Guiões de Cálculo I - Agrupamento 2

Guião 3

CÁLCULO INTEGRAL

Paula Oliveira

2021/22

Universidade de Aveiro

Conteúdo

6	Cal	culo Integral	1
	6.1	Introdução ao Cálculo Integral	1
	6.2	Partição de um intervalo	2
	6.3	Integral definido	3
	6.4	Critérios de Integrabilidade	6
	6.5	Propriedades do integral definido	7
	6.6	Integral indefinido	9
		6.6.1 Primeiro Teorema Fundamental do Cálculo Integral (T.F.C.I.)	10
		6.6.2 Segundo Teorema Fundamental do Cálculo Integral (T.F.C.I.)	11
		6.6.3 Substituição no integral definido	12
	6.7	Aplicação do integral de Riemann ao cálculo de áreas	14
		6.7.1 Área compreendida entre duas curvas	15
	6.8	Exercícios do capítulo	17

Capítulo 6

Cálculo Integral

6.1 Introdução ao Cálculo Integral

Como calcular a área A de uma região do plano limitada pelo eixo Ox e pelo gráfico de uma função contínua não negativa definida num dado intervalo [a, b]?

Figura 6.1: Área limitada pelo gráfico de uma função, pelo eixo das abcissas e duas retas verticais.

Podemos obter valores aproximados dessa área considerando retângulos como ilustrado nas figuras 6.2, 6.3 e 6.4.

Figura 6.2: Aproximação 1.

Figura 6.3: Aproximação 2.

Figura 6.4: Aproximação 3.

 A^* , A_m e A_M são valores aproximados da área A. Podemos determinar esses valores conhecendo a função f e, sendo retângulos, as suas áreas são dadas por $comprimento \times largura$. Assim,

1.
$$A_m = \sum_{i=1}^{5} m_i(x_i - x_{i-1})$$
, onde m_i é o mínimo global de f no intervalo $[x_{i-1}, x_i]$, $i = 1, \dots, 5$

2.
$$A_M = \sum_{i=1}^{5} M_i(x_i - x_{i-1})$$
, sendo M_i o máximo global de f no intervalo $[x_{i-1}, x_i]$, $i = 1, \dots, 5$

3.
$$A^* = \sum_{i=1}^{5} f(x_i^*)(x_i - x_{i-1}), \text{ com } x_i^* \in [x_{i-1}, x_i], i = 1, \dots, 5.$$

Note-se que

$$A_m \le A \le A_M \qquad A_m \le A^* \le A_M$$

Intuitivamente, poder-se-á esperar que quanto maior for o número de subintervalos de [a,b] considerados, menor será o erro que se comete ao aproximar A por cada um dos processos indicados, contudo isso não será necessariamente assim, pois depende da escolha dos subintervalos...

6.2 Partição de um intervalo

Definição 6.1. Chama-se partição do intervalo [a,b], com a < b, a um conjunto finito de pontos de [a,b]

$$\mathcal{P} = \{x_0, x_1, \dots, x_n\},\,$$

tal que $a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b$.

Figura 6.5: Partição de um intervalo.

Note-se que os pontos x_0, x_1, \ldots, x_n determinam uma divisão do intervalo [a, b] em n subintervalos $[x_{i-1}, x_i]$, com $i = 1, \ldots, n$, de amplitudes $\Delta x_i = x_i - x_{i-1}$.

Definição 6.2. Chama-se amplitude ou diâmetro de uma partição $\mathcal{P} = \{x_0, x_1, \dots, x_n\}$, e denota-se por $|\mathcal{P}|$, à maior das amplitudes dos subintervalos $[x_{i-1}, x_i]$, $i = 1, \dots, n$, isto é,

$$|\mathcal{P}| = \max \left\{ \Delta x_i : i = 1, \dots, n \right\}.$$

Exemplo 6.1. Seja $\mathcal{P} = \left\{-2, -\frac{3}{2}, -\frac{1}{2}, 0, \frac{1}{2}, 1\right\}$ uma partição do intervalo [-2, 1]. O diâmetro da partição é

$$|\mathcal{P}| = \max\left\{-\frac{3}{2} - (-2), -\frac{1}{2} - \left(-\frac{3}{2}\right), 0 - \left(-\frac{1}{2}\right), \frac{1}{2} - 0, 1 - \frac{1}{2}\right\} = \max\left\{\frac{1}{2}, 1, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right\} = 1$$

Definição 6.3. Chama-se conjunto compatível com a partição $\mathcal{P} = \{x_0, x_1, \dots, x_n\}$ a todo o conjunto

$$\mathcal{C} = \{x_1^*, x_2^*, \dots, x_n^*\}$$

tal que, para cada $i = 1, 2, \ldots, n$

$$x_i^* \in [x_{i-1}, x_i].$$

Definição 6.4. Chama-se partição regular de amplitude $\Delta = \frac{b-a}{n}$ do intervalo [a,b], com a < b, ao conjunto de pontos

$$\mathcal{P} = \{x_0, x_1, x_2, \dots, x_{n-1}, x_n\},\,$$

$$com x_i = a + i\Delta = a + i\frac{b-a}{n}$$
, para $i = 0, \dots, n$.

Note-se que neste tipo de partições se tem:

- $x_0 = a e x_n = b$;
- $x_i x_{i-1} = \frac{b-a}{n}$; logo todos os subintervalos têm a mesma amplitude que é precisamente o diâmetro da partição.

6.3 Integral definido

Definição 6.5. Seja f uma função definida num intervalo [a,b]. Dada uma partição \mathcal{P} , definimos a Soma Superior $S_f(\mathcal{P})$ e a Soma Inferior $I_f(\mathcal{P})$ para a partição \mathcal{P} , como sendo respetivamente

1.
$$S_f(\mathcal{P}) = \sum_{i=1}^n M_i(x_i - x_{i-1})$$
, sendo M_i o supremo de f no intervalo $[x_{i-1}, x_i]$, $i = 1, \ldots, n$

2.
$$I_f(\mathcal{P}) = \sum_{i=1}^n m_i(x_i - x_{i-1})$$
, sendo m_i o ínfimo de f no intervalo $[x_{i-1}, x_i]$, $i = 1, \ldots, n$

caso m_i e M_i , i = 1, ..., n, existam.

Figura 6.6: Soma superior.

Figura 6.7: Soma inferior.

Definição 6.6. Sejam f uma função definida num intervalo [a,b], $\mathcal{P} = \{x_0, x_1, \ldots, x_n\}$ uma partição de [a,b] e $\mathcal{C} = \{x_1^*, x_2^*, \ldots, x_n^*\}$ um conjunto compatível com a partição \mathcal{P} . A soma de Riemann de f relativamente à partição \mathcal{P} e ao conjunto \mathcal{C} , $S_f(\mathcal{P}, \mathcal{C})$, \acute{e} o número real

$$S_f(\mathcal{P}, \mathcal{C}) = \sum_{i=1}^n f(x_i^*)(x_i - x_{i-1}).$$

Se f é contínua e limitada em [a,b] então $S_f(P)=S_f(P,C)$ onde C é o conjunto dos maximizantes de f em cada subintervalo determinado pela partição P. Analogamente, $I_f(P)=S_f(P,C)$ onde C é o conjunto dos minimizantes.

Exercício resolvido 6.1. Seja $f(x) = x^2$, com $x \in [0, 1]$, $\mathcal{P} = \{0, \frac{1}{3}, \frac{1}{2}, 1\}$ e $\mathcal{C} = \{x_i^* = x_{i-1} : i = 1, 2, 3\}$. Determine $S_f(\mathcal{P}, \mathcal{C})$.

Figura 6.8: Área limitada pelo gráfico da função $f(x) = x^2$.

Resolução do exercício 6.1.

$$S_f(\mathcal{P}, \mathcal{C}) = f(0) \left(\frac{1}{3} - 0\right) + f\left(\frac{1}{3}\right) \left(\frac{1}{2} - \frac{1}{3}\right) + f\left(\frac{1}{2}\right) \left(1 - \frac{1}{2}\right) = 0 \cdot \frac{1}{3} + \frac{1}{9} \cdot \frac{1}{6} + \frac{1}{4} \cdot \frac{1}{2} = \frac{31}{216}.$$

Exercício resolvido 6.1. Seja
$$f(x) = x^2$$
, com $x \in [0,1]$, $\mathcal{P} = \{0, \frac{1}{3}, \frac{1}{2}, 1\}$ e $\mathcal{C} = \{x_i^* = x_{i-1} : i = 1, 2, 3\}$. Determine $S_f(\mathcal{P}, \mathcal{C})$.

$$S_{f}(\mathcal{P},C) = \sum_{i=1}^{n} f(x_{i}^{*})(x_{i} - x_{i-1}). = \sum_{i=1}^{3} \int (\psi_{i}^{*})(\psi_{i} - \psi_{i-1}) =$$

$$= \int (\psi_{i}^{*})(\psi_{i} - \psi_{0}) + \int (\psi_{i}^{*})(\psi_{i} - \psi_{i}) + \int (\psi_{i}^{*})(\psi_{i} - \psi_{i}) + \int (\psi_{i}^{*})(\psi_{i} - \psi_{i}) =$$

$$= \int (\psi_{i}^{*})(\psi_{i} - \psi_{0}) + \int (\psi_{i}^{*})(\psi_{i} - \psi_{i}) + \int (\psi_{i}^{*})(\psi_{i} - \psi_{i}) =$$

$$= \int (\psi_{i}^{*})(\psi_{i} - \psi_{0}) + \int (\psi_{i}^{*})(\psi_{i} - \psi_{i}) + \int (\psi_{i}^{*})(\psi_{i} - \psi_{i-1}) =$$

$$= \int (\psi_{i}^{*})(\psi_{i} - \psi_{0}) + \int (\psi_{i}^{*})(\psi_{i} - \psi_{i}) + \int (\psi_{i}^{*})(\psi_{i} - \psi_{i}) =$$

$$= \int (\psi_{i}^{*})(\psi_{i} - \psi_{0}) + \int (\psi_{i}^{*})(\psi_{i} - \psi_{$$

Exercício 6.1 Considere a função definida na Figura 6.8.

1. Se
$$C_1 = \{x_i^* = x_i : i = 1, 2, 3\}$$
, determine $S_f(\mathcal{P}, C_1)$.

2. Se
$$C_2 = \{x_i^* = \frac{x_{i-1} + x_i}{2}, i = 1, 2, 3\}$$
, determine $S_f(\mathcal{P}, \mathcal{C}_2)$.

3. Se
$$\mathcal{P}' = \{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\}$$
 e $\mathcal{C}' = \{x_i^* = x_{i-1} : i = 1, 2, 3, 4\}$ determine $S_f(\mathcal{P}', \mathcal{C}')$.

Figura 6.8: Área limitada pelo gráfico da função
$$f(x) = x^2$$
.

$$= \bigcirc^2 \times \frac{1}{4} + \left(\frac{1}{4}\right)^2 \times \frac{1}{4} + \left(\frac{3}{4}\right)^2 \times \frac{1}{4} + \left(\frac{3}{4}\right)^2 \times \frac{1}{4}$$

Tem sentido dizer que $S_f(\mathcal{P}, \mathcal{C})$ é um valor aproximado da área da região assinalada na figura 6.8?

Exercício 6.1 Considere a função definida na Figura 6.8.

- 1. Se $C_1 = \{x_i^* = x_i : i = 1, 2, 3\}$, determine $S_f(\mathcal{P}, C_1)$.
- 2. Se $C_2 = \{x_i^* = \frac{x_{i-1} + x_i}{2}, i = 1, 2, 3\}$, determine $S_f(\mathcal{P}, C_2)$.
- 3. Se $\mathcal{P}' = \{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\}$ e $\mathcal{C}' = \{x_i^* = x_{i-1} : i = 1, 2, 3, 4\}$ determine $S_f(\mathcal{P}', \mathcal{C}')$.

Exercício 6.2 Seja $g(x) = -x^2$, com $x \in [0,1]$, $\mathcal{P} = \{0, \frac{1}{3}, \frac{1}{2}, 1\}$ e $\mathcal{C} = \{x_i^* = x_i : i = 1, 2, 3\}$. Determine $S_g(\mathcal{P}, \mathcal{C})$.

Figura 6.9: Área limitada pelo gráfico da função $f(x) = -x^2$.

Será que neste caso tem sentido dizer que $S_g(\mathcal{P}, \mathcal{C})$ é um valor aproximado da área da região assinalada na figura 6.9?

Definição 6.7. Seja f uma função definida num intervalo [a,b]. Diz-se que f \acute{e} integrável em [a,b] se existir um número real I tal que

$$\lim_{n\to+\infty} S_f(\mathcal{P}_n,\mathcal{C}_n) = I,$$

para toda a sucessão $(\mathcal{P}_n)_{n\in\mathbb{N}}$ de partições de [a,b] com $\lim_{n\to+\infty} |\mathcal{P}_n| = 0$ e para toda a sucessão $(\mathcal{C}_n)_{n\in\mathbb{N}}$ tal que, para cada $n\in\mathbb{N}$, \mathcal{C}_n é compatível com \mathcal{P}_n .

onde a é o limite inferior de integração, b é o limite superior de integração e x a variável de integração.

Observação 6.1. Na definição de integral de Riemann pressupõe-se que a < b. Dá-se, no entanto, significado a $\int_a^b f(x)dx$ quando a > b ou a = b:

- Se a > b, $\int_a^b f(x)dx = -\int_b^a f(x)dx$ (se o integral do $2^{\underline{o}}$ membro existir).
- Se a = b, $\int_a^b f(x)dx = \int_a^a f(x)dx = 0$.

Como consequência da definição 6.7, temos

Proposição 6.1. Seja f uma função limitada num intervalo [a,b] e \mathcal{P} o conjunto de todas as partições de [a,b]. Diz-se que f \acute{e} integrável em [a,b] se e só se o ínfimo das somas superiores \acute{e} igual ao supremo das somas inferiores,

$$\inf\{S(P): P \in \mathcal{P}\} = \sup\{I(P): P \in \mathcal{P}\} = I,$$

e nesse caso,

$$\int_{a}^{b} f(x) \, dx = I.$$

Se f é integrável em [a,b], para calcular $\int_a^b f(x)dx$ pode-se considerar uma qualquer sucessão de partições de [a,b] cujo diâmetro tenda para zero.

É usual considerar a sucessão $(\mathcal{P}_n)_{n\in\mathbb{N}}$ de partições regulares de [a,b] $\left(\text{com }\Delta=\frac{b-a}{n}\right)$, tal que, para cada $n\in\mathbb{N}$,

$$\mathcal{P}_n = \{x_0, x_1, \dots, x_n\},\,$$

com
$$x_i = a + i \frac{b-a}{n}$$
, $i = 0, 1, ..., n$.

Repare-se que neste caso

$$\lim_{n \to +\infty} |\mathcal{P}_n| = \lim_{n \to +\infty} \frac{b-a}{n} = 0.$$

Exercício 6.3 Seja f, tal que f(x) = c, $\forall x \in \mathbb{R}$. Sabendo que f é integrável em qualquer intervalo fechado e limitado de \mathbb{R} , mostre que, para cada $a, b \in \mathbb{R}$

$$\int_{a}^{b} c \, dx = c(b - a).$$

Exercício 6.4 Sabendo que a função dada por f(x) = 2x + 1, é integrável em [0,3], calcule

$$\int_0^3 (2x+1)dx.$$

Exemplo 6.2. Seja

$$f(x) = \begin{cases} 0, & x \in [0, 1] \cap \mathbb{Q} \\ 1, & x \in [0, 1] \setminus \mathbb{Q} \end{cases}$$

Vejamos que f não é integrável em [0,1]. Consideremos uma qualquer partição P de [0,1].

Uma vez que o supremo de f no intervalo $[x_{i-1}, x_i]$ é 1 e que o ínfimo de f nesse intervalo é 0, para todo $n \in \mathbb{N}$ resulta

$$S(P) = \sum_{i=1}^{n} 1 \times (x_i - x_{i-1}) = \sum_{i=1}^{n} (x_i - x_{i-1}) = 1 \quad \text{e} \quad I(P) = \sum_{i=1}^{n} 0 \times (x_i - x_{i-1}) = 0.$$

Logo

$$\inf\{S(P): P \in \mathcal{P}\} = 1 \neq 0 = \sup\{I(P): P \in \mathcal{P}\},\$$

onde \mathcal{P} é o conjunto de todas as partições de [0,1].

Exemplo 6.3. Seja f(x) = x, $x \in [0,1]$. Consideremos as partições regulares do intervalo [0,1] de diâmetro $\frac{1}{n}$.

Notemos que, como f é uma função crescente, o supremo de f no intervalo $[x_{i-1}, x_i]$ é $f(x_i) = x_i = \frac{i}{n}$ e o ínfimo é $f(x_{i-1}) = x_{i-1} = \frac{i-1}{n}$. Logo

Exercício 6.3 Seja f, tal que f(x) = g, $\forall x \in \mathbb{R}$. Sabendo que f é integrável em qualquer intervalo fechado e limitado de \mathbb{R} , mostre que, para cada $a, b \in \mathbb{R}$

$$\int_{a}^{b} c \, dx = c(b - a).$$

$$\Lambda = 6 - \alpha$$

$$S_{1}[Q_{m},G] = \sum_{i=1}^{m} \{(Q_{i}^{x})(Q_{i}-Q_{i-1}) = \sum_{i=1}^{m} C A = \sum_{i=1}^{m} C (b-a)$$

$$= C(b-a) \times \sum_{i=1}^{m} \frac{1}{m} = C(b-a)$$

Exercício 6.4 Sabendo que a função dada por f(x) = 2x + 1, é integrável em [0,3], calcule

$$\frac{3}{m}\left(\frac{6}{4}\times\frac{1+m}{2}\times m+m\right)=$$

$$=q_{\kappa}\left(\frac{m+1}{m}\right)+\frac{3}{m}$$

$$\int_{0}^{3}(2u+1)du=\lim_{m\to\infty}\int_{1}^{\infty}(P_{m},6)=$$

$$=\lim_{m\to+\infty}\left(q_{m}\left(\frac{m+1}{m}\right)+3\right)=q+3=$$

$$=12$$

Exemplo 6.3. Seja
$$f(x) = x, x \in [0,1]$$
. Consideremos as partições regulares do intervalo $[0,1]$ de diâmetro $\frac{1}{n}$.

$$S_{1}(P_{m}) = \underbrace{S}_{1} \underbrace{M}_{1} \times \underbrace{M}_{1} = \underbrace{S}_{1} \underbrace{1}_{1} \underbrace{1}_{2} = \underbrace{M+1}_{1} \underbrace{M}_{1} \times \underbrace{M}_{2} = \underbrace{1}_{2} \underbrace{M+1}_{1} \underbrace{M}_{1} \times \underbrace{M}_{2} = \underbrace{1}_{2} \underbrace{M+1}_{1} \underbrace{M}_{1} \times \underbrace{M}_{2} = \underbrace{1}_{2} \underbrace{M+1}_{2} \underbrace{M}_{1} \times \underbrace{M+1}_{2} \times \underbrace{M}_{2} \times \underbrace{M+1}_{2} \times \underbrace{M+1}_{2} \times \underbrace{M}_{2} \times \underbrace{M+1}_{2} \times \underbrace{M+1}_{2} \times \underbrace{M}_{2} \times \underbrace{M+1}_{2} \times \underbrace{M+1}_$$

1.
$$S(P) = \sum_{i=1}^{n} x_i(x_i - x_{i-1}) = \frac{1}{n^2} \sum_{i=1}^{n} i = \frac{1}{n^2} \times \frac{1+n}{2} \times n = \frac{1+n}{2n};$$

2.
$$I(P) = \sum_{i=1}^{n} x_{i-1}(x_i - x_{i-1}) = \frac{1}{n^2} \sum_{i=1}^{n} (i-1) = \frac{1}{n^2} \times \frac{0+n-1}{2} \times n = \frac{n-1}{2n};$$

e portanto,

$$\inf\{S(P): P \in \mathcal{P}\} = \frac{1}{2} = \sup\{I(P): P \in \mathcal{P}\}.$$

Logo a função é integrável em [0,1] e $\int_0^1 f(x)dx = \frac{1}{2}$.

6.4 Critérios de Integrabilidade

Nesta secção iremos apresentar alguns resultados que nos permitem determinar a integrabilidade de de algumas funções.

Teorema 6.1. Seja f uma função definida num intervalo [a,b]. Se f é contínua em [a,b], então f é integrável em [a,b].

Teorema 6.2. Seja f uma função definida num intervalo [a,b]. Se f é limitada em [a,b] e é descontínua apenas num número finito de pontos de [a,b], então f é integrável em [a,b].

Teorema 6.3. Seja f uma função definida num intervalo [a,b]. Se f \acute{e} monótona em [a,b], então f \acute{e} integrável em [a,b].

Teorema 6.4. Sejam f e g funções definidas em [a,b]. Se f é integrável em [a,b] e g difere de f apenas num número finito de pontos, então g é integrável em [a,b] e

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} g(x)dx.$$

Teorema 6.5. Se f é integrável em [a,b], então f é limitada em [a,b].

Exemplo 6.4. A função definida por

$$f(x) = \begin{cases} \frac{1}{x^2} & , x \neq 0 \\ 0 & , x = 0 \end{cases}$$

é integrável em qualquer intervalo fechado que não contenha o 0, mas não é integrável em [a,0] (a < 0) ou [0,b] (b > 0) já que não é limitada nesses intervalos, bem como em nenhum outro intervalo [a,b] tal que $0 \in [a,b]$.

O facto de f ser limitada em [a,b] não garante que f seja integrável em [a,b]. Considere-se por exemplo a função definida por

$$f(x) = \begin{cases} 0 & , x \in \mathbb{Q} \cap [0, 1] \\ 1 & , x \in [0, 1] \setminus \mathbb{Q} \end{cases}$$

que é limitada mas não é integrável (confrontar exemplo 6.2).

Exercício 6.5 Estude quanto à integrabilidade, nos respetivos domínios, as seguintes funções:

1.
$$f(x) = \begin{cases} \frac{\operatorname{sen} x}{x}, & x \in [-1, 2] \setminus \{0\} \\ 1, & x = 0 \end{cases}$$
 2. $g(x) = \begin{cases} e^x, & x \in [1, 5] \setminus \mathbb{Z} \\ x^3 + \ln x, & x \in [1, 5] \cap \mathbb{Z} \end{cases}$ 3. $h(x) = \begin{cases} 1, & 0 \le x < 1 \\ 3, & 1 \le x \le 3 \end{cases}$

$$4. \ h(x) = \begin{cases} \ln|x|, & 0 < x \le 1 \\ 0, & x = 0 \end{cases}$$

$$5. \ i(x) = \begin{cases} \operatorname{tg} x, & x \in [0, \frac{\pi}{2}[\\ 2, & x = \frac{\pi}{2} \\ \operatorname{sen} x + \cos(2x), & x \in]\frac{\pi}{2}, \pi] \end{cases}$$

Exercício 6.6 Mostre que $\int_0^1 (x^3 - 6x) dx = -\frac{11}{4}$ sabendo que

$$\sum_{i=1}^{n} i^2 = \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6} \quad \text{e} \quad \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}.$$

Exercício 6.7 Seja g a função definida por

$$g(x) = \begin{cases} x, & x \neq 1 \\ 2, & x = 1 \end{cases}.$$

A função g é integrável em [0,2]? Em caso afirmativo calcule $\int_0^2 g(x) dx$.

6.5 Propriedades do integral definido

Neste secção iremos apresentar algumas propriedades do integral definido que serão utilizadas para calcular alguns integrais.

Teorema 6.6. Sejam f e g funções integráveis em [a,b] e $\alpha \in \mathbb{R}$. Então αf e f+g são funções integráveis em [a,b] e

•
$$\int_a^b \alpha f(x) dx = \alpha \int_a^b f(x) dx$$
.

•
$$\int_a^b \left(f(x) + g(x) \right) dx = \int_a^b f(x) dx + \int_a^b g(x) dx.$$

Teorema 6.7. Seja f uma função integrável em [a,b]. Então, f é integrável em qualquer subintervalo de [a,b] e se $c \in [a,b[$, f é integrável em [a,c] e [c,b] e

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

Exemplo 6.5. Seja f a função definida em [-1,1] por

$$f(x) = \begin{cases} x & \text{se} & x \in [0, 1] \\ \\ 2 & \text{se} & x \in [-1, 0[\end{cases}$$

Então

$$\int_{-1}^{1} f(x) \, dx = \int_{-1}^{0} f(x) \, dx + \int_{0}^{1} f(x) \, dx = \int_{-1}^{0} 2 \, dx + \int_{0}^{1} x \, dx$$

Teorema 6.8. Seja f uma função integrável em [a,b]. Se $f(x) \ge 0$ para todo o $x \in [a,b]$, então

$$\int_{a}^{b} f(x)dx \ge 0.$$

Na hipótese de f ser integrável em [a, b], será que se pode afirmar que:

1. se
$$\int_a^b f(x)dx = 0$$
 então $f(x) = 0, \forall x \in [a, b]$?

2. se
$$\int_a^b f(x)dx \ge 0$$
 então $f(x) \ge 0, \forall x \in [a,b]$?

Exemplo 6.6. Seja $f(x) = x, x \in [-1, 1]$. Temos que

$$\int_{-1}^{1} x \, dx = 0$$

e a função não é a função nula em [-1, 1].

Exemplo 6.7. Seja $f(x) = x, x \in [-1, 2]$. Temos que

$$\int_{-1}^{2} x \, dx > 0$$

e a função não é positiva em [-1, 2].

Teorema 6.9. Se f é integrável em [a,b] e se existem constantes $m, M \in \mathbb{R}$ tais que,

$$m \le f(x) \le M$$
, para todo o $x \in [a, b]$,

 $ent\~ao$

$$m(b-a) \le \int_a^b f(x)dx \le M(b-a).$$

Exemplo 6.8. Seja $f(x) = \frac{1}{1 + \sqrt{x^2 + 1}}$ em [-5, 10]. Como $0 \le f(x) \le \frac{1}{2}$, $\forall x \in [-5, 10]$, podemos afirmar que

$$0 \le \int_{-5}^{10} f(x) \, dx \le \frac{1}{2} \times 15.$$

Teorema 6.10. Se f e g são duas funções integráveis em [a,b] e se $f(x) \leq g(x)$, para todo o $x \in [a,b]$, então

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx.$$

Exemplo 6.9. Sejam $f(x) = \frac{e^x}{x+1}$ e $g(x) = e^x$ definidas em [1,3].

Como $f(x) \leq g(x), \forall x \in [1, 3], \text{ temos}$

$$\int_{1}^{3} \frac{e^{x}}{x+1} \, dx \le \int_{1}^{3} e^{x} \, dx.$$

Teorema 6.11. Seja f uma função integrável em [a,b]. Então |f| \acute{e} integrável em [a,b] e

$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx$$

Exemplo 6.10.

$$\left| \int_0^{\pi} \sin x \, dx \right| \le \int_0^{\pi} |\sin x| \, dx.$$

Teorema 6.12. Se f e g são duas funções integráveis em [a,b], então $f \cdot g$ é integrável em [a,b].

Atenção: No teorema anterior apenas se afirma que o produto de funções integráveis é integrável, mas <u>não é verdade</u> que $\int_a^b f(x) \cdot g(x) dx = \int_a^b f(x) dx \cdot \int_a^b g(x) dx$.

Teorema 6.13. (Teorema do valor médio para integrais) Se f é uma função contínua num intervalo [a,b], então existe $c \in [a,b]$ tal que,

$$\int_{a}^{b} f(x)dx = f(c)(b-a).$$

Suponha que f(x) > 0, para todo $x \in [a, b]$ e interprete geometricamente o teorema dado.

6.6 Integral indefinido

Seja f uma função integrável num intervalo I e $a \in I$. Para cada $x \in I$, tem-se que f é integrável no intervalo fechado de extremos a e x sendo, portanto, possível definir a seguinte função:

$$F: I \to \mathbb{R}$$

$$x \to F(x) = \int_{a}^{x} f(t)dt$$

Note-se que esta função se anula em x = a. Porquê?

Teorema 6.14. Seja f uma função integrável num intervalo I e $a \in I$. A função definida em I por $F(x) = \int_a^x f(t)dt$ \acute{e} contínua em I.

Demonstração. Seja $x_0 \in I$ e consideremos que $x_0 < x$ (análogo se $x_0 > x$). Então, como f é integrável em I, existe $\int_a^{x_0} f(t)dt = F(x_0)$. Assim,

$$F(x) - F(x_0) = \int_a^x f(t)dt - \int_a^{x_0} f(t)dt = \int_{x_0}^x f(t)dt.$$

Como f é integrável em I, f é limitada neste intervalo e consequentemente é limitada em $[x_0, x]$, isto é, existem $m \in M$ em \mathbb{R} tais que

$$m \le f(t) \le M, \ \forall t \in [x_0, x].$$

Então, pelo teorema 6.9,

$$m(x - x_0) \le \int_{x_0}^x f(t)dt \le M(x - x_0).$$

Como $\lim_{x \to x_0} (x - x_0) = 0$, resulta que

$$\lim_{x \to x_0} \left(F(x) - F(x_0) \right) = 0 \Leftrightarrow \lim_{x \to x_0} F(x) = F(x_0),$$

ou seja, F é contínua em x_0 (ponto arbitrário de I).

Exemplo 6.11. Dada a função $f: \mathbb{R} \to \mathbb{R}$, definida por, $f(x) = \ln 2$, seja $F: \mathbb{R} \to \mathbb{R}$ a função definida por $F(x) = \int_0^x \ln 2 \, dt$.

Pelo exercício 6.3 podemos dizer que $F(4) = \int_0^4 \ln 2 \, dt = 4 \ln 2$ e $F(-3) = -3 \ln 2$.

Qual o valor de F(0)?

Exercício 6.8 Considere a função definida por

$$f(x) = \begin{cases} 1, & x \in [0, 1[\\ 2, & x \in [1, 2[\\ 3, & x \in [2, 3] \end{cases}$$

- a) Mostre que $F(x) = \int_0^x f(t)dt = \begin{cases} x, & x \in [0,1[\\ 2x-1, & x \in [1,2[\\ 3x-3, & x \in [2,3] \end{cases}$
- b) Verifique que F é contínua em [0,3].

Observação 6.2. Observe que

$$G(x) = \begin{cases} x, & x \in [0, 1[\\ 2x, & x \in [1, 2[\\ 3x, & x \in [2, 3] \end{cases}$$

não pode ser dado por $G(x) = \int_0^x f(t)dt$.

6.6.1 Primeiro Teorema Fundamental do Cálculo Integral (T.F.C.I.)

Teorema 6.15. Seja f uma função contínua num intervalo I e $a \in I$. Se

$$F(x) = \int_{a}^{x} f(t)dt,$$

para cada $x \in I$, então F é uma função diferenciável e F'(x) = f(x).

Demonstração. Pelo teorema 6.14, a função F é contínua em I. O Teorema do Valor Médio para Integrais (teorema 6.13) diz-nos que, no intervalo $]x_0,x[$ (supondo $x>x_0$, o caso contrário é análogo), existe c tal que

$$F(x) - F(x_0) = \int_{x_0}^{x} f(t) dt = f(c)(x - x_0)$$

e, portanto,

$$\lim_{x \to x_0} \frac{F(x) - F(x_0)}{x - x_0} = \lim_{x \to x_0} f(c).$$

Pela continuidade da função f, $\lim_{x\to x_0} f(c) = f(x_0)$. Como $\lim_{x\to x_0} \frac{F(x) - F(x_0)}{x - x_0} = F'(x_0)$, resulta que $F'(x_0) = f(x_0)$.

Corolário 1. Se f é uma função contínua em I e $a \in I$, então f tem uma primitiva em I que é dada por $F(x) = \int_a^x f(t)dt$.

O teorema 6.15 pode ser generalizado usando como extremos funções deriváveis.

Teorema 6.16. Seja f uma função contínua no intervalo J e H a função definida por

$$H(x) = \int_{g_1(x)}^{g_2(x)} f(t)dt,$$

com g_1 e g_2 definidas em $I \subseteq \mathbb{R}$ tais que $g_1(I) \subseteq J$ e $g_2(I) \subseteq J$.

Se f é contínua em J e g₁ e g₂ são deriváveis em I, então

$$H'(x) = f(g_2(x))g_2'(x) - f(g_1(x))g_1'(x),$$

para todo o $x \in I$.