

Add a

textbook

home / study / math / advanced math / advanced math questions and answers / consider an unknown linear transformation t that maps vectors fr...

Question: Consider an unknown linear transformation T that maps vecto...

See this question in the app

(1 bookmark)

2. Consider an unknown linear transformation T that maps vectors from R4 to vectors in R4

The following information is provided:

$$T(e_1) = \begin{bmatrix} 1\\2\\0\\1 \end{bmatrix}, T(e_2) = \begin{bmatrix} 1\\0\\0\\4 \end{bmatrix}$$

Here,
$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
, $e_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 2 \end{bmatrix}$

- a. Find the image of the vector $x = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ under this linear transformation.
- b. Can we find the image of the vector $x = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ under this transformation?
- c. Do we have enough information to find the matrix A such that T(x) = Ax?
- d. Now, we are further given $T(e_3) = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$, where $e_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$. Can we determine the transformation matrix

Show transcribed image text

Expert Answer

Was this answer helpful?

Post a question

Answers from our experts for your tough homework questions

Enter question

Continue to post

20 questions remaining

My Textbook Solutions

College **Physics** 4th Edition

University Physics Vol...

View all solutions

Advanced Math Chegg tuto who can help right now

Shuenn Siang N. Georgia State Unive...

Carlos V. Central University of..

Missouri Southern

Find me a tutor

$$\begin{bmatrix} 3 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 \\ 2 \\ 4 \end{bmatrix} = a \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 3 \\ 2 \\ 2 \\ 4 \end{bmatrix} = \begin{bmatrix} a \\ b \\ b \\ 2b \end{bmatrix}$$

$$a = 3, b = 2$$

 $Hence \ x = 3e_1 + 2e_2$

$$\begin{split} T\left(x\right) &= T\left(3e_1 + 2e_2\right) \\ &= 3T\left(e_1\right) + 2T\left(e_2\right) \end{split}$$

$$= 3\begin{bmatrix} 1\\2\\0\\1 \end{bmatrix} + 2\begin{bmatrix} 1\\0\\0\\4 \end{bmatrix}$$

$$= \begin{bmatrix} 5 \\ 6 \\ 0 \\ 11 \end{bmatrix}$$

$$T(x) = \begin{bmatrix} 5 \\ 6 \\ 0 \\ 11 \end{bmatrix}$$

Whichistheimage of xunder \$T\$.

(b)

$$Let \ x = ae_1 + be_2$$

$$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \\ 1 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} a \\ b \\ b \\ 2b \end{bmatrix}$$

$$a = 1, b = 2, b = 3$$

Therefore b has two different values hence

Hence we can not find the image of x under T

$$T\begin{bmatrix} 3\\2\\2\\4 \end{bmatrix} = A\begin{bmatrix} 3\\2\\2\\4 \end{bmatrix}$$

$$\begin{bmatrix} 5\\6\\0\\11 \end{bmatrix} = A_{4\times4} \begin{bmatrix} 3\\2\\2\\4 \end{bmatrix}$$

$$\begin{bmatrix} 5\\6\\0\\11 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_3 & a_4\\a_1 & b_2 & b_3 & b_4\\c_1 & c_2 & c_3 & c_4\\d_1 & d_2 & d_3 & d_4 \end{bmatrix} \begin{bmatrix} 3\\2\\2\\4 \end{bmatrix}$$
From this we can not find A

From this we can not find A

(d)

 $Here\{e_1,e_2,e_3\}$ does not form a basis , since $\dim R^4=4$

Hence we can't find transformation matrix.

Comment >

Up next for you in Advanced Math

Consider an unknown linear

transformation T that maps

Consider an attention there transferration
$$T$$
 for steep vectors for the T to reason the T .

Although the transferration is unknown, we have two given to results when applied to the similar basis:

$$S = \left[a_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad a_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad a_3 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad a_4 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad a_5 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Give:

 $T(\mathbf{e}_1) = \begin{bmatrix}1\\1\\1\end{bmatrix}, \quad T(\mathbf{e}_2) = \begin{bmatrix}-2\\1\end{bmatrix}, \quad T(\mathbf{e}_3) = \begin{bmatrix}0\\0\end{bmatrix}$ A such that $T(\hat{\mathbf{x}}) = A\hat{\mathbf{x}}$ for all vectors $\hat{\mathbf{x}}$ in \mathbb{R}^1 .

See answer

Give an example where homogenous transformations are commutative

See answer

See more questions for subjects you study

Questions viewed by other students

Q: Homogenous Coordinates

100% (4 ratings) A: See answer

 $\mathbf{Q}\!\!:$ 3. Consider an unknown linear transformation T that maps vectors from R4 to vectors in R4 Although the transformation is unknown, we have been given its results when applied to this non-standard basis: The following information is provided: nformation 1s 7(b1) = |0 7(by)| = Find the image of the vector e1 = under this lineartransformation. Hint: e,--. (b1-b2+ b3-b4) 0 a. b. Find.

A: See answer

Show more >

© 2003-2020 Chegg Inc. All rights reserved.