# Übersicht – Übung 12



Wiederholung: Zusammenfassung Routing / Struktur des Internets

IPv4-Adressen

- → Netzklassen
- $\rightarrow$  CIDR

MAC-Adressen

Zuordnung von MAC- und IPv4-Adressen (ARP)



[1]: Fred Halsall: Computer Networking and the Internet

Ben Lorenz <lorenzb@tu-freiberg.de>
Jonas Treumer <treumer@tu-freiberg.de>

Die Ressourcenuniversität. Seit 1765.

- Auf welcher OSI-Schicht findet die Adressierung mit IP-Adressen statt? Wie sind IPv4-Adressen aufgebaut?
  - Internet Protocol Version 4
  - Vermittlungs- bzw. Netzwerkschicht (3)
  - 32-Bit-Adressen → theoretisch 4.294.967.296 Geräte adressierbar
  - Notation: Hexadezimal (C0 A8 B2 01) oder dezimal mit Punkten (192.168.178.1)

- Erläutern Sie das Konzept der Netzklassen, das der Vergabe von IPv4-Adressen in den 1980er-Jahren zugrunde lag.
  - Hierarchischer Aufbau der IPv4-Adressen für effizientes Routing unabdingbar
  - Zerlegung in einen Netzwerk- und einen Hostteil



- Erläutern Sie das Konzept der Netzklassen, das der Vergabe von IPv4-Adressen in den 1980er-Jahren zugrunde lag.
  - Hierarchischer Aufbau der IPv4-Adressen für effizientes Routing unabdingbar
  - Zerlegung in einen Netzwerk- und einen Hostteil



- Erläutern Sie das Konzept der Netzklassen, das der Vergabe von IPv4-Adressen in den 1980er-Jahren zugrunde lag.
  - Hierarchischer Aufbau der IPv4-Adressen für effizientes Routing unabdingbar
  - Zerlegung in einen Netzwerk- und einen Hostteil
  - Alle Bits im Hostteil auf 0: Bezeichner des gesamten Netzes
  - Alle Bits im Hostteil auf 1: Broadcastadresse für das gesamte Netz
  - RFC 791 (1981): Einführung der Netzklassen
  - Zerlegung bzw. Länge von Netzwerk- und Hostteil abhängig von Präfixen → insgesamt fünf Klassen (A bis E)
  - A bis C zur freien Vergabe, D für Multicasting, E reserviert

#### **IPv4-Adressen**

- Beispiel (Klasse A):
  - Präfix: 0 ...
  - Netzlänge: 8 Bit (7 Bit ohne Präfix)
  - Hostlänge: 32 Bit 8 Bit = 24 Bit

#### ONNNNNN HHHHHHHH HHHHHHHHHHHHHHHHHH

- Niedrigste Adresse: 0.0.0.0
- Höchste Adresse: 127.255.255.255
- Anzahl der Netze: 2<sup>Netzlänge ohne Präfix</sup> = 2<sup>7</sup> = 128
- Anzahl der Hosts pro Netz:  $2^{Hostlänge} 2 = 2^{24} 2 = 16.777.214$

| Klasse | Präfix | Adressen                    | Netzlänge                         | Hostlänge | Netze     | Hosts / Netz |
|--------|--------|-----------------------------|-----------------------------------|-----------|-----------|--------------|
| А      | 0      | 0.0.0.0 – 127.255.255.255   | 8 / 7 Bit                         | 24 Bit    | 128       | 16.777.214   |
| В      | 10     | 128.0.0.0 – 191.255.255.255 | 16 / 14 Bit                       | 16 Bit    | 16.384    | 65.534       |
| С      | 110    | 192.0.0.0 – 223.255.255.255 | 24 / 21 Bit                       | 8 Bit     | 2.097.152 | 254          |
| D      | 1110   | 224.0.0.0 – 239.255.255.255 | Für IPv4-Multicasting in Gebrauch |           |           |              |
| E      | 1111   | 240.0.0.0 – 255.255.255.255 | Reserviert für spätere Vergabe    |           |           |              |

#### **IPv4-Adressen**

- Welche Vor- und Nachteile weist der Umgang mit Netzklassen auf?
   Warum kommt das Verfahren nicht mehr zum Einsatz?
  - Effizientes Routing, immanente Netz-Host-Trennung
  - Zu unflexibel!
  - Beispiel: Campus-Netzwerk:

Ursprünglich: Class-B-Netzwerk 139.20.0.0

65.534 Hosts zu viel für uns

Aber: Class-C-Netzwerk (254 Hosts) viel zu wenig

- → verlorene Adressen!
- Anderes Beispiel: Class-A-Netzwerke

Wer verwaltet über 16 Mio. Hosts?

- Erläutern Sie das CIDR-Verfahren, das Anfang der 1990er-Jahre als Ersatz für die statischen Netzklassen eingeführt wurde.
  - Classless Inter-Domain Routing
  - RFC 1518 (1993)
  - Auflösung der festen Klassen, individuelle Angabe der Länge des Netzwerkteils
  - Notation von IP-Adressen in der Form 139.20.42.5/16
    - → 16 Bit Netzwerkteil, (32 Bit 16 Bit) = 16 Bit Hostteil
  - Feinere Vergabe von Netzen möglich, weniger Adressverlust
  - Routing komplizierter (Länge des Netzwerkteils ist nicht mehr immanent und muss mitgeführt werden)

#### **IPv4-Adressen**

- Was ist eine (Sub)netzmaske, wie wird sie notiert?
  - CIDR-Suffix in dezimaler IP-Notation, bei der genau diejenigen Bits gesetzt sind, die zum Netzwerkteil gehören
  - Beispiel: /15

11111111

11111110

0000000

0000000

- Subnetzmaske: 255.254.0.0
- Manchmal auch: VLSM (Variable Length of Subnet Mask)

- Schreiben Sie ein C-Programm, das aus einer gegebenen (klassenlosen) IP-Adresse und der zugehörigen Subnetzmaske die folgenden Informationen extrahiert:
  - Netzwerkteil
  - Hostteil
  - Broadcast-Adresse für das Netz
  - Tipp: Bitweise Operationen und boolesche Funktionen einsetzen (AND, NOT, ...)
  - Netzwerkteil: IP-Adresse & Subnetzmaske
  - Hostteil: IP-Adresse & (~Subnetzmaske)
- Broadcast-Adresse: IP-Adresse | (~Subnetzmaske)

#### **IPv4-Adressen**

 Nennen Sie IPv4-Adressen und -Adressbereiche mit besonderer Semantik.

- 0.0.0.0/8: Bezug auf das lokale Netz ("this")

10.0.0.0/8: Lokales Netzwerk (Class-A-Größe)

127.0.0.0/8: Loopback (localhost)

- 169.254.0.0/16: Zeroconf

172.16.0.0/12: Lokales Netzwerk (> Class-B, < Class A)</li>

- 192.168.0.0/16: Lokales Netzwerk (Class-B-Größe)

- 224.0.0.0/4: Class-D-Multicast

- 240.0.0/4: Class-E-Reservierung

- 255.255.255/32: Broadcast im aktuellen Netz

#### **IPv4-Adressen**

- Angenommen, Host A mit der IPv4-Adresse 183.42.125.202/21 möchte ein Paket an Host B mit der IPv4-Adresse 183.42.120.63/21 senden. Welchen Entscheidungsprozess durchläuft A? Welches Problem tritt auf?
  - Netzwerkteil bestimmen:

```
183.42.125.202 & 255.255.248.0 = 183.42.120.0
```

183.42.120.63 & 255.255.248.0 = 183.42.120.0

- → gleicher Netzwerkteil!
- Ethernet-Frame wird nicht an den Gateway gesendet, sondern kann direkt zugestellt werden.
- Problem: MAC-Adresse des Gateways bekannt, aber nicht diejenige von Host B.

- Auf welcher OSI-Schicht findet die Adressierung mit MAC-Adressen statt? Wie sind sie aufgebaut? Wie läuft die Vergabe von MAC-Adressen ab?
  - Media Access Control
  - Sicherungs- bzw. Data-Link-Schicht (2)
  - Eindeutige OUI-Vergabe (obere drei Bytes) an Unternehmen / Hardwarehersteller etc.
  - Pro OUI-Serie: Eindeutige Vergabe der NIC-Identifier (untere drei Bytes)
  - Oder: Manuelles Management im lokalen Netzwerk (b1 im vordersten Byte setzen)



- Ermitteln Sie die Hardwarehersteller zu den folgenden MAC-Adressen:
  - C8:0E:14:0B:9A:66
  - 4C:8D:79:22:47:A1
  - B8:BE:BF:19:88:B3
  - 01:00:5E:75:36:A9
- In welcher Hardwarekomponente sind MAC-Adressen hinterlegt? Stellen Sie den Unterschied zu IP-Adressen heraus. Welche Auswirkungen ergeben sich?
  - MAC-Adressen direkt in den NICs (Network Interface Cards), IP-Adressen im RAM (vom Betriebssystem verwaltet)
  - Filterung der per Ethernet eintreffenden Frames durch die NICs

- Was versteht man unter dem "Promiscuous Mode"?
  - MAC-Adressen-Filterung in der NIC deaktivieren und alle Frames an das Betriebssystem weiterleiten
  - Ideal für Packet Sniffing

# **Zuordnung von MAC- und IPv4-Adressen**

- Erläutern Sie den Header und die Funktionsweise des Address Resolution Protocol (ARP).
  - RFC 826 (1982)
  - MAC-Adresse zu einer gegebenen IPv4-Adresse erfragen
  - Header:



https://reaper81.files.wordpress.com/2010/07/arp-header3.png

# **Zuordnung von MAC- und IPv4-Adressen**

• Lassen Sie sich den ARP-Cache Ihres Computers mithilfe der Shell-Befehle **arp** bzw. **arp -a** ausgeben. Was spricht für kurz-, was für langlebige ARP-Caches?