OpenGL a OpenGL ES

Tematický seminář pro studenty Dušan Fedorčák

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Obsah

OpenGL

- Pojmy (matice, bod, normála, trojúhelník…)
- Standardní zobrazovací řetězec
- Programovatelný řetězec (shader)

OpenGL ES

- Verze 1.x, 2.x
- OpenGL vs. OpenGL ES
- Podpora na mobilních platformách

Obsah II

- Tvorba aplikací
 - Podpůrné nástroje
 - Grafické formáty
 - · Vývojová prostředí, emulátory, aplikační rámce
- Optimalizace
 - Správa paměti, Profilování
- Návrhové vzory
 - Zobrazení terénu
 - Částicové systémy, Sprites, Billboarding
 - Fyzika, detekce a řešení kolizí

OpenGL

Open Graphics Library

- Standard specifikující API pro práci s grafikou
- ARB konsorcium, Khronos Group
 - NVIDIA, AMD, Microsoft, SGI
- Multiplatformní
 - Windows, Mac OS, Linux, iOS, Android, Symbian...
- Architektura
 - Procedurální (žádné OOP)
 - Klient/Server

OpenGL – Pojmy

Bod v OpenGL

- Poloha v prostoru
- Normála
- Poloha na textuře
- Barva

Matice v OpenGL

- Typy matic
- Zásobník matic
- Maticové operace

```
(1.2, -5.3, 2.1)
(0.707, 0, -0.707)
(0.25, 0.75)
(0.5, 0.1, 0.8, 1.0)
```

OpenGL – Pojmy

Trojúhelník

- Tři osvětlené body
- Orientace plochy
- Triangulace
- Ostatní Struktury
 - Triangle Strip
 - Triangle Fan
 - Quad, Quad Strip
 - Line, Point

OpenGL – Pokročilé struktury

Display List

- Řetěz statických příkazů OpenGL, po kompilaci nelze měnit
- Uloženo pro mnohonásobné využití na GPU
- V novějších verzích nepodporovány

Vertex Arrays

- Pole atributů (poloha, normála, barva atd..)
- Posílá se najednou na GPU
- Ideální pro statické struktury

VBOs

- Vertex Buffer Object
- Optimalizační značky pro transfery do video paměti
- Výhody obou předchozích řešení

OpenGL – Osvětlení

- Phongův osvětlovací model
 - Okolní světlo
 - Rozptýlený odraz
 - Zrcadlový odraz

OpenGL Textury

- Nanášení textur
 - Prostor textury, UV mapování, Filtrace

Standardní zobrazovací řetězec

Programovatelný zobrazovací řetězec

Výhody programovatelného řetězce

- Vertex Shader (Geomety Shader)
 - Transformacích bodů na GPU
 - Tvorba nových primitiv přímo na GPU
- Pixel Shader / Fragment Shader
 - Pokročilejší osvětlovací techniky
 - Phongovo stínování
 - Normálové mapy, mapy lesklých míst, vržené stíny apod.
- Deferred Shading/Lighting

OpenGL ES

OpenGL for Embedded systems

- Podmnožina OpenGL
- OpenGL ES 1.x
 - Vertex Arrays,
 - Žádné glBegin(), glEnd(), glVertex(), glNormal()...
- OpenGL ES 2.x
 - Odvozeno od OpenGL 3.1
 - Fixní grafický řetězec nahrazen shadery
 - Žádný zásobník maticových operací
 - Neexistuje zpětná kompatibilita

OpenGL ES – Podpora

OpenGL ES 1.1

- Android 1.6
- iOS (iPad, iPhone, iPod Touch)
- BlackBerry, WebOS, Nintendo 3DS

OpenGL ES 2.0

- Android 2.0 (NDK), Android 2.2 (Java)
- iOS (iPad, iPhone, iPod Touch)
- WebGL (browsers), BlackBerry OS 7

OpenGL ES 3.0

- Android 4.3 (specifický ovladač výrobce zařízení)
- iOS 7 zařízení
- BlackBerry OS 10

Tvorba aplikací – Podpůrné nástroje

Podpůrné nástroje

Blender

- Volně dostupný modelovací nástroj
- Jednoduché ovládání a tvorba low-poly modelů
- UV mapování
- Export do formátů 3DS, OBJ, STL apod.

Inkscape

- Volně dostupný editor vektorové grafiky
- Vhodný na přípravu GUI, ikon, textur

Gimp

- Volně dostupný editor rastrové grafiky
- Vhodný na tvorbu textur

Tvorba aplikací – Datové formáty

Textury

- JPEG
 - Ztrátová komprese
 - Nepodporuje průhlednost
- PNG
 - Podpora průhlednosti
 - 32bit RGBA formát
 - Bezztrátová komprese, větší soubor

Modely

- Waveform OBJ
 - Triangulované objekty
 - Ukládá normály, texturové souřadnice, materiály apod.

Tvorba aplikací – Waveform OBJ

```
o Cube
v 1.000000 -1.000000 -1.000000
v -1.000000 -1.000000 -1.000000
v -1.000000 1.000000 -1.000000
vt 0.500000 0.749956
vt 0.250044 0.749957
vt 0.500000 0.500000
vn 0.000000 -0.000000 -1.000000
vn -0.000000 0.000000 1.000000
vn 0.000000 -1.000000 -0.000000
s off
f 1/1/1 2/2/1 4/3/1
f 5/4/2 8/5/2 6/6/2
f 1/1/3 5/7/3 2/2/3
f 2/8/4 6/9/4 3/10/4 ...
```

Tvorba aplikací – Vývojová prostředí

Android

- ADT
 - Eclipse Based
 - Emulátor s GPU on host funkcí

Genymotion

- Velmi rychlý Android emulátor
- Plug-in pro Eclipse
- Emulace akcelerometru a gest

Aplikační rámce

- Badlogic libGDX
 - Knihovna pro fullscreen OpenGL ES aplikace
 - Transparentní mapování mezi Dalvik VM a Java SE JRE

AndEngine

- Knihovna pro 2D grafiku pod OpenGL ES
- Kolizní model, fyzika

Optimalizace

Správa paměti

- Garbage Collection
 - Spuštění GC zastaví běh virtuálního stroje až na 500ms
 - Při hraní real-time hry k tomu nesmí dojít
 - Manuálně plánovat GC ve vhodné chvíli (pauza, menu atd.)

Skryté instaciace

- Iterátory for each
- Mapy, Hash tabulky (insert)
- String Buffer místo operátoru +

Profilování paměti

Používat, používat, používat

Návrhové vzory

Vizualizace terénu

- Výšková mapa
 - Běžný obrázek ve stupních šedi
- Standardní triangulace pravidelné sítě
 - Využít VBO
 - Normály se mohou spočítat nebo nahrát jako textura
- Kolizní model
 - Příznivá složitost o(1) pro testování kolizí
- Generátory terénu
 - Terragen, L3DT

Vizualizace terénu

Návrhové vzory – Efekty

Částicové systémy

- oheň, jiskry, bubliny dým, oblaka apod...
- Vertex shader

Billboarding

- Textura mapovaná na čtverec
- Billboard je stále otočen přímo ke kameře
- Jednoduchá implementace pomocí vymazání rotací

Animované textury

- Animace může být řízena transformacemi v prostoru textury
- Fragment shader

Poloprůhledné objekty

- Problém seřazení objektů
- Problém bufferu hloubky

Návrhové vzory – Fyzikální simulace

Časování

- Vypočítání časové změny od minulého kroku
- Update systému
- Vykreslení

Více jader = více vláken

- Synchronizace vykreslení a fyziky
- Citlivý přístup k CPU zdrojům

Integrační techniky

- Fixní a variabilní časový krok
- Eulerovská integrace / RK4 integrace
- Tvrdé systémy a nebezpečí "výbuchu"

Návrhové vzory – Fyzikální simulace

Kolizní model

- Detekce kolizí
 - Velmi rychle může být problém s o(n²) složitostí
 - Hrubá a jemná fáze
 - Prostorové indexování

Řešení kolizí

- Impulzní model
- Pružinový model
- Problém rychlých objektů
 - Vícenásobné testování v mezikrocích

Reference

http://mrl.cs.vsb.cz/people/sojka/pg/pocitacova_grafikaII.pdf

http://www.khronos.org/

http://www.khronos.org/registry/gles/specs/1.1/es_cm_spec_1.1.12.pdf

http://www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.25.pdf

http://www.bundysoft.com/docs/doku.php?id=I3dt:userguide

http://wiki.blender.org/index.php/Doc:2.6/Manual

http://developer.android.com/tools/sdk/eclipse-adt.html

http://developer.android.com/guide/topics/graphics/opengl.html

http://en.wikipedia.org/wiki/Phong_reflection_model

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ