Ex 71 p 116

On a une fonction $p(t) = -0.2t^2 + 4t + 25$.

1) On dérive t^2 : on obtient 2t. Donc si on dérive $-0.2t^2 = -0.2 \times 2t = -0.4t$ On dérive 4t: on obtient 4.

On dérive 25 : on obtient 0 car 25 ne multiplie pas de t.

On fait la somme de toutes ces dérivées : p'(t) = -0.4t + 4

2)
$$p'(t) = 0 \iff -0.4t + 4 = 0 \iff -0.4t = -4 \iff t = 10$$

De plus, p'(0)=4>0 donc on peut remplir le tableau de signes et le tableau de variations d'un coup :

x	0		10	25	
p'(t)	4>0	+	0	_	
p	p(0) = 25	p(10) ≡	45	p(25)	=

- 3) Au début de l'épidémie, t = 0 . Calculons $p(0): p(0) = -0.2 \times 0^2 + 4 \times 0 + 25 = 25$ % de malades au début de l'épidémie.
- 4) Après 10 mois, on atteint le maximum de l'épidémie avec un pourcentage maximum de $p(10) = -0.2 \times 10^2 + 4 \times 10 + 25 = -20 + 40 + 25 = 45$ 45 % de la population est contaminée.
- 5) On doit faire un tableau de valeurs. Cela va sans doute se passer assez tard (après 15 mois) donc :

mois	15	16	17	18	19	20	21	22	23	24	25
%	40	37,8	35,2	32,2	28,8	25	20,8	16,2	11,2	5,8	0

L'épidémie a disparu au bout de 25 mois : 2 ans et 1 mois. De janvier 2017 à février 2019.