回路講習1

- Altairu
- @Flying___eagle

抵抗器

最も基本的な素子.単位はオーム[Ω]

- 電流の大きさを制限
- 電流を電圧に変換することも

種類

- ☆炭素被膜抵抗 一般的なリード抵抗
- ☆メタルグレース抵抗 一般的なチップ抵抗
- 金属皮膜抵抗 精度・安定性よし
- 酸化金属皮膜抵抗 耐電力大

カラーコードの読み方

カラー	数值	乗数	誤差
黒	0	10^0	-
茶	1	10^1	±1%
赤	2	10^2	±2%
橙	3	10^3	-
黄	4	10^4	-
緑	5	10^5	±0.5%

カラーコードの読み方

カラー	数值	乗数	誤差
青	6	10^6	±0.25%
紫	7	10^7	±0.1%
灰	8	10^8	±0.05%
白	9	10^9	-
金	-	10^-1	±5%
銀	_	10^-2	±10%

コンデンサ

電荷を蓄える素子.単位はファラド[F]

- 交流信号の通過を許可
- 電圧の安定化やフィルタとして使用

種類

- ☆セラミックコンデンサ 小型で高周波特性に優れる
- ☆電解コンデンサ 大容量で極性がある
- フィルムコンデンサ 中高電圧での使用に適する

ダイオード

一方向にのみ電流を流す素子

- 順方向電圧降下がある (シリコン: 約0.7V)
- 整流や電圧保護に使用

種類

- シリコンダイオード 一般的な用途
- ショットキーバリアダイオード スイッチング特性が早い
- ゼナーダイオード 電圧リファレンスとして使用
- LED (発光ダイオード) 光を放出する

トランジスタ,FET

電流を増幅する素子

- ベース,エミッタ,コレクタ (トランジスタ)
- ゲート,ソース,ドレイン (FET)
- 増幅回路やスイッチとして使用

種類

バイポーラトランジスタ (BJT) NPNとPNPタイプ

フィールド効果トランジスタ (FET) 電界効果を利用 (例: MOSFET)

フォトカプラ

光を使い信号を伝達する絶縁デバイス

- 一次側の発光素子から
- 二次側のフォトトランジスタへ

信号伝達

三端子レギュレーター

- 降圧素子
- 端子が3つ (入力・グラウンド・出力)
- 三端子レギュレータは落とした分の 電圧をすべて 熱 として消費

論理回路

論理回路は、デジタル信号を扱う回路で、0と1の二つの状態を持つ信号を処理します。

基本的な論理ゲート

ANDゲート

ORゲート

NOTゲート

NANDゲート

NORゲート

XORゲート

XNORゲート

基本論理ゲートの動作

- ANDゲート
 - -> 入力が全て1の時のみ出力が1
- ORゲート
 - -> 入力のどれかが1の時出力が1
- NOTゲート
 - -> 入力が0の時出力が1、入力が1の時出力が0
- NANDゲート
 - -> ANDゲートの出力を反転

回路講習1スライド.md

- NORゲート-> ORゲートの出力を反転
- XORゲート-> 入力が異なる時出力が
- XNORゲート-> XORゲートの出力を反転

論理ゲートの真理値表

A	В	AND	OR	NOT A	NAND	NOR	XOR	XNOR
0	0	0	0	1	1	1	0	1
0	1	0	1	1	1	0	1	0
1	0	0	1	0	1	0	1	0
1	1	1	1	0	0	0	0	1

74HCxxシリーズ

74HCxxシリーズは、高速CMOSロジックICで、一般的な論理回路を 実装するためのものです。

主なIC

- 74HC00: 4つの2入力NANDゲート
- 74HC02: 4つの2入力NORゲート
- 74HC04: 6つのインバータ(NOTゲート)
- 74HC08: 4つの2入力ANDゲート
- 74HC32: 4つの2入力ORゲート

74HC00のピン配置と機 能

ピン配置

• Vcc: 電源

• GND: 接地

• 各入力と出力ピンが4つのNANDゲ

ートに対応

実際にロボコンで使われている回路を 見てみよう

モタドラとは

マイコンなどの制御 部からの指示を受け ででである。 制御するためのデバイス

AltairMD_V7

回路講習1スライド.md

仕様

- 30V~10V(フォトカプラを変更すると10V以下も可)
- 最大40A

SDs	Ps1	Ps2	出力		
HIGH	LOW	LOW	停止		
HIGH	LOW	HIGH	逆転		
HIGH	HIGH	LOW	正転		
HIGH	HIGH	HIGH	ブレーキ(非推奨)		
LOW	X	X	0		

降圧

三端子レギュレーター

NJM7812SDL1

- 12Vに降圧
- 端子が3つ(入力・グラウンド・出力)
- 三端子レギュレータは落と した分の電圧をすべて熱と して消費

降圧

- ダイオード レギュレータに逆電流が流れるのを 防止
- コンデンサ コンデンサは入力側と出力側に0.1 ~10[uF]程度入れるのが一般的

データシートを読もう!

フォトカプラ

TLP152

• 電源電圧min.: 10V

• 電源電圧max.: 30V

• 出力電流:2A

• 入力電流max.: 20mA

• 上昇応答時間: 95ns

• 下降応答時間:110ns

MOSFET

RSJ400N10

Nch 100V 40A Power MOSFET

- 4V駆動タイプ
- Nチャンネル パワーMOSFET
- 高速スイッチング
- 駆動回路が簡単
- 並列使用が容易

ゲート抵抗は10[Ω]で設定している

ハーフブリッジゲートドライバ

IR2302STRPBF

IR2302STRPBF

• IN端子

ハイサイドMOSFETをONにするか、ローサイドMOSFETをONにするかの切り替えを行う

Hが入力されるとハイサイド、Lが入力されるとローサイドがONとなる

IR2302STRPBF

ハイサイドにNchMOSFETを使うため にブーストラップ回路を使用

- ブートストラップコンデンサの容量 は[10uF]
- ブートストラップダイオード (ファストリカバリダイオード)
- 100%出力は不可 ブートストラップ回路の制約で コンデンサのチャージ時間が必要.

Hブリッジ回路

Ps1	Ps2	Q1	Q2	Q3	Q4	1	2
L	L	Н	Ш	Н	L	open	open
L	Н	Н	Н	L	L	L	Н
Н	L	L	L	Н	Н	Н	L
Н	Н	Н	Н	Н	Н	L	L

電子工作の素を読もう

ここに回路のすべてが!?

とりあえず KiCad は入れときましょう

回路図エディタとPCB設計するための統合開発環境

できれば FlatCAM も

G-code作るソフト

Downloads

Let me have it already!

Latest Release

Releases provide stability. Look for the latest version in the filename in the download list in Bitbucket.

Latest Development

Get the latest development version to access the latest features and fixes, but these are not guaranteed to work at all.

Under any Unix platform:

git clone https://bitbucket.org/jpcgt/flatcam.git

In Windows:

Download the repository zin file from Dithucket

次から実際に設計してみましょう!