Proposition 51.2. If f is any convex function on \mathbb{R}^n , then for every $\alpha \in \mathbb{R} \cup \{-\infty, +\infty\}$, the sublevel sets sublev $_{\alpha}(f)$ and sublev $_{<\alpha}(f)$ are convex.

Definition 51.7. A function $f: \mathbb{R}^n \to \mathbb{R} \cup \{-\infty, +\infty\}$ is *lower semi-continuous* if the sublevel sets sublev_{α} $(f) = \{x \in \mathbb{R}^n \mid f(x) \le \alpha\}$ are closed for all $\alpha \in \mathbb{R}$.

Observe that the improper convex function of Example 51.2 is not lower semi-continuous since sublev_{α}(f) = (-1,1) whenever $-\infty < \alpha < 0$. This result reflects the fact that the epigraph is not closed as shown in the following proposition; see Rockafellar [138] (Theorem 7.1).

Proposition 51.3. Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{-\infty, +\infty\}$ be any function. The following properties are equivalent:

- (1) The function f is lower semi-continuous.
- (2) The epigraph of f is a closed set in \mathbb{R}^{n+1} .

The notion of the closure of convex function plays an important role. It is a bit subtle because a convex function may be improper.

Definition 51.8. Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{-\infty, +\infty\}$ be any function. The function whose epigraph is the closure of the epigraph $\operatorname{epi}(f)$ of f (in \mathbb{R}^{n+1}) is called the *lower semi-continuous hull* of f. If f is a convex function and if $f(x) > -\infty$ for all $x \in \mathbb{R}^n$, then the closure $\operatorname{cl}(f)$ of f is equal to its lower semi-continuous hull, else if $f(x) = -\infty$ for some $x \in \mathbb{R}^n$, then the closure $\operatorname{cl}(f)$ of f is the constant function with value $-\infty$. A convex function f is closed if $f = \operatorname{cl}(f)$.

Definition 51.8 implies that there are only two closed improper convex functions: the constant function with value $-\infty$ and the constant function with value $+\infty$. Also, by Proposition 51.3, a proper convex function is closed iff it is equal to its lower semi-continuous hull iff its epigraph is nonempty and closed.

Given a convex set C in \mathbb{R}^n , the interior $\operatorname{int}(C)$ of C (the largest open subset of \mathbb{R}^n contained in C) is often not interesting because C may have dimension smaller than n. For example, a (closed) triangle in \mathbb{R}^3 has empty interior.

The remedy is to consider the affine hull $\operatorname{aff}(C)$ of C, which is the smallest affine set containing C; see Section 44.2. The dimension of C is the dimension of $\operatorname{aff}(C)$. Then the relative interior of C is the interior of C in $\operatorname{aff}(C)$ endowed with the subspace topology induced on $\operatorname{aff}(C)$. More explicitly, we can make the following definition.

Definition 51.9. Let C be a subset of \mathbb{R}^n . The relative interior of C is the set

$$\mathbf{relint}(C) = \{ x \in C \mid B_{\epsilon}(x) \cap \mathrm{aff}(C) \subseteq C \text{ for some } \epsilon > 0 \},$$

where $B_{\epsilon}(x) = \{y \in \mathbb{R}^n \mid ||x - y||_2 < \epsilon\}$, the open ball of center x and radius ϵ . The relative boundary of C is defined as $\overline{C} - \mathbf{relint}(C)$, where \overline{C} is the closure of C in \mathbb{R}^n (the smallest closed subset of \mathbb{R}^n containing C).