Development of a Fast Search Algorithm for the MUSiC Framework

Bachelor Presentation
Jonas Lieb, 21.09.2015

Outline

- Introduction to CMS and MUSiC
- Motivation for a fast search algorithm
- Concept of the fast search algorithm
- Optimization and validation
- Summary and outlook

LHC and CMS

- LHC: Large Hadron Collider (CERN), Proton-Proton accelerator, center-of-mass energy of 8 TeV (2012), hosts 4 detector experiments
- CMS: Detector at the LHC, barrel around the beam pipe, featuring silicon trackers, calorimeters, a solenoid magnet and muon chambers

Data Pipeline

- Huge amount of data
- 15 PB (10^{15} byte) per year
- Many different final states possible
- Cannot be processed solely by dedicated analyses
 - → Complementary method necessary to be sensitive to signs of new physics

MUSiC — The Model Unspecific Search

- MUSiC: Model Unspecific Search in CMS
- Goal: Find new physics beyond the standard model
- Compares measurement from CMS with standard model expectations from Monte Carlo simulations
- Does not focus on one final state, regard many final states at the same time
- Three steps: "Skimming", "Classification" and "Scanning"

Skimming, Classification and Scanning

- Skimming: Import CMS data, apply cuts and significantly reduce data amount
- Classification: Group events by physics content into "Event Classes"
- Objects: Electrons, Muons, Photons, Jets, Missing transverse energy
- For each event class, build three kinematic distributions:
 - Sum of transverse momenta $\sum |\overrightarrow{p_T}|$
 - Invariant mass M_{inv}
 - Missing transverse energy MET
- Scanning: In each distribution, search all connected bin regions for the one with the most significant deviation (with the smallest pvalue)
- → Region of Interest

The p-Value

- Measure for the probability to observe a deviation between measurement and null hypothesis as least as large as the observed one
- Calculated from the observed event count $N_{\rm data}$, the expected event count N_{SM} and its systematic uncertainty σ_{SM}
- Poissonian probabilities is used to model statistical nature
- Smear Poisson mean with a Gaussian to model systematic effects

$$p_{\mathrm{data}} = \begin{cases} \sum_{N=N_{\mathrm{data}}}^{\infty} C \cdot \int_{0}^{\infty} \mathrm{d}\theta \, \mathrm{exp} \left(-\frac{(\theta-N_{\mathrm{SM}})^{2}}{2 \, \sigma_{\mathrm{SM}}^{2}} \right) \frac{e^{-\theta} \, \theta^{N}}{N!}, & \text{if } N_{\mathrm{data}} \geq N_{\mathrm{SM}} \\ \sum_{N=0}^{N_{\mathrm{data}}} C \cdot \int_{0}^{\infty} \mathrm{d}\theta \, \mathrm{exp} \left(-\frac{(\theta-N_{\mathrm{SM}})^{2}}{2 \, \sigma_{\mathrm{SM}}^{2}} \right) \frac{e^{-\theta} \, \theta^{N}}{N!}, & \text{if } N_{\mathrm{data}} \leq N_{\mathrm{SM}} \end{cases}$$

Correcting for the Look-Elsewhere-Effect

- Problem: The probability to find a significant deviation just by chance rises with the number of considered search regions (look-elsewhere-effect)
- Solution: Dice pseudo distribution according to MC estimate (and systematics), calculate correction using the number of pseudo-experiments with a significance larger than the observed one
- Count pseudo-experiments with a more significant outcome

$$\tilde{p} = \frac{\text{pseudo experiments with } p < p_{data}}{\text{number of pseudo experiments}}$$

One value per distribution and event class

Scanning Summarized

Why a Fast Search Algorithm?

- Example: 100000 pseudo experiments for \sim 100 event classes with \sim 1000 connected bin regions per distribution
- 200 μ s per p-value \rightarrow 560 h computing time (for one kinematic distribution only!)
- Integral calculation slow, but already using the best available implementation
- Remedy: reduce the number regions considered for the p-value integral

Quickscan — The Fast Search Algorithm

- Use on pseudo-experiments only
- Still consider all regions
- Calculate a simpler, less computation intensive significance estimator χ for each region (instead of the full p-value)
- Keep a list of the N most significant candidate regions
- Choose final region of interest from this candidate list, using the p-value integral

Quickscan — Estimator

$$\chi = \frac{|N_{obs} - N_{MC}|}{\sqrt{\sigma_{MC}^2 + N_{MC}}}$$

- Ratio of observed deviation to expected deviation
- Denominator includes expected statistical deviation $\sigma_{stat}=\sqrt{N_{MC}}$ and systematical deviation σ_{MC} , combined in quadrature
- ${}^{\bullet}$ Only expected to hold in the Poissonian regime of high N_{MC}

Quickscan — Nested Regions

- Problem in high-energy tail of distributions
- Additional significance criterion for nested regions viable
- Given regions A and B:
 - Region A is nested in region B
 - A and B are excesses
 - A and B have the same amount of data
- → A is more significant
- Successfully suppresses unnecessary regions

Situation without nested region handling,
Pseudo-experiments

Optimization & Evaluation Criteria

Statistical Accuracy

- Compare \(\tilde{p} \) for each event class between full scan and Quickscan
- For each event class: calculate relative \tilde{p} difference

$$\sigma_{rel} = rac{ ilde{p}_{full} - ilde{p}_{Quickscan}}{ ilde{p}_{full}}$$

Situation without Quickscan:
 → next slide

Runtime

- Evaluated as wall-clock time
- Includes input/output
- Compared to runtime of complete scan

• speedup =
$$\frac{T_{full}}{T_{Quickscan}}$$

Situation without Quickscan:~ 1h 30min

Optimization subset: excl. event classes, $\sum |\overrightarrow{p_T}|$ distribution, 1000 pseudo experiments, summarize events with >2 jets in one event class

Statistical Accuracy without Quickscan

- Deviation of results due to random dicing of pseudoexperiments
- Width of the distribution about 5%

 Optimization of the number of candidate regions N to keep width of distributions stable

Two full scans compared to each other

$$\sigma_{rel} = rac{ ilde{p}_{full_2} - ilde{p}_{full_1}}{ ilde{p}_{full_1}}$$

Results for Different N

Number of Candidates

Selected Results, Choice of N

Validation Data Set

- Run on a different subset:
 - Use M_{inv} distribution (instead of $\sum |\overrightarrow{p_T}|$)
 - Turn off jet threshold, any number of jets generates a new event class (instead of summarizing >2 jets in one class)
 - Generate 100000 pseudo experiments (instead of 1000)

Validation Result

→ Statistical sensitivity unchanged, ~9 times faster

Conclusion & Outlook

- MUSiC analysis is very complex and computation intensive
- This work has introduced and implemented an additional step called "Quickscan"
- Quickscan allows for a speedup of about 9 times, keeping the statistical sensitivity
- Outlook: Quickscan could benefit from a different estimator, maybe making the nested region handling superfluous
- The MUSiC scan could benefit from a better parallelization, allowing it to run on the CERN computing grid

Backup: Data Details

- Recorded at CMS in 2012
- Center of momentum energy $\sqrt{s} = 8 \text{ TeV}$
- Integrated luminosity $L=19.7~{\rm fb^{-1}}$

Backup: CMS Barrel

Backup: Object Identification

Object	$ec{p}_{ m T}/$ GeV	$ \eta $	Identification Summary
μ	>25	< 2.1	track quality, isolation, dedicated high- $ec{p}_{ m T}$
e	>25	< 2.5	track quality, isolation, dedicated high- E_{T}
γ	>25	<1.442	isolation, veto against e from conversions
jet	>50	< 2.4	anti- k_t algorithm ($R = 0.5$)
${E_{\mathrm{T}}}$	>50		

Backup: Event Class Building

Backup: That One Class

Backup: Nested Region Handling

