14.3: Partial Derivatives,

14.4: The Chain Rule, and

14.5: Directional Derivatives and Gradient Vectors

TA: Sam Fleischer

November 10

Section 14.3: Partial Derivatives

Definition: Partial Derivative with respect to x, y

The partial derivative of f(x,y) with respect to x at the point (x_0,y_0) is

$$f_x = \frac{\partial f}{\partial x}\Big|_{(x_0, y_0)} = \frac{\mathrm{d}}{\mathrm{d}x} f(x, y_0)\Big|_{(x_0, y_0)} = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}$$

The partial derivative of f(x,y) with respect to y at the point (x_0,y_0) is

$$f_y = \frac{\partial f}{\partial y}\Big|_{(x_0, y_0)} = \frac{\mathrm{d}}{\mathrm{d}y} f(x_0, x)\Big|_{(x_0, y_0)} = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h}$$

Example: Taking Partial Derivatives

$$f(x,y) = y\sin(xy)$$

To find f_x (the partial derivative of f with respect to x), treat y as a constant.

$$f_x = y\cos(xy)y = y^2\cos(xy)$$

To find f_y (the partial derivative of f with respect to y), treat x as a constant.

$$f_y = (1)\sin(xy) + y\cos(xy)x = \sin(xy) + xy\cos(xy)$$

Example: Implicit Differentiation

Find $\frac{\partial z}{\partial x}$ if the equation

$$yz - \ln z = x + y$$

defines z as a function of two independent variables x and y and the partial derivative exists.

$$\frac{\mathrm{d}}{\mathrm{d}x}(yz - \ln z) = \frac{\mathrm{d}}{\mathrm{d}x}(x + y)$$

$$y\frac{\partial z}{\partial x} - \frac{1}{z}\frac{\partial z}{\partial x} = 1 + 0$$
$$\left(y - \frac{1}{z}\right)\frac{\partial z}{\partial x} = 1$$
$$\frac{\partial z}{\partial x} = \frac{x}{yz - 1}$$

Definition: Second-Order Partial Derivatives

When we differentiate a function f(x, y) twice, we produce its **second-order derivatives**. Notation:

$$\frac{\partial^2 f}{\partial x^2} \text{ or } f_{xx}, \qquad \frac{\partial^2 f}{\partial y^2} \text{ or } f_{yy}$$

$$\frac{\partial^2 f}{\partial x \partial y} \text{ or } f_{yx}, \text{ and } \frac{\partial^2 f}{\partial y \partial x} = f_{xy}$$

The defining equations are

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right), \qquad \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$$

Note that $f_{yx} = \frac{\partial^2 f}{\partial x \partial y}$ means you *first* take the derivative with respect to y, and then take the derivate with respect to x.

In general, $f_{xy} \neq f_{yx}$.

Theorem 2: Mixed Derivative Theorem

If f(x,y) and its partial derivatives f_x , f_y , f_{xy} , and f_{yx} are defined throughout an open region containing a point (a,b) and are all continuous at (a,b), then

$$f_{xy}(a,b) = f_{yx}(a,b)$$

Example: Partial Derivatives of Higher Order

Find
$$f_{yxyz}$$
 if $f(x, y, z) = 1 - 2xy^2z + x^2y$

$$f(x, y, z) = 1 - 2xy^{2}z + x^{2}y$$

$$f_{y} = -4xyz + x^{2}$$

$$f_{yx} = -4yz + 2x$$

$$f_{yxy} = -4z$$

$$f_{yxyz} = -4$$

Definition: Differentiability

A function z = f(x, y) is **differentiable at** (x_0, y_0) if $f_x(x_0, y_0)$ and $f_y(x_0, y_0)$ exists and Δz satisfies an equation of the form

$$\Delta z = f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y$$

in which each of $\epsilon_1, \epsilon_2 \to 0$ as both $\Delta x, \Delta y \to 0$. We call f differentiable if it is differentiable at every point in its domain, and say that its graph is a **smooth surface**.

Theorem 3: The Increment Theorem for Functions of Two Variables

Suppose that the first partial derivatives of f(x, y) are defined throughout an open region R containing the point (x_0, y_0) and that f_x and f_y are continuous at (x_0, y_0) . Then the change

$$\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$$

in the value of f that results from moving from (x_0, y_0) to another point $(x_0 + \Delta x, y_0 + \Delta y)$ in R satisfies an equation of the form

$$\Delta z = f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y$$

in which each of $\epsilon_1, \epsilon_2 \to 0$ as both $\Delta x, \Delta y \to 0$.

Corollary of Theorem 3

If the partial derivatives f_x and f_y of a function f(xy) are continuous throughout an open region R, then f is differentiable at every point of R.

Theorem 4 - Differentiability Implies Continuity

If a function f(x,y) is differentiable at (x_0,y_0) , then f is continuous at (x_0,y_0) .

Section 14.4: The Chain Rule

Theorem 5: Chain Rule for Functions of One Independent Variable and Two Intermediate Variables

If w = f(x, y) is differentiable and if x = x(t), y = y(t) are differentiable functions of t, then the composite w = f(x(t), y(t)) is a differentiable function of t and

$$\frac{\mathrm{d}w}{\mathrm{d}t} = f_x(x(t), y(t)) \cdot x'(t) + f_y(x(t), y(t)) \cdot y'(t)$$

or

$$\frac{\mathrm{d}w}{\mathrm{d}t} = \frac{\partial f}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial f}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}t}$$

Theorem 6: Chain Rule for Functions of One Independent Variable and Three Intermediate Variables

If w = f(x, y, z) is differentiable and x, y, and z are differentiable functions of t, then w is a differentiable function of t and

$$\frac{\mathrm{d}w}{\mathrm{d}t} = \frac{\partial w}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial w}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}t} + \frac{\partial w}{\partial z} \frac{\mathrm{d}z}{\mathrm{d}t}$$

Example

Find $\frac{\mathrm{d}w}{\mathrm{d}t}$ if

$$w = xy + z$$
, $x = \cos t$, $y = \sin t$, $z = t$

Use Theorem 6:

$$\frac{\mathrm{d}w}{\mathrm{d}t} = \frac{\partial w}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial w}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}t} + \frac{\partial w}{\partial z} \frac{\mathrm{d}z}{\mathrm{d}t}$$

$$= (y)(-\sin t) + (x)(\cos t) + (1)(1)$$

$$= (\sin t)(-\sin t) + (\cos t)(\cos t) + 1$$

$$= -\sin^2 t + \cos^2 t + 1$$

$$= \cos 2t + 1$$

What is the derivative at t = 0?

$$\left. \left(\frac{\mathrm{d}w}{\mathrm{d}t} \right) \right|_{t=0} = 1 + \cos 0 = 2$$

Theorem 7: Chain Rule for Two Independent Variables and Three Intermediate Variables

Suppose that w = f(x, y, z), x = g(r, s), y = h(r, s), and z = k(r, s). If all four functions are differentiable, then w has partial derivatives with respect to r and s given by the formulas

$$\frac{\partial w}{\partial r} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial r} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial r}$$

$$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial s}$$

Theorem 8: A Formula for Implicit Differntiation

Suppose that F(x, y) is differentiable and that the equation F(x, y) = 0 defines y as a differentiable function of x. Then at any point where $F_y \neq 0$,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{F_x}{F_y}$$

Example

Find
$$\frac{dy}{dx}$$
 if $y^2 - x^2 - \sin xy = 0$.

$$\frac{dy}{dx} = -\frac{F_x}{F_y}$$

$$= -\frac{-2x - y\cos xy}{2y - x\cos xy}$$

$$= \frac{2x + y\cos xy}{2y - x\cos xy}$$

Expansion of Theorem 8 to Three Variables

Suppose F(x,y,z)=0 and z=f(x,y). Assuming F and f are differentiable functions, then

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}$$
 and $\frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$

Expansion of Chain Rule to Functions of n variables

In general, suppose $z = f(x_1, x_2, ..., x_n)$ is a differential function of the intermediate variables $x_1, x_2, ..., x_n$ where n is a positive integer $(n \in \mathbb{N})$. Also suppose each x_i is a differentiable function of the independent variables $t_1, t_2, ..., t_m$, with $m \in \mathbb{N}$. In equation form,

$$x_1 = g_1(t_1, t_2, \dots, t_m)$$

$$x_2 = g_2(t_1, t_2, \dots, t_m)$$

$$\vdots$$

$$x_n = g_n(t_1, t_2, \dots, t_m)$$

Then w is a differential function of each of the independent variables t_1, t_2, \ldots, t_m , and the partial derivatives of w with respect to each t_i are

$$\frac{\partial w}{\partial t_1} = \frac{\partial w}{\partial x_1} \frac{\partial x_1}{\partial t_1} + \frac{\partial w}{\partial x_2} \frac{\partial x_2}{\partial t_1} + \dots + \frac{\partial w}{\partial x_n} \frac{\partial x_n}{\partial t_1} = \sum_{i=1}^n \frac{\partial w}{\partial x_i} \frac{\partial x_i}{\partial t_1}$$

$$\frac{\partial w}{\partial t_2} = \frac{\partial w}{\partial x_1} \frac{\partial x_1}{\partial t_2} + \frac{\partial w}{\partial x_2} \frac{\partial x_2}{\partial t_2} + \dots + \frac{\partial w}{\partial x_n} \frac{\partial x_n}{\partial t_2} = \sum_{i=1}^n \frac{\partial w}{\partial x_i} \frac{\partial x_i}{\partial t_2}$$

$$\vdots$$

$$\frac{\partial w}{\partial t_m} = \frac{\partial w}{\partial x_1} \frac{\partial x_1}{\partial t_m} + \frac{\partial w}{\partial x_2} \frac{\partial x_2}{\partial t_m} + \dots + \frac{\partial w}{\partial x_n} \frac{\partial x_n}{\partial t_m} = \sum_{i=1}^n \frac{\partial w}{\partial x_i} \frac{\partial x_i}{\partial t_m}$$

More compactly,

$$\frac{\partial w}{\partial t_j} = \sum_{i=1}^n \frac{\partial w}{\partial x_i} \frac{\partial x_i}{\partial t_j} \qquad \text{for } j = 1, 2, \dots, m$$

Directional Derivatives and Gradient Vectors

Definition: Directional Derivative

The derivative of f at $P_0(x_0, y_0)$ in the direction of the unit vector $\mathbf{u} = u_1 \mathbf{i} = u_2 \mathbf{j}$ is the number

$$\left(\frac{\mathrm{d}f}{\mathrm{d}s}\right)_{\mathbf{u},P_0} = \lim_{s \to 0} \frac{f(x_0 + su_1, y_0 + su_2) - f(x_0, y_0)}{s}$$

provided the limit exists. The directional derivative is also denoted

$$\left(\frac{\mathrm{d}f}{\mathrm{d}s}\right)_{\mathbf{u},P_0} = (D_{\mathbf{u}}f)_{P_0}$$

and is read "The derivative of f at P_0 in the direction of \mathbf{u} ".

Definition: Gradient Vector

The gradient vector (gradient) of f(x,y) at a point P is the vector

$$\nabla f = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j}$$

Theorem 9: The Directional Derivative is a Dot Product

If f(x,y) is differentiable in an open region containing $P_0(x_0,y_0)$, then

$$(D_{\mathbf{u}}f)_{P_0} = (\nabla f)_{P_0} \cdot \mathbf{u}$$

In words, the derivative of f at P_0 in the direction of \mathbf{u} is the dot product of the gradient ∇f at P_0 and \mathbf{u} . In brief,

$$(D_{\mathbf{u}})f = \nabla f \cdot \mathbf{u}$$

Example

Find the derivative of $f(x,y) = xe^y + \cos xy$ at the point (2,0) in the direction of $\mathbf{v} = 3\mathbf{i} - 4\mathbf{j}$. First, find the unit direction vector

$$\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|} = \frac{\mathbf{v}}{5} = \frac{3}{5}\mathbf{i} - \frac{4}{5}\mathbf{j}$$

Then we need to find the partial derivatives of f at (2,0) because together, they make up the gradient, ∇f .

$$f_x = e^y - y \sin xy$$

$$f_x(2,0) = e^0 - 0 \sin(2 \cdot 0) = 1 - 0 = 1$$

$$f_y = xe^y - x \sin xy$$

$$f_y(2,0) = 2e^0 - 2\sin(2 \cdot 0) = 2 - 0 = 2$$

Plug these values into the definition of gradient.

$$\nabla f|_{(2,0)} = f_x(2,0)\mathbf{i} + f_y(2,0)\mathbf{j}$$

= $\mathbf{i} + 2\mathbf{j}$

Then the directional derivative of f at (2,0) in the direction of u is

$$(D_{\mathbf{u}}f)_{(2,0)} = \nabla f|_{(2,0)} \cdot \mathbf{u}$$

$$= \left(\frac{3}{5}\mathbf{i} - \frac{4}{5}\mathbf{j}\right) \cdot (\mathbf{i} + 2\mathbf{j})$$

$$= \frac{3}{5} - 2 \cdot \frac{4}{5}$$

$$= -1$$

Properties of the Directional Derivative

1. The function f increases most rapidly when $\cos \theta = 1$, i.e. when $\theta = 0$, i.e. when \mathbf{u} is the direction of ∇f . That is, at each point P in its domain, f increases most rapidly in the direction of the gradient vector ∇f at P. The derivative in this direction is

$$D_{\mathbf{u}}f = \|\nabla f\| \cos 0 = \|\nabla f\|$$

2. Similarly, f decreases most rapidly in the direction of $-\nabla f$. The derivative in this direction is

$$D_{\mathbf{u}}f = \|\nabla f\| \cos \pi = -\|\nabla f\|$$

3. Any direction **u** orthogonal to a gradient $\nabla f \neq 0$ is a direction of zero change in f because $\theta = \frac{\pi}{2}$ and

$$D_{\mathbf{u}}f = \|\nabla f\| \cos \frac{\pi}{2} = \|\nabla f\| \cdot 0 = 0$$

Example

Let $f(x,y) = \frac{x^2}{2} + \frac{y^2}{2}$, and consider the point (1,1).

The function increases most rapidly in the direction of ∇f .

$$(\nabla f) = x\mathbf{i} + y\mathbf{j} \implies (\nabla f)_{(1,1)} = \mathbf{i} + \mathbf{j}$$

The unit vector of $(\nabla f)_{(1,1)}$ is

$$\mathbf{u} = \frac{\mathbf{i} + \mathbf{j}}{\sqrt{2}} = \frac{1}{\sqrt{2}}\mathbf{i} + \frac{1}{\sqrt{2}}\mathbf{j}$$

The function decreases most rapidly in the direction $-(\nabla f)_{(1,1)}$

$$-\frac{1}{\sqrt{2}}\mathbf{i} - \frac{1}{\sqrt{2}}\mathbf{j}$$

The directions of zero change at (1,1) are the directions ofthogonal to ∇f :

$$\mathbf{n} = -\frac{1}{\sqrt{2}}\mathbf{i} + \frac{1}{\sqrt{2}}\mathbf{j}$$
 and $-\mathbf{n} = \frac{1}{\sqrt{2}}\mathbf{i} - \frac{1}{\sqrt{2}}\mathbf{j}$

Important Concept

At every point (x_0, y_0) in the domain of a differentiable function f(x, y), the gradient of f is normal to the level curve through (x_0, y_0) .

Tangent Line to a Level Curve

$$f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) = 0$$

Notice this is the same as point-slope form from elementary algebra.

$$y - y_0 = m(x - x_0)$$

where

$$m = -\frac{f_x}{f_y} = \frac{\mathrm{d}y}{\mathrm{d}x}$$

by Theorem 8.

Algebra Rules for Gradients

	<i>a b i</i>	
1.	Sum Rule:	$\nabla(f+g) = \nabla f + \nabla g$

2. Difference Rule:
$$\nabla(f-g) = \nabla f - \nabla g$$

3. Constant Multiple Rule:
$$\nabla(kf) = k\nabla f$$

4. Product Rule:
$$\nabla(fg) = f\nabla g + g\nabla f$$

5. Quotient Rule:
$$\nabla \left(\frac{f}{g}\right) = \frac{g\nabla f - f\nabla g}{g^2}$$

Gradients of Functions of n variables

For a differential function $f(x_1, x_2, \dots x_n)$ and a unit vector $\mathbf{u} = \langle u_1, u_2, \dots, u_n \rangle$ in space, we have

$$\nabla f = \left\langle \frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n} \right\rangle$$

and

$$D_{\mathbf{u}}f = \nabla f \cdot \mathbf{u} = \frac{\partial f}{\partial x_1} u_1 + \frac{\partial f}{\partial x_2} u_2 + \dots + \frac{\partial f}{\partial x_n} u_n = \sum_{i=1}^n \frac{\partial f}{\partial x_i} u_i$$

The Derivative Along a Path

Let $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$ be a smooth path C and $w = f(\mathbf{r}(t))$ a scalar function along C. Then

$$\frac{\mathrm{d}w}{\mathrm{d}t} = \frac{\partial w}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial w}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}t} + \frac{\partial w}{\partial z} \frac{\mathrm{d}z}{\mathrm{d}t}$$

or in vector notation,

$$\frac{\mathrm{d}}{\mathrm{d}t}f(\mathbf{u}(t)) = \mathbf{\nabla}f(\mathbf{r}(t)) \cdot \mathbf{r}'(t)$$