Topological Kohonen maps and β turns

Nicolas Silva

Université de Paris silva.nicolas.j@gmail.com

 $https://github.com/nicolassilva/projetLong_Kohonen-BetaTurn$

Secondary structures and turns

Expected: 50% of coils; 1/5 of β -sheets and 1/3 of helix- α .

•00

Secondary structures and turns

Expected: 50% of coils; 1/5 of β -sheets and 1/3 of helix- α . Multiple turn types: γ -turn ; β -turn ; α -turn and π -turn.

$$\begin{array}{c|c}
H & R^2 & H \\
H & C & R^3 \\
N & O & C=0 \\
R^1 & C & H & R^4
\end{array}$$

Introduction 000

β -turns

Introduction 0 • 0

▶ 13 β -turn types: I, I', II, II', IV_1 , IV_2 , IV_3 , IV_4 , IV_{misc} , VI_{a1} , VI_{a2} , VI_b and VIII

β -turns

▶ 13 β -turn types: I, I', II, II', IV_1 , IV_2 , IV_3 , IV_4 , IV_{misc} , VI_{a1} , VI_{a2} , VI_b and VIII

Dihedral angles φ , ψ and ω of the residus X.

β -turns

000

▶ 13 β -turn types: I, I', II, II', IV₁, IV₂, IV₃, IV₄, IV_{misc}, VI_{a1} , VI_{a2} , VI_{b} and VIII

Dihedral angles φ , ψ and ω of the residus X.

Example of Ramachandran [Ramachandran, 1963] plot for β -turn type I and II.

Self-Organized Maps

Self-Organized Maps

Neurons' creation specialised classification of β -turns.

Self-Organized Maps

The main objectif is to study a classification method based on angles and to bring a different learning throughout Kohonen maps.

Data set and frequencies

Variables of interest from the data set:

- Amino acid type and position
- Secondary structure
- ightharpoonup arphi angle
- $ightharpoonup \psi$ angle
- (X, Y, Z) coordinates of the carbone- α

Data set and frequencies

Variables of interest from the data set:

- Amino acid type and position
- Secondary structure
- ightharpoonup arphi angle
- $ightharpoonup \psi$ angle
- (X, Y, Z) coordinates of the carbone- α

Data frequencies in the sequences:

- 20 Amino acids frequencies [King & Jukes, 1969]
- 3 Secondary structures frequencies [de Brevern, 2016]
- 13 β-turn types frequencies [de Brevern, 2016]

Turn assignment

Conditions:

- ▶ Distance i and i + 3 < 7Å
- \triangleright i+1 and i+2 not Helix
- \blacktriangleright All residus not β -sheets

Turn assignment

Conditions:

- ▶ Distance *i* and i + 3 < 7Å
- \triangleright i+1 and i+2 not Helix
- \triangleright All residus not β -sheets

Degree of angle liberty:

- \triangleright $\pm 30^{\circ}$ for 3 of the angles
- \triangleright $\pm 45^{\circ}$ for 1 of the angles

Туре	Résidu i+1		Résidu i+2	
	φ	ψ	φ	ψ
Type I	-60	-30	-90	0
Type I'	60	30	90	0
Type II	-60	120	80	0
Type II'	60	-120	-80	0
Type IV ₁	-120	130	55	41
Type IV ₂	-85	-15	-125	55
Type IV ₃	-71	-30	-72	-47
Type IV ₄	-97	-2	-117	-11
Type VI _{a1}	-60	120	90	0
Type VI _{a2}	-120	-120	-60	0
Type VI _b	-135	135	-75	160
Type VIII	-60	-30	-120	120
Type IV _{misc}	Aucunes des autres catégories			

Learning

Learning

Winner:

$$D = |V_i - W_i|$$
 If $D < 180$, then $D = D$ If $D > 180$, then $D = 360 - D$

Learning

Winner:

$$D = |V_i - W_i|$$

$$\begin{array}{lll} \textit{If} & \textit{D} < 180, & \textit{then} & \textit{D} = \textit{D} \\ \textit{If} & \textit{D} > 180, & \textit{then} & \textit{D} = 360 - \textit{D} \\ \end{array}$$

Modification & diffusion:

$$W_{new} = W_i + (V_i - W_i)\alpha(t)\beta(t)$$

with
$$\alpha(t) = \frac{\alpha_0}{1 + \frac{t}{n}}$$
 $\beta(t) = \exp{-\frac{(r - r_{winner})^2}{2\eta^2}}$

Observed frequencies almost as the expected ones except for Serines, Cysteine and Leucine.

Frequencies

Observed frequencies fitted the expected frequencies.

Frequencies

Observed frequencies not following the expected frequencies.

Pre-learning SOM classification

There are types: $II, IV_1, IV_3, IV_4,$ IV_{misc} and VIII.

Post-learning SOM classification

There are types: $II, IV_2, IV_3, IV_4,$ IV_{misc} and VIII.

Discussion

- Differences in types frequences can be due to programmation errors, errors in files or proteins chaîns with shifted frequencies.
- Learning because initialisation values are different from post learning values.
- Few types diversity at the end => may be due to the differences in types proportions in the file
- May be interesting to compare with Fisherman's rule learning method.

References

Ramachandran, G. N. (1963). Stereochemistry of polypeptide chain configurations. *J. Mol. Biol.* 7, 95 – 99.

King, J. L., & Jukes, T. H. (1969). Non-darwinian evolution. *Science*, 164(3881), 788 – 798.

de Brevern, A. G. (2016). Extension of the classical classification of β -turns. *Scientific reports*, 6, 33191.