CS685: Data Mining Bayesian Classifiers

Arnab Bhattacharya arnabb@cse.iitk.ac.in

Computer Science and Engineering, Indian Institute of Technology, Kanpur http://web.cse.iitk.ac.in/~cs685/

> 1st semester, 2021-22 Mon 1030-1200 (online)

Bayes' Theorem

$$P(C|O) = \frac{P(O|C)P(C)}{P(O)}$$

- P(C|O) is the probability of class C given object O posterior probability
- P(O|C) is the probability that O is from class C likelihood probability
- P(C) is the probability of class C prior probability
- P(O) is the probability of object O evidence probability

$$posterior = \frac{\textit{likelihood} \times \textit{prior}}{\textit{evidence}}$$

- Naïve Bayes classifier or Simple Bayes classifier
- To classify a new object O_q , compute posterior probabilities $P(C_i|O_q)$ for all classes C_i , $i=1,\ldots,k$

$$P(C_i|O_q) = \frac{P(O_q|C_i)P(C_i)}{P(O_q)}$$

 Bayes decision rule: The class with the highest posterior probability is chosen

- Naïve Bayes classifier or Simple Bayes classifier
- To classify a new object O_q , compute posterior probabilities $P(C_i|O_q)$ for all classes C_i , $i=1,\ldots,k$

$$P(C_i|O_q) = \frac{P(O_q|C_i)P(C_i)}{P(O_q)}$$

- Bayes decision rule: The class with the highest posterior probability is chosen
- \bullet $P(O_q)$ is constant for all classes and, therefore, can be removed

- Naïve Bayes classifier or Simple Bayes classifier
- To classify a new object O_q , compute posterior probabilities $P(C_i|O_q)$ for all classes C_i , $i=1,\ldots,k$

$$P(C_i|O_q) = \frac{P(O_q|C_i)P(C_i)}{P(O_q)}$$

- Bayes decision rule: The class with the highest posterior probability is chosen
- ullet $P(O_q)$ is constant for all classes and, therefore, can be removed
- Since it maximizes posterior probability, it is called maximum a posteriori (MAP) method

- Naïve Bayes classifier or Simple Bayes classifier
- To classify a new object O_q , compute posterior probabilities $P(C_i|O_q)$ for all classes C_i , $i=1,\ldots,k$

$$P(C_i|O_q) = \frac{P(O_q|C_i)P(C_i)}{P(O_q)}$$

- Bayes decision rule: The class with the highest posterior probability is chosen
- ullet $P(O_q)$ is constant for all classes and, therefore, can be removed
- Since it maximizes posterior probability, it is called maximum a posteriori (MAP) method
- If priors are unknown or same, this essentially maximizes the likelihood $P(O_q|C_i)$
- This is called maximum likelihood (ML) method

ullet In general, O_q has m features $O_q = \langle O_{q_1}, \ldots, O_{q_m}
angle$

$$P(O_{q}|C_{i}) = P(O_{q_{1}}, O_{q_{2}}, \dots, O_{q_{m}}|C_{i})$$

$$= P(O_{q_{1}}|C_{i}) \times P(O_{q_{2}}, \dots, O_{q_{m}}|O_{q_{1}}, C_{i})$$

$$= P(O_{q_{1}}|C_{i}) \times P(O_{q_{2}}|O_{q_{1}}, C_{i}) \times P(O_{q_{3}}, \dots, O_{q_{m}}|O_{q_{1}}, O_{q_{2}}, C_{i})$$

ullet In general, O_q has m features $O_q = \langle O_{q_1}, \dots, O_{q_m}
angle$

$$P(O_q|C_i) = P(O_{q_1}, O_{q_2}, \dots, O_{q_m}|C_i)$$

$$= P(O_{q_1}|C_i) \times P(O_{q_2}, \dots, O_{q_m}|O_{q_1}, C_i)$$

$$= P(O_{q_1}|C_i) \times P(O_{q_2}|O_{q_1}, C_i) \times P(O_{q_3}, \dots, O_{q_m}|O_{q_1}, O_{q_2}, C_i)$$

• Simple or naïve assumption is now applied: All class conditional probabilities are independent

ullet In general, O_q has m features $O_q = \langle O_{q_1}, \dots, O_{q_m}
angle$

$$P(O_{q}|C_{i}) = P(O_{q_{1}}, O_{q_{2}}, ..., O_{q_{m}}|C_{i})$$

$$= P(O_{q_{1}}|C_{i}) \times P(O_{q_{2}}, ..., O_{q_{m}}|O_{q_{1}}, C_{i})$$

$$= P(O_{q_{1}}|C_{i}) \times P(O_{q_{2}}|O_{q_{1}}, C_{i}) \times P(O_{q_{3}}, ..., O_{q_{m}}|O_{q_{1}}, O_{q_{2}}, C_{i})$$

• Simple or naïve assumption is now applied: All class conditional probabilities are independent

$$P(O_{q_j}, O_{q_k} | C_i) = P(O_{q_j} | C_i) \times P(O_{q_k} | O_{q_j}, C_i)$$

= $P(O_{q_j} | C_i) \times P(O_{q_k} | C_i)$

 $[:: O_{q_j}, O_{q_k}]$ are independent given the class]

ullet In general, O_q has m features $O_q = \langle O_{q_1}, \dots, O_{q_m}
angle$

$$P(O_{q}|C_{i}) = P(O_{q_{1}}, O_{q_{2}}, ..., O_{q_{m}}|C_{i})$$

$$= P(O_{q_{1}}|C_{i}) \times P(O_{q_{2}}, ..., O_{q_{m}}|O_{q_{1}}, C_{i})$$

$$= P(O_{q_{1}}|C_{i}) \times P(O_{q_{2}}|O_{q_{1}}, C_{i}) \times P(O_{q_{3}}, ..., O_{q_{m}}|O_{q_{1}}, O_{q_{2}}, C_{i})$$

• Simple or naïve assumption is now applied: All class conditional probabilities are independent

$$P(O_{q_j}, O_{q_k} | C_i) = P(O_{q_j} | C_i) \times P(O_{q_k} | O_{q_j}, C_i)$$

= $P(O_{q_j} | C_i) \times P(O_{q_k} | C_i)$

[$:: O_{q_i}, O_{q_k}$ are independent given the class]

$$P(O_q|C_i) = P(O_{q_1}|C_i) \times P(O_{q_2}|C_i) \times P(O_{q_3}, \dots, O_{q_m}|O_{q_1}, O_{q_2}, C_i)$$
or,
$$P(O_q|C_i) = P(O_{q_1}, O_{q_2}, \dots, O_{q_m}|C_i) = \prod_{j=1}^m P(O_{q_j}|C_i)$$

• How to estimate $P(O_{q_i}|C_i)$?

- How to estimate $P(O_{q_i}|C_i)$?
- ullet Examine all training objects pertaining to class C_i

- How to estimate $P(O_{q_i}|C_i)$?
- Examine all training objects pertaining to class C_i
- ullet If O_{q_i} is categorical, then relative empirical frequencies are estimates

$$P(O_{q_j} = v | C_i) = \frac{|\{O_k \in C_i : O_{k_j} = v\}|}{|\{O_k \in C_i\}|}$$

• A particular discrete distribution can also be assumed

- How to estimate $P(O_{q_i}|C_i)$?
- Examine all training objects pertaining to class C_i
- ullet If O_{q_i} is categorical, then relative empirical frequencies are estimates

$$P(O_{q_j} = v | C_i) = \frac{|\{O_k \in C_i : O_{k_j} = v\}|}{|\{O_k \in C_i\}|}$$

- A particular discrete distribution can also be assumed
- ullet If O_{q_i} is numerical, then a certain continuous distribution is assumed
- ullet Generally, Gaussian or normal distribution $N(\mu,\sigma)$
- μ and σ are estimated from training objects in C_i

$$P(O_{q_j} = v | C_i) = N(v; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(v-\mu)^2}{2\sigma^2}}$$

- How to estimate $P(O_{q_i}|C_i)$?
- Examine all training objects pertaining to class C_i
- ullet If O_{q_i} is categorical, then relative empirical frequencies are estimates

$$P(O_{q_j} = v | C_i) = \frac{|\{O_k \in C_i : O_{k_j} = v\}|}{|\{O_k \in C_i\}|}$$

- A particular discrete distribution can also be assumed
- If O_{q_i} is numerical, then a certain continuous distribution is assumed
- ullet Generally, Gaussian or normal distribution $N(\mu,\sigma)$
- μ and σ are estimated from training objects in C_i

$$P(O_{q_j} = v | C_i) = N(v; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(v-\mu)^2}{2\sigma^2}}$$

• $P(C_i)$ is just the empirical estimate $|C_i|/|D|$

Example: Training

Class	Rank	Motivated	Exam marks	
	2	Y	78.3	
Successful	99	Y	70.3	
(S)	5	N	88.5	
	87	Y	75.1	
	1	N	76.3	
Unsuccessful	90	N	66.2	
(U)	9	Y	68.1	
	62	N	75.4	

Example: Training

Class	Rank	Motivated	Exam marks	
	2	Y	78.3	
Successful	99	Y	70.3	
(S)	5	N	88.5	
	87	Y	75.1	
	1	N	76.3	
Unsuccessful	90	N	66.2	
(U)	9	Y	68.1	
	62	N	75.4	

Likelihoods

Class	Rank	Motivated	Exam marks	
S	$\mu = 48.25$		$\mu = 78.05$	
3	$\sigma = 51.92$	P(N) = 0.25	$\sigma = 7.70$	
U	$\mu = 40.50$	P(Y) = 0.25	$\mu = 71.50$	
U	$\sigma = 42.68$	P(N) = 0.75	$\sigma = 5.10$	

Example: Testing

• $O_q = (70, Y, 67.3)$

Example: Testing

• $O_q = (70, Y, 67.3)$

$$P(S|O_q) \propto P(70|S) \times P(Y|S) \times P(67.3|S) \times P(S)$$

$$= N(70; 48.25, 51.92) \times 0.75 \times N(67.3; 78.05, 7.70) \times 0.5$$

$$= 0.00704 \times 0.75 \times 0.0195 \times 0.5$$

$$= 5.16 \times 10^{-5}$$

$$P(U|O_q) \propto P(70|U) \times P(Y|U) \times P(67.3|U) \times P(U)$$

$$= N(70; 40.50, 42.68) \times 0.25 \times N(67.3; 71.50, 5.10) \times 0.5$$

$$= 0.00736 \times 0.25 \times 0.0597 \times 0.5$$

$$= 5.49 \times 10^{-5}$$

• Therefore, O_q is from class U

- If an estimated probability $P(O_{q_j}|C_i)$ becomes zero, the whole likelihood becomes zero
- ullet Laplacian correction or Laplacian estimation: Add a small ϵ

- If an estimated probability $P(O_{q_j}|C_i)$ becomes zero, the whole likelihood becomes zero
- ullet Laplacian correction or Laplacian estimation: Add a small ϵ
- Advantages

- If an estimated probability $P(O_{q_j}|C_i)$ becomes zero, the whole likelihood becomes zero
- ullet Laplacian correction or Laplacian estimation: Add a small ϵ
- Advantages
 - Incremental

- If an estimated probability $P(O_{q_j}|C_i)$ becomes zero, the whole likelihood becomes zero
- ullet Laplacian correction or Laplacian estimation: Add a small ϵ
- Advantages
 - Incremental
 - Robust to noise

- If an estimated probability $P(O_{q_j}|C_i)$ becomes zero, the whole likelihood becomes zero
- ullet Laplacian correction or Laplacian estimation: Add a small ϵ
- Advantages
 - Incremental
 - Robust to noise as probability of noise is low

- If an estimated probability $P(O_{q_j}|C_i)$ becomes zero, the whole likelihood becomes zero
- ullet Laplacian correction or Laplacian estimation: Add a small ϵ
- Advantages
 - Incremental
 - Robust to noise as probability of noise is low
 - Robust to irrelevant attributes

- If an estimated probability $P(O_{q_j}|C_i)$ becomes zero, the whole likelihood becomes zero
- ullet Laplacian correction or Laplacian estimation: Add a small ϵ
- Advantages
 - Incremental
 - Robust to noise as probability of noise is low
 - Robust to irrelevant attributes as their probability tends to be uniform across classes
- Disadvantages

- If an estimated probability $P(O_{q_j}|C_i)$ becomes zero, the whole likelihood becomes zero
- ullet Laplacian correction or Laplacian estimation: Add a small ϵ
- Advantages
 - Incremental
 - Robust to noise as probability of noise is low
 - Robust to irrelevant attributes as their probability tends to be uniform across classes
- Disadvantages
 - Treats attributes as independent and ignores any correlation information
 - Two redundant attributes contribute twice the weight

Bayesian Networks

- Bayesian networks or Bayesian belief networks or Bayes nets or belief nets
- Takes into account the correlations of attributes by modeling them as conditional probabilities
- Forms a directed acyclic graph (DAG)
- Edges model the dependencies
- Parent is the cause and children are the effects

Bayesian Networks

- Bayesian networks or Bayesian belief networks or Bayes nets or belief nets
- Takes into account the correlations of attributes by modeling them as conditional probabilities
- Forms a directed acyclic graph (DAG)
- Edges model the dependencies
- Parent is the cause and children are the effects
- A node is conditionally independent of all its non-descendants given its parents
- For every node, there is a conditional probability table (CPT) that describes its values given its parents' values
- CPT for node X is of the form P(X|parents(X))

- CPTs: rows are values; columns are parents (i.e., conditionals)
- Last rows can be inferred, and therefore, omitted

- CPTs: rows are values; columns are parents (i.e., conditionals)
- Last rows can be inferred, and therefore, omitted

Exercise (E)	Ф
regular (r)	0.70
irregular (i)	0.30

- CPTs: rows are values; columns are parents (i.e., conditionals)
- Last rows can be inferred, and therefore, omitted

Exercise (E)	Ф
regular (r)	0.70
irregular (i)	0.30

Diet (D)	Ф
healthy (h)	0.25
unhealthy (u)	0.75

- CPTs: rows are values; columns are parents (i.e., conditionals)
- Last rows can be inferred, and therefore, omitted

Exercise (E)	Ф	
regular (r)	0.70	
irregular (i)	0.30	ι

Diet (D)	Ф
healthy (h)	0.25
unhealthy (u)	0.75

Heart disease (H)	E=r, D=h	E=r, $D=u$	E=i, D=h	E=i, $D=u$
yes (y)	0.25	0.40	0.55	0.80
no (n)	0.75	0.60	0.45	0.20

- CPTs: rows are values; columns are parents (i.e., conditionals)
- Last rows can be inferred, and therefore, omitted

Exercise (E)	Φ	
regular (r)	0.70	
irregular (i)	0.30	

Diet (D)	Ф
healthy (h)	0.25
unhealthy (u)	0.75

Heart disease (H)	E=r, D=h	E=r, D=u	E=i, D=h	E=i, D=u
yes (y)	0.25	0.40	0.55	0.80
no (n)	0.75	0.60	0.45	0.20

Blood pressure (B)	H=y	H=n
normal (I)	0.15	0.80
high (g)	0.85	0.20

• CPTs: rows are values; columns are parents (i.e., conditionals)

0.70

Last rows can be inferred, and therefore, omitted

Exercise (E)

regular (r)

	irregula	r (i)	0.30		u	nhealth	ıy (u)	0.75	5	
Heart disease (H)		E=r, D=h		E=r, D=u		E=i, D=h		E=i, D=u		
yes (y)	0.25		0.	40	0.55		0.80		
no (r	ı)	0.75		0.60		0.45		0.20		
Blood pres	sure (B)	Н=у	/ H=	H=n		Chest	st pain (C)		Н=у	H=n
norma	l (l)	0.15	3.0	.80		normal (m))	0.70	0.45
high	(g)	0.85	0.2	.20 pa		pain (p)		0.30	0.55	

Diet (D)

healthy (h)

Φ

0.25

Classification using Bayesian Networks

- Given no prior information, is a person suffering from heart disease?
- Essentially, a yes/no classification problem with some information
- Note that no other information (e.g., chest pain, etc.) are known
- Compute P(H = y); if it is greater than P(H = n), then predict "heart disease"

Classification using Bayesian Networks

- Given no prior information, is a person suffering from heart disease?
- Essentially, a yes/no classification problem with some information
- Note that no other information (e.g., chest pain, etc.) are known
- Compute P(H = y); if it is greater than P(H = n), then predict "heart disease"

$$P(H = y) = \sum_{\alpha,\beta} [P(H = y | E = \alpha, D = \beta).P(E = \alpha, D = \beta)]$$

$$= \sum_{\alpha,\beta} [P(H = y | E = \alpha, D = \beta).P(E = \alpha).P(D = \beta)]$$

$$= 0.25 \times 0.70 \times 0.25 + 0.40 \times 0.70 \times 0.75$$

$$+ 0.55 \times 0.30 \times 0.25 + 0.80 \times 0.30 \times 0.75$$

$$= 0.475$$

- Given a person has high blood pressure, is she suffering from heart disease?
- Essentially, a yes/no classification problem with some information
- Note that not all information (e.g., chest pain, etc.) are known
- Compute P(H = y | B = g); if it is greater than P(H = n | B = g), then predict "heart disease"

- Given a person has high blood pressure, is she suffering from heart disease?
- Essentially, a yes/no classification problem with some information
- Note that not all information (e.g., chest pain, etc.) are known
- Compute P(H = y | B = g); if it is greater than P(H = n | B = g), then predict "heart disease"

$$P(H = y | B = g) = \frac{P(B = g | H = y).P(H = y)}{P(B = g)}$$

$$= \frac{P(B = g | H = y).P(H = y)}{\sum_{\alpha} [P(B = g | H = \alpha).P(H = \alpha)]}$$

$$= \frac{0.85 \times 0.475}{0.85 \times 0.475 + 0.20 \times 0.525}$$

$$= 0.794$$

- Given a person has high blood pressure, unhealthy diet and irregular exercise, is she suffering from heart disease?
- Essentially, a yes/no classification problem with some information
- Note that not all information (e.g., chest pain, etc.) are known
- Compute P(H = y | B = g, D = u, E = i); if it is greater than P(H = n | B = g, D = u, E = i), then predict "heart disease"

- Given a person has high blood pressure, unhealthy diet and irregular exercise, is she suffering from heart disease?
- Essentially, a yes/no classification problem with some information
- Note that not all information (e.g., chest pain, etc.) are known
- Compute P(H = y | B = g, D = u, E = i); if it is greater than P(H = n | B = g, D = u, E = i), then predict "heart disease"

$$P(H = y | B = g, D = u, E = i)$$

$$= \frac{P(B = g | H = y, D = u, E = i).P(H = y | D = u, E = i)}{P(B = g | D = u, E = i)}$$

$$= \frac{P(B = g | H = y).P(H = y | D = u, E = i)}{\sum_{\alpha} [P(B = g | H = \alpha).P(H = \alpha | D = u, E = i)]}$$

$$= \frac{0.85 \times 0.80}{0.85 \times 0.80 + 0.20 \times 0.20}$$

$$= 0.944$$

Two important steps

- Two important steps
- Learning the network topology
 - Which edges are present?

- Two important steps
- Learning the network topology
 - Which edges are present?
 - Domain knowledge from human experts

- Two important steps
- Learning the network topology
 - Which edges are present?
 - Domain knowledge from human experts
- Learning the CPTs

- Two important steps
- Learning the network topology
 - Which edges are present?
 - Domain knowledge from human experts
- Learning the CPTs
 - Same method as naïve Bayes
 - Empirical probabilities
 - If not categorical, use Gaussian

Models reality better

- Models reality better
- Dependence or correlation does not indicate which is cause and which is effect

- Models reality better
- Dependence or correlation does not indicate which is cause and which is effect

- Models reality better
- Dependence or correlation does not indicate which is cause and which is effect

Topology of network is very important

- Models reality better
- Dependence or correlation does not indicate which is cause and which is effect

- Topology of network is very important
- For large CPTs, require lots of training data

- Models reality better
- Dependence or correlation does not indicate which is cause and which is effect

- Topology of network is very important
- For large CPTs, require lots of training data
- Naïve Bayes is a special case

- Models reality better
- Dependence or correlation does not indicate which is cause and which is effect

- Topology of network is very important
- For large CPTs, require lots of training data
- Naïve Bayes is a special case
 - Class is parent and attributes are children

