

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date
3 March 2005 (03.03.2005)

PCT

(10) International Publication Number
WO 2005/019252 A2

(51) International Patent Classification⁷: **C07K 14/37**,
C12N 15/62, A61K 49/00, C12N 15/12

St. Augustine, FL 32080-8610 (US). MELESHKEVITCH, Ella, A. [BY/US]; Whitney Laboratory, 9505 Ocean Shore Blvd., St. Augustine, FL 32080-8610 (US). SALIH, Anya [AU/AU]; Sydney (AU).

(21) International Application Number:
PCT/US2004/016252

(74) Agents: SALIWANCHIK, David, R. et al.; Saliwanchik, Lloyd & Saliwanchik, A Professional Association, 2421 N.W. 41st Street, Suite A-1, Gainesville, FL 32606-6669 (US).

(22) International Filing Date: 20 May 2004 (20.05.2004)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(25) Filing Language: English

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

(26) Publication Language: English

(30) Priority Data:
60/472,196 22 May 2003 (22.05.2003) US

(71) Applicant (for all designated States except US): UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC. [US/US]; 223 Grinter Hall, Gainesville, FL 32611-5500 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MATZ, Mikhail, Vladimirovitch [RU/US]; 49 Nantucket Dr., Palm Coast, FL 32137 (US). KELMANSON, Ilya, Vladimirovitch [RU/US]; Whitney Laboratory, 9505 Ocean Shore Blvd.,

[Continued on next page]

(54) Title: NOVEL FLUORESCENT AND COLORED PROTEINS, AND POLYNUCLEOTIDES THAT ENCODE THESE PROTEINS

(57) Abstract: The subject invention provides new fluorescent and/or colored proteins, and polynucleotide sequences that encode these proteins. The subject invention further provides materials and methods useful for expressing these detectable proteins in biological systems.

WO 2005/019252 A2

BEST AVAILABLE COPY

FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:

- *without international search report and to be republished upon receipt of that report*

DESCRIPTIONNOVEL FLUORESCENT AND COLORED PROTEINS, AND
POLYNUCLEOTIDES THAT ENCODE THESE PROTEINS

5

Government Support

The subject matter of this application has been supported in part by U.S. Government Support under NIH RO1 GM066243-01. Accordingly, the U.S. Government has certain rights in this invention.

10

Cross-Reference to a Related Application

This application claims the benefit of U.S. provisional patent application Serial No. 60/472,196, filed May 20, 2003.

15

Field of the Invention

20

The present invention relates to novel fluorescent and colored proteins, and their use. These materials and methods are particularly advantageous for labeling and detection technology. Specifically, exemplified are novel colored and/or fluorescent proteins, and mutants thereof, isolated from marine organisms. These new proteins offer a wider array of colors and biochemical features compared to existing wild-type green fluorescent protein (GFP) or its modified variants utilized in current labeling and detection technology.

Background of the Invention

25

Genetic markers are important for monitoring gene expression and tracking movement of proteins in cells. Markers have been extensively used for monitoring biological activity of genetic elements such as promoters, enhancers and terminators, and other aspects of gene regulation in numerous biological systems. Over the years numerous marker genes have been developed and utilized widely in molecular and genetic studies aimed at the identification, isolation and characterization of genetic regulatory elements and genes, and the development of gene transfer techniques.

30

In general, markers can be grouped into selectable markers and reporter markers. Selectable markers are typically enzymes with catalytic capability to

convert chemical substrates usually harmful to host cells into non-toxic products, thus providing transformed host cells a conditionally selectable growth advantage under selective environment and allowing the recovery of stable transformants after transformation. A number of commonly used selectable markers include those that confer resistance characteristics to antibiotics (Gritz and Davies 1983; Bevan *et al.*, 1983) and herbicides (De Block *et al.*, 1987), and those with enzymatic activity to detoxify metabolic compounds that can adversely affect cell growth (Joersbo and Okkels 1996).

Reporter markers are compounds that provide biochemically assayable or identifiable activities. Reporter markers have been widely used in studies to reveal biological functions and modes of action of genetic elements such as promoters, enhancers, terminators, and regulatory proteins including signal peptides, transcription factors and related gene products. Over the years, several reporter markers have been developed for use in both prokaryotic and eukaryotic systems, including β -galactosidase (LacZ) (Stanley and Luzio 1984), β -glucuronidase (GUS) (Jefferson *et al.*, 1987; U.S. Patent No. 5,268,463), chloramphenicol acetyltransferase (CAT) (Gorman *et al.*, 1982), green fluorescent protein (GFP) (Prasher *et al.*, 1992; U.S. Patent No. 5,491,084) and luciferase (Luc) (Ow *et al.*, 1986).

Among reporter markers, GUS offers a sensitive and versatile reporting capability for gene expression in plants. β -glucuronidase or GUS, encoded by the *uidA* gene from *Escherichia coli*, catalyzes the conversion of several colorogenic and fluorogenic glucorogenic substrates such as p-nitrophenyl β -D-glucuronide and 4-methylumbelliferyl β -D-glucuronide into easily detectable products. GUS activity can be measured by highly sensitive colorimetric and fluorimetric methods (Jefferson *et al.*, 1987). However, the GUS assay often requires total destruction of the sample tissues or exposure of sample tissues to phytotoxic chemical substrates. This prevents repeated use of the same sample tissue for continuous expression analysis and precludes the recovery of transformants from analyzed materials.

Recently, GFP isolated from the Pacific Northwest jellyfish (*Aequorea victoria*) has become an important reporter marker for non-destructive analysis of gene expression. GFP fluoresces *in vivo* by receiving light energy without the involvement of any chemical substrates. Thus, GFP is especially suitable for real

time and continuous monitoring of temporal and spatial control of gene expression and protein activities without any physical damage to assay samples.

The gene for GFP has been cloned and used as a reporter gene, which can be expressed as a functional transgene in living organisms, marking the organisms with fluorescent color and thus allowing detection of those organisms. Accordingly, GFP has become a versatile fluorescent marker for monitoring a variety of physiological processes, visualizing protein localization and detecting the expression of transferred genes in various living systems, including bacteria, fungi, and mammalian tissues.

This *in vivo* labeling and detection technology was originally based on a single fluorescent protein: the green fluorescent protein from *Aequorea victoria*. Numerous modifications have been made to alter the spectral properties of GFP to provide for significant enhancement in fluorescence intensity (Prasher *et al.*, 1992; Cubitt *et al.*, 1995, Heim *et al.*, 1994, 1995; Cormack *et al.*, 1996; U.S. Patent No. 5,804,387). In addition, GFP genes have been modified to contain more silent base mutations that correspond to codon-usage preferences in order to improve its expression efficacy, making it a reporter gene in both animal and plant systems (U.S. Patent Nos. 5,874,304; 5,968,750; and 6,020,192).

In addition to GFP, there are now a number of other fluorescent proteins, substantially different from GFP, which are being developed into biotechnology tools. Most prominent of these proteins is the red fluorescent protein DsRed. See, for example, Labas, Y. A., N. G. Gurskaya, Y. G. Yanushevich, A. F. Fradkov, K. A. Lukyanov, S. A. Lukyanov and M. V. Matz. (2002) "Diversity and evolution of the green fluorescent protein family" *Proc Natl Acad Sci USA* 99:4256-4261 and Matz, M. V., K. A. Lukyanov and S. A. Lukyanov (2002) "Family of the green fluorescent protein: journey to the end of the rainbow" *Bioessays* 24: 953-959.

Labeling technologies based on GFP and related proteins have become indispensable in such areas as basic biomedical research, cell and molecular biology, transgenic research and drug discovery. The number of PubMed records containing the phrase "green fluorescent protein" exceeds 5500 only within the last three years. Demand for labeling and detection based on the fluorescent protein technology is large and steady.

Currently, there are very few known natural pigments essentially encoded by a single gene, wherein both the substrate for pigment biosynthesis and the necessary

catalytic moieties are provided within a single polypeptide chain. The limited availability of fluorescent marker proteins makes the current technology based on fluorescent proteins very expensive, rendering it unaffordable and inaccessible to many mid-size (or smaller) companies that are interested in using the technology. 5 Therefore, there is a need for less expensive, readily available fluorescent and/or colored materials.

Brief Summary of the Invention

The subject invention provides new fluorescent and/or colored proteins, and 10 polynucleotide sequences that encode these proteins. The subject invention further provides materials and methods useful for expressing these detectable proteins in biological systems.

In specific embodiments, the subject invention provides a red fluorescent protein from *Scolymia cubensis* scubRFP, featuring rapid conversion from immature 15 green to mature red form under UV-A light; and three fluorescent proteins from *Montastraea cavernosa*, namely g5.2 (cyan), mc6 (green) and R7 (green) proteins. The invention also includes proteins substantially similar to, or mutants or variants of, the exemplified proteins.

Another aspect of the subject invention pertains to polynucleotide sequences 20 that encode the detectable proteins of the present invention. In one embodiment, the present invention provides polynucleotide constructs comprising cDNA encoding novel colored and/or fluorescent proteins and mutants thereof.

The subject invention also provides proteins from *Acropora* ("staghorn corals") and *Agarica fragilis* ("fragile saucer coral"), as well as polynucleotides 25 encoding these proteins.

In one embodiment, the invention provides nucleotide sequences of the inserts in pGEM-T vector (Promega), the conceptual translations of these inserts, and special properties of purified protein products.

The proteins and polynucleotides of the present invention can be used as 30 described herein as colored and/or fluorescent (detectable) labels in a variety of ways, including but not limited to, as reporter genes for monitoring gene expression in living organisms, as protein tags for tracing the location of proteins within living cells and organisms, as reporter molecules for engineering various protein-based biosensors,

and as genetically encoded pigments for modifying color and/or fluorescence of living organisms or their parts.

In a specific embodiment, the proteins of the subject invention can be used in molecular fluorescent tagging whereby the coding region of a protein of interest is fused with the coding region for a fluorescent protein of the subject invention. The product of such a gene shows the functional characteristics of the protein of interest, but bears the fluorescent label allowing tracing its movements.

Advantageously, the present invention provides proteins and polynucleotides to improve on the current technology of labeling and detection by offering a wider choice of colors and biochemical features never before provided by GFP and its modified variants.

Brief Description of the Figures

Figure 1 shows design of bacterial expression constructs for the proteins of interests of the present invention.

Figure 2 shows the bacterial colonies expressing genes described in the present invention (cyan, green and red) under UV-A light. The bacterial colonies affected by the expression show red and greenish color and fluorescent appearance. These bacterial colonies are normally non-fluorescent under UV-A light.

Figure 3A-3B shows maturation of scubRFP under low-intensity UV-A light, resulting in conversion from a green-emitting form (emission maximum 520 nm) into red-emitting form (emission maximum 575 nm). Figure 3A is a graph showing the change in ratio or emission amplitudes of 520 and 575 nm. Figure 3B graph shows changes in the emission spectra.

Figure 4 shows the excitation and emission spectra of *A. aculeus* 1-1 (green).

Figure 5 shows the excitation and emission spectra of *A. aculeus* 1-2 (green).

Figure 6 shows the excitation and emission spectra of *A. aculeus* 2-1 (green).

Figure 7 shows the excitation and emission spectra of *A. aculeus* 2-2 (green).

Figure 8 shows the excitation and emission spectra of *A. aculeus* 3-1 (green).

Figure 9 shows the excitation and emission spectra of *A. millepora* 8-2 (cyan).

Figure 10 shows the excitation and emission spectra of *A. millepora* 9-1 (green).

Figure 11 shows the excitation and emission spectra of *A. millepora* 9-2 (green).

Figure 12 shows the excitation and emission spectra of *A. millepora* 10-1 (green).

5 Figure 13 shows the excitation and emission spectra of *A. millepora* 10-2 (cyan).

Figure 14 shows the excitation and emission spectra of *A. millepora* 11-1 (green).

10 Figure 15 shows the excitation and emission spectra of *A. millepora* 12-1 (red).

Figure 16 shows the excitation and emission spectra of *A. nobilis* 15-1 (cyan).

Figure 17 shows the excitation and emission spectra of *A. nobilis* 16-1 (cyan).

Figure 18 shows the excitation and emission spectra of *A. nobilis* 17-1 (green).

15 Figure 19 shows the excitation and emission spectra of *Agaricia fragilis* 1 (green).

Figure 20 shows the excitation and emission spectra of *Agaricia fragilis* 2 (green).

20 Figure 21 shows the excitation and emission spectra of *Agaricia fragilis* 3 (green).

Figure 22 shows the excitation and emission spectra of *Agaricia fragilis* 4 (cyan).

Figure 23 shows the excitation and emission spectra of *Agaricia fragilis* 5 (green).

25 Figure 24 shows the excitation and emission spectra of *Agaricia fragilis* 6 (green).

Figure 25 shows the excitation and emission spectra of *Agaricia fragilis* 8 (cyan).

30 Figure 26 shows the excitation and emission spectra of *A. aculeus* 5-2 (chromoprotein).

Figure 27 shows the excitation and emission spectra of *A. aculeus* 6-1 (chromoprotein).

Figure 28 shows the excitation and emission spectra of A. hyacinthus 7-1 (chromoprotein).

Figure 29 shows the excitation and emission spectra of A. millepora 14-1 (chromoprotein).

5

Brief Description of the Sequences

SEQ ID NO:1 is the 5' heel of an upstream primer used according to the subject invention.

10 **SEQ ID NO:2** is the 5' heel of a downstream primer used according to the subject invention.

SEQ ID NO:3 is the open reading frame of the cDNA encoding the g5.2 (cyan) protein of interest from *Montastraea cavernosa*.

SEQ ID NO:4 is the open reading frame of the cDNA encoding the mc6 (green) protein of interest from *Montastraea cavernosa*.

15 **SEQ ID NO:5** is the open reading frame of the cDNA encoding the R7 (green) protein of interest from *Montastraea cavernosa*.

SEQ ID NO:6 is the open reading frame of the cDNA encoding the scubRFP protein of interest from *Scolymia cubensis*.

SEQ ID NO:7 is the amino acid sequence encoded by SEQ ID NO:3.

20 **SEQ ID NO:8** is the amino acid sequence encoded by SEQ ID NO:4.

SEQ ID NO:9 is the amino acid sequence encoded by SEQ ID NO:5.

SEQ ID NO:10 is the amino acid sequence encoded by SEQ ID NO:6.

SEQ ID NO:11 is the bacterial expression construct for the g5.2 (cyan) protein of interest from *Montastraea cavernosa*.

25 **SEQ ID NO:12** is the bacterial expression construct for the mc6 (green) protein of interest from *Montastraea cavernosa*.

SEQ ID NO:13 is the bacterial expression construct for the R7 (green) protein of interest from *Montastraea cavernosa*.

30 **SEQ ID NO:14** is the bacterial expression construct for the scubRFP protein of interest from *Scolymia cubensis*.

SEQ ID NO:15 is the amino acid sequence encoded by SEQ ID NO:11.

SEQ ID NO:16 is the amino acid sequence encoded by SEQ ID NO:12.

SEQ ID NO:17 is the amino acid sequence encoded by SEQ ID NO:13.

SEQ ID NO:18 is the amino acid sequence encoded by SEQ ID NO:14.

SEQ ID NO:19 is the nucleotide sequence of an insert in the pGEM-T vector, according to subject invention (*Acropora aculeus* 1-1 in pGEM-T).

5 **SEQ ID NO:20** is the nucleotide sequence of an insert in the pGEM-T vector, according to subject invention (*Acropora aculeus* 1-2 in pGEM-T).

SEQ ID NO:21 is the nucleotide sequence of an insert in the pGEM-T vector, according to subject invention (*Acropora aculeus* 2-1 in pGEM-T).

SEQ ID NO:22 is the nucleotide sequence of an insert in the pGEM-T vector, according to subject invention (*Acropora aculeus* 2-2 in pGEM-T).

10 **SEQ ID NO:23** is the nucleotide sequence of an insert in the pGEM-T vector, according to subject invention (*Acropora aculeus* 3-1 in pGEM-T).

SEQ ID NO:24 is the nucleotide sequence insert of the subject invention (*Acropora aculeus* 5-2 in pGEM-T).

15 **SEQ ID NO:25** is the nucleotide sequence of an insert in the pGEM-T vector, according to subject invention (*Acropora aculeus* 6-1 in pGEM-T).

SEQ ID NO:26 is the nucleotide sequence insert of the subject invention (*Acropora hyacinthus* 7-1 in pGEM-T).

SEQ ID NO:27 is the nucleotide sequence of an insert in the pGEM-T vector, according to subject invention *Acropora millepora* 8-2 in pGEM-T).

20 **SEQ ID NO:28 i** is the nucleotide sequence of an insert in the pGEM-T vector, according to subject invention (*Acropora millepora* 9-1 in pGEM-T).

SEQ ID NO:29 is the nucleotide sequence of an insert in the pGEM-T vector, according to subject invention (*Acropora millepora* 9-2 in pGEM-T).

25 **SEQ ID NO:30** is the nucleotide sequence of an insert in the pGEM-T vector, according to subject invention (*Acropora millepora* 10-1 in pGEM-T).

SEQ ID NO:31 is the nucleotide sequence of an insert in the pGEM-T vector, according to subject invention (*Acropora millepora* 10-2 in pGEM-T).

SEQ ID NO:32 is the nucleotide sequence of an insert in the pGEM-T vector, according to subject invention (*Acropora millepora* 11-1 in pGEM-T).

30 **SEQ ID NO:33** is the nucleotide sequence of an insert in the pGEM-T vector, according to subject invention (*Acropora millepora* 12-1 in pGEM-T).

SEQ ID NO:34 is the nucleotide sequence of an insert in the pGEM-T vector, according to subject invention (*Acropora millepora* 14-1 in pGEM-T).

SEQ ID NO:35 is the nucleotide sequence of an insert in the pGEM-T vector, according to subject invention (*Acropora nobilis* 15-1 in pGEM-T).

SEQ ID NO:36 is the nucleotide sequence of an insert in the pGEM-T vector, according to subject invention (*Acropora nobilis* 16-1 in pGEM-T).

5 **SEQ ID NO:37** is the nucleotide sequence of an insert in the pGEM-T vector, according to subject invention (*Acropora nobilis* 17-1 in pGEM-T).

SEQ ID NO:38 is the nucleotide sequence of an insert in the pGEM-T vector, according to subject invention (*Agaricia fragilis* 1 in pGEM-T).

10 **SEQ ID NO:39** is the nucleotide sequence of an insert in the pGEM-T vector, according to subject invention (*Agaricia fragilis* 2 in pGEM-T).

SEQ ID NO:40 is the nucleotide sequence of an insert in the pGEM-T vector, according to subject invention (*Agaricia fragilis* 3 in pGEM-T).

SEQ ID NO:41 is the nucleotide sequence of an insert in the pGEM-T vector, according to subject invention (*Agaricia fragilis* 4 in pGEM-T).

15 **SEQ ID NO:42** is the nucleotide sequence of an insert in the pGEM-T vector, according to subject invention (*Agaricia fragilis* 5 in pGEM-T).

SEQ ID NO:43 is the nucleotide sequence of an insert in the pGEM-T vector, according to subject invention (*Agaricia fragilis* 6 in pGEM-T).

20 **SEQ ID NO:44** is the nucleotide sequence of an insert in the pGEM-T vector, according to subject invention (*Agaricia fragilis* 8 in pGEM-T).

SEQ ID NO:45 is the amino acid sequence of a protein of the subject invention as encoded by the following construct: *Acropora aculeus* 1-1 in pGEM-T.

SEQ ID NO:46 is the amino acid sequence of a protein of the subject invention as encoded by the following construct: *Acropora aculeus* 1-2 in pGEM-T.

25 **SEQ ID NO:47** is the amino acid sequence of a protein of the subject invention as expressed by the following construct: *Acropora aculeus* 2-1 in pGEM-T.

SEQ ID NO:48 is the amino acid sequence of a protein of the subject invention as encoded by the following construct: *Acropora aculeus* 2-2 in pGEM-T.

30 **SEQ ID NO:49** is the amino acid sequence of a protein of the subject invention as encoded by the following construct: *Acropora aculeus* 3-1 in pGEM-T.

SEQ ID NO:50 is the amino acid sequence of a protein of the subject invention as encoded by the following construct: *Acropora aculeus* 5-2 in pGEM-T.

SEQ ID NO:51 is the amino acid sequence of a protein of the subject invention as encoded by the following construct: *Acropora aculeus* 6-1 in pGEM-T.

SEQ ID NO:52 is the amino acid sequence of a protein of the subject invention as encoded by the following construct: *Acropora hyacinthus* 7-1 in pGEM-T.

5 **SEQ ID NO:53** is the amino acid sequence of a protein of the subject invention as encoded by the following construct: *Acropora millepora* 8-2 in pGEM-T.

SEQ ID NO:54 is the amino acid sequence of a protein of the subject invention as encoded by the following construct: *Acropora millepora* 9-1 in pGEM-T.

10 **SEQ ID NO:55** is the amino acid sequence of a protein of the subject invention as encoded by the following construct: *Acropora millepora* 9-2 in pGEM-T.

SEQ ID NO:56 is the amino acid sequence of a protein of the subject invention as encoded by the following construct: *Acropora millepora* 10-1 in pGEM-T.

SEQ ID NO:57 is the amino acid sequence of a protein of the subject invention as encoded by the following construct: *Acropora millepora* 10-2 in pGEM-T.

15 **SEQ ID NO:58** is the amino acid sequence of a protein of the subject invention as encoded by the following construct: *Acropora millepora* 11-1 in pGEM-T.

SEQ ID NO:59 is the amino acid sequence of a protein of the subject invention as encoded by the following construct: *Acropora millepora* 12-1 in pGEM-T.

20 **SEQ ID NO:60** is the amino acid sequence of a protein of the subject invention as encoded by the following construct: *Acropora millepora* 14-1 in pGEM-T.

SEQ ID NO:61 is the amino acid sequence of a protein of the subject invention as encoded by the following construct: *Acropora nobilis* 15-1 in pGEM-T.

SEQ ID NO:62 is the amino acid sequence of a protein of the subject invention as encoded by the following construct: *Acropora nobilis* 16-1 in pGEM-T.

25 **SEQ ID NO:63** is the amino acid sequence of a protein of the subject invention as encoded by the following construct: *Acropora nobilis* 17-1 in pGEM-T.

SEQ ID NO:64 is the amino acid sequence of a protein of the subject invention as encoded by the following construct: *Agaricia fragilis* 1 in pGEM-T.

30 **SEQ ID NO:65** is the amino acid sequence of a protein of the subject invention as expressed by the following construct: *Agaricia fragilis* 2 in pGEM-T.

SEQ ID NO:66 is the amino acid sequence of a protein of the subject invention as encoded by the following construct: *Agaricia fragilis* 3 in pGEM-T.

SEQ ID NO:67 is the amino acid sequence of a protein of the subject invention as encoded by the following construct: Agaricia fragilis 4 in pGEM-T.

SEQ ID NO:68 is the amino acid sequence of a protein of the subject invention as encoded by the following construct: Agaricia fragilis 5 in pGEM-T.

5 **SEQ ID NO:69** is the amino acid sequence of a protein of the subject invention as encoded by the following construct: Agaricia fragilis 6 in pGEM-T.

SEQ ID NO:70 is the amino acid sequence of a protein of the subject invention as encoded by the following construct: Agaricia fragilis 8 in pGEM-T.

SEQ ID NO:71 is the coding region of the construct of SEQ ID NO:45.

10 **SEQ ID NO:72** is the coding region of the construct of SEQ ID NO:46.

SEQ ID NO:73 is the coding region of the construct of SEQ ID NO:47.

SEQ ID NO:74 is the coding region of the construct of SEQ ID NO:48.

SEQ ID NO:75 is the coding region of the construct of SEQ ID NO:49.

SEQ ID NO:76 is the coding region of the construct of SEQ ID NO:50.

15 **SEQ ID NO:77** is the coding region of the construct of SEQ ID NO:51.

SEQ ID NO:78 is the coding region of the construct of SEQ ID NO:52.

SEQ ID NO:79 is the coding region of the construct of SEQ ID NO:53.

SEQ ID NO:80 is the coding region of the construct of SEQ ID NO:54.

SEQ ID NO:81 is the coding region of the construct of SEQ ID NO:55.

20 **SEQ ID NO:82** is the coding region of the construct of SEQ ID NO:56.

SEQ ID NO:83 is the coding region of the construct of SEQ ID NO:57.

SEQ ID NO:84 is the coding region of the construct of SEQ ID NO:58.

SEQ ID NO:85 is the coding region of the construct of SEQ ID NO:59.

SEQ ID NO:86 is the coding region of the construct of SEQ ID NO:60.

25 **SEQ ID NO:87** is the coding region of the construct of SEQ ID NO:61.

SEQ ID NO:88 is the coding region of the construct of SEQ ID NO:62.

SEQ ID NO:89 is the coding region of the construct of SEQ ID NO:63.

SEQ ID NO:90 is the coding region of the construct of SEQ ID NO:64.

SEQ ID NO:91 is the coding region of the construct of SEQ ID NO:65.

30 **SEQ ID NO:92** is the coding region of the construct of SEQ ID NO:66.

SEQ ID NO:93 is the coding region of the construct of SEQ ID NO:67.

SEQ ID NO:94 is the coding region of the construct of SEQ ID NO:68.

SEQ ID NO:95 is the coding region of the construct of SEQ ID NO:69.

SEQ ID NO:96 is the coding region of the construct of SEQ ID NO:70.

Detailed Description of the Invention

The present invention provides novel fluorescent and colored proteins isolated from marine organisms other than *Aequorea Victoria*. In a particularly preferred embodiment, these proteins are red fluorescent proteins featuring rapid conversion from immature green to mature red under UV-A light. Specifically exemplified herein are scubRFP from *Scolymia cubensis*; and g5.2 (cyan), mc6 (green) and R7 (green) proteins, from *Montastraea cavernosa*.

The subject invention further provides polynucleotide sequences encoding these proteins. These polynucleotide sequences include open reading frames encoding the specific exemplified detectable proteins, as well as expression constructs for expressing these proteins, for example, in bacterial hosts.

The proteins of the present invention can be readily, expressed by any one of the recombinant technology methods known to those skilled in the art having the benefit of the instant disclosure. The preferred method will vary depending upon many factors and considerations, including the host, and the cost and availability of materials and other economic considerations. The optimum production procedure for a given situation will be apparent to those skilled in the art having the benefit of the current disclosure.

The subject invention also concerns cells transformed with a polynucleotide of the present invention comprising a nucleotide sequences encoding a novel detectable protein. These cells may be prokaryotic or eukaryotic, plant or animal. In one embodiment, animals, such as fish, are transformed to provide them with a unique color or ability to fluoresce. Polynucleotides providing the markers of the present invention are stable in a diverse range of hosts, including prokaryotic and eukaryotic organisms, and the translation products are fully functional and capable of providing assayable characteristics.

In another embodiment, the present invention provides methods to synthesize colored and fluorescent proteins in a recombinant cell.

In a specific embodiment, the proteins of the subject invention can be used in molecular fluorescent tagging whereby the coding region of a protein of interest is fused with the coding region for a fluorescent protein of the subject invention. The

product of such a gene shows the functional characteristics of the protein of interest, but bears the fluorescent label allowing tracing its movements. See, for example, Eichinger, L., S. S. Lee and M. Schleicher (1999) "Dictyostelium as model system for studies of the actin cytoskeleton by molecular genetics" *Microsc Res Tech* 47:124-134; Falk, M. M. and U. Lauf (2001) "High resolution, fluorescence deconvolution microscopy and tagging with the autofluorescent tracers CFP, GFP, and YFP to study the structural composition of gap junctions in living cells" *Microsc Res Tech* 52:251-262; Kallal, L. and J. L. Benovic (2000) "Using green fluorescent proteins to study G-protein-coupled receptor localization and trafficking" *Trends Pharmacol Sci* 21:175-180; and Laird, D. W., K. Jordan, T. Thomas, H. Qin, P. Fistouris and Q. Shao (2001) "Comparative analysis and application of fluorescent protein-tagged connexins" *Microsc Res Tech* 52:263-272.

In a further embodiment, the subject invention concerns polynucleotides comprising an in-frame fusion of nucleotide sequences encoding multiple genetic markers. In one embodiment, the polynucleotides encode the genetic markers GUS, and a detectable protein of the subject invention.

The subject invention helps to provide a more abundant and diverse collection of proteins, which can be used in place of a GFP protein, such that new proteins are readily available for commercial exploitation by small companies that cannot take advantage of the current technology for financial reasons.

Definitions

As used herein, the terms "nucleic acid" and "polynucleotide" refer to a deoxyribonucleotide, ribonucleotide, or a mixed deoxyribonucleotide and ribonucleotide polymer in either single- or double-stranded form, and unless otherwise limited, would encompass known analogs of natural nucleotides that can function in a similar manner as naturally-occurring nucleotides.

As used herein, "a vector" is a DNA sequence having the elements necessary for the transcription/translation of a gene. Such elements would include, for example, promoters. Various classes of promoters are well known in the art and can be obtained commercially or assembled from the sequences and methods, which are also well known in the art. A number of vectors are available for expression and/or

cloning, and include, but are not limited to, pBR322, pUC series, M13 series, and pBLUESCRIPT vectors (Stratagene, La Jolla, CA).

As used herein, the term "expression construct" refers to a combination of nucleic acid sequences that provides for transcription of an operably linked nucleic acid sequence. As used herein, the term "operably linked" refers to a juxtaposition of the components described wherein the components are in a relationship that permits them to function in their intended manner. In general, operably linked components are in contiguous relation.

10 Detectable Proteins

The subject invention provides novel fluorescent and/or colored proteins. These proteins are exemplified by scubRFP from *Scolymia cubensis* (SEQ ID NO. 7); and g5.2 (cyan) (SEQ ID NO. 8), mc6 (green) (SEQ ID NO. 9) and R7 (green) (SEQ ID NO. 10) proteins, from *Montastraea cavernosa*.

15 The novel colored and fluorescent proteins of the present invention can be detected using standard long-wave UV light sources or, preferably, optical designs appropriate for detecting agents with the excitation/emission characteristics of the proteins exemplified herein (see, for example, Figures 2-29). These proteins are referred to herein as "detectable proteins" or "marker proteins." The interaction of
20 two or more residues of the protein and external agents such as molecular oxygen give rise to the colored and/or fluorescent feature of the proteins.

Advantageously, the use of these proteins facilitate real-time detection *in vivo*, a substrate is not required, and the relatively small size make the proteins very advantageous.

25 Substitution of amino acids other than those specifically exemplified or naturally present in the genetic marker proteins of the invention are also contemplated within the scope of the present invention. Such substitutions will create "variant proteins" within the scope of the subject invention. Variants and fragments preferably have emission and excitation maxima within 10 nm of the values shown in Figures 2-
30 29. For example, non-natural amino acids can be substituted for the amino acids of the marker proteins, so long as a marker protein having the substituted amino acids retains its ability to be detected through fluorescence and/or color. Examples of non-natural amino acids include, but are not limited to, ornithine, citrulline,

hydroxyproline, homoserine, phenylglycine, taurine, iodotyrosine, 2,4-diaminobutyric acid, α -amino isobutyric acid, 4-aminobutyric acid, 2-amino butyric acid, γ -amino butyric acid, ϵ -amino hexanoic acid, 6-amino hexanoic acid, 2-amino isobutyric acid, 3-amino propionic acid, norleucine, norvaline, sarcosine, homocitrulline, cysteic acid, 5 τ -butylglycine, τ -butylalanine, phenylglycine, cyclohexylalanine, β -alanine, fluoro-amino acids, designer amino acids such as β -methyl amino acids, C-methyl amino acids, N-methyl amino acids, and amino acid analogues in general. Non-natural 10 amino acids also include amino acids having derivatized side groups. Furthermore, any of the amino acids in the protein can be of the D (dextrorotary) form or L (levorotatory) form. Allelic variants of a protein sequence of a detectable protein used 15 in the present invention are also encompassed within the scope of the invention.

Amino acids can be generally categorized in the following classes: non-polar, uncharged polar, basic, and acidic. Conservative substitutions whereby a marker protein having an amino acid of one class is replaced with another amino acid of the 15 same class fall within the scope of the subject invention so long as a marker protein having the substitution still is detectable. Table 1 below provides a listing of examples of amino acids belonging to each class.

Table 1.	
Class of Amino Acid	Examples of Amino Acids
Nonpolar	Ala, Val, Leu, Ile, Pro, Met, Phe, Trp
Uncharged Polar	Gly, Ser, Thr, Cys, Tyr, Asn, Gln
Acidic	Asp, Glu
Basic	Lys, Arg, His

Polynucleotides

cDNA sequences encoding the proteins of the present invention are provided. Polynucleotides of the present invention can be composed of either RNA or DNA. Preferably, the polynucleotides are composed of DNA. The subject invention also

encompasses those polynucleotides that are complementary in sequence to the polynucleotides disclosed herein.

Specifically exemplified are DNA sequences that encode for scubRFP from *Scolymia cubensis*; and g5.2 (cyan), mc6 (green) and R7 (green) proteins, from 5 *Montastraea cavernosa*. These DNA sequences are set forth in SEQ. ID NOS. 3-6.

Sequences of the subject invention may utilize codons preferred for expression by the selected host strains. These sequences may also have sites for cleavage by restriction enzymes, and/or initial, terminal, or intermediate DNA sequences which facilitate construction of readily expressed vectors.

10 Because of the degeneracy of the genetic code, a variety of different polynucleotide sequences can encode the detectable proteins of the present invention. In addition, it is well within the skill of a person trained in the art to create alternative

15 polynucleotide sequences encoding the same, or essentially the same, detectable proteins of the subject invention. These variant or alternative polynucleotide

sequences are within the scope of the subject invention. As used herein, references to 20 "essentially the same" sequence refers to sequences which encode amino acid substitutions, deletions, additions, or insertions which do not eliminate the detectability of the polypeptide encoded by the polynucleotides of the present invention. Allelic variants of the nucleotide sequences encoding a genetic marker

protein of the invention are also encompassed within the scope of the invention.

The subject invention also concerns variants of the polynucleotides of the present invention that encode detectable proteins. Variant sequences include those sequences wherein one or more nucleotides of the sequence have been substituted, deleted, and/or inserted. The nucleotides that can be substituted for natural

25 nucleotides of DNA have a base moiety that can include, but is not limited to, inosine, 5-fluorouracil, 5-bromouracil, hypoxanthine, 1-methylguanine, 5-methylcytosine, and tritylated bases. The sugar moiety of the nucleotide in a sequence can also be modified and includes, but is not limited to, arabinose, xylulose, and hexose. In

30 addition, the adenine, cytosine, guanine, thymine, and uracil bases of the nucleotides can be modified with acetyl, methyl, and/or thio groups. Sequences containing nucleotide substitutions, deletions, and/or insertions can be prepared and tested using standard techniques known in the art.

Polynucleotides and polypeptides of the subject invention can also be defined in terms of more particular identity and/or similarity ranges with those exemplified herein. The sequence identity will typically be greater than 60%, preferably greater than 75%, more preferably greater than 80%, even more preferably greater than 90%, and can be greater than 95%. The identity and/or similarity of a sequence can be 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% as compared to a sequence exemplified herein. Unless otherwise specified, as used herein percent sequence identity and/or similarity of two sequences can be determined using the algorithm of Karlin and Altschul (1990), modified as in Karlin and Altschul (1993). Such an algorithm is incorporated into the NBLAST and XBLAST programs of Altschul *et al.* (1990). BLAST searches can be performed with the NBLAST program, score = 100, wordlength = 12, to obtain sequences with the desired percent sequence identity. To obtain gapped alignments for comparison purposes, Gapped BLAST can be used as described in Altschul *et al.* (1997). When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (NBLAST and XBLAST) can be used.

The subject invention also contemplates those polynucleotide molecules having sequences that are sufficiently homologous with the polynucleotide sequences exemplified herein so as to permit hybridization with that sequence under standard stringent conditions and standard methods (Maniatis *et al.* 1982). As used herein, "stringent" conditions for hybridization refers to conditions wherein hybridization is typically carried out overnight at 20-25 C below the melting temperature (Tm) of the DNA hybrid in 6x SSPE, 5x Denhardt's solution, 0.1% SDS, 0.1 mg/ml denatured DNA. The melting temperature, Tm, is described by the following formula (Beltz *et al.*, 1983):

$$Tm=81.5 \text{ C}+16.6 \text{ Log}[Na^+]+0.41(\%G+C)-0.61(\% \text{ formamide})-600/\text{length of duplex in base pairs.}$$

Washes are typically carried out as follows:

- 30 (1) Twice at room temperature for 15 minutes in 1x SSPE, 0.1% SDS (low stringency wash).
- (2) Once at Tm-20 C for 15 minutes in 0.2x SSPE, 0.1% SDS (moderate stringency wash).

The polynucleotide sequences include the DNA strand sequence that is transcribed into RNA and the strand sequence that is complementary to the DNA strand that is transcribed. The polynucleotide sequences also include both full-length sequences as well as shorter sequences derived from the full-length sequences. The 5 polynucleotide sequence includes both the sense and antisense strands either as individual strands or in the duplex.

Recombinant Hosts

Polynucleotide molecules containing DNA sequences encoding the colored 10 and/or fluorescent proteins of the present invention can be introduced into a variety of host cells including bacterial cells, yeast cells, fungal cells, plant cells and animal cells. Methods by which the exogenous genetic material can be introduced into such host cells are well known in the art.

In one embodiment, the invention provides a bacteria cell capable of 15 expressing the novel colored and fluorescent proteins.

Plants, plant tissues, and plant cells bred to contain, or transformed with, a polynucleotide of the invention are also contemplated by the present invention. In one embodiment, the polynucleotide encodes a detectable polypeptide shown in SEQ 20 ID NOS. 7-10, or a functional fragment or variant thereof. Plants within the scope of the present invention include monocotyledonous plants, such as rice, wheat, barley, oats, sorghum, maize, sugarcane, pineapple, onion, bananas, coconut, lilies, grasses, and millet; and dicotyledonous plants, such as peas, alfalfa, tomato, melon, chickpea, chicory, clover, kale, lentil, soybean, tobacco, potato, sweet potato, radish, cabbage, rape, apple trees, grape, cotton, sunflower, and lettuce; and conifers. Techniques for 25 transforming plant cells with a gene are known in the art and include, for example, *Agrobacterium* infection, biolistic methods, electroporation, calcium chloride treatment, etc. Transformed cells can be selected, redifferentiated, and grown into plants using standard methods known in the art. The progeny of any transformed plant cells or plants are also included within the scope of the present invention.

30 The subject invention also concerns non-human transgenic animals which have incorporated into the host cell genome a polynucleotide of the invention. Methods for producing transgenic animals, including mice, rats, pigs, sheep, cows, fish, and the like are well known in the art.

The subject invention also concerns methods for isolating transformants expressing a transgene. In one embodiment, an expression construct of the present invention comprising a transgene of interest operably linked to a nucleotide sequence encoding a detectable marker of the present invention is used to transform a cell.

5 Methods for transforming cells are well known in the art. Transformed cells expressing the transgene are selected by identifying those cells expressing a genetic marker of the invention.

Expression Constructs

10 An expression construct of the invention typically comprises a structural gene sequence (encoding a protein), an antisense sequence, or other polynucleotide sequences, or a site for insertion of such sequences, operably linked to a polynucleotide of the present invention encoding a marker. The structural gene can be a gene encoding a protein from a prokaryotic or eukaryotic organism; for example,

15 a human, mammal, insect, plant, bacteria, or virus. Proteins that can be encoded by a gene sequence include, but are not limited to, enzymes, hormones, cytokines, interleukins, receptors, growth factors, immunoglobulins, transcription factors, and *Bacillus thuringiensis* (*B.t.*) crystal toxin proteins. Sequences encoding *B.t.* proteins which have codon usage for preferential expression in plants are described in U.S.

20 Patent Nos. 5,380,831; 5,567,862; 5,567,600; 6,013,523; and 6,015,891. An antisense sequence is a sequence wherein the RNA transcribed from the antisense sequence is at least partially complementary to RNA transcribed from a gene encoding a protein.

25 Expression constructs of the invention will also generally include regulatory elements that are functional in the intended host cell in which the expression construct is to be expressed. Thus, a person of ordinary skill in the art can select regulatory elements for use in, for example, bacterial host cells, yeast host cells, plant host cells, insect host cells, mammalian host cells, and human host cells. Regulatory elements include promoters, transcription termination sequences, translation termination sequences, enhancers, and polyadenylation elements.

30 An expression construct of the invention can comprise a promoter sequence operably linked to a polynucleotide sequence encoding a marker of the invention. Promoters can be incorporated into a polynucleotide using standard techniques known in the art. Multiple copies of promoters or multiple promoters can be used in an

expression construct of the invention. In a preferred embodiment, a promoter can be positioned about the same distance from the transcription start site as it is from the transcription start site in its natural genetic environment. Some variation in this distance is permitted without substantial decrease in promoter activity. A transcription start site is typically included in the expression construct.

For expression in prokaryotic systems, an expression construct of the invention can comprise promoters such as, for example, alkaline phosphatase promoter, tryptophan (trp) promoter, lambda P_L promoter, β -lactamase promoter, lactose promoter, phoA promoter, T3 promoter, T7 promoter, or tac promoter (de Boer *et al.*, 1983).

Expression constructs for use in bacteria are given in SEQ ID NOS. 11-14, and the corresponding amino acid sequences are given in SEQ ID NOS. 15-18.

If the expression construct is to be provided in a plant cell, plant viral promoters, such as, for example, the cauliflower mosaic virus (CaMV) 35S (including the enhanced CaMV 35S promoter (see, for example U.S. Patent No. 5,106,739)) or 19S promoter can be used. Plant promoters such as *prolifera* promoter, Ap3 promoter, heat shock promoters, T-DNA 1'- or 2'-promoter of *A. tumefaciens*, polygalacturonase promoter, chalcone synthase A (CHS-A) promoter from petunia, tobacco PR-1a promoter, ubiquitin promoter, actin promoter, alcA gene promoter, pin2 promoter (Xu *et al.*, 1993), maize WipI promoter, maize trpA gene promoter (U.S. Patent No. 5,625,136), maize CDPK gene promoter, and RUBISCO SSU promoter (U.S. Patent No. 5,034,322) can also be used. Seed-specific promoters such as the promoter from a β -phaseolin gene (of kidney bean) or a glycinin gene (of soybean), and others, can also be used. Constitutive promoters (such as the CaMV, ubiquitin, actin, or NOS promoter), tissue-specific promoters (such as the E8 promoter from tomato), developmentally-regulated promoters, and inducible promoters (such as those promoters than can be induced by heat, light, hormones, or chemicals) are contemplated for use with the polynucleotides of the invention.

For expression in animal cells, an expression construct of the invention can comprise suitable promoters that can drive transcription of the polynucleotide sequence. If the cells are mammalian cells, then promoters such as, for example, actin promoter, metallothionein promoter, NF-kappaB promoter, EGR promoter, SRE promoter, IL-2 promoter, NFAT promoter, osteocalcin promoter, SV40 early

promoter and SV40 late promoter, Lck promoter, BMP5 promoter, TRP-1 promoter, murine mammary tumor virus long terminal repeat promoter, STAT promoter, or an immunoglobulin promoter can be used in the expression construct. The baculovirus polyhedrin promoter can be used with an expression construct of the invention for expression in insect cells. Promoters suitable for use with an expression construct of the invention in yeast cells include, but are not limited to, 3-phosphoglycerate kinase promoter, glyceraldehyde-3-phosphate dehydrogenase promoter, metallothionein promoter, alcohol dehydrogenase-2 promoter, and hexokinase promoter.

Expression constructs of the invention may optionally contain a transcription termination sequence, a translation termination sequence, signal peptide sequence, and/or enhancer elements. Transcription termination regions can typically be obtained from the 3' untranslated region of a eukaryotic or viral gene sequence. Transcription termination sequences can be positioned downstream of a coding sequence to provide for efficient termination. Signal peptides are a group of short amino terminal sequences that encode information responsible for the relocation of an operably linked mature polypeptide to a wide range of post-translational cellular destinations, ranging from a specific organelle compartment to sites of protein action and the extracellular environment. Targeting marker gene products to an intended cellular and/or extracellular destination through the use of operably linked signal peptide sequence is contemplated for use with the polypeptides of the invention. Enhancers are cis-acting elements that increase activity of a promoter and can also be included in the expression construct. Enhancer elements are known in the art, and include, but are not limited to, the CaMV 35S enhancer element, maize shrunken-1 enhancer element, cytomegalovirus (CMV) early promoter enhancer element, and the SV40 enhancer element.

DNA sequences which direct polyadenylation of the mRNA encoded by the structural gene can also be included in the expression construct. The expression constructs of the invention can also include a polynucleotide sequence that directs transposition of other genes, *i.e.*, a transposon.

30

Applications

There are many ways in which the novel proteins of the subject invention can be used. In one embodiment, the proteins can be used to identify cells. In these

methods the proteins can be used to express fluorescence in a cell. One use for this method is in pre-labeling isolated cells or a population of similar cells prior to exposing the cells to an environment in which different cell types are present. Detection of fluorescence in only the original cells allows the location of such cells to 5 be determined and compared with the total population.

A second group of methods concerns the identification of cells that have been transformed with exogenous DNA of interest. Identifying cells transformed with exogenous DNA is required in many *in vitro* procedures as well as in *in vivo* applications such as gene therapy.

10 In one embodiment of the subject invention, a polynucleotide sequence encoding a protein of the subject invention is fused to a DNA sequence encoding a selected protein in order to directly label the encoded protein. Expressing such a fluorescent and/or colored protein in a cell results in the production of labeled proteins that can be readily detected. This is useful in confirming that a protein is 15 being produced by a chosen host cell. It also allows the location of the selected protein to be determined.

Cells that have been transformed with exogenous DNA can also be identified without creating a fusion protein. Here, the method relies on the identification of cells 20 that have received a plasmid or vector that comprises at least two transcriptional or translational units. A first unit encodes and directs expression of the desired protein, while the second unit encodes and directs expression of the detectable protein. Co-expression of the detectable protein from the second transcriptional or translational unit ensures that cells containing the vector are detected and differentiated from cells that do not contain the vector.

25 In methods to produce fluorescent molecular weight markers, a gene sequence is generally fused to one or more DNA sequences that encode proteins having defined amino acid sequences and the fusion proteins are expressed from an expression vector. Expression results in the production of fluorescent proteins of defined molecular weight or weights that may be used as markers (following calculation of 30 the size of the complete amino acid sequence).

Amino acid replacements that produce different color forms permit simultaneous use of multiple reporter genes. Different colored proteins can be used to identify multiple cell populations in a mixed cell culture or to track multiple cell

types, enabling differences in cell movement or migration to be visualized in real time without the need to add additional agents or fix or kill the cells.

Other options include tracking and determining the ultimate location of multiple proteins within a single cell, tissue or organism; differential promoter analysis in which gene expression from two different promoters is determined in the same cell, tissue or organism; and FACS sorting of mixed cell populations.

The techniques that can be used with spectrally separable proteins are exemplified by confocal microscopy, flow cytometry, and fluorescence activated cell sorting (FACS) using modular flow, dual excitation techniques.

In one embodiment, the subject invention concerns polynucleotides comprising an in-frame fusion of nucleotide sequences encoding multiple genetic markers. For example, a polynucleotide of the invention may comprise a first nucleotide sequence that is operably linked in-frame to a second nucleotide sequence. The polynucleotide encodes the amino acid sequences of the detectable protein and another genetic marker such that the genetic markers are in direct contact with one another, *i.e.*, where the last amino acid of the fluorescent genetic marker is immediately contiguous with the first amino acid of the other genetic marker, or they can be separated by a peptide linker sequence, for example, as described in U.S. Patent Nos. 5,891,680 and Li *et al.*, 2001, that do not substantially alter functional activity of the genetic markers.

The subject invention also concerns kits comprising in one or more containers and a polynucleotide and/or protein of the present invention.

Additional useful applications of the technology described herein include, but are not limited to, the following:

FRET – Fluorescence Resonant Energy Transfer: This technique allows observation and quantification of molecular interactions. It requires at least two fluorescent proteins of different colors. Currently the most widely used pair is CFP and YFP (mutated variants of GFP); the proteins of the subject invention may be substituted for either or both of them.

References:

1. Hanson, M. R. and R. H. Kohler. 2001. GFP imaging: methodology and application to investigate cellular compartmentation in plants. *J Exp Bot* 52: 529-539.
- 5 2. Pollok, B. A. and R. Heim. 1999. Using GFP in FRET-based applications. *Trends Cell Biol* 9: 57-60.
3. Schuttrigkeit, T. A., U. Zachariae, T. von Feilitzsch, J. Wiehler, J. von Hummel, B. Steipe and M. E. Michel-Beyerle. 2001. Picosecond time-resolved FRET in the fluorescent protein from Discosoma Red (wt-DsRed). *Chemphyschem* 2: 325-328.
- 10 4. Hillisch, A., M. Lorenz and S. Diekmann. 2001. Recent advances in FRET: distance determination in protein-DNA complexes. *Curr Opin Struct Biol* 11: 201-207.

FRAP – Fluorescence Redistribution After Photobleaching: This technique quantifies the dynamics of tagged molecules or the reporter molecules themselves. It involves in photobleaching (burning out) of all the fluorescent molecules within a small area by intense excitation light and monitoring the process of fluorescence recovery within this area (due to migration of tagged molecules from adjacent areas).

References:

- 20 1. Reits, E. A. and J. J. Neefjes. 2001. From fixed to FRAP: measuring protein mobility and activity in living cells. *Nat Cell Biol* 3: E145-147.
2. Houtsmailler, A. B. and W. Vermeulen. 2001. Macromolecular dynamics in living cell nuclei revealed by fluorescence redistribution after photobleaching. *Histochem Cell Biol* 115: 13-21.

“Fluorescent timer” applications: one of the proteins exemplified herein – scubRFP – due to its natural spectroscopic properties, can be used as a reporter that changes color with time. Such reporters make it possible to estimate the time elapsed since the reporter protein was synthesized by quantifying its color. In addition, since the maturation speed (the rate of conversion from green to red) in scubRFP can be increased by UV-A light, it is possible to adjust its timing scale: experiments that need timing in shorter intervals may use appropriate background UV illumination to speed up the green-to-red conversion.

References:

1. Terskikh, A. V., A. Fradkov, A. Zaraiskiy, A. V. Kajava, M. Matz, S. Kim, I. Weissman and P. Siebert. 2000. "Fluorescent timer": Protein that changes color over time. *Molecular Biology of the Cell* 11: 648.
- 5 2. Verkhusha, V. V., H. Otsuna, T. Awasaki, H. Oda, S. Tsukita and K. Ito. 2001. An enhanced mutant of red fluorescent protein DsRed for double labeling and developmental timer of neural fiber bundle formation. *Journal of Biological Chemistry* 276: 29621-29624.

10 "Light-inducible fluorescence": since the red fluorescence of scubRFP can be induced by exposure to UV-A light, it is possible to use this protein as a light-inducible reporter. Such a reporter can be used for studying molecular dynamics, in a way that is analogous to FRAP (see above). A small area can be irradiated by the fluorescence-inducing light, after which the process of redistribution of active fluorescent molecules from the irradiated spot can be followed.

15 References:

1. Ando, R., H. Hama, M. Yamamoto-Hino, H. Mizuno and A. Miyawaki. 2002. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. *Proceedings of the National Academy of Sciences of the United States of America* 99: 12651-12656.
- 20 2. Patterson, G. H. and J. Lippincott-Schwartz. 2002. A photoactivatable GFP for selective photolabeling of proteins and cells. *Science* 297: 1873-1877.
3. Chudakov, D. M., V. V. Belousov, A. G. Zaraisky, V. V. Novoselov, D. B. Staroverov, D. B. Zorov, S. Lukyanov and K. A. Lukyanov. 2003. Kindling fluorescent proteins for precise in vivo photolabeling (vol 21, pg 191, 2003). *Nature Biotechnology* 21: 452-452.

25 Coloring of biological objects for decorative and other non-scientific purposes. Examples: producing decorative fish for aquariums; coloring of fur, wool and milk by means of genetic modifications of appropriate animals; and coloring of decorative plants. Such uses can be implemented by a person skilled in the art having the benefit of the teachings of the current disclosure.

All patents, patent applications, provisional applications, and publications referred to or cited herein are incorporated by reference in their entirety, including all figures and tables, to the extent they are not inconsistent with the explicit teachings of this specification.

5

Following are examples which illustrate procedures for practicing the invention. These examples should not be construed as limiting. All percentages are by weight and all solvent mixture proportions are by volume unless otherwise noted.

10 Example 1 — Bacterial Expression Construct

As illustrated in Figure 1, to prepare a bacterial expression construct, the ORF of the target detectable protein was amplified by means of polymerase chain reaction (PCR), using primers corresponding to the beginning and end of the protein's ORF. The upstream primer carried a 5'-heel **ttgattgattgaaggagaat**tcATG (SEQ ID NO:1), which encoded three termination codons in three frames (bold), followed by the ribosome binding site (underlined), 6 spacer bases and initiation ATG codon.

The downstream primer encoded a 6xHis tag in place of the original termination codon (the heel sequence was 5'-tta tta gtg atg gtg atg gtg atg (SEQ ID NO:2)), to facilitate protein purification by means of metal-affinity chromatography.

20 The products of amplification were cloned into pGEM-T vector (Promega) using manufacturer-provided reagents and protocol. The expressing clones were identified after overnight growth of the colonies by their fluorescent appearance.

Example 2 — Additional Proteins and Polynucleotides

25 The subject invention also provides proteins from *Acropora* ("staghorn corals") and *Agarica fragilis* ("fragile saucer coral"), as well as polynucleotides encoding these proteins.

In one embodiment, the invention provides nucleotide sequences of the inserts 30 in pGEM-T vector (Promega), the conceptual translations of these inserts, and special properties of purified protein products.

The vector constructs are shown in SEQ ID NOs.:19-44. The encoded proteins are shown in SEQ ID NOs.:45-70. The open reading frames encoding the

proteins of SEQ ID NOs.: 45-70 are shown in SEQ ID NOs.:71-96. The spectral characteristics of the proteins are shown in Figures 4-29.

Example 3 — Excitation and emission spectra of the detectable proteins

5 The excitation spectra were measured from the proteins purified after bacterial expression. The spectra are shown in Figures 2-29. Emission spectra (dotted lines) were measured using USB2000 uv-vis spectrometer (Ocean Optics), excitation spectra (solid lines) – using spectrofluorometer LS-50B (Perkin Elmer). The indicated positions of excitation and emission maxima are accurate within 5 nm.

10

Example 4 — Multiple Marker Constructs

15 There are several advantages associated with the use of fusion markers, including: 1) achievement of combined functionalities in a single transcription unit, 2) reduced usage of genetic elements, such as promoters and terminators, for expressing multiple marker genes, 3) reduced overall length of insertion sequences that may lead to increased transformation efficiency, and most importantly 4) elimination of molecular interactions between adjacent genetic elements. Such unwanted interactions are frequently encountered when multiple expression units associated with different marker genes are used simultaneously and often complicate the 20 interpretation of expression results.

25 In an effort to improve marker functionality and versatility, several translational fusions between two genetic markers have been developed. Datla *et al.* (1991; U.S. Patent No. 5,639,663) created a bifunctional fusion between GUS and neomycin phosphotransferase (NPTII) to provide a biochemically assayable reporter activity and a conditionally selectable growth advantage for use in plant transformation. Another bifunctional fusion, between GUS and GFP, was also developed to provide both indicative and assayable reporter activities for monitoring transient and stable transgene expression in plant cells (Quaedvlieg *et al.*, 1998). More recently, Li *et al.* (2001) constructed a bifunctional fusion between GFP and 30 NPTII and successfully used this marker for continuous analysis of promoter activity and transgene expression in transgenic grape plants throughout the entire process of plant development.

Small portions of a protein that provide unique functions such as protein/DNA/substrate binding activity can be inserted into another heterologous protein to create a hybrid fusion with enhanced functionality and utility. In other cases, an entire gene or protein of interest has been fused in-frame to another heterologous gene or protein to form a double fusion to provide combined functionalities. Production of multiple proteins using fusion constructs composed of two genes from transgenic plants has been demonstrated previously (U.S. Patent No. 6,455,759).

In one embodiment, the subject invention provides cells transformed with a polynucleotide of the present invention comprising an in-frame fusion of nucleotide sequences encoding multiple markers. Preferably, the polynucleotide sequence is provided in an expression construct of the invention. The transformed cell can be a prokaryotic cell, for example, a bacterial cell such as *E. coli* or *B. subtilis*, or the transformed cell can be a eukaryotic cell, for example, a plant or animal cell. Animal cells include human cells, mammalian cells, avian cells, fish cells and insect cells. Mammalian cells include, but are not limited to, COS, 3T3, and CHO cells.

Genetic markers that can be used in conjunction with the detectable proteins of the present invention are known in the art and include, for example, polynucleotides encoding proteins that confer a conditionally selective growth advantage, such as antibiotic resistance and herbicide-resistance; polynucleotides encoding proteins that confer a biochemically assayable reporter activity; and polynucleotides encoding proteins that confer an indicative reporter activity. Examples of polynucleotides encoding proteins providing antibiotic resistance include those that can provide for resistance to one or more of the following antibiotics: hygromycin, kanamycin, bleomycin, G418, streptomycin, paromomycin, and spectinomycin. Kanamycin resistance can be provided by neomycin phosphotransferase (NPTII). Examples of polynucleotides encoding proteins providing herbicide resistance include those that can provide for resistance to phosphinothricin acetyltransferase or glyphosate. Examples of genetic markers that confer assayable or indicative reporters activity that can be used in the present invention include, but are not limited to, polynucleotides encoding β -glucuronidase (GUS), β -galactosidase, chloramphenicol acetyltransferase (CAT), luciferase, nopaline synthase (NOS), and green fluorescence protein (GFP).

It should be understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application.

Claims

We claim:

1. A protein comprising an amino sequence selected from the group consisting of SEQ ID NOs: 7-10, SEQ ID NOs: 45-70, fragments of these sequences, and variants of these sequences and fragments; wherein the amino acid sequence of a variant is at least 90% identical to at least one of said SEQ ID NOs.:7-10 and 45-70 or a fragment of one of said sequences; and wherein said fragments and said variants have emission and excitation maxima there are within ± 10 nm of the emission and excitation maxima for at least one of SEQ ID NOs.: 7-10 and SEQ ID NOs. 45-70.
2. The protein, according to claim 1, wherein said protein has an amino acid sequence selected from the group consisting of SEQ. ID NOs: 7-10 and SEQ ID NOs: 45-70.
3. The protein, according to claim 1, wherein said protein has an amino acid sequence selected from the group consisting of SEQ. ID NOs: 7-10.
4. The protein, according to claim 1, wherein said protein has SEQ ID NO:10.
5. A polynucleotide sequence that encodes a protein comprising an amino sequence selected from the group consisting of SEQ. ID NOs: 7-10, SEQ ID NOs: 45-70, fragments of these sequences, and variants of these sequences and fragments; wherein the amino acid sequence of a variant is at least 90% identical to at least one of said SEQ ID NOs.:7-10 and 45-70, or a fragment of one of said sequences; and wherein said fragments and said variants have emission and excitation maxima there are within ± 10 nm of the emission and excitation maxima for at least one of SEQ ID NOs.: 7-10 and SEQ ID NOs. 45-70.
6. The polynucleotide sequence, according to claim 5, wherein said polynucleotide has a sequence is selected from the group consisting of SEQ. ID NOs: 3-6 and SEQ ID NOs: 71-96.

7. A polynucleotide sequence selected from the group consisting of SEQ ID NOs: 11-14 and SEQ ID NOs: 19-44.

8. A protein selected from the group consisting of the proteins expressed when a bacterium is transformed with a polynucleotide sequence selected from the group consisting of SEQ ID NOs: 11-14 and SEQ ID NOs: 19-44.

9. Use of a protein, wherein said protein comprises a protein comprising an amino sequence selected from the group consisting of SEQ. ID NOs: 7-10, SEQ ID NOs: 45-70, fragments of these sequences, and variants of these sequences and fragments; wherein the amino acid sequence of a variant is at least 90% identical to at least one of said SEQ ID NOs.:7-10 and 45-70, or a fragment of one of said sequences; and wherein said fragments and said variants have emission and excitation maxima there are within \pm 10 nm of the emission and excitation maxima for at least one of SEQ ID NOs.: 7-10 and SEQ ID NOs. 45-70, for monitoring gene expression; as a tag for tracing the location of proteins; as a reporter molecule in a protein-based biosensor; or as a pigment for modifying the color, or fluorescence, or both, of living tissue.

10. The use, according to claim 9, wherein a polynucleotide that encodes said protein is fused with a polynucleotide that encodes a protein of interest.

11. A cell transformed to express a heterologous polynucleotide wherein said heterologous polynucleotide encodes a protein comprising an amino sequence selected from the group consisting of SEQ. ID NOs: 7-10, SEQ ID NOs: 45-70, fragments of these sequences, and variants of these sequences and fragments; wherein the amino acid sequence of a variant is at least 90% identical to at least one of said SEQ ID NOs.:7-10 and 45-70 or a fragment of one of said sequences; and wherein said fragments and said variants have emission and excitation maxima there are within \pm 10 nm of the emission and excitation maxima for at least one of SEQ ID NOs.: 7-10 and SEQ ID NOs. 45-70.

12. The cell, according to claim 11, wherein said cell is a plant cell.

13. The cell, according to claim 11, wherein said cell is a fish cell.
14. A polynucleotide encoding multiple markers wherein at least one of said markers is selected from the group consisting of a protein comprising an amino sequence selected from the group consisting of SEQ ID NOs: 7-10, SEQ ID NOs: 45-70, fragments of these sequences, and variants of these sequences and fragments; wherein the amino acid sequence of a variant is at least 90% identical to at least one of said SEQ ID NOs.:7-10 and 45-70 or a fragment of one of said sequences; and wherein said fragments and said variants have emission and excitation maxima there are within ± 10 nm of the emission and excitation maxima for at least one of SEQ ID NOs.: 7-10 and SEQ ID NOs. 45-70.
15. The polynucleotide, according to claim 14, wherein one of said markers is GUS.

1/15

FIG. 1

FIG. 2

FIG. 3A

FIG. 3B

3/15

A.aculeus 1-1 (green)

FIG. 4

FIG. 5

4/15

FIG. 6

FIG. 7

5/15

FIG. 8

FIG. 9

6/15

FIG. 10

FIG. 11

7/15

FIG. 12

FIG. 13

8/15

FIG. 14

FIG. 15

9/15

FIG. 16

FIG. 17

10/15

FIG. 18

FIG. 19

11/15

FIG. 20

FIG. 21

12/15

FIG. 22

FIG. 23

13/15

FIG. 24

FIG. 25

14/15

FIG. 26

FIG. 27

15/15

FIG. 28

FIG. 29

SEQUENCE LISTING

<110> University of Florida Research Foundation, Inc.
Matz, Mikhail
Kelmanson, Ilya
Salih, Anya
Meleshkevitch, Ella

<120> Novel Fluorescent and Colored Proteins, and Polynucleotides that Encode These Proteins

<130> UF-364XC1

<150> US 60/472,196

<151> 2003-05-20

<160> 96

<170> PatentIn version 3.2

<210> 1

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> 5' heel of upstream primer

<400> 1

ttgattgatt gaaggagaaa tatcatg

27

<210> 2

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> 5' heel of downstream primer

<400> 2

ttttagtgtga tgggtatggc gatgc

24

<210> 3

<211> 675

<212> DNA

<213> Montastraea cavernosa

<400> 3

atgagtgtga ttaagtgcaga catgaagatc aagctgccta tggaaggcac tgtaaacggg

60

cacaagtttg tcacacagg agaaggagaa ggcaagcctt tccaggaaac acacactata

120

acccttaaag tcaaagaagg gggacctctg ccttccctt acgacatctt gacaacagca

180

ttccagtagc gcaacagggt attcacaaaa tacccaagag acataccaga ctatttcaag

240

cgatcgtttc ctgagggta ttcctggaa agaagcatga ctttcgaaga ccagggcatt

300

tgcaccgtca caagcgacat aaagttggaa ggcgactgtt ttttctacga aattcgattt	360
tatggtgtga actttccctc caatggtcca gttatgcaga agaagacgct gaaatggag	420
ccatccactg agaatatgtt cgtgcgttat ggagtgcgtac tggggatgt taacaggact	480
ctgttgcttg aaggagataa acatcaccga tgtaacttca gaagtactta cagggcgaag	540
aagggtgtcg tggccaga atatcactt gtggaccacc gaattgaaat tctgagccat	600
gacaaagatt acaacaccgt tgaggtgtat gagaatgccg ttgctgccccc ttctatgctg	660
ccgagtaagg cctaa	675

<210> 4
<211> 678
<212> DNA
<213> Montastraea cavernosa

<400> 4	
atgagtgtga taaaaccaga catgaagatc aagctgcgtt tgaaaggcgc tgtaaacggg	60
cacaacttcg tgattgaagg agaaggaaaa ggcaagcctt tcgagggAAC acagactata	120
aaccttacag tcaaagaagg cggacctctg cttttgtttt acgatatctt gacagcagca	180
ttccagtagc gcaacaggc attcaccaaa taccaagag acatagcaga ctatccaag	240
cagtcttttc ctgagggta ttccctggaa cgaagcatga cttatgaaga ccagggcatt	300
tgcacatca agagcgacat aagaatggaa ggcgactgtt ttatctatga aattcgat	360
gatggtgtga actttcccccc aagtggtcca gttatgcata agaagacgct gaaatggag	420
ccatccactg agaaaatgtt tgcgttat ggagtgcgtt aggggtatgt taacatggct	480
ctgttgcttg aaggaggtgg ccattaccga tgcgttatggta gaagtactta caaagcgaag	540
aaacgtgttc agttgccaga ctatcactt gtggaccacc gcattgagat ttgagccat	600
gacaatgact acaacaccgt aaagctgtct gagaatgccg aggctcgcta ttctatgctg	660
ccgagtcagg ccaagtaa	678

<210> 5
<211> 678
<212> DNA
<213> Montastraea cavernosa

<400> 5	
atgagtgtga taaaaccaga tatgaagatc aagctgcgtt tgcaaggcgt tgtaaacggg	60
cacaagttcg tgattaaagg agaaggagag ggcaagcctt tcgagggAAC gcagactata	120
aaccttacag tcaaagaagg cgcacctctc cttttgtttt acgacatctt gacatcagca	180

ttccagttatg gcaacagggt attcacaaaa tatccagacg atataccaga ctatttcaag	240
cagacgtttc ctgaaggta ttcgtggag cgaatcatgg cttatgaaga ccagagtatt	300
tgcacggcca caagcgacat aaaaatggaa ggcgactgtt ttatctacga aattcaattt	360
catggtgtga actttccacc caatggtcca gttatgcaga agaagacgct gaaatggaa	420
ccatccaccc agaaaatgta tgtgcgtat ggagtgcgtga agggtgatgt taacatggct	480
ctgttgcttg aaggaggtgg ccattaccga tgtgacttca gaagtactta caaagcgaag	540
aaggatgttc atttgcaga ctatcaaac gtggaccacc gcattgagat tttgagccat	600
gacaaagatt aaaaaaatgt tacgctgtat gagcatgcca aagctcgcta ttctatgctg	660
ccgagtaagg ccaagtaa	678

<210> 6
<211> 693
<212> DNA
<213> Scolymia cubensis

<400> 6	
atgtctgcca tcaagactgt ggtaaagcaa ttcatgaaga tcaagatgtc tttggaaggc	60
actgtaaacg ggcactactt caagattgta ggagagggtg atggcactcc ttttgaggga	120
aaacagactt tacacctcaa ggtcaaagag ggccgacacc tcgcctttgc ctacgatatc	180
ctgacaacag ctcttcatta cggaaacagg gtattcgctg aataccaga aaacatccca	240
gactatttca agcagtcgtt ccctaaggga tattcatggg aaagaaggct aactttcgaa	300
gacgggggaa tttgcacgc cagaagcgac ataaaaatgg ttggcgacac tttccataac	360
gaggttcaat tttacgggtt aaactttccc cccaatggtc ctgttatgca gaggcacacg	420
gtgaaatggg agccatccac tgagaagatt tatgtcgctg atggagtgtt gacgggtgat	480
attaccatgg ctctgttgc taaaggaggt acccattacc gatgtgactt cagaactact	540
tataaagcta aggagaaggg tcccaagttc ccaggctatc accttgcga tcattgtatt	600
gagattacaa gccatgacaa agattacaac gtgggtgagc tgtatgagca tgccgtcgct	660
cattctggat tgccggacag tgccaaatcga taa	693

<210> 7
<211> 224
<212> PRT
<213> Montastraea cavernosa

<400> 7

Met Ser Val Ile Lys Ser Asp Met Lys Ile Lys Leu Pro Met Glu Gly			
1	5	10	15

Thr Val Asn Gly His Lys Phe Val Ile Thr Gly Glu Gly Glu Gly Lys
20 25 30

Pro Phe Gln Gly Thr His Thr Ile Thr Leu Lys Val Lys Glu Gly Gly
35 40 45

Pro Leu Pro Phe Pro Tyr Asp Ile Leu Thr Thr Ala Phe Gln Tyr Gly
50 55 60

Asn Arg Val Phe Thr Lys Tyr Pro Arg Asp Ile Pro Asp Tyr Phe Lys
65 70 75 80

Gln Ser Phe Pro Glu Gly Tyr Ser Trp Glu Arg Ser Met Thr Phe Glu
85 90 95

Asp Gln Gly Ile Cys Thr Val Thr Ser Asp Ile Lys Leu Glu Gly Asp
100 105 110

Cys Phe Phe Tyr Glu Ile Arg Phe Tyr Gly Val Asn Phe Pro Ser Asn
115 120 125

Gly Pro Val Met Gln Lys Lys Thr Leu Lys Trp Glu Pro Ser Thr Glu
130 135 140

Asn Met Tyr Val Arg Asp Gly Val Leu Leu Gly Asp Val Asn Arg Thr
145 150 155 160

Leu Leu Leu Glu Gly Asp Lys His His Arg Cys Asn Phe Arg Ser Thr
165 170 175

Tyr Arg Ala Lys Lys Gly Val Val Leu Pro Glu Tyr His Phe Val Asp
180 185 190

His Arg Ile Glu Ile Leu Ser His Asp Lys Asp Tyr Asn Thr Val Glu
195 200 205

Val Tyr Glu Asn Ala Val Ala Arg Pro Ser Met Leu Pro Ser Lys Ala
210 215 220

<210> 8

<211> 225

<212> PRT

<213> Montastraea cavernosa

<400> 8

Met Ser Val Ile Lys Pro Asp Met Lys Ile Lys Leu Arg Met Glu Gly
1 5 10 - 15

Ala Val Asn Gly His Asn Phe Val Ile Glu Gly Glu Gly Lys Gly Lys
20 25 30

Pro Phe Glu Gly Thr Gln Thr Ile Asn Leu Thr Val Lys Glu Gly Gly
35 40 45

Pro Leu Pro Phe Ala Tyr Asp Ile Leu Thr Ala Ala Phe Gln Tyr Gly
50 55 60

Asn Arg Ala Phe Thr Lys Tyr Pro Arg Asp Ile Ala Asp Tyr Phe Lys
 65 70 75 80

Gln Ser Phe Pro Glu Gly Tyr Ser Trp Glu Arg Ser Met Thr Tyr Glu
 85 90 95

Asp Gln Gly Ile Cys Ile Ile Lys Ser Asp Ile Arg Met Glu Gly Asp
 100 105 110

Cys Phe Ile Tyr Glu Ile Arg Tyr Asp Gly Val Asn Phe Pro Pro Ser
 115 120 125

Gly Pro Val Met Gln Lys Lys Thr Leu Lys Trp Glu Pro Ser Thr Glu
 130 135 140

Lys Met Tyr Val Arg Asp Gly Val Leu Lys Gly Asp Val Asn Met Ala
 145 150 155 160

Leu Leu Leu Glu Gly Gly His Tyr Arg Cys Asp Phe Arg Ser Thr
 165 170 175

Tyr Lys Ala Lys Lys Arg Val Gln Leu Pro Asp Tyr His Phe Val Asp
 180 185 190

His Arg Ile Glu Ile Leu Ser His Asp Asn Asp Tyr Asn Thr Val Lys
 195 200 205

Leu Ser Glu Asn Ala Glu Ala Arg Tyr Ser Met Leu Pro Ser Gln Ala
 210 215 220

Lys
 225

<210> 9
<211> 225
<212> PRT
<213> Montastraea cavernosa

<400> 9

Met Ser Val Ile Lys Pro Asp Met Lys Ile Lys Leu Arg Met Gln Gly
 1 5 10 15

Val Val Asn Gly His Lys Phe Val Ile Lys Gly Glu Gly Glu Gly Lys
 20 25 30

Pro Phe Glu Gly Thr Gln Thr Ile Asn Leu Thr Val Lys Glu Gly Ala
 35 40 45

Pro Leu Pro Phe Ala Tyr Asp Ile Leu Thr Ser Ala Phe Gln Tyr Gly
 50 55 60

Asn Arg Val Phe Thr Lys Tyr Pro Asp Asp Ile Pro Asp Tyr Phe Lys
 65 70 75 80

Gln Thr Phe Pro Glu Gly Tyr Ser Trp Glu Arg Ile Met Ala Tyr Glu
 85 90 95

Asp Gln Ser Ile Cys Thr Ala Thr Ser Asp Ile Lys Met Glu Gly Asp
100 105 110

Cys Phe Ile Tyr Glu Ile Gln Phe His Gly Val Asn Phe Pro Pro Asn
115 120 125

Gly Pro Val Met Gln Lys Lys Thr Leu Lys Trp Glu Pro Ser Thr Glu
130 135 140

Lys Met Tyr Val Arg Asp Gly Val Leu Lys Gly Asp Val Asn Met Ala
145 150 155 160

Leu Leu Leu Glu Gly Gly His Tyr Arg Cys Asp Phe Arg Ser Thr
165 170 175

Tyr Lys Ala Lys Lys Asp Val His Leu Pro Asp Tyr His Tyr Val Asp
180 185 190

His Arg Ile Glu Ile Leu Ser His Asp Lys Asp Tyr Lys Asn Val Thr
195 200 205

Leu Tyr Glu His Ala Lys Ala Arg Tyr Ser Met Leu Pro Ser Lys Ala
210 215 220

Lys
225

<210> 10
<211> 230
<212> PRT
<213> Scolymia cubensis

<400> 10

Met Ser Ala Ile Lys Thr Val Val Lys Gln Phe Met Lys Ile Lys Met
1 5 10 15

Ser Leu Glu Gly Thr Val Asn Gly His Tyr Phe Lys Ile Val Gly Glu
20 25 30

Gly Asp Gly Thr Pro Phe Glu Gly Lys Gln Thr Leu His Leu Lys Val
35 40 45

Lys Glu Gly Ala Pro Leu Pro Phe Ala Tyr Asp Ile Leu Thr Thr Ala
50 55 60

Leu His Tyr Gly Asn Arg Val Phe Val Glu Tyr Pro Glu Asn Ile Pro
65 70 75 80

Asp Tyr Phe Lys Gln Ser Phe Pro Lys Gly Tyr Ser Trp Glu Arg Ser
85 90 95

Leu Thr Phe Glu Asp Gly Gly Ile Cys Ile Ala Arg Ser Asp Ile Lys
100 105 110

Met Val Gly Asp Thr Phe His Asn Glu Val Gln Phe Tyr Gly Val Asn
115 120 125

Phe Pro Pro Asn Gly Pro Val Met Gln Arg His Thr Val Lys Trp Glu
 130 135 140

Pro Ser Thr Glu Lys Ile Tyr Val Arg Asp Gly Val Leu Thr Gly Asp
 145 150 155 160

Ile Thr Met Ala Leu Leu Leu Lys Gly Gly Thr His Tyr Arg Cys Asp
 165 170 175

Phe Arg Thr Thr Tyr Lys Ala Lys Glu Lys Gly Pro Lys Phe Pro Gly
 180 185 190

Tyr His Leu Val Asp His Cys Ile Glu Ile Thr Ser His Asp Lys Asp
 195 200 205

Tyr Asn Val Val Glu Leu Tyr Glu His Ala Val Ala His Ser Gly Leu
 210 215 220

Pro Asp Ser Ala Asn Arg
 225 230

<210> 11

<211> 726

<212> DNA

<213> Montastraea cavernosa

<400> 11

ttgatttgatt	gaaggagaaa	tatcatgagt	gtgatatagt	cagacatgaa	gatcaagctg	60
cctatggaaag	gcactgtaaa	cgggcacaag	tttgcataca	caggagaagg	agaaggcaag	120
cctttccagg	gaacacacac	tataaccctt	aaagtcaaag	aagggggacc	tctgccttc	180
ccttacgaca	tcttgacaac	agcattccag	tacggcaaca	gggtattcac	caaataccca	240
agagacatac	cagactatTTT	caagcagtcg	tttcctgagg	ggtattcctg	ggaaagaagc	300
atgactttcg	aagaccaggg	catttgcacc	gtcacaagcg	acataaagt	ggaaggcgac	360
tgtttttct	acgaaattcg	atTTTatgg	gtgaactttc	cctccaatgg	tccagttatg	420
cagaagaaga	cgctgaaatg	ggagccatcc	actgagaata	tgtacgtcg	tgtggagt	480
ctactggggg	atgttaacag	gactctgttgc	cttgaaggag	ataaaacatca	ccgatgtaac	540
ttcagaagta	cttacagggc	gaagaagggt	gtcgtgtgc	cagaatatca	ctttgtggac	600
caccgaattt	aaattctgag	ccatgacaaa	gattacaaca	ccgttgaggt	gtatgagaat	660
gccgttgctc	gcccttctat	gctgcccagt	aaggccgaaa	gtgcacatca	ccatcaccat	720
cactaa						726

<210> 12

<211> 729

<212> DNA

<213> Montastraea cavernosa

<400> 12	
ttgattgatt gaaggagaaa tatcatgagt gtgattaaac cagacatgaa gatcaagctg	60
cgtatggaag gcgcgtgtaaa cgggcacaac ttctgtgattt aaggagaagg aaaaggcaag	120
ccttcgagg gaacacagac tataaacctt acagtcaaag aaggcggacc tctgcctttt	180
gcttacgata tcttgacagc agcattccag tacggcaaca gggcattcac caaataccca	240
agagacatag cagactatTTT caagcagtct tttcctgagg ggtattcctg ggaacgaagc	300
atgacttatg aagaccaggc catttgcattc atcaagagcg acataagaat ggaaggcgcac	360
tgctttatct atgaaattcg atatgatggt gtgaactttc ccccaagtgg tccagttatg	420
caaaaagaaga cgctgaaatg ggagccatcc actgagaaaaa tgtatgtgcg tgatggagtg	480
ctgaagggtg atgttaacat ggctctgttg cttgaaggag gtggccatta ccgatgtgac	540
tttcgaagta cttacaaagc gaagaaacgt gttcagttgc cagactatca ctttgtggac	600
caccgcattt agatTTTgag ccatgacaat gactacaaca ccgtaaagct gtctgagaat	660
gccgaggctc gctattctat gctgccgagt caggccaagg aaagtgcaca tcaccatcac	720
catcaactaa	729

<210> 13

<211> 729

<212> DNA

<213> Montastraea cavernosa

<400> 13	
ttgattgatt gaaggagaaa tatcatgagt gtgattaaac cagatatgaa gatcaagctg	60
cgtatgcaag gcgttgtaaa cgggcacaag ttctgtatta aaggagaagg agagggcaag	120
ccttcgagg gaacgcagac tataaacctt acagtcaaag aaggcgcacc tctccctttt	180
gcttacgaca tcttgacatc agcattccag tatggcaaca gggtattcac caaatatcca	240
gacgatatac cagactatTTT caagcagacg tttcctgaag ggtattcgtg ggagcgaatc	300
atggcttatg aagaccagag tatttgcacg gccacaagcg acataaaaat ggaaggcgcac	360
tgttttatct acgaaattca atttcatggt gtgaactttc caccaatgg tccagttatg	420
cagaagaaga cgctgaaatg ggaaccatcc accgagaaaaa tgtatgtgcg tgatggagtg	480
ctgaagggtg atgttaacat ggctctgttg cttgaaggag gtggccatta ccgatgtgac	540
ttcagaagta cttacaaagc gaagaaggat gttcatttgc cagactatca ctacgtggac	600
caccgcattt agatTTTgag ccatgacaat gattacaaaa atgttacgt gtatgagcat	660
gccaaagctc gctattctat gctgccgagt aaggccaagg aaagtgcaca tcaccatcac	720

catcaactaa

729

<210> 14
<211> 741
<212> DNA
<213> Scolymia cubensis

<400> 14

ttgattgatt	gaaggagaaa	tatcatgtct	gccatcaaga	ctgtggtaaa	gcaattcatg	60
aagatcaaga	tgtcttgga	aggcactgta	aacgggcact	acttcaagat	tgttaggagag	120
ggtgatggca	ctccctttga	gggaaaacag	actttacacc	tcaaggtaaa	agagggcgca	180
cctctgcctt	ttgccttacga	tatcctgaca	acagcttcc	attacggaaa	cagggtattc	240
gtcgaataacc	cagaaaacat	cccagactat	ttcaaggcagt	cgttccctaa	gggatattca	300
tggaaaagaa	gcctaacttt	cgaagacggg	ggaatttgca	tcgcccagaag	cgacatcaaa	360
atggttggcg	acactttcca	taacgagggtt	caatttacg	gggtaaactt	tcccccaat	420
ggtcctgtta	tgcagaggca	cacggtgaaa	tgggagccat	ccactgagaa	gatttatgtg	480
cgtgatggag	tgttgacggg	tgatattacc	atggctctgt	tgcttaaagg	aggtaaccat	540
taccgatgtg	acttcagaac	tactataaaa	gctaaggaga	agggtcccaa	gttcccaggc	600
tatcaccttg	tcgatcattg	tattgagatt	acaagccatg	acaaagatta	caacgtggtt	660
gagctgtatg	agcatgccgt	cgctcattct	ggattgccgg	acagtcccaa	tcgattgatt	720
gattgaagga	gaaatatcta	a				741

<210> 15
<211> 234
<212> PRT
<213> Montastraea cavernosa

<400> 15

Met	Ser	Val	Ile	Lys	Ser	Asp	Met	Lys	Ile	Lys	Leu	Pro	Met	Glu	Gly
1				5					10				15		

Thr	Val	Asn	Gly	His	Lys	Phe	Val	Ile	Thr	Gly	Glu	Gly	Glu	Gly	Lys
					20			25				30			

Pro	Phe	Gln	Gly	Thr	His	Thr	Ile	Thr	Leu	Lys	Val	Lys	Glu	Gly	Gly
					35			40				45			

Pro	Leu	Pro	Phe	Pro	Tyr	Asp	Ile	Leu	Thr	Thr	Ala	Phe	Gln	Tyr	Gly
					50			55				60			

Asn	Arg	Val	Phe	Thr	Lys	Tyr	Pro	Arg	Asp	Ile	Pro	Asp	Tyr	Phe	Lys
					65			70				75			80

Gln Ser Phe Pro Glu Gly Tyr Ser Trp Glu Arg Ser Met Thr Phe Glu
85 90 95

Asp Gln Gly Ile Cys Thr Val Thr Ser Asp Ile Lys Leu Glu Gly Asp
100 105 110

Cys Phe Phe Tyr Glu Ile Arg Phe Tyr Gly Val Asn Phe Pro Ser Asn
115 120 125

Gly Pro Val Met Gln Lys Lys Thr Leu Lys Trp Glu Pro Ser Thr Glu
130 135 140

Asn Met Tyr Val Arg Asp Gly Val Leu Leu Gly Asp Val Asn Arg Thr
145 150 155 160

Leu Leu Leu Glu Gly Asp Lys His His Arg Cys Asn Phe Arg Ser Thr
165 170 175

Tyr Arg Ala Lys Lys Gly Val Val Leu Pro Glu Tyr His Phe Val Asp
180 185 190

His Arg Ile Glu Ile Leu Ser His Asp Lys Asp Tyr Asn Thr Val Glu
195 200 205

Val Tyr Glu Asn Ala Val Ala Arg Pro Ser Met Leu Pro Ser Lys Ala
210 215 220

Lys Glu Ser Ala His His His His His His
225 230

<210> 16

<211> 234

<212> PRT

<213> Montastraea cavernosa

<400> 16

Met Ser Val Ile Lys Pro Asp Met Lys Ile Lys Leu Arg Met Glu Gly
1 5 10 15

Ala Val Asn Gly His Asn Phe Val Ile Glu Gly Glu Gly Lys Gly Lys
20 25 30

Pro Phe Glu Gly Thr Gln Thr Ile Asn Leu Thr Val Lys Glu Gly Gly
35 40 45

Pro Leu Pro Phe Ala Tyr Asp Ile Leu Thr Ala Ala Phe Gln Tyr Gly
50 55 60

Asn Arg Ala Phe Thr Lys Tyr Pro Arg Asp Ile Ala Asp Tyr Phe Lys
65 70 75 80

Gln Ser Phe Pro Glu Gly Tyr Ser Trp Glu Arg Ser Met Thr Tyr Glu
85 90 95

Asp Gln Gly Ile Cys Ile Ile Lys Ser Asp Ile Arg Met Glu Gly Asp
100 105 110

Cys Phe Ile Tyr Glu Ile Arg Tyr Asp Gly Val Asn Phe Pro Pro Ser
115 120 125

Gly Pro Val Met Gln Lys Lys Thr Leu Lys Trp Glu Pro Ser Thr Glu
130 135 140

Lys Met Tyr Val Arg Asp Gly Val Leu Lys Gly Asp Val Asn Met Ala
145 150 155 160

Leu Leu Leu Glu Gly Gly His Tyr Arg Cys Asp Phe Arg Ser Thr
165 170 175

Tyr Lys Ala Lys Lys Arg Val Gln Leu Pro Asp Tyr His Phe Val Asp
180 185 190

His Arg Ile Glu Ile Leu Ser His Asp Asn Asp Tyr Asn Thr Val Lys
195 200 205

Leu Ser Glu Asn Ala Glu Ala Arg Tyr Ser Met Leu Pro Ser Gln Ala
210 215 220

Lys Glu Ser Ala His His His His His
225 230

<210> 17

<211> 234

<212> PRT

<213> Montastraea cavernosa

<400> 17

Met Ser Val Ile Lys Pro Asp Met Lys Ile Lys Leu Arg Met Gln Gly
1 5 10 15

Val Val Asn Gly His Lys Phe Val Ile Lys Gly Glu Gly Glu Gly Lys
20 25 30

Pro Phe Glu Gly Thr Gln Thr Ile Asn Leu Thr Val Lys Glu Gly Ala
35 40 45

Pro Leu Pro Phe Ala Tyr Asp Ile Leu Thr Ser Ala Phe Gln Tyr Gly
50 55 60

Asn Arg Val Phe Thr Lys Tyr Pro Asp Asp Ile Pro Asp Tyr Phe Lys
65 70 75 80

Gln Thr Phe Pro Glu Gly Tyr Ser Trp Glu Arg Ile Met Ala Tyr Glu
85 90 95

Asp Gln Ser Ile Cys Thr Ala Thr Ser Asp Ile Lys Met Glu Gly Asp
100 105 110

Cys Phe Ile Tyr Glu Ile Gln Phe His Gly Val Asn Phe Pro Pro Asn
115 120 125

Gly Pro Val Met Gln Lys Lys Thr Leu Lys Trp Glu Pro Ser Thr Glu
130 135 140

Lys Met Tyr Val Arg Asp Gly Val Leu Lys Gly Asp Val Asn Met Ala
145 150 155 160

Leu Leu Leu Glu Gly Gly His Tyr Arg Cys Asp Phe Arg Ser Thr
165 170 175

Tyr Lys Ala Lys Lys Asp Val His Leu Pro Asp Tyr His Tyr Val Asp
180 185 190

His Arg Ile Glu Ile Leu Ser His Asp Lys Asp Tyr Lys Asn Val Thr
195 200 205

Leu Tyr Glu His Ala Lys Ala Arg Tyr Ser Met Leu Pro Ser Lys Ala
210 215 220

Lys Glu Ser Ala His His His His His
225 230

<210> 18

<211> 238

<212> PRT

<213> Scolymia cubensis

<400> 18

Met Ser Ala Ile Lys Thr Val Val Lys Gln Phe Met Lys Ile Lys Met
1 5 10 15

Ser Leu Glu Gly Thr Val Asn Gly His Tyr Phe Lys Ile Val Gly Glu
20 25 30

Gly Asp Gly Thr Pro Phe Glu Gly Lys Gln Thr Leu His Leu Lys Val
35 40 45

Lys Glu Gly Ala Pro Leu Pro Phe Ala Tyr Asp Ile Leu Thr Thr Ala
50 55 60

Leu His Tyr Gly Asn Arg Val Phe Val Glu Tyr Pro Glu Asn Ile Pro
65 70 75 80

Asp Tyr Phe Lys Gln Ser Phe Pro Lys Gly Tyr Ser Trp Glu Arg Ser
85 90 95

Leu Thr Phe Glu Asp Gly Gly Ile Cys Ile Ala Arg Ser Asp Ile Lys
100 105 110

Met Val Gly Asp Thr Phe His Asn Glu Val Gln Phe Tyr Gly Val Asn
115 120 125

Phe Pro Pro Asn Gly Pro Val Met Gln Arg His Thr Val Lys Trp Glu
130 135 140

Pro Ser Thr Glu Lys Ile Tyr Val Arg Asp Gly Val Leu Thr Gly Asp
145 150 155 160

Ile Thr Met Ala Leu Leu Lys Gly Gly Thr His Tyr Arg Cys Asp
165 170 175

Phe Arg Thr Thr Tyr Lys Ala Lys Glu Lys Gly Pro Lys Phe Pro Gly
 180 185 190

Tyr His Leu Val Asp His Cys Ile Glu Ile Thr Ser His Asp Lys Asp
 195 200 205

Tyr Asn Val Val Glu Leu Tyr Glu His Ala Val Ala His Ser Gly Leu
 210 215 220

Pro Asp Ser Ala Asn Arg Gln Ser His His His His His His His
 225 230 235

<210> 19

<211> 765

<212> DNA

<213> Acropora aculeus

<400> 19

ttgattgatt gaaggagaaa tatcatgatc aagccatcta tcctcaacat gtcttattca 60

aagcagggca tcgtacaaga aatgaagacg aaataccgta tggaaaggcag tgtcaatggc 120

catgaattca cgatcgaagg ttaggaact gggtaccctt acgaaggaa acagatgtcc 180

gaattagtga tcatcaagcc taagggaaag ccccttccat tctccttga catactgtca 240

tcagtcttc aatatggaaa caggtgcttc acaaagtacc ctgcagacat gcctgactat 300

ttcaagcaag cattcccaga tggaatgtca tatgaaaggt catttctatt tgaggatgga 360

gcagttgcta cagccagctg gaacattcgt ctgcaggaa attgcttcat ccacaattcc 420

atctttcatg gcttaaactt tcccgtatggat ggaccgtaa tgaaaaagaa gacaattggc 480

tggataagt cttcgaaaa aatgactgtg tctaaagagg tgttaagagg tgatgtgact 540

atgtttctta tgctcgaagg aggtggttac cacagatgcc agtttcaactc cacttacaaa 600

acagagaagc cggtcgaact gcccccaat catgtcgtag aacatcaaat tgtgaggacc 660

gaccttggcc aaagtgcaaa aggcttcacg gtcaagctgg aagcacatgc tgccgctcat 720

gttaaccctt tgaaggttca acagcaccat caccatcaact aataa 765

<210> 20

<211> 765

<212> DNA

<213> Acropora aculeus

<400> 20

ttgattgatt gaaggagaaa tatcatgatc aagccatcta tcctcaacat gtctttca 60

aagcatggca tcacacaaga aatgccgacg aaataccata tgaaaggcag tgtcaatggc 120

catgaattcg agatcgaagg ttaggaact ggacaccctt acgaaggac acacatggcc 180

gaattagtga tcataaagcc tgccggaaaa ccccttccat tctccttga catactgtca 240

acagtcatc aatacgaaa cagatgcttc actaagtacc ctgcagacct gcctgactat	300
ttcaagcaag cataccagg tggaatgtca tatgaaaggt catttgtta tcaggatgga	360
ggaattgcta cagcgagctg gaacgttagt ctcgaggaa attgcttcat ccacaaatcc	420
acctatcttgcgtaaactt tcctgctgat ggacccgtaa tgacaaagaa gacaattggc	480
tggataaaag ccttgaaaa aatgactggg ttcaatgagg tgttaagagg tcatgtgact	540
gagtttctta tgctcgaagg aggtggttac cattcatgcc agtttcaactc cacttacaaa	600
ccagagaagc cggtcgaact gccccgaat catgtcatag aacatcacat tgtgaggacc	660
gaccttggca agactgcaaa aggcttcatg gtcaagctgg tacaacatgc tgcggctcat	720
gttaacactt tgaaggttca acatcaccat caccatcaact aataa	765

<210> 21
<211> 716
<212> DNA
<213> Acropora aculeus

<400> 21	
ttgtcttatt caaagcaggg catcgtaaa gaaatgaaga cgaaataccg tatggaaggc	60
agtgtcaatg gccatgaatt cacgatcgaa ggtgttagaa ctgggtaccc ttacgaagg	120
aagcagatgt ccgaattagt gatcgtaag cctaaggaa agcccccattcc attctcctt	180
gacatactgt catcagtctt tcaatatgga aacaggtgct tcacaaagta ccctgcagac	240
atgcctgact atttcaagca agcattccca gatggaatgt catatgaaag gtcatttcta	300
tttgaggatg gaggagttgc tacagccagc tggAACATTC gtctcgaagg aaattgcttc	360
atccacaatt ccattttca tggcgtaaac tttcccgctg atggaccgt aatgaaaaag	420
aagacaattt gctggataa gtccttcgaa aaaatgactg tgtctaaaga ggtgttaaga	480
ggtgatgtga ctatgtttct tatgctcgaa ggaggtggtt accacagatg ccagttcac	540
tccacttaca aaacagtgaa gcccgtcgaa ctgcccccgaa atcatgtcgta agaacatcaa	600
attgtgagga ccgacattgg ccaaagtgc aaaaaggctca cagtcaagct ggaagcacat	660
gctgcggctc atgtaaccct ttgaaggttc aacatcacca tcaccatcac taataa	716

<210> 22
<211> 765
<212> DNA
<213> Acropora aculeus

<400> 22	
ttgattgatt gaaggagaaa tatcatgatc aagccatcta tcctcaacat gtctctttca	60

aagcatggca tcacacaaga aatgccgacg aaataccata taaaaggcag tgtcaatggc	120
catgaattcg agatcgaagg tgttaggaact ggacaccctt acgaaggac acacatggcc	180
gaattagtga tcataaagcc tgcccggaaaa ccccttccat tctccttga catactgtca	240
acagtcattc aatacggaaa cagatgcttc actaagtacc ctgcagacct gcctgactat	300
ttcaagcaag catacccagg tggaaatgtca tatgaaaggt catttgtatt tcaggatgga	360
ggaattgcta cagcgagctg gaacgtcggt ctgcaggaa attgcttcat ccacaaatcc	420
acctatcttg gtgtaaactt tcctgctgat ggacccgtaa tgacaaagaa gacaattggc	480
tgggataaaag ctttggaaaa aatgactggg ttcaatgagg tgttaagagg tgatgtgact	540
gagtttctta tgctcgaagg aggtggttac cattcatgcc agtttcactc cacttacaaa	600
ccagagaagc cggtaaaact gcccccaat catgtcatag aacatcacat tgtgaggacc	660
gaccttggca agactgcaaa aggcttcatg gtcaagctgg tacaacatgc tgccgctcat	720
gttaaccctt tgaaggttca acatcaccat caccatcact aataa	765

<210> 23
<211> 765
<212> DNA
<213> *Acropora aculeus*

<400> 23	
ttgattgatt gaaggagaaa tatcatgatc aagccatcta tcctcaacat gtctctttca	60
aagcatggca tcacacaaga aatgccgacg aaataccata taaaaggcag tgtcaatggc	120
catgaattcg agatcgaagg tgttaggaact ggacaccctt acgaaggac acacatggcc	180
gaattagtga tcataaagcc tgcccggaaaa ccccttccat tctccttga catactgtca	240
acagtcattc aatacggaaa cagatgcttc actaagtacc ctgcagacct gcctgactat	300
ttcaagcaag cgtacccagg tggaaatgtca tatgaaaggt catttgtatt tcaggatgga	360
ggaattgcta cagcgagctg gaacgtcggt ctgcaggaa attgcttcat ccacaaatcc	420
acctatcttg gtgtaaactt tcctgctgat ggacccgtaa tgacaaagaa gacaattggc	480
tgggataaaag ctttggaaaa aatgactggg ttcaatgagg tgttaagagg cgatgtgact	540
gggtttctta tgctcgaagg aggtggttac cattcatgcc agtttcactc cacttacaaa	600
ccagagaagc cggtaaaact gcccccaat catgtcatag aacatcacat tgtgaggacc	660
gaccttggca agactgcaaa aggcttcatg gtcaagctgg tacaacatgc tgccgctcat	720
gtgaaccctt tgaaggttca acatcaccat caccatcact aataa	765

<210> 24

<211> 711
<212> DNA
<213> Acropora aculeus

<400> 24
ttgatttattt gaaggagaaa tatcatgagt gtgatcgcta aacaaatgac ctacaaggtt 60
tatatgtcag gcacggtaa tggacattac tttgaggctg aaggcgatgg aaaaggaaag 120
ccttacgagg gggagcagac ggtgaagctc actgtcacca agggaggacc tctgccattt 180
gcttggata ttttattcacc acagtcacag tacggaagca taccattcac caaataccct 240
gacgacatcc ctgactatgt aaagcagtca ttcccggagg gatatacatg ggagaggatc 300
atgaactttt aagatggtgc agtgtgtact gtcagcaatg attccagcat ccaaggcaac 360
tgtttcatct acaatgtcaa gttctctgggt ttgaacttcc ctcccaatgg accggttatg 420
cagaagaaga cacagggctg ggaacccaac actgagcgta tctttgcacg agatggaatg 480
ctgatagggaa acaactttat ggctctgaag tttagaaggag gtggtcaacta tttgtgtgaa 540
ttcaaatcttta cttacaaggc aaagaaggctt gtgaggatgc cagggtatca ctatgttgac 600
cgcaaaactgg atgtaaccaa tcacaacagg gattacactt ccgttgagca gcgtgaaatt 660
tccattgcac gcaaacctgt ggtcgcccat caccatcacc atcactaata a 711

<210> 25
<211> 735
<212> DNA
<213> Acropora aculeus

<400> 25
ttgatttattt gaaggagaaa tatcatggct gcgtactta gtctcaatat gagtgtgatc 60
gctaaacaaa tgacctacaa gtttatatg tcaggcacgg tcaatggaca ttacttttag 120
gtcgaaggcg atggaaaagg aaagcttac gagggggagc agacggtgaa gctcaactgtc 180
accaaggggag gacctctgcc atttgcttgg gatattttat caccgcagtc acagtacgga 240
agcataaccat tcaccaaata ccctgacgac atccctgact atgtaaagca gtcattcccg 300
gagggatata catgggagag gatcatgaac tttgaggatg gtgcagtgtg tactgtcagc 360
aatgattcca gcatccaagg caactgttcc atctacaatg tcaagttctc tggtttgaac 420
tttcctccca atggaccggatggt tatgcggaaag aagacacggg gctggaaacc caacactgag 480
cgtctcttgc acgggatgg aatgctgata ggaaacaact ttatggctct gaagtttagaa 540
ggagggatggc actatttgg tgaattcaaa tctacttaca aggcaaagaa gcctgtgagg 600
atgccagggatgtc atcactatgt tgaccgcaaa ctggatgtaa ccaatcacaa cagggattac 660
acttccgttg agcagtgtga aatttccattt gcaacgcaaac ctgtggtcgc ccatcaccat 720

caccatcaact aataaa

735

<210> 26
<211> 711
<212> DNA
<213> Acropora hyacinthus

<400> 26

ttgattgatt	gaaggagaaa	tatcatgagt	gtgatcgcta	cacaaatgac	ctacaaggtt	60
tatatgtcag	gcacggtaaa	tggacactac	tttgaggtcg	aaggcgatgg	aaaaggaaag	120
ccttacgagg	gggagcaaac	gttaaggctg	actgtcacca	agggcggacc	tctgccgtt	180
gcttggata	ttttatcacc	acagtcacag	tacggaagca	taccattcac	caagtaccct	240
gaagacatcc	ctgactatgt	gaagcagtca	ttcccgagg	gatatacatg	ggagaggatc	300
atgaactttg	aagatggtgc	agtgtgtact	gtcagcaatg	attccagcat	ccaaggcaac	360
tgtttcatct	accatgtcaa	gttctcttgt	ttgaactttc	ctcccaatgg	acctgttatg	420
cagaagaaga	cacagggctg	ggaacccaac	actgagcgtc	tctttgcacg	agatggagtt	480
ctgataggaa	acaactttat	ggccctgaag	ttagaaggag	gtggtcacta	tttgtgtgaa	540
ttcaaatacta	cttacaaggc	aaagaagcct	gtgaagatgc	ctgggtatca	ctttgttgac	600
cgcaaactgg	atgtaaccaa	tcacaacaag	gattacactt	ctgttgagca	gcgtgaaatt	660
tccattgcac	gcaaacctgt	ggtcgcccac	caccatcacc	atcactaata	a	711

<210> 27
<211> 741
<212> DNA
<213> Acropora millepora

<400> 27

ttgattgatt	gaaggagaaa	tatcatgtct	tattcaaagc	agggcatcg	acaagtaatg	60
aagacgaaat	accatatgga	aggcagtgtc	aatggccatg	aattcacat	cgaagggtgt	120
ggaactggaa	acccttacga	aggcacacag	atgtccgaat	tagtgcac	cgagcctgca	180
ggaaaaacccc	ttccattctc	cttgcacatt	ctgtcaacag	tctttcagta	tggaaacagg	240
tgcttcacaa	agtaccctga	aggaatgact	gactattca	agcaaggcatt	cccagatgga	300
atgtcatttg	aaaggtcatt	tctatatgag	gatggaggag	ttgctacagc	cagctggaac	360
atcgtcttg	agagagattg	cttcatccac	aaatccatct	atcatggcgt	taactttccc	420
gctgatggac	ccgtaatgaa	aaagaagacc	attggctggg	ataaagcctt	cgaaaaaatg	480
actgtgtcca	aagacgtttt	aagaggtgt	gtgactgagt	ttcttatgct	cgaaggaggt	540

ggttaccaca gctgccagtt tcactccact tacaaccagg agaagccgg tacactgccc 600
 cctaatcatg tcgtggaaca tcacattgtg aggactgacc ttggccaaac tgcaaaaggc 660
 ttcacagtc a gctggaaga acatgctgct gctcatgtta acccttgaa ggttcaccat 720
 caccatcacc atcactaata a 741

<210> 28
<211> 726
<212> DNA
<213> Acropora millepora

<400> 28
ttgattgatt gaaggagaaa tatcatgaag ccatttatcc tcaacatgtc ttattcaaag 60
caaggcatcg tacaagaaat gaagacgaaa taccatatgg aaggcagtgt caatggccat 120
gaattcacga tcgaaggtgt aggaactggg tacccttacg aaggaaaca gatatccgaa 180
ttagtgatca tcaaggctgc gggaaaaccc ctccattct ctttgacat actgtcatca 240
gtcttcaat atggaaacag gtgcttcaca aagtaccctg cagacatgcc tgactattc 300
aagcaagcat tcccagatgg aatgtcatat gaaaggtcat ttctatttga ggatggagca 360
gttgccacag ccagctggaa cattcgctc gaaggaaatt gttcatcca caaatccatc 420
tttcatggcg taaactttcc cgctgatgga cccgtaatga aaaagaagac aattgactgg 480
gataagtcc tcgaaaaat gactgtgtct aaagaggtgc taagaggtga cgtgactatg 540
tttcttatgc tcgaaggagg tggttctcac agatgccaat ttcaactccac ttacaaaaca 600
gagaagccgg tcacactgcc cccgaatcat gtcgtagaac atcaaattgt gaggaccgac 660
cttggccaaa ctgcaaaagg ctccacagtc aagctggaag aacatgtgc ggctcatgtt 720
agccta 726

<210> 29
<211> 761
<212> DNA
<213> Acropora millepora

<400> 29
ttgattgatt gaaggagaaa tatcatgaag ccatttatcc tcaacatgtc ttattcaaag 60
caaggcatcg tacaagaaat gaagacgaaa taccatatgg aaggcagtgt caatggccat 120
gaattcacga tcgaaggtgt aggaactggg tacccttacg aaggaaaca gatgtccgaa 180
ttagtgatca tcaaggctgc gggaaaaccc ctccattct ctttgacat actgtcatca 240
gtcttcaat atggaaacag gtgcttcaca aagtaccctg cagacatgcc tgactattc 300

aagcaagcat tcccagatgg aatgtcatat gaaaggcat ttctatttga ggatggagca	360
gttgcacag ccagctggaa cattcgtctc gaaggaaatt gcttcatcca caaatccatc	420
tttcatggcg taaactttcc cgctgatgga cccgtaatga aaaagaagac aattgactgg	480
gataagtccct tcgaaaaat gactgtgtct aaagaggtgc taagaggtga cgtgactatg	540
tttcttatgc tcgaaggagg tggttctcac agatgccaat ttcaactccac ttacaaaaca	600
gagaagccgg tcacactgcc cccgaatcat gtcgtagaac atcaaattgt gaggaccgac	660
cttggccaaa ctgcaaaagg cttcacagtc aagctggaag aacatgctgc ggctcatgta	720
accctttgaa gttcaacat caccatcacc atcactaata a	761

<210> 30
<211> 762
<212> DNA
<213> Acropora millepora

<400> 30	
ttgattgatt gaaggagaaa tatcatgagg caatctatcc tcaacatgtc ttattcaaag	60
cagggcatcg tacaagaaat gaagacgaaa taccgtatgg aaggcagtgt caatggccat	120
gaattcacga tcgaaggtgt aggaactggg tacccttacg aagggaaagca gatgtccgaa	180
ttagtgatcg tcaaggctaa gggaaagccc cttccattct ctttgacat actgtcatca	240
gtctttcaat atggaaacag gtgcttcaca aagtaccctg cagacatgcc tgactattc	300
aagcaagcat tcccagatgg aatgtcatat gaaaggcat ttctatttga ggatggagca	360
gttgctacag ccagctggaa cattcgtctc gaaggaaatt gcttcatcca caattccatc	420
tttcatggcg taaactttcc cgctgatgga cccgtaatga aaaagaagac aattggctgg	480
gataagtccct tcgaaaaat gactgtgtct aaagaggtgt taagaggtga tgtgactatg	540
tttcttatgc tcgaaggagg tggttaccac agatgccagt ttcaactccac ttacaaaaca	600
gtgaagccgg tcgaactgcc cccgaatcat gtcgtagaac atcaaattgt gaggaccgac	660
cttggccaaa gtgcaaaagg cttcacagtc aagctggaag cacatgctgc ggctcatgta	720
aaccccttga aggttcaaca tcaccatcac catcactaat aa	762

<210> 31
<211> 762
<212> DNA
<213> Acropora millepora

<400> 31	
ttgattgatt gaaggagaaa tatcatgaag ccattctatcc tcaacatgtc tcattcaaag	60

caaggcatcg cacaagtaat gaagacgaaa taccatatgg aaggcagtgt caatggccat	120
gaattcacga tcgaagggtgt aggaactgga aacccttacg aaggctcaca gatgtccgag	180
ttagtgatca ccaagcctgc aggaaaaccc cttccattct cctttgacat tctctcaaca	240
gtcttcaat atggaaacag gtgcttcaca aagtaccctg aaggaatgac tgactattc	300
aagcaagcat tcccagatgg aatgtcatat gaaaggtcat ttctatatga ggatggagga	360
gttgctacag ccagctggaa cattcgtctt gagagaggtt gcttcatcca caaatccatc	420
tatcatggcg ttaactttcc cgctgatgga cccgtaatga aaaagaagac cattggctgg	480
gataaggcct tcgaaaaaat gactgtgtcc aaagacgtgt taagaggtga tgtgactggg	540
tttcttatgc tcgaaggagg tggttaccac aactgccagt ttcactccac ttacaaacca	600
gaaaagccgg ttacactgcc cccgaatcat gtcgtggAAC atcacattgt gaggactgac	660
cttggccaaa ctgcaaaagg cttcacagcc aagctggaaag aacatgctgc ggctcatgta	720
aacccttga aggtcaaca tcaccatcac catcactaat aa	762

<210> 32
<211> 741
<212> DNA
<213> Acropora millepora

<400> 32	
ttgattgatt gaaggagaaa tatcatgtct tattcaaAGC agggcatcgt acaagaaatg	60
aagacgaaat accatatgga aggcaGtGTC aatggccATG aattcacGAT cgaaggGTa	120
ggaactgggt acccttacga agggaaacag atgtccGAAT tagtGatcat caagcctGCG	180
ggAAAACCC ttccatttCtC ctGacata ctGtcatcag tctttcaata tggAAACAGG	240
tgcttcacaa agtaccctGc agacatGcT gactattca agcaagcATT cccagatggA	300
atgtcatatg aaaggTCATT tctatttGAG gatGGAGCAG ttGctacAGC cagctggAAC	360
attcgtctcg aaggAAATTG cttcatccAC aatccatCT ttcAtGGCGT aaACTTTCCC	420
gctgatggac ccGtaatgaa aaAGAAGACA attGactGGG ataAGtCCTT cgaaaaaatG	480
actgtgtcta aagaggGTGCT aagaggTGAC gtGactatGT ttcttatGCT cgaaggAGGT	540
ggttctcaca gatGCCAATT tcactccACT tacAAAACAG agaAGCCGgt cacactGCC	600
ccGAATCATG tcgtAGAAACA tcaaATTGtG aggaccGACC ttggccAAAG tgcaAAAGGC	660
tttacAGTCA agctggAAAGC acatGctGCG gctcatGTTA acccttGAA ggttaAAACAT	720
caccatCACc ATCActAATA A	741

<210> 33

<211> 744
<212> DNA
<213> Acropora millepora

<400> 33

ttgattgatt gaaggagaaa tatcatggct ctgtcaaagc acggtttaac aaaggacatg	60
acgatgaaat accacatgga agggtctgtc gatgggcata aatttgtat cacggccac	120
ggcaatggaa atccttcga agggaaacag actatgaatc tgtgtgttgt tgaaggggaa	180
cccctgccat tctccgaaga cattttgtct gctacgtttg actacggaaa cagggcttc	240
actgaatatic ctcaaggcat gggtgacttt ttcaagaatt catgtccagc tggatacaca	300
tggcacaggt cttaactctt tgaagatgga gcagtttgc caactagtgc agatataaca	360
gtgagtgttg aggagaactg cttttatcac aattccaagt ttcatggagt gaactttcct	420
gctgatggac ctgtgatgaa aaagatgaca actaattggg agccatcctg cgagaaaaatc	480
ataccagtac ctagacaggg gatattgaaa gggatatttgc ccatgtaccc cttctgaag	540
gatgggtggc gttatcggtg ccagttcgac acaatttaca aagcaaagtc tgacccgaaa	600
gagatgccgg agtggcactt catccaacat aagctcaccc gggaaagaccg cagcgatgct	660
aagaaccaga aatggcaact ggtagaacat gctgttgctt cccgatccgc attgcccggaa	720
catcaccatc accatcacta ataa	744

<210> 34
<211> 711
<212> DNA
<213> Acropora millepora

<400> 34

ttgattgatt gaaggagaaa tatcatgagt gtgatcgcta aacaaatgac ctacaaggtt	60
tatatgtcag gcacggtcaa tggacactac tttgaggtcg aaggcgatgg aaaaggtaag	120
ccctacgagg gggagcagac ggtaaagctc actgtcacca agggcggacc tctgccattt	180
gcttggata ttttatcacc acagtgtcag tacgaaagca taccattcac caagtaccct	240
gaagacatcc ctgactatgt aaagcagtca ttccggagg gctatacatg ggagaggatc	300
atgaactttg aagatggtgc agtgtgtact gtcagcaatg attccagcat ccaaggcaac	360
tgtttcatct accatgtcaa gttctcttgt ttgaactttc ctcccaatgg acctgtcatg	420
cagaagaaga cacagggctg ggaacccaaac actgagcgtc tctttgcacg agatggaatg	480
ctgcttaggaa acaactttat ggctctgaag tttagaaggag gcggtcaacta tttgtgtgaa	540
ttcaaaacta cttacaaggc aaagaagcct gtgaagatgc cagggtatca ctatgttgac	600
cgcaaactgg atgtaaccaa tcacaacaag gattacactt cggttgagca gtgtgaaatt	660

tccattgcac gcaaacctgt ggtcgccccat caccatcacc atcactaata a 711

<210> 35

<211> 765

<212> DNA

<213> Acropora nobilis

<400> 35

ttgattgatt gaaggagaaa tatcatgatc aagccatcta tcctcaacat gtcttattca 60

aagcaaggca tcgcacaagt aatgaagacg aaataccata tggaaggcag tgtcaatggc 120

catgaattca cgatcgaagg tgttaggaact ggaaaccctt acgaaggcac acagatgtcc 180

gaatttagtga tcaccaagcc tgcaggaaaa ccccttccat tctccttga cattctgtca 240

acagtcttc aatatggaaa caggtgcttc acaaagtacc ctgaaggaat gactgactat 300

ttcaagcaag cattcccaga tggaatgtca tgtgaaaggt cattttata tgaggatgga 360

ggagttgcta cagccagctg gaacattcgt cttgagagag attgcttcat ccacaaatcc 420

atctatcatg gcttaactt tcccgctgat ggacccgtaa tgaaaaagaa gaccattggc 480

tgggataaaag ctttcgaaaa aatgactgtg tccaaagacg tgttaagagg tgatgtgact 540

gagtttctta tgctcgaagg aggtggttac cacagctgcc agtttcaactc cacttacaaa 600

ccagaaaaagc cggctgcact gcccccaat catgtcgtag aacatcacat tgtgaggact 660

gaccttggcc aaagtgcaaa aggcttcaca gtcaagctgg aagaacatgc tgcggctcat 720

gttaaccctt tgaaggttca acatcaccat caccatcact aataa 765

<210> 36

<211> 741

<212> DNA

<213> Acropora nobilis

<400> 36

ttgattgatt gaaggagaaa tatcatgtct tattcaaagc agggcatcgc acaagtaatg 60

aagacgaaat accatatgga aggcagtgtc aatggccatg aattcacgtat cgaagggtgt 120

ggaactggaa acccttacga aggcacacac agtccgaat tggtgatcac caagcctgca 180

ggaaaaaccc ttccattctc ctttgacatt ctgtcaacag tctttcaata tgaaaacagg 240

tgcttcacaa agtaccctga aggaatgact gactattca agcaagcatt cccagatgga 300

atgtcatatg aaaggtcatt tcttatgag gatggaggag ttgctacagc cggctggAAC 360

attcgtcttg agagagattg cttcatccac aaatccatct atcatggcgt taactttccc 420

gctgatggac ccgtaatgaa gaagaagacc attggctggg ataaaggcctt cgaaaaaatg 480

actgtgtcca aagacgtgtt aagaggtgat gtgactgggt ttcttatgct cgaaggaggt	540
ggttaccaca gctgccagtt tcactccact tacaaaccag aaaagccgc tgcaactgccc	600
ccgaatcatg tcgtagaaca tcacattgtg aggactgacc ttggccaaag tgcaaaaggc	660
ttcacagtca agctggaaga acatgctgcg gctcatgtta acccttgaa ggttaacat	720
caccatcacc atcactaata a	741

<210> 37
<211> 741
<212> DNA
<213> Acropora nobilis

<400> 37	
ttgattgatt gaaggagaaa tatcatgtct tattcaaagc agggcatcgc acaagaaatg	60
aagacgaaat accatatgga aggcaigtgtc aatgccatg aattcacggc cgaagggtgt	120
gggactgggt acccttacga agggaaacag atgtccgaat tagtgcacat cgagcctgcg	180
ggaaaacccc ttccattctc ctttgacata ctgtcatcag tctttcagta tggaaacagg	240
tgcttcacaa aataccctgc agacatgcct gactattca agcaagcatt tccagatgga	300
atgtcatatg aaaggcatt tctattttag gatggagcag ttgctacagc cagctggaaa	360
attcgtctcg aaggaaattt cttcatccac aactccatct ttaatggcgt aaactttccc	420
gctgatggac ccgtaatgga aaagaagaca attggctggg ataagtccct cgaaaaaatg	480
actgtgtcta aagaggtgct aagaggtgat gtgactatgt ttcttatgct cgaaggaggt	540
ggttctcaca gatgccagtt tcactccact tacaaaacag agaagccggc cacactgccc	600
ccgaatcatg tcgtagaaca tcaaattgtg aggaccgacc ttggccaaag tgcaaaaggc	660
tttacagtca agctggaagc acatgctgcg gctcatgtta acccttgaa ggttaaacat	720
caccatcacc atcactaata a	741

<210> 38
<211> 726
<212> DNA
<213> Agaricia fragilis

<400> 38	
ttgattgatt gaaggagaaa tatcatgagt gtgattgtaa aggaaatgat gactaagcta	60
cacatggaag gtactgttaa cgggcacgcc cttacaattt aaggcaaaagg aaaaggcgat	120
ccttacaatg gagtgacgtc tatgaacctt gacgtcaaag gcgggtgcgc tttgccgttc	180
tcttcgatc tcttgacgcc agcattcatg tacggcaaca gagtgttcgc gaagtatcca	240
gaagacatac cagactttt caagcaggtg tttcctgaag ggtaccactg ggaaagaagt	300

attaccttg aagatcaggc cgtttgtacg gcaaccagcc acataaggct ggaccagaaa 360
gagatgtgtt ttatctatga cgtccgttt cacggtgtga actttcccgc caatggccca 420
atcatgcaga agaagatact gggatgggag ccatccactg agaaaatgta tgcacgtgat 480
ggggtgctga agggtgatgt taatatgact ctgcgtgtt aaggaggtgg ccattaccga 540
gctgacttca gaactactta caaagcaaag aagccagtca acctgccagg ctatcacttc 600
atagaccacc gcattgagat taccaagcac agcaaagatt acaccaatgt tgctttgtat 660
gaggcagcag ttgctcgta ttctccgctg cctaaggttt ctcacatcca tcaccatcac 720
taataa 726

<210> 39
<211> 725
<212> DNA
<213> Agaricia fragilis

<400> 39
ttgattgatt gaaggagaaa tatcatgagt gtgattgtaa aggaaatgt gactaagcta 60
cacatggaag gtactgttaa cgggcacgccc tttacaattt aaggcaaagg aaaaggcgat 120
ccttacaatg gagtgcatgc tatgaacctt gacgtcaaag gcgggtgcgc tttgccgttc 180
tcttcgatc tcttgacgccc agcattcatg tacggcaaca gagtgttcac gaagtatcca 240
gaagacatac cagactttt caagcaggtg tttcctgaag ggtaccactg gaaaagaagt 300
attaccttg aagatcaggc cgtttgtacg gcaaccagcc acataaggct ggaccagaaa 360
gagatgtgtt ttatctatga cgtccgttt cacggtgtga actttcccgc caatggccca 420
atcatgcaga agaagatact gggatgggag ccatccactg agaaaatgta tgcacgtgat 480
ggggtgctga agggtgatgt taatatgact ctgcgtgtt aaggaggtgg ccattaccga 540
gctgacttca gaactactta caaagcaaag aagccagtca acctgccagg ctatcacttc 600
atagaccacc gcattgagat taccaagcac agcaaagatt acaccaatgt tgctttgtat 660
gaggcagcag ttgctcgta ttctccgctg cctaaggttt ctcacatcca tcacatcac 720
aataa 725

<210> 40
<211> 726
<212> DNA
<213> Agaricia fragilis

<400> 40
ttgattgatt gaaggagaaa tatcatgagt gtgattgtaa aggaaatgt gactaagcta 60

cacatggaaag gtactgttaa cgggcacgcc tttacaattg aaggcaaagg aaaaggcgat	120
ccttacaatg gagtgcaagtc tatgaacctt gacgtcaaag gcggtgccgc tttccgttc	180
tcttcgatc tcttgacgcc agcattcatg tacggcaaca gagtgttcac gaagtatcca	240
gaagacatac cagactttt caagcaggtg ttccctgaag ggtaccactg ggaaagaagt	300
attacctttg aagatcaggc cgtttgtacg gcaaccagcc acataaggct ggaccagaaa	360
gagatgtgtt ttatctatga cgtccgttt cacggtgtga actttccgc caatggccca	420
atcatgcaga agaagatact gggatgggag ccatccactg agaaaatgta tgcacgtat	480
ggggtgctga agggtgatgt taatatgact ctgcgtttt aaggaggtgg ccattaccga	540
gctgacttca gaactactta caaagcaaag aagccagtca acctgccagg ctatcacttc	600
atagaccacc gcattgagat taccaagcac agcaaagatt acaccaatgt tgctttgtat	660
ggggcagcag ttgctcgtca ttctccgctg cctaaggttt ctcatcacca tcaccatcac	720
taataa	726

<210> 41
<211> 725
<212> DNA
<213> Agaricia fragilis

<400> 41	
ttgattgatt gaagaaaaat atcatgagtg tgattgtaaa ggaaatgtatg actaagctac	60
acatggaaagg tactgttaac gggcacgcct ttacaattga aggcaaagga aaaggcgatc	120
cttacaatgg agtgcagtct atgaaccttg acgtcaaagg cggtgcgcct ttgcgttct	180
cttgcgtatct cttgacgcca gcattcatgt acggcaacag agtgttcacg aagtatccag	240
aagacatacc agacttttc aagcaggtgt ttccctgaagg gtaccactgg gaaaagaagt	300
ttacctttga agatcaggcc gtttgtacgg caaccagcca cataaggctg gaccagaaag	360
agatgtgttt tatctatgac gtccgttttc acggtgtgaa ctttcccgc aatggcccaa	420
tcatgcagaa gaagatactg ggatgggagc catccactga gaaaatgtat gcacgtatg	480
gggtgctgaa gggtgatgtt aatgtgactc ttgcgtttga aggaggtggc cattaccgag	540
ctgacttcaag aactacttac aaagcaaaga agccagtcaa cctgccaggc tatcacttca	600
tagaccaccc cattgagatt accaagcaca gcaaagatta caccaatgtt gctttgtatg	660
aggcagcagt tgctcgtcat ttccgctgc ctaagggtgc tcatcacca caccatca	720
aataa	725

<210> 42

<211> 726
<212> DNA
<213> Agaricia fragilis

<400> 42

ttgattgatt gaaggagaaa tatcatgagt gtgattgtaa aggaaatgtat gactaagctat 60
cacatggaag gtactgttaa cgggcacgcc tttacaattt aaggcaaaagg agagggcgat 120
ccttacaatg gagtgcatgc tatgaacctt gacgtcaaag gcgggtgcgc tttgcgcgttc 180
tctttcgatc tcttgacgcc agcattcatg tacggcaaca gagtgttcac gaagtatcca 240
gaagacatac cagactttt caagcaggtg tttcctgaag ggtaccactg ggaaagaagt 300
attaccttg aagatcaggc cgtttgcgtacg gctaccagcc acataaggct ggaccagaaa 360
gagatgtgtt ttatctatga cgtccgtttt cacgggtgtga actttcccgc caatggccca 420
atcatgcaga agaagatact gggatgggag ccatccactg agaaaatgtat tgcacgtat 480
gggggtgctga aggggtgatgt taatatgact ctgcgtgtt aaggaggtgg ccattaccga 540
gctgacttca gaactactta caaagcaaag aagccagtca acctgcccagg ctatcacttc 600
atagaccacc gcattgagat taccaagcac agcaaagatt acaccaatgtat tgctttgtat 660
ggggcagcag ttgcgtcgtca ttctccgcgtc cctaagggttgc tcatcacca tcaccatcac 720
taataa 726

<210> 43
<211> 726
<212> DNA
<213> Agaricia fragilis

<400> 43

ttgattgatt gaaggagaaa tatcatgagt gtgattgtaa aggaaatgtat gactaagctat 60
cacatggaag gtactgttaa cgggcacgcc tttacaattt aaggcaaaagg aaaaggcgat 120
ccttacaatg gagtgcatgc tatgaacctt gacgtcaaag gcgggtgcgc tttgcgcgttc 180
tctttcgatc tcttgacgcc agcattcatg tacggcaaca gagtgttcac gaagtatcca 240
gaagacatac cagactttt caagcaggtg tttcctgaag ggtaccactg ggaaagaagt 300
attaccttg aagatcaggc cgtttgcgtacg gcaaccagcc acataaggct ggaccagaaa 360
gagatgtgtt ttatctatga cgtccgtttt cacgggtgtga actttcccgc caatggccca 420
atcatgcaga agaagatact gggatgggag ccatccactg agaaaatgtat tgcacgtat 480
gggggtgctga aggggtgatgt taatatgact ctgcgtgtt aaggaggtgg ccattaccga 540
gctgacttca gaactactta caaagcaaag aagccagtca acctgcccagg ctatcacttc 600
atagaccacc gcattgagat taccaagcac agcaaagatt acaccaatgtat tgctttgtat 660

gaggcagcag ttgctcgta ttctccgctg cctaagggttg ctcatcacca tcaccatcac	720
taataa	726

<210> 44
<211> 726
<212> DNA
<213> Agaricia fragilis

<400> 44	
ttgattgatt gaaggagaaa tatcatgagt gtgattgtaa agggaaatgt gactaagcta	60
cacatggaag gtactgttaa cgggcacgcc tttacaattt aaggcaaagg aaaaggcgat	120
ccttacaatg gagtgcagtc tatgaacctt gacgtcaaag gcgggtgcgcc tttggccgttc	180
tctttcgatc tcttgacgcc agcattcatg tacggcaaca gagtgttcac gaagtatcca	240
gaagacatac cagactttt caagcaggtt tttcctgaag ggtaccactg ggaaagaagt	300
attacctttt aagatcaggc cgccccgtt gcaaccagcc acataaggct ggaccagaaa	360
gagatgtgtt ttatctatga cgtccgttt cacgggtgtt actttccgc caatggccc	420
atcatgcaga agaagatact gggatgggag ccattccactg agaaaatgtt tgcacgttat	480
gggggtgtt aggggtatgt taatacgact ctttgtttt aaggagggtgg ccattaccga	540
gctgacttca gaactactta caaagcaaag aagccagtca acctgccagg ctatcacttc	600
atagaccacc gcatttagat taccaagcac agcaaagatt acaccaatgt tgctttgtat	660
gaggcagcag ttgctcgta ttctccgctg cctaagggttg ctcatcacca tcaccatcac	720
taataa	726

<210> 45
<211> 237
<212> PRT
<213> Acropora aculeus

<400> 45

Met Ser Tyr Ser Lys Gln Gly Ile Val Gln Glu Met Lys Thr Lys Tyr			
1	5	10	15

Arg Met Glu Gly Ser Val Asn Gly His Glu Phe Thr Ile Glu Gly Val		
20	25	30

Gly Thr Gly Tyr Pro Tyr Glu Gly Lys Gln Met Ser Glu Leu Val Ile		
35	40	45

Ile Lys Pro Lys Gly Lys Pro Leu Pro Phe Ser Phe Asp Ile Leu Ser		
50	55	60

Ser Val Phe Gln Tyr Gly Asn Arg Cys Phe Thr Lys Tyr Pro Ala Asp
65 70 75 80

Met Pro Asp Tyr Phe Lys Gln Ala Phe Pro Asp Gly Met Ser Tyr Glu
85 90 95

Arg Ser Phe Leu Phe Glu Asp Gly Ala Val Ala Thr Ala Ser Trp Asn
100 105 110

Ile Arg Leu Glu Gly Asn Cys Phe Ile His Asn Ser Ile Phe His Gly
115 120 125

Val Asn Phe Pro Asp Asp Gly Pro Val Met Lys Lys Lys Thr Ile Gly
130 135 140

Trp Asp Lys Ser Phe Glu Lys Met Thr Val Ser Lys Glu Val Leu Arg
145 150 155 160

Gly Asp Val Thr Met Phe Leu Met Leu Glu Gly Gly Tyr His Arg
165 170 175

Cys Gln Phe His Ser Thr Tyr Lys Thr Glu Lys Pro Val Glu Leu Pro
180 185 190

Pro Asn His Val Val Glu His Gln Ile Val Arg Thr Asp Leu Gly Gln
195 200 205

Ser Ala Lys Gly Phe Thr Val Lys Leu Glu Ala His Ala Ala Ala His
210 215 220

Val Asn Pro Leu Lys Val Gln Gln His His His His His
225 230 235

<210> 46
<211> 237
<212> PRT
<213> Acropora aculeus

<400> 46

Met Ser Leu Ser Lys His Gly Ile Thr Gln Glu Met Pro Thr Lys Tyr
1 5 10 15

His Met Lys Gly Ser Val Asn Gly His Glu Phe Glu Ile Glu Gly Val
20 25 30

Gly Thr Gly His Pro Tyr Glu Gly Thr His Met Ala Glu Leu Val Ile
35 40 45

Ile Lys Pro Ala Gly Lys Pro Leu Pro Phe Ser Phe Asp Ile Leu Ser
50 55 60

Thr Val Ile Gln Tyr Gly Asn Arg Cys Phe Thr Lys Tyr Pro Ala Asp
65 70 75 80

Leu Pro Asp Tyr Phe Lys Gln Ala Tyr Pro Gly Gly Met Ser Tyr Glu
85 90 95

Arg Ser Phe Val Tyr Gln Asp Gly Gly Ile Ala Thr Ala Ser Trp Asn
100 105 110

Val Ser Leu Glu Gly Asn Cys Phe Ile His Lys Ser Thr Tyr Leu Gly
115 120 125

Val Asn Phe Pro Ala Asp Gly Pro Val Met Thr Lys Lys Thr Ile Gly
130 135 140

Trp Asp Lys Ala Phe Glu Lys Met Thr Gly Phe Asn Glu Val Leu Arg
145 150 155 160

Gly Asp Val Thr Glu Phe Leu Met Leu Glu Gly Gly Tyr His Ser
165 170 175

Cys Gln Phe His Ser Thr Tyr Lys Pro Glu Lys Pro Val Glu Leu Pro
180 185 190

Pro Asn His Val Ile Glu His His Ile Val Arg Thr Asp Leu Gly Lys
195 200 205

Thr Ala Lys Gly Phe Met Val Lys Leu Val Gln His Ala Ala Ala His
210 215 220

Val Asn Thr Leu Lys Val Gln His His His His His His
225 230 235

<210> 47

<211> 265

<212> PRT

<213> Acropora aculeus

<400> 47

Met Thr Met Ile Thr Pro Ser Tyr Leu Gly Asp Thr Ile Glu Tyr Ser
1 5 10 15

Ser Tyr Ala Ser Asn Ala Leu Gly Ala Leu Pro Tyr Gly Arg Pro Ala
20 25 30

Gly Gly Arg Thr Ser Asp Leu Ser Tyr Ser Lys Gln Gly Ile Val Gln
35 40 45

Glu Met Lys Thr Lys Tyr Arg Met Glu Gly Ser Val Asn Gly His Glu
50 55 60

Phe Thr Ile Glu Gly Val Gly Thr Gly Tyr Pro Tyr Glu Gly Lys Gln
65 70 75 80

Met Ser Glu Leu Val Ile Val Lys Pro Lys Gly Lys Pro Leu Pro Phe
85 90 95

Ser Phe Asp Ile Leu Ser Ser Val Phe Gln Tyr Gly Asn Arg Cys Phe
100 105 110

Thr Lys Tyr Pro Ala Asp Met Pro Asp Tyr Phe Lys Gln Ala Phe Pro
115 120 125

Asp Gly Met Ser Tyr Glu Arg Ser Phe Leu Phe Glu Asp Gly Ala Val
130 135 140

Ala Thr Ala Ser Trp Asn Ile Arg Leu Glu Gly Asn Cys Phe Ile His
145 150 155 160

Asn Ser Ile Phe His Gly Val Asn Phe Pro Ala Asp Gly Pro Val Met
165 170 175

Lys Lys Lys Thr Ile Gly Trp Asp Lys Ser Phe Glu Lys Met Thr Val
180 185 190

Ser Lys Glu Val Leu Arg Gly Asp Val Thr Met Phe Leu Met Leu Glu
195 200 205

Gly Gly Gly Tyr His Arg Cys Gln Phe His Ser Thr Tyr Lys Thr Val
210 215 220

Lys Pro Val Glu Leu Pro Pro Asn His Val Val Glu His Gln Ile Val
225 230 235 240

Arg Thr Asp Leu Gly Gln Ser Ala Lys Gly Phe Thr Val Lys Leu Glu
245 250 255

Ala His Ala Ala Ala His Val Thr Leu
260 265

<210> 48

<211> 237

<212> PRT

<213> Acropora aculeus

<400> 48

Met Ser Leu Ser Lys His Gly Ile Thr Gln Glu Met Pro Thr Lys Tyr
1 5 10 15

His Met Lys Gly Ser Val Asn Gly His Glu Phe Glu Ile Glu Gly Val
20 25 30

Gly Thr Gly His Pro Tyr Glu Gly Thr His Met Ala Glu Leu Val Ile
35 40 45

Ile Lys Pro Ala Gly Lys Pro Leu Pro Phe Ser Phe Asp Ile Leu Ser
50 55 60

Thr Val Ile Gln Tyr Gly Asn Arg Cys Phe Thr Lys Tyr Pro Ala Asp
65 70 75 80

Leu Pro Asp Tyr Phe Lys Gln Ala Tyr Pro Gly Gly Met Ser Tyr Glu
85 90 95

Arg Ser Phe Val Phe Gln Asp Gly Gly Ile Ala Thr Ala Ser Trp Asn
100 105 110

Val Gly Leu Glu Gly Asn Cys Phe Ile His Lys Ser Thr Tyr Leu Gly
115 120 125

Val Asn Phe Pro Ala Asp Gly Pro Val Met Thr Lys Lys Thr Ile Gly
 130 135 140

Trp Asp Lys Ala Phe Glu Lys Met Thr Gly Phe Asn Glu Val Leu Arg
 145 150 155 160

Gly Asp Val Thr Glu Phe Leu Met Leu Glu Gly Gly Tyr His Ser
 165 170 175

Cys Gln Phe His Ser Thr Tyr Lys Pro Glu Lys Pro Val Lys Leu Pro
 180 185 190

Pro Asn His Val Ile Glu His His Ile Val Arg Thr Asp Leu Gly Lys
 195 200 205

Thr Ala Lys Gly Phe Met Val Lys Leu Val Gln His Ala Ala Ala His
 210 215 220

Val Asn Pro Leu Lys Val Gln His His His His His His
 225 230 235

<210> 49
<211> 237
<212> PRT
<213> Acropora aculeus

<400> 49

Met Ser Leu Ser Lys His Gly Ile Thr Gln Glu Met Pro Thr Lys Tyr
 1 5 10 15

His Met Lys Gly Asn Val Asn Gly His Glu Phe Glu Ile Glu Gly Val
 20 25 30

Gly Thr Gly His Pro Tyr Glu Gly Thr His Met Ala Glu Leu Val Ile
 35 40 45

Ile Lys Pro Ala Gly Lys Pro Leu Pro Phe Ser Phe Asp Ile Leu Ser
 50 55 60

Thr Val Ile Gln Tyr Gly Asn Arg Cys Phe Thr Lys Tyr Pro Ala Asp
 65 70 75 80

Leu Pro Asp Tyr Phe Lys Gln Ala Tyr Pro Gly Gly Met Ser Tyr Glu
 85 90 95

Arg Ser Phe Val Phe Gln Asp Gly Gly Ile Ala Thr Ala Ser Trp Asn
 100 105 110

Val Gly Leu Glu Gly Asn Cys Phe Ile His Lys Ser Thr Tyr Leu Gly
 115 120 125

Val Asn Phe Pro Ala Asp Gly Pro Val Met Thr Lys Lys Thr Ile Gly
 130 135 140

Trp Asp Lys Ala Phe Glu Lys Met Thr Gly Phe Asn Glu Val Leu Arg
 145 150 155 160

Gly Asp Val Thr Gly Phe Leu Met Leu Glu Gly Gly Tyr His Ser
165 170 175

Cys Gln Phe His Ser Thr Tyr Lys Pro Glu Lys Pro Val Lys Leu Pro
180 185 190

Pro Asn His Val Ile Glu His His Ile Val Arg Thr Asp Leu Gly Lys
195 200 205

Thr Ala Lys Gly Phe Met Val Lys Leu Val Gln His Ala Ala Ala His
210 215 220

Val Asn Pro Leu Lys Val Gln His His His His His
225 230 235

<210> 50

<211> 227

<212> PRT

<213> Acropora aculeus

<400> 50

Met Ser Val Ile Ala Lys Gln Met Thr Tyr Lys Val Tyr Met Ser Gly
1 5 10 15

Thr Val Asn Gly His Tyr Phe Glu Val Glu Gly Asp Gly Lys Gly Lys
20 25 30

Pro Tyr Glu Gly Glu Gln Thr Val Lys Leu Thr Val Thr Lys Gly Gly
35 40 45

Pro Leu Pro Phe Ala Trp Asp Ile Leu Ser Pro Gln Ser Gln Tyr Gly
50 55 60

Ser Ile Pro Phe Thr Lys Tyr Pro Asp Asp Ile Pro Asp Tyr Val Lys
65 70 75 80

Gln Ser Phe Pro Glu Gly Tyr Thr Trp Glu Arg Ile Met Asn Phe Glu
85 90 95

Asp Gly Ala Val Cys Thr Val Ser Asn Asp Ser Ser Ile Gln Gly Asn
100 105 110

Cys Phe Ile Tyr Asn Val Lys Phe Ser Gly Leu Asn Phe Pro Pro Asn
115 120 125

Gly Pro Val Met Gln Lys Lys Thr Gln Gly Trp Glu Pro Asn Thr Glu
130 135 140

Arg Leu Phe Ala Arg Asp Gly Met Leu Ile Gly Asn Asn Phe Met Ala
145 150 155 160

Leu Lys Leu Glu Gly Gly His Tyr Leu Cys Glu Phe Lys Ser Thr
165 170 175

Tyr Lys Ala Lys Lys Pro Val Arg Met Pro Gly Tyr His Tyr Val Asp
180 185 190

Arg Lys Leu Asp Val Thr Asn His Asn Arg Asp Tyr Thr Ser Val Glu
 195 200 205

Gln Arg Glu Ile Ser Ile Ala Arg Lys Pro Val Val Ala His His His
 210 215 220

His His His
 225

<210> 51
<211> 227
<212> PRT
<213> Acropora aculeus

<400> 51

Met Ser Val Ile Ala Lys Gln Met Thr Tyr Lys Val Tyr Met Ser Gly
 1 5 10 15

Thr Val Asn Gly His Tyr Phe Glu Val Glu Gly Asp Gly Lys Gly Lys
 20 25 30

Pro Tyr Glu Gly Glu Gln Thr Val Lys Leu Thr Val Thr Lys Gly Gly
 35 40 45

Pro Leu Pro Phe Ala Trp Asp Ile Leu Ser Pro Gln Ser Gln Tyr Gly
 50 55 60

Ser Ile Pro Phe Thr Lys Tyr Pro Asp Asp Ile Pro Asp Tyr Val Lys
 65 70 75 80

Gln Ser Phe Pro Glu Gly Tyr Thr Trp Glu Arg Ile Met Asn Phe Glu
 85 90 95

Asp Gly Ala Val Cys Thr Val Ser Asn Asp Ser Ser Ile Gln Gly Asn
 100 105 110

Cys Phe Ile Tyr Asn Val Lys Phe Ser Gly Leu Asn Phe Pro Pro Asn
 115 120 125

Gly Pro Val Met Arg Lys Lys Thr Arg Gly Trp Glu Pro Asn Thr Glu
 130 135 140

Arg Leu Phe Ala Arg Asp Gly Met Leu Ile Gly Asn Asn Phe Met Ala
 145 150 155 160

Leu Lys Leu Glu Gly Gly His Tyr Leu Cys Glu Phe Lys Ser Thr
 165 170 175

Tyr Lys Ala Lys Lys Pro Val Arg Met Pro Gly Tyr His Tyr Val Asp
 180 185 190

Arg Lys Leu Asp Val Thr Asn His Asn Arg Asp Tyr Thr Ser Val Glu
 195 200 205

Gln Cys Glu Ile Ser Ile Ala Arg Lys Pro Val Val Ala His His His
 210 215 220

His His His
225

<210> 52
<211> 227
<212> PRT
<213> Acropora hyacinthus

<400> 52

Met Ser Val Ile Ala Thr Gln Met Thr Tyr Lys Val Tyr Met Ser Gly
1 5 10 15

Thr Val Asn Gly His Tyr Phe Glu Val Glu Gly Asp Gly Lys Gly Lys
20 25 30

Pro Tyr Glu Gly Glu Gln Thr Val Arg Leu Thr Val Thr Lys Gly Gly
35 40 45

Pro Leu Pro Phe Ala Trp Asp Ile Leu Ser Pro Gln Ser Gln Tyr Gly
50 55 60

Ser Ile Pro Phe Thr Lys Tyr Pro Glu Asp Ile Pro Asp Tyr Val Lys
65 70 75 80

Gln Ser Phe Pro Glu Gly Tyr Thr Trp Glu Arg Ile Met Asn Phe Glu
85 90 95

Asp Gly Ala Val Cys Thr Val Ser Asn Asp Ser Ser Ile Gln Gly Asn
100 105 110

Cys Phe Ile Tyr His Val Lys Phe Ser Gly Leu Asn Phe Pro Pro Asn
115 120 125

Gly Pro Val Met Gln Lys Lys Thr Gln Gly Trp Glu Pro Asn Thr Glu
130 135 140

Arg Leu Phe Ala Arg Asp Gly Val Leu Ile Gly Asn Asn Phe Met Ala
145 150 155 160

Leu Lys Leu Glu Gly Gly His Tyr Leu Cys Glu Phe Lys Ser Thr
165 170 175

Tyr Lys Ala Lys Lys Pro Val Lys Met Pro Gly Tyr His Phe Val Asp
180 185 190

Arg Lys Leu Asp Val Thr Asn His Asn Lys Asp Tyr Thr Ser Val Glu
195 200 205

Gln Arg Glu Ile Ser Ile Ala Arg Lys Pro Val Val Ala His His His
210 215 220

His His His
225

<210> 53
<211> 237

<212> PRT

<213> Acropora millepora

<400> 53

Met Ser Tyr Ser Lys Gln Gly Ile Ala Gln Val Met Lys Thr Lys Tyr
 1 5 10 15

His Met Glu Gly Ser Val Asn Gly His Glu Phe Thr Ile Glu Gly Val
 20 25 30

Gly Thr Gly Asn Pro Tyr Glu Gly Thr Gln Met Ser Glu Leu Val Ile
 35 40 45

Thr Glu Pro Ala Gly Lys Pro Leu Pro Phe Ser Phe Asp Ile Leu Ser
 50 55 60

Thr Val Phe Gln Tyr Gly Asn Arg Cys Phe Thr Lys Tyr Pro Glu Gly
 65 70 75 80

Met Thr Asp Tyr Phe Lys Gln Ala Phe Pro Asp Gly Met Ser Phe Glu
 85 90 95

Arg Ser Phe Leu Tyr Glu Asp Gly Gly Val Ala Thr Ala Ser Trp Asn
 100 105 110

Ile Arg Leu Glu Arg Asp Cys Phe Ile His Lys Ser Ile Tyr His Gly
 115 120 125

Val Asn Phe Pro Ala Asp Gly Pro Val Met Lys Lys Lys Thr Ile Gly
 130 135 140

Trp Asp Lys Ala Phe Glu Lys Met Thr Val Ser Lys Asp Val Leu Arg
 145 150 155 160

Gly Asp Val Thr Glu Phe Leu Met Leu Glu Gly Gly Tyr His Ser
 165 170 175

Cys Gln Phe His Ser Thr Tyr Lys Pro Glu Lys Pro Val Thr Leu Pro
 180 185 190

Pro Asn His Val Val Glu His His Ile Val Arg Thr Asp Leu Gly Gln
 195 200 205

Thr Ala Lys Gly Phe Thr Val Lys Leu Glu Glu His Ala Ala Ala His
 210 215 220

Val Asn Pro Leu Lys Val His His His His His His
 225 230 235

<210> 54

<211> 311

<212> PRT

<213> Acropora millepora

<400> 54

Met Ser Tyr Ser Lys Gln Gly Ile Val Gln Glu Met Lys Thr Lys Tyr

1 5 10 15

His Met Glu Gly Ser Val Asn Gly His Glu Phe Thr Ile Glu Gly Val
20 25 30

Gly Thr Gly Tyr Pro Tyr Glu Gly Lys Gln Ile Ser Glu Leu Val Ile
35 40 45

Ile Lys Pro Ala Gly Lys Pro Leu Pro Phe Ser Phe Asp Ile Leu Ser
50 55 60

Ser Val Phe Gln Tyr Gly Asn Arg Cys Phe Thr Lys Tyr Pro Ala Asp
65 70 75 80

Met Pro Asp Tyr Phe Lys Gln Ala Phe Pro Asp Gly Met Ser Tyr Glu
85 90 95

Arg Ser Phe Leu Phe Glu Asp Gly Ala Val Ala Thr Ala Ser Trp Asn
100 105 110

Ile Arg Leu Glu Gly Asn Cys Phe Ile His Lys Ser Ile Phe His Gly
115 120 125

Val Asn Phe Pro Ala Asp Gly Pro Val Met Lys Lys Lys Thr Ile Asp
130 135 140

Trp Asp Lys Ser Phe Glu Lys Met Thr Val Ser Lys Glu Val Leu Arg
145 150 155 160

Gly Asp Val Thr Met Phe Leu Met Leu Glu Gly Gly Ser His Arg
165 170 175

Cys Gln Phe His Ser Thr Tyr Lys Thr Glu Lys Pro Val Thr Leu Pro
180 185 190

Pro Asn His Val Val Glu His Gln Ile Val Arg Thr Asp Leu Gly Gln
195 200 205

Thr Ala Lys Gly Phe Thr Val Lys Leu Glu His Ala Ala Ala His
210 215 220

Val Ser Leu Ile Pro Arg Pro Trp Arg Pro Gly Ala Cys Asp Val Gly
225 230 235 240

Pro Asn Ser Pro Tyr Ser Glu Ser Tyr Tyr Asn Ser Leu Ala Val Val
245 250 255

Leu Gln Arg Arg Asp Trp Glu Asn Pro Gly Val Thr Gln Leu Asn Arg
260 265 270

Leu Ala Ala His Pro Pro Phe Ala Ser Trp Arg Asn Ser Glu Glu Ala
275 280 285

Arg Thr Asp Arg Pro Ser Gln Gln Leu Arg Ser Leu Asn Gly Glu Trp
290 295 300

Thr Arg Pro Val Ala Ala His
305 310

<210> 55
<211> 227
<212> PRT
<213> Acropora millepora

<400> 55

Met Ser Tyr Ser Lys Gln Gly Ile Val Gln Glu Met Lys Thr Lys Tyr
1 5 10 15

His Met Glu Gly Ser Val Asn Gly His Glu Phe Thr Ile Glu Gly Val
20 25 30

Gly Thr Gly Tyr Pro Tyr Glu Gly Lys Gln Met Ser Glu Leu Val Ile
35 40 45

Ile Lys Pro Ala Gly Lys Pro Leu Pro Phe Ser Phe Asp Ile Leu Ser
50 55 60

Ser Val Phe Gln Tyr Gly Asn Arg Cys Phe Thr Lys Tyr Pro Ala Asp
65 70 75 80

Met Pro Asp Tyr Phe Lys Gln Ala Phe Pro Asp Gly Met Ser Tyr Glu
85 90 95

Arg Ser Phe Leu Phe Glu Asp Gly Ala Val Ala Thr Ala Ser Trp Asn
100 105 110

Ile Arg Leu Glu Gly Asn Cys Phe Ile His Lys Ser Ile Phe His Gly
115 120 125

Val Asn Phe Pro Ala Asp Gly Pro Val Met Lys Lys Lys Thr Ile Asp
130 135 140

Trp Asp Lys Ser Phe Glu Lys Met Thr Val Ser Lys Glu Val Leu Arg
145 150 155 160

Gly Asp Val Thr Met Phe Leu Met Leu Glu Gly Gly Ser His Arg
165 170 175

Cys Gln Phe His Ser Thr Tyr Lys Thr Glu Lys Pro Val Thr Leu Pro
180 185 190

Pro Asn His Val Val Glu His Gln Ile Val Arg Thr Asp Leu Gly Gln
195 200 205

Thr Ala Lys Gly Phe Thr Val Lys Leu Glu Glu His Ala Ala Ala His
210 215 220

Val Thr Leu
225

<210> 56
<211> 237
<212> PRT
<213> Acropora millepora

<400> 56

Met Ser Tyr Ser Lys Gln Gly Ile Val Gln Glu Met Lys Thr Lys Tyr
 1 5 10 15

Arg Met Glu Gly Ser Val Asn Gly His Glu Phe Thr Ile Glu Gly Val
 20 25 30

Gly Thr Gly Tyr Pro Tyr Glu Gly Lys Gln Met Ser Glu Leu Val Ile
 35 40 45

Val Lys Pro Lys Gly Lys Pro Leu Pro Phe Ser Phe Asp Ile Leu Ser
 50 55 60

Ser Val Phe Gln Tyr Gly Asn Arg Cys Phe Thr Lys Tyr Pro Ala Asp
 65 70 75 80

Met Pro Asp Tyr Phe Lys Gln Ala Phe Pro Asp Gly Met Ser Tyr Glu
 85 90 95

Arg Ser Phe Leu Phe Glu Asp Gly Ala Val Ala Thr Ala Ser Trp Asn
 100 105 110

Ile Arg Leu Glu Gly Asn Cys Phe Ile His Asn Ser Ile Phe His Gly
 115 120 125

Val Asn Phe Pro Ala Asp Gly Pro Val Met Lys Lys Lys Thr Ile Gly
 130 135 140

Trp Asp Lys Ser Phe Glu Lys Met Thr Val Ser Lys Glu Val Leu Arg
 145 150 155 160

Gly Asp Val Thr Met Phe Leu Met Leu Glu Gly Gly Tyr His Arg
 165 170 175

Cys Gln Phe His Ser Thr Tyr Lys Thr Val Lys Pro Val Glu Leu Pro
 180 185 190

Pro Asn His Val Val Glu His Gln Ile Val Arg Thr Asp Leu Gly Gln
 195 200 205

Ser Ala Lys Gly Phe Thr Val Lys Leu Glu Ala His Ala Ala Ala His
 210 215 220

Val Asn Pro Leu Lys Val Gln His His His His His His
 225 230 235

<210> 57
 <211> 237
 <212> PRT
 <213> Acropora millepora

<400> 57

Met Ser His Ser Lys Gln Gly Ile Ala Gln Val Met Lys Thr Lys Tyr
 1 5 10 15

His Met Glu Gly Ser Val Asn Gly His Glu Phe Thr Ile Glu Gly Val

[REDACTED]

20

25

30

Gly Thr Gly Asn Pro Tyr Glu Gly Ser Gin Met Ser Glu Leu Val Ile
 35 40 45

Thr Lys Pro Ala Gly Lys Pro Leu Pro Phe Ser Phe Asp Ile Leu Ser
 50 55 60

Thr Val Phe Gln Tyr Gly Asn Arg Cys Phe Thr Lys Tyr Pro Glu Gly
 65 70 75 80

Met Thr Asp Tyr Phe Lys Gln Ala Phe Pro Asp Gly Met Ser Tyr Glu
 85 90 95

Arg Ser Phe Leu Tyr Glu Asp Gly Gly Val Ala Thr Ala Ser Trp Asn
 100 105 110

Ile Arg Leu Glu Arg Gly Cys Phe Ile His Lys Ser Ile Tyr His Gly
 115 120 125

Val Asn Phe Pro Ala Asp Gly Pro Val Met Lys Lys Lys Thr Ile Gly
 130 135 140

Trp Asp Lys Ala Phe Glu Lys Met Thr Val Ser Lys Asp Val Leu Arg
 145 150 155 160

Gly Asp Val Thr Gly Phe Leu Met Leu Glu Gly Gly Tyr His Asn
 165 170 175

Cys Gln Phe His Ser Thr Tyr Lys Pro Glu Lys Pro Val Thr Leu Pro
 180 185 190

Pro Asn His Val Val Glu His His Ile Val Arg Thr Asp Leu Gly Gln
 195 200 205

Thr Ala Lys Gly Phe Thr Ala Lys Leu Glu Glu His Ala Ala Ala His
 210 215 220

Val Asn Pro Leu Lys Val Gln His His His His His His
 225 230 235

<210> 58

<211> 237

<212> PRT

<213> Acropora millepora

<400> 58

Met Ser Tyr Ser Lys Gln Gly Ile Val Gln Glu Met Lys Thr Lys Tyr
 1 5 10 15

His Met Glu Gly Ser Val Asn Gly His Glu Phe Thr Ile Glu Gly Val
 20 25 30

Gly Thr Gly Tyr Pro Tyr Glu Gly Lys Gln Met Ser Glu Leu Val Ile
 35 40 45

Ile Lys Pro Ala Gly Lys Pro Leu Pro Phe Ser Phe Asp Ile Leu Ser

50 55 60

Ser Val Phe Gln Tyr Gly Asn Arg Cys Phe Thr Lys Tyr Pro Ala Asp
65 70 75 .80

Met Pro Asp Tyr Phe Lys Gln Ala Phe Pro Asp Gly Met Ser Tyr Glu
85 90 95

Arg Ser Phe Leu Phe Glu Asp Gly Ala Val Ala Thr Ala Ser Trp Asn
..... 100 105 110

Ile Arg Leu Glu Gly Asn Cys Phe Ile His Lys Ser Ile Phe His Gly
115 120 125

Val Asn Phe Pro Ala Asp Gly Pro Val Met Lys Lys Lys Thr Ile Asp
 130 135 140

Trp Asp Lys Ser Phe Glu Lys Met Thr Val Ser Lys Glu Val Leu Arg
145 150 155 160

Gly Asp Val Thr Met Phe Leu Met Leu Glu Gly Gly Gly Ser His Arg
 165 170 175

Cys Gln Phe His Ser Thr Tyr Lys Thr Glu Lys Pro Val Thr Leu Pro
 180 185 190

Pro Asn His Val Val Glu His Gln Ile Val Arg Thr Asp Leu Gly Gln.
195 200 205

Ser Ala Lys Gly Phe Thr Val Lys Leu Glu Ala His Ala Ala Ala His
 210 215 220

Val Asn Pro Leu Lys Val Lys His His His His His His His
225 230 235

21

<211> 238

<212> PRT

<213> Acropora millepora

<400> 59

His Met Glu Gly Ser Val Asp Gly His Lys Phe Val Ile Thr Gly His
20 25 30

Gly Asn Gly Asn Pro Phe Glu Gly Lys Gln Thr Met Asn Leu Cys Val
35 40 45

Val Glu Gly Gly Pro Leu Pro Phe Ser Glu Asp Ile Leu Ser Ala Thr
50 55 60

Phe Asp Tyr Gly Asn Arg Val Phe Thr Glu Tyr Pro Gln Gly Met Val
65 70 75 80

Asp Phe Phe Lys Asn Ser Cys Pro Ala Gly Tyr Thr Trp His Arg Ser

85

90

95

Leu Leu Phe Glu Asp Gly Ala Val Cys Thr Thr Ser Ala Asp Ile Thr
 100 105 110

Val Ser Val Glu Glu Asn Cys Phe Tyr His Asn Ser Lys Phe His Gly
 115 120 125

Val Asn Phe Pro Ala Asp Gly Pro Val Met Lys Lys Met Thr Thr Asn
 130 135 140

Trp Glu Pro Ser Cys Glu Lys Ile Ile Pro Val Pro Arg Gln Gly Ile
 145 150 155 160

Leu Lys Gly Asp Ile Ala Met Tyr Leu Leu Lys Asp Gly Gly Arg
 165 170 175

Tyr Arg Cys Gln Phe Asp Thr Ile Tyr Lys Ala Lys Ser Asp Pro Lys
 180 185 190

Glu Met Pro Glu Trp His Phe Ile Gln His Lys Leu Thr Arg Glu Asp
 195 200 205

Arg Ser Asp Ala Lys Asn Gln Lys Trp Gln Leu Val Glu His Ala Val
 210 215 220

Ala Ser Arg Ser Ala Leu Pro Gly His His His His His His
 225 230 235

<210> 60

<211> 227

<212> PRT

<213> Acropora millepora

<400> 60

Met Ser Val Ile Ala Lys Gln Met Thr Tyr Lys Val Tyr Met Ser Gly
 1 5 10 15

Thr Val Asn Gly His Tyr Phe Glu Val Glu Gly Asp Gly Lys Gly Lys
 20 25 30

Pro Tyr Glu Gly Glu Gln Thr Val Lys Leu Thr Val Thr Lys Gly Gly
 35 40 45

Pro Leu Pro Phe Ala Trp Asp Ile Leu Ser Pro Gln Cys Gln Tyr Gly
 50 55 60

Ser Ile Pro Phe Thr Lys Tyr Pro Glu Asp Ile Pro Asp Tyr Val Lys
 65 70 75 80

Gln Ser Phe Pro Glu Gly Tyr Thr Trp Glu Arg Ile Met Asn Phe Glu
 85 90 95

Asp Gly Ala Val Cys Thr Val Ser Asn Asp Ser Ser Ile Gln Gly Asn
 100 105 110

Cys Phe Ile Tyr His Val Lys Phe Ser Gly Leu Asn Phe Pro Pro Asn

115

120

125

Gly Pro Val Met Gln Lys Lys Thr Gln Gly Trp Glu Pro Asn Thr Glu
130 135 140

Arg Leu Phe Ala Arg Asp Gly Met Leu Leu Gly Asn Asn Phe Met Ala
145 150 155 160

Leu Lys Leu Glu Gly Gly His Tyr Leu Cys Glu Phe Lys Thr Thr
165 170 175

Tyr Lys Ala Lys Lys Pro Val Lys Met Pro Gly Tyr His Tyr Val Asp
180 185 190

Arg Lys Leu Asp Val Thr Asn His Asn Lys Asp Tyr Thr Ser Val Glu
195 200 205

Gln Cys Glu Ile Ser Ile Ala Arg Lys Pro Val Val Ala His His His
210 215 220

His His His
225

<210> 61
<211> 237
<212> PRT
<213> Acropora nobilis

<400> 61

Met Ser Tyr Ser Lys Gln Gly Ile Ala Gln Val Met Lys Thr Lys Tyr
1 5 10 15

His Met Glu Gly Ser Val Asn Gly His Glu Phe Thr Ile Glu Gly Val
20 25 30

Gly Thr Gly Asn Pro Tyr Glu Gly Thr Gln Met Ser Glu Leu Val Ile
35 40 45

Thr Lys Pro Ala Gly Lys Pro Leu Pro Phe Ser Phe Asp Ile Leu Ser
50 55 60

Thr Val Phe Gln Tyr Gly Asn Arg Cys Phe Thr Lys Tyr Pro Glu Gly
65 70 75 80

Met Thr Asp Tyr Phe Lys Gln Ala Phe Pro Asp Gly Met Ser Cys Glu
85 90 95

Arg Ser Phe Leu Tyr Glu Asp Gly Gly Val Ala Thr Ala Ser Trp Asn
100 105 110

Ile Arg Leu Glu Arg Asp Cys Phe Ile His Lys Ser Ile Tyr His Gly
115 120 125

Val Asn Phe Pro Ala Asp Gly Pro Val Met Lys Lys Lys Thr Ile Gly
130 135 140

Trp Asp Lys Ala Phe Glu Lys Met Thr Val Ser Lys Asp Val Leu Arg

145

150

155

160

Gly Asp Val Thr Glu Phe Leu Met Leu Glu Gly Gly Gly Tyr His Ser
 165 170 175

Cys Gln Phe His Ser Thr Tyr Lys Pro Glu Lys Pro Ala Ala Leu Pro
 180 185 190

Pro Asn His Val Val Glu His His Ile Val Arg Thr Asp Leu Gly Gln
 195 200 205

Ser Ala Lys Gly Phe Thr Val Lys Leu Glu Glu His Ala Ala Ala His
 210 215 220

Val Asn Pro Leu Lys Val Gln His His His His His His
 225 230 235

<210> 62

<211> 237

<212> PRT

<213> Acropora nobilis

<400> 62

Met Ser Tyr Ser Lys Gln Gly Ile Ala Gln Val Met Lys Thr Lys Tyr
 1 5 10 15

His Met Glu Gly Ser Val Asn Gly His Glu Phe Thr Ile Glu Gly Val
 20 25 30

Gly Thr Gly Asn Pro Tyr Glu Gly Thr Gln-Met Ser Glu Leu Val Ile
 35 40 45

Thr Lys Pro Ala Gly Lys Pro Leu Pro Phe Ser Phe Asp Ile Leu Ser
 50 55 60

Thr Val Phe Gln Tyr Gly Asn Arg Cys Phe Thr Lys Tyr Pro Glu Gly
 65 70 75 80

Met Thr Asp Tyr Phe Lys Gln Ala Phe Pro Asp Gly Met Ser Tyr Glu
 85 90 95

Arg Ser Phe Leu Tyr Glu Asp Gly Gly Val Ala Thr Ala Gly Trp Asn
 100 105 110

Ile Arg Leu Glu Arg Asp Cys Phe Ile His Lys Ser Ile Tyr His Gly
 115 120 125

Val Asn Phe Pro Ala Asp Gly Pro Val Met Lys Lys Lys Thr Ile Gly
 130 135 140

Trp Asp Lys Ala Phe Glu Lys Met Thr Val Ser Lys Asp Val Leu Arg
 145 150 155 160

Gly Asp Val Thr Gly Phe Leu Met Leu Glu Gly Gly Tyr His Ser
 165 170 175

Cys Gln Phe His Ser Thr Tyr Lys Pro Glu Lys Pro Ala Ala Leu Pro

180

185

190

Pro Asn His Val Val Glu His His Ile Val Arg Thr Asp Leu Gly Gln
 195 200 205

Ser Ala Lys Gly Phe Thr Val Lys Leu Glu Glu His Ala Ala Ala His
 210 215 220

Val Asn Pro Leu Lys Val Gln His His His His His
 225 230 235

<210> 63

<211> 237

<212> PRT

<213> Acropora nobilis

<400> 63

Met Ser Tyr Ser Lys Gln Gly Ile Ala Gln Glu Met Lys Thr Lys Tyr
 1 5 10 15

His Met Glu Gly Ser Val Asn Gly His Glu Phe Thr Val Glu Gly Val
 20 25 30

Gly Thr Gly Tyr Pro Tyr Glu Gly Glu Gln Met Ser Glu Leu Val Ile
 35 40 45

Ile Glu Pro Ala Gly Lys Pro Leu Pro Phe Ser Phe Asp Ile Leu Ser
 50 55 60

Ser Val Phe Gln Tyr Gly Asn Arg Cys Phe Thr Lys Tyr Pro Ala Asp
 65 70 75 80

Met Pro Asp Tyr Phe Lys Gln Ala Phe Pro Asp Gly Met Ser Tyr Glu
 85 90 95

Arg Ser Phe Leu Phe Glu Asp Gly Ala Val Ala Thr Ala Ser Trp Lys
 100 105 110

Ile Arg Leu Glu Gly Asn Cys Phe Ile His Asn Ser Ile Phe Asn Gly
 115 120 125

Val Asn Phe Pro Ala Asp Gly Pro Val Met Glu Lys Lys Thr Ile Gly
 130 135 140

Trp Asp Lys Ser Phe Glu Lys Met Thr Val Ser Lys Glu Val Leu Arg
 145 150 155 160

Gly Asp Val Thr Met Phe Leu Met Leu Glu Gly Gly Ser His Arg
 165 170 175

Cys Gln Phe His Ser Thr Tyr Lys Thr Glu Lys Pro Val Thr Leu Pro
 180 185 190

Pro Asn His Val Val Glu His Gln Ile Val Arg Thr Asp Leu Gly Gln
 195 200 205

Ser Ala Lys Gly Phe Thr Val Lys Leu Glu Ala His Ala Ala His

210

215

220

Val Asn Pro Leu Lys Val Lys His His His His His His
 225 230 235

<210> 64
 <211> 232
 <212> PRT
 <213> Agaricia fragilis

<400> 64

Met Ser Val Ile Val Lys Glu Met Met Thr Lys Leu His Met Glu Gly
 1 5 10 15

Thr Val Asn Gly His Ala Leu Thr Ile Glu Gly Lys Gly Lys Gly Asp
 20 25 30

Pro Tyr Asn Gly Val Gln Ser Met Asn Leu Asp Val Lys Gly Gly Ala
 35 40 45

Pro Leu Pro Phe Ser Phe Asp Leu Leu Thr Pro Ala Phe Met Tyr Gly
 50 55 60

Asn Arg Val Phe Ala Lys Tyr Pro Glu Asp Ile Pro Asp Phe Phe Lys
 65 70 75 80

Gln Val Phe Pro Glu Gly Tyr His Trp Glu Arg Ser Ile Thr Phe Glu
 85 90 95

Asp Gln Ala Val Cys Thr Ala Thr Ser His Ile Arg Leu Asp Gln Lys
 100 105 110

Glu Met Cys Phe Ile Tyr Asp Val Arg Phe His Gly Val Asn Phe Pro
 115 120 125

Ala Asn Gly Pro Ile Met Gln Lys Lys Ile Leu Gly Trp Glu Pro Ser
 130 135 140

Thr Glu Lys Met Tyr Ala Arg Asp Gly Val Leu Lys Gly Asp Val Asn
 145 150 155 160

Met Thr Leu Arg Val Glu Gly Gly His Tyr Arg Ala Asp Phe Arg
 165 170 175

Thr Thr Tyr Lys Ala Lys Lys Pro Val Asn Leu Pro Gly Tyr His Phe
 180 185 190

Ile Asp His Arg Ile Glu Ile Thr Lys His Ser Lys Asp Tyr Thr Asn
 195 200 205

Val Ala Leu Tyr Glu Ala Ala Val Ala Arg His Ser Pro Leu Pro Lys
 210 215 220

Val Ala His His His His His
 225 230

<210> 65
<211> 306
<212> PRT

<213> Agaricia fragilis

<400> 65

Met Ser Val Ile Val Lys Glu Met Met Thr Lys Leu His Met Glu Gly
1 5 10 15

Thr Val Asn Gly His Ala Phe Thr Ile Glu Gly Lys Gly Lys Gly Asp
20 25 30

Pro Tyr Asn Gly Val Gln Ser Met Asn Leu Asp Val Lys Gly Gly Ala
35 40 45

Pro Leu Pro Phe Ser Phe Asp Leu Leu Thr Pro Ala Phe Met Tyr Gly
50 55 60

Asn Arg Val Phe Thr Lys Tyr Pro Glu Asp Ile Pro Asp Phe Phe Lys
65 70 75 80

Gln Val Phe Pro Glu Gly Tyr His Trp Glu Arg Ser Ile Thr Phe Glu
85 90 95

Asp Gln Ala Val Cys Thr Ala Thr Ser His Ile Arg Leu Asp Gln Lys
100 105 110

Glu Met Cys Phe Ile Tyr Asp Val Arg Phe His Gly Val Asn Phe Pro
115 120 125

Ala Asn Gly Pro Ile Met Gln Lys Lys Ile Leu Gly Trp Glu Pro Ser
130 135 140

Thr Glu Lys Met Tyr Ala Arg Asp Gly Val Leu Lys Gly Asp Val Asn
145 150 155 160

Met Thr Leu Arg Val Glu Gly Gly His Tyr Arg Ala Asp Phe Arg
165 170 175

Thr Thr Tyr Lys Ala Lys Lys Pro Val Asn Leu Pro Gly Tyr His Phe
180 185 190

Ile Asp His Arg Ile Glu Ile Thr Lys His Ser Lys Asp Tyr Thr Asn
195 200 205

Val Ala Leu Tyr Glu Ala Ala Val Ala Arg His Ser Pro Leu Pro Lys
210 215 220

Val Ala His His His Ile Thr Asn Lys Ser Arg Gly His Gly Gly
225 230 235 240

Arg Glu His Ala Thr Ser Gly Pro Ile Arg Pro Ile Val Ser Arg Ile
245 250 255

Thr Ile His Trp Pro Ser Phe Tyr Asn Val Val Thr Gly Lys Thr Leu
260 265 270

Ala Leu Pro Asn Leu Ile Ala Leu Gln His Ile Pro Leu Ser Pro Ala
275 280 285

Gly Val Ile Ala Lys Arg Pro Ala Pro Ile Ala Leu Pro Asn Ser Cys
290 295 300

Ala Ala
305

<210> 66
<211> 232
<212> PRT
<213> Agaricia fragilis

<400> 66

Met Ser Val Ile Val Lys Glu Met Met Thr Lys Leu His Met Glu Gly
1 5 10 15

Thr Val Asn Gly His Ala Phe Thr Ile Glu Gly Lys Gly Lys Gly Asp
20 25 30

Pro Tyr Asn Gly Val Gln Ser Met Asn Leu Asp Val Lys Gly Gly Ala
35 40 45

Pro Leu Pro Phe Ser Phe Asp Leu Leu Thr Pro Ala Phe Met Tyr Gly
50 55 60

Asn Arg Val Phe Thr Lys Tyr Pro Glu Asp Ile Pro Asp Phe Phe Lys
65 70 75 80

Gln Val Phe Pro Glu Gly Tyr His Trp Glu Arg Ser Ile Thr Phe Glu
85 90 95

Asp Gln Ala Val Cys Thr Ala Thr Ser His Ile Arg Leu Asp Gln Lys
100 105 110

Glu Met Cys Phe Ile Tyr Asp Val Arg Phe His Gly Val Asn Phe Pro
115 120 125

Ala Asn Gly Pro Ile Met Gln Lys Lys Ile Leu Gly Trp Glu Pro Ser
130 135 140

Thr Glu Lys Met Tyr Ala Arg Asp Gly Val Leu Lys Gly Asp Val Asn
145 150 155 160

Met Thr Leu Arg Val Glu Gly Gly His Tyr Arg Ala Asp Phe Arg
165 170 175

Thr Thr Tyr Lys Ala Lys Lys Pro Val Asn Leu Pro Gly Tyr His Phe
180 185 190

Ile Asp His Arg Ile Glu Ile Thr Lys His Ser Lys Asp Tyr Thr Asn
195 200 205

Val Ala Leu Tyr Gly Ala Ala Val Ala Arg His Ser Pro Leu Pro Lys
210 215 220

Val Ser His His His His His His
225 230

<210> 67
<211> 232
<212> PRT
<213> Agaricia fragilis

<400> 67

Met Ser Val Ile Val Lys Glu Met Met Thr Lys Leu His Met Glu Gly
1 5 10 15

Thr Val Asn Gly His Ala Phe Thr Ile Glu Gly Lys Gly Lys Gly Asp
20 25 30

Pro Tyr Asn Gly Val Gln Ser Met Asn Leu Asp Val Lys Gly Gly Ala
35 40 45

Pro Leu Pro Phe Ser Phe Asp Leu Leu Thr Pro Ala Phe Met Tyr Gly
50 55 60

Asn Arg Val Phe Thr Lys Tyr Pro Glu Asp Ile Pro Asp Phe Phe Lys
65 70 75 80

Gln Val Phe Pro Glu Gly Tyr His Trp Glu Arg Ser Ile Thr Phe Glu
85 90 95

Asp Gln Ala Val Cys Thr Ala Thr Ser His Ile Arg Leu Asp Gln Lys
100 105 110

Glu Met Cys Phe Ile Tyr Asp Val Arg Phe His Gly Val Asn Phe Pro
115 120 125

Ala Asn Gly Pro Ile Met Gln Lys Lys Ile Leu Gly Trp Glu Pro Ser
130 135 140

Thr Glu Lys Met Tyr Ala Arg Asp Gly Val Leu Lys Gly Asp Val Asn
145 150 155 160

Val Thr Leu Arg Val Glu Gly Gly His Tyr Arg Ala Asp Phe Arg
165 170 175

Thr Thr Tyr Lys Ala Lys Lys Pro Val Asn Leu Pro Gly Tyr His Phe
180 185 190

Ile Asp His Arg Ile Glu Ile Thr Lys His Ser Lys Asp Tyr Thr Asn
195 200 205

Val Ala Leu Tyr Glu Ala Ala Val Ala Arg His Ser Pro Leu Pro Lys
210 215 220

Val Ala His His His His His
225 230

<210> 68
<211> 232

<212> PRT

<213> Agaricia fragilis

<400> 68

Met Ser Val Ile Val Lys Glu Met Met Thr Lys Leu His Met Glu Gly
1 5 10 15

Thr Val Asn Gly His Ala Phe Thr Ile Glu Gly Lys Gly Glu Gly Asp
20 25 30

Pro Tyr Asn Gly Val Gln Ser Met Asn Leu Asp Val Lys Gly Gly Ala
35 40 45

Pro Leu Pro Phe Ser Phe Asp Leu Leu Thr Pro Ala Phe Met Tyr Gly
50 55 60

Asn Arg Val Phe Thr Lys Tyr Pro Glu Asp Ile Pro Asp Phe Phe Lys
65 70 75 80

Gln Val Phe Pro Glu Gly Tyr His Trp Glu Arg Ser Ile Thr Phe Glu
85 90 95

Asp Gln Ala Val Cys Thr Ala Thr Ser His Ile Arg Leu Asp Gln Lys
100 105 110

Glu Met Cys Phe Ile Tyr Asp Val Arg Phe His Gly Val Asn Phe Pro
115 120 125

Ala Asn Gly Pro Ile Met Gln Lys Lys Ile Leu Gly Trp Glu Pro Ser
130 135 140

Thr Glu Lys Met Tyr Ala Arg Asp Gly Val Leu Lys Gly Asp Val Asn
145 150 155 160

Met Thr Leu Arg Val Glu Gly Gly His Tyr Arg Ala Asp Phe Arg
165 170 175

Thr Thr Tyr Lys Ala Lys Pro Val Asn Leu Pro Gly Tyr His Phe
180 185 190

Ile Asp His Arg Ile Glu Ile Thr Lys His Ser Lys Asp Tyr Thr Asn
195 200 205

Val Ala Leu Tyr Gly Ala Ala Val Ala Arg His Ser Pro Leu Pro Lys
210 215 220

Val Ala His His His His His
225 230

<210> 69

<211> 232

<212> PRT

<213> Agaricia fragilis

<400> 69

Met Ser Val Ile Val Lys Glu Met Met Thr Lys Leu His Met Glu Gly

1	5	10	15
Thr Val Asn Gly His Ala Phe Thr Ile Glu Gly Lys Gly Lys Gly Asp			
20	25	30	
Pro Tyr Asn Gly Val Gln Ser Met Asn Leu Asp Val Lys Gly Gly Ala			
35	40	45	
Pro Leu Pro Phe Ser Phe Asp Leu Leu Thr Pro Ala Phe Met Tyr Gly			
50	55	60	
Asn Arg Val Phe Thr Lys Tyr Pro Glu Asp Ile Pro Asp Phe Phe Lys			
65	70	75	80
Gln Val Phe Pro Glu Gly Tyr His Trp Glu Arg Ser Ile Thr Phe Glu			
85	90	95	
Asp Gln Ala Val Cys Thr Ala Thr Ser His Ile Arg Leu Asp Gln Lys			
100	105	110	
Glu Met Cys Phe Ile Tyr Asp Val Arg Phe His Gly Val Asn Phe Pro			
115	120	125	
Ala Asn Gly Pro Ile Met Gln Lys Lys Ile Leu Gly Trp Glu Pro Ser			
130	135	140	
Thr Glu Lys Met Tyr Ala Arg Asp Gly Val Leu Lys Gly Asp Val Asn			
145	150	155	160
Met Thr Leu Arg Val Glu Gly Gly His Tyr Arg Ala Asp Phe Arg			
165	170	175	
Thr Thr Tyr Lys Ala Lys Lys Pro Val Asn Leu Pro Gly Tyr His Phe			
180	185	190	
Ile Asp His Arg Ile Glu Ile Thr Lys His Ser Lys Asp Tyr Thr Asn			
195	200	205	
Val Ala Leu Tyr Glu Ala Ala Val Ala Arg His Ser Pro Leu Pro Lys			
210	215	220	
Val Ala His His His His His			
225	230		

<210> 70
<211> 232
<212> PRT
<213> Agaricia fragilis

<400> 70

Met Ser Val Ile Val Lys Glu Met Met Thr Lys Leu His Met Glu Gly			
1	5	10	15
Thr Val Asn Gly His Ala Phe Thr Ile Glu Gly Lys Gly Lys Gly Asp			
20	25	30	
Pro Tyr Asn Gly Val Gln Ser Met Asn Leu Asp Val Lys Gly Gly Ala			

35

40

45

Pro Leu Pro Phe Ser Phe Asp Leu Leu Thr Pro Ala Phe Met Tyr Gly
 50 55 60

Asn Arg Val Phe Thr Lys Tyr Pro Glu Asp Ile Pro Asp Phe Phe Lys
 65 70 75 80

Gln Val Phe Pro Glu Gly Tyr His Trp Glu Arg Ser Ile Thr Phe Glu
 85 90 95

Asp Gln Ala Val Cys Thr Ala Thr Ser His Ile Arg Leu Asp Gln Lys
 100 105 110

Glu Met Cys Phe Ile Tyr Asp Val Arg Phe His Gly Val Asn Phe Pro
 115 120 125

Ala Asn Gly Pro Ile Met Gln Lys Lys Ile Leu Gly Trp Glu Pro Ser
 130 135 140

Thr Glu Lys Met Tyr Ala Arg Asp Gly Val Leu Lys Gly Asp Val Asn
 145 150 155 160

Thr Thr Leu Arg Val Glu Gly Gly His Tyr Arg Ala Asp Phe Arg
 165 170 175

Thr Thr Tyr Lys Ala Lys Pro Val Asn Leu Pro Gly Tyr His Phe
 180 185 190

Ile Asp His Arg Ile Glu Ile Thr Lys His Ser Lys Asp Tyr Thr Asn
 195 200 205

Val Ala Leu Tyr Glu Ala Ala Val Ala Arg His Ser Pro Leu Pro Lys
 210 215 220

Val Ala His His His His His
 225 230

<210> 71

<211> 717

<212> DNA

<213> Acropora aculeus

<400> 71

atgtcttatt caaaggcaggg catcgtaaaa gaaatgaaga cggaaataccg tatggaaggc 60

agtgtcaatg gccatgaatt cacgatcgaa ggtgttaggaa ctgggtaccc ttacgaaggg 120

aaacagatgt ccgaattagt gatcatcaag cctaaggaa agccccttcc atttccttt 180

gacatactgt catcagtctt tcaatatgga aacaggtgct tcacaaagta ccctgcagac 240

atgcctgact atttcaagca agcattccca gatggaatgt catatgaaag gtcatttcta 300

tttgaggatg gagcagttgc tacagccagc tggaacattc gtctcgaagg aaattgcttc 360

atccacaatt ccatctttca tggcgtaaac tttcccgatg atggaccgt aatgaaaaag 420

aagacaattg gctggataa gtcctcgaa aaaatgactg tgtctaaaga ggtgttaaga	480
ggtgatgtga ctatgttct tatgctcgaa ggaggtggtt accacagatg ccagttcac	540
tccacttaca aaacagagaa gccggtcgaa ctgccccga atcatgtcgt agaacatcaa	600
attgtgagga ccgaccttgg ccaaagtgc a aaggctca cggtcaagct ggaagcacat	660
gctgcccgtc atgttaaccc tttgaaggtt caacagcacc atcaccatca ctaataa	717

<210> 72
<211> 717
<212> DNA
<213> Acropora aculeus

<400> 72	
atgtctctt caaagcatgg catcacacaa gaaatgccga cgaaatacca tatgaaaggc	60
agtgtcaatg gccatgaatt cgagatcgaa ggtgttaggaa ctggacaccc ttacgaaggg	120
acacacatgg ccgaattagt gatcataaag cctgcggaa aaccccttcc atttccttt	180
gacatactgt caacagtcat tcaatacgg aacagatgtc tcactaagta ccctgcagac	240
ctgcctgact atttcaagca agcataccca ggtggaatgt catatgaaag gtcatttg	300
tatcaggatg gaggaattgc tacagcgagc tggaacgtt gtctcgaggg aaattgctt	360
atccacaaat ccacatatct tggtgtaaac ttccctgctg atggacccgt aatgacaaag	420
aagacaattg gctggataa agcctttgaa aaaatgactg gttcaatga ggtgttaaga	480
ggtgatgtga ctgagttct tatgctcgaa ggaggtggtt accattcatg ccagttcac	540
tccacttaca aaccagagaa gccggtcgaa ctgccccga atcatgtcat agaacatcac	600
attgtgagga ccgaccttgg caagactgc a aaggctca tggtcaagct ggtacaacat	660
gctgcccgtc atgttaacac tttgaaggtt caacatcacc atcaccatca ctaataa	717

<210> 73
<211> 665
<212> DNA
<213> Acropora aculeus

<400> 73	
atggaaggca gtgtcaatgg ccatgaattc acgatcgaa gttgttaggaac tgggtaccct	60
tacgaaggg a gcaatgtc cgaattagt atcgtcaagc ctaaggaaa gccccttcca	120
ttctcccttg acatactgtc atcagtctt caatatggaa acaggtgctt cacaaggatc	180
cctgcagaca tgcctgacta ttcaagcaa gcattccag atggaatgtc atatgaaagg	240
tcatttctat ttgaggatgg agcagttgtc acagccagct ggaacattcg tctcgaaagg	300
aattgcttca tccacaattc catcttcat ggctaaact ttcccgtga tggacccgt	360

atgaaaaaaga agacaattgg ctgggataag tccttcgaaa aaatgactgt gtctaaagag 420
 gtgttaagag gtgatgtgac tatgtttctt atgctcgaag gaggtggta ccacagatgc 480
 cagtttcact ccacttacaa aacagtgaag ccggtcgaac tgccccgaa tcatgtcgta 540
 gaacatcaa ttgtgaggac cgacccttggc caaagtgc当地 aaggcttcac agtcaagctg 600
 gaagcacatg ctgcggctca tgtaaccctt tgaaggttca acatcaccat caccatca 660
 aataa 665

<210> 74
 <211> 717
 <212> DNA
 <213> Acropora aculeus

<400> 74
 atgtctcttt caaagcatgg catcacacaa gaaatgccga cgaaatacca tatgaaaggc 60
 agtgtcaatg gccatgaatt cgagatcgaa ggtgttaggaa ctggacaccc ttacgaaggg 120
 acacacatgg ccgaatttagt gatcataaag cctgcggaa aacccttcc atttccttt 180
 gacatactgt caacagtcat tcaatacggg aacagatgct tcaactaagta ccctgcagac 240
 ctgcctgact atttcaagca agcataccca ggtggaatgt catatgaaag gtcatttgta 300
 tttcaggatg gaggaattgc tacagcgagc tggAACgtcg gtctcgaggg aaattgcttc 360
 atccacaaat ccacatatct tgggttaaac tttcctgctg atggaccctgt aatgacaaag 420
 aagacaattg gctggataa agccttgaa aaaatgactg ggtcaatga ggtgttaaga 480
 ggtgatgtga ctgagttct tatgctcgaa ggaggtggtt accattcatg ccagttcac 540
 tccacttaca aaccagagaa gccggtaaa ctgccccga atcatgtcat agaacatcac 600
 attgtgagga ccgacccttgg caagactgca aaaggcttca tggtcaagct ggtacaacat 660
 gctgcggctc atgttaaccc tttgaaggtt caacatcacc atcaccatca ctaataa 717

<210> 75
 <211> 717
 <212> DNA
 <213> Acropora aculeus

<400> 75
 atgtctcttt caaagcatgg catcacacaa gaaatgccga cgaaatacca tatgaaaggc 60
 aatgtcaatg gccatgaatt cgagatcgaa ggtgttaggaa ctggacaccc ttacgaaggg 120
 acacacatgg ccgaatttagt gatcataaag cctgcggaa aacccttcc atttccttt 180
 gacatactgt caacagtcat tcaatacggg aacagatgct tcaactaagta ccctgcagac 240

ctgcctgact atttcaagca agcgtaccca ggtggaatgt catatgaaag gtcatttcta	300
tttcaggatg gaggaattgc tacagcgagc tgAACGTT gtctcgaggg aaattgcttc	360
atccacaaaat ccacatatct tggtgtaaac ttccctgctg atggaccgt aatgacaaaag	420
aagacaattg gctggataa agccttgaa aaaatgactg ggtaatga ggtgttaaga	480
ggcgatgtga ctgggttct tatgctcgaa ggaggtggtt accattcatg ccagttcac	540
tccacttaca aaccagagaa gccggtaaaa ctgccccga atcatgtcat agaacatcac	600
attgtgagga ccgaccttgg caagactgca aaaggctca tggtaagct ggtacaacat	660
gctgcggctc atgtgaaccc tttgaaggaa caacatcacc atcaccatca ctaataa	717

<210> 76
<211> 666
<212> DNA
<213> Acropora aculeus

<400> 76	
atgacctaca aggttatata gtcaggcacg gtcaatggac attactttga ggtcgaaggc	60
gatggaaaag gaaagccta cgagggggag cagacggta agtcactgt caccaaggga	120
ggacctctgc catttgcttg ggatattta tcaccacagt cacgtacgg aagcatacca	180
ttcaccaaat accctgacga catccctgac tatgtaaagc agtcattccc ggagggatata	240
acatgggaga ggatcatgaa ctttgaagat ggtgcagtgt gtactgtcag caatgattcc	300
agcatccaag gcaactgttt catctacaat gtcaagttct ctggttgaa cttccctccc	360
aatggaccgg ttatgcagaa gaagacacag ggctggaaac ccaacactga gcgtctctt	420
gcacgagatg gaatgctgat agggaaacaac tttatggctc tgaagttaga aggaggtgg	480
cactatttgt gtgaattcaa atctacttac aaggcaaaga agcctgtgag gatgccaggg	540
tatcactatg ttgaccgcaa actggatgta accaattcaca acagggatta cactccgtt	600
gagcagcgtg aaatttccat tgcacgcaaa cctgtggctg cccatcacca tcaccatcac	660
taataa	666

<210> 77
<211> 687
<212> DNA
<213> Acropora aculeus

<400> 77	
atgagtgtga tcgctaaaca aatgacctac aaggttata tgtcaggcac ggtcaatgg	60
cattactttg aggtcgaagg cgatggaaaa ggaaagcctt acgagggggaa gcagacggtg	120
aagctcactg tcaccaaggg aggacctctg ccatttgctt gggatattt atcaccgcag	180

tcacagtacg gaagcataacc attcaccaaa taccctgacg acatccctga ctatgtaaag 240
 cagtcattcc cgaggggata tacatggag aggatcatga actttgagga tggtgcagtg 300
 tgtactgtca gcaatgattc cagcatccaa ggcaactgtt tcatactacaa tgtcaagttc 360
 tctggttga acttcctcc caatggaccc gttatgcgga agaagacacg gggctggaa 420
 cccaacactg agcgctcttt tgacacggat ggaatgctga taggaaacaa ctttatggct 480
 ctgaagttag aaggaggtgg tcactatttgc tgtgaattca aatctactta caaggcaaag 540
 aagcctgtga ggatgccagg gtatcactat gttgaccgca aactggatgt aaccaatcac 600
 aacagggatt acactccgt tgacgagtgt gaaatttcca ttgcacgcaa acctgtggtc 660
 gccccatcacc atcaccatca ctaataa 687

<210> 78
 <211> 666
 <212> DNA
 <213> Acropora hyacinthus

<400> 78
 atgacctaca aggttatata gtcaggcacf gtcaatggac actactttga ggtcgaaggc 60

 gatggaaaag gaaagccta cgagggggag caaacggtaa ggctgactgt caccaaggc 120
 ggacctctgc cgtttgcttg ggatattttt tcaccacagt cacagtaacgg aagcataacca 180
 ttcaccaagt accctgaaga catccctgac tatgtgaagc agtcattccc ggagggatata 240
 acatggaga ggatcatgaa ctttgaagat ggtgcagtgt gtactgtcag caatgattcc 300
 agcatccaag gcaactgttt catctaccat gtcaagttct ctggttgaa ctttccccc 360
 aatggacctg ttatgcagaa gaagacacag ggctggaaac ccaacactga gcgtctttt 420
 gcacgagatg gagttctgtat aggaaacaac tttatggccc tgaagttaga aggaggtgg 480
 cactatttgt gtgaattcaa atctacttac aaggcaaaga agcctgtgaa gatgcctggg 540
 tatcactttg ttgaccgcaa actggatgtt accaatcaca acaaggatta cacttctgtt 600
 gagcagcgtg aaatttccat tgacacgcaaa cctgtggcgt cccaccacca tcaccatcac 660
 taataa 666

<210> 79
 <211> 684
 <212> DNA
 <213> Acropora millepora

<400> 79
 atgaagacga aataccatata ggaaggcagt gtcaatggcc atgaattcac gatcgaaggt 60

gtaggaactg	gaaaccctta	cgaaggcaca	cagatgtccg	aattagtgtat	caccgagcct	120
gcaggaaaac	cccttccatt	ctcctttgac	attctgtcaa	cagtcttca	gtatggaaac	180
aggtgcttca	caaagtaccc	tgaaggaatg	actgactatt	tcaagcaagc	atcccagat	240
ggaatgtcat	ttgaaaggtc	atttctatat	gaggatggag	gagttgtac	agccagctgg	300
aacattcgtc	ttgagagaga	ttgcttcatc	cacaatcca	tctatcatgg	cgttaacttt	360
cccgctgatg	gaccgtaat	aaaaaagaag	accattggct	gggataaagc	cttcgaaaaaa	420
atgactgtgt	ccaaagacgt	tttaagaggt	gatgtgactg	agtttcttat	gctcgaagga	480
ggtggttacc	acagctgcca	gtttcactcc	acttacaaac	cagagaagcc	ggttacactg	540
ccccctaatc	atgtcgtgga	acatcacatt	gtgaggactg	accttggcca	aactgcaaaa	600
ggcttcacag	tcaagctgga	agaacatgct	gcggctcatg	ttaaccctt	gaaggttcac	660
catcaccatc	accatcacta	ataa				684

<210> 80
<211> 681
<212> DNA
<213> Acropora millepora

<400> 80						
atgtcttatt	caaagcaagg	catcgtaaa	gaaatgaaga	cgaaatacca	tatggaaggc	60
agtgtcaatg	gccatgaatt	cacgatcgaa	ggtgttaggaa	ctgggtaccc	ttacgaaggg	120
aaacagatat	ccgaattagt	gatcatcaag	cctgcggaa	aacccttcc	atttccttt	180
gacatactgt	catcagtctt	tcaatatgga	aacaggtgct	tcacaaagta	ccctgcagac	240
atgcctgact	atttcaagca	agcattccca	gatggaatgt	catatgaaag	gtcatttcta	300
tttgaggatg	gagcagttgc	cacagccagc	tggAACATTc	gtctcgaagg	aaattgcttc	360
atccacaaat	ccatcttca	tggcgtaaac	tttcccgctg	atggacccgt	aatgaaaaag	420
aagacaattg	actggataa	gtccttcgaa	aaaatgactg	tgtctaaaga	ggtgctaaga	480
ggtgacgtga	ctatgttct	tatgctcgaa	ggaggtggtt	ctcacagatg	ccaaatttcac	540
tccacttaca	aaacagagaa	gccggtcaca	ctgccccga	atcatgtcgt	agaacatcaa	600
attgtgagga	ccgaccttgg	ccaaactgca	aaaggcttca	cagtcaagct	ggaagaacat	660
gctgcggctc	atgttagcct	a				681

<210> 81
<211> 684
<212> DNA

<213> Acropora millepora

<400> 81

atgtcttatt	caaagcaagg	catcgtaaaa	gaaatgaaga	cggaaatacc	tatggaaaggc	60
agtgtcaatg	gccatgaatt	cacgatcgaa	ggtgttaggaa	ctgggtaccc	ttacgaaggg	120
aaacagatgt	ccgaattagt	gatcatcaag	cctgcggaa	aacccttcc	attctccttt	180
gacatactgt	catcagtctt	tcaatatgga	aacaggtgct	tcacaaagta	ccctgcagac	240
atgcctgact	atttcaagca	agcattccca	gatggaatgt	catatgaaag	gtcatttcta	300
tttgaggatg	gagcagttgc	cacagccagc	tggaacattc	gtctcgaagg	aaattgcttc	360
atccacaaat	ccatcttca	tggcgtaaac	tttcccgtg	atggaccgt	aataaaaaag	420
aagacaattg	actggataa	gtccttcgaa	aaaatgactg	tgtctaaaga	ggtgctaaga	480
ggtgacgtga	ctatgttct	tatgctcgaa	ggaggtggtt	ctcacagatg	ccaatttcac	540
tccacttaca	aaacagagaa	gccggtcaca	ctgccccg	atcatgtcgt	agaacatcaa	600
attgtgagga	ccgaccttgg	ccaaactgca	aaaggctca	cagtcaagct	ggaagaacat	660
gctgcggctc	atgttaaccct	ttgaa				684

<210> 82

<211> 717

<212> DNA

<213> Acropora millepora

<400> 82

atgtcttatt	caaagcagg	catcgtaaaa	gaaatgaaga	cggaaatacc	tatggaaaggc	60
agtgtcaatg	gccatgaatt	cacgatcgaa	ggtgttaggaa	ctgggtaccc	ttacgaaggg	120
aagcagatgt	ccgaattagt	gatcgtaag	cctaaggaa	agcccttcc	attctccttt	180
gacatactgt	catcagtctt	tcaatatgga	aacaggtgct	tcacaaagta	ccctgcagac	240
atgcctgact	atttcaagca	agcattccca	gatggaatgt	catatgaaag	gtcatttcta	300
tttgaggatg	gagcagttgc	tacagccagc	tggaacattc	gtctcgaagg	aaattgcttc	360
atccacaaat	ccatcttca	tggcgtaaac	tttcccgtg	atggaccgt	aataaaaaag	420
aagacaattg	gctggataa	gtccttcgaa	aaaatgactg	tgtctaaaga	ggtgctaaga	480
ggtgatgtga	ctatgttct	tatgctcgaa	ggaggtggtt	accacagatg	ccagttcac	540
tccacttaca	aaacagtgaa	gccggtcgaa	ctgccccg	atcatgtcgt	agaacatcaa	600
attgtgagga	ccgaccttgg	ccaaagtgca	aaaggctca	cagtcaagct	ggaagcacat	660
gctgcggctc	atgttaacc	tttgaagg	ttt	caacatcacc	atcaccatca	717

<210> 83
<211> 717
<212> DNA
<213> Acropora millepora

<400> 83
atgtctcatt caaagcaagg catgcacaa gtaatgaaga cgaaatacc tatggaaggc 60
agtgtcaatg gccatgaatt cacgatcgaa ggtgttagaa ctggaaaccc ttacgaaggc 120
tcacagatgt ccgagtttgt gatcaccaag cctgcaggaa aacccttcc attctccttt 180
gacattctct caacagtctt tcaatatgga aacaggtgct tcacaaagta ccctgaagga 240
atgactgact atttcaagca agcattccca gatggaatgt catatgaaag gtcatttcta 300
tatgaggatg gaggagttgc tacagccagc tgAACATTc gtcttgagag aggttgcttc 360
atccacaaat ccatctatca tggcgtaac tttcccgctg atggaccgt aatgaaaaag 420
aagaccattg gctgggataa ggccttcgaa aaaatgactg tgtccaaaga cgtgttaaga 480
ggtgatgtga ctgggtttct tatgctcgaa ggaggtggtt accacaactg ccagttcac 540
tccacttaca aaccagaaaa gccggttaca ctgccccga atcatgtcgt ggaacatcac 600
attgtgagga ctgaccttgg ccaaactgca aaaggcttca cagccaagct ggaagaacat 660
gctgcggctc atgtaaaccc tttgaagggtt caacatcacc atcaccatca ctaataa 717

<210> 84
<211> 684
<212> DNA
<213> Acropora millepora

<400> 84
atgaagacga aataccatat ggaaggcagt gtcaatggcc atgaattcac gatcgaaagg 60
gttaggaactg ggtaccctta cgaagggaaa cagatgtccg aattagtgtat catcaaggc 120
gcgggaaaac cccttccatt ctccttgc atactgtcat cagtcttca atatggaaac 180
aggtgcttca caaagtaccc tgcagacatg cctgactatt tcaagcaagc attcccagat 240
ggaatgtcat atgaaaggc atttctatgg gaggatggag cagttgcac agccagctgg 300
aacattcgtc tcgaaggaaa ttgcttcatc cacaatcca tctttcatgg cgtaaacttt 360
cccgctgatg gaccgtaat gaaaaagaag acaattgact gggataagtc cttcgaaaaa 420
atgactgtgt ctaaagaggt gctaagaggt gacgtgacta tgtttcttgc gctcgaaagg 480
ggtggttctc acagatgccat tttcactcc acttacaaaa cagagaagcc ggtcacactg 540
cccccaatc atgtcgtaga acatcaaatt gtgaggaccg accttggcc aagtgcacaaa 600
ggcttacag tcaagctgga agcacatgct gggctcatg ttaacccttt gaaggttaaaa 660

catcaccatc accatcacta ataa

684

<210> 85
<211> 687
<212> DNA
<213> Acropora millepora

<400> 85
atgacgtga aataccacat ggaagggtct gtcgatggc ataaatttg gatcacggc 60
cacggcaatg gaaatcctt cgaaggaaa cagactatga atctgtgtgt gggtgaaggg 120
ggaccctgc cattctccga agacattttgc tctgtacgt ttgactacgg aaacagggtc 180
ttcactgaat atcctaagg catggttgcac ttttcaaga attcatgtcc agctggatac 240
acatggcaca ggtctttact ctttgaagat ggagcagttt gcacaactag tgcagatata 300
acagttagtg ttgaggagaa ctgctttat cacaattcca agtttcatgg agtgaacttt 360
cctgctgatg gacctgtgat gaaaaagatg acaactaatt gggagccatc ctgcgagaaa 420
atcataccag tacctagaca gggatatttgc aaaggggata ttgccatgta cctccttctg 480
aaggatggtg ggcgttatcg gtgccagttc gacacaattt acaaagcaaa gtctgaccgg 540
aaagagatgc cggagtggca cttcatccaa cataagctca cccgggaaga ccgcagcgat 600
gctaagaacc agaaatggca actggtagaa catgctgttg cttcccgatc cgcatggccc 660
ggacatcacc atcaccatca ctaataa 687

<210> 86
<211> 666
<212> DNA
<213> Acropora millepora

<400> 86
atgacctaca aggttatata gtcaggcacg gtcaatggac actactttga ggtcgaaggc 60
gatggaaaag gtaaggcccta cgagggggag cagacggtaa agtcactgt caccaaggc 120
ggacctctgc catttgcttg ggatattttca tcaccacagt gtcagtacgg aagcataccca 180
ttcaccatgtt accctgaaga catccctgac tatgtaaagc agtcattccc ggagggctat 240
acatggaga ggatcatgaa ctttgaagat ggtgcagtgt gtactgtcag caatgattcc 300
agcatccaag gcaactgttt catctaccat gtcaagttct ctggtttggaa ctttcctccc 360
aatggacctg tcatgcagaa gaagacacag ggctggaaac ccaacactga gcgtctttt 420
gcacgagatg gaatgctgct aggaaacaac tttatggctc tgaagtttaga aggaggcggt 480
cactatttg gtgaattcaa aactacttac aaggcaaaaga agcctgtgaa gatgccaggg 540
tatcactatgtt tgacccgcaaa actggatgtt accaatcaca acaaggatta cacttcgggtt 600

gagcagtgt aaattccat tgcacgcaaa cctgtggcg cccatcacca tcaccatcac 660
taataa 666

<210> 87
<211> 717
<212> DNA
<213> Acropora nobilis

<400> 87
atgtcttatt caaagcaagg catcgacaaa gtaatgaaga cgaaatacca tatggaggc 60
agtgtcaatg gccatgaatt cacgatcgaa ggtgttaggaa ctggaaaccc ttacgaaggc 120
acacagatgt ccgaattagt gatcaccaag cctgcaggaa aacccttcc attctccttt 180
gacattctgt caacagtctt tcaatatgga aacaggtgct tcacaaagta ccctgaagga 240
atgactgact atttcaagca agcattccca gatggaatgt catgtgaaag gtcatttcta 300
tatgaggatg gaggagttgc tacagccagc tggAACATTc gtcttgagag agattgcttc 360
atccacaaat ccatctatca tggcgtaac tttcccgctg atggacccgt aatgaaaaag 420
aagaccattg gctgggataa agcattcgaa aaaatgactg tgtccaaaga cgtgttaaga 480
ggtgatgtga ctgagttct tatgctcgaa ggaggtggtt accacagctg ccagttcac 540
tccacttaca aaccagaaaa gccggctgca ctgcccccgatcatgtcgt agaacatcac 600
attgtgagga ctgacccggccaaagtgc aaaggcttca cagtcaagct ggaagaacat 660
gctgcggctc atgttaaccc tttgaaggtt caacatcacc atcaccatca ctaataa 717

<210> 88
<211> 684
<212> DNA
<213> Acropora nobilis

<400> 88
atgaagacga aataccatat ggaaggcagt gtcaatggcc atgaattcac gatcgaaggt 60
gttaggaactg gaaaccctta cgaaggcaca cagatgtccg aattgggtat caccaagcct 120
gcaggaaaaac ccctccatt ctcccttgac attctgtcaa cagttttca atatggaaac 180
aggtgcttca caaagtaccc tgaaggaatg actgactatt tcaagcaagc attcccgat 240
ggaatgtcat atgaaaggc atttctat gaggatggag gagttgtac agccggctgg 300
aacattcgtc ttgagagaga ttgcttcatc cacaatcca tctatcatgg cgttaacttt 360
cccgctgatg gaccgtaat gaagaagaag accattggct gggataaagc cttcgaaaaaa 420
atgactgtgt ccaaagacgt gttaagaggt gatgtgactg ggtttctt gctcgaagga 480

ggtggttacc acagctgcc a	tttcactcc acttacaaac cagaaaagcc ggctgcactg	540
cccccgaaatc atgtcgtaga acatcacatt gtgaggactg accttggcca aagtgc	aaaaaa	600
ggcttcacag tcaagctgga agaacatgct gggctcatg ttaaccctt gaagg	tcaa	660
catcaccatc accatcacta ataa		684
<210> 89		
<211> 684		
<212> DNA		
<213> Acropora nobilis		
<400> 89		
atgaagacga aataccatat ggaaggcagt gtcaatggcc atgaattcac ggtcgaagg	gt	60
gtaggactg ggtaccctta cgaaggggaa cagatgtccg aattagtgtat catcgac	cct	120
gccccggaaaac cccttccatt ctcccttgcac atactgtcat cagtcttca gtatggaa	ac	180
aggtgcttca caaaataccc tgcagacatg cctgactatt tcaagcaagc atttccag	at	240
ggaatgtcat atgaaaggc atttctattt gaggatggag cagttgtac agccagctgg	ttt	300
aaaattcgtc tcgaaggaaa ttgcttcatc cacaactcca tctttaatgg cgtaaaactt	ttt	360
cccgctgatg gaccgcataat ggaaaagaag acaattggct gggataagtc ctgcgaaaa	ttt	420
atgactgtgt ctaaagaggt gctaagaggt gatgtgacta tgtttcttat gctcgaagga	ttt	480
ggtggttctc acagatgcc a	tttcactcc acttacaaa cagagaagcc gg	540
cccccgaaatc atgtcgtaga acatcaaatt gtgaggaccg accttggcca aagtgc	aaaaaa	600
ggcttacag tcaagctgga agcacatgct gggctcatg ttaaccctt gaagg	ttaaa	660
catcaccatc accatcacta ataa		684
<210> 90		
<211> 681		
<212> DNA		
<213> Agaricia fragilis		
<400> 90		
atgatgacta agctacacat ggaaggtaact gttAACGGGC acggcccttac aattgaaggc	a	60
aaaggaaaaag gcgatcctta caatggagtg cagtctatga accttgcacgt caaaggcggt	ttt	120
gcgccttgc cgttctttt cgatcttttgc acggccacat tcatgtacgg caacagagt	ttt	180
ttcgcgaagt atccagaaga cataccagac ttttcaagc aggtgtttcc tgaagggtac	ttt	240
cactggaaa gaagtattac ctgttgaagat caggccgttt gtacggcaac cagccacata	ttt	300
aggctggacc agaaagagat gtgttttatac tatgacgtcc gtttgcacgg tgtgaactt	ttt	360

cccgccaatg gcccaatcat gcagaagaag atactggat gggagccatc cactgagaaa 420
atgtatgcac gtgatgggt gctgaagggt gatgttaata tgactctcg tttgaagga 480
ggtggccatt accgagctga ctccagaact acttacaaag caaagaagcc agtcaacctg 540
ccaggctatc acttcataga ccaccgcatt gagattacca agcacagcaa agattacacc 600
aatgttgctt tgtatgaggc agcagttgct cgtcattctc cgctgcctaa gtttgctcat 660
caccatcacc atcactaata a 681

<210> 91
<211> 680
<212> DNA
<213> Agaricia fragilis

<400> 91
atgtatgacta agctacacat ggaaggtact gttaacgggc acgccttac aattgaaggc 60
aaaggaaaaag gcgatccta caatggagt cagtctatga accttgcgt caaaggcggt 120
gcgccttgc cgttctttt cgatctctt acgccagcat tcacgtacgg caacagagt 180
ttcacgaagt atccagaaga cataccagac ttttcaagc aggtgtttcc tgaagggtac 240
cactggaaaa gaagtattac ctttgaagat caggccgtt gtacggcaac cagccacata 300
aggctggacc agaaagagat gtgttttac tatgacgtcc gtttacgg tgtgaacttt 360
cccgccaatg gcccaatcat gcagaagaag atactggat gggagccatc cactgagaaa 420
atgtatgcac gtgatgggt gctgaagggt gatgttaata tgactctcg tttgaagga 480
ggtggccatt accgagctga ctccagaact acttacaaag caaagaagcc agtcaacctg 540
ccaggctatc acttcataga ccaccgcatt gagattacca agcacagcaa agattacacc 600
aatgttgctt tgtatgaggc agcagttgct cgtcattctc cgctgcctaa gtttgctcat 660
caccatcaca tcactaataa 680

<210> 92
<211> 681
<212> DNA
<213> Agaricia fragilis

<400> 92
atgtatgacta agctacacat ggaaggtact gttaacgggc acgccttac aattgaaggc 60
aaaggaaaaag gcgatccta caatggagt cagtctatga accttgcgt caaaggcggt 120
gcgccttgc cgttctttt cgatctctt acgccagcat tcacgtacgg caacagagt 180
ttcacgaagt atccagaaga cataccagac ttttcaagc aggtgtttcc tgaagggtac 240

cactggaaa	gaagtattac	cttgaaagat	caggccgtt	gtacggcaac	cagccacata	300
aggctggacc	agaaagagat	gtgtttatc	tatgacgtcc	gtttcacgg	tgtgaacttt	360
cccgccaatg	gcccaatcat	gcagaagaag	atactggat	gggagccatc	cactgagaaa	420
atgtatgcac	gtgatgggt	gctgaagggt	gatgttaata	tgactcttcg	tgttgaagga	480
ggtggccatt	accgagctga	cttcagaact	acttacaaag	caaagaagcc	agtcaacctg	540
ccaggctatc	acttcataga	ccaccgcatt	gagattacca	agcacagcaa	agattacacc	600
aatgttgctt	tgtatgggc	agcagttgct	cgtcattctc	cgctgcctaa	ggtttctcat	660
caccatcacc	atcactaata	a				681

<210> 93

<211> 678

<212> DNA

<213> Agaricia fragilis

<400> 93

atgactaagc	tacacatgga	aggtaactgtt	aacgggcacg	cctttacaat	tgaaggcaaa	60
ggaaaaggcg	atccttacaa	tggagtgcag	tctatgaacc	ttgacgtcaa	aggcggtgcg	120
cctttgcgt	tctcttcga	tctcttgacg	ccagcattca	tgtacggcaa	cagagtgttc	180
acgaagtatc	cagaagacat	accagacttt	ttcaagcagg	tgtttcctga	agggtaccac	240
tggaaagaa	gtattacctt	tgaagatcag	gccgttgta	cggcaaccag	ccacataagg	300
ctggaccaga	aagagatgtg	tttatctat	gacgtccgtt	ttcacggtgt	gaactttccc	360
gccaatggcc	caatcatgca	gaagaagata	ctggatggg	agccatccac	tgagaaaaatg	420
tatgcacgtg	atgggtgct	gaagggtgat	gttaatgtga	ctcttcgtgt	tgaaggaggt	480
ggccattacc	gagctgactt	cagaactact	tacaaagcaa	agaagccagt	caacctgcca	540
ggctatcact	tcatagacca	ccgcatttag	attaccaagc	acagcaaaga	ttacaccaat	600
gttgctttgt	atgaggcagc	agttgctcgt	cattctccgc	tgcctaaggt	tgctcatcac	660
catcaccatc	actaataaa					678

<210> 94

<211> 681

<212> DNA

<213> Agaricia fragilis

<400> 94

atgatgacta	agctacacat	ggaaggtaact	gttaacgggc	acgccttac	aattgaaggc	60
aaaggagagg	gcgatccta	aatggagtg	cagtctatga	accttgacgt	caaaggcggt	120
gcgcctttgc	cgttctcttt	cgatctttg	acgccagcat	tcatgtacgg	caacagagtg	180

ttcacgaagt atccagaaga cataccagac ttttcaagc aggtgttcc tgaagggtac 240
 cactggaaa gaagtattac ctttgaagat caggccgtt gtacggctac cagccacata 300
 aggctggacc agaaaagagat gtgtttatc tatgacgtcc gtttcacgg tgtgaacttt 360
 cccgccaatg gcccaatcat gcagaagaag atactggat gggagccatc cactgagaaa 420
 atgtatgcac gtgatgggt gctgaagggt gatgttaata tgactctcg tttgaagga 480
 ggtggccatt accgagctga ctccagaact acttacaaag caaagaagcc agtcaacctg 540
 ccaggctatc acttcataga ccaccgcatt gagattacca agcacagcaa agattacacc 600
 aatgttgctt tgtatgggc agcagttgct cgtcattctc cgctgcctaa gtttgctcat 660
 caccatcacc atcactaata a 681

<210> 95
 <211> 681
 <212> DNA
 <213> Agaricia fragilis

<400> 95
 atgatgacta agctacacat ggaaggtaact gttaacgggc acgccttac aattgaaggc 60
 aaaggaaaaag gcgatccta caatggagtg cagtctatga accttgcgt caaaggcggt 120
 ggccttgc cgatctctt acgcgcgtatc tcatgtacgg caacagagtg 180
 ttcacgaagt atccagaaga cataccagac ttttcaagc aggtgttcc tgaagggtac 240
 cactggaaa gaagtattac ctttgaagat caggccgtt gtacggcaac cagccacata 300
 aggctggacc agaaaagagat gtgtttatc tatgacgtcc gtttcacgg tgtgaacttt 360
 cccgccaatg gcccaatcat gcagaagaag atactggat gggagccatc cactgagaaa 420
 atgtatgcac gtgatgggt gctgaagggt gatgttaata tgactctcg tttgaagga 480
 ggtggccatt accgagctga ctccagaact acttacaaag caaagaagcc agtcaacctg 540
 ccaggctatc acttcataga ccaccgcatt gagattacca agcacagcaa agattacacc 600
 aatgttgctt tgtatgaggc agcagttgct cgtcattctc cgctgcctaa gtttgctcat 660
 caccatcacc atcactaata a 681

<210> 96
 <211> 681
 <212> DNA
 <213> Agaricia fragilis

<400> 96
 atgatgacta agctacacat ggaaggtaact gttaacgggc acgccttac aattgaaggc 60
 aaaggaaaaag gcgatccta caatggagtg cagtctatga accttgcgt caaaggcggt 120

gcgcctttgc cgttctctt ccatctctt acgccagcat tcatgtacgg caacagagtg 180
ttcacgaagt atccagaaga cataccagac ttttcaaggc aggtgtttcc tgaagggtac 240
caactggaaa gaagtattac ctttgaagat caggccgttt gtacggcaac cagccacata 300
aggctggacc agaaagagat gtgtttatc tatgacgtcc gtttacgg tgtgaacttt 360
cccccaatg gcccaatcat gcagaagaag atactggat gggagccatc cactgagaaa 420
atgtatgcac gtgatgggt gctgaagggt gatgttaata cgactctcg tttgaagga 480
ggtggccatt accgagctga cttcagaact acttacaaag caaagaagcc agtcaacctg 540
ccaggctatc acttcataga ccaccgcatt gagattacca agcacagcaa agattacacc 600
aatgttgctt tgtatgaggc agcagttgct cgtcattctc cgctgcctaa gtttgctcat 660
caccatcacc atcactaata a 681

REVISED VERSION

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
3 March 2005 (03.03.2005)

PCT

(10) International Publication Number
WO 2005/019252 A2

(51) International Patent Classification⁷: C07K 14/37, C12N 15/62, A61K 49/00, C12N 15/12

(21) International Application Number: PCT/US2004/016252

(22) International Filing Date: 20 May 2004 (20.05.2004)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 60/472,196 22 May 2003 (22.05.2003) US

(71) Applicant (*for all designated States except US*): UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC. [US/US]; 223 Grinter Hall, Gainesville, FL 32611-5500 (US).

(72) Inventors; and

(75) Inventors/Applicants (*for US only*): MATZ, Mikhail, Vladimirovitch [RU/US]; 49 Nantucket Dr., Palm Coast, FL 32137 (US). KELMANSON, Ilya, Vladimirovitch [RU/US]; Whitney Laboratory, 9505 Ocean Shore Blvd., St. Augustine, FL 32080-8610 (US). MELESHEVITCH, Ella, A. [BY/US]; Whitney Laboratory, 9505 Ocean Shore Blvd., St. Augustine, FL 32080-8610 (US). SALIH, Anya [AU/AU]; Sydney (AU).

(74) Agents: SALIWANCHIK, David, R. et al.; Saliwanchik, Lloyd & Saliwanchik, A Professional Association, 2421 N.W. 41st Street, Suite A-1, Gainesville, FL 32606-6669 (US).

(81) Designated States (*unless otherwise indicated, for every kind of national protection available*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (*unless otherwise indicated, for every kind of regional protection available*): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with declaration under Article 17(2)(a); without abstract; title not checked by the International Searching Authority

(48) Date of publication of this revised version: 28 July 2005

(15) Information about Correction:
see PCT Gazette No. 30/2005 of 28 July 2005, Section II

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 2005/019252 A2

(54) Title: NOVEL FLUORESCENT AND COLORED PROTEINS, AND POLYNUCLEOTIDES THAT ENCODE THESE PROTEINS

(57) Abstract:

Applicant's or agent's file reference UF - 364XC1 PCT	IMPORTANT DECLARATION		Date of mailing(day/month/year) 14/03/2005
International application No. PCT/US2004/016252	International filing date(day/month/year) 20/05/2004	(Earliest) Priority date(day/month/year) 22/05/2003	
International Patent Classification (IPC) or both national classification and IPC			
Applicant UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.			

This International Searching Authority hereby declares, according to Article 17(2)(a), that no international search report will be established on the international application for the reasons indicated below

1. The subject matter of the international application relates to:
 - a. scientific theories.
 - b. mathematical theories
 - c. plant varieties.
 - d. animal varieties.
 - e. essentially biological processes for the production of plants and animals, other than microbiological processes and the products of such processes.
 - f. schemes, rules or methods of doing business.
 - g. schemes, rules or methods of performing purely mental acts.
 - h. schemes, rules or methods of playing games.
 - i. methods for treatment of the human body by surgery or therapy.
 - j. methods for treatment of the animal body by surgery or therapy.
 - k. diagnostic methods practised on the human or animal body.
 - l. mere presentations of information.
 - m. computer programs for which this International Searching Authority is not equipped to search prior art.
2. The failure of the following parts of the international application to comply with prescribed requirements prevents a meaningful search from being carried out:

the description the claims the drawings
3. The failure of the nucleotide and/or amino acid sequence listing to comply with the standard provided for in Annex C of the Administrative Instructions prevents a meaningful search from being carried out:

the written form has not been furnished or does not comply with the standard.
 the computer readable form has not been furnished or does not comply with the standard.
4. The failure of the tables related to the nucleotide and/or amino acid sequence listing to comply with the technical requirements provided for in Annex C-bis of the Administrative Instructions prevents a meaningful search from being carried out:

the written form has not been furnished.
 the computer readable form has not been furnished or does not comply with the technical requirements.
5. Further comments:
The requested Sequence Listing on floppy was not furnished

Name and mailing address of the International Searching Authority European Patent Office, P.B. 5818 Patentlaan 2 NL-2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Henriëtte Huysing-Solles
---	--

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 203

The claims of the underlying application have, according to PCT Rule 13ter.1.c, not been searched since the Sequence Listing has not been furnished in machine readable form as prescribed in the administrative instructions under Rule 5:2. The applicant has not remedied the disclosed deficiencies within the time limit fixed in the invitation pursuant to PCT Rule 13ter.1.a.

The applicant's attention is drawn to the fact that claims relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure. If the application proceeds into the regional phase before the EPO, the applicant is reminded that a search may be carried out during examination before the EPO, (see EPO Guideline C-VI, 8.5), should the problems which led to the Article 17(2) declaration be overcome.

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.