# Correlation

Vanessa LoBue

Jamil Bhanji

with a little help from Andy Field

## Aims

- Measuring Relationships
  - Scatterplots
  - Covariance
  - Pearson's Correlation Coefficient
- Nonparametric measures
  - Spearman's Rho
  - Kendall's Tau
- Interpreting Correlations
  - Causality
- Partial Correlations

### What is a Correlation?

 It is a way of measuring the extent to which two variables are related

It measures the pattern of responses across variables



## Measuring Relationships

 We need to see whether as one variable increases, the other increases, decreases or stays the same

- This can be done by calculating the covariance
  - We look at how much each score deviates from the mean.
  - If both variables deviate from the mean by the same amount, they are likely to be related

# Variance (review)

 The variance tells us by how much scores deviate from the mean for a single variable

 Covariance is similar—it tells is by how much scores on two variables differ from their respective means

### Covariance

- Calculate the error between the mean and each subject's score for the first variable (x).
- Calculate the error between the mean and their score for the second variable (y).
- Multiply these error values.
- Add these values and you get the cross product deviations.
- The covariance is the average cross-product deviations

## Covariance

| X   | 4 | Xi-Xong | Yi-Yovg | Product  |
|-----|---|---------|---------|----------|
| 1   | 8 | -3.89   | 2.56    | -9.96    |
| 3   | 6 | -1.89   | 0.56    | -1.06    |
| 2   | 9 | -2.89   | 3.56    | -10.29   |
| 25% | 4 | 0.11    | -1.44   | -0.16    |
| 8   | 3 | 3.11    | -2.44   | -7.59    |
| 7   | 3 | 2.11    | -2.44   | -5.15    |
| 12  | 2 | 7.11    | -3.44   | -24.46   |
| 2 4 | 7 | -2.89   | 1.56    | -4.51    |
| 4   | 7 | -0.89   | 1.56    | -1.39    |
|     |   |         | 5       | 3=-64.57 |



### **Problems with Covariance**

- It depends upon the units of measurement
  - E.g. The covariance of two variables measured in Miles might be 4.25, but if the same scores are converted to km, the covariance is 11
- One solution: standardise it!
  - Divide by the standard deviations of both variables
- The standardised version of covariance is known as the correlation coefficient – equivalent to the covariance of the standardized variables

## Things to know about the correlation

- It varies between -1 and +1
  - 0 = no relationship
- It is an effect size
  - ±.1 = small effect
  - ±.3 = medium effect
  - ±.5 = large effect
- Coefficient of determination, r<sup>2</sup>
  - By squaring the value of *r* you get the proportion of variance in one variable shared by the other.

# Correlation and Causality

#### • The third-variable problem:

In any correlation, causality between two variables cannot be assumed because there may be other measured or unmeasured variables affecting the results.

#### Direction of causality:

Correlation coefficients say nothing about which variable causes the other to change

# **Conducting Correlation Analysis**



## Nonparametric Correlation

- Spearman's rho
  - Pearson's correlation on the ranked data

- Kendall's tau
  - Better than Spearman's for small samples

### **Partial Correlations**

Partial correlation:

Measures the relationship between two variables, adjusting for the effect that a third variable has on them both

## **Partial Correlations**



partial correlation is the relationship between *X* and *Y* accounting for the overlap in *X* and *Z* and *Y* and *Z* 

A = variance exam performance uniquely shared with exam anxiety (5.1%)

B = variance in exam performance uniquely shared with revision time (1.5%)

C = variance in exam performance shared by both exam anxiety and revision time (14.3%)

D = variance shared by exam anxiety and revision time but not exam performance (36%)

E = variance in exam performance not shared by any measured variable (79.1%)

A + C = variance shared by exam performance and exam anxiety (19.4%)

C + B = variance shared by exam performance and revision time (15.8%)

C + D = variance shared by revision time and exam anxiety (50.3%)

A + B + C = variance in exam performance accounted for by revision time and exam anxiety (20.9%)

The **partial correlation** between *Performance* and *Anxiety* accounting for *Revision Time* is the unique variance in exam performance shared with exam anxiety (A) expressed as a proportion of the variance in exam performance not shared with revision time (A+E)

## Semi-Partial Correlations

Semi-partial correlation:

A measure of the relationship between two variables while adjusting for the effect that one or more additional variables have on one of those variables.

If we call our variables x and y, it gives us a measure of the variance in y that x alone shares

## Semi-Partial Correlations



A = variance exam performance uniquely shared with exam anxiety (5.1%)

B = variance in exam performance uniquely shared with revision time (1.5%)

C = variance in exam performance shared by both exam anxiety and revision time (14.3%)

D = variance shared by exam anxiety and revision time but not exam performance (36%)

E = variance in exam performance not shared by any measured variable (79.1%)

A + C = variance shared by exam performance and exam anxiety (19.4%)

C + B = variance shared by exam performance and revision time (15.8%)

C + D = variance shared by revision time and exam anxiety (50.3%)

A + B + C = variance in exam performance accounted for by revision time and exam anxiety (20.9%)

semi-partial correlation is the relationship between X and Y accounting for the overlap in X and Z, but not the overlap in Y and Z

The **semi-partial correlation** between *Performance* and Anxiety accounting for Revision Time is the unique variance in exam performance (A) shared with exam anxiety expressed as a proportion of the variance in exam performance (A+C+E+B)

# Categorical variables: Contingency Table

- Analyzing two or more categorical variables
  - The mean of a categorical variable is meaningless
    - The numeric values you attach to different categories are arbitrary
    - The mean of those numeric values will depend on how many members each category has.
  - Therefore, we analyze frequencies.
- An example
  - Can animals be trained to line-dance with different rewards?
  - Participants: 200 cats
  - Training
    - The animal was trained using either food or affection, not both)
  - Dance
    - The animal either learnt to line-dance or it did not.
  - Outcome:
    - The number of animals (frequency) that could dance or not in each reward condition.
  - We can tabulate these frequencies in a contingency table

## A contingency table

**TABLE 18.1** Contingency table showing how many cats will line-dance after being trained with different rewards

|                   |       | Training       |                     |       |
|-------------------|-------|----------------|---------------------|-------|
|                   |       | Food as Reward | Affection as Reward | Total |
| Could They Dance? | Yes   | 28             | 48                  | 76    |
|                   | No    | 10             | 114                 | 124   |
|                   | Total | 38             | 162                 | 200   |

Strength of the assocation between categorical variables can be quantified with a contingency coefficient or Cramer's V – reviewed in today's lab activity