Linear Models in Statistics:

A Collection of Core Theorems

From Rencher & Schaalje (2008)

November 25, 2024

Contents

1	Foundational Matrix Theorems (Ch. 2)	2
2	Multivariate Normal Distribution Theorems (Ch. 4)	2
3	Statistical Distribution Theorems of Quadratic Forms (Ch. 5)	3
4	Simple Linear Regression (Ch. 6)	3
5	Regression Theory Theorems (Ch. 7)	5
6	Multiple Regression: Tests of Hypotheses and Confidence Intervals (Ch. 8)	8
7	Multiple Regression: Model Validation and Diagnostics (Ch. 9)	11
8	Multiple Regression: Random x 's (Ch. 11)	12
9	Analysis of Variance Models (Ch. 12)	13

Preface

This document presents a comprehensive collection of theorems from fundamental concepts in linear models, organized by chapter. Each result is presented with its original theorem number from Rencher & Schaalje (2008) for easy reference.

1 Foundational Matrix Theorems (Ch. 2)

Theorem 1.1 (2.6a). (i) If **A** is positive definite, then all its diagonal elements a_{ii} are positive.

(ii) If **A** is positive semidefinite, then all $a_{ii} \geq 0$.

Theorem 1.2 (2.6b). Let **P** be a nonsingular matrix.

- (i) If \mathbf{A} is positive definite, then $\mathbf{P}^T \mathbf{A} \mathbf{P}$ is positive definite.
- (ii) If \mathbf{A} is positive semidefinite, then $\mathbf{P}^T \mathbf{A} \mathbf{P}$ is positive semidefinite.

Theorem 1.3 (2.13a). The only nonsingular idempotent matrix is the identity matrix **I**.

Theorem 1.4 (2.13b). If **A** is singular, symmetric, and idempotent, then **A** is positive semidefinite.

Theorem 1.5 (2.13c). If **A** is an $n \times n$ symmetric idempotent matrix of rank r, then **A** has r eigenvalues equal to 1 and n - r eigenvalues equal to 0.

Theorem 1.6 (2.13d). If **A** is symmetric and idempotent of rank r, then $rank(\mathbf{A}) = tr(\mathbf{A}) = r$.

Theorem 1.7 (2.13e). If **A** is an $n \times n$ idempotent matrix, **P** is an $n \times n$ nonsingular matrix, and **C** is an $n \times n$ orthogonal matrix, then:

- (i) $\mathbf{I} \mathbf{A}$ is idempotent
- (ii) A(I A) = O and (I A)A = O
- (iii) $\mathbf{P}^{-1}\mathbf{AP}$ is idempotent
- (iv) $\mathbf{C}^T \mathbf{A} \mathbf{C}$ is idempotent

2 Multivariate Normal Distribution Theorems (Ch. 4)

Theorem 2.1 (4.3). If y is distributed as $N_p(\mu, \Sigma)$, its moment generating function is given by: $[M_y(\mathbf{t}) = e^{\mathbf{t}^T \mu + \mathbf{t}^T \Sigma \mathbf{t}/2}]$

Theorem 2.2 (4.3a). If u is distributed as $\chi^2(n)$, then:

- 1. E(u) = n
- 2. var(u) = 2n
- 3. $M_u(t) = \frac{1}{(1-2t)^{n/2}}$

Theorem 2.3 (4.3b). If v is distributed as $\chi^2(n,\lambda)$, then:

- 1. $E(v) = n + 2\lambda$
- 2. $var(u) = 2n + 8\lambda$
- 3. $M_v(t) = \frac{1}{(1-2t)^{n/2}} e^{-\lambda(1-\frac{1}{(1-2t)})}$

Theorem 2.4 (4.3c). If $v_1, v_2, ..., v_k$ are independently distributed as $\chi^2(n_i, \lambda_i)$, then: $\sum_{i=1}^k v_i$ is distributed as $\chi^2(\sum_{i=1}^k n_i, \sum_{i=1}^k n_i)$

Theorem 2.5 (4.4a). Let the $p \times 1$ random vector \mathbf{y} be $N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, let \mathbf{a} be any $p \times 1$ vector of constants, and let \mathbf{A} be any $k \times p$ matrix of constants with rank $k \leq p$. Then: (i) $z = \mathbf{a}^T \mathbf{y}$ is $N(\mathbf{a}^T \boldsymbol{\mu}, \mathbf{a}^T \boldsymbol{\Sigma} \mathbf{a})$ (ii) $\mathbf{z} = \mathbf{A} \mathbf{y}$ is $N_k(\mathbf{A}\boldsymbol{\mu}, \mathbf{A}\boldsymbol{\Sigma} \mathbf{A}^T)$

Theorem 2.6 (4.4b). If \mathbf{y} is $N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then any $r \times 1$ subvector of \mathbf{y} has an r-variate normal distribution with the same means, variances, and covariances as in the original p-variate normal distribution.

Theorem 2.7 (4.4c). If $\mathbf{v} = (\mathbf{y} \ \mathbf{x})$ is $N_{p+q}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then \mathbf{y} and \mathbf{x} are independent if $\boldsymbol{\Sigma}_{yx} = \mathbf{O}$.

Theorem 2.8 (4.4d). If y and x are jointly multivariate normal with $\Sigma yx \neq 0$, then the conditional distribution of y given x, f(y|x), is multivariate normal with mean vector and covariance matrix: [E(y|x)] $[\mu y + \Sigma yx\Sigma xx^{-1}(\mathbf{x} - \mu x)][cov(\mathbf{y}|\mathbf{x}) = \Sigma yy - \Sigma yx\Sigma xx^{-1}\Sigma_{xy}]$

Theorem 2.9 (4.4e). If y and x are jointly multivariate normal with mean vector and covariance matrix: $[E(\mathbf{y}, \mathbf{x}) = (\mu y \ \mu x), \quad cov(\mathbf{y}, \mathbf{x}) = (\Sigma y y \ \Sigma y x \ \Sigma x y \ \Sigma x x)]$ Then the conditional distribution of y given \mathbf{x} is normal with: $[E(y|\mathbf{x}) = \mu_y + \boldsymbol{\sigma} y x^T \boldsymbol{\Sigma} x x^{-1} (\mathbf{x} - \boldsymbol{\mu} x)] [var(y|\mathbf{x}) = \sigma_y^2 - \boldsymbol{\sigma} y x^T \boldsymbol{\Sigma} x x^{-1} \boldsymbol{\sigma} y x]$

Statistical Distribution Theorems of Quadratic Forms (Ch. 5) 3

Theorem 3.1 (5.2a). Let y be a random vector with mean μ and covariance matrix Σ , and let A be a symmetric matrix of constants. Then:

$$E(\mathbf{y}^T \mathbf{A} \mathbf{y}) = tr(\mathbf{A} \mathbf{\Sigma}) + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu}$$

Theorem 3.2 (5.2b). If y is $N_p(\mu, \Sigma)$, then the moment generating function of $y^T A y$ is:

$$M_{\mathbf{y}^T \mathbf{A} \mathbf{y}}(t) = |\mathbf{I} - 2t \mathbf{A} \mathbf{\Sigma}|^{-1/2} \exp\left(-\frac{1}{2} \boldsymbol{\mu}^T [\mathbf{I} - (\mathbf{I} - 2t \mathbf{A} \mathbf{\Sigma})^{-1}] \mathbf{\Sigma}^{-1} \boldsymbol{\mu}\right)$$

Theorem 3.3 (5.2c). If y is $N_p(\mu, \Sigma)$, then:

$$Var(\mathbf{y}^T \mathbf{A} \mathbf{y}) = 2tr[(\mathbf{A} \mathbf{\Sigma})^2] + 4\boldsymbol{\mu}^T \mathbf{A} \mathbf{\Sigma} \mathbf{A} \boldsymbol{\mu}$$

Theorem 3.4 (5.2d). If \mathbf{y} is $N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then:

$$Cov(\mathbf{y}, \mathbf{y}^T \mathbf{A} \mathbf{y}) = 2 \mathbf{\Sigma} \mathbf{A} \boldsymbol{\mu}$$

Theorem 3.5 (5.5). Let y be distributed as $N_p(\mu, \Sigma)$, let A be a symmetric matrix of constants of rank r, and let $\lambda = \frac{1}{2} \mu^T \mathbf{A} \mu$. Then $\mathbf{y}^T \mathbf{A} \mathbf{y}$ is $\chi^2(r, \lambda)$ if and only if $\mathbf{A} \Sigma$ is idempotent.

Theorem 3.6 (5.6a). Suppose that **B** is a $k \times p$ matrix of constants, **A** is a $p \times p$ symmetric matrix of constants, and y is distributed as $N_p(\mu, \Sigma)$. Then By and y^TAy are independent if and only if B Σ A = O.

Corollary 3.7 (to Theorem 5.6a). If y is $N_p(\mu, \sigma^2 \mathbf{I})$, then By and $\mathbf{y}^T \mathbf{A} \mathbf{y}$ are independent if and only if BA = O.

Theorem 3.8 (5.6b). Let **A** and **B** be symmetric matrices of constants. If **y** is $N_{\nu}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then $\mathbf{y}^T \mathbf{A} \mathbf{y}$ and $\mathbf{y}^T \mathbf{B} \mathbf{y}$ are independent if and only if $\mathbf{A} \mathbf{\Sigma} \mathbf{B} = \mathbf{O}$.

Theorem 3.9 (5.6c). Let \mathbf{y} be $N_n(\boldsymbol{\mu}, \sigma^2 \mathbf{I})$, let \mathbf{A}_i be symmetric of rank r_i for $i=1,2,\ldots,k$, and let $\mathbf{y}^T \mathbf{A} \mathbf{y} = \sum_{i=1}^k \mathbf{y}^T \mathbf{A}_i \mathbf{y}$, where $\mathbf{A} = \sum_{i=1}^k \mathbf{A}_i$ is symmetric of rank r. Then:

(i) $\mathbf{y}^T \mathbf{A}_i \mathbf{y} / \sigma^2$ is $\chi^2(r_i, \boldsymbol{\mu}^T \mathbf{A}_i \boldsymbol{\mu} / 2\sigma^2)$, $i=1,2,\ldots,k$ (ii) $\mathbf{y}^T \mathbf{A}_i \mathbf{y}$ and $\mathbf{y}^T \mathbf{A}_j \mathbf{y}$ are independent for all $i \neq j$ (iii) $\mathbf{y}^T \mathbf{A} \mathbf{y} / \sigma^2$ is $\chi^2(r, \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} / 2\sigma^2)$

Simple Linear Regression (Ch. 6)

Theorem 4.1 (6.1 - Linear Regression Model). The simple linear regression model is given by:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \quad i = 1, 2, \dots, n$$

with assumptions:

1. $E(\epsilon_i) = 0$ for all i, or equivalently, $E(y_i) = \beta_0 + \beta_1 x_i$

- 2. $Var(\epsilon_i) = \sigma^2$ for all i, or equivalently, $Var(y_i) = \sigma^2$
- 3. $Cov(\epsilon_i, \epsilon_j) = 0$ for all $i \neq j$, or equivalently, $Cov(y_i, y_j) = 0$

Theorem 4.2 (6.2 - Least Squares Estimators). The least squares estimators that minimize $\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ are:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n x_i y_i - n\bar{x}\bar{y}}{\sum_{i=1}^n x_i^2 - n\bar{x}^2} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$
$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

These estimators have the following properties:

$$E(\hat{\beta}_1) = \beta_1$$

$$E(\hat{\beta}_0) = \beta_0$$

$$Var(\hat{\beta}_1) = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$Var(\hat{\beta}_0) = \sigma^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)$$

Theorem 4.3 (6.3 - Error Sum of Squares). The error sum of squares can be expressed as:

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - \bar{y})^2 - \frac{\left[\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})\right]^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

The unbiased estimator of σ^2 is:

$$s^{2} = \frac{SSE}{n-2} = \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{n-2}$$

with

$$E(s^2) = \sigma^2$$

Theorem 4.4 (6.4 - Distributional Results). Under normality assumption $y_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$:

- 1. $\hat{\beta}_1$ is $N(\beta_1, \sigma^2 / \sum_{i=1}^n (x_i \bar{x})^2)$
- 2. $(n-2)s^2/\sigma^2$ is $\chi^2(n-2)$
- 3. $\hat{\beta}_1$ and s^2 are independent
- 4. The test statistic

$$t = \frac{\hat{\beta}_1}{s/\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2}}$$

follows $t(n-2,\delta)$ with $\delta = \beta_1/[s/\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2}]$

Theorem 4.5 (6.5 - Confidence Interval). A $100(1-\alpha)\%$ confidence interval for β_1 is given by:

$$\hat{\beta}_1 \pm t_{\alpha/2, n-2} s / \sqrt{\sum_{i=1}^n (x_i - \bar{x})^2}$$

Theorem 4.6 (6.6 - Coefficient of Determination). The coefficient of determination r^2 is defined as:

$$r^{2} = \frac{SSR}{SST} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \bar{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

where the total sum of squares can be partitioned as:

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

or

$$SST = SSR + SSE$$

The t statistic can be expressed in terms of r as:

$$t = \frac{\hat{\beta}_1}{s/\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2}} = \sqrt{n-2} \frac{r}{\sqrt{1-r^2}}$$

5 Regression Theory Theorems (Ch. 7)

Theorem 5.1 (7.3a). If $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, where \mathbf{X} is $n \times (k+1)$ of rank k+1 < n, then the value of $\hat{\boldsymbol{\beta}} = (\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_k)'$ that minimizes (7.5) is

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

Theorem 5.2 (7.3b). If $E(y) = X\beta$, then $\hat{\beta}$ is an unbiased estimator for β .

Theorem 5.3 (7.3c). If $cov(\mathbf{y}) = \sigma^2 \mathbf{I}$, the covariance matrix for $\hat{\boldsymbol{\beta}}$ is given by $\sigma^2(\mathbf{X}'\mathbf{X})^{-1}$.

Theorem 5.4 (7.3d). (Gauss-Markov Theorem) If $E(\mathbf{y}) = \mathbf{X}\boldsymbol{\beta}$ and $cov(\mathbf{y}) = \sigma^2 \mathbf{I}$, the least-squares estimators $\hat{\beta}_j$, j = 0, 1, ..., k, have minimum variance among all linear unbiased estimators.

Theorem 5.5 (7.3e). If $\mathbf{x} = (1, x_1, \dots, x_k)'$ and $\mathbf{z} = (1, c_1 x_1, \dots, c_k x_k)'$, then $\hat{y} = \hat{\boldsymbol{\beta}}' \mathbf{x} = \hat{\boldsymbol{\beta}}'_z \mathbf{z}$, where $\hat{\boldsymbol{\beta}}_z$ is the least squares estimator from the regression of \mathbf{y} on \mathbf{z} .

Theorem 5.6 (7.3f). If s^2 is defined by (7.22), (7.23), or (7.24) and if $E(\mathbf{y}) = \mathbf{X}\boldsymbol{\beta}$ and $cov(\mathbf{y}) = \sigma^2 \mathbf{I}$, then

$$E(s^2) = \sigma^2$$

Theorem 5.7 (7.3g). If $E(\epsilon) = 0$, $cov(\epsilon) = \sigma^2 \mathbf{I}$, and $E(\epsilon_i^4) = 3\sigma^4$ for the linear model $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, then s^2 in (7.23) or (7.24) is the best (minimum variance) quadratic unbiased estimator of σ^2 .

Theorem 5.8 (7.4a). For the normal equations $X'X\hat{\beta} = X'y$:

- 1. The coefficient matrix X'X is symmetric and positive definite
- 2. The normal equations have a unique solution $\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$
- 3. The fitted values $\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}}$ are unique

Theorem 5.9 (7.4b). For any vector \mathbf{c} :

- 1. $\mathbf{c}'\hat{\boldsymbol{\beta}}$ is a linear function of \mathbf{y}
- 2. If $E(\mathbf{y}) = \mathbf{X}\boldsymbol{\beta}$, then $\mathbf{c}'\hat{\boldsymbol{\beta}}$ is an unbiased estimator of $\mathbf{c}'\boldsymbol{\beta}$
- 3. If $cov(\mathbf{y}) = \sigma^2 \mathbf{I}$, then $var(\mathbf{c}'\hat{\boldsymbol{\beta}}) = \sigma^2 \mathbf{c}'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{c}$

Theorem 5.10 (7.5). The model $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ can be transformed to $\mathbf{z} = \mathbf{W}\boldsymbol{\gamma} + \boldsymbol{\delta}$ by the transformation $\mathbf{z} = \mathbf{T}\mathbf{y}$ and $\mathbf{W} = \mathbf{T}\mathbf{X}$, where \mathbf{T} is any nonsingular matrix. The estimators $\hat{\boldsymbol{\gamma}}$ and $\hat{\boldsymbol{\beta}}$ are related by $\hat{\boldsymbol{\gamma}} = \hat{\boldsymbol{\beta}}$.

Theorem 5.11 (7.6a). If \mathbf{y} is $N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I})$, where \mathbf{X} is $n \times (k+1)$ of rank k+1 < n, the maximum likelihood estimators of $\boldsymbol{\beta}$ and σ^2 are

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

$$\hat{\sigma}^2 = \frac{1}{n} (\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})' (\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})$$

Theorem 5.12 (7.6b). Suppose that \mathbf{y} is $N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I})$, where \mathbf{X} is $n \times (k+1)$ of rank k+1 < n and $\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_k)'$. Then the maximum likelihood estimators $\hat{\boldsymbol{\beta}}$ and $\hat{\sigma}^2$ have the following distributional properties:

- 1. $\hat{\beta}$ is $N_{k+1}[\beta, \sigma^2(\mathbf{X}'\mathbf{X})^{-1}]$
- 2. $n\hat{\sigma}^2/\sigma^2$ is $\chi^2(n-k-1)$, or equivalently, $(n-k-1)s^2/\sigma^2$ is $\chi^2(n-k-1)$
- 3. $\hat{\boldsymbol{\beta}}$ and $\hat{\sigma}^2$ (or s^2) are independent

Theorem 5.13 (7.6c). If y is $N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I})$, then $\hat{\boldsymbol{\beta}}$ and $\hat{\sigma}^2$ are jointly sufficient for $\boldsymbol{\beta}$ and σ^2 .

Theorem 5.14 (7.6d). If \mathbf{y} is $N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I})$, then $\hat{\boldsymbol{\beta}}$ and s^2 have minimum variance among all unbiased estimators.

Corollary 5.15 (to Theorem 7.6d). If \mathbf{y} is $N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I})$, then the minimum variance unbiased estimator of $\mathbf{a}'\boldsymbol{\beta}$ is $\mathbf{a}'\hat{\boldsymbol{\beta}}$ where $\hat{\boldsymbol{\beta}}$ is the maximum likelihood estimator.

Theorem 5.16 (7.7a). In the model $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ with $cov(\boldsymbol{\epsilon}) = \sigma^2 \mathbf{I}$, the fitted values have the following properties:

- 1. $E(\hat{\mathbf{y}}) = \mathbf{X}\boldsymbol{\beta}$
- 2. $cov(\hat{\mathbf{y}}) = \sigma^2 \mathbf{H}$
- 3. $cov(\hat{\mathbf{y}}, \mathbf{y}) = \sigma^2 \mathbf{H}$

where $\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$

Theorem 5.17 (7.7b). The residuals $\hat{\boldsymbol{\epsilon}} = \mathbf{y} - \hat{\mathbf{y}}$ have the following properties:

- 1. $E(\hat{\boldsymbol{\epsilon}}) = \mathbf{0}$
- 2. $cov(\hat{\epsilon}) = \sigma^2(\mathbf{I} \mathbf{H})$
- 3. $cov(\hat{\boldsymbol{\epsilon}}, \mathbf{y}) = \sigma^2(\mathbf{I} \mathbf{H})$
- 4. $cov(\hat{\boldsymbol{\epsilon}}, \hat{\mathbf{y}}) = \mathbf{0}$

Theorem 5.18 (7.8a). Let $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, let $E(\mathbf{y}) = \mathbf{X}\boldsymbol{\beta}$, and let $cov(\mathbf{y}) = cov(\boldsymbol{\epsilon}) = \sigma^2 \mathbf{V}$, where \mathbf{X} is a full-rank matrix and \mathbf{V} is a known positive definite matrix. Then:

1. The best linear unbiased estimator (BLUE) of β is:

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{V}^{-1}\mathbf{X})^{-1}\mathbf{X}'\mathbf{V}^{-1}\mathbf{v}$$

2. The covariance matrix for $\hat{\beta}$ is:

$$cov(\hat{\boldsymbol{\beta}}) = \sigma^2 (\mathbf{X}' \mathbf{V}^{-1} \mathbf{X})^{-1}$$

3. An unbiased estimator of σ^2 is:

$$s^{2} = \frac{(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})'\mathbf{V}^{-1}(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})}{n - k - 1}$$

Theorem 5.19 (7.8b). If \mathbf{y} is $N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{V})$, where \mathbf{X} is full-rank and \mathbf{V} is a known positive definite matrix, where \mathbf{X} is $n \times (k+1)$ of rank k+1, then the maximum likelihood estimators for $\boldsymbol{\beta}$ and σ^2 are:

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{V}^{-1}\mathbf{X})^{-1}\mathbf{X}'\mathbf{V}^{-1}\mathbf{y}$$

$$\hat{\sigma}^2 = \frac{1}{n}(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})'\mathbf{V}^{-1}(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})$$

Theorem 5.20 (7.8c). Under the assumption that \mathbf{y} is $N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{V})$:

- 1. $\hat{\beta}$ is $N_{k+1}[\beta, \sigma^2(\mathbf{X}'\mathbf{V}^{-1}\mathbf{X})^{-1}]$
- 2. $(n-k-1)s^2/\sigma^2$ is $\chi^2(n-k-1)$
- 3. $\hat{\boldsymbol{\beta}}$ and s^2 are independent

Theorem 5.21 (7.9a). If we fit the model $\mathbf{y} = \mathbf{X}_1 \boldsymbol{\beta}_1^* + \boldsymbol{\epsilon}^*$ when the correct model is $\mathbf{y} = \mathbf{X}_1 \boldsymbol{\beta}_1 + \mathbf{X}_2 \boldsymbol{\beta}_2 + \boldsymbol{\epsilon}$ with $cov(\mathbf{y}) = \sigma^2 \mathbf{I}$, then:

1.
$$E(\hat{\boldsymbol{\beta}}_{1}^{*}) = \boldsymbol{\beta}_{1} + \mathbf{A}\boldsymbol{\beta}_{2} \text{ where } \mathbf{A} = (\mathbf{X}_{1}'\mathbf{X}_{1})^{-1}\mathbf{X}_{1}'\mathbf{X}_{2}$$

2.
$$cov(\hat{\boldsymbol{\beta}}_1^*) = \sigma^2(\mathbf{X}_1'\mathbf{X}_1)^{-1}$$

Theorem 5.22 (7.9b). Let $\hat{y}_0^1 = \mathbf{x}'_{01}\hat{\boldsymbol{\beta}}_1^*$ where $\hat{\boldsymbol{\beta}}_1^* = (\mathbf{X}'_1\mathbf{X}_1)^{-1}\mathbf{X}'_1\mathbf{y}$, then if $\boldsymbol{\beta}_2 \neq \mathbf{0}$:

$$E(\mathbf{x}'_{01}\hat{\boldsymbol{\beta}}_{1}^{*}) = \mathbf{x}'_{01}(\boldsymbol{\beta}_{1} + \mathbf{A}\boldsymbol{\beta}_{2})$$

= $\mathbf{x}'_{0}\boldsymbol{\beta} - (\mathbf{x}_{02} - \mathbf{A}'\mathbf{x}_{01})'\boldsymbol{\beta}_{2} \neq \mathbf{x}'_{0}\boldsymbol{\beta}$

Theorem 5.23 (7.9c). Let $\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$ from the full model be partitioned as $\hat{\boldsymbol{\beta}} = \begin{pmatrix} \hat{\boldsymbol{\beta}}_1 \\ \hat{\boldsymbol{\beta}}_2 \end{pmatrix}$ and let $\hat{\boldsymbol{\beta}}_1^* = (\mathbf{X}_1'\mathbf{X}_1)^{-1}\mathbf{X}_1'\mathbf{y}$ be the estimator from the reduced model. Then:

- 1. $cov(\hat{\boldsymbol{\beta}}_1) cov(\hat{\boldsymbol{\beta}}_1^*) = \sigma^2 \mathbf{A} \mathbf{B}^{-1} \mathbf{A}'$ which is a positive definite matrix, where $\mathbf{A} = (\mathbf{X}_1' \mathbf{X}_1)^{-1} \mathbf{X}_1' \mathbf{X}_2$ and $\mathbf{B} = \mathbf{X}_2' \mathbf{X}_2 \mathbf{X}_2' \mathbf{X}_1 \mathbf{A}$
- 2. $var(\mathbf{x}_0'\hat{\boldsymbol{\beta}}) \geq var(\mathbf{x}_0'\hat{\boldsymbol{\beta}}_1^*)$

Theorem 5.24 (7.9d). If $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ is the correct model, then for the reduced model $\mathbf{y} = \mathbf{X}_1\boldsymbol{\beta}_1^* + \boldsymbol{\epsilon}_1^*$ (underfitting), where \mathbf{X}_1 is $n \times (p+1)$ with p < k, the variance estimator:

$$s_1^2 = \frac{(\mathbf{y} - \mathbf{X}_1 \boldsymbol{\beta}_1^*)^T (\mathbf{y} - \mathbf{X}_1 \boldsymbol{\beta}_1^*)}{n - p - 1}$$

has the expected value:

$$E(s_1^2) = \sigma^2 + \frac{\boldsymbol{\beta}_2^T \mathbf{X}_2^T [\mathbf{I} - (\mathbf{X}_1 (\mathbf{X}_1^T \mathbf{X}_1)^{-1} \mathbf{X}_1^T] \mathbf{X}_2 \boldsymbol{\beta}_2}{n - p - 1}$$

Theorem 5.25 (7.9f). For the model $\mathbf{y} = \mathbf{X}_1 \boldsymbol{\beta}_1^* + \boldsymbol{\epsilon}^*$ when the true model is $\mathbf{y} = \mathbf{X}_1 \boldsymbol{\beta}_1 + \mathbf{X}_2 \boldsymbol{\beta}_2 + \boldsymbol{\epsilon}$:

$$MSE(\hat{\boldsymbol{\beta}}_1^*) = \sigma^2(\mathbf{X}_1'\mathbf{X}_1)^{-1} + \mathbf{A}\boldsymbol{\beta}_2\boldsymbol{\beta}_2'\mathbf{A}'$$

where $\mathbf{A} = (\mathbf{X}_1' \mathbf{X}_1)^{-1} \mathbf{X}_1' \mathbf{X}_2$

Theorem 5.26 (7.10). If $\mathbf{X}_1'\mathbf{X}_2 = \mathbf{O}$, then the estimator of $\boldsymbol{\beta}_1$ in the full model $\mathbf{y} = \mathbf{X}_1\boldsymbol{\beta}_1 + \mathbf{X}_2\boldsymbol{\beta}_2 + \boldsymbol{\epsilon}$ is the same as the estimator of $\boldsymbol{\beta}_1^*$ in the reduced model $\mathbf{y} = \mathbf{X}_1\boldsymbol{\beta}_1^* + \boldsymbol{\epsilon}^*$.

Theorem 5.27 (7.9e). If y is $N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I})$ and $\mathbf{X}_1'\mathbf{X}_2 = \mathbf{O}$, then:

- 1. $\hat{\boldsymbol{\beta}}_1$ and $\hat{\boldsymbol{\beta}}_2$ are independent
- 2. The test statistics for testing $H_0: \beta_1 = \mathbf{0}$ and $H_0: \beta_2 = \mathbf{0}$ are independent

Theorem 5.28 (7.11). For the model $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ with $cov(\boldsymbol{\epsilon}) = \sigma^2 \mathbf{I}$:

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST} = corr^2(\mathbf{y}, \hat{\mathbf{y}})$$

where SSR is the regression sum of squares, SSE is the error sum of squares, and SST is the total sum of squares.

6 Multiple Regression: Tests of Hypotheses and Confidence Intervals (Ch. 8)

Theorem 6.1 (8.1a). For the linear model $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ with $cov(\mathbf{y}) = \sigma^2 \mathbf{I}$:

- 1. $SSE = \mathbf{y}'(\mathbf{I} \mathbf{H})\mathbf{y}$
- 2. $SSR = \mathbf{y}'\mathbf{H}\mathbf{y} n\bar{y}^2$
- 3. $SST = \mathbf{y}'\mathbf{y} n\bar{y}^2$

where $\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$

Theorem 6.2 (8.1b). If y is $N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I})$, then:

- 1. SSE/σ^2 is $\chi^2(n-k-1)$
- 2. SSR/σ^2 is $\chi^2(k,\lambda)$ where $\lambda = \beta' \mathbf{X}' \mathbf{X} \beta / 2\sigma^2$

Theorem 6.3 (8.1c). If y is $N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I})$, then SSR and SSE are independent.

Theorem 6.4 (8.1d). Let y be $N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I})$ and define the F statistic

$$F = \frac{SSR/k}{SSE/(n-k-1)} = \frac{SSR/k}{s^2}$$

The distribution of F is:

- 1. If $H_0: \beta_1 = \mathbf{0}$ is false, then F is distributed as $F(k, n k 1, \lambda_1)$, where $\lambda_1 = \beta_1' \mathbf{X}_c' \mathbf{X}_c \beta_1 / 2\sigma^2$
- 2. If $H_0: \beta_1 = \mathbf{0}$ is true, then $\lambda_1 = 0$ and F is distributed as F(k, n-k-1)

Theorem 6.5 (8.2a). The matrix $\mathbf{H} - \mathbf{H}_1 = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}' - \mathbf{X}_1(\mathbf{X}_1'\mathbf{X}_1)^{-1}\mathbf{X}_1'$ is idempotent with rank h, where h is the number of elements in $\boldsymbol{\beta}_2$.

Theorem 6.6 (8.2b). If y is $N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I})$ and H and H₁ are as defined previously, then:

- 1. $\mathbf{y}'(\mathbf{I} \mathbf{H})\mathbf{y}/\sigma^2$ is $\chi^2(n-k-1)$
- 2. $\mathbf{y}'(\mathbf{H} \mathbf{H}_1)\mathbf{y}/\sigma^2$ is $\chi^2(h, \lambda_1)$, where

$$\lambda_1 = \boldsymbol{\beta}_2' [\mathbf{X}_2' \mathbf{X}_2 - \mathbf{X}_2' \mathbf{X}_1 (\mathbf{X}_1' \mathbf{X}_1)^{-1} \mathbf{X}_1' \mathbf{X}_2] \boldsymbol{\beta}_2 / 2\sigma^2$$

3. $\mathbf{y}'(\mathbf{I} - \mathbf{H})\mathbf{y}$ and $\mathbf{y}'(\mathbf{H} - \mathbf{H}_1)\mathbf{y}$ are independent

Theorem 6.7 (8.2c). Let y be $N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I})$ and define an F statistic as:

$$F = \frac{\mathbf{y}'(\mathbf{H} - \mathbf{H}_1)\mathbf{y}/h}{\mathbf{y}'(\mathbf{I} - \mathbf{H})\mathbf{y}/(n - k - 1)} = \frac{SS(\boldsymbol{\beta}_2|\boldsymbol{\beta}_1)/h}{SSE/(n - k - 1)}$$

The distribution of F is:

- 1. If $H_0: \beta_2 = \mathbf{0}$ is false, then F is distributed as $F(h, n-k-1, \lambda_1)$
- 2. If $H_0: \beta_2 = \mathbf{0}$ is true then $\lambda_1 = 0$ and F is distributed as F(h, n-k-1)

Theorem 6.8 (8.2d). If the model is partitioned as in (8.7), then $SS(\beta_2|\beta_1) = \hat{\beta}'_2[\mathbf{X}'_2\mathbf{X}_2 - \mathbf{X}'_2\mathbf{X}_1(\mathbf{X}'_1\mathbf{X}_1)^{-1}\mathbf{X}'_1\mathbf{X}_2]\hat{\beta}_2$, where $\hat{\beta}_2$ is from the partition of $\hat{\beta}$ in the full model:

$$\hat{oldsymbol{eta}} = egin{pmatrix} \hat{oldsymbol{eta}}_1 \\ \hat{oldsymbol{eta}}_2 \end{pmatrix} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

Theorem 6.9 (8.3). The F statistics for testing $H_0: \beta_1 = \mathbf{0}$ and $H_0: \beta_2 = \mathbf{0}$ can be written in terms of R^2 as:

$$F = \frac{R^2/k}{(1 - R^2)/(n - k - 1)}$$

and

$$F = \frac{(R^2 - R_r^2)/h}{(1 - R^2)/(n - k - 1)}$$

where R^2 and R_r^2 are the coefficients of determination for the full and reduced models respectively.

Theorem 6.10 (8.4a). If y is distributed $N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I})$ and C is $q \times (k+1)$ of rank $q \leq k+1$, then:

- 1. $\mathbf{C}\hat{\boldsymbol{\beta}}$ is $N_q[\mathbf{C}\boldsymbol{\beta}, \sigma^2\mathbf{C}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{C}']$
- 2. $SSH/\sigma^2 = (\mathbf{C}\hat{\boldsymbol{\beta}})'[\mathbf{C}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{C}']^{-1}\mathbf{C}\hat{\boldsymbol{\beta}}/\sigma^2$ is $\chi^2(q,\lambda)$, where $\lambda = (\mathbf{C}\boldsymbol{\beta})'[\mathbf{C}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{C}']^{-1}\mathbf{C}\boldsymbol{\beta}/2\sigma^2$
- 3. SSE/σ^2 is $\chi^2(n-k-1)$
- 4. SSH and SSE are independent

Theorem 6.11 (8.4b). Let y be $N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I})$ and define the statistic:

$$F = \frac{SSH/q}{SSE/(n-k-1)} = \frac{(\mathbf{C}\hat{\boldsymbol{\beta}})'[\mathbf{C}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{C}']^{-1}\mathbf{C}\hat{\boldsymbol{\beta}}/q}{SSE/(n-k-1)}$$

where C is $q \times (k+1)$ of rank $q \leq k+1$ and $\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$. The distribution of F in (8.27) is as follows:

1. If $H_0: \mathbf{C}\boldsymbol{\beta} = \mathbf{0}$ is false, then

F is distributed as
$$F(q, n-k-1, \lambda)$$

where
$$\lambda = (\mathbf{C}\boldsymbol{\beta})'[\mathbf{C}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{C}']^{-1}\mathbf{C}\boldsymbol{\beta}/2\sigma^2$$

2. If $H_0: \mathbf{C}\boldsymbol{\beta} = \mathbf{0}$ is true, then

F is distributed as
$$F(q, n-k-1)$$

Theorem 6.12 (8.4c). Under H_0 : $\mathbf{C}\boldsymbol{\beta} = \mathbf{0}$, a $100(1-\alpha)\%$ confidence region for $\mathbf{C}\boldsymbol{\beta}$ consists of all vectors that satisfy:

$$(\mathbf{C}\hat{\boldsymbol{\beta}})'[\mathbf{C}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{C}']^{-1}\mathbf{C}\hat{\boldsymbol{\beta}} \leq qs^2F_{\alpha,q,n-k-1}$$

Theorem 6.13 (8.4d). The F test in Theorem 8.4b for the general linear hypothesis $H_0: \mathbf{C}\boldsymbol{\beta} = \mathbf{0}$ is a full-reduced-model test.

Theorem 6.14 (8.5). 1. The maximum value of F in (8.44) is given by:

$$\max_{\mathbf{a}} \frac{(\mathbf{a}'\hat{\boldsymbol{\beta}})^2}{\sigma^2 \mathbf{a}'(\mathbf{X}'\mathbf{X})^{-1} \mathbf{a}} = \frac{\hat{\boldsymbol{\beta}}' \mathbf{X}' \mathbf{X} \hat{\boldsymbol{\beta}}}{\sigma^2}$$

2. If \mathbf{y} is $N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I})$, then $\hat{\boldsymbol{\beta}}'\mathbf{X}'\mathbf{X}\hat{\boldsymbol{\beta}}/(k+1)\sigma^2$ is distributed as F(k+1, n-k-1). Thus

$$\max_{\mathbf{a}} \frac{(\mathbf{a}'\hat{\boldsymbol{\beta}})^2}{\sigma^2 \mathbf{a}'(\mathbf{X}'\mathbf{X})^{-1} \mathbf{a}(k+1)}$$

is distributed as F(k+1, n-k-1).

Theorem 6.15 (8.7a). If y is $N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I})$, the likelihood ratio test for $H_0: \boldsymbol{\beta} = \mathbf{0}$ can be based on:

$$F = \frac{\hat{\boldsymbol{\beta}}' \mathbf{X}' \mathbf{y} / (k+1)}{(\mathbf{y}' \mathbf{y} - \hat{\boldsymbol{\beta}}' \mathbf{X}' \mathbf{y}) / (n-k-1)}$$

We reject H_0 if $F > F_{\alpha,k+1,n-k-1}$.

Theorem 6.16 (8.7b (continued)). Under H_0 :

$$LR = \frac{|S_0^*|^{n/2}}{|\hat{S}|^{n/2}} = (1 - R^2)^{n/2}$$

When H_0 is false:

$$LR = \frac{\max_{H_0} L(\boldsymbol{\beta}, \sigma^2)}{\max_{H_1} L(\boldsymbol{\beta}, \sigma^2)}$$

Theorem 6.17 (8.8). Under the normal model with $\mathbf{y} \sim N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I})$, a $100(1-\alpha)\%$ confidence region for $\boldsymbol{\beta}$ consists of all vectors $\boldsymbol{\beta}$ that satisfy:

$$(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})' \mathbf{X}' \mathbf{X} (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \le (k+1)s^2 F_{\alpha,k+1,n-k-1}$$

Theorem 6.18 (8.9). A $100(1-\alpha)\%$ confidence interval for β_i is given by:

$$\hat{\beta}_j \pm t_{\alpha/2, n-k-1} s \sqrt{g_{jj}}$$

where g_{ij} is the jth diagonal element of $(\mathbf{X}'\mathbf{X})^{-1}$.

Theorem 6.19 (8.10). A $100(1-\alpha)\%$ confidence interval for $\mathbf{a}'\boldsymbol{\beta}$ is given by:

$$\mathbf{a}'\hat{\boldsymbol{\beta}} \pm t_{\alpha/2,n-k-1} s \sqrt{\mathbf{a}'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{a}}$$

Theorem 6.20 (8.11). A $100(1-\alpha)\%$ confidence interval for $E(y_0) = \mathbf{x}_0'\boldsymbol{\beta}$ is given by:

$$\mathbf{x}_0'\hat{\boldsymbol{\beta}} \pm t_{\alpha/2,n-k-1} s \sqrt{\mathbf{x}_0'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}_0}$$

Theorem 6.21 (8.12). A $100(1-\alpha)\%$ prediction interval for a future observation y_0 at \mathbf{x}_0 is given by:

$$\mathbf{x}_0'\hat{\boldsymbol{\beta}} \pm t_{\alpha/2,n-k-1} s \sqrt{1 + \mathbf{x}_0'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}_0}$$

Theorem 6.22 (8.13). A $100(1-\alpha)\%$ confidence interval for σ^2 is given by:

$$\frac{(n-k-1)s^2}{\chi^2_{\alpha/2,n-k-1}} \le \sigma^2 \le \frac{(n-k-1)s^2}{\chi^2_{1-\alpha/2,n-k-1}}$$

Theorem 6.23 (8.14). A $100(1-\alpha)\%$ confidence interval for σ is given by:

$$\sqrt{\frac{(n-k-1)s^2}{\chi^2_{\alpha/2,n-k-1}}} \le \sigma \le \sqrt{\frac{(n-k-1)s^2}{\chi^2_{1-\alpha/2,n-k-1}}}$$

Theorem 6.24 (8.15). For simultaneous confidence intervals with familywise confidence coefficient $1 - \alpha$, Bonferroni confidence intervals for $\beta_1, \beta_2, \ldots, \beta_k$ are given by:

$$\hat{\beta}_j \pm t_{\alpha/2k, n-k-1} s \sqrt{g_{jj}}, \quad j = 1, 2, \dots, k$$

Theorem 6.25 (8.16). For d linear functions $\mathbf{a}_1'\boldsymbol{\beta}, \mathbf{a}_2'\boldsymbol{\beta}, \dots, \mathbf{a}_d'\boldsymbol{\beta}$, Bonferroni confidence intervals with familywise confidence coefficient $1 - \alpha$ are given by:

$$\mathbf{a}_{i}'\hat{\boldsymbol{\beta}} \pm t_{\alpha/2d,n-k-1} s \sqrt{\mathbf{a}_{i}'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{a}_{i}}, \quad i = 1, 2, \dots, d$$

Theorem 6.26 (8.17). Scheffé simultaneous confidence intervals for all possible linear combinations $\mathbf{a}'\boldsymbol{\beta}$ with confidence coefficient $1-\alpha$ are given by:

$$\mathbf{a}'\hat{\boldsymbol{\beta}} \pm s\sqrt{(k+1)F_{\alpha,k+1,n-k-1}\mathbf{a}'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{a}}$$

Theorem 6.27 (8.18). Scheffé simultaneous prediction intervals for d future observations with confidence coefficient $1 - \alpha$ are given by:

$$\mathbf{x}_i'\hat{\boldsymbol{\beta}} \pm s\sqrt{dF_{\alpha,d,n-k-1}[1+\mathbf{x}_i'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}_i]}, \quad i=1,2,\ldots,d$$

7 Multiple Regression: Model Validation and Diagnostics (Ch. 9)

Theorem 7.1 (9.2). If **X** is $n \times (k+1)$ of rank k+1 < n, and if the first column of **X** is **j**, then the elements h_{ij} of $\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$ have the following properties:

- 1. $\frac{1}{n} \leq h_{ii} \leq 1 \text{ for } i = 1, 2, \dots, n$
- 2. $-0.5 \le h_{ij} \le 0.5 \text{ for all } j \ne i$
- 3. $h_{ii} = \frac{1}{n} + (\mathbf{x}_{1i} \bar{\mathbf{x}}_1)'(\mathbf{X}_c'\mathbf{X}_c)^{-1}(\mathbf{x}_{1i} \bar{\mathbf{x}}_1), \text{ where } \mathbf{x}_{1i}' = (x_{i1}, x_{i2}, \dots, x_{ik}), \ \bar{\mathbf{x}}_1' = (\bar{x}_1, \bar{x}_2, \dots, \bar{x}_k), \text{ and } (\mathbf{x}_{1i} \bar{\mathbf{x}}_1)' \text{ is the ith row of the centered matrix } \mathbf{X}_c$
- 4. $tr(\mathbf{H}) = \sum_{i=1}^{n} h_{ii} = k+1$

Theorem 7.2 (9.3a). For the mean-shift outlier model $E(y_i) = \mathbf{x}_i' \boldsymbol{\beta} + u$, where \mathbf{x}_i' is the ith row of \mathbf{X} , the test statistic t_i in (9.26) or (9.31) has a t(n-k-1) distribution, and can be used to test $H_0: u = 0$.

Theorem 7.3 (9.3b). For the deleted residual $\hat{\epsilon}_{(i)}$ defined in (9.27), we have:

$$\hat{\epsilon}_{(i)} = \frac{\hat{\epsilon}_i}{1 - h_{ii}}$$

where $\hat{\epsilon}_i$ is the ith residual and h_{ii} is the ith diagonal element of **H**.

Theorem 7.4 (9.4a). Cook's distance D_i can be expressed as:

$$D_i = \frac{r_i^2}{k+1} \frac{h_{ii}}{1 - h_{ii}}$$

where r_i is the standardized residual and h_{ii} is the ith diagonal element of **H**.

Theorem 7.5 (9.4b). For the estimator $\hat{\boldsymbol{\beta}}_{(i)}$ obtained by deleting observation i:

$$\hat{\boldsymbol{\beta}}_{(i)} = \hat{\boldsymbol{\beta}} - \frac{\hat{\epsilon}_i}{1 - h_{ii}} (\mathbf{X}'\mathbf{X})^{-1} \mathbf{x}_i$$

where $\hat{\boldsymbol{\beta}}$ is the full sample estimator, $\hat{\epsilon}_i$ is the ith residual, h_{ii} is the ith diagonal element of \mathbf{H} , and \mathbf{x}_i is the ith row of \mathbf{X} .

Theorem 7.6 (9.4c). The deleted sample variance $s_{(i)}^2$ can be computed as:

$$s_{(i)}^2 = \frac{SSE_{(i)}}{n-k-2} = \frac{SSE - \hat{\epsilon}_i^2/(1-h_{ii})}{n-k-2}$$

where SSE is the error sum of squares from the full sample and $SSE_{(i)}$ is the error sum of squares with observation i deleted.

Theorem 7.7 (9.4d). For the deleted observations (y_i, \mathbf{x}'_i) , the studentized residual t_i can be computed as:

$$t_i = \frac{\hat{\epsilon}_{(i)}}{\sqrt{\widehat{var}(\hat{\epsilon}_{(i)})}} = \frac{\hat{\epsilon}_i}{s_{(i)}\sqrt{1 - h_{ii}}}$$

where $s_{(i)}^2$ is the deleted sample variance.

Theorem 7.8 (9.5). The prediction sum of squares (PRESS) statistic is given by:

$$PRESS = \sum_{i=1}^{n} \hat{\epsilon}_{(i)}^{2} = \sum_{i=1}^{n} \left(\frac{\hat{\epsilon}_{i}}{1 - h_{ii}}\right)^{2}$$

where $\hat{\epsilon}_{(i)}$ is the deleted residual and h_{ii} is the ith diagonal element of **H**.

Theorem 7.9 (9.6). The standardized distance $(x_{1i} - \bar{x}_1)'(\mathbf{X}_c'\mathbf{X}_c)^{-1}(x_{1i} - \bar{x}_1)$ in the expression for h_{ii} can be written as:

$$\sum_{r=1}^{k} \frac{1}{\lambda_r} \cos^2 \theta_{ir}$$

where λ_r is the rth eigenvalue of $\mathbf{X}_c'\mathbf{X}_c$ and θ_{ir} is the angle between $\mathbf{x}_{1i} - \bar{\mathbf{x}}_1$ and \mathbf{a}_r , the rth eigenvector of $\mathbf{X}_c'\mathbf{X}_c$.

Theorem 7.10 (9.7). For any point $(\mathbf{x}_{1i} - \bar{\mathbf{x}}_1)$, the leverage h_{ii} is large if either:

- 1. $(\mathbf{x}_{1i} \bar{\mathbf{x}}_1)'(\mathbf{x}_{1i} \bar{\mathbf{x}}_1)$ is large
- 2. θ_{ir} is small for some r corresponding to a small eigenvalue λ_r

Theorem 7.11 (9.8). The covariance matrix of the residual vector $\hat{\boldsymbol{\epsilon}}$ is:

$$cov(\hat{\boldsymbol{\epsilon}}) = \sigma^2(\mathbf{I} - \mathbf{H})$$

where **H** is the hat matrix.

8 Multiple Regression: Random x's (Ch. 11)

Theorem 8.1 (10.2a). If $(y_1, \mathbf{x}'_1), (y_2, \mathbf{x}'_2), \dots, (y_n, \mathbf{x}'_n)$ is a random sample from $N_{k+1}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, with $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ as given in (10.2) and (10.3), the maximum likelihood estimators are:

$$\hat{oldsymbol{\mu}} = egin{pmatrix} \hat{oldsymbol{\mu}}_y \ \hat{oldsymbol{\mu}}_x \end{pmatrix} = egin{pmatrix} ar{y} \ ar{\mathbf{x}} \end{pmatrix}$$

$$\hat{\mathbf{\Sigma}} = \frac{n-1}{n} \mathbf{S} = \frac{n-1}{n} \begin{pmatrix} s_{yy} & \mathbf{s}'_{yx} \\ \mathbf{s}_{yx} & \mathbf{S}_{xx} \end{pmatrix}$$

Theorem 8.2 (10.2b). The maximum likelihood estimator of a function of one or more parameters is the same function of the corresponding estimators; that is, if $\hat{\boldsymbol{\theta}}$ is the maximum likelihood estimator of the vector or matrix of parameters $\boldsymbol{\theta}$, then $g(\hat{\boldsymbol{\theta}})$ is the maximum likelihood estimator of $g(\boldsymbol{\theta})$.

Theorem 8.3 (10.2c). If $(y_1, \mathbf{x}'_1), (y_2, \mathbf{x}'_2), \dots, (y_n, \mathbf{x}'_n)$ is a random sample from $N_{k+1}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, the maximum likelihood estimators for β_0 , β_1 , and σ^2 are:

$$\hat{\beta}_0 = \bar{y} - \mathbf{s}'_{yx} \mathbf{S}_{xx}^{-1} \bar{\mathbf{x}}$$

$$\hat{\boldsymbol{\beta}}_1 = \mathbf{S}_{xx}^{-1} \mathbf{s}_{yx}$$

$$\hat{\sigma}^2 = \frac{n-1}{n} s^2 \text{ where } s^2 = s_{yy} - \mathbf{s}'_{yx} \mathbf{S}_{xx}^{-1} \mathbf{s}_{yx}$$

Theorem 8.4 (10.5). If $(y_1, \mathbf{x}'_1), (y_2, \mathbf{x}'_2), \dots, (y_n, \mathbf{x}'_n)$ is a random sample from $N_{k+1}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, the likelihood ratio test for $H_0: \boldsymbol{\beta}_1 = \mathbf{0}$ or equivalently $H_0: \rho^2_{y|x} = 0$ can be based on F in (10.44). We reject H_0 if $F \geq F_{\alpha,k,n-k-1}$.

Theorem 8.5 (10.6). The increase in \mathbb{R}^2 due to z can be expressed as:

$$R_{yw}^2 - R_{yx}^2 = \frac{(\hat{r}_{yz} - r_{yz})^2}{1 - R_{zz}^2}$$

where $\hat{r}_{yz} = \hat{\boldsymbol{\beta}}'_{zx} \mathbf{r}_{yx}$ is a "predicted" value of r_{yz} based on the relationship of z to the x's.

Theorem 8.6 (10.7). For the random vector (y, \mathbf{x}') , the function $t(\mathbf{x})$ that minimizes the mean squared error $E[y - t(\mathbf{x})]^2$ is given by $E(y|\mathbf{x})$.

Theorem 8.7 (10.7b). The linear function $t(\mathbf{x})$ that minimizes $E[y - t(\mathbf{x})]^2$ is given by $t(\mathbf{x}) = \beta_0 + \beta_1' \mathbf{x}$, where:

$$eta_0 = \mu_y - \sigma'_{yx} \Sigma_{xx}^{-1} \mu_x$$
 $eta_1 = \Sigma_{xx}^{-1} \sigma_{yx}$

Theorem 8.8 (10.7c). If $(y_1, \mathbf{x}'_1), (y_2, \mathbf{x}'_2), \dots, (y_n, \mathbf{x}'_n)$ is a random sample with mean vector and covariance matrix $\hat{\boldsymbol{\mu}}$ and \mathbf{S} , then the estimators $\hat{\beta}_0$ and $\hat{\boldsymbol{\beta}}_1$ that minimize $\sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\boldsymbol{\beta}}'_1 \mathbf{x}_i)^2/n$ are given by:

$$\hat{\beta}_0 = \bar{y} - \mathbf{s}'_{yx} \mathbf{S}_{xx}^{-1} \bar{\mathbf{x}}$$
$$\hat{\beta}_1 = \mathbf{S}_{xx}^{-1} \mathbf{s}_{yx}$$

Theorem 8.9 (10.8a). The expression for $r_{12|3}$ in (10.66) is equivalent to an element of $\mathbf{R}_{y|x}$ in (10.65) and is also equal to $r_{y_1-\hat{y}_1,y_2-\hat{y}_2}$ from (7.94), where $y_1-\hat{y}_1$ and $y_2-\hat{y}_2$ are residuals from regression of y_1 on y_3 and y_2 on y_3 .

Theorem 8.10 (10.8b). The sample covariance matrix of the residual vector $y_i - \hat{y}_i(\mathbf{x})$ is equivalent to $\mathbf{S}_{yy} - \mathbf{S}_{yx}\mathbf{S}_{xx}^{-1}\mathbf{S}_{xy}$ in (10.65), that is, $\mathbf{S}_{y-\hat{y}} = \mathbf{S}_{yy} - \mathbf{S}_{yx}\mathbf{S}_{xx}^{-1}\mathbf{S}_{xy}$.

9 Analysis of Variance Models (Ch. 12)

Theorem 9.1 (12.2a). If **X** is $n \times p$ of rank $k , the system of equations <math>\mathbf{X}'\mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}'\mathbf{y}$ is consistent.

Theorem 9.2 (12.2b). In the model $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, where $E(\mathbf{y}) = \mathbf{X}\boldsymbol{\beta}$ and \mathbf{X} is $n \times p$ of rank $k , the linear function <math>\mathbf{l}'\boldsymbol{\beta}$ is estimable if and only if any one of the following equivalent conditions holds:

- 1. I' is a linear combination of the rows of X; that is, there exists a vector \mathbf{a} such that $\mathbf{a}'\mathbf{X} = \mathbf{l}'$
- 2. I' is a linear combination of the rows of X'X or I is a linear combination of the columns of X'X
- 3. 1 or \mathbf{l}' is such that $\mathbf{X}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1} = \mathbf{l}$ or $\mathbf{l}'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X} = \mathbf{l}'$

Theorem 9.3 (12.2c). In the non-full-rank model $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, the number of linearly independent estimable functions of $\boldsymbol{\beta}$ is the rank of \mathbf{X} .

Theorem 9.4 (12.3a). Let $\mathbf{l}'\boldsymbol{\beta}$ be an estimable function of $\boldsymbol{\beta}$ in the model $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, where $E(\mathbf{y}) = \mathbf{X}\boldsymbol{\beta}$ and \mathbf{X} is $n \times p$ of rank $k . Let <math>\hat{\boldsymbol{\beta}}$ be any solution to the normal equations $\mathbf{X}'\mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}'\mathbf{y}$, and let \mathbf{r} be any solution to $\mathbf{X}'\mathbf{X}\mathbf{r} = \mathbf{l}$. Then the two estimators $\mathbf{l}'\hat{\boldsymbol{\beta}}$ and $\mathbf{r}'\mathbf{X}'\mathbf{y}$ have the following properties:

- 1. $E(\mathbf{l}'\hat{\boldsymbol{\beta}}) = E(\mathbf{r}'\mathbf{X}'\mathbf{y}) = \mathbf{l}'\boldsymbol{\beta}$
- 2. $\mathbf{l}'\hat{\boldsymbol{\beta}}$ is equal to $\mathbf{r}'\mathbf{X}'\mathbf{y}$ for any $\hat{\boldsymbol{\beta}}$ or any \mathbf{r}
- 3. $\mathbf{l}'\hat{\boldsymbol{\beta}}$ and $\mathbf{r}'\mathbf{X}'\mathbf{y}$ are invariant to the choice of $\hat{\boldsymbol{\beta}}$ or \mathbf{r}

Theorem 9.5 (12.3b). Let $\mathbf{l}'\boldsymbol{\beta}$ be an estimable function in the model $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, where \mathbf{X} is $n \times p$ of rank $k and <math>cov(\mathbf{y}) = \sigma^2 \mathbf{I}$. Let \mathbf{r} be any solution to $\mathbf{X}'\mathbf{X}\mathbf{r} = \mathbf{l}$, and let $\hat{\boldsymbol{\beta}}$ be any solution to $\mathbf{X}'\mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}'\mathbf{y}$. Then the variance of $\mathbf{l}'\hat{\boldsymbol{\beta}}$ or $\mathbf{r}'\mathbf{X}'\mathbf{y}$ has the following properties:

- 1. $var(\mathbf{r}'\mathbf{X}'\mathbf{y}) = \sigma^2 \mathbf{r}'\mathbf{X}'\mathbf{X}\mathbf{r} = \sigma^2 \mathbf{r}'\mathbf{l}$
- 2. $var(\mathbf{l}'\hat{\boldsymbol{\beta}}) = \sigma^2 \mathbf{l}'(\mathbf{X}'\mathbf{X})^{-1}$
- 3. $var(\mathbf{l}'\hat{\boldsymbol{\beta}})$ is unique, that is, invariant to the choice of \mathbf{r} or $(\mathbf{X}'\mathbf{X})^-$

Theorem 9.6 (12.3c). If $\mathbf{l}'_1\boldsymbol{\beta}$ and $\mathbf{l}'_2\boldsymbol{\beta}$ are two estimable functions in the model $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, where \mathbf{X} is $n \times p$ of rank $k and <math>cov(\mathbf{y}) = \sigma^2 \mathbf{I}$, the covariance of their estimators is given by:

$$cov(\mathbf{l}_1'\hat{\boldsymbol{\beta}}, \mathbf{l}_2'\hat{\boldsymbol{\beta}}) = \sigma^2\mathbf{r}_1'\mathbf{l}_2 = \sigma^2\mathbf{l}_1'\mathbf{r}_2 = \sigma^2\mathbf{l}_1'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{l}_2$$

where $\mathbf{X}'\mathbf{X}\mathbf{r}_1 = \mathbf{l}_1$ and $\mathbf{X}'\mathbf{X}\mathbf{r}_2 = \mathbf{l}_2$.

Theorem 9.7 (12.3d). If $\mathbf{l}'\boldsymbol{\beta}$ is an estimable function in the model $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, where \mathbf{X} is $n \times p$ of rank $k , then the estimators <math>\mathbf{l}'\hat{\boldsymbol{\beta}}$ and $\mathbf{r}'\mathbf{X}'\mathbf{y}$ are BLUE.

Theorem 9.8 (12.3e). For s^2 defined in (12.22) for the non-full-rank model, we have the following properties:

- 1. $E(s^2) = \sigma^2$
- 2. s^2 is invariant to the choice of $\hat{\beta}$ or to the choice of generalized inverse $(X'X)^-$

Theorem 9.9 (12.3f). If **y** is $N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I})$, where **X** is $n \times p$ of rank $k , then the maximum likelihood estimators for <math>\boldsymbol{\beta}$ and σ^2 are given by:

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'\mathbf{y}$$

$$\hat{\sigma}^{2} = \frac{1}{n}(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})'\mathbf{V}^{-1}(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})$$

Theorem 9.10 (12.3g). If \mathbf{y} is $N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I})$, where \mathbf{X} is $n \times p$ of rank $k , then the maximum likelihood estimators <math>\hat{\boldsymbol{\beta}}$ and s^2 have the following properties:

- 1. $\hat{\boldsymbol{\beta}}$ is $N_p[(\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'\mathbf{X}\boldsymbol{\beta}, \sigma^2(\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-}]$
- 2. $(n-k)s^2/\sigma^2$ is $\chi^2(n-k)$
- 3. $\hat{\boldsymbol{\beta}}$ and s^2 are independent

Theorem 9.11 (12.3h). If \mathbf{y} is $N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I})$, where \mathbf{X} is $n \times p$ of rank $k , and if <math>\mathbf{l}'\boldsymbol{\beta}$ is an estimable function, then $\mathbf{l}'\hat{\boldsymbol{\beta}}$ has minimum variance among all unbiased estimators.

Theorem 9.12 (12.6a). If $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, where \mathbf{X} is $n \times p$ of rank $k , and if <math>\mathbf{T}$ is a $(p - k) \times p$ matrix of rank p - k such that $\mathbf{T}\boldsymbol{\beta}$ is a set of nonestimable functions, then there is a unique vector $\hat{\boldsymbol{\beta}}$ that satisfies both $\mathbf{X}'\mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}'\mathbf{y}$ and $\mathbf{T}\hat{\boldsymbol{\beta}} = \mathbf{0}$.

Theorem 9.13 (12.7a). Consider the partitioned model $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon} = \mathbf{X}_1\boldsymbol{\beta}_1 + \mathbf{X}_2\boldsymbol{\beta}_2 + \boldsymbol{\epsilon}$, where \mathbf{X} is $n \times p$ of rank $k . If <math>\mathbf{X}_2'\mathbf{X}_1 = \mathbf{O}$, any estimate of $\boldsymbol{\beta}_2^*$ in the reduced model $\mathbf{y} = \mathbf{X}_2\boldsymbol{\beta}_2^* + \boldsymbol{\epsilon}^*$ is also an estimate of $\boldsymbol{\beta}_2$ in the full model.

Theorem 9.14 (12.7b). If \mathbf{y} is $N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I})$, where \mathbf{X} is $n \times p$ of rank $k , if <math>\mathbf{C}$ is $m \times p$ of rank $m \le k$ such that $\mathbf{C}\boldsymbol{\beta}$ is a set of m linearly independent estimable functions, and if $\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^-\mathbf{X}'\mathbf{y}$, then:

- 1. $C(X'X)^-C'$ is nonsingular
- 2. $\mathbf{C}\hat{\boldsymbol{\beta}}$ is $N_m[\mathbf{C}\boldsymbol{\beta}, \sigma^2\mathbf{C}(\mathbf{X}'\mathbf{X})^{-}\mathbf{C}']$
- 3. $SSH/\sigma^2 = (\mathbf{C}\hat{\boldsymbol{\beta}})'[\mathbf{C}(\mathbf{X}'\mathbf{X})^{-}\mathbf{C}']^{-1}\mathbf{C}\hat{\boldsymbol{\beta}}/\sigma^2$ is $\chi^2(m,\lambda)$, where $\lambda = (\mathbf{C}\boldsymbol{\beta})'[\mathbf{C}(\mathbf{X}'\mathbf{X})^{-}\mathbf{C}']^{-1}\mathbf{C}\boldsymbol{\beta}/2\sigma^2$
- 4. $SSE/\sigma^2 = \mathbf{y}'[\mathbf{I} \mathbf{X}(\mathbf{X}'\mathbf{X})^{-}\mathbf{X}']\mathbf{y}/\sigma^2$ is $\chi^2(n-k)$
- 5. SSH and SSE are independent

Theorem 9.15 (12.7c). Let y be $N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I})$, where X is $n \times p$ of rank k , and define the statistic:

$$F = \frac{SSH/m}{SSE/(n-k)} = \frac{(\mathbf{C}\hat{\boldsymbol{\beta}})'[\mathbf{C}(\mathbf{X}'\mathbf{X})^{-}\mathbf{C}']^{-1}\mathbf{C}\hat{\boldsymbol{\beta}}/m}{SSE/(n-k)}$$

Then, if $H_0: \mathbf{C}\boldsymbol{\beta} = \mathbf{0}$ is true, F is distributed as F(m, n - k).

Theorem 9.16 (12.7d). The F test in Theorem 12.7c for $H_0: \mathbf{C}\beta = \mathbf{0}$ is a full-reduced-model test.

Theorem 9.17 (12.7e). The mean vector and covariance matrix of $\hat{\boldsymbol{\beta}}_c$ in (12.30) are:

1.
$$E(\hat{\boldsymbol{\beta}}_c) = \boldsymbol{\beta} - (\mathbf{X}'\mathbf{X})^{-1}\mathbf{C}'[\mathbf{C}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{C}']^{-1}\mathbf{C}\boldsymbol{\beta}$$

2.
$$cov(\hat{\boldsymbol{\beta}}_c) = \sigma^2(\mathbf{X}'\mathbf{X})^{-1} - \sigma^2(\mathbf{X}'\mathbf{X})^{-1}\mathbf{C}'[\mathbf{C}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{C}']^{-1}\mathbf{C}(\mathbf{X}'\mathbf{X})^{-1}$$

Theorem 9.18 (12.8.1). In a non-full-rank model, the following properties hold for estimable functions:

- 1. Every row of $X\beta$ is estimable
- 2. Every row of $\mathbf{X}'\mathbf{X}\boldsymbol{\beta}$ is estimable
- 3. All estimable functions can be obtained from linear combinations of rows of $X\beta$ or $X'X\beta$

Theorem 9.19 (12.8.2). For testing $H_0: \mathbf{a}_1 = \mathbf{a}_2 = \mathbf{a}_3$ in a balanced two-way model:

- 1. The sum of squares $SS(\mathbf{a}|\mathbf{m}, \mathbf{b})$ has 2 degrees of freedom
- 2. $SS(\mathbf{a}|\mathbf{m}, \mathbf{b}) = \sum_{i} \frac{y_{i.}^2}{2} \frac{y_{..}^2}{6}$
- 3. Under H_0 , $\frac{SS(\mathbf{a}|\mathbf{m},\mathbf{b})/2}{SSE/2} \sim F(2,2)$

Theorem 9.20 (12.8.3). In a balanced non-full-rank model with orthogonal parameterization:

- 1. The columns of X corresponding to different groups of effects are orthogonal
- 2. The estimates from the full model equal those from reduced models for parameters not involved in the hypothesis
- 3. The sums of squares partition additively: $SS(\mathbf{m}, \mathbf{a}, \mathbf{b}) = SS(\mathbf{m}) + SS(\mathbf{a}) + SS(\mathbf{b})$

Theorem 9.21 (12.8.4). For a two-way model with interaction $y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk}$, under the side conditions:

$$\sum_{i} \alpha_{i} = 0$$

$$\sum_{j} \beta_{j} = 0$$

$$\sum_{i} \gamma_{ij} = \sum_{i} \gamma_{ij} = 0$$

The parameters are uniquely defined and the model becomes full-rank with orthogonal columns.

Theorem 9.22 (12.8.5). In a balanced complete block design:

- 1. The estimates of treatment effects are uncorrelated with block effects
- 2. The sums of squares for treatments and blocks are independent
- 3. The efficiency relative to a completely randomized design is $\frac{r}{r-1}$ where r is the number of blocks

Theorem 9.23 (12.8.6). For a non-full-rank model, a set of contrasts $\{\mathbf{l}'_1\boldsymbol{\beta},\ldots,\mathbf{l}'_q\boldsymbol{\beta}\}$ is estimable if and only if $\sum_i c_i \mathbf{l}_i$ is estimable for all choices of constants c_i .

Theorem 9.24 (12.9). If $\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'$ is the hat matrix for a non-full-rank model, then:

- 1. H is unique and idempotent regardless of the choice of $(X'X)^-$
- 2. $rank(\mathbf{H}) = rank(\mathbf{X}) = k$

3. $tr(\mathbf{H}) = k$

Theorem 9.25 (12.10). In a balanced non-full-rank model with no missing cells, the following conditions hold:

- 1. The rows of ${\bf X}$ corresponding to effects in different factors or interactions are orthogonal
- 2. The estimators of parameters in different factors or interactions are uncorrelated
- 3. The sum of squares for different factors or interactions are independent