

重要知識點

- 了解 YOLO 改進的思路。
- YOLO YOLO 的優缺點及其極限。

- 對相互靠很近或者很小的物體檢測效果不好,這是因為一個網格只預測兩個 bboxes,並且只屬於一個類別。
- 同一個類別出現新的,不常見的長寬比時(也就是訓練集裡面沒出現過的bbox 比例),會檢測不到。
- 損失函數的設計缺陷。
 - 假設定位誤差為 E,這個 E 對大物體來說可能是還可以接受的,但是對小物體來說可能就偏離 groundtruth bbox 很遠了,直覺上來說,小物體對 E 應該要更加敏感,雖然作者試圖在損失函數使用平方根來克服這個缺點,但還是沒有完全解決。

YOLO 作者在 2016 年時發表了 YOLO9000, 這篇論文的主要貢獻是

- 提出 YOLOv2
 - 在 YOLO 速度的基礎上對準確度做的改進
- 提出 YOLO9000
 - 設計出一種 Joint Training Algorithm,對檢測以及分類任務同時進行訓練
 - 應用至 ImageNet 和 COCO 資料集當中,最終使得網路檢測的物體超過 9000 種

在 2018 年時又在發表了 <u>YOLOv3</u>,設計出更好的檢測網路,在保持其速度的情況下,達到更高的準確度。

接下來會簡要地說明 YOLOv2 以及 YOLOv3 的改進,對 YOLO9000 有興趣的同學可以自己去看論文以及補充的參考資料,如果要完全掌握 YOLO,建議需要去看論文以及程式碼。

一。YOLOv2 各個改進策略帶來的提升

YOLOv2 具體做了不少改進,根據論文,其在 VOC2007 資料集上的 mAP 由 63.4 提升到 78.6!

	YOLO								YOLOv2
batch norm?		√	V	√	√	V	√	√	√
hi-res classifier?			1	V	V	1	1	\	✓
convolutional?				\	√	V	1	1	✓
anchor boxes?				1	V				
new network?					V	1	1	√	✓
dimension priors?						1	1	1	✓
location prediction?						1	1	√	✓
passthrough?							1	1	✓
multi-scale?								1	✓
hi-res detector?									✓
VOC2007 mAP	63.4	65.8	69.5	69.2	69.6	74.4	75.4	76.8	ne 78.6 /10p

会 YOLOv2 主要改進策略簡述

策略	簡述
Batch Normalization	在每個卷積層後添加 batch normalization,同時丟棄 dropout
High Resolution Classifier	一開始在 ImageNet finetune 時,使用更高 resolution 的圖像作為 input,同時最後輸出層的 feature map 大小由 7 x 7 改成 13 x 13
Convolutional With Anchor Boxes	為克服 YOLOv1 每個網格只能預測一個物件類別的缺點,借鑒 Faster RCNN 的 anchor boxes 思路,放棄用全連接層預測 bboxes,而是基於 anchor boxes 的 offsets 和 confidence 來獲得 bboxes,並且每個 anchor boxes 都會預測類別 YOLO 輸出層: S x S x (B x 5 + C) YOLOv2 輸出層: S x S x (B x (5 + C))
Dimension Clusters	在 Faster RCNN 中 anchor box 的長寬值是人工設定的,YOLOv2 使用 K-Means 的方式對資料集的 bboxes 做分群來取得長寬值,作者通過實驗最後決定用 5 個 anchor

這部分其實很難在一天裡面理解完,這裡只做了簡單的介紹,想要更理解細 節的可以參考這份筆記

CYOLOv2 網路架構 - Darknet-19

Type	Filters	Size/Stride	Output
Convolutional	32	3×3	224×224
Maxpool		$2 \times 2/2$	112×112
Convolutional	64	3×3	112×112
Maxpool		$2 \times 2/2$	56×56
Convolutional	128	3×3	56×56
Convolutional	64	1×1	56×56
Convolutional	128	3×3	56×56
Maxpool		$2 \times 2/2$	28×28
Convolutional	256	3×3	28×28
Convolutional	128	1×1	28×28
Convolutional	256	3×3	28×28
Maxpool		$2 \times 2/2$	14×14
Convolutional	512	3×3	14×14
Convolutional	256	1×1	14×14
Convolutional	512	3×3	14×14
Convolutional	256	1×1	14×14
Convolutional	512	3×3	14×14
Maxpool		$2 \times 2/2$	7×7
Convolutional	1024	3×3	7×7
Convolutional	512	1×1	7×7
Convolutional	1024	3×3	7×7
Convolutional	512	1×1	7×7
Convolutional	1024	3×3	7×7
Convolutional	1000	1×1	7×7
Avgpool		Global	1000
Softmax			

作者在 YOLOv2 採用了新的網路 backbone 該網路包含 19 個 convolutional layer 和 5 個 max pooling layer,最後用 average pooling layer 代替 YOLOv1 中的 fully connected layer 進行預測

YOLOv3 則是在 YOLOv2 的基礎上,改良了網路 backbone 以及 output layer 的結構,使得其準確度有很大的提升,主要的改進思路是

- Multiscale prediction
 - 輸出了3個不同 scale 的 feature map (分別是 13 x 13, 26 x 26 以及 52 x 52), 越大的 feature map 就能劃分出越細緻的網格,也就能檢測出越精細的物體
- 加深 backbone
 - 提出新的 backbone Darknet-53,採用簡單的 residual block 作為加深網路的手段
- Loss function
 - 在 YOLO 系列的論文中,只有 YOLOv1 明確提了 loss function 的公式,而其實 YOLOv3 有把原本的 YOLOv2 中的 softmax loss 變成 logistic loss,主要是因為 softmax 意味著每一個 boxes candidate 只對應一個類別,但實際上並不總是這 樣,因為有些數據集會有重疊的 label,比如說不同種類的馬。

Co YOLOv3 網路架構 - Darknet - 53

	Туре	Filters Size		Output		
	Convolutional	32	3×3	256×256		
	Convolutional	64	$3 \times 3/2$	128×128		
	Convolutional	32	1 x 1			
1×	Convolutional	64	3×3			
	Residual			128 × 128		
	Convolutional	128	$3 \times 3/2$	64 × 64		
	Convolutional	64	1 x 1			
2×	Convolutional	128	3×3			
	Residual			64 × 64		
	Convolutional	256	$3 \times 3/2$	32×32		
	Convolutional	128	1 × 1			
8×	Convolutional	256	3×3			
	Residual			32 × 32		
	Convolutional	512	$3 \times 3/2$	16 × 16		
	Convolutional	256	1 × 1			
8×	Convolutional	512	3×3			
	Residual			16 × 16		
	Convolutional	1024	$3 \times 3/2$	8 × 8		
	Convolutional	512	1 × 1			
4×	Convolutional	1024	3×3			
	Residual			8 × 8		
	Avgpool		Global			
	Connected		1000			
	Softmax					

作者在 YOLOv3 採用了新的網路 backbone 的架構,該網路包含 53 個 convolutional layer,相比 YOLOv2,拿掉了 MaxPooling Layer 然後添加了 residual block。

This new network is much more powerful than Darknet-19 but still more efficient than ResNet-101 or ResNet-152. Here are some ImageNet results:

Backbone	Top-1	Top-5	Bn Ops	BFLOP/s	FPS
Darknet-19 [15]	74.1	91.8	7.29	1246	171
ResNet-101[5]	77.1	93.7	19.7	1039	53
ResNet-152 [5]	77.6	93.8	29.4	1090	37
Darknet-53	77.2	93.8	18.7	1457	78

Table 2. Comparison of backbones. Accuracy, billions of operations, billion floating point operations per second, and FPS for various networks.

論文中的圖表顯示出原本的 Darknet-19 相比 ResNet 或者 Darknet-53 還是最快的 backbone,但是 Darknet-53 在維持 real time 的速度下,在 ImageNet 的分類任務上具備和 ResNet 差不多的準確度。

由論文中的圖表可以看出來,YOLOv3 並沒有追求更高的速度,而是在保證足夠實時的基礎上追求更好的準確度。

推薦閱讀資料

- YOLO 的發展
- YOLOv2
 - YOLOv2--論文學習筆記(算法詳解)
- YOLOv3
 - 【目標檢測簡史】進擊的YOLOv3,目標檢測網絡的巔峰之作

大陆縣

- YOLO 系列的精華在於它通過把圖片劃分為網格來做檢測,只是不同版本劃分的數量不一樣而已。
 - 也由於這樣的設計,靠一個 loss function 搞定訓練,只需要關注 input 以及 output layer
- 從 YOLOv2 在每一層 convolutional layer 加入 batch normalization 作為正規化、加速收斂和避免 overfitting 的方法
- 在速度和準確度直接是有 tradeoff 的,想要速度快點,可以犧牲準確度,用 tinyyolo 做 backbone
- YOLOv3 在多個 scale 的 feature map 上做檢測,對小目標的效果提升明顯
- 下一天的課程是 YOLOv3 的程式碼實作,你可能可以很快地就用上 YOLOv3,但你不大可能很快就懂 YOLOv3,所以建議沒辦法完全消化的 YOLO 這系列算法細節的同學可以先往實作課程去體會,之後有需要再回過頭來消化

- YOLO9000 darknet 實現
 - github 上相關的討論

解題時間 Let's Crack It

請跳出 PDF 至官網 Sample Code &作業開始解題