

Curso

Sistemas de Informação | Sistemas para Internet

Disciplina

Lógica Matemática

OPERAÇÕES LÓGICAS/ TABELA VERDADE/ EQUIVALÊNCIAS

AULA 02

AULA 03

- 1. Revisão
- 2. Operações lógicas
- 3. Tabela verdade
- 4. Equivalências lógicas
- 5. Exercícios

Vimos que...

Proposições podem ser conectadas através dos seguintes conectivos lógicos:

```
" ¬ " ou "~" (negação);
" ∧ " (conectivo "e");
" ∨ " (conectivo "ou");
" ⊻ " (conectivo "ou ou");
" → " (conectivo "se, então");
" ↔ " (conectivo "se, e somente se").
```


	CONECTIVOS LÓGICOS					
OPERAÇÃO LÓGICA	SÍMBOLOS	LÊ-SE	ESQUEMA	ESTRUTURA LÓGICA	VALOR LÓGICO	EXEMPLOS
Negação	~ ou ¬	não	~p ou ¬p	não p	Terá valor falso se a proposição for verdadeira e vice-versa	O carro não é am arelo
Conjunção	^	e	p ^ q	p e q	Será verdadeira, somente se todas as proposições forem também verdadeiras	Pedro é enfermeiro e Márcia é médica
Disjunção inclusiva	v	ou	p v q	p ou q	será verdadeira se todas as proposições forem verdadeiras	Pedro é enfermeiro ou Márcia é médica
Disjunção exclusiva	<u>v</u>	ou,ou	р <u>v</u> q	ou p ou q	Será verdadeira se uma das partes for falsa e a outra verdadeira (independentemente da ordem)	ou Pedro é enfermeiro ou Márcia é médica
Condicional	→	se _, ,então	p → q	se pentão q	Será falsa quando a proposição antecedente for verdadeira e a consequente for falsa	Se Pedro é enfermeiro então Márcia é médica
Bicondicional	+	,,,se e somente se,,,	p ↔ q	p se e somente se q	Será verdadeira quando ambas as proporções forem verdadeiras ou ambas falsas	Pedro é enfermeiro se e somente se Márcia é médica

	CONECTIVOS LÓGICOS					
OPERAÇÃO LÓGICA	SÍMBOLOS	LÊ-SE	ESQUEMA	ESTRUTURA LÓGICA	VALOR LÓGICO	EXEMPLOS
Negação	~ ou ¬	não	~p ou ¬p	não p	Terá valor falso se a proposição for verdadeira e vice-versa	O carro não é amarelo
Conjunção	۸	e	p ^ q	p e q	Será verdadeira, somente se todas as proposições forem também verdadeiras	Pedro é enfermeiro e Márcia é médica
Disjunção inclusiva	v	ou	p v q	p ou q	será verdadeira se todas as proposições forem verdadeiras	Pedro é enfermeiro ou Márcia é médica
Disjunção exclusiva	<u>v</u>	ou,ou	р <u>v</u> q	ou p ou q	Será verdadeira se uma das partes for falsa e a outra verdadeira (independentemente da ordem)	ou Pedro é enfermeiro ou Márcia é médica
Condicional	→	se _, ,então	p → q	se pentão q	Será falsa quando a proposição antecedente for verdadeira e a consequente for falsa	Se Pedro é enfermeiro então Márcia é médica
Bicondicional	+	,,,se e somente se,,,	p ↔ q	p se e somente se q	Será verdadeira quando ambas as proporções forem verdadeiras ou ambas falsas	Pedro é enfermeiro se e somente se Márcia é médica

NEGAÇÃO

DISJUNÇÃO (INCLUSIVA)

DISJUNÇÃO EXCLUSIVA

CONDICIONAL

BICONDICIONAL

NEGAÇÃO

Definição: Dada uma proposição p, denomina-se a negação de p a proposição representada por "não p", no qual o valor lógico é verdade quando p é falso e falso quando o valor de p é verdadeiro.

Desta forma, "não p" tem o valor lógico oposto daquele de p. Simbolicamente, podemos expressar a negação de um valor p por ~p ou ¬p, que se lê "não p". O valor lógico da negação de uma proposição é, portanto, definido pela seguinte tabela verdade

р	~p
V	F
F	V

NEGAÇÃO

Assim, podemos concluir que:

$$\sim V = F$$

$$\sim F = V$$

Ou seja, não verdade é igual a falso e não falso é igual a verdade.

Alguns exemplos do operador de negação:

Se p = 1+1 = 2 então p é verdade, ou seja, p=V

Se $\sim p = 1+1=2$ então p é falso, ou seja, p=F

p = Carlos é casado

~p = Carlos não é casado

CONJUNÇÃO

Definição: Dada duas proposições p e q, define-se por conjunção o operador "e" (simbolicamente representado por ^), onde "p ^ q" possui o valor lógico Verdade se ambas as proposições (p e q) são verdade. Da mesma forma, pode possuir o valor lógico Falso se ambas as proposições (p e q) são falsas.

Simbolicamente, a representação da conjunção entre duas proposições é representada por "p ^ q", onde se lê "p e q". O valor lógico da conjunção de duas proposições é, portanto, definido pela tabela verdade a seguir:

р	q	p^q
V	V	V
V	F	F
F	V	F
F	F	F

CONJUNÇÃO

```
Assim, podemos concluir que:
V \wedge V = V
F \wedge F = F
V \wedge F = F
F ^ V = F
Em termos gerais temos ainda que:
V(p ^q) = V(p) ^q V(q)
Alguns exemplos do operador de conjunção:
p = 0 céu é azul
q = 5+2=7
V = p \wedge q
p = Rio de janeiro é a capital do Brasil
q = 1+1 = 2
p \wedge q = F
```

DISJUNÇÃO

Definição: Dada duas proposições p e q, define-se por disjunção o operador "ou" (simbolicamente representado por v), onde "p v q" possui o valor lógico Verdade se pelo menos uma das proposições (p v q) forem verdade. Da mesma forma, pode possuir o valor lógico Falso se, e apenas se, ambas as proposições (p v q) forem falsas.

Simbolicamente, a representação da disjunção entre duas proposições é representada por "p v q" onde se lê "p ou q". O valor lógico da disjunção de duas

proposições é, portanto, definido pela tabela verdade a seguir: _____

р	q	pvq
V	V	V
V	F	V
F	V	V
F	F	F

DISJUNÇÃO

```
Assim, podemos concluir que:
V = V V
F \vee F = F
V V F = V
V = V V
Em termos gerais temos ainda que:
V(p v q) = V(p) v V(q)
Alguns exemplos do operador de disjunção:
p = A bola é quadrada
q = 1+1 = 3
p v q = F
p = Rio de janeiro é a capital do Brasil
q = 1+1 = 2
V = p v q
```

DISJUNÇÃO EXCLUSIVA

A disjunção exclusiva é um caso específico da disjunção. Suponhamos as duas proposições abaixo:

p = Carlos é casado ou gaúcho

q = Maria é carioca ou gaúcha

Considerando a proposição p, podemos ter que "Carlos é casado" é verdade e "Carlos é gaúcho" também é verdade. Ou seja, ambas podem ser verdades. No entanto, na proposição q, se Maria for carioca ela não poderá ser também gaúcha, ou seja, ou Maria é Carioca ou é gaúcha. Então temos, na proposição q, uma disjunção exclusiva pois o ou é exclusivo, enquanto que na proposição p o ou é inclusivo.

DISJUNÇÃO EXCLUSIVA

Definição: Dada duas proposições p e q, define-se por disjunção exclusiva o operador "ou exclusivo" (simbolicamente representado por \underline{V}), onde "p \underline{V} q" possui o valor lógico Verdade se, e apenas se, uma das proposições (p \underline{V} q) for verdade. Da mesma forma, pode possuir o valor lógico Falso se, e apenas se, as duas proposições (p \underline{V} q) forem verdadeiras ou as duas proposições forem falsas.

Simbolicamente, a representação da disjunção exclusiva entre duas proposições é representada por "p \underline{v} q" onde se lê "p ou exclusivo q" ("ou p ou q"). O valor lógico da disjunção de duas proposições é, portanto, definido pela tabela verdade a

seguir:

р	q	p⊻q
V	V	F
V	F	V
F	V	V
F	F	F

DISJUNÇÃO EXCLUSIVA

p v q = F

```
Assim, podemos concluir que:
V V V = F
F V V = V
V \underline{V} F = V
F V F = F
Será verdadeira se uma das partes for falsa e a outra
verdadeira (independentemente da ordem).
Em termos gerais temos ainda que:
V(p v q) = (V(p) v F(q)) v (F(p) v V(q))
Alguns exemplos do operador de disjunção exclusiva:
p = 2+2 = 4
q = 1+1 = 3
V = p v q
p = Brasília é a capital do Brasil
q = 1+1 = 2
```

CONDICIONAL

Definição: Dada duas proposições p e q, define-se por condicional o operador "se" (simbolicamente representado por \rightarrow), onde "p \rightarrow q" possui o valor lógico falso se p for verdade e q for falso. Em todos os outros casos o valor lógico sempre será Verdadeiro.

Simbolicamente, a representação do condicional entre duas proposições é representada por "p \rightarrow q" onde se lê "se p então q". O valor lógico do condicional de duas proposições é, portanto, definido pela tabela verdade a seguir:

р	q	$p \rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

CONDICIONAL

Assim, podemos concluir que: $V \rightarrow V = V$ $F \rightarrow F = V$ $V \rightarrow F = F$ $F \rightarrow V = V$ Em termos gerais temos ainda que: $V(p \rightarrow q) = V(p) \rightarrow F(q)$ Alguns exemplos do operador de condicional: p = 2+2 = 4q = 1+1 = 3 $p \rightarrow q = F$ p = Brasília é a capital do Brasil q = 1+1 = 2 $p \rightarrow q = V$

BICONDICIONAL

Definição: Dada duas proposições p e q, define-se por bicondicional o operador "se e somente se" (simbolicamente representado por \leftrightarrow), onde "p \leftrightarrow q" possui o valor lógico Verdade se ambas as proposições forem verdadeiras ou falsas. Em todos os outros casos o valor lógico sempre será Falso.

Simbolicamente, a representação do bicondicional entre duas proposições é representada por "p \leftrightarrow q", onde se lê "p se e somente se q". O valor lógico do bicondicional de duas proposições é, portanto, definido pela tabela verdade a seguir:

р	q	$p \leftrightarrow q$
V	V	V
V	F	F
F	V	F
F	F	V

BICONDICIONAL

```
Assim, podemos concluir que:
V \leftrightarrow V = V
F \leftrightarrow F = V
V \leftrightarrow F = F
F \leftrightarrow V = F
Em termos gerais temos ainda que:
V(p \rightarrow q) = V(p) \leftrightarrow F(q)
Alguns exemplos do operador de bicondicional:
p = 2+2 = 4
q = 1+1 = 3
p \leftrightarrow q = F
p = Brasília é a capital do Brasil
q = 1+1 = 2
V = p \leftrightarrow q
```

ATIVIDADE

1. Dada as seguintes proposições:

q : está chovendo

Traduzir para a linguagem natural as seguintes proposições:

- a) ~p
- b) p ^ q
- c) p v q
- d) $q \leftrightarrow p$
- e) $P \rightarrow \sim q$
- $f) p v \sim q$
- g) ~p ^ ~q
- h) $p \leftrightarrow \sim q$
- i) $p ^ q \rightarrow p$

ATIVIDADE

1. Dada as seguintes proposições:

q : está chovendo

Traduzir para a linguagem natural as seguintes proposições:

- a) ~p: Não está quente.
- b) p ^ q: Está quente e está chovendo.
- c) p v q: Está quente ou está chovendo.
- d) q ↔ p: Está chovendo se e somente se está quente.
- e) p \rightarrow ~q: Se está quente, então não está chovendo.
- f) p v ~q: Está quente ou não está chovendo.
- g) ~p ^ ~q: Não está quente e não está chovendo.
- h) p ↔ ~q: Está quente se e somente se não está chovendo.
- i) p ^ ~q \rightarrow p: Se está quente e não está chovendo, então está quente.

ATIVIDADE

2. Dada as seguintes proposições:

q : Carlos é feliz

Traduzir para a linguagem natural as seguintes proposições:

- a) $q \rightarrow p$
- b) ~p
- c) ~ (~p ^ ~q)

ATIVIDADE

2. Dada as seguintes proposições:

q : Carlos é feliz

Traduzir para a linguagem natural as seguintes proposições:

- a) $q \rightarrow p$: Se Carlos é feliz, então Maria é bonita.
- b) ~p: Maria não é bonita.
- c) ~(~p ^ ~q): Maria é bonita OU Carlos é feliz.

*distribuição de De Morgan

A distribuição de De Morgan é um conjunto de duas regras que envolvem a negação de proposições compostas, como conjunções (e) e disjunções (ou). Essas regras permitem transformar a negação de uma proposição composta em uma forma equivalente que envolve as negações das proposições individuais e a operação complementar (ou seja, transformar e em ou e vice-versa). As duas regras de distribuição de De Morgan são:

Primeira Regra (Negação da Conjunção): A negação de uma conjunção é equivalente à disjunção das negações das proposições individuais.

Matematicamente: ~(P ^ Q) é equivalente a (~P v ~Q)

Segunda Regra (Negação da Disjunção): A negação de uma disjunção é equivalente à conjunção das negações das proposições individuais.

Matematicamente: ~(P v Q) é equivalente a (~P ^ ~Q)

Essas regras são frequentemente utilizadas para simplificar expressões lógicas e converter a negação de uma proposição composta em uma forma mais compreensível.

Elas são especialmente úteis ao lidar com álgebra booleana, em circuitos digitais, análise de expressões lógicas e em muitos outros contextos onde a manipulação de proposições lógicas é necessária.

Em resumo, a distribuição de De Morgan é uma ferramenta para transformar negações de proposições compostas, tornando mais fácil trabalhar com expressões lógicas complexas.

Difícil?

é uma representação organizada das possíveis combinações de valores de verdade (verdadeiro ou falso) para diferentes proposições lógicas. Ela é usada para mostrar todas as respostas possíveis para diferentes cenários de avaliação lógica.

é uma representação organizada das possíveis combinações de valores de verdade (verdadeiro ou falso) para diferentes proposições lógicas. Ela é usada para mostrar todas as respostas possíveis para diferentes cenários de avaliação lógica.

Dá o valor lógico
da união das
proposições
através da tabuada
lógica

3 PASSOS

1° Passo : Encontrar o número de linhas da tabela,
que é expresso por 2ⁿ, onde n é a quantidade de
proposições simples.

Exemplo:
$$n = 2$$
 proposições $2^2 = 4$ linhas $n = 3$ proposições $2^3 = 8$ linhas

2° Passo : Distribuir (V) e (F) na tabela com o
macete "A IDEIA DO DOBRO"

3° Passo : DECORAR a tabuada lógica dos operadores.

1° Passo: Encontrar o número de linhas da tabela, que é expresso por 2 , onde n é a quantidade de proposições simples.

Exemplo: n = 2 proposições $\frac{2^2 = 4 \text{ linhas}}{n = 3 \text{ proposições}}$ $2^3 = 8 \text{ linhas}$

2° Passo: Distribuir (v) e (f) na tabela com o macete "A IDEIA DO DOBRO" $_2$ $_1$

	р	q
	V	V
	V	F
	F	V
	F	F

^{3°} Passo: DECORAR a tabuada lógica dos operadores.

1° Passo: Encontrar o número de linhas

$$n = 3$$
 proposições
 $2^3 = 8$ linhas

2° Passo: Distribuir (V) e (F) na tabela com o macete "A

IDEIA DO DOBRO" (x2) 1

	р	q	r
→	V	V	V
	V	V	F
	V	F	V
	V	F	F
	F	V	V
	F	V	F
→	F	F	V
	F	F	F

^{3°} Passo: DECORAR a tabuada lógica dos operadores.

Utilizamos a tabuada lógica dos conectivos para encontrarmos o resultado que é a TABELA VERDADE da dada proposição composta.

TABUADA LÓGICA		
e ^	Tudo V dá V	
ou V	Tudo F dá F	
ouou <u>V</u>	Iguais dá F Diferentes dá V	
se,então →	V com F dá F	
se e somente se ↔	Iguais dá V Diferentes dá F	

ATIVIDADE

1. Monte a tabela verdade de (~p) v (q \rightarrow r).

ATIVIDADE 5 min

1. Monte a tabela verdade de (~p) v ($q\rightarrow r$).

1° Passo: Encontrar o número de linhas da tabela

2° Passo: Distribuir (v) e (f) na tabela com o macete "a ideia do dobro"

3° Passo: Saber a tabuada lógica dos operadores

TABUADA LÓGICA		
e ^	Tudo V dá V	
ou V	Tudo F dá F	
ouou <u>V</u>	Iguais dá F Diferentes dá V	
se,então →	V com F dá F	
se e somente se	Iguais dá V Diferentes dá F	

1. Monte a tabela verdade de (~p) v ($q\rightarrow r$).

р	q	r	(~p)	(q→r)	(~p) v (q→r)

TABUADA LÓGICA e Tudo V dá V ou Tudo F dá F v Iguais dá F Diferentes dá V se...,então V com F dá F se e somente se Iguais dá V Diferentes dá F

р	q	r	(~p)	(q→r)	(~p) v (q→r)
V	V	V			
V	V	F			
V	F	V			
V	F	F			
F	V	V			
F	V	F			
F	F	V			
F	F	F			

TABUADA LÓGICA e Tudo V dá V ou Tudo F dá F v Iguais dá F Diferentes dá V se...,então V com F dá F se e somente se Iguais dá V Diferentes dá F

р	q	r	(~p)	(q→r)	(~p) v (q→r)
V	V	V	F		
V	V	F	F		
V	F	V	F		
V	F	F	F		
F	V	V	V		
F	V	F	V		
F	F	V	V		
F	F	F	V		

TABUADA LÓGICA e Tudo V dá V ou Tudo F dá F ou...ou Iguais dá F Diferentes dá V se...,então V com F dá F se e somente se Iguais dá V Diferentes dá F

р	q	r	(~p)	(q→r)	(~p) v (q→r)
V	V	V	F	V	
V	V	F	F	F	
V	F	V	F	V	
V	F	F	F	V	
F	V	V	V	V	
F	V	F	V	F	
F	F	V	V	V	
F	F	F	V	V	

TABUADA LÓGICA e Tudo V dá V ou Tudo F dá F v Iguais dá F Diferentes dá V se...,então V com F dá F se e somente se Iguais dá V Diferentes dá F

р	q	r	(~p)	(q→r)	(~p) v (q→r)
V	V	V	F	V	V
V	V	F	F	F	F
V	F	V	F	V	V
V	F	F	F	V	V
F	V	V	V	V	V
F	V	F	V	F	V
F	F	V	V	V	V
F	F	F	V	V	V

☐ Tabela verdade

Р	Q	$P \wedge Q$	$P \vee Q$	$P \vee Q$	$\textbf{P} \rightarrow \textbf{Q}$	$\textbf{P} \leftrightarrow \textbf{Q}$
V	V	٧	V	F	V	V
V	F	F	V	V	F	F
F	V	F	V	V	V	F
F	F	F	F	F	V	V

Tabela verdade

As tabelas verdade são amplamente usadas em lógica matemática e ciência da computação para analisar e avaliar a validade de argumentos lógicos, construir circuitos digitais e entender o comportamento de proposições lógicas em diferentes situações.

```
names = ["John", "Mary"]

found = False

for name in names:

if name.startswith("J"):

print("Found")

found = True

break

if not found:

print("Not found")

print("Not found")
```

```
def get_capital(country):
    if country == 'India':
        return 'New Delhi'
    elif country == 'France':
        return 'Paris'
    elif country == 'UK':
        return 'London'
    else:
        return None
```

As equivalências lógicas são relações entre expressões lógicas que possuem o mesmo valor verdade para todas as possíveis combinações de valores verdade das proposições envolvidas. Ou seja, duas expressões são equivalentes se produzirem os mesmos resultados em todas as situações possíveis.

Exemplo:

A equivalência "p ^ q" é logicamente equivalente a "q ^ p". Isso porque a conjunção é comutativa, ou seja, a ordem das proposições não importa.

As leis da lógica, também conhecidas como leis lógicas, são regras fundamentais que regem o funcionamento do raciocínio lógico e das operações em proposições. Elas são usadas para derivar conclusões válidas a partir de premissas e para simplificar expressões lógicas complexas. Aqui estão algumas das leis da lógica mais importantes:

Lei da Identidade:

Afirma que uma proposição é equivalente a ela mesma. Representada como: $p \ p = p \ (na \ conjunção)$ ou $p \ v \ p = p \ (na \ disjunção)$.

Lei da Negação Dupla:

Afirma que a negação da negação de uma proposição retorna a proposição original.

Representada como: ~~p = p.

Lei da Comutatividade:

Afirma que a ordem das proposições não afeta o resultado de uma operação.

Representada como: p $^{\circ}$ q = q $^{\circ}$ p (na conjunção) ou p v q = q v p (na disjunção).

Lei da Associatividade:

Afirma que a forma como as proposições são agrupadas não afeta o resultado de uma operação.

Representada como: $(p ^ q) ^ r = p ^ (q ^ r)$ (na conjunção) ou (p v q) v r = p v (q v r) (na disjunção).

Lei da Distribuição:

Afirma que uma operação distribui sobre a outra operação. Representada como: $p \ (q \ v \ r) = (p \ q) \ v \ (p \ r) \ (na conjunção distribuída sobre a disjunção) ou <math>p \ v \ (q \ r) = (p \ v \ q) \ (p \ v \ r) \ (na disjunção distribuída sobre a conjunção).$

Lei do Absorvente:

Afirma que a conjunção de uma proposição com ela mesma é ela mesma.

Representada como: p $^{\circ}$ (p v q) = p (na conjunção) ou p v (p $^{\circ}$ q) = p (na disjunção).

Lei de De Morgan:

Afirma como negar uma conjunção ou disjunção. Representada como: \sim (p $^{\circ}$ q) = \sim p v \sim q (negação de uma conjunção) e \sim (p v q) = \sim p $^{\circ}$ \sim q (negação de uma disjunção).

Essas são apenas algumas das leis lógicas básicas que ajudam a validar e simplificar argumentos lógicos e expressões. Elas formam a base do raciocínio lógico e são amplamente usadas em matemática, ciência da computação, filosofia e muitos outros campos.

Essas equivalências são fundamentais para simplificar expressões lógicas complexas e provar proposições. Elas também são usadas na otimização de circuitos digitais e na análise de argumentos lógicos.

ATIVIDADES

Proposições simples

- 1) É correto afirmar que, na relação dada, são proposições apenas os itens de números:
- 1. O Brasil é o país do futuro.
- 2. Por que João não estuda?
- 3. Quanto subiu o percentual de mulheres assalariadas nos últimos 10 anos?
- 4. Preste atenção ao edital!
- 5. Sílvia vai ao teatro.
- (A) 1 e 5. (B) 2, 3 e 4. (C) 3, 4 e 5. (D) 1, 2 e 5 (E) 2, 3, 4 e 5.

ATIVIDADES

Proposições simples

- 1) É correto afirmar que, na relação dada, são proposições apenas os itens de números:
- 1. O Brasil é o país do futuro.
- 2. Por que João não estuda?
- 3. Quanto subiu o percentual de mulheres assalariadas nos últimos 10 anos?
- 4. Preste atenção ao edital!
- 5. Sílvia vai ao teatro.
- (A) 1 e 5. (B) 2, 3 e 4. (C) 3, 4 e 5. (D) 1, 2 e 5 (E) 2, 3, 4 e 5.

ATIVIDADES

Proposições simples

Uma proposição é uma sentença que pode ser julgada como verdadeira (V) ou falsa (F).

De acordo com essa definição, julgue os itens a seguir.

- 2) A sentença "O feijão é um alimento rico em proteínas" é uma proposição.
- 3) A frase "Por que Maria não come carne vermelha?" não é uma proposição.

ATIVIDADES

Proposições simples

Uma proposição é uma sentença que pode ser julgada como verdadeira (V) ou falsa (F).

De acordo com essa definição, julgue os itens a seguir.

2) A sentença "O feijão é um alimento rico em proteínas" é uma proposição.

CORRETO

3) A frase "Por que Maria não come carne vermelha?" não é uma proposição.

CORRETO

ATIVIDADES

Proposições simples

- 4) Sabe-se que sentenças são orações com sujeito (o termo a respeito do qual se declara algo) e predicado (o que se declara sobre o sujeito). Na relação seguinte há expressões e sentenças:
- 1. Três mais nove é igual a doze.
- 2. Pelé é brasileiro.
- 3. O jogador de futebol.
- 4. A idade de Maria.
- 5. A metade de um número.
- 6. O triplo de 15 é maior do que 10.
- É correto afirmar que, na relação dada, são sentenças apenas os itens de números:
- (A) 1, 2 e 6. (B) 2, 3 e 4. (C) 3, 4 e 5. (D) 1, 2, 5 e 6.
- (E) 2, 3, 4 e 5.

ATIVIDADES

Proposições simples

- 4) Sabe-se que sentenças são orações com sujeito (o termo a respeito do qual se declara algo) e predicado (o que se declara sobre o sujeito). Na relação seguinte há expressões e sentenças:
- 1. Três mais nove é igual a doze.
- 2. Pelé é brasileiro.
- 3. O jogador de futebol.
- 4. A idade de Maria.
- 5. A metade de um número.
- 6. O triplo de 15 é maior do que 10.
- É correto afirmar que, na relação dada, são sentenças apenas os itens de números:
- (A) 1, 2 e 6. (B) 2, 3 e 4. (C) 3, 4 e 5. (D) 1, 2, 5 e 6.
- (E) 2, 3, 4 e 5.

ATIVIDADES'

Proposições simples

- 5) Considere as seguintes frases:
- I. Ele foi o melhor jogador do mundo em 2005.
- II. (x + y)/5 é um número inteiro.
- III. João da Silva foi o Secretário da Fazenda do Estado de São Paulo em 2000.

É verdade que APENAS

- (A) I e II são sentenças abertas.
- (B) I e III são sentenças abertas.
- (C) II e III são sentenças abertas.
- (D) I é uma sentença aberta.
- (E) II é uma sentença aberta.

ATIVIDADES'

Proposições simples

- 5) Considere as seguintes frases:
- I. Ele foi o melhor jogador do mundo em 2005. (não sei)
 II. (x + y)/5 é um número inteiro. (não sei)
 III. João da Silva foi o Secretário da Fazenda do Estado de São Paulo em 2000. é proposição (V ou F)

É verdade que APENAS

- (A) I e II são sentenças abertas.
- (B) I e III são sentenças abertas.
- (C) II e III são sentenças abertas.
- (D) I é uma sentença aberta.
- (E) II é uma sentença aberta.

ATIVIDADES

Proposições simples

- 6) Considere a seguinte lista de sentenças:
- I Qual é o nome pelo qual é conhecido o Ministério das Relações Exteriores?
- II O Palácio Itamaraty em Brasília é uma bela construção do século XIX.
- III As quantidades de embaixadas e consulados gerais que o Itamaraty possui são, respectivamente, x e y.
- IV O barão do Rio Branco foi um diplomata notável.

Nessa situação, é correto afirmar que entre as sentenças acima, apenas uma delas não é uma proposição.

ATIVIDADES

Proposições simples

- 6) Considere a seguinte lista de sentenças:
- I Qual é o nome pelo qual é conhecido o Ministério das Relações
 Exteriores? (não é proposição sentença aberta)
- II O Palácio Itamaraty em Brasília é uma bela construção do século XIX. (V ou F sentença fechada é proposição)
- III As quantidades de embaixadas e consulados gerais que o Itamaraty possui são, respectivamente, x e y. (não dá para julgar)
- IV O barão do Rio Branco foi um diplomata notável. (V ou F sentença fechada é proposição

Nessa situação, é correto afirmar que entre as sentenças acima, apenas uma delas não é uma proposição.

ERRADO

ATIVIDADES

Proposições compostas

- 1) Considerando as proposições,
- A: Renato é vascaíno.
- B: Thiago é inteligente.
- C: Marcão é carioca.
- Com base nas declarações acima A, B e C, represente as sentenças abaixo:
- A) Renato é vascaíno e Thiago é inteligente. Representação simbólica:
- B) Se Thiago é inteligente, então Marcão é carioca.
- Representação simbólica:
- C) Se Marcão é carioca ou Renato não é vascaíno, então Thiago é inteligente. Representação simbólica:
- D) Ou Marcão é carioca, ou Marcão não é carioca Representação simbólica:
- E) Renato não é vascaíno se, e somente se, Thiago não é inteligente. Representação simbólica:

ATIVIDADES

Proposições compostas

- 1) Considerando as proposições,
- A: Renato é vascaíno.
- B: Thiago é inteligente.
- C: Marcão é carioca.
- Com base nas declarações acima A, B e C, represente as sentenças abaixo:
- A) Renato é vascaíno e Thiago é inteligente. Representação simbólica: A ^ B
- B) Se Thiago é inteligente, então Marcão é carioca.
- Representação simbólica: B -> C
- C) Se Marcão é carioca ou Renato não é vascaíno, então Thiago é inteligente. Representação simbólica: (C v ~A) -> B
- D) Ou Marcão é carioca, ou Marcão não é carioca
- Representação simbólica: C v ~C
- E) Renato não é vascaíno se, e somente se, Thiago não é inteligente. Representação simbólica: ~A <-> ~B

ATIVIDADES

Proposições compostas

2) Considere a proposição

"Paula estuda, mas não passa no concurso".

Nessa proposição, o conectivo lógico é

- (A) disjunção inclusiva.
- (B) conjunção.
- (C) disjunção exclusiva.
- (D) condicional.
- (E) bicondicional.

ATIVIDADES

Proposições compostas

2) Considere a proposição

"Paula estuda, mas não passa no concurso".

(e)

Nessa proposição, o conectivo lógico é

- (A) disjunção inclusiva.
- (B) conjunção.
- (C) disjunção exclusiva.
- (D) condicional.
- (E) bicondicional.

ATIVIDADES

Proposições compostas

- 3) Acerca de proposições, considere as seguintes frases.
- I Os Fundos Setoriais de Ciência e Tecnologia são instrumentos de financiamento de projetos.
- II O que é o CT-Amazônia?
- III Preste atenção ao edital!
- IV Se o projeto for de cooperação universidade-empresa, então podem ser pleiteados recursos do fundo setorial verde-amarelo.

São proposições apenas as frases correspondentes aos itens

- A) I e IV.
- B) II e III.
- C) III e IV.
- D) I, II e III.
- E) I, II e IV.

ATIVIDADES

Proposições compostas

- 3) Acerca de proposições, considere as seguintes frases.
- I Os Fundos Setoriais de Ciência e Tecnologia são instrumentos de financiamento de projetos.
- II O que é o CT-Amazônia?
- III Preste atenção ao edital!
- IV Se o projeto for de cooperação universidade-empresa, então podem ser pleiteados recursos do fundo setorial verde-amarelo.

São proposições apenas as frases correspondentes aos itens

- A) I e IV.
- B) II e III.
- C) III e IV.
- D) I, II e III.
- E) I, II e IV.

ATIVIDADES

Proposições compostas

```
4) Considere as proposições seguintes.
```

```
Q: "Se o Estrela Futebol Clube vencer ou perder, cairá para a segunda divisão";
```

A: "O Estrela Futebol Clube vence";

B: "O Estrela Futebol Clube perde";

C: "O Estrela Futebol Clube cairá para a segunda divisão".

Nesse caso, a proposição Q pode ser expressa, simbolicamente, por A^B->C.

ATIVIDADES

Proposições compostas

```
4) Considere as proposições seguintes.
```

```
Q: "Se o Estrela Futebol Clube vencer ou perder, cairá para a segunda divisão";
```

A: "O Estrela Futebol Clube vence";

B: "O Estrela Futebol Clube perde";

C: "O Estrela Futebol Clube cairá para a segunda divisão".

Nesse caso, a proposição Q pode ser expressa, simbolicamente, por $A^B->C$.

ERRADO

A v B -> C

ATIVIDADES

Proposições compostas

5) Julgue o item a seguir.

A proposição

"Os cartões pré-pagos são uma evolução dos cartões tradicionais, pois podem ser usados, por exemplo, pelo público jovem"

é equivalente a

"Se podem ser usados, por exemplo, pelo público jovem, então os cartões pré-pagos são uma evolução dos cartões tradicionais".

ATIVIDADES

Proposições compostas

5) Julgue o item a seguir.

A proposição

"Os cartões pré-pagos são uma evolução dos cartões tradicionais, pois podem ser usados, por exemplo, pelo público jovem" (se)

é equivalente a

"Se podem ser usados, por exemplo, pelo público jovem, então os cartões pré-pagos são uma evolução dos cartões tradicionais".

CORRETO

ATIVIDADES'

Proposições compostas

- 6) A expressão "Viva Mandela, viva Mandela! gritava a multidão entusiasmada" estará corretamente representada na forma P v Q, em que P e Q sejam proposições lógicas adequadamente escolhidas.
- 7) A frase "A religião produz um cerceamento da liberdade individual e a falta de religião torna a sociedade consumista e degradada" estará representada, de maneira logicamente correta, na forma P^Q, em que P e Q sejam proposições convenientemente escolhidas.
- 8) A frase "O perdão e a generosidade são provas de um coração amoroso" estará corretamente representada na forma P^Q, em que P e Q sejam proposições lógicas convenientemente escolhidas.

ATIVIDADES

Proposições compostas

- 6) A expressão "Viva Mandela, viva Mandela! gritava a multidão entusiasmada" estará corretamente representada na forma P v Q, em que P e Q sejam proposições lógicas adequadamente escolhidas. ERRADO NÃO É PROPOSIÇÃO
- 7) A frase "A religião <u>produz</u> um cerceamento da liberdade individual e a falta de religião <u>torna</u> a sociedade consumista e degradada" estará representada, de maneira logicamente correta, na forma P^Q, em que P e Q sejam proposições convenientemente escolhidas.

CORRETO

8) A frase "O perdão e a generosidade são provas de um coração amoroso" estará corretamente representada na forma P^Q, em que P e Q sejam proposições lógicas convenientemente escolhidas.

ERRADA - PROPOSICÃO SIMPLES

ATIVIDADES

Tabela Verdade

1) Considerando as proposições P e Q verdadeiras e R falsa, determine o resultado das sentenças abaixo:

A)
$$P \wedge \neg Q$$

B)
$$\neg P \lor Q$$

C)
$$Q \rightarrow R$$

D)
$$\neg P \rightarrow \neg Q$$

E)
$$\neg$$
(Q $\rightarrow \neg$ R)

$$F) \sim (P \leftrightarrow Q)$$

ATIVIDADES

Tabela Verdade

1) Considerando as proposições P e Q verdadeiras e R falsa, determine o resultado das sentenças abaixo:

A) P ∧ <u>¬ Q</u>

B) $\neg P \vee Q$

C) $Q \rightarrow R$

se...,então

se e somente se

V com F dá F

Iguais dá V

Diferentes dá F

D)
$$\neg P \rightarrow \neg C$$

E)
$$\neg (Q \rightarrow \neg R)$$

F)
$$\sim$$
 (P \leftrightarrow Q) V

ATIVIDADES

Tabela Verdade

Texto para os itens de 2 a 4.

Considere que as letras P, Q, R e T representem proposições e que os símbolos \neg , \wedge , \vee e \rightarrow sejam operadores lógicos que constroem novas proposições e significam não, e, ou e então, respectivamente. Na lógica proposicional, cada proposição assume um único valor (valor-verdade), que pode ser verdadeiro (V) ou falso (F), mas nunca ambos.

Com base nas informações apresentadas no texto acima, julgue os itens a seguir.

ATIVIDADES

Tabela Verdade

- 2) Se as proposições P e Q são ambas verdadeiras, então a proposição $(\neg P) \lor (\neg Q)$ também é verdadeira.
- 3) Se a proposição T é verdadeira e a proposição R é falsa, então a proposição $R \rightarrow (\neg T)$ é falsa.
- 4) Se as proposições P e Q são verdadeiras e a proposição R é falsa, então a proposição $(P \land R) \rightarrow (\neg Q)$ é verdadeira.

Diferentes dá F

2) Se as proposições P e Q são ambas verdadeiras, então a proposição $(\neg P) \lor (\neg Q)$ também é verdadeira.

3) Se a proposição T é verdadeira e a proposição R é falsa, então a proposição $R \rightarrow (\neg T)$ é falsa.

4) Se as proposições P e Q são verdadeiras e a proposição R é falsa, então a proposição $(P \land R) \xrightarrow{} (\neg Q)$ é verdadeira.

ATIVIDADES

Tabela Verdade

5) Considere as seguintes proposições.

A:
$$3 + 3 = 6 e 4 \times 2 = 8$$
;

B:
$$3 + 1 = 6$$
 ou $5 \times 3 = 15$;

C:
$$4 - 2 = 2$$
 ou $6 \div 3 = 4$.

Nesse caso, é correto afirmar que apenas uma dessas proposições é F

ATIVIDADES

Tabela Verdade

5) Considere as seguintes proposições.

A:
$$3 + 3 = 6 e 4 \times 2 = 8$$
;

B:
$$\frac{3+1=6}{V} = \frac{5 \times 3}{V} = \frac{15}{V}$$
;

C:
$$4 - 2 = 2$$
 ou $6 \div 3 = 4$.

on locien		
Tudo V dá V		
Tudo F dá F		
Iguais dá F Diferentes dá V		
V com F dá F		
Iguais dá V Diferentes dá F		

TABUADA LÓGICA

Nesse caso, é correto afirmar que apenas uma dessas proposições é F

ATIVIDADES

Tabela Verdade

6) Se a proposição "Renato é pobre" for falsa e se a proposição "Renato pratica atos violentos" for verdadeira, então a proposição "Renato não é pobre, mas pratica atos violentos" será falsa.

ATIVIDADES

Tabela Verdade

F

6) Se a proposição "Renato é pobre" for falsa e se a proposição "Renato pratica atos violentos" for verdadeira, então a proposição "Renato não é pobre, mas pratica atos violentos" será falsa.

ERRADO

E também pode fazer contato

Referências (principais)

Bertolini, Cristiano. **Lógica matemática** [recurso eletrônico]/Cristiano Bertolini, Guilherme Bernardino da Cunha, Patrícia Rodrigues Fortes. - Santa Maria, RS: UFSM, NTE, 2017.

Exercícios:

Matemática pra Passar - Prof. Renato Oliveira @matematicaprapassar

@prof.netoferreira