Blast Off!

Lecture 5

Engines and Propulsion

Propulsion

Liquid Fuels

- Fuel Composition and types in use
- > The Cryogenics
- Monopropellants

Solid Propulsion

- Chemicals used
- Internal structure of SRB Energy Density
- Ignition and Control

The Idea of Propulsion

"THROW OUT AS MUCH AS MASS FROM THE NOZZLE AT MAXIMUM VELOCITY POSSIBLE"

High mass flow rate → High chamber pressure → High exhaust velocity.

But problem is, the chamber pressure!!

Liquid Propellants

- Liquids are desirable because they have a reasonably high density and high specific impulse aka high speed of exhaust gases.
- Using low density fuels increases the mass of the launch vehicle.
- \rightarrow $V_{rms} = \sqrt{(3kT)/m}$
- Liquid propellants have separate storage tanks - one for the fuel and one for the oxidizer.
- They also have pumps, valves, a combustion chamber, and a nozzle.
- > Their flow can be controlled.

Petroleum Based

- Refined from crude oil and a mixture of hydrocarbons.
- > RP1, aka highly refined kerosene is widely used.
- They are used with an oxidiser.
- Usually produce a Sooty Exhaust but is cheap.
- The soot makes exhaust glow orange and also helps in cooling the engine. How?

Cryogens

- Liquefied gases stored at a very low temperature.Liquid hydrogen (LH2) as the fuel and liquid oxygen (LO2 or LOX) as the oxidizer.
- Because of the low temperatures of cryogenic propellants, they are difficult to store over long periods of time.
- Cryogens usually burn clear and do minimum damage to the environment.

- Liquid Oxygen doesn't spontaneously combust so need to include extra hardware to ignite the rocket, adding complexity.
- ➤ Liquid hydrogen has a very low density (0.071 g/ml) and, therefore, requires a storage volume many times greater than other fuels.
- Liquid hydrogen delivers a specific impulse about 30%-40% higher than most other rocket fuels.
- Offer simplification in the engine cooling system(regenerative cooling).
- > Produce the engineering challenge of keeping the fuel tank cool.

For both the space shuttle disasters Cryogenics could also be(partially) put to blame.

 \triangleright Best known liquid fuel is $H_2(\text{liq}) + O_2(\text{liq}) = H_2O$.

> Highly energetic, H₂O is light so exhaust velocity is very high so

high specific impulse.

> Product is non toxic.

Fuel Type	 sp	Energy density
LH2 +	455	8.5
RP1	358	33

Hypergols

- Propellants that ignite spontaneously on contact with each other and require no ignition source.
- > The easy start and restart capability of hypergols make them ideal for spacecraft maneuvering systems. Can be used as an igniter.
- > They do not pose the storage problems of cryogenic propellants.
- > But they are highly toxic and must be handled with extreme care.
- Hypergolic fuels commonly include hydrazine, monomethyl hydrazine (MMH) and unsymmetrical dimethyl hydrazine (UDMH).
- > The oxidizer is usually nitrogen tetroxide (NTO) or nitric acid.
- Usually mixed oxides of nitrogen (MON) is used to lower freezing point.

https://youtu.be/IcjYdEW_HLQ?t=140

MonoPropellants

- Using single propellant which are pressure pumped.
- Simple in design(most reliable)
- Will require Catalysis
- Usually used in RCS

Fuel Rich vs Oxygen Rich

- Hydrocarbons have coking issues so their engines are oxygen rich.
- > Performance is usually higher in oxidiser rich fuels.
- But oxidisers are generally corrosive and complex metallurgy.
- Mostly fuel rich mixtures are preferred.
- Fuel rich mixtures keep the engine cooler.

Solid Propellants

- These mechanism are being used from an ancient time.
- Deflagration is the main process via which the fuel is burned.

- Essentially solid fuel burning rockets are channeled explosions.
- Different fuels will give different challenges and would require different constructs.

SRB (Solid Rocket Booster)

Used in various missions like the Space shuttles and the SLS program

Simple and provide a ton of thrust

> SRB in Shuttle produced 12,000 kN of thrust

Double the power of a single F1 rocket engine

They can't be switched off once they have been

fired.

Internal Structure of SRBs

Notice the black composite propellant

Different shapes for different thrust profiles