Structure-aware combinatorial group testing:

a new method for pandemic screening

Thais Bardini Idalino - Universidade Federal de Santa Catarina - Brazil Lucia Moura - University of Ottawa - Canada

Combinatorial Group Testing

Combinatorial Group Testing

Combinatorial Group Testing

d - CFF(t, n)

Definition: Let d be a positive integer. A d-cover-free family, denoted d - CFF(t, n), is a set system $\mathscr{F} = (X, \mathscr{B})$ with |X| = t and $|\mathscr{B}| = n$ such that for any d + 1 subsets $B_{i_0}, B_{i_1}, \ldots, B_{i_d} \in \mathscr{B}$, we have:

$$\left|B_{i_0}\setminus \left(\bigcup_{j=1}^d B_{i_j}\right)\right| \geq 1.$$

No element is *covered* by the union of any other d.

^{*} Equivalent to disjunct matrices and superimposed codes.

In this talk

- Applications of combinatorial group testing in pandemic screening
- Study of structure-aware combinatorial group testing *
- New constructions of structure-aware CFFs **
- Future work

^{* (}Nikolopoulos et al., 2021), (Gonen et al., 2022), (My PhD Thesis, 2019)

^{**} This work

Structure-aware CFFs

Model the communities as hypergraphs

$$\bullet \ \mathcal{H} = (V, \mathcal{S})$$

Propose constructions that take ${\mathscr H}$ into consideration

•
$$(\mathcal{S}, r) - CFF(t, n)$$

Structure-aware CFFs

Overlapping and non-overlapping edges:

Configurations:

•
$$(\mathcal{S}, r) - CFF(t, n)$$

- Identify all infected individuals, as long as there are at most r infected edges that jointly contain them
- (S, r) ECFF(t, n)
 - Identify *r* infected edges, without internal identification

Non-overlapping edges

- Revisit old d CFF constructions
- Show we can boost the number of infected items they can identify
 - Sperner-type construction for r = 1
 - Kronecker-type construction for r > 1
 - Array construction
 - Polynomial construction

The classroom problem

Non-overlapping edges

The classroom problem

Non-overlapping edges

	Class	room	1	C	Class	room	2	C	Class	room	3	C	Classi	room	4		Classi	room	5	C	Class	room	6
1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0
0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	1	1	1	1

- ullet Consider n individuals divided into m non-overlapping edges, each of size up to d.
- Variation of a $1 CFF(t_1, m)$ concatenated with a $d \times d$ id-matrix.
 - Generates a (S,1) CFF(t,n), $t = t_1 + d \approx \log m + d = \log n/d + d$
- If we only care about infected edges
 - Restrict to the first t_1 rows to get a $(\mathcal{S},1) ECFF(t_1,n)$

Comparison with traditional d - CFF(t, n)

Lower bound

Kronecker-type construction

What if more classrooms are infected?

- Generalization of Li, van Rees and Wei (2006)
 - Uses an r CFF(t, m) to build $(\mathcal{S}, r) ECFF(t, km)$ and $(\mathcal{S}, r) CFF(kt, km)$
- Allows edges of different cardinalities

Overlapping edges

- Explore the properties of the hypergraph
- Propose constructions inspired by the non-overlapping ones
 - Construction of $(\mathcal{S},1)-CFF$ and $(\mathcal{S},1)-ECFF$ based on edge-colouring
 - Construction of $(\mathcal{S}, r) CFF$ based on strong edge-colouring
 - Defect cover: a set of at most r edges whose union contains the set of infected elements

Constructions

Construction

Morning classes:

n = 18 students, 6 classrooms, 3 students each

edge 3

Construction

Afternoon classes: n = 18 students, 6 classrooms, 3 students each edge 9 edge 12 edge 11 edge 7 edge 8 edge 10

Construction

Total:

\mathscr{C}_1														
edge 1	edge 2	edge 3	edge 4	edge 5	edge 6									
1	1	1	0	0	0									
1	0	0	1	1	0									
0	1	0	1	0	1									
0	0	1	0	1	1									

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
8		8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0
0	0	0	1	1	1	0	0	0	1	1	1	0	0	0	1	1	1
0	0	0	0	0	0	1	1	1	0	0	0	1	1	1	1	1	1

\mathscr{C}_1														
edge 1	edge 2	edge 3	edge 4	edge 5	edge 6									
1	1	1	0	0	0									
1	0	0	1	1	0									
0	1	0	1	0	1									
0	0	1	0	1	1									

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
		8					8		8	8	8	8	8	8	8	8	8
1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0
0	0	0	1	1	1	0	0	0	1	1	1	0	0	0	1	1	1
0	0	0	0	0	0	1	1	1	0	0	0	1	1	1	1	1	1
1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0
0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0
0	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1

$$(\mathcal{S},1)$$
 – $CFF(t,n)$

 $(\mathcal{S},1) - CFF(t,n)$

For a larger highschool

- n = 900 studens
- Each student taking 4 courses (4 colour classes)
- Total of m = 120 courses (edges)
- Each course with 30 students (cardinality of edges)
- Tests:
 - Use 1 CFF(7,30 = 120/4)
 - t' = 7x4 = 28 tests to detect infected edges (course of outbreak)
 - t = 28+30x4 = 148 tests to identify all infected individuals

$$(\mathcal{S},1) - CFF(t,n)$$

- ullet Consider a hypergraph $\mathcal H$ with edge chromatic number $\chi(\mathcal H)=\ell$ and colour classes $\mathscr C_1,...,\mathscr C_\ell$
- If \mathcal{H} is **k-uniform**: we have $(\mathcal{S},1) CFF(t,n)$ and $(\mathcal{S},1) ECFF(t',n)$
 - Start with a $1 CFF(t_1, n/k)$
 - $t \le \ell \times (t_1 + k) \approx \ell \times (\log n/k + k)$
 - $t' \le \ell \times t_1 \approx \ell \times \log n/k$

• Start with
$$1 - CFF(t_i, |\mathscr{C}_i| + \delta_i), 1 \le i \le \ell$$

$$t = \sum_{i=1}^{\ell} (t_i + k_i), \quad k_i = \text{max edge in colour class } \mathscr{C}_i$$

$$t' = \sum_{i=1}^{\ell} t_i$$

$$(\mathcal{S},r)-CFF(t,n)$$

- Generalization for $(\mathcal{S}, r) CFF(t, n)$ using strong edge-colouring
 - Assuming that r edges $\mathscr{E} = \{S_1, S_2, ..., S_r\}$ contain all infected individuals

8

- \bullet There are at most r edges in \mathcal{C}_i which intersect \mathcal{E}
 - \mathscr{C}_i contains at most r infected edges
- Use a combination of $r-CFF(t_i,|\mathscr{C}_i|)$ and $(r-1)-CFF(t_i',|\mathscr{C}_i|)$

•
$$(\mathcal{S},r) - CFF(t,n)$$
 with $t \leq \sum_{i=1}^{\ell} (t_i + k_i t_i'), k_i = \max \text{ edge in colour class } \mathcal{C}_i$

Future Work on structure-aware CFFs

- Explore other constraints of the applications
 - Limit on number of 1s per row
- Generalize definitions to allow flexible internal identification
 - Assume a bound on the number of infected items inside an edge (instead of edge size)
- Explore probabilistic constructions
- Compare constructions with known lower bounds

Thank you!

