

Vortrag im Rahmen des BPP am 12.04.2023 von Julian Siebert im Modul "Angewandte Statistik und Versuchswesen" (SoSe 2023)

1 Versuchsfrage

Beobachtung

Etwas verhält sich anders als bekannt.

Hypothese

Aus diesem Grund verhält es sich anders.

> Faktorieller Versuch

² Faktorieller Versuch

Definition:

Mit faktoriellen Versuchsplänen können die

Einflüsse von Faktoren (Temperatur, Licht, Chemikalie, ...)

auf eine oder mehrere Outcomes / Zielgrößen (Masse, Menge, ...)

bestimmt werden.

Gleichzeitig können Aussagen über Wechselwirkungen getroffen werden.

Faktorieller Versuch

Struktur:

- Einflussgrößen (Faktoren) müssen einstellbar und messbar (kontrollierbar) sein
- Zielgrößen / Outcomes müssen geeignet sein die Auswirkung der Faktoren zu erfassen. (werden beeinflusst)

Wo möglich sollten sie gezählt, gemessen oder gewogen werden.

Bekanntermaßen normalverteilte Zielgrößen bevorzugen.

Schätzungen (Bonituren) nur wenn nicht anders möglich.

	Α	В	С	D	Е
1	genotype	trt	number	height_cm	fm_veg_g
2	nil	ww	1	58,5	7,79
3	scarlett	ww	2	54	5,85
4	nil	ww	3	56,2	5,96
5	scarlett	ww	4	57,2	10,75
6	scarlett	ww	5	46,4	6,92
7	nil	ww	6	56	9,43
8	nil	ww	7	57,8	8,92
9	nil	ww	8	63,6	8,07
10	nil	ww	9	64	8,86
11	nil	ww	10	59,7	7,04

Beispielhafte Exceltabelle eines faktoriellen Versuches mit den Faktoren Genotyp und Treatment und den messbaren Zielgrößen / Outcomes Höhe in cm und Frischmasse in gramm.

Faktorieller Versuch

Struktur:

- Einflussgrößen (Faktoren)
- Zielgrößen / Outcomes
- Begleitparamter dienen zur Überprüfung der gleichen Bedingungen (Homogenität) innerhalb des Experimentes

Für alle Pflanzen sollten bis auf die Einflussgrößen gleiche Bedingungen vorliegen.

Basiert häufig auf Bonituren (Beispiel BBCH)

	Α	В	С	D	Е	F
1	genotype	trt	number	height_cm	fm_veg_g	bbch
2	nil	ww	1	58,5	7,79	32,00
3	scarlett	ww	2	54	5,85	33,00
4	nil	ww	3	56,2	5,96	34,00
5	scarlett	ww	4	57,2	10,75	30,00
6	scarlett	ww	5	46,4	6,92	31,00
7	nil	ww	6	56	9,43	34,00
8	nil	ww	7	57,8	8,92	32,00
9	nil	ww	8	63,6	8,07	31,00
10	nil	ww	9	64	8,86	35,00
11	nil	ww	10	59,7	7,04	36,00

Beispielhafte Exceltabelle eines faktoriellen Versuches mit den Faktoren Genotyp und Treatment und den messbaren Zielgrößen / Outcomes Höhe in cm und Frischmasse in gramm.

Begleitparameter phänologisches Entwicklungsstadium von Pflanzen (BBCH)

Faktorieller Versuch

Bonituren / Schätzungen:

- Verlangen besondere Genauigkeit und Reflexion
- Meist hat schon einmal jemand einen Boniturschlüssel entworfen! Bsp: (2001): BBCH Monografie: Entwicklungsstadien mono- und dikotyler Pflanzen. 2. Auflage. Biologische Bundesanstalt für Land und Forstwirtschaft.
- Ansonsten jede Ausprägung fotografieren und Boniturschlüssel dokumentieren
- Alle Beobachtungen wenn möglich durch dieselbe Person und am selben Tag
- Ansonsten gemeinsames Üben der Schätzung
- Randpflanzen nicht schätzen

Boniturnote	Ausprägung
1	Fehlend oder sehr gering
2	Sehr gering bis gering
3	Gering
4	Gering bis Mittel
5	Mittel
6	Mittel bis Stark
7	Stark
8	Stark bis sehr stark
9	Sehr stark

² Faktorieller Versuch

Randomized Complete Block Design (RCBD):

- Die Versuchsgruppen werden in kleinere Gruppen aufgeteilt (Blöcke)
- Jede Treatmentgruppe ist mindestens einmal in jedem Block enthalten
- Soll die Auswirkungen bekannter (aber nicht kontrollierbarer) Größen (Heterogenitäten im Boden, Mikroklima) minimieren um die Effekte im Versuch auf die Treatments / Faktoren eingrenzen zu können. (Erhöhung des Bestimmtheitsmaßes / Anteil erklärte Varianz im stat. Modell)

Konzeptuelle Abbildung eines Randomized Complete Block Design (RCBD), Jeder Block enthält jedes Versuchsglied (Treatmentgruppe) einmal.

² Faktorieller Versuch

Operationalisierung

Genauigkeit

- Stichprobengröße (hängt ab von Variabilität des Merkmales)
- Messungsverfahren
- Häufigkeit der Messung

Aufwand

- Versuchslaufzeit
- Kapazitäten (Arbeitszeit)
- Kosten

Faktorieller Versuch

Operationalisierung:

- Faktoren
- Datum (oder Codierung)
- Begleitparameter
- Schätzungen
- Maßeinheiten

	Α	В	С	D	Е	F
1	genotype	trt	date	bbch	height_cm	fm_veg_g
2	nil	ts	t1	12	58,5	7,79
3	nil	ts	t1	11	54	5,85
4	nil	ts	t1	10	56,2	5,96
5	scarlett	ts	t1	13	57,2	10,75
6	scarlett	ts	t1	10	46,4	6,92
7	scarlett	ts	t1	11	56	9,43
8	nil	ww	t1	10	57,8	8,92
9	nil	ww	t1	12	63,6	8,07
10	nil	ww	t1	11	64	8,86
11	scarlett	ww	t1	10	59,7	7,04

Beispielhafter Datensatz für einen Boniturtermin an dem Werte erhoben werden.

The "Tidy" Dataset nach H.Wickham

Definition:

- Englisch für "Organisiert"
- In Data-Science in R bedeutet dies, dass der Datensatz nach einem standardisierten Format strukturiert ist

The "Tidy" Dataset nach H.Wickham

Anforderungen:

- "Organisiert"
- standardisiertes Format
- Jede Variable (Faktor) und jedes Outcome bestimmen eine Spalte

variables

Aus "R for Datascience" (Grolemund und Wickham 2017) Kapitel 12.2 – Tidy data; 1 - Wickham, Hadley. 2014. "Tidy Data." *Journal of Statistical Software* Volume 59 (Issue 10). https://www.jstatsoft.org/index.php/jss/article/view/v059i10/v59i10.pdf.

The "Tidy" Dataset nach H.Wickham

Anforderungen:

- "Organisiert"
- standardisiertes Format
- Spalte
- Jede Beobachtung füllt eine Reihe

observations

Aus "R for Datascience" (Grolemund und Wickham 2017) Kapitel 12.2 – Tidy data; 1 - Wickham, Hadley. 2014. "Tidy Data." *Journal of Statistical Software* Volume 59 (Issue 10). https://www.jstatsoft.org/index.php/jss/article/view/v059i10/v59i10.pdf.

The "Tidy" Dataset nach H.Wickham

Anforderungen:

- "Organisiert"
- standardisiertes Format
- Spalte
- Reihe
- Jeder Wert füllt / bekommt eine Zelle im Datensatz

country	year	cases	population
Afglanstan	99	7 5	1998 071
Afglanstan	200	666	2059/360
Bracil	99	3(73)7	17200/362
Brafil		8 148 8	174604898
Chila	99	212258	127291;272
Chi		216766	128(42) 583

values

Aus "R for Datascience" (Grolemund und Wickham 2017) Kapitel 12.2 – Tidy data; 1 - Wickham, Hadley. 2014. "Tidy Data." *Journal of Statistical Software* Volume 59 (Issue 10). https://www.jstatsoft.org/index.php/jss/article/view/v059i10/v59i10.pdf.

Problem:

- Die meisten Datensätze folgen nicht dem Konzept von "organisierten Daten
- Meist orientieren sie sich an Benutzerfreundlichkeit

Wide - Format:

Die zwei häufigsten Probleme sind:

- Ein Faktor / Outcome erstreckt sich über mehrere Spalten -> "Wide – Format"
- Einige Spalten sind tatsächlich Werte eines Faktors/Outcome (1999 und 2000 sind Werte des Faktors "year")
- Das Outcome "cases" (Anzahl Fälle pro Jahr) erstreckt sich über mehrere Spalten und ist nicht klar erkennbar

country	1999	2000
Α	0.7K	2K
В	37K	80K
С	212K	213K

Datensatz im "Wide-Format", Das Outcome "Fälle" erstreckt sich über mehrere Spalten, Aus "Tidyr – Cheatsheet" (Rstudio 2023) https://raw.githubusercontent.com/rstudio/cheatsheets/main/tidyr.pdf

Wide - Format:

Die zwei häufigsten Probleme sind:

- "Wide Format"
- pivot_longer(data,
 cols = c("1999", "2000"),
 names_to = "year",

values_to = "cases")

➤ Spaltennamen rücken in die Spalte "names_to" und die Werte in die Spalte "values_to"

country	1999	2000
Α	0.7K	2K
В	37K	80K
С	212K	213K

country	year	cases
Α	1999	0.7K
В	1999	37K
С	1999	212K
Α	2000	2K
В	2000	80K
C	2000	213K

Datensatz im "Wide-Format,
Aus "Tidyr – Cheatsheet" (Rstudio 2023)
https://raw.githubusercontent.com/rstudio/cheatsheets/main/tidyr.pdf

2 1 3 N

<u>Very – long - Format:</u>

Die zwei häufigsten Probleme sind:

- "Wide Format"
- Mehrere Outcomes sind in einer Spalte gespeichert
 -> "Very-long-format"
- Jede Beobachtung / Individuum füllt mehrere Reihen (anstatt einer)
- Eine Spalte enthält mehrere Faktoren / Outcomes ("count" enthält "cases" und "pop")

country	year	type	count
Α	1999	cases	0.7K
Α	1999	pop	19M
Α	2000	cases	2K
Α	2000	pop	20M
В	1999	cases	37K
В	1999	pop	172M
В	2000	cases	80K
В	2000	pop	174M
С	1999	cases	212K
С	1999	pop	1T
С	2000	cases	213K
С	2000	pop	1T

Datensatz im "Very-Long-Format",
Aus "Tidyr – Cheatsheet" (Rstudio 2023)
https://raw.githubusercontent.com/rstudio/cheatsheets/main/tidyr.pdf

<u>Very – long - Format:</u>

Die zwei häufigsten Probleme sind:

- "Wide Format"
- "Very-long-format"
- pivot_wider(data,

values_from = count)

country	year	type	count
Α	1999	cases	0.7K
Α	1999	рор	19M
Α	2000	cases	2K
Α	2000	pop	20M
В	1999	cases	37K
В	1999	pop	172M
В	2000	cases	80K
В	2000	pop	174M
С	1999	cases	212K
С	1999	рор	1T
С	2000	cases	213K
С	2000	рор	1T

country	year	cases	pop
Α	1999	0.7K	19M
Α	2000	2K	20M
В	1999	37K	172M
В	2000	80K	174M
С	1999	212K	1T
С	2000	213K	1T

➤ Werte der Spalte "names_from" werden zu eigenen Spalten mit den Werten aus "values_from" als Einträge / Beobachtungen

Datensatz im " Very-Long-Format",
Aus "Tidyr – Cheatsheet" (Rstudio 2023)
https://raw.githubusercontent.com/rstudio/cheatsheets/main/tidyr.pdf

Excel Sheet Generator

Eine R Shiny App in Entwicklung

- Generiert "Tidy" Exceltabellen zur Verwendung bei faktoriellen Versuchen.
- Faktoren und Faktorlevel können mit ihrem Namen eingegeben werden
- In R Environment Ordner kopieren und ausprobieren
- https://netcase.hsosnabrueck.de/index.php/s/GjmeGQ z912JQZzK

Literatur und weiterführende Links

Eine R Shiny App in Entwicklung

- R for Data Science Tidy Data (Buch) <u>https://r4ds.had.co.nz/tidy-data.html</u>
- Moderndive Import and Tidy Data (Buch) https://moderndive.com/4-tidy.html
- Tidyr Cheatsheet (Code Mappe) <u>https://raw.githubusercontent.com/r</u> <u>studio/cheatsheets/main/tidyr.pdf</u>
- Shiny Web App Gallery (Beispiele) https://shiny.rstudio.com/gallery/
- Mastering Shiny (Buch) https://mastering-shiny.org/