Função do 2º Grau: Parábolas e Aplicações

Professor: Jefferson

1. Conceito

Uma função do 2^{Ω} grau (ou quadrática) é expressa por:

$$f(x) = ax^2 + bx + c \quad \text{ou} \quad y = ax^2 + bx + c$$

onde:

- a, b, c são coeficientes reais $(a \neq 0)$
- \bullet x é a variável independente
- O gráfico é sempre uma **parábola**

Exemplos

- $f(x) = x^2 4x + 3$ (a = 1, b = -4, c = 3)
- $y = -2x^2 + 8x$ (a = -2, b = 8, c = 0)
- $f(x) = \frac{1}{2}x^2 + 1$ $(a = \frac{1}{2}, b = 0, c = 1)$

2. Gráfico: Parábola

Características principais:

- Concavidade: Para cima (a > 0) ou para baixo (a < 0)
- Vértice: Ponto de máximo/mínimo
- Eixo de simetria: Linha vertical que passa pelo vértice

3. Concavidade

- Para cima (a > 0): Formato de "u"
- Para baixo (a < 0): Formato de ""

Turma:

4. Vértice da Parábola

Coordenadas do vértice (V):

$$V\left(-\frac{b}{2a}, -\frac{\Delta}{4a}\right)$$

onde $\Delta = b^2 - 4ac$.

Exemplo

Para $f(x) = x^2 - 6x + 5$:

$$V\left(-\frac{-6}{2\cdot 1}, -\frac{16}{4\cdot 1}\right) = (3, -4)$$

5. Zeros da Função (Raízes)

Soluções da equação $ax^2 + bx + c = 0$:

$$x = \frac{-b \pm \sqrt{\Delta}}{2a}$$

- $\Delta > 0$: Duas raízes reais distintas
- $\Delta = 0$: Uma raiz real dupla
- $\Delta < 0$: Nenhuma raiz real

6. Estudo do Sinal

- Depende do sinal de a e do Δ
- Regra prática:
 - 1. Identifique as raízes (se existirem)

- 2. Observe a concavidade
- 3. Faça o "varal" de sinais

7. Aplicações Práticas

Lançamento de Projétil

A altura h em função do tempo t:

$$h(t) = -5t^2 + v_0 t + h_0$$

Maximização de Área

Cercar área retangular com 100m de cerca:

$$A(x) = x(50 - x) = -x^2 + 50x$$

Área máxima no vértice: x = 25m

8. Exercícios Básicos (1-10)

- 1. Dada $f(x) = x^2 5x + 6$, determine:
 - a) Os coeficientes a, b, c
 - b) As raízes
 - c) O vértice
- 2. Classifique a concavidade:
 - a) $y = 3x^2 2x + 1$
 - b) $f(x) = -x^2 + 4$
- 3. Calcule Δ para:
 - a) $x^2 6x + 9 = 0$
 - b) $2x^2 + x 3 = 0$
- 4. Determine o vértice:
 - a) $y = x^2 4x + 3$
 - b) $f(x) = -2x^2 + 8x 5$
- 5. Esboce o gráfico de:
 - a) $f(x) = x^2 1$
 - b) $y = -x^2 + 4x$

9. Exercícios Intermediários (11-20)

- 6. Resolva as equações:
 - a) $x^2 5x + 6 = 0$
 - b) $2x^2 + 3x 2 = 0$
- 7. Estude o sinal:
 - a) $f(x) = x^2 3x + 2$
 - b) $y = -x^2 + 2x 1$
- 8. Aplicações:
 - a) O lucro L em função das unidades x é $L(x) = -x^2 + 80x 1000$. Qual o lucro máximo?
 - b) Uma bola é lançada com $h(t) = -5t^2 + 20t$. Qual a altura máxima?
- 9. Determine m para que:
 - a) $f(x) = (m-1)x^2 + 2x 3$ tenha concavidade para cima
 - b) $y = (3 m)x^2 4x + 1$ tenha vértice no eixo
- 10. Problemas:
 - a) Um retângulo tem perímetro 20cm. Escreva a área em função de um lado e encontre a área máxima
 - b) Qual a função quadrática que passa por (0,3), (1,4) e (2,9)?

10. Exercícios Avançados (21-30)

- 11. Sistemas:
 - a) Resolva $\begin{cases} y = x^2 2x \\ y = x + 4 \end{cases}$
- 12. Análise gráfica:
 - a) Para $f(x) = x^2 4x + k$, determine k para que o gráfico tangencie o eixo x
- 13. Funções definidas:
 - a) Dada $f(x) = \begin{cases} x^2, & x \le 1 \\ 2x 1, & x > 1 \end{cases}$, calcule f(0),
- 14. Problemas complexos:
 - a) Um fazendeiro quer cercar um galinheiro retangular usando um muro como um dos lados. Se ele tem 40m de cerca, quais as dimensões para área máxima?
 - b) Uma empresa estima que o custo $C(x) = 0.1x^2 10x + 1000$ e a receita R(x) = 50x. Determine o break-even point.