

অধ্যায় ৭ রাসায়নিক বিক্রিয়া

MAIN TOPIC

রাসায়নিক বিক্রিয়া

পদার্থের প্রকৃতি, ধর্ম এবং তাদের পরিবর্তন রসায়ন পাঠের মূল বিষয়। পদার্থের এই পরিবর্তন আবার দুই ভাবে হয়। কখনো ভৌত পরিবর্তন, কখনো বা রাসায়নিক পরিবর্তন।

ভৌত পরিবর্তন: যদি কোন পদার্থের অভ্যন্তরীণ রাসায়নিক গঠনের কোনো পরিবর্তন না ঘটে শুধুমাত্র বাহ্যিক অবস্থার পরিবর্তন ঘটে তবে তাকে ভৌত পরিবর্তন (Physical Change) বলে।

যেমন : এক খন্ড বরফকে কক্ষ তাপমাত্রায় রেখে দিলে তা পরিবেশ থেকে তাপ গ্রহন করে আন্তে আন্তে গলে তরল পানিতে পরিণত হয়। আবার পানিকে তাপ প্রদান করে $100^{\circ}C$ এ উন্নীত করলে সেটি জলীয় বাষ্পে পরিণত করে। এখানে কঠিন বরফ, তরল পানি এবং জলীয় বাষ্প –এ তিনটি পদার্থের সংকেত একই হলেও এরা একই পদার্থের বিভিন্ন অবস্থা। পদার্থের এরূপ পরিবর্তনকে ভৌত পরিবর্তন বলে।

রাসায়নিক পরিবর্তন: যদি কোন পদার্থের বাহ্যিক তাপমাত্রা ও চাপের পরিবর্তন করলে কিংবা অন্য পদার্থের সংস্পর্শে আনলে তা পরিবর্তিত হয়ে সম্পূর্ণ ভিন্নধর্মী নতুন পদার্থে পরিণত হলে সেই পরিবর্তনকে রাসায়নিক পরিবর্তন (Chemical Change) বলে।

এক্ষেত্রে পূর্বের পদার্থের অনুর মধ্যে বন্ধনসমূহের ভাঙনের মাধ্যমে বিচ্ছিন্ন আয়ন বা পরমাণু সৃষ্টি হয়। পরবর্তীতে আয়ন বা পরমাণুর মধ্যে নতুন বন্ধনে নতুন পদার্থ সৃষ্টি হয়।

যেমন : মিথেন গ্যাসকে অক্সিজেনে পোড়ালে কার্বন-ডাই-অক্সাইড গ্যাস, জলীয় বাষ্প ও তাপ শক্তি উৎপন্ন হয়।

$$CH_4(s) + O_2(g) \rightarrow CO_2(g) + H_2O(l)$$

আবার, ক্যালসিয়াম কার্বনেট হাইড্রোক্লোরিক এসিডের সাথে বিক্রিয়া করে ক্যালসিয়াম ক্লোরাইড, কার্বন-ডাই অক্সাইড ও পানি উৎপন্ন করে।

$$CaCO_3(s) + HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)$$

এই দুইটি ঘটনাই রাসায়নিক পরিবর্তন।

রাসায়নিক বিক্রিয়ার শ্রেণিবিভাগ

রাসায়নিক পরিবর্তন সংঘটনের সময় যেসব রাসায়নিক বিক্রিয়া ঘটে থাকে তাদেরকে বিভিন্নভাবে শ্রেণিবিভাগ করা যায়। যেমন:

একমুখী বিক্রিয়া (Irreversible Reaction)

যে রাসায়নিক বিক্রিয়ায় বিক্রিয়ক পদার্থগুলো উৎপাদে পরিণত হতে পারে, কিন্তু উৎপাদ পদার্থগুলো পুনরায় বিক্রিয়কে পরিণত হতে পারে না, তাকে একমুখী বিক্রিয়া বলে।

যেমন- ক্যালসিয়াম কার্বনেটকে খোলা পাত্রে নিয়ে তাপ দিলে ক্যালসিয়াম কার্বনেটকে কঠিন চুন এবং গ্যাসীয় তে পরিবর্তিত হতে দেখা যাবে। কার্বন-ডাই-অক্সাইড খোলা পাত্র থেকে অপসারিত হলে তা থেকে পুনরায় ক্যালসিয়াম কার্বনেট উৎপন্ন করা যাবে না।

সূতরাং এটি একমুখী বিক্রিয়া।

অর্থাৎ, কোনো বিক্রিয়াকে একমুখী করা যাবে-

- (i) খোলা পাত্র ব্যবহার করে
- (ii) <mark>অধ:</mark>ক্ষেপণ সৃষ্টি করে (বুঝলে না? অসুবিধে নেই, পরবর্তীতে বুঝবে!)
- (iii) উৎপাদ হতে কোনো পদার্থ অপসারণ করা।

⇒ একমুখী বিক্রিয়ার সমীকরণে ডানমুখী তীর চিহ্ন (→) ব্যবহৃত হয়।

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

উভমুখী বিক্রিয়া (Reversible Reaction)

যে রাসায়নিক বিক্রিয়ায় বিক্রিয়ক পদার্থ বিক্রিয়া করে উৎপাদে পরিণত হয়, আবার উৎপাদ পদার্থগুলো বিক্রিয়া করে পুনরায় বিক্রিয়কে পরিণত হয়, তাকে উভমুখী বিক্রিয়া বলে।

- বিক্রিয়ক থেকে উৎপাদ হওয়ার বিক্রিয়া হলো সম্মুখমুখী বিক্রিয়া।
- উৎপাদ থেকে বিক্রিয়কে পরিণত হওয়ার বিক্রিয়া হলো পশ্চাৎমুখী বিক্রিয়া/ বিপরীতমুখী বিক্রিয়া।
- উভমুখী বিক্রিয়ার বিপরীতমুখী দুটি অর্ধতীর চিহ্ন (⇌) ব্যবহৃত হয়।

$$C_2H_5OH + CH_3COOH \rightleftharpoons CH_3COOC_2H_5 + H_2O$$

ইথানল ইথানয়ক এসিড ইথাইল ইথানয়েট এস্টার পানি

$$H_2 + I_2 \rightleftharpoons 2HI$$

হাইড্রোজেন আয়োডাইড

তোমরা জেনে অবাক হবে যে আসলে সব বিক্রিয়াই উভমুখী, তবে কিছু বিক্রিয়ায় সম্মুখমুখী বিক্রিয়ার তুলনায় পশ্চাৎমুখী বিক্রিয়ায় হার এত কম থাকে, যে বিক্রিয়াকে একমুখী মনে হয়।

এখানে উল্লেখ্য যে, বিক্রিয়ক বলতে সেসকল পদার্থের কথা বুঝানো হচ্ছে, যেগুলো বিক্রিয়ায় অংশ নেয় এবং বিক্রিয়া শেষে নিজে পরিবর্তিত হয়। আর উৎপাদ হচ্ছে বিক্রিয়কের পরিবর্তিত পদার্থ/পদার্থসমূহ।

তাপোৎপাদী বিক্রিয়া (Exothermic Reaction)

যে বিক্রিয়ায় বিক্রিয়ক থেকে উৎপাদ উৎপন্ন হওয়ার সময় তাপশক্তি উৎপন্ন হয় তাকে তাপোৎপাদী বিক্রিয়া বলে।

$$N_2(g)$$
 + $3H_2(g) \stackrel{Fe}{===} 2NH_3(g) + 92 KJ$
 $200-250 \text{ atm}$
 $450^{\circ} - 550^{\circ}C$

এখানে Fe চূর্ণ প্রভাবক হিসেবে কাজ করে।

- প্রভাবক হচ্ছে সেসকল রাসায়নিক পদার্থ যারা বিক্রিয়ায় অংশ নিয়ে বিক্রিয়ার গতি বৃদ্ধি বা হ্রাস করে কিন্তু বিক্রিয়া শেষে অপরিবর্তিত থাকে।
- ⇒ বিক্রিয়া তাপ: একটি রাসায়<mark>নিক</mark> বিক্রিয়া সংঘটিত হতে তাপের যে পরিবর্তন হয় তাকে বিক্রিয়া তাপ বলে।
- বিক্রিয়া তাপ △H দ্বারা প্রকাশ করা হয়।
- তাপ উৎপাদন হলে △H এর মান ঋণাত্মক হয়।

সূতরাং যেকোন তাপোৎপাদী বিক্রিয়ার ক্ষেত্রে লিখা যায় ,

$$N_2(g)$$
 + $3H_2(g) \stackrel{Fe}{===} 2NH_3(g) + 92 KJ$
 $200-250 \text{ atm}$
 $450^\circ - 550^\circ C$

তাপহারী বা তাপশোষী বিক্রিয়া (Endothermic Reaction)

যে রাসায়নিক বিক্রিয়ায় তাপশক্তির শোষণ ঘটে তাকে তাপহারী বিক্রিয়া বলে।

$$N_2\left(g
ight) + O_2(g) + 180\,KJ \ Rightarrow 2NO(g)$$
 অথবা,
$$N_2\left(g
ight) + O_2(g) \ Rightarrow 2NO(g) \; ; \; \Delta H = +180KJ$$

⇒ যেই বিক্রিয়ায় তাপশক্তির শোষণ ঘটে, সেখানে ∆H এর মান ধনাত্মক।

⇒ তোমরা নিশ্চয়ই চিন্তা করছ যে △H এর মান ধনাত্মক আর কখন ঋণাত্মক হবে সেটি কে বলে দিয়েছে! আসলে কাউকে বলে দিতে হবে না, তোমরা নিজেরাই দেখবে এখন।

আসলে, $\Delta H = পুরাতন বন্ধন ভাঙ্গার জন্য মোট শক্তি <math>-$ নতুন বন্ধন গঠনে নির্গত শক্তি

এভাবে, যেই বিক্রিয়ায় তাপশক্তি উৎপন্ন হয়, সেখানে ΔH ঋণাত্মক, যেই বিক্রিয়ায় শোষিত হয়, সেখানে ΔH এর মান ধনাত্মক।

16 MINUTE SCHOOL

রেডক্স বিক্রিয়া : রেডক্স অর্থ জারণ-বিজারণ। যে বিক্রিয়ায় ইলেকট্রনের আদান-প্রদান ঘটে তাকে রেডক্স বিক্রিয়া বলে।

Reduction (বিজারণ) শব্দের প্রথমাংশ Red এবং Oxidation (জারণ) শব্দের প্রথমাংশ Ox এর সমন্বয়ে গঠিত শব্দ হল Redox, সুতরাং অর্ধ জারণ-বিজারণ। রেডক্স বিক্রিয়া দুটি অর্ধাংশে বিভক্ত। যেই অর্ধাংশে বিক্রিয়ক ইলেকট্রন ত্যাগ করে তাকে জারণ অর্ধবিক্রিয়া বলে। আবার যেই অর্ধাংশে অন্য বিক্রিয়ক ইলেকট্রন গ্রহণ করে তাকে বিজারণ অর্ধবিক্রিয়া বলে।

$$Na \rightarrow Na^+ + e^-$$
 [জারণ বিক্রিয়া] $Cl^- + e^- \rightarrow Cl$ [বিজারণ বিক্রিয়া]

⇒ কি? চিন্তা করছো মনে রাখবে কিভাবে? সেটাও বলে দিচ্ছি।

- জারণ মানে ছারণ (অর্থাৎ ইলেকট্রন ত্যাগ)। এটি মনে রাখলে বিজারণের কথাও মনে থাকবে।
- জারক বিজারণ ঘটায়
- বিজারক জারণ ঘটায়

বিজারক:

- (i) যে পদার্থ অন্য পদার্থকে e^- দান করে।
- (ii) যে পদার্থের জারণ সংখ্যা বিক্রিয়া শেষে বৃদ্ধি পায়।
- (iii) যে পদার্থ অন্য পদার্থের বিজারণ ঘটায় কিন্তু নিজে জারিত হয়।

Examples:

- (i) C,H সহ সকল ধাতু
- (ii) বিশেষ বিজারক:
 - 1. CO
 - 2. H₂S
 - 3. HI
 - 4. NH₃
- (iii) সবচেয়ে শক্তিশালী বিজারক: Li

জারক:

- (i) যে পদার্থ অন্য পদার্থ থেকে e^- গ্রহণ করে।
- (ii) যে পদার্থের জারণ সংখ্যা বিক্রিয়া শেষে হ্রাস পায়।
- (iii) যে পদার্থ অন্য পদার্থের জারণ ঘটায় কিন্তু নিজে বিজারিত হয়।

Examples:

- (i) C,H ব্যতীত সকল অধাতু
- (ii) বিশেষ জারক:
 - 1. অম্লীয় $K_2Cr_2O_7$
 - 2. অম্লীয় *KMnO*4
 - 3. গাঢ় H₂SO₄
 - 4. গাঢ় HNO₃
- (iii) সবচেয়ে শক্তিশালী জারক: F

জারণ অর্ধ-বিক্রিয়া :

$$Al^{0} \rightarrow Al^{3+} + 3e^{-}$$
 ---(i)

বিজারণ অর্ধ-বিক্রিয়া:

$$O_2^0 + 4e^- \rightarrow 2O^{2-}$$
—(ii)

(i) নং কে 4 দারা এবং (ii) কে 3 দারা গুণ করে পাই,

$$4Al \rightarrow 4Al^{3} + 12e^{-}$$

$$30_{2}^{0} + 12e^{-} \rightarrow 60^{2}$$

$$4Al + 30_{2} \rightarrow 2Al_{2}O_{3}$$

এখানে Al এর জারণ সংখ্যা 0 থেকে +3 তে বৃদ্ধি পেয়েছে। অর্থাৎ, Al একটি বিজারক এবং এর জারণ ঘটে।

অপরদিকে ${\it O}_2$ এর জারণ সংখ্যা 0 থেকে হ্রাস পেয়ে -2 হয়। অর্থাৎ ${\it O}_2$ একটি জারক এবং এর বিজারণ ঘটে।

সুতরাং উপরোক্ত বিক্রিয়াটি একটি জারণ-বিজারণ বিক্রিয়া।

জারণ-বিজারণ বিক্রিয়া কিন্তু একইসাথে সংঘটিত হয়। কীভাবে? আমরা নিচের বিক্রিয়াটি বিবেচনা করি চলো।

$$Na + \frac{1}{2}Cl_2 \rightarrow NaCl$$

এখানে বিজারক পদার্থ Na তার বাইরের শেলের ১টি e- ত্যাগ করে জারণ অর্ধবিক্রিয়া সম্পন্ন করেছে। অপরদিকে জারক পদার্থ Cl সেই e- কে গ্রহন করে বিজারন অর্ধবিক্রিয়া সম্পন্ন করেছে।

$$Na^{0} \to Na^{+} + e^{-}$$
 [জারণ অর্ধবিক্রিয়া] $Cl^{0} + e^{-} \to Cl^{-}$ [বিজারন অর্ধবিক্রিয়া]

এই দুই অর্ধবিক্রিয়া যোগ করলে পাওয়া যায়:

$$Na^0 + Cl^0 \rightarrow Na^+ + Cl^- = NaCl$$
 [জারণ- বিজারণ বিক্রিয়া]

এখানে স্পষ্টত যে জারক পদার্থ <mark>বিজা</mark>রণ ঘটাচ্ছে এবং বিজারক পদার্থ জারণ ঘটাচ্ছে, এটি একে অপরকে ছাড়া সম্ভব হয় না। সুতরাং বল<mark>া যায়, জারণ-বিজারণ যুগপৎ প্রক্রিয়া</mark>।

যেহেতু বিজারক ইলেকট্রন দান করে এবং জারক উক্ত ইলেকট্রন গ্রহণ করে কাজেই বলা যায় জারণ-বিজারণ বিক্রিয়া মানে ইলেকট্রন স্থানান্তর প্রক্রিয়া।

আয়নিক সমীকরণ:

যে সমীকরণ দ্বারা কেবল বিক্রিয়ায় অংশগ্রহণকারী আয়ন সমূহের মাধ্যমে বিক্রিয়টি উপস্থাপন করা হয় তাকে আয়নিক সমীকরণ বলে।

দর্শক আয়ন:

জারণ-বিজারণ বিক্রিয়ায় যে আয়নের জারণ সংখ্যার কোনো পরিবর্তন হয় না তাকে দর্শক আয়ন বলে।

Examples:

$$Cl_{2(g)} + H_2S(g) \rightarrow HCl(g) + S(s)$$

এখানে, আয়নিক সমীকরণ:

$$Cl_2^{\ 0}(s) + S^{2-} \rightarrow \ 2Cl^{\ -}(g) + S^0(s)$$

জারণ অর্ধবিক্রিয়া: $S^{2-} \rightarrow S^0 + 2e^-$

বিজারণ অর্ধবিক্রিয়া: $Cl_2^0 + 2e^- \rightarrow 2Cl^-$

জারণ-বিজারণ বিক্রিয়া: $S^{2-} + Cl_2^0 \rightarrow S^0 + 2Cl^-$

এখানে, H⁺ দর্শক আয়ন কারন এর জারণ সংখ্যার পরিবর্তন ঘটেনি।

জারণ সংখ্যা (Oxidation number):

কোনো অণু বা যৌগমূলকের মধ্যে অবস্থিত পরমাণুগুলোর কোনোটি ইলেকট্রন ছেড়ে দেয় আবার কোনোটি ইলেকট্রন গ্রহণের প্রবণতা দেখায়।

মৌল বা যৌগমূলক যৌগ গঠনের সময় যত সংখ্যক ইলেকট্রন বর্জন করে ধণাত্মক আয়ন উৎপন্ন করে বা যত সংখ্যক ইলেকট্রন গ্রহণ করে ঋণাত্মক আয়ন উৎপন্ন করে তার চিহ্নযুক্ত সংখ্যাকে জারণ সংখ্যা বলে।

যেমন: NaCl যৌগে Na এর জারণ সংখ্যা +1

Cl এর জারণ সংখ্যা -1

একক পরমাণু বা কোনো অণুর জারণ সংখ্যা 0

যেমন: $FeSO_4$ যৌগে Fe এর জারণ সংখ্যা +2, কিন্তু Fe ধাতুতে এর জারণ সংখ্যা 0। $FeSO_4$ যৌগটির অণুর জারণ সংখ্যাও 0। কি মজার ব্যাপার তাইনা?

জারণ সংখ্যা নির্ণয়:

একটি যৌগে কোনো একটি মৌলের জারণ সংখ্যা যৌগের অন্যান্য মৌলের জারণ সংখ্যার উপর নির্ভর করে। তাই যৌগের কোনো মৌলের জারণ সংখ্যা জানতে হলে অন্য মৌলের জারণ সংখ্যা জানতে হবে। একটি চার্টের মাধ্যমে জারণ সংখ্যার নিয়মগুলো দেখে নাও:

জারণ সংখ্যার নিয়ম	যৌগের সংকেত	মৌল ও জারণ সংখ্যা
ধাতু সমূহের জারণ সংখ্যা ধণাত্মক এবং অধাতু সমূহের জারণ সংখ্যা ঋণাত্মক হয়।	NaCl	Na=+1 Cl=-1
নিরপেক্ষ পরমাণু বা মুক্ত মৌলের জারণ সংখ্যা o হয়।	Fe, H ₂	Fe=0 H=0
আধান বিশিষ্ট আয়নে পরমাণু সমূহের মোট জারণ সংখ্যা আধান সংখ্যার সমান হয়।	H ₂ O	H=+1 O=-2 মোট=0
আধান বিশিষ্ট আয়নে পরমাণু সমূহের মোট জারণ সংখ্যা আধান সংখ্যার সমান হয়।	SO ₄ ⁻² , NH ₄ ⁺	SO ₄ ²⁻ =-2 NH ₄ ⁺ =+1
ক্ষার ধাতু সমূহের জারণ সংখ্যা +1।	KCl, K ₂ CO ₃	K=+1
মৃৎক্ষার ধাতু সমূহের জারণ সংখ্যা +2।	CaO, MgSO ₄	Ca=+2 Mg=+2
ধাতব হ্যালাইডে হ্যালোজেনের জারণ সংখ্যা +2 হয়।	MgCl ₂ , LiCl	Cl=-1
অধিকাংশ যৌগে হাইড্রোজেনের জারণ সংখ্যা +1হয়, কিন্তু ধাতব হাইড্রাইডে হাইড্রোজেনের জারণ সংখ্যা -1 হয়।	NH ₃ , <i>LiAlH</i> ₄	H=+1 H=-1
অধিকাংশ যৌগে অক্সিজেনের জারণ সংখ্যা -2 , পার-অক্সাইডে -1 , সুপার অক্সাইডে $-\frac{1}{2}$ ।	K_2O ,CaO K_2O_2 , H_2O_2 NaO_2 , KO_2	$O=-2$ $O=-1$ $O=-\frac{1}{2}$

□ কোনো অণুতে কোনো পরমাণুর জারণ সংখ্যা নির্ণয় করার পদ্ধতি:

- ightarrow যৌগে অবস্থিত যে পরমাণুর জারণ সংখ্যা নির্ণয় করতে হবে তার জারণ x সংখ্যা ধরি।
- → যৌগ বা আয়নে সকল মৌলের জারণ সংখ্যাকে তাদের নিজ নিজ পরমাণুর সংখ্যা দ্বারা গুণ করি।
- ightarrow জারণ সংখ্যার সমষ্টি হবে অণুর ক্ষেত্রে 0, এবং আয়নের ক্ষেত্রে চিহ্নযুক্ত চার্জ সংখ্যার সমান।

উদাহরণ:

ধরি, ${\rm KMnO_4}$ অণুতে কেন্দ্রীয় পরমাণু সহ ${\rm Mn}$ এর জারণ মান বের করতে হবে। ধরা যাক, ${\rm Mn}$ সহ এর জারণ মান ${\rm x.}$ ${\rm K}$ এর জারণ মান +1, ${\rm O}$ এর -2। ${\rm KMnO_4}$ এর অণুর জারণ সংখ্যা ${\rm O}$ । এবার সমীকরণ গঠন করি:

$$(+1)\times 1 + x\times 1 + (-2)\times 4 = 0$$

$$\Rightarrow x = 8 - 1 = 7$$

∴ Mn এর জারন সংখ্যা 7

🛘 উল্লেখ্য যে জারণ সংখ্যা আর যোজনী এক বিষয় নয়। এদেও মধ্যে অনেক পার্থক্য পরিলক্ষিত হয়। যেমন:

স্তারণ সংখ্যার নিয়ম 2. এটি হল পরমাণু বা আয়নে উপস্থিত চিহ্নযুক্ত চার্জ সংখ্যা। 2. এটি ধনাত্মক বা ঋনাত্মক হতে পারে। 2. এটি ধনাত্মক বা ঋনাত্মক হতে পারে। 2. এটি কেবল পূর্ণ সংখ্যা হতে পারে। 3. এটি কেবল পূর্ণ সংখ্যা হতে পারে। 3. এটি কেবল পূর্ণ সংখ্যা হতে পারে। 4. এর কোনো চিহ্ন নেই। 5. এটি কেবল পূর্ণ সংখ্যা হতে পারে। 8. নিরপেক্ষ মৌল বা যৌগের জারণ সংখ্যা ০ 8. কেবল নিদ্ধিয় মৌলের যোজনী ০

Redox

বিভিন্ন প্রকারের জারণ-বিজারণ বিক্রিয়া

১. সংযোজন বিক্রিয়া (Addition Reaction):

যে জারণ-বিজারণ বিক্রিয়ায় দুই বা ততোধিক রাসায়নিক পদার্থ পরস্পরের সাথে যুক্ত হয়ে একটি মাত্র উৎপাদ উৎপন্ন করে তাকে সংযোজন বিক্রিয়া বলে।

যেমন:
$$2\text{FeCl}_2(\text{aq}) + \text{Cl}_2(\text{g}) \rightarrow \text{FeCl}_3(\text{aq})$$
 $N_2(\text{g}) + 3H_2(\text{g}) \rightarrow 2\text{NH}_3(\text{g})$

• य সংযোজন বিক্রিয়ায় বিক্রিয়কগুলো মৌলিক পদার্থ তাকে সংশ্লেষণ বিক্রিয়া বলে।

যেমন: $H_2(g) + O_2(g) \rightarrow H_2O(l)$ এক্ষেত্রে H_2 ও O_2 উভয়ই মৌল।

কিন্তু ক্যালসিয়াম অক্সাইড ও অক্সি<mark>জে</mark>ন বিক্রিয়া করে ক্যালসিয়াম কার্বনেট উৎপন্ন করলে সেটি সংশ্লেষণ বিক্রিয়া হয় না। কারন এক্ষেত্রে ক্যালসিয়াম অক্সাইড মৌল নয়।

অর্থাৎ "সকল সংশ্লেষণ বিক্রিয়া সংযোজন বিক্রিয়া, কিন্তু সকল সংযোজন বিক্রিয়া সংশ্লেষণ বিক্রিয়া নয় ।"

২. বিযোজন বিক্রিয়া (Decomposition Reaction):

যে বিক্রিয়ায় একটি যৌগ ভেঙে একাধিক যৌগ বা মৌলে পরিণত হয় তাকে বিয়োজন বিক্রিয়া বলে।

যেমন:

$$PCl_5 \longrightarrow PCl_3 + Cl_2$$
ফসফরাস
পেন্টাক্লোরাইড
ট্রাইক্লোরাইড

পানিকে তড়িৎ বিশ্লেষণ করলে হাইড্রোজেন এবং অক্সিজেনে ভেঙে যায়।

$$2H_2O \xrightarrow{$$
 তড়িৎ বিশ্লেষণ $2H_2+O_2$

৩. প্রতিস্থাপন বিক্রিয়া (Displacement Reaction):

কোনো অধিক সক্রিয় মৌল বা যৌগমূলক অপর কোনো কম সক্রিয় মৌল বা যৌগমূলককে প্রতিস্থাপন করে নতুন যৌগ উৎপন্ন করার প্রক্রিয়াকে প্রতিস্থাপন বিক্রিয়া বলে।

$$Zn(s) + H_2SO_{4}(l) \rightarrow ZnSO_4(aq) + H_2(g)$$

যেমন: জিংক ধাতু সালফিউরিক এসিডের হাইড্রোজেনকে প্রতিস্থাপন করে জিংক সালফাইট ও হাইড্রজেন গ্যাস উৎপন্ন করে।

এর কারন হল $Zn,\ H_2$ এর তুলনায় অধিক সক্রিয় মৌল। এখন কথা হচ্ছে যে কোনো বিক্রিয়ায় কোন মৌল অধিক সক্রিয় তা কিভাবে বুঝব? চলো আমরা Mnemonics সহ ধাতুর সক্রিয়তা সিরিজটা দেখে নেই,

এই সিরিজ অনুযায়ী বেশি সক্রিয় মৌলগুলো প্রতিস্থাপন বিক্রিয়ায় কম সক্রিয় মৌলগুলোকে তাদের যৌগ থেকে সরিয়ে প্রতিস্থাপন করতে পারে।

$$Zn(s)+FeSO_{4}(aq)
ightarrow ZnSO_{4}(aq)+Fe(s)$$
 কিন্তু, $Cu(s)+H_{2}SO_{4}(aq)
ightarrow No \ reaction$

কারন কপার হাইড্রোজেন অপেক্ষা কম সক্রিয় হওয়ায় সালফিউরিক এসিড থেকে হাইড্রোজেনকে সরাতে পারবে না।

তোমরা জেনে রাখ যে এই কপারকে গাঢ় সালফিউরিক এসিডের সাথে বিক্রিয়া করানো সম্ভব। গাঢ়

$$Cu(s) + H_2SO_{4}(aq)(\mathfrak{N}_{\overline{2}}) \rightarrow CuSO_4(aq) + SO_2(aq) + H_2O(l)$$

ullet সক্রিয়তার বিবেচনায় ${
m F}_2 > C l_2 > B r_2 > I_2$

8. দহন বিক্রিয়া (Combustion Reaction):

কোনো মৌল বা যৌগকে বা<mark>তাসের অক্সিজেনের উপস্থিতিতে পুড়িয়ে তার উপাদানকে মৌলের অক্সাইডে</mark> পরিণত করার প্রক্রিয়াকে দহন বিক্রিয়া বলে।

দহন বিক্রিয়ায় সবসময় তাপ উ<mark>ৎপন্ন</mark> হয়। এই প্রক্রিয়ায় ইলেকট্রনের আদান-প্রদান ঘটে।

যেমন:
$$CH_{4(g)}+2O_{2(g)}\stackrel{\Delta}{\to} CO_{2}(g)+2H_{2}O(g)+$$
 তাপ

এক্ষেত্রে অক্সিজেনের বিজারন ঘটে অর্থাৎ অক্সিজেন ইলেকট্রন গ্রহণ করে এবং অপর মৌল বা যৌগের জারণ ঘটে অর্থাৎ ইলেকট্রন ত্যাগ করে। তাই এটি একটি জারণ-বিজারণ বিক্রিয়া।

নন-রেডক্স বিক্রিয়া

এমন অনেক বিক্রিয়া আছে যেখানে ইলেকট্রনের আদান-প্রদান ঘটে না। এসব বিক্রিয়াকে আলাদা আলাদা শ্রেণিতে রাখা হয়েছে।

এক বা একাধিক বিক্রিয়ক থেকে নতুন যৌগ উৎপন্ন করার সময় বিক্রিয়কে বিদ্যমান মৌলসমূহের মধ্যে ইলেকট্রনের আদান-প্রদান না হলে ঐ বিক্রিয়াকে নন-রেডক্স বিক্রিয়া বলে।

এই পর্যায়ে তোমরা প্রশমন ও অধ্যক্ষেপণ বিক্রিয়া সম্পর্কে জানবে।

১. প্রশমন বিক্রিয়া (Nutralization Reaction):

যে বিক্রিয়ায় জলীয় দ্রবণে এসিড ও ক্ষার বিক্রিয়া করে পরস্পর প্রশমিত হয়ে লবণ ও পানি উৎপন্ন করে তাকে প্রশমন বিক্রিয়া বলে।

🗲 এ ধরনের বিক্রিয়াকে এসিড-ক্ষার বিক্রিয়াও বলে।

$$HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2O(l)$$

এক্ষেত্রে এসিড HCl থেকে H^+ এবং ক্ষার NaOH থেকে OH^- পরস্পর বিক্রিয়া করে পানি উৎপন্ন করে। NaCl জলীয় দ্রবণে Na^+ এবং Cl^- আয়ন হিসেবে থাকে।

সুতরাং Na⁺ও Cl⁻ দর্শক আয়ন।

$$Na^{+} + OH^{-} + H^{+} + Cl^{-} \rightarrow Na^{+}Cl^{-} + H_{2}O; \Delta H = -57.34 \, kj$$

 \Rightarrow প্রশমন বিক্রিয়ায় সর্বদাই তাপ উৎপন্ন হয়। তীব্র এসিড ও ক্ষার এর বিক্রিয়ায় $\Delta H = -57.34~Kj!$ একে প্রশমন তাপ বলে। [প্রশমন তাপ= 1 mol পানি উৎপন্ন করতে প্রয়োজনীয় তাপ]

২. অধ:ক্ষেপণ বিক্রিয়া (Precipitation Reaction):

যে বিক্রিয়ায় তরল বিক্রিয়ক পদার্থ বিক্রিয়া করে কঠিন ও অদ্রবণীয় উৎপাদে পরিণত হয় তাকে অধ:ক্ষেপণ বিক্রিয়া বলে।

⇒ একই দ্রাবকে দুটি যৌগ মিশ্রিত করলে তারা পরস্পর বিক্রিয়া করে তাদের মধ্যে কোনোটি যদি ঐ দ্রাবকে অদ্রবণীয় বা খুবই কম দ্রবণীয় হয় তবে তা বিক্রিয়া পাত্রের তলায় কঠিন অবস্থায় তলানি হিসেবে জমা হয় যাকে অধ:ক্ষেপ বলে।

যেমন:

$$NaCl(aq) + AgNo_3(aq) \rightarrow AgCl(s) \downarrow + NaNO_3(aq)$$

অধ:ক্ষেপ

কিছু অদ্রবণীয় যৌগ: BaSO₄, PbSO₄, Aএর, AgCl, CaSO₄, BaCl₂, CuS, PbS, PbI₂, Fe(OH)₂, AgBr

- \Rightarrow Fe(OH) $_2$ এর অধ:ক্ষেপের রং সবুজ। KMnO $_4$ এর অধ:ক্ষেপের রং বাদামি।
- ⇒ কিছু অধ:ক্ষেপণ বিক্রিয়ায় ইলেকট্রনের স্থানান্তর ঘটে।

বিশেষ ধরণের রাসায়নিক বিক্রিয়া

কিছু কিছু বিক্রিয়া আছে যারা রেডক্স বা নন-রেডক্স শ্রেণিতে পড়ে না এমন কিছু বিক্রিয়া সম্পর্কে জানব এখন।

আর্দ্রবিশ্লেষণ/পানি বিশ্লেষণ (Hydrolysis) বিক্রিয়া:

কোনো যৌগের দুই অংশ পানির বিপরীত আধানবিশিষ্ট দুই অংশের সাথে যুক্ত হয়ে নতুন যৌগ যেই বিক্রিয়ায় উৎপন্ন করে তাকে আর্দ্রবিশ্লেষণ বিক্রিয়া বলে।

$$SiCl_4 + H_2O \rightarrow Si(OH)_4 + 4HCl$$

$$AlCl_3(s) + H_2O(l) \rightarrow Al(OH)_3(s) + 3HCl(aq)$$

আর্দ্রবিশ্লেষণ বিক্রিয়ায় অনেক সময় অস্বচ্ছ দ্রবণীয় যৌগ উৎপন্ন হয়। এটি অল্প মাত্রায় দ্রবণীয় হওয়ায় যৌগটি অধ:ক্ষেপিত হয়ে যায় যেমনটা হয়েছে ২য় বিক্রিয়ায়, এক্ষেত্রে Al(OH)ঃ অধ:ক্ষেপ।

পানিযোজন (Hydration) বিক্রিয়া :

আয়নিক যৌগ কেলাস গঠনের সময় নির্দিষ্ট সংখ্যক পানির অণুর সাথে যুক্ত হয়। এই পানির অণুকে কেলাস বলে এবং এই বিক্রিয়াকে পানিযোজন বিক্রিয়া বলে।

যেমন: CuSO4 এর সাথে 5 অনু পানি যুক্ত হয়ে পেন্টা হাইড্রেট কপার (II) সালফেট উৎপন্ন করে।

$$CuSO_4 + 5H_2O
ightarrow CuSO_4.5H_2O$$
পেন্ট্রা হাইড্রেট কপার (II) সালফেট $($ কেলাস $ightarrow$ নীল $)$

$$FeSO_4 + 7H_2O o FeSO_4.7H_2O$$
হেপ্টা হাইড্রেট আয়রন(II)সালফেট (কেলাস o সবুজ)

$$ZnSO_4 + 7H_2O
ightarrow ZnSO_4.7H_2O$$
হেপ্টা হাইড্রেট জিংক সালফেট (কেলাস $ightarrow$ সাদা)

$$CaCl_3 + 6H_2O
ightarrow CaCl_3.6H_2O$$
হেক্সা হাইড্রেট ক্যালসিয়াম ক্লোরাইড

⇒পানিযোজন ও সংযোজন বিক্রিয়ার মধ্যে পার্থক্য হল সংযোজন বিক্রিয়ায় ইলেকট্রনের স্থানান্তর হয়, যা পানিযোজন বিক্রিয়ায় হয় না। এছাড়া বিক্রিয়া দুটি একই রকম।

সমানুকরণ (Isomerisation) বিক্রিয়া:

যে বিক্রিয়ায় অণুতে বিদ্যমান পরমাণুসমূহ পুণ:বিন্যস্ত হয়ে নতুন যৌগ গঠন করে তাকে সমানুকরণ (Isomerisation) বিক্রিয়া বলে।

$$NH_4CNO \xrightarrow{\Delta} H_2N - CO - NH_2$$

অ্যামোনিয়াম সায়ানেট

ইউরিয়া

এখানে অ্যামোনিয়াম সায়ানেট ও ইউরিয়াতে একই মৌলের একই সংখ্যক পরমাণু আছে। এক্ষেত্রে তাদের বন্ধনে পরিবর্তন আসায় তাদের গঠন ভিন্ন এবং তারা ভিন্ন যৌগ হয়েছে।

 \Rightarrow যখন দুটি যৌগের আনবিক সংকেত একই থাকে কিন্তু গাঠনিক সংকেত ভিন্ন হয় তখন তাদেরকে পরস্পরের সমাণু বলে।

সুতরাং অ্যামোনিয়াম সায়ানেট ও ইউরিয়া পরস্পর সমাণু।

পলিমারকরণ (Polymerization) বিক্রিয়া:

প্রভাবক, উচ্চ চাপ ও তাপের প্রভাবে যখন এক বা একাধিক যৌগের ক্ষুদ্র ক্ষুদ্র অণু পরস্পরের সাথে যুক্ত হয়ে একটি বৃহদাকার অণু গঠণ করে তখন তাকে পলিমারকরণ (Polymerization) বিক্রিয়া বলে।

- ⇒ বৃহদাকার অণুটিকে পলিমার এবং ক্ষুদ্রাকার অণুটিকে মনোমার বলে।

$$n[CH_2=CH_2]$$
 $\xrightarrow{O_2}$ $[-CH_2-Ch_2-]n$ ইথিলিন (মনোমার) $\xrightarrow{200^{\circ}C,1200\ atm}$ পলিথিন (পলিমার)

লোহায় মরিচা সৃষ্টি

লোহা (Fe) বাতাসের O_2 এবং H_2O এর সংস্পর্শে আসলে দুটি e^- ত্যাগ করে Fe^{2+} এ পরিণত হয়।

$$Fe \rightarrow Fe^{2+} + 2e^{-}$$

 Fe^{2+} এর e^- , O_2 এবং H_2O গ্রহণ করে OH^- (হাইড্রোক্সাইড) এ পরিণত হয়।

$$\frac{1}{2}O_2 + H_2O + 2e^- \rightarrow 2OH^-$$

 Fe^{2+} , OH^- এর সাথে বিক্রিয়া করে $Fe(OH)_2$ উৎপন্ন করে।

$$Fe^{2+} + 2OH^- \rightarrow Fe(OH)_2$$

 ${
m Fe^{3+}}$ অবস্থায় অধিক স্থিতিশীল। তাই এটি ${
m Fe^{3+}}$ এ পরিণত হবার প্রবণতা দেখাবে। ${
m Fe^{2+}}$ পুণরায় ${
m H_2O}$ ও ${
m O_2}$ এর সাথে বিক্রিয়া করে ${
m Fe(OH)_3}$ উৎপন্ন করে।

$$Fe(OH)_2 + H_2O + O_2 \rightarrow Fe(OH)_3$$

 $Fe(OH)_3$ তাপের সংস্পর্শে কিংবা স্বয়ংক্রিয়ভাবে $Fe_2O_3.3H_2O$ উৎপন্ন করে।

$$Fe(OH)_3 \rightarrow Fe_2O_3.3H_2O$$

এই Fe₂O_{3.}3H₂O হল মরিচা।

 Fe_2O_3 ,ফেরাস (III) অক্সাইড এর প্রয়োজনীয় সংখ্যক পানির অণুতে যুক্ত হতে পারে। তাই মরিচার রাসায়নিক সংকেত $Fe_2O_3.3H_2O$ । মরিচা ঝাঁঝরা জাতীয় পদার্থ হওয়ায় এর মধ্য দিয়ে O_2 এবং জলীয় বাষ্প ঢুকে ক্রমাগত লোহার পৃষ্ঠকে ক্ষয় করতে থাকে।

মরিচা সৃষ্টির জন্য O_2 এবং H_2O অত্যাবশ্যকীয় উপাদান। O_2 এবং H_2O এর অনুপস্থিতিতে লোহার কোনো ক্ষয় হবে না। এটি প্রমাণ করার জন্য ৪টি টেস্টটিউব নিয়ে বিভিন্ন ব্যবস্থায় মরিচা সৃষ্টির চেষ্টা করতে পারি।

প্রয়োজনীয় উপকরণ:

- ১ আলপিন/তারকাটা
- ২. অনার্দ্র CaCl₂
- ৩. ফুটানো পানি
- ৪. অলিভ অয়েল বা যেকোনো তেল
- ৫. ঠান্ডা পানি
- ৬. টেস্টটিউব

কার্যধারা:

- ১. ৪টি টেস্টটিউব নিয়ে এদের ১ থেকে ৪ পর্যন্ত চিহ্নিত করি।
- ২. প্রতিটি টেস্টটিউবে আলপিন রাখি।
- ৩. ১ম টেস্টটিউবে অনার্দ্র CaCl₂ নেই।
- 8. ২য় টেস্টটিউবে ফুটন্ত পানি দিয়ে ভর্তি করি ।
- ৫. ৩য় টেস্টটিউবে ফুটন্ত পানির পরিমাণ কমিয়ে দিয়ে ১ মিলি তেল যোগ করি।
- ৬. ৪র্থ টেস্টটিউবে ঠান্ডা পানিতে আলপিন ঢোকাই ।

পর্যবেক্ষণ ও ফলাফল:

টেস্টটিউব গুলোকে ১ সপ্তাহ এভাবে ছিপি দিয়ে আটকে রাখি। ১ সপ্তাহ পর দেখা যাবে ৪র্থ টেস্টটিউবের আলপিনে মরিচা কেবল মরিচা পড়েছে। এর কারণ হল:

- ১. অনার্দ্র $CaCl_2$ নিরুদক পদার্থ। তাই এটি পানি শোষন করে নেয়। পানির ঘাটতির কারণে মরিচা সৃষ্টি হয় না।
- ২, ২য় টেস্টটিউবে ফুটানো পানি রাখা আছে। ফুটানো পানি বায়ুর ${
 m O}_2$ কে আলপিনের সংস্পর্শে আসতে দেয় না।
- ৩. ৩য় টেস্টটিউবে তেলের স্তর বায়ুর সাখে পানির সংস্পর্শে হতে দেয় না।
- 8. ঠান্ডা পানি (৪র্থ টেস্টটিউবে) O_2 এর সাথে লোহার আস্তরণ তৈরি করে যা মরিচা।

টেস্টিটিউব -১,২,৩ এ O_2 কিংবা পানির ঘাটতি ছিল বিধায় মরিচা সৃষ্টি হয়নি। কিন্তু টেস্টিটিউব ৪ এ মরিচা পড়েছে।

সুতরাং বলা যায় O2 এবং পানি ব্যতীত মরিচা হয় না।

মরিচা প্রতিরোধের উপায়:

- ১. মরিচা প্রতিরোধের জন্য লোহার তৈরি দ্রব্যাদির উপর রং দিলে সেটি আর বাতাসের সংস্পর্শে আসতে পারে না। ফলে মরিচা ধরে না।
- ২. তড়িৎ বিশ্লেষণের মাধ্যমে লোহার উপর লোহা অপেক্ষা কম সক্রিয় অপর একটি ধাতুর প্রলেপ দিয়ে ইলেকট্রোপ্লেটিং করে লোহার তৈরি দ্রব্যাদিকে মরিচার হাত থেকে রক্ষা করা যায়। যেমন: গ্যালভানাইজিং অর্থাৎ জিংকের প্রলেপ অথবা টিন প্লেটিং।

বাস্তব ক্ষেত্রে আরও কিছু রাসায়নিক বিক্রিয়া

১. পিঁপড়া বা মৌমাছির কামড়ের জ্বালা নিরাময়: পিঁপড়ার মুখ বা মৌমাছির হুলে ফরমিক এসিড (HCOOH) থাকে। তাই এরা কামড়ালে জ্বালা-যন্ত্রণা সৃষ্টি হয়। ক্ষতস্থানে ক্ষারক(চুন) প্রয়োগ করলে তা এসিডের সাথে বিক্রিয়া করে এবং ব্যাথা নিরাময় হয়।

$$HCOOH + CaO \rightarrow HCOOCa + H_2O$$

- ২. কলা গাছ ক্ষার ধর্মী। বৃষ্টির <mark>পানির</mark> সাথে কিছু পরিমাণ এসিড ভূমিতে পতিত হয় যা কলা গাছের সংস্পর্শে এলে গাছটির ক্ষারতা প্রশমিত হয়। <mark>এ</mark>র ফলে কলা গাছ থেকে ছুটে গিয়ে মাটিতে পড়ে।
- ৩. শ্বসন প্রক্রিয়ার মাধ্যমে শক্তি উৎপাদন: আমাদের দেহের প্রতিটি কোষে শ্বসন প্রক্রিয়া সাধিত হয়। শ্বসনে প্লুকোজ ($C_6H_{12}O_6$) অণু জারিত হয়ে CO_2 , পানি ও শক্তি উৎপাদন করে।

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + energy$$

8. জ্বালানি হিসেবে প্রাকৃতিক গ্যাস: জ্বালানি হিসেবে প্রাকৃতিক গ্যাস ব্যবহার করা হয়। মিথেনকে অক্সিজেনের উপস্থিতিতে পোড়ালে CO_2 , জলীয় বাস্প ও শক্তি উৎপন্ন হয়।

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O + energy$$

- ৫. বর্ষাকালে বাড়ির ছাদ বা আঙিনা পিচ্ছিল থাকে। এটি ক্ষার জাতীয় পদার্থের কারনে হয়। তাই ক্ষারকে প্রশমিত করার জন্য অস্লধর্মী পদার্থ (SiO_2) যোগ করা হয়। SiO_2 হল বালু।
- ৬. সেলাই করার সুঁচকে মরিচার হাত থেকে রক্ষার জন্য নারিকেল তেলে ডুবিয়ে রাখা হয়। কারণ তেলের আস্তরনের কারনে জলীয় বাস্প ও অক্সিজেনের সাথে সুচ রাসায়নিক বিক্রিয়া করতে পারে না।
- ৭. কপার ও অ্যালুমিনিয়ামের দ্রব্যাদি বাতাসের অক্সিজেনের সংস্পর্শে এলে প্রথমে তাদের উপর CuO ও ${
 m Al}_2{
 m O}_3$ এর একটি আস্তরন পড়ে। পরবর্তীতে বাতাসের অক্সিজেন উক্ত আস্তরন ভেদ করে Cu ও ${
 m Al}$ এর সংস্পর্শে আসতে পারে না। ফলে বিক্রিয়া সাধিত হয় না এবং Cu ও ${
 m Al}$ এর দ্রব্যের ক্ষয় হয় না।
- ৮. মানুষের শরীরের বিপাক ক্রিয়ায় অনেকের পাকস্থলীতে অতিরিক্ত HCl তৈরি হয়। অতিরিক্ত HCl কে প্রশমিত করার জন্য রোগীকে এন্টাসিড জাতীয় ওষুধ খেতে দেয়া হয়। এই এন্টাসিড হল $Mg(OH)_2$ ও $Al(OH)_3$ এর মিশ্রণ। এই ক্ষারক দুটি অতিরিক্ত HCl কে প্রশমিত করে এবং রোগীকে আরাম দেয়।

$$2HCl + Mg(OH)_2 \rightarrow MgCl_2 + 2H_2O$$

 $2HCl + Al(OH)_3 \rightarrow AlCl_3 + 3H_2O$

□ বিক্রিয়ার গতিবেগ:

একক সময়ে যে পরিমাণ বিক্রিয়ক উৎপাদে পরিণত হয় তাকে বিক্রিয়ার হার বলে। বিক্রিয়ার এই হারের হ্রাস বা বৃদ্ধি নির্ভর করে যেসব বিষয়ের উপর তা হল:

- ১. তাপ
- ২. ঘনমাত্রা
- ৩. চাপ (গ্যাসীয় বিক্রিয়কের ক্ষেত্রে)
- ৪. বিক্রিয়কের পৃষ্ঠতলের ক্ষেত্রফল
- ৫. প্রভাবক, ইত্যাদি।

উভমূখী বিক্রিয়ার শুরুতে সম্মুখমুখী বিক্রিয়ার হার বেশি থাকে এবং পশ্চাৎমুখী বিক্রিয়ার হার কম থাকে। আবার বিক্রিয়ার শেষের দিকে পশ্চাৎমুখী বিক্রিয়ার হার বেশি থাকে এবং সম্মুখমুখী বিক্রিয়ার হার কম থাকে।

 \Rightarrow বিক্রিয়ার হারের একক \rightarrow mol L⁻¹S⁻¹

রাসায়নিক সাম্যাবস্থা:

কোনো উভমুখী বিক্রিয়ার হার যদি এরুপ হয় যে সম্মুখমুখী বিক্রিয়া এবং পশ্চাৎমুখী বিক্রিয়ার হার সমান এবং বাইরে থেকে বিক্রিয়াটিকে আপাত দৃষ্টিতে স্থির মনে হয়, তবে ঐ অবস্থাকে রাসায়নিক সাম্যাবস্থা বলে।

সাম্যাবস্থায় যে পরিমাণ বিক্রিয়ক উৎপাদে পরিণত হয় ঐ একই পরিমাণ উৎপাদ বিক্রিয়কে পরিণত হয়। তবে সাম্যাবস্থায় বিক্রিয়ার নিয়ামক তাপ, চাপ, ঘনমাত্রা এগুলো পরিবর্তন করলে সাম্যাবস্থায় পরিবর্তিত হয়ে যায়। উভমুখী বিক্রিয়া সাম্যাবস্থায় উৎপাদের পরিমাণের বৃদ্ধি বা হ্রাস লা-শাতেলিয়ারের নীতি কতৃক নিয়ন্ত্রিত হয়।

লা-শাতেলিয়ারের নীতি

কোনো বিক্রিয়া সাম্যাবস্থায় থাকাকালীন যদি তাপ, চাপ, ঘনমাত্রা ইত্যাদি নিয়ামক পরিবর্তন করা হয় তবে সাম্যের অবস্থান এমনভাবে পরিবর্তিত হয় যেন তাপ, চাপ, ঘনমাত্রা ইত্যাদির পরিবর্তনের ফলাফল প্রশমিত হয়।

লা-শাতেলিয়ারের নীতির উপর ভিত্তি করে সাম্যাবস্থার উপর তাপ, চাপ, ঘনমাত্রার প্রভাব সম্পর্কে নিচে আলোচনা করা হলো:

সাম্যাবস্থার উপর তাপের প্রভাব

কোনো উভমুখী বিক্রিয়ার সাম্যাব<mark>স্থার</mark> উপর তাপের প্রভাব নির্ভর করে বিক্রিয়াটি তাপোৎপাদী না তাপহারী সেটির উপর।

যেসকল বিক্রিয়ায় ∆H=0, সেসব বিক্রিয়ার সাম্যাবস্থার উপর তাপের কোনো প্রভাব নেই।

বিক্রিয়া তাপোৎপাদী হলে,

তাপমাত্রা বৃদ্ধি করলে → বিক্রিয়াটির পশ্চাৎমুখী বিক্রিয়ার হার বৃদ্ধি পাবে, অর্থাৎ বিক্রিয়াটি পশ্চাৎ দিকে অগ্রসর হবে।

তাপমাত্রা হ্রাস করলে → বিক্রিয়াটির সম্মুখমুখী বিক্রিয়ার হার হ্রাস পাবে, অর্থাৎ বিক্রিয়াটি সামনের দিকে অগ্রসর হবে।

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g), \Delta H = +90 kj$$

যেহেতু সম্মুখমুখী বিক্রিয়াটি তাপোৎপাদী বিক্রিয়া তাই বিক্রিয়ার সাম্যাবস্থায় তাপমাত্রা বৃদ্ধি করলে বিক্রিয়াটি পশ্চাৎ দিকে অগ্রসর হবে এবং তাপমাত্রা হ্রাস করে তাপমাত্রা বৃদ্ধির ফলাফল প্রশমিত করবে। এক্ষেত্রে উৎপাদের শতকরা পরিমাণ হ্রাস পাবে এবং বিক্রিয়কের শতকরা পরিমাণ বৃদ্ধি পাবে।

আবার তাপমাত্রা হ্রাস করলে বিক্রিয়াটি সামনের দিকে অগ্রসর হবে এবং তাপমাত্রা বৃদ্ধি করলে তাপমাত্রা হ্রাসের প্রভাবকে প্রশমিত করবে। এক্ষেত্রে উৎপাদের শতকরা পরিমাণ বৃদ্ধি পাবে এবং বিক্রিয়কের শতকরা পরিমাণ হ্রাস পাবে।

বিক্রিয়া তাপহারী হলে,

তাপমাত্রা বৃদ্ধি করলে → বিক্রিয়াটির সম্মুখমুখী বিক্রিয়ার হার বৃদ্ধি পাবে, অর্থাৎ বিক্রিয়াটি সামনের দিকে অগ্রসর হবে।

তাপমাত্রা হ্রাস করলে → বিক্রিয়াটির পশ্চাৎমুখী বিক্রিয়ার হার বৃদ্ধি পাবে, অর্থাৎ বিক্রিয়াটি পশ্চাৎ দিকে অগ্রসর হবে।

$$2NH_3(g) \rightleftharpoons N_2(g) + 3H_2(g)$$

যেহেতু সম্মুখমুখী বিক্রিয়াটি একটি তাপহারী বিক্রিয়া তাই বিক্রিয়ার সাম্যাবস্থায় তাপমাত্রা বৃদ্ধি করলে বিক্রিয়াটি সামনের দিকে অগ্রসর হবে এবং তাপমাত্রা হ্রাস করে তাপমাত্রা বৃদ্ধির ফলাফল প্রশমিত করে। এক্ষেত্রে উৎপাদের শতকরা পরিমাণ বৃদ্ধি পাবে এবং বিক্রিয়কের শতকরা পরিমাণ হ্রাস পাবে।

আবার তাপমাত্রা হ্রাস করলে বিক্রিয়াটি পশ্চাৎ দিকে অগ্রসর হবে এবং তাপমাত্রা বৃদ্ধি করে তাপমাত্রা হ্রাসের ফলাফলকে প্রশমিত করবে। এক্ষেত্রে উৎপাদের শতকরা পরিমাণ হ্রাস পাবে এবং বিক্রিয়কের শতকরা পরিমাণ বৃদ্ধি পাবে।

সাম্যাবস্থার উপর চাপের প্রভাব

কোনো উভমুখী বিক্রিয়ার সাম্যাবস্থার উপর চাপের প্রভাব থাকবে যদি ও কেবল যদি-

- ১. বিক্রিয়ক ও উৎপাদ উভয়ই গ্যাসীয় অবস্থায় থাকে।
- ২, বিক্রিয়ক ও উৎপাদের মোট মোলার আয়তনের পরিবর্তন থাকতে হবে।

বিক্রিয়কের মোট মোলসংখ্যা উৎপাদের মোট মোলসংখ্যা থেকে বেশি হলে,

- ১. চাপ বৃদ্ধি পেলে \rightarrow বিক্রিয়াটির গ্যাসীয় উপাদান বেশি মোল থেকে কম মোলের দিকে যাবে। অর্থাৎ বিক্রিয়াটি সম্মুখদিকে অগ্রসর হবে।
- ২. চাপ হ্রাস পেলে \rightarrow বিক্রিয়াটির গ্যাসীয় উপাদান কম মোল থেকে বেশি মোলের দিকে যাবে। অর্থাৎ বিক্রিয়াটি পশ্চাৎদিকে আগাবে। যেমন:

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$

বিক্রিয়াটিতে বিক্রিয়ক ও উৎপাদ উভয়ই গ্যাসীয় অবস্থায় আছে। বিক্রিয়ক ও উৎপাদের মোলসংখ্যা ভিন্ন। সুতরাং বিক্রিয়ার সাম্যাবস্থায় চাপের প্রভাব আছে।

বিক্রিয়কের মোলসংখ্যা= 1+2=3 উৎপাদের মোলসংখ্যা=1। অর্থাৎ বিক্রিয়কের মোলসংখ্যা উৎপাদের মোলসংখ্যা হতে বেশি। এক্ষেত্রে সাম্যাবস্থায় চাপ বৃদ্ধি করলে বিক্রিয়াটি সম্মুখদিকে অগ্রসর হবে এবং চাপ হ্রাস করে চাপ বৃদ্ধির ফলাফল প্রশমিত করবে।

চাপ হ্রাস করলে বিক্রিয়াটি পশ্চাৎদিকে অগ্রসর হবে এবং চাপ বৃদ্ধি করে চাপ হ্রাসের ফলাফল প্রশমিত করবে।

• বিক্রিয়কের মোট মোলসংখ্যা উৎপাদের মোট মোলসংখ্যা হতে কম হলে,

চাপ বৃদ্ধি পেলে \rightarrow বিক্রিয়াটির গ্যাসীয় উপাদান বেশি মোলসংখ্যা থেকে কম মোলসংখ্যার দিকে যাবে। অর্থাৎ বিক্রিয়াটি পশ্চাৎদিকে আগাবে।

চাপ হ্রাস পেলে \rightarrow বিক্রিয়াটির গ্যাসীয় উপাদান কম মোলসংখ্যা থেকে বেশি মোলসংখ্যার দিকে যাবে। অর্থাৎ বিক্রিয়াটি সম্মুখদিকে অগ্রসর হবে।

$$2NH_3(g) \rightleftharpoons N_2(g) + 3H_2(g)$$

যেহেতু বিক্রিয়ক ও উৎপাদ উভয়ই গ্যাসীয় অবস্থায় আছে এবং বিক্রিয়ক ও উৎপাদের মোলসংখ্যা ভিন্ন সেহেতু বিক্রিয়ার উপর চাপের প্রভাব আছে।

এখানে বিক্রিয়কের মোলসংখ্যা=2 উৎপাদের মোলসংখ্যা= 1+3=4। অর্থাৎ বিক্রিয়কের মোল সংখ্যা উৎপাদের মোল সংখ্যা অপেক্ষা কম। এক্ষেত্রে সাম্যাবস্থায় চাপ বৃদ্ধি করলে বিক্রিয়াটি পশ্চাৎদিকে আগাবে এবং চাপ হ্রাস করে চাপ বৃদ্ধির ফলাফল প্রশমিত করবে।

আবার সাম্যাবস্থায় চাপ হ্রাস করলে বিক্রিয়াটি সম্মুখদিকে অগ্রসর হবে এবং চাপ বৃদ্ধি করে চাপ হ্রাসের ফলাফল প্রশমিত করবে।

সাম্যাবস্থার উপর ঘনমাত্রার প্রভাব

বিক্রিয়কের ঘনমাত্রা বাড়ালে → বিক্রিয়াটি সম্মুখদিকে অগ্রসর হবে

উৎপাদের ঘনমাত্রা বাড়ালে → বিক্রিয়াটি পশ্চাৎদিকে অগ্রসর হবে। যেমন:

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

সাম্যাবস্থায় বিক্রিয়কের ঘনমাত্রা বাড়ালে সাম্যাবস্থা সম্মুখদিকে অগ্রসর হয়ে অ্যামোনিয়ার (NH3) উৎপাদন বৃদ্ধির মাধ্যমে বিক্রিয়কের ঘনমাত্রা বৃদ্ধির ফলাফল প্রশমিত হবে।

বিপরীতে, সাম্যাবস্থায় উৎপাদ (NH_3) ঘনমাত্রা বাড়ালে বিক্রিয়াটি পশ্চাৎদিকে আগানোর মাধ্যমে উৎপাদের ঘনমাত্রা বৃদ্ধির ফলাফল প্রশমিত হবে। অর্থাৎ NH_3 ভেঙে N_2 ও H_2 উৎপন্ন হবে।

জ্ঞানমূলক প্রশ্লোত্তর

১। একমুখী বিক্রিয়া কাকে বলে?

উত্তর: যে রাসায়নিক বিক্রিয়ায় বিক্রিয়ক পদার্থগুলো উৎপাদে পরিণত হয় কিন্তু উৎপাদ পদার্থগুলো পুনরায় বিক্রিয়কে পরিণত হয় না তাকে একমুখী বিক্রিয়া বলে।

২। তাপোৎপাদী বিক্রিয়া কাকে বলে?

উত্তর: যে রাসায়নিক বিক্রিয়ায় তাপশক্তি উৎপন্ন হয় তাকে তাপোৎপাদী বিক্রিয়া বলে। যেমন:

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g); \Delta H = -92 \text{ KJ}$$

৩। সমাণুকরণ বিক্রিয়া কাকে বলে?

[ঢা. বো-১৬, দি. বো: ১৭]

উত্তর: কোনো রাসায়নিক বিক্রিয়ায় যৌগের পরমাণুসমূহের পূণর্বিন্যাসের মাধ্যমে একটি সমাণু থেকে অপর সমাণু উৎপন্ন হলে তাকে সমাণুকরণবিক্রিয়া বলে।

৪। কেলাস পানি কাকে বলে?

[সম্মিলিত বোর্ড:১৮]

<mark>উত্তর:</mark> লবণের কেলাসের সাথে যু<mark>ক্ত পা</mark>নিকে কেলাস পানি বলা হয়। যেমন, তুঁতের (CuSO₄.5H₂O) গঠনে 5 অণু কেলাস পানি থাকে।

৫। মরিচার সংকেত লিখ।

[কু. বো. ব. বো- ১৭; রা বো-১৬]

উত্তর: মরিচার রাসায়নিক সংকেত Fe₂O₃. nH₂O.

৬। সমাণু কি?

[কু. বো-১৭, চ. বো-১৬, ঢা. বো-১৭]

উত্তর: যে সব যৌগের আণবিক সংকেত একই কিন্তু গাঠনিক সংকেত ভিন্ন তাদের একটিকে অপরটির সমাণু বলা হয়।

৭। টিন প্লেটিং?

উত্তর: তড়িৎ বিশ্লেষণ পদ্ধতিতে লোহার উপর টিনের প্রলেপ দেওয়াকে টিন প্লেটিং বলে।

৮। মরিচা কি?

উত্তর: আয়রন বাতাসের অক্সিজেন ও জলীয় বাষ্পের সাথে বিক্রিয়া করে আর্দ্র ফেরিক অক্সাইড উৎপন্ন করে। যা মরিচা নামে পরিচিত।

৯। নন-রেডক্স বিক্রিয়া কাকে বলে?

উত্তর: যে বিক্রিয়ায় এক বা একাধিক বিক্রিয়ক থেকে নতুন যৌগ উৎপন্ন হওয়ার সময় বিক্রিয়কে বিদ্যমান মৌলসমূহের মধ্যে ইলেকট্রন আদান প্রদান হয় না ঐ বিক্রিয়াকে নন্-রেডক্স বিক্রিয়া বলে। যেমন:

$$HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2O$$

১০। NaO2 এ অক্সিজেনের জারণ সংখ্যা কত?

উত্তর: NaO_2 এ অক্সিজেনের জারণ সংখ্যা $-\frac{1}{2}$ ।

১১। জারণ সংখ্যা কাকে বলে?

[ঢা. বো-১৭]

উত্তর: অণু বা যৌগমূলক অবস্থিত কোনো পরমাণু ইলেকট্রন ত্যাগ করে ধনাত্বক চিহ্নযুক্ত হয় এবং কোনো পরমাণু ইলেকট্রন গ্রহণ করে ঋণাত্মক চিহ্নযুক্ত হয়। অণু বা যৌগমূলকের মধ্যে অবস্থিত কোনো পরমাণুর এই ধনাত্মক বা ঋণাত্মক চিহ্নযুক্ত সংখ্যাকেই তার জারণ সংখ্যা বলে।

১২। বিয়োজন বিক্রিয়া কাকে বলে?

উত্তর: যে বিক্রিয়ায় একটি যৌগ ভে<mark>ঙ্গে</mark> একাধিক যৌগ বা মৌলে পরিণত হয়। তাকে বিয়োজন বিক্রিয়া বলে।

১৩। লা-শাতেলিয়ার নীতিটি লিখ।

উত্তর: কোনো বিক্রিয়া সাম্যাবস্থায় থাকাকালে যদি ঐ অবস্থার একটি নিয়ামক, যেমন: তাপমাত্রা, চাপ বা ঘনমাত্রা পরিবর্তন করা হয়, তবে তার সাম্যের অবস্থান এমনভাবে বদলাবে যেন নিয়ামক পরিবর্তনের ফলাফল প্রশমিত হয়।

১৪। উভমুখী বিক্রিয়া কাকে বলে?

[দি. বো, সি. বো: ১৫]

উত্তর: যে বিক্রিয়ার বিক্রিয়ক পদার্থগুলো বিক্রিয়া করে উৎপাদে পরিণত হয় এবং একই সাথে উৎপাদ বিক্রিয়া করে পুনরায় বিক্রিয়কে পরিণত হয় তাকে উভমুখী বিক্রিয়া বলে।

১৫। প্রতিস্থাপন বিক্রিয়া কাকে বলে?

উত্তর: কোনো অধিক সক্রিয় মৌল বা যৌগমূলক অপর সক্রিয় মৌল বা যৌগমূলককে প্রতিস্থাপন করে নতুন যৌগ উৎপন্ন করার প্রক্রিয়াকে প্রতিস্থাপন বিক্রিয়া বলে।

১৬। দহন বিক্রিয়া কাকে বলে?

উত্তর: কোনো মৌলকে বা যৌগকে বায়ুর অক্সিজেনের উপস্থিতিতে পুড়িয়ে তার উপাদান মৌলের অক্সাইডে পরিণত করার প্রক্রিয়াকে দহন বিক্রিয়া বলে।

১৭। বিক্রিয়ার হার কাকে বলে?

উত্তর: একক সময়ে যে পরিমাণ বিক্রিয়ক উৎপাদে পরিণত হয় তাকে বিক্রিয়ার হার বলে।

১৮। জারণ বিক্রিয়ার সংজ্ঞা দাও।

[সি বো ১৫]

উত্তর: যে রাসায়নিক বিক্রিয়ায় ইলেকট্রনের দান ঘটে তাকে জারণ বিক্রিয়া বলা হয়। যেমন:

$$Zn \rightarrow Zn^{2+} + 2e^{-}$$

১৯। বিজারণ বিক্রিয়ার সংজ্ঞা দাও।

উত্তর: যে রাসায়নিক বিক্রিয়ায় ইলেকট্রনের গ্রহণ ঘটে তাকে বিজারণ বিক্রিয়া বলা হয়। যেমন:

$$Cu^{2+} + 2e^{-} \rightarrow Cu$$

২০। ইলেক্ট্রোপ্লেটিং কাকে বলে?

[ঢা বো-১৬]

উত্তর: তড়িৎ বিশ্লেষণের সাহায্যে কোনো ধাতুর উপর অন্য ধাতুর প্রলেপ দেওয়ার প্রক্রিয়াকে ইলেকট্রোপ্লেটিং বা তড়িৎ প্রলেপন বলে।

২১। সংযোজন বিক্রিয়া কি?

উত্তর: যে বিক্রিয়ায় দুই বা ততোধিক যৌগ বা মৌল যুক্ত হয়ে নতুন যৌগ উৎপন্ন করে তাকে সংযোজন বিক্রিয়া বলা হয়। যেমন:

$$2\text{FeCl}_2 + \text{Cl}_2 \rightarrow 2\text{FeCl}_3$$

২২। অধ:ক্ষেপণ বিক্রিয়া কাকে বলে?

উত্তর: যে বিক্রিয়ায় তরল বিক্রিয়ক পদার্থ বিক্রিয়া করে কঠিন উৎপাদে পরিণত হয়ে পাত্রের তলদেশে জমা হয় তাকে অধ:ক্ষেপণ বিক্রিয়া বলে। যেমন:

$$NaCl + AgNO_3 \rightarrow NaNO_3 + AgCl$$

২৩। আর্দ্র বিশ্লেষণ বিক্রিয়া কি?

উত্তর: যে রাসায়নিক বিক্রিয়ায় বিক্রিয়ক হিসেবে পানি অন্য কোনো যৌগের সাথে বিক্রিয়া করে উৎপাদ উৎপন্ন করে তাকে আর্দ্র বিশ্লেষণ বিক্রিয়া বলে। যেমন:

$$AlCl_3 + 3H_2O \rightarrow Al(OH)_3 + 3HCl$$

২৪। জারক কি?

উত্তর: রাসায়নিক বিক্রিয়ায় যে বিক্রিয়ক ইলেকট্রন গ্রহণ করে তাকে জারক বলে। যেমন:

$$Cu^{2+} + 2e^{-} \rightarrow Cu$$

২৫। বিজারক কি?

উত্তর: রাসায়নিক বিক্রিয়ায় যে বিক্রিয়ক ইলেকটন ত্যাগ করে তাকে বিজারক বলা হয়। যেমন :

$$Zn \rightarrow Zn^{2+} + 2e$$

২৬। সংশ্লেষণ বিক্রিয়া কী?

উত্তর: যে সংযোজন বিক্রিয়ায় শুধু মৌলিক পদার্থ যুক্ত হয়ে যৌগ গঠন করে তাদেরকে সংশ্লেষণ বিক্রিয়া বলে। যেমন :

$$H_2 + Cl_2 \rightarrow 2HCl$$

২৭। প্রশমন বিক্রিয়া বলতে কী বোঝ?

উত্তর: যে বিক্রিয়ায় জলীয় দ্রবণে এসিড ও ক্ষার বিক্রিয়া করে লবণ ও পানি উৎপন্ন করে তাকে প্রশমন বিক্রিয়া বলে। যেমন :

$$NaOH + HCl \rightarrow NaCl + H_2O$$

২৮। শ্বসন বলতে কী বোঝ?

উত্তর: যে বিক্রিয়ায় জীবদেহের কো<mark>ষে</mark> অবস্থিত শর্করা জাতীয় খাদ্য অক্সিজেনের সাথে বিক্রিয়া করে ${
m CO}_2$ ও ${
m H}_2{
m O}$ এবং শক্তি উৎপন্ন করে <mark>তা</mark>কে শ্বসন বলে।

২৯। তাপের পরিবর্তনের উপর ভিত্তি করে রাসায়নিক বিক্রিয়া কয় প্রকার?

উত্তর: তাপের পরিবর্তনে উপর ভিত্তি করে রাসায়নিক বিক্রিয়া দুই প্রকার। যথা:

- (১) তাপোৎপাদী বিক্রিয়া
- (২) তাপহারী বিক্রিয়া

৩০। ইলেকট্রন স্থানান্তরের ভিত্তিতে রাসায়নিক বিক্রিয়া কয় প্রকার?

উত্তর: ইলেকট্রন স্থানান্তরের ভিত্তিতে রাসায়নিক বিক্রিয়া দুই প্রকার। যথা:

- (১) রেডক্স বিক্রিয়া (Redox)
- (২) নন-রেডক্স (Non-Redox) বিক্রিয়া।

৩১। রাসায়নিক সাম্যাবস্থা কি?

উত্তর: যখন কোনো উভমুখী বিক্রিয়ায় সম্মুখমুখী বিক্রিয়ার গতিবেগ ও পশ্চাৎমুখী বিক্রিয়ার গতিবেগ সমান থাকে তখন সেই বিক্রিয়াকে রাসায়নিক সাম্যাবস্থা বলা হয়।

৩২। বিক্রিয়ার দিক বিবেচনায় রাসায়নিক বিক্রিয়া কয় প্রকার ও কি কি?

উত্তর: বিক্রিয়ার দিক বিবেচনায় রাসায়নিক বিক্রিয়া দুই প্রকার। যথা:

- (১) একমুখী বিক্রিয়া (Irreversible Reaction)
- (২) উভমুখী বিক্রিয়া (Reversible Reaction)

৩৩। অ্যামোনিয়াম সায়ানেট এর সমাণু কী?

উত্তর: অ্যামোনিয়াম সায়ানেট এর সমাণু হলো ইউরিয়া।

৩৪। মৌমাছির কামড়ের জ্বালা নিরাময়ে কোনটি ব্যবহৃত হয়?

উত্তর: মৌমাছির কামড়ের জ্বালা নিরাময়ে চুন ব্যবহার করা হয়।

৩৫। বাড়ির আঙ্গিনার পিচ্ছিলতা দূর করতে কোনটি ব্যবহৃত হয়?

উত্তর: বাড়ির আঙ্গিনার পিচ্ছিলতা দূর করতে বালু (SiO₂) ব্যবহৃত হয়।

৩৬। বালু কোন প্রকৃতির?

উত্তর: বালু অম্লীয় প্রকৃতির।

৩৭। প্রশমন বিক্রিয়ার বিক্রিয়া তাপ কত?

উত্তর: প্রশমন বিক্রিয়ার বিক্রিয়া তাপ – 57.34 kJ ।

৩৮। ইথাইল ইথানয়েট এর সংকেত লিখ?

উত্তর: ইথাইল ইথানয়েট এর সংকেত CH3COOC2H5

৩৯। অ্যামোনিয়া উৎপাদনে কোনটি প্রভাবক হিসেবে ব্যবহৃত হয়?

উত্তর: অ্যামোনিয়া উৎপাদনে Fe চূর্ণ প্রভাবক হিসেবে ব্যবহৃত হয়।

৪০। অ্যামোনিয়া উৎপাদনে বিক্রিয়া তাপ কত?

উত্তর: অ্যামোনিয়া উৎপাদনে বিক্রিয়া তাপ – 92 kJ ।

৪১। মৃৎক্ষার ধাতুসমূহের জারণ সংখ্যা কত?

উত্তর: মৃৎক্ষার ধাতুসমূহের জারণ সংখ্যা + 2 ।

৪২। ক্ষার ধাতুসমূহের জারণ সংখ্যা কত?

উত্তর: ক্ষার ধাতুসমূহের জারণ সংখ্যা + 1 ।

৪৩। মুক্ত মৌলের জারণ সংখ্যা কত?

[সি.বো,-'১৭,চ বো-'১৭]

<mark>উত্তর:</mark> মুক্ত মৌলের জারণ সংখ্যা o।

88। পারঅক্সাইডে অক্সিজেনের জারণ সংখ্যা কত?

উত্তর: পারঅক্সাইডে অক্সিজেনের জারণ সংখ্যা – 11

৪৫। সুপারঅক্সাইডে অক্সিজেনের জারণ সংখ্যা কত?

উত্তর: সুপারঅক্সাইডে অক্সিজেনের জারণ সংখ্যা $-\frac{1}{2}$ ।

৪৬। কেলাস পানি কি?

[সকল বোর্ড ২০১৮]

উত্তর: আয়নিক যৌগের কেলাস গঠনের সময় যুক্ত পানিকে কেলাস পানি বলে।

৪৭। আর্দ্র বিশ্লেষণ কী?

উত্তর: যে বিক্রিয়ায় কোনো যৌগের দুই অংশ পানির বিপরীত আধান বিশিষ্ট দুই অংশের সাথে যুক্ত হয়ে নতুন যৌগ উৎপন্ন করে তাকে আদ্র বিশ্লেষণ বলে।

৪৮। পলিমারকরণ বিক্রিয়া কাকে বলে?

উত্তর: প্রভাবক, উচ্চ চাপ ও তাপের প্রভাবে যখন এক বা একাধিক যৌগের অসংখ্য ক্ষুদ্র ক্ষুদ্র অণু পরস্পরের সাথে যুক্ত হয়ে একটি বৃহদাকার <mark>অণু</mark> তৈরি করে তখন তাকে পলিমারকরণ বিক্রিয়া বলে।

৪৯। মরিচা কী?

উত্তর: একটি লোহার বস্তুকে দীর্ঘদিন আর্দ্র বাতাসে রেখে দিলে এটি অক্সিজেন ও জলীয় বাষ্পের সাথে বিক্রিয়া করে পানিযুক্ত ফেরিক অক্সাইড উৎপন্ন করে যা মরিচা নামে পরিচিত।

৫০। মরিচার সংকেত লেখো।

[কু. বো, ব. বো, ১৭ রা. বো- ১৬]

উত্তর: মরিচার সংকেত $Fe_2O_3.nH_2O$ ।

৫১। দহন তাপ কী?

[দি. বো ১৬]

উত্তর: এক মোল পরিমাণ পদার্থকে দহন করলে যে তাপের উৎপন্ন হয় তাকে দহন তাপ বলে।

৫২। বিক্রিয়ার হার কী?

উত্তর: একক সময়ে যে পরিমাণ বিক্রিয়ক উৎপাদে পরিণত হয় তাকে বিক্রিয়ার হার বলে।

অনুধাবনমূলক প্রশ্নোত্তর

প্রশ্ন ১: রাসায়নিক সাম্যাবস্থা একটি গতিময় অবস্থা- ব্যাখ্যা কর।

(রা. বো, '১৭; কু. বো, '১৭)

উত্তর: উভমুখী বিক্রিয়ার সম্মুখমুখী বিক্রিয়ায় হার ও পশ্চাৎমুখী বিক্রিয়ার হার সমান হলেই বিক্রিয়াটি সাম্যাবস্থায় উপনীত হয়। । আপাতদৃষ্টিতে সাম্যাবস্থায় বিক্রিয়াটিকে স্থির মনে হলেও প্রকৃতপক্ষে বিক্রিয়াটি গতিশীল। এ অবস্থায় একক সময়ে যে পরিমাণ বিক্রিয়ক উৎপাদে পরিণত হয় ঐ একই সময়ে উৎপাদেরও একই পরিমাণ বিক্রিয়কে পরিবর্তিত হয়। অর্থাৎ এ অবস্থায় প্রতি সেকেন্ডে যতগুলো বিক্রিয়ক অণু বিক্রিয়া করে উৎপাদ তৈরি করে ঐ একই সময়ে উৎপাদ বিক্রিয়া করে ঠিক ততগুলো বিক্রিয়ক অণু উৎপন্ন করে। তাই রাসায়নিক সাম্যাবস্থা একটি গতিশীল অবস্থা, স্থির অবস্থা নয়।

প্রশ্ন ২: পানি-বিশ্লেষণ ও পানিযোজন বিক্রিয়া এক নয় কেন? ব্যাখ্যা কর।

্চ. বো, '১৪]

উত্তর: যে বিক্রিয়ায় কোনো যৌগের দুই অংশ পানির বিপরীত আধান বিশিষ্ট দুই অংশের সাথে যুক্ত হয়ে নতুন যৌগ উৎপন্ন করে তাকে পানি বিশ্লেষণ বিক্রিয়া বলে। পানি বিশ্লেষণ বিক্রিয়া দ্বিপ্রতিস্থাপন বিক্রিয়ার অনুরূপ। অপরদিকে যে বিক্রিয়ায় আয়নিক যৌগ কেলাস গঠনের সময় এক বা একাধিক সংখ্যক পানির অণুর সাথে যুক্ত হয় তাকে পানিযোজন বিক্রিয়া বলে। পানিযোজন বিক্রিয়া সংযোজন বিক্রিয়ার অনুরূপ। তাই বলা যায় পানি বিশ্লেষণ ও পানিযোজন বিক্রিয়া এক নয়।

প্রশ্ন ৩: পলিমারকরণ বিক্রিয়া ব্যাখ্যা কর।

[ঢা. বো '১৫]

উত্তর: যে বিক্রিয়ায় উচ্চ তাপ ও চাপের প্রভাবে একই যৌগের অসংখ্য ক্ষুদ্র অণু বা মনোমারসমূহ পরস্পরের সাথে যুক্ত হয়ে বৃহৎ আণবিক ভরবিশিষ্ট নতুন যৌগের অণু বা পলিমার গঠন করে তাকে পালমারকরণ বিক্রিয়া বলে। যেমন, উচ্চ তাপ ও চাপের প্রভাবে ভিনাইল ক্লোরাইড (CH₂ = CHCI) যৌগের অসংখ্য অণু পরস্পরের সাথে যুক্ত হয়ে বৃহৎ আণবিক ভরবিশিষ্ট নতুন যৌগ পলিভিনাইল ক্লোরাইড (PVC) গঠন করে।

$$nH_2C=CH-Cl$$
 উচ্চ চাপ ও তাপ $(-CH_2-CH-Cl-)n$ (মনোমার) পলিমারকরণ $PVC($ পলিমার)

প্রশ্ন 8: কৃষিক্ষেত্রে প্রশমন বিক্রিয়ার গুরুত্ব ব্যাখ্যা কর।

[কু বো, '১৫]

উত্তর: জলীয় দ্রবণে এসিড ও ক্ষার বিক্রিয়া করে লবণ ও পানি উৎপন্ন করার বিক্রিয়াকে প্রশমন বিক্রিয়া বা এসিড-ক্ষার বিক্রিয়া বলে। কৃষিক্ষেত্রে মাটির নিয়ন্ত্রিত pH মান বজায় রাখার জন্য অর্থাৎ মাটির অম্লধর্মিতা বা ক্ষারধর্মিতা নিয়ন্ত্রিত সীমার মধ্যে রাখার জন্য প্রশমন বিক্রিয়া অত্যন্ত তাৎপর্যপূর্ণ। সাধারণত অম্লধর্মী মাটির pH মান বৃদ্ধির জন্য চুন বা ক্যালসিয়াম কার্বনেট ব্যবহৃত হয়। আবার ক্ষারধর্মী মাটির pH মান কমানোর জন্য টি.এস.পি সার প্রয়োগ করা হয়। এক্ষেত্রে প্রশমন বিক্রিয়ার মাধ্যমে মাটির উর্বরতা ঠিক থাকে।

প্রশ্ন ৫: তাপোৎপাদী বিক্রিয়ায় তাপমাত্রা পরিবর্তনের প্রভাব ব্যাখ্যা।

উত্তর: তাপোৎপাদী বিক্রিয়ার ΔH ঋণাত্মক অর্থাৎ তাপোৎপাদী বিক্রিয়ায় তাপ উৎপন্ন বা নির্গত হয়। কোনো তাপোৎপাদী উভমুখী বিক্রিয়ার সাম্যাবস্থায় তাপমাত্রা বাড়ালে লা-শাতেলিয়ারের নীতি অনুযায়ী বিক্রিয়াটি পশ্চাৎমুখী হবে অর্থাৎ সাম্যাবস্থা ডান থেকে বাম দিকে সরে যাবে। আবার এ ধরনের বিক্রিয়ার সাম্যাবস্থায় তাপমাত্রা কমালে লা-শাতেলিয়ারের নীতি অনুয়ায়ী বিক্রিয়াটি সম্মুখবর্তী হবে, অর্থাৎ সাম্যাবস্থা বাম থেকে ডান দিকে সরে যাবে।

প্রশ্ন ৬: আর্দ্রবিশ্লেষণ বিক্রিয়া একটি দ্বিবিযোজন বিক্রিয়া ব্যাখ্যা কর।

উত্তর : দ্বি-বিযোজন বিক্রিয়ায় বিক্রিয়কের উপাদান মৌলসমূহ স্থান বিনিময় করে। অন্যদিকে আর্দ্রবিশ্লেষণ বিক্রিয়ায় যৌগের দুই অংশ পানির বিপরীত আধানবিশিষ্ট দুই অংশের সাথে যুক্ত হয়ে নতুন যৌগ গঠন করে। এস্টারের আর্দ্রবিশ্লেষণ বিক্রিয়া নিম্নরূপ-

$$\text{CH}_3\text{CH}_2\text{COO} - \text{CH}_3 + \text{H}_2\text{O} \rightarrow \text{CH}_3\text{COOH} + \text{CH}_3\text{CH}_2\text{OH}$$

বিক্রিয়ায় দেখা যায় আর্দ্রবিশ্লেষণে H_2O এর H^+ ও OH^- আয়ন দ্বারা দুই এস্টার দুইবার প্রতিস্থাপিত হয়ে CH_3COOH ও CH_3CH_2OH উৎপন্ন করে। এক্ষেত্রে বিক্রিয়কের উপাদানগুলো স্থান বিনিময় করে বলে বিক্রিয়াটি দ্বিবিয়োজন বিক্রিয়া।

প্রশ্ন ৭: সমাণুকরণ বিক্রিয়া বলতে কী বোঝ? ব্যাখ্যা কর।

উত্তর: কোনো রাসায়নিক বিক্রিয়ায় যৌগের পরমাণুসমূহের পুনর্বিন্যাসের মাধ্যমে একটি সমাণু থেকে অপর সমাণু উৎপন্ন হলে তাকে সমাণুকরণ বিক্রিয়া বলে। যেমন অ্যামোনিয়াম সায়ানেটকে তাপ দিলে ইউরিয়া উৎপন্ন হয়। এ প্রক্রিয়ায় অ্যামোনিয়া সায়ানেট ও ইউরিয়া পরস্পরের সমাণু।

$$NH_4CNO \xrightarrow{\Delta} NH_2 - CO - NH_2$$

প্রশ্ন ৮: প্রশমন বিক্রিয়া একটি নন-রেডক্স বিক্রিয়া কেন?

উত্তর: এক বা একাধিক বিক্রিয়ক থেকে নতুন যৌগ উৎপন্ন হওয়ার সময় বিক্রিয়কে বিদ্যমান মৌলসমূহের মধ্যে ইলেকট্রন আদান-প্রদান হলে বিক্রিয়াকে নন-রেডক্স বিক্রিয়া বলে। প্রশমন বিক্রিয়ার ক্ষেত্রে বিক্রিয়কের এসিড ও ক্ষার এবং উৎপাদের লবণ ও পানি সবগুলোর ইলেকট্রন সংখ্যা বিক্রিয়ক ও উৎপাদে সমান থাকে অর্থাৎ কোনো ইলেকট্রন আদান-প্রদান হয় না।

এজন্য প্রশমন বিক্রিয়া একটি নন-রেডক্স বিক্রিয়া।

প্রশ্ন ৯: $K_2 C r_2 O_7$ এ C r এর জারণ মান নির্ণয় কর।

উত্তর: ধরি, Cr এর জারণ সংখ্যা = x

আমরা জানি, K এর জারণ সংখ্যা = +1

O এর জারণ সংখ্যা = -2

$$(+1) \times 2 + x \times 2 + (-2) \times 7 = 0$$

 $\sqrt{1}$, +2 + 2x - 14 = 0

$$\therefore x = +6$$

∴ K₂Cr₂O₇ এ Cr এর জারণ সংখ্যা +6.

প্রশ্ন ১০: নাইট্রিক এসিডকে সর্বদা বাদামি বর্ণের বোতলে রাখা হয় কেন?

উত্তর : নাইট্রিক এসিড (HNO_3) কে সর্বদা বাদামি বর্ণের বোতলে রাখা হয়। কারণ আলোর উপস্থিতিতে HNO_3 সহজেই ভেঙে গিয়ে বা বিযোজিত হয়ে নাইট্রোজেন ডাইঅক্সাইড (NO_2) তৈরি হয় । আলোর অনুপস্থিতিতে এ বিক্রিয়ার হার হ্রাস পায় বলে HNO_3 কে বাদামি বর্ণের বোতলে রাখা হয়।

প্রশ্ন ১১: তাপোৎপাদী ও তাপহারী বিক্রিয়ার মধ্যে দুটি পার্থক্য লিখ।

উত্তর: তাপোৎপাদী ও তাপহারী বিক্রিয়ার মধ্যে দুটি পার্থক্য হলো-

তাপোৎপাদী বিক্রিয়া

১। তাপোৎপাদী বিক্রিয়ায় সর্বদা তাপ উৎপন্ন হয়।

২। তাপোৎপাদী বিক্রিয়ার ∆ H এর মান ঋণাত্মক (-ve) হয়।

তাপহারী বিক্রিয়া

- ১। তাপহারী বিক্রিয়ায় সর্বদা তাপ শোষিত হয়।
- ২। তাপহারী বিক্রিয়ায় ΔH এর মান সর্বদা ধনাত্মক (+ve) হয়।

প্রশ্ন ১২: বিক্রিয়কের ঘনমাত্রা বাড়ালে বিক্রিয়ার হার বৃদ্ধি পায় কেন?

উত্তর: বিক্রিয়ার হার বিক্রিয়কের ঘনমাত্রার উপর নির্ভরশীল। সময়, পরিবর্তনের সাথে বিক্রিয়কের ঘনমাত্রা পরিবর্তিত হয়। সময় অতিক্রান্তের সাথে বিক্রিয়কের ঘনমাত্রা ধীরে ধীরে কমে যাওয়ায় বিক্রিয়ার হারও কমে যায়। এই অবস্থায় বিক্রিয়কের ঘনমাত্রা বাড়ালে বিক্রিয়ার হার বৃদ্ধি পায়। কারণ ঘনমাত্রা বৃদ্ধি পাওয়া মানে একটি নির্দিষ্ট আয়তনে বিক্রিয়ায় অংশ গ্রহণকারী অণুসমূহের সংখ্যা বৃদ্ধি পাওয়া। এতে বিক্রিয়ায়ে অণুসমূহের মধ্যে কার্যকর সংঘর্ষের সংখ্যা বৃদ্ধি পায়। ফলে বিক্রিয়ার হারও বেড়ে যায়।

প্রশ্ন ১৩: মোম জ্বালানোর সময় ভৌত ও রাসায়নিক উভয় ধরনের পরিবর্তন ঘটে- ব্যাখ্যা কর।

উত্তর : মোমের প্রধান উপাদান বিভিন্ন হাইড্রোকার্বনের মিশ্রণ। মোম জ্বালালে তার কিছু অংশ শুধু ভৌত পরিবর্তনের মাধ্যমে গলে কঠিন অবস্থা হতে তরল অবস্থায় রূপান্তরিত হয় এবং ঠাণ্ডা হয়ে পুনরায় কঠিন অবস্থায় পরিণত হয়। একই সাথে মোমের কিছু অংশ অক্সিজেনের সাথে বিক্রিয়া করে কার্বন ডাইঅক্সাইড ও জলীয় বাষ্প উৎপন্ন করে। কাজেই মোম জ্বালানোর সময় ভৌত ও রাসায়নিক উভয় ধরনের পরিবর্তন সাধিত হয়।

প্রশ্ন ১৪: কার্বন অধাতু হলেও বিজারক কেন?

উত্তর : যে বস্তু অন্য কোনো বস্তুর বিজারণ ঘটায় এবং নিজে জারিত হয় তাকে বিজারক বলে। কার্বন একটি বিজারক, কারণ কপার অক্সাইড (CuO) এবং কার্বনের বিক্রিয়ায় কপার ও কার্বন মনোক্সাইড উৎপন্ন হয়।

$$CuO + C \rightarrow Cu + CO$$

এ বিক্রিয়ায় কপার অক্সাইড হতে তড়িৎ ঋণাত্মক অক্সিজেনের অপসারণ হয়েছে। সুতরাং কপার অক্সাইডের বিজারণ ঘটেছে। কার্বন এই বিজারণ ঘটিয়ে নিজে জারিত হয়ে কার্বন মনোক্সাইডে রূপান্তরিত হয়েছে। অর্থাৎ কার্বন বিজারক।

প্রশ্ন ১৫: বিক্রিয়কের ঘনমাত্রা বাড়ালে বিক্রিয়ার হার বৃদ্ধি পায় কেন?

উত্তর: বিক্রিয়ার হার বিক্রিয়কের ঘনমাত্রার উপর নির্ভরশীল। সময় পরিবর্তনের সাথে বিক্রিয়কের ঘনমাত্রা পরিবর্তিত হয়। সময় অতিক্রান্তের সাথে বিক্রিয়কের ঘনমাত্রা ধীরে ধীরে কমে যাওয়ায় বিক্রিয়ার হারও কমে যায়। এই অবস্থায় বিক্রিয়াকের ঘনমাত্রা বাড়ালে বিক্রিয়ার হার বৃদ্ধি পায়। কারণ ঘনমাত্রা বৃদ্ধি পাওয়া মানে একটি নির্দিষ্ট আয়তনে বিক্রিয়ায় অংশ গ্রহণকারী অণুসমূহের সংখ্যা বৃদ্ধি পাওয়া। এতে বিক্রিয়াতে অণুসমূহের মধ্যে কার্যকর সংঘর্ষের সংখ্যা পৃদ্ধি পায়। ফলে বিক্রিয়ার হারও বেড়ে যায়।

প্রশ্ন ১৬: উভমুখী বিক্রিয়াকে একমুখী করা যায় কি প্রক্রিয়ায়?

উত্তর: আমরা জানি, উভমুখী বিক্রিয়া অসম্পূর্ণ। উভমুখী বিক্রিয়াকে বিভিন্নভাবে একমুখী করা যায়। কোনো উভমুখী বিক্রিয়ায় একটি উৎপাদকে যদি ক্রমাগত বিক্রিয়াস্থল থেকে সরিয়ে নেওয়া যায়, তাহলে বিপরীত বিক্রিয়াটি সংঘটিত হতে পারে না। অর্থাৎ তখন উভমুখী সাম্যাবস্থা আর বজায় থাকে না। যেমন- জিংক ও সালফিউরিক এসিডের বিক্রিয়ায় উৎপন্ন হাইড্রোজেন গ্যাসকে পৃথকভাবে সংগ্রহ করা হলে বিক্রিয়া সম্পূর্ণ হয় তথা বিক্রিয়াটি একমুখী হয়।

$$Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2 \uparrow$$

আবার, বিক্রিয়াটি খোলা পাত্রে সংঘটিত হলে এবং উৎপাদ গ্যাসীয় হলে উভমুখী বিক্রিয়া একমুখী হয়।

16 MINUTE SCHOOL

SOLVED MCQ

(১) পদার্থের গলনাঙ্ক, স্ফুটনাঙ্ক এবং ঘনত্ব কী?

🌠 ভৌত পরিবর্তন

- (খ) রাসায়নিক পরিবর্তন
- (গ) ভৌত ও রাসায়নিক পরিবর্তন
- (ঘ) অবস্থার পরিবর্তন

(২) দহন কী?

- (ক) পদার্থকে আগুনে পোড়ানো
- অক্সিজেনের সাথে পদার্থের বিক্রিয়া

(গ) মোমবাতি পোড়ানো

(ঘ) আগুনের স্ফুলিঙ্গ

(৩) মোমবাতি জ্বলতে থাকলে কোন ধরনের পরিবর্তন হয়?

(ক) ভৌত পরিবর্তন

- (খ) রাসায়নিক পরিবর্তন
- ধ্যে ভৌত ও রাসায়নিক পরিবর্তন
- (ঘ) বাহ্যিক পরিবর্তন

(৪) পদার্থ তিন অবস্থায় রূপান্তরের কারণ কী?

(ক) অণুর বিন্যাস

(খ) পরমাণুর বিন্যাস

ধ ি তাপের প্রভাব

(ঘ) রাসায়নিক পরিবর্তন

(৫) পানির ১টি অণু কী কী দিয়ে তৈরি?

- (ক) ১টি হাইড্রোজেন পরমাণু ও ১টি অক্সিজেন 🎁 ২টি হাইড্রোজেন পরমাণু ও ১টি অক্সিজেন
- পরমাণু
- (গ) ১টি হাইড্রোজেন পরমাণু ও ২টি অক্সিজেন (ঘ) ২টি হাইড্রোজেন পরমাণু ও ২টি অক্সিজেন পরমাণু
- (৬) বরফে তাপ দিলে পানিতে পরিণত হয়; আরও তাপ দিলে কী ঘটবে?
 - ্রা) জলীয় বাষ্পে পরিণত হবে
- (খ) বরফে পরিণত হবে
- (গ) ভারি পানিতে পরিণত হবে
- (ঘ) পানি ঊর্ধ্বপাতিত হবে
- (৭) পানিকে 100°C তাপমাত্রা<mark>য় উত্ত</mark>প্ত করে জলীয় বাষ্পে পরিণত করলে এর শতকরা সংযুতির ক্ষেত্রে কী ঘটবে?
 - (ক) বৃদ্ধি পাবে

(খ) হ্রাস পাবে

(গ) পরিবর্তিত হবে

- (৮) মোমের প্রধান উপাদান কী?
 - (ক) সালফার

🌠 কার্বন

(গ) ফসফরাস

- (ঘ) অক্সিজেন
- (৯) মোম $+ O_2 \longrightarrow X + H_2O$ এ X যৌগটির সংকেত কোনটি?
 - (**季**) CO

(খ) CH₄

(গ) H₂

CO₂

(১০) জলীয় বাষ্পকে ঠাণ্ডা করলে পানিতে পরিণত হয়; আরও ঠাণ্ডা করলে কী ঘটবে?

(ক) পানি ঊর্ধ্বপাতিত হবে

- (খ) জলীয় বাষ্পে পরিণত হবে
- (গ) জলীয় বাষ্প ঊর্ধ্বপাতিত হবে
- বরফে পরিণত হবে

(১১) বরফের রাসায়নিক সংকেত কী?

(**季**) HO₂

H₂O

(গ) H₂O₂

(ঘ) (HO)₂

(১২) মোমের প্রধান উপাদান কী?

(ক) পানি

(খ) ডিজেল

(শ) হাইড্রোকার্বন

(ঘ) ক্ষার

🎻 ভৌত

(খ) রাসায়নিক

(গ) বাহ্যিক

(ঘ) সাধারণ

(১৪) $X + 2HCI \rightarrow CaCl_2 + CO_2 + Y$; এ বিক্রিয়াতে $X \otimes Y$ যৌগদ্বয়ের নাম কী?

(ক) CaNO₃ ও NO₂

CaCO₃ & H₂O

(গ) CaO ও O₂

(ঘ) CaCO₃ ও H₂

150	$1 \times + 30_{o}(a)$	$= 2CO_2(g)$	+3H2O(a)	• বিক্রিয়াটিতে	X যৌগটির	নাম কী
100	1 7 1 000191	2009191	1 01190191	, 1 114-111060	V @ 41 11 2 14	11.24 4.1

(ক) মিথেন

(খ) ইথেন

(গ) ইথানল

মিথানল

(১৬) কোনটি ভৌত পরিবর্তন?

- (ক) হাইড্রোজেন ও অক্সিজেনের সংযোগে পানি তৈরি
- হাইড্রোজেন ও অক্সিজেনের সংযোগে পানি তৈরি

(গ) মোমবাতি জ্বালানো

(ঘ) লোহায় মরিচা পড়া

(১৭) লোহাকে বাতাসে রেখে দি<mark>লে এর</mark> উপর লালচে বাদামি রঙের আস্তরণ পড়া কোন ধরনের পরিবর্তন?

(ক) গ্যাসীয় পরিবর্তন

🤝 ভৌত পরিবর্তন

(গ) বাহ্যিক পরিবর্তন

(ঘ) রাসায়নিক পরিবর্তন

(১৮) জলীয় বাষ্পের রাসায়নিক সংকেত কী?

√ H₃O

(খ) H₂O

(গ) HO₂

(ঘ) OH

(১৯) মোম ও গালা থেকে তাপ সরিয়ে নিলে এগুলো কিসে পরিণত হয়?

(ক) কঠিন পদার্থে

(খ) তরল পদার্থে

বাষ্পীয় পদার্থে

(ঘ) জলীয় পদার্থে

(২০) $C_x H_y + \left(x + \frac{y}{4}\right) O_2 \stackrel{\Delta}{\to} x C O_2 + \frac{y}{2} H_2 O +$ শক্তি; এই বিক্রিয়ায় কী ধরনের পরিবর্তন ঘটে?

(ক) পানি ঊর্ধ্বপাতিত হবে

- (খ) জলীয় বাষ্পে পরিণত হবে
- (গ) জলীয় বাষ্প ঊর্ধ্বপাতিত হবে
- বরফে পরিণত হবে

(২১) মোম মূলত কী?

(ক) C ও N এর যৌগ

(খ) C ও O এর যৌগ

🌠 C ও H এর যৌগ

(ঘ) C ও S এর যৌগ

(২২) তাপ দিলে পানি কোন অবস্থা প্রাপ্ত হয়?

(গ্যাসীয়

(খ) তরল

(গ) কঠিন

(ঘ) জলীয়

(২৩) পদার্থের ভৌত পরিবর্তনে শতকরা সংযুতির ক্ষেত্রে কী ঘটে?

(ব্য ভিন্নতা থাকে

(খ) পরিবর্তিত হয়

(গ) শূন্য হয়

(ঘ) অভিন্ন থাকে

(২৪) মোম জ্বালালে কী উৎপন্ন হয়?

(ক) অক্সিজেন ও জলীয় বাষ্প

- (ব) কার্বন ডাইঅক্সাইড ও জলীয় বাষ্প
- (গ) অক্সিজেন ও কার্বন ডাইঅক্সাইড
- (ঘ) অক্সিজেন ও নাইট্রিক অক্সাইড

(২৫) পরমাণুসমূহের মধ্যকার বন্ধন ভেঙে নতুন বন্ধন গঠিত হয় কখন?				
(ক) ভৌত পরিবর্তনে	(খ) বাহ্যিক পরিবর্তনে			
街 রাসায়নিক পরিবর্তনে	(ঘ) যেকোনো পরিবর্তনে			
(২৬) কোনো পদার্থের রাসায়নিক পরিবর্তন হলে এর মৌলসমূহের শতকরা সংযুতি কেমন হয়?				
🕣 পরিবর্তন হয়	(খ) অপরিবর্তিত থাকে			
(গ) হ্রাস পায়	(ঘ) বৃদ্ধি পায়			
(২৭) রাসায়নিক পরিবর্তনে বন্ধন ভাঙা ও নতুন বন্ধন	গঠনের সময় কিসের পরিবর্তন হয়?			
(ক) বন্ধন শক্তির	🌎 তাপ শক্তির			
(গ) রাসায়নিক শক্তির	(ঘ) সিস্টেমের			
(২৮) রাসায়নিক পরিবর্তনের সময় পরমাণুর মধ্যবর্তী হয়?	বন্ধন ভেঙে নতুন বন্ধন গঠিত হওয়ার সময় কী উৎপন্ন			
🕣 তাপশক্তি	(খ) অক্সিজেন			
(গ) বুদবুদ	(ঘ) আণবিক শক্তি			

(২৯) $CH_4(g) + 2O_2(g) \stackrel{\Delta}{\longrightarrow} CO_2(g) + 2H_2O(g)$ এই বিক্রিয়ায় -

- i. রাসায়নিক পরিবর্তন সংঘটিত হয়
- ii. কার্বন ডাইঅক্সাইড ও জলীয় বাষ্প উৎপন্ন হয়
- iii. উৎপাদে গ্যাসীয় পদার্থ পাওয়া যায়

নিচের কোনটি সঠিক?

- (ক) i ও ii খে) i ও iii গো খে iii গো ় ii ও iii

- i. একটি ভৌত পরিবর্তন
- ii. এতে হাইড্রোজেন ও অক্সিজে<mark>নের</mark> শতকরা সংযুতি অপরিবর্তিত থাকে
- iii. মুক্ত অবস্থায় রেখে দিল<mark>ে পরি</mark>বেশ থেকে তাপ শোষণ করে পানিতে পরিণত হয়

নিচের কোনটি সঠিক?

- (ক) i ও ii (খ) i ও iii (গ) ii ও iii (গ) i, ii ও iii

(৩১) CaCO₃(s) + 2HCl(aq) → CaCl₂(aq) + CO₂(g) + H₂O(l) এই বিক্রিয়ায় -

- i. ভৌত পরিবর্তন সংঘটিত হয়
- ii. রাসায়নিক পরিবর্তন হয়
- iii. নতুন ধরনের পদার্থ উৎপন্ন হয়

নিচের কোনটি সঠিক?

- (ক) i ও ii (খ) i ও iii (ঘ) i, ii ও iii

নিচের বিক্রিয়া থেকে ৩২ ও ৩৩ নং প্রশ্নের উত্তর দাও:

$$CH_4(g) + 2O_2(g) \xrightarrow{\Delta} CO_2(g) + 2H_2O(g)$$

(৩২) প্রদত্ত বিক্রিয়ায় কী ধরনের পরিবর্তন ঘটে?

(ক) ভৌত পরিবর্তন

- া রাসায়নিক পরিবর্তন
- (গ) ভৌত ও রাসায়নিক পরিবর্তন
- (ঘ) অস্থায়ী পরিবর্তন

(৩৩) প্রদত্ত বিক্রিয়ায় বিক্রিয়ক কোনটি?

🎻 মিথেন

(খ) কার্বন ডাইঅক্সাইড

(গ) তাপ ও চাপ

(ঘ) আলো ও তাপ

নিচের অনুচ্ছেদ পড় এবং ৩৪ ও ৩৫ নং প্রশ্নের উত্তর দাও :

মোম, পেট্রোল, কেরোসিন প্রভৃতি কার্বন এবং হাইড্রোজেনের যৌগ। এগুলোকে বাতাসে জ্বালালে ${
m CO}_2$ এবং জলীয় বাষ্প উৎপন্ন হয়।

(৩৪) উদ্দীপকে কোন বিক্রিয়ার কথা বলা হয়েছে?

(ক) প্রতিস্থাপন বিক্রিয়া

(খ) প্রশমন বিক্রিয়া

🙀 দহন বিক্রিয়া

(ঘ) পরমাণুকরণ বিক্রিয়া

(৩৫) এই বিক্রিয়ায় -

- i. তাপশক্তি উৎপন্ন হয়
- ii. বন্ধন ভেঙে যায়
- iii. নতুন বন্ধন গঠিত হয়

নিচের কোনটি সঠিক?

- (ক) i ও ii (খ) i ও iii (গ) ii ও iii
- i, ii & iii

(৩৬) রাসায়নিক বিক্রিয়ায় যে পদার্থ নিয়ে আরম্ভ করা হয় তাকে বলে বিক্রিয়ক এবং যে পদার্থ উৎপন্ন হয় তাকে কী বলে?				
উৎপাদ	(খ) বিক্রিয়াজাত পদার্থ			
(গ) উৎপন্নকারী পদার্থ	(ঘ) প্রক্রিয়াজাত পদার্থ			
(৩৭) বিক্রিয়ক ও উৎপাদের ভৌত ও রাসায়নিক ধর্মের মধ্যে সম্পর্ক কেমন?				
(ক) একই	ভিন্ন			
(গ) অভিন্ন	(ঘ) এক ও অভিন্ন			
(৩৮) রাসায়নিক বিক্রিয়া সংঘট <mark>নের জ</mark> ন্য কোনটি অত্যাবশ্যক?				
(ক) আলোক	(খ) তাপ			
(গ) চাপ	সংস্পর্শ			
(৩৯) রাসায়নিক বিক্রিয়ায় নিচের কোনটির পরিবর্তন অবশ্যস্ভাবী?				
(ক) পরিবেশ	(খ) চাপ			
(শ) তাপ	(ঘ) ভর			
(৪০) রাসায়নিক বিক্রিয়াকে কয়টি বিষয়ের ওপর ভিত্তি করে শ্রেণিবিভাগ করা হয়?				
(ক) দুই	তিন			
(গ) চার	(ঘ) পাঁচ			

(৪১) বিক্রিয়ার দিকের ওপর ভিত্তি করে রাসায়নিক বিক্রিয়াকে কয় ভাগে ভাগ করা যায়?				
ব ে) দুই	(খ) তিন			
(গ) চার	(ঘ) পাঁচ			
(৪২) কোনো রাসায়নিক বিক্রিয়া একইসাথে সম্মুখ ও পশ্চাৎ দিকে সংঘটিত হলে, সে বিক্রিয়াকে কী বলে?				
(ক) একমুখী বিক্রিয়া	(খ) বিপরীতমুখী বিক্রিয়া			
🎻 উভমুখী বিক্রিয়া	(ঘ) সমান্তরাল বিক্রিয়া			
(৪৩) বিক্রিয়াসমূহের ঘনমাত্রা বা <mark>ড়ালে</mark> বিক্রিয়ার গতি কিরূপ হয়?				
(ক) বিক্রিয়ার গতি কমে	বিক্রিয়ার গতি বাড়ে			
(গ) বিক্রিয়ার গতি অপরিবর্তিত থাকে	(ঘ) বিক্রিয়া বন্ধ হয়ে যায়			
(৪৪) কোন বিক্রিয়া অসম্পূর্ণ?				
(ক) একমুখী	(খ) সম্মুখমুখী			
😈 উভমুখী	(ঘ) পশ্চাৎমুখী			
(৪৫) রাসায়নিক বিক্রিয়ার তাপমাত্রা বাড়ালে কী হয়?				
(ক) বিক্রিয়ার গতি বাড়ে	(খ) বিক্রিয়ার গতি কমে			

বিক্রিয়ার গতি অপরিবর্তিত থাকে
 (ঘ) অন্য ধরনের বিক্রিয়া হয়

(৪৬) কোন বিক্রিয়াটি খোলা পাত্রে সংঘটিত হলে একমুখী হয়?

O
(**)
$$CH_3 - CH_2OH + CH_3COOH \longrightarrow CH_3-CH_2-O - C - CH_3$$

$$(S) \xrightarrow{\Delta} CaO(s) + CO_2(g)$$

(গ)
$$2\text{FeCl}_2(aq) + \text{Cl}_2(g) \rightarrow 2\text{FeCl}_3(aq)$$

(되)
$$Zn(s) + H_2SO_4(aq) \rightarrow ZnSO_4(aq) + H_2(g)$$

(৪৭) কোনটি উভমুখী বিক্রিয়া?

- (খ) কার্বনের দহন
- (গ) হাইড্রোক্লোরিক এসিড <mark>সংশ্লেষ</mark>ণ
- (ঘ) ফসফরাস পেন্টাক্লোরাইডের বিয়োজন

(৪৮) রাসায়নিক সাম্যাবস্থার বৈশিষ্ট্য কোনটি?

- (ক) সাম্যাবস্থার স্থায়িত্ব
- (খ) উভয়দিক থেকে সাম্যাবস্থার প্রতিষ্ঠা
- বিক্রিয়ার অসম্পূর্ণতা
- (ঘ) নিয়ামকের প্রভাব নেই

(৪৯) N₂(g) + 3H₂(g) = 2NH₃(g); এই বিক্রিয়ার নিয়ামক কোনগুলো?

(ক) চাপ ও প্রভাবক

(খ) তাপ ও চাপ

(গ) প্রভাবক, চাপ ও ঘনমাত্রা

্যা তাপ, চাপ ও প্রভাবক

(৫০) প্রশমন বিকিয়ায় কোনটি ঘটে?

(ক) তাপ শোষিত হয়

পি তাপ নিৰ্গত হয়

(গ) △H ধনাত্মক হয়

(되) $\Delta H = 0$

(৫১) H₂○ যৌগে H ও ○ এর জারণ সংখ্যা কত?

 $(\overline{\Phi})$ -1, +2

(খ) 1, 2

(গ) -1, -1

₹7+1, -2

(৫২) MgSO4 যৌগে Mg এর <mark>জার</mark>ণ সংখ্যা কত?

(ক) -2

(গ) -1

(৫৩) কোন ধরনের বিক্রিয়ার ক্ষেত্রে ∆H ঋণাত্মক?

(ক) তাপহারী

ভাপ উৎপাদী

(গ) প্রশমন

(ঘ) পানিযোজন

(৫৪) একটি জারণ-বিজারণ বিক্রিয়ায় জারক পদার্থের ক্ষেত্রে কী ঘটে?

- (ক) ইলেকট্রন গ্রহণ করে এটি জারিত হয় (খ) ইলেকট্রন ত্যাগ করে এটি জারিত হয়

- ইলেকট্রন গ্রহণ করে এটি বিজারিত হয়
 (ঘ) ইলেকট্রন গ্রহণ করে এটি বিজারিত হয়

(৫৫) রাসায়নিক সাম্যাবস্থা কী?

街 গতিময় অবস্থা

(খ) বিক্রিয়া বন্ধ হয়ে যাওয়া

(গ) বেশি উৎপাদ সৃষ্টি হওয়া

(ঘ)তাপ শোষণ করা

(৫৬) বিক্রিয়ক পদার্থ বা পদার্থসমূহ উৎপাদে পরিণত হয় কোন ধরনের বিক্রিয়ায়?

(ক) উভমুখী বিক্রিয়ায়

(গ) তাপহারী বিক্রিয়ায়

(ঘ) তাপ উৎপাদী বিক্রিয়ায়

(৫৭) CaCO3 কে উত্তপ্ত কর<mark>লে কী</mark> উৎপাদ উৎপন্ন হয়?

(季) CaO

(খ) CO

(গ) Ca, O₂ ও CO₂

CaO & CO2

(৫৮) $CaCO_3(s) \xrightarrow{\Delta} CaO(s) + CO_2(g)\uparrow$ (খোলা পাত্রে) এ বিক্রিয়ায় বিপরীত বিক্রিয়া সম্পন্ন হয় না কেন ?

(ক) এতে CaCO3 বিযোজিত হয় না বলে

্র্ব এতে CO₂ বিক্রিয়াপাত্র থেকে অপসারিত হয় বলে

(গ) এতে CaO বিযোজিত হয় না বলে

(ঘ) এতে CaO বিক্রিয়াপাত্র থেকে অপসারিত হয় বলে

(৫৯) রাসায়নিক বিক্রিয়ায় উৎপাদ আবার বিক্রিয়কে পরিণত হলে তাকে কী বলা হয়?

(ক) বিপরীতমুখী বিক্রিয়া

(খ) সম্মুখমুখী বিক্রিয়া

ᡝ) উভমুখী বিক্রিয়া

(ঘ) একমুখী বিক্রিয়া

(৬০) বিপরীতমুখী বিক্রিয়ায় বিক্রিয়ক হিসেবে ক্রিয়া করে কোনটি?

(ক) বিক্রিয়াজাত পদার্থ

📆 উৎপাদ

(গ) যেকোনো একটি পদার্থ

(ঘ) তীর চিহ্ন

(৬১) অজৈব এসিডের (H+) উপস্থিতিতে ইথানল ও জৈব এসিড বিক্রিয়া করে কী উৎপন্ন করে?

(ক) এসিড

(খ) কিটোন

🖅 এস্টার

(ঘ) অ্যালকোহল

(৬২) CH3CH2OH + CH3COOH এই বিক্রিয়ায় নিচের কোনটি উৎপন্ন হয়?

(季) CH₃COCH₃

- CH₃CH₂OCOCH₃
- (গ) CH₃CH₂COCH₂ CH₃
- (ঘ) CH₃CH₂ CH₂ OH

(৬৩) এস্টারিফিকেশনের বিপরীতমুখী বিক্রিয়ায় কী উৎপন্ন হয়?

(ক) ইথানল

(খ) জৈব এসিড

🎻 ইথানল ও জৈব এসিড

(ঘ) অ্যালকোহল ও কিটোন

(৬৪) চুনাপাথরের তাপীয় বিযোজন বদ্ধপাত্রে সংঘটিত হলে বিক্রিয়াটি কেমন হয়?

(ক) বিপরীতমুখী

(খ) সম্মুখমুখী

(গ) একমুখী

ধ্যু উভমুখী

(৬৫) চুনাপাথরের তাপীয় বিযোজন বদ্ধপাত্রে সংঘটিত হলে বিক্রিয়াটি উভমুখী হয় কেন?

- 🌃 উৎপাদ CO2 বাষ্পীভূত হতে পারে না বলে
- (খ) উৎপাদ CaO কঠিন আকারে থাকে বলে
- (গ) উৎপাদ CaO কঠিন আকারে থাকে বলে
- (ঘ) বিক্রিয়ক ও উৎপাদের মধ্যে উভমুখী চিহ্ন ব্যবহৃত হয় বলে

(৬৬) তাপের পরিবর্তনের ওপর ভিত্তি করে রাসায়নিক বিক্রিয়াকে কত ভাগে ভাগ করা হয়?

্ দুই

(খ) তিন

(গ) চার

(ঘ) পাঁচ

(৬৭) কোন বিক্রিয়ায় বিক্রিয়ক থেকে উৎপাদ উৎপন্ন হওয়ার সময় তাপশক্তি উৎপন্ন হয়?

(ক) তাপহারী বিক্রিয়া

(খ) সম্মুখ বিক্রিয়া

(গ) বিপরীতমুখী বিক্রিয়া

তাপ উৎপাদী বিক্রিয়া

(৬৮) বিক্রিয়ক থেকে উৎপাদ উৎপন্ন হওয়ার সময় তাপশক্তি শোষিত হলে তাকে কী বলে?

ᡝ তাপহারী বিক্রিয়া

(খ) সম্মুখ বিক্রিয়া

(গ) বিপরীতমুখী বিক্রিয়া

(ঘ) তাপ উৎপাদী বিক্রিয়া

(৬৯) N₂(g) + 3H₂(g) = 2NH₃(g) বিক্রিয়াটিতে কোনটি ঘটবে?

্ব্য তাপ উৎপন্ন হবে

(খ) তাপ শেষিত হবে

(গ) তাপের পরিবর্তন ঘটবে না

(ঘ) বিক্রিয়া ঘটবে না

10 MINUTE SCHOOL

(৭০) $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ বিক্রিয়ায় উৎপন্ন তাপের পরিমাণ কত?

√ 92 kJ

(খ) 192 kJ

(গ) 102 kJ

(ঘ) 802 kJ

(৭১) N₂(g) + 3H₂(g) = 2NH₃(g) + 92.2 কিলোজুল এ বিক্রিয়াটি কিরূপ?

তাপোৎপাদী

(খ) তাপহারী

(গ) তাপ বিয়োগী

(ঘ) তাপ ত্যাগী

(৭২) হেবার-বোস পদ্ধতিতে বা<mark>ণিজ্যিকভাবে অ্যামোনিয়া সংশ্লেষণের সময় বিক্রিয়ার তাপমাত্রা কত রাখতে হয়?</mark>

(季) 200° − 300°C

(뉙) 300° - 400°C

11) 450° – 550°C

(ঘ) 500° – 600°C

(৭৩) হেবার-বোস পদ্ধতিতে অ্যামোনিয়া উৎপাদনে কত অ্যাটমোসফিয়ার চাপ প্রয়োগ করা হয়?

(**क**) 50 – 100 atm

200 – 250 atm

(গ) 1000 atm

(ঘ) 500 atm

(৭৪) কোন পদ্ধতিতে নাইট্রোজেন ও হাইড্রোজেন গ্যাস থেকে বাণিজ্যিকভাবে অ্যামোনিয়া সংশ্লেষণ করা হয়?

(ক) লা শাতেলিয়ে পদ্ধতিতে

হেবার-বোস পদ্ধতিতে

(গ) অ্যাভোগেড্রো প্রকল্প অনুসারে

(ঘ) স্পৰ্শ পদ্ধতি

10 MINUTE SCHOOL

(৭৫) $N_2(g) + O_2(g) \rightarrow 2NO(g)$ বিক্রিয়ায় $\Delta H = \overline{\Phi}$ ত?

√) − 92 kJ

(খ) 92 kJ

(গ) - 180 kJ

(ঘ) 180 kJ

(৭৬) C_2H_6O সংকেত থেকে কয়টি সমাণু পাওয়া যায়?

(4) 2

(খ) 3

(গ) 4

(ঘ) 5

(৭৭) $Ca(OH)_2$ (aq) + $CO_2(g) \rightarrow CaCO_3(s) + H_2O(I)$ বিক্রিয়াটি কী ধরনের?

(ক) বিযোজন

🖅 সংযোজন

(গ) সংশ্লেষণ

(ঘ) প্রশমন

(৭৮) $Zn + Cu^{2+} \to Zn^{2+} + Cu$ এ বিক্রিয়ায় নিচের কোনটি বিজারক?

(*) Zn

(뉙) C∪²⁺

(গ) Zn²⁺

(ঘ) C∪

(৭৯) অ্যামোনিয়া উৎপাদনের সময় কোনটির উপস্থিতি দরকার হয় না?

(ক) তাপ

(খ) চাপ

(গ) প্রভাবক

গাঢ়ত্ব

(৮০) তাপহারী বিক্রিয়ায় ∆H -এর মান কেমন?				
(ক) ঋণাত্মক	ধনাত্মক			
(গ) নিরপেক্ষ	(ঘ) শূন্য			
(৮১) ইলেকট্রন স্থানান্তরের ওপর ভিত্তি করে রাসায়নিক বিক্রিয়াকে প্রধানত কত ভাগে ভাগ করা হয়?				
ক্রি দুই	(খ) তিন			
(গ) চার	(ঘ) পাঁচ			
(৮২) কোনো রাসায়নিক বিক্রিয়ায় <mark>ইলে</mark> কট্রন স্থানান্তরিত হলে তাকে কী বলা হয়?				
(ক) জারণ বিক্রিয়া	(খ) বিজারণ বিক্রিয়া			
রেডক্স বিক্রিয়া	(ঘ) প্রতিস্থাপন বিক্রিয়া			
(৮৩) যে বিক্রিয়ায় জারণ-বিজারণ যুগপৎ ঘটে তাকে কী ধরনের বিক্রিয়া বলে?				
🔝) দ্বিবিযোজন বিক্রিয়া	(খ) প্রতিস্থাপন বিক্রিয়া			
(গ) রেডক্স বিক্রিয়া	(ঘ) যুগপৎ বিক্রিয়া			
(৮৪) যে বিক্রিয়ায় কোনো মৌলের সক্রিয় যোজনীর হ্রাস-বৃদ্ধি ঘটে তাকে কী বলে?				
(ক) জারণ-বিজারণ	(খ) পলিমারকরণ			
(গ) সমানুকরণ	পুনর্বিন্যাস			

(৯০) HCI অণুতে H- এর জারণ সংখ্যা +1 এবং H₂ অণুতে H- এর জারণ সংখ্যা কত?

(৯১) HCI অণুতে CI-এর জারণ সংখ্যা —1 এবং CI2 অণুতে CI-এর জারণ সংখ্যা কত?

(৯২) মুক্ত Fe- এর জারণ সংখ্যা 0 হলে, $FeSO_4$ অণুতে Fe-এর জারণ সংখ্যা কত?

(৯৩) মৃৎক্ষার ধাতুসমূহের জারণ সংখ্যা কত?

(৯৪) NaO $_2$ - এখানে অক্সিজেনের জারণ সংখ্যা কত?

(৯৫) HCI অণুতে H-এর জারণ সংখ্যা +1 এবং H2 অণুতে H-এর জারণ সংখ্যা কত?

(৯১) HCl অণুতে Cl- এ জারণ সংখ্যা −1 এবং Cl₂ অণুতে Cl-এর জারণ সংখ্যা কত?

(৯২) মুক্ত Fe-এর জারণ সংখ্যা 0 হলে, $FeSO_4$ অণুতে Fe-এর জারণ সংখ্যা কত?

(৯৩) মৃৎক্ষার ধাতুসমূহের জারণ সংখ্যা কত?

(৯৪) NaO2 -এখানে অক্সিজেনের জারণ সংখ্যা কত?

(৯৫) H_2O_2 যৌগে অক্সিজেনের জারণ সংখ্যা কত?

(ক) -2

↑ 1

(গ) +1

(ঘ) +2

(৯৬) KMnO₄ এ Mn - এর জারণ সংখ্যা কত?

(ক) +7

1 -7

(গ) +1

(ঘ) -1

(৯৭) $Zn + CU^{++} \rightarrow Zn^{++} + CU$ এ বিক্রিয়ায় কোনটি জারক?

(ক) Zn

(গ) Cu

(৯৮) $SnCl_2 + FeCl_3 \rightarrow SnCl_4 + FeCl_2$ -এ বিক্রিয়ায় কোনটি জারক হিসেবে কাজ করে?

(ক) Fe+++

(뉙) Sn++

(গ) CI-

Fe⁺⁺

(৯৯) কোন বাক্যটি সঠিক?

- বিজারিত হয়
- (ক) বিজারক পদার্থ ইলেকট্রন দান করে (খ) বিজারক পদার্থ ইলেকট্রন দান করে জারিত হয়
- ধ জারক পদার্থ ইলেকট্রন গ্রহণ করে জারিত হয়
- (ঘ) জারক পদার্থ ইলেকট্রন দান বা গ্রহণ করে না

10 MINUTE SCHOOL

(১০০) জারণ বলতে কী বোঝায়?

(ক) ইলেকট্রন অপসারণ

(খ) প্রোটন সংযোগে

🌠 ইলেকট্রন সংযোগ

(ঘ) প্রোটন অপসারণ

(১০১) বিজারণ বলতে কী বোঝায়?

(ক) ইলেকট্রন বর্জন করা

(খ) অক্সিজেন যোগ করা

(গ) হাইড্রোজেন বাদ দেওয়া

ত্ত্তিকট্রন গ্রহণ করা

(১০২) যে রাসায়নিক বিক্রিয়ায় কোনো পরমাণু ইলেকট্রন বর্জন করে তাকে কী বলে?

(ব্যু জারণ

(খ) বিজারণ

(গ) জারক

(ঘ) বিজারক

(১০৩) যে পদার্থ ইলেকট্রন গ্রহণ করে তাকে কী বলে?

্র্তারক

(খ) জারিত

(গ) বিজারক

(ঘ) বিজারিত

(১০৪) নিচের কোন বিক্রিয়াটিতে জারণ-বিজারণ ঘটে?

$$PCl_5(I) \stackrel{\Delta}{\rightarrow} PCl_3(I) + Cl_2$$

(박) HCI (aq) + NaOH (aq)
$$\rightarrow$$
 NaCI (aq) + H₂O (I)

(1) NaCl(aq)+AgNO₃(aq)
$$\rightarrow$$
 aNO₃ (aq)+AgCl(s)

(
$$\triangledown$$
) AICl₃(s)+3H₂O(I)→AI(OH)₃(s)+ 3HCI (aq)

(১০৫) 2FeCl₂ + Cl₂ = 2FeCl₃ বিক্রিয়াটি কী ধরনের?

(ক) জারণ-বিজারণ

প্রশমন

(গ) বিয়োজন

(ঘ) পানি বিশ্লেষণ

(১০৬) ইলেকট্রন স্থানান্তরের মাধ্যমে সংঘটিত বিক্রিয়া কোন ধরনের বিক্রিয়ার অন্তর্ভুক্ত?

(ক) সংযোজন বিক্রিয়া

বিযোজন বিক্রিয়া

(গ) প্রতিস্থাপন বিক্রিয়া

(ঘ) জারণ-বিজারণ বিক্রিয়া

(১০৭) ইলেকট্রন স্থানান্তরের মাধ্যমে সংঘটিত বিক্রিয়া কোন ধরনের বিক্রিয়ার অন্তর্ভুক্ত?

(ক) দহন বিক্রিয়া

(খ) সংযোজন বিক্রিয়া

প্রশমন বিক্রিয়া

(ঘ) প্রতিস্থাপন বিক্রিয়া

(১০৮) 2FeCl₂ + Cl₂ = 2FeCl₃ বিক্রিয়ায় কী ঘটেছে?

(ক) ক্লোরিন জারিত হয়েছে

(খ) ক্লোরিন বিজারক হিসেবে কাজ করেছে

প্রশমন বিক্রিয়া

(ঘ) প্রতিস্থাপন বিক্রিয়া

(১০৯) $HgCl_2 + Hg = Hg_2Cl_2$ বিক্রিয়াটিতে কোনটির জারণ ঘটেছে?

(<u>क</u>) CI

(뉙) CI-

Hg Hg

(ঘ) Hg²⁺

(১১০) $Zn(s) + H_2SO_4(aq) \rightarrow ZnSO_4(aq) + H_2(g)$ এটি কোন ধরনের বিক্রিয়া? (ক) বিনিময় বিক্রিয়া (খ) প্রশমন বিক্রিয়া প্রতিস্থাপন বিক্রিয়া (গ) সংযোজন বিক্রিয়া (১১১) যে রাসায়নিক বিক্রিয়ায় দুই বা ততোধিক মৌলিক বা যৌগিক পদার্থ পরস্পর বিক্রিয়া করে একটিমাত্র যৌগ উৎপন্ন করে তাকে কী বলে? সংযোজন বিক্রিয়া (খ) সংশ্লেষণ বিক্রিয়া (গ) বিযোজন বিক্রিয়া (ঘ) প্রতিস্থাপন বিক্রিয়া (১১২) রাসায়নিক বিক্রিয়ায় একটি মৌল অন্য যৌগের এক বা একাধিক পরমাণুকে সরিয়ে নিজেই তার স্থান দখল করে নতুন যৌগ উৎপন্ন করে সে বিক্রিয়াকে কী বলে? প্রতিস্থাপন বিক্রিয়া (ক) প্রশমন বিক্রিয়া (ঘ) বিযোজন বিক্রিয়া (গ) দহন বিক্রিয়া (১১৩) এসিড ও ক্ষারকের সংযোগে লবণ ও পানি উৎপন্ন হওয়ার বিক্রিয়াকে কী বলা হয়? (খ)জারণ-বিজারণ বিক্রিয়া (ক) দহন বিক্রিয়া 🌠 প্রশমন বিক্রিয়া (ঘ) প্রতিস্থাপন বিক্রিয়া (১১৪) NaCl(ag) + AgNO₃(ag) → NaNO₃(ag) + AgCl(s) এটি কোন ধরনের বিক্রিয়া? অধঃক্ষেপণ বিক্রিয়া (খ) প্রশমন বিক্রিয়া (গ) দহন বিক্রিয়া (ঘ) প্রতিস্থাপন বিক্রিয়া

(১১৫) $PCI_5(I) \xrightarrow{\Delta} PCI_3(I) + CI_2(g)$ বিক্রিয়াকে বিযোজন বিক্রিয়া বলার কারণ কী?

- একটি যৌগ ভেঙে একাধিক যৌগ গঠন করেছে
- (খ) শুধু মৌলিক পদার্থ যুক্ত হয়ে যৌগ গঠন করেছে
- (গ) শুধু যৌগিক পদার্থ যুক্ত হয়ে যৌগ গঠন করেছে
- (ঘ) তাপীয় বিযোজনে একাধিক যৌগ গঠিত হয়েছে

(১১৬) যে বিক্রিয়ায় কোনো যৌগ তার সরল উপাদানে বিভক্ত হয় তাকে কী বলে?

(ক) সংযোজন বিক্রিয়া

বিযোজন বিক্রিয়া

(গ) প্রতিস্থাপন বিক্রিয়া

(ঘ) দহন বিক্রিয়া

(১১৭) যে বিক্রিয়ায় এক বা একাধিক যৌগের দুই বা ততোধিক অণু পরস্পরের সঙ্গে যুক্ত হয়ে বড় অণু সৃষ্টি করে তাকে কী বলে?

(ক) সমাণুকরণ

প্রিমারকর

(গ) জারণ-বিজারণ

(ঘ) প্রশমন

(১১৮) প্রশমন বিক্রিয়ায় কী উৎপন্ন হয়?

বি লবণ ও পানি

(খ) লবণ

(গ) এসিড ও লবণ

(ঘ) লবণ ও ক্ষার

(১১৯) $2\text{FeCl}_2(aq) + \text{Cl}_2(g) \rightarrow 2\text{A (aq)}$ বিক্রিয়ায় A কী?

FeCl₃

(খ) FeCl₄

(গ) Fe

(ঘ) Fe₂Cl₃

(১২০) $2H_2O(I) \xrightarrow{\text{তিড়িং বিশ্লেষণ}} 2 H_2(g) + O_2(g)$; এটি কোন ধরনের বিক্রিয়া?

(ক) সংযোজন বিক্রিয়া

বিযোজন বিক্রিয়া

(গ) প্রতিস্থাপন বিক্রিয়া

(ঘ) দহন বিক্রিয়া

(১২১) কোনটি সংযোজন বিক্রিয়ার বিপরীত?

(ক) প্রতিস্থাপন

বিয়োজন

(গ) বিশ্লেষণ

(ঘ) সংশ্লেষণ

(১২২) প্রতিস্থাপন বিক্রিয়ার ক্ষেত্রে কোনটি সঠিক?

- (ক) উপাদান সমূহের প্রত্যক্<mark>ষ সংযোগে সৃষ্টি হয়</mark>
- উপাদান সমূহের বিভাজন ঘটে
- (গ) একটি যৌগ থেকে কোনো মৌল অপসারণ
- (ঘ) যোজনীর হ্রাস বা বৃদ্ধি ঘটানো

(১২৩) HCI(aq) + NaOH(aq)→NaCI(aq) + H2O(I); এটি কোন ধরনের বিক্রিয়া?

(ক) জারণ-বিজারণ

(খ) সংযোজন

(গ) অধঃক্ষেপণ

👣 প্রশমন

(১২৪) কোনটিকে পুনর্বিন্যাস বিক্রিয়া বলা হয়?

(ক) পানিযোজন বিক্রিয়া

(খ) প্রশমন বিক্রিয়া

(গ) দ্বিবিযোজন বিক্রিয়া

সমাণুকরণ বিক্রিয়া

(১২৫) কোনটির বহুসংখ্যক অণু একত্রিত হয়ে পলিইথিলিন তৈরি করে?

😿 ইথিলিন

(খ) প্লাস্টিক

(গ) প্রোইথিলিন

(ঘ) প্রোপাইলিন

(১২৬) PVC তৈরি হয় কোনটি থেকে?

ইথিলিন

(খ) অ্যালকোহল

(গ) নাইলন

(ঘ) সিনথেটিক

(১২৭) CUO + C = CU + CO; এটি কোন ধরনের বিক্রিয়া?

(ক) দ্বিবিযোজন

🤝 জারণ-বিজারণ

(গ) প্রশমন

(ঘ) বিযোজন

(১২৮) $Ca(OH)_2 + 2HCl = CaCl_2 + 2H_2O$; এটি কোন ধরনের বিক্রিয়া?

(ক) জারণ-বিজারণ

প্রশমন

(গ) বিযোজন

(ঘ) দ্বিবিযোজন

(১২৯) $MgCl_2 + 7H_2O \rightarrow MgCl_2.7H_2O$; এটি কোন ধরনের বিক্রিয়া?

পানিযোজন

(খ) বিযোজন

(গ) প্রশমন

(ঘ) সমাণুকরণ

10 MINUTE SCHOOL

(১৩০) $NH_4CNO \rightarrow NH_2 - CO - NH_2$ এ বিক্রিয়াটি -?

(ক) বিযোজন

(খ) জারণ-বিজারণ

প্রি সমাণুকরণ

(ঘ) পলিমারকরণ

(১৩১) NaCl(aq) + AgNO $_3$ (aq) \rightarrow NaNO $_3$ (aq) + AgCl(s) এ বিক্রিয়ায় কোনটির অধঃক্ষেপ পড়ে?

(**क**) NaNO₃

M AgCl

(গ) Na

(ঘ) Ag

(১৩২) সংযোজন বিক্রিয়ায় দুই <mark>বা ততোধিক মৌলিক পদার্থ যুক্ত হয়ে নতুন যৌগ উৎপন্ন হলে, তাকে কী</mark> বলা হয়?

সংশ্লেষণ বিক্রিয়া

(খ) বিযোজন বিক্রিয়া

(গ) দহন বিক্রিয়া

(ঘ) প্রতিস্থাপন বিক্রিয়া

(১৩৩) সংযোজন বিক্রিয়ার উদাহরণ কোনটি?

$$(\overline{\Phi})$$
 2H₂O \rightarrow 2H₂ + O₂

$$Zn + CuSO_4 \rightarrow ZnSO_4 + Cu$$

(গ)
$$H_2 + Cl_2 \rightarrow 2HCl$$

(
3
) CH₄ + 2O₂ → CO₂ + 2H₂O

(১৩৪) বিযোজন বিক্রিয়া কোনটি?

$$PCl_5 \xrightarrow{\Delta} PCl_3 + Cl_2$$

(খ)
$$2Na + CuSO_4 \rightarrow Na_2SO_4 + Cu$$

(গ)
$$2FeCl_2 + Cl_2 \rightarrow 2FeCl_3$$

(ঘ)
$$H_2 + Cl_2 \rightarrow 2HCl$$

(১৩৫) $CH_3CH_2OH \rightarrow CH_3 - O - CH_3$; বিক্রিয়াটি কিরূপ?

(ক) পলিমারকরণ

(খ) দ্বিবিয়োজন

সমাণুকরণ

(ঘ) অধঃক্ষেপণ

(১৩৬) কোনগুলো প্রশমন বিক্রিয়ার উৎপাদ?

(ক) NaOH ও H₂O

NaCl & H2O

(গ) NaSO₄ ও H₂SO₄

(ঘ) NaOH ও H₂SO₄

(১৩৭) $CH_4+2O_2 \rightarrow CO_2+2H_2O$; বিক্রিয়াটি কোন ধরনের বিক্রিয়া?

প্রি দহন

(খ) সংশ্লেষণ

(গ) প্রতিস্থাপন

(ঘ) প্রশমন

(১৩৮) পানিতে তড়িৎ চালনা করলে কী উৎপন্ন হয়?

(ক) নাইট্রোজেন

(খ) বাষ্প

- হাইড্রোজেন ও অক্সিজেন

(ঘ) হাইড্রক্সাইড

(১৩৯) $2Na(s) + CuSO_4(aq) \rightarrow Na_2SO_4(aq) + Cu(s)$ এ বিক্রিয়ায় Na ধাতু $CuSO_4$ থেকে কী প্রতিস্থাপন করে?

Cu

(খ) SO₄

(গ) S

(ঘ) O₂

(১৪০) দহন বিক্রিয়ায় কী উৎপন্ন হয়?

(ক) চাপ

তাপ

(গ) স্ফুলিঙ্গ

(ঘ) জলীয়বাষ্প

(১৪১) কোন গ্যাস বৈশ্বিক উষ্ণতা বাড়াতে ভূমিকা রাখে?

(ক) CO

₩ CO₂

(গ) 🔾

(ঘ) SO₂

(১৪২) কোনটিকে ননরেডক্স বিক্রিয়া বলা হয়?

(ক) দহন বিক্রিয়া

(খ) প্রতিস্থাপন বিক্রিয়া

প্রশমন বিক্রিয়া

(ঘ) বিযোজন বিক্রিয়া

(১৪৩) প্রশমন বিক্রিয়া সম্পূর্ণ হলে দ্রবণের pH মান কত হয়?

7

(খ) 6.5

(গ) 7.5

(ঘ) 4

(১৪৪) সকল প্রশমন বিক্রিয়া কোন ধরনের?

্যি তাপহারী

(খ) তাপ উৎপাদী

(গ) রেডক্স

(ঘ) জারণ

(১৪৫) প্রশমন বিক্রিয়ায় HCI ও NaOH বিক্রিয়া করে NaCl ও H_2 O উৎপন্ন হয়। এ বিক্রিয়ার দর্শক আয়ন কোনগুলো?

(ক) H+ও Na+

CI- & OH-

(গ) H+ ও CI-

(ঘ) Na+ ও Cl-

(১৪৬) প্রশমন বিক্রিয়ায় যে আয়নগুলো বিক্রিয়ায় অংশগ্রহণ করে না, তাদের কী বলা হয়?

(ক) দর্শক আয়ন

ধনাত্মক আয়ন

(গ) ঋণাত্মক আয়ন

(ঘ) নিরপেক্ষ আয়ন

(১৪৭) যে বিক্রিয়ায় উৎপন্ন যৌগ অধঃক্ষেপ হিসেবে পাত্রের তলদেশে জমা হয় তাকে কী বলে?

(ক) রেডক্স বিক্রিয়া

🔫 অধঃক্ষেপণ বিক্রিয়া

(গ) প্রশমন বিক্রিয়া

(ঘ) ননরেডক্স বিক্রিয়া

(১৪৮) অধঃক্ষেপণ বিক্রিয়ায় অংশগ্রহণকারী বিক্রিয়ক দুটি সাধারণত কী ধরনের যৌগ হয়?

সমযোজী যৌগ

(খ) ধাতব যৌগ

(গ) আয়নিক যৌগ

(ঘ) অধাতব যৌগ

(১৪৯) একটি বিক্রিয়াকে অধঃক্ষেপণ বিক্রিয়া কখন বলা হয়?

- (ক) উৎপন্ন যৌগের মধ্যে যখন একটি যৌগ পানিতে দ্রবণীয় হয়
- 🤟 উৎপন্ন যৌগের মধ্যে যখন একটি যৌগ পানিতে অদ্রবণীয় হয়
- (গ) উৎপন্ন যৌগের মধ্যে যখন একটি যৌগ পানিতে অধঃক্ষিপ্ত হয়
- (ঘ) উৎপন্ন যৌগের মধ্যে যখন একটি যৌগ ঊর্ধ্বপাতিত হয়

(১৫০) NaCl ও $AgNO_3$ এর জলীয় দ্রবণে নিচের কোন গুচ্ছ দর্শক আয়ন হিসেবে থাকে?

(季) Ag+, Cl-

(খ) Ag+, NO₃-

(গ) Na+, Cl-

Na⁺, NO₃-

(১৫১) নিচের কোন বিক্রিয়াকে দ্বিপ্রতিস্থাপন বিক্রিয়া বলা হয়?

(ক) দহন বিক্রিয়াকে

খি অধঃক্ষেপণ বিক্রিয়াকে

(গ) প্রতিস্থাপন বিক্রিয়াকে

(ঘ) পানিযোজন বিক্রিয়াকে

(১৫২) একই আণবিক সংকেতবিশিষ্ট দুটি যৌগের ধর্ম ভিন্ন হলে তাদের কী বলা হয়?

(ক) আর্দ্র বিশ্লেষণ

(খ) পলিমারকরণ

সমাণু

(ঘ) পানিযোজন

(১৫৩) CH_3-CH_2-OH ও CH_3-O-CH_3 এ যৌগ দুটিকে পরস্পারের কী বলা হয়?

(ক) হাইড্রোলাইসিস

(খ) আইসোটোপ

(গ) আইসোবার

সমাণু

(১৫৪) আয়নিক যৌগ কেলাস গঠনের সময় এক বা একাধিক পানির অণুর সাথে যুক্ত হয়। এই বিক্রিয়াকে কী বলা হয়?

পানি বিশ্লেষণ বিক্রিয়া

(খ) আর্দ্র বিশ্লেষণ বিক্রিয়া

(গ) পানিযোজন বিক্রিয়া

(ঘ) সমাণু বিক্রিয়া

(১৫৫) আয়নিক যৌগের সাথে যুক্ত পানিকে কী বলা হয়?

কেলাস পানি

(খ) জলীয় বাষ্প

(গ) হাইড্রোলাইসিস

(ঘ) ইলেকট্রলাইসিস

(১৫৬) উভমুখী বিক্রিয়াকে একমুখী করার উপায়-

- i. উন্মুক্ত স্থানে বিক্রিয়া করে
- ii. উৎপাদকে বিক্রিয়ক হিসেবে ব্যবহার করে
- iii. বিক্রিয়ায় বিক্রিয়ক যোগ করে

নিচের কোনটি সঠিক?

i છ ii

(খ) i <mark>ও iii</mark>

(গ) ii ও iii

(ঘ) i, ii ও iii

(১৫৭) $CaCO_3(s) \stackrel{\Delta}{\longrightarrow} CaO(s) + CO_2(g)$ (খোলা পাত্ৰে)–

- i. এটি একটি একমুখী বিক্রিয়া
- ii. উৎপাদ CO₂ বিক্রিয়া পাত্র থেকে অপসারিত হয়
- iii. সম্মুখমুখী ও বিপরীতমুখী বিক্রিয়া চলে

নিচের কোনটি সঠিক?

(ক) i ও ii

া ও iii (গ) ii ও iii (ঘ) i, ii ও iii

(১৫৮) H₂(g) + Cl₂(g)→2HCl(g) বিক্রিয়াটি -

- i. সংশ্লেষণ
- ii. সংযোজন
- iii. জারণ-বিজারণ

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) i ও iii (গ) ii ও iii **া**i, ii ও iii

(১৫৯) তাপ উৎপাদী বিক্রিয়া-

i.
$$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$$

ii.
$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

iii.
$$N_2(g) + O_2(g) \rightarrow 2NO(g)$$

নিচের কোনটি সঠিক?

(১৬০) NaCl(aq) + AgNO₃(aq)→NaNO₃(aq) + AgCl↓ বিক্রিয়াটিতে-

i. সাদা বর্ণের অধঃক্ষেপ পড়ে

ii. ইলেকট্রন স্থানান্তর ঘটে

iii. Na^+ ও NO_3^- আয়ন বিক্রিয়ায় অংশগ্রহণ করে না

নিচের কোনটি সঠিক?

(১৬১) $Fe^{3+} + Sn^{2+} \rightarrow Fe^{2+} + Sn^{4+}$ বিক্রিয়াটিতে -

i. Fe³⁺ এর বিজারণ ঘটে

ii. Sn²⁺ এর জারণ ঘটে

iii. Fe³⁺ একটি বিজারক

নিচের কোনটি সঠিক?

(১৬২) Zn(s) + Cu⁺⁺(aq) → Zn⁺⁺(aq) + Cu(s) বিক্রিয়াটি -

i. C∪ জারিত হয়

ii. C∪²⁺ বিজারিত হয়

iii. C∪²⁺ জারক

(১৬৩) CUO + C = CU + CO বিক্রিয়াটিতে-

- i. কার্বন বিজারক
- ii. কপার অক্সাইড জারক
- iii. উৎপাদ C∪ এর জারণ সংখ্যা শূন্য

নিচের কোনটি সঠিক?

- (ক) i ও ii (খ) i ও iii (গ) ii ও iii **শ**) i, ii ও iii

(১৬৪) Na + Cl₂ → NaCl বিক্রিয়াটিতে-

- i. Cl₂ জারক
- ii. Na বিজারক
- iii. দহন বিক্রিয়ায়

নিচের কোনটি সঠিক?

(ক) i ও ii

- (뉙) i ଓ iii
- (গ) ii ও iii
- i, ii ও iii

(১৬৫) ইলেকট্রন স্থানান্তর ঘটে না -

- i. অধঃক্ষেপণ বিক্রিয়ায়
- ii. প্রশমন বিক্রিয়ায়
- iii. দহন বিক্রিয়ায়

- (ক) i ও ii (খ) i ও iii iii ভ iii
- (ঘ) i, ii ও iii

নিচের বিক্রিয়াটি থেকে ১৬৬ ও ১৬৭ নং প্রশ্নের উত্তর দাও :

NH₄CNO → NH₂-CO-NH₂

(১৬৬) উপরিউক্ত বিক্রিয়াটি কোন ধরনের?

সমাণুকরণ বিক্রিয়া

(খ) সংযোজন বিক্রিয়া

(গ) বিযোজন বিক্রিয়া

(ঘ) জারণ-বিজারণ বিক্রিয়া

(১৬৭) বিক্রিয়াটি সংঘটনের জন্য কোনটি প্রয়োজন?

🖅 তাপ

(খ) চাপ

(গ) আলো

(ঘ) প্রভাবক

নিচের বিক্রিয়াটি লক্ষ কর এবং ১৬৮ ও ১৬৯ নং প্রশ্নের উত্তর দাও :

 $Zn + CuSO_4 \rightarrow ZnSO_4 + Cu$

(১৬৮) বিক্রিয়াটি কোন ধরনের বিক্রিয়া?

- **া** জারণ-বিজারণ বিক্রিয়া
- (খ) অধঃক্ষেপণ বিক্রিয়া

(গ) প্রশমন বিক্রিয়া

(ঘ) সমাণুকরণ বিক্রিয়া

(১৬৯) উদ্দীপকের বিক্রিয়ায়-

- i. Zn দুটি ইলেকট্রন অপসারণ করে ZnSO₄ এ পরিণত হয়
- ii. বন্ধন ভেঙে যায়
- iii. উৎপাদ ZnSO₄ এ Zn এর জারণ সংখ্যা +2

- (ক) i ও ii
- (খ) i ও iii (গ) ii ও iii
- Ni, ii & iii

(১৭০) যৌগটিতে কার্বনের শতকরা সংযুতি কত?

(季) 12%

(খ) 24%

(গ) 32.32%

52.17%

(১৭১) যৌগটি দ্বারা গঠিত সমাণু-

- i. ইথার
- ii. অ্যালকোহল
- iii. অ্যালডিহাইড

নিচের কোনটি সঠিক?

(গ) i ও iii (খ) i ও iii (গ) ii ও iii

নিম্নোক্ত যৌগদ্বয় থেকে ১৭২ ও ১৭৩ নং প্রশ্নের উত্তর দাও :

(১৭১) যৌগদ্বয়ের বৈশিষ্ট্য-

- i. এরা পানিতে দ্রবণীয়
- ii. এরা একই আণবিক সংকেত বিশিষ্ট
- iii. এরা সমাণু

নিচের কোনটি সঠিক?

(ক) i ও ii (খ) i ও iii (গ) ii ও iii (গ) i ও iii

10 MINUTE SCHOOL

(১৭৩) উদ্দীপকের যৌগ দুটির নাম কী?

- (ক) মিথানল ও ডাইইথাইল ইথার
- তাইমিথাইল ইথার ও ইথানল
- (গ) ইথানল ও ট্রাই মিথাইল ইথার
- (ঘ) মিথাইল ও ডাই ইথাইল ইথার

(১৭৪) মরিচার গ্রহণযোগ্য সংযুতি কোনটি?

(季) Fe₂O₃ . H₂O

(খ) Fe₂O₃ . H₂O₂

 Fe_2O_3 . nH_2O

(ঘ) Fe₃O₂ . nH₂O

(১৭৫) সাধারণ তাপমাত্রায় লো<mark>হাকে আর্দ্র বাতাসে রেখে দিলে এর উপর লালচে বাদামি রঙের যে আস্তরণ</mark> পড়ে তাকে কী বলে?

(ক) ফেরিক অক্সাইড

্তি ইলেকট্রোপ্লেটিং

(গ) মরিচা

(ঘ) সোদক অক্সাইড

(১৭৬) নিচের কোন বিক্রিয়া দ্বারা প্রকৃতিতে মরিচা উৎপন্ন হয়?

- $(\overline{\bullet}) \text{ Fe(s)} + H_2O(I) + O_2(g) \rightarrow \text{Fe}_2O_3(s)$
- (박) $2\text{Fe(s)} + 3\text{H}_2\text{O(I)} + 2\text{O}_2(g) \rightarrow \text{Fe(OH)}_3(s)$
- (গ) $4\text{Fe(s)} + 3\text{O}_2(g) \rightarrow \text{Fe}_2\text{O}_3.\text{n H}_2\text{O(s)}$
- $4Fe(s) + 6H_2O(l) + 3O_2(g) \rightarrow Fe_2O_3$. $nH_2O(s)$

(১৭৭) মরিচা পড়ার জন্য কী কী আবশ্যক?

- (ক) অক্সিজেন এবং জলীয়বাষ্প
- **র্ব্বা**লোহার সামগ্রী, অক্সিজেন এবং জলীয় বাষ্প
- (গ) লোহার সামগ্রী এবং অক্সিজেন
- (ঘ) জলীয়বাষ্প এবং লৌহজাত পদার্থ

(১৭৮) মরিচার সংকেতকে কী হিসেবে প্রকাশ করা হয়?

(क) Fe₂O₃

(খ) Fe(OH)3

(গ) Fe.H₂O.O₂

FeO(OH)

(১৭৯) মরিচার রাসায়নিক সংকেত $Fe_2O_3.nH_2O$ । এতে পানির অণুর সংখ্যাকে n দ্বারা প্রকাশ করা হয় কেন?

- 🌠 এতে যুক্ত পানির অণুর সংখ্যা অজ্ঞাত বলে
- (খ) এতে যুক্ত পানির অণুর সংখ্যা বাষ্পীভূত হয় বলে
- (গ) এতে যুক্ত পানির অণুর সংখ্যা তরল অবস্থায় থাকে বলে
- (ঘ) এতে যুক্ত পানির অণুর সংখ্যা কম বলে

(১৮০) অ্যালুমিনিয়াম ধাতু বায়ুর <mark>অ</mark>ক্সিজেনের সাথে বিক্রিয়া করে কিসের আন্তরণ তৈরি করে?

(季) AI(OH)₃

(뉙) AIN

MI₂O₃

(ঘ) AICI₃

(১৮১) ধাতব অ্যালুমিনিয়ামকে বায়ুর সংস্পর্শে আসা থেকে রোধ করে নিচের কোনটি?

(ক) অ্যালুমিনিয়াম অক্সাইড

- (খ) অ্যালুমিনিয়াম ক্লোরাইড
- (গ) অ্যালুমিনিয়াম হাইড্রোক্সাইড
- আুলুমিনিয়াম সালফেট

(১৮২) অ্যালুমিনিয়ামের তৈরি জিনিসপত্র বেশি স্থায়ী হওয়ার কারণ কী?

- বাতাসের জলীয় বাষ্প
- (খ) অ্যালুমিনিয়াম অক্সাইডের উপস্থিতি
- (গ) অ্যালুমিনিয়াম হাইড্রক্সাইডের স্তর
- (ঘ) অ্যালুমিনিয়াম ক্লোরাইডের স্তর

(১৮৩) মৌমাছির কামড়ে জ্বালা নিবারণের জন্য কী ব্যবহার করা হয়?

(ক) অক্সালিক এসিড

(খ) এসিটিক এসিড

(গ) জৈব এসিড

🌠 চুন বা ক্ষারক

(১৮৪) মৌমাছির হুলে কী থাকে, যা আমাদের শরীরে জ্বালা-পোড়া সৃষ্টি করে?

(ক) ক্ষারধর্মী পদার্থ

্ব অম্লধর্মী বা ক্ষারধর্মী পদার্থ

(গ) অম্লধর্মী পদার্থ

(ঘ) নিরপেক্ষ পদার্থ

(১৮৫) কোন জৈবিক ক্রিয়ায় জীব O_2 গ্রহণ করে এবং CO_2 ত্যাগ করে?

(ক) সালোকসংশ্লেষণ

(খ) অভিস্ৰবণ

প্রস্কেদন

(ঘ) শ্বসন

(১৮৬) একটি জীবকোষে সবসময় কী ঘটে?

(ক) সালোকসংশ্লেষণ

(খ) শ্বসন ও সালোকসংশ্লেষণ

শ্বসন

(ঘ) প্রস্বেদন

(১৮৭) শ্বসনে উৎপন্ন শক্তি কোনটি?

🎻 তাপশক্তি

(খ) সৌরশক্তি

(গ) যান্ত্ৰিক শক্তি

(ঘ) বিদ্যুৎ শক্তি

10 MINUTE SCHOOL

(১৮৮) কোনটি শর্করা জাতীয় খাদ্যের সাথে অসঙ্গতি প্রকাশ করে?

(ক) স্টার্চ

(খ) চিনি

(গ) গ্লুকোজ

ক্যাটি এসিড

(১৮৯) শ্বসন প্রক্রিয়ায় নিচের কোন গ্যাসটি উৎপন্ন হয় যা উদ্ভিদ খাদ্য তৈরিতে কাজে লাগায়?

(季) CO₂

 O_2

(গ) CH₄

(ঘ) H₂

(১৯০) মানুষের শরীরে চিনি বিশ্লেষিত হয়ে কিসে পরিণত হয়?

(ক) গ্লুকোজ

(খ) ফ্রক্টোজে

🎁 গ্লুকোজ ও ফ্রুক্টোজে

(ঘ) ল্যাকটোজে

(১৯১) শ্বসনে কোন গ্যাস উৎপন্ন হয়?

IT CO₂

(খ) O₂

(গ) N₂

(ঘ) CO

(১৯২) $C_6 H_{12} O_6 + O_2 \rightarrow ?$

$$\bigcirc CO_2 + H_2O$$

(গ)
$$C_6H_{12}O_6 + O_2 \rightarrow CO_2 + H_2O +$$
 শক্তি

(১৯৩) মানবদেহে সংঘটিত শ্বসন প্রক্রিয়ার বিক্রিয়া কোনটি??

(ক)
$$C_6H_{12}O_6 + O_2 \rightarrow CO_2 + H_2O + O_2 +$$
 শক্তি

$$C_6H_{12}O_6 + O_2 \rightarrow CO_2 +$$
 শক্তি

(গ)
$$C_6H_{12}O_6 + O_2 \rightarrow CO_2 + H_2O +$$
 শক্তি

(ঘ)
$$C_6H_{12}O_{11} + O_2 \rightarrow CO_2 + H_2O + O_2 +$$
 শক্তি

(১৯৪) পেটে ব্যথা হলে ম্যাগনেসিয়াম হাইড্রোক্সাইড বা অ্যালুমিনিয়াম হাইড্রোক্সাইড জাতীয় এন্টাসিড খেলে সেরে যায় কেন?

- (ক) এসব পদার্থ এসিডিটি কমাতে সাহায্য করে বলে
- (খ) এসব পদার্থ ক্ষারকত্ব <mark>কমাতে</mark> সাহায্য করে বলে
- ্র্য এসিড এবং ক্ষারকের <mark>মধ্যে</mark> বিক্রিয়া ঘটে বলে
- (ঘ) এসব পদার্থ এসিড শোষণ করে নেয় বলে

(১৯৫) এন্টাসিড মূলত কী?

(**क**) CaO

(뉙) Ca(OH)2

(গ) Ca(OCI)

Mg(OH)

(১৯৬) X + Al(OH) $_3 \to AlCl_3 + H_2O; X$ যৌগটি $Mg(OH)_2$ এর সাথে বিক্রিয়ায় কোন যৌগটি উৎপন্ন করবে?

(**季**) MgO

(뉙) MgCl₂

(গ) Ca(OCI)

Mg(OH)₂

10 MINUTE SCHOOL

(১৯৭) HCl + A \rightarrow AlCl $_3$ + H $_2$ O; A যৌগটির প্রকৃতি কিরূপ?

(ক) অম্লীয়

(খ) নিরপেক্ষ

ক্ষারীয়

(ঘ) দ্বিক্ষারীয়

(১৯৮) আমাদের পাকস্থলিতে খাদ্যদ্রব্য হজম করতে কোন এসিড অত্যাবশ্যকীয়?

(ক) CH₃COOH

(খ) NaHCO₃

HCI

(ঘ) H₂CO₃

(১৯৯) এসিডিটি হলে আমরা কী ওষুধ সেবন করি?

(ক) কলিচুন

(খ) কুইক লাইম

্বতাসিড

(ঘ) ক্যালামিন

(২০০) এসিডিটি হলে কী গ্রহণ করে উপশম পাওয়া যায়?

ক্ষারধর্মী খাবার

(খ) অম্লধর্মী খাবার

(গ) নিরপেক্ষ খাবার

(ঘ) পানীয় জাতীয় খাবার

(২০১) জ্বালানির আংশিক দহনে সংঘটিত বিক্রিয়া কোনটি?

- (Φ) CH₄(g)+2O₂(g) \to CO₂(g)+2H₂O(g) + শক্তি
- (४) CH₄(g)+O₂(g)→C(s) + 2H₂O(g) + শক্তি
- (গ) $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) +$ শক্তি
- (ঘ) $CO_2(g) + 2H_2O(g) + শক্তি \rightarrow CH_4(g) + 2O_2(g)$

(২০২) জ্বালানির দহনে কোনটি উৎপাদন হয় না?

(季) CO₂

(খ) O₂

₩ H₂O

(ঘ) তাপশক্তি

(২০৩) জ্বালানির আংশিক দহনে CO_2 এর পরিবর্তে কী উৎপন্ন হয়?

(<u>क</u>) CO

(킥) H₂CO₃

★ H₂O

(ঘ) CH₄

(২০৪) জ্বালানির দহনে কী উৎপন্<mark>ন হয়</mark>?

- (ক) কার্বন ডাইঅক্সাইড
- (খ) কার্বন ডাইঅক্সাইড ও পানি
- 쓁 কার্বন ডাইঅক্সাইড, পানি ও তাপশক্তি
- (ঘ) পানি ও তাপশক্তি

(২০৫) বায়ুর অক্সিজেনের সাথে বিক্রিয়া করে-

- i. আয়রন
- ii. অ্যালুমিনিয়াম
- iii. ক্যালসিয়াম

- (ক) i ও ii
- iii છ i
- (গ) ii ও iii (ঘ) i, ii ও iii

(২০৬) সিডিটি হলে আমরা এন্টাসিড হিসেবে গ্রহণ করি-

- i. Mg(OH)2 জাতীয় ক্ষারক
- ii. AI(OH)3 জাতীয় লবণ
- iii. AI(OH)3 জাতীয় ক্ষারক

নিচের কোনটি সঠিক?

(ক) i ও ii (খ) i ও iii (গ) ii ও iii 📆 i, ii ও iii

(২০৭) X + O₂ → CO₂ + H₂O বিক্রিয়াটিতে-

- i. X শর্করা জাতীয় খাদ্য
- ii. মানুষের শরীরে সংঘটিত বি<mark>ক্রি</mark>য়া
- iii. উৎপন্ন গ্যাস উদ্ভিদ খাদ্<mark>য তৈ</mark>রিতে কাজে লাগায়

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) i ও iii (গ) ii ও iii

🎁 i, ii ও iii

(২০৮) জ্বালানির দহনে উৎপন্ন হয়-

- i. কার্বন ডাইঅক্সাইড
- ii. পানি ও তাপশক্তি
- iii. অক্সিজেন ও যান্ত্রিক শক্তি

নিচের কোনটি সঠিক?

(ক) i ও ii (খ) i ও iii ভ iii ভ iii

(ঘ) i, ii ও iii

নিচের অনুচ্ছেদ পড় এবং ২০৯ ও ২১০ নং প্রশ্নের উত্তর দাও :

বাবুলের পায়ে মৌমাছির কামড়ে যন্ত্রণা হয় এবং ফুলে যায়। তার মা চুন লাগিয়ে দেন। এতে বাবুলের জ্বালা কমে যায়।

(২০৯) বাবুলের পা ফুলে যাওয়ার কারণ কী?

🕥 অম্লধর্মী পদার্থ

(খ) ক্ষারধর্মী পদার্থ

(গ) নিরপেক্ষ পদার্থ

(ঘ) অম্লধর্মী বা ক্ষারধর্মী পদার্থ

(২১০) বাবুলের পায়ে লাগানো পদার্থ-

- i. অম্লধর্মী পদার্থকে প্রশমিত <mark>করে</mark>
- ii. ক্ষারধর্মী পদার্থ
- iii. নিরপেক্ষ যৌগ

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) i ও iii

ii e ii

(ঘ) i, ii ও iii

(২১১) কোন ধাতুর তৈরি জিনিসে মরিচা ধরে?

(ক) কপার

(খ) অ্যালুমিনিয়াম

(গ) দস্তা

লোহা

(২১২) তড়িৎ বিশ্লেষণের সাহায্যে ধাতুর তৈরি জিনিসপত্রে অন্য ধাতুর প্রলেপ সৃষ্টি করাকে কী বলা হয়?

(ক) ইলেকট্রোটাইপিং

ইলেকট্রোপ্লেটিং

(গ) ইলেকট্রোফিলিং

(ঘ) ইলেকট্রোড্রিলিং

(২১৩) রাসায়নিক বিক্রিয়া কী উদ্দেশ্য নিয়ে সম্পন্ন করা হয়?

- (খ) প্রয়োজনীয় বিক্রিয়ক ও শক্তি প্রাপ্তি
- (গ) বন্ধন ভেঙে নতুন বন্ধন গঠন
- (ঘ) প্রয়োজনীয় তাপ গ্রহণ ও শোষণ

(২১৪) রাসায়নিক বিক্রিয়ায় উৎপাদিত পদার্থের স্বাস্থ্য, পরিবেশ ও আর্থিক ক্ষতি রোধ করার জন্য কী প্রয়োজন?

(ক) যথাযথ আইনি পদক্ষেপ

(খ) জরিমানা ও অর্থদণ্ড

্র্প প্রতিকারমূলক ব্যবস্থা

(ঘ) আন্তর্জাতিক আইন অনুসরণ

(২১৫) ধাতব আয়রন কীভাবে ক্ষয়প্রাপ্ত হয়?

- (খ) এতে নিষ্ক্রিয় অবস্থা বিরাজ করলে
- (গ) এটি বায়ুর প্রধান উপাদানের সংস্পর্শে আসলে
- (ঘ) প্রয়োজনীয় তাপ গ্রহণ ও শোষণ

(২১৬) আয়রনকে মরিচার কবল থেকে রক্ষা করার উপায় কী?

- (ক) বায়ুর সংস্পর্শ থেকে দূরে রাখা
- বায়ু ও পানির সংস্পর্শ থেকে দূরে রাখা
- (গ) পানির সংস্পর্শ থেকে দূরে রাখা
- (ঘ) জলীয় বাষ্পের সংস্পর্শ থেকে দূরে রাখা

(২১৭) লোহার জিনিসকে মরিচার হাত থেকে রক্ষার জন্য গ্যালভানাইজিং এর কাজে নিচের কোন ধাতুটি ব্যবহার করা হয়?

(ক) Al

T) Zn

(গ) Cu

(ঘ) Pl

(২১৮) একটি ধাতুর ওপর টিনের প্রলেপ দেয়াকে কী বলা হয়?

(ক) ইলেকট্রোটাইপিং

(খ) ইলেকট্রোপ্লেটিং

(গ) তড়িৎ লেপনিং

ি টিন প্লেটিং

(২১৯) তড়িৎ প্রলেপন বা ইলেকট্রোপ্লেটিং-এর উদ্দেশ্য

- i. ধাতুর জিনিসপত্রকে জলবায়ু থেকে রক্ষা করা
- ii. জিনিসপত্রের স্থায়িত্ব ও সৌন্দর্য বৃদ্ধি করা
- iii. চকচকে ও আকর্ষণীয় করে তোলা

নিচের কোনটি সঠিক?

- (ক) i ও ii (খ) i ও iii (গ) ii ও iii
- 📆 i, ii ଓ iii

(২২০) ধাতুর ক্ষয় রোধ করা যায়-

- i. গ্যালভানাইজিং করে
- ii. ইলেকট্রোপ্লেটিং করে
- iii. সংকর ধাতু ব্যবহার করে

- (ক) i ও ii
- (খ) i ও iii
- (গ) ii ও iii 🛮 🎻 i, ii ও iii

নিচের অনুচ্ছেদ পড় এবং ২২১ ও ২২২ নং প্রশ্নের উত্তর দাও :

কামরুন নাহারের মায়ের দেয়া লোহার কড়াইটিতে জং ধরে যাওয়ায় এতে আর রান্না করা যায় না। তাই তিনি আব্দুলকে বলে কড়াইটিকে গ্যালভানাইজিং করিয়ে আনলেন।

(২২১) আব্দুল কোন প্রক্রিয়ার সাহায্যে কড়াই সারিয়ে আনে?

(ক) তড়িৎ প্রক্ষেপণ

্ব্য তড়িৎ বিশ্লেষণ

(গ) টিন প্লেটিং

(ঘ) অধঃক্ষেপণ

(২২২) উক্ত কাজটি করার উদ্দেশ্য-

- i. ধাতুর ক্ষয়রোধ
- ii. বায়ু ও পানির সংস্পর্শ থেক<mark>ে ল</mark>োহাকে দূরে রাখা
- iii. লোহা ও জিঙ্কের সংকর<mark> ধাতু</mark> তৈরি করা

নিচের কোনটি সঠিক?

- i s i
- (খ) i ও iii
- (গ) ii ও iii
- (ঘ) i, ii ও iii

(২২৩) রাসায়নিক বিক্রিয়ায় উৎপাদের পরিমাণ কোনটি দ্বারা প্রভাবিত হয় না?

(ক) তাপমাত্রা

পাত্র

(গ) চাপ

(ঘ) ঘনমাত্রা

(২২৪) কোন বাক্যটি সঠিক?

(ক) সাম্যাবস্থা স্থিতাবস্থা

সাম্যাবস্থা বিপরীত গতির অবস্থা

(গ) সাম্যাবস্থা গতিময় অবস্থা

(ঘ) সাম্যাবস্থা একমুখী গতির অবস্থা

(২২৫) যে সকল বিক্রিয়ার উভয় দিকে গ্যাসীয় পদার্থের মোল সংখ্যা সমান সে সকল বিক্রিয়ার ক্ষেত্রে নিচের কোন উক্তিটি সত্য?

- (ক) চাপ বৃদ্ধি করলে বিক্রিয়া সামনের দিকে যায়
- চাপ বৃদ্ধি করলে বিক্রিয়া পেছন দিকে যায়
- (গ) চাপের কোনো প্রভাব নেই
- (ঘ) চাপ হ্রাস করলে বিক্রিয়া পেছন দিকে যায়

(২২৬) বিক্রিয়ার হার কোনটি?

- (ক) বিক্রিয়কের ভৌত পরিবর্তন ঐ পরিবর্তন সাধনে ব্যয়িত সময়
- (খ) <u>উৎপাদের ঘনমাত্রা</u> সময়

(ঘ) বিক্রিয়কের ঘনমাত্রা সময়

(২২৭) লা-শাতেলিয়ারের নীতি অনুযায়ী- $2SO_2(g) + O_2(g)$ $\frac{2SO_2(g)}{g} + O_2(g) + O_2(g)$ + তাপ; বিক্রিয়ায় বিক্রিয়ক যোগ করলে সাম্যাবস্থার কী পরিবর্তন ঘটবে?

(ক) ডানে সরে যাবে

(খ) বামে সরে যাবে

(গ) অপরিবর্তিত থাকবে

শ্বিমান অপরিবর্তিত হবে

(২২৮) যে সকল বিক্রিয়ার উভয় দিকে গ্যাসীয় পদার্থের মোল সংখ্যা সমান সে সকল বিক্রিয়ার ক্ষেত্রে নিচের কোন উক্তিটি সত্য?

- (ক) চাপ বৃদ্ধি করলে বিক্রিয়া সামনের দিকে যায়
- চাপ বৃদ্ধি করলে বিক্রিয়া পেছন দিকে যায়
- (গ) চাপের কোনো প্রভাব নেই
- (ঘ) চাপ হ্রাস করলে বিক্রিয়া পেছন দিকে যায়

(২২৯) উভমুখী বিক্রিয়ার সাম্যাবস্থায় উৎপাদের পরিমাণ নিচের কোন নীতি দ্বারা নিয়ন্ত্রিত?

(ক) ফাযানের নীতি

(খ) সাম্যাবস্থার নীতি

র্পা লা-শাতেলিয়ার নীতি

(ঘ) থমসনের নীতি

(২৩০) যে সকল বিক্রিয়ায় গ্যাসীয় অণুর সংখ্যা পরিবর্তন হয় না সে সকল বিক্রিয়ায় সাম্যাবস্থার ওপর চাপ প্রয়োগে কী হয়?

- (ক) সাম্যাবস্থা ডান দিকে সরে যাবে
- (খ) সাম্যাবস্থা বাম দিকে সরে যাবে
- (গ) বিক্রিয়া বিপরীতমুখী হবে
- সাম্যাবস্থা অপরিবর্তিত থাকবে

(২৩১) যে বিক্রিয়ায় গ্যাসীয় অণুসংখ্যা হ্রাস পায়, চাপ বাড়ালে সে বিক্রিয়া কোন দিকে অগ্রসর হয়?

প্রামনের দিকে

(খ) পশ্চাৎ দিকে

(গ) নিচের দিকে

(ঘ) উপরের দিকে

(২৩২) বিক্রিয়ার গতির ওপর প্রভাব নেই কোনটির?

🎻 তাপমাত্রা

(খ) বিক্রিয়কের ঘনমাত্রা

(গ) প্রভাবক

(ঘ) বিক্রিয়া পাত্রের আকার

(২৩৩) $2NO(g) + O_2(g) = 2NO_2(g)$ বিক্রিয়াটির সিস্টেম চাপ বাড়ালে বিক্রিয়া সামনের দিকে অগ্রসর হওয়ার কারণ কী?

- (ক) বিক্রিয়ার ফলে সিস্টেমের চাপ বেড়ে যায় বলে
- (খ) বিক্রিয়কের মোট অণু উৎপাদের অণুর সংখ্যার চেয়ে কম বলে
- (গ) বিক্রিয়ক ও উৎপাদ সকলেই গ্যাস বলে
- বিক্রিয়ায় অণুর সংখ্যা হ্রাস পায় বলে

- (ক) অ্যামোনিয়ার উৎপাদন বন্ধ থাকবে
- ্ব্যামোনিয়ার উৎপাদন বেশি হবে
- (গ) অ্যামোনিয়ার উৎপাদন কম হবে
- (ঘ) অ্যামোনিয়া উৎপাদন বাধাগ্রস্ত হবে

(২৩৫) বিক্রিয়কের ঘনমাত্রা বৃদ্ধি করলে সাম্যাবস্থার অবস্থান কোন দিকে স্থানান্তরিত হয়?

(খ) বামে

(গ) যেকোনো এক দিকে

(ঘ) কোনো দিকে নয়

(২৩৬) $N_2(g) + 3H_2(g) = \frac{2N}{2}H_3(g)$ বিক্রিয়ায় NH_3 কে উচ্চ চাপ প্রয়োগে তরল করা হলে সাম্যাবস্থার অবস্থান কোন দিকে স্থানান্তরিত হয়?

(ক) কোনো দিকে নয়

(খ) বামে

🎸 ডানে

(ঘ) যেকোনো একদিকে

(২৩৭) কোন বিক্রিয়ার সাম্যাবস্থায় চাপের প্রভাব নেই?

$$(\Phi) 2NO_2(g) = N_2O_4(g)$$

(약)
$$N_2(g) + 2H_2(g) = 2NH_3(g)$$

(1)
$$2H_2(g) + O_2(g) = 2H_2O(g)$$
 (2) $H_2(g) + I_2(g) = 2H_2(g)$

$$H_2(g)+I_2(g) = 2HI(g)$$

(২৩৮) চাপের প্রভাব আছে কোনটিতে?

$$(\overline{\Phi}) H_2(g) + I_2(g) = 2HI(g)$$

$$N_2O_4(g) = 2NO_2(g)$$

(1)
$$AgNO_3(I) + NaCI(I) = NaNO_3(I) + AgCI(S)$$

$$(\forall) C(s) + O_2(g) = CO_2(g)$$

(২৩৯) তাপমাত্রা বাড়ালে কোনটি ঘটে?

(খ) বিক্রিয়ার গতি কমে

(গ) বিক্রিয়ার গতি অপরিবর্তিত থাকে

(ঘ) অন্য ধরনের বিক্রিয়া হয়

(২৪০) $A_2(g) + 3B_2(g) = 2AB_3$; $\triangle H = -92 \text{ kJ}$ বিক্রিয়ায় তাপ প্রয়োগে কী ঘটবে?

- (ক) বিক্রিয়াটি সামনের দিকে অগ্রসর হবে
- ★ বিক্রিয়াটি পশ্চাৎ দিকে সরে যাবে
- (গ) A ও B গ্যাসদ্বয় বেশি পরিমাণে বিক্রিয়া করবে
- (ঘ) তাপের প্রভাব ঘটবে না

(২৪১) $N_2(g) + 3H_2(g) = 2NH_3$ বিক্রিয়াটির সাম্যাবস্থায় চাপ প্রয়োগ করলে কী ঘটবে?

- (ক) NH3 উৎপাদন হ্রাস পাবে
- ₩ NH3 উৎপাদন বৃদ্ধি পাবে

(গ) বিক্রিয়া বন্ধ হয়ে যাবে

(ঘ) বিক্রিয়া স্থির থাকবে

(২৪২) বিক্রিয়ায় একক সময়ে উৎপন্ন উৎপাদের পরিমাণকে কী বলে?

街 বিক্রিয়ার হার

(খ) বিক্রিয়ার সাম্যাবস্থা

(গ) বিক্রিয়ার গতিশীলতা

(ঘ) বিক্রিয়ার উভমুখিতা

(২৪৩) বিক্রিয়ক এবং উৎপাদের ঘনমাত্রাকে কী এককে প্রকাশ করা হয়?

☆) মোল — লিটার^{−1}

(খ) মোল — লিটার⁻¹সময়⁻¹ (ঘ) মোল — কিলোজুল⁻¹

(গ) মোল — সময়⁻¹

(২৪৪) বিক্রিয়কের ঘনমাত্রা বৃদ্ধির সাথে বিক্রিয়ার হারের কেমন পরিবর্তন হয়

(ক) হ্রাস পায়

্ বৃদ্ধি পায়

(গ) হ্রাস বা বৃদ্ধি পায়

(ঘ) অসীম হয়

(২৪৫) বিক্রিয়ার তাপমাত্রা বৃদ্ধির সাথে বিক্রিয়ার হারের কেমন পরিবর্তন হয়?

(ক) হ্রাস পায়

🍎 বৃদ্ধি পায়

(গ) হ্রাস বা বৃদ্ধি পায়

(ঘ) অসীম হয়

(২৪৬) বিক্রিয়কের পৃষ্ঠতলের ক্ষেত্রফল বৃদ্ধির সাথে বিক্রিয়ার হারের কেমন পরিবর্তন হয়?

ᡝ বৃদ্ধি পায়

(খ) হ্রাস পায়

(গ) হ্রাস বা বৃদ্ধি পায়

(ঘ) অসীম হয়

(২৪৭) বিক্রিয়ার ঘনমাত্রা বাড়ালে বিক্রিয়ার হারের কেমন পরিবর্তন হয়?

(ক) বাম দিকে যাবে

ভান দিকে যাবে

(গ) সাম্যাবস্থায় থাকবে

(ঘ) ডান ও বাম দিকে যাবে

(২৪৮) প্রভাবক ব্যবহারে বিক্রিয়ার হার-?

🎻 হ্রাস পায়

(খ) বৃদ্ধি পায়

(গ) হ্রাস বা বৃদ্ধি পায়

(ঘ) অসীম হয়

(২৪৯) H₂ + I₂ ===2HI বিক্রিয়াটির-

- i. বিপরীতমুখী অংশটি তাপহারী
- ii. সাম্যাবস্থায় তাপ হ্রাস করলে HI এর পরিমাণ কমে যাবে
- iii. সাম্যাবস্থায় চাপের কোনো প্রভাব নেই

- (ক) i ও ii (খ) i ও iii (গ) ii ও iii (খ) i, ii ও iii

(২৫০) A + B ----C + D বিক্রিয়াটির-

- i. সম্মুখমুখী অংশটি তাপ উৎপাদী এবং বিপরীত বিক্রিয়াটি তাপহারী
- ii. সাম্যাবস্থায় তাপ বৃদ্ধি করলে বিক্রিয়কের পরিমাণ বৃদ্ধি পায়
- iii. উৎপাদের পরিমাণ নিয়ামক দ্বারা প্রভাবিত হয়

নিচের কোনটি সঠিক?

(২৫১) কোনো বিক্রিয়ার সাম্যাবস্থায় বিক্রিয়কের ঘনমাত্রা বাড়ালে-

- i. সম্মুখমুখী বিক্রিয়ার বেগ <mark>বা</mark>ড়বে
- ii. সাম্যাবস্থার পরিবর্তন ঘটবে
- iii. পশ্চাৎমুখী বিক্রিয়ার বেগ<mark> বা</mark>ড়বে

নিচের কোনটি সঠিক?

i ও ii

(খ) i ও iii

(গ) ii ও iii

(ঘ) i, ii ও iii

(২৫২) বিক্রিয়ার হার-

- i. তাপমাত্রা বৃদ্ধি পেলে বৃদ্ধি পায়
- ii. বিক্রিয়কের ঘনমাত্রা বৃদ্ধি পেলে বৃদ্ধি পায়
- iii. সকল ক্ষেত্রে চাপ প্রয়োগ বৃদ্ধি পায়

নিচের কোনটি সঠিক?

i છ i 🔰

(খ) i ও iii (গ) ii ও iii (ঘ) i, ii ও iii

নিচের বিক্রিয়া থেকে ২৫৩ ও ২৫৪ নং প্রশ্নের উত্তর দাও :

$$H_2(g) + Cl_2(g)$$
 \longrightarrow \longrightarrow $H_2(g) - তাপ$

(২৫৩) উপরের বিক্রিয়াটির জন্য নিচের কোনটি সঠিক?

- (ক) এ বিক্রিয়াটি একটি প্রশমন বিক্রিয়া
- (খ) এ বিক্রিয়াটি একটি অধঃক্ষেপণ বিক্রিয়া
- 💅 তাপমাত্রা বৃদ্ধি করলে সম্মুখ বিক্রিয়ার গতির হার বৃদ্ধি পায়
- (ঘ) সাম্যাবস্থার উপর তাপের কোনো প্রভাব নেই

(২৫৪) বিক্রিয়াটি সাম্যাবস্থায় থাকাকালে-

- i. তাপমাত্রা বৃদ্ধি করলে বি<mark>ক্রিয়</mark>কের পরিমাণ কমবে
- ii. চাপ হ্রাস করলে বিক্রিয়কের পরিমাণ বাড়বে
- iii. ঘনমাত্রা বাড়লে উৎপাদের পরিমাণ বৃদ্ধি পাবে

নিচের কোনটি সঠিক?

(ক) i ও ii

iii છ i

(গ) ii ও iii (ঘ) i, ii ও iii

নিচের বিক্রিয়াটি লক্ষ কর এবং ২৫৫ ও ২৫৬ নং প্রশ্নের উত্তর দাও :

$$A_2 + B_2 \longrightarrow AB_3 + 92 \text{ kJ}$$

(২৫৫) বিক্রিয়াটিতে চাপ প্রয়োগ করলে কী হবে?

উৎপাদন বৃদ্ধি পাবে

(খ) উৎপাদন হ্রাস পাবে

(গ) বিক্রিয়ার হার হ্রাস পাবে

(ঘ) তাপ শোষিত হবে

(২৫৬) বিক্রিয়াটির সাম্যাবস্থার ওপর প্রভাব বিস্তার করে-

- i. প্রভাবক
- ii. তাপমাত্রা
- iii. ঘনমাত্রা

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) i ও iii (ঘ) i, ii ও iii

নিচের লেখচিত্র থেকে ২৫৭ ও ২৫৮ নং প্রশ্নের উত্তর দাও:

(২৫৭) চিত্রে PQ অংশ দ্বারা কী বোঝানো হয়েছে?

(খ) সম্মুখ বিক্রিয়া

(গ) বিপরীত বিক্রিয়া

(ঘ) গতিহীন অবস্থা

(২৫৮) উদ্দীপকের বিক্রিয়ায়-

i.বিপরীত বিক্রিয়ায় $H_2 O_2$ এর পরিমাণ বৃদ্ধি করলে H_2 পরিমাণে বৃদ্ধি পায়

ii.বিপরীত বিক্রিয়ায় H_2O_2 এর ঘনমাত্রা বৃদ্ধি করলে O_2 এর ঘনমাত্রা বৃদ্ধি পায়

iii.সম্মুখ বিক্রিয়ায় H_2 বা O_2 এর ঘনমাত্রা বৃদ্ধি করলে H_2O_2 এর ঘনমাত্রা বৃদ্ধি পায়

নিচের কোনটি সঠিক?

(ক) i ও ii 😝 i ও iii

(গ) ii ও iii (ঘ) i, ii ও iii

(২৫৯) এসিড ও ক্ষারকের বিক্রিয়ায় লিটমাস কাগজ নিরপেক্ষ হয় কেন?

- (ক) বিক্রিয়া বিদ্যুৎ পরিবহনে সক্ষম বলে
- (খ) বিক্রিয়ায় প্রচুর তাপ উৎপন্ন হয় বলে
- বিক্রিয়ায় H⁺ ও OH⁻ আয়ন পানিতে পরিণত হয় বলে
- (ঘ) বিক্রিয়ায় H⁺ ও OH⁻ আয়ন পানিতে পরিণত হয় বলে

(২৬০) 0.1 মোলার HCI দ্রবণকে কী বলা হয়?

(ক) সেমি মোলার দ্রবণ

ডেসি মোলার দ্রবণ

(গ) মোলার দ্রবণ

(ঘ) মোলার দ্রবণ

(২৬১) 0.5 মোলার Na₂CO₃ দ্রবণকে কী বলা হয়?

সেমি মোলার দ্রবণ

(খ) ডেসি মোলার দ্রবণ

(গ) মোলার দ্রবণ

(ঘ) মোলার দ্রবণ

(২৬২) 1L দ্রবণে 36.5g HCl দ্রবীভূত থাকলে দ্রবণের ঘনমাত্রা কত হবে?

(ক) 0.1M

(뉙) 0.5M

(1.0M

(ঘ) 0.25M

(২৬৩) 5 মিলি 0.1 মোলার HCI দ্রবণে কত গ্রাম HCI দ্রবীভূত আছে?

(**क**) 0.18g

(0.018g

(গ) 0.11g

(ঘ) 0.011g

(২৬৪) 5 মিলি 0.1 মোলার HCI দ্রবণকে 0.1M N a_2 CO $_3$ দ্রবণ দ্বারা প্রশমিত করতে কত গ্রাম N a_2 CO $_3$ লাগবে?

(**क**) 0.018g

(খ) 0.011g

(0.026g

(ঘ) 0.035g

(২৬৫) HCI এর জলীয় দ্রবণ লিটমাস কাগজে কী বর্ণ ধারণ করে?

লাল

(খ) নীল

(গ) সবুজ

(ঘ) বেগুনি

(২৬৬) 2HCl + Na₂CO₃ \rightarrow 2NaCl + H₂O + CO₂; এ বিক্রিয়ায় ক্ষারক হিসেবে কি ব্যবহৃত হয়েছে ?

(ক) HCI

Na₂CO₃

(গ) NaCl

(ঘ) H₂C

(২৬৭) Na₂CO₃ ও HCI এর বিক্রিয়ায় কী উৎপন্ন হয়?

(₱) Na₂O, H₂O, CO

(খ) Na, Na(OH)₂, Cl₂

MaCl, H₂O, CO₂

(ঘ) NaOH, H₂O, O₂

(২৬৮) এসিড, কার্বনেটের সাথে বিক্রিয়া করে কী গ্যাস উৎপন্ন করে?

(ক) হাইড্রোজেন

(খ) অক্সিজেন

(গ) কার্বন মনোঅক্সাইড

কার্বন ডাইঅক্সাইড

(২৬৯) $2HCI + Na_2CO_3 \rightarrow 2NaCI + H_2O + CO_2$ এটি কোন ধরনের বিক্রিয়া?

🔰 প্রশমন বিক্রিয়া

(খ) প্রতিস্থাপন বিক্রিয়া

(গ) দহন বিক্রিয়া

(ঘ) অধঃক্ষেপণ বিক্রিয়া

(২৭০) 0.1 মোলার Na₂CO₃ দ্রবণ বলতে কী বোঝায়?

- (ক) 1 kg দ্রবণে 21.2g Na₂CO₃ দ্রবীভূত আছে
- (খ) 1L দ্রবণে 21.2g Na₂CO₃ দ্রবীভূত আছে
- (গ) 1kg দ্ৰবণে 10.6g Na₂CO₃ দ্ৰবীভূত আছে
- 1L দ্ৰবণে 10.6g Na₂CO₃ দ্ৰবীভূত আছে

(২৭১) 2HCl + Na₂CO₃ \rightarrow 2NaCl + H₂O + CO₂ এ বিক্রিয়া শেষে দ্রবণের pH কত?

(ক) 12

1 7

(গ) 4

(ঘ) 0

(২৭২) 50mL 0.1M HCI দ্রবণে HCI এর মোল সংখ্যা কত?

(f) 0.18gm

(খ) 0.22gm

(গ) 0.1gm

(ঘ) 0.15gm

(২৭৩) 2HCl + Na₂CO₃ ightarrow 2NaCl + H₂O + CO₂; এ বিক্রিয়ায় এসিড ও ক্ষারকের কোন আয়ন বিক্রিয়ায় অংশগ্রহণ করেনা?

(ক) H+ এবং CI-

(গ) Na+ এবং CO₃-2

(ঘ) Cl- এবং Na+

(২৭৪) যে বিক্রিয়ায় এসিড থেকে উৎপন্ন H^+ আয়ন ক্ষার থেকে উৎপন্ন OH^- আয়নের সাথে যুক্ত হয়ে অবিযোজিত পানির অণু গঠন করে তাকে কী বলে?

প্রতিস্থাপন বিক্রিয়া

- (ক) প্রশমন বিক্রিয়া
- (গ) রিডক্স বিক্রিয়া

(ঘ) জারণ-বিজারণ বিক্রিয়া

(২৭৫) এসিডের ধর্ম হলো-

- i. নীল লিটমাসকে লাল করে
- ii. টক
- iii. পানিতে H+ তৈরি করে

নিচের কোনটি সঠিক?

- (ক) i ও ii (খ) i ও iii

- (গ) ii ও iii 😽 i, ii ও iii

(২৭৬) 2HCI + Na₂CO₃ → 2NaCI + H₂O + CO₂ এ বিক্রিয়ায়-

- i. এসিড HCl
- ii. ক্ষারক Na₂CO₃
- iii. লবণ NaCl

- (ক) i ও ii
- (খ) i ও iii
- (গ) ii ও iii 😈 i, ii ও iii

নিচের অনুচ্ছেদ পড় এবং ২৭৭ ও ২৭৮ নং প্রশ্নের উত্তর দাও :

 $2HCI + Na_2CO_3 \rightarrow 2NaCI + H_2O + CO_2$

(২৭৭) কার কার মধ্যে বিক্রিয়াটি সংঘটিত হয়েছে?

(ক) ধাতুর সাথে এসিডের

(খ) অধাতুর সাথে এসিডের

(গ) লবণের সাথে এসিডের

ক্ষারকের সাথে এসিডের

(২৭৮) এ বিক্রিয়াকে বলা হয়-

- i. প্রশমন বিক্রিয়া
- ii. ননরেডক্স বিক্রিয়া
- iii. প্রতিস্থাপন বিক্রিয়া

নিচের কোনটি সঠিক?

(ক) i ও ii

iii છ i

(গ) ii ও iii

(ঘ) i, ii ও iii

নিচের অনুচ্ছেদ পড় এবং ২৭৯ ও ২৮০ নং প্রশ্নের উত্তর দাও :

 $10g\ No_2CO_3$ কে পানিতে দ্রবীভূত করে $500\ Normalfon$ করা হলো। এ দ্রবণ থেকে $50\ Normalfon$ নিয়ে টাইট্রেশন করে শেষ বিন্দুতে পৌঁছাতে $0.1M\ HCl$ এর $10\ Normalfon$ প্রয়োজন হলো।

(২৭৯) Na₂CO₃ এর ঘনমাত্রা কত?

(0.01M

(খ) 0.02M

(গ) 0.001M

(ঘ) 0.002M

(২৮০) উদ্দীপকের বিক্রিয়ায়-

- i. দ্রবণে Na₂CO₃ এর পরিমাণ 0.53g
- ii. Na₂CO₃ এর গ্রাম আণবিক ভর 106g
- iii. শেষ বিন্দুতে р^н এর মান 7 এর চেয়ে কম হয়

নিচের কোনটি সঠিক?

i v i

(খ) i ও iii

(গ) ii ও iii

(ঘ) i, ii ও iii

(২৮১) কোনটি অধঃক্ষেপণ বিক্রিয়া?

- ($\overline{\Phi}$) NaOH(aq) + HCl (aq) → NaCl(aq) + H₂O(l)
- NaCl (aq)+ AgNO₃(aq) \rightarrow NaNO₃ (aq)+ AgCl(s)
- (1) $Zn(s) + H_2SO_4(aq) \rightarrow ZnSO_4(aq) + H_2(g)$
- (3) 2H₂O(3) → 2H₂(3) + O₂(3)

(২৮২) অধঃক্ষেপণ বিক্রিয়ার অন্য নাম কী?

(ক) প্রশমন বিক্রিয়া

(খ) দ্রবণ বিক্রিয়া

(গ) সাধারণ বিক্রিয়া

দ্বিপ্রতিস্থাপন বিক্রিয়া

(২৮৩) $FeSO_4(aq) + 2NaOH (aq) \rightarrow Fe(OH)_2(s) + Na_2SO_4(aq)$ এ বিক্রিয়ায় দর্শক আয়ন কোনগুলো?

(ক) Na⁺ এবং SO_4^{-2}

Ma⁺ এবং OH⁻

(গ) Fe⁺³ এবং SO₄⁻²

(ঘ) Fe⁺³ এবং OH⁻

(২৮৪) FeSO₄(aq) + 2NaOH(aq) \rightarrow Fe(OH)₂(s) + Na₂SO₄(aq) এ বিক্রিয়ায় কোনটির অধক্ষেপ পড়ে?

(क) FeSO₄(aq)

(খ) NaOH(aq)

√ Fe(OH)₂(s)

(ঘ) Na₂SO₄(aq)

(২৮৫) অধঃক্ষেপণ বিক্রিয়ায় যে আয়নগুলো বিক্রিয়ায় অংশগ্রহণ করে না তাদের কী বলে?

(ক) ধনাত্মক আয়ন

(খ) ঋণাত্মক আয়ন

(গ) নিরপেক্ষ আয়ন

পূৰ্দৰ্শক আয়ন

(২৮৬) $FeSO_4(aq) + 2NaOH(aq) \rightarrow Fe(OH)_2(s) + Na_2SO_4(aq)$ এ বিক্রিয়ায় অংশগ্রহণকারী বিক্রিয়ক দৃটি কী ধরণের যৌগ ?

(ক) সমযোজী যৌগ

(খ) ধাতব যৌগ

র্ব্বা আয়নিক যৌগ

(ঘ) অধাতব যৌগ

(২৮৭) $FeSO_4$ এর সাথে NaOH দ্রবণ বিক্রিয়া করে পানিতে অদ্রবণীয় $Fe(OH)_2$ এর যে অধঃক্ষেপ উৎপন্ন হয় তা কী বর্ণের?

সাদা

(খ) হালকা সবুজ

(গ) গাঢ় নীল

(ঘ) হালকা বাদামি

(২৮৮) $FeSO_4(aq) + 2NaOH (aq) \rightarrow Fe(OH)_2(s) + Na_2SO_4(aq)$ এই বিক্রিয়াটি-

- i. একটি নন-রেডক্স বিক্রিয়া
- ii. এতে ইলেকট্রন স্থানান্তর ঘটে না
- iii. এটি জারণ-বিজারণ বিক্রিয়া

নিচের কোনটি সঠিক?

(ক) i ও ii

(গ) ii ও iii (ঘ) i, ii ও iii

নিচের উদ্দীপকটি পড় এবং ২৮৯ ও ২৯০ প্রশ্নের উত্তর দাও:

একটি টেস্টটিউবে একটি যৌগের দ্রবণ নেয়া হলো, তারপর তাতে ফোঁটা ফোঁটা NaOH দ্রবণ যোগ করা হলো, কিছুক্ষণ পর দেখা গেল টেস্টটিউবের তলায় সর্বুজ বর্ণের অধঃক্ষেপ জমছে।

(২৮৯) এই সবজ অধঃক্ষেপটি কী?

(গ) AI(OH)3

(ঘ) FeSO₄

(২৯০) উদ্দীপকের বিক্রিয়ায়-

- i. Fe⁺⁺ ও OH⁻ যুক্ত হয়ে অধঃক্ষেপ উৎপন্ন করে
- ii. ইলেকট্রন স্থানান্তর ঘটে
- iii. Na^+ এবং SO_4^{-2} দর্শক আয়ন হিসেবে থাকে

নিচের কোনটি সঠিক?

(ক) i ও ii

iii છ ii

(গ) ii ও iii (ঘ) i, ii ও iii

SOLVED CQ

প্রশ্ন নং: ১

🔲 নিচের বিক্রিয়াদ্বয় লক্ষ কর এবং প্রশ্নগুলোর উত্তর দাও :

i.
$$2HCl + Na_2CO_3 \longrightarrow 2NaCl + H_2O + CO_2$$

ii. $H_2SO_4 + Ca(OH)2 \longrightarrow CaSO_4 + 2H_2O$

- ক) উভমুখী বিক্রিয়া কী?
- খ) জারক ও বিজারক কী? ব্যাখ্যা কর।
- গ) (i) নং বিক্রিয়ায় 5 gm HCl কে প্রশমিত করতে কী পরিমাণ Na₂CO₃ প্রয়োজন হবে?
- ঘ) "(ii) নং বিক্রিয়াটি একটি প্রশমন বিক্রিয়া" তোমার উত্তরের সপক্ষে যুক্তি দাও।

১ নং প্রশ্নের উত্তর

ক) উভমুখী বিক্রিয়া কী?

যে বিক্রিয়ায় বিক্রিয়ক পদার্থগুলো বিক্রিয়া করে উৎপাদে পরিণত হয় এবং একই সাথে উৎপাদ বিক্রিয়া করে পুনরায় বিক্রিয়কে পরিণত হয় তাকে উভমুখী বিক্রিয়া বলে।

খ) জারক ও বিজারক কী? ব্যাখ্যা কর।

যে বিক্রিয়ক ইলেকট্রন গ্রহণ করে তাকে জারক এবং যে বিক্রিয়ক ইলেকট্রন বর্জন করে তাকে বিজারক বলে। যেমন : $Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$ এই বিক্রিয়ায় জিংক ইলেকট্রন বর্জন করে Zn^{2} $^+$ এ পরিণত হয়, তাই জিংক একটি বিজারক। আবার Cu^{2} $^+$ দুটি ইলেকট্রন গ্রহণ করে Cu এ পরিণত হয়। তাই Cu^{2+} একটি জারক।

গ) (i) নং বিক্রিয়ায় 5 gm HCl কে প্রশমিত করতে কী পরিমাণ Na₂CO₃ প্রয়োজন হবে?

প্রদত্ত বিক্রিয়াটি হলো :

$$2HCl + Na_2CO_3 \longrightarrow 2NaCl + H_2O + CO_2$$

HCl এর এক মৌল = 1 + 35.5

$$= 36.5 \, \text{gm}$$

∴ এ বিক্রিয়ায় HCl এর দুই মৌল = (36.5 × 2) gm

$$=73 \text{ gm}$$

আবার, Na₂CO₃ এর এক মোল = (23×2 + 12 + 16×3) gm = 106 gm

উপরিউক্ত সমীকরণ থেকে দেখা যায় 2 মোল HCl কে প্রশমিত করতে প্রয়োজন 1 মোল Na₂CO₃।

- \therefore 73 gm HCl কে প্রশমিত করতে প্রয়োজন $106\,\mathrm{gm}$ Na $_2\mathrm{CO}_3$
- \therefore 5 gm HCl কে প্রশমিত করতে প্রয়োজন $\frac{106 \times 5}{73}$ gm = 7.26 gm
- \therefore Na₂CO₃ এর প্রয়োজনীয় পরিমাণ = 7.26 gm

ঘ) "(ii) নং বিক্রিয়াটি একটি প্রশমন বিক্রিয়া" তোমার উত্তরের সপক্ষে যুক্তি দাও।

উদ্দীপকের (ii) নং বিক্রিয়াটি হলো : H₂SO₄ + Ca(OH)2 → CaSO₄ + 2H₂O

জানা আছে, যে বিক্রিয়ায় এসিড ও ক্ষার বিক্রিয়া করে লবণ ও পানি উৎপন্ন করে, তাকে প্রশমন বিক্রিয়া বলে। উল্লিখিত বিক্রিয়াটিতে সালফিউরিক এসিড, ক্যালসিয়াম হাইড্রোক্সাইড ক্ষারের সাথে বিক্রিয়া করে ক্যালসিয়াম সালফেট লবণ ও পানি উৎপন্ন করে। তাই এটি একটি প্রশমন বিক্রিয়া। যেকোনো প্রশমন বিক্রিয়া: এসিড + ক্ষার → লবণ + পানি।

উল্লিখিত বিক্রিয়াটি : H₂SO₄ + Ca(OH)₂ ---- CaSO₄ + 2H₂O

জলীয় দ্রবণে সালফিউরিক এসিড ও ক্যালসিয়াম হাইড্রোক্সাইডের বিক্রিয়ায় লবণ ও পানি উৎপন্ন হওয়ার সময় দ্রবণের pH 7 এর নিকটবর্তী হয়। অর্থাৎ প্রশমন বিক্রিয়া সম্পন্ন হলে pH এর মান 7 হয়। প্রকৃতপক্ষে এ বিক্রিয়ায় এসিডের হাইড্রোজেন আয়ন (H^+) ও ক্ষারের হাইড্রোক্সিল আয়ন (OH^-) যুক্ত হয়ে পানি উৎপন্ন করে। $H^+(aq) + OH^-(aq) \longrightarrow H_2O(l)$

সামগ্রিক বিক্রিয়াটি হলো:

$$2H^+(aq) + SO_4^{2-}(aq) + Ca^{2+} + 2OH^-(aq) \longrightarrow Ca^{2+}(aq) + SO_4^{2-}(aq) + H_2O(l)$$

অতএব, এটি একটি প্রশমন বিক্রিয়া।

প্রশ্ন নং: ২

নিচের উদ্দীপকটি পড় এবং প্রশ্নগুলোর উত্তর দাও :

ঘটনা -১. একটি কাচের বিকারে কয়েক খণ্ড বরফ নিয়ে তাতে তাপ প্রয়োগ করা হলো। **ঘটনা -২.** একটি মোমবাতি জ্বালিয়ে রাখা হলো। মোমের কিছু গলিত অংশ ঠাণ্ডা হয়ে জমে কঠিন অবস্থায় পরিণত হলো। এই প্রাপ্ত মোমের ভর মোমবাতির ভর অপেক্ষা কম।

- ক) মোমের প্রধান উপাদান কী?
- খ) রাসায়নিক পরিবর্তনে বিক্রিয়কের শতকরা সংযুতির পরিবর্তন ঘটে কেন?
- গ) ১নং ঘটনাটি কোন ধর<u>নের</u> পরিবর্তনের? ব্যাখ্যা কর।
- ঘ) ২নং ঘটনায় মোমের ভর হ্রাসের কারণ যুক্তিসহ ব্যাখ্যা কর।

২ নং প্রশ্নের উত্তর

ক) মোমের প্রধান উপাদান কী?

মোমের প্রধান উপাদান বিভিন্ন হাইড্রোকার্বনের মিশ্রণ।

খ) রাসায়নিক পরিবর্তনে বিক্রিয়কের শতকরা সংযুতির পরিবর্তন ঘটে কেন?

রাসায়নিক পরিবর্তনের ক্ষেত্রে এক বা একাধিক বিক্রিয়ক বিক্রিয়া করে নতুন পদার্থের সৃষ্টি হয় বলে তাদের শতকরা সংযুতির পরিবর্তন ঘটে। যেহেতু রাসায়নিক পরিবর্তনে নতুন পদার্থের সৃষ্টি হয়, তাই নতুন পদার্থের আণবিক সংকেত বিক্রিয়ক থেকে ভিন্ন হবে। সুতরাং, রাসায়নিক পরিবর্তনে বিক্রিয়কের শতকরা সংযুতির পরিবর্তন হয়।

গ) ১নং ঘটনাটি কোন ধরনের পরিবর্তনের? ব্যাখ্যা কর ৷

১নং ঘটনাটি ভৌত পরিবর্তন।

কোনো পদার্থের শতকরা সংযুতির পরিবর্তন না হলে যে পরিবর্তন হয় তাকে ভৌত পরিবর্তন বলে। বরফকে তাপ দিলে তা গলে পানিতে পরিণত হয়। এই পানি উত্তপ্ত হতে থাকলে 100° C তাপমাত্রায় বাম্পে পরিণত হয়।

উদ্দীপকে শুরুতে পাত্রে বরফ থাকে। এই বরফে তাপ প্রয়োগের ফলে তা পানিতে পরিণত হয়। তাপ প্রয়োগ করতে থাকলে এই পানি 100° C তাপমাত্রায় জলীয় বাষ্পে পরিণত হয়। তাই কিছু সময় পর দেখা গেল বিকারে কিছু নেই। এখানে সংঘটিত পরিবর্তনটি নিম্নরূপ-

$$H_2O(s) J H_2O(l) J H_2O(g)$$

যেহেতু এখানে শতকরা সংযুতির কোনো পরিবর্তন হচ্ছে না। সুতরাং, এটি ভৌত পরিবর্তন।

ঘ) ২নং ঘটনায় মোমের ভর হ্রাসের কারণ যুক্তিসহ ব্যাখ্যা কর।

২নং ঘটনায় মোমের ভর <mark>হ্রা</mark>সের কারণ হলো রাসায়নিক বিক্রিয়া ও রাসায়নিক পরিবর্তন। কোনো পদার্থ থেকে ভিন্ন সংযুতির পদার্থ উৎপাদনের প্রক্রিয়াকে রাসায়নিক পরিবর্তন বলে। মোমবাতি জ্বালালে যে তাপ উৎপন্ন হয় তাতে মোমবাতির মোম গলে নিচে পড়তে থাকে এবং পরে ঠাণ্ডা হয়ে কঠিনে পরিণত হয়। আবার কিছুটা মোম অক্সিজেনের সাথে বিক্রিয়া করে। কার্বন ডাইঅক্সাইড ও জলীয় বাষ্প উৎপন্ন হয়। এ বিক্রিয়ায় তাপ উৎপন্ন হয়।

$$C_xH_y + \left(x + \frac{y}{4}\right)O_2 \xrightarrow{\Delta} xCO_2 + \frac{y}{2}H_2O +$$
শক্তি

এই উৎপন্ন তাপর্শক্তি বিক্রিয়াস্থলের মোমকে গলিয়ে তরলে পরিণত করে। এই তরল মোম নিচে পড়ে আবার শীতল হয়ে কঠিনে পরিণত হয়।

ধরা যাক, মোমবাতির মোমের ভর ছিল x এবং 2 ঘণ্টা পরে প্রাপ্ত মোমের ভর ছিল y । অবশ্যই x এর মান y এর মান অপেক্ষা বৃহত্তর হবে। কারণ কিছুটা মোমের রাসায়নিক পরিবর্তন হয়ে CO_2 ও $H_2O(g)$ উৎপন্ন হয়েছে।

ধরি,
$$x - y = a$$

সুতরাং, বলা যেতে পারে a পরিমাণ মোমের রাসায়নিক পরিবর্তন ঘটেছে বলেই মোমের ভর হ্রাস পেয়েছে।

🗅 নিচের বিক্রিয়া দুটি লক্ষ কর এবং প্রশ্নগুলোর উত্তর দাও :

(i)
$$PCl_5 \stackrel{\Delta}{\Longleftrightarrow} PCl_5(l) + Cl_2$$

(ii) $3Fe(s) + 2O_2(g) \stackrel{}{\longleftrightarrow} Fe_3O_4(s)$

- ক) অধঃক্ষেপ কী?
- খ) প্রশমন বিক্রিয়া একটি নন রেডক্স বিক্রিয়া ব্যাখ্যা কর।
- গ) (i) নং বিক্রিয়াটির ওপর চাপের প্রভাব ব্যাখ্যা কর।
- ঘ) (i) ও (ii) নং বিক্রিয়ার প্রকৃতি বিশ্লেষণ কর।

৩ নং প্রশ্নের উত্তর

ক) অধঃক্ষেপ কী?

রাসায়নিক বিক্রিয়ায় উৎপন্ন যৌগ দ্রাবকে দ্রবীভূত না হয়ে কঠিন পদার্থ হিসেবে জমা হলে তাকে অধঃক্ষেপ বলে।

খ) প্রশমন বিক্রিয়া একটি নন রেডক্স বিক্রিয়া ব্যাখ্যা কর।

প্রশমন বিক্রিয়ায় ইলেকট্রনের আদান-প্রদান ঘটে না। তাই এটি নন-রেডক্স বিক্রিয়া। এসিড ও ক্ষারক বিক্রিয়া করে লবণ ও পানি উৎপন্ন করলে তাকে প্রশমন বিক্রিয়া বলে।

সুতরাং, প্রশমন বিক্রিয়া একটি নন-রেডক্স বিক্রিয়া।

গ) (i) নং বিক্রিয়াটির ওপর চাপের প্রভাব ব্যাখ্যা কর।

(i) নং বিক্রিয়াটি হলো :

$$PCl_5(l) \rightleftharpoons PCl_3(l) + Cl_2(g)$$

সমীকরণটিতে, বিক্রিয়ক তরল পদার্থ এবং উৎপাদের একটি তরল ও অন্যটি গ্যাস। যেহেতু তরলের ওপর চাপের কোনো প্রভাব নেই; তাই শুধু উৎপাদ ক্লোরিন গ্যাসের ওপর চাপের প্রভাব নির্ভর করবে। বিক্রিয়কে Cl_5 , কিন্তু উৎপাদে Cl_2 হওয়াতে একই আয়তনে ক্লোরিনের চাপ কমে। বিক্রিয়াটির সাম্যাবস্থায় চাপ কমালে বিক্রিয়াটির সাম্যাবস্থা সামনের দিকে অগ্রসর হয়ে চাপ হ্রাসের প্রভাবকে প্রশমিত করবে। সুতরাং, চাপ হ্রাস করলে PCl_5 এর বিযোজন বৃদ্ধি পাবে।

ঘ) (i) ও (ii) নং বিক্রিয়ার প্রকৃতি বিশ্লেষণ কর।

```
(i) নং সমীকরণটি হতে পাই, P^{+5}Cl_5^{-1} = P^{+3}Cl_3^{-1} + Cl_2^0
    P^{+5} + 5Cl^{-} = P^{+3} + 3Cl^{-} + Cl_{2}^{0}
\boxed{A}, \ P^{+5} + 2Cl^{-} = P^{+3} + Cl_{2}^{0}
P^{+5} + 2e^{-} = P^{+3} (বিজারণ)
    2Cl^{-}-2e^{-}=Cl_{2} (জারণ)
সুতরাং PCl_5 = PCl_3 + Cl_2 একটি রেডক্স বিক্রিয়া।
আবার (ii) নং সমীকরণটি হতে পাই, 3Fe + 2O_2 = Fe_3O_4
    3Fe + 2O<sub>2</sub> = FeO, Fe<sub>2</sub>O<sub>3</sub> অর্থাৎ
    Fe - 2e^{-} = Fe^{2+} এবং 2Fe - 3e^{-} = Fe^{3+} (জারণ)
    O_2 + 4e^- = 20^{2-} (বিজারণ)
সূতরাং Fe - 2e^- = Fe^{2+}
       2\text{Fe} - 6\text{e}^{-} = 2\text{Fe}^{3+}
এবং 20_2 + 8e^- = 40^{2-}
      3\text{Fe} + 2\text{O}_2 = \text{FeO.Fe}_2\text{O}_3 জারণ - বিজারণ বিক্রিয়া
সূতরাং, (ii) নং বিক্রিয়াটি রেডক্স বিক্রিয়া।
অতএব, (i) ও (ii) নং রেডক্স বিক্রিয়া, এরা নন-রেডক্স বিক্রিয়া নয়।
```


□ নিচের উদ্দীপকটি পড় এবং প্রশ্নগুলোর উত্তর দাও :

 N_2 , H_2 এর সাথে বিক্রিয়া করে NH_3 উৎপাদন করে এবং নিচের বিক্রিয়ানুযায়ী সাম্যাবস্থা তৈরি করে-ঘটনা -

$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$
; $\Delta H = -92$ kjmol

- ক) লা-শাতেলিয়ারের নীতি কী?
- খ) তাপমাত্রা বাড়ালে বিক্রিয়ার গতি বাড়ে কেন?
- গ) উদ্দীপকের সাম্যাবস্থার <mark>উপর</mark> চাপের প্রভাব ব্যাখ্যা কর।
- ঘ) উদ্দীপকে NH3 এর সর্বোচ্চ পরিমাণ পেতে লা-শাতেলিয়ার নীতির প্রয়োগ দেখাও।

৪ নং প্রশ্নের উত্তর

ক) লা-শাতেলিয়ারের নীতি কী?

লা-শাতেলিয়ে নীতি হলো-

'কোন উভমুখী বিক্রিয়া সাম্যাবস্থায় থাকাকালে যদি ঐ অবস্থার একটি নিয়ামক যেমন, তাপমাত্রা, চাপ অথবা ঘনমাত্রা পরিবর্তন করা হয়, তবে সাম্যের অবস্থান ডানে বা বামে এমনভাবে পরিবর্তিত হবে, যাতে নিয়ামক পরিবর্তনের ফলাফল প্রশমিত হয়।'

খ) তাপমাত্রা বাড়ালে বিক্রিয়ার গতি বাড়ে কেন?

তাপমাত্রা বাড়ালে বিক্রিয়ার গতি বাড়ে। এর কারণ হলো :

- তাপমাত্রা বৃদ্ধির সাথে বিক্রিয়ক অণু বা আয়নগুলোর গতিবেগ বৃদ্ধি পায়।
- ২. অণুগুলোর মধ্যে সংঘর্ষের হার বৃদ্ধি পায়।
- ত. অণু বিক্রিয়ার জন্য শক্তি লাভ করে থাকে।

গ) উদ্দীপকের সাম্যাবস্থার উপর চাপের প্রভাব ব্যাখ্যা কর।

উদ্দীপকের বিক্রিয়ায় গ্যাসীয় অণুর সংখ্যা পরিবর্তিত হয়। তাই বিক্রিয়ার গতি ও হারে চাপের প্রভাব পড়ে।

উদ্দীপকের বিক্রিয়া অনুযায়ী চার মোল বিক্রিয়ক পদার্থ থেকে দুই মোল উৎপাদ পদার্থ তৈরি হয়। অর্থাৎ বিক্রিয়ক অপেক্ষা উৎপাদের মোল সংখ্যা কম। তাই বিক্রিয়ার ফলে গ্যাসের মোল সংখ্যা কমতে থাকে অর্থাৎ মোলার আয়তন কমে যায়; ফলে একই আয়তনে গ্যাসের চাপ কমে। সাম্যাবস্থা অর্জিত হওয়ার পর চাপ বাড়ালে বিক্রিয়া সামনের দিকে অগ্রসর হয়ে উৎপাদ এর পরিমাণ বাড়ায়। কেননা তার ফলে সিস্টেমে গ্যাসীয় মোল সংখ্যা কমবে এবং সে সময় চাপ কমবে, যা চাপ বাড়ানোকে প্রশমিত করে। আবার চাপ কমালে বিক্রিয়াটি পেছনদিকে সরে যাবে অর্থাৎ অ্যামোনিয়া বিয়োজিত হয়ে নাইট্রোজেন ও হাইড্রোজেন উৎপন্ধ করবে।

ঘ) উদ্দীপকে NH3 এর সর্বোচ্চ পরিমাণ পেতে লা-শাতেলিয়ার নীতির প্রয়োগ দেখাও।

উদ্দীপক অনুসারে উৎপন্ন NH₃ এর সর্বোচ্চ পরিমাণ পেতে লা-শাতেলিয়ার নীতির প্রয়োগ:

তাপমাত্রা পরিবর্তনের ফলাফল: উদ্দীপক অনুযায়ী বিক্রিয়াটি তাপোৎপাদী। তাই তাপমাত্রা বৃদ্ধি করলে বিক্রিয়াটি বিপরীত দিকে অগ্রসর হবে এবং তাপমাত্রা বৃদ্ধির ফলাফল প্রশমিত করে বিক্রিয়াটির উৎপাদন হ্রাস পাবে। অপরপক্ষে, তাপমাত্রা হ্রাস করলে বিক্রিয়াটির উৎপাদন বৃদ্ধি পাবে। তবে নিম্ন তাপমাত্রায় বিক্রিয়ার গতিবেগ হ্রাস পায় বলে সর্বোচ্চ পরিমাণ NH3 উৎপাদনের জন্য একটি অত্যানকল তাপমাত্রা ব্যবহার করতে হবে।

চাপ পরিবর্তনের ফলাফল: প্রদত্ত বিক্রিয়ার 1 মোল N_2 ও 3 মোল H_2 গ্যাস থেকে 2 মোল NH_3 গ্যাস উৎপন্ন হয়েছে অর্থাৎ আয়তন কমে গেছে। লা-শাতেলিয়ে নীতি অনুযায়ী, এ বিক্রিয়ায় চাপ প্রয়োগ করা হলে আয়তন হ্রাস পেয়ে প্রয়োগকৃত চাপের প্রভাব প্রশমিত করে এবং সাম্যের অবস্থান ডানে সরে যায় অর্থাৎ উৎপাদন বৃদ্ধি পায়। তাই উচ্চ চাপে অ্যামোনিয়ার উৎপাদন বৃদ্ধি পায়। সাধারণত 200-250 বায়ুচাপ প্রয়োগ করে সর্বোচ্চ পরিমাণ NH_3 উৎপাদন করা হয়।

প্রভাবকের উপস্থিতি : বিক্রিয়া দ্রুত সংঘটনের জন্য এতে Fe প্রভাবক ব্যবহৃত হয়।

ঘনমাত্রা পরিবর্তনের ফলাফল : সর্বোপরি বিক্রিয়াটি উভমুখী। তাই পশ্চাৎমুখী বিক্রিয়া রোধ করার জন্য NH₃ উৎপাদনের সঙ্গে সঙ্গে তা বিক্রিয়াস্থল থেকে সরিয়ে নেয়া হয় এবং NH₃ এর উৎপাদন বৃদ্ধি পায়।

ঐভাবে, উদ্দীপকের NH3 এর সর্বোচ্চ পরিমাণ পেতে লা শাতেলিয়ার নীতির প্রয়োগ করা হয়।

□ নিচের উদ্দীপকটি পড় এবং প্রশ্নগুলোর উত্তর দাও:

লোহা এবং অ্যালুমিনিয়ামকে দীর্ঘদিন বায়ুতে মুক্ত অবস্থায় রেখে দিলে লোহা ক্ষয়প্রাপ্ত হয়। কিন্তু অ্যালুমিনিয়াম ক্ষয়প্রাপ্ত হয় না।

- ক) কেলাস পানি কী?
- খ) $\mathrm{H_2SO_3}$ এ সালফারের <mark>জারণ</mark> মান নির্ণয় কর।
- গ) উদ্দীপকে উল্লিখিত ঘটনা দুইটি ব্যাখ্যা কর।
- ঘ) "অ্যালুমিনিয়ামের সাথে অক্সিজেনের বিক্রিয়াটি একই সাথে সংযোজন এবং দহন বিক্রিয়া" উক্তিটির যথার্থতা যাচাই কর।

৫ নং প্রশ্নের উত্তর

ক) কেলাস পানি কী?

আয়নিক যৌগের সাথে যুক্ত পানিকে কেলাস বা হাইড্রেটেড পানি বলে।

খ) H_2SO_3 এ সালফারের জারণ মান নির্ণয় কর।

ধরি, S এর জারণ সংখ্যা = x,

H এর জারণ সংখ্যা = +1

O এর জারণ সংখ্যা = -2

যেহেতু H_2SO_3 নিরপেক্ষ অণু, অতএব মোট জারণ সংখ্যা শূন্য হয়।

$$\therefore (1) \times 2 + x + (-2) \times 3 = 0$$

বা,
$$x = 6 - 2$$

$$= +4$$

অর্থাৎ, H₂SO₃ এ S এর জারণ সংখ্যা +4

গ) উদ্দীপকে উল্লিখিত ঘটনা দুইটি ব্যাখ্যা কর।

লোহাকে বায়ুতে মুক্ত অবস্থায় রেখে দিলে তা অক্সিজেন ও জলীয়বাম্পের সাথে বিক্রিয়ায় অংশগ্রহণ করে। ফলে লোহা বায়ুর জলীয় বাম্পের সাথে বিক্রিয়া করে আয়রনের অক্সাইড বা মরিচা উৎপন্ন করে। ফলে লোহা ক্ষয়প্রাপ্ত হয়। মরিচার রাসায়নিক সংকেত হলো ${\rm Fe_2O_3_nH_2O}|$ মরিচার প্রতি অণুতে যুক্ত পানির অণুর সংখ্যা অজ্ঞাত। তাই যুক্ত পানির অণুর সংখ্যাকে ${\rm n}$ দ্বারা প্রকাশ করা হয়। মরিচাকে ${\rm FeO(OH)}$ সংকেত হিসেবেও প্রকাশ করা হয়।

$$4\text{Fe(s)} + 6\text{H}_2\text{O}(l) + 3\text{O}_2(g) \rightarrow 4\text{Fe(OH)}3(s)$$

$$2\text{Fe}(0\text{H})2(s) \xrightarrow{-\text{H}_2\text{O}} \text{Fe}_2\text{O}_3.\,\text{nH}_2\text{O}(s)$$

আর লোহার মতো অ্যালুমিনিয়াম ধাতু বায়ুর অক্সিজেনের সাথে বিক্রিয়া করে অ্যালুমিনিয়াম অক্সাইড উৎপন্ন করে যা ধাতব খণ্ড থেকে অপসারিত হয় না। অর্থাৎ অ্যালুমিনিয়াম ক্ষয়প্রাপ্ত হয় না বরং অ্যালুমিনিয়াম অক্সাইড নিচের স্তরের ধাতব অ্যালুমিনিয়ামকে বায়ুর সংস্পর্শে আসা থেকে রোধ করে। বিক্রিয়াটি নিম্নরূপ :

$$2Al + 3O_2 \longrightarrow Al_2O_3$$

ঘ) উদ্দীপকে NH_3 এর সর্বোচ্চ পরিমাণ পেতে লা-শাতেলিয়ার নীতির প্রয়োগ দেখাও।

অ্যালুমিনিয়ামের সাথে অক্সিজেনের বিক্রিয়াটি একই সাথে সংযোজন এবং দহন বিক্রিয়া। উক্তিটি যথার্থ।

যে বিক্রিয়ায় দুই বা ততোধিক যৌগ বা মৌল যুক্ত হয়ে নতুন যৌগ উৎপন্ন করে তাকে সংযোজন বিক্রিয়া বলে। অ্যালুমিনিয়াম বায়ুর অক্সিজেনের সাথে যুক্ত হয়ে অ্যালুমিনিয়াম অক্সাইড উৎপন্ন করে। অতএব, উক্ত বিক্রিয়াটি একটি সংযোজন বিক্রিয়া।

বিক্রিয়াটি নিম্নরূপ •

$$2Al + 3O_2 \longrightarrow Al_2O_3$$

আবার, দহন বিক্রিয়ার সংজ্ঞানুযায়ী যে বিক্রিয়ায় কোনো মৌল বা যৌগকে বায়ুর অক্সিজেনের উপস্থিতিতে পুড়িয়ে তার উপাদান মৌলের অক্সাইডে পরিণত করা হয় তাকে দহন বিক্রিয়া বলে। এখানে বিক্রিয়াটিতে অ্যালুমিনিয়াম বায়ুর অক্সিজেনের উপস্থিতিতে পুড়িয়ে Al_2O_3 পরিণত হয়েছে। অতএব, এটি একটি দহন বিক্রিয়া।

প্রশ্ন নং: ৬

🔲 নিচের উদ্দীপকটি পড় এবং প্রশ্নগুলোর উত্তর দাও :

(i) চুনাপাথর
$$\stackrel{\Delta}{\longrightarrow}$$
 চুন $+$ A(g)
(ii) A(g) $+$ NH $_3$ $+$ H $_2$ O \rightarrow B
(iii) B $+$ বাইন \rightarrow C $+$ নিশাদল

- ক) ফরমালিন কী?
- খ) ব্যাপন ও নিঃসরণের মধ্যে পার্থক্য লেখ।
- গ) উদ্দীপকের বিক্রিয়া তিনটির সাহায্যে $\mathcal C$ এর প্রস্তুতি বর্ণনা কর।
- ঘ) উদ্দীপকের বিক্রিয়া তিনটি কী ধরনের বিক্রিয়া? যুক্তিসহ বিশ্লেষণ কর।

৬ নং প্রশ্নের উত্তর

ক) ফরমালিন কী?

মিথান্যাল বা ফরমালডিহাইডের সম্পৃক্ত (আয়তন হিসেবে ৪০%, ভর হিসেবে ৩৭%) জলীয় দ্রবণকে ফরমালিন বলে।

খ) ব্যাপন ও নিঃসরণের মধ্যে পার্থক্য লেখ।

ব্যাপন ও নিঃসরণের মধ্যে পার্থক্য:

ব্যাপন	নিঃসরণ
১. কোনো মাধ্যমে কঠিন, তরল বা গ্যাসীয় পদার্থের স্বতঃস্ফূর্ত ও সমভাবে পরিব্যাপ্ত হওয়ার প্রক্রিয়াকে ব্যাপন বলে।	১. সরু ছিদ্র পথে কোনো গ্যাসের অণুসমূহের উচ্চচাপ থেকে নিম্নচাপ অঞ্চলে বেরিয়ে আসার প্রক্রিয়াকে নিঃসরণ বলে।
২, ব্যাপন স্বতঃফূর্ত হয়।	২. নিঃসরণ চাপে ক্রিয়া করে।

গ) উদ্দীপকের বিক্রিয়া তিনটির সাহায্যে C এর প্রস্তুতি বর্ণনা কর।

উদ্দীপকে উল্লিখিত (i), (ii) এবং (iii) নং বিক্রিয়া দ্বারা C প্রস্তুত করা যায় :

(i) নং বিক্রিয়া:

চুনাপাথর $(CaCO_3)$ এর <mark>তাপ</mark>ীয় বিযোজনে আমরা চুন (CaO) এবং CO_2 গ্যাস পাই।

$$(CaCO_3) \xrightarrow{\Delta} CaO \left(\overline{g}
ightharpoons \right) + CO_2(g)$$

(A)

(ii) নং বিক্রিয়া :

 ${
m CO_2}$ এর সাথে অ্যামোনিয়া ও ${
m H_2O}$ এর বিক্রিয়ায় ${
m NH_4HCO_3}$ পাওয়া যায়।

$$CO_2(g) + NH_3 + H_2O \rightarrow NH_4HCO_3$$

$$(A) (B)$$

(iii) নং বিক্রিয়া:

 $\mathrm{NH_4HCO_3}$ এর সাথে ব্রাইন (NaCl) এর বিক্রিয়ায় নিশাদল ($\mathrm{NH_4Cl}$) এবং $\mathrm{NaHCO_3}$ পাওয়া যায়।

$$NH_4HCO_3 + NaCl \rightarrow NaHCO_3(C) +$$
 নিশাদল (NH_4Cl)

ঘ) উদ্দীপকে NH3 এর সর্বোচ্চ পরিমাণ পেতে লা-শাতেলিয়ার নীতির প্রয়োগ দেখাও।

উদ্দীপকের উল্লিখিত বিক্রিয়াগুলো হলো:

- i. $CaCO_3 \longrightarrow CaO + CO_2$
- ii. $CO_2 + NH_3 + H_2O \rightarrow NH_4HCO_3$
- iii. NH₄HCO₃ + NaCl → NaHCO₃ + NH₄Cl

এখানে ১ম বিক্রিয়টি বিযোজন বিক্রিয়া। কারণ, $CaCO_3$ যৌগটি ভেঙ্গে দুটি নতুন যৌগ CaO এবং CO_2 উৎপন্ন হয়। যা বিযোজন বিক্রিয়ায় বৈশিষ্ট্য প্রকাশ করে।

২য় বিক্রিয়াটি একটি সংযোজন বিক্রিয়া। কারণ এখানে তিনটি যৌগ একত্রে মিলিত হয়ে একটি নতুন যৌগ NH4HCO3 উৎপন্ন করে এবং ৩য় বিক্রিয়াটি একটি দ্বি-প্রতিস্থাপন বিক্রিয়া।

কারণ উক্ত বিক্রিয়ায় NaCl এর Na $^+$ আয়ন NH $_4$ HCO $_3$ এর NH_4^+ আয়ন দ্বারা এবং Cl $^-$ আয়ন HCO_3^- আয়ন দ্বারা প্রতিস্থাপিত হয়।

নিচের উদ্দীপকটি পড় এবং প্রশ্নগুলোর উত্তর দাও :

(i)
$$NaCl(aq) + AgNO_3(aq) \rightarrow$$

(ii)
$$AgNO_3(aq) + NaOH(aq) \rightarrow$$

- ক) জারণ সংখ্যা কাকে বলে?
- খ) উভমুখী বিক্রিয়ার সাম্যাব<mark>স্থার</mark> ওপর তাপমাত্রার প্রভাব ব্যাখ্যা কর।
- গ) (i) নং বিক্রিয়াটি কোন ধরনের বিক্রিয়া ব্যাখ্যা কর।
- ঘ) (ii) নং বিক্রিয়া থেকে শুরু করে টলেন বিকারক প্রস্তুতির ধাপগুলো বর্ণনা কর এবং এর সাথে অ্যালডিহাইড এর সংঘটিত বিক্রিয়া ব্যাখ্যা কর।

৭নং প্রশ্নের উত্তর

ক) জারণ সংখ্যা কাকে বলে?

যৌগ গঠনের সময় কোন মৌল যত সংখ্যক ইলেকট্রন বর্জন করে ঋণাত্মক আয়ন উৎপন্ন করে অথবা যত সংখ্যক ইলেকট্রন গ্রহণ করে ধনাত্মক আয়ন উৎপন্ন করে তাকে মৌলের জারণ সংখ্যা বলে।

খ) উভমুখী বিক্রিয়ার সাম্যাবস্থার ওপর তাপমাত্রার প্রভাব ব্যাখ্যা কর।

যে সকল বিক্রিয়া একই সাথে সম্মুখ ও পশ্চাৎ উভয় দিকে সংঘটিত হয় তাকে উভমুখী বিক্রিয়া বলে। উভমুখী বিক্রিয়ার সাম্যাবস্থায় যদি তাপমাত্রা বাড়ানো হয় তবে সাম্যাবস্থা এমন দিকে সরে যায় যাতে সংযোগকৃত তাপ সিস্টেম কর্তৃক শোষিত হয়ে তাপমাত্রা বৃদ্ধির ফলাফল সামনের দিকে অগ্রসর হয়। তেমনি তাপ উৎপাদনকারী বিক্রিয়ার ক্ষেত্রে সাম্যাবস্থায় তাপমাত্রা বাড়ালে বিক্রিয়া পেছনের দিকে অগ্রসর হয়ে তাপমাত্রা বৃদ্ধি ফলাফল প্রশমিত করে।

গ) (i) নং বিক্রিয়াটি কোন ধরনের বিক্রিয়া ব্যাখ্যা কর।

উদ্দীপকের (i) নং বিক্রিয়াটি নিম্নরূপ:

 $NaCl(aq) + AgNO_3(aq) \rightarrow NaNO_3(aq) + AgCl(s)$

উক্ত বিক্রিয়াটি একটি অধঃক্ষেপণ বিক্রিয়া। কেননা, যে বিক্রিয়ায় উৎপন্ন উৎপাদ অধঃক্ষিপ্ত হয়, তাকে অধঃক্ষেপণ বিক্রিয়া বলে।

উক্ত বিক্রিয়ায় জলীয় দ্রবণে সিলভার নাইট্রেটের সাথে সোডিয়াম ক্লোরাইডের বিক্রিয়ায় সোডিয়াম নাইট্রেট ও সিলভার ক্লোরাইড উৎপন্ন হয়। এ সিলভার ক্লোরাইড অধঃক্ষেপ হিসেবে উৎপন্ন হয়। অর্থাৎ, (i) নং বিক্রিয়াটি একটি অধঃক্ষেপণ বিক্রিয়া।

ঘ) (ii) নং বিক্রিয়া থেকে শুরু করে টলেন বিকারক প্রস্তুতির ধাপগুলো বর্ণনা কর এবং এর সাথে অ্যালডিহাইড এর সংঘটিত বিক্রিয়া ব্যাখ্যা কর।

 $AgNO_3$ (aq) + NaOH (aq) \rightarrow AgOH(s) + $NaNO_3$ (aq) অর্থাৎ জলীয় দ্রবণে সিলভার নাইট্রেট সোডিয়াম হাইড্রোক্সাইডের সাথে বিক্রিয়ায় সিলভার হাইড্রোক্সাইড উৎপন্ন করে।

উৎপন্ন সিলভার হাইড্রোক্সাইড বিয়োজিত হয়ে সিলভার অক্সাইড হিসেবে অধঃক্ষিপ্ত হয়। $2AgOH(s) \rightarrow Ag_2O(s) + H_2O(l)$

সিলভার অক্সাইডে অ্যামোনিয়ার জলীয় দ্ববণ ফোঁটায় ফোঁটায় যোগ করলে সকল অধঃক্ষেপ দ্রবীভূত হয়ে অ্যামোনিয়া যুক্ত সিলভার

হাইড্রোক্সাইডের দ্রবণ বা টলেন বিকারক উৎপন্ন হয়।

 $Ag_2O(s) + 4NH_3 + H_2O(l) \rightarrow 2[Ag(NH_3)_2]^+(aq) + 2OH^-(aq)$ টলেন বিকারকের সিলভার আয়ন (Ag^+) অ্যালডিহাইডের সাথে বিক্রিয়া করে বিজারিত হয় এবং ধাতব সিলভার হিসেবে অধঃক্ষিপ্ত হয়। একই

সাথে অ্যালডিহাইড জারিত হয়ে জৈব এসিডে পরিণত হয়। $\mathrm{CH_3CHO}(l) + 2\mathrm{Ag}^+(\mathrm{aq}) + 2\mathrm{OH}^-(\mathrm{aq}) \to \mathrm{CH_3COOH}(l) + 2\mathrm{Ag} \downarrow (\mathrm{s}) + \mathrm{H_2O}(l)$

নিচের বিক্রিয়া চারটি লক্ষ্য কর এবং প্রশ্নগুলোর উত্তর দাও :

- (i) $AlCl_{3(S)} + 3H_2O(l) \rightarrow Al(OH)3(s) + 3HCl(aq)$
- (ii) $NaCl(aq) + AgNO_3(aq) \rightarrow NaNO_3(aq) + AgCl$
- (iii) $MgCl_2 + 7H_2O \rightarrow MgCl_2.7H_2O$
- (iv) Mg + $CuSO_4 \rightarrow MgSO_4 + Cu$
- ক) নন-রেডক্স বিক্রিয়া কাকে বলে?
- খ) (iv) নং বিক্রিয়াটি কোন ধরনের বিক্রিয়া? ব্যাখ্যা কর।
- গ) (i) নং ও (iii) নং বিক্রিয়ার মধ্যে পার্থক্য লেখ।
- ঘ) (ii) নং বিক্রিয়াটি নন-রেডক্স বিক্রিয়া- ব্যাখ্যা কর।

৮নং প্রশ্নের উত্তর

ক) নন-রেডক্স বিক্রিয়া কাকে বলে?

যে বিক্রিয়ায় এক বা একাধিক বিক্রিয়ক থেকে নতুন যৌগ উৎপন্ন হওয়ার সময় বিক্রিয়কে বিদ্যমান মৌলসমূহের মধ্যে ইলেকট্রন আদান-প্রদান হয় না সেই বিক্রিয়াকে নন-রেডক্স বিক্রিয়া বলে।

খ) (iv) নং বিক্রিয়াটি কোন ধরনের বিক্রিয়া? ব্যাখ্যা কর।

(iv) নং বিক্রিয়াটি হলো : Mg + CuSO₄ → MgSO₄ + Cu প্রদত্ত বিক্রিয়াটি হলো প্রতিস্থাপন বিক্রিয়া। এটি এক ধরনের জারণ-বিজারণ বিক্রিয়া। বিক্রিয়ায় ম্যাগনেসিয়াম ধাতু কপার সালফেটের সাথে বিক্রিয়া করে ম্যাগনেসিয়াম সালফেট এবং কপার উৎপন্ন করে। বিক্রিয়ায় ম্যাগনেসিয়াম ধাতু কপার সালফেট হতে কপারকে প্রতিস্থাপন করে।

গ) (i) নং ও (iii) নং বিক্রিয়ার মধ্যে পার্থক্য লেখ।

(i) নং বিক্রিয়াটি হলো:

$$AlCl_3 + 3H_2O \rightarrow Al(OH)3 + 3HCl$$

(iii) নং বিক্রিয়াটি হলো:

$$MgCl_2 + 7H_2O \rightarrow MgCl_2.7H_2O$$

- (i) নং (iii) নং বিক্রিয়ার মধ্যে পার্থক্য নিম্নে দেয়া হলো :
 - ১. (i) নং বিক্রিয়াটি হলো আর্দ্রবিশ্লেষণ বিক্রিয়া এবং (iii) নং বিক্রিয়াটি হলো পানিযোজন বিক্রিয়া।
 - ২. (i) নং বিক্রিয়ায় যৌগের দুই অংশ পানির বিপরীত আধান বিশিষ্ট দুই অংশের সাথে যুক্ত হয়ে নতুন যৌগ উৎপন্ন করে। অপর দিকে (iii) নং বিক্রিয়ায় আয়নিক যৌগ কেলাস গঠনের সময় একাধিক সংখ্যক পানির অণুর সাথে যুক্ত হয়।
 - ৩. (i) নং বিক্রিয়া দ্বি-প্রতিস্থাপন বিক্রিয়ার অনুরূপ। তবে এই বিক্রিয়ায় পানি অংশগ্রহণ করে এবং বিক্রিয়ায় কোনো ইলেকট্রন স্থানান্তর ঘটে না। অপরদিকে, (iii) নং বিক্রিয়াটি সংযোজন বিক্রিয়ার অনুরূপ। তবে সংযোজন বিক্রিয়ার ন্যায় এই বিক্রিয়ায় ইলেকট্রন স্থানান্তর ঘটে না।

ঘ) (ii) নং বিক্রিয়াটি নন-রেডক্স বিক্রিয়া- ব্যাখ্যা কর।

(ii) নং বিক্রিয়াটি হলো :

 $NaCl(aq) + AgNO_3(aq) \rightarrow NaNO_3(aq) + AgCl(l)$

উপরের বিক্রিয়ায় সোডিয়াম ক্লোরাইড ও সিলভার নাইট্রেট জলীয় দ্রবণ বিক্রিয়া করে সোডিয়াম নাইট্রেটের জলীয় দ্রবণ ও সিলভার ক্লোরাইডের অধঃক্ষেপ উৎপন্ন করে।

প্রকতপক্ষে বিক্রিয়ায় সিলভার নাইট্রেটের সিলভার আয়ন (Ag^+) ও সোডিয়াম ক্লোরাইডের ক্লোরাইড আয়ন (Cl^-) যুক্ত হয়ে সিলভার ক্লোরাইডের অধঃক্ষেপ উৎপন্ন করে। সোডিয়াম নাইট্রেট জলীয় দ্রবণে সোডিয়াম আয়ন (Na^+) ও নাইট্রেট আয়ন (NO_3^-) হিসেবে থাকে। জলীয় দ্রবণে সোডিয়াম আয়ন (Na^+) ও নাইট্রেট আয়ন (NO_3^-) বিক্রিয়ায় অংশগ্রহণ করে না। এদেরকে দর্শক আয়ন বলে। এই বিক্রিয়ায় কোনো ইলেকট্রনের স্থানান্তর ঘটে না।

 $NaCl(aq) + AgNO_3(aq) \rightarrow Na^+(aq) + NO_3^-(aq) + AgCl(s)$ অথবা.

 $Na^+(aq) + Cl^-(aq) + Ag^+(aq) + NO^-_3(aq) \rightarrow Na^+(aq) + NO_3^-(aq) + AgCl(s)$ যেহেতু, উপরিউক্ত (ii) নং বিক্রিয়ায় কোনো ইলেক্ট্রনের স্থানান্তর ঘটে না। অতএব, বলা যায় যে, এটি একটি নন-রেডক্স বিক্রিয়া।

নিচের বিক্রিয়া চারটি লক্ষ্য কর এবং প্রশ্নগুলোর উত্তর দাও :

$$Zn + CuSO_4 = ZnSO_4 + Cu$$

- ক) বিজারক কী?
- খ) বিজারক জারিত হয় কেন?
- গ) উক্ত বিক্রিয়ায় কোনটি <mark>জার</mark>ক ও কোনটি বিজারক তা নির্ধারণ কর।
- ঘ) ইলেকট্রনিক মতবাদ অনুসারে বিক্রিয়ায় জারণ ও বিজারণ একই সাথে সংঘটিত হয়েছে- যুক্তিসহ বুঝিয়ে দাও।

৯নং প্রশ্নের উত্তর

ক) বিজারক কী?

জারণ-বিজারণ বিক্রিয়ার সময় যে বিক্রিয়ক ইলেকট্রন বর্জন করে তাকে বিজারক বলে।

খ) বিজারক জারিত হয় কেন?

বিক্রিয়কের জারণ সংখ্যা পরিবর্তন করার জন্য বিজারক জারিত হয়। জারণ-বিজারণ বিক্রিয়া যুগপৎ ঘটে। এ বিক্রিয়ায় বিজারক ইলেকট্রন ত্যাগ করে জারিত হয় এবং জারক ইলেকট্রন গ্রহণ করে বিজারিত হয়। এতে বিক্রিয়কের জারণ সংখ্যার পরিবর্তন হয়। এজন্য বিজারক জারিত হয়।

গ) উক্ত বিক্রিয়ায় কোনটি জারক ও কোনটি বিজারক তা নির্ধারণ কর।

উক্ত বিক্রিয়ায় $CuSO_4$ দুটি ইলেকট্রন গ্রহণ করে বিজারিত হয় এবং Zn কে জারিত করে; অর্থাৎ $CuSO_4$ এই বিক্রিয়ায় জারক পদার্থ। একইভাবে Zn দুটি ইলেকট্রন প্রদান করে জারিত হয় এবং $CuSO_4$ কে বিজারিত করে। অর্থাৎ Zn এই বিক্রিয়ায় বিজারক।

এক্ষেত্রে নিম্নোক্ত বিক্রিয়া দুটি ঘটে :

$$Zn - 2e^- \longrightarrow Zn^{2+}$$
 (জারণ)

 $Cu^{2+} + 2e^{-} \longrightarrow Cu$ (বিজারণ)

ঘ) ইলেকট্রনিক মতবাদ অনুসারে বিক্রিয়ায় জারণ ও বিজারণ একই সাথে সংঘটিত হয়েছে- যুক্তিসহ বুঝিয়ে দাও।

$$Zn-2e^ \longrightarrow Zn^{2+}$$
 (বিজারণ বিক্রিয়া)(i)

$$Cu^{2+} + 2e^{-} \longrightarrow Cu$$
 (জারণ বিক্রিয়া) (ii)

i নং ও ii নং বিক্রিয়ার আয়<mark>নিক</mark> রূপ হলো

$$Zn + Cu^{2+} \longrightarrow Zn^{2+} + Cu$$

i নং বিক্রিয়ার বিক্রিয়কে Zn এর জারণ সংখ্যা শূন্য (0) এবং উৎপাদ $ZnSO_4$ এ Zn এর জারণ সংখ্যা + 2। অর্থাৎ বিক্রিয়ায় Zn দুটি ইলেকট্রন অপসারণ করে জারিত হয় এবং $ZnSO_4$ এ পরিণত হয়।

ii নং বিক্রিয়ার বিক্রিয়ক $CuSO_4$ এ Cu এর জারণ সংখ্যা + 2 এবং উৎপাদে Cu এর জারণ সংখ্যা শূন্য (O)। অর্থাৎ বিক্রিয়ায় $CuSO_4$ দুটি ইলেকট্রন গ্রহণ করে বিজারিত হয় এবং Cu এ পরিণত হয়।

সূতরাং, উক্ত বিক্রিয়ায় জারণ ও বিজারণ একই সাথে সংঘটিত হয়েছে।

নিচের বিক্রিয়া চারটি লক্ষ্য কর এবং প্রশ্নগুলোর উত্তর দাও :

চারটি টেস্টটিউব বা স্বছ কাচের গ্লাস নাও এবং এগুলোকে 1, 2, 3 ও 4 নম্বর দিয়ে চিহ্নিত কর। প্রতিটি টেস্টটিউবে সমপরিমাণ আনুমানিক 0.5/1 মি.গ্রাম সোডিয়াম কার্বোনেট (Na_2CO_3) অথবা কাপড়কাচা সোডা নাও। অতঃপর 1 ও 2 নম্বর টেস্টটিউবে স্বাভাবিক পানি এবং 3 ও 4 নম্বর টেস্টটিউবে গরম পানি যোগ করে 2 ও 4 নম্বর টেস্টটিউবে 1 মি.গ্রাম লেবুর রস অথবা ভিনেগার মিশ্রিত করে নিম্নলিখিত পরিবর্তনসমূহ পর্যবেক্ষণ কর।

- ক) তাপ-উৎপাদী বিক্রিয়া বলতে কী বোঝ?
- খ) পোকার কামড়ের জ্বালাযন্ত্রণা নিবারণে চুন ব্যবহার করলে উপশম হয় কেন?
- গ) 2 ও 4 নম্বর টেস্টটিউবের কোনটিতে বেশি পরিমাণে গ্যাস নির্গত হয় এবং কেন? ব্যাখ্যা কর।
- ঘ) ভিনেগারের পরিবর্তে বিশুদ্ধ অ্যাসিটিক এসিড ব্যবহার করলে কী ঘটবে বিশ্লেষণ কর।

১০নং প্রশ্নের উত্তর

ক) তাপ-উৎপাদী বিক্রিয়া বলতে কী বোঝ?

যে বিক্রিয়ায় বিক্রিয়ক থেকে উৎপাদ উৎপন্ন হওয়ার সময় তাপশক্তি উৎপন্ন হয় তাকে তাপ-উৎপাদী বিক্রিয়া বলে।

খ) পোকার কামড়ের জ্বালাযন্ত্রণা নিবারণে চুন ব্যবহার করলে উপশম হয় কেন?

পোকার কামড়ের ক্ষতস্থানে পোকার শরীর থেকে যে বিষ প্রবেশ করে তাতে অস্লীয় উপাদান থাকে। মানুষ পোকার কামড়ের জ্বালাযন্ত্রণা নিবারণ করার জন্য ক্ষতস্থানে চুন ব্যবহার করে। চুন ক্ষারধর্মী পদার্থ। এটি অস্লীয় উপাদানের সাথে প্রশমন বিক্রিয়া করে।

গ) 2 ও 4 নম্বর টেস্টটিউবের কোনটিতে বেশি পরিমাণে গ্যাস নির্গত হয় এবং কেন? ব্যাখ্যা কর।

চিত্রের 2 ও 4 নং টেস্টটিউবে সংঘটিত রাসায়নিক বিক্রিয়াটি নিম্নরূপে প্রকাশ করা যায় :

 $Na_2CO_3 + CH_3COOH \rightarrow CH_3COONa + CO_2 + H_2O$

লেবুর রস/ভিনেগার

উল্লেখিত টেস্টটিউব দুটি থেকে উদ্ভূত বুদবুদ পর্যবেক্ষণ করে দেখা যায় যে একটি নির্দিষ্ট সময়ে (1 বা 5 মিনিট) টেস্টটিউবদ্বয়ে সমপরিমাণ CO_2 গ্যাস নির্গত হয় না। এক্ষেত্রে 4 নং টেস্টটিউবে নির্গত গ্যাসের পরিমাণ একই সময়ে 2 নং টেস্টটিউবে থেকে নির্গত গ্যাসের পরিমাণের চেয়ে বেশি। এর কারণ হলো, 4 নং টেস্টটিউবটিতে ঠাণ্ডা পানির পরিবর্তে গরম পানি দেয়া হয়েছিল। এতে দ্রবণের তাপমাত্রা বৃদ্ধি পায়। আর তাপমাত্রা বৃদ্ধি পোয়। আর তাপমাত্রা বৃদ্ধি পায়। ফলে উৎপাদের পরিমাণ বৃদ্ধি পায়। তাই CO_2 গ্যাস বেশি পরিমাণে নির্গত হয়।

অতএব, 4 টেস্টটিউবে নম্বর বেশি গ্যাস নির্গত হবে।

ঘ) 2 ও 4 নম্বর টেস্টটিউবের কোনটিতে বেশি পরিমাণে গ্যাস নির্গত হয় এবং কেন? ব্যাখ্যা কর।

ভিনেগারের পরিবর্তে বিক্রিয়ক হিসেবে বিশুদ্ধ অ্যাসিটিক এসিড ব্যবহার করলে বিক্রিয়ার হার বৃদ্ধি পাবে।

ভিনেগার হলো অ্যাসিটিক এসিডের 6-10% জলীয় দ্রবণ। ভিনেগারের চেয়ে বিশুদ্ধ অ্যাসিটিক এসিডের ঘনমাত্রা বেশি। আর বিক্রিয়ার হার বিক্রিয়াকের ঘনমাত্রার ওপর নির্ভরশীল। তাই বিশুদ্ধ অ্যাসিটিক এসিডের ঘনমাত্রা বেশি হওয়ার ফলে Na_2CO_3 অণুর সাথে বিশুদ্ধ CH_3COOH অণুর সংঘর্ষের পরিমাণ অনেক বৃদ্ধি পাবে।

তাই উৎপন্ন CO_2 গ্যাসের পরিমাণ অনেক বৃদ্ধি পাবে এবং টেস্টটিউব থেকে বুদবুদ আকারে গ্যাস নির্গত হবে।