IN THE CLAIMS

Please cancel claims 1, 2, 4, 10 and 11, amend claims 3 and 5-9, and add new claims 12-17 as follows:

1-2. (Cancelled).

	3. (Currently Amended) Method of noise filtering (3) as
	claimed in claim 2A method of noise filtering a signal, the method
	comprising the steps of:
	estimating a type of noise in the signal; and
5	enabling one of at least two noise filtering operations,
	the enabled noise filtering operation being a most suitable noise
	filtering operation for the estimated type of noise,
	wherein said enabling step comprises the sub-steps:
	enabling a median filtering operation if the estimated
10	type of noise is long-tailed noise; and
	enabling a spatio-temporal rational filtering operation if
	the estimated type of noise is Gaussian noise or contaminated
	Gaussian noise,
	wherein the sub-step of enabling a spatio-temporal
15	rational filtering operation (310,311) comprises the further sub-
	steps:

enabling a first spatio-temporal_rational filtering operation (310)—if the estimated type of noise is Gaussian noise; and

enabling a second <u>spatio-temporal_rational</u> filtering operation (311)—if the estimated type of noise is contaminated Gaussian noise,

_____and wherein the first spatio-temporal rational filtering operation (310) takingtakes into account at least one temporal direction, and the second spatio-temporal rational filtering operation (311) takingtakes into account at least one combination of a temporal direction and a spatial direction.

4. (Cancelled).

25

5

10

5. (Currently Amended) Method of noise filtering (3) as claimed in claim 2A method of noise filtering a signal, the method comprising the steps of:

enabling one of at least two noise filtering operations,

the enabled noise filtering operation being a most suitable noise

filtering operation for the estimated type of noise,

wherein said enabling step comprises the sub-steps:

enabling a median filtering operation if the estimated

type of noise is long-tailed noise; and

	enabling a spatio-temporal rational filtering operation if
	the estimated type of noise is Gaussian noise or contaminated
	Gaussian noise,
	and wherein:
15	a kurtosis of the noise $\frac{(z)}{}$ is used $\frac{(303)}{}$ as a metric for
	estimating the type of noise;
	the median filtering operation (312) —is enabled if the
	kurtosis is above a first threshold; and
	the <u>spatio-temporal</u> rational noise filtering operation
20	(310, 11)—is enabled if the kurtosis is below said first
	threshold+.
	6. (Currently Amended) Method_The of noise filtering (3)—as
	claimed in claim 3, wherein:
	a kurtosis of the noise $\frac{(z)}{}$ is used $\frac{(303)}{}$ as a metric for
	estimating the type of noise;
5	the median filtering operation (312) —is enabled if the
	kurtosis is above a first threshold;
	the rational noise filtering operation (310,311) is
	enabled if the kurtosis of the noise is below said first threshold,
	wherein the rational filtering operation comprises:
10	enabling—the first spatio—temporal rational filtering
	operation (310) is enabled if the kurtosis is below a second

- 12. (New) The method of noise filtering as claimed in claim 5, wherein in said noise estimating step, the noise in the signal is estimated by a difference between the signal and a noise-filtered version of the signal.
- 13. (New) The method of noise filtering as claimed in claim
 12, wherein the noise-filtered version of the signal is obtained by
 subjecting the signal to a median filtering operation.
- 14. (New) A device for noise filtering a signal, the device comprising:

means for estimating a type of noise in the signal; a median filter for filtering said signal;

a first spatio-temporal rational filter and a second spatio-temporal rational filter for filtering said signal; and means for enabling one of said median filter and said first and second spatio-temporal rational filters, the enabled filter being a most suitable filter for the estimated type of noise,

wherein said enabling means:

enables said median filter if the estimated type of noise is long-tailed noise;

enables said first spatio-temporal rational filter if the
15 estimated type of noise is Gaussian noise; and

5

10

threshold, said second threshold being lower than said first threshold; and

enabling—the second <u>spatio</u>—temporal_<u>rational</u> filtering

15 operation (311) is enabled if the kurtosis is above the second

threshold and below the first threshold.

- 7. (Currently Amended) A—The method of noise filtering (3)—as claimed in claim 6, wherein the first threshold is about 15 and the second threshold is about 6.
- 8. (Currently Amended) Method_The method of noise filtering $\frac{(3)}{(3)}$ as claimed in claim $\frac{1}{3}$, wherein in said noise estimating step, the noise $\frac{(2)}{(2)}$ in the signal is approximated estimated by a difference $\frac{(302)}{(302)}$ between the signal $\frac{(x)}{(302)}$ and a noise-filtered $\frac{(301)}{(302)}$ version of the signal $\frac{(x)}{(302)}$.
- 9. (Currently Amended) Method_The method_of noise filtering (3)—as claimed in claim 8, wherein the noise-filtered version of the signal (x)—is obtained by subjecting the signal (x)—to a median filtering operation—(301).

10-11. (Cancelled).

enables said second spatio-temporal rational filter if the extimated type of noise is contaminated Gaussian noise,

and wherein the first spatio-temporal rational filter takes into account at least one temporal direction, and the second spatio-temporal rational filter takes into account at least one combination of a temporal direction and a spatial direction.

15. (New) A video system comprising:

means for obtaining an image sequence; and a device as claimed in claim 14 for noise filtering the image sequence.

16. (New.) A device for noise filtering a signal, the device comprising:

means for estimating a type of noise in the signal; a median filter for filtering said signal; a spatio-temporal rational filter; and

means for enabling one of said median filter and said spatio-temporal rational filter, the enabled filter being a most suitable filter for the estimated type of noise,

wherein said enabling means enables said median filter if

the estimated type of noise is long-tailed noise, and enables said

spatio-temporal rational filter if the estimated type of noise is

Gaussian noise or contaminated Gaussian noise,

20

5

wherein said estimating means uses a kurtosis of the noise as a metric for estimating the type of noise,

15 and wherein said enabling means:

enables said median filter if the kurtosis is above a first threshold; and

enables said spatio-temporal rational filter if the kurtosis is below said first threshold.

17. (New) A video system comprising:

means for obtaining an image sequence; and a device as claimed in claim 16 for noise filtering the image sequence.