Final Part1

Final Part1

- 1 Summary of Power Series Ansatz
- 2 Ansatz1: ODE with Analytic Coefficients
- **3** ODE Having Singular Points
 - 3. 1 Regular Singular Points
- 4 Ansatz2: Euler's Equation
- 5 Ansatz3: The Method of Frobenius
 - 5. 1 Basic Method
 - 5. 2 Find a Second Independent Solution
 - 5. 2. 1 Problem
 - 5. 2. 2 One Possible Solution
- 6 Bessel Equations of Order v
 - **6.** 1 Find the Indical and Recurrence Equations
 - 6. 2 Find the First Independent Solution
 - 6. 2. 1 Find the First Independent Solution with the Larger r_1
 - 6. 2. 2 The Bessel Function of the First Kind
 - **6.** 3 Find the Second Independent Solution ($v \notin \mathbb{N}$)
 - 6. 3. 1 Another Example: $v=\frac{1}{2}$
 - **6.** 4 Find the Second Independent Solution ($v \in \mathbb{N}$)
 - 6. 4. 1 Reduction of Order
 - 6. 4. 2 The Second Method only for v=0
 - 6. 4. 3 The Third Method
 - 6. 4. 4 The Bessel Function of the Second Kind
- 7 Transform Differential Equations to Bessel Equation

7. 1
$$x^2y'' + xy' + (a^2x^2 - v^2)y = 0$$

7. 2
$$x^2y'' + axy' + (x^2 - v^2)y = 0$$

7. 3
$$y'' - xy = 0$$

For **homogeneous linear ODEs** with **variable coefficients**, sometimes finding an explicit solution is difficult, then we use the method of **power series ansatz** to solve/approximate solutions.

Recall: homogeneous, linear, ordinary, variable coefficients.

1 Summary of Power Series Ansatz

- 1. Analyze the equation, decide whether we can use power series ansatz around some point
- 2. Choose which form of ansatz to use
- 3. Plug into the ansatz, get recurrence relationship of the coefficients

- 4. Set initial value of coefficients. solve for coefficients to get one or more independent solutions
- 5. If not enough independent solutions are found, using reduction of order to find more solutions
- 6. Obtain the general solution

2 Ansatz1: ODE with Analytic Coefficients

$$x\prime\prime + P(t)x\prime + Q(t)x = 0$$

Where P(t) and Q(t) are **analytic in a neiborhood of** t_0 .

" a neighborhood of t_0 " contains t_0

Then we can choose the *ansatz*

$$x(t) = \sum_0^\infty a_k (t-t_0)^k$$

Accordingly,

$$x\prime(t)=\sum_0^\infty ka_k(t-t_0)^{k-1}$$

$$x''(t) = \sum_{0}^{\infty} k(k-1)a_k(t-t_0)^{k-2}$$

Plug the three equations back, we can obtain the relationship of the coefficients $\{a_0, a_1, a_2, ...\}$.

Depending on the situation, after setting values for first n terms (always 2), we can solve 1 to n(expected) independent solutions.

If not enough indepedent solutions are found, sometimes we can use reduction of order to find more.

Comments:

• The solutions found should be valid within its radius of convergence

Radius of Convergence of a Power Series:

- $egin{align} ullet & rac{1}{R} = \lim_{n o \infty} rac{|c_{n+1}|}{|c_n|} \ ullet & rac{1}{R} = \lim_{n o \infty} \left|c_n
 ight|^{1/n} \ \end{split}$

3 ODE Having Singular Points

The general form of a homogeneous linear second-order ODE with variable coefficients:

$$P(t)x\prime\prime + Q(t)x\prime + R(t)x = 0$$

It is said to have a **singular point** at t_0 if $P(t_0) = 0$.

Generally around singular points, it's hard to decide or find continuous solutions. But there're some specific cases we can deal with.

3.1 Regular Singular Points

$$x\prime\prime + p(t)x\prime + q(t)x = 0$$

is said to have a **regular singular point** at t_0 if the functions $(t - t_0)p(t)$ and $(t - t_0)^2q(t)$ are **analytic in a neighborhood of** t_0 . A singular point which is not regular is said to be **irregular**.

The general claim is: if an equation has a regular sigular point at t_0 , then we can assume $p(t)=rac{p_{-1}}{t-t_0}+\sum_{j=0}^{\infty}p_j(t-t_0)^j$ $q(t)=rac{q_{-2}}{(t-t_0)^2}+rac{q_{-1}}{t-t_0}+\sum_{j=0}^{\infty}q_j(t-t_0)^j$ and use the ansatz $x(t)=(t-t_0)^r\sum_{k=0}^{\infty}a_k(t-t_0)^k$ to find solutions.

4 Ansatz2: Euler's Equation

$$t^2x'' + \alpha tx' + \beta x = 0, \quad \alpha, \beta \in \mathbb{R}$$

Analysis:

This is exactly the case where the equation $x'' + \alpha \frac{1}{t}x' + \beta \frac{1}{t^2}x = 0$, $\alpha, \beta \in \mathbb{R}$ is having a regular singular point at t = 0.

But for this specific case of the Euler's Equation, we can choose an easier ansatz.

We can choose the ansatz

$$x(t) = t^r$$

Inserting back and solve for r we get

$$r=-rac{lpha-1}{2}\pmrac{1}{2}\sqrt{(lpha-1)^2-4eta}$$

• $(\alpha - 1)^2 - 4\beta > 0$

$$x\left(t;c_{1},c_{2}
ight)=c_{1}t^{r_{1}}+c_{2}t^{r_{2}},\quad c_{1},c_{2}\in\mathbb{R}$$

ullet $(lpha-1)^2-4eta=0$, $r_1=r_2=rac{1-lpha}{2}$, need to use reduction of order

$$x\left(t;c_{1},c_{2}
ight)=c_{1}t^{r_{1}}+c_{2}t^{r_{1}}\ln t,\quad c_{1},c_{2}\in\mathbb{R}$$

Reduction of order:

For equation y'' + p(t)y' + q(t)y = 0, and a known solution $y_1(x)$, let $y_2(x) = v(x)y_1(x)$, then you can solve for v(x) using

$$y_1(t)v'' + (2y_1'(t) + p(t)y_1(t))v' = 0$$

• $(\alpha - 1)^2 - 4\beta < 0$

After getting $x_1(t)=t^{r_1}=t^\lambda(\cos(\mu\ln t)+i\sin(\mu\ln t)).$ $x_2(t)=t^{r_1}=t^\lambda(\cos(\mu\ln t)-i\sin(\mu\ln t)),$ further have $x\left(t;c_1,c_2\right)=c_1t^\lambda\cos(\mu\ln t)+c_2t^\lambda\sin(\mu\ln t),\quad c_1,c_2\in\mathbb{R}$

5 Ansatz3: The Method of Frobenius

5.1 Basic Method

$$x\prime\prime + p(t)x\prime + q(t)x = 0$$

$$t^2x\prime\prime + t(tp(t))x\prime + t^2q(t)x = 0$$

If it has a **regular singular point** at t=0, then we can write out

$$tp(t) = \sum_{j=0}^{\infty} p_j t^j$$

$$t^2q(t)=\sum_{j=0}^{\infty}q_jt^j$$

 p_j and q_j are known constants for us

We choose the Frobenius ansatz

$$x(t)=t^r\sum_{k=0}^\infty a_kt^k \qquad \quad a_0
eq 0$$

Accordingly,

$$x'(t) = \sum_{k=0}^{\infty} (r+k)a_k t^{r+k-1}$$

$$x''(t) = \sum_{k=0}^{\infty} (r+k)(r+k-1)a_k t^{r+k-2}$$

Plug back into the equations we then get

$$(r(r-1) + p_0r + q_0) a_0 = 0$$

$$\left((r+m)(r+m-1)+q_0+(r+m)p_0
ight)a_m++\sum_{k=0}^{m-1}\left(q_{m-k}+(r+k)p_{m-k}
ight)a_k=0 \hspace{1cm} m\geq 1$$

Setting

$$F(x) := x(x-1) + p_0x + a_0$$

We get the **indicial equation** and **recurrence equations** to solve for a_k

$$F(r) = 0 \ a_m F(r+m) = -\sum_{k=0}^{m-1} \left(q_{m-k} + (r+k)p_{m-k}
ight) a_k, \quad m \geq 1$$

With the recurrence equations, you can usually generate out a easier recurrence equation.

For good and different r_i solved by the indical equation, Ilus some assumed initial values for a_0 , a_1 , ..., we are possible to solve for all a_k .

If everything goes fine, with $r_1 \neq r_2$ are two GOOD solutions, you get two INDEPENDENT solutions.

Question

Find the series solution to the below equation in the vicinity of $x_0=0\,$

Answer

5.2 Find a Second Independent Solution

5.2.1 Problem

But things can go wrong if $r_1 = r_2 + N$, $N \in \mathbb{N}$

- ullet $r_1=r_2$: then need further work to obtain another solution
- $ullet r_1=r_2+N, N\in \mathbb{N}^+$: then though r_1 gives a solution, for r_2 , due to $F(r_2+N)=F(r_1)=0$,
 - o if the right-side of the recurrence equation vanishes for $F(r_2+m)=F(r_2+N)$, then a_N is arbitrary, by setting a_N as zero when dealing with r_1 (but you may not be able to do this), and as an arbitrary non-zero number when dealing with r_2 , we may further find a second independent solution. Though we can also use another general method
 - if the right-side of the recurrence equation doesn't vanish, need further work to obtain another solution

5.2.2 One Possible Solution

The recurrence equations can **give a relationship** $a_k(r)$, where you can view a_k as a function of r. Then we have

$$\left|x_2(t)=rac{\partial}{\partial r}igg(t^r\sum_{k=0}^{\infty}a_k(r)t^kigg)
ight|_{r=r_2}=c\cdot x_1(t)\ln t+t^{r_2}\sum_{k=0}^{\infty}a_k'\left(r_2
ight)t^k$$

where the constant $c \in R$ may vanish. If $r_1 = r_2$, then c = 1.

And a tricky way to find $a_{2k}^{\prime}(r_2)$ is to use

$$rac{a_{2k}'(r)}{a_{2k}(r)}=rac{d}{dr}\mathrm{ln}|a_{2k}(r)|$$

6 Bessel Equations of Order v

$$x^{2}y'' + xy' + (x^{2} - v^{2})y = 0$$

Having a regular singular point at 0.

The Method of Frobenius can be applied.

6.1 Find the Indical and Recurrence Equations

Choose the Frobenius ansatz

$$x(t) = t^r \sum_{k=0}^{\infty} a_k t^k \qquad \quad a_0
eq 0$$

Besides,

$$xp(x) = 1, \qquad p_0 = 1$$
 $x^2q(x) = x^2 - v^2, \qquad q_0 = -v^2, \quad q_2 = 1$

Setting

$$F(x) := x(x-1) + p_0x + q_0 = x^2 - v^2$$

We get the indicial equation and recurrence equations

$$F(r)=r^2-v^2=0 \ a_m F(r+m)=-\sum_{k=0}^{m-1}\left(q_{m-k}+(r+k)p_{m-k}
ight)a_k, \quad m\geq 1$$

Which gives us

$$egin{aligned} r^2-v^2&=0\ a_1((r+1)^2-v^2)&=0\ a_{m-2}&=-rac{a_{m-2}}{(m+r+v)(m+r-v)},\quad m\geq 2 \end{aligned}$$

It obviously turns out $r_1=v$ and $r_2=-v$.

If $r_1-r_2=2v
ot\in\mathbb{N}$, then r_1 and r_2 give two independent solutions.

But for *Bessel Equations*, the condition is slightly *less strict*:

If $v
otin \mathbb{N}$, then r_1 and r_2 give two independent solutions.

6.2 Find the First Independent Solution

6.2.1 Find the First Independent Solution with the Larger r_1

With the **LARGER** $r_1 = v$, we have

$$a_1((v+1)^2-v^2)=0 \ a_m=-rac{a_{m-2}}{(m+2v)m}, \quad m\geq 2$$

So $a_1=a_3=a_5=\cdots=0$ and

$$a_{2k} = rac{(-1)^k a_0}{2^{2k} k! (1+v) (2+v) \cdots (k+v)}$$

6.2.2 The Bessel Function of the First Kind

Recall *Euler Gamma function*'s property:

$$\Gamma(s+1) = s\Gamma(s)$$

So it gives

$$(1+v)(2+v)\cdots(k+v)=rac{\Gamma(k+1+v)}{\Gamma(1+v)}$$

And by setting $a_0=rac{2^{-v}}{\Gamma(1+v)}$, we will have the first independent solution be *the Bessel function of* the first kind of order v

$$J_v(x) = \left(rac{x}{2}
ight)^v \sum_{k=0}^\infty rac{(-1)^k}{k!\Gamma(k+1+v)} \Big(rac{x}{2}\Big)^{2k}$$

Take v=1 as example, we have

$$J_1(x) = rac{x}{2} \sum_{k=0}^{\infty} rac{(-1)^k x^{2k}}{2^{2k} (k+1)! k!}$$

6.3 Find the Second Independent Solution ($v otin \mathbb{N}$)

Starting from if 2v is not an integer, with the SMAllER $r_2=-v$, we have

$$a_1((v-1)^2-v^2)=0, \quad a_1(2v-1)=0 \ a_m=-rac{a_{m-2}}{(m-2v)m}, \quad m\geq 2$$

We have $a_1=a_3=a_5=\cdots=0$ and

$$a_{2k} = rac{(-1)^k a_0}{2^{2k} k! (1-v) (2-v) \cdots (n-v)}$$

Similarly,

$$\Gamma(1-v)(2-v)\cdots(k-v) = rac{\Gamma(k+1-v)}{\Gamma(1-v)}$$

And by setting $a_0=rac{2^{-v}}{\Gamma(1+v)}$, the second independent solution will be **the Bessel function of the first kind of negative order** -v

$$J_{-v}(x)=\left(rac{x}{2}
ight)^{-v}\sum_{k=0}^{\infty}rac{(-1)^k}{k!\Gamma(k+1-v)}\Big(rac{x}{2}\Big)^{2k}$$

Then the **general solution** is

$$y(x) = C_1 J_v(x) + C_2 J_{-v}(x)$$

But actually, If 2v is an odd integer, which means v is not an integer, the above results also holds.

And the combined conclusion is *if* v *is not an integer, the above results will hold*.

6.3.1 Another Example: $v=rac{1}{2}$

Recall what you have seen in class with $v=\frac12$, you are "lucky" enough to find a second independent solution directly with $r_2=-\frac12$. (Exactly the case where $2v\in\mathbb{N}$ but $v\not\in\mathbb{N}$!)

Which is in slide 533, and there actually exsits a small typo.

You use $r_1=\frac{1}{2}$ to get the Bessel function of the first kind of order 1/2 $J_{1/2}=\sqrt{\frac{2}{\pi t}}\sin t$ and use $r_2=-\frac{1}{2}$ to get the Bessel function of the second kind of order 1/2 $Y_{1/2}(t)=\sqrt{\frac{2}{\pi t}}\cos t$ (Notice the minus sign!). Actually,

$$J_{rac{1}{2}}(x) = Y_{-rac{1}{2}}(x) = \sqrt{rac{2}{\pi x}}\sin(x)$$

$$J_{-rac{1}{2}}(x) = -Y_{rac{1}{2}}(x) = \sqrt{rac{2}{\pi x}}\cos(x)$$

6.4 Find the Second Independent Solution ($v \in \mathbb{N}$)

6.4.1 Reduction of Order

Set
$$y_2(x)=c(x)\cdot J_{\nu}(x)$$
, then
$$x^2y_2''+xy_2'+\left(x^2-\nu^2\right)y_2=0 \\ \Rightarrow x^2\left(c''(x)J_{\nu}(x)+2c'(x)J_{\nu}'(x)+c(x)J_{\nu}''(x)\right) \\ +x\left(c'(x)J_{\nu}(x)+c(x)J_{\nu}(x)\right)+\left(x^2-\nu^2\right)c(x)\cdot J_{\nu}(x)=0 \\ \Rightarrow x^2J_{\nu}(x)c''(x)+\left(2x^2J_{\nu}'(x)+xJ_{\nu}(x)\right)c'(x)=0 \\ \Rightarrow \ln|c'(x)|=\left(-2\ln|J_{\nu}(x)|-\ln|x|\right) \\ \Rightarrow c'(x)=\frac{1}{x\cdot J_{\nu}^2(x)} \\ \Rightarrow c(x)=\int \frac{dx}{x\cdot J^2(x)}$$

So a second independent solution is given as

$$y_2(x) = J_
u(x) \int rac{dx}{x \cdot J_
u^2(x)}$$

6.4.2 The Second Method only for $\emph{v}=\emph{0}$

$$\left|x_{2}(t)=rac{\partial}{\partial r}igg(t^{r}\sum_{k=0}^{\infty}a_{k}(r)t^{k}igg)
ight|_{r=r_{2}}=c\cdot x_{1}(t)\ln t+t^{r_{2}}\sum_{k=0}^{\infty}a_{k}'\left(r_{2}
ight)t^{k}$$

$$rac{a_{2k}'(r)}{a_{2k}(r)} = rac{d}{dr} \ln |a_{2k}(r)|$$

Will fail except for v=0, because $rac{\partial}{\partial r}ig(t^r\sum_{k=0}^\infty a_k(r)t^kig)$ has no definition at $r=r_2$

6.4.3 The Third Method

Let's find these new constants in another way. Using the "ansatz"

$$y_2(x) = a J_v(x) \ln x + x^{-v} \left[\sum_{k=0}^\infty c_k x^k
ight], \quad x>0$$

Computing y_2 I, y_2 II(x), substituting in the original Bessel Equation, and make use of $J_v(x)$ is a solution(as we have done by reduction of order), we can obtain all the constants a, c_0, c_1, \ldots

For example, if you try with order 1, where you also choose $c_2=\frac{1}{2^2}$, you would get $c_1=c_3=\cdots=0$ and:

$$c_{2m} = rac{(-1)^{m+1} \left(H_m + H_{m-1}
ight)}{2^{2m} m! (m-1)!}$$

Where $H_m(x):=\sum_{i=1}^m rac{1}{i}$, $H_0=0$, is the Harmonic Numbers. In conclusion:

$$y_2(x) = -J_1(x) \ln x + rac{1}{x} \left[1 - \sum_{m=1}^{\infty} rac{(-1)^m \left(H_m + H_{m-1}
ight)}{2^{2m} m! (m-1)!} x^{2m}
ight], \quad x > 0$$

6.4.4 The Bessel Function of the Second Kind

Actually the second independent solution of Bessel Equations can be a more beautiful form: **the Bessel function of the second kind of order** v, which is some linear combinition of $J_v(x)$ and a second independent solution $y_2(x)$ we find. In our specific case for $y_2(x)$ of order 1, we set **the Bessel function of the second kind of order 1** as

$$Y_1(x) = rac{2}{\pi} [-y_2(x) + (\gamma - \ln 2) J_1(x)]$$

But, in practice, the Bessel function of the second kind of order v can be found from $J_v(x)$ and $J_{-v}(x)$:

$$Y_v(x) = rac{J_v(x)\cos\pi v - J_{-v}(x)}{\sin\pi v}$$

And then the **general solution** can be written as

$$y(x) = C_1 J_v(x) + C_2 Y_v(x)$$

7 Transform Differential Equations to Bessel Equation

Key Take-away:

$$ullet \ u=u(x)=rac{y}{f(x)}$$
, f is a known function

$$rac{d^2y}{dx^2} = rac{d^2(f(x)u(x))}{dx^2} = rac{d(f'(x)u(x) + f(x)u'(x))}{dx}$$

• z=z(x), z is a known function

$$rac{d^2y}{dx^2} = rac{d^2y}{dz^2} igg(rac{dz}{dx}igg)^2 + rac{dy}{dz} igg(rac{d^2z}{dx^2}igg)$$

7.1
$$x^2y'' + xy' + (a^2x^2 - v^2)y = 0$$

Exercise:

Transform this equation to a Bessel equation of order \boldsymbol{v}

7.2
$$x^2y'' + axy' + (x^2 - v^2)y = 0$$

Exercise:

Transform this equation to a Bessel equation using the substitution $y(x)=x^{\frac{1-a}{2}}z(x)$. What's the order?

7.3 y'' - xy = 0

Exercise:

Show that the general solution of this equation can be expressed as

$$y(x) = C_1 \sqrt{x} J_{rac{1}{3}} \left(rac{2}{3} i x^{rac{3}{2}}
ight) + C_2 \sqrt{x} J_{-rac{1}{3}} \left(rac{2}{3} i x^{rac{3}{2}}
ight)$$

Hint:

be careful with $\frac{d^2y}{dx^2}$