Trade Policy Dynamics: Evidence from 50 years of China-U.S. trade

Alessandria, Khan, Khederlarian, Ruhl, and Steinberg

VITM | April 2021

Aggregate trade

- ► Aggregate trade is a function of
 - ▶ Individual firm choices
 - ▶ Distribution over firms
- ▶ These are functions of past, present, and future policy
- ▶ Large literature studies the effects of past policy
- ► Growing literature focuses on uncertain future policy

1

China's import share and tariff rates

China's import share and tariff rates

Aggregate trade

- ▶ Aggregate trade is a function of
 - ▶ Individual firm choices
 - ▶ Distribution over firms
- ▶ These are functions of past, present, and future policy
- ▶ Large literature studies the effects of past policy
- ► Growing literature focuses on uncertain future policy
- Our goal: Methodology for disentangling the past from the future
- ► Today: Use China-U.S. trade as a case study
 - ▶ Begin from autarky
 - ▶ No phase-ins of tariffs (as in NAFTA)

U.S. trade policy towards China: $(1 + \tau_t^{NTR})/(1 + \tau_t^{CH})$

► The 1970s liberalizations were huge, adjustment takes decades

Roadmap

- 1. Summarize the slow nature of adjustment (long/short elasticities)
- 2. Difference in differences approach
 - ▶ Revisit Pierce and Schott (2016); Handley and Limão (2017)
 - ► Estimate year-by-year NNTR-gap coefficients on longer sample
 - Adjust for effects of past policy
- Quantitative model
 - ▶ Partial equilibrium model with extensive and intensive margins
 - ▶ Time-varying uncertainty over trade policy regime
 - Estimate model to match NNTR-gap coefficients
 - Recover agent beliefs over trade regime uncertainty

Our findings

- **1.** Slow adjustment: $\sigma^{LR} \approx$ 8, $\sigma^{SR} \approx$ 2.3
- 2. Empirical
 - ► NNTR gap coefficients: 1970s >> 1990s
 - ▶ NNTR gap coefficients shrink when adding lagged trade
- 3. Structural model
 - ► Policy uncertainty: 1980s >> 1990s
 - Policy uncertainty before/after 2000 similar
 - ► Post-1980 uncertainty estimates quite stable
 - ▶ High initial policy uncertainty delayed transition from early liberalizations

7

Trade elasticities

- ▶ j = country, g = good (SITC 5-digit)
- ightharpoonup v =trade value, au =applied duties, $\delta =$ fixed effect
- ▶ Error correction model (restricted) $\sigma^{LR} = \sigma^{SR}/(1-\alpha)$

$$\begin{aligned} v_{jgt} = & \sigma^{SR} \mathbb{1}\{j = China\} \tau_{jgt} + \sigma^{SR} \mathbb{1}\{j \neq China\} \tau_{jgt} \\ & + \alpha \mathbb{1}\{j = China\} v_{jg,t-1} + \alpha \mathbb{1}\{j \neq China\} v_{jg,t-1} + \delta_{jt} + \delta_{jg} + \delta_{gt} + u_{jgt}, \end{aligned}$$

▶ Error correction model (unrestricted) $\sigma^{LR} = -\alpha_2/\alpha_1$

$$\begin{split} \Delta \textit{v}_{\textit{jgt}} = & \sigma^{\textit{SR}} \mathbb{1}\{j = \textit{China}\} \Delta \tau_{\textit{jgt}} + \sigma^{\textit{SR}} \mathbb{1}\{j \neq \textit{China}\} \Delta \tau_{\textit{jgt}} \\ & + \alpha_2 \mathbb{1}\{j = \textit{China}\} \tau_{\textit{jg},t-1} + \alpha_2 \mathbb{1}\{j \neq \textit{China}\} \tau_{\textit{jg},t-1} \\ & + \alpha_1 \mathbb{1}\{j = \textit{China}\} \textit{v}_{\textit{jg},t-1} + \alpha_1 \mathbb{1}\{j \neq \textit{China}\} \textit{v}_{\textit{jg},t-1} + \delta_{\textit{jt}} + \delta_{\textit{jg}} + \delta_{\textit{gt}} + \textit{u}_{\textit{jgt}}. \end{split}$$

8

Aggregate elasticity estimates

	Cross-section	ECM rest.	ECM unrest.
	V _{jgt}	V _{jgt}	Δv_{jgt}
$\mathbb{1}\left\{ j=\mathit{China}\right\} au_{\mathit{jgt}}$	-6.69 ***	-2.84 ***	
$\mathbb{1}\left\{ j=\mathit{China}\right\} \Delta au_{\mathit{jgt}}$			-2.30 ***
$\mathbb{1}\left\{ j=\textit{China}\right\} \textit{v}_{jg,t-1}$		0.63***	-0.37 ***
$\mathbb{1}\{j=\textit{China}\}\tau_{jg,t-1}$			-2.96 ***
Long-Run China		-7.78 ***	-8.07 ***
Long-/Short-Run China		2.74	3.51
FE	gt, jt, gj	gt, jt, gj	gt, jt, gj
Observations	1,184,722	934,249	934,249
Adjusted R ²	0.79	0.86	0.27

Difference in differences approach

- ► Follow Pierce and Schott (2016)
- $ightharpoonup X_g = ext{NNTR Gap (Column two tariff minus MFN tariff)}$

$$v_{jgt} = \beta \mathbb{1}\{t > 2000\}\mathbb{1}\{j = China\}X_g + \sigma \tau_{jgt} + \delta_{jt} + \delta_{jg} + \delta_{gt} + u_{jgt}$$

Tariff gap estimates

	PS (2016)	1974– 2008	NTR countries	Excl. tariffs	NNTR	Applied NNTR
$\mathbb{1}_{\substack{t>2000\ j=China}}$ NNTRGap _g	0.9***	2.5***	3.3***	3.6***		
$\mathbb{1}_{\substack{t>2000\ j=China}}$ NNTR $_g$					3.0***	
$\mathbb{1}_{\substack{t>2000\ j=China}}$ AppNNTR $_g$						4.1***
$ au_{jgt}$	-3.3***	-3.2***	-2.8***			
Period	'92-'07	'74-'08	'74-'08	'74-'08	'74-'08	'74-'08
Countries	All	All	NTR	NTR	NTR	NTR
Life-Cycle controls					✓	
FE	gt, jt, gj	gt, jt, gj	gt, jt, gj	gt, jt, gj	gt, jt, gj	gt, jt, gj
R ²	0.86	0.81	0.80	0.80	0.80	0.82

Difference in differences approach

- ► Follow Pierce and Schott (2016)
- $ightharpoonup X_g = \text{NNTR Gap (Column two tariff minus MFN tariff)}$

$$v_{jgt} = \beta \mathbb{1}\{t > 2000\}\mathbb{1}\{j = China\}X_g + \sigma \tau_{jgt} + \delta_{jt} + \delta_{jg} + \delta_{gt} + u_{jgt}\}$$

▶ The dynamics of the NNTR-gap effects

$$v_{jgt} = \sum_{t'=1974}^{2007} \beta_t \mathbb{1}\{t=t'\} \mathbb{1}\{j=\textit{China}\} X_g + \delta_{jt} + \delta_{jg} + \delta_{gt} + u_{jgt}$$

12

Elasticity of U.S. imports from China to NNTR gap

- ► Coefficients capture initial reform and expectations (1970s vs. 1980s)
- ▶ Flat before 1980
- Jumps in 1980 with NTR liberalization; Stalls in early 1980s
- ▶ 1990s growth small share of overall growth

Difference in differences approach (Pierce and Schott 2016)

 $ightharpoonup X_g = \text{NNTR Gap (Column two tariff minus MFN tariff)}$

$$v_{jgt} = \beta \mathbb{1}\{t > 2000\}\mathbb{1}\{j = China\}X_g + \sigma \tau_{jgt} + \delta_{jt} + \delta_{jg} + \delta_{gt} + u_{jgt}\}$$

▶ The dynamics of the NNTR-gap effects

$$v_{jgt} = \sum_{t'=1974}^{2007} \beta_t \mathbb{1}\{t=t'\} \mathbb{1}\{j=\textit{China}\} X_g + \delta_{jt} + \delta_{jg} + \delta_{gt} + u_{jgt}$$

► A crude way to control for the pervious liberalizations

$$v_{jgt} = \sum_{t'=1974}^{2007} \beta_t \mathbb{1}\{t=t'\} \mathbb{1}\{j=China\}X_g + \gamma v_{jg,t-1} + \delta_{jt} + \delta_{jg} + \delta_{gt} + u_{jgt}\}$$

14

Elasticity of U.S. imports from China to NNTR gap

Findings robust to:

- ► Level of aggregation (TSUSA8/HS8)
- ► Sample of countries (NTR countries/all countries)
- ► Alternative gap measures (NNTR statutory, NNTR applied)
- Sample of goods (balanced/unbalanced)
- ► Trade costs (applied tariffs, shipping costs)
- ► Life cycle controls (entry/exit dummies, age, age²)

The model

- Ingredients
 - ▶ Time-varying uncertainty over policy
 - ► Exporter life cycle (slow adjustment)
- ► Partial equilibrium version of ACR(2021)
- ► G goods, matched to SITC 5-digit tariffs
- ► In each *g*, fixed mass of producers (no entry)
 - ▶ Heterogenous in productivity (z), variable trade cost (ξ)
 - ▶ Firms exit with probability $1 \delta(z)$, replaced by new firm
- ▶ Two policy regimes: NNTR and MFN
 - ► At each *t*, probability of moving to the other regime

Producers in China

▶ Production (z = productivity; $\ell = \text{labor}$)

$$y_t = z_t \ell_t$$

▶ Firm-level demand (τ = tariff; ξ = trade cost; D^* = aggregate shifter)

$$d_t(p_t) = (p_t \tau_t^* \xi_t)^{-\theta} D_t^*,$$

- Variable export costs
 - \blacktriangleright $\xi_L < \xi_H < \infty$
 - ▶ New exporters are ξ_H , then Markov process over ξ
- ▶ Fixed export costs
 - $ightharpoonup f_0$ to enter, f_1 to continue
 - One period "time to export"

Static optimization

- ► Firms are monopolistic competitors
- ► Export status is predetermined

$$\pi(z_t, \xi_t, \tau_{gt}) = \max_{\substack{p, \ell}} p_t d_t(p_t, \xi_t, \tau_{gt}) - w_t \ell_t$$

s.t. $z_t \ell_t \ge d_t(p_t, \xi_t, \tau_{gt}) \xi_t$

Dynamic optimization

▶ A firm that chooses to export at t + 1

$$V_{gt}^{1}(z_{t},\xi_{t},\tau_{gt}) = -f(\xi_{t}) + \frac{\delta(z_{t})}{1+r} \mathop{\mathbb{E}_{t}}_{z,\xi,\tau} V_{t+1}(z_{t+1},\xi_{t+1},\tau_{g,t+1})$$

▶ A firm that choose not to export at t + 1

$$V_{gt}^{0}\left(z_{t}, \xi_{t}, \tau_{gt}\right) = \frac{\delta(z_{t})}{1+r} \underset{z, \xi, \tau}{\mathbb{E}_{\mathsf{t}}} V_{t+1}\left(z_{t+1}, \infty, \tau_{g, t+1}\right)$$

▶ Firm value

$$V_{gt}\left(z_{t},\xi_{t},\tau_{gt}\right)=\pi(z_{t},\xi_{t},\tau_{gt})+\max\left\{ V_{gt}^{1}\left(z_{t},\xi_{t},\tau_{gt}\right),V_{gt}^{0}\left(z_{t},\xi_{t},\tau_{gt}\right)\right\}$$

Dynamic optimization

► The break-even exporter has

$$V_{gt}^{0}\left(z_{t},\xi_{t}, au_{gt}\right)=V_{gt}^{1}\left(z_{t},\xi_{t}, au_{gt}\right)$$

▶ Equating the cost of exporting to the benefit

$$f(\xi_t) = \frac{\delta(z_t)}{1+r} \mathop{\mathbb{E}_{t}}_{z,\xi,\tau} \left[V_{t+1}(z_{t+1},\xi_{t+1},\tau_{t+1}) - V_{t+1}(z_{t+1},\infty,\tau_{t+1}) \right]$$

Aggregate exports

▶ Measures of exporters $\varphi_{qt}^1(z,\xi)$

$$EX_{gt} = \sum_{\xi \in \{\xi_L, \xi_H\}} \int_{z} p\left(z, \xi, \tau_{gt}\right) y\left(z, \xi, \tau_{gt}\right) \varphi_{gt}^{1}\left(z, \xi\right) dz.$$

- ▶ py depends on current tariff rates (jump variables)
- $ightharpoonup \varphi$ depends on past and future tariff rates (state variables)

Timing and beliefs

- ▶ Model begins in 1971; all firms are nonexporters
- ▶ Benchmark model ("with TPU")
 - ▶ 1971: Learn that autarky is over, in NNTR regime
 - ▶ 1971: Observe two tariff paths (NNTR, MFN)
 - ▶ 1971: Observe time-varying Markov probs. of switching regimes

Estimation: Basics

Parameter	Meaning	Value	Source/target
Assigned			
W	Wage	1	Normalization
r	Interest rate	4 pct.	Standard
$\sigma_{\it Z}$	Variance of productivity	1.32	Alessandria et al. (2021)
$ ho_{\sf Z}$	Persistence of productivity	0.65	"
δ_{0}	Corr. of survival with productivity	21.04	"
δ_1	Minimum death probability	0.023	"
$ au_{q1}$	NNTR tariff	Varies	Data
$ au_{g2}$	MFN tariff	Varies	Data
Calibrated to	match terminal steady state		
f_0	Entry cost	0.60	Export part. rate = 22 pct.
f_1	Continuation cost	0.32	Exit rate = 17 pct.
ξ_H/ξ_L	High iceberg cost	2.40	$\frac{\text{mean ent. sales}}{\text{mean inc. sales}} = 0.5$

Calibrating to transition dynamics

- ► Indirect inference approach
 - ► Run DiD regressions in the model
 - ► Run ECM regressions in the model
- ▶ Match aggregate trade adjustment and industry differences
- ▶ Probability of NNTR \rightarrow MFN: ω_{21}
 - ▶ Match average NNTR gap coefficients 1974–1979
- ▶ Probability of MFN \rightarrow NNTR: $\{\omega_{12,t}\}_{t=1980}^{2008}$
 - ► Match NNTR gap coefficients 1980–2008
- ▶ Demand elasticity: $\theta = 3.55$ to match ECM $\sigma^{SR} = 2.3$
- ▶ Iceberg cost persistence: $\rho_{\xi} = 0.85$ to match ECM $\sigma^{LR} = 8.07$

▶ Do not smooth jump at 1980, it identifies σ^{SR}

Estimated probabilities

- ▶ Lots of uncertainty in the early 1980s
- ► Falls rapidly post-1986
- ▶ Much lower in the late 1990s and 2000s

$$\blacktriangleright \ \tau_t^{\rho v} = (1 - \beta) \sum_{s=t}^{\infty} \beta^{s-t} \mathbb{E}_t[\tau_s]$$

► Expected tariffs stay high, suppressing entry

Uncertainty effects

- ▶ Model begins in 1971; all firms are nonexporters
- Benchmark model ("with TPU")
 - ▶ 1971: Learn that autarky is over, in NNTR regime
 - ▶ 1971: Observe two tariff paths (NNTR, MFN)
 - ▶ 1971: Observe time-varying Markov probs. of switching regimes
- ► Counterfactual model ("no TPU")
 - ▶ 1971: Learn that autarky is over, in NNTR regime
 - ▶ 1971: Learn that NNTR until 1980, MFN afterwards
 - ▶ No uncertainty. Perfect foresight.

- ► TPU slows down trade growth significantly
- ► Largest effects are in the 1980s
- ► Trade is more depressed in early period

Present value of tariffs

- ► (TPU) Expected tariffs stay high, suppressing entry
- ▶ (no TPU) Expected tariffs fall quickly, change little

Sensitivity to expectations assumptions

- ▶ Model begins in 1971; all firms are nonexporters
- ▶ Benchmark model ("with TPU")
 - ▶ 1971: Learn that autarky is over, in NNTR regime
 - ▶ 1971: Observe two tariff paths (NNTR, MFN)
 - ▶ 1971: Observe time-varying Markov probs. of switching regimes
- Counterfactual model ("no TPU")
 - ▶ 1971: Learn that autarky is over, in NNTR regime
 - ▶ 1971: Learn that NNTR until 1980, MFN afterwards
 - ▶ No uncertainty. Perfect foresight.
- ► Counterfactual model ("surprises")
 - ▶ 1971: Learn that autarky is over, in NNTR regime
 - ▶ 1971–2008: Surprised by a new transition matrix, believe it is permanent

- ► Post-1980 estimates relatively unchanged
- ▶ Pre-1980: if benchmark estimate was believed permanent, would get too much entry

- (TPU) Expected tariffs stay high, suppressing entry
- ▶ (no TPU) Expected tariffs fall quickly, change little
- ► (surprises) Tariff PV pre-1980 very similar to benchmark

Conclusions

- **1.** Slow adjustment: $\sigma^{LR} \approx$ 8, $\sigma^{SR} \approx$ 2.3
- 2. Empirical
 - ► NNTR gap coefficients: 1970s >> 1990s
 - ▶ NNTR gap coefficients shrink when adding lagged trade
- 3. Structural model
 - ▶ Policy uncertainty: 1980s >> 1990s
 - Policy uncertainty before/after 2000 similar
 - ▶ Post-1980 uncertainty estimates quite stable
 - ▶ Policy uncertainty slowed down transition from early liberalizations

References

- **Alessandria, George, Horag Choi, and Kim J. Ruhl**, "Trade adjustment dynamics and the welfare gains from trade," *Journal of International Economics*, 2021, *131*, 1034–58.
- **Handley, Kyle and Nuno Limão**, "Policy uncertainty, trade, and welfare: Theory and evidence for China and the United States," *American Economic Review*, 2017, *107(9)*, 2731–2783.
- **Pierce, Justin and Peter Schott**, "The surprisingly swift decline of US manufacturing employment," *American Economic Journal*, 2016, *106*(7), 1632–1662.