ISE 5264 Modelling and Analysis of Semiconductor Manufacturing

ASSIGNMENT II

TEAM MEMBERS

MANUKA BHATIANI SESHA SAI NALLAMOTHU SIDDHESH GYANASAMPATH PILLAI

On My honor, as a hokie, I have neither given nor received unauthorized aid on this work.

FAB LAYOUT

JOB LOADING AND SEQUENCING

In this section we Assigned the priority to jobs at stations based on FIFO (First In, First Out) and SRPT (Shortest Remaining Processing Time) methods and also Implementing job loading strategies like CONWIP (Constant Work In Process) and lot dispatch.

Q1: Using FIFO on every machine, determine the makespan, cycle time and throughput when the wafers are uniformly released into the fab at the frequency of:

Answer 1:

Frequency	Makespan (Min)	Cycle Time(Min)
1 Wafer/4.5 hour	270640.053	639.42
1 Wafer/5 hour	300640.053	639.42
1 Wafer/6 hour	360638.433	669.97
1 Wafer/8 hour	480638.087	637.86
1 Wafer/10 hour	600638.087	637.86
1 Wafer/12 hour	720638.087	637.86

Q2: Using SRPT on every machine, determine the makespan, cycle time and throughput when the wafers are uniformly released into the fab at the frequency of:

Answer 2:

Frequency	Makespan (Min)	Cycle Time (Min)
1 Wafer/10 hour	600863.326	638.086
1 Wafer/12 hour	720638.087	638.086

Q3: Using FIFO on every machine, determine the makespan, cycle time and throughput under the CONWIP job release policy when:

Answer 3:

CONWIP	Makespan (Min)	Cycle Time (Min)	Throughput (wafers/min
2	320323.281	640.414	0.00312
3	251524.199	766.759	0.00391
5	240113.972	1212.072	0.00413
10	240164.627	2400	0.00417

Please find the graphs of the Cycle Time and Throughput vs CONWIP Level under FIFO job release policy.

Q4: Using SRPT on every machine, determine the makespan, cycle time and throughput under the CONWIP job release policy when:

Answer 4:

CONWIP	Makespan (Min)	Cycle Time(Min)	Throughput (wafers/min)
2	425828.96	635.631	0.00314
3	252159.712	745.95	0.00402
5	240385.485	1199.157	0.00416
10	240278.032	2392.45	0.00417

graphs of the Cycle Time and Throughput vs CONWIP Level under SRPT job release policy.

Q5: Instead of loading one wafer at-a-time, now consider their release into the fab in lots. Using FIFO on every machine and lot loading policy with lot size = 5, determine the makespan, throughput and cycle time for the following loading rates.

Answer 5:

Loading Rates	Makespan (Min)	Cycle Time (Min)
1 lot/15 hrs	240946.899	4389.933
1 lot/20 hrs	241454.627	1454.626

Q6:Consider the same situation as in 5 above except that, now, the lots are processed using SRPT on every machine and lot size = 6. Determine the makespan, throughput and cycle time for the following loading rate

Answer 6:

Loading Rates	Makespan (Min)	Cycle Time (Min)
1 lot/15 hrs	240718.972	5541.416

Q7: Determine the makepan when a wafer is released into the fab once a wafer is completed at the BN station. Initially, 2 wafers are released into the system.

Answer 7: 240085.498 minutes

Q8: The same situation as in 7 above except that now a wafer is released into the fab once a wafer is completed at the Litho station. Initially, 2 wafers are released into the system

Answer 8: 240117.979 minutes

MULTI – PRODUCTS

Managing multiple types of wafers in a system involves optimizing workflows to handle varying sizes, priorities, and processing requirements efficiently. Job releasing or dispatching help allocate resources and sequence tasks effectively. Combining both ensures streamlined operations, improved throughput, and reduced cycle times in wafer manufacturing systems.

Q9: Consider two types of wafers, namely, A and B. The processing/usage requirements for these wafers are given below:

The values given in the tables are mean processing time values.

- For Cases 1-5, the processing times are deterministic.
- Cases 6 and 7, include variable processing times.

The LV and HV mentioned at the top of some columns indicate high and low variability, where for high variability std =1.5*mean, and for low variability: std =0.5*mean.

Consider that a CONWIP of 4 wafers is maintained and a total of 1000 wafers A and 1000 wafers B are to be processed. Find the cycle times for the processing sequence given below, for all the seven cases:

All the units of makespan and cycletime are minutes and the processing times is considered in hours

CASE 1:

	WS1	WS2	WS3	WS4
A	3	6	3	3
В	3	3	3	9

Sequence	Makespan (Min)	Cycle time A Constant (Min)
AABB	766930.175	1534.236
BBAA	767823.39	1535.042
ABAB	720613.96	1439.786
BABA	720608.634	1440.134

• ABAB is the best job loading scenario for Case 1 which is giving lowest cycle time

CASE 2:

	WS1	WS2	WS3	WS4
A	6	10	6	12
В	12	10	6	6

Sequence	Makespan	Cycle time
AABB	1233334.03	2465.370
BBAA	1232324.82	2465.44
ABAB	1204371.54	2407.177
BABA	1205275.88	2409.652

• ABAB is the best job loading scenario for Case 2 which is giving lowest cycle time

Case 3

	WS1	WS2	WS3	WS4
A	6	10	6	12
В	4	6	6	12

Sequence	Makespan	Cycle time	
AABB	14439446.5	2880.405	
BBAA	14439446	2879.688	
ABAB	1441033.53	2879.725	
BABA	14410282.8	2879.714	

• BBBBB...AAAAA is the best job loading policy for case 3

Case 4: (6 Processing Steps)

	WS1	WS2	WS3	WS4	WS1	WS4
A	3	6	3	3	4	2
В	3	3	3	9	6	6

Sequence	Makespan	Cycle Time
AABB	1340365.4	2678.951
BBAA	1354090.88	2707.482
ABAB	1235398.75	2470.048
BABA	1240194.08	2479.791

• ABAB is the best job loading scenario for Case 4 which is giving lowest cycle time

Case 5

	WS1	WS2	WS3	WS4	WS1	WS4
A	3	6	3	3	9	6
В	3	3	3	9	6	6

Sequence	Makespan	Cycle Time
AABB	1893553.08	3785.780
BBAA	1801452.2	3106.438
ABAB	1537889.19	3074.686
BABA	1808343.32	3613.791

• ABAB is the best job loading scenario for Case 5 which is giving lowest cycle time

Case 6

	WS1	WS2 (LV)	WS3	WS4 (HV)
A	3	6	3	3
В	3	3	3	9

Sequence	Makespan	Cycle Time
AABB	1078536.99	2158.064
BBAA	1055069.17	2109.322
ABAB	1076928.01	1914.278
BABA	1076934.68	1966.247

Case 7:

	WS1	WS2 (HV)	WS3	WS4 (LV)
A	3	6	3	3
В	3	3	3	9

Sequence	Makespan	Cycle Time
AABB	929928.863	1860.866
BBAA	938515.799	1876.756
ABAB	930781.672	1537.579
BABA	930278.13	1562.127

Q10: For lot sizes of 5, 10, 50 (all stations process in lots) determine the makespan, time spent for each load in the system, and CT, and plot their values for the following loads:

Answer 10:

Loads	Lot Size	Makespan	Cycle Time				
	5	2062.7695	206.27695				
50	10	2046.6895	409.3379				
	50	2067.6168	2067.6168				
·							
	5	3817.2421	190.8621				
100	10	3567.6168	356.7616				
	50	3597.6168	1798.8084				
	5	7432.5738	185.8143				
200	10	6567.6168	328.3808				
	50	6597.6168	1649.4042				
•							
	5	18222.5023	182.2250				
500	10	15567.6168	311.3523				
	50	15597.6168	1559.761683				
	5	36215.0608	181.0753				
1000	10	30567.6168	305.6761				
	50	30597.6168	1529.8808				
	5	180211.5933	180.2115				
5000	10	150567.6168	301.1352				
	50	150597.6168	1505.9761				

AUTOMOD MODEL

Please find the automod model in the below link

Assignment 2_final.zip