Алгоритм 1 (Алгоритм Николь—Ли—Николь отсечения отрезка).

Bход: $[(x_1, y_1), (x_2, y_2)]$ — отсекаемый отрезок, $(x_{\min}, y_{\min}), (x_{\max}, y_{\max})$ — координаты левого нижнего и правого верхнего углов окна отсечения соответственно

Выход: false, если заданный отрезок полностью невидим, true, если у отрезка есть видимая часть, в этом случае в $[(x_1, y_1), (x_2, y_2)]$ будут содержаться координаты начала и конца видимой части отрезка

- 1. Если $x_1 > x_2$, то поменять местами значения x_1 с x_2 , y_1 с y_2 ;
- 2. Определить C_1 и C_2 коды областей, в которые попали точки (x_1,y_1) и (x_2,y_2) соответственно:
 - (a) $C_1 = 0$;
 - (b) Если $x_1 < x_{\min}$, то C_1 увеличить на 1;
 - (c) Если $x_1 > x_{\text{max}}$, то C_1 увеличить на 2;
 - (d) Если $y_1 < y_{\min}$, то C_1 увеличить на 4;
 - (e) Если $y_1 > y_{\text{max}}$, то C_1 увеличить на 8;
 - (f) $C_2 = 0$;
 - (g) Если $x_2 < x_{\min}$, то C_2 увеличить на 1;
 - (h) Если $x_2 > x_{\text{max}}$, то C_2 увеличить на 2;
 - (i) Если $y_2 < y_{\min}$, то C_2 увеличить на 4;
 - (j) Если $y_2 > y_{\text{max}}$, то C_2 увеличить на 8;
- 3. Если $C_1\&C_2\neq 0$, выдать false и закончить алгоритм.
- 4. Если $C_1 = 0$, то
 - (a) Если $C_2 = 0$ Выдать **true** и закончить алгоритм
 - (b) $\Delta x = x_2 x_1$, $\Delta y = y_2 y_1$;
 - (c) Если $\Delta y \geqslant 0$
 - i. $\Delta x_R = x_{\text{max}} x_1, \ \Delta y_T = y_{\text{max}} y_1;$
 - іі. Если $\Delta y \cdot \Delta x_R < \Delta x \cdot \Delta y_T$, то Clip2Right, иначе Clip2Top. Перейти к шагу 10;
 - (d) Если $\Delta y < 0$
 - i. $\Delta x_R = x_{\text{max}} x_1, \ \Delta y_B = y_{\text{min}} y_1;$
 - іі. Если $\Delta y \cdot \Delta x_R < \Delta x \cdot \Delta y_B$, то Clip2Bottom, иначе Clip2Right. Перейти к шагу 10;

- 5. Если $C_1 = 1$, то
 - (a) $\Delta x = x_2 x_1$, $\Delta y = y_2 y_1$;
 - (b) $\Delta x_L = x_{\min} x_1, \ \Delta y_T = y_{\max} y_1;$
 - (c) Если $C_2 = 0$, то Clip1Left и перейти к шагу 10;
 - (d) Если $\Delta y \geqslant 0$
 - і. Если $\Delta y \cdot \Delta x_L > \Delta x \cdot \Delta y_T$, то переход к шагу 11;
 - ii. $\Delta x_R = x_{\text{max}} x_1, \ \Delta y_T = y_{\text{max}} y_1;$
 - ііі. Если $\Delta y \cdot \Delta x_R < \Delta x \cdot \Delta y_T$, то Clip2Right, иначе Clip2Top. Выполнить Clip1Left и перейти к шагу 10;
 - (e) Если $\Delta y < 0$
 - i. $\Delta x_L = x_{\min} x_1, \, \Delta y_B = y_{\min} y_1;$
 - іі. Если $\Delta y \cdot \Delta x_L < \Delta x \cdot \Delta y_B$, то переход к шагу 11;
 - iii. $\Delta x_R = x_{\text{max}} x_1, \ \Delta y_B = y_{\text{min}} y_1;$
 - iv. Если $\Delta y \cdot \Delta x_R < \Delta x \cdot \Delta y_B$, то Clip2Bottom, иначе Clip2Right. Выполнить Clip1Left и перейти к шагу 10;
- 6. Если $C_1 = 4$, то
 - (a) $\Delta x = x_2 x_1$, $\Delta y = y_2 y_1$;
 - (b) $\Delta x_R = x_{\text{max}} x_1, \ \Delta y_B = y_{\text{min}} y_1;$
 - (c) Если $C_2=0$, то Clip1Bottom и перейти к шагу 10;
 - (d) Если $\Delta y > 0$
 - і. Если $\Delta y \cdot \Delta x_R < \Delta x \cdot \Delta y_B$, то переход к шагу 11;
 - ii. $\Delta y_T = y_{\text{max}} y_1$;
 - ііі. Если $\Delta y \cdot \Delta x_R < \Delta x \cdot \Delta y_T$, то Clip2Right, иначе Clip2Top.
 - iv. Выполнить *Clip1Bottom* и перейти к шагу 10;
 - (e) Если $\Delta y \leqslant 0$, то переход к шагу 11;
- 7. Если $C_1 = 5$, то
 - (a) $\Delta x = x_2 x_1$, $\Delta y = y_2 y_1$;
 - (b) Если $\Delta y > 0$
 - i. $\Delta x_L = x_{\min} x_1, \ \Delta y_T = y_{\max} y_1;$
 - іі. Если $\Delta y \cdot \Delta x_L > \Delta x \cdot \Delta y_T$, то переход к шагу 11;
 - iii. $\Delta x_R = x_{\text{max}} x_1$, $\Delta y_B = y_{\text{min}} y_1$;
 - iv. Если $\Delta y \cdot \Delta x_R < \Delta x \cdot \Delta y_B$, то переход к шагу 11;

- v. Если $\Delta y_B \cdot \Delta x_R < \Delta x_L \cdot \Delta y_T$, то
 - А. Если $\Delta y \cdot \Delta x_L < \Delta x \cdot \Delta y_B$, то Clip1Bottom. Если $x_2 > x_{\max}$ выполнить Clip2Right. Перейти к шагу 10;
 - В. Выполнить Clip1Left.
 - С. Если $C_2 = 0$, перейти к шагу 10;
 - D. Если $\Delta y \cdot \Delta x_R < \Delta x \cdot \Delta y_T$ и $C_2 \neq 0$ выполнить Clip2Right. Перейти к шагу 10;
 - Е. Выполнить Clip 2Top. Перейти к шагу 10;
- vi. Иначе $(\Delta y_B \cdot \Delta x_R \geqslant \Delta x_L \cdot \Delta y_T)$
 - А. Если $\Delta y \cdot \Delta x_R < \Delta x \cdot \Delta y_T$, то Clip1Bottom. Если $x_2 > x_{\max}$ выполнить Clip2Right. Перейти к шагу 10;
 - В. Если $\Delta y \cdot \Delta x_L < \Delta x \cdot \Delta y_B$, то Clip1Bottom. Если $C_2 \neq 0$ выполнить Clip2Top. Перейти к шагу 10;
 - С. Выполнить Clip1Left.
 - D. Если $C_2 = 0$, перейти к шагу 10;
 - Е. Выполнить Clip2Top. Перейти к шагу 10;
- (c) Если $\Delta y \leqslant 0$, то переход к шагу 11;
- 8. Если $C_1 = 8$, то
 - (a) $\Delta x = x_2 x_1$, $\Delta y = y_2 y_1$;
 - (b) $\Delta x_R = x_{\text{max}} x_1, \ \Delta y_T = y_{\text{max}} y_1;$
 - (c) Если $C_2 = 0$, то Clip1Top и перейти к шагу 10;
 - (d) Если $\Delta y < 0$
 - і. Если $\Delta y \cdot \Delta x_R > \Delta x \cdot \Delta y_T$, то переход к шагу 11;
 - ii. $\Delta y_B = y_{\min} y_1$;
 - ііі. Если $\Delta y \cdot \Delta x_R > \Delta x \cdot \Delta y_B$, то Clip2Right, иначе Clip2Bottom.
 - iv. Выполнить Clip1Top и перейти к шагу 10;
 - (e) Если $\Delta y \geqslant 0$, то переход к шагу 11;
- 9. Если $C_1 = 9$, то
 - (a) $\Delta x = x_2 x_1$, $\Delta y = y_2 y_1$;
 - (b) Если $\Delta y < 0$
 - i. $\Delta x_R = x_{\text{max}} x_1, \ \Delta y_T = y_{\text{max}} y_1;$
 - іі. Если $\Delta y \cdot \Delta x_R > \Delta x \cdot \Delta y_T$, то переход к шагу 11;
 - iii. $\Delta x_L = x_{\min} x_1$, $\Delta y_B = y_{\min} y_1$;

- iv. Если $\Delta y \cdot \Delta x_L < \Delta x \cdot \Delta y_B$, то переход к шагу 11;
- v. Если $\Delta y_T \cdot \Delta x_R > \Delta x_L \cdot \Delta y_B$, то
 - А. Если $\Delta y \cdot \Delta x_L > \Delta x \cdot \Delta y_T$, то Clip1Top. Если $x_2 > x_{\max}$ выполнить Clip2Right. Перейти к шагу 10;
 - В. Выполнить Clip1Left.
 - С. Если $C_2 = 0$, перейти к шагу 10;
 - D. Если $\Delta y \cdot \Delta x_R > \Delta x \cdot \Delta y_B$, то выполнить Clip2Right. Перейти к шагу 10;
 - E. Выполнить Clip2Bottom. Перейти к шагу 10;
- vi. Иначе $(\Delta y_T \cdot \Delta x_R \leqslant \Delta x_L \cdot \Delta y_B)$
 - А. Если $\Delta y \cdot \Delta x_R > \Delta x \cdot \Delta y_B$, то Clip1Top. Если $x_2 > x_{\max}$ выполнить Clip2Right. Перейти к шагу 10;
 - В. Если $\Delta y \cdot \Delta x_L > \Delta x \cdot \Delta y_T$, то Clip1Top. Если $C_2 \neq 0$ выполнить Clip2Bottom. Перейти к шагу 10;
 - C. Выполнить Clip1Left.
 - D. Если $C_2 \neq 0$ выполнить Clip2Bottom. Перейти к шагу 10;
- (c) Если $\Delta y \geqslant 0$, то переход к шагу 11;
- 10. Выдать true и закончить алгоритм.
- 11. Отрезок полностью невидим: выдать false и закончить алгоритм.

ОБРАТИТЕ ВНИМАНИЕ!!! Алгоритмам 2–4, в качестве параметра подаются координаты той начальной точки отрезка, для которой были вычислены значения Δ -параметров.

Алгоритм 2 (Отсечение начальной точки левой границей Clip1Left).

Bход: (x_1,y_1) — начальная точка, Δx , Δy , Δx_L

Bыход: (x_1,y_1) — начальная точка после отсечения

$$y_1 = y_1 + \Delta x_L \frac{\Delta y}{\Delta x}$$
$$x_1 = x_1 + \Delta x_L$$

Алгоритм 3 (Отсечение начальной точки верхней границей Clip1Top).

Bход: (x_1, y_1) — начальная точка, Δx , Δy , Δy_T

Bыход: (x_1, y_1) — начальная точка после отсечения

$$x_1 = x_1 + \Delta y_T \frac{\Delta x}{\Delta y}$$
$$y_1 = y_1 + \Delta y_T$$

АЛГОРИТМ 4 (ОТСЕЧЕНИЕ НАЧАЛЬНОЙ ТОЧКИ НИЖНЕЙ ГРАНИЦЕЙ Clip1Bottom).

Bход: (x_1,y_1) — начальная точка, $\Delta x,\,\Delta y,\,\Delta y_B$

Bыход: (x_1, y_1) — начальная точка после отсечения

$$x_1 = x_1 + \Delta y_B \frac{\Delta x}{\Delta y}$$
$$y_1 = y_1 + \Delta y_B$$

ОБРАТИТЕ ВНИМАНИЕ!!! Алгоритмам 5–7, в качестве параметра подаются координаты той конечной точки отрезка, для которой были вычислены значения Δ -параметров.

Алгоритм 5 (Отсечение конечной точки правой границей Clip2Right).

Bход: (x_2,y_2) — конечная точка, Δx , Δy , Δx_R

Bыход: (x_2, y_2) — конечная точка после отсечения

$$y_2 = y_1 + \Delta x_R \frac{\Delta y}{\Delta x}$$
$$x_2 = x_1 + \Delta x_R$$

Алгоритм 6 (Отсечение конечной точки верхней границей Clip2Top).

Bход: (x_2, y_2) — конечная точка, Δx , Δy , Δy_T

Bыход: (x_2, y_2) — конечная точка после отсечения

$$x_2 = x_1 + \Delta y_T \frac{\Delta x}{\Delta y}$$
$$y_2 = y_1 + \Delta y_T$$

Алгоритм 7 (Отсечение конечной точки нижней границей Clip2Bottom).

Bход: (x_2,y_2) — конечная точка, Δx , Δy , Δy_B

Bыход: (x_2, y_2) — конечная точка после отсечения

$$x_2 = x_1 + \Delta y_B \frac{\Delta x}{\Delta y}$$
$$y_2 = y_1 + \Delta y_B$$