Numerik Klausur Gröll WS 2018

Ein Fan des Gröll

Dezember 2018

1 Aufgabe

- 1. Notieren Sie die wichtigsten Schritte für das Erstellen eines numerischen Programms.
- 2. Nennen Sie die 4 Verfahren zur numerischen Lösung eines Problems und stellen Sie das zugehörige analytische Problem (Beispiel) gegenüber.

2 Aufgabe

- 1. Welchen Wert hat die Konditionszahl von $A = \begin{bmatrix} 1 & 3 \\ 0 & 4 \end{bmatrix}$ in der Spaltensummennorm?
- 2. Formulieren Sie die Berechnung von $x = AB^{-1}c$ in eine numerisch effiziente Form um.
- 3. Kann eine Effizienzverbesserung einer Berechnung eine Verbesserung der Kondition des Problems bewirken?
- 4. Nennen Sie die 3 Bedingungen für ein well-posed Problem.
- 5. Was ist eine Tikhonov-Regularisierung? Welche Konsequenz hat das Anwenden auf die Lösung?
- 6. Warum kann es beim Lösen einer Differenzialgleichung $\dot{x}_1 = x_2 k\sqrt{x_1}$ mit $x_1 \ge 0$ sinnvoll sein, eine Modifikation des Vektorfelds vorzunehmen? Welche Lösung schlagen Sie vor?
- 7. Ein Algorithmus hat die Komplexität $\mathcal{O}(n^2)$? Heißt das
 - (a) dass er weniger Aufwand hal n^2 Operationen benötigt
 - (b) mindestens n^2 Operationen benötigt
 - (c) genau kn^2 mit $k \in \mathbb{N}$ Operationen benötigt, oder ist
 - (d) keine der Aussagen richtig?
- 8. Wodurch sind Testmatrizen für numerische Leistungstests gekennzeichnet?

3 Aufgabe

- 1. Zur Berechnung der zweiten Ableitung an der Stelle x=2 einer Funktion stehen Ihnen nur die Stützwerte $(0,y_1),\ 1,y_2,\ 2.5,y_3$ und $3,y_4$ zur Verfügung. Beschreiben Sie Ihr Vorgehen und geben Sie benötigte Gleichungssysteme und Rechenwege an. Die Rechnung selbst brauchen Sie nicht ausführen.
- 2. Wie viele Funktionsaufrufe benötigen Sie mindestens für die numerische Approximation einer dritten Ableitung?
- 3. In welchem Konflikt stehen Ingeneure, die online eine Ableitung berechnen müssen?

- 4. Was halten Sie von $f_k^n = -\frac{1}{12}f_{k-3} + \frac{1}{3}f_{k-2} + \frac{1}{2}f_{k-1} \frac{5}{3}f_k + f_{k+1}$?
- 5. Wie lauten die Fixpunkte der Iteration $x_{x+1} = -x_k^2 + 2$? Ist einer der Fixpunkte attraktiv?
- 6. Mit welchem Kriterium überprüfen Sie die lokale Konvergenz einer Fixpunktiteration?

4 Aufgabe

- 1. Gegeben seien ... Berechnen Sie die Flops für A(BC)
- 2. Mit welchem Programm können Sie die Polynomberechnung numerisch effizient gestalten?
- 3. Welche Voraussetzung muss für eine Parallelisierung eines Programms vorliegen? Nennen Sie ein Beispiel, wo Parallelisierung auf 8 Rechenkerne leicht anwendbar ist und viel bringt
- 4. Schreiben Sie in Pseudocode einen Test, um numerische Bugs bei der Auswertung von tan(x) zu verhindern.
- 5. Was verstehen Sie unter Pivotisierung? Eerklären Sie worin der Nutzen dieser Technik liegt.
- 6. Formulieren Sie das Lösen des Gleichungssystems Ax = b mit $A \in \mathbb{C}^{m \times n}$ und $b \in \mathbb{C}^m$ um, um es mit einer reellen Algebra lösen zu können.
- 7. Bestimmen sie ein ϵ , bis zu d
m Sie sich x=1 nähern können, ohne dass die Kondition von $f(x)=\frac{1}{(x-1)^2}$ den Wert $\kappa=10^5$ übersteigt.

5 Aufgabe

- 1. Leiten Sie das Newton-Verfahren zur Lösung von Optimierungsaufgaben her und geben Sie die recheneffiziente Version an
- 2. Definieren Sie superlineare Konvergenz.
- 3. Warum ist das Newton-Verfahren zur Lösung der Aufgaben $c^Tx \to Max$ unter Ax = b und $Cx \le d$ nicht geeignet?
- 4. Wie viele zweite Ableitungen benötigen Sie beim Newton-Verfahren bei einem p-parametrischen Problem?
- 5. Berechen Sie den ersten Schritt der Newton-Raphson-Iteration zur Nullstellensuche von $f(x_1, x_2) = \begin{bmatrix} x_1 + x_2^2 \\ x_1x_2 + x_2^2 \end{bmatrix}$, wenn Sie mit $\begin{bmatrix} x_{10} \\ x_{20} \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$ starten.

6 Aufgabe

- 1. Formen Sie die Differenzialgleichung $y'' + xy^2 = 1$ so um, dass Sie sie mit dem Runge-Kutta-Verfahren integrieren könnten.
- 2. Notieren Sie die Funktionsdefinition für das Lösen eines p-dimensionalen Differentialgleichungssystems erster Ordnung.
- 3. Berechnen Sie den Wert $y(\frac{1}{2})$ der Differentialgleichung $y'=xy^2+x$ mit dem Runge-Kutta-4-Verfahren, wenn Ihr Anfangswert y(0)=2 ist. Wählen Sie die Schrittweite $h=\frac{1}{2}$.
- 4. Lösen Sie $Q = \int_0^1 (x+1)^2 dx$ analytisch. Anschließend lösen Sie das Problem mit der Trapezregel numerisch. Verwenden Sie die SChrittweite $h = \frac{1}{4}$.