ENG-A2001

Period II – Mechanical Engineering

Kaur Jaakma 1.11.2021

Content

Practical arrangements of Mechanical Engineering module CAD in Mechanical Engineering

Course structure

Two modules

- CAD/CAE tools in Civil Engineering
- CAD/CAE tools in Mechanical Engineering

Both obligatory and needed to be completed during the same

semester

Why We Need 3D CAD?

To communicate

To visualize

To visualize

Augment/Virtual Reality (AR/VR)

Additive manufacturing (3D printing)

Input Geometry for Simulations

Input Geometry for Simulations

Learning outcomes & content

After the module student will be familiar with computer-aided tools utilized in the field of mechanical engineering.

- Concept of feature-based and parametric CAD
- Creation of parts and assemblies
- Sheet medal design
- Engineering drawings
- Performing basic motion and strength simulations

Staff

Kaur Jaakma

- Teacher-in-charge
- Lectures
- Wednesday's exercise guidance

Tuukka Ormio

Friday's exercise guidance

Exercises

Week	Topics
44	Part modeling and Part families (1.1, 1.2, 1.3)
45	Sheet medal products and Assemblies (2.1, 2.2)
46	Engineering drawings (3.0, 3.1, 3.2)
47	Advanced features and Parametrization (4.1, 4.2)
48	Mechanism and Strength analyses (5.1, 5.2)
49-50	Final project (6.1)

Week 2

Week 3

Week 4

Weeks 6-7

Workload

2,5 ECTS → 67,5 hrs

7 weeks = 9,6 hrs/week

(6 weeks = 11,25 hrs/week)

2 hrs of lectures, 8 hrs of guidance sessions with assistant / week

Software

Utilized software is PTC Creo 6.0.2.0

- Parametric module
- Integrated CAD/CAE/CAM software

Home usage

- \\work\COURSES\T\Kon\ENG-A1001\general\Creo media\
- Demands constant VPN connection to Aalto license server

Remote desktop connection to classroom computers

mfavdi.aalto.fi and Maari-C, K148 or A046/a classrooms

Example Creo users in Finland

M-COMPONENTS

Source: Econocap Oy, Convia Oy

Example Creo users in the World

Microsoft

Source: https://www.linkedin.com/groups/What-are-most-famous-companies-1542977.S.5912891802800648194 Refered on 3.3.2015

CAD in Mechanical Engineering

Computer-aided Tools in the field of Mechanical Engineering

Relationships between software

Modeling with 3D-CAD

Profile

Modeling with 3D-CAD

Utilization of 3D model

2D Engineering Drawing

- For manufaktuurin
- For documentation

X I - X I

Utilization of 3D model

Strenght analyses

Utilization of 3D model

Visualization Rendering

CAD Models

CAD models in mechanical engineering are

- Feature-based
- History-based
- Parametric
- Solid models

Feature-based

Complex geometries are built on features and operations between them

History-based

Features are arranged historybased on Feature Tree

History-based

Feature Tree order affects how the geometry is built up

Parametric

Part's geometry is defined with dimensions and constrains

Sketch Constrains

Geometric constrains help to reduce the amount of dimensional constrains

Feature Constrains

Features can be depended on previous features

Feature Constrains

Reference Viewer can be used to

see relationships between

features

References

Features can "follow" each other using both sketch and feature

references

Solving Geometry

CAD software tries to find an unambiguous solution based on constrains and dimensions

Solid Models

Blue is a surface model (no mass, may have volume)
Gray is a solid model (has mass and volume)

Solid Models

Actually, Solid Model is created based on surfaces

- If surfaces limit a volume, it can be turned into solid model
- Using solid modeling tools, the user don't need to interfere with it

Solid Models

Sometimes, these creation method can be utilized

For ex. To Selected limit can "see" the surface

Family Table

If parts have some common shape and they are some differences on features and on dimension values, we call them Product Families (Family Table in Creo)

Reduces extra modeling work

Family Table

DEMO_V2

aalto.fi

