Carnap | About | Book | Login

Logic, First Course, Winter 2020. Week 6, Lecture 1, Handout.

Introduction rule for conjunction

The rule is: if you have ϕ on a line ℓ_1 , and you have ψ on line ℓ_2 , then you may write $\phi \wedge \psi$ on any subsequent line $\ell > \ell_1$, ℓ_2 .

This rule is abbreviated as I_{\wedge} , where the 'l' is for *introduction*.

In terms of a picture, the rule is:

In the rule, it does not matter whether ℓ_1 or ℓ_2 comes first.

Here's a worked-out example which contains two applications of I_{\wedge} :

Elimination rule for conjunction

The rule is: if you have $\phi \wedge \psi$ on line ℓ_1 , then you may write ϕ on any subsequent line $\ell > \ell_1$, and likewise you may write ψ on any subsequent line $\ell > \ell_1$.

In terms of a picture, the rule is either of the following:

Here's a worked-out example:

Elimination rule for implication

The rule is: if you have ϕ on line ℓ_1 , and you have $\phi \to \psi$ on line ℓ_2 , then you may write ψ on any subsequent line $\ell > \ell_1$, ℓ_2 .

In terms of a picture, the rule is:

lı. Y

lz. 4-7 4

l Y : E→l,,lz

In the rule, it does not matter whether ℓ_1 or ℓ_2 comes first.

Here's a worked-out example:

exercise $\frac{((p \rightarrow q) \ \Lambda \ (p \rightarrow r)), \ p \vdash (q \ \Lambda \ r)}{1.}$

The introduction rule for implication

The rule is: suppose that consecutive lines ℓ_1 – ℓ_n constitute a proof with premise ϕ and conclusion ψ . Then one may introduce $\phi \to \psi$ at line ℓ_n + 1, so long as one brackets off ℓ_1 – ℓ_n and never appeals to them again.

In a picture, it is:

$$\begin{array}{c} \begin{array}{c} \mathcal{L}_{1}, & \varphi & \text{: assumption} \\ \\ \mathcal{L}_{0}, & \Psi & \\ \\ \mathcal{L}_{0} + 1, & \varphi \rightarrow \Psi & \text{: } \mathbf{I} \rightarrow \mathcal{L}_{1} - \mathcal{L}_{0} \end{array}$$

Here is a worked out example:

```
exercise
(p \to (q \land r)) \vdash (p \to (r \land q))
1.
```

Another example and proof-sketches by hand

Yet another example

Nested example of implication introduction

These is a handout for this course.¹

1. It is run on the Carnap software, which is ←

An **Open Tower** project. Copyright 2015-2019 G. Leach-Krouse <gleachkr@ksu.edu> and J. Ehrlich