Michael Schrapp Übungsblatt 2

Ferienkurs Theoretische Mechanik 2009

Lagrange Formalismus

1 Abrutschendes Seil

Ein Seil der Länge l und der konstanten Längenmassendichte λ rutscht nach dem Loslassen ohne Reibung über eine Tischkante herunter. Stellen Sie die Bewegungsgleichung auf und lösen Sie sie mit den Anfangsbedingungen:

$$x(0) = x_0$$
 $0 < x_0 < l$
 $\dot{x}(0) = 0$

2 Molekülschwingungen (Klausuraufgabe)

Ein 2-atomiges Molekül kann außer Schwingungen auch Rotationsbewegungen ausführen. Der Einfachheit halber sollen nur Bewegungen in einer festen Ebene betrachtet werden.

Das Potential ist dabei über $U(r) = \frac{\mu}{2}\omega_0^2(r-r_0)^2$ gegeben, wobei $\mu = \frac{m_1m_2}{m_1+m_2}$ die sogenannte reduzierte Masse, r der Relativabstand und r_0 der Gleichgewichtsabstand für $\dot{\varphi} = 0$ ist.

i) Zeigen Sie, dass in einem Inertialsystem, in dem der Schwerpunkt am Ursprung ruht, das Molekül durch folgende Lagrange-Funktion beschrieben wird:

$$\mathcal{L} = \frac{\mu}{2}(\dot{r}^2 + r^2\dot{\varphi}^2) - U(r)$$

- ii) Geben Sie 2 Erhaltungsgrößen mit Begründung an.
- iii) Stellen Sie die Bewegungsgleichung auf und vereinfachen Sie diese. Drücken Sie die Gleichung für die Radialbewegung durch den Abstand $\rho = r r_o$ von der Ruhelage aus.

3 Masse auf schiefer Ebene

Eine Masse m ist an einem Keil mit Masse M durch eine Feder (Federkonstante k) verbunden. Der Keil hat einen Neigungswinkel von α und kann sich reibungsfrei entlang der horizontalen Ebene bewegen.

Stellen Sie die Lagrange-Funktion des Systems in Abhängigkeit der x-Koordinaten des Keils und der Federlänge s auf und ermitteln Sie die Bewegungsgleichungen. Ermittlen Sie eine zyklische Koordinate und die dazugehörige Erhaltungsgröße.

4 Noether-Theorem

Betrachten Sie die Lagrange-Funktion eines Teilchens im homogenen Magnetfeld $\vec{B}=B\vec{e}_z$

$$\mathcal{L} = \frac{m}{2}(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) - \frac{eB}{2}(x\dot{y} - y\dot{x})$$

sowie die infinitesimale Transformation

$$x \Rightarrow \widetilde{x} = x - \epsilon y$$

$$y \Rightarrow \widetilde{y} = y - \epsilon x$$

$$z \Rightarrow \widetilde{z} = z$$

$$t \Rightarrow \widetilde{t} = t$$

Zeigen Sie, dass die Größe $m(x\dot{y}-y\dot{x})-\frac{eB}{2}(x^2+y^2)$ eine Erhaltungsgröße ist.

5 Rotierender Massepunkt

Betrachten Sie einen masselosen Ring der im Schwerefeld der Erde mit der konstanten Winkelgeschwindigkeit ω rotiert und auf dem eine Masse m reibungsfrei gleiten kann.

- i) Stellen Sie die Lagrangefunktion auf und bestimmen Sie eine Erhaltungsgröße.
- ii) Bestimmen Sie die Gleichgewichtslage θ und zeigen Sie dass diese von 0 verschieden sein kann.

6 Fallender Stab

Ein Masseloser Stab der Länge l
 habe eine punktförmige Masse m
 an einem Ende befestigt. Der Stab stehe auf einem rutschfesten Tisch. Bei kleinen Auslenkungen aus der senkrechten Position fällt der Stab aufgrund der Gravitation um.

- i) Stellen Sie mit Hilfe der Lagrange-Funktion die Bewegungsgleichung auf.
- ii) Lösen Sie die Bewegungsgleichung für die Anfangsbedingungen

$$\phi(0) = \phi_0, \dot{\phi}(0) = 0$$

in Kleinwinkelnäherung.