Juan Carles Llamas Niñez DNI: 11867802-D

$$X_{B}^{*} = B^{-1}b' = \begin{pmatrix} 1/2 & 0 \\ -1/6 & 1/3 \end{pmatrix} \begin{pmatrix} 6 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ -2/3 \end{pmatrix}$$

Por tunto la nueva table del simplex queda:

	X	1 × X2 =	1 X2	ſ ×,	1 v.	Ĺ
- X3	0	1/2	1	1/2	0	3
×,	1	1/21	0	-1/6	43	-2/3
	0	4	0	4	2	2-1-26)

Como no tenemos factibilidad primal pero si factibilidad dual aplicamos el algoritmo dual del Simplex.

Entra en la base x2 y sale x,

	X,	×2	× 3	l x.	1 V-	- Î
×3	1	0	1	1/3	1/5	7/2
×2	-2	1	0	1/3	-2/2	4/5
1	8	0	0	8/3	14/3	2-1-63/3)

Esta tabla presenta solución óptima factible y además es única. Esta es:

$$\begin{cases} x_{1}^{*} \\ x_{2}^{*} \\ x_{3}^{*} \\ x_{4}^{*} \\ x_{5}^{*} \end{cases} = \begin{cases} 0 \\ \frac{9}{3} \\ \frac{7}{3} \\ 0 \\ 0 \end{cases} \qquad y \quad z^{*} = -\frac{62}{3}$$