Soluciones

Teórico - Práctico

Prof. Laura C. Lerici llerici@frc.utn.edu.ar

Soluciones

Solución: Mezcla homogénea

El componente que se encuentra en mayor proporción se denomina disolvente y los que están en menor proporción se llaman solutos.

Soluciones según su estado de agregación

SOLUCIONES SÓLIDAS	SOLUTO	SOLVENTE	EJEMPLO
	SÓLIDO	SÓLIDO	Aleaciones (acero= Fe+C) Bronce Acero Acero
	LÍQUIDO	SÓLIDO	Sales hidratadas, Amalgamas de Hg con Na
	GAS	SÓLIDO	Gases disueltos en minerales o metales(H en Pd)

Soluciones según su estado de agregación

SOLUCIONES LÍQUIDAS	SOLUTO	SOLVENTE	EJEMPLO
	SÓLIDO	LÍQUIDO	Sal o azúcar disuelta en agua Agua con azúcar
	LÍQUIDO	LÍQUIDO	Alcohol en agua Agua con alcohol
	GAS	LÍQUIDO	Bebidas carbonatadas, oxígeno en agua

Soluciones según su estado de agregación

SOLUCIONES GASEOSAS	SOLUTO	SOLVENTE	EJEMPLO
	SÓLIDO	GAS	Vapor de iodo en aire
	LÍQUIDO	GAS	Vapor de agua en aire
	GAS	GAS	Aire

SOLUBILIDAD

Máxima cantidad de soluto que puede disolverse en una cierta cantidad de un solvente a una temperatura y presión especificada (g/100g)

CLASIFICACIÓN DE SOLUCIONES EN FUNCIÓN DE LA CANTIDAD DE SOLUTO

SOLUCIONES INSATURADAS

aun se puede disolver más soluto

SOLUCIONES SATURADAS

Solución en la está disuelta la máxima cantidad de soluto (solubilidad)

SOLUCIONES SOBRESATURADAS

Contiene mayor cantidad de soluto que la que permite la solubilidad

CANTIDAD DE SOLUTO

EFECTO DE LA TEMPERATURA Y PRESION EN LA SOLUBILIDAD

La solubilidad de los sólidos disueltos en solventes líquidos aumenta cuando aumenta la temperatura

La solubilidad de los sólidos disueltos en solventes líquidos o de líquidos disueltos en líquidos no se ve afectada por los cambios de presión

EFECTO DE LA TEMPERATURA Y PRESION EN LA SOLUBILIDAD

- Un aumento de temperatura siempre disminuye la solubilidad de un gas en un líquido (contaminación térmica)
- Un aumento de presión siempre aumenta la solubilidad de un gas en un líquido

LEY DE HENRY: a cualquier temperatura, la solubilidad (concentración) de un gas en un líquido es directamente proporcional a la presión parcial del gas sobre la disolución C(gas) = k.Pgas

EFECTO DE LA TEMPERATURA EN LA SOLUBILIDAD DE GASES

Unidades de concentración

Unidades físicas

$$%P/P = \frac{masa\ de\ soluto\ (g)}{100\ g\ de\ solución} \times 100\ %$$

$$%P/V = \frac{masa\ de\ soluto\ (g)}{100\ mL\ de\ solución} \times 100\ %$$

$$\%V/V = \frac{volumen\ de\ soluto\ (mL)}{100\ mL\ de\ solución} \times 100\ \%$$

Unidades químicas

Molaridad

$$M = \frac{moles \ de \ soluto}{1 \ L \ de \ solución}$$

Molalidad

$$m = \frac{moles \; de \; soluto}{1 \; Kg \; de \; solvente}$$

Fracción Molar

$$X_{A} = \frac{moles \ de \ A}{moles \ A + moles \ de \ B}$$
$$X_{B} = \frac{moles \ de \ B}{moles \ A + moles \ de \ B}$$

Preparamos soluciones!

1. Pesar soluto

- 2. Poner soluto en el matraz (trasvasar cuantitativamente).
- 3. Completar con el solvente hasta el aforo.

Calcular la cantidad de soluto y de solvente necesarias para lograr la concentración deseada.

- 2.- Calcular la concentración en porcentaje peso en peso (%P/P) de las siguientes soluciones formadas por:
 - a) 5 g de Na₂SO₄ en 300 g de agua.
 - b) 0,2 moles de NaCl en 250 g de agua.
 - c) 1,8 moles de NaOH en 400 mL de solución de densidad 1,2 g/mL.
 - d) 12,5 g de HCl (ac) en 550 mL de solución de densidad 1,01 g/mL.

$$%P/P = \frac{masa\ de\ soluto\ (g)}{100\ g\ de\ solución} \times 100\ %$$

a) Masa de solución = masa de soluto + masa de solvente

 c) Masa de soluto = 1,8 moles x PM_{NaOH} = 72 g soluto

Masa de solución = densidad de solución x 400 mL

Lerici

5.- Calcular la cantidad en gramos de AgNO₃ necesaria para preparar 30 ml de solución al 3 %P/V.

$$\%P/V = \frac{masa\ de\ soluto\ (g)}{100\ mL\ de\ solución} \times 100\ \%$$

6.- Una solución contiene 35 mL de alcohol y 80 mL de agua. Exprese la concentración de la solución en %V/V.

$$\%V/V = \frac{volumen\ de\ soluto\ (mL)}{100\ mL\ de\ solución} \times 100\ \%$$

- Calcular la concentración en Molaridad (M) de las siguientes soluciones formadas por:
 - a)5 g de Na₂SO₄ en 300 mL de solución.
 - b)1,8 moles de NaOH en 400 mL de solución.
 - c)12,5 g de HCl (ac) en 550 mL de solución.

$$M = \frac{moles\ de\ soluto}{1\ L\ de\ solución}$$

a) Moles de soluto= Masa de soluto /Pm_{soluto}= 5 g /142 g/mol

$$X = 0,117 M$$

- 8.- En 35 g de agua se han disuelto 5 g de HCl (g). La densidad de la solución resultante a la temperatura de trabajo es de 1,06 g/mL. Hallar la concentración de la solución en:
 - a) % P/P;
 - b) la molaridad (M);
 - c) la molalidad (m);
 - d) las fracciones molares de soluto y solvente.

$$m = \frac{moles\ de\ soluto}{1\ Kg\ de\ solvente}$$

c) Moles de soluto= Masa de soluto /Pm_{soluto}= 5 g /36,5 g/mol

- 8.- En 35 g de agua se han disuelto 5 g de HCl (g). La densidad de la solución resultante a la temperatura de trabajo es de 1,06 g/mL. Hallar la concentración de la solución en:
 - a) % P/P;
 - b) la molaridad (M);
 - c) la molalidad (m);
 - d) las fracciones molares de soluto y solvente.

$$X_A = \frac{moles \ de \ A}{moles \ A + moles \ de \ B}$$
$$X_B = \frac{moles \ de \ B}{moles \ A + moles \ de \ B}$$

 AB moles A + moles de B

d) Moles de soluto= Masa de soluto /Pm_{soluto}= 5 g /36,5 g/mol

0,137 mol

Moles de solvente = Masa de solvente / Pm_{solvente} = 35 g / 18 g/mol

1,94 mol

$$X_{\text{soluto}} = 0.137 \text{ mol/} (0.137 + 1.94) \text{ mol}$$

 $X_{\text{soluto}} = 0.066$

$$X_{\text{solvente}}$$
= 1,94 mol/ (0,137 + 1,94) mol X_{solvente} = 0,934

23.- ¿Qué volumen de ácido sulfúrico 3 M se necesitará para liberar 185 L de gas hidrógeno en C.N.T.P. cuando se trata con este ácido un exceso de zinc?

Diluciones

- 11.- ¿Qué volumen (en mL) de solución de HNO3 3 M se necesita para preparar:
 - a) 250 g de solución 0,2 M, de densidad 1 g/mL.
 - b) 300 g de solución 1 M, de densidad 1 g/mL.
 - c) 300 mL de solución 5 %P/P si la densidad de la solución diluida es de 1,3 g/mL.
 - d) 500 g de solución al 4 %P/P.

Cantidad de soluto a sacar de la solución conc 0,2 mol soluto ----- 1000 mL solución X ----- 250 mL solución

X = 0.05 mol soluto

Densidad igual a 1 g/mL \rightarrow 250 g = 250 mL

Volumen de solución concentrada que tiene
0,05 mol de soluto
3 mol soluto ------ 1000 mL solución
0,05 mol ------ X
X = 16,7 mL solución conc

- 11.- ¿Qué volumen (en mL) de solución de HNO₃ 3 M se necesita para preparar:
 - a) 250 g de solución 0,2 M, de densidad 1 g/mL.
 - b) 300 g de solución 1 M, de densidad 1 g/mL.
 - c) 300 mL de solución 5 %P/P si la densidad de la solución diluida es de 1,3 g/mL.
 - d) 500 g de solución al 4 %P/P.

Cantidad de soluto a sacar de la solución conc 5 g soluto ----- 100 g solución X ----- 390 g solución Densidad igual a 1,3 g/mL → 300 mL = 390 g

Volumen de solución concentrada que tiene
19,5 g de soluto
189 g soluto ------ 1000 mL solución
19,5 g ------ X

3 mol x 63 g/mol = 189 g

HNO₂

X = 103,2 mL solución conc

- 18.- 8,5 mL de HCl concentrado (36 %P/P cuya densidad es de 1,19 g/mL) son diluidos hasta completar 1 L de solución. Si la densidad de esta solución diluida es de 1,002 g/mL, calcule la concentración de esta solución en:
 - a) molalidad (m)
 - b) molaridad (M)
 - c) fracciones molares de soluto y solvente (X)

Cantidad de soluto contenida en 8,5 mL de la solución conc
36 g soluto ----- 100 g solución
X ----- 10,11 g solución

Densidad igual a 1,19 g/mL

→ 8,5 mL = 10,11 g

b) Concentración de la solución diluida 0,1 mol soluto ------ 1000 mL solución M = 0,1 mol/L 3,64 g/ 36,5 g/mol = 0,1 mol de HCl

- 18.- 8,5 mL de HCl concentrado (36 %P/P cuya densidad es de 1,19 g/mL) son diluidos hasta completar 1 L de solución. Si la densidad de esta solución diluida es de 1,002 g/mL, calcule la concentración de esta solución en:
 - a) molalidad (m)
 - b) molaridad (M)
 - c) fracciones molares de soluto y solvente (X)

Cantidad de soluto contenida en 8,5 mL de la solución conc.

X = 3,64 g soluto 0,1 mol soluto

a)Masa de disolvente

Volumen final de solución diluida = 1000 mL

Masa de solución diluida = 1000 mL* 1,002 g/mL = 1002 g

Masa de disolvente = Masa de solución – Masa de soluto

Masa de disolvente = 998,36 g

Molalidad de la solución diluida

m=0,1 mol/Kg

Propiedades Coligativas

Propiedades físicas, las cuales son proporcionales a la concentración (número) de partículas (moléculas o iones) de soluto, e independientemente de su naturaleza.

Disminución de la presión de vapor,

$$P_1 = X_1 P_1^0$$

Ley de Raoult

• Elevación del punto de ebullición,

$$\Delta T_{\rm b} = K_{\rm b} m$$

- Disminución del punto de congelación, $\Delta T_f = K_f m$
- Presión osmótica

$$\pi = MRT$$

- 27.- Una solución que contiene 25 g de un soluto en 200 g de agua, tiene una densidad de 1,08 g/mL a 25 °C. Su temperatura de ebullición es de 100,26 °C. Calcular:
 - a) Peso molecular del compuesto
 - b) Presión de vapor de la solución
 - c) Temperatura de congelación de la solución
 - d) Presión osmótica de la solución

Datos: P_{vap} del agua pura= 23,759 torr a 25 °C, K_b= 0,52 °C/m, K_f= 1,86 °C/m.

Usando la expresión

$$\rightarrow$$
 $\Delta T_{\rm b} = K_{\rm b} m$

Despejamos la molalidad

$$m = \Delta T/K_b$$

$$m = 0.26 \text{ °C/0.52 °C/m}$$

 $m = 0.5 \text{ mol/kg}$

2° m = moles de soluto/Kg de disolvente n = Masa de soluto/PM_{soluto}

$$m = \frac{Masa \ de \ soluto}{Kg \ disolvente * PM_{soluto_*}}$$

$$0.5 = \frac{25 \text{ g}}{0.200 \text{ Kg} * \text{PM}_{\text{soluto}}}$$

- 27.- Una solución que contiene 25 g de un soluto en 200 g de agua, tiene una densidad de 1,08 g/mL a 25 °C. Su temperatura de ebullición es de 100,26 °C. Calcular:
 - a) Peso molecular del compuesto
 - b) Presión de vapor de la solución
 - c) Temperatura de congelación de la solución
 - d) Presión osmótica de la solución

Datos: P_{vap} del agua pura = 23,759 torr a 25 °C, K_b = 0,52 °C/m, K_f = 1,86 °C/m.

Usando la expresión

$$\rightarrow$$

$$\rightarrow$$
 $P_1 = X_1 P_1^0$

La presión de vapor del agua pura es: 23,759 torr

$$P_{vap} = 23,759 \text{ torr * } X_A$$

$$X_A = \frac{moles \ de \ A}{moles \ A + moles \ de \ B}$$

Si A es e disolvente y B el soluto

 n_{Δ} = Masa de disolvente/P $M_{disolvente}$

 $n_A = 200 g / 18 g/mol$

 $n_{\Delta} = 11,11 \text{ mol}$

$$X_A = 11,11/11,21$$

 $X_A = 0,99$

 $n_B = Masa de soluto/PM_{soluto}$

 $n_{R} = 25 \text{ g} / 250 \text{ g/mol}$

 $n_R = 0.1 \text{ mol}$

$$P_A = 23,521 \text{ torr}$$

