

AtliQ Grands

PYTHON HOSPITALITY
DOMAIN PROJECT

Insights Presented By
-Shimran Gupta

1.INTRODUCTION

2. PROBLEM STATEMENT

3. OBJECTIVES

4.DATA CLEANING

5.DATA TRANSFORMATION

6.ANALYTICAL INSIGHTS

Project Steps

Understand Business Problem

Data
Collection and
Understanding

Data
Cleaning
and
Exploration

Data Transformation

Collect Insights

About Us

AtliQ Grand is a well-established hotel chain operating in major Indian cities such as Delhi, Mumbai, Bangalore, and Hyderabad. With over 20 years in the industry, the chain offers a diverse range of hotels and room categories to cater to various customer preferences.

Different Types of Hotels

AtliQ Seasons

AtliQ Exotica

AtliQ Bay

AtliQ Palace

Different Types of Rooms

Standard

Elite

Premium

Presidential

Problem Statement

- <u>Challenges Faced:</u> AtliQ Grand, a prominent hotel chain with properties across India, is encountering difficulties in maintaining its competitive edge.
- Revenue and Market Share Decline: The company is seeing a decline in both revenue and market share, despite having multiple booking channels, including their own website and third-party platforms.
- <u>Booking Channels:</u> AtliQ Grand utilizes various booking channels, but these have not prevented the decline in financial performance.
- <u>Strategic Improvement:</u> A data-driven strategy is required to improve decision-making and tackle the issues affecting revenue and market share.

Objectives

- Analyze Bookings Data: The project aims to analyze booking data from multiple sources to uncover insights.
- Enhance Revenue and Market Understanding: The goal is to enhance revenue streams, understand market dynamics, and regain a competitive position.
- Identify Key Factors: Leverage data analytics to identify factors contributing to revenue loss and assess current strategy effectiveness.
- Develop Actionable Recommendations: Provide recommendations to optimize booking processes and marketing efforts based on data insights.

t of an others, ns can shows,

#cleaning invalid guests df_bookings[df_bookings.no_guests<=0] booking_id property_id booking_date check_in_date checkout_date no_guests room_category booking_platform ratings_given booking 0 May012216558RT11 16558 27-04-22 1/5/2022 2/5/2022 Checi direct online 3 May012216558RT14 28-04-22 2/5/2022 others 16558 1/5/2022 NaN 18559 12/5/2022 May122218559RT44 12/5/2022 14-05-22 -10.0RT4 direct online NaN May122218561RT22 18561 8/5/2022 12/5/2022 14-05-22 -12.0 NaN makeyourtrip 18119 May122218562RT311 18562 5/5/2022 12/5/2022 17-05-22 RT3 -6.0 direct offline 5.0 Check 18562 10/5/2022 12/5/2022 17-05-22 18121 May122218562RT313 direct online NaN Jun082218562RT12 18562 5/6/2022 8/6/2022 13-06-22 RT1 others NaN 119765 Jul202219560RT220 19560 19-07-22 20-07-22 22-07-22 Check -1.0 others NaN 134586 Jul312217564RT47 17564 30-07-22 31-07-22 1/8/2022 -4.0 RT4 Check logtrip 2.0 #now storing the records other than negative no quests in same data frame df_bookings = df_bookings[df_bookings.no_guests>0] df bookings.shape (134578, 12) (2) Outlier removal in revenue generated df_bookings.revenue_generated.min(),df_bookings.revenue_generated.max() (6500, 28560000) avg, std = df_bookings.revenue_generated.mean(), df_bookings.revenue_generated.std() avg, std (15378.036937686695, 93040.1549314641) higher_limit = avg + 3*std higher_limit 294498.50173207896 lower_limit = avg - 3*std lower_limit -263742.4278567056 df_bookings[df_bookings.revenue_generated > higher_limit]

DATA CLEANING

- Rectified invalid guest IDs where the number of guests was found to be negative.
- Conducted thorough checks for any null values in the dataset.
- Identified and removed outliers using the standard deviation method.

==> 3. Data Transformation Creating occupancy percentage column df_agg_bookings.head(3) property_id check_in_date room_category successful_bookings capacity 1-May-22 1-May-22 1-May-22 [237]: df_agg_bookings['occ_pct'] = df_agg_bookings.apply(lambda row: row['successful_bookings']/row['capacity'], axis=1) [141]: new_col = df_agg_bookings.apply(lambda row: row['successful_bookings']/row['capacity'], axis=1) 回个少古早 df_agg_bookings = df_agg_bookings.assign(occ_pct=new_col.values) df_agg_bookings.head(3) property_id check_in_date room_category successful_bookings capacity occ_pct 1-May-22 30.0 0.833333 1-May-22 30.0 0.933333 1-May-22 [142]: #Converting to percentage value df_agg_bookings['occ_pct'] = df_agg_bookings['occ_pct'].apply(lambda x: round(x*100, 2)) property_id check_in_date room_category successful_bookings capacity occ_pct 1-May-22 83.33 19563 1-May-22 30.0 [143]: df_bookings.head() booking_id_property_id_booking_date_check_in_date_checkout_date_no_guests_room_category_booking_platform_ratings_given_booking_status_revenu 1 May012216558RT12 30-04-22 1/5/2022 2/5/2022 4 May012216558RT15 16558 27-04-22 1/5/2022 2/5/2022 direct online Checked Out 5 May012216558RT16 1/5/2022 1/5/2022 3/5/2022 Checked Out 28-04-22 1/5/2022 6/5/2022 6 May012216558RT17 16558 Cancelled 26-04-22 1/5/2022 3/5/2022 NaN . No Show logtrip.

DATA TRANSFORMATION

```
df agg bookings.info()
<class 'pandas.core.frame.DataFrame'>
Index: 9194 entries, 0 to 9199
Data columns (total 6 columns):
                         Non-Null Count Dtype
                         9194 non-null
    property id
                                        int64
    check_in_date
                                        object
                      9194 non-null
    room_category
                         9194 non-null
                                        object
    successful_bookings 9194 non-null
                                        int64
                                        float64
    capacity
                         9194 non-null
    occ pct
                         9194 non-null
                                         float64
dtypes: float64(2), int64(2), object(2)
memory usage: 502.8+ KB
```


INSIGHTS GENERATION

Average Occupany Rate

```
df.groupby("city")["occ_pct"].mean()
```

city

Bangalore 56.332376

Delhi 61.507341

Hyderabad 58.120652

Mumbai 57.909181

Name: occ_pct, dtype: float64

Average Occupany Rate per city

INSIGHTS GENERATION

Occupancy for different cities in month of June

Revenue realized per city

df_bookings_all.groupby("city")["revenue_realized"].sum()

city

到在1000天日本日本

Bangalore 420383550

Delhi 294404488

Hyderabad 325179310

Mumbai 668569251

Name: revenue_realized, dtype: int64

INSIGHTS GENERATION

Revenue realized per booking platform

