Submatrix Detection

Parker Knight

September 5, 2022

1 Introduction

This set of notes concerns the submatrix detection problem, following [1].

Our setup is as follows: we observe a high dimensional random matrix, and want to test if it contains a submatrix (of much smaller size) with large entries. In particular, let

$$Y_{ij} = s_{ij} + \varepsilon_{ij}$$

for $i \in [N], j \in [M]$, and the ε_{ij} are iid N(0,1). We test the following hypothesis:

$$H_0: s_{ij} = 0 \quad \forall i, j$$

versus

$$H_1: \exists C = A \times B \subset [N] \times [M]$$
 s.t. $s_{ij} \geq a \quad \forall i, j \in C$

where |A|=n and |B|=m. We assume that the size of the matrix (i.e., the values of n and m) is known. Let $\mathcal{S}_{nm,a}$ denote the set of all $N\times M$ matrices satisfying the alternative hypothesis, and let \mathcal{C}_{nm} denote the set of all possible $n\times m$ submatrices of an $N\times M$ matrix¹. Let $\mathbb{P}_0\{E\}$ denote the probability of event E under the null hypothesis, and let $\mathbb{P}_S\{E\}$ denote the probability of E under some $S\in\mathcal{S}_{nm,a}$.

A test ψ is any measurable function of the observations $\{Y_{ij}\}$ taking values in $\{0,1\}$. We introduce the following notation:

¹In other words, $C_{nm} = \{A \times B : A \subset [N], B \subset [M], |A| = n, |M| = m\}$

Type I Error: $\alpha(\psi) = \mathbb{P}_0 \left\{ \psi = 1 \right\}$ Type II Error: $\beta(\psi,S) = \mathbb{P}_S \left\{ \psi = 0 \right\}$ Maximal Type II Error: $\beta_{nm,a}(\psi) = \sup_{S \in \mathcal{S}_{nm,a}} \mathbb{P}_S \left\{ \psi = 0 \right\}$ Risk: $\gamma_{nm,a}(\psi) = \alpha(\psi) + \beta_{nm,a}(\psi)$

We consider the following high dimensional sparse asymptotic regime: $N,M,n,m\to\infty$ with $p=n/N,q=m/M\to0$.

References

[1] C. Butucea and Y. I. Ingster, "Detection of a sparse submatrix of a high-dimensional noisy matrix," vol. 19, no. 5.