Melanin on Margins: A Study on Skin-Color Bias in the Bollywood Film Industry

Abhik Rana (BS2301)

May 2025

Introduction

- Bollywood reaches over 90 countries with a \$2.1B market.
- Despite this reach, there is limited research on colorism in casting.
- This study investigates how skin tone bias manifests in Hindi cinema.

Research Questions

- How pronounced is colorism in Bollywood movies?
- 2 How has colorism changed over time?
- What is the distribution of skin tones across roles?
- What are the average luminance trends?

Data Set

- Top 5 grossing movies each year (2015–2024).
- Extracted L* values from CIELAB color space.
- Leading and supporting cast analyzed separately by gender.
- Average luminance used as proxy for skin tone.

Dataset Cleaning and Preprocessing

- Selected scenes with visible glabella.
- Removed outliers and standardized frame counts.
- Averaged support cast L* values per scene.
- Manual filtering of foreign or heavily made-up faces.

ANOVA: Concept

- Used to compare L* across four roles:
 - actor, actress, side_actor, side_actress
- Hypothesis:

$$H_0: \mu_{actor} = \mu_{actress} = \mu_{side_actor} = \mu_{side_actress}$$

• Tested via F-statistic:

$$F = \frac{\text{between-group variance}}{\text{within-group variance}}$$

ANOVA Results

Source	sum_sq	df	F	PR(>F)
C(role)	26213.77	3	117.25	1.63×10^{-43}
Residual	14606.09	196		

Table: ANOVA for Luminance by Role

Null hypothesis rejected: at least one role differs significantly in average luminance.

ANOVA: Luminance by Year

Source	sum_sq	df	F	PR(>F)
C(year)	1458.47	9	0.78	0.63
Residual	39361.40	190		

Table: ANOVA for Luminance by Year

No significant difference across years.

Cohen's d Effect Size

- Formula: $d = \frac{L_A L_B}{s_{pooled}}$
- Actor vs Actress: d = -2.319 (actors significantly lighter)
- Lead vs Side roles: d = 1.492 (leads significantly lighter)

Distribution of Skin Tones

- Multiple visualizations to assess role-based luminance differences.
- Next slides show KDEs, histograms, percentiles, and trends.

Luminance Distribution by Role

Luminance Distribution by Role (2015-2024)

Luminance Histogram by Role

Luminance Distribution with Percentiles

Luminance Distribution (2019-2024) by Role with Percentile Overlays

Average Luminance Over Time by Role

Observed Trends

- Persistent preference for lighter skin in lead roles.
- Clustering and trendline analyses support earlier findings.

Linear Trend of Luminance by Role

K-Means Clustering of Luminance

Clustering Interpretation

- Cluster 0: Darker tones \rightarrow More side roles.
- Cluster 2: Lighter tones \rightarrow Mostly lead roles.
- Supports presence of colorism through unsupervised learning.

Conclusion

- Strong empirical evidence of colorism.
- Leads have significantly lighter skin than supporting characters.
- Temporal trends show little progress.
- Statistical and ML methods converge on similar findings.

Acknowledgments

I would like to express my sincere gratitude to

Professor Garga Chatterjee and Professor Kuntal Ghosh
for their invaluable guidance and mentorship throughout this study.

Thank You

Questions?

