

Vyhledávání vzorů

František Kynych 24. 12. 2022 | MVD

Část I.: Úvod do problematiky

Vyhledávání vzorů

- Proces automatického rozpoznání vzorů a pravidelností v datech
- Co je to vzor?
 - Množina prvků, dílčích sekvencí nebo podstruktur, které se v datech často vyskytují společně (silně korelované)
 - Vzory často reprezentují vnitřní a důležité vlastnosti dat
- Základ pro další aplikace vytěžování dat
 - Vytěžování vzorů, analýza kauzality, analýza vzorů v multimédiích, časových řadách a datových proudech
 - Klasifikace, shlukování

Praktické aplikace

- Které produkty jsou často společně zakoupeny
- Co dalšího lidé kupují po zakoupení určitého produktu
- Analýza trhu
- Analýza kódu a logů
- Detekce frází
- Detekce silně korelovaných úseků v časových řadách (biologická data, finance, ...)

• ...

Časté vzory (Frequent patterns)

Itemset

- Množina jedné nebo více položek
- **k-itemset**: $X = \{x_1, ..., x_k\}$
- Absolutní support X
 - Frekvence výskytů nějaké položky X v celé databázi
 - Pro kávu = 3

Relativní support, s

- Podíl transakcí obsahující položku X
- Pravděpodobnost, že bude transakce obsahovat položku X
- Pro kávu = 60 %
- Itemset je častý (frequent), pokud je **support s** vyšší než námi daný práh (**minsup**, označován také jako σ)

ID	Zakoupené položky
1	Káva, čaj, mléko
2	Káva, vajíčka, mléko
3	Káva, mléko, maso
4	Čaj, maso, pečivo
5	Čaj, vajíčka, mléko, maso, pečivo

Časté vzory (Frequent patterns)

Příklad: minsup = 50 %

• Hledáme množiny s hodnotou s > 50 %

Častý 1-itemset:

Mléko: 4/5 (80 %)

Káva: 3/5 (60 %); čaj: 3/5 (60 %); maso: 3/5 (60 %)

Častý 2-itemset:

• {Káva, mléko}: 3 (60 %)

ID	Zakoupené položky
1	Káva, čaj, mléko
2	Káva, vajíčka, mléko
3	Káva, mléko, maso
4	Čaj, maso, pečivo
5	Čaj, vajíčka, mléko, maso, pečivo

Asociační pravidla

- Asociační pravidla: $X \rightarrow Y(s,c)$
 - Pokud uživatel koupí položku X, jaký je support (s) a jistota (confidence, c), že uživatel koupí položku Y
 - Support (s)
 - Pravděpodobnost, že transakce obsahuje zároveň položky X a Y $(X \cup Y)$
 - U itemsetu se značí obsažení obou položek zároveň sjednocením, nikoliv průnikem
 - Confidence (c)
 - Podmíněná pravděpodobnost, že transakce obsahující X obsahuje i Y
 - $c = \frac{\sup(X \cup Y)}{\sup(X)}$
 - Těžení dat pomocí asociačních pravidel
 - Snažíme se najít všechny pravidla $X \rightarrow Y$ s parametry **minsup** a **minconf**

Asociační pravidla

Příklad: minsup = 50 %

Častý 1-itemset:

- mléko: 4, káva: 3, čaj: 3, maso: 3
- Častý 2-itemset:
- {káva, mléko}: 3 (60 %)

minconf = 50 %

Asociační pravidla: $X \rightarrow Y(s,c)$

$$c = \frac{\sup(X \cup Y)}{\sup(X)}$$

$$c = \frac{\sup(k \land va \cup ml \land ko)}{\sup(k \land va)} = \frac{3}{3} = 100 \%$$

 $k\acute{a}va \rightarrow ml\acute{e}ko(60\%, 100\%);$

 $ml\acute{e}ko \rightarrow k\acute{a}va(60\%,75\%)$

Zakoupené položky

Káva, čaj, mléko

Káva, vajíčka, mléko

Káva, mléko, maso

Čaj, maso, pečivo

Čaj, vajíčka, mléko, maso, pečivo

Reprezentace vzorů

- Kolik častých vzorů obsahuje databáze TDB₁?
 - TDB₁: T₁:{a₁, ..., a₅₀}; T₂: {a₁, ..., a₁₀₀}
 - Předpokládaný minsup = 1
 - Výsledek:

```
1-itemsets: \{a_1\}: 2, ..., \{a_{50}\}: 2, \{a_{51}\}: 1, ..., \{a_{100}\}: 1
2-itemsets: \{a_1, a_2\}: 2, ..., \{a_1, a_{50}\}: 2, \{a_1, a_{51}\}: 1, ..., \{a_{99}, a_{100}\}: 1 ...
99-itemsets: \{a_1, a_2, ..., a_{99}\}: 1, \{a_2, a_3, ..., a_{100}\}: 1
100-itemsets: \{a_1, a_2, ..., a_{100}\}: 1
```

- Celkem $\binom{100}{1} + \binom{100}{2} + ... + \binom{100}{100} = 2^{100} 1 \text{ vzorů}$
- Složité na výpočet i uložení

Reprezentace vzorů - komprese

- Uzavřené vzory (closed patterns)
 - Vzor (itemset) X je uzavřený, pokud X je častý vzor a neexistuje žádný super-vzor (nadmnožina) $Y \supset X$ se stejnou support hodnotou jako X

Příklad:

- TDB₁: T₁:{a₁, ..., a₅₀}; T₂: {a₁, ..., a₁₀₀}
- Předpokládaný minsup = 1
- TDB₁ nyní obsahuje pouze dva uzavřené vzory
 - P_1 : { a_1 , ..., a_{50} }: 2
 - P₂: {a₁, ..., a₁₀₀}: 1
- Bezeztrátová komprese
 - Stále dokážeme určit např. {a₂, ..., a₄₀}: 2

Reprezentace vzorů - komprese

- Maximální vzory (max-patterns)
 - Vzor X je maximální, pokud X je častý vzor a neexistuje žádný supervzor (nadmnožina) $Y \supset X$
 - Rozdíl oproti uzavřenému vzoru:
 - Nebereme ohled na support hodnotu

Příklad:

- TDB₁: T₁:{a₁, ..., a₅₀}; T₂: {a₁, ..., a₁₀₀}
- Předpokládaný minsup = 1
- TDB₁ nyní obsahuje pouze jeden **maximální** vzor
 - P: {a₁, ..., a₁₀₀}: 1
- Ztrátová komprese
 - Víme, že vzor {a₂, ..., a₄₀} je častý, ale neznáme support hodnotu

Část II.: Základní přístupy vyhledávání vzorů

Apriori algoritmus

- Využívá apriori principu
 - Každá podmnožina častého vzoru (itemsetu) musí být také častá

Algoritmus:

- Projít databázi a najít časté 1-itemsety (k=1)
- Opakovat:
 - 1) Vygenerovat všechny možné (k+1)-itemsety
 - 2) Otestovat vygenerované kandidáty na databázi s ohledem na parametr *minsup* a smazat neexistující
 - 3) Inkrementovat k
 - Opakovat dokud nemohou být generovaní další kandidáti
- 3. Navrátit nalezené itemsety

Apriori algoritmus

Databáze

ID	Položky
1	A, C, D
2	B, C, E
3	A, B, C, E
4	B, E

minsup = 2

1. kontrola DB

Itemset	Sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

	Itemset	Sup
	{A}	2
→	{B}	3
	{C}	3
	{E}	3

Generování kandidátů

 F_2

2. kontrola DB

F_3		
Itemset	Sup	
{B ← F}	2	

3. kontrola DB

Itemset	
{B, C, E}	•

Gen. kandidátů

		_

Itemset	Sup
{A, C}	2
{B, C}	2
{B, E}	3
{C, E}	2

Itemset	Sup
{A, B}	1
{A, C}	2
{A, E}	1
{B, C}	2
{B, E}	3
{C, E}	2

Navrátit $F_1 \cup F_2 \cup F_3$

FPGrowth

- Frequent pattern growth (FPGrowth)
- Řeší nedostatky Aprirori algoritmu
 - Aprirori musí procházet opakovaně databázi pro získání support hodnoty
 - Není potřeba vytvářet list kandidátů
- Prochází databázi pouze dvakrát s využitím stromové struktury (FP-tree) pro uložení informací
- Po vytvoření stromu se využívá divide-and-conquer přístup pro vytěžení častých vzorů

Algoritmus:

- 1. Seřazení položek v transakci dle support hodnot obsažených položek
- 2. Vytvoření FP-stromu na základě získaných hodnot v kroku 1.
- 3. Z FP-stromu vytvoříme FP-podmíněné stromy (FP-conditional tree) pro každou položku (nebo itemset)
- 4. Nalezení častých vzorů

FP-tree

ID	Položky v transakcích	Seřazené časté položky
1	{f, a, c, d, g, i, m, p}	{f, c, a, m, p}
2	{a, b, c, f, l, m, o}	{f, c, a, b, m}
3	{b, f, h, j, o, w}	{f, b}
4	{b, c, k, s, p}	{c, b, p}
5	{a, f, c, e, l, p, m, n}	{f, c, a, m, p}

- Projití DB a nalezení častých položek minsup = 3
 Výsledek f: 4, a: 3, c: 4, b: 3, m: 3, p: 3
- 2. Seřazení položek dle jejich frekvence **F-list = f-c-a-b-m-p**
- Procházíme znovu databázi a vytváříme FP-strom

			f:4	> c:1
D	مامخلاء	Sup		:1 b:1
Р	oložka	Sup	Pointer	
	f	4	/ _/ → a:3	p:1
	С	4		
	a	3	m:2 b:1	
	b	3	n,2 m,1	
	m	3	p:2 m:1	
	р	3		

Pointer ukazuje na první prvek v linked listu

FP-conditional tree

Obsahuje prefixové cesty položek

3

3

m

р

p:2

m:1

FP-conditional tree

Položka	Conditional pattern base
С	f:3
a	fc:3
b	fca:1, f:1, c:1
m	fca:2, fcab:1
р	fcam:2, cb:1

minsup = 3

Zbývá vytěžit data z conditional pattern base

- p-conditional PB: fcam: 2, cb: 1 \rightarrow c: 3
- m-conditional PB: fca: 2, fcab: 1 $\rightarrow fca$: 3
- b-conditional PB: fca: 1, f: 1, c: 1 \rightarrow Ø

Těžení víceúrovňových častých vzorů

- Produkty často tvoří hierarchie
 - Např. hlavní kategorie mléko
 - Dále se dělí na jednotlivé značky a druhy
- Jak nastavit minsup parametr:
 - Uniformní minsup přes všechny úrovně
 - Redukovaný support v závislosti na úrovni

- V praxi je potřeba nastavit různou hodnotu minsup pro odlišné kategorie
 - Drahé produkty se neprodávají tak často, ale mohou mít velký přínos k příjmu

Těžení sekvenčních častých vzorů

Sekvenční databáze obsahuje seřazené položky v závislosti na pořadí jejich zakoupení

<(ab)c> je sekvenční vzor

- Aplikace:
 - Nákupy zákazníků (telefon, obal -> kabel -> sklo)
 - Biologické signály, přírodní katastrofy (zemětřesení)
 - DNA sekvence
 - Akcie a trhy

SID	Sekvence
1	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>
2	<(ad)c(bc)(ae)>
3	<(ef)(ab)(df)cb>
4	<eg(af)cbc></eg(af)cbc>

```
a, (abc), (ac), ... jsou jednotlivé transakce <a(bc)dc> je subsekvence <a(abc)(ac)d(cf)> minsup = 2
```


SPADE algoritmus

- SPADE (Sequential Pattern Discovery using Equivalent class)
- Založeno na Apriori principu a generování kandidátů
- Využívá vertikální transformace databáze

Databáze sekvencí je transformována do velké množiny položek <SID, EID>

(<sequence_id, element_id>)

SID	Sekvence		
1	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>		
2	<(ad)c(bc)(ae)>		
3	<(ef)(ab)(df)cb>		
4 <eg(af)cbc></eg(af)cbc>			

SID	EID	Items
1	1	a
1	2	abc
1	3	ac
1 1 2 2 2 2 2 3	4	d
1	5	cf
2	1	ad
2	2	\mathbf{c}
2	3	$_{\mathrm{bc}}$
2	4	ae
	1	ef
3	2	ab
3	3	df
3	4	c
3	5	b
4	1	e
4	2	g
4	3	\mathbf{af}
4	4	\mathbf{c}
4	5	b
4	6	c

https://faculty.cc.gatech.edu/~hic/CS7616/pdf/lecture13.pdf

SPADE algoritmus

minsup = 2

SID	EID	Items
1	1	a
1	2	abc
1	3	ac
1	4	d
1	5	cf
2 2 2 2	$\frac{1}{2}$	ad
2		c
2	3	bc
2	4	ae
3	1 2	ef
3	2	ab
3	3	df
3	4	\mathbf{c}
3	5	b
4	1	e
4	2	g
4	3	af
4	4	c
4	5	b
4	6	\mathbf{c}

 Pro nalezení sekvencí ab je potřeba, aby EID(a) bylo v dané sekvenci SID menší než EID(b) = prvek a byl před b

	$^{\mathrm{ab}}$	•		ba		
SID	EID (a)	EID(b)	SID	EID (b)	EID(a)	***
1	1	2	1	2	3	
2	1	3	2	3	4	
3	2	5				
4	3	5				

aba				
SID	EID (a)	EID(b)	EID(a)	
1	1	2	3	
2	1	3	4	

https://faculty.cc.gatech.edu/~hic/CS7616/pdf/lecture13.pdf

Užitečná literatura / kurzy

- Coursera Data Mining specializace
- <u>Těžení sekvenčních vzorů</u>
- Sequential Pattern Mining: Approaches and Algorithms

