This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

		•			
			- /	:	
				i ,	
•				**	
			,		
			,		
•	•				
	4			•	
			4		
			7.		
			- i		
>				Ý .	

DIALOG(R) File 347: JAPIO (c) 2004 JPO & JAPIO. All rts. reserv.

03482778 **Image available**
SUPPLYING TONER AND DEVELOPING METHOD

PUB. NO.: 03-145678 [JP 3145678 A]

PUBLISHED: June 20, 1991 (19910620)

INVENTOR(s): OYAMA KATSUMI

KURAMAE YOSHIHISA WATANABE AKIHIRO

APPLICANT(s): MITA IND CO LTD [000615] (A Japanese Company or Corporation),

JP (Japan)

APPL. NO.: 01-285864 [JP 89285864]

FILED: October 31, 1989 (19891031)

INTL CLASS: [5] G03G-015/08; G03G-009/113; G03G-013/08

JAPIO CLASS: 29.4 (PRECISION INSTRUMENTS -- Business Machines)

JOURNAL: Section: P, Section No. 1254, Vol. 15, No. 372, Pg. 83,

September 19, 1991 (19910919)

ABSTRACT

PURPOSE: To remove such trouble where picture quality deteriorates due to the lowering of the electric resistance of carriers and to obtain preferable picture quality by allowing supplying toner to contain resin-coated carriers and toner and setting the electric resistance of the coated carriers to be larger than that of carriers contained in a developing device.

CONSTITUTION: A two-component system developer (a) wherein the coated carriers are blended with the toner is contained in the developing device 5, and is held on the surface of a developing sleeve disposed in the developing device 5. A latent image is formed of the toner on the surface of a photosensitive body 10 and developed. On the other hand, when the toner is consumed in the developing, the supplying toner is appropriately supplied from a toner supplying hopper 1 to the developing device 5. At this time, the supplying toner is made by blending the resin-coated carriers and the toner, and the electric resistance of the resin-coated carriers is set larger than that of the carriers in the developer (a) contained in the developing device 5. Thus, the electric resistance of the carriers is prevented from lowering and stable picture quality can be obtained.

					•
					-
		·,			
•					
		*			
				9	
				G.,	
		<i>3</i> .			
				·	
		e ús			
			7		
					3-
	•				
					1.5

DIALOG(R) File 345:Inpadoc/Fam.& Legal Stat (c) 2004 EPO. All rts. reserv.

9994130

Basic Patent (No, Kind, Date): JP 3145678 A2 910620 <No. of Patents: 001>

Patent Family:

Patent No Kind Date Applic No Kind Date

JP 3145678 A2 910620 JP 89285864 A 891031 (BASIC)

Priority Data (No, Kind, Date):

JP 89285864 A 891031

PATENT FAMILY:

JAPAN (JP)

Patent (No, Kind, Date): JP 3145678 A2 910620 SUPPLYING TONER AND DEVELOPING METHOD (English)

Patent Assignee: MITA INDUSTRIAL CO LTD

Author (Inventor): OYAMA KATSUMI; KURAMAE YOSHIHISA; WATANABE AKIHIRO

Priority (No, Kind, Date): JP 89285864 A 891031 Applic (No, Kind, Date): JP 89285864 A 891031 IPC: * G03G-015/08; G03G-009/113; G03G-013/08

JAPIO Reference No: ; 150372P000083 Language of Document: Japanese

		• • •
	,	
7 -		

② 公開特許公報(A) 平3-145678

®Int. Cl.⁵

識別記号

庁内整理番号

④公開 平成3年(1991)6月20日

G 03 G 15/08 9/113 13/08 1 1 2

8807-2H

7029-2H

7144-2H

G 03 G 9/10

3 5 1

審査請求 未請求 請求項の数 3 (全5頁)

公発明の名称 補給用トナー及び現像方法

②特 願 平1-285864

②出 願 平1(1989)10月31日

⑩発 明 者 大 山 勝 巳

大阪府大阪市中央区玉造1丁目2番28号 三田工業株式会

社内

⑩発 明 者 蔵 前 善 务

大阪府大阪市中央区玉造1丁目2番28号 三田工業株式会

社内

⑩発 明 者 渡 辺

昭宏

大阪府大阪市中央区玉造1丁目2番28号 三田工業株式会

社内

⑪出 願 人 三田工業株式会社

大阪府大阪市中央区玉造1丁目2番28号

個代 理 人 弁理士 山本 秀策

明 細 書

1. 発明の名称

補給用トナー及び現像方法

2. 特許請求の範囲

1. 現像器内に収容されているキャリアの電気抵抗値に比べて高い電気抵抗値を有するキャリアとトナーとが含有されていることを特徴とする補給用トナー。

2. 樹脂で被覆されたキャリアとトナーとが混合されている現像剤を現像器内に配設した現像スリーブの表面に保持させ、このトナーにで感光体表面に形成された静電潜像を現像すると共に、現像によって消費されたトナーをトナー補給ホッパーから現像器内へ補給する現像方法であって、

前記トナー補給ホッパーから補給される補給用トナーが樹脂で被覆されたキャリアとトナーとを含有し、該被覆キャリアの電気抵抗値が現像器内に収容されているキャリアの電気抵抗値に比べて大きく設定されている現像方法。

3、 前記トナー補給ホッパーから補給される補

給用トナーに含まれるキャリアの電気抵抗値は以 下の式から求められる請求項2:記載の現像方法。

R = W / W' (r - r' (W - W') / W)

但し、R: 補給用トナーに含まれるキャリアの 電気抵抗値 (Ωcm)

> W: 現像剤に含まれるキャリアの設定量 (g)

> r:現像剤に含まれるキャリアの設定す る電気抵抗値 (Ω cm)

W': 補給用トナーに含まれるキャリア型 (g)

ここで、W' = γ t

(t:現像剤寿命内での全トナー消費量 (g)、γ:実験による定数)

r · : 初期キャリアの電気抵抗値 (Ωcm)

 $ccc, r' = \alpha r in(t+1)$

(α: 実験による定数)

3. 発明の詳細な説明

(産菜上の利用分野)

本発明は、電子写真複写機等の画像形成装置に

おいて、連続複写(ランニング複写)中に用いられる補給用トナーと現像方法に関し、さらに詳しくはキャリアの劣化による画質の低下等を解消した結給用トナーと現像方法に関する。

(従来の技術)

電子写真複写機において、感光体に形成された 静電潜像を乾式現像法により可視化するため、ト ナーとキャリアが混合された2成分現像剤を用い た磁気ブラシ現像法が従来から行われている。

以下に、一般的な磁気ブラシ現像法を第i図に 基づいて説明する。

第1 図において、10は感光体、5 は現像器、1 はトナー補給ホッパーである。

現像器 5 内には現像剤 a を均一に混合するための攪拌ローラ 7 と、現像スリーブ 8 が配設されている。現像スリーブ 8 は磁石等で形成されており、その周囲に現像剤 a 中のキャリアが鎖状に配列した磁気ブラシを形成し、トナーTは摩擦帯電によってこのキャリアに付着する。そして、帯電、露光により感光体10上に形成された静電潜像を上記

-3-

題がある。

従来、現像剤中のキャリアが消費されることに 起因する問題を解消するために、例えば、特開昭 56-159654号公報には補給用トナー中にキャリアを 含有させる技術が開示されている。

(発明が解決しようとする課題)

しかしながら、上記公報において、補給用トナーに含まれるキャリアはスタート用現像剤中に含まれるキャリアと同じものであるから、現像器内のキャリアの電気抵抗値の低下を充分に改善することがです、従って、キャリアの劣化による画像 渡度の上昇等を抑えることはできない。

本発明は、上記の欠点を解決したものであり、 その目的とするところは、キャリアの電気抵抗値 が低下することによる画質劣化を解消し、長期間 に亘って良好な画質が得られる補給用トナーと現 像方法を提供することにある。

(課題を解決するための手段)

本発明の補給用トナーは、現像器内に収容されているキャリアの電気抵抗値に比べて高い電気抵

トナーTで現像し、静電潜像に対して形成されたトナー像を転写抵等の支持体に転写すると共に、加熱ローラまたは加圧ローラ等の定着手段によってトナー像を支持体上に定着させて復写物を得るのである。そして、複写機を稼動し始める際には、トナーとキャリアとが所定割合で混合されたスタート用現像剤 a を現像器 5 内に投入して行うのであり、現像によってトナーが消費されるように得ってが自動的に現像器 5 内へ補給されるように構成されている。

ところで、スタート用現像剤に用いられている キャリアとして、従来よりスペント現象を改良し、 及びキャリアの抵抗を調整して線画を向上させる ために樹脂で被覆された被覆キャリアが使用され ている。このような現像剤を用いて長期間の複写 作業を行った場合には、現像中にキャリアの樹脂 被膜が摩擦等によってけずれ、キャリアの電気抵 抗が低下してしまうという現象が起き、次第に文 字潰れや画像流れ等の画質劣化を生じるという問

-4-

抗値を有するキャリアとトナーとが含有されていることを特徴とし、そのことにより上記目的が達成される。

また、トナー補給ホッパーから補給される補給 用トナーに含まれるキャリアの電気抵抗値Rは以 下の式から求められるのが好ましい。

R = W / W' (r - r' (W - W') / W) 但し、R: 補給用トナーに含まれるキャリアの 電気抵抗値(Ωcm)

W: 現像剤に含まれる + + リアの設定量 (g)

r: 現像剤に含まれるキャリアの設定す る電気抵抗値 (Ω cm)

W': 補給用トナーに含まれるキャリア量 (g)

ここで、 W ′ = γ t

(t : 現像剤寿命内での全トナー消費量

(g)、γ:実験による定数)

r': 初期 + + リアの電気抵抗値(Ω cm) ここで、 r' = α r ln(t+1)

(α:実験による定数)

(作用)

一般に、現像によって少量のキャリアが感光体側へ付着し現像剤に含まれるキャリアの含量が次第に少なくなってくると同時に、連続複写の進行によってキャリアが摩耗し、その電気抵抗が低くなってくる。本発明では、消費されたトナーの量に応じてトナー補給ホッパーより補給用トナー(

-7-

に含まれるキャリアの電気抵抗値に比べて高いものである。 このようなキャリアとしては、 通常は 樹脂で被覆されたキャリアが用いられる。 そして、 補給用トナーに含まれるキャリアに比べて高くするに は、 キャリアの組成等を変えることによって行ってもよく、 あるいは被覆される樹脂の組成、 被膜の 腹厚等を変えることによって行ってもよい。

上記補給用トナー及びスタート用現像剤に含まれるキャリアの組成は従来より公知のものが使用され、例えば、酸化または未酸化の鉄粉、フェライト等の未被覆キャリア、または鉄、ニッケル、コバルト、フェライト等の磁性体をアクリル系質合体、ファソ樹脂系質合体、ポリエステル等の遺合体で被覆した被覆キャリアがあげられる。キャリアの平均粒径は、一般に15~200μmが好ましく、50~150μmがさらに好ましい。

また、上記補給用トナー及びスタート用現像剤に含まれるトナーは、結婚樹脂中に發色剤等の添加剤が分散された粉体トナーであり、 従来公知の

トナーとキャリアとの混合物)が補給される。 この補給用トナーには消費されたキャリアと同類のキャリアが含まれているので、キャリアがトナーとともに供給されることでキャリアの減少を防ぐことができると共に、現像器内のキャリアに比して高抵抗のキャリアが供給されるため現像器内に存在するキャリアは全体としてその電気抵抗値の低下が防止される。

(発明の好適態様)

本発明の補給用トナーは、トナーにキャリアを添加混合して調製されている。補給用トナーが現像器内へ補給される前の状態では現像器内には、トナーとキャリアとを所定割合で混合して調製されている。補給といるが収容されているが、カーと中の現像によっても、カーと中リアとの平均比率とされている。本発明では、補給用トナーに含まれるキャリアの現像器内に収容されているので別(スタート用現像剤または複写後の現像剤)

-8

ものが使用される。

次に、本発明の現像方法を説明する。

本発明の現像方法は、第1図で示した2成分系の現像剤を用いた磁気ブラン現像法を使用したものであり、詳細は従来の方法に従うことができる。

ここで、補給用トナーに含まれるキャリアの電 気抵抗値 R は、以下の式から求めることができる。 R = W / W' (r - r' (W - W') / W)

但し、R: 補給用トナーに含まれるキャリアの 電気抵抗値 (Ωcm)

> W: 現像剤に含まれるキャリアの設定量 (g)

> r : 現像剤に含まれる + + リアの設定す る電気抵抗値 (Ω cm)

W': 補給用トナーに含まれるキャリア量 (g)

ここで、W' = 7 t

(t:現像剤寿命内での全トナー消費量 (g)、γ:実験による定数)

r ': 初期キャリアの電気抵抗値 (Ω cm) ここで、 r ' = α r ln(t+1)

(α:実験による定数)

なお、上記ι、γ、αは使用する現像装置において、実測によって求めることができる。 これらの実験値を上記式に代入し、またw、 r を所定値に設定しておくことによってキャリアの電気抵抗値 R が求められる。設定値w及び r は、現像器の

-11-

従って、 R = 430/38 (5.4×10-1.2×10⁷ (430-38) /430) $\stackrel{.}{=}$ 4.8×10⁸ (Ωcm)

 $\gamma = 38 / (38 + 1260) \times 100 = 2.9 (\%)$

そして、4.8×10⁸ (Ω cm) のキャリアを作製し、補給用トナー中に2.9%の比率で混合して、これにより同様の耐久テストを行った。その結果、キャリア引きによるキャリア量の減少はなくなり、またキャリアの電気抵抗もほぼ維持され、良好な画質が維持された。

なお、第2図に上記実験例における複写枚数と電気抵抗の変動を示した。図より、本発明によればキ+リアの電気抵抗の低下が防止できることがわかる。

(発明の効果)

本発明の構成は上述の通りであり、現像により 消費されたキャリアを補給することができる上に、 現像器内の現像剤に含まれるキャリアの電気抵抗 値が低下するのを防止することができ、文字潰れ や画像流れ等の画質劣化を解消し、長期間に亘っ て安定した画質を得ることができる。 大きさや現像条件、画像形成回数等の画像形成数 置の仕様によって適宜決定される。

(実験例)

以下、実験例によって本発明を説明するが、本 発明がこれによって限定されるものではない。

現像剤セット量 450g、保証枚数 255 千枚の電子写真復写機において、トナー 渡度 4.5%、キャリア電気抵抗 5.4×10^{7} (Ω cm) の現像剤でトナーのみを補給しながら耐久テストを行ったところ、キャリア抵抗値が 1.2×10^{7} (Ω cm) と低下し、 15 枚当りから文字つぶれ等による画質低下が認められた。また、この時の全トナー消費量は 1260 (g) であり、全キャリア消費量は 138 (g) であった。

次いで、上記耐久テストから得られた結果から、 Rとγを算出した。

 $r = 5.4 \times 10^{7} (\Omega \text{ cm})$ $W = 450 \times (1 - 0.045) = 430 (g)$ W' = 38 (g) $r' = 1.2 \times 10^{7} (\Omega \text{ cm})$ t = 1260 (g)

-12-

4. 図面の簡単な説明

第1 図は磁気ブラシ法による現像機構を示す概略図、第2図は複写枚数とキャリアの電気抵抗の変動を表す図である。

1 … トナー補給ホッパー、5 … 現像器、10… 感光体、a … 現像剤、T … トナー。

以上

出願人 三田工業株式会社 代理人 弁理士 山本秀策

第 1 図

		0.		· ·	
·	i.				