Class12

Jae Kim

Section 1. Proportion of G/G in a population

```
mxl <- read.csv("MXL.csv", row.names = 1)
mxl</pre>
```

		${\tt Genotypeforward.strand.}$	Population.s.		${\tt Father}$	Mother	
NA19648	(F)	A A	ALL,	AMR,	\mathtt{MXL}	-	-
NA19649	(M)	G G	ALL,	AMR,	\mathtt{MXL}	_	-
NA19651	(F)	A A	ALL,	AMR,	\mathtt{MXL}	_	_
NA19652	(M)	G G	ALL,	AMR,	\mathtt{MXL}	_	_
NA19654	(F)	G G	ALL,	AMR,	\mathtt{MXL}	_	_
NA19655	(M)	A G	ALL,	AMR,	\mathtt{MXL}	_	_
NA19657	(F)	A G	ALL,	AMR,	\mathtt{MXL}	_	_
NA19658	(M)	A A	ALL,	AMR,	\mathtt{MXL}	_	_
NA19661	(M)	A G	ALL,	AMR,	\mathtt{MXL}	_	_
NA19663	(F)	A A	ALL,	AMR,	\mathtt{MXL}	_	_
NA19664	(M)	G A	ALL,	AMR,	\mathtt{MXL}	_	_
NA19669	(F)	A A	ALL,	AMR,	\mathtt{MXL}	-	-
NA19670	(M)	A A	ALL,	AMR,	\mathtt{MXL}	_	_
NA19676	(M)	G G	ALL,	AMR,	\mathtt{MXL}	_	_
NA19678	(F)	A A	ALL,	AMR,	\mathtt{MXL}	_	_
NA19679	(M)	A G	ALL,	AMR,	\mathtt{MXL}	_	_
NA19681	(F)	A G	ALL,	AMR,	\mathtt{MXL}	_	_
NA19682	(M)	A G	ALL,	AMR,	\mathtt{MXL}	-	-
NA19684	(F)	A G	ALL,	AMR,	\mathtt{MXL}	-	-
NA19716	(F)	G A	ALL,	AMR,	\mathtt{MXL}	-	-
NA19717	(M)	A G	ALL,	AMR,	\mathtt{MXL}	-	-
NA19719	(F)	G G	ALL,	AMR,	\mathtt{MXL}	-	-
NA19720	(M)	G G	ALL,	AMR,	\mathtt{MXL}	_	_
NA19722	(F)	G A	ALL,	AMR,	\mathtt{MXL}	-	-

NA19723	(M)	G G	ALL,	AMR,	MXL	-	-
NA19725	(F)	A G	ALL,	AMR,	MXL	-	-
NA19726	(M)	$A \mid A$	ALL,	AMR,	MXL	_	-
NA19728	(F)	$A \mid A$	ALL,	AMR,	MXL	-	-
NA19729	(M)	A G	ALL,	AMR,	MXL	-	-
NA19731	(F)	$A \mid A$	ALL,	AMR,	MXL	-	-
NA19732	(M)	A G	ALL,	AMR,	MXL	-	-
NA19734	(F)	G A	ALL,	AMR,	MXL	-	-
NA19735	(M)	G G	ALL,	AMR,	MXL	-	-
NA19740	(F)	$A \mid A$	ALL,	AMR,	MXL	_	-
NA19741	(M)	$A \mid A$	ALL,	AMR,	MXL	-	-
NA19746	(F)	$A \mid A$	ALL,	AMR,	MXL	-	-
NA19747	(M)	G A	ALL,	AMR,	MXL	-	-
NA19749	(F)	A G	ALL,	AMR,	MXL	-	-
NA19750	(M)	A G	ALL,	AMR,	MXL	-	-
NA19752	(F)	A G	ALL,	AMR,	MXL	_	-
NA19755	(F)	$A \mid A$	ALL,	AMR,	MXL	_	-
NA19756	(M)	G A	ALL,	AMR,	MXL	_	-
NA19758	(F)	A G	ALL,	AMR,	MXL	-	-
NA19759	(M)	G A	ALL,	AMR,	MXL	_	-
NA19761	(F)	G A	ALL,	AMR,	MXL	-	-
NA19762	(M)	$A \mid A$	ALL,	AMR,	MXL	_	-
NA19764	(F)	$A \mid A$	ALL,	AMR,	MXL	_	-
NA19770	(F)	A G	ALL,	AMR,	MXL	_	-
NA19771	(M)	$A \mid A$	ALL,	AMR,	MXL	_	-
NA19773	(F)	$A \mid A$	ALL,	AMR,	MXL	-	-
NA19774	(M)	A G	ALL,	AMR,	MXL	-	-
NA19776	(F)	A G	ALL,	AMR,	MXL	_	-
NA19777	(M)	$A \mid A$	ALL,	AMR,	MXL	_	-
NA19779	(F)	G A	ALL,	AMR,	MXL	-	-
NA19780	(M)	$A \mid A$	ALL,	AMR,	MXL	_	-
NA19782	(F)	G A	ALL,	AMR,	MXL	-	-
NA19783	(M)	A G	ALL,	AMR,	MXL	_	-
NA19785	(F)	$A \mid A$	ALL,	AMR,	MXL	_	-
NA19786	(M)	G A	ALL,	AMR,	MXL	_	-
NA19788	(F)	A G	ALL,	AMR,	MXL	-	-
NA19789	(M)	G G	ALL,	AMR,	MXL	_	-
NA19792	(M)	$A \mid A$	ALL,	AMR,	MXL	-	-
NA19794	(F)	G A	ALL,	AMR,	MXL	-	-
NA19795	(M)	A G	ALL,	AMR,	MXL	-	-

```
table(mxl$Genotype..forward.strand.)
A|A A|G G|A G|G
22 21 12
  table(mxl$Genotype..forward.strand.) / nrow(mxl)*100
    AIA
            AIG
                     GIA
                              GIG
34.3750 32.8125 18.7500 14.0625
     Q13: Read this file into R and determine the sample size for each genotype and
     their corresponding median expression levels for each of these genotypes
  url <- "https://bioboot.github.io/bimm143_S23/class-material/rs8067378_ENSG00000172057.6.t
  expr <- read.table(url)</pre>
  nrow(expr)
[1] 462
  table(expr$geno)
A/A A/G G/G
108 233 121
  result <- aggregate(expr$exp ~ expr$geno, data = expr, FUN = median)
  result
  expr$geno expr$exp
        A/A 31.24847
1
        A/G 25.06486
2
        G/G 20.07363
3
     Q14: Generate a boxplot with a box per genotype, what could you infer from the
     relative expression value between A/A and G/G displayed in this plot? Does the
```

library(ggplot2)

Making a boxplot

```
x <- ggplot(expr) +
  aes(geno, exp, fill=geno) +
  geom_boxplot(notch=TRUE)
x</pre>
```


boxplot_data <- ggplot_build(x)\$data[[1]]
boxplot_data\$middle</pre>

[1] 31.24847 25.06486 20.07363

From the boxplot, we can see that the expression of ORMDL3 is higher if the genotype is A/A than if it is G/G. It seems like SNP does affect the expression of ORMDL3.