Math 261 – Discrete Optimization (Spring 2022)

Assignment 2

Problem 1

Draw the feasible area of the following linear programs and indicate the direction of the objective function.

(a)

min
$$3x - y$$

s.t. $3x + 2y \ge 5$
 $2x - 3y \le 3$
 $x + 2y \le 6$

(b)

$$\max 2x + y$$
s.t.
$$x - y \ge 0$$

$$3x - y \ge 2$$

$$- y \le 2$$

$$4x + 3y \le 3$$

Problem 2

Consider the linear program

$$P = \min -x + 3y$$
s.t.
$$y + z = 3$$

$$-x - y + w = -3$$

$$3x + y \leq 15$$

$$z, w \geq 0$$

Write an equivalent linear program P' that uses only two variables. Show how the feasible solutions in P and P' correspond to each other.

Problem 3

Reformulate the (nonlinear) optimization problem

$$P = \min \quad 2x + 3|y - 10|$$
s.t. $|x + 2| + y \le 5$, (1)

as a linear programming problem. That is, write a linear program P' which has an optimal solution that as the same objective value as an optimal solution to P (P and P' do not need to be equivalent).

Problem 4

Prove that the following are equivalent:

- (a) $P = {\mathbf{x} \in \mathbb{R}^n : \mathbf{v}_i \cdot \mathbf{x} \le b_i, i = 1, ..., m}$ is nonempty and the \mathbf{v}_i span \mathbb{R}^n .
- (b) There exists a point $\mathbf{x} \in P$ which has n linearly independent active constraints (that is, their normal vectors are linearly independent).

Problem 5

Given a feasible region P and a point $\mathbf{x} \in P$, a feasible direction at p is any vector \mathbf{v} for which $\mathbf{x} + \epsilon \mathbf{v} \in P$ for some $\epsilon > 0$.

(a) Let P be the polyhedron

$$P = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \ge 0 \}.$$

Show that if $\mathbf{x} \in P$ and \mathbf{v} is a feasible direction at \mathbf{x} then $A\mathbf{v} = \mathbf{0}$.

(b) Let P be the polyhedron

$$P = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \ge 0 \}.$$

Assume $\mathbf{x} \in P$ and \mathbf{v} is a feasible direction at \mathbf{x} and find a way to determine the set of ϵ for which $\mathbf{x} + \epsilon \mathbf{v}$ is feasible.

(c) Find the set of feasible directions of

$$P = \{ \mathbf{x} \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 1, \mathbf{x} \ge \mathbf{0} \}$$

at the point $\mathbf{x} = (0, 0, 1)$ and for each feasible direction \mathbf{v} , find the set of ϵ for which $\mathbf{x} + \epsilon \mathbf{v}$ is feasible.