Guess a possible non-homog soln for the following DEs:

Note homogeneous solution to y'' - 4y' - 5y = 0 is $y = c_1 e^{-t} + c_2 e^{5t}$ since $r^2 - 4r - 5 = (r - 5)(r + 1) = 0$

1.)
$$y'' - 4y' - 5y = 4e^{2t}$$

Guess: ____

2.)
$$y'' - 4y' - 5y = t^2 - 2t + 1$$

Guess:

3.)
$$y'' - 4y' - 5y = 4\sin(3t)$$

Guess:

4.)
$$y'' - 4y' - 5y = 4\sin(3t) + 5\cos(3t)$$

Guess:

5.)
$$y'' - 4y' - 5y = 4e^{-t}$$

Guess:

6.)
$$y'' - 4y' - 5y = e^t + e^{-t} + 2t^3 + 3t^2 + 4\sin(3t) + 5\cos(3t)$$

Guess: $\underline{FYI: See\ answers}$

7.)
$$y'' - 4y' - 5y = e^t + e^{-t} + 2t^3 + 3t^2 + 4\sin(3t) + 5\cos(t)$$

Guess: $\underline{FYI: See\ answers}$

0	!!	121	5	$=4(t^2)$	2 2+	1`	$\frac{2t}{2}$
O •	y	-4y	- $5y$	$=4(\iota$	$- z\iota$	— I	je

Guess: _____

Note homogeneous solution to y'' - 6y' + 9y = 0 is $y = c_1 e^{3t} + c_2 t e^{3t}$ since $r^2 - 6r + 9 = (r - 3)(r - 3) = 0$

9.)
$$y'' - 6y' + 9y = 7e^{3t}$$

Guess:

10.)
$$y'' - 6y' + 9y = 7e^{-3t}$$

Guess:

Some special cases:

11.)
$$y'' - 5y = 4\sin(3t)$$

Best Guess:

12.)
$$y'' - 4y' = t^2 - 2t + 1$$

Guess: