Appl. No.

:

10/804,891

Filed

March 19, 2004

AMENDMENTS TO THE CLAIMS

Please amend the Claim Form and Claim as follows. Insertions are shown underlined while deletions are struck through. Please add Claims 24-31.

1 (currently amended): An electrode comprising a porous conductive substrate as well as an electrode active material and a conductive auxiliary filled in the pores in the substrate, wherein a ratio of the conductive auxiliary to the electrode active material is 50 % by weight or less, wherein the electrode active material is a proton-conducting compound which is subjected to an oxidation-reduction reaction with ions in an electrolyte, said electrode active material being selected from the group consisting of indole π -conjugated compounds, quinones, and quinone polymers.

- 2 (original): The electrode as claimed in Claim 1, wherein the porous conductive substrate is a carbon fiber sheet.
- 3 (original): The electrode as claimed in Claim 1, wherein the porous conductive substrate before filling has a porosity of 50 to 85 %.
- 4 (original): The electrode as claimed in Claim 1, wherein the porous conductive substrate has a filling rate of 5 % or more.
 - 5 (canceled):
 - 6 (canceled):
- 7 (original): The electrode as claimed in Claim 1, comprising at least one of particulate carbon and fibrous carbon as the conductive auxiliary.
- 8 (previously presented): An electrochemical cell, wherein at least one of electrodes is the electrode as claimed in Claim 1.
- 9 (original): The electrochemical cell as claimed in Claim 8, wherein the electrochemical cell is a secondary battery.
- 10 (original): The electrochemical cell as claimed in Claim 8, wherein the electrochemical cell is a capacitor.
 - 11 (currently amended): An electrode comprising: a conductive thin sheet having a porous structure; proton-conducting particles; and

Appl. No. : 10/804,891 Filed : March 19, 2004

conductive auxiliary particles, wherein the proton-conducting particles and the conductive auxiliary particles are dispersed and filled uniformly in the porous structure of the conductive thin sheet, wherein the proton-conducting particles are subjected to an oxidation-reduction reaction with ions in an electrolyte, wherein the conductive auxiliary particles are used less than the proton-conducting particles by weight, said proton-conducting particles being made of an electrode active material selected from the group consisting of indole π -conjugated compounds, quinones, and quinone polymers.

12 (previously presented): The electrode as claimed in Claim 11, wherein the conductive thin sheet has a porosity of 50 to 85 % before filling.

13 (previously presented): The electrode as claimed in Claim 11, wherein the conductive thin sheet is filled with the proton-conducting particles and the conductive auxiliary particles at a filling rate of 5 % or higher.

14 (canceled):

15 (previously presented): The electrode as claimed in Claim 11, wherein the conductive thin sheet is a carbon fiber nonwoven sheet.

16 (previously presented): An electrochemical cell comprising electrodes, wherein at least one of said electrodes is the electrode as recited in Claim 2.

17 (previously presented): An electrochemical cell comprising electrodes, wherein at least one of said electrodes is the electrode as recited in Claim 3.

18 (previously presented): An electrochemical cell comprising electrodes, wherein at least one of said electrodes is the electrode as recited in Claim 4.

19 (previously presented): An electrochemical cell comprising electrodes, wherein at least one of said electrodes is the electrode as recited in Claim 5.

20 (previously presented): An electrochemical cell comprising electrodes, wherein at least one of said electrodes is the electrode as recited in Claim 6.

21 (previously presented): An electrochemical cell comprising electrodes, wherein at least one of said electrodes is the electrode as recited in Claim 7.

22 (previously presented): An electrochemical cell for a secondary battery, which comprises the electrode as recited in Claim 7.

Appl. No. : 10/804,891 Filed : March 19, 2004

23 (previously presented): An electrochemical cell for a capacitor, which comprises the electrode as recited in Claim 7.

24 (new): An electrode comprising a porous conductive substrate as well as an electrode active material and a conductive auxiliary filled in the pores in the substrate, wherein a ratio of the conductive auxiliary to the electrode active material is 50 % by weight or less, wherein the electrode active material is a proton-conducting compound which is subjected to an oxidation-reduction reaction with ions in an electrolyte, said electrode active material being selected from the group consisting of poly-p-phenylene, polyphenylene-vinylene, polyperinaphthalene, polyfuran, polyflurane, polythienylene, polypyridinediyl, polyisothianaphthene, polyquinoxaline, polypyrimidine, polyindole, polyaminoanthraquinone, polyimidazole, and derivatives of the foregoing.

25 (new): An electrochemical cell, wherein at least one of electrodes is the electrode as claimed in Claim 24.

26 (new): An electrode comprising:

a conductive thin sheet having a porous structure;

proton-conducting particles; and

conductive auxiliary particles,

wherein the proton-conducting particles and the conductive auxiliary particles are dispersed and filled uniformly in the porous structure of the conductive thin sheet, wherein the proton-conducting particles are subjected to an oxidation-reduction reaction with ions in an electrolyte, wherein the conductive auxiliary particles are used less than the proton-conducting particles by weight, and wherein the proton-conducting particles are made of an electrode active material selected from poly-p-phenylene, polyphenylene-vinylene, polyperinaphthalene, polyfuran, polyflurane, polythienylene, polypyridinediyl, polyisothianaphthene, polyquinoxaline, polypyrimidine, polyindole, polyaminoanthraquinone, polyimidazole, and derivatives of the foregoing.

27 (new): An electrochemical cell, wherein at least one of electrodes is the electrode as claimed in Claim 25.

28 (new): An electrode comprising a porous conductive substrate as well as an electrode active material and a conductive auxiliary filled in the pores in the substrate, wherein a

Appl. No. : 10/804,891 Filed : March 19, 2004

ratio of the conductive auxiliary to the electrode active material is 50 % by weight or less, wherein the electrode active material is a proton-conducting compound which is subjected to an oxidation-reduction reaction with ions in an electrolyte, said electrode active material being selected from the group consisting of proton-conducting polymers obtained by copolymerizing multiple monomers constituting different polymers or compounds selected from the group consisting of π -conjugated polymers, indole π -conjugated compounds, quinones, and quinone polymers.

29 (new): An electrochemical cell, wherein at least one of electrodes is the electrode as claimed in Claim 28.

30 (new): An electrode comprising:

a conductive thin sheet having a porous structure;

proton-conducting particles; and

conductive auxiliary particles,

wherein the proton-conducting particles and the conductive auxiliary particles are dispersed and filled uniformly in the porous structure of the conductive thin sheet, wherein the proton-conducting particles are subjected to an oxidation-reduction reaction with ions in an electrolyte, wherein the conductive auxiliary particles are used less than the proton-conducting particles by weight, said proton-conducting particles being made of an electrode active material selected from the group consisting of proton-conducting polymers obtained by copolymerizing multiple monomers constituting different polymers or compounds selected from the group consisting of π -conjugated polymers, indole π -conjugated compounds, quinones, and quinone polymers.

31 (new): An electrochemical cell, wherein at least one of electrodes is the electrode as claimed in Claim 30.