PROBLEM 1.60

KNOWN: Thickness and thermal conductivity, k, of an oven wall. Temperature and emissivity, ϵ , of front surface. Temperature and convection coefficient, k, of air. Temperature of large surroundings.

FIND: (a) Temperature of back surface, (b) Effect of variations in k, h and ε .

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state, (2) One-dimensional conduction, (3) Radiation exchange with large surroundings.

ANALYSIS: (a) Applying an energy balance, Eq. 1.13, at an instant of time to the front surface and substituting the appropriate rate equations, Eqs. 1.2, 1.3a and 1.7, find

$$k \frac{T_1 - T_2}{L} = h \left(T_2 - T_{\infty} \right) + \varepsilon \sigma \left(T_2^4 - T_{sur}^4 \right).$$

Substituting numerical values, find

$$T_1 - T_2 = \frac{0.05 \,\mathrm{m}}{0.7 \,\mathrm{W/m \cdot K}} \left[20 \frac{\mathrm{W}}{\mathrm{m}^2 \cdot \mathrm{K}} 100 \,\mathrm{K} + 0.8 \times 5.67 \times 10^{-8} \frac{\mathrm{W}}{\mathrm{m}^2 \cdot \mathrm{K}^4} \left[\left(400 \,\mathrm{K} \right)^4 - \left(300 \,\mathrm{K} \right)^4 \right] \right] = 200 \,\mathrm{K} \;.$$

Since $T_2 = 400 \text{ K}$, it follows that $T_1 = 600 \text{ K}$.

(b) Parametric effects may be evaluated by using the IHT First Law Model for a Nonisothermal Plane Wall. Changes in k strongly influence conditions for $k < 20 \text{ W/m} \cdot \text{K}$, but have a negligible effect for larger values, as T_2 approaches T_1 and the heat fluxes approach the corresponding limiting values

<

PROBLEM 1.60 (Cont.)

The implication is that, for k > 20 W/m·K, heat transfer by conduction in the wall is extremely efficient relative to heat transfer by convection and radiation, which become the *limiting* heat transfer processes. Larger fluxes could be obtained by increasing ϵ and h and/or by decreasing T_{∞} and T_{sur} .

With increasing h, the front surface is cooled more effectively (T_2 decreases), and although q''_{rad} decreases, the reduction is exceeded by the increase in q''_{conv} . With a reduction in T_2 and fixed values of k and L, q''_{cond} must also increase.

The surface temperature also decreases with increasing ϵ , and the increase in q''_{rad} exceeds the reduction in q''_{conv} , allowing q''_{cond} to increase with ϵ .

COMMENTS: Conservation of energy, of course, dictates that, irrespective of the prescribed conditions, $q''_{cond} = q''_{conv} + q''_{rad}$.