题目: 设 f(x) 在 [0,1] 上有连续的导数,且 f(0)=0,证明: 存在 $\xi \in [0,1]$, $\int_0^1 x f(x) dx = \frac{1}{3} f'(\xi).$

分析: 注意到要证的式子涉及到函数和其导数值的关系,就可以想到拉格朗日中值定理. 已知条件中有 f(0) = 0 ,所以,可以用 $f(x) = f(0) + f'(\eta)x$ 来表示被积函数中的 f(x) .

证明: 对于 $x \in [0,1]$,由拉格朗日中值定理,存在 $\eta \in (0,x)$,使得 $f(x) = f(0) + f'(\eta)x$,其中 $0 < \eta < x$.

于是, $xf(x) = xf(0) + f'(\eta)x^2$. 因为 f(0) = 0, 所以 $xf(x) = f'(\eta)x^2$, 于是 $\int_0^1 xf(x)dx = \int_0^1 x^2f'(\eta)dx.$

因为 f'(x) 在 [0,1] 上连续,则 f'(x) 在 [0,1] 上必取得最大值 M 和最小值 m ,于是,

$$m \int_0^1 x^2 dx \le \int_0^1 x f(x) dx = \int_0^1 x^2 f'(\eta) dx \le M \int_0^1 x^2 dx$$

即 $\frac{m}{3} \le \int_0^1 x f(x) dx \le \frac{M}{3}$,也即 $m \le 3 \int_0^1 x f(x) dx \le M$.

因为 f'(x) 在 [0,1] 上连续,由介值定理,存在 $\xi \in [0,1]$,使得 $f'(\xi) = 3\int_0^1 x f(x) dx$,即 $\int_0^1 x f(x) dx = \frac{1}{3} f'(\xi).$