Import Modul

In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.preprocessing import LabelEncoder
from sklearn import tree
```

EDA

Read Data

In [2]:

```
df = pd.read_csv("students_adaptability_level_online_education.csv")
```

Head and Tail Data

In [3]:

df.head()

Out[3]:

	Gender	Age	Education Level	Institution Type	IT Student	Location	Load- shedding	Financial Condition	Internet Type	Nety
0	Воу	21- 25	University	Non Government	No	Yes	Low	Mid	Wifi	
1	Girl	21- 25	University	Non Government	No	Yes	High	Mid	Mobile Data	
2	Girl	16- 20	College	Government	No	Yes	Low	Mid	Wifi	
3	Girl	11- 15	School	Non Government	No	Yes	Low	Mid	Mobile Data	
4	Girl	16- 20	School	Non Government	No	Yes	Low	Poor	Mobile Data	
4										

In [4]:

df.tail()

Out[4]:

	Gender	Age	Education Level	Institution Type	IT Student	Location	Load- shedding	Financial Condition	Internet Type	I
1200	Girl	16- 20	College	Non Government	No	Yes	Low	Mid	Wifi	
1201	Girl	16- 20	College	Non Government	No	No	High	Mid	Wifi	
1202	Boy	11- 15	School	Non Government	No	Yes	Low	Mid	Mobile Data	
1203	Girl	16- 20	College	Non Government	No	No	Low	Mid	Wifi	
1204	Girl	11- 15	School	Non Government	No	Yes	Low	Poor	Mobile Data	
4									•	•

Bentuk Dataset

In [5]:

df.shape

Out[5]:

(1205, 14)

Cek Tipe Data

In [6]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1205 entries, 0 to 1204
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	Gender	1205 non-null	object
1	Age	1205 non-null	object
2	Education Level	1205 non-null	object
3	Institution Type	1205 non-null	object
4	IT Student	1205 non-null	object
5	Location	1205 non-null	object
6	Load-shedding	1205 non-null	object
7	Financial Condition	1205 non-null	object
8	Internet Type	1205 non-null	object
9	Network Type	1205 non-null	object
10	Class Duration	1205 non-null	object
11	Self Lms	1205 non-null	object
12	Device	1205 non-null	object
13	Adaptivity Level	1205 non-null	object

dtypes: object(14)
memory usage: 131.9+ KB

Missing Value

In [7]:

```
df.isnull().sum()
```

Out[7]:

Gender	0
Age	0
Education Level	0
Institution Type	0
IT Student	0
Location	0
Load-shedding	0
Financial Condition	0
Internet Type	0
Network Type	0
Class Duration	0
Self Lms	0
Device	0
Adaptivity Level	0
dtype: int64	

Visualisasi

In [8]:

df['Adaptivity Level'].value_counts().plot.pie(autopct='%1.1f%%',shadow=True)

Out[8]:

<AxesSubplot:ylabel='Adaptivity Level'>

In [9]:

sns.countplot(x=df['Gender'],hue=df['Adaptivity Level'])

Out[9]:

<AxesSubplot:xlabel='Gender', ylabel='count'>

In [10]:

sns.countplot(x=df['Age'],hue=df['Adaptivity Level'])

Out[10]:

<AxesSubplot:xlabel='Age', ylabel='count'>

In [11]:

sns.countplot(x=df['Education Level'],hue=df['Adaptivity Level'])

Out[11]:

<AxesSubplot:xlabel='Education Level', ylabel='count'>

In [12]:

sns.countplot(x=df['Institution Type'],hue=df['Adaptivity Level'])

Out[12]:

<AxesSubplot:xlabel='Institution Type', ylabel='count'>

In [13]:

sns.countplot(x=df['IT Student'],hue=df['Adaptivity Level'])

Out[13]:

<AxesSubplot:xlabel='IT Student', ylabel='count'>

In [14]:

sns.countplot(x=df['Location'],hue=df['Adaptivity Level'])

Out[14]:

<AxesSubplot:xlabel='Location', ylabel='count'>

In [15]:

sns.countplot(x=df['Load-shedding'],hue=df['Adaptivity Level'])

Out[15]:

<AxesSubplot:xlabel='Load-shedding', ylabel='count'>

In [16]:

sns.countplot(x=df['Financial Condition'],hue=df['Adaptivity Level'])

Out[16]:

<AxesSubplot:xlabel='Financial Condition', ylabel='count'>

In [17]:

sns.countplot(x=df['Internet Type'],hue=df['Adaptivity Level'])

Out[17]:

<AxesSubplot:xlabel='Internet Type', ylabel='count'>

In [18]:

sns.countplot(x=df['Network Type'],hue=df['Adaptivity Level'])

Out[18]:

<AxesSubplot:xlabel='Network Type', ylabel='count'>

In [19]:

sns.countplot(x=df['Class Duration'],hue=df['Adaptivity Level'])

Out[19]:

<AxesSubplot:xlabel='Class Duration', ylabel='count'>

In [20]:

```
sns.countplot(x=df['Self Lms'],hue=df['Adaptivity Level'])
```

Out[20]:

<AxesSubplot:xlabel='Self Lms', ylabel='count'>

In [21]:

```
sns.countplot(x=df['Device'],hue=df['Adaptivity Level'])
```

Out[21]:

<AxesSubplot:xlabel='Device', ylabel='count'>

Deskripsi Dataframe

In [22]:

```
df.describe()
```

Out[22]:

	Gender	Age	Education Level	Institution Type	IT Student	Location	Load- shedding	Financial Condition	Inter T
count	1205	1205	1205	1205	1205	1205	1205	1205	1:
unique	2	6	3	2	2	2	2	3	
top	Воу	21- 25	School	Non Government	No	Yes	Low	Mid	Mo E
freq	663	374	530	823	901	935	1004	878	~
4									•

Change Data Type

In [23]:

```
# change all data type using LabelEncode
data=df

label_encoders = {}
categorical_columns = data.columns

for column in categorical_columns:
    label_encoders[column] = LabelEncoder()
    data[column] = label_encoders[column].fit_transform(data[column])
```

Lihat Perubahan Data

```
In [24]:
```

```
data.head()
```

Out[24]:

	Gender	Age	Education Level	Institution Type	IT Student	Location		Financial Condition	Internet Type	Netwo
0	0	3	2	1	0	1	1	0	1	
1	1	3	2	1	0	1	0	0	0	
2	1	2	0	0	0	1	1	0	1	
3	1	1	1	1	0	1	1	0	0	
4	1	2	1	1	0	1	1	1	0	
4										•

KORELASI

In [25]:

cols = df.corr()
cols

Out[25]:

	Gender	Age	Education Level	Institution Type	IT Student	Location	Load- shedding	Financi Conditio
Gender	1.000000	-0.130395	-0.197743	0.106910	-0.233284	-0.034231	0.059998	-0.0174 ⁻
Age	-0.130395	1.000000	0.414985	-0.216818	0.320066	-0.187269	-0.122011	0.02879
Education Level	-0.197743	0.414985	1.000000	0.116403	0.415967	0.063676	0.004725	0.08350
Institution Type	0.106910	-0.216818	0.116403	1.000000	0.104185	0.326813	-0.017794	0.0135{
IT Student	-0.233284	0.320066	0.415967	0.104185	1.000000	0.009697	-0.186005	-0.02507
Location	-0.034231	-0.187269	0.063676	0.326813	0.009697	1.000000	0.245380	0.0569
Load- shedding	0.059998	-0.122011	0.004725	-0.017794	-0.186005	0.245380	1.000000	-0.0010 ⁻
Financial Condition	-0.017410	0.028792	0.083509	0.013586	-0.025075	0.056958	-0.001017	1.00000
Internet Type	-0.021589	0.203195	0.080694	0.060198	0.113452	0.222660	-0.013199	-0.02046
Network Type	-0.032527	-0.049077	-0.046162	-0.060035	-0.128817	0.171539	0.164678	-0.01992
Class Duration	-0.035407	0.065048	0.165127	0.348251	0.228662	0.216953	-0.119729	0.02379
Self Lms	-0.138331	0.246289	0.326259	0.096722	0.453429	-0.036443	-0.187610	-0.06436
Device	0.140691	-0.171172	-0.278548	-0.096857	-0.386776	-0.070397	0.052088	-0.02096
Adaptivity Level	0.033426	-0.230317	-0.032694	0.162387	0.049282	0.107414	0.043611	-0.27464
4								•

In [26]:

```
k = 14 #Jumlah variabel
cols = df.corr().nlargest(k, 'Gender')['Gender'].index
cm = df[cols].corr()
plt.figure(figsize=(15,10))
sns.heatmap(cm, annot=True, cmap='viridis', fmt='g')
plt.show()
```


Train and Test Data

```
In [27]:
#Defined X value and y value , and split the data train
X = data.drop(columns="Adaptivity Level")
y = data["Adaptivity Level"]
                                   # y = quality
# split the data train and test
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)
print("X Train : ", X_train.shape)
print("X Test : ", X_test.shape)
print("Y Train : ", y_train.shape)
print("Y Test : ", y_test.shape)
X Train: (903, 13)
X Test : (302, 13)
Y Train : (903,)
Y Test : (302,)
Decision Tree
In [28]:
DTC = DecisionTreeClassifier()
In [29]:
```

```
DTC.fit(X_train,y_train)
Out[29]:
```

DecisionTreeClassifier()

```
In [30]:
```

```
ypred = DTC.predict(X_test)
print(DTC,":",accuracy_score(y_test,ypred)*100)
```

DecisionTreeClassifier(): 89.40397350993378

In [31]:

Grafik Akurasi

```
In [32]:
```

```
x = df.index[:151]

plt.figure(figsize=(20, 5))
plt.plot(x, y_test[:151], 'g', label='Line test')
plt.plot(x, ypred[:151], 'r', label='Line pred')

plt.legend()
plt.show()
```


In [33]:

```
plt.figure(figsize=(20, 5))
plt.plot(x, y_test[151:], 'g', label='Line test')
plt.plot(x, ypred[151:], 'r', label='Line pred')

plt.legend()
plt.show()
```


K-NN

```
In [34]:
```

```
KNN = KNeighborsClassifier(n_neighbors=3)
```

In [35]:

```
KNN.fit(X_train,y_train)
ypred = KNN.predict(X_test)
print(KNN,":",accuracy_score(y_test,ypred)*100)
```

KNeighborsClassifier(n_neighbors=3) : 82.11920529801324

Grafik Akurasi

In [36]:

```
x = df.index[:151]
plt.figure(figsize=(20, 5))
plt.plot(x, y_test[:151], 'g', label='Line test')
plt.plot(x, ypred[:151], 'r', label='Line pred')
plt.legend()
plt.show()
```


In [37]:

```
plt.figure(figsize=(20, 5))
plt.plot(x, y_test[151:], 'g', label='Line test')
plt.plot(x, ypred[151:], 'r', label='Line pred')

plt.legend()
plt.show()
```


Naive Bayes

```
In [38]:
```

```
naive = GaussianNB()
```

In [39]:

```
naive.fit(X_train,y_train)
ypred = naive.predict(X_test)
print(naive,":",accuracy_score(y_test,ypred)*100)
```

GaussianNB(): 69.5364238410596

Grafik Akurasi

In [40]:

```
x = df.index[:151]

plt.figure(figsize=(20, 5))
plt.plot(x, y_test[:151], 'g', label='Line test')
plt.plot(x, ypred[:151], 'r', label='Line pred')

plt.legend()
plt.show()
```


In [41]:

```
plt.figure(figsize=(20, 5))
plt.plot(x, y_test[151:], 'g', label='Line test')
plt.plot(x, ypred[151:], 'r', label='Line pred')

plt.legend()
plt.show()
```



```
In [ ]:
```