ESAME ELABORAZIONE SEGNALI BIOMEDICI - ESERCITAZIONE MATLAB

Anno Accademico 2022/2023 - SECONDO APPELLO

NOME:	COGNOME:	
NUMERO MATRICOLA:	POSTAZIONE #:	

Si consideri il segnale TEST02.mat, contenente il tracciato di un **EMG** (unità di misura mV) acquisito alla frequenza di Fc=500Hz e definito su una griglia temporale in cui il primo campione viene associato al tempo t=0 secondi.

PARTE 1 – COSTRUZIONE DEL SEGNALE DI INGRESSO (4pt)

Dalla registrazione EMG (che rappresenta il segnale_originale) si estraggano i cinque eventi di contrazioni della durata di 2 secondi ciascuno a partire dagli istanti tempoTaglio= [2, 6, 10, 14, 18] secondi (Nota: il segnale nei tempi di taglio, va considerato segnale utile nell'analisi della contrazione). Calcolare i valori associati alla media del segnale EMG nelle cinque contrazioni e al suo range max e minimo e completare la seguente tabella

VARIABILE	RISPOSTA	UNITÀ DI MISURA
Numero di campioni di ogni	1001	
epoca		
Media del segnale EMG durante le cinque contrazioni	-0.0092	mV
Minimo del segnale EMG durante le cinque contrazioni	-0.8618	mV
Massimo del segnale EMG durante le cinque contrazioni	0.7538	mV

PARTE 2 – FILTRAGGIO

Progettare un filtro passa basso con due poli di modulo 0.95 alla frequenza di taglio di +/-50 Hz, un polo di modulo 0.95 alla frequenza di 0 Hz, e tre zeri sul cerchio di raggio unitario alla frequenza 125, 250 e 375 Hz. Imporre al filtro un guadagno unitario alla frequenza nulla. Calcolare la variabile segnale filtrato rappresentante l'uscita del filtro applicato al segnale_originale.

PARTE 3 – ANALISI SPETTRALE (2pt)

Dati il segnale_originale e il segnale_filtrato utilizzare il metodo del Peridiogramma per calcolare la densità spettrale di potenza del segnale (Nota implementativa: no zero padding, utilizzare il numero di campioni dei due segnali). Calcolare la densità spettrale di potenza media dei due segnali nell'intervallo di frequenza 0-50Hz e completare la seguente tabella

	RISPOSTA	UNITÀ DI MISURA
Densità spettrale di potenza media segnale originale	0.0266	mV²/Hz

FILE DA CONSEGNARE

- FILE SCRIPT Cognome_Nome_Matricola_ESAME.m contenente lo script utilizzato per risolvere esame
- FILE FIGURA (1pt) Cognome_Nome_Matricola_SEGNALE.fig che confronta in un unico plot il segnale orginale (plot in colore blue) con il segnale filtrato (plot in colore rosso)
- FILE FIGURA (1pt) Cognome_Nome_Matricola_FILTRO.fig che riporta il digramma poli/zeri del filtro
- FILE FIGURA (1pt) Cognome_Nome_Matricola_BODE.fig che riporta il modulo semplice (NO CONVERSIONE IN DB) e la fase semplice del filtro (NO CONVERSIONE IN GRADI)
- FILE FIGURA (1pt) Cognome_Nome_Matricola_SPETTRO.fig che confronta su due panelli affiancati il peridiogramma del segnale originale e quello del sanle filtrato
- FILE MATLAB (4pt) Cognome_Nome_Matricola_RISULTATI.mat che riporta le seguenti variabili:
 - o segnale originale: vettore 1-D che rappresenta il segnale originale
 - segnale_filtrato: vettore 1-D che rappresenta il segnale filtrato
 - o time: vettore 1-D che rappresenta i tempi del segnale originale e filtrato
 - o z: vettore 1-D che rappresenta gli zeri del filtro
 - o p: vettore 1-D che rappresenta i poli del filtro
 - modulo: vettore 1-D che rappresenta il modulo semplice del filtro nell'intervallo di frequenze [0 250 Hz] definito su N=2048 punti (NO CONVERSIONE IN DB)
 - fase: vettore 1-D che rappresenta la fase del filtro nell'intervallo di frequenze [0 250 Hz] definito su N=2048 punti (NO CONVERSIONE IN GRADI)
 - P_segnale_originale: vettore 1-D che rappresenta il peridiogramma del segnale originale nell'intervallo di frequenze [0 250 Hz]
 - P_segnale_filtrato: vettore 1-D che rappresenta il peridiogramma del segnale filtrato nell'intervallo di frequenze [0 250 Hz]