Formelliste til eksamen (ELET1001)

NB! Formellisten er under arbeid og det kan derfor bli gjort endringer opp mot eksamen.

Strøm, spenning og resistans

Likestrøm: $I = \frac{Q}{t}$ [C/s] = [A], hvor Q er elektrisk ladning

Vekselstrøm: $i = \frac{dq}{dt}$ [A]

Spenning: $v = \frac{dw}{da}$ [V]

Effekt: $P = \frac{W}{t} = V \cdot I$; [J/s] = [V·A] = [W]

Ohms lov: $V = R \cdot I [\Omega]$

Konduktans: $G = \frac{1}{R}$ [S]

Seriekopling: $R_S = R_1 + R_2 + \dots + R_N$ [Ω]

Parallellkopling: $\frac{1}{R_P} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N} [\Omega]$

 $G_{PAR} = G_1 + G_2 + \dots + G_n$ [S]

Ideell operasjonsforsterker

I en ideell opamp har følgende egenskaper:

$$\begin{array}{ccc} R_i \rightarrow \infty: & i_+ = i_- = 0 \\ A_0 \rightarrow \infty: & v_+ = v_- \\ R_o = 0 \end{array}$$

Kondensatorer

Kapasitans:
$$C = \frac{q}{r}$$
 [F]

Parallellkopling:
$$C_P = C_1 + C_2 + \dots + C_n$$
 [F]

Seriekopling:
$$\frac{1}{C_S} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_N} [F]$$

Strømmen gjennom en kondensator:
$$i_C(t) = C \frac{dv_C(t)}{dt}$$
 [A]

Spenningen over en kondensator:
$$v_C(t) = v_c(t_o) + \frac{1}{c} \int_{t_o}^t i_C(x) dx$$
 [V]

Sprangrespons i en RC-sløyfe:
$$x(t) = x(\infty) + [x(0+) - x(\infty)]e^{-\frac{t}{\tau}}$$

Tidskonstant i en RC-sløyfe:
$$\tau = R_{Th} \cdot C$$
 [s]

Lagret energi i en kondensator:
$$w_C = \frac{1}{2}Cv^2(t)$$
 [J]

Spoler

Seriekopling:
$$L_S = L_1 + L_2 + \cdots + L_n$$
 [H]

Parallellkopling:
$$\frac{1}{L_P} = \frac{1}{L_1} + \frac{1}{L_2} + \dots + \frac{1}{L_N} \quad [H]$$

Spenningen over en spole:
$$v_L(t) = L \frac{di_L(t)}{dt}$$
 [V]

Strømmen gjennom en spole:
$$i_L(t) = i(t_o) + \frac{1}{L} \int_{t_0}^t v_L(t) dt \quad [A]$$

Sprangrespons i en RL-sløyfe:
$$x(t) = x(\infty) + [x(0+) - x(\infty)]e^{-\frac{t}{\tau}}$$

Tidskonstant i en RL-sløyfe:
$$\tau = \frac{L}{R_{Th}}$$
 [s]

Lagret energi i en spole:
$$w_L = \frac{1}{2}Li^2(t)$$
 [J]

trekant-stjerne/Stjerne-trekant omforming

$$N_3$$
 N_3
 N_3

$$R_{1} = \frac{R_{b}R_{c}}{R_{a} + R_{b} + R_{c}}$$

$$R_{2} = \frac{R_{a}R_{c}}{R_{a} + R_{b} + R_{c}}$$

$$R_{3} = \frac{R_{a}R_{b}}{R_{c} + R_{b} + R_{c}}$$

$$R_{4} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{1}R_{3}}{R_{2}}$$

$$R_{5} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{1}R_{3}}{R_{2}}$$

$$R_{6} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{1}R_{3}}{R_{2}}$$

2. ordens differensiallikninger

En 2. ordens differensiallikning er på formen:

$$\frac{d^2x(t)}{dt^2} + 2\zeta\omega_0\frac{dx(t)}{dt} + \omega_0^2x(t) = f(t)$$

Den tilhørende homogene differensiallikningen (uten pådrag) er:

$$\frac{d^2x_c(t)}{dt^2} + 2\zeta\omega_0\frac{dx_c(t)}{dt} + \omega_0^2x_c(t) = 0$$

Dersom $x_p(t)$ er partikulær løsning og $x_c(t)$ er homogen løsning, er den generelle løsningen, x(t):

$$x(t) = x_c(t) + x_p(t)$$

Den karakteristiske likninga til en 2. ordens differensiallikning er $s^2 + 2\zeta\omega_0 s + \omega_0^2 = 0$.

Hvor røttene er
$$s_1 = -\zeta \omega_0 + \omega_0 \sqrt{\zeta^2 - 1}$$
 og $s_2 = -\zeta \omega_0 - \omega_0 \sqrt{\zeta^2 - 1}$

Tilfelle 1:

 $\zeta > 1$: Røttene er reelle og ulike, og responsen er overdempet.

Røttene er: $s_1 = -\zeta \omega_0 + \omega_0 \sqrt{\zeta^2 - 1} \text{ og } s_2 = -\zeta \omega_0 - \omega_0 \sqrt{\zeta^2 - 1}$

Homogen løsning: $x_c(t) = K_1 e^{s_1 t} + K_2 e^{s_2 t}$

I stasjonær tilstand er: $\frac{dx_c(0)}{dt} = s_1 K_1 + s_2 K_2$

 K_1 og K_2 er konstanter som man finner ved hjelp av startbetingelsene x(0) og $\frac{dx(0)}{dt}$.

Tilfelle 2:

 $\zeta = 1$: Røttene er reelle og like, og responsen er kritisk dempa.

Røttene er: $s_1 = s_2 = -\zeta \omega_0$

Homogen løsning: $x_c(t) = B_1 e^{s_1 t} + B_2 t e^{s_2 t}$

I stasjonær tilstand er: $\frac{dx_c(0)}{dt} = -\zeta \omega_0 B_1 + B_2$

 B_1 og B_2 er konstanter som man finner ved hjelp av startbetingelsene x(0) og $\frac{dx(0)}{dt}$.

Tilfelle 3:

 $\zeta < 1$: Røttene er komplekskonjugerte, og responsen er underdempa.

Røttene er: $s_1 = -\sigma + j\omega_d \text{ og } s_2 = -\sigma - j\omega_d$

hvor $\sigma = -\zeta \omega_0$ og $\omega_d = \omega_0 \sqrt{1 - \zeta^2}$

Homogen løsning: $x_C(t) = e^{-\sigma t} (A_1 \cos \omega_d t + A_2 \sin \omega_d t)$

I stasjonær tilstand er: $\frac{dx_c(0)}{dt} = -\sigma A_1 + A_2 \omega_d$

 A_1 og A_2 er konstanter som man finner ved hjelp av startbetingelsene x(0) og $\frac{dx(0)}{dt}$.

Diode

Fig. The v-i characteristics of ideal diode.

Fig. The v-i characteristic of the constant-voltage-drop model

$$i_{\rm D} = I_{\rm S} \left[\exp \left(\frac{v_{\rm D}}{nV_{\rm T}} \right) - 1 \right]$$

$$V_{\rm T} = kT/q$$

$$V_{L,snitt} = \frac{1}{T} \int_0^T V_L(t) dt$$

Likerettere

$$V_{rippel} \cong \frac{1}{f \cdot R_{Last} \cdot C} \cdot V_{peak,rect} \qquad V_{DC} \cong \left(1 - \frac{1}{2 \cdot f \cdot R_{Last} \cdot C}\right) \cdot V_{peak,rect}$$

Symbol og måleiningar

\boldsymbol{A}	Forsterkning	[1]
В	Susceptans	[S]
C	Kapasitans	[F]
\boldsymbol{E}	Spenning (Kjeldespenning)	[V]

G	Konduktans	[S]
H	Overføringsfunksjon / Transferfunksjon	[1]
i	Tidsvarierande straum	[A]
I	Likestraum [<i>I</i> straumvisar]	[A]
L	Induktans	[H]
n	Viklingsbrøk / Omsetjingstilhøve	[1]
N	Viklingstal	[1]
P	Aktiv effekt / middeleffekt	[W]
p	Momentan effekt	[W]
Q	Ladning	[C]
Q	Reaktiv effekt	[VAr]
Q	Kvalitetsfaktor	[1]
R	Resistans	$[\Omega]$
S	Tilsynelatande effekt	[VA]
t	Tid	[s]
T	Periodetid	[s]
и	Tidsvarierande spenning	[V]
U	Likespenning [U spenningsvisar]	[V]
(v)	Tidsvarierande spenning	[V]
(V)	Likespenning	[V]
W	Arbeid / Energi	[J]
X	Reaktans	$[\Omega]$
Y	Admittans	[S]
Z	Impedans	$[\Omega]$
ζ	Demping	[1]
τ	Tidskonstant	[s]
Φ	Magnetfluks	[Wb]
φ	Fasevinkel	[rad] eller [°]
ω	Vinkelfrekvens	[rad/s]
$I_{\rm s}$	diode saturation current	[A]
k	Boltzmann constant [1.38066*10 ²³]	[J/K]