1. Let function f be defined by the polynomial below:

$$f(x) = -5x^5 + 8x^4 - 3x^3 - 9x^2 + 4x - 7$$

Draw lines that match each function reflection with its polynomial:

Reflections	Polynomials
-f(-x) ●	$-5x^5 - 8x^4 - 3x^3 + 9x^2 + 4x + 7$
-f(x) ●	$5x^5 - 8x^4 + 3x^3 + 9x^2 - 4x + 7$
f(−x) •	$5x^5 + 8x^4 + 3x^3 - 9x^2 - 4x - 7$

2. In each xy plane shown below, a function is graphed with blue. Draw the indicated reflections (as a second curve, indicated in legend) with black (or with whatever you have). The x axis is horizontal and the y axis is vertical (as typical), and the scale is equal on both axes.

For all questions on this page, the functions $f,\,g,$ and h are defined by the table below.

\boldsymbol{x}	f(x)	g(x)	h(x)
1	4	9	2
2	7	4	6
3	5	6	4
4	6	7	8
5	1	2	1
6	8	1	7
7	3	3	9
8	9	5	3
9	2	8	5

3. Evaluate g(1).

$$g(1) = 9$$

4. Evaluate $f^{-1}(6)$.

$$f^{-1}(6) = 4$$

5. Assuming h is an **even** function, evaluate h(-7).

If function h is even, then

$$h(-7) = 9$$

6. Assuming f is an **odd** function, evaluate f(-5).

If function f is odd, then

$$f(-5) = -1$$

7. A function, f, is **even** if f(x) = f(-x) for all x in the domain. A function, g, is **odd** if g(x) = -g(-x) for all x in the domain.

Let polynomial p be defined with the following equation:

$$p(x) = -x^2 + x$$

a. Express p(-x) as a polynomial in standard form.

$$p(-x) = -(-x)^{2} + (-x)$$
$$p(-x) = -x^{2} - x$$

b. Express -p(-x) as a polynomial in standard form.

$$-p(-x) = -(-x^2 - x)$$
$$-p(-x) = x^2 + x$$

c. Is polynomial p even, odd, or neither?

neither

d. Explain how you know the answer to part c.

We see that p(x) is not equivalent to either p(-x) or -p(-x), so p is neither even nor odd.

8. I have drawn half of a function. Draw the other half to make it even or odd.

9. Let function f be defined with the equation below.

$$f(x) = 8x - 9$$

a. Evaluate f(6).

step 1: multiply by 8 step 2: subtract 9

$$f(6) = 8(6) - 9$$
$$f(6) = 39$$

b. Evaluate $f^{-1}(47)$.

step 1: add 9 step 2: divide by 8

$$f^{-1}(x) = \frac{x+9}{8}$$
$$f^{-1}(47) = \frac{(47)+9}{8}$$
$$f^{-1}(47) = 7$$

10. The function b is represented by the curve y = b(x) graphed below.

a. Evaluate b(4).

$$b(4) = 6$$

b. Evaluate $b^{-1}(2)$.

$$b^{-1}(2) = 9$$

- 11. Function f is defined by the table below.
 - a. Complete the columns for -f(x) and f(-x) and -f(-x).

\overline{x}	f(x)	-f(x)	f(-x)	-f(-x)
-2	-7	7	7	-7
-1	9	-9	-9	9
0	0	0	0	0
1	-9	9	9	-9
2	7	-7	-7	7

b. Is function f even, odd, or neither?

odd

c. How do you know the answer to part b?

Function f is odd because column -f(-x) matches column f(x) exactly.