INTRO TO RNASEQ AND QUALITY CONTROL/TRIMMING

RNASEQ

RNASEQ

RNA EXTRACTION METHODS:

- Dependent on starting material: Tissue type, Amount
- End product: mRNA or total RNA?
 - Total RNA: Trizol vs. Columns (Promega, RNeasy, ect.)
 - mRNA: direct extraction or isolation from total RNA

http://www.nature.com/nprot/journal/v8/n11/full/nprot.2013.141.htm

RNA-Seq: How do we make cDNA?

Slide courtesy of Joshua Levin, Broad Institute.

Slide from: https://github.com/trinityrnaseq/RNASeq_Trinity_Tuxedo_Workshop/blob/master/docs/ rnaseq_workshop_slides.pdf

Overview of RNA-Seq

From: http://www2.fml.tuebingen.mpg.de/raetsch/members/research/transcriptomics.html

Slide from: https://github.com/trinityrnaseq/RNASeq_Trinity_Tuxedo_Workshop/blob/master/docs/ rnaseq_workshop_slides.pdf

Common Data Formats for RNA-Seq

FASTA format:

>61DFRAAXX100204:1:100:10494:3070/1

AAACAACAGGGCACATTGTCACTCTTGTATTTGAAAAAACACTTTCCGGCCAT

FASTQ format:

@61DFRAAXX100204:1:100:10494:3070/1

AAACAACAGGGCACATTGTCACTCTTGTATTTGAAAAACACTTTCCGGCCAT

+

ACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC@@CACCCCCA

Read

Quality values

AsciiEncodedQual(x) =
$$-10 * log10(Pwrong(x)) + 33$$

AsciiEncodedQual ('C') = 64

So, Pwrong('C') = $10^{(64-33/(-10))}$ = $10^{-3.4}$ = **0.0004**

Slide from: https://github.com/trinityrnaseq/RNASeq_Trinity_Tuxedo_Workshop/blob/master/docs/rnaseq_workshop_slides.pdf

Paired-end Sequences

Two FastQ files, read name indicates left (/1) or right (/2) read of paired-end

@61DFRAAXX100204:1:100:10494:3070/1
AAACAACAGGGCACATTGTCACTCTTGTATTTGAAAAAACACTTTCCGGCCAT
+
ACCCCCCCCCCCCCCCCCCCCCCCCCC@@CACCCCA

Slide from: https://github.com/trinityrnaseq/RNASeq_Trinity_Tuxedo_Workshop/blob/master/docs/ rnaseq workshop slides.pdf

Overview of RNA-Seq

From: http://www2.fml.tuebingen.mpg.de/raetsch/members/research/transcriptomics.html

Slide from: https://github.com/trinityrnaseq/RNASeq_Trinity_Tuxedo_Workshop/blob/master/docs/ rnaseq_workshop_slides.pdf

COMMON RNASEQ APPLICATIONS

- Raw genetic data
 - Population genomics
 - Phylogenomics
- Experimental biology
 - Differential expression analysis

Journal of Ornithology (2018) 159:599-629 https://doi.org/10.1007/s10336-018-1532-5

REVIEW

Avian transcriptomics: opportunities and challenges

Elinor Jax^{1,2} · Michael Wink³ · Robert H. S. Kraus^{1,2}

Received: 29 September 2017 / Revised: 27 December 2017 / Accepted: 15 January 2018 / Published online: 5 February 2018 © The Author(s) 2018. This article is an open access publication

EXPERIMENTAL DESIGN WET LAB RNA ISOLATION **HYPOTHESIS** AND SELECTION **LIBRARY** CONSTRUCTION SAMPLE COLLECTION AND PRESERVATION **SEQUENCING BIOINFORMATIC PROCESSING** QUALITY CHECK OF RAW READS REFERENCE BASED ASSEMBLY GENE ANNOTATION **DATA ANALYSIS GENE EXPRESSION** SEQUENCE VARIATION **MOLECULAR EVOLUTION** VARIANT CALLING VARIANT CALLING QUANTIFY GENE **EXPRESSION** ATGGCCTGAT ATGCCCTGAT ATGCCCTGAT ATGCCCTGAT ATGCCCTGAT ATGCCCTGAT GENE A GENE B COMPERATIVE **PHYLOGENOMIC SELECTION ANALYSIS ANALYSIS ANALYSIS**

Journal of Ornithology (2018) 159:599-629

Fig. 2 Overview of a typical RNA sequencing workflow. The individual elements of the workflow are detailed in "Planning an RNA-seq study: a quick guide". Protein structure by Richard Wheeler (Zephyris), licensed under Creative Commons 3.0, Wikimedia Commons

COMMON RNASEQ APPLICATIONS

- Raw genetic data
 - Population genomics
 - Phylogenomics
- Experimental biology
 - Differential expression analysis

QUALITY CHECK SHORT READ SEQUENCE

- FASTQC "A quality control tool for high throughput sequence data"
 - http://www.bioinformatics.babraham.ac.uk/projects/ fastqc/

TRIMMING

- Many different trimmers available
- Trim adapters/low quality reads
- Trim Galore! is one that works well on Hydra

HANDS-ON

- ► Go to https://github.com/SmithsonianWorkshops/ SMSC_Conservation_Genomics/tree/master/Day%2007
- Click on "2a_Raw Read QA-QC.md"