The Efficiency of Algorithms

Chapter 4

Data Structures and Abstractions with Java, 4e, Global Edition Frank Carrano

Why Efficient Code?

- Computers are faster, have larger memories
 - So why worry about efficient code?
- And ... how do we measure efficiency?

Example

Consider the problem of summing

$$\sum_{k=1}^{n} k = 1 + 2 + 3 + \dots + n$$

Algorithm A	Algorithm B	Algorithm C	
sum = 0 for i = 1 <i>to</i> n sum = sum + i	<pre>sum = 0 for i = 1 to n { for j = 1 to i sum = sum + 1 }</pre>	sum = n * (n + 1) / 2	

FIGURE 4-1 Three algorithms for computing the sum 1 + 2 + ... + n for an integer n > 0

Example

```
// Computing the sum of the consecutive integers from 1 to n:
long n = 10000; // Ten thousand
// Algorithm A
long sum = 0;
for (long i = 1; i <= n; i++)
   sum = sum + i;
System.out.println(sum);
// Algorithm B
sum = 0;
for (long i = 1; i <= n; i++)
   for (long j = 1; j <= i; j++)
       sum = sum + 1;
} // end for
System.out.println(sum);
// Algorithm C
sum = n * (n + 1) / 2;
System.out.println(sum);
```

Java code for the three algorithms

What is "best"?

- An algorithm has both time and space constraints – that is complexity
 - Time complexity
 - Space complexity
- This study is called analysis of algorithms

Counting Basic Operations

- A basic operation of an algorithm
 - The most significant contributor to its total time requirement

	Algorithm A	Algorithm B	Algorithm C
Additions	n	n(n+1)/2	1
Multiplications			1
Divisions			1
Total basic operations	n	$(n^2 + n) / 2$	3

FIGURE 4-2 The number of basic operations required by the algorithms in Figure 4-1

Counting Basic Operations

FIGURE 4-3 The number of basic operations required by the algorithms in Figure 4-1 as a function of *n*

Counting Basic Operations

n	$\log(\log n)$	log n	$\log^2 n$	n	$n \log n$	n^2	n^3	2^n	n!
10	2	3	11	10	33	10^{2}	10^{3}	10 ³	10 ⁵
10^{2}	3	7	44	100	664	10^{4}	10^{6}	10^{30}	10^{94}
10^{3}	3	10	99	1000	9966	10^{6}	10^{9}	10^{301}	10^{1435}
10^{4}	4	13	177	10,000	132,877	10^{8}	10^{12}	10^{3010}	10 ^{19,335}
105	4	17	276	100,000	1,660,964	10^{10}	10^{15}	$10^{30,103}$	10 ^{243,338}
106	4	20	397	1,000,000	19,931,569	10^{12}	10^{18}	$10^{301,030}$	10 ^{2,933,369}

FIGURE 4-4 Typical growth-rate functions evaluated at increasing values of *n*

Best, Worst, and Average Cases

- For some algorithms, execution time depends only on size of data set
- Other algorithms depend on the nature of the data itself
 - Here we seek to know best case, worst case, average case

Big Oh Notation

- A function f(n) is of order at most g(n)
- That is, f(n) is O(g(n))—if
 - A positive real number c and positive integer N exist ...
 - Such that $f(n) \le c \times g(n)$ for all $n \ge N$
 - That is, $c \times g(n)$ is an upper bound on f(n) when n is sufficiently large

Big Oh Notation

FIGURE 4-5 An illustration of the definition of Big Oh

Big Oh Notation

The following identities hold for Big Oh notation:

```
O(k g(n)) = O(g(n)) for a constant k

O(g_1(n)) + O(g_2(n)) = O(g_1(n) + g_2(n))

O(g_1(n)) \times O(g_2(n)) = O(g_1(n) \times g_2(n))

O(g_1(n) + g_2(n) + ... + g_m(n)) = O(\max(g_1(n), g_2(n), ..., g_m(n))

O(\max(g_1(n), g_2(n), ..., g_m(n)) = \max(O(g_1(n)), O(g_2(n)), ..., O(g_m(n)))
```

By using these identities and ignoring smaller terms in a growth-rate function, you can usually find the order of an algorithm's time requirement with little effort. For example, if the growth-rate function is $4n^2 + 50n - 10$,

$$O(4n^2 + 50n - 10) = O(4n^2)$$
 by ignoring the smaller terms
= $O(n^2)$ by ignoring the constant multiplier

Identities for Big Oh Notation

Complexities of Program Constructs

Construct	Time Complexity
Consecutive program segments S_1, S_2, \ldots, S_k whose growth-rate functions are g_1, \ldots, g_k , respectively	$\max(O(g_1), O(g_2), \ldots, O(g_k))$
An if statement that chooses between program segments S_1 and S_2 whose growth-rate functions are g_1 and g_2 , respectively	$O(condition) + max(O(g_1), O(g_2))$
A loop that iterates m times and has a body whose growth-rate function is g	$m \times O(g(n))$

FIGURE 4-6 An O(n) algorithm

```
for i = 1 to n
    \{ for j = 1 \text{ to } j \}
          sum = sum + 1
i = 1
    R. R. R.
    O(1 + 2 + ... + n) = O(n^2)
```

FIGURE 4-7 An O(n²) algorithm

FIGURE 4-8 Another O(n²) algorithm

Growth-Rate Function for Size <i>n</i> Problems	Growth-Rate Function for Size 2n Problems	Effect on Time Requirement
$ \begin{array}{c} 1\\ \log n\\ n\\ n\log n\\ n^2\\ n^3\\ 2^n \end{array} $	$ \begin{array}{r} 1 \\ 1 + \log n \\ 2n \\ 2n \log n + 2n \\ (2n)^2 \\ (2n)^3 \\ 2^{2n} \end{array} $	None Negligible Doubles Doubles and then adds 2n Quadruples Multiplies by 8 Squares

FIGURE 4-9 The effect of doubling the problem size on an algorithm's time requirement

Growth-Rate Function g	$g(10^6) / 10^6$
$\log n$ $n \log n$ n^2 n^3 2^n	0.0000199 seconds 1 second 19.9 seconds 11.6 days 31,709.8 years 10 ^{301,016} years

FIGURE 4-10 The time required to process one million items by algorithms of various orders at the rate of one million operations per second

Efficiency of Implementations of ADT Bag

Operation	Fixed-Size Array	Linked
add(newEntry)	O(1)	O(1)
remove() remove(anEntry)	1 / 1 / 1 /	O(1) O(1), O(n), O(n)
<pre>clear() getFrequencyOf(anEntry)</pre>	O(n) $O(n)$	O(n) $O(n)$
contains(anEntry) toArray()	O(1), O(n), O(n) O(n)	O(1), O(n), O(n) O(n)
<pre>getCurrentSize(), isEmpty()</pre>	O(1)	O(1)

FIGURE 4-11 The time efficiencies of the ADT bag operations for two implementations, | expressed in Big Oh notation

End

Chapter 4