FICHE DE COURS 11

SIGNAL SINUSOÏDAL RÉGIME SINUSOÏDAL FORCÉ (RSF)

Ce que je dois être capable de faire après avoir appris mon cours

Rappeler la définition d'un signal et classer les signaux suivant la nature physique de la grandeur associée
Expliquer le principe d'une chaîne d'acquisition et de restitution (transducteurs, conversion $A/N, \ldots$)
Donner les caractéristiques d'un signal sinusoïdal
Savoir que tout signal physique observable peut se décomposer en une somme de signaux sinusoïdaux
Définir les notions de spectre et de spectrogrammes d'amplitude et de phase
Représenter les spectrogrammes d'une somme finie de signaux sinusoïdaux
Donner l'expression générale de la décomposition en série de Fourier d'un signal périodique
Définir les notions de fondamental et d'harmoniques de rang n pour un signal périodique
Donner l'expression générale de la transformée de Fourier d'un signal quelconque
Définir la valeur moyenne et la valeur efficace d'un signal d'un signal
Discuter l'influence de la durée d'enregistrement d'un signal sur un spectrogramme d'amplitude
Expliquer le principe de la synthèse spectrale
Justifier l'intérêt du RSF dans l'étude de la réponse d'un système à une excitation quelconque
Définir la notion de gain dans l'étude de la réponse d'un système à une excitation sinusoïdale
Définir la notion de déphasage entre deux signaux sinusoïdaux synchrones
Mesurer sur un chronogramme le gain et le déphasage de deux signaux synchrones
Identifier et discuter les cas de signaux en phase, en opposition de phase et en quadrature de phase
Énoncer le principe d'équivalence en RSF
Exprimer la grandeur complexe associée à une grandeur sinusoïdale pure
Établir les relations de sommation, de produit, de dérivation et d'intégration en notation complexe
Étudier la réponse d'un système à une excitation sinusoïdale pure par la méthode des nombres complexes
Représenter le vecteur de Fresnel associé à un signal sinusoïdal pur $s(t)$ ainsi que ceux associés à $\dot{s}(t)$ et à $\ddot{s}(t)$
Décrire l'évolution d'un vecteur de Fresnel au cours du temps.
Visualiser et déterminer le déphasage entre deux vecteurs de Fresnel
Reconnaître les cas où deux vecteurs de Fresnel sont en phase, en opposition de phase, en quadrature
Étudier la réponse d'un système à une excitation sinusoïdale pure par la méthode des vecteurs de Fresnel

Les relations sur lesquelles je m'appuie pour développer mes calculs

☐ Signal sinusoïdal :

$$s(t) = S_m \cos(\omega t + \varphi)$$

avec $S_m > 0$ l'amplitude du signal s, ω sa pulsation et φ ou ψ la phase initiale.

☐ Décomposition de Fourier d'un signal périodique :

$$s(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(\omega_n t) + \sum_{n=1}^{\infty} b_n \sin(\omega_n t) \qquad \text{avec} \begin{cases} a_0 = \frac{2}{T} \int_0^T s(t) dt \\ a_n = \frac{2}{T} \int_0^T s(t) \cos(\omega_n t) dt \end{cases} \quad \text{et} \quad \omega_n = n \ \omega_1$$

$$b_n = \frac{2}{T} \int_0^T s(t) \sin(\omega_n t) dt$$

où les a_n et les b_n sont des constantes positives et φ_n est la phase initiale de l'harmonique de range n.

☐ Valeur moyenne d'un signal périodique :

□ Valeur efficace d'un signal périodique :

$$S_{\text{eff}} = \sqrt{\langle s^2 \rangle_T} = \sqrt{\frac{1}{T} \int_t^{t+T} s^2(t) dt} \quad \text{cas sinuso\"idal pur} : \quad S_{\text{eff}} = \frac{S_m}{\sqrt{2}}$$

 \Box Gain et déphasage entre deux signaux sinusoïdaux $s_1 = S_{1,m} \cos(\omega t + \varphi_1)$ et $s_2 = S_{2,m} \cos(\omega t + \varphi_2)$ synchrones :

 \square Notation complexe pour $s(t) = S_m \cos(\omega t + \varphi)$:

□ Relations mathématiques en notation complexe pour l'étude d'un système en RSF :

$$\underline{\underline{s}} = \underline{s_1} + \underline{s_2} \qquad \text{pour} \quad s = s_1 + s_2$$

$$\underline{\underline{s}} = \underline{s_1} \times \underline{s_2} \qquad \text{pour} \quad s = s_1 \times s_2$$

$$\underline{\dot{\underline{s}}} = j\omega\underline{\underline{s}} \qquad \text{pour} \quad \dot{\underline{s}} = \frac{\mathrm{d}s}{\mathrm{d}t}$$