Neural Networks

Matt R

July 7, 2022

Contents

Ι	Neural Networks and Deep Learning	4
1	Logistic Regression1.1 The Gradient	5 6 9 13
2	Neural Networks: A Single Hidden Layer 2.1 Activation Functions	15 17 17 18 18 19 20
3 II	3.1 Implementation in Python via numpy	
	er Tuning, Regularization, and Optimization	35
4	Training, Development and Test Sets 4.1 Python Implementation	36 38

5	Reg	ularization	41
	5.1	(Inverted) Dropout Regularization	42
		5.1.1 Python Implementation	43
	5.2	Data Augmentation	
	5.3	Early Stopping	49
6	Gra	dients and Numerical Remarks	50
	6.1	Numerical Gradient Checking	50
	6.2	Python Implementation	51
7	Gra	dient Descent	53
		7.0.1 Python Implementation via numpy	55
	7.1	Weighted Averages	61
	7.2	Gradient Descent with Momentum	64
	7.3	Root Mean Squared Propagation (RMSProp)	65
	7.4	Adaptive Moment Estimation: The Adam Algorithm	67
	7.5	Learning Rate Decay	68
	7.6	Python Implementation	69
8	Tun	ing Hyper-Parameters	76
	8.1	Python Implementation	77
9	Bat	ch Normalization	78
	9.1	Backward Propagation	80
	9.2	Inferencing	86
	9.3	Algorithm Outline	87
	9.4	Better Backpropagation	89
	9.5	Python Implementation	95
10	Mul	ti-Class Softmax Regression	96
II	Ι (Convolutional Neural Networks	100
11	An	Introduction to Convolutions	101
	11.1	Cross-Correlation	101
	11.2	Convolution with Padding	103
	11.3	Strided Convolution	105
	11.4	Strided Convolutions with Padding	106
		Convolutions Over Volumes	107

11.6 Multiple Filters	108
12 Convolutional Networks	109
12.1 Convolutional Layers (conv)	109
12.2 Pooling Layers (pool)	110
12.2.1 Max Pooling	110
12.2.2 Average Pooling	110
12.3 A Convolutional Network	111
12.4 Backpropagation	112
Appendix A utils.py	114
Appendix B activators.py	128
Appendix C The Reverse Differential	130
References	135

Part I Neural Networks and Deep Learning

1 Logistic Regression

We begin with a review of binary classification and logistic regression. To this end, suppose we have we have training examples $x \in \mathbb{R}^{n \times N}$ with binary labels $y \in \{0,1\}^{1 \times N}$. We desire to train a model which yields an output a which represents

$$a = \mathbb{P}(y = 1|x).$$

To this end, let $\sigma: \mathbb{R} \to (0,1)$ denote the sigmoid function, i.e.,

$$\sigma(z) = \frac{1}{1 + e^{-z}},$$

and let $w \in \mathbb{R}^{1 \times n}$, $b \in \mathbb{R}$, and let

$$a = \sigma(wx + b).$$

To analyze the accuracy of model, we need a way to compare y and a, and ideally this functional comparison can be optimized with respect to (w, b) in such a way to minimize an error. To this end, we note that

$$\mathbb{P}(y|x) = a^y (1-a)^{1-y},$$

or rather

$$\mathbb{P}(y = 1|x) = a, \qquad \mathbb{P}(y = 0|x) = 1 - a,$$

so $\mathbb{P}(y|x)$ represents the corrected probability. Now since we want

$$a \approx 1$$
 when $y = 1$,

and

$$a \approx 0$$
 when $y = 0$,

and $0 \le a \le 1$, any error using differences won't be refined enough to analyze when tuning the model. Moreover, since introducing the sigmoid function, our usual mean-squared-error function won't be convex. This leads us to apply the log function, which when restricted to (0,1) is a bijective mapping of $(0,1) \to (-\infty,0)$. This leads us to define our log-loss function

$$L(a, y) = -\log(\mathbb{P}(y|x))$$

= $-\log(a^{y}(1-a)^{1-y})$
= $-[y\log(a) + (1-y)\log(1-a)],$

and finally, since we wish to analyze how our model performs on the entire training set, we need to average our log-loss functions to obtain our cost function \mathbb{J} defined by

$$\mathbb{J}(w,b) = \frac{1}{N} \sum_{j=1}^{N} \mathbb{L}(a_j, y_j)
= -\frac{1}{N} \sum_{j=1}^{N} \left[y_j \log(a_j) + (1 - y_j) \log(1 - a_j) \right]
= -\frac{1}{N} \sum_{j=1}^{N} \left[y_j \log(\sigma(wx_j + b)) + (1 - y_j) \log(1 - \sigma(wx_j + b)) \right].$$

1.1 The Gradient

We wish to compute the gradient of our cost function \mathbb{J} with respect to our trainable parameters, $w \in \mathbb{R}^{1 \times n}$ and $b \in \mathbb{R}$. To this end, we define the functions

$$\phi: \mathbb{R}^{1 \times n} \times \mathbb{R}^n \to \mathbb{R}, \qquad \phi(w, x) = wx,$$

and

$$\psi: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \qquad \psi(b, u) = u + b.$$

Then our logistic regression model for a single example follows the following network layout:

$$\mathbb{R}^{1 \times n} \qquad \mathbb{R} \qquad \{0, 1\}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

Let's now analyze our reverse differentials for this type of composition:

$$\mathbb{R}^{1 \times n} \qquad \mathbb{R} \qquad \{0, 1\}$$

$$\downarrow r_1 \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\mathbb{R}^n \longleftarrow \phi \longleftarrow \psi \longleftarrow \psi \longleftarrow r \longrightarrow \mathbb{L} \longleftarrow \mathbb{R}$$

1.

$$\phi: \mathbb{R}^{1 \times n} \times \mathbb{R}^n \to \mathbb{R}, \qquad u := \phi(w, x) = wx.$$

Then for for any $(w,x) \in \mathbb{R}^{1 \times n} \times \mathbb{R}^n$ and any $\eta \in T_w \mathbb{R}^{1 \times n}$, we have that

$$d_1\phi_{(w,x)}(\eta) = \eta x$$

= $R_x(\eta)$,

where R_x is the right-multiplication operator. It then follows that for any $\zeta \in T_u\mathbb{R}$, that

$$\langle r_1 \phi_{(w,x)}(\zeta), \eta \rangle_{\mathbb{R}^{1 \times n}} = \langle \zeta, d_1 \phi_{(w,x)}(\eta) \rangle_{\mathbb{R}}$$
$$= \langle \zeta, R_x(\eta) \rangle_{\mathbb{R}}$$
$$= \langle R_{xT}(\zeta), \eta \rangle_{\mathbb{R}^{1 \times n}},$$

and hence that

$$r_1\phi_{(w,x)} = R_{x^T}.$$

2.

$$\psi : \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \qquad z := \psi(b, u) = u + b.$$

Then for any $(b, u) \in \mathbb{R} \times \mathbb{R}$ and any $\xi \in T_u \mathbb{R}$, we have that

$$d\psi_{(b,u)}(\xi) = \mathbb{1}_{\mathbb{R}}(\xi),$$

and similarly for any $\eta \in T_b\mathbb{R}$, we have that

$$\overline{d}_1\psi_{(b,u)}(\eta)=\mathbb{1}_{\mathbb{R}}(\eta).$$

We then immediately have that

$$r\psi_{(b,u)}=\mathbb{1}_{\mathbb{R}},$$

and

$$\overline{r}_1\psi_{(b,u)}=\mathbb{1}_{\mathbb{R}}.$$

3.

$$\sigma: \mathbb{R} \to \mathbb{R}, \qquad a := \sigma(z) = \frac{1}{1 + e^{-z}}.$$

Then

$$r\sigma_z = \frac{e^{-z}}{(1+e^{-z})^2}$$

$$= \frac{1}{1+e^{-z}} \frac{e^{-z}}{1+e^{-z}}$$

$$= \sigma(z) \frac{1+e^{-z}-1}{1+e^{-z}}$$

$$= \sigma(z)(1-\sigma(z))$$

$$= a(1-a).$$

4.

$$\mathbb{L}: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \qquad \mathbb{L}(a, y) = -[y \log(a) + (1 - y) \log(1 - a)].$$

Then

$$r\mathbb{L}_{(a,y)} = -\frac{y}{a} + \frac{1-y}{1-a}$$

We now compute the gradients with respect to w and b. To this end,

$$\frac{\partial \mathbb{J}}{\partial w} = \frac{1}{N} \sum_{j=1}^{N} r_1 \phi_{w,x_j} \circ r \psi_{(b,u_j)} \circ r \sigma_{z_j} \circ r \mathbb{L}_{(a_j,y_j)}$$

$$= \frac{1}{N} \sum_{j=1}^{N} R_{x_j^T} \circ \left[-\frac{y_j}{a_j} + \frac{1 - y_j}{1 - a_j} \right] \cdot (a_j (1 - a_j))$$

$$= \frac{1}{N} \sum_{j=1}^{N} (a_j - y_j) x_j^T$$

$$= \frac{1}{N} (a - y) x^T,$$

and

$$\frac{\partial \mathbb{J}}{\partial b} = \frac{1}{N} \sum_{j=1}^{N} \overline{r}_1 \psi_{b,u_j} \circ r \sigma_{z_j} \circ r \mathbb{L}_{(a_j,y_j)}$$
$$= \frac{1}{N} \sum_{j=1}^{N} (a_j - y_j)$$

1.2 Implementation in Python via numpy

Here we include the general method of coding a logistic regression model with L^2 -regularization via the classical numpy library.

```
1 #! python3
з import numpy as np
5 from mlLib.utils import apply_activation
  class LinearParameters():
      def __init__(self, dims, bias=True, seed=1):
           Parameters:
10
           _____
11
           dims : tuple(int, int)
12
           bias : Boolean
13
               Default : True
14
           seed : int
15
               Default : 1
16
           Returns:
18
           None
20
21
           np.random.seed(seed)
22
           self.dims = dims
           self.bias = bias
24
           self.w = np.random.randn(*dims) * 0.01
25
           if bias:
26
               self.b = np.zeros((dims[0], 1))
27
28
      def forward(self, x):
29
30
           Parameters:
31
32
           x : array_like
33
34
           Returns:
35
           -----
           z : array_like
37
38
           z = np.einsum('ij,jk', self.w, x)
39
           if self.bias:
40
               z += self.b
41
```

```
return z
43
44
      def backward(self, dz, x):
45
46
           Parameters:
47
           _____
48
           dz : array_like
49
           x : array_like
50
51
           Returns:
52
           _____
53
           None
54
55
           if self.bias:
56
               self.db = np.sum(dz, axis=1, keepdims=True)
57
               assert (self.db.shape == self.b.shape)
58
59
           self.dw = np.einsum('ij,kj', dz, x)
60
           assert (self.dw.shape == self.w.shape)
61
62
       def update(self, learning_rate=0.01):
63
64
           Parameters:
65
66
           learning_rate : float
67
               Default: 0.01
69
70
           Returns:
71
           None
72
           11 11 11
73
           w = self.w - learning_rate * self.dw
74
           self.w = w
75
76
           if self.bias:
77
               b = self.b - learning_rate * self.db
78
               self.b = b
79
80
81 class LogisticRegression():
       def __init__(self, lp_reg):
82
83
           Parameters:
84
           lp_reg : int
85
               2 : L_2 Regularization is imposed
86
               1 : L_1 Regularization is imposed
87
               0 : No regulariation is imposed
88
```

```
Returns:
90
            -----
91
            None
92
93
            self.lp_reg = lp_reg
94
95
       def predict(self, params, x):
97
98
            Parameters:
            _____
99
            params : class[LinearParameters]
100
            x : array_like
101
102
            Returns:
103
            -----
104
            a : array_like
105
106
            dg : array_like
107
            z = params.forward(x)
108
            a, dg = apply_activation(z, 'sigmoid')
109
            return a, dg
110
111
       def cost_function(self, params, x, y, lambda_=0.01, eps=1e-8):
112
113
            Parameters:
114
            -----
115
            params : class[LinearParameters]
116
117
            x : array_like
            y : array_like
118
            lambda_ : float
119
                Default : 0.01
120
            eps : float
121
                Default : 1e-8
122
123
            Returns:
124
125
            cost : float
126
127
            n = y.shape[1]
128
129
            R = np.sum(np.abs(params.w) ** self.lp_reg)
130
            R *= (lambda_ / (2 * n))
131
132
            a, _ = self.predict(params, x)
133
            a = np.clip(a, eps, 1 - eps)
134
135
            J = (-1 / n) * (np.sum(y * np.log(a) + (1 - y) * np.log(1 - a)))
136
```

```
137
            cost = float(np.squeeze(J + R))
138
139
            return cost
140
141
       def fit(self, x, y, learning_rate=0.1, lambda_=0.01, seed=1, num_iters=10000):
142
            11 11 11
143
            Parameters:
144
            -----
145
            x : array_like
146
            y : array_like
147
            learning_rate : float
148
                Default : 0.1
149
            lambda_ : float
150
                Default : 0.0
151
            num_iters : int
152
                Default : 10000
153
154
            Returns:
155
156
            costs : List[floats]
157
            params : class[Parameters]
            11 11 11
159
            dims = (y.shape[0], x.shape[0])
160
            n = x.shape[1]
161
            params = LinearParameters(dims, True, seed)
162
163
            if self.lp_reg == 0:
164
                lambda_ = 0.0
165
166
            costs = []
167
            for i in range(num_iters):
168
                a, _ = self.predict(params, x)
169
                cost = self.cost_function(params, x, y, lambda_)
170
                costs.append(cost)
171
                dz = (a - y) / n
172
                params.backward(dz, x)
173
                params.update(learning_rate)
174
175
                if i % 1000 == 0:
176
                     print(f'Cost_after_iteration_{i}:_{cost}')
177
178
179
            return params
180
       def evaluate(self, params, x):
181
182
            Parameters:
183
```

```
184
            params : class[Parameters]
185
            x : array_like
186
187
            Returns:
188
189
            y_hat : array_like
191
            a, _ = self.predict(params, x)
192
            y_hat = (\sim(a < 0.5)).astype(int)
193
194
            return y_hat
195
196
       def accuracy(self, params, x, y):
197
198
            Parameters:
199
200
            params : class[Parameters]
201
            x : array_like
202
            y : array_like
203
204
205
            Returns:
            _____
206
            accuracy : float
207
208
            y_hat = self.evaluate(params, x)
209
210
            accuracy = np.sum(y_hat == y) / y.shape[1]
211
212
            return accuracy
213
```

1.3 Implementation in Python via sklearn

Here we include the general method of coding a logistic regression model via scikit-learn's modeling library.

```
#! python3
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression

def main(csv):
    df = pd.read_csv(csv)
    dataset = df.values
```

```
x = dataset[:, :10]
11
12
      y = dataset[:, 10]
13
      x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)
14
      mu = np.mean(x, axis=0, keepdims=True)
15
      var = np.var(x, axis=0, keepdims=True)
16
      x_train = (x_train - mu) / np.sqrt(var)
      x_{test} = (x_{test} - mu) / np.sqrt(var)
18
19
      log_reg = LogisticRegression()
20
      log_reg.fit(x_train, y_train)
      train_acc = log_reg.score(x_train, y_train)
22
      print(f'The_accuracy_on_the_training_set:_{train_acc}.')
      test_acc = log_reg.score(x_test, y_test)
^{24}
      print(f'The_accuracy_on_the_test_set:_{test_acc}.')
```

2 Neural Networks: A Single Hidden Layer

Suppose we wish to consider the binary classification problem given the training set (x, y) with $x \in \mathbb{R}^{n^{[0]} \times N}$ and $y \in \{0, 1\}^{1 \times N}$. Usually with logistic regression we have the following type of structure:

$$\mathbb{R}^{1 \times n^{[0]}} \qquad \mathbb{R} \qquad \{0, 1\} \\
\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow$$

Such a structure will be called a *network*, and the *a* is known as the *activation node*. Logistic regression can be too simplistic of a model for many situations, e.g., if the dataset isn't linearly separable (i.e., there doesn't exist some well-defined decision boundary built from a linear-surface), then logistic regression won't give a high-accuracy model. To modify this model to handle more complex situations, we introduce a new "hidden layer" of nodes with their own (possibly different) activation functions. That is, we consider a network of the following form:

$$\mathbb{R}^{n^{[1]} \times n^{[0]}} \quad \mathbb{R}^{n^{[1]}} \quad \mathbb{R}^{1 \times n^{[1]}} \quad \mathbb{R} \quad \{0,1\}$$

$$w^{[1]} \downarrow \quad b^{[1]} \downarrow \quad w^{[2]} \downarrow \quad b^{[2]} \downarrow \quad y \downarrow$$

$$\mathbb{R}^{n^{[0]}} \stackrel{a^{[0]} := x}{\longrightarrow} \phi^{[1]} \stackrel{u^{[1]}}{\longrightarrow} \psi^{[1]} \stackrel{z^{[1]}}{\longrightarrow} G^{[1]} \stackrel{a^{[1]}}{\longrightarrow} \phi^{[2]} \stackrel{u^{[2]}}{\longrightarrow} \psi^{[2]} \stackrel{z^{[2]}}{\longrightarrow} G^{[2]} \stackrel{a^{[2]}}{\longrightarrow} \mathbb{L} \stackrel{\mathrm{loss}}{\longrightarrow} \mathbb{R}$$

In the above diagram, we use ·^[0] to denote everything in layer-0, i.e., the input layer; we use ·^[1] to denote everything in layer-1, i.e., the hidden layer; and we use ·^[2] to denote everything in layer-2, i.e., the output layer. Moreover, we have the functions (where we suppress the layer-notation)

$$\phi: \mathbb{R}^{n \times m} \times \mathbb{R}^m \to \mathbb{R}^n, \qquad u := \phi(w, a) = wa,$$

 $\psi: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n, \qquad z := \psi(b, u) = u + b,$

•
$$G: \mathbb{R}^n \to \mathbb{R}^n, \qquad a:=G(z),$$

where G is the broadcasting of some activating function $g: \mathbb{R} \to \mathbb{R}$.

Definition 2.1. Suppose $g : \mathbb{R} \to \mathbb{R}$ is any function. Then we say $G : \mathbb{R}^n \to \mathbb{R}^n$ is the **broadcast** of g from \mathbb{R} to \mathbb{R}^n if

$$G(v) = G(v^i e_i)$$
$$= g(v^i)e_i,$$

where $v \in \mathbb{R}^n$ and $\{e_i : 1 \le i \le n\}$ is the standard basis for \mathbb{R}^n . In practice, we will sometimes write g = G for a broadcasted function, and let the context determine the meaning of g.

castingDifferential

Lemma 2.2. Suppose $g: \mathbb{R} \to \mathbb{R}$ is any smooth function and $G: \mathbb{R}^n \to \mathbb{R}^n$ is the broadcasting of g from \mathbb{R} to \mathbb{R}^n . Then the differential $dG_z: T_z\mathbb{R}^n \to T_{G(z)}\mathbb{R}^n$ is given by

$$dG_z(\xi) = [g'(z^i)] \odot [\xi^i],$$

where \odot is the Hadamard product (also know as component-wise multiplication), and has matrix-representation in $\mathbb{R}^{m \times m}$ given by

$$[dG_z]_j^i = \delta_j^i g'(z^i).$$

We use the notation

$$G'(z) := [g'(z^i)] \in \mathbb{R}^n,$$

and thus may write

$$dG_z(v) = G'(z) \odot \xi.$$

Furthermore, we have that for $\zeta \in T_{G(z)}\mathbb{R}^n$,

$$rG_z(\zeta) = G'(z) \odot \zeta.$$

Proof: We calculate

$$dG_z(\xi) = \frac{d}{dt} \Big|_{t=0} G(z + t\xi)$$

$$= \frac{d}{dt} \Big|_{t=0} (g(z^i + t\xi^i))$$

$$= (g'(z^i)\xi^i)$$

$$= [g'(z^i)] \odot [\xi^i],$$

and letting $e_1, ... e_m$ denote the usual basis for $T_z \mathbb{R}^m$ (identified with \mathbb{R}^m), we see that

$$dG_z(e_j) = [g'(z^i)] \odot e_j$$

= $g'(z^j)e_j$,

from which conclude that dG_z is diagonal with (j, j)-th entry $g'(z^j)$ as desired.

Furthermore, for $\zeta \in T_{G(z)}\mathbb{R}^n$, we have that

$$\langle rG_z(\zeta), \xi \rangle_{\mathbb{R}^n} = \langle \zeta, dG_z(\xi) \rangle_{\mathbb{R}^n}$$

$$= \langle \zeta, G'(z) \odot \xi \rangle_{\mathbb{R}^n}$$

$$= \langle G'(z) \odot \zeta, \xi \rangle_{\mathbb{R}^n},$$

and the result follows.

Returning to our network, we see call the full composition of network functions resulting in $a^{[2]}$, the forward propagation. That is, given an example $x \in \mathbb{R}^{n^{[0]}}$, we have that

П

$$a^{[2]} = G^{[2]}(\psi^{[2]}(b^{[2]}, \phi^{[2]}(w^{[2]}, G^{[1]}(\psi^{[1]}(b^{[1]}, \phi^{[1]}(w^{[1]}, x))))).$$

2.1 Activation Functions

There are mainly only a handful of activating functions we consider for our non-linearity conditions (but many more built from these that follow).

2.1.1 The Sigmoid Function

We have the sigmoid function $\sigma(z)$ given by

$$\sigma : \mathbb{R} \to (0,1), \qquad \sigma(z) = \frac{1}{1 + e^{-z}}.$$

We note that since

$$1 - \sigma(z) = 1 - \frac{1}{1 + e^{-z}}$$
$$= \frac{e^{-z}}{1 + e^{-z}}$$

$$\sigma'(z) = \frac{e^{-z}}{(1 + e^{-z})^2}$$

$$= \frac{1}{1 + e^{-z}} \cdot \frac{e^{-z}}{1 + e^{-z}}$$

$$= \sigma(z)(1 - \sigma(z))$$

2.1.2 The Hyperbolic Tangent Function

We have the hyperbolic tangent function tanh(z) given by

$$\tanh : \mathbb{R} \to (-1, 1), \qquad \tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}.$$

We then calculate

$$\tanh'(z) = \frac{(e^z + e^{-z})(e^z + e^{-z}) - (e^z - e^{-z})(e^z - e^{-z})}{(e^z + e^{-z})^2}$$
$$= \frac{(e^z + e^{-z})^2}{(e^z + e^{-z})^2} - \frac{e^z - e^{-z})^2}{(e^z + e^{-z})^2}$$
$$= 1 - \tanh^2(z).$$

Furthermore, we note that

$$\frac{1}{2}\left(\tanh\left(\frac{z}{2}\right) + 1\right) = \sigma(z).$$

Indeed,

$$1 + \tanh \frac{z}{2} = 1 + \frac{e^{\frac{z}{2}} - e^{-\frac{z}{2}}}{e^{\frac{z}{2}} + e^{-\frac{z}{2}}}$$

$$= \frac{e^{\frac{z}{2}} + e^{-\frac{z}{2}} + e^{\frac{z}{2}} - e^{-\frac{z}{2}}}{e^{\frac{z}{2}} + e^{-\frac{z}{2}}}$$

$$= 2\frac{e^{\frac{z}{2}}}{e^{\frac{z}{2}} + e^{-\frac{z}{2}}}$$

$$= 2\frac{1}{1 + e^{-z}}$$

$$= 2\sigma(z),$$

as desired.

2.1.3 The Rectified Linear Unit Function

We have the leaky-ReLU function $ReLU(z;\beta)$ given by

$$ReLU : \mathbb{R} \to \mathbb{R}, \qquad ReLU(z; \beta) = \max\{\beta z, z\},$$

for some $\beta > 0$ (typically chosen very small).

We have the rectified linear unit function ReLU(z) given by setting $\beta=0$ in the leaky-ReLu function, i.e.,

$$ReLU : \mathbb{R} \to [0, \infty), \qquad ReLU(z) = ReLU(z; \beta = 0) = \max\{0, z\}.$$

We then calculate

$$ReLU'(z;\beta) = \begin{cases} \beta & z < 0 \\ 1 & z \ge 0 \end{cases}$$
$$= \beta \chi_{(-\infty,0)}(z) + \chi_{[0,\infty)}(z),$$

where

$$\chi_A(z) = \begin{cases} 1 & z \in A \\ 0 & z \notin A \end{cases},$$

is the indicator function.

2.1.4 The Softmax Function

We finally have the softmax function softmax(z) given by

softmax:
$$\mathbb{R}^m \to \mathbb{R}^m$$
, softmax $(z) = \frac{1}{\sum_{j=1}^m e^{z^j}} \begin{pmatrix} e^{z^1} \\ e^{z^2} \\ \vdots \\ e^{z^m} \end{pmatrix}$,

which we typically use this function on the outer-layer to obtain a probability distribution over our predicted labels when dealing with multi-class regression. Let

$$S^i = x^i \circ \operatorname{softmax}(z),$$

denote the *i*-th component of $\operatorname{softmax}(z)$, and so we calculate

$$\begin{split} \frac{\partial S^i}{\partial z^j} &= \frac{\partial}{\partial z^j} \left[\left(\sum_{k=1}^m e^{z^k} \right)^{-1} e^{z^i} \right] \\ &= -\left(\sum_{k=1}^m e^{z^k} \right)^{-2} \left(\sum_{k=1}^m e^{z^k} \delta^k_j \right) e^{z^i} + \left(\sum_{k=1}^m e^{z^k} \right)^{-1} e^{z^i} \delta^i_j \\ &= -\left(\sum_{k=1}^m e^{z^k} \right)^{-2} e^{z^j} e^{z^i} + S^i \delta^i_j \\ &= -S^j S^i + S^i \delta^i_j \\ &= S^i (\delta^i_j - S^j). \end{split}$$

That is, as a map $dS_z: T_z\mathbb{R}^m \to T_{S(z)}\mathbb{R}^m$, we have that

$$dS_z = [S^i(\delta^i_j - S_j)]^i_j,$$

and we make note that dS_z is symmetric (i.e., it's also the reverse differential).

2.2 Backward Propagation

We consider a neural network of the form

$$\mathbb{R}^{n^{[1]} \times n^{[0]}} \quad \mathbb{R}^{n^{[1]}} \quad \mathbb{R}^{n^{[2]} \times n^{[1]}} \quad \mathbb{R}^{n^{[2]}} \quad \mathbb{R}^{n^{[2]}}$$

$$w^{[1]} \downarrow \qquad b^{[1]} \downarrow \qquad w^{[2]} \downarrow \qquad b^{[2]} \downarrow \qquad y \downarrow$$

$$\mathbb{R}^{n^{[0]}} \stackrel{a^{[0]} := x}{\longrightarrow} \phi^{[1]} \stackrel{u^{[1]}}{\longrightarrow} \psi^{[1]} \stackrel{z^{[1]}}{\longrightarrow} G^{[1]} \stackrel{a^{[1]}}{\longrightarrow} \phi^{[2]} \stackrel{u^{[2]}}{\longrightarrow} \psi^{[2]} \stackrel{z^{[2]}}{\longrightarrow} G^{[2]} \stackrel{a^{[2]}}{\longrightarrow} \mathbb{L} \stackrel{\mathrm{loss}}{\longrightarrow} \mathbb{R}$$

where we have the functions:

1.

$$G^{[\ell]}: \mathbb{R}^{n^{[\ell]}} \to \mathbb{R}^{n^{[\ell]}}$$

is the broadcasting of the activation unit $g^{[\ell]}: \mathbb{R} \to \mathbb{R}$.

2.

$$\phi^{[\ell]}: \mathbb{R}^{n^{[\ell]} \times n^{[\ell-1]}} \times \mathbb{R}^{n^{[\ell-1]}} \to \mathbb{R}^{n^{[\ell]}}$$

is given by

$$\phi^{[\ell]}(w,x) = wx.$$

3.

$$\psi^{[\ell]}: \mathbb{R}^{n^{[\ell]}} \times \mathbb{R}^{n^{[\ell]}} \to \mathbb{R}^{n^{[\ell]}}$$

is given by

$$\psi^{[\ell]}(b, x) = x + b.$$

4.

$$\mathbb{L}: \mathbb{R}^{n^{[2]}} \times \mathbb{R}^{n^{[2]}} \to \mathbb{R}$$

is the given loss-function.

We now consider back-propagating through the neural network via "reverse exterior differentiation". We represent our various reverse derivatives via the following diagram:

First, we need to consider our individual derivatives:

1. Suppose $G: \mathbb{R}^n \to \mathbb{R}^n$ is the broadcasting of $g: \mathbb{R} \to \mathbb{R}$. Then for $(x, \xi) \in T\mathbb{R}^n$, we have that

$$dG_x(\xi) = G'(x) \odot \xi$$

= diag(G'(x)) \cdot \xi

and for any $\zeta \in T_{G(x)}\mathbb{R}^n$, the reverse derivative is given by

$$rG_x(\zeta) = G'(x) \odot \zeta$$

= diag $(G'(x)) \cdot \zeta$.

2. Suppose $\phi: \mathbb{R}^{m \times n} \times \mathbb{R}^n \to \mathbb{R}^m$ is given by

$$\phi(w,x) = wx.$$

Then we have two differentials to consider:

(a) For any $(w, x) \in \mathbb{R}^{m \times n} \times \mathbb{R}^n$ and any $\xi \in T_x \mathbb{R}^n$, we have that

$$d\phi_{(w,x)}(\xi) = w\xi$$

= $L_w(\xi)$;

and for any $\zeta \in T_{\phi(w,x)}\mathbb{R}^m$, we have the reverse derivative

$$r\phi_{(w,x)}(\zeta) = w^T \zeta$$

= $L_{w^T}(\zeta)$;

where $L_A(B) = AB$, i.e., left-multiplication by A.

(b) For any $(w,x) \in \mathbb{R}^{m \times n} \times \mathbb{R}^n$ and any $\eta \in T_w \mathbb{R}^{m \times n}$ we have that

$$d_1\phi_{(w,x)}(\eta) = \eta x$$

= $R_x(\eta)$;

and for any $\zeta \in T_{\phi(w,x)}\mathbb{R}^m$, we have the reverse derivative

$$r_1 \phi_{(w,x)}(\zeta) = \zeta x^T$$

= $R_{x^T}(\zeta)$;

where $R_A(B) = BA$, i.e, right-multiplication by A.

3. Suppose $\psi: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ is given by

$$\psi(b, x) = x + b.$$

Then we again have two (identical) differentials to consider:

(a) For any $(x, b) \in \mathbb{R}^n \times \mathbb{R}^n$ and any $\xi \in T_x \mathbb{R}^n$, we have that

$$d\psi_{(b,x)}(\xi) = \xi;$$

and for any $\zeta \in T_{\psi(b,x)}\mathbb{R}^n$, we have the reverse derivative

$$r\psi_{(b,x)}(\zeta) = \zeta.$$

(b) For any $(x, b) \in \mathbb{R}^n \times \mathbb{R}^n$ and any $\eta \in T_b \mathbb{R}^n$, we have that

$$d_1\psi_{(b,x)}(\eta)=\eta;$$

and for any $\zeta \in T_{(\psi(b,x)}\mathbb{R}^n$, we have the reverse derivative

$$\overline{r}_1\psi_{(b,x)}(\zeta)=\zeta.$$

Returning to our neural network, for each point (x_j, y_j) in our training set, we first let

$$F_j := \mathbb{L} \circ G^{[2]} \circ \psi^{[2]} \circ \phi^{[2]} \circ G^{[1]} \circ \psi^{[1]} \circ \phi^{[1]},$$

and we have our cost function

$$\mathbb{J} := \frac{1}{N} \sum_{j=1}^{N} F_j.$$

We use the following notation for our inputs and outputs of our respective functions:

 $\phi^{[\ell]}:(w^{[\ell]},a^{[\ell-1]}_{i})\mapsto u^{[\ell]}_{i},$

• $\psi^{[\ell]}:(b^{[\ell]},u^{[\ell]}{}_i)\mapsto z^{[\ell]}{}_i,$

 $G^{[\ell]}: z^{[\ell]}{}_j \mapsto a^{[\ell]}{}_j.$

Let $p=(w^{[1]},b^{[1]},w^{[2]},b^{[2]})$ is a point in our parameter space. Suppose we wish to apply gradient descent with learning rate $\alpha \in T_{\mathbb{J}(p)}\mathbb{R}$, we would define our parameter updates via

$$\begin{split} w^{[1]} &:= w^{[1]} - r_1 \mathbb{J}_p(\alpha) \\ b^{[1]} &:= b^{[1]} - \overline{r}_1 \mathbb{J}_p(\alpha) \\ w^{[2]} &:= w^{[2]} - r_2 \mathbb{J}_p(\alpha) \\ b^{[2]} &:= b^{[2]} - \overline{r}_2 \mathbb{J}_p(\alpha). \end{split}$$

Moreover, by linearity (and independence of our training data), we see that

$$r\mathbb{J}_p = \frac{1}{N} \sum_{j=1}^{N} r(F_j)_p,$$

so we need only calculate the various reverse derivatives of F_j .

To this end, we suppress the index j when we're working with the compositional function F. We calculate the reverse derivatives in the order traversed in our back-propagating path along the network.

1. $\overline{r}_2 \mathbb{J}_p$:

$$\begin{split} \overline{r}_2 F_p &= \overline{r}_2 (\mathbb{L} \circ G^{[2]} \circ \psi^{[2]})_p \\ &= \overline{r}_2 \psi_p^{[2]} \circ r G_{z^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}} \\ &= \mathbb{1} \circ r G_{z^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}} \\ &= r G_{z^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}}, \end{split}$$

and hence

$$\overline{r}_2 \mathbb{J}_p = \frac{1}{N} \sum_{i=1}^N r G_{z^{[2]}_j}^{[2]} \cdot r \mathbb{L}_{a^{[2]}_j}$$

 $2. r_2 \mathbb{J}_p$:

$$\begin{split} r_2 F_p &= r_2 (\mathbb{L} \circ G^{[2]} \circ \psi^{[2]} \circ \phi^{[2]})_p \\ &= r_2 \phi_p^{[2]} \circ r \psi_{u^{[2]}}^{[2]} \circ r G_{z^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}} \\ &= R_{a^{[1]T}} \circ \mathbb{1} \circ r G_{z^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}} \\ &= R_{a^{[1]T}} \circ r G_{z^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}}, \end{split}$$

and hence

$$r_2 \mathbb{J}_p = \frac{1}{N} \sum_{j=1}^{N} R_{a^{[1]T}_j} \circ rG_{z^{[2]}_j}^{[2]} \cdot r \mathbb{L}_{a^{[2]}_j}.$$

Notice that this is not just a sum after matrix multiplication since we have composition with an operator, namely, $R_{a^{[1]T_j}}$. However, since the learning rate $\alpha \in T_{\mathbb{J}(p)}\mathbb{R} \cong \mathbb{R}$, which may pass through the aforementioned linear composition, we conclude that

$$r_2 \mathbb{J}_p = \frac{1}{N} \sum_{j=1}^N R_{a^{[1]T}_j} \circ r G_{z^{[2]}_j}^{[2]} \cdot r \mathbb{L}_{a^{[2]}_j}$$
$$= \frac{1}{N} \sum_{j=1}^N r G_{z^{[2]}_j}^{[2]} \cdot r \mathbb{L}_{a^{[2]}_j} a^{[1]T}_j.$$

3. $\overline{r}_1 \mathbb{J}_p$:

$$\begin{split} \overline{r}_1 F_p &= \overline{r}_1 (\mathbb{L} \circ G^{[2]} \circ \psi^{[2]} \circ \phi^{[2]} \circ G^{[1]} \circ \psi^{[1]})_p \\ &= \overline{r}_1 \psi_p^{[1]} \circ r G_{z^{[1]}}^{[1]} \circ r \phi_{a^{[1]}}^{[2]} \circ r \psi_{u^{[2]}}^{[2]} \circ r G_{z^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}} \\ &= \mathbbm{1} \circ r G_{z^{[1]}}^{[1]} \circ L_{w^{[2]T}} \circ \mathbbm{1} \circ r G_{z^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}} \\ &= r G_{z^{[1]}}^{[1]} \circ L_{w^{[2]T}} \circ r G_{z^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}}, \end{split}$$

and hence

$$\overline{r}_1 \mathbb{J}_p = \frac{1}{N} \sum_{j=1}^N r G_{z^{[1]}_j}^{[1]} \cdot w^{[2]T} \cdot r G_{z^{[2]}_j}^{[2]} \cdot r \mathbb{L}_{a^{[2]}_j}.$$

4. $r_1 \mathbb{J}_p$:

$$\begin{split} r_1 F_p &= r_1 (\mathbb{L} \circ G^{[2]} \circ \psi^{[2]} \circ \phi^{[2]} \circ G^{[1]} \circ \psi^{[1]} \circ \phi^{[1]})_p \\ &= r_1 \phi_p^{[1]} \circ r \psi_{u^{[1]}}^{[1]} \circ r G_{z^{[1]}}^{[1]} \circ r \phi_{a^{[1]}}^{[2]} \circ r \psi_{u^{[2]}}^{[2]} \circ r G_{z^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}} \\ &= R_{x^T} \circ \mathbb{1} \circ r G_{z^{[1]}}^{[1]} \circ L_{w^{[2]T}} \circ \mathbb{1} \circ r G_{z^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}} \\ &= R_{x^T} \circ r G_{z^{[1]}}^{[1]} \circ L_{w^{[2]T}} \circ r G_{z^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}}, \end{split}$$

and hence

$$\begin{split} r_1 \mathbb{J}_p &= \frac{1}{N} \sum_{j=1}^N R_{x_j^T} \circ r G_{z^{[1]}_j}^{[1]} \cdot w^{[2]T} \cdot r G_{z^{[2]}_j}^{[2]} \cdot r \mathbb{L}_{a^{[2]}_j} \\ &= \frac{1}{N} \sum_{j=1}^N r G_{z^{[1]}_j}^{[1]} \cdot w^{[2]T} \cdot r G_{z^{[2]}_j}^{[2]} \cdot r \mathbb{L}_{a^{[2]}_j} \cdot x_j^T \end{split}$$

3 Deep Neural Networks

In this section we discuss a general "deep" neural network, which consist of L layers. That is, we have a network of the form:

$$\mathbb{R}^{n[1]} \times n[0] \qquad \mathbb{R}^{n[1]} \qquad \mathbb{R}^{n[2]} \times n[1] \qquad \mathbb{R}^{n[2]} \times n[1] \qquad \mathbb{R}^{n[2]} \times \mathbb{R}^{n$$

In general nothing fundamentally changes when adding more layers to a network. We may have different activator functions for each layer, but the general outline of computing forward propagation via composition, and then apply gradient descent by using reverse differentiation to "backtrack" through the network. Here we give a more general outline for computing our desired gradients.

To this end, we reverse our network to use reverse differentiation:

$$\mathbb{R}^{n[1] \times n[0]} \qquad \mathbb{R}^{n[1]} \qquad \mathbb{R}^{n[2] \times n[1]} \qquad \mathbb{R}^{n[2]}$$

$$\downarrow^{r_1} \qquad \qquad \uparrow^{r_2} \qquad \qquad \downarrow^{r_2} \qquad \qquad \downarrow^{r_2$$

We compute differentials recursively as follows:

1. Define $\delta^{[L]}_{j} \in \mathbb{R}^{n^{[L]}}$ by

$$\begin{split} \delta^{[L]}{}_j &:= r (\mathbb{L} \circ G^{[L]})_{z^{[L]}{}_j} \\ &= r G^{[L]}_{z^{[L]}{}_j} \circ r \mathbb{L}_{(a^{[L]}{}_j, y_j)} \\ &= G^{[L]'}(z^{[L]}{}_j) \odot r \mathbb{L}_{(a^{[L]}{}_i, y_i)}. \end{split}$$

2. Compute

$$\frac{\partial \mathbb{J}}{\partial b^{[L]}} = \frac{1}{N} \sum_{j=1}^{N} \delta^{[L]}_{j},$$

and

$$\frac{\partial \mathbb{J}}{\partial w^{[L]}} = \frac{1}{N} \sum_{j=1}^{N} \delta^{[L]}{}_{j} a^{[L-1]T}{}_{j}$$
$$= \frac{1}{N} \delta^{[L]} a^{[L-1]T}.$$

3. Define $\delta^{[L-1]}_{j} \in \mathbb{R}^{n^{[L-1]}}$ by

$$\begin{split} \delta^{[L-1]}{}_{j} &:= r (\mathbb{L} \circ G^{[L]} \circ \psi^{[L]} \circ \phi^{[L]} \circ G^{[L-1]})_{z^{[L-1]}{}_{j}} \\ &= r G^{[L-1]}_{z^{[L-1]}{}_{j}} \circ r \phi^{[L]}_{(w^{[L]},a^{[L-1]}{}_{j})} \circ r \psi^{[L]}_{(b^{[L]},u^{[L]}{}_{j})} \circ r G^{[L]}_{z^{[L]}_{j}} \circ r \mathbb{L}_{(a^{[L]}{}_{j},y_{j})} \\ &= G^{[L-1]'}(z^{[L-1]}{}_{j}) \odot w^{[L]T} \cdot \delta^{[L]}{}_{j}. \end{split}$$

4. Compute

$$\frac{\partial \mathbb{J}}{\partial b^{[L-1]}} = \frac{1}{N} \sum_{i=1}^{N} \delta^{[L-1]}{}_{j}$$

and

$$\begin{split} \frac{\partial \mathbb{J}}{\partial w^{[L-1]}} &= \frac{1}{N} \sum_{j=1}^{N} \delta^{[L-1]}{}_{j} a^{[L-2]T}{}_{j} \\ &= \frac{1}{N} \delta^{[L-1]} a^{[L-2]T}. \end{split}$$

- 5. Given $\delta^{[\ell+1]}_{j} \in \mathbb{R}^{n^{[\ell+1]}}$, define $\delta^{[\ell]}_{j} \in \mathbb{R}^{n^{[\ell]}}$ by $\delta^{[\ell]}_{j} := G^{[\ell]'}(z^{[\ell]}_{j}) \odot w^{[\ell+1]T} \delta^{[\ell+1]}_{j}.$
- 6. Compute

$$\frac{\partial \mathbb{J}}{\partial b^{[\ell]}} = \frac{1}{N} \sum_{i=1}^{N} \delta^{[\ell]}{}_{j}$$

and

$$\begin{split} \frac{\partial \mathbb{J}}{\partial w^{[\ell]}} &= \frac{1}{N} \sum_{j=1}^N \delta^{[\ell]}{}_j a^{[\ell-1]T}{}_j \\ &= \frac{1}{N} \delta^{[\ell]} a^{[\ell-1]T}, \end{split}$$

with the caveat that if $\ell=1,\ a^{[0]}:=x,$ and we've completed the recursion.

3.1 Implementation in Python via numpy

We implement a neural network with an arbitrary number of layers and nodes, with the ReLU function as the activator on all hidden nodes and the sigmoid function on the output layer for binary classification with the log-loss function.

```
1 #! python3
з import numpy as np
5 from mlLib.utils import LinearParameters, apply_activation
7 class NeuralNetwork():
      def __init__(self, config):
10
           Parameters:
           -----
11
           config : Dict
12
               config['lp_reg'] = 0,1,2
13
               config['nodes'] = List[int]
14
               config['bias'] = List[Boolean]
15
               config['activators'] = List[str]
16
17
           Returns:
18
           -----
19
           None
20
21
           self.config = config
22
           self.lp_reg = config['lp_reg']
23
           self.nodes = config['nodes']
24
           self.bias = config['bias']
           self.activators = config['activators']
26
           self.L = len(config['nodes']) - 1
27
28
      def forward_propagation(self, params, x):
29
           11 11 11
30
31
           Parameters:
32
           params : Dict[class[Parameters]]
33
               params[l].w = Weights
               params[1].bias = Boolean
35
               params[1].b = Bias
36
37
           x : array_like
38
           Returns:
39
           _____
```

```
cache = Dict[array_like]
41
               cache['a'] = a
42
               cache['dg'] = dg
43
44
45
           # Initialize dictionaries
46
           a = \{\}
47
           dg = \{\}
48
49
           a[0], dg[0] = apply_activation(x, self.activators[0])
50
51
           for l in range(1, self.L + 1):
52
               z = params[1].forward(a[1 - 1])
53
               a[l], dg[l] = apply_activation(z, self.activators[l])
54
55
           cache = \{'a' : a, 'dg' : dg\}
56
           return cache
57
58
      def cost_function(self, params, a, y, lambda_=0.01, eps=1e-8):
59
60
           Parameters:
61
           params: class[Parameters]
63
           a: array_like
64
           y: array_like
65
           lambda_: float
               Default: 0.01
67
           eps: float
68
               Default: 1e-8
69
70
           Returns:
71
           -----
72
           cost: float
73
74
           n = y.shape[1]
75
           if self.lp_reg == 0:
76
               lambda_ = 0.0
77
78
           # Compute regularization term
79
           R = 0
80
           for param in params.values():
               R += np.sum(np.abs(param.w) ** self.lp_reg)
82
           R *= (lambda_ / (2 * n))
83
84
           # Compute unregularized cost
85
           a = np.clip(a, eps, 1 - eps)
                                              # Bound a for stability
86
           J = (-1 / n) * (np.sum(y * np.log(a) + (1 - y) * np.log(1 - a)))
87
```

```
88
            cost = float(np.squeeze(J + R))
89
90
            return cost
91
92
       def backward_propagation(self, params, cache, y):
93
            Parameters:
95
            -----
96
            params : Dict[class[Parameters]]
97
                params[1].w = Weights
98
                params[1].bias = Boolean
99
                params[1].b = Bias
100
            cache : Dict[array_like]
101
                cache['a'] : array_like
102
                cache['dg'] : array_like
103
104
            y : array_like
105
            Returns:
106
107
            None
108
            11 11 11
109
110
            # Retrieve cache
111
            a = cache['a']
112
            dg = cache['dg']
113
114
            # Initialize differentials along the network
115
            delta = {}
116
            delta[self.L] = (a[self.L] - y) / y.shape[1]
117
118
            for 1 in reversed(range(1, self.L + 1)):
119
                delta[1 - 1] = dg[1 - 1] * params[1].backward(delta[1], a[1 - 1])
120
121
       def update_parameters(self, params, learning_rate=0.1):
122
123
            Parameters:
124
125
            params : Dict[class[Parameters]]
126
                params[1].w = Weights
127
                params[1].bias = Boolean
128
                params[1].b = Bias
129
            learning_rate : float
130
                Default: 0.01
131
132
            Returns:
133
            -----
134
```

```
None
135
136
            for param in params.values():
137
                param.update(learning_rate)
138
139
       def fit(self, x, y, learning_rate=0.1, lambda_=0.01, num_iters=10000):
140
            11 11 11
            Parameters:
142
            -----
143
            x : array_like
144
            y : array_like
145
            learning_rate : float
146
                Default : 0.1
147
            lambda_ : float
148
                Default : 0.0
149
            num_iters : int
150
                Default : 10000
151
152
            Returns:
153
154
            costs : List[floats]
155
            params : class[Parameters]
157
            # Initialize parameters per layer
158
            params = {}
159
            for 1 in range(1, self.L + 1):
160
                params[l] = LinearParameters((self.nodes[l], self.nodes[l - 1]), self.b
161
162
            costs = []
163
            for i in range(num_iters):
164
                cache = self.forward_propagation(params, x)
165
                cost = self.cost_function(params, cache['a'][self.L], y, lambda_)
166
                costs.append(cost)
167
                self.backward_propagation(params, cache, y)
168
                self.update_parameters(params, learning_rate)
169
170
                if i % 1000 == 0:
171
                    print(f'Cost_after_iteration_{i}:_{cost}')
172
173
            return params
174
175
       def evaluate(self, params, x):
176
177
            Parameters:
178
179
            params : class[Parameters]
180
            x : array_like
181
```

```
182
            Returns:
183
            -----
184
            y_hat : array_like
185
186
            cache = self.forward_propagation(params, x)
187
            a = cache['a'][self.L]
            y_hat = (\sim(a < 0.5)).astype(int)
189
            return y_hat
190
191
       def accuracy(self, params, x, y):
193
            Parameters:
194
195
            params : class[Parameters]
196
            x : array_like
197
198
            y : array_like
199
            Returns:
200
201
            accuracy : float
202
203
            y_hat = self.evaluate(params, x)
204
            acc = np.sum(y_hat == y) / y.shape[1]
205
206
207
            return acc
```

3.2 Implementation in Python via tensorflow

We implement a neural network using tensorflow.keras.

```
1 #! python3
з import pandas as pd
4 import numpy as np
5 from sklearn.model_selection import train_test_split
6 from tensorflow import keras
7 from keras import Model, Input
8 from keras.layers import Dense
10 def keras_functional_nn(csv):
      df = pd.read_csv(csv)
11
      dataset = df.values
12
      x, y = dataset[:, :-1], dataset[:, -1].reshape(-1, 1)
13
      x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.15)
14
      train = {'x' : x_train, 'y' : y_train}
```

```
test = {'x' : x_test, 'y' : y_test}
16
      mu = np.mean(train['x'], axis=0, keepdims=True)
17
      var = np.var(train['x'], axis=0, keepdims=True)
18
       train['x'] = (train['x'] - mu) / np.sqrt(var)
19
      test['x'] = (test['x'] - mu) / np.sqrt(var)
20
21
      ## Define network structure
22
      input_layer = Input(shape=(10,))
23
      hidden_layer_1 = Dense(
24
           32,
25
           activation='relu',
           kernel_initializer='he_normal',
27
           bias_initializer='zeros'
28
      )(input_layer)
29
      hidden_layer_2 = Dense(
30
           8,
31
           activation='relu',
32
           kernel_initializer='he_normal',
33
           bias_initializer='zeros'
34
      )(hidden_layer_1)
35
      output_layer = Dense(
36
37
           1,
           activation='sigmoid',
38
           kernel_initializer='he_normal',
39
           bias_initializer='zeros'
40
      )(hidden_layer_2)
41
42
      model = Model(inputs=input_layer, outputs=output_layer)
43
      model.summary()
44
45
      ## Compile desired model
46
      model.compile(
47
           loss='binary_crossentropy',
48
           optimizer='adam',
49
           metrics=['accuracy']
50
      )
51
52
      ## Train the model
53
      hist = model.fit(
54
           train['x'],
55
           train['y'],
           batch_size=32,
57
           epochs = 150,
58
           validation_split=0.17
59
      )
60
61
      ## Evaluate the model
```

```
test_scores = model.evaluate(test['x'], test['y'], verbose=2)
print(f'Test_Loss:_{test_scores[0]}')
print(f'Test_Accuracy:_{test_scores[1]}')
```

Part II
Improving Deep Neural
Networks: Hyperparameter
Tuning, Regularization, and
Optimization

4 Training, Development and Test Sets

Let $\mathbb{D} = \{(x_j, y_j) \in \mathbb{R}^m \times \mathbb{R}^K : 1 \leq j \leq N\}$ denote a dataset. Then we partition \mathbb{D} into three distinct sets

$$\mathbb{D} = \mathbb{X} + \mathcal{D} + \mathcal{T}.$$

where \mathbb{X} is called our training set, \mathcal{D} is called our development, or cross-validation set, and \mathcal{T} is called our test set. We make this partition randomly, however, if $N = |\mathbb{D}| \leq 10^4$, we see a partition being divided accordingly to the following ratios:

$$n_X := |\mathbb{X}| \approx \frac{3}{5}N,$$

$$n_D := |\mathcal{D}| \approx \frac{1}{5}N,$$

and

$$n_T := |\mathcal{T}| \approx \frac{1}{5}N.$$

If however, we have a very large dataset (i.e., $N > 10^4$), then we assume a much smaller ratio of something similar to

$$\frac{n_X}{N} \approx 0.98, \qquad \frac{n_D}{N} \approx 0.01, \qquad \frac{n_T}{N} \approx 0.01.$$

In general, we use our training set \mathbb{X} to train our parameters $w^{[\ell]}$ and $b^{[\ell]}$, we use our development set \mathcal{D} to tune our hyper-parameters (i.e., learning rate, number of layers, number of nodes per layer, activation function, number of iterations to perform gradient descent, regularization parameters, etc), and we use our test set \mathcal{T} to evaluate the accuracy of our model. Since we're partitioning our dataset to better increase the accuracy of our model, we need to define an error function. To this end, define $\mathcal{E}: 2^{\mathbb{D}} \to [0,1]$ by

$$\mathcal{E}(\mathcal{A}) = \frac{1}{|\mathcal{A}|} \sum_{(x,y) \in \mathcal{A}} \varepsilon(x,y),$$

where $\varepsilon : \mathbb{D} \to \{0,1\}$ is defined by

$$\varepsilon(x,y) = \begin{cases} 1 & \text{if } y = \hat{y}(x) \\ 0 & \text{else.} \end{cases}$$

From our partition and error function we can make several claims of the fitting of our model to our data. Indeed, let $\epsilon > 0$ be a small percentage (with exact value depending on specific examples), then:

- If $\mathcal{E}(\mathbb{X}) < \epsilon$ and $\mathcal{E}(\mathbb{X}) < \mathcal{E}(\mathcal{D}) \lesssim 10\epsilon$, then we say our model has high variance since our model is overfitting the data.
- If $\mathcal{E}(\mathbb{X}) \approx \mathcal{E}(\mathcal{D}) \gtrsim 10\epsilon$, then we say our model has high bias since our model is underfitting the data.
- If $10\epsilon \lesssim \mathcal{E}(\mathbb{X}) \ll \mathcal{E}(\mathcal{D})$, then we say our model has both high bias (since it doesn't fit our training data well) and high variance (because the model fits the training data better than the development data).
- If $\mathcal{E}(\mathbb{X})$, $\mathcal{E}(\mathcal{D}) < \epsilon$, then we say the model has both low bias and low variance.

Remark 4.1. The interpretations of our error percentage is based on two crucial assumptions:

- \mathcal{D} and \mathcal{T} come from samplings with the same distribution of outputs (i.e., if we're determining whether a collection of images contain a cat, we should never have that \mathcal{D} is mostly cat pictures, and \mathcal{T} is mostly non-cat pictures).
- The optimal error for the model is approximately 0%. That is, if a human were looking at the data, they could determine the correct response with negligible error. This is sometimes called the Bayes error.

If either of these assumptions fail to hold, other methods of analysis may be required to obtain meaningful insights for the performance of our model.

A methodology for using errors could be as follows

- 1. Check $\mathcal{E}(\mathbb{X})$ for high bias.
 - a. If "Yes", then we can try a bigger network, we can train longer, or we can change the neural network architecture. Then we return to (1.).
 - b. If "No", then we move to (2.).
- 2. Check $\mathcal{E}(\mathcal{D})$ for high variance.
 - a. If "Yes", then we can try to get more data, try regularization, or try changing the neural network architecture. Then we return to (1.).
 - b. If "No", then we're done.

4.1 Python Implementation

To implement a partitioning we could do something like the following:

```
1 ## Shuffle, split and normalize data
  class ProcessData():
      def __init__(self, x, y, test_percent, dev_percent=0.0, seed=101, shuffle=True,
           Parameters:
5
           _____
          x : array_like
               x.shape = (examples, features)
           y : array_like
               y.shape = (examples, labels)
10
           test_percent : float
11
           dev_pervents : Tuple(floats)
12
           seed : int
               Default = 1
14
           shuffle : Boolean
15
               Default = True
16
           feat_as_col : Boolean
17
               Default = True
18
19
           Returns:
20
           _____
21
          None
22
23
           self.x = x
24
25
           self.y = y
           self.test_percent = test_percent
26
           self.dev_percent = dev_percent
27
           self.seed = seed
           self.shuffle = shuffle
29
           self.feat_as_col = feat_as_col
30
31
           self.split()
           self.normalize()
33
34
           print(f"x_train.shape:_{self.train['x'].shape}")
35
           print(f"y_train.shape:_{self.train['y'].shape}")
36
           print(f"x_test.shape:_{self.test['x'].shape}")
37
           print(f"y_test.shape:_{self.test['y'].shape}")
38
           if self.dev_percent > 0.0:
39
               print(f"x_dev.shape:_{self.dev['x'].shape}")
40
               print(f"y_dev.shape:_{self.dev['y'].shape}")
41
42
      def split(self):
43
```

44

```
Parameters:
45
           -----
46
           None
47
48
           Returns:
49
           _____
50
          None
51
52
           x_aux, x_test, y_aux, y_test = train_test_split(self.x, self.y, test_size=s
53
           left_over = 1 - self.test_percent
54
           aux_perc = self.dev_percent / left_over
55
           x_train, x_dev, y_train, y_dev = train_test_split(x_aux, y_aux, test_size=a
56
57
           if self.feat_as_col:
58
               self.train = {'x' : x_train, 'y' : y_train}
59
               self.test = {'x' : x_test, 'y' : y_test}
60
61
               self.dev = {'x' : x_dev, 'y' : y_dev}
          else:
62
               self.train = {'x' : x_train.T, 'y' : y_train.T}
63
               self.test = {'x' : x_test.T, 'y' : y_test.T}
64
               self.dev = {'x' : x_dev.T, 'y' : y_dev.T}
65
      def normalize(self, z=None, eps=0.0):
67
68
           Parameters:
69
           -----
70
           z : array_like
71
               Default : None - For initialization
72
           eps : float
73
               Default 0.0 - For stability
74
75
           Returns:
76
           z_scale : array_like
77
78
           if z == None:
79
               x = self.train['x']
80
               axis = 0 if self.feat_as_col else 1
81
               self.mu = np.mean(x, axis=axis, keepdims=True)
82
               self.var = np.var(x, axis=axis, keepdims=True)
83
               self.theta = 1 / np.sqrt(self.var + eps)
84
               self.train['x'] = self.theta * (x - self.mu)
               self.test['x'] = self.theta * (self.test['x'] - self.mu)
86
               self.dev['x'] = self.theta * (self.dev['x'] - self.mu)
87
88
           else:
89
               z_scale = self.theta * (z - self.mu)
90
               return z_scale
91
```

5 Regularization

Suppose we're training an L-layer neural network with dataset $\{(x_j, y_j)\} \subset \mathbb{R}^{n^{[0]}} \times \mathbb{R}^{n^{[L]}}$ with N examples. Assuming a generic loss function $\mathbb{L} : \mathbb{R}^{n^{[L]}} \times \mathbb{R}^{n^{[L]}} \to \mathbb{R}$, then we have our cost function \mathbb{J} defined on our one-parameter families of parameters w and b given by

$$\mathbb{J}(w,b) = \frac{1}{N} \sum_{j=1}^{N} \mathbb{L}(a^{[L]}_{j}, y_{j}).$$

If our model suffers from overfitting the training set, it's reasonable to impose constraints on the parameters w and/or b. That is, define the function

$$R(w) = \frac{\lambda}{2N} \sum_{\ell=1}^{L} \|w^{[\ell]}\|_F^2,$$

for some $\lambda > 0$, where $\|\cdot\|_F$ represents the Frobenius norm on matrices, and we define the regularized cost function \mathbb{J}^R given by

$$\mathbb{J}^{R}(w,b) = \mathbb{J}(w,b) + R(w)
= \frac{1}{N} \sum_{j=1}^{N} \mathbb{L}(a^{[L]}_{j}, y_{j}) + \frac{\lambda}{2N} \sum_{\ell=1}^{L} \|w^{[\ell]}\|_{F}^{2}.$$

Adding such an R(w) to our cost function is known as L^2 -regularization. We note that by linearity we have the following equalities amongst gradients:

$$\frac{\partial \mathbb{J}^R}{\partial b^{[\ell]}} = \frac{\partial \mathbb{J}}{\partial b^{[\ell]}}$$

and

$$\frac{\partial \mathbb{J}^R}{\partial w^{[\ell]}} = \frac{\partial \mathbb{J}}{\partial w^{[\ell]}} + \frac{\lambda}{N} w^{[\ell]}.$$

The idea behind regularization is that we're now minimizing

$$\min_{w,b} \mathbb{J}^{R}(w,b) = \min_{w,b} \left\{ \mathbb{J}(w,b) + R(w) \right\},\,$$

and so for suitably chosen $\lambda > 0$, it forces $\|w^{[\ell]}\|_F$ to be small, along with minimizing the cost \mathbb{J} . This balancing-act of minimizing the two functions simultaneously helps with overfitting the data.

A typical tuning via regularization would be similar to the following outline:

- i. Partition our dataset $\mathbb{D} = \mathbb{X} \cup \mathcal{D} \cup \mathcal{T}$.
- ii. Give a set Λ of potential regularization parameters.
- iii. For each $\lambda \in \Lambda$, we first train on X, that is, we obtain

$$(w,b) = \arg\min_{w,b} \mathbb{J}^{R}(w,b)$$

$$= \arg\min_{w,b} \left\{ \frac{1}{n_{X}} \sum_{(x,y) \in \mathbb{X}} \mathbb{L}(a^{[L]}, y) + \frac{\lambda}{2n_{X}} \sum_{\ell=1}^{L} \|w^{[\ell]}\|_{F}^{2} \right\}$$

which is dependent on λ .

- iv. Then using the aforementioned $(w, b) = (w, b)(\lambda)$, we evaluate $\mathcal{E}_{\lambda}(\mathbb{X})$ and $\mathcal{E}_{\lambda}(\mathcal{D})$.
- v. After finding $\mathcal{E}_{\lambda}(\mathbb{X})$ and $\mathcal{E}_{\lambda}(\mathcal{D})$ for each $\lambda \in \Lambda$, we choose our desired λ and hence our desired parameters w and b.
- vi. We evaluate our model on \mathcal{T} to determine the overall accuracy.

5.1 (Inverted) Dropout Regularization

For illustrative purposes, suppose we have a 2-layer neural network of the following form:

Let Q_0, Q_1, Q_2 denote the collection of all nodes in Layers 0, 1, 2, respectively. Let $p_0, p_1, p_2 \in [0, 1]$, and define a probability distribution \mathbb{P}_{ℓ} on Q_{ℓ} by

$$\mathbb{P}_{\ell}(q=1) = p_{\ell}, \qquad \mathbb{P}_{\ell}(q=0) = 1 - p_{\ell},$$

where q = 1 represents the node existing in layer- ℓ , and q = 0 represents the dropping of the node from layer- ℓ . That is we're effectively reducing the number of nodes throughout the network, thus simplifying the network and reducing the amount of influence of any single feature or node on the entire model. That is, we would implement a methodology similar to the following:

i. For each iteration, each layer ℓ and each training example x_j define the "dropout vector" $D^{[\ell]}{}_j$ by

$$D^{[\ell]}{}_j = egin{bmatrix} d^1_j \ dots \ d^{n^{[\ell]}}_j \end{bmatrix},$$

where

$$d_j^i = \begin{cases} 1 & \text{if } \mathbb{P}(q^i) \le p_\ell \\ 0 & \text{if } \mathbb{P}(q^i) > p_\ell \end{cases}.$$

ii. During forward propagation, we redefine

$$a^{[\ell]} \mapsto \frac{a^{[\ell]} \odot D^{[\ell]}}{p_{\ell}}.$$

iii. During backward propagation, we define

$$\delta^{[\ell]} \mapsto \frac{\delta^{[\ell]} \odot D^{[\ell]}}{p_{\ell}}.$$

iv. Then perform gradient descent, etc with these new values.

5.1.1 Python Implementation

We see here the use of inverted dropout regularization in a general neural network.

```
#! python3
import numpy as np

from mlLib.utils import LinearParameters, apply_activation

class NeuralNetwork():
    def __init__(self, config):
        """

Parameters:
        ------
config : Dict
        config['lp_reg'] = 0,1,2
        config['nodes'] = List[int]
```

```
config['bias'] = List[Boolean]
16
               config['activators'] = List[str]
17
               config['keep_probs'] = List[float]
18
19
           Returns:
20
           _____
21
           None
22
23
           self.config = config
24
           self.lp_reg = config['lp_reg']
25
           self.nodes = config['nodes']
26
           self.bias = config['bias']
27
           self.activators = config['activators']
28
           self.keep_probs = config['keep_probs']
29
           self.L = len(config['nodes']) - 1
30
31
      def init_dropout(self, num_examples, seed=1):
32
33
           Parameters:
34
35
           num_examples : int
36
           seed : int
37
               Default: 1 # For reproducability
38
39
           Returns:
40
           D : Dict[layer : array_like]
42
43
           np.random.seed(seed)
44
           D = \{\}
45
           for l in range(self.L + 1):
46
               D[1] = np.random.rand(self.nodes[1], num_examples)
47
               D[1] = (D[1] < self.keep_probs[1]).astype(int)</pre>
48
               D[1] = D[1] / self.keep_probs[1]
49
               assert (D[1].shape == (self.nodes[1], num_examples)), "Dropout_matrices.
50
51
           return D
52
53
      def forward_propagation(self, params, x, dropout=None):
54
55
           Parameters:
           _____
57
           params : Dict[class[Parameters]]
58
               params[1].w = Weights
59
               params[1].bias = Boolean
60
               params[1].b = Bias
61
           x : array_like
62
```

```
63
            Returns:
64
            -----
65
            cache = Dict[array_like]
66
                cache['a'] = a
67
                cache['dg'] = dg
68
            ,,,,,,
70
            # Initialize dictionaries
71
            a = \{ \}
72
            dg = \{\}
73
74
            a[0], dg[0] = apply_activation(x, self.activators[0])
75
            if dropout != None:
76
                a[0] = dropout[0] * a[0]
77
78
            for l in range(1, self.L + 1):
79
                z = params[l].forward(a[l - 1])
80
                a[l], dg[l] = apply_activation(z, self.activators[l])
81
                if dropout != None:
82
                     a[l] = dropout[l] * a[l]
83
84
            cache = {'a': a, 'dg': dg}
85
            return cache
86
87
       def cost_function(self, params, a, y, lambda_=0.01, eps=1e-8):
89
90
            Parameters:
91
            params: class[Parameters]
92
            a: array_like
93
            y: array_like
94
            lambda_: float
95
                Default: 0.01
96
            eps: float
97
                Default: 1e-8
98
99
100
            Returns:
            -----
101
            cost: float
102
103
            n = y.shape[1]
104
            if self.lp_reg == 0:
105
106
                lambda_{-} = 0.0
107
            # Compute regularization term
108
            R = 0
109
```

```
for param in params.values():
110
                                            R += np.sum(np.abs(param.w) ** self.lp_reg)
111
                                R *= (lambda_ / (2 * n))
112
113
                                # Compute unregularized cost
114
                                a = np.clip(a, eps, 1 - eps)
                                                                                                                                # Bound a for stability
115
                                J = (-1 / n) * (np.sum(y * np.log(a) + (1 - y) * np.log(1 - a)))
117
                                cost = float(np.squeeze(J + R))
118
119
                                return cost
120
121
                    def backward_propagation(self, params, cache, y, dropout):
122
123
                                Parameters:
124
                                 ------
125
126
                                params : Dict[class[Parameters]]
                                            params[1].w = Weights
127
                                            params[1].bias = Boolean
128
                                            params[1].b = Bias
129
                                cache : Dict[array_like]
130
                                            cache['a'] : array_like
                                            cache['dg'] : array_like
132
                                y : array_like
133
134
                                Returns:
135
                                _____
136
                                None
137
138
139
                                # Retrieve cache
140
                                a = cache['a']
141
                                dg = cache['dg']
142
143
                                # Initialize differentials along the network
144
145
                                delta[self.L] = ((a[self.L] - y) / y.shape[1]) * dropout[self.L]
146
147
                                for 1 in reversed(range(1, self.L + 1)):
148
                                            delta[1 - 1] = dg[1 - 1] * params[1].backward(delta[1], a[1 - 1]) * droperty delta[1] = dg[1 - 1] = 
149
150
                    def update_parameters(self, params, learning_rate=0.1):
151
152
                                Parameters:
153
154
                                params : Dict[class[Parameters]]
155
                                            params[1].w = Weights
156
```

```
params[1].bias = Boolean
157
                params[1].b = Bias
158
            learning_rate : float
159
                Default: 0.01
160
161
            Returns:
162
            -----
            None
164
            11 11 11
165
            for param in params.values():
166
                param.update(learning_rate)
167
168
       def fit(self, x, y, learning_rate=0.1, lambda_=0.01, num_iters=10000):
169
170
            Parameters:
171
            -----
172
173
            x : array_like
            y : array_like
174
            learning_rate : float
175
                Default: 0.1
176
            lambda_ : float
177
                Default : 0.0
            num_iters : int
179
                Default : 10000
180
181
            Returns:
            _____
183
            costs : List[floats]
184
            params : class[Parameters]
185
186
            # Initialize parameters per layer
187
            params = \{\}
188
            for 1 in range(1, self.L + 1):
189
                params[1] = LinearParameters(
190
                    (self.nodes[1], self.nodes[1 - 1]), self.bias[1])
191
192
            costs = []
193
            for i in range(num_iters):
194
                dropout = self.init_dropout(x.shape[1])
195
                cache = self.forward_propagation(params, x, dropout)
196
                cost = self.cost_function(params, cache['a'][self.L], y, lambda_)
197
                costs.append(cost)
198
199
                self.backward_propagation(params, cache, y, dropout)
                self.update_parameters(params, learning_rate)
200
201
                if i % 1000 == 0:
202
                    print(f'Cost_after_iteration_{i}:_{cost}')
203
```

```
204
            return params
205
206
       def evaluate(self, params, x):
207
208
            Parameters:
209
            -----
            params : class[Parameters]
211
            x : array_like
212
213
            Returns:
^{214}
            -----
215
            y_hat : array_like
216
217
            cache = self.forward_propagation(params, x)
218
            a = cache['a'][self.L]
219
            y_hat = (\sim(a < 0.5)).astype(int)
220
            return y_hat
221
222
       def accuracy(self, params, x, y):
223
224
225
            Parameters:
            -----
226
            params : class[Parameters]
227
            x : array_like
228
            y : array_like
229
230
            Returns:
231
232
            accuracy : float
233
234
            y_hat = self.evaluate(params, x)
235
            acc = np.sum(y_hat == y) / y.shape[1]
236
237
            return acc
238
```

5.2 Data Augmentation

This section requires work.

There are few other regularization techniques. One of the simplest techniques is data augmentation, i.e., transforming data you currently have into related but different example to gather a larger dataset (e.g., flipping or distorting images to obtain other relevant images).

5.3 Early Stopping

This section requires work.

Another technique is stop the training early (fewer iterations) before the model develops higher variance.

6 Gradients and Numerical Remarks

This section requires work. See "He Initialization" and "Xavier Initialization"

We first remark, that by our use of gradient descent, there are few outlier cases which may occur. Namely our gradients may explode or vanish. One way to attempt to fix such a situation to impose a normalization on our weights depending on our activation functions.

• If $g^{[\ell]} = \text{ReLU}$, then we wish to impose the requirement that

$$\mathbb{E}[(w^{[\ell]2})] = \frac{1}{n^{[\ell-1]}}.$$

6.1 Numerical Gradient Checking

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is a smooth function. Then, we recall the definition of the partial derivative

$$\frac{\partial f}{\partial x^{j}} = \lim_{h \to 0} \frac{f(x + he_{j}) - f(x)}{h}$$
$$= \lim_{\epsilon \to 0^{+}} \frac{f(x + \epsilon e_{j}) - f(x - \epsilon e_{j})}{2\epsilon},$$

and so for sufficiently small $\epsilon > 0$, we have the approximation

$$\frac{\partial f}{\partial x^j} \approx \frac{f(x + \epsilon e_j) - f(x - \epsilon e_j)}{2\epsilon}.$$

Define the approximation function $F: \mathbb{R}^n \times (0,1) \to \mathbb{R}^n$ by

$$F(x,\epsilon) = \frac{1}{2\epsilon} \begin{bmatrix} f(x+\epsilon e_1) - f(x-\epsilon e_1) \\ \vdots \\ f(x+\epsilon e_n) - f(x-\epsilon e_n) \end{bmatrix}.$$

Then we may check that our gradient computation $\nabla f(x)$ is correct by checking that

$$\frac{\|F(x,\epsilon) - \nabla f(x)\|_2}{\|F(x,\epsilon)\|_2 + \|\nabla f(x)\|_2} \approx 0.$$

6.2 Python Implementation

Reformat this section for the reverse differential of varying sizes once the Reverse Differential section is completed. There should be several cases included:

```
f: R→R
f: R<sup>n</sup> → R and maybe g: R → R<sup>n</sup>
f: R<sup>n</sup> → R<sup>m</sup>
f: R<sup>m×n</sup> → R and maybe g: R → R<sup>m×n</sup>
f: R<sup>m×n</sup> → R<sup>k</sup> and maybe g: R<sup>k</sup> → R<sup>m×n</sup>
f: R<sup>m×n</sup> → R<sup>k</sup> and maybe g: R<sup>k</sup> → R<sup>m×n</sup>
```

```
1 ## f(x) = x_1*x_2*...*x_n
2 def fctn(x):
      n = x.shape[0]
      y = np.prod(x)
      grad = np.zeros((n, 1))
      for i in range(n):
           omit = 1 - np.eye(1, n, i).T
           omit = np.array(omit, dtype=bool)
           grad[i, 0] = np.prod(x, where=omit)
10
      return y, grad
11
12 def gradient_check(grad, f, x, epsilon=1e-3):
13
      Parameters
14
      -----
15
      grad : array_like
           grad.shape= (n, 1)
17
      f : function
           The function to check.
19
      x : array_like
           x.shape = (n, 1)
21
      epsilon : float
           Default 0.001
23
24
      Returns
      error : float
25
26
      11 11 11
27
```

```
n = x.shape[0]
28
29
      y_diffs = []
      for i in range(n):
30
          e = np.eye(1, n, i).T
31
          x_plus = x + epsilon * e
32
          x_minus = x - epsilon * e
33
          y_plus, = f(x_plus)
          y_{minus}, = f(x_{minus})
35
          y_diffs.append(y_plus - y_minus)
36
      y_diffs = np.array(y_diffs).reshape(n, 1)
37
      y_diffs = y_diffs / (2 * epsilon)
38
39
      error = (np.linalg.norm(y_diffs - grad)
40
                   / (np.linalg.norm(y_diffs) + np.linalg.norm(grad)))
41
42
      return error
```

7 Gradient Descent

So far in our implementation of gradient descent, we use the entire training set for every iteration of gradient descent. This method is called batch gradient descent. Gradient descent has many downfalls. Indeed, since we're typically working in a very high dimensional space, the majority of the critical points for our cost function are actually saddle points (these can be thought of as plateaus of the loss-manifold). These pitfalls (amongst others) are what we wish to overcome. To this end, we first consider a modification of batch gradient descent by partitioning the training set into smaller "mini-batches" and using each mini-batch recursively throughout the iterative process.

That is, suppose we have training set \mathbb{X} with $|\mathbb{X}| = N$, where N is very large (e.g., N = 5000000). We fix a batch size b (e.g., b = 5000), and partition \mathbb{X} into (e.g., 1000 distinct) mini-batches

$$\left\{ \mathbb{X}^k : 1 \le k \le \left\lceil \frac{N}{b} \right\rceil \right\}, \qquad \mathbb{X} = \bigcup_{k=1}^{\left\lceil \frac{N}{b} \right\rceil} \mathbb{X}^k,$$

where $\lceil \cdot \rceil$ denote the ceiling function. If we shuffle \mathbb{X} and partition during each epoch (i.e., each iteration) so our loss-manifold changes during each batch iteration within each epoch, we can then perform gradient descent in the following manner:

- 1. For $0 \le i < \text{num_iters}$:
 - a. Let $B = \left\lceil \frac{N}{h} \right\rceil$, and generate batches $\{X^k\}$.
 - b. For $1 \le k \le B$:
 - i. Perform forward propagation on \mathbb{X}^k :

$$a^{[0]} = x(\mathbb{X}^k)$$

$$z^{[\ell]} = w^{[\ell]}a^{[\ell-1]} + b^{[\ell]}$$

$$a^{[\ell]} = a^{[\ell]}(z^{[\ell]})$$

ii. Evaluate the cost \mathbb{J}^k on \mathbb{X}^k :

$$\mathbb{J}^{k}(w,b) = \frac{1}{|\mathbb{X}^{k}|} \sum_{(x,y) \in \mathbb{X}^{k}} \mathbb{L}(a^{[L]}, y) + \frac{\lambda}{2|\mathbb{X}^{k}|} \sum_{\ell=1}^{L} \|w^{[\ell]}\|_{F}^{2}.$$

iii. Perform backward propagation on \mathbb{X}^k :

$$\frac{\partial \mathbb{J}^k}{\partial w^{[\ell]}} = \frac{1}{|\mathbb{X}^k|} \delta^{[\ell]} a^{[\ell-1]T} + \frac{\lambda}{|\mathbb{X}^k|} w^{[\ell]}$$
$$\frac{\partial \mathbb{J}^k}{\partial b^{[\ell]}} = \frac{1}{|\mathbb{X}^k|} \sum_{\rho \sim \mathbb{X}^k} \delta^{[\ell]}{}_{\rho}$$

iv. Perform gradient descent:

$$\begin{split} w^{[\ell]} &:= w^{[\ell]} - \alpha \frac{\partial \mathbb{J}^k}{\partial w^{[\ell]}} \\ b^{[\ell]} &:= b^{[\ell]} - \alpha \frac{\partial \mathbb{J}^k}{\partial b^{[\ell]}} \end{split}$$

We make several remarks about mini-batch gradient descent:

- Batch gradient descent doesn't always decrease (e.g., our learning rate is too large). Mini-batch may oscillate rapidly, but the general direction should move towards a minimum.
- If b = n, then we fully recover batch gradient descent. This is typically too computationally expensive since we use the full training set for each iteration.
- If b = 1, then we recover stochastic gradient descent, i.e., we train our model on a different example during each iteration. We lose all the speed related to vectorization, since we're dealing with single examples during each iteration.
- Choose 1 < b < n is typically always the best solution, since it deals with both of the aforementioned problems.
- \bullet Due to the nature of a computer's internal structure, it's typically better to choose a batch size b for the form

$$b = 2^{p}$$
.

for some $p \in \{6, 7, 8, 9, 10\}$ (usually p < 10).

 \bullet Choose a batch size b that ensures your computer's CPU/GPU can hold a dataset of that size.

7.0.1 Python Implementation via numpy

We show here our implementation of dropout and L^2 -regularization utilizing mini-batch gradient descent in numpy.

```
1 #! python3
з import numpy as np
5 from mlLib.utils import LinearParameters, apply_activation
  class ShuffleBatchData():
      def __init__(self, data, batch_size, seed=10101):
           Parameters:
10
           -----
11
           data : Dict[array_like]
12
               data['x'] : array_like
13
               data['y'] : array_like
14
           batch_size : int
15
           seed : int
16
               Default: 10101
18
           Returns:
           None
20
           11 11 11
           self.data = data
22
           self.batch_size = batch_size
           self.seed = seed
24
           self.idx = np.arange(data['x'].shape[1])
25
           self.__N = data['x'].shape[1]
26
27
           np.random.seed(seed)
28
29
      def get_batches(self):
30
31
           Parameters:
32
           -----
33
           None
34
35
           Returns:
           -----
37
           None
39
           np.random.shuffle(self.idx)
           x_shuffled = self.data['x'][:, self.idx]
41
           y_shuffled = self.data['y'][:, self.idx]
```

```
43
          B = int(np.ceil(self.__N / self.batch_size))
44
45
           batches = []
46
           for i in range(B):
47
               x_aux = x_shuffled[:, (self.batch_size * i):(self.batch_size * (i + 1))]
48
               y_aux = y_shuffled[:, (self.batch_size * i):(self.batch_size * (i + 1))]
               batches.append({'x' : x_aux, 'y' : y_aux})
50
51
           return batches
52
53
54 class NeuralNetwork():
      def __init__(self, config):
55
56
           Parameters:
57
           -----
58
           config : Dict
59
               config['lp_reg'] = 0,1,2
60
               config['batch_size'] = 2 ** p # p in \{5, 6, 7, 8, 9, 10\}
61
               config['nodes'] = List[int]
62
               config['bias'] = List[Boolean]
63
               config['activators'] = List[str]
               config['keep_probs'] = List[float]
65
66
           Returns:
67
           -----
          None
69
70
           self.config = config
71
           self.lp_reg = config['lp_reg']
72
           self.batch_size = config['batch_size']
73
           self.nodes = config['nodes']
74
           self.bias = config['bias']
75
           self.activators = config['activators']
76
           self.keep_probs = config['keep_probs']
77
           self.L = len(config['nodes']) - 1
78
79
      def init_dropout(self, num_examples, seed=101011):
80
           11 11 11
81
           Parameters:
82
           -----
           num_examples : int
84
85
           seed : int
               Default: 1 # For reproducability
86
87
           Returns:
88
           -----
```

```
D : Dict[layer : array_like]
90
91
            np.random.seed(seed)
92
            D = \{\}
93
            for l in range(self.L + 1):
94
                D[1] = np.random.rand(self.nodes[1], num_examples)
95
                D[1] = (D[1] < self.keep_probs[1]).astype(int)</pre>
                D[1] = D[1] / self.keep_probs[1]
97
                assert (D[1].shape == (self.nodes[1], num_examples)), "Dropout_matrices.
98
99
            return D
100
101
       def forward_propagation(self, params, x, dropout=None):
102
103
            Parameters:
104
            ------
105
106
            params : Dict[class[Parameters]]
                params[1].w = Weights
107
                params[1].bias = Boolean
108
                params[1].b = Bias
109
            x : array_like
110
111
            Returns:
112
113
            cache = Dict[array_like]
114
                cache['a'] = a
115
                cache['dg'] = dg
116
117
118
            # Initialize dictionaries
119
            a = \{\}
120
            dg = \{\}
121
122
            a[0], dg[0] = apply_activation(x, self.activators[0])
123
            if dropout != None:
124
                a[0] = dropout[0] * a[0]
125
126
            for l in range(1, self.L + 1):
127
                z = params[1].forward(a[1 - 1])
128
                a[l], dg[l] = apply_activation(z, self.activators[l])
129
                if dropout != None:
130
                    a[l] = dropout[l] * a[l]
131
132
            cache = {'a': a, 'dg': dg}
133
            return cache
134
135
       def cost_function(self, params, a, y, lambda_=0.01, eps=1e-8):
136
```

```
11 11 11
137
            Parameters:
138
139
            params: Dict[LinearParameters]
140
            a: array_like
141
            y: array_like
142
            lambda_: float
                Default: 0.01
144
            eps: float
145
                Default: 1e-8
146
147
            Returns:
148
149
            cost: float
150
151
            n = y.shape[1]
152
            if self.lp_reg == 0:
153
                lambda_{-} = 0.0
154
155
            # Compute regularization term
156
            R = 0
157
            for param in params.values():
                R += np.sum(np.abs(param.w) ** self.lp_reg)
159
            R *= (lambda_ / (2 * n))
160
161
            # Compute unregularized cost
162
            a = np.clip(a, eps, 1 - eps)
                                                # Bound a for stability
163
            J = (-1 / n) * (np.sum(y * np.log(a) + (1 - y) * np.log(1 - a)))
164
165
            cost = float(np.squeeze(J + R))
166
167
            return cost
168
169
       def backward_propagation(self, params, cache, y, dropout):
170
171
            Parameters:
172
173
            params : Dict[LinearParameters]
174
                params[1].w = Weights
175
                params[1].bias = Boolean
176
                params[1].b = Bias
177
            cache : Dict[array_like]
178
                cache['a'] : array_like
179
                cache['dg'] : array_like
180
            y : array_like
181
182
            Returns:
183
```

```
184
                                   None
185
                                    11 11 11
186
187
                                    # Retrieve cache
188
                                    a = cache['a']
189
                                   dg = cache['dg']
191
                                    # Initialize differentials along the network
192
                                    delta = \{\}
193
                                    delta[self.L] = ((a[self.L] - y) / y.shape[1]) * dropout[self.L]
194
195
                                    for 1 in reversed(range(1, self.L + 1)):
196
                                                 delta[1 - 1] = dg[1 - 1] * params[1].backward(delta[1], a[1 - 1]) * droperty delta[1] = dg[1 - 1] + droperty delta[1] + droperty
197
198
                      def update_parameters(self, params, learning_rate=0.1):
199
200
                                    Parameters:
201
                                    _____
202
                                    params : Dict[LinearParameters]
203
                                                params[1].w = Weights
204
                                                params[1].bias = Boolean
205
                                                 params[1].b = Bias
206
                                    learning_rate : float
207
                                                Default: 0.01
208
209
                                    Returns:
210
211
                                   None
212
                                    n n n
213
                                    for param in params.values():
214
                                                 param.update(learning_rate)
215
216
                      def fit(self, data, learning_rate=0.1, lambda_=0.01, num_iters=10000):
217
218
                                    Parameters:
219
220
221
                                    data : Dict[array_like]
                                                 data['x'] : array_like
222
                                                 data['y'] : array_like
223
                                    learning_rate : float
224
                                                 Default: 0.1
225
                                    lambda_ : float
226
                                                Default : 0.0
227
                                    num_iters : int
^{228}
                                                 Default : 10000
229
```

230

```
Returns:
231
            -----
232
            costs : List[floats]
233
            params : class[LinearParameters]
234
235
            # Initialize parameters per layer
236
            params = \{\}
            for l in range(1, self.L + 1):
238
                params[1] = LinearParameters(
239
                     (self.nodes[l], self.nodes[l - 1]), self.bias[l])
240
241
            # Initialize batching
242
            batching = ShuffleBatchData(data, self.batch_size)
243
244
            costs = []
245
            for i in range(num_iters):
246
                batches = batching.get_batches()
^{247}
                for batch in batches:
248
                    x = batch['x']
249
                    y = batch['y']
250
                     dropout = self.init_dropout(x.shape[1])
251
                    cache = self.forward_propagation(params, x, dropout)
252
                    cost = self.cost_function(params, cache['a'][self.L], y, lambda_)
253
                    costs.append(cost)
254
                     self.backward_propagation(params, cache, y, dropout)
255
                     self.update_parameters(params, learning_rate)
256
257
                if i % 100 == 0:
258
                    print(f'Cost_after_iteration_{i}:_{cost}')
259
260
            return params
261
262
       def evaluate(self, params, x):
263
264
            Parameters:
265
266
            params : Dict[LinearParameters]
267
            x : array_like
268
269
           Returns:
270
            -----
^{271}
            y_hat : array_like
272
273
            cache = self.forward_propagation(params, x)
274
            a = cache['a'][self.L]
275
            y_hat = (\sim(a < 0.5)).astype(int)
276
            return y_hat
277
```

```
278
       def accuracy(self, params, data):
279
280
            Parameters:
281
282
            params : Dict[LinearParameters]
283
            data : Dict[array_like]
                 data['x'] : array_like
285
                 data['y'] : array_like
286
287
            Returns:
288
289
            accuracy : float
290
291
            x = data['x']
292
            y = data['y']
293
294
            y_hat = self.evaluate(params, x)
295
            acc = np.sum(y_hat == y) / y.shape[1]
296
297
            return acc
298
```

7.1 Weighted Averages

Suppose $x_t \in \mathbb{R}^m$ is some collection of data indexed by t which we may consider a time-variable, that is, after each successive unit of time (say for example, each day), our collection adds a new data point. That is, the collection

$$\{x_t \in \mathbb{R}^m : 1 \le t \le T\}$$

has variable T.

Then if X is the random vector associated to x, our usual mean μ is given by

$$\mu(T) := \mathbb{E}[X] = \frac{1}{T} \sum_{t=1}^{T} x_t.$$

Since our collection of data is growing and evolving over time, it's reasonable in many applications to have the most recent data points affect a model more than older data points. That is, we wish to impose a "weight" on more recent data points.

One way (and likely the most trivial) to achieve such a weighing is to have only the most recent k examples affect our model. That is, for fixed

 $k \in \mathbb{N}$, and $t \geq k$, define the vector $\hat{x}_{t+1} \in \mathbb{R}^m$ by

$$\hat{x}_{t+1} = \frac{1}{k} \sum_{j=t-mk+1}^{t} x_j.$$

Then \hat{x}_{t+1} represents the mean of the most recent k-examples. This may be interpreted as the "predicted-value" for x_{t+1} . This predictive model is known as a *simple moving average*, or SMA.

The simple moving average satisfies our weight requirement of focusing more on the most recent data, however, older data, though being less relevant, should still affect our model, but in a reduced form. The simple model does not satisfy this more refined requirement. Let's modify the simple model as follows: Fix $\beta_1 \in [0,1)$ and we initialize a $V_0 = 0 \in \mathbb{R}^m$, and define recursively the vector $V_t \in \mathbb{R}^m$ given by

$$V_t = \beta_1 V_{t-1} + (1 - \beta_1) x_t.$$

We claim that V_t can be interpreted as the next predicted value \hat{x}_{t+1} . Indeed, expanding our recursive definition

$$V_{t} = \beta_{1}V_{t-1} + (1 - \beta_{1})x_{t}$$

$$= \beta_{1}(\beta_{1}V_{t-2} + (1 - \beta_{1})x_{t-1}) + (1 - \beta_{1})x_{t}$$

$$= \beta_{1}^{2}V_{t-2} + (1 - \beta_{1})(\beta_{1}x_{t-1} + x_{t})$$

$$= \beta_{1}^{2}(\beta_{1}V_{t-3} + (1 - \beta_{1})x_{t-2}) + (1 - \beta_{1})(\beta_{1}x_{t-1} + x_{t})$$

$$= \beta_{1}^{3}V_{t-3} + (1 - \beta_{1})(\beta_{1}^{2}x_{t-2} + \beta_{1}x_{t-1} + x_{t})$$

$$\vdots$$

$$= \beta_{t}^{t}V_{0} + (1 - \beta_{1})\sum_{j=0}^{t-1}\beta_{j}^{j}x_{t-j}$$

$$= (1 - \beta_{1})\sum_{j=0}^{t-1}\beta_{j}^{j}x_{t-j}.$$

Moreover, if we define a probability distribution \mathbb{P} as given by

$$\mathbb{P}(X = x_j) = (1 - \beta_1)\beta_1^j,$$

then we immediately see that V_t is the weighted-average over the last t-days, and hence may be interpreted as the predicted-value \hat{x}_{t+1} as desired. Finally, since

$$1 - \beta_1 = \frac{1}{\frac{1}{1 - \beta_1}},$$

we may interpret $\frac{1}{1-\beta_1}$ as the size of the relevant sampling, i.e., V_t is the average of x over the previous $\frac{1}{1-\beta_1}$ days (assuming our time-units are measured in days). This predictive model is known as an exponentially moving average, or EMA.

Remark 7.1. We note that since we initialize our EMA with $V_0 = 0$, that our predictive model is very bad for small t. This usually is irrelevant for many models, but if we need to correct for bias, we may make the modification of

$$V_t = \frac{\beta_1 V_{t-1} + (1 - \beta_1) x_t}{1 - \beta_1^t}.$$

Indeed, since $\beta_1 \in [0,1)$, we note that

$$\frac{1}{1-\beta_1} = \sum_{j=0}^{\infty} \beta_1^j$$

$$= \sum_{j=t}^{\infty} \beta_t^j + \sum_{j=0}^{t-1} \beta_1^j$$

$$= \beta_1^t \sum_{j=0}^{\infty} \beta_1^j + \sum_{j=0}^{t-1} \beta_1^j$$

$$= \frac{\beta_1^t}{1-\beta_1} + \sum_{j=0}^{t-1} \beta_1^j,$$

and so

$$\sum_{j=0}^{t-1} \beta_1^j = \frac{1 - \beta_1^t}{1 - \beta_1}.$$

We then see that

$$V_{t} = \frac{\beta_{1}V_{t-1} + (1 - \beta_{1})x_{t}}{1 - \beta_{1}^{t}}$$

$$= \frac{(1 - \beta_{1})\sum_{j=0}^{t-1}\beta_{1}^{j}x_{t-j}}{1 - \beta_{1}^{t}}$$

$$= \frac{\sum_{j=0}^{t-1}\beta_{1}^{j}x_{t-j}}{\sum_{j=0}^{t-1}\beta_{1}^{j}},$$

which is the explicit definition of a weighted-average.

7.2 Gradient Descent with Momentum

Gradient descent has an issue with potentially plateauing during areas with a flat gradient, or bouncing around drastically before arriving at a minimum. One reason for this is that each iterative step only depends on the previous value of the gradient (or rather, the most recently updated parameter). The algorithm doesn't see larger trends, and so this leads to give our algorithm more history of the movements. We do this by using EMA.

We first recall our gradient descent algorithm:

- 1. We initialize $W^{\{0\}}$ and $b^{\{0\}}$.
- 2. For $0 \le i < \mathsf{num_iters}$:
 - a. Let $B = \left\lceil \frac{n}{b} \right\rceil$, and generate batches $\{\mathbb{X}^k\}$.
 - b. For $1 \le k \le B$:
 - i. Apply forward propagation on \mathbb{X}^k .
 - ii. Compute the cost \mathbb{J} on \mathbb{X}^k .
 - iii. Apply backward propagation on \mathbb{X}^k to obtain

$$\frac{\partial \mathbb{J}^{\{t\}}}{\partial W}$$
, $\frac{\partial \mathbb{J}^{\{t\}}}{\partial b}$.

iv. We update parameters

$$W^{\{t\}} = W^{\{t-1\}} - \alpha \frac{\partial \mathbb{J}^{\{t\}}}{\partial W}$$
$$b^{\{t\}} = b^{\{t-1\}} - \alpha \frac{\partial \mathbb{J}^{\{t\}}}{\partial b}$$

Using this formulation of gradient descent, we insert EMA applied to the sequences of gradients depending on the iteration t := i + k. That is, we have the following algorithm:

- 1. Initialize our parameters $W^{\{0\}}$ and $b^{\{0\}}$. Initialize $V_W^{\{0\}} = V_b^{\{0\}} = 0$. Fix a momentum hyper-parameter $\beta_1 \in [0,1)$.
- 2. For $0 \le i < \text{num_iters}$:
 - a. Let $B = \left\lceil \frac{n}{b} \right\rceil$, and generate batches $\{\mathbb{X}^k\}$.
 - b. For $1 \le k \le B$:

- i. Apply forward propagation on \mathbb{X}^k .
- ii. Compute the cost \mathbb{J} on \mathbb{X}^k .
- iii. Apply backward propagation on \mathbb{X}^k to obtain

$$\frac{\partial \mathbb{J}}{\partial W}^{\{t\}}, \qquad \frac{\partial \mathbb{J}}{\partial b}^{\{t\}}.$$

iv. Define

$$V_{W}^{\{t\}} = \beta_{1} V_{W}^{\{t-1\}} + (1 - \beta_{1}) \frac{\partial \mathbb{J}}{\partial W}^{\{t\}}$$
$$V_{b}^{\{t\}} = \beta_{1} V_{b}^{\{t-1\}} + (1 - \beta_{1}) \frac{\partial \mathbb{J}}{\partial b}^{\{t\}}$$

v. We update parameters

$$W^{\{t\}} = W^{\{t-1\}} - \alpha V_W^{\{t\}}$$
$$b^{\{t\}} = b^{\{t-1\}} - \alpha V_h^{\{t\}}$$

7.3 Root Mean Squared Propagation (RMSProp)

One of the main drawbacks to gradient descent with momentum is the uniformity of the modification regardless of the direction. That is, suppose our desired minimum is in the \vec{b} direction, but the gradient $\partial_b \mathbb{J}$ is small while the gradient $\partial_W \mathbb{J}$ is large. As a result, our steps will oscillate wildly in the \vec{w} direction, while moving very slowing in the \vec{b} direction to our desired minimum. This as a whole can be very computationally slow, and is undesired.

The main idea for fixing these oscillatory issues is have a variable learning rate α which also depends on the direction. That is, if $\partial_W \mathbb{J}$ is large, and not in our desired direction of motion, we would like our update for W to be small, and vice-versa if $\partial_b \mathbb{J}$ is small. Moreover, we wish to exaggerate the magnitudes of these vectors so we ensure our algorithm works efficiently. That is, we relate some vector S via

$$S \sim \frac{\partial \mathbb{J}^2}{\partial W},$$

where we're taking that Hadamard-square (i.e., component-wise product with itself). Then we perform step via

$$W = W - \alpha \frac{1}{\sqrt{S}} \odot \frac{\partial \mathbb{J}}{\partial W},$$

where where taking the Hadamard-root. Note that this root is necessary for our update to make sense (consider the units involved in such an equation), but it does introduce the potential to divide by zero (which we'll fix by a small. Moreover, we would like use the history of gradients as in EMA to further our refinement of the descent algorithm. To this end, we have the following $RMSProp\ algorithm$:

- 1. Initialize our parameters $W^{\{0\}}$ and $b^{\{0\}}$. Initialize $S_W^{\{0\}} = S_b^{\{0\}} = 0$. Fix a momentum $\beta_2 \in [0,1)$ and let $\epsilon > 0$ be sufficiently small ($\epsilon = 10^{-8}$ is a good starting point).
- 2. For $0 \le i < \mathsf{num_iter}$:
 - a. Let $B = \left\lceil \frac{n}{b} \right\rceil$, and generate batches $\{\mathbb{X}^k\}$
 - b. For $1 \le k \le B$:
 - i. Apply forward propagation on \mathbb{X}^k .
 - ii. Compute the cost \mathbb{J} on \mathbb{X}^k .
 - iii. Apply backward propagation on \mathbb{X}^k to obtain

$$\frac{\partial \mathbb{J}}{\partial W}^{\{t\}}, \qquad \frac{\partial \mathbb{J}}{\partial h}^{\{t\}}.$$

iv. Define

$$S_W^{\{t\}} = \beta_2 S_W^{\{t-1\}} + (1 - \beta_2) \left(\frac{\partial \mathbb{J}^{\{t\}}}{\partial W}\right)^2$$
$$S_b^{\{t\}} = \beta_2 S_b^{\{t-1\}} + (1 - \beta_2) \left(\frac{\partial \mathbb{J}^{\{t\}}}{\partial b}\right)^2$$

v. Update parameters via

$$\begin{split} W^{\{t\}} &= W^{\{t-1\}} - \alpha \frac{\frac{\partial \mathbb{J}}{\partial W}^{\{t\}}}{\sqrt{S_W^{\{t\}}} + \epsilon} \\ b^{\{t\}} &= b^{\{t-1\}} - \alpha \frac{\frac{\partial \mathbb{J}}{\partial b}^{\{t\}}}{\sqrt{S_b^{\{t\}}} + \epsilon} \end{split}$$

7.4 Adaptive Moment Estimation: The Adam Algorithm

We first note that with the momentum algorithm utilizing the EMA as it does, that it is an algorithm of the first moment (i.e., the mean of the gradients). Similarly, with RMSProp utilizing the square of the gradient as it does, we say it is an algorithm of the second moment (i.e., the uncentered variance of the gradients). Our goal it utilize both gradient descent with momentum and RMSProp simultaneously to optimize our parameters. This combination of algorithms is called the *Adam algorithm* and is implemented as follows:

- 1. Initialize our parameters $W^{\{0\}}$ and $b^{\{0\}}$. Initialize $V_W^{\{0\}} = V_b^{\{0\}} = 0$ and $S_W^{\{0\}} = S_b^{\{0\}} = 0$. Fix our constants of momenta $\beta_1, \beta_2 \in [0, 1)$ and let $\epsilon > 0$ be sufficiently small.
- 2. For $0 \le i < \mathsf{num_iters}$:
 - a. Let $B = \left\lceil \frac{n}{b} \right\rceil$, and generate batches $\{\mathbb{X}^k\}$
 - b. For $1 \le k \le B$:
 - i. Apply forward propagation on \mathbb{X}^k .
 - ii. Compute the cost \mathbb{J} on \mathbb{X}^k .
 - iii. Apply backward propagation on \mathbb{X}^k to obtain

$$\frac{\partial \mathbb{J}}{\partial W}^{\{t\}}, \qquad \frac{\partial \mathbb{J}}{\partial b}^{\{t\}}.$$

iv. Define

$$V_{W}^{\{t\}} = \beta_{1} V_{W}^{\{t-1\}} + (1 - \beta_{1}) \frac{\partial \mathbb{J}}{\partial W}^{\{t\}},$$

$$V_{b}^{\{t\}} = \beta_{1} V_{b}^{\{t-1\}} + (1 - \beta_{1}) \frac{\partial \mathbb{J}}{\partial b}^{\{t\}},$$

and define

$$S_W^{\{t\}} = \beta_2 S_W^{\{t-1\}} + (1 - \beta_2) \left(\frac{\partial \mathbb{J}}{\partial W}^{\{t\}} \right)^2,$$

$$S_b^{\{t\}} = \beta_2 S_b^{\{t-1\}} + (1 - \beta_2) \left(\frac{\partial \mathbb{J}^{\{t\}}}{\partial b} \right)^2.$$

v. Utilize bias correction via:

$$\hat{V}_{W}^{\{t\}} = \frac{V_{W}^{\{t\}}}{1 - \beta_{1}^{t}}$$

$$\hat{V}_{b}^{\{t\}} = \frac{V_{b}^{\{t\}}}{1 - \beta_{1}^{t}}$$

$$\hat{S}_{W}^{\{t\}} = \frac{S_{W}^{\{t\}}}{1 - \beta_{2}^{t}}$$

$$\hat{S}_{b}^{\{t\}} = \frac{S_{b}^{\{t\}}}{1 - \beta_{2}^{t}}$$

vi. Update the parameters:

$$\begin{split} W^{\{t\}} &= W^{\{t-1\}} - \alpha \frac{\hat{V}_W^{\{t\}}}{\sqrt{\hat{S}_W^{\{t\}}} + \epsilon} \\ b^{\{t\}} &= b^{\{t-1\}} - \alpha \frac{\hat{V}_b^{\{t\}}}{\sqrt{\hat{S}_b^{\{t\}}} + \epsilon} \end{split}$$

We note that though we may still need to tune the hyper-parameter α , the hyper-parameters β_1, β_2 and ϵ typically work quite well with default values of

$$\beta_1 = 0.9, \qquad \beta_2 = 0.999, \qquad \epsilon = 10^{-8}.$$

7.5 Learning Rate Decay

Finally, one further method we may utilize in our optimization problem, is the idea of slowly reducing our learning rate α . That is, if i is our epoch iteration, and $\eta > 0$ is a fixed decay rate, we can define new learning rates in many ways. That is, for $\alpha = \alpha(i)$ we can define

$$\alpha(i) = \frac{1}{1+mi}\alpha_0,$$

 $lpha(i)=lpha_0\eta^i,$

$$\alpha(i) = \frac{\eta}{\sqrt{i}}\alpha_0.$$

One could also implement a "manual decay", but this should only be used under ideal circumstances.

7.6 Python Implementation

```
1 import copy
з import numpy as np
4 from sklearn.utils import shuffle
6 import mlLib.utils as utils
8 def get_batches(x, y, b):
      Parameters
10
      _____
11
      x : array_like
12
           x.shape = (m, n)
13
      y : array_like
           y.shape = (k, n)
15
      b: int
17
      Returns
18
       _____
19
      batches : List[Dict]
           batches[i]['x'] : array_like
21
               x.shape = (m, b) # except last batch
22
               y.shape = (k, b) # except last batch
23
24
      ,, ,, ,,
25
      m, n = x.shape
26
      ## Shuffle the data
27
      x, y = \text{shuffle}(x.T, y.T) \# \text{Only shuffles rows, so transpose is needed}
28
      x = x.T
29
      y = y.T
30
31
      B = int(np.ceil(n / b))
32
      batches = []
      for i in range(B):
34
           x_{temp} = x[:,(b * i):(b * (i + 1))]
35
           y_{temp} = y[:,(b * i):(b * (i + 1))]
36
           batches.append({'x' : x_temp, 'y' : y_temp})
37
      # Slicing automatically ends at the end of
38
      # the list if the stop is outside the index
      return batches
40
41
```

```
42 def initialize_momenta(layers):
      Parameters
44
      _____
45
      layers : List[int]
46
           layers[1] = # nodes in layer 1
47
      Returns
       _____
49
      v : Dict[Dict[array_like]]
      s : Dict[Dict[array_like]]
51
      vw = \{\}
53
      vb = \{\}
54
      sw = \{\}
55
      sb = \{\}
56
      for 1 in range(1, len(layers)):
57
           vw[l] = np.zeros((layers[l], layers[l - 1]))
58
           sw[l] = np.zeros((layers[l], layers[l - 1]))
59
           vb[l] = np.zeros((layers[l], 1))
60
           sb[l] = np.zeros((layers[l], 1))
61
62
      v = \{'w' : vw, 'b' : vb\}
63
      s = \{'w' : sw, 'b' : sb\}
64
65
      return v, s
66
68 def learning_rate_decay(epoch, learning_rate=0.01, decay_rate=0.0):
      Parameters
70
       _____
71
      eposh : int
72
      learning_rate : float
73
           Default: 0.01
74
      decay_rate : float
75
           Default: 0.0 - Returns a constant learning_rate
76
77
      Returns
78
       _____
79
      learning_rate : float
80
81
      learning_rate = (1 / (1 + epoch * decay_rate)) * learning_rate
82
      return learning_rate
83
84
85 def corrected_momentum(v, grads, update_iter, beta1=0.0):
86
      Parameters
87
      _____
```

```
v : Dict[Dict[array_like]]
89
            v['w'][1].shape = w[1].shape
90
           v['b'][1].shape = b[1].shape
91
       grads : Dict[Dict]
92
            grads['w'][l] : array_like
93
                dw[1].shape = w[1].shape
94
            grads['b'][l] : array_like
                db[1].shape = b[1].shape
96
       update_iter : int
97
       beta1 : float
98
           Default: 0.0 - Returns grads
            Usual: 0.9
100
101
       Returns
102
       _____
103
       v : Dict[Dict[array_like]]
104
105
            v['w'][1].shape = dw[1].shape
            v['b'][1].shape = db[1].shape
106
107
       ## Retrieve velocities and gradients
108
       vw = v['w']
109
       vb = v['b']
110
       dw = grads['w']
111
       db = grads['b']
112
       L = len(dw)
113
114
       for l in range(1, L + 1):
115
            vw[1] = beta1 * vw[1] + (1 - beta1) * dw[1]
116
            vw[1] /= (1 - beta1 ** update_iter)
117
            assert(vw[1].shape == dw[1].shape)
118
            vb[1] = beta1 * vb[1] + (1 - beta1) * db[1]
119
            vb[1] /= (1 - beta1 ** update_iter)
120
            assert(vb[1].shape == db[1].shape)
121
122
       v = \{'w' : vw, 'b' : vb\}
123
       return v
124
125
126 def corrected_rmsprop(s, grads, update_iter, beta2=0.999):
127
       Parameters
128
       -----
129
       s : Dict[Dict[array_like]]
130
           s['w'][1].shape = w[1].shape
131
            s['b'][1]. shape = b[1]. shape
132
       grads : Dict[Dict]
133
            grads['w'][l] : array_like
134
                dw[1].shape = w[1].shape
135
```

```
grads['b'][l] : array_like
136
                db[1].shape = b[1].shape
137
       update_iter : int
138
       beta2 : float
139
            Default: 0.999
140
141
142
       Returns
       _____
143
       s : Dict[Dict[array_like]]
144
            s['w'][1].shape = w[1].shape
145
            s['b'][1].shape = b[1].shape
146
147
       ## Retrieve accelerations and gradients
148
       sw = s['w']
149
       sb = s['b']
150
       dw = grads['w']
151
152
       db = grads['b']
       L = len(dw)
153
154
       for l in range(1, L + 1):
155
            sw[1] = beta2 * sw[1] + (1 - beta2) * (dw[1] * dw[1])
156
            sw[l] /= (1 - beta2 ** update_iter)
            assert(sw[1].shape == dw[1].shape)
158
            sb[1] = beta2 * sb[1] + (1 - beta2) * (db[1] * db[1])
159
            sb[1] /= (1 - beta2 ** update_iter)
160
            assert(sb[1].shape == db[1].shape)
161
162
       s = \{'w' : sw, 'b' : sb\}
163
       return s
164
165
166
       update_parameters_adam(params, grads, epoch, batch_iter, v, s, momenta=[1e-8, 0
167
168
       Parameters
169
       -----
170
       params : Dict[Dict]
171
            params['w'][1] : array_like
172
                w[1].shape = (layers[1], layers[1-1])
173
            params['b'][1] : array_like
174
                b[1].shape = (layers[1], 1)
175
       grads : Dict[Dict]
176
            grads['dw'][1] : array_like
177
                dw[1].shape = w[1].shape
178
            grads['db'][1] : array_like
179
                db[1].shape = b[1].shape
180
       epoch : int
181
       batch_iter : int
182
```

```
learning_rate : float
183
            Default: 0.01
184
       momenta : List[float]
185
            momenta[0] = epsilon
186
                Default: 10^{-8}
187
            momenta[1] = beta_1
188
                Default: 0.9
            momenta[2] = beta_2
190
                Default: 0.999
191
192
       Returns
193
       -----
194
       params : Dict[Dict]
195
            params['w'][1] : array_like
196
                w[1]. shape = (layers[1], layers[1-1])
197
            params['b'][1] : array_like
198
199
                b[1].shape = (layers[1], 1)
       11 11 11
200
       update_iter = epoch + batch_iter
201
       ## Retrieve parameters
202
       w = copy.deepcopy(params['w'])
203
       b = copy.deepcopy(params['b'])
204
       L = len(w)
205
206
       ## Update velocites and accelerations
207
       v = corrected_momentum(v, grads, update_iter, momenta[1])
208
       vw = v['w']
209
       vb = v['b']
210
       s = corrected_rmsprop(s, grads, update_iter, momenta[2])
211
       sw = s['w']
212
       sb = s['b']
213
214
       ## Update learning rate
215
       learning_rate = learning_rate_decay(epoch, alpha0, decay_rate)
^{216}
217
       ## Perform update
218
       for l in range(1, L + 1):
219
220
            w[1] = w[1] - learning_rate * vw[1] / (np.sqrt(sw[1]) + momenta[0])
            b[1] = b[1] - learning_rate * vb[1] / (np.sqrt(sb[1]) + momenta[0])
221
222
       params = \{'w' : w, 'b' : b\}
^{223}
       return params
224
225
226 def model(x, y,
            hidden_layer_sizes,
227
            activators,
228
            batch_size,
```

```
lambda_=0.0,
230
            num_iters=10000,
231
            print_cost=False):
232
233
       Parameters
^{234}
235
       x : array_like
236
           x.shape = (layers[0], n)
237
238
       y : array_like
           y.shape = (layers[-1], n)
239
       hidden_layer_sizes : List[int]
240
            The number nodes layer 1 = hidden_layer_sizes[1-1]
241
       activators : List[str]
242
            activators[1] = activation function of layer 1+1
243
       batch_size : int
244
       lambda_ : float
245
246
           The regularization parameter
            Default: 0.0
247
       num_iters : int
248
           Number of iterations with which our model performs gradient descent
249
            Default: 10000
250
       print_cost : Boolean
^{251}
            If True, print the cost every 1000 iterations
252
            Default: False
253
254
255
       Returns
       _____
256
       params : Dict[Dict]
257
            params['w'][1] : array_like
258
                w[1].shape = (layers[1], layers[1-1])
259
            params['b'][1] : array_like
260
                b[1].shape = (layers[1], 1)
261
       cost : float
262
           The final cost value for the optimized parameters returned
263
264
       n, layers = utils.dim_retrieval(x, y, hidden_layer_sizes)
265
       params = utils.initialize_parameters_random(layers)
266
267
       v, s = initialize_momenta(layers)
268
269
       ## main descent loop
270
       for i in range(num_iters):
271
            batches = get_batches(x, y, batch_size)
272
            ## batch loop
273
            batch_iter = 1
274
            cost = 0
275
            for batch in batches:
```

```
x = batch['x']
277
278
                y = batch['y']
                cache = utils.forward_propagation(x, params, activators)
279
                cost += utils.compute_cost(y, params, cache)
280
                grads = utils.backward_propagation(x, y, params, cache, activators)
281
                params = update_parameters_adam(params,
282
                                             grads,
283
                                             i,
284
                                             batch_iter,
285
                                             ٧,
286
287
                                             momenta=[1e-8, 0.9, 0.999],
288
                                             learning_rate=0.01,
289
                                             decay_rate = 0.0
290
                batch_iter += 1
291
292
           if print_cost and i % 1000 == 0:
293
                print(f'Cost_after_iteration_{i}:_{cost}')
294
295
       return params, cost
296
```

8 Tuning Hyper-Parameters

Suppose that we have the dataset \mathbb{D} with the usual partition of

$$\mathbb{D} = \mathbb{X} \cup \mathcal{D} \cup \mathcal{T}.$$

Furthermore, suppose we impose a neural network architecture which has a collection of hyper-parameters (relabeled as):

$$\eta_1, \eta_2, ... \eta_K$$
.

The naive method of hyper-parameter tuning would instinctively be something of the form: Let $[d_i, d_i + k_i \Delta_i]$ denote an interval for which we require

$$\eta_i \in [d_i, d_i + k_i \Delta_i],$$

with an even-partition of

$$d_i < d_i + \Delta_i < d_i + 2\Delta_i < \cdots < d_i + k_i \Delta_i$$

of length Δ_i . This collection forms a "grid" in \mathbb{R}^K for which each point of the grid gives us a full collection of hyper-parameters which we can then use to train our model. However, if certain hyper-parameters do not affect our model's accuracy very much, we've added at least a full dimension of validation which is not needed. A more randomized approach would be best to determine such a hyper-parameter characterization must faster. Thus a random collection of points H_i for which we constrain $\eta_i \in H_i$.

How should we implement this set H_i ? Suppose for example, we wish to find

$$\eta_i \in [0.0001, 1],$$

but the majority of the random points will likely be in [0.1, 1]. Suppose we partition the interval

$$[0.0001, 1] = 0.0001 < 0.001 < 0.01 < 0.1 < 1$$
$$= 10^{-4} < 10^{-3} < 10^{-2} < 10^{-1} < 10^{0}.$$

This suggests we obtain a distribution of points using a logarithmic (in base 10) scale. Indeed, let

$$p\in [0,1],$$

be a random point. Then letting $r = -4p \in [-4, 0]$, we obtain another random point, and let

$$H_i = \{10^{-4p} : p \in \text{rand}([0,1])\},\$$

for some prescribed set-cardinality. This allows us to choose more appropriately scaled-options for our hyper-parameters.

Remark 8.1. Suppose we're using exponentially moving averages and have a hyper-parameter $\beta_1 \in [0,1)$. If we do not use a log-scale, then the sensitivity of our model with respect to β_1 when $\beta_1 \approx 1$ is very strong. Indeed, we recall that when $\beta_1 = 0.999$, this corresponds to averaging over the previous 1000 days. And it we change β_1 slightly to

$$\beta_1 = 0.9995$$
.

then we've changed the interpretation of our model to the previous 2000 days. A subtle change for β_1 , but a drastic change to our model. The log-scale fixes this issue immediately.

We finally note that our hyper-parameters can become *stale* over time. That is, suppose we've trained a neural network, and tuned the hyper-parameters to allow an acceptable accuracy for our model. As the model refines over time, with more data being inserted to train on, it's import to re-test our hyper-parameters to make sure our model hasn't opened up to a better choice of one (or some or all) of the hyper-parameters we've previously tuned.

8.1 Python Implementation

```
1 def hyperparameter_scale(k, p):
2
      Parameters
3
      -----
4
      k : int
          The number random points to generate
6
      p: int
          The smallest magnitude for our log-scale
      Returns
10
      _____
11
      hypers : List[float]
12
          The list of hyper-parameters with which to tune
13
14
      hypers = []
15
      for _ in range(k):
16
          r = p * np.random.rand()
17
          hypers.append(10 ** r)
18
      return hypers
```

9 Batch Normalization

See [7].

We recall feature-normalization: Suppose $x \in \mathbb{R}^{m \times n}$ is some training data, and let

$$\mu = \mathbb{E}[X], \qquad \sigma^2 = \mathbb{E}[(X - \mu)^2],$$

denote the mean and variance of the random-vector representation X of x, respectively. Then we consider the map

$$x_j \mapsto \frac{x_j - \mu}{\sigma} =: \hat{x}_j,$$

to be the normalization of x_i .

This definition is so "vanilla", that it should be clear that this can be easily applied to each hidden-layer (we shall not use it on the output layer) of a neural network as well. However, we first note that there is an ambiguous choice amongst the implementation, namely, do we normalize $z^{[\ell]}$ or $a^{[\ell]}$, i.e., does normalization occur before or after we compute the activation unit. It seems more common to apply normalization to $z^{[\ell]}$, so that is what we do here without further mention of this choice.

Let $\gamma, \beta \in \mathbb{R}^m$, if we consider the map

$$\hat{x}_i \mapsto \gamma \odot \hat{x}_i + \beta := \tilde{x}_i$$

we can see fairly trivially that we can recover x_j (thus allowing for identity activation units), indeed, let $\gamma = \sigma$ and $\beta = \mu$, and hence

$$\tilde{x}_{j} = \gamma \odot \hat{x}_{j} + \beta$$

$$= \gamma \odot \frac{x_{j} - \mu}{\sigma} + \beta$$

$$= x_{j} - \mu_{\beta}$$

$$= x_{j}$$

as desired. Moreover, we see that we can actually control what mean and variance we wish to impose on our input-vectors x. Indeed, let \hat{x} denote the

normalized x, and consider

$$\mathbb{E}[\gamma \odot \hat{X} + \beta] = \frac{1}{n} \sum_{j=1}^{n} (\gamma \odot \hat{x}_j + \beta)$$
$$= \gamma \odot \mathbb{E}[\hat{X}] + \beta$$
$$= 0 + \beta$$
$$= \beta,$$

and so the new mean would be given by β . Similarly,

$$\mathbb{E}[(\gamma \odot \hat{X} + \beta - \beta)^2] = \frac{1}{n} \sum_{j=1}^n (\gamma \odot \hat{x}_j)^2$$

$$= \frac{1}{n} \sum_{j=1}^n (\gamma^2 \odot \hat{x}_j^2)$$

$$= \gamma^2 \odot \mathbb{E}[(\hat{X} - 0)^2]$$

$$= \gamma^2 \odot 1$$

$$= \gamma^2$$

and so we see the new variance would be given by γ^2 . Thus, we see that by composition, the act of normalization can be characterized by the new parameters γ and β , and is mathematically-superfluous to consider both, but for computational considerations and algorithmic stability it shall be beneficial to keep both. That is, suppose we're training on some batch \mathbb{X}^k and focused on layer- ℓ , with parameters $\gamma^{[\ell]}, \beta^{[\ell]} \in \mathbb{R}^{m_\ell}$ and some $\epsilon > 0$, arbitrarily small and prescribed for numerical stability, we define the batch-normalization map $BN_{\gamma^{[\ell]},\beta^{[\ell]}}: \mathbb{R}^{m_\ell} \to \mathbb{R}^{m_\ell}$ given by the compositional-map

$$\begin{split} z^{[\ell]} &\mapsto \frac{1}{|\mathbb{X}^k|} \sum_{x \in \mathbb{X}^k} z^{[\ell]} =: \mu^{[\ell]}; \\ (z^{[\ell]}, \mu^{[\ell]}) &\mapsto \frac{1}{|\mathbb{X}^k|} \sum_{x \in \mathbb{X}^k} (z^{[\ell]} - \mu^{[\ell]})^2 =: \sigma^{[\ell]2}; \\ (z^{[\ell]}, \mu^{[\ell]}, \sigma^{[\ell]}, \epsilon) &\mapsto \frac{z^{[\ell]} - \mu^{[\ell]}}{\sqrt{\sigma^{[\ell]2} + \epsilon}} =: \hat{z}^{[\ell]}; \\ (\hat{z}^{[\ell]}, \gamma^{[\ell]}, \beta^{[\ell]}) &\mapsto \gamma^{[\ell]} \odot \hat{z}^{[\ell]} + \beta^{[\ell]} =: \tilde{z}^{[\ell]}. \end{split}$$

Suppose we have an L-layer neural network, each layer with m_{ℓ} nodes, and we focus on the ℓ -th layer specifically to expand:

$$\cdots \xrightarrow{\varphi^{[\ell]}} \underbrace{\begin{bmatrix} z^{[1]1} \\ \vdots \\ z^{[1]m_{\ell}} \end{bmatrix}}^{BN_{\gamma^{[\ell]}},\beta^{[\ell]}} \xrightarrow{\begin{bmatrix} \tilde{z}^{[\ell]1} \\ \vdots \\ \tilde{z}^{[\ell]}_{m_{\ell}} \end{bmatrix}}^{g^{[\ell]}} \xrightarrow{\begin{bmatrix} a^{[1]1} \\ \vdots \\ a^{[1]m_{\ell}} \end{bmatrix}}^{\varphi^{[\ell+1]}} \xrightarrow{\cdots}$$

$$\xrightarrow{\text{Laver } \ell}$$

The procedure for forward propagation should be immediately obvious from the closer look at layer- ℓ . However, we notice that

$$a^{[\ell-1]} \mapsto \gamma^{[\ell]} \odot \frac{W^{[\ell]} a^{[\ell-1]} + b^{[\ell]} - \mu^{[\ell]}}{\sqrt{\sigma^{[\ell]^2} + \epsilon}} + \beta^{[\ell]}$$
$$= \frac{\gamma^{[\ell]}}{\sqrt{\sigma^{[\ell]^2} + \epsilon}} (W^{[\ell]} a^{[\ell-1]} - \mu^{[\ell]}) + \beta^{[\ell]},$$

after absorbing the $b^{[\ell]}$ into the parameter $\beta^{[\ell]}$. That is, we have 3 trainable parameters given by $W^{[\ell]} \in \mathbb{R}^{m_{\ell} \times m_{\ell-1}}, \gamma^{[\ell]}, \beta^{[\ell]} \in \mathbb{R}^{m_{\ell}}$.

9.1 Backward Propagation

We now show how batch normalization affects the backward propagation algorithm. For illustrative purposes, we assume a 2-layer neural network with arbitrary activation functions and generic loss function. We recall the setup (without bias $b^{[\ell]}$) used in ??

$$\underbrace{\begin{bmatrix} x^{1} \\ \vdots \\ x^{m_{0}} \end{bmatrix}}_{\text{Layer 0}} \xrightarrow{\Phi^{[1]}} \underbrace{\begin{bmatrix} z^{[1]1} \\ \vdots \\ z^{[1]m_{1}} \end{bmatrix}}_{\text{Examon 1}} \xrightarrow{BN_{\gamma_{i}\beta}} \underbrace{\begin{bmatrix} \tilde{z}^{[\ell]1} \\ \vdots \\ \tilde{z}^{[\ell]}_{m_{\ell}} \end{bmatrix}}_{\text{Layer 1}} \xrightarrow{g^{[1]}} \underbrace{\begin{bmatrix} a^{[1]1} \\ \vdots \\ a^{[1]m_{1}} \end{bmatrix}}_{\text{Caparity}} \xrightarrow{\Phi^{[2]}} \cdots \xrightarrow{\Phi^{[2]}} \underbrace{\begin{bmatrix} z^{[2]1} \\ \vdots \\ z^{[2]m_{2}} \end{bmatrix}}_{\text{Layer 2}} \xrightarrow{g^{[2]}} \underbrace{\begin{bmatrix} a^{[2]1} \\ \vdots \\ a^{[2]m_{2}} \end{bmatrix}}_{\text{Caparity}} \xrightarrow{g^{[1]}} \underbrace{\begin{bmatrix} \hat{y}^{1} \\ \vdots \\ \hat{y}^{m_{2}} \end{bmatrix}}_{\text{Caparity}},$$

where

$$\Phi^{[1]}: \mathbb{R}^{m_1 \times m_0} \times \mathbb{R}^{m_0} \to \mathbb{R}^{m_1}, \qquad \Phi^{[1]}(A, x) = Ax;$$

and

$$\Phi^{[2]}: \mathbb{R}^{m_2 \times m_1} \times \mathbb{R}^{m_2} \times \mathbb{R}^{m_1} \to \mathbb{R}^{m_2}, \qquad \Phi^{[2]}(A, b, x) = Ax + b.$$

Define the compositional function

$$G: \mathbb{R}^{m_2 \times m_1} \times \mathbb{R}^{m_2} \times \mathbb{R}^{m_1} \times \mathbb{R}^{m_1} \times \mathbb{R}^{m_1 \times m_0} \times \mathbb{R}^{m_0} \to \mathbb{R},$$

given by

$$G(B, b, \gamma, \beta, A, x) = \mathbb{L}_y \circ g^{[2]} \circ \Phi^{[2]}(B, b, g^{[1]} \circ BN_{\gamma,\beta}(\Phi^{[1]}(A, x))).$$

This leads to compute some auxiliary differentials before continuing further.

Lemma 9.1. For $N \in \mathbb{N}$, we define the expectation function $\mathbb{E} : \mathbb{R}^N \to \mathbb{R}$ given by

$$\mathbb{E}[(x_1, ..., x_N)] = \frac{1}{N} \sum_{j=1}^{N} x_j.$$

Let $z = \{z_1, ..., z_N\} \subset \mathbb{R}$ be fixed, and define the mean

$$\mu := \mathbb{E}[z] = \frac{1}{N} \sum_{j=1}^{N} z_j.$$

Then as a differential, we have that $d\mathbb{E}_z: T_z\mathbb{R}^N \to T_\mu\mathbb{R}$ given by

$$d\mathbb{E}_z = \frac{1}{N} \sum_{j=1}^{N} dx_j |_{x=z}, \qquad d\mathbb{E}_z(v) = \frac{1}{N} \sum_{j=1}^{N} v^j.$$

Moreover, for $\alpha = 1, ..., N$, let $\iota_{z_{\alpha}} : \mathbb{R} \to \mathbb{R}^{N}$ denote the inclusion

$$\iota_{z_{\alpha}}(x) = (z_1, ..., z_{\alpha-1}, x, z_{\alpha+1}, ..., z_N).$$

Then the differentials

$$d_{\alpha}\mathbb{E}_{z_{\alpha}} := d(\mathbb{E} \circ \iota_{z_{\alpha}})_{z_{\alpha}} : T_{z_{\alpha}}\mathbb{R} \to T_{\mu}\mathbb{R},$$

are given by

$$d_{\alpha}\mathbb{E}_{z_{\alpha}} = d(\mathbb{E} \circ \iota_{z_{\alpha}})_{z_{\alpha}}$$
$$= d\mathbb{E}_{z} \cdot d(\iota_{z_{\alpha}})_{z_{\alpha}}$$
$$= \frac{1}{N} dx_{z_{\alpha}}.$$

Since we don't use batch normalization on the output layer, the bias term still exists.

Similarly, we define the variance function $\mathbb{V}: \mathbb{R}^N \to \mathbb{R}$ given by

$$\mathbb{V}[(x_1, ..., x_N)] = \frac{1}{N} \sum_{j=1}^{N} (x_j - \mathbb{E}[(x_1, ..., x_N)])^2.$$

For fixed z, define the variance

$$\sigma^2 = \mathbb{V}[z].$$

Then as a differential, we have that $d\mathbb{V}_z: T_z\mathbb{R}^N \to T_{\sigma^2}\mathbb{R}$ given by

$$d\mathbb{V}_z = \frac{2}{N} \sum_{j=1}^{N} (z_j - \mu) dx^j \big|_{x=z}, \qquad d\mathbb{V}_z(v) = \frac{2}{N} \sum_{j=1}^{N} (z_j - \mu) v^j.$$

Moreover, for $\alpha = 1, ..., N$, the differentials

$$d_{\alpha} \mathbb{V}_{z_{\alpha}} := d(\mathbb{V} \circ \iota_{z_{\alpha}})_{z_{\alpha}} : T_{z_{\alpha}} \mathbb{R} \to T_{\sigma^{2}} \mathbb{R}$$

are given by

$$\begin{aligned} d_{\alpha} \mathbb{V}_{z_{\alpha}} &= d(\mathbb{V} \circ \iota_{z_{\alpha}})_{z_{\alpha}} \\ &= d\mathbb{V}_{z} \cdot d(\iota_{z_{\alpha}})_{z_{\alpha}} \\ &= \frac{2}{N} (z_{\alpha} - \mu) dx_{z_{\alpha}} \end{aligned}$$

Proof: Immediate from direct calculation.

Corollary 9.2. For $\alpha = 1, ..., N$, let $\mathcal{N}_{\alpha} : \mathbb{R}^{m \times N} \to \mathbb{R}^m$ denote the α -th component of the vector-valued, normalization transformation. That is,

$$\hat{x}_{\alpha} = \mathcal{N}_{\alpha}(x_1, ..., x_N),$$

with

$$\hat{x}_{\alpha}^{i} = \frac{\pi_{\alpha}(x^{i}) - \mathbb{E}[x^{i}]}{(\mathbb{V}[x^{i}] + \epsilon)^{\frac{1}{2}}},$$

where $\pi_{\alpha}: \mathbb{R}^{N} \to \mathbb{R}$ is the projection onto the α -th coordinate

$$\pi_{\alpha}(x_1,...,x_N) = x_{\alpha}.$$

Fix $z_1, ..., z_N \in \mathbb{R}^m$, let $\mu = \mathbb{E}[z] \in \mathbb{R}^m$ denote vector-mean and let $\sigma^2 = \mathbb{V}[z] \in \mathbb{R}^m$ denote the component-wise, vector-variation (i.e., $(\sigma^2)^i = \mathbb{V}[z^i]$). Then the differentials

$$d_{\alpha}(\mathcal{N}_{\alpha})_{z_{\alpha}} := d(\mathcal{N}_{\alpha} \circ \iota_{z_{\alpha}})_{z_{\alpha}} : T_{z_{\alpha}} \mathbb{R}^{m} \to T_{\hat{z}_{\alpha}} \mathbb{R}^{m}$$

are given by the diagonal matrices

$$d_{\alpha}(\mathcal{N}_{\alpha})_{z_{\alpha}} = \left(\frac{1 - \frac{1}{N}}{\sqrt{(\sigma^2)^i + \epsilon}} - \frac{1}{N} \frac{(z_{\alpha}^i - \mu^i)^2}{((\sigma^2)^i + \epsilon)^{\frac{3}{2}}}\right) \delta_j^i.$$

Proof: We compute directly after noting that

$$d_{\alpha}(\mathcal{N}_{\alpha})_{z_{\alpha}} = \begin{bmatrix} d_{\alpha}(\hat{x}_{\alpha}^{1})_{z_{\alpha}^{1}} & \cdots & 0 \\ 0 & \ddots & 0 \\ 0 & \cdots & d_{\alpha}(\hat{x}_{\alpha}^{m})_{z_{\alpha}^{m}} \end{bmatrix}$$

To this end, fix $1 \le i \le m$ and we compute

$$\begin{split} d_{\alpha}(\hat{x}_{\alpha}^{i})_{z_{\alpha}^{i}} &= d_{\alpha}(\mathcal{N}_{\alpha}^{i})_{z_{\alpha}^{i}} \\ &= \frac{d_{\alpha}(\pi_{\alpha})_{z_{\alpha}^{i}} - d_{\alpha}\mathbb{E}_{z_{\alpha}^{i}}}{\sqrt{(\sigma^{2})^{i} + \epsilon}} - \frac{z_{\alpha}^{i} - \mu^{i}}{2((\sigma^{2})^{i} + \epsilon)^{\frac{3}{2}}} d_{\alpha}\mathbb{V}_{z_{\alpha}^{i}} \\ &= \frac{dx_{z_{\alpha}^{i}} - \frac{1}{N}dx_{z_{\alpha}^{i}}}{\sqrt{(\sigma^{2})^{i} + \epsilon}} - \frac{z_{\alpha}^{i} - \mu^{i}}{2((\sigma^{2})^{i} + \epsilon)^{\frac{3}{2}}} \left(\frac{2}{N}(z_{\alpha}^{i} - \mu^{i})dx_{z_{\alpha}^{i}}\right) \\ &= \left(\frac{1 - \frac{1}{N}}{\sqrt{(\sigma^{2})^{i} + \epsilon}} - \frac{(z_{\alpha}^{i} - \mu^{i})^{2}}{N((\sigma^{2})^{i} + \epsilon)^{\frac{3}{2}}}\right) dz_{\alpha}^{i}, \end{split}$$

as desired.

Proposition 9.3. Let $\mathcal{N}: \mathbb{R}^{m \times N} \to \mathbb{R}^{m \times N}$ denote the usual normalization transformation with $\hat{x}_{\alpha} = \mathcal{N}_{\alpha}(x)$. Let $BN: \mathbb{R}^{m} \times \mathbb{R}^{m} \times \mathbb{R}^{m \times N} \to \mathbb{R}^{m \times N}$ denote the batch normalization transformation $[x_{i}] \mapsto [\tilde{x}_{i}]$, i.e.,

$$\tilde{x}_j^i = \gamma^i \hat{x}_j^i + \beta^i,$$

where $x^i \in \mathbb{R}^N$. Moreover, given $\gamma, \beta \in \mathbb{R}^m$, for $\alpha \in \{1, ..., N\}$, let

$$BN_{\alpha}^{\gamma,\beta}: \mathbb{R}^{m\times N} \to \mathbb{R}^m$$

denote

$$BN_{\alpha}^{\gamma,\beta}(x) = \gamma \odot \mathcal{N}_{\alpha}(x) + \beta.$$

Fix $z_1, ..., z_N \in \mathbb{R}^m$, and let

$$\hat{z}_{\alpha} = \mathcal{N}_{\alpha}(z_1, ..., z_N) \in \mathbb{R}^m, \qquad \mu^i = \mathbb{E}[z^i] \in \mathbb{R}, \qquad (\sigma^2)^i = \mathbb{V}[z^i] \in \mathbb{R}.$$

For $\alpha \in \{1,...,N\}$, $z \in \mathbb{R}^{m \times N}$ and for $\gamma, \beta \in \mathbb{R}^m$, we have the differentials:

• $d(BN_{\alpha}^{\beta,z})_{\gamma}: T_{\gamma}\mathbb{R}^m \to T_{\tilde{z}}\mathbb{R}^m$, is given by

$$d(BN_{\alpha}^{\beta,z})_{\gamma}(v) = \hat{z}_{\alpha} \odot v, \qquad \frac{\partial \tilde{z}_{\alpha}^{i}}{\partial \gamma^{j}} = \hat{z}_{\alpha}^{i} \delta_{j}^{i}.$$

• $d(BN_{\alpha}^{\gamma,z})_{\beta}: T_{\beta}\mathbb{R}^m \to T_{\tilde{z}}\mathbb{R}^m$ is given by

$$d(BN_{\alpha}^{\gamma,z})_{\beta}(v) = v, \qquad \frac{\partial \tilde{z}_{\alpha}^{i}}{\partial \beta^{j}} = \delta_{j}^{i}.$$

• $d(BN_{\alpha}^{\gamma,\beta})_{\hat{z}_{\alpha}}: T_{\hat{z}_{\alpha}}\mathbb{R}^m \to T_{\tilde{z}}\mathbb{R}^m$ is given by

$$d(BN_{\alpha}^{\gamma,\beta})_{\hat{z}_{\alpha}}(v) = \gamma \odot v, \qquad \frac{\partial \tilde{z}_{\alpha}^{i}}{\partial \hat{z}_{\alpha}^{j}} = \gamma^{i} \delta_{j}^{i}.$$

• $d_{\alpha}(BN_{\alpha}^{\gamma,\beta})_{z_{\alpha}} := d(BN_{\alpha}^{\gamma,\beta} \circ \iota_{z_{\alpha}})_{z_{\alpha}} : T_{z_{\alpha}}\mathbb{R}^{m} \to T_{\tilde{z}_{\alpha}}\mathbb{R}^{m} \text{ is given by}$ $d_{\alpha}(BN_{\alpha}^{\gamma,\beta})_{z_{\alpha}} = (\gamma \odot)d_{\alpha}(\mathcal{N}_{\alpha})_{z_{\alpha}},$

$$\frac{\partial \tilde{z}_{\alpha}^{i}}{\partial z_{\alpha}^{j}} = \gamma^{i} \left(\frac{1 - \frac{1}{N}}{\sqrt{(\sigma^{2})^{i} + \epsilon}} - \frac{(z_{\alpha}^{i} - \mu^{i})^{2}}{N((\sigma^{2})^{i} + \epsilon)^{\frac{3}{2}}} \right) \delta_{j}^{i}$$

Proof: Follows immediately from the previous Corollary. We now return to considering the compositional function

$$G: \mathbb{R}^{m_2 \times m_1} \times \mathbb{R}^{m_2} \times \mathbb{R}^{m_1} \times \mathbb{R}^{m_1} \times \mathbb{R}^{m_1 \times m_0} \times \mathbb{R}^{m_0} \to \mathbb{R},$$

given by

$$G(B, b, \gamma, \beta, A, x_{\alpha}) = \mathbb{L}_{y} \circ g^{[2]} \circ \Phi^{[2]}(B, b, g^{[1]} \circ BN_{\alpha}^{\gamma, \beta}(\Phi^{[1]}(A, x))).$$

We compute (and since $\alpha \in \{1, ..., N\}$ is fixed, we ignore implied summation for the moment)

 $d_{B}G_{B}(V) = d_{B}(\mathbb{L}_{y} \circ g^{[2]} \circ \Phi^{[2]})_{B}(V)$ $= \frac{d}{dt}\Big|_{t=0} \mathbb{L}_{y} \circ g^{[2]}((B+tV)a^{[1]}_{\alpha} + b)$ $= (\delta^{[2]}_{\alpha}^{T})_{\rho} \frac{d}{dt}\Big|_{t=0} \left[(B_{\lambda}^{\rho} + tV_{\lambda}^{\rho})a^{[1]}_{\alpha}^{\lambda} + b^{\rho}) \right]$ $= (\delta^{[2]}_{\alpha}^{T})_{\rho}V_{\lambda}^{\rho}a^{[1]}_{\alpha}^{\lambda}$ $= (a^{[1]}_{\alpha}\delta^{[2]}_{\alpha}^{T})_{\rho}^{\lambda}V_{\lambda}^{\rho},$

and hence

$$d_B G_B = a^{[1]}{}_{\alpha} \delta^{[2]}{}_{\alpha}{}^T, \qquad \frac{\partial G}{\partial B} = \delta^{[2]}{}_{\alpha} a^{[1]}{}_{\alpha}{}^T.$$

•

$$d_b G_b(v) = d_B(\mathbb{L}_y \circ g^{[2]} \circ \Phi^{[2]})_b(v)$$

$$= (\delta^{[2]}{}_{\alpha}{}^T)_{\rho} \left. \frac{d}{dt} \right|_{t=0} \left[B_{\lambda}^{\rho} a^{[1]}{}_{\alpha}^{\lambda} + (b^{\rho} + tv^{\rho}) \right]$$

$$= \delta^{[2]}{}_{\alpha}{}^T v$$

yielding

$$d_b G_b = \delta^{[2]}{}_{\alpha}{}^T, \qquad \frac{\partial G}{\partial b} = \delta^{[2]}{}_{\alpha}.$$

•

$$\begin{split} d_{\gamma}G_{\gamma}(\xi) &= d_{\gamma}(\mathbb{L}_{y} \circ g^{[2]} \circ \Phi^{[2]}(B, b, g^{[1]} \circ BN_{\alpha}^{\beta, z^{[1]}_{\alpha}}))_{\gamma}(\xi) \\ &= (\delta^{[2]}_{\alpha}^{T}) \cdot B \cdot dg_{\bar{z}^{[1]}_{\alpha}}^{[1]}(\hat{z}_{\alpha} \odot \xi) \\ &= (\delta^{[2]}_{\alpha}^{T}) \cdot B \cdot dg_{\bar{z}^{[1]}_{\alpha}}^{[1]} \mathrm{diag}(\hat{z}_{\alpha}^{[1]}) \xi \\ &= \delta^{[1]}_{\alpha}^{T} \mathrm{diag}(\hat{z}^{[1]}_{\alpha}) \xi, \end{split}$$

and so

$$d_{\gamma}G_{\gamma} = \delta^{[1]}{}_{\alpha}{}^{T}\operatorname{diag}(\hat{z}^{[1]}{}_{\alpha}), \qquad \frac{\partial G}{\partial \gamma} = \operatorname{diag}(\hat{z}^{[1]}{}_{\alpha})\delta^{[1]}{}_{\alpha}.$$

$$d_{\beta}G_{\beta}(\eta) = d_{\beta}(\mathbb{L}_{y} \circ g^{[2]} \circ \Phi^{[2]}(B, b, g^{[1]} \circ BN_{\alpha}^{\gamma, z^{[1]}_{\alpha}}))_{\beta}(\eta)$$

= $\delta^{[1]}{}_{\alpha}{}^{T}\eta$,

thus

$$d_{\beta}G_{\beta} = \delta^{[1]}{}_{\alpha}{}^{T}, \qquad \frac{\partial G}{\partial \beta} = \delta^{[1]}{}_{\alpha}.$$

 $d_A G_A(V) = \delta^{[1]}{}_{\alpha}{}^T \cdot d_{\alpha} (B N_{\alpha}^{\gamma,\beta})_{z^{[1]}{}_{\alpha}} d\Phi_A^{[1]}(V)$ $= \delta^{[1]}{}_{\alpha}{}^T \operatorname{diag}(\gamma) d_{\alpha} (\mathcal{N}_{\alpha})_{z^{[1]}{}_{\alpha}} V x_{\alpha},$

and hence

$$d_{A}G_{A} = x_{\alpha}\delta^{[1]}{}_{\alpha}{}^{T}\operatorname{diag}(\gamma)d_{\alpha}(\mathcal{N}_{\alpha})_{z^{[1]}{}_{\alpha}},$$
$$\frac{\partial G}{\partial A} = \operatorname{diag}(\gamma)d_{\alpha}(\mathcal{N}_{\alpha})_{z^{[1]}{}_{\alpha}}\delta^{[1]}{}_{\alpha}x_{\alpha}{}^{T}.$$

Finally, since

$$\mathbb{J}(W^{[2]}, b^{[2]}, \gamma, \beta, W^{[1]}) = \frac{1}{N} \sum_{\alpha=1}^{N} G(W^{[2]}, b^{[2]}, \gamma, \beta, W^{[1]}, x_{\alpha}),$$

we've described our desired gradients after summation.

9.2 Inferencing

We note that in our computation for forward propagation, that our normalization transforms change with out batches. This leads to ambiguity when predicting a label for a new example. One fix would be to average our means and variances over our batches. That is, suppose during our iteration process, we have training-batches of the form $\{\mathbb{X}^k : 1 \leq k \leq K\}$, where each \mathbb{X}^k has cardinality $|\mathbb{X}^k| = n$. Then for each hidden-layer $\ell \in \{1, ..., L-1\}$, we obtain the means

$$\mu^{[\ell]}_k = \frac{1}{n} \sum_{x \in \mathbb{X}^k} z^{[\ell]},$$

and the variances

$$\sigma^{2^{[\ell]}}{}_{k} = \frac{1}{n} \sum_{x \in \mathbb{X}^{k}} (z^{[\ell]} - \mu^{[\ell]}{}_{k})^{2}.$$

That is, for each hidden-layer ℓ , we have the collection

$$\{\mu^{[\ell]}_k : 1 \le k \le K\}$$

from which we average again to obtain

$$\mu^{[\ell]} := \frac{1}{K} \sum_{k=1}^{K} \mu^{[\ell]}_{k},$$

and the collection

$$\{\sigma^{2^{[\ell]}}_{k}: 1 \le k \le K\},\$$

from which we use the unbiased estimate

$$\sigma^{2[\ell]} := \frac{n}{n-1} \frac{1}{K} \sum_{k=1}^{K} \sigma^{2[\ell]}_{k}.$$

These quantities are what we use when computing the batch-normalization transforms of the hidden units for new examples.

9.3 Algorithm Outline

Suppose we have a training set \mathbb{X} with which we wish to train a binary classification via an L-layer neural network. Let $N = |\mathbb{X}|$ and let $n = 2^p$ be the batch size with $K = \lceil \frac{N}{n} \rceil$ batches per epoch. Then our algorithm would be as follows:

- 1. Set hyper-parameters. Initialize parameters.
- 2. For $0 \le i \le \text{num_iters}$:
 - a. Generate batches $\{X^k : 1 \le k \le K\}$.
 - b. For $1 \le k \le K$:
 - i. Perform forward propagation on \mathbb{X}^k :

•
$$z^{[1]} = W^{[1]}x$$
 • For $\ell \in \{1,...,L-1\}$:
$$- z^{[\ell]} = W^{[\ell]}a^{[\ell-1]}$$

$$\mu^{[\ell]}{}_k = \frac{1}{n} \sum_{x \in \mathbb{X}^k} z^{[\ell]}$$

$$\sigma^{2[\ell]}{}_k = \frac{1}{n} \sum_{x \in \mathbb{X}^k} (z^{[\ell]} - \mu^{[\ell]}{}_k)^2$$

$$\hat{z}^{[\ell]} = (\sigma^{2[\ell]}{}_k + \epsilon)^{-\frac{1}{2}} \odot (z^{[\ell]} - \mu^{[\ell]}{}_k)$$

$$\tilde{z}^{[\ell]} = \gamma^{[\ell]} \odot \hat{z}^{[\ell]} + \beta^{[\ell]}$$

$$a^{[\ell]} = g^{[\ell]} (\tilde{z}^{[\ell]})$$

$$z^{[L]} = W^{[L]} a^{[L-1]} + b$$

- ii. Compute cost \mathbb{J} on \mathbb{X}^k .
- iii. Apply backwards propagation on \mathbb{X}^k to obtain

$$\frac{\partial \mathbb{J}}{\partial W^{[\ell]}}, \quad \frac{\partial \mathbb{J}}{\partial b}, \quad \frac{\partial \mathbb{J}}{\partial \gamma^{[\ell]}}, \quad \frac{\partial \mathbb{J}}{\partial \beta^{[\ell]}}.$$

- iv. Update parameters.
- 3. Compute

$$\begin{split} \boldsymbol{\mu}^{[\ell]} &= \mathbb{E}[\boldsymbol{\mu}^{[\ell]}_{k}], \\ \boldsymbol{\sigma}^{2[\ell]} &= \frac{n}{n-1} \mathbb{E}[\boldsymbol{\sigma}^{2[\ell]}_{k}] \end{split}$$

4. Return

$$W^{[\ell]}, \quad b, \quad \gamma^{[\ell]}, \quad \beta^{[\ell]}, \quad \mu^{[\ell]}, \quad \sigma^{2^{[\ell]}}.$$

9.4 Better Backpropagation

We consider a neural network utilizing batch normalization of the form

where we have the functions

1.

$$\mathbb{L}: \mathbb{R}^{n^{[2]} \times N} \times \mathbb{R}^{n^{[2]} \times N} \to \mathbb{R}$$

is the given loss function. If we're working with a binary classification problem, then we have that

$$\mathbb{L}(y, \hat{y}) = -\frac{1}{N} \sum_{j=1}^{n} \{ y_j \log \hat{y}_j + (1 - y_j) \log(1 - \hat{y}_j) \}$$
$$= -\frac{1}{n} \left[\langle y, \log y \rangle_{\mathbb{R}^N} + \langle 1 - y, \log(1 - \hat{y}) \rangle_{\mathbb{R}^N} \right].$$

2.

$$G^{[\ell]}: \mathbb{R}^{n^{[\ell]} \times N} \to \mathbb{R}^{n^{[\ell]} \times N}$$

is the broadcasting of the activation unit $g^{[\ell]}: \mathbb{R} \to \mathbb{R}$.

3.

$$\phi^{[\ell]}: \mathbb{R}^{n^{[\ell]} \times n^{[\ell-1]}} \times \mathbb{R}^{n^{[\ell-1]} \times N} \to \mathbb{R}^{n^{[\ell]} \times N}$$

is given by

$$\phi^{[\ell]}(W, x) = Wx.$$

4.

$$\psi^{[\ell]}: \mathbb{R}^{n^{[\ell]}} \times \mathbb{R}^{n^{[\ell]} \times N} \to \mathbb{R}^{n^{[\ell]} \times N}$$

is given by

$$\psi(b, x) = x + b\vec{1}^T,$$

where

$$\vec{1}^T = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix} \in \mathbb{R}^{n^{[\ell]}}.$$

5.

$$N^{[1]} \cdot \mathbb{R}^{n^{[1]} \times N} \to \mathbb{R}^{n^{[1]} \times N}$$

is the normalization operator given by

$$N^{[1]}: x_j^i \mapsto \frac{x_j^i - \mathbb{E}[x^i]}{\sqrt{\mathbb{V}[x^i] + \epsilon}},$$

where \mathbb{E} is the expectation operator, i.e.,

$$\mathbb{E}[x^i] = \frac{1}{N} \sum_{j=1}^{N} x_j^i,$$

and V is the variance operator, i.e.,

$$\mathbb{V}[x^i] = \mathbb{E}[(x^i - \mathbb{E}[x^i])^2].$$

6.

$$\Gamma^{[\ell]}: \mathbb{R}^{n^{[\ell]}} \times \mathbb{R}^{n^{[\ell]} \times N} \to \mathbb{R}^{n^{[\ell]} \times N}$$

is given by

$$\Gamma(\gamma, x) = \gamma \vec{1}^T \odot x,$$

where

$$\vec{1}^T = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix} \in \mathbb{R}^{n^{[\ell]}}.$$

We now consider back-propagating through the network via reverse differentiations as in the following diagram:

We consider our individual derivatives:

1. Suppose $G: \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n}$ is the broadcasting of $g: \mathbb{R} \to \mathbb{R}$. Then for any $(x, \xi) \in T\mathbb{R}^{m \times n}$ we have that

$$dG_x(\xi) = G'(x) \odot \xi.$$

Then for any $\zeta \in T_{G(x)}\mathbb{R}^{m\times n}$, we have the reverse derivative is given by

$$rG_x(\zeta) = G'(x) \odot \zeta.$$

2. Suppose $\phi: \mathbb{R}^{m \times n} \times \mathbb{R}^{n \times N} \to \mathbb{R}^{m \times N}$ is given by

$$\phi(W, x) = Wx.$$

Then we have two differential paths to consider:

(a) For any $(W, x) \in \mathbb{R}^{m \times n} \times \mathbb{R}^{n \times N}$ and any $\xi \in T_x \mathbb{R}^{n \times N}$, we have that

$$d\phi_{(W,x)}(\xi) = W \cdot \xi$$

= $L_W(\xi)$,

and for any $\zeta \in T_{\phi(W,x)}\mathbb{R}^{m\times N}$, we have the reverse differential

$$r\phi_{(W,x)}(\zeta) = W^T \cdot \zeta$$
$$= L_{W^T}(\zeta).$$

(b) For any $(W, x) \in \mathbb{R}^{m \times n} \times \mathbb{R}^{n \times N}$ and any $Z \in T_W \mathbb{R}^{m \times n}$, we have that

$$d_1\phi_{(W,x)}(Z) = Z \cdot x$$
$$R_x(Z),$$

and for any $\zeta \in T_{\phi(W,x)}\mathbb{R}^{m\times N}$, we have the reverse differential

$$r_1 \phi_{(W,x)}(\zeta) = \zeta \cdot x^T$$

= $R_{x^T}(\zeta)$.

3. Suppose $\psi: \mathbb{R}^n \times \mathbb{R}^{n \times N} \to \mathbb{R}^{n \times N}$ is given by

$$\psi(b, x) = x + b\vec{1}^T,$$

where

$$\vec{1}^T = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix} \in \mathbb{R}^N.$$

Then we look at the two differential paths and for any $(b, x) \in \mathbb{R}^n \times \mathbb{R}^{n \times N}$ any any $\xi \in T_x \mathbb{R}^{n \times N}$, $\eta \in T_b \mathbb{R}^n$ and $\zeta \in T_{\psi(b,x)} \mathbb{R}^{n \times N}$:

(a) In the network direction, we have that

$$d\psi_{(b,x)}(\xi) = \xi,$$

with reverse differential

$$r\psi_{(b,x)}(\zeta) = \zeta.$$

(b) In the parameter-space direction, we have that

$$\overline{d}\psi_{(b,x)}(\eta) = \eta \cdot \overrightarrow{1}^T
= R_{\overrightarrow{1}^T}(\eta),$$

with reverse differential

$$\overline{r}\psi_{(b,x)}(\zeta) = \zeta \cdot \vec{1}$$

$$= R_{\vec{1}}(\zeta).$$

4. Suppose $\Gamma: \mathbb{R}^n \times \mathbb{R}^{n \times N} \to \mathbb{R}^{n \times N}$ is given by

$$\Gamma(\gamma, x) = \gamma \vec{1}^T \odot x.$$

The considering the two paths of differentiation, we have that for any $((\gamma, x), (\eta, \xi)) \in T(\mathbb{R}^n \times \mathbb{R}^{n \times N})$ and $\zeta \in T_{\Gamma(\gamma, x)} \mathbb{R}^{n \times N}$ that:

(a) In the network direction, we have that

$$d\Gamma_{(\gamma,x)}(\xi) = \gamma \vec{1}^T \odot \xi,$$

with reverse differential

$$r\Gamma_{(\gamma,x)}(\zeta) = \gamma \vec{1}^T \odot \zeta.$$

(b) In the parameter-space direction, we have that

$$\hat{d}\Gamma_{(\gamma,x)}(\eta) = \eta \vec{1}^T \odot x$$

= $\odot_x \circ R_{\vec{1}^T}(\eta),$

with reverse differential

$$\hat{r}\Gamma_{(\gamma,x)}(\zeta) = (x \odot \zeta) \cdot \vec{1}$$
$$= R_{\vec{1}} \circ \odot_x(\zeta).$$

- 5. As the normalization operator is quite involved, we move its computation to the appendix, ??.
- 6. For the loss function $\mathbb{L}: \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$ given by

$$L(y, \hat{y}) = -\frac{1}{N} [\langle y, \log \hat{y} \rangle + \langle 1 - y, \log(1 - \hat{y}) \rangle],$$

we fix $y, \hat{y} \in \mathbb{R}^N$ and for $\xi \in T_{\hat{y}} \mathbb{R}^N$, we see that

$$d\mathbb{L}_{(y,\hat{y})}(\xi) = -\frac{1}{N} \sum_{j=1}^{N} \left[\frac{y_j}{\hat{y}_j} - \frac{1 - y_j}{1 - \hat{y}_j} \right] \xi_j$$
$$= -\frac{1}{N} \left\langle \frac{y}{\hat{y}} - \frac{1 - y}{1 - \hat{y}}, \xi \right\rangle,$$

and hence for $\zeta \in T_{L(y,\hat{y})}\mathbb{R}$, it follows that

$$r\mathbb{L}_{(y,\hat{y})}(\zeta) = -\frac{1}{N} \left[\frac{y}{\hat{y}} - \frac{1-y}{1-\hat{y}} \right] \zeta.$$

We're now ready to compute our various gradients of our cost function. That is, if we let

$$\mathbb{J}: \mathbb{R}^{n^{[2]}} \times \mathbb{R}^{n^{[2]} \times n^{[1]}} \times \mathbb{R}^{n^{[1]}} \times \mathbb{R}^{n^{[1]}} \times \mathbb{R}^{n^{[1]} \times n^{[0]}} \rightarrow \mathbb{R}$$

is given by

$$\mathbb{J}(W^{[2]},\gamma^{[1]},\beta^{[1]},W^{[2]},b^{[2]}) = \mathbb{L}(y,G^{[2]}\circ\psi^{[2]}(b^{[2]},\phi^{[2]}(W^{[2]},G^{[2]}\circ\psi^{[2]}(\beta^{[1]},\Gamma^{[1]}(\gamma^{[1]},N^{[1]}\circ\phi^{[1]}(W^{[1]},x)))))$$

and we compute the reverse differentials for a learning rate $\alpha \in T_{\mathbb{J}}\mathbb{R}$ with the assumption that our second activator function is the sigmoid function. Indeed,

$$r(\mathbb{L} \circ G^{[2]})_v(\alpha) = rG_v^{[2]} \circ r\mathbb{L}_a(\alpha)$$

$$= -\frac{\alpha}{N}G^{[2]'}(v) \odot \left[\frac{y}{a} - \frac{1-y}{1-a}\right]$$

$$= -\frac{\alpha}{N}a(1-a)\left[\frac{y}{a} - \frac{1-y}{1-a}\right]$$

$$= -\frac{\alpha}{N}[y(1-a) - a(1-y)]$$

$$= -\frac{\alpha}{N}[y-a]$$

$$= \frac{a-y}{N}\alpha.$$

This leads us to

$$\begin{split} \overline{r}_{2} \mathbb{J}_{b^{[2]}}(\alpha) &= \overline{r}_{2}(\psi^{[2]})_{(b^{[2]}, u^{[2]})} \circ rG_{v^{[2]}}^{[2]} \circ r\mathbb{L}_{(y, a^{[2]})} \\ &= \frac{\alpha}{N} R_{\vec{1}}(a^{[2]} - y) \\ &= \frac{\alpha}{N} \sum_{i=1}^{N} (a^{[2]}_{j} - y_{j}); \end{split}$$

$$\begin{split} r_2 \mathbb{J}_{W^{[2]}}(\alpha) &= r_2 \phi_{(W^{[2]}, a^{[1]})}^{[2]} \circ r \psi_{(b^{[2]}, u^{[2]})}^{[2]} \left(\frac{\alpha}{N} (a^{[2]} - y) \right) \\ &= r_2 \phi_{(W^{[2]}, a^{[1]})}^{[2]} \left(\frac{\alpha}{N} (a^{[2]} - y) \right) \\ &= \frac{\alpha}{N} (a^{[2]} - y) a^{[1]T}; \end{split}$$

$$\begin{split} \overline{r}_{1} \mathbb{J}_{\beta^{[1]}}(\alpha) &= \overline{r}_{1} \psi_{(\beta^{[1]}, \hat{z}^{[1]})}^{[1]} \circ r G_{\hat{z}^{[1]}}^{[1]} \circ r \phi_{(W^{[2]}, a^{[2]})}^{[2]} \circ r \psi_{(b^{[2]}, u^{[2]})}^{[2]} \circ r (\mathbb{L} \circ G^{[2]})_{v^{[2]}}(\alpha) \\ &= \frac{\alpha}{N} \overline{r}_{1} \psi_{(\beta^{[1]}, \hat{z}^{[1]})}^{[1]} \circ r G_{\hat{z}^{[1]}}^{[1]} \circ r \phi_{(W^{[2]}, a^{[2]})}^{[2]}(a^{[2]} - y) \\ &= \frac{\alpha}{N} \overline{r}_{1} \psi_{(\beta^{[1]}, \hat{z}^{[1]})}^{[1]} \circ r G_{\hat{z}^{[1]}}^{[1]} \left(W^{[2]T}(a^{[2]} - y) \right) \\ &= \frac{\alpha}{N} \overline{r}_{1} \psi_{(\beta^{[1]}, \hat{z}^{[1]})}^{[1]} \left(G^{[1]'}(\tilde{z}^{[1]}) \odot W^{[2]T}(a^{[2]} - y) \right) \\ &= \frac{\alpha}{N} \sum_{i=1}^{N} g^{[1]'}(\tilde{z}^{[1]}_{j}) \odot W^{[2]T}(a^{[2]}_{j} - y_{j}); \end{split}$$

$$\begin{split} \hat{r}_{1} \mathbb{J}_{\gamma^{[1]}}(\alpha) &= \frac{\alpha}{N} \hat{r}_{1} \Gamma_{(\gamma^{[1]}, z^{[1]})}^{[1]} \left(G^{[1]'}(\tilde{z}^{[1]}) \odot W^{[2]T}(a^{[2]} - y) \right) \\ &= \frac{\alpha}{N} R_{\vec{1}} \left(z^{[1]} \odot \left(G^{[1]'}(\tilde{z}^{[1]}) \odot W^{[2]T}(a^{[2]} - y) \right) \right) \\ &= \frac{\alpha}{N} \sum_{j=1}^{n} z^{[1]}{}_{j} \odot g^{[1]'}(\tilde{z}^{[1]}{}_{j}) \odot W^{[2]T}(a^{[2]}{}_{j} - y_{j}); \end{split}$$

and finally,

$$\begin{split} r_{1}\mathbb{J}_{W^{[1]}}(\alpha) &= \frac{\alpha}{N}r_{1}\phi_{(W^{[1]},x)}^{[1]} \circ rN_{u^{[1]}}^{[1]} \circ r\Gamma_{(\gamma^{[1]},z^{[1]})}^{[1]} \left(G^{[1]'}(\tilde{z}^{[1]}) \odot W^{[2]T}(a^{[2]} - y)\right) \\ &= \frac{\alpha}{N}r_{1}\phi_{(W^{[1]},x)}^{[1]} \circ rN_{u^{[1]}}^{[1]} \left(\gamma\vec{1}^{T} \odot G^{[1]'}(\tilde{z}^{[1]}) \odot W^{[2]T}(a^{[2]} - y)\right) \\ &= \frac{\alpha}{N}R_{x^{T}} \circ rN_{u^{[1]}}^{[1]} \left(\gamma\vec{1}^{T} \odot G^{[1]'}(\tilde{z}^{[1]}) \odot W^{[2]T}(a^{[2]} - y)\right) \\ &= \frac{\alpha}{N}\sum_{j,l=1}^{N}\sum_{i=1}^{n^{[1]}}T_{i}^{jk}_{l}\gamma^{i}g^{[1]'}(\tilde{z}^{[1]i}_{j})W^{[2]}_{i}(a^{[2]}_{j} - y_{j})x_{l}^{m} \end{split}$$

9.5 Python Implementation

Work in Progress

10 Multi-Class Softmax Regression

Thus far, we've mostly been dealing with binary classification problems, that is, our true label y takes values in $\{0,1\}$, where y=1 represents when the object in question represents our desired classification, and y=0 when it does not. However, in many examples we wish to expand upon this, for example, instead of knowing whenever an image contains a cat (y=1) or it doesn't contain a cat (y=0), maybe we would like to have a table of the following

Table 1: ClassificationyLabely = 0None of the followingy = 1Caty = 2Dogy = 3Birdy = 4Elephanty = 5Bear

That is, we have a total of 6 classes we wish to distinguish. If we were to train a neural network for this classification problem, the only time this needs to be considered is on the output layer. With this in mind, we shall only consider the simple regression problem

$$\begin{bmatrix} x^1 \\ \vdots \\ x^m \end{bmatrix} \xrightarrow{Wx+b} \begin{bmatrix} z^1 \\ \vdots \\ z^C \end{bmatrix} \xrightarrow{g(z)} \begin{bmatrix} a^1 \\ \vdots \\ a^C \end{bmatrix} \longrightarrow \hat{y},$$

where C is the number of labels in our classification.

First, we need to *one-hot encode* our labels. That is, if our labels are given by

$$\{0, 1, ..., C - 1\},\$$

then we consider the basis vectors in \mathbb{R}^C

$$\{e_1, ..., e_C\},\$$

which clearly admits a bijection

$$\{0, 1, ..., C-1\} \xrightarrow{\cong} \{e_1, ..., e_C\}, \qquad i \mapsto e_{i+1}.$$

Thus, we've effectively mapped our true labels

$$y \in \{0, 1, ..., C - 1\}^N \mapsto y \in \mathbb{R}^{C \times N}$$

where

$$(y=i) \mapsto (y=e_{i+1}).$$

Next, we need to decide which type of nonlinearity $g: \mathbb{R}^C \to \mathbb{R}^C$ to impose. To this end, we would like a^i to satisfy

$$a^i = \mathbb{P}(y = i - 1),$$

then we can declare a prediction via

$$i_0 = \arg \max_i a^i, \qquad \hat{y} = e_{i_0} \leftrightarrow \hat{y} = i_0 - 1.$$

That is, we would like our target output vector $a \in \mathbb{R}^C$ to be a probability distribution, i.e.,

$$0 \le a^i \le 1, i \in \{1, ..., C\},\$$

and

$$\sum_{i=1}^{C} a^i = 1.$$

This leads us to letting g be the softmax function, i.e.,

$$g(z^1,...,z^C) = \frac{1}{\sum_{i=1}^C e^{z^i}} \begin{bmatrix} e^{z^1} \\ \vdots \\ e^{z^C} \end{bmatrix}.$$

Finally, we need to define a cost function $\mathbb{L}: \mathbb{R}^C \times \mathbb{R}^C \to \mathbb{R}$ with which we can compare our true value to our predicted value. To this end, we consider the cross-entropy function \mathbb{L} defined by

$$\mathbb{L}(a_j, y_j) = -\sum_{i=1}^C y_j^i \log a_j^i.$$

We note that since $y_j = e_k$ for some $k \in \{1, ..., C\}$, that this sum is actually a single element. Moreover, when C = 2, we recover our log-loss function for the sigmoid activation. This finally yields a cost function

$$J(W, b) = -\frac{1}{N} \sum_{j=1}^{N} \sum_{i=1}^{C} y_j^i \log a_j^i$$
$$= -\frac{1}{N} (y : \log a),$$

where

$$A: B = \langle A, B \rangle_F = \operatorname{tr}(A^T B),$$

is the Frobenius norm on $\mathbb{R}^{C \times N}$.

To minimize our cost, we first note

$$\frac{\partial \mathbb{L}_{y} \circ g}{\partial z^{\mu}} = \sum_{i=1}^{C} \frac{\partial \mathbb{L}_{y}}{\partial a^{i}} \frac{\partial S^{i}}{\partial z^{\mu}}$$

$$= -\sum_{i=1}^{C} \frac{y^{i}}{a^{i}} a^{i} (\delta^{i}_{\mu} - a^{\mu})$$

$$= -\sum_{i=1}^{C} y^{i} (\delta^{i}_{\mu} - a^{\mu})$$

$$= -y^{\mu} + a^{\mu} \sum_{i=1}^{C} y^{i}$$

$$= a^{\mu} - y^{\mu},$$

then we see that

$$\begin{split} \frac{\partial z^{\mu}}{\partial W^{\alpha}_{\beta}} &= \frac{\partial}{\partial W^{\alpha}_{\beta}} (W^{\mu}_{k} x^{k} + b^{\mu}) \\ &= \sum_{k=1}^{m} \delta^{\mu}_{\alpha} \delta^{\beta}_{k} x^{k} \\ &= \delta^{\mu}_{\alpha} x^{\beta}, \end{split}$$

and

$$\frac{\partial z^{\mu}}{\partial b^{\alpha}} = \delta^{\mu}_{\alpha}.$$

Hence,

$$\frac{\partial \mathbb{L}_y}{\partial W_\beta^\alpha} = \sum_{\mu=1}^C (a^\mu - y^\mu) \delta_\alpha^\mu x^\beta$$
$$= x(a-y)^T,$$

yielding a gradient of

$$\frac{\partial \mathbb{L}_y}{\partial W} = (a - y)x^T,$$

and similarly

$$\frac{\partial \mathbb{L}_y}{\partial b^{\alpha}} = \sum_{\mu=1}^C (a^{\mu} - y^{\mu}) \delta_{\alpha}^{\mu}$$
$$= a^{\alpha} - y^{\alpha},$$

and so

$$\frac{\partial \mathbb{L}_y}{\partial b} = a - y.$$

Finally, we conclude that

$$\frac{\partial \mathbb{J}}{\partial W} = \frac{1}{N} \sum_{j=1}^{N} (a_j - y_j)(x_j)^T = \frac{1}{N} (a - y) x^T,$$

and

$$\frac{\partial \mathbb{J}}{\partial b} = \frac{1}{N} \sum_{j=1}^{N} (a_j - y_j).$$

We remark that for a deep neural network, the backwards propagation follows a similar path backwards through the network since we have the aforementioned differentials.

Part III Convolutional Neural Networks

11 An Introduction to Convolutions

One common application of neural networks is that of image detection/classification. Recall that an image in grayscale can be seen as a matrix $x \in \mathbb{R}^{m \times n}$, where

$$x_j^i \in \{0, 1, ..., 9, 10\},\$$

and 10 represents "white" and 0 represents "black".

Instead of flattening the pixels into a vector $\vec{x} \in \mathbb{R}^{nm}$ and feeding the input into a deep network, we observe that several simple detections may be imposed on the image first while it's in matrix form. That is, suppose we wish to detect vertical or horizontal edges in the image first. As there are typically several of such edges in an image, and these edges are the "atomic" pieces of full images, this initial detection would be of great benefit.

To this end, we wish to impose an operation which finds where a pixel x_j^i changes dramatically when moving to a neighboring pixel. One way to find these changes is with convolutions, or cross-correlations.

11.1 Cross-Correlation

We first recall that given two function $f, g : \mathbb{Z} \to \mathbb{R}$, the (discrete) cross-correlation f * g is defined by

$$f * g(n) = \sum_{j=-\infty}^{\infty} f(j)g(j+n).$$

We note that cross-correlation is not commutative, however, we see that

$$g * f(-n) = \sum_{j=-\infty}^{\infty} g(j)f(j-n) \qquad i = j-n$$
$$= \sum_{i=-\infty}^{\infty} f(i)g(i+n)$$
$$= f * g(n).$$

We may similarly define for $f, g: \mathbb{Z}^2 \to \mathbb{R}$,

$$f * g(k,l) = \sum_{(i,j) \in \mathbb{Z}^2} f(i,j)g(i+k,j+l).$$

Whenever f or g has finite support, say in [-M, M], the above sum reduces to

$$f * g(n) = \sum_{j=-M}^{M} f(j)g(j+n).$$

Suppose $x \in \mathbb{R}^{n_h^{[0]} \times n_w^{[0]}}$ and let $F \in \mathbb{R}^{f^{[1]} \times f^{[1]}}$ with $f^{[1]} \leq \min\{n_h^{[0]}, n_w^{[0]}\}$. Define

$$n_{\alpha}^{[1]} = n_{\alpha}^{[0]} - f^{[1]} + 1, \qquad \alpha = h, w,$$

and we obtain the matrix $F * x \in \mathbb{R}^{n_h^{[1]} \times n_w^{[1]}}$ given by

$$(F * x)_l^k = \sum_{i,j=1}^{f^{[1]}} F_j^i x_{j+l-1}^{i+k-1}.$$

Note that this is exactly the cross-correlation defined above, except with finite support and reindexed to start at 1.

In what follows, this cross-correlation operator will be called the convolution operator, and F will be called the filter (or kernel).

Example 11.1. Suppose

$$x = \begin{bmatrix} 1 & 2 & 0 & 3 \\ 4 & 5 & 6 & 0 \\ 0 & 1 & 2 & 3 \end{bmatrix}$$

and

$$F = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}.$$

Then f = 2, $n_h^{[0]} = 3$, $n_w^{[0]} = 4$, and so

$$n_h^{[1]} = 3 - 2 + 1 = 2,$$

$$n_w^{[1]} = 4 - 2 + 1 = 3.$$

We now compute $(F * x) \in \mathbb{R}^{2 \times 3}$

$$(F * x)_{1}^{1} = 1 * 1 + 0 * 2 + 1 * 4 + 1 * 5 = 10$$

$$(F * x)_{2}^{1} = 1 * 2 + 0 * 0 + 1 * 5 + 1 * 6 = 13$$

$$(F * x)_{3}^{1} = 1 * 0 + 0 * 3 + 1 * 6 + 1 * 0 = 6$$

$$(F * x)_{1}^{2} = 1 * 4 + 0 * 5 + 1 * 0 + 1 * 1 = 5$$

$$(F * x)_{2}^{2} = 1 * 5 + 0 * 6 + 1 * 1 + 2 * 2 = 10$$

$$(F * x)_{3}^{2} = 1 * 6 + 0 * 0 + 1 * 2 + 1 * 3 = 11,$$

and hence

$$F * x = \begin{bmatrix} 10 & 13 & 6 \\ 5 & 10 & 11 \end{bmatrix}.$$

Example 11.2. Suppose

which can be seen as a grayscale image that's white on the left half of the image and black on the right half. Now define the filter

$$F = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix}.$$

Then $F * x \in \mathbb{R}^{4 \times 4}$ and is given by

which looks like an image a "white" edge in the middle, telling us the original has an edge in the middle that goes from "bright" pixels to "dark" pixels.

This idea of convolution seems to be able to detect our edges. However, we see that the pixels in the "interior" of the matrix affect the convolution much more the the pixels on the "boundary". This may not always matter, but when it does, we need a technique to allow for the boundary pixels to be more prominent. One such fix is to add some "padding" around the original image.

11.2 Convolution with Padding

Suppose $x \in \mathbb{R}^{m \times n}$ is matrix, and let $p \in \mathbb{Z}_{\geq 0}$, which we will call the *padding*. Define a new matrix $(x, p) \in \mathbb{R}^{(m+2p) \times (n+2p)}$ given by

$$(x,p)_l^k = \begin{cases} x_{l-p}^{k-p} & \text{if } p < k \le m+p \text{ and } p < l \le n+p, \\ 0 & \text{else.} \end{cases}$$

Example 11.3. Suppose

$$x = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}.$$

Then (x,0) = x immediately,

From the previous example, we see a recursive property with padding, i.e.,

$$(x,p) = ((x,p-1),1)$$

$$= (((x,p-2),1),1)$$

$$\vdots$$

$$= \underbrace{((\cdots ((x,1),1),\cdots 1),1)}_{p-\text{times}}$$

Suppose $x \in \mathbb{R}^{n_h^{[0]} \times n_w^{[0]}}$, let $F \in \mathbb{R}^{f^{[1]} \times f^{[1]}}$ be a filter, and let $p \in \mathbb{Z}_{\geq 0}$ be the padding. Then since (x, p) is an $(n_h^{[0]} + 2p) \times (n_w^{[0]} + 2p)$ -matrix, we have that the convolution F * (x, p) has a size given by

$$n_{\alpha}^{[1]} = n_{\alpha}^{[0]} + 2p - f^{[1]} + 1, \qquad \alpha = h, w,$$

and we write

$$F *^p x = F * (x, p).$$

When p = 0, we say that $F *^p x$ is a valid convolution, and we'll typically drop the p-superscript. When $p = \frac{f^{[1]}-1}{2}$, we say that $F *^p x$ is a same convolution, since

$$n_{\alpha}{}^{[1]}=n_{\alpha}{}^{[0]}, \qquad \alpha=h,w.$$

We remark here that in many application our desired filters have $f^{[1]}$ being odd (if it's not odd, then it cannot be a same convolution).

11.3 Strided Convolution

We note that in our definition of a convolution

$$(F * x)_{l}^{k} = \sum_{i,j=1}^{f^{[1]}} F_{j}^{i} x_{j+l-1}^{i+k-1},$$

that we're sliding our filter F along x with a *stride* of s = 1. This does not necessarily have to be the case. We modify our definition of convolution to allow for $s \in \mathbb{N}$ as follows:

Suppose $x \in \mathbb{R}^{n_h^{[0]} \times n_w^{[0]}}$, let $F \in \mathbb{R}^{f^{[1]} \times f^{[1]}}$ be a filter and let $s \in \mathbb{N}$ be the stride. Let

$$n_{\alpha}^{[1]} = \lfloor \frac{n_{\alpha}^{[0]} - f^{[1]}}{s} + 1 \rfloor, \qquad \alpha = h, w,$$

and define $F *_s x \in \mathbb{R}^{n_h^{[1]} \times n_w^{[1]}}$ to be the matrix given by

$$(F *_s x)_l^k = \sum_{i,j=1}^{f^{[1]}} F_j^i x_{j+s(l-1)}^{i+s(k-1)}.$$

We note that the definition of a strided convolution is a direct generalization of our previous definition of convolution, namely with stride s = 1.

Example 11.4. Suppose

$$x = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 3 & 0 & 4 & 0 \\ 0 & 5 & 0 & 6 \\ 7 & 0 & 8 & 0 \end{bmatrix},$$
$$F = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix},$$

and suppose we have a stride of 2 (any larger stride would result in a (1×1) -matrix). Then we see that

$$n_{\alpha}^{[1]} = \lfloor \frac{4-2}{2} + 1 \rfloor = 2, \qquad \alpha = h, w,$$

and hence that

$$(F *2 x)11 = 1 * 1 + 1 * 0 + 2 * 3 + 0 * 0 = 7$$

$$(F *2 x)21 = 1 * 2 + 1 * 0 + 2 * 4 + 0 * 0 = 10$$

$$(F *2 x)12 = 1 * 0 + 1 * 5 + 2 * 7 + 0 * 0 = 19$$

$$(F *2 x)22 = 1 * 0 + 1 * 6 + 2 * 8 + 0 * 0 = 22,$$

or rather

$$F *_2 x = \begin{bmatrix} 7 & 10 \\ 19 & 22 \end{bmatrix}.$$

11.4 Strided Convolutions with Padding

Suppose $x \in \mathbb{R}^{n_h^{[0]} \times n_w^{[0]}}$, let $F \in \mathbb{R}^{f^{[1]} \times f^{[1]}}$ be a filter, let $s \in \mathbb{N}$ be the stride, and let $p \in \mathbb{Z}_{\geq 0}$ be the padding. We define

$$F *_s^p x := F *_s (x, p),$$

that is, we first pad x, then compute the strided convolution of the filter F with (x, p). From our previous work, we see that for $\alpha = h, w$, that

$$n_{\alpha}^{[1]} = \left\lfloor \frac{n_{\alpha}'^{[0]} - f^{[1]}}{s} + 1 \right\rfloor, \qquad n' \sim (x, p)$$
$$= \left\lfloor \frac{n_{\alpha}^{[0]} + 2p - f^{[1]}}{s} + 1 \right\rfloor.$$

Moreover, to compute a closed form of the strided convolution with padding, we first define the set

$$\begin{split} \mathcal{I}^{[1]k} &= \mathcal{I}(n_h^{[0]}, n_w^{[0]}, p, s; k, l) \\ &:= \left\{ (i, j) \in \mathbb{Z}^2 : p < i + s(k - 1) - p \le n_h^{[0]} + p ; \\ &\quad p < j + s(l - 1) - p \le n_w^{[0]} + p \right\} \\ &= \left\{ (i, j) \in \mathbb{Z}^2 : 2p - s(k - 1) < i \le 2p - s(k - 1) + n_h^{[0]} ; \\ &\quad 2p - s(l - 1) < j \le 2p - s(l - 1) + n_w^{[0]} \right\} \end{split}$$

and now we immediately see by chasing the definitions that

$$\begin{split} (F *_{s}^{p} x)_{l}^{k} &= (F *_{s} (x, p))_{l}^{k} \\ &= \sum_{i,j=1}^{f^{[1]}} F_{j}^{i}(x, p)_{j+s(l-1)}^{i+s(k-1)} \\ &= \sum_{i,j=1}^{f^{[1]}} F_{j}^{i} x_{j+s(l-1)-p}^{i+s(k-1)-p} \chi_{\mathcal{I}^{[1]}_{l}^{k}}(i, j) \end{split}$$

Example 11.5. Suppose

$$x = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 3 & 0 \\ 4 & 0 & 5 \end{bmatrix},$$

and we have a filter

$$F = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.$$

We first compute $F *_{2}^{1} x$: Since we we're using a padding of p = 1, we have that

$$(x,1) = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 4 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Using a stride of s = 2, we see we have resultant dimensions of the form

$$n_{\alpha}^{[1]} = \lfloor \frac{3+2*1-2}{2} + 1 \rfloor$$

= 2,

that is, $F *_{2}^{1} x \in \mathbb{R}^{2 \times 2}$. We now compute

$$\begin{split} &(F*_2^1x)_1^1=1*0+1*0+0*0+1*1=1\\ &(F*_2^1x)_2^1=1*0+1*0+0*0+1*2=2\\ &(F*_2^1x)_1^2=1*0+1*0+0*0+1*4=4\\ &(F*_2^1x)_2^2=1*0+1*0+0*5+1*0=0, \end{split}$$

or rather

$$F *_2^1 x = \begin{bmatrix} 1 & 2 \\ 4 & 0 \end{bmatrix}.$$

11.5 Convolutions Over Volumes

At the beginning of this section, we began by considering a grayscale image which we represented as a matrix $x \in \mathbb{R}^{n_h \times n_w}$. Suppose that instead of grayscale, we have an RGB image. Then for each fixed color component, we may represent the component as a matrix as before. However, since flattening a color image into a grayscale image would break our desired

symmetries (e.g., for edges, etc), we would like a way to handle convolutions of an RGB image being represented as a rank-3 tensor $x \in \mathbb{R}^{n_h \times n_w \times n_c}$. This n_c parameter represents the "depth" of the image, which we shall call the channels. That is, x has a red, a green, and a blue channel. We wish to work with channels simultaneously to see simplifications in their relationships with each other. To this end, we introduce a notion of convolution over volumes, which instead of moving a $f^{[1]} \times f^{[1]}$ -square across x, we move a $f^{[1]} \times f^{[1]} \times n_c^{[0]}$ -prism across x instead.

Suppose $x \in \mathbb{R}^{n_h^{[0]} \times n_w^{[0]} \times n_c^{[0]}}$, and suppose $F \in \mathbb{R}^{f^{[1]} \times f^{[1]} \times n_c^{[0]}}$ is a filter (noted the channel size of the input must match the channel size of the filter). Then as before we have that

$$n_{\alpha}^{[1]} = n_{\alpha}^{[0]} - f + 1, \qquad \alpha = h, w,$$

and we define $F * x \in \mathbb{R}^{n_h^{[1]} \times n_w^{[1]}}$ by

$$(F * x)_l^k = \sum_{i,j=1}^{f^{[1]}} \sum_{\rho=1}^{n_c^{[0]}} F^i{}_j{}^{\rho} x^{i+k-1}{}_{j+l-1}{}^{\rho}.$$

Similarly, if $p \in \mathbb{Z}_{>0}$ is the padding and $s \in \mathbb{N}$ is the stride, we have that

$$n_{\alpha}^{[1]} = \left[\frac{n_{\alpha}^{[0]} + 2p - f^{[1]}}{s} + 1\right], \qquad \alpha = h, w,$$

and we define $F *_{\mathbf{q}}^p x \in \mathbb{R}^{n_h^{[1]} \times n_w^{[1]}}$ by

$$(F *_s^p x)_l^k = \sum_{\rho=1}^{n_c^{[0]}} \sum_{i,j=1}^{f^{[1]}} F^i{}_j{}^\rho x^{i+s(k-1)-p}{}_{j+s(l-1)-p}{}^\rho \chi_{\mathcal{I}^{[1]}{}_l^k}(i,j).$$

11.6 Multiple Filters

Suppose $x \in \mathbb{R}^{n_h^{[0]} \times n_w^{[0]} \times n_c^{[0]}}$, and we wish to convolve x with $n_c^{[1]}$ -filters, i.e.,

$$F_{\eta} \in \mathbb{R}^{f^{[1]} \times f^{[1]} \times n_c^{[0]}}, \qquad \eta \in \{1, ..., n_c^{[1]}\}.$$

Then we have that

$$n_{\alpha}^{[1]} = \left| \frac{n_{\alpha}^{[0]} + 2p - f^{[1]}}{s} + 1 \right|, \qquad \alpha = h, w,$$

and letting $F = \{F_{\eta} : 1 \leq \eta \leq n_c^{[1]}\}$, we define $F *_s^p x \in \mathbb{R}^{n_h^{[1]} \times n_w^{[1]} \times n_c^{[1]}}$ to be given by

$$(F *_{s}^{p} x)_{\eta}^{k}{}_{l} = (F_{\eta} *_{s}^{p} x)^{k}{}_{l}.$$

12 Convolutional Networks

We've now seen enough of how to compute convolutions, and are ready to implement them into a neural network architecture. There are three main types of layers that occur in a convolutional neural network, namely, a convolutional layer (conv), a pooling layer (pool), and a fully connected layer (FC), which the usual type of neural network layer we've seen previously.

12.1 Convolutional Layers (conv)

Suppose we are propagating from layer- ℓ to layer- $(\ell+1)$ in a neural network, and suppose $a^{[\ell]} \in \mathbb{R}^{n_h^{[\ell]} \times n_w^{[\ell]} \times n_c^{[\ell]}}$. Suppose we have $n_c^{[\ell+1]}$ -filters we wish to convolve with, each of size $f^{[\ell+1]} \times f^{[\ell+1]} \times n_c^{[\ell]}$, and we have padding $p^{[\ell+1]}$ and a stride $s^{[\ell+1]}$. We let $\mathsf{conv}^{[\ell+1]}(a^{[\ell]})$ denote the mapping:

• For $\eta \in \{1, ..., n_c^{[\ell]}\}$, compute

$$F_{\eta} *_{s[\ell+1]}^{p^{[\ell+1]}} a^{[\ell]} + b_{\eta}^{[\ell+1]},$$

where $b_{\eta}^{[\ell+1]} \in \mathbb{R}$ and the sum is a broadcasting.

• Stack the resultant matrices to obtain an $n_h^{[\ell+1]} \times n_w^{[\ell+1]} \times n_c^{[\ell+1]}$ tensor.

$$\mathsf{conv}^{[\ell+1]}(a^{[\ell]}) = F *_{s^{[\ell+1]}}^{p^{[\ell+1]}} a^{[\ell]} + b^{[\ell+1]}$$

Letting

$$z^{[\ell+1]} = \mathsf{conv}^{[\ell+1]}(a^{[\ell]}),$$

we may then apply our activation unit for the layer $g^{[\ell+1]}$ (broadcasted to the rank-3 tensor). That is, we have $a^{[\ell+1]} \in \mathbb{R}^{n_h^{[\ell+1]} \times n_w^{[\ell+1]} \times n_c^{[\ell+1]}}$ given by

$$a^{[\ell+1]}{}_{\eta}{}^{k}{}_{l} = g^{[\ell+1]}(z_{\eta}{}^{[\ell+1]})^{k}{}_{l},$$

where

$$z_{\eta}^{[\ell+1]k}{}_{l} = F_{\eta} *_{s^{[\ell+1]}}^{p^{[\ell+1]}} a^{[\ell]} + b^{[\ell+1]}.$$

We remark here that the number of parameters we need to train is given by the filters with number of parameters

$$f^{[\ell+1]} \times f^{[\ell+1]} \times n_c^{[\ell]} \times n_c^{[\ell+1]}$$

plus the bias terms

$$1 \times n_c^{[\ell+1]}$$

that is,

#(Parameters) =
$$f^{[\ell+1]} \times f^{[\ell+1]} \times n_c^{[\ell]} \times n_c^{[\ell+1]} + 1 \times n_c^{[\ell+1]}$$

= $n_c^{[\ell+1]} (n_c^{[\ell]} (f^{[\ell+1]})^2 + 1)$

12.2 Pooling Layers (pool)

To reduce computational cost and to help prevent over-fitting, a new type of layer is needed to reduce the overall dimensions of the input-size. This is done with a "pooling" layer. There are two main types of pooling layers that we'll discuss here, the *max pooling* layer and the *average pooling* layer.

12.2.1 Max Pooling

Suppose

$$x = \begin{bmatrix} 1 & 3 & 2 & 1 \\ 2 & 9 & 1 & 1 \\ 1 & 3 & 2 & 3 \\ 5 & 6 & 1 & 2 \end{bmatrix},$$

and we wish to apply maxPool with a "filter size" of f = 2, a stride s = 2 and padding p = 0. Then we apply the max operator to the (2×2) -submatrices moving with a stride of 2, i.e., maxPool $(x) \in \mathbb{R}^{2 \times 2}$ given by

$$\begin{aligned} \max & \mathsf{Pool}(x) = \begin{bmatrix} \max\{1,3,2,9\} & \max\{2,1,1,1\} \\ \max\{1,3,5,6\} & \max\{2,3,1,2\} \end{bmatrix} \\ & = \begin{bmatrix} 9 & 2 \\ 6 & 3 \end{bmatrix}. \end{aligned}$$

Since each layer of max pooling has 3 hyper-parameters (and no trainable parameters), we denote these via

$$\mathsf{maxPool}_{\{f,p,s\}}(x).$$

12.2.2 Average Pooling

Suppose

$$x = \begin{bmatrix} 1 & 3 & 2 & 1 \\ 2 & 9 & 1 & 1 \\ 1 & 3 & 2 & 3 \\ 5 & 6 & 1 & 2 \end{bmatrix},$$

and we wish to apply avPool with a "filter size" of f=2, a stride of s=2 and padding p=0. Then we apply the averaging operator to the (2×2) -submatrices moving with a stride of 2, i.e., $avPool(x) \in \mathbb{R}^{2\times 2}$ given by

$$\begin{aligned} \operatorname{avPool}(x) &= \begin{bmatrix} \mathbb{E}[\{1,3,2,9\}] & \mathbb{E}[\{2,1,1,1\}] \\ \mathbb{E}[\{1,3,5,6\}] & \mathbb{E}[\{2,3,1,2\}] \end{bmatrix} \\ &= \begin{bmatrix} 3.75 & 1.25 \\ 3.75 & 2 \end{bmatrix}. \end{aligned}$$

Since each layer of average pooling has 3 hyper-parameters (and again, no trainable parameters), we denote these via

$$avPool_{\{f,p,s\}}(x).$$

12.3 A Convolutional Network

Suppose we have a collection of images (our training set), where each image is of the form $x \in \mathbb{R}^{n_h^{[0]} \times n_w^{[0]} \times n_c^{[0]}}$. We shall denote the forward propagation from layer-0 to layer-1 via convolution as the mapping $\operatorname{conv}(1)$ which encompasses the following information:

$$conv(1) = \begin{cases}
filter \\
padding \\
stride \\
number of filter.
\end{cases}$$

We similarly use pool(1) to encompass the following information:

$$pool(1) = \begin{cases} pool \text{ type} \\ \text{filter} \\ padding} \\ \text{stride.} \end{cases}$$

This yields a network architecture of the following form:

$$\begin{split} [x] & \stackrel{\mathsf{conv}^{[1]}}{\longrightarrow} [z^{[1]}] \stackrel{\mathsf{pool}^{[1]}}{\longrightarrow} [\zeta^{[1]}] \stackrel{g^{[1]}}{\longrightarrow} [a^{[1]}] \stackrel{\mathsf{conv}^{[2]}}{\longrightarrow} [z^{[2]}] \stackrel{\mathsf{pool}^{[2]}}{\longrightarrow} [\zeta^{[2]}] \stackrel{g^{[2]}}{\longrightarrow} \\ & \stackrel{g^{[2]}}{\longrightarrow} [a^{[2]}] \stackrel{\mathsf{flatten}}{\longrightarrow} [a^{[2]}] \stackrel{\varphi^{[1]}}{\longrightarrow} [z^{[3]}] \stackrel{g^{[3]}}{\longrightarrow} [a^{[3]}] \longrightarrow \cdots \longrightarrow \hat{y} \end{split}$$

We remark here that the convolution and pooling layers are done before the fully connected layers. Moreover, we apply the nonlinearity after the pooling, but this doesn't matter when doing max pooling, since our nonlinearities are typically non-decreasing. We choose this order because it's typically computationally cheaper.

We also remark that since each output of a convolutional layer only depends on a subset of features, our model is less prone to over-fitting.

12.4 Backpropagation

We introduce the following tensoral notation: We say $x \in \mathbb{R}^{a}_{b,c}$ is a (1,2)-tensor written in index form

$$x = (x^{\rho}_{ij})$$

with $1 \le \rho \le a$, $1 \le i \le b$ and $1 \le j \le c$. Similarly, we say $W \in \mathbb{R}^{a,b,c}_d$ is a (3,1)-tensor written in index form

$$W = (W^{\eta ij}{}_{\rho}).$$

Suppose $x \in \mathbb{R}^{n_c}{}_{n_h,n_w}$, $W \in \mathbb{R}^{m_c,f,f}{}_{n_c}$ and $b \in \mathbb{R}^{m_c}$ with padding $p \geq 0$ and stride $s \in \mathbb{N}$. Then we have that

$$z=\operatorname{conv}(x)\in\mathbb{R}^{m_c}{}_{m_h,m_w}$$

is given by

$$z^{\eta}_{k,l} = \sum_{\rho=1}^{n_c} \sum_{i,j=1}^{f} W^{\eta,i,j}{}_{\rho} x^{\rho}{}_{i+s(k-1)-p,j+s(l-1)-p} \chi_{\mathcal{I}_{k,l}}(i,j) + b^{\eta}.$$

This is the general formula for the forward propagation of a conv layer.

We now compute derivatives for general loss function \mathbb{L} :

$$\frac{\partial z^{\eta}_{k,l}}{\partial b^{\mu}} = \delta^{\eta}_{\mu},$$

and hence

$$\frac{\partial \mathbb{L}}{\partial b^{\mu}} = \sum_{\eta=1}^{m_c} \sum_{k=1}^{m_h} \sum_{l=1}^{m_w} \frac{\partial \mathbb{L}}{\partial z^{\eta}_{k,l}} \frac{\partial z^{\eta}_{k,l}}{\partial b^{\mu}}$$

$$= \sum_{\eta=1}^{m_c} \sum_{k=1}^{m_h} \sum_{l=1}^{m_w} \frac{\partial \mathbb{L}}{\partial z^{\eta}_{k,l}} \delta^{\eta}_{\mu}$$

$$= \sum_{k=1}^{m_h} \sum_{l=1}^{m_w} \frac{\partial \mathbb{L}}{\partial z^{\mu}_{k,l}}.$$

Next we consider

$$\frac{\partial z^{\eta}{}_{k,l}}{\partial W^{\alpha,\mu,\nu}{}_{\beta}} = \sum_{\rho=1}^{n_c} \sum_{i,j=1}^f \delta^{\eta}_{\alpha} \delta^i_{\mu} \delta^j_{\nu} \delta^{\beta}_{\rho} x^{\rho}{}_{i+s(k-1)-p,j+s(l-1)-p} \chi_{\mathcal{I}_{k,l}}(i,j)$$

$$= \delta^{\eta}_{\alpha} x^{\beta}{}_{\mu+s(k-1)-p,\nu+s(l-1)-p} \chi_{\mathcal{I}_{k,l}}(\mu,\nu)$$

and hence

$$\frac{\partial \mathbb{L}}{\partial W^{\alpha,\mu,\nu_{\beta}}} = \sum_{\eta=1}^{m_c} \sum_{k=1}^{m_h} \sum_{l=1}^{m_w} \frac{\partial \mathbb{L}}{\partial z^{\eta_{k,l}}} \frac{\partial z^{\eta_{k,l}}}{\partial W^{\alpha,\mu,\nu_{\beta}}}$$

$$= \sum_{\eta=1}^{m_c} \sum_{k=1}^{m_h} \sum_{l=1}^{m_w} \frac{\partial \mathbb{L}}{\partial z^{\eta_{k,l}}} \delta^{\eta}_{\alpha} x^{\beta}_{\mu+s(k-1)-p,\nu+s(l-1)-p} \chi_{\mathcal{I}_{k,l}}(\mu,\nu)$$

$$= \sum_{k=1}^{m_h} \sum_{l=1}^{m_w} \frac{\partial \mathbb{L}}{\partial z^{\alpha_{k,l}}} x^{\beta}_{\mu+s(k-1)-p,\nu+s(l-1)-p} \chi_{\mathcal{I}_{k,l}}(\mu,\nu).$$

Finally, we consider

$$\begin{split} \frac{\partial z^{\eta}{}_{k,l}}{\partial x^{\alpha}{}_{\mu,\nu}} &= \sum_{\rho=1}^{n_c} \sum_{i,j=1}^{f} W^{\eta,i,j}{}_{\rho} \delta^{\rho}_{\alpha} \delta^{\mu}_{i+s(k-1)-p} \delta^{\nu}_{j+s(l-1)-p} \chi_{\mathcal{I}_{k,l}}(i,j) \\ &= W^{\eta,\mu-p-s(k-1),\nu-p-s(l-1)}{}_{\alpha} \chi_{\mathcal{I}_{k,l}}(\mu-p-s(k-1),\nu-p-s(l-1)) \\ &= W^{\eta,\mu-p-s(k-1),\nu-p-s(l-1)}{}_{\alpha} \begin{cases} 1 & \text{if } p < (\mu,\nu) \le p + (n_h,n_w) \\ 0 & \text{else} \end{cases}, \end{split}$$

and hence

$$\frac{\partial \mathbb{L}}{\partial x^{\alpha}_{\mu}, \nu} = \sum_{\eta=1}^{m_c} \sum_{k=1}^{m_h} \sum_{l=1}^{m_w} \frac{\partial \mathbb{L}}{\partial z^{\eta}_{k,l}} \frac{\partial z^{\eta}_{k,l}}{\partial x^{\alpha}_{\mu,\nu}}$$

Appendices

A utils.py

```
1 #! python3
2 import copy
4 import numpy as np
5 from sklearn.utils import shuffle
7 import mlLib.npActivators as npActivators
8 from mlLib.npActivators import ACTIVATORS
10 ## Usefule printing function
11 def print_array_dict(D):
      11 11 11
12
      Parameters
13
      D : Dict[array_like]
15
      Returns
17
      _____
      None
19
20
      txt = "Array_{0}_has_shape_{1}\n{2}"
21
      for k, v in D.items():
           print(txt.format(str(k), v.shape, v))
23
26 ## Partition data into training, development, and test sets
27 def partition_data(x, y, train_ratio):
28
      Parameters
29
      -----
30
      x : array_like
           x.shape = (m, N)
32
      y : array_like
           y.shape = (k, N)
34
      train_ratio : float
35
           0<=train_ratio<=1</pre>
36
37
      Returns
38
      train : Tuple[array_like]
40
      dev : Tuple[array_like]
```

```
test : Tuple[array_like]
42
43
      ## Shuffle the data
44
      x, y = \text{shuffle}(x.T, y.T) \# \text{Only shuffles rows, so transpose is needed}
45
      x = x.T
46
      y = y.T
47
      ## Get the size of partitions
49
      N = x.shape[1]
50
      N_train = int(train_ratio * N)
51
      N_mid = (N - N_train) // 2
53
      ## Create partitions
54
      train = (x[:,:N_train], y[:,:N_train])
55
      dev = (x[:,N_train:N_train + N_mid], y[:,N_train:N_train + N_mid])
56
      test = (x[:,N_train + N_mid:], y[:,N_train + N_mid:])
57
58
      assert(x.all() == np.concatenate([train[0], dev[0], test[0]], axis=1).all())
59
      assert(y.all() == np.concatenate([train[1], dev[1], test[1]], axis=1).all())
60
61
      return train, dev, test
62
64 ## Partition training data into batches
65 def get_batches(x, y, b):
66
67
      Parameters
       ------
68
      x : array_like
           x.shape = (m, n)
70
      y : array_like
71
           y.shape = (k, n)
72
      b : int
73
74
      Returns
75
76
      batches : List[Dict]
77
           batches[i]['x'] : array_like
               x.shape = (m, b) # except last batch
79
               y.shape = (k, b) # except last batch
80
81
      ,, ,, ,,
82
      m, n = x.shape
83
      B = int(np.ceil(n / b))
84
      batches = []
85
      for i in range(B):
           x_{temp} = x[:,(b * i):(b * (i + 1))]
87
           y_{temp} = y[:,(b * i):(b * (i + 1))]
```

```
batches.append({'x' : x_temp, 'y' : y_temp})
89
       # Slicing automatically ends at the end of
90
       # the list if the stop is outside the index
91
       return batches
92
93
94 ##### General Neural Network Model #####
96 ## Retrieve number of examples and layer dimensions
97 def dim_retrieval(x, y, hidden_sizes):
98
       Parameters
       -----
100
       x : array_like
101
           x.shape = (layers[0], n)
102
       y : array_like
103
           y.shape = (layers[L], n)
104
       hidden_sizes : List[int]
105
           hidden_sizes[i-1] = The number nodes layer i
106
       Returns
107
108
       n : int
109
           The number of training examples
110
       layers : List
111
           layer[1] = # nodes in layer 1
112
113
       ,, ,, ,,
114
       m, n = x.shape
115
116
       assert(y.shape[1] == n)
       K = y.shape[0]
117
       layers = [m]
       layers.extend(hidden_sizes)
119
       layers.append(K)
120
121
       return n, layers
123
124 ## Initialize parameters using the size of each layer
125 def initialize_parameters_random(layers):
126
       Parameters
127
       _____
128
       layers : List[int]
129
           layers[l] = # nodes in layer 1
130
131
       Returns
       -----
132
       params : Dict[Dict]
           w[l] : array_like
134
                dwl.shape = (layers[1], layers[1-1])
```

```
b[l] : array_like
136
                dbl.shape = (layers[l], 1)
137
       ,, ,, ,,
138
       w = \{\}
139
       b = \{ \}
140
       for l in range(1, len(layers)):
141
            w[l] = np.random.randn(layers[l], layers[l - 1]) * 0.01
142
            b[1] = np.zeros((layers[1], 1))
143
       params = \{'w' : w, 'b' : b\}
144
       return params
145
147 ## Forward and Backward Linear Activations
148 def linear_activation_forward(a_prev, w, b, activator):
       11 11 11
149
       Parameters
150
        ------
151
152
       a_prev : array_like
            a_prev.shape = (layers[1], n)
153
       w : array_like
154
           w.shape = (layers[l+1], layers[l])
155
       b : array_like
156
            b.shape = (layers[l+1], 1)
157
       activator : str
158
            activator in ACTIVATORS
159
160
161
       Returns
       _____
162
       z : array_like
163
            z.shape = (layer_dims[l+1], n)
164
       a : array_like
165
            a.shape = (layer_dims[l+1], n)
166
167
       assert activator in ACTIVATORS, f'{activator}_is_not_a_valid_activator.'
168
169
       z = w @ a_prev + b
170
       if activator == 'relu':
171
            a, _ = npActivators.relu(z)
172
173
       elif activator == 'sigmoid':
            a, _ = npActivators.sigmoid(z)
174
       elif activator == 'tanh':
175
            a, _ = npActivators.tanh(z)
176
       return z, a
177
178
179 def linear_activation_backward(delta_next, z, w, activator):
180
       Parameters
181
       ------
182
```

```
delta_next : array_like
183
           delta_next.shape = (layers[l+1], n)
184
       z : array_like
185
           z.shape = (layers[l+1], n)
186
       w : array_like
187
           w.shape = (layers[l+1], layers[l])
188
       activator : str
           activator in ACTIVATORS
190
191
       Returns
192
       _____
193
       delta : array_like
194
           delta.shape = (layers[1], n)
195
196
       assert activator in ACTIVATORS, f'{activator}_is_not_a_valid_activator.'
197
198
       n = delta_next.shape[1]
199
200
       if activator == 'relu':
201
           _, dg = npActivators.relu(z)
202
       elif activator == 'sigmoid':
203
           _, dg = npActivators.sigmoid(z)
204
       elif activator == 'tanh':
205
           _, dg = npActivators.tanh(z)
206
207
       da = w.T @ delta_next
208
       assert(da.shape == (w.shape[1], n))
209
       delta = da * dg
210
       assert(delta.shape == (w.shape[1], n))
211
       return delta
213
214
215 ## Forward and Backward Propagation with Dropout Regularization
216 # Generate dropout matrices
217 def dropout_matrices(layers, num_examples, keep_prob):
218
       Parameters
219
220
       _____
       layers : List[int]
221
           layers[1] = number of nodes in layer 1
222
       num_examples : int
^{223}
           The number of training examples
224
       keep_prob : List[float]
225
           keep_prob[1] = The probabilty of keeping a node in layer 1
226
227
       Returns
228
       -----
```

```
D : Dict[array_like]
230
            D[1].shape = (layers[1], num_ex)
231
            D[1] = a Boolean array
232
233
       np.random.seed(1)
234
       L = len(layers)
235
       D = \{\}
236
       for l in range(L - 1):
237
            D[1] = np.random.rand(layers[1], num_examples)
238
            D[1] = (D[1] < keep_prob[1]).astype(int)</pre>
239
            assert(D[1].shape == (layers[1], num_examples))
240
       return D
241
242
243 def forward_propagation_dropout(x, params, activators, D, keep_prob):
244
       Parameters
245
       _____
246
       x : array_like
247
           x.shape = (layers[0] n)
248
       params : Dict[Dict]
249
            params['w'][1] : array_like
250
                wl.shape = (layers[1], layers[1-1])
251
            params['b'][1] : array_like
252
                bl.shape = (layers[l], 1)
253
       activators : List[str]
254
            activators[1] = activation function of layer 1+1
255
       D : Dict[array_like]
256
           D[1].shape = (layer_dims[1], num_ex)
257
           D[l] = a Boolean array astype(int)
258
       keep_prob : List[float]
259
            keep_prob[1] = The probabilty of keeping a node in layer 1
260
261
       Returns
262
       _____
263
       cache : Dict[Dict]
264
            cache['z'][1] : array_like
265
                z[1].shape = (layers[1], n)
266
            cache['a'][1] : array_like
267
                a[1].shape = (layers[1], n)
268
       11 11 11
269
       # Retrieve parameters
270
       w = params['w']
271
272
       b = params['b']
       L = len(w) # Number of layers excluding output layer
273
       n = x.shape[1]
       # Set empty caches
275
       a = \{\}
276
```

```
z = \{\}
277
       # Dropout on layer 0
278
       a[0] = x
279
       a[0] = a[0] * D[0]
280
       a[0] /= keep_prob[0]
281
       # Loop through hidden layers
282
       for l in range(1, L + 1):
            zl, al = linear_activation_forward(a[l - 1], w[l], b[l], activators[l - 1])
284
            al = al * D[1]
285
            al /= keep_prob[1]
286
            z[1] = z1
287
            a[1] = a1
288
       # Output layer
289
       z[L], a[L] = linear_activation_forward(a[L - 1], w[L], b[L], activators[-1])
290
291
       cache = \{'z' : z, 'a' : a\}
292
293
       return cache
294
295 def backward_propagation_dropout(x, y, params, cache, activators, D, keep_prob):
296
       Parameters
297
298
       x : array_like
299
           x.shape = (layers[0], n)
300
       y : array_like
301
            y.shape = (layers[-1], n)
302
       params : Dict[Dict[array_like]]
303
            params['w'][1] : array_like
304
                w[1].shape = (layers[1], layers[1-1])
305
            params['b'][1] : array_like
306
                b[1].shape = (layers[1], 1)
307
       cache : Dict[Dict[array_like]]
308
            cache['a'][1] : array_like
309
                a[1].shape = (layers[1], n)
310
            cache['z'][1] : array_like
311
                z[1].shape = (layers[1], n)
312
       activators : List[str]
313
            activators[1] = activation function of layer 1+1
314
       D : Dict[array_like]
315
           D[1].shape = (layer_dims[1], num_ex)
316
           D[1] = a Boolean array astype(int)
317
       keep_prob : List[float]
318
            keep\_prob[1] = The probabilty of keeping a node in layer 1
319
320
       Returns
321
       _____
322
       grads : Dict[Dict]
323
```

```
grads['dw'][1] : array_like
324
                dw[1].shape = w[1].shape
325
            grads['db'][1] : array_like
326
                db[1].shape = b[1].shape
327
328
       ## Retrieve parameters
329
       a = cache['a']
       z = cache['z']
331
       w = params['w']
332
       n = x.shape[1]
333
       L = len(z)
334
335
       ## Compute deltas
336
       delta = \{\}
337
       delta[L] = a[L] - y
338
       for 1 in reversed(range(1, L)):
339
            deltal = linear_activation_backward(delta[1 + 1], z[1], w[1 + 1], activators
340
            deltal = deltal * D[1]
341
            deltal /= keep_prob[1]
342
            delta[1] = deltal
343
344
       ## Compute gradients
345
       dw = \{\}
346
       db = \{\}
347
348
       for l in range(1, L + 1):
            db[1] = (1 / n) * np.sum(delta[1], axis=1, keepdims=True)
350
            assert(db[1].shape == (w[1].shape[0], 1))
351
            dw[1] = (1 / n) * delta[1] @ a[1 - 1].T
352
            assert(dw[1].shape == w[1].shape)
353
       grads = {'w' : dw, 'b' : db}
354
       return grads
355
356
358 ## Forward and Backward Propagation with L2-Regularization
359 def forward_propagation(x, params, activators):
       11 11 11
360
361
       Parameters
       -----
362
       x : array_like
363
           x.shape = (layers[0] n)
364
       params : Dict[Dict]
365
366
            params['w'][1] : array_like
                wl.shape = (layers[1], layers[1-1])
367
            params['b'][l] : array_like
368
                bl.shape = (layers[l], 1)
369
       activators : List[str]
```

```
activators[1] = activation function of layer 1+1
371
       Returns
372
       -----
373
       cache : Dict[Dict]
374
            cache['z'][1] : array_like
375
                z[1].shape = (layers[1], n)
376
            cache['a'][l] : array_like
                a[1].shape = (layers[1], n)
378
       ,, ,, ,,
379
       # Retrieve parameters
380
       w = params['w']
381
       b = params['b']
382
       L = len(w) # Number of layers excluding output layer
383
       n = x.shape[1]
384
       # Set empty caches
385
       a = \{\}
386
387
       z = \{\}
       # Initialize a
388
       a[0] = x
389
       for l in range(1, L + 1):
390
            z[1], a[1] = linear_activation_forward(a[1 - 1], w[1], b[1], activators[1 -
391
392
       cache = \{'a' : a, 'z' : z\}
393
       return cache
394
395
  def backward_propagation(x, y, params, cache, activators, lambda_=0.0):
396
397
       Parameters
398
399
       x : array_like
400
           x.shape = (layers[0], n)
401
       y : array_like
402
           y.shape = (layers[-1], n)
403
       params : Dict[Dict[array_like]]
404
            params['w'][1] : array_like
405
                w[l].shape = (layers[l], layers[l-1])
406
            params['b'][1] : array_like
407
                b[1].shape = (layers[1], 1)
408
       cache : Dict[Dict[array_like]]
409
            cache['a'][1] : array_like
410
                a[1].shape = (layers[1], n)
411
            cache['z'][1] : array_like
412
413
                z[1].shape = (layers[1], n)
       activators : List[str]
414
            activators[1] = activation function of layer 1+1
415
       lambda_ : float
416
           Default: 0.0
417
```

```
418
                   Returns
419
                    _____
420
                    grads : Dict[Dict]
421
                               grads['w'][l] : array_like
422
                                           dw[1].shape = w[1].shape
423
                               grads['b'][1] : array_like
                                           db[1].shape = b[1].shape
425
                    ,, ,, ,,
426
                   ## Retrieve parameters
427
                   a = cache['a']
428
                    z = cache['z']
429
                   w = params['w']
430
                   n = x.shape[1]
431
                   L = len(z)
432
433
                   ## Compute deltas
434
                    delta = {}
435
                    delta[L] = a[L] - y
436
                    for 1 in reversed(range(1, L)):
437
                               delta[1] = linear_activation_backward(delta[1 + 1], z[1], w[1 + 1], activatorical variables and variables are supported by the support of t
438
                   ## Compute gradients
440
                   dw = \{\}
441
                   db = \{\}
442
                    for l in range(1, L + 1):
                               db[1] = (1 / n) * np.sum(delta[1], axis=1, keepdims=True)
444
                               assert(db[1].shape == (w[1].shape[0], 1))
445
                               dw[1] = (1 / n) * (delta[1] @ a[1 - 1].T + lambda_ * w[1])
446
                               assert(dw[1].shape == w[1].shape)
447
                    grads ={'w' : dw, 'b' : db}
448
                    return grads
449
450
452 ## Compute the (L2-regulated) cost
453 def compute_cost(y, params, cache, lambda_=0.0):
                    11 11 11
454
                    Parameters
455
                    -----
456
                   y : array_like
457
                               y.shape = (layers[-1], n)
458
                    params : Dict[Dict[array_like]]
459
460
                               params['w'][1] : array_like
                                          w[l].shape = (layers[l], layers[l-1])
461
                               params['b'][l] : array_like
462
                                           b[1].shape = (layers[1], 1)
463
                    cache : Dict[Dict[array_like]]
464
```

```
cache['z'][1] : array_like
465
                z[1].shape = (layers[1], n)
466
            cache['a'][1] : array_like
467
                a[1].shape = (layers[1], n)
468
       lambda_ : float
469
            Default: 0.0
470
       Returns
472
       _____
473
       cost : float
474
            The cost evaluated at y and aL
475
476
       ## Retrieve parameters
477
       n = y.shape[1]
478
       a = cache['a']
479
       w = params['w']
480
481
       L = len(a)
       aL = a[L - 1]
482
483
       ## Regularization term
484
       R = 0
485
       for l in range(1, L):
486
            R += np.sum(w[1] * w[1])
487
       R \star = (lambda_ / (2 \star n))
488
489
       ## Unregularized cost
       J = (-1 / n) * (np.sum(y * np.log(aL)) + np.sum((1 - y) * np.log(1 - aL)))
491
492
       ## Total Cost
493
       cost = J + R
494
       cost = float(np.squeeze(cost))
495
       return cost
496
497
498
499 ## Update parameters via gradient descent
500 def update_parameters(params, grads, learning_rate=0.01):
       n n n
501
502
       Parameters
       -----
503
       params : Dict[Dict]
504
            params['w'][1] : array_like
505
                w[1].shape = (layers[1], layers[1-1])
506
            params['b'][1] : array_like
507
                b[1].shape = (layers[1], 1)
508
       grads : Dict[Dict]
509
            grads['w'][l] : array_like
510
                dw[1].shape = w[1].shape
511
```

```
grads['b'][l] : array_like
512
                db[1].shape = b[1].shape
513
       learning_rate : float
514
            Default: 0.01
515
            The learning rate for gradient descent
516
517
       Returns
       _____
519
520
       params : Dict[Dict]
            params['w'][1] : array_like
521
                w[1].shape = (layers[1], layers[1-1])
522
            params['b'][1] : array_like
523
                b[1].shape = (layers[1], 1)
524
525
       ## Retrieve parameters
526
       w = copy.deepcopy(params['w'])
527
528
       b = copy.deepcopy(params['b'])
       L = len(w)
529
530
       ## Retrieve gradients
531
       dw = grads['w']
532
       db = grads['b']
533
534
       ## Perform update
535
       for l in range(1, L + 1):
536
            w[1] = w[1] - learning_rate * dw[1]
537
            b[1] = b[1] - learning_rate * db[1]
538
539
       params = \{'w' : w, 'b' : b\}
540
       return params
541
542
543
544
545
546
547
548
549
550
551 #### Dropout NN Model ####
552 def model_nn(x, y, hidden_layer_sizes, activators, keep_prob=1.0, num_iters=10000,
553
554
       Parameters
       _____
555
       x : array_like
556
            x.shape = (layers[0], n)
557
       y : array_like
558
```

```
y.shape = (layers[-1], n)
559
       hidden_layer_sizes : List[int]
560
           The number nodes layer 1 = hidden_layer_sizes[1-1]
561
       activators : List[str]
562
           activators[1] = activation function of layer 1+1
563
       keep_prob : List[float] | float
564
           keep_prob[1] = The probabilty of keeping a node in layer 1
           keep_prob = The same probability for all input and hidden layers
566
       num_iters : int
567
           Number of iterations with which our model performs gradient descent
568
       print_cost : Boolean
569
           If True, print the cost every 1000 iterations
570
571
       Returns
572
       _____
573
       params : Dict[Dict]
574
575
           params['w'][1] : array_like
               w[l].shape = (layers[l], layers[l-1])
576
           params['b'][1] : array_like
577
               b[1].shape = (layers[1], 1)
578
       cost : float
579
           The final cost value for the optimized parameters returned
581
       ## Set dimensions and Initialize parameters
582
       n, layers = dim_retrieval(x, y, hidden_layer_sizes)
583
       params = initialize_parameters_random(layers)
585
       ## Expand keep_prob to a list if it's a single float
586
       if isinstance(keep_prob, float):
587
           keep_prob = [keep_prob] * (len(layers) - 1)
588
589
       # main gradient descent loop
590
       for i in range(num_iters):
591
           D = dropout_matrices(layers, n, keep_prob)
592
           cache = forward_propagation(x, params, activators, D, keep_prob)
593
           cost = compute_cost(cache, y)
594
           grads = backward_propagation(x, y, params, cache, activators, D, keep_prob)
595
           params = update_parameters(params, grads)
596
597
           if print_cost and i % 1000 == 0:
598
                print(f'Cost_after_iteration_{i}:_{cost}')
599
600
601
       return params, cost
602
603
```

604 605

```
606
607
608
609 ######## TESTING #########
610 def test_dropout_nn():
       x = np.random.rand(4, 500)
611
       y = np.random.rand(1, 500)
612
       hidden_layer_sizes = [4, 5, 4]
613
       activators = ['relu', 'relu', 'relu', 'sigmoid']
614
       keep\_prob = 1.0
615
       params, cost = model_nn(x, y, hidden_layer_sizes, activators, keep_prob)
616
       print(params)
617
618
619
620
621 ####### Functions to use later
622 def reshape_labels(num_labels, y):
       ,, ,, ,,
623
       Parameters
624
625
       num_labels : int
626
            The number of possible labels the output y may take
627
       y : array_like
628
            y.size = n
629
            y[i] takes values in {1,2,...,num_labels}
630
       Returns
631
       Y : array_like
632
            Y.shape = (num_lables, n)
633
            Y[i][j] = 1 if y[j] = i, Y[i][j] = 0 otherwise
634
635
       ,, ,, ,,
636
637
       if num_labels <= 2:</pre>
638
            return y
639
       else:
640
            omega = []
641
            for i in range(num_labels):
642
                omega.append(np.eye(1, num_labels, i)) # the standard i-th basis vector
643
644
            Y = np.concatenate([omega[i] for i in y], axis=0).T
645
            for i in range(num_labels):
646
                for j in range(n):
647
                     if y[j] == i:
648
                         assert Y[i][j] == 1
649
                     else:
650
                         assert Y[i][j] == 0
651
            return Y
652
```

B activators.py

```
1 import numpy as np
3 ACTIVATORS = ['relu', 'sigmoid', 'tanh', 'linear', 'softmax']
5 ## Activator functions
6 # The (leaky-)ReLU function
7 def relu(z, beta=0.0):
      11 11 11
      Parameters
9
      -----
10
      z : array_like
11
      beta : float
^{12}
13
      Returns
      -----
15
      r : array_like
16
           The (broadcasted) ReLU function when beta=0, the leaky-ReLU otherwise.
17
      dr : array_like
18
          The (broadcasted) derivative of the (leaky-)ReLU function
19
20
      # Change scalar to array if needed
21
      z = np.array(z)
22
      # Compute value of ReLU(z)
23
      r = np.maximum(z, beta * z)
24
      # Compute differential ReLU'(z)
      dr = ((^{(z < 0))} * 1) + ((z < 0) * beta)
26
      return r, dr
27
28
29 # The sigmoid function
30 def sigmoid(z):
      n n n
31
      Parameters
32
      _____
      z : array_like
34
35
      Returns
36
37
      sigma : array_like
38
           The (broadcasted) value of the sigmoid function evaluated at z
39
```

```
dsigma : array_like
40
           The (broadcasted) derivative of the sigmoid function evaluate at z
41
42
      # Compute value of sigmoid
43
      sigma = (1 / (1 + np.exp(-z)))
44
      # Compute differential of sigmoid
45
      dsigma = sigma * (1 - sigma)
46
      return sigma, dsigma
47
48
49 # The hyperbolic tangent function
50 def tanh(z):
      11 11 11
51
      Parameters
52
53
      z : array_like
54
55
56
      Returns
      phi : array_like
57
           The (broadcasted) value of the hyperbolic tangent function evaluated at z
58
      dphi : array_like
59
           The (broadcasted) derivative of hyperbolic tangent function evaluated at z
60
61
      # Compute value of tanh
62
      phi = np.tanh(z)
63
      # Compute differential of tanh
64
      dphi = 1 - (phi * phi)
65
      return phi, dphi
66
68 # The linear activator function
69 def linear(z):
      11 11 11
70
      Parameters
71
       -----
72
      z : array_like
73
74
      Returns
75
76
77
      id : array_like
      d_id
78
79
      id = z
80
      d_id = np.ones(z.shape)
81
```

return id, d_id

C The Reverse Differential

In order to apply gradient descent to our trainable parameters, we obviously have a need to compute various gradients of the cost function which is essentially a large functional composition. Computing intermediate gradients along this computation doesn't make sense mathematically as stated. However, the usual exterior derivative works very well in this context. However, since we would like to vectorize this process, the exterior derivative falls short for our implementation purposes. This leads us to a related form of differentiation, namely, the reverse derivative. We give here a brief exposition of the reverse differential in the setting of Riemannian geometry, and then use Euclidean spaces as our examples. C.f., [1], [2], [3], [4], [5], [6], [8], [9], [10], [11], [12].

We first recall the definition of the exterior derivative between smooth manifolds.

Definition C.1. Suppose M, N are smooth manifolds and $f: M \to N$ is smooth. Then for $p \in M$, the (exterior) differential of f at p, denoted df_p , is the linear map

$$df_p: T_pM \to T_{f(p)}N$$

, such that for any $\xi \in T_nM$ and any $g \in C^{\infty}(N)$, we have that

$$df_p(\xi)[g] = \xi[g \circ f].$$

Example C.2. Suppose $f: \mathbb{R}^n \to \mathbb{R}^m$ is smooth with coordinates (x^j) on \mathbb{R}^n and coordinates (y^j) on \mathbb{R}^m . Then at a point $p \in \mathbb{R}^n$, we have the differential in coordinates

$$df_p = \frac{y^i \circ f}{\partial x^j}(p) dx^j \Big|_p \otimes \frac{\partial}{\partial y^i} \Big|_{f(p)}.$$

In matrix form, we have the Jacobian representation of df_p , denoted $Jf_p \in \mathbb{R}^{m \times n}$, given by

$$Jf_{p} = \begin{bmatrix} \frac{\partial f^{1}}{\partial x^{1}} \Big|_{p} & \cdots & \frac{\partial f^{1}}{\partial x^{n}} \Big|_{p} \\ \frac{\partial f^{2}}{\partial x^{1}} \Big|_{p} & \cdots & \frac{\partial f^{2}}{\partial x^{n}} \Big|_{p} \\ \vdots & \ddots & \vdots \\ \frac{\partial f^{m}}{\partial x^{1}} \Big|_{p} & \cdots & \frac{\partial f^{m}}{\partial x^{n}} \Big|_{p} \end{bmatrix},$$

where $f^i := y^i \circ f$.

Moreover, for any fixed $p \in \mathbb{R}^n$, we may identify \mathbb{R}^n with the tangent space $T_p\mathbb{R}^n$ via

$$v = (v^1, ..., v^n) \in \mathbb{R}^n \iff \vec{v} = v^j \left. \frac{\partial}{\partial x^j} \right|_p \in T_p \mathbb{R}^n.$$

It then follows that

$$df_p(\vec{v}) = v^j \frac{\partial f^i}{\partial x^j} \Big|_p \frac{\partial}{\partial y^i} \Big|_{f(p)}$$

$$\iff \left(v^j \frac{\partial f^1}{\partial x^j} \Big|_p, ..., v^j \frac{\partial f^m}{\partial x^j} \Big|_p \right)$$

$$= Jf_p v$$

reverseDifferential

Definition C.3. Suppose (M,g) and (N,h) are Riemannian manifolds and suppose $f: M \to N$ is smooth. Then for $p \in M$, the reverse differential, denoted rf_p , is the linear map

$$rf_p: T_{f(p)}M \to T_pM$$

such that for any $\xi \in T_pM$ and any $\zeta \in T_{f(p)}N$, the following equality holds

$$g(rf_p(\zeta), \xi) = h(\zeta, df_p(\xi)).$$

Example C.4. Suppose $f: \mathbb{R}^n \to \mathbb{R}^m$ is smooth with coordinates (x^j) on \mathbb{R}^n and coordinates (y^j) on \mathbb{R}^m . Then at a point $p \in \mathbb{R}^n$, we have the reverse differential in coordinates

$$rf_p = \sum_{i=1}^m \sum_{j=1}^n \frac{\partial f^i}{\partial x^j} \bigg|_p dy^i \bigg|_{f(p)} \otimes \frac{\partial}{\partial x^j} \bigg|_p,$$

where $f^i := y^i \circ f$.

In matrix form, we have the Jacobian representation of rf_p , denoted $J^T f_p \in \mathbb{R}^{n \times m}$, given by

$$J^{T} f_{p} = \begin{bmatrix} \frac{\partial f^{1}}{\partial x^{1}} \Big|_{p} & \cdots & \frac{\partial f^{m}}{\partial x^{1}} \Big|_{p} \\ \frac{\partial f^{1}}{\partial x^{2}} \Big|_{p} & \cdots & \frac{\partial f^{m}}{\partial x^{2}} \Big|_{p} \\ \vdots & \ddots & \vdots \\ \frac{\partial f^{1}}{\partial x^{n}} \Big|_{p} & \cdots & \frac{\partial f^{m}}{\partial x^{n}} \Big|_{p} \end{bmatrix}$$

Moreover, for $w \in \mathbb{R}^m \iff \vec{w} \in T_{f(p)}\mathbb{R}^m$ and $v \in \mathbb{R}^n \iff \vec{v} \in T_p\mathbb{R}^n$, it follows that

$$\langle rf_p(\vec{w}), \vec{v} \rangle_{T_p \mathbb{R}^n} = \langle \vec{w}, df_p(\vec{v}) \rangle_{T_{f(p)} \mathbb{R}^m}$$

$$= \langle w, Jf_p(v) \rangle_{\mathbb{R}^m}$$

$$= \langle J^T f_p(w), v \rangle_{\mathbb{R}^n},$$

and hence that

$$rf_p(\vec{w}) = J^T f_p(w).$$

Proposition C.5. Suppose we have the compositional diagram

$$(M,g) \xrightarrow{\phi} (N,h) \xrightarrow{\psi} (Q,k)$$

and we let $f := \psi \circ \phi : (M,g) \to (Q,k)$. Then for any $p \in M$, the reverse derivative satisfies

$$rf_p = r\phi_p \circ r\psi_{\phi(p)}.$$

Proof: Fix $p \in M$, and let $\xi \in T_pM$ and $\zeta \in T_{f(p)}Q$. Then we have that

$$g(rf_p(\zeta), \xi) = k(\zeta, df_p(\xi))$$

$$= k(\zeta, d\psi_{\phi(p)} \circ d\phi_p(\xi))$$

$$= h(r\psi_{\phi(p)}(\zeta), d\phi_p(\xi))$$

$$= g(r\phi_p(r\psi_{\phi(p)}(\zeta)), \xi)$$

$$= g(r\phi_p \circ r\psi_{\phi(p)}(\zeta), \xi), \xi),$$

as desired.

The following needs to be refined further still.

Example C.6. Suppose $f:(\mathbb{R}^{m\times n},(X_j^i),F)\to(\mathbb{R},(t),\delta)$ is smooth, where F is the Frobenius inner product. Suppose $v\in T_P\mathbb{R}^{m\times n}\iff V\in\mathbb{R}^{m\times n}$ are represented via

$$v = v_j^i \left. \frac{\partial}{\partial X_j^i} \right|_P \leftrightsquigarrow V = \left[v_j^i \right],$$

and in coordinates, we have that

$$df_P = \left. \frac{\partial f}{\partial X_j^i} \right|_P dX_j^i \right|_P.$$

The matrix-Jacobian-representation of f at P, denoted $Jf_P \in \mathbb{R}^{m \times n}$ is given by

$$Jf_{P} = \begin{bmatrix} \frac{\partial f}{\partial X_{1}^{1}} |_{P} & \cdots & \frac{\partial f}{\partial X_{n}^{1}} |_{P} \\ \frac{\partial f}{\partial X_{1}^{2}} |_{P} & \cdots & \frac{\partial f}{\partial X_{n}^{2}} |_{P} \\ \vdots & \ddots & \vdots \\ \frac{\partial f}{\partial X_{1}^{m}} |_{P} & \cdots & \frac{\partial f}{\partial X_{n}^{m}} |_{P} \end{bmatrix}.$$

It then follows that

$$df_P(v) = v_j^i \frac{\partial f}{\partial X_j^i} \Big|_P$$
$$= \langle V, Jf_P \rangle_{F(m,n)}.$$

Similarly, if $\tau \in \mathbb{R} \iff \vec{\tau} = \tau \frac{d}{dt}|_{f(P)} \in T_{f(P)}\mathbb{R}$, we see the reverse differential given in coordinates

$$rf_P = \sum_{i=1}^m \sum_{j=1}^n \frac{\partial f}{\partial X_j^i} \bigg|_P dt \bigg|_P \otimes \frac{\partial}{\partial X_j^i} \bigg|_{f(P)},$$

evaluates to

$$rf_p(\vec{\tau}) = \tau \sum_{i=1}^m \sum_{j=1}^n \frac{\partial f}{\partial X_j^i} \bigg|_P \frac{\partial}{\partial X_j^i} \bigg|_{f(P)},$$

and hence that

$$\langle rf_P(\vec{\tau}), v \rangle_{T_P \mathbb{R}^{m \times n}} = \langle \vec{\tau}, df_P(v) \rangle_{T_{f(P)} \mathbb{R}}$$
$$= \tau df_P(v)$$
$$= \tau \langle V, Jf_P \rangle_{F(m,n)}$$

Lemma C.7. Suppose $f: \mathbb{R}^{n \times m} \to \mathbb{R}^k$, and for $P \in \mathbb{R}^{n \times m}$, let $R = rf_P$. Then $R \in \mathbb{R}^k_n^m$ is rank (1,2)-tensor written in coordinates as

$$R = R_i^{\mu}{}_{\nu} \frac{\partial}{\partial X^{\mu}_{\cdot}} \otimes dx^i,$$

and the components is given by

$$R_i^{\mu}{}_{\nu} = \frac{\partial f^i}{\partial X^{\nu}_{\mu}}$$

Proof: Considering the basis vectors $\frac{\partial}{\partial X_{\mu}^{\nu}} \in T_P \mathbb{R}^{n \times m}$ and $\frac{\partial}{\partial x^i} \in T_{f(P)} \mathbb{R}^k$ we have that

$$\begin{split} R_{i}{}^{\mu}{}_{\nu} &= \left\langle R \left(\frac{\partial}{\partial x^{i}} \right), \frac{\partial}{\partial X_{\mu}^{\nu}} \right\rangle_{F} \\ &= \left\langle \frac{\partial}{\partial x^{i}}, df_{P} \left(\frac{\partial}{\partial X_{\mu}^{\nu}} \right) \right\rangle_{\mathbb{R}^{k}} \\ &= \left\langle \frac{\partial}{\partial x^{i}}, \frac{\partial f^{\alpha}}{\partial X_{\mu}^{\nu}} \frac{\partial}{\partial x^{\alpha}} \right\rangle_{\mathbb{R}^{k}} \\ &= \delta_{i\alpha} \frac{\partial f^{\alpha}}{\partial X_{\mu}^{\nu}}, \end{split}$$

as desired.

References

- [1] Henk P Barendregt and Erik Barendsen. Introduction to lambda calculus. In Aspens Workshop on Implementation of Functional Languages, Göteborg. Programming Methodology Group, University of Göteborg and Chalmers University of Technology, volume 85, 1988.
- [2] Richard F Blute, J Robin B Cockett, and Robert AG Seely. Cartesian differential categories. *Theory and Applications of Categories*, 22(23):622–672, 2009.
- [3] Robin Cockett, Geoffrey Cruttwell, Jonathan Gallagher, Jean-Simon Pacaud Lemay, Benjamin MacAdam, Gordon Plotkin, and Dorette Pronk. Reverse derivative categories. arXiv preprint arXiv:1910.07065, 2019.
- [4] Geoffrey SH Cruttwell, Bruno Gavranović, Neil Ghani, Paul Wilson, and Fabio Zanasi. Categorical foundations of gradient-based learning. In *European Symposium on Programming*, pages 1–28. Springer, Cham, 2022.
- [5] Brendan Fong, David Spivak, and Rémy Tuyéras. Backprop as functor: A compositional perspective on supervised learning. In 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–13. IEEE, 2019.
- [6] Bruno Gavranović. Compositional deep learning. arXiv preprint arXiv:1907.08292, 2019.
- [7] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. *CoRR*, abs/1502.03167, 2015.
- [8] Saunders Mac Lane. Categories for the working mathematician, volume 5. Springer Science & Business Media, 2013.
- [9] Carol Mak and Luke Ong. A differential-form pullback programming language for higher-order reverse-mode automatic differentiation. arXiv preprint arXiv:2002.08241, 2020.
- [10] Peter Selinger. A survey of graphical languages for monoidal categories. In *New structures for physics*, pages 289–355. Springer, 2010.

- [11] Dan Shiebler, Bruno Gavranović, and Paul Wilson. Category theory in machine learning. arXiv preprint arXiv:2106.07032, 2021.
- [12] Robert Edwin Wengert. A simple automatic derivative evaluation program. Communications of the ACM, 7(8):463–464, 1964.