CFA & Structural Equation Modeling Materials

Brier Gallihugh, M.S.

2024-07-11

Table of contents

Confirmatory Factor Analysis	
Structural Equation Modeling	

```
set.seed(5212023)
library(tidyverse)
library(lavaan)
library(psych)
library(semTools)
library(semPlot)

data <- psych::bfi[,16:25]

cfa_data <- data[sample(nrow(data),300),]

sem_data <- lavaan::PoliticalDemocracy %>% na.omit()
```

Line 8

Create overall data for CFA

Line 10

Randomly sample 300 observations from data using sample() function

Line 12

Create data for SEM using the PoliticalDemocracy data set from the lavaan package. Omit missing data using the na.omit() function

Confirmatory Factor Analysis

semPaths(fit_cfa,'std')

Line 5

Run a CFA on the model above using the cfa() function

Line 7

Generate CFA output and fit measures using the summary() function with the fit.measures argument set to TRUE

Line 9

Create a basic path diagram of the CFA model using the semPaths() function with standardized coefficients using the std argument

lavaan 0.6-18 ended normally after 39 iterations						
Estimator	ML					
Optimization method	NLMINB					
Number of model parameters	21					
	Used	Total				
Number of observations	284	300				
Model Test User Model:						
Test statistic	126.828					

Degrees of free P-value (Chi-sq				34 0.000	
Model Test Baseli	ne Model:				
Test statistic Degrees of free P-value	dom			785.605 45 0.000	
User Model versus	Raseline M	ndel·		0.000	
oser moder versus	Dascerne II	04011			
Comparative Fit	Index (CFT)		0.875	
Tucker-Lewis In		,		0.834	
				0.00.	
Loglikelihood and	Informatio	n Criteri	a:		
Loglikelihood u	ser model (H0)		4737.244	
Loglikelihood u				4673.830	
			-,	.075.050	
Akaike (AIC)				9516.489	
Bayesian (BIC)				9593.117	
Sample-size adj	usted Bayes	ian (SABI	C)	9526.525	
Root Mean Square	Error of Ap	proximati	on:		
RMSEA				0.098	
90 Percent conf	idence inte	rval - lo	wer	0.080	
90 Percent confi				0.117	
P-value H_0: RM:		•	pei	0.000	
P-value H_0: RM:				0.952	
		•		0.00-	
Standardized Root	Mean Squar	e Residua	l:		
SRMR				0.084	
Parameter Estimate	es:				
Standard errors				Standard	
Information				Expected	
Information sat	urated (h1)	model	St	tructured	
Labort Variable					
Latent Variables:	Estimate	Std.Frr	z-value	P(> 7)	
nfactor =~	25 (21110 (6	JEGIETI		. (- -)	
N1	1.000				
N2	0.979	0.067	14.513	0.000	
N3	0.809	0.071	11.478	0.000	
N4	0.794	0.070	11.382	0.000	

N5	0.746	0.076	9.796	0.000
ofactor =~	0.7.10	0.070		0.000
01	1.000			
02	-0.580	0.159	-3.635	0.000
03	1.314	0.250	5.249	0.000
04	0.266	0.125	2.134	0.033
05	-0.799	0.158	-5.051	0.000
03	01.733	0.150	3.031	0.000
Covariances:				
	Estimate	Std.Frr	z-value	P(> z)
nfactor ~~				. (1-17
ofactor	-0.070	0.072	-0.967	0.333
Variances:				
	Estimate	Std.Err	z-value	P(> z)
.N1	0.838	0.109	7.720	0.000
. N2	0.759	0.101	7.491	0.000
.N3	1.442	0.139	10.387	0.000
.N4	1.424	0.137	10.427	0.000
. N5	1.921	0.175	10.953	0.000
.01	0.879	0.115	7.630	0.000
.02	2.025	0.177	11.468	0.000
.03	0.595	0.158	3.769	0.000
.04	1.415	0.120	11.787	0.000
. 05	1.583	0.147	10.733	0.000
nfactor	1.779	0.224	7.947	0.000
ofactor	0.491	0.125	3.932	0.000

🗘 Tip

For SEM and CFA models, the =~ syntax is used. You can interpret it as an "equals" sign more or less

Structural Equation Modeling

```
# Create SEM Model

sem_model <- 'ind60 =~ x1 + x2 + x3

dem60 =~ y1 + y2 + y3 + y4

dem65 =~ y5 + y6 + y7 + y8

dem60 ~ ind60

dem65 ~ ind60 + dem60

y1 ~~ y5

y2 ~~ y4 + y6

y3 ~~ y7

y4 ~~ y8

y6 ~~ y8'
```

```
fit_sem <- sem(sem_model, data = sem_data)
summary(fit_sem, standardized = TRUE, fit.measures = TRUE)
semPaths(fit_sem,'std')</pre>
```

Line 13

Run an SEM model using the sem() function

Line 14

Generate a summary of the SEM model with standardized results and fit measures using the summary() function with the standardized and fit.measures() arguments set to TRUE

Line 15

Generate a basic path diagram of the SEM model usign the semPaths() function with standardized coefficients using the std argument.

lavaan 0.6-18 ended normally after 68 iterations					
Estimator Optimization method Number of model parameters	ML NLMINB 31				
Number of observations	75				
Model Test User Model:					

Test statistic Degrees of freed	lom.			38.125 35			
P-value (Chi-squ				0.329			
Model Test Baselir	ne Model:						
Test statistic				730.654			
Degrees of freed	lom			55			
P-value				0.000			
User Model versus	Baseline Mo	del:					
Comparative Fit	Index (CFI)			0.995			
Tucker-Lewis Ind				0.993			
Loglikelihood and	Information	Criteri	a:				
Loglikelihood us	ser model (H	0)	-	1547.791			
Loglikelihood ur			1) -	1528.728			
Akaike (AIC)				3157.582			
Bayesian (BIC)				3229.424			
Sample-size adju	ısted Bayesi	an (SABI	C)	3131.720			
Root Mean Square E	Error of App	roximati	on:				
RMSEA				0.035			
90 Percent confi	dence inter	val - lo	wer	0.000			
90 Percent confi		•	per	0.092			
P-value H_0: RMS				0.611			
P-value H_0: RMS	SEA >= 0.080			0.114			
Standardized Root	Mean Square	Residua	l:				
SRMR				0.044			
Parameter Estimate	es:						
Standard errors				Standard			
Information				Expected			
Information satu	ırated (h1)	model	St	ructured			
Latent Variables:	_		_				
÷ - 400	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
ind60 =~ x1	1.000				0.670	0.920	
x1 x2	2.180	0.139	15.742	0.000	1.460	0.920	
x3	1.819	0.153	11.967	0.000	1.218	0.872	
			,				

dem60 =~							
y1	1.000				2.223	0.850	
y2	1.257	0.182	6.889	0.000	2.794	0.717	
y3	1.058	0.151	6.987	0.000	2.351	0.722	
y4	1.265	0.145	8.722	0.000	2.812	0.846	
dem65 =~							
y5	1.000				2.103	0.808	
y6	1.186	0.169	7.024	0.000	2.493	0.746	
y7	1.280	0.169	8.002	0.000	2.691		
y <i>7</i> y8	1.266	0.158	8.007	0.000	2.662	0.828	
уо	1.200	0.130	0.007	0.000	2.002	0.020	
Regressions:							
Regressions.	Ectimato	C+d Err	7 vol.10	D(> -)	C+d 1v	Std.all	
d =CO	ESTIMATE	Stu.EII	z-vatue	P(> z)	Stu.tv	Stu.att	
dem60 ~	1 400	0 200	2 715	0.000	0 447	0 447	
ind60	1.483	0.399	3.715	0.000	0.447	0.447	
dem65 ~							
ind60	0.572	0.221	2.586	0.010	0.182		
dem60	0.837	0.098	8.514	0.000	0.885	0.885	
Covariances:							
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
.y1 ~~							
. y5	0.624	0.358	1.741	0.082	0.624	0.296	
.y2 ~~							
. y4	1.313	0.702	1.871	0.061	1.313	0.273	
. y6	2.153	0.734	2.934	0.003	2.153	0.356	
.y3 ~~							
. y7	0.795	0.608	1.308	0.191	0.795	0.191	
.y4 ~~							
.y8	0.348	0.442	0.787	0.431	0.348	0.109	
.y6 ~~	0.0.0	V <u>_</u>	0	0	0.0.0	0.200	
. y8	1.356	0.568	2.386	0.017	1.356	0.338	
. y o	1.550	0.500	2.500	0.017	1.550	0.550	
Variances:							
variances.	Ectimato	C+d Err	7 V21U0	P(> z)	C+d lv	Std.all	
v.1		0.019	4.184		0.082		
.x1	0.082			0.000		0.154	
.x2	0.120	0.070	1.718	0.086	0.120	0.053	
.x3	0.467	0.090	5.177	0.000	0.467	0.239	
.y1	1.891	0.444	4.256	0.000	1.891	0.277	
. y2	7.373	1.374	5.366	0.000	7.373	0.486	
. y3	5.067	0.952	5.324	0.000	5.067	0.478	
. y4	3.148	0.739	4.261	0.000	3.148	0.285	
. y5	2.351	0.480	4.895	0.000	2.351	0.347	
. y6	4.954	0.914	5.419	0.000	4.954	0.443	
. y7	3.431	0.713	4.814	0.000	3.431	0.322	
. y8	3.254	0.695	4.685	0.000	3.254	0.315	
ind60	0.448	0.087	5.173	0.000	1.000	1.000	

.dem60	3.956	0.921	4.295	0.000	0.800	0.800	
.dem65	0.172	0.215	0.803	0.422	0.039	0.039	

🗘 Tip

As stated above, for SEM models we want the $=\sim$ syntax. For reference, a regression syntax is simply \sim while residuals syntax are $\sim\sim$. Each of these can as with SEM, be interpreted as an "equals" sign.