МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа №5

по дисциплине: Исследование операций

тема: Двойственный симплекс-метод

Выполнил: ст. группы ПВ-223

Игнатьев Артур

Проверил:

Вирченко Юрий Петрович

Цель работы: изучить элементы теории двойственности, двойственный симплекс-метод для пары симметрично двойственных задач, а так же метод последовательного уточнения оценок.

Задания

- 1. Изучить правило составления двойственных задач, а также формулировки и применения первой, второй и третьей теорем двойственности.
- 2. Изучить двойственный симплекс-метод для симметрично двойственных задач. Составить и отладить программу решения пары симметрично двойственных задач двойственным симплекс-методом.
- 3. Изучить понятие псевдоплана, построение симплекс-таблицы, отвечающей псевдоплану. Освоить метод последовательного уточнения оценок. Составить и отладить программу решения задачи ЛП методом последовательного уточнения оценок.
- 4. Для подготовки тестовых данных решить вручную одну из следующих ниже задач двойственным симплекс-методом для пары симметрично двойственных задач, а также методом последовательного уточнения оценок.

3.

$$z = 2x_1 - 7x_2 - x_3 - 4x_4 \to \max;$$

$$\begin{cases}
-3x_1 + x_2 - 4x_3 + x_4 = 20, \\
2x_1 + 3x_2 + 4x_3 + 2x_4 \ge 32, \\
4x_1 + 5x_2 + 2x_3 - 3x_4 \ge 26, \\
x_i \ge 0 & (i = \overline{1, 4}).
\end{cases}$$

Ручной расчет

Решим прямую задачу линейного программирования двойственным симплексным методом, с использованием симплексной таблицы.

Приведем систему ограничений к системе неравенств смысла ≤, умножив соответствующие строки на (-1).

Определим максимальное значение целевой функции $F(X) = 2x_1-7x_2-x_3-4x_4$ при следующих условиях-ограничений.

$$-3x_1+x_2-4x_3+x_4=20$$

$$-2x_1-3x_2-4x_3-2x_4 \le -32$$

$$-4x_1-5x_2-2x_3+3x_4 \le -26$$

Для построения первого опорного плана систему неравенств приведем к системе уравнений путем введения дополнительных переменных (*переход к канонической форме*).

В 2-м неравенстве смысла (\leq) вводим базисную переменную x_5 . В 3-м неравенстве смысла (\leq) вводим базисную переменную x_6 .

$$-3x_1+x_2-4x_3+x_4=20$$

$$-2x_1-3x_2-4x_3-2x_4+x_5=-32$$

$$-4x_1-5x_2-2x_3+3x_4+x_6=-26$$

Введем *искусственные переменные х*: в 1-м равенстве вводим переменную x_7 ;

$$-3x_1+x_2-4x_3+x_4+x_7=20$$

$$-2x_1-3x_2-4x_3-2x_4+x_5=-32$$

$$-4x_1-5x_2-2x_3+3x_4+x_6 = -26$$

Для постановки задачи на максимум целевую функцию запишем так: $F(X) = 2x_1 - 7x_2 - 1x_3 - 4x_4 - Mx_7 \to \max$

За использование искусственных переменных, вводимых в целевую функцию, накладывается так называемый штраф величиной М, очень большое положительное число, которое обычно не задается.

Полученный базис называется искусственным, а метод решения называется методом искусственного базиса.

Причем искусственные переменные не имеют отношения к содержанию поставленной задачи, однако они позволяют построить стартовую точку, а процесс оптимизации вынуждает эти переменные принимать нулевые значения и обеспечить допустимость оптимального решения.

Из уравнений выражаем искусственные переменные: $x_7 = 20+3x_1-x_2+4x_3-x_4$ которые подставим в целевую функцию:

$$F(X) = 2x_1-7x_2-x_3-4x_4$$
 - $M(20+3x_1-x_2+4x_3-x_4) omes$ max или

$$F(X) = (2-3M)x_1 + (-7+M)x_2 + (-1-4M)x_3 + (-4+M)x_4 + (-20M) \rightarrow \max$$
 Матрица коэффициентов $A = a(ij)$ этой системы уравнений имеет вид:

-3	1	-4	1	0	0	1
-2	-3	-4	-2	1	0	0
-4	-5	-2	3	0	1	0

Базисные переменные это переменные, которые входят только в одно уравнение системы ограничений и притом с единичным коэффициентом.

Экономический смысл дополнительных переменных: дополнительные переменные задачи ЛП обозначают излишки сырья, времени, других ресурсов, остающихся в производстве данного оптимального плана.

Решим систему уравнений относительно базисных переменных: х₇, х₅,

Полагая, что **свободные переменные** равны 0, получим первый опорный план:

$$X0 = (0,0,0,0,-32,-26,20)$$

Базисное решение называется допустимым, если оно неотрицательно.

Базис	В	X ₁	X ₂	X 3	X4	X5	X ₆	X 7
X ₇	20	-3	1	-4	1	0	0	1
X5	-32	-2	-3	-4	-2	1	0	0
X ₆	-26	-4	-5	-2	3	0	1	0
F(X0)	-20M	-2+3M	7-M	1+4M	4-M	0	0	0

1. Проверка критерия оптимальности.

План 0 в симплексной таблице **является псевдопланом**, поэтому определяем ведущие строку и столбец.

2. Определение новой свободной переменной.

Среди отрицательных значений базисных переменных выбираем наибольший по модулю.

Ведущей будет 2-ая строка, а переменную х₅ следует вывести из базиса.

3. Определение новой базисной переменной.

Минимальное значение θ соответствует 4-му столбцу, т.е. переменную x_4 необходимо ввести в базис.

На пересечении ведущих строки и столбца находится разрешающий элемент (РЭ), равный (-2).

Базис	В	x ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X7
X ₇	20	-3	1	-4	1	0	0	1
X ₅	-32	-2	-3	-4	-2	1	0	0
X ₆	-26	-4	-5	-2	3	0	1	0
F(X0)	- 20M	-2+3M	7-M	1+4M	4-M	0	0	0
θ		-2+3M: (- 2)	7-M:(- 3)	1+4M: (- 4)	4-M:(- 2)	-	-	-

4. Пересчет симплекс-таблицы.

Выполняем преобразования симплексной таблицы методом Жордано-Гаусса.

Базис	В	X ₁	X ₂	X3	X4	X5	X ₆	X7
X7	4	-4	-1/2	-6	0	1/2	0	1
X ₄	16	1	3/2	2	1	-1/2	0	0
X ₆	-74	-7	-19/2	-8	0	3/2	1	0
F(X0)	-64-4M	-6+4M	1+M	-7+6M	0	2-M	0	0

Представим расчет каждого элемента в виде таблицы:

В	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇
,	,	,	-4-(-	`	0-	0-	1-
32*1):-2	2*1):-2	3*1):-2	4*1):-2	2*1):-2	(1*1):-2	(0*1):-2	(0*1):-2
-32:-2	-2:-2	-3:-2	-4:-2	-2:-2	1:-2	0:-2	0:-2
-26-(-	-4-(-	-5-(-	-2-(-	3-(-	0-	1-	0-
32*3):-2	2*3):-2	3*3):-2	4*3):-2	2*3):-2	(1*3):-2	(0*3):-2	(0*3):-2
(0)-(-	(-	(1+M)-	(-	(0)-(-	(2-M)-	(0)-	(0)-
32*(0)):	6+4M)	(-	7+6M)	2*(0)):	(1*(0)):	(0*(0)):	(0*(0)):
-2	-(-	3*(0)):	-(-	-2	-2	-2	-2
	2*(0)):	-2	4*(0)):				
	-2		-2				

1. Проверка критерия оптимальности.

План 1 в симплексной таблице **является псевдопланом**, поэтому определяем ведущие строку и столбец.

2. Определение новой свободной переменной.

Среди отрицательных значений базисных переменных выбираем наибольший по модулю.

Ведущей будет 3-ая строка, а переменную х₆ следует вывести из базиса.

3. Определение новой базисной переменной.

Минимальное значение θ соответствует 2-му столбцу, т.е. переменную x_2 необходимо ввести в базис.

На пересечении ведущих строки и столбца находится разрешающий элемент (РЭ), равный ($^{-19}/_2$).

Базис	В	X ₁	X ₂	X ₃	X4	X ₅	X ₆	X7
X ₇	4	-4	-1/2	-6	0	1/2	0	1
X_4	16	1	3/2	2	1	-1/2	0	0
X ₆	-74	-7	-19/2	-8	0	3/2	1	0
F(X0)	-64- 4M	-6+4M	1+M	-7+6M	0	2- M	0	0
θ		-6+4M: (- 7)	1+M: (⁻ 19/ ₂)	-7+6M: (- 8)	-	-	ı	-

4. Пересчет симплекс-таблицы.

Выполняем преобразования симплексной таблицы методом Жордано-Гаусса.

Базис	В	X ₁	X2	X ₃	X4	X5	X ₆	X 7
X 7	150/19	-69/19	0	-106/19	0	8/19	-1/19	1
X ₄	82/19	-2/19	0	14/19	1	-5/19	3/19	0
X ₂	148/19	14/19	1	16/19	0	-3/19	-2/19	0
F(X1)	-1364/ ₁₉ -	-	0	-	0	41/19	$^{2}/_{19}+M$	0
	$^{150}/_{19}M$	$^{128}/_{19}+^{69}/_{19}M$		$^{149}/_{19}+^{106}/_{19}M$		$^{8}/_{19}M$		

Представим расчет каждого элемента в виде таблицы:

В	\mathbf{x}_1	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇
4-(- 74*- 1/ ₂):- 19/ ₂	-4-(-7*- 1/2):-19/2	-1/ ₂ -(- 19/ ₂ *- 1/ ₂):- 19/ ₂	-6-(-8*- 1/2):-19/2	0-(0*- 1/2):- 19/2	1/ ₂ - (³ / ₂ *- 1/ ₂):- 19/ ₂	0-(1*	1-(0*- 1/ ₂):- 19/ ₂
16-(- 74* ³ / ₂): ⁻¹⁹ / ₂	1-(-7* ³ / ₂): ⁻ ¹⁹ / ₂	³ / ₂ -(⁻ ¹⁹ / ₂ * ³ / ₂): ⁻¹⁹ / ₂	2-(-8* ³ / ₂): ⁻ ¹⁹ / ₂	1- $(0*^3/_2$): $^{-19}/_2$	$-\frac{1}{2}$ $(\frac{3}{2}*\frac{3}{2})$ $(\frac{3}{2}*\frac{3}{2})$	$0- (1*^{3}/_{2}) : {}^{-19}/_{2}$	$0 (0*^3/_2)$ $):^{-19}/_2$
-74 : ⁻	-7: ⁻¹⁹ / ₂	-19/ ₂ : -	-8: -19/2	0:-	³ / ₂ : - ¹⁹ / ₂	1:-19/2	0:-
(0)-(- 74*(0)):-19/ ₂	$(^{-})$ $^{128}/_{19}+^{69}/_{19}$ $M)-(7*(0)):^{-19}/_{2}$	(0)-($(^{-})^{149}/_{19} + (^{106}/_{19})$ $M) - (^{-})^{19}/_{2}$	(0)- (0*(0)):-19/ ₂	$(^{41}/_{19}^{-})$ $^{8}/_{19}M)$ - $(^{3}/_{2}*(0))$: $^{-19}/_{2}$	$(^{2}/_{19}+$ $M)$ - $(1*(0))$ $:^{-19}/_{2}$	(0)- (0*(0)):-19/ ₂

В базисном столбце все элементы положительные.

Переходим к основному алгоритму симплекс-метода.

Итерация №0.

1. Проверка критерия оптимальности.

Текущий опорный план неоптимален, так как в индексной строке находятся отрицательные коэффициенты.

2. Определение новой базисной переменной.

В качестве ведущего выберем столбец, соответствующий переменной x_5 , так как это наибольший коэффициент по модулю.

3. Определение новой свободной переменной.

Вычислим значения D_i по строкам как частное от деления: b_i / a_{i5} и из них выберем наименьшее:

min
$$(^{150}/_{19}: ^{8}/_{19}, -, -) = ^{75}/_{4}$$

Следовательно, 1-ая строка является ведущей.

Разрешающий элемент равен $(^{8}/_{19})$ и находится на пересечении ведущего столбца и ведущей строки.

Бази	В	\mathbf{x}_1	X	X3	X	X5	X ₆	X	min
С			2		4			7	
X ₇	150/1	-69/19	0	-106/19	0	8/19	-1/19	1	75/
	9								4
X4	82/19	-2/19	0	14/19	1	-	3/19	0	-
						5/19			
X ₂	148/1	14/19	1	16/19	0	_	-2/19	0	-
	9					3/19			
F(X1	-1364/19	-	0	-	0	41/19-	² / ₁₉ +	0	
)	¹⁵⁰ / ₁₉	$^{128}/_{19}+^{69}/_{19}$		$^{149}/_{19}+^{106}/_{19}$		8/19	M		
	M	M		M		M			

4. Пересчет симплекс-таблицы.

Формируем следующую часть симплексной таблицы. Вместо переменной x_7 в план 1 войдет переменная x_5 .

Строка, соответствующая переменной x_5 в плане 1, получена в результате деления всех элементов строки x_7 плана 0 на разрешающий элемент $PЭ=8/_{19}$. На месте разрешающего элемента получаем 1. В остальных клетках столбца x_5 записываем нули.

Таким образом, в новом плане 1 заполнены строка x_5 и столбец x_5 . Все остальные элементы нового плана 1, включая элементы индексной строки, определяются по правилу прямоугольника.

Для этого выбираем из старого плана четыре числа, которые расположены в вершинах прямоугольника и всегда включают разрешающий элемент РЭ. $H\Theta = C\Theta - (A*B)/P\Theta$

СТЭ - элемент старого плана, РЭ - разрешающий элемент ($^{8}/_{19}$), А и В - элементы старого плана, образующие прямоугольник с элементами СТЭ и РЭ.

Представим расчет каждого элемента в виде таблицы:

В	\mathbf{x}_1	X ₂	X ₃	X4	X5	X ₆	X ₇
150/19:8	-	0:8/19	-	0:8/19	8/19:8/	-	1:8/19
/19	⁶⁹ / ₁₉ : ⁸ / ₁₉		- 106/ ₁₉ : ⁸ / ₁₉		19	¹ / ₁₉ : ⁸ /	
						19	
82/19-	⁻² / ₁₉ -(⁻	0-(0*-	¹⁴ / ₁₉ -(-	1-(0*-	⁻⁵ / ₁₉ -	3/19-(-	0-(1*-
(150/ ₁₉ *-	⁶⁹ / ₁₉ *-	⁵ / ₁₉): ⁸ / ₁	14/ ₁₉ -(- 106/ ₁₉ *- 5/ ₁₉): ⁸ / ₁₉	⁵ / ₁₉): ⁸ / ₁	(8/19*-	1/19*-	⁵ / ₁₉): ⁸ / ₁
⁵ / ₁₉): ⁸ / ₁₉	⁵ / ₁₉): ⁸ / ₁₉	9	⁵ / ₁₉): ⁸ / ₁₉	9	⁵ / ₁₉): ⁸ / ₁	⁵ / ₁₉): ⁸ / ₁	9
					9	9	

148/19-	14/19-(-	1-(0*-	¹⁶ / ₁₉ -(-	0-(0*-	⁻³ / ₁₉ -	⁻² / ₁₉ - (⁻	0-(1*-
(150/19*-	⁶⁹ / ₁₉ *-	³ / ₁₉): ⁸ / ₁	¹⁰⁶ / ₁₉ *-	³ / ₁₉): ⁸ / ₁	(8/19*-	1/19*-	³ / ₁₉): ⁸ / ₁
³ / ₁₉): ⁸ / ₁₉	³ / ₁₉): ⁸ / ₁₉	9	³ / ₁₉): ⁸ / ₁₉	9	³ / ₁₉): ⁸ / ₁	³ / ₁₉): ⁸ / ₁	9
					9	9	
(0)-	(-	(0)-	(-	(0)-	(41/19-	$(^{2}/_{19}+$	(0)-
(150/ ₁₉ *($^{128}/_{19}+^{69}/_{1}$	(0*(41/	$^{149}/_{19}+^{106}/$	(0*(41/	$^{8}/_{19}$ M)-	M)-(⁻	(1*(41/
41/19	9 M)- (-	19	₁₉ M)-(⁻	19	(8/ ₁₉ *(4	¹ / ₁₉ *(⁴¹	19
⁸ / ₁₉ M)):	⁶⁹ / ₁₉ *(⁴¹ / ₁	$^{8}/_{19}M))$	106/ ₁₉ *(41/	$^{8}/_{19}M))$	1/19-	/19-	⁸ / ₁₉ M))
8/19	9	:8/19	19	:8/19	$^{8}/_{19}M))$	$^{8}/_{19}M))$:8/19
	⁸ / ₁₉ M)): ⁸ /		⁸ / ₁₉ M)): ⁸ /		:8/19	:8/19	
	19		19				

Получаем новую симплекс-таблицу:

Базис	В	X ₁	X2	X ₃	X4	X5	X ₆	X7
X ₅	75/4	-69/8	0	-53/4	0	1	-1/8	19/8
X4	37/4	-19/8	0	-11/4	1	0	1/8	5/8
X ₂	43/4	-5/8	1	-5/4	0	0	-1/8	3/8
F(X1)	-449/4	95/8	0	83/4	0	0	3/8	-41/ ₈ +M

1. Проверка критерия оптимальности.

Среди значений индексной строки нет отрицательных. Поэтому эта таблица определяет оптимальный план задачи.

Окончательный вариант симплекс-таблицы:

Базис	В	X ₁	X ₂	X ₃	X4	X5	X ₆	X7
X5	75/4	-69/8	0	-53/4	0	1	-1/8	19/8
X4	37/4	-19/8	0	-11/4	1	0	1/8	5/8
X ₂	43/4	-5/8	1	-5/4	0	0	-1/8	3/8
F(X2)	-449/4	95/8	0	83/4	0	0	3/8	$^{-41}/_{8}+M$

Так как в оптимальном решении отсутствуют искусственные переменные (они равны нулю), то данное решение является допустимым.

Оптимальный план можно записать так:

$$x_1 = 0$$
, $x_2 = {}^{43}/_4$, $x_3 = 0$, $x_4 = {}^{37}/_4$
$$F(X) = 2*0 \cdot 7*^{43}/_4 \cdot 1*0 \cdot 4*^{37}/_4 = {}^{-449}/_4$$

Блок-схемы:

Функция InitTable:

Функция getNegativeBRow

Функция getNegativeBColumn

Функция calculateF

Функция getRelations

Функция getSolve

Функция printTable

Функция printCoef

Функция PrintTask

Функция makeDual

Функция main

Код программы:

```
{\sf import} {\sf numpy} {\sf as} {\sf np} # Импортируем библиотеку {\sf numpy} и используем сокращение
MAX MODE = 'MAX' # Устанавливаем режим 'MAX' в качестве константы для
class SimplexMethod: # Создаем класс SimplexMethod для реализации
        self.main variables count = a.shape[1] # Определяем количество
        for i in range(self.restrictions count): # Проходим по всем
            self.table[i][self.variables count] = b[i] # Заполняем
```

```
abs(self.table[row][-1])): # Если значение b отрицательное и больше
           row = self.get_negative_b_row() # Получаем строку с
           column = self.get negative b column(row) # Получаем столбец
           self.print table() # Выводим таблицу
```

```
q.append(np.inf) # Добавляем бесконечность в список
       q.append(q i if q i >= 0 else np.inf) # Добавляем значение
    y[self.basis[i]] = self.table[i][-1] # Запол
self.print table() # Выводим таблицу
if not self.remove negative b(): # Если не удалось удалить
   self.calculate f() # Вычисляем значения F
```

```
column = (np.argmin if self.mode == MAX MODE else
np.argmax) (self.f[:-1]) # Получаем разрешающий столбец
           q = self.get relations(column) # Получаем симплекс-отношения
           self.gauss(np.argmin(q), column) # Выполняем исключение Гаусса
```

Результат работы программы:

Оптимальный план:

	В	X ₁	X ₂	X ₃	X4	X ₅	X ₆	X ₇
X 5	75/4	-69/8	0	-53/4	0	1	-1/8	19/8
X 4	37/4	-19/8	0	-11/4	1	0	1/8	5/8
X 2	43/4	-5/8	1	-5/4	0	0	-1/8	3/8
F	-449/4	95/8	0	83/4	0	0	3/8	⁻⁴¹ / ₈ +M

Значение целевой функции: -112,25

Вывод: Проведено изучение теории двойственности, основ двойственного симплекс-метода для пары симметрично двойственных задач и метода последовательного уточнения оценок. В процессе стало двойственность важный инструмент линейном что программировании, который помогает использовать данные о прямой задаче для решения её двойственной версии. Двойственный симплексметод - это изменённый симплекс-метод, который применяется для симметрично двойственных задач. Метод последовательного уточнения помогает улучшить точность решения линейного оценок задачи программирования путём поочередного уточнения и улучшения оценок переменных.