

Chapter 7: Introduction to linear regression

OpenIntro Statistics, 3rd Edition

Slides developed by Mine Çetinkaya-Rundel of OpenIntro.
The slides may be copied, edited, and/or shared via the <u>CC BY-SA license</u>.
Some images may be included under fair use guidelines (educational purposes).

Inference for linear regression

Nature or nurture?

In 1966 Cyril Burt published a paper called "The genetic determination of differences in intelligence: A study of monozygotic twins reared apart?" The data consist of IQ scores for [an assumed random sample of] 27 identical twins, one raised by foster parents, the other by the biological parents.

Which of the following is false?

Coefficients:

```
| Estimate Std. Error t value Pr(>|t|) | (Intercept) | 9.20760 | 9.29990 | 0.990 | 0.332 | 0.90144 | 0.09633 | 9.358 | 1.2e-09 |
```

Residual standard error: 7.729 on 25 degrees of freedom Multiple R-squared: 0.7779, Adjusted R-squared: 0.769 F-statistic: 87.56 on 1 and 25 DF, p-value: 1.204e-09

- (a) Additional 10 points in the biological twin's IQ is associated with additional 9 points in the foster twin's IQ, on average.
- (b) Roughly 78% of the foster twins' IQs can be accurately predicted by the model.
- (c) The linear model is fo— $sterlQ = 9.2 + 0.9 \times bioIQ$.
- (d) Foster twins with IQs higher than average IQs tend to have biological twins with higher than average IQs as well.

Testing for the slope

Assuming that these 27 twins comprise a representative sample of all twins separated at birth, we would like to test if these data provide convincing evidence that the IQ of the biological twin is a significant predictor of IQ of the foster twin. What are the appropriate hypotheses?

(a)
$$H_0: b_0 = 0; H_A: b_0 \neq 0$$

(b)
$$H_0: \beta_0 = 0; H_A: \beta_0 \neq 0$$

(c)
$$H_0: b_1 = 0; H_A: b_1 \neq 0$$

(d)
$$H_0: \beta_1 = 0; H_A: \beta_1 \neq 0$$

Testing for the slope (cont.)

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	9.2076	9.2999	0.99	0.3316
bioIQ	0.9014	0.0963	9.36	0.0000

We always use a t-test in inference for regression.

Remember: Test statistic, $T = \frac{point\ estimate - null\ value}{SE}$

- Point estimate = b_1 is the observed slope.
- SE_{b_1} is the standard error associated with the slope.
- Degrees of freedom associated with the slope is df = n −2, where n is the sample size.

Remember: We lose 1 degree of freedom for each parameter we estimate, and in simple linear regression we estimate 2 parameters, β_0 and β_1 .

Testing for the slope (cont.)

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	9.2076	9.2999	0.99	0.3316
bioIQ	0.9014	0.0963	9.36	0.0000

$$T = \frac{0.9014 - 0}{0.0963} = 9.36$$

$$df = 27 - 2 = 25$$

$$p - value = P(|T| > 9.36) < 0.01$$

% College graduate vs. % Hispanic in LA

What can you say about the relationship between % college graduate and % Hispanic in a sample of 100 zip code areas in LA?

% College educated vs. % Hispanic in LA - another look

What can you say about the relationship between of % college graduate and % Hispanic in a sample of 100 zip code areas in LA?

% College educated vs. % Hispanic in LA - linear model

Which of the below is the best interpretation of the slope?

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.7290	0.0308	23.68	0.0000
%Hispanic	-0.7527	0.0501	-15.01	0.0000

- (a) A 1% increase in Hispanic residents in a zip code area in LA is associated with a 75% decrease in % of college grads.
- (b) A 1% increase in Hispanic residents in a zip code area in LA is associated with a 0.75% decrease in % of college grads.
- (c) An additional 1% of Hispanic residents decreases the % of college graduates in a zip code area in LA by 0.75%.
- (d) In zip code areas with no Hispanic residents, % of college graduates is expected to be 75%.

% College educated vs. % Hispanic in LA - linear model

Do these data provide convincing evidence that there is a statistically significant relationship between % Hispanic and % college graduates in zip code areas in LA?

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.7290	0.0308	23.68	0.0000
hispanic	-0.7527	0.0501	-15.01	0.0000

Yes, the p-value for % Hispanic is low, indicating that the data provide convincing evidence that the slope parameter is different than 0.

How reliable is this p-value if these zip code areas are not randomly selected?

Not very...

Confidence interval for the slope

Remember that a confidence interval is calculated as $point\ estimate\ \pm ME$ and the degrees of freedom associated with the slope in a simple linear regression is n-2. Which of the below is the correct 95% confidence interval for the slope parameter? Note that the model is based on observations from 27 twins.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	9.2076	9.2999	0.99	0.3316
bioIQ	0.9014	0.0963	9.36	0.0000

(a)
$$9.2076 \pm 1.65 \times 9.2999$$

(b)
$$0.9014 \pm 2.06 \times 0.0963$$

(c)
$$0.9014 \pm 1.96 \times 0.0963$$

(d)
$$9.2076 \pm 1.96 \times 0.0963$$

$$n = 27$$
 $df = 27 - 2 = 25$
 $95\%: t_{25}^* = 2.06$
 $0.9014 \pm 2.06 \times 0.0963$
 $(0.7, 1.1)$

- Inference for the slope for a single-predictor linear regression model:
 - · Hypothesis test:

$$T = \frac{b_1 - null \ value}{SE_{b_1}} \qquad df = n - 2$$

· Confidence interval:

$$b_1 \pm t^*_{df=n-2} SE_{b_1}$$

- The null value is often 0 since we are usually checking for any relationship between the explanatory and the response variable.
- The regression output gives b₁, SE_{b1}, and two-tailed p-value for the t-test for the slope where the null value is 0.
- We rarely do inference on the intercept, so we'll be focusing on the estimates and inference for the slope.

• Always be aware of the type of data you're working with: random sample, non-random sample, or population.

- Always be aware of the type of data you're working with: random sample, non-random sample, or population.
- Statistical inference, and the resulting p-values, are meaningless when you already have population data.

- Always be aware of the type of data you're working with: random sample, non-random sample, or population.
- Statistical inference, and the resulting p-values, are meaningless when you already have population data.
- If you have a sample that is non-random (biased), inference on the results will be unreliable.

- Always be aware of the type of data you're working with: random sample, non-random sample, or population.
- Statistical inference, and the resulting p-values, are meaningless when you already have population data.
- If you have a sample that is non-random (biased), inference on the results will be unreliable.
- The ultimate goal is to have independent observations.