

Mathematisch-Naturwissenschaftliche Fakultät Institut für Informatik, Anja Rey

Exercise Sheet 6

for the lecture on

Advanced Programming and Algorithms

Submission until Monday, 4th December, 12:30 pm.

Discussion in the exercise classes on 11th, 12th, and 15th December, 2023.

Problem 1 to hand in: Data Structure

Describe a data structure that can store m values together with an update history and undo function.

The following methods should be managed by the data structure:

- initialise(m): set up an empty instance that can manage m values (that are initially set to 0) in $\mathcal{O}(m)$,
- update(i, x): change the ith value to x in $\mathcal{O}(1)$,
- get(i): return the current ith value $\mathcal{O}(1)$,
- undo(): reset the latest update in $\mathcal{O}(1)$ (a redo is not needed),
- reset(): reset all values to 0 and delete the update history in $\mathcal{O}(1)$,
- count_undo(): count the number of available updates that can be undone in $\mathcal{O}(1)$.

Describe each of these methods (intuitively or in pseudocode) and explain why their running times are fulfilled.

Problem 2 as a programming exercise: Compound Data Types and Numpy

Work on the current jupyter notebooks lecture_06_compound_types and lecture_06_numpy in order to learn how to use collective types such as list and set as well as numpy arrays.

Problem 3 for discussion: Set Problem

Design an algorithm to solve the following problem: Given a set $U = \{1, ..., m\}$ and given sets $S_1, S_2, ..., S_n$ each of which is a subset of U, is there a pair of sets S_i, S_j that cover U completely, i.e., $S_i \cup S_j = U$?

Problem 4 for discussion: Universal Hashing

Let U be a set of possible keys, $S \subseteq U$ be an arbitrary set of currently used keys with |S| = n. Moreover, let H be a universal family of hash functions mapping from U to $T = \{0, \ldots, m-1\}, m \leq |U|$.

Show that, for $h \in H$ chosen uniformly, the total number of collisions is less than $\frac{n(n-1)}{m}$ with probability at least $\frac{1}{2}$.

Hint: Use an indicator random variable $X_{xy}(h)$ that is 1 if h(x) = h(y), and 0 otherwise. Show that the expected number of collisions is $\frac{n(n-1)}{2m}$. Then use Markov's inequality.