Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

Кафедра «Прикладная математика»

$Лабораторная \ paбота \ \mathcal{N} 5$

по дисциплине «Методы вычислений»

Численное решение интегральных уравнений

Выполнили студенты группы ФН2-61

Разумов Т.Е. Швечков И.В.

1. Ответы на контрольные вопросы

1. При выполнение каких условий интегральное уравнение Фредгольма второго рода имеет решение? В каком случае решение является единственным?

Интегральным уравнением Фредгольма второго рода называется уравнение вида

$$u(x) - \lambda \int_{a}^{b} K(x, s)u(s)dx = f(x), \quad x \in [a, b],$$

при этом предполагается, что K(x,s), f(x) являются кусочно-непрерывными функциями либо удовлетворяют условиям

$$\int_{a}^{b} \int_{a}^{b} |K(x,s)|^{2} dx ds < \infty, \quad \int_{a}^{b} |f(x)|^{2} dx < \infty.$$

Если $\lambda \neq \lambda_i$ (λ_i – собственное число), то решение уравнения существует и при этом единственное.

2. Можно ли привести матрицу СЛАУ, получающуюся при использовании метода квадратур, к симметричному виду, в случае, если ядро интегрального уравнения является симметричным?

СЛАУ, получающаяся при использовании квадратур, записывается в следующем виде:

$$y_i - \lambda \sum_{k=0}^{N} a_k^N K(x_i, s_k) y_k = f_i, \quad i = 0, \dots, N.$$

Для упрощения обозначений примем $K(x_i, s_k) = K_{ik}$. Так как ядро интегрального уравнения является симметричным, то $K_{ik} = K_{ki}$. Домножим каждое i-е уравнение системы на a_i^N , тогда получим:

$$a_i^N y_i - \lambda \sum_{k=0}^N a_i^N a_k^N K_{ik} y_k = a_i^N f_i, \qquad i = 0, \dots, N.$$

Получена система с симметричной матрицей.

3. Предложите способ контроля точности результата вычислений при использовании метода квадратур.

Введём равномерную сетку на [a,b]. Вычислим приближенно значение интеграла при шаге h, получим - I_h , потом проделаем ту же операцию при шаге $h/2 - I_{h/2}$. Если $|I_{h/2} - I_h| < \varepsilon$ останавливаем вычисления, в противном случае делим шаг пополам и повторяем процедуру.

4. Оцените возможность и эффективность применения методов квадратур, простой итерации и замены ядра при решение интегральных уравнений Вольтерры 2-го рода.

Метод квадратур применим. СЛАУ становится треугольной и решается за один ход метода Гаусса. Позволяет проводить расчёты с очень высокой точностью.

Метод простой итерации так же применим. При таком методе уравнение сходится равномерно по x при любом значении λ .

Метод замены ядра вырожденным не применим, так как ядро уравнение Вольтерра вырожденным не бывает.

5. Что называют резольвентой ядра интегрального уравнения?

Резольвентой интегрального уравнения, или его разрешающим ядром называется такая функция $R(x, s, \lambda)$ переменных x, s и параметра λ , что решение интегрального уравнения представляется в виде:

$$y(x) = f(x) + \lambda \int_{a}^{b} R(x, s, \lambda) f(s) ds.$$

При этом λ не должна быть собственным числом интегрального уравнения.

6. Почему замену ядра интегрального уравнения вырожденным предпочтительнее осуществлять путём разложения по многочленам Чебышева, а не по формуле Тейлора?

Полином Чебышева — полином наилучшего приближения функции в данном нормированном пространстве, который наилучшим образом аппроксимирует функцию на всем исследуемом отрезке. Формула Тейлора для приближения функции записывается в окрестности одной точки, соответственно, чем дальше находится точка, в которой вычисляется приближенное значение функции, тем больше погрешность аппроксимации. Следовательно, замену ядра интегрального уравнения вырожденным предпочтительнее осуществлять путем разложения по многочленам Чебышева, а не по формуле Тейлора, потому что, таким образом, ошибка приближений является минимально возможной.

7. Какие вы можете предложить методы решения переопределённой системы помимо введения дополнительно переменной R?

Можно выразить, например, из последнего уравнения g_i и подставить в любое другое уравнение системы. Также для решения переопределенной СЛАУ применим метод наименьших квадратов или метод вращений.

2. Демонстрация работоспособности программы

В табл. 1 представлена погрешность в зависимости от уменьшения шага при численном решении 1-го тестового примера различными методами. Аналитическое решение для теста N1: u=1.

Метод \ Шаг	h = 0.1	h/2	h/4	z_1/z_2	z_2/z_3
Квадратур	$3.67309 \cdot 10^{-4}$	$9.17545 \cdot 10^{-5}$	$2.29341 \cdot 10^{-5}$	4.00317	4.00079
Простой итерации	$3.67309 \cdot 10^{-4}$	$9.17544 \cdot 10^{-5}$	$2.2934 \cdot 10^{-5}$	4.00318	4.0008
Замены ядра	$3.68791 \cdot 10^{-4}$	$9.31712 \cdot 10^{-5}$	$2.43345 \cdot 10^{-5}$	3.95821	3.82877
Замены ядра (Чебышев)	$3.6879 \cdot 10^{-4}$	$9.3171 \cdot 10^{-5}$	$2.43343 \cdot 10^{-5}$	3.95821	3.82879

Таблица 1

Отметим, что в качестве критерия останова в методе простой итерации использовался критерий $||y^{k+1}-y^k||_C<\varepsilon=10^{-8}$. При заданных параметрах метод сходился за 15 итераций.

В методе замены ядра вырожденным было взято первые 4 слагаемых из разложения ядра по формуле Тейлора и в полином Чебышева.

Часть 2

Правая часть: $f(\mathbf{r}) = \cos(7\phi)$. Аналитическое решение: $\gamma(r) = 2\sin(7\phi)$.

Рис. 5. Тестовый пример

Кол-во разбиений	N = 10	N = 50	N = 100	
Ошибка	$4.44089 \cdot 10^{-15}$	$2.84217 \cdot 10^{-14}$	$3.86358 \cdot 10^{-14}$	
·	·		TI ()	

Таблица 2