

Institut für Stochastik

Prof. Dr. D. Hug · Dr. F. Nestmann

Stochastische Geometrie (SS2019)

Übungsblatt 9

Aufgabe 1 (Der zufällige geometrische Graph)

Es sei $\gamma > 0$ und $\Phi = \sum_{i=1}^{\infty} \delta_{X_i}$ ein Poisson-Prozess auf \mathbb{R}^d mit Intensitätsmaß $\lambda := \gamma \lambda_d$. Weiter sei r > 0 und $G_r(\Phi)$ der zufällige geometrische Graph mit Knotenmenge $\{X_1, X_2, \ldots\}$ und Kantenmenge

$$\{\{X_i, X_j\} : i, j \in \mathbb{N}, i \neq j, ||X_i - X_j|| \le 2r\}.$$

Wir betrachten den Punktprozess der isolierten Knoten in $G_r(\Phi)$, gegeben durch

$$\Phi_1 := \sum_{i=1}^{\infty} \mathbb{1}\{X_i \text{ ist isoliert in } G_r(\Phi)\} \delta_{X_i}.$$

Berechnen Sie das Intensitätsmaß von Φ_1 .

Hinweis: Es gilt die folgende Variante der Mecke-Formel:

Es sei Φ ein Poisson-Prozess auf $\mathbb X$ mit lokal-endlichem Intensitätsmaß Θ . Dann gilt

$$\mathbb{E} \int_{\mathbb{X}} f(x, \Phi \setminus \delta_x) \, \Phi(\mathrm{d}x) = \int_{\mathbb{X}} \mathbb{E} f(x, \Phi) \, \Theta(\mathrm{d}x)$$

für alle messbaren Funktionen $f: \mathbb{X} \times \mathbf{N}(\mathbb{X}) \to [0, \infty]$, wobei für $\mu \in \mathbf{N}(\mathbb{X})$ und $x \in \mathbb{X}$ das Maß $\mu \setminus \delta_x$ durch

$$\mu \setminus \delta_x := \begin{cases} \mu - \delta_x, & \text{falls } \mu \ge \delta_x, \\ \mu, & \text{sonst,} \end{cases}$$

definiert ist.

Aufgabe 2 (Boolesches Modell)

Es sei $Z = \bigcup_{i=1}^{\infty} (X_i + Z_i)$ ein stationäres Boolesches Modell im \mathbb{R}^d mit Intensität γ und einer Kornverteilung \mathbb{Q} , die auf Mengen aus \mathcal{C}^d konzentriert ist, die 0 enthalten. Weiter sei $v_d := \int_{\mathcal{C}^d} \lambda_d(K) \, \mathbb{Q}(\mathrm{d}K) < \infty$. Wir nennen einen Punkt $z \in Z$ sichtbar, falls

$$|\{i \in \mathbb{N} : z \in X_i + Z_i\}| = 1,$$

falls also z in genau einem Partikel des Booleschen Modells enthalten ist. Sei nun

$$\Phi := \sum_{i=1}^{\infty} \delta_{X_i} \mathbb{1}\{X_i \text{ ist sichtbar}\}.$$

Zeigen Sie, dass Φ ein stationärer Punktprozess mit Intensität $\gamma_{\mathbb{Q}} := \gamma e^{-\gamma \mathbb{E}[\lambda_d(Z_1)]}$ ist.

Aufgabe 3 (Innere Volumina der Einheitskugel)

Bestimmen Sie alle inneren Volumina V_j , $j \in \{0, ..., d\}$, der d-dimensionalen Einheitskugel B^d .

Aufgabe 4 (Additivität der inneren Volumina)

(a) Es seien $K, L \in \mathcal{K}^d \setminus \{\emptyset\}$ mit $K \cup L \in \mathcal{K}^d$. Zeigen Sie für $\varepsilon \geq 0$

$$\mathbb{1}_{(K \cup L) + \varepsilon B^d} + \mathbb{1}_{(K \cap L) + \varepsilon B^d} = \mathbb{1}_{K + \varepsilon B^d} + \mathbb{1}_{L + \varepsilon B^d}.$$

(b) Folgern Sie aus (a), dass V_j für $j \in \{0, \dots, d\}$ additiv ist.

Aufgabe 5 (Eine Abschätzung der inneren Volumina)

Die Menge $W \in \mathcal{K}^d$ enthalte eine Kugel mit Radius r, das heißt es gibt ein $x \in \mathbb{R}^d$ und ein r > 0 mit $x + rB^d \subset W$. Zeigen Sie für $j \in \{0, \dots, d-1\}$

$$V_j(W) \le \frac{(2^d - 1)V_d(W)}{\kappa_{d-j}r^{d-j}}.$$