HIGGS BUNDLES — EXISTENCE OF SOLUTIONS

PEDRO NÚÑEZ

ABSTRACT. In this talk we introduce the stability condition for Higgs bundles and prove the Hitchin–Kobayashi correspondence. The main result is [Hit87, Theorem 4.3]. Relevant literature is [Hit87, §3 and §4] and [Wen14, §2 and §3]. Maybe we will also use [Wen16] every now and then.

This talk is related to Tanuj's talk on *Stable vector bundles*, for which the main reference is [Kob87]. Therefore we will also use [Kob87] as a main reference for generalities on complex vector bundles.

CONTENTS

Notation and conventions	1
1. Stability	2
References	4

NOTATION AND CONVENTIONS

We will try to follow the notation and conventions of the main reference [Hit87] most of the time. M will denote a compact Riemann surface genus g. We denote by O the trivial line bundle on M and by K the canonical line bundle on M. All morphisms, vector bundles and sections are holomorphic unless otherwise specified.

The slope of a vector bundle V on M will be denoted by

$$\mu(V) := \frac{\deg V}{\operatorname{rk} V}.$$

The dimension of $H^i(M, V)$ will be denoted by $h^i(M, V)$ or simply by $h^i(V)$ if it is clear over which space we are taking the sections.

Date: 14th June 2020.

Supported by the DFG-Graduiertenkolleg GK1821 "Cohomological Methods in Geometry" at the University of Freiburg.

When tensoring several bundles we will omit the symbols \otimes unless confusion may result from other operators involved, for example

$$AB \otimes \operatorname{End}(C)$$
 or $\Lambda^2 A \otimes BC$.

1. Stability

Definition 1.1 (Higgs bundles). A *Higgs bundle* on M is a pair (V, Φ) , where V is a rank 2 vector bundle on M and Φ is a global section of End $V \otimes K$, called a *Higgs field* on V.

Remark 1.2. Using the canonical isomorphisms

$$H^0(M, \operatorname{End} V \otimes K) \cong \operatorname{Hom}(O, V^* \otimes V \otimes K) \cong \operatorname{Hom}(V, V \otimes K)$$

we will identify Φ with a morphism of vector bundles

$$\Phi \colon V \to V \otimes K$$
.

Remark 1.3. We are mainly interested in the subbundle of traceless endomorphisms, denoted $\operatorname{End}_0 V$.

Example 1.4. Assume $g \ge 2$. Then $\deg K = 2g - 2 > 0$, so we can find a line bundle $K^{\frac{1}{2}}$ such that $K^{\frac{1}{2}} \otimes K^{\frac{1}{2}} \cong K$. Let $V = K^{\frac{1}{2}} \oplus K^{-\frac{1}{2}}$, where $K^{-\frac{1}{2}} = (K^{\frac{1}{2}})^{-1}$. We consider the Higgs field $\Phi_w \colon K^{\frac{1}{2}} \oplus K^{-\frac{1}{2}} \to (K^{\frac{1}{2}} \oplus K^{-\frac{1}{2}}) \otimes K$ given by a matrix

$$\begin{pmatrix} 0 & w \\ 1 & 0 \end{pmatrix}$$
,

where $w \in \text{Hom}(K^{-\frac{1}{2}}, K^{\frac{1}{2}} \otimes K) \cong H^0(M, K^2)$ can be regarded as a quadratic differential.

Definition 1.5 (Stability of Higgs bundles). A Higgs bundle (V, Φ) on M is said to be *stable* if for every Φ -invariant¹ line bundle $L \subseteq V$ we have $\mu(L) < \mu(V)$.

Remark 1.6. (V,0) is stable if and only if V is stable in the usual sense.

Example 1.7 (Omit during the talk). On \mathbb{P}^1 , we can write every rank 2 vector bundle as $V \cong O(a) \oplus O(b)$ for some integers $a \geqslant b$, where O(-1) is the tautological line bundle on \mathbb{P}^1 and $O(a) := O(-1)^{-a}$. Let $\Phi \in \text{Hom}(V, V \otimes K)$ be given by the matrix

$$\begin{pmatrix} 0 & \theta_1 \\ \theta_2 & 0 \end{pmatrix}$$

with $\theta_1 \in \text{Hom}(O(b), O(a) \otimes K)$ and $\theta_2 \in \text{Hom}(O(a), O(b) \otimes K)$. Since $K \cong O(-2)$, we can also regard θ_1 as a global section of O(a - b - 2)

¹Meaning that $\Phi(L) \subseteq L \otimes K$.

and θ_2 as a global section of O(b-a-2). Since $a \ge b$, the line bundle O(b-a-2) does not have any global sections. Hence $\theta_2=0$ and $O(a) \subseteq V$ is Φ -invariant. But

$$\deg O(a) = a \geqslant \frac{a+b}{2} = \frac{\deg V}{2},$$

so (V, Φ) cannot be a stable Higgs bundle.

Example 1.8. Assume $g \ge 2$ and consier $V = K^{\frac{1}{2}} \oplus K^{-\frac{1}{2}}$ again. Then Φ_0 is stable, because $K^{-\frac{1}{2}}$ is the only Φ_0 -invariant line bundle and

$$\deg K^{-\frac{1}{2}} = 1 - g < 0 = \frac{\deg V}{2}.$$

Proposition 1.9. Assume $g \ge 2$. A rank 2 vector bundle V occurs in a stable Higgs bundle (V, Φ) if and only if one of the following holds:

- i) V is stable;
- ii) V is semi-stable and g > 2;
- iii) V is semi-stgable, g=2 and $V\cong U\otimes L$, where U is either a direct sum of line bundles or an extension of the form

$$0 \to O \to U \to O \to 0$$
.

- iv) V is not semi-stable and $h^0(L_V^{-2} \otimes K \otimes \det V) > 1$, where $L_V \subseteq V$ is the unique rank 1 subbundle with $\mu(L_V) \geqslant \mu(V)$;
- v) V is a direct sum of line bundles of the form

$$V \cong L_V \oplus (L_V^{-1} \otimes \det V)$$

and $h^0(L_V^{-2} \otimes K \otimes \det V) = 1$, where $L_V \subseteq V$ is again the unique rank 1 subbundle with $\mu(L_V) \geqslant \mu(V)$.

Proof. Let $p: P(V) \to M$ be the projectivisation of our rank 2 vector bundle, which is the \mathbb{P}^1 -bundle obtained by replacing each fibre V_x by its projectivisation $(V_x \setminus \{0\})/\mathbb{C}^\times$. Let $S \subseteq p^*V$ be the tautological line bundle on P(V), whose fibre over a point $[v] \in p^{-1}(x)$ is given by the line $\{\lambda v \mid \lambda \in \mathbb{C}\} \subseteq V_x$. Let $H := S^*$ be its dual, which fits into a short exact sequence

$$0 \to Q^* \to p^* V^* \to H \to 0.$$

Let $U \subseteq M$ be an open subset trivialising V. Then the quotient map $p^*V^* \to H$ in the previous short exact sequence induces an isomorphism

$$H^0(p^{-1}(U),p^*V^*) \cong H^0(p^{-1}(U),H),$$

so the pushforward of the sheaf of sections of p^*V^* is isomorphic to the pushforward of the sheaf of sections of H. Since p has connected fibres we have $p_*\mathcal{O}_{P(V)} \cong \mathcal{O}_M$, so applying the projection formula [Har77,

Exercise II.5.1.d] we deduce that the pushforward of the sheaf of sections of H is isomorphic to the sheaf of sections of V^* . Abusing slightly the notation we will express this as $V^* \cong p_*H$, and similarly we have $\operatorname{Sym}^2 V^* \cong p_*H^2$.

Let $x \in M$. Then every endomorphism $A \in \operatorname{End}(V_x)$ defines a quadratic map $V_x \to \Lambda^2 V_x$ sending v to $Av \wedge v$. Such a quadratic map can be naturally regarded as a degree 2 homogeneous polynomial on the coordinates coordinates of v with coefficients in $\Lambda^2 V_x$. Hence we have a vector bundle morphism $\operatorname{End}(V) \to S^2 V \otimes \Lambda^2 V$. Restricting to $\operatorname{End}_0(V)$ we get an injective morphism, because $A \in \operatorname{End}(V_x)$ is sent to $0 \in S^2 V_x \otimes \Lambda^2 V_x$ if and only if A is a multiple of the identity. Counting dimensions we see that we have in fact an isomorphism of vector bundles $\operatorname{End}_0(V) \cong S^2 V \otimes \Lambda^2 V$, and therefore

$$\operatorname{End}_0(V) \otimes K \cong p_* H^2 K \otimes \Lambda^2 V.$$

Using again that $p_*p^*(-)\cong (-)$ for vector bundles we have a \mathbb{C} -linear isomorphism

$$s \colon H^0(M, \operatorname{End}_0(V) \otimes K) \cong H^0(P(V), H^2p^*(K \otimes \Lambda^2V)).$$

REFERENCES

[Har77] R. Hartshorne. Algebraic geometry. Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. $\uparrow 4$

[Hit87] N. J. Hitchin. The self-duality equations on a Riemann surface. *Proc. London Math. Soc.* (3), 55(1):59–126, 1987. $\uparrow 1$

[Kob87] Shoshichi Kobayashi. Differential geometry of complex vector bundles, volume 15 of Publications of the Mathematical Society of Japan. Princeton University Press, Princeton, NJ; Princeton University Press, Princeton, NJ, 1987. Kanô Memorial Lectures, 5. ↑ 1

[Wen14] Richard A. Wentworth. Higgs bundles and local systems on riemann surfaces, 2014. $\uparrow 1$

[Wen16] Richard Wentworth. Higgs Bundles and Local Systems on Riemann Surfaces, pages 165–219. Springer International Publishing, Cham, 2016. ↑ 1

Pedro Núñez, Mathematisches Institut, Albert-Ludwigs-Universität Freiburg, Ernst-Zermelo-Strasse 1, 79104 Freiburg im Breisgau, Germany

Email address: pedro.nunez@math.uni-freiburg.de URL: https://home.mathematik.uni-freiburg.de/nunez