Automaten und formale Sprachen Epsilon-Übergänge

Nichtdeterministische endliche Automaten (NEA) sind häufig viel übersichtlicher als ihr deterministisches Gegenstück. In manchen Fällen hilft es zusätzlich, Übergänge zu benutzen, die *ohne Eingabe* ausgeführt werden. Solche Übergänge nennt man **Epsilon-Übergänge** (ε steht für das leere Wort).

Aufgabe 1

Der gezeigte Automat A über dem Alphabet $\Sigma = \{0,1,2,3\}$ akzeptiert die Sprach $L(A) = 0^*1^*2^*3^*$. Konstruiere den gezeigten NEA in FLACI und teste ihn.

Abbildung 1: Übergangsgraph des Automaten A.

Aufgabe 2

Versuche zu erklären, warum der Graph aus Abbildung 1 durch die Epsilon-Übergänge übersichtlicher wird. Wie würde ein Graph für einen äquivalenter NEA ohne Epsilon-Übergänge aussehen?

Hinweis Zu jedem NEA mit Epsilon-Übergängen gibt es einen äquivalenten (der dieselbe Sprache akzeptiert) ohne Epsilon-Übergänge.

Aufgabe 3

Um die Potenzmengenkonstruktion durchführen zu können, kannst du zuerst einen NEA ohne Epsilon-Übergänge konstruieren und diesen Umformen.

Du kannst den NEA aber auch direkt umformen. Dabei werden Epsilon-Übergänge berücksichtigt, indem die Zustände am Ende der Übergänge immer mit in die Menge der Folgezustände aufgenommen werden.

Abbildung 2: Potenzmengenkonstruktion mit Epsilon-Übergang.

Konstruiere für den NEA A aus Aufgabe 1 oben einen äquivalenten DEA.