Problem Set #1

Measure Theory Jan Ertl Kendra Robbins

1.3 \mathcal{G}_1 is not an algebra because it is not closed under complements: Suppose $A \in \mathcal{G}_1$. Then A is open. Then A^c is closed, so $A^c \notin \mathcal{G}_1$.

 \mathcal{G}_2 is an algebra:

- $\emptyset \in \mathcal{G}_2$
- Suppose $A \in \mathcal{G}_2$. Then A is a finite union of intervals of the form $(a, b], (-\infty, b], (a, \infty)$. Then A^c is a finite union of intervals of the form $(a, b], (-\infty, b], (a, \infty)$, so $A^c \in \mathcal{G}_2$. \mathcal{G}_2 is closed under complements.
- If $B \in \mathcal{G}_2$, then B is a finite union of intervals of the form $(c, d], (-\infty, d], (c, \infty)$. Then $A \cup B$ is a finite union of intervals of the form $(a, b], (-\infty, b], (a, \infty)$, so $A \cup B \in \mathcal{G}_2$, so \mathcal{G}_2 is closed under finite unions.
- Since \mathcal{G}_2 by definition does not contain infinite unions, a countably infinite union is not contained in \mathcal{G}_2 , so \mathcal{G}_2 is not a σ -algebra.

 \mathcal{G}_3 is a sigma algebra. This can be proved by a modification of the proof for \mathcal{G}_2 , incorporating that \mathcal{G}_3 contains countable unions.

1.7 Suppose A is the smallest σ -algebra of a set X. By definition, $\emptyset \in A$. The complement of \emptyset in X is X. Since A is closed under complements, $X \in A$. Since X is necessarily nonempty, $X \neq \emptyset$, so $A \neq \emptyset$. So $\{\emptyset, X\}$ is the smallest σ -algebra. $A = \{\emptyset, X\}$.

Suppose B is a σ -algebra of X that is larger than the power set of X, P(X). Then there exists a subset of X, $b \in B$ such that $b \notin P(X)$. But P(X) contains all subsets of X, so $b \in P(X)$. This is a contradiction: B cannot be larger than P(X). P(X) must be the largest σ -algebra.

Suppose C is an arbitrary σ -algebra of a set X. Then $\emptyset \in C$. The complement of \emptyset is X, so $X \in C$. Thus, $\{\emptyset, X\} \subseteq C$. Since all elements of C are subsets of X, every element of C is contained in P(X), so $C \subseteq P(X)$.

1.10 Let $\{S_{\alpha}\}$ be a family of σ -algebras of X. Since every σ -algebra contains \emptyset by definition, $\emptyset \in S_{\alpha} \ \forall \alpha$, so $\emptyset \in \cap_{\alpha} S_{\alpha}$.

Let $x \in \cap_{\alpha} S_{\alpha}$. Then $x \in S_{\alpha} \ \forall \alpha$. Since σ -algebras are closed under complements, $x^C \in S_{\alpha} \ \forall \alpha$, so $x^C \in \cap_{\alpha} S_{\alpha}$.

Suppose $\{x_i\}_{i=1}^{\infty} \in \cap_{\alpha} S_{\alpha}$. Then $\{x_i\}_{i=1}^{\infty} \in S_{\alpha} \ \forall \alpha$. Since σ -algebras are closed under countable unions, the countable union $\bigcup_{i=1}^{\infty} x_i \in \cap_{\alpha} S_{\alpha}$. Then $\bigcup_{i=1}^{\infty} x_i \in S_{\alpha} \ \forall \alpha$. Thus, $\bigcup_{i=1}^{\infty} x_i \in \cap_{\alpha} S_{\alpha}$. So $\cap_{\alpha} \{S_{\alpha}\}$ is closed under countable unions.

```
\Rightarrow \cap_{\alpha} \{S_{\alpha}\} is a \sigma-algebra.
```

1.17 Let (X, S, μ) be a measure space.

Suppose $A, B \in S$ with $A \subset B$.

Let K = B /A

Then $B = (A \cap B) \cup K = A \cap K$.

Since $(A \cap B) \cap K = \emptyset$, $\mu(B) = \mu(A) + \mu(K)$.

Since $\mu(K) \ge 0, \mu(B) = \mu(A) + \mu(K) \ge \mu(A)$.

 $\Rightarrow \mu(A) \leq \mu(B).$

Suppose $\{A_i\}_{i=1}^{\infty} \in S$.

Let $A_m, A_n \in \{A_i\}_{i=1}^{\infty}$.

Define:

 $D = A_m/A_n$

 $E = A_n/A_m$

 $F = A_n \cap A_m$

Note that D, E, F are disjoint, $A_n = E \cup F$, $A_m = D \cup F$, and $A_n \cup A_m = D \cup E \cup F$.

Then $\mu(A_n \cup A_m) = \mu(D \cup E \cup F) = \mu(D) + \mu(E) + \mu(F)$ since D, E, F are disjoint.

Further, $\mu(A_n) + \mu(A_m) = \mu(E \cup F) + \mu(D \cup F) = \mu(E) + \mu(D) + 2\mu(F)$ since D, E, F are disjoint.

Since $\mu(F) \ge 0$, $\mu(A_n \cup A_m) = \mu(D) + \mu(E) + \mu(F) \le \mu(E) + \mu(D) + 2\mu(F) = \mu(A_n) + \mu(A_m)$.

 $\Rightarrow \mu(A_n \cup A_m) \le \mu(A_n) + \mu(A_m) \text{ for any } A_n, A_m \in \{A_i\}$

 $\Rightarrow \mu(\bigcup_{i=1}^{\infty} \{A_i\}) \leq \sum_{i=1}^{\infty} \mu(A_i).$

1.18 Let (X, S, μ) be a measure space and $B \in S$. Suppose $\lambda : S \to [0, \infty]$ defined by $\lambda(A) = \mu(A \cap B)$.

 $\lambda(\emptyset) = \mu(\emptyset \cap B) = \mu(\emptyset) = 0$ since μ is a measure.

Let $\{A_i\}_{i=1}^{\infty} \in S$ with $A_i \cap A_j = \emptyset$ whenever $i \neq j$.

Then $\lambda(\bigcup_{i=1}^{\infty} A_i) = \mu((\bigcup_{i=1}^{\infty} A_i) \cap B) = \mu(\bigcup_{i=1}^{\infty} (A_i \cap B)) = \sum_{i=1}^{\infty} \mu(A_i \cap B) = \sum_{i=1}^{\infty} \lambda(A_i)$ since all A_i are disjoint.

 $\Rightarrow \lambda$ is a measure.

1.20 Let μ be a measure on (X, S). and suppose $A_1 \supset A_2 \supset A_3 \supset ...$ for all $A_n \in S$ and $\mu(A_1) < \infty$.

Define $B_n = A_1 \setminus A_n \ \forall n \in \mathbb{N}$.

Then $A_1 = B_n \cup A_n \ \forall n \in \mathbb{N}$ and $B_n \cap A_n = \emptyset \ \forall n \in \mathbb{N}$. Thus, $\mu(A_1) = \mu(B_n) + \mu(A_n)$ and therefore $\mu(A_n) = \mu(A_1) - \mu(B_n)$.

Define $B = \bigcup_{i=1}^{\infty} B_i$. Then the conditions for part i of 1.19 are met for $\{B_i\}$, so we have: $\mu(B) = \lim_{n \to \infty} \mu(B_n)$

Note that:

- $A_1 \setminus \bigcap_i^{\infty} A_i = A_1 \cap \left(\bigcap_i^{\infty} A_i\right)^c = \bigcup_{i=1}^{\infty} \left(A_1 \cap A_i^c\right) = \bigcup_{i=1}^{\infty} (A_1 \setminus A_i) = B$
- $\mu(A_1) = \mu(A_1 \setminus \bigcap_{i=1}^{\infty} A_i i) + \mu(\bigcap_{i=1}^{\infty} A_i) = \mu(B) + \mu(\bigcap_{i=1}^{\infty} A_i)$
- $\mu(\bigcap_{i=1}^{\infty} A_i) = \mu(A_1) \mu(B)$

So now we have: $\mu(\bigcap_{i=1}^{\infty} A_i) = \mu(A_1) - \lim_{n \to \infty} \mu(B_n)$ and: $\mu(\bigcap_{i=1}^{\infty} A_i) = \lim_{n \to \infty} (\mu(A_1) - \mu(B_n)) = \lim_{n \to \infty} \mu(A_n)$

2.10 Let μ^* be an outer measure on a set X and let \mathcal{M} be the set of all $E \in X$ such that $\mu^*(B) = \mu^*(B \cap E) + \mu^*(B \cap E^C) \ \forall B \subset X$.

Then \mathcal{M} is a σ -algebra.

Since μ^* is an outer measure, $\mu^*(B) \leq \mu^*(B \cap E) + \mu^*(B \cap E^C) \ \forall E \in \mathcal{M}$ and $\forall B \subseteq X$ by subadditivity.

By construction we have $\mu^*(B) \ge \mu^*(B \cap E) + \mu^*(B \cap E^C) \ \forall E \in \mathcal{M} \ \text{and} \ \forall B \in X$. So we must have $\mu^*(B) = \mu^*(B \cap E) + \mu^*(B \cap E^C) \ \forall E \in \mathcal{M} \ \text{and} \ \forall B \in X$.

2.14 Let O be the set of all open sets of \mathbb{R} . Let A be an algebra containing O. A exists because we can form a set containing all open sets, their finite unions, and their complements.

Let $\{S_{\alpha}\}$ be the set of all σ -algebras containing A.

Then $B(\mathcal{R}) = \sigma(O) \subseteq \sigma(A) = \bigcap_{\alpha} \{S_{\alpha}\}$ because $O \subseteq A \subseteq S_{\alpha} \ \forall \alpha$.

By $2.12 \ \sigma(A) \subset M$, so $B(\mathcal{R}) = \sigma(O) \subset M$.

3.1 Let $A \in M$ be a countable set and $\epsilon > 0$. Since A is countable, it is a null set, so we can construct a set of intervals $\{I_n\}_{n=1}^{\infty}$ such that $A \subseteq \bigcup_{n=1}^{\infty} I_n$ and the sum of the lengths of all intervals in $\{I_n\}_{n=1}^{\infty}$ is less than ϵ .

Since $\mu = \mu * |_{M}$, μ is monotonic and countably subadditive.

So $\mu(A) \leq \mu(\{I_n\}_{n=1}^{\infty} \leq \sum_{n=1}^{\infty} \mu(I_n)$. Since the sum of lengths of intervals $\{I_n\}_{n=1}^{\infty}$ is less than ϵ and ϵ can be arbitrarily small, we must have $\mu(A) \leq \mu(\{I_n\}_{n=1}^{\infty} \leq \sum_{n=1}^{\infty} \mu(I_n) = 0$. Since $\mu(A) \geq 0$, $\mu(A) = 0$.

3.4 Suppose (X, \mathcal{M}, μ) , $f: X \to \mathbb{R}$, and $\forall a \in \mathbb{R}, \{x \in X : f(x) < a\} \in \mathcal{M}$.

Then since \mathcal{M} is closed under complements, $\forall a \in \mathbb{R}, \{x \in X : f(x) < a\}^C = \{x \in X : f(x) \ge a\} \in \mathcal{M} \ \forall a \in \mathbb{R}.$

Let $b \in \mathbb{R}$. Then $\forall n \in \mathbb{N}, \{x \in X : f(x) < b + \frac{1}{n}\} \in \mathcal{M}$ by assumption.

Since σ -algebras are closed under countable intersections, $\bigcap_{n=1}^{\infty} \{x \in X : f(x) < b + \frac{1}{n}\} = \{x \in X : f(x) \le b\} \in \mathcal{M}$.

So $\{x \in X : f(x) < a\} \in \mathcal{M} \Rightarrow \{x \in X : f(x) \le a\} \in \mathcal{M}.$

Since \mathcal{M} is closed under complements, $\{x \in X : f(x) \leq a\} \in \mathcal{M} \Rightarrow \{x \in X : f(x) < a\}^C = \{x \in X : f(x) \geq a\} \in \mathcal{M}.$

Thus, containment of each of the 4 sets in \mathcal{M} is equivalent.

3.7 Suppose $f, g, \{f_n\}_{n \in \mathbb{N}}, \{g_n\}_{n \in \mathbb{N}}$ are measurable functions.

Suppose further that $F:(im(f),im(g))\to\mathbb{R}$ is continuous. Then f+g and fg are continuous and therefore measurable.

Since f and g are measurable on $(X, \mathcal{M}), \forall a \in \mathbb{R}, \{x \in X : f(x) < a\} \in \mathcal{M}$ and $\{x \in X : q(x) < a\} \in \mathcal{M}.$

 $\{x \in X : \max(f(x), g(x)) < a\} = \{x \in X : f(x) < a\} \cap \{x \in X : g(x) < a\}.$ \mathcal{M} is closed under countable intersections. Therefore, $\{x \in X : \max(f(x), g(x)) < 0\}$ $a \in \mathcal{M}$. Thus, $\max(f(x), g(x))$ is measurable. $|f| = \max(f, -f)$ so by 1, |f| is measurable.

3.14 Suppose $f: X \to \mathbb{R}$ and $f(x) \leq M \ \forall x \in X$. Let $\epsilon > 0$.

By the Archimedian property, $\exists N_1 \in \mathbb{N}$ such that $\frac{1}{2^n} < \epsilon \ \forall n \geq N_1$.

Define $N = \max\{M, N_1\}$. Then $\forall x \in X, \exists i \text{ such that } x \in E_i^N$. Then $\forall n \geq N$ we have $|s_n(x) - f(x)| < \epsilon \ \forall x \in X$.

4.13 Suppose f measurable, ||f|| < M on $E \in M$, and $\mu(E) < \infty$.

Then $\int_E ||f|| d\mu < \int_E M d\mu = M\mu(E) < \infty$ since $M, \mu(E) < \infty$ by assumption.

By definition, $\int_E ||f|| d\mu < \infty \Rightarrow f \in \mathcal{L}^1(E,\mu)$.

4.14 Proof by contrapositive:

Suppose f is infinite on $E' \subseteq E$ and $\mu(E') > 0$.

Then $f(E') = \infty = \int_{E'} f d\mu \le \int_{E} f d\mu \le \int_{E} ||f|| d\mu$.

 $\int_{E} ||f|| d\mu \le \infty \Rightarrow f \not\in \mathcal{L}^{1}(E, \mu).$

So by contrapositive we have shown that $f \in \mathcal{L}^1(E,\mu) \Rightarrow \text{if } f$ is infinite on a set $A, then \mu(A) = 0.$

4.15 Suppose $f, g \in \mathcal{L}^1(\mu, E)$ and $f(x) \leq g(x) \forall x \in E$.

Define $h(x) = q(x) - f(x) \ \forall x \in E$. Then $h(x) > 0 \ \forall x \in E$.

By linearity of Lebesque integrals, as is alluded to in the notes and is readily verifiable: $\int_E h d\mu = \int_E (g - f) d\mu = \int_E g d\mu - \int_E f d\mu \ge 0.$

So $\int_E \bar{f} d\mu \leq \int_E \bar{g} d\mu$.

4.16 Suppose $f \in \mathcal{L}^1(\mu, E)$, $A \in \mathcal{M}$, and $A \subseteq E$.

 $f \in \mathcal{L}^1(\mu, E) \Rightarrow \int_E ||f|| d\mu = \int_E f^+ d\mu + \int_E f^- d\mu < \infty.$

Since $\int_{E} f^{+}d\mu < \infty$ and $A \subseteq E$, $\int_{A} f^{+}d\mu < \infty$. Since $\int_{E} f^{-}d\mu < \infty$ and $A \subseteq E$, $\int_{A} f^{-}d\mu < \infty$. Since $\int_{A} f^{+}d\mu < \infty$ and $\int_{A} f^{-}d\mu < \infty$, $f \in \mathcal{L}^{1}(\mu, A)$.

4.21 Suppose $A, B \in \mathcal{M}$, $\mu(A / B) = 0$, $B \in A$, and $f \in \mathcal{L}^1$. Then by 4.19, $\lambda(A) = \int_A f d\mu$ is a measure. Thus it is countably subadditive, $A / B \cap B = \emptyset$, and $\int_{A/B} f d\mu = 0$ by 4.6, so: $\lambda(A) = \int_A f d\mu = \int_{A/B} f d\mu + \int_B f d\mu = \int_B f d\mu = \lambda(A / B) + \lambda(B) = \lambda(B).$ So $\int_A f d\mu = \int_B f d\mu$.