	Complex Numbers.
	1. z = a+bi, a,bek.
	12. Rel2) = a, In (2) = b.
	3). $C = \int a + bi \cdot a \cdot b + i \cdot c$
	4). Proposition:
	2 (a+bi) (c+di) = (ac-bol) + (ad+bc);
	Then $\frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}$ its the multiplicative lineare of $a+bi$.
	Suppose. (a+bi)(c+di) = nultiplying (a+bi) grus.
	$(a^{2}+b^{2})(c+di)=a-bi$ $\Rightarrow c+di=\frac{a}{a^{2}+b^{2}}-\frac{b}{a^{2}+b^{2}}i$
$8 \cdot \overline{2} = a^2 + b^2$	2. Complex Conjugato: $a-bi$ -is the C.C. of $a+bi$ which cleante as $\overline{a+bi}$ 1). \overline{s} is real iff. $\overline{s}=\overline{z}$.
$= \left \frac{1}{2} \right ^{2}$ $\Rightarrow \frac{1}{2} \pm \frac{\left \frac{1}{2} \right ^{2}}{2}$	2). Let s.t. EIR. Then Sz1±tz2 = SZ, ±tZ2.
useful in polar	$3) \cdot \frac{2_1 \cdot 2_1}{2_1 \cdot 2_2} = \frac{2_1}{2_1} \cdot \frac{2_2}{2_2}.$ $2_1 \cdot \left(\frac{2_1}{2_2}\right) = \frac{2_1}{2_2}$
	$\frac{1}{2^n} = (\frac{1}{2})^n$
	6). Given polynomial $p(z)$ with real coefficient: $\overline{p(z)} = p(\overline{z})$
	3. Modulus & Segument.
	1). Modulus of $a+b$; 75 $\Gamma = \int a^{\frac{1}{2}}b^{\frac{1}{2}}$ denote os. $ a+b $. D. $2=0$ iff $ 2 =0$.

2). e	① $ 3 \cdot 2 = 2 \cdot 3 $ ② $ \frac{21}{22} = \frac{ 3 }{ 22 }$ ② $ 2^n = 2 ^n$ Singularit: An augel of ① ang $(\bar{z}) = -$ ang $(z) = 2\lambda$	-argla)	
4. Polar	D. $arg(2, 2z) = arg(2, 7+c)$ Form: $2 = \alpha + bi = rc$ Moivre's Theorem. Until	cos0+isino).	
6. nth	ort of unity: CSolve Cosno + isinno = 1		
All	$\begin{cases} \cos n\theta = 1. \\ \sin n\theta = 0. \end{cases}$ $sol^{\frac{1}{2}} : 1, \cos^{\frac{1}{2}} n + i c$	$\int n\theta = 2k\pi.$ $=>$ $n\theta = k\pi$ $\sin \frac{2\pi}{n}, \cos \frac{4\pi}{n} + \sin \frac{4\pi}{n},$	$n0 = 2k\lambda \implies 0 = \frac{2k\lambda}{n}$ $k = 0, 1,, n-1$ $\frac{2a(n-1)}{n} + i \sin(\frac{2a(n-1)}{n})$.