Lenguajes Formales y Computabilidad Teoremas: Combo 9

Nicolás Cagliero

July 3, 2025

Lema (Lema de división por casos para funciones Σ -recursivas). Supongamos $f_i: D_{f_i} \subseteq \omega^n \times \Sigma^{*m} \to O, i = 1, ..., k$, son funciones Σ -recursivas tales que $D_{f_i} \cap D_{f_j} = \emptyset$ para $i \neq j$. Entonces la función $f_1 \cup ... \cup f_k$ es Σ -recursiva. (Haga el caso k = 2, n = m = 1 y $O = \omega$)

Dem Sean \mathcal{P}_1 y \mathcal{P}_2 programas que computen las funciones f_1 y f_2 , respectivamente. Para i = 1, 2, definamos

$$H_i = \lambda t x_1 \alpha_1 \left[Halt^{1,1}(t, x_1, \alpha_1, \mathcal{P}_i) \right]$$

Notar que $D_{H_i} = \omega^2 \times \Sigma^*$ y que H_i es Σ -mixta. Además sabemos que la función $Halt^{1,1}$ es $(\Sigma \cup \Sigma_p)$ -p.r., por lo cual resulta fácilmente que H_i es $(\Sigma \cup \Sigma_p)$ -p.r.. Por el Teorema de Independencia del Alfabeto tenemos que H_i es Σ -p.r.. y por lo tanto el Segundo Manantial de Macros nos dice que en \mathcal{S}^{Σ} hay un macro:

[IF
$$H_i(V1, V2, W1)$$
 GOTO A1]

Para hacer más intuitivo el uso de este macro lo escribiremos de la siguiente manera:

[IF
$$Halt^{1,1}(V1, V2, W1, \mathcal{P}_i)$$
 GOTO A1]

Ya que cada f_i es Σ -recursiva, el Primer Manantial nos dice que en \mathcal{S}^Σ hay macros

$$[V2 \leftarrow f_1(V1, W1)]$$

$$[V2 \leftarrow f_2(V1, W1)]$$

Sea \mathcal{P} el siguiente programa:

```
L1 N20 \leftarrow N20 + 1

[IF Halt^{1,1}(N20, N1, P1, \mathcal{P}_1) GOTO L2]

[IF Halt^{1,1}(N20, N1, P1, \mathcal{P}_2) GOTO L3]

GOTO L1

L2 [N1 \leftarrow f_1(N1, P1)]

GOTO L4

L3 [N1 \leftarrow f_2(N1, P1)]

L4 SKIP
```

Nótese que \mathcal{P} computa la función $f_1 \cup f_2$ pues primero nos fijamos que el contenido en N1 y P1 sea parte del dominio de algunas de las dos funciones. En caso que no sea de ninguno de los dominios, el programa no termina. Cuando vemos que en efecto pertenece a alguno de los dos dominios, dejamos en N1 el valor correspondiente al resultado de aplicar f_i con esos valores.

Teorema (Gödel vence a Neumann). Si $f: D_f \subseteq \omega^n \times \Sigma^{*m} \to \omega$ es Σ -computable, entonces f es Σ -recursiva.

Dem Sea \mathcal{P}_0 un programa que compute a f. Primero veremos que f es $(\Sigma \cup \Sigma_p)$ -recursiva. Note que

$$f = E_{\#1}^{n,m} \circ [T^{n,m} \circ [p_1^{n,m}, \dots, p_{n+m}^{n,m}, C_{\mathcal{P}_0}^{n,m}], p_1^{n,m}, \dots, p_{n+m}^{n,m}, C_{\mathcal{P}_0}^{n,m}]$$

donde cabe destacar que $p_1^{n,m},\ldots,p_{n+m}^{n,m}$ son las proyecciones respecto del alfabeto $\Sigma\cup\Sigma_p$, es decir que tienen dominio $\omega^n\times(\Sigma\cup\Sigma_p)^{*m}$. Esto nos dice que f es $(\Sigma\cup\Sigma_p)$ -recursiva. O sea que el Teorema de Independencia del Alfabeto nos dice que f es Σ -recursiva.