- 3. Para el siguiente ejercicio es necesario usar R.
- a) Considere una moneda desequilibrada que tiene probabilidad p de obtener águila. Usando el comando sample, escriba una función que simule N veces lanzamientos de esta moneda hasta obtener un águila. La función deberá recibir como parámetros a la probabilidad p de obtener águila y al número N de veces que se repite el experimento; y tendrá que regresar un vector de longitud N que contenga el número de lanzamientos hasta obtener un águila en cada uno de los N experimentos.
- b) Usando la función anterior simule  $N=10^4$  veces una variable aleatoria Geom(p) para p=0.5, 0.1, 0.01. Grafique las frecuencias normalizadas en color azul. Sobre está última figura empalme en rojo la gráfica de la función de masa correspondiente. ¿Qué observa?
- c) Repita el inciso anterior para  $N=10^6$ . Además calcule el promedio y la desviación estándar de las simulaciones que realizó ¿Qué observa?
- 4. Usando las ideas del inciso anterior escriba una función en R que simule N veces los lanzamientos de moneda hasta obtener r águilas. La función deberá recibir como parámetros a la probabilidad p de obtener águila, al número r de águilas a observar antes de detener el experimento y al número N de veces que se repite el experimento; y tendrá que regresar un vector de longitud N que contenga el número de lanzamientos hasta obtener las r águilas en cada uno de los N experimentos. Grafique las frecuencias normalizadas de los experimentos para  $N=10^6$ , p=0.2,0.1 y r=2,7 y compárelos contra la función de masa de la distribución más adecuada para modelar este tipo de experimentos.
- 5. Escriba una función en R que simule una aproximación al proceso Poisson a partir de las 5 hipótesis que usamos en clase para construir tal proceso. Usando esta función, simule tres trayectorias de un proceso Poisson  $\lambda=2$  sobre el intervalo [0,10] y grafíquelas. Además simule  $10^4$  veces un proceso de Poisson N con  $\lambda 1/2$  y hasta el tiempo t=1. Haga un histograma de N(1) en su simulación anterior y compare contra la distribución de Poisson correspondiente.
- 6. Este es un problema al que se recurrirá en el futuro, su intención es que empiecen a jugar con datos reales. El archivo Delitos.csv contiene información sobre los delitos denunciados en la ciudad de Aguascalientes, para el período comprendido entre enero de 2011 a junio del 2016. Dicho archivo contiene 5 columnas: la primera columna contiene la fecha de denuncia del delito; la columna TIPO muestra una descripción del tipo de delito; la columna CONCATENAD presenta un descripción más amplia del delito; la columna SEMANA contiene la semana del año a la que corresponde la fecha de denuncia; y la columna SEMANA\_COMPLETAS indica la semana a lo largo del estudio en la cual se presentó la denuncia. A través de métodos gráficos (e.g. boxplots) traten de determinar el comportamiento semanal de los delitos y discutan alternativas de modelos para describir los delitos cometidos en forma relativamente apropiada.