Monte Carlo Basics

Week 2: How to Sample Ensembles?

2024 Winter Molecular Simulation Seminar January 26th, 2024

Presenter: Seonghyeon Kang

Advisor: Prof. Chang Yun Son

Week 2 : How to Sample Ensembles?

Three Brief Approaches to Sample Ensemble Average

- 1. Sampling in Molecular Dynamics Simulation: Thermostat
 - 2. Sampling in Monte Carlo : Monte Carlo Basics
- 3. Enhanced Methods with Monte Carlo: Enhanced Monte Carlo

Contents

- 1. What is Monte Carlo Simulation and How does it work?
- 2. Monte Carlo Sampling Methods in Various Ensembles
- 3. Grand Canonical Monte Carlo: Principles and Applications
 - 4. Monte Carlo Simulation in Gibbs Ensemble

1. What is Monte Carlo Simulation and How does it work?

What is Monte Carlo Simulation?

Monte Carlo (MC) Methods: Statistical methodologies that derive certain statistical quantities for given system by utilizing random number

Monte Carlo Simulation : Molecular Simulation methodologies that use the idea of Monte Carlo Method

How Monte Carlo Simulation Works? - Metropolis Algorithm

Molecular System with Random Move Applied

1. What is Monte Carlo Simulation and How does it work?

Monte Carlo Simulation vs Molecular Dynamics Simulations

1. What is Monte Carlo Simulation and How does it work?

Why We Use Monte Carlo Simulation?

Unique Perspective of Monte Carlo Simulation

- 1. Suggesting Random Movement in Chemical System
 - It can also introduce artificial movement that MD cannot
 - Particle insertion, Phase Transition, Hole hopping, ...
 - Mainly treated in this talk

2. Introducing Acceptance Criteria to Derive Specific Statistics

- It can derive the accepted states to certain probability distribution
- Ensemble expansion, Enhancing performance of MC or MD, ...
- Mainly treated in the next talk(Enhanced Monte Carlo)

Types of Ensembles : NVE, NVT, NPT, ...

NVE Ensemble(Microcanonical Ensemble)

<Acceptance Criteria>

If $\Delta E < 0$: Accept the random movement If $\Delta E > 0$: Reject the random movement

"Exactly the same as energy minimization process!"

Types of Ensembles : NVE, NVT, NPT, ...

NVT Ensemble(Canonical Ensemble)

$$\frac{P(state\ 2)}{P(state\ 1)} = \frac{e^{-\Delta E/k_bT}}{1} = \frac{acc(1\to 2)}{acc(2\to 1)}$$

$$= P(state\ 1)acc(1\to 2)$$

$$= P(state\ 2)acc(2\to 1)$$

In Statistical Mechanics (Equilibrium)

In Monte Carlo. (Equilibrium)

Detailed Balance (Equilibrium Statistics)

Frenkel, D., & Smit, B., Understanding molecular simulation: from algorithms to applications. Elsevier. 2023

Types of Ensembles : NVE, NVT, NPT, ...

NPT Ensemble(Isobaric-Isothermal Ensemble)

Rejected

Current Configuration

Random Movement

Detailed Balance Also Applied

Energy difference due to volume change

<Acceptance Criteria>

should be applied

If $\Delta W = \Delta E + P\Delta V - Nk_bT\Delta \big(log(V)\big) < 0$: Accept the random movement If $\Delta W = \Delta E + P\Delta V - Nk_bT\Delta \big(log(V)\big) > 0$: Accept with the probability $e^{-\Delta W/k_bT}$ Else: Reject

$$acc(i \rightarrow j) \Rightarrow min\left(1, exp\left(-\frac{\Delta E + P\Delta V - Nk_b T\Delta(\log(V))}{k_b T}\right)\right)$$

Frenkel, D., & Smit, B., Understanding molecular simulation: from algorithms to applications. Elsevier. 2023

Types of Ensembles : NVE, NVT, NPT, ...

NPT Ensemble(Isobaric-Isothermal Ensemble)

Ex) MonteCarloBarostat in OpenMM(2 MD steps + 1 MC Step)

$$r(t+\mathrm{d}t) = r(t) + v(t) \, \delta t + \frac{1}{2}a(t) \, \delta t^2,$$

$$v(t+\frac{1}{2}\delta t) = v(t) + \frac{1}{2}a(t) \, \delta t,$$

$$ma(t+\delta t) = -\nabla E[r(t+\delta t)],$$

$$v(t+\delta t) = v(t+\frac{1}{2}\delta t) + a(t+\delta t) \, \delta t,$$
Two MD steps

$$V' = V + R[S(\delta V)] \qquad r'(t + \delta t) = r(t + \delta t) \left[\frac{{V'}^{1/3}}{V^{1/3}} \right] \qquad \textbf{One MC step(Trial Move)}$$

$$P(\Delta V) = \begin{cases} \exp\left(-\frac{\Delta W}{kT_0}\right), & \Delta W > 0, \\ 1, & \Delta W \leq 0. \end{cases}$$
 One MC step (Acceptance Criteria)
$$\Delta W = (E' - E) + P_0(V' - V) - NkT_0 \ln \frac{V'}{V}$$
 Aqvist, J., Wennerström, P., Nervall, M., Bjelic, S., & Brandsdal, B. O., Molecular dynamics simulations of the state of the state

$$\Delta W = (E' - E) + P_0(V' - V) - NkT_0 \ln \frac{V'}{V}$$

Agvist, J., Wennerström, P., Nervall, M., Bjelic, S., & Brandsdal, B. O., Molecular dynamics simulations of water and biomolecules with a Monte Carlo constant pressure algorithm. Chem. Phys. Lett., 2004, 384(4-6), 288-294.

Principle: muVT Ensemble(Grand Canonical Ensemble)

Rejected

Current Configuration

Random Movement $\frac{N_{f,V,T}(s^{N+1};L)}{N_{f,V,T}(s^{N};L)} = \frac{fV}{N+1}exp\left(-\frac{E(s^{N+1};L)-E(s^{N};L)}{k_bT}\right)$

<Acceptance Criteria>

1) Displacement of Particles :
$$acc(i \rightarrow j) \Rightarrow min\left(1, exp\left(-\frac{\Delta E}{k_b T}\right)\right)$$

2) Insertion of Particles:
$$acc(N \rightarrow N+1) \Rightarrow min\left(1, \frac{fV}{N+1}exp\left(-\frac{\Delta E(N+1) - \Delta E(N)}{k_bT}\right)\right)$$

3) Removal of Particles:
$$acc(N \rightarrow N-1) \Rightarrow min\left(1, \frac{N}{fV}exp\left(-\frac{\Delta E(N+1) - \Delta E(N)}{k_bT}\right)\right)$$

How to calculate the energy per molecule(Chemical Potential)?

Principle: muVT Ensemble(Widom's Particle Insertion Method)

$$\begin{split} Q_N &= \frac{1}{N!} \int_V \cdots \int_V \ exp\left(-\frac{E_N}{k_b T}\right) dr_1 \, dr_2 \cdots dr_N \\ &= \int \ \frac{1}{(N-1)!} \bigg(\int_V \cdots \int_V \ exp\left(-\frac{E_{N-1}}{k_b T}\right) dr_1 \, dr_2 \cdots dr_{N-1} \bigg) exp\left(-\frac{\psi}{k_b T}\right) dr_N \\ &= Q_{N-1} \frac{V}{N} \bigg\langle exp\left(-\frac{\psi}{k_b T}\right) \bigg\rangle \qquad \text{ψ is the interaction energy of an inserted particle with all other particles in the system} \end{split}$$

$$\mu_{insert} = \frac{\Delta F}{\Delta N} = \frac{F(N) - F(N-1)}{1} = -k_b T log \left(\frac{Q_N}{Q_{N-1}}\right) = -k_b T log \left(\frac{1}{\rho} \left| exp\left(-\frac{\psi}{k_b T}\right) \right| \right)$$

Widom's Particle Insertion Method

$$\mu_{insert} = -k_b T log \left(\frac{1}{\rho} \left| exp \left(-\frac{\psi}{k_b T} \right) \right| \right)$$

Widom. B., Some Topics in the Theory of Fluids, *J. Chem. Phys.*, **1963**, 39(11), 2808-2812 *Widom. B.*, Potential-distribution theory and the statistical mechanics of fluids. *J. Phys. Chem.*, **1982**, *86*(6), 869-872.

Application: Gas Adsorption

GCMC allowed the molecular simulation with exchange of matter It enabled to applying GCMC to gas adsorption in porous material

Computed Isotherm + Interaction by using GCMC

Kim, J., Lin, L. C., Martin, R. L., Swisher, J. A., Haranczyk, M., & Smit, B., Large-scale computational screening of zeolites for ethane/ethene separation. Langmuir, 2012, 28(32), 11914-11919.

Application: Gas Adsorption

Grand Canonical Monte Carlo + Widom Particle Insertion Method

MOF Screening

$$N_{i}(p_{i}) = K_{H,i}p_{i}(i = Xe, Kr)$$

$$K_{H} = \left\langle e^{-\frac{U}{RT}} \right\rangle / RT$$

Spatial probability densities sampled from GCMC

Banerjee, D., Simon, C. M., Plonka, A. M., Motkuri, R. K., Liu, J., Chen, X., ... & Thallapally, P. K., Metal–organic framework with optimally selective xenon adsorption and separation. *Nat. Comm.*, **2016**, *7*(1), ncomms11831.

Application: Vapor-Liquid Equilibrum(Histogram Reweighting)

With histogram reweighting method(Next seminar), Vapor-Liquid Equilibrium also can be modelled

Errington, J. R., & Panagiotopoulos, A. Z., A new intermolecular potential model for the n-alkane homologous series. J. Phys. Chem. B, **1999**, 103(30), 6314-6322.

Application: Critical Micelle Concentration (Histogram Reweighting)

Floriano, M. A., Caponetti, E., & Panagiotopoulos, A. Z. Micellization in model surfactant systems. Langmuir, 1999, 15(9), 3143-3151.

Technical Issues: Molecule Insertion Problem

In perspective of sampling, acquiring sufficient insertion/deletion move in the phase space is important

However, acceptance ratio for molecule insertion/deletion is significantly low!(Especially high density & low temperature system)

Soroush Barhaghi, M., Torabi, K., Nejahi, Y., Schwiebert, L., & Potoff, J. J. Molecular exchange Monte Carlo: A generalized method for identity exchanges in grand canonical Monte Carlo simulations. J. Chem. Phys., 2018, 149(7).

Ross, G. A., Rustenburg, A. S., Grinaway, P. B., Fass, J., & Chodera, J. D., Biomolecular simulations under realistic macroscopic salt conditions. J. Phys. Chem. B, **2018**. 122(21), 5466-5486.

Solution : Molecular Exchange Monte Carlo

2. Solutions

Configuration-Bias Monte Carlo, Continuous Fractional Component Monte Carlo, Expanded Ensembles, ...

- (Controlling acceptance criteria, Next talk: Enhanced Monte Carlo)

Identity exchange move(swapping molecule A and B, Controlling Move)

- Steric issue can be solved. Many simulations (Grand canonical, Semigrand canonical, Gibbs ensemble, ...) use this idea
- However, this method is difficult to generalize in various system
- Solution: Generalized identity exchange move for simulations in the grand canonical ensemble(Molecular Exchange Monte Carlo)

Soroush Barhaghi, M., Torabi, K., Nejahi, Y., Schwiebert, L., & Potoff, J. J. Molecular exchange Monte Carlo: A generalized method for identity exchanges in grand canonical Monte Carlo simulations. J. Chem. Phys., 2018, 149(7).

Solution : Molecular Exchange Monte Carlo

ME-1, ME-2, ME-3 Algorithm

Soroush Barhaghi, M., Torabi, K., Nejahi, Y., Schwiebert, L., & Potoff, J. J. Molecular exchange Monte Carlo: A generalized method for identity exchanges in grand canonical Monte Carlo simulations. J. Chem. Phys., 2018, 149(7).

Solution : Molecular Exchange Monte Carlo

Soroush Barhaghi, M., Torabi, K., Nejahi, Y., Schwiebert, L., & Potoff, J. J. Molecular exchange Monte Carlo: A generalized method for identity exchanges in grand canonical Monte Carlo simulations. J. Chem. Phys., 2018, 149(7).

Principle: Phase Coexistence without Boundary

Baus, M., Rull, L. F., & Ryckaert, J. P. (Eds.)., Observation, prediction and simulation of phase transitions in complex fluids (Vol. 460)., Springer Science & Business Media, **2012**

Principle : Acceptance Criteria

Rejected Acceptance Criteria>

1) Displacement:
$$P_{move} = min\left(1, exp\left(-\frac{\Delta E}{k_b T}\right)\right)$$

2) Volume Change :

$$P_{volume} = \min \left[1, \exp \left(-\frac{\Delta U_I + \Delta U_2}{k_b T} + N_I \log \left(\frac{V_I + \Delta V}{V_I} \right) + N_{II} \log \left(\frac{V_{II} - \Delta V}{V_{II}} \right) \right) \right]$$

 $\Delta V = \xi \delta v_{max} min(V_I, V_{II})$ (0 < \xi < 1, random, \delta v_{max} : maximum volume fraction)

3) Particle Transfer(I to II):
$$P_{transfer} = \min \left[1, \frac{N_{II}V_I}{(N_{II}+1)V_I} \exp \left(-\frac{\Delta U_I + \Delta U_2}{k_b T} \right) \right]$$

Application : Solid – Vapor Equilibrium

Chen, B., Siepmann, J. I., & Klein, M. L., Direct Gibbs ensemble Monte Carlo simulations for solid-vapor phase equilibria: applications to Lennard-Jonesium and carbon dioxide. J. Phys. Chem. B, **2001**, 105(40), 9840-9848.

Application : Solid – Vapor Equilibrium

Chen, B., Siepmann, J. I., & Klein, M. L., Direct Gibbs ensemble Monte Carlo simulations for solid-vapor phase equilibria: applications to Lennard-Jonesium and carbon dioxide. J. Phys. Chem. B, **2001**, 105(40), 9840-9848.

Application : Liquid - Vapor Equilibrium, Critical Point

Dinpajooh, M., Bai, P., Allan, D. A., & Siepmann, J. I., Accurate and precise determination of critical properties from Gibbs ensemble Monte Carlo simulations. J. Chem. Phys., **2015**, 143(11).

Takeaways

■ Monte Carlo method is statistical methodology that derive certain statistical quantities for given system by utilizing random number. It contains two main processes: Random Movement and Acceptance Criteria

■ By using specific acceptance criteria, we can sample the system with NVE, NVT, and NPT ensemble environment

■ Grand Canonical Monte Carlo allowed the molecular simulation with exchange of matter. It contains several principles related to particle insertion and deletion(Acceptance criteria, Widom's particle insertion method, ...)

■ Gibbs ensemble assume two-phase system as separated systems with particle swapping. It enabled to modelling phase transition phenomena

Thank you for your kind attention / Q&A

