

Facultad de Ciencias

Universidad Autónoma de México Física Estadística

Tarea 2 - 4.3

Profesores:

Dr. Ricardo Atahualpa Solórzano Kraemer

Alumno: Sebastián González Juárez

sebastian_gonzalezj@ciencias.unam.mx

4.3 Considera un gas ideal compuesto por N moléculas confinadas dentro de una caja cuyas aristas tienen longitudes L_x , L_y y L_z (los tres valores son diferentes). Calcula el número de estados posibles (considera un gas cuántico). Calcula la entropía. Obtén la ecuación del gas ideal. El primero en entregar en PDF/LaTeX la solución de este problema, se libra de 1 ejercicio en el examen.

Sol.

Consideremos un gas cuántico ideal en una caja tridimensional de lados L_x , L_y y L_z , y con N moléculas indistinguibles. Donde $L_x \neq L_y \neq L_z$. La energía de una partícula en una caja 3D está dada por:

$$E_{n_x,n_y,n_z} = \frac{h^2}{8m} \left(\frac{n_x^2}{L_x^2} + \frac{n_y^2}{L_y^2} + \frac{n_z^2}{L_z^2} \right), \qquad n_i \in \mathbb{Z}^+$$

Nos interesan todos los estados (n_x, n_y, n_z) con energía $E_{n_x, n_y, n_z} \le E$.

$$\frac{h^2}{8m} \left(\frac{n_x^2}{L_x^2} + \frac{n_y^2}{L_y^2} + \frac{n_z^2}{L_z^2} \right) \le E$$

$$\Rightarrow \frac{h^2}{8mE} \left(\frac{n_x^2}{L_x^2} + \frac{n_y^2}{L_y^2} + \frac{n_z^2}{L_z^2} \right) \le 1 \Rightarrow \frac{n_x^2}{\left(\frac{L_x \sqrt{8mE}}{h} \right)^2} + \frac{n_y^2}{\left(\frac{L_y \sqrt{8mE}}{h} \right)^2} + \frac{n_z^2}{\left(\frac{L_z \sqrt{8mE}}{h} \right)^2} \le 1$$

Esto para definir el volumen de un elipsoide, $a = \frac{L_x\sqrt{8mE}}{h}$, $b = \frac{L_y\sqrt{8mE}}{h}$, $c = \frac{L_z\sqrt{8mE}}{h}$

Por lo que nuestra condición es: $\frac{n_x^2}{a^2} + \frac{n_y^2}{b^2} + \frac{n_z^2}{c^2} \le 1$. Esta ecuación describe un elipsoide en el espacio de números cuánticos. Su volumen total es: $V_e = \frac{4}{3}\pi abc$. i.e.

$$V_{e} = \frac{4}{3}\pi \left(\frac{L_{x}\sqrt{8mE}}{h} \frac{L_{y}\sqrt{8mE}}{h} \frac{L_{z}\sqrt{8mE}}{h} \right) = \frac{4\pi}{3} \frac{L_{x}L_{y}L_{z}(8mE)^{3/2}}{h^{3}}$$

Ahora vamos a fijarnos en el octante positivo del elipsoide, pues n_x , n_y , n_z son \mathbb{Z}^+ .

$$\phi(E) = \frac{1}{8}V_e = \frac{1}{8}\frac{4\pi}{3}\frac{L_{\chi}L_{y}L_{z}(8mE)^{3/2}}{h^3} = \frac{\pi}{6}\frac{V(8mE)^{3/2}}{h^3} = \frac{V}{6\pi^2}\left(\frac{2mE}{\hbar^2}\right)^{\frac{3}{2}}$$

Calculemos el número de estados posibles (Espacio fase)

La función acumulativa para el sistema completo de las N partículas indistinguibles, se obtiene como:

$$\Phi(E) = \frac{[\phi(E)]^N}{N!} = \frac{1}{N!} \left(\frac{V}{6\pi^2} \left(\frac{2mE}{\hbar^2} \right)^{\frac{3}{2}} \right)^N$$

Pues con *N*! corregimos la indistinguibilidad. Derivando respecto a *E* para obtener la densidad de estados:

$$\Omega(E) = \frac{d\Phi}{dE} = \frac{d}{dE} \frac{1}{N!} \left(\frac{V}{6\pi^2} \left(\frac{2mE}{\hbar^2} \right)^{\frac{3}{2}} \right)^N = \frac{1}{N!} N \left(\frac{V}{6\pi^2} \left(\frac{2mE}{\hbar^2} \right)^{\frac{3}{2}} \right)^{N-1} \left(\frac{V}{6\pi^2} \frac{3}{2} \left(\frac{2m}{\hbar^2} \right)^{\frac{3}{2}} E^{\frac{1}{2}} \right)$$

Por lo tanto,

$$\Omega(E) = \frac{V^N}{N!} \left(\frac{2m}{\hbar^2}\right)^{\frac{3N}{2}} \frac{3N}{2} \frac{1}{(6\pi^2)^N} E^{\frac{3N}{2} - 1}$$

Calculemos la entropía

La entropía microcanónica está dada por: $S(E, V, N) = k_B \ln \Omega(E, N)$

Sustituyendo,

$$S(E, V, N) = k_B \ln \left[\frac{V^N}{N!} \left(\frac{2m}{\hbar^2} \right)^{\frac{3N}{2}} \frac{3N}{2} \frac{1}{(6\pi^2)^N} E^{\frac{3N}{2} - 1} \right]$$

$$= k_B \left[N \ln(V) - \ln(N!) + \frac{3N}{2} \ln\left(\frac{2m}{\hbar^2}\right) + \ln\left(\frac{3N}{2}\right) + \left(\frac{3N}{2} - 1\right) \ln(E) - N \ln(6\pi^2) \right]$$

Usamos la aproximación de Stirling: $ln(N!) \approx N ln(N) - N$

$$S \approx k_B \left[N \ln(V) - N \ln(N) + N + \frac{3N}{2} \ln\left(\frac{2m}{\hbar^2}\right) + \ln\left(\frac{3N}{2}\right) + \left(\frac{3N}{2} - 1\right) \ln(E) - N \ln(6\pi^2) \right]$$

$$\approx k_B N \left[\ln\left(\frac{V}{N}\right) + 1 + \frac{3}{2} \ln\left(\frac{2m}{\hbar^2}\right) + \frac{3}{2} \ln(E) - \ln(6\pi^2) \right] + k_B \ln\left(\frac{3N}{2}\right) - k_B \ln(E)$$

Y para $N \gg 1$:

$$S \approx k_B N \left[\ln \left(\frac{V}{N} \right) + \frac{3}{2} \ln \left(\frac{2mE}{\hbar^2} \right) - \ln(6\pi^2) + 1 \right]$$

Obtengamos las ecuaciones del gas ideal.

Relación entre entropía y temperatura

Sabemos que: $\frac{1}{T} = \left(\frac{\partial S}{\partial E}\right)_{VN}$. Calculemos la derivada:

$$\frac{\partial}{\partial E} \left(\frac{3}{2} \ln \left(\frac{2\pi mE}{h^2} \right) \right) = \frac{3}{2} \frac{1}{E}$$

De modo que,

$$\frac{1}{T} = \frac{3}{2} \frac{k_B N}{E} \Rightarrow T = \frac{2E}{3Nk_B} \wedge E = \frac{3}{2} N k_B T$$

Con lo que tenemos la energía interna.

Relación entre entropía y presión

Sabemos que: $\frac{P}{T} = \left(\frac{\partial S}{\partial V}\right)_{E,N}$. Calculemos la derivada:

$$\frac{\partial}{\partial V} \left(\ln \left(\frac{V}{N} \right) \right) = \frac{1}{V}$$

De modo que,

$$\frac{P}{T} = \frac{k_B N}{V} \Rightarrow PV = N k_B T$$

Con lo que tenemos la ecuación de estado.