le.g. Javas Hash tables using separate chaining HashSet/Hashmay) Dictionary with n endies Hash table away with I lists. Load factor = $\lambda = 4 \frac{N}{2} = Average #cf antier$ Well defined hash burkous:Well defined hash functions: For any x, y: Pr f h(x) = h(y) = 1

Consider a dictionary with no correlation:

or entires are randomly, independently distributed; Expected size of a list = | Prfh(x) lands in that list} $= \frac{1}{\lambda} = \frac{1}{\lambda}$ Therefore if $\lambda = O(1)$: expected RT of all hash table spendions (add/contains/remove) = 0(1).

RT of iterator ops (hostlert(), next()) = 0(1), amorbal

Note that worst case RT Ber op = 0(n). Practical: Valid rays for λ : $\lambda_{min} \leq \lambda \leq \lambda_{max}$ $e.q. \lambda_{min} = 0.2$ when $\lambda > \lambda_{max} \rightarrow \text{reherh into bigger table} | \lambda < \lambda_{min} \rightarrow \text{reherh table}$

Applications of hashing

- 1. Dictionaries with only add/contains/remove operations, associative arrays (maps)
- 2. Remove duplicates (especially during database query processing)
- 3. Cryptographic applications: confirmation numbers, preventing accidental access/update of wrong records, digital certificates, passwords, surrogate key generation, data transfer, bittorrent
- 4. Find duplicate web pages (in web crawlers)
- 5. Bloom filters (for malicious URL lookups in browsers): Detecting membership in a set S; use k hash functions $h_1 \cdots h_k$, and a bit array table[0..n-1]. for each $x \in S$, set table[$h_i(x)$] \leftarrow 1, for $1 \le i \le k$.

For a given y, if table[$h_i(y)$] $\neq 1$ for any $1 \leq i \leq k$, then y is not in S. Otherwise, y may be in S (false positive). A Bloom filter uses n = O(|S|) and $k = O(\log n)$.

Multi-dimensional search:

Suppose we have a dictionary of <Key, Value> pairs, where the keys are derived from a totally ordered set (i.e., elements are comparable). Then, storing elements in a balanced binary search tree (TreeMap), allows efficient implementation of the following operations: get, put, min, max, floor, ceiling, iteration of elements in sorted order of their keys.

What can be done, if in addition to the above operations, the following operations are also needed? findValue(v): find all keys whose associated value is equal to v. removeValue(v): remove all entries whose value field is equal to v.

If the operations are rare, an O(n) algorithm that traverses the tree, looking for entries with value field equal to v, can be used. If these operations are frequent, then a better solution can be obtained by combining a binary search tree based on keys, and a hash table based on values.

```
Solution using TreeMap< Key, Value > tree + HashMap< Value, TreeSet<Key> > table:
add( key, value ):
   if tree has entry with key then
       reject add operation
       // Otherwise, to replace existing element, execute remove( key ) + add( key, value ).
   else
       tree.put( key, value )
       set ← table.get( value )
       if set is null then
           table.put( value, a new tree set containing key )
       else
           set.add( key )
remove( key ):
   value ← tree.remove( key )
   if value ≠ null then
       set ← table.get( value )
       if set.size() > 1 then
           set.remove( key )
       else
           table.remove( value )
findValue( value ):
   return table.get( value )
removeValue( value )
   set ← table.remove( value )
   if set \neq null then
       for key in set do
           tree.remove( key )
```