Theoretische Mechanik Sommersemester 2023

Prof. Dr. W. Strunz, Dr. R. Hartmann, Institut für Theoretische Physik, TU Dresden https://tu-dresden.de/mn/physik/itp/tqo/studium/lehre

Präsenzübung (Besprechung 3.4. - 7.4.)

1. Krummlinige Koordinatensysteme

Im Ursprung \mathscr{O} eines dreidimensionalen Euklidischen Raums sei ein kartesisches Koordinatensystem mit den Basisvektoren $\{\vec{E}_x,\vec{E}_y,\vec{E}_z\}\equiv\{\vec{E}_i\}_{i=1,2,3}$ mit $\vec{E}_i\cdot\vec{E}_j=\delta_{ij}$ errichtet. Die Trajektorie $\vec{r}(t)$ hat in diesem Bezugssystem die Darstellung $\vec{r}(t)=x(t)$ $\vec{E}_x+y(t)$ $\vec{E}_y+z(t)$ $\vec{E}_z\equiv\sum_{i=1}^3x_i(t)$ \vec{E}_i . Die Koordinaten $x_i=x_i(t)$ seien beliebige Funktionen der Zeit t. Die Einführung krummliniger Koordinaten $q_k=q_k(t)$ basiert auf der Angabe von Transformationsgleichungen der Form $x_i=x_i(q_1,q_2,q_3)\equiv x_i(q_k)$ aus denen sich die (normierten) lokalen Basisvektoren gemäß $\vec{e}_k=\left(\frac{\partial \vec{r}}{\partial q_k}\right)/\left|\left(\frac{\partial \vec{r}}{\partial q_k}\right)\right|$ berechnen. Es gilt also für die Darstellung des infinitesimalen Abstandsvektors: $d\vec{r}=\sum_{k=1}^3\frac{\partial \vec{r}}{\partial q_k}\,dq_k=\sum_{k=1}^3\left|\frac{\partial \vec{r}}{\partial q_k}\right|\,dq_k\,\vec{e}_k$. Wichtige Beispiele für krummlinige Koordinatensysteme sind:

• Zylinderkoordinaten, $(q_1 = \rho, q_2 = \varphi, q_3 = z)$

$$x_1 = x = \rho \cos(\varphi)$$
$$x_2 = y = \rho \sin(\varphi)$$
$$x_3 = z = z$$

$$x_1 = x = r \sin(\theta) \cos(\varphi)$$

$$x_2 = y = r \sin(\theta) \sin(\varphi)$$

$$x_3 = z = r \cos(\theta)$$

- a) Veranschaulichen Sie sich die Relation $\vec{e}_k \sim \frac{\partial \vec{r}}{\partial q_k}$.
- b) Berechnen Sie jeweils die lokalen Basisvektoren \vec{e}_k und geben Sie die Komponentendarstellung des Ortsvektors $\vec{r}(t)$ bezüglich Zylinder- und Kugelkoordinaten an. Notieren Sie explizit die Abhängigkeit des Ortsvektors von den Koordinaten q_k , d.h.

$$\vec{r} = \vec{r}(q_1, q_2, q_3) = \sum_{k=1}^{3} c_k(q_1, q_2, q_3) \vec{e}_k(q_1, q_2, q_3)$$
.

- c) Verifizieren Sie, dass für das Quadrat der Linienelemente $d\ell^2:=|d\vec{r}\,|^2$ gilt: $d\ell^2=d\rho^2+\rho^2d\varphi^2+dz^2$ bzw. $d\ell^2=dr^2+r^2d\theta^2+r^2\sin^2(\theta)d\varphi^2$.
- d) Leiten Sie die Geschwindigkeit $\vec{v}(t)$ und die Beschleunigung $\vec{a}(t)$ in Kugelkoordinaten her.

2. Flächensatz der Planetenbahnen

"Ein von der Sonne zum Planeten gezogener Fahrstrahl überstreicht in gleichen Zeiten gleich große Flächen." (Johannes Kepler, 17. Jh.)

a) Ein Massenpunkt bewege sich auf einer Raumkurve $\vec{r}(t)$. Zeigen Sie über die geometrische Bedeutung des Vektorprodukts, dass in einem kleinen Zeitintervall Δt die Verbindungslinie (Fahrstrahl) vom Ursprung $\mathscr O$ zur Position $\vec{r}(t)$ des Massenpunktes die Fläche $\Delta A(t) = \frac{1}{2} \, |\vec{r}(t) \times \Delta \vec{r}(t)|$ überstreicht. Leiten Sie somit die Flächengeschwindigkeit $f(t) \coloneqq \dot{A}(t) = \mathrm{d}A/\mathrm{d}t$ her.

- b) Zeigen Sie, dass der Flächensatz $\frac{d}{dt}f(t) = \dot{f}(t) = 0$ gilt, wenn die Beschleunigung $\vec{a}(t) = \dot{\vec{v}}(t) = \ddot{\vec{r}}(t)$ proportional zu $\vec{r}(t)$ ist.
- c) Gegeben sei die Bahnkurve $\vec{r}(t) = \rho \vec{e}_{\rho} + z \vec{e}_{z}$ in Zylinderkoordinaten. Betrachten Sie speziell eine Bewegung in der x, y-Ebene mit $\rho(t), \varphi(t)$ und z(t) = 0 und leiten Sie den Ausdruck für die Flächengeschwindigkeit $f(t) = \frac{1}{2}\dot{\varphi}\rho^{2}$ her.

3. Drehungen als orthogonale Transformationen

Wir betrachten eine aktive Drehung eines Vektors $\vec{a} \stackrel{R}{\longrightarrow} \vec{a}'$ bezüglich eines festgehaltenen kartesischen Basissystems $\{\vec{E}_i\}$ im dreidimensionalen Raum. Die Vektorkomponenten a'_i und a_i sind über die Komponenten $(R)_{ij} = R_{ij}$ der Rotationsmatrix R gemäß $a'_i = \sum_j R_{ij} a_j$ verknüpft. Für orthogonale Transformationen gilt die definierende Eigenschaft: $R^T = R^{-1}$ bzw. in Komponentenschreibweise $(R^{-1})_{ij} = (R^T)_{ij} = (R)_{ji}$.

- a) Zeigen Sie, dass das Produkt R_1R_2 zweier orthogonaler Matrizen R_1 und R_2 wieder eine orthogonale Matrix ergibt.
- b) Zeigen Sie, dass das Skalarprodukt $\vec{a} \cdot \vec{b}$ zweier Vektoren unter orthogonalen Transformationen eine Invariante darstellt.
- c) Überprüfen Sie wesentliche Zusammenhänge aus Teil a) und b) anhand der konkreten Rotationsmatrizen

2

$$R(\varphi) = \begin{pmatrix} \cos(\varphi) & \sin(\varphi) & 0 \\ -\sin(\varphi) & \cos(\varphi) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

welche Drehungen um die z-Achse vermitteln.

