Homework 2 on Newton's methods

Leave your name and uni here

Due: 03/18/2020, Wednesday, by 1pm

Problem 1

Design an optmization algorithm to find the minimum of the continuously differentiable function $f(x) = -e^{-1}\sin(x)$ on the closed interval [0, 1.5]. Write out your algorithm and implement it into **R**.

Answer: your answer starts here...

#R codes:

Problem 2

The Poisson distribution is often used to model "count" data — e.g., the number of events in a given time period.

The Poisson regression model states that

$$Y_i \sim \text{Poisson}(\lambda_i)$$
,

where

$$\log \lambda_i = \alpha + \beta x_i$$

for some explanatory variable x_i . The question is how to estimate α and β given a set of independent data $(x_1, Y_1), (x_2, Y_2), \ldots, (x_n, Y_n)$.

- 1. Modify the Newton-Raphson function from the class notes to include a step-halving step.
- 2. Further modify this function to ensure that the direction of the step is an ascent direction. (If it is not, the program should take appropriate action.)
- 3. Write code to apply the resulting modified Newton-Raphson function to compute maximum likelihood estimates for α and β in the Poisson regression setting.

The Poisson distribution is given by

$$P(Y = y) = \frac{\lambda^y e^{-\lambda}}{y!}$$

for $\lambda > 0$.

Answer: your answer starts here...

#R codes:

${\bf problem} \ {\bf 3}$

Consider the ABO blood type data, where you have $N_{\mathrm{obs}} = (N_A, N_B, N_O, N_{AB}) = (26, 27, 42, 7).$

- design an EM algorithm to estimate the allele frequencies, $P_A,\,P_B$ and $P_O;$ and
- Implement your algorithms in R, and present your results..

Answer: your answer starts here...

#R codes: