

Invisible Probe: Timing Attacks with PCle Congestion Side-channel

Mingtian Tan*, **Junpeng Wan***, Zhe Zhou† Fudan University {18210240176, 19210240003, zhouzhe}@fudan.edu.cn Zhou Li University of California, Irvine zhou.li@uci.edu

^{*}The first two authors are equally contributed

[†] Zhe Zhou is the corresponding author

De facto protocol to connect CPU and peripheral devices

- De facto protocol to connect CPU and peripheral devices
- Increasing numbers of peripheral devices connects to CPU

- De facto protocol to connect CPU and peripheral devices
- Increasing numbers of peripheral devices connects to CPU
- CPU PCle interfaces increase slower

- De facto protocol to connect CPU and peripheral devices
- Increasing numbers of peripheral devices connects to CPU
- CPU PCle interfaces increase slower

10 Switches to support more PCIe interfaces

10 Switches to support more PCIe interfaces

Platform Controller Hub (PCH)

PCIe Switch

Throughput decrease

- Throughput decrease
- Delays introduced

- Throughput decrease
- Delays introduced
- Secrets leaking! (Side Channel Attack)

- A pair of I/O devices:
 - one for attacker
 - another for victim

- A pair of I/O devices:
 - one for attacker
 - another for victim
- Devices share same I/O switch

- A pair of I/O devices:
 - one for attacker
 - another for victim
- Devices share same I/O switch
- Attacker cannot access victim's data or code directly

- A pair of I/O devices:
 - one for attacker
 - another for victim
- Devices share same I/O switch
- Attacker cannot access victim's data or code directly

Attacker knows when victim is active!

Access data ceaselessly and make congestion

- Access data ceaselessly and make congestion
- Record latency between two operations

- Access data ceaselessly and make congestion
- Record latency between two operations

A higher latency means data is transmitting

• GPU

- password input in monitor
- o render webpages
- o machine Learning models trained

GPU

- password input in monitor
- o render webpages
- o machine Learning models trained
- Ethernet NIC
 - transmit webpages packets
 - SSH passwords or texts

S2 Control NVMe SSD to attack Ethernet NIC

- T1 User-input Inference
- T2 Webpage Inference
- T3 Machine-learning Model Inference

- T1 User-input Inference
- T2 Webpage Inference
- T3 Machine-learning Model Inference

	T1	T2	Т3
S1			
S2			

fudan.edu.cn

image1

image2

image3

fudan.edu.cn image1

image2

image3

fudan.edu.cn
image1

image3

Ethernet

NIC

GPU

Device

using by

Attacker

fudan.edu.cn

image1

image2

image3

fudan.edu.cn

image1

image2

image3

video

fudan.edu.cn

image1

image2

image3

xxxTube.com

video

The actual situation will be more complicated

Machine-learning Model Inference

Machine-learning Model Inference

Data transferred in and out of the GPU

Machine-learning Model Inference

- Data transferred in and out of the GPU
- Different layers transfer different size of data at different frequency

Machine-learning Model Inference

- Data transferred in and out of the GPU
- Different layers transfer different size of data at different frequency
- Delay sequences of models significantly different

- User-input Inference
 - Extract keystrokes from delay sequences
 - Accuracy: above 94% without the caret removal
 - Use HMM(Hidden Markov Model) to recover the password [1]

- User-input Inference
 - Extract keystrokes from delay sequences
 - Accuracy: above 94% without the caret removal
 - Use HMM(Hidden Markov Model) to recover the password [1]
- Webpage Inference
 - Probe 100 webpages, collect delay sequence, and train a classifer (AttBLSTM[2])
 - Accuracy: above 96% in S1, above 93% in S2

- User-input Inference
 - Extract keystrokes from delay sequences
 - Accuracy: above 94% without the caret removal
 - Use HMM(Hidden Markov Model) to recover the password [1]
- Webpage Inference
 - Probe 100 webpages, collect delay sequence, and train a classifer (AttBLSTM[2])
 - Accuracy: above 96% in S1, above 93% in S2
- Machine-learning Model Inference
 - Probe 10 machine-learning models, collect delay sequence, and train the same classifer
 - All the models are correctly classified

Blocking high-resolution clock instructions (e.g. RDTSCP)

- Blocking high-resolution clock instructions (e.g. RDTSCP)
- Detecting suspicious probe requests

- Blocking high-resolution clock instructions (e.g. RDTSCP)
- Detecting suspicious probe requests
- I/O bandwidth allocation

Found a new side-channel attack Based on PCIe congestion

- Found a new side-channel attack Based on PCIe congestion
- Develop two attack strategies:
 - using RDMA NIC to attack GPU
 - using NVMe SSD to attack Ethernet NIC

- Found a new side-channel attack Based on PCIe congestion
- Develop two attack strategies:
 - using RDMA NIC to attack GPU
 - using NVMe SSD to attack Ethernet NIC
- Evaluate them under three tasks:
 - keystroke typing
 - webpage browsing
 - training machine-learning model

Thank you for listening! Questions?

References

- [1] D.X.Song, D.A. Wagner, and X. Tian, "Timing analysis of keystrokes and timing attacks on ssh." in USENIX Security Symposium, vol. 2001, 2001.
- [2] P. Zhou, W. Shi, J. Tian, Z. Qi, B. Li, H. Hao, and B. Xu, "Attention-based bidirectional long short-term memory networks for relation classification," in Proceedings of the 54th annual meeting of the association for computational linguistics (volume 2: Short papers), 2016, pp. 207–212.
- [3] https://hakk.me/windows-secure-boot-process-enumeration-detailed-mechanism-and-overview-a156b57f4f98