MIS7420

Prof. Zhiqiang Zheng, Prof. Vijay Mookerjee

Author: Yihong Liu,

NETID: YXL180111,

Contents

Li	st of	Figures	3
Li	st of	Tables	4
Li	st of	Codes	5
1	Data	a Cleaning Process	6
2	Pap	er Replication	8
	2.1	Table 1	8
	2.2	Table 2	8
	2.3	Table 3	9
	2.4	Table 4	12
	2.5	Table 5	13
	2.6	Table 6	14
	2.7	Table 7	15
	2.8	Table 8	16
	2.9	Table 9	17
	2.10	Table 10	17
	2.11	Table 11	18
	2.12	Table 12	18
	2.13	Table 13	19
	2.14	Table 14	19
	2.15	Table C1	19
	2.16	Table D1-D4	21
	2.17	Table E1-E2	21
	2.18	Table G1-G3	21
3	\mathbf{Adv}	ranced Method	21
	3.1	Synthetic Control Method	21
	3.2	Generalized Synthetic Control Method	21
	3.3	Heckit Approach	21
	3.4	PSM and LA-PSM	21
	3.5	Measurement Error Bias Correction	21
4	Refe	erences	22

List of Figures

List of Tables

1	Summary Statistics of Top Five Vendors by Sales Volume	8
2	Summary Statistics of Referring Domain Categories	8
3	Average Difference-in-Difference (DID) of the Outcome Variables	S
4	Results of the Sales Effect (All Product Categories)	12
5	Results of the Search Effect (All Product Categories)	13
6	Results of the Sales Effect: Experience and Search Products	14
7	Results of the Online Search Effect: Experience Products	15
8	Results of the Online Search Effect: Search Products	16
9	Results of the Online Sales and Search Effect (All Product Categories)	17
10	Results of the Online Sales and Search Effect with Zip Code Demographics as Interactions	
	and Time Fixed Effects (All Product Categories)	18
11	Change in Demographics after Circuit City Store Closure	19

List of Codes

1	Data Preprocess	6
2	Table 1 Generation	8
3	Table 2 Generation	8
4	Table 3 Generation	Ć
5	Table 4 Generation	13
6	Table 5 Generation	13
7	Table 6 Generation	14
8	Table 7 Generation	15
9	Table 8 Generation	16
10	Table 10 Generation	17
11	Table 12 Generation	18
12	Table C1 Generation	19

1 Data Cleaning Process

```
1 # load library
 2 library('dplyr')
 3 library('haven')
 4 library('sqldf')
 5 library('zoo')
6 library('plm')
 7 library('stargazer')
9 # all data path
10 bb_zipcode_path <- 'data/bestbuyzipcodes_sample.sas7bdat'
11 sales_allother_zipcode_path <- 'data/sales_allotherzipcode_sample.sas7bdat'
12 sales_cc_Omile_path <- 'data/sales_ccityOmilezipcode_sample.sas7bdat
13 sales_cc_5miles_path <- 'data/sales_ccity5milezipcode_sample.sas7bdat
14
15 # load data
16 bb_zipcode <- read_sas(bb_zipcode_path)
17 sales_allother_zipcode <- read_sas(sales_allother_zipcode_path)
18 sales_cc_0mile <- read_sas(sales_cc_0mile_path)</pre>
19 sales_cc_5miles <- read_sas(sales_cc_5miles_path)
21 # Data Mapping
22 sales_allother_zipcode$Store_Close_Status <- 0 # NaN means no CC in 5-miles radius, we change NaN to 0
24 # Exclude Data without purchase
25 # All data should be with purchase -> tran_flg == 1
26 sales_allother_zipcode <- sales_allother_zipcode[sales_allother_zipcode$tran_flg == 1,]
27 sales_cc_Omile <- sales_cc_Omile[sales_cc_Omile$tran_flg == 1,]
28 sales_cc_5miles <- sales_cc_5miles[sales_cc_5miles$tran_flg == 1,]
29
30 # Filter Referring Domain
32 # groupby ref_domain and count
33 groupby_ref_domain_result <- aggregate(machine_id ~ ref_domain_name, rbind(sales_allother_zipcode, sales_cc_0mile, sales_cc_5miles), FUN = "length"
34 groupby_ref_domain_result <- groupby_ref_domain_result[order(-groupby_ref_domain_result$machine_id),]
35 # we identify some search engines
36 search_engine_to_consider1 <- c("GOOGLE.COM", "YAHOO.COM", "google.com", "yahoo.com",
                                "MSN.COM", "msn.com", "aol.com", "AOL.COM", "LIVE.COM", "live.com",
                                "MYWEBSEARCH.COM". "ASK.COM". "MYWAY.COM". "mywebsearch.com".
38
39
                                "ask.com", "YAHOO.NET", "BIZRATE.COM", "bizrate.com",
                                "amazon.com", "staples.com", "dell.com", "walmart.com", "bestbuy.com",
40
41
                                "AMAZON.COM", "STAPLES.COM", "DELL.COM", "WALMART.COM", "BESTBUY.COM")
43 search_engine_to_consider2 <- c("GOOGLE.COM", "YAHOO.COM", "BING.COM", "google.com", "yahoo.com", "bing.com")
44
45
   ref_domain_to_consider1 <- c("", "GOOGLE.COM", "YAHOO.COM", "google.com", "yahoo.com",
46
                                "MSN.COM", "msn.com", "aol.com", "AOL.COM", "LIVE.COM", "live.com",
                                "MYWEBSEARCH.COM", "ASK.COM", "MYWAY.COM", "mywebsearch.com",
47
48
                                "ask.com", "YAHOO.NET", "BIZRATE.COM", "bizrate.com",
49
                                "amazon.com", "staples.com", "dell.com", "walmart.com", "bestbuy.com",
                                "AMAZON.COM", "STAPLES.COM", "DELL.COM", "WALMART.COM", "BESTBUY.COM")
51
    ref_domain_to_consider2 <- c("", "GOOGLE.COM", "YAHOO.COM", "BING.COM", "google.com", "yahoo.com", "bing.com")
53
54\, # Then we filter data by refer domain name
55 sales_allother_zipcode <- sales_allother_zipcode[(sales_allother_zipcode$ref_domain_name %in% ref_domain_to_consider1),]
56 sales cc Omile <- sales cc Omile ((sales cc Omile ref domain name %in% ref domain to consider1).]
57 sales_cc_5miles <- sales_cc_5miles[(sales_cc_5miles$ref_domain_name %in% ref_domain_to_consider1),]
60 groupby_target_domain_result <- aggregate(machine_id ~ domain_name, rbind(sales_allother_zipcode, sales_cc_5miles), FUN = "length")
61 groupby_target_domain_result <- groupby_target_domain_result[order(-groupby_target_domain_result$machine_id), ]
62 five_target_domain_to_consider <- c("amazon.com", "staples.com", "dell.com", "valmart.com", "bestbuy.com")
63 two_target_domain_to_consider <- c("amazon.com", "bestbuy.com")
65\, # we can choose what filter to apply
66 sales_allother_zipcode <- sales_allother_zipcode[sales_allother_zipcode$domain_name %in% five_target_domain_to_consider,]
67 sales_cc_Omile <- sales_cc_Omile[sales_cc_Omile$domain_name %in% five_target_domain_to_consider,]
68 sales_cc_5miles <- sales_cc_5miles[sales_cc_5miles$domain_name %in% five_target_domain_to_consider,]
```

```
69
70 # Product Categories
71 # 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
72 # Jay removed 28, 30, 39, 40
73 # We choose to remove 38 39 40
74 sort(unique(rbind(sales_allother_zipcode, sales_cc_0mile, sales_cc_5miles) prod_category_id))
75 category_to_consider <- c(22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37)
76 experience_product <- c(24, 25, 26, 27, 28, 31, 32, 33, 34, 36, 37)
77 search_product <- c(22, 23, 24, 29, 30, 35)
79 sales_allother_zipcode <- sales_allother_zipcode[sales_allother_zipcode$prod_category_id %in% category_to_consider,]
80 sales_cc_Omile <- sales_cc_Omile[sales_cc_Omile$prod_category_id %in% category_to_consider,]
81 sales_cc_5miles <- sales_cc_5miles[sales_cc_5miles$prod_category_id %in% category_to_consider,]
83 # Date Transform
84 sales_allother_zipcode$event_date <- as.Date(sales_allother_zipcode$event_date)
    sales_cc_Omile$event_date <- as.Date(sales_cc_Omile$event_date)
86 sales_cc_5miles$event_date <- as.Date(sales_cc_5miles$event_date)
87
88 # construct MonthYear - month of year
89 sales allother zipcode Month Year <- format (sales allother zipcode Sevent date, "%Y-%m")
90 sales_cc_Omile$MonthYear <- format(sales_cc_Omile$event_date, "%Y-%m")
91
    sales_cc_5miles$MonthYear <- format(sales_cc_5miles$event_date, "%Y-%m")
92
94
95 # CCStorePresent
96 # it is the same as Store_Close_Status
97 \\ \hspace*{0.2cm} \texttt{sales\_allother\_zipcode\$CCStorePresent} \leftarrow \\ \hspace*{0.2cm} \texttt{sales\_allother\_zipcode\$Store\_Close\_Status} \\ \\
    sales_cc_Omile$CCStorePresent <- sales_cc_Omile$Store_Close_Status
99 sales_cc_5miles$CCStorePresent <- sales_cc_5miles$Store_Close_Status
100
101 # AfterStoreClosing
102 sales_allother_zipcode$AfterStoreClosing <- ifelse(sales_allother_zipcode$MonthYear < "2008-11", 0, 1)
103 sales_cc_0mile$AfterStoreClosing <- ifelse(sales_cc_0mile<math>$MonthYear < "2008-11", 0, 1)
104 sales_cc_5miles $AfterStoreClosing <- ifelse(sales_cc_5miles $MonthYear < "2008-11", 0, 1)
105
106 # BBStorePresent
107 sales_allother_zipcode <- merge(sales_allother_zipcode, bb_zipcode, by.x ="Zip_Code", by.y = "Zip_Code", all.x = TRUE)
108 sales_cc_Omile <- merge(sales_cc_Omile, bb_zipcode, by.x ="Zip_Code", by.y = "Zip_Code", all.x = TRUE)
109 sales_cc_5miles <- merge(sales_cc_5miles, bb_zipcode, by.x ="Zip_Code", by.y = "Zip_Code", all.x = TRUE)
110
111 sales_allother_zipcode$BBStorePresent <- na.fill(sales_allother_zipcode$BB_Store_Status, 0)
112 sales cc Omile$BBStorePresent <- na.fill(sales cc Omile$BB Store Status. 0)
113 sales_cc_5miles$BBStorePresent <- na.fill(sales_cc_5miles$BB_Store_Status, 0)
114
115 # Mark Referring Domain
116 # Question: How to group data?
117 sales_allother_zipcode$NoReferringDomain <- ifelse(sales_allother_zipcode$ref_domain_name == "", 1, 0)
    sales_cc_Omile$NoReferringDomain <- ifelse(sales_cc_Omile$ref_domain_name == "", 1, 0)
119 sales cc 5miles NoReferringDomain <- ifelse (sales cc 5miles ref domain name == "", 1, 0)
120
121 sales_allother_zipcode$ReferringDomainIsSearchEngine <- ifelse(sales_allother_zipcode$ref_domain_name %in% search_engine_to_consider1, 1, 0)
122 sales_cc_Omile$ReferringDomainIsSearchEngine <- ifelse(sales_cc_Omile$ref_domain_name %in% search_engine_to_consider1, 1, 0)
123 sales_cc_5miles$ReferringDomainIsSearchEngine <- ifelse(sales_cc_5miles$ref_domain_name %in% search_engine_to_consider1, 1, 0)
124
125 # Aggregate Data
126 concat_data1 <- rbind(sales_allother_zipcode, sales_cc_0mile)
127 concat_data2 <- rbind(sales_allother_zipcode, sales_cc_5miles)
128 concat_data1_exp <- concat_data1[concat_data1$prod_category_id %in% experience_product, ]
129 concat_data1_search <- concat_data1[concat_data1$prod_category_id %in% search_product, ]
130 concat_data2_exp <- concat_data2[concat_data2$prod_category_id %in% experience_product, ]
131 concat_data2_search <- concat_data2[concat_data2$prod_category_id %in% search_product, ]
```

Code 1: Data Preprocess

2 Paper Replication

In this section, we provide our replication for this paper. Names for subsections correspond to the tables in the published paper.

2.1 Table 1

Table 1 shows the summary statistics of top five vendors by sales volume.

Table 1: Summary Statistics of Top Five Vendors by Sales Volume

DomainName	TotalTransaction	TotalSales	${\bf Total Pages Viewed}$	${\bf Pages Per Dollar}$	TotalDuration	MinsPerDollar
dell.com	1,620	483,703.300	66,953	0.138	57, 225.660	0.118
amazon.com	10,904	354,573.300	464,383	1.310	369,227.900	1.041
staples.com	5,927	236,982.300	247, 163	1.043	166, 189.900	0.701
walmart.com	1,977	156,606.100	80,397	0.513	68,434.890	0.437
bestbuy.com	1,230	149,950.400	50,627	0.338	36,735.900	0.245

Codes for generating Table 1 are listed below.

```
# Table 1

table1_raw <- rbind(read_sas(sales_allother_zipcode_path), read_sas(sales_cc_Omile_path))

table1 <- sqldf("SELECT domain_name as DomainName, count(*) as TotalTransaction, SUM(prod_totprice) AS TotalSales, SUM(pages_viewed) AS

TotalPagesViewed, SUM(pages_viewed)/SUM(prod_totprice) AS PagesPerDollar, SUM(duration) AS TotalDuration, SUM(duration)/SUM(prod_totprice) AS

MinsPerDollar FROM table1_raw GROUP BY domain_name ORDER BY TotalSales DESC")

stargazer(table1[1:5,], align=TRUE, summary = FALSE, rownames = FALSE, title="Summary Statistics of Top Five Vendors by Sales Volume")
```

Code 2: Table 1 Generation

2.2 Table 2

Table 2 summarizes the frequency of referral channels for various online retailers.

Table 2: Summary Statistics of Referring Domain Categories

Domain Name	Total Transaction	Referred by SearchEngine	Direct to Website	Referred by Others
amazon.com	10,904	2,955(27.1%)	7,018(64.4%)	931 (8.6%)
bestbuy.com	1,230	258(21.0%)	901(73.3%)	71(5.8%)
All Others	36,794	6,999(19.0%)	25,483(69.3%)	4,312 (11.7%)
All Transactions	48,928	10,212 (20.9%)	33,402 (68.3%)	5,314 (10.9%)

Codes for generating Table 2 are listed below.

```
# Table 2

table2_raw <- rbind(read_sas(sales_allother_zipcode_path), read_sas(sales_cc_Omile_path))

table2_raw$direct_to_website <- ifelse(table2_raw$ref_domain_name == '', 1, 0)

table2_raw$referred_by_search <- ifelse(table2_raw$ref_domain_name %in% search_engine_to_consider1, 1, 0)

table2_raw$referred_by_other <- ifelse(!(table2_raw$ref_domain_name %in% ref_domain_to_consider1), 1, 0)
```

```
7 table2_raw$domain_name[!(table2_raw$domain_name %in% c('amazon.com', 'bestbuy.com'))] <- "All Others"
```

Code 3: Table 2 Generation

2.3 Table 3

Table 3 reports the model-free average DID values for some outcome variables.

Table 3: Average Difference-in-Difference (DID) of the Outcome Variables

Outcome Variable	Groups	After Store	Before Store	First Difference	DID
		Closure	Closure	(se)	
Amazon	Control	3.418	3.303	0.115	
Sales	Control	0.410	5.505	(0.031)	-0.167
Saics	Treatment	3.351	3.403	-0.052	
	Treatment	0.001	0.400	(0.212)	
Amazon	Control	1.188	1.147	0.041	
PagesPerDollar	Colletor	1.100	1.141	(0.025)	0.257
r agesr er Donar	Treatment	1.363	1.065	0.298	
	Treatment	1.505	1.000	(0.153)	
Amazon	Control	1.016	0.975	0.041	
MinsPerDollar	Colletor	1.010	0.510	(0.025)	0.263
Willist CrDonai	Treatment	1.187	0.882	0.304	
	Treatment	1.101	0.002	(0.137)	
bestbuy.com	Control	3.418	3.303	0.354	
Sales	Colletor	0.410	5.500	(0.031)	0.623
Saics	Treatment	3.351	3.403	0.976	
	Treatment	5.551	5.405	(0.212)	
bestbuy.com	Control	1.188	1.147	-0.109	
PagesPerDollar	Colletor	1.100	1.141	(0.025)	0.074
r agest erbonar	Treatment	1.363	1.065	-0.035	
	Treatment	1.505	1.000	(0.153)	
bestbuy.com	Control	1.016	0.975	-0.084	
MinsPerDollar	Collitor	1.010	0.910	(0.025)	-0.012
minor er Donar	Treatment	1.187	0.882	-0.096	
	Treatment	1.101	0.002	(0.137)	

Codes for generating Table 3 are listed below.

```
1 # Table 3
2 temp <- read_sas(sales_allother_zipcode_path)
3 temp$Store_Close_Status <- 0
4 table3_Om_raw <- rbind(temp, read_sas(sales_cc_Omile_path))
5 table3_5m_raw <- rbind(temp, read_sas(sales_cc_5miles_path))
6
7 # Date Transform
8 table3_Om_raw$event_date <- as.Date(table3_Om_raw$event_date)
9 table3_5m_raw$event_date <- as.Date(table3_5m_raw$event_date)</pre>
```

```
11 # construct MonthYear - month of year
12 table3_0m_raw$MonthYear <- format(table3_0m_raw$event_date, "%Y-%m")
13 table3_5m_raw$MonthYear <- format(table3_5m_raw$event_date, "%Y-%m")
14
15 # Mark CC Closure
16
17 # CCStorePresent
18 # it is the same as Store_Close_Status
19 table3_0m_raw$CCStorePresent <- table3_0m_raw$Store_Close_Status
20 table3_5m_raw$CCStorePresent <- table3_5m_raw$Store_Close_Status
21
22 # AfterStoreClosing
23 table3_0m_raw$AfterStoreClosing <- ifelse(table3_0m_raw$MonthYear < "2008-11", 0, 1)
24 table3_5m_raw$AfterStoreClosing <- ifelse(table3_5m_raw$MonthYear < "2008-11", 0, 1)
26 # BBStorePresent
27 table3_0m_raw <- merge(table3_0m_raw, bb_zipcode, by.x ="Zip_Code", by.y = "Zip_Code", all.x = TRUE)
28 table3_5m_raw <- merge(table3_5m_raw, bb_zipcode, by.x = "Zip_Code", by.y = "Zip_Code", all.x = TRUE)
29
30
   table3_0m_raw$BBStorePresent <- na.fill(table3_0m_raw$BB_Store_Status, 0)
31 table3 5m raw$BBStorePresent <- na.fill(table3 5m raw$BB Store Status. 0)
32
33 # aggregate data
34
   table3_Om_aggregate <- sqldf("SELECT Zip_Code, MonthYear, domain_name, count(*) AS TotalTransactions, SUM(pages_viewed) as TotalPages, SUM(prod_
         totprice) as TotalMonthlySales, SUM(duration) as TotalMins, SUM(pages_viewed) / SUM(prod_totprice) AS PagesPerDollar, SUM(duration) / SUM(
          prod_totprice) AS MinsPerDollar, AVG(CCStorePresent) AS CCStorePresent, AVG(BBStorePresent) AS BBStorePresent, AVG(AfterStoreClosing) AS
         AfterStoreClosing FROM table3_Om_raw GROUP BY Zip_Code, MonthYear, domain_name")
36 table3_5m_aggregate <- sqldf("SELECT Zip_Code, MonthYear, domain_name, count(*) AS TotalTransactions, SUM(pages_viewed) as TotalPages, SUM(prod_
          totprice) as TotalMonthlySales, SUM(duration) as TotalMins, SUM(pages_viewed) / SUM(prod_totprice) AS PagesPerDollar, SUM(duration) / SUM(
          prod_totprice) AS MinsPerDollar, AVG(CCStorePresent) AS CCStorePresent, AVG(BBStorePresent) AS BBStorePresent, AVG(AfterStoreClosing) AS
          AfterStoreClosing FROM table3_5m_raw GROUP BY Zip_Code, MonthYear, domain_name")
37
38 # Table 3 Gen Func
39 table3_gen <- function(table3_raw, domain_name_used, print_name){
40
    # Amazon Sales
41
    amazonsales_control_before <- table3_raw[(table3_raw$CCStorePresent == 0) & (table3_raw$domain_name == domain_name_used) & (table3_raw$
42
         AfterStoreClosing == 0),]$TotalMonthlySales
     amazonsales_control_after <- table3_raw[(table3_raw$CCStorePresent == 0) & (table3_raw$domain_name == domain_name_used) & (table3_raw$
         AfterStoreClosing == 1),]$TotalMonthlySales
44
45
     amazonsales_control_before <- log(amazonsales_control_before + 1)
     amazonsales_control_after <- log(amazonsales_control_after + 1)
46
47
     # t test
48
     t_test.amazonsales_control <- t.test(amazonsales_control_after, amazonsales_control_before)
49
     amazonsales_control_mean_diff_se <- t_test.amazonsales_control$stderr
50
     t_test.amazonsales_control$p.value
51
     amazonsales_control_after_mean <- t_test.amazonsales_control$estimate[["mean of x"]]
52
      amazonsales_control_before_mean <- t_test.amazonsales_control$estimate[["mean of y"]]
     amazonsales control mean diff <- t test.amazonsales control sestimate [["mean of x"]] - t test.amazonsales control sestimate [["mean of y"]]
53
54
55
     # Amazon Sales
56
     # for treatment
     amazonsales_treatment_before <- table3_raw[(table3_raw$CCStorePresent == 1) & (table3_raw$domain_name == domain_name_used) & (table3_raw$
         AfterStoreClosing == 0), ] $TotalMonthlySales
     amazonsales_treatment_after <- table3_raw[(table3_raw$CCStorePresent == 1) & (table3_raw$domain_name == domain_name_used) & (table3_raw$
         AfterStoreClosing == 1),]$TotalMonthlySales
59
60
     amazonsales_treatment_before <- log(amazonsales_treatment_before + 1)
     amazonsales_treatment_after <- log(amazonsales_treatment_after + 1)
61
62
     # t test
63
      t_test.amazonsales_treatment <- t.test(amazonsales_treatment_after, amazonsales_treatment_before)
     amazonsales treatment mean diff se <- t test.amazonsales treatment$stderr
64
65
     t_test.amazonsales_treatment$p.value
66
     amazonsales_treatment_after_mean <- t_test.amazonsales_treatment$estimate[["mean of x"]]
67
     amazonsales_treatment_before_mean <- t_test.amazonsales_treatment$estimate[["mean of y"]]
     amazonsales_treatment_mean_diff <- t_test.amazonsales_treatment$estimate[["mean of x"]] - t_test.amazonsales_treatment$estimate[["mean of y"]]
69
70
71
     amazonsales_did <- amazonsales_treatment_mean_diff - amazonsales_control_mean_diff
72
```

```
73 # Amazon PagesPerDollar
           # for control
           amazonppd_control_before <- table3_raw[(table3_raw$CCStorePresent == 0) & (table3_raw$domain_name == domain_name_used) & (table3_raw$
 75
                  AfterStoreClosing == 0),]$TotalPages / table3_raw[(table3_raw$CCStorePresent == 0) & (table3_raw$domain_name == domain_name_used) & (table3_raw$domain_name_used) & (table3_raw$domain_name_us
                   raw$AfterStoreClosing == 0),]$TotalMonthlySales
 76
           amazonppd_control_after <- table3_raw$CCStorePresent == 0) & (table3_raw$domain_name == domain_name_used) & (table3_raw$
                   AfterStoreClosing == 1),]$TotalPages / table3_raw[(table3_raw$CCStorePresent == 0) & (table3_raw$domain_name == domain_name_used) & (table3_
                   raw$AfterStoreClosing == 1),]$TotalMonthlySales
 77
           amazonppd_control_before <- log(amazonppd_control_before + 1)
 79
           amazonppd_control_after <- log(amazonppd_control_after + 1)
 80
           # t test
 81
           t_test.amazonppd_control <- t.test(amazonppd_control_after, amazonppd_control_before)
 82
           amazonppd\_control\_mean\_diff\_se <- t\_test.amazonppd\_control\$stderr
 83
           \verb|t_test.amazonppd_control| p.value|
 84
           amazonppd_control_after_mean <- t_test.amazonppd_control$estimate[["mean of x"]]
 85
            amazonppd_control_before_mean <- t_test.amazonppd_control$estimate[["mean of y"]]
           amazonppd_control_mean_diff <- t_test.amazonppd_control$estimate[["mean of x"]] - t_test.amazonppd_control$estimate[["mean of y"]]
 86
 87
 88
 89
            # for treatment
           amazonppd_treatment_before <- table3_raw[(table3_raw$CCStorePresent == 1) & (table3_raw$domain_name == domain_name_used) & (table3_raw$
 90
                   AfterStoreClosing == 0),]$TotalPages / table3_raw[(table3_raw$CCStorePresent == 1) & (table3_raw$domain_name == domain_name_used) & (table3_raw$domain_name_used) & (table3_raw$domain_name_us
                   raw$AfterStoreClosing == 0),]$TotalMonthlySales
           amazonppd_treatment_after <- table3_raw$(ctable3_raw$CCStorePresent == 1) & (table3_raw$domain_name == domain_name_used) & (table3_raw$
                 AfterStoreClosing == 1).1$TotalPages / table3 raw (table3 raw CCStorePresent == 1) & (table3 raw domain name == domain name used) & (table3
                   raw$AfterStoreClosing == 1),]$TotalMonthlySales
 92
 93
           amazonppd_treatment_before <- log(amazonppd_treatment_before + 1)
 94
            amazonppd_treatment_after <- log(amazonppd_treatment_after + 1)
           # t test
 95
 96
           t_test.amazonppd_treatment <- t.test(amazonppd_treatment_after, amazonppd_treatment_before)
 97
           amazonppd_treatment_mean_diff_se <- t_test.amazonppd_treatment$stderr
 98
           t_test.amazonppd_treatment$p.value
 99
           amazonppd\_treatment\_after\_mean <- t\_test.amazonppd\_treatment\\ \$estimate[["mean of x"]]
100
           amazonppd_treatment_before_mean <-t_test.amazonppd_treatment$estimate[["mean of v"]]
101
            amazonppd_treatment_mean_diff <- t_test.amazonppd_treatment$estimate[["mean of x"]] - t_test.amazonppd_treatment$estimate[["mean of y"]]
103
           # Amazon PagesPerDollar DID
            amazonppd_did <- amazonppd_treatment_mean_diff - amazonppd_control_mean_diff
106
           # Amazon MinsPerDollar
108
           amazonmpd control before <- table3 raw (table3 raw (table3 raw (table3 raw) (table3 raw) (table3 raw)
                  AfterStoreClosing == 0),]$TotalMins / table3_raw$CCStorePresent == 0) & (table3_raw$domain_name == domain_name_used) & (table3_
                   raw$AfterStoreClosing == 0),]$TotalMonthlySales
            amazonmpd_control_after <- table3_raw[(table3_raw$CCStorePresent == 0) & (table3_raw$domain_name == domain_name_used) & (table3_raw$
                 AfterStoreClosing == 1),]$TotalMins / table3_raw[(table3_raw$CCStorePresent == 0) & (table3_raw$domain_name == domain_name_used) & (table3_
                   raw$AfterStoreClosing == 1),]$TotalMonthlySales
           amazonmpd control before <- log(amazonmpd control before + 1)
112
           amazonmpd_control_after <- log(amazonmpd_control_after + 1)
113
114
           t_test.amazonmpd_control <- t.test(amazonmpd_control_after, amazonmpd_control_before)
115
           amazonmpd_control_mean_diff_se <- t_test.amazonmpd_control$stderr
116
           t_test.amazonmpd_control$p.value
117
           amazonmpd_control_after_mean <- t_test.amazonmpd_control$estimate[["mean of x"]]
118
           amazonmpd_control_before_mean <- t_test.amazonmpd_control$estimate[["mean of y"]]
119
           amazonmpd_control_mean_diff <- t_test.amazonmpd_control$estimate[["mean of x"]] - t_test.amazonmpd_control$estimate[["mean of y"]]
120
           # Amazon MinsPerDollar
121
122
           # for treatment
           amazonmpd_treatment_before <- table3_raw[(table3_raw$CCStorePresent == 1) & (table3_raw$domain_name == domain_name_used) & (table3_raw$
                 AfterStoreClosing == 0). TotalMins / table3 raw (table3 raw CCStorePresent == 1) & (table3 raw domain name == domain name used) & (table3
                   raw$AfterStoreClosing == 0),]$TotalMonthlySales
           amazonmpd_treatment_after <- table3_raw[(table3_raw$CCStorePresent == 1) & (table3_raw$domain_name == domain_name_used) & (table3_raw$
124
                 AfterStoreClosing == 1),]$TotalMins / table3_raw[(table3_raw$CCStorePresent == 1) & (table3_raw$domain_name == domain_name_used) & (table3_
                   raw$AfterStoreClosing == 1),]$TotalMonthlySales
125
126
            amazonmpd_treatment_before <- log(amazonmpd_treatment_before + 1)
           amazonmpd_treatment_after <- log(amazonmpd_treatment_after + 1)
127
128 # t test
```

```
t_test.amazonmpd_treatment <- t.test(amazonmpd_treatment_after, amazonmpd_treatment_before)
129
130
       amazonmpd_treatment_mean_diff_se <- t_test.amazonmpd_treatment$stderr
131
       t_test.amazonmpd_treatment$p.value
132
       amazonmpd\_treatment\_after\_mean \ \leftarrow \ t\_test.amazonmpd\_treatment\\ \$estimate[["mean of x"]]
133
       amazonmpd_treatment_before_mean <- t_test.amazonmpd_treatment$estimate[["mean of y"]]
       amazonmpd_treatment_mean_diff <- t_test.amazonmpd_treatment$estimate[["mean of x"]] - t_test.amazonmpd_treatment$estimate[["mean of y"]]
134
135
       # Amazon MinsPerDollar DID
136
137
       amazonmpd_did <- amazonmpd_treatment_mean_diff - amazonmpd_control_mean_diff
138
140
       return(rbind(c(paste(print_name, "Sales"), "Control", amazonsales_control_after_mean, amazonsales_control_before_mean, amazonsales_control_mean_
           diff, amazonsales_control_mean_diff_se, amazonsales_did),
141
                    c(paste(print_name, "Sales"), "Treatment", amazonsales_treatment_after_mean, amazonsales_treatment_before_mean, amazonsales_treatment
           mean_diff, amazonsales_treatment_mean_diff_se, amazonsales_did),
142
                    c(paste(print_name, "PagesPerDollar"), "Control", amazonppd_control_after_mean, amazonppd_control_before_mean, amazonppd_control_mean,
           diff, amazonppd_control_mean_diff_se, amazonppd_did),
                    c(paste(print_name, "PagesPerDollar"), "Treatment", amazonppd_treatment_after_mean, amazonppd_treatment_before_mean, amazonppd_
143
           {\tt treatment\_mean\_diff}\;,\;\;{\tt amazonppd\_treatment\_mean\_diff\_se}\;,\;\;{\tt amazonppd\_did})\;,
                    c(paste(print_name, "MinsPerDollar"), "Control", amazonmpd_control_after_mean, amazonmpd_control_before_mean, amazonmpd_control_mean_
           diff, amazonmpd control mean diff se, amazonmpd did),
145
                   c(paste(print_name,"MinsPerDollar"),"Treatment", amazonmpd_treatment_after_mean, amazonmpd_treatment_before_mean, amazonmpd_
           treatment_mean_diff, amazonmpd_treatment_mean_diff_se, amazonmpd_did))
146
147 }
148
149 # generate table
amazon_table3 <- table3_gen(table3_0m_aggregate, "amazon.com", "Amazon")
bestbuy_table3 <- table3_gen(table3_0m_aggregate, "bestbuy.com", "bestbuy.com")
153 #
154 stargazer(rbind(amazon_table3, bestbuy_table3), align=TRUE, summary = FALSE, rownames = FALSE, title="Summary Statistics of Top Five Vendors by
     Sales Volume")
```

Code 4: Table 3 Generation

2.4 Table 4

Table 4: Results of the Sales Effect (All Product Categories)

		$\log(\text{TotalMonthlySales} + 1)$						
	Amazon-0 Mile	Amazon-5 Miles	BestBuy-0 Mile	BestBuy-5 Miles				
	(1)	(2)	(3)	(4)				
eta_1	0.138	-0.202	0.090	-1.002				
	(0.524)	(0.198)	(1.171)	(0.896)				
eta_2	0.109	0.096		1.116				
	(0.668)	(0.245)		(1.224)				
Observations	5,126	5,781	729	837				
\mathbb{R}^2	0.0002	0.001	0.0001	0.012				
Adjusted R^2	-1.279	-1.199	-6.744	-6.512				
F Statistic	0.204 (df = 2; 2248)	0.672 (df = 2; 2627)	0.006 (df = 1; 94)	0.647 (df = 2; 110)				

Note: Standard errors are in parentheses

*p<0.1; **p<0.05; ***p<0.01

Codes for generating Table 4 are listed below.

```
# Table 4 Data
   data_Om_t4 <- sqldf("SELECT Zip_Code, MonthYear, domain_name, SUM(prod_totprice) AS TotalMonthlySales, AVG(CCStorePresent) AS CCStorePresent, AVG(
          BBStorePresent) AS BBStorePresent, AVG(AfterStoreClosing) AS AfterStoreClosing FROM concat_data1 GROUP BY Zip_Code, MonthYear, domain_name")
   data 5m t4 <- soldf("SELECT Zip Code, MonthYear, domain name, SUM(prod totprice) AS TotalMonthlySales, AVG(CCStorePresent) AS CCStorePresent, AVG(
         BBStorePresent) AS BBStorePresent, AVG(AfterStoreClosing) AS AfterStoreClosing FROM concat_data2 GROUP BY Zip_Code, MonthYear, domain_name")
 4 # manually construct DID and THREEINTERACTION
 5 data_Om_t4$DID <- data_Om_t4$CCStorePresent * data_Om_t4$AfterStoreClosing
 6 data_0m_t4$THREEINTER <- data_0m_t4$CCStorePresent * data_0m_t4$AfterStoreClosing * data_0m_t4$BBStorePresent
   data_5m_t4$DID <- data_5m_t4$CCStorePresent * data_5m_t4$AfterStoreClosing
 8 data_5m_t4$THREEINTER <- data_5m_t4$CCStorePresent * data_5m_t4$AfterStoreClosing * data_5m_t4$BBStorePresent
9 # Table 4
10 ama.t4.Omile <- plm(log(TotalMonthlySales + 1) DID + THREEINTER, data = data_Om_t4[data_Om_t4$domain_name == "amazon.com",], index = c("Zip_Code"
          , "MonthYear"), model = "within", effect = "twoways")
11 ama.t4.5mile <- plm(log(TotalMonthlySales + 1) DID + THREEINTER, data = data_5m_t4[data_5m_t4$domain_name == "amazon.com",], index = c("Zip_Code"
          , "MonthYear"), model = "within", effect = "twoways")
12 bb.t4.0mile <- plm(log(TotalMonthlySales + 1) DID + THREEINTER, data = data_0m_t4$domain_name == "bestbuy.com",], index = c("Zip_Code"
         . "MonthYear"). model = "within". effect = "twowavs")
13 bb.t4.5mile <- plm(log(TotalMonthlySales + 1) DID + THREEINTER, data = data_5m_t4[data_5m_t4$domain_name == "bestbuy.com",], index = c("Zip_Code"
    , "MonthYear"), model = "within", effect = "twoways")
```

Code 5: Table 4 Generation

2.5 Table 5

Table 5: Results of the Search Effect (All Product Categories)

		log(PagesPerI	Pollar + 1)	$\log(\text{MinsPerDollar} + 1)$				
	Amazon-0 Mile	Amazon-5 Miles	${\bf BestBuy-0~Mile}$	BestBuy-5 Miles	Amazon-0 Mile	Amazon-5 Miles	${\tt BestBuy-0}$ Mile	BestBuy-5 Miles
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
β_1	-0.078	0.072	0.476	0.373	0.149	0.063	0.127	0.513
	(0.411)	(0.156)	(0.680)	(0.511)	(0.400)	(0.152)	(0.544)	(0.425)
β_2	-0.263	-0.056		-0.028	-0.387	-0.047		-0.309
	(0.524)	(0.193)		(0.697)	(0.510)	(0.188)		(0.580)
Observations	5,126	5,781	729	837	5,126	5,781	729	837
\mathbb{R}^2	0.0005	0.0001	0.005	0.008	0.0003	0.0001	0.001	0.014
Adjusted R ²	-1.279	-1.200	-6.705	-6.537	-1.279	-1.200	-6.740	-6.490
F Statistic	0.552 (df = 2; 2248)	0.109 (df = 2; 2627)	0.490 (df = 1; 94)	0.458 (df = 2; 110)	0.347 (df = 2; 2248)	0.089 (df = 2; 2627)	0.055 (df = 1; 94)	0.805 (df = 2; 110

Note: *p<0.1; **p<0.05; ***p<0.05;

Codes for generating Table 5 are listed below.

```
data_Om_t5 <- sqldf("SELECT Zip_Code, MonthYear, domain_name, SUM(pages_viewed) / SUM(prod_totprice) AS PagesPerDollar, SUM(duration) / SUM(prod_totprice)
          totprice) AS MinsPerDollar, AVG(CCStorePresent) AS CCStorePresent, AVG(BBStorePresent) AS BBStorePresent, AVG(AfterStoreClosing) AS
          AfterStoreClosing FROM concat_data1 GROUP BY Zip_Code, MonthYear, domain_name")
 3 data_5m_t5 <- sqldf("SELECT Zip_Code, MonthYear, domain_name, SUM(pages_viewed) / SUM(prod_totprice) AS PagesPerDollar, SUM(duration) / SUM(prod_
         totprice) AS MinsPerDollar, AVG(CCStorePresent) AS CCStorePresent, AVG(BBStorePresent) AS BBStorePresent, AVG(AfterStoreClosing) AS
          AfterStoreClosing FROM concat_data2 GROUP BY Zip_Code, MonthYear, domain_name")
   # manually construct DID and THREEINTERACTION
 5 data_0m_t5$DID <- data_0m_t5$CCStorePresent * data_0m_t5$AfterStoreClosing
6 data_0m_t5$THREEINTER <- data_0m_t5$CCStorePresent * data_0m_t5$AfterStoreClosing * data_0m_t5$BBStorePresent
    data_5m_t5$DID <- data_5m_t5$CCStorePresent * data_5m_t5$AfterStoreClosing
8 data 5m t5$THREEINTER <- data 5m t5$CCStorePresent * data 5m t5$AfterStoreClosing * data 5m t5$BBStorePresent
9 # Table 5
10 # For PagesPerDollar
11 ama.t5.pagesperdollar.Omile <- plm(log(PagesPerDollar + 1) ~ DID + THREEINTER, data = data_Om_t5[data_Om_t5$domain_name == "amazon.com",], index =
         c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
12 ama.t5.pagesperdollar.5mile <- plm(log(PagesPerDollar + 1) ~ DID + THREEINTER, data = data_5m_t5[data_5m_t5$domain_name == "amazon.com",], index =
    c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
```

Code 6: Table 5 Generation

2.6 Table 6

Table 6: Results of the Sales Effect: Experience and Search Products

	$\log(\text{TotalMonthlySales} + 1)$							
	Amazon	Amazon	Amazon	Amazon	BestBuy	BestBuy	BestBuy	
	0 Mile	5 Miles	0 Mile	5 Miles	0 Mile	5 Miles	5 Miles	
	Experience	Experience	Search	Search	Experience	Experience	Search	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
β_1	-1.783	0.245	0.517	-0.304*	-1.574	-2.021	-2.515**	
	(1.821)	(0.697)	(0.634)	(0.180)	(2.994)	(2.054)	(0.993)	
β_2	1.785	-0.173	-0.069	0.281		2.867		
	(2.015)	(0.772)	(0.816)	(0.229)		(2.277)		
Observations	1,788	2,022	3,741	4,229	461	529	342	
\mathbb{R}^2	0.002	0.0003	0.001	0.002	0.024	0.090	0.130	
Adjusted R ²	-3.195	-2.923	-1.437	-1.343	-39.794	-29.016	-5.901	
F Statistic	0.480 (df = 2; 425)	0.071 (df = 2; 515)	0.704 (df = 2; 1533)	1.424 (df = 2; 1802)	0.276 (df = 1; 11)	0.795 (df = 2; 16)	6.417** (df = 1; 43)	

*p<0.1; **p<0.05; ***p<0.01

Codes for generating Table 6 are listed below.

```
# Table 6 Data
    data_Om_t6_exp <- sqldf("SELECT Zip_Code, MonthYear, domain_name, SUM(prod_totprice) AS TotalMonthlySales, AVG(CCStorePresent) AS CCStorePresent,
         AVG(BBStorePresent) AS BBStorePresent, AVG(AfterStoreClosing) AS AfterStoreClosing FROM concat_datai_exp GROUP BY Zip_Code, MonthYear, domain
          name")
    data_Om_t6_search <- sqldf("SELECT Zip_Code, MonthYear, domain_name, SUM(prod_totprice) AS TotalMonthlySales, AVG(CCStorePresent) AS CCStorePresent
          , AVG(BBStorePresent) AS BBStorePresent, AVG(AfterStoreClosing) AS AfterStoreClosing FROM concat_data1_search GROUP BY Zip_Code, MonthYear,
 4 data_5m_t6_exp <- sqldf("SELECT Zip_Code, MonthYear, domain_name, SUM(prod_totprice) AS TotalMonthlySales, AVG(CCStorePresent) AS CCStorePresent,
         AVG(BBStorePresent) AS BBStorePresent, AVG(AfterStoreClosing) AS AfterStoreClosing FROM concat_data2_exp GROUP BY Zip_Code, MonthYear, domain
 5 data_5m_t6_search <- sqldf("SELECT Zip_Code, MonthYear, domain_name, SUM(prod_totprice) AS TotalMonthlySales, AVG(CCStorePresent) AS CCStorePresent
          , AVG(BBStorePresent) AS BBStorePresent, AVG(AfterStoreClosing) AS AfterStoreClosing FROM concat_data2_search GROUP BY Zip_Code, MonthYear,
          domain_name")
6 # manually construct DID and THREEINTERACTION
    data_Om_t6_exp$DID <- data_Om_t6_exp$CCStorePresent * data_Om_t6_exp$AfterStoreClosing
 8 data_0m_t6_exp$THREEINTER <- data_0m_t6_exp$CCStorePresent * data_0m_t6_exp$AfterStoreClosing * data_0m_t6_exp$BBStorePresent
9 data_0m_t6_search$DID <- data_0m_t6_search$CCStorePresent * data_0m_t6_search$AfterStoreClosing
10 data_0m_t6_search$THREEINTER <- data_0m_t6_search$CCStorePresent * data_0m_t6_search$AfterStoreClosing * data_0m_t6_search$BStorePresent
11 data_5m_t6_exp$DID <- data_5m_t6_exp$CCStorePresent * data_5m_t6_exp$AfterStoreClosing
12 data_5m_t6_exp$THREEINTER <- data_5m_t6_exp$CCStorePresent * data_5m_t6_exp$AfterStoreClosing * data_5m_t6_exp$BBStorePresent
13 data_5m_t6_search$DID <- data_5m_t6_search$CCStorePresent * data_5m_t6_search$AfterStoreClosing
```

```
44 data_5m_t6_search$THREEINTER <- data_5m_t6_search$CCStorePresent * data_5m_t6_search$AfterStoreClosing * data_5m_t6_search$BStorePresent
15 # Table 6
16 # AmazonTotalMonthlySales & BBTotalMonthlySale vs Experience and Search Product
17 ama.t6.0mile.exp <- plm(log(TotalMonthlySales + 1) DID + THREEINTER, data = data_0m_t6_exp[data_0m_t6_exp$domain_name == "amazon.com",], index =
         c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
   ama.t6.5mile.exp <- plm(log(TotalMonthlySales + 1) ~ DID + THREEINTER, data = data_5m_t6_exp[data_5m_t6_exp$domain_name == "amazon.com",], index =
          c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
   ama.t6.Omile.search <- plm(log(TotalMonthlySales + 1) DID + THREEINTER, data = data_Om_t6_search[data_Om_t6_search$domain_name == "amazon.com",],
           index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
   ama.t6.5mile.search <- plm(log(TotalMonthlySales + 1) DID + THREEINTER, data = data_5m_t6_search[data_5m_t6_search$domain_name == "amazon.com",],
           index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
   bb.t6.Omile.exp <- plm(log(TotalMonthlySales + 1) DID + THREEINTER, data = data_Om_t6_exp[data_Om_t6_exp$domain_name == "bestbuy.com",], index =
          c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
   bb.t6.5mile.exp <- plm(log(TotalMonthlySales + 1) ~ DID + THREEINTER, data = data_5m_t6_exp[data_5m_t6_exp$domain_name == "bestbuy.com",], index =
         c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
   bb.t6.0mile.search <- plm(log(TotalMonthlySales + 1) ~ DID + THREEINTER, data = data_0m_t6_search[data_0m_t6_search$domain_name == "bestbuy.com",],
           index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
24 bb.t6.5mile.search <- plm(log(TotalMonthlySales + 1) ~ DID + THREEINTER, data = data_5m_t6_search[data_5m_t6_search$domain_name == "bestbuy.com",],
         index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
```

Code 7: Table 6 Generation

2.7 Table 7

Table 7: Results of the Online Search Effect: Experience Products

		log(PagesPer	Dollar + 1)		log(MinsPerDollar + 1)				
	Amazon-0 Mile	Amazon-5 Miles	${\bf BestBuy-0~Mile}$	BestBuy-5 Miles	Amazon-0 Mile	Amazon-5 Miles	${\bf BestBuy\text{-}0}$ Mile	BestBuy-5 Miles	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
β_1	0.663	-0.067	1.091	0.136	1.046	0.039	0.886	0.386	
	(1.451)	(0.547)	(0.800)	(0.634)	(1.406)	(0.536)	(0.625)	(0.481)	
β_2	-1.167	0.145		0.043	-1.366	-0.021		-0.122	
	(1.605)	(0.606)		(0.703)	(1.555)	(0.593)		(0.533)	
Observations	1,788	2,022	461	529	1,788	2,022	461	529	
\mathbb{R}^2	0.002	0.0002	0.145	0.013	0.002	0.00002	0.155	0.069	
Adjusted R ²	-3.198	-2.924	-34.767	-31.568	-3.197	-2.924	-34.355	-29.730	
F Statistic	0.358 (df = 2; 425)	0.040 (df = 2; 515)	1.861 (df = 1; 11)	0.106 (df = 2; 16)	0.390 (df = 2; 425)	0.004 (df = 2; 515)	2.011 (df = 1; 11)	0.591 (df = 2; 16	

*p<0.1; **p<0.05; ***p<0.05; ***p<0.00

Codes for generating Table 7 are listed below.

```
# Table 7 & 8 Data
                     <- sqldf("SELECT Zip_Code, MonthYear, domain_name, SUM(pages_viewed) / SUM(prod_totprice) AS PagesPerDollar, SUM(duration) / SUM(
   data_0m_t7_exp
          prod_totprice) AS MinsPerDollar, AVG(CCStorePresent) AS CCStorePresent, AVG(BBStorePresent) AS BBStorePresent, AVG(AfterStoreClosing) AS
          AfterStoreClosing FROM concat_data1_exp GROUP BY Zip_Code, MonthYear, domain_name")
   data_Om_t8_search <- sqldf("SELECT Zip_Code, MonthYear, domain_name, SUM(pages_viewed) / SUM(prod_totprice) AS PagesPerDollar, SUM(duration) / SUM(
          prod_totprice) AS MinsPerDollar, AVG(CCStorePresent) AS CCStorePresent, AVG(BBStorePresent) AS BBStorePresent, AVG(AfterStoreClosing) AS
          AfterStoreClosing FROM concat_data1_search GROUP BY Zip_Code, MonthYear, domain_name")
                    <- sqldf("SELECT Zip_Code, MonthYear, domain_name, SUM(pages_viewed) / SUM(prod_totprice) AS PagesPerDollar, SUM(duration) / SUM(</p>
          prod_totprice) AS MinsPerDollar, AVG(CCStorePresent) AS CCStorePresent, AVG(BBStorePresent) AS BBStorePresent, AVG(AfterStoreClosing) AS
          AfterStoreClosing FROM concat_data2_exp GROUP BY Zip_Code, MonthYear, domain_name")
 5 data_5m_t8_search <- sqldf("SELECT Zip_Code, MonthYear, domain_name, SUM(pages_viewed) / SUM(prod_totprice) AS PagesPerDollar, SUM(duration) / SUM(
          prod_totprice) AS MinsPerDollar, AVG(CCStorePresent) AS CCStorePresent, AVG(BBStorePresent) AS BBStorePresent, AVG(AfterStoreClosing) AS
          AfterStoreClosing FROM concat_data2_search GROUP BY Zip_Code, MonthYear, domain_name")
6 # manually construct DID and THREEINTERACTION
    data_Om_t7_exp$DID <- data_Om_t7_exp$CCStorePresent * data_Om_t7_exp$AfterStoreClosing
 8 data_0m_t7_exp$THREEINTER <- data_0m_t7_exp$CCStorePresent * data_0m_t7_exp$AfterStoreClosing * data_0m_t7_exp$BBStorePresent
   data_Om_t8_search$DID <- data_Om_t8_search$CCStorePresent * data_Om_t8_search$AfterStoreClosing
10 data_0m_t8_search$THREEINTER <- data_0m_t8_search$CStorePresent * data_0m_t8_search$AfterStoreClosing * data_0m_t8_search$BBStorePresent
11 data_5m_t7_exp$DID <- data_5m_t7_exp$CCStorePresent * data_5m_t7_exp$AfterStoreClosing
```

```
12 data_5m_t7_exp$THREEINTER <- data_5m_t7_exp$CCStorePresent * data_5m_t7_exp$AfterStoreClosing * data_5m_t7_exp$BBStorePresent
13 data_5m_t8_search$DID <- data_5m_t8_search$CCStorePresent * data_5m_t8_search$AfterStoreClosing
14 data_5m_t8_search$THREEINTER <- data_5m_t8_search$CCStorePresent * data_5m_t8_search$AfterStoreClosing * data_5m_t8_search$BBStorePresent
16 ama.t7.pagesperdollar.Omile.exp <- plm(log(PagesPerDollar + 1) - DID + THREEINTER, data = data_0m_t7_exp[data_0m_t7_exp$domain_name == "amazon.com"
         ,], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
   ama.t7.pagesperdollar.5mile.exp <- plm(log(PagesPerDollar + 1) DID + THREEINTER, data = data_5m_t7_exp[data_5m_t7_exp$domain_name == "amazon.com"
         ,], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
   bb.t7.pagesperdollar.Omile.exp <- plm(log(PagesPerDollar + 1) DID + THREEINTER, data = data_Om_t7_exp[data_0m_t7_exp$domain_name == "bestbuy.com"
          ,], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
   bb.t7.pagesperdollar.5mile.exp <- plm(log(PagesPerDollar + 1) DID + THREEINTER, data = data_5m_t7_exp[data_5m_t7_exp$domain_name == "bestbuy.com"
          ,], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
   ama.t7.minsperdollar.Omile.exp <- plm(log(MinsPerDollar + 1) ~ DID + THREEINTER, data = data_0m_t7_exp[data_0m_t7_exp$domain_name == "amazon.com"
         ,], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
   ama.t7.minsperdollar.5mile.exp <- plm(log(MinsPerDollar + 1) DID + THREEINTER, data = data_5m_t7_exp[data_5m_t7_exp$domain_name == "amazon.com"
         ,], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
                                 bb.t7.minsperdollar.Omile.exp
         ,], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
23 bb.t7.minsperdollar.5mile.exp <- plm(log(MinsPerDollar + 1) DID + THREEINTER, data = data_5m_t7_exp$domain_name == "bestbuy.com"
       ,], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
```

Code 8: Table 7 Generation

2.8 Table 8

Table 8: Results of the Online Search Effect: Search Products

	lo	$\log(PagesPerDollar + 1)$		$\log(MinsPerDollar + 1)$				
	Amazon-0 Mile	Amazon-5 Miles	${\bf BestBuy-5\ Miles}$	Amazon-0 Mile	Amazon-5 Miles	BestBuy-5 Miles		
	(1)	(2)	(3)	(4)	(5)	(6)		
β_1	0.051	0.181	1.038	0.395	0.151	1.522**		
	(0.554)	(0.160)	(0.752)	(0.555)	(0.159)	(0.711)		
β_2	-0.320	-0.214		-0.778	-0.182			
	(0.713)	(0.203)		(0.715)	(0.203)			
Observations	3,741	4,229	342	3,741	4,229	342		
\mathbb{R}^2	0.0002	0.001	0.042	0.001	0.001	0.096		
Adjusted R ²	-1.439	-1.344	-6.593	-1.438	-1.345	-6.166		
F Statistic	0.182 (df = 2; 1533)	0.704 (df = 2; 1802)	1.907 (df = 1; 43)	0.613 (df = 2; 1533)	0.501 (df = 2; 1802)	4.583** (df = 1; 4		

*p<0.1; **p<0.05; ***p<0.01

Codes for generating Table 8 are listed below.

```
# Table 8

2 ma.t8.pagesperdollar.Omile.search <- plm(log(PagesPerDollar + 1) - DID + THREEINTER, data = data_Om_t8_search[data_Om_t8_search$domain_name == " amazon.com",], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")

3 ama.t8.pagesperdollar.Omile.search <- plm(log(PagesPerDollar + 1) - DID + THREEINTER, data = data_5m_t8_search[data_5m_t8_search$domain_name == " amazon.com",], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")

4 bb.t8.pagesperdollar.Omile.search <- plm(log(PagesPerDollar + 1) - DID + THREEINTER, data = data_0m_t8_search[data_0m_t8_search$domain_name == " bestbuy.com",], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")

5 bb.t8.pagesperdollar.Smile.search <- plm(log(PagesPerDollar + 1) - DID + THREEINTER, data = data_5m_t8_search[data_5m_t8_search$domain_name == " bestbuy.com",], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")

6 ama.t8.minsperdollar.Omile.search <- plm(log(MinsPerDollar + 1) - DID + THREEINTER, data = data_0m_t8_search[data_0m_t8_search$domain_name == " amazon.com",], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")

7 ama.t8.minsperdollar.Smile.search <- plm(log(MinsPerDollar + 1) - DID + THREEINTER, data = data_5m_t8_search[data_5m_t8_search$domain_name == " amazon.com",], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")

8 bb.t8.minsperdollar.Omile.search <- plm(log(MinsPerDollar + 1) - DID + THREEINTER, data = data_0m_t8_search[data_0m_t8_search$domain_name == " amazon.com",], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")

8 bb.t8.minsperdollar.Omile.search <- plm(log(MinsPerDollar + 1) - DID + THREEINTER, data = data_0m_t8_search[data_0m_t8_search$domain_name == " amazon.com",], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
```

```
9 bb.t8.minsperdollar.5mile.search <- plm(log(MinsPerDollar + 1) DID + THREEINTER, data = data_5m_t8_search[data_5m_t8_search$domain_name == "bestbuy.com",], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
```

Code 9: Table 8 Generation

2.9 Table 9

2.10 Table 10

Table 9: Results of the Online Sales and Search Effect (All Product Categories)

	$\log(\text{SalesPerTransaction} + 1)$		log(PagesPerTra	ansaction + 1)	$\log(\text{MinsPerTransaction} + 1)$		
	Amazon-0 Mile	BestBuy-0 Mile	Amazon-0 Mile	BestBuy-0 Mile	Amazon-0 Mile	BestBuy-0 Mile	
	(1)	(2)	(3)	(4)	(5)	(6)	
β_1	0.104	0.064	0.137	0.929	0.366	0.468	
	(0.449)	(1.148)	(0.324)	(0.683)	(0.403)	(0.741)	
β_2	0.133		-0.446		-0.559		
	(0.572)		(0.413)		(0.514)		
Observations	5,126	729	5,126	729	5,126	729	
\mathbb{R}^2	0.0002	0.00003	0.001	0.019	0.001	0.004	
Adjusted R ²	-1.279	-6.744	-1.278	-6.595	-1.279	-6.712	
F Statistic	0.240 (df = 2; 2248)	0.003 (df = 1; 94)	0.800 (df = 2; 2248)	1.850 (df = 1; 94)	0.596 (df = 2; 2248)	0.399 (df = 1; 94)	

Note: p<0.1; **p<0.05; ***p<0.01

Codes for generating Table 9 are listed below.

```
1 # Table 10 Data
   data_Om_t10 <- sqldf("SELECT Zip_Code, MonthYear, domain_name, AVG(pages_viewed) AS PagesPerTransaction, AVG(duration) AS MinsPerTransaction, AVG(
         prod_totprice) AS SalesPerTransaction, AVG(CCStorePresent) AS CCStorePresent, AVG(BBStorePresent) AS BBStorePresent, AVG(AfterStoreClosing)
          AS AfterStoreClosing FROM concat_data1 GROUP BY Zip_Code, MonthYear, domain_name")
   data_0m_t10$DID <- data_0m_t10$CCStorePresent * data_0m_t10$AfterStoreClosing
   data_0m_ti0$THREEINTER <- data_0m_ti0$CCStorePresent * data_0m_ti0$AfterStoreClosing * data_0m_ti0$BBStorePresent
6 # Table 10
   # SalesPerTransaction; PagesPerTransaction; MinsPerTransaction; for Ama & BB
   ama.t10.0mile.SalesPerTransaction <- plm(log(SalesPerTransaction + 1) - DID + THREEINTER, data = data_0m_t10[data_0m_t10$domain_name == "amazon.com
          ",], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
   bb.t10.0mile.SalesPerTransaction <- plm(log(SalesPerTransaction + 1) - DID + THREEINTER, data = data_0m_t10[data_0m_t10$domain_name == "bestbuy.
          com".]. index = c("Zip Code", "MonthYear"), model = "within", effect = "twoways")
   ama.t10.0mile.PagesPerTransaction <- plm(log(PagesPerTransaction + 1) DID + THREEINTER, data = data_0m_t10$domain_name == "amazon.com
          ",], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
   bb.ti0.0mile.PagesPerTransaction <- plm(log(PagesPerTransaction + 1) ~ DID + THREEINTER, data = data_0m_t10[data_0m_t10$domain_name == "bestbuy.
          com",], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
12 ama.t10.0mile.MinsPerTransaction <- plm(log(MinsPerTransaction + 1) DID + THREEINTER, data = data_0m_t10[data_0m_t10$domain_name == "amazon.com"
          ,], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
bb.t10.0mile.MinsPerTransaction <- plm(log(MinsPerTransaction + 1) DID + THREEINTER, data = data_0m_t10[data_0m_t10$domain_name == "bestbuy.com"
     ,], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
```

Code 10: Table 10 Generation

2.11 Table 11

2.12 Table 12

Table 10: Results of the Online Sales and Search Effect with Zip Code Demographics as Interactions and Time Fixed Effects (All Product Categories)

	$\log({\rm TotalMonthlySales}+1)$		log(PagesPerDollar + 1)		$\log(\text{MinsPerDollar} + 1)$		
	Amazon-0 Mile	${\bf BestBuy-0}$ Mile	Amazon-0 Mile	${\bf BestBuy\text{-}0}$ Mile	Amazon-0 Mile	BestBuy-0 Mile	
	(1)	(2)	(3)	(4)	(5)	(6)	
β_1	-0.001	-0.012	0.002	-0.003	0.002	0.0001	
	(0.002)	(0.018)	(0.002)	(0.010)	(0.002)	(0.008)	
β_2	0.352	1.008	-0.493	0.718	-0.427	0.123	
	(0.457)	(1.779)	(0.359)	(1.034)	(0.349)	(0.829)	
Observations	5,126	729	5,126	729	5,126	729	
\mathbb{R}^2	0.0003	0.005	0.001	0.006	0.001	0.001	
Adjusted R ²	-1.279	-6.788	-1.278	-6.779	-1.277	-6.823	
F Statistic	0.348 (df = 2; 2248)	0.239 (df = 2; 93)	1.116 (df = 2; 2248)	0.291 (df = 2; 93)	1.216 (df = 2; 2248)	0.027 (df = 2; 93)	

*p<0.1; **p<0.05; ***p<0.01

Codes for generating Table 10 are listed below.

```
# Table 12 Data
   data_Om_t12 <- sqldf("SELECT Zip_Code, MonthYear, domain_name, SUM(prod_totprice) AS TotalMonthlySales, SUM(pages_viewed) / SUM(prod_totprice) AS
          PagesPerDollar, SUM(duration) / SUM(prod_totprice) AS MinsPerDollar, AVG(household_size) AS HoHSize, AVG(hoh_oldest_age) AS HoHAge, AVG(
          household income) AS HoHIncome. AVG(CCStorePresent) AS CCStorePresent. AVG(BBStorePresent) AS BBStorePresent. AVG(AfterStoreClosing) AS
          AfterStoreClosing FROM concat_data1 GROUP BY Zip_Code, MonthYear, domain_name")
 3 data_0m_t12$DID <- data_0m_t12$CCStorePresent * data_0m_t12$AfterStoreClosing * data_0m_t12$HoHSize * data_0m_t12$HoHAge * data_0m_t12$HoHIncome
   data_0m_t12$THREEINTER <- data_0m_t12$CCStorePresent * data_0m_t12$AfterStoreClosing * data_0m_t12$BBStorePresent
6 ama.t12.0m.PagesPerDollar <- plm(log(PagesPerDollar + 1) ~ DID + THREEINTER, data = data_0m_t12[data_0m_t12$domain_name == "amazon.com",], index =
          c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
   ama.t12.0m.MinsPerDollar <- plm(log(MinsPerDollar + 1) ~ DID + THREEINTER, data = data_0m_t12[data_0m_t12$domain_name == "amazon.com",], index = c(
          "Zip_Code", "MonthYear"), model = "within", effect = "twoways")
    ama.t12.0m.TotalMonthlySales <- plm(log(TotalMonthlySales + 1) DID + THREEINTER, data = data_0m_t12[data_0m_t12$domain_name == "amazon.com",],
          index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
   bb.ti2.0m.PagesPerDollar <- plm(log(PagesPerDollar + 1) ~ DID + THREEINTER, data = data_0m_ti2[data_0m_ti2$domain_name == "bestbuy.com",], index =
         c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
10 bb.t12.0m.MinsPerDollar <- plm(log(MinsPerDollar + 1) ~ DID + THREEINTER, data = data_0m_t12[data_0m_t12$domain_name == "bestbuy.com",], index = c(
          "Zip_Code", "MonthYear"), model = "within", effect = "twoways")
11 bb.t12.0m.TotalMonthlySales <- plm(log(TotalMonthlySales + 1) DID + THREEINTER, data = data_0m_t12[data_0m_t12$domain_name == "bestbuy.com",],
       index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
```

Code 11: Table 12 Generation

Table 11:	Change in	Demographics	after Circuit	City Store Closus	re

Group	Before Store Closure		After Store Closure			First Difference of Mean (p-value)			
	Mean Age	Mean Income	Mean Education	Mean Age	Mean Income	Mean Education	Mean Age	Mean Income	Mean Education
Control	7.048	4.479	97.957	6.937	4.498	97.999	-0.111 (<0.0001)	0.019 (0.300)	0.042 (0.639)
Treated	7.68	4.971	98.632	6.645	4.739	96.843	-1.035 (<0.0001)	-0.232 (0.029)	-1.789 (0.004)

2.13 Table 13

2.14 Table 14

2.15 Table C1

Codes for generating Table 11 are listed below.

```
temp <- read_sas(sales_allother_zipcode_path)
    temp$Store_Close_Status <- 0
   table_C1_Om_raw <- rbind(temp, read_sas(sales_cc_Omile_path))
   table_C1_5m_raw <- rbind(temp, read_sas(sales_cc_5miles_path))
   table_C1_Om_raw$event_date <- as.Date(table_C1_Om_raw$event_date)
8 table_C1_5m_raw$event_date <- as.Date(table_C1_5m_raw$event_date)
10 # construct MonthYear - month of year
11 table_C1_0m_raw$MonthYear <- format(table_C1_0m_raw$event_date, "%Y-%m")
   table_C1_5m_raw$MonthYear <- format(table_C1_5m_raw$event_date, "%Y-%m")
13
14 # Mark CC Closure
15
16 # CCStorePresent
17 # it is the same as Store_Close_Status
18 table_C1_Om_raw$CCStorePresent <- table_C1_Om_raw$Store_Close_Status
19 table_C1_5m_raw$CCStorePresent <- table_C1_5m_raw$Store_Close_Status
20
21 # AfterStoreClosing
22 table_C1_0m_raw$AfterStoreClosing <- ifelse(table_C1_0m_raw$MonthYear < "2008-11", 0, 1)
23 \  \  \, {\tt table\_C1\_5m\_raw\$AfterStoreClosing} \  \, {\tt <- ifelse(table\_C1\_5m\_raw\$MonthYear} \  \, {\tt <- "2008-11", 0, 1)} \\
24
25 # BBStorePresent
26 table_C1_0m_raw <- merge(table_C1_0m_raw, bb_zipcode, by.x ="Zip_Code", by.y = "Zip_Code", all.x = TRUE)
27 table_Ci_5m_raw <- merge(table_Ci_5m_raw, bb_zipcode, by.x ="Zip_Code", by.y = "Zip_Code", all.x = TRUE)
29 table_C1_Om_raw$BBStorePresent <- na.fill(table_C1_Om_raw$BB_Store_Status, 0)
30 table_C1_5m_raw$BBStorePresent <- na.fill(table_C1_5m_raw$BB_Store_Status, 0)
31
33 control before age <- table C1 0m raw[(table C1 0m raw$CCStorePresent == 0)&(table C1 0m raw$AfterStoreClosing==0).]$hoh oldest age
34 control_before_income <- table_C1_0m_raw[(table_C1_0m_raw$CCStorePresent == 0)&(table_C1_0m_raw$AfterStoreClosing == 0), $\) household_income
35 control_before_edu <- table_C1_0m_raw[(table_C1_0m_raw$CCStorePresent == 0)&(table_C1_0m_raw$AfterStoreClosing==0),]$hoh_most_education
37 control_after_age <- table_Ci_Om_raw[(table_Ci_Om_raw$CCStorePresent == 0)&(table_Ci_Om_raw$AfterStoreClosing==1),]$hoh_oldest_age
38 control_after_income <- table_C1_0m_raw[(table_C1_0m_raw$CCStorePresent == 0)&(table_C1_0m_raw$AfterStoreClosing ==1),]$household_income
39 control_after_edu <- table_Ci_Om_raw[(table_Ci_Om_raw$CCStorePresent == 0)&(table_Ci_Om_raw$AfterStoreClosing==1),]$hoh_most_education
```

```
41 test.control.age <- t.test(control_before_age, control_after_age)
42 test.control.income <- t.test(control_before_income, control_after_income)
     test.control.edu <- t.test(control_before_edu, control_after_edu)
45 treated_before_age <- table_C1_0m_raw[(table_C1_0m_raw$CCStorePresent == 1)&(table_C1_0m_raw$AfterStoreClosing==0),]$hoh_oldest_age
46 treated_before_income <- table_C1_0m_raw[(table_C1_0m_raw$CCStorePresent == 1)&(table_C1_0m_raw$AfterStoreClosing==0),]$household_income
     treated_before_edu <- table_C1_Om_raw[(table_C1_Om_raw$CCStorePresent == 1)&(table_C1_Om_raw$AfterStoreClosing==0),]$hoh_most_education
49 treated_after_age <- table_C1_0m_raw[(table_C1_0m_raw$CCStorePresent == 1)&(table_C1_0m_raw$AfterStoreClosing==1),]$hoh_oldest_age
     treated_after_income <- table_C1_0m_raw[(table_C1_0m_raw$CCStorePresent == 1)&(table_C1_0m_raw$AfterStoreClosing==1),]$household_income
                                  <- table_C1_Om_raw[(table_C1_Om_raw$CCStorePresent == 1)&(table_C1_Om_raw$AfterStoreClosing==1),]$hoh_most_education</pre>
51 treated_after_edu
53 test.treated.age <- t.test(treated_before_age, treated_after_age)
     test.treated.income <- t.test(treated_before_income, treated_after_income)
55 test.treated.edu <- t.test(treated_before_edu, treated_after_edu)
56
57 # Construct Variables
58 test.control.age.before.mean <- test.control.age$estimate[["mean of x"]]
59 test.control.income.before.mean <- test.control.income$estimate[["mean of x"]]
     test.control.edu.before.mean
                                                   <- test.control.edu$estimate[["mean of x"]]</pre>
61
62 test.control.age.after.mean <- test.control.age$estimate[["mean of y"]]
63 test.control.income.after.mean <- test.control.income$estimate[["mean of y"]]
64 test.control.edu.after.mean <- test.control.edu$estimate[["mean of y"]]
66 test.control.age.diff <- test.control.age.after.mean - test.control.age.before.mean
     test.control.age.diff.se <- test.control.age$p.value
68 test.control.income.diff <- test.control.income.after.mean - test.control.income.before.mean
69 \hspace{0.2in} {\tt test.control.income.diff.se} \hspace{0.2in} {\tt <-} \hspace{0.2in} {\tt test.control.income.sp.value}
                                         <- test.control.edu.after.mean - test.control.edu.before.mean</pre>
71 test.control.edu.diff.se <- test.control.edu$p.value
73
     test.treated.age.before.mean <- test.treated.age$estimate[["mean of x"]]
74 test.treated.income.before.mean <- test.treated.income$estimate[["mean of x"]]
     test.treated.edu.before.mean <- test.treated.edu$estimate[["mean of x"]]
76
     test.treated.age.after.mean <- test.treated.age$estimate[["mean of y"]]
78 test.treated.income.after.mean <- test.treated.income$estimate[["mean of y"]]
79 test.treated.edu.after.mean <- test.treated.edu$estimate[["mean of y"]]
81 test.treated.age.diff <- test.treated.age.after.mean - test.treated.age.before.mean
82 test.treated.age.diff.se <- test.treated.age$p.value
83 test.treated.income.diff
                                              <- test.treated.income.after.mean - test.treated.income.before.mean</pre>
84 test.treated.income.diff.se <- test.treated.income$p.value
85 test.treated.edu.diff <- test.treated.edu.after.mean - test.treated.edu.before.mean
86 test.treated.edu.diff.se <- test.treated.edu$p.value
88 # Construct Table
89 tabc1 <- rbind(c("Control", test.control.age.before.mean, test.control.income.before.mean, test.control.edu.before.mean,
                                  test.control.age.after.mean, test.control.income.after.mean, test.control.edu.after.mean,
                                  test.control.age.diff, test.control.age.diff.se, test.control.income.diff, test.control.income.diff.se, test.control.edu.diff,
91
               test.control.edu.diff.se),
92
              {\tt c("Treated", test.treated.age.before.mean, test.treated.income.before.mean, test.treated.edu.before.mean,}
93
                                  test.treated.age.after.mean, test.treated.income.after.mean, test.treated.edu.after.mean,
94
                                  test.treated.age.diff,\ test.treated.age.diff.se,\ test.treated.income.diff,\ test.treated.income.diff.se,\ test.treated.age.diff.se,\ test.treated.age.di
              test.treated.edu.diff.se))
```

Code 12: Table C1 Generation

- 2.16 Table D1-D4
- 2.17 Table E1-E2
- 2.18 Table G1-G3
- 3 Advanced Method
- 3.1 Synthetic Control Method
- 3.2 Generalized Synthetic Control Method
- 3.3 Heckit Approach
- 3.4 PSM and LA-PSM
- 3.5 Measurement Error Bias Correction

4 References

[1] Marek Hlavac. Stargazer: Well-formatted regression and summary statistics tables. R package version, 5(1), 2015.