

Probeklausur Grundzüge der Theoretischen Informatik, WS 21/22

Prof. Markus Bläser, Julian Dörfler https://cc-lecture.cs.uni-saarland.de/ti2122/

Saarbrücken, 22.02.2020

Lesen Sie bitte zuerst folgende Hinweise!

- 1. Benutzen Sie bitte einen blauen oder schwarzen nicht-löschbaren Stift.
- 2. Schreiben Sie bitte auf jedes Blatt Ihren Namen und Ihre Matrikelnummer.
- 3. Fangen Sie bitte jede Aufgabe auf einem neuen Blatt an.
- 4. Geben Sie bitte pro Aufgabe nur einen Lösungsversuch ab. Streichen Sie nicht gültige Lösungsversuche deutlich durch.
- 5. Sie dürfen auf alle Ergebnisse der Vorlesung in den Kapiteln 1 bis 30 und auf die Aufgaben der Übungsblätter 1 bis 13 und Präsenzblätter 1 bis 14 Bezug nehmen, außer dies wird in der Aufgabenstellung ausgeschlossen.
- 6. Ihr Merkblatt ist nicht Teil Ihrer Lösung. Verweise auf Ihr Merkblatt werden daher nicht gewertet.

Name:			
Matrikelnummer:			

Aufgabe	max.	erreicht
1	15	
2	16	
3	15	
4	13	
5	8	
Σ	67	

Aufgabe 1. (15 Punkte)

Welche der folgenden Aussagen sind richtig, welche falsch. Beweisen Sie Ihre Antworten.

- (a) (3 Punkte) Es existiert eine Bijektion von V_0 auf H_0 .
- (b) (3 Punkte) Seien $A,B\subseteq \Sigma^{\star}$, wobei $A\notin \mathsf{REG}$ und B endlich ist. Dann ist ebenfalls $A\cup B\notin \mathsf{REG}$.
- (c) (3 Punkte) Sei $L \leq_{\mathbf{P}} L'$ und $L' \in \mathsf{REG}.$ Dann ist $L \in \mathsf{REG}.$
- (d) *(3 Punkte)* Mindestens eine der Inklusionen $L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE$ ist strikt.
- (e) (3 Punkte) Sei $L\subseteq H_0$ unendlich. Dann ist Lunentscheidbar.

Aufgabe 2. (Reguläre Sprachen) (16 Punkte)

(a) (4 Punkte) Geben Sie einen minimalen totalen DEA für folgende Sprache an und beweisen Sie dessen Minimalität, indem Sie Repräsentanten aller Myhill-Nerode-Äquivalenzklassen angeben und paarweise beweisen, dass diese nicht Myhill-Nerode-Äquivalent sind:

$$L_1 = \{ bin(n) \in \{0, 1\}^* \mid n \equiv 0 \mod 2 \}$$

Hierbei enthält bin(n) keine führenden Nullen und es gilt bin(0) = 0.

Hinweis: Ihr totaler DEA sollte 5 Zustände haben.

(b) (4 Punkte) Konstruieren Sie einen zu folgendem Automaten äquivalenten deterministischen endlichen Automaten. Führen Sie dazu die Potenzmengenkonstruktion explizit durch. Vereinfachen¹ Sie danach den Automaten, wenn möglich, und geben Sie einen regulären Ausdruck für die akzeptierte Sprache an.

Hinweis: Sie können in der expliziten Konstruktion auf den Zustand, der der leeren Menge entspricht, verzichten. Nehmen Sie aber *keine* weiteren Vereinfachungen des Potenzmengen-Automaten vor. Geben Sie den neuen Zuständen sinnvolle Namen, nicht etwa A, B, C, . . .

(c) (4 Punkte) Wir betrachten die Sprache

$$L_2 = \{0^n 1 2^m \mid n \neq m\} .$$

Beweisen Sie, dass $L_2 \notin \mathsf{REG}$.

- (d) (3 Punkte) Beweisen Sie, dass L_2 aus der vorherigen Teilaufgabe jedoch kontextfrei ist, indem Sie eine kontextfreie Grammatik angeben, die L_2 erkennt. Erklären Sie Ihre Konstruktion kurz.
- (e) (1 Punkt) Können Sie auch eine linkslineare Grammatik für L_2 angeben? Begründen Sie Ihre Antwort.

¹D.h. nicht erreichbare Zustände sollen entfernt werden.

Aufgabe 3. (Berechenbarkeitstheorie) (15 Punkte)

Zur Erinnerung: Eine Sprache $U \subseteq \mathbb{N}$ ist letztendlich periodisch, wenn es $n_0, p \in \mathbb{N}$ mit p > 0 gibt, so dass für alle $n \ge n_0$ gilt: $n \in U \Leftrightarrow n + p \in U$.

Betrachten Sie die folgende Sprache

$$B = \left\{ i \in \mathbb{N} \mid \operatorname{im} \varphi_i \text{ ist letztendlich periodisch} \right\}.$$

- (a) (2 Punkte) Zeigen Sie: B ist eine nicht-triviale Indexmenge.
- (b) (1 Punkt) Zeigen oder widerlegen Sie: $B \in \mathsf{REC}$.
- (c) (4 Punkte) Zeigen oder widerlegen Sie: $B \in RE$.
- (d) (4 Punkte) Zeigen oder widerlegen Sie: $B \in \mathsf{co}\text{-}\mathsf{RE}.$
- (e) (4 Punkte) Sei $g \in B$. Zeigen Sie: Es gibt ein $i \in \mathbb{N}$, so dass

$$\forall x \in \mathbb{N} : \varphi_i(x) = \begin{cases} 1 & i \cdot x \in \operatorname{im} \varphi_g \\ 0 & \operatorname{sonst} \end{cases}.$$

Aufgabe 4. (13 Punkte)

Eine aussagenlogische Formel ϕ in konjunktiver Normalform (CNF) heißt *positiv*, wenn ϕ keine Negationen enthält. Die Formel

$$\phi_1 = (x_1 \lor x_2) \land (x_1 \lor x_3 \lor x_4) \land (x_2 \lor x_3 \lor x_4)$$

ist beispielsweise eine positive CNF. Die Formel

$$\phi_2 = (x_1 \lor x_2) \land (x_1 \lor x_3) \land (x_2 \lor x_3)$$

ist sogar eine positive 2CNF. Wir betrachten die folgenden beiden Probleme:

$$\mathsf{PosSAT} := \{ \phi \mid \phi \in \mathsf{SAT} \land \phi \text{ ist eine positive CNF} \}$$

WPos2SAT := $\{(\phi, k) \mid \phi \text{ ist eine positive 2CNF und hat eine erfüllende Belegung mit$ **genau** $<math>k \text{ Einsen}\}$

Zur Veranschaulichung betrachten wir ϕ_1 und ϕ_2 . Da beide erfüllbare positive CNFs sind, gilt $\phi_1 \in \mathsf{PosSAT}$ und $\phi_2 \in \mathsf{PosSAT}$. Ferner gilt, dass (ϕ_1, k) für **kein** k in WPos2SAT enthalten ist, da ϕ_1 keine 2CNF ist. ϕ_2 dagegen ist eine 2CNF und kann mit der Belegung $x_1 = x_2 = 1$ und $x_3 = 0$ erfüllt werden. Da diese Belegung genau zwei Einsen hat, gilt $(\phi_2, 2) \in \mathsf{WPos2SAT}$. Es gibt jedoch keine erfüllende Belegung von ϕ_2 mit nur einer Eins, daher gilt $(\phi_2, 1) \notin \mathsf{WPos2SAT}$.

- (a) (1 Punkt) Zeigen Sie, dass PosSAT \in P.
- (b) (7 Punkte) Zeigen Sie, dass WPos2SAT NP-vollständig ist. **Tipp:** Reduzieren Sie von VC.
- (c) (5 Punkte) Eine CNF heißt negativ, wenn jedes Literal eine negierte Variable ist. Definieren Sie NegSAT und WNeg2SAT analog und zeigen Sie, dass
 - NegSAT \in P und, dass
 - WNeg2SAT NP-vollständig ist.

Hinweis: Nutzen Sie dafür Aufgabenteil (b), auch wenn Sie diesen nicht bearbeitet oder gelöst haben oder reduzieren Sie von IS.

Aufgabe 5. (Die Independent-Set-Vermutung) (8 Punkte)

Erinnern Sie sich, dass die Funktion

$$f: (G, k) \mapsto (G, |V(G)| - k)$$

eine Polynomialzeit-many-one-Reduktion von IS nach VC ist. Vielleicht haben Sie sich gefragt, ob es auch eine andere Reduktion von IS nach VC gibt, die G verändert, aber nicht k. In dieser Aufgabe sollen Sie zeigen, dass dies wahrscheinlich nicht möglich ist. Betrachten Sie dazu die folgende komplexitätstheoretische Vermutung²

ISC: Es gibt keine berechenbare Funktion g, so dass es einen (deterministischen) Algorithmus A gibt, der gegeben einen Graphen G und eine natürliche Zahl k korrekt entscheidet ob $(G,k) \in \mathsf{IS}$ und dessen Laufzeit beschränkt ist durch

$$g(k) \cdot |V(G)|^{O(1)}$$
.

- (a) (2 Punkte) Zeigen Sie: ISC $\Rightarrow P \neq NP$.
- (b) (3 Punkte) Zeigen Sie: Es gibt einen Algorithmus A' der gegeben (G, k) korrekt entscheidet ob $(G, k) \in \mathsf{VC}$ und dessen Laufzeit beschränkt ist durch

$$O(k)^{O(k)} \cdot |V(G)|^{O(1)}$$
.

Tipp: Stellen Sie sich vor, Sie entfernen schrittweise Kanten (mitsamt Knoten) aus G. Angenommen Sie haben auf diese Weise k Kanten entfernt und es gibt immer noch verbleibende Kanten in G, kann G dann noch einen Vertex-Cover der Größe k haben?

(c) (3 Punkte) Nutzen Sie (b) um zu zeigen, dass unter der Annahme ISC folgendes gilt:

Für KEINE Polynomialzeit-many-one-Reduktion

$$f: \Sigma^* \to \Sigma^*$$

 $(G, k) \mapsto (G', k')$

von IS nach VC gibt es eine berechenbare Funktion g, so dass für alle $(G, k) \in \Sigma^*$ mit f(G, k) = (G', k') gilt, dass $k' \leq g(k)$.

In anderen Worten: k' hängt immer auch von |V(G)| ab.

²Diese Vermutung (ISC) wird von der sogenannte Exponential Time Hypothesis (ETH) impliziert. ETH ist eine stärkere Vermutung als $P \neq NP$ — in dem Sinne, dass ETH $\Rightarrow P \neq NP$, die Rückrichtung aber nicht bekannt ist. Trotzdem wird ETH, genau wie $P \neq NP$ von der Community als wahr angenommen, da ein Beweis, dass ETH nicht gilt fast ebenso weitreichende Folgen wie P = NP hätte.