

低延迟非自回归语音识别方法

田正坤 中科院自动化所在读博士

zhengkun.tian@nlpr.ia.ac.cn

导师: 陶建华 研究员

目录

- 背景介绍
- 非自回归语音识别方法介绍
- 我们团队的工作
 - 尖峰触发非自回归语音识别方法
 - 混合自回归与非自回归语音识别方法
- 总结与展望
- ICASSP2022 ADD 比赛简介

背景介绍

- 1. 会议字幕(线上or线下)/手机输入法
- 2. 语音交互 (手机/音箱/智能助手)
- 3. 其他各种后台语音数据转录任务

低延迟非自回归语音识别方法。线上分享

背景介绍

- 流式任务(边听边识别)
 - CTC
 - RNN-Transducer/SA-Transducer/Transformer-Transducer
 - MoChA/CIF/SMLTA/SCAMA/Triggered Attention
 - FastEmit/Fast-Skip Regularization
- •非流式任务(逐句识别)
 - · 基于深度卷积构建的CTC模型
 - Speech Transformer
 - LAS各种Attention-based Encoder-Decoder模型

降低语音识别系统的延迟是不懈的追求!

非自回归语音识别方法

• 自回归模型 (时序依赖, 不能并行)

• 非自回归模型 (时序独立, 完全并行)

非自回归模型的构建

非自回归语音识别方法

• 直接解码式非自回归

低延迟非自回归语音识别方法。线上分享

非自回归语音识别方法

• 纠错式非自回归

非自回归模型的训练方法

- 预训练模式
 - 将预训练好的自回归模型直接改成非自回归模型进行微调
- 随机遮蔽模式
 - · 类似于BERT, 通过随机掩蔽进行训练
 - 逐步提高掩蔽的概率
- 多任务联合模式
 - · 联合CTC损失
 - 联合自回归损失或者其他正则化方法

工作1: 尖峰触发非自回归语音识别方法

- 动机
 - 非自回归模型解码不能预测目标序列中的标记个数
 - 长度预测问题引发了大量的冗余计算
- 非自回归模型预测长度的方法
 - · 长度预测网络 (类似 SCAMA)
 - 经验预测

工作1: 尖峰触发非自回归语音识别方法

$$POS(i) = \begin{cases} triggerd, & 1 - p_b \ge \beta \\ ignored, & 1 - p_b < \beta \end{cases}$$

$$\mathcal{L} = \begin{cases} \alpha \mathcal{L}_{CTC} + (1 - \alpha) \mathcal{L}_{CE}, & T' \ge T \\ \mathcal{L}_{CTC}, & T' < T \end{cases}$$

工作1: 尖峰触发非自回归语音识别方法

Model	DEV	TEST	RTF
TDNN-Chain (Kaldi) [21]	-	7.45	-
LAS[22]	-	10.56	-
Speech-Transformer *	6.57	7.37	0.0504
SA-Transducer † [16]	8.30	9.30	0.1536
SAN-CTC * [23]	7.83	8.74	0.0168
Sync-Transformer † [24]	7.91	8.91	0.1183
NAT-MASKED * [11]	7.16	8.03	0.0058
ST-NAT(ours)	6.88	7.67	0.0056
ST-NAT+LM(ours)	6.39	7.02	0.0292

^{*} These models are re-implemented by ourselves according to the papers.

(a) The realtionship bettween trigger and word boundaries

[†] We supplement the RTF of our previous two models.

工作2: 混合自回归与非自回归语音识别方法

- 动机
 - 非自回归模型难以训练
 - · a. 更多的迭代次数
 - b. 辅助训练 (联合CTC)
 - 非自回归模型和自回归模型之间的性能差距
 - a. 辅助训练
 - b. 为解码器提供初始信息
- 思路
 - · 共享AR与NAR部分参数 (加速收敛)
 - 两步解码 (性能提升)

工作2: 混合自回归与非自回归语音识别方法

(a) The Structure of Two-Step Non-Autoregressive Transformer

(b) The First-Step Inference Graph

工作2: 混合自回归与非自回归语音识别方法

Model	LM	Dev	Test	RTF
A-FMLM(K=1) [10]	w/o	6.2	6.7	-
Insertion-NAT [25]	w/o	6.1	6.7	-
LASO-big [15] ◊	w/o	5.8	6.4	-
CASS-NAT [26] ♦	W	5.3	5.8	-
CTC-enhanced NAR [13] ◊	w/o	5.3	5.9	-
ST-NAT [14]	w/o	6.9	7.7	0.0056
ST-NAT [14]	w	6.4	7.0	0.0292
AR-Transformer-Small (34M)	w/o	5.3	5.9	0.0557
AR-Transformer-Middle (59M)	w/o	5.2	5.7	0.0613
AR-Transformer-Big (87M)	w/o	5.0	5.6	0.0721
HANAT-Small (34M) †	w/o	5.8	6.4	0.0054
Two Step Hybrid Inference	w/o	5.4	5.9	0.0173
HANAT-Middle (59M) †	w/o	5.4	6.0	0.0063
Two Step Hybrid Inference	w/o	5.2	5.7	0.0176
HANAT-Big (87M) †	w/o	5.3	6.0	0.0077
AR Inference	w/o	5.2	5.7	0.0735
Two Step Hybrid Inference	w/o	5.1	5.6	0.0185

[♦] These models additionally use speed-perturb to augment the speech data.

低延迟非自回归语音识别方法。线上分享

总结与展望

•非流式解码方法有可能被非自回归模型颠覆(速度极快)

- 待解决的问题:
 - 消除自回归模型与非自回归模型之间的性能差距
 - 非自回归模型与流式任务的结合
 - 构建系统级的非自回归语音识别解决方案
 - 输出序列长度预测
 - 快速的准确解码方法
 - 热词定制等工业化问题

ICASSP2022 ADD Challenge

• 网址: http://addchallenge.cn

• 内容: 合成音频检测与生成

谢谢大家的聆听!