- 15. (New) The ceramic heater according to Claim 4, wherein a semiconductor wafer is heated while being held by a supporting pin at a distance of 1 to 5000 μ m apart from the work-heating surface of the ceramic heater.
- 16. (New) The ceramic heater according to Claim 5, wherein a semiconductor wafer is heated while being held by a supporting pin at a distance of 1 to 5000 μ m apart from the work-heating surface of the ceramic heater.
- 17. (New) The ceramic heater according to Claim 1, wherein thermal conductivity of said ceramic substrate is 130 to 200 W/m·K.
- 18. (New) The ceramic heater according to Claim 2, wherein thermal conductivity of said ceramic substrate is 130 to 200 W/m·K.
- 19. (New) The ceramic heater according to Claim 4, wherein thermal conductivity of said ceramic substrate is 130 to 200 W/m·K.
- 20. (New) The ceramic heater according to Claim 5, wherein thermal conductivity of said ceramic substrate is 130 to 200 W/m·K.
- 21. (New) The ceramic heater according to Claim 1, wherein a thickness of said ceramic substrate is 0.5 to 5 mm.
- 22. (New) The ceramic heater according to Claim 2, wherein a thickness of said ceramic substrate is 0.5 to 5 mm.
- 23. (New) The ceramic heater according to Claim 4, wherein a thickness of said ceramic substrate is 0.5 to 5 mm.
- 24. (New) The ceramic heater according to Claim 5, wherein a thickness of said ceramic substrate is 0.5 to 5 mm.
- 25. (New) The ceramic heater according to Claim 1, wherein said ceramic substrate is in a form of a disk.

- 26. (New) The ceramic heater according to Claim 2, wherein said ceramic substrate is in a form of a disk.
- 27. (New) The ceramic heater according to Claim 1, wherein the ceramic heater is a heater for heating a semiconductor wafer.
- 28. (New) The ceramic heater according to Claim 2, wherein the ceramic heater is a heater for heating a semiconductor wafer.

IN THE ABSTRACT

Please delete the Abstract in its entirety and replace as follows:

A ceramic heater includes a ceramic substrate and a heating element which is disposed either on the surface or internally of the substrate. A work-heating surface has a surface roughness of Rmax = 0.05 to 200 μ m.

REMARKS

Favorable reconsideration of this application, as presently amended and in light of the following discussion, is respectfully requested.

Claims 1-28 are presently pending in this application, Claims 13-28 having been added by the present Amendment.

In the outstanding Office Action, the Abstract was objected to because of informalities; Claim 1 was rejected under 35 U.S.C. 102(b) as being anticipated by Kobayashi (U.S. Patent 5,721,062); Claims 2, 4 and 5 were rejected under 35 U.S.C. 102(b) as being anticipated by Okuda et al. (U.S. Patent 5,750,958); Claims 3 and 6-12 were rejected under 35 U.S.C 103(a) as being unpatentable over Kobayashi (U.S. Patent 5,721,062) in view of Kawada et al. (U.S. Patent 5,665,260) and further in view of Miyata (2002/0027131).