ARM Microprocessor and ARM-Based Microcontrollers

Nguatem William

24th May 2006

A Microcontroller-Based Embedded System

o outside

Roadmap

- Introduction
 - ARM
 - ARM Basics
- 2 ARM Extensions
 - Thumb
 - Jazelle
 - NEON & DSP Enhancement
 - Summary
- ARM Processor Cores
- ARM based System
 - Microcontroller
 - ARM Products

Roadmap

- Introduction
 - ARM
 - ARM Basics
- **2** ARM Extensions
 - Thumb
 - Jazelle
 - NEON & DSP Enhancement
 - Summary
- **3** ARM Processor Cores
- ARM based System
 - Microcontroller
 - ARM Products

ARM

Introduction

ARM History

- ARM Acorn RISC Machine from Acorn Computers Ltd. of Cambridge, UK.
- In 1990, ARM Ltd. was established and ARM was renamed as Advanced RISC Machines.

ARM Ltd.

- A semiconductor IP Intellectual Property company.
- Licenses IP cores to partner companies e.g Nokia, Philips Semiconductors.
- Also develop technologies to assist with the designing of the ARM architecture
- ARM is not a chip producer.

IP - Intellectual Property

IP - Intellectual Property

- ARM provides hard and soft views to licensees (RTL and synthesis flows GDSII layout) IP
- Soft views include gate level netlists (RTL source code) → synthesizable from licensees using a suitable gate library Hard IP are the final GDSII layout given to the customer
- OEMs must use hard views to protect ARM IP

Partly from Berkeley RISC concept

- A load-store architecture.
- Fixed-length 32-bit instructions
- 3-address instruction format
- Pipelined architecture
- Conditional execution of all instructions
- Extensible ISA through hardware Coprocessors
- The ability to perform a general shift operation and a general ALU operation in a single instruction that executes in a single clock cycle

rejected from Berkeley RISC concept

- Register Window.
- Delayed branches

Modes (I)

7 operating modes

- user: Unprivileged, normal execution mode
- FIQ: High priority (fast) interrupt raised
- IRQ : Low priority Interrupt
- svc: Software interrupt(SWI) is executed
- Abort: Handling of memory access violations
- system : Run privileged task
- Undefined : Undefined instructions

Modes (II)

Question

Why FIQ and IRQ?

Answer

- FIQ has a higher priority than IRQ
- Gives a better mapping of different interrupt sources
- FIQ has extra bank registers than IRQ
 - → faster than IRQ

Registers

ARM has 37 registers all of which are 32-bits long

- 1 dedicated program counter
- 1 dedicated current program status register
- 5 dedicated saved program status registers
- 30 general purpose registers

Accessible Registers

These registers cannot all be seen at once. The processor state and operating mode dictate which registers are available to the programmer.

Introduction

00000000000

Processor Status Register - CPSR

- Condition code flags
 - N = Negative result from ALU
 - Z = Zero result from ALU
 - C = ALU operation Carried out
 - V = ALU operation oVerflowed
- Sticky Overflow flag Q flag
 - Architecture 5TE/J only
 - Indicates if saturation has occurred

- Interrupt Disable bits.
 - I = 1: Disables the IRQ.F = 1: Disables the FIQ.
- T Bit
 - Architecture xT only
 - T = 0: Processor in ARM state
 - T = 1: Processor in Thumb state
- Mode bits
 - Specify the processor mode

- J bit
 - Architecture 5TEJ only
 - J = 1: Processor in Jazelle state

Data sizes

The ARM is a 32-bit architecture.

When used in relation to the ARM:

- Byte means 8 bits
- Halfword means 16 bits (two bytes)
- Word means 32 bits (four bytes)

ISA

Most ARMs implement two instruction sets.

- 32-bit ARM Instruction Set
- 16-bit Thumb Instruction Set

Jazelle cores can also execute Java bytecode

ARM Basics

Memory

Endianess

- Neutrality to Endianess.
- Can be configured at power-up as either little- or big-endian mode.
- Default alignment is little-endian due to many little-endian peripheral component available.

Coprocessor interface

Provide support for hardware coprocessors.

Advantages

 Extends the instruction set,
e.g On-Chip control of MMU and Cache, floating point arithmetic

Roadmap

- Introduction
 - ARM
 - ARM Basics
- 2 ARM Extensions
 - Thumb
 - Jazelle
 - NEON & DSP Enhancement
 - Summary
- **3** ARM Processor Cores
- **4** ARM based System
 - Microcontroller
 - ARM Products

Thumb

Thumb (I)

- Thumb is a 16-bit instruction set.
- Core has additional execution state Thumb
- Switch between ARM and Thumb using BX instruction
- Not a complete ISA

Difference to ARM Inst.

- Conditional execution is not used
- Source and destination registers identical
- Thumb bit in CPRS is set
- Inline barrel shifter not used

Thumb

Thumb (II)

Thumb-2

16-bit coding of more ARM instruction.

Pros and Cons of Thumb

- + Excellent code density for minimal system size.
- No direct access of Status registers while in Thumb state
- No conditional execution, excepting branch instructions
- With 32-bit memory, the ARM code is 40% faster than Thumb code
- + With 16-bit memory, the Thumb code is 45% faster than ARM code

Thumb (IV)

Thumb Application

A typical embedded system, e.g. a mobile phone, will include a small amount of fast 32-bit memory (to store speed-critical DSP code) and 16-bit off-chip memory to store the control code.

Jazelle (I)

• Hardware accelerated java code mechanism.

Features

- Processor fetches one word containing 4-javabytes.
- J-bit of status register set

Jazelle types

- Jazelle DBX Direct Byte eXecution: supports only javabyte codes
- Jazalle RCT Run time CompilaTion: extension of Thumb-2, supports different VM.

Jazelle

TrustZone

TrustZone.

- Hardware based security mechanism
- Complete code separation

NEON & DSP Enhancement

NEON.

- Hardware acceleration for multimedia applications
- Combines 64-bit and 128-bit hybrid SIMD
- Separate execution i.e complete instruction architecture.

DSP Extension

Added DSP instructions to ARM ISA

Note

- Extra logic needed for the hardware extension: e.g Thumb decompression unit.
- Increase die size and cost.
- + Simple implementation
- + Very efficient

Roadmap

- 1 Introduction
 - ARM
 - ARM Basics
- 2 ARM Extensions
 - Thumb
 - Jazelle
 - NEON & DSP Enhancement
 - Summary
- **3** ARM Processor Cores
- ARM based System
 - Microcontroller
 - ARM Products

ARM7 Core

Features

- 32-bit RISC Architecture
- Von Neumann Architecture
- 3-Stage Pipeline Fetch, Decode Execute
- Most instructions execute in a single cycle.
- ARMv4 ISA
- Supports up to 16 coprocessors.

Introduction

Stated operating frequencies represent worst-case speed for a range of processes.

ARM9 Core

Features

Performance of the ARM7 Von Neumann architecture limited by the available bandwidth - memory accessed on almost every cycle either to fetch an instruction or to transfer data.

- Harvard architecture improves CPI Clock cycles Per Instruction
- Higher performance core than ARM7
- Five-stage pipeline Fetch, Decode, Execute, Memory, and Write

ARM9E

Features

- ARM9 core + DSP extensions
- Enhanced multiplier for DSP performance
- On-Chip debug hardware

Benefits

- Single engine for both DSP and control code
- Simple single memory system.
- Reduced chip complexity, die size and power consumption
- Single toolkit support with ARMs Development and Debug tools, giving faster time-to-market

Introduction

Introduction

Roadmap

- 1 Introduction
 - ARM
 - ARM Basics
- **2** ARM Extensions
 - Thumb
 - Jazelle
 - NEON & DSP Enhancement
 - Summary
- **3** ARM Processor Cores
- ARM based System
 - Microcontroller
 - ARM Products

ActelCoreMP7 and Subsystem

- ARM7TDMI-S
- 32/16-bit RISC architecture
- ARM and Thumb instruction sets
- Embedded real-time debug and JTAG

Introduction

ARM Products

ARM Powered Products

ARM Products

Summary

Summary

- ARM Cores are IPs
- Hybrid instruction encoding offers better efficiency in embedded applications
- Backward software compatibility for all new cores

Questions?