PAKET 12

PELATIHAN ONLINE

po.alcindonesia.co.id

2019

SMP FISIKA

WWW.ALCINDONESIA.CO.ID

@ALCINDONESIA

085223273373

DINAMIKA LANJUT

Gaya

• HUKUM I NEWTON.

Jika resultan dari gaya-gaya yang bekerja pada sebuah benda sama dengan nol (Σ F = 0), maka benda tersebut :

- Jika dalam keadaan diam akan tetap diam, atau
- Jika dalam keadaan bergerak lurus beraturan akan tetap bergerak lurus beraturan. Keadaan tersebut di atas disebut juga Hukum KELEMBAMAN.

Kesimpulan : $\Sigma F = 0$ dan a = 0

• HUKUM II NEWTON.

Percepatan yang ditimbulkan oleh gaya yang bekerja pada suatu benda berbanding lurus dan searah dengan gaya itu dan berbanding terbalik dengan massa benda.

$$m = masa (kg)$$

 $a = percepatan (\frac{m}{s^2})$

Berat

Berat suatu benda (w) adalah besarnya gaya tarik bumi terhadap benda tersebut dan arahnya menuju pusat bumi. (vertikal ke bawah).

Hubungan massa dan berat:

$$\begin{aligned} w &= m \cdot g \\ w &= \text{gaya berat.} \\ m &= \text{massa benda.} \\ g &= \text{percepatan gravitasi.} \end{aligned}$$

Pengembangan:

1. Jika pada benda bekerja banyak gaya yang horisontal maka berlaku : Σ F = m . a

$$F_3 \longrightarrow \mathbf{m} \longrightarrow_{F_1} F_2$$

$$F_1 + F_2 - F_3 = m \cdot a$$

Arah gerak benda sama dengan F_1 dan F_2 jika $F_1 + F_2 > F_3$ Arah gerak benda sama dengan F_3 jika $F_1 + F_2 < F_3$ (tanda a = -)

2. Jika pada beberapa benda bekerja banyak gaya yang horisontal maka berlaku:

$$\Sigma F = \Sigma m . a$$

$$F_{3} \xrightarrow{m_{1}} \xrightarrow{m_{2}} \xrightarrow{F_{1}} F_{2}$$

$$F_{1} + F_{2} - F_{3} = (m_{1} + m_{2}) . a$$

3. Jika pada benda bekerja gaya yang membentuk sudut θ dengan arah mendatar maka berlaku : F $\cos \theta = m$. a

• HUKUM III NEWTON

Bila sebuah benda A melakukan gaya pada benda B, maka benda B juga akan melakukan gaya pada benda A yang besarnya sama tetapi berlawanan arah.

Gaya yang dilakukan A pada B disebut : gaya aksi.

Gaya yang dilakukan B pada A disebut : gaya reaksi.

maka ditulis :
$$F_{aksi} = -F_{reaksi}$$

Hukum Newton III disebut juga Hukum Aksi - Reaksi.

GERAK BENDA YANG DIHUBUNGKAN DENGAN KATROL.

2)

Dua buah benda m1 dan m2 dihubungkan dengan karol melalui sebuah tali yang diikatkan pada ujung-ujungnya. Apabila massa tali diabaikan, tali dengan katrol tidak ada gaya gesekan, maka akan berlaku persamaan-persamaan:

Sistem akan bergerak ke arah m1 dengan percepatan a.

$$\begin{array}{ll} \mbox{Tinjauan benda} \ m_1 & \mbox{Tinjauan benda} \ m_2 \\ \mbox{m_1.g - T} = m_1.a \ (\mbox{ persamaan 1}) & \mbox{T - m_2.g} = m_2.a \ (\mbox{ persamaan} \end{array}$$

Karena gaya tegangan tali di mana-mana sama, maka persamaan 1 dan persamaan 2 dapat digabungkan:

$$m_1 \cdot g - m_1 \cdot a = m_2 \cdot g + m_2 \cdot a$$

 $m_1 \cdot a + m_2 \cdot a = m_1 \cdot g - m_2 \cdot g$
 $(m_1 + m_2) \cdot a = (m_1 - m_2) \cdot g$

$$a = \frac{(m_1 - m_2)}{(m_1 + m_2)} g$$

Persamaan ini digunakan untuk mencari percepatan benda yang dihubungkan dengan katrol.

BENDA BERGERAK PADA BIDANG MIRING.

Gaya - gaya yang bekerja pada benda.

Gaya gesek (fg)

Gaya gesekan antara permukaan benda yang bergerak dengan bidang tumpu benda akan menimbulkan gaya gesek yang arahnya *senantiasa berlawanan dengan arah gerak benda.*

Ada dua jenis gaya gesek yaitu:

gaya gesek statis (fs): bekerja pada saat benda diam (berhenti) dengan persamaan:

$$fs = N.\mu s$$

gaya gesek kinetik (fk): bekerja pada saat benda bergerak dengan persamaan:

$$fk = N. \mu k$$

Nilai fk < fs

SOAL

1. Perhatikan gambar berikut! Jika konstanta pegas sebesar 100 N/mm, maka pegas akan bertambah panjang sebesar mm dari kondsi awalnya.

- a. 1
- b. 2
- c. 0,5
- d. 0,25
- e. 0,75
- 2. Jika massa benda 10 kg, berapakah gaya minimal yang digunakan untuk menarik beban ke atas?

- a. 50 N
- b. 100 N
- c. 150 N
- d. 200 N
- e. 250 N
- 3. Seseorang berada dalam lift yang sedang bergerak keatas, jika percepatan lift ialah $1m/s^2$ dan masa orang tersebut 80 kg, berapakah berat yang diterima oleh kedua kaki orang tersebut?
 - a. 880 N
 - b. 980 N
 - c. 1080 N
 - d. 780 N
 - e. 680 N
- 4. Pesawat yang sedang melakukan manuver melingkar dengan jari-jari 5 m, harus memiliki ketahanan struktur yang kuat. Contohnya kursi untuk pilot akan terkena gaya sentripetal. Berapakah besar gaya yang dirasakan

kuri akibat pilot yang duduk dan pesawat yang sedang melakukan menuver? *tinjua pada titik *top* dan asumsikan berat pilot 85 kg serta kecepatan pesawat saat itu 10 m/s

- a. 250 N
- b. 450 N
- c. 550 N
- d. 750 N
- e. 850 N
- 5. Pada soal nomor 4, pada titik manakan kursi akan memperoleh beban maksimal?
 - a. Top/atas
 - b. Samping kanan
 - c. Samping kiri
 - d. Bottom/bawah
 - e. Pusat lingkaran
- 6. Sebuah benda bermassa 2 kg diam diatas lantai licin, benda didorong dengan gaya 20 N selama 4 detik, berapakah kecepatan benda pada detik ke 5?
 - a. 40 m/s
 - b. 30 m/s
 - c. 20 m/s
 - d. 50 m/s
 - e. 60 m/s
- 7. Perhatikan gambar

Nilai gaya F = 20 N, percepatan yang diamali benda 3 adalahm/s²

- a. $\frac{4}{3}$
- b. 2
- c. $\frac{2}{3}$
- d. 1
- e. $\frac{1}{2}$
- 8. Dua buah balok yang massanya 1 kg (balok 1) dan 2 kg (balok 2), berapakah percepatan sistem?
 - A. 1 m/s^2
 - B. $2,33 \text{ m/s}^2$
 - C. $3,33 \text{ m/s}^2$
 - D. $4,33 \text{ m/s}^2$

E. $5,33 \text{ m/s}^2$

9. Ketinggian h = 15 cm dan ketika katrol menggulung dengan gaya F, benda bergerak dari x_1 (20 cm) ke x_2 (8 cm). Jika energi yang dihabiskan katrol untuk menggerakan benda dari x_1 ke x_2 adalah 180 J. Nilai F adalah?

a. 12,5 N

b. 17,5 N

c. 20 N

d. 22,5 N

e. 25 N

10. Sebuah benda didorong dengan gaya F selama 5 detik, setelah itu benda mendapatkan gaya sebesar 20 N ke arah yang berlawanan dengan gaya F, sehingga benda berhenti setelah bergerah sejauh 10 m. Jika masa benda 2 kg, berapakah besar gaya F?

a. 250 N

b. 125 N

c. 500 N

d. 375 N

e. 62,5 N

11. Perhatikan gambar gaya vs perpindahan berikut: Berdasarkan grafik disamping, maka usaha yang dilakukan gaya tersebut adalah ialah?

a. 5 J

b. 10 J

c. 15 J

d. 20 J

e. 25J

12. Sebuah benda dilempar ke atas dengan kecepatan 12 m/s, berapakah energi potensial benda tersebut? Jika massa benda 20 kg dan percepatan graavitasi ditempat itu 10 m/s^2 .

- a. 1,44 J
- b. 14,4 J
- c. 144 J
- d. 1440 J
- e. 14400 J
- 13. Sebuah balok bermasa 4 kg bergerak dengan kecepatan 2 m/s menumbuk pegas degan konstanta 200 N/m. Pegas akan tertekan sejauh berapa? Saat balok berhenti bergerak?

 - a. $\frac{\sqrt{3}}{5} m$ b. $\frac{1}{5} m$ c. $\frac{\sqrt{2}}{5} m$ d. $2\frac{\sqrt{2}}{5} m$ e. $2\frac{\sqrt{3}}{5} m$
- 14. Benda dengan masa 1000 gram bergerak dengan kecepatan 8 m/s. Benda memasuki daerah kasar sehingga kecepatannya berubah menjadi 2 m/s selama 6 detik. Berapakah besar koefisien geseknya?
 - a. 0,1
 - b. 0.3
 - c. 0,5
 - d. 0,7
 - e. 0,9
- 15. Perhatikan gambar!

Benda di geser sejauh 20 mm ke arah pegas 2, berapakah besar resultan gaya yang diterima benda? Jika konstanta pegas $k_1=100\frac{N}{mm}$ dan $k_2=200\frac{N}{mm}$

- a. 0 N
- b. 2000 N

- c. 4000 N
- d. 3000 N
- e. 6000 N