

Pilani Campus

BITS Pilani presentation

SS ZC416 Mathematical Foundations for Data Science Optimization

Objectives

- Finding a root of a function using Newton's Method
- Optimization using
 - Newton's Method
 - Steepest Descent Method
 - Lagrange's Multipliers

Newton's Method

The Problems

For solving

- The equation f(x) = 0
- Minimize f(x)

The Newton's Method

- Is based on the geometry of a curve, using the tangent lines to a curve.
- It requires calculus, in particular differentiation

Suppose we are at the purple dotted point We want to get to the red dotted point What should we do?

Consider the successive X intercepts

Right!, successive x-intercepts of tangent lines get closer and closer to roots.

Successive x-intercepts of tangent lines get closer and closer to roots.

Take a point $P_0 = (x_0, f(x_0))$

The x-intercept of the tangent at P_0 is $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$ (check it out !)

The x-intercept of the tangent at $P_1 = (x_1, f(x_1))$ is $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$ (refer above!)

Keep going: x_0 , x_1 , x_2 , x_3 ,

Some stopping criteria are:

- Limit on the number of iterations
- $|x_{n+1} x_n| < Limit$

Find a root of $2x^2 + 4x - 13 = 0$

Take the initial approximation to be x = -2

$$f'(x) = 4x + 4$$

$$x0 = -2$$
, $x1 = -5.25$

#	0	1	2	3	4	5	6	7
X	-2	-5.25	-4.00735	-3.75062	-3.73864	-3.73861	-3.73861	-3.73861

Remarks

- 1. The method is not foolproof. It depends a lot on the initial guess.
- 2. The method can be extremely efficient, if the first guess is a good one.
- 3. The method is ideal for an Excel spreadsheet
- 4. The function may have no roots, the method will fail
- 5. x_n may not exist
- 6. The iterations may cycle

Consider $-x^3 + 4x^2 - 2x + 2$ with initial estimate $x_0 = 0$

Optimizing using Newton's Method

Minimize f(x)

The iterative method is:

$$x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)}$$

Newton's method for finding minimum normally has quadratic convergence rate, but must be started close enough to solution to converge

Example

Min
$$f(x) = 0.5 - xe^{-x^2}$$

f'(x) =
$$(2x^2 - 1)e^{-x^2}$$

f''(x) = $2x(3 - 2x^2)e^{-x^2}$
And

$$x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)} = x_n - \frac{(2x^2 - 1)e^{-x^2}}{2x(3 - 2x^2)e^{-x^2}}$$

#	\mathbf{x}_{n}	f(x)	f'(x)	f"(x)	X _{n+1}
0	1.0000	0.1321	0.3679	0.7358	0.5000
1	0.5000	0.1106	-0.3894	1.9470	0.7000
2	0.7000	0.0712	-0.0123	1.7325	0.7071
3	0.7071	0.0711	-0.0001	1.7156	0.7071
4	0.7071	0.0711	0.0000	1.7155	0.7071

Steepest Descent Method

We want to minimize f(x)

Plan: Repeatedly compute the minima of a function g(t) of a single variable t, as follows:

- Suppose f has a minimum at x.
- We start at a point x_0 .
- We look for the minimum of f along the straight line in the direction $-\nabla f(x_0)$ The direction of steepest decrease of f at x_0 .
- x₁ is this point

Steps

Compute $\nabla f(x)$, $z(t) = x - t\nabla f(x) \& g(t) = f(z(t))$

Start at the initial guess x_0 .

Find minima of g(t)

$$\mathbf{x}_1 = \mathbf{z}(\mathbf{t}) = \mathbf{x}_0 - \mathbf{t} \nabla \mathbf{f}(\mathbf{x}_0)$$

Iterate until convergence

$$\nabla f(x) = [2x 10y]^{T}$$

$$z(t) = x - t\nabla f(x) = [x y]^{T} - t[2x 10y]^{T}$$

$$z(t) = [x - 2tx y - 10ty]^{T}$$

$$g(t) = f(z(t) = (x - 2tx)^{2} + 5(y - 10ty)^{2}$$

$$= x^{2}(1 - 2t)^{2} + 5y^{2}(1 - 10t)^{2}$$

$$x_0$$
: $x = 3.22 \& y = 1.39$

$$\nabla f(x) = [2x \ 10y]^T = [6.44 \ 13.9]^T$$
The black dot is x_0
The black line is the direction of $\nabla f(x_0)$
Contours: Red (f = 2) to Blue (f = 20)

How far should we go?

- The minimum along the line
- The current gradient is parallel to a contour

Example

Min
$$f(x, y) = x^2 + 3y^2$$

$$\nabla f(x, y) = \begin{bmatrix} 2x \\ 6y \end{bmatrix}$$

$$z(t) = \begin{bmatrix} x \\ y \end{bmatrix} - t\nabla f(x, y)$$

$$= \begin{bmatrix} x \\ y \end{bmatrix} - t \begin{bmatrix} 2x \\ 6y \end{bmatrix} = \begin{bmatrix} (1-2t)x \\ (1-6t)y \end{bmatrix}$$

$$g(t) = f(z(t) = x^2(1 - 2t)^2 + 3y^2(1 - 6t)^2$$

$$g'(t) = -4x^2(1-2t) - 36y^2(1-6t)$$

$$g'(t) = 0 \Rightarrow t = \frac{4x^2 + 36y^2}{8x^2 + 216y^2}$$

	n	x	t	1 - 2t	1 - 6t
כ	0	6.000 3.000	0.210	0.581	-0.258
_	1	3.484 -0.774	0.310	0.381	-0.857
	2	1.327 0.664	0.210	0.581	-0.258
	3	0.771 -0.171	0.310	0.381	-0.857
	4	0.294 0.147	0.210	0.581	-0.258
	5	0.170 -0.038	0.310	0.381	-0.857
	6	0.065 0.032			

Lagrange Multipliers

The constrained optima problem can be stated as: Find the extreme value of z = f(x, y) subject to g(x, y) = 0

So Lagrange formed the <u>augmented function</u>. $z = f(x, y) + \lambda g(x, y)$

The first order conditions for optimization are:

$$\frac{\partial Z}{\partial x} = 0, \frac{\partial Z}{\partial y} = 0, \frac{\partial Z}{\partial \lambda} = 0$$

- To be solved simultaneously
- These will give the critical points
- We will use intuitive methods to identify whether these critical points are maxima or minima

Example

Consider a firm producing commodity z with the following production function:

$$z = 5xy$$

Without any constraints, the firm can produce an unlimited quantity

But suppose the firm has a budget constraint:

Let the cost of the inputs x and y be: X = \$2 / unit and Y = \$1 / unit

For simplicity, assume that the maximum amount the firm can spend is \$100.

So we have the following constraint: 2x + y = 100

Max 5xy subject to 2x + y = 100

The augmented function: $z = 5xy + \lambda (2x + y - 100)$

The first order derivatives are:

$$\frac{\delta z}{\delta x} = 5y + \lambda 2; \ \frac{\delta z}{\delta y} = 5x + \lambda; \ \frac{\delta z}{\delta \lambda} = 2x + y - 100$$

Setting each derivative to 0 gives us: Three unknowns and 3 equation

$$y = -2\lambda/5$$
, $x = -\lambda/5 & 2x + y - 100 = -2\lambda/5 - 2\lambda/5 - 100 = 0 $\rightarrow \lambda = 500 / 4 = 125$$

That is: x = 25 and y = 50 & 5xy = 6250

Is x = 25 and y = 50 a maxima?

Analysis of the Problem

(24, 52): 6240

(26, 48): 6240

Therefore the critical value (25, 50) is a maxima

Analytical Approach

There is an analytical way to show whether we have a maxima or a minima But this is out of scope for this course