CMP461: Big Data Analytics 3/13/2017

Logistic Regression

Elsayed Hemayed

The original slides are from EMC Data Analytics Course and from Udmey course by SuperDataScience Team

Overview of Logistic Regression

- Why we need logistics regression
- -Technical description of a logistics regression model
- Interpretation and scoring with the logistics regression model
- Diagnostics for validating the logisitics regression model
- The Reasons to Choose (+) and Cautions (-) of the logistics regression model

2

Examples of Binary Outcomes

- Should a bank give a person a loan or not?
- Is an individual transaction fraudulent or not?
- Which people are more likely to vote against a new law?
- Which customers are more likely to buy a new product?

8

Data for Example: Customers' Subscription

- We have data on 1,000 random customers from a given city. We want to know what determines their decision to subscribe to a magazine.
- Subscribe: indicates if a customer has subscribed to the magazine.
- Ages: we will start by examining how age influences the likelihood of subscription.
- Gender: May also influence likelihood of subscription.

9

A linear model

Subscribe = $b_0 + b_1$ age + ε

	Coefficient
Const	-1.70073
age	0.0645

- P(subscribe=1) = p = -1.700 + 0.064 age
- Every additional year of age increase the probability of subscription by 6.4%

10

Problems with the Linear Approach

- Probabilities should be bounded 0 <= p <= 1
- The range of age is the data 20<= age <=55
- P(Subscribe =1 | age = 25) = -1.7 + 0.064 x 25
 = -0.09 (<0)
- P(Subscribe =1 | age = 45) = -1.7 + 0.064 x 45
 = 1.2 (>1)

11

Fixing the Linear Model

- p=f(age)
- What f to use
 - f(.) must be >=0
 - f(.) must be <=1
- (to be >=0) $-p=\exp(b_0 + b_1 age) = e^{(b0 + b1 age)}$
- (To be <=1) $- p = \exp(b_0 + b_1 age) / (\exp(b_0 + b_1 age) + 1)$

12

Logistics Regression

$$p = \exp(b_0 + b_1 age) / (\exp(b_0 + b_1 age) + 1)$$

Can be rewritten as

$$ln(p/(1-p)) = b_0 + b_1 age$$

The *In* term is called the **logit**

And the ratio (p/(1-p)) is called **the odd ratio**

13

A Logistics model

$$ln(p/(1-p)) = b_0 + b_1 age$$

	Coefficient
Const	-26.524
age	0.78105

$$ln\left(p/(1-p)\right) = b_0 + b_1 \ age = -26.524 + 0.78 \ age$$

Or

$$p = \exp(b_0 + b_1 \, age) / (\exp(b_0 + b_1 \, age) + 1)$$

L4

A Logistics model

 $ln(p/(1-p)) = b_0 + b_1 age$

	Coefficient
Const	-26.524
age	0.78105

 $ln[p/(1-p)] = b_0 + b_1 age = -26.524 + 0.78 age$

So

For every unit increase in age, ln [p/(1-p)] increases by 0.78 units.

For age =35; $y^* = \ln [p/(1-p)] = 0.813$

 $p = \exp(y^*)/[\exp(y^*)+1] = P \text{ (subscribe } = 1 \mid age = 35) = 0.693$

15

A logistics model results

- Change in p from age = 35 to 36 is 0.138
- Change in p from age= 25 to 26 is 0.001
- Change in p from age 45 to 46 is 0.0001

16

Diagnostics

- Hold-out data:
 - Does the model predict well on data it hasn't seen?
- N-fold cross-validation: Formal estimate of generalization error
- "Pseudo-R²": 1 (deviance/null deviance)
 - Deviance, null deviance both reported by most standard packages
 - The fraction of "variance" that is explained by the model
 - Used the way R² is used

Diagnostics (Cont.)

- Sanity check the coefficients
 - Do the signs make sense? Are the coefficients excessively large?
 - Wrong sign is an indication of correlated inputs, but doesn't necessarily affect predictive power.
 - Excessively large coefficient magnitudes may indicate strongly correlated inputs; you may want to consider eliminating some variables, or using regularized regression techniques.
 - Unfortunately, regularized logistic regression is not standard.
 - Infinite magnitude coefficients could indicate a variable that strongly predicts a subset of the output (and doesn't predict well on the rest).
 - Try a Decision Tree on that variable, to see if you should segment the data before regressing.

Logistic Regression - Reasons to Choose (+) and Cautions (-)

Reasons to Choose (+)	Cautions (-)
Explanatory value:	Does not handle missing values well
Relative impact of each variable on the outcome	
in a more complicated way than linear regression	
Robust with redundant variables, correlated variables	Assumes that each variable affects the log-odds of the
Lose some explanatory value	outcome linearly and additively
	Variable transformations and modeling variable
	interactions can alleviate this
	A good idea to take the log of monetary amounts
	or any variable with a wide dynamic range
Concise representation with the	Cannot handle variables that affect the outcome in a
the coefficients	discontinuous way.
	Step functions
Easy to score data	Doesn't work well with discrete drivers that have a lot
	of distinct values
	For example, ZIP code
Returns good probability estimates of an event	
Preserves the summary statistics of the training data	
"The probabilities equal the counts"	