Inference

David L Miller

What do we want to know?

- Don't just fit models for the sake of it!
- What are our questions?
 - Relationship to covariates
 - Abundance
 - Distribution
 - Response to disturbance
 - Temporal changes
 - Other stuff?

Prediction

What is a prediction?

- Evaluate the model, at a particular covariate combination
- Answering (e.g.) the question "at a given depth, how many dolphins?"
- Steps:
 - 1. evaluate the s(...) terms
 - 2. move to the response scale (exponentiate? Do nothing?)
 - 3. (multiply any offset etc)

Example of prediction

- in maths:
 - Model: count_i = $A_i \exp(\beta_0 + s(x_i, y_i) + s(Depth_i))$
 - \blacksquare Drop in the values of x, y, Depth (and A)
- in R:
 - build a data. frame with x, y, Depth, A
 - usepredict()

```
preds <- predict(my_model, newdat=my_data, type="response")</pre>
```

(se.fit=TRUE gives a standard error for each prediction)

Back to the dolphins...

Where are the dolphins?

(ggplot2 code included in the slide source)

Prediction summary

- Evaluate the fitted model at a given point
- Can evaluate many at once (data.frame)
- Don't forget the type=... argument!
- Obtain per-prediction standard error with se.fit

Without uncertainty, we're not doing statistics

Where does uncertainty come from?

- β : uncertainty in the spline parameters
- λ : uncertainty in the smoothing parameter
- (Traditionally we've only addressed the former)
- (New tools let us address the latter...)

Parameter uncertainty

From theory:

$$\beta \sim N(\hat{\beta}, V_{\beta})$$

(caveat: the normality is only approximate for non-normal response)

What does this mean? Variance for each parameter.

In mgcv: vcov(model) returns V_{β} .

What can we do this this?

- confidence intervals in plot
- standard errors using se.fit
- derived quantities? (see bibliography)

The Ipmatrix, magic, etc

For regular predictions:

$$\hat{\boldsymbol{\eta}}_{p} = L_{p}\hat{\boldsymbol{\beta}}$$

form L_p using the prediction data, evaluating basis functions as we go.

(Need to apply the link function to $\hat{oldsymbol{\eta}}_{
m p}$)

But the L_p fun doesn't stop there...

[[mathematics intensifies]]

Variance and Ipmatrix

To get variance on the scale of the linear predictor:

$$V_{\hat{\boldsymbol{\eta}}} = L_p^T V_{\hat{\boldsymbol{\beta}}} L_p$$

pre-/post-multiplication shifts the variance matrix from parameter space to linear predictor-space.

(Can then pre-/post-multiply by derivatives of the link to put variance on response scale)

Simulating parameters

• β has a distribution, we can simulate

Uncertainty in smoothing parameter

- Recent work by Simon Wood
- "smoothing parameter uncertainty corrected" version of $V_{\stackrel{\wedge}{\beta}}$
- In a fitted model, we have:
 - \$Vp what we got with vcov
 - \$Vc the corrected version

Variance summary

- Everything comes from variance of parameters
- Need to re-project/scale them to get the quantities we need
- mgcv does most of the hard work for us
- Fancy stuff possible with a little maths
- Can include uncertainty in the smoothing parameter too

Summary

- predict is your friend
- Most stuff comes down to matrix algebra, that mgcv sheilds you from
 - To do fancy stuff, get inside the matrices