

LINEAR ALGEBRA AND ITS APPLICATIONS UE19MA251

Unit 3. Linear Transformations and Orthogonality

Transformations Represented by Matrices

Rotation Matrices Q:

The matrix that rotates (left) every point in R^2 about origin through θ is given by

$$Q_{\theta} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

This transformation is invertible since the matrix has an inverse.

A rotation through $-\theta$ brings back the original.

Unit 3. Linear Transformations and Orthogonality

Transformations Represented by Matrices

$$H = 2P - I = \begin{bmatrix} 2c^2 - 1 & 2cs \\ 2cs & 2s^2 - 1 \end{bmatrix}$$

Image + original = $2 \times \text{projection}$

$$Hx + x = 2Px$$

Unit 3. Linear Transformations and Orthogonality

Transformations Represented by Matrices

PES

To conclude....

Product of two transformations is another transformation by itself. Matrix multiplication is so defined that product of matrices corresponds to the product of the transformations that they represent.

THANK YOU