

PubMed

Nucleotide

Protein

Genome

Structure

PopSet

Taxonomy

OMIM

Book

Search **Nucleotide** for**Go** **Clear**

Limits

Preview/Index

History

Clipboard

Details

Display

default

Save

Text

Add to Clipboard

Get Subsequence

1: NM_000163. Homo sapiens growth hormone receptor [gi:4503992]

Links

LOCUS GHR 4414 bp mRNA linear PRI 05-NOV-2002
DEFINITION Homo sapiens growth hormone receptor (GHR), mRNA.
ACCESSION NM_000163
VERSION NM_000163.1 GI:4503992
KEYWORDS
SOURCE Homo sapiens (human)
ORGANISM Homo sapiens
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE 1 (bases 1 to 4414)
AUTHORS Leung,D.W., Spencer,S.A., Cachianes,G., Hammonds,R.G., Collins,C.,
Henzel,W.J., Barnard,R., Waters,M.J. and Wood,W.I.
TITLE Growth hormone receptor and serum binding protein: purification,
cloning and expression
JOURNAL Nature 330 (6148), 537-543 (1987)
MEDLINE 88065896
PUBMED 2825030
REFERENCE 2 (bases 1 to 4414)
AUTHORS Godowski,P.J., Leung,D.W., Meacham,L.R., Galgani,J.P., Hellmiss,R.,
Keret,R., Rotwein,P.S., Parks,J.S., Laron,Z. and Wood,W.I.
TITLE Characterization of the human growth hormone receptor gene and
demonstration of a partial gene deletion in two patients with
Laron-type dwarfism
JOURNAL Proc. Natl. Acad. Sci. U.S.A. 86 (20), 8083-8087 (1989)
MEDLINE 90046742
PUBMED 2813379
REFERENCE 3 (bases 1 to 4414)
AUTHORS Ayling,R.M., Ross,R., Towner,P., Von Laue,S., Finidori,J.,
Moutoussamy,S., Buchanan,C.R., Clayton,P.E. and Norman,M.R.
TITLE A dominant-negative mutation of the growth hormone receptor causes
familial short stature
JOURNAL Nat. Genet. 16 (1), 13-14 (1997)
MEDLINE 97285114
PUBMED 9140387
REFERENCE 4 (bases 1 to 4414)
AUTHORS Behncken,S.N., Rowlinson,S.W., Rowland,J.E., Conway-Campbell,B.L.,
Monks,T.A. and Waters,M.J.
TITLE Aspartate 171 is the major primate-specific determinant of human
growth hormone. Engineering porcine growth hormone to activate the
human receptor
JOURNAL J. Biol. Chem. 272 (43), 27077-27083 (1997)
MEDLINE 98001682
PUBMED 9341147
REFERENCE 5 (bases 1 to 4414)
AUTHORS Pantel,J., Machinis,K., Sobrier,M.L., Duquesnoy,P., Goossens,M. and
Amselem,S.
TITLE Species-specific alternative splice mimicry at the growth hormone

receptor locus revealed by the lineage of retroelements during
 primate evolution
 JOURNAL J. Biol. Chem. 275 (25), 18664-18669 (2000)
 MEDLINE 20317053
 PUBMED 10764769
 COMMENT PROVISIONAL REFSEQ: This record has not yet been subject to final
 NCBI review. The reference sequence was derived from X06562.1.
 Summary: Biologically active growth hormone (MIM 139250) binds its
 transmembrane receptor (GHR), which dimerizes to activate an
 intracellular signal transduction pathway leading to synthesis and
 secretion of insulin-like growth factor I (IGF1; MIM 147440). In
 plasma, IGF1 binds to the soluble IGF1 receptor (IGF1R; MIM
 147370). At target cells, this complex activates
 signal-transduction pathways that result in the mitogenic and
 anabolic responses that lead to growth.[supplied by OMIM].
 FEATURES Location/Qualifiers
source
 1..4414
 /organism="Homo sapiens"
 /db_xref="taxon:9606"
 /chromosome="5"
 /map="5p13-p12"
 /clone="ghr.262, ghr.210, ghr.501, ghr.110, ghr.281"
 /clone_lib="liver cDNA in lambda gt10"
gene
 1..4414
 /gene="GHR"
 /db_xref="LocusID:2690"
 /db_xref="MIM:600946"
CDS
 44..1960
 /gene="GHR"
 /codon_start=1
 /product="growth hormone receptor"
 /protein_id="NP_000154.1"
 /db_xref="GI:4503993"
 /db_xref="LocusID:2690"
 /db_xref="MIM:600946"
 /translation="MDLWQLLLTLAGSSDAFGSEATAAILSRAPWSLQSVNPGLK
 TNSSKEPKFTKCRSPERETFSCHWTDEVHHGTKNLGPIQLFYTRRNTQEWTQEWEKCP
 DYVSAGENSCYFNSSFTSIWIPYCIKLTSGNGTVDEKCFSVDEIVQPDPPIALNWTL
 NVSLTGIHADIQVRWEAPRNADIQKGWMVLEYLQYKEVNETKWKMDPILTTSPVY
 SLKVDKEYEVVRRSKQRNSGNYGEFSEVLYVTLPQMSQFTCEEDFYFPWL
 GLTVMLFVFLFSKQQRIKMLILPPVPVKIKGIDPDLLKEGKLEEVNTILAIHD
 SYKP
 EFHSDDSWVEFIELDIDEPEDEKTEESDTRLLSSDHEKSHSNLGVKDGSRTSCCEP
 DILEDFNANDIHEGTSEVAQPQRLKGEADLLCLDQKNQNNSPYHDACPATQQPSVIQ
 AEKNKPQPLPTEGAESTHQAAHIQLSNPSSLNSIDFYAQVSDITPAGSVVLSPGQKN
 AGMSQCDMHPEMVSLCQENFLMDNAYFCEADAKKICIPVAPHIKVESHIQPSLNQ
 EDIY
 ITTESLTTAAGRPGTGEHVPGESEMPPDYTSIHIVQSPQGLILNATALPLPD
 KEFLSS
 CGYVSTDQLNKIMP"
misc_feature
 488..742
 /gene="GHR"
 /note="FN3; Region: Fibronectin type 3 domain"
 /db_xref="CDD:smart00060"
misc_feature
 524..775
 /gene="GHR"
 /note="fn3; Region: Fibronectin type III domain"
 /db_xref="CDD:pfam00041"
variation
 579
 /gene="GHR"
 /allele="A"
 /allele="G"
 /db_xref="dbSNP:6181"

variation 601
/gene="GHR"
/allele="A"
/allele="G"
/db_xref="dbSNP:6179"
variation 601
/gene="GHR"
/note="a is g in ghr.262 and ghr.501"
variation 729
/gene="GHR"
/allele="A"
/allele="G"
/db_xref="dbSNP:6177"
variation 1167
/gene="GHR"
/note="g is u in ghr.501"
variation 1362
/gene="GHR"
/allele="G"
/allele="T"
/db_xref="dbSNP:6182"
variation 1516
/gene="GHR"
/allele="C"
/allele="T"
/db_xref="dbSNP:6176"
variation 1526
/gene="GHR"
/allele="A"
/allele="C"
/db_xref="dbSNP:6183"
variation 1673
/gene="GHR"
/allele="A"
/allele="C"
/db_xref="dbSNP:6180"
variation 1778
/gene="GHR"
/allele="A"
/allele="C"
/db_xref="dbSNP:6184"
variation complement(2260)
/allele="C"
/allele="T"
/db_xref="dbSNP:2910875"
variation 2479
/gene="GHR"
/note="c is u in ghr.110"
variation 3751
/gene="GHR"
/allele="A"
/allele="G"
/db_xref="dbSNP:2973016"
misc_feature 4342..4347
/gene="GHR"
/note="pot. polyA signal"
polyA_site 4414
/gene="GHR"
/note="polyA site"
BASE COUNT 1398 a 872 c 869 g 1275 t

ORIGIN

1 ccgcgctctc tgatcagagg cgaagctcg aggtcctaca ggtatggatc tctggcagct
61 gctgttacc ttggactgg caggatcaag tgatgcttt tctggaaatg aggccacagc
121 agctatccctt agcagagcac cctggagtc gcaaagtgtt aatccaggcc taaagacaaa
181 ttcttctaag ggcctaaat tcaccaagtg cggtcaccc gagcgagaga cttttcatg
241 ccactggaca gatgagggtc atcatggtaa aaagaaccta ggaccacata agctgttcta
301 taccagaagg aacactcaag aatggactca agaatggaaa gaatgccctg attatgttcc
361 tgctgggaa aacagctgtt actttaattc atcgttacc tccatctgga taccttattt
421 tatcaagcta actagcaatg gtggtagctt ggtgaaaag tggttctgt ttgtatggaaat
481 agtgcaccca gatccaccca ttgcctcaat ctggacttta ctgaacgtca gtttaactgg
541 gattcatgca gatatccaag tgagatggg agcaccacgc aatgcagata ttcaagaaagg
601 atggatgggtt ctggagttt aacttcaata caaagaagta aatgaaacta aatggaaaat
661 gatggacccctt atattgacaa catcagtcc agtgtactca ttgaaatggg ataaaggaaa
721 tgaagtgcgt gtgagatcca aacaacgaaa ctctggaaat tatggcgagt tcagtggaggt
781 gctctatgtt acacttcctc agatggatca atttacatgtt gaagaagatt tctactttcc
841 atggctcttta attattatct ttggaaatatt tggcttaaca gtgtatgtt ttgtatttt
901 attttctaaa cagcaaggg taaaatgtt gattctgccc ccagttccag ttccaaagat
961 taaaggaatc gatccagatc ttctcaaggg agggaaaatta gaggaggtga acacaatctt
1021 agccattcat gatagtata aacccgattt ccacagtgtt gactcttggg ttgaatttat
1081 tgagcttagt attgtatggc cagatggaaa gactggggaa tcagacacag acagacttct
1141 aagcagtgcac catgagaaat cacatgttta cctagggggtt aaggatggcg acgttgcac
1201 taccagctgt ttttgcaccc acattcttgc gactgatttca aatgcacatg acatacatgt
1261 gggtaacctca gaggttgc tggccacaggg gttaaaaggga gaagcagatc tcttatgcct
1321 tgaccagaag aatcaaaaata actcacccca tcatgtatgtt tgccctgcta ctcagcagcc
1381 cagtttatac caagcagaga aaaacaaacc acaaccactt cctactgtt gactgtgtt
1441 aactcaccatc gctgcccata ttcaagtttcaatccaaatg tcactgttcaatcactgtt
1501 ttatgcccac gtgagcgaca ttacaccaggc aggtatgtt gtccttcccc cggggccaaaa
1561 gaataaggca gggatgtccc aatgtgacat gcacccggaa atggtctcac tctgccaaga
1621 aaacttcctt atggacaatg cctacttctt tgaggcgat gccaaaaatg gcatccctgt
1681 ggctcctcac atcaaggtt aatcacacat acagccaaacg ttttttttttgggggggggg
1741 catcaccaca gaaagccca tccactgtgc tggggggctt gggacaggag aacatgttcc
1801 aggttcttagt atgcctgtcc cagactatac ctccattcat atagtagt ggggggggggg
1861 cctcataactc aatgcactt gcttgcctt gcctgacaaa gagtttctt catcatgtgg
1921 ctatgttgc acagaccaac tgaacaaaat catgccttag cttttttttt gtttttttt
1981 agctacgtt ttaatagca agaattgtt gggcaataa cggtttaagcc aaaacaaatgt
2041 ttaaaccttt
2101 aatgttggaaat tatgtatgtt aaaaataag aagaatgtt aatcagatgtt atattccat
2161 tgtgcaatgtt aaatattttt aagaattgtt tcagactgtt tagtagcgtt gattgttca
2221 atattgtggg ttt
2281 aaatcacgtt ttt
2341 atgcaaaacca tagcacaggc taattttttt ttttttttttta aataagaaac tttttttttt
2401 aaaaaactaa aaactatggg tgagaaatttt aaactataag caagaaggca aaaatagttt
2461 ggatatgtaa aacattttact ttgacataaa gttgataaaatg attttttaat aattttagact
2521 tcaagcatgg ctatttata ttacactaca cactgtgtac tgcgttgggtt atgacccttc
2581 taaggagtgt agcaactaca gtctaaagct ggtttatgtt tttggccat gcacctaaag
2641 aaaaaacaaac tcgttttttta caaagccctt ttataccctcc ccagacttcc tcaacaattc
2701 taaaatgtt gtagtaatctt gcttgcataa aatataattt tttttatgtt atttttaaac
2761 aagtattttgtt taatt
2821 aaagaagttaa aagcaaaaaaa gaaaacccctt cttcacccaa ttttttttttttttttttt
2881 aaatacatgc taagagaagt agaaatcata gctgggttac actgaccaag atacttaagt
2941 gctgcaatttgc cacgcggagt gatgtttttt gtttttttttttttttttttttttttttt
3001 tagcctctgc agcggaaatctt gttcacaccc aacttggttt tgctacataa ttatccagga
3061 agggaaataag gtacaagaag ctt
3121 taatgttggaaaca aaggttcaag gaaataatgtt ttttttttttttttttttttttttt
3181 ctcatttttttccatgttggaaaca aacggatataa gacagaagaa acaagggtttt cagtc
3241 agataactgtt aaatttttttta aaccgttttttttttttttttttttttttttttttttttt
3301 aggatt
3361 gactggccctt aaagcaagca ttcaagaaagaa aaaaagcaat cctcagtaat tttagaaatca
3421 ttt
3481 acagagtcgttc gctctgtcgc caggcttagag tggcggtggcg cgtatctgtac tcaactgtcaat

3541 ctccacctcc cacaggttca ggcgattccc gtgcctcagc ctccttagta gctgggacta
3601 caggcacgca ccaccatgcc aggctaattt ttttgtattt tagcagagac ggggttcac
3661 catgttggcc aggttgtct cgagtctcct gacctgtga tccaccgcac tcggcctccc
3721 aaagtgtgg gattacaggt gtaagccacc gtgcccagcc ctaaacatca ttcttgagag
3781 cattgggata tctcctgaaa aggttatga aaaagaagaa tctcatctca gtgaagaata
3841 cttctcattt ttaaaaaaag cttaaaactt tgaagtttgc tttacttaa atagtatttc
3901 ccatttatcg cagacctttt ttaggaagca agcttaatgg ctgataattt taaattctct
3961 ctcttgcagg aaggactatg aaaagctaga atttagtgg taaagtccaa catgttatttt
4021 gtaatagatg tttgatagat tttctgctac tttgctgcta tggtttctc caagagctac
4081 ataatttagt ttcatataaa gtatcatcag tgtagaacct aattcaattc aaagctgtgt
4141 gtttggaaaga ctatcttact atttcacaac agcctgacaa catttctata gccaaaaata
4201 gctaaataacc tcaatcagtc tcagaatgtc atttggtag tttggtgcc acataagcca
4261 ttattcacta gtatgactag ttgtgtctgg cagtttatat ttaactctct ttatgtctgt
4321 ggatttttc cttcaaagtt taataaattt atttcttgg attcctgata atgtgcttct
4381 gttatcaaacc accaacataa aaatgatcta aacc

//

Revised: July 5, 2002.

[Disclaimer](#) | [Write to the Help Desk](#)
[NCBI](#) | [NLM](#) | [NIH](#)

Dec 13 2002 14:41:17

HyPhy Documentation: Amino Acid Translation Table: Rate distributions

Note: This table is identical to PHYLIP's translation table.

Character	Translation
A	Alanine (Ala)
C	Cysteine (Cys)
D	Aspartic Acid (Asp)
E	Glutamin Acid (Glu)
F	Phenylalanine (Phe)
G	Glycine (Gly)
H	Histidine (His)
I	Isoleucine (Ile)
K	Lysine (Lys)
L	Leucine (Leu)
M	Methionine (Met)
N	Asparagine (Asn)
P	Proline (Pro)
Q	Glutamine (Gln)
R	Arginine (Arg)
S	Serine (Ser)
T	Threonine (Thr)
V	Valine (Val)
W	Tryptophan (Trp)
Y	Tyrosine (Tyr)
B	D or N (Asn or Asp)
Z	E or Q (Gln or Glu)
X,?	Unknown amino acid (any of the 20)
-	Skipped or unknown (see Deletions and Ambiguities)
.	For sequential file formats is interpreted as '?'. For interleaved formats singnals that '!' should be replaced with the character at the same position in the first sequence.

HYPHY provides means for defining custom alphabets and translations. In particular, *HYPHY* recognizes relevant NEXUS blocks. However one must be careful with custom alphabets since they may require model redefinitions.

Sergei L. Kosakovsky Pond and Spencer V. Muse.

			U	C	A	G	
U	UUU UUC UUA UUG	Phe Phe Leu Leu	UCU UCC UCA UCG	Ser Ser Ser Ser	UAU UAC UAA UAG	Tyr Tyr End End	UGU UGC Cys End
C	CUU CUC CUA CUG	Leu Leu Leu Leu	CCU CCC CCA CCG	Pro Pro CAA CAG	CAU CAC Gln Gln	His His Gln Gln	CGU CGC CGA CGG
A	AUU AUC AUA AUG	Ile Ile Ile Met	ACU ACC ACA ACG	Thr Thr Thr The	AAU AAC AAA AAG	Asn Asn Asn Lys	AGU AGC AGA AGG
G	GUU GUC GUA GUG	Val Val Val Val	GCU GCC GCA GCG	Ala Ala Ala Ala	GAU GAC GAA GAG	Asp Asp Glu Glu	GGU GGC GGA GGG
							Gly Gly Gly Gly

