《拓扑学基础》HW 6 提交时间: 04/30/2019, 周二

- 1. 证明:设 \mathcal{B} 是拓扑空间 X 的一个基,则 A 是拓扑空间 X 的稠密子集 \Longleftrightarrow A 与 \mathcal{B} 中任意个元 B,都有 $A \cap B \neq \emptyset$.
- 2. 证明:考虑实数集 ℝ 上的子集族:

$$\mathcal{B} = \{ [a, b) | a, b \in \mathbb{R}, a < b \}$$

证明:

- (a). \mathcal{B} 为 \mathbb{R} 的某一个拓扑的基.(该拓扑称为实数**下限拓扑**,记为: \mathbb{R}_l)
- (b). *B* 中每一个元素在下限拓扑 ℝ_l 中即是开集又是闭集.
- (c). \mathbb{R}_l 有一个子基: $\{(-\infty,b)|b\in\mathbb{R}\}\cup\{[a,\infty)|a\in\mathbb{R}\}.$
- 3. 设 $f: X \longrightarrow Y$ 在 $x \in X$ 处连续,序列 $x_n \longrightarrow x$,则 $f(x_n) \longrightarrow f(x)$.
- 4. 设 $f: X \longrightarrow Y$ 是满的连续映射, 其中 X 是可分的. 证明: Y 也是可分的.
- 5. 规定 $f: \mathbb{R} \setminus [0,1) \longrightarrow \mathbb{R}$ 为:

$$f(x) = \begin{cases} x & x < 0, \\ x - 1 & x \ge 0. \end{cases}$$

证明: f 是连续映射, 但不是同胚映射.

6. 若 $f: \mathbb{R} \longrightarrow \mathbb{R}$ 为连续映射,证明在 f 下保持不动的点的全体构成 \mathbb{R} 的一个闭集.(即集合: $\{x \in \mathbb{R} | f(x) = x\}$ 是闭集.)