Algoritmos e Programação de Computadores Prova 2

Prof. Dr. Rodolfo Carneiro

09/08/2023

1. Você está implementando o controlador de uma máquina que filtra produtos com defeito em uma esteira de produção. A máquina está sendo utilizada para filtrar creme dental. Um item correto tem peso de 90g. Para a indústria, qualquer variação acima de 2 gramas para mais ou para menos, é considerada uma avaria no produto, e este não pode seguir para venda. Faça um programa em Python que recebe uma lista de pesos para os produtos que passam na esteira e decida quais destes produtos devem ser descartados da esteira.

Exemplo:

Littering.															
item	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
peso	90	90	91	90	93	90	89	90	87	90	85	91	90	90	86

saida = 4, 8, 10, 14

2. Você está implementando um sistema de taxi por aplicativo. Quando um usuário solicita um taxi, o aplicativo carrega a localização deste usuário e precisa encontrar o taxi mais próximo para realizar a chamada. Para calcular a distância, o aplicativo utiliza a distância euclidiana, como descrito abaixo. Faça um programa que recebe como entradas a localização atual de um usuário (x,y) e as lista de localizações dos taxis disponíveis $taxis_x = [x_1, x_2, ..., x_n]$, $taxis_y = [y_1, y_2, ..., y_n]$, e imprima na tela o taxi mais próximo.

$$d((x_i, y_i), (x_j, y_j) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

Exemplo:

$$\begin{array}{l} \mathbf{x} = 10,\, \mathbf{y} = 8 \\ \mathrm{taxis}_x = [21,40,35,17,-42,82,60,-1,-15,25,29,0] \\ \mathrm{taxis}_y = [25,30,-1,45,-20,60,0,26,-10,52,36,-1] \end{array}$$

saída: 11

3. Uma organização não-governamental está realizando um estudo com uma determinada comunidade. Uma das características analisadas desta comunidade foi o índice de massa corporal (IMC), com o objetivo de identificar as pessoas que estão abaixo do peso ideal. O IMC é calculado dividindo o peso (em kg) pela altura (em metros) ao quadrado (eq. 1). Você foi então contratado para criar um programa que automatiza o processamento destes dados. O programa recebe como entrada uma lista com o peso e uma lista com a altura de um conjunto de entrevistados. O programa deve calcular o IMC de cada pessoa da lista e classificar a situação de cada pessoa de acordo com a tabela.

$$IMC = \frac{peso}{altura^2} \tag{1}$$

IMC	Situação
Abaixo de 18,49	Abaixo do peso
Entre 18,5 e 24,99	Peso normal
Entre 25 e 29,99	Acima do peso
Acima de 30	Obesidade