GROUPS EXAMPLES 4

G.P. Paternain Michaelmas 2008

The questions on this sheet are not all equally difficult and the harder ones are marked with *'s. Comments on and/or corrections to the questions on this sheet are always welcome, and may be e-mailed to me at g.p.paternain@dpmms.cam.ac.uk.

- 1. Write the following permutations as products of disjoint cycles and compute their order and sign:
 - (a) (12)(1234)(12);
 - (b) (123)(45)(16789)(15).
- **2.** What is the largest possible order of an element in S_5 ? And in S_9 ? Show that every element in S_{10} of order 14 is odd
- 3. Show that any subgroup of S_n which is not contained in A_n contains an equal number of odd and even permutations.
- **4**. Let N be a normal subgroup of the orthogonal group O(2). Show that if N contains a reflection in some line through the origin, then N = O(2).
- **5.** Show that S_n is generated by the two elements (12) and (123...n).
- **6**. Let H be a normal subgroup of a group G and let K be a normal subgroup of H. Is it true that K must be a normal subgroup of G?
- 7. Find the elements in S_n that commute with (12).
- 8. Let z_1, z_2, z_3 and z_4 be four distinct points in \mathbb{C}_{∞} and let $\lambda = [z_1, z_2, z_3, z_4]$ be the cross ratio of the four points. Let G be the group of Möbius maps which map the set $\{0, 1, \infty\}$ onto itself. Show that given $\sigma \in S_4$, there exists $f_{\sigma} \in G$ such that $f_{\sigma}(\lambda) = [z_{\sigma(1)}, z_{\sigma(2)}, z_{\sigma(3)}, z_{\sigma(4)}]$.
- **9**. Show that the map $S_4 \ni \sigma \mapsto f_{\sigma^{-1}} \in G \cong S_3$ given by the previous question is a surjective homomorphism. Find its kernel.
- 10. Let X be the set of all 2×2 real matrices with trace zero. Given $A \in SL(2,\mathbb{R})$ and $B \in X$, show that

$$(A,B) \mapsto ABA^{-1}$$

defines an action of $SL(2,\mathbb{R})$ on X. Find the orbit and stabilizer of

$$B = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right).$$

Show that the set of matrices in X with zero determinant is a union of 3 orbits.

- 11. When do two elements in SO(3) commute?
- 12. If A is a complex $n \times n$ matrix with entries a_{ij} , let A^* be the complex $n \times n$ matrix with entries \bar{a}_{ji} . The matrix A is called *unitary* if $AA^* = I$. Show that the set U(n) of unitary matrices forms a group under matrix multiplication. Show that

$$SU(n) = \{ A \in U(n) : \det A = 1 \}$$

is a normal subgroup of U(n) and that U(n)/SU(n) is isomorphic to S^1 . Show that SU(2) contains the quaternion group \mathbb{H}_8 as a subgroup.

- 13. Show that any subgroup of A_5 has order at most 12. [Use Question 11 in Example Sheet 3.]
- 14*. Let G be a finite non-trivial subgroup of SO(3). Let X be the set of points on the unit sphere in \mathbb{R}^3 which are fixed by some non-trivial rotation in G. Show that G acts on X and that the number of orbits is either 2 or 3. What is G if there are only two orbits? [With more work one can show that if there are three orbits, then G must be dihedral or the group of rotational symmetries of a Platonic solid.]

1