

Characteristics of undulatory locomotion in granular media

Zhiwei Peng and Gwynn J. Elfring University of British Columbia

On Shun Pak
Santa Clara University

APS DFD November 23, 2015

Undulatory locomotion

Friedrich, B. M., et al., J. Exp. Biol. 213, 1226–1234 (2010)

Dorgan, K. M., Law, C. J., Rouse, G. W., Proc. R. Soc. B 280(1757), 20122948.

© CC BY-SA 4.0

© CC BY-SA 4.0

Maladen, Ryan D., et al., Science 325.5938 (2009): 314-318.

Granular media

- Conglomeration of discrete macroscopic particles
- Fluid-like & solid-like
- Anisotropic response to intrusion
- Volume fraction: 0.58 (LP) 0.62 (CP)

Assumptions:

- dry GM
- slow motion: inertialess

© CC BY-SA 3.0

How to characterize particle-body/particle-particle interaction?

Slender body dynamics

Localized interaction

 Force measurements (Goldman's group)

Maladen, Ryan D., et al., Science 325.5938 (2009): 314-318.

$$f_{\parallel}$$
 f_{\perp}

$$f_{\parallel} = C_{\parallel} \cos \psi$$

$$f_{\perp} = C_{\perp}(\psi) \sin \psi$$

$$C_{\perp}(\psi) > C_{\parallel}$$

Infinite swimmer

- Infinitely many number of sinusoidal waves
- 1D force balance

Optimal deformation?

• Finite-size effect?

Swimmer model

- Prescribed planar waveform
- Nonlinear resistive force theory

$$\mathbf{f} = -C_{\parallel} \hat{\mathbf{u}} \cdot \mathbf{t} \mathbf{t} - C_{\perp}(\psi) \left(\hat{\mathbf{u}} - \hat{\mathbf{u}} \cdot \mathbf{t} \mathbf{t} \right)$$

• Force-free and torque-free: $\int_0^L \mathbf{f} ds = \mathbf{0}$, $\int_0^L \mathbf{x}(s,t) \times \mathbf{f} ds = \mathbf{0}$

Optimal swimming

Optimal shape: sawtooth

$$\eta = \frac{C_{\parallel} L U}{\left\langle \int_0^L \mathbf{f} \cdot \mathbf{u} \mathrm{d}s \right\rangle}$$

Local optimality

- low energy expenditure
- high propulsive force

Sawtooth: global extension of a local optimum

Finite sinusoidal swimmers

Symmetry

$$\mathbf{u}
ightarrow -\mathbf{u} \hspace{0.2cm} \Longrightarrow \hspace{0.2cm} \mathbf{f}
ightarrow -\mathbf{f}$$

Koehler, S., Spoor, T., & Tilley, B. S. (2012). Phys. Fluids, 24(9), 091901.

Swimming characteristics

Reorientation

Direction of swimming

Pitching

Diminishes performance

Swimming efficiency

Conclusion

1. Sandfish swimming in nature is closely tuned for optimality

- 2. Distinct similarity: GM & Newtonian
- Local resistive force theory
- Kinematic reversibility

3. Rich dynamics: the effective design of artificial swimmers