Gradient Descent: The Foundation of Machine Learning

From Taylor Series to Modern Deep Learning

Nipun Batra and the teaching staff

IIT Gandhinagar

August 28, 2025

Table of Contents

Introduction: Why

Optimization Matters

Key Points:

Central Problem: Find the best parameters $oldsymbol{ heta}^*$ for our model

Key Points:

Central Problem: Find the best parameters $oldsymbol{ heta}^*$ for our model

Examples everywhere in ML:

• Linear regression: $\min_{\theta} \|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|^2$

Key Points:

Central Problem: Find the best parameters $heta^*$ for our model

Examples everywhere in ML:

- Linear regression: $\min_{\theta} \|\mathbf{y} \mathbf{X}\boldsymbol{\theta}\|^2$
- Logistic regression: $\min_{\theta} \sum \log p(y_i|\mathbf{x}_i, \theta)$

Key Points:

Central Problem: Find the best parameters $heta^*$ for our model

Examples everywhere in ML:

- Linear regression: $\min_{\theta} \|\mathbf{y} \mathbf{X}\boldsymbol{\theta}\|^2$
- Logistic regression: $\min_{\theta} \sum \log p(y_i|\mathbf{x}_i, \theta)$
- Neural networks: $\min_{\theta} \sum \ell(f(\mathbf{x}_i; \theta), y_i)$

Key Points:

Central Problem: Find the best parameters $heta^*$ for our model

Examples everywhere in ML:

- Linear regression: $\min_{\theta} \|\mathbf{y} \mathbf{X}\boldsymbol{\theta}\|^2$
- Logistic regression: $\min_{\theta} \sum \log p(y_i|\mathbf{x}_i, \theta)$
- Neural networks: $\min_{\theta} \sum \ell(f(\mathbf{x}_i; \theta), y_i)$

Key Points:

Central Problem: Find the best parameters $heta^*$ for our model

Examples everywhere in ML:

- Linear regression: $\min_{\theta} \|\mathbf{y} \mathbf{X}\boldsymbol{\theta}\|^2$
- Logistic regression: $\min_{\theta} \sum \log p(y_i|\mathbf{x}_i, \theta)$
- Neural networks: $\min_{\theta} \sum \ell(f(\mathbf{x}_i; \theta), y_i)$

Important: The Challenge

Most ML problems have no closed-form solution!

Enter: Iterative Optimization

Since we can't solve directly, we use iterative methods:

Enter: Iterative Optimization

Since we can't solve directly, we use iterative methods:

Definition: Gradient Descent

The workhorse algorithm that powers modern machine learning

Steepest Path

Intuition: Following the

The Mountain Climbing Analogy

Imagine: You're lost in fog and want to reach the valley

The Mountain Climbing Analogy

Imagine: You're lost in fog and want to reach the valley

Mathematical Definition of Gradient

For function $f(x, y) = x^2 + y^2$:

Mathematical Definition of Gradient

For function
$$f(x, y) = x^2 + y^2$$
:

Definition: Gradient $\nabla f(x,y) = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix} = \begin{bmatrix} 2x \\ 2y \end{bmatrix}$

Mathematical Definition of Gradient

For function $f(x, y) = x^2 + y^2$:

Definition: Gradient

$$\nabla f(x,y) = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix} = \begin{bmatrix} 2x \\ 2y \end{bmatrix}$$

Key Points:

Mathematical Foundation: Taylor Series

Example: The Core Idea

If we can't solve $\min f(\mathbf{x})$ exactly, let's approximate $f(\mathbf{x})$ locally!

Example: The Core Idea

If we can't solve $\min f(\mathbf{x})$ exactly, let's approximate $f(\mathbf{x})$ locally!

Taylor series expansion around point x_0 :

$$f(\mathbf{x}) = f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^T \nabla^2 f(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0) + \dots$$
(1)

Example: The Core Idea

If we can't solve $\min f(\mathbf{x})$ exactly, let's approximate $f(\mathbf{x})$ locally!

Taylor series expansion around point x_0 :

$$f(\mathbf{x}) = f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^T \nabla^2 f(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0) + \dots$$
(1)

Different orders of approximation:

• **0th order:** $f(\mathbf{x}) \approx f(\mathbf{x}_0)$ (constant)

Example: The Core Idea

If we can't solve $\min f(\mathbf{x})$ exactly, let's approximate $f(\mathbf{x})$ locally!

Taylor series expansion around point x_0 :

$$f(\mathbf{x}) = f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^T \nabla^2 f(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0) + \dots$$
(1)

Different orders of approximation:

- **0th order:** $f(\mathbf{x}) \approx f(\mathbf{x}_0)$ (constant)
- 1st order: $f(\mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T (\mathbf{x} \mathbf{x}_0)$ (linear)

Example: The Core Idea

If we can't solve $\min f(\mathbf{x})$ exactly, let's approximate $f(\mathbf{x})$ locally!

Taylor series expansion around point x_0 :

$$f(\mathbf{x}) = f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^T \nabla^2 f(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0) + \dots$$
(1)

Different orders of approximation:

- **0th order:** $f(\mathbf{x}) \approx f(\mathbf{x}_0)$ (constant)
- 1st order: $f(\mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T (\mathbf{x} \mathbf{x}_0)$ (linear)
- 2nd order: Includes curvature via Hessian

•
$$f(0) = \cos(0) = 1$$

- $f(0) = \cos(0) = 1$
- $f(0) = -\sin(0) = 0$

- $f(0) = \cos(0) = 1$
- $f(0) = -\sin(0) = 0$
- $f'(0) = -\cos(0) = -1$

- $f(0) = \cos(0) = 1$
- $f(0) = -\sin(0) = 0$
- $f''(0) = -\cos(0) = -1$
- $f''(0) = \sin(0) = 0$

- $f(0) = \cos(0) = 1$
- $f(0) = -\sin(0) = 0$
- $f''(0) = -\cos(0) = -1$
- $f''(0) = \sin(0) = 0$
- $f^{(4)}(0) = \cos(0) = 1$

- $f(0) = \cos(0) = 1$
- $f(0) = -\sin(0) = 0$
- $f''(0) = -\cos(0) = -1$
- $f''(0) = \sin(0) = 0$
- $f^{(4)}(0) = \cos(0) = 1$

Let's approximate $f(x) = \cos(x)$ around $x_0 = 0$:

•
$$f(0) = \cos(0) = 1$$

•
$$f(0) = -\sin(0) = 0$$

•
$$f''(0) = -\cos(0) = -1$$

•
$$f''(0) = \sin(0) = 0$$

•
$$f^{(4)}(0) = \cos(0) = 1$$

Taylor approximations:

Oth:
$$f(x) \approx 1$$
 (2)

2nd:
$$f(x) \approx 1$$
 (2)
 $f(x) \approx 1 - \frac{x^2}{2}$ (3)

4th:
$$f(x) \approx 1 - \frac{x^2}{2} + \frac{x^4}{24}$$
 (4)

Visual: Taylor Approximations

Key Points: H

igher-order = better approximation, but 1st-order is often sufficient!

Derivation: From Taylor

Descent

Series to Gradient

Goal: Find Δx such that $f(x_0 + \Delta x) < f(x_0)$

Goal: Find Δx such that $f(x_0 + \Delta x) < f(x_0)$ Using 1st-order Taylor approximation:

$$f(\mathbf{x}_0 + \Delta \mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T \Delta \mathbf{x}$$
 (5)

Goal: Find Δx such that $f(x_0 + \Delta x) < f(x_0)$ Using 1st-order Taylor approximation:

$$f(\mathbf{x}_0 + \Delta \mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T \Delta \mathbf{x}$$
 (5)

For the function to decrease:

$$\nabla f(\mathbf{x}_0)^T \Delta \mathbf{x} < 0$$

Goal: Find Δx such that $f(x_0 + \Delta x) < f(x_0)$ Using 1st-order Taylor approximation:

$$f(\mathbf{x}_0 + \Delta \mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T \Delta \mathbf{x}$$
 (5)

For the function to decrease:

$$\nabla f(\mathbf{x}_0)^T \Delta \mathbf{x} < 0$$

Important: Vector Geometry Reminder

For vectors \mathbf{a}, \mathbf{b} : $\mathbf{a}^T \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos(\theta)$

Most negative when: $cos(\theta) = -1$ (opposite directions!)

Visual Derivation with TikZ

Visual Derivation with TikZ

 $\Delta \mathbf{x} = -\alpha \nabla f(\mathbf{x}_0), \quad \alpha > 0$

Visual Derivation with TikZ

 $\Delta \mathbf{x} = -\alpha \nabla f(\mathbf{x}_0), \quad \alpha > 0$

Pop Quiz #1: Understanding the Derivation

Answer this!

Consider $f(x) = x^2 + 2$ at point $x_0 = 2$.

Questions:

- 1. What is $f(x_0)$ and $f'(x_0)$?
- 2. Write the 1st-order Taylor approximation
- 3. If we take step $\Delta x = -0.1 \cdot f(x_0)$, what is our new x?
- 4. Will the function value decrease?

The Gradient Descent Algorithm

Definition: Gradient Descent Algorithm

An iterative first-order optimization method for finding local minima

Definition: Gradient Descent Algorithm

An iterative first-order optimization method for finding local minima

Algorithm Steps:

1. **Initialize:** Choose starting point θ_0

Definition: Gradient Descent Algorithm

An iterative first-order optimization method for finding local minima

- 1. **Initialize:** Choose starting point θ_0
- 2. Repeat until convergence:

Definition: Gradient Descent Algorithm

An iterative first-order optimization method for finding local minima

- 1. **Initialize:** Choose starting point θ_0
- 2. Repeat until convergence:
 - Compute gradient: $\mathbf{g}_t =
 abla \mathit{f}(oldsymbol{ heta}_t)$

Definition: Gradient Descent Algorithm

An iterative first-order optimization method for finding local minima

- 1. **Initialize:** Choose starting point θ_0
- 2. Repeat until convergence:
 - $oldsymbol{\circ}$ Compute gradient: $\mathbf{g}_t =
 abla \mathit{f}(oldsymbol{ heta}_t)$
 - $m{\theta}$ Update parameters: $m{ heta}_{t+1} = m{ heta}_t lpha \mathbf{g}_t$

Definition: Gradient Descent Algorithm

An iterative first-order optimization method for finding local minima

- 1. **Initialize:** Choose starting point θ_0
- 2. Repeat until convergence:
 - Compute gradient: $\mathbf{g}_t =
 abla \mathit{f}(\boldsymbol{ heta}_t)$
 - $_{\circ}$ Update parameters: $oldsymbol{ heta}_{t+1} = oldsymbol{ heta}_{t} lpha \mathbf{g}_{t}$
 - Check stopping criterion

Definition: Gradient Descent Algorithm

An iterative first-order optimization method for finding local minima

- 1. **Initialize:** Choose starting point θ_0
- 2. Repeat until convergence:
 - Compute gradient: $\mathbf{g}_t =
 abla \mathit{f}(\boldsymbol{ heta}_t)$
 - $_{\circ}$ Update parameters: $oldsymbol{ heta}_{t+1} = oldsymbol{ heta}_{t} lpha \mathbf{g}_{t}$
 - Check stopping criterion

Definition: Gradient Descent Algorithm

An iterative first-order optimization method for finding local minima

Algorithm Steps:

- 1. **Initialize:** Choose starting point θ_0
- 2. Repeat until convergence:
 - Compute gradient: $\mathbf{g}_t = \nabla f(\boldsymbol{\theta}_t)$
 - \circ Update parameters: $oldsymbol{ heta}_{t+1} = oldsymbol{ heta}_t lpha \mathbf{g}_t$
 - Check stopping criterion

Key hyperparameter: Learning rate α

The learning rate α controls how big steps we take:

• Too small α : Slow convergence

- Too small α : Slow convergence
- **Good** α : Fast, stable convergence

- **Too small** α **:** Slow convergence
- Good α : Fast, stable convergence
- Too large α : Overshooting, instability

- Too small α : Slow convergence
- Good α : Fast, stable convergence
- **Too large** α **:** Overshooting, instability
- Way too large α : Divergence!

- Too small α : Slow convergence
- Good α : Fast, stable convergence
- **Too large** α **:** Overshooting, instability
- Way too large α : Divergence!

The learning rate α controls how big steps we take:

- Too small α : Slow convergence
- Good α : Fast, stable convergence
- **Too large** α : Overshooting, instability
- Way too large α : Divergence!

Key Points: L

earning rate selection is crucial for success!

Learning Rate Visualization: Too Small

 $\alpha = 0.01$ - Slow but steady

Important: Issue

Many iterations needed \rightarrow Computationally expensive

Learning Rate Visualization: Just Right

 $\alpha=0.1$ - The sweet spot

Key Points: P

erfect balance: Fast convergence + Stability

Learning Rate Visualization: Too Large

 $\alpha = 0.8$ - Getting risky

Important: Warning

Fast but oscillatory - watch for instability!

Learning Rate Visualization: Disaster

 $\alpha=1.01$ - Complete failure

Important: Disaster Zone

Function values explode! Always monitor your loss curves.

Application: Linear Regression

Our First Real Example

Problem: Learn $y = \theta_0 + \theta_1 x$ from data

X	у
1	1
2	2
3	3

Our First Real Example

Problem: Learn $y = \theta_0 + \theta_1 x$ from data

X	у
1	1
2	2
3	3

Cost function (Mean Squared Error):

$$MSE(\theta_0, \theta_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
$$= \frac{1}{n} \sum_{i=1}^{n} (y_i - \theta_0 - \theta_1 x_i)^2$$

Computing the Gradients

We need:
$$\nabla MSE = \begin{bmatrix} \frac{\partial MSE}{\partial \theta_0} \\ \frac{\partial MSE}{\partial \theta_1} \end{bmatrix}$$

Computing the Gradients

We need:
$$\nabla MSE = \begin{bmatrix} \frac{\partial MSE}{\partial \theta_0} \\ \frac{\partial MSE}{\partial \theta_1} \end{bmatrix}$$

Partial derivatives:

$$\frac{\partial \text{MSE}}{\partial \theta_0} = \frac{2}{n} \sum_{i=1}^{n} (y_i - \theta_0 - \theta_1 x_i)(-1)$$
 (6)

$$= -\frac{2}{n} \sum_{i=1}^{n} \epsilon_i \tag{7}$$

Computing the Gradients

We need:
$$\nabla \text{MSE} = \begin{bmatrix} \frac{\partial \text{MSE}}{\partial \theta_0} \\ \frac{\partial \text{MSE}}{\partial \theta_1} \end{bmatrix}$$

Partial derivatives:

$$\frac{\partial \text{MSE}}{\partial \theta_0} = \frac{2}{n} \sum_{i=1}^{n} (y_i - \theta_0 - \theta_1 x_i)(-1)$$

$$= -\frac{2}{n} \sum_{i=1}^{n} \epsilon_i$$
(6)

$$\frac{\partial \text{MSE}}{\partial \theta_1} = \frac{2}{n} \sum_{i=1}^n (y_i - \theta_0 - \theta_1 x_i)(-x_i)$$

$$= -\frac{2}{n} \sum_{i=1}^n \epsilon_i x_i$$
(9)

where $\epsilon_i = y_i - \hat{y}_i$ is the residual.

Initial values: $\theta_0=4, \theta_1=0$ Learning rate: $\alpha=0.1$

Initial values: $\theta_0=4, \theta_1=0$ Learning rate: $\alpha=0.1$ Iteration 1 - Compute predictions:

•
$$\hat{y}_1 = 4 + 0 \cdot 1 = 4$$

Initial values: $\theta_0=4, \theta_1=0$ Learning rate: $\alpha=0.1$ Iteration 1 - Compute predictions:

- $\hat{y}_1 = 4 + 0 \cdot 1 = 4$
- $\hat{y}_2 = 4 + 0 \cdot 2 = 4$

Initial values: $\theta_0=4, \theta_1=0$ Learning rate: $\alpha=0.1$ Iteration 1 - Compute predictions:

- $\hat{y}_1 = 4 + 0 \cdot 1 = 4$
- $\hat{y}_2 = 4 + 0 \cdot 2 = 4$
- $\hat{y}_3 = 4 + 0 \cdot 3 = 4$

Initial values: $\theta_0=4, \theta_1=0$ Learning rate: $\alpha=0.1$ Iteration 1 - Compute predictions:

- $\hat{y}_1 = 4 + 0 \cdot 1 = 4$
- $\hat{y}_2 = 4 + 0 \cdot 2 = 4$
- $\hat{y}_3 = 4 + 0 \cdot 3 = 4$

Initial values: $\theta_0=4, \theta_1=0$ Learning rate: $\alpha=0.1$ Iteration 1 - Compute predictions:

- $\hat{y}_1 = 4 + 0 \cdot 1 = 4$
- $\hat{y}_2 = 4 + 0 \cdot 2 = 4$
- $\hat{y}_3 = 4 + 0 \cdot 3 = 4$

Compute errors:

•
$$\epsilon_1 = 1 - 4 = -3$$

Initial values: $\theta_0 = 4, \theta_1 = 0$ Learning rate: $\alpha = 0.1$

Iteration 1 - Compute predictions:

- $\hat{y}_1 = 4 + 0 \cdot 1 = 4$
- $\hat{y}_2 = 4 + 0 \cdot 2 = 4$
- $\hat{y}_3 = 4 + 0 \cdot 3 = 4$

Compute errors:

- $\epsilon_1 = 1 4 = -3$
- $\epsilon_2 = 2 4 = -2$

Step-by-Step Example: Setup

Initial values: $\theta_0 = 4, \theta_1 = 0$ Learning rate: $\alpha = 0.1$

Iteration 1 - Compute predictions:

- $\hat{y}_1 = 4 + 0 \cdot 1 = 4$
- $\hat{y}_2 = 4 + 0 \cdot 2 = 4$
- $\hat{y}_3 = 4 + 0 \cdot 3 = 4$

Compute errors:

- $\epsilon_1 = 1 4 = -3$
- $\epsilon_2 = 2 4 = -2$
- $\epsilon_3 = 3 4 = -1$

Compute gradients:

•
$$\frac{\partial \text{MSE}}{\partial \theta_0} = -\frac{2}{3}(-3 - 2 - 1) = 4$$

Compute gradients:

•
$$\frac{\partial MSE}{\partial \theta_0} = -\frac{2}{3}(-3 - 2 - 1) = 4$$

•
$$\frac{\partial MSE}{\partial \theta_1} = -\frac{2}{3}(-3 \cdot 1 - 2 \cdot 2 - 1 \cdot 3) = 6.67$$

Compute gradients:

•
$$\frac{\partial MSE}{\partial \theta_0} = -\frac{2}{3}(-3 - 2 - 1) = 4$$

•
$$\frac{\partial MSE}{\partial \theta_1} = -\frac{2}{3}(-3 \cdot 1 - 2 \cdot 2 - 1 \cdot 3) = 6.67$$

Compute gradients:

- $\frac{\partial MSE}{\partial \theta_0} = -\frac{2}{3}(-3 2 1) = 4$
- $\frac{\partial MSE}{\partial \theta_1} = -\frac{2}{3}(-3 \cdot 1 2 \cdot 2 1 \cdot 3) = 6.67$

Parameter updates:

•
$$\theta_0^{(1)} = 4 - 0.1 \times 4 = 3.6$$

Compute gradients:

- $\frac{\partial MSE}{\partial \theta_0} = -\frac{2}{3}(-3 2 1) = 4$
- $\frac{\partial MSE}{\partial \theta_1} = -\frac{2}{3}(-3 \cdot 1 2 \cdot 2 1 \cdot 3) = 6.67$

Parameter updates:

- $\theta_0^{(1)} = 4 0.1 \times 4 = 3.6$
- $\theta_1^{(1)} = 0 0.1 \times 6.67 = -0.67$

Compute gradients:

- $\frac{\partial MSE}{\partial \theta_0} = -\frac{2}{3}(-3 2 1) = 4$
- $\frac{\partial MSE}{\partial \theta_1} = -\frac{2}{3}(-3 \cdot 1 2 \cdot 2 1 \cdot 3) = 6.67$

Parameter updates:

- $\theta_0^{(1)} = 4 0.1 \times 4 = 3.6$
- $\theta_1^{(1)} = 0 0.1 \times 6.67 = -0.67$

Compute gradients:

- $\frac{\partial MSE}{\partial \theta_0} = -\frac{2}{3}(-3 2 1) = 4$
- $\frac{\partial MSE}{\partial \theta_1} = -\frac{2}{3}(-3 \cdot 1 2 \cdot 2 1 \cdot 3) = 6.67$

Parameter updates:

- $\theta_0^{(1)} = 4 0.1 \times 4 = 3.6$
- $\theta_1^{(1)} = 0 0.1 \times 6.67 = -0.67$

Key Points: N

ew parameters: $(\theta_0, \theta_1) = (3.6, -0.67)$

We moved closer to the true solution (0,1)!

Variants: Batch vs Stochastic vs Mini-batch

The Gradient Descent Family

Three variants based on data usage per update:

Definition: Batch Gradient Descent

Use ALL training data for each gradient computation

Definition: Stochastic Gradient Descent (SGD)

Use **ONE** sample for each gradient computation

Definition: Mini-batch Gradient Descent

Use a **SMALL BATCH** of samples for each gradient computation

Comparison: The Trade-offs

Method	Data/update	Updates/epoch	Convergence	Memory
Batch GD	n (all)	1	Smooth	High
SGD	1	n	Noisy	Low
Mini-batch	b (batch)	n/b	Balanced	Medium

Comparison: The Trade-offs

Method	Data/update	Updates/epoch	Convergence	Memory
Batch GD	n (all)	1	Smooth	High
SGD	1	n	Noisy	Low
Mini-batch	b (batch)	n/b	Balanced	Medium

Key Points:

Modern ML Standard: Mini-batch GD with batch sizes 32-256

- · Good balance of stability and efficiency
- Enables GPU parallelization
- Better gradient estimates than pure SGD

Definition: Iteration

One parameter update step

Definition: Epoch

One complete pass through the entire training dataset

Definition: Iteration

One parameter update step

Definition: Epoch

One complete pass through the entire training dataset

For dataset with 1000 samples:

• Batch GD: 1 iteration = 1 epoch

Definition: Iteration

One parameter update step

Definition: Epoch

One complete pass through the entire training dataset

For dataset with 1000 samples:

- Batch GD: 1 iteration = 1 epoch
- **SGD:** 1000 iterations = 1 epoch

Definition: Iteration

One parameter update step

Definition: Epoch

One complete pass through the entire training dataset

For dataset with 1000 samples:

- Batch GD: 1 iteration = 1 epoch
- **SGD**: 1000 iterations = 1 epoch
- Mini-batch (size 100): 10 iterations = 1 epoch

Definition: Iteration

One parameter update step

Definition: Epoch

One complete pass through the entire training dataset

For dataset with 1000 samples:

- Batch GD: 1 iteration = 1 epoch
- **SGD**: 1000 iterations = 1 epoch
- Mini-batch (size 100): 10 iterations = 1 epoch

Definition: Iteration

One parameter update step

Definition: Epoch

One complete pass through the entire training dataset

For dataset with 1000 samples:

- Batch GD: 1 iteration = 1 epoch
- **SGD:** 1000 iterations = 1 epoch
- Mini-batch (size 100): 10 iterations = 1 epoch

Important: Important

Always specify which metric when discussing convergence

26/1

Mathematical Properties

True gradient:
$$\nabla L(\theta) = \frac{1}{n} \sum_{i=1}^{n} \nabla \ell(f(\mathbf{x}_i; \theta), y_i)$$

True gradient: $\nabla L(\theta) = \frac{1}{n} \sum_{i=1}^{n} \nabla \ell(f(\mathbf{x}_i; \theta), y_i)$ **SGD estimate:** $\nabla \tilde{L}(\theta) = \nabla \ell(f(\mathbf{x}; \theta), y)$ where (\mathbf{x}, y) is randomly sampled.

True gradient: $\nabla L(\theta) = \frac{1}{n} \sum_{i=1}^{n} \nabla \ell(f(\mathbf{x}_i; \theta), y_i)$ **SGD estimate:** $\nabla \tilde{L}(\theta) = \nabla \ell(f(\mathbf{x}; \theta), y)$ where (\mathbf{x}, y) is randomly sampled.

Theorem: Unbiased Property

$$\mathbb{E}[\nabla \tilde{L}(\boldsymbol{\theta})] = \nabla L(\boldsymbol{\theta})$$

True gradient: $\nabla L(\theta) = \frac{1}{n} \sum_{i=1}^{n} \nabla \ell(f(\mathbf{x}_i; \theta), y_i)$ SGD estimate: $\nabla \tilde{L}(\theta) = \nabla \ell(f(\mathbf{x}; \theta), y)$ where (\mathbf{x}, y) is randomly sampled.

Theorem: Unbiased Property

$$\mathbb{E}[\nabla \tilde{L}(\boldsymbol{\theta})] = \nabla L(\boldsymbol{\theta})$$

Proof:

$$\begin{split} \mathbb{E}[\nabla \tilde{L}(\boldsymbol{\theta})] &= \mathbb{E}[\nabla \ell(f(\mathbf{x}; \boldsymbol{\theta}), y)] \\ &= \sum_{i=1}^{n} \frac{1}{n} \nabla \ell(f(\mathbf{x}_i; \boldsymbol{\theta}), y_i) = \nabla L(\boldsymbol{\theta}) \end{split}$$

Key Points:

Key insight: On average, SGD points in the correct direction!

Key Points:

Key insight: On average, SGD points in the correct direction!

Practical implications:

Individual SGD steps may be "wrong"

Key Points:

Key insight: On average, SGD points in the correct direction!

- Individual SGD steps may be "wrong"
- But they average to the correct direction

Key Points:

Key insight: On average, SGD points in the correct direction!

- Individual SGD steps may be "wrong"
- But they average to the correct direction
- Noise can help escape local minima

Key Points:

Key insight: On average, SGD points in the correct direction!

- Individual SGD steps may be "wrong"
- But they average to the correct direction
- Noise can help escape local minima
- Theoretical justification for SGD's success

Key Points:

Key insight: On average, SGD points in the correct direction!

- Individual SGD steps may be "wrong"
- But they average to the correct direction
- Noise can help escape local minima
- Theoretical justification for SGD's success

Key Points:

Key insight: On average, SGD points in the correct direction!

Practical implications:

- Individual SGD steps may be "wrong"
- But they average to the correct direction
- Noise can help escape local minima
- Theoretical justification for SGD's success

Example: Intuition

Like asking random people for directions:

Die tel en et la el e

Each answer might be slightly off

Advanced SGD Theory

For detailed mathematical analysis, see:

Computational Complexity

GD vs Normal Equation: When to Use What?

For linear regression, we have two options:

Important: Normal Equation

$$\hat{\boldsymbol{\theta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Time: $\mathcal{O}(d^2n + d^3)$

 $\textbf{Space: } \mathcal{O}(\textit{d}^2)$

GD vs Normal Equation: When to Use What?

For linear regression, we have two options:

Important: Normal Equation

$$\hat{\boldsymbol{\theta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Time: $\mathcal{O}(d^2n + d^3)$

Space: $\mathcal{O}(d^2)$

Key Points: Gradient Descent

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \alpha \mathbf{X}^T (\mathbf{X} \boldsymbol{\theta}_t - \mathbf{y})$$

Time: $\mathcal{O}(T \cdot nd)$ for T iterations

Space: $\mathcal{O}(nd)$

When to Choose Which Method

Scenario	Normal Eq.	Gradient Desc.
Few features ($d < 1000$)	Yes	Yes
Many features $(d > 10000)$	No	Yes
Non-linear models	No	Yes
Large datasets	No	Yes
Need exact solution	Yes	No
Online learning	No	Yes

When to Choose Which Method

Scenario	Normal Eq.	Gradient Desc.
Few features ($d < 1000$)	Yes	Yes
Many features $(d > 10000)$	No	Yes
Non-linear models	No	Yes
Large datasets	No	Yes
Need exact solution	Yes	No
Online learning	No	Yes

Key Points:

Modern ML: Gradient descent dominates due to:

- High-dimensional problems (d very large)
- Non-linear models (neural networks)
- Large datasets (n very large)

Pop Quiz #2: Complexity Analysis

Answer this!

Dataset: $n = 10^6$ samples, $d = 10^3$ features **Questions:**

- 1. Normal equation complexity?
- 2. GD complexity for 100 iterations?
- 3. Which would you choose?
- 4. What if $d = 10^6$?

Modern Extensions

Modern optimizers address GD limitations:

• Momentum: Accelerates in consistent directions

- Momentum: Accelerates in consistent directions
- AdaGrad: Adaptive per-parameter learning rates

- Momentum: Accelerates in consistent directions
- AdaGrad: Adaptive per-parameter learning rates
- Adam: Combines momentum + adaptive rates

- Momentum: Accelerates in consistent directions
- AdaGrad: Adaptive per-parameter learning rates
- Adam: Combines momentum + adaptive rates
- RMSprop: Handles non-stationary objectives

- Momentum: Accelerates in consistent directions
- AdaGrad: Adaptive per-parameter learning rates
- Adam: Combines momentum + adaptive rates
- RMSprop: Handles non-stationary objectives

Modern optimizers address GD limitations:

- Momentum: Accelerates in consistent directions
- AdaGrad: Adaptive per-parameter learning rates
- Adam: Combines momentum + adaptive rates
- RMSprop: Handles non-stationary objectives

Example: Why These Improvements?

- Handle different parameter scales
- Accelerate convergence
- Reduce oscillations
- Better for non-convex landscapes

Key Points: E

very deep learning framework uses gradient descent variants!

Key Points: E

very deep learning framework uses gradient descent variants!

Key modern extensions:

• Backpropagation: Efficient gradients for neural networks

Key Points: E

very deep learning framework uses gradient descent variants!

Key modern extensions:

- Backpropagation: Efficient gradients for neural networks
- Automatic differentiation: PyTorch/TensorFlow magic

Key Points: E

very deep learning framework uses gradient descent variants!

Key modern extensions:

- Backpropagation: Efficient gradients for neural networks
- Automatic differentiation: PyTorch/TensorFlow magic
- GPU acceleration: Parallel mini-batch processing

Key Points: E

very deep learning framework uses gradient descent variants!

Key modern extensions:

- Backpropagation: Efficient gradients for neural networks
- Automatic differentiation: PyTorch/TensorFlow magic
- GPU acceleration: Parallel mini-batch processing
- **Mixed precision:** 16-bit + 32-bit arithmetic

Practical Considerations

Common approaches:

• Grid search: Try $\{0.001, 0.01, 0.1, 1.0\}$

- Grid search: Try $\{0.001, 0.01, 0.1, 1.0\}$
- Learning rate schedules: Start high, decay over time

- Grid search: Try $\{0.001, 0.01, 0.1, 1.0\}$
- Learning rate schedules: Start high, decay over time
- Adaptive methods: Let algorithm adjust automatically

- Grid search: Try $\{0.001, 0.01, 0.1, 1.0\}$
- Learning rate schedules: Start high, decay over time
- Adaptive methods: Let algorithm adjust automatically
- Learning rate finder: Gradually increase and monitor loss

- Grid search: Try $\{0.001, 0.01, 0.1, 1.0\}$
- Learning rate schedules: Start high, decay over time
- Adaptive methods: Let algorithm adjust automatically
- Learning rate finder: Gradually increase and monitor loss

Common approaches:

- Grid search: Try $\{0.001, 0.01, 0.1, 1.0\}$
- Learning rate schedules: Start high, decay over time
- Adaptive methods: Let algorithm adjust automatically
- Learning rate finder: Gradually increase and monitor loss

Important: Warning Signs

- Loss exploding ightarrow lpha too high
- Very slow progress $\rightarrow \alpha$ too low
- Oscillating loss \rightarrow Try smaller α or momentum

When to stop optimization:

• Gradient norm: $\|\nabla \mathbf{f}(\boldsymbol{\theta})\| < \epsilon$

- Gradient norm: $\|\nabla f(\theta)\| < \epsilon$
- Function change: $|\mathit{f}(\theta_{t+1}) \mathit{f}(\theta_t)| < \epsilon$

- Gradient norm: $\|\nabla f(\theta)\| < \epsilon$
- Function change: $|\mathit{f}(\theta_{t+1}) \mathit{f}(\theta_t)| < \epsilon$
- Parameter change: $\|\boldsymbol{\theta}_{t+1} \boldsymbol{\theta}_t\| < \epsilon$

- Gradient norm: $\|\nabla f(\theta)\| < \epsilon$
- Function change: $|f(\theta_{t+1}) f(\theta_t)| < \epsilon$
- Parameter change: $\|\boldsymbol{\theta}_{t+1} \boldsymbol{\theta}_t\| < \epsilon$
- Maximum iterations: Safety upper bound

- Gradient norm: $\|\nabla f(\theta)\| < \epsilon$
- Function change: $|f(\theta_{t+1}) f(\theta_t)| < \epsilon$
- Parameter change: $\|\boldsymbol{\theta}_{t+1} \boldsymbol{\theta}_t\| < \epsilon$
- Maximum iterations: Safety upper bound

When to stop optimization:

- Gradient norm: $\|\nabla f(\theta)\| < \epsilon$
- Function change: $|f(\theta_{t+1}) f(\theta_t)| < \epsilon$
- Parameter change: $\|\boldsymbol{\theta}_{t+1} \boldsymbol{\theta}_t\| < \epsilon$
- Maximum iterations: Safety upper bound

Key Points:

Best practice: Use multiple criteria + validation performance

Common Pitfalls

Important: Pitfall 1: Poor Initialization

Problem: Starting at bad points **Solution:** Xavier/He initialization

Common Pitfalls

Important: Pitfall 1: Poor Initialization

Problem: Starting at bad points **Solution:** Xavier/He initialization

Important: Pitfall 2: Wrong Learning Rate

Problem: Divergence or slow convergence

Solution: Learning rate schedules, adaptive optimizers

Common Pitfalls

Important: Pitfall 1: Poor Initialization

Problem: Starting at bad points **Solution:** Xavier/He initialization

Important: Pitfall 2: Wrong Learning Rate

Problem: Divergence or slow convergence

Solution: Learning rate schedules, adaptive optimizers

Important: Pitfall 3: Poor Feature Scaling

Problem: Different scales cause poor convergence

Solution: Standardization: $(x - \mu)/\sigma$

Summary and Takeaways

What We've Learned

Key Points: G

radient descent is the backbone of modern machine learning!

Key Points: G

radient descent is the backbone of modern machine learning!

Key concepts covered:

• Mathematical foundation: Taylor series derivation

Key Points: G

radient descent is the backbone of modern machine learning!

- Mathematical foundation: Taylor series derivation
- **Geometric intuition:** Steepest descent direction

Key Points: G

radient descent is the backbone of modern machine learning!

- Mathematical foundation: Taylor series derivation
- **Geometric intuition:** Steepest descent direction
- Algorithm variants: Batch, SGD, mini-batch

Key Points: G

radient descent is the backbone of modern machine learning!

- Mathematical foundation: Taylor series derivation
- Geometric intuition: Steepest descent direction
- Algorithm variants: Batch, SGD, mini-batch
- Theoretical properties: Unbiased estimation

Key Points: G

radient descent is the backbone of modern machine learning!

- Mathematical foundation: Taylor series derivation
- Geometric intuition: Steepest descent direction
- Algorithm variants: Batch, SGD, mini-batch
- Theoretical properties: Unbiased estimation
- Practical aspects: Learning rates, convergence

Advanced optimization topics:

• Second-order methods: Newton's method, L-BFGS

- Second-order methods: Newton's method, L-BFGS
- Constrained optimization: Lagrange multipliers

- Second-order methods: Newton's method, L-BFGS
- Constrained optimization: Lagrange multipliers
- Global optimization: Simulated annealing

- Second-order methods: Newton's method, L-BFGS
- Constrained optimization: Lagrange multipliers
- Global optimization: Simulated annealing
- Distributed optimization: Federated learning

- Second-order methods: Newton's method, L-BFGS
- Constrained optimization: Lagrange multipliers
- Global optimization: Simulated annealing
- Distributed optimization: Federated learning

Advanced optimization topics:

- Second-order methods: Newton's method, L-BFGS
- Constrained optimization: Lagrange multipliers
- Global optimization: Simulated annealing
- Distributed optimization: Federated learning

Key Points: M

aster gradient descent first - it's the foundation for everything else!

Final Pop Quiz #3

Answer this!

True or False?

- 1. SGD always converges faster than batch GD
- 2. Learning rates should decrease during training
- 3. SGD gradient estimates are unbiased
- 4. Normal equation is always better than GD
- 5. GD can find global minima for any function

Thank You!

Questions?

Next lecture: Advanced Optimization Techniques **Practice:** Implement GD for your favorite ML model!