Title: Credit Card Fraud Detection

Description: Detecting credit card fraud transactions using machine learning techniques.

Problem Statement: Building a model that accuratley identifies fraudlent trasctions.

Desired Outcome: Minimizing the financial loss of both credit card holders and issuers by identifying fraud transactions.

Importing required libraries

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Load the data

```
In [2]: df = pd.read_csv ("C:/Users/sande/Downloads/archive (6)/creditcard.csv")
```

In [3]: df

_			_ ~	7
m	117	_	1 - 3	
•	u	_		

	Time	V1	V2	V3	V4	V5	V6	V 7	
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0
			•••						
284802	172786.0	-11.881118	10.071785	-9.834783	-2.066656	-5.364473	-2.606837	-4.918215	7
284803	172787.0	-0.732789	-0.055080	2.035030	-0.738589	0.868229	1.058415	0.024330	0
284804	172788.0	1.919565	-0.301254	-3.249640	-0.557828	2.630515	3.031260	-0.296827	0
284805	172788.0	-0.240440	0.530483	0.702510	0.689799	-0.377961	0.623708	-0.686180	0
284806	172792.0	-0.533413	-0.189733	0.703337	-0.506271	-0.012546	-0.649617	1.577006	- 0

284807 rows × 31 columns

Exploratory data analysis

In [5]: | df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 284807 entries, 0 to 284806
Data columns (total 31 columns):

Data	COTUMNS	(cocar	31 COTUMNS	·):
#	Column	Non-Nu	ll Count	Dtype
0	Time	284807	non-null	float64
1	V1	284807	non-null	float64
2	V2	284807	non-null	float64
3	V3	284807	non-null	float64
4	V4	284807	non-null	float64
5	V5	284807	non-null	float64
6	V6	284807	non-null	float64
7	V7	284807	non-null	float64
8	V8	284807	non-null	float64
9	V 9	284807	non-null	float64
10	V10	284807	non-null	float64
11	V11	284807	non-null	float64
12	V12	284807	non-null	float64
1 3	V13	284807	non-null	float64
14	V14	284807	non-null	float64
15	V15	284807	non-null	float64
16	V16	284807	non-null	float64
17	V17	284807	non-null	float64
18	V18	284807	non-null	float64
19	V19	284807	non-null	float64
20	V20	284807	non-null	float64
21	V21	284807	non-null	float64
22	V22	284807	non-null	float64
23	V23	284807	non-null	float64
24	V24	284807	non-null	float64
25	V25	284807	non-null	float64
26	V26	284807	non-null	float64
27	V27	284807	non-null	float64
28	V28	284807	non-null	float64
29	Amount	284807	non-null	float64
30	Class	284807	non-null	int64
dtyn	.c. £1001	-61/201	in+61/1)	

dtypes: float64(30), int64(1)

memory usage: 67.4 MB

Data Cleaning and Preprocessing

```
In [6]: df.isna().sum()
Out[6]: Time
                   0
        V1
                   0
        V2
                   0
        V3
                   0
                   0
        V4
        V5
                   0
        ۷6
                   0
        V7
                   0
        ٧8
                   0
        V9
                   0
        V10
                   0
        V11
                   0
        V12
                   0
        V13
                   0
        V14
                   0
        V15
                   0
        V16
                   0
        V17
                   0
        V18
                   0
        V19
                   0
        V20
                   0
        V21
                   0
        V22
                   0
        V23
                   0
        V24
                   0
        V25
                   0
        V26
                   0
        V27
                   0
        V28
                   0
        Amount
                   0
        Class
        dtype: int64
```

statistical summary

In [7]: df.describe().T

Out[7]:

	count	mean	std	min	25%	50%	
Time	284807.0	9.481386e+04	47488.145955	0.000000	54201.500000	84692.000000	139320
V1	284807.0	1.168375e-15	1.958696	- 56.407510	-0.920373	0.018109	1.
V2	284807.0	3.416908e-16	1.651309	-72.715728	-0.598550	0.065486	0.
V3	284807.0	-1.379537e- 15	1.516255	-48.325589	-0.890365	0.179846	1.
V4	284807.0	2.074095e-15	1.415869	-5.683171	-0.848640	-0.019847	0.
V5	284807.0	9.604066e-16	1.380247	-113.743307	-0.691597	-0.054336	0
V6	284807.0	1.487313e-15	1.332271	-26.160506	-0.768296	-0.274187	0.
V 7	284807.0	-5.556467e- 16	1.237094	-43.557242	-0.554076	0.040103	0.
V8	284807.0	1.213481e-16	1.194353	-73.216718	-0.208630	0.022358	0.
V 9	284807.0	-2.406331e- 15	1.098632	-13.434066	-0.643098	-0.051429	0.
V10	284807.0	2.239053e-15	1.088850	-24.588262	-0.535426	-0.092917	0.
V11	284807.0	1.673327e - 15	1.020713	- 4.797473	-0.762494	-0.032757	0.
V12	284807.0	-1.247012e- 15	0.999201	-18.683715	-0.405571	0.140033	0.
V13	284807.0	8.190001e-16	0.995274	-5.791881	-0.648539	-0.013568	0.
V14	284807.0	1.207294e-15	0.958596	-19.214325	-0.425574	0.050601	0.
V15	284807.0	4.887456e-15	0.915316	-4.498945	-0.582884	0.048072	0.
V16	284807.0	1.437716e - 15	0.876253	-14.129855	-0.468037	0.066413	0.
V17	284807.0	-3.772171e- 16	0.849337	-25.162799	-0.483748	-0.065676	0.
V18	284807.0	9.564149e-16	0.838176	-9.498746	-0.498850	-0.003636	0.
V19	284807.0	1.039917e-15	0.814041	-7.213527	-0.456299	0.003735	0.
V20	284807.0	6.406204e-16	0.770925	-54.497720	-0.211721	-0.062481	0.
V21	284807.0	1.654067e-16	0.734524	-34.830382	-0.228395	-0.029450	0.
V22	284807.0	-3.568593e- 16	0.725702	-10.933144	-0.542350	0.006782	0.
V23	284807.0	2.578648e-16	0.624460	- 44.807735	-0.161846	-0.011193	0.
V24	284807.0	4.473266e-15	0.605647	- 2.836627	-0.354586	0.040976	0.
V25	284807.0	5.340915e - 16	0.521278	- 10.295397	-0.317145	0.016594	0.
V26	284807.0	1.683437e-15	0.482227	- 2.604551	-0.326984	-0.052139	0.
V27	284807.0	-3.660091e- 16	0.403632	-22.565679	-0.070840	0.001342	0.
V28	284807.0	-1.227390e- 16	0.330083	-15.430084	-0.052960	0.011244	0.
Amount	284807.0	8.834962e+01	250.120109	0.000000	5.600000	22.000000	77.
Class	284807.0	1.727486e-03	0.041527	0.000000	0.000000	0.000000	0.

In [8]: df.drop(columns = "Time",inplace = True)

In [9]: df

_	- 2		
α		ıo	
UL.	ıı	יכו	Ι.

	V1	V2	V3	V4	V5	V6	V 7	V8	
0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	(
1	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-(
2	- 1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	- 1
3	- 0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	- 1
4	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	(
284802	-11.881118	10.071785	-9.834783	-2.066656	-5.364473	-2.606837	-4.918215	7.305334	1
284803	-0.732789	-0.055080	2.035030	-0.738589	0.868229	1.058415	0.024330	0.294869	(
284804	1.919565	-0.301254	-3.249640	-0.557828	2.630515	3.031260	-0.296827	0.708417	(
284805	- 0.240440	0.530483	0.702510	0.689799	-0.377961	0.623708	-0.686180	0.679145	(
284806	-0.533413	-0.189733	0.703337	-0.506271	-0.012546	-0.649617	1.577006	-0.414650	(

284807 rows × 30 columns

```
In [10]: df.dtypes
Out[10]: V1
                    float64
         V2
                    float64
         V3
                    float64
         ٧4
                    float64
         ۷5
                    float64
         ۷6
                    float64
         ٧7
                    float64
         ٧8
                    float64
         V9
                    float64
         V10
                    float64
         V11
                    float64
         V12
                    float64
         V13
                    float64
         V14
                    float64
         V15
                    float64
         V16
                    float64
         V17
                    float64
         V18
                    float64
         V19
                    float64
         V20
                    float64
         V21
                    float64
         V22
                    float64
         V23
                    float64
         V24
                    float64
         V25
                    float64
                    float64
         V26
         V27
                    float64
         V28
                    float64
         Amount
                    float64
                      int64
         Class
         dtype: object
In [11]: df.duplicated()
Out[11]: 0
                    False
         1
                    False
                    False
         2
         3
                    False
         4
                    False
                    . . .
         284802
                    False
         284803
                    False
         284804
                    False
         284805
                    False
                    False
         284806
```

Length: 284807, dtype: bool

In [12]: df.drop_duplicates()

\sim		_	Γ -	1	п.
U	u:	ГΙ		17	- [
_	٠.	_	ь-		а.

	V1	V2	V3	V4	V5	V6	V7	V8	
0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	(
1	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-(
2	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1
3	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1
4	-1.158233	0.877737	1.548718	0.403034	- 0.407193	0.095921	0.592941	-0.270533	(
284802	-11.881118	10.071785	-9.834783	-2.066656	-5.364473	-2.606837	-4.918215	7.305334	1
284803	-0.732789	-0.055080	2.035030	-0.738589	0.868229	1.058415	0.024330	0.294869	(
284804	1.919565	-0.301254	-3.249640	-0.557828	2.630515	3.031260	-0.296827	0.708417	(
284805	-0.240440	0.530483	0.702510	0.689799	-0.377961	0.623708	-0.686180	0.679145	(
284806	-0.533413	-0.189733	0.703337	-0.506271	-0.012546	-0.649617	1.577006	-0.414650	(

275663 rows × 30 columns

outliers removing

using boxplot detecting outliers

```
In [13]: plt.boxplot(df,vert= False)
    plt.title("Detecting Outliers Using Boxplot")
    plt.show()
```

Detecting Outliers Using Boxplot

removing outliers

```
In [14]: # Function to remove outliers using the IQR method
def remove_outliers_iqr(df):
    # Select only numerical columns
    df_num = df.select_dtypes(include=['float64', 'int64'])

# Calculate Q1 (25th percentile) and Q3 (75th percentile)
Q1 = df_num.quantile(0.25)
Q3 = df_num.quantile(0.75)

# Calculate the IQR
IQR = Q3 - Q1

# Filter the dataframe
df_no_outliers = df[~((df_num < (Q1 - 1.5 * IQR)) | (df_num > (Q3 + 1.5 *
return df_no_outliers

# Applying the function
df_no_outliers = remove_outliers_iqr(df)
```

```
In [15]: df_no_outliers
Out[15]:
                        V1
                                 V2
                                          V3
                                                    V4
                                                             V5
                                                                       V6
                                                                                V7
                                                                                          V8
               0 -1.359807 -0.072781
                                                                  0.462388
                                     2.536347
                                               1.378155 -0.338321
                                                                           0.239599
                                                                                    0.098698
                                                                                              0.
                  1.191857 0.266151
                                     0.166480
                                               0.448154
                                                        0.060018
                                                                 -0.082361
                                                                          -0.078803
                                                                                    0.085102 -0.
               3 -0.966272 -0.185226
                                     1.792993 -0.863291
                                                       -0.010309
                                                                  1.247203
                                                                           0.237609
                                                                                    0.377436 -1.
                 -1.158233 0.877737
                                     1.548718
                                               0.403034 -0.407193
                                                                  0.095921
                                                                           0.592941
                                                                                    -0.270533
               5 -0.425966
                           0.960523
                                     1.141109 -0.168252
                                                        0.420987 -0.029728
                                                                           0.476201
                                                                                    0.260314 -0.
           284796
                  1.884849 -0.143540 -0.999943
                                               1.506772 -0.035300 -0.613638
                                                                           0.190241 -0.249058
                                                                                              0.
           284797 -0.241923
                           0.712247
                                     0.399806
                                              -0.463406
                                                        0.244531
                                                                 -1.343668
                                                                           0.929369
                                                                                    -0.206210
                  2.039560 -0.175233 -1.196825
                                               0.234580
                                                        -0.008713
                                                                 -0.726571
                                                                           0.017050
                                                                                    -0.118228
           284800
           284801 0.120316
                          0.931005 -0.546012 -0.745097
                                                        1.130314
                                                                 -0.235973
                                                                                    0.115093 -0.
                                                                           0.812722
           284803 -0.732789 -0.055080
                                     2.035030 -0.738589
                                                        0.868229
                                                                  1.058415
                                                                           0.024330
                                                                                    0.294869
          146319 rows × 30 columns
          Standardization
         from sklearn.preprocessing import StandardScaler
In [16]:
          scale = StandardScaler()
          scaled_df = scale.fit_transform(df)
In [17]: scaled df
Out[17]: array([[-0.69424232, -0.04407492,
                                                1.6727735 , ..., -0.06378115,
                    0.24496426, -0.04159898
                  [ 0.60849633, 0.16117592,
                                                0.1097971 , ..., 0.04460752,
                   -0.34247454, -0.04159898],
                  [-0.69350046, -0.81157783, 1.16946849, ..., -0.18102083,
                    1.16068593, -0.04159898],
                  [0.98002374, -0.18243372, -2.14320514, ..., -0.0804672,
                   -0.0818393 , -0.04159898],
                  [-0.12275539, 0.32125034, 0.46332013, ..., 0.31668678,
                   -0.31324853, -0.04159898],
                  [-0.27233093, -0.11489898, 0.46386564, ..., 0.04134999,
                    0.51435531, -0.04159898]])
In [18]: |df['Class'].value_counts()
Out[18]: 0
               284315
```

492

Name: Class, dtype: int64

```
In [19]: plt.figure(figsize=(13,10))
sns.heatmap(df.corr(), annot=True, cmap='coolwarm')
```

Out[19]: <Axes: >

Visualization of (Fraud vs Non Fruad)

```
In [20]: sns.countplot(x='Class', data=df)
    plt.title('Class Distribution')
    plt.show()
```


Data balancing

```
In [25]: | X.shape
Out[25]: (284807, 29)
In [26]: X_res.shape
Out[26]: (984, 29)
In [27]: Y.value_counts()
Out[27]: 0
              284315
                 492
         Name: Class, dtype: int64
In [28]: Y_res.shape
Out[28]: (984,)
In [29]: Y_res.value_counts()
Out[29]: 0
              492
              492
         Name: Class, dtype: int64
         Train_Test_Split
In [30]: | from sklearn.model_selection import train_test_split
         X_train,X_test,Y_train,Y_test = train_test_split(X_res,Y_res,test_size=0.2, ra
In [31]:
         print(X_train.shape)
         print(Y_train.shape)
         print(X_test.shape)
         print(Y_test.shape)
         (787, 29)
         (787,)
         (197, 29)
         (197,)
         Data modeling
```

y variable is categorical data then we implement logistic regression

```
In [32]: from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
```

```
In [33]: model
Out[33]: LogisticRegression()
         In a Jupyter environment, please rerun this cell to show the HTML representation or trust
         the notebook.
         On GitHub, the HTML representation is unable to render, please try loading this page with
         nbviewer.org.
In [34]: | model = model.fit(X train, Y train)
         C:\Users\sande\AppData\Roaming\Python\Python311\site-packages\sklearn\linear
         model\ logistic.py:469: ConvergenceWarning: lbfgs failed to converge (status=
         1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max_iter) or scale the data as shown in:
              https://scikit-learn.org/stable/modules/preprocessing.html (https://sciki
         t-learn.org/stable/modules/preprocessing.html)
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear_model.html#logistic-regres
         sion (https://scikit-learn.org/stable/modules/linear model.html#logistic-regr
         ession)
            n_iter_i = _check_optimize_result(
```

```
In [35]: | Y predict = model.predict(X test)
```

```
In [36]: Y true = Y test
```

Model Evalution

In [37]: from sklearn.metrics import classification report, confusion matrix print(classification_report(Y_predict,Y_true))

	precision	recall	f1-score	support
0	0.96	0.90	0.93	106
1	0.89	0.96	0.92	91
accuracy			0.92	197
macro avg	0.92	0.93	0.92	197
weighted avg	0.93	0.92	0.92	197

```
In [38]: | print(confusion_matrix(Y_true,Y_predict))
```

[[95 4] [11 87]]

```
In [39]: from sklearn.ensemble import RandomForestClassifier
In [40]:
         model = RandomForestClassifier()
In [41]: | model = model.fit(X_train,Y_train)
In [42]: Y_predict = model.predict(X_test)
In [43]: Y true = Y test
In [44]: from sklearn.metrics import classification_report
         print(classification_report(Y_predict,Y_true))
                        precision
                                     recall f1-score
                                                        support
                    0
                             0.99
                                       0.89
                                                 0.94
                                                             110
                    1
                             0.88
                                       0.99
                                                 0.93
                                                             87
             accuracy
                                                 0.93
                                                            197
                            0.93
                                                 0.93
            macro avg
                                       0.94
                                                            197
         weighted avg
                                                 0.93
                                                            197
                            0.94
                                       0.93
In [45]:
         print(confusion_matrix(Y_true,Y_predict))
         [[98 1]
          [12 86]]
```

Final Result

The Random Forest model successfully detects fraudulent transactions with high accuracy. The most influential features in fraud detection are V14, V10, V17, V12, and V4. Balancing the dataset significantly improved model performance by reducing bias towards non-fraudulent transactions, leading to better fraud detection.