

81683

SEARCH REQUEST FORM

Scientific and Technical Information Center

Requester's Full Name: Jeffrey E. Russel Examiner #: 62785 Date: 12-4-2002
 Art Unit: 1651 Phone Number 305-3975 Serial Number: 09/815978
 Mail Box and Bldg/Room Location: _____ Results Format Preferred (circle): PAPER DISK E-MAIL
CMI-11D13/CMI 9807

If more than one search is submitted, please prioritize searches in order of need.

Please provide a detailed statement of the search topic, and describe as specifically as possible the subject matter to be searched. Include the elected species or structures, keywords, synonyms, acronyms, and registry numbers, and combine with the concept or utility of the invention. Define any terms that may have a special meaning. Give examples or relevant citations, authors, etc, if known. Please attach a copy of the cover sheet, pertinent claims, and abstract.

Title of Invention: Hydrazine-Based And Carbonyl-Based Bifunctional Crosslinking Reagents

Inventors (please provide full names): D. Schwartz

Earliest Priority Filing Date: 3-22-2001

For Sequence Searches Only Please include all pertinent information (parent, child, divisional, or issued patent numbers) along with the appropriate serial number.

Please search the following partial structure:

Cyclohexyl group.

Edward Hart
Technical Info Specialist
STIC/BioTech
CMI 6B02 Tel: 305-9203

If necessary, keywords are conjugat?, crosslink?,
bifunctional, antibody, immobiliz?.

Thank you.
JSL

STAFF USE ONLY		Type of Search	Vendors and cost where applicable
Searcher:		NA Sequence (#)	STN
Searcher Phone #:		AA Sequence (#)	Dialog
Searcher Location:		Structure (#)	Questel/Orbit
Date Searcher Picked Up:	<u>12/6/02</u>	Bibliographic	Dr. Link
Date Completed:	<u>12/12/02</u>	Litigation	Lexis/Nexis
Searcher Prep & Review Time:		Fulltext	Sequence Systems
Clerical Prep Time:		Patent Family	WWW/Internet
Online Time:		Other	Other (specify)

RUSSEL 09 / 415976

-> file hcplus
FILE 'HCPLUS' ENTERED AT 10:57:35 ON 12 DEC 2002
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2002 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PE, field available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of ACS, is strictly prohibited.

FILE COVERS 1967 - 12 Dec 2002 VOL 137 ISS 24
FILE LAST UPDATED: 11 Dec 2002 (20021211/ED)

This file contains CAS Registry Numbers for easy and accurate substance identification.

CAS roles have been modified effective December 16, 2001. Please check your SDI profiles to see if they need to be revised. For information on CAS roles, enter HELP ROLES at an arrow prompt or use the CAS Roles thesaurus (/RL field) in this file.

-> d stat que

L1 STER

12
31

2 7
C 3 C N C N N
1 3 C 3 9 10 11

6 C C₄
C C C
14 13 5

VAR G1=0/S

NODE ATTRIBUTES:

DEFAULT MLEVEL IS ATOM

DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED

NUMBER OF NODES IS 14

STEREC ATTRIBUTES: NONE

L3 135 SEA FILE=REGISTRY SSS FUL L1

L4 STER

9
G1

C C G2 N N C N N
2 1 2 3 4 5 6 7

VAR G1=0/S

REP G2=(1-20) C

NODE ATTRIBUTES:

DEFAULT MLEVEL IS ATOM
 DEFAULT ELEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED

NUMBER OF NODES IS 9

STEREO ATTRIBUTES: NONE

L6 78 SEA FILE=REGISTRY SSS FUL L4
 L9 STR

REP G1=(1-20) C

NODE ATTRIBUTES:

DEFAULT MLEVEL IS ATOM
 DEFAULT ELEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED

NUMBER OF NODES IS 13

STEREO ATTRIBUTES: NONE

L11 33 SEA FILE=REGISTRY SSS FUL L9
 L12 52 SEA FILE=HCAPLUS ABB=CN PLU=ON L3
 L13 37 SEA FILE=HCAPLUS ABB=CN PLU=ON L6
 L14 44 SEA FILE=HCAPLUS ABB=CN PLU=ON L11
 L15 3 SEA FILE=HCAPLUS ABB=CN PLU=ON L12 AND (CONUGAT? OR CROSSLINK
 ? OR BIFUNCTIONAL? OR ANITBCD? OR AB# OR MAB# OR PAB# OR
 IMMOCBILI?)
 L16 4 SEA FILE=HCAPLUS ABB=CN PLU=ON L13 AND (CONUGAT? OR CROSSLINK
 ? OR BIFUNCTIONAL? OR ANITBCD? OR AB# OR MAB# OR PAB# OR
 IMMOCBILI?)
 L17 3 SEA FILE=HCAPLUS ABB=CN PLU=ON L14 AND (CONUGAT? OR CROSSLINK
 ? OR BIFUNCTIONAL? OR ANITBCD? OR AB# OR MAB# OR PAB# OR
 IMMOCBILI?)
 L18 17 SEA FILE=HCAPLUS ABB=CN PLU=ON L16 OR L17 OR L18

=> d iob abs n1rn l19 tst

l19 ANSWER 1 OF 10 HCAPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 2001:713305 HCAPLUS
 DOCUMENT NUMBER: 145:272864
 TITLE: Hydrazine-based and carbonyl-based
 bifunctional crosslinking reagents
 for biomolecules, drugs, and synthetic polymers
 INVENTOR(S): Schwartz, David A.
 PATENT ASSIGNEE(S): Solulink, Inc., USA
 SOURCE: PCT Int. Appl., 97 pg.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2001070685	A2	20011027	WO 2001-070685	20011027
W: AE, AG, AL, AM, AT, BY, AZ, BA, BB, BG, BR, BY, CZ, DE, DM, DZ, EE, ES, FI, GB, GD, GE, GH, HI, HR, HU, IS, IL, IN, IS, JP, KE, KG, KP, KZ, LQ, LR, LS, LS, LT, LU, LV, MA, MD, MC, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RU, SE, SI, SK, SL, TJ, TM, TR, TZ, UG, VN, YU, ZA, ZW, AN, AS, BY, KG, KZ, UD, RC, TZ, TW	B: BG, GE, GH, HI, HR, HU, IS, IL, IN, IS, JP, KE, KG, KP, KZ, LQ, LR, LS, LT, LU, LV, MA, MD, MC, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RU, SE, SI, SK, SL, TJ, TM, TR, TZ, UG, VN, YU, ZA, ZW, AN, AS, BY, KG, KZ, UD, RC, TZ, TW			
RW: CH, GN, HE, LS, MW, MD, SD, SL, SZ, TZ, UC, XK, AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LS, MC, NL, PT, SE, TR, RU, SI, CG, CI, CN, GA, GN, GW, ML, MR, NE, SG, TZ, UG	B: AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LS, MC, NL, PT, SE, TR, RU, SI, CG, CI, CN, GA, GN, GW, ML, MR, NE, SG, TZ, UG			
US 2002146504	A1	20021016	US 2002-51277	20021016

PRIORITY APPLN. INFO.:

US 2000-191186P P 20000322
US 2001-262094P P 20010116

OTHER SOURCE(S):

MARPAT 10/10/2002

AB Reagents and methods are provided for **bifunctional crosslinking** and **immobilizing** biomols., drugs, and synthetic polymers. The reagents of formula BRANHNNH₂•HX (wherein A = NHCO, NHCS, NHNHCO, NHNHCS, or a direct bond; B = an amino or thio reactive moiety; R = specified aliphatic divalent groups containing any combination of cycloalkylene, C(R₁₀)₂, CR₁₀:CR₁₀, C:CR₁₂R₁₃, CR₁₂R₁₃, C:R₁₀bond.C, D, SGa, NR₁₀, N-R₁₂R₁₃, CL, etc.; a = 0-2; b = 0-3; G = O or S; R₁₀ = NR₁₀; R₁₂ = specified monovalent groups; R₁₂ and R₁₃ = independently R, (cyclo)alkyl, alkenyl, alkynyl, or (hetero)aryl; or R₁₂ and R₁₃ together from (cyclo)alkylene or alkenylene; X = neg. counterion; and R₁₀ possesses a thiol or amino reactive group and a hydrazine or oxyamine moiety. Conjugates and **immobilized** biomols. are also provided. For example, hydrazinonicotinic acid was converted to the acetone hydrazone and treated with N-hydroxysuccinimide to give the **crosslinking** agent, succinimidyl- ϵ -hydrazinonicotinate acetone hydrazone (-), in 33% yield. A solution of - in PBS and EDTA was added to a solution of I in DMF and the mixture incubated at room temperature for 4 h to afford the hydrazine-modified protein, which exhibited a molar extinction coefficient of 22,000 at 360 nm.

17

362522-51-8P
EI: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
crosslinking agent; preparation of hydrazine- and carbonyl-based bifunctional crosslinking agents and use with biomols., drugs, and synthetic polymers

L19 ANSWER 2 OF 10 HCPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER: 1993:617414 HCPLUS
DOCUMENT NUMBER: 119:217414
TITLE: Peptidic aldehyde analogs for trypsin inhibitors
INVENTOR(S): Prunck, Terence Kevin; Pepe, Michael Gary; Fearnly, Daniel Andrew; Webb, Thomas Roy
PATENT ASSIGNEE(S): Corvas International, Inc., USA
SOURCE: PCT Int. Appl., 61 pp.
Coden: PIXMDZ
DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 2
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9314779	A1	19930805	WO 1993-08906	19930129

 W: CA, JP
 RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SI

EP 627925	AI 19941214	EP 1993-00016	139976-30-0P
B: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, NL, PT, TR	DE 1993-00016	IT 1993-00016	EP 1993-00016
JP 07503715	TR 139976-30-0P	US 1993-00016	US 1993-00016
US 5534418	A 139976-30-0P	US 1993-00016	WO 1993-00016

PRIORITY APPLN. INFO.:

OTHER SOURCE(S): MARPAT 119:217:14

AB Peptide aldehyde analogs are disclosed which have substantial potency and specificity as inhibitors of mammalian pancreatic trypsin. The compds. of the invention are useful in the prevention and treatment of tissue damage or destruction associated with pancreatitis. Preparation of the analogs is described. Thus, N-t-butoxycarbonyl-L-Asp-L-Pro-L-argininal (I) (preparation given) had a Ki against trypsin of 0.00045 μM. The effectiveness of I in an animal model for pancreatitis was also demonstrated.

IT 139976-30-0P

RL: SPN (Synthetic preparation); PREP (Preparation)
(preparation and **immobilization** of, in peptide aldehyde analog preparation for trypsin inhibitor)

IT 139976-26-4P 139976-27-5P 139976-29-7P

139976-30-0DP, solid phase-**immobilized**
RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RCT
(Reactant or reagent)
(preparation and reaction of, in peptide aldehyde analog preparation for trypsin inhibitor)

L19 ANSWER 3 OF 10 HCAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1392:611912 HCAPLUS
DOCUMENT NUMBER: 117:212932
TITLE: Total synthesis and absolute configuration of bengamide A
AUTHOR(S): Chida, Noritaka; Tobe, Takahiko; Okada, Shinsuke;
Ogawa, Seiichiro
CORPORATE SOURCE: Fac. Sci. Technol., Keio Univ., Yokohama, 223, Japan
SOURCE: Journal of the Chemical Society, Chemical Communications (1992), (15), 1064-6
CIPEN: JCCCAT; ISSN: 0022-4936
DOCUMENT TYPE: Journal
LANGUAGE: English
OTHER SOURCE(S): CASREACT 117:212932
GI

* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT *

AB The first total synthesis of the novel marine natural product, bengamide A (I) is described, revealing the **absolute** configuration of this compound. I was prepared in several steps from known ester II (R1 = Boc), which can be obtained from L-glutamic acid in 4 steps. Key steps were the cyclization of active ester III to give hexanhydro-2-azepinone IV (R1 = CH2Ph, R2 = Boc) and the coupling of IV-CF3CO2H (R1 = R2 = H with polyhydroxylated C11 side chain V by (EtO)2P(O)CN to give the corresponding amide.

IT 144090-64-2P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RCT
(Reactant or reagent)
(preparation and cyclization of)

L19 ANSWER 4 OF 10 HCAPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER: 1391:425407 HCAPLUS

DOCUMENT NUMBER: 115:25407
 TITLE: Novel trifunctional carrier molecule for the fluorescent labeling of haptens
 AUTHOR(S): Breden, Ist., Reinhard; Neuhoff, Gregory A.; Kurnikoff, Anne M.; Charles, Paul T.; Thompson, Richard P.; Liggier, Frances S.; Vogel, Carl Wilhelm
 CORPORATE SOURCE: Dep. Biochem. Mol. Biol., Georgetown Univ., Washington, DC, 20007, USA
 SOURCE: Analytical Biochemistry (1991), 188(2), 270-7
 CUDEN: ANB0A2; ISSN: 0003-2697
 DOCUMENT TYPE: Journal
 LANGUAGE: English

AB The authors developed a novel trifunctional carrier mol. for the synthesis of hapter-fluorophore conjugates as reporter mols. in immunoassays. This carrier eliminates some of the disadvantages associated with currently used fluorophore-labeling procedures including high nonspecific binding. The backbone of the carrier consists of the 21 amino acid residues of the insulin A-chain mol. This polypeptide provides a single site (terminal amino group) for covalent coupling of the hapten, three carboxyl groups for the attachment of fluorophores, and four sulfhydryl groups for derivatization with hydrophilic residues to compensate for the hydrophobic effect of the attached fluorophores. The sites for fluorophore attachment are 4, 17, and 21 amino acids away from the hapter attachment site. This spatial separation minimizes quenching of the fluorescence signal due to interaction of the fluorophores with each other and with the attached hapter. 2,4-Dinitrophenol (DNP) was selected as model hapter, fluorescein as label, and S-sulfonate groups as hydrophilic residues. The properties of the DNP-insulin A-chain-fluorescein conjugate (DNP-Ins-Fl) were compared to those of a DNP derivative labeled with a single fluorescein moiety via a small lysine spacer (DNP-Lys-Fl). The DNP-Ins-Fl conjugate exhibited a 3-fold lower nonspecific adsorption to **immobilized** non-immune IgG compared to an approx. 3-fold more efficient displacement from the binding sites of an **immobilized** monoclonal anti-DNP antibody by the antigen DNP-lysine. Furthermore, at equivalent concns. the DNP-Ins-Fl generated a 1.6-fold higher fluorescent signal than DNP-Lys-Fl. Due to these properties of DNP-Ins-Fl, DNP-lysine could be detected with an approx. 11-fold higher sensitivity compared to DNP-Lys-Fl as labeled antigen. The use of DNP-Ins-Fl as reporter molecule in a competitive fluorimmic assay allowed the quant. determination of picomole amounts of DNP-lysine.

IT 134664-50-9
 FL: RCT (Reactant); FACT (Reactant or reagent)
 (reaction of, with FITC)

L19 ANSWER 5 OF 10 HCAPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 1990:4 2-71 HCAPLUS
 DOCUMENT NUMBER: 115:25407
 TITLE: Preparation and characterization of immunconjugates for antibody-targeted photolysis
 AUTHOR(S): Rakestraw, Scott L.; Tompkins, Ronald G.; Yurnick, Martin L.
 CORPORATE SOURCE: Cent. Adv. Biotech. Med., Rutgers, State Univ., Piscataway, NJ, 08855, USA
 SOURCE: Biocarrier Chemistry (1991), 1(1), 61-66
 CUDEN: BICHE3; ISSN: 1043-1612
 DOCUMENT TYPE: Journal
 LANGUAGE: English

AB Monoclonal antibody (**MAb**)-dextran-tin(IV) chlorin e6 (SnCe6) immunconjugates were prepared by a new technique involving the use of reducing terminal-modified dextran carriers and site-specific modification of the Fc oligosaccharide moiety on the antibodies. Dextran carriers were synthesized to increase the number of SnCe6 mols. attached to a **MAb**

. The dextran carriers were coupled to the **MAb** via a site-specific, chain-terminal hydrazide group to prevent aggregation of **MAbs**. Conjugates were prepared with anti-melanoma **MAb** 2.1 containing up to 18.3 SnCe6 mols. per **MAb**. Under neutral conditions, i.e., hydrolysis of the hydrazone bond between the **MAb** and the dextran carrier could be detected, and the hydrazone was not stabilised by treatment with NaCNBH3 or NaBH4. Anal. of the purified immunconjugates showed that apprx. 2 dextran carrier chains were attached to a **MAb**.

apprx. 2 dextran carrier chains were attached to a **MAb**, regardless of the number of SnCe6 mols. linked to a dextran carrier. Site-specific covalent attachment of the SnCe6-dextran chains to the **MAb** was confirmed by SDS-PAGE. HPLC anal. of the conjugates gave a single species eluting in the range of 200-240 kDa. As determined by a competitive inhibition FIA using viable SK-MEL-2 human malignant melanoma cells, the conjugates showed excellent retention of antigen-binding activity relative to unconjugated **MAb**.

IT 127381-73-1P

RL: SBN (Synthetic preparation); PREP (Preparation)
(preparation and hydrazinodextran terminal hydrazide protection by)

L19 ANSWER 6 OF 10 HCAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1974:13716 HCAPLUS
 DOCUMENT NUMBER: 64:4871
 TITLE: Preparation of a foam material
 INVENTOR(S): Ueda, Naoshi; Nakamura, Tominaro
 PATENT ASSIGNEE(S): Orlitika Co., Ltd.
 SOURCE: Jpn. Tokkyo Koho, 2 pp.
 CILEN: JAXNAD
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 47051944	B4	19721227	JP 1969-88917	19691106

AB [α -Acetylethylidene] carbonyldiazide (I) [50883-75-5]
 (CH₃COC(Me):NNHCONHNH₂), which generated nontoxic, odorless, nonflammable gas on decomposition was used as a blowing agent for manufacture of polymer foams.

Thus, 93 parts **ABS** copolymer [9003-56-9] was dry-blended with 1 parts I and injection molded at die temperature 290.deg. at 45 rpm to obtain a foam having uniform small cells and an apparent sp. gr. 0.1697 g/cm³.

IT 50883-75-5

RL: USES (Uses)
(blowing agents, for manufacture of polymer foams)

L19 ANSWER 7 OF 10 HCAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1967:75307 HCAPLUS
 DOCUMENT NUMBER: 64:75307
 TITLE: Preparation of terephthaloyl diisocyanate
 AUTHOR(S): Heidlein, Richard; Bottler, Rainer
 CORP/HATE SOURCE: Univ. Marburg-Lahn, Marburg-Lahn, Ger.
 SOURCE: Chem. Ber. (1967), 100(2), 698-700
 CILEN: CHBEAM
 DOCUMENT TYPE: Journal
 LANGUAGE: German

GI For diagram(s), see printed CA Issue.

AB p-C₆H₄(CONH)₂ (32.8 g.) in 200 cc. dry CO₂ refluxed about 10 days until 152.4 g. (COCl)₂ gave 43.2 g. p-C₆H₄(CONCO₂R)₂ (II, R = Me).
 (2.7 g.) in 60 cc. tetrahydrofuran treated with cooling with 1.7 N absolute MeOH and stirred 1 hr. at room temperature yielded 1.4 g. p-C₆H₄(CONHCO₂R)₂ (III) (R = Me). Similarly prepared were the corresponding p-C₆H₄(CONHCO₂R)₂ (III) (R, n.p. decomposition), and a yield given: Et, 22%; Et₂O, 15%.

IT 13506-12-2P 14994-19-5P

RI: SPN (Synthetic preparation); RIE: Ecaparation
(preparation of)

119 ANSWER 8 OF 10 HCAFLOS COPYRIGHT 2002 ACS

1967.3572 ECAFLUS
ACCESSION NUMBER: 1967.3572 ECAFLUS

DOCUMENT NUMBER: 66-5574

TITLE: Hydrazine compounds as heteroconstituents in peptides. VII. Synthesis of derivatives and peptides of DL- α -hydrazino- β -phenylpropionic acid (NHPhe).

AUTHORS): Gruppe, Renate; Niedrich, Hartmut

CORPORATE SOURCE: Deut. Akad. Wiss., Berlin, Ger.
SOURCE: Chem. Ber. 1964, 99(12), 3914-24

SOURCE: [REDACTED] DATE: [REDACTED]
TEN: [REDACTED]

DOCUMENT TYPE: Transcript

LANGUAGE : German.

AB OF CA 61, 30%.

III (MeOH-aqueous NaBH method) gave 1.3 g. I ($R = Z$, $X = CH_2COOEt$).
 III (in 12 cc. N,N-dimethylformamide during a 1 hr. reflux at 100°, treated with 1.1 g. in 12 cc. 2N NaBH with ice cooling until pH was 8-9) at 0°, added 10.5 cc. 2N NaBH with ice cooling until pH was 8-9 at 0°, and 1.1 g. of the mixture stirred 30 min. gave 4.1 g. I ($R = Z$, $X = CH_2COOEt$).
 The same treatment of II (1.1 g.) with 1.1 g. MeCNHCl and 1,2,4-triazole like IV gave 0.3 g. I ($R = Z$, $X = CH_2COOEt$).
 II (1.1 g.) treated like V gave 1.7 g. I ($R = Z$, $X = CH_2COOEt$). From 1.1-MeC₆NH₂(CH₂Ph)CO₂Et, II (1.4 g.) in 12 cc. DMF treated with 0.53 g. 1-MeC₆NNH₂(CH₂Ph)CO₂Et, III (1.4 g.) in 12 cc. DMF treated with 0.53 g. N-hydroxysuccinimide $VIII$, and then at 0° with 1.03 g. DCCI and the reaction mixture kept 60 hrs. at 0° gave 1.5 g. I ($R = CO_2Et$, $X = CH_2COOEt$). II (3.14 g.) and 1.15 g. $VIII$ in 15 cc. THF treated with 2.36 g. DCCI 24 hrs. at 0° gave 0.4 g. I ($R = Z$, $X = CO_2Et$).
 II (1.1 g.) suspended in 14 cc. THF, treated with 1.78 g.

Et₃N with ice cooling, the product treated with 1.5 g. Z-Gly and 1.66 cc. Et₃N with ice cooling, and the mixture kept at room temperature for 24 hrs. at 0° gave 1.66 g. Nβ-Z-Gly-DL-NHphe-R (X, R = OH). X, m. 206-210°, NHRhe-OEt (from 2 g. HCl salt) in 5 cc. H₂OAc kept 24 hrs. at room temperature, treated with 6.2 g. Z-Gly-OCH₂CN gave 9.1 g. X, m. 206-210°. X (2 g.) suspended like III gave 1.5 g. (X, R = OH). X (3.99 g.) in 10 cc. **absolute** MeOH kept 3 days with 2.5 cc. 100% N₂H₄.H₂O and approx. 100 mg. 1,2,4-triazole gave 2 g. X (R = N₂H₃). Free DL-NHphe-OEt (from 2.4 g. HCl salt) and 2.1 g. Z-L-Ala in 30 cc. MeCN treated portionwise with 2.46 g. DCCl 24 hrs. at 0°, 2 drops AOH added, and the mixture let stand 2 hrs., gave 2.4 g. Nβ-Z-L-Ala-DL-NHphe-R (XI, R = OEt). XI, Free NHphe-OEt (2.08 g.) in 5 cc. CHCl₃ combined with 3.44 g. Z-L-Ala-ONP. Free NHphe-OEt (2.08 g.) in 5 cc. CHCl₃, 0.01 cc. NaOH added, and the solution kept 48 hrs. at room temperature gave 3.2 g. XI. XI (1.03 g.) saponified like III (MeOH-aqueous temperature) gave 3.2 g. XI.

NaOH

method) gave 0.62 g. XI (R = OH). XI (1.03 g.) in 8.4 cc. **absolute** MeOH heated 40 min. at 45° with 4.6 cc. approx. 4N HBr-AcOH gave 0.17 g. Nβ-L-Ala-DL-NHphe-OEt.HBr (XII). XII, m. 206-210°, NHRhe-OEt (0.17 g.) in 4 cc. DMF treated with 0.17 g. Et₃N and then 1.16 g. Z-L-Asp-ONP in 5 cc. THF gave 0.17 g. Nβ-Z-L-Asp-L-Ala-DL-NHphe-OEt. To 0.17 g. XII and 1.16 g. Et₃N added 0.125 g. Et₃BN at -10° to -5° until pH 7 was attained, followed during 10 min. by 0.1 g. ClCO₂Et, the solution stirred approx. 1 hr. at -5°, treated with a precipitated solution of 2.0 g. X in 12.5 cc. THF at -15°, stirred 10 min. at -5°, and refrigerated 3 days at 0° to give 0.5 g. Z-Gly-NHNHC(CH₂Ph)COX (XIV) (R = Z-Gly, X = OEt) (XV). To 2 g. X and 1.04 g. Z-Gly in 30 cc. MeCN was added 1.23 g. DCCl with stirring and ice cooling and the solution let stand 20 hrs. at 0°, to give 0.4 g. XV. To 3.19 g. X in 20 cc. **absolute** C₅H₅N were added simultaneously 2.21 g. p-tosyl chloride and 1.66 cc. Et₃N with ice cooling to give 4.3 g. XII (R = p-tosyl, X = OEt) (XVI). XVI (1.2 g.) dissolved in 1. cc. **absolute** MeOH by heating, the solution cooled, treated with approx. 100 mg. 1,2,4-triazole and 0.76 cc. 100% N₂H₄.H₂O, and let stand 4 days at room temperature gave 0.1 g. XIV (R = p-tosyl, X = N₂H₃). The mixed anhydride from 2.0 g. Z-Gly and 1.2 g. ClCO₂Et treated with a precipitated solution of 2.0 g. II in 25 cc. THF as described for XII gave 1.4 g. crude Nβ-EtOCO₂-Z-Gly-DL-NHphe-OEt (XVII).

Nβ-tert-butyloxycarbonyl-L-L-α-hydroxyisino-β-phenylpropionyl amine acid esters was prepared as follows: Method A. To 5 millimoles appropriate amino acid ester-OMe in 5 cc. DMF was added 0.7 cc. Et₃BN, stirring and ice cooling, precipitated Et₃BN.HCl filtered and washed with 10 cc. DMF, the filtrate added to a solution of 1.4 g. III in 10 cc. THF, 0.17 g. ClCO₂Et added at 0° and the solution kept approx. 6 hrs. at 0° to give the corresponding heterodipeptide ester. Method B. A solution of 5 millimoles amino acid ester (prepared as in Method A) combined with a solution of 1.4 g. VIIa in 10 cc. THF, and kept approx. 66 hrs. at 0°-10° gave 90-100% corresponding heterodipeptide ester. Thus, with Gly-OMe, there was obtained 61% (by method A) and 100% by method B) Nβ-Boc-DL-NHphe-Gly-OMe (XVIII). From L-Leu-OMe was obtained 70% (method A) and 90% (method B) disastereoisomeric mixture of Nβ-Boc-DL-NHphe-L-Leu-OMe. L-Ile-Gly-L-Leu-L-Met-NH₂ (Luebke, et al., J. Am. Chem. Soc. 67, 4113; 0.107 g.), 1 millimole Et₃N, and 1 millimole VIIa in 5 cc. DMF let stand 60 hrs. at 20-5° and diluted with H₂O gave 0.60 g. Nβ-Boc-DL-NHphe-L-Ile-Gly-L-Leu-L-Met-NH₂. A solution of 0.3 millimoles L-Ile-ONP (prepared as in method A) combined with a solution of 0.17 g. XI (R = OH) in 5 cc. DMF, and treated further like method A gave 0.17 g. Nβ-(Z-L-Ala-DL-NHphe-L-CMe. XVIII (1.82 g.) in 20 cc. MeOH combined with a solution of 0.2 g. NaOH in 50 cc. H₂O, a solution of 0.2 g.

NaOH

In 50 cc. H₂O and 20 cc. MeOH added dropwise during 2 hrs. while maintaining the pH at 5-9 gave 1.1 g. Nβ-Boc-DL-L-Ile-Gly-OMe (XIX) (0.81 g.) in 10 cc. THF treated first with 1.06 g. Et₃BN and then with 0.50 g. DCCl overnight at 0°, gave 0.76 g.

IT N β -Boc-DL-NH Phe-Gly-OEt, m. 90-2°.
14381-16-9P 14381-17-0P
RL: SPN (Synthetic preparation); PREP (Preparation)
(Preparation 91)

114 ANSWER 9 OF 10 HCABLUS COPYRIGHT 2010 RCF
ACCESSION NUMBER: 1965:438638 HCABLUS
DOCUMENT NUMBER: 63:38638
ORIGINAL REFERENCE NO.: 63:6854h, 6855a
TITLE: Synthesis of 1,3-bis[bis(carboxymethyl)aminomethyl]propane
AUTHOR(S): Ermakova, M. I.; Fedgornaya, I. V.; Butina, N. V.;
Potapovskii, T. Ya.

CORPORATE SOURCE: Chern. Inst., Sverdlovsk
SOURCE: Zh. Organ. Khim. (1965), 1(5), 857-60
DOCUMENT TYPE: Journal
LANGUAGE: Russian

AB (MeO₂CCH₂)₂NNH₂.HCl treated with aqueous NaOH gave the free ester, b.p. 124-5°, n_D²⁰ 1.4562, d.₄²⁰ 1.1930 [p-nitrobenzylidene derivative m. 75-7°; hydrazone with p,N-bis(β-chloroethyl)aminobenzaldehyde m. 76-8°; picrate m. 116-8°]. This kept 3-4 hrs. in EtOH-NH₃ with 2.62 gave 68% (MeO₂CCH₂)₂NNHC₆H₄NH₄, m. 102-4°, which adjusted to pH 3 with HCl gave the free acid, m. 82-4°, unstable in storage. This heated in **absolute** EtOH 50 min. gave SC(NHN(CH₂CO₂-Me)₂)₂, m. 86-8°, which refluxed 1 hr. in 10% HCl gave 33% SC(NHN(CH₂CO₂H)₂)₂, decomposed 190-3°. The polarograms of the salts of this acid with 13 common metal ions were reported. This acid in weakly basic medium can complex many metals as such as Fe, Co, Ni, Mn, Cr(IV), and Cd. The complex forming tendency is weaker in acid media.

2215-00-1, Acetic acid, 1-thiocarbonyldiacyclazinyl, and the preparation and polarography of its metal complexes

2509-12-8, Acetyl 10,11-thiobis(2-oxo-2,3-dihydro-1H-pyrazin-4-yl)-4-methyl-1,3-dihydro-
tetramethyl ester
Preparation of

L19 ANSWER 10 OF 10 HCPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER: 1954:469149 HCPLUS
DOCUMENT NUMBER: 61:69149
ORIGINAL REFERENCE NO.: 61:11899e-h, 11999a-h, 12000a-h, 12001a-h, 12002a-h
TITLE: Syntheses of nitrogen-containing heterocycles. XXV.
α-Chloro oximes. 2
AUTHOR(S): Ferrey, Alfred; Marquardt, Hans Heinrich; Baucksch,

CORPORATE SOURCE: Tech. Hochschule, Hannover, Germany
SOURCE: Ber. (1964), 97(8), 2165-8
DOCUMENT TYPE: Journal
LANGUAGE: It available

GL For diaciam(s), see printed CA Issue.
 AB cf. CA 55, 2660h, 83865. α -Chloro oximes with Ph₂C=O gave 2-aminothiazole 3-oxides (II). The 4-Me derivative of II with Et₂OCS₂K gave 2-amino-4-hydroxyethyl- and 4-chloromethylthiazoles. Other 2-oximes with Et₂OCS₂K gave α -ethoxythiocarbonylthiazole oxides which were cyclized to 2-mercaptopthiazole 3-oxides. PhCHCl₂:NaH (III) (1.6 g.) in 20 cc. EtOH refluxed 1 hr. with 2.6 g. I in 15 cc. EtOH yielded 3.3 g. (R = Ph), m. 181° (Et₂O). p-ClC₆H₄CHClCCl:NaH (4.1 g.) in 30 cc. EtOH treated 2 days at room temperature with 2.8 g. I in 15 cc. EtOH yielded

g. IV ($\text{R} = \text{p-ClC}_6\text{H}_4$) (V), m. 208° (EtOH). V $\text{R} = \text{Ph}$ (I) g., in 25 cc. 2N HCl heated 0.5 hr. on a water bath with 2 g. Zn dust yielded 0.5 g. 2-amino-4-methyl-5-phenylthiazole (VI), m. 163° (aqueous MeOH). V (1.2 g.) in 20 cc. $(\text{CH}_2\text{Cl})_2$ treated at room temperature with 1.6 cc. AgNO_3 yielded

2.4 g. 2-amino-3-acetoxy-4-methyl-5-(p-chlorophenyl)thiazolium chloride, m.p. 180° (decomposition), V (3 g.) in 150 cc. (CH₂Cl)₂ refluxed 1 hr. with

1.4 g., AcCl gave 0.6 g. 2-amino-5-methylimidazole (I). 2-chlorophenyl-thiazole, m. 266° (decomposition) (C6H6), and 0.4 g. 2-amino-4-hydroxymethyl-5-(p-chlorophenyl)thiazole, m. 196° (C6H6-EtOH). EtOCS2K (3.2 g.) in 25 cc. EtOH added to 3.0 g. I in 25 cc. EtOH and poured after 1 hr. into 400 cc. H2O yielded 4.1 g. 1-ethoxythiocarbonylthio-2-oxime-1-phenylpropane (VII), m. 125° (aqueous EtOH). VII (3.5 g.) and 30 cc. 2N NaOH heated 20 min. at 160° gave 2 g. 2-SH analog (VIII) of IV (R = Ph), m. 143° (MeOH). VIII (0.6 g.), 1 cc. HI (d. 1.9), and 0.3 g. red P refluxed 20 min. yielded 0.4 g. 2-SH analog of VI, m. 122° (MeOH). XXVI. Use of α -amino oximes in the preparation of imidazole 3-oxides. Alfred Bernow and Hans Heinrich Marquardt. Ibid. 2169-72. α -Amino oximes react with ClCO2Et (I) and ClCH2Et (II) on the NH₂ group to yield the corresponding acetans and trans-acetans, resp. The free carbamidil chloride, obtained by alkaline saponification of the acetans and thioacetans, eliminates CO₂ and SO₂, resp., to yield with cyclization imidazole 3-oxides. 2-Amino-4,5-dimethylimidazole (III) (1.1 g.) in 30 cc. C6H6 treated at room temperature with 0.1 g. I in 10 cc. C6H6 gave 0.8 g. EtO2CNH₂HCl (IV) (0.3 g.) in 10 cc. 2N NaOH (V), m. 113° (petr. ether-C6H6). IV (0.3 g.) in 10 cc. 2N NaOH refluxed gave 0.5 g. 2-hydroxy-4,5-trimethylimidazole 3-oxide, m. 235° (HCl). FeCl₂ (0.15 g.) in 1 cc. 6N HCl added to 3 g. V in 50 cc. H₂O, and the mixture saturated with H₂ gave the hydrogenation product. When V was stirred under MeOH, AcPhCH₂NH₂ (8.2 g.) in 80 cc. **absolute** MeOH and 1 cc. 2N HCl-MeOH hydrogengated at room temperature over 1.5 g. catalyst yielded 3.5 g. AcPhCH₂NH₂·HCl (VI), m. 201° (decomposition). IV (3.3 g.) and 5 g. RNH₂·HCl in 30 cc. H₂O treated rapidly with stirring with 16.5 g. Ac₂O in 40 cc. H₂O (heated to 100°) gave 10.1 g. PhCH₂NH₂CO₂:NH₂ (V), m. 167° (iso-PrOH), which in 80 cc. H₂O treated with 1.5 g. Na₂CO₃ in 15 cc. H₂O and extracted with CHCl₃ yielded 6.7 g. PhCH₂NH₂CO₂:NOH (V), m. 74° (CHCl₃-petr. ether), 76° (NaOH). V (3.5 g.) in 160 cc. C6H6 treated slowly with stirring with 1.1 (NaOH) (1.1 g.) in 20 cc. C6H6 yielded 1.1 g. EtO2CNHCFHCMe:NOH, m. 138° (160-ether), which heat 1 hr. in a water bath with 10 cc. 2N NaOH gave 1.1 g. VI, m. 112° (MeOH). VI (0.6 g.) in 30 cc. 2N NaOH refluxed 3 hrs. in a water bath with 4 g. Zn dust gave 0.4 g. 2-hydroxy-4-methyl-5-propylimidazole, m. 285° (aqueous EtOH). V (3.2 g.) in 170 cc. C6H6 treated slowly with stirring with 1.24 g. II in 30 cc. C6H6, stirred 1 hr., filtered from the HCl salt, m. 216°, and evaporated, and the viscous, yellow residue heated 4 hrs. in a water bath and re-refluxed 10 cc. 2N NaOH yielded 1.1 g. 2-SH analog of VI, m. 201° (decomposition) (aqueous MeOH). XXVII. 1,4-Triazines. 1. Preparation of some 1,4-s-triazolo[3,2-*a*]-as-triazines. Alfred Bernow, Herbert Denzel, and Hans Marquardt. 2173-3. Et₂NH₂H₂O (I) with α -keto acids gave 4-amino-5-oxo-3-triazo-3,4,5-tetrahydro-as-triazines (II) which form via the corresponding Kekulé corpus., with amines 3,4-diamino-4,5-dihydro-as-triazines (III). III were converted readily with HCO₂H or Ac₂O into 3,7-dihydro-s-triazolo[3,2-*a*]-as-triazines (IV). I (5.5 g.) in 500 cc. boiling H₂O treated slowly with 44 g. Ac₂O and kept 5 hrs. at room temperature yielded 7.5 g. II (R = Me) (V, m. 180° HCO₂H). I (1.06 g.) in 50 cc. boiling H₂O with 1.5 g. HCO₂H gave 2.1 g. II (R = Ph) (VI), decomposes 151° (H₂O). V (1 g.) in 1 cc. boiling MeOH treated with 1 cc. NaBH₄ and refluxed 0.5 hr. yielded 1.3 g. 4-PhCH₂N analog of V, m. 204-6° (C6H6). V (1 g.) in 10 cc. C6H6 treated 3 hrs. with 1 cc. Ac₂O gave 0.8 g. di-Ac derivative of V, m. 162° (C6H6). V (3.1 g.) and 1.6 g. NaOH in 30 cc. H₂O stirred 3 hr. with 1.3 cc. NaBH₄ yielded 2.7 g. H₂NNHC(SMe)₂:NN:CM₂CO₂H (VII), m. 145-150° (aqueous MeOH). VII (1.5 g.) in 70 cc. MeOH refluxed 5 hrs. gave 1.7 g. VIII (R = Me) (VIII, m. 155° (MeOH). V (15.7 g.) and NaBH₄ from 1.5 g. Na and 1.5 g. **absolute** MeOH refluxed 2.5 hr. with 1.5 cc. NaBH₄ yielded 1.5 g. IX, m. 165° (H₂O). VI (22 g.) and NaOMe from 2.5 g. Na and 2.5 g. **absolute** MeOH treated during 10 min. dropwise with 10 g. NaBH₄ and 100 cc.

0.5 hr., and kept 12 hrs. at 10° yielded 2.5 g. VIII (R = Ph, R₁ = H, m. 136° (MeOH). IX (1 g.) and 10 cc. BuNH₂ refluxed 5 hrs. gave 1.1 g. III (R = Me, R₁ = Bu), m. 145° (MeOH)-purity unknown. IX (1.1 g.) and 10 cc. BuNH₂ heated 5 hrs. at 170° gave 0.5 g. III (R = Me, R₁ = Ph), m. 235-6° (MeOH). IX (1 g.) with 4 cc. Bu₂NH₂ gave 0.5 g. X (R = Ph, R₁ = Ph), m. 163° (MeOH). Similarly 1.3 g. III (R = Me, R₁ = PhCH₂) (XI), m. 163° (MeOH) gave 0.5 g. III (R = Me, R₁ = X (1.17 g.) and 15 cc. BuNH₂ refluxed 7 hrs. gave 0.5 g. XI (R = Ph, R₁ = Bu, (XII), m. 142° (MeOH). XI (2.34 g.) and 15 cc. BuNH₂ refluxed 1 hr. yielded 0.37 g. XII (R = Ph, R₁ = PhCH₂, m. 175° (MeOH)). XII (1 g.) and 10 cc. morpholine heated 2 hrs. at 110° yielded 0.8 g. 4-amino-3-morpholino-5-oxo-6-phenyl-1,2,4-triazine, m. 163° (MeOH). XII (4 g.) in 20 cc. BuNH₂ refluxed 4 hrs. at 150° yielded 1.3 g. XIII (R = R₁ = Ph) (XIV), m. 211.5° (MeOH). IX (1 g.) and 1.5 g. 98% N₂H₄ in 30 cc. **abs** 283-5° (MeOH). IX (1 g.) and 1.5 g. 98% N₂H₄ in 30 cc. **abs** 211.5° (MeOH) refluxed 4 hrs. gave 0.85 g. XIII (R = Me, R₁ = NH₂), m. 145° (MeOH). (EtSC₂NH₂)Br (100 g.) in 250 cc. H₂O treated 283-5° (MeOH). XIII (1 g.) and 3 cc. 99% HCO₂H (XVII), m. 159-60° (decomposition). XVI (1 g.) and 3 cc. 99% HCO₂H refluxed 4 hrs. yielded 0.55 g. IV (R = Me, R₁ = R₂ = H), m. 250-1° (XVI, 1 g.) and 3 cc. Ac₂O refluxed 3 hrs. yielded 0.7 g. XV (R = (XVI, 1 g.) and 3 cc. Ac₂O refluxed 3 hrs. yielded 0.7 g. XVI (R = Me, R₁ = H), m. 250-3°. XI (0.5 g.) and 1 cc. HCC₂H refluxed 2.5 hr. yielded 0.5 g. IV (R = Me, R₁ = EtCH₂, R₂ = H), m. 192° (XVI, 0.5 g.) in 10 cc. HCC₂H refluxed 48 hrs. gave 1.2 g. IV (R = Ph, R₁ = H, R₂ = Bu, R₃ = H), m. 166° (MeOH). XVII (0.5 g.) gave similarly 0.5 g. IV (R = R₁ = Ph, R₂ = H), m. 212° (iso-PrOH). XIII (0.5 g.) and 3 cc. HCO₂H refluxed 3 hrs. yielded 0.4 g. IV (R = Ph, R₁ = PhCH₂, R₂ = H), m. 192° (MeOH). XVII (0.5 g.) yielded similarly with 5 cc. Ac₂O m. 191-2° (MeOH). XVII (0.5 g.) yielded similarly with 5 cc. Ac₂O m. 159 g. XV (R = Ph, R₁ = H, R₂ = Me), m. 247-8°. XVI (1 g.) in 60 cc. MeOH refluxed with 1.4 n. BzCl·Br yielded 0.7 g. XVIII, m. 201-2° (BzCNMe₂). XVII (1 g.) and 5 cc. Ac₂O heated 1 hr. at 150° yielded 0.7 g. solid, C₁₁H₈N₆O₂, m. 214° (MeOH), presumably a pyrazolo-3-as-triazine, and 1 g. light yellow prisms, C₁₃H₁₇N₅O₂, m. 123°, a di-As compound XXVIII. 1,2,4-Triazines. 2. C₁₃H₁₇N₅O₂, m. 123°, a di-As compound XXVIII. 1,2,4-Triazines. Alfred Dornow, Werner Abele, and Herbert Menzel. Ibid. 2179-84. 3-Hydrazino-1,2,4-triazines with CS₂, urea, or HCON yielded s-triazolo[4,3-b]-as-triazines. triazines with CS₂, urea, or HCON yielded s-triazolo[4,3-b]-as-triazines. 3-Methylthio-5,6-diphenyl-as-triazine (1.0 g.) and 10 cc. 80% N₂H₄·H₂O in 200 cc. iso-PrOH refluxed 12 hrs. yielded 1.6 g. 3-hydrazino-5,6-diphenyl-as-triazine (I), m. 150° (MeOH). I and aldehydes or ketones in EtOH refluxed 18 hrs. gave in most cases nearly quant. the 1:1:1 hydrazones of the following compds. (m.p.) 1,6-diphenyl-1,3,4-triaxin-3-ylhydrazone of p-C₆H₄CO₂Et; (benzaldehyde); EtOH, 223° (MeOH); BzPh, 231° (HCONMe₂); p-C₆H₄CHO, 234° (HCONMe₂); p-MeOC₆H₄CHO, 268° (HCONMe₂); furfural, 135° (EtOH); MeC₆O, 193° (Me₂CO); AcPh, 110° (iso-PrOH); BzPh, 111° (iso-PrOH); cyclohexanone, 102° (iso-PrOH). 3-Methylothio-5-oxo-6-tetethyl-4,5-dihydro-1,2,4-triazine (1.0 g.) in 60 cc. iso-PrOH refluxed 5 hrs. with 10 cc. NaH₂O gave MeSH and 1.3 g. 5-methoxy-3-hydrazino-6-methyl-4,5-dihydro-1,2,4-triazine (II), m. 241°. II (1.0 g.) in 100 cc. boiling NaOH treated 3 hrs. gave 0.5 g. p-C₆H₄CO₂Et (III) yielded 0.5 g. 5-methoxy-6-methyl-4,5-dihydro-1,2,4-triazin-3-ylhydrazone of III, m. 331° (HCONMe₂). Similarly was prepared the analogous derivative of p-MeOC₆H₄CHO, m. 305° (HCONMe₂), and 96% yield. IV (R = EtO, R₁ = SH) (1.0 g.) and NaC₂O from 1.5 g. Na and 1.5 g. absolute EtOH treated 48 hrs. with 8 g. Mel gave 8.5 g. IV (R = EtO, R₁ = MeS) (V), m. 140-3° (H₂O). IV (R = OH, R₁ = MeS) (II) (R = EtO, R₁ = MeS) (V), m. 140-3° (H₂O). IV (R = OH, R₁ = MeS) (II) and 15 cc. concentrated H₂SO₄ in 400 cc. absolute EtOH refluxed 5 hrs. yielded 8.2 g. V, m. 142° (H₂O). V (2 g.) in 100 cc. iso-PrOH refluxed 3 hrs. with 3 cc. 0.8% N₂H₄ yielded 1.4 g. IV (R = R₁ = NH₂), m. 142° (H₂O). IV (R = OH, R₁ = Ph) (VI) did not melt up to 380° (aqueous MeOH). IV (R = OH, R₁ = Ph) (VI) did not melt up to 380° (aqueous MeOH).

and 6 g. ClCH₂CO₂H in 60 cc. H₂O refluxed 5 hrs. Yields I, R = Ph, m. 131° (R1 = OH), decompose 235° (MeOH). I (1.5 g.), R = Ph, m. 131° (R1 = OH), C₅H₅N refluxed 10 hrs. yielded 10.5 g. VII (R = Ph) (X), m. 298-300° (HCONMe₂). I, C₅H₅N, and CS₂ deposited at room temperature a yellow precipitate, m. 100°, which heated in MeOH decompose 235° (X). Components. II (8 g.), 280 cc. C₅H₅N, and CS₂ deposited at room temp., then heated about 60 hrs. on a water bath until the HCONMe₂ solution was yielded 5.5 g. VII (R = Me, R1 = OH, X), decompose 235° (MeOH). 4,6-Diamino-*o*-thiocro-2,3-dihydro-1,2,4-triazole (1.31 g.) in 60 cc. H₂O refluxed 5 hrs. with 0.45 g. AcCO₂H yielded 1.2 g. VIII, decompose 305-311° (MeOH). VII (5 g.) in 500 cc. 5% aqueous K₂CO₃ treated 6 hrs. with 5 g. NaI gave 5 g. IX (R, R1 = Ph, R2 = Me), decompose 197° (MeOH). VIII (3 g.) in 10 cc. 4% aqueous NaOH shaken 0.5 hr. with 1.5 cc. MeI and adjusted to pH 6 with AcOH yielded 2.8 g. IX (R = (R2 = Me, R1 = OH) (X), m. 235-237° (MeOH)). 4,5-Diamino-3-methylthio-1,2,4-triazole (1.45 g.) in 100 cc. H₂O refluxed about 3 hrs. with 0.95 g. AcCO₂H gave 1.31 g. X, m. 236-238° (MeOH). VIII (1 g.) and II (g. ClCH₂CO₂H in 100 cc. 70% AcOH refluxed 4 hrs. gave 1 g. IX (R = Ph, R2 = CH₂CO₂H) (XII), m. 236° (AcOH); Me ester m. 161° (MeOH). VIII (4 g.) and 40 cc. 10% aqueous ClCH₂CO₂H refluxed 1 hr. yielded 4.2 g. IX (R = Me, R1 = OH, R2 = CH₂CO₂H), m. 161° (H₂O). XI (1 g.) in 50 cc. 10% aqueous KOH refluxed 3 hrs. gave 1.5 g. orange-red hydroxy-6,7-dimethyl-*s*-triazolo[4,5-*c*]thiadiazine (XIII), decompose 235-240° (MeOH). XI (1 g.) and 2.4 g. XII heated 10 min. at 220° yielded 0.4 g. XII, decompose 275° (MeOH). I (1 g.) in 15 cc. concentrated HCl diluted with 60 cc. H₂O and filtered, and

the residue dissolved in 10 cc. H₂O and treated dropwise with 1.5 g. K₂CO₃ in 10 cc. H₂O gave 1 g. 3-semicarbazone-*b*,6-diphenyl-2,3-dihydro-*s*-triazolo[4,5-*c*]thiadiazine (XIV), decompose 235-240° (H₂O). XIII (5 g.) heated 20 min. at 220° yielded 3 g. XIII, decompose 235-240° (MeOH). XXIX.

1,2,4-Triazines. 3. Alfred Dornow, Herbert Menzel, and Paul Marx. Ibid. 9105-61. The preparation of I, II (R = Me) (III), II (R = H) (IV), and V is described. 3-Methylthio-*s*-one-1,4-dimethyl-2,5-dihydro-1,2,4-triazine (II) (1 g.) in 200 cc. absolute EtOH treated 48 hrs. at room temperature with 1.5 cc. 98% NaBH₄ yielded 0.5 g. 5-exo-3-hydrazone-2,6-dimethyl-2,5-dihydro-1,2,4-triazine (VI), m. 242° (HCONMe₂). VI (0.5 g.) in 400 cc. boiling MeOH treated with 0.4 g. BzH yielded 0.4 g. yellow *β*-benzalhydrazone analog of VI, m. 234° (MeOH). VI (0.5 g.) and 5 cc. HCO₂H refluxed 3 hrs. yielded 0.2 g. I, m. 131° (H₂O). VI (1.55 g.) in 10 cc. 2N HCl treated dropwise slowly with stirring with 5% aqueous NaNO₂ yielded 0.7 g. III, m. 101° (C₆H₆-petr. ether). 5-Cro-3-hydrazone-6-methyl-1,3,4,5-tetrahydro-1,2,4-triazine (VII) (6 g.) in 50 cc. 2N HCl + 10 g. NaNO₂ in 10 cc. H₂O gave 4 g. IV, m. 211° (MeOH). 5-Hydrazinotetrazole (I) (1 g.) in 10 cc. hot H₂O treated slowly with 0.86 g. AcCO₂H gave 1.6 g. the 5-tetrazolylhydrazone (VIII), m. 215° (decomposition) (MeOH), of AcCO₂H. VIII (1 g.) and 3 cc. AcCO₂H heated to solution and kept 14 hrs. yielded IV, m. 211° (H₂O), and some 5-acetamidotetrazole, m. 270° (decomposition) (AcCO₂H). IV (1.1 g.) treated 12 hrs. at room temp. range with 100 cc. CH₂Cl₂-Et₂O from 10 g. H₂BClNMeNO yielded 1.1 g. isomer of VII, m. 210° (C₆H₆). VII (1.1 g.) in 10 cc. refluxing Et₂O treated during 6 min. with 0.4 g. BzL and 3 cc. Et₂O gave 0.5 g. *α*-methylacetato-phenone.

6-exo-7-methyl-1,3-dihydro-1,2,4-triazolo-*s*-ylhydrazone (IX), m. 194-195° (MeOH). VII (1 g.) in 50 cc. MeOH refluxed 1 hr. with 1.2 g. BzCH₂OMe yielded 1.4 g. IX, m. 194° (MeOH). VII (3.5 g.) and 6 g. BzCH₂Br in 10 cc. HCONMe₂ heated 1 hrs. at 100° gave 5.2 g. 6-exo-7-methyl-3-phenyl-6,9-dihydro-4*H*-as-triazino[4,3-*b*]-as-triazine, m. 193° (decomposition) (HCONMe₂). XXX. 1,2,4-Triazines. 4. Preparation of 1,3,4-thiadiazolo[2,3-*c*]-as-triazines. Alfred Dornow and Paul Marx. Ibid. 91, 2640-6. 3,4-Diamino-1,2,4-triazines and their *S*-MeS analogs plus with CS₂ in C₅H₅N with the elimination of amine or MeSH, resp., the pyridinium salts. I. II (R = Ph, R' = PhNH) (5.1 g.) in 30 cc. 95% CS₂ heated 1 hr. with 10 cc. CS₂ yielded 6.1 g. I (R = Ph) (III), m. 235° (H₂O). II

(R = Ph, R' = MeS) (5.0 g.), 50 cc. C5H5N, and 10 cc. CS2 refluxed 12 hrs., and kept 12 hrs. at room temperature yielded 6.2 g. III. III (5.0 g.) in 50 cc. boiling H₂O adjusted with concentrated HCl to pH 1 yielded 3.9 g. compound IV (R = Ph) (IV), m. 245° (decomposition) (1:10 HCOONa-MeOH). IV (R = Me, R' = PhNH) (5.0 g.) in 60 cc. dry C5H5N treated 12 hrs. at room temperature with 1.5 cc. CS2 yielded 6.3 g. I (R = Me) (VII), m. 216° (decomposition).

MeOH). II (R = Me, R' = MeS) (5 g.), 40 cc. C5H5N, and 10 cc. CS2 refluxed 3 hrs. yielded about 6 g. VI. VI (5.0 g.) in 50 cc. boiling H₂O adjusted with concentrated HCl to pH 1 gave 3.6 g. IV (R = Me, R' = Me) (V). 240-1° (decomposition) H₂O. V in aqueous NaOH heated briefly yielded I (R = Ph) (IX), m. 214° (decomposition) (1:1 aqueous NaOH).

5-Hydrazino-2-thioxo-1,3,4-thiadiazolidine-HCl (X, HCl) in 50 cc. H₂O treated with aqueous Na₂CO₃ and treated with BzCO₂H gave quant. IX. VII (1.0 g.) in dilute aqueous NaOH and acidified gave quant. VIII (R = Me) (XI), m. 106-18° (H₂O). VII refluxed 1 hr. with dilute HCl gave 100% XI. X in 50 cc. H₂O treated dropwise with BzCO₂H gave quant. XI, m. 217-18° (H₂O). IX (2 g.) in 15 cc. AcOH refluxed 5 min. gave 2 g. XII (R = Ph, R' = Ac) (XIII), m. 215° (decomposition) (Ac₂O). XIII (1.00 g.) in 15 cc. MeOH refluxed 15 min. gave 1.61 g. V, m. 242°. V (1.5 g.) with 1.2 g. Na₂CO₃ in 7 cc. H₂O yielded 1.5 g. yellow XIV (R = Ph) (XV), m. 192° (decomposition) (H₂O). Similarly was prepared the pale yellow XIV (R = Me) (XVI), m. 265° (decomposition) H₂O. XV (2.5 g.) in 250 cc. H₂O treated dropwise with stirring with 1.4 g. MeI and stirred 2 hrs. at room temperature gave 1.5 g. XII (R = Ph, R' = Me), m. 165° (C₆H₆-petr. ether). XVI (2.0 g. and 1.7 g. MeI) gave similarly 1.5 g. XII (R = R' = Me), m. 193-6° (H₂O). V (1.0 g.) and 150 cc. aqueous Na₂CO₃ heated to 30-30°, treated dropwise with 0.6 g. MeI, and heated 0.5 hr. on water bath gave 1.3 g. XVII (R = Ph, R' = Me), m. 218-18° (AcOH). XVII (1.5 g.) in 20 cc. 1 aqueous NaOH treated with 1.2 g. MeI, kept 1 hr., and adjusted with HCl to pH 3 gave 1.4 g. XVII (R = R' = Me), m. 217-18° (H₂O). XV (1.0 g.) in 10 cc. HCOONa-2 refluxed 5 min. with 0.5 g. PhCH₂C₆H₅ yielded 1.25 g. XII (R = Ph, R' = PhCH₂C₆H₅), m. 110° (C₆H₆-petr. ether). XVII (1.0 g.) in 6 cc. HCOONa-2 refluxed a few min. and 0.7 g. PhCH₂C₆H₅ yielded 1.25 g. XII (R = Me, R' = PhCH₂C₆H₅), m. 171° (MeOH). VII (1.0 g.) in 10 cc. 10% ClCH₂CO₂H refluxed 15 min. gave 1.3 g. XVII (R = Me, R' = CH₂CO₂H), m. 219-21° (decomposition) (H₂O). XV (1.0 g.) in 10 cc. HCOONa-2 refluxed briefly with 0.5 g. ClCH₂CO₂H gave 1.65 g. XII (R = Ph, R' = CH₂CO₂H) (XVIII), m. 220° (MeOH). XVI (1.0 g.) and 0.5 g. ClCH₂CO₂H gave similarly 0.75 g. XII (R = Me, R' = CH₂CO₂H), m. 207° (H₂O). XVIII (1 g.) and 30% aqueous NaOH refluxed 5 hrs. and acidified yielded 1 g. XVII (R = Ph, R' = CH₂CO₂H), m. 197° (decomposition) (AcOH). XVI (1.0 g.) in 40 cc. H₂O treated dropwise with iodine in MeOH until the color persisted gave 0.8 g. XIX, m. 200° (decomposition).

IT 89715-26-4, Pyruvic acid, azine with 3-Me thiocarbazate
(preparation cf)

=> sel hot rc
EI THROUGH EI6 ASSIGNED

=> file rec
FILE 'REGISTRY' ENTERED AT 10:53:01 ON 12 DEC 2002
USE IS SUBJECT TO THE TERMS OF YOUTH STM CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT © 2002 American Chemical Society ACS.

Property values tagged with IC are from the ZIC/INITI data file provided by InfoChem.

RUSSELL 12/11/2002 11:30:19

DICTIONARY FILE UPDATES: 11 DEC 2002 HIGHEST RN 416976-27-8

CSCA INFORMATION NOW CURRENT THROUGH MAY 20, 2002

Please note that search-term pruning does **NOT** apply when conducting SMARTS/SMART searches.

Crossover limits have been increased. See HELP CROSSOVER for details.

Experimental and calculated property data are now available. See HELP PROPERTIES for more information. See STNote 27, Searching Properties in the CAS Registry File, for complete details:
<http://www.cas.org/ONLINE/STM/STNOTES/stnotes27.pdf>

=> s el-e16

1 109976-30-0, BI
(109976-30-0, RN)
1 127381-73-1, BI
(127381-73-1, RN)
1 134664-50-9, BI
(134664-50-9, RN)
1 135006-11-2, BI
(135006-11-2, RN)
1 139776-16-6, BI
(139776-16-6, RN)
1 140376-17-3, BI
(140376-17-3, RN)
1 140401-14-7, BI
(140401-14-7, RN)
1 140401-16-9/BI
(140401-16-9/RN)
1 142411-17-0/BI
(142411-17-0/RN)
1 144030-64-1, BI
(144030-64-1/RN)
1 14934-17-5/BI
(14934-17-5/RN)
1 20115-05-1, BI
(20115-05-1/RN)
1 20115-12-3, BI
(20115-12-3/RN)
1 362522-51-8, BI
(362522-51-8/RN)
1 5-((13-75-1)/BI
(5-((13-75-1)/RN))
1 6-((13-75-1)/BI
(6-((13-75-1)/RN))
L20 16 ((1-1976-3)-, BI OR 127381-73-1/BI OR 134664-50-9/BI OR 135006-11-2/BI OR 139776-16-4/BI OR 139976-27-5/BI OR 139976-29-7/BI OR 14-1-16-4/BI OR 14381-17-0/BI OR 144030-64-2/BI OR 14934-18-1/BI OR 20115-0-1/BI OR 2509-12-8/BI OR 362522-51-8/BI OR 5-((13-75-1)/BI OR 30115-16-4/BI)

=> d ide can 120 1-16

L20 ANSWER 1 OF 16 REGISTRY COPYRIGHT 2002 ACS

RN 362522-51-8 REGISTRY

CN Hydrazinecarbothioamide, N-[trans-4-[(2,5-dioxo-1-pyrrolidinyl)oxy]carbonyl)cyclohexyl)methyl]-, monohydrate [272-11-2] (CA INDEX NAME)

FS STEREOSEARCH

MF C13 H20 N4 O4 S . CI H

SR CA

RUSSEL 09 / 815978

L20 STN Files: CA, CAPLUS, USPATFULL

Relative stereochemistry.

● HCl

1 REFERENCES IN FILE CA (1962 TO DATE)
1 REFERENCES IN FILE CAPLUS (1962 TO DATE)

REFERENCE 1: 135:272864

L20 ANSWER 2 OF 16 REGISTRY COPYRIGHT 2002 ACS

RN 144090-64-2 REGISTRY

CN Carbamic acid, [5-azido-1-[(2,5-dioxo-1-pyrrolidinyl)oxy]carbonyl]-4-(phenylmethoxy)pentyl]-, 1,1-dimethylethyl ester, [S-(R*,R*)]-1937 (CA INDEX NAME)

FS STEREOSEARCH

MF C22 H29 N5 O7

SR CA

L20 STN Files: CA, CAPLUS, CASREFACT

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1962 TO DATE)
1 REFERENCES IN FILE CAPLUS (1962 TO DATE)

REFERENCE 1: 117:212932

L20 ANSWER 3 OF 16 REGISTRY COPYRIGHT 2002 ACS

RN 139976-30-0 REGISTRY

CN Cyclohexanecarboxylic acid, 4-[7-[3-[3-imino[nitroamino(methyl)amino]propyl]-11,11-dimethyl-3,9-dioxo-10-oxa-2,4,5,8-tetraazadodec-5-en-1-yl]-trans- (9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN Cyclohexanecarboxylic acid, 4-[7-[3-[3-imino[nitroamino(methyl)amino]propyl]-11,11-dimethyl-3,9-dioxo-10-oxa-2,4,5,8-tetraazadodec-5-en-1-yl]-trans- (4(S)-trans)-

FS STEREOSEARCH

MF C20 H36 N8 O1

SR CA

LJ STN FILES: CA, CAPLUS, USPATFULL

**File contains numerically generated property data.

Absolute stereochemistry.

Double bond geometry unknown.

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

15 REFERENCES IN FILE CA (1962 TO DATE)

7 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA

15 REFERENCES IN FILE CAPLUS (1962 TO DATE)

REFERENCE 1: 192:211418

REFERENCE 2: 191:229021

REFERENCE 3: 190:215649

REFERENCE 4: 197:210992

REFERENCE 5: 196:131740

REFERENCE 6: 195:146361

REFERENCE 7: 124:344121

REFERENCE 8: 124:176940

REFERENCE 9: 122:133851

REFERENCE 10: 121:212001

120 ANSWER 4 OF 16 REGISTRY COPYRIGHT 2002 ACS

RN 139976-29-7 REGISTRY

CN Cyclohexanecarboxylic acid, 4-[[[hydrazinocarbonyl]amino)methyl]-, trans-, mono(trifluoroacetate) (9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C9 H17 N3 O3 . C2 H F3 O2

SR CA

LJ STN FILES: CA, CAPLUS, USPATFULL

CM 1

CRN 139976-28-6

CMF C9 H17 N3 O3

Relative stereochemistry.

CM 2

CRN 76-05-1
CMF C2 H F3 O2

F

F C CC₂H

F

20 REFERENCES IN FILE CA (1962 TO DATE)
 2 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
 20 REFERENCES IN FILE CAPLUS (1962 TO DATE)

REFERENCE 1: 137:125392

REFERENCE 2: 137:125391

REFERENCE 3: 137:125390

REFERENCE 4: 137:109484

REFERENCE 5: 137:33541

REFERENCE 6: 134:281136

REFERENCE 7: 134:17726

REFERENCE 8: 133:17829

REFERENCE 9: 132:251428

REFERENCE 10: 130:223589

L20 ANSWER 5 OF 16 REGISTRY COPYRIGHT 2002 ACS

RN 139976-27-5 REGISTRY

CN Hydrazinecarboxylic acid, 2-[(4-carboxycyclohexyl)methyl]anilinobenzyl ester
bonyl-, 1-(1,1-dimethylethyl) ester (1CI, 1A, 17 PK, 18W)

OTHER CA INDEX NAMES:

CN Hydrazinecarboxylic acid, 2-[(4-carboxycyclohexyl)methyl]anilinobenzyl-,
1-(1,1-dimethylethyl) ester, trans-

FS STEREOSEARCH

MF C14 H25 N3 O5

SR CA

LC STM Files: BEILSTEIN*, CA, CAPLUS, USPATENT
File contains numerically searchable property data

Relative stereochemistry.

RUSSEL, T. J. et al.¹

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

21 REFERENCES IN FILE CA (1962 TO DATE)
21 REFERENCES IN FILE CAPLUS (1962 TO DATE)

REFERENCE 1: 137:3,541

REFERENCE 2: 134:2,1136

REFERENCE 3: 134:1,15970

REFERENCE 4: 133:2,62750

REFERENCE 5: 132:2,61428

REFERENCE 6: 131:1,29021

REFERENCE 7: 130:1,23539

REFERENCE 8: 128:2,05143

REFERENCE 9: 127:2,46661

REFERENCE 10: 127:1,20932

L20 ANSWER 6 OF 16 REGISTRY COPYRIGHT 2002 ACS

RN 139976-26-4 REGISTRY

CN Hydrazinecarboxylic acid, 2-[[[trans-4-[(phenylmethoxy carbonyl)pyridinyl]methyl]amino]carbonyl]-, 1,1-dimethylethyl ester (9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN Hydrazinecarboxylic acid, 2-[[[4-[(phenylmethoxy carbonyl)methyl]amino]carbonyl]-, 1,1-dimethylethyl ester, trans-

FS STEREOSEARCH

MF C21 H31 N3 O5

SR CA

LC STN Files: BEILSTEIN*, CA, CAPLUS, USPATFULL
(*File contains numerically searchable property data)

Relative stereochemistry.

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

RUSSEL 09 / 615676

19 REFERENCES IN FILE CA (1962 TO DATE)
19 REFERENCES IN FILE CAPLUS (1962 TO DATE)

REFERENCE	1:	132:251428
REFERENCE	2:	131:223021
REFERENCE	3:	130:223589
REFERENCE	4:	130:125491
REFERENCE	5:	123:205143
REFERENCE	6:	127:346661
REFERENCE	7:	127:229992
REFERENCE	8:	126:131753
REFERENCE	9:	125:196383
REFERENCE	10:	124:344121

120 ANSWER 7 OF 16 REGISTRY COPYRIGHT 2002 ACS

ANSWER TO THE
REGISTRY

RN 134664-50-9 REGISTRY
CN Insulin (cattle-A reduced), N-(2,4-dinitrophenyl)-, tris[2-(hydrazinocarbonyl)hydrazide], 6,7,11,20-tetrakis(hydrogen sulfate) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN Insulin (ox-A reduced), N-(2,4-dinitrophenyl)-, tris(2-hydrazinocarbonyl)hydrazide], 6,7,11,20-tetrakis(hydrogen sulfide)

ES PROTEIN SEQUENCE; STEREOSEARCH

ME C106 E165 N35 050 S6

EP CR
SR CA

U.S. GOVERNMENT PRINTING OFFICE: 1914. 25-1250.

Absolute stereochemistry.

PAGE 1-A

PAB1

PAB2

RUSSEL 09 / 815975

卷之三

10

1 REFERENCES IN FILE CA (1962 TO DATE)
1 REFERENCES IN FILE CAPIUS (1962 TO DATE)

REFERENCE 1: 115:25407

L20 ANSWER 8 OF 16 REGISTRY COPYRIGHT 2002 ACS
RN 127381-73-1 REGISTRY
CN Hexanoic acid, 6-[(1,3-dihydro-1,3-dioxo-2H-isindol-2-yl)oxy]-5-(phenyl)-
MF C33 H29 N3 O5
SR CA
LC STN FILES: CA, CAPLUS, TOXCENTER

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

1 REFERENCES IN FILE CA (1962 TO DATE)
1 REFERENCES IN FILE CAFILE (1962 TO DATE)

REFERENCE 4: 113:2671

120 ANSWER 9 OF 16 REGISTRY COPYRIGHT 1971, RCI
RN 89715-26-4 REGISTRY
CN Pyruvic acid, azine with S-methyl thiocarbazate (RCI) TA INNEN NAME
CN
RS 35 CONCORD
MF C5 H10 N4 O2 S
LC STN Files: BEILSTEIN*, CA, CHOLD, CPLUS, CASREACT
(*File contains numerically searchable property data)

REDCFTL...14...1117

SMILES

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

- 1 REFERENCES IN FILE CA (1962 TO DATE)
- 1 REFERENCES IN FILE CPLUS (1962 TO DATE)
- 1 REFERENCES IN FILE CASOLD (PRIOR TO 1962)

REFERENCE 1: 61:69149

L20 ANSWER 10 OF 16 REGISTRY COPYRIGHT 2002 ACS
 RN **50883-75-5** REGISTRY
 CN Carbonic dihydrazide, (1-methyl-2-oxopropylidene)- (8CI) (CA INDEX NAME)
 OTHER NAMES:
 CN (α -Acetylethylidene)carbonyldiazide
 FS 3D CONCORD
 MF C5 H10 N4 O2
 LC STN Files: BEILSTEIN*, CA, CPLUS, TOXCENTER
 (*File contains numerically searchable property data)

O

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

- 1 REFERENCES IN FILE CA (1962 TO DATE)
- 1 REFERENCES IN FILE CPLUS (1962 TO DATE)

REFERENCE 1: 80:48710

L20 ANSWER 11 OF 16 REGISTRY COPYRIGHT 2002 ACS
 RN **14994-19-5** REGISTRY
 CN Carbamoyl azide, terephthaloyldi- (8CI) (CA INDEX NAME)
 FS 3D CONCORD
 MF C10 H6 N8 O4
 LC STN Files: CA, CPLUS

- 1 REFERENCES IN FILE CA (1962 TO DATE)
- 1 REFERENCES IN FILE CPLUS (1962 TO DATE)

REFERENCE 1: 66:15607

L20 ANSWER 13 OF 16 REGISTRY COPYRIGHT 2002 ACS
 RN **14381-17-0** REGISTRY
 CN Succinimide, N-[α -(2-carboxyhydrazino)hydrocinnamoyl]-, DL-, tert-butyl ester, (8CI) (CA INDEX NAME)
 OTHER CA INDEX NAMES:
 CN Hydrocinnamic acid, α -(2-carboxyhydrazino)-, α -tert-butyl-
 O-succinimido deriv., DL-
 MF C21 H21 N3 O6
 LC STN Files: BEILSTEIN*, CA, CAFLUS
 (*File contains numerically searchable property data)

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

2 REFERENCES IN FILE CA (1962 TO DATE)
 2 REFERENCES IN FILE CAFLUS (1962 TO DATE).

REFERENCE 1: 67:117258

REFERENCE 2: 66:55728

L20 ANSWER 13 OF 16 REGISTRY COPYRIGHT 2002 ACS
 RN **14381-16-9** REGISTRY
 CN Succinimide, N-[α -(2-carboxyhydrazino)hydrocinnamoyl]-,
 tert-butyl ester (8CI) (CA INDEX NAME)
 OTHER CA INDEX NAMES:
 CN Hydrocinnamic acid, α -(2-carboxyhydrazino)-, α -tert-butyl-
 ester, O-succinimido deriv., DL-
 MF C18 H23 N3 O6
 LC STN Files: BEILSTEIN*, CA, CAFLUS
 (*File contains numerically searchable property data)

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

RUSSEL 03/7/2002

2 REFERENCES IN FILE CA (1962 TO DATE)
2 REFERENCES IN FILE CAPLUS (1962 TO DATE)

REFERENCE 1: 66:11328

I20 ANSWER 14 OF 16 REGISTRY COPYRIGHT 2002 ACS
RN 13506-12-2 REGISTRY
CN Semicarbazide, 4,4'-phthaloylibis[1-phenyl- (8CI) (CA INDEX NAME)
OTHER NAMES:
CN Carbamic acid, terephthaloyldi-, bis(2-phenylhydrazide)
FS BD CONCORD
MF C22 H20 N6 O4
LC STN Files: BEILSTEIN*, CA, CAPLUS
(*File contains numerically searchable property data)

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

2 REFERENCES IN FILE CA (1962 TO DATE)
2 REFERENCES IN FILE CAPLUS (1962 TO DATE)

REFERENCE 1: 69:52073

REFERENCE 2: 66:75807

I20 ANSWER 15 OF 16 REGISTRY COPYRIGHT 2002 ACS
RN 2509-12-8 REGISTRY
CN Acetic acid, (carbonothioyldihydrazinylidene)tetra-, tetramethyl ester
(8CI) (CA INDEX NAME)
OTHER CA INDEX NAMES:
CN Acetic acid, [(thiocarbonyl)dihydrazinylidene]tetra-, tetramethyl ester
(7CI)
FS BD CONCORD
MF C13 H22 N4 O8 S
LC STN Files: BEILSTEIN*, CA, CACLD, CAPLUS
(*File contains numerically searchable property data)

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

RUSSEL 09 / 816976

2 REFERENCES IN FILE CA (1962 TO DATE)
2 REFERENCES IN FILE CAPIUS (1962 TO DATE)
1 REFERENCES IN FILE CAOLD (PRIOR TO 1967)

REFERENCE 1: 63:38639

REFERENCE 2: 63:38638

L20 ANSWER 16 OF 16 REGISTRY COPYRIGHT 2002 AIC

BN 2215-00-1 REGISTRY

CN Acetic acid, 2,2',2'',2'''-(carbonothioylidene)-2-hydrazinylidene)tetrakis- (9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN Acetic acid, (thiocarbonyl)dihydrazinylidene)tetrakis- (7CI, 8CI)

OTHER NAMES:

CN 1,5-Thiocarbohydrazidotetracetic acid

FS 3D CONCORE

MF C9 H14 N4 O8 S

LC STN Files: BEILSTEIN*, CA, CAOLD, CAPIUS
(*File contains numerically searchable property data.)

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

3 REFERENCES IN FILE CA (1962 TO DATE)
3 REFERENCES IN FILE CAPIUS (1962 TO DATE)
1 REFERENCES IN FILE CAOLD (PRIOR TO 1967)

REFERENCE 1: 78:158585

REFERENCE 2: 72:8987

REFERENCE 3: 63:38638