BOOTCAMP - AMMI 2021

Densely Connected Convolutional Networks: DenseNet

Presented by:

Emmanuel NGENZIRABONA

August 20, 2021

Evolution of Depth in CNNs

ImageNet Classification top-5 error (%)

The Degradation

- Normalized initialization and intermediate normalization layers
- The main culprit : Vanishing/exploding gradients
- Not caused by overfitting

RESNET

STOCHASTIC DEPTH

Deep network during testing, but shallower network during training.

$$H_{l} = ReLU(b_{l} f_{l}(H_{l-1}) + id(H_{l-1}))$$
 $b_{l} \in \{0,1\}$

They all share a key characteristic: They create short paths from early layers to later layers

DENSE CONNECTIVITY

 $\frac{l(l+1)}{2}$ direct connections

Channel-wise concatenation

DENSE AND SLIM

The growth rate regulates how much new information each layer contributes to the global state.

k: Growth Rate

ResNets:

$$x_l = H_l(x_{l-1}) + x_{l-1}$$

DenseNets:

$$x_l = H_l([x_0, x_1, ..., x_{l-1}])$$

Where $[x_0, x_1, ..., x_{l-1}]$ refers to the concatenation of the feature-maps prin layers 0.....l-1.

Forward Propagation

Composite Layer in DENSENET

Composite Layer in DenseNet

WITH BOTTLENECK LAYER

Higher parameter and computational efficiency

DENSENET

Compression in transition layer

Within each block

Advantages of Dense Connectivity

Advge1. Strong Gradient Flow

- Direct access: Deep Supervision with single classifier
- Reduces overfitting on tasks with smaller training set sizes

Comparison between Architectures

Method	Depth	Params	C10	C10+	C100	C100+	SVHN
Network in Network [22]	-	-	10.41	8.81	35.68	-	2.35
All-CNN [31]	-	-	9.08	7.25	-	33.71	-
Deeply Supervised Net [20]	-	-	9.69	7.97	-	34.57	1.92
Highway Network [33]	-	-	-	7.72	-	32.39	-
FractalNet [17]	21	38.6M	10.18	5.22	35.34	23.30	2.01
with Dropout/Drop-path	21	38.6M	7.33	4.60	28.20	23.73	1.87
ResNet [11]	110	1.7M	-	6.61	-	-	-
ResNet (reported by [13])	110	1.7M	13.63	6.41	44.74	27.22	2.01
ResNet with Stochastic Depth [13]	110	1.7M	11.66	5.23	37.80	24.58	1.75
	1202	10.2M	-	4.91	-	-	-
Wide ResNet [41]	16	11.0M	-	4.81	-	22.07	-
	28	36.5M	-	4.17	-	20.50	-
with Dropout	16	2.7M	-	-	-	-	1.64
ResNet (pre-activation) [12]	164	1.7M	11.26*	5.46	35.58*	24.33	-
	1001	10.2M	10.56*	4.62	33.47*	22.71	-
DenseNet $(k = 12)$	40	1.0M	7.00	5.24	27.55	24.42	1.79
DenseNet $(k = 12)$	100	7.0M	5.77	4.10	23.79	20.20	1.67
DenseNet $(k=24)$	100	27.2M	5.83	3.74	23.42	19.25	1.59
DenseNet-BC $(k = 12)$	100	0.8M	5.92	4.51	24.15	22.27	1.76
DenseNet-BC $(k=24)$	250	15.3M	5.19	3.62	19.64	17.60	1.74
DenseNet-BC $(k=40)$	190	25.6M	-	3.46	-	17.18	-

Advge2. Parameter & Computational efficiency

DenseNet connectivity:

#parameters:

Standard Connectivity:

Classifier uses most complex (high level) features

Remember feature visualization

Feature visualization of convolutional net trained on ImageNet

"Collective Knowledge"

- → Feature reuse
- → Information flow from the first to the last layers of the block
- → Compression in transition layer
- → Concentrate on high level feature for final classification

RESULTS

Results on CIFAR-10

- ResNet (110 Layers, 1.7 M)

 DenseNet (100 Layers, 0.8 M)
 - ResNet (1001 Layers, 10.2 M)
 DenseNet (250 Layers, 15.3 M)

Layers	Output Size	DenseNet-121($k = 32$)	DenseNet-169 $(k = 32)$	DenseNet-201 $(k = 32)$	DenseNet-161(k = 48)				
Convolution	112 × 112	7×7 conv, stride 2							
Pooling	56 × 56	3×3 max pool, stride 2							
Dense Block (1)	56 × 56	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 6$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 6$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 6$				
Transition Layer	56 × 56	$1 \times 1 \text{ conv}$ $2 \times 2 \text{ average pool, stride } 2$							
(1)	28 × 28								
Dense Block (2)	28 × 28	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 12$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 12$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 12$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 12$				
Transition Layer	28 × 28	$1 \times 1 \text{ conv}$							
(2)	14 × 14	2 × 2 average pool, stride 2							
Dense Block (3)	14 × 14	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 24$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 32$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 48$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 36$				
Transition Layer	14 × 14	$1 \times 1 \text{ conv}$							
(3)	7 × 7	2 × 2 average pool, stride 2							
Dense Block (4)	7 × 7	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 16$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 32$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 32$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 24$				
Classification	1 × 1	7 × 7 global average pool							
Layer		1000D fully-connected, softmax							

RESULTS ON IMAGENET

References

- (1)Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens van der Maaten. Densely connected convolutional networks.

 Conference on Computer Vision and Pattern Recognition, 2017
- (2) Kaiming He, et al. "Deep residual learning for image recognition" CVPR
- (3) Chen-Yu Lee, et al. "Deeply-supervised nets" AISTATS 2015
- (4)CS231n: Convolutional Neural Networks for Visual Recognition
- (5) Geoff Pleiss, et al. "Memory-Efficient Implementation of DenseNets", arXiv preprint arXiv:1707.06990 (2017)

THANK YOU!!!