Notes: Generalized Additive Models – Ch4 Introducing GAMs

Yingbo Li

03/27/2021

1

Table of Contents

Univariate Smoothing

Piecewise linear basis: tent functions

Penalty to control wiggliness

Additive Models

Generalized Additive Models

Introducing Package mgcv

Introduction of GAM

In general the GAM model has a following structure

$$g(\mu_i) = \mathbf{A}_i \boldsymbol{\theta} + f_1(x_{1i}) + f_2(x_{2i}) + f_3(x_{3i}, x_{4i}) + \cdots$$

- Y_i follows some exponential family distribution: $Y_i \sim EF(\mu_i, \phi)$
- $-\mu_i = E(Y_i)$
- A_i is a row of the model matrix, and θ is the corresponding parameter vector
- $-f_j$ are smooth functions of the covariates x_k
- This chapter
 - Illustrates GAMs by basis expansions, each with a penalty controlling function smoothness
 - Estimates GAMs by penalized regression methods
- Takeaway: technically GAMs are simply GLM estimated subject to smoothing penalties

Representing a function with basis expansions

Let's consider a model containing one function of one covariate

$$y_i = f(x_i) + \epsilon_i, \quad \epsilon_i \stackrel{\text{iid}}{\sim} \mathsf{N}(0, \sigma^2)$$

• If $b_j(x)$ is the jth basis function, then f is assumed to have a representation

$$f(x) = \sum_{j=1}^{k} b_j(x)\beta_j$$

with some unknown parameters β_i

This is clearly a linear model

The problem with polynomials

• A kth order polynomial is

$$f(x) = \beta_0 + \sum_{j=1}^k \beta_k x^k$$

• The polynomial oscillates wildly in places, in order to both interpolate the data and to have all derivatives wrt x continuous

Figure 1: Left: the target function f(x). Middle: polynomial interpolation. Right: piecewise linear interpolant

Piecewise linear basis

- Suppose there are k knots $x_1^* < x_2^* < \dots < x_k^*$
- The tent function representation of piecewise linear basis is

- For
$$j = 2, ..., k - 1$$
,

$$b_j(x) = \begin{cases} \frac{x - x_{j-1}^*}{x_j^* - x_{j-1}^*}, & \text{if } x_{j-1}^* < x \leq x_j^* \\ \frac{x_{j+1}^* - x}{x_{j+1}^* - x_j^*}, & \text{if } x_j^* < x \leq x_{j+1}^* \\ 0, & \text{otherwise} \end{cases}$$

For the two basis functions on the edge

$$\begin{split} b_1(x) &= \begin{cases} \frac{x_2^* - x}{x_2^* - x_1^*}, & \text{if } x \leq x_2^* \\ 0, & \text{otherwise} \end{cases} \\ b_k(x) &= \begin{cases} \frac{x - x_{k-1}^*}{x_k^* - x_{k-1}^*}, & x > x_{k-1}^* \\ 0, & \text{otherwise} \end{cases} \end{split}$$

Visualization of tent function basis

- $b_j(x)$ is zero everywhere, except over the interval between the knots immediately to either side of x_i^*
- $b_j(x)$ increases linear from 0 at x_{j-1}^* to 1 at x_j^* , and then decreases linearly to 0 at x_{j+1}^*

Figure 2: Left: tent function basis, for interpolating the data shown as black dots. Right: the basis functiosn are each multiplied by a coefficient, before being summed

Control smoothness by penalizing wiggliness

- To choose the degree of smoothness, rather than selecting the number of knots k, we can use a relatively large k, but control the model's smoothness by adding a "wiggliness" penalty
 - Note that a model based on k-1 evenly spaced knots will not be nested within a model based on k evenly spaced knots
- Penalized likelihood function for piecewise linear basis:

$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \sum_{j=2}^{k-1} \left[f(x_{j-1}^*) - 2f(x_j^*) + f(x_{j+1}^*) \right]^2$$

- Wiggliness is measured as a sum of squared second differences of the function at the knots
- This crudely approximates the integrated squared second derivative penalty used in cubic spline smoothing
- $-\lambda$ is called the smoothing parameter

Simplify the penalized likelihood

- For the test function basis, $\beta_j = f(x_j^*)$
- Therefore, the penalty can be expressed as a quadratic form

$$\sum_{j=2}^{k-1} (\beta_{j-1} - 2\beta_j + \beta_{j+1})^2 = \boldsymbol{\beta}^T \mathbf{D}^T \mathbf{D} \boldsymbol{\beta} = \boldsymbol{\beta}^T \mathbf{S} \boldsymbol{\beta}$$

- The $(k-2) \times k$ matrix **D** is

 $-\mathbf{S} = \mathbf{D}^T \mathbf{D}$ is a square matrix

Solution of the penalized regression

To minimize the penalized likelihood

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \boldsymbol{\beta}^T \mathbf{S} \boldsymbol{\beta}$$
$$= (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{S})^{-1} \mathbf{X}^T \mathbf{y}$$

• The hat matrix (also called influence matrix) A is thus

$$\mathbf{A} = \mathbf{X}(\mathbf{X}^T \mathbf{X} + \lambda \mathbf{S})^{-1} \mathbf{X}^T$$

and the fitted expectation is $\hat{\mu} = Ay$

 For practical computation, we can introduce imaginary data to re-formulate the penalized least square problem to be a regular least square problem

$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \boldsymbol{\beta}^T \mathbf{S} \boldsymbol{\beta} = \left\| \begin{bmatrix} \mathbf{y} \\ \mathbf{0} \end{bmatrix} - \begin{bmatrix} \mathbf{X} \\ \sqrt{\lambda} \mathbf{D} \end{bmatrix} \boldsymbol{\beta} \right\|^2$$

Hyper-parameter tuning

- Between the two hyper-parameters: number of knots k and the smoothing parameter λ , the choice of λ plays the crucial role
- We can always use a k large enough, more flexible then we expect to need to represent f(x)
- In mgcv package, the default choice is k=20, and knots are evenly spread out over the range of observed data

Choose λ by leave-one-out cross validation

 Under linear regression, to compute leave-one-out cross validation error (called the ordinary cross validation score), we only need to fit the full model once

$$\mathcal{V}_o = \frac{1}{n} \sum_{i=1}^n \left(y_i - \hat{f}_i^{[-i]} \right)^2 = \frac{1}{n} \sum_{i=1}^n \frac{\left(y_i - \hat{f}_i \right)^2}{(1 - A_{ii})^2}$$

- $-\hat{f}_i^{[-i]}$ is the model fitted to all data except y_i
- $-\hat{f_i}$ is the model fitted to all data, and A_{ii} is the ith diagonal entry of the corresponding hat matrix
- In practice, A_{ii} are often replaced by their mean $tr(\mathbf{A})/n$. This results in the generalized cross validation score (GCV)

$$V_g = \frac{n \sum_{i=1}^{n} \left(y_i - \hat{f}_i \right)^2}{\left[n - \text{tr}(\mathbf{A}) \right]^2}$$

From the Bayesian perspective

 The wiggliness penalty can be viewed as a normal prior distribution on β

$$oldsymbol{eta} \sim \mathsf{N}\left(\mathbf{0}, \sigma^2 \frac{\mathbf{S}^-}{\lambda}\right)$$

- $-\,$ Because ${\bf S}$ is rank deficient, the prior covariance is proportional to the pseudo-inverse ${\bf S}^-$
- The posterior of β is still normal

$$\boldsymbol{\beta} \mid \mathbf{y} \sim \mathsf{N}\left(\hat{\boldsymbol{\beta}}, (\mathbf{X}^T\mathbf{X} + \lambda \mathbf{S})^{-1}\sigma^2\right)$$

• Given the model this extra structure opens up the possibility of estimating σ^2 and λ using marginal likelihood maximization or REML (aka empirical Bayes)

A simple additive model with two univariate functions

Let's consider a simple additive model

$$y_i = \alpha + f_1(x_i) + f_2(v_i) + \epsilon_i, \quad \epsilon_i \stackrel{\text{iid}}{\sim} \mathsf{N}(0, \sigma^2)$$

- The assumption of additive effects is a fairly strong one
- The model now has an identifiability problem: f_1 and f_2 are each only estimable to within an additive constant
 - Due to the identifiability issue, we need to use penalized regression splines

Piecewise linear regression representation

• Basis representation of $f_1()$ and $f_2()$

$$f_1(x) = \sum_{j=1}^{k_1} b_j(x)\delta_j$$
$$f_2(v) = \sum_{j=1}^{k_2} \mathcal{B}_j(v)\gamma_j$$

- The basis functions $b_j()$ and $\mathcal{B}_j()$ are tent functions, with evenly spaced knots x_i^* and v_i^* , respectively
- Matrix representations

$$\mathbf{f}_1 = [f_1(x_1), \dots, f_1(x_n)]^T = \mathbf{X}_1 \boldsymbol{\delta}, \quad [\mathbf{X}_1]_{i,j} = b_j(x_i)$$

 $\mathbf{f}_2 = [f_2(v_1), \dots, f_2(v_n)]^T = \mathbf{X}_2 \boldsymbol{\gamma}, \quad [\mathbf{X}_2]_{i,j} = \mathcal{B}_j(x_i)$

Sum-to-zero constrains to resolve identifiability issues

We assume

$$\sum_{i=1}^{n} f_1(x_i) = 0 \Longleftrightarrow \mathbf{1}^T \mathbf{f}_1 = 0$$

This is equivalent to $\mathbf{1}^T \mathbf{X}_1 \boldsymbol{\delta} = 0$ for all $\boldsymbol{\delta}$, which implies $\mathbf{1}^T \mathbf{X}_1 = \mathbf{0}$

ullet To achieve this condition, we can center the column of ${f X}_1$

$$\tilde{\mathbf{X}}_1 = \mathbf{X}_1 - \mathbf{1} \; \frac{\mathbf{1}^T \mathbf{X}_1}{n}, \quad \tilde{\mathbf{f}}_1 = \tilde{\mathbf{X}}_1 \boldsymbol{\delta}$$

- Column centering reduces the rank of $\tilde{\mathbf{X}}_1$ to $k_1 1$, so that only $k_1 1$ elements of the k_1 vector $\boldsymbol{\delta}$ can be uniquely estimated
- A simple identifiability constraint:
 - Set a single element of δ to zero
 - $-\,$ And delete the corresponding column of $\tilde{\mathbf{X}}_1$ and \mathbf{D}
- For notation simplicity, in what follows the tildes will be dropped, and we assume that the X_j, D_j are the constrained versions

Penalized piecewise regression additive model

We rewrite the penalized regression as

$$y = X\beta + \epsilon$$

where
$$X = (\mathbf{1}, \mathbf{X}_1, \mathbf{X}_2)$$
 and $\boldsymbol{\beta}^T = (\alpha, \boldsymbol{\delta}^T, \boldsymbol{\gamma}^T)$

Wiggliness penalties

$$oldsymbol{\delta}^T \mathbf{D}_1^T \mathbf{D}_1 oldsymbol{\delta} = oldsymbol{\delta}^T ar{\mathbf{S}}_1 oldsymbol{\delta} = oldsymbol{\beta}^T \mathbf{S}_1 oldsymbol{\delta}, \quad \mathbf{S}_1 = \left[egin{array}{ccc} 0 & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & ar{\mathbf{S}}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{array}
ight] \ oldsymbol{\gamma}^T \mathbf{D}_2^T \mathbf{D}_2 oldsymbol{\gamma} = oldsymbol{\gamma}^T ar{\mathbf{S}}_2 oldsymbol{\gamma} = oldsymbol{\beta}^T \mathbf{S}_2 oldsymbol{\delta}.$$

Fitting additive models by penalized least squares

Penalized least squares objective function

$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda_1 \boldsymbol{\beta}^T \mathbf{S}_1 \boldsymbol{\beta} + \lambda_2 \boldsymbol{\beta}^T \mathbf{S}_2 \boldsymbol{\beta}$$

Coefficient estimator

$$\hat{\boldsymbol{\beta}} = \left(\mathbf{X}^T \mathbf{X} + \lambda_1 \mathbf{S}_1 + \lambda_2 \mathbf{S}_2\right)^{-1} \mathbf{X}^T \mathbf{y}$$

Hat matrix

$$\mathbf{A} = \mathbf{X} \left(\mathbf{X}^T \mathbf{X} + \lambda_1 \mathbf{S}_1 + \lambda_2 \mathbf{S}_2 \right)^{-1} \mathbf{X}^T$$

Conditional posterior distribution

$$oldsymbol{eta} \mid \mathbf{y} \sim \mathsf{N}\left(\hat{oldsymbol{eta}}, \hat{\mathbf{V}}_{oldsymbol{eta}}
ight), \quad \hat{\mathbf{V}}_{oldsymbol{eta}} = \left(\mathbf{X}^T\mathbf{X} + \lambda_1\mathbf{S}_1 + \lambda_2\mathbf{S}_2
ight)^{-1}\hat{\sigma}^2$$

Choosing two smoothing parameters

- Since we now have two smoothing parameters λ_1, λ_2 , grid searching for the GCV optimal values starts to become inefficient
- Instead, R function optim can be used to minimize the GCV score
- We can use log smoothing parameters for optimization to ensure that estimated smoothing parameters are non-negative

Generalized additive models

Generalized additive models (GAMs): additive models + GLM

$$g(\mu_i) = \alpha + f_1(x_i) + f_2(v_i) + \epsilon_i$$

- Penalized iterative least squares (PIRLS) algorithm: iterate the following steps to convergence
- 1. Given the current $\hat{\eta}$ and $\hat{\mu}$, compute

$$w_i = \frac{1}{V(\hat{\mu}_i)g'(\hat{\mu}_i)^2}, \quad z_i = g'(\hat{\mu}_i)(y_i - \hat{\mu}_i) + \hat{\eta}_i$$

2. Let $\mathbf{W} = \operatorname{diag}(w_i)$, we obtain the new $\hat{\boldsymbol{\beta}}$ by minimizing

$$\|\sqrt{\mathbf{W}}\mathbf{z} - \sqrt{\mathbf{W}}\mathbf{X}\boldsymbol{\beta}\|^2 + \lambda_1\boldsymbol{\beta}^T\mathbf{S}_1\boldsymbol{\beta} + \lambda_2\boldsymbol{\beta}^T\mathbf{S}_2\boldsymbol{\beta}$$

Introducing package mgcv

- Main function: gam(), very much like the glm() function
- Smooth terms: s() for univariate functions and te() for tensors
- A gamma regression example

```
\log\left(E\left[\mathtt{Volume}_i\right]\right) = f_1(\mathtt{Height}_i) + f_2(\mathtt{Girth}_i), \quad \mathtt{Volume}_i \sim \mathsf{Gamma}
```

 \bullet By default, the degree of smoothness of the f_j is estimated by GCV

```
summary(ct1)
##
## Family: Gamma
## Link function: log
##
## Formula:
## Volume ~ s(Height) + s(Girth)
##
## Parametric coefficients:
##
          Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.27570 0.01492 219.6 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
              edf Ref.df F p-value
##
## s(Height) 1.000 1.000 31.32 3.92e-06 ***
## s(Girth) 2.422 3.044 219.28 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.973 Deviance explained = 97.8\%
## GCV = 0.0080824 Scale est. = 0.006899 n = 31
```

Parital residuals plots

Pearson residuals added to the estimated smooth terms

$$\hat{\epsilon}_{1i}^{\mathsf{partial}} = f_1(\mathtt{Height}_i) + \hat{\epsilon}_i^p$$

^{*} The number in the *y*-axis label: effective degrees of freedom

Finer control of gam(): choice of basis functions

- Default: thin plat regression splines
 - It has some appealing properties, but can be somewhat computationally costly for large dataset
- · We can select penalized cubic regression spline by using

```
s(..., bs = "cr")
```

- We can change the dimension k of the basis
 - The actual effective degrees of freedom for each term is usually estimated from the data by GCV or another smoothness selection criterion
 - The upper bound on this estimate is k-1, minus one due to identifiability constraint on each smooth term

```
s(..., bs = "cr", k = 20)
```

Finer control of gam(): the gamma parameter

- GCV is known to have some tendency to overfitting
- Inside the gam() function, the argument gamma can increase the amount of smoothing
 - The default value for gamma is 1
 - We can use a higher value to avoid overfitting, gamma = 1.5, without compromising model fit

References

 Wood, Simon N. (2017), Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC