

INTRODUCTION TO MACHINE LEARNING

Measuring model performance or error

Is our model any good?

- Context of task
 - Accuracy
 - Computation time
 - Interpretability
- 3 types of tasks
 - Classification
 - Regression
 - Clustering

Classification

- Accuracy and Error
- System is right or wrong
- Accuracy goes up when Error goes down

Error
$$= 1 - Accuracy$$

Example

- Squares with 2 features: small/big and solid/dotted
- Label: colored/not colored
- Binary classification problem

Example

$$\frac{3}{5} = 60\%$$

Example

$$\frac{3}{5} = \frac{3}{60\%}$$

Limits of accuracy

- Classifying very rare heart disease
- Classify all as negative (not sick)
- Predict 99 correct (not sick) and miss 1
- Accuracy: 99%
- Bogus... you miss every positive case!

- Rows and columns contain all available labels
- Each cell contains frequency of instances that are classified in a certain way

• Binary classifier: positive or negative (1 or o)

• Binary classifier: positive or negative (1 or o)

True Positives
Prediction: P
Truth: P

• Binary classifier: positive or negative (1 or o)

True Negatives
Prediction: N
Truth: N

• Binary classifier: positive or negative (1 or o)

False Negatives
Prediction: N
Truth: P

• Binary classifier: positive or negative (1 or o)

False Positives
Prediction: P
Truth: N

- Accuracy
- Precision
- Recall

- Accuracy
- Precision
- Recall

Precision TP/(TP+FP)

- Accuracy
- Precision
- Recall

Precision TP/(TP+FP)

- Accuracy
- Precision
- Recall

Recall TP/(TP+FN)

- Accuracy
- Precision
- Recall

Recall TP/(TP+FN)

- Accuracy: (TP+TN)/(TP+FP+FN+TN) = (1+2)/(1+2+1+1) = 60%
- Precision: TP/(TP+FP) = 1/(1+1) = 50%
- Recall: TP/(TP+FN) = 1/(1+1) = 50%

- Accuracy: (TP+TN)/(TP+FP+FN+TN) = (1+2)/(1+2+1+1) = 60%
- Precision: TP/(TP+FP) = 1/(1+1) = 50%
- Recall: TP/(TP+FN) = 1/(1+1) = 50%

- Accuracy: (TP+TN)/(TP+FP+FN+TN) = (1+2)/(1+2+1+1) = 60%
- Precision: TP/(TP+FP) = 1/(1+1) = 50%
- Recall: TP/(TP+FN) = 1/(1+1) = 50%

- Accuracy: (TP+TN)/(TP+FP+FN+TN) = (1+2)/(1+2+1+1) = 60%
- Precision: TP/(TP+FP) = 1/(1+1) = 50%
- Recall: TP/(TP+FN) = 1/(1+1) = 50%

Rare heart disease

- Accuracy: 99/(99+1) = 99%
- Recall: 0/1 = 0%
- Precision: undefined no positive predictions

Regression: RMSE

- Root Mean Squared Error (RMSE)
- Mean distance between estimates and regression line

RMSE =
$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2}$$

 y_i : actual outcome for obs. i

 \hat{y}_i : predicted outcome for obs. i

N: Number of observations

Clustering

- No label information
- Need distance metric between points

Clustering

- Performance measure consists of 2 elements
 - Similarity within each cluster **†**
 - Similarity between clusters

Within cluster similarity

Within sum of squares (WSS)

Between cluster similarity

Between cluster sum of squares (BSS)

Dunn's index

INTRODUCTION TO MACHINE LEARNING

Let's practice!

INTRODUCTION TO MACHINE LEARNING

Training set and test set

Machine learning - statistics

- Predictive power vs. descriptive power
- Supervised learning: model must predict
 - unseen observations
- Classical statistics: model must fit data
 - explain or describe data

Predictive model

- Training
 - not on complete dataset
 - training set
- Test set to evaluate performance of model
- Sets are disjoint: NO OVERLAP
- Model tested on unseen observations
 - -> Generalization!

- N instances (=observations): X
- K features: F
- Class labels: y

	f ₁	f ₂	 f _K	У
X 1	X1,1	X 1,2	 X 1,K	y 1
X ₂	X 2,1	X 2,2	 X 2,K	y 2
Xr	Xr,1	Xr,2	 X r,K	Уr
X _{r+1}	Xr+1,1	X r+1,2	 Xr+1,K	y r+1
X _{r+2}	Xr+2,1	X r+2,2	 X r+2,K	y r+2
XN	XN,1	XN,2	 XN,K	УN

Training set

- N instances (=observations): X
- K features: F
- Class labels: y

	f ₁	f ₂	 f _K	У
X 1	X1,1	X 1,2	 X 1,K	y 1
X ₂	X 2,1	X 2,2	 X 2,K	y 2
Xr	Xr,1	Xr,2	 X r,K	y r
Xr+1	Xr+1,1	X r+1,2	 Xr+1,K	y r+1
Xr+2	Xr+2,1	X r+2,2	 X r+2,K	y r+2
XN	XN,1	XN,2	 XN,K	УN

Training set

- N instances (=observations): X
- K features: F
- Class labels: y

	f ₁	f ₂	 f _K	у
X 1	X1,1	X 1,2	 X 1,K	y 1
X 2	X2,1	X 2,2	 X 2,K	y 2
Xr	Xr,1	Xr,2	 Xr,K	y r
Xr+1	X r+1,1	X r+1,2	 X r+1,K	y r+1
Xr+2	X r+2,1	X r+2,2	 X r+2,K	y r+2
XN	XN,1	X N,2	 XN,K	У N

Training set

- N instances (=observations): X
- K features: F
- Class labels: y

	f ₁	f ₂	 f _K	У
X 1	X1,1	X 1,2	 X 1,K	y 1
X 2	X 2,1	X 2,2	 X 2,K	y 2
Xr	X r, 1	X _{r,2}	 Xr,K	y r
Xr+1	Xr+1,1	X r+1,2	 Xr+1,K	Yr+1
Xr+2	Xr+2,1	X r+2,2	 Xr+2,K	y r+2
XN	XN,1	XN,2	 XN,K	УN

Training set

	f ₁	f ₂	 f _K	у
X 1	X1,1	X 1,2	 X 1,K	y 1
X 2	X 2,1	X 2,2	 X 2,K	y 2
Xr	X r,1	X _{r,2}	 Xr,K	y r
X _{r+1}	Xr+1,1	X r+1,2	 Xr+1,K	Yr+1
X _{r+2}	Xr+2,1	X r+2,2	 X r+2,K	y r+2
XN	XN,1	XN,2	 XN,K	У N

Training set

	f ₁	f ₂	 f _K	у
X 1	X1,1	X1,2	 X 1,K	y 1
X 2	X 2,1	X 2,2	 X 2,K	y 2
Xr	Xr,1	X _{r,2}	 X _{r,K}	y r
X _{r+1}	Xr+1,1	Xr+1,2	 Xr+1,K	Yr+1
X _{r+2}	Xr+2,1	Xr+2,2	 Xr+2,K	y r+2
XN	X N,1	XN,2	 X _{N,K}	У N

Training set

Test set

Use to predict y: ŷ

	f ₁	f ₂	 f _K	У
X 1	X 1,1	X 1,2	 X 1,K	y 1
X ₂	X 2,1	X 2,2	 X 2,K	y 2
Xr	Xr,1	X _{r,2}	 X _{r,} K	y r
X _{r+1}	Xr+1,1	Xr+1,2	 Xr+1,K	Yr+1
X _{r+2}	Xr+2,1	Xr+2,2	 Xr+2,K	Yr+2
XN	XN,1	XN,2	 X _{N,K}	УN

Training set

Test set

Use to predict y: ŷ ← real y compare them

When to use training/test set?

- Supervised learning
- Not for unsupervised (clustering)
 - Data not labeled

Predictive power of model

How to split the sets?

- Which observations go where?
- Training set larger test set
- Typically about 3/1
- Quite arbitrary
- Generally: more data = better model
- Test set not too small

Distribution of the sets

- Classification
 - classes must have similar distributions
 - avoid a class not being available in a set
- Classification & regression
 - shuffle dataset before splitting

Effect of sampling

- Sampling can affect performance measures
- Add robustness to these measures: cross-validation
- Idea: sample multiple times, with different separations

E.g.: 4-fold cross-validation

• E.g.: 4-fold cross-validation

• E.g.: 4-fold cross-validation

• E.g.: 4-fold cross-validation

aggregate results for robust measure

n-fold cross-validation

- Fold test set over dataset n times
- Each test set is 1/n size of total dataset

INTRODUCTION TO MACHINE LEARNING

Let's practice!

INTRODUCTION TO MACHINE LEARNING

Bias and Variance

What you've learned?

- Accuracy and other performance measures
- Training and test set

Knitting it all together

- Effect of splitting dataset (train/test) on accuracy
- Over- and underfitting

Introducing

BIAS

VARIANCE

Bias and Variance

- Main goal of supervised learning: prediction
- Prediction error ~ reducible + irreducible error

Irreducible - reducible error

- Irreducible: noise don't minimize
- Reducible: error due to unfit model minimize
- Reducible error is split into bias and variance

Bias

- Error due to bias: wrong assumptions
- Difference predictions and truth
 - using models trained by specific learning algorithm

Quadratic data

- Quadratic data
- Assumption: data is linear
 use linear regression

- Quadratic data
- Assumption: data is linear
 use linear regression
- Error due to bias is high: more restrictions on model

Bias

- Complexity of model
- More restrictions lead to high bias

Variance

- Error due to variance: error due to the sampling of the training set
- Model with high variance fits training set closely

- Quadratic data
- Few restrictions: fit polynomial perfectly through training set
- If you change training set, model will change completely

high variance: generalizes bad to test set

Bias-variance tradeoff

low bias - high variance low variance - high bias

Overfitting

- Accuracy will depend on dataset split (train/test)
- High variance will heavily depend on split
- Overfitting = model fits training set a lot better than test set
- Too specific

Underfitting

- Restricting your model too much
- High bias
- Too general

Example - spam or not?

Example - spam or not?

Overfit

Example - spam or not?

Underfit

mo
More than 10 capital letters? → no spam

yes

spam

too general!

INTRODUCTION TO MACHINE LEARNING

Let's practice!