Devoir surveillé n°4: corrigé

Problème 1 – Résolution d'une équation différentielle

Partie I - Résolution d'une première équation différentielle

- 1. Les solutions de l'équation caractéristique associée à (E_1) sont évidemment 2i et -2i. Les solutions de l'équation différentielle (E_1) sont les fonctions $t \mapsto \lambda \cos(2t) + \mu \sin(2t)$ avec $(\lambda, \mu) \in \mathbb{R}^2$.
- 2. Les solutions de l'équation caractéristique associée à (E_2) sont évidemment 2 et -2. Les solutions de l'équation différentielle (E_2) sont les fonctions $t \mapsto \lambda e^{2t} + \mu e^{-2t}$ avec $(\lambda, \mu) \in \mathbb{R}^2$.
- 3. On a montré que l'ensemble des solutions de (E₂) était

$$S = \{t \mapsto \lambda e^{2t} + \mu e^{-2t}, (\lambda, \mu) \in \mathbb{R}^2\}$$

On veut montrer que c'est également

$$\mathcal{S}' = \{ t \mapsto \lambda \operatorname{ch}(2t) + \mu \operatorname{sh}(2t), \ (\lambda, \mu) \in \mathbb{R}^2 \}$$

Soit donc $f \in \mathcal{S}$. Il existe donc $(\lambda, \mu) \in \mathbb{R}^2$ tel que $f(t) = \lambda e^{2t} + \mu e^{-2t}$ pour tout $t \in \mathbb{R}$. En posant $A = \frac{\lambda + \mu}{2}$ et $B = \frac{\lambda - \mu}{2}$, $f(t) = A \operatorname{ch}(2t) + \mu \operatorname{sh}(2t)$ pour tout $t \in \mathbb{R}$ donc $f \in \mathcal{S}'$.

Réciproquement, soit $f \in \mathcal{S}'$. Il existe donc $(\lambda, \mu) \in \mathbb{R}^2$ tel que $f(t) = \lambda \operatorname{ch}(2t) + \mu \operatorname{sh}(2t)$ pour tout $t \in \mathbb{R}$. En posant $A = \frac{\lambda + \mu}{2}$ et $B = \frac{\lambda - \mu}{2}$, $f(t) = Ae^{2t} + Be^{-2t}$ pour tout $t \in \mathbb{R}$ donc $f \in \mathcal{S}$. Par double inclusion, $\mathcal{S} = \mathcal{S}'$.

Partie II - Résolution d'une seconde équation différentielle par changement de variable

- **4.** cos est deux fois dérivable sur]0, π [à valeurs dans]-1, 1[et f est deux fois dérivable sur]-1, 1[donc $g = f \circ \arccos$ est deux fois dérivable sur]0, π [.
- **5.** Puisque g est deux fois dérivable sur $]0,\pi[$, on montre successivement que pour tout $x \in]-1,1[$,

$$\begin{split} f(x) &= g(\arccos(x)) \\ f'(x) &= -(1-x^2)^{-\frac{1}{2}} g'(\arccos(x)) \\ f''(x) &= -x(1-x^2)^{-\frac{3}{2}} g'(\arccos(x)) + (1-x^2)^{-1} g''(\arccos(x)) \end{split}$$

f est solution de (F) sur] -1, 1[si et seulement si

$$\forall x \in]-1, 1[, (1-x^2)f''(x) - xf'(x) + 4f(x) = 0$$

Or d'après ce qui précède, pour tout $x \in]-1,1[$,

$$xf'(x) = -x(1-x^2)^{-\frac{1}{2}}g'(\arccos(x))$$
$$(1-x^2)f''(x) = -x(1-x^2)^{-\frac{1}{2}}g'(\arccos(x)) + g''(\arccos(x))$$

Ainsi f est-elle solution de (F) sur] -1, 1[si et seulement si

$$\forall x \in]-1,1[, g''(\arccos(x))+4g(\arccos(x))=0$$

Puisque $\arccos(]-1,1[)=]0,\pi[$, cette dernière condition équivaut à

$$\forall t \in]0, \pi[, g''(t) + 4g(t) = 0$$

Pour résumer, f est solution de F sur] -1, 1[si et seulement si g est solution de ((E₁) sur]0, π [.

6. On a déterminé à la question **I.1** les solutions de (E_1) sur \mathbb{R} et donc a fortiori sur $]0,\pi[$. On en déduit que les solutions de (F) sur]-1,1[sont les fonctions

$$x \mapsto \arccos(x) + \lambda \cos(2\arccos(x)) + \mu \sin(2\arccos(x))$$

avec $(\lambda, \mu) \in \mathbb{R}^2$. Or pour tout $x \in]-1, 1[$,

$$\cos(2\arccos(x)) = 2\cos^2(\arccos(x)) - 1 = 2x^2 - 1$$

$$\sin(2\arccos(x)) = 2\cos(\arccos(x))\sin(\arccos(x)) = 2x\sqrt{1 - x^2}$$

Les solutions de (F) sur]-1,1[sont donc les fonctions

$$x \mapsto \lambda(2x^2 - 1) + 2\mu x \sqrt{1 - x^2}$$

Partie III - La fonction argument cosinus hyperbolique

- 7. La fonction ch est strictement croissante et continue sur \mathbb{R}_+ . De plus, ch(0) = 1 et $\lim_{+\infty} ch = +\infty$ donc ch induit une bijection de \mathbb{R}_+ sur $[1, +\infty[$.
- 8. Soit $x \in [1, +\infty[$. Posons $\theta = \operatorname{argch}(x)$. On sait que $\operatorname{sh}^2(\theta) = \operatorname{ch}^2(\theta) 1 = x^2 1$. De plus, $\theta \in \mathbb{R}_+$ par définition de argch. Ainsi $\operatorname{sh}\theta \geqslant 0$. Finalement, $\operatorname{sh}(\operatorname{argch}(x)) = \operatorname{sh}(\theta) = \sqrt{x^2 1}$.
- 9. La fonction che st dérivable sur \mathbb{R}_+^* et sa dérivée sh ne s'annule pas sur cet intervalle. En tant que bijection réciproque de la bijection induite par che \mathbb{R}_+ sur $[1, +\infty[$, argche st dérivable sur $\mathrm{ch}(\mathbb{R}_+^*) =]1, +\infty[$. De plus, pour tout $x \in]1, +\infty[$,

$$\operatorname{argch}'(x) = \frac{1}{\operatorname{ch}'(\operatorname{argch}(x))} = \frac{1}{\operatorname{sh}(\operatorname{argch}(x))} = \frac{1}{\sqrt{x^2 - 1}}$$

10. C'est du calcul bête et méchant. Soit $\theta \in \mathbb{R}$.

$$2 \operatorname{ch}^{2}(\theta) - 1 = 2 \left(\frac{e^{\theta} + e^{-\theta}}{2} \right)^{2} - 1 = \frac{e^{2\theta} + e^{-2\theta} + 2}{2} - 1 = \frac{e^{2\theta} + e^{-2\theta}}{2} = \operatorname{ch}(2\theta)$$
$$2 \operatorname{ch}(\theta) \operatorname{sh}(\theta) = 2 \frac{e^{\theta} - e^{-\theta}}{2} \cdot \frac{e^{\theta} - e^{-\theta}}{2} = \frac{(e^{\theta})^{2} - (e^{-\theta})^{2}}{2} = \frac{e^{2\theta} - e^{-2\theta}}{2} = \operatorname{sh}(2\theta)$$

11. Par définition de la fonction argch, ch(argch x) = x pour tout $x \in [1, +\infty[$. Par ailleurs, on a vu que sh(argch(x)) = $\sqrt{x^2 - 1}$ pour tout $x \in [1, +\infty[$. On en déduit que pour tou $x \in [1, +\infty[$,

$$\begin{split} \operatorname{ch}(2\operatorname{argch}(x)) &= 2\operatorname{ch}^2(\operatorname{argch}(x)) - 1 = 2x^2 - 1 \\ \operatorname{sh}(2\operatorname{argch}(x)) &= 2\operatorname{ch}(\operatorname{argch}(x))\operatorname{sh}(\operatorname{argch}(x)) = 2x\sqrt{x^2 - 1} \end{split}$$

Partie IV - Un problème de raccord

12. Soit f une fonction deux fois dérivable sur $]1,+\infty[$. Alors $g=f\circ ch$ est deux fois dérivable sur \mathbb{R}_+^* et, pour tout $x\in]1,+\infty[$, on a successivement

$$f(x) = g(\operatorname{argch}(x))$$

$$f'(x) = (x^2 - 1)^{-\frac{1}{2}} g'(\operatorname{argch}(x))$$

$$f''(x) = -x(x^2 - 1)^{-\frac{3}{2}} g'(\operatorname{arccos}(x)) + (x^2 - 1)^{-1} g''(\operatorname{arccos}(x))$$

Or f est solution de (F) sur]1, $+\infty$ [si et seulement si

$$\forall x \in]1, +\infty[, (1-x^2)f''(x) - xf'(x) + 4f(x) = 0$$

Or d'après ce qui précède, pour tout $x \in]1, +\infty[$,

$$xf'(x) = x(x^2 - 1)^{-\frac{1}{2}}g'(\operatorname{argch}(x))$$
$$(1 - x^2)f''(x) = -(x^2 - 1)f''(x) = x(x^2 - 1)^{-\frac{1}{2}}g'(\operatorname{argch}(x)) - g''(\operatorname{argch}(x))$$

Ainsi f est-elle solution de (F) sur]1, $+\infty$ [si et seulement si

$$\forall x \in]1, +\infty[, -q''(\operatorname{argch}(x)) + 4q(\operatorname{argch}(x)) = 0$$

Puisque $\operatorname{argch}(]1, +\infty[) = \mathbb{R}_+^*$, cette dernière condition équivaut à

$$\forall t \in \mathbb{R}^*_+, \ g''(t) - 4g(t) = 0$$

Pour résumer, f est solution de (F) sur $]1, +\infty[$ si et seulement si g est solution de (E_2) sur \mathbb{R}_+^* . La question **I.3** montre alors que les solutions de l'équation différentielle de (F) sur $]1, +\infty[$ sont les fonctions

$$x \in]1, +\infty[\mapsto \lambda \operatorname{ch}(2\operatorname{argch}(x)) + \mu \operatorname{sh}(2\operatorname{argch}(x))]$$

ou encore

$$x \in]1, +\infty[\mapsto \lambda(2x^2 - 1) + 2\mu x \sqrt{x^2 - 1}]$$

avec $(\lambda, \mu) \in \mathbb{R}^2$.

13. Soit f une fonction deux fois dérivable sur $]-\infty,-1[$. Alors $g:x\mapsto f(-x)$ est deux fois dérivable sur $]1,+\infty[$. De plus, pour tout $x\in]1,+\infty[$, g'(x)=-f'(-x) et g''(x)=f''(-x). f est solution de (F) sur $]-\infty,-1[$ si et seulement si

$$\forall x \in]-\infty, -1[, (1-x^2)f''(x) - xf'(x) + 4f(x) = 0$$

Ceci équivaut à

$$\forall x \in]1, \infty[, (1 - (-x)^2)f''(-x) - (-x)f'(-x) + 4f(-x) = 0$$

ou encore à

$$\forall x \in]1, \infty[, (1-x^2)f''(-x) + xf'(-x) + 4f(-x) = 0$$

et finalement à

$$\forall x \in]1, \infty[, (1-x^2)g''(x) - xg'(x) + 4g(x) = 0$$

Finalement f est solution de (F) sur] $-\infty$, -1[si et seulement si g est solution de (F) sur]1, $+\infty[$. On en déduit que les solutions de (F) sur] $-\infty$, -1[sont les fonctions

$$x\in]1,+\infty[\mapsto \lambda(2(-x)^2-1)+2\mu(-x)\sqrt{(-x)^2-1}$$

avec $(\lambda, \mu) \in \mathbb{R}^2$. On peut également affirmer que ce sont les fonctions

$$x \in]1, +\infty[\mapsto \lambda(2x^2 - 1) + 2\mu x \sqrt{x^2 - 1}]$$

avec $(\lambda, \mu) \in \mathbb{R}^2$ puisque $-\mu$ décrit \mathbb{R} lorsque μ décrit \mathbb{R} .

14. Soit f une solution de (F) sur \mathbb{R} . Remarquons qu'alors f est deux fois dérivable sur \mathbb{R} . En particulier, f et f' sont continues sur \mathbb{R} .

D'après, les questions précédentes il existe $(\lambda_-,\mu_-,\lambda_0,\mu_0,\lambda_+,\mu_+)\in\mathbb{R}^6$ tel que

$$\begin{aligned} \forall x \in]-\infty, -1[, &f(x) = \lambda_{-}(2x^{2}-1) + 2\mu_{-}x\sqrt{x^{2}-1} \\ \forall x \in]-1, 1[, &f(x) = \lambda_{0}(2x^{2}-1) + 2\mu_{0}x\sqrt{1-x^{2}} \\ \forall x \in]1, \infty[, &f(x) = \lambda_{+}(2x^{2}-1) + 2\mu_{+}x\sqrt{x^{2}-1} \end{aligned}$$

Par continuité de f en -1, $\lim_{x\to -1^-} f(x) = \lim_{x\to -1^+} f(x)$ et donc $\lambda_- = \lambda_0$. De même, par continuité de f en 1, $\lambda_0 = \lambda_+$. Finalement, $\lambda_- = \lambda_0 = \lambda_+$.

$$\forall x \in]-\infty, -1[, f(x) = 4\lambda_{-}x + 2\mu_{-}\frac{2x^{2} - 1}{\sqrt{x^{2} - 1}}$$

$$\forall x \in]-1, 1[, f(x) = 4\lambda_{0}x + 2\mu_{0}x\frac{1 - 2x^{2}}{\sqrt{1 - x^{2}}}$$

$$\forall x \in]1, \infty[, f(x) = 4\lambda_{+}x + 2\mu_{+}\frac{2x^{2} - 1}{\sqrt{x^{2} - 1}}$$

Par continuité de f' en -1 et 1, on obtient $\mu_- = \mu_0 = \mu_+ = 0$ (sinon f' admettrait des limites infinies à gauche ou à droite en -1 ou 1).

On en déduit qu'il existe $\lambda \in \mathbb{R}$ tel que $f(x) = \lambda(2x^2 - 1)$ pour tout $x \in \mathbb{R}$.

Réciproquement, toute fonction $x \mapsto \lambda(2x^2 - 1)$ est évidemment solution de (F) sur \mathbb{R} .

En conclusion, les solutions de (F) sur \mathbb{R} sont exactement les fonctions $x \mapsto \lambda(2x^2 - 1)$.

SOLUTION 1.

- 1. Une primitive de $x\mapsto \frac{3x}{1+x^2}$ est $x\mapsto \frac{3}{2}\ln(1+x^2)$. On en déduit que les solutions de (E_H) sont les fonctions $x\mapsto \lambda\exp\left(\frac{3}{2}\ln(1+x^2)\right)=(1+x^2)^{\frac{3}{2}}$ où $\lambda\in\mathbb{R}$.
- 2. Posons donc $P: x \mapsto ax^3 + bx^2 + cx + d$ avec $(a, b, c, d) \in \mathbb{R}^4$. On obtient $(1 + x^2)P'(x) 3xP(x) = -bx^3 + (3a 2c)x^2 + (2b 3d)x + c$ pour tout $x \in \mathbb{R}$. Une condition suffisante (et même nécessaire en fait,

 $\text{mais qu'importe) pour que P soit solution de (E) est donc que } (a,b,c,d) \text{ vérifie le système } \begin{cases} -\upsilon-\upsilon \\ 3\alpha-2c=0 \\ 2b-3d=0 \end{cases}. \text{ On } dC=1$

trouve alors $a = \frac{2}{3}$, b = 0, c = 1 et d = 0. Ceci signifie que la fonction polynomiale $P : x \mapsto \frac{2}{3}x^3 + x$ est solution de (E).

On en déduit que les solutions f_{λ} de (E) sont telles que :

$$\forall x \in \mathbb{R}, \, f_{\lambda}(x) = \frac{2}{3}x^3 + x + \lambda(1+x^2)^{\frac{3}{2}} \quad \text{ où } \lambda \in \mathbb{R}$$

3. Remarquons que pour tout x > 0,

$$(1+x^2)^{\frac{3}{2}} = x^3 \left(1 + \frac{1}{x^2}\right)^{\frac{3}{2}}$$

En utilisant un développement limité classique

$$\left(1 + \frac{1}{x^2}\right)^{\frac{3}{2}} = 1 + \frac{3}{2x^2} + \frac{3}{8x^4} + o\left(\frac{1}{x^4}\right)$$

A fortiori

$$\left(1 + \frac{1}{x^2}\right)^{\frac{3}{2}} = 1 + \frac{3}{2x^2} + o\left(\frac{1}{x^3}\right)$$

On en déduit

$$(1+x^2)^{\frac{3}{2}} = x^3 + \frac{3}{2}x + o(1)$$

4. Soit $\lambda \in \mathbb{R}$. D'après la question précédente,

$$f_{\lambda}(x) = \left(\frac{2}{3} + \lambda\right) x^3 + \left(1 + \frac{3}{2}\lambda\right) x + o(1)$$

Si $\lambda \neq -\frac{2}{3}$, $f_{\lambda}(x) \sim \left(\frac{2}{3} + \lambda\right) x^3$ et f admet une limite infinie en $+\infty$.

Si $\lambda = -\frac{2}{3}$, $f_{\lambda} = g$ et g(x) = 0 o (1) de sorte que g admet une limite finie (nulle) en $+\infty$.

g est donc l'unique solution de (E) admettant une limite finie en $+\infty$.

5. g est dérivable sur $\mathbb R$ et on trouve $g'(x)=2x^2+1-2x\sqrt{1+x^2}=\left(\sqrt{1+x^2}-x\right)^2$ pour tout $x\in\mathbb R$. De plus, par stricte croissance de la racine carrée, pour tout $x\in\mathbb R$, $\sqrt{1+x^2}>\sqrt{x^2}=|x|\geqslant x$. On en déduit que g'(x)>0 pour tout $x\in\mathbb R$. Ainsi g est strictement croissante sur $\mathbb R$.

Par opérations sur les limites, il est clair que $\lim_{-\infty} g = -\infty$. Par ailleurs, on a vu à la question précédente que $\lim_{-\infty} g = 0$.

SOLUTION 2.

1. On a facilement $I_0=\frac{\pi}{2},\,J_0=\frac{\pi^3}{24},\,I_1=1.$ Pour le calcul de $J_1,$ on intègre deux fois par parties :

$$\begin{split} J_1 &= \left[t^2 \sin t\right]_0^{\frac{\pi}{2}} - 2 \int_0^{\frac{\pi}{2}} t \sin t \, dt \\ &= \frac{\pi^2}{4} + 2 \left[t \cos t\right]_0^{\frac{\pi}{2}} - 2 \int_0^{\frac{\pi}{2}} \cos t \, dt \\ &= \frac{\pi^2}{4} - 2 \end{split}$$

- 2. Soit $n \in \mathbb{N}$. La fonction \cos^n est continue, positive et non constamment nulle sur $\left[0,\frac{\pi}{2}\right]$ donc son intégrale sur ce segment est stritement positive i.e. $I_n > 0$.
- 3. Soit $n\in\mathbb{N}.$ On procède à nouveau à une intégration par parties :

$$\begin{split} I_{n+2} &= \left[\sin t \cos^{n+1} t \right]_0^{\frac{\pi}{2}} + (n+1) \int_0^{\frac{\pi}{2}} \sin^2 t \cos^n t \, dt \\ &= (n+1) \int_0^{\frac{\pi}{2}} (1 - \cos^2 t) \cos^n t \, dt \\ &= (n+1) (I_n - I_{n+2}) \end{split}$$

On en déduit l'égalité demandée.

- 4. **a.** Il est évident que $t \geqslant 0$ pour $t \in \left[0, \frac{\pi}{2}\right]$. Pour établir l'autre inégalité, il suffit d'utiliser la concavité de la fonction sin sur $\left[0, \frac{\pi}{2}\right]$. En effet, sur l'intervalle $\left[0, \frac{\pi}{2}\right]$, le graphe de cette fonction est au-dessus de la corde reliant les points d'abscisse 0 et $\frac{\pi}{2}$. Ainsi pour tout $t \in \left[0, \frac{\pi}{2}\right]$, sin $t \geqslant \frac{2t}{\pi}$ et on en déduit bien la seconde inégalité demandée. Pour les nouvelles générations qui ignoreront tout de la convexité, on introduit la fonction $f: t \mapsto \frac{\pi}{2} \sin t t$. f est deux fois dérivable sur $\left[0, \frac{\pi}{2}\right]$ et $f''(t) = -\frac{\pi}{2} \sin t$ pour tout $t \in \left[0, \frac{\pi}{2}\right]$. Ainsi f'' est négative sur $\left[0, \frac{\pi}{2}\right]$ et ne s'annule qu'en 0 ce qui prouve la stricte décroissance de f'. On a $f'(0) = \frac{\pi}{2} 1 > 0$ et $f'\left(\frac{\pi}{2}\right) = -1 < 0$. f' étant également continue, le corollaire du théorème des valeurs intermédiaires montre que f' s'annule en un unique réel α sur $\left[\alpha, \frac{\pi}{2}\right]$. La décroissance de f' montre que f' est positive sur $\left[0, \alpha\right]$ et négative sur $\left[\alpha, \frac{\pi}{2}\right]$. Ainsi f est croissante sur $\left[0, \alpha\right]$ et décroissante sur $\left[0, \frac{\pi}{2}\right]$. Puisque $f(0) = f\left(\frac{\pi}{2}\right) = 0$, f est positive sur $\left[0, \frac{\pi}{2}\right]$.
 - **b.** Soit $n \in \mathbb{N}$. On a donc par croissance de l'intégrale

$$0 \leqslant J_n \leqslant \int_0^{\frac{\pi}{2}} \frac{\pi^2}{4} \sin^2 t \cos^n t \, dt = \frac{\pi^2}{4} \int_0^{\frac{\pi}{2}} (1 - \cos^2 t) \cos^n t \, dt = \frac{\pi^2}{4} (I_n - I_{n+2})$$

c. Soit $n \in \mathbb{N}$. Puisque $I_n > 0$

$$0 \leqslant \frac{J_n}{I_n} \leqslant \frac{\pi^2}{4} \left(1 - \frac{I_{n+2}}{I_n} \right)$$

Or d'après la question 3, $\frac{I_{n+2}}{I_n} = \frac{n+1}{n+2} \xrightarrow[n \to +\infty]{} 1$. Par le théorème des gendarmes, $\left(\frac{I_n}{I_n}\right)$ converge vers 0.

5. a. On procède encore une fois à des intégrations par parties :

$$\begin{split} I_{n+2} &= \left[t\cos^{n+2}t\right]_0^{\frac{\pi}{2}} + (n+2)\int_0^{\frac{\pi}{2}}t\sin t\cos^{n+1}t\,dt \\ &= (n+2)\left[\frac{t^2}{2}\sin t\cos^{n+1}t\right]_0^{\frac{\pi}{2}} - (n+2)\int_0^{\frac{\pi}{2}}\frac{t^2}{2}\left(\cos^{n+2}t - (n+1)\sin^2t\cos^nt\right)\,dt \\ &= -\frac{1}{2}(n+2)\int_0^{\frac{\pi}{2}}t^2\left(\cos^{n+2}t - (n+1)(1-\cos^2t)\cos^nt\right)\,dt \\ &= -\frac{1}{2}(n+2)\int_0^{\frac{\pi}{2}}t^2\left((n+2)\cos^{n+2}t - (n+1)\cos^nt\right)\,dt \\ &= \frac{1}{2}\left((n+2)(n+1)J_n - (n+2)^2J_{n+2}\right) \end{split}$$

b. En utilisant la question 3

$$\frac{J_n}{I_n} - \frac{J_{n+2}}{I_{n+2}} = \frac{(n+1)J_n}{(n+2)I_{n+2}} - \frac{J_{n+2}}{I_{n+2}} = \frac{\frac{n+1}{n+2}J_n - J_{n+2}}{I_{n+2}}$$

En utilisant maintenant la question précédente :

$$\frac{J_n}{I_n} - \frac{J_{n+2}}{I_{n+2}} = \frac{\frac{n+1}{n+2}J_n - J_{n+2}}{\frac{1}{2}\left((n+2)(n+1)J_n - (n+2)^2J_{n+2}\right)} = \frac{2}{(n+2)^2}$$

6. En sommant les égalités de la question précédente pour $n \in [\![0,N]\!]$ (avec $N \geqslant 1$), on obtient par télescopage

$$\frac{J_0}{I_0} + \frac{J_1}{I_1} - \frac{J_{N+1}}{I_{N+1}} - \frac{J_{N+2}}{I_{N+2}} = 2\sum_{n=0}^{N} \frac{1}{(n+2)^2} = 2S_{N+2} - 2$$

En utilisant la question **4.c**, on en déduit que (S_n) converge vers $\frac{1}{2}\left(\frac{J_0}{I_0}+\frac{J_1}{I_1}\right)+1$. En utilisant les résultats de la question **1**, on a :

$$\begin{split} \frac{1}{2} \left(\frac{J_0}{I_0} + \frac{J_1}{I_1} \right) + 1 &= \frac{1}{2} \left(\frac{\frac{\pi^3}{24}}{\frac{\pi}{2}} + \frac{\frac{\pi^2}{4} - 2}{1} \right) + 1 \\ &= \frac{1}{2} \left(\frac{\pi^2}{12} + \frac{\pi^2}{4} - 2 \right) + 1 = \frac{\pi^2}{6} \end{split}$$