Artificial Intelligence

Institute of Web Science and Technologies
Department of Computer Science
University of Koblenz-Landau

Submission until: 11.05.2022, 11:00 a.m.

Tutorial on: 12.05.2022 8:00 a.m. and 13.05.2022 10:00 a.m.

GROUP HOLLERITH - SOLUTION

Group Members:

- 1. Saborni Shernaj Binte Elahi (220202426) (saborni@uni-koblenz.de)
- 2. M Rashedul Hasnat (220202415) (rhasnat@uni-koblenz.de)
- 3. Kamrun Nahar(220202410) (nahar@uni-koblenz.de)

1 Propositional logic (50 Points)

Assume the following propositions:

- A = "Alice visits the party"
- B = "Bob visits the party"
- C = "Charlie visits the party"
- D = "Daniel visits the party"

Formulate the following sentences in propositional logic over the signature $At = \{A, B, C, D\}$:

- a) Bob visits the party and Alice doesn't.
- b) Daniel and Bob visit the party if and only if Charlie also visits the party.
- c) If Alice and Bob visit the party, then Charlie does as well—but only if Daniel is not visiting the party.
- d) Charlie visits the party if and only if not both Bob and Alice visit the party, or at least Daniel visits the party.
- e) If Alice visits the party, then Bob and Charlie do as well—if Alice does not visit the party, then Charlie and Daniel visit the party.

SOLUTION:

- 1. a) B ∧ (¬A)
 - b) $(D \wedge B) \leftrightarrow C$
 - c) $(A \land B) \rightarrow (C \leftrightarrow (\neg D))$
 - d) $C \leftrightarrow ((\neg B \land \neg A) \lor D)$
 - e) $(A \rightarrow (B \land C)) \lor (\neg A \rightarrow (C \land D))$

2 Propositional logic (50 Points)

Assume a safe that has four combination locks represented through the colors yellow, red, blue and violet. Each combination lock can represent one number ranging from 1 to 3.

Formulate the following sentences in propositional logic over the signature

$$At = \{y_1, y_2, y_3, r_1, r_2, r_3, b_1, b_2, b_3, v_1, v_2, v_3\}$$

whereas x_i is true if the lock with color x (where y stands for yellow, r for red, b for blue and v for violet) is set to number i:

Example: The yellow lock is either set to 1 or 2.

Formula: $y_1 \vee y_2$

- a) If the red lock is set to 3, then the yellow and the blue lock are set to the same number.
- b) At least one lock must be set to 3.
- c) If the yellow lock is not set to 3, then the red one cannot be set to 2.
- d) If the red lock is set to 1, then the blue one must be set to 2.
- e) If the blue lock is set to 2, there must be at least two other locks be set to 1.

SOLUTION:

- 2. a) $r_3 \rightarrow ((y_1 \wedge b_1) \vee (y_2 \wedge b_2) \vee (y_3 \wedge b_3))$
 - b) $y_3 \vee r_3 \vee b_3 \vee v_3$
 - c) $(\neg y_3) \rightarrow (\neg r_2)$
 - d) $r_1 \rightarrow b_2$
 - e) $b_2 \rightarrow ((y_1 \wedge r_1) \vee (y_1 \wedge v_1) \vee (r_1 \wedge v_1))$