Липецкий государственный технический университет

Факультет Автоматизации и Информатики Кафедра прикладной математики

ЛАБОРАТОРНАЯ РАБОТА №5

по дисциплине «Статистические методы в прикладных задачах» Кластерный анализ Вариант 8

Студенты

Стюфляев А.Р. Коретников Н.И.

Группа АС-19-1

Руководитель

доцент Рыжкова Д.В.

Оглавление

Цель работы	3
Задание кафедры	4
Хол выполнения лабораторной работы	6

Цель работы

Научиться проводить кластерный анализ по имеющимся данным.

Задание кафедры

Задание 1. По данным Таблицы 1 и алгоритму кластерного анализа провести классификацию объектов иерархическим методом (древовидная кластеризация).

Таблица 1.

No	Страны	Число вра-	Смертность	ВВП по паритету	Расходы на
п/п.		чей на 10000	на 100000	покупательной спо-	здравоохране-
		населения	населения	собности, в % к	ние, в % к
				США	США
		X1	X2	X3	X4
1	Россия	44.5	84.98	20.4	3.2
2	Австралия	32.5	30.58	71.4	8.5
3	Австрия	33.9	38.42	78.7	9.2
4	Азербай-	38.8	60.34	12.1	3.3
	джан				
5	Армения	34.4	60.22	10.9	3.2
6	Беларусь	43.6	60.79	20.4	5.4
7	Бельгия	41	29.82	79.7	8.3
8	Болгария	36.4	70.57	17.3	5.4
9	Великобри-	17.9	34.51	69.7	7.1
	тания				
10	Венгрия	32.1	64.73	24.5	6
11	Германия	38.1	36.63	76.2	8.6
12	Греция	41.5	32.84	44.4	5.7
13	Грузия	55	62.64	11.3	3.5
14	Дания	36.7	34.07	79.2	6.7
15	Ирландия	15.8	39.27	57	6.7
16	Испания	40.9	28.46	54.8	7.3
17	Италия	49.4	30.27	72.1	8.5
18	Казахстан	38.1	69.04	13.4	3.3
19	Канада	27.6	25.42	79.9	10.2
20	Киргизия	33.2	53.13	11.2	3.4

Задание 2. Решить Задание 1, предварительно нормировав исходные данные.

Задание 3. Решить Задание 1 при условии, что расстояния между кластерами измеряются по принципу "дальнего соседа", предварительно нормируя исходные данные.

Задание 4. Решить Задание 1, но в качестве расстояния между объектами принять "расстояние городских кварталов (Манхэттенское расстояние)", а расстояния между кластерами измерять по методу Варда. Не нормируя предварительно исходные данные.

Задание 5. Решить Задание 1 методом К-средних. Предварительно нормируя исходные данные.

Ход выполнения лабораторной работы

Задание 1. По данным таблицы 1, за исключением 8-ой строки, и алгоритму кластерного анализа проведем классификацию объектов иерархическим методом (древовидная кластеризация). В качестве расстояния между объектами принимаем "обычное евклидово расстояние", а расстояния между кластерами измеряем по принципу "ближайшего соседа".

Рисунок 1 - Классификация объектов иерархическим методом (не нормированные данные)

Задание 2. По данным таблицы 1, за исключением 8-ой строки, и алгоритму кластерного анализа проведем классификацию объектов иерархическим методом (древовидная кластеризация). В качестве расстояния между объектами принимаем "обычное евклидово расстояние", а расстояния между кластерами измеряем по принципу "ближайшего соседа".

Исходные данные нормируем.

Рисунок 2 - Классификация объектов иерархическим методом (нормированные)

Задание 3. По данным таблицы 1, за исключением 8-ой строки, и алгоритму кластерного анализа проведем классификацию объектов иерархическим методом (древовидная кластеризация). В качестве расстояния между объектами принимаем "обычное евклидово расстояние", а расстояния между кластерами измеряем по принципу "дальнего соседа".

Worked Classory | Statistics | Personal Stat

Рисунок 3 - Классификация объектов иерархическим методом с изменениями (нормированные данные)

Задание 4. По данным таблицы 1, за исключением 8-ой строки, и алгоритму кластерного анализа проведем классификацию объектов иерархическим методом (древовидная кластеризация). В качестве расстояния между объектами принимаем "расстояние городских кварталов (Манхэттенское расстояние)", а расстояния между кластерами измеряем по методу Варда.

Исходные данные не нормируем.

Рисунок 4 - Классификация объектов иерархическим методом с изменениями (не нормированные данные)

Задание 5. По данным таблицы 1, за исключением 8-ой строки, и алгоритму кластерного анализа проведем классификацию объектов методом K-средних.

Исходные данные нормируем.

Рисунок 5 - Классификация объектов методом K-средних (нормированные данные)