Module 5 - Likelihood Over Pedigrees

(Fundamentals of) Statistical Genetics

Lei Sun

Department of Statistical Sciences, FAS Division of Biostatistics, DLSPH University of Toronto

Outline

Likelihood Over Pedigrees (Expanding Chapter 4.1 Preliminaries)

- \blacksquare Joint distribution of phenotype Y and genotype G in nuclear families
- Marginal distribution of parents G
- Conditional distribution of offsprings G given parents G
- Conditional probability (penetrance) of Y given G
- Discussion of joint distribution of Y and G in general pedigrees

What's Value of Learning This? e.g. Genetic Counselling

Cystic Fibrosis (CF) is a recessive disease.

- If both parents are carriers, what's the chance that their first born will have CF?
- If both parents are carriers, what's the chance that both their kids will have CF?
- If both parents do not have CF, what's the chance that their first born will have CF?

Likelihood/Probability Over Pedigree Data

- The approach used to construct a likelihood for pedigree data given in Section 4.1 serves as a basis for other analyses in linkage and association discussed in later chapters.
- Simple nuclear family/pedigree only:
 - Two parents, two offsprings.
 - Female: circle
 - Male: square
- More complex pedigrees discussed in more advanced stat gene course.
- Some pedigree can be really COMPLEX, e.g. The Hutterites data (Dr. Carole Ober, University of Chicago): single one 13-generation pedigree with 1623 individuals (descendants of 64 Hutterite ancestors; quite a bit inbreeding).

Pedigree	Relationship
	MZ-twin
	parent-offspring
	full-sib
	half-sib+first-cousin
	half-sib
	grandparent-grandchild
	avuncular
	first-cousin
	half-avuncular
	half-first-cousin
	unrelated

Joint Distribution of Y and G - Notations

- d and D: two alleles of a biallelic marker.
- $G = \{dd, dD, DD\}$: the three genotypes.
- $\{0,1,2\}$: alternative (and conventional) way to code the genotypes; counting the number of copies of the D allele.
- p: the allele frequency of allele D.
- X_1, X_2 : genotype variables for siblings 1 and 2, $X_i \in \{0, 1, 2\}$. Y_1, Y_2 : phenotype variables for siblings 1 and 2.
- P_1, P_2 : genotype variables for parents 1 and 2, $P_i \in \{0, 1, 2\}$.
- f(.): probability density function, e.g. $P(X_1 = x_1) = f(x_1)$.
- Convention: capital letters (e.g. X_1 and X_2) denote random variables, and lower case letters (e.g. x_1 and x_2) denote the particular values of the random variables.

Joint Distribution of Y and G I

Several systematic steps involved in the joint distribution:

$$f(y_1, y_2, x_1, x_2, g_1, g_2) = P(Y_1 = y_1, Y_2 = y_2, X_1 = x_1, X_2 = x_2, P_1 = g_1, P_2 = g_2),$$

e.g. $P(Y_1 = 1, Y_2 = 1, X_1 = dD, X_2 = DD, P_1 = dD, P_2 = DD) = ?$

Parents *G* assuming random mating:

$$f(g_1, g_2) = P(P_1 = g_1, P_2 = g_2) = P(P_1 = g_1)P(P_2 = g_2) = f(g_1)f(g_2).$$

If we assume HWE then e.g.

$$P(P_1 = 1, P_2 = 2) = P(P_1 = dD, P_2 = DD) = P(P_1 = dD)P(P_2 = DD)$$

= $2p(1-p)p^2 = 2p^3(1-p)$.

Offsprings G: Note that there is NO independence here!

$$f(x_1, x_2) = P(X_1 = x_1, X_2 = x_2) \neq P(X_1 = x_1)P(X_2 = x_2).$$

Joint Distribution of Y and G II

→ Offsprings *G* **conditional on parents** *G*, assuming independent Mendelian segregation between offsprings.

$$f(x_1, x_2|g_1, g_2) = P(X_1 = x_1, X_2 = x_2|P_1 = g_1, P_2 = g_2)$$

$$= P(X_1 = x_1|P_1 = g_1, P_2 = g_2)P(X_2 = x_2|P_1 = g_1, P_2 = g_2)$$

$$= f(x_1|g_1, g_2)f(x_2|g_1, g_2).$$

If we assume Mendelian first law of segregation then e.g.

$$P(X_1 = 0, X_2 = 2 | P_1 = 1, P_2 = 2) = P(X_1 = dd, X_2 = DD | P_1 = dD, P_2 = DD)$$

$$= P(X_1 = dd | P_1 = dD, P_2 = DD) P(X_2 = DD | P_1 = dD, P_2 = DD) = 0!$$

$$P(X_1 = 1, X_2 = 2 | P_1 = 1, P_2 = 2) = P(X_1 = dD, X_2 = DD | P_1 = dD, P_2 = DD)$$

$$= P(X_1 = dD | P_1 = dD, P_2 = DD) P(X_2 = DD | P_1 = dD, P_2 = DD) = \frac{1}{2} \frac{1}{2} = \frac{1}{4}$$

Joint Distribution of Y and G III

Joint offsprings and parents G (Textbook Equation 4.1),

$$f(x_1, x_2, g_1, g_2) = P(X_1 = x_1, X_2 = x_2, P_1 = g_1, P_2 = g_2)$$

$$= P(X_1 = x_1, X_2 = x_2 | P_1 = g_1, P_2 = g_2) P(P_1 = g_1, P_2 = g_2)$$

$$= f(x_1 | g_1, g_2) f(x_2 | g_1, g_2) f(g_1) f(g_2).$$

e.g.

$$P(X_1 = 1, X_2 = 2, P_1 = 1, P_2 = 2)$$

$$= P(X_1 = 1, X_2 = 2 | P_1 = 1, P_2 = 2) P(P_1 = 1, P_2 = 2) = \frac{1}{4} 2p^3 (1 - p).$$

Again, not all combinations are possible, e.g.

$$P(X_1 = dd, X_2 = DD, P_1 = dD, P_2 = DD) = 0.$$

Joint Distribution of Y and G IV

There are two components in the joint probability formulation:

$$P(X_1 = x_1, X_2 = x_2, P_1 = g_1, P_2 = g_2)$$

$$= P(X_1 = x_1, X_2 = x_2 | P_1 = g_1, P_2 = g_2) P(P_1 = g_1, P_2 = g_2)$$

- Parents generation, P(P₁, P₂), needs concepts and models from population genetics (e.g. population allele frequency, HWE).
- Offsprings generation, $P(X_1, X_2)$, needs concepts and models from DNA segregation transmission between generations, $P(X_1, X_2 | P_1, P_2)$ (e.g. Mendel's first law of segregation).
- Use of Bayes' rule for the conditional probability.

Joint Distribution of Y and G V

How do we get the marginal distribution of offsprings G?

$$egin{aligned} fig(x_1,x_2ig) &= Pig(X_1 = x_1,X_2 = x_2ig) \ &= \sum_{g_1,g_2} Pig(X_1 = x_1,X_2 = x_2,P_1 = g_1,P_2 = g_2ig) \ &= \sum_{g_1,g_2} fig(x_1|g_1,g_2ig) fig(x_2|g_1,g_2ig) fig(g_1ig) fig(g_2ig), \end{aligned}$$

where $g_1, g_2 \in \{dd, dD, DD\}$ or $\{0, 1, 2\}$.

- Calculations can be done by hand: a bit tedious, essentially going through the rows in Textbook Table 2.1, or
- Write a programming script: more efficient and adaptive and less prone to errors.
- A little exercise: $P(X_1 = 2, X_2 = 1) = P(X_1 = DD, X_2 = Dd) = ????$ (Check Textbook Page 50.)

Joint Distribution of Y and G VI

Adding the phenotype Y component (Textbook Equation (4.3)).

$$f(y_1, y_2, x_1, x_2, g_1, g_2) = f(y_1, y_2 | x_1, x_2, g_1, g_2) f(x_1, x_2, g_1, g_2)$$

= $f(y_1 | x_1) f(y_2 | x_2) f(x_1 | g_1, g_2) f(x_2 | g_1, g_2) f(g_1) f(g_2).$

Important assumptions needed for

$$f(y_1, y_2|x_1, x_2, g_1, g_2) = f(y_1, y_2|x_1, x_2) = f(y_1|x_1)f(y_2|x_2).$$

- A person's phenotype Y depends only on the genotype G of one single DSL of that individual. Reasonable only for simple Mendelian disorders.
- If there are environmental Es factors, Es tend to be correlated within family:

$$f(e_1, e_2) \neq f(e_1)f(e_2),$$

and we need more complex statistical models.

• Note that only if $E \perp X$, $f(e_1, e_2 | x_1, x_2) = f(e_1, e_2)$.

Joint Distribution of Y and G VII

$$f(y_1, y_2|x_1, x_2) = \sum_{e_1, e_2} f(y_1, y_2, e_1, e_2|x_1, x_2)$$

$$= \sum_{e_1, e_2} f(y_1, y_2|e_1, e_2, x_1, x_2) f(e_1, e_2|x_1, x_2)$$

$$= \sum_{e_1, e_2} f(y_1|e_1, x_1) f(y_2|e_2, x_2) f(e_1, e_2)$$

$$\neq \sum_{e_1} f(y_1|e_1, x_1) f(e_1) \sum_{e_2} f(y_2|e_2, x_2) f(e_2)$$

 If there are more than one disease susceptibility locus Gs, then Gs can be also correlated.

Back to the Genetic Counselling Example

Cystic Fibrosis (CF) is a recessive disease.

So the penetrances linking genotype G and phenotype Y are:

$$f_0 = P(Y = 1|g = dd) = 0, f_1 = P(Y = 1|g = dD) = 0, f_2 = P(Y = 1|g = DD) = 1.$$

If both parents are carriers, what's the chance that their first born will have CF?

A carriers means the genotype is Dd, and using the notations as before: Y for phenotype of an offspring, X for the genotype of the offspring and g_1 and g_2 for the genotypes of the two parents, then

$$P(Y_1 = 1|g_1 = Dd, g_2 = Dd)$$
= $P(Y_1 = 1, X_1 = DD|g_1 = Dd, g_2 = Dd) + 0 + 0$
= $P(Y_1 = 1|X_1 = DD)P(X_1 = DD|g_1 = Dd, g_2 = Dd)$
= $\frac{1}{4}$

- If both parents are carriers, what's the chance that both their kids will have CF?
- If both parents do not have CF, what's the chance that their first born will have CF?

Joint Distribution of Y and G - Beyond Siblings I

- Likelihood calculation over general pedigrees is a more advanced topic, requiring e.g.
 - ◆ Elston-Stewart Peeling algorithm.
 - ◆ Lander-Green Hidden Markov Model (HMM) algorithm.

Joint Distribution of Y and G - Beyond Siblings II

- We will touch on the basic ideas of these two algorithms in the linkage analysis (Parametric and nonparametric linkage analysis: a unified multipoint approach.), but not the mathematical details.
 - Need the concept of Markov and Hidden Markov Models (HMM).
 A tutorial on Hidden Markov Models and selected applications in speech recognition.
 - Need understanding of multi-locus inheritance model for jointly analyzing multiple genetic markers(later).

Joint Distribution of Y and G - Beyond Siblings III

- e.g. more advanced learning will allow us to
 - lacktriangle perform a two-point linkage analysis using the ES peeling algorithm. That is, calculate the likelihood for heta, the recombination fraction between the marker locus, and the unknown gene locus (left figure) and
 - calculate the posterior probability distribution of genetic material shared by the sib pair at each marker (right).

Exercises

Additional (a bit more advanced) exercises on likelihood over pedigree data.

What's Next

Chapter 4 - Aggregation, Heritability and Segregation Analysis