

Template LaTex

Département : XXX Unité d'enseignement : XXX

Auteur: XXX XXXX

Professeur : XXXXX Assistant : XXXXX

 $\begin{array}{ll} {\rm Classe:} & {\rm XXXXX} \\ {\rm Salle\;du\;labo:} & {\rm XXX} \end{array}$

Date: 12 février 2015

Table des matières

1	Introduction	3
2	Section 2.1 sous section	3 3
3	Section 2 3.1 sous section 2	3
4	Conclusion	4
5	Annexes 5.1 code source filtrage.m	5 5

- 1 Introduction
- 2 Section
- 2.1 sous section

Dans l'équation 2.1.

$$x(t) = \frac{\sin(\omega_y \cdot t + \phi)}{t} \tag{2.1}$$

- 3 Section 2
- 3.1 sous section 2

4 Conclusion

XXXXXXX, 12 février 2015

Signature:

XXX XXXX

5 Annexes

5.1 code source filtrage.m

```
1 %% nettoyage
2 close all; clear; clc;
4 %% paramètre
_{5} fe = 12000;
_6 h = 1/fe;
7 \mid \text{Tmv} = 1.6e-3;
9 | fig = 0;
10 %% chargement
11 data = load('comparaison_omega_omegaf_avecSinus.dat');
omega = data(:,3);
14 omegaf = data(:,5);
16 N = length(omega);
17 t = linspace(0,N/fe,N)*1000;
18 %% filtrage theorique
|b| = [(1 - \exp(-h/Tmv))];
21 a = [1, (-exp(-h/Tmv))];
omegaf_theo = filter(b,a,omega);
24 %% Affichage
25 fig = fig +1;
26 figure(fig);
27 plot(t,[omega,omegaf,omegaf_theo]);
28 xlabel('t [ms]');
ylabel('\omega [rad/s]');
30 legend('omega', 'omegaf mesuré', 'omegaf théo');
31 grid on;
32 axis tight;
```