Metody uczenia reguł kombinacji zespołów klasyfikatorów

prof. dr hab. inż. Michał Woźniak

Olaf Krawczyk

Plan prezentacji

- 1. Temat pracy opiekun pracy.
- 2. Cel i zakres prac.
- 3. Wyniki studiów literaturowych.
- 4. Napotkane problemy.
- 5. Podsumowanie.

Temat pracy - opiekun pracy

Metody uczenia reguł kombinacji zespołów klasyfikatorów

prof. dr hab. inż. Michał Woźniak

Temat pracy - opiekun pracy

- Zespoły klasyfikatorów
 - Klasyfikatory bazowe
 - Combiner / Fuser
- Reguły kombinacji
 - Sposób łączenia decyzji klasyfikatorów
 - Wymagające trenowania
 - Głosowanie ważone
 - Stacking
 - Niewymagające trenowania
 - Średnia
 - Głosowanie większościowe

Cel i zakres pracy

Hipoteza - dodanie informacji o obiekcie jako wejście metaklasyfikatora podnosi jakość klasyfikacji

Stacking

- Zasilany wsparciami klasyfikatorów bazowych oraz informacją o obiekcie
- Sieć neuronowa jako metaklasyfikator, blackbox

Klasyfikatory bazowe

- Heterogeniczny zbiór klasyfikatorów
- Zwracające wsparcia
- 3 do 8, silne klasyfikatory

Dane UCI

1000+ obiektów w bazie np. Mammographic Mass

Cel i zakres pracy

- Implementacja środowiska do eksperymentów
 - o Python, scikit-learn
 - o R
- Testy statystyczne
- Opracowanie oraz dyskusja uzyskanych wyników
- Metryki do porównywania jakości klasyfikacji
 - Accuracy
 - ROC / AUC
 - Macierze konfuzji

- L. I. Kuncheva Combining Pattern Classifiers
 - Pattern recognition przypomnienie
 - Rodzaje i zasady działania klasyfikatorów bazowych np. KNN
 - Przegląd oraz historia dziedziny
 - Terminologia

- L. I. Kuncheva Combining Pattern Classifiers
 - Metody kombinacji wymagające uczenia
 - Stacking
 - Głosowanie ważone
 - Metody kombinacji niewymagające uczenia
 - Average combiner (minimum, maximum, median)
 - Głosowanie większościowe
 - Zapewnienie dywersyfikacji
 - Uczenie klasyfikatorów bazowych
 - Wybór klasyfikatorów bazowych

- M. Woźniak, M. Graña, E. Corchado A Survey of Multiple Classifier Systems as Hybrid Systems
 - Topologie systemów wieloklasyfikatorowych
 - Szeregowa
 - Równoległa

- M. Woźniak, M. Graña, E. Corchado A Survey of Multiple Classifier Systems as Hybrid Systems
 - Projektowanie fuzera
 - Zasilanie etykietą (decyzją) klasyfikatorów bazowych
 - Zasilanie wsparciami poszczególnych klasyfikatorów
 - Zastosowanie MCS
 - Bezpieczeństwo systemów komupterowych DDoS
 - Bankowość wykrywanie oszustw, ocena zdolności kredytowej, giełda

- E. Alpaydın, Introduction to Machine Learning, MIT Press, 2010.
- T. Mitchell, Machine Learning, McGraw-Hill Education, 1997.

Napotkane problemy

- Definicja tematu i zakresu pracy
- Wybór klasyfikatorów bazowych
 - Heterogenicze
 - Homogeniczne
- Zapewnienie dywersyfikacji klasyfikatorów bazowych
- Wybór środowiska do implementacji eksperymentu
 - o Python / R / MATLAB
- Planowanie eksperymentu
 - Uczenie, podział danych etc.
- Wzrost wymiaru przestrzeni cech metaklasyfikatora

Podsumowanie

- Zespoły klasyfikatorów
- Stacking NN jako metaklasyfikator
- Czy dodatkowa informacja o cechach obiektu poprawi jakość klasyfikacji?
- Technologie Python, scikit-learn

Dziękuję za uwagę