Отчёт по лабораторной работе №2.

Чилеше Абрахам. Б9122-02.03.01 СЦТ (1) Вариант-17

Цель работы 1.

- Построить таблицу конечных разностей по значениям табличной функции.
- По соответствующим интерполяционным формулам вычислить значения функции в заданных узлах
- Оценить минимум и макисмум для $f^{n+1}(x)$
- Проверить на выполнение равенство min $R_n < R_n(z) < \max R_n$, где z заданный угол, а $R_n(z) = L_n(z) f(z)$
- Сделать вывод по проделанной работе.

Условия:

- функция: $f(x) = 0.5x^2 + \cos(2x)$
- Интервал: [0.6, 1.1]
- $x^{**} = 0.62$, $x^{***} = 1.07$, $x^{****} = 0.83$

Ход работы:

• Для этой лабораторной работы я использовал язык программирования с++

1. Библиотеки

```
#include <iostream>
#include <vector>
#include <cmath>
#include <iomanip>
#include <algorithm>
```

- <vector>: Предоставляет реализацию динамического массива, позволяя создавать изменяемые массивы, способные хранить элементы любого типа данных.
- <cmath>: Содержит математические функции и константы, такие как тригонометрические функции (sin, cos, tan), логарифмические функции (log, log10) и константы, такие как pi
- <iomanip>: Позволяет управлять форматированием ввода и вывода в C++, включая контроль ширины и точности вывода, установку символов заполнения и управление форматом чисел с плавающей точкой.

<algorithm>: Предоставляет набор функций для выполнения различных операций над последовательностями элементов, включая поиск, сортировку и модификацию. Примеры включают *min(), max()*

2. функция (алгоритмы)

i. newton_minus_param: Эта функция вычисляет один из членов многочлена Ньютона с убывающими степенями (t - i), где і изменяется от 0 до n-1. Затем результат делится на факториал n.

```
double newton_minus_param(double t, int n) {
    double a = 1;
    for (int i = 0; i < n; i++) {
        a *= (t - i);
    }
    a /= tgamma(x:n + 1);
    return a;
}</pre>
```

ii. newton_plus_param: Похожая на предыдущую функцию, но вычисляет член многочлена Ньютона с возрастающими степенями (t + i).

```
double newton_plus_param(double t, int n) {
    double a = 1;
    for (int i = 0; i < n; i++) {
        a *= (t + i);
    }
    a /= tgamma(x:n + 1);
    return a;
}</pre>
```

iii. gauss1_minus_param: Эта функция вычисляет один из членов многочлена Гаусса с чередующимися знаками, используя (t - i) для нечетных итераций и (t + i - 1) для четных. Затем результат делится на факториал n.

```
double gauss1_minus_param(double t, int n) {
    double a = 1;
    for (int i = 0; i < n; i++) {
        if (i % 2 == 1 || i == 0) {
            a *= (t - i);
        } else {
            a *= (t + i - 1);
        }
    }
    a /= tgamma(x:n + 1);
    return a;
}</pre>
```

iv. gauss2_plus_param: Похожая на предыдущую функцию, но использует (t + i) для нечетных итераций и (t - i + 1) для четных.

```
double gauss2_plus_param(double t, int n) {
    double a = 1;
    for (int i = 0; i < n; i++) {
        if (i % 2 == 1 || i == 0) {
            a *= (t + i);
        } else {
            a *= (t - i + 1);
        }
    }
    a /= tgamma(x:n + 1);
    return a;
}</pre>
```

- v. insert_gauss1_polynomial: Строит многочлен Гаусса, суммируя члены, вычисленные с помощью gauss1_minus_param(), и умножая каждый член на соответствующий коэффициент, хранящийся в двумерном векторе mass.
- vi. insert_gauss2_polynomial: Похожа на предыдущую функцию, но строит многочлен Гаусса с использованием gauss2 plus param().

```
double insert_gauss1_polynomial(double t, int n, const vector<vector<double>>& mass) {
   double Px = 0;
   int j = 5;
   for (int i = 0; i < n; i++) {
        Px += mass[i][j] * gauss1_minus_param(t, i);
        if (i % 2 != 0) {
            j--;
        }
   return Px:
}
double insert_gauss2_polynomial(double t, int n, const vector<vector<double>>& mass) {
   double Px2 = 0;
   int j = 5;
   for (int i = 0; i < n; i++) {
        Px2 += mass[i][j] * gauss2_plus_param(t, i);
        if (i % 2 == \theta) {
            j--;
        }
   return Px2;
```

- vii. insert_newton1_polynomial: Строит многочлен Ньютона, суммируя члены, вычисленные с помощью newton_minus_param(), и умножая каждый член на соответствующий коэффициент, хранящийся в двумерном векторе mass.
- viii. insert_newton2_polynomial: Похожа на предыдущую функцию, но строит многочлен Ньютона с использованием newton_plus_param().

```
double insert_newton1_polynomial(double t, int n, const vector<vector<double>>& mass) {
   double Px = 0;
   int j = 0;
   for (int i = 0; i < n; i++) {
        Px += mass[i][j] * newton_minus_param(t, i);
   }
   return Px;
}

double insert_newton2_polynomial(double t, int n, const vector<vector<double>>& mass) {
   double Px2 = 0;
   for (int i = 0; i < n; i++) {
        int j = n - i - 1;
        Px2 += mass[i][j] * newton_plus_param(t, i);
   }
   return Px2;
}</pre>
```

3. входных данных

```
\circ функция: f(x) = 0.5x^2 + \cos(2x)
○ Интервал: [0.6, 1.1]
\circ x^{**} = 0.62, x^{***} = 1.07, x^{****} = 0.83
 const double a = 0.6;
  const double b = 1.1;
  const int n = 11;
  const double h = (b - a) / 10;
vector<double> x_list(n);
  vector<double> y_list(n);
  for (int i = 0; i < n; i++) {
     double xi = a + i * h;
     x_list[i] = xi;
     y_{list[i]} = 0.5 * pow(xi, y:2) - cos(X:2 * xi);
 const double x_star2 = 0.62;
 const double x_star3 = 1.07;
 const double x_star4 = 0.83;
```

4. Нахождение значений

а) Таблица функции у(х)

Ниже приведена таблица с результатами

No.	x	y(x)
0	0.6	-0.182358
1	0.65	-0.0562488
2	0.7	0.0750329
3	0.75	0.210513
4	0.8	0.3492
5	0.85	0.490094
6	0.9	0.632202
7	0.95	0.77454
8	1	0.916147
9	1.05	1.0561
10	1.1	1.1935

Таблица значений функции у(х)

b) Расчет разностей и формирование новой таблицы

к сожалению, поскольку я использовал c++, код получился немного длинным, поэтому я не могу добавить весь фрагмент кода в отчет. полный код вы можете посмотреть в файле c++, который я прикрепил

```
vector<vector<double>> list_diffs = { My_list};

while (list_diffs.back().size() != 1) {
    vector<double> lis;
    for (int i = 0; i < static_cast<int>(list_diffs.back().size()) - 1; i++) {
        lis.push_back(x:list_diffs.back()[i + 1] - list_diffs.back()[i]);
    }
    list_diffs.push_back(lis);
}

vector<vector<double>> list_to_table = list_diffs;
int max_length = 0;
for (const auto& lst:constvector<double>& : list_to_table) {
    max_length = max(a:max_length, b:static_cast<int>(lst.size()));
}

for (auto& lst:vector<double>& : list_to_table) {
    while (lst.size() < static_cast<size_t>(max_length)) {
        lst.push_back(x:0); // Use 0 or NaN instead of ""
    }
}
```

Ниже приведена таблица с результатами

No.	Value 1	Value 2	Value 3	Value 4	Value 5	Value 6
- 0	-0.182358	-0.0562488	0.0750329	0.210513	0.3492	0.490094
1	0.126109	0.131282	0.13548	0.138687	0.140895	0.142108
2	0.00517276	0.00419826	0.00320678	0.00220825	0.00121263	0.000229872
3	-0.000974504	-0.000991473	-0.000998535	-0.00099562	-0.000982757	-0.000960074
4	-1.69684e-05	-7.06194e-06	2.91509e-06	1.2863e-05	2.26824e-05	3.22751e-05
5	9.90647e-06	9.97703e-06	9.9479e-06	9.81938e-06	9.59274e-06	9.27026e-06
6	7.05606e-08	-2.91266e-08	-1.28523e-07	-2.26635e-07	-3.22482e-07	Θ
7	-9.96872e-08	-9.93962e-08	-9.8112e-08	-9.58475e-08	0	Θ
8	2.91015e-10	1.28417e-09	2.26444e-09	Θ	θ	0
9	9.93155e-10	9.80272e-10	Θ	0	0	0
10	-1.28827e-11	0	Θ	Θ	0	0

No.	Value 7	Value 8	Value 9	Value 10	Value 11	
0	0.632202	0.77454	0.916147	1.0561	1.1935	
1	0.142337	0.141607	0.139949	0.137405	0	
2	-0.000730202	-0.001658	-0.00254426	Θ	0	
3	-0.000927799	-0.000886254	0	Θ	0	
4	4.15454e-05	0	0	Θ	0	
5	Θ	0	0	Θ	0	
6	Θ	0	0	Θ	0	
7	Θ	0	0	Θ	0	
8	Θ	0	0	Θ	0	
9	Θ	0	0	Θ	0	
10	Θ	0	0	0	Θ	

Вычисление параметров методов и их погрешностей

Нижеприведенный код оценивает производительность методов интерполяции Ньютона и Гаусса, сравнивая их интерполированные значения с точными решениями и анализируя остаточные ошибки в заданном интервале:

```
const double x_star2 = 0.62;
const double x_star3 = 1.07;
const double x_star4 = 0.83;
double t = min(abs(x_list[0] - x_star2), abs(x_list[1] - x_star2)) / h;
cout<<endl:
cout << "Newton 1: " << insert_newton1_polynomial(t, n, list_diffs) << endl;</pre>
\texttt{cout} << "R_N1: " << insert_newton1\_polynomial(t, n, list\_diffs) - (0.5 * pow(x\_star2, y\_2) - cos(2 * x\_star2)) << endl; \\
t = -1 * (x_list[n - 1] - x_star3) / h;
cout << "Newton 2: " << insert_newton2_polynomial(t, n, list_diffs) << endl;</pre>
\texttt{cout} << "R_N2: " << \texttt{insert\_newton2\_polynomial(t, n, list\_diffs)} - (0.5 * \texttt{pow}(x\_star3, y\_2) - \texttt{cos}(2 * x\_star3)) << \texttt{endl};
t = min(abs(x_list[0] - x_star4), abs(x_list[1] - x_star4)) / h;
cout << "Gauss 1: " << insert_gauss1_polynomial(t, n, list_diffs) << endl;</pre>
cout << "R_61: " << insert_gauss1_polynomial(t, n, list_diffs) - (0.5 * pow(x_star4, y, 2) - cos(2 * x_star4)) << endl;
t = -1 * (x_list[n - 1] - x_star4) / h;
cout << "Gauss 2: " << insert_gauss2_polynomial(t, n, list_diffs) << endl;</pre>
cout << "R_62: " << insert_gauss2_polynomial(t, n, list_diffs) - (0.5 * pow(x_star4, y: 2) - cos(2 * x_star4)) << endl;
double R_n = insert_newton1_polynomial(t, n, list_diffs);
double min_Rn = min(R_n, insert_newton1_polynomial(t, n, list_diffs));
double max_Rn = max(R_n, insert_newton1_polynomial(t, n, list_diffs));
cout << "Minimum Rn on interval: " << min_Rn << endl;</pre>
cout << "Maximum Rn on interval: " << max_Rn << endl;</pre>
```

Newton 1: -0.132596 R_N1: 9.64784e-14 Newton 2: 1.11141 R_N2: -5.92859e-14 Gauss 1: 1.00033 R_G1: 0.566797

Gauss 2: -0.231158 R_G2: -0.664693

Minimum Rn on interval: -0.735542 Maximum Rn on interval: -0.735542

Вывод:

В процессе выполнения лабораторной работы были реализованы различные численные методы, включая методы Ньютона и методы Гаусса, для аппроксимации функции.

Применение методов аппроксимации:

- С помощью методов Ньютона и Гаусса были вычислены коэффициенты аппроксимирующих многочленов.
- о Применили методы для вычисления значений аппроксимирующих многочленов в заданных точках.