

Comparing Trained Models on Motor Control Tasks

Joyful Catmint

Neuromatch Workshop in the NeuroAl course, Slot 4, Pod: Joyful Catmint, Megapod: Aspen Project TA: Paolo Muratore, Course TA: Pravish Sainath

15-26 July, 2024

Hikaru Tsujimura^{1,2}, Seidi Yamauti³, Sevgi Silkin⁴, Salvatore Binasco⁵

1. Cardiff University, UK, 2. University College London, UK, 3. Santos Dumont Institute, BR, 4. Istanbul Technical University, TR, 5. Universidade Paulista, BR

Introduction

Here we look at Motor Control

Our Goals - Testing Model Generalizability and Interpretability

Computation-Through-Dynamics Benchmark*

Task-trained Models

NODE, LSTM, GRU

Task Envs

3BFF vs Random Task
Non-noisy vs Noisy
environment

Analysis

Train and validation

Latent Dynamics

Result 1 - How different models learn a task?

Result 1 - How different models learn a task?

Result 2 - Effect of noise on generalization

Target(4)

Models- Effect of noise on Loss Graphs

250 epochs

Result 3 - Physiologically constrained environment

Result 3 - Physiologically constrained environment

Trial 40

40

Time (bins)

150

Time (bins)

200

250

60

x velocity

80

v velocity

100

300

Result 3 - Physiologically constrained environment

Task-Trained Latent Dynamics

Conclusion

Simple models internal dynamics correlate with output, but physiologically constrained models show interesting latent representations.

A GRU model is easy to physiologically interpret. However, NODE and LSTM models are robust to noises while maintaining similar performance.

Also, noises disrupt interpretability of models in general.

Still an area of research!

Q?