modelS_2regularization

June 12, 2025

```
[9]: from tensorflow import keras
from keras import layers
from keras.preprocessing import image_dataset_from_directory
import matplotlib.pyplot as plt
from keras.utils import to_categorical
import tensorflow as tf
import numpy as np
from keras.preprocessing import image
from sklearn.metrics import classification_report
import seaborn as sns
import pandas as pd
from sklearn.metrics import confusion_matrix
import os, shutil
```

1 Funções

```
[10]: def get_true_pred(model, dataset):
    y_true = []
    y_pred = []
    for images, labels in dataset.unbatch().batch(1):
        y_true.append(np.argmax(labels.numpy()))
        pred = model.predict(images, verbose=0)
        y_pred.append(np.argmax(pred))
    return np.array(y_true), np.array(y_pred)
```

1.1 Carregamento do dataset

Carrega o dataset distribuido pelos diferentes conjuntos de dados.

```
[11]: train_dir = 'Dataset/archive/seg_train'
    validation_dir = 'Dataset/archive/seg_val'
    test_dir = 'Dataset/archive/seg_test'

train_buildings_dir = 'Dataset/archive/seg_train/buildings/'
    train_forest_dir = 'Dataset/archive/seg_train/forest'
    train_glacier_dir = 'Dataset/archive/seg_train/glacier'
    train_mountain_dir = 'Dataset/archive/seg_train/mountain'
```

```
train_sea_dir = 'Dataset/archive/seg_train/sea'
train_street_dir = 'Dataset/archive/seg_train/street'
val_buildings_dir = 'Dataset/archive/seg_val/buildings'
val_forest_dir = 'Dataset/archive/seg_val/forest'
val_glacier_dir = 'Dataset/archive/seg_val/glacier'
val mountain dir = 'Dataset/archive/seg val/mountain'
val_sea_dir = 'Dataset/archive/seg_val/sea'
val_street_dir = 'Dataset/archive/seg_val/street'
test buildings dir = 'Dataset/archive/seg test/buildings'
test_forest_dir = 'Dataset/archive/seg_test/forest'
test_glacier_dir = 'Dataset/archive/seg_test/glacier'
test_mountain_dir = 'Dataset/archive/seg_test/mountain'
test_sea_dir = 'Dataset/archive/seg_test/sea'
test_street_dir = 'Dataset/archive/seg_test/street'
print('total training buildings images:', len(os.listdir(train_buildings_dir)))
print('total training forest images:', len(os.listdir(train_forest_dir)))
print('total training glacier images:', len(os.listdir(train_glacier_dir)))
print('total training mountain images:', len(os.listdir(train_mountain_dir)))
print('total training sea images:', len(os.listdir(train_sea_dir)))
print('total training street images:', len(os.listdir(train_street_dir)))
print('total validation buildings images:', len(os.listdir(val_buildings_dir)))
print('total validation forest images:', len(os.listdir(val forest dir)))
print('total validation glacier images:', len(os.listdir(val_glacier_dir)))
print('total validation mountain images:', len(os.listdir(val_mountain_dir)))
print('total validation sea images:', len(os.listdir(val_sea_dir)))
print('total validation street images:', len(os.listdir(val_street_dir)))
print('total test buildings images:', len(os.listdir(test_buildings_dir)))
print('total test forest images:', len(os.listdir(test_forest_dir)))
print('total test glacier images:', len(os.listdir(test_glacier_dir)))
print('total test mountain images:', len(os.listdir(test_mountain_dir)))
print('total test sea images:', len(os.listdir(test_sea_dir)))
print('total test street images:', len(os.listdir(test_street_dir)))
total training buildings images: 1691
total training forest images: 1771
total training glacier images: 1904
total training mountain images: 2012
total training sea images: 1774
total training street images: 1882
total validation buildings images: 500
total validation forest images: 500
total validation glacier images: 500
total validation mountain images: 500
```

```
total validation sea images: 500 total validation street images: 500 total test buildings images: 437 total test forest images: 474 total test glacier images: 553 total test mountain images: 525 total test sea images: 510 total test street images: 501
```

1.2 Distribuição de imagens por classe e por conjunto de dados

As imagens estão distribuidas por 3 conjuntos de dados: train, validation e test. Cada um desses conjuntos está distribuido por 6 classes: buildings, forest, glacier, mountain, sea e street.

1.2.1 Número total de imagens por classe:

Classe	Treino	Validação	Teste	Total
Buildings	1691	500	437	2628
Forest	1771	500	474	2745
Glacier	1904	500	553	2957
Mountain	2012	500	525	3037
Sea	1774	500	510	2784
Street	1882	500	501	2883
Total	11034	3000	3000	17034

1.2.2 Número total de imagens por conjunto de dados:

Conjunto de dados	Total
Treino	11034
Validação	3000
Teste	3000
Total geral	17034

2 Processamento dos dados

Carrega, redimensiona e organiza imagens em batches com rótulos one-hot, preparando os dados de treino, validação e teste.

```
[12]: IMG_SIZE = 150
BATCH_SIZE = 32

train_dataset = image_dataset_from_directory(
    train_dir,
    label_mode='categorical',
    image_size=(IMG_SIZE, IMG_SIZE),
    batch_size=BATCH_SIZE)
```

```
validation_dataset = image_dataset_from_directory(
   validation_dir,
   label_mode='categorical',
   image_size=(IMG_SIZE, IMG_SIZE),
   batch_size=BATCH_SIZE)

test_dataset = image_dataset_from_directory(
   test_dir,
   label_mode='categorical',
   image_size=(IMG_SIZE, IMG_SIZE),
   batch_size=BATCH_SIZE)

print(test_dataset)
class_names = train_dataset.class_names
print("Classes:", class_names)
```

```
Found 11034 files belonging to 6 classes.

Found 3000 files belonging to 6 classes.

Found 3000 files belonging to 6 classes.

<_PrefetchDataset element_spec=(TensorSpec(shape=(None, 150, 150, 3), dtype=tf.float32, name=None), TensorSpec(shape=(None, 6), dtype=tf.float32, name=None))>

Classes: ['buildings', 'forest', 'glacier', 'mountain', 'sea', 'street']
```

3 Modelo (regularization: Dropout)

3.1 Criação da CNN

Criação da CNN que irá receber imagens de 150x150 píxeis, aplica normalização e passa por quatro camadas convolucionais com max pooling para extrair características, integrando camadas Dropout para reduzir overfitting (desligando aleatoriamente 50% dos neurónios durante o treino, como forma de regularização). A rede termina com uma camada densa com 512 unidades e uma camada de saída softmax para classificação multiclasse.

```
[13]: inputs = keras.Input(shape=(IMG_SIZE, IMG_SIZE, 3))
    x = layers.Rescaling(1./255)(inputs)
    x = layers.Conv2D(32, 3, activation="relu")(x)
    x = layers.MaxPooling2D(2)(x)
    x = layers.Conv2D(64, 3, activation="relu")(x)
    x = layers.MaxPooling2D(2)(x)
    x = layers.Conv2D(128, 3, activation="relu")(x)
    x = layers.MaxPooling2D(2)(x)
    x = layers.Conv2D(128, 3, activation="relu")(x)
    x = layers.MaxPooling2D(2)(x)
    x = layers.Flatten()(x)
    x = layers.Flatten()(x)
    x = layers.Dropout(0.5)(x)
    x = layers.Dense(512, activation="relu")(x)
```

```
outputs = layers.Dense(len(class_names), activation="softmax")(x)
model_dropout = keras.Model(inputs, outputs)
print(model_dropout.summary())
```

Model: "functional_1"

Layer (type)	Output Shape	Param #
<pre>input_layer_1 (InputLayer)</pre>	(None, 150, 150, 3)	0
rescaling_1 (Rescaling)	(None, 150, 150, 3)	0
conv2d_4 (Conv2D)	(None, 148, 148, 32)	896
<pre>max_pooling2d_4 (MaxPooling2D)</pre>	(None, 74, 74, 32)	0
conv2d_5 (Conv2D)	(None, 72, 72, 64)	18,496
<pre>max_pooling2d_5 (MaxPooling2D)</pre>	(None, 36, 36, 64)	0
conv2d_6 (Conv2D)	(None, 34, 34, 128)	73,856
<pre>max_pooling2d_6 (MaxPooling2D)</pre>	(None, 17, 17, 128)	0
conv2d_7 (Conv2D)	(None, 15, 15, 128)	147,584
<pre>max_pooling2d_7 (MaxPooling2D)</pre>	(None, 7, 7, 128)	0
flatten_1 (Flatten)	(None, 6272)	0
dropout_1 (Dropout)	(None, 6272)	0
dense_2 (Dense)	(None, 512)	3,211,776
dense_3 (Dense)	(None, 6)	3,078

Total params: 3,455,686 (13.18 MB)

Trainable params: 3,455,686 (13.18 MB)

Non-trainable params: 0 (0.00 B)

None

3.2 Compilação da CNN

Compilação da CNN utilizando a loss categorical crossentropy e o optimizer RMSprop.

```
[14]: model_dropout.compile(optimizer=tf.keras.optimizers.

□RMSprop(learning_rate=1e-4), loss='categorical_crossentropy', □
□metrics=['accuracy'])
```

3.3 Definição do callback

Definição de um callback que guarda automaticamente o modelo com a menor perda (loss) de validação durante o treino.

```
[15]: checkpoint_filepath = 'modelS_CatCross_RMS_dropout.keras'
model_checkpoint_callback = keras.callbacks.ModelCheckpoint(
    filepath=checkpoint_filepath,
    monitor='val_loss',
    save_best_only=True)
```

3.4 Treino da CNN

Treino da CNN durante 50 épocas utilizando o dataset de validação e o callback para guardar o melhor modelo.

```
[16]: history_dropout = model_dropout.fit(
      train_dataset,
      epochs=50,
      validation data=validation dataset,
      callbacks=[model checkpoint callback])
     Epoch 1/50
     345/345
                         21s 45ms/step -
     accuracy: 0.4426 - loss: 1.3753 - val accuracy: 0.5703 - val loss: 1.1022
     Epoch 2/50
     345/345
                         12s 36ms/step -
     accuracy: 0.6253 - loss: 0.9863 - val_accuracy: 0.6890 - val_loss: 0.8312
     Epoch 3/50
     345/345
                         15s 44ms/step -
     accuracy: 0.6762 - loss: 0.8629 - val_accuracy: 0.7187 - val_loss: 0.7614
     Epoch 4/50
     345/345
                         12s 36ms/step -
     accuracy: 0.7157 - loss: 0.7780 - val_accuracy: 0.7403 - val_loss: 0.7058
     Epoch 5/50
     345/345
                         15s 44ms/step -
     accuracy: 0.7359 - loss: 0.7181 - val_accuracy: 0.7410 - val_loss: 0.7101
     Epoch 6/50
     345/345
                         12s 35ms/step -
```

```
accuracy: 0.7618 - loss: 0.6633 - val_accuracy: 0.7117 - val_loss: 0.7699
Epoch 7/50
345/345
                   13s 37ms/step -
accuracy: 0.7794 - loss: 0.6241 - val_accuracy: 0.7193 - val_loss: 0.7779
Epoch 8/50
345/345
                   20s 58ms/step -
accuracy: 0.7910 - loss: 0.5869 - val accuracy: 0.7310 - val loss: 0.7266
Epoch 9/50
345/345
                   13s 37ms/step -
accuracy: 0.8069 - loss: 0.5492 - val_accuracy: 0.7847 - val_loss: 0.5986
Epoch 10/50
345/345
                   18s 52ms/step -
accuracy: 0.8184 - loss: 0.5187 - val_accuracy: 0.7503 - val_loss: 0.6917
Epoch 11/50
345/345
                   14s 40ms/step -
accuracy: 0.8293 - loss: 0.4868 - val_accuracy: 0.8077 - val_loss: 0.5454
Epoch 12/50
345/345
                   17s 50ms/step -
accuracy: 0.8367 - loss: 0.4730 - val_accuracy: 0.7993 - val_loss: 0.5538
Epoch 13/50
345/345
                   15s 43ms/step -
accuracy: 0.8411 - loss: 0.4459 - val accuracy: 0.8173 - val loss: 0.5046
Epoch 14/50
345/345
                   13s 38ms/step -
accuracy: 0.8471 - loss: 0.4289 - val_accuracy: 0.8203 - val_loss: 0.5058
Epoch 15/50
345/345
                   17s 49ms/step -
accuracy: 0.8541 - loss: 0.4198 - val_accuracy: 0.8033 - val_loss: 0.5352
Epoch 16/50
345/345
                   12s 34ms/step -
accuracy: 0.8612 - loss: 0.3930 - val_accuracy: 0.8200 - val_loss: 0.5121
Epoch 17/50
345/345
                   15s 43ms/step -
accuracy: 0.8732 - loss: 0.3742 - val_accuracy: 0.8250 - val_loss: 0.5069
Epoch 18/50
345/345
                    12s 35ms/step -
accuracy: 0.8760 - loss: 0.3588 - val accuracy: 0.8357 - val loss: 0.4656
Epoch 19/50
345/345
                   14s 41ms/step -
accuracy: 0.8774 - loss: 0.3497 - val_accuracy: 0.8357 - val_loss: 0.4636
Epoch 20/50
345/345
                   15s 44ms/step -
accuracy: 0.8821 - loss: 0.3356 - val_accuracy: 0.7933 - val_loss: 0.5976
Epoch 21/50
345/345
                   12s 35ms/step -
accuracy: 0.8876 - loss: 0.3286 - val_accuracy: 0.8353 - val_loss: 0.4769
Epoch 22/50
345/345
                   15s 44ms/step -
```

```
accuracy: 0.8889 - loss: 0.3143 - val_accuracy: 0.8260 - val_loss: 0.5241
Epoch 23/50
345/345
                   15s 43ms/step -
accuracy: 0.8968 - loss: 0.2975 - val_accuracy: 0.8267 - val_loss: 0.5161
Epoch 24/50
345/345
                   14s 39ms/step -
accuracy: 0.8995 - loss: 0.2850 - val accuracy: 0.8427 - val loss: 0.4812
Epoch 25/50
345/345
                   18s 51ms/step -
accuracy: 0.9032 - loss: 0.2735 - val_accuracy: 0.8503 - val_loss: 0.4568
Epoch 26/50
345/345
                   13s 39ms/step -
accuracy: 0.9129 - loss: 0.2665 - val_accuracy: 0.8410 - val_loss: 0.4671
Epoch 27/50
345/345
                   15s 44ms/step -
accuracy: 0.9153 - loss: 0.2445 - val_accuracy: 0.8380 - val_loss: 0.4799
Epoch 28/50
345/345
                   13s 38ms/step -
accuracy: 0.9145 - loss: 0.2428 - val_accuracy: 0.8267 - val_loss: 0.5130
Epoch 29/50
345/345
                   16s 46ms/step -
accuracy: 0.9143 - loss: 0.2387 - val accuracy: 0.8253 - val loss: 0.5518
Epoch 30/50
345/345
                   13s 38ms/step -
accuracy: 0.9203 - loss: 0.2263 - val_accuracy: 0.8347 - val_loss: 0.5003
Epoch 31/50
345/345
                   12s 35ms/step -
accuracy: 0.9274 - loss: 0.2115 - val_accuracy: 0.8477 - val_loss: 0.4689
Epoch 32/50
345/345
                   16s 48ms/step -
accuracy: 0.9297 - loss: 0.2033 - val_accuracy: 0.8477 - val_loss: 0.4951
Epoch 33/50
345/345
                   12s 35ms/step -
accuracy: 0.9365 - loss: 0.1894 - val_accuracy: 0.8413 - val_loss: 0.5072
Epoch 34/50
345/345
                   16s 47ms/step -
accuracy: 0.9357 - loss: 0.1891 - val_accuracy: 0.8330 - val_loss: 0.5603
Epoch 35/50
345/345
                   12s 35ms/step -
accuracy: 0.9397 - loss: 0.1789 - val_accuracy: 0.8460 - val_loss: 0.4890
Epoch 36/50
345/345
                   13s 39ms/step -
accuracy: 0.9372 - loss: 0.1730 - val_accuracy: 0.8323 - val_loss: 0.5264
Epoch 37/50
345/345
                   18s 51ms/step -
accuracy: 0.9423 - loss: 0.1659 - val_accuracy: 0.8413 - val_loss: 0.4951
Epoch 38/50
345/345
                   13s 39ms/step -
```

```
Epoch 39/50
     345/345
                         15s 44ms/step -
     accuracy: 0.9468 - loss: 0.1484 - val_accuracy: 0.8517 - val_loss: 0.4858
     Epoch 40/50
     345/345
                         13s 39ms/step -
     accuracy: 0.9467 - loss: 0.1506 - val accuracy: 0.8487 - val loss: 0.4911
     Epoch 41/50
     345/345
                         13s 39ms/step -
     accuracy: 0.9526 - loss: 0.1405 - val_accuracy: 0.8467 - val_loss: 0.5276
     Epoch 42/50
     345/345
                         16s 45ms/step -
     accuracy: 0.9533 - loss: 0.1319 - val_accuracy: 0.8447 - val_loss: 0.5212
     Epoch 43/50
     345/345
                         12s 35ms/step -
     accuracy: 0.9539 - loss: 0.1280 - val_accuracy: 0.8210 - val_loss: 0.7326
     Epoch 44/50
     345/345
                         15s 44ms/step -
     accuracy: 0.9512 - loss: 0.1310 - val_accuracy: 0.8533 - val_loss: 0.4999
     Epoch 45/50
     345/345
                         12s 35ms/step -
     accuracy: 0.9628 - loss: 0.1122 - val accuracy: 0.8567 - val loss: 0.5042
     Epoch 46/50
     345/345
                         12s 35ms/step -
     accuracy: 0.9634 - loss: 0.1089 - val_accuracy: 0.8497 - val_loss: 0.5295
     Epoch 47/50
     345/345
                         15s 44ms/step -
     accuracy: 0.9617 - loss: 0.1052 - val_accuracy: 0.8390 - val_loss: 0.6200
     Epoch 48/50
     345/345
                         13s 36ms/step -
     accuracy: 0.9632 - loss: 0.1049 - val_accuracy: 0.8503 - val_loss: 0.5236
     Epoch 49/50
     345/345
                         17s 49ms/step -
     accuracy: 0.9652 - loss: 0.1029 - val_accuracy: 0.8433 - val_loss: 0.5867
     Epoch 50/50
     345/345
                         12s 36ms/step -
     accuracy: 0.9676 - loss: 0.0972 - val accuracy: 0.8447 - val loss: 0.5763
[17]: best_epoch = np.argmin(history_dropout.history['val_loss']) + 1
      print(f"Melhor época (menor val_loss): {best_epoch}")
     Melhor época (menor val_loss): 25
```

accuracy: 0.9448 - loss: 0.1592 - val_accuracy: 0.8497 - val_loss: 0.5041

3.5 Carregamento do modelo e validação

Carregamento e avaliação do modelo através do valor da accuracy.

```
[18]: model_dropout = keras.models.load_model('modelS_CatCross_RMS_dropout.keras')
val_loss, val_acc = model_dropout.evaluate(validation_dataset)
print('val_acc:', val_acc)
```

94/94 3s 21ms/step - accuracy: 0.8406 - loss: 0.4978 val_acc: 0.85033333330154419

Representação gráfica dos valores da accuracy e da loss ao longo das épocas.

```
[19]: acc = history_dropout.history['accuracy']
    val_acc = history_dropout.history['val_accuracy']
    loss = history_dropout.history['loss']
    val_loss = history_dropout.history['val_loss']
    epochs = range(1, len(acc) + 1)
    plt.plot(epochs, acc, 'bo', label='Training acc')
    plt.plot(epochs, val_acc, 'b', label='Validation acc')
    plt.title('Training and validation accuracy')
    plt.legend()
    plt.figure()
    plt.plot(epochs, loss, 'bo', label='Training loss')
    plt.plot(epochs, val_loss, 'b', label='Validation loss')
    plt.title('Training and validation loss')
    plt.legend()
    plt.show()
```


Avaliação da performance do modelo no conjunto de teste, utilizando o relatório de classificação. O relatório apresenta, para cada classe, as métricas precision, recall e F1-score, permitindo analisar detalhadamente os acertos e erros por classe.

```
[20]: y_true, y_pred = get_true_pred(model_dropout, test_dataset)
report = classification_report(y_true, y_pred, target_names=class_names,_
output_dict=True)
class_only_report = {k: v for k, v in report.items() if k in class_names}
df = pd.DataFrame(class_only_report).T
print(df[['precision', 'recall', 'f1-score']].round(3))
```

```
2025-06-12 22:02:18.308742: I
external/local_xla/xla/service/gpu/autotuning/conv_algorithm_picker.cc:549]
Omitted potentially buggy algorithm eng14{} for conv %cudnn-conv-bias-
activation.12 = (f32[1,32,148,148]{3,2,1,0}, u8[0]{0}) custom-
call(f32[1,3,150,150]{3,2,1,0} %bitcast.262, f32[32,3,3,3]{3,2,1,0}
%bitcast.269, f32[32]{0} %bitcast.271), window={size=3x3},
dim_labels=bf01_oi01->bf01,
custom_call_target="__cudnn$convBiasActivationForward",
metadata={op_type="Conv2D" op_name="functional_1_1/conv2d_4_1/convolution"
source_file="/home/diogo/.pyenv/versions/3.10.18/lib/python3.10/site-
packages/tensorflow/python/framework/ops.py" source_line=1200}, backend_config={
```

```
"operation_queue_id":"0","wait_on_operation_queues":[],"cudnn_conv_backend_confi
g":{"conv_result_scale":1,"activation_mode":"kRelu","side_input_scale":0,"leakyr
elu_alpha":0}, "force_earliest_schedule":false}
2025-06-12 22:02:18.371909: I
external/local xla/xla/service/gpu/autotuning/conv algorithm picker.cc:549]
Omitted potentially buggy algorithm eng14{} for conv %cudnn-conv-bias-
activation.13 = (f32[1,64,72,72]{3,2,1,0}, u8[0]{0}) custom-
call(f32[1,32,74,74]{3,2,1,0} %bitcast.278, f32[64,32,3,3]{3,2,1,0}
%bitcast.285, f32[64]{0} %bitcast.287), window={size=3x3},
dim_labels=bf01_oi01->bf01,
custom_call_target="__cudnn$convBiasActivationForward",
metadata={op_type="Conv2D" op_name="functional_1_1/conv2d_5_1/convolution"
source_file="/home/diogo/.pyenv/versions/3.10.18/lib/python3.10/site-
packages/tensorflow/python/framework/ops.py" source_line=1200}, backend_config={
"operation_queue_id": "0", "wait_on_operation_queues": [], "cudnn_conv_backend_confi
g":{"conv_result_scale":1,"activation_mode":"kRelu","side_input_scale":0,"leakyr
elu_alpha":0},"force_earliest_schedule":false}
2025-06-12 22:02:18.425038: I
external/local_xla/xla/service/gpu/autotuning/conv_algorithm_picker.cc:549]
Omitted potentially buggy algorithm eng14{} for conv %cudnn-conv-bias-
activation.14 = (f32[1,128,34,34]{3,2,1,0}, u8[0]{0}) custom-
call(f32[1,64,36,36]{3,2,1,0} %bitcast.293, f32[128,64,3,3]{3,2,1,0}
%bitcast.300, f32[128]{0} %bitcast.302), window={size=3x3},
dim labels=bf01 oi01->bf01,
custom_call_target="__cudnn$convBiasActivationForward",
metadata={op_type="Conv2D" op_name="functional_1_1/conv2d_6_1/convolution"
source_file="/home/diogo/.pyenv/versions/3.10.18/lib/python3.10/site-
packages/tensorflow/python/framework/ops.py" source_line=1200}, backend_config={
"operation_queue_id": "0", "wait_on_operation_queues": [], "cudnn_conv_backend_confi
g":{"conv_result_scale":1,"activation_mode":"kRelu","side_input_scale":0,"leakyr
elu_alpha":0}, "force_earliest_schedule":false}
2025-06-12 22:02:18.482526: I
external/local_xla/xla/service/gpu/autotuning/conv_algorithm_picker.cc:549]
Omitted potentially buggy algorithm eng14{} for conv %cudnn-conv-bias-
activation.15 = (f32[1,128,15,15]\{3,2,1,0\}, u8[0]\{0\}) custom-
call(f32[1,128,17,17]{3,2,1,0} %bitcast.308, f32[128,128,3,3]{3,2,1,0}
%bitcast.315, f32[128]{0} %bitcast.317), window={size=3x3},
dim_labels=bf01_oi01->bf01,
custom_call_target="__cudnn$convBiasActivationForward",
metadata={op_type="Conv2D" op_name="functional_1_1/conv2d_7_1/convolution"
source_file="/home/diogo/.pyenv/versions/3.10.18/lib/python3.10/site-
packages/tensorflow/python/framework/ops.py" source_line=1200}, backend_config={
"operation_queue_id": "0", "wait_on_operation_queues": [], "cudnn_conv_backend_confi
g":{"conv_result_scale":1,"activation_mode":"kRelu","side_input_scale":0,"leakyr
elu_alpha":0},"force_earliest_schedule":false}
           precision recall f1-score
buildings
               0.864
                       0.796
                                 0.829
```

forest	0.942	0.951	0.946
glacier	0.832	0.821	0.826
mountain	0.886	0.758	0.817
sea	0.776	0.931	0.847
street	0.863	0.880	0.872

2025-06-12 22:05:59.173953: I tensorflow/core/framework/local_rendezvous.cc:407] Local rendezvous is aborting with status: OUT_OF_RANGE: End of sequence

4 Modelo (regularization: L2)

4.1 Criação da CNN

Criação da CNN que irá receber imagens de 150x150 píxeis, aplica normalização e passa por quatro camadas convolucionais com max pooling para extrair características, integrando regularização L2 nas camadas convolucionais para penalizar pesos excessivamente elevados e reduzir o overfitting. A rede termina com uma camada densa com 512 unidades e uma camada de saída softmax para classificação multiclasse.

```
[21]: inputs = keras.Input(shape=(IMG_SIZE, IMG_SIZE, 3))
    x = layers.Rescaling(1./255)(inputs)
    x = layers.Conv2D(32, 3, activation="relu", kernel_regularizer='12')(x)
    x = layers.MaxPooling2D(2)(x)
    x = layers.Conv2D(64, 3, activation="relu", kernel_regularizer='12')(x)
    x = layers.MaxPooling2D(2)(x)
    x = layers.Conv2D(128, 3, activation="relu", kernel_regularizer='12')(x)
    x = layers.MaxPooling2D(2)(x)
    x = layers.Conv2D(128, 3, activation="relu", kernel_regularizer='12')(x)
    x = layers.MaxPooling2D(2)(x)
    x = layers.Flatten()(x)
    x = layers.Pense(512, activation="relu", kernel_regularizer='12')(x)
    outputs = layers.Dense(len(class_names), activation="softmax")(x)
    model_12 = keras.Model(inputs, outputs)
```

Model: "functional 2"

Layer (type)	Output Shape	Param #
<pre>input_layer_2 (InputLayer)</pre>	(None, 150, 150, 3)	0
rescaling_2 (Rescaling)	(None, 150, 150, 3)	0
conv2d_8 (Conv2D)	(None, 148, 148, 32)	896
max_pooling2d_8 (MaxPooling2D)	(None, 74, 74, 32)	0

```
conv2d_9 (Conv2D)
                                  (None, 72, 72, 64)
                                                                  18,496
max_pooling2d_9 (MaxPooling2D)
                                  (None, 36, 36, 64)
                                                                        0
conv2d_10 (Conv2D)
                                  (None, 34, 34, 128)
                                                                   73,856
                                  (None, 17, 17, 128)
max_pooling2d_10 (MaxPooling2D)
                                                                        0
conv2d_11 (Conv2D)
                                  (None, 15, 15, 128)
                                                                  147,584
max_pooling2d_11 (MaxPooling2D)
                                  (None, 7, 7, 128)
                                                                        0
flatten_2 (Flatten)
                                  (None, 6272)
                                                                        0
                                                                3,211,776
dense_4 (Dense)
                                  (None, 512)
dense_5 (Dense)
                                  (None, 6)
                                                                    3,078
```

Total params: 3,455,686 (13.18 MB)

Trainable params: 3,455,686 (13.18 MB)

Non-trainable params: 0 (0.00 B)

None

4.2 Compilação da CNN

Compilação da CNN utilizando a loss categorical crossentropy e o optimizer RMSprop.

```
[22]: model_12.compile(
    loss='categorical_crossentropy',
    optimizer=tf.keras.optimizers.RMSprop(learning_rate=1e-4),
    metrics=['acc'])
```

4.3 Definição do callback

Definição de um callback que guarda automaticamente o modelo com a menor perda (loss) de validação durante o treino.

```
[23]: checkpoint_filepath = 'modelS_CatCross_RMS_L2.keras'
model_checkpoint_callback = keras.callbacks.ModelCheckpoint(
    filepath=checkpoint_filepath,
    monitor='val_loss',
```

```
save_best_only=True)
```

4.4 Treino da CNN

Treino da CNN durante 50 épocas utilizando o dataset de validação e o callback para guardar o melhor modelo.

```
[24]: history_12 = model_12.fit(
      train_dataset,
      epochs=50,
      validation_data=validation_dataset,
      callbacks=[model_checkpoint_callback])
     Epoch 1/50
     345/345
                         24s 57ms/step -
     acc: 0.4528 - loss: 9.2746 - val_acc: 0.5573 - val_loss: 3.6021
     Epoch 2/50
     345/345
                         14s 40ms/step -
     acc: 0.6091 - loss: 3.0461 - val_acc: 0.6103 - val_loss: 2.2840
     Epoch 3/50
     345/345
                         15s 44ms/step -
     acc: 0.6483 - loss: 2.1270 - val_acc: 0.6237 - val_loss: 1.8955
     Epoch 4/50
     345/345
                         13s 39ms/step -
     acc: 0.6690 - loss: 1.7784 - val_acc: 0.6527 - val_loss: 1.6544
     Epoch 5/50
     345/345
                         15s 45ms/step -
     acc: 0.6777 - loss: 1.5969 - val_acc: 0.6843 - val_loss: 1.5193
     Epoch 6/50
     345/345
                         13s 38ms/step -
     acc: 0.6881 - loss: 1.4691 - val_acc: 0.6867 - val_loss: 1.4160
     Epoch 7/50
     345/345
                         13s 36ms/step -
     acc: 0.6998 - loss: 1.3742 - val_acc: 0.6973 - val_loss: 1.3263
     Epoch 8/50
     345/345
                         16s 46ms/step -
     acc: 0.7055 - loss: 1.3055 - val_acc: 0.6417 - val_loss: 1.3917
     Epoch 9/50
     345/345
                         15s 43ms/step -
     acc: 0.7095 - loss: 1.2612 - val_acc: 0.6767 - val_loss: 1.3005
     Epoch 10/50
     345/345
                         16s 48ms/step -
     acc: 0.7205 - loss: 1.2088 - val_acc: 0.6947 - val_loss: 1.2515
     Epoch 11/50
     345/345
                         13s 38ms/step -
     acc: 0.7268 - loss: 1.1717 - val_acc: 0.6557 - val_loss: 1.3328
     Epoch 12/50
     345/345
                         12s 36ms/step -
```

```
acc: 0.7234 - loss: 1.1442 - val_acc: 0.7117 - val_loss: 1.1288
Epoch 13/50
345/345
                    16s 45ms/step -
acc: 0.7330 - loss: 1.1078 - val_acc: 0.7387 - val_loss: 1.1108
Epoch 14/50
345/345
                    12s 36ms/step -
acc: 0.7431 - loss: 1.0844 - val_acc: 0.7290 - val_loss: 1.0947
Epoch 15/50
345/345
                    15s 45ms/step -
acc: 0.7467 - loss: 1.0525 - val_acc: 0.7427 - val_loss: 1.0504
Epoch 16/50
345/345
                    12s 36ms/step -
acc: 0.7504 - loss: 1.0380 - val_acc: 0.7607 - val_loss: 1.0250
Epoch 17/50
                    12s 35ms/step -
345/345
acc: 0.7539 - loss: 1.0255 - val_acc: 0.7500 - val_loss: 1.0428
Epoch 18/50
345/345
                    15s 44ms/step -
acc: 0.7574 - loss: 1.0046 - val_acc: 0.7377 - val_loss: 1.0705
Epoch 19/50
345/345
                    13s 37ms/step -
acc: 0.7621 - loss: 0.9876 - val_acc: 0.7437 - val_loss: 1.0381
Epoch 20/50
345/345
                    17s 49ms/step -
acc: 0.7615 - loss: 0.9803 - val_acc: 0.7690 - val_loss: 0.9599
Epoch 21/50
345/345
                    15s 44ms/step -
acc: 0.7686 - loss: 0.9601 - val_acc: 0.6663 - val_loss: 1.1906
Epoch 22/50
345/345
                    13s 37ms/step -
acc: 0.7692 - loss: 0.9513 - val_acc: 0.7447 - val_loss: 0.9894
Epoch 23/50
345/345
                    17s 48ms/step -
acc: 0.7700 - loss: 0.9360 - val_acc: 0.7713 - val_loss: 0.9422
Epoch 24/50
345/345
                    14s 39ms/step -
acc: 0.7770 - loss: 0.9198 - val acc: 0.7597 - val loss: 0.9706
Epoch 25/50
345/345
                    17s 48ms/step -
acc: 0.7735 - loss: 0.9177 - val_acc: 0.7570 - val_loss: 0.9797
Epoch 26/50
345/345
                    13s 38ms/step -
acc: 0.7800 - loss: 0.9060 - val_acc: 0.7603 - val_loss: 0.9483
Epoch 27/50
345/345
                    16s 46ms/step -
acc: 0.7804 - loss: 0.8963 - val_acc: 0.7573 - val_loss: 0.9666
Epoch 28/50
345/345
                    13s 38ms/step -
```

```
acc: 0.7846 - loss: 0.8868 - val_acc: 0.7767 - val_loss: 0.9004
Epoch 29/50
345/345
                    13s 38ms/step -
acc: 0.7788 - loss: 0.8784 - val_acc: 0.7787 - val_loss: 0.9022
Epoch 30/50
345/345
                    16s 47ms/step -
acc: 0.7855 - loss: 0.8691 - val_acc: 0.7713 - val_loss: 0.9269
Epoch 31/50
345/345
                    13s 38ms/step -
acc: 0.7904 - loss: 0.8646 - val_acc: 0.7317 - val_loss: 1.0009
Epoch 32/50
345/345
                    16s 47ms/step -
acc: 0.7848 - loss: 0.8606 - val_acc: 0.7390 - val_loss: 0.9471
Epoch 33/50
345/345
                    13s 39ms/step -
acc: 0.7880 - loss: 0.8504 - val_acc: 0.7880 - val_loss: 0.8730
Epoch 34/50
345/345
                    15s 43ms/step -
acc: 0.7976 - loss: 0.8468 - val_acc: 0.7977 - val_loss: 0.8554
Epoch 35/50
345/345
                    16s 46ms/step -
acc: 0.8033 - loss: 0.8367 - val_acc: 0.7833 - val_loss: 0.8614
Epoch 36/50
345/345
                    13s 38ms/step -
acc: 0.7959 - loss: 0.8393 - val_acc: 0.7850 - val_loss: 0.8654
Epoch 37/50
345/345
                    15s 43ms/step -
acc: 0.8020 - loss: 0.8177 - val_acc: 0.7797 - val_loss: 0.8835
Epoch 38/50
345/345
                    12s 36ms/step -
acc: 0.8020 - loss: 0.8264 - val_acc: 0.7907 - val_loss: 0.8437
Epoch 39/50
345/345
                    13s 38ms/step -
acc: 0.8036 - loss: 0.8110 - val_acc: 0.7697 - val_loss: 0.8976
Epoch 40/50
345/345
                    17s 49ms/step -
acc: 0.8031 - loss: 0.8145 - val acc: 0.7913 - val loss: 0.8512
Epoch 41/50
345/345
                    13s 39ms/step -
acc: 0.8071 - loss: 0.7967 - val_acc: 0.7913 - val_loss: 0.8296
Epoch 42/50
345/345
                    15s 44ms/step -
acc: 0.8074 - loss: 0.8000 - val_acc: 0.7937 - val_loss: 0.8305
Epoch 43/50
345/345
                    12s 36ms/step -
acc: 0.8044 - loss: 0.7901 - val_acc: 0.7920 - val_loss: 0.8220
Epoch 44/50
345/345
                    12s 35ms/step -
```

```
acc: 0.8097 - loss: 0.7814 - val_acc: 0.7517 - val_loss: 0.9344
     Epoch 45/50
     345/345
                         18s 51ms/step -
     acc: 0.8110 - loss: 0.7858 - val_acc: 0.7743 - val_loss: 0.8539
     Epoch 46/50
     345/345
                         14s 40ms/step -
     acc: 0.8159 - loss: 0.7818 - val acc: 0.8013 - val loss: 0.8134
     Epoch 47/50
     345/345
                         15s 44ms/step -
     acc: 0.8148 - loss: 0.7744 - val_acc: 0.7523 - val_loss: 0.9336
     Epoch 48/50
     345/345
                         12s 36ms/step -
     acc: 0.8151 - loss: 0.7692 - val_acc: 0.7953 - val_loss: 0.8094
     Epoch 49/50
     345/345
                         12s 36ms/step -
     acc: 0.8191 - loss: 0.7626 - val_acc: 0.7987 - val_loss: 0.8033
     Epoch 50/50
     345/345
                         15s 44ms/step -
     acc: 0.8134 - loss: 0.7701 - val_acc: 0.7700 - val_loss: 0.8718
[25]: best_epoch = np.argmin(history_12.history['val_loss']) + 1
      print(f"Melhor época (menor val_loss): {best_epoch}")
```

Melhor época (menor val_loss): 49

4.5 Carregamento do modelo e validação

Carregamento e avaliação do modelo através do valor da accuracy.

```
[26]: model_12 = keras.models.load_model('modelS_CatCross_RMS_L2.keras')
val_loss, val_acc = model_12.evaluate(validation_dataset)
print('val_acc:', val_acc)
```

94/94 3s 21ms/step - acc: 0.7978 - loss: 0.8087

val acc: 0.7986666560173035

Representação gráfica dos valores da accuracy e da loss ao longo das épocas.

```
[27]: acc = history_12.history['acc']
    val_acc = history_12.history['val_acc']
    loss = history_12.history['loss']
    val_loss = history_12.history['val_loss']
    epochs = range(1, len(acc) + 1)
    plt.plot(epochs, acc, 'bo', label='Training acc')
    plt.plot(epochs, val_acc, 'b', label='Validation acc')
    plt.title('Training and validation accuracy')
    plt.legend()
    plt.figure()
```

```
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
plt.show()
```

Training and validation accuracy

Avaliação da performance do modelo no conjunto de teste, utilizando o relatório de classificação. O relatório apresenta, para cada classe, as métricas precision, recall e F1-score, permitindo analisar detalhadamente os acertos e erros por classe.

```
[28]: y_true, y_pred = get_true_pred(model_12, test_dataset)
report = classification_report(y_true, y_pred, target_names=class_names,__
output_dict=True)
class_only_report = {k: v for k, v in report.items() if k in class_names}
df = pd.DataFrame(class_only_report).T
print(df[['precision', 'recall', 'f1-score']].round(3))
```

	precision	recall	II-score
buildings	0.789	0.787	0.788
forest	0.946	0.888	0.916
glacier	0.803	0.754	0.778
mountain	0.803	0.712	0.755
sea	0.748	0.843	0.793
street	0.778	0.868	0.821

2025-06-12 22:22:18.626637: I tensorflow/core/framework/local_rendezvous.cc:407] Local rendezvous is aborting with status: OUT_OF_RANGE: End of sequence

5 Modelo (regularization: Dropout e L2)

5.1 Criação da CNN

Criação da CNN que irá receber imagens de 150x150 píxeis, aplica normalização e passa por quatro camadas convolucionais com max pooling para extrair características. Integra regularização L2 nas camadas convolucionais para penalizar pesos elevados e reduzir o overfitting, e camadas Dropout que desligam aleatoriamente 50% dos neurónios durante o treino. Termina com uma camada densa com 512 unidades e uma camada de saída softmax para classificação multiclasse.

```
[29]: inputs = keras.Input(shape=(IMG_SIZE, IMG_SIZE, 3))
      x = layers.Rescaling(1./255)(inputs)
      x = layers.Conv2D(32, 3, activation="relu", kernel_regularizer='12')(x)
      x = layers.MaxPooling2D(2)(x)
      x = layers.Conv2D(64, 3, activation="relu", kernel_regularizer='12')(x)
      x = layers.MaxPooling2D(2)(x)
      x = layers.Conv2D(128, 3, activation="relu", kernel_regularizer='12')(x)
      x = layers.MaxPooling2D(2)(x)
      x = layers.Conv2D(128, 3, activation="relu", kernel_regularizer='12')(x)
      x = layers.MaxPooling2D(2)(x)
      x = layers.Flatten()(x)
      x = layers.Dropout(0.5)(x)
      x = layers.Dense(512, activation="relu", kernel_regularizer='12')(x)
      outputs = layers.Dense(len(class_names), activation="softmax")(x)
      model both = keras.Model(inputs, outputs)
      print(model_both.summary())
```

Model: "functional_3"

Layer (type)	Output Shape	Param #
<pre>input_layer_3 (InputLayer)</pre>	(None, 150, 150, 3)	0
rescaling_3 (Rescaling)	(None, 150, 150, 3)	0
conv2d_12 (Conv2D)	(None, 148, 148, 32)	896
<pre>max_pooling2d_12 (MaxPooling2D)</pre>	(None, 74, 74, 32)	0
conv2d_13 (Conv2D)	(None, 72, 72, 64)	18,496
<pre>max_pooling2d_13 (MaxPooling2D)</pre>	(None, 36, 36, 64)	0
conv2d_14 (Conv2D)	(None, 34, 34, 128)	73,856
max_pooling2d_14 (MaxPooling2D)	(None, 17, 17, 128)	0

```
conv2d_15 (Conv2D)
                                   (None, 15, 15, 128)
                                                                   147,584
max_pooling2d_15 (MaxPooling2D)
                                   (None, 7, 7, 128)
                                                                         0
flatten_3 (Flatten)
                                   (None, 6272)
                                                                         0
dropout_2 (Dropout)
                                   (None, 6272)
                                                                         0
dense_6 (Dense)
                                   (None, 512)
                                                                 3,211,776
dense_7 (Dense)
                                   (None, 6)
                                                                     3,078
```

Total params: 3,455,686 (13.18 MB)

Trainable params: 3,455,686 (13.18 MB)

Non-trainable params: 0 (0.00 B)

None

5.2 Compilação da CNN

Compilação da CNN utilizando a loss categorical crossentropy e o optimizer RMSprop.

5.3 Definição do callback

Definição de um callback que guarda automaticamente o modelo com a menor perda (loss) de validação durante o treino.

```
[31]: checkpoint_filepath = 'modelS_CatCross_RMS_dropout_L2.keras'
model_checkpoint_callback = keras.callbacks.ModelCheckpoint(
    filepath=checkpoint_filepath,
    monitor='val_loss',
    save_best_only=True)
```

5.4 Treino da CNN

Treino da CNN durante 50 épocas utilizando o dataset de validação e o callback para guardar o melhor modelo.

```
[32]: history_both = model_both.fit(
      train_dataset,
      epochs=50,
      validation_data=validation_dataset,
      callbacks=[model_checkpoint_callback])
     Epoch 1/50
     345/345
                         23s 55ms/step -
     accuracy: 0.4214 - loss: 9.5866 - val_accuracy: 0.5413 - val_loss: 3.9742
     Epoch 2/50
     345/345
                         12s 36ms/step -
     accuracy: 0.5933 - loss: 3.3751 - val_accuracy: 0.6030 - val_loss: 2.4343
     Epoch 3/50
     345/345
                         17s 50ms/step -
     accuracy: 0.6382 - loss: 2.2580 - val_accuracy: 0.6430 - val_loss: 1.9492
     Epoch 4/50
     345/345
                         14s 40ms/step -
     accuracy: 0.6604 - loss: 1.8401 - val_accuracy: 0.6463 - val_loss: 1.7115
     Epoch 5/50
     345/345
                         12s 36ms/step -
     accuracy: 0.6727 - loss: 1.6196 - val_accuracy: 0.6677 - val_loss: 1.5477
     Epoch 6/50
     345/345
                         15s 43ms/step -
     accuracy: 0.6845 - loss: 1.4849 - val_accuracy: 0.6790 - val_loss: 1.4433
     Epoch 7/50
     345/345
                         12s 34ms/step -
     accuracy: 0.6917 - loss: 1.4102 - val_accuracy: 0.6963 - val_loss: 1.3490
     Epoch 8/50
     345/345
                         15s 43ms/step -
     accuracy: 0.7043 - loss: 1.3289 - val_accuracy: 0.7130 - val_loss: 1.2866
     Epoch 9/50
     345/345
                         12s 34ms/step -
     accuracy: 0.7116 - loss: 1.2796 - val_accuracy: 0.7273 - val_loss: 1.2266
     Epoch 10/50
     345/345
                         12s 36ms/step -
     accuracy: 0.7154 - loss: 1.2340 - val accuracy: 0.7120 - val loss: 1.2114
     Epoch 11/50
     345/345
                         16s 47ms/step -
     accuracy: 0.7235 - loss: 1.2049 - val_accuracy: 0.7253 - val_loss: 1.1907
     Epoch 12/50
     345/345
                         13s 37ms/step -
     accuracy: 0.7254 - loss: 1.1677 - val_accuracy: 0.7343 - val_loss: 1.1421
     Epoch 13/50
     345/345
                         13s 37ms/step -
     accuracy: 0.7339 - loss: 1.1366 - val_accuracy: 0.7480 - val_loss: 1.1096
     Epoch 14/50
     345/345
                         15s 44ms/step -
     accuracy: 0.7413 - loss: 1.1195 - val_accuracy: 0.7410 - val_loss: 1.0936
```

```
Epoch 15/50
                    12s 36ms/step -
345/345
accuracy: 0.7451 - loss: 1.0907 - val_accuracy: 0.7560 - val_loss: 1.0573
Epoch 16/50
345/345
                    15s 44ms/step -
accuracy: 0.7547 - loss: 1.0684 - val_accuracy: 0.7287 - val_loss: 1.1081
Epoch 17/50
345/345
                    13s 36ms/step -
accuracy: 0.7589 - loss: 1.0490 - val_accuracy: 0.7550 - val_loss: 1.0485
Epoch 18/50
345/345
                    12s 35ms/step -
accuracy: 0.7567 - loss: 1.0374 - val_accuracy: 0.7027 - val_loss: 1.1904
Epoch 19/50
345/345
                    15s 45ms/step -
accuracy: 0.7523 - loss: 1.0343 - val_accuracy: 0.7653 - val_loss: 1.0116
Epoch 20/50
345/345
                    12s 35ms/step -
accuracy: 0.7671 - loss: 1.0063 - val_accuracy: 0.7590 - val_loss: 1.0176
Epoch 21/50
345/345
                    15s 44ms/step -
accuracy: 0.7688 - loss: 1.0036 - val_accuracy: 0.7453 - val_loss: 1.0283
Epoch 22/50
345/345
                    12s 36ms/step -
accuracy: 0.7721 - loss: 0.9823 - val_accuracy: 0.7770 - val_loss: 0.9633
Epoch 23/50
345/345
                    12s 35ms/step -
accuracy: 0.7773 - loss: 0.9660 - val_accuracy: 0.7680 - val_loss: 0.9873
Epoch 24/50
345/345
                    15s 44ms/step -
accuracy: 0.7855 - loss: 0.9553 - val_accuracy: 0.7550 - val_loss: 1.0057
Epoch 25/50
345/345
                    14s 41ms/step -
accuracy: 0.7747 - loss: 0.9548 - val_accuracy: 0.7657 - val_loss: 0.9789
Epoch 26/50
345/345
                    16s 47ms/step -
accuracy: 0.7827 - loss: 0.9414 - val_accuracy: 0.7717 - val_loss: 0.9654
Epoch 27/50
345/345
                    15s 43ms/step -
accuracy: 0.7881 - loss: 0.9302 - val_accuracy: 0.7860 - val_loss: 0.9220
Epoch 28/50
345/345
                    15s 42ms/step -
accuracy: 0.7917 - loss: 0.9171 - val_accuracy: 0.7773 - val_loss: 0.9257
Epoch 29/50
                    18s 52ms/step -
345/345
accuracy: 0.7876 - loss: 0.9184 - val_accuracy: 0.7900 - val_loss: 0.9193
Epoch 30/50
345/345
                    16s 46ms/step -
accuracy: 0.7851 - loss: 0.9170 - val accuracy: 0.7693 - val loss: 0.9448
```

```
Epoch 31/50
345/345
                    19s 56ms/step -
accuracy: 0.7961 - loss: 0.8937 - val_accuracy: 0.7847 - val_loss: 0.9126
Epoch 32/50
345/345
                    16s 46ms/step -
accuracy: 0.8031 - loss: 0.8880 - val_accuracy: 0.7923 - val_loss: 0.8883
Epoch 33/50
345/345
                    19s 55ms/step -
accuracy: 0.7948 - loss: 0.8906 - val_accuracy: 0.7843 - val_loss: 0.9122
Epoch 34/50
345/345
                    16s 47ms/step -
accuracy: 0.7957 - loss: 0.8809 - val_accuracy: 0.8060 - val_loss: 0.8578
Epoch 35/50
345/345
                    19s 55ms/step -
accuracy: 0.8061 - loss: 0.8708 - val_accuracy: 0.7693 - val_loss: 0.9256
Epoch 36/50
345/345
                    16s 48ms/step -
accuracy: 0.7998 - loss: 0.8646 - val_accuracy: 0.7983 - val_loss: 0.8543
Epoch 37/50
345/345
                    19s 55ms/step -
accuracy: 0.8014 - loss: 0.8579 - val_accuracy: 0.7773 - val_loss: 0.8929
Epoch 38/50
345/345
                    17s 50ms/step -
accuracy: 0.7971 - loss: 0.8637 - val_accuracy: 0.7817 - val_loss: 0.8797
Epoch 39/50
345/345
                    19s 54ms/step -
accuracy: 0.8071 - loss: 0.8506 - val_accuracy: 0.7843 - val_loss: 0.8952
Epoch 40/50
345/345
                    15s 45ms/step -
accuracy: 0.8056 - loss: 0.8435 - val_accuracy: 0.7850 - val_loss: 0.8862
Epoch 41/50
345/345
                    19s 53ms/step -
accuracy: 0.8092 - loss: 0.8330 - val_accuracy: 0.7770 - val_loss: 0.8985
Epoch 42/50
345/345
                    17s 49ms/step -
accuracy: 0.8050 - loss: 0.8409 - val_accuracy: 0.7893 - val_loss: 0.8632
Epoch 43/50
345/345
                    20s 57ms/step -
accuracy: 0.8116 - loss: 0.8290 - val_accuracy: 0.7970 - val_loss: 0.8492
Epoch 44/50
345/345
                    17s 50ms/step -
accuracy: 0.8162 - loss: 0.8223 - val_accuracy: 0.7787 - val_loss: 0.9015
Epoch 45/50
                    19s 54ms/step -
345/345
accuracy: 0.8147 - loss: 0.8233 - val_accuracy: 0.7230 - val_loss: 1.0055
Epoch 46/50
345/345
                    21s 60ms/step -
accuracy: 0.8109 - loss: 0.8214 - val_accuracy: 0.7993 - val_loss: 0.8313
```

```
Epoch 47/50
345/345
                   16s 45ms/step -
accuracy: 0.8149 - loss: 0.8134 - val_accuracy: 0.8003 - val_loss: 0.8389
Epoch 48/50
345/345
                   20s 57ms/step -
accuracy: 0.8117 - loss: 0.8128 - val_accuracy: 0.7687 - val_loss: 0.9084
Epoch 49/50
345/345
                   17s 48ms/step -
accuracy: 0.8175 - loss: 0.8061 - val_accuracy: 0.8057 - val_loss: 0.8178
Epoch 50/50
345/345
                   22s 63ms/step -
accuracy: 0.8126 - loss: 0.7987 - val_accuracy: 0.7853 - val_loss: 0.8561
```

5.5 Carregamento do modelo e validação

Carregamento e avaliação do modelo através do valor da accuracy.

```
[34]: model_both = keras.models.load_model('modelS_CatCross_RMS_dropout_L2.keras')
val_loss, val_acc = model_both.evaluate(validation_dataset)
print('val_acc:', val_acc)
```

```
94/94 4s 24ms/step - accuracy: 0.8075 - loss: 0.8293 val_acc: 0.8056666851043701
```

Representação gráfica dos valores da accuracy e da loss ao longo das épocas.

```
[36]: acc = history_both.history['accuracy']
    val_acc = history_both.history['val_accuracy']
    loss_CatCros = history_both.history['loss']
    val_loss = history_both.history['val_loss']
    epochs = range(1, len(acc) + 1)
    plt.plot(epochs, acc, 'bo', label='Training acc')
    plt.plot(epochs, val_acc, 'b', label='Validation acc')
    plt.title('Training and validation accuracy')
    plt.legend()
    plt.figure()
    plt.plot(epochs, loss_CatCros, 'bo', label='Training loss')
    plt.plot(epochs, val_loss, 'b', label='Validation loss')
    plt.title('Training and validation loss')
    plt.legend()
    plt.show()
```


Avaliação da performance do modelo no conjunto de teste, utilizando o relatório de classificação. O relatório apresenta, para cada classe, as métricas precision, recall e F1-score, permitindo analisar detalhadamente os acertos e erros por classe.

```
[37]: y_true, y_pred = get_true_pred(model_both, test_dataset)
report = classification_report(y_true, y_pred, target_names=class_names,__
output_dict=True)
class_only_report = {k: v for k, v in report.items() if k in class_names}
df = pd.DataFrame(class_only_report).T
print(df[['precision', 'recall', 'f1-score']].round(3))
```

	precision	recall	f1-score
buildings	0.820	0.721	0.767
forest	0.853	0.958	0.903
glacier	0.766	0.817	0.791
mountain	0.815	0.737	0.774
sea	0.786	0.829	0.807
street	0.840	0.806	0.823

6 Avaliação do melhor modelo

6.1 Comparação dos modelos utilizando a accuracy

```
[38]: val_loss_CatCross_RMS_dropout, val_acc_CatCross_RMS_dropout = model_dropout.
      ⇔evaluate(validation_dataset)
      val_loss_CatCross_RMS_12, val_acc_CatCross_RMS_12 = model_12.
       ⇔evaluate(validation_dataset)
      val_loss_CatCross_RMS_dropout_12, val_acc_CatCross_RMS_dropout_12 = model_both.
       ⇔evaluate(validation_dataset)
      print("Validation Accuracy dos modelos:")
      print(f"CatCross + RMSprop + Dropout: {val loss CatCross RMS dropout: .4f}")
      print(f"CatCross + RMSprop + L2: {val_loss_CatCross_RMS_12:.4f}")
      print(f"CatCross + RMSprop + Dropout + L2: {val loss CatCross RMS dropout 12:.

4f}")

      results = {
          'CatCross_RMS_Dropout': val_acc_CatCross_RMS_dropout,
          'CatCross_RMS_L2': val_acc_CatCross_RMS_12,
          'CatCross RMS_Dropout_L2': val_acc_CatCross_RMS_dropout_12
      }
      # Identificar o melhor modelo com base na maior val_accuracy
      best model = max(results, key=results.get)
      best_accuracy = results[best_model]
      print(f"\nMelhor modelo: {best model} com val accuracy = {best accuracy:.4f}")
     94/94
                       4s 35ms/step -
     accuracy: 0.8360 - loss: 0.4948
                       3s 30ms/step - acc:
     94/94
     0.7997 - loss: 0.8191
     94/94
                       3s 29ms/step -
     accuracy: 0.8049 - loss: 0.8338
     Validation Accuracy dos modelos:
     CatCross + RMSprop + Dropout: 0.4568
     CatCross + RMSprop + L2: 0.8033
     CatCross + RMSprop + Dropout + L2: 0.8178
     Melhor modelo: CatCross_RMS_Dropout com val_accuracy = 0.8503
     6.2 Matriz de confusão do melhor modelo
```

```
[39]: y_true, y_pred = get_true_pred(model_dropout, test_dataset)
cm = confusion_matrix(y_true, y_pred)

plt.figure(figsize=(6, 6))
```

2025-06-12 22:52:36.305303: I tensorflow/core/framework/local_rendezvous.cc:407] Local rendezvous is aborting with status: OUT_OF_RANGE: End of sequence

6.3 Calcular saída do modelo para uma imagem

```
[40]: img_path = 'Dataset/archive/seg_test/sea/20072.jpg'
     img = tf.keras.preprocessing.image.load_img(
         img_path,
         target_size=(150, 150),
         interpolation='bilinear'
     )
     plt.imshow(img)
     plt.axis('off')
     plt.title("Imagem de Teste")
     plt.show()
     img_array = tf.keras.preprocessing.image.img_to_array(img)
     img_array = tf.expand_dims(img_array, 0)
     # Previsão
     result = model_dropout.predict(img_array)
     class_names = ['buildings', 'forest', 'glacier', 'mountain', 'sea', 'street']
     print("Probabilidades por classe:")
     for i, prob in enumerate(result[0]):
         print(f"{class_names[i]:>10s}: {prob:.4f}")
     # Classe prevista
     predicted_class = np.argmax(result)
     print(f"\nClasse prevista: {class_names[predicted_class]}__
```

Imagem de Teste

1/1 Os 41ms/step Probabilidades por classe:

buildings: 0.0069 forest: 0.0004 glacier: 0.0563 mountain: 0.0155

sea: 0.9200 street: 0.0009

Classe prevista: sea (0.9200)