

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address COMMISSIONER FOR PATENTS P O Box 1450 Alexandra, Virginia 22313-1450 www wayto gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/761,783	01/21/2004	Fahd Bin Jawad Pirzada	016295.1523 (DC-05823)	3540
23640 7590 69901/25099 BAKER BOTTS, LLP 910 LOUISIANA HOUSTON, TX 77002-4995			EXAMINER	
			GILLIS, BRIAN J	
HOUSTON, I	X 7/002-4995		ART UNIT	PAPER NUMBER
			2441	
			NOTIFICATION DATE	DELIVERY MODE
			09/01/2009	ELECTRONIC

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Notice of the Office communication was sent electronically on above-indicated "Notification Date" to the following e-mail $\,$ address(es):

debbie.allen@bakerbotts.com

Application No. Applicant(s) 10/761,783 JAWAD PIRZADA ET AL. Office Action Summary Examiner Art Unit Brian J. Gillis 2441 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 29 May 2009. 2a) This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4) Claim(s) 1-20 is/are pending in the application. 4a) Of the above claim(s) _____ is/are withdrawn from consideration. 5) Claim(s) _____ is/are allowed. 6) Claim(s) 1-20 is/are rejected. 7) Claim(s) _____ is/are objected to. 8) Claim(s) _____ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) ☐ The drawing(s) filed on 21 January 2004 is/are: a) ☐ accepted or b) ☐ objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. Attachment(s)

PTOL-326 (Rev. 08-06)

1) Notice of References Cited (PTO-892)

Paper No(s)/Mail Date 05292009.

2) Notice of Draftsperson's Patent Drawing Review (PTO-948)

Interview Summary (PTO-413)
Paper No(s)/Mail Date.

6) Other:

Notice of Informal Patent Application

Art Unit: 2441

DETAILED ACTION

Claim Rejections - 35 USC § 102

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless -

(e) the invention was described in (1) an application for patent, published under section 122(b), by another filed in the United States before the invention by the applicant for patent or (2) a patent granted on an application for patent by another filed in the United States before the invention by the applicant for patent, except that an international application filed under the treaty defined in section 351(a) shall have the effects for purposes of this subsection of an application filed in the United States only if the international application designated the United States and was published under Article 21(2) of such treaty in the English language.

Claims 1-20 are rejected under 35 U.S.C. 102(e) as being anticipated by Rusch (US Patent #6,801,777).

(Claim 1 discloses) a method for dynamically switching between network protocols, the method comprising: conducting network communications from a client system via a first network protocol (Rusch shows a connection to the first network is made (Figure 2, column 6, lines 39-41 and 55-65).); receiving, in the client system, performance data for the first network protocol (Rusch shows the device receives performance information regarding the network (column 6, lines 39-54).); receiving, in the client system, performance data for a second network protocol available to the client system (Rusch shows the devices receives data for other networks (column 6, lines (39-54).); receiving from a user a ranking of one or more performance factors displayed to the user to be used in determining whether to dynamically switch between network protocols (Rusch shows a user provides preferences or ranking of performance factors to the wireless device such as a laptop or PDA which includes a display and are used in

Art Unit: 2441

determining whether to dynamically to make a switch (column 2, lines 27-41 and column 5, line 55—column 6, line 11); while conducting network communications with the first network protocol, automatically determining whether switching from the first network protocol to the second network protocol would improve performance for the client system based at least on the user's ranking of the one or more performance factors; (Rusch shows the device monitors the connections and makes a determination to switch networks utilizing the user's ranking of performance factors (column 6, line 55 – column 7, line 6).); and in response to determining that switching to the second network protocol would cause improved performance for the client system, automatically switching from the first network protocol to the second network protocol (Rusch shows a automatic switch between the networks is made (column 6, lines 10-12, and column 6, line 66 - column 7, line 6)).

(Claim 2 discloses) the method of claim 1, wherein the first network protocol and second network protocol comprise a wireless network protocol selected from the group consisting of 802.11a, 802.11b and 802.11g (Rusch shows the capability to use the IEEE wireless standards (column 2, lines 52-55)).

(Claim 3 discloses) the method of claim 1, further comprising: receiving, in the client system, performance data for a third network protocol available to the client system (Rusch shows the device receives information on various networks available (column 6, lines 39-54).); while conducting network communications with the first network protocol automatically determining whether switching from the first network protocol to the third network protocol would improve performance for the client system

Art Unit: 2441

(Rusch shows the device monitors the connections and makes a determination to switch networks (column 6, line 66 – column 7, line 6).); and in response to determining that switching to the third network protocol would cause improved performance for the client system, automatically switching from the first network protocol to the third network protocol (Rusch shows a automatic switch between the networks is made (column 6, line 50 - column 7, line 6)).

(Claim 4 discloses) the method of claim 1, further comprising: determining that switching to the second network protocol would cause improved performance based on energy consumption for the client system (Rusch shows the device makes a switch based on power consumption (column 5, line 55 – column 6, line 12).); and switching from the first network protocol to the second network protocol (Rusch shows the device switches networks (column 6, line 66 - column 7, line 6)).

(Claim 5 discloses) the method of claim 1, further comprising: storing performance data for the first network protocol and second network protocol in the client system (Rusch shows the system processor obtains and stores performance data for the networks (column 3, lines 45-65 and column 5, lines 1-3).); and accessing the performance data for the first network protocol and second network protocol (Rusch shows the data obtained is used by the device (column 3, lines 45-65, and column 5, lines 1-3)).

(Claim 6 discloses) the method of claim 1, wherein performance data for the first network protocol and second network protocol comprises signal quality data (Rusch shows quality of service data for the network is stored (column 3, lines 45-65)).

Art Unit: 2441

(Claim 7 discloses) the method of claim 1, wherein performance data for the first network protocol and second network protocol comprises signal strength data (Rusch shows quality of service data for the network is stored (column 3, lines 45-65)).

(Claim 8 discloses) an information handling system for dynamically switching between network protocols, the information handling system comprising: a user interface configured to receive from a user a ranking of one or more performance factors displayed to the user to be used in determining whether to dynamically switch between network protocols (Rusch shows a user provides preferences or ranking of performance factors to the wireless device such as a laptop or PDA which includes a display and are used in determining whether to dynamically to make a switch (column 2, lines 27-41 and column 5, line 55—column 6, line 11); a receiver module including logic instructions stored in computer-readable media and operable to receive communications governed by at least two network protocols (Rusch shows receiving communications from networks (Figure 1, 106).); a performance data module including logic instructions stored in computer-readable media and associated with the receiver module, the performance data module operable to obtain network performance data for the at least two network protocols (Rusch shows the device monitors the connections and makes a determination to switch networks (column 6, line 66 - column 7, line 6).); and a dynamic switching module including logic instructions stored in computerreadable media and associated with the performance data module, the dynamic switching module operable to monitor performance data and determine whether to dynamically switch between network protocols based at least on the network

Art Unit: 2441

performance data and the user's ranking of the one or more performance factors (Rusch shows the device monitors the connections and makes a determination and automatically switches networks utilizing the user's ranking of performance factors (column 6, line 55 – column 7, line 6)).

(Claim 9 discloses) the information handling system of claim 8, further comprising a performance data storage module operable to store performance data, the performance data storage module associated with the performance data module and the dynamic switching module (Rusch shows the obtained network performance data is stored (Figure 1, column 5, lines 1-3)).

(Claim 10 discloses) the information handling system of claim 9, wherein the performance data storage module further comprises at least one register, the at least one register operable to store performance data (Rusch shows the data is stored in a storage element (column 5, lines 1-3)).

(Claim 11 discloses) the information handling system of claim 8, wherein the dynamic switching module further comprises: a network protocol setting module operable to identify wireless communications according to the at least two network protocols (Rusch shows receiving communications from networks (Figure 1, 106).); a performance data comparison module operable to compare performance data for the at least two network protocols, and determine if switching to a second network protocol would improve network performance (Rusch shows the device monitors the connections and makes a determination to switch networks (column 6, line 66 – column 7, line 6).); and the dynamic switching module operable to switch to a second network protocol if

Art Unit: 2441

the performance data comparison module determines that switching to a second network protocol would cause improved performance (Rusch shows a automatic switch between the networks is made (column 6, lines 10-12, and column 6, line 66 - column 7, line 6)).

(Claim 12 discloses) the information handling system of claim 8, wherein the at least two network protocols comprise wireless network protocols selected from the group consisting of 802.11a, 802.11b and 802.11g (Rusch shows the capability to use the IEEE wireless standards (column 2, lines 52-55)).

(Claim 13 discloses) the information handling system of claim 8, wherein the performance data module further comprises a signal quality indicator operable to monitor signal quality associated with communications according to each of the at least two network protocols (Rusch shows quality of service data for the network is stored (column 3, lines 45-65)).

(Claim 14 discloses) the information handling system of claim 8, wherein the performance data module further comprises a signal strength indicator operable to monitor received signal strength of communications according to each of the at least two network protocols (Rusch shows quality of service data for the network is stored (column 3, lines 45-65)).

(Claim 15 discloses) a wireless network access card for dynamically switching between network protocols, the wireless network access card comprising: a performance data receiver module, operable to receive performance data for communications according to at least two network protocols (Rusch shows the device

Art Unit: 2441

receives data from the networks (Figure 1, 106).); and a dynamic switching module associated with the performance data receiver module, the dynamic switching module operable to monitor and compare performance data of at least two network protocols and determine whether to dynamically switch network protocols based on performance data based at least on user rankings of one or more performance factors received from a user (Rusch shows the device monitors the connections and makes a determination and automatically switches networks utilizing the user's ranking of performance factors (column 6, lines 10-12 and column 6, line 55 – column 7, line 6)).

(Claim 16 discloses) the wireless network access card of claim 15, the dynamic switching module further comprising: a network protocol setting module operable to identify wireless communications according to the at least two network protocols (Rusch shows receiving communications from networks (Figure 1, 106).); a performance data comparison module operable to compare performance data for the at least two network protocols and determine if switching to a second network protocol would improve performance (Rusch shows the device monitors the connections and makes a determination to switch networks (column 6, line 66 – column 7, line 6).); and the dynamic switching module operable to switch to a second network protocol if the performance data comparison module determines that switching to a second network protocol would cause improved performance (Rusch shows a automatic switch between the networks is made (column 6, lines 10-12, and column 6, line 66 - column 7, line 6)).

(Claim 17 discloses) the wireless network access card of claim 15, further comprising at least one storage register, the at least one storage register associated

Art Unit: 2441

with the performance data receiver module and the dynamic switching module and operable to receive performance data from the performance data receiver module and provide performance data to the dynamic switching module (Rusch shows the obtained network performance data is stored in a storage element (Figure 1, column 5, lines 1-3)).

(Claim 18 discloses) the wireless network access card of claim 15, wherein the performance data receiver module further comprises: a signal quality indicator operable to monitor signal quality associated with communications according to each of the at least two network protocols (Rusch shows quality of service data which can include signal quality for the network is stored (column 3, lines 45-65).); and a signal strength indicator operable to monitor received signal strength associated with communications according to each of the at least two network protocols (Rusch shows quality of service data which can include signal strength for the network is stored (column 3, lines 45-65)).

(Claim 19 discloses) the wireless network access card of claim 15, wherein the at least two network protocols comprise wireless network protocols selected from the group consisting of 802.11a, 802.11b and 802.11g (Rusch shows the capability to use the IEEE wireless standards (column 2, lines 52-55)).

(Claim 20 discloses) the wireless network access card of claim 15, further comprising a receiver module operable to receive communications governed by the at least two network protocols (Rusch shows the devices receives data for various networks (column 6, lines (39-54)).

Art Unit: 2441

Response to Arguments

Applicant's arguments filed May 29, 2009 have been fully considered but they are not persuasive.

Applicant asserts the prior art does not teach receiving from a user a ranking of one or more performance factors displayed to the user to be used in determining whether to dynamically switch between network protocols and automatically determining whether switching from the first network protocol to the second network protocol would improve performance for the client system based at least on the user's ranking of the one or more performance factors. The Examiner respectfully disagrees, Rusch shows a user provides preferences or ranking of performance factors to the wireless device such as a laptop or PDA which includes a display and are used in determining whether to dynamically to make a switch, the selections are made by the user ranking quality preferences by selecting one preference or taking precedence over the other selections available (column 2, lines 27-41 and column 5, line 55—column 6, line 11) and the device monitors the connections and makes a determination to switch networks utilizing the user's ranking of performance factors (column 6, line 55—column 7, line 6).

Conclusion

THIS ACTION IS MADE FINAL. Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not

Art Unit: 2441

mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Brian J. Gillis whose telephone number is (571)272-7952. The examiner can normally be reached on M-F 7:30-5:00.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Wing F. Chan can be reached on 571-272-7493. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Art Unit: 2441

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

Brian J Gillis Examiner Art Unit 2441

/B. J. G./ Examiner, Art Unit 2441 8/26/2009

/Larry D Donaghue/ Primary Examiner, Art Unit 2454