Sowing differ Sonn dy = a-1	certicel	Equal.	1001S	05	lhe
$\int \int \int dy = a - 1$	J.			ov. 9,	2018
You already mon:	· What the equation	he solut	hon is E form lly inter Slope	Sor a My = more d	Liff.

Today we will see: How to use what we already know to find solutions for diff. equations of the form dy = a - by $(y(0) = y_0)$.

Special solutions: steady states.

We have $\frac{dy}{dt} = a - by$

Question: are there values of y for which $\frac{dy}{dt} = 0.7$

This would mean that a-by=0 by=a $y=\frac{a}{b}$. Solution: $y(t)=\frac{a}{b}$.

These constant solutions are called steady states.

Part 21 a=0.

Consider case a=0. So $\frac{dy}{dt}=-by$, $y(0)=y_0$ We know labor what the solution to this is!
Solution: $y(t)=Ce^{-bt}$ Use initial value: $y_0=y(0)=C$ So $y(t)=y_0e^{-bt}$.

Part 3/ How can we generalise this to a #0?

We have $\frac{dy}{dt} = a - by$, $y(0) = y_0$ = -b(y-8)

This is the difference or <u>deviation</u> of y away from its steady state value association and formation of

Now we reformulate the DE. into one whose solution we know.

Let $Z(t) = y(t) - \frac{a}{b}$. i.e. Z is the deviation of y from its steady state value as a function of time.

We need to deal with 3 things:

- · LHS
- · RHS
- Initial value.

RHS] -b(y-名)=-bz

IHS] #= #

III Z(0)=Y(0)-8=40-8.

Solution to ED: Z(t) = (40-2)e-bt. Are we done! Not quite! We want to convert this back into a solution for D. We have $Z = Y - \frac{2}{5}$, so $Y = Z + \frac{2}{5}$ So $y(t) = (y_0 - 2)e^{-bt} + 2 | 15 the$ Solution for D. let's summarise. Step 1: Write DE (Including IV) in terms of deviation of y from steady state value. Step 2: Solve resulting & DE using formula for MFNOY. Z'= KNZ. Step 3: Convert solution back in terms of y. Example Let C(t) = level of otmospheric CO_2 P = pollution (constant) M = associated of living plantsAssume plants absorb CO2 at a rate proportional to their mass dC = P - MC M Say P = 100, M = 25dE = P-MC & Say P=100, M=25, ((0)=16.

We know the solution to this!

We get $Z(t) = Ce^{-bt}$

Use IV: Z(0) = 4.-2=C

Let's Al solve this! Say
$$P=100$$

Step 1: $dC = -25(C-4)$
We let $z(t) = C(t)-4$.
Then $dC = dz = -25z$, $z(0) = (C(0)-4) = 12$
 $dep 2$: So $z(t) = 12e^{-25t}$

Step 2: So
$$z(t) = 12e^{-25t}$$

Step 3:
$$y(t) = z(t) + 4 = 12e^{-25t} + 4$$