Лабораторно упражнение №1

Въведение в Python

Руthon е език от високо ниво, който позволява програмата да се раздели на модули, които могат да бъдат използвани, отново в други програми на Python. Езикът съдържа набор от вградени модули, които обезпечават различни функции като: файлов вход/изход (I/O), системни функции, сокети (sockets), програмни интерфейси към GUI библиотеки.

Python е интерпретируем език, като не са необходими компилиране и свързване. Интерпретаторът може да се използва интерактивно, което го прави лесен за експериментиране с възможностите на езика, или за тестване на функциите по време на разработка отдолу-нагоре.

Езикът е кръстен на шоуто на ВВС "Monty Python's Flying Circus".

1. Интерактивен режим.

В интерактивен режим промпта представлява три знака поголямо (>>>), а за продължение на ред се появява вторичен промпт, обикновено три точки (...). В този режим Python може да се използва като калкулатор. В интерактивен режим на Spyder първия промпт е $\ln[1]$:, като числото в квадратни скоби инициира номера на командния ред, на който пишете.

Помощна информация за елементите на езика, може да получите като въведете help(). Появява се пояснителен текст и от появилия се списък, въвеждате търсения елемент.

- 2. Идентификатори в Python. идентификаторите започват с буква или долно тире, съдържат латински главни и/или малки букви, долно тире и цифри, и са неограничени по дължина. Запазени идентификатори са тези идентификатори, които започват със следните символи: _*, _*_, __*.
- **3. Ключови думи в Python. -** ключовите думи са запазени за езика и не могат да се използват като обикновени идентификатори.

False	class	finally	is	return
None	continue	for	lambda	try
True	def	from	nonlocal	while
and	del	global	not	with
as	elif	if	or	yield
assert	else	import	pass	
break	except	in	raise	

4. Основни типове данни.

int, float, long, complex, bool

- В Python типа на операндите не се заявява предварително. Ключовите думи: int, float, long, comlex и bool се използват за преобразуване от един тип друг.
- 5. Коментар. използва се знака #
- **6. Свързване на два или повече физически реда. –** използва се наклонена черта \setminus

Пример 1:

 $x=[1, \]$

2]

X

Резултат:?

При създаване на списък, отделните елементи могат да се въвеждат на няколко реда. Коментари могат да се добавят на всеки ред и до всеки символ.

Пример 2:

у=[1,2,# коментар

3,4,5,

6,7]

У

Резултат:?

7. Оператори.

```
+ - * ** / // %
<< >> & | ^ ~
< >> == !=
```

8. Разделители.

```
{
                                                 }
          )
                    [
                              ]
                              ;
                                       @
                                                            ->
                                                 =
                                        //=
          -=
                    *=
                              /=
                                                 응=
                                                                      =
+=
                                                           £=
                              **=
^=
         >>=
                   <<=
```

9. Аритметични операции. - +, -, * , **, /, //, %

Пример 3:

2**3 # степенуване

Резултат:?

Пример4:

9/2 # деление

```
Резултат:?
Пример 5:
9//2 # целочислено деление
Резултат:?
Пример 6:
9%2 # остатък от деление
Резултат:?
10.
     Оператори за сравнение.
        >
<
                <=
                         >=
                                 ==
                                         ! =
11.
     Побитови операции.
                &
<<
        >>
12.
     Съставни оператори.
                *=
                         /=
+=
        -=
                                 //=
                                         %=
                                                 @=
        |=
                ^=
                                 <<=
                                         * * =
=3
                         >>=
13.
     Логически оператори.
   and
             or
                      not
     Оператори за вход и изход.
   14.1. Оператор за вход.
input([prompt]) -> string
Чете низ от стандартния вход
Пример 7:
name=input("Your name:")
Your name: (Примерно: Ana)
name
Резултат:?
Пример 8:
number=input("Enter integer:")
Enter integer: (Примерно: 3)
```

number

```
Резултат: '3'
    В примера number e string.
Пример 9:
number=int(input("Enter integer:"))
Enter integer: (Примерно: 3)
number
Резултат: 3
    В примера number е цяло число.
   14.2. Оператор за изход.
print(value,
              ..., sep=' ', end='\n', file=sys.stdout,
flush=False)
За повече информация help(print).
Пример 10:
print("number=",number)
Резултат:?
15. Списък. (List)- съставен тип данни за групиране
  стойности, от различен и/или един и същи тип, изписани като
  поредица и разделени със запетая между квадратни скоби.
  Достъпът до елемент се осъществява чрез индекс, цяло число.
  Дължината на всеки списък може да се променя и да не се
  определя предварително. Списъците могат да се влагат един в
  друг.
Пример 11:
ime='Ivan'
familia='Ivanov'
student=['ime:',ime,'familia:',familia,4,'kurs']
student
Резултат:?
      15.1.
              Индексиране.
Пример 12:
student[0]
Резултат:?
Пример 13:
```

```
student[-1] # извежда последния елемент
Резултат:?
Пример 14:
student[0:2] # извежда елементи от индекс 0 до индекс 1
Резултат:?
Пример 15:
 student[:3] # извежда първите три елемента
Резултат:?
Пример 16:
student[3:] # извежда всичко, освен първите три елемента
Резултат:?
    15.2. Замяна на елементи.
Пример 17:
student[1]='Dian'
student
Резултат:?
    15.3. Конкатенация на списъци.
Пример 18:
fnomer=['fN',123456]
student=student + fnomer
student
Резултат:?
    15.4. Изтриване на елементи.
Пример 19:
student[6:]=[ ]
student
Резултат:?
    15.5. Създаване на празен списък.
Пример 20:
student1=list()
student1
```

```
Резултат:?
    15.6. Визуализация на списък.
Пример 21:
list(student)
Резултат:?
           Списъкът може да се третира и като двумерен масив.
Пример 22:
student[1][0]
Резултат:?
    15.8. Списъци. Методи.
     15.8.1.
               Разширяване на списък чрез extend.
Пример 23:
student.extend(fnomer)
student
Резултат:?
     Ho:
Пример 24:
student.extend('TU-Varna')
student
Резултат:?
     15.8.2.
               Разширяване на списък чрез append.
Пример 25:
student.append('TU-Varna')
student
Резултат:?
     Ho:
Пример 26:
year=['year',2018]
student.append(year)
student
Резултат:?
```

15.8.3. Преброяване на повтарящите се елементи.

```
Пример 27:
student1=['Koev', 2,2,3,4,5,5,5]
student1.count(5)
Резултат:?
              Индекси на списък.
     L.index(value, [start, [stop]]) -> integer -- return first
index of value.
Пример 28:
student1.index('Koev')
Резултат:?
Пример 29:
student1.index(2,2,7)
Резултат:?
     Самостоятелна задача 1:
     Разгледайте самостоятелно методите: clear, insert, pop,
        reverse, sort. За повече подробности: help(list).
Тествайте със собствени примери.
    Комплекти. - "tuple"
     Комплектите са съставен тип данни за групиране на стойности,
  от различен и/или един и същи тип, изписани като поредица и
  разделени със запетая и без/със заграждащи скоби
Пример 30:
x='hi'
y=x,'world',2018
Резултат:?
  В резултата комплектите винаги са затворени в скоби
  16.1.
         Празен комплект.
Пример 31:
  C=()
```

7

16.2.

Пример 32:

Комплект с един елемент.

```
d=1,
  d
Резултат:?
  16.3.
          Дължина на комплект.
Пример 33:
  len(d)
Резултат:?
          Присвояване на стойности на повече от една променлива.
Пример 34:
i, j=1, 2
i
Резултат:?
Пример 35:
j
Резултат:?
         Извличане на стойности от комплекта - разкплектоване.
Пример 36:
a,b,c=y
a,b,c
Резултат:?
Пример 37:
Резултат:?
Пример 38:
b
Резултат:?
Пример 39:
Резултат:?
          Едновременно създаване на комплект и сравняване.
Пример 40:
1,2<1,3
```

Резултат:?

16.7. Сравняване на комплекти.

Сравнява първия елемент от първия комплект с първия елемент от втория комплект, ако е лъжа сравнява следващата двойка елементи.

Пример 41:

(4, 5) < (3, 5)

Резултат:?

Пример 42:

(2, 6) < (3, 5)

Резултат:?

16.8. Комплекти. Методи.

16.8.1. Преброяване на повтарящите се елементи.

Пример 43:

y.count(2018)

Резултат:?

16.8.2. Индекси на елемент от комплект.

Пример 44:

y.index(2018)

Резултат:?

17. Оператори за членство. - използват се за проверка дали дадена стойност или променлива се съдържа в дадена последователност - string, list, tuple, set и dict.

Оператор	Эначение	Пример
in	True, ако стойността/променливата е намерена в дадената последователност - string, list, tuple, set и dictionary	2 in x
not in	True, ако стойността/променливата не е намерена в дадената последователност - string, list, tuple, set и dictionary	2 not in x

Пример: Проверка дали даден елемент се съдържа в списък – със служебната дума in

Пример 45:

x=[1,2,3]

2 in x

Резултат:?

18. Оператори за идентичност. - използват се за проверка дали две променливи сочат към една и съща клетка от паметта. Две променливи, които са равни, може да са идентични, може и да не са.

Оператор	Значение	Пример
is	True, ако операндите са идентични	x is y
is not	True, ако операндите не са идентични	x is not y

17.1. Променливите са от цял тип.

Пример 46:

u=9

v=9

u==v

Резултат:?

Пример 47:

u is v

Резултат:?

Пример 48:

id(u), id(v)

Резултат:?

<u>Извод</u>: Стойностите им са както равни, така и идентични.

И двете променливи сочат към една и съща клетка от паметта. Идентификационните им номера са равни. За повече информация help(id).

Самостоятелна задача 2:

Проверете идентични ли са 2 променливи, които съдържат еднакви низове.

Какъв е извода?

17.2. Променливите са от реален тип. Стойностите им са равни, но не са идентични.

```
Пример 49:
a=1.234
b=1.234
a==b
Резултат:?
Пример 50:
a is b
   Резултат: False
Пример 51:
id(a), id(b)
Резултат:?
   Но, ако свържем двете променливи със знак за равенство
Пример 52:
a=b
a is b
Резултат: True
Пример 53:
id(a),id(b)
Резултат:?
   Извод: Стойностите на двете променливи от реален тип след
   свързване със знака за равенство са равни и идентични.
```

Самостоятелна задача 3:

Проверете идентични ли са 2 променливи, които съдържат еднакви списъци от елементи.

Какъв е извода?

19. Условни оператори.

```
if (условен израз): # двете точки са задължителни
    оператор
                        # задължително трябва да има отстъп
elif:
                        # двете точки са задължителни
     оператор
                        # задължително трябва да има отстъп
else:
                        # двете точки са задължителни
```

оператор # задължително трябва да има отстъп 20. Циклични оператори. 20.1. Оператор за цикъл while. while (условен израз): # двете точки са задължителни оператор 1 # задължително трябва да има отстъп оператор 2 # задължително трябва да има отстъп # задължително трябва да има отстъп Оператор n 20.2. Оператор за цикъл for. for x1 in x2: # двете точки са задължителни оператор 1 # задължително трябва да има отстъп оператор 2 # задължително трябва да има отстъп Оператор n # задължително трябва да има отстъп където: **х1** - управляваща променлива ж2 - списък, редица или низ • С оператора **break** се осъществява излизане от цикъл • Оператора **continue** прекъсва текущата итерация и продължава изпълнението на цикъла от следващия елемент 21. функция range(). - генерира списъци, съдържащи аритметични прогресии Синтаксис: range(stop) или range(start, stop[, step]) За повече подробности: help(range) Примери: Пример 54: range(5) Резултат:? Това са числата от 0 до 4 включително, т.е. 0,1,2,3,4 Пример 55: for i in range(5):

Резултат:?

print(i,end=" ")

```
Пример 56:
     for i in range(0,10,2):
          print(i,end=" ")
Резултат:?
     Често операторът range се комбинира с оператора len.
Пример 57:
x="ab"
for i in range(len(x)):
     print(x[i])
Резултат:?
22. Математически функции. - чрез добавяне на библиотеката
  math
  Примери:
Пример 58:
import math
Пример 59:
math.sqrt(9)
Резултат:?
Пример 60:
math.exp(1)
Резултат:?
Пример 61:
math.log(1)
Резултат:?
Пример 62:
math.log(math.exp(1))
Резултат:?
Пример 63:
math.log2(8)
Резултат:?
Пример 64:
```

```
math.log10(100)
Резултат:?
Пример 65:
pow(2,4)
Резултат:?
Пример 66:
math.factorial(4)
Резултат:?
     За повече информация: help(math)
23. Работа с комплексни числа.
    23.1. реална част - z.real
    23.2. имагинерна част - z.imag
  Примери:
Пример 67:
z = 8 + 3i
z.real
Резултат:?
Пример 68:
 z.imag
Резултат:?
```

24. Самостоятелни задачи.

24.1. Самостоятелна задача 4:

С помощта на оператора while или for, изчислете и изведете числата на Фибоначи.

Отворете нов файл от File \rightarrow New File. Запишете файла като име_на_файл.py. Стартирайте го от Run \rightarrow Run Module или F5.

24.2. Самостоятелна задача 5:

Създайте програма на Python, която да проверява дали въведена дума от потребител е палиндром.

24.3. Самостоятелна задача 6:

Създайте програма на Python, която да преброява гласните във въведена дума от потребител.

Използвайте функциите lower() и count().

25. Полезни връзки.

- 25.1. https://docs.python.org/3/
- **25.2.** https://www.programiz.com/python-programming
- **25.3.** https://www.tutorialspoint.com/python/index.htm
- **25.4.** https://anh.cs.luc.edu/python/hands-on/3.1/handsonHtml/ch1.html