DATA PREPROCESSING

- 1. Data Preprocessing is the process of transforming raw data into a format that is more suitable for analysis and modeling..
- 2. Data preprocessing involves cleaning the data, Normalization, Feature Engineering tasks...

```
In [2]: #importing modules
import numpy as np
#imported numpy as np
import pandas as pd
#imported pandas module as pd
import matplotlib.pyplot as plt
#imported matplotlib.pyplot as plt alias
import seaborn as sns
#imported seaborn library as sns
import scipy
#imported scientific python module
import sklearn
#imported sklearn
import sklearn.preprocessing
#imported preprocessing from sklearn library
```

In [3]: #loading the dataframe using pandas library
df = pd.read_excel('expenses.xlsx')
#df is the variable to store the expenses dataframe
df
#viewing the dataframe

Out[3]:

	age	workclass	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain
0	39	Self-emp- inc	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White	Male	15024
1	20	Private	Some- college	10	Never- married	Other- service	Own-child	White	Male	0
2	50	Private	Doctorate	16	Married- civ- spouse	Prof- specialty	Husband	White	Male	0
3	38	State-gov	HS-grad	9	Married- civ- spouse	Prof- specialty	Wife	White	Female	0
4	23	Local-gov	Bachelors	13	Never- married	Prof- specialty	Own-child	White	Female	0
4995	38	Private	HS-grad	9	Married- civ- spouse	Machine- op-inspct	Husband	White	Male	0
4996	26	Private	Some- college	10	Never- married	Tech- support	Own-child	White	Female	0
4997	20	Private	11th	7	Never- married	Transport- moving	Own-child	White	Male	0
4998	24	Private	HS-grad	9	Married- civ- spouse	Craft-repair	Husband	White	Male	0
4999	40	Private	HS-grad	9	Divorced	Craft-repair	Not-in-family	White	Male	0

5000 rows × 14 columns

In [4]: df.head()
#getting the 5 top records from dataframe

Out[4]:

	age	workclass	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain	сар
0	39	Self-emp- inc	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White	Male	15024	
1	20	Private	Some- college	10	Never- married	Other- service	Own-child	White	Male	0	
2	50	Private	Doctorate	16	Married- civ- spouse	Prof- specialty	Husband	White	Male	0	,
3	38	State-gov	HS-grad	9	Married- civ- spouse	Prof- specialty	Wife	White	Female	0	
4	23	Local-gov	Bachelors	13	Never- married	Prof- specialty	Own-child	White	Female	0	
4											

In [6]: df.columns

#returns the column names of the dataframe

In [9]: #info function is used to get a concise summary of the dataframe
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 14 columns):

Data	COTUMNIS (COCAT	14 COIUIIIIS).					
#	Column	Non-Null Count	Dtype				
0	age	5000 non-null	int64				
1	workclass	5000 non-null	object				
2	education	5000 non-null	object				
3	education-num	5000 non-null	int64				
4	marital-status	5000 non-null	object				
5	occupation	5000 non-null	object				
6	relationship	5000 non-null	object				
7	race	5000 non-null	object				
8	sex	5000 non-null	object				
9	capital-gain	5000 non-null	int64				
10	capital-loss	5000 non-null	int64				
11	hours-per-week	5000 non-null	int64				
12	native-country	5000 non-null	object				
13	Expense	5000 non-null	object				
dtype	dtypes: int64(5), object(9)						

memory usage: 547.0+ KB

In [11]: df.describe() #describe function is used to get some basic stastical details like mean, min, max, cou

Out[11]:

	age	education-num	capital-gain	capital-loss	hours-per-week
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000
mean	38.656000	10.065000	1104.080000	90.032800	40.566200
std	13.698292	2.558141	7579.674371	404.168991	12.154191
min	17.000000	1.000000	0.000000	0.000000	1.000000
25%	28.000000	9.000000	0.000000	0.000000	40.000000
50%	37.000000	10.000000	0.000000	0.000000	40.000000
75%	48.000000	12.000000	0.000000	0.000000	45.000000
max	90.000000	16.000000	99999.000000	3004.000000	99.000000

In [20]: df.shape

#the shape function returns the Number of Rows and columns from the dataframe in tup

Out[20]: (5000, 14)

Cleaning Data

- 1. Cleaning data: Cleaning data involves removal of duplicate values, handling the missing values and removal of outliers....
- 2. The goal of cleaning data is that the data is accurate, complete, consistent
- In [27]: #lets count the missing values or NaN values in the dataframe
 df.isnull().sum()
 #isnull function is used to check whether the the record is null or not
 #the sum function returns the sum of the null values in the each column respectively
- Out[27]: age 0 workclass 0 education 0 education-num 0 marital-status occupation 0 relationship 0 0 race 0 sex capital-gain capital-loss 0 hours-per-week 0 native-country 0 Expense dtype: int64

Out[34]:

	Total Missing Values	Percentage of Missing values	Data(Dtypes)
age	0	0.0	int64
workclass	0	0.0	object
education	0	0.0	object
education-num	0	0.0	int64
marital-status	0	0.0	object
occupation	0	0.0	object
relationship	0	0.0	object
race	0	0.0	object
sex	0	0.0	object
capital-gain	0	0.0	int64
capital-loss	0	0.0	int64
hours-per-week	0	0.0	int64
native-country	0	0.0	object
Expense	0	0.0	object

```
In [35]: #representing the null values in heatmap
    import seaborn as sns
    #imported seaborn library as sns
    sns.heatmap(df.isnull(),cbar = False)
```

Out[35]: <AxesSubplot:>

In [25]: #As there No Null Values in the entire dataset...
#we don't need to handle the missing values

Removal of Outliers

```
In [37]: #lets divide the numerical columns into another dataset
    df_num = df.select_dtypes(include = [np.number])
    df_num
    #now df_num is the dataset which contains only the Numerical columns of the dataframe
```

Out[37]:

	age	education-num	capital-gain	capital-loss	hours-per-week
0	39	13	15024	0	50
1	20	10	0	0	40
2	50	16	0	1902	65
3	38	9	0	0	40
4	23	13	0	0	60
4995	38	9	0	0	40
4996	26	10	0	0	40
4997	20	7	0	0	60
4998	24	9	0	0	60
4999	40	9	0	0	45

5000 rows × 5 columns

```
In [44]: df_num.columns
#the columns of Numerical columns
```

Out[42]:

	workclass	education	marital- status	occupation	relationship	race	sex	native- country	Expense
0	Self-emp- inc	Bachelors	Married- civ-spouse	Exec- managerial	Husband	White	Male	United- States	>50K
1	Private	Some- college	Never- married	Other-service	Own-child	White	Male	United- States	<=50K
2	Private	Doctorate	Married- civ-spouse	Prof- specialty	Husband	White	Male	United- States	>50K
3	State-gov	HS-grad	Married- civ-spouse	Prof- specialty	Wife	White	Female	United- States	>50K
4	Local-gov	Bachelors	Never- married	Prof- specialty	Own-child	White	Female	United- States	<=50K
4995	Private	HS-grad	Married- civ-spouse	Machine-op- inspct	Husband	White	Male	United- States	<=50K
4996	Private	Some- college	Never- married	Tech-support	Own-child	White	Female	United- States	<=50K
4997	Private	11th	Never- married	Transport- moving	Own-child	White	Male	United- States	<=50K
4998	Private	HS-grad	Married- civ-spouse	Craft-repair	Husband	White	Male	Mexico	>50K
4999	Private	HS-grad	Divorced	Craft-repair	Not-in-family	White	Male	United- States	<=50K

5000 rows × 9 columns

```
In [43]: df_cat.columns
    #the columns of Categorical dataset
```

```
In [59]: #Now lets find the Outliers for the Numerical columns
    #for this we need to use subplots() function
    import matplotlib.pyplot as plt
    import seaborn as sns
    #import matplotlib and seaborn as plt and sns respectively
    fig,ax = plt.subplots(2,3,figsize = (15,9))
    for variable,subplot in zip(df_num.columns,ax.flatten()):
        z = sns.boxplot(x = df_num[variable],orient = 'h',whis = 1.5,ax = subplot)
        z.set_xlabel(variable,fontsize = 14)
```


Removing Outliers using IQR Method

```
In [61]: Q1 = df_num.quantile(0.25)
Q3 = df_num.quantile(0.75)
#we know that to find IQR
#The formula is
IQR = Q3 - Q1
IQR
#We got the IQR for respective columns
```

```
Out[61]: age 20.0 education-num 3.0 capital-gain 0.0 capital-loss 0.0 hours-per-week dtype: float64
```

In [62]: # ~ : select all the rows which doesn't satisfy the condition

In [66]: df_cleaned = df[~((df<(Q1-1.5*IQR))|(df>Q3+1.5*IQR)).any(axis = 1)]
#removed the outliers using the formula and
#storing the cleaned data in df_cleaned variable

In [67]: df_cleaned

Out[67]:

	age	workclass	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain
1	20	Private	Some- college	10	Never- married	Other- service	Own-child	White	Male	0
3	38	State-gov	HS-grad	9	Married- civ- spouse	Prof- specialty	Wife	White	Female	0
6	58	Private	Bachelors	13	Married- civ- spouse	Adm- clerical	Husband	White	Male	0
7	66	Private	HS-grad	9	Separated	Machine- op-inspct	Not-in-family	Black	Male	0
8	39	Self-emp- inc	HS-grad	9	Married- civ- spouse	Exec- managerial	Husband	White	Male	0
4993	28	Private	HS-grad	9	Never- married	Handlers- cleaners	Unmarried	White	Male	0
4994	35	Private	HS-grad	9	Divorced	Other- service	Not-in-family	White	Female	0
4995	38	Private	HS-grad	9	Married- civ- spouse	Machine- op-inspct	Husband	White	Male	0
4996	26	Private	Some- college	10	Never- married	Tech- support	Own-child	White	Female	0
4999	40	Private	HS-grad	9	Divorced	Craft-repair	Not-in-family	White	Male	0

3032 rows × 14 columns

In [68]: df_cleaned.shape

Out[68]: (3032, 14)

In [74]: df_cleaned.columns

```
In [79]: #lets divide the numerical columns into another dataset
df_num = df_cleaned.select_dtypes(include = [np.number])
df_num
```

Out[79]:

_		age	education-num	capital-gain	capital-loss	hours-per-week
	1	20	10	0	0	40
	3	38	9	0	0	40
	6	58	13	0	0	40
	7	66	9	0	0	40
	8	39	9	0	0	40
	4993	28	9	0	0	40
	4994	35	9	0	0	35
	4995	38	9	0	0	40
	4996	26	10	0	0	40
	4999	40	9	0	0	45

3032 rows × 5 columns

```
In [86]: #Now lets find the Outliers for the Numerical columns
    #for this we need to use subplots() function
    import matplotlib.pyplot as plt
    import seaborn as sns
    #import matplotlib and seaborn as plt and sns respectively
    fig,ax = plt.subplots(2,3,figsize = (15,9))
    for variable,subplot in zip(df_num.columns,ax.flatten()):
        z = sns.boxplot(x = df_num[variable],orient = 'h',whis = 1.5,ax = subplot)
        z.set_xlabel(variable,fontsize = 14)
```


In [96]: Q1 = df_num.quantile(0.25) Q3 = df_num.quantile(0.75) #we know that to find IQR #The formula is IQR = Q3 - Q1 IQR #We got the IQR for respective columns

```
Out[96]: age 19.0 education-num 3.0 capital-gain 0.0 capital-loss 0.0 hours-per-week dtype: float64
```

```
In [97]: df_ultra_cleaned = df_cleaned[\sim((df_cleaned<(Q1-1.5*IQR))|(df_cleaned>Q3+1.5*IQR)).a #removed the outliers using the formula and #storing the cleaned data in df_cleaned variable
```

In [98]: df_ultra_cleaned

Out[98]:

	age	workclass	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain
1	20	Private	Some- college	10	Never- married	Other- service	Own-child	White	Male	0
3	38	State-gov	HS-grad	9	Married- civ- spouse	Prof- specialty	Wife	White	Female	0
6	58	Private	Bachelors	13	Married- civ- spouse	Adm- clerical	Husband	White	Male	0
7	66	Private	HS-grad	9	Separated	Machine- op-inspct	Not-in-family	Black	Male	0
8	39	Self-emp- inc	HS-grad	9	Married- civ- spouse	Exec- managerial	Husband	White	Male	0
4990	32	Private	HS-grad	9	Married- civ- spouse	Craft-repair	Husband	White	Male	0
4991	34	Private	Bachelors	13	Never- married	Sales	Own-child	Black	Female	0
4993	28	Private	HS-grad	9	Never- married	Handlers- cleaners	Unmarried	White	Male	0
4995	38	Private	HS-grad	9	Married- civ- spouse	Machine- op-inspct	Husband	White	Male	0
4996	26	Private	Some- college	10	Never- married	Tech- support	Own-child	White	Female	0

2000 rows × 14 columns

In [99]: df_ultra_cleaned.shape

Out[99]: (2000, 14)

```
In [101]: #lets divide the numerical columns into another dataset
df_num = df_ultra_cleaned.select_dtypes(include = [np.number])
df_num
```

Out[101]:

		age	education-num	capital-gain	capital-loss	hours-per-week
	1	20	10	0	0	40
	3	38	9	0	0	40
	6	58	13	0	0	40
	7	66	9	0	0	40
	8	39	9	0	0	40
4	990	32	9	0	0	40
4	991	34	13	0	0	40
4	993	28	9	0	0	40
4	995	38	9	0	0	40
4	996	26	10	0	0	40

2000 rows × 5 columns

```
In [102]: #Now lets find the Outliers for the Numerical columns
    #for this we need to use subplots() function
    import matplotlib.pyplot as plt
    import seaborn as sns
    #import matplotlib and seaborn as plt and sns respectively
    fig,ax = plt.subplots(2,3,figsize = (15,9))
    for variable,subplot in zip(df_num.columns,ax.flatten()):
        z = sns.boxplot(x = df_num[variable],orient = 'h',whis = 1.5,ax = subplot)
        z.set_xlabel(variable,fontsize = 14)
```


In []: