DIAGRAM ====>

XRD Pattern

The problem of indexing lies in fixing the correct value of a by inspection of the sin²0 values.

OBSERVATIONS -----

	20	Sin ² 0	1× Sin20 Sin20min		3× Sin20 Sin20min	h2+k2+12	hk2	a	d
			OIII Omin	min	Aura		Longgon	tod o	
						I want	I - to	415	
-							- 10	A°	A°
1}	27 · 137	0.0550	1	2	3	3	1,1,1	5.6900	3.285
2}	45.077	0.1469	3	5	8	8	2,2,0	5.6837	2.009
3}	53.415	0.2019	4	7	u	II	3,1,1	5.6845	81F-1
4}	65.677	0.2940	5	11	16	16	4,0,0	5.6818	1.420
5}	83 - 189	0.4407	8	16	24	24	BOTO :	5.6841	1.160
6}	106.540	0.6423	12	23	35	35	10-	5.6857	0.961
-						M	EAN -	5.6849	1.758

CALCULATION OF LATTICE CELL PARAMETERS -

X-RAY DIFFRACTION.

To calculate the lattice cell parameters from the powder X-ray diffraction data.

APPARATUS REQUIRED ==>

Powder X-ray diffraction diagram

FORMULAE ---

1) For a cubic crystal:

$$\frac{1}{d^2} = \frac{(h^2 + k^2 + l^2)}{a^2}$$

For a tetragonal crystal: $\frac{1}{d^2} = \left\{ \frac{(h^2 + k^2)}{a^2} + \frac{l^2}{c^2} \right\}$

$$\frac{1}{d^2} = \left\{ \begin{array}{cc} (h^2 + k^2) & + & l^2 \\ \hline a^2 & c^2 \end{array} \right\}$$

For a orthorhombic crystal:

$$\frac{1}{d^2} = \left(\frac{h^2}{a^2}\right) + \left(\frac{k^2}{b^2}\right) + \left(\frac{l^2}{c^2}\right)$$

The lattice parameter and interplanar distance are given. 4>

for a cubic crystal as:

$$a = \lambda \sqrt{h^2 + k^2 + l^2} A^\circ$$
2sino

$$d = Q A^{\circ}$$

$$\sqrt{h^2 + k^2 + l^2}$$

1)
$$\theta = 13.5685$$
, $h^2 + k^2 + l^2 = 3$
 $\therefore a = \frac{\lambda}{2\sin\theta} \cdot \sqrt{h^2 + k^2 + l^2}$

$$= 1.5405 \cdot \sqrt{3}$$

 $2 \times Sih(13.5685)$

$$= 1.5405 \times 1.73$$

$$2 \times 0.2346$$

$$= 3.2832 \times 1.73 = 5.6900 \, \text{A}^{\circ}$$

2)
$$\theta = 22.5385$$
, $h^2 + k^2 + l^2 = 8$

$$Q = \frac{\lambda}{26in\theta} \cdot \sqrt{h^2 + k^2 + l^2}$$

$$= 1.5405 \cdot \sqrt{8}$$

 $2 \times \sin(22.5385)$

$$= 2.0095 \times 2.82 = 5.6837 \text{ A}^{\circ}$$

$$\Theta = 26.7075$$
 , $h^2 + k^2 + l^2 = 11$

3>

:.
$$a = \frac{\lambda}{2\sin\theta} \cdot \sqrt{h^2 + k^2 + l^2}$$

$$=\frac{1.5405}{2\times\sin(26.7075)}\cdot\sqrt{11}$$

where,

a = lattice parameter

d = interplanar distance

2 = wavelength of the Cuka radiation (1.5405)

h, k, 1 = miller integers

PRINCIPLE ---

Bragg's law is the theoretical basis for X-ray diffraction.

$$(\sin^2 \theta)_{hkl} = (\frac{\lambda^2}{4a^2})(h^2 + k^2 + l^2)$$

Each of the miller indices can take values 0, 1, 2, 3.

Thus, the factor $(h^2+k^2+l^2)$ takes the values given in the table below.

h, k, 1	$h^2 + k^2 + l^2$	h, K, 1	$h^2 + k^2 + l^2$	
		La day		
100	1	300	9	
110	2	310	10	
111	3	311	u	
200	4	322	12	
210	5	320	13	
211	6	321	14	
220	8	400	16	1
221	9	410	17	-

LATTICE DETERMINATION -----

4)
$$\Theta = 32.8385$$
 $h^2 + k^2 + l^2 = 16$
 $\therefore \quad \alpha = \frac{\lambda}{2 \sin \Theta} \cdot \sqrt{h^2 + k^2 + l^2}$

$$= \frac{1.5405}{2 \times 0.5422} \times 4$$

$$0 = 41.5945 , h^2 + k^2 + l^2 = 24$$

$$\therefore 0 = \frac{\lambda}{2 \sin \theta} \cdot \sqrt{h^2 + k^2 + l^2}$$

5}

$$= 1.5405 \cdot \sqrt{24}$$

 $2 \times \sin(41.5945)$

$$= 1.1603 \times 4.89 = 5.6841 A^{\circ}$$

6)
$$\Theta = 53.2700$$
 $h^2 + k^2 + l^2 = 35$

$$\therefore \alpha = \frac{\lambda}{2\sin\theta} \cdot \sqrt{h^2 + k^2 + 2^2}$$

$$= \frac{1.5405}{2 \times \sin(53.2700)} \cdot \sqrt{35}$$

$$= \frac{1.5405}{2 \times 0.8014} \times 5.91$$

$$= 0.9611 \times 5.91 = 5.6857 \, \text{A}^{\circ}$$

Lattice Type	Rule for reflection to be observed
Primitive (P)	None
Body Centered (I)	hk1: h+k+1=2n
Face Centered (F)	hk1: h, k, 2 either all odd or all
Depending on the type can be det	nature of the h, k, 2 values the lattice termined.
	26.46
	TEN BOUBLE YEAR
	86 30 0 x 5
	"A 1083/3 3 - PSW W 503/1 3
	28 = 3 - 4 - 24 0000 68 = 9 10 3 + 5 4 = 10
	35.0 - COURT
	164 × 36431 ± 1
	9 (33) 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Teacher's Signature

• For calculating 'd':

$$a = 5.6900$$
, $\sqrt{h^2 + K^2 + 1^2} = 1.73$
 $d = \frac{a}{\sqrt{h^2 + k^2 + 1^2}}$
 $= \frac{5.6900}{1.73} = 3.285 \text{ A}^{\circ}$

2)
$$Q = 5.6837$$
 $\sqrt{h^2 + k^2 + l^2} = 2.82$
 $d = \frac{Q}{\sqrt{h^2 + k^2 + l^2}}$
 $= \frac{5.6837}{2.82} = 2.009 \text{ A}^\circ$

3>

44

5>

$$a = 5.6845 \quad \sqrt{h^2 + k^2 + l^2} = 3.31$$

$$\therefore d = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

$$= \frac{5.6845}{3.31} = 1.713 \text{ A}^{\circ}$$

$$a = 5.6818$$
, $\sqrt{h^2 + k^2 + 2^2} = 4$

$$d = \frac{a}{\sqrt{h^2 + k^2 + 2^2}}$$

$$= \frac{5.6818}{4} = 1.420 \text{ A}^{\circ}$$

$$a = 5.6841 \quad , \sqrt{h^2 + k^2 + l^2} = 4.89$$

$$\therefore d = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

$$= \frac{5.6841}{4.89} = 1.160 \text{ A}^\circ$$

Expt. No	Page No.
RESULT =>	
The lattice parameters are	
from the powder X-Ray diffract	
Teac	cher's Signature