Premier exercice (préparé) :

Soit E un \mathbb{C} espace vectoriel de dimension finie (de dimension n). Soit $u \in \mathcal{L}(E)$

Montrer que u est diagonaisable si et seulement si tout sous-espace vectoriel de E admet un supplémentaire stable par u.

Deuxième exercice (non préparé):

$$f(x) = \int_0^1 \frac{e^{-x^2(1+t^2)}dt}{1+t^2}$$
 et $g(x) = \int_0^x e^{-t^2}dt$

- 1) Montrer que f et g sont C^1 sur \mathbb{R}
- 2) Calculer $f + g^2$
- 3) Trouver la valeur de $\int_0^{+\infty} e^{-t^2} dt$

Correction:

Premier exercice:

Implication: Soit F un sous-espace vectoriel de E, de base $(x_1, ..., x_p)$. u est diagonalisable si et seulement si il existe une base de vecteurs propores $(y_1, ..., y_n)$

On complète la base $(x_1, ..., x_p)$ (en utilisant le théorème de la base incomplète avec la famille génératrice $(y_1, ..., y_n)$) en une nouvelle base de E.

Cette base est $(x_1, ..., x_p, y_1, ..., y_{n-p})$. (quitte à réordonner les vecteurs, on les classe dans cet ordre)

Et on a $G = Vect(y_1, ..., y_{n-p})$ qui est supplémentaire de F stable par u (car y_i vecteurs propres)

Réciproque (plus dur) :

Méthode de l'examinateur (par l'absurde) : On suppose u non diagonalisable. On a alors $E_{\lambda i}$ en somme directe mais $E_{\lambda 1} \bigoplus ... \bigoplus E_{\lambda k} \neq E$ $((\lambda_i)_{1 \leq i \leq k}$ sont les valeurs propres)

Considérer alors la restriction de u à G le supplémentaire de $F = E_{\lambda 1} \bigoplus ... \bigoplus E_{\lambda k}$, son polynôme caractéristique divise celui de u sur E. Aboutir à une contradiction, le fait que le seul supplémentaire stable par u possible soit le vecteur nul.

Autre méthode (refusée par l'examinateur):

Considérer F de dimension n-1, (hyperplan de E), et utiliser l'hypothèse pour montrer que G est supplémentaire tel que $\forall x \in G, u(x) = \lambda_1 x$

On a trouvé un vecteur propre. On réitère en prenant un deuxième hyperplan contenant $Vect(E_{\lambda 1})$. Il a un supplémentaire tel que $\forall x \in G, u(x) = \lambda_2 x$

En répétant l'opération n fois, on obtient bien une famille libre de n vecteurs propres.

Deuxième exercice:

1) Montrer que f est continue est classique, on pose $h(x,t) = \frac{e^{-x^2(1+t^2)}}{1+t^2}$

h(.,t) est continue sur \mathbb{R} ; h(x,.) est continue sur [0,1] et $|h(x,t)| \leq \frac{1}{1+t^2}$ (fonction intégrable indépendante de x).

Puis $\frac{\partial h(x,t)}{\partial x} = -2x.e^{-x^2(1+t^2)}$ C'est pareil pour la continuité mais pour la majoration c'est plus subtil, il faut travailler sur $[a,b] \subset \mathbb{R}$ et faire attention à bien majorer.

Pour dire que g est C^1 , je l'ai comparé à $\int_0^x e^{-t} dt$, dit qu'elle convergeait et dit que t $\mapsto e^{-t^2}$ est continue.

2) $f'(x) = \int_0^1 -2x \cdot e^{-x^2(1+t^2)} dt$ (Première astuce, penser à travailler avec f' puisqur l'on vient de montrer son existence).

Deuxième astuce, penser à se ramener aux mêmes bornes d'intégration que g. Pour cela, il faut poser le changement de variable \mathcal{C}^1 bijectif u = xt.

$$\begin{split} &\int_0^1 -2x.e^{-x^2(1+t^2)}dt = \int_0^x -2x.e^{-x^2(1+(\frac{u}{x})^2)}\frac{du}{x} \\ &= \int_0^x -2.e^{-(x^2+u^2)}du \\ &= -2.e^{-x^2}.\int_0^x e^{-u^2}du \\ &= -2.e^{-x^2}.g(x) \end{split}$$

Troisième et énorme astuce,
$$g'(x) = e^{-x^2}$$

 $\implies f'(x) + 2g'(x)g(x) = 0$
 $\implies f(x) + g^2(x) = K$

En évaluant en zéro, on obtient $f(x) + g^2(x) = \frac{\pi}{4}$

3) Montrer que $\lim_{x\to +\infty}f(x)=0$ par le théorème de convergence dominée, on a alors $\int_0^{+\infty}e^{-t^2}dt=\frac{\sqrt{\pi}}{2}$