



### Introduction to Electronics



#### Agenda

- Basic electronics Component
- Resistor
- ohm's law
- led
- Relay
- Measurement tools
- Measure Current in closed circuit
- Measure Voltage in closed circuit
- Bread board







## Basic electronics component







## ohm's law









### Voltage

- Electric potential difference between two points.
- (V) Measured in Volts.







#### Current

- Charges (Electrons) moving through material.
- (I) Measured in Amps

#### Electric Current Is Analogous to Water Flow







# آآ

#### Resistance

- The ability of the material to slow/stop the flowing of the electrical current.
- (R) Measured in ohms  $(\Omega)$ .
- Application ...











#### Resistor Color Code









### Variable Resistance







#### Batteries











### Capacitors













### Capacitors





#### **Capacitors**



#### **Capacitance Conversion Values**

| Microfarads (µF) |    | Nanofarads (nF) |    | Picofarads (pF) |
|------------------|----|-----------------|----|-----------------|
| 0.000001 µF      | 4+ | 0.001 nF        | 4+ | 1 pF            |
| 0.00001 µF       | 4+ | 0.01 nF         | 4+ | 10 pF           |
| 0.0001 µF        | 4+ | 0.1 nF          | 4+ | 100 pF          |
| 0.001 µF         | 4+ | 1 nF            | 4+ | 1,000 pF        |
| 0.01 µF          | 4+ | 10 nf           | 4+ | 10,000 pF       |
| 0.1 µF           | 4+ | 100 nF          | 4+ | 100,000 pF      |
| 1 µF             | 4+ | 1,000 nF        | 4+ | 1,000,000 pF    |
| 10 μF            | 4+ | 10,000 nF       | 4+ | 10,000,000 pF   |
| 100 μF           | 4+ | 100,000 nF      | 4+ | 100,000,000 pF  |

#### Max. Operating Voltage

| Code | Max. Voltage |
|------|--------------|
| 1H   | 50V          |
| 2A   | 100V         |
| 2T   | 150V         |
| 2D   | 200V         |
| 2E   | 250V         |
| 2G   | 400V         |
| 2J   | 630V         |

#### Tolerance

| Code | Percentage |
|------|------------|
| В    | ± 0.1 pF   |
| С    | ±0.25 pF   |
| D    | ±0.5 pF    |
| F    | ±1%        |
| G    | ±2%        |
| н    | ±3%        |
| J    | ±5%        |
| K    | ±10%       |
| M    | ±20%       |
| Z    | +80%, -20% |



### **Switches**

Toggle switch

Pushbutton switch

Selector switch







Lever actuator limit switch













#### Electromechanical

- Electromagnet
- Armature that can be attracted by the electromagnet
- Spring
- Set of electrical contacts







# M

# Relay body









## Multimeter (AVO Meter)









# M

## oscilloscope









### Tinker cad

#### Dashboard | Tinkercad









## Resistor in series









# M

## Task

create a combined resistors of 4.5k ohm using 5 resistor.





## Resistor in parallel





$$R_{T} = \frac{1}{\frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} + \dots + \text{ etc.}}$$







## ohm's law

 $\begin{array}{c|c} \text{Ohm's} \\ \text{Law} & = \frac{V}{R} \\ \text{Electric current} & = \text{Voltage / Resistance} \end{array}$ 







## Task

change the resistance value to create a current of 20m Amp.





## Voltage measurement









## Voltage divider











### current measurement









## variable resistor







# M

## Arduino







## blinking











## Task blinking 2 led

add led to another digital pin to be blinking every 2 second





# Variable light (PWM)









## Blinking with push button











## Digital read serial







# Analog input







# M

## Dimmer









## Temperature Sensor







### Task 1

use the following formula to find the temperature.

temperature=(Sensor\_voltage-0.5)\*100 print the output in Serial Monitor





## Ultrasonic Sensor









### Task 2

use ultrasonic sensor to get distance of the moving object. if the distance < 60 print "Warning -----"







## PIR Sensor







## DC Motor - H bridge











## H- bridge







## DC with L293D H bridge







### Task 3

add two push button to control dc motor direction, first one to rotate motor clockwise and other to rotate it counter clockwise.