Project #2 Report

名字:王康霖 學號:N26077124

執行指令: python3 predict.py

Dataset

問題設計:客戶是否會買電腦

• My Decision Tree Rules

這是一個結果為"會/不會買電腦"的 Decision Tree 依據上面的 Decision Tree 產生下列有 30 筆 Data 的 Dataset 因此在這個問題上

M = 30, K = 4

• <u>Dataset</u>

Age T	Income T	Student T	Credit T	Buys_co ▼
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
3140	medium	yes	fair	yes
>40	high	no	fair	yes
<=30	medium	no	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
>40	high	yes	excellent	no
<=30	medium	yes	fair	yes
>40	high	no	excellent	no
<=30	medium	yes	excellent	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
<=30	low	yes	fair	yes
>40	low	no	fair	yes
3140	low	no	fair	yes
>40	medium	yes	fair	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no
3140	medium	no	excellent	yes
<=30	high	yes	excellent	yes
3140	low	yes	fair	yes
>40	low	no	excellent	yes
3140	high	no	excellent	yes
<=30	low	no	excellent	no
<=30	low	yes	excellent	yes
3140	medium	yes	excellent	yes
>40	medium	yes	excellent	no

Data Preprocessing

因為 Dataset 裡面的資料是以文字形式在儲存,但這樣無法拿來做使用。所以我們需要 先用 label encode 的方式將同組轉換成數字。例如把 `Age` 欄位中的 '<=30',' 31...40','>40'分別轉換成 1,2,3。我是使用 sklearn.preprocessing 所提供的 LabelEncoder。

再來就是要將 Feature 和 Answer 分開,Feature 就是前四個欄位:`Age`,`Income`,
`Student`,`Credit`。Answer 就是最後的欄位 `Buys_computer`。
最後再將 dataset split 成 train_data 和 test_data,使用的是
sklearn.model_selection 所提供的 train_test_split 功能。
參數如下:

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.15,
random_state=42)

random_state 會設 42 而不是亂數是為了讓 data 可以一樣

Decision Tree

● 結果

使用的是 sklearn 所提供的套件 tree,數的生成是將規則輸出到 `dot_tree.txt` 再用線上工具來繪畫 (Webgraphiz, http://webgraphviz.com)

這個 Decision Tree 的準確率為 0.8

```
Answer:['1' '1' '1' '0']

Decision Tree

Predict: ['1' '1' '1' '1' '1']

Accuracy: 0.8
```

討論

其實在 random_state 為其他數字的時候,也就是分割檔案的方式不一樣的時候所得到的準確率都有上下,所以這個分割參數還不是最佳的參數,但為了顯示差異所以選擇這個 random_state。

另外,由於 dataset 的 M 只有 30,資料其實是非常不足的,而且由於 dataset 中沒有重複的資料,所以在 split_data 的時候有可能會發生 model 從來沒學過的規則出現在 test_data 中,所以給出錯誤的答案其實也是很合理的。

SVM

結果

SVM

Predict: ['1' '1' '1' '1' '1']

Accuracy: 0.8

可以看到準確率也是 0.8,但其實這也是在 train_split_test 的時候選擇的 random_state 的關係而已。在其他的分割方法的時候,準確率可能是 SVM > Decision_Tree 亦或是反過來。

總結

在 K 和 M 都相同的情況下,我們可以發現會根據我們的 Dataset 的 train 和 test 的不同而有不同的結果。得出的結論是 Decision Tree 結構簡單,使用上也不需要設定參數,但缺點就是"想像力"太差,如果出現的分類是自己沒有看過的,打錯的機率就很高。而其他分類器的方法,例如本次所用的 SVM,因為還有很多參數可以做調整,而且資料集只有 30 筆資料,沒有辦法做出顯著的效果,並且也實在無法去跟 Decision Tree 來做相提並論和比較。