OPT skripta do kapsv

Kapitola 2 (Maticová algebra)

- Pravá/levá inverze nemusí existovat nebo nemusí být jediná, je-li matice čtvercová a má jednu z nich, pak má i druhou a jsou si rovny.
- Pravá inverze existuje \iff $\mathbf{A} \in \mathbf{R}^{m \times n}$ má nezávislé řádky (rng $\mathbf{A} = \mathbf{R}^m$)
- Levá inverze existuje \iff $\mathbf{A} \in \mathbf{R}^{m \times n}$ má nezávislé sloupce (null $\mathbf{A} = \{0\}$)
- $(AB)^{-1} = B^{-1}A^{-1}, (\alpha A)^{-1} = \alpha^{-1}A^{-1}, (A^{\mathsf{T}})^{-1} = (A^{-1})^{\mathsf{T}} = A^{-\mathsf{T}}$
- det $\mathbf{A} = \sum_{\sigma} \operatorname{sgn} \sigma \prod_{i=1}^{n} a_{i\sigma(i)}$
- $\det(\mathbf{A}\mathbf{B}) = (\det \mathbf{A})(\det \mathbf{B}), \det \mathbf{A} = \det \mathbf{A}^\mathsf{T}, \det \mathbf{A} = 0 \iff \mathbf{A}$ je singulární
- Gaussova eliminace soustavy $\mathbf{A}\mathbf{x} = \mathbf{b}$: řádkové úpravy zachovají null A, rng A, sloupcové úpravy zachovají rng A, null A.

Kapitola 3 (Linearita)

- ullet báze podprostoru X je LN množina vektorů generující X
- Věty: 1) Z každé množiny vektorů lze vybrat bázi lin. obalu.
- 2) Každou LN množinu vektorů podprostoru lze doplnit na jeho bázi. 3) Každý lin. podprostor má (alespoň jednu) bázi a každá jeho báze má stejný počet vektorů.
- X, Y množiny: $X \subseteq Y \to \dim X \le \dim Y, X \subseteq Y \land \dim X = \dim Y \to X = Y$
- rng $\mathbf{A} = {\mathbf{A} \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^m}$, null $\mathbf{A} = {\mathbf{x} \in \mathbb{R}^n \mid \mathbf{A} \mathbf{x} = \mathbf{0}}$ (obojí pro $\mathbf{A} \in \mathbb{R}^{m \times n}$)
- TFAE pro matici $\mathbf{A} \in \mathbb{R}^{m \times n}$: $\mathbf{A}\mathbf{A}^{\intercal} \in \mathbb{R}^{m \times m}$ je regulární; $\operatorname{rng} \mathbf{A} = \mathbb{R}^m$; $\mathbf{A} \mathbf{x} = \mathbf{y}$ má řešení $\forall \mathbf{y}$; $\operatorname{rank} \mathbf{A} = m$; řádky \mathbf{A} nezávislé; zobr. $\mathbf{f}(\mathbf{x}) = \mathbf{A}\mathbf{x}$ je surjektivní, tj. $\mathbf{f}(\mathbb{R}^n) = \mathbb{R}^m$; **A** má pravou inverzi
- TFAE: null $A = \{0\}$; Ax=0 má jediné řešení x=0; rank A = n; sloupce Ajsou LN; A má levou inverzi; A T A je regulární
- rng AB ⊂ rng A (rovnost, pokud jsou řádky B lineárně nezávislé)
- null AB D null B (rovnost, pokud jsou sloupce A lineárně nezávislé)
- Věta (rozklad podle hodnosti): Pro každou matici $\mathbf{A} \in \mathbb{R}^{m \times n}$ hodnosti rexistují $\mathbf{B} \in \mathbb{R}^{m \times n}$, $\mathbf{C} \in \mathbb{R}^{r \times n}$ t.ž. $\mathbf{A} = \mathbf{BC}$
- $\operatorname{rank} \tilde{\mathbf{A}} = \operatorname{rank} \mathbf{A}^{\mathsf{T}}$
- Věta (o dimenzích): Pro matici $\mathbf{A} \in \mathbb{R}^{m \times n}$ platí: dim rng \mathbf{A} + dim null $\mathbf{A} = n$
- Je-li X lineární podprostor \mathbb{R}^n a $\mathbf{x} \in \mathbb{R}^n$, pak $X + \mathbf{x}$ je afinní podprostor \mathbb{R}^n . Je-li A afinní podprostor \mathbb{R}^n a $\mathbf{x} \in A$, pak $A - \mathbf{x}$ je lineární podprostor \mathbb{R}^n . Je-li A afinní podprostor \mathbb{R}^n a $\mathbf{x}, \mathbf{y} \in A$, pak $A - \mathbf{x} = A - \mathbf{y}$.
- Množina $A\subseteq \mathbb{R}^n$ je afinní podprostor \iff je množinou řešení nějaké lin. soustavy, tj. existují \mathbf{A} , \mathbf{b} t.ž. $A=\{\mathbf{x}\in \mathbb{R}^n\mid \mathbf{A}\mathbf{x}=\mathbf{b}\}$
- Pro body $\mathbf{x_1}, \dots \mathbf{x_n} \in \mathbb{R}^n$ TFAE: žádný bod není roven aff. komb. ostatních; vektory $\{x_i - x_1\}$ jsou LN; homogenní vektory s těmito x_i jsou LN

Kapitola 4 (Ortogonalita)

- Skalární součin: $\mathbf{x}^{\mathsf{T}}\mathbf{y} = \sum x_i y_i$, Úhel mezi \mathbf{x} a \mathbf{y} je $\cos \phi = \frac{\mathbf{x}^{\mathsf{T}}\mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$
- CSB-nerovnost sk. součinu: $(\mathbf{x}^{\mathsf{T}}\mathbf{y})^2 \leq (\mathbf{x}^{\mathsf{T}}\mathbf{x})(\mathbf{y}^{\mathsf{T}}\mathbf{y})$
- Euklidovská norma: $\|\mathbf{x}\| = \sqrt{\mathbf{x}^{\mathsf{T}}\mathbf{x}}$.
- Ortogonální vektory: $\mathbf{x} \perp \mathbf{y} \Leftrightarrow \mathbf{x}^{\mathsf{T}} \mathbf{y} = 0$, \mathbf{y} je ortogonální na množinu X, iff $\mathbf{x} \perp \mathbf{y} \ \forall \mathbf{x} \in X$ (stačí, je-li kolmý na bázové vektory X)
- Ortogonální prostory: $X \perp Y$, je-li $\mathbf{x} \perp \mathbf{y} \ \forall \mathbf{x} \in X, \ \forall \mathbf{y} \in Y$, dále platí $X \perp Y \Rightarrow X \cap Y = \{0\}$
- Ortogonální doplněk: $X^{\perp} = \{ \mathbf{y} \mid \mathbf{y} \perp X \}.$
- Platí $\forall X, Y \in \mathbb{R}^n$: 1) dim X + dim X^{\perp} = n, 2) $(X^{\perp})^{\perp}$ = X3) $X \perp Y \wedge \dim X + \dim Y = n \Rightarrow Y = X^{\perp}$.
- $\forall \mathbf{A} \text{ plati: 1) } (\operatorname{rng} \mathbf{A})^{\perp} = \operatorname{null}(\mathbf{A}^{\mathsf{T}}), 2) \ (\operatorname{null} \mathbf{A})^{\perp} = \operatorname{rng}(\mathbf{A}^{\mathsf{T}}).$
- Mn. vektorů: $\{\mathbf{u}_1, ... \mathbf{u}_n\}$ je ortonormální, iff \mathbf{u}_i je normalizovaný a $\mathbf{u}_i^{\mathsf{T}} \mathbf{u}_j = \delta_{ij}$. \mathbf{u}_i ortonormální a $\mathbf{x} = \sum \alpha_i \mathbf{u}_i$, pak $\alpha_i = \mathbf{u}_i^{\mathsf{T}} \mathbf{x}$.
- Matice s ortonormálními sloupci: $\mathbf{U}^{\mathsf{T}}\mathbf{U} = \mathbf{I}$. Čtvercová \mathbf{U} je ortogonální a platí pro ní navíc $\mathbf{U}^{\mathsf{T}} = \mathbf{U}^{-1}$, $\mathbf{U}\mathbf{U}^{\mathsf{T}} = \mathbf{I}$.
- Matice s ortonormálními sloupci zachovává skalární součin a normu $f(\mathbf{x})^{\mathsf{T}} f(\mathbf{y}) = (\mathbf{U}\mathbf{x})^{\mathsf{T}} (\mathbf{U}\mathbf{y}) = \mathbf{x}^{\mathsf{T}} \mathbf{U}^{\mathsf{T}} \mathbf{U}\mathbf{y} = \mathbf{x}^{\mathsf{T}} \mathbf{y}$
- (Isometrie): $\|\mathbf{f}(\mathbf{x})\| = \|\mathbf{U}\mathbf{x}\| = \|\mathbf{x}\|$ (viz výše)
- QR rozklad: $\mathbf{A} = \mathbf{Q}\mathbf{R}$, $\mathbf{Q} \in \mathbb{R}^{m \times m}$ ortogonální $\mathbf{R} \in \mathbb{R}^{m \times n}$ horní
- Redukovaný QR: Q stejné rozměry jak A, R čtvercová (v plném je jsou typicky poslední řádky R nulové, tak ty (a to s čím se násobí), můžeme
- Ortogonální projekce: Pokud $\mathbf{U}^{\mathsf{T}}\mathbf{U} = \mathbf{I}$ tak projekce na rng $\mathbf{U} : \mathbf{x} = \mathbf{U}\mathbf{U}^{\mathsf{T}}\mathbf{z}$. Matice $\mathbf{P} = \mathbf{U}\mathbf{U}^{\mathsf{T}}$ je ortogonální projektor na rng \mathbf{U} . $\mathbf{P}^2 = \mathbf{P} = \mathbf{P}^{\mathsf{T}}$. Platí $\operatorname{rng} \mathbf{P} = X$, $\operatorname{null} \mathbf{P} = X^{\perp}$. Ort. projektor na $\operatorname{rng}(\mathbf{U})^{\perp} = (\mathbf{I} - \mathbf{P})\mathbf{z}$.

- $\bullet\,$ pro ortogonální matici platí $\det \mathbf{U}=1$ (rotace) nebo $\det \mathbf{U}=-1$ (reflexe)
- Vzdálenost bodu **z** od lin. podp. $X^{\perp} : \|\mathbf{U}\mathbf{U}^{\mathsf{T}}\mathbf{z}\| = \|\mathbf{U}^{\mathsf{T}}z\|, (\operatorname{rng}\mathbf{U} = X)$
- Vzdálenost bodu z od aff. podprostoru $A = \{ \mathbf{x} \in \mathbb{R}^m \mid \mathbf{U}^\mathsf{T} \mathbf{x} = b \} = \{ \mathbf{x} \in \mathbb{R}^m \mid \mathbf{U}^\mathsf{T} (\mathbf{x} - \mathbf{x}_0 = 0) \} = X^\perp + \mathbf{x}_0$ $\mathbf{U}^{\mathsf{T}}\mathbf{x} = \mathbf{b} : \|\mathbf{U}^{\mathsf{T}}\mathbf{z} - \mathbf{b}\|.$
- vzdálenost bodu **z** od nadroviny $\mathbf{a}^\mathsf{T} \mathbf{x} = \mathbf{b}$ je $\frac{|\mathbf{a}^\mathsf{T} \mathbf{z} \mathbf{b}|}{\|\mathbf{a}\|}$

Kapitola 5 (Nehomogenní lin. soustavy)

- $\forall \mathbf{A} \text{ plati } 1) \operatorname{rng}(\mathbf{A}^{\mathsf{T}} \mathbf{A}) = \operatorname{rng}(\mathbf{A}^{\mathsf{T}}), 2) \operatorname{null}(\mathbf{A}^{\mathsf{T}} \mathbf{A}) = \operatorname{null}(\mathbf{A}).$
- $\bullet \rightarrow \operatorname{rank}(\mathbf{A}\mathbf{A}^{\mathsf{T}}) = \operatorname{rank}\mathbf{A} = \operatorname{rank}(\mathbf{A}^{\mathsf{T}}\mathbf{A}) = \operatorname{rank}\mathbf{A}^{\mathsf{T}}$
- Platí 1) A^TA regulární iff A LN sloupce, 2) AA^T regulární, iff A LN řádky.

Obrázek 1: Nejmenší čtverce

- Metoda nejmenších čtverců: hledáme $\min_x \|\mathbf{A}\mathbf{x} \mathbf{b}\|^2$. Pak platí $\mathbf{A}^{\mathsf{T}} \mathbf{A} \mathbf{x}^* = \mathbf{A}^{\mathsf{T}} \mathbf{b}$. Z toho $\mathbf{x}^* = \mathbf{A}^{\mathsf{+}} \mathbf{b}$, kde $\mathbf{A}^{\mathsf{+}} = (\mathbf{A}^{\mathsf{T}} \mathbf{A})^{-1} \mathbf{A}^{\mathsf{T}}$, pokud $\mathbf{A}^{\mathsf{T}} \mathbf{A}$ regulární, jinak více řešení x (affiní podprostor)
- Ortogonální projekce: Když \mathbf{x} řeší norm. rovnici, pak $\mathbf{A}\mathbf{x} = \mathbf{Pb}, \mathbf{P} = \mathbf{AA}^+$ je projektor na rng A. Reduk. QR rozkladem: po dosazení $\mathbf{A} := \mathbf{Q}\mathbf{R}, \mathbf{x} = \mathbf{R}^{-1}\mathbf{Q}^{\mathsf{T}}\mathbf{b}. \mathbf{R}$ regulární pro A LN sloupce.
- Lin. regrese: $\min_{\theta} \sum_{i} (y_i f(x_i, \theta))^2$, pro $f \vee \theta$ lineární, $\|\mathbf{y} \mathbf{A}\theta\|$.
- Vícekrit. nejmenší čtverce (nezáporná kombinace více kritérií): $\| \left[\sqrt{\mu_i} (\mathbf{A}_i \mathbf{x} - \mathbf{b}_i) \right] \|^2 = \| \left[\sqrt{\mu_i} \mathbf{A}_i \right] \mathbf{x} - \left[\sqrt{\mu_i} \mathbf{b}_i \right] \|^2 = \| \mathbf{A}' \mathbf{x} = \mathbf{b}' \|^2.$ Řešení $\mathbf{A}\mathbf{x} = \mathbf{b}$ pro malé \mathbf{x} je $\mathbf{x} = \mathbf{A}_{\mu}^{+}\mathbf{b}$, $\mathbf{A}_{\mu}^{+} = (\mathbf{A}^{\mathsf{T}}\mathbf{A} + \mu\mathbf{I})^{-1}\mathbf{A}^{\mathsf{T}}$.

Obrázek 2: Neimenší norma

 • $NEJMENŠÍ\ NORMA$: Řešení s nejmenší normou pro nedourčenou soustavu $\mathbf{A}\mathbf{x} = \mathbf{b}$: min{ $\|\mathbf{x}\|^2 | \mathbf{x} \in \mathbb{R}^n$, $\mathbf{A}\mathbf{x} = \mathbf{b}$ }, pak pro \mathbf{x}^* platí $\mathbf{x}^* = \mathbf{A}^{\mathsf{T}} \mathbf{b} = \mathbf{A}^{\mathsf{T}} (\mathbf{A} \mathbf{A}^{\mathsf{T}})^{-1} \mathbf{b}$, tentokrát $\mathbf{A} \mathbf{A}^{\mathsf{T}}$ regulární, jinak více řešení x (affiní podprostor)

Kapitola 6 (Spektrální rozklad a kvadratická forma)

- polynom je homogenní, pokud jsou všechny monomy stejného stupně
- $\mathbf{A} \in \mathbb{R}^{n \times n}$, $\mathbf{A}\mathbf{v} = \mathbf{v}\lambda$, $\mathbf{A}\mathbf{V} = \mathbf{V}\Lambda$
- ullet Pokud ${f V}$ je reg. (tj. ${f A}$ má n LN vlastních vek.), je invertovatelná a platí $A = V\Lambda V^{-1}$
- $V\check{E}TA$: Nechť $\mathbf{A} \in \mathbb{R}^{n \times n}$ pak FSAE: \mathbf{A} je symetrická $\iff \forall$ vl. čísla \mathbf{A} jsou reálná a A má n vlastních vektorů které jsou po dvojicích ortogonální. $D\mathring{U}SLEDEK$: Pro každou sym. $\mathbf{A} = \mathbf{V}\Lambda\mathbf{V}^{\mathsf{T}} = \lambda_1\mathbf{v}_1\mathbf{v}_1^{\mathsf{T}} + ... + \lambda_n\mathbf{v}_n\mathbf{v}_n^{\mathsf{T}}$ lze zvolit V ortogonální. rank $A = \operatorname{rank} \Lambda$
- SYMETRIZACE: $\mathbf{A} = \frac{1}{2}(\mathbf{A} + \mathbf{A}^{\mathsf{T}})$
- Definitnost kvadratické formy: Čtvercovou matici nazýváme: - P[N]SD když pro každé \mathbf{x} platí $\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} \geq 0$ $[\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} \leq 0]$
- P[N]D když pro každé $x \neq 0$ platí $x^TAx > 0$ $[x^TAx < 0]$
- INDEF když exist. \mathbf{x} a \mathbf{y} tak, že $\mathbf{x}^{\intercal} \mathbf{A} \mathbf{x} > 0$ a $\mathbf{y}^{\intercal} \mathbf{A} \mathbf{y} < 0$]
- VĚTA: Symetrická matice je

- PD, právě když všechny vůdčí hlavní minory jsou kladné. PSD, právě když všechny hlavní minory jsou nezáporné.
- DIAG. KVADR. FORMY: $f(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} = \mathbf{x}^{\mathsf{T}} \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathsf{T}} \mathbf{x} = \mathbf{y}^{\mathsf{T}} \mathbf{\Lambda} \mathbf{y}$
- VĚTA: Symetrická matice je
- P[N]SĎ ⇔ ∀ vl.č. nezáporná [nekladná]
- P[N]D ⇔ ∀ vl.č. kladná [záporná]
- INDEF ⇐⇒ aspoň jedno kladné a jedno záporné.
- KVADRATICKA FUNKCE: $f(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} + \mathbf{b}^{\mathsf{T}} \mathbf{x} + c$
- DOPLNĚNÍ NA ČTVEREC: $f(\mathbf{x}) = (\mathbf{x} \mathbf{x}_0)^{\mathsf{T}} \mathbf{A} (\mathbf{x} \mathbf{x}_0) y_0$. $TRIK: \mathbf{b} = -2\mathbf{A}\mathbf{x}_0, \ c = \mathbf{x}_0^\mathsf{T}\mathbf{A}\mathbf{x}_0 + y_0$ (vtip pro zoufalé studenty při testu: "Víte, jak si utírá zadek kouzelník? Trikem!" (A teď běž zase počítat...))
- KVADRIKA je nultá vrstevnice kvadratické funkce, tedy $\{\mathbf{x} \in \mathbb{R}^n | \mathbf{x}^\mathsf{T} \mathbf{A} \mathbf{x} + \mathbf{b}^\mathsf{T} \mathbf{x} + c = 0\}$. Jedná se zobecnění kuželoseček (n=2), Pokud lze doplnit na čtverec, tvary dle matice A (PD, ND: elipsoid, INDEF: hyperboloid). Pokud rank A < n, je kvadrika degenerovaná. Kvadrika může být Ø. Pokud kvadratická funkce nelze doplnit na čtverec, jsou tvary složitější než elipsa/hyperbola.

Kapitola 7 (Použití spektrálního rozkladu)

- Def. (stopa): tr $\mathbf{A} = a_{11} + ... + a_{nn}$
- $\operatorname{tr}(\mathbf{A} + \mathbf{B}) = \operatorname{tr}(\mathbf{A}) + \operatorname{tr}(\mathbf{B}), \ \operatorname{tr}(\alpha \mathbf{A}) = \alpha \operatorname{tr}(\mathbf{A}), \ \operatorname{tr}(\mathbf{A}) = \operatorname{tr}(\mathbf{A}^{\mathsf{T}}),$ $tr(\mathbf{AB}) = tr(\mathbf{BA})$ (cykličnost stopy),
- $$\begin{split} \operatorname{tr}(\mathbf{A}\mathbf{B}) &= \operatorname{tr}(\mathbf{B}\mathbf{A}) \text{ (cykličnost stopy)}, \\ \operatorname{Každá čtvercová matice: } \operatorname{tr}(\mathbf{A}) &= \lambda_1 + \ldots + \lambda_n \\ \bullet & \operatorname{Def. (skalární součin matic): } \langle \mathbf{A}, \mathbf{B} \rangle = \sum_{i=1}^m \sum_{j=1}^n a_{ij}b_{ij}, \\ \langle \mathbf{A}, \mathbf{B} \rangle &= \langle \mathbf{B}, \mathbf{A} \rangle = \langle \mathbf{A}^\mathsf{T}, \mathbf{B}^\mathsf{T} \rangle = \langle \mathbf{B}^\mathsf{T}, \mathbf{A}^\mathsf{T} \rangle, \\ \langle \mathbf{A}, \mathbf{B} \rangle &= \operatorname{tr}(\mathbf{A}^\mathsf{T}\mathbf{B}) = \operatorname{tr}(\mathbf{A}\mathbf{B}^\mathsf{T}) = \operatorname{tr}(\mathbf{B}^\mathsf{T}\mathbf{A}) = \operatorname{tr}(\mathbf{B}\mathbf{A}^\mathsf{T}) \\ \bullet & \|\mathbf{A}\| &= \sqrt{\langle \mathbf{A}, \mathbf{A} \rangle} = \sqrt{\operatorname{tr}(\mathbf{A}^\mathsf{T}\mathbf{A})} = \left(\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2\right)^{\frac{1}{2}} \\ \bullet & \operatorname{Dále předpokládáme, že vl. čísla souř rázena vzestupně <math>\lambda_1 \leq \ldots \leq \lambda_n \\ \sum_{i=1}^n \operatorname{tr}(\mathbf{A}^\mathsf{T}\mathbf{A}) = \sum_{i=1}^n \operatorname{tr}(\mathbf{A}^\mathsf{T}\mathbf{A$$

- NEJMENŠÍ STOPA: Platí $\min\{\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x}|\mathbf{x}\in\mathbb{R}^n, \mathbf{x}^{\mathsf{T}}\mathbf{x}=1\}=\lambda_1 \text{ a min.}$ hodnota se nabývá pro $\mathbf{x} = \mathbf{v}_1$ V E T A: Nechť k < n. Platí

 $\min\{\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x}|\mathbf{x}\in\mathbb{R}^{n},\mathbf{x}^{\mathsf{T}}\mathbf{x}=1,\mathbf{v}_{1}^{\mathsf{T}}\mathbf{x}=\ldots=\mathbf{v}_{k}^{\mathsf{T}}\mathbf{x}=0\}=\lambda_{k+1} \text{ a min. hodnota}$ se nabývá pro $\mathbf{x} = \mathbf{v}_{k+1}$

 $V\check{E}TA$: Nechť $k \leq n$. Platí

 $\min\{\mathbf{tr}(\mathbf{X}^\mathsf{T}\mathbf{A}\mathbf{X})\,|\,\mathbf{X}\in\mathbb{R}^{n\times k},\,\mathbf{X}^\mathsf{T}\mathbf{X}=\mathbf{I}\}=\lambda_1+\ldots+\lambda_k\text{ a minimum se nabývá pro }\mathbf{X}=[\mathbf{v}_1\ \ldots\ \mathbf{v}_k]$

Obrázek 3: Proložení bodů podprostorem

- $PROLO\check{Z}EN\acute{I}\ BOD\mathring{U}\ PODPROSTOREM$: Máme body $a_1,...,a_m\in\mathbb{R}^n,$ prokládáme podprostorem rng \mathbf{Y} dim k < n. Vzdálenost bodu od rng \mathbf{Y} je délka projekce na jeho ort. doplněk $(\operatorname{rng} \mathbf{Y})^{\perp} = \operatorname{rng} \mathbf{X}$. Tedy $\|\mathbf{X}^{\mathsf{T}}\mathbf{a}_1\|^2 + ... + \|\mathbf{X}^{\mathsf{T}}\mathbf{a}_m\|^2 = \|\mathbf{A}\mathbf{X}\|^2$. Tedy máme úlohu $\min\{\|\mathbf{A}\mathbf{X}\|^2 | \mathbf{X} \in \mathbb{R}^{n \times (n-k)}, \mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{I}\}$ Protože $\|\mathbf{A}\mathbf{X}\|^2 = \operatorname{tr}\{\mathbf{X}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{X}\}$, spočítáme spekt. rozklad $\mathbf{V}\mathbf{\Lambda}\mathbf{V}^{\mathsf{T}}$ matice $\mathbf{A}^{\mathsf{T}}\mathbf{A}$. Máme $\mathbf{V} = [\mathbf{X} \ \mathbf{Y}] \in \mathbb{R}^{n \times n}$. \mathbf{X} je řešní úlohy proložení bodů podprostorem a Y je Easy.
- MATICE NEJNIŽŠÍ HODNOSTI: $\min\{\|\mathbf{A} \mathbf{B}\|^2 | \mathbf{B} \in \mathbb{R}^{m \times n}, \operatorname{rank} \mathbf{B} \le k\}$. Stejná opt. hodnota jako výše, stačí najít $\mathbf{B} = \mathbf{AYY}^{\mathsf{T}} = \mathbf{A}(\mathbf{I} - \mathbf{XX}^{\mathsf{T}})$. Opt. hodnota je $\lambda_1 + ... + \lambda_{n-k}$ (ze spektra matice $\mathbf{A}^{\mathsf{T}}\mathbf{A}$).
- Když chceme promítat na affiní podprostor, musíme body $a_1...a_m$ posunout tak, aby jejich težiště $\bar{a} = \frac{1}{m}(\mathbf{a}_1 + ... + \mathbf{a}_m)$ leželo v počátku.
- SVD ROZKLAD: Každou matici $\mathbf{A} \in \mathbb{R}^{m \times n}$ lze rozložit jako $\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^{\mathsf{T}} = s_1\mathbf{u}_1\mathbf{v}_1^{\mathsf{T}} + \ldots + s_p\mathbf{v}_p\mathbf{v}_p^{\mathsf{T}}$, kde $\mathbf{S} \in \mathbb{R}^{m \times n}$ je diag. s diag. prvky $s_1,...,s_p$ (kde $p=\min\{m,n\})$ a $\mathbf{U}=[\mathbf{u}_1...\mathbf{u}_m]\in\mathbb{R}^{m\times m}$ a $\mathbf{V} \in \mathbb{R}^{n \times n} = [\mathbf{v}_1 ... \mathbf{v}_n]$ jsou ortogonální. $D \mathring{U} SLEDEK$: nenulová sing. čísla

- matice A isou druhé odmocniny nenulových vl. čísel matic $A^{\mathsf{T}}A$ a AA^{T} (která isou tudíž steiná)
- řešení úlohy MATICE NEJMENŠÍ HODNOSTI pomocí SVD rozkladu (Eckart - Young): Nechť $\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^\intercal$ je SVD matice \mathbf{A} . Řešení úlohy je $\mathbf{B}=\mathbf{US}^{'}\mathbf{V}^{\intercal}=s_{p-k+1}\mathbf{u}_{p-k-1}\mathbf{v}_{p-k+1}^{\intercal}+\ldots+s_{p}\mathbf{u}_{p}\mathbf{v}_{p}^{\intercal},$ kde $\mathbf{S}^{'}$ se získá z matice \mathbf{S} vynulováním p-knejmenších diagonálních prvků (v sumě dryád (#joke) tedy předpokládáme $0 \le s_1 \le ... \le s_p$)

Kapitola 8 (Nelineární funkce a zobrazení)

- Nechť funkce $f, g: \mathbb{R}^n \to \mathbb{R}$ jsou spojité v bodě **X**. Pak f+g, f-g, fg jsou spojité. Pokud $g(\mathbf{x}) \neq 0$, je tam spojitá i f/g. Skládání funkcí (vnější $\mathbb{R} \to \mathbb{R}$) spojitých je také spojité. Zobrazení $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$, jehož složky jsou spojité
- Zobrazení f je v bodě x spojitě diferencovatelné, jestliže v bodě x ex. všechny parciální derivace a jsou v tomto bodě spojité.
- Je-li zobrazení v bodě spojitě diferencovatelné, je v tomto bodě diferencovatelné.

$$\begin{array}{lll} f(\mathbf{x}) = \mathbf{x} & f'(\mathbf{x}) = \mathbf{I} \\ f(\mathbf{x}) = \mathbf{a}^\mathsf{T} \mathbf{x} & f'(\mathbf{x}) = \mathbf{a}^\mathsf{T} \\ f(\mathbf{x}) = \mathbf{x}^\mathsf{T} \mathbf{A} \mathbf{x} & f'(\mathbf{x}) = \mathbf{x}^\mathsf{T} (\mathbf{A} + \mathbf{A}^\mathsf{T}) \\ f(\mathbf{x}) = ||\mathbf{x}|| & f'(\mathbf{x}) = \mathbf{x}^\mathsf{T} / ||\mathbf{x}|| \end{array} \quad \begin{array}{ll} f(\mathbf{x}) = \mathbf{A} \mathbf{x} + \mathbf{b} & f'(\mathbf{x}) = \mathbf{A} \\ f(\mathbf{x}) = \mathbf{x}^\mathsf{T} \mathbf{x} & f'(\mathbf{x}) = \mathbf{2} \mathbf{x}^\mathsf{T} \\ f(\mathbf{x}) = \mathbf{A} \mathbf{g}(\mathbf{x}) & f'(\mathbf{x}) = \mathbf{A} \mathbf{g}'(\mathbf{x}) \end{array}$$

- $f(\mathbf{x}) = \mathbf{g}(\mathbf{x})^{\mathsf{T}} \mathbf{h}(\mathbf{x})$ $f'(\mathbf{x}) = \mathbf{g}(\mathbf{x})^{\mathsf{T}} \mathbf{h}'(\mathbf{x}) + \mathbf{h}(\mathbf{x})^{\mathsf{T}} \mathbf{g}'(\mathbf{x})$
- Směrová derivace $\varphi(\alpha) = \mathbf{f}(\mathbf{x} + \alpha \mathbf{v})$
- Nechť zobrazení $\mathbf{f}:\mathbb{R}^n\to\mathbb{R}^m$ je diferencovatelné v bodě $\mathbf{x}.$ Pak jeho směrová derviace v bodě \mathbf{x} ve směru \mathbf{v} je rovna $\mathbf{f}'(\mathbf{x})\mathbf{v}$.
- Gradient je transpozicí derivace a udává směr největšího růstu funkce.
- Hesián je symetrický, pokud druhé parc. derivace existují a jsou spojité.
- Taylorův polynom 2. řádu v bodě $\mathbf{x_0}$ je $T_2(\mathbf{x}) = f(\mathbf{x_0}) + f'(\mathbf{x_0})(\mathbf{x} \mathbf{x_0}) + \frac{1}{2}(\mathbf{x} \mathbf{x_0})^{\mathsf{T}} f''(\mathbf{x_0})(\mathbf{x} \mathbf{x_0})$
- Označme $B_{\epsilon}(\mathbf{x}) = \{\mathbf{y} \in \mathbb{R}^n \mid ||\mathbf{x} \mathbf{y}||, \epsilon\}$ (n-rozměrná koule bez hranice). Mějme množinu $X \subseteq \mathbb{R}^n$, bod $\mathbf{x} \in \mathbb{R}^n$ nazveme její:
- vnitřní bod iff $\exists \epsilon > 0$ t.ž. $B_{\epsilon} \subseteq X$,
- hraniční bod iff $\forall \epsilon > 0$ je $B_{\epsilon}(\mathbf{x}) \cap X \neq X \wedge B_{\epsilon}(\mathbf{x}) \cap (\mathbb{R}^n \setminus X) \neq \emptyset$

Kapitola 9 (Volné lokální extrémy)

- $\bullet\,$ Fermatova věta: Nechť je funkce $f:\mathbb{R}\to\mathbb{R}$ v bodě $x\in\mathbb{R}$ diferencovatelná a má v tomto bode lokální extrém. Pak f'(x) = 0.
- Nechť $f:\mathbb{R}^n \to \mathbb{R}$ a $X\subseteq \mathbb{R}^n$. Nechť \mathbf{x} je vnitřní bod množiny X. Nechť je fce f v bode x dvakrát diferencovatelná a platí $f'(\mathbf{x}) = 0$. Pak:
- Je-li \mathbf{x} lok. min. [max] fce f na X, pak Hessova matice f'' je pos.[neg.] semidefinitní. Je-li pos.[neg.] definitní, pak je to ostré min.[max.]. Je-li indefinitní, pak x není lok. extrém.
- Iterační metody: $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha \mathbf{v}_k$, směr \mathbf{v}_k je sestupný, jestliže:
- Gradientní metoda: $\alpha \mathbf{v}_k = -\alpha f'(\mathbf{x}_k)^{\mathsf{T}} = -\alpha \nabla f(\mathbf{x}_k)$. BACHA! Gradient se dělá z účelové fce, tedy z $g(x)^{\mathsf{T}}g(x)$, nikoli jen z g(x). (viz zápočťák)
- Newtonova metoda (hledání kořenu): $\mathbf{x}_{k+1} = \mathbf{x}_k \mathbf{g}'(\mathbf{x}_k)^{-1}\mathbf{g}(\mathbf{x}_k)$
- Newtonova metoda hledaní min.: $\mathbf{x}_{x+1} = \mathbf{x}_k f''(\mathbf{x}_k)^{-1} f'(\mathbf{x}_k)^\mathsf{T}$. Odvozeno z: $T_{\mathbf{x}_k}^2(\mathbf{x}) = f(\mathbf{x}_k) + f'(\mathbf{x}_k)(\mathbf{x} \mathbf{x}_k) + \frac{1}{2}(\mathbf{x} \mathbf{x}_k)^\mathsf{T} f''(\mathbf{x})(\mathbf{x} \mathbf{x}_k)$ nebo z hledání kořenů (výše) pro funkci $\mathbf{g} = f'^{\mathsf{T}}$
- Gauss-Newton (min $\|g(\mathbf{x})\|^2$): $\mathbf{x}_{k+1} = \mathbf{x}_k \mathbf{g}'(\mathbf{x}_k)^+ \mathbf{g}(\mathbf{x}_k)$ Odvozeno z: Normální rovnice (kap. 5): $\mathbf{g}'(\mathbf{x}_k)^{\mathsf{T}}\mathbf{g}'(\mathbf{x}_k)(\mathbf{x} - \mathbf{x}_k) = -\mathbf{g}'(\mathbf{x}_k)^{\mathsf{T}}\mathbf{g}(\mathbf{x}_k)$ Metoda s jednotkovou délkou kroku může vždy divergovat, vhodnou volbou α lze konvergenci zajistit.
- $\bullet \ \text{Levenberg-Marguardt:} \ \mathbf{x}_{k+1} = \mathbf{x}_k (\mathbf{g}'(\mathbf{x}_k)^\intercal \mathbf{g}'(\mathbf{x}_k) + \mu \mathbf{I})^{-1} \mathbf{g}'(\mathbf{x}_k)^\intercal \mathbf{g}(\mathbf{x}_k)$ Pro malé μ se blíží Gauss-Newtonově metodě, pro velké gradienty.

Kapitola 10 (Lokální extrémy vázané rovnostmi)

- Lineární omezení: $\min \|\mathbf{A}\mathbf{x} \mathbf{b}\|^2$, za podmínek: $\mathbf{C}\mathbf{x} = \mathbf{d}$ Převedeme: $f(\mathbf{x}) = \frac{1}{2}((\mathbf{A}\mathbf{x} - \mathbf{b})^{\mathsf{T}}(\mathbf{A}\mathbf{x} - \mathbf{b}), \text{ tedy podm. stacionarity:}$ $\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} + \mathbf{C}^{\mathsf{T}}\lambda = \mathbf{A}^{\mathsf{T}}\mathbf{b} \wedge \mathbf{C}\mathbf{x} = \mathbf{d}$, což lze převést na maticový tvar.
- Nechť je zobrazení \mathbf{g} v bodě $\mathbf{x} \in X$ a vektor $\mathbf{v} \in \mathbb{R}^n$ je tečný k X v bodě \mathbf{x} . Pak $\mathbf{g}'(\mathbf{x})\mathbf{v} = 0 \rightarrow \text{Gradient je kolmý na vrstevnici.}$
- Pokud navíc rank $\mathbf{g}'(\mathbf{x}) = m$ (tj. LN řádky) a vektor \mathbf{v} je $\mathbf{g}'(\mathbf{x})\mathbf{v} = 0$, pak \mathbf{v} je tečné na X v bodě \mathbf{x} .
- Lagrangián: $L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda^{\mathsf{T}} \mathbf{g}(\mathbf{x}) = f(\mathbf{x}) + \lambda_1 g_1(\mathbf{x} + \ldots + \lambda_m g_m(\mathbf{x}))$ a položíme parc. derivace podle všech proměnných rovny 0.

• Regulární bod: Gradienty vazební fce g(x) na množině X isou lin.

Kapitola 11 (Lineární programování)

- Stand. tvar: $\min\{\mathbf{c}^{\mathsf{T}}\mathbf{x}|\mathbf{x}\in\mathbb{R}^n, \mathbf{A}\mathbf{x}\geq \mathbf{b}, \mathbf{A}\in\mathbb{R}^{mxn}, \mathbf{b}\in\mathbb{R}^m\}$
- Stand. úpravy: $\max \mathbf{c}^{\mathsf{T}} \mathbf{x} = \min -\mathbf{c}^{\mathsf{T}} \mathbf{x}$. $\mathbf{a}^{\mathsf{T}} \mathbf{x} < \mathbf{b} \to -\mathbf{a}^{\mathsf{T}} \mathbf{x} > -\mathbf{b}$
- Rovnic. tvar: $\min\{\mathbf{c}^{\mathsf{T}}\mathbf{x}|\mathbf{x}\in\mathbb{R}^n, \mathbf{A}\mathbf{x}=\mathbf{b}, \mathbf{x}\geq 0\}$ - Slackové proměnné: $\mathbf{a}^\mathsf{T} \mathbf{x} \geq \mathbf{b} \to (\mathbf{a}^\mathsf{T} \mathbf{x} - u = \mathbf{b} \land u \geq 0), \leq \to +u$
- Neomezená proměnná: $x \in \mathbb{R} \to x = x^+ x^- \land (x^+, x^-) \ge 0$
- Po částech afinní funkce: $f(x) = \max(\mathbf{c_i}^\intercal \mathbf{x} + d_i)$, Cheeme min: $\min\{f(x) | \mathbf{A}\mathbf{x} \geq \mathbf{b}\} = \min\{z | (\mathbf{x}, y) \in \mathbb{R}^{n+1}, \forall i : \mathbf{c_i}^\intercal + d_i \leq z, \mathbf{A}\mathbf{x} \geq \mathbf{b}\}$ • Axiomy normy: $\|\mathbf{x}\| = 0 \to \mathbf{x} = 0$, $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$, $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$
- Definice p-normy: $\|\mathbf{x}\|_p = (|x_1|^p + ... + |x_n|^p)^{1/p}, p \ge 1$
- Typické normy: $\|x\|_1 = \sum_i |x_i|, \|x\|_2 = \sqrt{\sum_i x_i^2}, \|x\|_{\infty} = \max\{|x_i|\}$ Pro \mathbf{A} s LN sloupci je také $\|\mathbf{A}\mathbf{x}\|$ normou.
 - Řešení přeurčené lin soustavy v p-normě, tedy: $min_x ||\mathbf{A}\mathbf{x} \mathbf{b}||_n, x \in \mathbb{R}^n$ $p = \infty$: $\min\{z | x \in \mathbb{R}^n, z \in \mathbb{R}, -z\mathbf{1} \le \mathbf{A}\mathbf{x} - \mathbf{b} \le z\mathbf{1}\}$
- $p = 1: \min\{\mathbf{1}^{\mathsf{T}}\mathbf{z}|x \in \mathbb{R}^n, z \in \mathbb{R}^m, -\mathbf{z} \leq \mathbf{A}\mathbf{x} \mathbf{b} \leq \mathbf{z}\}$ LP relaxace: $\min\{\mathbf{c}^{\mathsf{T}}\mathbf{x}|x \in \{0,1\}^n\mathbf{A}\mathbf{x} \geq \mathbf{b}\}$ pracujme s: $x \in [0,1]^n$ → tato 'uvolněná' úloha pak nemá větší optimální hodnotu než původní úloha, to proto že optimalizujeme přes větší množinu!

Kapitola 12 (Konvexní množiny a mnohostěny)

- $X \subseteq \mathbb{R}^n$ se nazývá konvexní, iff: $x, y \in X, 0 \le \alpha \le 1 \to (1-\alpha)x + \alpha y \in X$ Tedy každé dva body v množině propojím úsečkou která je celá v této množině
- Vážený součet $\alpha_1 \mathbf{x}_1 + \cdots + \alpha_k \mathbf{x}_k$ vektorů $\mathbf{x}_i \in \mathbb{R}^n$ se nazývá jejich:
- lineární kombinace $\iff \alpha_i \in \mathbb{R}$
- afinní kombinace $\iff \alpha_i \in \mathbb{R}, \quad \alpha_1 + \cdots + \alpha_k = 1$
- nezáporná kombinace $\iff \alpha_i \in \mathbb{R}, \quad \forall \alpha_i \geq 0$
- konvexní kombinace $\iff \alpha_i \in \mathbb{R}, \quad \alpha_1 + \cdots + \alpha_k = 1, \quad \forall \alpha_i > 0$
- Konvex. (jiný) obal vektorů je množina všech jejich konv. (jiných) kombinací. Konvex obal množiny $X \subseteq \mathbb{R}^n$ je průnik všech konv. množin, které X obsahují
- Množina uzavřená vůči kombinacím lineárním je lin. podprostor, afinním je afinní podp., nezáporným je konvexní kužel a konvexním je konvexní množina.
- DŮSLEDEK: Průnik (konečně či nekonečně) konv. množin je konv. množina.
- Konvexní mnohostěn je průnik konečně mnoha uzavřených poloprostorů, je to tedy množina: $\{x \in \mathbb{R}^n | \mathbf{A}\mathbf{x} \geq \mathbf{b}\}$. Příklady konv. mnohostěnů: \emptyset, \mathbb{R}^n , intervaly $(-\infty, a], [a, \infty), \text{ každý aff podpr}, [-1, 1]^n$
- Co není polyedr: koule v $\mathbb{R}^n n \geq 2$, interval [0, a), $\{\mathbf{x} \in \mathbb{R}^n | \mathbf{A}\mathbf{x} > \mathbf{b}\}$
- Bod $x \in X$ je extremálním bodem, iff neex. dva různé body z X takové, že xje střed úsečky tyto body spojující.
- TFAE: x je extremální bod polyedru, $\exists I \subseteq \{1..m\}$ tak že $\mathbf{A}_{\mathbf{I}}\mathbf{x} = \mathbf{b}_{\mathbf{I}}$ a $\mathbf{A}_{\mathbf{I}}$, což má LN sloupce (a Ax = b).
- Opěrná nadrovina konv. $X \subseteq \mathbb{R}^n$ je nadrovina $H = \{ \mathbf{x} \in \mathbb{R}^n | \mathbf{a}^\mathsf{T} \mathbf{x} = \mathbf{b} \}$ a $H\cap X\neq\emptyset$. Množina $H\cap X$ se nazývá stěna mnohostěnu. Stěna dim 0 je vrchol, dim 1 je hrana a dim X-1 je faseta. Každý extremální bod je vrchol.
- Je-li H opěrná nadrov. X, pak extr. bod $X \cap H$ je i extr. bod X.
- TFAE: polyedr má alespoň jeden extr. bod, polyedr neobsahuje přímku
- Mějme konvexní mnohostěn, který neobsahuje přímku. Jestliže lineární funkce má na tomto mnohostěnu minimum, pak tato funkce nabývá na mnohostěnu minima aspoň v jednom z jeho extremálních bodů.

Kapitola 14 (Dualita)

- Dále: x příp. primární řeš., y příp. primární řeš
- $SLABA DUALITA: \mathbf{c}^{\mathsf{T}}\mathbf{x} > \mathbf{b}^{\mathsf{T}}\mathbf{y}$

- \rightarrow pokud \mathbf{x} , \mathbf{y} jsou přípustná řešení primární a duální úlohy a $\mathbf{c}^{\mathsf{T}}\mathbf{x} = \mathbf{b}^{\mathsf{T}}\mathbf{y}$, pak isou to optimální hodnoty obou úloh.
- \bullet PODM. KOMPL.: $\mathbf{c}^{\mathsf{T}}\mathbf{x} = \mathbf{b}^{\mathsf{T}}\mathbf{y}$ iff na každém řádku alespoň jedna rovnost (aktivní podmínka)
- SILNÁ DUALITA: Primár má opt. řeš. iff duál má opt. řeš. y máli Primár má opt. řeš. \mathbf{x} a duál má opt. řeš. \mathbf{y} , pak $\mathbf{c}^{\mathsf{T}}\mathbf{x} = \mathbf{b}^{\mathsf{T}}\mathbf{y}$

	primární/duální	má optimum	neomezená	nepřípustná
.	má optimum	ano	ne	ne
1	neomezená	ne	ne	ano
	nepřípustná	ne	ano	ano

• STÍNOVÉ CENY:

 $f: \mathbb{R}^m \to \mathbb{R}, f(\mathbf{b}) = \min\{\mathbf{c}^\mathsf{T}\mathbf{x} | \mathbf{A}\mathbf{x} > \mathbf{b}, \mathbf{x} > \mathbf{0}\} = \max\{\mathbf{b}^\mathsf{T}\mathbf{y} | \mathbf{A}^\mathsf{T}\mathbf{y} < \mathbf{c}, \mathbf{y} > \mathbf{0}\}$ (přičemž primár i duál mají opt. řeš.) Pokud má duální úloha pro dané ${\bf b}$ jediné opt. řeš. \mathbf{y}^* , pak je fce f v bodě \mathbf{b} diferencovatelná a $\frac{\partial f(\mathbf{b})}{\partial h} = \mathbf{y}_i^*$.

Kapitola 15 (Konvexní funkce)

- Funkce $f:\mathbb{R}^n \to \mathbb{R}$ na množině $X\subseteq \mathbb{R}^n$ se nazývá konvexní, iff:
- Jensenova nerovnost zobecňuje podmínku konvexity fce:
- Příklady konvexních fcí: $f(x) = e^{ax}$ $a \in \mathbb{R}$ na \mathbb{R} , $f(x) = x^a = 1 \rightarrow f(\alpha_1 x_1 + \ldots + \alpha_k x_k) \leq \alpha_1 f(x_1) + \ldots + \alpha_k f(x_k)$ Př: $f(x) = \max(x_i) \rightarrow f((1-\alpha)x + \alpha y) = \max((1-\alpha)x_i + \alpha y_i) \leq \max((1-\alpha)x_i) + \max(\alpha y_i) = (1-\alpha)f(x) + \alpha f(y)$. fce je konvexní
 Příklady konvexních fcí: $f(x) = e^{ax}$ $a \in \mathbb{R}$ na \mathbb{R} , $f(x) = x^a$ $a \geq 1 \lor a \leq 0$ na
- $\mathbb{R}_{++}, f(x) = |x|^a \ a \ge 1$ na $\mathbb{R}, f(x) = \mathbf{a}^\mathsf{T} \mathbf{x} + b$ je zároveň konv. i konk, $f(x) = \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}$ konv. pro **A** PSD, každá norma je konv., $x \log x$ je konvexní na
- Příklady konkávních fcí: $f(x) = \log(x)$ na \mathbb{R}_{++} , $\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}$ konk. pro \mathbf{A} NSD, $f(x) = x^a \ 0 < a < 1 \text{ na } \mathbb{R}_{++}$
- Epigraf fce je množina $\{(x,y) \in \mathbb{R}^{n+1} | f(x) \leq y\}$..množina nad grafem fce
- Subkontura výšky y je $\{x \in \mathbb{R}^n | f(x) \leq y\}$
- Funkce je konvexní iff její epigraf je konvexní. Obousměrná implikace.
- Každá subkontura konv. fce je kovexní množina. Obrácená implikace neplatí.
- Ať je $f: \mathbb{R}^n \to \mathbb{R}$ diferencovatelná. Pak je f konvexní na \mathbb{R}^n , iff pro $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ platí: $f(\mathbf{y}) \geq f(\mathbf{x}) + f'(\mathbf{x})(\mathbf{y} - \mathbf{x})$..tzn T_1 fce f je v každém bodě $x \in X$ všude menší nebo roven fci f
- Ať je $f:\mathbb{R}^n\to\mathbb{R}$ dvakrát diferencovatelná. Pak je f konvexní na \mathbb{R}^n , iff v každém $x \in \mathbb{R}^n$ je f''(x) PSD.
- Ať $g_1...g_k:\mathbb{R}^n\to\mathbb{R}$ jsou konvexní, pak pro $\alpha_i\geq 0$ je $f=\alpha_1g_1+...+\alpha_kg_k$ také konvexní. Může se stát, že i takováto kombinace nekonvex. fcí je nakonec konvexní fce $(f(x) = x^3 - x^3)$.
- Skládání konvex. fcí nemusí být konvex. fce. Např.
- At fce $q: \mathbb{R}^m \to \mathbb{R}$ je konvex., $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, pak fce $h(\mathbf{x}) = g(\mathbf{A}\mathbf{x} + \mathbf{b})$ je konvexní.
- Ať I je libovolná množina, $g_i: \mathbb{R}^n \to \mathbb{R}$ jsou konv. fce. Pak: $f(x) = \max_{i \in I} (g_i(x))$ je konv fce, předpokládáme že pro každé x maximum existuje. Dané tím, že epigraf f je průnikem epigrafů g_i .

Kapitola 16 (Konvexní optimalizace)

- Nechť funkce $f: \mathbb{R}^n \to \mathbb{R}$ je konvexní na konvexní množině $X \subset \mathbb{R}^n$ (tj. je to konvexní optim. úloha). Pak každé lok. min. fce f na X je zároveň globální.
- Příklady konvexních úloh: lineární programování, kvadratické programování, kvadratické programování s kvadratickými omezením, programování na kuželu druhého řádu, semidefinitní programování.
- Příklad nepřípustné úlohy: $\max\{b \mid b=z+s+100p, b \leq 40, b \geq 20\}$, kde z...znalosti, s...štěstí, p...tento přehled, b...body ze zkoušky
- Konvexní relaxace: když mám konv. fci na složité (nekonv.) množině, vezmu její kony, podmnožinu a získám alespoň horní odhad minima.

Autorství

Vytvořeno podmnožinou S(|S|=8) členů (ne)chvalně (ne)proslulé tajné skupiny zvané Memy pro zoufalce na B3B33 (značíme M).

Za obsah nikdo (rozhodně ani množina S, ani M) nikomu neručí - je možné, že jsme si vše jen zlovolně vymysleli. :-)

Pokud byste chtěli zdrojový kód, ozvěte se na hodandom@fel.cvut.cz. Šetřte papír, tiskněte naši jednostránkovou verzi!

Hodně štěstí ke zkoušce, nechť vás provází síla a nejmenší čtverce!