Università degli Studi di Verona	
DIPARTIMENTO DI INFORMATICA	
Analisi di Sistemi informatici	
Riassunto dei principali argomenti	
Autore: Davide Bianchi	

Indice

1	Prel	iminari matematici
	1.1	Ordini parziali
	1.2	Reticoli
	1.3	Teoremi di punto fisso
2	Inte	erpretazione astratta
	2.1	Introduzione
	2.2	Connessione di Galois
		Famiglie di Moore
		Upper closure operator
	2.5	Reticolo delle interpretazioni astratte
	2.6	Computazioni astratte e concrete

1 Preliminari matematici

- 1.1 Ordini parziali
- 1.2 Reticoli
- 1.3 Teoremi di punto fisso

2 Interpretazione astratta

2.1 Introduzione

Lo scopo è quello di trovare un'approssimazione di una semantica $\langle P \rangle$ di $\llbracket P \rrbracket$ tale per cui valgano:

- correttezza: $\llbracket P \rrbracket \subseteq \langle P \rangle$;
- $decidibilit\grave{a}:\langle P\rangle\subseteq Q$ è decidibile (Q è un insieme di semantiche che soddisfa la proprietà di interesse).

Se entrambe le proprietà sono soddisfatte, allora vale che

$$(\langle P \rangle \subseteq Q) \Rightarrow (\llbracket P \rrbracket \subseteq Q)$$

La semantica è data da una coppia $\langle D, f \rangle$ dove D è una coppia $\langle D, \leq_D$ rappresentante un dominio semantico e $f:D\to D$ è una funzione di trasferimento con una soluzione a punto fisso

Dato un oggetto concreto, definiamo:

- un **oggetto astratto** come una rappresentazione matematica sovra-approssimata del corrispondente concreto;
- un **dominio** astratto come un insieme di oggetti astratti con delle operazioni astratte, che approssimano quelle concrete;
- una funzione di **astrazione** α che mappa oggetti concreti in oggetti astratti;
- una funzione di **concretizzazione** γ che mappa oggetti astratti in oggetti concreti.

La caratteristica peculiare delle astrazioni è che solo alcune proprietà vengono osservate con esattezza, le altre vengono solo approssimate. In sostanza, dato un dominio astratto A, gli elementi di A sono osservati con esattezza, gli altri sono approssimati o l'informazione è persa del tutto.

Proprietà. L'insieme delle proprietà $\mathcal{P}(\Sigma)$ di oggetti in Σ è l'insieme di elementi che gode di quella proprietà. Questo insieme di proprietà costituisce un reticolo completo

$$\langle \mathcal{P}(\Sigma), \subseteq, \emptyset, \cup, \cap, \neg \rangle$$

dove:

- ⊆ è l'implicazione logica;
- Σ è true;
- \cup è la disgiunzione (oggetti che godono di P o di Q appartengono a $P \cup Q$);
- \cap è la congiunzione (oggetti che godono di P e di Q appartengono a $P \cap Q$);
- \neg è la negazione (oggetti che non godono di P stanno in $\Sigma \setminus P$).

Direzione dell'astrazione. Quando si approssima una proprietà concreta $P \in \mathcal{P}(\Sigma)$ usando una proprietà astratta \overline{P} , deve essere stabilito un criterio per definire quando \overline{P} è un'approssimazione di P.

Si distinguono quindi i seguenti casi:

- approssimazione da sopra: $P \subseteq \overline{P}$;
- approssimazione da sotto: $P \supseteq \overline{P}$.

Dato un oggetto o, si vuole quindi sapere se $o \in P$:

$$P\supseteq \overline{P}: \begin{cases} \text{"Si"} & o\in \overline{P} \\ \text{"Non lo so"} & o\notin \overline{P} \end{cases} \qquad P\subseteq \overline{P}: \begin{cases} \text{"No"} & o\notin \overline{P} \\ \text{"Non lo so"} & o\in \overline{P} \end{cases}$$

Migliore approssimazione. Definiamo come *migliore approssimazione* di una proprietà P in A il glb delle over-approximation di P in A, ossia:

$$\overline{P} = \bigcap \{ \overline{P'} \in A | P \subseteq \overline{P'} \} \in A$$

2.2 Connessione di Galois

Imponiamo il vincolo che α e γ siano monotone, allora concludiamo che:

- $\gamma \circ \alpha : C \to C$ è estensiva: $\gamma(\alpha(c)) \geq c$;
- $\alpha \circ \gamma : A \to A$ è riduttiva: $\alpha(\gamma(a)) \leq a$.

Le definizioni qui sopra dicono rispettivamente che:

- α perde informazione, e γ non la può recuperare;
- γ non perde informazione.

Definizione 2.2.1 (Connessione di Galois). Dati due poset $\langle A, \leq_A \rangle$ e $\langle C, \leq_C \rangle$, e due funzioni monotone $\alpha: C \to A$ e $\gamma: A \to C$, diciamo che $\langle C, \alpha, \gamma, A \rangle$ è una connessione di Galois se:

- $\forall c \in \mathcal{C} : c \leq_C \gamma(\alpha(c))$
- $\forall a \in \mathcal{A} : \alpha(\gamma(a)) \leq_A a$

Se inoltre vale che $\forall a \in \mathcal{A} : \alpha(\gamma(a)) = a$, allora $\langle C, \alpha, \gamma, A \rangle$ è un'inserzione di Galois.

Una connessione e un'inserzione di Galois sono rappresentate rispettivamente come

$$C \stackrel{\gamma}{\longleftrightarrow} A \qquad C \stackrel{\gamma}{\longleftrightarrow} A$$

La funzione α è detta aggiunta sinistra, mentre la funzione γ è detta aggiunta destra.

Teorema 2.2.1. Data una connessione di Galois $C \xrightarrow{\gamma} A$, sono equivalenti:

- $C \stackrel{\gamma}{\longleftrightarrow} A$;
- α è suriettiva;
- γ è iniettiva.

Inoltre, dati due domini astratti, non esistono due coppie (α, γ) che formino una connessione di Galois; quindi la connessione di Galois tra due domini è **unica**, e le funzioni sono identificabili attraverso:

$$\alpha(c) = \bigwedge \{ a \in A | c \le_C \gamma(a) \}$$

$$\gamma(a) = \bigvee \{c \in C | \alpha(c) \le_A a\}$$

2.3 Famiglie di Moore

Definizione 2.3.1 (Famiglia di Moore). Sia L un reticolo completo. $X\subseteq L$ è una famiglia di Moore di L se

$$X = \mathcal{M}(X) = \left\{ \bigwedge S \mid S \subseteq X \right\}$$

dove

$$\bigwedge \emptyset = \top \in \mathcal{M}(X)$$

Da questa definizione segue che, ipotizzando che ogni proprietà concreta abbia una migliore astrazione $\overline{P} \in A$, implica che il dominio A è una famiglia di Moore.

2.4 Upper closure operator

Definizione 2.4.1 (Upper closure operator). Una funzione $f: P \to P$ su un poset $\langle P, \leq_P \rangle$ è un upper closure operator (uco) se soddisfa le seguenti proprietà:

- estensività: $\forall x \in P : x \leq_P \rho(x)$
- monotonia: $\forall x, y \in P : (x \leq_P y) \Rightarrow (\rho(x) \leq_P \rho(y))$
- idempotenza: $\forall x \in P : \rho(x) = \rho(\rho(x))$

I lower closure operator sono definiti in modo duale, specificando che ρ deve essere *riduttiva*, ovvero che $\forall x \in P : x \geq_P \rho(x)$.

Teorema 2.4.1. Data una connessione di Galois $C \xrightarrow{\gamma} A$ si ha che $\gamma \circ \alpha$ è un uco e $\alpha \circ \gamma$ è un lco.

Teorema 2.4.2. $C \xrightarrow{\gamma} A$ se e solo se A è isomorfo 1 ad una Moore family di C.

Teorema 2.4.3. Sia $\rho \in uco(c)$. Allora $\forall A \simeq \rho(C)$ si ha che $\exists \alpha, \gamma : C \xrightarrow{\gamma} A$

2.5 Reticolo delle interpretazioni astratte

I vari domini astratti possono essere comparati sulla base della loro precisione. In generale si può dire che un dominio astratto A_1 è più preciso di A_2 (indicato attraverso $A_1 \sqsubseteq A_2$) quando

$$\forall a_2 \in A_2, \exists a_1 \in A_1$$
 tali che $\gamma_1(a_1) = \gamma_2(a_2)$

ovvero quando

$$\gamma(A_2) \subseteq \gamma(A_1)$$

Collegando agli uco, possiamo dire che

$$A_1 \sqsubseteq A_2 \Leftrightarrow \rho_1 \sqsubseteq \rho_2 \Leftrightarrow \rho_2(C) \subseteq \rho_1(C)$$

Definizione 2.5.1 (Reticolo delle int. astratte). Se C è un reticolo completo o un cpo, allora

$$\langle uco(C), \sqsubseteq, \sqcup, \sqcap, \lambda x. \top, \lambda x. x \rangle$$

è un reticolo completo dove $\forall \rho, \eta \in uco(C), \{\rho_i\}_{i \in I} \subseteq uco(C)$ e $x \in C$:

•
$$\rho \sqsubseteq \eta \Leftrightarrow \forall y \in C. \rho(y) \leq \eta(y) \Leftrightarrow \eta(C) \subseteq \rho(C)$$

•
$$\left(\prod_{i\in I}\rho_i\right)(x) = \bigwedge_{i\in I}\rho_i(x)$$

•
$$\left(\bigsqcup_{i\in I}\rho_i\right)(x)=x\Leftrightarrow \forall i\in I.\rho_i(x)=x$$

• $\lambda x. \top, \lambda x. x$ sono rispettivamente top e bottom.

¹Con isomorofismo si intendono reticoli con la stessa struttura.

2.6 Computazioni astratte e concrete

Definizione 2.6.1 (Correttezza). Data un'inserzione di Galois $C \xrightarrow{\gamma} A$, una funzione concreta $f: C \to C$ e una funzione astratta $f^{\sharp}: A \to A$ diciamo che f^{\sharp} è un'approssimazione corretta di f se

$$\forall c \in C : \alpha(f(c)) \leq_A f^{\sharp}(\alpha(c))$$
 backward

o equivalentemente

$$\forall a \in A : f(\gamma(a)) \leq_C \gamma(f^{\sharp}(a))$$
 forward

Rinforzando la definizione e imponendo uguaglianza si perde l'equivalenza delle due espressioni sopra.

Definizione 2.6.2 (Completezza). Data un'inserzione di Galois $C \stackrel{\gamma}{\longleftarrow_{\alpha}} A$, una funzione concreta $f: C \to C$ e una funzione astratta $f^{\sharp}: A \to A$ diciamo che f^{\sharp} è:

- backward-completa per f se $\forall c \in C: \alpha(f(c)) = f^\sharp(\alpha(c))$
- forward-completa per f se $\forall a \in A: f(\gamma(a)) = \gamma(f^\sharp(a))$

La definizione rappresenta una situazione ideale in cui non si ha perdita di precisione durante il calcolo astratto. Inoltre la backward-completezza lavora sull'astrazione dell'input delle operazioni, la forward-completezza sull'output.