Графи и алгоритми върху графи

ИТ Кариера

Учителски екип Обучение за ИТ кариера https://it-kariera.mon.bg/e-learning

Съдържание

- Начини на представяне на графите. Компоненти на свързаност
- Упражнения: намиране на компоненти на свързаност
- Топологично сортиране
- Упражнения: топологично сортиране
- Пътища в граф, алгоритъм на Дейкстра
- Упражнения: пътища в граф
- Други алгоритми върху графи
- Упражнения: други алгоритми върху графи

Определения и терминология Graphs

Ориентиран мултиграф

- $V=(v_1,v_2,v_3,...v_n)$ множество на върховете
- $E=(e_1,e_2,e_3,e_4,...e_m)$ множество на ребрата
- $f_G: E ext{->} VxV$ свързваща функция, съпоставяща на всеки елемент на Е наредена двойка върхове

Ориентиран мултиграф

- $G = \{V, E, f_G\}$ краен ориентиран мултиграф
- v_i u v_j са (точки) върхове, които са свързани със стрелки (ребра). Означава се $e=(v_i,v_i)$.
- В един ориентиран мултиграф може да съществуват:
 - изолиран връх в който не влизат и не излизат ребра
 - примка ребро, чието начало и край съвпадат
 - повече от едно ориентирано ребро между два върха

Ориентиран граф

- $G = \{V, E\}$ краен ориентиран граф
- $\overline{f_G}$ е инективна (еднозначна)
- всяко ребро се определя еднозначно от съответната двойка върхове и има посока

Неориентиран граф

- $G = \{V, E\}$ краен ориентиран граф
- f_G е инективна (еднозначна)
- всяко ребро се определя еднозначно от съответната двойка върхове и няма посока

Претеглен граф

всяко ребро има тегло

Път в граф

- Последователността от върхове v_{i1} , v_{i2} , v_{i3} , ..., v_{il} , наричаме път, ако за всяко j=1....l-1, съществува е \in E, такова, че $f_G(e)=(v_{ij},v_{ij+1})$.
- Естественото число *l* наричаме дължина на пътя.

Път в граф

- Ако $v_{i1} = v_{il}$, пътя се нарича цикъл.
- Граф, съдържащ поне един цикъл наричаме цикличен, в противен случай казваме, че е ацикличен.
- Графа $G=\{V, E\}$ ще наричаме свързан, ако за всяка двойка върхове v_i , $v_j \in V$ съществува път от v_i до v_j .

Представяне на граф Graphs

- Списък на съседите
- Всеки връх съдържа списък на своите съседи
- $v_1 \rightarrow \{v_2, v_4\}$
- $v_2 \rightarrow \{ v_1, v_4, v_3 \}$
- $v_3 \rightarrow \{ v_2, v_4 \}$
- $v_4 \rightarrow \{v_1, v_2, v_3\}$

- Матрица на свързаност
- 1 ако има свързващо ребро
- 0 ако няма свързващо ребро

връх	\mathbf{v}_1	\mathbf{v}_2	\mathbf{v}_3	V_4
\mathbf{v}_1	0	1	0	1
v_2	1	0	1	1
v_3	0	1	0	1
V_4	1	1	1	0

- Матрица на свързаност
- Стойността на теглото ако има свързващо ребро
- 0 ако няма свързващо ребро

- Списък на ребрата
- Изброяват се всички ребра, прекарани в графа
- $\bullet \quad \{ \mathbf{v}_1, \mathbf{v}_4 \}$
- $\{v_2,v_4\}$
- $\{v_2, v_3\}$
- $\{v_3, v_4\}$

Топологично сортиране

Топологично сортиране

Топологично сортиране (подреждане) на ориентиран граф

Линейно подреждане на върховете му, така че за всяко насочено ребро от върха и до връх v, u идва преди v в подреждането.

Пример:

$$7 \rightarrow 5 \rightarrow 3 \rightarrow 11 \rightarrow 8 \rightarrow 2 \rightarrow 9 \rightarrow 10$$

$$3 \rightarrow 5 \rightarrow 7 \rightarrow 8 \rightarrow 11 \rightarrow 2 \rightarrow 9 \rightarrow 10$$

$$5 \rightarrow 7 \rightarrow 3 \rightarrow 8 \rightarrow 11 \rightarrow 10 \rightarrow 9 \rightarrow 2$$

Топологично сортиране – правила

- Топологично сортиране не може да бъде направено при:
 - неориентиран граф
 - цикличен граф
- Сортирането не е уникално
- Съществуват различни сортирания и те дават различни резултати

Стъпка 1. Намираме възел без входящи ребра

Стъпка 2. Премахваме възел А и съответните му ребра

Стъпка 3. Намираме възел без входящи ребра

Стъпка 4. Премахваме възел В и съответните му ребра

Стъпка 5. Намираме възел без входящи ребра

Стъпка 6. Премахваме възел Е и съответните му ребра

Стъпка 7. Намираме възел без входящи ребра

Стъпка 8. Премахваме възел Е и съответните му ребра

Стъпка 9. Намираме възел без входящи ребра

Стъпка 10. Премахваме възел С и съответните му ребра

Стъпка 11. Намираме възел без входящи ребра

A, B, E, D, C

Стъпка 12. Премахваме възел F и съответните му ребра

Резултат от топологичното сортиране

Топологично сортиране: DFS Алгоритъм

```
//sortedNodes = { } // свързан списък, който съдържа резултата
visitedNodes = { } // набор от посетени възли
foreach node in graphNodes
       TopSortDFS(node)
TopSortDFS(node)
       if node ∉ visitedNodes
       visitedNodes ← node
       for each child c of node
       TopSortDFS(c)
       добави node възела в sortedNodes
```

Топологично сортиране: DFS + цикъл

```
sortedNodes = { } // свързан списък, съдържащ резултата
visitedNodes = { } // списък от посетените възли
cycleNodes = { } // набор от възли в настоящия цикъл от обхождането в дълбочина
foreach node in graphNodes
          TopSortDFS(node)
TopSortDFS(node)
          if node \epsilon cycleNodes
          return "Грешка: намерен е цикъл"
          if node ∉ visitedNodes
          visitedNodes ← node
          cycleNodes ← node
          for each child c of node
          TopSortDFS(c)
          премахни node от cycleNodes
          добави node в sortedNodes
```


Алгоритъм на Дейкстра

Алгоритъм на Дейкстра

• Намиране на минимален път в претеглен граф с неотрицателни тегла

Алгоритъм на Дейкстра

- Представяне на графа като матрица W, на която елементът Wij е равен на дължината на реброто, съединяващо i-тия и j-ия връх
- Означаваме с ∞ ребрата, чиито върхове не са инцидентни

	a	b	С	d	e
a	0	3	∞	7	∞
b	3	0	1	2	∞
С	∞	1	0	4	6
d	7	2	4	0	4
e	∞	∞	6	4	0

- За всички върхове даваме стойност на масива L: l(i)=∞, освен този с номер u1,
 т.е. l(u1)=0.
- За всички върхове се дава стойност на масива H: h(i)=0, а за h(u1)=1;
- Започваме от връх u1, той е текущ и полагаме p=u1;
- За всички върхове i, за които h(i)=0 и са инцидентни /съседни/ с върха p преизчисляваме по формулата $l(i)=min\{l(i),l(t)+W[t,i]\}$
- Измежду тях намираме такъв, за който *l(i)* е минимално, ако не е намерен такъв минимум, т.е. стойността на всички посетени върхове е безкрайност, то не съществува път и КРАЙ;
- Полагаме p да е равен на намерения връх с минимална стойност и правим h[p]=1;
- Ако p=u2, то е намерен път със стойност l(u2) и КРАЙ
 - иначе отиваме на стъпка 4.

- Търсим минимален път от връх а до връх е
- u1= a, u2=e;
- Полагаме l[a]=0;

Предполагаме, че няма да надхвърлим път с дължина 100.

• Съседните на върха а са b, и d.

- $l(b)=min\{l(b), l(a)+3\}=min\{100, 0+3\}=3$
- $l(d)=min\{l(d), l(a)+7\}=min\{100, 0+7\}=7$

- Най-малката стойност е на l(b) и тя е 3.
- Полагаме p=b и този връх го маркираме.
- Полагаме h(b)=1;

- Съседните немаркирани върхове на b са с и d
- $l(c)=min\{l(c), l(b)+1\}=min\{100, 3+1\}=4$
- $l(d)=min\{l(d), l(b)+2\}=min\{7, 3+2\}=5$

- Най-малката стойност е на l(c) и тя е 4.
- Полагаме р=с и този връх го маркираме.
- Полагаме h(c)=1;

- Съседните немаркирани върхове на с са d и е
- $l(d)=min\{l(d), l(c)+4\}=min\{5, 4+4\}=5$
- $l(e)=min\{l(e), l(c)+6\}=min\{100, 4+6\}=10$

- Най-малката стойност е на l(d) и тя е 5.
- Полагаме p=d и този връх го маркираме.
- Полагаме h(d)=1;

- Съседен, немаркиран връх на d е само е.
- $l(e)=min\{l(e), l(d)+4\}=min\{10, 5+4\}=9$
- Достигнахме u2=e;

Prim's Algorithm

Задача:

В община X има път между всеки две селища. Общинският съвет взел решение да асфалтира всички междуселищни пътища, но времето за изпълнение било малко, а финансите - недостатъчни. За целта решили да асфалтират само някои от тях, така, че да се стига от всяко селище до друго.

Нека е даден граф с 6 върха и 9 ребра, със съответни тегла.

Стъпка 1: Избираме един връх. Нека да е 1. Маркираме го. Търсим съседен на него, който не е маркиран и свързващото им ребро да е с минимално тегло. Това са 5 и 2. Нека изберем 5. Маркираме го.

Стъпка 2: Намираме следващото най-късо ребро, на което един от върховете е 1 или 5, а другият не е маркиран. Приемаме, че е (5,2). Маркираме не маркирания връх 2.

Стъпка 3: Намираме следващото най-късо ребро, на което един от върховете е 1,2 или 5, а другият не е маркиран. Приемаме, че е (1,3). Маркираме не маркирания връх 3.

Стъпка 4: Намираме следващото най-късо ребро, на което един от върховете е 1,2,3 или 5, а другият не е маркиран. Това е (3,6). Маркираме не маркирания връх 6.

Стъпка 5: Намираме следващото най-късо ребро, на което един от върховете е 1,2,3,5 или 6, а другият не е маркиран. Избираме който и да е от двата. Нека да е (6,4). Маркираме не маркирания връх 4.

Стъпка 6: Всички върхове са маркирани. Край на алгоритъма.

Упражнения: Prim's Algorithm

Задача:

Приложете алгоритъма на Prim към дадения граф

Упражнения: Prim's Algorithm

Задача:

Приложете алгоритъма на Prim към дадения граф

Kruskal's Algorithm

Този алгоритъм реализира следната идея: Търси се минимално покриващо дърво в претеглен, свързан граф G = {V, E}, като ацикличен подграф с |V|-1 ребра, сумата от ребрата на който е минимална. В този случай дървото се разширява като подграфа е винаги ацикличен, но на междинните етапи не винаги е свързан.

Нека е даден граф с 6 върха и 10 ребра, със съответни тегла.

Стъпка 1. Избираме ребро с на-малко тегло. В случая това е реброто (b, c) с тегло 1. Маркираме го.

Стъпка 2. Избираме ребрата със следващото тегло, по-голямо от 1. Това е ребро (f,e) с тегло 2.

Стъпка 3. Избираме ребрата със следващото тегло, по-голямо от 2. Това е ребро (a,b) с тегло 3.

Стъпка 4. Избираме ребрата със следващото тегло, по-голямо от 3. Това е ребрата (b, f) и (c, f) с тегло 4. Търсим ацикличен подграф с |V|-1 ребра, сумата от ребрата на който е минимална. Това е реброто (b, f).

Стъпка 5. Избираме ребрата със следващото тегло, по-голямо от 4. Това са ребрата (a, f) и (d f) с тегло 5. Търсим ацикличен подграф с |V|-1 ребра, сумата от ребрата на който е минимална. Това е реброто (d, f).

Стъпка 6. Край на алгоритъма.

Упражнения: Kruskal's Algorithm

Задача:

Приложете алгоритъма на Kruskal към дадения граф

Упражнения: Kruskal's Algorithm

Задача:

Приложете алгоритъма на Kruskal към дадения граф

Обобщение

- Представяне на графи
 - Списък на ребра
 - Матрица на свързаност
 - Списък на съседи
- Топологично сортиране
- Подреждане на върховете на насочен, ацикличен граф
- Алгоритъм на Дейкстра
 - Намиране на минимален път в претеглен граф с неотрицателни тегла
- Други алгоритми върху графи
 - Алгоритъм на Прим
 - Алгоритъм на Крускал

Министерство на образованието и науката (МОН)

 Настоящият курс (презентации, примери, задачи, упражнения и др.) е разработен за нуждите на Национална програма "Обучение за ИТ кариера" на МОН за подготовка по професия "Приложен програмист"

Курсът се разпространява под свободен лиценз СС-ВҮ-NС-SA

