2. test iz Uvoda v geometrijsko topologijo

2. 6. 2017

Veliko uspeha!

1. naloga (5 točk)

Za vsako od spodnjih trditev v pripadajoči kvadratek čitljivo označi, če je trditev pravilna \bigcap oziroma napačna \bigcap .

Če ne veš, pusti kvadratek prazen, ker se nepravilni odgovor šteje negativno!

Prostor (0,1] je retrakt prostora $(0,\infty)$.

Prostor $([-1,1] \times \{0\}) \cup (\{0\} \times [-1,1])$ ima lastnost negibne točke.

Prostor $\mathbb{R}^2 - \{(0,0)\}$ je absolutni ekstenzor za razred normalnih prostorov.

Krožnica $\mathbb{S}^1 \times \{0\}$ je retrakt krogle \mathbb{B}^3 .

Obstaja zvezna injektivna preslikava $f \colon \mathbb{B}^3 \to \mathbb{R}^2$.

Vsaka zvezna preslikava $f \colon \mathbb{B}^3 \to \mathbb{B}^2$ ima negibno točko.

Če je $S \subset \mathbb{R}^3$ homeomorfna krožnici \mathbb{S}^1 , ima $\mathbb{R}^3 \setminus S$ natanko dve komponenti za povezanost.

Če sta M in N mnogoterosti brez roba, je $M \times N$ mnogoterost brez roba.

Če sta $M, N \subset \mathbb{R}^n$ mnogoterosti iste dimenzije in je $M \cap N \neq \emptyset$, je $M \cap N$ mnogoterost.

Zaprta podmnožica mnogoterosti je mnogoterost.

2. naloga (5 točk)

Naj bo $X = (\mathbb{R} \times \{0\}) \cup (\{-1, 0, 1,\} \times [0, 1])$ in $Y_a = X \cup ((-\infty, a) \times \{1\})$.

- 1. Za katere $a \in \mathbb{R}$ je X retrakt prostora X_a .
- 2. Za katere $a \in \mathbb{R}$ je X_a retrakt ravnine \mathbb{R}^2 .

3. naloga (5 točk)

Za polinom p definiramo

$$X_p = \{(x, y) \in \mathbb{R}^2 \mid y > p(x)\} \cup (\mathbb{R} \times (-\infty, 0]),$$

$$Y_p = \{(x, y) \in \mathbb{R}^2 \mid y \ge p(x)\} \cup (\mathbb{R} \times (-\infty, 0]).$$

- 1. Naj bo $p_{-1}(x) = x^2 1$, $p_0(x) = x^2$ in $p_1(x) = x^2 + 1$. Ugotovi kateri od prostorov X_{p_i} , Y_{p_i} , za $i \in \{-1, 0, 1\}$, so mnogoterosti.
- 2. Poišči potreben in zadosten pogoj na p, da je X_p mnogoterost.
- 3. Poišči potreben in zadosten pogoj na p, da je Y_p mnogoterost.