Тренировочная работа №1 по МАТЕМАТИКЕ 11 класс

25 сентября 2019 года Вариант МА1910111 (профильный уровень)

Выполнена: ФИО	класс
----------------	-------

Инструкция по выполнению работы

На выполнение работы по математике отводится 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 19 заданий.

Часть 1 содержит 8 заданий базового уровня сложности с кратким ответом. Часть 2 содержит 4 задания повышенного уровня сложности с кратким ответом и 7 заданий повышенного и высокого уровней сложности с развёрнутым ответом.

Ответы к заданиям 1-12 записываются в виде целого числа или конечной десятичной дроби.

При выполнении заданий 13–19 требуется записать полное решение на отдельном листе бумаги.

При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются.

Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

Справочные материалы

 $\sin^{2}\alpha + \cos^{2}\alpha = 1$ $\sin 2\alpha = 2\sin\alpha \cdot \cos\alpha$ $\cos 2\alpha = \cos^{2}\alpha - \sin^{2}\alpha$ $\sin(\alpha + \beta) = \sin\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta$ $\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta$

© СтатГрад 2019-2020 уч. г.

Математика. 11 класс. Вариант МА1910111

Часть 1

Ответом к каждому из заданий 1–12 является конечная десятичная дробь, целое число или последовательность цифр. Запишите ответы к заданиям в поле ответа в тексте работы.

	1	В доме, в котором живёт Оля, 9 этажей и несколько подъездов. На каждом
L		этаже находится по 3 квартиры. Оля живёт в квартире № 82. В каком
		подъезде живёт Оля?

Ответ: ______.

2 Когда самолёт находится в горизонтальном полёте, подъёмная сила, действующая на крылья, зависит от скорости движения. На рисунке изображена эта зависимость для некоторого самолёта. На оси абсцисс откладывается скорость (в километрах в час), на оси ординат — сила (в тоннах силы). Определите по рисунку, чему равна подъёмная сила (в тоннах силы) при скорости 200 км/ч.

Ответ: ______.

На клетчатой бумаге с размером клетки 1×1 изображён треугольник ABC. Найдите длину его средней линии, параллельной стороне AB.

Ответ: ______.

2

В классе 21 учащийся, среди них два друга — Вадим и Олег. Учащихся случайным образом разбивают на 3 равные группы. Найдите вероятность того, что Вадим и Олег окажутся в одной группе.

Ответ: .

5 Найдите корень уравнения $\frac{1}{7x+16} = \frac{1}{8x+11}$.

Ответ: .

6 Площадь параллелограмма ABCD равна 20. Точка E — середина стороны CD. Найдите площадь трапеции ABED.

Ответ:

На рисунке изображены график функции y = f(x) и касательная к нему в точке с абсциссой x_0 . Найдите значение производной функции f(x) в точке x_0 .

3

Ответ: _____

В правильной четырёхугольной призме $ABCDA_lB_lC_lD_l$ известно, что $CA_l=2A_lD_l$. Найдите угол между диагоналями BD_l и AC_l . Ответ дайте в градусах.

Ответ: .

Часть	2

9 Найдите значение выражения $16\sqrt{3}$ tg $\frac{\pi}{4}$ sin $\frac{\pi}{3}$.

Ответ: ______.

Для определения эффективной температуры звёзд используют закон Стефана—Больцмана, согласно которому $P = \sigma S T^4$, где P — мощность излучения звезды (в ваттах), $\sigma = 5,7\cdot 10^{-8}~\frac{\mathrm{BT}}{\mathrm{M}^2\cdot\mathrm{K}^4}$ — постоянная, S — площадь поверхности звезды (в квадратных метрах), а T — температура (в кельвинах). Известно, что площадь поверхности некоторой звезды равна $\frac{1}{2}\cdot 10^{18}~\mathrm{M}^2$, а мощность её излучения равна $2,85\cdot 10^{26}~\mathrm{BT}$. Найдите температуру этой звезды в кельвинах.

Ответ:

Автомобиль выехал с постоянной скоростью 90 км/ч из города А в город В, расстояние между которыми равно 270 км. Одновременно с ним из города С в город В, расстояние между которыми равно 162 км, с постоянной скоростью выехал мотоциклист. По дороге он сделал остановку на 45 минут. В результате автомобиль и мотоцикл прибыли в город В одновременно. Найдите скорость мотоциклиста. Ответ дайте в км/ч.

Ответ: _____

Найдите наибольшее значение функции $y = -\frac{3x^2 + 24x}{x}$ на отрезке [-18;-2].

Ответ: ______.

5

Для записи решений и ответов на задания 13—19 используйте отдельный лист. Запишите сначала номер выполняемого задания (13, 14 и т. д.), а затем полное обоснованное решение и ответ. Ответы записывайте чётко и разборчиво.

- 13 a) Решите уравнение $\sqrt{3} \operatorname{tg} (7\pi 2x) = -1$.
 - б) Укажите корни этого уравнения, принадлежащие отрезку $\left[-2\pi; -\frac{\pi}{2}\right]$
- Точки P и Q середины рёбер AD и CC_1 куба $ABCDA_1B_1C_1D_1$ соответственно.
 - а) Докажите, что прямая BQ перпендикулярна прямой B_1P .
 - б) Пусть H проекция точки Q на прямую B_1P . Найдите PH , если AB = 12 .
- Решите неравенство $\frac{x^4 2x^3 + x^2}{x^2 + x 2} \frac{2x^3 + x^2 + x 1}{x + 2} \le 1$
- Окружность проходит через вершины B и C треугольника ABC и пересекает AB и AC в точках C_1 и B_1 соответственно.
 - а) Докажите, что треугольник ABC подобен треугольнику AB_1C_1 .
 - б) Найдите радиус данной окружности, если $\angle A$ =45°, B_1C_1 =6 и площадь треугольника AB_1C_1 в восемь раз меньше площади четырёхугольника BCB_1C_1 .
- 15 сентября планируется взять кредит в банке на 12 месяцев. Условия его возврата таковы:
 - 1-го числа каждого месяца долг возрастает на 4 % по сравнению с концом предыдущего месяца;
 - со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
 - -15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца.

Какую сумму следует взять в кредит, чтобы общая сумма выплат после полного погашения равнялась 1,26 млн рублей?

значений функции $y = \frac{5a + 150x - 10ax}{100x^2 + 20ax + a^2 + 25}$ содержит отрезок [0;1].

Найдите все значения параметра а, при каждом из которых множество

- На доске написаны все пятизначные числа, в десятичной записи которых по одному разу встречаются цифры 3, 4, 5, 6 и 7 (34567, 34576 и т. д.).
 - а) Есть ли среди них число, которое делится на 55?
 - б) Есть ли среди них число, которое делится на 505?
 - в) Найдите наибольшее из этих чисел, делящееся на 11.

math100.ru
Ответы на тренировочные варианты 1910109-1910112 (профильный уровень) от 25.09.2019

	1	2	3	4	5	6	7	8	9	10	11	12
1910109	475	8	0,6	0,25	- 5	5	7	300	27	1	8	- 17
1910110	570	2	0,75	0,2	- 12	7,5	7	108	8	2,2	6	- 23
1910111	4	1	2,5	0,3	5	15	1,5	60	24	10000	72	30
1910112	2	4	3	0,25	0,2	27	1,25	60	54	4000	60	38

Критерии оценивания заданий с развёрнутым ответом

- 13 а) Решите уравнение $\sqrt{3} \operatorname{tg} (7\pi 2x) = -1$.
 - б) Укажите корни этого уравнения, принадлежащие отрезку $\left[-2\pi; -\frac{\pi}{2}\right]$.

Решение.

Запишем исходное уравнение в виде $\operatorname{tg}(7\pi-2x)=-\frac{1}{\sqrt{3}};$ $-\operatorname{tg}2x=-\frac{1}{\sqrt{3}},$ откуда $2x=\frac{\pi}{6}+\pi n,\ n\in\mathbb{Z},$ то есть $x=\frac{\pi}{12}+\frac{\pi}{2}n,\ n\in\mathbb{Z}.$

б) С помощью числовой окружности отберём корни, принадлежащие отрезку $\left[-2\pi;-\frac{\pi}{2}\right]$.

Получим числа: $-\frac{23\pi}{12}$, $-\frac{17\pi}{12}$, $-\frac{11\pi}{12}$.

Ответ: a) $\frac{\pi}{12} + \frac{\pi}{2}n$, $n \in \mathbb{Z}$; 6) $-\frac{23\pi}{12}$, $-\frac{17\pi}{12}$, $-\frac{11\pi}{12}$.

Содержание критерия	Баллы
Обоснованно получены верные ответы в обоих пунктах	2
Обоснованно получен верный ответ в пункте a или в пункте δ .	1
ИЛИ	
Получен неверный ответ из-за вычислительной ошибки, но при этом	
имеется верная последовательность всех шагов решения	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	2

- **14** Точки P и Q середины рёбер AD и CC_1 куба $ABCDA_1B_1C_1D_1$ соответственно.
 - а) Докажите, что прямая BQ перпендикулярна прямой B_1P .
 - б) Пусть H проекция точки Q на прямую B_1P . Найдите PH, если AB=12.

Решение.

а) Пусть ребро куба равно 4a. Отметим на ребре DD_1 такую точку E, что DE=a. Прямая PE параллельна прямой BQ, следовательно, необходимо проверить, что $\angle EPB_1=90^\circ$.

По теореме Пифагора вычислим длины сторон треугольника EPB_1 :

$$PE^2 = PD^2 + DE^2 = 5a^2,$$

$$B_1 E^2 = B_1 D_1^2 + D_1 E^2 = 32a^2 + 9a^2 = 41a^2$$

$$B_1P^2 = B_1B^2 + BA^2 + AP^2 = 16a^2 + 16a^2 + 4a^2 = 36a^2$$
, $B_1P = 6a$.

Поскольку $5a^2 + 36a^2 = 41a^2 = B_1E^2 = PE^2 + B_1P^2$, по теореме, обратной теореме Пифагора, получаем, что $\angle EPB_1 = 90^\circ$, т. е. прямая BQ перпендикулярна прямой B_1P .

б) Поскольку прямая BQ перпендикулярна прямой B_1P , проекции точек B и Q на прямую B_1P совпадают. В прямоугольном треугольнике BB_1P имеем

$$\cos \angle HPB = \frac{HP}{PB} = \frac{PB}{PB_1}$$
, откуда $HP = \frac{PB^2}{PB_1} = \frac{6^2 + 12^2}{18} = 10$.

Ответ: б) 10.

Содержание критерия				
Имеется верное доказательство утверждения пункта а, и	2			
обоснованно получен верный ответ в пункте δ				
Верно доказан пункт а.	1			
ИЛИ				
Верно решён пункт δ при отсутствии обоснований в пункте a				

Решение не соответствует ни одному из критериев, перечис-	0
ленных выше	
Максимальный балл	2

Решите неравенство
$$\frac{x^4 - 2x^3 + x^2}{x^2 + x - 2} - \frac{2x^3 + x^2 + x - 1}{x + 2} \le 1.$$

Решение.

Запишем исходное неравенство в виде

$$\frac{x^4 - 2x^3 + x^2}{x^2 + x - 2} - \frac{2x^3 + x^2 + x - 1}{x + 2} \le 1;$$

$$\frac{x^2(x - 1)^2}{(x + 2)(x - 1)} - \frac{2x^3 + x^2 + 2x + 1}{x + 2} \le 0;$$

$$\begin{cases} -x^3 - 2x^2 - 2x - 1 \\ x + 2 \end{cases} \le 0,$$

$$\begin{cases} x \ne 1; \\ x + 2 \end{cases}$$

$$\begin{cases} \frac{(x + 1)(x^2 + x + 1)}{x + 2} \ge 0, \\ x \ne 1; \end{cases}$$

$$(-\infty; -2), [-1; 1), (1; +\infty).$$

Othet: $(-\infty; -2), [-1; 1), (1; +\infty).$

Содержание критерия	Баллы
Обоснованно получен верный ответ	2
Решение содержит вычислительную ошибку, возможно, приведшую	1
к неверному ответу, но при этом имеется верная последовательность	
всех шагов решения	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	2

- 16
- Окружность проходит через вершины B и C треугольника ABC и пересекает AB и AC в точках C_1 и B_1 соответственно.
- а) Докажите, что треугольник ABC подобен треугольнику AB_1C_1 .
- б) Найдите радиус данной окружности, если $\angle A$ =45°, B_1C_1 =6 и площадь треугольника AB_1C_1 в восемь раз меньше площади четырёхугольника BCB_1C_1 .

Решение.

3

а) Заметим, что $\angle AB_1C_1 + \angle C_1B_1C = 180^\circ$. Четырёхугольник BCB_1C_1 вписан в окружность, поэтому $\angle C_1BC + \angle C_1B_1C = 180^\circ$.

Значит, $\angle AB_1C_1 = \angle C_1BC = \angle ABC$. Следовательно, треугольники ABC и AB_1C_1 подобны по двум углам.

б) Площадь треугольника AB_1C_1 в восемь раз меньше B площади четырёхугольника BCB_1C_1 , поэтому площадь треугольника ABC в девять раз больше площади треугольника AB_1C_1 и коэффициент подобия этих треугольников равен 3.

Пусть $AB_1 = x$, тогда AB = 3x. Найдём BB_1 по теореме косинусов:

$$BB_1^2=x^2+9x^2-6x\cdot x\cdot \cos 45^\circ=x^2\left(10-3\sqrt{2}\right)$$
. Следовательно,
$$BB_1=x\sqrt{10-3\sqrt{2}}\ .$$

Теперь по теореме синусов из треугольника АВВ₁ получаем

$$\frac{AB}{\sin \angle AB_1B} = \frac{BB_1}{\sin \angle A}; \quad \sin \angle AB_1B = \frac{AB}{BB_1}\sin \angle A.$$

Но $\sin \angle AB_1B = \sin \angle BB_1C$, поскольку синусы смежных углов равны. Получаем

$$\sin \angle BB_1C = \frac{AB}{BB_1}\sin \angle A = \frac{3x}{x\sqrt{10-3\sqrt{2}}} \cdot \frac{\sqrt{2}}{2} = \frac{3\sqrt{2}}{2\sqrt{10-3\sqrt{2}}}.$$

Теперь находим радиус окружности, описанной около треугольника BB_1C :

$$2R = \frac{BC}{\sin \angle BB_1C} = 6\sqrt{20 - 6\sqrt{2}} \; ; \; R = 3\sqrt{20 - 6\sqrt{2}} \; .$$

Ответ: 6) $3\sqrt{20-6\sqrt{2}}$.

Содержание критерия				
Имеется верное доказательство утверждения пункта a , и	3			
обоснованно получен верный ответ в пункте δ				
Обоснованно получен верный ответ в пункте δ .	2			
ИЛИ				
Имеется верное доказательство утверждения пункта а, и при				
обоснованном решении пункта δ получен неверный ответ из-за				
арифметической ошибки				

Имеется верное доказательство утверждения пункта а.	1
ИЛИ	
При обоснованном решении пункта δ получен неверный ответ из-за	
арифметической ошибки.	
ЙЛЙ	
Обоснованно получен верный ответ в пункте δ с использованием	
утверждения пункта a , при этом пункт a не выполнен	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	3

15 сентября планируется взять кредит в банке на 12 месяцев. Условия его возврата таковы:

- 1-го числа каждого месяца долг возрастает на 4 % по сравнению с концом предыдущего месяца;
- со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
- 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца.

Какую сумму следует взять в кредит, чтобы общая сумма выплат после полного погашения равнялась 1,26 млн рублей?

Решение.

Пусть сумма кредита равна *S*. Долг перед банком по состоянию на 15-е число должен уменьшаться до нуля равномерно:

$$S; \frac{11}{12}S; \frac{10}{12}S; ...; \frac{1}{12}S; 0.$$

По условию 1-го числа каждого месяца долг возрастает на 4 %. Значит, последовательность размеров долга по состоянию на 1-е число такова:

$$1,04S; 1,04 \cdot \frac{11}{12}S; 1,04 \cdot \frac{10}{12}S; ...; 1,04 \cdot \frac{1}{12}S.$$

Таким образом, выплаты должны быть следующими:

$$0.04S + \frac{S}{12}$$
; $\frac{11 \cdot 0.04S + S}{12}$; ...; $\frac{2 \cdot 0.04S + S}{12}$; $\frac{0.04S + S}{12}$.

Всего следует выплатить

$$S + S \cdot 0.04 \left(1 + \frac{11}{12} + \dots + \frac{2}{12} + \frac{1}{12} \right) = S \left(1 + \frac{13 \cdot 0.04}{2} \right) = 1,26S.$$

По условию 1,26S=1,26 млн рублей. Значит, сумма, взятая в кредит, равна 1 млн рублей.

Ответ: 1 млн рублей.

Содержание критерия	Баллы
Обоснованно получен верный ответ	3
Верно построена математическая модель, решение сведено	2
к исследованию этой модели, получен неверный ответ из-за вычислительной ошибки	
вычислительной ошиоки	
Верно построена математическая модель, и решение сведено	1
к исследованию этой модели, при этом решение не завершено	
Решение не соответствует ни одному из критериев,	0
перечисленных выше	
Максимальный балл	3

Найдите все значения параметра a, при каждом из которых множество значений функции $y = \frac{5a + 150x - 10ax}{100x^2 + 20ax + a^2 + 25}$ содержит отрезок [0;1].

Решение.

5

Запишем функцию в виде $y = \frac{5a + 10(15 - a)x}{(10x + a)^2 + 25}$. Если при некоторых

значениях a существуют такие числа $x_0,\ x_1,$ что выполняются равенства

$$0 = \frac{5a + 10(15 - a)x_0}{(10x_0 + a)^2 + 25} \quad \text{и} \quad 1 = \frac{5a + 10(15 - a)x_1}{(10x_1 + a)^2 + 25}, \quad \text{то отрезок [0; 1] будет}$$

принадлежать множеству значений данной функции.

Первое уравнение: $0 = \frac{5a + 10(15 - a)x}{(10x + a)^2 + 25}$; 10(a - 15)x = 5a. Уравнение имеет

решение при любом $a \neq 15$

Второе уравнение:
$$1 = \frac{5a + 10(15 - a)x}{(10x + a)^2 + 25}$$
; $100x^2 + 30(a - 5)x + a^2 - 5a + 25 = 0$.

Уравнение имеет решение тогда и только тогда, когда его дискриминант неотрицателен: $D = 900(a-5)^2 - 400(a^2 - 5a + 25) \ge 0$;

$$500(a^2 - 14a + 25) \ge 0$$
; $(a - 7 + 2\sqrt{6})(a - 7 - 2\sqrt{6}) \ge 0$. Решением этого неравенства является множество $(-\infty; 7 - 2\sqrt{6}], [7 + 2\sqrt{6}; +\infty)$.

Следовательно, условию задачи удовлетворяют только все значения $a \in (-\infty; 7-2\sqrt{6}] \cup [7+2\sqrt{6};15] \cup (15;+\infty)$.

Other:
$$\left(-\infty; \ 7-2\sqrt{6}\right], \left[7+2\sqrt{6};15\right), \ \left(15; +\infty\right).$$

Содержание критерия	Баллы
Обоснованно получен верный ответ	4
С помощью верного рассуждения получено множество значений а,	3
отличающееся от искомого конечным числом точек	
С помощью верного рассуждения получены все граничные точки	2
искомого множества значений а	
Верно найдена хотя бы одна граничная точка искомого множества	1
значений а	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	4

На доске написаны все пятизначные числа, в десятичной записи которых по одному разу встречаются цифры 3, 4, 5, 6 и 7 (34567, 34576 и т. д.).

- а) Есть ли среди них число, которое делится на 55?
- б) Есть ли среди них число, которое делится на 505?
- в) Найдите наибольшее из этих чисел, делящееся на 11.

Решение.

- а) Да. Например, число $63745 = 55 \cdot 1159$.
- $\frac{6)}{abcde}$, где a, b, c, d и e это различные, расставленные в некотором (возможно, ином) порядке цифры 3, 4, 5, 6 и 7. Поскольку число $\frac{abcde}{abcde}$ делится на $505 = 101 \cdot 5$, получаем, что оно делится на 101 и 5. Значит, e = 5.

Имеем
$$\overline{abcde} = \overline{abcd5} = 100 \cdot \overline{abc} + \overline{d5} = 101 \cdot \overline{abc} - (\overline{abc} - \overline{d5}).$$

Следовательно, разность $\overline{abc}-\overline{d5}$ делится на 101 и найдётся такое натуральное число $k\leq 9$, что $\overline{abc}-\overline{d5}=101\cdot k$. Так как c может принимать значения 3, 4, 6 или 7, отсюда получаем, что k может принимать значения 8, 9, 1 или 2 соответственно. Если $k\geq 8A$, то $a\geq 8$. Если $k\leq 2$, то $a\leq 2$. Пришли к противоречию.

в) Пусть \overline{abcde} — это десятичная запись какого-либо числа с доски. Имеем $\overline{abcde} = a \cdot 10^4 + b \cdot 10^3 + c \cdot 10^2 + d \cdot 10 + e = = (a - b + c - d + e) + 11 \cdot (a \cdot 909 + b \cdot 91 + c \cdot 9 + d)$.

Число \overline{abcde} делится на 11 тогда и только тогда, когда число a-b+c-d+e делится на 11. Сумма цифр каждого из чисел с доски равна a+b+c+d+e=3+4+5+6+7=25.

Значит, a-b+c-d+e=25-2(b+d). Поскольку b+d может принимать значения от 7 до 13, получаем, что число \overline{abcde} делится на 11 тогда и только тогда, когда b+d=7, то есть когда b и d — это различные, расставленные © СтатГрад 2019–2020 уч. г.

в некотором (возможно, ином) порядке цифры 3 и 4. Среди чисел указанного вида наибольшим числом на доске является 74635.

Ответ: : а) Да; б) нет; в) 74635.

Содержание критерия	Баллы
Получены верные обоснованные ответы в пунктах a , δ и ϵ	4
Получены верные обоснованные ответы в пунктах а и б, либо	3
получены верные обоснованные ответы в пунктах а и в	
Получен верный обоснованный ответ в пункте δ , пункты a и b не	2
решены, либо получен верный обоснованный ответ в пункте ϵ ,	
пункты a и δ не решены	
Приведён пример в пункте a , пункты δ и ϵ не решены	1
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	4