

proof of alternating series test

 ${\bf Canonical\ name} \quad {\bf ProofOfAlternatingSeriesTest}$

Date of creation 2014-07-22 16:20:39 Last modified on 2014-07-22 16:20:39 Owner Wkbj79 (1863)

Last modified by pahio (2872)

Numerical id 13

Author Wkbj79 (2872)

Entry type Proof

Classification msc 40A05

The series has partial sum

$$S_{2n+2} = a_1 - a_2 + a_3 - + \dots - a_{2n} + a_{2n+1} - a_{2n+2}$$

where the a_j 's are all nonnegative and nonincreasing. From above, we have the following:

$$S_{2n+1} = S_{2n} + a_{2n+1};$$

$$S_{2n+2} = S_{2n} + (a_{2n+1} - a_{2n+2});$$

$$S_{2n+3} = S_{2n+1} - (a_{2n+2} - a_{2n+3})$$

$$= S_{2n+2} + a_{2n+3}$$

Since $a_{2n+1} \ge a_{2n+2} \ge a_{2n+3}$, we have $S_{2n+1} \ge S_{2n+3} \ge S_{2n+2} \ge S_{2n}$. Moreover,

$$S_{2n+2} = a_1 - (a_2 - a_3) - (a_4 - a_5) - \dots - (a_{2n} - a_{2n+1}) - a_{2n+2}.$$

Because the a_j 's are nonincreasing, we have $S_n \geq 0$ for any n. Also, $S_{2n+2} \leq S_{2n+1} \leq a_1$. Thus, $a_1 \geq S_{2n+1} \geq S_{2n+3} \geq S_{2n+2} \geq S_{2n} \geq 0$. Hence, the even partial sums S_{2n} and the odd partial sums S_{2n+1} are bounded. Also, the even partial sums S_{2n} 's are monotonically nondecreasing, while the odd partial sums S_{2n+1} 's are monotonically nonincreasing. Thus, the even and odd series both converge.

We note that $S_{2n+1} - S_{2n} = a_{2n+1}$. Therefore, the sums converge to the same limit if and only if $a_n \to 0$ as $n \to \infty$. The theorem is then established.