캡스톤 디자인 I 중간 발표

AI를 활용한 열화상 데이터 분석 및 IoT 기반 서버 쿨링 시스템

팀명:5인분같은 4인분

팀원: 홍수민(팀장), 길기훈, 오민석, 지원근

담당 교수 : 이상금 교수님

L 프로젝트 개요

2 진행 상황

3 향후 계획

프로젝트 개요

√	라즈베리파이-열화상 카메라 연결
√	열화상 이미지 데이터 수집
√	데이터 분석
√	모델 학습 (YOLO 11)
	DB 구축
	서버 구축
	팬 제어
	모니터링 시스템

진행 상황(환경 설정)

	항목	사양		
	CPU	Intel Core i7-6700K		
	GPU	NVIDIA GTX 1050 2GB		
	RAM	16GB DDR4		
,	os	Ubuntu 22.04.5 LTS		
	카메라	FLIR Lepton 3.5		

<촬영 환경>

- 컴퓨터와 카메라의 거리 1.5m 이내로 설치
- AGC 비활성화
- 최소 온도 10℃, 최대 온도60℃로 고정

<시나리오별 촬영 이미지>

- 1) Idle 유휴 상태 (1,990장)
- 2) CPU 부하 상태 (1,990장)
- 3) GPU 부하 상태 (1,990장)
- 4) CPU+GPU 부하 상태 (1,990장)

총 7,960장

진행 상황(데이터 분석)

<시나리오별 최대 온도값에 대한 히트맵>

	Mean	Std	Min	Max
Idle	37.0	2.0	28.0	42.0
CPU	58.0	4.0	30.0	60.0
GPU	42.0	2.0	34.0	50.0
CPU+GPU	57.0	6.0	33.0	60.0

<시나리오별 최대 온도값 통계>

- Idle 상태 : 연두색, 낮은 온도
- CPU 부하 : 붉은색, 높은 온도

- GPU 부하 : 노란색, 주황색, 중간 온도
- CPU + GPU 부하 : 붉은색, 노란색, 높은 온도

진행 상황(데이터 분석)

<CPU와 GPU 온도값 기반 K-Means 클러스터링>

Cluster	Scenario	Count
0	Idle	1,990
0	CPU	50
0	GPU	1,984
0	CPU+GPU	228
1	СРИ	1,940
1	GPU	6
1	CPU+GPU	1,762

<클러스터링별 통계>

<컴퓨터 상태별 최대 온도값 분포(예외상황 포함)>

- Exception(예외 상황): 30~58°C 에 분포
- 발열 지점의 가려짐 정도에 따라 열화상 이 미지에서 추출한 온도값 달라짐
- 실제 상태와 클러스터링 간 불일치 발생
- 향후, BMC 센서 데이터와 결합하여 신뢰성 보완

<Blur>

- Train/Validation 8:2비율 분할
- 최대 온도 50 °C 기준 라벨링(정상/비정상)
- Blur, CLAHE(히스토그램 평활화) 적용

Part 2

진행 상황(모델 학습)

YOLO11	mAP50:95	CPU 속도		
		(ms)	(M)	(B)
n	39.5	56.1	2.6	6.5
S	47.0	90.0	9.4	21.5
m	51.5	183.2	20.1	68.0
I	53.4	238.6	25.3	86.9
x	54.7	462.8	56.9	194.9

<YOLO11 모델별 세부 사항>

파라미터	값
Input	160 x 160
Epoch	50
Optimizer	AdamW(Ir=0.001667, momentum=0.9)
Batch Size	32

- 대형 모델(m, l, x)의 파라미터 수, 연산량 大
- 소형 시스템(라즈베리파이)와 적합하지 않음
- YOLO11n(2.4M) vs YOLO11s(9.4M)

Part 2 진 행 상황(모델 평가)

YOLO11	mAP50:95	Precision	Recall	F1
n	0.99329	1.00	0.99	0.97
s	0.99044	1.00	1.00	0.97

- YOLO11n과 YOLO11s는 97~98%의 높은 신뢰도
- 제한된 하드웨어 자원 내에서 실시간 처리
- 상대적으로 경량화된 YOLO11n 모델 채택

1학기

- 시계열데이터베이스구축(InfluxDB)
- BMC와 열화상데이터저장쿼리작성

여름방학

- 웹서버(Spring) 및모니터링시스템패널(Grafana)구축
- 팬제어시스템구성

2학기

- 열화상촬영장비케이스제작
- 시스템유지보수 및최종점검