

Unidad 1: Planificación del Almacenamiento e Indexación

Bases de Datos Avanzadas, Sesión 1: Dispositivos y Estructuras de Almacenamiento

> Iván González Diego Dept. Ciencias de la Computación Universidad de Alcalá

INDICE

- □ Visión Medios de Almacenamiento
- ☐ Gestor de Memoria Intermedia
- ☐ Estructuras de Almacenamiento:
 - Longitud Fija
 - Longitud Variable

Referencias: Silberschatz 4ª Ed. Pp 249 - 315

Elmasri, 3^a Ed. Pp 105 - 181

Introducción

En este tema se va a tratar sobre el almacenamiento de los datos de usuario y la planificación del mismo según el sistema gestor de base de datos.

□ De forma detallada se entrará en los modos de almacenamiento de los ficheros de datos y el funcionamiento de los índices de una base de datos.

Visión general de los medios de almacenamiento

Visión general de los medios de almacenamiento

Distintos tipos de memoria:

- Caché: La más rápida junto con los registros. Pequeño tamaño y control hardware.
- Memoria principal: medio de almacenamiento donde se ejecutan los programas. No suele ser lo suficientemente grande para guardar toda una base de datos.
- Memoria flash: Memoria de lectura y escritura bastante lenta.
- Discos magnéticos: Principal medio de almacenamiento. Hace las veces de disco swaping con la memoria principal.
- Almacenamiento Optico:
 - CD-ROM: ⇒ sirven como copia de respaldo,
 - DVD: (4-17 GB)
- Almacenamiento en cinta: cintas de gran capacidad (80 GB 1 TB). Copias de respaldo. DLT

Discos de almacenamiento

Discos de almacenamiento

- Tiempo de acceso: tiempo transcurrido entre la solicitud de lectura y el comienzo de la transferencia de datos
- Tiempo medio de Búsqueda : tiempo para ubicar el brazo en una pista en media.
- ☐ Tiempo de latencia rotacional: tiempo de espera una vez movido el brazo para que el sector pase por debajo de la cabeza
- ☐ Tiempo medio de latencia: en media la mitad de rotación del disco
- □ Velocidad de transferencia de datos: velocidad a la que se pueden recuperar o guardar datos.
- ☐ Tiempo medio entre fallos: medida de fiabilidad.

Discos de Estado Sólido (SSD)

Acceso a los datos: bloques de disco

- □ Operación I/O ⇒ dirección disco ⇒ numero bloque
- □ Bloque ⇒ secuencia continua de sectores de una pista
- □ Datos se transfieren en bloques
- ☐ Ejemplo: SO 4 sectores de disco / bloque

Sistemas de acceso a disco: Sistemas RAID

RAID: Redundant Array of Independent Disks Compuestos de discos pequeños y de bajo coste:

- Gran rendimiento
- Gran fiabilidad al montarlos en este tipo de sistemas.
- ☐ *Múltiples modos de funcionamiento:*
 - Con redundancia.
 - Paridad de datos
 - Paralelismo, etc.
- ☐ Distribución de datos a nivel de bloque (1 bloque en cada disco) o a nivel de bit (1 bit en cada disco)
- □ Son utilizados normalmente en cualquier sistema de almacenamiento masivo de datos, utilizándose de forma normal el RAID 1 o el 5.

Niveles RAID

Aplicaciones de Alto Rendimiento donde la pérdida de datos no es crítica

☐ 1: Creación de imágenes de disco con distribución de bloque

5: Distribución datos nivel bloque, pero distribuyendo la paridad entre todos los discos, para cada bloque un disco guarda paridad, y el resto datos.

Acceso al almacenamiento: Gestor de memoria intermedia

- Son parecidos a los gestores de memoria virtual aunque más complejos.
- Se encargan de manipular los bloques de la memoria al disco o del disco a la memoria
- □ Objetivo ⇒ minimización de los accesos al disco.
- Los sistemas operativos utilizan esquemas de gestión de memoria estáticos, en base a previsiones estadísticas.
- □ Los SBGD por el contrario son capaces de planificar los accesos a datos que realizarán, el orden y la estrategia a seguir ⇒ Gestión de memoria mucho más precisa que un S.O.

Acceso al almacenamiento: Gestor de memoria intermedia

Los esquemas de gestión de la memoria intermedia son:

- Estrategias de sustitución:
 - MRU: Más Recientemente Utilizado fuera.
 - LRU: Menos Recientemente Utilizado fuera.
- Bloques clavados: Limita el número de veces que se puede escribir un bloque en disco.
- Salida forzada de bloques: Se obliga a la escritura de un bloque en disco, y se elimina de la memoria principal.

Acceso al almacenamiento: Gestor de memoria intermedia

- □ P: LRU o extracción inmediata
- □ C: MRU ⇒ elimina el último utilizado. No se utilizará hasta la próxima iteración del bucle.

Organización de los archivos

- Vista lógico ⇒ archivos son secuencias de registros que se deberían de corresponder con bloques de disco.
- Rara vez un registro va a ocupar exactamente un bloque de disco
- ☐ Regla ⇒ Un registro en un Bloque de Datos ⇒ un acceso disco
- □ Registros ⇒ Tamaño variable (cadenas texto, arrays, etc).
- ☐ En bases de datos se manejan dos supuestos:
 - Registros de tamaño fijo ⇒ gran velocidad de acceso.
 - Registros de tamaño variable ⇒ gran eficiencia en el espacio

end

□ Suponiendo que un real ocupa 8 bytes, los caracteres son ASCII de 1 byte, el registro tendrá 40 bytes de longitud.

☐ Problemas de la estructura:

- Dificultad en los borrados ⇒ Creación de huecos, dificultad de contabilización de los espacios en esquemas simples.
- Dificultad en almacenamiento ⇒ Puede haber registros que estén almacenados en 2 bloques ⇒ dos accesos a disco para leer un registro.

Estrategias de actualización de las tablas:

Desplazamiento en borrado.

Desplazamiento de los siguientes registros: Gran sobrecarga de disco.

No se utiliza.

400
350
500
700
900
750
600
700

- Desplazamiento del último registro: Menos sobrecarga. Tampoco se

suele utilizar

registro 0	C-102	Navacerrada	400
registro 1	C-305	Collado Mediano	350
registro 8	C-218	Navacerrada	700
registro 3	C-101	Centro	500
registro 4	C-222	Moralzarzal	700
registro 5	C-201	Navacerrada	900
registro 6	C-217	Galapagar	750
registro 7	C-110	Centro	600
'		·	

- Se basa en que es más probable que se inserten datos en vez de borrarlos ⇒ los huecos dejados al borrar se pueden utilizar posteriormente en las nuevas inserciones
- Estructura de cabecera con seguimiento del primer registro libre y lista enlazada a partir de este para acceder al resto de registros borrados. Se denomina lista libre
- Cuando se añade un nuevo registro ⇒ se pone en el primer hueco libre y se actualiza la cabecera.

cabecera				
registro 0	C-102	Navacerrada	400	}
registro 1				-
registro 2	C-215	Becerril	700	
registro 3	C-101	Centro	500	
registro 4				
registro 5	C-201	Navacerrada	900	}
registro 6				—
registro 7	C-110	Centro	600	-
registro 8	C-218	Navacerrada	700	

Se deben a:

- Almacenamiento de varios tipos de registros sobre el mismo archivo
- Tipos de registros que permiten longitudes variables de sus campos
- Tipos de registros con campos repetidos

□ Ejemplo:

```
type Lista_cuentas = record

nombre_sucursal: char (22);

información_cuenta: array [1..∞] of record

numero_cuenta: char(10);

saldo: real;

end

end
```


- Método muy sencillo.
- Existe una marca de "fin de registro".

0	Navacerrada	C-102	400	C-201	900	C-218	700	Т
1	Collado Mediano	C-305	350	Т				
2	Becerril	C-215	700	Т				
3	Centro	C-101	500	C-110	600	Τ		
4	Moralzarzal	C-222	700					
5	Galapagar	C-217	750	1				

Esquema Alternativo ⇒ cabecera con longitud del registro

- Problemas para reutilizar el espacio borrado, al tener distintas longitudes ⇒
 Necesidad de compactación de datos.
- No deja espacio para el aumento del tamaño de los registros ya incluidos.
 - Si un registro aumenta ⇒ desplazarlo
 - Provoca el mismo efecto que un borrado.
- No se suele utilizar.

Solución:

Estructura de páginas con ranuras.

- Número de elementos del registro de cabecera
- Final del espacio vacío del bloque
- Array con la ubicación y el tamaño de cada registro.

Comportamiento

- Los registros reales ⇒ seguidos dentro del bloque, pero empezando desde el final
- El número de entradas y el array de "punteros" se sitúan al principio del bloque.
- El espacio libre se sitúa en el medio de los Registros-cabecera

Comportamiento (continuación)

- Si se añade un registro:
 - añadir una entrada al array
 - El registro se inserta al final del espacio libre.
 - Posteriormente se actualiza el espacio libre.
- Si se borra un registro:
 - Su entrada se le da un tamaño de –1
 - Se desplazan los que había antes que él, actualizando el resto de la cabecera y el nuevo punto del espacio libre.
- □ Dado que la escritura se realiza a través de bloques (2 Kb-4 Kb)
 ⇒ Coste de mover la información dentro del bloque no es alto ⇒ se reduce la fragmentación del espacio utilizado.

Representación de longitud fija

- Mediante espacio reservado.
 - Si nunca se supera la longitud máxima asignada, se puede utilizar.
 - Se utiliza una marca para representar la falta de información.
 - Es poco útil con información de distinto tamaño
 - Pero si la información tiene un tamaño cercano al máximo, merece la pena implementar este tipo de esquemas.

0	Navacerrada	C-102	400	C-201	900	C-218	700
1	Collado Mediano	C-305	350	Т	Τ	Т	Τ
2	Becerril	C-215	700	Т	Τ	Т	Τ
3	Centro	C-101	500	C-110	600	Τ	Τ
4	Moralzarzal	C-222	700	\perp	Τ	Т	Τ
5	Galapagar	C-217	750	Т	Τ	Т	Τ

Representación de longitud fija con punteros

- Similar al utilizado en el seguimiento del espacio libre en los esquemas de registros de longitud fija
- Mantiene la información de los registros ocupados por la misma entidad superior

0	Navacerrada	C-102	80.000
1	Collado Mediano	C-305	70.000
2	Becerril	C-215	140.000
3	Centro	C-101	100.000
4	Moralzarzal	C-222	140.000
5		C-201	180.000
6	Galapagar	C-217	150.000
7		C-110	120.000
8		C-218	140.000

- Una tabla de bloque ancla ⇒ mantiene la información del primer registro.
- Bloque de desbordamiento ⇒ mantiene la información de los siguientes registros.

bloque	Navacerrada	C-102	400			
ancla	Collado Mediano	C-305	350			
	Becerril	C-215	700	\		
	Centro	C-101	500			
	Moralzarzal	C-222	700			
	Galapagar	C-217	750			
bloque d		C-201	900			
desbord	amiento	C-218	700	<u>*/</u>		
		C-110	600			