1. Рассмотрим следующую регрессионную модель зависимости логарифма заработной платы $\ln W$ от уровня образования Edu, опыта работы Exp, Exp^2 и уровня образования родителей Fedu, Medu:

$$\widehat{\ln W} = \hat{\beta}_1 + \hat{\beta}_2 E du + \hat{\beta}_3 E x p + \hat{\beta}_4 E x p^2 + \hat{\beta}_5 F e du + \hat{\beta}_6 M e du$$

Модель регрессии была отдельно оценена по выборкам из 35 мужчин и 23 женщин, и были получены остаточные суммы квадратов $RSS_1 = 34.4$ и $RSS_2 = 23.4$ соответственно. Остаточная сумма квадратов в регрессии, оценённой по объединённой выборке, равна 70.3. На уровне значимости 5% проверьте гипотезу об отсутствии дискриминации в оплате труда между мужчинами и женщинами.

Решение

Упорядочим нашу выборку таким образом, чтобы наблюдения с номерами с 1 по 35 относились к мужчинам, а наблюдения с номерами с 36 по 58 относились к женщинам. Тогда уравнение

$$\ln W_{i} = \beta_{1} + \beta_{2}Edu_{i} + \beta_{3}Exp_{i} + \beta_{4}Exp_{i}^{2} + \beta_{5}Fedu_{i} + \beta_{6}Medu_{i} + \varepsilon_{i}, i = 1, ..., 35$$

соответствует регрессии, построенной для подвыборки из мужчин, а уравнение

$$\ln W_i = \gamma_1 + \gamma_2 E du_i + \gamma_3 Exp_i + \gamma_4 Exp_i^2 + \gamma_5 Fedu_i + \gamma_6 Medu_i + \varepsilon_i, i = 36, ..., 58$$

соответствует регрессии, построенной для подвыборки из женщин. Введем следующие переменные:

$$d_i = \begin{cases} 1, & \text{если i--ое наблюдение соответствует мужчине,} \\ 0, & \text{в противном случае;} \end{cases}$$

$$dum_i = \begin{cases} 1, & \text{если i--ое наблюдение соответствует женщине,} \\ 0, & \text{в противном случае.} \end{cases}$$

Рассмотрим следующее уравнение регрессии:

$$\ln W_i = \beta_1 d_i + \gamma_1 du m_i + \beta_2 E du_i d_i + \gamma_2 E du_i du m_i + \beta_3 E x p_i d_i + \gamma_3 E x p_i du m_i + \beta_4 E x p_i^2 d_i +$$

$$+ \gamma_4 E x p_i^2 du m_i + \beta_5 F e du_i d_i + \gamma_5 F e du_i du m_i + \beta_6 M e du_i d_i + \gamma_6 M e du_i du m_i + \varepsilon_i, i = 1, ..., 58$$
 Гипотеза, которую требуется проверить в данной задаче, имеет вид

$$H_0: \begin{cases} \beta_1 = \gamma_1, \\ \beta_2 = \gamma_2, & H_1: |\beta_1 - \gamma_1| + |\beta_2 - \gamma_2| + \dots + |\beta_6 - \gamma_6| > 0. \\ \dots \\ \beta_6 = \gamma_6 \end{cases}$$

Тогда регрессия

$$\ln W_i = \beta_1 d_i + \gamma_1 du m_i + \beta_2 E du_i d_i + \gamma_2 E du_i du m_i + \beta_3 E x p_i d_i + \gamma_3 E x p_i du m_i + \beta_4 E x p_i^2 d_i +$$

$$+ \gamma_4 E x p_i^2 du m_i + \beta_5 F e du_i d_i + \gamma_5 F e du_i du m_i + \beta_6 M e du_i d_i + \gamma_6 M e du_i du m_i + \varepsilon_i, i = 1, ..., 58$$
 по отношению к основной гипотезе H_0 является регрессией без ограничений, а регрессия

$$\ln W_{i} = \beta_{1} + \beta_{2}Edu_{i} + \beta_{3}Exp_{i} + \beta_{4}Exp_{i}^{2} + \beta_{5}Fedu_{i} + \beta_{6}Medu_{i} + \varepsilon_{i}, i = 1, ..., 58$$

является регрессией с ограничениями.

Кроме того, для решения задачи должен быть известен следующий факт:

 $RSS_{UR} = RSS_1 + RSS_2$, где RSS_{UR} — это сумма квадратов остатков в модели:

$$\ln W_i = \beta_1 d_i + \gamma_1 dum_i + \beta_2 E du_i d_i + \gamma_2 E du_i dum_i + \beta_3 Exp_i d_i + \gamma_3 Exp_i dum_i + \beta_4 Exp_i^2 d_i + \\ + \gamma_4 Exp_i^2 dum_i + \beta_5 Fedu_i d_i + \gamma_5 Fedu_i dum_i + \beta_6 Medu_i d_i + \gamma_6 Medu_i dum_i + \varepsilon_i, i = 1, ..., 58$$

$$RSS_1 - \text{ это сумма квадратов остатков в модели:}$$

$$\ln W_{i} = \beta_{1} + \beta_{2}Edu_{i} + \beta_{3}Exp_{i} + \beta_{4}Exp_{i}^{2} + \beta_{5}Fedu_{i} + \beta_{6}Medu_{i} + \varepsilon_{i}, i = 1, ..., 35$$

 RSS_2 — это сумма квадратов остатков в модели:

$$\ln W_i = \gamma_1 + \gamma_2 E du_i + \gamma_3 E x p_i + \gamma_4 E x p_i^2 + \gamma_5 F e du_i + \gamma_6 M e du_i + \varepsilon_i, i = 36, ..., 58$$

(а) Тестовая статистика:

$$T = \frac{(RSS_R - RSS_{UR})/q}{RSS_{UR}/(n-m)},$$

где RSS_R — сумма квадратов остатков в модели с ограничениями;

 RSS_{UR} – сумма квадратов остатков в модели без ограничений;

q — число линейно независимых уравнений в основной гипотезе H_0 ;

n — общее число наблюдений;

т – число коэффициентов в модели без ограничений

(b) Распределение тестовой статистики:

$$T \sim F(q, n-m)$$

(с) Наблюдаемое значение тестовой статистики:

$$T_{obs} = \frac{(70.3 - (34.4 + 23.4))/6}{(34.4 + 23.4)/(58 - 12)} = 1.66$$

(d) Область, в которой H_0 не отвергается:

$$[0; T_{cr}] = [0; 2.3]$$

(е) Статистический вывод:

Поскольку $T_{obs} \in [0; T_{cr}]$, то на основе имеющихся данных мы не можем отвергнуть гипотезу H_0 в пользу альтернативной H_1 . Следовательно, имеющиеся данные не противоречат гипотезе об отсутствии дискриминации на рынке труда между мужчинами и женщинами.

2. Рассмотрим следующую регрессионную модель зависимости логарифма заработной платы $\ln W$ от уровня образования Edu, опыта работы Exp, Exp^2 :

$$\widehat{\ln W} = \hat{\beta}_1 + \hat{\beta}_2 E du + \hat{\beta}_3 E x p + \hat{\beta}_4 E x p^2$$

Модель регрессии была отдельно оценена по выборкам из 20 мужчин и 20 женщин, и были получены остаточные суммы квадратов $RSS_1 = 49.4$ и $RSS_2 = 44.1$ соответственно. Остаточная сумма квадратов в регрессии, оценённой по объединённой выборке, равна 105.5. На уровне 5% проверьте гипотезу об отсутствии дискриминации в оплате труда между мужчинами и женщинами.

- 3. Ниже приведены результаты оценивания спроса на молоко для модели $y_i = \beta_1 + \beta_2 I_i + \beta_3 P_i + \varepsilon_i$, где y_i стоимость молока, купленного i-ой семьёй за последние 7 дней (в руб.), I_i месячный доход i-ой семьи (в руб.), P_i цена 1 литра молока (в руб.). Вычисления для общей выборки, состоящей из 2127 семей, дали RSS = 8841601. Для двух подвыборок, состоящих из 348 городских и 1779 сельских семей, соответствующие суммы квадратов остатков оказались следующими: $RSS_1 = 1720236$ и $RSS_2 = 7099423$. Можно ли считать зависимость спроса на молоко от его цены и дохода единой для городской и сельской местности? Ответ обоснуйте подходящим тестом.
- 4. По 52 наблюдениям была оценена следующая зависимость цены квадратного метра квартиры Price (в долларах) от площади кухни K (в квадратных метрах), времени в пути пешком до ближайшего метро M (в минутах), расстояния до центра города C (в км) и наличия рядом с домом лесопарковой зоны P (1 есть, 0 нет).

$$\widehat{Price}_{(s.e.)} = \underset{(3.73)}{16.12} + \underset{(0.14)}{1.7}K - \underset{(0.03)}{0.35}M - \underset{(0.12)}{0.46}C + \underset{(0.98)}{2.22}P$$

$$R^{2} = 0.78, \sum_{i=1}^{52} (Price_{i} - \overline{Price})^{2} = 278$$

Предположим, что все квартиры в выборке можно отнести к двум категориям: квартиры на севере города (28 наблюдений) и квартиры на юге города (24 наблюдения). Модель регрессии была оценена отдельно только по квартирам на севере и только по квартирам на юге. Ниже приведены результаты оценивания.

Для квартир на севере:

$$\widehat{Price}_{(s.e.)} = \underset{(3.3)}{14} + \underset{(0.23)}{1.6}K - \underset{(0.04)}{0.33}M - \underset{(0.22)}{0.4}C + \underset{(0.78)}{2.1}P, RSS = 21.8$$

Для квартир на юге:

$$\widehat{Price}_{(s.e.)} = \underset{(3.9)}{16.8} + \underset{(0.4)}{1.62}K - \underset{(0.12)}{0.29}M - \underset{(0.23)}{0.51}C + \underset{(1.28)}{1.98}P, RSS = 19.2$$

На уровне значимости 5% проверьте гипотезу о различии в ценообразовании квартир на севере и на юге.

5. По 52 наблюдениям была оценена следующая зависимость цены квадратного метра квартиры Price (в долларах) от площади кухни K (в квадратных метрах), времени в пути пешком до ближайшего метро M (в минутах), расстояния до центра города C (в км) и наличия рядом с домом лесопарковой зоны P (1 — есть, 0 — нет).

$$\widehat{Price}_{(s.e.)} = 16.12 + 1.7 K - 0.35 M - 0.46 C + 2.22 P$$

$$_{(s.e.)} = (3.73) + (0.14) K - (0.03) M - (0.12) (0.12)$$

$$R^{2} = 0.78, \sum_{i=1}^{52} (Price_{i} - \overline{Price})^{2} = 278$$

Предположим, что все квартиры в выборке можно отнести к двум категориям: квартиры на севере города (28 наблюдений) и квартиры на юге города (24 наблюдения). Пусть S — это фиктивная переменная, равная 1 для домов в южной части города и 0 для домов в северной части города. Используя эту переменную, была оценена следующая регрессия:

$$\widehat{Price}_{(s.e.)} = 14.12 + 0.25S + 1.65K + 0.17K \cdot S - 0.37M + 0.05M \cdot S - 0.44C - 0.06C \cdot S + 2.27P - 0.23P \cdot S$$

$$(3.13) \quad (0.11) \quad (0.13) \quad (0.14) \quad (0.14) \quad (0.039) \quad (0.0012) \quad (0.13) \quad (0.18) \quad (0.18) \quad (0.88) \quad (0.08)$$

$$R^2 = 0.85$$

На уровне значимости 5% проверьте гипотезу о различии в ценообразовании квартир на севере и на юге.

6. На основе квартальных данных с 2003 по 2008 год было получено следующее уравнение регрессии, описывающее зависимость цены на товар Р от нескольких факторов:

$$P = 3.5 + 0.4X + 1.1W, ESS = 70.4, RSS = 40.5$$

Когда в уравнение были добавлены фиктивные переменные, соответствующие первым трем кварталам года Q_1, Q_2, Q_3 , оцениваемая модель приобрела вид:

$$P_{t} = \beta + \beta_{X} X_{t} + \beta_{W} W_{t} + \beta_{Q_{1t}} Q_{1t} + \beta_{Q_{2t}} Q_{2t} + \beta_{Q_{3t}} Q_{3t} + \varepsilon_{t}$$

При этом величина ESS выросла до 86.4. Сформулируйте и на уровне значимости 5% проверьте гипотезу о наличии сезонности.

7. Рассмотрим следующую функцию спроса с сезонными переменными SPRING (весна),

SUMMER (лето), FALL (осень):

$$\widehat{\ln Q} = \hat{\beta}_1 + \hat{\beta}_2 \cdot \ln P + \hat{\beta}_3 \cdot SPRING + \hat{\beta}_4 \cdot SUMMER + \hat{\beta}_5 \cdot FALL$$

$$R^2 = 0.37, n = 20$$

Напишите спецификацию регрессии с ограничениями для проверки статистической гипотезы $H_0: \beta_3 = \beta_5$. Дайте интерпретацию проверяемой гипотезе. Пусть для регрессии с ограничениями был вычислен коэффициент $R_R^2 = 0.23$. На уровне значимости 5% проверьте нулевую гипотезу.

8. Рассмотрим следующую функцию спроса с сезонными переменными SPRING (весна), SUMMER (лето), FALL (осень):

$$\widehat{\ln Q} = \hat{\beta}_1 + \hat{\beta}_2 \cdot \ln P + \hat{\beta}_3 \cdot SPRING + \hat{\beta}_4 \cdot SUMMER + \hat{\beta}_5 \cdot FALL$$

$$R^2 = 0.24, n = 24$$

Напишите спецификацию регрессии с ограничениями для проверки статистической гипотезы $H_0: \begin{cases} \beta_3=0, \\ \beta_4=\beta_5 \end{cases}$. Дайте интерпретацию проверяемой гипотезе. Пусть для регрессии с ограничениями был вычислен коэффициент $R_R^2=0.13$. На уровне значимости 5% проверьте нулевую гипотезу.

- 9. Исследователь собирается по выборке, содержащей данные за 2 года, построить модель линейной регрессии с константой и 3-мя объясняющими переменными. В модель предполагается ввести 3 фиктивные сезонные переменные SPRING (весна), SUMMER (лето) и FALL (осень) на все коэффициенты регрессии. Однако в процессе оценивания статистический пакет вывел на экран компьютера следующее сообщение "insufficient number of observations". Объясните, почему имеющегося числа наблюдений не хватило для оценивания параметров модели.
- 10. По данным для 57 индивидов оценили зависимость длительности обучения индивида S от способностей индивида, описываемых обобщённой переменной IQ, и пола индивида, описываемого с помощью фиктивной переменной MALE (равной 1 для мужчин и 0 для женщин), с помощью двух регрессий (в скобках под коэффициентами указаны оценки

стандартных отклонений):

$$\hat{S}_{(s.e.)} = 6.12 + 0.147 \cdot IQ, RSS = 2758.6$$

$$\hat{S}_{(s.e.)} = 6.12 + 0.147 \cdot IQ - 1.035 \cdot MALE + 0.0166 \cdot (MALE \cdot IQ), RSS = 2090.98$$

Зависит ли длительность обучения от пола индивида и почему?

11. По данным, содержащим 30 наблюдений, построена регрессия:

$$\hat{y} = 1.3870 + 5.2587 \cdot x + 2.6259 \cdot d + 2.5955 \cdot x \cdot d,$$

где фиктивная переменная d определяется следующим образом:

$$d_i = \begin{cases} 1 & \text{при } i \in \{1, \dots, 20\}, \\ 0 & \text{при } i \in \{21, \dots, 30\}. \end{cases}$$

Найдите оценки коэффициентов в модели $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$, построенной по первым 20-ти наблюдениям, т.е. при $i \in \{1, \dots, 20\}$.

12. Выборка содержит 30 наблюдений зависимой переменной y и независимой переменной x. Ниже приведены результаты оценивания уравнения регрессии $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$ по первым 20-ти и последним 10-ти наблюдениям соответственно:

$$\hat{y} = 4.0039 + 2.6632 \cdot x$$

$$\hat{y} = 1.3780 + 5.2587 \cdot x$$

По имеющимся данным найдите оценки коэффициентов модели, рассчитанной по 30-ти наблюдениям $y_i = \beta_1 + \beta_2 x_i + \Delta \beta_1 \cdot d_i + \Delta \beta_2 \cdot x_i \cdot d_i + \varepsilon_i$, где фиктивная переменная d определяется следующим образом:

$$d_i = \begin{cases} 1 & \text{при } i \in \{1, \dots, 20\}, \\ 0 & \text{при } i \in \{21, \dots, 30\}. \end{cases}$$

13. Пусть регрессионная модель имеет вид $y_i = \beta_1 + \beta_2 x_{i1} + \beta_3 x_{i2} + \beta_4 x_{i3} + \varepsilon_i, i = 1, \dots, n$. Тестируемая гипотеза $H_0: \beta_2 = \beta_3 = \beta_4$. Запишите, какой вид имеет модель «с ограничением» для тестирования указанной гипотезы.

14. Пусть регрессионная модель имеет вид $y_i = \beta_1 + \beta_2 x_{i1} + \beta_3 x_{i2} + \beta_4 x_{i3} + \varepsilon_i, i = 1, \dots, n$. Тестируемая гипотеза $H_0: \beta_3 = \beta_4 = 1$. Какая модель из приведённых ниже может выступать в качестве модели «с ограничением» для тестирования указанной гипотезы? Если ни одна из них, то запишите свою.

(a)
$$y_i - (x_{i2} + x_{i3}) = \beta_1 + \beta_2 x_{i1} + \varepsilon_i$$

(b)
$$y_i + (x_{i2} - x_{i3}) = \beta_1 + \beta_2 x_{i1} + \varepsilon_i$$

(c)
$$y_i + x_{i2} + x_{i3} = \beta_1 + \beta_2 x_{i1} + \varepsilon_i$$

(d)
$$y_i = \beta_1 + \beta_2 x_{i1} + \beta_3 + \beta_4 + \varepsilon_i$$

15. Пусть регрессионная модель имеет вид $y_i = \beta_1 + \beta_2 x_{i1} + \beta_3 x_{i2} + \beta_4 x_{i3} + \varepsilon_i, i = 1, \ldots, n$. Тестируемая гипотеза $H_0: \begin{cases} \beta_2 + \beta_3 + \beta_4 = 1, \\ \beta_3 + \beta_4 = 0. \end{cases}$ Какая модель из приведённых ниже может выступать в качестве модели «с ограничением» для тестирования указанной гипотезы? Если ни одна из них, то запишите свою.

(a)
$$y_i - x_{i1} = \beta_1 + \beta_3(x_{i2} - x_{i3}) + \varepsilon_i$$

(b)
$$y_i - x_{i1} = \beta_1 + \beta_4(x_{i3} - x_{i2}) + \varepsilon_i$$

(c)
$$y_i + x_{i1} = \beta_1 + \beta_3(x_{i2} + x_{i3}) + \varepsilon_i$$

(d)
$$y_i + x_{i1} = \beta_1 + \beta_3(x_{i2} - x_{i3}) + \varepsilon_i$$

16. Пусть регрессионная модель имеет вид $y_i = \beta_1 + \beta_2 x_{i1} + \beta_3 x_{i2} + \beta_4 x_{i3} + \varepsilon_i, i = 1, \dots, n.$ Тестируемая гипотеза $H_0: \begin{cases} \beta_2 - \beta_3 = 0, \\ \beta_3 + \beta_4 = 0. \end{cases}$ Какая модель из приведённых ниже может выступать в качестве модели «с ограничением» для тестирования указанной гипотезы? Если ни одна из них, то запишите свою.

(a)
$$y_i = \beta_1 + \beta_3(x_{i2} - x_{i1} - x_{i3}) + \varepsilon_i$$

(b)
$$y_i - x_{i1} = \beta_1 + \beta_4(x_{i3} - x_{i2}) + \varepsilon_i$$

(c)
$$y_i = \beta_1 + \beta_3(x_{i1} + x_{i2} + x_{i3}) + \varepsilon_i$$

(d)
$$y_i = \beta_1 + \beta_3(x_{i1} + x_{i2} - x_{i3}) + \varepsilon_i$$

- 17. Известно, что P-значение для коэффициента регрессии равно 0.087, а уровень значимости 0.1. Является ли значимым данный коэффициент в регрессии?
- 18. Известно, что P-значение для коэффициента регрессии равно 0.078, а уровень значимости 0.05. Является ли значимым данный коэффициент в регрессии?

- 19. Известно, что P-значение для коэффициента регрессии равно 0.09. На каком уровне значимости данный коэффициент в регрессии будет признан значимым?
- 20. Ниже приведены результаты оценивания уравнения линейной регрессии зависимости количества смертей в автомобильных катастрофах от различных характеристик:

$$deaths_i = \beta_1 + \beta_2 drivers_i + \beta_3 popden_i + \beta_4 temp + \beta_5 fuel + \varepsilon_i$$

$$\widehat{deaths}_i = -\underbrace{27.1}_{(222.8803)} + \underbrace{4.64}_{(0.3767)} \cdot drivers_i - \underbrace{0.0228}_{(0.0239)} \cdot popden_i + \underbrace{5.3}_{(4.6016)} \cdot temp_i - \underbrace{0.663}_{(0.8679)} \cdot fuel_i$$

	Estimate	St.Error	t value	P-value
Intercept	-27.10	222.88	-0.12	0.90
Drivers	4.64	0.38	12.30	0.00
Popden	-0.02	0.02	-0.95	0.35
Temp	5.30	4.60	1.15	0.26
Fuel	-0.66	0.87	-0.76	0.45

Перечислите, какие из переменных в регрессии являются значимыми и на каком уровне значимости.