Unit I

Modular Arithmetic:
Multiplicative inverse,
extended euclidean algo
Refer: Chapter 2,
Fourozan

Chapter 2

Objectives

- ☐ To review integer arithmetic, concentrating on divisibility and finding the greatest common divisor using the Euclidean algorithm
- ☐ To understand how the extended Euclidean algorithm can be used to solve linear Diophantine equations, to solve linear congruent equations, and to find the multiplicative inverses
- ☐ To emphasize the importance of modular arithmetic and the modulo operator, because they are extensively used in cryptography
- ☐ To emphasize and review matrices and operations on residue matrices that are extensively used in cryptography
- ☐ To solve a set of congruent equations using residue matrices

2.1.3 Integer Division

In integer arithmetic, if we divide a by n, we can get q And r. The relationship between these four integers can be shown as

$$a = q \times n + r$$

Example 2.2

Assume that a = 255 and n = 11. We can find q = 23 and R = 2 using the division algorithm.

Figure 2.3 Example 2.2, finding the quotient and the remainder

Figure 2.4 Division algorithm for integers

Figure 2.6 Common divisors of two integers

Greatest Common Divisor

The greatest common divisor of two positive integers is the largest integer that can divide both integers.

Note

Euclidean Algorithm

Fact 1: gcd(a, 0) = a

Fact 2: gcd (a, b) = gcd (b, r), where r is the remainder of dividing a by b

Figure 2.7 Euclidean Algorithm

a. Process

b. Algorithm

Note

When gcd(a, b) = 1, we say that a and b are relatively prime.

Note

When gcd(a, b) = 1, we say that a and b are relatively prime.

Example 2.7

Find the greatest common divisor of 2740 and 1760.

Solution

We have gcd(2740, 1760) = 20.

q	r_{I}	r_2	r
1	2740	1760	980
1	1760	980	780
1	980	780	200
3	780	200	180
1	200	180	20
9	180	20	0
	20	0	

Example 2.8

Find the greatest common divisor of 25 and 60.

Solution

We have gcd(25, 65) = 5.

q	r_{I}	r_2	r
0	25	60	25
2	60	25	10
2	25	10	5
2	10	5	0
	5	0	

2.1.4 Continued Extended Euclidean Algorithm

Given two integers a and b, we often need to find other two integers, s and t, such that

$$s \times a + t \times b = \gcd(a, b)$$

The extended Euclidean algorithm can calculate the gcd (a, b) and at the same time calculate the value of s and t.

Figure 2.8.a Extended Euclidean algorithm, part a

a. Process

Figure 2.8.b Extended Euclidean algorithm, part b

```
r_1 \leftarrow a; \qquad r_2 \leftarrow b;
 s_1 \leftarrow 1; \qquad s_2 \leftarrow 0;
                                        (Initialization)
t_1 \leftarrow 0; \qquad t_2 \leftarrow 1;
while (r_2 > 0)
   q \leftarrow r_1 / r_2;
    r \leftarrow r_1 - q \times r_2;
                                                        (Updating r's)
    r_1 \leftarrow r_2; r_2 \leftarrow r;
     s \leftarrow s_1 - q \times s_2;
                                                        (Updating s's)
     s_1 \leftarrow s_2; s_2 \leftarrow s;
     t \leftarrow t_1 - q \times t_2;
                                                        (Updating t's)
   t_1 \leftarrow t_2; \ t_2 \leftarrow t;
   \gcd(a,b) \leftarrow r_1; \ s \leftarrow s_1; \ t \leftarrow t_1
```

b. Algorithm

Example 2.9

Given a = 161 and b = 28, find gcd (a, b) and the values of s and t.

Solution

We get gcd(161, 28) = 7, s = -1 and t = 6.

q	r_1 r_2	r	s_1 s_2	S	t_1 t_2	t
5	161 28	21	1 0	1	0 1	- 5
1	28 21	7	0 1	-1	1 -5	6
3	21 7	0	1 -1	4	- 5 6	-23
	7 0		-1 4		6 −23	

Example 2.10

Given a = 17 and b = 0, find gcd (a, b) and the values of s and t.

Solution

We get gcd(17, 0) = 17, s = 1, and t = 0.

q	r_{I}	r_2	r	s_I	s_2	S	t_I	t_2	t
	17	0		1	0		0	1	

Example 2.11

Given a = 0 and b = 45, find gcd (a, b) and the values of s and t.

Solution

We get gcd(0, 45) = 45, s = 0, and t = 1.

q	r_1	r_2	r	s_1	s_2	S	t_{I}	t_2	t
0	0	45	0	1	0	1	0	1	0
	45	0		0	1		1	0	

Note

The extended Euclidean algorithm finds the multiplicative inverses of b in Z_n when n and b are given and $\gcd(n, b) = 1$.

The multiplicative inverse of b is the value of t after being mapped to Z_n .

Figure 2.15 Using extended Euclidean algorithm to find multiplicative inverse

a. Process

b. Algorithm

Example 2.25

Find the multiplicative inverse of 11 in \mathbb{Z}_{26} .

Solution

q	r_{I}	r_2	r	t_1 t_2	t
2	26	11	4	0 1	-2
2	11	4	3	1 -2	5
1	4	3	1	-2 5	- 7
3	3	1	0	5 -7	26
	1	0		-7 26	

The gcd (26, 11) is 1; the inverse of 11 is -7 or 19.

Example 2.26

Find the multiplicative inverse of 23 in Z_{100} .

Solution

q	r_{I}	r_2	r	t_{I}	t_2	t
4	100	23	8	0	1	-4
2	23	8	7	1	-4	19
1	8	7	1	-4	9	-13
7	7	1	0	9	-13	100
	1	0		-13	100	

The gcd (100, 23) is 1; the inverse of 23 is -13 or 87.

Example 2.27

Find the inverse of 12 in \mathbb{Z}_{26} .

Solution

q	r_{I}	r_2	r	t_{I}	t_2	t
2	26	12	2	0	1	-2
6	12	2	0	1	-2	13
	2	0		-2	13	

The gcd (26, 12) is 2; the inverse does not exist.