Revision questions

Inequalities and Absolute Values

- 1. Sketch the set of points (x, y) which satisfy the following relations.
 - a) $0 \le y \le 2x$ and $0 \le x \le 2$ b) $y/2 \le x \le 2$ and $0 \le y \le 4$
- 2. Solve
 - a) x(x-1) > 0 b) (x-1)(x-2) < 0 c) $\frac{1}{x} > -\frac{1}{2}$ d) $\frac{1}{1-x} > \frac{1}{2}$
- 3. Solve
 - a) |x+1| < 3 b) |x+2| > 3 c) |3x+2| < 1 d) $\left| \frac{x-1}{x+1} \right| < 1$

Trigonometry

- 4. Find the **exact** value of each of the following:
 - a) $\cos\left(\frac{\pi}{12}\right)$ b) $\sin\left(\frac{5\pi}{12}\right)$ c) $\tan\left(\frac{7\pi}{12}\right)$ d) $\sec\left(\frac{11\pi}{12}\right)$
- 5. If A and B are acute with $sin(A) = \frac{3}{5}$ and $tan(B) = \frac{12}{5}$ find (without the use of a calculator):
 - a) cos(A) b) tan(A) c) sin(B) d) cos(B)
 - e) $\sin(A+B)$ f) $\cos(A-B)$ g) $\sin(2A)$ h) $\tan(2B)$
- 6. If A and B are acute with $sin(A) = \frac{24}{25}$ and $cos(B) = \frac{8}{17}$ find (without finding A and B):
 - a) $\cos(2A)$ b) $\sin(A-B)$ c) $\tan(A+B)$

7. Find the period and amplitude for each of the following functions.

a)
$$y = 3\sin\left(2x - \frac{\pi}{4}\right)$$

a)
$$y = 3\sin\left(2x - \frac{\pi}{4}\right)$$
 b) $y = -2\cos\left(\frac{x}{3} + \frac{\pi}{2}\right)$

8. Express each of the following in terms of a single sine function in the form $R\sin(x\pm\alpha)$, where R>0 and α is acute.

a)
$$\sin(x) + \cos(x)$$

$$\sin(x) + \cos(x)$$
 b) $2\sin(x) + 2\sqrt{3}\cos(x)$

c)
$$\sqrt{3}\sin(x) - \cos(x)$$

$$\sqrt{3}\sin(x) - \cos(x)$$
 d) $\sqrt{8}\sin(x) - \sqrt{8}\cos(x)$

Functions

9. What is the (maximal) domain and range of the following functions?

$$a) f(x) = \sqrt{5 - x^2}$$

$$f(x) = \sqrt{5 - x^2}$$
 b) $f(x) = \sqrt{x^2 - 5}$

c)
$$f(x) = \sqrt{1 - 2\sin x}$$
 d) $f(x) = (x - 8)^{-1/3}$

$$f(x) = (x-8)^{-1/3}$$

e)
$$f(x) = \sqrt{x-1}$$

f)
$$f(x) = \frac{1}{\sqrt{x-1}}$$

$$g) f(x) = \sqrt{\sin x}$$

e)
$$f(x) = \sqrt{x-1}$$
 f)
$$f(x) = \frac{1}{\sqrt{x-1}}$$
 g)
$$f(x) = \sqrt{\sin x}$$
 h)
$$f(x) = \begin{cases} \cos x & \text{if } x < 0 \\ \sqrt{1-x} & \text{if } 0 \le x \le 1 \\ |x| & \text{if } x > 1 \end{cases}$$

$$i) f(x) = 1 + \tan^2 x$$

- 10. Sketch the graph of each of the functions in Problem 9.
- 11. Sketch each of the following functions without using calculus.
 - a) An odd function, f(x), defined on [-2, 2] such that

$$f(x) = x^2(1-x)$$
 when $0 \le x \le 2$.

b) An even function, f(x), defined on [-3,3] such that

$$f(x) = (x-1)^2(x-2)$$
 when $0 \le x \le 3$.

12. If f(x) = x + 5 and $g(x) = x^2 - 3$ find

a)
$$g(f(0))$$
 b) $g(f(x))$ c) $f(g(2))$ d) $f(g(x))$

b)
$$g(f(x))$$

c)
$$f(g(2))$$

13. If f(x) = x - 1 and $g(x) = \frac{1}{\sqrt{x-1}}$, give the explicit forms of

a)
$$f(x) + g(x)$$
 b) $f(x)g(x)$ c) $\frac{f(x)}{g(x)}$ d) $f(g(x))$

c)
$$\frac{f(x)}{g(x)}$$

$$d) f(g(x))$$

Limits of some Rational Functions

14. Find

a)
$$\lim_{x \to 2} \frac{x-2}{x^2 - 5x + 6}$$
 b) $\lim_{x \to 2} \frac{x^2 - 5x + 6}{2x^2 - 3x - 2}$ c) $\lim_{\lambda \to 1} \frac{\lambda^2 - 0.8\lambda - 0.2}{\lambda - 1}$ d) $\lim_{x \to 1} \frac{1 - x^4}{1 - x}$ e) $\lim_{x \to \infty} \frac{2x^2 - 3x + 7}{3x^2 + x - 1}$ f) $\lim_{x \to \infty} \frac{2x^3 + 3x + 2}{-5x^3 + 4x - 1}$

d)
$$\lim_{x \to 1} \frac{1 - x^4}{1 - x}$$
 e) $\lim_{x \to \infty} \frac{2x^2 - 3x + 7}{3x^2 + x - 1}$ f) $\lim_{x \to \infty} \frac{2x^3 + 3x + 2}{-5x^3 + 4x - 1}$

Simple Differentiation

15. Find the derivative of each of the following functions.

a)
$$f(x) = (2x+5)^3$$
 b) $g(t) = \sqrt{t^2 - 4}$ c) $h(x) = \frac{1}{(2x+3)^{3/2}}$

d)
$$f(x) = \sin^3 x$$
 e) $g(x) = \cos(x^3)$ f) $h(x) = \sec(2x^2 + 3)$

g)
$$f(x) = e^{-x^2/2}$$
 h) $g(x) = x^2(2x - 1)^4$ i) $h(\theta) = \theta \tan \theta$

j)
$$f(x) = x \cos 2x$$
 k) $g(x) = x^3 \sin x$ l) $h(x) = x \ln x$

j)
$$f(x) = x \cos 2x$$
 k) $g(x) = x^3 \sin x$ l) $h(x) = x \ln x$ m) $f(x) = \frac{x+e}{x+\pi}$ n) $g(x) = \frac{2x^2+3}{3x-2}$ o) $h(t) = \frac{t}{\sqrt{t^2-4}}$

$$p) f(x) = \frac{\sin x}{2x+5}$$

Tangents and Normals

16. Find the equation of the tangent and the equation of the normal to each of the following curves.

a)
$$y = 4x + \frac{1}{x}$$
 at the point $(1,5)$

b)
$$y = x^3 - 1 + \frac{1}{x^2}$$
 at the point $(1,1)$

c)
$$y = \frac{\cos x}{1 - \sin x}$$
 at the point where $x = \frac{\pi}{6}$

Stationary Points

17. Locate and identify the stationary points for

a)
$$y = 2x^3 - 9x^2 + 12x - 3$$
 b) $y = \frac{x}{1+x^2}$

c)
$$y = e^{2x}(1-x)$$
 d) $y = xe^{-x}$

e)
$$y = x^n e^{-x}$$
 for $n \in \mathbb{Z}, n \ge 2$ f) $y = \frac{\ln x}{x}$

g)
$$y = 4x^3 - x^4$$
 h) $y = x + \cos x$

18. The slope of the curve y = f(x) is given by

$$\frac{dy}{dx} = x^2(2x-1)(x-1)$$

Determine the nature of the stationary points.

19. The slope of the curve y = f(x) is

$$\frac{dy}{dx} = 3(x-1)^2(x-2)^3(x-3)^4(x-4)$$

For what value or values of x does y have

a) a local maximum? b) a local mimimum?

Integration

20. a) Use your answer to 15(i) to find a primitive function (indefinite integral) of

$$g(\theta) = \theta \sec^2 \theta$$
 [Hint: from tables $\int \tan \theta d\theta = \ln |\sec \theta| + C$]

- b) Use your answer to 15(j) to find a primitive function (indefinite integral) of $h(x) = x \sin 2x$
- c) Use your answer to 15(l) to find a primitive function (indefinite integral) of

$$f(x) = \ln x$$

21. The curve $y = f(x)$ has $\frac{dy}{dx} = 3x^2 - 2x + 1$ and passes through the

22. Find y where

point (2,3). Find f(x).

a)
$$\frac{dy}{dx} = \sqrt{x} + \frac{1}{\sqrt{x}}$$
 for $x > 0$ b) $\frac{dy}{dx} = \frac{x^2 + 1}{x^2}$ for $x \neq 0$

23. Without recourse to tables find

a)
$$\int e^x dx$$
 b) $\int_0^1 e^{3x} dx$ c) $\int_0^{\pi} \sin(2x) dx$ d) $\int \cos(3x) dx$ e) $\int (2x^3 + 3x^2 + 4x + 5) dx$ f) $\int \frac{1}{3x + 1} dx$ g) $\int_{-2}^{-1} \frac{1}{2x - 3} dx$ h) $\int (2x - 3)^5 dx$

For all the above indefinite integrals, check your answers by differentiating.

Integration by Substitution

24. Evaluate each of the following indefinite integrals by using the suggested substitution:

a)
$$\int x^2 (x^3 + 1)^5 dx; \ u = x^3 + 1$$

b)
$$\int (t-1)\sqrt{t^2 - 2t + 4} dt; \ u = t^2 - 2t + 4$$

c)
$$\int (x+1) e^{x^2+2x+3} dx; \ u = x^2 + 2x + 3$$

d)
$$\int x \sin(x^2 + 1) dx; \ u = x^2 + 1$$
 e)
$$\int e^{\sin 2x} \cos 2x dx; \ u = \sin 2x$$
 f)
$$\int e^{2x} \cos(e^{2x}) dx; \ u = e^{2x}$$
 g)
$$\int \frac{dz}{z \ln z}; \ u = \ln z$$

f)
$$\int e^{2x} \cos(e^{2x}) dx; \ u = e^{2x}$$
 g)
$$\int \frac{dz}{z \ln z}; \ u = \ln z$$

h)
$$\int \frac{x+1}{x^2+2x-1} dx$$
; $u = x^2+2x-1$ i) $\int \frac{e^x}{1+e^x} dx$; $u = 1+e^x$

j)
$$\int \frac{x^2 + 2x - 1}{(x^2 + 2x - 1)^5} dx$$
; $u = x^2 + 2x - 1$ k) $\int \frac{\sin(\ln x) dx}{x}$; $u = \ln x$

25. Evaluate each of the following definite integrals by using the suggested

a)
$$\int_0^4 xe^{x^2+1} dx$$
; $u = x^2 + 1$ b) $\int_{\pi/6}^{\pi/4} \frac{\sec^2 x}{\tan x} dx$; $u = \tan x$

c)
$$\int_0^1 \frac{3x}{(3x+1)^2} dx; \ u = 3x+1 \quad d$$

$$\int_5^{20} \frac{t}{\sqrt{t-4}} dt; \ u = t-4$$

Area and Volume

26. For each of the following functions, find the area between the curve y = f(x) and the x-axis over the given range of x values.

a)
$$f(x) = 2x^2 - 1$$
 from $x = 1$ to 2 b) $f(x) = x^3 - 3x^2 + 4x$ from $x = 0$ to 2

c)
$$f(x) = 2x^2 + \frac{1}{x^2}$$
 from $x = 1$ to 2 d) $f(x) = e^{-x/3}$ from $x = 0$ to 3

e)
$$f(x) = 2\cos x + 3$$
 from $x = 0$ to π f) $f(x) = \frac{1}{x+1}$ from $x = 0$ to 2

27. For each of the following functions, find the volume of the solid formed when the curve y = f(x) over the given range of x is rotated about the x-axis.

a)
$$f(x) = x^2 + 1$$
 from $x = 0$ to 1 b) $f(x) = x + \frac{2}{x}$ from $x = 1$ to 2

c)
$$f(x) = e^{-x/4}$$
 from $x = 0$ to 2 d) $f(x) = \sec x$ from $x = 0$ to $\frac{\pi}{4}$

e)
$$f(x) = \frac{1}{x+1}$$
 from $x = 0$ to 1

Logarithms

28. Simplify:

a)
$$\log_4 12 - \log_4 3$$
 b) $\frac{\log_2 16}{\log_2 8}$ c) $\log_{1/3} 729$

29. Solve for x:

a)
$$2^{2x+1} - (17)2^x + 8 = 0$$
 b) $\ln x = 3 \ln 2 + 2 \ln 3$ c) $\log_x 125 = -3$

Remainder Theorem

30. Without division find the remainder when $p(x) = x^3 - 5x^2 + 10x - 6$ is divided by

```
a) x-2 b) x-1 c) x+2 d) x+1 which (if any) of these is a factor of p(x)?
```

Binomial Theorem

31. Use Pascal's triangle to expand the following:

a)
$$(x+y)^5$$
 b) $(3x-2y)^4$ c) $(2x+3)^6$

32. Use the Binomial Theorem to find the following.

a) The coefficient of x^{12} in the expansion of $(2x^3 - 3)^7$.

b) The coefficient of
$$x^3$$
 in the expansion of $\left(x^2 - \frac{2}{x}\right)^3$.

c) The term independent of x in the expansion of $\left(2x^2 + \frac{1}{x}\right)^9$.

Answers for Revision Questions

1. Answer for both: the interior and boundary of the triangle with vertices at (0,0),

$$(2,0)$$
, and $(2,4)$.

2. a)
$$x < 0$$
 or $x > 1$ b) $1 < x < 2$ c) $x < -2$ or $x > 0$ d) $-1 < x < 1$ e) $-1 < x < 1$ f) $x < 1$ or $x \ge 5$

3. a)
$$-4 < x < 2$$
 b) $x < -5$ or $x > 1$ c) $-1 < x < -1/3$ d) $0 < x$

4. a)
$$\frac{1}{4}\sqrt{2}(1+\sqrt{3})$$
 b) $\frac{1}{4}\sqrt{2}(1+\sqrt{3})$ c) $-(2+\sqrt{3})$ d) $-\sqrt{2}(\sqrt{3}-1)$

5. a)
$$\frac{4}{5}$$
 b) $\frac{3}{4}$ c) $\frac{12}{13}$ d) $\frac{5}{13}$ e) $\frac{63}{65}$ f) $\frac{56}{65}$ g) $\frac{6}{13}$ h) $-\frac{120}{119}$

6. a)
$$-\frac{527}{625}$$
 b) $\frac{87}{425}$ c) $-\frac{297}{304}$

7. a) amplitude = 3, period =
$$\pi$$
 b) amplitude = 2, period = 6π

8. a)
$$\sqrt{2}\sin\left(x+\frac{\pi}{4}\right)$$
 b) $4\sin\left(x+\frac{\pi}{3}\right)$ c) $2\sin\left(x-\frac{\pi}{6}\right)$ d) $4\sin\left(x-\frac{\pi}{4}\right)$

9. a)
$$-\sqrt{5} \le x \le \sqrt{5}$$
; $0 \le y \le \sqrt{5}$ b) $x \le -\sqrt{5}$ or $x \ge \sqrt{5}$; $y \ge 0$ c) $x \ge 1$; $y \ge 0$ d) $x > 1$; $y > 0$ e) $x \ne 8$; $y \ne 0$ f) $\{x : 2n\pi \le x \le (2n+1)\pi, n \in \mathbb{Z}\}$; $0 \le y \le 1$ g) $\{x : x \ne (2n+1)\pi/2, n \in \mathbb{Z}\}$; $y \ge 1$ h) \mathbb{R} ; $y \ge -1$

12. a) 22 b)
$$x^2 + 10x + 22$$
 c) 6 d) $x^2 + 2$

13. a)
$$x-1+1/\sqrt{x-1}$$
 b) $\sqrt{x-1}$ c) $(x-1)^{3/2}$ d) $(1/\sqrt{x-1})-1$

14. a)
$$-1$$
 b) $-1/5$ c) 1.2 d) 4 e) $\frac{2}{3}$ f) $-\frac{2}{5}$.

15. a)
$$6(2x+5)^2$$
 b) $\frac{t}{\sqrt{t^2-4}}$ c) $-\frac{3}{(2x+3)^{5/2}}$ d) $3\sin^2 x \cos x$
e) $-3x^2\sin(x^3)$ f) $4x\sec(2x^2+3)\tan(2x^2+3)$ g) $-xe^{-x^2/2}$
h) $2x(6x-1)(2x-1)^3$ i) $\theta\sec^2\theta+\tan\theta$ j) $-2x\sin 2x+\cos 2x$ k) $x^2(x\cos x+3\sin x)$ l) $1+\ln x$ m) $\frac{\pi-e}{(x+\pi)^2}$
n) $\frac{6x^2-8x-9}{(3x-2)^2}$ o) $-\frac{4}{(t^2-4)^{3/2}}$ p) $\frac{(2x+5)\cos x-2\sin x}{(2x+5)^2}$

16. a)
$$y = 3x + 2$$
, $x + 3y = 16$
b) $y - \sqrt{3} = 2(x - \frac{\pi}{6})$, $y - \sqrt{3} = -\frac{1}{2}(x - \frac{\pi}{6})$

- a) (1,2) is a local maximum and (2,1) is a local minimum
 - b) (1,1/2) is a local maximum and (-1,-1/2) is a local minimum
 - c) (1/2, e/2) is a local maximum
 - d) $(1, e^{-1})$ is a local maximum
 - e) $(n, n^n/e^n)$ is a local maximum and (0, 0) is a local minimum if n is even and a point of inflection if n is odd
 - f) (e, e^{-1}) is a local maximum
 - g) (3,27) is a local maximum and (0,0) is a point of inflection
 - h) $(\pi/2 + 2k\pi, \pi/2 + 2k\pi)$ $k \in \mathbb{Z}$ are points of inflection
- 18. There is a point of inflection for x = 0, a local maximum for x = 1/2, and a local minimum for x = 1
- 19. a) x = 2 b) x = 4
- 20. a) $\theta \tan \theta \ln |\sec \theta|$ b) $-\frac{1}{2}x \cos 2x + \frac{1}{4}\sin 2x$ c) $x \ln x x$
- 21. $f(x) = x^3 x^2 + x 3$
- 22. a) $y = \frac{2}{3}x^{3/2} + 2\sqrt{x} + C$ b) $y = x \frac{1}{x} + C$
- 23. a) $e^x + C$ b) $\frac{1}{3}(e^3 1)$ c) 0 d) $\frac{1}{3}\sin(3x) + C$ e) $\frac{1}{2}x^4 + x^3 + 2x^2 + 5x + C$ f) $\frac{1}{3}\ln|3x + 1| + C$ g) $\frac{1}{2}\ln\left(\frac{5}{7}\right)$ h) $\frac{1}{12}(2x 3)^6 + C$
- 24. a) $\frac{1}{18} (x^3 + 1)^6 + C$ b) $\frac{1}{3} (t^2 2t + 4)^{\frac{3}{2}} + C$ c) $\frac{1}{2} e^{x^2 + 2x + 3} + C$
 - d) $-\frac{1}{2}\cos(x^2+1)+C$ e) $\frac{1}{2}e^{\sin 2x}+C$ f) $\frac{1}{2}\sin(e^{2x})+C$
 - g) $\ln |\ln z| + C$ h) $\frac{1}{2} \ln |x^2 + 2x 1| + C$ i) $\ln (1 + e^x) + C$
 - j) $-\frac{1}{8(x^2+2x-1)^4} + C$ k) $-\cos(\ln x) + C$
- 25. a) $\frac{1}{2} (e^{17} e)$ b) $\frac{1}{2} \ln 3$ c) $\frac{2}{3} \ln 2 \frac{1}{4}$ d) 66
- 26. a) $\frac{11}{3}$ b) 4 c) $\frac{31}{6}$ d) $3 \frac{3}{e}$ e) 3π $\ln 3$
- 27. a) $\frac{28\pi}{15}$ b) $\frac{25\pi}{3}$ c) $2\pi \left(1 \frac{1}{e}\right)$ d) π e) $\frac{\pi}{2}$

- 28. a) 1 b) 4/3 c) -6
- 29. a) -1, 3 b) 72 c) 1/5
- 30. a) 2 b) 0 c) -54 d) -22; x-1 is a factor.
- 31. a) $x^5 + 5x^4y + 10x^3y^2 + 10x^2y^3 + 5xy^4 + y^5$

 - b) $81x^4 216x^3y + 216x^2y^2 96xy^3 + 16y^4$ c) $64x^6 + 576x^5 + 2160x^4 + 4320x^3 + 4860x^2 + 2916x + 729$
- 32. a) -15120 b) -6 c) 672