Search Algorithems

Timor Sharabi

June 2020

1 Manhattan Distance Heuristic is Consistence

For a heuristic to be consistent, we must show that

$$h(n) \le h(n') + c(n, n') \quad \forall n, n'$$

in Manhattans distance we have 2 cases, after a move one less tile is out of position or one more tile is out of position, since we can move only the blank.

case 1: After a move, one more tile is out of position, $c(n, n') \ge 1$, therefore

$$h(n) = h(n') - 1$$

 $\leq h(n') - 1 + c(n, n')$
 $\leq h(n') + c(n, n')$

case 2: After a move, one more tile is in position, $c(n, n') \geq 1$, therefore

$$h(n) = h(n') + 1$$

$$\leq h(n') + c(n, n')$$

2 Manhattan Distance Heuristic is Admissible

Moreover, we will prove that any heuristic which is consistent, must be admissible.

Definition 2.1. let c(n, a, n') be the cost by moving from node n to node n' via operation a.

Assume h is a consistence heuristic function and let k(n) be the cost of the cheapest path from n to the goal node.

We will prove by induction on the number of steps to the goal that $h(n) \leq k(n)$. Base case: we already on the goal then we have more 0 steps from node n, then n is a goal. Hence,

$$h(n) = 0 \le k(n).$$

Induction step:

If n is i steps away from the goal, there must exist some node n' that move one step from n, by operation a s.t. n' is on the optimal path from n to the goal (via operation a) and n' is i-1 steps away from the goal. Therefore(by assuming h is consistence),

$$h(n) \le c(n, a, n') + h(n')$$

But by the induction hypothesis, we know that $h(n') \leq k(n')$. Therefore,

$$h(n) \le c(n, a, n') + k(n') = k(n)$$

Since n' is on the optimal path from n to the goal via operation a.