EC569 Economic Growth Efficiency

Keisuke Casey Otsu

School of Economics, University of Kent

Lecture 7

Otsu (Kent) EC569 Lecture 7 1 / 15

Overview

- Decomposing productivity into technology and efficiency
- Differences in efficiency
- Types of inefficiency

Decomposing Productivity into Technology and Efficiency Technology and Efficiency

Productivity decomposition

$$A = T \times E$$

- T: technology
 - knowledge about how factors of production can be combined to produce output
 - grows over time
- E: efficiency
 - how effectively given technology and factors of productions are actually used
 - bounded between zero and one

Otsu (Kent) EC569 Lecture 7 3 / 15

Decomposing Productivity into Technology and Efficiency Analyzing Cross-Country Data

Technology gap

$$\frac{T_{2009,India}}{T_{2009,US}} = \left(\frac{1}{1+g}\right)^G$$

where

$$T_{2009,India} = T_{2009-G,US} = \frac{T_{2009,US}}{(1+g)^G}$$

- G: the years Indian technology lags from the US technology
- g: the average growth rate of technology in the US
 - ullet productivity growth during 1975-2009 in the US = 0.54%

Decomposing Productivity into Technology and Efficiency Analyzing Cross-Country Data

Productivity gap

$$\frac{A_{India}}{A_{US}} = \frac{T_{India}}{T_{US}} \times \frac{E_{India}}{E_{US}}$$

- productivity gap consists of technology gap and efficiency gap
- we can measure the productivity gap but cannot disentangle into the technology and efficiency gap
- unless lags in technology are extremely large, efficiency gap is the dominant force of the productivity gaps

Table 10.1 Decomposition of Productivity Gap Between India and the United States

Years India Lags United States in Technology (<i>G</i>)	Level of Technology in India Relative to United States (<i>T</i>)	Level of Efficiency in India Relative to United States (<i>E</i>)
10	0.95	0.33
20	0.90	0.35
30	0.85	0.36
40	0.81	0.38
50	0.76	0.41
75	0.67	0.46
100	0.58	0.53
125	0.51	0.61

Copyright © 2013 Pearson Education, Inc. Publishing as Addison-Wesley

Differences in Efficiency

Central Planning in the Soviet Union

- Efficiency in the Soviet economy: Krugman (1995)
 - output: only one-third of the US per capita level in 1985
 - factors: high investment rate, well educated workforce
 - technology: fairly high especially in defense related industries
 - efficiency must have been low
 - central planning is inefficient if the planner cannot process all information
 - lack of competition/incentives

Otsu (Kent) EC569 Lecture 7 6 / 15

Differences in Efficiency

Differences in Productivity within an Industry

- Comparing relative productivity among industries in US, Japan and Germany
 - Japanese industrial productivity relative to other countries
 - steel and automobile industries were more productive than others
 - food processing industry was less than half as productive than others
 - differences in industry level productivity are much larger than those in aggregate productivity
 - hard to imagine that the technology levels are so different
 - differences in organizations and regulations seem more important

Table 10.2 Productivity in Selected Industries in the Early 1990s

	United States	Japan	Germany
Automobiles	100	127	84
Steel	100	110	100
Food Processing	100	42	84
Telecommunications	100	51	42
Aggregate Productivity	100	67	89

- Resources not used
- Misallocation: resources are used to produce the wrong things
- Technology blocking

Otsu (Kent) EC569 Lecture 7 8 / 15

Resources not Used

- Unproductive activities
 - rent seeking: involve the use of laws or government institutions to bring private benefits
- Idle resources
 - labor hoarding: union protection during recessions
 - capital hoarding: factory shutdown during recessions

Misallocation of Factors among Sectors

- Misallocation among sectors: marginal product of inputs are not equal across sectors
 - barriers to mobility
 - geographical isolation
 - wage policy: e.g. sectoral minimum wage
 - wages ≠ marginal product of labor
 - market segmentation: potentially productive people are unable to work in certain sectors

Misallocation of Factors among Sectors

- Efficiency gains from sectoral reallocation
 - reallocation from agriculture to manufacture: Lewis
 - Taiwan: 0.7% of 5.4% annual growth over 1966-1991
 - \bullet Korea: 0.7% of 5.7% annual growth over 1960-1990
 - US: fraction of agricultural labor 50% to 3% over 1880-1980
 - China: fraction of agricultural labor 69% to 40% over 1980-2009

Figure 10.3 Efficient Allocation of Labor between Sectors

Copyright © 2013 Pearson Education, Inc. Publishing as Addison-Wesley

Figure 10.4 Overallocation of Labor to Sector 1

Copyright © 2013 Pearson Education, Inc. Publishing as Addison-Wesley

Misallocation of Factors among Firms

- Misallocation among firms: marginal product of inputs are not equal across firms
 - government-owned firms over-employ: political power
 - monopolies under-employ: monopolistic profit
 - financial frictions prevent efficient allocation of capital: financial development and growth

Misallocation of Factors among Firms

- Measuring misallocation among firms: Hsieh and Klenow (2009)
 - misallocation: differences in marginal products across firms
 - misallocation among manufacturing firms is larger in India and China than in US
 - reallocation of factors among firms would significantly improve productivity

Technology Blocking

- Agents deliberately prevent the use of technology
 - Gutenberg's printing press (1453): scribes
 - automated weaving loom (19th century): Luddites
 - margarine (late 19th century): dairy farmers
 - Netscape browser: Microsoft

Technology Blocking

- Isn't technological progress beneficial to the economy?
 - creative destruction and technology blocking
 - the success of technology blocking depends on the relative power of the opposer/supporter
 - rich countries are more prone to technology blocking
 - technology blocking requires a well functioning government

Otsu (Kent) EC569 Lecture 7 15 / 15