蚁群优化算法2 Ant Colony Optimization

1 蚁群算法起源

- 计算智能领域有两种基于群智能的算法: 蚁群算法和粒子群算法, 前者模仿蚂蚁觅食, 后者模仿鸟类觅食
- 最早是由意大利学者Colorni A., Dorigo M. 等于1991年提出。 经过30年的发展,蚁群算法在理论以及应用研究上已经得 到巨大的进步。

Macro Dorigo

Gambardella

蚁群算法概述

- 蚁群算法(ant colony optimization, ACO),又称蚂蚁算法, 是一种对自然界蚂蚁的觅食行为模拟而得到的一种仿生算 法(蚂蚁有能力在没有任何提示的情形下找到从巢穴到食物 源的最短路径。
- 当蚂蚁寻找食物,会释放一种挥发性分泌物pheromone(信息素),如果 其中一条道路更短,信息素的挥发相对变慢,该道路上的信息素浓度 会越来越大,后来的蚂蚁选择该道路的概率也就越高,最终找到最短路 径
- 路径上信息素的越多,会吸引越多的蚂蚁到该路径上来,所以信息素的积累是正反馈过程;反之,信息素的挥发是负反馈过程

人工蚁群和自然蚁群的区别:

- ▶ 人工蚁群有一定的记忆能力,能够记忆已经访问过的节点;
- ➤ 人工蚁群选择下一条路径的时候是按一定算法规律有意识 地寻找最短路径,而不是盲目的。例如在TSP问题中,可以 预先知道当前城市到下一个目的地的距离。

蚁群觅食	蚁群优化算法	
蚁群	搜索空间的一组有效解	(表现为种群规模N)
觅食空间	问题的搜索空间(表现	为维数D)
信息素	信息素浓度变量	
蚁巢到食物的一条路径	一个有效解	
找到的最短路径	问题的最优解	/blog.csdn.net/qq_38048756

参数含义及符号

```
m ——蚂蚁数量;
k ——蚂蚁编号:
t ——时刻;
n ——城市数:
d_{ii} ——城市 (i, j)之间的距离;
\eta_{ii} ——启发式因子(能见度),反映蚂蚁由
     城市i转移到城市j的启发程度;
\tau_{ii} ——边 (i, j) 上的信息素量;
```

- $\Delta \tau_{ii}$ ——本次迭代边(i,j)上的信息素增量;
- $\Delta \tau_{ij}^{k}$ ——第k 只蚂蚁在本次迭代中留在边 (i, j) 上的信息素量;
 - ho ——信息素蒸发(或挥发)系数,
- $1-\rho$ ——持久性(或残留)系数, $0<\rho<1$;
- $P_{ij}^{k}(t)$ ——时刻 t 蚂蚁 k 由城市 i 转移到城市 j的 概率 (转移概率);
- $tabu_k$ ——蚂蚁 k 的禁忌表。

禁忌表

$tabu_k$ ——记录蚂蚁已经访问过的城市。

要求蚂蚁必须经过所有n个不同的城市,为了避免蚂蚁重复走入同一个城市,蚁群算法为每只蚂蚁配备一个记忆空间

- 1. 初始禁忌列表是空的。
- 2. 经过城市后算法更新禁忌列表,
- 3. 完成n个城市的遍历后,清空禁忌列表,等待下一次的迭代

相关计算公式

(1) 转移概率 $p_{ij}^{k}(t)$ 计算公式:

$$p_{ij}^{k}(t) = \begin{cases} \frac{\left[\tau_{ij}(t)\right]^{\alpha} \cdot \left[\eta_{ij}(t)\right]^{\beta}}{\sum_{s \in J_{k}(i)} \left[\tau_{is}(t)\right]^{\alpha} \cdot \left[\eta_{is}(t)\right]^{\beta}}, & \text{如果} j \in J_{k}(i) \\ \mathbf{0}, & \text{否则} \end{cases}$$

 α ——信息素的相对重要程度,越小,随机性因素越大;

 β ——启发式因子的相对重要程度,越大,确定性因素越大;

 $J_{k}(i)$ ——蚂蚁k下一步允许选择的城市集合。

(2) 启发式因子计算公式:
$$\eta_{ij} = \frac{1}{d_{ii}}$$

(3) 信息素计算公式

当所有蚂蚁完成1次周游后,各路径上的信息素为:

$$\tau_{ij}(t+n) = (1-\rho) \cdot \tau_{ij}(t) + \Delta \tau_{ij}$$

$$\Delta \tau_{ij} = \sum_{k=1}^{m} \Delta \tau_{ij}^{k}$$

Q ——正常数,

 L_k ——蚂蚁 k在本次周游中所走路径的长度。

2 蚁群算法解决TSP问题的过程

旅行商问题(Traveling saleman problem, TSP)是物流配送的典型问题基本过程如下:

- ① 初始化,设置迭代次数;
- ②将 ants 只蚂蚁放置到 cities 个城市上;
- ③ ants只蚂蚁按照概率函数选择下一个城市,并完成所有城市的周游;
- ④ 记录本次迭代的最优路线;
- ⑤ 全局更新信息素。
- ⑥ 终止。

```
(1)初始化 随机放置蚂蚁,为每只蚂蚁建立禁忌表,
(2)迭代过程
  k=1
  while k=〈Count do (执行迭代)
     for i = 1 to m do (对m只蚂蚁循环)
      for j = 1 to n - 1 do (对n个城市循环)
        根据蚂蚁行动原则 选择下一个城市j并将j置入禁忌表,
    end for
    end for
    计算每只蚂蚁经过的路径长度
    依据信息素更新方法更新所有路径上的信息量;
    k = k + 1:
  end while
(3)输出结果,结束算法.
```

算法流程

算 例2

已知资料表

	A	В	C	D	E
A	0	2	10	8	3
В	1	0	2	5	7
C	9	1	0	3	6
D	10	4	3	0	2
E	2	7	5	1	0

参数设置m=5, $\alpha=1$, $\beta=1$, $\rho=0.5$, Q=100, $\tau_{ij}(0)=2$

$$p_{ij}^{k}(t) = \begin{cases} \frac{\left[\tau_{ij}(t)\right]^{\alpha} \cdot \left[\eta_{ij}(t)\right]^{\beta}}{\sum_{s \in J_{k}(i)} \left[\tau_{is}(t)\right]^{\alpha} \cdot \left[\eta_{is}(t)\right]^{\beta}} = \frac{X}{Y}, & \text{如果} j \in J_{k}(i) \\ 0, & \text{否则} \end{cases} \qquad \eta_{ij} = \frac{1}{d_{ij}}$$

k	t	i	tabu _k	$J_k(i)$	$ au_{ij}(t)$	$p_{ij}^k(t)$	L_k	Δau_{ij}^{k}	Y
		A	A	B C D	2 2 2 2	0.47 0.095 0.118 0.315			2.117
1	0	В	A,B	C D E	2 2 2	0.593 0.237 0.169	11	9.1	1.686
•		С	A,B,C	D E	2 2	0.67 0.33			1.0
		D	A,B,C,D	E	2	1.0			1.0
		E	A,B,C,D, E	空集	-	-			

第1只蚂蚁所经路径

已知资料表

	A	В	C	D	E
A	0	2	10	8	3
В	1	0	2	5	7
C	9	1	0	3	6
D	10	4	3	0	2
E	2	7	5	1	0

		1	Τ	<u> </u>					
k	t	i	tabu _k	$J_k(i)$	$ au_{ij}(t)$	$p_{ij}^k(t)$	L_{k}	Δau_{ij}^k	Y
		В	В	A C D E	2 2 2 2	0.54 0.27 0.11 0.08			3.686
2	0	A	B,A	C D E	2 2 2	0.18 0.22 0.60	9	11.1	1.117
		E	B,A,E	C D	2 2	0.17 0.83		• • • • • • • • • • • • • • • • • • • •	2.4
		D	B,A,E,D	С	2	1.0			0.667
		С	B,A,E,D, C	空集	-	-			

第2只蚂蚁所经路径

已知资料表

	A	В	C	D	E
A	0	2	10	8	3
В	1	0	2	5	7
C	9	1	0	3	6
D	10	4	3	0	2
E	2	7	5	1	0

路径: BAEDC

L2=BA + AE + ED + DC + CB = 1 + 3 + 1 + 3 + 1

						1			
k	t	i	tabu _k	$J_k(i)$	$ au_{ij}(t)$	$p_{ij}^k(t)$	L_{k}	Δau_{ij}^{k}	Y
		С	С	A B D E	2 2 2 2	0.069 0.62 0.207 0.103			3.222
3	0	В	C,B	A D E	2 2 2	0.745 0.149 0.106	9	11.1	2.686
)		A	C,B,A	D E	2 2	0.273 0.727			0.917
		E	C,B,A,E	D	2	1.0			2.0
		D	C,B,A,E, D	空集	-	-			

第3只蚂蚁所经路径

已知资料表

	A	В	C	D	E
A	0	2	10	8	3
В	1	0	2	5	7
C	9	1	0	3	6
D	10	4	3	0	2
E	2	7	5	1	0

路径: BAEDC

$$L3 = CB + BA + AE + ED + DC = 1 + 1 + 3 + 1 + 3$$

					I					1
k	t	i	tabu _k	$J_{_k}(i)$	$ au_{ij}(t)$	$p_{ij}^k(t)$	L_{k}	Δau_{ij}^{k}	Y	
		D	D	A B C E	2 2 2 2	0.084 0.211 0.287 0.422			2.367	
4	0	E	D,E	A B C	2 2 2	0.593 0.169 0.237	11	9.1	1.686	
•		A	D,E,A	B C	2 2	0.83 0.17	••		1.2	
		В	D,E,A,B	С	2	1.0			1.0	
		С	D,E,A,B,	空集	-	-				

第4只蚂蚁所经路径

已知资料表

	A	В	C	D	E
A	0	2	10	8	3
В	1	0	2	5	7
C	9	1	0	3	6
D	10	4	3	0	2
E	2	7	5	1	0

路径: DEABC

L4 = DE + EA + AB + BC + CD

						k			
k	t	i	tabu _k	$J_k(i)$	$ au_{ij}(t)$	$p_{ij}^k(t)$	L_k	Δau_{ij}^{k}	Y
				A	2	0.271			
		E	E	В	2	0.078			3.686
		-	_	С	2	0.109			0.000
				D	2	0.543			
				Α	2	0.146			
		D	E,D	В	2	0.366			1.367
5	0			С	2	0.488	9	11.1	
			ED 0	Α	2	0.1			0.000
		C	E,D,C	В	2	0.9			2.222
		В	E,D,C,B	Α	2	1.0			2.0
		A	E,D,C,B,	空集	-	-			

第5只蚂蚁所经路径

已知资料表

	A	В	C	D	E
A	0	2	10	8	3
В	1	0	2	5	7
C	9	1	0	3	6
D	10	4	3	0	2
E	2	7	5	1	0

路径: EDCBA

L5 = ED + DC + CB + BA + AE

信息素矩阵 $\tau_{ij}(0+5)$

L1=AB+BC+CD+DE+EA = 11 100/11

路径: BAEDC

L2=BA + AE + ED + DC + CB

= 9

路径: BAEDC

L3 = CB + BA + AE + ED + DC

= 9

路径: DEABC

L4 = DE + EA + AB + BC + CD

= 11

100/11

路径: EDCBA

L5= ED +DC +CB +BA +AE

	A	В	C	D	E
A	0	9.1+9.1+1 =19.2 L1, L4	1	1	11.1+11. 1+11.1+ 1=34.3
В	11.1+11.1 +11.1+1= 34.3	0	9.1+9.1+1 =19.2	1	1
C	1	11.1+11.1 +11.1+1 =34.3	0	9.1+9.1+ 1=19.2	1
D	1	1	11.1+11.1 +11.1+1= 34.3	0	9.1+9.1+ 1=19.2
E	9.1+9.1+1 =19.2	1	1	11.1+11. 1+11.1+1 =34.3	0

						k ()			
k	t	i	tabu _k	$J_k(i)$	$ au_{ij}(t)$	$p_{ij}^k(t)$	L_k	Δτ	ij Y
	1 5	A E	A	ВСОЕ	19.2 1 1 34.3	0.45 0.005 0.006 0.538	9		21.258
1			A,E	B C D	1 1 34.3	0.004 0.006 0.99		11.1	34.643
		D	A,E,D	B C	1 34.3	0.021 0.979			11.683
		С	A,E,D,C	В	34.3	1.0			34.3
		В	A,E,D,C, B	空集	-	-			

k	t	i	tabu _k	$J_k(i)$	$\tau_{ij}(t)$	$p_{ij}^k(t)$	L_{k}	$oxedsymbol{\Delta au_{ij}^{k}}$	Y		
	5	В	В	A C D E	34.3 19.2 1 1	0.775 0.217 0.005 0.003					44.24
2		A	B,A	C D E	1 1 34.3	0.009 0.011 0.98	9	11.1	11.66		
1		E	B,A,E	CD	1 34.3	0.006 0.994	•		34.5		
		D	B,A,E,D	С	34.3	1.0			11.43		
		С	B,A,E,D, C	空集	-	-					

k	t	ī	tabu _k	$J_k(i)$	$\tau_{ij}(t)$	$p_{ij}^k(t)$	I	A _k	V								
		•	tabu _k		ij (°)	Pij(t)	L_k	Δau_{ij}^k	<i>I</i>								
				A	1	0.003											
		С	С	В	34.3	0.837		40.9	40.98								
				D	19.2	0.156											
				E	1	0.004											
		B 5	В	В	В	В	В	В	В	В		Α	34.3	0.99			
											В	В	C,B	D	1	0.006	
3	5						E	1	0.004	9	11.1						
		Α	C,B,A	D	1	0.011			11.56								
			A	C,B,A	E	34.3	0.989			11.50							
		E	C,B,A,E	D	34.3	1.0			34.3								
		D	C,B,A,E, D	空集	-	-											

	k	t	i	tabu _k	$J_k(i)$	$\tau_{ij}(t)$	$p_{ij}^k(t)$	I	Δau_{ij}^k	V		
-			-	Tallo a K	K \ 7	y		Lk		1		
					A B	1 1	0.005 0.012					
		5	D	D	С	34.3	0.535			21.38		
			5			E	19.2	0.449		-		
	4			С	D,C	A B	1 34.3	0.003			34.58	
				5 B	5	,	E	1	0.005	9	11.1	
					В	D,C,B	A	34.3	0.996			34.44
							E	1	0.004		-	
			A	D,C,B,A	E	34.3	1.0			11.43		
			E	D,C,B,A,	空集	-	-					

k	t	i	tabu _k	$J_k(i)$	$ au_{ij}(t)$	$p_{ij}^k(t)$	L_{k}	Δau_{ij}^k	Y							
				_			, k	y								
				A	19.2	0.217										
		E	E	В	1	0.003			44.24							
			_	С	1	0.005										
				D	34.3	0.775										
		D 5		D	D	D	D	D	D		Α	1	0.008			44.50
										E,D	В	1	0.021			11.78
5	5				С	34.3	0.971	9	11.1							
		C	C E,D,C	Α	1	0.003			34.41							
				В	34.3	0.997			04.41							
		В	E,D,C,B	A	34.3	1.0			34.3							
		A	E,D,C,B,	空集	-	-										

至此出现了停滯现象,算法结束。

已找到最优解: AEDCBA,目标函

数值为9。

3 程序实现过程

```
      Step 1 初始化

      置 t: =0; {t表示时间}

      置 NC: =0; {NC 为迭代次数}

      对每条边 l<sub>y</sub>设置 τ<sub>y</sub>(t) = C, Δτ<sub>y</sub>(t) = 0; 将 m 只蚂蚁随机放到 n 个城市上;

      Step 2 置 s: =1; {s 为禁忌表中的索引}

      for k: =1 to m do

      将蚂蚁 k 的起点城市加入到禁忌表 tabu<sub>k</sub>;

      end for
```

Step 3 while (禁忌表 tabu, 不满)

置 s: =s+1;

for k = 1 to m do

按式(2.1)计算转移概率 $p_{ij}^k(t)$,根据赌轮方法选择下一个要到的

城市 j; {在时刻 t 时,蚂蚁 k 在城市 $i = tabu_k(s-1)$ }

蚂蚁 k 移到城市 j;

将城市j加入到 $tabu_k$;

end for end while

Step 4 for k: =1 to m do

蚂蚁 k 从 $tabu_k(n)$ 移到 $tabu_k(1)$;

计算蚂蚁 k 走过的周游长度 L_k :

更新当前的最优路径

end for

for 每条边 l_{ij}

for k = 1 to m do

$$\Delta \tau_{ij} = \Delta \tau_{ij} + \Delta \tau_{ij}^{k};$$

end for end for

```
Step 5 for 每条边l_{ij}按式(2.2)计算\tau_{ij}(t+1);
   置 t: =t+1;
   置 NC: =NC+1;
   for 每条边l_{ij},置\Delta \tau_{ij}(t) = 0
Step 6 if (NC < NC<sub>MAX</sub>) and (没有出现停滞情况) then
          清空所有的禁忌表;
          goto step 2
       else
          打印最优路径;
          算法停止:
```

end

参数	参数意义	参数经验值
	影响算法搜索能力与计算量,	AS,EAS,MMAS
蚂蚁数目m	数目多,计算量大,收敛慢	m=n
	数目少,探索能力降低,早熟	ACS, m=10
信息素权重α	决定算法的搜索导向	各类ACO算法
启发信息权重 eta	lpha 越小,偏向于眼前利益	$\alpha = 1$
,	eta 越小,偏向于信息素浓度	$\beta = 2 \sim 5$
	影响蚂蚁个体间的相互影响强弱	AS,EAS $\rho = 0.5$
信息素维持因子的	ho 大,较高全局搜索,收敛慢	$\rho = 0.98$
	ho 小,信息素挥发快,易早熟	ACS $\rho = 0.9$
初始信息素量 $ au_0$	决定初始阶段探索能力	$ACS \ \tau_0 = 1 / (n \cdot L_{nn})$

4 改进的蚁群优化算法

改进的蚂蚁算法

- ▲最优解保留策略蚂蚁系统 (带精英策略的蚂蚁系统ASelite)
- △最大-最小蚂蚁系统 (MMAS)
- ▲基于优化排序的蚂蚁系统 (ASrank)
- △最优最差蚂蚁系统(BWAS)
- △一种新的自适应蚁群算法(AACA)
- △基于混合行为的蚁群算法(HBACA)

(一) 带精英策略的蚂蚁系统 ASelite

特点——在信息素更新时给予当前最优解以额外的信息素量,使最优解得到更好的利用。找到全局最优解的蚂蚁称为"精英蚂蚁"。

$$\tau_{ij}(t+n) = (1-\rho) \cdot \tau_{ij}(t) + \Delta \tau_{ij} + \Delta \tau_{ij}^*$$

$$\Delta \tau_{ij}^* = \begin{cases} \sigma \cdot \frac{Q}{L_{0}^{gb}}, & \text{若边 } ij \text{ 是当前最优解的一部分} \\ 0, & \text{否则} \end{cases}$$

 $\Delta \tau_{ij}^*$ ——精英蚂蚁在边 ij上增加的信息素量; σ ——精英蚂蚁个数;

L^{gb} ——当前全局最优解路径长度。

(二)最大最小蚂蚁系统 MMAS

- 特点 $\{ 1$ 、每次迭代后,只对最优解所属路径上的信息素更新。 $\{ 2$ 、对每条边的信息素量限制在范围 $[\tau_{min}, \tau_{max}] \}$
 - 内,目的是防止某一条路径上的信息素量远 大于其余路径,避免过早收敛于局部最优解。

关于 τ_{\min} , τ_{\min} 的取值,没有确定的方法,有的 书例子中取为0.01,10;有的书提出一个在最大 值给定的情况下计算最小值的公式。

(三) 基于优化排序的蚂蚁系统 ASrank

特点:每次迭代完成后,蚂蚁所经路径由小到大排序, 并根据路径长度赋予不同的权重,路径越短权重越大。 信息素更新时对 $\Delta \tau_{ii}^{k}$ 虑权重的影响。

(四)最优最差蚂蚁系统BWAS

特点:主要是修改了ACS中的全局更新公式,增加 对最差蚂蚁路径信息素的更新,对最差解进 行削弱,使信息素差异进一步增大。

(五)一种新的自适应蚁群算法 AACA

特点:将ACS中的状态转移规则改为自适应伪随机 比率规则,动态调整转移概率,以避免出现 停滞现象。

说明:在ACS的状态转移公式中,q是给定的常数;在AACA中,是随乎均节点分支数ANB而变化的变量。ANB较大,意味着下一步可选的城市较多, q_0 也变大,表示选择信息素和距离最好的边的可能性增大;反之减小。

(六) 基于混合行为的蚁群算法 HBACA

特点:按蚂蚁的行为特征将蚂蚁分成4类,称为4个子蚁群,各子蚁群按各自的转移规则行动,搜索路径,每迭代一次,更新当前最优解,按最优路径长度更新各条边上的信息素,如此直至算法结束。

蚂蚁行为——蚂蚁在前进过程中,用以决定其下一步移 动到哪个状态的规则集合。

1、蚂蚁以随机方式选择下一步要到达的状态。

蚂蚁行为

- 2、蚂蚁以贪婪方式选择下一步要到达的状态。
 - 3、蚂蚁按信息素强度选择下一步要到达的状态。
- 4、蚂蚁按信息素强度和城市间距离选择下一步要到达的状态。

(七) AS算法的优点与不足

按强的鲁棒性——稍加修改即可应用于其他问题。(鲁棒性就是系统的健壮性,用以表征控制系统对特性或参数摄动的不敏感性。)
分布式计算——本质上具有并行性。
易于与其他启发式算法结合。

不足 { 一般需要较长的搜索时间。 不足 { 容易出现停滞现象。

5 蚁群算法与遗传的比较

实验结果表明:

- 1、蚁群算法所找出的解的质量最高,遗传算法次之。
- 2、蚁群算法的收敛速度快。因为该算法的个体之间不断进行信息交流和传递。

练习题

某商人准备去以下6个城市旅行,仿照例2,试写出蚁群算法迭代2步的详细信息

参数设置:

$$m = 6$$
, $\alpha = 1$, $\beta = 1$, $\rho = 0.4$, $Q = 10$, $\tau_{ij}(0) = 1$

	A	В	C	D	E	F
A	0	38	35	34	41	43
В	35	0	14	40	48	38
C	33	17	0	11	56	49
D	42	52	7	0	45	56
E	45	39	57	47	0	62
F	48	37	46	54	60	0