Package 'SADmoment'

July 22, 2019

Title Extrapolate SAD and calculate parameters of best fitting distribution for subareas with several others

Type Package

Version 1.2 **Date** 2019-05-14

Author Saeid Alirezazadeh
Maintainer Saeid Alirezazadeh < saeid.alirezazadeh@gmail.com>
Description Extrapolation of SAD and finding parameters of the best fitting distribution for subareas from the study of moments across scales. Moments of fitting distributions across scales by only using their parameters across scales.
Depends copula, BB, stats4, VGAM, sads, bbmle, poilog, splines, BBmisc
License GPL (>= 2)
LazyData true
R topics documented:
SADmoment-package
alffinder 4 BellB 4
bet.f
betfinder
calcalpha
cmoment
cmul
Coef.Tcheb.pol.2nd
data_read
datfun
dbfact
Dist_Moment
expnd

SADm	oment-package	Extrapolate SAD and calculate parameters of best fitting distrib	oution
Index			24
	xmul		23
	1		
	-		
	C		
	shrt		
	SAD_Moment		
	ro.c.z		19
	relpwave		18
	r.mom		18
	ptransform		18
	provide_info		1
	PLNmom		1
	PGmom		1
	numsum		10
	U —		

for subareas with several others

Description

Extrapolate SAD and parameters of best fitting distribution for subareas.

Details

It is implemented by the techniques developed in Alirezazadeh S. (2019) and Alirezazadeh et. al. (2018). The most important functions of the package LLfun and SAD_Moment. The function SAD Moment(X,Y,Splist,ext.rate,dplot) asks for positions (X,Y) of individuals of species Splist in the area of existing sample, an extrapolation rate that is the proportion of area we are interested to extrapolate to by the sample area, and dplot that identify whether the user want to visualise the SAD of the extrapolated area and compare it with the sample data or not. If the dplot=T then after running the function provides the histogram for species abundances of the sample and a line which is the estimation of species abundances of the extrapolated area. Note that the function SAD_Moment(X,Y,Splist,ext.rate,dplot) returns valuable information regarding the running time, information on the sample and also information regarding the extrapolated area. So, we suggest to run it as: name<-SAD_Moment(X,Y,Splist,ext.rate,dplot). Also, note that the length of X, Y and Splist must be the same. The function LLfun(X,splist), where X is a data.frame consists of species names and their (X,Y) positions. And splist is the name of existing species in the sample. And by pressing return it requests the user to enter a value for sub-area size and then with respect to the Log-Likelihood, finds the best fitting distribution of data and returns its parameters, see Alirezazadeh et.al. (2018)

Author(s)

Saeid Alirezazadeh

References

Alirezazadeh, S., 2019, Improvement on Extrapolation of Species Abundance Distribution Across Scales from Moments Across Scales (Unpublished)

Saeid Alirezazadeh and Luís Borda-de-Água and Paulo Borges and Rosalina Gabriel and F. Miguel Dionisio and Henrique Miguel Pereira and Pedro Cardoso, 2018, Theoretical Approach for how Species Abundance Distributions Change Across Scales, 2018 13th APCA International Conference on Control and Soft Computing (CONTROLO), pp. 131-136.

Examples

```
# Data from Barro Colorado Island (BCI) is used here for the example,
# within total 50 ha area all the individuals
# with at least 1cm (Diameter at Breast Height) (dbh) are considered.
SAD_Moment(dbci[,3],dbci[,4],dbci[,1],ext.rate=1.1,dplot=TRUE)
# In the following we used all the individuals
# with at least 10cm (Diameter at Breast Height) (dbh) from the BCI data.
#R> name<-SAD_Moment(X,Y,Spnames,ext.rate=1.2,dplot=FALSE)</pre>
#R> summary(name)
#
            Length Class
                              Mode
#Data
             6
                    -none-
                              list
#Initial
            4
                    -none-
                              list
#Extrapolate 7
                    -none-
                              list
#Time
            5
                    proc_time numeric
#R> summary(name$Initial)
#
               Length Class Mode
#Area
                       -none- numeric
                1
#Moments
                20
                       -none- numeric
#XY.Ratio
                1
                       -none- numeric
#Number.of.bins 1
                       -none- numeric
#R> summary(name$Extrapolate)
                                        Length Class Mode
#Area
                                               -none- numeric
#Moments
                                        20
                                                -none- numeric
#Number.of.bins
                                         1
                                                -none- numeric
#Coefficients.of.Tchebychev.Polynomials 49
                                                -none- numeric
                                        98
#Tchebychev.Polynomials.Values
                                                -none- numeric
#Tchebychev.Moments.Values
                                         7
                                                -none- numeric
#Extrapolate.SAD
                                        12
                                               -none- numeric
#R> summary(name$Time)
   user system elapsed
# 4.632
          2.009
                   6.690
#R>print(name$Data$SAD)
```

4 BellB

```
# [1] 27 11 20 30 29 38 30 21 20 5 4 1
#R> print(name$Extrapolate$Extrapolate.SAD)
# [1] 32 13 15 24 31 33 30 24 17 10 5 2
#
#R> LLfun(X,Splist)
#Enter sub-area size: 9800
# [,1]
#[1,] "For the sub-area ( 9800 ) the best fitting distribution is : Poisson Gamma"
#[2,] "alpha= 1.2089269105249 and beta= 1.2089269105249"
#R> LLfun(X,Y,Splist)
#Enter sub-area size: 200000
# [,1]
#[1,] "For the sub-area ( 2e+05 ) the best fitting distribution is : Log-Normal"
#[2,] "mu= 3.51478121939837 and sigma= 2.2582385148143"
#
```

alffinder

Parameter alpha in the fitting with a Gamma distribution

Description

Finds parameter alpha in the case of fitting with a Gamma distribution

Usage

```
alffinder(res, slope, ro, c, z, A)
```

Arguments

res intercept of first moments acorss area	
slope slope of first moments acorss area	
ro slope of number of individuals across area	
c parameter c in the power-law species area relationsh	nip
z parameter z in the power-law species area relationsh	nip
A total area of consideration	

Bell function

BellB

Description

Returns the values of Bell function

Usage

```
BellB(n, k, x)
```

n	total elements of the sets
k	number of partitions
X	specific element(s) of the set

bet.f

bet.f bet.f

Description

returns beta(n,N) as a part of finding values of Tchebychev polynomials.

Usage

```
bet.f(n, N)
```

Arguments

n order of polynomial
N number of bins

betfinder

Parameter beta in the fitting with a Gamma distribution

Description

Finds parameter beta in the case of fitting with a Gamma distribution

Usage

```
betfinder(res, slope, ro, c, z, A)
```

res	slope of first moments acorss area
slope	slope of first moments acorss area
ro	slope of number of individuals across area
С	parameter c in the power-law species area relationship
z	parameter z in the power-law species area relationship
A	total area of consideration

6 cmul

calcalpha

Logseries parameter

Description

Finds the parameter alpha in the case of fitting with a log-series distribution

Usage

```
calcalpha(n.orig, s.orig)
```

Arguments

n.orig	number of individuals		
s.orig	number of species		

cmoment

moment calculator, first step in the Log-Normal, values need to be transformed

Description

First step for calculating moments of log-normal, will be used in another function for transformation.

Usage

```
cmoment(mu, sig, k)
```

Arguments

mu	the parameter mu in the log-normal
sig	the parameter sigma in the log-normal

k maximum order of moments

cmul

symbolic constant multiplication

Description

symbolic multiplication with a constant

Usage

```
cmul(u, c)
```

Arguments

u matrix with two rows and second raw consists of 1 to number of columns (rep-

resent powers) and first raw is the coefficients

c a constant

Coef.Tcheb.pol.2nd 7

Coef.Tcheb.pol.2nd

Coefficients of the Tchebychev polynomials up to a certain degree

Description

Coefficients of the Tchebychev polynomials up to a certain degree as a matrix

Usage

```
Coef.Tcheb.pol.2nd(N, no.m)
```

Arguments

N Number of bins

no.m maximum order of polynomials

data_read

get values from keyboard for future use.

Description

Take a value from keyboard for future use. It is a part of LLfun which is to find the best fitting distribution for a smaller sub-areas.

Usage

```
data_read()
```

datfun

average number of species and individuals

Description

Returns average number of species and individuals in a given sub-area, by randomly sampling that sub-area size from the total area.

Usage

```
datfun(df, x, spp, n, ratio)
```

Arguments

df data frame, name of species, position over X and Y axis

x sub-section size over Y axis

spp list of all species

n number of random sampling

ratio ratio of X by Y

8 expnd

dbfact

double factorial

Description

Finds the value of double factorial value.

Usage

```
dbfact(i)
```

Arguments

i

an integer

Dist_Moment

Moments of the most common fitting distributions

Description

Returns the moments up to degree 20 of the fitting distribution of data across scales.

Usage

```
Dist_Moment(xpos, ypos, splist, DIST = "LS")
```

Arguments

xpos	position of individuals of species by X-axis
ypos	position of individuals of species by Y-axis

splist Respective name of the species in the position (X,Y)

symbolic expansion

DIST The fitting distribution under consideration ("LS","LN","PG","PLN")

expnd

Description

expand symbolic polynomials to higher degree

Usage

```
expnd(u, n)
```

Arguments

u matrix with two rows and second raw consists of 1 to number of columns (rep-

resent powers) and first raw is the coefficients

n numeric value that we need to expand the polynomial.

extpfun 9

extpfun	extrapolation of moments across scales

Description

extrapolate moments.

Usage

```
extpfun(dat, m)
```

Arguments

dat list of values (the list must have almost linear pattern).

m the corresponding numeric index in the list that we try to extrapolate to.

extrapolation.dist extrapolate distribution moments across scales

Description

Returns the values of extrapolations of moments of different orders of the distribution moments

Usage

```
extrapolation.dist(momraw, momdist, ext.rate, momr)
```

Arguments

momraw raw moments values

momdist distribution moments values

ext.rate extrapolation rate.

momr values of extrapolation of raw moments to that rate.

10 f

extrapolation.raw

extrapolate raw moments across scales

Description

Returns the values of extrapolations of moments of different orders of the raw moments

Usage

```
extrapolation.raw(momraw, ratio, ba, bba)
```

Arguments

momraw values of raw moments ratio the ration of x by y.

ba total area we try to extrapolate to.
bba total area that we have informations.

f

individuals in a given positions

Description

Lista of individuals exist in a given sub-area.

Usage

```
f(df, xcoor, ycoor, x, ratio)
```

df	data frame, name of species, position over X and Y axis
xcoor	initial X-coordinate inside total area
ycoor	initial Y-coordinate inside total area
x	sub-section size over Y axis
ratio	ratio of X by Y

11

fg

list of number individuals of all species

Description

Returns the abundances of species of interest from a given list of individuals.

Usage

```
fg(g, sppnames)
```

Arguments

g list of all individuals in a sub-area

sppnames list of all species

fo fo

Description

used as part of method to evaluate the parameter of log-series across scales

Usage

```
fo(a, n, s)
```

Arguments

a area

n number of individual s number of species

fprime

first derivative of funtion fo, as a part of the function calculate the parameter of log-series

Description

first derivative of the fo function used for the Newton's method to find the parameter of log-series

Usage

```
fprime(a, n, s)
```

Arguments

a area

n numbero of individuals s number of species 12 LSmom

LLfun

Parameters of the best fitting distribution

Description

Returns the parameters of the best fitting distribution with respect to the log-likelihoods.

Usage

```
LLfun(Y, spp)
```

Arguments

Y A matrix consists of x,y and species names respect all individuals in the com-

munity

spp list of all species in the community

LNmom

Moments of log-normal

Description

Returns moments up to degree k of the log-normal distribution.

Usage

```
LNmom(mu, sig, k)
```

Arguments

mu mu value in the log-normal distribution sig sigma value in the log-normal distribution

k the order of moment.

LSmom

Moments of the log-series distribution.

Description

Returns moments up to degree k of the log-normal distribution.

Usage

```
LSmom(x, n)
```

Arguments

x the parameter of log-series

n order of moment

M1

M1, theoretical average

Description

Returns average number of individuals (Theoretical)

Usage

```
M1(ro, c, z, A)
```

Arguments

ro	parameter ro in N=ro A
С	parameter c in S=c A^z
z	parameter z in S=c A^z
Α	area or scale

manage_data

data across scales, number of individuals of species across scales

Description

returns number of individuals of all species and number of species across scales.

Usage

```
manage_data(df, spp, n, x, ratio)
```

Arguments

df	data frame,	name of species,	position	over X and Y	axis
----	-------------	------------------	----------	--------------	------

spp list of all species

n number of random sampling over Y axis

x sub-section size over Y axis

ratio ratio of X by Y

mo2nd

mmoment	first step for finding moment of Possion-Gamma, the values needed to be transformed
	be transformed

Description

the values from this function is used as the first step to calculate the moments of Poisson-Gamma distribution and need to be transformed

Usage

```
mmoment(al, bet, k)
```

Arguments

al	parameter alpha in the gamma distribution
bet	parameter beta in the gamma distribution
k	maximum order of moments

mo2nd 2nd moment across scales

Description

consider the linear pattern for the 2nd moment across scales.

Usage

```
mo2nd(res, slope, A)
```

Arguments

res residual of second moment across scales slope slope of second moment across scales

A area or scale

moment1 15

moment1	moment of log-series number of individuals are not log-transformed

Description

return moments of different orders of log-series but in the case where the number of individuals are not log-transformed

Usage

```
moment1(x, n)
```

Arguments

X	parameter of log-series	
n	maximum moment order	

momfun raw, distribution, and linear moments

Description

all moments are calculated here. linear moments is when we do not log transform the number of individuals.

Usage

```
momfun(df, x, spp, n, no.m, ratio)
```

Arguments

df	data frame consists of name of species together with positions over X and Y axis
x	subsection size over Y axis
spp	list of all species
n	number of randomize sampling in the total area
no.m	maximum order of moments

ratio ratio of X by Y

16 numsum

mufinderLN

mean finder for the Log-Normal

Description

find the parameter mu in a log-normal

Usage

```
mufinderLN(res, slope, A)
```

Arguments

res residual of the first raw moment across scales slope slope of the first raw moment across scales

A area or scale

mufinderPLN

mean finder for the Poisson log-normal

Description

returns the parameter of mu in the Poisson log-normal.

Usage

```
mufinderPLN(res, slope, A)
```

Arguments

res residual of the first moment across scales slope slope of the first moment across scales

A area or scale

numsum weighted sum

Description

Calculate the weighted sum for given weight and a list

Usage

```
numsum(n, x, k)
```

Arguments

n maximum degree x a numeric parameter

k a numeric value for the weight

PGmom 17

PGmom

Moments of the Poisson Gamma

Description

Returns moments up to degree k of the Poisson Gamma distribution.

Usage

```
PGmom(al, bet, k)
```

Arguments

al parameter alpha of poisson gamma distribution
bet parameter beta of poisson gamma distribution

k order of moment

PLNmom

Moments of the Poisson log-normal distribution.

Description

Returns moments up to degree k of the Poisson log-normal distribution.

Usage

```
PLNmom(mu, sig, k)
```

Arguments

mu parameter mu of the distribution sig parameter sigma of the distribution

k order of moment

provide_info

provide some info

Description

inside function to print some information from LLfun function.

Usage

```
provide_info(L)
```

Arguments

L A list of information provided by the LLfun function.

18 relpwave

 $ptransform \qquad \qquad polylog \ transformation$

Description

Polylog transformation used to calculate moments of log-series where number individuals are log transformed

Usage

```
ptransform(x, k)
```

Arguments

x parameter for log series

k integer as degree of the polylog function to expand to.

r.mom raw moments

Description

calculate raw moments

Usage

```
r.mom(dat, no.m)
```

Arguments

data list of number of individuals of species

no.m maximum order of moments

relpwave wave function

Description

fit wave function and use it for extrapolation

Usage

```
relpwave(1, t, ba)
```

Arguments

list of values that is considered to be wavet the larger scale we need to extrapolate to

ba area or scale

ro.c.z

ro.c.z	parameter finder
--------	------------------

Description

returns theoretical parameter ro, c, and z in N=ro A and S=cA^z

Usage

```
ro.c.z(No.Sp, No.Id, bba)
```

Arguments

No.Sp	number of species across scales
No.Id	number of individuals across scales

bba area or scales

SAD_Moment	Extrapolate Species Abundance Distribution	

Description

Extrapolates SAD by extrapolating of moments.

Usage

```
SAD_Moment(xpos = NULL, ypos = NULL, splist = NULL, ext.rate = 1, dplot = T)
```

xpos	List of position of individuals over X-axis
ypos	List of position of individuals over Y-axis
splist	Name of species where its individual is in place (X,Y)
ext.rate	extrapolation rate(>=1)
dplot	Values (T or F) respectively to inform whether the plot of the extrapolation should appears or not.

20 sigfinderLN

shrt Symbolic shortenning

Description

Shorten a polynomial with symbolic calculation

Usage

shrt(u)

Arguments

u matrix with two rows and second raw consists of 1 to number of columns (rep-

resent powers) and first raw is the coefficients

sigfinderLN standard deviation finder for Log Normal across scales

Description

returns the parameter sigma in the Log-normal Distribion.

Usage

```
sigfinderLN(res, slope, ro, c, z, A)
```

res	residual for the change of the first raw moments across scales
slope	slope of the change of the first raw moments across scales
ro	the parameter ro in the formula N=ro A, number of individuals across scales
С	the parameter c in S=cA^z
Z	the parameter z in $S=cA^z$
Α	area or scale

sigfinderPLN 21

sigfinderPLN	
SIGITHUCH LIN	

standard deviation finder for Poisson Log Normal across scales

Description

returns the parameter sigma in a Poisson log-normal.

Usage

```
sigfinderPLN(res1, slope1, res2, slope2, A)
```

Arguments

res1	residual for the change of means across scales
slope1	slope of the change of means across scales
res2	residual for the change of moments of second order across scales
slope2	slope of the change of moments of second order across scales
A	area or scale

smom

Log-normal moments

Description

moments of log-normal of different orders are calculate here

Usage

```
smom(mu, sig, k)
```

Arguments

mu mean

sig standard deviation

k maximum order of moment

Tcheb.pol.2nd

st2k

Sterling number of second kind

Description

Returns the Sterling number of second kind

Usage

```
st2k(n, k)
```

Arguments

n number of elements of the setk number of partitions of the set

summ

symbolic addition

Description

Adding polynomials symbolically

Usage

```
summ(u1, u2)
```

Arguments

u1	matrix with two rows and second raw consists of 1 to number of columns (rep-
	resent powers) and first raw is the coefficients
u2	matrix with two rows and second raw consists of 1 to number of columns (rep-
	resent powers) and first raw is the coefficients

Tcheb.pol.2nd

Values of Tchebychev polynomials up to certain degree at each bin.

Description

Returns values of the Tchebychev polynomials up to a certain degree and by considering a certain number of bins.

Usage

```
Tcheb.pol.2nd(N, no.m)
```

Arguments

N number of bins

no.m maximum order of polynomials

tn 23

tn

Thecbychev polynomials recursive formula

Description

calculate recursively the Tchebychev polynomials up to given degree and in different bins

Usage

```
tn(n, N)
```

Arguments

n maximum degree of polynomial
N maximum number of bins

xmul

symbolic multiplication

Description

Returns the symbolic multiplications of a polynomial by its variable

Usage

xmul(u)

Arguments

u

matrix with two rows and second raw consists of 1 to number of columns (represent powers) and first raw is the coefficients

Index

alffinder, 4	r.mom, 18 relpwave, 18
BellB, 4	ro.c.z, 19
bet.f,5	
betfinder, 5	<pre>SAD_Moment, 19 SADmoment (SADmoment-package), 2</pre>
calcalpha, 6	SADmoment-package, 2
cmoment, 6	shrt, 20
cmul, 6	sigfinderLN, 20
Coef.Tcheb.pol.2nd, 7	sigfinderPLN, 21
coci. Telleb. pol. Zila, 7	
data_read, 7	smom, 21
	st2k, 22
datfun, 7	summ, 22
dbfact, 8	
Dist_Moment, 8	Tcheb.pol.2nd, 22
	tn, 23
expnd, 8	
extpfun, 9	xmu1, 23
extrapolation.dist,9	
extrapolation.raw, 10	
extrapolation ran, 10	
f, 10	
fg, 11	
fo, 11	
fprime, 11	
LLfun, 12	
LNmom, 12	
LSmom, 12	
Lonion, 12	
M1, 13	
manage_data, 13	
mmoment, 14	
mo2nd, 14	
moment1, 15	
momfun, 15	
mufinderLN, 16	
mufinderPLN, 16	
numsum, 16	
PGmom, 17	
PLNmom, 17	
provide_info, 17	
ptransform, 18	
per uno rorm, 10	