Übungsblatt 3

Topologie

Viktor Kleen
viktor.kleen@uni-due.de

Sabrina Pauli sabrinp@math.uio.no

Aufgabe 3.1. Wir definieren auf der Menge Spec $\mathbb{Z} := \{p \in \mathbb{Z} : p \text{ prim}\} \cup \{0\}$ eine Basis für eine Topologie: Für $0 \neq n \in \mathbb{Z}$ sei $D(n) = \{p \in \text{Spec } \mathbb{Z} : p \nmid n\}$ und

$$\mathfrak{B} = \{D(n) : n \in \mathbb{Z} \text{ und } n \neq 0\}.$$

Zeigen Sie, dass ${\mathfrak B}$ tatsächlich eine Basis für eine Topologie auf Spec ${\mathbb Z}$ ist. Die erzeugte Topologie heißt *Zariskitopologie* auf Spec ${\mathbb Z}$.

- (i) Beschreiben Sie die abgeschlossenen Teilmengen von Spec \mathbb{Z} .
- (ii) Zeigen Sie, dass $\{0\}$ dicht in Spec \mathbb{Z} ist, und folgern Sie daraus, dass Spec \mathbb{Z} nicht Hausdorff sein kann.

Aufgabe 3.2. Sei (X,d) ein metrischer Raum mit abgeschlossenen Teilmengen $A,B \subseteq X$. Wir definieren eine Funktion $d(_,A):X \longrightarrow \mathbb{R}$ durch

$$d(x,A) = \inf\{d(x,y) : y \in A\}.$$

- (i) Zeigen Sie, dass $d(_, A)$ stetig ist.
- (ii) Konstruieren Sie unter der Anname, dass $A \cap B = \emptyset$, eine stetige Funktion $\varphi \colon X \longrightarrow \mathbb{R}$, so dass $\varphi(x) = 1$ für alle $x \in A$ und $\varphi(x) = 0$ für alle $x \in B$ gilt.

Aufgabe 3.3.

- (i) Sei Y ein topologischer Raum und $\Delta \colon Y \longrightarrow Y \times Y$, $\Delta(x) = (x,x)$ die *Diagonalabbildung*. Zeigen Sie, dass Δ stetig ist, und dass $\Delta(Y) \subset Y \times Y$ genau dann abgeschlossen ist, wenn Y ein Hausdorffraum ist.
- (ii) Sei X ein topologischer Raum und $D \subseteq X$ eine dichte Teilmenge, d. h. $\overline{D} = X$. Sei weiter Y ein Hausdorffraum mit stetigen Funktionen $f,g\colon X\longrightarrow Y$, die auf D übereinstimmen, d. h. wir haben f(x)=g(x) für alle $x\in D$. Zeigen Sie, dass dann f=g. Ein Hinweis: Schreiben Sie die Menge $\{x\in X: f(x)\neq g(x)\}$ als Urbild einer offenen Menge unter einer stetigen Funktion.

AUFGABE 3.4.

- (i) Welche Folgen konvergieren in der diskreten Topologie? Welche Folgen konvergieren in der kofiniten Topologie?
- (ii) Konstruieren Sie eine Topologie auf \mathbb{R} , in der die Folge $\{1/n\}_{n\in\mathbb{N}}$ gegen jeden der Punkte in $\mathbb{R}\setminus\{0\}$ konvergiert, aber nicht gegen 0.
- (iii) Finden Sie einen topologischen Raum, in dem Grenzwerte von Folgen eindeutig bestimmt sind, der aber kein Hausdorffraum ist.