HETEROGENOUS AGENT MODELS

QUANTITATIVE ECONOMICS 2024

Piotr Żoch

January 22, 2025

MOTIVATION

- We introduce a class of models with heterogeneous agents.
- We focus on models with household heterogeneity and incomplete markets: Aiyagari-Bewley-Hugget-Imrohoroglu models.
 - Infinitely lived households face idiosyncratic shocks.
 - Markets are incomplete households cannot trade all assets they would like to trade.
- We will find general equilibrium of these models.

AGENTS

- In all these models there is a continuum of agents/households indexed by $i \in [0,1]$.
- Agents are infinitely lived, have a standard period utility function u(c), where c is consumption, discount future at $\beta \in (0,1)$.
- Labor endowment (productivity) is stochastic and follows a stationary Markov process (same process for all *i*), with a finite set of states Z and transition matrix *P*.
- Agents consume and trade a single asset a that pays (net) return r. Wage per unit of labor is
 w.
- Agents face a borrowing constraint, $a \ge -\phi$.

AGENTS

- State variables: beginning of period assets a and labor endowment z.
- Recursive formulation of a problem of an agent with assets a and labor endowment z is

$$V(a,z) = \max_{c,a'} \left\{ u(c) + \beta \sum_{z' \in \mathbb{Z}} P(z,z') V(a',z') \right\}$$

subject to $c + a' = zw + (1+r)a$,
 $a' \ge -\phi$.

- The solution consists of the value function V(a,z) and the policy functions a'(a,z),c(a,z).
- Note: everything (e.g. V) depends on (r, w), we supress it in notation.

DISTRIBUTION

- Suppose that there a finite grid of asset levels (a_1, \ldots, a_N) and define the unconditional distribution $\lambda_t(a, z) := \mathbb{P}(a_t = a, z_t = z)$.
- Given the policy function a'(a,z) and P we have

$$\lambda_{t+1}(a',z') = \sum_{a,z} \lambda_t(a,z) \cdot P(z,z') \cdot \Im(a' = a'(a,z)),$$

where I is the indicator function.

- What if assets are not restricted to a grid? Similar logic, but a more messy formula (+ measure theory).
- We will need to discretize the state space and action space anyway.

AGGREGATION

- Given a distribution λ_t and policy functions a'(a,z) and c(a,z) we can calculate aggregate variables.
- We have asset demand and consumption

$$A'_{t} = \int a'(a,z) \cdot d\lambda_{t}(a,z),$$

$$C_{t} = \int c(a,z) \cdot d\lambda_{t}(a,z).$$

I switched notation again, for a finite grid we have $A'_t = \sum_{a,z} a'(a,z) \cdot \lambda_t(a,z)$ and $C_t = \sum_{a,z} c(a,z) \cdot \lambda_t(a,z)$.

THE REST OF THE ECONOMY

- How are r and w determined?
- What/who supplies goods?
- What/who supplies assets?
- We will start with the Hugget model:
 - Endowment economy: w exogenous, wz is the amount of goods received by an agent.
 - Nothing/nobody else in the economy. Supply of assets is zero.
- Market clearning conditions:
 - Goods market: $C_t = w \int z_i di$.
 - Asset market: $A'_t = 0$.

HUGGET MODEL

- Assets are loans from/to agents.
- Asset market clears if the total amount of loans (negative *a*) is equal to the total amount of savings (positive *a*).
- We will be looking for a stationary equilibrium: the distribution of agents and prices (here only *r*) are constant over time.
- This was already anticipated by how we wrote the Bellman equation no time subscripts anywhere.

RCE IN HUGGET MODEL

Definition (Stationary recursive competitive equilibrium (RCE))

A stationary recursive competitive equilibrium is a rate of return r, a value function V(a,z), policy functions a'(a,z) and c(a,z), and a distribution $\lambda(a,z)$ such that

- 1. Given r, the value function V(a,z) satisfies the Bellman equation, and associated policy functions a'(a,z), c(a,z), solve the agent's maximization problem;
- 2. The probability distribution $\lambda(a,z)$ is the stationary distribution of the Markov process (a_t,z_t) induced by P and a'(a,z);
- 3. Markets clears:

$$\int a'(a,z) \cdot d\lambda(a,z) = 0, \qquad \int c(a,z) \cdot d\lambda(a,z) = w \int z d\lambda(a,z).$$

COMMENTS

- We now need to find *r* such that aggregate asset demand resulting from optimal decisions of agents is zero.
- Alternatively, we can find r such that the goods market clears.
- Recall: the Walras law says that if there are N markets and N 1 clear, the N-th market also clears.

COMMENTS

- The usual procedure is:
 - 1. Guess *r*.
 - 2. Solve the Bellman equation for V(a,z) and a'(a,z).
 - 3. Find the stationary distribution $\lambda(a,z)$.
 - 4. Calculate aggregate asset demand A'.
 - 5. If A' > 0, decrease r, if A' < 0, increase r.
- This combines several things:
 - solving the Bellman equation
 - finding the stationary distribution
 - (new) finding the equilibrium price *r*.

COMPUTATION

- When we solve the model on a computer we discretize the state space and have a finite grid of points for assets: (a_1, \ldots, a_N) and for productivity (z_1, \ldots, z_M) .
- We usually want to allow maximizers of the RHS of the Bellman equation to not necessarily belong to the grid.
- We cannot use the formula

$$\lambda(a',z') = \sum_{a,z} \lambda(a,z) \cdot P(z,z') \cdot \Im(a' = a'(a,z)),$$

because a'(a, z) might not belong to the grid.

• How to find the stationary distribution $\lambda(a,z)$ in this case?

COMPUTATION

- When we solve the model on a computer we discretize the state space and have a finite grid of points for assets: (a_1, \ldots, a_N) and for productivity (z_1, \ldots, z_M) .
- We usually want to allow maximizers of the RHS of the Bellman equation to not necessarily belong to the grid.
- We cannot use the formula

$$\lambda(a',z') = \sum_{a,z} \lambda(a,z) \cdot P(z,z') \cdot \Im(a' = a'(a,z)),$$

because a'(a, z) might not belong to the grid.

• How to find the stationary distribution $\lambda(a,z)$ in this case?

YOUNG (2010)

Let

$$q(a,z,a_n) = \Im(a'(a,z) \in [a_{n-1},a_n]) \frac{a'(a,z) - a_{n-1}}{a_n - a_{n-1}} + \Im(a'(a,z) \in [a_n,a_{n+1}]) \frac{a_{n+1} - a'(a,z)}{a_{n+1} - a_n}$$

be the distribution of agents with assets a_n and a_{n+1} .

Then

$$\lambda(a',z') = \sum_{a,z} \lambda(a,z) \cdot P(z,z') \cdot q(a,z,a').$$

YOUNG (2010)

- This the same as saying that agent with assets a and productivity z will choose a_n with probability $q(a, z, a_n,)$.
- Given there is a continuum of agents, this is the same as saying that the fraction $q(a, z, a_n,)$ of agents with assets a and productivity z will choose a_n .
- This approach (due to Young (2010)) is useful because it makes aggregates unbiased.

AGGREGATION AND EQUILIBRIUM

- Once we have the distribution $\lambda(a,z)$ we can calculate aggregates.
- For example:

$$A' = \sum_{\alpha, z} \alpha'(\alpha, z) \cdot \lambda(\alpha, z).$$

- We can repeat the same procedure for various r to find the equilibrium r, such that A' = 0.
- Better: write a function that takes r as an input and returns A' as an output. Then use a root finding algorithm to find the equilibrium r.

DISCUSSION

- Suppose we want to use a bracketing method to find the equilibrium r.
- What are the appropriate bounds? Probably r < -1 does not make sense (nobody would save). The upper bound is more tricky.
- We can show that $r < \beta^{-1} 1$ in equilibrium for the Hugget model (just see what happens if $r > \beta^{-1} 1$).

DISCUSSION

- Here you need to solve the Bellman equation for each r: possibly many times.
- This can be costly try to optimize the code.
 - Use HPI or OPI.
 - Use EGM.
 - Get the transition matrix for (a, z) and use it to find the stationary distribution (do not simulate anything!)
 - Check out Simon Mongey's slides general notation but similar models.

- In Aiyagari model there is a representative firm that hires labor and rents capital from households.
- The firm has a constant returns to scale production function F(K, L), where K is capital and L is labor.
- The firm is competitive, so it takes *r* and *w* as given.
- The firm's problem is

$$\max_{K,L} F(K,L) - (r+\delta) K - wL.$$

- Assets accumulated by households are capital and loans to other agents.
- Labor market clearing: $L = \int z \cdot d\lambda(a, z)$.
- Asset market clearing: $K = \int a \cdot d\lambda(a, z)$.
- Goods market clearing: $F(K, L) = C + \delta K$.

Notice that here we have

$$r = F_K(K, L) - \delta$$
, $w = F_L(K, L)$.

Because of the constant returns to scale

$$r = F_K\left(\frac{K}{L}, 1\right) - \delta, \quad w = F_L\left(\frac{K}{L}, 1\right).$$

- We can solve for K/L as a function of r. This also allows us to solve for w as a function of r.
- We know L (it is exogenous) so we have K(r)

- This suggests a following strategy:
 - Guess r. Repeat all the steps from the Hugget model to find A'.
 - Calculate K.
 - Check if A' = K. If yes, we found the equilibrium r. If not, adjust (how?) r and repeat.
- We can simply find the root of A'(r) K(r) = 0.

- In many applications we are interested in the effects of some government policies.
- Example: how does an increase in taxation affect the wealth distribution?
- Example: how does an increase in government debt crowd out capital accumulation?
- We will now consider a simple extension of the Aiyagari model with government.

The intertemporal budget constraint of the government is

$$B_{t+1} = (1+r)B_t + T_t - G_t.$$

where B_t is the government debt, T_t is tax revenue net of transfers and G_t is government purchases of goods.

• The government collects taxes on labor and capital income. Linear tax system with rates τ^{w} , τ^{r} . Tax revenue net of transfers is

$$T = \int \tau^{W} w z_{i} di + \int \tau^{r} r a_{i} - d.$$

In a stationary equilibrium the government budget constraint becomes

$$rB = T - G$$
.

- Asset market clearing: $K + B = \int a \cdot d\lambda(a, z)$.
- Goods market clearing: $F(K, L) = C + \delta K + G$.
- Key difference: assets available in the economy are K + B, not just K.

- We also need to modify the household problem.
- Recursive formulation of a problem of an agent with assets a and labor endowment z is

$$V(a,z) = \max_{c,a'} \left\{ u(c) + \beta \sum_{z' \in \mathbb{Z}} P(z,z') V(a',z') \right\}$$

subject to $c + a' = (1 - \tau^{w}) zw + (1 + (1 - \tau^{r}) r) a + d,$
$$a' \ge -\phi.$$

Note: dependence on government policies, we supress it in notation.