittelt. Bei dieser Methode wird ein Silitrohrofen mit liegendem, beidseitig offenem Arbeitsrohr mit einer Länge von 350 mm und einem Innendurchmesser von 27 mm verwendet. Im Ofenzentrum ist ein keramisches Auflageplättchen mit 30 × 20 × 3 mm zum Aufstellen des Prüfkörpers. Der Prüfkörper hat Abmessungen von $12 \times 12 \times 12$ mm oder 12 mm Ø x 12 mm Höhe. Die Rohdichte beträgt im Normalfall 100 kg/m³. Die Temperatursteigerung beträgt 5 K/min. Die Ermittlung der Prüfkörperhöhenänderung erfolgt laufend mit einer Ableseoptik.

Die Erfindung wird nachstehend anhand von Beispielen näher beschrieben.

Beispiel 1

Es wurde eine Mineralwolle mit folgender Zusammensetzung in Gewichtsprozent produziert:

SiO₂	50
Al_2O_3	0,8
Fe ₂ O ₃	0,3
CaO	41,1
MgO	0,6
Na ₂ O	0,4
K ₂ O	0,1
B_2O_3	5,2.

45

50

55

Diese Zusammensetzung konnte nach dem Düsenblasverfahren bei einer Verziehtemperatur von 1360°C zu Mineralfasern mit einem mittleren Durchmesser von 1,7 µm gut verarbeitet werden.

Eine Untersuchung gemäß der Standardgrießprobe der Deutschen Glasgesellschaft ergab einen Wert von 35 mg/kg und somit einen Wert für hohe biologische Abbaubarkeit.

Die Ermittlung des Temperaturverhaltens gemäß der Schwedischen Methode ergab eine Temperaturbeständigkeit bei 5% Höhenminderung von 740°C, was aus dem zugehörigen in der einzigen Zeichnung beispielhaft dargestellten Schaubild deutlich zu erkennen ist.

25

30

3

Beispiel 2

Es wurde eine Mineralwolle mit folgender Zusammensetzung in Gewichtsprozent produziert:

SiO ₂	56,5	
Al ₂ O ₃	0,3	
Fe ₂ O ₃	0,3	
CaO	29,1	
MgO	7,8	
Na₂O	0,5	
B_2O_3	5,0.	

Diese Zusammensetzung konnte nach dem Düsen- 15 nissen führen. blasverfahren bei einer Verziehtemperatur von 1350°C zu Mineralfasern mit einem mittleren Durchmesser von 1,8 µm gut verarbeitet werden.

Eine Untersuchung gemäß der Standardgrießprobe der Deutschen Glasgesellschaft ergab einen Wert von 20 39 mg/kg und somit einen Wert für hohe biologische Abbaubarkeit.

Die Ermittlung des Temperaturverhaltens gemäß der Schwedischen Methode ergab eine Temperaturbeständigkeit bei 5% Höhenminderung von 720°C.

Beispiel 3

Es wurde eine Mineralwolle mit folgender Zusammensetzung in Gewichtsprozent produziert:

SiO ₂	· 56	
Al ₂ O ₃	1,0	
CaO	30	
MgO	8	35
Na ₂ O	5.	

Diese Zusammensetzung konnte ebenfalls nach dem Düsenblasverfahren bei einer Verziehtemperatur von 40 1340°C zu Mineralfasern mit einem mittleren Durchmesser von 1,9 µm gut verarbeitet werden.

Eine Untersuchung gemäß der Standardgrießprobe der Deutschen Glasgesellschaft ergab einen Wert von 33 mg/kg und somit einen Wert für hohe biologische 45 Abbaubarkeit.

Die Ermittlung des Temperaturverhaltens gemäß der Schwedischen Methode ergab eine Temperaturbeständigkeit bei 5% Höhenminderung von 700°C.

Dieses Beispiel zeigt, daß auch Zusammensetzungen, 50 die kein Boroxid, jedoch einen gewissen Anteil an Natriumoxid enthalten, ebenfalls zu guten Ergebnissen führen.

Beispiel 4

Es wurde eine Mineralwolle mit folgender Zusammensetzung in Gewichtsprozent produziert:

SiO ₂	55	60
Al_2O_3	1,0	
CaO	30	
MgO	8,0	
Na ₂ O	5.0	
P ₂ O ₅	1,0	65

Diese Zusammensetzung konnte nach dem Düsenblasverfahren bei einer Verziehtemperatur von 1340°C zu Mineralfasern mit einem mittleren Durchmesser von 2 µm gut verarbeitet werden.

Eine Untersuchung gemäß der Standardgrießprobe der Deutschen Glasgesellschaft ergab einen Wert von 37 mg/kg und somit einen Wert für hohe biologische Abbaubarkeit.

Die Ermittlung des Temperaturverhaltens gemäß der Schwedischen Methode ergab eine Temperaturbeständigkeit bei 5% Höhenminderung von 700°C.

Dieses Beispiel zeigt abermals, daß auch Zusammensetzungen, die kein Boroxid, jedoch einen gewissen Anteil an Natriumoxid enthalten, ebenfalls zu guten Ergebnissen führen.

Patentansprüche

1. Mineralfaserzusammensetzung, die biologisch abbaubar ist, gekennzeichnet durch folgende Bestandteile in Gewichtsprozent:

SiO ₂	40 bis 67
CaO	20 bis 45
MgO	0 bis 12
Na ₂ O	0 bis 10
B_2O_3	0 bis 15
$Na_2O + B_2O_3$	1 bis 15
P ₂ O ₅	0 bis 5
Al ₂ O ₃	0 bis 2
TiO ₂ , Fe ₂ O ₃ , BaO, MnO, K ₂ O	0 bis 5.

2. Mineralfaserzusammensetzung nach Anspruch 1, gekennzeichnet durch folgende Bestandteile in Gewichtsprozent:

SiO ₂	45 bis 60
CaO	25 bis 45
MgO	5 bis 10
Na ₂ O	0 bis 5
B_2O_3	1 bis 15
$Na_2O \div B_2O_3$	3 bis 10
P ₂ O ₅	0 bis 1
Al ₂ O ₃	weniger als 1
TiO ₂ , Fe ₂ O ₃ , BaO, MnO, K ₂ O	0 bis 3
Fe ₂ O ₃	weniger als 1.

3. Mineralfaserzusammensetzung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Anteil an Siliciumdioxid 53 bis 58 Gewichtsprozent beträgt.

4. Mineralfaserzusammensetzung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Anteil an Boroxid 3 bis 8 Gewichtsprozent, insbesondere 4 bis 6 Gewichtsprozent, beträgt.

Hierzu 1 Seite(n) Zeichnungen

Nummer: Int. Cl.⁶:

Offenlegungstag:

D E 44 17 230 A1 C 03 C 13/06

23. November 1995

