Introduction to Aerial Robotics Lab Tutorial

Professor: Shaojie Shen

TA: Wenliang Gao

TA: Peiliang Li

Dept. of ECE, HKUST

10 October 2017

Linux Basis

- Be familiar with command line and some common commands and tools.
- Be familiar with the package management system and the file management system on Linux
- Install ROS and configure the environment on your laptop(go through with the tutorial on http://www.ros.org)

Suggest software tool: terminator, vim, ssh, htop

ROS Basis

- The Robot Operating System (ROS) is a set of software libraries and tools that help you build robot applications. From drivers to state-of-the-art algorithms, and with powerful developer tools, ROS has what you need for your next robotics project.
- ROS is a open source communication framework with many useful tools.

About the 1st lab session

- Each group will be equipped with a Jetson TX2 computer, which can be mounted on the quadrotor. The computer is running a Ubuntu OS and has all necessary packages such as ROS or Eigen.
- The TX2 is connected with the router in the lab through an Ethernet cable. You can use "ssh XXX(host name)@xxx.xxx.xxx.xxx(host IP)" to remote login on TX2 form your laptop.

Project 1 Phase 4

- Assemble quadrotor
- First flight of quadrotor
 - Flying under manual control
- Hovering automatically
 - Write your controller
- Following trajectory automatically
 - Write your trajectory generation

Assemble quadrotor

Assemble quadrotor

4 legs

4 motors

4 propellers

4 electric speed controllers

Flight controller

Receiver

Battery

Quadrotor Equipment

Main Elements List

Element	Number	Manufacturer	Price (HKD)	Reference Link
F330 structure	1		50	
N3 flight controller	1	DJI	2,999	www.dji.com/n3
Lightbridge 2	1	DJI	7,759	www.dji.com/lightbridge-2
mvBlueFOX MLC200wg	1	MATRIX VISION	3,500	www.matrix-vision.com/USB2.0-single-board-camera-mvbluefox-mlc.html
Jetson TX2	1	NVIDIA	3,588	www.nvidia.com/object/embedded- systems-dev-kits-modules.html
TX2 carrier board	1	DJI	2,400	
E310 Motors, ESCs	4	DJI	1,154	www.dji.com/e310

Be careful during your experiments because your robot cost more than HK\$ 21,000 !!!

Setup your TX2

sudo apt-get install git

1. Follow:

https://github.com/gaowenliang/TX2-

TX1-setup

flash the system

III README.md 1. flash the TX2 1.1 download jetpack L4T 3.0 Provided by TA: JetPack-L4T-3.0-linux.run put it in a new folder. Run: chmod +x JetPack-L4T-3.0-linux.run sudo .JetPack-L4T-3.0-linux.run Warning: . do not run the script in sudo mode when installing host components • do not install OpenCV4Tegra V2.4 for TX2, we will use OpenCV3 . for TX2 you may need to flash it tiwce, one just flash the OS, the other install cuda • if the tx1/tx2 cannot boot the GUI, but shut down after finish loading BIOS, try to change a more powerful power source After flash, the system can be launch. username: nvidia password: nvidia 2. Install basic tools connect to lab WiFi: indigo or indigo5G,install arp-scan and run: 'sudo arp-scan --interface=eth0 192.168.1.0/24 | grep NVIDIA' find your TX2 device. ssh to your TX2 and run:

Setup your TX2

2. Follow:

https://github.com/gaowenliang/instal IROSTX2 install ROS

III README.md

1. flash the TX2

1.1 download jetpack L4T 3.0

Provided by TA: JetPack-L4T-3.0-linux.run

put it in a new folder. Run:

chmod +x JetPack-L4T-3.0-linux.run

sudo .JetPack-L4T-3.0-linux.run

Warning:

- . do not run the script in sudo mode when installing host components
- do not install OpenCV4Tegra V2.4 for TX2, we will use OpenCV3
- . for TX2 you may need to flash it tiwce, one just flash the OS, the other install cuda
- if the tx1/tx2 cannot boot the GUI, but shut down after finish loading BIOS, try to change a more powerful power source

After flash, the system can be launch.

username: nvidia password: nvidia

2. Install basic tools

connect to lab WiFi: indigo or indigo5G,install arp-scan and run: `sudo arp-scan --interface=eth0 192.168.1.0/24 | grep NVIDIA' find your TX2 device.

ssh to your TX2 and run:

sudo apt-get install git

Coding your controller

3. Coding your controller: One ros node

subscribe message: Robot_1/pose

type: geometry_msgs/PoseStamped

publish message: ctrl

type: sensor_msgs::Joy

Coding your controller

```
void DjiRos::control callback(const sensor msgs::JoyConstPtr &pMsg) {
  if (pMsg->header.frame id.compare("FRD") == 0) {
    last ctrl stamp = ros::Time::now();
    uint8 t flag = 0;
    if (pMsg->axes[4] > 0) {
      flag = 0b00100010; // 0b00100000, mode 13
     if (pMsg->axes.size() > 5 && pMsg->axes.at(5) > 0.5) {
        flag = 0b00101010; // 0b00100000, mode 14
    } else {
     flag = 0b00000010; // 0b00000000, mode 1
    DJI::OSDK::Control::CtrlData ctrl_data(flag, pMsg->axes[0], pMsg->axes[1], pMsg->axes[2], pMsg->axes[3]);
    vehicle->control->flightCtrl(ctrl data);
    // if (pMsg->buttons.size()) {
           ros::Time feedback stamp;
    //
           feedback_stamp.sec = pMsg->buttons[1] * pMsg->buttons[0] + pMsg->buttons[2];
    //
           feedback_stamp.nsec = pMsg->buttons[3] * pMsg->buttons[0] + pMsg->buttons[4];
           ROS INFO("curr: %.3f fbk: %.3f dt=%.3f", last ctrl time.toSec(),
    //
           feedback stamp.toSec(),
    //
                    (last ctrl time - feedback stamp).toSec());
   // }
    ROS ERROR("[djiros] input joy msg.frame id should be FRD!!!");
```


Assemble quadrotor

Assemble TX2 module.
 Copper pillars
 Skew: M3

5. Assemble TX2 on the top of quadrotor, with a carbon fiber slice.

3M Double-sided adhesive

Assemble quadrotor

6. Assemble necessary tools and connections:

USB2.0-miniUSB cable USB hub power support cable

7. Fix all of cables. nylon tie

Do **not** install propellers!

SDK set of quadrotor

1. Setup and check your aerial robot.

SDK set of quadrotor

2. Setup and check your aerial robot.

Your Mobile device, both IOS and Android are suitable DJI GO

Now you can install propellers.

First flight of quadrotor

- 3. Unlock the quadrotor.
- 4. Control and have fun.

First flight of quadrotor

Enjoy it~

Note again: Be careful during your experiments because your robot cost more than HK\$ 21,000 !!!