EONIA Jumps and Proper Euribor Forwarding The Case of Synthetic Deposits in Legacy Discount-Based Systems

Ferdinando M. Ametrano ferdinando.ametrano@bancaimi.com ferdinando@ametrano.net

Paolo Mazzocchi pmazzocchi@deloitte.it mazzocchip@live.it

QuantLib User Meeting, Düsseldorf, 5 December 2014 https://speakerdeck.com/nando1970/eonia-jumps-and-proper-euribor-forwarding

QuantLib

Deloitte.

Outline

- Synthetic Deposits
 - The problem
 - A first solution
 - Residual problems
- ON Curve with Jumps
 - Jumps calculation
- Final Results
 - Forward rate curve using Synthetic Deposits

Outline

- Synthetic Deposits
 - The problem
 - A first solution
 - Residual problems
- 2 ON Curve with Jumps
 - Jumps calculation
- Final Results
 - Forward rate curve using Synthetic Deposits

To obtain proper forward rate curves in legacy discount-based systems it is very important to construct in a good way the first section, the one for maturities shorter than the first market pillar.

FRA equation

It is useful to write down the relation between the value of a generic FRA contract, on x tenor rate, and pseudo-discount factors (P(d), d = date):

$$1 + F_{x}(d, d + x) \cdot \tau = \frac{P(d)}{P(d + x)} = e^{\int_{d}^{d + x} f_{x}(s)ds}$$
 (1)

Therefore we have that this contract depends on the values of two pseudo-discount factors: P(d) and P(d + x).

We consider the Euribor 6M curve. The first instrument, in order of increasing maturities, that we can find on market is the 0 \times 6 FRA (e.g. FRA over today, FRA over tomorrow, index fixing^a) Since P(0) = 1, using equation (1), we have:

$$P(6M) = \frac{1}{1 + F_{6M}(0, 6M) \cdot \tau} = e^{-\int_0^{6M} f_{6M}(s) ds} = e^{-z_{6M}(6M)\tau}$$
 (2)

With $z_{6M}(6M)$ we indicate the zero rate at 6M.

^aEuribor fixing = 0x6 FRA, therefore $r^{fix}(6M) = F_{6M}(0, 6M)$

Imagine that we now want to insert the 1×7 FRA; using equation (1), we have:

$$P(7M) = \frac{P(1M)}{1 + F_{6M}(1M, 7M) \cdot \tau} = \frac{e^{-\int_0^{1M} f_{6M}(s)ds}}{1 + F_{6M}(1M, 7M) \cdot \tau}$$
(3)

We need to know $\int_0^{1M} f_{6M}(s)$

This produces very bad result: without any other information we easily underestimate or overestimate the proper values of the 1M

Imagine that we now want to insert the 1×7 FRA; using equation (1), we have:

$$P(7M) = \frac{P(1M)}{1 + F_{6M}(1M, 7M) \cdot \tau} = \frac{e^{-\int_0^{1M} f_{6M}(s)ds}}{1 + F_{6M}(1M, 7M) \cdot \tau}$$
(3)

We need to know $\int_0^{1M} f_{6M}(s)$

We could interpolate P(1M) between P(0) = 1 and P(6M).

This produces very bad result: without any other information we easily underestimate or overestimate the proper values of the 1M pseudo-discount factor.

These kind of errors lead to an incorrect calculation of forward rates: when market quotes become less dense (i.e. where the FRA's strip ends) the curve shows an hump:

Figure: Forward Euribor 6M Curve

It is helpful to take a look at the *instantaneous forward rates*, since everything else is obtained through their integration. In the first 6 months, they have been obtained in an arbitrary way, leading to oscillations:

Figure: Instantaneous Forward Rate^a on Euribor 6M Curve (3 years)

^awe calculate them as ON forward rate on 6 months curve

Outline

- Synthetic Deposits
 - The problem
 - A first solution
 - Residual problems
- ON Curve with Jumps
 - Jumps calculation
- Final Results
 - Forward rate curve using Synthetic Deposits

Synthetic Deposits construction

The model

To solve this problem we need a reliable way to prescribe the shape of the instantaneous forward on the short end. We can use ON instantaneous forward rate plus a spread, $\delta_{\mathbf{x}}(t)$:

$$f_X(t) = f_{on}(t) + \delta_X(t) \qquad \forall \ 0 \le t \le X$$
 (4)

The model

In general^a, even with t_2 not equal to $t_1 + x$:

$$\begin{aligned} 1 + F_{x}(t_{1}, t_{2})\tau_{x} &= e^{\int_{t_{1}}^{t_{2}} f_{x}(s)ds} \\ &= e^{\int_{t_{1}}^{t_{2}} (f_{on}(s) + \delta_{x}(s))ds} = e^{\int_{t_{1}}^{t_{2}} f_{on}(s)ds} \cdot e^{\int_{t_{1}}^{t_{2}} \delta_{x}(s)ds} \\ &= [1 + F_{on}(t_{1}, t_{2})\tau_{x}] \cdot e^{\Delta_{x}(t_{1}, t_{2})} \end{aligned}$$

Where:

$$\Delta_{\scriptscriptstyle X}(t_1,t_2) = \int_{t_1}^{t_2} \delta_{\scriptscriptstyle X}(s) ds$$

$$F_{on}(t_1, t_2) = \frac{1}{\tau_x} \left[\frac{P_{on}(t_1)}{P_{on}(t_2)} - 1 \right]$$

 $^{^{}a} au_{x}=x$ -months discrete forward rate year fraction

The model

Isolating $\Delta_x(t_1, t_2)$, we have:

$$\Delta_{x}(t_{1}, t_{2}) = \ln \left[\frac{1 + F_{x}(t_{1}, t_{2})\tau_{x}}{1 + F_{on}(t_{1}, t_{2})\tau_{x}} \right]$$

$$= \ln \left[1 + F_{x}(t_{1}, t_{2})\tau_{x} \right] - \ln \left[1 + F_{on}(t_{1}, t_{2})\tau_{x} \right]$$

We can approximate the previous equation neglecting higher order terms:

$$\Delta_{x}(t_{1}, t_{2}) \approx F_{x}(t_{1}, t_{2})\tau_{x} - F_{on}(t_{1}, t_{2})\tau_{x} \approx B_{x}(t_{1}, t_{2})\tau_{x}$$
 (5)

Where:

$$B_{x}(t_{1}, t_{2}) = F_{x}(t_{1}, t_{2}) - F_{on}(t_{1}, t_{2})$$
(6)

is the simply compounded basis.

 $\Delta_x(t_1, t_1 + x)$ and $B_x(t_1, t_1 + x)$ are observable from market quotes

Synthetic Deposits

We can construct synthetic spot instruments, $F_x^{Synth}(0,t)$ with $t \le x$, for the bootstrapping of the forward curve of tenor x between 0 and x.

$$P(t) = \frac{1}{1 + F_x^{Synth}(0, t) \cdot \tau_x} = e^{-\int_0^t f_x(s) ds}$$

Therefore in equations (5) and (6) we consider the case:

- $t_1 = 0$
- $t_2 = t \le t_1 + x = x$

Synthetic Deposits equation

With these hypothesis:

$$F_{x}^{Synth}(0,t) = \frac{[1 + F_{on}(0,t)\tau_{x}] \cdot e^{\Delta_{x}(0,t)} - 1}{\tau_{x}}$$
 (7)

Remark:

- $\Delta_x(0, t)$, with $t \leq x$, is not observable on the market;
- $\Delta_x(t_i, t_i + x)$, with $t_i = 0M, 1M, 2M, ...$ and/or $t_i = 0M, IMM1, IMM2, ...$ is observable from $F_x(t_i, t_i + x)$ and $F_{on}(t_i, t_i + x)$;

$$\Delta_{\mathsf{x}}(0,t) = \int_0^t \delta_{\mathsf{x}}(s) ds$$

We parametrize $\delta_x(s)$ using an n degree polynomial calibrated to market available quotes, $F_x(t_i, t_i + x)$, and $F_{on}(t_i, t_i + x)$ calculated from the ON curve.

1 - Flat parametrization

$$f_x(t) = f_{on}(t) + \delta_x(t) \quad \forall \ 0 \le t \le x$$

$$\delta_{\mathsf{x}}(\mathsf{t}) = \alpha_{\mathsf{x}}$$

To fix the value of α_x we need:

$$\int_0^x \delta_x(s)ds = \alpha_x \tau_x = \Delta_x(0,x)$$

$$= \ln[1 + F_x(0,x)\tau_x] - \ln[1 + F_{on}(0,x)\tau_x]$$

We have the following equation:

$$\Delta_{x}(0,x) = \alpha_{x}\tau_{x}$$

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

2 - Linear parametrization

$$\delta_{x}(t) = \alpha_{x} + \beta_{x}\tau_{x}(0,t)$$

To determine the value of α_x , β_x we integrate the previous equation between a generic t_i and $t_i + x$:

$$\int_{t_i}^{t_i+x} \delta_x(s) ds = \alpha_x(\tau_{t_i+x} - \tau_{t_i}) + \frac{1}{2} \beta_x(\tau_{t_i+x}^2 - \tau_{t_i}^2) = \Delta_x(t_i, t_i + x)$$

$$^{a} au_{t}= au_{x}(0,t)$$

 $\Delta_x(t_i, t_i + x)$ is observable for $t_i = 0M, 1M, ...$ and/or $t_i = IMM1, IMM2, ...$

2 - Linear parametrization

We need 2 equations to calibrate α_x and β_x :

$$\begin{cases} \Delta_{x}(0,0+x) = & \ln[1+F_{x}(0,0+x)\tau_{x}(0,x)] \\ & -\ln[1+F_{on}(0,0+x)\tau_{x}(0,x)] \end{cases} \\ \Delta_{x}(t_{1},t_{1}+x) = & \ln[1+F_{x}(t_{1},t_{1}+x)\tau_{x}(t_{1},t_{1}+x)] \\ & -\ln[1+F_{on}(t_{1},t_{1}+x)\tau_{x}(t_{1},t_{1}+x)] \end{cases}$$

We have the following system of 2 equations:

$$\begin{cases} \Delta_{x}(0,0+x) &= \alpha_{x}\tau_{x} + \frac{1}{2}\beta_{x}\tau_{x}^{2} \\ \Delta_{x}(t_{1},t_{1}+x) &= \alpha_{x}(\tau_{t_{1}+x} - \tau_{t_{1}}) + \frac{1}{2}\beta_{x}(\tau_{t_{1}+x}^{2} - \tau_{t_{1}}^{2}) \end{cases}$$

3 - Quadratic parametrization

$$\delta_{\mathsf{x}}(t) = \alpha_{\mathsf{x}} + \beta_{\mathsf{x}} \tau_{\mathsf{x}}(0, t) + \gamma_{\mathsf{x}} \tau_{\mathsf{x}}(0, t)^{2}$$

To determine the value of $\alpha_x, \beta_x, \gamma_x$ as before:

$$\int_{t_{i}}^{t_{i}+x} \delta_{x}(s) ds = \alpha_{x} (\tau_{t_{i}+x} - \tau_{t_{i}}) + \frac{1}{2} \beta_{x} (\tau_{t_{i}+x}^{2} - \tau_{t_{i}}^{2}) + \frac{1}{3} \gamma_{x} (\tau_{t_{i}+x}^{3} - \tau_{t_{i}}^{3})$$

$$= \Delta(t_{i}, t_{i} + x)$$

 $\Delta_x(t_i, t_i + x)$ is observable for $t_i = 0M, 1M, ...$ and/or $t_i = IMM1, IMM2, ...$

3 - Quadratic parametrization

We need 3 equations to calibrate $\alpha_x, \beta_x, \gamma_x$:

$$\begin{cases} \Delta_{x}(0,0+x) = & \ln[1+F_{x}(0,0+x)\tau_{x}(0,x)] \\ & -\ln[1+F_{on}(0,0+x)\tau_{x}(0,x)] \end{cases} \\ \Delta_{x}(t_{1},t_{1}+x) = & \ln[1+F_{x}(t_{1},t_{1}+x)\tau_{x}(t_{1},t_{1}+x)] \\ & -\ln[1+F_{on}(t_{1},t_{1}+x)\tau_{x}(t_{1},t_{1}+x)] \end{cases} \\ \Delta_{x}(t_{1},t_{1}+x) = & \ln[1+F_{x}(t_{2},t_{2}+x)\tau_{x}(t_{2},t_{2}+x)] \\ & -\ln[1+F_{on}(t_{2},t_{2}+x)\tau_{x}(t_{2},t_{2}+x)] \end{cases}$$

We have the following system of 3 equations:

$$\begin{cases} \Delta_{x}(0,0+x) &= \alpha_{x}\tau_{x} + \frac{1}{2}\beta_{x}\tau_{x}^{2} + \frac{1}{3}\gamma_{x}\tau_{x}^{3} \\ \Delta_{x}(t_{1},t_{1}+x) &= \alpha_{x}(\tau_{t_{1}+x}-\tau_{t_{1}}) + \frac{1}{2}\beta_{x}(\tau_{t_{1}+x}^{2}-\tau_{t_{1}}^{2}) + \frac{1}{3}\gamma_{x}(\tau_{t_{1}+x}^{3}-\tau_{t_{1}}^{3}) \\ \Delta_{x}(t_{2},t_{1}+x) &= \alpha_{x}(\tau_{t_{2}+x}-\tau_{t_{2}}) + \frac{1}{2}\beta_{x}(\tau_{t_{2}+x}^{2}-\tau_{t_{2}}^{2}) + \frac{1}{3}\gamma_{x}(\tau_{t_{2}+x}^{3}-\tau_{t_{2}}^{3}) \end{cases}$$

To find $\Delta_x(t_i, t_i + x) = \int_{t_i}^{t_i + x} \delta_x(s) ds$, we use:

- market available quotes on x-months tenor Euribor, like: index fixing, Futures, FRA, IRS.
- equivalent *ON* discrete forward rates, built using the *ON* curve (in the Euro market they are equivalent to forward *OIS* contract).

Example

Let's consider the 6 Months Euribor curve.

Until 2 years ago, to calculate $\Delta_{6M}(0,6M)$ we had:

• FRA over today and FRA over tomorrow;

Today they are not quoted anymore, therefore we need to find a different way to calculate $\Delta_{6M}(0,6M)$. The only contract that we can use is the index fixing.

After that instruments, to calculate $\Delta_{6M}(t_i, t_i + x)$, we have:

• FRA up to 2 years.

We calculate ON discrete forward rates insisting on the same set of dates as the 6M market quotes and we calculate the difference between these two values.

Example

Figure: $\Delta_{6M}(t_i, t_i + 6M) = \ln[1 + F_{6M}(t_i, t_i + 6M)] - \ln[F_{on}(t_i, t_i + 6M)]$

Example

$$\Delta_{6M}(t_i,t_i+6M)=\int_{t_i}^{t_i+6M}\delta_x(s)ds$$

Figure: Continuously compounded basis

Synthetic Deposits Calculation

Example

It is important to note that the integral of $\delta_{6M}(s)$ in the first 6 months it is the same for all of the parametrization used, but with different shape:

$$\Delta_{x}(0,6M) = \int_{0}^{6M} \delta_{x}(s)ds = \begin{cases} \int_{0}^{6M} \alpha_{6M}ds & \text{flat} \\ \int_{0}^{6M} (\hat{\alpha}_{6M} + \hat{\beta}_{6M}\tau_{s})ds & \text{linear} \\ \int_{0}^{6M} (\tilde{\alpha}_{6M} + \tilde{\beta}_{6M}\tau_{s} + \tilde{\gamma}_{6M}\tau_{s}^{2})ds & \text{quad} \end{cases}$$

Synthetic Deposits Calculation

Example

We can build *Synthetic Deposits* for every $0 \le t \le 6M$:

$$F_{6M}^{Synth}(0,t) = rac{[1+F_{on}(0,t) au_{6M}]\cdot \mathrm{e}^{\Delta_{6M}(0,t)}-1}{ au_{6M}}$$

Usually we construct *Synthetic Deposits* to match the start date of market *FRAs* or Futures.

Not using 1*M*, 2*M*, 3*M*, 4*M*, 5*M*, 6*M* Synthetic Deposits for the 6*M* curve.

Figure: Forward Euribor 6M Curve without Synthetic Deposits

Using 1M, 2M, 3M, 4M, 5M, 6M Synthetic Deposits for the 6M curve.

Figure: Forward Euribor 6M Curve with Synthetic Deposits

Outline

- Synthetic Deposits
 - The problem
 - A first solution
 - Residual problems
- ON Curve with Jumps
 - Jumps calculation
- Final Results
 - Forward rate curve using Synthetic Deposits

Problem

Until about two years ago this approach was satisfactory: it produced smooth forward rates.

Recently it began to show some problems, because of two crucial issues:

- instruments available to calculate the basis, $F_x(t, t+x)^a$
- shape of the ON term structure, $F_{on}(t, t + x)$

$$\Delta_{x}(t, t + x) = \ln[1 + F_{x}(t, t + x)\tau_{x}] - \ln[1 + F_{on}(t, t + x)\tau_{x}]$$

^aFRA over today/tomorrow are not available anymore

First Problem

The first problem is the correct selection of market instruments used to determine the values of the basis: an illiquid product will produce an incorrect estimation.

E.g.: the index fixing is not an optimal choice. Its value remains constant during the day, insensitive to market changes.

Solution

A solution is to interpolate/extrapolate only on liquid values of $B_x(t_i, t_i + x)^a$, the simply compounded basis; then we calculate the interpolated/extrapolated values of F_x , for the illiquid ones and we use them to determine Δ_x .

 $^{^{}a}\Delta_{x}(t_{i},t_{i}+x)\approx B_{x}(t_{i},t_{i}+x)\tau$ cannot be directly interpolated because τ is not exactly constant (business days adjustment)

Example

$$B_{6M}(t_i, t_i + 6M) = F_{6M}(t_i, t_i + 6M) - F_{on}(t_i, t_i + 6M)$$

Figure: Interpolated Simply Compounded Basis

Second Problem

The second critical point is the *ON* term structure: to obtain a good approximation of the basis, it is fundamental to build a good *ON* curve.

Figure: ON interest rate curve with log-cubic interpolation on Discount factor

Problem

The second critical point is the *ON* term structure: to obtain a good approximation of the basis, it is fundamental to build a good *ON* curve.

Figure: ON interest rate curve with log-linear interpolation on Discount factor

Outline

- Synthetic Deposits
 - The problem
 - A first solution
 - Residual problems
- ON Curve with Jumps
 - Jumps calculation
- Final Results
 - Forward rate curve using Synthetic Deposits

How many Jumps?

The Eonia fixing has a jump at least at every end of month.

Figure: Eonia fixings, last 6 months

We show how the jump estimation improves the quality of the curve with a concrete example:

Figure: ON interest rate curve: starting point

We show how the jump estimation improves the quality of the curve with a concrete example:

Figure: ON interest rate curve with the first jump

To calculate Jumps' size we can follow an approach similar to the one used by Burghardt [3] to estimate turn of year jumps:

- Construct an ON curve using all liquid market quotes using a flat interpolation on forward rate
- Estimate the first jump assuming that a segment out of line with preceding and following segments can be put back in line dumping the difference into the jump¹:

$$[F^{original}(t_1, t_2) - F^{interp}(t_1, t_2)] \cdot \tau(t_1, t_2) = Jump \cdot \tau_{Jump}$$

• Clean the curve from the jump at point 2 cerate ad libitum 2 and 3 on next jump date

 $^{^{1}} au_{Jump}$ is the year fraction between jump business day and the next business day

To calculate Jumps' size we can follow an approach similar to the one used by Burghardt [3] to estimate turn of year jumps:

- Construct an *ON* curve using all liquid market quotes using a flat interpolation on forward rate
- Estimate the first jump assuming that a segment out of line with preceding and following segments can be put back in line dumping the difference into the jump¹:

$$[F^{original}(t_1,t_2)-F^{interp}(t_1,t_2)]\cdot au(t_1,t_2)=Jump\cdot au_{Jump}$$

Olean the curve from the jump at point 2 terate ad libitum 2 and 3 on next jump date

 $^{^{1}} au_{Jump}$ is the year fraction between jump business day and the next business day

To calculate Jumps' size we can follow an approach similar to the one used by Burghardt [3] to estimate turn of year jumps:

- Construct an ON curve using all liquid market quotes using a flat interpolation on forward rate
- Estimate the first jump assuming that a segment out of line with preceding and following segments can be put back in line dumping the difference into the jump¹:

$$[F^{original}(t_1, t_2) - F^{interp}(t_1, t_2)] \cdot \tau(t_1, t_2) = Jump \cdot \tau_{Jump}$$

Olean the curve from the jump at point 2 Iterate ad libitum 2 and 3 on next jump date

 $^{^{1}} au_{\it Jump}$ is the year fraction between jump business day and the next business day

To calculate Jumps' size we can follow an approach similar to the one used by Burghardt [3] to estimate turn of year jumps:

- Construct an ON curve using all liquid market quotes using a flat interpolation on forward rate
- 2 Estimate the first jump assuming that a segment out of line with preceding and following segments can be put back in line dumping the difference into the jump¹:

$$[F^{original}(t_1, t_2) - F^{interp}(t_1, t_2)] \cdot \tau(t_1, t_2) = Jump \cdot \tau_{Jump}$$

Olean the curve from the jump at point 2

 $^{^1} au_{ extsf{Jump}}$ is the year fraction between jump business day and the next business day

To calculate Jumps' size we can follow an approach similar to the one used by Burghardt [3] to estimate turn of year jumps:

- Construct an ON curve using all liquid market quotes using a flat interpolation on forward rate
- Estimate the first jump assuming that a segment out of line with preceding and following segments can be put back in line dumping the difference into the jump¹:

$$[F^{original}(t_1, t_2) - F^{interp}(t_1, t_2)] \cdot \tau(t_1, t_2) = Jump \cdot \tau_{Jump}$$

• Clean the curve from the jump at point 2 Iterate ad libitum 2 and 3 on next jump date

 $^{^{1}} au_{\it Jump}$ is the year fraction between jump business day and the next business day

Figure: ON interest rate curve: starting point

Figure: ON interest rate curve with the first jump

Figure: ON interest rate curve with the second jump

Figure: ON interest rate curve with the third jump

Figure: ON interest rate curve with jumps

Figure: ON interest rate curve with log-cubic interpolation on Discount factor

Outline

- Synthetic Deposits
 - The problem
 - A first solution
 - Residual problems
- ON Curve with Jumps
 - Jumps calculation
- Final Results
 - Forward rate curve using Synthetic Deposits

Synthetic Deposits Construction

We had 2 residual problems for construction of *Synthetic Deposits*:

- sub-optimal instruments selection
- wrong ON curve calculation

Modelling *ON* jumps we fixed the *ON* curve and obtained reliable B(0,x) to be interpolated/extrapolated.

Example

Interpolating only liquid $B_{6M}(t_i, t_i + 6M)$, i.e. fixing not included, we match the fixing level nonetheless!

Figure: Interpolated Simply Compounded Basis with jumps

Example

Interpolating only liquid $B_{6M}(t_i, t_i + 6M)$, i.e. fixing not included, we match the fixing level nonetheless!

Figure: Interpolated Simply Compounded Basis without jumps

Example

In order to estimate $\delta_{6M}(t)$ we use:

• flat parametrization:

$$\Delta_{6M}(0,6) = \ln[1 + F_{6M}^{extrap}(0,6) \cdot \tau] - \ln[1 + F_{ON}(0,6) \cdot \tau]$$

• linear parametrization:

$$\begin{cases} \Delta_{6M}(0,6) = \ln[1 + F_{6M}^{\text{extrap}}(0,6) \cdot \tau] - \ln[1 + F_{ON}(0,6) \cdot \tau] \\ \Delta_{6M}(1,7) = \ln[1 + F_{6M}^{\text{interp}}(1,7) \cdot \tau] - \ln[1 + F_{ON}(1,7) \cdot \tau] \end{cases}$$

• quadratic parametrization:

$$\begin{cases} \Delta_{6M}(0,6) = \ln[1 + F_{6M}^{extrap}(0,6) \cdot \tau] - \ln[1 + F_{ON}(0,6) \cdot \tau] \\ \Delta_{6M}(1,7) = \ln[1 + F_{6M}^{interp}(1,7) \cdot \tau] - \ln[1 + F_{ON}(1,7) \cdot \tau] \\ \Delta_{6M}(2,8) = \ln[1 + F_{6M}^{interp}(2,8) \cdot \tau] - \ln[1 + F_{ON}(2,8) \cdot \tau] \end{cases}$$

Example

 $\delta_{6M}(t)$ using index fixing:

Figure: Continuously Compounded Basis $\delta_{6M}(t)$ for $0 \le t \le 6M$

Example

 $\delta_{6M}(t)$ extrapolating B_{6M} , instead of index fixing:

Figure: Continuously Compounded Basis $\delta_{6M}(t)$ for $0 \le t \le 6M$

Example

Interpolating only liquid $B_{3M}(t_i, t_i + 3M)$, i.e. fixing not included, we match the fixing level nonetheless!

Figure: Interpolated Simply Compounded Basis

Example

In order to estimate $\delta_{3M}(t)$ we use:

• flat parametrization:

$$\Delta_{3M}(0,3) = \ln[1 + F_{3M}^{extrap}(0,3) \cdot \tau] - \ln[1 + F_{ON}(0,3) \cdot \tau]$$

• linear parametrization:

$$\begin{cases} \Delta_{3M}(0,3) = \ln[1 + F_{3M}^{\text{extrap}}(0,3) \cdot \tau] - \ln[1 + F_{ON}(0,3) \cdot \tau] \\ \Delta_{3M}(1,4) = \ln[1 + F_{3M}^{\text{interp}}(1,4) \cdot \tau] - \ln[1 + F_{ON}(1,4) \cdot \tau] \end{cases}$$

• quadratic parametrization:

$$\begin{cases} \Delta_{3M}(0,3) = \ln[1 + F_{3M}^{extrap}(0,3) \cdot \tau] - \ln[1 + F_{ON}(0,3) \cdot \tau] \\ \Delta_{3M}(1,4) = \ln[1 + F_{3M}^{interp}(1,4) \cdot \tau] - \ln[1 + F_{ON}(1,4) \cdot \tau] \\ \Delta_{3M}(2,5) = \ln[1 + F_{3M}^{interp}(2,5) \cdot \tau] - \ln[1 + F_{ON}(2,5) \cdot \tau] \end{cases}$$

Example

Figure: Continuously Compounded Basis $\delta_{3M}(t)$ for $0 \le t \le 3M$

Example

Forward Euribor 6M without synthetic deposits^a:

Figure: Forward Euribor 6M Curve

ausing index fixing

Example

Forward Euribor 6M with synthetic deposits^a:

Figure: Forward Euribor 6M Curve

ausing index fixing and without ON jumps

Example

Forward Euribor 6M with synthetic deposits^a:

Figure: Forward Euribor 6M Curve

^awithout index fixing, with correct instruments selection and ON jumps

Example

Instantaneous Forward Euribor 6M without synthetic deposits^a:

Figure: Instantaneous Forward Rate on Euribor 6M Curve

ausing index fixing

Example

Instantaneous Forward Euribor 6M with synthetic deposits^a:

Figure: Instantaneous Forward Rate on Euribor 6M Curve

awithout index fixing, with correct instruments selection and ON jumps

Example

Forward Euribor 3M without synthetic deposits^a:

Figure: Forward Euribor 3M Curve

ausing index fixing

Example

Forward Euribor 3M with synthetic deposits^a:

Figure: Forward Euribor 3M Curve

^awithout index fixing, with correct instruments selection and ON jumps

Example

Instantaneous Forward Euribor 3M without synthetic deposits^a:

Figure: Instantaneous Forward Rate on Euribor 3M Curve

ausing index fixing

Example

Instantaneous Forward Euribor 3M with synthetic deposits^a:

Figure: Instantaneous Forward Rate on Euribor 3M Curve

awithout index fixing, with correct instruments selection and ON jumps

Conclusion

ON curve jumps must be taken into account

 the smoothness of the basis, not of the forward rates, is the relevant factor

Bibliography

F.M. Ametrano, M. Bianchetti

Everything you always wanted to know about multiple interest rate curve bootstrapping but were afraid to ask. http://ssrn.com/abstract=2219548 SSRN, 2013.

S. Schlenkrich, A. Miemiec Choosing the right spread. SSRN, 2014.

G. Burghardt, S. Kirshner One good turn.

CME Interest Rate Products Advanced Topics. Chicago: Chicago Mercatile Exchange, 2002.