Ejemplo comparación de resultados predictores in sillico

Cambio de estudio TYW1 c.270G>A (chr7:66998951 G/A, rs11547292 o NM_018264.4: c.270G>A)

Exón 3 e intrones adyacentes:

El cambio se encuentra en la última línea de exón 3 (la **g** en color verde).

Se va a obtener los resultados que produce analizar esta variable con los diferente predictores y ver cuál de ellos es más preciso.

NetGene2

Donor splice sites, direct strand	Donor splice sites, direct strand								
pos 5'->3' phase strand confidence 5' exon intron 3' 319 0 + 0.99 AACAGCGAAG^GTAAGAAATT H	pos 5'->3' phase strand confidence 5' exon intron 3' 319 0 + 0.94 AACAGCAAAG^GTAAGAAATT H								
Donor splice sites, complement strand	Donor splice sites, complement strand								
pos 3'->5' pos 5'->3' phase strand confidence 5' exon intron 3' 435 64 2 - 0.00 AATAAAGAAG^GTTAGATGAC	pos 3'->5' pos 5'->3' phase strand confidence 5' exon intron 3' 435 64 2 - 0.00 AATAAAGAAG^GTTAGATGAC								
Acceptor splice sites, direct strand	Acceptor splice sites, direct strand								
pos 5'->3' phase strand confidence 5' intron exon 3' 180 0 + 0.28 TGTCTTCAAG^GGCAAGAACT 186 0 + 0.18 CAAGGGCAAG^AACTTACAGG 195 0 + 0.18 GAACTTACAG^GAAAAATCTG 456 2 + 0.00 TTTCTCCCAG^CCTTTTCCCC	pos 5'->3' phase strand confidence 5' intron exon 3' 180 0 + 0.27 TGTCTTCAAG^GGCAAGAACT 186 0 + 0.18 CAAGGGCAAG^AACTTACAGG 195 0 + 0.17 GAACTTACAG^GAAAAATCTG 456 2 + 0.00 TTTCTCCCAG^CCTTTTCCCC								
Acceptor splice sites, complement strand No acceptor site predictions above threshold.	Acceptor splice sites, complement strand pos 3'->5' pos 5'->3' phase strand confidence 5' intron exon 3' 305 194 2 - 0.25 GCTGTTCCAG^TCTGAGAACC								

El sitio *donor* (en azul) predicho es el correspondiente al exón y, por la presencia de la mutación, su nivel de confianza disminuye. Esto podría producir que se debilitara el sitio, haciendo que el *spliceosome* no lo reconociera, lo que provocaría cambios en el *splicing*. Esto es poco probable, dado que su nivel de confianza sigue siendo alto.

Splice Site Prediction by Neural Network (NNSplice)

Dono	r site p	redictio	ns for wt :		Donor site predictions for mut :								
Start 312	End 326	5core 1.00	Exon Intron agcgaag gt aagaaa		Start 312	End 326	Score 1.00	Exon Intron agcaaag gt aagaaa					
Accep	otor si	te predic	tions for wt :		Accep	otor si	te predic	tions for mut :					
Start	End	Score	Intron	Exon	Start	End	Score	Intron	Exon				
283	323	0.89	aagattttttatggttct	c ag actggaacagcgaaggtaag	283	323	0.84	aagattttttatggttc	tc ag actggaacagcaaaggtaag				
436	476	0.92	cttctttattcttctcc	c ag ccttttcccctcaaatattt	436	476	0.92	cttctttattcttctc	cc ag ccttttcccctcaaatattt				

Se producen dos cambios entre las predicciones para las secuencias WT y la mutante. El primero será en el sitio *donor* predicho, que se ve alterado debido a la presencia de la mutación. Pero como el *score* sigue siendo el mismo y es este el sitio que corresponde con el *donor* del exón, el *donor* no se verá alterado. El otro cambio se produce en el primer sitio *acceptor* predicho que cambia debido a la presencia de la mutación, pero este no coincide con el sitio *acceptor* normal del *splicing* por lo que no se tendrá en cuenta.

Spliceman

Point mutation	Wildtype (wt)	Mutation (mt)	Ll distance	Ranking (L1)
acagc(g/a)aaggt	agcgaa	agcaaa	29734	72%

Human Splicing Finder

No significant impact on splicing signals.

No significant impact on splicing signals.

SVM-BPfinder

seq_id	agez	ss_dist	bp_seq bp_scr	y_cont ppt_off	ppt_len ppt_scr	svm_scr			
wt	17	130	gagtgaaga	-1.43700571908	0.536 4	8	19	-0.0639	957738
wt	17	120	tttttatgg	-3.09494031759	0.530434782609	43	20	40	-2.9879167
wt	17	111	ttctcagac	0.235315307719	0.518867924528	34	20	40	-1.1180151
wt	17	91	aggtaagaa	-1.949418832	0.581395348837	14	20	40	-0.68728078
wt	17	83	aatttatat	-3.75777453105	0.602564102564	6	20	40	-0.88211408
wt	17	78	atatgatgc	-0.080234928427	7 0.61643	8356164	1	20	40 0.87878908
wt	17	56	tcctgacat	2.41746425666	0.549019607843	43	9	19	-1.0191801
wt	17	49	attttaaga	-5.38822660344	0.522727272727	36	9	19	-3.6408804
wt	17	48	ttttaagaa	-2.42879329846	0.53488372093	35	9	19	-2.4148979
wt	17	35	cctttagca	-3.32222356194	0.533333333333	22	9	19	-1.9423407
wt	17	28	cagtgaact	0.363286991875	0.608695652174	15	9	19	-0.031861019
wt	17	22	actttagca	-4.54172837212	0.588235294118	9	9	19	-1.5792246
wt	17	15	cagtgaact	0.363286991875	0.8 2	9	19	0.85286	286
mut	17	130	gagtgaaga	-1.43700571908	0.536 4	8	19	-0.0639	957738
mut	17	120	tttttatgg	-3.09494031759	0.530434782609	43	20	40	-2.9879167
mut	17	111	ttctcagac	0.235315307719	0.518867924528	34	20	40	-1.1180151
mut	17	91	aggtaagaa	-1.949418832	0.581395348837	14	20	40	-0.68728078
mut	17	83	aatttatat	-3.75777453105	0.602564102564	6	20	40	-0.88211408
mut	17	78	atatgatgc	-0.080234928427	7 0.61643	8356164	1	20	40 0.87878908
mut	17	56	tcctgacat	2.41746425666	0.549019607843	43	9	19	-1.0191801
mut	17	49	attttaaga	-5.38822660344	0.522727272727	36	9	19	-3.6408804
mut	17	48	ttttaagaa	-2.42879329846	0.53488372093	35	9	19	-2.4148979
mut	17	35	cctttagca	-3.32222356194	0.533333333333	22	9	19	-1.9423407
mut	17	28	cagtgaact	0.363286991875	0.608695652174	15	9	19	-0.031861019
mut	17	22	actttagca	-4.54172837212	0.588235294118	9	9	19	-1.5792246
mut	17	15	cagtgaact	0.363286991875	0.8 2	9	19	0.85280	286

Variant Effect Predictor tool

ENST00000359626.9:c.270G>A	7:66998951- A 66998951	synonymous_variant	TYW1	ENSG00000198874 Transcript	ENST00000359626.10	protein_coding	3/16	416	270	90	Α	GCG/GCA	rs11547292
ENST00000359626.9:c.270G>A	7:66998951- A 66998951	synonymous_variant, NMD_transcript_variant	TYW1	ENSG00000198874 Transcript	ENST00000361660.8	nonsense_mediated_decay	3/15	396	270	90	Α	GCG/GCA	<u>rs11547292</u>
ENST00000359626.9:c.270G>A	7:66998951- A 66998951	upstream gene variant	SBDS	ENSG00000126524 Transcript	ENST00000414306.5	nonsense_mediated_decay	-	-	-	-	-	-	<u>rs11547292</u>
ENST00000359626.9:c.270G>A	7:66998951- A 66998951	synonymous_variant	TYW1	ENSG00000198874 Transcript	ENST00000442959.5	protein_coding	3/5	429	270	90	Α	GCG/GCA	<u>rs11547292</u>
ENST00000359626.9:c.270G>A	7:66998951- A 66998951	upstream gene variant	SBDS	ENSG00000126524 Transcript	ENST00000463579.1	retained_intron	-	-	-	-	-	-	rs11547292
ENST00000359626.9:c.270G>A	7:66998951- A 66998951	non_coding_transcript_exon_variant	TYW1	ENSG00000198874 Transcript	ENST00000475392.1	retained_intron	3/4	404	-	-	-	-	<u>rs11547292</u>
ENST00000359626.9:c.270G>A	7:66998951- A 66998951	upstream gene variant	SBDS	ENSG00000126524 Transcript	ENST00000490953.5	retained_intron	-	-	-	-	-	-	<u>rs11547292</u>
ENST00000359626.9:c.270G>A	7:66998951- A 66998951	downstream_gene_variant	TYW1	ENSG00000198874 Transcript	ENST00000491969.5	processed_transcript	-	•		-	•	-	<u>rs11547292</u>
ENST00000359626.9:c.270G>A	7:66998951- A 66998951	intron_variant	TYW1	ENSG00000198874 Transcript	ENST00000615572.4	protein_coding	-	-	-	-	-	-	<u>rs11547292</u>
ENST00000359626.9:c.270G>A	7:66998951- 66998951	upstream_gene_variant	SBDS	ENSG00000126524 Transcript	ENST00000617799.1	protein_coding	-	-	-	-	-	-	<u>rs11547292</u>

ESEfinder

Solo se observa un resultado con puntuación positiva para las matrices 3'. Sin embargo, cuando se compara esta puntuación con la equivalente en la secuencia mutante se observa que ésta disminuido muy poco, por lo que el efecto más probable que sería que se estuviera debilitando un sitio *acceptor* es poco probable y tampoco tendrá mucho efecto sobre el *splicing* porque nos encontramos en una región *donor:*

En cuanto a los ESE, se producen algunas alteraciones que pueden estar afectando al *splicing*:

309 (-190)	AACAGCG	0.17527	309 (-190) AACAGCG -0.02544	309 (-190) AACAGCGA -2.02699	309 (-190) AACAGCG -3.81669
310 (-189)	ACAGCGA	-2.86015	310 (-189) ACAGCGA -1.89965	310 (-189) ACAGCGAA -3.43363	310 (-189) ACAGCGA -0.56825
311 (-188)	CAGCGAA	2.16746	311 (-188) CAGCGAA 2.62625	311 (-188) CAGCGAAG -1.44287	311 (-188) CAGCGAA -4.41193
312 (-187)	AGCGAAG	-5.10014	312 AGCGAAG -3.28570	312 AGCGAAGg -2.06777	312 AGCGAAG -0.23447
313 (-186)	GCGAAGg	-0.21041	313 (-186) GCGAAGg -0.90828	313 GCGAAGgt -6.55803	313 GCGAAGg -0.35776
314 (-185)	CGAAGgt	2.87450	314 (-185) CGAAGgt 3.49849	314 (-185) CGAAGgta -1.54856	314 (-185) CGAAGgt -1.35916
315 (-184)	GAAGgta	-2.93096	315 (-184) GAAGgta -2.73329	315 (-184) GAAGgtaa -1.71772	315 (-184) GAAGgta -7.12982
309 (-190)	AACAGCA	0.90205	309 (-190) AACAGCA 0.40993	309 AACAGCAA -0.73009	309 (-190) AACAGCA -6.19842
310 (-189)	ACAGCAA	-5.43788	310 ACAGCAA -3.67930	310 ACAGCAAA -3.79512	310 ACAGCAA -1.13608
311 (-188)	CAGCAAA	0.24785	311 (-188) CAGCAAA 0.91987	311 (-188) CAGCAAAG -1.01760	311 (-188) CAGCAAA -1.85737
312 (-187)	AGCAAAG	-2.19157	312 (-187) AGCAAAG -1.56595	312 (-187) AGCAAAGg -2.06777	312 (-187) AGCAAAG -0.07917
313 (-186)	GCAAAGg	-2.27420	313 (-186) GCAAAGg -2.29203	313 (-186) GCAAAGgt -5.26114	313 (-186) GCAAAGg 2.25104
314 (-185)	CAAAGgt	3.32172	314 (-185) CAAAGgt 3.20026	314 (-185) CAAAGgta -1.90942	314 (-185) CAAAGgt -2.80433
315 (-184)	AAAGgta	-3.85883	315 (-184) AAAGgta -2.97084	315 (-184) AAAGgtaa -3.46979	315 (-184) AAAGgta -5.67510

EX-SKIP

Seq	PESS (count)	FAS-ESS hex2 (count)	FAS-ESS hex3 (count)	IIE (count)	IIE (sum)	NI-ESS trusted (count)	NI-ESS all (sum)	PESE (count)	RESCUE -ESE (count)	EIE (count)	EIE (sum)	NI-ESE trusted (count)	NI-ESE all (sum)	ESS (total)	ESE (total)	ESS/ESE (ratio)
wt	12	3	1	38	722.8436	24	-32.9953	13	31	57	799.5271	61	68.6502	78	162	0.48
mut	12	3	1	38	722.8436	24	-32.9953	14	32	58	803.9295	62	69.3027	78	166	0.47

Allele wt has a higher chance of exon skipping than allele mut.

HOT-SKIP