#### Recurrences and Master Theorem









#### Recurrences and Master Theorem

## Recurrence for divide and conquer sorting algorithms



One pass through the data reduces problem size by half. Process both halves

- Operation takes constant time c
- Base case takes time d

$$T(1) = d$$

$$T(n) = 2T(n/2) + nc$$

$$= nc + 2cn/2 + 4cn/4... + n/2*2c + nd$$

$$= cn log_2 n + nd$$

COMP20003 Algorithms and Data Structures

## Divide and Conquer: Recurrences to Master Theorem

Most common case:

$$T(n) = 2T(n/2) + n$$

General case:

$$T(n) = aT(n/b) + f(n)$$

$$f(n) \in \Theta(n^{d})$$

Most common case:

$$T(n) = 2T(n/2) + n$$
  
 $a=2, b=2, d=1$ 

=2, d=1

COMP20003 Algorithms and Data Structures 4-6

## Divide and Conquer: Recurrences to Master Theorem

• Familiar examples?

$$T(n) = T(n/2) + f(1)$$
  $a=1, b=2, d=0$ 

$$T(n) = 2T(n/2) + f(1)$$
  $a=2, b=2, d=0$  ?

COMP20003 Algorithms and Data Structures

## **Master Theorem for Divide and Conquer**



- T(n) = aT(n/b) + f(n) $f(n) \in \Theta(n^d)$
- T(n) closed form varies, depending on whether:
  - $d > log_{p}a$   $T(n) \in \Theta(n^d)$
  - $d = log_b a$   $T(n) \in \Theta(n^d log n)$
  - $d < log_b a$   $T(n) \in \Theta(n^{log} b^a)$

COMP20003 Algorithms and Data Structures

# Recurrences and Master Theorem

## Master Theorem for Divide and Conquer

- T(n) = aT(n/b) + f(n), where  $a \ge 1$ , b > 1,  $n^d$  asymptotically positive
- *T(n)* closed form varies, depending on whether:
  - $d > log_b a$
- $T(n) \in \Theta(n^d)$
- $d = log_b a$
- $T(n) \in \Theta(n^d \log n)$
- $d < log_b a$
- $T(n) \in \Theta(n^{\log_b a})$

## Where do $\Theta()$ solutions to the Master Theorem come from?



 $T(n) = aT(n/b) + f(n), f(n) \in \Theta(n^d)$ 

#### Size of subproblems decreases by b

- So base case reached after log<sub>b</sub>n levels
- Recursion tree *log<sub>b</sub>n* levels

#### Branch factor is a

• At kth level, have ak subproblems

#### At level k, total work is then

- $a^k * O(n/b^k)^d$
- (#subproblems \* cost of solving one)

1-10

## Where do $\Theta$ () solutions to the Master Theorem come from?



 $T(n) = aT(n/b) + f(n), f(n) \in \Theta(n^d)$ 

- •At level k, total work is then
  - $a^k * O(n/b^k)^d = O(n^d) * (a/b^d)^k$
- As k (levels) goes from 0 to  $log_b n$ , this is a geometric series, with ratio  $a/b^a$ 
  - $\Sigma O(n^d)^* (a/b^d)^k$

13 Alcorithme and Data Structurae

## Where do $\Theta$ () solutions to the Master Theorem come from?



 $T(n) = aT(n/b) + f(n), f(n) \in \Theta(n^d)$ 

- Geometric series: O(nd) \* (a/bd)k
  - as k goes from 0 → log<sub>b</sub>n
- •Case 1: ratio  $a/b^d < 1$  or  $d > log_b a$ 
  - $(a/b^d)^k$  gets smaller as k goes from  $1 \rightarrow \log n$
  - a/bd First term is the largest, and is <1
  - O(n<sup>d</sup>)

COMP20003 Algorithms and Data Structures

1-12

#### Recurrences and Master Theorem









#### Recurrences and Master Theorem



