- 1. (a) Suppose $f:(0,1)\to\mathbb{R}$ is a continuous function. Define what it means for f to be uniformly continuous.
 - (b) Show that if $f:(0,1)\to\mathbb{R}$ is uniformly continuous, then there is a continuous function $F:[0,1]\to\mathbb{R}$ with F(x)=f(x) for all $x\in(0,1)$.

Solution

(S02.4)

2. Prove: If a_1, a_2, a_3, \ldots is a sequence of real numbers with

$$\sum_{j=1}^{\infty} |a_j| < +\infty,$$

then $\lim_{N\to+\infty} \sum_{j=1}^{N} a_j$ exists.

Solution

Let

$$S_n = \sum_{j=1}^n |a_j|,$$

$$T_n = \sum_{j=1}^n a_j.$$

Given $\epsilon > 0$, let N be such that $|S_n - S_m| < \epsilon$ for all n, m > N. Then for N < n < m,

$$|T_n - T_m| = \left| \sum_{j=n+1}^m a_j \right| \le \sum_{j=n+1}^m |a_j| < \epsilon,$$

hence $\{T_n\}_{n=1}^{\infty}$ is a Cauchy sequence, so has a limit since \mathbb{R} is complete.

- 3. Find a subset S of the real numbers \mathbb{R} such that both (a) and (b) hold for S:
 - (a) S is not the countable union of closed sets.
 - (b) S is not the countable intersection of open sets.

Solution

Let $S = (\mathbb{Q} \cap (0, \infty)) \cup ((-\infty, 0) \setminus \mathbb{Q})$. Then $S^C = (\mathbb{Q} \cap (-\infty, 0]) \cup ((0, \infty) \setminus \mathbb{Q})$. If S is a countable intersection of open sets, then $S \cap (0, \infty) = \mathbb{Q} \cap (0, \infty)$ would be a countable intersection of open sets, which is impossible, following from the Baire Category Theorem. Similarly, if S is the countable union of closed sets, S^C is the countable intersection of open sets, which again is impossible for the same reasons. Hence S satisfies the given conditions.

4. Consider the following equations for a function F(x,y) on \mathbb{R}^2 :

$$\frac{\partial^2 F}{\partial x^2} = \frac{\partial^2 F}{\partial y^2} \quad (*)$$

(a) Show that if a function F has the form F(x,y) = f(x+y) + g(x-y) where $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are twice differentiable, then F satisfies the equation (*).

(b) Show that if $F(x,y) = ax^2 + bxy + cy^2$, $a,b,c \in \mathbb{R}$, satisfies (*), then F(x,y) = f(x+y) + g(x-y) for some polynomials f and g in one variable.

Solution

(a) Given F as above, then

$$\frac{\partial^2 F}{\partial x^2} = f''(x+y) + g''(x-y),$$

$$\frac{\partial^2 F}{\partial u^2} = f''(x+y) + g''(x-y),$$

hence F satisfies the differential equation.

(b) Given F as above, then

$$\frac{\partial^2 F}{\partial x^2} = 2a,$$

$$\frac{\partial^2 F}{\partial u^2} = 2c,$$

hence a = c and

$$F(x,y) = \frac{a}{2} \left((x+y)^2 + (x-y)^2 \right) + \frac{b}{4} \left((x+y)^2 - (x-y)^2 \right) = f(x+y) + g(x-y)$$

for

$$f(z) = \frac{a}{2}z^2 + \frac{b}{4}z^2,$$

$$g(z) = \frac{a}{2}z^2 - \frac{b}{4}z^2.$$

- 5. Consider the function $F(x, y) = ax^2 + 2bxy + cy^2$ on the set $A = \{(x, y) : x^2 + y^2 = 1\}$.
 - (a) Show that F has a maximum and minimum on A.
 - (b) Use Lagrange multipliers to show that if the maximum of F on A occurs at a point (x_0, y_0) , then the vector (x_0, y_0) is an eigenvector of the matrix $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$.

Solution

- (a) F is continuous on A, which is compact, hence F achieves its maximum and minimum.
- (b) Let

$$g(x,y) = x^2 + y^2 - 1.$$

Then F achieves its maximum and minimum values whenever $(x,y) \in \mathbb{R}^2$ simultaneously satisfy

$$\nabla F(x, y) = \lambda \nabla g(x, y),$$

$$q(x,y) = 0$$

for some $\lambda \in \mathbb{R}$. Thus we compute

$$\nabla F(x,y) = (2ax + 2by, 2bx + 2cy),$$

$$\nabla g(x,y) = (2x,2y),$$

and substituting into the first condition gives the system

$$2ax + 2by = 2\lambda x,$$

$$2bx + 2cy = 2\lambda y,$$

which is equivalent to

$$\left(\begin{array}{cc} a & b \\ b & c \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \lambda \left(\begin{array}{c} x \\ y \end{array}\right),$$

hence $\begin{pmatrix} x \\ y \end{pmatrix}$ is an eigenvector of $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$.

6. Formulate some reasonably general conditions on a function $f: \mathbb{R}^2 \to \mathbb{R}$ which guarantee that

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right)$$

and prove that your conditions do in fact guarantee that this equality holds.

Solution

(F01.5)

7. Let V be a finite dimensional real vector space. If $W \subset V$ is a subspace, let $W^{\circ} = \{f : V \to \mathbb{F} \mid f = 0 \text{ on } W\}$. Let $W_i \subset V$ be subspaces for i = 1, 2. Prove that

$$W_1^{\circ} \cap W_2^{\circ} = (W_1 + W_2)^{\circ}.$$

Solution

Suppose $f \in W_1^{\circ} \cap W_2^{\circ}$. Let $v \in W_1 + W_2$. Then $v = w_1 + w_2$ for some $w_i \in W_i$. Thus

$$f(v) = f(w_1 + w_2) = f(w_1) + f(w_2) = 0 + 0 = 0$$

since $f \in W_1^{\circ}$ as well as $f \in W_2^{\circ}$. It follows that $f \in (W_1 + W_2)^{\circ}$ and $W_1^{\circ} \cap W_2^{\circ} \subset (W_1 + W_2)^{\circ}$.

Now suppose $f \in (W_1 + W_2)^{\circ}$. Then any $w \in W_1$ can be expressed as $w_1 + 0 \in W_1 + W_2$ ($0 \in W_2$ since W_2 is a subspace), hence f(w) = 0 and $f \in W_1^{\circ}$. Similarly, $f \in W_2^{\circ}$ as well, so $f \in W_1^{\circ} \cap W_2^{\circ}$ and $(W_1 + W_2)^{\circ} \subset W_1^{\circ} \cap W_2^{\circ}$. This completes the proof of the claim.

8. Let V be an n-dimensional complex vector space and $T:V\to V$ a linear operator. Suppose that the characteristic polynomial of T has n distinct roots. Show that there is a basis B for V such that the matrix representation of T in the basis B is diagonal. (Make sure that you prove your choice of B is in fact a basis.)

Solution

Let the roots of the characteristic polynomial of T be $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$, $\lambda_i \neq \lambda_j$ for $i \neq j$. Let $x_1, \ldots, x_n \in \mathbb{R}^n$ be corresponding eigenvectors, respectively; i.e., $Tx_i = \lambda_i x_i$. We first show by induction that $\{x_1, \ldots, x_n\}$ is linearly independent. For suppose $\{x_1, \ldots, x_{n-1}\}$ is linearly independent, and suppose some trivial linear relation

$$\sum_{i=1}^{n} c_i x_i = 0,$$

 $c_i \in \mathbb{R}$. Then

$$0 = T \sum_{i} c_i x_i = \sum_{i} c_i T x_i = \sum_{i} c_i \lambda_i x_i.$$

If we multiply the first equation by λ_n and subtract the second, we obtain

$$\sum_{i=1}^{n-1} c_i (\lambda_n - \lambda_i) x_i = 0.$$

Since $\lambda_n \neq \lambda_i$ for i = 1, ..., n-1 and $\{x_1, ..., x_{n-1}\}$ is linearly independent, it follows that $c_i = 0$ for each i = 1, ..., n-1, hence $c_n = 0$ as well. Thus $\{x_1, ..., x_n\}$ is linearly independent as well, as claimed.

Let $B = \{x_1, \ldots, x_n\}$. Then as B is a linearly independent set of vectors within an n-dimensional vector space, B must be a basis for that vector space. It is evident as well that the matrix representation of T in the basis B is diagonal, with diagonal terms $[T]_{ii} = \lambda_i$.

9. Let $A \in M_3(\mathbb{R})$ satisfy $\det(A) = 1$ and $A^t A = I = AA^t$ where I is the 3×3 identity matrix. Prove that the characteristic polynomial of A has 1 as a root.

Solution

Let λ_i , i = 1, 2, 3 be the roots of the characteristic polynomial. Then $\lambda_1 \lambda_2 \lambda_3 = \det A = 1$, hence at least one of the λ_i 's is real. Without loss of generality, suppose $\lambda_1 \in \mathbb{R}$.

Let x_i be an associated eigenvector for λ_i . Then

$$(x_i, x_i) = (A^t A x_i, x_i) = (A x_i, A x_i) = (\lambda_i x_i, \lambda_i x_i) = |\lambda_i|^2 (x_i, x_i),$$

so $|\lambda_i|^2 = 1$, hence $|\lambda_i| = 1$.

Now if $\lambda_2 \notin \mathbb{R}$, then $\lambda_3 = \overline{\lambda_2}$ and

$$1 = \lambda_1 \lambda_2 \lambda_3 = \lambda_1 \lambda_2 \overline{\lambda_2} = \lambda_1 |\lambda_2|^2 = \lambda_1$$

which proves the claim. On the other hand, if $\lambda_2 \in \mathbb{R}$, $\lambda_3 \in \mathbb{R}$ as well, hence $\lambda_i \in \{-1,1\}$ and either 1 or 3 of the λ_i 's will be equal to 1 (since their product is 1).

10. Let V be a finite dimensional real inner product space and $T: V \to V$ a hermitian linear operator. Suppose the matrix representation of T^2 in the standard basis has trace zero. Prove that T is the zero operator.

Solution

In the standard basis $\{e_1, \ldots, e_n\}$, we have that

$$0 = \operatorname{tr} T^2 = \sum_{i=1}^n (T^2 e_i, e_i) = \sum_{i=1}^n (T e_i, T e_i) = \sum_{i=1}^n ||T e_i||^2,$$

hence $Te_i = 0$ for i = 1, ..., n, from which it follows that T = 0.