

Tree Model

최 대 우 한국외국어대학교 통계학과

Agenda

- Introduction
- Growing Trees
- Pruning in CART
- Surrogate
- Tree regression
- Running S-PLUS

Example

- The figure 1 and 2 is the result of tree model in S-PLUS.
- The kyphosis data has 81 rows representing data on 81 children who have had corrective spinal surgery.
- The outcome Kyphosis is a binary variable, the other three variables (columns) are numeric.

Example (cont.)

DATA DESCRIPTION

- Kyphosis: a factor telling whether a postoperative deformity (kyphosis) is "present" or "absent".
- Age: the age of the child in months.
- Number: the number of vertebrae involved in the operation.
- Start: the beginning of the range of vertebrae involved in the operation.

Tree model with kyphosis (1)

Figure 1 : Splitted by deviance

Tree model with kyphosis (2)

Figure 2: Splitted by Gini index

Tree Regression in CART

How CART Sees An Elephant

It was six men of Indostan; To learning much inclined, Who went to see the Elephant; (Though all of them were blind), That each by observation; Might satisfy his mind

-- "The Blind Men and the Elephant" by John Godfrey Saxe (1816-1887)

3

Several approaches

- THAID Morgan and Messenger, 1973)
- CHAID (Kass, 1980)
- ID3 (Quinlan, 1983)
- CART (Breiman, Freidman, Olshen and Stone, 1984)
- FACT (Loh and Vanichetakul, 1988)
- CN2 (Clark and Niblett, 1989)
- C4.5 (Quinlan, 1993)
- QUETS (Loh and Shih, 1997)
- Ltree, Btree, Oblique Tree (Gama, 1997)

Some history

- Artificial intelligence rules for exact prediction
 - Hunt, Marin, and Stone (1996)
 - Quinlan: ID3, C4.5 (1982, 1993) (classification only)
- Statistics uncertainty
 - Sonquist and Morgan (1964)
 - Breiman, Freidman, Olshen and Stone : CART (1984)

Pros and Cons

- Pros Why on earth would you want to fit such a model?
 - Easy to understand and interpret non-statisticians really like it
 - Handles missing values efficiently
 - Fast computation
 - Interactions
 - invariant to monotone transforms

Pros and Cons (cont.)

- Cons
 - emphasizes interactions
 - non-parsimonious description of additive models
 - Prediction surface is not smooth.
 - Different trees can often describe the same data.
 - very unstable (high variance)
 - Accuracy is lower than other methods.

Growing Trees (1)

• Trees are grown recursively. A terminal node g is split into the left and right daughters (say, g_L and g_R) that increase the split criterion

$$D_{g} - D_{gL} - D_{gR}$$

highly, where D is a measure of goodness of fit

- Choice of goodness-of-fit measure:
 - for regression:

$$D_g = \sum_{i \in g} (y_i - \overline{y}_g)^2$$

• for classification:

Growing Trees (2)

• Gini index:

$$D_g = \sum_j \hat{p}_j (1 - \hat{p}_j)$$
 (CART)

• Entropy index :

$$D_g = -\sum_j \hat{p}_j \log \hat{p}_j \qquad (C 4.5)$$

• Deviance:

$$D_g = -2\sum_i n_i \log \hat{p}_i \qquad (S-PLUS)$$

Criteria for splitting

- Cross-entropy and Gini are more sensitive
- To grow the tree: use CE or Gini
- To prune the tree: use Misclassification rate (or any other method)

Growing

Growing Trees (4)

Growing Tree (4)

Conventional criteria – Gini index

- The class labels are denoted 0 and 1.
- Given a split into left and right buckets, let $p_L^0 + p_L^1 = 1$, $p_R^0 + p_L^1 = 1$
- The Gini index is $p_L^0 p_L^1$ in left bucket.
- This is essentially the Mean Square Error (MSE) when fitting a mean to $y_n \in \{0,1\}$, $n \in L$, as a short calculation shows:

$$\min MSE_{L} = \min \frac{RSS}{N_{L}} = \min_{q} \frac{1}{N_{L}} \sum_{n \in L} (y_{n} - q)^{2}$$

$$= \frac{1}{N_{L}} \sum_{n \in L} (y_{n} - p_{L}^{1})^{2}$$

$$= \frac{1}{N_{L}} (N_{L}^{0} (p_{L}^{1})^{2} + N_{L}^{1} (1 - p_{L}^{1})^{2})$$

$$= \frac{1}{N_{L}} (N_{L} p_{L}^{0} (p_{L}^{1})^{2} + N_{L} p_{L}^{1} (p_{L}^{0})^{2})$$

$$= \frac{1}{N_{L}} N_{L} p_{L}^{0} p_{L}^{1} (p_{L}^{1} + p_{L}^{0}) = p_{L}^{0} p_{L}^{1}$$

Pruning in CART

- To avoid shortness of trees, a large tree T_0 is grown and then pruned backward.
- Pruning criterion: cost of a subtree $T \in T_0$, defined by

$$C_{\alpha}(T) = \sum D_{g}(T) + \alpha \cdot |T|$$

• Here the sum is over the terminal nodes of T, |T| is the number of terminal node in T and α is a cost-complexity parameter.

Pruning

Pruning in CART (cont.)

- For each fixed α , the best subtree T_{α} is found via weakest link pruning.
- Large α gives smaller trees.
- A best value $\hat{\alpha}$ is estimated via 10-fold cross-validation.
- Final chosen tree is $\widehat{T}_{\widehat{\alpha}}$.

What is "surrogate"?

- Meaning: to put in the place of another, to appoint as successor
- Once a splitting variable and a split point for it have been decided, what is to be done with observations missing that variable?
- One approach is to estimate the missing datum using the other independent variables, that is *surrogate variables*.

Example of "surrogate"

- Assume the split (age < 40, age >= 40) has been chosen.
- The surrogate variables are found by
 - Re-applying the splitting algorithm (without recursion)
 - To predict the two categories "age < 40, age >= 40"
 - Using the other independent variables.
- Any observation which is missing the split variable is then classified using the first surrogate variable,
 - Or if missing that, the second surrogate is used.
 - and etc.

Regression

Tree regression: why?

- Tree regression had not been popular due to inaccuracy.
- But tree regression is very attractive since the model is interpretable.
- Friedman, Hastie, and Tibshirani (2000) showed that tree regression can be used in classification problem.

Tree regression: 4 ingredients

Splitting criterion

$$SS_T - (SS_L + SS_R)$$

- Where $SS_T = \Sigma (y_i \overline{y})^2$ is the sum of squares of the node, and SS_L , SS_R are the sums of squares for the right and left son, respectively.
- Equivalently to choosing the split to maximize the betweengroups sum-of-squares in a simple analysis of variance
- A summary statistics (describing a node)
 - For the anova method the response is the mean of the node
 - For classification the predicted class followed by the vector probabilities
- The error of a node: the variance of *y* for anova
- The prediction error for a new observation : $(y_{new} \overline{y})$

German Credit Data

- Observation 1,000개
- 20개의 설명변수 중, 7개는 연속형, 나머지는 이산형
- Target variable은 credit의 good과 bad.
- 주요 설명변수
 - checking: status of existing checking account (4 levels)
 - savings: savings account/bond (5 levels)
 - duration: duration in month
 - employment: present employment since (5 levels)
 -
- http://www.ics.uci.edu/AI/ML/Machine-Learning.html

Tree by deviance

- > german.tree <- tree(good.bad~., data=german)</pre>
- > plot(german.tree)

Cross-validation

- > german.cv <- cv.tree(german.tree,FUN=prune)</pre>
- > plot(german.cv)

Tree by deviance (after pruning)

```
> german.tree.3 <- prune.tree(german.tree, best=3)</pre>
```

```
> plot(german.tree.3)
```


Bad credit의 비율: 0.5646

No. of obs.: 247개

Rule: checking-1,2/ duration>22.5

Q&A