Metodología clase 5/08

Fecha: 5/08

💡 Ética en la ingenieria de software

La etica en la ingenieria de software debe tener una confidencialidad a la cual debe respetar la info del cliente. Debe tener una competencia, no aceptar proyectos duera de nuestra experiencia. Propiedad intelectual debe de respetar derechos de autor y licencias. Se debe hacer un uso adecuado de computadoras para evitar acciones malintencionadas.

▼ Conclusiones:

La ingenieria de softwarre permite el desarrollo eficiente y profesional.

Aplicar metodología adecuadas mejora la calidad y confiabilidad.

La ética y la responsabilidad son claves en el desarrolo del software.

e Explicación detallada con ejemplos

1. Confidencialidad en la ingeniería de software:

La confidencialidad implica proteger la información sensible del cliente y no divulgarla sin autorización.

Ejemplo: Un desarrollador que trabaja con datos financieros de una empresa debe firmar acuerdos de confidencialidad y no compartir información sobre algoritmos propietarios, incluso en conversaciones informales con colegas de otras compañías.

2. Competencia profesional:

Consiste en aceptar solo proyectos dentro de nuestra área de experiencia y capacidad técnica.

Metodología clase 5/08

Ejemplo: Un desarrollador especializado en aplicaciones web rechaza un proyecto de sistemas embebidos críticos para equipos médicos, ya que no tiene la experiencia necesaria, y recomienda a otro profesional más capacitado para esa tarea.

3. Respeto a la propiedad intelectual:

Implica respetar los derechos de autor, patentes y licencias de software.

Ejemplo: Un equipo de desarrollo utiliza bibliotecas de código abierto en su proyecto, pero se asegura de cumplir con las condiciones de la licencia (como MIT o GPL), dando crédito apropiado y manteniendo las notificaciones de copyright.

4. Uso responsable de recursos computacionales:

Consiste en evitar el uso indebido de los sistemas informáticos.

Ejemplo: Un ingeniero detecta una vulnerabilidad en el sistema de un cliente pero, en lugar de explotarla, documenta el problema y notifica al cliente para que pueda corregirlo, siguiendo protocolos éticos de divulgación responsable.

Importancia de estos principios éticos

Estos principios éticos no solo protegen a los clientes y usuarios, sino que también construyen confianza en la profesión y contribuyen a la creación de software más seguro y confiable. En un mundo cada vez más dependiente de la tecnología, la ética en la ingeniería de software se vuelve fundamental para proteger el bienestar de la sociedad.

¿Que es un proceso de software?

Es un conjunto de actividades organizadas para la produccion de software profesional.

▼ Actividades esenciales

Metodología clase 5/08 2

- Especificación: Define requisitos y restricciones.
- ☼Diseño e implementación: desarrollo del software.
- Validación: pruebas y aseguramineto de calidad.
- Evolución: adaptacion a cambios.

Ejemplos de actividades en cada fase:

Especificación:

- Entrevistas con stakeholders para recopilar requisitos
- Creación de documentos de especificación de requisitos (SRS)
- Desarrollo de casos de uso y historias de usuario

Diseño e implementación:

- Creación de diagramas de arquitectura del sistema
- Diseño de bases de datos y modelos de datos
- Programación y desarrollo de código fuente

Validación:

- Pruebas unitarias y de integración
- Revisiones de código entre pares
- Pruebas de aceptación con usuarios finales

Evolución:

- Implementación de nuevas funcionalidades solicitadas
- Corrección de errores y optimización de rendimiento
- Actualización de tecnologías y plataformas

Productos, roles y condiciones

 <u>Producto:</u> Documento de requerimiento, código, pruebas manuales, unit test, diagramas, uml, etc.

Metodología clase 5/08 3

 Roles: programador, gerente de proyecto, analista, tester (QA), diseñador UX/UI, etc.

▼ Pre-condiciones (ejemplos):

Requisitos aprobados del diseño.

Pruebas unitarias antes de pruebas de integración.

Diagrama de base de datos antes de crear código fuente.

▼ Post-Condiciones:

Validación del cliente tras prueba de integración aprobadas.

Despliegue en servidor para aprobación del cliente.

Modelos de procesos de software

Diferentes enfoques para estructurar el desarrollo de proyectos de software.

▼ Modelos

Cascadas.

Incremental

Basado de reutilización de componentes.

Espiral

RUP

1. Modelo en Cascada:

Es un enfoque lineal y secuencial donde cada fase debe completarse antes de pasar a la siguiente. Las etapas típicas son: requisitos, diseño, implementación, verificación y mantenimiento. No permite retroceder fácilmente a fases anteriores.

2. Modelo Incremental:

Metodología clase 5/08

Divide el proyecto en incrementos o mini-proyectos, cada uno siguiendo una secuencia de requisitos, diseño, implementación y pruebas. Permite entregar funcionalidad útil al cliente de forma progresiva mientras se desarrollan las demás partes.

3. Modelo Basado en Reutilización de Componentes:

Consiste en construir software a partir de componentes previamente desarrollados. Se enfoca en ahorrar tiempo y mejorar la calidad mediante la integración de módulos existentes, como librerías o frameworks.

4. Modelo Espiral:

Es un modelo de desarrollo iterativo que se centra en la evaluación y gestión de riesgos. Cada ciclo incluye planificación, análisis de riesgos, diseño, implementación y evaluación, permitiendo adaptar el sistema según nuevos requerimientos.

5.RUP (Rational Unified Process):

Es un proceso de desarrollo estructurado en fases: inicio, elaboración, construcción y transición. Utiliza casos de uso como base y promueve buenas prácticas como la documentación detallada, control de versiones y pruebas constantes.

Metodología clase 5/08 5