Diszkrét matematika II. – Definíciók és tételek

B szakirány – 2023/2024/1. őszi félév *Mérai László előadásai alapján* Legutóbbi frissítés: 2024. január 17.

Felhasznált források:

- Mérai László előadás-prezentációi
- Gyarmati Edit, Turán Pál: Számelmélet (Tankönyvkiadó, 1989)

1. Számelmélet

1.1. előadás

1.1. Definíció. Oszthatóság

Legyen $a,b \in \mathbb{Z}$. Azt mondjuk, hogy az a osztja a b-t, ha

$$\exists c \in \mathbb{Z} : a \cdot c = b$$

Jelölése: a|b

Megjegyz'es.A definíció más megközelítésből: $a \neq 0$ esetén $\frac{b}{a} \in \mathbb{Z}$

1.1. Tétel. Oszthatóság tulajdonságai

 $\forall a, b, c, \ldots \in \mathbb{Z}$:

- 1. a|a;
- 2. $a|b \wedge b|c \implies a|c;$
- 3. $a|b \wedge b|a \implies a = \pm b;$
- 4. $a|b \wedge a'|b' \implies aa'|bb';$
- 5. $a|b \implies ac|bc$;
- 6. $ac|bc \land c \neq 0 \implies a|b;$
- 7. $a|b_1, \dots b_k \implies a|c_1b_1 + \dots + c_kb_k;$
- 8. a|0, ugyanis $a \cdot 0 = 0$;
- 9. $0|a \Leftrightarrow a=0;$
- 10. $1|a \wedge (-1)|a;$

Bizonyítás. Házi feladat.

1.2. Tétel. Maradékos osztás

$$\forall a,b \in \mathbb{Z}, \ b \neq 0, \ \exists !q,r \in \mathbb{Z} \ : \ a = bq + r \ \land \ 0 \leq r < |b|$$

 $Jel\"ol\'ese: r = \boxed{a \mod q}$ (kiejtése: "a modulo q"). Az operáció neve modulo. A \boxed{q} számot h'anyadosnak nevezzük, az \boxed{r} szám pedig az osztási marad'ek.

Bizonyítás. A tételt csak nemnegatív számok esetében bizonyítjuk.

- I. Létezés bebizonyítása (\exists): a szerinti indukcióval Megkülönböztetünk két esetet.
 - A) $a < b \implies a = b \cdot 0 + a \quad (q = 0, r = a)$
 - B) $a \ge b$: tegyük fel, hogy az a-nál kisebb számok már felírhatók ilyen alakban. Elevenítsük fel a tételben szereplő egyenletet: $a = bq + r \ (0 \le r < |b|)$ Vegyük az alábbi egyenletet:

$$a - b = bq^* + r^* \iff a = b(q^* + 1) + r^*$$

ami akkor teljesül, ha $q = q^* + 1$ és $r = r^*$.

II. Egyértelműség bebizonyítása (\exists !): indirekt módon. Tegyük fel, hogy a-hoz és b-hez két $q_1, q_2 \in \mathbb{Z}$ ($q_1 \neq q_2$), illetve $r_1, r_2 \in \mathbb{Z}$ számok tartoznak. Ekkor

$$a = bq_1 + r_1$$
 $(0 \le r_1 < |b|)$
 $a = bq_2 + r_2$ $(0 \le r_2 < |b|)$

aminek az átrendezésével azt kapjuk, hogy

$$b(\underbrace{q_1-q_2}_0)=\underbrace{r_2-r_1}_0.$$

Ez akkor teljesül, ha $q_1=q_2 \ (\leftrightarrow q_1\neq q_2, \ \text{itt ellentmondásra jutottunk})$ és $r_1=r_2.$

Megjegyzés. $q=\left\lfloor rac{a}{b}
ight
vert ,$ ha a,b>0

1.2. Definíció. Legnagyobb közös osztó

 $Legyenek\ a,b\in\mathbb{Z}\ és\ d\in\mathbb{N}.\ A\ d\ az\ a\ és\ b\ legnagyobb\ közös\ osztója,\ ha$

- $d|a \wedge d|b$
- $\bullet \ \forall k \in \mathbb{Z} \ : \ (k|a \ \land \ k|b) \implies k|d$

Jel"ol'ese: d = (a,b) = lnko(a,b) = gcd(a,b). Definíció szerint (0,0) = 0

1.3. Tétel. Euklideszi algoritmus

$$\forall a, b \in \mathbb{Z} : \exists \operatorname{lnko}(a, b)$$

Bizonyítás. A tétel bizonyítása algoritmikus (**euklideszi algoritmus**). Feltehetjük, hogy $(a, b) \neq (0, 0)$. Végezzük el a következő osztásokat:

$$a = bq_1 + r_1 \qquad 0 < r_1 < |b|,$$

$$b = r_1q_2 + r_2 \qquad 0 < r_2 < r_1,$$

$$r_1 = r_2q_3 + r_3 \qquad 0 < r_3 < r_2,$$

$$\vdots$$

$$r_{n-2} = r_{n-1}q_n + r_n \qquad 0 < r_n < r_{n-1},$$

$$r_{n-1} = r_nq_{n+1}. \qquad (r_{n+1} = 0)$$

Az algoritmus véges sok lépésben véget ér maximum b darab lépésben:

$$|b| > r_1 > r_2 > \dots > r_n (\ge 0)$$

Megmutatjuk, hogy az utolsó nem 0 maradék (r_n) lesz a kitüntetett legnagyobb közös osztó:

• r_n közös osztó: $r_n|r_{n-1} \implies r_n|r_{n-1} \cdot q$. Kérdés, hogy $r_n|r_{n-2}$? Mivel

$$r_{n-2} = \overbrace{r_{n-1}}^{r_n \cdot q_{n+1}} \cdot q_n + r_n = r_n \cdot q_{n+1} \cdot q_n + r_n = r_n (q_{n+1} \cdot q_n + 1) \implies r_n | r_{n-2}$$

Hasonlóan haladva visszafelé

$$r_n|r_{n-1} \implies r_n|r_{n-2} \implies r_n|r_{n-3} \implies \dots \implies \boxed{r_n|b} \implies \boxed{r_n|a}$$

• r_n legnagyobb közös osztó: legyen $c \in \mathbb{Z}$ tetszőleges. Ha

$$\begin{vmatrix} c|a \wedge c|b \\ a = b \cdot q_1 + r_1 \\ c|b \cdot q_1 \end{vmatrix} \implies c|\underbrace{a - bq_1}_{=r_1} \implies c|r_1$$

Hasonlóan haladva lefelé: $c|a,\ c|b \implies c|r_1 \implies c|r_2 \implies \ldots \implies c|r_n$

Ekkor a legnagyobb közös osztó az utolsó nem-nulla maradék: $(a,b)=r_n$. (Itt $a=r_{-1},b=r_0$)

Megjegyz'es.

- A tétel szerint egész számok körében az oszthatóság egy nagyon speciális részben rendezés.
- Az euklidészi algoritmus **hatékony**:
 - futási idő: $\simeq 2\log a \ (|b| < a)$. Bizonyítás: $r_i < \frac{1}{2}r_{i-2}$
 - Prímtényezős felbontással: $\simeq e^{\sqrt{\log a \log \log a}}$

1.3. Definíció. Dionfantikus / diofantoszi egyenlet

Legyen $a, b, c, x, y \in \mathbb{Z}$. Az

$$ax+by = c$$

egyenleteket lineáris diofantoszi egyenletnek hívjuk.

1.4. Tétel. Bővített euklideszi algoritmus

Minden $a, b, c \in \mathbb{Z}$ esetén **pontosan** akkor léteznek $x, y \in \mathbb{Z}$, hogy ax + by = c, ha (a, b)|c.

$$\forall a, b, c \in \mathbb{Z}, (a, b) | c, \exists x, y \in \mathbb{Z} : ax + by = c$$

Bizonyítás. Elég c = (a, b) esetet vizsgálni.

Legyenek $q_i, r_i \in \mathbb{Z}$ az euklideszi algoritmussal megkapott hányadosok, maradékok:

$$r_{i-2} = r_{i-1} \cdot q_i + r_i.$$

Legyen $x_{-1} := 1, x_0 := 0$ és

$$x_i = x_{i-2} - q_i \cdot x_{i-1} \quad (i \ge 1).$$

Hasonlóan legyen $y_{-1} := 0, \ y_0 := 1$ és

$$y_i = y_{i-2} - q_i \cdot y_{i-1} \quad (i \ge 1).$$

Ekkor $i \ge 1$ esetén: $x_i \cdot a + y_i \cdot b = r_i$, ami speciálisan $x_n a + y_n b = r_n = (a, b)$:

- i=-1,0 esetében: $r_{-1}=1\cdot a+0\cdot b,\ r_0=0\cdot a+1\cdot b$
- más esetben:

$$r_{i-2} = x_{i-2} \cdot a + y_{i-2} \cdot b \qquad r_i = (x_{i-2} \cdot a + y_{i-2} \cdot b) - (x_{i-1} \cdot a + y_{i-1} \cdot b) \cdot q_i$$

$$r_{i-1} = x_{i-1} \cdot a + y_{i-1} \cdot b \iff = (x_{i-2} - q_i \cdot x_{i-1}) \cdot a + (y_{i-2} - q_i \cdot y_{i-1}) \cdot b$$

$$r_i = r_{i-2} - r_{i-1} \cdot q_i$$

1.2. előadás

1.4. Definíció. Prímszámok

 $Egy p \neq 0, \pm 1 szám prímszám, ha$

$$p = a \cdot b \implies p = \pm a \lor p = \pm b$$

Megjegyzés.

- 1. Ekvivalens definíció: $p|a \cdot b \implies p|a \vee p|b$.
- 2. Nagy matematikai áttörés lenne nagy számok **prímfaktorizációja**, azaz megtalálni nagy számok prímosztóit.

Precízen: adott két prímszám p, q, a szorzatból $p \cdot q$ számoljuk ki p-t.

1.5. Definíció.

Adott $a_1, a_2, \ldots, a_n \in \mathbb{Z} \ (n \in \mathbb{N}^+) \ sz\'{a}mok.$

- Relatív prímeknek nevezzük őket, ha $(a_1, a_2, \ldots, a_n) = 1$
- Páronként relatív prímeknek nevezzük őket, ha $(a_i,a_j)=1 \quad (i,j\in [1..n] \ \land \ i\neq j)$

1.5. Tétel. Számelmélet alaptétele

 $\forall n \in \mathbb{Z} \setminus \{0, \pm 1\}$ sorrendtől és előjeltől eltekintve egyértelműen felírható prímszámok szorzataként:

$$n = \pm p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_\ell^{\alpha_\ell} = \pm \prod_{i=1}^{\ell} p_i^{\alpha_i}$$

ahol p_1, p_2, \ldots, p_ℓ pozitív prímek és $\alpha_1, \alpha_2, \ldots, \alpha_\ell$ pozitív egészek.

1.6. Tétel. Számelmélet alaptételének következménye

Legyenek n, m > 1 pozitív egészek, melyekre teljesül, hogy

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_\ell^{\alpha_\ell}, \quad m = p_1^{\beta_1} p_2^{\beta_2} \cdots p_\ell^{\beta_\ell} \quad (\forall i \in [1..\ell] : \alpha_i, \beta_i \ge 0)$$

Ekkor:

- $\bullet \ (a,b) = p_1^{\min\{\alpha_1,\beta_1\}} p_2^{\min\{\alpha_2,\beta_2\}} \cdots p_\ell^{\min\{\alpha_\ell,\beta_\ell\}}$
- $[a,b] = p_1^{\max\{\alpha_1,\beta_1\}} p_2^{\max\{\alpha_2,\beta_2\}} \cdots p_\ell^{\max\{\alpha_\ell,\beta_\ell\}}$
- $(a,b) \cdot [a,b] = a \cdot b$

Bizonyítás. Házi feladat.

1.7. Tétel. Euklidesz tétele

Végtelen sok prímszám létezik.

Bizonyítás. Indirekt bizonyítással. Tegyük fel, hogy csak véges sok prím van. Legyenek ezek p_1, p_2, \ldots, p_k . Tekintsük az $n := p_1 \cdots p_k + 1$ számot. Ez nem osztható egyetlen p_1, \ldots, p_k prímmel sem, így n prímtényezős felbontásában kell szerepelnie egy újabb prímszámnak.

Megjegyzés.

- Figyelem: $p_1 \cdots p_k + 1$ nem feltétlen prím: $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 + 1 = 59 \cdot 509$
- **Prímszámtétel**: x-ig a prímek száma: $\sim \frac{x}{\ln x}$

1.6. Definíció. Kongruencia

Adott $n \neq 0$ és $a, b \in \mathbb{Z}$ esetén, a kongruens b-vel modulo n;

$$a \equiv b \mod n$$
, ha $n | (a - b)$.

5

1.8. Tétel.

A kongruencia ekvivalencia reláció.

Bizonyítás. Ellenőrizzük az ekvivalencia reláció tulajdonságait.

I. Reflexivitás: $a \equiv a \mod n$, ugyanis n|a-a=0

- II. <u>Tranzitivitás</u>: $a \equiv b \mod n \land b \equiv c \mod n \implies a \equiv c \mod n$, ugyanis $n|a-b, n|b-c \implies n|(a-b)+(b-c)=a-c$
- III. <u>Szimmetria</u>: $a \equiv b \mod n \implies b \equiv a \mod n$, ugyanis $n|a-b \implies n|(-1) \cdot (a-b) = b-a$

1.9. Tétel. A kongruencia kompatibilitása az összeadással és a szorzással

Legyenek $a, b, c, d, n \in \mathbb{Z}, n \neq 0$. Ekkor:

- $a \equiv b \mod n \land c \equiv d \mod n$ esetén $a + c \equiv b + d \mod n$
- ullet $a \equiv b \mod n \land c \equiv d \mod n$ esetén $a \cdot c \equiv b \cdot d \mod n$

Bizonyítás. Házi feladat.

1.10. Tétel. Osztás művelete kongruenciákkal

Legyenek $a, b, c, n \in \mathbb{Z}, n \neq 0$. Ekkor:

$$ab \equiv ac \mod n \iff b \equiv c \mod \frac{n}{(a,n)}$$
.

Bizonyítás. Ekvivalenciánál mindkét irányt meg kell vizsgálni.

I. \implies : Legyen d := (a, n) és tegyük fel, hogy n|ab - ac = a(b - c). Ekkor

$$\frac{n}{d} \cdot d \mid \frac{a}{d} \cdot d \cdot (b-c)$$
,

azaz

$$\exists k \in \mathbb{Z} : k \cdot \frac{n}{d} \cdot d = \frac{a}{d} \cdot d \cdot (b - c) .$$

Egyszerűsítve d-vel meghapjuk, hogy

$$\frac{n}{d} \mid \frac{a}{d} \cdot (b-c)$$
.

Azonban $\frac{n}{d}$ és $\frac{a}{d}$ relatív prímek, így $\frac{n}{d} \mid (b-c)$.

II. (: A másik irány triviális.

1.11. Tétel. Lineáris kongruenciák

Legyenek $a, b, n \in \mathbb{Z}, n > 1$. Azt mondjuk, hogy

$$ax \equiv b \mod n \ megoldhat \acute{o} \iff (a,b)|b$$

és pontosan (a, n) darab inkongruens megoldása van mod n.

Bizonyítás. A bizonyítás algoritmikus.

$$ax \equiv b \mod n \iff ax + ny = b$$

I. Szükséges feltétel (\Longrightarrow) : mivel (a, n) osztja a bal oldalt, osztja a jobb oldalt is, azaz

$$(a,n)|b \implies (a,n)|ax+ny.$$

II. Elégséges feltétel (⇐=): a **bővített euklideszi algoritmus** szerint

$$\exists x_0, y_0 \in \mathbb{Z} : x_0 a + y_0 n = (a, b).$$

Beszorozva $\frac{b}{(a,n)}$ -nel megkapjuk a megoldást.

III. Megoldások száma: Legyen $a' := \frac{a}{(a,n)}, b' := \frac{b}{(a,n)}, n' := \frac{n}{(a,n)}$. Ekkor (a',b') = 1.

Ha (x_0, y_0) és (x_1, y_1) két megoldása az a'x + n'y = b' egyenletnek, akkor

$$a'(x_0 - x_1) + n'(y_0 - y_1) = 0.$$

Ekkor $x_0 \equiv x_1 \mod n'$.

További megoldások: $abla b = \frac{b}{(a,n)} \cdot x + k \cdot n' \quad (k=0,\ldots,(a,n)-1)$.

1.3. előadás

1.7. Definíció. Szimultán kongruencia

Egy ismeretlenre vonatkozó különböző modulusú lineáris kongruenciákat szimultán (egyidejű) kongruenciáknak nevezünk.

$$a_1x \equiv b_1 \mod n_1$$
 $a_2x \equiv b_2 \mod n_2$
 \vdots
 $a_kx \equiv b_k \mod n_k$

ahol $k \in \mathbb{N}^+$, $(n_1, n_2, \dots, n_k) = 1$ és $a_1, a_2, \dots a_k, b_1, b_2, \dots, b_k, x \in \mathbb{Z}$

Megjegyzés. ^a Mivel a szimultán kongruenciák megoldhatóságához nyilvánvalóan szükséges, hogy a fenti definícióbeli kongruenciák külön-kölün megoldhatók legyenek, tehát ezen kongru-

enciák helyett rögtön a megoldásokat tekintve az

$$x \equiv c_1 \mod n_1$$

$$x \equiv c_2 \mod n_2$$

$$\vdots$$

$$x \equiv c_k \mod n_k$$

alakú szimultán kongruenciák megoldására szorítkozhatunk, ahol c_i az i-edik kongruencia valamelyik megoldása $(i \in [1..k])$.

Ha az összes ilyen rendszer megoldását megadjuk, ezáltal már a kongruenciarendszer összes megoldását előállítottuk.

1.12. Tétel. Kínai maradék tétel

Legyenek $k \in \mathbb{N}^+$, $n_1, n_2, \ldots, n_k \in \mathbb{N} \setminus \{0, 1\}$ páronként relatív prímszámok és $c_1, c_2, \ldots, c_k \in \mathbb{Z}$. Ekkor a

$$x \equiv c_1 \mod n_1$$

$$x \equiv c_2 \mod n_2$$

$$\vdots$$

$$x \equiv c_k \mod n_k$$

kongruenciarendszer megoldható és bármely két megoldása kongruens egymással modulo $n_1 \cdot n_2 \cdots n_k$.

Bizonyítás. A bizonyítás algoritmikus.

I. Legyen k := 2:

$$x \equiv c_1 \mod n_1$$

$$x \equiv c_2 \mod n_2$$

A bővített euklideszi algoritmussal oldjuk meg az alábbi egyenletet:

$$n_1 x_1 + n_2 x_2 = 1.$$

Legyen $c_{1,2} := n_1 x_1 \cdot c_2 + n_2 x_2 \cdot c_1$. Ekkor^a

$$c_{1,2} = n_1 x_1 \cdot c_2 + n_2 x_2 \cdot c_1 = c_2 \cdot \overbrace{(1 - n_2 x_2)}^{n_1 x_1 + n_2 x_2 = 1} + n_2 x_2 \cdot c_1 = c_2 + (c_1 - c_2) n_2 x_2$$

Ebből az következik, hogy

$$c_{1,2} \equiv c_1 \mod n_1 \tag{1}$$

$$c_{1,2} \equiv c_2 \mod n_2 \tag{2}$$

A (2) egyenletet megkapjuk a fentiekhez hasonló átalakításokkal. Összegezve,

$$c_{1,2} \equiv c_i \mod n_i \quad (j = 1, 2).$$

Ha $x \equiv c_{1,2} \mod n_1 n_2$, akkor x megoldása a két kongruenciának. Megfordítva: ha x megoldása a két kongruenciának, akkor az $(x-c_{1,2})|n_1 \wedge (x-c_{1,2})|n_2$, így a szorzatukkal is: $x \equiv c_{1,2} \mod n_1 n_2$ (ne feledjük, hogy $(n_1, n_2) = 1$).

^aForrás: Gyarmati Edit, Turán Pál – Számelmélet (Tankönyvkiadó, 1989), 70. oldal

II. <u>Általános eset</u>. Az alábbi

$$x \equiv c_1 \mod n_1$$
 $x \equiv c_2 \mod n_2$
 \vdots
 $x \equiv c_k \mod n_k$

szimultán kongruencia ekvivalens a

$$x \equiv c_{1,2} \mod n_1 n_2$$

$$x \equiv c_3 \mod n_3$$

$$\vdots$$

$$x \equiv c_k \mod n_k$$

rendszerrel. Iterálva az eljárást, megkapjuk az

$$x \equiv c_{1,\dots,k} \mod n_1 n_2 \dots n_k$$

kongruenciát.

 ${\it ^a} Forr \'{a}s: \ https://www.wikiwand.com/en/Chinese_remainder_theorem \# Existence_(constructive_proof)$

Megjegyzés. A megjegyzés a javított dia szövege, ami nem lesz számonkérve.

Ha a modulosok nem relatív prímek $((n_1, n_2) \neq 1)$, akkor a feladat hasonlóan kezelhető.

Például
$$k=2$$
 esetén tekintsük a

$$x \equiv c_1 \mod n_1$$

$$x \equiv c_2 \mod n_2$$

rendszert. Legyen $d := (n_1, n_2) > 1$. Megmutatható, hogy ha

$$c_1 \not\equiv c_2 \mod d$$
,

akkor a rendszernek nincs megoldása.

Ellenkező esetben legyen $d := n_1x_1 + n_2x_2$. Ekkor

$$c_{1,2} \equiv c_1 - x_1 \cdot n_1 \cdot \frac{c_1 - c_2}{d} \mod \frac{n_1 n_2}{d}$$

lesz az összes megoldás (bizonyítása házi feladat).

A $k \geq 3$ esetén az eljárást iterálva oldhatjuk meg a szimultán kongruenciarendszert.

1.8. Definíció. Euler-függvény

 $Adott \ n \in \mathbb{N} \ szám \ esetén \ legyen$

$$\varphi(n) = \#\{1 \le a < n \mid (a, n) = 1\}$$

az Euler-függvény (vagy Euler-féle φ-függvény).

Megjegyzés. Az Euler-függvény néhány tulajdonsága multiplikatív (gyakorlaton hangzott el):

1. Multiplikativitás: $\forall a, b \in \mathbb{N} : (a, b) = 1 \implies \varphi(ab) = \varphi(a) \cdot \varphi(b)$

2. Kis Fermat-tétel: $\varphi(p) = p - 1$, ha p prímszám.

1.13. Tétel. Euler-függvény értékének kiszámítása

Legyen n prímtényezős felbontása $n := p_1^{e_1} \cdot p_2^{e_2} \cdots p_\ell^{e_\ell}$. Ekkor

$$\varphi(n) = n \cdot \prod_{i=1}^{\ell} \left(1 - \frac{1}{p_i}\right)$$

Bizonyítás. Nem bizonyítjuk.

Pár szó az **osztahtósági szabályo**król. Vegyünk szemügyre pár példát.

1. $\underline{3\text{-mal való oszthatóság}}$: ha a számjegyek összege osztható 3-mal, akkor a szám is osztható 3-mal.

Például: $\boxed{123} = 1 \cdot 100 + 2 \cdot 10 + 3 \cdot 1 \equiv 1 + 2 + 3 \mod 3$

Általában:

$$n = \sum_{i=0}^{k} n_i \cdot 10^i \equiv \sum_{i=0}^{k} n_i \cdot 1^i \equiv \sum_{i=0}^{k} n_i,$$

ugyanis $10 \equiv 1 \mod 3$.

 $2.\,$ 7-tel való oszthatóság: Például:

A kérdés: $10^i \equiv ? \mod 7$. Vizsgáljuk meg a hatványmaradékokat!

	i	0	1	2	3	4	7	6	7	8	9	10	11	12	13	14	
Ì	$10^i \mod 7$	1	3	2	6	4	5	1	3	2	6	4	5	1	3	2	

Tehát: $123 \equiv 1 \cdot 2 + 2 \cdot 3 + 3 \cdot 1 = 11 \equiv 4 \mod 7$.

- 3. Következtetéseink:
 - Mindig van oszthatósági szabály.
 - ullet Az $a^i \mod n$ hatványmaradékok periodikusan ismétlődnek.
 - Vannak olyan a alapok, amikor teljesen ciklikusan ismétlődnek az osztási maradékok, míg más esetben csak egy bizonyos ponttól. Ez utóbbiak egy aciklikus és egy ciklikus részből állnak.
 - Vannak olyan aalapok, ahol a teljes maradékosztály maradékai megjelennek, míg mások esetében csak pár jelenik meg.

1.4. előadás

Maradékosztályok.

Jelölés: legyen $\mathbb{Z}_n := \{0, 1, \dots, n-1\}$ a nem-negatív maradékok halmaza, és tekintsük a +, műveleteket modulo n.

	7	$\mathbb{Z}_3 =$	= {0
+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

1,2}											
		0	1	2							
	0	0	0	0							
	1	0	1	2							
	2	0	2	1							

	$\mathbb{Z}_4 = \{0, 1, 2, 3\}$													
+	0	1	2	3		•	0	1	2	3				
0	0	1	2	3		0	0	0	0	0				
1	1	2	3	0		1	0	1	2	3				
2	2	3	0	0		2	0	2	0	2				
3	3	0	0	2		3	0	3	2	1				

Emlékeztető: ha (a,b)=1, akkor $ax\equiv b \mod n$ kongruenciának létezik egyértelmű megoldása modulo n.

Legyen $\mathbb{Z}_n^* := \{1 \le a < n | (a, n) = 1\}$. Speciálisan $|\mathbb{Z}_n^*| = \varphi(n)$

1.14. Tétel. Euler-Fermat-tétel

Legyenek $a, n \in \mathbb{Z}, (a, n) = 1$. Ekkor

$$a^{\varphi(n)} \equiv 1 \mod n$$
,

ahol φ az Euler-függvény.

Bizonyítás. Lineáris kongruenciákkal.

Tekintsük az

$$ax \equiv b \mod n$$

lineáris kongruenciát. Mivel (a,n)=1, minden b-hez létezik egyértelmű (vagyis pontosan egy) x megoldás, azaz az

$$x \mapsto ax \mod n$$

ami \mathbb{Z}_n^* maradékosztálynak egy bijekciója. Így a

$$\mathbb{Z}_n^*$$
 és $\{ax \mod n \mid x \in \mathbb{Z}_n^*\}$

halmazok azonosak. Ekkor a halmazok elemeinek szorzata is megegyezik:

$$\prod_{x \in \mathbb{Z}_n^*} x \equiv \prod_{x \in \mathbb{Z}_n^*} ax \equiv a^{\varphi(n)} \cdot \prod_{x \in \mathbb{Z}_n^*} x \mod n.$$

Mivel

$$\left(n, \prod_{x \in \mathbb{Z}_n^*} x\right) = 1$$

így a szorzattal egyszerűsíthetünk: $1 \equiv a^{\varphi(n)} \mod n$.

Hatványok maradékai még egyszer.

Legyen p egy prímszám és $p \nmid a$. Ekkor az Euler-Fermat-tétel szerint $a^{\varphi(n)} \equiv 1 \mod p$ ($\varphi(p) = p-1$). Vannak jó a alapok, melyknek p-1 különböző hatványa van modulo p.

1.15. Tétel. Generátor létezéséről szóló tétel

Legyen p prímszám. Ekkor \mathbb{Z}_p^* -ban van generátor (vagy primitív gyök), azaz

$$\exists g \in \mathbb{Z}, \ 1 < g < p \ : \ \{ \overbrace{g^0 \mod p}^{=1}, g \mod p, g \mod p, \dots, g^{p-2} \mod p \} = \mathbb{Z}_p^* = \{1, \dots, p-1\}$$

Bizonyítás. Nem bizonyítjuk.

1.9. Definíció. Diszkrét logaritmus

Legyen p prímszám, g generátor modulo p. Ekkor az $a \in \mathbb{Z}$: $(p \nmid a)$ g alapú **diszkrét logarit-** musa (indexe).

$$\log_a a = n : a \equiv g^n \mod p, \quad 0 \le n$$

Megjegyzés. Példa: 2 generátor modulo 11.

n	0	1	2	3	4	5	6	7	8	9
$2^n \mod 11$	1	2	4	8	5	10	9	7	3	6

 \Downarrow

a	1	2	3	4	5	6	7	8	9	10
$\log_2 a$	0	1	8	2	4	9	7	3	6	5

1.16. Tétel. Diszkrét logaritmus műveletei

Legyen p prímszám, g generátor modulo p, valamint $1 \le a, b < p, n \in \mathbb{Z}$. Ekkor

$$\log_g(a\cdot b) \equiv \log_g a + \log_g b \mod (p-1)$$

$$\log_g(a^n) \equiv n \cdot \log_g a \mod (p-1)$$

Bizonyítás. Nem bizonyítjuk.

1.5. előadás – Titkosítási algoritmusok

I. Caesar-kód

Kidolgozni.

II. One-Time Pad

Kidolgozni.

III. RSA

Kidolgozni.

2. Polinomok

2.1. előadás

A polinomok $x^2 + 2x + 1$, $x^5 + \frac{3}{2}x^2 - ix + i - \sqrt{2}$, ... típusú kifejezések. Alkalmazások:

I. Numerikus módszerek: bonyolult függvények közelítése

$$\sin(x) \approx x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!}, \qquad |x| < 1, \quad \text{hiba} < 10^{-7}$$

$$e^x \approx 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \frac{x^6}{6!} + \frac{x^7}{7!}, \qquad |x| < 1, \quad \text{hiba} < 10^{-3}$$

$$e^x \approx 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \frac{x^6}{6!} + \frac{x^7}{7!}, \quad |x| < 1, \quad \text{hiba} < 10^{-3}$$

II. Hibajavító kódok: Adatátvitel során sérült jel rekonstrukciója

kódszavak ↔ polinomok

III. Komputeralgebra, szimbolikus számítások: határozott integrálok, differenciálegyenletek (pontos) megoldása

$$\int x^2 dx = \frac{x^3}{3} + C$$

IV. Robotika: Robotkarok pontos mozgásának leírása

Jelölés: legyen $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}, \mathbb{Z}, \mathbb{Z}_p\}$ (p egy prímszám). Jelentése: \mathbb{K} egy tetszőleges számhalmaz.

2.1. Definíció. Polinom.

Legyen $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}, \mathbb{Z}, \mathbb{Z}_p\}$. A \mathbb{K} fölötti **polinomok** halmaza $\mathbb{K}[x]$ az x és \mathbb{K} elemei által az +, $-, \cdot \textit{segits\'eg\'evel alkotott form\'alis kifejez\'esek:}$

$$\mathbb{K}[x] := \{c_n x^n + \ldots + c_0 \mid n \ge 0 \land c_n, \ldots, c_0 \in \mathbb{K}\}$$

Adott polinom $f := c_n x^n + \ldots + c_0$ együtthatói a c_n, \ldots, c_0 számok, míg $c_n \neq 0$ esetén f foka $\deg f = n \text{ \'es } f \tilde{o} e g y \tilde{u} t t h a t \tilde{o} j a c_n.$

13

Megjegyzés. Megkülönböztetjük a polinomot a polinomfüggvénytől.

• Polinom: $f = c_n x^n + \ldots + c_0$

• Polinomfüggvény: $f(x) = c_n x^n + \ldots + c_0$