

Chinese Chess Al

- Human Mode
- Simulations Mode
- ❖ Angular2 + SemanticUI
- ❖ Node.js
- * Typescript

- Popularity in China
- Scarcity of AI-powered Game Engine

- Complex Game Rules
- Large branching factor (38)

Materials Value

- Piece Value
- Piece Position

Attacking Power

- Number of Threatening
- Number of Captures
- Number of Center Cannons
- Number of Aligned Cannons

Mobility

- Mobility of Rook
- Mobility of Cannon
- Mobility of Horse
- Mobility of Elephant

-	Search Efficiency
	**
	Selection Expansion Backpropagate Simulation

Strategy	Search Depth	Average Runtime for Each Move(ms)
Alpha-Beta Pruning	2	76
Greedy	1	3
Alpha-Beta Pruning	3	600
Alpha-Beta Pruning	4	7307
Alpha-Beta Pruning with Move Reorder (Type A)	2	72
Alpha-Beta Pruning with Move Reorder (Type A)	3	239
Alpha-Beta Pruning with Move Reorder (Type A)	4	3175
Temporal Difference Learning	2	393
Temporal Difference Learning	3	1176
Temporal Difference Learning	4	9568
Monte Carlo Tree Search	2	43
Monte Carlo Tree Search	3	105
Monte Carlo Tree Search	4	315

Win:1

y Search Effenciency Comparison

- **Greedy**
- * MiniMax
- **Alpha-beta Pruning**
- **Pruning with Move Reorder**
- * Monte Carlo Tree Search
- **Temporal Difference Learning**

Li Deng dengl11@stanford.edu Stanford CS221 2016 Autumn

 ϕ_i : feature vector saved during game t for state i

f: normalizing function $f = (\frac{1}{1 + \exp^{-x}} - 0.5) \times A$

 $w^{t+1} := w^t + \eta \cdot f(\sum \phi_i) \times r^t$

 r^t : reward at game $r = \langle$

A: scaling parameter