

Confronting Heavy Tau Neutrinos with Neutrino Oscillations

Chun Liu

*Institute of Theoretical Physics, Chinese Academy of Sciences,
P.O. Box 2735, Beijing 100080, China*

Abstract

If the tau neutrino is as heavy as 10 MeV which may have certain astrophysical implications, the neutrino mass pattern is studied so as to accommodate the new oscillation observations. It predicts that the electron neutrino has Marjorana mass around 0.05 eV. A supersymmetric model is described to realize the above scenario.

Keywords: tau neutrino, neutrino oscillation.

PACS numbers: 14.60.Pq, 14.60.St.

There are some motivations for a heavy ν_τ . Cosmologically, 10 MeV ν_τ 's can compose the cold dark matter in a scenario with low re-heating temperature [1]. Theoretically, a 10 MeV ν_τ is predicted in a supersymmetric (SUSY) model which understands the muon mass from the sneutrino vacuum expectation values [2]. One astrophysical implication is that gamma ray bursts may be just the supernova explosions [3]. In this model, ν_τ mixes with other neutralinos slightly. It decays to light gravitino and photon with a very long lifetime $\sim 10^{13}$ sec. Therefore, distant supernova explosions which emit tau neutrinos look like gamma ray bursts to us.

Neutrino oscillation observations should be considered carefully. The Super-Kamiokande (Super-K) data for the atmospheric neutrino problem (ANP) imply that the ν_μ maximally mixes with ν_x ($x \neq e$) with $\Delta m_{\mu x}^2 \simeq 3 \times 10^{-3}$ eV² [4]. And it is claimed that compared to the sterile neutrino, the $x = \tau$ case is favored [5]. However, Ref. [6] has argued that this claim is not yet reliable, and more careful analysis is needed. Nevertheless, as emphasized in Ref. [7], the $x = \text{sterile}$ case is not ruled out on its own basis.

The Sudbury Neutrino Observatory (SNO)'s first result [8] for the solar neutrino problem (SNP) makes it clear that mixing among the active neutrinos are essential, although certain involvement of a sterile neutrino cannot be excluded [9]. Recent Super-K's result [10] for the SNP shows that the solutions lie in the large mixing angle (LMA) region with $\Delta m^2 \simeq 10^{-5} - 10^{-4}$ eV² or $\Delta m^2 \simeq 10^{-9} - 10^{-7}$ eV².

In this Letter, we take ν_τ to be heavy ($\simeq 10$ MeV). The ANP is explained by introducing a sterile neutrino ν_s . The SNP is thus mainly due to the $\nu_e - \nu_\mu$ mixing. Can this scenario be consistent with neutrino oscillations in detail? There are three light neutrinos, ν_e , ν_μ and ν_s . It looks similar to the case of three light active neutrinos which have several forms of the neutrino mass matrix allowed by the neutrino oscillations [11]. However, careful consideration shows that the neutrino mass matrix is almost unique. By introducing a sterile neutrino, naively the pseudo-Dirac mechanism would be expected for the ANP. But this can not explain the SNP, because even if ν_e is taken to be degenerate with ν_μ and ν_s , the large mixing between ν_e and ν_μ can not be achieved. Requiring parameter tunings to be

small, we come up with the following neutrino mass matrix phenomenologically. It in the (ν_e, ν_μ, ν_s) basis to the leading order is

$$\mathcal{M}_\nu^{(0)} = \frac{m}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}. \quad (1)$$

Note that the matrix elements (12) and (13) are not necessarily equal. The equality will be exact if the ANP is due to a maximal mixing.

The following mass spectrum is obtained from Eq. (1),

$$m_1 = m_2 = m, \quad m_3 = 0, \quad (2)$$

Two neutrinos are degenerate and one massless. Their mixing matrix is then

$$U = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{\sqrt{2}} \end{pmatrix}. \quad (3)$$

The charged lepton mass matrix has been taken to be diagonal at the leading order. Therefore both $\nu_\mu - \nu_s$ and $\nu_e - \nu_\mu$ mixing have been fixed to be maximal already, for the ANP and SNP, respectively.

The value of m is determined by the ANP,

$$m \simeq 0.05 \text{ eV}. \quad (4)$$

The degeneracy of ν_1 and ν_2 has to be lift as required by the SNP. Phenomenologically, a small perturbation $m\epsilon$ can be added to the mass matrix Eq. (1). It splits ν_1 and ν_2 with

$$\Delta m_{12}^2 \simeq m^2 \epsilon. \quad (5)$$

$\epsilon \simeq 10^{-2}$ is for the Mikheyev-Smirnov-Wolfenstein [12] solution and $\epsilon \simeq 10^{-6}$ for the LOW solution.

The fact that the SNP is due to a large mixing instead of a maximal mixing is explained by considering the mixing matrix of charged leptons which was taken as unit matrix at

the leading order. It is then natural to expect the $\nu_e - \nu_\mu$ mixing angle deviates from $\pi/4$, $\sin 2\theta_{e\mu} \simeq 1 - \sqrt{\frac{m_e}{m_\mu}} \simeq 0.93$.

Let us discuss a SUSY model [2,13] which can produce the neutrino mass matrix Eq. (1). The model is a SUSY extension of the standard model. Lepton number violation is introduced so that one of the left-handed sneutrino gets a non-vanishing vacuum expectation value, $\langle v_3 \rangle \sim \text{few GeV}$ which results in a 10 MeV Majorana mass for the tau-neutrino [2]. In addition, we introduce two heavy (N_1 and N_2) and one massless (N_3) right-handed neutrino superfields. The relevant superpotential for N_1 and N_2 is generally written as

$$\mathcal{W}_{(1,2)} \sim L_1 H_u N_{1,2} + L_2 H_u N_{1,2} + L_3 H_u N_{1,2} + M_1 N_1 N_1 + M_2 N_2 N_2, \quad (6)$$

where L_i ($i = 1, 2, 3$) are the SU(2) doublet superfields of leptons, H_u denotes one of the Higgs fields, and $M_{1,2}$ are the masses of $N_{1,2}$. The basis where the mass matrix of charged leptons is diagonal, is expanded by

$$\begin{aligned} L_e &= \frac{1}{\sqrt{6}}(L_1 + L_2 - 2L_3), \\ L_\mu &= \frac{1}{\sqrt{2}}(L_1 - L_2), \\ L_\tau &= \frac{1}{\sqrt{3}}(L_1 + L_2 + L_3). \end{aligned} \quad (7)$$

In this basis,

$$\mathcal{W}_{(1,2)} \sim L_e H_u N_{1,2} + L_\mu H_u N_{1,2} + L_\tau H_u N_{1,2} + M_1 N_1 N_1 + M_2 N_2 N_2. \quad (8)$$

One observation is that the term containing L_τ is useless, because ν_τ is already much heavier. It is natural to expect that the mass sub-matrix of ν_e and ν_μ in Eq. (1) comes from the seesaw mechanism given by the other terms in the superpotential Eq. (8), and $m \sim \langle H_u \rangle^2/M$.

We assume N_3 couples to L_3 dominantly,

$$\mathcal{W}_3 = c L_3 H_u N_3 \quad (9)$$

with coupling c being very small, $c \langle H_u \rangle \sim 10^{-1} - 10^{-2}$ eV. The smallness of c can be understood if N_3 is a composite particle [14]. In the basis of L_e , L_μ and L_τ ,

$$\mathcal{W}_3 \sim L_e H_u N_3 + L_\tau H_u N_3. \quad (10)$$

Again, the second term is not important for neutrino masses. The first term just generates the (13) entry of the mass matrix Eq. (1). Note that N_3 is almost massless and there is no $L_\mu - N_3$ coupling. Therefore the texture of neutrino mass matrix Eq. (1) is obtained.

One phenomenologically interesting point of introducing light N_3 in this model is that it interacts with other leptons as

$$\mathcal{W}' \sim \frac{1}{M} L_e L_\mu E_\mu^c N_3, \quad (11)$$

where E^c denotes the SU(2) singlet charged lepton superfield. Because $\langle v_3 \rangle \neq 0$, the above superpotential results in the following interaction,

$$\mathcal{L}' = \frac{v_3}{M} \mu^+ \mu^- \phi_{N_3}, \quad (12)$$

where ϕ_{N_3} is the scalar component of N_3 . Note that after SUSY breaking, ϕ_{N_3} becomes massive. So it decays to $\mu^+ \mu^-$ with possibly a long decay length. We wonder if this is related to the recent observation of NuTeV Collaboration [15], or can be tested in future experiments.

Experimentally, the neutrino mass scenario in this paper can be tested in the future. Besides the direct measurement of ν_τ mass, the confirmation of the $\nu_\mu - \nu_\tau$ oscillation for the ANP will be a serious challenge. It is predicted that the electron neutrino has a Majorana mass around 0.05 eV. The neutrino-less double β -decay experiments will probe this value [16]. There is no room for LSND result, but it is compatible with KARMEN experiment. The mixing U_{e3} can be vanishingly small without affecting the physics discussed in this paper.

When the work was written, we got to know Ref. [17] which reports τ appearance in the ANP observation at 2σ level. The author is supported in part by the National Natural Science Foundation of China with grant no. 10047005.

REFERENCES

- [1] G.F. Giudice, E.W. Kolb and A. Riotto, Phys. Rev. D64 (2001) 023508;
M. Kawasaki, K. Kohri and N. Sugiyama, Phys. Rev. D 62 (2000) 023056.
- [2] D. Du and C. Liu, Mod. Phys. Lett. A8 (1993) 2271, A10 (1995) 1837;
C. Liu and H.S. Song, Nucl. Phys. B545 (1999) 183.
- [3] C. Liu and J. Song, Nucl. Phys. B598 (2001) 3.
- [4] Super-K Collaboration, Y. Fukuda *et al.*, Phys. Rev. Lett. 81 (1998) 1562.
- [5] Super-K Collaboration, S. Fukuda *et al.*, Phys. Rev. Lett. 85 (2000) 3999.
- [6] R. Foot, Phys.Lett. B496 (2000) 169.
- [7] M.C. Gonzalez-Garcia, M. Maltoni and C. Pena-Garay, hep-ph/0105296.
- [8] SNO Collaboration, Q.R. Ahmad *et al.*, nucl-ex/0106015.
- [9] V. Barger, D. Marfatia and K. Whisnant, hep-ph/0106207.
- [10] Super-K Collaboration, S. Fukuda *et al.*, Phys. Rev. Lett. 86 (2001) 5656.
- [11] R. Barbieri, L.J. Hall, D. Smith, A. Strumia and N. Weiner, JHEP 9812 (1998) 017; For a review, see G. Altarelli and F. Feruglio, in Venice 1999, Neutrino telescopes, p353.
- [12] S. P. Mikheyev and A. Yu Smirnov, Sov. J. Nucl. Phys. 42 (1985) 913; L. Wolfenstein, Phys. Rev. D 17 (1978) 2369.
- [13] C. Liu, Mod. Phys. Lett. A 12 (1997) 329.
- [14] N. Arkani-Hamed and Y. Grossman, Phys. Lett. B459 (1999) 179.
- [15] NuTeV Collaboration, T. Adams *et al.*, Phys. Rev. Lett. 87 (2001) 041801.
- [16] H.V. Klapdor-Kleingrothaus, H. Paes and A.Yu. Smirnov, hep-ph/0103076.
- [17] A. Habig, hep-ex/0106025, to appear in the Proceedings of ICRC 2001.