Tutorium 13

Aufgabe 1: Minima, Maxima, Schranken

Gegeben sei die Halbordnung \leq : $(\mathbb{N}_+, \mathbb{N}_+)$ mit \leq := $\{(a, b) : \exists c \in \mathbb{N}_+ : a \cdot c = b \}$ (d.h. $a \leq b$ gdw. a ein Teiler von b ist).

1.a) *Gib an:* Alle kleinsten/größten und minimalen/maximalen Elemente, alle unteren/oberen Schranken und Infimum/Supremum der folgenden Mengen, falls diese existieren.

1.a(i) $\{ n \mid n \text{ ist gerade } \}$

1.a(ii) N₊

1.a(iii) { 1, 5 }

1.a(iv) { 12, 21, 96 }

Lösung

Skizze für die Werte 1-12

Menge	kleinstes /	minimale /	untere /	Infimum /
	größtes El.	maximale El.	obere Schranken	Supremum
$\{ n : n \text{ ist gerade } \}$	2	{ 2 }	{ 1, 2 }	2
	_	Ø	Ø	
\mathbb{N}_+	1	{ 1 }	{ 1 }	1
	_	Ø	Ø	
{ 1, 5 }	1	{ 1 }	{ 1 }	1
	5	{ 5 }	$\left\{ 5x : x \in \mathbb{N}_+ \right\}$	5
{ 12, 21, 96 }	_	{ 12, 21 }	{ 1, 3 }	3
	_	{ 21, 96 }	$\left\{ 672x : x \in \mathbb{N} \right\}$	672

Durch Primfaktorzerlegung ergibt sich:

$$12 = 2^2 * 3$$

$$21 = 3 * 7$$

$$96 = 2^5 * 3$$

Obere Schranken sind demnach alle Zahlen, die durch $2^5 * 3 * 7 = 672$ teilbar sind.

\Lösung

1.b) Für welche Teilmengen von \mathbb{N}_+ gibt es obere Schranken?

Lösung

Für endliche Mengen.

\Lösung

Aufgabe 2: Verbände

Gegeben sei die Halbordnung \leq aus Aufgabe 1. Seien $a, b \in \mathbb{N}_+$.

2.a) *Gib an*: $\inf(\{a, b\})$.

2.b) *Beweise*:: Deine Angabe für $\inf(\{a, b\})$ ist tatsächlich das Infimum von a, b.

Hinweis: Seien $c, m, n \in \mathbb{N}_+$. Wenn c der größte gemeinsame Teiler von m und n ist, dann existieren $u, v \in \mathbb{Z}$ mit $c = u \cdot m + v \cdot n$ (*)

Hinweis: Seien $c, m, n \in \mathbb{N}_+$. Wenn c ein Teiler von m und ein Teiler von n ist, dann gilt für alle $p, q \in \mathbb{Z}$, dass c auch $p \cdot m + q \cdot n$ teilt (**)

Wir zeigen, dass ggT(a,b) das Infimum von a,b ist, d.h. $ggT(a,b) \leq a$, $inf(\{a,b\}) \leq b$ und $\forall x \in \mathbb{N}_+$. $(x \leq a \text{ und } x \leq b) \Rightarrow x \leq ggT(a,b)$

- Da per Definition ggT(a,b) Teiler von a und b ist, gilt, dass $ggT(a,b) \leq a$ und $ggT(a,b) \leq b$.
- Sei nun $x \in \mathbb{N}_+$ mit $x \leq a$ und $x \leq b$. Wir zeigen, dass auch $x \leq ggT(a, b)$, d.h., dass x ein Teiler von ggT(a, b) ist.

Da, ggT(a,b) der größte gemeinsame Teiler von a und b ist, können wir den Hinweis (*) anwenden. Seien also $u,v\in\mathbb{Z}$ mit $ggT(a,b)=u\cdot a+v\cdot b$. Weiterhin, da x ein Teiler von a und ein Teiler von b ist, folgt aus Hinweis (**), dass für alle $p,q\in\mathbb{Z}$, x ein Teiler von $p\cdot a+q\cdot b$ ist und damit ist also x auch ein Teiler von $u\cdot a+v\cdot b=ggT(a,b)$.

Somit ist ggT(a, b) das Infimum von a, b.

\Lösung\

Aufgabe 3: Hasse-Diagramme und Verbände

3.a) Gegeben sei $A := \{a, b, c, d, e, f\}$ und der Verband $V := (A, \sqsubseteq)$, der durch sein Hasse-Diagramm bestimmt ist:

Gib explizit an:

3.a(i) $c \sqcup e$ Lösung

3.a(ii) $b \sqcap d$ Lösung

Lösung

3.a(iii) sup({ a, b, e })

f \Lösung

3.a(iv) Eine injektive Abbildung $f: A \to \mathcal{P}(\mathbb{N})$, so dass $\forall x, y \in A.f(x \sqcap y) = f(x) \cap f(y)$ und $\forall x, y \in A.f(x \sqcup y) = f(x) \cup f(y)$

 $a \mapsto \emptyset$

 $b \mapsto \{1\}$

 $d \mapsto \{2\}$

 $c \mapsto \{1, 2\}$

 $e \mapsto \{2, 3\}$

 $f \mapsto \{1, 2, 3\}$

\Lösung

3.b) Sei $P \subseteq \mathcal{P}(X)$. P ist eine *Partition* von X, wenn folgendes gilt: • $\emptyset \notin P$ • $\forall x, y \in P . x \neq y \Rightarrow x \cap y = \emptyset$ $\bigcup_{P_i \in P} P_i = X$ Bezeichnen wir mit Part(X) die Menge aller Partitionen von X. Wir definieren die Halbord- \sqsubseteq : (Part(X), Part(X)) mit \sqsubseteq := $\{ (M, N) : \forall m \in M . \exists n \in N . m \subseteq n \}.$ 3.b(i) Sei $X := \{ 1, 2, 3, 4, 5, 6, 7, 8, 9 \}.$ Gib an: Eine Partition P von X mit |P| = 3, so dass $\forall p \in P \cdot |p| \ge 2$ und $\exists q \in P \cdot |q| = 4$ -----{Lösung} Z.B.: $P := \{ \{ 1, 2, 3, 4 \}, \{ 5, 6 \}, \{ 7, 8, 9 \} \}$ \Lösung 3.b(ii) Sei $X := \{ 1, 2, 3, 4 \}$. Visualisiere \sqsubseteq mittels eines Hasse-Diagramms. {{1,2,3,4}} $\{\{1,4\},\{2,3\}\} \quad \{\{1\},\{2,3,4\}\} \quad \{\{1,2,4\},\{3\}\} \quad \{\{1,3\},\{2,4\}\} \quad \{\{1,2,3\},\{4\}\} \quad \{\{1,3,4\},\{2\}\} \quad \{\{1,2\},\{3,4\}\}$ $\{\{1\},\{2,3\},\{4\}\} \quad \{\{1,4\},\{2\},\{3\}\} \quad \{\{1\},\{2,4\},\{3\}\} \quad \{\{1,3\},\{2\},\{4\}\}$ {{1,2},{3},{4}} {{1},{2},{3,4}} $\{\{1\},\{2\},\{3\},\{4\}\}$

3.b(iii) Sei $X:=\mathbb{N}$. Gegeben sei eine beliebige Partition P von \mathbb{N} . Definiere eine Äquivalenzrelation $R:(\mathbb{N},\mathbb{N})$ mit $P=\mathbb{N}/R$

\Lösung

Wir definieren $R := \{ (a, b) : \exists M \in P ... a, b \in M \}$

\Lösung |