IOWA STATE UNIVERSITY

Modeling the Operations of Electric Autonomous Taxis in New York City

Liang Hu and Jing Dong

Presented at 2017 INFORMS Annual Meeting, Houston, TX

October 23, 2017

Why Electric Autonomous Taxis?

	Conventional taxis	Ride-hailing	Electric autonomous vehicles (EAV)
Energy source	gasolinesome electric	gasolinesome electric	• electric
Search for customers	cruisingby chance	cruising + waitingdrivers compete	relocating + waitingcollaborative
Customers' delay	 unknown to taxis 	 drivers do not care 	optimal dispatchreduce delay
Trip distance	 unknown to taxis 	 unknown to taxis 	 taxis w/o sufficient range are not assigned

Model EAV Taxi Operations

Requests

- request time
- location
- wait time

EAV taxis

- location
- SOC

Taxi Trip Data in NYC

- Data fields
 - taxi ID
 - pick-up GPS
 - pick-up timestamp
 - drop-off GPS
 - drop-off timestamp
 - occupied trip distance
- ☐ Estimate empty trip dist. by

 trip dist. = 1.4413 × straight-line
 dist. + 0.1383 (unit: mi)
- ☐ Extract data of 500 taxis & the corresponding requests

Assumptions for Simulation

- ☐ Requests of customers
 - location: pick-up GPS
 - time: pick-up timestamp
 - dist.: occupied trip dist.
- □ EAV taxis
 - location: drop-off GPS
 - time: drop-off timestamp
 - dist.: estimated trip dist.

Charging Stations in NYC

Source: US DOE

Summary

Simulation Process

Introduction Simulation Optimization Results Summary

Decision Variables

I available taxis and J unserved requests at t Define binary decision variables

```
x_{i,j}
```

```
i: index of an available taxi, i \in I

j: index of an unserved request, j \in J

x_{i,j} = 1: taxi i picks up request j

x_{i,j} = 0: taxi i does not pick up request j
```

Objective Function

minimize
$$\sum_{i=1}^{I} \sum_{j=1}^{J} D_{i,j}^{(1)} x_{i,j} + \sum_{j=1}^{J} D_{j}^{(2)} (1 - \sum_{i=1}^{I} x_{i,j})$$
 total costs of the requests that can be served total costs of the requests that cannot be served

 $D_{i,j}^{(1)}$: cost matrix (1) = time that has been delayed + time for pick-up

 $D_j^{(2)}$: cost matrix (2) = time that has been delayed + avg. wait time

differs by area

Constraints (1): Sufficient EV Range

 \square calculate the distance matrix $L_{I\times J}=L_1+L_2+L_3$

 \Box if $L_{i,i}$ > the taxi's remaining range,

$$x_{i,j} = 0$$

Constraints (2)

Each taxi will server at most one customer

$$\sum_{j=1}^{J} x_{i,j} \le 1, \forall I$$

Each customer will be served by at most one taxi

$$\sum_{i=1}^{I} x_{i,j} \le 1, \forall J$$

Solver

- Gurobi 7.5.1
- integer linear programming (ILP)
- 1440 time intervals
- CPU Intel E5-1620 3.70GHz, RAM 16GB
- □ ~40 minutes

Customer Wait Time Distribution

- Only 0.5% of requests are not served
- Average wait time is 4.7 minutes
- 95% of requests are served within 11 minutes

Total Travel Distance of Taxis

Average travel distance reduces by 18%

Ratio of Occupied/Total Travel Distance

- EAV taxi system reduces empty trip distance from 49 mi to 23 mi
- Average ratio of occupied distance increases from 69% to 82%

Implications of Fleet Size

- Reduces fleet size by 5%~20%
- Unserved requests remain at 0.5%~0.6%
- Average delay is within 9 minutes when fleet size reduces by ≤15%
- Average delay increases more significantly at 20% reduction

Implications of Fleet Size

- With smaller fleet size, EAV taxis become busier
 - travel distance & ratio of occupied time increase almost linearly
- Efficiency of current taxi system ≈ EAV taxis with 80% of fleet size
- Ratio of occupied distance remains stable at 81%~82% 17

Results Summary

Implications of Electric Range

unserved requests: 0.5%

avg. delay: 4.6~4.8 min

avg. total travel dist.: 126 mi

 Range does not have considerable implications on request delays nor efficiency of EAV taxi systems

avg. ratio of occupied dist.: 82% avg. ratio of occupied time: 51%~52%

Summary

- EAV taxis improves efficiency of taxi systems
 - less empty trips
 - less energy consumption
- EAV taxis has potential to reduce fleet size, while keep wait time at an acceptable level
 - average delay is within 9 min when the fleet size is reduced by 15%

Thank you

Corresponding author:
Dr. Jing Dong
jingdong@iastate.edu