Харьковский Национальный Университет Радиоэлектроники

Методы повышения качества обслуживания на основе потоковых агентов на стыке мобильных и стационарных сетей

Аспирант: Кобрин А. В. Научный руководитель: д.т.н., проф. Поповский В.В.

Харьков 2013

Архитектура сети NGN

Уровни архитектуры сети NGN:

- Уровень управления услугами;
- Уровень сетевого контроля и управления;
- Транспортный уровень;
- Уровень доступа;
- Уровень терминального оборудования.

Цель и задачи исследования

Цель и задача исследования состоит в повышении качества обслуживания в гибридных сетях, которые содержат мобильную и стационарную компоненту. **Объект исследования:** процесс передачи трафика реального времени через гибридные сети.

Предмет исследования: метод повышения качества обслуживания на основе потоковых агентов на стыке мобильных и стацонарных сетей.

Научная задача состоит в повышении качества обслуживания в гибридных сетях, которые содержат мобильную и стационарную компоненту. **Частные задачи исследования:**

- Провести анализ статистических характеристик джиттера в стационарных и беспроводных сетях.
- Определить основные причины формирования джиттера.
- Определить статистические характеристики нестационарности джиттера и произвести классификацию нестационарных явлений задержки.
- Обосновать и разработать математическую модель джиттера, позволяющую отображать динамику изменений состояний сетевой задержки.
- Разработать алгоритмы стохастической оценки параметров джиттера и управления с целью его минимизации.
- 6 Разработать практические предложения по выбору параметров и мест установки агента минимизации джиттера на границе стационарной и мобильной сети.

Научная новизна полученных результатов

- В результате анализа состояния составных каналов связи, включая мобильную и стационарную компоненту, выявлены причины возникновения нестационарностей и большого разброса параметров джиттера. Проанализированы механизмы формирования джиттера в гибридных сетях, получены статистические данные характеристик джиттера.
- Разработана более адекватная общая, по сравнению с известными, нестационарная математическая модель задержки прибытия пакетов, позволяющая учитывать засоренность представления наблюдаемого процесса случайными выбросами и скачками.
- Эазработан новый адаптивный метод компенсации джиттера на базе робастных процедур инвариантных к распределению вероятностей процесса задержки.
- Фазработаны новые рекомендации по применению буфера компенсации джиттера в сетях LTE на основе потоковых агентов, устанавливаемых на границе проводной и беспроводной сети.

Первый научный результат

В результате анализа состояния составных каналов связи, включая мобильную и стационарную компоненту, выявлены причины возникновения нестационарностей и большого разброса параметров джиттера. Проанализированы механизмы формирования джиттера в гибридных сетях, получены статистические данные характеристик джиттера.

Градация типов джиттера

Основные типы джиттера:

- Постоянный джиттер;
- Джиттер содержащий выбросы задержки;
- Э Джиттер содержащий скачки задержки.

Причины возникновения джиттера

Причины возникновения джиттера характерные проводным сетям:

- Пакетное планирование на стороне отправителя (тип 1);
- Перегрузка в локальной сети (тип 2);
- Перегрузки в канале доступа (тип 3);
- Распределение нагрузки между несколькими линиями доступа или сервис-провайдерами (тип 1);
- Распределение нагрузки (тип 1);
- Неравномерное внутреннее разделение нагрузки в маршрутизаторах (тип 1);
- Неравномерное внутреннее разделение нагрузки в маршрутизаторах (тип 1).

Причины возникновения джиттера характерные беспроводным сетям:

- Хэндовер (тип 2);
- Изменение расстояния между абонентом и базовой станцией (тип 3);
- Внутрисистемные помехи (тип 3);
- Замирания в канале (тип 3).

Обзор архитектуры имитационной модели сети LTE в сетевом симуляторе NS3

Моделирование причин возникновения нестационарного джиттера в сети LTE

Изменение задержки прибытия пакетов при хэндовере между базовыми станциями

Зависимость а) SINR 6) MCS в) размера TBS г) скорости передачи нисходящего канала передачи от расстояния между абонентом и базовой станцией

Зависимость джиттера от расстояния до источника внутрисистемной помехи

Зависимость пакетных потерь от расстояния до источника внутрисистемной помехи

4 D > 4 D > 4 E > 4 E > E *) Q(

Второй научный результат

Разработана более адекватная общая, по сравнению с известными, нестационарная математическая модель задержки прибытия пакетов, позволяющая учитывать засоренность представления наблюдаемого процесса случайными выбросами и скачками.

Синтез математической модели процесса задержки

Уравнение состояния системы:

$$x(k+1) = \Phi x(k) + G\xi(k), \tag{1}$$

где Φ - коэффициент (в многомерном случае матрица перехода состояний); G - порождающий коэффициент; $\xi(k)$ - порождающая последовательность.

Уравнение наблюдения системы:

$$y(k) = Hx(k) + \nu(k), \tag{2}$$

где $\nu(k)$ - фазовый шум, некоррелированный с процессом $\xi(k)$.

Синтез математической модели процесса задержки

Фазовый шум для уравнения наблюдения процесса, содержащего выбросы:

$$\nu_{re}(k) = (1 - r_v(k))\nu_{id}(k) + r_v(k)\nu_{di}(k), \tag{3}$$

$$P[\nu_{re}(k)] = (1 - \varepsilon)N[0, R_1(k)] + \varepsilon N[0, R_2(k)], \tag{4}$$

где $\nu_{di}(k)$ - случайный процесс выброса, P - плотность распределения вероятностей, $r_v(k)$ - случайная величина, принимающая значения 0 и 1 с вероятностями:

$$P[r_v(k) = 1] = \varepsilon, P[r_v(k) = 0] = 1 - \varepsilon, ||R_2|| >> ||R_1||.$$
 (5)

Синтез математической модели процесса задержки

Порождающая последовательность для уравнения состояния процесса, содержащего скачки:

$$\xi_{re}(k) = (1 - r_s(k))\xi_{id}(k) + r_s(k)\xi_{di}(k), \tag{6}$$

$$P[\xi_{re}(k)] = (1 - \varepsilon)N[0, R_3(k)] + \varepsilon N[0, R_4(k)],$$
 (7)

где $\xi_{di}(k)$ - случайный процесс скачка, $r_s(k)$ - случайная величина, принимающая значения 0 и 1 с вероятностями:

$$P[r_s(k) = 1] = \varepsilon, P[r_s(k) = 0] = 1 - \varepsilon, ||R_2|| >> ||R_1||.$$
 (8)

Моделирование последовательностей задержек

Моделирование ряда задержек а) с выбросами, б) со скачками

Третий научный результат

Разработан новый адаптивный метод компенсации джиттера на базе робастных процедур инвариантных к распределению вероятностей процесса задержки.

Фильтр Калмана-Бьюси (ФКБ)

ФКБ синтезирован с учетом того, что наблюдаемый процесс соответствует уравнению (1) и наблюдается на фоне гауссовского белого шума. Уравнение оценки в виде условного среднего значения задержки с использованием ФКБ имеет вид:

$$\hat{x}(k+1) = \Phi \hat{x}(k) + K(k)\Delta y, \tag{9}$$

где $\Delta y = H\Phi \hat{x}(k) - y(k)$ - невязка, K(k) - коэффициент усиления ФКБ:

$$K(k) = V(k)H^T N_{\nu}^{-1},$$
 (10)

$$V(k) = [I - K(k-1)H(k)]V(k, k-1),$$
(11)

$$V(k, k-1) = \Phi^{T} V(k-1) \Phi + N_{\xi},$$
(12)

где V(k) - апостериорная дисперсия ошибки оценки, V(k,k-1) - априорная дисперсия ошибки оценки, I - единичная матрица.

Робастный Фильтр Калмана-Бьюси (РФКБ) для ситуации выброса

$$\hat{x}(k+1) = \Phi(k+1,k)\hat{x}(k) + K(k)\Delta y \cdot min\left\{1, \frac{b}{|K(k)\Delta y|}\right\}, \quad (13)$$

где b аргумент, ограничивающий изменение значения функции.

Схема РФКБ для фильтрации случайных процессов содержащих выбросы

Робастный Фильтр Калмана-Бьюси (РФКБ) для ситуации скачка

$$\hat{x}(k+1) = \Phi(k+1,k)\hat{x}(k) + H(k)[I - H(k)K(k)\Delta y] \times \min\left\{1, \frac{b}{|I - H(k)K(k)\Delta y|}\right\},\tag{14}$$

Схема РФКБ для фильтрации случайных процессов содержащих скачки

Гибридный Робастный Фильтр Калмана-Бьюси

$$\hat{x}(k+1) = \Phi(k+1,k)\hat{x}(k) + (1-\eta)K(k)\Delta y \min\left\{1, \frac{b}{|K(k)\Delta y|}\right\} + \eta H(k)[I - H(k)K(k)\Delta y]\left\{1, \frac{b}{|I - H(k)K(k)\Delta y|}\right\},$$
(15)

$$\eta = \begin{cases} 0, \ cond(k) \\ 1, \ cond(k), \end{cases}$$
(16)

где cond(k) - функция, которая определяет, произошел ли скачок задержки:

```
def cond(arr, w, b):
     try:
       arr[-w]
     except IndexError:
       return False
6
7
     if arr[-w]<b:
       return False
     if w==1 and arr[-w]>=b:
       return True
     if k==1 and arr[-w] < b:
10
       return False
11
12
     else:
13
        if cond(arr, w-1, b):
14
          return True # detected nonstationary delay
15
       else:
16
          return False # no detected nonstationary delay
                                               4 D > 4 A > 4 B > 4 B > B
```

Сравнительный анализ алгоритмов фильтрации

СКО оценки фильтров в разных ситуациях зашумленности

Тип филь-	Условия без	Условия с	Условия со	Условия с
тра	выбросов и	выбросами	скачками	выбросами
	скачков			и скачками
ФКБ	0,1327	0,1722	0,6024	0,2371
РФКБ (для	0,1685	0,163	0,6515	0,3052
выбросов)				
РФКБ (для	0,135	0,19	0,5024	0,2630
скачков)				
ГРФКБ	0,139	0,168	0,5523	0,1869

Четвертый научный результат

Разработаны новые рекомендации по применению буфера компенсации джиттера в сетях LTE на основе потоковых агентов, устанавливаемых на границе проводной и беспроводной сети.