TEMA 1

GRUPA 135

Problema 1. Pe mulțimea $\mathbb{Z} \times \mathbb{Z}$ se definesc următoarele operații algebrice:

$$(a,b)*(a',b') = (a+a',b+b')$$
 şi
 $(a,b) \circ (a',b') = (aa'-bb,ab'+a'b).$

Arătați că $(\mathbb{Z} \times \mathbb{Z}, *, \circ)$ este inel unitar. Verificați dacă $(\mathbb{Z} \times \mathbb{Z}, *, \circ)$ este inel integru. Determinați grupul unităților inelului $(\mathbb{Z} \times \mathbb{Z}, *, \circ)$.

(1+0.5+0.5 puncte)

Problema 2. Fie $n \in \mathbb{N}$, $n \geq 2$. Determinați numărul structurilor de inel unitar ce pot fi definite pe $(\mathbb{Z}_n, +)$ și arătați că acestea sunt izomorfe.

(1+1 puncte)

Problema 3. Fie $m, n \in \mathbb{N}, m, n \geq 2$.

- (1) Arătați că există un morfism de inele unitare $f: \mathbb{Z}_m \to \mathbb{Z}_n$ dacă și numai dacă $n \mid m$.
- (2) Determinați toate morfismele de la \mathbb{Z}_{12} la \mathbb{Z}_{36} .

(1+1 puncte)

Problema 4. Fie $R = M_2(\mathbb{Z}_2)$. Determinați:

- (1) numărul divizorilor lui zero ai lui R,
- (2) numărul elementelor nilpotente ale lui R și
- (3) numărul elementelor idempotente ale lui R.

(1+0.5+0.5 puncte)

- **Problema 5.** (1) Fie R_1 și R_2 două inele unitare si $R = R_1 \times R_2$. Să se arate că idealele bilaterale ale lui R sunt de forma $I = I_1 \times I_2$, unde I_1 , I_2 sunt ideale bilaterale în R_1 , respectiv R_2 .
 - (2) Fie R un inel unitar. Să se arate că idealele bilaterale ale lui $M_2(R)$ sunt de forma $M_2(I)$, unde I este ideal bilateral al lui R.

(1+1 puncte)

Date: 01.03.2018.