OPTIMIZATION (SI 416) – LECTURE 1

Harsha Hutridurga

IIT Bombay

LET'S BEGIN

- 🧍 My name is harsha hutridurga ramaiah
- ♣ I am the instructor for SI 416 during Spring 2025
- \$\int\\$ SI 416 is a DEPARTMENT CORE COURSE for
 - ▶ M.Sc. Statistics First year
- 🜲 It is also a DEPARTMENT ELECTIVE and an INSTITUTE ELECTIVE
- Learning materials include
 - ► Lectures and Tutorial sessions
 - ▶ Reading material presentations, problem sheets and handouts
 - ▶ Assessment Quizzes, Exams

LECTURES AND TUTORIAL SESSIONS

- ♣ We are assigned SLOT 6 for the lectures
 - ▶ Wednesdays between 11.05 AM and 12.30 PM
 - ▶ Fridays between 11.05 AM and 12.30 PM
- ♣ Lectures will be in LH 302
- As this is a six credit course, there is NO separate tutorial slot
- ♣ Some lectures will be replaced by tutorials in LH 302
- Office hours to discuss anything course related
 - ▶ WEDNESDAYS between 03.00 PM and 04.00 PM
 - Or by appointment (taken via email)
 - ▶ Office: 202-D, second floor, Department of Mathematics

ATTENDANCE

- Attendance monitored, for lectures and tutorials, via the SAFE app
- Misrepresentation of attendance on the SAFE app will have unpleasant consequences
- Registration on the ASC portal must have automatically enrolled you for a course called SI416-2025-JAN on the SAFE app

SAFE APP

- A Download SAFE app on to your phone and register using LDAP
- During each lecture, you will be asked to take attendance on the SAFE app on your phone
- ♣ You have to bring your smartphone (with ample amount of charge) to the classroom

EXAMS AND QUIZZES

- A This course will have
 - ► TWO quizzes
 - ► SOME surprise quizzes
 - ▶ a mid-semester exam (between 22 February and 02 March 2025)
 - ▶ an end-semester exam (between 21 April and 01 May 2025)
- A Quiz 1 will be on
 - ► Saturday the 08 February 2025
- A Quiz 2 will be on
 - ► Saturday the 05 April 2025

TUTORIAL SESSIONS

- & KSHITIJ, SURAJIT, DEBAPRIYA are the TAs for this course
- A new problem sheet is posted every week
 - ▶ on the course webpage https://hutridurga.wordpress.com/teaching/si-416/
 - ▶ You are strongly encouraged to solve the problem sheets
 - ▶ Solutions will be discussed during tutorial sessions

WEIGHTAGE AND GRADING

♣ Here is the points distribution:

► FIRST QUIZ: 12.5 POINTS

► MID-SEMESTER EXAM: 25 POINTS

► SECOND QUIZ: 12.5 POINTS

► SURPRISE QUIZZES: 10 POINTS

► END-SEMESTER EXAM: 40 POINTS

♣ We follow ABSOLUTE GRADING:

▶ Grading slab for the letter grades will be disclosed on the last instruction day (17 April 2025)

GO-TO EXAMPLE

- ♣ The following example is a typical practical problem addressed in
 - ▶ Oil and chemical companies
 - ► Logistics companies
- Suppose
 - ▶ there are four factories B_1, B_2, B_3 and B_4 in Mumbai
 - there are ten retail outlets S_1, \ldots, S_{10} that sell a certain product
 - ▶ Factory B_i can produce a_i tons of that product daily
 - \triangleright Outlet S_i has a daily demand of b_i tons of that product
 - ightharpoonup cost of shipping a ton of that product from B_i to S_j is c_{ij}
- A How much to ship from each factory to each retail outlet so as to
 - satisfy all the requirements
 - minimize the cost
- \clubsuit Let x_{ij} denote the desired number of tons of the product to be shipped from factory B_i to the retail outlet S_j

GO-TO EXAMPLE (CONTD.)

 \clubsuit Our goal then is to find x_{ij} such that

$$\min \sum_{i,j} c_{ij} x_{ij}$$

subject to

$$\begin{cases} x_{ij} \ge 0 & \text{for } i = 1, \dots, 4, \quad j = 1, \dots, 10, \\ \sum_{j=1}^{10} x_{ij} \le a_i & \text{for } i = 1, \dots, 4, \\ \sum_{j=1}^{4} x_{ij} \ge b_j & \text{for } j = 1, \dots, 10. \end{cases}$$

A This is a typical problem in LINEAR PROGRAMMING

GENERAL PROBLEM

• Given a set $\Omega \subseteq \mathbb{R}^n$ and a function $f: \Omega \to \mathbb{R}$, the goal is to find $x_* \in \Omega$ such that $f(x_*) \leq f(x)$ for all $x \in \Omega$

- \clubsuit f is referred to as the OBJECTIVE FUNCTION
- $\Lambda \subseteq \mathbb{R}^n$ is usually defined by constraints, i.e. we are given

$$c_j: \mathbb{R}^n \to \mathbb{R}$$
 $j = 1, \dots, m_I + m_E$

and the problem is

$$\begin{cases} \min_{x \in \mathbb{R}^n} f(x) \\ c_j(x) \le 0 & \text{for } j \in I \\ c_j(x) = 0 & \text{for } j \in E \end{cases}$$

Here m_I is the cardinality of I and m_E is the cardinality of E

♣ We have inequality and equality constraints

BROAD CLASSIFICATIONS

$$\begin{cases} \min_{x \in \mathbb{R}^n} f(x) \\ c_j(x) \le 0 & \text{for } j \in I \\ c_j(x) = 0 & \text{for } j \in E \end{cases}$$

- \clubsuit If $I = E = \emptyset$ then unconstrained optimization
 - \blacktriangleright Linear problems: f is linear, i.e.

$$f(x) := \langle \mathbf{b}, x \rangle + a$$
 with $\mathbf{b} \in \mathbb{R}^n$ and $a \in \mathbb{R}$.

Note that the above f has a minimum if and only if $\mathbf{b} = \mathbf{0}$

 \triangleright Quadratic problems: f is quadratic, i.e.

$$f(x) := \frac{1}{2} \langle Ax, x \rangle + \langle \mathbf{b}, x \rangle + a$$
 with $A \in \mathcal{M}_n(\mathbb{R}), \ \mathbf{b} \in \mathbb{R}^n$ and $a \in \mathbb{R}$.

 \blacktriangleright Nonlinear problems: f is neither linear nor quadratic

BROAD CLASSIFICATIONS (CONTD.)

$$\begin{cases} \min_{x \in \mathbb{R}^n} f(x) \\ c_j(x) \le 0 & \text{for } j \in I \\ c_j(x) = 0 & \text{for } j \in E \end{cases}$$

- \clubsuit If I and E is (are) nonempty then Constrained optimization
 - ▶ Linearly constrained problems (All c_i are linear)
 - * Problems with equality constraints $(I = \emptyset)$ Linear-Quadratic problems: f quadratic Nonlinear problems: f is neither linear nor quadratic
 - ★ Problems with inequality constraints
 Linear programming: f linear
 Linear-Quadratic problems: f quadratic
 Linearly constrained nonlinear problems
 - Nonlinear programming
 - ★ with equality constraints only
 - ★ general nonlinear programming

REFERENCES

- NW] J.NOCEDAL, S.J.WRIGHT

 Numerical Optimization (2006).
- [CZ] E.CHONG, S.ZAK
 An introduction to optimization (2013).
- BR] V.S.BORKAR, K.S.MALLIKARJUNA RAO

 Elementary convexity with optimization (2022).
- F R.FLETCHER

 Practical methods of optimization (2001).
- [G] O.GÜLER

 Foundations of optimization (2010).

GLOBAL VERSUS LOCAL

- \clubsuit Take a function $f: \mathbb{R}^n \to \mathbb{R}$
 - A point x_* is a GLOBAL MINIMIZER if

$$f(x_*) \le f(x)$$
 for all $x \in \mathbb{R}^n$.

▶ A point x_* is a LOCAL MINIMIZER if there is an open set $B \ni x_*$ such that

$$f(x_*) \le f(x)$$
 for all $x \in B$.

▶ A point x_* is a STRICT LOCAL MINIMIZER if there is an open set $B \ni x_*$ such that

$$f(x_*) < f(x)$$
 for all $x \in B$ with $x \neq x_*$.

TAYLOR'S THEOREM

Theorem

Let m be a nonnegative integer and let $a \in \mathbb{R}$ be nonnegative. Let $f : \mathbb{R} \to \mathbb{R}$ be (m+1)-times continuously differentiable on \mathbb{R} . Then.

$$f(x+a) = f(x) + f'(x)a + \dots + \frac{f^{(m)}(x)}{m!}a^m + \frac{f^{(m+1)}(c)}{(m+1)!}a^{m+1}$$

for some point $c \in (x, x + a)$.

- \clubsuit In the above theorem, if a is negative then the point $c \in (x+a,x)$
- \clubsuit The point c depends on x, a and m
- ♣ The proof is a repeated application of the Rolle's theorem
- A Taylor's theorem also holds true in higher dimension

TAYLOR'S THEOREM (HIGHER DIMENSION)

 \clubsuit For $f: \mathbb{R}^n \to \mathbb{R}$, its gradient vector

$$\nabla f = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$$

 \clubsuit A point \tilde{x} is called a STATIONARY POINT of f if

$$\nabla f(\tilde{x}) = 0$$

 \clubsuit For $f: \mathbb{R}^n \to \mathbb{R}$, its Hessian is a $n \times n$ matrix with entries

$$\left(\nabla^2 f\right)_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}$$

TAYLOR'S THEOREM (HIGHER DIMENSION)

Theorem

Let $f: \mathbb{R}^n \to \mathbb{R}$ be twice continuously differentiable on \mathbb{R}^n and let $p \in \mathbb{R}^n$. Then,

$$f(x+p) = f(x) + \langle \nabla f(x+\ell p), p \rangle$$

for some $\ell \in (0,1)$ and

$$f(x+p) = f(x) + \langle \nabla f(x), p \rangle + \frac{1}{2} \langle \nabla^2 f(x+tp)p, p \rangle$$

for some $t \in (0,1)$.

- Above theorem is implied by the one dimensional Taylor's theorem
- \clubsuit For first assertion, f being once continuously differentiable suffices
- \clubsuit Idea is to work with $g:[0,1]\to\mathbb{R}$ defined as

$$g(s) := f(x + sp)$$
 for $s \in [0, 1]$.

FIRST ORDER NECESSARY CONDITION

Theorem

If x_* is a local minimizer of f and if f is continuously differentiable in an open neighbourhood of x_* , then

$$\nabla f(x_*) = 0.$$

- \clubsuit This isn't a sufficient condition: think of $f(x) = x^3$ at x = 0.
- \$\int\\$ Suppose not true, i.e. $\nabla f(x_*) \neq 0$
- Arr Take $p := -\nabla f(x_*)$. Observe that

$$\langle \nabla f(x_*), p \rangle = -\|\nabla f(x_*)\|^2 < 0$$

 \clubsuit As ∇f is continuous at x_* , there exists a T>0 such that

$$\langle \nabla f(x_* + sp), p \rangle < 0$$
 for all $s \in [0, T]$.

FIRST ORDER NECESSARY CONDITION (CONTD.)

♣ For any $t_* \in (0,T]$, Taylor's theorem says

$$f(x_* + t_*p) = f(x_*) + t_* \langle \nabla f(x_* + s_*p), p \rangle$$
 for some $s_* \in (0, t_*)$

A Recall that we also have

$$\langle \nabla f(x_* + sp), p \rangle < 0$$
 for all $s \in [0, T]$.

♣ Hence we deduce that

$$f(x_* + t_*p) < f(x_*)$$
 for all $t_* \in (0, T]$.

 \clubsuit This contradicts the fact that x_* is a local minimizer of f

END OF LECTURE 1 THANK YOU FOR YOUR ATTENTION