Air Quality

New York Air Quality Measurement

Libera Mastromatteo

University of Padova

Contents

1	Working with Data in R	2
	1.1 Airquality dataset	2
	1.1.1 Details of the airquality dataset	2
	1.1.1.1 Exploring airquality	2
2	Proviamo a mettere link:	2
	2.1 Vai con le liste:	2
3	Inseriamo delle immagini	2
4	Inseriamo la bibliografia	4
5	Inseriamo delle equazioni	5
6	Come inserire cross-referencing	6
	6.1 Inserire cross-referencing per le equazioni richiede scrittura in LateX	6
7	Nuovo chunck	7
8	Esercitazione	7
	8.1 Summary	7
	8.2 Plot 1	8
	8.3 Plot 2	8
	8.4 First 10 rows	8

9	Tab	pelle	8
	9.1	Tabelle con codice R	9
R	efere	nces	12

Working with Data in R 1

Airquality dataset 1.1

The airquality dataset is built-in R so there is nothing to install or prepare, it is already there as an R object. This data is small compared to environmental data sets.

Details of the airquality dataset

Daily readings of the following air quality values for May 1, 1973 a Tuesday to September 30, 1973.

1.1.1.1 Exploring airquality¹ We can look at the first and last few lines of that airquality tabular data².

Proviamo a mettere link:

Link qui

Vai con le liste: 2.1

- Oggi
- ho
- imparato
- cose
- 1. Devo
- 2. Fare
- 3. Cose
 - 1. Devo
 - 2. Fare
 - 3. Cose

Inseriamo delle immagini 3

 $[\]begin{picture}(200,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){10$

Figure 1: Using Markdown code

Figure 2: Using RMarkdown code

4 Inseriamo la bibliografia

Hess and Blairy (2001) riportano che l'inquinamento fa male Secondo recenti studi (Hess and Blairy 2001), l'inquinamento fa male

5 Inseriamo delle equazioni

Ecco qui una bellissima equazione 3+5=8

$$3 + 9 = 12$$

$$Y = mx + q$$

$$\Delta = 1 - \pi$$

 $\sqrt{4}=2$

6 Come inserire cross-referencing

Come si vede in Tabella $1\,$

Table 1: Questo è un dataset con le prime 10 righe

-	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4

Come si vede in Tabella $2\,$

Table 2: Questo è un dataset con le prime 5 righe

	mpg	cyl	disp	hp	drat	wt	qsec	VS	am	gear	carb
Mazda RX4	21.0	6	160	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360	175	3.15	3.440	17.02	0	0	3	2

6.1 Inserire cross-referencing per le equazioni richiede scrittura in ${\rm Late}{\bf X}$

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n} \tag{1}$$

Come si evince in (1)

7 Nuovo chunck

	Ozone	${\tt Solar.R}$	Wind	Temp	${\tt Month}$	Day
1	41	190	7.4	67	5	1
2	36	118	8.0	72	5	2
3	12	149	12.6	74	5	3
4	18	313	11.5	62	5	4
5	NA	NA	14.3	56	5	5

. . . .

8 Esercitazione

8.1 Summary

NA	Ozone	Solar.R	Wind	Temp
NA	Min. : 1.00	Min. : 7.0	Min. : 1.700	Min. :56.00
NA	1st Qu.: 18.00	1st Qu.:115.8	1st Qu.: 7.400	1st Qu.:72.00
NA	Median : 31.50	Median :205.0	Median : 9.700	Median :79.00
NA	Mean : 42.13	Mean :185.9	Mean : 9.958	Mean :77.88
NA	3rd Qu.: 63.25	3rd Qu.:258.8	3rd Qu.:11.500	3rd Qu.:85.00
NA	Max. :168.00	Max. :334.0	Max. :20.700	Max. :97.00
NA	NA's :37	NA's :7		
NA	Month	Day		
NA	Min. :5.000	Min. : 1.0		
NA	1st Qu.:6.000	1st Qu.: 8.0		
NA	Median :7.000	Median :16.0		
NA	Mean :6.993	Mean :15.8		
NA	3rd Qu.:8.000	3rd Qu.:23.0		
NA	Max. :9.000	Max. :31.0		
NA				

8.2 Plot 1

8.3 Plot 2

plot(dati\$y ~ dati\$x)

8.4 First 10 rows

NA		Ozone	Solar.R	Wind	Temp	${\tt Month}$	Day	У	x
NA	1	41	190	7.4	67	5	1	67	5
NA	2	36	118	8.0	72	5	2	72	5
NA	3	12	149	12.6	74	5	3	74	5
NA	4	18	313	11.5	62	5	4	62	5
NA	5	NA	NA	14.3	56	5	5	56	5
NA	6	28	NA	14.9	66	5	6	66	5
NA	7	23	299	8.6	65	5	7	65	5
NA	8	19	99	13.8	59	5	8	59	5
NA	9	8	19	20.1	61	5	9	61	5
NA	10	NA	194	8.6	69	5	10	69	5

• • • •

9 Tabelle

X	Y	Z	W	A	U
1	1	1	NA	С	
В	В	В	\mathbf{S}	0	
NA	2	3	3	3	

Tables	Are	Cool	new column
col 1 is	left-aligned	\$1600	
col 2 is	centered	\$12	
col 3 is	right-aligned	\$1	

Tables	Are	Cool
1 is	right-aligned	\$1600
2 is	left-aligned	\$12
3 is	centered	\$1

9.1 Tabelle con codice R

##

Please cite as:

Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.

R package version 5.2.3. https://CRAN.R-project.org/package=stargazer

Table 6: Tabella di summary

Statistic	N	Mean	St. Dev.	Min	Max
Ozone	116	42.129	32.988	1	168
Solar.R	146	185.932	90.058	7	334
Wind	153	9.958	3.523	1.700	20.700
Temp	153	77.882	9.465	56	97
Month	153	6.993	1.417	5	9
Day	153	15.804	8.865	1	31
у	153	77.882	9.465	56	97
X	153	6.993	1.417	5	9

Table 7: Risultati del modello

	Dependent variable:
	Temp
Constant	58.211***
	(3.519)
Month	2.813***
	(0.493)
Observations	153
\mathbb{R}^2	0.177
Adjusted R ²	0.172
Residual Std. Error	8.614 (df = 151)
F Statistic	$32.519^{***} (df = 1; 151)$
Note:	*p<0.1; **p<0.05; ***p<0

Table 8: Risultati del modello

	Dependent variable: Temp	
	(1)	(2)
Constant	77.882***	58.211***
	(0.765)	(3.519)
Month		2.813***
		(0.493)
Observations	153	153
\mathbb{R}^2	0.000	0.177
Adjusted R^2	0.000	0.172
Residual Std. Error	9.465 (df = 152)	8.614 (df = 151)
F Statistic	. ,	$32.519^{***} (df = 1; 151)$
Note:	*p<0.1; **p<0.05; ***p<0.01	

Come si vede in Tabella 8, qui c'è un confronto tra m0 e m1.

$$x = \frac{-10.8823529}{9.4652697} = -1.149714$$
$$-10.8823529$$

$$x = \frac{-10.8823529}{9.4652697} = -1.149714$$

Voglio una frase rossa

References

Hess, Ursula, and Sylvie Blairy. 2001. "Facial Mimicry and Emotional Contagion to Dynamic Emotional Facial Expressions and Their Influence on Decoding Accuracy." *International Journal of Psychophysiology* 40 (2): 129–41.