Ein #P-vollständiges Problem: Die Permanente

Seminar Komplexitätstheorie

Leo Kayser

Wintersemester 2021/22

Institut für Theoretische Informatik

#P und Zählprobleme

Definition 1: (Die Funktionenklassen FP und #P)

(i)
$$FP = \{ f : \Sigma^* \to \Delta^* \mid f \text{ ist in Polynomialzeit berechenbar } \}$$

(ii)
$$\#\mathrm{P} = \left\{ f \colon \Sigma^* \to \mathbb{N}_0 \, \middle| \, \begin{array}{c} \mathsf{Es \ gibt \ eine \ Polynomialzeit-NTM \ } M \ \mathsf{mit} \\ f(x) = \# \operatorname{\mathsf{acc}}_M(x) \ \mathsf{für \ alle} \ x \in \Sigma^* \end{array} \right\}$$

Beobachtung: $A \in NP$ via polynomiellem Verifizierer V, d. h.

$$x \in A \iff \exists y \text{ mit } |y| \le p(|x|) \text{ und } V(\langle x, y \rangle) = 1,$$

für ein Polynom p, dann liegt das dazugehörige $Z\ddot{a}hlproblem$ in #P:

$$\#A: \Sigma^* \to \mathbb{N}_0, \qquad x \mapsto \#\{y \mid |y| \le p(|x|) \text{ und } V(\langle x, y \rangle) = 1\}$$

Reduktionsbegriffe für Funktionenklassen

Definition 2: $(\leq_{m}^{P}, \leq_{met}^{P}, \leq_{T}^{P}, Vollständigkeit)$

Es seien $f_1 \colon \Sigma^* \to \mathbb{N}_0$, $f_2 \colon \Delta^* \to \mathbb{N}_0$ Funktionen. Wir definieren

- (i) $f_1 \leq^{\mathsf{P}}_{\mathsf{m}} f_2$ gdw. es gibt $g \in \mathrm{FP}$ in mit $f_1(x) = f_2(g(x))$;
- (ii) $f_1 \leq_{\text{met}}^{\mathsf{P}} f_2$ gdw. es gibt $g, h \in \mathsf{FP}$ mit $f_1(x) = h(x, f_2(g(x)))$;
- (iii) $f_1 \leq^{\mathsf{P}}_{\mathsf{T}} f_2$ gdw. $f_1 \in \mathrm{FP}^{f_2}$;
- (iv) f_1 ist #P-vollständig bezüglich $\leq \in \{\leq_m^P, \leq_{met}^P, \leq_T^P\}$, gdw. $f_1 \in \#P$ und für alle $f_0 \in \#P$ gilt $f_0 \leq f_1$.

Beobachtung:

$$\textit{f}_1 \leq^{\mathsf{P}}_{\mathsf{m}} \textit{f}_2 \quad \implies \quad \textit{f}_1 \leq^{\mathsf{P}}_{\mathsf{met}} \textit{f}_2 \quad \implies \quad \textit{f}_1 \leq^{\mathsf{P}}_{\mathsf{T}} \textit{f}_2.$$

Der Satz von Cook-Levin für #P

Satz 3: (#P-Vollständigkeit von #SAT)

Das Zählproblem $\#SAT(\langle \varphi \rangle) = \#\{\text{Erfüllende Belegungen von } \varphi\}$ ist vollständig für #P bezüglich $\leq_{\mathrm{m}}^{\mathrm{P}}$. Die analoge Aussage gilt für #3SAT.

Beweis.

- Es sei $f \in \#P$ mit $f(x) = acc_M(x)$ für eine Polynomialzeit-NTM M
- Es sei g die Reduktionsfunktion für $L(M) \leq_{\mathsf{m}}^{\mathsf{P}} \mathsf{SAT}$ aus dem Satzes von Cook-Levin
- {Akzept. Berechnungspfade von M(x)} \longleftrightarrow {Erfüllende Belegungen von g(x)}

$$\sim f(x) = \#SAT(g(x))$$
 für alle x .

Die Permanente

Definition 4: (Permanente, PERM)

Die *Permanente* eine Matrix $A = [a_{i,j}] \in \mathsf{Mat}(n \times n, \mathbb{Z})$ ist

$$\operatorname{\mathsf{perm}} A = \sum_{\sigma \in \mathcal{S}_n} a_{1,\sigma(1)} \cdots a_{n,\sigma(n)}.$$

Das dazugehörige Zählproblem bezeichnen wir mit PERM, oder PERM_S, wenn wir die Matrixeinträge auf eine Teilmenge $S \subseteq \mathbb{Z}$ einschränken.

Beispiel: perm
$$\begin{bmatrix} 0 & 2 & 4 & 0 \\ 0 & 1 & 1 & 0 \\ 3 & 0 & 0 & 5 \\ 1 & 0 & 0 & 2 \end{bmatrix} = 66.$$

Determinante und Permanente

• Formel ähnelt der Determinante:

$$\det A = \sum_{\sigma \in \mathcal{S}_n} \operatorname{sign} \sigma \cdot a_{1,\sigma(1)} \cdots a_{n,\sigma(n)}$$

- Determinante lässt sich effizient berechnen (Gauß-Elimination)
- Für Permanente kein effizienter Algorithmus bekannt
- Beste allgemeine Formel stammt von Ryser

perm
$$A = (-1)^n \sum_{S \subseteq \{1,...,n\}} (-1)^{|S|} \prod_{i=1}^n \sum_{j \in S} a_{i,j}$$

Herbert J. Ryser (1923–1985) CC BY-SA 2.0 de

Gewichtete Kreisüberdeckungen

Es sei G = (V, E) ein gerichteter gewichteter Graph mit Gewichten $w \colon E \to \mathbb{N}_0$.

Definition 5: (Kreisüberdeckung, #CC)

- (i) Eine Kreisüberdeckung $C \subseteq E$ von G ist eine Menge von knotendisjunkten Kreisen, die alle Knoten beinhaltet; das Gewicht sei $w(C) = \prod_{e \in C} w(e)$.
- (ii) Das Zählproblem #CC fragt nach der Summe der Gewichte aller Kreisüberdeckungen von G.

- Wie viele Kreisüberdeckungen besitzt folgender Graph?
- Was ist #CC(G)?

Γ0	2	4	0
0	1	1	0
3	0	0	5
_1	0	0	2

Die kombinatorische Interpretation der Permanente

Lemma 6 Ist A die gewichtete Adjazenzmatrix von G, so ist

$$\#CC(G) = perm A.$$

Insbesondere sind #CC und $PERM_{\mathbb{N}_0}$ äquivalent bezüglich \leq^P_m .

- Kreisüberdeckungen entsprechen Permutationen via

$$\mathcal{C} \mapsto \sigma_{\mathcal{C}}, \quad \sigma_{\mathcal{C}}(i) = j \text{ für } (v_i, v_j) \in \mathcal{C}.$$

• Somit ist $w(\mathcal{C}) = a_{1,\sigma_{\mathcal{C}}(1)} \cdots a_{n,\sigma_{\mathcal{C}}(n)}$ und die Identität folgt.

Eine weitere Interpretation

Definition 7: (Biadjazenzmatrix, PM, #PM)

Es sei G=(X,Y,E) ein bipartiter Graph, $X=Y=\{1,\ldots,n\},\ E\subseteq X\times Y.$ Die *Biadjazenzmatrix* ist

$$M_G = [a_{i,j}], \qquad a_{i,j} = egin{cases} 1 & \mathsf{falls}\; (i,j) \in E; \ 0 & \mathsf{sonst}. \end{cases}$$

Das Entscheidungsproblem PM fragt nach der Existenz eines perfekten Matchings in G. Das dazugehörige Zählproblem sei #PM.

Beobachtung: $\#PM(G) = perm M_G$. Es ist also $\#PM \equiv_m^P PERM_{\{0,1\}}$

Die große Überraschung

Leslie G. Valiant (*1949) CC BY-SA 2.0 de

Satz 8: (Valiant [Val79])

 $\mathtt{PERM}_{\{0,1\}} \text{ ist } \# P\text{-vollst"andig bez"uglich } \leq^P_{\mathsf{met}}.$

Insbesondere ist #PM #P-vollständig, obwohl PM in P liegt!

Beweisidee zum Satz von Valiant

- 1. $\text{PERM}_{\{0,1\}} \in \#P$, da $\#\text{PM} \in \#P$ (tatsächlich sogar $\text{PERM}_{\mathbb{N}_0} \in \#P$)
- 2. Reduziere zunächst #3SAT $\leq_{\text{met}}^{P} \text{PERM}_{\{0,1\}}$ mit Zwischenergebnis in PERM $_{\mathbb{Z}}$:

Konstruktion. Zu $\varphi(x_1,\ldots,x_n)$ in 3KNF mit m Klauseln konstruiere

- n Variablen-Gadgets, die je genau 2 Kreisüberdeckungen zulassen
- m Klausel Gadgets, verbunden mit den Variablen über
- 3m XOR-Gadgets, die Gewicht 4 bei korrekter Belegung liefern, 0 sonst.
- 3. Der so konstruierte Graph hat die Eigenschaft $\#CC(G) = 4^{3m} \cdot \#3SAT(\varphi)$
- 4. Durch Binärentwicklung werden $\pm a$ -Kanten zu ± 1 -Kanten
- 5. Da $\#CC(G) \in \{0, ..., N = 4^{3m}2^n\}$, genügt es, mod N+1 zu rechnen dann $-1 \equiv N \rightsquigarrow$ wiederhole 4.

$\leq^{\mathsf{P}}_{\mathsf{m}}$ ist (vermutlich) echt stärker als $\leq^{\mathsf{P}}_{\mathsf{met}}$

#SAT ist \leq_m^P -vollständig für #P. Gilt dasselbe für #PM?

Satz 9: (Nein.)

Falls #PM #P-vollständig bzgl. \leq_m^P ist, so ist P = NP.

Beweis.

- Sei $g \in \operatorname{FP}$ mit $\#\operatorname{SAT}(\varphi) = \#\operatorname{PM}(g(\varphi))$
- Sei *M* eine Polynomialzeit-DTM für PM.
- $M \circ g$ entscheidet SAT in Polynomialzeit, also SAT $\in P$.

Danke! Fragen?

Literaturquellen

- [AB09] Sanjeev Arora und Boaz Barak. Computational Complexity: A Modern Approach. Cambridge: Cambridge University Press, 2009. ISBN: 9780521424264. DOI: 10.1017/CB09780511804090. URL: https://www.cambridge.org/core/books/computational-complexity/3453CAFDEB0B4820B186FE69A64E1086.
- [DK00] D.-Z. Du und K.-I. Ko. *Theory of Computational Complexity*. Wiley, 2000.
- [Val79] Leslie G. Valiant. "The complexity of computing the permanent". In: Theoretical Computer Science 8.2 (1979), S. 189–201. ISSN: 0304-3975. DOI: https://doi.org/10.1016/0304-3975(79)90044-6.

Bildquellen

- Folie 5: CC BY-SA 2.0 de, Konrad Jacobs Oberwolfach Photo Collection. https://opc.mfo.de/detail?photo_id=3617
- Folie 9: CC BY-SA 2.0 de, Renate Schmid Oberwolfach Photo Collection. https://opc.mfo.de/detail?photo_id=7074