# Lecture 13 Normal (Gaussian) Distribution

**BIO210** Biostatistics

Xi Chen

Spring, 2023

School of Life Sciences
Southern University of Science and Technology



#### The PDF of a normal distribution

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \qquad \mathbb{E}[X] = \mu, \ \mathbb{V}\mathrm{ar}(X) = \sigma^2$$

## The Standard Normal (Gaussian) PDF

Standard Normal Distribution: 
$$\mathcal{N}(0,1)$$
:  $f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$ 



General Normal Distribution: 
$$\mathcal{N}(\mu, \sigma^2)$$
:  $f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ 

We have the random variable  $X \sim \mathcal{N}(\mu, \sigma^2)$ . Now consider the following random variable:

$$Y = aX + b$$
 , where  $a$  and  $b$  are constant

- What distribution does Y follow?
- $\mathbb{E}[Y] = ?$
- Var(Y) = ?

$$Y \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$$

Property: A linear function of a normal r.v. is also a normal r.v.

We have the random variable  $X \sim \mathcal{N}(\mu, \sigma^2)$ . Now consider the following random variable:

$$Z = \frac{X - \mu}{\sigma}$$

• What distribution does Z follow?

 $Z \sim \mathcal{N}(0,1)$ 

- $\mathbb{E}[Z] = ?$
- $\operatorname{Var}(Z) = ?$

Given that X and Y are two independent normal random variables, and  $X \sim \mathcal{N}(\mu_x, \sigma_x^2)$  and  $Y \sim \mathcal{N}(\mu_y, \sigma_y^2)$ , now consider the new random variable:

$$W = X + Y$$

- ullet What distribution does W follow?
- $\mathbb{E}[W] = ?$
- $\operatorname{Var}(W) = ?$

$$W \sim \mathcal{N}(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2)$$

Property: the sum of independent normal random variables is still normal.

## **Properties of normal PDFs**

**Dotted line**: one standard deviation away from the mean.



## The Empirical Rule



#### Normal Distribution in real life

- Commonly observed in many natural phenomena: height, weight, blood pressure, chest measurements of Scottish soldiers, etc.
  - In many cases, you need to take the log value.
- Noise or Error.
  - An assumption.
- Sum of many random variables.
  - Only if they have equal weights.
- Sample mean.

TABLE 1: Chest measurement of Scottish soldiers

| Girth | Frequency |
|-------|-----------|
| 33    | 3         |
| 34    | 18        |
| 35    | 81        |
| 36    | 185       |
| 37    | 420       |
| 38    | 749       |
| 39    | 1,073     |
| 40    | 1,079     |
| 41    | 934       |
| 42    | 658       |
| 43    | 370       |
| 44    | 92        |
| 45    | 50        |
| 46    | 21        |
| 47    | 4         |
| 48    | 1         |

### **Probability Calculation**



$$X \sim \mathcal{N}(\mu, \sigma^2)$$

$$\mathbb{P}(a \leqslant X \leqslant b) = \int_{a}^{b} f_X(x) dx$$
$$= \int_{a}^{b} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{-(x-\mu)^2}{2\sigma^2}} dx$$

### The solution is non-elementary!

Note: we know 
$$\mathbb{P}\left(a\leqslant X\leqslant b\right)=F_X(b)-F_X(a)$$
 and if  $X\sim\mathcal{N}(\mu,\sigma^2)$ , then  $\frac{X-\mu}{\sigma}\sim\mathcal{N}(0,1)$ .

Pre-computed table to the rescue!

### **Examples of the Standard Normal Table**





## **Example: Human IQ**



### A Historical Fact About The First Standard Normal Table

$$F(x) = \int_0^x e^{-t^2} dt = x - \frac{x^3}{1!3} + \frac{x^5}{2!5} - \frac{x^7}{3!7} + \frac{x^9}{4!9} - \dots$$

$$G(x) = \int_{x}^{\infty} e^{-t^{2}} dt = \frac{1}{x} - \frac{1}{2x^{3}} + \frac{1 \cdot 3}{4x^{5}} - \frac{1 \cdot 3 \cdot 5}{8x^{7}} + \frac{1 \cdot 3 \cdot 5 \cdot 7}{16x^{9}} - \dots$$

- Large gaps between F(x) and G(x)
- First computed by the French astronomer **Christian Kramp** in 1799.
- Analyse des Réfractions Astronomiques et Terrestres (Analysis of Astronomical and Terrestrial Refractions)

## The Table by Christian Kramp

#### TABLE PREMIÈRE.

Intégrales de e-11 dt, depuis une valeur quelconque de t jusqu'à t infinie.

| 1    | Intégrale.  | Diff. prem | Diff. II. | Diff. III. |
|------|-------------|------------|-----------|------------|
| 0,00 | 0,88622692  | 999968     | 201       | 199        |
| 0,01 | 0,87622724  | 999767     | 400       | 199        |
| 0,02 | 0,86622957  | 999367     | 599       | 200        |
| 0,03 | 0,85623590  | 998768     | 799       | 1990       |
| 0,04 | 0,84624822  | 997969     | 998       | 197        |
| 0,05 | 0,83526853  | 996971     | 1195      | 199        |
| 0,06 | 0,82629882  | 995776     | 1394      | 196        |
| 0,07 | 0,81634106  | 994382     | 1590      | 495        |
| 0,08 | 0,80639724  | 992792     | 1785      | 194        |
| 0,09 | 0,79646932  | 991007     | 1979      | 195        |
| 0,10 | 0,78655925  | 989028     | 2174      | 192        |
| 0,11 | 0,77666897  | 986854     | 2366      | 190        |
| 0,12 | 0,76680043  | 984488     | 2556      | 189        |
| 0,13 | 0,75695555  | 981932     | 2745      | 188        |
| 0,14 | 0.74713623  | 979187     | 2933      | 186        |
| 0,15 | 0,73734436  | 976254     | 3119      | 184        |
| 0,16 | 0,72758182  | 973135     | 3303      | 183        |
| 0,17 | 0,71785047  | 969832     | 3486      | 180        |
| 0,18 | 0,70815215  | 966346     | 3666      | 175        |
| 0,19 | 0,69848869  | 962680     | 3841      | 178        |
| 0,20 | 0,68886189  | 958839     | 4019      | 173        |
| 0,21 | 0,67927350  | 954820     | 4192      | 171        |
| 0,22 | 0,66972530  | 050628     | 4363      | 168        |
| 0,23 | 0,66021902  | 946265     | 4531      | 166        |
| 0,24 | 0 6507 5637 | 941734     | 4697      | 163        |
| 0,25 | 0,64133903  | 937037     | 4860      | 160        |
| 0,26 | 0,63196866  | 932177     | 5020      | 157        |
| 0,27 | 0,62264689  | 927157     | 5177      | 155        |
| 0,28 | 0,61337532  | 929980     | 5332      | 151        |
| 0,29 | 0,60415552  | 916648     | 5483      | 149        |
| 0,30 | 0,59498004  | 911165     | 5632      | 145        |
| 0,31 | 0,58587739  | 905533     | 5777      | 142        |
| 0,32 | 0,57682206  | 899756     | 5919      | 138        |

|      | INTEGRA    | LES DE       | e-it dt.  |            |
|------|------------|--------------|-----------|------------|
|      | Intégrale. | 1 Diff.prem. | Diff. II. | Diff. III. |
| 0,76 | 0,25032654 | 556981       | 8511      | 21         |
| 0,77 | 0,24475673 | 548470       | 8400      | 25         |
| 0,78 | 0,23027203 | 539980       | 8465      | 20         |
| 0,79 | 0,23387223 | 531515       | 8436      | 31         |
| 0,80 | 0,22855708 | 523079       | 8405      | 33         |
| 0,81 | 0,22332620 | 514674       | 8372      | 37         |
| 0,82 | 0,21817955 | 506302       | 8335      | 39         |
| 0,83 | 0,21311653 | 497967       | 8296      | 42         |
| 0,84 | 0,20813686 | 489671 -     | 8254      | 45         |
| 0,85 | 0,20324015 | 481417       | 8200      | 46         |
| 0,86 | 0,19842598 | 473208       | 8163      | 50         |
| 0,87 | 0,19369390 | 465045       | 8113      | 52         |
| 0,88 | 0,18904345 | 456932       | 806r      | 54         |
| 0,89 | 0,18447413 | 448871       | 8007      | 56         |
| 0,90 | 0,17998542 | 440864       | 7951      | 58         |
| 0,91 | 0,17557678 | 432913       | 7893      | 61         |
| 0,92 | 0,17124765 | 425020       | 7832      | 62         |
| 0,93 | 0,16699745 | 417188       | 7770      | 65         |
| 0,94 | 0,16282557 | 409418       | 7705      | 66         |
| 0,95 | 0,15873139 | 401713       | 7639      | 67         |
| 0,96 | 0,15471426 | 394074       | 7572      | 71         |
| 0,98 | 0,15077352 | 386502       | 7501      | 70         |
| 0,99 | 0,14311849 | 379001       | 7431      | 74         |
| 1,00 | 0,13940279 | 364213       | 7357      | 74         |
| 1,01 | 0,13576066 | 356930       | 7283      | 75         |
| 1,02 | 0,13219136 |              | 7208      | 77         |
| 1,03 | 0,12869414 | 349722       | 7051      | 78         |
| 1,04 | 0,12526823 | 335540       | 6973      | 7° 8r      |
| 1,05 | 0,12191283 | 328567       | 6892      | 81         |
| 1,06 | 0,11862716 | 321675       | 6811      | 83         |
| 1,07 | 0,11541041 | 314864       | 6728      | 83         |
| ,08  | 0,11226177 | 308136       | 6645      | 85         |
| ,09  | 0,10018041 | 301491       | 6560      | 85         |
| ,10  | 0,10616550 | 294931       | 6175      | 86         |
| 111  | 0,10321619 | 288456       | 6389      | 85         |
| ,12  | 0,10033163 | 282067       | 6304      | 88         |
| ,13  | 0,09751096 | 275763       | 6216      | 87         |
| s14  | 0.00475333 | 269547       | 6129      | 89         |
| ,15  | 0,09205786 | 263418       | 6040      | 87         |
| ,16  | 0,08942368 | 257378       | 5953      | 80         |
| ,17  | 0,08684990 | 251425       | 5864      | 89         |
| ,18  | 0,08433565 | 245561       | 5775      | 89         |

| 1    | Intégrale.    | Diff. prem.      | Diff. II. | Diff. III, | Diff.I |
|------|---------------|------------------|-----------|------------|--------|
| 2.47 | 0,00042311518 | 2186320          | 105795    |            | 101    |
| 2,48 | 0,00040125180 | 2080534          | 10:071    | 4533       | 183    |
| 2349 | 0,00038044655 | 1979463          | 96538     | 4350       | 177    |
| 2,50 | 0.00036065102 | 1882925          | 92188     | 4173       | 171    |
| 2,51 | 0,00034182267 | 1790737          | 88015     | 4002       | 164    |
| 2,52 | 0,00032391530 | 1702722          | 84013     | 3838       | 160    |
| 2,53 | 0,00030688808 | 1618700          | 80175     | 3678       | 152    |
| 2,54 | 0,00029070099 | 1538534          | 76497     | 3526       | 1.48   |
| 2,55 | 0.00027531565 | 1462037          | 72971     | 3378       | 142    |
| 2,56 | 0,00026069528 | 1389966          | 69593     | 3236       | 137    |
| 2,57 | 0.00024680462 | 1319473          | 66357     | 3000       | 181    |
| 2,58 | 0,00023360989 | 1253116          | 63258     | 2968       | 138    |
| 2,59 | 0,00022107873 | 1189858          | 60290     | 2830       | 141    |
| 2,60 | 0,00020918015 | 1129568          | 57460     | 2749       | 139    |
| 2,61 | 0,00019788447 | 1072108          | 54711     | 2570       | 142    |
| 2,62 | 0,00018716339 | 1017397          | 52141     | 2498       | 118    |
| 2,63 | 0,00017698942 | 965256           | 49643     | 2380       | 105    |
| 2,64 | 0,00016733686 | 915613           | 47263     | 2275       | 101    |
| 2,65 | 0,00015818073 | 868350           | 44988     | 2174       | 95     |
| 2,66 | 0,00014949723 | 823362           | 42814     | 2079       | 94     |
| 2,67 | 0,00014126361 | 780548           | 40735     | 1985       | 88     |
| 2,68 | 0,00013345813 | 739813           | 38750     | 1897       | 85     |
| 2,69 | 0,00012606000 | 701063           | 36853     | 1812       | 83     |
| 2,70 | 0,00011904937 | 664210           | 35041     | 1729       | 78     |
| 2,71 | 0,00011240727 | 629169           | 33312     | 1651       | 76     |
| 2,72 | 0,00010611558 | 595857           | 31661     | 1575       | 71     |
| 2,73 | 0,00010015701 | 564196           | 30086     | 1504       | 70     |
| 2,74 | 0,00009451505 | 534110           | 28582     | 1434       | 67     |
| 2,75 | 0,00008917395 | 505528           | 27148     | 1367       | 64     |
| 2,70 | 0,00005411867 | 478380<br>452599 | 25781     | 1303       | 59     |
| 2,78 | 0,00007480888 | 432399           | 24478     | 1214       | 56     |
| 2,79 | 0,00007052767 | 404887           | 23234     | 1184       | 53     |
| 2,80 | 0,00006647880 | 382837           | 22050     | 1128       | 51     |
| 2,81 | 0,00006265043 | 361915           | 19847     | 1075       |        |
| 2,82 | 0,00005903128 | 342068           | 18823     |            | 49     |
| 2,83 | 0,00005561060 | 323245           | 17848     | 975        | 48     |
| 2,84 | 0,00005237815 | 305397           |           | 927        | 43     |
| 2,85 | 0,00003237613 |                  | 16921     | 839        | 39     |
| 2,86 | 0,00004643942 | 288476           | 15:98     | 800        |        |
| 2,87 | 0,00004371503 | 272439 257241    | 14398     | 760        | 40     |
| 2,88 | 0,00004114262 | 242843           | 13638     | 700        | 34     |
| 2.80 | 0.00003871410 | *42843           | 13030     | 688        | 24     |
|      |               |                  |           |            |        |

# Probability Mass/Density Function (PMF/PDF)

