DTIC FILE COPY

COMPARING THE EFFECTIVENESS OF TWO KC-10 CONCEPTS OF OPERATION
--AN EXAMINATION OF TANKER/AIRLIFT SUPPORT IN A FIGHTER DEPLOYMENT TO EUROPE

THESIS

JOHN DAVIS HUNSUCK, JR. CAPTAIN, USAF

AFIT/GST/ENC/86J-1

Approved for public release; distribution unlimited.

86 10 7 17

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

SECURITY C	LASSIFICATI	ON OF THIS	TAGE			0. / 1/2	σ / σ						
				REPORT DOCUME	NTATION PAG	E							
18. REPORT SECURITY CLASSIFICATION					16. RESTRICTIVE MARKINGS								
	ASSIFIE		THORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT								
Za. SECURI	IT CEASSIFIC		THORITI		1			50.					
2b. DECLAS	SIFICATION	DOWNGRA	DING SCHEE	ULE	Approved for public release; distribution unlimited.								
4. PERFOR	MING ORGAN	IZATION R	EPORT NUM	BER(S)	5. MONITORING OF	IGANIZATION R	EPORT NUMBI	ER(S)					
AFIT	r/gst/en	IC/86J-	·1					;					
	FPERFORMI OOL OF E			6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MONITORING ORGANIZATION								
				AFIT/ENS	5	0							
ł	SS (City, State			. .	7b. ADDRESS (City,	State and ZIP Co.	16)	,					
				rechnology nio 45433									
	F FUNDING/	SPONSORIN	IG	6b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER								
Sc. ADDRE	SS (City, State	and ZIP Cod	le)	<u> </u>	10. SOURCE OF FUI	NDING NOS.							
					PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT					
See	include Securit box 19.		(on)										
Johr				, B.S., Capt,	USAF								
	OF REPORT		13b. TIME C		14. DATE OF REPORT (Yr., Mo., Dey) 15. PAGE COUNT 1986 June 259								
	Thesis	OTATION	FROM	To	1986 June 259								
17.	COSATI	CODES		18. SUBJECT TERMS (C	ontinue on reverse if no	ccessary and identi	ly by block nu	mber)					
FIELD	GROUP	SUE	. GR.	Operations	Research Mathematical Models								
15	07	-			ations Deployment KC-10								
10 40570	CT (Continue	On severe i	, negerator en	Tanker Aircra I identify by block number		ategy							
Titl	Le: Con	paring KC-10 An exa	the E Conce mination	ffectiveness of Operation of Tanker/oloyment to E	of ion Airlift Supp	port							
Thes	Thesis Advisor: Daniel E. Reynolds Assistant Professor Department of Mathematics and Computer Science												
					Air i Wrig	E. WELAVER for Research and Force Institute of T. 21-Patterson AFE	Professional Deschnology (ACC)	AFK nralopovik					
20. DISTRI	BUTION/AVA	LABILITY	OF ABSTRAC	T	21. ABSTRACT SECURITY CLASSIFICATION								
UNCLASSI	IED/UNLIMI	TED 🂢 SA	ME AS RPT.	OTIC USERS	UNCLASSIFIED								
22a. NAME	OF RESPONS	BLE INDIV	IDUAL		22b TELEPHONE NUMBER 22c. OFFICE SYMBOL (Include Area Cade)								
Dani	lel E. R	eynold	s		(513) 255-4185 AFIT/ENC								

Abstract

This thesis considers

This thesis is the first AFIT research to have considered how the <u>role</u> of the tanker affects Closure Time in a fighter deployment scenario. Two KC-10 concepts of operation (or "roles") were examined and compared for their effectiveness in deploying fighter squadrons from the CONUS to their forward bases. The two concepts evaluated were:

- 1) Dual Role, all KC-10s provided both airlift and air refueling (AR) on each mission.
- 2) Distinct Kole some KC-10s carried only cargo, while the other KC-10s were organized into Tanker Task Forces (TTFs) to provide only air refuelings.

Closure Time (latest arrival of fighters and cargo at the destination) was selected as the appropriate measure of effectiveness and its minimization was the objective. It was assumed that only KC-10s would be used, with no support from KC-135 tankers or C-141/C-5 airlifters.

This thesis provides a foundational "tutorial," describing the KC-10 operations in the context of a fighter deployment. A significant literature survey and an extensive bibliographical listing of relevant sources are also included.

A deterministic calculation of the Closure Time was developed. It was—then used to calculate the apportioning of Distinct Role Tankers among the TTFs. Graphical analysis was used to determine the apportioning of KC-10s between the TTF and Airlifter-Only missions. The deterministic TTF model was computerized to-provide a tool for calculating optimal KC-10 apportioning for any given set of fighter AR requirements. Two sources of aircraft flight performance data used in the analysis were the "Tanker" program provided by the Air Force Center for Studies and Analysis, and the "TAC Aircraft Profiler" program.

> Using the deterministic equations, it was shown that the fastest fighter Closure Time occurs when the KC-10 is used in the Distinct Role concept of operation.

1

COMPARING THE EFFECTIVENESS OF TWO KC-10 CONCEPTS OF OPERATION

--AN EXAMINATION OF TANKER/AIRLIFT SUPPORT IN A FIGHTER DEPLOYMENT TO EUROPE

Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the
Requirements for the Degree of
Master of Science in Operations Research

John Davis Hunsuck, Jr., B.S.

Captain, USAF

June 1986

Approved for public release; distribution unlimited.

RE: Classified References, Distribution Unlimited
No change per Ms. Amy Moore, AFIT/EN

Preface

The purpose of this thesis was to explore two KC-10 concepts of operation in support of a large-scale fighter deployment. A new term, "Distinct Role," was coined to refer to the concept where some KC-10s perform solely as tankers while others perform only as airlifters. It should be pointed out that, although the deterministic methodology was designed to apportion KC-10s among several fighter air refueling tracks, it will work just as well for any type of receiver.

Since there was so little published research in this topic area, I developed a special "Tutorial" section in this thesis. Also included are an extensive Literature Review and Bibliography. I can also provide copies of the computer source codes on a 5 1/4 inch floppy disk.

I am endebted to Mr M.E. Estes (AFCSA/SAGM), the Sponsor of this research, for many willing hours on the telephone and for vital feedback.

To my Advisor, Professor Dan Reynolds, I am appreciative of your willingness to let me freewheel with creative approaches to this problem, and for your for perserverance in "polishing" this paper.

To my Reader, Major Ken Feldman, I appreciate your practical critiques--your insight was always on target.

And most importantly, I thank my wife, Barbara, and my son, Michael. There are no words to express the value of your loving support during these endless months. The deadlines always came hard, and you have both paid dearly in lost sleep when you stayed up with me, and in the loneliness of empty arms when I spent the night with my studies. Your sacrifices have made this thesis possible, and it is truly yours as much as it is mine. We are endebted to our caring God, whose strength and love have carried us through together as a family.

Table of Contents

PREL	IMINARIES	Page
	Preface and the Acknowledgements	iii
	Table of Contents	iv
	List of Tables	v i
	List of Figures	vii
	Abstract	i
ı.	THE PROBLEM AND ITS SETTING	
	Introduction	1-1
	Statement of Problem	1-4
	Methodology Overview	1-5
	The Delimitations	1-9
	Scenario Assumptions	1-10
	Overview of Thesis	1-14
II.	TUTORIAL OF KC-10 OPERATIONS	
	Introduction	2 - 1
	Fighter Deployment Concepts	2-1
	KC-10s in the TTF Operation	2-15
	Airlift Operations	2-22
	Dual Role KC-10s	2-27
ш.	THE LITERATURE REVIEW	
	Introduction	3-1
	A Journal Publication	3-1
	AFIT These	3-3
	Computer Programs	3-9
		3-15
		3-17

IV. METHODOLOGY

	Two N	lë t i	ode	o l	og:	i e s	3																4-1
	Dete	rmi	nis	s t	i c	A	SS	u m	D	tio	on:	S			•			•	•	•	•		4 - 3
	Disti											-		•	•			Ĭ	Ĭ	•	•	•	- 0
			cu								T	i me	•	for	, ,	ГТŦ	7			_			4 – 4
		Dei	ive	a t	ioi	n c	o f	tl	he	ጥ	rF	Ar	ם ממ	5 r 1	l i d	onn	ne n	its	•	•	•	•	4-10
		Con	npu	t e	ri	zec	i N	100	de	1	••				•				_	•		•	4-23
	Disti	nei	R	. I	e /	Ain	 • 1 i	f	t e	- r-⁄	n i	lv	K	1 1	เกิง	•	•	•	•	•	•	•	1 20
	ar ar	id I)11 6 1	1	Roj	ما	KC		1 0	• `	, 11	J	***	,									4-26
	Concl	iu i	on.	•			120	•		٠.	•	•	•	•	•	•	•	•	•	•	•	•	4-32
	Conci	usi	Oil	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4-34
٧.	ANALY	'S I S	S Ai	ND.	R	ESU	JLT	S															
	Intro	duc	etic	on	•	•																	5-1
	Closu	ıre	Tin	ne	Re	esi	ılt	S						•		•					•	•	5-1
	Sensi	tiv	/itv	7	Ana	alv	si	S															5-2
		TTI	E	ju	a t	i or	าร						•		•	•					•		5-2
		Ana	lys	s i	s c	o f	Αi	r	li	fte	יין	-0	n I	lv	Ē	ดนร	iti	on	S	٠	Ĭ	•	5-12
		Ana	llys	s i	s (o f	Du	a	1	Ro	l e		•	- 5		1		•		•	•	٠	
			Cid									or	2.1							_	_		5-15
	Signi	fic																					5-17
	Selec	etir	10' (o f	Be	es 1	. F	a c	e t	or	Se	• f f	·ir	105					•		•	•	5-19
	Conce	en t	ີດ f	R	e fi	ie l	 Iin	or	ŧ	he	ות	ıal	1	}∧]	ما	ĸc	·- 1	n e	•	•	•	•	5-20
	Summa																						5-24
	Dunina	ıı y	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3-44
VI.	CONCI	របនរ	ONS	3 ,	ANI	O F	REC	O)	MM	ENI)Aí	ΓIC)NS	8									
	Conel	usi	ons	3								•											6-1
	Recon				ons	S				_									•			•	6-1
					• • • •	-	•	•	·	·		•	•	•	•	•	•		•	•	•	·	• •
Anna	endix	Δ.	Λŀ	٠h٠	80 1	rio	. + i	Λr		18	. <i>a</i>	De	. •	n i		iar							A-1
	endix									TF						. 01	13	•	•	•	•	•	W-1
Thhe	HUIX	υ,	De							tρι													B-1
Anna	endix	٥.	11.7	ro i	いない	a Br	ימוו רוו	1 (Ju Fo		1 6	•	•	•	•	•	•	•	•	•	•	•	C-1
	endix					bii er.										•							D-1
	endix									ano													E-1
	endix									wee										ž •	٠	•	E-1
whhe	TIDIT.	Г;																					F-1
Anna	ndiv	٥.	01		411	יונ מוני	, 11 E		m	Tı on) B.	:KS	; . 1	•	•	•	•	•	٠	•	•	•	
whhe	endix	u:	21	ıAl	AT 5	51 II	ıu 1	દ્ધા	LI	υn	IVIC	o a e	; ţ	•	•	•	•	•	•	٠	•	•	G-1
Bibl	iogra	phy		•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	BIB-1
Ou a 1	: f : o o			_		. h.	מנ				, h a		/١	, , ,	٠ , ،	`						,	/ T (T) A 1

List of Tables

Table		Page
2.1	KC-10 Passenger and Cargo Combinations	2-23
2.2	KC-10 Air Crew Duty Day Limits	2-25
2.3	Weight of Fuel Offload and Cargo Transport per Fighter	2 - 27
2.4	Dual role Payload and KC-10 Fuel Requirements	2 - 28
3.1	Known KC-10 Distributions for Use in Simulation	3-13
4.1	Summary of Notational Abbreviations	4-12
4.2	Apportionment of TTF KC-10s Among AR Tracks	4-20

List of Figures

Figure		Page
1.1	Map of TTF Locations Relative to the Deployment Route	1-13
2.1	Three-View Drawing of the F-16	2-3
2.2	F-16 Air Refueling Tracks	2-3
2.3	Three-View Drawing of the F-15	2 - 4
2.4	F-15 Air Refueling Tracks	2-4
2.5	Three-View Drawing of the F-111	2-5
2.6	F-111 Air Refueling Tracks	2-5
2.7	Three-View Drawing of the RF-4C	2-6
2.8	RF-4C Air Refueling Tracks	2-6
2.9	Three-View Drawing of the KC-10	2-7
2.10	Map of KC-10 Home Bases and TTF Bases	2-7
2.11	Map of Fighters Refueled by TTF KC-10s	2-10
2.12	Map of Fighters Refueled by Dual Role KC-10s	2-10
2.13	Distinct Roles Flowplan TTF	2-20
2.14	Distinct Roles Flowplan Airlifter	2-21
2.15	Comparison of Airlifter Pallet Capabilities	2-24
2.16	Dual Role Flowplan	
4.1	Flow Illustration	4 – 4
4.2	Graphical Illustration of Fighter Arrivals, Related to Deterministic TTF Closure Time Equations	4-6
4.3	Overview of Deterministic Computer Program	
4.4	Input to Deterministic Program	
4.5	Deterministic Program Logic	

5.1	Summary of Closure Time Results 5-1
5.2	Sensitivity of Closure Time to changes in TTF Ground Time
5.3	Sensitivity of Closure Time to the Number of TTF KC-10s
5.4	Sensitivity of Closure Time to Fighter-Tanker Ratio 5-10
5.5	Sensitivity of Closure Time to TTF Reliability . 5-11
5.6	Hypothetical Maintenance Repair Time Distribution
5.7	Sensitivity of Cargo Closure Time to the Number of KC-10s and Cargo Weight 5-14
5.8	Apportionment of KC-10s Between TTF and Airlifter Missions
5.9	Dual Role Closure Time vs. Total Number of KC-10s 5-16
5.10	Cummulative Arrival of Fighters and Cargo for Dual and Distinct Role Deployments 5-17

Abstract

This thesis is the first AFIT research to have considered how the <u>role</u> of the tanker affects Closure Time in a fighter deployment scenario. Two KC-10 concepts of operation (or "roles") were examined and compared for their effectiveness in deploying fighter squadrons from the CONUS to their forward bases. The two concepts evaluated were:

- 1. Dual Role: all KC-10s provided both airlift and air refueling (AR) on each mission.
- 2. Distinct Role: some KC-10s carried only cargo, while the other KC-10s were organized into Tanker Task Forces (TTFs) to provide only air refuelings.

Closure Time (latest arrival of fighters and cargo at the destination) was selected as the appropriate measure of effectiveness and its minimization was the objective. It was assumed that only KC-10s would be used, with no support from KC-135 tankers or C-141/C-5 airlifters.

Since there was no previously published literature to explain the operational concepts, this thesis provides a foundational "tutorial," describing the KC-10 operations in the context of a fighter deployment.

Initially, a simulation model was chosen as the methodology for studying the two KC-10 "roles," since it could duplicate the queuing and uncertainties of the operations. The simulation model was left in the prototype stage when it was discovered that several complex problems relating to the scheduling of TTF sorties had not yet been solved.

A deterministic calculation of the Closure Time was developed. It was then used to calculate the apportioning of Distinct Role Tankers among the TTFs. Graphical analysis was used to determine the apportioning of KC-10s between the TTF and Airlifter-Only missions. The deterministic TTF model was computerized to provide a tool for calculating optimal KC-10 apportioning for any given set of fighter AR requirements. Two sources of aircraft flight performance data used in the analysis were the "Tanker" program provided by the Air Force Center for Studies and Analysis, and the "TAC Aircraft Profiler" program.

Using the deterministic equations, it was shown that the fastest fighter Closure Time occurs when the KC-10 is used in its Distinct Roles.

COMPARING THE EFFECTIVENESS OF TWO KC-10 CONCEPTS OF OPERATION

--AN EXAMINATION OF TANKER/AIRLIFT SUPPORT OF A FIGHTER DEPLOYMENT TO EUROPE

I. Problem Statement and Setting

Introduction

The KC-10 Mission in the Strategy of Forward Defense.

The US strategy for protecting its interests and commitments worldwide is called forward defense. Implementation of the forward defense strategy consists of two military tactics:

- 1. Forward basing--the semi-permanent positioning of military forces in a foreign nation.
- 2. Reinforcement--the augmenting of forward based military forces with units from the CONUS.

Clearly, the forward based forces, such as our fighter squadrons stationed in Europe, would be capable of an immediate military response to a threat. It is not possible, however, to forward-base large military forces in every threat location across the globe. Instead, the United States positions small forces in foreign nations, relying on our ability to rapidly deploy reinforcements from their home bases in the CONUS to wherever they are needed in time of conflict. Reinforcement, therefore, meets the need for flexibility, and allows many of the military people to be based in the USA, at a lower cost (8:2).

The obvious drawback of reinforcement is the necessity for an extensive "lift" capability to quickly move the military forces across the ocean. While the bulk of the load will be moved by ship, this may take 15 to 20 days to begin arriving (reference 10--only UNCLASSIFIED portions were used). Therefore, high urgency items must be sent by air:

The ability of the United States to sucessfully deter aggression, limit conflict, or wage war depends on our ability to rapidly deploy and sustain fighting units. Airlift provides the capability to deliver forces where they are needed in time to make a difference (Joint SECAF and CSAF Memorandum, 29 September 1983) (22:97).

The KC-10A Extender is being added to the Air Force inventory to ensure rapid deployment of tactical fighter squadrons called upon to carry out this mission of aerial reinforcement.

KC-10 Capabilities. The KC-10 has the unique capability of transporting both cargo and transferable fuel (for offload to receivers via inflight refueling.) Thus, the KC-10 is the first aircraft which can operate either as an airlifter or as a tanker, or both.

Because the KC-10 can play multiple-roles, its introduction into the Air Force inventory has been accompanied by controversy. Part of the sensitivity surrounding the KC-10 is the "who shall control" question, which results from the fact that it can refuel any type of receiver, including Strategic Air Command (SAC) bombers, Military Airlift
Command (MAC) airlifters, Tactical Air Command (TAC)
fighters, and even Navy and Allied drogue-refueled aircraft.
MAC is interested in KC-10 ownership because the KC-10 does
have a significant airlift capability--much more than MAC's
main work horse, the C-141B. In historical context, SAC was
given charge of all tankers because the highest-priority
refueling mission was to refuel SAC's bombers in the SIOP
(the nuclear Single Integrated Operations Plan). Presently,
only KC-135s are tasked to refuel SIOP bombers, and although
SAC owns and operates the KC-10, the KC-10 currently has no
part in the SIOP.

Even though each Command wants the KC-10 to play a role supporting its own self-interests, this research was not motivated by a desire to "justify" any Command's position. While it is likely the final conclusions of the thesis will "add fuel to someones fire," the author has sincerely tried to provide an unbiased examination of the KC-10 roles. Specifically, the question of how to most effectively utilize the KC-10 in support of deploying TAC squadrons (fighter, support equipment, and personnel) has been addressed.

The analysis involved the study and evaluation of KC-10s serving in one or the other of two major roles during the deployment of fighter squadrons:

- 1. <u>Dual role</u>: all KC-10s operate as tanker/airlifters. This means that the KC-10s deploy with the fighters, refueling them enroute and carry their support equipment and personnel to the destination.
- 2. <u>Distinct role</u>: For this scenario, some KC-10s serve as airlifters, while other KC-10s function as tankers. The tanker-only KC-10s fly "round-robin" (or yo-yo) missions: providing air refuelings and returning to their launch base. They are organized into Tanker Task Forces (TTFs) based at locations close to the deployment route.

The Statement of the Problem

The effectiveness of the roles KC-10s can play during the deployment of fighter squadrons to Europe needs to be evaluated.

This thesis solved the problem of determining the preferred role for KC-10s by achieving four objectives:

- 1. Develop an appropriate model to calculate the effectiveness of the deployments for each KC-10 role. (The measure of effectiveness is described in the next section).
- 2. Evaluate the sensitivity of the deployment effectiveness to changes in the following factors:
 - a. reliability of the KC-10
 - b. ratio of fighters to KC-10s for air refuelings
 - c. location of the Tanker Task Force (in the distinct roles concept)

- 3. Select the combination of the above three factor settings that produces the best performance for each role.
- 4. Develop an analytic procedure that will reveal any significant difference in effectiveness between the Dual Role and Distinct Roles KC-10 support of the fighter deployment.

Methodology Overview

Measure of Effectiveness (MOE). In order to measure how effectively each KC-10 role supported the fighter deployment, a Measure of Effectiveness had to be specified. Since the primary evaluation of the two KC-10 roles focused on the speed of the fighter deployment, Closure Time was selected as the MOE.

Closure Time was operationally defined as the time of arrival of the last fighter or the last item of cargo at the destination base in Europe.

Models. An appropriate method for determining Closure Time had to be developed in order to accurately determine Closure Time. An accurate model of the deployment process needed to be built. Both computer simulations and deterministic equations were used.

Simulation models were constructed to depict the individual actors and actions in the deployment process, including the fighter and KC-10 flights, the cargo handling, aircraft maintenance and preparation, and aircrew duty and rest. When the last fighter landed or the last piece of

cargo was unloaded, the clock was checked and the Closure Time was recorded.

Deterministic equations, developed intially for the purpose of checking the reasonableness of the MOEs produced by the computer simulation, were designed to calculate Closure Time by solving a rate-time equation. For instance, if 150 loads of cargo had to be moved, and the KC-10s could move 50 loads per day, then Closure Time would be calculated as 150/50 = 3 days. The complex part of constructing these equations involved finding ways to calculate the flow rate of cargo and fighters that could be sustained by the KC-10s.

Simulation. At the start of the research effort, it was thought the simulation models would be able to provide more information than the deterministic equations. It appeared such simulation models could provide valuable insights concerning the impact of random processes such as the duration of KC-10 maintenance and the variance in Closure Time, as well as facilitate a deeper understanding of complex systems dynamics. Thus, two simulation models were developed: one to model Dual Role and Airlifter KC-10s and another to model TTF K3-10s. These basic "prototype" models yielded results consistent with the deterministic Closure Time calculations.

At this point in the research effort, it was discovered that the problem of scheduling rendezvous times (ie: when the TTF KC-10s were to meet the fighters) could

not be handled by the simulation models. That is, the air refuelings could not be scheduled unless the following questions were answered:

- 1. How many KC-10s were at each TTF base?
- 2. How often would they fly?
- 3. What would be the required maintenance turn-around time for such a flying schedule?

Because the deterministic model could apportion the KC-10s among the TTF bases and could approximate the flying schedule with the flow rates based on an assumed value for the maintenance turn-around time, the research turned to the deterministic equations.

Deterministic Model By using a "best guess" value for TTF KC-10 ground turn-around time, (ie: by assuming turn-around time was not dependent on reliability or sortic rate), a KC-10 sortic rate was calculated. By breaking this interdependence of the turn-around time and reliability factors in the deployment, the deterministic equations were able, in addition to calculating Closure Time, to predict apportionment of TTF KC-10s to the AR tracks and TTF bases. Deterministic equations were also developed for calculating Closure Time for the Distinct Role Airlifter KC-10s and for Dual Role KC-10s. (All these equations are developed in Chapter IV.) The analysis of relative effectiveness of the

two KC-10 roles (Dual Role, Distinct Roles) was based on the Closure Times from these deterministic equations.

Both the methodology for determining TTF Closure Time and for apportioning KC-10s among several AR tracks and several TTFs were computerized.

The analysis of relative effectiveness of the two KC-10 Roles (Dual Role, Distinct Roles) was based on the Closure Times from these deterministic equations.

Sensitivity Analysis. The exact values for several parameters used in the deterministic model could not be specified with certainty. For instance, it was not known how "bulky" the cargo might be, thus creating uncertainty as to how much cargo could be carried by Distinct Role Airlifter KC-10s. Also, it was not clear how much maintenance would be required after each KC-10 sortie. The ground turn-around time for the KC-10, and the reliablity of the KC-10 for any given turn-around time, were unknown values and, hence, had to be estimated. Thus, it was important to find out how sensitive Closure Time would be to variation in these values.

The Closure Time sensitivity to predictable variation was obvious from the equations. For instance, Closure Time is known to be inversely proportional to the number of KC-10s. Many such senitivities were evaluated in this way by careful examination of the equations. To study more complex sensitivities several runs of deterministic model

had to be made to determine the variation that might be expected in values of unknown parameters.

The Delimitations

Although models could have been developed that were applicable to any scenario, time and manpower constraints dictated that the scope of this research be narrowed to examine a more specific scenario. Instead of modeling all of the individual fighter departure bases in the CONUS, bases were represented by one aggregate base located at theier geographical "centroid": McConnell AFB, Kansas. Hahn AB, Germany, was chosen as the "centroid" base for the European destinations (reference 13). This served three purposes.

- 1. The revealing of sensitive information about our capabilities or national weaknesses was precluded since actual deployment bases were not used.
- 2. The scale of the deployment was kept realistic by using a very large force of fighter squadrons. The use of a single route, with all the fighters flying the same mission routing, ensured effects due to fighter type would be readily observable.
- 3. Calculation time was reduced by an order of magnitude.

This simplified scenario of a single route between two "centroid" bases provided adequate representation of a major

deployment. Insight concerning KC-10 usuage could be gained, without getting bogged-down in the details of a more complex scenario.

Scenario Assumptions

To ensure the scenario was representative of a major fighter deployment eight assumptions were made.

- 1. It was assumed that unclassified data would provide an adequate foundation for assessment. This assumption was based on the reasoning that the relative effectiveness of the two KC-10 roles would be unchanged by small changes in routing or deployment scale. To keep this study unclassified, public sources and broad generalizations were used to create the hypothetical deployment scenario. For instance, instead of using actual information from the war plans, an unclassified peacetime deployment route was chosen (reference 23, 6). Similarly, the numbers of deploying fighters and tankers were assumed to be the 1990 aircraft inventories, as listed in Janes' All the World's Aircraft.
- 2. The locations of the fighter air refuelings (ARs) were assumed to be an unchangeable requirement. This meant that the KC-10s were forced to fly to wherever the fighters needed the refuelings. No attempt was made to optimize the given fighters' routing or refueling requirements. The routing and the AR Track locations were provided by Hq TAC/DOXD, in the form of printouts from the TACAP computer

program (reference 23). (See Appendix D for copies of the TACAP computer printouts. Maps showing the AR Track locations are presented in Chapter II.)

- 3. Only three TTF bases were used: Goose Bay, Canada; Loring AFB, Maine; and Mildenhall, England. Figure 1.1, on the following page, is a map showing these TTF Bases. In addition, this map shows the fighter deployment route from McConnell AFB, Kansas to the destination Hahn, Germany. Tanker Task Force Bases were selected based on proximity to the AR tracks, as well as publicly known ability to service fleets of large military aircraft including necessary fueling "pits" for fast service.
- 4. KC-10s at the TTF bases were unconstrained by time limits which are established by directives. This assumption freed the research from "planning" factors, so that potential capability could be demonstrated. The number of hours that would be flown by a KC-10 was limited only by how quickly maintenance and normal servicing could be accomplished.

Map of TTF Locations relative to the Deployment Route. Figure 1.1.

- 5. The USAF KC-10 was assumed to be solely responsible for the tanker/airlift support of the deploying fighter squadrons. Specifically, this meant that:
 - a. The alloted KC-10s were given no other duties.
 - b. No other tankers (ie: KC-135s) were available for support of the deployment.
- c. No other airlifters (ie: C-141s, C-5s) were available for support of the deployment.

 Thus, the research focused on the unaided capability of the KC-10.
- available to support the fighter deployment. This number represented the projected KC-10 procurement for the year 1990 as published in <u>Jane's All the Worlds' Aircraft</u> (1:321). This was probably somewhat optimistic in that some KC-10s might be assigned to other missions or may be unavailable due to maintenance, but was close enough to the true value to be useful. More importantly this number is unclassified.
- 7. The research scenario assumed that the fighters available for the deployment were 700 F-16s, 300 F-15s, 100 F-111s, and 100 RF-4Cs. This was derived from information in Jane's. For example, Jane's predicts an acquisition of 2800 F-16s (1:260). Many of these will be stationed at forward bases around the globe. One fourth of the total 2800 are assumed to be in the CONUS, and ordered to deploy. Therefore it was estimated that 700 F-16s would deploy. The

number of types of fighters was similarly determined. It should be pointed out that no F-4s (other than reconnais-sance RF-4Cs) were included since <u>Jane's</u> says they are being replaced by F-16 and F-15 aircraft. Similarly, A-7s were not included since they are not as capable as the F-16s. The deployment of A-10s was not modeled because they fly so slow as to require an overnight stay at the Azores for crew rest enroute to their destination. Thus, they couldn't fly the selected northern route.

8. Weather was considered to be favorable. In reality, adverse weather could cause the re-routing of missions, or even a lengthy delay. As soon as weather became favorable, however, the deployment would continue as planned under fair weather criteria.

This research provided the useful more information in fair weather.

Overview of Thesis

This first chapter has described the need for research concerning which role the KC-10 should play in a deployment to Europe of fighters and their associated cargo. The methodology used to accomplish this analysis has been outlined.

Chapter II, A Tutorial on KC-10 Operations, presents a detailed discussion concerning how the KC-10 is used in such fighter deployments. Since there is a severe lack of published information concerning the operation of tankers,

this section meets the need to provide a guide to understanding KC-10 operations. It is the product of numerous interviews of Air Force people involved in planning and flying tanker, fighter, and airlifter deployment missions.

Chapter III, The Literature Review, discusses the results of other research relevant to tanker/airlift support of fighter deployments. Several research tools are explored, followed by an explanation of why simulation was initially selected as the most desirable methodology for solving this specific problem.

Chapter IV, Methodology, describes the complexity of the scheduling and tanker apportionment problems which prevented the full development of the Simulation Models. In this chapter, the Deterministic Equations for finding the Closure Time, (and for solving the apportionment problems in the TTFs) are developed. A computerized model of the deterministic equations for TTF apportionment and Closure Time is also described.

Chapter V, Results and Analysis, graphically presents results of the modelling exercises, and states which role is better. Further insight is developed into the implications of the deterministic models. Also included are the results of sensitivity analysis performed on the models.

Finally, and most importantly, Chapter VI, Conclusions and Recommendations, discusses the conclusions reached during the course of this research, and provides recommendations for future analysis.

II. Tutorial of KC-10 Operations

Introduction

This chapter continues the scenario development of Chapter I by providing a detailed description of the fighters, their support equipment and personnel, and the KC-10s as they deploy to Europe. The following sections provide a description of actions, decisions, rules, options, delays, and sources of uncertainty in the KC-10 operations. The fighter actions are described first. Next, the interactions of the KC-10 and fighters are explained. Finally, the description is expanded to include cargo transportation by Airlifter-Mission KC-10s and by Dual Role KC-10s.

Fighter Deployment Concepts

In the hypothetical 1990 scenario, 1200 fighter aircraft (700 F-16s, 300 F-15s, 100 F-111s, 100 RF-4Cs) are located at the fighter launch base, McConnell AFB, Kansas, which is a "centroid" base representing all the bases in the CONUS. All the squadrons have just been notified that they must deploy immediately to Europe. Their destination is Hahn, Germany. The aircrews are ready in a very short time. Since the fighters have fairly short ranges they cannot cross the Atlantic non-stop (approximately 9.5 hours) unless refueled. Several air refuelings (ARs) are needed for the long transAtlantic mission (2 refuelings for F-16s and

F-111s; 3 for F-15s; 5 for RF-4s) So, the fighters must wait on the ground until a KC-10 air refueling becomes available. Figures 2.1 through 2.8 depict the fighters and their AR tracks. Figures 2.9 through 2.10 depict the KC-10 and the KC-10 bases.

Wingspan = 31 ft Length = 49 ft Height = 17 ft

pat abbooksti kaisistest i Woosen i somani o samani

Max TO Gross Wt = 35,400 lbs Ferry Range (with drop tanks) 2100 nm

Figure 2.1. Three-view Drawing of the F-16 from Janes All the World's Aircraft

Figure 2.2. F-16 Air Refueling Tracks

Wingspan = 43 ft Length = 64 ft Height = 18 ft Max TO Gross Wt = 58,470 1bs Ferry Range (unrefueled) 2500 nm

Figure 2.3. Three-view Drawing of the F-15 from Janes All the World's Aircraft

Figure 2.4. F-15 Air Refueling Tracks

Wingspan (spread) = 63 ft Max TO Weight = 91,500 lbs (swept) = 32 ft Range (Max Internal Fuel) Length = 73 ft 2750 nm Height = 17 ft

Figure 2.5 Three-view Drawing of the F-111 from Janes All the World's Aircraft

Figure 2.6. F-111 Air Refueling Tracks

Wingspan = 39 ft Length = 63 ft Height = 16 ft Max TO Gross Wt = 61,795 1bs Ferry Range = 1,718 nm

Figure 2.7 Three-view Drawing of the RF-4C from Janes All the World's Aircraft

Figure 2.8. RF-4C Air Refueling Tracks

Wingspan = 165 ft Length = 181 ft Height = 58 ft Max TO Gross Wt = 588,200 lbs Range w/Max Cargo = 3,797 nm. w/No Cargo = 9,993 nm

Figure 2.9. Three-view Drawing of the KC-10 from <u>Jane's All</u> the <u>World's Aircraft</u>

Figure 2.10. Map of KC-10 Home Bases and TTF Bases

Refuelings from a Tanker Task Force. When Air Refuelings are provided by TTF KC-10s, the fighters launch as necessary to meet a pre-planned rendezvous with the tanker (reference 24). Launching in flights of 4, 6, 8, the fighters fly alone until they rendezvous with the TTF KC-10. (The number of fighters in the flight is also called "fighter-tanker ratio".) Meanwhile the KC-10 launches from the TTF base for a rendezvous with the fighters at the ARCP (Air Refueling Control Point) at the pre-scheduled ARCT (Air Refueling Control Time). After the rendezvous, the KC-10 proceeds down the AR track, offloading the required fuel to each fighter in turn. Upon reaching the end of the AR track, the fighters continue alone to subsequent AR tracks. Meanwhile, the KC-10, while it has sufficient fuel, returns again to the ARCP to refuel subsequent flights of fighters. The KC-10 then returns to the TTF base for more fuel.

Dual Role KC-10 Air Refuelings. When air refuelings are provided by Dual Role KC-10s, the fighters launch simultaneously with the KC-10 which has been loaded with cargo at the fighter base. The fighters fly in close formation with the tanker all the way to the destination being refueled at the AR tracks along the way. At the destination, the fighters are readied for battle by the maintenance personnel who were carried on board the KC-10. When the KC-10 has been unloaded of all the fighters' support equipment, the KC-10 returns to the CONUS to pick up remaining fighters.

Figures 2.11 and 2.12 show the difference in KC-10 routing for refueling of fighters by TTF KC-10s and Dual Role KC-10s. Notice that the fighter path is unchanged (although the locations of the air refuelings are slightly changed). (See Appendix D for exact fighter route data.)

Figure 2.11. Fighters being refueled by TTF KC-10s.

Figure 2.12. Fighters being refueled by Dual Role KC-10s.

Three things can happen at each ARCP:

- 1. Success. The single KC-10 (or possibly a formation) is there, on time, as planned. KC-10 becomes Formation Leader. The flight of fighters fly down the AR track, each receiving, in turn, his pre-planned fuel onload from the single KC-10. At the end of the AR track (EAR point), the KC-10 returns the leadership of the fighter flight back to the lead fighter aircraft. The fighters continue on their designated flight plan route to the subsequent ARCP(s) and eventually, to the destination.
- 2. Fighter Abort due to Failed Rendezvous. High technology and highly trained aircrews make the difficult rendezvous nearly a certainty, given that both the KC-10 and the flight of fighters are mechanically fit to arrive at the ARCP. Thus, a failed rendezvous (RZ) is almost always due to a "No-show" by the fighters or tanker (reference 26).

If the KC-10 does not arrive at the ARCP by ARCT+10 minutes, the entire flight of fighters will fly to an AR "Abort Base" (reference 25). There are usually 2 or 3 bases that are suitable for any given abort, so the flight leader chooses the most suitable base as be deems fit.

3. Abort due to Failed Refueling after a Successful Rendebzvous. There are two sources of possible failed refueling, assuming that the KC-10 and fighter crews have sufficient skill and that weather is not a factor:

- a. Fighter is broken. The fighter's refueling system is a complex electrical and mechanical system. If a fighter's system is unable to function, then that one fighter, plus his wingman (always flying in pairs for mutual support) must fly to an abort base. (See Aborted Fighters) The other fighters that are functioning properly may receive their refuelings and continue their mission as planned, or they may all abort together as a flight. About 1% of the fighters will abort due to some mechanical failure. If the fighters abort together in flights of six, then 6% of the 1200 fighter will abort for this reason (reference: 25).
- b. KC-10 breaks in-flight. If the KC-10 is so badly broken that is can no longer provide AR, then any unrefueled fighters (and their wingmen) must abort. Because of the high reliability of the KC-10 air refueling system (it has many backup sub-systems), it is assumed that the refueling is successful, with a degraded AR system, must be fixed on the ground after the sortic (reference 27). Thus, a failed AR system would only affect subsequent KC-10 ground turn-around time, and not the current fighters. (There is a need for better statistics on the maintainability and reliability of the KC-10, to verify this assumption.)

Aborted Fighters: Once the aborting fighters have arrived safely on the ground at the abort base of choice, the fighter crews have their aircraft immediately refueled. At best, if there are no other aircraft ahead of them in a queue for service, the fighters could be ready for launch within one hour. A two or three hour turn-around time is reasonable, assuming no queuing (13:5).

NOTE: There is a definite maximum rate that aircraft that can abort to a base before the service capacity of that base is exceeded. As the service capacity is approached, longer turnaround times will result. There is also a severe deployment restriction which would occur if the entire ramp space at the abort base is filled with aborted fighters. This is called a Maximum On Ground, or MOG restriction (reference 25). Since a subsequent missed refueling would then result in the aborting fighter having no place to safely land, the ARs which depend on that abort base must be cancelled until such a time as the number of fighters on the ramp is less than the MOG. Thus, the deployment would halt. Obviously, it is very important to verify whether significant queuing will occur. This thesis, however, was not able to obtain sufficient information on ramp space and service. The deterministic equations are based on the assumption of no queuing for service or ramp space.

The aircrews must enter crew rest (for 12 hours) if insufficient time for another sortic remains within their maximum (15 hour) crew duty day (13:5). When exiting crew

rest, or if sufficient crew duty day remains, the aircrews can take one of three actions. (This thesis assumes the first action is taken.)

- 1. Rejoin the planned routing, getting ARs where originally planned. To do so would have the effect of "bumping back" all the subsequently planned fighters to the next AR available. Another option (which would have the same effect on Closure Time) would be for the aborted fighters to wait for the "end of the line," and take the AR after the last fighters have deployed. The effect on Closure Time is that one more TTF AR must be made available. Thus, only one "track lap" or, at most one more KC-10 launch, must be added to the schedule. For fighters that abort in the last day of the deployment, this would be the fastest way for them to get to their destination.
- 2. Fly directly (unrefueled) to the destination. This is feasible for the fighters which abort the last AR prior to the destination.

Contract contract contract contract

3. "Island Hopping". The fighters could continue toward their destination without any ARs at all, by flying several short "hops." For example, F-16s can fly unrefueled from St. Johns (the abort base) to Goose Bay, Canada. There they would land, refuel on the ground, launch again, and fly to Keflavik, Iceland. Subsequent "hops" would be flown via Leuchars and then to Hahn (the Destination). Accounting for 3-hour turnarounds at each enroute base, and one crew rest

crew rest. The KC-10, when ready, is refueled by the ground crews, and launches on its mission of providing refuelings to several flights of fighters. This thesis assumed that these actions take a total of 36 hours (Therefore the first fighters arrived in Europe after 45 hours.)

TTF Refueling Missions. On each sortie, the KC-10 will:

- 1. Fly directly to the ARCP for the rendezvous with its scheduled receivers (the flight of fighters). The KC-10 arrives 10 minutes prior to the planned ARCT and enters an AR orbit pattern. There it waits for the fighters to arrive, and prepares for the rendezvous.
- 2. After a successful rendezvous, the KC-10 will fly down the AR track, offloading the planned amount of fuel to the fighters, one at a time (taking 6-14 minutes per fighter, depending on the quantity of fuel transfered).
- 3. Upon arriving at the planned End AR Point (EAR), the KC-10 will around and fly back to the ARCP to enter orbit to prepare for the arrival of the next flight of fighters.
- 4. Repeat steps 2 and 3 with the KC-10 making laps of the AR track (we'll call them "track laps") until the KC-10 must return to the TTF Base for more fuel.

The number of "track laps" that are feasible for the KC-10 depends on:

1. Fuel on board at launch. This is calculated by

Max fuel Wt = Max TO Gross Wt - Cargo Wt - Aircraft Empty Wt

= 588,200 - 0 - 243,209 = 344,991 pounds,

This could be further limited by field conditions. The following regression equation explains Maximum Takeoff Gross Weight (TOGW) in pounds as a function of runway length (RL) and field elevation (or pressure altitude, PA) in feet (15:97):

TOGW = 187,083 - 8.125x(PA) + 47.5x(RL) - .0013542x(RL)x(RL)

- .0004688x(PA)x(RL)

For the TTF bases in this thesis, TOGW was not restricted by field conditions (reference 6).

- 2. Fuel consumed by the KC-10 to do all the following:
 - a. fly from the TTF Base to the ARCP
 - b. orbit at the ARCP
 - c. fly down track and back (each track lap)
 - d. fly back to TTF Base

The fuel calculations for this thesis were performed by the TANKER program (see modified Tanker subroutine in Appendix B).

- 3. <u>Fuel Reserves</u> (20,000 pounds) required for KC-10 safety (reference 5).
- 4. <u>Fuel Transfer</u> required by all the fighters being refueled, during several track laps. Fighter fuel requirements were dictated by TACAP flight plans. (See Appendix D.)

Since the above is fairly complex, I built a computer program which calls a subroutine based on AFCSA's "TANKER" program to calculate the KC-10 fuel consumptions, sortie durations, and the feasible number of "track laps" per KC-10

sortie. These calculations and the program are discussed in Chapter IV.

TTF Ground Turnaround. Once the pre-determined number of "track laps" has been completed and the KC-10 has returned to the TTF Base, the aircraft is refueled as quickly as possible. When necessary, unscheduled repairs are made for "safety-of-flight" and for "mission-essential" equipment. Every attempt is made to launch on the scheduled timing, in order to make the planned ARCT. If it is not possible to fix the KC-10 within this scheduled timing, the first AR must be cancelled and the fighters abort. Repairs continue in the attempt to make the subsequent ARCTs.

The aircrews continue to fly the same aircraft for several sorties until completing their 20 hour crew duty day (non-augmented crew, Higher Headquarters - Directed [HHD] mission) (reference 4). The thoroughly exhausted aircrew is immediately replaced with a fresh aircrew so as to continue the ground turnaround of the KC-10s at an uninterrupted pace.

Effect of the KC-10 Sortie Interval on Fighter Closure

Time. The term "Sortie Interval" is defined in this thesis
as the total time (flight time + ground turnaround time) per

KC-10 sortie. This is the inverse of the sortie rate.

Since airborne flight time is already predetermined, the
only flexibility in scheduling this interval is to change
the duration of the scheduled ground turnaround time.

Contraction (The Contraction of the contraction)

There are two opposing influences that act upon the proper choice of KC-10 Sortie Interval:

- 1. Maximize the AR rate. By reducing the scheduled sortic interval (ie: by reducing scheduled ground time), the KC-10s can fly more sortics per day. This results in more frequent refuelings of the fighters, and thus reduces Closure Time.
- 2. Minimize the Fighter Abort Rate. If a KC-10 is unable to launch within about 10-20 minutes of the schedule, the AR is cancelled, and the fighters end up at the abort base. Aborted Fighters will take 6 hours (with an additional AR) to 30 hours (island hopping) of extra time before arriving at the Battle. This is very undesireable! This means that the possiblity of a KC-10 late launch must be minimized. To do this simply means giving the maintenance teams plenty of extra time to repair any malfunctions that might occur.

Thus, before deciding to reduce the scheduled sortie interval, the effects on both the increased sortie rate and the increased abort rate should be analyzed. (This is an area for further research. See Chapter VI.)

Figures 2.13, 2.14 on the following pages illustrate the flowplans of the Distinct Role TTF and Airlifter missions. They can be considered to be network representations of the "conceptual models" of the deployment.

Figure2.13flowplan of Tanker Task Force Operation and Fighter Mission Simulation (Upper Half of Figure)

2-20

XXXXX

DISTINCT ROLES: Figure 2.14Towplan of Cargo Hovement and RC-10 Transport Operation

Airlift Operations

Bulk Cargo and Passengers. When a fighter squadron deploys, it must also take along extra aircrews, staff, and maintenance personnel. In addition to their personal baggage, these people need the tools and equipment to do their jobs. Examples include power carts and other flightline equipment. Thus, most of the cargo that deploys with the fighter squadron is lightweight and bulky. Typically, a fighter squadron of 24 aircraft will have about 240,000 pounds of cargo to deploy. All this cargo must first be strapped onto standard (463L) pallets. In peacetime, this cargo preparation is typically accomplished by MAC ALCE units which are deployed to the fighter base in advance of the KC-10s (reference 28).

Cargo Loading. Once the cargo is palletized, it must be loaded onto the KC-10. This is no easy task, since the cargo deck of the KC-10 is 15 feet above the ground level. Currently, the KC-10 is totally dependent on external Material Handling Equipment (MHE), such as the Cochran Loader, to load and unload. (A certain forklift can also be used, but it is very slow.) If a Cochran Loader is not available, it must be dismantled at its location, flown in by a C-141B, and reassembled for KC-10 use. This is obviously time-consuming and expensive. Furthermore, because of the small number of available Cochran Loaders, the KC-10s may be forced to wait in line to use the Cochran Loader. One future concept (tentatively planned for the

1990 SAC Program Objective Memorandum) is the Integral Onboard Cargo Loader (IOCL). This cargo loader would be installed in the ceiling of the KC-10 cargo bay, making the KC-10 totally self-sufficient for cargo missions (14:35). Although this cargo loader will surely have more restrictive parameters (such as lighter and shorter cargo loads, and fairly calm winds), it would eliminate the problem of queuing for loaders.

In this thesis, it is assumed that the IOCL will be installed. Thus, unloading a full load of pallets should take less than 2 hours.

Cargo Capacity of the KC-10. The KC-10 can carry a maximum of 27 standard cargo pallets (see Figure 2.15). For bulky cargo, the pallets average only about 4000-5000 pounds. Since the airline-type passenger seats are also palletized, the equipment and personnel are in competition for space in the KC-10 cargo bay. A larger, nonstandard 55-seat pallet can also be loaded onto the plane, but only with a Cochran Loader (it will probably be too large for the IOCL). The following is a list of passenger/cargo combinations (14:14,15):

Table 2.1

KC-10 Passenger and Cargo Combinations

Passengers	Cargo Pallets
0	27
6	. 25
20	23
75	17

CAPACITY FOR 463L PALLETS OF KC-10A AND VARIOUS USAF CARGO AIRCRAFT

Comparison of Airlifter Pallet Capabilities (14:13). Figure 2.15.

Because of the large number of passengers that must be carried, the KC-10s will be limited to carrying only 17 to 23 pallets of equipment. (Note: A KC-10 could be forced to carry even fewer pallets when carrying large quantities of fuel, since it is limited by maximum takeoff gross weight. The Airlifter-Only KC-10s can carry a "bulky" load of cargo weighing 100,000 pounds for a distance of over 5000 nm. A Dual-Role KC-10, on the other hand, may not even be able to carry 20,000 pounds of cargo because of the large quantity of transferable fuel that it must carry.)

KC-10 Duty Day Limits. Dual Role KC-10s and Airlifter-Only KC-10s must fly back and forth between the fighter base and the destination. Since the duration of the flight is so long, the aircrews can only fly a one-way trip without exceeding the maximum aircrew duty day. The following are the maximum crew duty day limits for the SAC KC-10 crews.

Table 2.2

KC-10 Aircrew Duty Day Limits (reference 4)

Normal Mission	16	Hours
Higher Headquarters Directed Mission	20	Hours
JCS Directed (actual contingency) with Augmented Crew (ie: extra Pilot, Flight Engineer, Boom Operator)	26	Hours

Within that duty day, the Boom Operator/Cargomaster must accomplish the cargo loading and unloading, plus normal

aircrew "preflight" inspection of the aircraft. Usually, then, it is the Boom Operator who limits the aircrew's duty day.

Aircraft Maintenance. After every mission, certain inspections must be accomplished, in addition to checking the oil and filling up the gas tanks. Furthermore, the aircraft usually has one or more unsheduled "write-ups" of systems that have failed during the previous mission. When critical, these "write-ups" must be fixed. Thus, there is a requirement for a KC-10 repair team to do unscheduled maintenance.

Recovery Base. Usually the Fighter Destination Base does not have any KC-10 maintenance personnel or rested replacement aircrews. Also, the base may be in a hostile war zone, where it would be desireable to spend as little time as possible on the ground. For these reasons, the KC-10s in the Dual Role or Airlifter-Only Mission would probably be flown immediately to a Recovery Base, such as Mildenhall, England.

Staging or Main Operating Base. Similarly, on the trip back to the CONUS, the KC-10 may be sent via another base instead of directly to/from the Fighter Deployment Base. This would allow the aircraft to receive major maintenance if necessary. If the KC-10 was in good repair, the staging base could be used to swap crews so that the plane could continue the round-trip without delay.

Dual Role KC-10s

The second secon

The Dual Role KC-10s must perform fighter air refueling and airlift simultaneously. The approximation is made that each fighter squadron has 240,000 pounds cargo, or about 10,000 pounds per fighter. The following Table 2.3 shows the fuel and cargo needs for each fighter. (The fuel needs were established by the TACAP printouts in Appendix D.)

Table 2.3
Weight of Fuel Offload and Cargo Transport per Fighter (in pounds)

	<u>Fuel</u>	Cargo
F-16:	14,333	10,000
F-15:	41,277	10,000
F-111:	40,130	10,000
RF-4C:	49,588	10,000

Since the KC-10 must carry large quantities of fuel to transfer to the fighters, it cannot carry a full load of cargo. Ideally, the Dual Role KC-10 would be able to carry all the necessary support equipment and personnel for the fighters that it refuels. For long distance missions, or for fuel-hungry fighters (such as the F-4), the KC-10 cannot carry all the necessary cargo, plus sufficient fuel for itself and the fighters, and still remain below Maximum Takeoff Gross Weight. In these cases, the KC-10 could launch with fewer fighters and less cargo, or launch with less fuel and then be air refueled by another tanker. An extra AR would force the KC-10 to meet very tight and

closely coordinated schedules. The air refueling also adds one more fatigue factor to the already long and difficult mission.

Table 2.4 shows the trade-off of fuel to make room for extra cargo. In the deployment, fighters launch in flights. Table 2.4 thus indicates total weights of fuel and cargo that the KC-10 must carry in order to support fighter flights of various sizes.

Table 2.4

Dual Role Payload and KC-10 Fuel Requirements

property of the property of th

		Total Fuel offload	Total Cargo Weight	Required KC-10 Onload (based on TANKER data)
4	F-16s	57,332	40,000	-4,296
5	11	71,665	50,000	20,037
6 7	tt	85,998	60,000	44,370
	11	100,331	70,000	68,703
8	n	114,664	80,000	83,036
	•	·	·	·
2	F-15s	82,554	20,000	-2,032
3	11	123,831	30,000	49,245
	tt .	165,108	40,000	100,522
4 5	11	206,385	50,000	151,799
6	17	247,662	60,000	203,076
		•	,	•
2	F-111s	80,260	20,000	-33,329
3	11	120,390	30,000	16,801
4	11	160,520	40,000	66,931
5	11	200,650	50,000	117,061
6	11	240,780	60,000	167,191
		·	•	•
2	RF-4Cs	99,176	20,000	-42,399
3	11	148,764	30,000	17,189
4	11	198,352	40,000	76,777
5	11	247,940	50,000	136,365
6	11	297,528	60,000	195,953
		•	-	·

The first row of the table shows that a Dual Role KC-10 can refuel 4 F-16s and carry all 40,000 pounds of their support equipment and personnel. The KC-10 would arrive at the destination with an extra 4,296 pounds of fuel reserve. The second row of the table shows that, by adding a fifth F-16, the extra 10,000 pounds of cargo plus 14,333 of fuel would place the KC-10 20,037 pounds above the Maximum Takeoff Gross Weight. Therefore, in order to carry the cargo, the KC-10 would have to reduce its fuel load, and receive an AR of 20,032 pounds. Notice that the 10,000 pounds of cargo directly displaces 10,000 pounds of fuel.

The table also shows that the KC-10 can provide Dual Role support for 4 F-16s without requiring an additional KC-10 refueling. Since the other types of fighters require much more fuel per fighter, the KC-10 can only refuel two F-15s, two F-111s, or two RF-4Cs, while carrying their support equipment. Notice especially how inefficient each KC-10 sortie is in supporting F-111 and RF-4C deployments. When deploying with two F-111s, the KC-10 is underloaded by 33,329 pounds. When supporting two RF-4Cs, the KC-10 is underloaded by 42,399 pounds.

The flight route of the Dual Role KC-10 is basically the same as that of the Airlifter-Only KC-10. One significant difference between Dual Role and Airlifter-Only KC-10 mission profiles is that the Dual Role sorties must be at the same altitude and airspeed as the fighter aircraft which accompany them. This is a disadvantage to the KC-10

since it must fly at a lower altitude, and at a much higher indicated airspeed than its optimum. The Dual Role KC-10 thus consumes much more fuel.

Figure 2.13 shows the Dual Role Flowplan, which is a network summary of the "conceptual model" of the Dual Role deployment operations.

Figure 2.13 Flowplan of Dual-Role Concept of Operation

Summary

This chapter has provided an in-depth look at the fighter squadron deployment operation, explaining the two roles in which the KC-10s can be used to support the deployment. Flow chart representations of the fighter, tanker, cargo, and aircrew actions have summarized this deployment information into "conceptual models" of the operations. These flow charts are thus the direct basis for the simulation models, and contribute to understanding the more abstract deterministic equations which are developed in Chapter IV.

All this information was garnered from an extensive series of conversations with experts in tanker, fighter, airlifter fields. These telephone interviews can be seen, then, as an integral part of the Literature Review, in that they provided an operational description which was not available in published documents.

The following Literature Review Chapter is, in a sense, a forward looking section. Accomplished in the early phases of thesis activity, the search of published literature laid the foundations for the rest of the research.

III. Literature Review

Introduction

STATE OF THE PROPERTY OF THE P

This particular Literature Review serves two purposes. First, it provides the reader with a thorough understanding of previous research carried out on support of tanker deployment. Secondly, it explores methodologies which might have been appropriate for reaching the research objective proposed for this effort. The Literature Review is, in a sense, a forward-looking section. Accomplished in the early phases of the thesis activity, it laid the foundation for what was yet to come.

In all, fourteen sources were applicable toward my thesis research: one journal report, seven AFIT theses, five military deployment models, and the Sponsor's previous research in the use of tankers for supporting fighter deployments. Exhaustive as this review turned out to be, only a small amount of material was discovered that directly addressed tanker's support of deployments.

A Journal Publication

Refueling Strategies. In an article titled "Vehicle fleet refueling Strategies to Maximize Operational Range," Mehrez and Stern considered mathematical concepts involved in various Naval fleet refueling concepts (3:320). These concepts helped to shed light on the theory of refueling. One concept, the inherent inefficiency of extending the

range of a receiver aircraft by using tanker aircraft to refuel them, was directly related to KC-10 useage.

Consider the effect of a KC-10 refueling a KC-10 (equal size tanker and receiver). If either KC-10 were to launch with maximum fuel on board, it could fly an unrefueled one-way range of approximately 8900 miles. Mehrez and Stern indicate the optimal refueling concept, assuming the two aircraft launch from the same base, would be for the two (identical) KC-10s to fly together for 1/3 of their maximum range. At that point, one KC-10 would fill up the other KC-10 (1/3 tank of gas transfer). After the air refueling, the receiver KC-10 would be full, and the tanker KC-10 would have just enough fuel to make the return trip. But the overall effect would be that 1 tanker sortie had been used to increase the flight distance of 1 receiver by only one-third (to 11,866 nm).

The authors proved that even an infinite number of tanker KC-10s, all launched together, could not get the receiver KC-10 any farther than the mathematical limit: 1 1/2 times the unrefueled range of a single KC-10 (13,350 nm)! The inefficiency is due to the fuel each tanker has to burn to make its own round-trip to the launch base (3:328).

Several important air refueling concepts that had a direct impact on the methodology of this thesis were gained from this mathematical exercise:

- Even a small improvement in the range of receiver aircraft (ie: fighter and cargo aircraft) greatly reduces the required number of tanker sorties.
- 2. Inefficient operations occur when the tanker is smaller or equal in size to the receiver. In an ideal mission, the tanker would be able to offload a very large quantity of fuel, while consuming very little of the fuel itself. Therefore, large, efficient tankers would be most profitable.
- 3. There is a mathematical limit to the effectiveness of tankers which launch from the same base as their receiver. If a tanker were to be prepositioned at a base half-way between the receiver's launch base and its destination, then that 1 tanker could do what an infinite number of tankers (all launched from the same base as the receiver) could not do: double the range of the receiver!

 Therefore, forward positioning of the tanker base, such as in a Tanker Task Force, will yield great increases in effectiveness.

AFIT Theses

executed becomed executed attribute executed extensive executes executed absorber.

Fighter deployment in 72 hours. Capt Robert D.

Reynolds, in his AFIT Thesis, "Optimum Utilization of the KC-10 for Fighter Aircraft Deployments," used Integer Linear Programming to determine the minimum number of KC-10s required to rapidly deploy fighter squadrons to Europe (18:14). This is the only document available that

specifically studied the use of the KC-10 in support of a fighter deployment.

Based on the operational constraints on the KC-10, Capt Reynolds' objective was to "maximize the number of fighters deployed per KC-10 sortie." He assumed that all associated cargo for each fighter must be carried by the KC-10, thus setting up a simple proportionality concept: if a KC-10 can refuel, say, 4 of the 24 fighters in the squadron it must also carry 4/24 of the cargo. In this case, then, 6 KC-10 sorties, each carrying 4/24 of the squadron, are required to deploy the squadron in a European deployment scenario. The model reduces the number of fighters until the trip is feasible without refueling.

Capt Reynolds' deterministic approach to the problem, using the methodology of Integer Linear Programming, was appropriate since his objective was to find the optimal integer number of KC-10s needed to achieve a given time constraint. In contrast to my thesis which seeks to minimize Closure Time, given a fixed number of KC-10s, his thesis tries to justify an increased <u>number</u> of KC-10s. Since my thesis searches for the best <u>way</u> to use the KC-10s that are rapidly coming into the inventory, our objectives are totally different. Thus, Linear Programming was determined to be inappropriate for my thesis research.

Minimizing fuel consumption when refueling airlifters.

In his 1982 AFIT Master's thesis, Capt Tenny Lindholm used

Dynamic Programming to "determine optimal rendezvous points,

fuel offloads, and tanker departure bases, using the total fuel consumed by both airlifter and tanier as the measure of effectiveness" (16:ii). It was hoped that this thesis methodology would be applicable to the deployment scenario where flights of fighters are refueled.

Capt Lindholm considered only a C-141 or C-5 airlifter being refueled (only once) by a KC-135 or KC-10 tanker. His model is very credible: it allows tankers to depart from any location, and includes subroutines which accurately calculate the non-linear fuel consumption rates of the aircraft. It specifically ensures that the airlifters will have safety reserve fuel to fly from the "optimal" air refueling location to the air refueling abort base if the AR is unsuccessful. It also allows any route of flight, not just great circle routes.

In some situations, however, it might be more desireable to optimize MOEs other than fuel consumption. Capt Lindholm's model does not guarantee minimum number of tankers used or minimum deployment time, nor does it consider the use of the tanker in a multiple-refueling situation (ie: one KC-10 refueling several receivers as is the case in a TTF refueling). Since Capt Lindholm's thesis was designed to explore refueling of MAC airlifters, it obviously was not designed to consider the KC-10 in the fighter-refueling role. Indeed, the model might become

overwhelmed by complexity if several receivers were to be considered.

Furthermore, his model only considered a single lap by each airlifter. In a high-throughput scenario, such as a full-scale mobility, other factors which were not considered may become dominant (examples might be aircrew availability, aircraft maintenance, and cargo offload time).

Thus, while Capt Lindholm's model effectively optimizes a single sortie, it lacks the flexibility to analyze an entire mobility scenario. Dynamic Programming was therefore rejected as a methodology for my thesis research.

Simulation to Analyze the Air Refueling of Airlifters. In their 1981 AFIT thesis, Major John Marcotte and Capt Vernon Bordelon used a computerized simulation model to examine the factors that affect fuel consumption. This was the first simulation model I explored. My objective for studying this thesis was to find an accurate fuel model for the tanker (a need that was virtually met by a program provided by my thesis sponsor).

Major Marcotte and Capt Bordelon they analyzed the effects of varying takeoff fuel loads and rendezvous points. One conclusion was that optimal takeoff fuel loads are a function of relative fuel efficiencies of the tanker and the receiver (9:57). The most efficient aircraft should be tasked to carry the greater percentage of fuel. The minimum fuel consumption is achieved "by minimizing the combined percentage of fuel capacity used by the two aircraft"

(9:59). This means that a larger tanker (such as KC-10) should carry most of the total mission fuel, allowing the smaller receivers (such as C-141B) to operate more efficiently at lower weights.

One significant finding directly applicable to Dual Role KC-10s was that, when the airlifter carries maximum feasible cargo weights, the optimal rendezvous point is as close as possible to the airlifter's takeoff base (ie: if it takes off with very little fuel, it can carry more cargo, but needs to be refueled as early as feasible) (9:58). A conclusion applicable to the TTF KC-10s was that it also helps somewhat for the airlifter to fly closer to the tanker's base if the tanker base is enroute to the airlifter's destination (9:59).

Major Marcotte's and Capt Bordelon's methodology was deemed appropriate since computerized simulation models could be built to depict the stochastic flow of entities of the "deployment" process.

Simulation of Strategic Airlift to Europe. In their 1981 AFIT thesis, Captains Holck and Ticknor developed a SLAM simulation model to study factors within the MAC airlift system which produce significant changes in the system's daily cargo delivery rate. This thesis provided a basic conceptual model for airlifter deployments. Four factors were studied: aircrew, maintenance, supply, and aerial port (16:viii). Although MAC uses a totally

different concept of aircrew management than SAC uses, this simulation model provided the logic and structure for developing my SLAM model of the Distinct Roles Airlifter KC-.

Improved Maintenance Model. Capt Wayne P. Stanberry, in his 1982 AFIT thesis, developed a detailed SLAM simulation model to describe the aircraft maintenance in MAC's airlift system (21:vii). It was hoped that this thesis would provide an adequate model for the maintenance of the KC-10, which is so critical in the TTF operation.

Capt Stanberry examined maintenance manning at the Air Force Specialty Code level. He modeled the maintenance discrepancies and distributions for repair times (based on LtC Shaw's disertation (20:35)) for the major aircraft subsystems and tested his maintenance model by inserting it into the airlift model developed by Captains Holck and Ticknor.

Since maintenance turn-around time is a critical factor in TTFs which fly at high sortic rates, I closely examined this maintenance model for possible use in my SLAM models. Unfortunately, the Air Force does not accumulate the maintenance statistics that would be needed to use Capt Stanberry's model. It therefore could not be used to model KC-10 maintenance (reference 32).

Analytical Methodology for Predicting Repair Time

Distributions. In his December 1985 AFIT thesis, Captain

Dennis Dietz concluded that analytical methods were more

efficient than simulation for predicting aircraft repair time distributions. His major assumptions were that aircraft subsystems fail with an exponential distribution (with a parameter of Mean Time Between Failure, MTBF), and that, given a failure, each subsystem will have a lognormal distribution (with mean = Mean Time to Repair, MTTR, and standard deviation = 0.29 MTTR) (12:1-4). Since the ability to properly schedule a TTF operation depends on an accurate understanding of the Maintenance Repair Time distribution, it was hoped that this thesis would provide a way to calculate that distribution for the KC-10.

I attempted to use Captain Dietz's estimates for the distribution parameters, in combination with Captain Stanberry's improved maintenance simulation model (see TTF simulation model in Appendix G). Data used was obtained from the Maintenance and Operation Data Access System (references 32,33). I found that it gave unrealistically high overall Times to Repair. This is because it assumes that every subsystem is a mandatory item for flight. This is inconsistent with the redundancy of KC-10 systems as indicated in the KC-10 Minimum Equipment List. Thus, I was not able to find an adequate model for KC-10 maintenance.

Computer Programs Currently Used to Analyze Deployments

In addition to reviewing AFIT theses, a search for relevant government studies was accomplished through the Defense Technical Information Center (DTIC). All their

research related to airlifting Army units to Europe, and were not directly applicable to fighter deployments. A review of the Catalog of Wargaming and Military Simulation Models provided the information on the following computer programs currently being used by government agencies to analyze deployment scenarios (reference 7). It will be seen that none of these computer programs have the ability to model air refueling of the deploying airlifters. Also, none of them considers the deployment of fighters. In short, there is a total lack of analysis in the field of fighter deployments using tankers.

OJCS "MACE" Model". The Military Airlift Capability
Estimate (MACE) is an analytical computer program which is
used by the Joint Chiefs of Staff J-4 to estimate the
minimum "closure time" of large-scale troop and cargo
movements (7:202). It does not consider the tanker side of
the deployment. This model accomplishes the following:

Input: load description
aircraft ground time
distance between APOE and APOD

MESTERNAL STREETS MESTERNAL STREETS ASSESSED LEGISLES

(Aerial Port of Embarcation, Debarcation)

Output: force closure time (arrival of last cargo load)

summary of aircraft utilization

traces of individual sorties/movement of types of cargo

OJCS "RAPIDSIM" Model. Rapid Intertheater Deployment Simulator (RAPIDSIM) is also used by the OJCS J-4. Certain inputs are simple constants: maximum number of available cargo "vehicles", vehicle speed, capacity, and time for loading/unloading. This program cannot model air refueling

the cargo aircraft at all (7:261).

postal postatos experies experies proper profess. Professor desirable postatos assessed and desirable

Army's "TRANSMO" Model. The Army Concepts Analysis
Agency uses this analytical computer program to "determine
the arrival time of the US Forces in overseas theaters of
operation." Given specified "lift" assets, it can determine
the time-table for a deployment scenario. Or, given a
required deployment schedule, it can determine the "lift"
requirements to meet the schedule (7:365). Air refueling
of the airlifters is not considered.

Military Traffic Management Command. The MTMC Operations Analysis Division has published several studies with the objective of identifying the fastest method and optional methods of deploying specific Army divisions to Europe (references 10,11). These studies use computer simulation to model deployment via sealift and/or via C-5 and C-141 aircraft. Because they reveal current capabilities in minute detail, these reports are either SECRET or CONFIDENTIAL. Although the major conclusions cannot be discussed, these reports were very useful because they revealed many factors which are vital to building an accurate deployment model. Furthermore, these reports contained several unclassified portions which provided relevant data.

Unfortunately, these studies (and all the apparently redundant models mentioned above) fail to consider the possibility of using air refueling at all, much less

optimizing the use of air refueling for force deployments.

MAC's M-14 Model. This program does model air refueling of airlifters but does not explicitly model the tankers which are providing the refuelings. A computerized (FORTRAN) simulation model, the M-14 is a detailed representation of MAC's strategic airlift system. "It individually models each component of the system in terms of airfields, aircraft, cargo, people, and support equipment. The model details more than 400 airfields, and realistically defines airlift aircraft in terms of performance and capability" (15:ix). Each of these details can be changed to accurately describe a given scenario. As a simulation model, it also has the flexibilty of allowing changes in policies, such as which cargo has higher priority or the length of the maximum aircrew duty day. Most importantly, the M-14 presents the opportunity to examine the cumulative and interactive effects of all the variables that it models (15:iii).

The M-14, although supposedly able to model the KC-10, has not been updated with KC-10 reliability and maintainability data. As a ball-park approximation, the KC-10 is assumed to be similar to the C-5. Further, the M-14 does not look at the KC-10 as a tanker, but as an airlifter (reference 29).

The model assumes that an unlimited number of KC-135 tankers will be available at every air refueling point, each capable of offloading 70,000 pounds of fuel (15:57). Since

the model does not specifically track tanker aircraft, it merely assigns an 80% probability that a tanker will be available if the air refueling area is not congested. It then assigns a 99% chance of successful rendezvous, and a 95% probability of successful air refueling. Thus, the M-14 does not consider the interactions which would affect the availability of tankers to provide the air refuelings. It did, however, provide excellent historical data which was used in this thesis effort to develop my simulation model. The available data includes payload-range equations, fuel consumption rates, and probability distributions for the times required to perform various maintenance and flight activities. These distributions are summarized on the following page:

Table 3.1

Known KC-10 Distributions for Use in Simulation (reference 15)

Mission Duration to overhead destination = planned + 10 minutes (Uniform)

Penetration ™ Uniform(7,10) minutes

Final Approach ™ Uniform(1.2,1.6) minutes

Landing = constant 2 minutes

Taxi off runway = constant 5 minutes

Taxi into park = Erlang(min 0, avg 6, max 45)

The following activities are mostly concurrent:

Through-Flight Inspection = constant 1 hour + 10 minutes

Refueling by Fuel "Pit" = 15.3 minutes + (quantity)(.000349)

by Truck = -17.5 minutes + (quantity)(.00125)

Scheduled Fleet Service ™ Normal(.4,.1)

	Mita	Avg	Ma x
Cargo Offload or Onload			
Palletized Cargo			
using Cochran Load	ler 1.5	2.0	4.0 hrs

MACREG 28-2 Planning Factors for the KC-10

Onload cargo = 4 hrs + 15 min (any type cargo)

Offload cargo= 3 hrs + 15 min (" ")

Enroute Stop = 1 hr + 45 min ("gas and go")

Sponsor's Research

TACAIR Deployment Alternatives. This study was accomplished in 1983-1984 by the thesis sponsor, Mr M. E. Estes of AFCSA/SAGM. He examined the tradeoff between fighter enroute time and the number of tankers used. Tactical Aircraft deploying over great distances can travel non-stop (least time used) by using aerial tankers for rapid closure. Alternatively, the fighters can land at enroute bases, sacrificing closure time for tanker savings.

Mr Estes found that significant savings in tankers could be realized if delays in Closure Time were acceptable (13:5)

This study was designed to provide a tool for the TAC deployment planner for use in estimating the enroute time, enroute bases, and tanker support required to deploy selected TACAIR squadrons from the CONUS to the forward area. Since tanker shortages may exist during periods of high tension, alternative deployment procedures, such as fighters landing at intermediate bases, may make the deployment less dependent on tankers.

This was a deterministic type of study. The duration of each flight was calculated based on mission distance, fighter speed, and specified wind conditions. As an example, an F-15 deploying non-stop from Langley AFB, VA to Hahn, Germany requires 7.3 hours. The number of tankers required was calculated using the "TACAP" flight profiles (see description following) and AFCSA's "Tanker" program (also described below). Tankers were assumed to be

available at the closest tanker base. The tanker mission calculations were based on the tankers flying in the tanker-only role (as in a TTF). For each flight of six F-15s in the above non-stop flight to Germany, this study determined that 4 KC-10s would be necessary.

For fighters landing at intermediate bases (instead of being air refueled), the assumption was made that the aircraft would always be ready for launch in 3 hours. Thus, closure time was calculated simply as the sum of flight durations, turn-around times, and crew rests (as needed).

It should be noted that transportation of fighter support equipment was not considered in this study.

KENEZEZE E ZEKREKI EKE EKEN KOROSER EKEREKE KARKEKI KOROKOK ELEKEK ELEKEK ELEKEK

TAC'S TACAP Program. This computer program was the primary source of information concerning the fighters' fuel consumption. The "TAC Aircraft Profiler" model is a FORTRAN and COBOL based computer program. Given a departure base, destination, route, abort bases, and type of fighter, it calculates an entire fuel log for all the fighters. This includes determining the air refueling locations and the amount of fuel onload that each fighter requires. The model can provide this information based on orbit or track types of refuelings (references 23,25).

Since TAC trusts the accuracy of TACAP's output, my thesis simulation models were based on TACAP data for fighter fuel consumption.

AFCSA's "Tanker" Program. This interactive FORTRAN program calculates accurate mission fuel consumption by KC-135A, E, R or KC-10 tankers (reference 25). It can iterate to find the maximum feasible number of fighters that can be refueled by a KC-10. Data from this program was the foundation of my thesis calculations. By making a few slight modifications to enable it to calculate the feasible number of flights of fighters, and to make it modular, I was able to use it as a subroutine within my Deterministic Model of TTF Closure Time.

Conclusion

SECTION SECTION SECTIONS SECTIONS SECTIONS SECTIONS SECTIONS SECTIONS SECTIONS SECTIONS

Very little information was found in the available literature which directly pertains to the KC-10s use in fighter deployments. Several AFIT simulations dealt with aspects of MAC airlifters supporting deployment. These studies were somewhat helpful, especially in building my simulation model for the Airlifter missions. No studies were found to be adequate for modeling the KC-10 maintenance, which leaves a critical need unmet for studying the TTF operations. Of several computer programs reviewed, none modeled the tanker's role in the deployment. This thesis' sponsor, Mr M.E. Estes of Center for Studies and Analysis, has carried out significant deterministic analysis of tankers supporting fighter deployments. His research, however, did not involve the examination of the total picture of fighter and cargo seployment.

At the conclusion of the Literature Review, simulation was considered to be the most relevant methodology for modeling complex operational concepts such as the KC-10 missions. As will be seen in the next Chapter, intial simulation results were promising, but the research had to turn to deterministic equations to address the complexities of the TTF operation.

IV. Methodology

Two Methodologies

Two methodological tools were used in the search for the best KC-10 deployment concept: computer simulation and deterministic equations. As it turned out, both methodologies contributed to solving the problem of which was the most effective KC-10 role.

Simulation was important in that it required the initial development of a detailed conceptual model which gave structure to the problem. The prototype computerized simulation models enabled the researcher to develop a better understanding of the "working" of the deployment process. This eventually led to the assimilation of the knowledge into a compact determinstic model of the deployment.

A set of deterministic equations was developed initially for the purpose of obtaining a "ballpark" estimation for the deployment Closure Time. As it turned out, the predictions of the deterministic "flow rate" equations coincided very closely to the results of the first Tanker Task Force simulation model, substantiating the deterministic assumption of a constant flow of fighters.

The thesis research then placed its emphasis on the simulation models for the purpose of gaining an understanding of queuing effects, stochastic variances, and factor interactions. The simulation work, however, bogged down with the complex problem of "pre-determining" the Air

Refueling schedules for the TTF deployment. For the Dual Role simulation, there was no scheduling problem at all since, in real life, the fighters can wait on the ground until the KC-10, located at the same base, is ready to launch. This could be easily modeled by a simple queue. But when the fighters were to be refueled by Distinct Role TTF KC-10s, it would have been unrealistic to make a simulation model where the fighters queue until a KC-10 becomes available. Fighters do not queue in the air--they abort to a landing base if the KC-10 is not available when needed. It thus became apparent that, as in the real world, the scheduling of launches and ARCTs in the simulation model must be known prior to the first launch.

The scheduling of ARCTs, however, was not simple since the scheduling of air refuelings depended on how many KC-10s were assigned to each AR track and how many missions each KC-10 could fly during the deployment. It also became apparent that the apportioning of KC-10s among AR tracks was dependent on the desired number and duration (ie: schedule) of missions to be flown to each track.

Once the interdepedent nature of the scheduling and apportioning problems became obvious, the simulation models were set aside. The thesis research returned to the deterministic models to search for a solution to the scheduling and apportioning problems. (See Appendix G for description of the prototype simulation models).

Deterministic Assumptions

This deterministic modelling of the deployment process implies, by its name, that there is no uncertainty in the time required for scheduled events. Also the deterministic equations make no allowance for extra time which might be spent if excessive queuing were to occur (such as for KC-10 parts or maintenance, for servicing of aborted fighters, or for resting aircrews).

An important prerequisite to developing this model was the deletion of certain interactions. For instance, it is known that the KC-10 flying schedule directly affects the reliability and maintainability of the KC-10. In order to estimate the flying schedule, however, it was essential to assume a constant maintenance time. In the equations that follow, KC-10 ground time is scheduled to be 3 hours duration.

In real life, a scheoule can be made using the discrete times when each fighter launches, air refuels, and arrives at the destination. This deterministic model, however, assumes an average, continuous flow of fighters. Continuous flows are the result of "smoothing out" the discrete, integer mission schedules. For instance, if 1 KC-10 can refuel 12 fighters on each mission, and can fly 2 such missions per day, then the continuous flow rate of fighter air refuelings is 24 per day, or 1 per hour.

Figure 4.1 Flow Illustration

It is also assumed that all four types of fighters are deployed simultaneously with no type of fighter having priority. Thus, with "parallel" deployments of F-16s, F-15s, F-111s, and RF-4Cs, the optimal overall deployment Closure Time is achieved if the last F-16 arrives at the same time as the last F-15, the last F-111, and the last RF-4C. In relation to the above figure, there are 4 reservoirs (F-16, F-15, F-111, RF-4C). Proportional flow rates were established so that all 4 reservoirs would be emptied at exactly the same instant.

Distinct Role Equations

Calculating "Closure Time" for TTF. The following paragraphs develop an equation to calculate Closure Time for fighters refueled by Distinct Role TTF KC-10s. This section also developes the apportioning of KC-10s among the 11 AR tracks, and by inference, the apportioning of KC-10s among the TTF bases. (The subsequent section, beginning on page 4-18, develops the equations for the Distinct Role Airlifters.)

By setting the Closure Times equal for each type of fighter, it is possible to apportion the TTF KC-10s among the AR tracks and TTF bases so that all the fighters receive refuelings according to their proportional flow rates. The total time to deploy fighters is described as the sum of the times required for five events (ie: five addends).

Closure Time =

Time to Set-up TTF

[1st addend]

- + Time for KC-10 to fly to the ARCP (for 1st "track lap"). (Assume fighters launch as necessary to arrive on time.) [2nd addend]
- + Time it takes the TTF KC-10s to transport sufficient fuel to the ARCP to refuel all the fighters. [3rd addend]
- + Time for last fighter to fly from ARCT to destination. [4th addend]
- + Time necessary for aborted fighters to arrive at destination. [5th addend]

The above addends are illustrated on the following page in Figure 4.2.

Figure 4.2. Graphical Illustration of Fighter Arrivals, related to Deterministic TTF Closure Time Equations.

It should be noted from Figure 4.2 that the extra time needed to refuel aborted fighters [5th Addend], can also be represented in terms of planned times [3rd Addend], and AR reliability. (This thesis assumes that all aborted fighters must be re-scheduled into the AR track from which they aborted, as opposed to flying directly to the destination, or "island hopping," as described in Chapter II.)

[3rd Addend] + [5th Addend] = [3rd Addend]
Average AR Reliability

This is because the [3rd Addend] is based on 100% reliability. It should be understood that the fighter arrival rate (or the slope of the cumulative fighter arrival line on Figure 4.2) is simply the scheduled (or 100% reliable) AR rate minus the abort rate. Thus, the vertical "rise" of the fighter arrivals is decreased by the number of fighter aborts. Therefore, the Closure Time is increased according to the new horizontal "run" of the graph in Figure 4.2.

Next, let's look more closely at the 3rd Addend, which is the only addend dependent on the KC-10 allocation. Since this addend is dependent on the number of KC-10s which are carrying fuel to the ARCP, then the ARCPs could be pictured as flow restrictions in the pipeline of deploying fighters. Thus, the 3rd Addend can be expanded in much further detail in terms of the number of fighters and the refueling sorties that they require of the KC-10s:

- [3rd Addend] = Total Time to transport all required fuel to the ARCP (same for each KC-10 assigned to the track)
 - = (Time Interval, including flight and ground turn-around time, per KC-10 sortie.)
 - x Number of KC-10 Sorties required
 Number of KC-10s assigned to the AR track
 - = (Time interval/sortie) x (Sorties/KC-10)

Each of the above two factors can be further explained.

The first factor is essentially an overall "interval."

(Time interval/sortie) = <u>Airborne mission time + Ground Time</u> KC-10 Sortie

in terms of hours/sortie

The second factor, "Sorties per KC-10" can be represented as the product of many factors, as seen in the following derivation:

The denominator, "KC-10s per AR Track", is a constant which will be calculated later in this section. The term, "Sorties per AR Track," can be further explained as a requirement to provide a certain number of refuelings:

Since all of each type of fighter must go through all their AR tracks then "# of F-16s/AR Track" is equal to the Total

Number of that type of fighters deploying. For example, all 700 F-16s must go through each of the 2 F-16 AR tracks.

The maximum feasible number of fighters that can be refueled by one KC-10 sortie (ie: # Fighters/Sortie) is determined by fighter fuel onload requirements and by the transferable KC-10 fuel available. Recall that, in the TTF concept, instead of refueling many fighters consecutively (the last fighter would run out of gas before it was his turn to refuel), the fighters are refueled in several flights of approximately six receivers each. Thus, the KC-10 must refuel one flight of fighters, then fly back to the ARCP to meet the next flight of fighters. The KC-10 will fly several laps of the AR track, refueling a flight of fighters on each east-bound leg, until the KC-10 must return to base for fuel. Thus the "# of fighters per Sortie" term can be further expanded as follows:

In summary, the [3rd addend] of the Closure Time has been expanded to the following:

[3rd Addend] = Time to transport all fuel (for one type of fighter) to ARCP, per KC-10

Derivation of the TTF Apportionments

For the sake of simplifying the explanation of the derivation, let us derive the apportionment of two TTFs of KC-10s (at Goose Bay and Mildenhall) providing ARs at the designated ARCPs. The equation will work just as well for scenarios with any number of TTFs, providing ARs at any number of AR tracks.

Consider the deploying F-16s. The F-16s must flow at an equal rate through each of the two consecutive AR tracks. This is important since the ARs do occur in sequence, the flow is only as fast as the minimum rate. Therefore, there must be a restriction that the Mildenhall TTF, which provides refuelings in the second AR track, be able to provide the same number of ARs as provided in the first AR track by the Goose Bay TTF.

For a hypothetical example, say that, on the average, a single Goose Bay KC-10 could refuel 2 fighters per hour. If a Mildenhall KC-10 could refuel 4 fighters per hour (due to closer TTF Base distance from ARCP, and smaller required offloads per fighter), then the obvious apportioning requirement would be for twice as many Goose Bay KC-10s as Mildenhall KC-10s. This can be shown mathematically as

RateAR track 1 = RateAR track 2

(2 Fighters/hr) x (# of KC-10s at Goose Bay)
(KC-10)

= $\frac{\text{(4 Fighters/hr)}}{\text{(KC-10)}}$ x (# of KC-10s at Mildenhall)

Note that this thesis assigns the AR Track responsibility to the closest TTF.

Notation. For notational abbreviation, the inverse of AR Rate, or refueling interval for each AR track (ie: average time between air refuelings) is indicated by lower case letters. The number of tankers assigned to each AR track is indicated by upper case letters. The type of letters indicate the type of fighter: associate a or A with F-16s, b or B with F-15s, c or C with F-111s, and d or D with RF-4Cs. Subscripted numbers represent the number of the AR track. The number of KC-10s assigned to each track are upper case letters. These are summarized in Table 4.2 on the following page.

Table 4.2

Summary of Notational Abbreviations

F-16s a ₁ = a ₂ =	refueling "		for	AR AR		$\begin{smallmatrix} A_1\\A_2\end{smallmatrix}$		KC-10s	assigned	to "	AR AR	
F-15s b ₁ = b ₂ = b ₃ =	refueling		Ħ		2	$\begin{array}{c} \mathbf{B_1} \\ \mathbf{B_2} \\ \mathbf{B_3} \end{array}$	=	11	assigned	to 11	AR AR AR	2
F-111s c ₁ = c ₂ =	refueling	interval		AR AR		$^{\mathrm{C_1}}_{\mathrm{C_2}}$		KC-10s	assigned	to "	AR AR	1 2
$RF-4Cs$ $d_1 = d_2 = d_3 = d_4 = d_4 = d_5$	refueling		11 11	AR AR AR AR	2 3	$\stackrel{-}{\mathrm{D_2}}$	=	11	assigned	to "	AR AR AR AR	2 3
$d_5^2 =$	11	tt	11	AR	5	D_5		Ħ	11	tf	AR	5

Greek letters:

Proportionality between tracks

$$\alpha = 1 + a_2/a_1$$

$$\beta = 1 + b_2/b_1 + b_3/b_1$$

$$\gamma = 1 + c_2/c_1$$

$$\delta = 1 + d_2/d_1 + d_3/d_1 + d_4/d_1 + d_5/d_1$$

Proportionality between Fighter Types

$$\theta = B_1/A_1$$

 $\phi = C_1/A_1$
 $\psi = D_1/A_1$

For example, since it is feasible for a Goose Bay KC-10 to refuel 18 F-16s on AR track number 1 (in three laps, refueling flights of 6 F-16s each lap) every 9.4 hours, then $a_1 = 9.4/18 = .52$ hours/fighter. Similarly, since a Mildenhall KC-10 servicing AR track 2, can provide refuelings to 42 F-16s per sortie (in seven laps) every 13.4 hours, then $a_2 = 13.4/42 = .32$ hours/fighter. (Notice again, that the Mildenhall KC-10s can perform more ARs per sortie because the offloads are smaller, and the KC-10 has less distance to fly between the TTF Base and the AR Tracks.)

The problem to be solved is, "What are the values of A_1 , A_2 , the number of KC-10s assigned to each track?" The proportionality of flow rates (represented by the Greek letters), which was based on equal Closure Times for all types of fighters, was used to solve this problem.

Apportionment Equations. First, the flow rates through consecutive AR tracks need to be equated (ie: same number of fighters refueled in each track).

Recall that the [3rd Addend] of Closure Time was defined as:

[3rd Addend] = Time to transport all fuel (for one type of fighter) to ARCP, per KC-10

= Airborne Mission Time + Ground turn around time sortie

Note that this is equivalent to:

[3rd Addend] = Time/AR Track KC-10s/AR Track

where Time/AR Track = a_1 for F-16 Track 1

and KC-10s/AR Track = A_1 for F-16 Track 1.

Therefore, the equality of "fighter flow" through consecutive AR tracks results in equal values for Addend 3, time required for the KC-10s to carry all the fuel to each ARCP:

[Goose Bay]

[Mildenhall]

 $(F-16 \text{ Addend } 3)_{TRACK 1} = (F-16 \text{ Addend } 3)_{TRACK 2}$

or

$$\begin{array}{ccc} a_1 & = & a_2 \\ \hline A_1 & & A_2 \end{array}$$

In order to obtain values for a₁ and a₂ (Time/AR Track), the KC-10 fuel consumption need to be calculated for each TTF mission route. This information was obtained by using the FORTRAN TANKER program, provided by the Air Force Center for Studies and Analysis. The output of the (modified) TANKER program included Airborne Mission Time, and the number of feasible tracklaps/sortie. Using the TANKER information, the equation became:

$$\frac{(700 \text{ F-}16\text{s}/\text{AR Track}) \times (6.4 + 3.0 \text{ hours/sortie})}{(6 \text{ F-}16\text{s}/\text{track lap}) (3 \text{ tracklaps/sortie}) (A_1)}$$

[Goose Bay]

$$= \frac{(700 \text{ F-}16\text{s}/\text{AR Track}) \times (10.4 + 3.0 \text{ hrs/sortie})}{(6 \text{ F-}16\text{s}/\text{track lap}) (7 \text{ tracklaps/sortie})} (A_2)$$

[Mildenhall]

(Note: For computationaly efficiency, in the computerized version of these equations, the identical terms were cancelled out of the above equations.)

Using the above equation to solve for the relative proportions of tankers on each track:

$$A_2 = \underbrace{a_2}_{a_1} A_1$$
$$= .697 A_1$$

Similarly, for each of the other types of fighters, the proportions among tracks are:

It is important to remember that, for the purposes of the mathematical derivation, KC-10s are essentially permanently assigned to each <u>Track</u>. That is, once a KC-10 was assigned to an AR track, it would only be allowed to fly to that track.

The next contraint was that the total number of KC-10s allocated to all the AR tracks had to equal to the number of available tankers. That is:

$$(A_1 + A_2) + (B_1 + B_2 + B_3) + (C_1 + C_2)$$

$$+ (D_1 + D_2 + D_3 + D_4 + D_5) = 100\% \text{ of }$$

$$TTF \text{ Tankers}$$
or,
$$100\% = (A_1 + [a_2/a_1]A_1) + (B_1 + [b_2/b_1]B_1)$$

$$+ (C_1 + [c_2/c_1]C_1)$$

$$+ (D_1 + [d_2/d_1]D_1 + [d_4/d_1]D_1 + [d_5/d_1]D_1)$$
or,
$$100\% = A_1(1 + a_2/a_1) + B_1(1 + b_2/b_1 + b_3/b_1)$$

$$+ C_1(1 + c_2/c_1)$$

$$+ D_1(1 + d_2/d_1 + d_3/d_1 + d_4/d_1 + d_5/d_1)$$
or,
$$100 = \alpha A_1 + \beta B_1 + \gamma C_1 + \delta D_1$$

Thus, the above constrained equation set up the proportionality among AR tracks. Still, there has the remaining unknown of the relationship between A_1 , B_1 , C_1 , and D_1 , that is, the apportioning of KC-10s among the <u>types</u> of fighters. Thus, we must still had to answer the questions, "What number of KC-10s should refuel F-16s (A_1) ? What number of KC-10s should refuel F-15s (B_1) ? ...F-111s (C_1) ?...RF-4Cs (D_1) ?"

The solution was derived from our objective of having equal Closure time for all the types of fighters. Thus, we must also had to equality of the [3rd Addend] among all the types of fighters. That is,

$$(Addend 3)_{F-16} = (Addend 3)_{F-15}$$

= $(Addend 3)_{F-111} = (Addend 3)_{RF-4C}$

A specific example (equating F-16s and F-15s) may help make the numbers more apparent. (Notationally, the fighter subscripts, such as F-16, indicate that the KC-10 support is for the first AR track for that type of fighter.)

$$time_{F-16} = \frac{(700 \text{ Total } F-16s) \times (6.4 +3.0 \text{ hrs/sortie})_1}{(6 \text{ } F-16s/tracklap})(3 \text{ tracklaps/sortie})(A_1)$$

=
$$time_{F-15}$$
 = $\frac{(300 \text{ Total } F-15s) \times (4.4 + 3.0 \text{ hrs/sortie})}{(6 \text{ } F-15s/tracklap)(1 \text{ tracklap/sortie})(B_1)}$

Solving for the relationship between A_1 and B_1 ,

$$B_{1} = A_{1} \frac{(300 \text{ F}-15\text{s})(4.4 + 3 \text{ hrs/sortie})}{(700 \text{ F}-16\text{s})(6.4 + 3 \text{ hrs/sortie})} F_{-16}$$

$$\frac{(6 \text{ F}-16\text{s}/\text{tracklap})}{(6 \text{ F}-15\text{s}/\text{tracklap})} \times \frac{(3 \text{ tracklaps/sortie})}{(1 \text{ tracklaps/sortie})} F_{-16}$$

$$= \theta A_{1}$$

Similarly, for the other types of fighters, the ratios of the remaining terms were indicated by the following Greek letters:

$$C_1 = \emptyset A_1$$

$$D_1 = \psi A_1$$

Overall, then, the following equations were derived:

[Addend 3] =
$$(700 \text{ F-}16\text{s/AR Track}) (6.4 + 3.0 \text{ hrs/sortie}) (6 \text{ F-}16\text{s/tracklap}) (3 \text{ tracklaps/sortie}) (A_1)$$

= $\frac{365.55}{\Lambda_1}$

where the apportionment of KC-10s to F-16 AR Track 1 was:

$$A_1 = 100\% / (\alpha + \beta\theta + \gamma\phi + \delta\psi)$$

and where the values of the above Greek letters were obtained by a simple process of substitution.

Solution:

For each type of fighter, the following parameters were selected to represent the relationship between the AR tracks:

[F-16]
$$\alpha = 1 + (a_2/a_1) = 1 + [(10.4 + 3)/7] = 1.611$$

[F-15] $\beta = 1 + (b_2/b_1) + (b_3/b_1)$
 $= 1 + [(6.2 + 3)/2] + [(8.6 + 3)/5] = 1.935$
[F-111] $\gamma = 1 + (c_2/c_1)$
 $= 1 + [(7.9 + 3)/2] = 1.673$
[RF-4C] $\delta = 1 + (d_2/d^1) + (d_3/d_1) + (d_4/d_1) + (d_5/d_1)$
 $= 1 + [(5.3 + 3)/2] + [(7.5 + 3)/3] +$
 $= 1 + [(8.4 + 3)/3] + [(11.7 + 3)/6] = 3.574$

The ratios between fighter AR1 tracks were as follows:

Therefore, the apportionment of KC-10s to F-16 AR Track 1 was

$$A_1 = 100\% / [(1.611) + (1.935)(1.012) + (1.673)(0.369) + (3.574)(0.246)]$$

$$= 100\% / 5.066$$

$$= 19.74\% \text{ of the Total KC-10s}$$

From the above value, the remaining values were calculated. First, the apportionment of KC-10s to F-16 AR Track 2 was:

$$A_2 = (a_2/a_1) A_1 = (0.611)(19.74) = 12.06% of the KC-10s$$

Likewise, for the F-15 AR Tracks:

$$B_1 = \theta A_1 = (1.012)(19.74) = 19.977\%$$
 of the KC-10s
 $B_2 = (b_2/b_1) B_1 = (0.622)(19.977\%) = 12.42\%$
 $B_3 = (b_3/b_1) B_1 = (0.314)(19.977\%) = 6.263\%$

For the F-111 AR Tracks:

$$C_1 = \emptyset A_1 = (0.369)(19.74) = 7.248\%$$
 of the KC-10s
 $C_2 = (c_2/c_1) C_1 = (0.673)(7.248) = 4.901\%$

For the RF-4C AR Tracks:

$$D_1 = \psi A_1 = (0.246)(19.74) = 4.856\%$$
 of the KC-10s
 $D_2 = (d_2/d_1) D_1 = (0.768)(4.856\%) = 3.731\%$
 $D_3 = (d_3/d_1) D_1 = (0.648)(4.856\%) = 3.147\%$
 $D_4 = (d_4/d_1) D_1 = (0.704)(4.856\%) = 3.417\%$
 $D_5 = (d_5/d_1) D_1 = (0.454)(4.856\%) = 2.205\%$

The following table summarizes KC-10 track apportionments:

APPORTI AMONG A	ONMEN		TTF	KC-	10 S
FIGHTER	RR I	BR 2	RR 3	AR 4	RR 5
F-16	19.7 %	12.1 %			
F-15	20.0	12.4	6.26		
F-111	7.3	4.9			
RF-4C	4.9	3.7	3.1	3.4	2.2

Finally, since the TTFs were to be allocated in accordance with the rule "the closest TTF must refuel the AR Track" then, following the above AR Track apportionments, the TTFs' apportionments had to be:

Goose Bay TTF =
$$A_1$$
 + $(B_1 + B_2)$ + $(C_1 + C_2)$
+ $(D_1 + D_2 + D_3)$ = 76.055%
Mildenhall TTF = A_2 + B_3
+ $(D_4 + D_5)$ = 23.945%

Thus, the value of the [3rd Addend] could be calculated as follows:

time =
$$365.55 / 19.74 = 18.52$$
 hours (if 100 TTF tankers)
time = $18.52/.60 = 30.86$ hours
(if 60 TTF tankers)
time = $18.52/.20 = 92.60$ hours
(if 20 TTF tankers)

Closure Time was then calculated using the following values for the remaining addends:

= 36 hours

[2nd Addend] = KC-10 Flight Time to ARCP = 2 hours

[4th Addend] = Fighter Flight Time from ARCP to Destination = 7 hours

[3rd Addend] + [5th Addend] = $\frac{\text{[3rd Addend]}}{\text{KC-10 AR reliability}}$

= 92.6 hours, 100% reliable

or = 97.5 hours, 95% reliable

or = 102.9 hours, 90% reliable

Thus, for this fighter deployment scenario, with 20 KC-10s in the Distinct Roles TTF mission (assigned to Goose Bay and Mildenhall), using fighter to tanker ratios of 6:1, assuming scheduled ground times of 3 hours, and a TTF launch reliability of 95%, then the expected Closure Time for the fighters was computed to be:

$$36 + 2 + 7 + 97.5 = 142.5$$
 hours (or 6 days, 4 hours)

Computerized Model. The above equations for finding the TTF Closure Time and KC-10 apportionment among AR Tracks are fairly complex, and certainly tedious to calculate manually. Thus, in order to accomplish further analysis for this thesis, and hopefully, for other future researchers, a computerized model of the TTF Deterministic Equations was built. The computerized model verified the hand-calculated results shown on the previous pages. Also, the computer output is found in Appendix B. The self-documenting source code is found in Appendix B. This computer model accomplishes the following:

<u>Input</u>	Major Functions	Output
All AR Track Information	Calculate Great Circle Distances between TTFS, AR Tracks	Track and TTF Apportionment of KC-10s
Locations of	·	
TTFs	Search for closest TTF to each AR Track	Closure Time
	Call modified "TANKER" -determines sortie	
	duration	
	-maximum feasible	
	number of "tracklaps"	
	Use Deterministic Equat -KC-10 apportionmen -Fighter Closure Ti	ıt

Figure 4.3 Overview of Deterministic Computer Program

The "input" information required by the FORTRAN program "TTFDETERM" is listed in Figure 4.4 on the following page.

For every AR Track:

Coordinates (Lattitude, Longitude) of the ARCP, EAR

Names of fighter (ie: "F-15") being refueled

Air refueling attitude

- " calibrated airspeed
- " time down track
- " " distance down track
- " fuel offload

For every TTF:

Coordinates of the airfield (lattitude, longitude)

Name of the airfield (ie: "Mildenhall")

KC-10 Maximum Takeoff Gross Weight at that airfield

For the deployment:

Numbers of deploying fighters, by type

Number of fighters in each flight (ie: fighter to tanker ratio)

Number of KC-10s supporting the deployment

KC-10 Reliability

KC-10 Ground Turn-around Time

TTF Setup time

Figure 4.4. Input to Deterministic Program

Using the above information, the program follows the following pseudo-code logic:

Call "CalcDistance" to find:

Distances between TTFs and ARCPs
by calling "GreatCircle"
(based on spherical trigonometry (2:199))

Distances between TTFs and EARs by calling "GreatCircle"

Call "NonDominated" to find:

Closest TTF to each AR Track

For every fighter

With the TTF closest to each AR Track

Call "Tanker" to determine:

The maximum feasible # Tracklaps/KC-10 sortie KC-10 sortie duration

Call "Closure Time" to get:

Optimal apportionment of KC-10s to AR Tracks, TTFs

Closure Time for deploying fighters

Figure 4.5. Deterministic Program Logic

Distinct Role Airlifter-only KC-10s and Dual Role KC-10s

Basis for the Equations. In deriving these Airlifter equations, it was necessary to assume that there was no queuing of KC-10s (such as waiting for fighters, cargo, cargo loaders, or aircrews), and that every mission was independent of the others. Based on these two assumptions, the time to deploy (Closure Time) was computed as the sum of the time required for consecutive deterministic events to occur. Consecutive events were transAtlantic laps by individual cargo-carrying airlifter (or Dual Role) KC-10s. The important assumption was made that the KC-10s should fly concurrent missions, or "carry their own load." That is, all KC-10s were to fly an equal portion of the missions. Thus, with every transAtlantic lap flown by every KC-10 having the exact same duration, the Closure Time (C.T.) for the cargo closure for Distinct Role Airlifter KC-10s (and fighter and cargo closure for Dual Role KC-10s) would be:

C.T. =
$$\sum_{\substack{\text{number} \\ \text{of laps}}} (\text{time per lap})$$

Equation for Airlifter or Dual Role Missions. On Airlifter-Only missions, the KC-10s in this scenario can carry approximately 80,000 to 120,000 pounds of cargo. For Dual Role missions, the KC-10 carries 10,000 pounds of cargo for each fighter that deploys with the KC-10. So, the Dual Role KC-10s can be modelled with the airlifter equations. The only difference is that the Dual Role KC-10s carry much

less cargo per lap because of the increased quantity of transferable fuel that must also be carried. Thus, the equation is the same for both Distinct Role Airlifter and for Dual Role KC-10s.

Cargo Closure Time is simply the sum of set-up time plus (Time/Trip) x (No. of Trips). To be mathematically strict, for developing a Closure Time equation, the KC-10s must make one "one-way" trip, followed by several "two-way" trips, or "laps" across the Atlantic. Thus, the cargo Closure Time equation is:

+ (Preparation Time + First One-way Trip)

In the above equation, the terms "Total Cargo" and "Cargo

per KC-10 per lap" could also be expressed in terms of cargo

per fighter:

Total Cargo = (pounds of Cargo)x(Number of Fighters)
(Fighter)

$$\frac{\text{Cargo}}{\text{KC-10 - lap}} = \frac{\text{(No. of Pallets)} \times \text{(Pounds of Cargo)}}{\text{(KC-10 - lap)}}$$

Therefore, Closure Time becomes:

Cargo
Closure Time = (pounds of Cargo) x (Number of Fighters)
(Fighter)

- % [No. of KC-10s] -1 Trip
- x (Time/lap)
- + (Preparation Time + First One-way Trip)

Example of Closure Time for Distinct Role Airlifters. The total amount of cargo that had to be deployed in this scenario was:

(1200 Fighters) x (10,000 lbs cargo/fighter) = 12,000,000 lbs cargo

Consider a fleet of Airlifter-Only KC-10s which can each carry 80,000 pounds of cargo on each trip they make across the Atlantic. Each lap takes 45 hours. Let Preparation plus First Trip time also be 45 hours. For this situation, Cargo Closure Time would be:

Cargo Closure Time =

$$\frac{12,000,000 \text{ lbs}}{(80,000 \text{ pounds}/(KC-10 \text{ lap})} \times \frac{1}{(\text{No. of KC-10s})} - 1 \text{ trip}$$

- x 45 hrs/lap
- + 45 hrs for Preparation and 1st One-way Trip
- = 168 hours (ie: 1 week)

By combining terms, we can see that 150 KC-10 laps are required:

= 150 KC-10 laps
$$x \frac{1}{(No. of KC-10s)}$$
 - 1

- x 45 hours/lap
- + 45 hours for Preparation and 1st Trip

If we had 150 KC-10s available for the airlifter-only mission, the cargo deployment could be accomplished in a single one-way trip. Any smaller number of KC-10s would necessitate return "laps" to pick up the remaining cargo. For instance, if we had 50 KC-10s, 3 trips would be required: all the KC-10s would make one "one-way trip" to Europe, then return for 2 more "laps."

Note that the Cargo Closure Time is inversely proportional to the number of KC-10s in the Airlifter-Only Mission. That is, 150 KC-10s deploy all the cargo in one lap, but when the number of KC-10s was decreased to 50, one-third of the original, the number of laps triples. If a graph were drawn of "KC-10s versus laps," it would have a hyperbolic shape. These graphs will be discussed in Chapter 5, Results and Conclusions.

Explanation of Dual Role Closure Time. As was stated earlier, the same Closure Time equation used for Dual Role KC-10s was used for Distinct Role Airlifters. The amount of cargo carried by the Dual Role KC-10, however, is much less than carried by the Airlifter-Only KC-10s. This is because of the requirement to carry large quantities of transferable fuel to offload to the fighters. Because of higher KC-10 fuel consumption in the Dual Role, less transferable fuel can be transported. Specifically, the Dual Role KC-10s consumed approximately 30,000 pounds more fuel (depending on fighter refueling speed and cruise altitude) in the given scenario. (See Tanker Data for Dual Role, in Appendix C). The Dual Role KC-10s could therefore carry less payload of cargo and transferable fuel.

Recall the discussion in Chapter II which showed that unrefueled Dual Role KC-10s could only deploy the following numbers of fighters plus their supporting cargo:

For the Dual Role KC-10s, the number of KC-10 trips required to deploy each type of fighter is:

$$KC-10 \text{ trips}(F-16s) = \frac{10,000 \text{ lbs}}{\text{Fighter}} \times 700 \text{ F-16s}$$

$$\times \frac{1 \text{ KC}-10 \text{ trip}}{40,000 \text{ lbs}}$$

$$= 175 \text{ trips}$$

$$KC-10 \text{ trips}(F-15s) = \frac{10,000 \text{ lbs}}{\text{Fighter}} \times 300 \text{ F-15s}$$

= 150 trips

$$KC-10 \ trips_{(F-111s)} = \frac{10,000 \ lbs}{Fighter} \times 100 \ F-111s$$

= 50 KC-10 trips

$$KC-10 \text{ trips}(RF-4Cs) = \frac{10,000 \text{ lbs}}{\text{Fighter}} \times 100 \text{ RF-4Cs}$$

= 50 KC-10s trips

Summing the above numbers, the Total number of KC-10 trips required for deploying all four types of fighters is

$$175 + 150 + 50 + 50 = 425 \text{ KC-}10 \text{ trips}$$

Now, solving for Closure Time,

C.T. =
$$\left[\frac{425 \text{ KC}-10 \text{ trips}}{\text{No. of KC}-10 \text{ (ie: 60)}} - 1 \text{ trip}\right] \text{ laps } \times 45 \text{ hrs/lap}$$

+ set up time (ie: 36 hrs)

+ flight time for 1st one-way trip (ie: 9 hrs)

$$C.T. = [(7.08) - 1] \times 45 + 36 + 9$$

= 319 hrs

= 1 week, 6 days, 7 hours

Conclusion

This chapter explained that, although simulation would have been preferred, the research returned to deterministic equations to provide the calculations for the apportionment of the TTF KC-10s to all the AR tracks. The deterministic Closure Time equations were developed for

- 1. fighters refueled by Distinct Role TTF KC-10s
- 2. cargo, whether by Airlifter-Only KC-10s or by Dual Role KC-10s.

In the following chapter, <u>Results and Analysis</u>, the better KC-10 role is selected, based on the Closure Time MOE. Also, the implications of the deterministic equations are discussed as they relate to sensitivity analysis. Graphs of "Closure Time versus Number of KC-10s" are used to explain the apportionment of KC-10s between the Distinct Role TTF and Airlifter Missions.

V. Results and Analysis

Introduction

As stated in Chapter I, the problem of finding the better KC-10 Role was solved by meeting four objectives. The first objective, develop an appropriate model to calculate Closure Time for each KC-10 Role, was accomplished in Chapter IV. This chapter will summarize the results of those calculations and then discuss the accomplishment of the remaining three objectives—evaluate model sensitivity, select the best factor settings, and then determine if there is a significant difference between the alternatives of Dual Role or Distinct Role KC-10 operation.

Closure Time Results

In the previous chapter, it was shown the the Closure Time for the (unrefueled) Dual Role KC-10s was more than twice that of the Distinct Role KC-10s.

Dual Role (based on 60 Dual Role KC-10s, unrefueled)

Closure Time = 319 hrs = 1 wk, 6 days, 7 hrs

Distinct Roles

Fighters (based on 20 TTF KC-10s)
Closure Time = 142 hrs = 5 days, 22hrs

Cargo (based on 40 Airlifter-Only KC-10s) Closure Time = 141 hrs = 5 days, 21 hrs

Overall
Closure Time = Greater of (142, 141 = 142 hours

Figure 5.1. Summary of Closure Time Results

Sensitivity Analysis

Overview. The above results were based on specific values of terms in the deterministic Closure Time Equations. Because those values were uncertain, it was important to examine how sensitive the Closure Time was to changes in those terms.

After a review of the sensitivity analysis, it will be explained how the TTF KC-10s were apportioned among the AR tracks. The decision as to how to apportion the 60 Distinct Role KC-10s between the TTF and Airlifter Missions is shown using their hyperbolic curves. Finally this section will examine the sensitivity of the choice between Dual Role and Distinct Roles.

Analysis of TTF Equations. Recall that the TTF Closure Time equation was described as the sum of the times required for five events (ie: five addends).

Closure Time =

Time to Set-up TTF

[1st addend]

- + Time for KC-10 to fly to the ARCP (for 1st "track lap"). (Assume fighters launch as necessary to arrive on time.) [2nd addend]
- + Time it takes the TTF KC-10s to transport sufficient fuel to the ARCP to refuel all the fighters. [3rd addend]
- + Time for last fighter to fly from ARCT to destination. [4th addend]
- + Time necessary for aborted fighters to arrive at destination. [5th addend]

The [3rd addend] of the Closure Time was:

[3rd Addend] = Time to transport all fuel (for one type of fighter) to ARCP, per KC-10

- = Sortie interval x Number of consecutive Sorties required
- = Airborne Mission Time + Ground turn around time sortie

The effect of fighters aborting their missions due to missed ARs (due to KC-10 reliability) was that the deployment took longer because they had to be refueled again:

Using these TTF equations, the sensitivity of Closure Time on changes in each term was then analyzed using mathematic relationships of the terms in the equation. Because the equation is deterministic, a change in one factor causes a predictable effect on the MOE, Closure Time. This cause-effect relationship will now be described for all of the terms in the equation, starting with the 1st addend:

First Addend: Time to set-up TTF. Any error in this term is directly add. to the Closure Time. For example, this scenario used an estimated TTF Set-up Time of 36 hours. If TTF Set-up Time were actually 48 hours, then Closure Time would also increase by 12 hours: 142 + 12 =

154 hours. Notice that, although this error is directly additive to the Closure Time, the scale of the error is relatively insignificant:

a 12 hour (half-day) error is only about 8.5% of the total Closure Time value. This term, Time to Set up, will be discussed again, later, in reference to how it affects the overall decision between Distinct Roles and Dual Role.

Second Addend: Time for KC-10 to fly to the ARCP.

Again, as with every addend, error in this term adds

directly to the MOE, Closure Time. This term, however,
introduces extremely little error, because it is small (less
than 3 hours) and it is accurately predicted (flight times
are accurate within minutes).

Third Addend: Time for the KC-10s to carry all fuel to the ARCP. this is the most significant term in the TTF Closure Time equation. In this scenario, the 3rd Addend = 92.6 hrs, or about 65% ci the Closure time (142 hours).

The 3rd Addend is the product of two major terms:

[3rd Addend] =

Sortie interval x Number of consecutive Sorties required

1. Sortie Interval. Any error in this term is multiplied into the error of the 3rd Addend. Considering the scale of the 3rd Addend, a 10% change in Sortie interval

would cause about a 6.5 % change in Closure Time. The term Sortie Interval is actually the sum of two other terms:

Sortie interval =

<u>Airborne Mission Time + Ground turn around time</u> sortie

- a. Airborn Mission Time. This term is very accurate, contributing only a few minutes to the error in sortic interval.
- b. Ground Turn-Around Time. This term is the crux of the whole TTF concept. This term has direct, but unknown effects on the mission reliability of the KC-10, thus affecting fighter abort rate. The value of this term is, therefore, the result of a managerial decision that will have to be made in the future. Many operators "feel" that 3 hours is reasonable (reference 27,28,31) MACREG 28-2 specifies as little as 1 hour + 45 minutes for "gas and go." My own simulation model (See Appendix G) produced an unrealistically large value of 8 hours (to obtain a 91.3% KC-10 launch reliability). This is a very significant range of values.

Notice that the effect of this value on Sortie
Interval depends on the relative sizes of the two
terms, Airborne Mission Time and Ground Turn-around
Time. Airborne Mission Time, however, is different for
every AR track. If Airborne Mission Time was 7 hours

(typical of Goose Bay TTF missions) and Ground Turnaround Time was 3 hours, then a + 1 hour variance in Ground Turn-around Time would cause Sortie Interval to be 7 + 3 = 10 hours, + 1 hour. Thus, a + 1 hour variance in Ground Turn-around Time would have the following effects: 10% change in Sortie Interval, which would cause a 10% change in Addend 3, which would cause a 6.5% change in Closure Time. But, if Airborne Mission Time was 10 hours (typical of Mildenhall TTF missions, since less fuel is offloaded per AR, making possible more ARs per sortie) then uncertainty in Ground Turn-around Time would have significantly less impact: Sortie Interval = 13 hours + 1 hour. would only be a 7.7% change in Addend 3, causing a 5% change in Closure Time. In general, if Ground Turnaround Time is a large portion of Sortie Interval, then it has a greater effect on Closure Time.

This implies that the decision-maker's choice of Ground Turn-around time should be different for each TTF, since the effect on Closure Time would be different.

The following graph displays the resulting effect on Closure Time caused by different selections of values for Ground Turn-around Time. It should be realized that changes in Ground Turn-around Time would change the apportionment of KC-10s among the AR Tracks. Changes in Ground Turn-around Time would also affect

reliability (for instance, if available maintenance time were increased, reliability would also increase).

Figure 5.2 Sensitivity of Closure Time to changes in TTF Ground Time

2. Number of consecutive sorties required. This term is also very significant. Because it is a "multiplicand" (ie: a factor), any change in this term would cause a proportional change in Addend 3. Recall that this term was also the product of several factors:

Number of consecutive sorties required =

- Number of Fighters/AR Track. Since this term is in the numerator, it is apparent that changes in this term would cause proportional changes in Addend 3. For instance, if, instead of 1200 fighters, the deployment were increased by 120 (a 10% increase, of every type fighter) to 1320 fighters, then Addend 3 would increase by 10%. It should be noted that if the quantity of only one type of fighter (F-16s, for instance) were to be changed, then the apportionment of tankers would also change to meet the increased need of that one type of fighter. In that case, the change in Addend 3 would not be 10%, but would depend on the relative efficiency of the refuelings provided to that fighter. For example, an increase of 120 F-16s, which use very little fuel, would cause less change in Closure Time than would an increase of 120 fuel-hungry RF-4Cs.
- b. Number of KC-10s per AR Track. This is the "apportionment" term. Since this term is in the denominator, a change in the number of KC-10s would cause an "inversely proportional" change in Addend 3. For example, a doubling of the number of available KC-10s would halve the value of Addend 3. The following hyperbolic curve on the next page illustrates this inverse proportionality:

Figure 5.3. Sensitivity of Closure Time to Number of TTF KC-10s

c. Number of Fighters/Sortie. This term is the product of two factors: Fighters/Tracklap (also known as Fighter-Tanker Ratio) and Track Laps/Sortie. Again, since the terms are in the denominator of the Third Addend equation, they cause an inversely proportional effect. It should be pointed out, however, that a change in Fighter-Tanker Ratio affects the values of Track Laps/Sortie and Airborne Mission Time. Furthermore, it would cause a change in KC-10 apportionment. Thus, the selection of Fighter-Tanker Ratio, which could be calculated for each type of fighter, would be very scenario dependent.

Fourth Addend: Time for the last fighter to fly
from the ARCT to the Destination. Like all other addends,
the effect of any error in this term would cause an
"additive" error to Closure Time. This Fourth Addend is

known very accurately, to within minutes, therefore adding minimal error to the value of Closure Time.

Fifth Addend: Time for aborted fighters to fly to destination. Recall that this term was expressed in terms of the Third Addend and AR Reliability:

[3rd Addend] + [5th Addend] = [3rd Addend]
Average AR Reliability

As was mentioned earlier, AR Reliability (which, from the maintenance point of view is Probability of Launching on Time) is dependent upon the value chosen for TTF Ground Turn-around Time (which is essentially Time Allowed for KC-10 Repair). The nature of this relationship is presently unknown. There is therefore, a need for a future study to calculate the "Time to Repair" distribution for the KC-10.

In the meantime, the issue was addressed in the following manner: Choose a value for Ground Turn-around Time, which, in turn, determines the value of Addend 3. Based on that value, vary the AR Reliablity to examine sensitivity. Figure 5.5, on the following page, shows several curves of Closure Time versus AR Reliability, based on different values of Ground Turn-around Time.

Figure 5.5. Sensitivity of Closure Time to TTF AR Reliability.

From this type of graph, a future decision-maker could see that it would be better to have a 5 hour Ground Turn-around Time with a 95% reliability than a 1.75 hour Turn-around Time with a 75% reliability. This graph, if used in conjunction with a graph of the "Time to Repair" distribution, would allow the decision-maker to choose the Ground Turn-around Time which would yield the best Closure Time. Both graphs are essential to the process. Figure 5.6 is a hypothetical example of a Maintenance Repair Time Distribution. (Appendix G contains the Maintenance Repair Time Distribution from the SLAM model of KC-10 maintenance.)

Figure 5.6. Hypothetical Maintenance Repair Time Distribution

Because the "Time to Repair" distribution is currently not available, it is impossible at this time to pick the best Ground Turn-around Time.

Analysis of Airlifter-Only Equations. Recall that the Airlifter (and Dual Role) Equation was derived as:

Cargo Closure Time = (pounds_of_Cargo) (Number of Fighters)

(Fighter)

- % [No. of KC-10s] -1 Trip
- x (Time/lap)

CONTROL OF SERVICE CONTROL CONSESSES CONTROL C

+ (Preparation Time + First One-way Trip)

Again, using the mathematical relationships between the terms in the above equation, the sensitivity analysis is

very straight-forward. The following relationships exist between Closure Time and the terms in the equation:

Preparation Time -- Additive. If Preparation Time is changed by 1 hour, Closure Time is also changed by 1 hour.

Time per Lap--Directly proportional. If lap time were increased by 4.5 hours (a 10% change), then the Total Lap Time would also increase by 10%. (Notice that, to get Closure Time, the Preparation Time term must be added to Total Lap Time.)

Average Cargo Weight--Inversely proportional (not including the additive term). It is very significant that the cargo load is uncertain within the range of 80,000 to 120,000 pounds per KC-10. This causes an uncertainty in Cargo Closure Time (and in apportioning between TTF and Airlifter roles!) of + 20%.

Number of KC-10s-The number of trips to Europe required of the fleet of Airlifter-only KC-10s is clearly inversely proportional to the number of cargo-carrying KC-10s in the Airlifter-only mission. Figure 5.7 on the following page displays this relationship of Closure Time to the Total Number of Airlifter KC-10s.

Figure 5.7. Sensitivity of Cargo Closure Time to the Number of KC-10s and the Cargo Weight

Apportionment of KC-10s between TTF and Airlifter

Missions. The assignment of KC-10s to these two missions
within the Distinct Roles concept is optimized when both
have equal Closure Times. Figure 5.8 on the following page
dipicts the graphs of TTF and Airlifter "Closure Times vs.

Number of KC-10s." It can be seen that the best overall
Closure Time of 142 hours is achieved when 20 KC-10s are
assigned to the TTF mission and 40 KC-10s are assigned to
the Airlifter-only mission.

Figure 5.8. Apportionment of KC-10s between TTF, Airlifter Missions

Analysis of Dual Role Closure Time Equations

Since the Dual Role Closure Time was calculated using the same equation as the Distinct Role Airlifter Closure Time, the sensitivity to uncertainty or to managerial changes is the same. Unlike the Airlifter-only KC-10s, the Dual Role KC-10s are not "bulked-out" (since the Dual Role KC-10s carry so little cargo). Because of this, Pallet Weight is not a consideration for the Dual Role KC-10s. The most important factor in the Dual Role operation is the Number of KC-10s assigned.

Figure 5.9 on the following page illustrates the sensitivity of Dual Role Closure Time to the number of KC-10s. On the graph, the number of KC-10s actually available, 60, is so small, compared to the number required to accomplish the deployment in one trip, as to place the Closure Time in the steeply increasing part of the

hyperbolic curve. In this part of the curve, sensitivity to all factors is more pronounced.

The following graph displays this relationship of Closure Time to Total KC-10s.

Note: This Figure assumes the KC-10s are not given additional air refuelings

Figure 5.9. Dual Role Closure Time vs. Total Number of KC-10s

Significance of the Difference Between Roles

The following Figure 5.10 charts the times of the the arrivals of fighters and cargo at the destination, as delivered by the two deployment concepts, Dual and Distinct Roles.

Figure 5.10. Cummulative Arrival of Fighters and Cargo for Dual and Distinct Role Deployment

The only parts of the chart that differ between the two concepts are:

- 1. slope of the cumulative arrivals (arrival rate)
- 2. horizontal displacement of the first arrival
 In terms of this visual concept, the major sensitivity
 question that has to be asked then, is "is there sufficient
 uncertainty in the slope or in the horizontal displacement
 of the two Roles to doubt that Distinct Roles is better?"

In the above graphs, the horizontal displacement is the Set-up Time plus time to fly the first trip across the ocean. For the horizontal displacement to make up the difference between the Roles would require an error of incredible magnitude: 4 days!

The slope of the TTF deployment (ie: the rate of fighter refuelings) is the next part of the graph to be examined. The crux of the TTF is the ability of the KC-10s to rapidly and reliably "turn-around" for their next mission. In order for uncertainty in the slope to cause an uncertainty of greater than 4 days would require a doubling of the AR Interval (inverse of the rate). To do that would require "turn-around" times of about 12 hours. That would be ridiculously poor performance.

Another question that might be asked is -- Would a combination of errors in the slope and displacement in the TTF deployment graph cause it to lose to the Dual Role concept? That would require, for example 2 days set-up and a 50% increase in sortic interval. Even that is not reasonable.

Next, the graph of the Airlifter-only deployment must be considered. Since Airlifter KC-10s and Dual Role KC-10s fly the same route, the set-up times (horizontal displacement) are identical. The slope of the Airlifter-only deployment (ie: cargo deployment rate) would also have to be examined. Indeed, there is significant question,

based on the "bulkiness" of the cargo, as to how much cargo each airlifter KC-10 can carry per trip. The difference, though great, would not be enough to make 40 Distinct Role Airlifter KC-10s perform worse than 60 Dual Role KC-10s.

Selection of the Best Factor Settings

Recall from chapter I that three factors were thought to have significant impact on the effectiveness of each KC-10s role:

- 1. reliability of the KC-10
- 2. ratio of fighters to KCs-10s for air refueling
- 3. location of the TTF (Distinct Role only)

For Dual Role KC-10s, the selections were straightforward. KC-10 reliability was always 100% because they
waited on the ground until they were fixed. (The fighters
simply waited until the KC-10 was fixed before they
launched.) The ratio of fighters to KC-10s was the maximum
feasible: 4 F-16s, 2 F-15s, 2 F-111s, or 2 RF4-Cs.

In the Distinct Role, reliability was directly impacted by the choice of ground turn-around time. Too short a turn-around time would cause missed ARs due to KC-10 maintenance. It was not possible, ho ever, to choose a ground turn-around time without having internation about the Maintenance Repair Time distribution. This therefore remains for future research.

The best ratio of fighters to KCS-10s was found to be six to one, for the overall deployment.

Of the three TTFs considered, only one was on the east side of the Atlantic Ocean, Mildenhall TTF was therefore mandatory to make the deployment feasible. On the west side of the Atlantic, a choice of two possible TTFs existed. Goose Bay, being closer to most of the AR tracks, was more effective than Loring AFB. It should be noted, however, that the use of two smaller TTFs, with some at Loring (refueling the AR tracks over New England) and some at Goose Bay (refueling the Atlantic AR tracks) would provide even better Closure Time.

Concept of Refueling the Dual Role KC-10s

The Air Force regularly uses the concept of air refueling the Dual Role KC-10s, usually by calling upon KC-135s to provide the extra fuel. A tanker, whether a KC-135 or a KC-10 which refuels the Dual Role KC-10 is, essentially, only helping it to carry more cargo--if the KC-10 takes off with less fuel (which is then provided by the other tanker), it can carry more cargo. To see how this might affect Closure Time, let us first consider the two main reasons why the Distinct Role concept was better than the unrefueled Dual Role concept:

1. TTF effectiveness. The 20 Distinct Role
TTF KC-10s were able to deliver 30,114,100 pounds of fuel to
the fighters in the same amount of time that it took 40
Distinct Role Airlifter KC-10s to deploy 12,000,000 pounds
of cargo. This indicates that the KC-10 was twice as

effective in the TTF mission as it was in the Airlifter mission. In contrast to the TTF tankers which were able to provide ARs every few hours, the Dual Role KC-10s had to fly across the Atlantic and back (like the Distinct Role Airlifter) between ARs.

2. Reduced Dual Role Payload. The Dual Role KC-10s, having higher fuel consumption, had a lower payload capacity. Even worse, the Dual Role KC-10s often launched with much less than capacity payload because of the restriction that their cargo weight be in proportion to the number of fighters being refueled.

It is apparent that, if each of the Dual Role KC-10s were given an extra AR it would reduce the impact of item 2 above. That is, the Dual Role KC-10 could launch at Maximum Takeoff Gross Weight by carrying more cargo, but with inadequate fuel. Aother tanker (preferably at a TTF base), would supply the difference in fuel. There, the Dual Role KC-10 would always be carrying a full payload.

Although the Dual role KC-10s would only be able to make 1 lap every 45 hours, they would be able to deploy with many more fighters each lap. The "Tanker" program was used to calculate that the following numbers of fighters could be refueled if the Dual Role KC-10s were provided an AR:

8 F-16s, 6 F-15s, 6 F-111s, 6 RF-4Cs. Using the Dual Role deterministic equation, the total deployment would require 172 KC-10 trips.

The air refueling support for these Dual Role KC-10s could be provided by 1 TTF KC-10 for each Dual Role KC-10s deploying with F-15s, F-111s, and RF-4Cs. F-16 deployments, being more fuel efficient, only require 1 TTF KC-10 for every 2 Dual Role KC-10s. The total TTF support would thus be 128 KC-10 sorties, each 6.5 hours long. The deterministic TTF equation, previously used to find Fighter Closure Time, was used to derive the graph of Closure Time (of fighters and cargo being deployed by Refueled Dual Role KC-10s) versus Number of TTF KC-10s. Then, using the same iterative procedure that was used for apportioning KC-10s between the Distinct Role TTF and Airlifter missions, the following apportionment was calculated between TTF and Refueled Dual Role KC-10s:

14 TTF KC-10s 46 Dual Role KC-10s

Notice that this is similar to the values calculated for the Distinct Role apportionment. Here, however, the Dual Role KC-10s were only carrying 60,000 to 80,000 pounds of cargo (the support equipment of 6 to 8 fighters), so more KC-10s were required in order to rapidly deploy all the cargo.

The expected value of the Refueled Dual Role Closure
Time was calculated to be 3.74 laps = 168 hours. This was
26 hours (18%) longer than the Distinct Role deployment
Closure Time, which was 142 hours.

Is Distinct Role Significantly Better than Refueled Dual Role? The difference of 26 hours between the Closure Times of the Distinct Role and Refueled Dual Role concepts lies within the range of uncertainty. Recall that the upper bound of Closure Time uncertainty for the Distinct Role Airlifters was 20% greater (170 hours), based on only 80,000 pounds of cargo being carried per trip. Notice that, at this point, the Refueled Dual Role KC-10s would be carrying nearly as much cargo as the "bulked out" Airlifteronly KC-10s. This deletes one of the main advantages of the Distinct Role concept over the Dual Role concept: that the Distinct Role airlifters carried more cargo per lap. If the Distinct Role airlifters carried as little as 80,000 pounds per lap, the Distinct Role would have an insignificant advantage over refueled KC-10s. Further data needs to be obtained to reduce the large range of uncertainty surrounding Distinct Role Airlifter Closure Time.

(It should also be pointed out that this argument is based on "expected" Closure time for the transAtlantic laps. In reality, 3.74 laps means that 35 of the Dual role KC-10s would stop after 3 laps, and 11 of them would return for a fourth lap. Compare that to the Distinct Role concept: although 20 of the Airlifter KC-10s had to return for the fourth lap, all the fighters had actually arrived by 142 hours. What this means is that, even if the refueled Dual Role had an "expected" Closure Time equal to the Distinct Role Closure Time, the Dual Role would have 66 fighters

arriving a half-lap (22 hours) later. Therefore, there is still a slight advantage to the Distinct Role concept.)

Summary

大大學

The contract and the second of the second se

In conclusion, the sensitivity analysis of the two deployment concepts shows that, based on the mathematical relationships between terms, and the suspected uncertainty in those terms, the Distinct Roles concept is clearly superior to the unrefueled Dual Role concept.

It can be seen that most of the disparity in Closure Time can be explained by the fact that many of the unrefueled Dual Role KC-10s carried much less than their maximum payload. When deploying with F-111s or RF-4Cs, in this scenario the Dual Role KC-10s could only feasibly carry 20,000 pounds of cargo and air refuel 2 fighters on each It was not quite feasible to refuel 3 fighters and carry their 30,000 pounds of cargo. That load inefficiency would account for a 33% loss of effectiveness for two of the four types of fighters. (The Dual Role deployments of the F-16s and F-15s were nearly optimal using Fighter-Tanker Ratios of 4, and 2, respectively.) It is obvious that, in any Dual Role deployment scenario, there are going to be some KC-10s with grossly inefficient payloads. It would be impossible to make all the Dual Role payloads 100% efficient.

One attempt to reduce this inefficiency has been the idea of air refueling the Dual Role KC-10s to allow them to

deploy with more fighters and their cargo. In this way, the extra cargo can be carried by the Dual Role KC-10s, and the extra fuel can be carried by another tanker. It was shown that providing the extra ARs for the Dual Role KC-10s did not improve the effectiveness beyond that of the Distinct role.

The following chapter will summarize conclusions and make recommendations.

STAND STANDARD CONTROL STANDARD STANDARD STANDARD STANDARD STANDS STANDARD STANDARD STANDARD STANDARD STANDARD

VI. Conclusions and Recommendations

Conclusions

This research definitely shows that the Distinct Roles Concept of Operation is vastly superior to the "pure" Dual Role concept, that is, where the Dual Role KC-10s are not air refueled. By providing air refuelings to the Dual Role KC-10s, Closure Time could be reduced, but not sufficiently to equal the Distinct Role Closure Time. In reality, air refueling the Dual Role KC-10s provides a compromise, leaning toward separating the roles.

Recommendations

In light of the clear superiority of the Distinct
Roles, largely due to the highly effective operations of the
Tanker Task Force, the following recommendations are made.

- 1. <u>Implement the Distinct Roles concept of operation</u>. The Air Force should not plan to use the KC-10 in the Dual Role, but to use the KC-10 in the Distinct Roles of Airlifter-only missions and Tanker-only missions.
- 2. Reduce uncertainty. Future research into the area of Distinct Role operations should also look more closely at the TTF operations to reduce the uncertainty surrounding the Closure Time resulting from TTF support of the fighter deployment. Three areas of TTF operation should be studied in depth:
 - a. KC-10 Maintainability/Reliability. In order

to determine the optimal refueling rate, the KC-10 ground turn-around time must be scheduled so as to reduce late take offs (which cause missed ARs), and at the same time, increase the sortic rate (more AR sortics means faster Closure Time). In order to make that decision, the calculation of the Distribution of Maintainance Repair Time is essential.

- b. Fighter Abort Queueing? In order to optimize Closure Time, the TTF Operation is forced to select a non-zero abort rate. Thus, the aborting of fighters should be examined further. The time fighters spend on the ground should be closely examined to see whether queuing occurs for parking space or for services, including maintainance and Air Traffic Control.
- c. TTF organization should be closely examined:
- 1. <u>TTF Set-up Time</u>. How long does it really take to set up the TTF?
- 2. <u>TTF Size.</u> Would a split into smaller
 TTFs be better or worse? For instance, the Goose
 Bay TTF of 15 KC-10s could have been split into
 two smaller forces, with some KC-10s operating out
 of Loring AFB. Since Loring AFB is closer to the
 western-most AR tracks, the sortic efficiency is

improved, causing a corresponding improvement in Closure Time. The issue is a matter of KC-10 sortic efficiency versus maintenance efficiency.

Consider the relative effectiveness of KC-10 and MAC airlifters. This recommendation deals with the relative inefficiency of the KC-10 as an airlifter, compared to its capability as a tanker. One way to ease the problem would be to reduce the scenario's demands for airlift. would not be a very likely prospect. Therefore, if the Distinct Role KC-10s are required to move all the cargo and to supply all the necessary fuel for the deploying fighters, then the KC-10s will spend the majority of time doing that which they are least equipped to do--airlift. Why make twothirds of the KC-10s carry cargo? Instead, the Air Force should seriously consider using the KC-10 to concentrate on what only it can do--provide air refuelings! That is not to say that the KC-10 should carry no cargo, but that, if other airlifters can do it better, they should do most of the airlifting. The final recommendation of this study then, is to further examine the whole deployment picture. If C-5s, C-141s and C-17s were used to transport fighter support equipment and personnel, then the Closure Time of fightersquadrons would probably be greatly improved. In turn, the KC-10s freed from Airlifter duty would be able to increase the effectiveness of the MAC airlifters by providing them with extra air refuelings.

4. Consider the survivability of the KC-10. Attrition of the KC-10s was not studied in this thesis. Consideration should be given in future studies to the increased vulnerability of the KC-10 while on the ground unloading cargo at the destination. In contrast to the estimated KC-10 unloading duration of 3 hours, the MAC airlifters, with rear-opening cargo doors, can unload cargo in one sixth the time, which could greatly improve survivability at a fighter destination base. On the other hand, there is also a disadvantage to putting all the KC-10s into large TTFs, because they become very lucrative targets.

In summary, the KC-10s have been shown to be extremely effective in the Distinct Role Tanker Task Force mission, where they fly short, highly efficient, "round-robin" missions. This effectiveness in providing TTF air refuelings resulted in the Distinct Role concept of KC-10 operation being clearly superior to the Dual Role. Because the KC-10 is twice as effective in the TTF mission as it is in the Airlifter mission, further condsideration should be given to reducing or eliminating the KC-10's cargo-carrying task.

APPENDIX A ABBREVIATIONS AND DEFINITIONS

Abbreviations

AFB. Air Force Base.

AFIT. The Air Force Institute of Technology.

 \underline{AR} . Air refueling--the aerial transfer of jet fuel from a tanker (KC-10) to another aircraft, such as the deploying fighters.

ARCP. Air Refueling Control Point--the predetermined location where the tanker and receiver aircraft rendezvous. Once the rendezvous is complete, the air refueling operation begins immediately. On missions where the tankers and fighters are already flying together in formation, air refueling begins immediately upon arrival at the ARCP.

ARCT. Air Refueling Control Time--the predeterined time when both the tanker and the receiver aircraft will arrive at the AR Control Point.

CONUS. Acronym standing for Continental United

States--all the deploying fighter aircraft and KC-10s are
based in the CONUS.

C-141B, C-5. Two types of cargo aircraft operated by Military Airlift Command. Also called airlifters.

<u>FORTRAN.</u> A math-oriented computer language, used in SLAM and in the deterministic model.

 $\underline{F-4}$, $\underline{F-15}$, $\underline{F-16}$, $\underline{F-111}$. Four types of fighter aircraft which are studied in this thesis.

Hq. Headquarters.

IOCL Integral On-Board Cargo Loader. A proposed modification to the KC-10 which would make it self-

sufficient for cargo operations.

 $\underline{KC-10}$. A large tanker/cargo aircraft, operated by Strategic Air Command.

MAC. Military Airlift Command--Established by the Secretary of the Air Force as "the single manager operating agency for airlift service." As such, MAC is responsible for the C-5 and C-141 airlifter fleets.

Max. Maximum.

SLAM II The registered trademark of an advanced FORTRAN based computer language with which simulation models can be built. This acronym stands for Simulation Language for Alternative Modeling.

SAC. Strategic Air Command--The sole manager of all tanker resources, resposible for the KC-10 both in peacetime and in crisis fighter deployments.

TAC. Tactical Air Command--The USAF command responsible for the organizing, training, and equipping of tactical forces.

TGID. Thank Goodness It's Done!--An exclamation upon the occasion of the long-awaited completion of this Thesis.

TTF. Tanker Task Force--A temporary tanker organization which is formed to accomplish a specified refueling assignment.

USAF. The United States Air Force.

Definitions of Terms

Abort. The abnormal termination of a mission due to such events as a missed rendezvous or aircraft mechanical malfunction.

Airlifter. A cargo-carrying aircraft, such as the KC-10, C-5, C-141.

Augmented Aircrew. An aircrew which has extra pilots and other required personnel onboard the aircraft for the purpose of relieving the primary crew. Augmented aircrews are authorized to fly longer missions than normal.

Buddy. A buddy mission is one in which the tanker and receivers launch from the same base and fly together in formation to the subsequent air refueling. This is the type of mission flown under the Dual Role concept.

Closure Time. The time it takes for all of the fighter squadrons, including fighter aircraft and their support equipment and personnel, to arrive at their destination base in Europe.

Cochran Loader. The cargo loader required to load and unload the KC-10.

Concept of Operation. In this study, one of two possible master plans, Dual Role or Distinct Role, for use of the KC-10 in refueling fighters and carrying their support equipment and personnel.

<u>Conceptual Model.</u> A logical/descriptive representation of the deployment operation.

Computerized Model. The conceptual model implemented on a computer.

<u>Deployment.</u> The strategic movement of forces to another battle area. In this study, the movement of fighter squadrons to forward bases in Europe.

<u>Duty Day.</u> The aircrew duty day is the maximum allowable time period that the aircrew is allowed to perform flying duties. (Duty day limitations vary among aircraft types.) For example, the usual KC-10 crew duty day is 16 hours.

Operational Concept. See Concept of Operation.

Model. A representation of a real-life operation. In this thesis, the operation of KC-10s in the deployment of fighters to Europe is being modeled.

Offload. noun: A fuel offload is the fuel that a tanker has given away to a receiver. verb: To remove fuel from a tanker or cargo from an airlifter.

Onload. noun: The fuel that a receiver receives from a tanker. verb: To place fuel or cargo on an aircraft.

Palletized Cargo. Cargo that has been placed on pallets that can be quickly rolled on/off airlifters such as the KC-10, C-141, C-5.

Receiver Aircraft. An aircraft receiving fuel from a tanker. In this thesis, fighter aircraft such as the F-15 are the receivers.

Refueling Boom. The apparatus on the tanker aircraft by which fuel is transferred to the receiver aircraft during flight.

Refueling Receptacle. The apparatus on the receiver aircraft that enables it to receive fuel from a tanker refueling boom.

Reinforcement. The augmenting of forward-based military forces with units from the CONUS. In this study, specifically meaning the strategy which requires the deployment of fighter squadrons to Europe.

Rendezvous. In air refueling missions, the complex procedure whereby the tanker and receiver aircraft meet at a prearranged time and location for the purpose of accomplishing an aerial refueling.

Sortie. A single mission of any USAF aircraft, from takeoff to landing.

Support Equipment and Personnel. In this study, the equipment and personnel that are specifically required to deploy with the fighter squadrons as designated in the $\underline{4102}$ Plan.

Tanker. The KC-10. It carries extra fuel which it transfers to the receiver aircraft.

Track lap. Defined in this thesis as a reference to one of several trips each TTF KC-10 makes down the AR track.

Transferable fuel. The extra fuel in the tanker aircraft that is available to be offloaded to the receiver via air refueling.

APPENDIX B DETERMINISTIC TTF PROGRAM

PROGRAM OUTPUT

Sensitivity of Fighter Closure Time to Changes in TTF Ground Turn-Around Time

PRINTOUT FROM PROGRAM DETERMTTF.FOR

			5			
TURNTIME		CLOSURE	TIME	ıs	121.9	HOURS
TURNTIME		CLOSURE	TIME	IS	127.0	HOURS
TURNTIME		CLOSURE	TIME	IS	132.2	HOURS
TURNTIME		CLOSURE	TIME	ıs	137.3	HOURS
TURNTIME		CLOSURE	TIME	IS	142.5	HOURS
TURNTIME		CLOSURE	TIME	IS	147.7	HOURS
TURNTIME		CLOSURE	TIME	IS	152.8	HOURS
TURNTIME	IS 4.5 FIGHTER	CLOSURE	TIME	IS	158.0	HOURS
TURNTIME		CLOSURE	TIME	ıs	163.1	HOURS
TURNTIME	IS 5.5 FIGHTER	CLOSURE	TIME	IS	168.3	HOURS
TURNTIME		CLOSURE	TIME	ıs	173.5	HOURS
TURNTIME	IS 6.5 FIGHTER	CLOSURE	TIME	ıs	178.6	HOURS
TURNTIME		CLOSURE	TIME	IS	183.8	HOURS
TURNTIME		CLOSURE	TIME	ıs	188.9	HOURS
TURNTIME		CLOSURE	TIME	IS	194.1	HOURS

APPORTIONMENTS TO AR TRACKS AND TO TTFS

--DATA FROM DETERMITF PROGRAM

```
TURNTIME IS 3.0
GREEKETA=
             365.56
100 TANKER, 1.00 RELIABILITY ADDEND3= 18.52
BASED ON 20. TANKERS, ADDEND3= 92.62
BASED ON 0.95 RELIABILITY, ADDEND3= 97.49
        FIGHTER CLOSURE TIME IS 142.5 HOURS
 GOOSE BAY
           APPORTIONMENT= 76.1 %
 MILDENHALL APPORTIONMENT= 23.9 %
 FOR F-16 , TRACK 1, KC-10 APPRT=
                                    19-.7 %
 FOR F-16 , TRACK 2, KC-10 APPRT=
 FOR F-15, TRACK 1, KC-10 APPRT=
                                     20.0 %
 FOR F-15 , TRACK 2, KC-10 APPRT=
                                     12.4 %
 FOR F-15, TRACK 3, KC-10 APPRT=
 FOR F-111, TRACK 1, KC-10 APPRT=
                                     7.3 %
 FOR F-111, TRACK 2, KC-10 APPRT=
                                     4.9 %
 FOR RF-4C, TRACK 1, KC-10 APPRT=
                                      4.9 %
 FOR RF-4C, TRACK 2, KC-10 APPRT=
                                     3.7 %
 FOR RF-4C, TRACK 3, KC-10 APPRT=
FOR RF-4C, TRACK 4, KC-10 APPRT=
                                      3.1 %
                                     3.4 %
 FOR RF-4C, TRACK 5, KC-10 APPRT=
```

41.	PROGRAM I	DETERMTTF
* * *	AUTHOR:	JOHN DAVIS (DAVE) HUNSUCK, JR., CAPT, USAF 217 - 64 -7804.
* * *	DATE:	JUNE 5, 1986
* * * * * * * *	PURPOSE:	THIS PROGRAM WAS DEVELOPED AS PART OF A MASTER'S THESIS RESEARCH AT THE AIR FORCE INSTITUTE OF TECHNOLOGY, WPAFB, OH. FURTHER EXPLANATION OF THE THEORY BEHIND THIS PROGRAM CAN BE FOUND IN THE ACCOMPANYING THESIS.
* * * * * * *		USING A DETERMINISTIC MATHEMATICAL MODEL, THIS PROGRAM CALCULATES THE APPORTIONMENT OF TANKER TASK FORCE TANKERS (KC-10S) AMONG SEVERAL AIR REFUELING TRACKS. RECEIVER (FIGHTER) CLOSURE TIME IS ALSO CALCULATED.
* * * * * * * * * * * * * * * * * * * *	INPUT:	CURRENTLY, THE INPUT ROUTINE CONSISTS OF A LIST OF INITIALIZING EQUATIONS IN THE PROGRAM. TO CHANGE DATA REQUIRES A RECOMPILATION OF THE PROGRAM. REQUIRED DATA INCLUDES ALL AR TRACK INFO, AS WELL AS INFO ABOUT THE TTFS.
****	MAJOR FU	CALCULATE THE GREAT CIRCLE DISTANCES BETWEEN THE TTFS AND AR TRACKS. SEARCH FOR CLOSEST TTF BASE TO EACH AR TRACK CALL A MODIFIED 'TANKER' PROGRAM TO FIND: KC-10 SORTIE DURATION MAXIMUM FEASIBLE NUMBER OF 'TRACKLAPS' CALL THE DETERMINISTIC EQUATIONS TO: FIND KC-10 APPORTIONMENT AMONG TRACKS CALCULATE THE FIGHTER CLOSURE TIME
**** ****	COMMON	√ING COMMON IS USED AT THIS LEVEL OF THE PROGRAM: /INPUT/ _ATT, ARCPLONG,

- &
- ARCPLATT, ARCPLONG, EARLATT, EARLONG, TTFLATT, TTFLONG, ALTRAR, CASRAR, TIMERAR, DISTRAR, OFFRAR, TTFMAX70
- & &

real

- & ARCPLATT(4,5), ARCPLONG(4,5),
- & EARLATT(4,5), EARLONG(4,5),
- & TTFLATT(3), TTFLONG(3),
- & ALTRAR(4), CASRAR(4), TIMERAR(4,5), DISTRAR(4,5), OFFRAR(4,5),
- & TTFMAXTO(3)

COMMON /NAMES/ TTFNAME, FIGHTER character TTFNAME(3)*10, FIGHTER(4)*5

COMMON/EQNS/ CLOSURE, SETUPTM, FLYTOAR1, FLYTODST,

- \$ FTRCELL, TOTNOFTR, TURNTIME, KCFLTIME,
- & kclaps, GOOUT, GORTB,
- & TOTALTNK, TTFAPPRT, RELIBLTY, KCTRACK,
- & ITTFL, JFTRL, KTRAKL, NEARTTF,
- & DOMINATD

REAL CLOSURE, SETUPTM, FLYTOAR1, FLYTODST,

- & FTRCELL(4), TOTNOFTR(4), TURNTIME(3), KCFLTIME(4,5),
- & KCLAPS(4,5), GOOUT(3,4,5), GORTB(3,4,5),
- & TOTALTNK, TTFAPPRT(3), RELIBETY, KCTRACK(4,5)

REAL SORINTVL(4,5), AVGLAPINT(4,5)

INTEGER ITTFL, JFTRL, KTRAKL, NEARTTF (4,5)

LOGICAL DOMINATD(3,4,5)

* FOLLOWING COMMON LINES ADDED TO MAKE 'TANKER' WORK WITH

* THIS DETERMITE PROGRAM:

COMMON /HUNSUCK/ITANKR, IFULOP, NUMFAR, NUMFA1
COMMON /THESIS/FULSUB, TOWT, OFWT, FULLND, CRUDRG, RTBALT, RTBTIM, FLTWT
, CWT, DIST1S, FARCAS, DIST3, WT1T, TOTA, TIME

REAL TOTA, TIME
INTEGER ITANKER, IFULOP, NUMFAR, NUMFA1

INTEGER I, J, K, L, M

* THE FOLLOWING COMMON DATA ARE FOR SUBROUTINE TANKER *******

COMMON /A / DISTTA ,WT ,AS(7) ,DAT ,DAT1 ,LCAS ,IPNT REAL

```
&
                 DAT
                          (17, 7, 4)
                ,DAT1
    Šć.
                           (17,5)
    &
                , DISTTA
                , WT
                         (17)
                      ,LCAS
      INTEGER IPNT
                                (17,5)
      COMMON /B
                     / ALTX
                                       , CFUEL
                                               , CTIME
                              ,CCCAS
                        , CDIST
                                    ,TARTIME
      DOUBLE PRECISION
                       CCCAS
                                  (17)
                        , CDIST
                                    (17,7)
    દે
                        , CFUEL
                                    (17,7)
    &
                        ,CTIME
                                    (17,7)
      REAL
              TARTIME
                      ,ALTX(8)
      COMMON /C
                     / RFDRAG
                              ,ONLOAD ,YTAB1
                                               ,YTAB2
                        , CCALT
                                    , CCNAM
      DOUBLE PRECISION
                       CCALT
                                  (17)
    ઢ
                        , CCNAM
                                    (17)
    દ
                        ,YTAB1
                                    (17,7)
                        ,YTAB2
                                    (17,7)
    &
      REAL
             ONLOAD
                      , RFDRAG
      COMMON /D
                     / FARDST ,TIMELT, OF LOAD , NUMREC
                        FARALT ,ALT1(5) ,FARTIM
      REAL
    &
                 FARALT
                             (15)
                             (15)
    દેહ
                ,FARDST
    &
                ,FARTIM
                             (15)
    &
                             (15)
                ,OFLOAD
                , FIMELT (15)
      INTEGER NUMREC
      COMMON /E
                     / SPECIAL , ANUMRO
      DOUBLE PRECISION SPECIAL (17)
      REAL
              ANUMRC
                         (15)
                     / NOPRNT
      COMMON /F
      COMMON /G
                     / DATE
                                 , ICTAS
             DAT2
                       (17, 5)
      REAL
      INTEGER NOPRNT
                      , ICTAS
                                 (17,5)
****
       REAL KCFUELUS(3,4,5), KCFUELOF(3,4,5)
# First, tell the computer which type of tanker: 3 means KC-10.
      ITANKR = 3
* Next, open the appropriate data file.
      IF(ITANKR.EQ.1) OPEN(10,FILE='GST86J:[JHUNSUCK.FUELS]TKRW.DAT',
        STATUS='OLD')
      IF(ITANER.EQ.2) OPEn(10.FILE='GST86J:IJHUNSUCE.FUELSITERTT.DAT'.
        STATUS='OLD')
      IF(ITANKR.EQ.3) OPEN(10,FILE='GST86J:CJHUNSUCK.FUELS]TKRXA.DAT',
```

```
& STATUS='OLD')
      & STATUS='OLD')
* Next, open any output files that we desire to use.
      OPEN (UNIT=11, FILE='DISTANT.LIS', STATUS='NEW')
     OPEN (UNIT=12, FILE='FEASIBLE.LIS'.STATUS='NEW')
  Establish the dimensions of the TTF, Fighter, Track Array.
      WRITE(*,*)'ENTER ITTF1, JFTR1, KTRAK1'
*
*
      READ(*,*) ITTF1, JFTR1, KTRAK1
*
      WRITE(*,*)'ENTER ITTFL, JFTRL, KTRAKL'
      READ(*,*) ITTFL, JFTRL, KTRAKL
*
      ITTF1 = 1
      ITTFL =3
      JFTR1 = 1
      JFTRL =4
      KTRAK1=1
      KTRAKL=5
* INITIALIZE ALL DATA CONCERNING TTFS. AR TRACKS:
      CALL INITIAL
      DATA FLYTOAR1/2./
      DATA FLYTODST/7./
      DATA SETUPTM/36./
      DATA TOTALTNK/20./
      DATA RELIBLTY/0.95/
* IF CALCULATIONS ARE NOT DESIRED FOR ANY PARTICULAR TIF,
* IT CAN BE SKIPPED BY SETTING ISKIPTTF TO THE TTF NUMBER.
      ISKIPTTF = 3
*NEXT, CALCULATE THE DISTANCES BETWEEN THE TTFS AND AR TRACKS:
      CALL CALCDISTANCE (ITTFL, ISKIPTTF, JFTRL, KTRAKL, ARCPLATT,
               ARCPLONG, EARLATT, EARLONG, TTFLATT, TTFLONG, TTFNAME,
              FIGHTER, GOOUT, GORTB)
* SEARCH FOR NEAREST TTF TO EACH TRACK:
      CALL NOTDOMINATED
* FOR EVERY AR TRACK, FOR EVERY FIGHTER TYPE, FOR EVERY TTF:
       DO 0100 I=1, ITTFL
        DO 0100 J=1, JFTRL
         DO 0100 K=1,KTRAKL
       IF (G00UT(I,J,K).EQ.O.) GD TO 0100
            (IE: TRACK IS NON-EXISTANT, SO GO TO NEXT TRACK)
*
```

```
*
       IF THIS IS NOT THE CLOSEST TTF TO THIS TRACK.
*
         THEN SKIP THE CALCULATIONS,
*
         ELSE $$ CALL TANKER $$ TO CALCULATE FUEL, FEASIBLITY:
*
       IF (NEARTTF(J,K).NE.I) GO TO 0100
         CONTINUE
         THE FOLLOWING LINES LOAD VALUES INTO VARIABLES
*
*
         USED BY TANKER:
            NUMFAR = 8
*
                  (ie: attempt to put max of 8 tracklaps
‡:
                        per KC-10 sortie}
            ANUMRC(1) = 6
*
                  {ie: assign six fighters to the tracklap}
            DO 0003 L=2.NUMFAR
               ANUMRC(L)=ANUMRC(1)
 0003
            CONTINUE
               {ie: fill in the above matrix}
            DISTIS
                     = 600UT(1,J,K)
            FARALT(1) = ALTRAR(J)
            FARCAS
                    = CASRAR(J)
            FARTIM(1) = TIMERAR(J,K)
            FARDST(1)= DISTRAR(J.K)
            OFLOAD(1) = OFFRAR(J,K)
C
            TIMELT(1)=?
            DIST3
                     = GORTB(I,J,K)
          CALL TANKER
             REWIND(10)
             WRITE(12,1233) TIME
# 1233
             FORMAT (1X, TOTAL TIME=',F4.1)
             WRITE(12,1234) OFLOAD(1),OFLOAD(1)*NUMFA1*ANUMRC(1)
‡.
             FORMAT(1X,'INDIV OFLOAD= ',F10.0,' TOTAL OFLOAD= ',F10.0)
* 1234
*
             WRITE(12,1600)WTTT,TOTA
* 1600
             FORMAT(1X,'REMAINING FUEL= ',F7.0,', FUEL USED= ',F7.0)
*
             WRITE(12,1605) NUMFA1
* 1605
             FORMAT(1X, I3, ' CELLS OF FIGHTERS')
#:
             WRITE(12,1610)(ANUMRC (M), M=1, NUMFA1)
# 1610
             FORMAT(1X,'NUMBER OF RECEIVERS BY CELL',1X,8E12.2)
*
           TRANSLATE THE 'TANKER' VALUES INTO VARIABLE NAMES USED BY
*:
           THIS PROGRAM:
             KCLAPS(J,K)=NUMFA1
             KCFLTIME(J,K)=TIME
*
              KCFUELUS(I,J,K)=TOTA
*
              KCFUELOF(I, J, K)=OFLOAD(1)*NUMFA1*ANUMRC(1)
```

```
*** DO APPORTIONMENT AND CLOSURE TIME EQUATIONS
* THE FOLLOWING LOOP WAS USED TO DO SENSITIVITY ANALYSIS
* OF CLOSURE TIME TO THE VARIABLE TURNTIME:
*
       DO 120 I=6,6
        TURNTIME(1)=0.5*I
*
*
        TURNTIME(2)=0.5*I
*
        TURNTIME(3)=0.5*I
       WRITE(12,0101)TURNTIME(1)
* 0101 FORMAT(1X, 'TURNTIME IS ',F4.1)
      CALL CLOSURETIME
      WRITE(12,0110) CLOSURE
 0110 FORMAT(8X,' FIGHTER CLOSURE TIME IS ',F6.1,' HOURS')
      WRITE(12,0111) (TTFNAME(K),TTFAPPRT(K),K=1,2)
* 0111 FORMAT(1X,' ',A10,' APPORTIONMENT= ',F5.1,' %')
* THE FOLLOWING LOOP WAS USED TO PRINT OUT THE APPORTIONMENT
  OF FIGHTERS TO ALL THE AR TRACKS:
*
*
      DO 0120 J=1,JFTRL
*
       DO 0120 K=1,KTRAKL
*
         IF (KCTRACK(J,K).EQ.O) GO TO 120
*
         WRITE(12,0112) FIGHTER(J),K,KCTRACK(J,K)
* 0112
         FORMAT(1X,' FOR ',A5,', TRACK ',I1,
*
                   ', KC-10 APPRT=',F6.1,' %')
*
* 0120 CONTINUE
       STOP
       END
SUBROUTINE INITIAL
         PURPOSE: INITIALIZATION OF VARIABLES
#
***
       COMMON /INPUT/
         ARCPLATT, ARCPLONG,
     ડ
          EARLATT, EARLONG,
```

```
ಒ
          ALTRAR, CASRAR, TIMERAR, DISTRAR, OFFRAR,
    &
          TTFMAXTO
      real
         ARCPLATT(4,5), ARCPLONG(4,5),
          EARLATT(4,5), EARLONG(4,5),
    &
                         TTFLONG(3),
    Š٤
          TTFLATT(3),
          ALTRAR(4), CASRAR(4), TIMERAR(4,5), DISTRAR(4,5),
    &
    &
          OFFRAR(4,5),
          TTFMAXTD(3)
*****
       COMMON /NAMES/ TTFNAME, FIGHTER
       character TTFNAME(3)*10, FIGHTER(4)*5
*****
* The following are the Coords of ARCPs, EARs for the TTF refuelings of F-16s:
       ARCPLATT(1,1) = 4621.
       ARCPLONG(1,1) = 05908.
        EARLATT(1,1) = 4745.
        EARLONG(1,1) = 05128.
       ARCPLATT(1,2) = 5050.
       ARCPLONG(1,2)= 00315.
       EARLATT(1,2)= 5018.
        EARLONG(1,2)=-00433.
      name of fighter and AR altitude, AR calibrated air speed
*
        FIGHTER(1) ='F-16'
         ALTRAR(1) = 31000.
         CASRAR(1) = 310.
*
      OFLOADs for the above AR tracks:
         OFFRAR(1,1) = 11367.
         OFFRAR(1,2) = 2114.
*
      times and distances for flying the above AR tracks:
         TIMERAR(1,1) = 39.
         TIMERAR(1,2) = 39.
          DISTRAR(1,1) = 324.
          DISTRAR(1,2) = 313.
* The following are the Coords of ARCPs for the TTF refuelings of F-15s:
       ARCPLATT(2,1) = 4239.
       ARCFLONG(2,1) = 07304.
        EARLATT(2,1) = 4504.
        EARLONG(2,1) = 06302.
       ARCPLATT(2,2) = 4824.
       ARCPLONG(2,2) = 04826.
        EARLATT(2,2) = 5001.
        EARLONG(2,2) = 03858.
       ARCPLATT(2,3) = 5000.
       ARCPLONG(2,3) = 00802.
        EARLATT(2,3) = 5042.
        EARLONG(2,3) = -00337.
```

&

TTFLATT, TTFLONG,

```
#:
      name of fighter and AR altitude, AR calibrated air speed:
        FIGHTER(2)
                   = 'F-15'
         ALTRAR(2)
                     = 31000.
                     =
         CASRAR(2)
                         310.
*
      OFLOADs for the above AR tracks:
         OFFRAR(2,1) = 20924.
         OFFRAR(2,2) = 14080.
         OFFRAR(2,3) = 3560.
*
      times and distances for flying the above AR tracks:
         TIMERAR(2,1) = 57.
         TIMERAR(2,2) = 46.
         TIMERAR(2,3) = 56.
          DISTRAR(2,1) = 477.
          DISTRAR(2,2) = 384.
          DISTRAR(2,3) = 462.
* The following are the Coords of ARCPs for the TTF refuelings of F-111s:
       ARCPLATT(3,1) = 4230.
       ARCPLONG(3,1) = 07628.
        EARLATT(3,1) = 4522.
        EARLONG(3,1) = 06214.
       ARCPLATT(3,2) = 4930.
       ARCPLONG(3,2) = 04312.
        EARLATT(3,2) = 5001.
        EARLONG(3,2) = 03057.
*
      name of fighter and AR altitude, AR calibrated air speed:
        FIGHTER(3)
                   = 'F-111'
         ALTRAR(3)
                     = 24000.
         CASRAR(3)
                     =
                         305.
*
      Utluads for the above AR tracks:
         OFFRAR(3,1) = 25804.
         OFFRAR(3,2) = 15423.
      times and distances for flying the above AR tracks:
         TIMERAR(3,1) = 88.
         TIMERAR(3,2) = 64.
          DISTRAR(3,1) = 666.
          DISTRAR(3,2) = 477.
* The following are the Coords of ARCPs for the TTF refuelings of RF-4Cs:
       ARCPLATT(4,1) = 4021.
       ARCPLONG(4,1) = 08351.
        EARLATT(4,1) =
                       4237.
        EARLONG(4,1) = 07517.
       ARCPLATT(4,2) = 4618.
       ARCPLONG(4,2) = 05923.
        EARLATT(4,2) = 4806.
        EARLONG(4,2) = 04936.
       ARCPLATT(4,3) = 4916.
       ARCPLONG(4,3) = 04426.
        EARLATT(4,3) = 5001.
        EARLONG(4,3) = 03630.
```

HANGE CONTROL STATESTED ST

የቀያላርዎ የሚያም ለተፈርት እየፈለት ለሚያም የሚያም የሚያም የሚያም የሚያም ለ

```
ARCPLATT(4,4) = 5000.
       ARCPLONG(4,4) = 02949.
        EARLATT(4,4) = 5002.
        EARLONG(4,4) = 02152.
       ARCPLATT(4,5) = 5101.
       ARCPLONG(4.5) = 00213.
        EARLATT(4,5) = 4957.
        EARLONG(4,5) = -00715.
*
      name of fighter and AR altitude, AR calibrated air speed:
        FIGHTER(4) = 'RF-4C'
                     = 29000.
        ALTRAR(4)
        CASRAR(4)
                    = 305.
*
      OFLOADs for the above AR tracks:
         OFFRAR(4,1) = 15016.
         OFFRAR(4,2) = 15666.
         OFFRAR(4,3) = 8297.
         OFFRAR(4,4) = 8341.
         OFFRAR(4,5) = 2535.
*
      times and distances for flying the above AR tracks:
         TIMERAR(4,1) = 51.
         TIMERAR(4,2) = 51.
         TIMERAR(4,3) = 39.
         TIMERAR(4,4) = 39.
         TIMERAR(4,5) = 51.
          DISTRAR(4.1) = 415.
          DISTRAR(4,2) = 413.
          DISTRAR(4,3) = 313.
          DISTRAR(4,4) = 307.
          DISTRAR(4,5) = 403.
* Coords for TTF Base -- Goose Bay, Canada:
        TTFNAME(1)='GOOSEBAY'
        TTFLATT(1)= 5319.
        TTFLONG(1) = 06026
       TTFMAXTO(1)= 588200.
* Coords for TTF Base -- Mildenhall, England:
        TTFNAME(2) = 'MILDENHALL'
        TTFLATT(2) = 5222.
        TTFLONG(2) = -00029.
       TTFMAXTO(2) = 588200.
  Coords for TTF Base -- Loring AFB, Maine, USA:
        TTFNAME(3) = 'LORING AFB'
        TTFLATT(3) = 4657.
        TTFLONG(3) = 06753.
       TTFMAXTO(3) = 588200.
       RETURN
       END
*
          (OF INITIAL)
```

```
ARCPLONG, EARLATT, EARLONG, TTFLATT, TTFLONG, TTFNAME,
                  FIGHTER, GOOUT, GORTB)
     PURPOSE: CALCULATE THE DISTANCES BETWEEN THE TTF AND AR TRACK
#
:
               ARCP AND EAR POINT. THIS IS DONE FOR EVERY TTF AND
*
               FOR EVERY FIGHTER'S AR TRACKS.
       INTEGER ITTFL, ISKIPTTF, JFTRL, KTRAKL
       REAL ARCPLATT(4,5), ARCPLONG(4,5), EARLATT(4,5), EARLONG(4,5),
             TTFLATT(3), TTFLONG(3), GOOUT(3, 4, 5), GORTB(3, 4, 5)
       CHARACTER TTFNAME(3)*10, FIGHTER(4)*5
  Calculations of Distance from TTF to ARCPs
      DO 2222, I= ITTF1, ITTFL
*
              {I is the TTF}
       IF (I.EQ.ISKIPTTF) GO TO 2222
       DO 2222, J=JFTR1,JFTRL
               {J is the fighter type}
        DO 2222, K=KTRAK1,KTRAKL
*
                {K is the track number for that fighter}
# First, check if track exists (because matrix is not solid):
      IF((ARCPLATT(J,K) .EQ. 0.0) .AND. (EARLATT(J,K) .EQ. 0.0))
     & THEN
         GOOUT(I,J,K) = 0
         GO TO 2222
        ENDIF
      GOOUT(I, J, K) = GREATCIR( TTFLATT(I), TTFLONG(I),
                                 ARCPLATT(J,K), ARCPLONG(J,K))
      GORTB(I,J,K) = GREATCIR( EARLATT(J,K), EARLONG(J,K),
                                 TTFLATT(I), TTFLONG(I))
        WRITE(11.1) TTFNAME(I).FIGHTER(J).K.GODUT(I.J.K)
* 0001
        FORMAT(15X,'THE DISTANCE FROM ',A10,' TO ',A5,' ARCP ',I1,
*
      &' IS: '.F6.0)
*
        WRITE(11,2) TTFNAME(I),FIGHTER(J),K,GORTB(I,J,K)
* 0002
        FORMAT(15X.'
                                        ',A10,' ',A5,' EAR ',I1,
      દ્ધ
           : ',F6.0)
 2222 CONTINUE
        RETURN
        END
            {OF SUBROUTINE CALCDISTANCE}
#:
```

```
function GreatCir (LattOrig.LongOrig.LattDest,LongDest)
              GreatCir, LattOrig,LongOrig,LattDest,LongDest
      real
* This function calculates great-circle distance between two points,
lpha anywhere on the globe. The equations used based on the following
# geometry (which assumes a perfectly spherical earth):
#:
*
                         North Fole of Earth
*
*
*
*
*
                       с.
*
*
*
*
           Origin >
                       . в
*
*
                                                       equator
*
*
                               a.
*
                                          . C
*
*
                                                  C Destination
*
*
*
            Thus, we have a triangle on the surface of a sphere
*
                             with sides a, b, c
:
                             and angles A, B, C.
*
*
      We use positive coordinate values to indicate North Latt, West Long.
               and negative values for South Lattitude, East Longitude.
#:
*
# It can therefore be seen that
     c = distance from North Pole to Origin = 90 degrees - Origin Lattitude
*
     b = distance from North Pole to Dest. = 90 degrees - Destination Latt.
*
*
     A = angle at top of triangle = Origin Longitude - Destination Longitude.
*
‡:
* The law of cosines for sides of a spherical triangle states that:
*
*
     cos a = cos b cos c + sin b sin c cos A
*
# Thus, the Great Circle Distance between the Origin and Destination is
*
*
      a, the arccos of the above value.
* The distance is converted to nautical miles by multiplying a * 60,
*
                            statute miles ...... a * 60 * 1.151,
                            kilometers ..... a * 60 * 1.852.
*
```

```
*
*
*
      NOTE: This program assumes all lattitudes are North
*
                               and all longitudes are West.
*
*
              To enter South Lattitudes or East Longitudes,
*
                              please use negative (-) values!
*
*
              Examples: 3059 indicates 30 degrees, 59 minutes
*
                       -17900 indicates 179 degrees (east longitude)
*
*
                Goose Bay: 5319N, 06026W.
*
                       Latturig=5319 LongOrig=6026
*
*
                Loring AFB: 4657N, 06753W.
*
                       LattOrig=4657 LongOrig=6753
*
*
                Mildenhall: 5222N, 00029E.
*
                       LattOrig=5222 LongOrig=-0029
*
* {variables}
      Character
     &
         Answer
         cosa, smalla, smallb, smallc
                                     {distances}
         CapA
*
                                       {angle}
* {begin GreatCir calculations:}
      smallc= radian( 90 - DecDegrees(LattOrig))
              {distance of Origin from the North Pole}
      smallb= radian( 90 - DecDegrees(LattDest))
              {distance of Destination from the North Pole}
      CapA= radian( i DecDegrees(LongOrig) - DecDegrees(LongDest) ) )
*
          {a positive angle}
      cosa= cos(smallb) * cos(smallc) +
            sin(smallb) * sin(smallc) * cos(CapA)
      smalla= deg( acos(cosa) )
*
                               ( THIS IS THE GREAT CIRCLE DISTANCE
*
                                                 for a unit sphere }
*
     {Great Circle Distance =
                                    (in nautical miles)}
      GreatCir=smalla#60
*
                                   (in statute miles)
                        *1.151
4:
                        *1.852
                                   (in kilometers)
```

```
*
*
     return
      end
      {of function GreatCir}
***************
      function DecDearees(Coord)
         real DecDegrees, Coord
*
      (This function separates minutes from the degrees in the coordinate.
*
       The minutes are then converted to decimal fraction of degrees.
*
       The output, DecDegrees, is a decimal representation of the coord.}
*
      {variables}
     real
       Degrees, Minutes, DecMinutes
*
      (begin)
         Degrees = real( int(Coord/ 100.))
*
                                  {truncates away the minutes}
        Minutes = ((Coord/100.) - real(int(Coord/ 100.))) * 100.
*
                   (separates away the degrees, leaving the remainder)
*
         DecMinutes = Minutes / 60.
         DecDegrees = Degrees + DecMinutes
       write(*,10)coord, degrees, minutes, decminutes, decdegrees
* 10
       format(1x,'coord= ',f7.0,'degrees=',f5.1,', minutes= ',f5.1
      &,' decmin= ',f7.5,', decdegrees= ',f11.5)
:#:
       return
       end
     {function DecDegrees of function GreatCir}
function radian(xdegrees)
         real radian, xdegrees
*
      {This function converts degrees to radians.}
      parameter pi= 3.141592653589793
      {begin}
*
         radian=xdegrees \% (2.0%pi/360.0)
      return
       end
      {function radian of function GreatCir}
**************
      function deg(xradians)
```

```
real deg, xradians
*
      {This function converts radians back to degrees.}
     parameter pi = 3.141592653589793.
*
      {begin}
        \sqrt{\text{deg}} = \text{xradians} * (360.0/(2.0*pi))
      return
       end
      {function deg of function GreatCir}
*
*************************************
      SUBROUTINE NOTDOMINATED
*
*
                  THIS SUBROUTINE FINDS THE NEAREST TTF TO EACH
         PURPOSE:
*
                   AR TRACK.
*
         VALUES RETURNED: ENTIRE MATRIX OF NEARTTF
        COMMON/EQNS/ CLOSURE, SETUPTM, FLYTOAR1, FLYTODST,
     દ
             FTRCELL, TOTNOFTR, TURNTIME, KCFLTIME,
     &
             KCLAPS, GOOUT, GORTB,
             TOTALTNK, TTFAPPRT, RELIBLTY, KCTRACK,
     &
     શ્
             ITTFL, JFTRL, KTRAKL, NEARTTF,
             TTFNAME, FIGHTER,
     શ
     &
             DOMINATO
        REAL CLOSURE, SETUPTM, FLYTOAR1, FLYTODST,
             FTRCELL(4), TOTNOFTR(4), TURNTIME(3), KCFLTIME(4,5),
     &
             KCLAPS(4,5), GOOUT(3,4,5), GORTB(3,4,5),
     &
             TOTALTNK, TTFAPPRT(3), RELIBLTY, KCTRACK(4,5)
       INTEGER 1, J, K, ITTFL, JFTRL, KTRAKL, NEARTTF (4,5)
       CHARACTER TTFNAME(3)*10, FIGHTER(4)*5
       LOGICAL DOMINATD(3,4,5)
* SEARCH FOR DOMINATED SOLUTIONS (IE: WE ONLY WANT THE TTF CLOSEST TO
#:
        EACH TRACK):
       DO 0099 I=1, ITTFL-1
        DO 0099 J=1, JFTRL
```

DO 0099 K=1,KTRAKL

```
IF (GODUT(I,J,K).EQ.O.) GO TO 0099
        IF ((GOOUT(I ,J,K)+GORTB(I ,J,K)).GT.
    &
            (GOOUT(I+1,J,K)+GORTB(I+1,J,K))) THEN
          DOMINATD(I ,J,K)= .TRUE.
          DOMINATD(I+1,J,K)= .FALSE.
          DOMINATD(I ,J,K)= .FALSE.
          DOMINATD(I+1,J,K)= .TRUE.
 0099 CONTINUE
      DO 0101 I=1, ITTFL
       DO 0101 J=1,JFTRL
        DO 0101 K=1,KTRAKL
      IF (.NOT.DOMINATD(I,J,K)) THEN
         NEARTTF(J,K) = I
*
         WRITE(12,0005)
*
         WRITE(12,0006) TTFNAME(I), FIGHTER(J), K
* 0005
         FORMAT(' ')
* 0006
                     TTF:',A10,', FIGHTER: ',A5,', TRACK# ',I1)
         FORMAT (*
*
         WRITE(12,0007)
* 0007
         FORMAT('
                     $$$BEST SOLUTION -- CLOSEST TO AR TRACK')
       ELSE
*
         WRITE(12,0008)
* 0008
         FORMAT('
                       * DOMINATED SOLUTION -- '
*
                ,'ANOTHER TTF IS CLOSER TO THIS TRACK.')
         GO TO 0101
       END IF
0101 CONTINUE
      RETURN
      END
          { OF SUBROUTINE NOTDOMINATED }
}i{ ~r
SUBROUTINE CLOSURETIME
*
#:
      (THIS SUBROUTINE APPORTIONS TANKERS AMONG SEVERAL TTFS.
       AND CALCULATES THE RESULTING OPTIMAL CLOSURE TIME
#:
       FOR THE DEPLOYING RECEIVERS (FIGHTERS).)
*
       COMMON/EQNS/ CLOSURE, SETUPTM, FLYTOAR1, FLYTODST,
            FTRCELL, TOTNOFTR, TURNTIME, KCFLTIME,
    &
            KCLAPS, GOOUT, GORTB,
```

- & TOTALTNK, TTFAPPRT, RELIBLTY, KCTRACK,
- & ITTFL, JFTRL, KTRAKL, NEARTTF,
- & TTFNAME, FIGHTER.
- & DOMINATD

REAL CLOSURE, SETUPTM, FLYTOAR1, FLYTODST,

- & FTRCELL(4), TOTNOFTR(4), TURNTIME(3), KCFLTIME(4,5),
- & KCLAPS(4,5), GCOUT(3,4,5), GCRTB(3,4,5),
- & TOTALTNK, TTFAPPRT(3), RELIBLTY, KCTRACK(4,5)

REAL SORINTVL(4,5), AVGLAPINT(4,5), & GREEKETA,TRKRATIO(4), FTRRATIO(4)

INTEGER I, J, K, ITTFL, JFTRL, KTRAKL, NEARTTF(4,5)

LOGICAL DOMINATD(3,4,5)

COMMON /NAMES/ TTFNAME, FIGHTER character TTFNAME(3)*10, FIGHTER(4)*5

THE CONTRACTOR OF THE STATE OF

****** START OF CALCULATIONS:
******* (REFER TO THESIS FOR MORE EXPLANATION OF THEORY.)

- * METHODOLOGY NOTE: FLOW RATES THROUGH ALL OTHER AR TRACKS

 * ARE ALSO EQUAL TO THE ABOVE FLOW RATE (GREEKETA).
- **WRITE(12,0101)GREEKETA**
- * 0101 FORMAT(1X, 'GREEKETA=', F10.2)

DO 0200 J=1,JFTRL DO 0200 K=1,KTRAKL

IF (GOOUT(NEARTTF(J,K),J,K).EQ.O.) GO TO 0200
IE: THIS TRACK DOES NOT EXIST

SORINTVL(J,K) = KCFLTIME(J,K) + TURNTIME(NEARTTF(J,K))
AVGLAPINT(J,K) = SORINTVL(J,K) / KCLAPS(J,K)

- *!! METHODOLOGY NOTE: AVG LAP INTERVALS (IE: AVG HOURS PER TRACKLAP)
- *!! ARE DENOTED BY LOWER CASE a1, a2, b1, b2, b3,... IN THE THESIS:

0200 CONTINUE

:

```
* INITIALIZATION:
      DO 0210 J=1.JFTRL
        TRKRATID(J)=0.0
 0210 CONTINUE
*!! THE FOLLOWING SECTION CALCULATES ALPHA, BETA, DELTA, GAMMA:
      DO 0300 J=1,JFTRL
       DO 0300 K=1, KTRAKL
        IF (GOOUT(NEARTTF(J.K).J.K).EQ.O.) GO TO 0300
               IE: THIS TRACK DOES NOT EXIST
*
        TRKRATIO(J) = TRKRATIO(J) + (AVGLAPINT(J,K)/AVGLAPINT(J,1))
*!!
         METHODOLOGY NOTE: THE "SUM OF TRACK RATIOS" FOR EACH FIGHTER ARE
*!!
          DENOTED BY THE FOLLOWING GREEK LETTERS IN THE THESIS EXPLANATION:
                           ALPHA =
                                      TRERATIO(1)
#11
                  [F-16]
*!!
                  [F-15]
                           BETA
                                   =
                                      TRKRATIO(2)
*!!
                  (F-111) DELTA =
                                      TRKRATIO(3)
*!!
                  [RF-4C]
                           GAMMA =
                                     TRKRATIO(4)
 0300 CONTINUE
      INITIALIZE THE DENOMINATOR BEFORE ENTERING LOOP:
*
       DENOM=TRKRATIO(1)
       DO 0400 J=2, JFTRL
       FTRRATIO(J)=(TOTNOFTR(J) #SORINTVL(J,1)/(FTRCELL(J) #KCLAPS(J,1)))
                 / (TOTNOFTR(1)*SORINTVL(1,1)/(FTRCELL(1)*KCLAPS(1,1)))
*!!
        METHODOLOGY NOTE: THE "RATIOS BETWEEN FIGHTERS FOR ARI"
*!!
         ARE DENOTED BY THE FOLLOWING GREEK LETTERS IN THE THESIS:
*!!
                  [F-15/F-16] THETA = FTRRATIO(2)
#!!
                  (F-111/F-16] PHI
                                      = FTRRATIO(3)
*!!
                  CRF-4C/F-163 PSI
                                     = FTRRATIO(4)
        DENOM = DENOM + (TRKRATIO(J) * FTRRATIO(J))
 0400 CONTINUE
     METHODOLOGY NOTE: NEXT, SOLVE FOR KCTRACK(1,1) WHICH IS DENOTED BY
*!!
        THE FOLLOWING EQUATION IN THE THESIS EXPLANATION:
*!!
*!!
             A1 = 100 / (ALPHA + BETA*THETA + GAMMA*PHI + DELTA*PSI)
*!!
*!!
        WHERE DENOM IS THE DENOMINATUR IN THE ABOVE EQUATION.
*!!
```

priori attribute extracts on reasonal extracts exercise enterminanted processis entermine theorem. Therefore

KCTRACK(1,1)= 100. / DENOM

```
*!! THEN SOLVE FOR THE APPORTIONMENT OF TANKERS
*!!
       TO THE REMAINING ART TRACKS:
       DO 0500 J=2, JFTRL
          KCTRACK(J,1) = KCTRACK(1,1) * FTRRATIO(J)
 0500
       CONTINUE
*!! FINALLY, BASED ON THE ABOVE APPORTIONMENT OF TANKERS TO EACH ARI,
        SOLVE FOR THE APPORTIONMENT OF TANKERS TO THE REMAINING TRACKS.
          DO 0600 J=1,JFTRL
           DO 0600 K=1,KTRAKL
            IF (GDOUT(NEARTTF(J,K),J,K).EQ.O.) GO TO 0600
*
               IE: THIS TRACK DOES NOT EXIST
          KCTRACK(J,K)=KCTRACK(J,1)*AVGLAPINT(J,K)/AVGLAPINT(J,1)
*!! NEXT, SUM THE APPORTIONMENTS OF EACH TTF:
          TTFAPPRT(NEARTTF(J,K)) = TTFAPPRT(NEARTTF(J,K))
     દ
                                      + KCTRACK(J.K)
 06:00
        CONTINUE
      CALCULATE (ADDEND 3) BASED ON THE ABOVE APPORTIONMENTS
*!!
311
      NOTE THAT ALL TYPES OF RECEIVERS HAVE EQUAL CADDDEND 3],
       SO IT DOESN'T MATTER WHICH OF THE KCTRACK(J,K), THE
#!!
*!!
      FOLLOWING CALCULATION USES:
       ADDEND3 = GREEKETA/KCTRACK(1,1)
        WRITE(12,0701)ADDEND3
* 0701 FORMAT(1X,'100 TANKER, 1.00 RELIABILITY ADDEND3= ',F6.2)
*!! THE FOLLOWING IS THE CORRECTION FOR THE
      ACTUAL SIZE OF TOTAL TTF FORCE:
      ADDEND3 = ADDEND3 / (TOTALTNK/100.)
        WRITE(12,0702)TOTALTNK, ADDENDS
* 0702 FORMAT(1X,'BASED ON ',F3.0,' TANKERS,
                                                 ADDEND3= ',F6.2)
*!! THE FOLLOWING IS THE CORRECTION FOR THE LESS THAN PERFECT
*!!
      RELIABILITY OF THE TANKER FORCE.
```

#!! (IE: THIS ASSUMES THAT WHEN A TANKER CAUSES *!! A MISSED AIR REFUELING, THE FIGHTERS THAT ABORTED

*!! MUST ALL BE SENT BACK THROUGH THAT AIR REFUELING.)

ADDEND3 = ADDEND3 / RELIBLTY

```
WRITE(12.0703)RELIBLTY. ADDENDS
* 0703 FORMAT(1X, BASED ON ',F4.2.' RELIABILITY, ADDENDS= ',F6.2)
*!!
     FINALLY, CLOSURE TIME OF THE ENTIRE DEPLOYMENT IS CALCULATED.
     CLOSURE = SETUPTM + FLYTOAR1 + ADDEND3 + FLYTODST
     RETURN
     END
        {OF SUBROUTINE CLOSURE TIME}
SUBROUTINE TANKER
*$$ NOTE:
         THIS PROGRAM WAS SUPPLIED BY THE THESIS SPONSOR,
米$$
         MR. M.E. ESTES, OF THE AIR FORCE CENTER FOR
*$$
         STUDIES AND ANALYSIS, MOBILITY DIVISION.
*$$
2
         SEVERAL MINOR MODIFICATIONS HAVE BEEN MADE TO MAKE IT A
*$$
         NON-INTERACTIVE SUBROUTINE, AND TO CALCULATE THE MAXIMUM
         FEASIBLE NUMBER OF 'FLIGHTS' OF FIGHTERS THAT CAN BE
#$$
                  THIS NUMBER IS CALLED 'TRACKLAFS' IN THE
*$$
         REFUELED.
*$$
         DETERMITE PROGRAM.
#$$
         ALL MODIFICATIONS ARE INDICATED BY THE '#$$' SYMBOLS.
*$$
                                     ,AS(7)
      COMMON /A
                    / DISTTA ,WT
                                            .DAT
                                 , LCAS
    &
                      ,DAT1
                                            , IPNT
      REAL
                DAT
                        (17, 7, 4)
    &
                         (17,5)
    &
               ,DAT1
               , DISTTA
    &
               , WT
                       (17)
      INTEGER IPNT
                     ,LCAS
                              (17,5)
                            ,CCCAS
                                   ,CFUEL
      COMMON /B
                    / ALTX
                                            ,CTIME
                      ,CDIST
                                  , TARTIME
      DOUBLE PRECISION CCCAS
                                (17)
    &
                      , CDIST
                                  (17,7)
                                  (17,7)
    &
                      , CFUEL
                      ,CTIME
                                  (17,7)
    Sz.
      REAL
             TARTIME ,ALTX(8)
      COMMON /C
                    / RFDRAG ,ONLOAD ,YTAB1
                                            ,YTAB2
                       , CCALT
                                  , CONAM
      DOUBLE PRECISION CCALT
                                (17)
                       , CCNAM
                                  (17)
    &
```

STATES TO SECURE THE SECOND SE

&

દ

REAL

ONLOAD

,YTAB1 ,YTAB2

, RFDRAG

(17,7)

(17,7)

```
COMMON /D
                        / FARDST , TIMELT, OFLOAD , NUMREC
     &
                            FARALT ,ALT1(5) ,FARTIM
       REAL
     &
                    FARALT
                                 (15)
                                 (15)
                   ,FARDST
                                 (15)
     &
                   .FARTIM
                   .OFLOAD
                                 (15)
                   ,TIMELT (15)
       INTEGER NUMREC
                        / SPECIAL , ANUMRO
       COMMON /E
       DOUBLE PRECISION SPECIAL (17)
                             (15)
       REAL
                ANUMRO
       COMMON /F
                        / NOPRNT
       COMMON /G
                        / DAT2
                                      , ICTAS
       REAL
                DAT2
                           (17,5)
       INTEGER NOPRNT
                                       (17,5)
                         , ICTAS
* FOLLOWING COMMON LINES ADDED TO WORK WITH TTF PROGRAM:
       COMMON /HUNSUCK/ITANKR, IFULOP, NUMFAR, NUMFA1
       COMMON /THESIS/FULSUB, TOWT, OPWT, FULLND, CRUDRG, RTBALT, RTBTIM, FLTWT
                   , CWT, D1ST1S, FARCAS, D1ST3, WTTT, TOTA, TIME
     ů
       REAL TOTA
****
       REAL
                ALT, CLDIST, CLUDGE, CRUDRG, CURRWT, DIFF, DIST, DISTI, DISTIS
     &
                   .DIST2.DIST3
     &
                   , DLEG
                               (9)
                   , DLEGSV
     å
                                 (9)
     દ
                   ,DLEGTM (9)
               FARCAS, FLTWT, FULLND, FULRES, FULSUB, OFWT, RCVR
       REAL
     å
                   ,RTBALT,RTBTIM,SGWT,STIME,TARALT,TARCAS,TEMP,TIME,TOWT
     ઢ
                   ,CWT,TOWT1,WTTT,Y1,Y2,Y3,Y4
       INTEGER 1,1X
                   , ICELL, IDECRM, IEND, IERR, IFLAG, IFULOP, ITANKR
                   , ITEMP, J, JJ, K, LL, ML, NUMAAR, NUMLSV, NUMLEG, NUMFAR
     શ
               , NUMFA1
                            /15000.,20000.,25000.,30000.,35000.,40000.,45000./
C ptr
       DATA
                ALTX
                           /15000.,20000.,25000.,30000.,35000./
ĭ ptr
       DATA
                ALT1
Cptr
       DATA
                AS
                         /250.,260.,270.,280.,290.,300.,310./
*DATA PASSING ECHO CHECK:
       WRITE(#,2)ITANKR,CWT,DIST1S
#:
        FORMAT(1X,'TANKER= ', I5,' CARGO = ',F5.0,' DIST= ',F6.1)
       WRITE(*,3) NUMFAR, ANUMRO (NUMFAR)
*
*
        FORMAT(1X, I5,' CELLS OF ',F5.0,' FIGHTERS')
*
       WRITE(*,4)FARALT(1),FARCAS
#
        FORMAT(1X, 'REFUELING AT ALT: ', F6.0,' AT CAS: ', F5.0)
       WRITE(*,5)FARTIM(1),FARDST(1),OFLOAD(1)
#.
*
        FORMAT(1x,'DURATION=',F5.0,',DIST=',F5.0,', OFLOAD=',F7.0)
*
       WRITE(*,6)DIST3
*
    ε
        FORMAT(1X,'RTB DISTANCE =',F5.0)
*
       WRITE(*,7) IFULOP
       FORMAT(1X,'THE FOLLOWING NUMBER IS A TWO FOR AAR: ', I5)
```

proposal seconds increases the seconds and seconds are second and seconds and seconds and seconds and seconds

*

1 FORMAT(F12.4)

```
0020 CONTINUE
* 0020 WRITE(*,0021) ITANKR
* 0021 FORMAT(1X,'ENTER TANKER (DEFAULT=',14,')')
        READ(*,*) ITANKR
C
       INCLUDE DATA UNPACKING AND TABLE INITIALIZATION
       GO TO 5000
0100
            CONTINUE
С
      END INCLUDE
*
        CWT=0.0
       TOTFUL=0.
       FULTSF=0.
C
       FARALT(1) = 0.
*
        NUMFAR = 1
*
        NUMFA1 = 1
        WRITE(*,0101) TOWT
* 0101 FORMAT(1X,'ENTER T.O. WEIGHT (DEFAULT =',F12.0,')')
        READ(*,*) TOWT
       TOWT1=TOWT
        WRITE(*,0402) CWT
* 0402 FORMAT(1X,'ENTER CARGO WT (DEFAULT =',F12.0,')')
        READ(*,*) CWT
       OPWT=OPWT+CWT
       TOTFUL=TOWT-OPWT
        WRITE(*,0102)TOTFUL
* 0102 FORMAT(1X,'T.O. FUEL =',F8.1)
       TOWT = TOWT - FULSUB
       TIME=0.
        WRITE(*,0800) CRUDRG,RFDRAG
* 0800 FORMAT(1X,'ENTER CRUISE AND REFUEL DRAG FACTOR (DEFAULT = ',
*
      & F12.0,', ',F12.0,')')
Ü
       READ(*,*), CRUDRG, RFDRAG
       CRUDRG = 2. - CRUDRG
       RFDRAG = 2. - RFDRAG
       IPNT = 0
#:
        WRITE(*,*) 'ENTER A 1 TO EXPAND PRINT (DEFAULT = 0)'
*
        READ(*, *) IPNT
        WRITE (*,0900) DIST1S
* 0900 FORMAT (1X, 'DISTANCE TO FIRST TAR OR RAR OR AAR
      & (DEFAULT = ',F12.0,')')
.k
        READ(*,*) DISTIS
*
       DIST1 = DIST1S
*
        IF(DIST1.EQ.O.) GO TO 1020
        INCLUDE NORMAL CLIMB AND TAR OPTION
       GO TO 6500
 1000
       CONTINUE
        END INCLUDE
       GO TO 1050
       ELSE
C
       INCLUDE BUDDY REFUELING CLIMB
 1020
       ASSIGN 1050 TO IM
        60 TO 9700
 1050
       CONTINUE
        END INCLUDE
```

door expensed between the property and the property of the pro

ઌૢૺૣઌૺૣઌઌૢ૽ઌ૾ૹૺઌૺૢઌ૾૽ૢઌૢ૾ઌઌ૽ઌૢ૾ઌ૽ઌઌ૾ઌઌૢઌ૾ઌઌઌ૽ઌ૽૽ઌ૽૱૱૱૱૱૱૱૱૱ઌૺ૱ઌૺૺઌ૾૽ઌ૽૽ઌ૿૽ઌ૽ૺઌ૽ૺઌ૽ૺઌ૽ૺઌ૽ૺઌ૽ૺઌ૽ૺઌ૽ૺઌ૽ૺઌ૽ૺઌ૽ૺઌ૽ૺઌૺ

```
C
       ENDIF
:
        IF(IFULOP.EQ.3) GO TO 1200
         INCLUDE RAR
* THE FOLLOWING LINE ADDED BY HUNSUCK:
       GD TD 7000
*
1100
       CONTINUE
         END INCLUDE
       GO TO 1250
C
       ELSE
C
         INCLUDE AAR
 1200
       ASSIGN 1250 TO IM
*
        GO TO 9000
 1250
       CONTINUE
         END INCLUDE
C
       ENDIF
*
        IF (IFULOP.NE.1)
*
             ONLOAD = 0.
C
       OFLD2 = TTFLC - TTFLB
C
       OFLD = OFLD1 + OFLD2
C
       WRITE(*) 'OFLOAD=',OFLD
        WRITE(*, 1600)WTTT, TOTA, ONLOAD
* 1600 FORMAT(1X, 'REMAINING FUEL= ',F7.0,', FUEL USED= ',
*
      & F7.0,', ONLOAD USED= ',F7.0)
        WRITE(*,1610)(ANUMRC (I), I=1, NUMFA1)
*
* 1610 FORMAT(1X, 'RECEIVERS BY CELL', 8E12.2)
        GO TO 0020
* (NOTE: THE FOLLOWING LINE WAS ADDED BY HUNSUCK TO STOP INFINITE LOOP:)
5000 CONTINUE
           WRITE(*,*) '*** LABEL 5000, DATA UNPACK'
* 5000 IF(ITANKR.EQ.1) OPEN(10,FILE='GST86J:[JHUNSUCK.FUELS]TKRW.DAT',
#:
          STATUS='OLD')
*
        IF(ITANKR.EQ.2) OPEN(10.FILE='GST86J:[JHUNSUCK.FUELS]TKRTT.DAT'.
*
          STATUS='OLD')
*
        IF(ITANKR.EQ.3) OPEN(10.FILE='GST86J:[JHUNSUCK.FUELS]TKRXA.DAT'.
*
          STATUS='OLD')
:1:
        IF(!TANKR.EQ.4) OPEN(10,FILE='GST86J:[JHUNSUCK.FUELS]KC135.DAT',
          STATUS='OLD')
       READ (10, %) FULSUB
       READ (10, *) TOWT, OPWT, FULLND, FULRES, CRUDRG, RFDRAG, RTBALT,
     & RTBTIM,FLTWT
       READ (10, *) \in (CTIME(1, J), I=1, 17), J=1, 7)
       READ (10, \%) (CCNAM(I), I=1, 17)
       READ (10, *) (SPECIAL(1), I=1,17)
       READ (10, *) (((DAT(I, J, E), I=1, 17), J=1, 7), E=1, 4)
       READ (10, *) ((DAT1(I, J), I=1, 17), J=1, 5)
       READ (10, *)((DAT2(I, J), I=1, 17), J=1, 5)
       REWIND(10)
        CLOSE (10)
       DO 5020 J=1,7
       DO 5020 I=1,17
```

The second secon

```
CTIME(I, J)=CTIME(I, J)\pm100000.
      ITEMP=CTIME(I, J)/100000
      CFUEL(I, J)=FLOAT(ITEMP)
      CLUDGE=CFUEL(I,J) *100000.
      TEMP=CTIME(I,J)-CLUDGE
      ITEMP=TEMP/1000
      CTIME(I,J)=ITEMP#1.
5020 CDIST(I, J)=TEMP-(ITEMP#1000.)
      DO 5030 I=1.17
      ITEMP=CCNAM(I)/1000.
      CCALT(I)=ITEMP*100.
      ITEMP1=IDINT(CCNAM(I))-(ITEMP#1000)
      CCCAS(I)=FLOAT(ITEMP1)
      TEMP=CCCAS(I)+(CCALT(I)*10.)
      CCNAM(I)=CCNAM(I)-TEMP
5030 CONTINUE
      DO 5040 I=1,17
      DO 5040 J=1,5
      LCAS(I,J)=DAT1(I,J)/1
      DAT1(I,J)=DAT1(I,J)-1.*LCAS(I,J)
      ICTAS(I,J)=DAT2(I,J)/1
5040 DAT2(I,J)=DAT2(I,J)-1.*ICTAS(I,J)
      A = 950000.
      IF(ITANKR.EQ.4)A=320000.
      B=50000
      IF(ITANKR.EQ.4)B=20000.
      DO 5050 I=1,17
      A = A - B
 5050 \text{ WT}(I) = A
      GO TO 0100
 9999 STOP
6000 IFLAG = 0
* $$
           WRITE(*,*) 'LABEL 6000 SET YTAB1'
      JJ = 4
C
      DOWHILE(ALT.LE.ALT1(JJ))
      GO TO 6020
 6010 \text{ JJ} = \text{JJ} - 1
 6020 IF(ALT.LT.ALT1(JJ)) GO TO 6010
      ENDDO
      LL = JJ + 1
       IF(ALT.EQ.ALT1(JJ))
            IFLAG = 1
      ENUIF
      DO 6030 I=1,17
      DO 6030 J=1,7
       YTABI(I,J) = DAT(I,J,JJ)
       IF(IFLAG.NE.1)
             YTAB2(I,J) = DAT(I,J,LL)
        ENDIF
 6030 CONTINUE
      ENDDO
      'IF(IFLAG.NE.1)
```

```
& DIFF = ((ALT - ALT1(JJ))/1000.)/5.
C
      ENDIF
      GO TO IZ, (7110,8210,9130)
6300 CONTINUE
*$$
          WRITE(*,*) '** LABEL 6300, PROLAT'
      IF(DIST.LE.250.) GO TO 6320
      Y1 = TNT1(CURRWT, 17, WT, CCALT, 2, IERR)
С
        WRITE(*) 'Y1=', Y1, ALT
      IF(Y1.LE.ALT) GO TO 6310
¢
                CALL PROLAT TO GET CLIMB NUMBERS
          WRITE(*) 'WT BEFORE PROLAT=', CURRWT
      CALL PROLAT(Y1, Y2, Y3, ALT, CURRWT)
      TIME = TIME + (Y3/60.)
      DIST = DIST - Y2
C
          WRITE(*) 'TIME AFTER PROLAT=', TIME
C
          WRITE(*) 'WT AFTER PROLAT=',CURRWT
      Y1 = TNT1(CURRWT, 17, WT, CCALT, 2, IERR)
Ŭ
          WRITE(*) 'ALT AFTER PROLAT=', Y1
 6310 CONTINUE
       ENDIF
      CALL CRUCLM(TIME, DIST, CURRWT, CRUDRG)
      GO TO 6340
      ELSE
 6320 CALL CRUISE(ALT, DIST, CURRWT, TIME, CRUDRG)
 6340 CONTINUE
      ENDIF
       GO TO IZ, (7190,8220,9165)
6500 CONTINUE
          WRITE(*,*) '** LABEL 6500, NORMAL CLIMB AND TAR'
#$$
       TOWT1 = TOWT
       DO 6510 I=1,7
       Y1 = TNT1(TOWT1, 17, WT, CCALT, 2, IERR)
C
                Y1 CONTAINS A HACK AT CRUISE CLIMB ALT
       CALL CLIMB (TOWT1, TIME, Y1, Y2, Y3, Y4)
 6510 \quad TOWT1 = TOWT - (Y2*CRUDRG)
       ENDDO
       CLDIST = Y3
       CURRWT = TOWT1
       TIME = TIME + Y4/60.
       IF(CLDIST.GE.DIST1) 60 TO 6520
       DIST1 = DIST1 - CLDIST
       GO TO 6530
       ELSE
C
 6520 DIST1 = 0.
 6530 CONTINUE
       ENDIF
       CALL CRUCLM(TIME, DIST1, CURRWT, CRUDRG)
C
       WRITE(*) 'TIME, CURRWT, CLDIST=', TIME, CURRWT, CLDIST
       CLDIST=0.
```

```
WRITE(*,6541) IFULOP
* 6541 FORMAT(1X.'ENTER A 1 FOR A TAR OR A 2 FOR A RAR OR A 3 FOR AN
     & AAR (DEFAULT = '.14')')
*
       READ(*,'(I4)') IFULOF
C
      IFULOP = 2
      IF(IFULOP.NE.1) GO TO 6550
C.
       INCLUDE TAR REFUELING NUMBER 1
      ASSIGN 6550 TO IX
      GD TO 8000
 6550 CONTINUE
C
       END INCLUDE
C
      ENDIF
      GD TO 1000
*$$ THE FOLLOWING LINES ADDED BY HUNSUCK TO MAKE DECREMENT OCCUR BY CELL:
 6600 NUMFAR = NUMFAR -1
      IF (NUMFAR.EQ.O) IEND = 1
      NUMFA1=NUMFAR
          WRITE(*,*) '*$$$ LABEL 6600 DECRM'
* 6600 IF(RCVR.EQ..5) GO TO 6610
       ANUMRC(ICELL) = ANUMRC(ICELL) - 1
*
       IF (ANUMRC (ICELL).EQ.O.)
*
            ICELL = ICELL + 1
#C
        ENDIF
* 6610 CONTINUE
*C
       ENDIF
*:
       IF(RCVR.NE..5) GO TO 6650
       IF(ANUMRC(1).EQ..5) GO TO 6620
*
*
       ANUMRC(1) = .5
*
       GO TO 6650
#C
       ELSE
* 6620 ANUMRC(NUMFAR) = 0.
       NUMFAR = NUMFAR - 1
*
       IF (NUMFAR.GT.O)
*
            ANUMRC(1) = 1.
     &
*C
          ENDIF
*
       IF (NUMFAR. EQ. 0)
*
     &
            1END = 1
#C
          ENDIF
* 6650 CONTINUE
        ENDIF
      GO TO 7070
IF (NOPRNT.EQ.O) WRITE (*, *) 'ENTER LOITER ALT, TIME OVER RTB BASE'
      IF(NOPRNT.EQ.O)READ(*,*) RTBALT,RTBTIM
 6700 FARALT(ML) = RTBALT
          WRITE(*,*) '*4$$ LABEL 6700 LOITER AND LAND'
#$$
      TIMELT(ML) = RTBTIM
      TOYA=OFWT+TOTFUL-CURRWY
      CALL LOITER (TIME, CURRWT, ML, CRUDRG)
      TIME = TIME - .583
```

```
*
       IF (NOPRNT.EQ.0)
*
     &
             WRITE(*,6710)TIME
      ENDIF
* 6710 FORMAT(1X,'TOTAL TIME ',F8.1)
      WRITE(*,*) 'ENTER LANDING FUEL'
      READ(*,*) FULLND
C
      CURRWT = CURRWT - FULLND
      TOTA=TOTA+FULLND
      WTTT = CURRWT - OPWT
      GO TO IX, (7050,9075)
7000 CONTINUE
*$$
          WRITE(*,*) '*** LABEL 7000. RAF!
* 7000 WRITE(*,7001)NUMFAR,(ANUMRC(I),I=1,NUMFAR)
* 7001 FORMAT(1X,'ENTER CELL STRUCTURE'/ 1X,'DEFAULT VALUES: ',
*
     & I4,(', ',F8.0))
       READ(*,*)NUMFAR, (ANUMRC(I), I=1, NUMFAR)
*
      NUMFA1 = NUMFAR
*
       WRITE(*,7002) FARALT(1), FARCAS
* 7002 FORMAT (1X,'ENTER RAR ALTITUDE AND CAS (DEFAULT = ',F12.0,',',
*
     & F12.0,')')
*
       READ(*,*) FARALT(1), FARCAS
C
      FARALT(1)=FARASAV
      TIMELT(1) = 15.
      TIMELT(2) = 15
      RCVR = 1.
       IF(ANUMRC(1).EQ.1.)
            RCVR = .5
C
      ENDIF
      IF(RCVR.EQ.1.) GO TO 7010
      WRITE(*.7005) TANKLT
 7005 FORMAT(1X,'ENTER 2ND LOITER TIME (DEFAULT = ',F12.0,')')
       READ(*.*) TANKLT
        IF (TANKLT.EQ.0) RCVR = 1.
 7010
           CONTINUE
C
      ENDIF
*
        WRITE(*,*) ' ENTER TIME, DISTANCE AND OFLOAD FOR RAR'
*
        WRITE(*,*) ' DEFAULTS ARE: '
#
        WRITE(*,7015) FARTIM(1), FARDST(1), OFLOAD(1)
* 7015 FORMAT(10X,F8.0,', ',F8.0,', ',F8.0,/)
*
        READ(*,*) FARTIM(1),FARDSY(1),OFLOAD(1)
       DD 7020 I=1.NUMFAR-1
        FARTIM(I+1)=FARTIM(1)
        FARDST(I+1)=FARDST(1)
        OFLOAD(I+1)=OFLOAD(1)
        TIMELT(I+1)=TIMELT(2)
        FARALT(I+1)=FARALT(1)
 7020
            CONTINUE
C
       ENDDO
        WRITE(*,7021) DIST3
*
* 7021 FORMAT(1X.'WHAT IS DISTANCE TO RTB BASE OR TAR? (DEFAULT =',
*
      & F12.0,')')
*
        READ(*,*) DIST3
```

```
*
        WRITE(*,*) 'ENTER A 1 FOR TAR ON WAY HOME '
*
        READ(*,'(I4)') IFULOP
C
       IFULOP = 2
       IF(IFULOP.NE.1) GO TO 7026
        WRITE(*,7022) DISTTA
* 7022
       FORMAT(1X,'WHAT IS DISTANCE TO TAR (DEFAULT = ',F12.0,')')
*
        READ(*,*) DISTTA
*
        WRITE(*,7023) TARTIME
* 7023 FORMAT (1X,'ENTER TIME (MIN) FOR TAR (DEFAULT =',F12.0,')')
*
        READ(*,*) TARTIME
*
        WRITE(*,7024) TARALT, TARCAS
* 7024 FORMAT(1X, 'WHAT IS TAR ALTITUDE AND CAS? (DEFAULT = ',
      & F12.0,', ',F12.0,')')
#
        READ(*,*) TARALT, TARCAS
*
        WRITE(*,7025) DIST2
* 7025 FORMAT(1X, 'WHAT IS DISTANCE TO NEXT TAR OR RTB BASE? (DEFAULT =
*
      & ',F12.0,')')
*
        READ(*,*) DIST2
 7026
        CONTINUE
C
       ENDIF
       STIME = TIME
       SGWT = CURRWT
       STOTFUL=TOTFUL
       NOPRNT= 1
       IEND = 0
       ICELL = 1
       DO UNTIL (IEND=1)
 7027
        IF (NOPRNT.EQ.O)
               IEND = 1
C
        ENDIF
       CURRWT = SGWT
       TIME = STIME
       TOTFUL=STOTFUL
       ML = ICELL
       IDECRM = 0
C
        INCLUDE RAR REFUELING
       GO TO 7100
 7030
       CONTINUE
        END INCLUDE
       IF(IDECRM.EQ.1) GO TO 7060
         IF(IFULOP.NE.1) GO TO 7040
C
        INCLUDE TAR NUMBER 2
         ASSIGN 7040 TO IX
         GO TO 8100
 7040
         CONTINUE
Ü
            END INCLUDE
C
          ENDIF
C
          INCLUDE LOITER AND LAND
       ASSIGN 7050 TO IX
       GO TO 6700
 7050
       CONTINUE
          END INCLUDE
       IF(IFULOP.NE.1)
```

```
IDECRM = ICHEK(IFULOP, CURRWT, OPWT, FULRES)
C
         ENDIF
      IF(IDECRM.EQ.O)
    & NOPRNT = 0
         ENDIF
7060 CONTINUE
       ENDIF
      IF(IDECRM.EQ.O) GO TO 7080
C
         INCLUDE RECEIVER DECREMENT
      GC TO 6600
7070 CONTINUE
         END INCLUDE
      IF(NOPRNT.EQ.O) GO TO 7080
*
       WRITE(*,*) NOPRNT
      NOPRNT = NOPRNT + 1
7080
       CONTINUE
C
         ENDIF
C
       ENDIF
      IF(IEND.NE.1) GO TO 7027
      ENDDO
      GO TO 1100
7100 ALT = FARALT(1)
*$$
          WRITE(*,*) '*$$$ LABEL 7100, RAR REFUELING'
C
       INCLUDE SET YTAB1, YTAB2, DIFF
      ASSIGN 7110 TO IZ
      GO TO 6000
 7110 CONTINUE
      END INCLUDE
        IF ((ML.GT.NUMFAR).OR.(IDECRM.EQ.1)) THEN
 7120 CRUTIM = TIMELT(8)
         IF ((RCVR.EQ..5).AND.(NL.GT.1))
     &
              TIMELT(ML) = TANKLT - CRUTIM - FARTIM(1)
         IF(TIMELT(ML).LT.O) WRITE(#,7130)
 7130 FORMAT(1h,'TIMELT TO SMALL')
*$$ the following added by hunsuck:
        idecrm=ichek(ifulop,currwt,opwt,fulres)
       if (totful.le.35000) idecrm=1
       if(idecrm.eq.1) go to 7030
*$$
       CALL LOITER (TIME, CURRWT, ML, CRUDRG)
       IDECRM = ICHEK(IFULOP, CURRWY, OPWT, FULRES)
*** the following added by hunsuck:
       if (totful.le.35000) idecrm=1
       if(idecrm.eq.1) go to 7030
#$$
*
        IF(IDECRM.EQ.1) GO TO 7180
*
        IF (NOPRNT.EQ.O)
             WRITE(#,7140) TIME
* 7140 FORMAT(1H, 'CUM TIME = ',F8.1)
```

```
TIME = TIME + FARTIM(ML)/60
      TOTFUL=TOTFUL-(OFLOAD(ML) *ANUMRC(ML))
** the following added by hunsuck:
      idecrm=ichek(ifulop,currwt.opwt,fulres)
      if (totful.le.35000) idecrm=1
      if(idecrm:eq.1) go to 7030
#$$
      CALL LOAD (ML, CURRWT, FARCAS, IFLAG, DIFF, CRUDRG, 2)
      IDECRM = ICHEK(IFULOP, CURRWT, OPWT, FULRES)
       IF(IDECRM.EQ.1) GO TO 7180
** the following added by hunsuck:
       if (totful.le.3500) idecrm=1
       if (idecrm.eq.1) go to 7030
     if (currwt.lt.(opwt+ofload(m1)*ANUMRC(m1)+30000)
    & .and. (ml.lt.numfar)) then
        idecrm=1
        go to 7030
       end if
#$$
        ie: if you can't refuel another flight, don't try!
       IF (ML. NE. NUMFAR)
    & CALL CRUISE(FARALT(ML),FARDST(ML),CURRWT,TIME,CRUDRG)
      ML = ML + 1
      IDECRM = ICHEK(IFULOP, CURRWT, OPWT, FULRES)
*$$$ THE FOLLOWING LINE ADDED BY HUNSUCK:
      WRITE(*,7179)ML,CURRWT
       FORMAT(1X,'ML=', I2, ' CURRWT=', F10.0)
 7179
      IF (IDECRM.EQ.1) GO TO 7180
*$$
 7180 CONTINUE
      IF (ML.LE.NUMFAR.AND.IDECRM.NE.1) GO TO 7120
      IF(IDECRM.EQ.1) GO TO 7190
      DIST = DIST3
      ASSIGN 7190 TO IZ
* THE FOLLOWING LINE ADDED BY HUNSUCK:
       WRITE(*,7181)IDECRM, NUMFAR
* 7181 FORMAT(1X,' 7181; IDECRM=', I3,' NUMFAR=', I3)
      GO TO 6300
 7190 CONTINUE
       IDECRM = ICHEK(IFULOP, CURRWT, OPWT, FULRES)
* THE FOLLOWING LINE ADDED BY HUNSUCK:
        WRITE(*,7191) IDECRM, NUMFAR
# 7191 FORMAT(1X,' 7191; IDECRM=',I3,' NUMFAR=',I3)
       GO TO 7030
8000 WRITE(*,8005) DISTTA, ONLOAD
          WRITE(*,*) '*** LABEL 8000, TAR REFL 1'
#$$
```

```
8005 FORMAT(1X,'ENTER DISTANCE AND ONLOAD FOR TAR (DEFAULT = ',
    & F12.0,', ',F12.0,')')
      READ(*,*) DISTTA, ONLOAD
      WRITE(*,8008) TARTIME
8008 FORMAT(1X,'ENTER TIME (MIN) FOR TAR NUMBER 1 (DEFAULT = ',
    & F12.0,')')
      READ(*,*) TARTIME
      WRITE(*,8020) TARALT, TARCAS
8020 FORMAT(1X,'WHAT IS TAR ALTITUDE AND CAS? (DEFAULT = ',
    & F12.0,', ',F12.0,')')
      READ(*,*) TARALT, TARCAS
      WRITE(*,8030) DIST2
8030 FORMAT(1X,'DISTANCE TO AAR OR RAR (DEFAULT = ',
    & F12.0,')')
      READ(*,*) DIST2
      WRITE(*,*) 'ENTER A 2 FOR A RAR OR A 3 FOR AN AAR'
      READ(*,'(I4)') IFULOP
      IFULOP = 2
      INCLUDE TAR REFUELING
      ASSIGN 8070 TO IY
      GO TO 8200
8070
      CONTINUE
      END INCLUDE
      GO TO IX, (6550)
8100 ONLOAD = FLTWT - CURRWT
          WRITE(*,*) '*$$$ LABEL 8100. TAR 2'
      IF(NOPRNT.NE.O) GO TO 8160
        IF (ONLOAD.LE.WTTT)
           ONLOAD = 0.
C
       ENDIF
      IF (ONLOAD.GT.WTTT.AND.WTTT.GT.O.)
           ONLOAD = ONLOAD - WTTT
       ENDIF
8160
      CONTINUE
C
      ENDIF
      INCLUDE TAR REFUELING
      ASSIGN 8170 TO IY
      GO TO 8200
 8170
      CONTINUE
      END INCLUDE
      GO TO IX, (7040,9070)
8200 ALT = TARALT
          WRITE(*,*) '*** LABEL 8200, TAR REFUELING'
*$$
      INCLUDE SET YTAB1, YTAB2, DIFF
      ASSIGN 8210 TO IZ
      GO TO 6000
 8210
          CONTINUE
      END INCLUDE
      TOTFUL=TOTFUL+ONLOAD
      CALL LOAD(1, CURRWT, TARCAS, IFLAG, DIFF, CRUDRG, 1)
```

Secretary Sections

```
TIME = TIME + TARTIME/60.
С
      WRITE(*,*) 'TIME AFTER TARTIME', TIME
      DIST = DIST2
Č
      INCLUDE PROLAT SECTION
      ASSIGN 8220 TO IZ
      GO TO 6300
 8220
      CONTINUE
C
      END INCLUDE
      WRITE(*,*) 'TIME AFTER CRU TO NEXT TAR', TIME
       GO TO IY, (8070,8170)
9000 DO 9010 I=1.8
С
       DLEG(I) = 0.
C
       FARTIM(I) = 0.
ũ
       FARDST(I) = 0.
       OFLOAD(I) = 0.
 9010 CONTINUE
*$$
          WRITE(*,*) '*** LABEL 9010, AAR'
C
       ENDDO
       TIMELT(1) = 15.
       WRITE(*,9012) ANMRCS
 9012 FORMAT(1X, 'ENTER NUMBER OF RECEIVERS (DEFAULT = ',
     & F12.0,')')
       READ(宋,本) ANMRCS
       ANUMRC(1)=ANMRCS
       IF(FARALT(1).NE.O.) GO TO 9014
       WRITE(*,9013) FARALT(1), FARCAS
 9013 FORMAT(1X,'ENTER REFUEL ALTITUDE AND CAS (DEFAULT = ',
     & F8.0,', ',F8.0,')')
       READ(*,*) FARALT(1), FARCAS
C
       FARALT(1)=FARASAV
       CALL LOITER (TIME, CURRWT, 1, CRUDAG)
 9014
      CONTINUE
       ENDIF
       WRITE(*,9015) NUNLSV, NUMAAR
 9015 FORMAT(1X.'ENTER NUMBER OF LEGS AND NUMBER OF AARs (DEFAULT = ',
     & 14,°, ',14,')')
       READ(*,*) NUMLSV, NUMAAR
       NUMLEG=NUMLSV
       ICHG=0
       WRITE(*.*) 'TYPE A 1 TO ENTER NEW CRUISE DISTANCES & TIMES'
       READ(*,'(14)') ICHG
       1F(ICHG.NE.1) GO TO 9017
       WRITE(*,*) ' ENTER ALL CRUISE DISTANCES AND TIMES IN ORDER'
       WRITE(*,*) ' DEFAULTS ARE:'
       WRITE(*,9016) (DLEGSV(I), DLEGTM(I), I = 1, NUMLEG)
 9016 FORMAT(10X,F9.0,5X,F9.0,/)
       READ(*,*) (DLEGSV(I), DLEGTM(I), I = 1, NUMLEG)
       DO 9027 i = 1, NUMLEG
 9027 DLEG(I)=DLEGSV(I)
       IF(DLEG(1).LE.CLBIST)
     & DLEG(1) ~ 0.
Ü
       ENDIF
```

```
IF(DLEG(1).GT.CLDIST)
            DLEG(1) = DLEG(1) - CLDIST
    &
      ENDIF
 9017 CONTINUE
       ICHG=0
      WRITE(*.*) 'TYPE 1 TO ENTER NEW TIME.DISTANCE & OFLOAD FOR AAR'
       READ(*.'(14)') ICHG
       IF(ICHG.NE.1) GO TO 9019
       WRITE(*,*) ' ENTER TIME, DISTANCE & OFLOAD FOR AARS IN ORDER'
      WRITE(*, *) ' DEFAULTS ARE:'
      WRITE(*,9018) (FARTIM(I), FARDST(I), OFLOAD(I), I = 1, NUMAAR)
 9018 FORMAT(10X,F8.0,3X,F8.0,3X,F8.0,/)
       READ(*,*) (FARTIM(I),FARDST(I),OFLOAD(I), I=1,NUMAAR)
 9019 CONTINUE
       WRITE(*,9020) DIST3
 9020 FORMAT(1X.'WHAT IS DISTANCE TO RTB BASE OR TAR? (DEFAULT = '.
     & F12.0,')')
       READ(*,*) DIST3
       IFULCP = 0
       IF(DIST3.EQ.O.) GO TO 9030
       WRITE(*,*) 'ENTER A 1 FOR TAR ON WAY HOME '
       READ(*,'(14)') IFULOP
С
         IFULOP = 2
       IF(IFULOP.NE.1) GO TO 9030
       WRITE (6,9021)DISTTA
 9021 FORMAT(1X,'WHAT IS DISTANCE FOR TAR NUMBER 2 (DEFAULT = '.
     & F12.0,')')
            READ(*, *) DISTTA
       WRITE(*.9022)TARTIME
 9022 FORMAT(1X,'ENTER TIME (MIN) FOR TAR (DEFAULT = ',F12.0,')')
       READ(*, *) TARTIME
       WRITE(*,9023)TARALT, TARCAS
 9023 FORMAT(1X,'WHAT IS TAR ALTITUDE AND CAS (DEFAULT = ',
     & F12.0,', ',F12.0,')')
       READ(*,*) TARALT, TARCAS
       WRITE(*.9024) DIST2
 9024 FORMAT(1X, DISTANCE TO NEXT TAR OR RTB (DEFAULT = ',
     & F12.0,', ',F12.0,')')
       READ(*,*) DIST2
 9030 CONTINUE
C
        ENDIF
       ENDIF
       STIME = TIME
       SGWT = CURRWT
       STOTFUL=TOTFUL
       NOPRNT = 1
       IEND = 0
       DO UNTIL (IEND=1)
 9045 IF(NOPRNT.EQ.0)
     &
            IEND = 1
        ENDIF
Ü
       CURRWT = SGWT
       TIME = STIME
```

```
TOTFUL=STOTFUL
      IDECRM = 0
C
       INCLUDE AAR REFUELING
      ASSIGN 9050 TO IX
      GO TO 9100
 9050
      CONTINUE
       END INCLUDE
       IDECRM = ICHEK(IFULOP, CURRWT, OPWT, FULRES)
       IF(IDECRM.EQ.1) GO TO 9080
       IF(IFULOP.NE.1) GO TO 9070
C
           INCLUDE TAR NUMBER 2
       ASSIGN 9070 TO IX
       GO TO 8100
 9070
      CONTINUE
C
           END INCLUDE
C
         ENDIF
       ML=8
C
          INCLUDE LOITER AND LAND
       ASSIGN 9075 TO IX
       GO TO 6700
 9075 CONTINUE
         END INCLUDE
       IF (IFULOP.NE.1)
     &
            IDECRM = ICHEK(IFULOP, CURRWT, OPWT, FULRES)
C
          ENDIF
       IF (IDECRM.EQ.O)
     &
           NOPRNT = 0
C
          ENDIF
 9080 CONTINUE
C
       ENDIF
       IF(IDECRM.NE.1) GO TO 9090
       ANUMRC(1) = ANUMRC(1) - 1
       IF(ANUMRC(1).EQ. 0)
     8
            IENI) = 1
C
          ENDIF
       IF(NOPRNT.EQ.O) GO TO 9090
       WRITE(*,*) NOPRNT
       NOPRINT = NOPRNT + 1
 9090
       CONTINUE
C
          ENDIF
C
        ENDIF
       IF(IEND.EQ.O) GO TO 9045
       GO TO IM, (1250)
9100 ALT = FARALT(1)
        WRITE(#, #) '#$$$ LABEL 9100, AAR REFUELING'
C
       INCLUDE SET YTAB1, YTAB2, DIFF
       ASSIGN 9130 TO IZ
       GO TO 5000
 9130
       CONTINUE
       END INCLUDE
       ML = 1
C
       DO UNTIL (IDECRM.EQ.1.OR.(ML.GT.NUMLEG.AND.ML.GT.NUMAAR))
```

```
INCLUDE CRUISE LEG
 9135
      ASSIGN 9140 TO IY
      GO TO 9500
9140
      CONTINUE
        END INCLUDE
       IF(IDECRM.EQ.1) GO TO 9160
C
          INCLUDE AARLEG
       ASSIGN 9150 TO IY
          - GO TO 9600
 9150
                CONTINUE
          END INCLUDE
          ML = ML + 1
 9160
              CONTINUE
        ENDIF
C
        IF(IDECRM.NE.1.AND.(ML.LE.NUMLEG.OR.ML.LE.NUMAAR)) GO TO 9135
C
       ENDDO
       IF(IDECRM.EQ.1) GO TO 9180
        IF(DIST3.EQ.0) GO TO 9180
          DIST = DIST3
C
          INCLUDE PROLAT SECTION
            ASSIGN 9165 TO IZ
            GD TO 6300
 9165
                CONTINUE
          END INCLUDE
C
 9180
              CONTINUE
C
        ENDIF
C
       ENDIF
       GO TO IX, (9050)
9500
       CONTINUE
       WRITE(*,*) '*$$$ LABEL 9500, CRUISE LEG'
        IF(ML.GT.NUMLEG) GO TO 9550
        TIME = TIME + DLEGTM(ML)/60.
        DIST = DLEG(ML)/10.
        DO 9545 I=1,10
          Y1 = TNT2(CURRWT, FARCAS, 17, 7, WT, AS, YTAB1, IERR1, IERR2, 17, 0)
          IF(IFLAG.EQ.1) GO TO 9530
            Y2 = TNT2(CURRWT, FARCAS, 17, 7, WT, AS, YTAB2, IERR1, IERR2, 17, 0)
            Y1 = Y1 + (DIFF*(Y2 - Y1))
                CONTINUE
 9530
C
          ENDIF
         A = FUEL(Y1, DIST, CRUDRG)
         CURRWT = CURRWT - A
          IDECRM = ICHEK(IFULOP, CURRWT, OPWT, FULRES)
          IF (NOPENT.EQ.O.AND. IPNT.EQ.1)
     ŝ
                 WRITE(*,9540)ML,1,DIST,A,CURRWT
             FORMAT(1H ,'CRUISE LEG ', I2,' SUBLEG ', I2,' DIST= ',F5.1,
 9540
                    ' FUEL USED= ',F8.0,' GWT=',F8.0)
          ENDIF
 9545
              CONTINUE
        ENDDO
C
 9550
            CONTINUE
```

```
C
      ENDIF
      GO TO IY, (9140)
9600 CONTINUE
#$$
          WRITE(*,*) '*** LABEL 9600. AARLEG'
      IF(ML.GT.NUMAAR) GD TO 9650
       ANUMRC(ML) = ANUMRC(1)
       TIME = TIME + FARTIM(ML)/60.
Ü
       TTFLC=TOYFUL
      IF(OFLOAD(ML).GT.O)
           TOTFUL=TOTFUL-(OFLOAD(ML)*ANUMRC(1))
      TTFLD=TOTFUL
C
      ENDIF
      IF(OFLOAD(ML) .LT.O)
           TOTFUL=TOTFUL-OFLOAD(ML)
      ENDIF
C
       CALL LOAD (ML, CURRWT, FARCAS, 1FLAG, DIFF, CRUDRG, 2)
       IDECRM = ICHEK(IFULOP, CURRWT, OPWT, FULRES)
 9650
          CONTINUE
      ENDIF
      GO TO IY, (9150)
9700 CONTINUE
          WRITE(*,*) '*** LABEL 9700, BUDDY REFL CLIMB'
#$$
      WRITE(*,9710) FARALT(1), FARCAS
 9710 FORMAT(1X,'ENTER REFUEL ALTITUDE AND CAS (DEFAULT = ',
    & F12.0,', ',F12.0,')')
      READ(*,*) FARALT(1), FARCAS
      FARALT(1)=FARASAV
C
      Y1 = FARALT(1)
      TOWT1 = TOWT
      CALL CLIMB(TOWT1, TIME, Y1, Y2, Y3, Y4)
      CURRWT = TOWT - Y2
      CLDIST = Y3
      TIME = TIME + Y4/60.
      IFULOP = 3
      GO TO IM, (1050)
      END
SUBROUTINE PROLAT(Y1, Y2, Y3, ALTOLD, CURRWT)
      COMMON/A/DISTTA,WT(17),AS(7),DAT(17,7,4),DAT1(17,5),LCAS(17,5),
    & INPNT
      COMMON/B/ALTX(8), CCCAS(17), CFUEL(17,7), CTIME(17,7), CDIST(17,7),
      COMMON/C/RFDRAG, ONLOAD, YTAB1(17, 7), YTAB2(17, 7), CCALT(17),
    & CCNAM(17)
      COMMON/D/FARDST(15), TIMELT(15), OFLOAD(15), NUMREC, FARALT(15),
     & ALT1(5), FARTIM(15)
      DOUBLE PRECISION CTIME, CONAM, CCCAS
      DOUBLE PRECISION CFUEL, CDIST, CCALT
      DOUBLE PRECISION YTAB1, YTAB2
      WTT=CURRWT
```

Control of the state of the sta

The solution of the state of the solution of t

```
DO 10 L=1.5
       ALTNEW=TNT1(WTT, 17, WT, CCALT, 2, IERR)
       D0 1 I=1.2
       IF(I.EQ.1)AALT=ALTOLD
       IF (I.EQ.2) AALT=ALTNEW
       IF(I.EQ.2)GO TO 3
       Y1=TNT2(WTT, AALT, 17, 7, WT, ALTX, CFUEL, IERR1, IERR2, 17, 0)
С
       WRITE(*,*) 'Y1=',Y1
       Y2=TNT2(WTT, AALT, 17, 7, WT, ALTX, CD1ST, IERR1, IERR2, 17, 0)
C
       WRITE(*.*) 'Y2='.Y2
       Y3=TNT2(WTT, AALT, 17, 7, WY, ALTX, CTIME, IERR1, IERR2, 17, 0)
C
       WRITE(*.*) 'Y3='.Y3
       GO TO 1
  3
       CONTINUE
       Y4=TNT2(WTT, AALT, 17, 7, WT, ALTX, CFUEL, IERR1, IERR2, 17, 0)
       WRITE(*,*) 'Y4=',Y4
C
       Y5=TNT2(WTT, AALT, 17,7, WT, ALTX, CDIST, IERR1, IERR2, 17,0)
C
       WRITE(*,*) 'Y5=',Y5
       Y6=TNT2(WTT, AALT, 17,7, WT, ALTX, CTIME, IERR1, IERR2, 17,0)
C
       WRITE(*,*) 'Y6=',Y6
       CONTINUE
       Y1 = (Y4 - Y1)
       Y2=(Y5-Y2)
       Y3 = (Y6 - Y3)
C
       WRITE(*,*) 'FUEL, DIST AND TIME=', Y1, Y2, Y3
       GO TO 6
  6
       CONTINUE
       WTT=CURRWT-Y1
       WRITE(*,*) 'WTT=',WTT
 10
       CONTINUE
       CURRWY=WTT
       RETURN
       END
SUBROUTINE CRUCLM(TIME, DISTER, WTT, DRAG)
       COMMON/A/DISTTA,WT(17),AS(7),DAT(17,7,4),DAT1(17,5),LCAS(17,5),
     & IPNT
       COMMON/B/ALTX(8), CCCAS(17), CFUEL(17,7), CTINE(17,7), CDIST(17,7),
     & TARTIME
       COMMON/C/RFDRAG, ONLOAD, YTAB1(17,7), YTAB2(17,7), CCALT(17),
     & CCNAM(17)
       COMMON/D/FARDST(15), TIMELT(15), OFLOAD(15), NUMREC, FARALT(15).
     & ALT1(5), FARTIM(15)
       COMMON/F/NOPENT
        DOUBLE PRECISION CONAM, COCAS, COALT
       DOUBLE PRECISION CDIST, CFUEL, CTIME
        DOUBLE PRECISION YTAB1, YTAB2
        WRITE(*,*) '*$$$ SUBROUTINE CRUISECLIMB '
        DO 10 I=1,10
       DIST=DISTER/10.
        Y1=TNT1(WTT, 17, WT, CCNAM, 2, IERR)
       Y2=TNT1(WTT, 17, WT, CCCAS, 2, IERR)
        A = FUEL(Y1, DIST, DRAG)
```

```
WTT = WTT - A
      Y3=TNT1(WTT, 17, WT, CCALT, 2, IERR)
       IF (Y3.EQ.O)WTT=0
      TIME=TIME+(DIST/Y2)
       IF (IPNT.EQ.1.AND.NOFRNT.EQ.0) WRITE(*,100) I, DIST, Y2, Y3, WTT
      FORMAT(1X,'ON CC SUBLEG ', 12,' , DIST =', F4.0,' , TAS= ',
 100
    & F8.1,' ALT= ',F6.0,', AND WT= ',F8.0)
 10
       CONTINUE
      RETURN
       END
SUBROUTINE LOAD (M, CURRWT, TARCAS, IFLAG, DIFF, CRUDRG, MM)
       COMMON/A/DISTTA, WT(17), AS(7), DAT(17,7,4), DAT1(17,5), LCAS(17,5),
       COMMON/B/ALTX(8), CCCAS(17), CFUEL(17,7), CTIME(17,7), CDIST(17,7),
     & TARTIME
       COMMON/C/RFDRAG.ONLOAD,YTAB1(17,7),YTAB2(17,7),CCALT(17),
     & CCNAM(17)
       COMMON/D/FARDST(15), TIMELT(15), OFLOAD(15), NUMREC, FARALT(15),
     & ALT1(5).FARTIM(15)
       COMMON/E/SPECIAL(17), ANUMRC(15)
       COMMON/F/NOFRNT
       DOUBLE PRECISION CTIME, CONAM, COCAS
       DOUBLE PRECISION CFUEL, CDIST, CCALT
       DOUBLE PRECISION YTAB1, YTAB2
       DOUBLE PRECISION SPECIAL
*$$
           WRITE(*,*) '*$$$ SUBROUTINE LOAD'
       IF (MM.EQ. 1) DIST=DISTTA/5.
       IF (MM.EQ.2) DIST=FARDST (M) /5.
       A=ANUMRC (M)
       IF(OFLOAD(M).LT.O) A=1
       IF (MM.EQ.2)LOADD=OFLOAD(M) *A
       IFLAGG=0
       IF(FARALT(1).NE.35000.)GO TO 1
       IF (TARCAS.NE.260.)GO TO 1
       Y1=TNT1(CURRWT, 17, WT, SPEC(AL, 2, IERR)
       WRITE(*,*) 'SPECIAL AIRCRAFT'
       IFLAGG=1
       DO 16 J=1,5
 1
       IF(IFLAGG.EQ.1)GO TO 2
       Y1=TNT2(CURRWT, TARCAS, 17, 7, WT, AS, YTAB1, IERR1, IERR2, 17, 0)
     IF(IFLAG.NE.1)Y2=TNT2(CURRWT, TARCAS, 17, 7, WT, AS, YTAB2, IERR1, IERR2,
            17,0)
       IF (IF LAG. NE. 1) Y1=Y1+(D1FF #(Y2-Y1))
       A=FUEL(Y1, DIST, CRUDRG)
       IF(MM.EQ.1)CURRWT = CURRWT - A + ONLOAD/5.
       A=FUEL(Y1.DIST,RFDRAG)
       IF(MM.EQ.2)CURRWT = CURRWT - A - LOADD/5.
       IF(CURRWT.LE.100000) CURRWT = 100000
C
       WRITE(*,100) J,DIST,CURRWY
       IF (IPNT.ED.1.AND.NOPRNY.ED.0) WRITE (*, 100) J, DIST, CURRWY
       FORMAT(1X,'ON TAR OR RAR SUBLEG ',12,' DIST= ',F5.0,
     & ' CURRWT= ',F8.0)
```

```
16
      CONTINUE
ü
      WRITE(*,105) CURRWT,N
       IF (NOPRNT.EQ.O) WRITE (*, 105) CURRWT, M
* 105
       FORMAT(1X, 'CURRENT WT= ',F7.0,' AFTER TAR OR RAR NUM ',I1)
      RETURN
      END
SUBROUTINE CLIMB(TOWT1, TIME, Y1, Y2, Y3, Y4)
      COMMON/A/DISTTA,WT(17),AS(7),DAf(17,7,4),DAf1(17,5),LCAS(17,5),
    & IPNT
      COMMON/B/ALTX(8), CCCAS(17), CFUEL(17,7), CTIME(17,7), CDIST(17,7),
    & TARTIME
      COMMON/C/RFDRAG, ONLOAD, YTAB1(17,7), YTAB2(17,7), CCALT(17),
    & CCNAM(17)
      COMMON/D/FARDST(15), TIMELT(15), OFLOAD(15), NUMREC, FARALT(15),
    & ALT1(5), FARTIM(15)
      DOUBLE PRECISION CTIME, CONAM, COCAS
      DOUBLE PRECISION CFUEL, CDIST, CCALT
      DOUBLE PRECISION YTAB1, YTAB2
       WRITE(*, 1) '1445 SUBROUTINE CLIMB
      Y2=TNT2(TOWT1, Y1, 17, 7, WT, ALTX, CFUEL, IERR1, IERR2, 17, 0)
      Y3=TNT2(TOWT1, Y1, 17, 7, WT, ALTX, CDIST, IERR1, IERR2, 17, 0)
      Y4=TNT2(TOWT1, Y1, 17, 7, WT, ALTX, CTIME, IERR1, IERR2, 17, 1)
      WRITE(*,100)Y1,Y2,Y3,Y4
 100
      FURMAT(2X, 'FINAL ALT, WT, DIST, TIME=',
     & 2X,F7.1,2X,F7.1,2X,F5.1,2X,F4.1)
      RETURN
      END
FUNCTION TNT1 (XARG, NTBARG, XTBARG, YTBARG, NPYARG, NERR)
      DIMENSION XTBARG(NTBARG), YTBARG(NTBARG)
       DOUBLE PRECISION YTBARG
         WRITE(*,*) '*** FUNCTION TNT1'
华术
      NTAB=NTBARG
      X≔XARG
       NPT=MINO(NTAB, NPTARG)
¢
       CALL TLU1(X,NTAB, XTBARG, J,NERR)
       IF(NERR.NE.O) GOTO 901
       JMIN=MAXO(1, J-(NPT-1)/2)
       JMAX=JMIN+(NFT-1)
       N1=NTAB-JMAX
       IF(N1.GE.O)GO TO 21
       JMAX=JMAX+N1
       JMIN=JMIN+N1
 21
       Y=0
       DO 91 J1=JMIN, JMAX
       TEMP=YTBARG(J1)
       DO 41 J2=JMIN, JMAX
       IF(J1.EQ.J2)00 TO 41
       TEMP=TEMP*(X-XTBARG(J2))/(XTBARG(J1)-XTBARG(J2))
       CONTINUE
 41
       Y=Y+TEMF
```

CONTROL SESSECT | RECESSED SESSECT BENEFICE BENEFICE SECURIS S

```
91
      CONTINUE
      GO TO 1001
   **************** X OUT OF RANGE OF TABLE *****************
901
      Y = 0.0
1001
      TNT1=Y
5001
      RETURN
      END
      FUNCTION TNT2(X1ARG, X2ARG, N1ARG, N2ARG, X1TARG, X2TARG, YTBARG,
           Jiarg, J2ARG, IDIM, II)
      DIMENSION X1TARG(N1ARG), X2TARG(N2ARG), YTBAR6(IDIM, N2ARG)
      DIMENSION N(2), X(2), Y(2), X1TAB(2), X2TAB(2), YTAB(2,2), TEMP(2)
      DOUBLE PRECISION YTHARG
      N(1)=N1ARG
1
      N(2)=N2ARG
21
      X(1)=X1ARG
      *************************************
      KK=1
      CALL TLUI(X(1),N(1),X1TARG,N1,J1ARG)
      X(2)=X2ARG
      C
     CALL TLU1(X(2),N(2),X2TARG,N2,J2ARG)
     1F(J1ARG.NE.O.OR.J2ARG.NE.O) GO TO 901
     N1=MAXO(1,MINO(N1,N(1)-1))
     N2=MAXO(1, MINO(N2, N(2)-1))
      101 DO 121 J1=1,2
     M1=J1+N1-1
     M2=J1+N2-1
     X1TAB(J1)=X1TARG(M1)
     X2TAB(J1)=X2TARG(M2)
     DO 121 J2=1.2
     M2=J2+N2-1
 121 YTAB(J1,J2)=YTBARG(M1,M2)
      ****************************
 201
     IF(N(1).GT.1) GO TO 241
     IF(N(2).GT.1) GO TO 231
 221 Y(1)=YTAB(1,1)
     Y(1)=YTAB(1,1)+(X(2)-X2TAB(1))*(YTAB(1,2)-YTAB(1,1))/
    & (X2TAB(2)-X2TAB(1))
      60 TO 1001
 241
      TEMP(1)=X(1)-X1TAB(1)
      TEMP(...=X1TAB(2)-X1TAB(1)
      DO 251 J1=1,2
      Y(J1)=YTAB(1,J1)+TEMP(1)*(YTAB(2,J1)-YTAB(1,J1))/TEMP(2)
      IF(N(2).EQ.1) GO TO 1001
 251
      CONTINUE
      Y(1)=Y(1)+(X(2)-X2TAB(1))*(Y(2)-Y(1))/(X2TAB(2)-X2TAB(1))
      60 TO 1001
 901
      Y(1)=0.0
 1001
      TNT2=Y(1)
 5001
      RETURN
      END
      SUBROUTINE TLUI(ARG, NTAB, TAB, J, IERR)
```

```
DIMENSION TAB(NTAB)
       IERR=0
 1
      DO 21 J1=1.NTAB
      IF(TAB(1).GT.TAB(2))VAR=TAB(J1)-ARG
       IF(TAB(1).LE.TAB(2))VAR=ARG-TAB(J1)
       IF(VAR)41.61.21
21
      CONTINUE
      IERR≔1
       J=NTAB
      GO TO 5001
       IF (J1.GT.1) GO TO 101
41
       IERR=-1
       J=1
       GO TO 5001
 61
       J1=J1+1
 101
       J=J1-1
5001 RETURN
       END
SUBROUTINE LOITER (TIME, CURRWT, ML, CRUDRG)
       COMMON/A/DISTA, WT(17).AS(7), DAT(17,7,4), DAT1(17,5), LCAS(17,5),
     & IFNT
      COMMON/B/ALTX(8), CCCAS(17), CFUEL(17,7), CTIME(17,7), CDIST(17,7),
     & TARTIME
       COMMON/C/RFDRAG, ONLOAD, YTAB1(17,7), YTAB2(17,7), CCALT(17),
     & CCNAM(17)
       COMMON/D/FARDST(15), TIMELT(15), OFLOAD(15), NUMREC, FARALT(15),
     & ALT1(5).FARTIM(15)
       COMMON/F/NOPRNT
       DOUBLE PRECISION CTIME, CONAM, COCAS
       DOUBLE PRECISION CFUEL, CDIST, CCALT
       DOUBLE PRECISION YTAB1, YTAB2
       DIMENSION YTAB3(17), YTAB4(17), YTAB5(17), YTAB6(17)
       DOUBLE PRECISION YTABS, YTAB4, YTAB5, YTAB6
#$$
           WRITE(x, x) / xsss SUBROUTINE LOITER! !! !!!!
       IFLAG=0
       IF (IPNT.EQ.1.AND.NOPRNT.EQ.0) WRITE (*, 100) ML, TIME, CURRWT
       DO 1 I=1,4
       IF(FARALT(ML).EQ.ALT1(I))1FLAG=1
       IF(FARALT(ML).GT.ALT1(I))JJ=I
       IF(FARALT(ML).EQ.ALT1(T))JJ=T
       CONTINUE
       LL=JJ+1
       TIME=TIME+(TIMELT(ML)/60.)
       TIME1=TIMELT(ML)/5.
       DO 2 I=1,17
       YTAB3(I)=DAT1(I,JJ)
       IF (IFLAG.NE.1)YTAB4(1)=DAT1(I,LL)
       YTAB5(1)=LCAS(I,JJ)
       IF (IFLAG. NE. 1) YTAB6 (I) =LCA5(1,LL)
       IF(IFLAG.NE.1)DIFF=((FARALT(ML)-ALTX(JJ))/1000.1/5.
       DO 3 I=1.5
       Y1=TNT1(CURRWT, 17, WT, YTABG, 2, 1ERR)
```

```
IF (IFLAG. NE. 1) Y2=TNT1 (CURRWT, 17, WT, YTAB4, 2, IERR)
       Y3=TNT1(CURRWY, 17, WY, YYAB5, 2, IERR)
       IF(IFLAG.NE.1)Y4=TNT1(CURRWT,17,WT,YYAB6,2,IERR)
       IF((FLAG.NE.1)Y1=Y1+(DIFF*(Y2-Y1))
       A1=Y3
       IF (IFLAG. NE. 1) A1=Y3+(D1FF*(Y4-Y3))
       DISTER=TIME1/60. *A1
*$
         WRITE(*,200)Y1,DISTER,CRUDRG,TIME1,A1
         FORMAT(1X,'Y1:',F7.0,' DISTER:',F7.0,' CRUDRG:',F7.0,
*$ 200
#:$
       &' TIME1:',F7.0, ' A1:',F7.0)
       A=FUEL(Y1, DISTER, CRUDRG)
       CURRWT = CURRWT - A
       TAS=A1
       IF (IPNT.EQ.1.AND.NOPRNT.EQ.0) WRITE (*, 101) ML, I, TAS, DISTER
       WRITE(%,102) TIME1,A,CURRWT
       IF(IPNT.EQ.1.AND.NOPRNT.EQ.0)WRITE(*,102)TIME1,A,CURRWT
       FORMAT(1H , 'ON LOITER LEG ', I1,' THE TIME= ',F8.1,' CURRWT= ',
 100
            F8.0)
       FURNAT(1H ,'LOITER LEG', 12,' SUBLEG', 12,' TAS=',F8.2,
 101
          DIST= ',F6.1)
       FORMAT(1H ,'TIME= ',F3.0,' FUEL USED=',F8.0,' GWT= ',F8.0)
       RETURN
       END
SUBROUTINE CRUISE (Y, Z, CURRWT, CUMTINE, CRUDRG)
       COMMON/A/DISTTA,WT(17),AS(7),DAT(17,7,4),DAT1(17,5),LCAS(17,5),
C *** Y = ALTITUDE , Z = DISTANCE , CURRWT = CURRENT WEIGHT ,
C *** CUMTIME = CUMMULATIVE FLIGHT TIME , CRUDRG = CRUISE DRAG FACTOR
       COMMON/D/FARDST(15),TIMELT(15),OFLOAD(15),NUMREC,FARALT(15),
             ALT1(5), FARTIM(15)
     &
       CUMMUN/F/NOPRNT
       COMMON /G/ DAT2(17,5),10TA5(17,5)
C ### DAT2 = NAM/LD & ICTAS = TAS FOR FIXED ALT CRUISE
       DIMENSION YTAB3(17), YTAB3(17), YTAB5(17), YTAB6(17)
       DOUBLE PRECISION YTABS, YTABS, YTABS, YTABS
#$$ WRITE(#,#) /#$$$ SUBROUTING CRUISE
       TIMER=0.
       IFLAG=0
       NPT=2
       DO 12 T=1.5
       1F(Y.EQ.ALT1(I))1FLAG=1
       IF(Y.GT.ALTI(I))JJ=1
       1F(Y.E@.ALT1(I))JJ=I
 12
       CONTINUE
       WRITE(*, *) 'CRUISE ALT & DIST = ',Y,Z
       LL=JJ+1
       DIST=Z/5.
       DO 2 I=1,17
       YTAB3(I)=DAT2(I,JJ)
       IF (IFLAG.NE.1) YTAB4 (I) = LAY2 (I, LL)
       YTAB5(I)=ICTAS(I,JJ)
       SRITE(4, to 'CRUISE TABLES DAT2 & ICTAS = ',YTAB3(I),YTAB5(I)
```

```
2
      IF(IFLAG.NE.1)YTABG(I)=ICTAS(I,LL)
      IF (IFLAG.NE.1)DIFF - (ALII(JJ)/1000.)/5.
      DO 3 I=1,5
      Y1=TNT1 (CURRWT, 17, WT, YTADG, 2, IERR)
      IF(IFLAG.NE.1)Y2=TNT1(CURRWT,17,WT,YTAB4,2,IERR)
C
      WRITE(*,*) !NAM/LB = !,Y1
      IF(IFLAG.NE.1)Y1=Y1+(DIFF*(Y2-Y1))
      A = FUEL(Y1,DIST,CRUDRG)
      Y1=TNT1(CURRWT, 17, WT, YTAB5, 2, IERR)
      IF(IFLAG.NE.1)Y2=TNT1(CURRWY,17,WY,YTAB6,2,1ERR)
      CURRWT = CURRWT - A
C
      WRITE(*,*) 'TAS = ',Y1
      A1-Y1
      IF(IFLAG.NE.1)A1=Y1+(DIFF*(Y2-Y1))
      TIME=DIST/A1
      TIMER=TIMER+TIME
      CUMTIME=CUMTIME+TIME
       IF (IPNT.EQ.1.AND.NOPRNT.EQ.0) WRITE (*,101) I, DIST, A, CURRWT
 3
       IF (IPNT.EQ.1.AND.NOPRNT.EQ.0) WRITE (*, 103) DIST, A1, TIME, TIMER, Y
      TIMELT(8) = TIMER$60.
       IF (IPNT.EQ.1.AND.NOPRNT.EQ.0) WRITE (4, 105) TIMER
       IF (IPNT.EQ.1.AND.NOPRNT.EQ.0) WRITE (*, 106) FIMER
      FORMATCH ,'CRUISE LEG ', 12,' DIST= ',FG.1,
     ኢ ' FUEL USED= ',F8.0,' 6W1=',F8.0)
      FORMAT(1H ,'DIST= ',F6.1,' TAS= ',F8.1,' TIME FOR LEG= ',
 103
     & F6.2, ' CUM TIME= ',F6.2,' ALT= ',F6.0)
       FORMAT(1H ,'CLIMBING FROM ', F6.0,' TO ', F6.0,' TOOK ', *** BUG TEST ***
C104
     & FG.1,' #'S OF FUEL, LEVEL OFF WY = ',F8.0)
       FORMAT(IH , LUM TIME TO CRUISE OUT TO IST URBIT=1,F6.2)
 105
       FORMAT(1H ,'CUM TINE TO KETURN FROM LAST AAR=',F6.2)
 106
       RETURN
       END
FUEL USED FUNCTION
       FUNCTION FUEL (FARGI, FARGI, FARGI)
#$$
          WRITE(*,*) '*$$$ FUNCTION FUEL '
       CALL %FXOPT(69,1,1,0)
                             はま ERROR MESSAGE おははま
                             ** FOR DIVIDE ERROR ***
       CALL %FXOPT(71,1,1,0)
       FUEL = 1./FARG1%FARG1% ARGS
С
       CALL %FXOPT(69,1,0,0)
Ľ.
       CALL %FX0PT(71,1,0,0)
       RETURN
       END
ICKEK FUNCTION
       FUNCTION ICHER (IFULOP, CURRWY, OPWY, FULRES)
         WRITE(*,*) '*** FUNCTION ICHE: '
4.
*
        IF(IFULOF.EQ.I.AND.CURRWILE.(OFWT+FULRES))
      & M = 1
```

CONSTITUTE ACCORDING CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT

```
С
      ENDIF
       IF (IFULOP.NE.1.AND.CURRWY.LE.OPWY)
**$$ THE FOLLOWING ADDED BY HUNSUCK: $$$
       ## (CURRWT.LE.(OFWT+5000))
    & M = 1
C
      ENDIF
      ICHEK = M
      RETURN
      END
C*** BLOCK DATA PORTION
C##
     BLOCK DATA
ũ
C
***
      COMMON /INPUT/
         ARCPLATT, ARCPLONG,
    8,
          EARLATT, EARLONG,
     &
          TTFLATT, TTFLONG,
    8,
         ALTRAR, CASRAR, TIMERAR, DISTRAR, OFFRAR,
          TTFMAXTO
      real
         ARCPLATT(4,5), ARCPLUNG(4,5),
     &
          EARLATT(4,5), EARLONG(4,5),
     Ž,
          TTFLATT(3),
                         TTFLONG(3),
         ALTRAR(4), CASRAR(4), TIMERAK(4,5), DISTRAR(4,5), OFFRAR(4,5),
          TTFMAXTO(3)
*****
       COMMON /NAMES/ TTFNAME, FIGHTER
       character TTFNAME(3)%10, FIGHTER(4)%5
****
        COMMON/EQNS/ CLOSURE, SETUPTM, FLYTOARI, FLYTODST,
            FTRCELL, TOTNOFTH, TURNTINE, KCFLTIME,
     &
            KCLAPS, GOOUT, GORTH,
     ಒ
            TOTALTNK, TTFAPP', RELIBLIY, KCTRACK,
     દે
            ITTEL, JETKL, KTRAKL, NEARTTE,
     દ
            DOMINATO
        REAL CLOSURE, SETUPTM, FLYTOARI, FLYTODST,
            FTRCELL(4), TOTNOFTR(4), TURNTIME(3), KCFLTIME(4,5),
     Ľ
            KCLAPS(4,5), 600UT(3,4,5), 60RTE(3,4,5),
            TOTALTNE, TTFAPPRT(3), RELIBLTY, KCTRACK(4,5)
     Š.
```

REAL SORINTVL(4,5), AVGLAFINT(4,5)

NOVI RECENTED FORESCOOL EXPERSES. STREETERS SECRETED SECRETED AND ADDRESS. AND ADDRESS. SECRETED SECRETED SECRETARIES.

INTEGER ITTFL, JFTRL, KTRAKL, NEARTTF(4,5) LOGICAL DOMINATD(3,4,5)

* FOLLOWING COMMON LINES ADDED TO MAKE 'TANKER' WORK WITH

* THIS DETERMTTF PROGRAM:

COMMON /HUNSUCK/lTANKR, IFULOP, NUMFAR, NUMFAL:
COMMON /THESIS/FULSUB, TOWT, OPWT, FULLND, CRUDRG, RTBALT, RTBTIM, FLTWT
CWT, DISTIS, FARCAS, DISTS, WTTT, TOTA, TIME

REAL TOTA, TIME
INTEGER ITANKER, IFULOP, NUMFAR, NUMFA1

INTEGER I, J, K, L, M

######

* THE FOLLOWING COMMON DATA ARE FOR SUBROUTINE TANKER ******

	COMMON	/A	/ I	ATERIC	,WT		,AS(7)	,DAT
8				,DAT1		,LC/	18	, ifnt
	REAL							
Ł		DAT		(17,	7,40			
Šć		, DAT	l	(17	7,5)			
દ		,Dist	"TA					
દે		,WT		(17)				
	INTEGER	R IPNT	, ا	LCAS		17,5)		
	COMMON	/B	1 6	4LTX			,CFUEL	, CTIME
ě				,Chis		, [é	ar lime	
	DOUBLE	PRECISION	į i			(17)		
&				, CDIV		(1)		
Ĺ				, LFUL	L	$\langle - \langle 1 \rangle$	7,73	
Š,				,CTIM		(1)	7,72	
	REAL	TARIIME	•					
	LÜMMÖN	/U					,YTAB1	,YTAB2
દેહ				,CCAL		,0	INAM	
		PRECISION	4 1			(17)		
Ĉ٤				, CCNAI			•	
દ				,YTAB			7,7)	
Š				YTAB.		(1)	7,7)	
	REAL	ÜNLUAD				27. 2 7		موروس رس ر
	COMMON	/D	/				FLOAD , NO	
Ľ				, FARA	, الم	ALII(i, taki	ITM
	REAL	et a str	~~					
<u>ي</u>		FAR			(15)			
Ů.		, FARI			(15)			
Ž		, FAR			1151			
Ž,		, OFL			(15)			
Ž		•	iL I	(15)				
	INTEGER	R NUMREC						

```
COMMON /E
                           / SPECIAL , ANUMRO
        DOUBLE PRECISION SPECIAL (17)
        REAL
                 ANUMRO
                                (15)
        COMMON /F
                           / NOFRNT
        COMMON /G
                           / DAT2
                                          , ICTAS
                 DAT2
        REAL
                             (17, 5)
                                          (17, 5)
        INTEGER NOPENT
                            , ICTAS
*****
        DATA
                 ALTX
                              /15000.,20000.,25000.,30000.,35000.
     દ
                              ,40000.,45000.,0./
                           /15000.,20000.,25000.,30000.,35000./
/250.,260.,270.,280.,290.,300.,310./
        DATA
                 ALT1
        DATA
                 AS
C
        END
```

Appendix C

Explanation of Tanker Program Sample Output of Tanker Program

COMMAND/EXPLAINATION OF TANKER UTILITY PROGRAM

- 1. ENTER TANKER 2 KC-135E

 Select tanker eg. 1 = KC-135A, 3 = KC-135R, 4 = KC-10A.
- ENTER T.O. WEIGHT
 Enter "Unstick" (liftoff) weight in pounds. Note: Carriage return
 (CR) defaults to Max gross to weight shown in data file.
- ENTER CARGO WEIGHT Enter weight of cargo carried by tanker--in pounds.
- 4. ENTER A 1 TO EXPAND PRINT "1" gives long print, anything else, including carriage return, gives summary print.
- DISTANCE TO FIRST TAR OR BAR OR AAR TAR is Refuel Tanker, BAR is Orbit Refuel, AAR is Buddy Refuel.
- 6. ENTER A 1 FOR A TAR OR A 2 FOR A RAR OR A 3 FOR AN AAK, Selects type of mission if you enter a "1" continue below if you enter a "2" go to 12 if you enter a "3" go to 22.
- ENTER DISTANCE AND ONLOAD FOR TAR
 Enter distance run during TAR in nm and fuel onload in pounds.
- 8. ENTER TIME (MIN) FOR TAR NUMBER 1
 Enter time to cover distance shown above.
- WHAT IS TAR ALTITUDE AND CAS
 Enter Tanker serial refueling altitude in fact and airspeed in CAS
 (KTS).
- 10. DISTANCE TO AAR OR RAR Enter distance to next event. If RAR, distance to ARCP. If AAR, distance to joinup.
- 11. ENTER A 2 FOR RAR OR A 3 FOR AN AAR Enter a "2" for an orbit refuel and continue below--or a "3" to join a formation for a buddy refueling then go to 22.
- 12. ENTER CELL STRUCTURE For Orbit Refuel - 1st number is number of cells of receivers followed by the number of receivers in each cell eg. 3,1,1,1 means 3 cells consisting of one receiver in each cell.
- 13. ENTER RAR ALTITUDE AND CAS Enter altitude in feet and CAS in knots for refueling operation eg., 25000, 252.

14. ENTER 2ND LOITER TIME
Enter time (in minutes) between cells.

- 15. ENTER TIME, DISTANCE, AND OFFLOAD FOR RAR
 Describes serial refueling run. Enter time in minutes, distance in nautical miles, and offload in pounds. eg., 45,300,95000.
- 16. WHAT IS THE DISTANCE TO RTB BASE OR TAR?
 Distance from last aerial refueling to landing base or tanker aerial refueling-mas appropriate.
- 17. ENTER A 1 FOR TAR ON WAY HOME

 Entering CR ends profile and begins solution and printout. Entering a "1" brings additional queries eg:
- 18. WHAT IS DISTANCE FOR TAR?

 Enter length of aerial refueling in nm.
- 19. ENTER TIME (MIN) FOR TAR
 Enter length of time of aerial refueling
- 20. WHAT IS TAR ALTITUDE AND CAS? Enter altitude (in feet) and calibrate airapeed of refueling.
- 21. WHAT IS DISTANCE TO RTB BASE?

 Enter distance in nm to home base. Upon entering data, computation begins.
- 22. ENTER NUMBER OF RECEIVERS Number of receivers in the cell accompanying the tanker.
- ENTER REFUELING ALTITUDE AND CAS
 Enter altitude in feet and cruising airspeed in knots CAS.
- 24. ENTER NUMBER OF LEGS AND NUMBERS OF AAR's Enter the number of legs not counting aerial air refuelings and enter the number of aerial refuelings - Note: The number of legs must be one greater than the number of AARs eg., 3,2.
- 25. ENTER ALL CRUISE DISTANCES AND TIMES IN ORDER Enter the distance in nm and the time of flight in minutes for each leg listed above eg., 1000, 125, 500, 63, 750, 94.
- 26. ENTER TIME, DISTANCE AND OFFLOAD FOR AARS IN ORDER List data requested in order of AARS eg., 35, 175, 21000, 42, 850, 40000.
- 27. WHAT IS DISTANCE TO RTB OR TAR

 If you are at destination, enter 0. If not go to 16.

Tel (202) 697-9315 Autovon 227-9315

M. E. "MEL" ESTES
Modelity Systems Analyst

Air Force Center for Studies and Analyses Mobility Division The Pentagon Rm 10377

AFCSA/SAGU Wesh DC 20330-5420

Sample Tanker Data

Dual Role KC-10 refueling Four F-16s

```
A>b:tank1
ENTER TANKEK (DEFAULT= 0)
ENTER T.O. WEIGHT (DEFAULT =
                                        588200.)
588200
ENTER CARGO WT (DEFAULT -
                                          0.)
40000
T.O. FUEL =304991.0
ENTER A 1 TO EXPAND PRINT (DEFAULT = 0)
DISTANCE TO FIRST TAR OR RAR OR AAR
                                                                 (DEFAULT =
                                                                                           0.)
ENTER REFUEL ALTITUDE AND CAS (DEFAULT =
                                                              0.,
                                                                              0.)
31000,310
ENTER NUMBER OF RECEIVERS (DEFAULT =
                                                          0.)
ENTER NUMBER OF LEGS AND NUMBER OF AARS (DEFAULT =
                                                                          0)
TYPE A 1 TO ENTER NEW CRUISE DISTANCES & TIMES
 ENTER ALL CRUISE DISTANCES AND TIMES IN ORDER
 DEFAULTS ARE:
                   0.
                                    0.
                   0.
                                    0.
                   0.
                                    0.
1805,216
1829,223
243, 35
TYPE 1 TO ENTER NEW TIME, DISTANCE & OFLOAD FOR AAR
 ENTER TIME, DISTANCE & OFLOAD FOR AARS IN ORDER
 DEFAULTS ARE:
                               0.
                  0.
                               ٥.
                                            ٥.
36,300,11578
36,288,2755
WHAT IS DISTANCE TO RTB BASE OR TAR? (DEPAULT =
                                                                       0.)
CURRENT WT= 417595. AFTER TAR OR RAR NUM 1
CURRENT WT= 309562. AFTER TAR OR RAR NUM 2
TOTAL TIME 9.5
REMAINING FUEL= 4296., FUEL USED= 232527., ONLOAD USED=
RECEIVERS BY CELL .40E+01
ENTER TANKER (DEFAULT= 3)
```

Northean Jersephil Contrate Manages areaster Casaster to Sasses

Airlifter Only KC-10 Carrying 120,000 pounds of cargo

```
3
ENTER T.O. WEIGHT (DEFAULT =
88200 588200
ENTER CARGO WT (DEFAULT =
                                        588200.)
 120000
T.O. FUEL =224991.0
ENTER A 1 TO EXPAND PRINT (DEFAULT = 0)
 DISTANCE TO FIRST TAR OR RAR OR AAR
                                                                  (DEFAULT =
                                                                                        4465.)
 ENTER A 1 FOR A TAR OR A 2 FOR A RAR OR A 3 FOR AN
                                                                    AAR (DEFAULT =
                                                                                          0)
 ENTER NUMBER OF RECEIVERS (DEFAULT =
 ENTER NUMBER OF LEGS AND NUMBER OF AAR: (DEFAULT =
                                                                          1)
 TYPE A 1 TO ENTER NEW CRUISE DISTANCES & TIMES
 TYPE 1 TO ENTER NEW TIME, DISTANCE & OPLOAD FOR AAR
 WHAT IS DISTANCE TO RTB BASE OR TAR? (DEFAULT =
                                                                        0.)
 CURRENT WT= 393963. AFTER TAR OR RAR NUM 1 TOTAL TIME 9.9
 TOTAL TIME 9.9
REMAINING FUEL- 15415., FUEL USED- 195237., ONLOAD USED-
 RECEIVERS BY CELL .00E+00
ENTER TANKER (DEFAULT= 3)
```

Goose Bay TTF KC-10 Refueling F-16s on AR Track 1

```
ENTER T.O. WEIGHT (DEFAULT =
                                  588200.)
588200
ENTER CARGO WT (DEFAULT =
                                      0.)
T.O. FUEL =344991.0 ^
ENTER A 1 TO EXPAND PRINT (DEFAULT = 0)
                                                            (DEFAULT =
                                                                                   0.)
DISTANCE TO FIRST TAR OR RAR OR AAR
421
ENTER A 1 FOR A TAR OR A 2 FOR A RAR OR A 3 FOR AN
                                                            AAR (DEFAULT =
ENTER CELL STRUCTURE
DEFAULT VALUES:
3,6,6,6
ENTER RAR ALTITUDE AND CAS (DEFAULT =
                                                                    0.)
31000,310
 ENTER TIME, DISTANCE AND OFLOAD FOR RAR
 DEFAULTS ARE:
                ٥.,
                            0.,
 39,324,11367
WHAT IS DISTANCE TO RTB BASE OR TAR? (DEFAULT =
                                                               0.)
 ENTER A 1 FOR TAR ON WAY HOME
 CUM TIME -
                   1.2
 CURRENT WT= 467870. AFTER TAR OR RAR NUM 1
                  2.8
 CUM TIME -
 CURRENT WT= 365803. AFTER TAR OR RAR NUM 2
 CUM TIME =
                  4.3
 CURRENT WT= 272051. AFTER TAR OR RAR NUH 3
TOTAL TIME 6.4

REMAINING FUEL= 6254., FUEL USED= 124578., ONLOAD USED=
RECEIVERS BY CELL .60E+01 .60E+01

ENTER TANKER (DEFAULT= 3)
```

Appendix D

"TACAP" Data

This Appendix consists of the TAC Air Profiler computer printouts which dictated the locations of the air refueling tracks and the fuel requirements of the fighters.

The TACAP fighter flight plans are in the following order:

Flight Plans for refuelings by TTFs (they include time for rendezvous)

plane	page
F-16	D-2
F-15	D-5
F-111	D-9
RF-4C	D-12

Flight Plans for "buddy" refuelings (Dual Role KC-10s)

plane	page
F-16	D-16
F-15	D-19
F-111	D-22
RF-4C	D-25

ROUTE									•	UTE 41	ROUTE JIND FACTOR	33 +313		
~	P)	,	F-15A	ا[ې	2×570	2x37041; 309CLT	נר ז			10	TOTAL FUEL	L ONLOAD	Đ.	RECEIVER
320 320 320 320	, 25.0 0.35.0 5.05.0 5.05.0		`	f2.24		40004466	7	717	RECV9 .	1,55	REC/3	OI.	9ECVR 3 13481	4ECVR 13485
	!			. מנפ	3 < 11 %	THE SEFUELING	. 51-1		RECVP 13479	2 8 5	RECVR 13477	v 0		
EV +350	*		CLIMATOLDSICA_ JINDS	٨_ ال	NDS	9) UOR	ST 2R	UNRST PROB FACTOR	α					
<u></u>	C02R51	CODREIVATES	13UE CR S	445	SISTANCE LFG FD1	ANS E FOTAL	11.	TIYE Les Total	FUFL 1	, 3SL	FUEL REMAI	9 14 4 18	FJEL	WIND OF
	37374	707164									13732	13732		
EOFF	37174	307164							205	265	13143	13149		
FL349	37514	73154	7 20	"	.:	47	10	20+00	724	724	12415	12415	2655	
	3815V	162366	073	"	Çĸ	137	5	r0+17	500	503	11937	11937	3324	
ڀ	38524	16246C	2 2 0	1 &	151	128	25	62+08	1071	1071	10835	10836	1962	
	10768	785 33A	۷۲٥	W.	122	255	23	01+02	1081	1081	2775	9755	2870	
	40014	17278L	031	÷	5.	518	Ct	01+12	483	183	è 126	9272	2185	
	41524	752107	050		13.1	872	15	01+27	683	683	8539	\$ 580	2769	
	42114	42662C	950	4	1:5	803	15	11+43	140	243	7859	6782	2707	
	1.5767	267876	0.40	o,	239	1131	22	n>+13	1202	1 202	6647	6647	2642	
	42214	971904	1:10	+13	125	1257	1	72+2U	612	612	6035	5035	2585	
	N6717	750550	156	+15	235	1001	27	£2+51	1137	1137	6687	5 6 ¥ 7	2536	
	NS 577	75324W	6 \$ 0	۲۲+	133	1523	15	0.1+36	719	759	7567	7527	9872	
	18257	112150	150	+23	Ce	1713	Ç	£3+15	127	127	3843	3.84.3	2452	
FL377	15624	4562V 7512D4	250	***	^	1727	05	03+14	72	? 2	3417	3819	959	
	16097	753034	052	+25	53	17.82	20	93+25	962	562	3523	3593	1531	
CTL 91	46214	กรจฏหม	270	+25	Ç	1822	9	03+39	196	195	3327	3327	2652	
	45284	6284 758334	220	+25	Si	1947	03	03+33	119	113	3238	3228	2652	
NC 2 1	R 2797	D57234	073	+25	5.3	1807	90	03+39	5 72	243	13732	2955	2471	13761
	NZ 557	701550	720	+5?	33	1935	93	77+£G	234	185	13423	2780	3120	
					รั	Unclassified	JED					ROJTE		4

527 528 \$29 525 530

6 S

ULVD OR

3ECVR 4 13480

JUC. ASSIFIED

FLT LEVEL A_T JOPER LDWFR TAS

CAS

12-02-86 27362

451-TE4P-DEV +35C

DATA POINT

C2F14 THICM PROJECT F

S ST LOUIS VORTAC

6 INDIANAPOLIS

7 DAYTON

9 DRYER

9 JAMESTOWN

10 ALBANY VOTSCE 11 12 YAPPOJIH

13 HALIFAX 14 DESCFND

4 BUTLER VORTAC

2 START, TAXI, TAKEOFF

1 YCCONNELL

21) AND STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD

\$23 523 513 519 525 504 504 501 501 591 501

19 40.1 ABORT.OFF. 2 3N

23 CHECK PT

17 AIR PFFUELING CIL PT

15 LEVELOFF

15 SYDNFY

18 START AAR 31

PASE 01

		;	Ş	;	,	;	,	Or	UTE 41	ROUTE JIND FACTOR	57 +713	,		
CODPOSIVATES CRS JAR LEG TOT	445 DISTA	DISTA LES	2 1 Y	5	12 TAL	7 14c	4¢ TOT3L	f UEL	USE)	1931	FUE. 454AIY 1 6	FJEL	WIND OR	gs
21 2c+ 720 F1195C N9597	۲۰۰		ći		1247	0	57+10	73	53	13425	2772	3129	11010	503
ES 22+ 520 F2455C NSC27	.24		Ç		1991	င်	03+51	30.7	543	13118	2672	3122	11250	503
rs 22+ 510 Fb5850 FL227	+5+		2		2762	3	23+57	304	54.3	1281	2552	3,392	11493	503
15 22+ 920 F152SC Acc27	+27		Ş		2388	9	P4+32	972	196	12553	2 04 8	3375		503
6 75+ 675 485 55 +27 5	14+		n		2012	5	14+33	5.1	Ç	12517	2038	3260	11724	667
C7 1C+ 720 P8-150 A5727	427		7		2166	90	¢C+>ü	962	234	12221	1373?	3062	11958	667
								AVE	AVERAGE 31	JULDAD F	F72 ALR	-	11367	
5	£1 £2+	ij		^'	2156	ē	24+19	£ ¢	33	12123	13659	6555		667
4837N 953604 674 +28 51 2	+23 51	5.1		^	7257	95	04+15	302	303	11833	13331	3132		517
£ 112 £24 850 r00576 NO167	£3 217	21.7		N'	2112	52	04+41	1205	1257	10624	1.2 07 4	3078		514
55 165 22+ 528 FUBERO NUCES	165 55+	165		Ŏ.	2518	۲,	15+16	1196	1152	c č\$6	13922	2357		517
52724 755004 038 +25 193 23	+25 193	123		č.	2311	23	22+50	1043	1034	6 278	9845	2878		511
\$970V 939704 D88 +24 191 3	+24 128	128		M	70 C £	2	05+50	1000	1045	7473	8722	2789		513
\$ \$ct 254 888 4005ct houds	+22 193	103		M	3197	23	05+13	700	1027	6779	7755	3715		\$08
₹ \$61 f2+ 880 toffst tfff?	+23 173	173		₩,	3300	5	76+35	126	CCUI	\$ (\$ \$	6755	5763		508
5 751 71+ 886 4071F VCCQ2	+17 125	125		~	3543	23	06+52	484	989	4545	5113	2583		505
\$ 501 51+ 880 F66410 NOGOS	15 123	123		•	37.76	23	67+22	933	653	3613	4 81 0	3556		\$06
\$ 22 21+ 680 PCC846 NOVOS	+12 77	2.2		M	3953	ç	97+31	367	377	3245	2777	2486		206
\$937v 335534 034 +11 82 8	+11 32	33		~	\$3.35	Ç	07+41	389	(6)	283.2	< 36 >	7276		\$08
\$00#4 005384 034 +t) a g	+:3	٥		ě.	7768	č	27+43	72	26	2833	4018	960		487
3 CL1 (1+ 750 F518CC NOSCS	661 (11	113		3	77[7	12	0.7+55	531	514	2332	3524	2597		187
51 nny nny 394 066 + 0 25 4.	\$2 6 +	5.2		3	9967	03	07+59	122	125	2713	3379	2500		187
C1 1. 6 + 170 L255CF WCF12	+ 3 -4	7		:	.370	C	£5+2ċ	4	•	\$535	3375	3430		187
5 25 C + 780 F721CC N7C15	15 6 +	4.7			4117	98	20+86	233	235	5697	3143	7272	2719	488
21374 30 4 580 470000 VTC12	87 8 +	.,		•	4165	9	0.5+10	25.0	543	5 3 7 7	2897	2545	2472	488

PASE 02

ROJTE

UNCLASSIFIED

RCJTF	
UYCLASSIFIED	

12-02-85 27357 ROUTE	u.								ō œ	JTE 41.	ROUTE AIND FACTOR +013	3 +313			
LIVE VBR DATA POJYT	COJPJI4ATES		13 UE CR S	4 A 5	DISTAVES LES IDT	AVE S TO TAL	11	TIME LEG TOTAL	FUEL	USE)	FUE:	REMAIN S	FUEL	WIND OR	gs
45 40.3 ABORT, OFF, 4 34	SILOV TOTOGE	300	950	^ +	r,	1163	90	03+15	676	572	4135	2 65 5	2532	2231	488
45 DJVER	51124 JJ121E		637	•	^	55.50	5	14+17	34	33	4152	2 63 2	2553		4.88
47 <u>3</u> 930	51784 JJ	きのいさして	760	<u>۸</u>	10	5765	93	34+29	127	122	4035	2579	2540		887
48 NO.4 ABORT, OFF. 5 3N	51374	372256	760	4	1,5	1527	05	0 \$+22	30	7.2	3055	2423	2526	1090	187
49 KOKSET	5195V 009332	308	700	4 \$	^	0.27	6	0.8+23	9 7	\$7	3939	2378	5539		787
52 40.5 ABORT.OFF. 6 DA 50454 301515	52654 231	315	123	*	33	13.00	95	₩2+£C	200	195	\$233	2133	2500	1754	287
51 40. 6 43021, OFF. 6AR 571R4 37633	(R57184 376	2.2	123	* *	07 17	1352	90	0.8+34	972	239	3453	3453	2532	1519	187
									AVE	24 GE 37	AVERAGE DYLOAD FOR AAR	18 A4R	2	2114	
52 FLORENVES	50164 9363	305	761	٠	ď	:362	10	38+35	94	\$5	3417	3417	4500		205
S3 LEJELDEF FL349	5735C V31C8	£ 25	1.30		•	:367	5	24.35	27	23	337.3	3377	4733		183
54 DESCF43	32456F ¥8FC8	366	130	*	Ç	4616	69	< 7+8 J	733	232	3113	3118	JC72		\$0\$
SS NATTENHEIM	5001V 00632E	325	139	•	ť	98 77	96	18+45	10	;9	3074	3024	893		781
אאא נרטטט	3912ÜU N2507		2 6 6	J +	6	5977	33	c5+60	76	76	2933	2 950	881		487
					15(64	3435S PECETVE?	N 195	E> 1							
BER AAR 1 BEB															
ASORT POINT	45272 Y52334	234				1001		03+10				5 6 2			
194 STEPHFNYILLE	FEEBSC NEEST	73.57	33.7	+23	127	2117	15	55+20		633		2332	2450		797
194 31467 FUEL 2008															
193 GAVDER	48554 JS4344		039	+53	175	27.65	2,	14+09		855		1111	5776		767
198 BINGO FUEL 2329															
19C ST JOHNS	42374 DS2454		220	+23	195	1002	72	50+70		196		702	5443		867
19C BINGO FUEL 2475															

J.1C.4 551F 1ED

14C.7551F 15D

ROJTE

12-72-85 22752

ROUTE 41YD FICTOR +314

ACCOUNT ACCOUNTS OF THE PROPERTY AND THE PROPERTY OF THE PROPE

;					•]	F-15C/3	325131745					101	TOTAL FJEL	. ON. OAD	AY RE	CEIVER	
ALT	UPPER	- 65,5	320	3,00	•	a,	F204	_	11368	#		4ECV4 35774	7.	8EC/3 2	A 4	4FCV4 3 39050	RECVR 4	
CAS		ç		? .			4304	430H TYPE	REFUSE	ō		RECVR 396%	۶ کر د کر	REC/7 5	•			
	¥S.¥	-4631-	MS4-TE4P-DEV +35C		VIY CLIMATOLJGICAL	013616	AL 41110S		OP WORST	1 P 4 0 B	B fàctio							
L14F		DATA 23IWI	-	5003	2) 44 65	14 VE C4 S	445	915TA	ISTAVCE 5 TOTAL L	114F	iF T OT A L	FVEL	USE3	FUE	\$ \$	F JEL F_54	WIVD DR OVLOAD	SS
-	115N10JJK	11		37374	79126C N									25833	2 5 83 9			
N	STARTOTAXIOTAKEOFF	AXIOTA	KEOFF	37374	#9126C N.							2500	(us č	23333	23300			
m	LEVELOF	F POIN	LEVELOFF POINT FL*89	N\$52E	1105c6 N	7 20	٠ •	5	53	ć	¢1.+Uŭ	2112	2113	21133	21155	14389		828
4	BJTLER VORTAC	VORTAC		3815	rociel ng	073	^	22	137	, so	19+17	411	411	20211	20211	7353		536
'n	ST LOUIS VORTAC	S VJRT	y v	38524	F62066 N	07.7	÷	121	328	21 (09+38	7526	2234	17971	17971	1629		538
0	S INDIANAPOLIS	POLIS		39494	K2554C N	972	~	100	527	22 (01+1)	2216	2215	15751	15751	5980		537
^	DAYTON			4.001 W	POCSEL N	141			518	τ.	נויור	060	69.	14251	14771	5831		538
60	DRYER			41224	70128C N	35.0	•	13.)	748	15	21+25	1171	1171	13353	13350	6625		533
0.	JAMESTOWN	2		45114	720620 A	650	•	32.5	K O or	36	01+41	1523	1523	11837	11837	9295		\$39
10	DESCEND			NE 5 27	175577 N	6 20	•	16.5	1035	16	11+57	1081	1991	9855	9886	0252		531
11	LEVELOFF	u,	FL377	42374	181526 N.	032	.1	ç	1364		12+21	13.9	133	9713	3718	1882		\$0\$
15.	AL 3 ANY			45727	18754C N	032	+12	43	1131	80	22+03	84.9	678	5857	8859	8779		905
13	AIR RFFUFLING CTL	UFLING	CTL PT	4527	N 373044	100	+13	33	1164	70	02+13	627	627	844.0	8440	7229		513
16	START AAR	AR 31		42344	768220 N	130	+ 15	25	1150	03	£1+20	32.8	329	\$112	\$112	6786		513
15	9018CF			42214	4 371 904	130	÷	£5	1257	ť	72+2G	•	168	7231	7221	5757		513
15	15 VO.T 493RT.DFF.	DRILDE	F. 2 DW	NS 627	4 373404	956	+15	•	1366		02+25	66	66	25833	7122	0765	18678	501
17	40.2 ABORT.OFF.	ORTADE	F. 3 24	A7527	421680 V	990	+15	2.2	1341	60	75.720	1361	878	58272	7729	7153	19556	501
8	NO.3 ABORT.OFF.	ORTADE	F. 4 ON	1 43234	FC7256 N	1 90	+17	2,2	1416	6	12+43	1056	895	23633	6385	7110	20451	501
19	19 YARMOUTH	×		10757	#56596 N	95.8	+13	7	1:90	60	25+20	1011	400	22632	2775	7330		531
23	23 47.4 A30"T.OFF. S	0.1.0	F. S 24	NL 583	F7055C N	6 50	د ۲۶	,	1491	6	02+52	12	Ç	22647	2877	2203	21368	205

PASE 01

ROJTE

UNCLASSIFIED

-
•
S
v
•
`
J
z
7

93J1=				JTE 414	POUTE ALMO FACEDS	+114		
TRUE 445 DIS CODRDIVATES CRS JAR LES	SISTANCE F ES TOTAL LFG	FIME LFG TOTAL	FUEL 1	USE)	FUE.' 2	45 4 A 1 4	FJEL WIND OR FLOW ONLOAD	0R Ab GS
52 (2+ 050 rs 2751 h2 c77	1566 09	09 03+01	1033	917	21637	3515	58622 7569	85 502
25 cc4 090 87289C N5577	1523 07	07 03+08	785	79,	23821	2814	5569	502
£1 £2+ 150 PCL\$5C N7L57	1541 02	02 93+19	\$ 72	217	20578	25872	5943 23203	33 535
			AVE	AVERAGE DY	34L0A3 F33	2 A4R 1	72002	72
45144 962364 051 +23 21	1567	03 03+13	312	312	29255	25438	8672	\$0\$
C21 22+ 150 P20037 153	1782	14 63+27	1445	3753	13821	21738 1	16657	530
45574 755394 272 +25 153	1935	17 03+66	1765	2077	17055	13651	7152	\$25
251 22+ 720 F15251 N6227	2788	17 04+01	1715	1778	15341	17881	6166	528
4.244 051304 977 +27 57	3145	07 04+08	633	655	14718	17728	9769	224
cc 82+ 720 F87C5C NC527	31 24	94 64+12	138	138	14573	0 60 2 1	1892	667
£≥ £2+ 720 röulsi hilb7	72.97	91+76 70	127	435	14159	15655	2655	667
4824 343764 05° +23 57	72 22	D8 34+24	89.8	933	1 325 1	15752	6899	967
52 82+ 690 r1527C n2887	22.03	03 04+27	327	334	12021	15418	6630	967
49514 ^46794 B70 +28 \$7	2356	72+70 70	٤ 72	751	55877	14657	6626 13619	19 496
25 82+ 120 P90536 86665	25.13	07 94443	A11	751	6 8672	13916	1156 1351	967 81
22+ 220 PU6576 NC167	4 2617 90	12+70 66	8 7	77	24041	13872	72.90	967
\$ 42+ 120 467870 47267)6 UZ72 ES	27+76 96	751	689	24173	13181	7152 13725	25 498
25 22+ 720 F2127C Noto7	2527	92+54	9.70	243	23333	12443	7359 14099	867 66
49534 343514 075 +37 57	28.82	10+50 20	797	733	22533	11732	7332 14479	867 62
\$300% OC100% O26 +27 34	2518	50+50 70	197	432	22125	11270	2007	867
50314 038584 988 +25 47	2558	95 05+19	\$\$\$	513	21571	5 S 8 1 3	6938 15049	267 67
			AVE	AVERAGE JV	JULOAD FOR A48	2 A48 2	14083	င္ဆ
57314 334254 088 +25 21	25.79 03	93 35+13	31.2	31.2	21259	\$8752	7435	765
5000v 035104 388 +25 135	2811 15	15 05428	1750	4 021	19579	21467 1	15769	517
\$000N 0300N 088 +5¢ 193	3094 22	22 05450	2277	6676	17232	18958	77.19	519
			:					

PASE 32

40JTE

JUC. ASSIFIED

٥
w
×
•
-
S
S
•
u
=

12-92-86 22352 ROUTE								0	UTE AT	ROUTE JIYD FACTOR	27 +314			
LINE DATA 27 HT	COORDIVATES	194E C3.S	445 743	5151 LE3	DISTANCE LEG TOTAL	114E	4E I OTAL	f UE L	USES	FUEL 1	REMAIN 5	FUEL	WIND OR OVLOAD	65
14 55 PT	POGSEC ACCES	348	÷ 2÷	198	\$197	23	16+13	2222	2281	15035	15637	5353		516
1d db \$7	FUUUZU ACCUS	980	٤٠	193	1590	22	16+35	2159	2 202	12845	14485	5898		515
45 C4 PT	F00510 ACCOS	038	117	193	35.83	23	85+96	2338	2155	10538	12319	2629		512
47 DESCEND	WIELLO VITOS	8.40	+16	171	7622	17	0.7+15	1072	1725	\$535	13594	1111		513
CENECOFF FLAT	FECTE VITOS	040	+13	۴.	23.28	2	37+19	13.8	133	8333	13455	1332		887
1d cb 67	106516 NGCUS	040	+13		911.	03	22+26	327	311	8071	13145	9929		887
59 AIR RFFUFLING CTL PT	PEUSEC ALLES	080	4	25	1352	96	07+31	1023	266	705	0168	6500		488
1d dp 15	20004 008004	020	=	-	3853	6	n 7+ 31	10	=	7038	9137	9699		88 7
S2 START AAR 33	45576C V5CO2	7 60	=	;	1377	60	27+34	986	317	5752	8820	6555		487
53 LAYDS E110	59384 DD5384	780	=	52	776.	98	27+26	803	456	5053	7836	9229		187
54 VO.1 ABORT, OFF, 2 DV	\$1125CG NOTOS	790	:	•	0761	5	17+2ů	69	%	10352	7 82 5	0089	2275	887
55 HO.2 490RT,OFF, 1 ON	2001N 00367J	740	C1 +	7.	2267	60	07+52	953	953	4437	6.87.3	5279	4336	4.88
S6 YEDVILION	5179V 772384	055	•	m v	4772	6	32+58	640	583	5252	6237	\$538		488
57 VOLT ABORT, OFF, 4 DY	51324 7315R4	780	•	2,5	501;	03	08+91	338	552	8423	7665	6760	3874	687
58 43.4 ABORT, OFF, 5 3N	REVECE VICES	985	er +	٣	4158	00	98419	1004	4U4	5222	5088	6929	3355	687
59 DOVER	5110V 03121E	480	+	ćs	űZZJ	90	08+15	5 79	679	6783	6877	6181		685
SO 40.5 ABORT, OFF, 6 DY	5138V 77154E	766	•	1,	1763	03	01+10	972	253	7859	1111	5135	5 6 2 6	687
51 £33v	51744 33200E	760	*		5767	5	98+19	33	Ç	5679	4133	6333		687
62 KOKSEY	5135V 77239E	760	•	Sé	62 65	03	08+22	295	313	6230	3829	6200		187
53 NO. 6 ABORT,OFF.	3482LO NE7US	123	٠ ج	7,7	7187	90	0.9+27	536	555	2654	7595	5178	2391	187
								N.	AVFRAGE 3	SALDAD F	32 A4R	3	3567	
54 LE/ELOFF FL383	50304 D0408E	123	÷	2	: 335	33	28+37	312	312	5332	5352	74.88		187
65 FLOREWRS	\$0154 97439¢	123	•	53	7927	03	0 3+ 13	597	597	5043	\$ 048	5110		512
66 DESCEND	30334 77530	100	in	33	4395	35	08+37	323	323	4755	4755	5197		513
67 VATTENHEIM	5031V 33532E	130	ب +	5	9577	80	57480	302	302	\$ 577	4453	2353		322

ROJTE

UNCLASSIFIED

					2	JAC. 4 SS 1F 1ED	431							
12-32-85 27352 POJTE									0	UTE 411	ROUTE AIND FACTOR +314	3 +314		
IVE BR DATA POINT	COORDINATES	NATES	TAUE	445	SISTAVCE LET TOTA	AVC E TO TAL	11.	TINE LEG TOTAL	FUEL	u SE 5	FUE_ 7 3 5 4 4 1 4 6	\$ 14 P 3	FJEL	WIND OR
68 HA4N FL099		1914CL N2507	200	•	23	5911	9	0.9+50	213	213	C 52 7	0527	2367	
				•	19061	ABJRY BUSES RECEIVER 1	ice I ve	5. T						
*** 445 1 ***														
ABORT POINT	15627	P07626 NSc27				12,56		\$2+20				7123		
6A PEASE	4305V	78702C NSG87	930	+15	ć,	13.36	95	02+37		387		8899	265	
64 BIVGO FUFL 2594														
69 34VGOR	Pa >>>	F65850 10777	030	• 13	157	14.34	23	57+24		2027		5112	0009	
53 31VG) FUFL 617A														
ŚC SHEAPWATER	10277	FCE196 Na177	750	+23	365	1619	13	0.5+76		4173		5 94 9	2009	
SC BINGO FUEL 6273														
*** 8,48 2 ***														
ABDAT POINT	43514	162314 168234				958 ć		75+36				12131		
3A ST JOHUS	N2 2 2 7	157256 N2127	255	+23	551	2517	32	15+11		3972		8239	1159	
34 91460 FUEL 6972														
*** A48 3 ***														
ABORT POINT	53104	\$1154 975314				1940		17+43				5883		
CA ST MAJSANS	15665	23254 335984	35.6	113	15	7208	93	37+45		10;		\$ 57.9	5383	
7L72 Tand CONIE W7													8	
NNC0-361.03506 67	51100	5110v 221444	990	۳ +	155	11 04	19	03+02		1962		3921	6163	
43 31460 FUEL 4052														

987

789

PASE 34

JYC.4 SSIF1E3

UNCL. 5.5 11 1ED

12-02-86 22377	ROUTE									œ	ROUTE ATVD	40 F12134				
	^			파	£=113p	SNUTIG 7	S N.				101	₹	L ONL'DAD	9.	RECEIVER	
UPPER 107 LOWER 103	CCM	~ ~ ~		n	1304		46 COVV ELL	#	ملا	RECVR .	180	REC4R 2	Q	ECVR 3	RECVR 4 41134	
					B33#	142	2 ; FIIEL 146	٥		8ECVR 40925	e 5 25	REC/3 5	~			
45H-TE4P-DEV +95C	35G+ A	44.4	Y CLIMATOLDGICA	013616	A_ 41910S		93 WORST	T PROS	FACTO	۵r						
LIVE V9R DATA POINT		COORDINATE	144165	TAUE	3 A S	DISTANCE LEG TOTAL		114E	ΙΕ Τ 9Τ Α L	f UEL	USES	FUEL 9	RE4AIN 6	FUEL	WIND OR ONLOAD	89
1 YCCONVELL		37278	r912eC									30533	\$9533			
2 START, TAKI, TAKEOFF	0 F F	37374	797164							3830	1837	26673	26673			
3 LEVELOFF PYINT FL25A	66273	37554	120566	720	er I	51	61	6i	CC+69	1745	1745	5 6 5 2	5 7 6 5 5	11633		697
4 BUTLFR VORTAC		38154	166760	073	٠ ،	52	137	10	09+13	1998	1004	23827	23827	5675		697
S ST LOUIS VORTAC		16598	rožleC	27.0	٠,	151	328	36	19+43	2712	2712	21115	21115	6555		697
6 INDIANAPOLIS		39404	136224	220	∽	199	527	52	01+08	2740	(722	18375	14375	8679		123
7 DAYTON		4114	425286	031		11	513	12	01+20	1223	1223	17152	17152	5381		127
S DRYER		41224	742104	050	•	133	871	17	71+37	1752	1752	15433	15473	5333		¥97
PARESTOWN		42114	723374	950	•	1:5	303	20	11+55	1932	1932	13453	13458	6330		7.15
13 DESCEND		42134	973484	640	*	7.	3.07	75	01+57	13.9	189	13279	13279	6300		195
11 LEVELOFF	トレフィル	42127	72784C	0\$0	۳ +	~	312	Į,	01+53	15	15	13254	13254	900		657
12 AIR REFUELING CTL	11 21	46227	375784	030	~	(tt	1312	13	32+11	1294	1294	11977	11973	5372		657
13 STAPT AAR 71		45857	775526	031	ţ	\$	1337	03	32+14	34.0	343	11633	11633	6375		657
14 AL3ANY		15727	787820	280	=	ęc S	1130	5	02+26	1259	1 263	19373	10370	8729		657
15 40.1 439RT.OFF.	20 0	N2727	173294	190	• 13	3.5	1144	26	02+23	159	159	32785	11501	5300	22574	797
16 40.2 A92RIJOFF	¥ 24	42224	771954	100	;;	17\$	1252	7,	02+42	1500	1233	31135	3072	5532	23813	557
17 30STO4		42214	071994	101	+15	•	1256	6	32+43	23	43	31123	3 92 4	0969		797
18 40.3 ABORT, OFF.	r.C 7	12023	958504	950	+15	134	1360	14	02+57	1542	1297	29535	1691	5803	25158	957
19 NO.4 ABORT, OFF.	۸6 ۷	A1787	05534W	057	+13	136	1456	71	03+11	1558	1311	2 302 3	6316	6725	59792	456
23 YARWOUTH		A0757	PSUSSL P0787	650	5.	٤;	1:89	03	93+14	34.5	182	27633	5015	0665		456

PASE 01

ROJTE

OBIJISSVTJKE

12-32-86 2237? ROUTE								8	ROUTE 4140	VD FACTOR	110+ 50			
LIVE DATA POINT	CODRAFACTES	739 <u>5</u>	143	SISTANCE LES TOTA	AVS E TO TAL	LES T	*F TOTAL	FUEL 1	15E3	FUE .	\$ 4 A I Y	FJEL FLOW	WIYD OR	6S
21 40.5 ABORT.OFF. 6 DV	75c75C 11275	650	CŽ +	83	1572	=	03+25	1190	1012	26493	5023	6511	27762	457
22 HALIFAX	872890 NSS77	050	+22	Š	1522	٥,	93+52	2113	609	25787	2177	6582		457
23 NO. 6 ASORT,OFF.	45154 75214A	051	+23	5.5	1578	70,	03+12	761	683	56672	32745	6526	29048	459
				•				AVE	AVERAGE SYLSAS		F33 AAR	-	25504	
24 -576LOFF FL255	PCICSL Nicsy	150	;	~	1581	દ	07+£C	9 8	92	24821	\$ 2 69 3	5700		459
25 SYDUEY	FEGCSC NoC97	1 50	+24	רכו	1731	13	03+53	1771	1537	234:7	31153	7205		797
26 CHECK PT	40530 VS6394	270	+25	153	1734	23	04+13	2158	2328	21259	2 8 8 2 5	2090		465
27 ST JOHNS	P15256 N6227	720	£ 2.3	153	2297	23	12+76	2136	2274	19123	15551	1565		195
28 C< PT	Fourso Aures	2.70	* 2*	113	9026	15	37476	1647	1757	17475	26172	6853		463
29 DESCEND	72757L NGL67	05.8	42+	178	7682	23	05+11	2772	5 604	15029	22155	25.25		760
30 LEVELOFF FL240	707570 N2Co7	171	÷23	~	2190	5	n 5+12	15	15	15914	\$2173	006		452
31 C< PT	PCUSSC NCIES	1.70	+ 23	,	3:16	70	35+15	151	353	14653	21875	6233		725
32 AIP REFUELING CTL PT	FELLTE ACECT	173	^ * *	*	> , 90	t	35+26	763	1 004	13733	20831	6278		455
33 START AAR 72	49564 742354	97.5	+57	\$5	2514	03	0.5+20	319	332	13331	50459	6228		\$\$7
34 40.1 ABORT, OFF, 2 94	P17C7L N7567	8 2 0	427	2	0056	13	c £ + \$ 6	0	1037	31598	19432	6222	19206	455
35 RP PT	700L7C AULCS	9 2 0	+25	,,	3517	70	12+63	402	351	31175	1 20 6 1	5891		\$\$7
36 VO.2 43041.0ff, 3 7V	P77026 ALLES	880	+25	Ç	2566	07	05+50	73.8	671	30433	18400	6812	17679	657
37 40.3 ABORTEOFF, 4 94	27798C VIEUS	089	+25	25	2741	12	94+99	1132	1025	59395	17374	6792	16155	450
38 CK PT	reasid vacas	0+6	+ 25	63	2810	ć	06+90	1.02.7	170	23230	16433	6699		450
39 VO.4 ABORT, OFF, 5 DH	\$1531C AGCG5	0.5.8	7,7	•	> 5.16	0	26+10	7.8	2	15582	15351	5889	14665	452
43 40.5 ABORTADFF. 6 OV	80024 33254#	860	÷2;	25	1086	13	26+27	1008	1003	27123	15358	6655	13164	452
41 NO. 6 ABORT,OFF.	KYSCEG VICES	680	+ 23	2.5	5065	10	08+90	1099	966	25033	26033	9099	11671	452
								AVE	AVERAGE 3	SVLOAS F	FOR AAR	~	15423	
42 LEVFLOFF FL255	\$5050 VICOS	1 60	+55	~	6962	10	06+31	9.5	95	25938	≥ 5 93 €	5700		755
23	#60050 NG05	1 60	+55	ž	1103	70	06+35	501	\$01	28437	25437	6832		7.60

ROJTE

UVCLASSIFIED

						5	J 4 CL A S S I F 1 E D	031								
-32-86 22372 4	ROJTE									o ar	UTF 41	10 FR.S.F	ROUTE 4140 FACTOR +311			
E DATA POJNT	J	COJRDIVATES	84168	TAUS CRS	425) 1 S T LES	DISTANCE ES TOTAL	714E	4E TOTAL	f VEL	USES 5	FUEL	4 E 4 A I 4	FUEL	WIND OR ONLOAD	
CK PI	v) NGCUS	<i>r</i> v05c0	038	+55	153	31 26	52	P 7+93	2360	2867	22577	52525	9529		
RP PT	•	י אטנטג	アレひいさひ	99.8	t2+	123	13 90	52	17+25	2775	2778	19799	19799	6588		-
T4 > 2	\$. ALCES	715002	933	+17	193	\$5 32	25	15+20	2727	2727	17072	17071	5416		-
14 da .	~	NucGs	roccic	058	+1;	153	\$778	55	28+17	269.8	2683	14334	14384	6328		-
RP PT	v.	NOCUS	r00800	080	+12	7.7	3852	10	22+80	1756	1055	13328	13328	6273		-
LANDS FND	v	Nacus	785 SUU	780	=	۲	1761	č	P 3+ 37	1245	1245	12033	12053	5225		
YESVILTO"	•	, NOCES	112384	346		1?5	4963	17	0.8+55	1711	1711	10372	10372	5167		_
SOVER	v	1104	331216	786	°.	15.3	:210	23	19+15	5003	2037	5 35 3	8353	4324		-
. E98u	~	, NäCIS	112 GBF	760	~ +	25	7727	03	00+13	337	333	8033	8033	9009		•
. KOKSEY	U\	51764	30 £ 5 C G	760	÷	3.5	6927	03	22+00	328	328	27.75	77.35	2965		•
FLORENNES	v.	5015v	376392	123	*	33	:361	5	71 +0 C	1213	1213	643	2679	\$965		-
DESCEND	•	, אזנכּ	J2513E	170	i^	12	2255	33	99+42	79.0	77)	5732	5732	5925		-
NATTEMHEIM	v	59314	378375	100	* +	13	5533	05	77+60	97	57	5655	9 59 5	1533		•
HAHN FL	FL000 4	12567	A3716E	2 60	\r	53	7977	č	87+00	105	106	5550	\$550	1551		-
						15061	BASES RE	RECFIVER	#- &X							
* 44R 1 ***																
ASORT POINT	7	A\$ 727	373294				11 44		02+28				13211			
GPIFFIS	7	43154	275244	291	+12	ç	12 32	M	02+41		1111		0 0 6	5333		-
SINGN FUFL 3941																
PEASE	7	, 15(27	P07626	8 20	+15	113	1263	15	32+44		1391		8823	5385		-
BINGO FUEL 4141																
: 84460R	7	. 4877	44484 758504	950	+13	237	1381	31	05+2G		2865		7345	2547		-
SIVGO FUEL 5616																
															,	
						Š	UNC.ASSIFIED	169					ROJTE		PASE	

C97

Ξ	
MCLASS	

ROJTE

		" ~			SS			531	\$67	567	967	267	767	265	687	647	687	687	767	767	767	287	487	187	
	RECEIVER	RECVR 4			WIND OR												13062		13846	14627		15402	16192	15959	15016
		RECVR 3 49927			FJEL FLOW			13333	5002	6756	8679	6359	1299	6132	6108	5353	6361	7533	7557	7523	7156	7153	7125	8569	-
51 + 512	L ONLOAD SY	٥.	٠,		L' REWAIN	20213	17985	15955	14938	12317	0738	7876	7176	8636	8239	7935	7138	1047	9326	5573	5332	8 6 2 7	\$ (0.3	rt202	FJ4 AAR
AIND FACTOR	TOTAL FJEL	REC/3 3	REC/R 4		FUE.	29200	17035	15955	14953	12337	9734	7876	7,76	\$535	6828	1935	29233	2002	19218	1424.)	17913	17313	16353	15431	SVLOAS F
ROUTE 41	10	50923	49753 49753		.38ť. 6		2215	2 n2 J	1027	2 601	5652	352	5	83.8	397	£CF	793	16	869	7*1	175	204	79.0	777	AVERAGE 3
œ		8EC 50	REC 49	a C	fuel		2215	202	1027	2601	5888	52	13	43.5	265	303	798	113	869	978	322	€09	95.9	626	≱l
	PYLOUS FOAM	\		D3 FACTO	4E TOTAL			აი•ი	20+18	17+60	01+05	21117	11+19	01+15	01+33	71+23	91+31	01+12	01+39	91+47	21+53	01+55	n2+03	02+11	
	PYLO	4	. 541	ST PROS	114E			Ę	ĘĹ	23	7,	u5	10	Ĉ.	č	03	ů,	ני	04	°C	Ş0	90	80	98	
	73 4 3 2 JUL 5 JUCT	4C COVVELL	BOOM IYDE REFUELING	TSACW CO	DISTANCE ES IDTAL			79	137	* 2.8	255	275	655	518	550	575	672	372	\$08	970	¥ 0 ¥	335	1990	1365	
	2437		# Tro	41 Kb S	215			;	7.3	191	190	(;	•	58	32	2,5	55	•	\$	2.5	23	Ç,	55	55	
	RF - 4C	F20E	900		245			~	٠,		#* 1	•	_	C +	C +	-	•	+	+	` . ^	*	+	+	÷	
		,		CL 1 ** TOL3 GIC 4_	13 UE CR S			726	673	7 20	220	03.4	90	092	050	1 50	051	25،	059	070	020	6 20	080	081	
	ir.				ORDINATES	10716W	191166	rbssec	Pu 25cC	762U6U	78522W	7.5564	7255EC	7727áC	L12780	733264	332184	192101	765Ca0	170364	F20626	278114	27976	375174	
	પ			41.4	CO3R91	1777	37374	37554	19162	38524	Najol	39554	NC 562	V1007	V1 207	12867	41174	41224	14717	A 7C27	42114	42184	Nt:227	42374	
21008	^	300 285 280 285 275		35€4 ∀3 €									64273		CTL PT		۶. ک		ŏ	ትር 7		NC S		5 ABORTOFF. EARLESTN 375174	•
20710		233 233 234 234 235		JSV+ TE4¤-D£V +JSC	DATA POINT	17 3NI	STARTITAXIITAKENFF	LEVFLOFF POINT FL290	SJILER VOPTAC	ST LOUIS VORTAC	6 INDIAMAPOLIS	47.	.)FF	N.C	AIF REFUELING	1 AAR 31	VO. 1 ABORT, OFF.	~	14 HO.2 ARORT, OFF. 3	15 NO.3 ABORTADEE	NHCTS	17 NO.4 ABORT, OFF,	18 40.5 480RT,OFF, 6 OK	5 ABORT.	• • • • • • • • • • • • • • • • • • • •
13-22-86	fLT LEVE	ALT JOPER LOWER TAS	CAS	•	1 1 1 E V B R	1 MCCOANETE	2 START	3 LEVFL	4 3316	S ST LO	4 1 MP 1 4	7 RESCEMB	S EVFLOFF	9 DAYTON	10 415	11 STAPT ARR	12 40.1	13 DRYER	14 40.2	15 MD. 3	15 JAMESTOWN	17 ND.4	18 40.5	19 40.	****

UNC. % SSIFIED

UNCLASSIFIED

13-72-85 71472 ROJIE								49.	11E 414	ADJIE AIND FACTOR	13 +312			
IVE SR DATA POINT	S 3 1 W 1 C 3 C 3	13 UE C3 S	4 A 3	SISTANCE LES TOT	ÅL	1195 LEG T	MF T 01 4 L	FUEL 1	USE)	FUEL"	REMAIN 5	FJEL FLOW	WIND OR	68
20 LEVELOFF FL285	FE1526 N2827	280	+12	m	136°	5	02112	150	153	15231	20059	18000		187
21 ALBANY	787520 AS727	082	+12	53	1131	50	12+27	876	756	14435	19036	7532		267
NOISCE 22	700126 NI227	130	+13	125	1357	15	32+36	1730	1 553	12735	17253	7353		867
23 YARMOJIH	r5055C N6787	950	+15	233	1490	53	3494	3182	3325	3415	13918	7330		067
24 HALIFAX	4255C V2222	950	•23	133	1523	92	03+50	1790	1 803	7015	12110	9699		067
25 DESCEMD	48130 VS1384	150	+23	Š	1709	13	03+39	1074	1134	5,4,5	10976	2759		267
25 LEVELOFF FL287	4557V 351344	35.2	15:	*	1711	10	23+31	10	t	5433	13955	1230		4.9.7
27 SYDIEY	recese neuss	952	+2:	1,	1782	60	13+43	178	917	1365	1 0 04 9	7259		187
28 AIR REFUELING CTL PT	45184 357234	27.2	+25	ç	1311	70	77 + 2 U	351	363	5613	9636	6223		485
29 STADT AAR 92	48284 358484	270	+25	3.5	1836	č	73+£ O	301	305	5339	9380	6120		485
37 YO.1 ABORT, OFF, 2 74	45434 357184	37.3	+ 25	\$5	1061	93	93+50	171	F13	しいさいろ	9552	5135	15682	485
31 C4ECK PT	PUESSE NCSS5	710	+54	*	1935	š	n 3+57	527	453	13571	3135	7887		4.85
32 VD.2 ARAPT.DFF. 3 D'	162556 VC(12	7 20	* 2.7		1366	3,	56+50	827	333	19123	7751	7547	15685	887
33 NO.3 ABORT.OFF. 4 24	42135C V2172	378	+54	4.5	2331	90	04+11	080	193	18274	6 95 2	7511	15684	4.88
34 ST JOHNS	M18280 N6227	470	+27	25	2788	٠,	P1+10	334	202	17373	6250	7149		4.88
35 43.4 ABORT, 3 FF. 5 34	FC525C N1845	573	+27	m	3336	5	61+70	197	6	17253	5157	7133	15684	787
36 NO.5 ARORT.OFF. 6 24	recisc ness	720	+27	\$\$	2160	¥ c	12+76	936	162	16327	5359	7139	15646	787
37 CK PT	4300V 95000	. 526	429	V	2507	90	11+70	673	225	15654	5 6 2 7	6962		7.87
38 NO. 6 ASOPT.OFF. EAR	798670 N9CS7 8	05.8	+24	17	7556	95	25+70	776	202	15413	20200	5971	15612	4.81
								AVE.	AVERAGE 3	JULOAD F	F34 A1R	2	15665	
39 LEVELOFF FL285	45263C NCC83	950	+23	₩.	2352	5	34+36	150	153	15253	\$3053	14333		481
40 DESCEMB	19597C N5787	950	+23	רנו	2337	7;	05+70	1555	1707	13735	15343	7531		786
41 LEVELOFF "L299	125510 N51E7	170	+ 7.3	₩	2340	6	15+70	1.0	t,	13625	18333	1200		481
42 C4 PT	700576 AC167	07.1	+53	7.7	2:17	Ç	16+56	1065	1145	12627	17138	7156		4.41
43 AIR REFUELING STL PT	49154 344264	. 073	22+	23	しっささ	03	7G+5C	306	334	12323	16854	7157		787

PASE 02

ROJIE

JACLASSIFIED

															1
13-32-85 01432 p.JT	<u></u>								200	117 31	ROUTE ATMO FACTOR	31 + 312			
INE 19R DATA POINT	RC03	CODRDIVATES	13 U E CR S	445	DISTANCE LES TOT	AL	714E	Ϊ T 0 T A L	f UFL	USES	FUE.	45 4 A I B	FUEL	WIND OR	65
44 STAPT AAR 93	N\$ 667	16787C NE	27.0	+27	\$5	5972	ŋ3	r5+37	323	357	11935	16791	7140		787
45 40.1 ABORT.OFF. 2 0H	19867 F	48527C N9	7 26	+27	o;	2513	90	05+13	629	685	2 023 3	15811	9269	7788	787
46 YD.2 ABORT, DFF. 3 DY	76367 7	14 741254	\$ 2ú	12+	"	2561	35	75+19	27.3	685	19457	15125	7556	3626	727
47 VD.3 490RT.0FF. 4 NV	18567 N	LETCAC VE	910	+27	۳ .•	eu S č	90	15+25	26.3	673	18714	14453	7556	8403	787
48 RP PT	VOCES	ruccyc no	2.26	*2\$	•	2518	5	92+56	14.0	124	1 857:	14326	7636		787
49 NO.4 ABORT.OFF. 5 NY	VI SOTIV	765 ã \$ U NI	088	+2\$	33	2555	96	05+31	587	54.1	17087	13785	7338	8194	627
50 40.5 ABDRT. OFF. 5 3V	4 57324	75728C NO	038	+ 25	* *	37.15	95	15+37	2115	675	17272	13139	7159	7 958	627
51 VD. 5 A978T.OFF. EAR	AR 52214	14 735 501	249	+25	a^ •*	2755	90	25+43	716	959	16535	23233	2163	3772	623
									AVERAGE		DVL DAD F	JP AAR	3	8297	
52 LEVELOFF FL295		452880 VICOS	0,0	+25	m	2756	10	77+56	150	153	16435	20050	18090		479
53 CK PT	אהכרצ	10031C NO	060	\$2+	\$3	11 = 2	20	15+51	762	854	15612	19195	7535		787
\$4 DESCE49	45rCS	4 232392	820	+2%	22	4066	7	26+93	1385	1483	14227	17713	2415		786
SS LEVELOFF FL283	3 53324	24 332244	0.0	+23	~	1100	93	76+90	1.0	t	14217	17733	1200		187
56	10065	רטטטנט אנ	0 0 0	+24	2.6	7008	12	61.490	1301	1377	12915	15325	7122		187
57 AIR RFFUELING CTL PT	- 1	Posect NLLCS	038	ć2 4	^	1311	2	76+17	\$	\$ ¢	12823	15243	4375		475
SE START AAR 34	\$ 331 V	14 029104	980	2 2+	rc ic	3336	93	26+23	338	352	12433	15873	8969		475
59 NO.1 ABORT, OFF, 2 0M	4 5032V	125260 VS	8,0	+52	23	1367	3	92+90	273	685	Crzuz	15199	9969	8352	475
60 40.2 ABOQT.OFF. 3 01.	4 Sp014	17 02643	6\$0	+21	67	31 30	90	96+32	1 72	229	19457	14511	755è	8350	475
41 ND_3 4904T, 0 ff, 4 34	אולטט י	41725C VI	0 6 0	121	23	3177	35	95+90	243	463	1871:	13866	7556	8358	475
52 C< PT	ะกามเ	00 52C V	1 60	C2+	73	4127	ũ	36+41	316	282	18324	13564	7534		475
53 VO.4 ABORTADEE, 5 PM	עוכרפ י	14 92418J	8 80	C2+	,	72 62	ž	77+96	410	383	17933	13131	7235	9349	7.19
54 VD_S 490RT.0FF. 6 09	N2Cu5 #	1508 cC N2	980	+13	۲,	1228	ÛŜ	05+50	202	645	17234	12536	7159	8331	7.76
65 vo. 6 ABORT, OFF. EAR	AR SONZY	N 721524	080	+13	13	3318	90	95.90	702	£79	16533	20230	7159	8307	476
									AVERAGE		JYLOA) FOR AAR	19 AAR	,	4341	
66 LEVELOFF FL285		50314 921474	060	+13	•	1621	3	25+90	150	153	16433	20052	14330		415

ROJTE

JHC.A SSIFIED

į

24C. 4 SS1F 1FD

160
\$118
אנו ע
27

ARTE PASES RECEIVER 1

PAGF 04

ROJTE

×	89	187	477	478	478	925	719	127	123	17,	227	227	225	215	715	127	471	127	127	715	715	715		472
	WIND DR											4083	3467				2855	2234		1616		1016	2545	
	FJEL	7535	7269	6890	2564	2759	6484	1200	5255	5164	6150	6128	512R	6129	2209	\$05 R	6137	6353	6320	9009	6006	5983	~	0609
33 +312		18970	16038	13259	12195	19952	10779	10759	5:76	9332	9127	5310	7532	7431	7033	6775	5115	2914	5 61 3	5125	1697	5350	FOR AAR	5350
7.45.7	FUEL	15425	12675	10055	9937	7887	1491	7651	6332	6273	1 209	9326	\$557	8435	9121	7838	77:7	63:3	6539	6115	\$(73	5353	34L043 F	5 75 3
SCISAS GNIF SINGS	JSES	103)	2932	2777	1053	1244	173	10	1324	113	202	817	R33	101	313	313	5)	108	101	887	435	345	AVERAGE 3	Ç
ř	FUEL	1004	2259	2559	1016	1103	166	1.0	1279	110	201	410	\$17	132	711	313	51	817	103	067	077	34.9	AVE	10
	'E TOTAL	07+135	97+39	25+20	90+60	28.15	08+17	05+18	25+31	38+32	7£+6G	27+60	03+53	68+51	08+54	15+80	29+58	32+45	00+00	99+14	30+18	ćc+cu		2 0 0 0
160	1146	66	7.2	72	ţ	Ξ	6	10	13	6	6	٥,	60	5	5	£0	5	8	£	0.5	36	ŏ		8
94C_4 SS IF 1E0	FOTAL	1390	35.93	\$2.28	5353	776.	1968	1961	:369	:363	4738	6118	1121	4210	77 63	c5 č 7	7233	4337	1361	66.33	1:35	5955		797;
	DISTANCE LES FOLI	53	101	108	7.7	16	13	₩	ננו	•	1,	53	**	m	5 2	35	10	53	,,	Ç	\$\$	8,		-
	445	+13	+17	4	÷	r.	••	+13	.13	•	•	+ &	*	<u>۰</u>		•	÷	**	\$	÷ \$	•	*		•
	14 U <u>:</u> C3 S	0 0	ç.	038	033	785	956	750	750	25.7	986	034	036	180	760	760	123	123	124	199	130	27.0		240
	COORNIVATES	receit reces	\$0000 01800A	400010 NOCUS	street value	4888CL 18CCS	\$0144 935234	\$1500 AS105	PESELL ASSES	\$1374 372334	\$1500 victs	\$135V A71334	5119V 331A3E	311EV 331121E	\$105K 335035	3055QQ VACTR	51334 JJ246E	SOSEA DISOS	30154 J1439E	3688LO V9008	50314 77532E	49574 3371SE		49574 33716
X 13-02-86 91432 ROUTE	LIVE DATA POINT	57 RP PT	18 CK PT	69 RP PT	7) RP PT	71 LANDS E45	72 DESCEND	73 LEVELOFF FL789	74 AIR REFUELING CTL PT	75 YEDVILTO"	76 START AAR 35	77 NO.1 ABORT.OFF. 2 DR	78 VD.2 ASDRT, DFF, 3 DV	79 DOVED	N6v3 V8	81 <><587	82 VO. 7 A 90RT, OFF, 4 OV	93 VO.4 ABORT, OFF, 5 OV	S4 FLORENVES	PS NO.5 490RT.OFF. 6 ON	85 VATTENHEIM	57 43. 5 43391,0FF. EAR 43574		AS HAHN

12.	12-32-86 22412 ROUTS				5				č	ROUTE 41'ND	VD FACEDA	51 (+ 50			∢
	6		과	151-1	2x 37 0 WT;	VI; TOOCLT	נו ז			13	TOTAL FJEL	L ONLOAD	₽¥	RECEIVER	
ALT	UPPER 3	•	n	F304 T3		YYELL	PORCE	_	14364	R 1 64	REC4R :	•	RECVR 3 14343	RECVR 4 14325	
CAS	V			4004	ĭ	3E F 11E1	ING ING		RECVR 14314	۹ ۶ 14	REC43	3 0			
	SC+ V3C-PH-15K	MAY CLIMATOLDGICAL	019616	AL JINDS	SGP	O) WORST	ST PROS	09 FACT3	۰						
L 1 V.F.	DATA POINT	COSASIVATES	78.UF C3.S	445	315TAVC	AVCE IJTAL	114E	4€ TOTAL	FUEL	USF)	F135.	REMAIN 5	FJEL	WIND OR	SS
-	773866338	37374 377164									13733	13732			
~	STARL/TAXI/TAKEOFF	\$7574 JP7164							ć & \$	\$92	13143	13140			
M	LEVELDEF POINT FL300	\$748N 395304	7.20	~	\$. 5.	33	0	5v+0u	531	631	12519	12539	7502		518
7	BUTLER VORTAC	28164 J94294	07.3	ش ا	će	137	12	00+17	\$92	\$65	11917	11917	3036		\$0\$
~	ST LOUIS VORTAC	38524 393294	2 2 0	٠	151	324	5	00+40	1119	1113	10773	13724	2971		505
₩.	IVDIAVAPOLIS	19:34 JR5224	270	~	122	527	><	21+34	1120	1125	6596	6596	2483		505
7	DAYTON	772786 NILO7	081	C •		518	=	91+15	\$18	\$2\$	9156	9156	2832		508
æ	DRYER	101280 N2c17	050	•	13.3	572	15	91+30	715	713	6:58	6778	2786		\$0\$
0	JAMESTOWN	PLUCIC ALLEY	050	•	145	\$93	12	11.47	275	773	7574	7636	2735		\$10
5	13 AL3A4Y	18754C A5767	620	٠ •	239	1131	ç. 8.	22+15	1252	1252	6115	2179	9292		503
:	805TOV	F60126 N1227	190	•13	125	1257	15	02+30	8 79	679	5754	2754	2527		808
12	YARMOUTH	+5399C No7E7	950	+15	233	ύουι	€1 €0	92+50	1199	1193	5557	4 55 5	257R		200
	HALIFAX	+7289C A5577	650	£5	133	1523	15	21+80	57.1	671	3824	7645	2532		531
7.	SYDNEY	FECUSC NOCS5	150	+23	153	1787	13	23+33	785	785	3139	3139	2672		503
15	START AAR 1	4616V 359314	2 20	+25	53	1865	03	93+34	116	115	£ 662	2 69 3	2486		501
15	15 40.1 ABORT.OFF. 2 0H	F22450 N1897	072	+52	53	1855	٤,	₹7+€6	176	543	13732	2750	2471	10982	501
17	40.2 ABORT, OFF, 3 1N	72125C A5555	073	+5\$	ני	1305	, 0	57+50	397	543	13425	2513	3122	11222	501
	CHECK PT	708950 NESSY	720	+57	33	1935	č	93+52	182	142	13243	2358	3129		501
19	19 NO.3 ABORT, OFF, 4 ON	\$10950 N8597	7 20	+57	۲2	1955	۲۵	75+80	120	76	13123	2274	3130	11458	503
23	23 NO.4 ABORT, OFF, 5 ON	705750 NJ127	075	+54	ç	5002	90	66+50	30.5	ci2	12918	2035	3192	11697	503

ROJTE

JNC. N SSIFIED

THE PARTY OF THE P

311179 21722 98-20-21				1		į		7						
								ž	17 310	KOUIE 4130 FACTOR	32 +313			
LINF V33 DATA > 214T	CODROSVAFES	13 UE C3 S	415	215	315 T/VCF	1146 1.E3 T9	46 T 0T AL	FUEL 1	0.5E.)	ru: 1	45 4 A I V	FJEL F13H	WIND OR	S
21 VO.S ABORT, OFF, 6 DN	#6235 N2247	920	+27	sı	\$5 C &	9	96+70	302	235	12515	1777	3271	11935	503
27 ST JOHNS	r15250 No227	970	+27	#1	38 C č	70	04+19	100	157	12317	1640	3362		503
23 NO. 6 A90RT,OFF.	F22250 K7827	073	+57	13	21.05	95	21+70	102	2	12215	13732	3060	12173	200
								AVE	AVERAGE	2 CACAYS F	F32 A18		11578	
24 C< PT	700CSC NCL87	720	+23	133	2024	12	72+7C	612	634	116) 2	13098	3118		500
25 CK PT	700570 Ku167	950	+28	213	24:72	\$2	67+70	1219	1287	10354	11811	3052		167
25 RP PT	700C70 NUCUS	073	+27	۲۲,	2518	72	55+13	1147	1189	9217	10622	2960		500
27 C< PT	PUUSEL NLLOS	088	÷3	123	1185	23	25+36	1042	1113	1135	£ (5 e	2859		767
2.8	FOULSC ALCOS	293	+36+	101	3706	\$2	65+50	1052	1085	7.03.3	5417	2797		967
29 C< PT	FUUSCU NUUGS	08.8	+25	193	1997	72	1 < +90	1038	1067	5 :05	7.35.0	2724		167
30 RP PT	#0662 Noods	088	+33	193	UCžz	72	27+90	1017	1 04 \$	502.8	5337	2653		167
31 CK PT	PUDSIC NULGS	033	•13	193	\$533	%	11+71	1205	1032	¿<07	5275	2513		5 x 7
32 qp PT	700CIL PUCCS	983	-	153	3778	24	27+35	245	ton	3037	4527	5554		887
33 RP PT	4008Cu NGCGS	6 8 0	+12	2.2	3853	90	77+2G	981	\$6\$	7651	3872	2528		487
34 STABT ARP 2	775500 NZLG5	750	=		2034	5	75+20	967	217	3566	3453	2652		987
35 LAVDS END	500 vaccs	035	••	1,	7768	16	22+55	07	2	2135	3433	2539		485
\$5 VD.1 4904T,OFF, ? DV	1777CC A72CS	750	.13	w.	3332	üŞ	13+11	186	173	5332	3213	24.78	3382	7.86
37 110.2 ABORT, OFF, 3 34	F518CC N77CS	055	+	%	4.730	69	08+95	752	572	5138	2970	25.8,3	3127	786
38 YEDVILTON	51904 972384	365	•	۲,	4370	545.	03+11	539	202	6 607	2758	2559		987
39 NO.3 ABORT,OFF, 4 3N	SIDIN DOSESA	234	•	•	:378	91	34.12	3.5	33	1687	2731	2533	2885	487
43 40.4 ABORT,OFF, 5 14	\$1354 331394	780	+ a,	**	4125	٦,	18+13	252	(>2	6887	1672	2563	2628	187
41 40.5 4BORT, DFF, 6 3N	3100CC VAL15	085	•	5	7215	9	72+80	6 7 2	547	4390	2 2 5 1	2832	2379	187
42 DOVER	\$11fv 93121E	0\$6	<u>۰</u>	57	4220	96	08+33	236	125	4154	5 05 4	2529		187
43 40. 6 A309T.0FF.	\$1104 JJ1245	760	÷ ,	V.	25 25	CO	CŽ+ŠC	e 0	~	41:5	4145	24.30	2133	187
••••••••••••								AVE.	R4 SE 2	AVERAGE DYLDAD FOR AAR	JE AAR	~	2755	

PASE 02

ROJTE

UNCLASSIFIED

URCL . SSIF 1ED

1864 SEPTIMISTAL STRUCTURES SECURISHED SECURES BESIDES SECURISH SECURISH SECURISH

Ļ	COORD	COORDIVATES	77 UE C9 S	445	DISTANCE LES TOTA	AVC E TO TAL	7.1	TIME LES TOTAL	fUEL 1	95E)	f UE.	FUEL REMAIN	FUEL	WIND OR	89
	517RV	5178V 00200E	7 c0	+ 7	23	5723	93	n8+33	113	113	4028	¥ 20 7	2529		187
	51761	5136V 03239E	760	4 0	5 2	4270	93	98+80	126	125	3932	3 9 3 2	2520		487
	5015v	5015V 73439E	123	•	ćć	:362	:	27+8C	127	1.27	3431	1575	1025		587
	V¥ C05	5031V 33615E	110	*	53	5277	98	98+55	318	318	3113	3113	2478		127
	\$001A	5021V 00532E	100	.	11	98 77	60	0.8+53	36	35	3077	3077	854		566
rrass		49574 33715E	240	•	2	5955	0	50+6u	44	46	2933	2937	\$59		183
				_	15C6A	ABD2T B1555 RECEIVER 1	EC E 1 V	E 1							
_	11.97	72583C N1.97				1855		27+£U				2750			
	48334	r\$\$\$\$C N\$\$\$7	35.6	1,23	122	1377	15	93+57		61;		2135	5443		433
040															
	48564	7835C N9587	5 70	+53	112	596 2	56	80+70		1033		1717	2431		567
8070															
	N2 127	PS 7256 N2147	1 20	+23	23.8	2303	53	11+71		1157		1593	2427		867
229															
_	7720.5	2377C N32CS				248		10.4				6102			
	\$025V	\$0554 DE2004	280	•	13	2062	3	03+01		53		1957	9772		£77
1518															
	51134	51124 J31444	950	*	123	1174	15	38+15		603		1437	2612		987
5902															
					25	JNCLASSIFIED	160					ROJTE		PASE	PASE 03

ROUTE JIND FACTOR +313

UNCLASSIFIED

12-32-86 22412 ROUTE

DATA POINT

154 STEPHENVILLE

THICH THOSY

... AAR 1 450

48 NATTENHEIW

14 HWH 67

47 DESCEND

45 FLORENVES

45 KOKSEY

1663 77

8072

169 BIVGO FUEL

158 SAVDER

15C ST JOHVS

2622

15C 31469 FUEL

*** AAR 2 ***

354 BINGD FUEL 1518

36A ST MANGAYS

ASORT POINT

353 305C043E-034N

				à	UVC.4 SSIFIED	eg eg								
12-02-86 2343Z ROUTE	w							8	UTE 41	ROUTE AIND FACTOR	28 +313			
FLT I EVE! 1		1	6-150.0	3x510146	JVCC				10	OTAL FUEL	LONLOAD	¥	RECEIVER	
Jepter 3	,	•	FROM		773740334			RECVR		REC13 3	_	4ECVR 3	4ECV3 4	
			Ը	4 A H		20004	<i>ح</i> د		ā,			× × ×	< 371.	
CAS			930	4 TYPE	ADOM TYPE BEFUELING	٤٥		41149	۲ م د م	41180	n			
154-TEMP-DEV +35C	C MAY CLIMATOLDGICAL- JIMDS	טרטפוכ	A 4T		es unes	40	YORST PROB FACTOR	œ						
LIVE NBR DATA POINT	COSRSIVATES	12UE CR S	445	DISTANCE LES TOTA	ڌ	T 1 %F	16 TOTAL	FUEL	JSES	FUEL	4 3 4 4 3 4	FJEL FLOW	WIND OR	S
1 YCCONNELL	37374 707162									25833	25810			
2 STAPTATATATAKEOFF	32374 707164							2500	\$ 50)	23333	23333			
3 LEVELOFF POINT FL379	792966 Ne328	720	m m	:,	7,1	20	20+00	1800	1892	21533	21533	16615		518
4 BUTLER VORTAC	3316V 394294	576	m I	2,	127	=	00+13	1315	1315	20145	20185	6921		\$0\$
S ST LOUIS VORTAC	POZCEC NZSSE	220	٠ ١	151	328	23	17+00	257.9	2573	17615	17615	6853		\$06
6 INDIANAPOLIS	reesal hoses	67.0	^	190	255	56	51+16	2619	2613	14025	14975	5537		502
7 DATTOW	42314 794244	23.1	C +	5	518	=	31+16	1182	1192	1381;	13814	5528		\$08
8 DRYER	41724 79210	ÚSÚ	C +	133	7 &	£ ,	01+31	1681	1691	12133	12133	6759		\$05
9 JAMESTOUN	Procet Alies	650	+	16.5	893	17	01+43	1834	1834	10232	10239	6473		510
13 START AAP 1	486757 V8452	0 2 0	•	Ç	382	Ξ	és i té	1136	1135	2153	5153	C¥ \$6		\$03
11 43.1 ABORT, OFF, 2 04	42354 37528A	180	•1	7.5	1357	6	20+5C	266	č 66	25833	8171	8899	17629	503
12 ALBANY	857820 NS727	082	÷15	7.2	1131	ů	02+17	1049	786	24751	7184	7152		503
13 40.2 ABORT, OFF, 3 74	22720 AS767	130	+13	-	1132	ç	92+175	13	5	24738	7117	7800	18626	\$00
14 43.3 ABORT. 1FF. 4 14	rsužel niežy	130	113	52	1200 15	60	52+64	1055	873	23633	5535	7112	19534	539
15 30STOV	760126 F1627	131	+15	Ç	1257	36	02+32	899	795	2 301 5	5225	7332		\$09
16 40.4 ABORT.OFF, 5 04	r92626 22867	950	+15	22	1284	03	02+35	33 c	437	2264.3	2075	7031	20399	800
17 NO.S AROAT.OFF. 6 ON	#25890 NICE7	950	+15	22	1250	60	35+46	1045	440	21595	5 27 7	2969	21325	\$00
18 40. 5 ABDRT OFF.	#2 \$ 2 50 No 2 5 7 4	250	7	22	1:36	ć	32253	1041	426	20554	25839	6369	2222	200
** ** ** ** ** * * * * * * * * *							÷.	3V =	AVERAGE DALDAS		F34 AAR		13256	
19 YARHOUTH	r5099G 16727	058	+13	\$5	14 99	20	0 5+33	763	662	19785	25001	7155		200

ROJTE

UNCLASSIFIED

12-02-66 724/21 CONDITION CONDITIO						÷	JWCL A SS 1F 1ED	160								
0.3 ABONT-OFF. 3 No 51359 13415 4 G 45 A 41 L 5 A 1716 L 6 A 61 A 61 A 61 A 61 A 61 A 61 A 6	12-02-86 22432	ROUTE								80	UYE 41	ND FACT	38 +313			
		H	CODPOINATES	TAUE	* A5	0151 L£3	TAYCE TOTAL	T I	¥€ TOTAL	FUEL	USE5 5		REMAIN 5	FUEL	WIND OR	65
2017 7 5 0 0 51304 072384	44 YO.Z ABORTEOFF	VC E 1	5035W 304244	986	•13	21	3296	35	38+33	687	68:	10113	5 99 3	5441	7229	485
50104 0022884 086 +3	45 NO.3 ABORT.OF	KC 7 7	\$359V 332404	9 5 9	•	22	\$96\$	60	D8+12	6 76	868	9175	\$ 609	9430	5819	789
-0ff 7 504 5130 51108 61024 618 618 618 618 618 618 618 618 618 618	46 YEOVILTON		5100v 00238#	950		^	4370	6	08+12	21	72	9155	5074	6300		486
Silon Silo	47 HO.4 ABORT, DFF	F. S ON		780		5	6140	60	08+21	958	872	8137	5 23 2	4884	4838	187
S1104 D3121E G37	48 VD.5 ABDRT,DFF	NC 9 1		980	m	5,	1212	66	D8+17	6 66	925	7233	4 5 3 5	5743	3831	487
5134 02396 034	43 DOVER			286		œ	4229	10	38+31	93.8	a) a	7123	4 23 8	5867		487
S1054 002596 123 + 5 25 124 125 12 125	50 £98u		\$138V 93250E	760	,	25	5727	50	75+60	506	303	6824	3899	6130		187
1	51 KOKSEY			760	*	Si	G 2 2 7	23	0.8+37	502	303	6528	3590	6180		487
	52 VD. 5 490RI #5)F F.		123		~	75 25	32	28+39	167	175	6351	1529	5176	5762	485
500-4 07615e 123 + 5 73 4362 10 38+40 961 961 961 5403 5409 6006 500-4 07615e 120 + 5 51 44.23 03 09+57 772 4728 4629 6176 500-4 07615e 120 + 5 51 44.23 03 09+60 114 114 116 4514 4514 4515 500-4 07615e 120 + 5 51 44.23 03 09+00 114 114 116 4514 4516 4536 6176 500-4 07615e 120 + 5 51 44.23 09 114 114 114 4514 4514 4515 4525 500-4 07615e 120 + 5 12 14.3										AVE	R 6 GF 7	3 (40.1)		~	5323	
5974 07513c 100 +5 51 6423 08 09+57 772 6236 6626 6176 5971 07537c 120 +1 13 6116 03 09+00 114 116 6516 6556 6176 5971 07537c 120 +1 13 6116 03 09+00 114 116 6516 6516 6176 5971 07537c 120 120 120 120 120 120 120 120 114 116 6511 6511 6511 4850 0750 0750 04 05 115 11 115 115 115 115 115 115 115 1	53 FLORENVES		5015V 33439E	123	÷	7.8	4362	10	67+80	1961	951	5433	8439	9009		789
FLUTO 4-5574 107166 027 + 1 23 4:45 03 09+09 114 114 4514 4515 4553 2555 FLUTO 4-5574 107166 027 + 1 23 4:455 05 10±10 254 255 255 255	S4 DESCEND			100		21	4623	0.8	08+57	217	277	4628	6 29 7	6176		487
FLOTO 43574 10716E 007 + 1 20 4165 05 104-16 264 625 626 4250 4250 2555 AGD-111 42344 075284 51 1057 1020-13 2620 45144 075284 008 115 205 1253 25 02415 51 2530 25415	SS WATTENHEIM			133		13	51 15	03	00+60	117	32	1157	7157	2533		291
4900 1111 4972 1855 46C £1VEP 1 43144 375244 313 412 33 1365 35 32413 523	55 1A1N	FLNJJ	3912CL N2SE7	240		ς.	1:55	95	947€	554	597	({2}	c 52 7	2555		487
0998 0424 075244 033 412 53 1305 05 32413 523 523 523 5231 5783 5833 6234 6231 6231 6231 6231 6231 6231 6231 6231					-	14681	RASES 9	EC £ 1 V								
1157 1257 1257 1257 1257 1257 1257 1257	*** AAR 1 ***															
0998 0998	ASORT POINT	_	42344 3752AJ				1357		92+13				8171			
0665 0665 0597 0597 0597 0698	11A SZIFFIS		43144 J75244	503	+12	33	1395	50	22+13		52.)		7651	5783		987
0665 521 523 54 1243 54 080 415 515 1543 54 05435 541 6251 6251 6251 6251 6251 6251 6251 625		029														
46 ² 0 4419y 15550 163 +17 315 1573 35 32+46 3893 4231 6237 6 ² 0	118 PEASE		167020 NSGE7	0.00	+15	235	1253	52	02+32		2533		5641	6221		\$08
6990 4231 6237 35 32466 3893 4231 6237		0.9:														
	11C SAVGOR		70585C Ni777	053	÷	315	1373	33	97+26		3893		1 827	2537		204
		0669														

PASE 03

4007

UNCLASSIFIED

الموارة وجودودوارا المتعادية المحججة المحججة المحججة المحججة المحججة المحجمة المحجمة المحجمة المحجمة المحجمة المحجمة

						*	JNC.4 SS IF 1ED	43						Ì		
12-32-86 22437	21 CO2									O #	UTE 411	ID FACT	ROUTE AIVD FACTOR +DIS			
LINE DATA POINT		COJRJIVATES	7.65	140£ CR S	445	DISTANCE LES TOTA	۲	114E	YE TOTAL	FUEL	U SE 9	fUEL	464A14	FUEL	WIND OR	65
20 HALIFAK		46 VZ 23	753564	00 ء	(2+	133	1623	,	21+16	1404	1.887	17975	23121	7036		501
21 STDUFT		5C re(47	752734	051	+24	15.2	17.52	13	73+35	2115	2195	1585?	\$ 20C č	5971		573
22 C45CK PT		4552V 35	155394	220	\$24	153	1235	~	23+53	1 26 4	€002	13435	18827	6879		501
23 ST JOHNS		27794 JS	75551	27.6	*>>	153	2783	e.	04+11	1084	2042	11855	16778	6755		\$03
24 START AL	A & P >	SC NC 527	157691	07.3	121	\$	77	13	12+50	1102	1135	10753	15642	6532		200
25 CK PT		St NCLB3	ruûusb	5 2 0	**	25	2022	70	32.76	431	777	10322	15128	5550		533
26 VD.1 ABDRT.OFF. 2 74	rc 2	26 NS187	rsuesc	555	£ 2.4	2	8726	9	34+39	\$26	175	25833	14657	7299	16034	497
27 NO.2 AROST.OFF, 3 ON	3 ON	7C NU7E7	34713%	050	+23	2	2322	ê	68+70	1061	186	54739	13676	7153	16008	167
28 40.3 ABORT.OFF. 4 03	1:0 7	76 Rivet	345314	070	52+	7.2	2306	ç	87+70	1056	326	23643	12734	7119	16009	267
29 C< PT		אר יכורג	れじらうし	220		ĭ	>:17	č	34+51	762	274	68282	12430	1356		107
33 40.4 4378T.DFF. 5 94	2 24	76 17667	743424	5 20	+2,	\$3	02:4	96	15+26	73.8	759	22651	11746	7329	15989	\$ 90
31 NO.5 4809T.OFF. 5 04	5 04	76 N£767	705176	720	+27	22	5752	99	50+50	1045	216	21635	10774	2969	15993	200
32 ap pT		36 NUCES	r60636	076	+24	۲	2518	60	95+15	1006	934	29633	9840	603 8		200
of VO. 5 ASORT, Off.	•	SC VCTCS	PLSESC	083	+2>	^	025è	ce	25+15	54	2:	20575	25.873	22.13	15982	767
** * * * * * * * * * * * * * * * * * * *										AVE	AVERAGE 31	34L04) F	FJR AKR	~	15998	
3¢ C< PT		EC NGCUS	735064	05.8	+24	121	2411	23	0.5+3.8	2633	2735	17943	23054	7106		767
35		\$0 NULUS	7000£0	9 % 0	+24	103	3005	23	00+01	5604	1075	15139	20353	5569		965
36 C< PT		St verus	ド Gレらさし	980	• 55	17.1	\$107	72	16+25	2882	2674	12757	17639	5827		167
37 qp pT		\$C +CL65	F0CC2C	93.R	(2+	193	3390	72	67490	2752	1292	1 1 1 5	15058	2699		167
38 CK PT		SOTON DI	215904	038	+17	193	15.53	72	97+13	9092	1692	6697	12457	2659		88.7
39 RP PT		\$000v P1	roacta	380	+14	193	3776	72	12+37	2408	5855	5231	9606	8779		887
43 START ABR T	1 00	נו אנוכצ	172734	930	+12	7.5	* 8 5.1-	É	37+46	876	983	4253	\$ 66 \$	5411		488
1d cb 17		S 22724 73	133 nn4	066	=	יח	3553	CG	97+46	12	23	4232	8 93 2	6693		488
42 NO.1 ABORT, OFF, 2 3N	NC S	CO A9Cus	101900	984	:		3926	60	97+55	896	983	11054	9197	6119	\$222	786
43 LANDS END		P815C0 A&COS	P815	989	£112	52	3366	05	07+57	25.4	272	10836	7 64 7	989		486

PASE 32

ROJTE

JNC. ASSIFIED

graf for the section of the formation of the section of the sectio

2 456 4 456 5 456 7 456 7 458 7 458	22483 25035 2534 <u>2</u> 2634 <u>2</u> 26937 PA:	6733 6812 6812 6733 6625 6500	10335 9153 9077 7750 5437 6257 5133 4639 32735	32735 31273 31135 29637 27867 27867 26511 25928 25034	504 85 1327 173 173 173 494 494	10.25 10.25 10.53	02-51 72-44 92-45 73-15 93-15 93-32	M M = 2 2 11 10 10 10	1156 0 1257 1 1254 0 1490 0 1532 1 1533 1 1533 0	25 20 20 20 20 20 20 20 20 20 20 20 20 20	+13 +15 +13 +13 +22 +23 +23 +23
957	27652	6733	6257	27847	177	20?	33+15 03+27	12	15.93	3. 6.	
456	25348	5725	2437	280:3	1315	155\$	73+13		1676	135	
955	25035	6812	7750	29617	1327	1578	n2+53		1377	175	_
456	23709	2000	9077	31135	\$	175	92+45		1521	^	
797		CC 69	9153	31273	1142	1425	カサキさし	13	1257	1,51	
797	22483	57.73	10335	32735	30%	39.6	02+31	60	1156	3.5	
458		6329	10679	10639	1134	1134	42454	:	1131	ŝ	÷
857		6009	11743	11743	2043	2963	03+17	5.5	13602	155	or 4
463		6335	13786	13735	1881	1881	21+57	7	308	1:5	•
657		5137	15657	15657	172)	1720	71+38	1,	671	133	:
						•	•				

77179C NSE77

18 43.5 490RT-OFF. 6 JN

45254 352034

20 VO. 6 ABORT,OFF.

19 HALIFAX

44554 05324

460

797 297

195

S

WIND OR

RECVR 4

UNCLASSIF 1ED

23 SF JOHNS	47204 352514		• 740	+27	153	23.88	53	04+33	7805	222	13453	26858	2259	
24 54 PT	48324 957504		• \$70	÷53	117	27.47	15	14440	1418	1713	17851	55149	6959	
25 CK PT	FGUS70 ACLET	194 058		+23	213	26.17	28	95+17	2523	2975	1 502 3	22174	1279	
25 START AAR 2	49424 34155A	54 973		127	124	25417	9	05+33	1642	1715	13331	65702	7229	
27 VD.1 ABJRT.OFF. 2 JY	\$106>C NGL65		• 920	+27	5.2	2517 #	5	15+43	980	1037	30539	19422	5225	18197
1d cb 82	\$3734 BCCCS	920 ru		52 +	-	2518	5	15+43	11	Ξ	37578	19411	6639	
29 40.2 4308T.OFF. 3 34	LEPRE VSTUR		+ 630	+25	2.5	2593	5	15+50	1133	1032	5 3 7 6 2	13379	8029	16681
30 40.3 4908T.OFF, 4 24	45021C VICOS		• 680	\$2	2.5	, 8922	2	26+60	1110	1025	5 62 8 2	17353	6714	15173
31 C< PT	rubser nuccs	166 706		+25	¥.;	25.11	35	66+96	637	583	5 2 6 3 3	16753	5025	
32 43.4 4308T.DFF. 5 24	50014 034104		+ \$50	+5:	2	2323	č	34496	195	£27	52522	16341	6614	13670
33 43.5 ABORT.OFF, 6 3H	50024 052144		+ 680	+24	2.5	2018	Ç	85+90	1391	1 203	26135	15338	6612	12183
34 NO. 6 4908T.OFF.	597AV 753174		• 060	\$ 6 \$	۲,	7322	Ç	94+33	1978	404	25055	25055	6533	10715
						-			AVE	RAGE 3	AVERAGE SULOAS FOR ALR	- 1	~	14437
35	POUCEL ALLCS	100 701		+25	:	, 30C\$	5	25+34	15.2	152	5(672	\$6678	5514	
36 CK PT	reasse veces		+ 850	+25	193	3197	52	07+43	2767	2757	22138	22138	Ò179	
37 RP PT	POUCEO NUUCS		038 +	• 53	193	3330	55	92+20	2633	2633	19453	19450	4251	
34 C< PT	STOTA DISORA		085 +	. 17	193	5583	\$2	2S+2G	2671	2677	16773	15773	5154	
30 qp pT	rootic autos		138 +	::	193	47.78	33	38+18	2626	5292	14153	14153	0909	
40 RP PT	LOCETO VOCES		030 +	+12	2.2	1353	13	03+23	1327	1027	13125	13126	5983	
41 LANDS END	5078V 005384		+ >80		1.6	1762	2	08+47	1213	1213	11938	11928	0665	
42 YEDVILTON	LESSIC VICTS	750 72			125	10203	7	2>+•0	1737	1737	10171	17171	5131	
43 DOVER	51134 33121E	1E 054			15.3	,022;	23	21+60	1361	1841	\$333	8339	8975	

557

455

456 458 757 452 455

gs

FJEL WIYD OR

JSE) FUEL'REMAIN

fuft

445 DISTANCE FINE /AR LES FOTAL LES TOTAL

73.55 C3.5

CODRAITES

THICK ATAG

SYHCL IS ES 22 CHECK PT 21 SYDNEY

gling

12-02-85 22412

UNCLASSIFIED

ROUTE AIND FACTOR +310

25693

6898 6803

1326 1414 23678 31371 AVERAGE DYLOAD FOR ANN

> 12 93+53 27 04+13

1782 1335

05.2 2 70

12065C 20657 r01950 N2597

153 č

+25 + 24

2277 215:9 29072

2129

. 677 677

452

677

452

452

877 577 577 575 777 777 777 PASE 02

ROJTE

UNCLASSIFIED

452 277

2-02-86 2241Z PDJTE								•	COUTF 4140 FACTOR +310	D FACT	12 +310			
JE DATA POINT	COORDINATES	12 UE CR S	445 /43	DISTANCE LES TOT	AVC F TO TAL	11%E	TISE Leg Total	f ver	USED 6	FUEL	2E4A14	FUEL	WIND OR	S
4 63311	5138V 93200F	700	~ +	35	5727	93	00+50	314	316	\$015	8 01 6	5730		777
S KOKSEY	\$1364 BJ2 39E	7 (0	\$	25	07 65	1)3	00+23	314	314	\$677	27.2	\$7.09		777
S FLOREWVES	3087CC 451CS	123	•	ć;	2983	12	30+35	1179	1173	6532	5885	5651		777
C DESCEND	\$973 ¥5708	130	۱r +	57	6233	60	33.4C C	778	265	\$638	5 68 8	2627		777
8 NATTEMHEIY	5071V 33632E	130	4.	^	44.36	5	57+60	56	55	5652	2 6 9 2	1733		897
9 н 4ни <i>г</i> гсээ	261700 V5204	160	7	5	5977	70	67.60	112	112	5550	5550	1630		777
			•	AATEL AUSES		RECEIVER 1	£ 1							
** AAR 1 ***														
ASORT POINT	#512C N1727				1156		02+31				10335			
A PEASE	767626 ASCE7	9 2 0	+15	173	1265	1,4	57+60		1253		9 50 6	5320		097
A SIVGO FUFL 4000														
3 34460P	PUS 69C NE577	750	• •	727	1385	33	12471		37 55		75:3	5530		458
9 BIVGO FUEL \$515														
C SHEARWATER	708196 NBE77	071	+23	6 2 3	1564	5.8	03+29-		5 353		4955	5533		457
C BINGO FUEL A1PD														•
** 44P 2 ***														
ABORT POINT	410036 VCC62				2517		05+43				12392	٠		
A ST JOHNS	#5725C N2827	259	á 2+	255	3139	1 19	07+02		7.553		6887	57.16		396
A BIVGO FUEL 17203												,		;
3 14JES	28464 327064	135	+17	658	36 36	1 57	07+70		10979		1413	5650		,,,
3 31VGO FUEL 13729														
				ā	UNCLASS IF 1ED	f 1E0					ROJTE		PA3	PASE 03

				3	UNCLA SSIFIED	eg G								
12-02-26 22392 ROUTE	Lui.							80	UTE AT	ROUTE AIND FACTOR	21 + 312			
ברו הפעבר ז	 	37-38	J.7-	2x370	2x370HT509CL PYLOHS FO4%	0 Y L 01	HE FOAM		10	FOTAL FUEL	L ONLOAD	3 7	RECEIVER	
JOPEA 3		•	F20*		NVELL	70000	٥,	REC VR 47661	r 1	REC./?)3 e é	48689 3	4ECVR 4	
CAS 305			820	1175	RE FUELI	ž ž		RECVR :	R 5	RECVR :	40			
35C+ V3G-6831-V2M	C MAY CLIMATOLOGICAL AINDS	19676	At 41	20.2	o) was	ă .	WARST PROB FACTOR	۵.						
JANE DATA DINI	C2)831V4TES	13 UF	445	DISTANCE LES TOTA	بر	TINF LES T	4F TOTAL	f UEL	JSES	FUE, REMAI	4 14 W E S	FJEL FLDW	WIND OR	S S
1 MCCONVELL	1917CF V7878									20233	20203			
2 START, TAXI, TAKEOFF	37374 397164							2215	2215	17945	17935			
3 LEVELOFF POINT FL280	rzusec assei	720	, w	51	61	60	00+Gu	1877	1.873	16115	16115	13062		200
4 39TLER VARTAC	1915 Jacob	073	~ -	25	137	6	50+18	1080	1083	15035	15035	5958		687
S ST LOUIS VORTAC	39524 373294	777	` `	121	338	23	17461	2693	\$ 63.5	12421	12427	5715		C67
6 IVDIANAPOLIS	2949V 384224	270		100	525	5 2	01+05	2589	2589	0833	9 83 8	5393		167
7 DAYTON	40314 34424	091	6.	71	518	=	61+10	1124	1124	8714	8714	6131		492
S STAPT AAR 1	45586 VOTC3	050	•	c2	578 -	26	01+23	75.2	75.5	7952	2562	2609		687
9 40.1 4308T.OFF. 2 34	42168C 46117	95.1	^	55	273	υď	P1+31	777	790	16505	7153	8909	13037	687
13 DAYER	40158C V5212	95.2	+	~	372	9	01+32	92	61	29124	5112	7609		687
11 NO.2 ABORT, OFF, 3 OF	423CEU NE717	690	*	ţ	\$08	~	01+30	920	733	10201	9 35 9	7562	13831	867
12 43.3 4304T.DFF. 4 74	PEE62C ASC27	070	•	\$\$	473	93	21+47	6 8 0	167	1 921 5	\$ 57.8	7511	14622	267
13 JAYESTOWN	42114 329074	070	~ +	(ر	90.0	ç	51+69	285	572	17923	5334	7153		493
14 HJ.4 ABORT, OFF, 5 DN	P2082C N6127	640	er +	\$\$	938	90	01+55	656	273	17273	1627	7156	15409	187
15 40.5 490RT,OFF, 6 0"	707920 Ac227	080	+	55	1793	03	12+41	676	793	16324	4 0 3 1	7118	16190	187
16 VD. 5 A939T.OFF.	42121 J75134	1 50	ţ	55	1363	93	02+11	626	773	15395	CLZCZ	6968	12691	187
					- 84			AVE	AVERAGE 3'	DALOAD F	FOR AAR	1	15013	
17 ALBANY	#8782C A5727	082	+12	\$9	1131	80	92+19	A36	679	14533	19230	7558		187
18 90STON	4221V 07100A	100	+13	125	1257	15	02+34	1713	1 873	12775	17357	7345		493
19 YARMOUTH	43099C A6787	950	+15	233	1499	د ۲.	03+03	1268	3341	9725	14015	6965		485

PASE 01

JMC_ASSIFIED

					٦	431 34 35 4 . JRI.								1	
					ń	1166 471	מ								
12-02-86 22392 ROUTE									æ	UTE 41	ROUTE JIND FACTOR +01	38 +312			
LINE DATA POINT	COORSI	COORSIVATES	73 U E C 3 S	445)15T LE3	DISTANCE ES IDTAL I	11,	TIME LES TOTAL	f ver	. JSE)	FUE.	S AAI N	HC14	WIND DE	65
. 23 HALIFAX	15577	772296	050	+5)	133	1523	16	03+19	1672	1817	\$053	12139	8759		485
21 SYDHEY	No (97	P\$0050	190	+23	153	17.82	50	03+32	1962	2078	1609	10121	7689		187
22 START AAP 2	45254	153643	220	+25	\$\$	1338	76	57420	169	71.2	5413	6676	6191		485
23 VD.1 ABORT, DFF, 2 DV	A > > 5 7	48444 35715A	576	+25	\$ 2	1993	03	D3+54	191	813	20233	1658	6135	15591	585
24 C4ECK PT	A 6 5 5 7	155301	7/0	+25	2	1335	ă	73+58	107	397	12733	8174	7884		485
25 NO.2 ABORT, 3 FF. 3 34	47714	155434	726	+27	33	1968	2	26+76	20.4	\$67	19235	7759	7560	15594	187
25 20.3 4B3RT,OFF, 4 0V	47174	161750	9 2 0	20+	55	2233	93	01+70	1.002	899	1 \$233	6930	7515	15603	187
27 ST JOHNS	ACC27	352514	9 2 0	+27	\$\$	2338	07	21+76	799	672	174);	5374	7155		187
28 YO.4 ABORT, OFF, 5 OV	12227	F2825C	273	+54	1.3	2328 11	93	34+18	144	123	17253	6188	2200	15602	483
29 NO.5 AB391,0FF, 6 3N	16727	r50156 N6727	7.0	+27	54	2916	90	04+25	937	791	15323	5 33 7	7116	15593	483
30 CK PT	10087	100050	5 2 0	+ 23	5,9	2207	90	04+32	639	575	15634	1527	1269		4.53
31 WO. 5 430RT.OFF.	43774	149334	058	+23	12	2226	č	26+36	287	\$55	15417	23233	5565	15575	481
									%	AVERAGE 3	JVLOAD FJR	419	2	15593	
32 CK PT	10167	416V 245994	059	+53	151	24.17. 47	56	\$5~70	2687	2937	12733	17253	7676		481
33 START AAR 3	17,67	343434	. n7 3	+27	\$2	26.60 745	9	70+00	269	752	1 2033	16531	7144		787
34 40.1 4972T,OFF, 2 74	12867	76535C	720	+27		2517	90	05+13	649	683	29233	15815	9969	5837	767
35 VO.2 A309T,OFF, 3 OV	16707	76120A	5 2 0	+27	"	5952	90	25+15	74.3	635	19437	15139	7556	8590	787
36 NO.3 A97RT. OFF. 4 2N	16567	720076	920	+37	a' .*	2513	35	22+36	74.3	678	18714	14454	7556	8353	787
37 AP PT	Nuu6S	700°C76	677	428	۰	2518	5	05+23/	7.7	69	18637	14386	770ÿ		787
38 YO.4 ABORTADFFA 5 DN	5231V	755350	983	+25	۲,	256111	56	05+28	450	265 .	17937	13739	7358	8146	473
39 NO.5 ABORTADEE 6 DN	\$3324	137 384	038	+25	en 17	3,0028	9ú	25+3¢	215	675	17272	13113	7150	1762	478
40 NO. 6 ABORT, OFF.	500 1v	P7298C	086	+25	S	2757,	90	67+50	716	989	16555	20230	1160	2772	817
** * * * * * * * * * * * * * * * * * * *									₩.	AVERAGE 0	OVLOAS FO	OR AAR		8265	
41 CK PT	ALCOS	\$0034 D\$\$004	0 60	+25	75	2511	20	27+SG	779	578	15777	19355	7558		\$13
75	≯ 000€	PC0110	033	+54	193	3003	72	11+96	2742	\$202	13035	16439	2882		087

PASE 02

ROJTE

UNCLASSIFIED

				3	JNCLASSIFIED	8							İ	
12-32-R6 22392 R3JTE								0	UTE 411	15 FA 2 F	POUTE JIYS FACTOR +312			
_14 VE VBR DATA POINT	COPROIVATES	12U5 CR S	443) 1 S T	DISTANCE ES TOTAL	11	1145 .EG TOTAL	FUEL	USE)	FUE.	FUE, REWAIN	FUEL	WIND OR	65
43 START AAR 4	10586C ALCOS	038	÷	33	1761	95	06+16	534	\$65	12531	15851	6967		475
44" 40.1 490RT, OFF, 7 04	19722C NECCS	938	*	^	3390	0	04422	643	685	20273	15175	9269	8342	475
45 VO.2 ABORTIOFF, 3 3V	\$525C VICES	0,89	+21	.,	3137	90	16+29	272	677	19457	14438	1556	8339	475
45 VO.3 ABDRT, OFF, 4 NV	10232C NCCCS	94C	62+	:3	7812	9.8	7£+9C	243	655	15715	1 3833	7556	8342	475
14 X CK PI	10052C NGUGS	1 00	+23	13	3197	05	06+36	203	13.3	13511	13653	7613		475
48 NO.4 ABORT, DFF, 5 ON	2072C ALLOS	038	+20	3,6	1251	70	07+90	512	\$23	17009	13180	7314	8330	476
49 43.5 AB3RT.OFF. 6 3N	475251 N2CCS	988	+15	7;	3278	99	5744C	703	\$; 9	17275	12534	7149	5321	925
53 43. 6 ABORT, OFF.	50714 321414	989	÷ 1,	25	33.25	90	95+52	703	643	16533	20233	7149	8309	476
								AV E	AVERAGE SYLOAS	11.049 F	FOR AAR	7	8331	
Si qo pr	POUGEC NCCUS	006	+13	\$\$	3390	č	0.7+0.0	676	1 02 3	15653	19180	7556		476
52 C< PT	406816 VFC68	038	+17	123	3583	\$5	52+20	1111	\$ 56 2	12873	15222	1566		715
53 RD PT	400C1C NCC65	988		154	3775	72	17+53	2615	1675	10253	13781	6863		473
54 Rp PT	7009CG NULOS	680	+13	7.2	3853	13	92+50	1002	1067	9526	12354	929		473
S LAVDS EUD	Paisco Natus	750	:	5	7762	12	n 8+11	1172	1241	\$03	11123	\$279		127
S6 YEDVILTON	1855CF VELIS	054		125	4324	15	18+27	1613	1672	1279	9451	5270		127
S7 START AAR 5	אנוברר אורוצ	786	•	1,5	:3%6.	60	28+23	200	502	1,69	4726	6123		715
SS NO.1 ABORT, OFF, 2 ON	S176V 73753V	780	÷	53	6717	60	08+37	108	817	2354	8437	612B	3884	715
59 40.2 ABORT, OFF, 3 74	\$110v 21108g	03.5	*	53	6515	28	57+80	517	803	\$537	7 62 1	5128	3278	472
53 DJVER	\$1151C VC112	13.7		~	022:	5	98+46	102	171	\$ \$ 7 \$	7523	5129		472
51 Eagu	51384 03279E	760	~ +	Sé	5725	G3	67+80	314	313	3121	7237	4209		715
62 KOKSEY	5135V 03239E	760	÷	52	6270	03	n8+52	313	313	7513	7689	8309		471
63 NO.3 ABORT.OFF. 4 OH	397260 NECLS	123	٠,	~	5227	6	08+53	61	ç	77:77	6835	6100	2680	171
64 YO.4 ABORT, OFF, 5 34	330766 NG<65	123	÷ \$	53	1338	93	09+31	¥07	893	694.3	5035	5353	2086	123
65 FLORENVES	59154 33439E	124	+	*	\$985	03	76+6G	301	331	6633	5734	6359		471
66 NO.5 ABORT, OFF. 6 DN	5008V 00539E	130	÷	43	, 1077	00	60+60	067	C67	6119	2244	9000	1492	715

PAGE 03

ROJIE

JACLA SSIF 1ED

PASE 04

Appendix E

MODAS Maintenance/Reliability Data

AFIT/LSMA

The Maintenance and Operational Data Access System (MODAS) is a valuable source of Air Force wide maintenance and operational information. Requirements to access this system are a computer and modem, with an identification number and password. Capt Jim Smith, AFIT/LSMA, has attended the course on MODAS and has the user identification number and password for this department. The password can be used from any location. It is restricted to office personnel.

USER IDENTIFICATION: AFTLSMA

PASSWORD: MAKE.POW

To access the system, call 257-5207 (local), 1-800-648-7381 (Dhio DNLY) or 1-800-435-7549 (outside state of Dhio). This avenue of access is "LOGNET", and is restricted to MILITARY DNLY. The following sequence will follow:

PROMPTS

CONNECT: (CR)
SYSTEM?: CHOICE 2
USERNAME: AFTLSMA
PASSWORD: MAKE.POW
TERMINAL: (CR) PRESS RETURN (CR)
ENTER MODAS SYSTEM REQUIRED: "A", "B", OR "Q"

Entering a "system" puts a user into a set of ALCs, as described in the operations manual. There are few copies of this manual available (in reprint) at this time. The ONLY copy in AFIT is maintained by Capt Shith, room 302, building 641 (School of Systems and Logistics).

Modas is also accessable by the following commercial numbers:

SYSTEM "A": (513) 257-5672/73/74/75/76/77 SYSTEM "B": (513) 257 2179, 5667/68/69/70/71

AT THE PROMPT ("_"), ENTER: LOGON_AFTLSMA_-ON_SYS(A or B)
(pay attention to the spaces (_)
PASSWORD:MAKE.POW
(the password DOES NOT echo, get it right)

PAY ATTENTION TO THE MESSAGES ON THE OPENING MENU!! They tell you if a particular ALC is unaccessable because of update or if a particular MDS is being updated and not accessable at that time.

SEARCHES CAN TAKE A LONG TIME. If you begin a dat intensive search and can not stay with the system, YOU MUST CALL MR. FRANK MAGUIRE, 513-257-690% (AV 787-6906), FOR A DISCONNECT!! To just turn your system off and hang up leaves the line connected and denies other users access. A search once started, must be completed.

00 LZ Modas

- Maintainability Report #4
For Nov 85
All Systems *
Ranked by

05 MAR 1986

G063

Latest	3	Month	HH/FH	(Unscheduled	Manhours)	May Isperend
--------	---	-------	-------	--------------	-----------	--------------

					73.7	
Rank	Vuc	Noun	# Fortures	3 Month Manhours	3 Honth HH/FH	Ranking Factor
1	46***	System 46	184	4198.1	22.8/6 0.64927	100.00
2	23***	Syátem 23	122	2392.9	18.128 0.37008	57.00
3	71***	System 71	111	1556.7	11.046 0.24076	37.08
4	14***	System 14	57	1308.0	27.1 0.20229	31.16
5	13***	System 13	ر ع ا	1034.8	14.7170.16004	24.65
6	52***	System 52		896.0	7.7- 0.13857	21.34
7	24***	System 24	・・ク	876.6	22.47 0.13557	20.88
8	44***	System 44	111	832.3	7. 448.0.12872	19.83
9	45***	System 4:	41	761.8	15. 5/70.11782	18.15
10	41***	System 41	37	549.2	14.5730.08494	13.08
11	64***	System 64	77	459.2	5.7.40.07102	10.94
12	51***	System 51	55	459.0	6.:75 0.07099	10.93
13	68***	System 68		372.8	21.7270.05766	8.88
14	11***	System 11		364.2	15.175 0.05633	8.68
15	63***	System 63		346.1	23. 0730.05353	8.24
16	72***	System 72		341.9	11.3970.05288	8.14
		For	Nov 85		·	_
17	12***	System 12	1"	334,2	11.62 0.05169	7.96
18	42***	System 42	21	331.2	15.771 0.05122	7.89
19	47***	System 47	55	282.3	5.132 0.04366	6.72
20	49***	System 49	24	174.7	7. 277 0.02702	4.16
21	65***	System 65		97.0	10,775.0.01500	2.31
22	61***	System 61		72.0	7. 200 0.01114	1.72
٠.	4.4	System 69	7 9	72.0	£*000	

05 HAR 1986

G063

Ranked by
Latest 3 Month HTBM (Type 1 Failures)

05 MAR 1986

				X(\$ 0.000	• 1
Wuc	No	מט	3 Houth Failures	3 Month HTBM	Ranking Factor
46***	System	46	184	35.14075	100.00
71***	System	71	141	45.85741	76.63
23***	System	23	132	48.98407	71.74
44**	System	44	111	58.25133	60.33
52***	System	52	90	71.84328	48.91
13***	•	13	83	77.90236	45.11
64***	System	64	77	83.97269	41.85
14***	System	14	57	113.43677	30.98
47***	System	47	55	117.56177	29.89
51***	System	51	5 5	117.56177	29.89
45***	System	45	49	131,95703	26.63
24***	System	24	37	174.75397	20.11
41***	System	41	37	174.75397	20.11
72***	System	72	30	215,52991	16.30
11***	System	11	24	269.41229	13.04
49***	System	49	24	269.41229	13.04
	46*** 71*** 23*** 44*** 52*** 13*** 64*** 14*** 47*** 51*** 45*** 41*** 72*** 11***	46*** System 71*** System 23*** System 44*** System 52*** System 13*** System 14*** System 47*** System 51*** System 45*** System 45*** System 45*** System 45*** System 72*** System 72*** System	46*** System 46 71*** System 71 23*** System 23 44*** System 44 52*** System 52 13*** System 13 64*** System 64 14*** System 47 51*** System 47 51*** System 51 45*** System 47 51*** System 41 72*** System 41 72*** System 41	Wuc Noun Failures 46*** System 46 184 71*** System 71 161 23*** System 23 132 44*** System 44 111 52*** System 52 90 13*** System 13 83 64*** System 64 77 14*** System 14 57 47*** System 47 55 51**** System 51 55 45**** System 49 24*** 24*** System 24 37 41*** System 72 30 11*** System 11 24	Wic Noin 3 Month Failures 3 Month HTBH 46*** System 46 184 35.14075 71*** System 71 141 45.85741 23*** System 23 132 48.98407 44*** System 44 111 58.25133 52*** System 52 90 71.84328 13*** System 13 83 77.90236 64*** System 64 77 83.97269 14*** System 14 57 113.43677 47**** System 47 55 117.56177 51**** System 51 55 117.56177 45**** System 45 49 131.95703 24**** System 24 37 174.75397 72*** System 72 30 215.52991 11*** System 11 24 269.41229

Latest 3 Month MTBM (Type 1 Failures)

Rank	Wuc	Wuc Noun		3 Nonth Failures	3 Month HIBH	Ranking Factor	
17	42***	System	42	21	307.89978	11.41	
18	12***	System	12	17	380.34680	9,24	
19	68***	System	68	17	380.34680	9.24	
20	63***	System	63	15	431.05975	8.15	
21	61***	System	61	10	646.58960	5,43	
22	65***	System	65	9	718.43286	4.89	
23	69***	System	69	9	718.43286	4.89	

```
L1200 RELIABILITY STATUS REPORT
                                                      PREPARED: 105 MAR PAGES LI300
 END ART DESIG: KCOlOA
                                   BASE: ***
                                                        FLEET SUMMARY
WORK UNIT CODE: 46***
                               FUEL SYSTEM
TYPE FAILURE: 1
L1500
            PLIGHT HOURS
                                  TOTAL HEAN TIME BETWEEN MAINTENANCE
                                PAILURE ---
DATE
           ACTUAL
                  CUH.
                                COUNT
                                           HONTHLY 3 HONTH
                                                                    CUM.
                                                                   ----LI100
                                -----
                                          -------
                                                     ------
          1124.3
                       1124.3
                                     50
                                             22.49
                                                         0.00
                                                                   22.49
 84 1
84 2
84 3
           1289.3
                       2413.6
                                     60
                                             21.49
                                                         0.00
                                                                   21.94
                       4044.4
                                             58.24
                                                        29.31
                                                                   29.31
           1630.8
                                     28
                                                                   27.77
 84 4
84 5
                       5471.1
                                             24.18
                                                        29.57
                                     59
           1426.7
           1616.4
                       7087.5
                                     44
                                             36.74
                                                        35.68
                                                                   29.41
 84 6
           1690.2
                       8777.7
                                     65
                                             26.00
                                                        28.17
                                                                   28.69
                                             24.60
                                                        28.09
                                                                   27.93
 84 7
           1722.2
                      10499.9
                                     70
                      12452.2
                                                        29.16
                                                                   29,30
 84 8
           1952.3
                                     49
                                             39.84
                                                        32,69
                                                                   30.10
                      14237.0
                                     48
                                             37.18
 84 9
           1784.8
                                                        36.54
 8410
           2036.6
                      16273.6
                                     61
                                             33.39
                                                                   30.47
 8411
           1869.0
                      18142.6
                                     71
                                             26.32
                                                        31.61
                                                                   29.99
           1391.4
                                             22.81
                                                        27.45
                                                                   29,33
                      19534.0
                                     61
 8412
                                             21.61
                      21176.7
                                                        23.57
                                                                   28.54
 85 1
           1642.7
                                     76
                                                                   28.29
 85 2
           1909.7
                      23086.4
                                     74
                                             25.81
                                                        23.43
 85 3
                      25453.1
                                     77
                                             30.74
                                                        26.08
                                                                   28.50
           2366.7
 85 4
85 5
                      27717.4
                                     94
                                             24.09
                                                        26.70
                                                                   28.08
           2264.3
                      29831.0
                                                                   29.08
           2113,6
                                     39
                                             54.19
                                                        32.12
                                 *** H O D A S ***
                                                                   VERSIO
LISCOLZ DSD G063
          ACTUAL
                       CUH.
                                  COUNT
                                           HONTHLY
                                                      3 HONTH
 DATE
                                                                   ----LI100
                                            16.36
                                                        25.38
                                                                   27.83
           1815.7
                      31646.7
                                    111
 85 6
                                                         23.48
                                                                   27.14
                                             19.54
 83 7
           2012.2
                      33658.9
                                     103
                                    67
| 53
| 61
| 70±
 85 B
85 9
           2543,6
                                                                   27.70
                      36202.5
                                             37.96
                                                        22.67
          71899.6
                      38102.1
                                             35.84
                                                        28.95
                                                                   28.02
         2442.0
                      40544.1
                                                        38.04
                                                                   28.53
                                             40.03
 8510
         2124.3
                                             30.35
                                                        35.14
                                                                   28.62
 8511
                      42668.4
                                              0.00
                      42668.4
                                     55
                                                        24.55
                                                                   27.60
 8512
                                  . . . . . . . . . . . . . . . . . . .
                                            inovik
Tolaiz
184 failures
                                    1546
 TOTAL 42668.4
                    VLatest 3 month Flyinghours = 6465.9
```

0.563

£1388672	SD GO63 RATIONAL	STATUS RE	PORT	** H O D A	S ***	PAG	
L1500						PREPARED	
	010A			BASE:	**** -	FLEET SU	MMARY
COMMAND: LISOO	***						
£1300	TOTAL		AVERAGE	TOTAL	PULLY	NOT	DADET V
	FLIGHT		AIRCRAFT	POSSESSED	MISSION	MISSION	PARTLY HISSION
DATE	HOURS	SORTIES	INVENTORY	HOURS	CAPABLE	CAPABLE	CAPABLE
	~						LI100
8312	888.9	206	18	13435	12297	957	181
8401	1124.3	265	18	13595	12332	975	288
8402	1289.3	308	19	13297	12446	668	183
8403	1630.8	347	20	14888	13676	1091	121
8404	1426.7	318	20	14574	13281	1135	158
8405	1616.4	343	21	15456	14411	986	59
8406	1690.2	346	20	14304	12264	1056	984
8407	1722.2	361	23	16991	15186	1488	317
8408	1952.3	408	23	16786	15119	1592	75
8409	1784.8	364	24	17130	15225	1643	262
8410	2036.6	434	23	17520	15837	1274	409
8411	1869.0	463	25	18186	15497	1785	904
8412	1391.4	338	27	19903	18638	945	320
8501	1642.7	388	27	20162	17851	2147	164
8502	1909.7	426	27	18354	15251	2630	473
8503	2366.7	516	28	20832	18916	1648	268
8504	2264.3	491	29	20510	18853	1584	73
LI500LZD	SD G063		1	*** H O D A	_		VERSION 1.0
8505	2112 6	472	29	21613	20147	1370	96
8506	2113.6 1815.7	413	30	21859	20664	1073	122
8507		467	31	23118	21032	1897	189
8507 8508	2012.2 2543.6	553	33	24108	21867	1699	542
			33	23596	21468	1794	334
8509	1899.6	439					620
8510	2442.0	581	35 36	25990 25976	23687 23745	1683 1685	546
8511	2124.3	487	JO	43970	23/43	100)	J40
TOTAL	43557.3	9734		452183	409690	34805	7688
HONTHLY							
AVERAGE	1814.9	405	25	18840	17070	1450	320

APPENDIX F

DISTANCES	BETWEEN 1	ITF BASES	AND THE AR	TRACKS
(As calcula	ated by	the Grea	at Circle	routine)

	DISTANCE		GOOSEBAY		F-16 F-16	EAR	1	:	421. 477.
THE	DISTANCE	FROM	GOOSEBAY GOOSEBAY	то	F-16 F-16	ARCP EAR		IS:	2057. 2333.
THE	DISTANCE	FROM	GOOSEBAY GOOSEBAY	то	F-15 F-15	ARCP EAR		IS:	814. 505.
THE	DISTANCE	FROM	GOOSEBAY GOOSEBAY	то	F-15 F-15	ARCP EAR		IS:	541. 820.
THE	DISTANCE	FROM	GOOSEBAY GOOSEBAY	TO	F-15 F-15	ARCP EAR		IS:	1916. 2290.
THE	DISTANCE	FROM	GOOSEBAY GOOSEBAY	TO	F-111 F-111	ARCP EAR	_	IS:	911. 482.
THE	DISTANCE	FROM	GOOSEBAY GOOSEBAY	то	F-111 F-111	ARCP EAR	_	IS:	682. 1107.
THE	DISTANCE	FROM	GOOSEBAY GOOSEBAY	то	RF-4C RF-4C	ARCP EAR		IS:	1227. 873.
THE	DISTANCE	FROM	GOOSEBAY GOOSEBAY	то	RF-4C RF-4C	ARCP EAR		IS:	423. 516.
THE	DISTANCE	FROM	GOOSEBAY GOOSEBAY	TO	RF-4C RF-4C	ARCP EAR		IS:	646. 908.
THE	DISTANCE	FROM	GOOSEBAY GOOSEBAY	то	RF-4C RF-4C	ARCP EAR		IS:	1148. 1431.
THE	DISTANCE	FROM	GOOSEBAY GOOSEBAY	то	RF-4C RF-4C	ARCP EAR	_	IS:	2087. 2433.

```
THE DISTANCE FROM MILDENHALL TO F-16 ARCP 1 IS: 2290.
                 MILDENHALL
                              F-16
                                     EAR 1 : 1976.
THE DISTANCE FROM MILDENHALL TO F-16 ARCP 2 IS:
                              F-16
                 MILDENHALL
                                     EAR 2: 196.
THE DISTANCE FROM MILDENHALL TO F-15 ARCP 1 IS: 2905.
                 MILDENHALL
                              F-15
                                     EAR 1
                                            : 2469.
THE DISTANCE FROM MILDENHALL TO F-15 ARCP 2 IS: 1850.
                 MILDENHALL
                              F-15
                                    EAR 2 : 1472.
THE DISTANCE FROM MILDENHALL TO F-15 ARCP 3 IS:
                                                 350.
                 MILDENHALL
                              F-15
                                    EAR 3 : 154.
THE DISTANCE FROM MILDENHALL TO F-111 ARCP 1 IS: 3027.
                 MILDENHALL
                              F-111 EAR 1
                                           : 2431.
THE DISTANCE FROM MILDENHALL TO F-111 ARCP 2 IS:
                                               1635.
                 MILDENHALL
                             F-111 EAR 2 : 1181.
THE DISTANCE FROM MILDENHALL TO RF-4C ARCP 1 IS: 3362.
                 MILDENHALL
                              RF-4C EAR 1
                                           : 2982.
THE DISTANCE FROM MILDENHALL TO RF-4C ARCP 2 IS:
                                                2301.
                 MILDENHALL
                              RF-4C EAR 2 : 1900.
THE DISTANCE FROM MILDENHALL TO RF-4C ARCP 3 IS:
                                               1685.
                 MILDENHALL
                              RF-4C EAR 3
                                           : 1382.
THE DISTANCE FROM MILDENHALL TO RF-4C ARCP 4 IS:
                                               1140.
                 MILDENHALL
                              RF-4C EAR 4
                                                 848.
THE DISTANCE FROM MILDENHALL TO RF-4C ARCP 5 IS:
                                                 129.
                 MILDENHALL
                              RF-4C EAR 5 :
                                                 293.
```

```
THE DISTANCE FROM LORING AFB TO F-16 ARCP 1 IS:
                                                362.
                                                668.
                                   EAR 1:
                 LORING AFB
                              F-16
THE DISTANCE FROM LORING AFB TO F-16 ARCP 2 IS: 2478.
                            F-16 EAR 2 : 2764.
                 LORING AFB
                                                 339.
THE DISTANCE FROM LORING AFB TO F-15 ARCP 1 IS:
                                                232.
                                     EAR 1
                 LORING AFB
                              F-15
THE DISTANCE FROM LORING AFB TO F-15 ARCP 2 IS:
                                                788.
                                     EAR 2 :
                                               1157.
                 LORING AFB
                              F-15
THE DISTANCE FROM LORING AFB TO F-15 ARCP 3 IS:
                                                2323.
                                                2721.
                 LORING AFB
                               F-15
                                    EAR 3 :
THE DISTANCE FROM LORING AFB TO F-111 ARCP 1 IS:
                                                 453.
                              F-111 EAR 1 :
                                                 253.
                 LORING AFB
 THE DISTANCE PROM LORING AFB TO F-111 ARCP 2 IS:
                                                 994.
                  LORING AFB F-111 EAR 2 : 1465.
                                                 796.
  17 MICHARGE FROM LORING AFB TO RF-4C ARCP 1 IS:
                                                 408.
                               RF-4C EAR 1 :
                  LORING AFB
                                                 352.
     . MICH FROM LORING AFB TO RF-4C ARCP 2 IS:
                               RF-4C EAR 2:
                                                 742.
                  LORING AFB
                                                 946.
         FIGH WOM LORING APB TO RF-4C ARCP 3 IS:
                             RF-4C EAR 3 : 1252.
                  WORING APB
           THE TOTAL WATER APR TO RF-4C ARCP 4 IS: 1509.
                   TRYTO AFB RF-4C EAR 4 : 1810.
               ** ** AFF TO RF-4C ARCP 5 IS: 2511.
```

>>~~ RF-4C EAR 5 : 2866.

SLAM TTF Output

Plot of Cumulative Fighters Refueled (R) and Aborted Fighters due to Missed ARs (A) VS. Time.

Cumulative Refuelings and Aborts

Maintenance Repair Time Distribution

(Output from the SLAM TTF Maintenance Routine)

Note that this Distribution is very pessimistic because it requires that the KC-10 be 100% functional, without consideration of back-up systems.

PARTITION NUMBER 1888 PARTITION OF TIME

```
ore or a contract
                                                                                                              Percent of Repair Completions
                                                                                                                                                                                                                                                ċС
                                                 Time
                i.u.i
         C C.SUC C.TEC-+C.
C C.SUC C.TET +U:
        2 C.02C C.15C.427 4:
C C.CCC L.17:14E1 4
1 C.01C C.2CC:421 4
                                                                                                                                                                                   Cumulative % of
                                                                                                                                                                                  Repair Completions
                                                                                                                Distribution ( Repairs will be s the weights
        1 (.010 0.2171+11 + 1 (.010 0.11 0.11 + 1)
                (.C.C 0.275.4.1 4%
                                                                                                          is the weighted ( completed before
       2 (.... 0... 71... 12 +1 12 (... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0... 12 0.
                                                                                                                                                                                           time "x") X100
                                                                                                          sum of several
                                                                                                          lognormal distributions.
                6.610 0.611.411 40
6.611 0.611.411 40
        1 (.01( t.:1)::4(:
2 (.01( t.:1)::4(:
              Callé Carriere.
              6.316 1.7....481
             Ground Interval to achieve 88% Reliability
                                                                                                         8.0 Hours
                                                                                                                                                                                                                         for ARCT 10
        Time between ARCTs = 1.3 hours
                                                                                                            Achieves 92% reliability for ARCT 2
        1 2.1.10 1.151.11.1.1
                                                                                                            Achieves 94% reliability for ARCT 3
                                                            101
```

```
PROGRAM MAIN
    DIMENSION NSET (50000)
    COMMON/SCOM1/ATRIB(100),DD(100),DDL(100),DTNOW,II,MFA,MSTOF,NCLNR
   1, NCRDR, NPRNT, NNRUN, NNSET, NTAPE, SS(100), SSL(100), TNEXT, TNOW, XX(100)
    COMMON QSET(50000)
    EQUIVALENCE(NSET(1), QSET(1))
    NNSET=50000
    NCRDR=5
    NPRNT=6
    NTAPE=7
    NPLOT=2
    CALL SLAM
    STOP
    END
    SUBROUTINE INTLC
    COMMON/SCOM1/ATRIB(100),DD(100),DDL(100),DTNOW,II,MFA,MSTOP,NCLNR
   1, NCRDR, NPRNT, NNRUN, NNSET, NTAPE, SS(100), SSL(100), TNEXT, TNOW, XX(100)
    END
    SUBROUTINE OTPUT
    COMMON/SCOM1/ATRIB(100), DD(100), DDL(100), DTNOW, II, MFA, MSTOP, NCLNR
   1, NCRDR, NPRNT, NNRUN, NNSET, NTAPE, SS(100), SSL(100), TNEXT, TNOW, XX(100)
    RETURN
    END
    SUBROUTINE EVENT(I)
    COMMON/SCOM1/ATRIB(100),DD(100),DDL(100),DTNOW,II,MFA,MSTOP,NCLNR
   1,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS(100),SSL(100),TNEXT,TNOW,XX(100)
    DIMENSION NSET (50000)
    COMMON QSET(50000)
    EQUIVALENCE(NSET(1).QSET(1))
    EQUIVALENCE (ATRIB(1), FLYHRS), (ATRIB(4), MXTIME)
    REAL PROBFAIL, MTBF, MTTR, STDEV, MXTIME
    60 TO (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22
   1,23) I
Events 1-23 are used to determine Maintenance Time for the 23 Sub-
   systems of the KC-10 aircraft. First, a probability of failure is
   calculated using the exponential distribution as a model (the
   parameter of the exponential distribution depends on the subsystem).
   A random number is then drawn to see if the subsystem fails.
   then Maintenance Time (MXTIME) is set to zero. Otherwise, a random
   value is drawn from the Lognormal distribution with the parameters
   for the Maintenance Time for that particular subsystem.
   NOTE: These values are based on MODAS (Maintenance and Operational
   Data Access System) values for the three months Sep - Nov 85.
   The value for MTTR is calculated using Manhours per failure,
   ie: Total Manhours/ Total Failures. All values for Manhours are divided
   by the average number of men per repair, 2.7188, to get MTTR in hours.
```

C

¢

C

C

C

- C Worst).
- C Event 1 calculates MXTIME for the 46*** subsystem.
- 1 MTBF = 35.14075 MTTR = 22.816 / 2.7188 GO TO 98
- C Event 2 calculates MXTIME for the 71*** subsystem.
- 2 MTBF = 45.85741 MTTR = 11.040 / 2.7188 GO TO 98
- C Event 3 calculates MXTIME for the 23*** subsystem.
- 3 MTBF = 48.98407 MTTR = 18.128 / 2.7188 GO TO 98
- C Event 4 calculates MXTIME for the 44*** subsystem.
- 4 MTBF = 58.25133 MTTR = 7.498 / 2.7188 GO TO 98
- C Event 5 calculates MXTIME for the 52*** subsystem.
- 5 MTBF = 71.84328 MTTR = 9.956 / 2.7188 GO TO 98
- C Event 6 calculates MXTIME for the 13** subsystem.
- 6 MTBF = 77.90236 MTTR = 12.467 / 2.7188 GO TO 98
- C Event 7 calculates MXTIME for the 64*** subsystem.
- 7 MTBF = 83.97269 MTTR = 5.964 / 2.7188 GO TO 98
- C Event 8 calculates MXTIME for the 14** subsystem.
- 8 MTBF = 113.43677 MTTR = 22.947 / 2.7188 GO TO 98
- C Event 9 calculates MXTIME for the 47** subsystem.
- 9 MTBF = 117.56177 MTTR = 5.133 / 2.7188 GO TO 98
- C Event 10 calculates MXTIME for the 51*** subsystem.
- 10 MTBF = 117.56177 MTTR = 8.345 / 2.7188 GO TO 98
- C Event 11 calculates MXTIME for the 45*** subsystem.

- 11 MTBF = 131.95703 MTTR = 15.547 / 2.7188 GO TO 98
- C Event 12 calculates MXTIME for the 24*** subsystem.
 12 MTBF = 174.75397
 MTTR = 8.345 / 2.7188
 GO TO 98
- C Event 13 calculates MXTIME for the 41*** subsystem.
 13 MTBF = 174.75397
 MTTR = 14.843 / 2.7188
 GO TO 98
- C Event 14 calculates MXTIME for the 72*** subsystem.
 14 MTBF = 215.52991
 MTTR = 11.397 / 2.7188
 GO TO 98
- C Event 15 calculates MXTIME for the 11*** subsystem.

 15 MTBF = 269.41229

 MTTR = 15.175 / 2.7188

 GO TO 98
- C Event 16 calculates MXTIME for the 49*** subsystem.

 16 MTBF = 269.41229

 MTTR = 7.279 / 2.7188

 GO TO 98
- C Event 17 calculates MXTIME for the 42*** subsystem.

 17 MTBF = 307.89978

 MTTR = 15.771 / 2.7188

 GO TO 98
- C Event 18 calculates MXTIME for the 12*** subsystem. 18 MTBF = 380.34680 MTTR = 19.659 / 2.7188 GO TO 98
- C Event 19 calculates MXTIME for the 68*** subsystem.
 19 MTBF = 380.34680
 MTTR = 21.929 / 2.7188
 GO TO 98
- C Event 20 calculates MXTIME for the 63*** subsystem.
 20 MTBF = 431.05975
 MTTR = 23.073 / 2.7188
 GO TO 98
- C Event 21 calculates MXTIME for the 61*** subsystem.
 21 MTBF = 646.58960
 MTTR = 7.200 / 2.7188
 GO TO 98

```
Event 22 calculates MXTIME for the 65*** subsystem.
22
     MTBF = 718.43286
     MTTR = 10.778 / 2.7188
     GO TO 98
     Event 23 calculates MXTIME for the 69*** subsystem.
     MTBF = 718.43286
     MTTR = 8.000 / 2.7188
     GO TO 98
     These are the calculations for probability of subsystem failure,
     and for Maintenance Time, if the subsystem does fail.
 98
     PROBFAIL = 1 - EXP(-FLYHRS/MTBF)
      IF (DRAND(1) .LE. PROBFAIL) THEN
            60 TO 99
         ELSE
            MXTIME = 0
             WRITE(NPRNT, *)'FOR SUB = ', I,' O XXTIME = ', XX(10)
C
            RETURN
         ENDIF
 99
      STDEV = 0.29 * MTTR
      MXTIME = RLOGN(MTTR, STDEV, 2)
             WRITE(NPRNT, *)'FOR SUB = ', I, MX TIME = ', MXTIME
      RETURN
      END
```

der desperante desperante desperante desperante desperante desperante desperante desperante desperante desperan

```
GEN, HUNSUCK, TTF 2HR 4RATIO, 4/1/1986, 1, NO, NO, YES, NO, YES, 72;
LIMITS, 35, 8, 2500;
TIMST, XX(1), CREWREST:
TIMST, XX (2), KCCREWDD;
TIMST, XX(3), F16ARCT1;
TIMST, XX(4), F16ARCT2;
TIMST, XX(5), TRACK161;
TIMST, XX(6), RTB16_1;
TIMST, XX(7), GNDINTVL;
TIMST, XX (8), KCAR16_1;
TIMST, XX(9), ABORTS;
TIMST, XX(10), F16PERLAP;
TIMST, XX(11), TOT_F16S;
TIMST, XX(12), ORBITTM;
TIMST, XX(13), MAXCRWDD;
TIMST, XX(14), LAPS161;
TIMST, XX(15), LAUNCH1;
TIMST, XX(16), REFUELED;
EQUIVALENCE /XX(1), CREWREST/ XX(2), KCCREWDD/ XX(3), F16ARCT1;
EQUIVALENCE /XX(4),F16ARCT2/ XX(5),TRACK161/ XX(6),RTB16_1;
EQUIVALENCE /XX(7), GNDINTVL/ XX(8), KCAR16_1/XX(9), ABORTS;
EQUIVALENCE /XX(10),F16PERLAP/XX(11),TOT_F165/XX(12),ORBITTM;
EQUIVALENCE /XX(13).MAXCRWDD/ XX(14).LAPS161 /XX(15).LAUNCH1;
EQUIVALENCE /XX(16), REFUELED;
EQUIVALENCE /ATRIB(1), FLYHRS/ ATRIB(2), STCREWDD/ ATRIB(3), STARTMX;
EQUIVALENCE /ATRIB(4), MXTIME/ ATRIB(5), MYLAPS / ATRIB(6), CREWDUTY;
EQUIVALENCE /ATRIB(7), SCHEDTO;
EQUIVALENCE /UNFRM(2,4), UNLOAD;
INTLC, CREWREST=13;; includes 1 hour transportation
INTLC,F16ARCT1=3.55;; this is the time from F-16 launch to ARCT1
INTLC, F16ARCT2=7.97;;
INTLC, TRACK161=0.65;; time down track for the 1st AR for F-16s
                       = 39 minutes
INTLC, GNDINTVL=2.0;; scheduled interval between KC-10 landing and T.O.
INTLC,RTB16_1 =1.3;; the time it takes the KC-10 to RTB after F-16 EAR1
INTLC, KCAR16_1=1.2;; the time it takes the KC10 to fly from TTF to
                       F-16 ARCT1
INTLC,ABORTS =0.0;; accumulates number of fighter aborts
INTLC,F16PERLAP=4.0;;
                        fighter to tanker ratio (also, fighters per
                         track lap)
INYLC, TOT_F16S=700.0;; total number of F-16s to be deployed / remaining
INTLC,ORBITTM =0.1666;; air refueling orbit is a 10 minute delay
INTLC, LAPS161 =4.0;; number of laps of F-16 AR track 1,
                          to be flown by KC10
INTLC,LAUNCH1 =24.0;;
                        time of the first scheduled TTF KC10
                          launch for AR
INTLC,MAXCRWDD=16.0;; max allowable KC-10 crew duty day ***********
INTLC,REFUELED=0.0;; the number of fighters refueled by the TTF
RECORD, TNOW, TIME OF DEPLOY, 0, P, 6, 0, 168, YES;
VAR, TOT_F16S, T, TOT F16S REMAIN, 0, 1000;
VAR, ABORTS, A, CUM F16S ABORT, 0,1000;
                              ,0,1000;
VAR, REFUELED, R, REFUELINGS
```

order secondal secondal seconde extende estade seconde menoses execute seconde seconde seconde

```
NETWORK;
      RESOURCE, CREWGOOS (0), 30;; Initially, there are no KC-10 crews
                                     at Goose.
      RESOURCE,F16_1R7(4),33,32,31;; Only 4 KC-10s are allowed on track
KCGOO CREATE, 0.01, 6, , 4, 2;; Make 4 KC-10s instantly at Goose Bay,
                   starting at time =6 hrs. Entity goes to 2 nodes.
            ACT, CREWREST, , NEWCR; newly arrived crews must rest
                                   before flying
            ACT,,,FLYHR;
NEWCR ALTER, CREWGOOS/+3:
                            Landing tankers bring extra aircrews, who
            TERM:
                            become available after completing crew rest.
FLYHR ASSIGN, FLYHRS=6.0; Duration of mission flying to TTF from Home.
            ACT, UNLOAD, , MAINT; Plane is unloaded.
                                (ALL crews already resting)
;
TIRED GOON, 1;
             ACT, CREWREST, , RESTD;
RESTD
          FREE, CREWGOOS/1; this tired crew gets freed after
;
                                     13 hours rest
             TERM;
MAINT ASSIGN, STARTMX=TNOW; Plane enters maintenance.
      GOON, 23;;
                        KC-10 is divided into its 23 subsystems for
            ACT,,,EV1;
                             repair as necessary.
            ACT,,,EV2;
            ACT,,,EV3;
            ACT, , , EV4;
            ACT,,,EV5;
            ACT,,,EV6;
            ACT,,,EV7;
            ACT,,,EVB;
            ACT, , , EV9;
            ACT,,,EV10;
            ACT,,,EV11;
            ACT, , , EV12;
            ACT,,,EV13;
           ACT, , , EV14;
            ACT, , , EV15;
            ACT, , , FV16;
            ACT,,,EV17;
            ACT, , , EV18;
            ACT,,,EV19;
            ACT, , , EV20;
            ACT, , , EV21;
           ACT, , , EV22;
            ACT,,,EV23;
EV1
      EYENT, 1, 1;;
                                Lalculates MXTIME (Atrib(4) of the entity)
            ACT, MXTIME, , Q1;
EV2
      EVENT, 2, 1;;
```

```
ACT, MXTIME., Q2:
EV3
       EVENT, 3, 1;;
            ACT, MXTIME, ,Q3;
EV4
       EVENT, 4, 1;;
            ACT, MXTIME, , Q4;
EV5
       EVENT, 5, 1;;
            ACT, MXTIME, , Q5;
EV6
       EVENT, 6, 1;;
            ACT, MXTIME, , Q6;
EV7
       EVENT, 7, 1;;
            ACT, MXTIME, , Q7;
EV8
       EVENT, 8, 1;;
            ACT, MXTIME, ,QB;
EV9
       EVENT, 9, 1;;
            ACT, MXTIME, , Q9;
EV10
       EVENT, 10, 1;;
             ACT, MXTIME, , Q10;
EV11
       EVENT, 11, 1;;
             ACT, MXTIME, , Q11;
EV12
       EVENT, 12, 1;;
             ACT, MXTIME, , Q12 ;
EV13
       EVENT, 13, 1;;
             ACT, MXTIME, , Q13;
EV14
       EVENT, 14, 1;;
             ACT, MXTIME, , Q14;
EV15
       EVENT, 15, 1;;
             ACT, MXTIME, , Q15 ;
EV16
       EVENT, 16, 1;;
             ACT, MXTIME, , Q16;
EV17
       EVENT, 17, 1;;
             ACT, MXTIME, , Q17;
EV18
       EVENT, 18, 1;;
             ACT, MXTIME, , Q18;
EV19
       EVENT, 19, 1;;
             ACT, MXTIME, , Q19;
EV20
       EVENT, 20, 1;;
             ACT, MXTIME, , Q20;
EV21
       EVENT, 21, 1;;
             ACT, MXTIME, , Q21;
EV22
       EVENT, 22, 1;;
             ACT, MXTIME, , 022;
       EVENT, 23, 1;;
EV23
             ACT, MXTIME, , Q23;
        Now we wait (in Queues 1-23) until completion of Maintenance
             on all subsystems (MATCH). Then we ACCUMULATE all the
             subsystems into one KC-10 entity again:
01
       QUEUE(1),,,,MATC;
02
       QUEUE(2),,,,MATC;
03
       QUEUE(3),,,,MATC;
04
       QUEUE(4),,,,MATC;
05
       QUEUE(5),,,,MATC;
```

```
QUEUE(6),,,,MATC;
89
Q7
      QUEUE(7),,,,MATC;
08
      QUEUE(8),,,,MATC;
09
      QUEUE(9),,,,MATC;
Q1Q
      QUEUE(10),,,,MATC;
      QUEUE(11),,,,MATC;
Q11
Q12
      QUEUE(12),,,,MATC;
·Q13
      QUEUE(13),,,,MATC;
Q14
      QUEUE(14),,,,MATC;
Q15
      QUEUE(15),,,,MATC;
Q16
      QUEUE(16),,,,MATC;
Q17
      QUEUE(17),,,,MATC;
      QUEUE(18),,,,MATC;
Q18
Q19
      QUEUE(19),,,,MATC;
Q20
      QUEUE(20),,,,MATC;
021
      QUEUE(21),,,,MATC;
022
      QUEUE (22),,,,MATC;
Q23
      QUEUE(23),,,,MATC;
    The aircraft subsystems are matched by the fact that they all have
     a common Atrib(3)=STARTMX time. When all maintenance is
     completed, the 23 subsystems of the KC-10 proceed together to A1.
     where they are ACCUMULATEd into a single KC-10 entity again.
MATC MATCH,3,Q1/A1,Q2/A1,Q3/A1,Q4/A1,Q5/A1,Q6/A1,Q7/A1,Q8/A1,Q9/A1.
       Q10/A1,Q11/A1,Q12/A1,Q13/A1,Q14/A1,Q15/A1,Q16/A1,Q17/A1,Q18/A1,
       Q19/A1,Q20/A1,Q21/A1,Q22/A1,Q23/A1;
A1
      ACCUMULATE, 23, 23, HIGH(4), 1;
                                    Save attribute set of entity with
                                      highest value of MXTIME= ATRIB(4).
ï
      COLCT, INTVL(3), MAINTENANCE TIME, 40, 0.0, 0.25, 1;
         ACT, O, STCREWDD. NE. O., CKDAY; already have a crew, but check
;
                                          if tired
         ACT, 0, , KCREW;
                                         if no crew, wait to get a
                                         new crew
CKDAY ASSIGN, CREWDUTY=TNOW-STCREWDD, 1; update the crew duty day
         ACT, 0, CREWDUTY. LT. 12, SCHED;
                                         plenty of day left for
                                               another flt
;
         ACT, O, , LONG;
                                         not enough duty day left,
                                               go rest
LONG GOON, 2;
            ACT, CREWREST-GNDINTVL,, RESTD; old aircrew is sent into
                                         crew rest before maintenance
                                          actions started!
            ACT, 0, , KCREW; must get new aircrew
KCREW AWAIT(30), CREWGOOS; if no crews are available, wait for one
      ASSIGN, STCREWDD=TNOW-1.5; this time includes briefing of
                                    new crew and aircrew preflight
                                    of the KC-10
SCHED GOON, 1;
                    assigns scheduled launch time,
                          and flight plan route
```

```
ACT, O, TNOW. LE. LAUNCH1, FIRST; ie: this is a "no earlier than"
                              time. NOTE: independent of crew or mx.
        ACT, O, TNOW. GT. LAUNCH1, LATER; later launches are scheduled
                                            based on a pre-planned
                                            ground mx time.
FIRST
           ASSIGN, SCHEDTO=LAUNCH1,
                                              MYLAPS = LAPS161;
             ACT, 0, , MISSN;
LATER
           ASSIGN, SCHEDTO=STARTMX + GNDINTVL, MYLAP8 = LAPS161;
             ACT, 0, , MISSN;
 $$$ This is the key to the TTF operation: KC-10 launches are
      scheduled on a regular interval, which is based on the
      reliability and maintainability of the KC-10. Every KC-10 is
      planned to fly a closely scheduled mission, followed by a
      specified time on the ground, in which maintenance is performed.
      If the KC-10 breaks and cannot be repaired prior the end of
      the specified time on the ground (GNDINTVL), the KC-10 misses
      an AR! If the KC-10 misses an AR, the maintenance is continued,
      with the hope of being able to make the next scheduled AR for
    , that KC-10. If all ARs are missed, due to very long repair
       time, then the KC-10 must wait until its next scheduled takeoff
      (but it has 100% reliability for that launch).
MISSN GOON,1;; Choose one of the following three actions:
      ACT/1, SCHEDTO-TNOW, SCHEDTO.GE. TNOW. AND. MYLAPS.EQ. LAPS161, LAUNC;
        On-Time TO! ie: takeoff intvl .GT. mxtime
į
      ACT/2,0,SCHEDTO.LT.TNOW,MSSRZ; Missed RZ!
                              caused by excessive delay
      ACT/3.SCHEDTO-TNOW.SCHEDTO.GE.TNOW.AND.MYLAPS.LT.LAPS161,LAUNC;
               Delayed TO!
      ACT/4,,,LAUN; SCREWED UP LOGIC
              (programming note: SCHEDTO is required to be an ATRIB
                since it will be changed by subsequent entities.)
           Note: if KC10 aircrew not available,
                 or if Maintenance delayed, (one long MXTIME can cause
                  several missed rendezvous'!) this program
ï
                 calls it MSSRZ.
;
   *** put fighter abort actions here (ie:entity to abort, colct,etc)
MSSRZ ASSIGN, MYLAPS = MYLAPS-1; this ensures that KC10 only flies
                  its own (preplanned) ARCTs (ie: if it launches late,
                  it does NOT fly the same number of track laps).
;
                  The following test ensures that a delay causes
                      the KC10 to miss ONLY its scheduled ARCTs:
        ACT, O, MYLAPS. EQ. O, MSALL; missed all laps--wait till next
                 sched mission but, obviously, no further mx needed.
        ACT.O.MYLAPS.GT.O.MORE; still have at least one sched ARCT
                 to try achieve.
 MSALL
           ASSIGN.FLYHRS=0:
             ACT, SCHEDTO+KCAR16_1+TRACK161+RTB16_1+GNDINTVL - TNOW;
```

```
ie: to get proper interval, wait out the remainder
                    of the planned mission plus unneeded subsequent
                    maintenance (GNDINTVL)
            ASSIGN, STARTMX=TNOW-GNDINTVL;; this tells scheduler when
                         to launch
ACT, O, , CKDAY;; check if crew is still fresh, then fly next mission
          ASSIGN, SCHEDTO=SCHEDTO + 2*TRACK161 + ORBITTM; to make
               next ARCT
          ASSIGN, ABORTS = ABORTS + F16PERLAP;
            ACT.O, MISSN:
LAUNC GOON;
       ACT, KCAR16_1;
RZ161 AWAIT(33),F16_1RZ;
       ACT, TRACK161;
      ASSIGN, TOT_F16S=TOT_F16S - F16PERLAP, MYLAPS= MYLAPS - 1,2;
      ASSIGN, REFUELED=REFUELED + F16PERLAP;
       ACT,,,FRE1; this KC-10 entity will free the track for subseq. RZ
       ACT,,,FIGHT;
                          this entity will become a fighter
FRE1 - FREE, F16_1RZ/1, 1;
        ACT, TRACK161+ORBITTM, MYLAPS.GT.O, RZ161;; Take another lap
                                                      vax RZ
        ACT,0
                             , MYLAPS.LE.O, RTB;;
                                                     KC-10 Returns
                                                      To Base
RTB
      GOON, 1;;
                            fly back to the TTF base from this track
       ACT, RTB16_1;;
      ASSIGN, FLYHRS=TNOW-SCHEDTO, 1;
LAND ASSIGN, CREWDUTY=TNOW-STCREWDD, 1;
       COLCT, FLYHRS, MISSION LENGTH, 24, 0.0, 1;
       COLCT, CREWDUTY, CREW DUTY DAY, 24, 0.0, 1;
         ACT, O, CREWDUTY. GT. MAXCRWDD, NDCRW; too close to max DD,
                                              get rid of crew
; ***
          Need to modify this for realistic test!
                     (ie: make atrib=actual DD) ****
         ACT, O, , MAINT; otherwise, the crew stays with the aircraft
;*** considering the large GNDINTVL (?) should I keep crew with acft?
NOCRW ASSIGN, STCREWDD=0;
        ACT, 0, , TIRED; this is the aircrew going back to the barracks
        ACT, O, , MAINT;
                         this is the KC10 aircraft going back to
                            maintenance
ï
FIGHT GOON, 1;
       ACT,,TOT_F16S.LE.O,STP; ***could also terminate
                                    by setting STOP=1***
       ACT, TOT F16S.GT.O, CONT;
CONT TERM, 200; fighters continue on their merry way, and so do EC-10s
; ***
         the above term number is only applicable for 700 F-16s by 4s
STP
      ALTER,F16_1RZ/-2; prevent any more KC-10s from flying missions
```

and the second consists consists and an action of the consists and an action of the constant and the constan

```
COLCT, TNOW, TIME OF TERMINATION;
TERM;

STATS CREATE, 12,0;
COLCT, TOT_F16S, F16s REMAINING;
COLCT, ABORTS, F16s ABORTING; ** NECESSARY? ***
TERM;

ENDNETWORK;
INIT, 0, 168;
; MONTR, TRACE, 0, 50;
; MONTR, SUMRY, 168;
FIN;
```

```
PROGRAM MAIN
     DIMENSION NSET(10000)
     COMMON/SCOM1/ATRIB(100),DD(100),DDL(100),DTNOW,II,MFA,MSTOP,NCLNR
    1, NCRDR, NPRNT, NNRUN, NNSET, NTAPE, SS (100), SSL (100), TNEXT, TNOW, XX (100)
     COMMON QSET(10000)
     EQUIVALENCE (NSET(1), QSET(1))
     NNSET=10000
     NCRDR=5
     NPRNT=6
     NTAPE=7
     NPLOT=2
     CALL SLAM
     STOP
     END
SUBROUTINE EVENT(I)
     COMMON/SCOM1/ATRIB(100).DD(100).DDL(100).DTNOW.II.MFA.MSTOP,NCLNR
     1, NCRDR, NPRNT, NNRUN, NNSET, NTAPE, SS(100), SSL(100), TNEXT, TNDW, XX(100)
      IF(1.GT.3) CALL ERROR(1)
     GO TO (1,2,3) I
************
***EVENT (1) loads the aircraft to capacity with fuel/cargo and assigns
*** fighters, depending on what remains to be deployed.
      IF(ATRIB(1).EQ.1)THEN
             GO TO 11
         ELSE
             CALL ERROR(11)
         ENDIF
***Acft is a KC-10
***RULE: Assign optimum # fighters to acft, then asssign fuel for
*** KC-10, offload, then assign cargo load (as attributes to entity).
      IF (XX(14).LE.(XX(12)-XX(13)))THEN
             ATRIB(7)=1
             ATRIB(8)=XX(14)
             XX(13) = XX(13) + XX(14)
***
                         An entire flight of fighters is
***
                         assigned to the KC-10.
***
                         NOTE: ATRIB(7) indicates 1=AR, 0=No Air Refl
                               ATRIB(8) is # fighters assigned to KC-10
***
***
                               XX(14) is optimal # of fighters per KC-10
***
                               XX(12)-XX(13) is remaining fighters
         ELSE
              IF (XX(12)-XX(13).EQ.0) THEN
                 ATRIB(7)=0
                 ATRIB(8) = XX(12) - XX(13)
                 ENDIF
              IF (ATRIB(8).GE.1) THEN
                 ATRIB(7)=1
                 XX(13) = XX(12)
                 ENDIF
```

particular proportion of the particular proportion of the proportion of the particular of the particul

```
***
                       Any remaining fighters were assigned to KC-10
         ENDIF
***
                       Next assign fuel to KC-10
     ATRIB(5)=200+25*ATRIB(8)
***
                       Next assign any remaining payload to cargo
***
                                     if any cargo remains!
     IF((XX(1)-XX(2)).GT.(ATRIB(4)-ATRIB(5))) THEN
         ATRIB(6)=ATRIB(4)-ATRIB(5)
         XX(2)=XX(2)+ATRIB(6)
       ELSE
         ATRIB(6) = XX(1) - XX(2)
         XX(2)=XX(1)
       ENDIF
                           NOTE: ATRIB(4) is max payload=(max GW-ramp wt)
                                ATRIB(5) is fuel load
*
*
                                ATRIB(6) is cargo load
*
                                XX(2) is cumulative cargo deploying
     RETURN
***************
(Not yet modified to include delay time TNOW-ATRIB(2))
2
       IF (ATRIB(1).EQ.1) THEN
*:
       Aircraft is a KC-10
        XX(3) = XX(3) + 3.0
        ATRIB(5) = ATRIB(5) - 3.0
        ENDIF
     IF (ATRIB(1).GT.1) CALL ERROR(2)
     RETURN
**********
             EVENT 3 CALCULATES INFLIGHT FUEL CONSUMPTION
3
     DURATION=TNOW-ATRIB(2)
     IF (ATRIB(1).EQ.1) THEN
‡:
       Aircraft is a KC-10
        XX(3)=XX(3)+15*DURATION
        ATRIB(5)=ATRIB(5)-15*DURATION
        ENDIF
     IF (ATRIB(1).GT.1) CALL ERROR(3)
     RETURN
     END
SUBROUTINE INTLC
     COMMON/SCOM1/ATRIB(100),DD(100),DDL(100),DTNOW,II,MFA,MSTOP,NCLNR
     1.NCRDR, NPRNT, NNRUN, NNSET, NTAPE, SS (100), SSL (100), TNEXT, TNOW, XX (100)
     RETURN
      END
     SUBROUTINE OTPUT
```

green proposed windering toposee, seedens soldings withing the soldings of the soldings and other soldings

COMMON/SCOM1/ATRIB(100),DD(100),DDL(100),DTNOW,II,MFA,MSTOP,NCLNR

```
1, NCRDR, NPRNT, NNRUN, NNSET, NTAPE, SS(100), SSL(100), TNEXT, TNOW, XX(100)
     RETURN
     END
SUBROUTINE ALLOC (I, IFLAG)
     DIMENSION A(13)
     COMMON/SCOM1/ATRIB(100),DD(100).DDL(100),DTNOW.II.MFA.MSTOP.NCLNR
    1, NCRDR, NPRNT, NNRUN, NNSET, NTAPE, SS(100), SSL(100), TNEXT, TNOW, XX(100)
     IFLAG=0
     RETURN
     END
FUNCTION USERF (I)
     COMMON/SCOM1/ATRIB(100),DD(100),DDL(100),DTNOW,II,MFA,MSTOP,NCLNR
    1, NCRDR, NPRNT, NNRUN, NNSET, NTAPE, SS(100), SSL(100), TNEXT, TNOW, XX(100)
     IF (I.GT.3) CALL ERROR(5)
     GO TO (1,2,3), I
********
***USERF(1) determines cargo loading/unloading time
     GO TO (11), ATRIB(1)
***ACFT is a KC-10
     USERF=RNORM(4.0,.5,1)
     RETURN
*****************
***USERF(2) determines KC-10 fuel consumption in thousands
*** of pounds (very coarse!)
     USERF=(TNDW-ATRIB(3))*12.0
     RETURN
****************
***USERF(3) calculates expected major maintenance
     USERF=3
*** (For lack of an exact formula)
     RETURN
     END
```

Bibliography

Cited Articles

Books

- 1. Jane's All the World's Aircraft, 1985 86. New York: Jane's Publishing Co., Inc., 1986.
- 2. Selby, Samuel M. Ed. Standard Mathematical Tables, 20th Edition. Cleveland, OH: The Chemical Rubber Company, 1972.

Articles and Periodicals

3. Mehrez, Abraham and Helman Stern. "Vehicle Fleet Refueling Strategies to Maximize Operational Range,"

Naval Research Logistics Quarterly, 30,: 319-342

(1983).

Official Documents

- 4. Air Force Regulation 60-1, SAC Supplement 1, change
- 5. Air Force Regulation 60-16.
- 6. IFR Supplement, DOD Flight Information Publication (Enroute). St Louis Air Force Station, MO: The Defense Mapping Agency Aerospace Center, 1986.
- 7. Quatromani, Anthony F. Catalog of Wargaming and Military Simulation Models, 9th Ed. SAGAM 120-82. Organization of the Joint Chiefs of Staff Studies Analysis and Gaming Agency, Washington D.C. (AD A115 950).

Unpublished Materials

8. Blamey, Maj John T. "Extract from Strategic Mobility, Theater Warfare Lesson, Air Command and Staff College Vol 12." as quoted in the ACSC Readings Book, Lesson 41. Maxwell AFB, AL: Air University, 1984.

- 9. Bordelon, Capt Vernon P. and Major John C. Marcotte, Jr. Optimization of Strategic Airlift In-Flight Refueling. MS Thesis, GST/OS/81M-3. School of Engineering, AFIT (AU), Wright-Patterson AFB, OH, March 1981.
- 10. Carroll, Maj Jason D., Project Coordinator. Analysis
 of the Simulated Deployment of the 2d Armored Division
 to Europe. (SECRET) Military Traffic Management
 Command Report No. OA 79-8a-13 Vol. I. Transportation
 Engineering Agency, Newport News, VA, August 1980. (AD
 C024 248)
- 11. Carroll, Maj Jason D., Project Coordinator. Analysis of the Simulated Deployment of the 6th Cavalry Brigade (Air Combat) to Europe. (SECRET) Military Traffic Management Command Report No. OA 79-8a-13 Vol. II. Transportation Engineering Agency, Newport News, VA, August 1980. (AD C023 671)
- 12. Dietz, Capt Dennis C. An Analytical Methodology for Predicting Repair Time Distributions of Advanced Technology Aircraft. MS Thesis, GOR/OS/85D-3, School of Engineering, AFIT (AU), Wright-Patterson AFB, OH, Dec 1985.
- 13. Estes, Mr Milburn E TACAIR Deployment Alternatives
 (SN:22993). Air Force Center for Studies and Analysis,
 Mobility Division (AFCSA/SAGM), Washington DC, Sep 1985.
- 14. Foley, LTC Jack O. The KC-10--Concept, Capabilities, and Future. Air War College Report No. 84-073.

 Maxwell AFB, AL, March 1984.
- 15. Harp, Maj Tilford W. "M-14: A Model to Estimate the Wartime Capability of Strategic Airlift." Student Report 83-1010. Air Command and Staff College, Maxwell AFB, AL. June 1983.
- 16. Holck, Capt Eric K. and Capt Robert W. Ticknor.

 Strategic Airlift: US to Europe. MS Thesis,

 GST/OS/81M-7. School of Engineering, AFIT (AU),
 Wright-Patterson AFB, OH, March 1981. (AD A101 139)
- 17. Lindholm, Capt Tenny A. An Aerial Refueling
 Optimization Model Applied to Strategic Airlift. MS
 Thesis, GST/OS/82M-7. School of Engineering,
 AFIT (AU), Wright-Patterson AFB, OH, March 1982.

- 18. Reynolds, Capt Robert D. Optimum Utilization of the KC-10 for Fighter Aircraft Deployments. MS Thesis, GSM/SM/79S-12. School of Engineering, AFIT (AU), Wright-Patterson AFB OH, 1979.
- 19. Sargent, R.G. "Verification and Validation of Simulation Models," Progress in Modelling and Simulation, pp 159-167. New York: Academic Press, Inc., 1982.
- 20. Shaw, LTC Christopher C., Jr. The Effect of System Operation Duration on Failure Rate: A Study of Strategic Airlift. PhD Dissertation, University of Nebraska at Lincoln, December 1982.
- 21. Stanberry, Capt Wayne P. An Improved Maintenance Model for the Simulation of Strategic Airlift Capability. MS Thesis, GST/OS/82M-13, School of Engineering, AFIT (AU), Wright-Patterson AFB, OH, March 1982.
- 22. US Air Force Airlift Master Plan (unclassified version). Action memorandum. Washington: Hq USAF, 29 Sep 1983.

HOND CONTINUE CONTINUE DESCRIPTION CONTINUES C

Interviews

- 23. Coppler, LTC Tom, TACAP Expert. Telephone Interviews (AV-432-3391), Hq TAC/DOXD, Langley AFB, VA, Jan 1986
- 24. Dutelle, Capt Gary, Telephone Interviews. Hq Strategic Air Command Tanker Operations (SAC/DO8X), Offutt AFB, NE. Sep-Oct 1985.
- 25. Estes, Mr. Milburn E., Mobility Analyst. Telephone Interviews (AV-227-9315), AFCSA/SAGM, The Pentagon, Sep 1985 May 1986.
- 26. Jeffcoat, Maj George, KC-135A Instructor Instructor Pilot. Telephone Interview. Central Flight Instructor Course, Castle AFB, CA. 29 April 1985.
- 27. Kline, TSgt Mark, 2nd Bombardment Wing Inflight Refueling Manager. Telephone interview (AV-781-3334). Barksdale AFB, LA, 10 Apr 1986.

- 28. Lee, CMSgt Randy, Chief ALCE, HqMAC/DOCSA. Telephone Interviews (AV-576-3570). Scott AFB, IL, Jan 1986.
- 29. Moses, Maj Glenn, "M-14" Program Expert. Telephone Interviews. Headquarters Military Airlift Command, Operations Research Branch (MAC/XPSR), Scott AFB, IL. Sep-Oct 1985.
- 30. Poggi, Maj Bill, KC-10 Training Flight Instructor Pilot. Telephone Interview. 32d Air Refueling Squadron, Barksdale AFB, LA. 29 April 1985.
- 31. Pugh, Maj Jim, KC-10 Instructor Pilot and Deployment Planner. Telephone Interviews. Hq Eighth Air Force (SAC) Tanker Task Force Branch (8AF/DOOK), Barksdale AFB, LA, Sep-Oct 1985.
- 32. Smith, Capt Jim, AFIT expert on how to access "MODAS." Personal Interviews (255-4149). AFIT/LSMA, Wright-Patterson AFB, OH, Feb-Mar 1986.

Other

33. "MODAS," Maintenance and Operational Data Access System. Computerized database including fleetwide KC-10 Reliability and Maintainability Reports summarizing Sep, Oct, Nov 1985. Database Accesses: March 1986.

pool possocial papasing besides negotias eventable eventable eventual paratics and analysis 182000000

Additional References

Books

- Banks, Jerry and John S. Carson, II. <u>Discrete Event System Simulation</u>. New Jersey: Prentice-Hall, Inc., 1984.
- Gibbons, Jean and Ingram Olkin, and Milton Sobel.

 and Ordering Populations: A New Statistical

 Methodology. New York: John Wiley and Sons, Inc.,

 1977.
- Kleijnen, J.P.C. "Experimentation with Models: Statistical Design and Analysis Techniques," <u>Progress in Modelling and Simulation</u>, pp 173-183. New York: Academic Press, Inc., 1982.
- Montgomery, Douglas C. Design and Analysis of Experiments, 2nd Edition. New York: John Wiley and Sons, Inc., 1984.
- Pritsker, A. Alan B. <u>Introduction to Simulation and SLAM</u>
 II. New York: John Wiley and Sons, Inc., 1984.

Articles and Periodicals

- Alder, Konrad. "Aerial Refueling--A Growing Need," Armada International, 6: 90-102 (March/April 1982).
- Berent, Mark E. "Aerial Refueling in NATO," NATO's Sixteen Nations, 28: 52-55 (October/November 1983).
- Bracken, J. and J.D. Longhill. "Note on a Model for Minimizing Cost of Aerial Tankers' Support of a Practice Bomber Mission," Naval Research Logistics Quarterly, 11 (4): 359-364 (December 1964).
- Hoyt, Brig Gen Ross G., "Reflections of an Early Refueler,"

 <u>Air Force Magazine, 1:</u> 55-59 (January 1974).
- Jester, Lt Col Clifton J. "Air Refueling--the Need," <u>Combat</u> Crew <u>Magazine</u> 6: 20,21 (June 1980).
- Poe, Bruce. "Tomorrow's Tanker," Flight International, 112: 1673-1676 (December 3, 1977).

Ullman, Capt Robert P., and Capt Myhre E. Paulson, Jr.
"Refueling Behind the KC-10," Combat Crew Magazine, 7:
34-36 (July 1981).

Official Documents

✓ CINCEUR OPLAN 4102-84. (SECRET)

warming warden and the second

- Joint Staff Officer's Guide, Armed Forces Staff College
 Pub 1. Norfolk, VA: National Defense University,
 July 1984.
- KC-10 Minimum Equipment List and Procedures, Technical Order 1C-10(K)A-1-2, 1 July 1985.
- "WMP-4" USAF War and Mobilization Plan, Volume 4, 1 Oct 1984. (TOP SECRET)
- "WMP-5" Basic Planning Factors and Data, Volume 5, 1 Oct 1985. (SECRET)

Unpublished Materials

- Bailey, Maj Charles E. Strategic Mobility and the KC-10:

 A Pilot's Perspective. Air Command and Staff College
 Report No. 83-120. Maxwell AFB, AL, April 1983. (For Official/Operational Use Only).
- Benson, Maj Donald R. KC-10 Maintenance Organization
 Structure. Air Command and Staff College Report No.
 82-0240, Maxwell AFB, AL, March 1982. (For
 Official/Operational Use Only) (AD B066 745L)
- Del Mar, Major General H.R. "Total Systems Approach to Strategic Mobility." Address to the Worldwide Strategic Mobility Conference. Fort McNair, Washington, DC, 4 May 1977.
- Head, Capt Elbert B. and Capt Leslie R. VanHeeswyk. Better Utilization of Tankers for Refueling Bombers in the SIOP. MS thesis, GST/OS/83M-4 (SECRET). School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB, OH, 1983.

- Fought, Major Stephen O. Air Refueling: The Linchpin to our Continental Strategy. (SECRET NOFORN) Naval War College, Newport, RI, June, 1981. (AD C025 677)
 - Kuehner, LTC Gregory A. Air Refueling: The KC-10
 Connection. Industrial College of the Armed Forces
 Report No. 1R27-83. Ft McNair, Washington, DC, May
 1983. (For Official/Operational Use Only) (AD-B093
 713L)
 - Tapleshay, Major Thomas N. 7-10A--The SIOP Tanker (SECRET NOFORN) Air Command an Taff College, Report No. 2355-81. Maxwell AFB, AL, May 1981. (AD C027 245)

Interviews

- Chapman, TSgt Mary Kay, analyst. Telephone Interview (AV-271-2892). HQ SAC/LGY, Offutt AFB, NE, Feb 1986. Citing:
 - LGCM 271 Maintenance Man Hours/Flying Hour Report LGCM 273 Standard Reliability and Maintenance Report LGCM 275 On-Equipment Summary.
- Cole, SMSgt Thomas, Squadron Chief Inflight Refueling Operator. Telephone Interview. 42nd Air Refueling Squadron, Loring AFB, ME, 26 April 1985.
- Coulter, Major Dennis, F-111 pilot. Personal Interviews while assigned to AFIT. Currently at Hq AF/XOXFM, Washington DC, Jan 1986.
- Englert, Capt Marvin, United States Army Officer. Telephone Interview. Air Force Institute of Technology, Wright-Patterson AFB, OH, 29 April 1985, citing United States Army Infantry School, Infantry Reference Tactics Data Book ST7-176 FY83, Washington: US Government Printing Office, 1984.
- Ewing, Major William, former C-5A Navigator. Personal Interviews. Air Force Institute of Technology, Wright-Patterson AFB, OH. 1 April 2 May 1985.
- Federinko, Major John, "4102 Plan" expert. Personal Interiews (AV-257-5648). AFLC Logistics Operations Center/XOXR, Wright-Patterson AFB, OH, Nov 1985 Apr 1986.

- Tom, Maintenance Information Services Manager.
 Telephone Interviews (213-593-5511). Douglas Aircraft
 Corporation, Long Beach, CA, Feb 1986.
- Gross, Mr Chuck, MODAS expert. Telephone Interviews (257-6906). KC-10 Special Program Office, Wright-Patterson AFB, OH, Feb 1986.
- Phillips, Col, Chief of KC-10 Special Project Officer. Telephone Interviews (255-5624). Wright-Patterson AFB, OH, Feb 1986.
- Rochelle, Mr Pete, "TANKER" program expert. Telephone Interviews (AV-225-0685). AFCSA/SAGM The Pentagon. January March 1986.
- Selva, Capt Mike, Operations Analyst. Telephone Interview (AV-271-5836). Hq SAC/XOS, Offut AFB, NE, Nov 1985.
- Welch, SMsgt Mike, designer for Strategic Airlift.
 Telephone Interviews (255-7533). Aeronautical Systems
 Division, Wright-Patterson AFB, OH March 1986.