In [1]:

```
#BL.EN.U4CSE21083
#K.SAI CHANDANA
#CSEB
import pandas as pd
import numpy as np
df=pd.read_csv('winequality-red.csv')
df
```

Out[1]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	i
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	
1594	6.2	0.600	80.0	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	

1599 rows × 12 columns

In [2]:

```
#A1
# Sample data for two classes (quality 5 and quality 6)
class_5_data = np.array([
    [7.4, 0.7, 0, 1.9, 0.076, 11, 34, 0.9978, 3.51, 0.56, 9.4],
    [7.4, 0.66, 0, 1.8, 0.075, 13, 40, 0.9978, 3.51, 0.56, 9.4]
])
class_6_data = np.array([
    [11.2, 0.28, 0.56, 1.9, 0.075, 17, 60, 0.998, 3.16, 0.58, 9.8],
    [7.9, 0.32, 0.51, 1.8, 0.341, 17, 56, 0.9969, 3.04, 1.08, 9.2]
1)
# Calculating mean vectors
mean_class_5 = np.mean(class_5_data, axis=0)
mean_class_6 = np.mean(class_6_data, axis=0)
# Calculating standard deviations(spread)
std class 5 = np.std(class 5 data, axis=0)
std class 6 = np.std(class 6 data, axis=0)
# Calculate Euclidean distance between mean vectors
distance = np.linalg.norm(mean class 5 - mean class 6)
print("Mean vector for class 5:", mean_class_5)
print("Mean vector for class 6:", mean_class_6)
print("Standard deviation for class 5:", std_class_5)
print("Standard deviation for class 6:", std_class_6)
print("Euclidean distance between mean vectors:", distance)
Mean vector for class 5: [ 7.4
                                   0.68
                                            0.
                                                    1.85
                                                            0.0755 12.
37.
         0.9978 3.51
          9.4
  0.56
Mean vector for class 6: [ 9.55
                                    0.3
                                              0.535
                                                       1.85
                                                                0.208
                                                                        17.
          0.99745
           0.83
  3.1
                    9.5
Standard deviation for class 5: [0.e+00 2.e-02 0.e+00 5.e-02 5.e-04 1.e+00
3.e+00 0.e+00 0.e+00 0.e+00
 0.e+00]
Standard deviation for class 6: [1.65e+00 2.00e-02 2.50e-02 5.00e-02 1.33e
-01 0.00e+00 2.00e+00 5.50e-04
 6.00e-02 2.50e-01 3.00e-01]
Euclidean distance between mean vectors: 21.70994429685392
```

In [3]:

```
#A2
import matplotlib.pyplot as plt
# Sample data for volatile acidity
volatile_acidity_data = np.array([
    0.7, 0.88, 0.76, 0.28, 0.7, 0.66, 0.6, 0.58, 0.5
])
# Plotting histogram of feature volatile acidity
plt.hist(volatile_acidity_data, bins=5, edgecolor='k')
plt.xlabel("Volatile Acidity")
plt.ylabel("Frequency")
plt.title("Histogram of Fixed Acidity")
plt.show()
# Calculating mean and variance of feature volatile acidity
mean volatile acidity = np.mean(volatile acidity data)
variance_volatile_acidity = np.var(volatile_acidity_data)
print("Mean volatile acidity:", mean_volatile_acidity)
print("Variance of volatile acidity:", variance_volatile_acidity)
```


Mean volatile acidity: 0.6288888888888888

Variance of volatile acidity: 0.02587654320987654

In [4]:

```
#A3
from scipy.spatial import distance

# Sample feature vectors of fixed acidity and volatile acidity
vector1 = np.array([7.4, 0.7])
vector2 = np.array([7.8, 0.88])

# Calculating Minkowski distances for different values of r
r_values = range(1, 11)
distances = [distance.minkowski(vector1, vector2, r) for r in r_values]

# Plotting the distances
plt.plot(r_values, distances, marker='o')
plt.xlabel("r")
plt.ylabel("Minkowski Distance")
plt.title("Minkowski Distance vs r")
plt.grid(True)
plt.show()
```


In [5]:

```
#A4
from sklearn.model_selection import train_test_split
# Extracting features (X) and target variable (y)
X = df.drop(columns=['quality'])
y = df['quality']
# Splitting the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
print("Printing the training dataset")
print(X)
print("Printing the testing dataset")
print(y)
```

Doin	ting the theiri	na data	cot					
Prin	ting the traini fixed acidity			citric ac	id resid	lual su	gar	chlori
des	\	VOIGE	ire delaity	citife ac	.14 16314	idai sa	Биі	CIIIOI I
0	7.4		0.700	0.	00		1.9	0.
076								
1	7.8		0.880	0.	00		2.6	0.
098								
2	7.8		0.760	0.	04		2.3	0.
092								
3	11.2		0.280	0.	56		1.9	0.
075								
4	7.4		0.700	0.	00		1.9	0.
076								
• • •	• • •		• • •	•	• •		• • •	
1504	<i>c</i> 2		0.600	0	00		2 0	0
1594	6.2		0.600	0.	08		2.0	0.
090 1595	5.9		0.550	a	10		2.2	0.
062	3.9		0.550	0.	10		Z • Z	٥.
1596	6.3		0.510	a.	13		2.3	0.
976	0.5		0.510	٠.	13		2.5	0.
1597	5.9		0.645	0.	12		2.0	0.
075								
1598	6.0		0.310	0.	47		3.6	0.
067								
	free sulfur d	ioxide	total sulfu	ır dioxide	density	рН	sul	phates
\								
0		11.0		34.0				0.56
1		25.0		67.0				0.68
2		15.0		54.0				0.65
3		17.0		60.0				0.58
4		11.0		34.0				0.56
 1594		32.0		44.0	0.99490	2 /E		0.58
1595		39.0		51.0	0.99512	3.52		0.38 0.76
1596		29.0		40.0	0.99574	3.42		0.75 0.75
1597		32.0		44.0	0.99547	3.57		0.71
1598		18.0		42.0	0.99549	3.39		0.66
	alcohol							
0	9.4							
1	9.8							
2	9.8							
3	9.8							
4	9.4							
1504	10.5							
1594	10.5 11.2							
1595 1596								
1597								
1598	11.0							
1330	11.0							
Γ1599	9 rows x 11 col	umns1						
_	ting the testin	_	et					
0	5	-						
1	5							
2	5							
3	6							
4	5							

```
1594 5
1595 6
1596 6
1597 5
1598 6
Name: quality, Length: 1599, dtype: int64
```

In [6]:

```
#A5
from sklearn.neighbors import KNeighborsClassifier
neigh = KNeighborsClassifier(n_neighbors=3)
neigh.fit(X, y)
```

Out[6]:

```
KNeighborsClassifier
KNeighborsClassifier(n_neighbors=3)
```

In [8]:

```
#A6
accuracy = neigh.score(X_test, y_test)
print(f"Accuracy on the test set: {accuracy:2f}")
```

Accuracy on the test set: 0.735417

In [9]:

```
#A7
y_pred = neigh.predict(X_test)
from sklearn.metrics import accuracy_score
accuracy= accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
```

Accuracy: 0.735416666666667

In [10]:

```
#A8
k_values = range(1, 12)
accuracies = []

for k in k_values:
    neigh = KNeighborsClassifier(n_neighbors=k)
    neigh.fit(X_train, y_train)
    accuracy = neigh.score(X_test, y_test)
    accuracies.append(accuracy)

# Plot the accuracies
plt.plot(k_values, accuracies, marker='o')
plt.xlabel("k (Number of Neighbors)")
plt.ylabel("Accuracy")
plt.title("kNN Classifier Accuracy for Different k Values")
plt.grid(True)
plt.show()
```


In [11]:

```
#A9
from sklearn.metrics import confusion_matrix, classification_report
# Calculating confusion matrix
conf_matrix = confusion_matrix(y_test, predictions)
# Generating classification report
class_report = classification_report(y_test, predictions)
print("Confusion Matrix:")
print(conf_matrix)
print("\nClassification Report:")
print(class_report)
```

Confusion Matrix:

[1	0	0	0	0	0]
[0	8	2	7	0	0]
[1	2	157	33	2	0]
[1	4	34	149	12	0]
[0	1	8	14	37	1]
[0	0	1	4	0	1]]

Classification Report:

	precision	recall	f1-score	support
_				
3	0.33	1.00	0.50	1
4	0.53	0.47	0.50	17
5	0.78	0.81	0.79	1 95
6	0.72	0.74	0.73	200
7	0.73	0.61	0.66	61
8	0.50	0.17	0.25	6
accuracy			0.74	480
macro avg	0.60	0.63	0.57	480
weighted avg	0.73	0.74	0.73	480

In []: