ACT-11302: Cálculo Actuarial III

ITAM

Frecuencia de siniestros (Distribuciones $(\alpha, \beta, 0)$)

Prof: Juan Carlos Martínez Ovando

29 de septiembre de 2015

En esta sesión, revisaremos la definición y propiedades de una familia de distribuciones discretas que engloba las duatro distribuciones paramétricas que revisamos la sesión anterior. Esta familia de distribuciones se denota como $(\alpha, \beta, 0)$

Definición. Una variable aleatoria discreta no negativa, X, sigue una distribución $(\alpha, \beta, 0)$ si la función de masa de probabilidades puede escribirse como:

$$p_X(x) = \left(\alpha + \frac{\beta}{x}\right) p_X(x-1),\tag{1}$$

para x en $\mathcal{X} = \{1, 2, \ldots\}$.

Los parámetros, α y β son constantes y $p_X(0)$ es fijo y dado.

El uso de las distribuciones $(\alpha, \beta, 0)$ en estadística actuarial proviene de la naturaleza recursiva de a distribución de masa de probabilidades. Esta propiedad recursiva es útil cuando se emplean ciertas fórmulas recursivas para calcular la distribución del monto agregado de siniestros.

Ejemplo: Distribución binomial. La expresión recursiva de la distribución binomial, $Bin(n, \theta)$, como caso particular de la distribución $(\alpha, \beta, 0)$ está dada con

$$\alpha = -\frac{\theta}{1-\theta}.$$

$$\beta = -\frac{\theta(n+1)}{(1-\theta)}.$$

Definición. Una variable aleatoria discreta no negativa, X, sigue una distribución $(\alpha, \beta, 1)$ si la

Frecuencia de siniestros 2

función de masa de probabilidades puede escribirse como:

$$p_X(x) = \left(\alpha + \frac{\beta}{x}\right) p_X(x-1),\tag{2}$$

para x en $\mathcal{X} = \{2, 3, ...\}$. Aquí, $p_X(0)$ debe estar dado.

A partir de una distribución $(\alpha, \beta, 0)$, es posible definir una distribución con soporte en $\mathscr{X} = \{1,2,\}$ mediante un ejercicio de truncamiento. La distribución resultante se conoce como una distribución modificada en 0.

Definición. Una variable aleatoria discreta no negativa, X, con soporte en $\mathscr{X} = \{0, 1, ...\}$ y distribución $(\alpha, \beta, 0)$ tiene sigue una modificación en 0 si,

$$p_X^M(x) = \gamma p_X(x),\tag{3}$$

para x en $\mathscr{X}^M=\{1,2,3,\ldots\}$. Aquí, γ es una constante de modificación, definida para garantizar que p_X^M sea una medida de probabilidad propia en el soporte modificado \mathscr{X}^M .

Así, la constante de modificación está dada por

$$\gamma = \frac{1 - p_X^M(0)}{1 - p_X(0)}. (4)$$