The Gamma Function*

Definition:
$$\Gamma(n) = \int_0^\infty t^{n-1} e^{-t} dt$$
 $n > 0$
Recursion Formula: $\Gamma(n+1) = n\Gamma(n)$

$$\Gamma(n+1) = n!$$
, if $n = 0, 1, 2, ...$ where $0! = 1$

For n < 0 the gamma function can be defined by using

$$\Gamma(n) = \frac{\Gamma(n+1)}{n}$$

* From Beyer, W. H., Ed., CRC Handbook of Mathematical Sciences, 5th ed., CRC Press, Boca Raton, 1978, 484–485. With permission.

$$\Gamma(n) = \frac{\Gamma(n+1)}{n}$$

Graph:

Special Values:

$$\Gamma(\frac{1}{2}) = \sqrt{\pi}$$

$$\Gamma(m + \frac{1}{2}) = \frac{1 \cdot 3 \cdot 5 \cdots (2m - 1)}{2^m} \sqrt{\pi} \qquad m = 1, 2, 3, \dots$$

$$\Gamma(-m + \frac{1}{2}) = \frac{(-1)^m 2^m \sqrt{\pi}}{1 \cdot 3 \cdot 5 \cdots (2m - 1)} \qquad m = 1, 2, 3, \dots$$

Definition:

$$\Gamma(x+1) = \lim_{k \to \infty} \frac{1 \cdot 2 \cdot 3 \cdots k}{(x+1)(x+2)\cdots(x+k)} k^x$$
$$\frac{1}{\Gamma(x)} = xe^{\gamma x} \prod_{m=1}^{\infty} \left\{ \left(1 + \frac{x}{m}\right)e^{-x/m} \right\}$$

This is an infinite product representation for the gamma function where γ is Euler's constant.

Properties:

$$\Gamma'(1) = \int_0^\infty e^{\gamma x} \ln x \, dx = -\gamma$$

$$\frac{\Gamma'(x)}{\Gamma(x)} = -\gamma + \left(\frac{1}{1} - \frac{1}{x}\right) + \left(\frac{1}{2} - \frac{1}{x+1}\right) + \dots + \left(\frac{1}{n} - \frac{1}{x+n-1}\right) + \dots$$

$$\Gamma(x+1) = \sqrt{2\pi x} \, x^x e^{-x} \left\{ 1 + \frac{1}{12x} + \frac{1}{288x^2} - \frac{139}{51,840x^3} + \dots \right\}$$

This is called Stirling's asymptotic series.

If we let x = n a positive integer, then a useful approximation for n! where n is large (e.g., n > 10) is given by Stirling's formula

$$n! \approx \sqrt{2\pi n} \, n^n e^{-n}$$

The Gamma Function*

Values of $\Gamma(n) = \int_0^\infty e^{-x} x^{n-1} dx$; $\Gamma(n+1) = n\Gamma(n)$							
n	$\Gamma(n)$	n	$\Gamma(n)$	n	$\Gamma(n)$	n	$\Gamma(n)$
1.00	1.00000	1.25	0.90640	1.50	.88623	1.75	.91906
1.01	.99433	1.26	.90440	1.51	.88659	1.76	.92137
1.02	.98884	1.27	.90250	1.52	.88704	1.77	.92376
1.03	.98355	1.28	.90072	1.53	.88757	1.78	.92623
1.04	.97844	1.29	.89904	1.54	.88818	1.79	.92877
1.05	.97350	1.30	.89747	1.55	.88887	1.80	.93138
1.06	.96874	1.31	.89600	1.56	.88964	1.81	.93408
1.07	.96415	1.32	.89464	1.57	.89049	1.82	.93685
1.08	.95973	1.33	.89338	1.58	.89142	1.83	.93969
1.09	.95546	1.34	.89222	1.59	.89243	1.84	.94261
1.10	.95135	1.35	.89115	1.60	.89352	1.85	.94561
1.11	.94740	1.36	.89018	1.61	.89468	1.86	.94869
1.12	.94359	1.37	.88931	1.62	.89592	1.87	.95184
1.13	.93993	1.38	.88854	1.63	.89724	1.88	.95507
1.14	.93642	1.39	.88785	1.64	.89864	1.89	.95838
1.15	.93304	1.40	.88726	1.65	.90012	1.90	.96177
1.16	.92980	1.41	.88676	1.66	.90167	1.91	.96523
1.17	.92670	1.42	.88636	1.67	.90330	1.92	.96877
1.18	.92373	1.43	.88604	1.68	.90500	1.93	.97240
1.19	.92089	1.44	.88581	1.69	.90678	1.94	.97610
1.20	.91817	1.45	.88566	1.70	.90864	1.95	.97988
1.21	.91558	1.46	.88560	1.71	.91057	1.96	.98374
1.22	.91311	1.47	.88563	1.72	.91258	1.97	.98768
1.23	.91075	1.48	.88575	1.73	.91466	1.98	.99171
1.24	.90852	1.49	.88595	1.74	.91683	1.99	.99581
						2.00	1.00000

* For large positive values of
$$x$$
, $\Gamma(x)$ approximates Stirling's asymptotic series
$$x^x e^{-x} \sqrt{\frac{2\pi}{x}} \left[1 + \frac{1}{12x} + \frac{1}{288x^2} - \frac{139}{51840x^3} - \frac{571}{2488320x^4} + \cdots \right]$$