

Финал - Бэкенд-разработка

О 1 июн 2019, 16:00:13

старт: 1 июн 2019, 12:00:00

финиш: 1 июн 2019, 16:00:00

длительность: 04:00:00

начало: 1 июн 2019, 12:00:00 конец: 1 июн 2019, 16:00:00

С. Разбиение на рекламные блоки

Ограничение времени	2 секунды
Ограничение памяти	256Mb
Ввод	стандартный ввод или input.txt
Вывод	стандартный вывод или output.txt

Уже не первый год в Байтландии идёт тяжелая борьба за быструю отрисовку страниц в интернете...

Одним из шагов к победе стало нововведение Баннерной крутилки: отдавать баннеры для нескольких блоков в одном ответе, тем самым сохранив дополнительные вызовы, а с ними и время. Однако оказалось, что совсем непросто разумно разбить полученные баннеры по блокам.

Имеется N баннеров, которые мы хотим разбить на K блоков. В ответе есть массив P, где P_i — прогнозируемая польза от показа i-го баннера, а также массив L, где L_i — возможная потеря внимания пользователя на j-й по счёту блок.

Аналитик Виталик тестирует гипотезы, которые должны в первую очередь повысить счастье пользователя. Сейчас он прорабатывает следующую метрику: для блока вводим функцию $f\left(Block_s\right) = P_{min} \cdot len\left(Block_s\right) - L_s P_{max}$, где P_{min} — минимальное значение P среди баннеров в блоке, P_{max} — максимальное, $len\left(Block_s\right)$ — количество баннеров в блоке, s — номер блока в разбиении. Значением метрики для конкретного разбиения является сумма значений f для всех блоков в этом разбиении. На каждом запросе необходимо находить разбиение, которое максимизирует эту метрику.

Виталик умеет решать эту задачу, но его алгоритм оказался не очень быстрым. Вас, как эксперта, попросили помочь ему и ускорить отбор!

Формат ввода

Первая строка входных данных содержит 2 целых числа N и K ($1 \le N \le 5 \cdot 10^4$, $1 \le K \le \min{(100, N)}$). Вторая стока содержит N целых чисел $1 \le P_i \le 10^6$; гарантируется, что $P_i > P_{i+1}$.

Третья строка содержит K целых чисел $0 \le L_i \le 10^6$.

Формат вывода

Выведите одно целое число — значение метрики для наилучшего разбиения.

Пример 1

Ввод	Вывод
4 2	7
6 4 3 1	
0 3	

Пример 2

Ввод	Вывод
10 3	19
10 9 8 7 6 5 4 3 2 1	
0 4 2	

Примечания

В первом примере возможны три разбиения:

- $(6) | (4\ 3\ 1)$, со значением метрики -3;
- $(6\ 4)\,|\,(3\ 1)$, со значением метрики 1;
- $(6\ 4\ 3)\ |\ (1)$, со значением метрики 7.

© 2013-2019 ООО «Яндекс»