2021 MATHEMATICS – HONOURS SEMESTER-6 INTERNAL ASSESSMENT Full Marks of each Course: 10

The figures in the margin indicate full mark .

Symbols and notations used here carry their usual meaning.

Candidates are required to give their answers in their own words as far as practical.

Course: CC13 (Metric Space & Complex Analysis)

Choose the correct altern	5x2=10						
1. Usual Metric on R (Set of all real numbers)							
(i) may be bounded	(ii) must be bounded						
(iii) is unbounded	(iv) may be bot	th bounded and unbounde	ed				
2. An infinite subset of an infinite discrete metric space							
(i) is compact		(ii) is not compact					
(iii) may or may not be compact (iv) is closed only							
3. $D = \{z \in C: Im(Z) < a\}$ is							
(i) domain (ii) region (iii) domain, but no region (iv) region, but not domain							
4. The function $e^{ar{Z}}$ is							
(i) everywhere analytic (ii) no	where analytic	(iii) analytic except z=0	(iv) analytic at only z=0				
$\int_{5.} \left z \right = 2^{\frac{1}{z^2 + 1}} dz$ is							
(i) 0 (ii) 1 (iii) 2	2 (iv) not in	tegrable					

Course: CC14 (Numerical Methods)

Choose the correct alternative with proper justification:

5x2=10

- 6. The numbers 0.002745 and 2.995 when rounded off to three significant digits become
 - (i) 0.003 and 2.99 respectively.
 - (ii) 0.00275 and 3.00 respectively.
 - (iii) 0.00274 and 3.00 respectively.
 - (iv) 0.00275 and 2.99 respectively.

7.	What is the degree of the first order forward difference of a polynomial of degree 3. Justify								
	your a	inswer. 3	(ii)	2	(iii)	1	(iv)	0	
	(1)	3	(11)	۷	(111)	1	(IV)	U	
8.		nd $ abla$ aralent to	e the fo	rward aı	nd backv	vard dif	ference	e operato	ors respectively, then $\Delta - abla$ is
		4 V 7		4 V 7		A . V	7		$\frac{\Delta}{ abla}$
_	(i)	$\Delta\nabla$			(iii)			(iv)	•
9.	_	-		-	oldal rul	e and Si	mpson	's one-tr	nird rule are
	(i) (ii)	3 and 2	1 respec 1 respec						
		3 and 3	-	-					
	(iv)		3 respec	-					
10.	10. For a system of equations $a_{11}x_1 + a_{12}x_2 = b_1$ $a_{21}x_1 + a_{22}x_2 = b_2$ a sufficient condition for convergence of the Gauss Seidel iteration process is $ (i) a_{12}a_{21} = a_{11}a_{22} $ $ (ii) a_{12}a_{21} > a_{11}a_{22} $ $ (ii) a_{12}a_{21} < a_{11}a_{22} $ $ (iv) a_{11} + a_{22} < a_{12} + a_{21} $								
			Cou	urse: DS	E-A2 (Di	fferenti	al Geor	netry)	
Cho	Choose the correct alternative with proper justification: 5x2=10								5x2=10
2 <i>d</i> : (1, (i) (ii)	$x^2 dx^3$ $0, 0, \frac{1}{c}$ \cos^{-1} \cos^{-1} \cos^{-1} \cos^{-1}		$ \frac{1}{c^{2}-2} = \frac{1}{c^{2}-2} $ $ \frac{1}{c^{2}-2} = \frac{1}{c^{2}-2} $ $ \frac{1}{c^{2}-2} = \frac{1}{c^{2}-2} $	dx^1dx^2					$(dx^2)^2 + 4(dx^3)^2 - 4$ variant vectors
		action o	f a tenso	or of type (ii) (r			es a ten) (m-:	-	/pe (iv) (m, n-1)
13.	The n	umber of	f indepe	ndent co	omponei	nts of Cl	nristoff	el's sym	bols in V_n are

14. For an Einstein space $V_n (n > 4)$ the scalar curvature is always

(i) 1 (ii) 0 (iii) -1 (iv) constant

		e of a vector A alo	ng a curve C vanis	shes at all points of C.	Then the			
magnitude of i		(iii) Constant	(iv) 0					
Course: DSE-B2 (Point Set Topology)								
Choose the co	rrect alterna	tive with proper ju	stification:		5x2=10			
feasible solution (i) Unique		lution (ii) L	Inbounded optim	side of the region of um solution optimum solution	basic			
solution is call (i) Bounded	ed I Solution		optimal solution	decreased indefinitel	y, such			
18. The Area (i) Bound		_	ng constraints x Convex (iv)	+3y≥3, x≥0, y≥0 is Concave	;			
Transportation	n Problem? -West Corne		Matrix Minima		ı a			
	nite number		evex combinations Finite number of p None of these					