

## Project Cost Management



### COST

a resource sacrificed or foregone to achieve a specific objective or something given up in exchange

### Project cost management

the processes required to ensure that the project is completed within an approved budget

### **Project Cost Management Processes**



### **Project Cost Management Summary**

#### Planning

Process: Plan cost management Outputs: Cost management plan

**Process: Estimate costs** 

Outputs: Activity cost estimates, basis of estimates, project documents

updates

Process: Determine budget

Outputs: Cost baseline, project funding requirements, project

documents updates

#### **Monitoring and Controlling**

Process: Control costs

Outputs: Work performance information, cost forecasts, change requests,

project management plan updates, project documents updates,

organizational process assets updates

**Project Start** 

**Project Finish** 

## **Basic Principles of Cost Management**

**Profits** are revenues minus expenditures

**Profit margin** is the ratio of revenues to profits

**Life cycle costing** considers the total cost of ownership, or development plus support costs, for a project

**Cash flow analysis** determines the estimated annual costs and benefits for a project and the resulting annual cash flow

## **Basic Principles of Cost Management**



## **Basic Principles of Cost Management**

Learning curve theory

Reserves are dollars included in a cost stimate to mitigate cost risk by allowing for future situations that are difficult to predic

### Planning Cost Management

| Level of accuracy                |
|----------------------------------|
| Units of measure                 |
| Organizational procedures links  |
| Control thresholds               |
| Rules of performance measurement |
| Reporting formats                |
| Process descriptions             |

## **Cost Estimating**

• A Rough order of magnitude (ROM) estimate provides an estimate of what a project will cost

 A budgetary estimate is used to allocate money into an organization's budget

 A definitive estimate provides an accurate estimate of project costs

## Types of Cost Estimates

| Type of Estimate               | When Done                                                                             | Why Done                                               | How Accurate  |
|--------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------|---------------|
| Rough order of magnitude (ROM) | Very early in the project life<br>cycle, often 3–5 years before<br>project completion | Provides estimate of cost for selection decisions      | -50% to +100% |
| Budgetary                      | Early, 1–2 years out                                                                  | Puts dollars in the budget plans                       | -10% to +25%  |
| Definitive                     | Later in the project, less than 1 year out                                            | Provides details for purchases, estimates actual costs | -5% to +10%   |

# Cost Estimation Tools and Techniques

 Analogous or top-down estimates: use the actual cost of a previous, similar project as the basis for estimating the cost of the current project

 Bottom-up estimates: involve estimating individual work items or activities and summing them to get a project total

 Parametric modeling: uses project characteristics (parameters) in a mathematical model to estimate project costs

## Typical Problems with IT Cost Estimates

Estimates are done too quickly

Lack of estimating experience

Human beings are biased toward underestimation

Management desires accuracy

### Sample Cost Estimate

#### The project has the following WBS:

- 1. Project management
- 2. Hardware
  - 2.1 Handheld devices
  - 2.2 Servers
- 3. Software
  - 3.1 Licensed software
  - 3.2 Software development
- 4. Testing
- 5. Training and support
- 6. Reserves

|                                                       | # Units/Hrs. | Cost/Unit/Hr. | Subtotals | WBS Level 2 Totals | % of Total |
|-------------------------------------------------------|--------------|---------------|-----------|--------------------|------------|
| WBS Items                                             |              |               |           |                    |            |
| 1. Project Management                                 |              |               |           | \$306,300          | 20%        |
| Project manager                                       | 960          | \$100         | \$96,000  |                    |            |
| Project team members                                  | 1920         | \$75          | \$144,000 |                    |            |
| Contractors (10% of software development and testing) |              |               | \$66,300  |                    |            |
| 2. Hardware                                           |              |               |           | \$76,000           | 5%         |
| 2.1 Handheld devices                                  | 100          | \$600         | \$60,000  |                    |            |
| 2.2 Servers                                           | 4            | \$4,000       | \$16,000  |                    |            |
| 3. Software                                           |              |               |           | \$614,000          | 40%        |
| 3.1 Licensed software                                 | 100          | \$200         | \$20,000  |                    |            |
| 3.2 Software development*                             |              |               | \$594,000 |                    |            |
| 4. Testing (10% of total hardware and software costs) |              |               | \$69,000  | \$69,000           | 5%         |
| 5. Training and Support                               |              |               |           | \$202,400          | 13%        |
| Trainee cost                                          | 100          | \$500         | \$50,000  |                    |            |
| Travel cost                                           | 12           | \$700         | \$8,400   |                    |            |
| Project team members                                  | 1920         | \$75          | \$144,000 |                    |            |
| 6. Reserves (20% of total estimate)                   |              |               | \$253,540 | \$253,540          | 17%        |
| Total project cost estimate                           |              |               |           | \$1,521,240        |            |

| 1. Labor Estimate                    | # Units/Hrs. | Cost/Unit/Hr. | Subtotals | Calculations             |
|--------------------------------------|--------------|---------------|-----------|--------------------------|
| Contractor labor estimate            | 3000         | \$150         | \$450,000 | 3000 *150                |
| Project team member estimate         | 1920         | \$75          | \$144,000 | 1920 * 75                |
| Total labor estimate                 |              |               | \$594,000 | Sum above two values     |
|                                      |              |               |           |                          |
| 2. Function point estimate**         | Quantity     | Conversion    | Function  | Calculations             |
| -                                    |              | Factor        | Points    |                          |
| External inputs                      | 10           | 4             | 40        | 10 * 4                   |
| External interface files             | 3            | 7             | 21        | 3 * 7                    |
| External outputs                     | 4            | 5             | 20        | 4 * 5                    |
| External queries                     | 6            | 4             | 24        | 6 * 4                    |
| Logical internal tables              | 7            | 10            | 70        | 7 * 10                   |
| Total function points                |              |               | 175       | Sum above function point |
|                                      |              |               |           | values                   |
| Java 2 languange equivalency         |              |               | 46        | Assumed value from       |
| value                                |              |               |           | reference                |
| Source lines of code (SLOC) estimate |              |               | 8,050     | 175 * 46                 |
| Productivity×KSLOC^Penalty           |              |               | 29.28     | 3.13 * 8.05^1.072        |
| (in months)                          |              |               |           | (see reference)          |
| Total labor hours (160 hours/month)  |              |               | 4,684.65  | 29.28 *160               |
| Cost/labor hour (\$120/hour)         |              |               | \$120     | Assumed value from       |
| (4                                   |              |               |           | budget expert            |
| Total function point estimate        |              |               | \$562,158 | 4684.65 * 120            |

### Determining The Budget

Determining the budget involves allocating the project cost estimate to individual material resources or work items over time.

The main goal of the cost budgeting process is to produce a cost baseline for measuring project performance and to determine project funding requirement

| WBS Items                | 1      | 2      | 3      | 4       | 5       | 6       | 7       | 8       | 9       | 10     | 11     | 12     | Totals    |
|--------------------------|--------|--------|--------|---------|---------|---------|---------|---------|---------|--------|--------|--------|-----------|
| Project Management       |        |        |        |         |         |         |         |         |         |        |        |        |           |
| 1.1 Project manager      | 8,000  | 8,000  | 8,000  | 8,000   | 8,000   | 8,000   | 8,000   | 8,000   | 8,000   | 8,000  | 8,000  | 8,000  | 96,000    |
| 1.2 Project team members | 12,000 | 12,000 | 12,000 | 12,000  | 12,000  | 12,000  | 12,000  | 12,000  | 12,000  | 12,000 | 12,000 | 12,000 | 144,000   |
| 1.3 Contractors          |        | 6,027  | 6,027  | 6,027   | 6,027   | 6,027   | 6,027   | 6,027   | 6,027   | 6,027  | 6,027  | 6,027  | 66,300    |
| 2. Hardware              |        |        |        |         |         |         |         |         |         |        |        |        |           |
| 2.1 Handheld devices     |        |        |        | 30,000  | 30,000  |         |         |         |         |        |        |        | 60,000    |
| 2.2 Servers              |        |        |        | 8,000   | 8,000   |         |         |         |         |        |        |        | 16,000    |
| 3. Software              |        |        |        |         |         |         |         |         |         |        |        |        |           |
| 3.1 Licensed software    |        |        |        | 10,000  | 10,000  |         |         |         |         |        |        |        | 20,000    |
| 3.2 Software development |        | 60,000 | 60,000 | 80,000  | 127,000 | 127,000 | 90,000  | 50,000  |         |        |        |        | 594,000   |
| 4. Testing               |        |        | 6,000  | 8,000   | 12,000  | 15,000  | 15,000  | 13,000  |         |        |        |        | 69,000    |
| 5. Training and Support  |        |        |        |         |         |         |         |         |         |        |        |        |           |
| 5.1 Trainee cost         |        |        |        |         |         |         |         |         | 50,000  |        |        |        | 50,000    |
| 5.2 Travel cost          |        |        |        |         |         |         |         |         | 8,400   |        |        |        | 8,400     |
| 5.3 Project team members |        |        |        |         |         |         | 24,000  | 24,000  | 24,000  | 24,000 | 24,000 | 24,000 | 144,000   |
| 6. Reserves              |        |        |        | 10,000  | 10,000  | 30,000  | 30,000  | 60,000  | 40,000  | 40,000 | 30,000 | 3,540  | 253,540   |
| Totals                   | 20,000 | 86,027 | 92,027 | 172,027 | 223,027 | 198,027 | 185,027 | 173,027 | 148,427 | 90,027 | 80,027 | 53,567 | 1,521,240 |

### **Cost Control**

Monitoring cost performance

Ensuring that only appropriate project changes are included in a revised cost baseline

Informing project stakeholders of authorized changes to the project that will affect costs

# Earned Value Management (EVM)

**EVM** is a project performance measurement technique that integrates scope, time, and cost data

# Earned Value Management (EVM)

The **planned value (PV)**, also called the budget, is that portion of the approved total cost estimate planned to be spent on an activity during a given period

**Actual cost (AC)** is the total of direct and indirect costs incurred in accomplishing work on an activity during a given period

The **earned value (EV)**, is an estimate of the value of the physical work actually completed

### **Earned Value Formulas**

| Term                             | Formula                    |
|----------------------------------|----------------------------|
| Earned value (EV)                | EV = PV to date * RP       |
| Cost variance (CV)               | CV = EV - AC               |
| Schedule variance (SV)           | SV = EV - PV               |
| Cost performance index (CPI)     | CPI = EV/AC                |
| Schedule performance index (SPI) | SPI = EV/PV                |
| Estimate at completion (EAC)     | EAC = BAC/CPI              |
| Estimated time to complete       | Original time estimate/SPI |

### Rate of Performance

Rate of performance (RP) is the ratio of actual work completed to the percentage of work planned to have been completed at any given time during the life of the project or activity

For example, suppose the server installation was halfway completed by the end of week 1; the rate of performance would be 50% because by the end of week 1, the planned schedule reflects that the task should be 100% complete and only 50% of that work has been completed

Cost variance (CV) is the earned value minus the actual cost. If cost variance is a negative number, it means that performing the work cost more than planned. If cost variance is a positive number, performing the work cost less than planned.

Schedule variance (SV) is the earned value minus the planned value. A negative schedule variance means that it took longer than planned to perform the work, and a positive schedule variance means that the work took less time than planned to perform.

The cost performance index (CPI) is the ratio of earned value to actual cost; it can be used to estimate the projected cost of completing the project. If the CPI is equal to one, or 100 percent, then the planned and actual costs are equal—the costs are exactly as budgeted. If the CPI is less than one or less than 100 percent, the project is over budget. If the CPI is greater than one or more than 100 percent, the project is under budget.

The schedule performance index (SPI) is the ratio of earned value to planned value; it can be used to estimate the projected time to complete the project. Similar to the cost performance index, an SPI of one, or 100 percent, means the project is on schedule. If the SPI is greater than one or 100 percent, then the project is ahead of schedule. If the SPI is less than one or 100 percent, the project is behind schedule

The estimate at completion (EAC)—an estimated cost of completing a project based on performance to date. Similarly, the schedule performance index can be used to calculate an estimated time to complete the project.

# Earned Value Calculations for One Activity After Week One

| Activity                         | Week 1  |
|----------------------------------|---------|
| Earned value (EV)                | 5,000   |
| Planned value (PV)               | 10,000  |
| Actual cost (AC)                 | 15,000  |
| Cost variance (CV)               | -10,000 |
| Schedule variance (SV)           | -5,000  |
| Cost performance index (CPI)     | 33%     |
| Schedule performance index (SPI) | 50%     |

### Rules Earned Value Numbers

- Negative numbers for cost and schedule variance indicate problems in those areas
- CPI and SPI less than 100% indicate problems
- Problems mean the project is costing more than planned (over budget) or taking longer than planned (behind schedule)
- The CPI can be used to calculate the estimate at completion
   (EAC)—an estimate of what it will cost to complete the project
   based on performance to date; the budget at completion
   (BAC) is the original total budget for the project

## Earned Value Chart for Project after Five Months



### **End of File**