CLAIMS

What is claimed is:

ì	1. A method communicating a packet comprising communicating:
2	a channelization field identifying channels that are used for
3	communicating subsequent wideband fields of the packet; and
4	a wideband-header field on the identified channels to identify sub-fields
5	present in the wideband-header field and the presence of a wideband-data field
6	following the wideband-header field.
1	2. The method of claim 1 wherein the communicating comprises:
2	communicating the channelization field on a single compatibility channel
3	of an allocated portion of spectrum comprising a plurality of channels; and
4	communicating the wideband-header field on the identified channels
5	including the compatibility channel.
1	3. The method of claim 1 wherein the communicating comprises
2	communicating a wideband-training field as part of the packet following the
3	channelization field, the wideband-training field comprising a training sequence
4	on the channels identified by the channelization field.
1	4. The method of claim 3 wherein when the wideband-header field
2	includes an indication of a presence of the wideband-data field, the
3	communicating further comprises communicating the wideband-data field as part
4	of the packet on the channels identified by the channelization field.
1	5. The method of claim 3 further comprising estimating at least one of a
2	timing offset, fine-frequency offset, and channel response using at least the
3	training sequence for processing subsequent wideband fields of the packet
4	including the wideband-header field and the wideband-data field when included
5	within the packet.

- 6. The method of claim 2 wherein the communicating comprises one of 1 either sending the packet by a transmitting communication unit or receiving the 2 packet by a receiving communication unit, and 3 wherein the identified channels, including the compatibility channel, 4 comprise symbol-modulated subcarriers. 5
- 7. The method of claim 1 wherein the wideband-header field is encoded with a predetermined encoding scheme and modulated with a predetermined 2 modulation scheme, wherein the predetermined modulation scheme comprises one 3 of either BPSK or QPSK modulation, and wherein the predetermined encoding 4 scheme comprises a ½ rate convolution code. 5
- 8. The method of claim 2 wherein the communicating further comprises 1 communicating a short-compatibility field as part of the packet on the 2 compatibility channel, wherein the short-compatibility field includes length 3 information defining a length of the packet, wherein communications units refrain 4 from transmitting on the identified channels during transmission of the packet. 5
- 9. The method of claim 2 wherein communicating further comprising 1 communicating a long-compatibility field on the compatibility channel, the long-2 compatibility field comprising a variable number of symbols over a plurality of 3 symbol-modulated subcarriers that comprise at least one of the channels, 4 wherein the long-compatibility field includes information to reserve at 5 least one of the channels for a time period, wherein a narrower-band 6 communication unit refrains from communicating during the time period in 7 response to receipt of the long-compatibility field. 8
- 10. The method of claim 9 wherein the long-compatibility field and the 1 channelization field of the packet are sent on the compatibility channel, and 2 wherein a wideband-training field, the wideband-header field and, when 3 included, a wideband-data field are sent on the identified channels including the 4 5 compatibility channel.

1

1	11. The method of claim 2 wherein the compatibility channel is relocatable
2	to any one of a plurality of narrow-band channels within the allocated portion of
3	spectrum, and
4	wherein the method further comprises scanning channels for the operation
5	of narrower-band communication units, and
6	selecting one of the channels as the compatibility channel based on an
7	overlapping use by at least some of the narrower-band communication units.
1	12. The method of claim 1 wherein the wideband-header field comprises:
2	a field to request bit-loading per subcarrier for subsequent transmission by
3	a transmitting communication unit of a wideband-data field of a packet, the bit-
4	loading per subcarrier indicating a modulation scheme for transmission of the
5	individual symbol-modulated subcarriers of the identified channels;
6	a field to request a coding rate for the subsequent transmission of the
7	wideband-data field; and
8	a field to request a power loading per subcarrier for the subsequent
9	transmission of the wideband-data field.
1	13. The method of claim 12 wherein the wideband-header field comprises
2	at least one of:
3	a field to indicate the presence of the wideband-data field;
4	a field to indicate a bit loading per subcarrier for the wideband-data field,
5	the bit loading per subcarrier indicating a modulation scheme used for
6	transmission of the individual symbol-modulated subcarriers of the identified
7	channels;
8	a field to indicate a power loading per subcarrier for the wideband-data
9	field, the power loading per subcarrier indicating a transmission power level used
10	for transmission of the individual symbol-modulated subcarriers of the identified
11	channels; and
12	a field to indicate coding rates for decoding the wideband-data field.

1	14. The method of claim 13 wherein the wideband-header field comprises
2	a parameter mask to identify fields present in the wideband-header field and the
3	presence of the wideband-data field.
1	15. The method of claim 14 further comprising:
2	receiving selected individual subcarrier modulation assignments in the
3	wideband-header field, the subcarrier modulation assignments being selected
4	based on channel characteristics measured during a receipt of the wideband-
5	channel training field on the identified channels at a receiving communication
6	unit; and
7	individually modulating subcarriers of the identified channels for
8	transmission based on the selected individual subcarrier modulation assignments
9	received in the wideband-header field.
1	16. The method of claim 1 wherein the communicating comprises:
2	communicating the channelization field on a single compatibility channel
3	of an allocated portion of spectrum comprising a plurality of channels;
4	communicating the wideband-header field on the identified channels
5	including the compatibility channel;
6	communicating a wideband-training field as part of the packet following
7	the channelization field, the wideband-training field comprising a training
8	sequence on the channels identified by the channelization field; and
9	communicating a long-compatibility field on the compatibility channel, the
10	long-compatibility field comprising a variable number of symbols over a plurality
11	of symbol-modulated subcarriers that comprise at least one of the channels,
12	wherein the long-compatibility field includes information to reserve at
13	least one of the channels for a time period, wherein a narrower-band
14	communication unit refrains from communicating during the time period in
15	response to receipt of the long-compatibility field,
16	wherein the wideband-header field comprises:
17	a field to request bit-loading per subcarrier for subsequent transmission by
18	a transmitting communication unit of a wideband-data field of a packet, the bit-

20	individual symbol-modulated subcarriers of the identified channels;
21	a field to request a coding rate for the subsequent transmission of the
22	wideband-data field; and
23	a field to request a power loading per subcarrier for the subsequent
24	transmission of the wideband-data field.
1	17. The method of claim 16 wherein when the wideband-header field
2	includes an indication of a presence of the wideband-data field,
3	the communicating further comprises communicating the wideband-data
4	field as part of the packet on the channels identified by the channelization field,
5	wherein the method further comprising estimating at least one of a timing
6	offset, fine-frequency offset, and channel response using at least the training
7	sequence for processing subsequent wideband fields of the packet including the
8	wideband-header field and the wideband-data field when included within the
9	packet,
10	wherein the compatibility channel is relocatable to any one of a plurality of
11	narrow-band channels within the allocated portion of spectrum, and
12	wherein the method further comprises:
13	scanning channels for the operation of narrower-band communication
14	units;
15	selecting one of the channels as the compatibility channel based on an
16	overlapping use by at least some of the narrower-band communication units;
17	receiving selected individual subcarrier modulation assignments in the
18	wideband-header field, the subcarrier modulation assignments being selected
19	based on channel characteristics measured during a receipt of the wideband-
20	channel training field on the identified channels at a receiving communication
21	unit; and
22	individually modulating subcarriers of the identified channels for
23	transmission based on the selected individual subcarrier modulation assignments
24	received in the wideband-header field.

loading per subcarrier indicating a modulation scheme for transmission of the

19

1	18. The method of claim 17 wherein the communicating comprises one of
2	either sending the packet by a transmitting communication unit or receiving the
3	packet by a receiving communication unit,
4	wherein the identified channels, including the compatibility channel, are
5	comprised symbol-modulated subcarriers, and
6	wherein the wideband-header field is encoded with a predetermined
7	encoding scheme and modulated with a predetermined modulation scheme,
8	wherein the predetermined modulation scheme comprises one of either BPSK or
9	QPSK modulation, and wherein the predetermined encoding scheme comprises a
10	½ rate convolution code.
1	19. A communication unit comprising:
2	a physical layer to communicate a packet comprising at least a
3	channelization field to identify channels that are used for communicating
4	subsequent wideband fields of the packet, and to communicate a wideband-header
5	field on the identified channels, the wideband-header field to identify sub-fields
6	present in the wideband-header field and the presence of a wideband-data field
7	following the wideband-header field; and
8	a medium access control layer to select channels for communication by the

20. The communication unit of claim 19 wherein the physical layer is to communicate the channelization field on a compatibility channel of an allocated portion of spectrum comprising a plurality of channels, and is to communicate the wideband-header field on the identified channels including the compatibility channel.

physical layer and obtain access to the selected channels.

9

21. The communication unit of claim 19 wherein the physical layer is to further communicate a wideband-training field as part of the packet following the channelization field, the wideband-training field comprising a training sequence on the channels identified by the channelization field.

22. The communication unit of claim 21 wherein when the wideband-1 header field includes an indication of a presence of the wideband-data field, the 2 physical layer is to further communicate the wideband-data field as part of the 3 packet on the channels identified by the channelization field. 4 23. A system comprising: 1 2 an omnidirectional antenna; a physical layer to communicate a packet with the omnidirectional 3 antenna, the packet comprising at least a channelization field to identify channels 4 that are used for communicating subsequent wideband fields of the packet, and to 5 communicate a wideband-header field on the identified channels, the wideband-6 header field to identify sub-fields present in the wideband-header field and the 7 presence of a wideband-data field following the wideband-header field; and 8 a medium access control layer to select channels for communication by the 9 physical layer and obtain access to the selected channels. 10 24. The system of claim 23 wherein the physical layer is to communicate 1 the channelization field on a compatibility channel of an allocated portion of 2 spectrum comprising a plurality of channels, and is to communicate the wideband-3 header field on the identified channels including the compatibility channel. 4 25. The system of claim 23 wherein the physical layer is to further 1 communicate a wideband-training field as part of the packet following the 2 channelization field, the wideband-training field comprising a training sequence 3 on the channels identified by the channelization field, 4 wherein when the wideband-header field includes an indication of a 5 presence of the wideband-data field, the physical layer is to further communicate 6 the wideband-data field as part of the packet on the channels identified by the 7 channelization field. 8 26. A machine-readable medium that provides instructions, which when 1 executed by one or more processors, cause said processors to perform operations 2 comprising communicating a packet comprising a channelization field identifying 3

٠, .

channels that are used for communicating subsequent wideband fields of the 4 packet, and further comprising a wideband-header field on the identified channels 5 to identify sub-fields present in the wideband-header field and the presence of a 6 wideband-data field following the wideband-header field. 7 27. The machine-readable medium of claim 26 wherein the instructions, 1 when further executed by one or more of said processors cause said processors to 2 perform operations further comprising: 3 communicating the channelization field on a single compatibility channel 4 of an allocated portion of spectrum comprising a plurality of channels; and 5 communicating the wideband-header field on the identified channels 6 including the compatibility channel. 7 28. The machine-readable medium of claim 26 wherein the instructions, 1 when further executed by one or more of said processors cause said processors to 2 perform operations further comprising communicating a wideband-training field 3 as part of the packet following the channelization field, the wideband-training 4 5

* 9 6

- field comprising a training sequence on the channels identified by the channelization field. 6
 - 29. The machine-readable medium of claim 28 wherein the instructions, when further executed by one or more of said processors cause said processors to perform operations wherein when the wideband-header field includes an indication of the presence of the wideband-data field, the communicating further comprises communicating the wideband-data field as part of the packet on the channels identified by the channelization field.
 - 30. A communication packet comprising: a channelization field identifying channels that are used for communicating subsequent wideband fields of the packet; and a wideband-header field for communication on the identified channels to identify sub-fields present in the wideband-header field and the presence of a wideband-data field following the wideband-header field,

1

2

3

4

5

6

1

2

3

4

5

6

7	wherein the channels comprise a plurality of substantially orthogonal
8	symbol-modulated subcarriers.
1	31. The packet of claim 30 wherein the channelization field is for
2	communication on a single compatibility channel assigned an allocated portion of
3	spectrum comprising the plurality of channels, and
4	wherein the wideband-header field is for communication on the identified
5	channels including the compatibility channel.
1	32. The packet of claim 30 further comprising:
2	a wideband-training field to follow the channelization field, the wideband-
3	training field comprising a training sequence for communication on the channels
4	identified by the channelization field,
5	wherein when the wideband-header field includes an indication of the
6	presence of the wideband-data field, the packet includes the wideband-data field
7	for communication on the channels identified by the channelization field.
1	33. The packet of claim 30 further comprising a long-compatibility field
2	for communication on the compatibility channel, the long-compatibility field
3	comprising a variable number of symbols transmitted over a plurality of symbol-
4	modulated subcarriers that comprise the compatibility channel,
5	wherein the long-compatibility field includes information to reserve at
6	least one of the channels for a time period, wherein a narrower-band
7	communication unit refrains from communicating during the time period in
8	response to receipt of the long-compatibility field.
1	34. A method comprising:
2	communicating a wideband-training field as part of a packet, the
3	wideband-training field comprising a training sequence modulated on a plurality
4	of symbol-modulated subcarriers on a plurality of channels;
5	communicating a wideband-header field on the channels, the wideband-
6	header field to identify sub-fields present in the wideband-header field and to

7

identify a presence of a wideband-data field; and

communicating the wideband-data field as part of the packet on the channels when indicated in the wideband-header field.

. . .

- 35. The method of claim 34 further comprising communicating a short-compatibility field as part of the packet on the plurality of channels, wherein the short-compatibility field includes packet-length information defining a length of the packet, wherein narrower-band communication units refrain from communicating on the plurality of channels during the packet in response to the packet-length information.
- 36. The method of claim 34 further comprising estimating at least one of a timing offset, fine-frequency offset, and channel response using at least the training sequence for processing subsequent wideband fields of the packet including the wideband-header field and the wideband-data field when included within the packet.
- 37. The method of claim 34 wherein the wideband-header field is encoded with a predetermined encoding scheme and modulated with a predetermined modulation scheme, wherein the predetermined modulation scheme comprises one of either BPSK or QPSK modulation, and wherein the predetermined encoding scheme comprises a ½ rate convolution code.