SISTEM INFORMASI GEOGRAFIS (SIG)

GEOGRAPHIC INFORMATION SYSTEM (GIS)

#4

Menyiapkan Data Spasial

SIG

PERLUNYA SIG

FUGSI SIG

Ada beberapa fungsi utama SIG, yaitu:

- Input Data
- Manipulasi Data
- Manajemen (Pengelolaan)
- Query dan Analisis
- Visualisasi (Keluaran)

CIRI SIG

Ciri khas SIG terletak pada **INFORMASI** yang dihasilkan, yaitu:

- ı. Menyajikan data/informasi yang terkait dengan permukaan bumi
 - → jalan, sungai, bangunan, penggunaan lahan lain
 - →Lokasi sumberdaya alam
 - →Lokasi rawan bencana, dll
- Memiliki referensi koordinat, sehingga dapat dengan mudah diketahui lokasi, pola, dan sebarannya
 - Terdiri dari DATA GRAFIS dan DATA ATRIBUT

PERANGKAT SIG

GPS RECEIVER

revolutionized data

collection for GIS use.

Global Positioning System

receivers calculate exact position from satellite transmissions. This has

A series of satellites, 11,000 miles above Earth, provide the signals that GPS receivers translate.

SCANNER

WORKSTATION/

COMPUTER

Scanners transform hardcopy maps and documents into digital format.

MASS STORAGE DEVICE

Various devices are used to store highvolume data and programs.

Electrostatic Plotters are able to print large copies of maps, images, and diagrams.

MANUAL DIGITIZING

Manual digitizing is done with a digitizing table and cursor (inset). Lines are traced and cursor buttons pushed to indicate various commands.

SISTEM SIG

Users need to understand both data and software in order to create unique spatial questions and maintain the spatial information produced.

Data Input	Refers to the creation of digital spatial data. Refers to unique issues in the maintenance of spatial data such as error or level of accuracy; storing data; retrieving data; and metadata. Data management is one of the key issues determining the usability of spatial data.		
Data Management			
Data Analysis	Is what allows users to answer questions that may not be explicitly stated in the data.		
Data Output	Refers to the method used to visually display analysis performed using GIS. Output can be in the form of jpg to large plotted images.		

Konversi informasi analog ke digital

- Preliminary processing data
- Most difficult task, takes 75% of time and cost.

Sub-Fungsi dalam Input Data:

- Perancangan data (pendefinisian data input: jenis data, format data, struktur data, klasifikasi, tujuan
- Digitisasi
- Pembangunan topologi
- Penyuntingan/editing
- Transformasi proyeksi
- Konversi format data
- Pemberian atribut, dll.

Input dalam SIG dapat berupa:

a. **Data spasial** :

- Peta Analog (peta topografi, peta tematik)
- Foto Udara
- Citra Satelit

b. <u>Data Nir-spasial</u>:

Data yang tidak secara langsung mempunyai/memuat aspek spasial (jumlah penduduk, pH tanah, tekstur tanah, klas jalan, dsb).

SIG dapat berjalan apabila:

- Seluruh data masukan mempunyai format yangsama (format digital)
- Data nir-spasial dapat dirujukkan ke suatu entitas spasial tertentu sehingga berfungsi sebagai atribut
- Ada mekanisme otomatis yang dikontrol oleh nalar dan atau knowledge untuk menurunkan informasi baru berdasarkan data masukan tadi.

Input (Pemasukan) Data SIG

- Pemasukan data kedalam SIG pada prinsipnya adalah pengubahan format data dari analog digital. Proses ini disebut **DIGITISASI** (digitization) dan secara salah kaprah disebut *DIGITASI*.
- Pemasukan data yang sudah berformat digital ke dalam SIG biasanya berupa:
 - klasifikasi multispektral (untuk citra digital satelit)
 - pembobotan (scoring) dan penyesuaian koordinat untuk data/peta yang sudah berformat digital.

DIGITASI

Digitasi pada umumnya diterapkan dengan dua metode:

1) Raster digitization

→ (Biasa disebut pelarikan/ penyiaman atau scanning)

2) Vector digitization

→ Perunutan /tracing kenampakan batas-batas satuan pemetaan dan kenampakan topografis lain untuk menghasilkan peta garis digital

DIGITASI RASTER

- a. Menggunakan pelarik (scanner)
- Hasil data adalah peta berformat raster (tersusun atas sekumpulan piksel). Piksel adalah data yang punya aspek spektral dan spasial sekaligus.
- c. Scanner punya kemampuan bit-coding tertentu (4 bit, 6 bit, 8 bit, dst)
- d. Scanner punya resolusi tertentu (dinyatakan salam DPI, dot per inch), 100 dpi, 200 dpi, 300 dpi, 400 dpi, dst.

Apa yang "bisa" dan biasa didigitasi raster?

Pada prinsipnya, semua citra/peta pada media dua dimensi dapat didigitasi, contoh:

- foto udara
- peta tematik
- peta topografi

Pada berbagai SIG saat ini, digitasi raster (scanning) lebih efektif dan efisien diterapkan pada:

- citra hardcopy (misal foto udara sebagai tampilan)
- peta tematik dengan bentuk, macam dan ukuran satuan pemetaan yang tidak terlalu kompleks.

DIGITASI VEKTOR

Data vektor adalah data spasial yang disimpan dalam struktur geometris tertentu, dengan memisahkan informasi:

- titik (point/node)
- garis (line/arc)
- bidang (area/poly)

Digitasi vektor antara lain dapat dilakukan dengan:

- Mouse : cepat, mudah, akurasi rendah.
- Meja Digitizer: lambat, susah, mahal, akurasi tinggi.

PROSEDUR INPUT DATA 1

ON-SCREEN DIGITIZING

and polygons, include adjacencies,

connectivity, and containment.

Pemberian atribut

BEBERAPA ATURAN!!

- Tentukan tujuan
- Digitasi informasi yg benar2 dibutuhkan
- Pilih sumber input konvensional
- Gunakan level akurasi yg sesuai
- Input data terpisah dlm tema2 spesifik

LEVEL AKURASI

Seberapa besar akurasi yg diinginkan

Contoh: data dasar (FU)

Contoh: digitasi jalan utama & sungai

Contoh: digitasi bidang tanah

EDITING VECTOR OBJECT

Points

- Simply changing the coordinate.
- Dragging and dropping the most common.

Lines

- Changing the coordinate of one or more points.
- Splitting a line in two.
- Merging lines.

Polygons

- Changing the coordinate of one or more points (the last point is also the first point).
- Splitting a polygon in two.
- Using a boundary to draw another polygon.
- Merging polygons.
 - Creating an island in a polygon.
 - Creating an intersection.

EDITING VECTOR OBJECT

MANAJEMEN DATA

Refers to unique issues in the maintenance of spatial data. Data management is one of the key issues determining the usability of spatial data.

Data Errors / Level of Accuracy

- Errors in digitizing
- Errors in original data
- Errors in data entry
- · Method of data entry
- Scale of data

Storing Data

- Upkeep of historical data sets
- Warehousing state and city data

Retrieving Data · How can users access stored data

Metadata

 Using national standards to record and maintain key information about data creation, scale, projection, and attributes.

ANALISIS DATA

Is what allows users to answer questions that may not be explicitly stated in the data.

Retrieval

 Polygon Overlay & Dissolve

Map Generalization

Measurements

Map Abstraction

Map Sheet
 Manipulations

 Digital Terrain Analysis

Buffer Generation

Network Analysis

KELUARAN

Display and output of GIS data are achieved by both printers and computer screens. These output devices require software to format text and, if a map is to be drawn, graphics software to convert data into drawing instructions.