

Art of Problem Solving 2004 Balkan MO

Balkan MO 2004

_	May 7th
1	The sequence $\{a_n\}_{n\geq 0}$ of real numbers satisfies the relation:
	$a_{m+n} + a_{m-n} - m + n - 1 = \frac{1}{2}(a_{2m} + a_{2n})$
	for all non-negative integers m and n , $m \ge n$. If $a_1 = 3$ find a_{2004} .
2	Solve in prime numbers the equation $x^y - y^x = xy^2 - 19$.
3	Let O be an interior point of an acute triangle ABC . The circles with centers the midpoints of its sides and passing through O mutually intersect the second time at the points K , L and M different from O . Prove that O is the incenter of the triangle KLM if and only if O is the circumcenter of the triangle ABC .
4	The plane is partitioned into regions by a finite number of lines no three of which are concurrent. Two regions are called "neighbors" if the intersection of their boundaries is a segment, or half-line or a line (a point is not a segment). An integer is to be assigned to each region in such a way that:
	 i) the product of the integers assigned to any two neighbors is less than their sum; ii) for each of the given lines, and each of the half-planes determined by it, the sum of the integers, assigned to all of the regions lying on this half-plane equal to zero.
	Prove that this is possible if and only if not all of the lines are parallel.