Chapitre 3 Algorithmes gloutons

HLIN401 : Algorithmique et complexité

L2 Informatique Université de Montpellier 2020 – 2021

Les méthodes gloutonnes

- ► En un mot, faire à chaque étape le choix possible qui semble le meilleur. Parfois, ça marche et on obtient des bons algos...
- On voit dans ce cours des algorithmes gloutons simples et dont on peut prouver l'optimalité
 - D'autres sont plus *célèbres* mais plus sophistiqués (par ex. l'algorithme de compression de Huffman) et seront étudiés dans des cours plus spécialisés

- 1. Exemple 1 : choix de cours
- 2. Qu'est-ce qu'un algorithme glouton?
- 3. Exemple 2 : le sac-à-dos (fractionnaire)
- 4. Exemple spécial : approximation pour SETCOVER dans le plan
- 5. Dernier exemple : arbre couvrant de poids minimal

1. Exemple 1 : choix de cours

2. Qu'est-ce qu'un algorithme glouton ?

3. Exemple 2 : le sac-à-dos (fractionnaire)

4. Exemple spécial : approximation pour SETCOVER dans le plan

5. Dernier exemple : arbre couvrant de poids minimal

Définition du problème

Entrée un ensemble $\mathcal C$ de cours $C_i = (d_i, f_i)$ [début, fin], $i = 0, \ldots, n-1$ Sortie un ensemble ordonné maximal de cours $(C_{i_1}, \ldots, C_{i_k})$ tels que pour tout j < k, $f_{i_j} \le d_{i_{j+1}} \rightsquigarrow \text{cours compatibles}$

modifié d'après Algorithms de J. Erickson

Définition du problème

Entrée un ensemble $\mathcal C$ de cours $C_i = (d_i, f_i)$ [début, fin], $i = 0, \ldots, n-1$ Sortie un ensemble ordonné maximal de cours $(C_{i_1}, \ldots, C_{i_k})$ tels que pour tout j < k, $f_{i_j} \le d_{i_{j+1}} \rightsquigarrow \text{cours compatibles}$

modifié d'après Algorithms de J. Erickson

Définition du problème

Entrée un ensemble $\mathcal C$ de cours $C_i = (d_i, f_i)$ [début, fin], $i = 0, \ldots, n-1$ Sortie un ensemble ordonné maximal de cours $(C_{i_1}, \ldots, C_{i_k})$ tels que pour tout j < k, $f_{i_j} \le d_{i_{j+1}} \rightsquigarrow \text{cours compatibles}$

modifié d'après Algorithms de J. Erickson

► Tri des cours par dates de début croissantes

- ► Tri des cours par dates de début croissantes
- ► Choix *glouton* : sélectionner le cours qui débute **le plus tôt**

- ► Tri des cours par dates de début croissantes
- ► Choix *glouton* : sélectionner le cours qui débute **le plus tôt**

- ► Tri des cours par dates de début croissantes
- ► Choix *glouton* : sélectionner le cours qui débute **le plus tôt**

- ► Tri des cours par dates de début croissantes
- ► Choix *glouton* : sélectionner le cours qui débute **le plus tôt**

- ► Tri des cours par durées croissantes
- ► Choix *glouton* : sélectionner le cours **le plus court**

- ► Tri des cours par durées croissantes
- ► Choix *glouton* : sélectionner le cours **le plus court**

- ► Tri des cours par durées croissantes
- ► Choix *glouton* : sélectionner le cours **le plus court**

- ► Tri des cours par durées croissantes
- ► Choix *glouton* : sélectionner le cours **le plus court**

- ► Tri des cours par durées croissantes
- ► Choix *glouton* : sélectionner le cours **le plus court**

- ► Tri des cours par dates de fin croissantes
- ► Choix *glouton* : sélectionner le cours qui finit **le plus tôt**

- ► Tri des cours par dates de fin croissantes
- ► Choix *glouton* : sélectionner le cours qui finit **le plus tôt**

- ► Tri des cours par dates de fin croissantes
- ► Choix *glouton* : sélectionner le cours qui finit **le plus tôt**

- ► Tri des cours par dates de fin croissantes
- ► Choix *glouton* : sélectionner le cours qui finit **le plus tôt**

- ► Tri des cours par dates de fin croissantes
- ► Choix *glouton* : sélectionner le cours qui finit **le plus tôt**

- ► Tri des cours par dates de fin croissantes
- ► Choix *glouton* : sélectionner le cours qui finit **le plus tôt**

▶ Idée 1 donne une solution de taille 3 : on l'oublie!

- ▶ Idée 1 donne une solution de taille 3 : on l'oublie!
- ▶ Idées 2 et 3 donnent une solution de taille 5
 - Les deux sont bonnes?

- ▶ Idée 1 donne une solution de taille 3 : on l'oublie!
- Idées 2 et 3 donnent une solution de taille 5
 - Les deux sont bonnes?
- On pourrait avoir d'autres idées...
 - cours qui crée le moins d'incompatibilités
 - cours qui commence le plus tard
 - **.**..

- ▶ Idée 1 donne une solution de taille 3 : on l'oublie!
- Idées 2 et 3 donnent une solution de taille 5
 - Les deux sont bonnes?
- On pourrait avoir d'autres idées...
 - cours qui crée le moins d'incompatibilités
 - cours qui commence le plus tard
 - **...**
- ► Lesquelles fonctionnent?
 - Contre-exemples quand ça ne marche pas
 - Besoin de preuves quand ça marche!

- ▶ Idée 1 donne une solution de taille 3 : on l'oublie!
- Idées 2 et 3 donnent une solution de taille 5
 - Les deux sont bonnes?
- On pourrait avoir d'autres idées...
 - cours qui crée le moins d'incompatibilités
 - cours qui commence le plus tard
 - **...**
- ► Lesquelles fonctionnent?
 - ► Contre-exemples quand ça ne marche pas
 - Besoin de preuves quand ça marche!
- ► Aujourd'hui : choix de l'idée 3 (« finit le plus tôt »)
- ► TD : autres choix

Algorithme glouton

```
Algorithme: CHOIXCOURSGLOUTON(\mathcal{C})
Trier \mathcal{C} en fonction des fins
I \leftarrow \{\mathcal{C}_{\mathsf{[0]}}\}
                                                                                          // Indice des cours choisis
f \leftarrow \mathsf{FIN}(\mathcal{C}_{[0]})
                                                                                   // Fin du dernier cours choisi
pour i = 1 à n - 1:
      si DÉBUT(C_{[i]}) \geq f:
       egin{array}{c} I \leftarrow I \cup \{\mathcal{C}_{[i]}\} \ f \leftarrow \mathsf{Fin}(\mathcal{C}_{[i]}) \end{array}
renvoyer I
```

Algorithme glouton

```
Algorithme: CHOIXCOURSGLOUTON(\mathcal{C})
Trier \mathcal{C} en fonction des fins
I \leftarrow \{\mathcal{C}_{\mathsf{[O]}}\}
                                                                                    // Indice des cours choisis
f \leftarrow \mathsf{FIN}(\mathcal{C}_{[0]})
                                                                              // Fin du dernier cours choisi
pour i = 1 à n - 1:
     si DÉBUT(C_{[i]}) \geq f:
         I \leftarrow I \cup \{\mathcal{C}_{[i]}\} \ f \leftarrow \mathsf{Fin}(\mathcal{C}_{[i]})
renvoyer I
```

Question

Quelle est la complexité de CHOIXCOURSGLOUTON?

Algorithme glouton

```
Algorithme: CHOIXCOURSGLOUTON(\mathcal{C})
Trier \mathcal{C} en fonction des fins
I \leftarrow \{\mathcal{C}_{\mathsf{[O]}}\}
                                                                                    // Indice des cours choisis
f \leftarrow \mathsf{FIN}(\mathcal{C}_{[0]})
                                                                              // Fin du dernier cours choisi
pour i = 1 à n - 1:
     si DÉBUT(C_{[i]}) \geq f:
         I \leftarrow I \cup \{\mathcal{C}_{[i]}\} \ f \leftarrow \mathsf{Fin}(\mathcal{C}_{[i]})
renvoyer I
```

Question

Quelle est la complexité de CHOIXCOURSGLOUTON?

 \rightsquigarrow coût du tri : $O(n \log n)$

Théorème

L'algorithme CHOIXCOURSGLOUTON est optimal : il renvoie un ensemble maximal de cours compatibles, c'est-à-dire qu'il n'existe pas d'ensemble strictement plus grand de cours compatibles.

Preuve

Théorème

L'algorithme CHOIXCOURSGLOUTON est optimal : il renvoie un ensemble maximal de cours compatibles, c'est-à-dire qu'il n'existe pas d'ensemble strictement plus grand de cours compatibles.

Preuve

Notons $C = (C_0, \dots, C_{n-1})$ les cours triés par dates de fin croissantes.

Théorème

L'algorithme CHOIXCOURSGLOUTON est optimal : il renvoie un ensemble maximal de cours compatibles, c'est-à-dire qu'il n'existe pas d'ensemble strictement plus grand de cours compatibles.

Preuve

- Notons $C = (C_0, ..., C_{n-1})$ les cours triés par dates de fin croissantes.
- **Petit Lemme** : il existe une solution optimale contenant C_0

En effet, soit $\mathcal{B} = (C_{i_1}, C_{i_2}, \dots, C_{i_k})$ une solution optimale.

- ightharpoonup Si $C_{i_1} = C_{0}$, on est content...
- ▶ Sinon, par définition de C_0 , on a $f_0 \le f_{i_1}$ et $(\mathcal{B} \setminus C_{i_1}) \cup C_0$ est aussi une solution optimale, contenant C_0 cette fois.

Théorème

L'algorithme CHOIXCOURSGLOUTON est optimal : il renvoie un ensemble maximal de cours compatibles, c'est-à-dire qu'il n'existe pas d'ensemble strictement plus grand de cours compatibles.

Preuve

- Notons $C = (C_0, ..., C_{n-1})$ les cours triés par dates de fin croissantes.
- ▶ **Petit Lemme** : il existe une solution optimale contenant C₀

En effet, soit $\mathcal{B} = (C_{i_1}, C_{i_2}, \dots, C_{i_k})$ une solution optimale.

- ightharpoonup Si $C_h = C_0$, on est content...
- Sinon, par définition de C_0 , on a $f_0 \le f_h$ et $(\mathcal{B} \setminus C_h) \cup C_0$ est aussi une solution optimale, contenant C_0 cette fois.
- **→ CHOIXCOURSGLOUTON** fait le premier bon choix!

Théorème

L'algorithme CHOIXCOURSGLOUTON est optimal : il renvoie un ensemble maximal de cours compatibles, c'est-à-dire qu'il n'existe pas d'ensemble strictement plus grand de cours compatibles.

Preuve

Notons maintenant $C_0 = \{C_{j_1}, C_{j_2}, \dots, C_{j_{n_1}}\}$ les cours compatibles avec C_0 , triés par dates de fin croissantes (càd les cours dont la date de début est $\geq f_0$).

Théorème

L'algorithme CHOIXCOURSGLOUTON est optimal : il renvoie un ensemble maximal de cours compatibles, c'est-à-dire qu'il n'existe pas d'ensemble strictement plus grand de cours compatibles.

Preuve

- Notons maintenant $C_0 = \{C_{j_1}, C_{j_2}, \dots, C_{j_{n_1}}\}$ les cours compatibles avec C_0 , triés par dates de fin croissantes (càd les cours dont la date de début est $\geq f_0$).
- ▶ Moyen Lemme : il existe une solution optimale formée de C_0 et d'une solution optimale du problème sur l'entrée C_0

En effet, soit $\mathcal{B} = (C_0, C_{i_2}, \dots, C_{i_k})$ une solution optimale contenant C_0 (ça existe par le petit lemme).

- Si $(C_{i_2}, \ldots, C_{i_k})$ n'est pas une solution optimale pour C_0 , alors il existerait une meilleure solution $(C_h, \ldots, C_{l_{k+1}})$ sur C_0 .
- Mais $(C_{l_2}, \ldots, C_{l_{k+1}})$ sont tous compatibles avec C_0 , et $(C_0, C_{l_2}, \ldots, C_{l_{k+1}})$ serait meilleure que \mathcal{B} : impossible!

Théorème

L'algorithme CHOIXCOURSGLOUTON est optimal : il renvoie un ensemble maximal de cours compatibles, c'est-à-dire qu'il n'existe pas d'ensemble strictement plus grand de cours compatibles.

Preuve

- Notons maintenant $C_0 = \{C_{j_1}, C_{j_2}, \dots, C_{j_{n_1}}\}$ les cours compatibles avec C_0 , triés par dates de fin croissantes (càd les cours dont la date de début est $\geq f_0$).
- ▶ Moyen Lemme : il existe une solution optimale formée de C_0 et d'une solution optimale du problème sur l'entrée C_0
- Du coup, par le Petit Lemme, comme il existe une solution optimale de C_0 commençant par C_{j_1} , il existe une solution optimale du problème de départ commençant par (C_0, C_{j_1}) .
 - **→ CHOIXCOURSGLOUTON** fait aussi un second bon choix!

Théorème

L'algorithme CHOIXCOURSGLOUTON est optimal : il renvoie un ensemble maximal de cours compatibles, c'est-à-dire qu'il n'existe pas d'ensemble strictement plus grand de cours compatibles.

Preuve

► On peut mettre en place la récurrence :

 $\mathcal{P}_s = \ll Soit\left(C_{p_1}, C_{p_2}, \ldots, C_{p_s}\right)$ les s premiers choix de cours de ChoixCoursGlouton et \mathcal{C}_s les cours compatibles avec tous ces cours là. Alors il existe une solution au problème initial formée de $\left(C_{p_1}, C_{p_2}, \ldots, C_{p_s}\right)$ et d'une solution optimale sur \mathcal{C}_s . \gg

Théorème

L'algorithme CHOIXCOURSGLOUTON est optimal : il renvoie un ensemble maximal de cours compatibles, c'est-à-dire qu'il n'existe pas d'ensemble strictement plus grand de cours compatibles.

Preuve

► On peut mettre en place la récurrence :

 $\mathcal{P}_s = \ll Soit\left(C_{p_1}, C_{p_2}, \ldots, C_{p_s}\right)$ les s premiers choix de cours de ChoixCoursGlouton et \mathcal{C}_s les cours compatibles avec tous ces cours là. Alors il existe une solution au problème initial formée de $\left(C_{p_1}, C_{p_2}, \ldots, C_{p_s}\right)$ et d'une solution optimale sur \mathcal{C}_s . \gg

 $\triangleright \mathcal{P}_1$ vraie par le Moyen lemme.

Théorème

L'algorithme CHOIXCOURSGLOUTON est optimal : il renvoie un ensemble maximal de cours compatibles, c'est-à-dire qu'il n'existe pas d'ensemble strictement plus grand de cours compatibles.

Preuve

- ► On peut mettre en place la récurrence :
 - $\mathcal{P}_s = \ll Soit\left(C_{p_1}, C_{p_2}, \ldots, C_{p_s}\right)$ les s premiers choix de cours de CHOIXCOURSGLOUTON et \mathcal{C}_s les cours compatibles avec tous ces cours là. Alors il existe une solution au problème initial formée de $\left(C_{p_1}, C_{p_2}, \ldots, C_{p_s}\right)$ et d'une solution optimale sur \mathcal{C}_s . \gg
- ▶ Si \mathcal{P}_s vraie, alors par le Moyen Lemme, il existe une solution opt. sur \mathcal{C}_s formée du premier cours $\mathcal{C}_{p_{s+1}}$ de \mathcal{C}_s et d'une solution opt. sur les cours de \mathcal{C}_s compatibles avec $\mathcal{C}_{p_{s+1}}$. Et \mathcal{P}_{s+1} est vraie!

Théorème

L'algorithme CHOIXCOURSGLOUTON est optimal : il renvoie un ensemble maximal de cours compatibles, c'est-à-dire qu'il n'existe pas d'ensemble strictement plus grand de cours compatibles.

Preuve

► On peut mettre en place la récurrence :

 $\mathcal{P}_s = \ll Soit\left(C_{p_1}, C_{p_2}, \ldots, C_{p_s}\right)$ les s premiers choix de cours de CHOIXCOURSGLOUTON et \mathcal{C}_s les cours compatibles avec tous ces cours là. Alors il existe une solution au problème initial formée de $\left(C_{p_1}, C_{p_2}, \ldots, C_{p_s}\right)$ et d'une solution optimale sur \mathcal{C}_s . \gg

→ CHOIXCOURSGLOUTON renvoie une solution optimale au problème!

1. Exemple 1 : choix de cours

2. Qu'est-ce qu'un algorithme glouton?

3. Exemple 2 : le sac-à-dos (fractionnaire)

4. Exemple spécial : approximation pour SETCOVER dans le plar

5. Dernier exemple : arbre couvrant de poids minimal

Idée générale

Un algorithme glouton fait à chaque étape un choix localement optimal dans le but d'obtenir à la fin un optimum global.

Idée générale

Un algorithme glouton fait à chaque étape un choix localement optimal dans le but d'obtenir à la fin un optimum global.

Exemple du choix de cours

- Optimum local : cours qui minimise les incompatibilités
- Optimum global : maximum de cours compatibles

Idée générale

Un algorithme glouton fait à chaque étape un choix localement optimal dans le but d'obtenir à la fin un optimum global.

Exemple du choix de cours

- Optimum local : cours qui minimise les incompatibilités
- Optimum global : maximum de cours compatibles

Remarques

- Construction pas-à-pas d'une solution
- ▶ Algorithmes simples à concevoir... mais pas toujours parfaits!
- Nésolution exacte, approximation, heuristique

1. Décider d'un choix glouton

- ▶ Ajout d'un nouvel élément à la solution en construction
- ► Recommencer sur le sous-problème restant

- 1. Décider d'un choix glouton
 - ► Ajout d'un nouvel élément à la solution en construction
 - ► Recommencer sur le sous-problème restant
- 2. Chercher un cas où ça ne marche pas
 - ► Si on en trouve, retourner en 1.
 - Sinon, continuer en 3.

Tri par durées croissantes {(11, 14), (7, 12), (13, 19)}

- 1. Décider d'un choix glouton
 - Ajout d'un nouvel élément à la solution en construction
 - ► Recommencer sur le sous-problème restant
- 2. Chercher un cas où ça ne marche pas
 - Si on en trouve, retourner en 1.
 - Sinon, continuer en 3.

Tri par durées croissantes {(11, 14), (7, 12), (13, 19)}

- 1. Décider d'un choix glouton
 - ► Ajout d'un nouvel élément à la solution en construction
 - ▶ Recommencer sur le sous-problème restant
- 2. Chercher un cas où ça ne marche pas
 - Si on en trouve, retourner en 1.
 - Sinon, continuer en 3.
- 3. Démontrer que l'algorithme est correct
 - ▶ Il existe une solution optimale contenant le choix local
 - ► Choix local + glouton pour le reste → solution optimale

Tri par durées croissantes {(11, 14), (7, 12), (13, 19)}

- 1. Décider d'un choix glouton
 - ► Ajout d'un nouvel élément à la solution en construction
 - ► Recommencer sur le sous-problème restant
- 2. Chercher un cas où ça ne marche pas
 - Si on en trouve, retourner en 1.
 - ► Sinon, continuer en 3.
- 3. Démontrer que l'algorithme est correct
 - ► Il existe une solution optimale contenant le choix local
 - ► Choix local + glouton pour le reste → solution optimale
- 4. Étudier la **complexité** de l'algorithme

Algorithme glouton générique

Problème générique

Entrée Un ensemble fini X, avec une valeur v_x pour tout $x \in X$

Paramètre Une propriété $\mathcal P$ définissant les sous-ensembles $A\subset X$ acceptables, telle que si A vérifie $\mathcal P$, tout sous-ensemble $B\subset A$ vérifie $\mathcal P$ (propriété *monotone vers le bas*)

Sortie Un sous-ensemble $A \subset X$, acceptable, et qui maximise/minimise $v_A = \sum_{x \in A} v_x$ (parmi les sous-ensembles acceptables)

Algorithme glouton générique

Problème générique

Entrée Un ensemble fini X, avec une valeur v_x pour tout $x \in X$

Paramètre Une propriété $\mathcal P$ définissant les sous-ensembles $A\subset X$ acceptables, telle que si A vérifie $\mathcal P$, tout sous-ensemble $B\subset A$ vérifie $\mathcal P$ (propriété monotone vers le bas)

Sortie Un sous-ensemble $A \subset X$, acceptable, et qui maximise/minimise $v_A = \sum_{x \in A} v_x$ (parmi les sous-ensembles acceptables)

Choix de cours

►
$$X = \{(d_i, f_i) : 0 \le i < n\}; v_x = 1 \text{ pour tout } x \in X$$
 $(X = C)$

- $ightharpoonup \mathcal{P}: A \subset X$ vérifie \mathcal{P} si les cours de A sont compatibles
- On cherche l'ensemble de cours compatibles le plus grand

Algorithme glouton générique

Problème générique

Entrée Un ensemble fini X, avec une valeur v_x pour tout $x \in X$

Paramètre Une propriété $\mathcal P$ définissant les sous-ensembles $A\subset X$ acceptables, telle que si A vérifie $\mathcal P$, tout sous-ensemble $B\subset A$ vérifie $\mathcal P$ (propriété monotone vers le bas)

Sortie Un sous-ensemble $A \subset X$, acceptable, et qui maximise/minimise $v_A = \sum_{x \in A} v_x$ (parmi les sous-ensembles acceptables)

```
Algorithme: GLOUTONGÉNÉRIQUE(X, \mathcal{P})
Trier X par valeurs croissantes/décroissantes + critère glouton S \leftarrow \emptyset

pour x \in X (dans l'ordre du tri):

\begin{bmatrix} \mathbf{si} \ S \cup \{x\} \ v\'erifie \ \mathcal{P} : \mathbf{ajouter} \ x \ \mathbf{a} \ S \end{bmatrix} // S \leftarrow S \cup \{x\}

renvoyer S
```

Théorème des algorithmes gloutons

Théorème

On considère le problème générique avec la propriété \mathcal{P} . Si pour toute entrée X, il existe une solution optimale S telle que

- le premier élément x₀ de X, dans l'ordre du tri, appartienne à S
- ▶ $S \setminus x_0$ soit une solution optimale sur l'entrée $X \setminus x_0$ du problème de paramètre \mathcal{P}' où A vérifie \mathcal{P}' si $A \cup \{x_0\}$ vérifie \mathcal{P}

Alors GLOUTONGÉNÉRIQUE est optimal.

Théorème des algorithmes gloutons

Théorème

On considère le problème générique avec la propriété \mathcal{P} . Si pour toute entrée X, il existe une solution optimale S telle que

- le premier élément x₀ de X, dans l'ordre du tri, appartienne à S
- ▶ $S \setminus x_0$ soit une solution optimale sur l'entrée $X \setminus x_0$ du problème de paramètre \mathcal{P}' où A vérifie \mathcal{P}' si $A \cup \{x_0\}$ vérifie \mathcal{P}

Alors GLOUTONGÉNÉRIQUE est optimal.

Exemple du choix de cours

- ightharpoonup X: ensemble des cours ($v_x = 1$ pour tout x); $\mathcal P$: cours compatibles entre eux
- ► Tri : dates de fin croissantes
- Preuve:
 - ► Il existe un ensemble de cours optimal contenant le 1^{er} cours
 - ► En enlevant le 1^{er} cours, il reste un ensemble optimal pour les cours commençant après la fin du 1^{er} cours

Théorème des algorithmes gloutons

Théorème

On considère le problème générique avec la propriété \mathcal{P} . Si pour toute entrée X, il existe une solution optimale S telle que

- le premier élément x₀ de X, dans l'ordre du tri, appartienne à S
- ▶ $S \setminus x_0$ soit une solution optimale sur l'entrée $X \setminus x_0$ du problème de paramètre \mathcal{P}' où A vérifie \mathcal{P}' si $A \cup \{x_0\}$ vérifie \mathcal{P}

Alors GLOUTONGÉNÉRIQUE est optimal.

Preuve par récurrence sur |X|

- ▶ Si |X| = 0, la solution optimale est \emptyset
- Soit X une entrée avec |X| > 0. Par hyp. de récurrence, GLOUTONGÉNÉRIQUE trouve une solution optimale S' pour $X \setminus x_0$ avec la propriété \mathcal{P}' . Donc $S' \cup \{x_0\}$ est optimale pour X avec la propriété \mathcal{P} , sinon on obtient une contradiction...

En pratique

- ▶ Il existe une théorie générale des algorithmes gloutons
 - basée sur la notion de matroïde
 - ▶ mais certains algorithmes « type glouton » ne rentrent pas exactement dans le moule

En pratique

- ▶ Il existe une théorie générale des algorithmes gloutons
 - basée sur la notion de matroïde
 - ▶ mais certains algorithmes « type glouton » ne rentrent pas exactement dans le moule
- ▶ Dans ce cours : étude de plusieurs exemples
 - utilisation du théorème pour faciliter les preuves

En pratique

- ▶ Il existe une théorie générale des algorithmes gloutons
 - basée sur la notion de matroïde
 - ▶ mais certains algorithmes « type glouton » ne rentrent pas exactement dans le moule
- Dans ce cours : étude de plusieurs exemples
 - utilisation du théorème pour faciliter les preuves

Objectifs:

- ► Savoir tenter une stratégie gloutonne
- Savoir détecter si elle marche ou non
- ► Savoir l'analyser (correction et complexité)

- 1. Exemple 1 : choix de cours
- 2. Qu'est-ce qu'un algorithme glouton?
- 3. Exemple 2 : le sac-à-dos (fractionnaire)
- 4. Exemple spécial : approximation pour SETCOVER dans le plan
- 5. Dernier exemple : arbre couvrant de poids minima

Problème du sac-à-dos

Définition du problème

Entrée un ensemble d'objets, ayant une taille t_i et une valeur v_i une taille T de sac-à-dos

Sortie un sous-ensemble des objets qui

- rentre dans le sac : $\sum_i t_i \leq T$
- ightharpoonup maximise la valeur totale $V=\sum_i v_i$

Problème du sac-à-dos

Définition du problème

Entrée un ensemble d'objets, ayant une taille t_i et une valeur v_i une taille T de sac-à-dos

Sortie un sous-ensemble des objets qui

- rentre dans le sac : $\sum_i t_i \leq T$
- maximise la valeur totale $V = \sum_i v_i$
- Problème célèbre car utile
 - en théorie
 - en pratique
 - en cryptographie
- ▶ Difficile (NP-complet → HLIN612)

MY HOBBY: Embedding NP-complete problems in restaurant orders

https://xkcd.com/287/

Problème du sac-à-dos

Définition du problème

Entrée un ensemble d'objets, ayant une taille t_i et une valeur v_i une taille T de sac-à-dos

Sortie un sous-ensemble des objets qui

- rentre dans le sac : $\sum_i t_i \leq T$
- maximise la valeur totale $V = \sum_i v_i$
- Problème célèbre car utile
 - en théorie
 - en pratique
 - en cryptographie
- ▶ Difficile (NP-complet → HLIN612)

MY HOBBY: Embedding NP-complete problems in restaurant orders

https://xkcd.com/287/

Problème du sac-à-dos fractionnaire

24 13 15 23 16

Objets fractionnables: on peut n'en prendre qu'une partie

Définition

Entrée un ensemble d'objets, ayant une taille t_i et une valeur v_i une taille T de sac-à-dos

Sortie une fraction $x_i \in [0, 1]$ pour chaque objet, telle que

- le total ne dépasse pas la taille du sac : $\sum_i x_i t_i \leq T$
- la valeur totale $V = \sum_{i} x_{i} v_{i}$ est maximale

Problème du sac-à-dos fractionnaire

24 13 15 23 16

Objets fractionnables: on peut n'en prendre qu'une partie

Définition

Entrée un ensemble d'objets, ayant une taille t_i et une valeur v_i une taille T de sac-à-dos

Sortie une fraction $x_i \in [0, 1]$ pour chaque objet, telle que

- le total ne dépasse pas la taille du sac : $\sum_i x_i t_i \leq T$
- la valeur totale $V = \sum_i x_i v_i$ est maximale
- Problème simplifié!
- Approche pour résoudre le sac-à-dos

Problème du sac-à-dos fractionnaire

24

13

9, 375

16

Objets fractionnables: on peut n'en prendre qu'une partie

Définition

Entrée un ensemble d'objets, ayant une taille t_i et une valeur v_i une taille T de sac-à-dos

Sortie une fraction $x_i \in [0, 1]$ pour chaque objet, telle que

- le total ne dépasse pas la taille du sac : $\sum_i x_i t_i \leq T$
- la valeur totale $V = \sum_{i} x_i v_i$ est maximale
- Problème simplifié!
- Approche pour résoudre le sac-à-dos

Algorithme glouton

Choix glouton : choisir l'objet de meilleur rapport qualité - prix

Algorithme glouton

Choix glouton : choisir l'objet de meilleur rapport qualité - prix

```
Algorithme: SADFRACGLOUTON(O, T)
Trier les objets O_i = (t_i, v_i) par v_i/t_i décroissant
R \leftarrow T
                                // Espace encore libre dans le sac-à-dos
pour i = 0 à n - 1 (dans l'ordre du tri) :
   si t_i < R:
    x_i \leftarrow 1
    R \leftarrow R - t:
    sinon:
      x_i \leftarrow R/t_i
R \leftarrow 0
renvoyer (x_0, \ldots, x_{n-1})
```

Algorithme glouton

Choix glouton : choisir l'objet de meilleur rapport qualité - prix

```
Algorithme: SADFRACGLOUTON(O, T)
Trier les objets O_i = (t_i, v_i) par v_i/t_i décroissant
                                // Espace encore libre dans le sac-à-dos
R \leftarrow T
pour i = 0 à n - 1 (dans l'ordre du tri) :
   si t_i < R:
    x_i \leftarrow 1
     R \leftarrow R - t:
    sinon:
      x_i \leftarrow R/t_i
R \leftarrow 0
renvoyer (x_0, \ldots, x_{n-1})
```

Lemme

La complexité de SADFRACGLOUTON est $O(n \log n)$.

Lemme

Soit $O = \{(t_0, v_0), \dots, (t_{n-1}, v_{n-1})\}$ un ensemble d'objets et T une taille de sac-à-dos, où $v_0/t_0 \ge v_1/t_1 \ge \dots \ge v_{n-1}/t_{n-1}$. Alors il existe une solution optimale (x_0, \dots, x_{n-1}) sur l'entrée (O, T) telle que

- (x_1,\ldots,x_{n-1}) est solution optimale sur l'entrée $\{(t_1,v_1),\ldots,(t_{n-1},v_{n-1})\}$ et $T-t_0$

Preuve: en TD!

Optimalité de SADFRACGLOUTON d'après le théorème des algorithmes gloutons!

- 1. Exemple 1 : choix de cours
- 2. Qu'est-ce qu'un algorithme glouton?
- 3. Exemple 2 : le sac-à-dos (fractionnaire)
- 4. Exemple spécial : approximation pour SETCOVER dans le plan
- 5. Dernier exemple : arbre couvrant de poids minimal

Le problème

SETCOVER

Entrée n maisons placées dans le plan

Sortie un ensemble minimal de maisons où placer une antenne Wifi :

- ► chaque antenne a une portée de 100 m
- ▶ toutes les maisons doivent être couvertes

Le problème

SETCOVER

Entrée n maisons placées dans le plan

Sortie un ensemble minimal de maisons où placer une antenne Wifi :

- ► chaque antenne a une portée de 100 m
- ▶ toutes les maisons doivent être couvertes

Le problème

SETCOVER

Entrée n maisons placées dans le plan

Sortie un ensemble minimal de maisons où placer une antenne Wifi :

- ► chaque antenne a une portée de 100 m
- ▶ toutes les maisons doivent être couvertes

À chaque étape, on choisit la maison qui permet de couvrir le plus de maisons non encore couvertes

Choix non optimal mais...

Lemme

L'algorithme présenté peut être implanté en temps $O(n^3)$

Preuve : en TD!

Lemme

L'algorithme présenté peut être implanté en temps $O(n^3)$

Preuve : en TD!

Lemme

Si k est le nombre minimal d'antennes nécessaires, l'algorithme trouve toujours une solution avec $\leq k \ln n$ antennes

Lemme

L'algorithme présenté peut être implanté en temps $O(n^3)$

Preuve : en TD!

Lemme

Si k est le nombre minimal d'antennes nécessaires, l'algorithme trouve toujours une solution avec $\leq k \ln n$ antennes

$$ightharpoonup n_0 = n$$

Lemme

L'algorithme présenté peut être implanté en temps $O(n^3)$

Preuve : en TD!

Lemme

Si k est le nombre minimal d'antennes nécessaires, l'algorithme trouve toujours une solution avec \leq k \ln n antennes

- $ightharpoonup n_0 = n$
- Puisque k antennes suffisent pour couvrir toutes les maisons, k antennes suffisent pour les n_t maisons non encore couvertes
- ▶ Donc l'emplacement qui couvre le plus de maisons non encore couvertes en couvre $\geq n_t/k$ (preuve : par contradiction)

Lemme

L'algorithme présenté peut être implanté en temps $O(n^3)$

Preuve : en TD!

Lemme

Si k est le nombre minimal d'antennes nécessaires, l'algorithme trouve toujours une solution avec \leq k \ln n antennes

- $ightharpoonup n_0 = n$
- Puisque k antennes suffisent pour couvrir toutes les maisons, k antennes suffisent pour les n_t maisons non encore couvertes
- ▶ Donc l'emplacement qui couvre le plus de maisons non encore couvertes en couvre $\geq n_t/k$ (preuve : par contradiction)
- Alors $n_{t+1} \leq n_t n_t/k = (1 \frac{1}{k})n_t$

Lemme

L'algorithme présenté peut être implanté en temps $O(n^3)$

Preuve : en TD!

Lemme

Si k est le nombre minimal d'antennes nécessaires, l'algorithme trouve toujours une solution avec \leq k \ln n antennes

Preuve Notons n_t le nb de maisons non couvertes après l'étape t.

ightharpoonup En résumé : $n_0=n$ et pour tout $t\geq 0$ on a $n_{t+1}\leq (1-\frac{1}{k})n_t$

Lemme

L'algorithme présenté peut être implanté en tem

Preuve: en TD!

Lemme

Si k est le nombre minimal d'antennes nécessaire solution avec $\leq k \ln n$ antennes

Preuve Notons n_t le nb de maisons non couvert

- lacksquare En résumé : $n_0=n$ et pour tout $t\geq 0$ on a $n_{t+1}\leq (1-rac{1}{k})n_t$
- ightharpoonup Or $1-x \leq e^{-x}$ pour tout x, donc $n_{t+1} \leq e^{-\frac{1}{k}} n_t$

Lemme

L'algorithme présenté peut être implanté en temps $O(n^3)$

Preuve : en TD!

Lemme

Si k est le nombre minimal d'antennes nécessaires, l'algorithme trouve toujours une solution avec $\leq k \ln n$ antennes

- lacksquare En résumé : $n_0=n$ et pour tout $t\geq 0$ on a $n_{t+1}\leq (1-rac{1}{k})n_t$
- ▶ Or $1 x \le e^{-x}$ pour tout x, donc $n_{t+1} \le e^{-\frac{1}{k}} n_t$
- ▶ D'où $n_t \le e^{-\frac{1}{k}} n_{t-1} \le e^{-\frac{2}{k}} n_{t-2} \le \cdots \le e^{-\frac{t}{k}} n_0 = e^{-\frac{t}{k}} n_0$

Lemme

L'algorithme présenté peut être implanté en temps $O(n^3)$

Preuve : en TD!

Lemme

Si k est le nombre minimal d'antennes nécessaires, l'algorithme trouve toujours une solution avec $\leq k \ln n$ antennes

- lacksquare En résumé : $n_0=n$ et pour tout $t\geq 0$ on a $n_{t+1}\leq (1-rac{1}{k})n_t$
- ▶ Or $1 x \le e^{-x}$ pour tout x, donc $n_{t+1} \le e^{-\frac{1}{k}} n_t$
- ▶ D'où $n_t \le e^{-\frac{1}{k}} n_{t-1} \le e^{-\frac{2}{k}} n_{t-2} \le \cdots \le e^{-\frac{t}{k}} n_0 = e^{-\frac{t}{k}} n$
- ► Toutes les maisons sont couvertes dès que $e^{-\frac{t}{k}}n < 1$, càd $t > k \ln n$

- 1. Exemple 1 : choix de cours
- 2. Qu'est-ce qu'un algorithme glouton?
- 3. Exemple 2 : le sac-à-dos (fractionnaire)
- 4. Exemple spécial : approximation pour SETCOVER dans le plan
- 5. Dernier exemple : arbre couvrant de poids minimal

Définition

Un arbre couvrant d'un graphe G = (S, A) est un sous-ensemble $B \subset A$ des arêtes tel que T = (S, B) est un arbre (graphe connexe et sans cycle).

Lemme

Un arbre couvrant d'un graphe à n sommets possède n-1 arêtes.

Preuve par récurrence sur n (cas n = 1 trivial) :

- L'arbre possède au moins un sommet de degré 1 (feuille), sinon il a un cycle
- Si on supprime ce sommet et son arête, on a un arbre couvrant de n-1 sommets, donc n-2 arêtes par hypothèse de récurrence.

Lemme

Un arbre couvrant d'un graphe à n sommets possède n-1 arêtes.

Lemme

Un graphe possède (au moins) un arbre couvrant si et seulement s'il est connexe.

- ightharpoonup Si G a un arbre couvrant T=(S,B), il est connexe
- ightharpoonup Si G est connexe : algorithme glouton de construction de B
 - Pour chaque arête $e \in A$ (ordre qcq), ajouter $e \ni B$ si elle ne crée pas de cycle

ssède n – 1 arêtes 5 3

Lemme

Un arbre couvrant d'un graphe à n sommets possède n-1 arêtes.

Lemme

Un graphe possède (au moins) un arbre couvrant si et seulement s'il est connexe.

- ightharpoonup Si G a un arbre couvrant T=(S,B), il est connexe
- ► Si *G* est connexe : algorithme *glouton* de construction de *B*
 - Pour chaque arête $e \in A$ (ordre qcq), ajouter $e \ni B$ si elle ne crée pas de cycle

Lemme

Un arbre couvrant d'un graphe à n sommets possède n-1 arêtes.

Lemme

Un graphe possède (au moins) un arbre couvrant si et seulement s'il est connexe.

- ightharpoonup Si G a un arbre couvrant T=(S,B), il est connexe
- ightharpoonup Si G est connexe : algorithme glouton de construction de B
 - Pour chaque arête $e \in A$ (ordre qcq), ajouter $e \ni B$ si elle ne crée pas de cycle

Lemme

Un arbre couvrant d'un graphe à n sommets possède n-1 arêtes.

Lemme

Un graphe possède (au moins) un arbre couvrant si et seulement s'il est connexe.

- ▶ Si G a un arbre couvrant T = (S, B), il est connexe
- ightharpoonup Si G est connexe : algorithme glouton de construction de B
 - Pour chaque arête $e \in A$ (ordre qcq), ajouter $e \ni B$ si elle ne crée pas de cycle

Lemme

Un arbre couvrant d'un graphe à n sommets possède n-1 arêtes.

Lemme

Un graphe possède (au moins) un arbre couvrant si et seulement s'il est connexe.

- ightharpoonup Si G a un arbre couvrant T=(S,B), il est connexe
- ► Si *G* est connexe : algorithme *glouton* de construction de *B*
 - Pour chaque arête $e \in A$ (ordre qcq), ajouter $e \ni B$ si elle ne crée pas de cycle

Lemme

Un arbre couvrant d'un graphe à n sommets possède n-1 arêtes.

Lemme

Un graphe possède (au moins) un arbre couvrant si et seulement s'il est connexe.

- ▶ Si G a un arbre couvrant T = (S, B), il est connexe
- ightharpoonup Si G est connexe : algorithme glouton de construction de B
 - Pour chaque arête $e \in A$ (ordre qcq), ajouter $e \ni B$ si elle ne crée pas de cycle

Lemme

Un arbre couvrant d'un graphe à n sommets possède n-1 arêtes.

Lemme

Un graphe possède (au moins) un arbre couvrant si et seulement s'il est connexe.

- ightharpoonup Si G a un arbre couvrant T=(S,B), il est connexe
- ► Si *G* est connexe : algorithme *glouton* de construction de *B*
 - Pour chaque arête $e \in A$ (ordre qcq), ajouter $e \ni B$ si elle ne crée pas de cycle

Lemme

Un arbre couvrant d'un graphe à n sommets possède n-1 arêtes.

Lemme

Un graphe possède (au moins) un arbre couvrant si et seulement s'il est connexe.

- ightharpoonup Si G a un arbre couvrant T=(S,B), il est connexe
- ightharpoonup Si G est connexe : algorithme glouton de construction de B
 - Pour chaque arête $e \in A$ (ordre qcq), ajouter $e \ni B$ si elle ne crée pas de cycle

Lemme

Un arbre couvrant d'un graphe à n sommets possède n-1 arêtes.

Lemme

Un graphe possède (au moins) un arbre couvrant si et seulement s'il est connexe.

- ightharpoonup Si G a un arbre couvrant T=(S,B), il est connexe
- ightharpoonup Si G est connexe : algorithme glouton de construction de B
 - Pour chaque arête $e \in A$ (ordre qcq), ajouter $e \ni B$ si elle ne crée pas de cycle

Lemme

Un arbre couvrant d'un graphe à n sommets possède n-1 arêtes.

Lemme

Un graphe possède (au moins) un arbre couvrant si et seulement s'il est connexe.

- ightharpoonup Si G a un arbre couvrant T=(S,B), il est connexe
- ▶ Si G est connexe : algorithme glouton de construction de B
 - Pour chaque arête $e \in A$ (ordre qcq), ajouter $e \ni B$ si elle ne crée pas de cycle

Lemme

Un arbre couvrant d'un graphe à n sommets possède n-1 arêtes.

Lemme

Un graphe possède (au moins) un arbre couvrant si et seulement s'il est connexe.

- ightharpoonup Si G a un arbre couvrant T=(S,B), il est connexe
- ▶ Si G est connexe : algorithme glouton de construction de B
 - Pour chaque arête $e \in A$ (ordre qcq), ajouter $e \ni B$ si elle ne crée pas de cycle

Lemme

Un arbre couvrant d'un graphe à n sommets possède n-1 arêtes.

Lemme

Un graphe possède (au moins) un arbre couvrant si et seulement s'il est connexe.

- ightharpoonup Si G a un arbre couvrant T=(S,B), il est connexe
- ightharpoonup Si G est connexe : algorithme glouton de construction de B
 - Pour chaque arête $e \in A$ (ordre qcq), ajouter $e \ni B$ si elle ne crée pas de cycle

Lemme

Un arbre couvrant d'un graphe à n sommets possède n-1 arêtes.

Lemme

Un graphe possède (au moins) un arbre couvrant si et seulement s'il est connexe.

- ▶ Si G a un arbre couvrant T = (S, B), il est connexe
- ightharpoonup Si G est connexe : algorithme glouton de construction de B
 - Pour chaque arête $e \in A$ (ordre qcq), ajouter $e \ni B$ si elle ne crée pas de cycle

Lemme

Un arbre couvrant d'un graphe à n sommets possède n-1 arêtes.

Lemme

Un graphe possède (au moins) un arbre couvrant si et seulement s'il est connexe.

- ▶ Si G a un arbre couvrant T = (S, B), il est connexe
- ightharpoonup Si G est connexe : algorithme glouton de construction de B
 - Pour chaque arête $e \in A$ (ordre qcq), ajouter $e \ge B$ si elle ne crée pas de cycle

Lemme

Un arbre couvrant d'un graphe à n sommets possède n-1 arêtes.

Lemme

Un graphe possède (au moins) un arbre couvrant si et seulement s'il est connexe.

- ightharpoonup Si G a un arbre couvrant T=(S,B), il est connexe
- ightharpoonup Si G est connexe : algorithme glouton de construction de B
 - Pour chaque arête $e \in A$ (ordre qcq), ajouter $e \ni B$ si elle ne crée pas de cycle

Lemme

Un arbre couvrant d'un graphe à n sommets possède n-1 arêtes.

Lemme

Un graphe possède (au moins) un arbre couvrant si et seulement s'il est connexe.

- ightharpoonup Si G a un arbre couvrant T=(S,B), il est connexe
- ightharpoonup Si G est connexe : algorithme glouton de construction de B
 - Pour chaque arête $e \in A$ (ordre qcq), ajouter $e \ni B$ si elle ne crée pas de cycle

Lemme

Un arbre couvrant d'un graphe à n sommets possède n-1 arêtes.

Lemme

Un graphe possède (au moins) un arbre couvrant si et seulement s'il est connexe.

- ightharpoonup Si G a un arbre couvrant T=(S,B), il est connexe
- ▶ Si G est connexe : algorithme glouton de construction de B
 - Pour chaque arête $e \in A$ (ordre qcq), ajouter $e \ni B$ si elle ne crée pas de cycle

Lemme

Un arbre couvrant d'un graphe à n sommets possède n-1 arêtes.

Lemme

Un graphe possède (au moins) un arbre couvrant si et seulement s'il est connexe.

- ightharpoonup Si G a un arbre couvrant T=(S,B), il est connexe
- ightharpoonup Si G est connexe : algorithme glouton de construction de B
 - Pour chaque arête $e \in A$ (ordre qcq), ajouter $e \ge B$ si elle ne crée pas de cycle
 - \rightsquigarrow (S, B) est sans cycle, et connexe (sinon on pourrait ajouter des arêtes à B)

Problème ACPM

Entrée Graphe pondéré $G = (S, A, \mathbf{p})$, avec $p : A \to \mathbb{R}_+$

Problème ACPM

Entrée Graphe pondéré $G = (S, A, \mathbf{p})$, avec $p : A \to \mathbb{R}_+$

Problème ACPM

Entrée Graphe pondéré $G = (S, A, \mathbf{p})$, avec $p : A \to \mathbb{R}_+$

Problème ACPM

Entrée Graphe pondéré $G = (S, A, \mathbf{p})$, avec $p : A \to \mathbb{R}_+$

Problème ACPM

Entrée Graphe pondéré $G = (S, A, \mathbf{p})$, avec $p : A \to \mathbb{R}_+$

Problème ACPM

Entrée Graphe pondéré $G = (S, A, \mathbf{p})$, avec $p : A \to \mathbb{R}_+$

Problème ACPM

Entrée Graphe pondéré $G = (S, A, \mathbf{p})$, avec $p : A \to \mathbb{R}_+$

Problème ACPM

Entrée Graphe pondéré $G = (S, A, \mathbf{p})$, avec $p : A \to \mathbb{R}_+$

Problème ACPM

Entrée Graphe pondéré $G = (S, A, \mathbf{p})$, avec $p : A \to \mathbb{R}_+$

Problème ACPM

Entrée Graphe pondéré $G = (S, A, \mathbf{p})$, avec $p : A \to \mathbb{R}_+$

Problème ACPM

Entrée Graphe pondéré $G = (S, A, \mathbf{p})$, avec $p : A \to \mathbb{R}_+$

Problème ACPM

Entrée Graphe pondéré $G = (S, A, \mathbf{p})$, avec $p : A \to \mathbb{R}_+$

Problème ACPM

Entrée Graphe pondéré $G = (S, A, \mathbf{p})$, avec $p : A \to \mathbb{R}_+$

Problème ACPM

Entrée Graphe pondéré $G = (S, A, \mathbf{p})$, avec $p : A \to \mathbb{R}_+$

Problème ACPM

Entrée Graphe pondéré $G = (S, A, \mathbf{p})$, avec $p : A \to \mathbb{R}_+$

Problème ACPM

Entrée Graphe pondéré $G = (S, A, \mathbf{p})$, avec $p : A \to \mathbb{R}_+$

Problème ACPM

Entrée Graphe pondéré $G = (S, A, \mathbf{p})$, avec $p : A \to \mathbb{R}_+$

Arbre couvrant de poids 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 11 = 47.

Problème ACPM

Entrée Graphe pondéré $G = (S, A, \mathbf{p})$, avec $p : A \to \mathbb{R}_+$

```
Algorithme: KRUSKAL(S, A, p)
Trier les arêtes par poids croissants B \leftarrow \emptyset // aucune arête pour chaque arête e \in A dans l'ordre:

si (S, B \cup \{e\}) n'a pas de cycle:

Ajouter e \ni B
renvoyer B
```

```
Algorithme: KRUSKAL(S, A, p)
Trier les arêtes par poids croissants B \leftarrow \emptyset // aucune arête pour chaque arête e \in A dans l'ordre:

si(S, B \cup \{e\}) n'a pas de cycle:

Ajouter e \ni B
renvoyer B
```

Théorème

L'algorithme KRUSKAL renvoie un arbre couvrant de poids minimum de G = (S, A, p).

Remarque : on suppose que les poids sont distincts deux-à-deux

```
Algorithme: KRUSKAL(S, A, p)
Trier les arêtes par poids croissants B \leftarrow \emptyset // aucune arête pour chaque arête e \in A dans l'ordre:

si (S, B \cup \{e\}) n'a pas de cycle:

Ajouter e \ni B
renvoyer B
```

Théorème

L'algorithme KRUSKAL renvoie un arbre couvrant de poids minimum de G = (S, A, p).

Remarque : on suppose que les poids sont distincts deux-à-deux

Lemme On ajoutant une arête à un arbre couvrant, on crée un unique cycle.

Preuve Supposons qu'en ajoutant une arête uv, deux cycles $u-v-\cdots-u$ distincts sont créés. Alors il existe deux chemins distincts (et distincts de l'arête uv) entre u et v, càd un cycle qui passe par u et v.

renvoyer B

Algorithme: KRUSKAL(S, A, p)Trier les arêtes par poids croissants $B \leftarrow \emptyset$ // aucune arête pour chaque arête $e \in A$ dans l'ordre: | si $(S, B \cup \{e\})$ n'a pas de cycle: | Ajouter $e \ni B$

Théorème

L'algorithme KRUSKAL renvoie un arbre couvrant de poids minimum de G = (S, A, p).

Remarque : on suppose que les poids sont distincts deux-à-deux

Preuve Soit C un ensemble d'arêtes tq (S, C) soit un arbre couvrant. Soit e_i l'arête la plus légère qui est dans B mais pas dans C.

- lacksquare $(S,C\cup\{e_i\})$ contient un cycle $u_1-u_2-\cdots-u_k-u_1$ (avec $e_i=u_ku_1$)
- lacksquare II existe $e_j=u_tu_{t+1}$ tq $p(e_j)>p(e_i)$: sinon e_i ne serait pas choisie par KRUSKAL
- ▶ Donc $(S, C \cup \{e_i\} \setminus \{e_j\})$ est un arbre couvrant de poids moindre :
 - ► Cycle supprimé en supprimant *e*_j
 - ightharpoonup Connexe car il suffit de remplacer e_i par $u_{t+1} \cdots u_k u_1 \cdots u_t$
 - Poids plus faible car $p(e_i) < p(e_i)$.

Questions d'implantation et de complexité

Comment tester efficacement à chaque étape si ajouter e à B crée un cycle?

Questions d'implantation et de complexité

Comment tester efficacement à chaque étape si ajouter e à B crée un cycle?

- 1. Retenir la composante connexe de chaque sommet
 - Numéro d'un des sommets de la composante, unique pour la composante
- 2. Ajout d'une arête :
 - Seulement si composantes différentes (sinon création de cycle)
 - ▶ Nécessité de faire l'*union* des deux composantes

Questions d'implantation et de complexité

Comment tester efficacement à chaque étape si ajouter e à B crée un cycle?

- 1. Retenir la composante connexe de chaque sommet
 - Numéro d'un des sommets de la composante, unique pour la composante
- 2. Ajout d'une arête :
 - Seulement si composantes différentes (sinon création de cycle)
 - Nécessité de faire l'union des deux composantes

Structure de données de type UNION-FIND

- 1. Données:
 - ▶ Tableau c des composantes : $c_{[u]} = v$ si la composante de u est v
 - $lackbox{Pile}\ P_{c_{[u]}}$ pour chaque composante, contenant tous les sommets de la composante
- 2. Union de deux composantes $c_{[u]}$ et $c_{[v]}$:
 - lacktriangle Vider la pile $P_{c_{[u]}}$ dans $P_{c_{[v]}}$, en mettant à jour $c_{[w]}$ pour chaque $w \in P_{c_{[u]}}$
 - Rôles u et v inversés si $P_{c_{[u]}}$ est plus grande que $P_{c_{[v]}}$

Algorithme de Kruskal (complet)

```
Algorithme: KRUSKAL(S, A, p)
Trier les arêtes par poids croissants
B \leftarrow \emptyset
                                      // aucune arête
pour chaque arête e = uv \in A dans l'ordre :
   \operatorname{si} c_{[u]} \neq c_{[v]}: // e ne crée pas de cycle
       Ajouter e \ge B
```

Algorithme de Kruskal (complet)

```
Algorithme: KRUSKAL(S, A, p)
Trier les arêtes par poids croissants
B \leftarrow \emptyset
                                        // aucune arête
pour chaque sommet v \in S:
   P_{c_{[v]}} \leftarrow \mathsf{Pile}\left\{v\right\} // un seul élément
   t_{c_{\text{f,cl}}} \leftarrow 1
                               // taille de la pile
pour chaque arête e = uv \in A dans l'ordre :
    \operatorname{si} c_{[u]} \neq c_{[v]}: // e ne crée pas de cycle
       Ajouter e à B
        Union(c_{[\mu]}, c_{[\nu]})
```

Algorithme de Kruskal (complet)

```
Algorithme: KRUSKAL(S, A, p)
Trier les arêtes par poids croissants
B \leftarrow \emptyset
                                        // aucune arête
pour chaque sommet v \in S:
   c_{[v]} \leftarrow v
   P_{C_{[v]}} \leftarrow \text{Pile } \{v\} // un seul élément
   t_{c_{[v]}} \leftarrow 1
                              // taille de la pile
pour chaque arête e = uv \in A dans l'ordre :
   \operatorname{si} c_{[\nu]} \neq c_{[\nu]}: // e ne crée pas de cycle
       Ajouter e \ge B
       Union(c_{[\mu]}, c_{[\nu]})
```

```
Algorithme: UNION(x, y)
si t_x > t_y: UNION(y, x)
sinon:
     t_{\mathsf{v}} \leftarrow t_{\mathsf{v}} + t_{\mathsf{x}}
     tant que P_{\times} est non vide :
           w \leftarrow \text{dépiler } P_{x}
           c_{[w]} \leftarrow y
           Empiler w sur P_{v}
```

Complexité de l'algorithme de Kruskal

Théorème

L'algorithme KRUSKAL a une complexité $O(m \log n)$, où n est le nombre de sommets et m le nombre d'arêtes.

Complexité de l'algorithme de Kruskal

Théorème

L'algorithme KRUSKAL a une complexité $O(m \log n)$, où n est le nombre de sommets et m le nombre d'arêtes.

Lemme

Pour tout sommet u, le nombre total de mises à jour de la case $c_{[u]}$ au cours de l'algorithme est $\leq \log n$.

Preuve La mise à jour a lieu dans UNION, avec $t_{c_{[v]}} \ge t_{c_{[u]}}$. Donc après mise à jour, $t_{c_{[u]}}$ a au moins doublé. Comme $t_{c_{[u]}} \le n$, le nombre de mises à jour est $\le \log n$.

Complexité de l'algorithme de Kruskal

Théorème

L'algorithme KRUSKAL a une complexité $O(m \log n)$, où n est le nombre de sommets et m le nombre d'arêtes.

Lemme

Pour tout sommet u, le nombre total de mises à jour de la case $c_{[u]}$ au cours de l'algorithme est $\leq \log n$.

Preuve du théorème

- ► Tri des arêtes : $O(m \log m)$, or $m \le n^2$ donc $\log m \le 2 \log n$ $\longrightarrow O(m \log n)$
- ightharpoonup Parcours de toutes les arêtes une fois $\leadsto O(m)$
- ▶ Pour chaque sommet, $\leq \log n$ mises à jour de $c_{[u]}$ $\rightsquigarrow O(n \log n)$

Conclusion

Bilan

Pourquoi des algorithmes gloutons?

- ► Algorithmes souvent simples et rapides...
- ▶ ... parfois optimaux
- ... parfois avec de bonnes propriétés
- ▶ ... parfois qui marchent en pratique
- ... parfois parfaitement inutiles!

Bilan

Pourquoi des algorithmes gloutons?

- ► Algorithmes souvent simples et rapides...
- ... parfois optimaux
- ... parfois avec de bonnes propriétés
- ... parfois qui marchent en pratique
- ... parfois parfaitement inutiles!

Comment les utiliser?

- 1. Chercher un choix glouton
- 2. Démontrer que c'est un bon choix (en **théorie** ou pratique)
- 3. Étudier la complexité obtenue

Aussi vu dans ce cours

- ► Algorithme d'approximation (SETCOVER) : ne résout pas le problème exactement, mais fournit une solution approchée
- ► Complexité amortie (UNION) : technique d'analyse de complexité qui remplace le pire cas par la somme (ou moyenne) des coûts de plusieurs exécutions Étudiés dans le cours d'algorithmique de L3

Aussi vu dans ce cours

- ► Algorithme d'approximation (SETCOVER) : ne résout pas le problème exactement, mais fournit une solution approchée
- ► Complexité amortie (UNION) : technique d'analyse de complexité qui remplace le pire cas par la somme (ou moyenne) des coûts de plusieurs exécutions Étudiés dans le cours d'algorithmique de L3
- Structure de donnée UNION-FIND pour stocker des ensembles disjoints :
 - ► Trois opérations : MAKESET, UNION et FIND
 - Plusieurs implantations possibles :
 - ► Tableau + Piles : complexité amortie $O(n \log n)$
 - ▶ Meilleure implantation possible : $O(n\alpha(n))$

inverse de la fonction d'Ackermann : $\alpha(n) \leq 4$ pour $n \leq 2^{2^{2^{55336}}} - 3$

Voir https://fr.wikipedia.org/wiki/Union-find