МАТЛОГ, ЛЕКЦИИ

1 Общая топология

Определение 1. Топологическим пространством называется упорядоченная пара (X,Ω) , $\Omega\subset 2^X$, причем выполнено

- 1. $\emptyset, X \in \Omega$
- 2. $\bigcup A_i \in \Omega$ если $\forall i \ A_i \in \Omega$
- 3. $\bigcap_n A_i \in \Omega$, если $\forall i \ A_i \in \Omega$

Определение 2. Связным топологическим пространством называется такое топ. пространство (X,Ω) , в котором нет $A,B\in\Omega$ таких, что $A\cup B=X$ и $A\cap B=\emptyset$.

Определение 3. Подпространством пространства (X,Ω) называется топологическое пространство (X_1,Ω_1) , где $X_1\subset X$ и $\Omega_1=\{A\cap X_1\mid A\in\Omega\}$. Это подпр-во так же называется индуцированным подпространством.

Определение 4. Подмножество (Y) пр-ва $((X,\Omega))$ называется связным, если связно индуцированное им подпространство.

Пример топологии на (подвешенном) лесе. Теорема: лес связен титт., когда он связен как топ. пространство.

Определение 5. Рассмотрим частично-упорядоченное множество $X,\ (X,\leqslant)$. Решеткой называется....

Пример: топологическое пространство с порядком по включению является решеткой. Антипример: произвольное дерево не является решеткой.

Определение 6. Дистрибутивной решеткой называется такая решетка, в которой

$$(a+b)c = ac + bc$$
 $a+bc = (ab) + (ac)$

(Теорема ...)

Определение 7. Псевдодополнение $a \to b$ это наибольший c из всех таких c, что $ac \leqslant b$. Решетка, в которой псевдодополнение определено для всех пар элементов, называется импликативной.

Пример: решетка - диамант.

Определение 8. Ноль 0 и единица 1 — это нейтральные элементы операций + и \cdot одновременно.

Теорема 1. Рассмотрим импилкативную решетку (X, \leqslant) с 0. Рассмотрим интуиционисткое исчисление высказываний, определим оценку следующим образом: $[\![\alpha \land \beta]\!] = [\![\alpha]\!] \cdot [\![\beta]\!]$, $[\![\alpha \lor \beta]\!] = [\![\alpha]\!] + [\![\beta]\!]$, $[\![\alpha \to \beta]\!] = [\![\alpha]\!] \to [\![\beta]\!]$, $[\![\neg \alpha]\!] = [\![\alpha]\!] \to 0$.

Исчисление высказываний с которым мы работали называется исчислением гильбертовского типа — очень много аксиом и практически одно правило вывода, и это несколько неудобно, как мы увидели. Не мы одни такие умные. Люди придумали что-то ещё. Полноты ради секвенциальное исчисление будет обсуждаться в конце, если останется время.

Теперь мы обсудим кое-что ещё. Доказательства в этой системе рисуются в виде дерева, в отличиии от длинного списка, как получается в гильбертовском исчислении. Вид док-ва: $\Gamma \vdash \varphi$.

Схемы:

1.

$$\frac{\Gamma, \phi \vdash \psi}{\psi}$$