SfePy Documentation

May 12, 2009

Contents

1	Notation	3
2	List of all terms	4
3	Introduction 3.1 Term call syntax	5
4	Terms in termsMass 4.1 dw_mass dw_mass 4.2 dw_mass_scalar dw_mass_scalar_fine_coarse 4.4 dw_mass_scalar_variable dw_mass_vector 4.5 dw_surface_mass_scalar dw_surface_mass_scalar	6 6 6 7 7
5	Terms in termsElectric 5.1 dw_electric_source	7
6	Terms in termsLaplace 6.1 de_diffusion_velocity 6.2 dw_diffusion 6.3 dw_laplace 6.4 dw_permeability_r 6.5 dw_permeability_r	7 7 8 8 8
7	Terms in termsNavierStokes 7.1 dq_grad	8 9 9 9 9 9 10 10 10
8		10

9	Terms in termsHyperElasticity	11
	0.1 dw_tl_bulk_penalty	11
	0.2 dw_tl_he_mooney_rivlin	11
	0.3 dw_tl_he_neohook	11
10	Terms in termsPoint	11
	0.1 dw_point_lspring	11
	on an-point-opting	
11	Terms in termsVolume	11
	1.1 dw_volume_lvf	11
12	Terms in termsSurface	12
	2.1 dw_jump	12
	2.2 dw_surface_ltr	12
13	Terms in termsBasic	12
	3.1 d_surface_dot	12
	3.2 d_surface_integrate	12
	3.3 d_volume	12
	3.4 d_volume_dot	12
	3.5 de_average_variable	13
	3.6 de_volume_average_mat	13
	3.7 di_volume_integrate	13
	3.8 di_volume_integrate_mat	13
	3.9 dw_surface_integrate	14
	3.10dw_volume_integrate	14
	3.11dw_volume_wdot	14
	3.12dw_volume_wdot_scalar_th	14
14	Terms in termsLinElasticity	15
	4.1 de_cauchy_strain	15
	4.2 de_cauchy_stress	15
	4.3 dw_lin_elastic	15
	4.4 dw_lin_elastic_iso	15
	4.5 dw_lin_elastic_th	15
15	Terms in termsBiot	16
	5.1 dw_biot	
	5.2 dw_biot_th	16
16	Term caches in cachesFiniteStrain	16
	6.1 finite_strain_tl	16
17	Term caches in cachesBasic	16
	7.1 cauchy_strain	16
	7.2 div_vector	16
	7.3 grad_scalar	17
	7.4 grad_vector	17
	7.5 mat_in_qp	17
	7.6 state_in_surface_qp	17
	7.7 state_in_volume_qp	17
	7.8 volume	17

1 Notation

Ω	volume (sub)domain
Γ	surface (sub)domain
t	time
y	any function
\underline{y}	any vector function
<u>n</u>	unit outward normal
q, s	scalar test function
p, r	scalar unknown or parameter function
\bar{p}	scalar parameter function
\underline{v}	vector test function
$\underline{w}, \underline{u}$	vector unknown or parameter function
\underline{b}	vector parameter function
$\underline{\underline{e}}(\underline{u})$	Cauchy strain tensor $(\frac{1}{2}((\nabla u) + (\nabla u)^T))$
<u>F</u>	deformation gradient $F_{ij} = \frac{\partial x_i}{\partial \partial X_j}$
J	$\det(F)$
<u>C</u>	right Cauchy-Green deformation tensor $C = F^T F$
$\underline{\underline{E}}(\underline{u})$	Green strain tensor $E_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} + \frac{\partial u_m}{\partial x_i} \frac{\partial u_m}{\partial x_j} \right)$
$ \underline{\underline{E}}(\underline{u}) \\ \underline{\underline{S}} \\ \underline{f} $	second Piola-Kirchhoff stress tensor
<u>f</u>	vector volume forces
f	scalar volume force (source)
ρ	density
ν	kinematic viscosity
c	any constant
$\delta_{ij}, \underline{\underline{I}}$	Kronecker delta, identity matrix

The suffix $"_0"$ denotes a quatity related to a previous time step. Term names are prefixed according to the following conventions:

dw	discrete weak	terms having a virtual (test) argument and zero or more unknown arguments, used for FE assembling	
d	discrete	terms having all arguments known, the result is the scalar value of the integral	
di	discrete integrated	like 'd' but the result is not a scalar (e.g. a vector)	
dq	discrete quadrature	terms having all arguments known, the result are the values in quadrature points of elements	
	continued		

	$\dots continued$		
de	discrete element	terms having all arguments known, the result is a vector of integral averages over elements (element average of 'dq')	

2 List of all terms

section	name	definition
(13.5)	de_average_variable	vector of $\forall K \in \mathcal{T}_h : \int_{T_K} y / \int_{T_K} 1$
(15.1)	dw_biot	$\int_{\Omega} p \; \alpha_{ij} e_{ij}(\underline{v}), \; \int_{\Omega} q \; \alpha_{ij} e_{ij}(\underline{u})$
(15.2)	dw_biot_th	$\int_{\Omega} \left[\int_{0}^{t} \alpha_{ij}(t-\tau) p(\tau) \right) d\tau \right] e_{ij}(\underline{v}),$
		$\int_{\Omega} \left[\int_{0}^{t} \alpha_{ij}(t-\tau) e_{kl}(\underline{u}(\tau)) d\tau \right] q$
(14.1)	de_cauchy_strain	vector of $\forall K \in \mathcal{T}_h : \int_{T_K} \underline{\underline{e}}(\underline{w}) / \int_{T_K} 1$
(14.2)	de_cauchy_stress	vector of $\forall K \in \mathcal{T}_h : \int_{T_K} D_{ijkl} e_k l(\underline{w}) / \int_{T_K} 1$
(7.3)	dw_convect	$\int_{\Omega}((\underline{u}\cdot abla)\underline{u})\cdot\underline{v}$
(6.2)	$dw_diffusion$	$\int_{\Omega} K_{ij} \nabla_i q \nabla_j p, \int_{\Omega} K_{ij} \nabla_i \bar{p} \nabla_j r$
(6.1)	de_diffusion_velocity	vector of $\forall K \in \mathcal{T}_h : \int_{T_K} K_{ij} \nabla_j r / \int_{T_K} 1$
(7.4)	dw_div_grad	$\int_{\Omega} u abla \underline{v} : abla \underline{u}$
(5.1)	dw_electric_source	$\int_{\Omega} cs(\nabla \phi)^2$
(7.1)	dq_{-grad}	$(\nabla p) _{qp}$
(6.3)	dw_laplace	$c \int_{\Omega} \nabla s \cdot \nabla r \text{ or } \sum_{K \in \mathcal{T}_h} \int_{T_K} c_K \nabla s \cdot \nabla r$
(7.2)	dq_lin_convect	$((\underline{b}\cdot abla)\underline{u}) _{qp}$
(7.5)	dw_lin_convect	$\int_{\Omega} ((\underline{b} \cdot \nabla)\underline{u}) \cdot \underline{v}$
(14.3)	dw_lin_elastic	$\int_{\Omega} D_{ijkl} \ e_{ij}(\underline{v}) e_{kl}(\underline{u})$
(14.4)	dw_lin_elastic_iso	$\int_{\Omega} D_{ijkl} e_{ij}(\underline{v}) e_{kl}(\underline{u}) \text{ with } D_{ijkl} = \mu(\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}) + \lambda \delta_{ij}\delta_{kl}$
(14.5)	$dw_{lin_elastic_th}$	$\int_{\Omega} \left[\int_{0}^{t} \mathcal{H}_{ijkl}(t-\tau) \frac{\mathrm{d}e_{kl}(\underline{u}(\tau))}{\mathrm{d}\tau} \mathrm{d}\tau \right] e_{ij}(\underline{v})$
(4.1)	dw_mass	$\int_{\Omega} \rho \underline{v} \cdot \frac{\underline{u} - \underline{u}_0}{\Delta t}$
(4.2)	dw_mass_scalar	$\int_{\Omega} q p$
(4.3)	dw_mass_scalar_fine_coarse	$\int_{\Omega}q_{h}p_{H}$
(4.4)	dw_mass_scalar_variable	$\int_{\Omega} cqp$
(4.5)	dw_mass_vector	$\int_{\Omega} \rho \ \underline{v} \cdot \underline{u}$
(6.4)	dw_permeability_r	$\int_{\Omega} K_{ij} \nabla_j q$
(8.1)	dw_piezo_coupling	$\int_{\Omega} g_{kij} \ e_{ij}(\underline{u}) \nabla_k q, \ \int_{\Omega} g_{kij} \ e_{ij}(\underline{v}) \nabla_k p$
(10.1)	dw_point_lspring	$\underline{f}^i = -k\underline{u}^i \forall \text{ FE node } i \text{ in region}$
(7.6)	$dw_st_grad_div$	$\gamma \int_{\Omega} (\nabla \cdot \underline{u}) \cdot (\nabla \cdot \underline{v})$
(7.7)	dw_st_pspg_c	$\sum_{K \in \mathcal{I}_h} \int_{T_K} \tau_K \ ((\underline{b} \cdot \nabla)\underline{u}) \cdot \nabla q$
continued		

$\dots continued$		
(7.8)	dw_st_pspg_p	$\sum_{K \in \mathcal{T}_h} \int_{T_K} \tau_K \ \nabla p \cdot \nabla q$
(7.9)	$dw_st_supg_c$	$\sum_{K \in \mathcal{T}_h} \int_{T_K} \delta_K \ ((\underline{b} \cdot \nabla)\underline{u}) \cdot ((\underline{b} \cdot \nabla)\underline{v})$
(7.10)	$dw_st_supg_p$	$\sum_{K \in \mathcal{T}_h} \int_{T_K} \delta_K \ \nabla p \cdot ((\underline{b} \cdot \nabla) \underline{v})$
(7.11)	dw_stokes	$\int_{\Omega} p \ \nabla \cdot \underline{v}, \ \int_{\Omega} q \ \nabla \cdot \underline{u}$
(13.1)	$d_surface_dot$	$\int_{\Gamma} pr, \int_{\Gamma} \underline{u} \cdot \underline{w}$
(13.2)	$d_surface_integrate$	$\int_{\Gamma} y$, for vectors: $\int_{\Gamma} \underline{y} \cdot \underline{n}$
(13.9)	$dw_surface_integrate$	$\int_{\Gamma} q$
(12.2)	$dw_surface_ltr$	$\int_{\Gamma} \underline{v} \cdot \underline{\underline{\sigma}} \cdot \underline{n}$
(4.6)	$dw_surface_mass_scalar$	$\int_{\Gamma} q p$
(9.1)	$dw_tl_bulk_penalty$	$\int_{\Omega} S_{ij}(\underline{u}) \delta E_{ij}(\underline{u};\underline{v})$
(9.2)	$dw_tl_he_mooney_rivlin$	$\int_{\Omega} S_{ij}(\underline{u}) \delta E_{ij}(\underline{u};\underline{v})$
(9.3)	$dw_tl_he_neohook$	$\int_{\Omega} S_{ij}(\underline{u}) \delta E_{ij}(\underline{u};\underline{v})$
(13.3)	d_{-} volume	$\int_{\Omega} 1$
(13.6)	$de_volume_average_mat$	$\forall K \in \mathcal{T}_h: \int_{T_K} m / \int_{T_K} 1$
(13.4)	d_{volume_dot}	$\int_{\Omega} pr,\int_{\Omega} \underline{u}\cdot\underline{w}$
(13.10)	$dw_volume_integrate$	$\int_\Omega q$
(13.7)	$di_volume_integrate$	$\int_{\Omega}y,\int_{\Omega}\underline{y}$
(13.8)	$di_volume_integrate_mat$	$\int_{\Omega} m$
(11.1)	dw_volume_lvf	$\int_{\Omega} \underline{f} \cdot \underline{v} \text{ or } \int_{\Omega} fq$
(13.11)	dw_volume_wdot	$\int_{\Omega} y q p, \ \int_{\Omega} y \underline{v} \cdot \underline{u}, \ \int_{\Omega} y p r, \ \int_{\Omega} y \underline{u} \cdot \underline{w}$
(13.12)	dw_volume_wdot_scalar_th	$\int_{\Omega} \left[\int_0^t \mathcal{G}(t-\tau) p(\tau) d\tau \right] q$

3 Introduction

Equations in SfePy are built using terms, which correspond directly to the integral forms of weak formulation of a problem to be solved. As an example, let us consider the Laplace equation in time interval $t \in [0, t_{\text{final}}]$:

$$\frac{\partial T}{\partial t} + c\Delta T = 0 \text{ in } \Omega, \quad T(t) = \bar{T}(t) \text{ on } \Gamma.$$
 (1)

The weak formulation of (1) is: Find $T \in V$, such that

$$\int_{\Omega} s \frac{\partial T}{\partial t} + \int_{\Omega} c \, \nabla T : \nabla s = 0, \quad \forall s \in V_0 \,, \tag{2}$$

where we assume no fluxes over $\partial\Omega\setminus\Gamma$. In the syntax used in SfePy input files, this can be written as

dw_mass_scalar.i1.0mega(s, dT/dt) + dw_laplace.i1.0mega(coef, s, T) = 0, (3) which directly corresponds to the discrete version of (2): Find $T \in V_h$, such that

$$s^T (\int_{\Omega_h} \boldsymbol{\phi}^T \boldsymbol{\phi}) \frac{\partial \boldsymbol{T}}{\partial t} + s^T (\int_{\Omega_h} c \ \boldsymbol{G}^T \boldsymbol{G}) \boldsymbol{T} = 0, \quad \forall s \in V_{h0} ,$$

where $u \approx \phi u$, $\nabla u \approx G u$ for $u \in \{s, T\}$. The integrals over the discrete domain Ω_h are approximated by a numerical quadrature, that is named i1 in our case.

3.1 Term call syntax

In general, the syntax of a term call in SfePy is:

where <i> denotes an integral name (i.e. a name of numerical quadrature to use) and <r> marks a region (domain of the integral). In the following, <virtual> corresponds to a test function, <state> to a unknown function and parameter> to a known function arguments. We will now describe all the terms available in SfePy to date.

4 Terms in termsMass

4.1 dw_mass

Class: MassTerm

Description: Inertial forces term (constant density).

Definition:

$$\int_{\Omega} \rho \underline{v} \cdot \frac{\underline{u} - \underline{u}_0}{\Delta t}$$

Arguments:

material.rho	ρ
ts.dt	Δt
parameter	\underline{u}_0

 $Syntax: dw_mass. <i>.<r>(<ts>, <material>, <virtual>, <state>, <parameter>)$

4.2 dw_mass_scalar

Class: MassScalarTerm

Description: Scalar field mass matrix/rezidual.

Definition:

$$\int_{\Omega} qp$$

Syntax: dw_mass_scalar.<i>.<r>(<virtual>, <state>)

4.3 dw_mass_scalar_fine_coarse

Class: MassScalarFineCoarseTerm

Description: Scalar field mass matrix/rezidual for coarse to fine grid interpolation. Field p_H belong to the coarse grid, test field q_h to the fine grid.

Definition:

$$\int_{\Omega} q_h p_H$$

Syntax: dw_mass_scalar_fine_coarse.<i>.<r>(<virtual>, <state>, <iemaps>, <pbase>)

4.4 dw_mass_scalar_variable

Class: MassScalarVariableTerm

Description: Scalar field mass matrix/rezidual with coefficient c defined in nodes.

Definition:

 $\int_{\Omega} cqp$

Syntax: dw_mass_scalar_variable.<i>.<r>(<material>, <virtual>, <state>)

4.5 dw_mass_vector

Class: MassVectorTerm

Description: Vector field mass matrix/rezidual.

Definition:

 $\int_{\Omega} \rho \ \underline{v} \cdot \underline{u}$

Syntax: dw_mass_vector.<i>.<r>(<material>, <virtual>, <state>)

4.6 dw_surface_mass_scalar

Class: MassScalarSurfaceTerm

Description: Scalar field mass matrix/rezidual.

Definition:

 $\int_{\Gamma} qp$

Syntax: dw_surface_mass_scalar.<i>.<r>(<virtual>, <state>)

5 Terms in termsElectric

5.1 dw_electric_source

Class: ElectricSourceTerm

Description: Electric source term.

Definition:

 $\int_{\Omega} cs(\nabla \phi)^2$

Arguments:

material	c (electric conductivity)
virtual	s (test function)
parameter	ϕ (given electric potential)

 $Syntax: \ \, dw_electric_source. <i>.<r>(<material>, <virtual>, <parameter>)$

6 Terms in termsLaplace

6.1 de_diffusion_velocity

Class: DiffusionVelocityTerm

Description: Diffusion velocity averaged in elements.

Definition: vector of

$$\forall K \in \mathcal{T}_h: \int_{T_K} K_{ij} \nabla_j r / \int_{T_K} 1$$

 $Syntax: \ \texttt{de_diffusion_velocity.} < \texttt{i>.<r>} (\ \texttt{<material>}, \ \texttt{<parameter>})$

6.2 dw_diffusion

Class: DiffusionTerm

Description: General diffusion term with permeability K_{ij} constant or given in mesh vertices.

Can be evaluated. Can use derivatives.

Definition:

$$\int_{\Omega} K_{ij} \nabla_i q \nabla_j p$$
, $\int_{\Omega} K_{ij} \nabla_i \bar{p} \nabla_j r$

Syntax: dw_diffusion.<i>.<r>(<arguments>) where <arguments> is one of:

6.3 dw_laplace

Class: LaplaceTerm

Description: Laplace term with c constant or constant per element.

Definition:

$$c \int_{\Omega} \nabla s \cdot \nabla r$$
 or $\sum_{K \in \mathcal{T}_h} \int_{T_K} c_K \nabla s \cdot \nabla r$

Syntax: dw_laplace.<i>.<r>(<material>, <virtual>, <state>)

6.4 dw_permeability_r

Class: PermeabilityRTerm

Description: Special-purpose diffusion-like term with permeability K_{ij} constant or given in mesh

vertices (to use on a right-hand side).

Definition:

$$\int_{\Omega} K_{ij} \nabla_j q$$

Syntax: dw_permeability_r.<i>.<r>(<material>, <virtual>, <index>)

7 Terms in termsNavierStokes

$7.1 dq_{grad}$

Class: GradQTerm

Description: Gradient term (weak form) in quadrature points.

Definition:

$$(\nabla p)|_{ap}$$

Syntax: dq_grad.<i>.<r>(<state>)

7.2 dq_lin_convect

Class: LinearConvectQTerm

Description: Linearized convective term evaluated in quadrature points.

Definition:

$$((\underline{b} \cdot \nabla)\underline{u})|_{qp}$$

Syntax: dq_lin_convect.<i>.<r>(cparameter>, <state>)

7.3 dw_convect

Class: ConvectTerm

Description: Nonlinear convective term.

Definition:

$$\int_{\Omega} ((\underline{u} \cdot \nabla)\underline{u}) \cdot \underline{v}$$

Syntax: dw_convect.<i>.<r>(<virtual>, <state>)

7.4 dw_div_grad

Class: DivGradTerm

Description: Diffusion term.

Definition:

$$\int_{\Omega} \nu \ \nabla \underline{v} : \nabla \underline{u}$$

Syntax: dw_div_grad.<i>.<r>(<material>, <virtual>, <state>)

7.5 dw_lin_convect

Class: LinearConvectTerm

Description: Linearized convective term.

Definition:

$$\int_{\Omega} ((\underline{b} \cdot \nabla)\underline{u}) \cdot \underline{v}$$

 $Syntax: \ \, \texttt{dw_lin_convect.} \\ \texttt{<i><} \texttt{<} \texttt{<virtual>}, \ \, \texttt{<parameter>}, \ \, \texttt{<} \texttt{state>} \ \,)$

7.6 dw_st_grad_div

 ${\bf Class:} \ {\bf Grad Div Stabilization Term}$

Description: Grad-div stabilization term (γ is a global stabilization parameter).

Definition:

$$\gamma \int_{\Omega} (\nabla \cdot \underline{u}) \cdot (\nabla \cdot \underline{v})$$

Syntax: dw_st_grad_div.<i>.<r>(<material>, <virtual>, <state>)

$7.7 ext{ dw_st_pspg_c}$

Class: PSPGCStabilizationTerm

Description: PSPG stabilization term, convective part (τ is a local stabilization parameter).

Definition:

$$\sum_{K \in \mathcal{T}_h} \int_{T_K} \tau_K \ ((\underline{b} \cdot \nabla)\underline{u}) \cdot \nabla q$$

Syntax: dw_st_pspg_c.<i>.<r>(<material>, <virtual>, <parameter>, <state>)

$7.8 ext{dw_st_pspg_p}$

Class: PSPGPStabilizationTerm

Description: PSPG stabilization term, pressure part (τ is a local stabilization parameter), alias

to Laplace term dw_laplace.

Definition:

$$\sum_{K \in \mathcal{T}_h} \int_{T_K} \tau_K \ \nabla p \cdot \nabla q$$

Syntax: dw_st_pspg_p.<i>.<r>(<material>, <virtual>, <state>)

$7.9 ext{dw_st_supg_c}$

Class: SUPGCStabilizationTerm

Description: SUPG stabilization term, convective part (δ is a local stabilization parameter).

Definition:

$$\sum_{K \in \mathcal{T}_b} \int_{T_K} \delta_K \ ((\underline{b} \cdot \nabla)\underline{u}) \cdot ((\underline{b} \cdot \nabla)\underline{v})$$

Syntax: dw_st_supg_c.<i>.<r>(<material>, <virtual>, <parameter>, <state>)

$7.10 \quad dw_st_supg_p$

Class: SUPGPStabilizationTerm

Description: SUPG stabilization term, pressure part (δ is a local stabilization parameter).

Definition:

$$\sum_{K \in \mathcal{T}_h} \int_{\mathcal{T}_K} \delta_K \ \nabla p \cdot ((\underline{b} \cdot \nabla) \underline{v})$$

Syntax: dw_st_supg_p.<i>.<r>(<material>, <virtual>, <parameter>, <state>)

7.11 dw_stokes

Class: StokesTerm

Description: Stokes problem coupling term. Corresponds to weak forms of gradient and diver-

gence terms. Can be evaluated.

Definition:

$$\int_{\Omega} p \ \nabla \cdot \underline{v}, \ \int_{\Omega} q \ \nabla \cdot \underline{u}$$

Syntax: dw_stokes.<i>.<r>(<arguments>) where <arguments> is one of:

8 Terms in termsPiezo

8.1 dw_piezo_coupling

Class: PiezoCouplingTerm

Description: Piezoelectric coupling term.

Definition:

$$\int_{\Omega} g_{kij} \ e_{ij}(\underline{u}) \nabla_k q, \ \int_{\Omega} g_{kij} \ e_{ij}(\underline{v}) \nabla_k p$$

Syntax: dw_piezo_coupling.<i>.<r>(<arguments>) where <arguments> is one of:

<material>, <virtual>, <state>
 <material>, <state>, <virtual>
<material>, <parameter_v>, <parameter_s>

9 Terms in termsHyperElasticity

9.1 dw_tl_bulk_penalty

Class: BulkPenaltyTerm

Description: Hyperelastic bulk penalty term. Stress $S_{ij} = K(J-1) JC_{ij}^{-1}$.

Definition:

$$\int_{\Omega} S_{ij}(\underline{u}) \delta E_{ij}(\underline{u};\underline{v})$$

Syntax: dw_tl_bulk_penalty.<i>.<r>(<material>, <virtual>, <state>)

9.2 dw_tl_he_mooney_rivlin

Class: MooneyRivlinTerm

Description: Hyperelastic Mooney-Rivlin term. Effective stress $S_{ij} = \kappa J^{-\frac{4}{3}} (C_{kk} \delta_{ij} - C_{ij} - C_{ij})$

 $\frac{2}{3}I_2C_{ij}^{-1}$). **Definition**:

$$\int_{\Omega} S_{ij}(\underline{u}) \delta E_{ij}(\underline{u};\underline{v})$$

Syntax: dw_tl_he_mooney_rivlin.<i>.<r>(<material>, <virtual>, <state>)

9.3 dw_tl_he_neohook

Class: NeoHookeanTerm

Description: Hyperelastic neo-Hookean term. Effective stress $S_{ij} = \mu J^{-\frac{2}{3}} (\delta_{ij} - \frac{1}{3} C_{kk} C_{ij}^{-1})$.

Definition:

$$\int_{\Omega} S_{ij}(\underline{u}) \delta E_{ij}(\underline{u};\underline{v})$$

Syntax: dw_tl_he_neohook.<i>.<r>(<material>, <virtual>, <state>)

10 Terms in termsPoint

10.1 dw_point_lspring

Class: LinearPointSpringTerm

Description: Linear springs constraining movement of FE nodes in a reagion; use as a relaxed

Dirichlet boundary conditions.

Definition:

$$\underline{f}^i = -k\underline{u}^i \quad \forall \text{ FE node } i \text{ in region}$$

Syntax: dw_point_lspring.<i>.<r>(<material>, <virtual>, <state>)

11 Terms in termsVolume

11.1 dw_volume_lvf

 ${f Class}$: LinearVolumeForceTerm

Description: Vector or scalar linear volume forces (weak form) — a right-hand side source term.

Definition:

$$\int_{\Omega} f \cdot \underline{v} \text{ or } \int_{\Omega} fq$$

Syntax: dw_volume_lvf.<i>.<r>(<material>, <virtual>)

12 Terms in termsSurface

$12.1 \, dw_{jump}$

Class: SurfaceJumpTerm

 $Syntax: dw_jump. <i>.<r>(<material>, <virtual>, <state_1>, <state_2>)$

12.2 dw_surface_ltr

Class: LinearTractionTerm

Description: Linear traction forces (weak form), where, depending on dimension of 'material' argument, $\underline{\underline{\sigma}} \cdot \underline{\underline{n}}$ is $\underline{p}\underline{\underline{I}} \cdot \underline{\underline{n}}$ for a given scalar pressure, $\underline{\underline{f}}$ for a traction vector, and itself for a stress tensor.

Definition:

$$\int_{\Gamma} \underline{v} \cdot \underline{\sigma} \cdot \underline{n}$$

Syntax: dw_surface_ltr.<i>.<r>(<material>, <virtual>)

13 Terms in termsBasic

13.1 d_surface_dot

 ${\bf Class:}\ {\bf DotProductSurfaceTerm}$

Description: Surface $L^2(\Gamma)$ dot product for both scalar and vector fields.

Definition:

$$\int_{\Gamma} pr, \int_{\Gamma} \underline{u} \cdot \underline{w}$$

Syntax: d_surface_dot.<i>.<r>(<parameter_1>, <parameter_2>)

13.2 d_surface_integrate

 ${\bf Class:}\ {\bf IntegrateSurfaceTerm}$

Definition:

$$\int_{\Gamma} y$$
, for vectors: $\int_{\Gamma} \underline{y} \cdot \underline{n}$

Syntax: d_surface_integrate.<i>.<r>(<parameter>)

13.3 d_volume

Class: VolumeTerm

Description: Volume of a domain. Uses approximation of the parameter variable.

Definition:

$$\int_{\Omega} 1$$

13.4 d_volume_dot

Class: DotProductVolumeTerm

Description: Volume $L^2(\Omega)$ dot product for both scalar and vector fields.

Definition:

$$\int_{\Omega} pr, \int_{\Omega} \underline{u} \cdot \underline{w}$$

Syntax: d_volume_dot.<i>.<r>(<parameter_1>, <parameter_2>)

13.5 de_average_variable

 ${\bf Class:}\ {\bf Average Variable Term}$

Description: Variable y averaged in elements.

Definition: vector of

$$\forall K \in \mathcal{T}_h : \int_{T_K} y / \int_{T_K} 1$$

Syntax: de_average_variable.<i>.<r>(<parameter>)

$13.6 \quad de_volume_average_mat$

 ${\bf Class:}\ {\bf AverageVolumeMatTerm}$

Description: Material parameter m averaged in elements. Uses approximation of y variable.

Definition:

$$\forall K \in \mathcal{T}_h : \int_{T_K} m / \int_{T_K} 1$$

Arguments:

material	m (can have up to two dimensions)
parameter	y
shape	shape of material parameter parameter
mode	'const' or 'vertex' or 'ele- ment_avg'

Syntax: de_volume_average_mat.<i>.<r>(<material>, <parameter>, <shape>, <mode>)

13.7 di_volume_integrate

Class: IntegrateVolumeTerm

Definition:

$$\int_{\Omega} y$$
, $\int_{\Omega} y$

Syntax: di_volume_integrate.<i>.<r>(<parameter>)

13.8 di_volume_integrate_mat

Class: IntegrateVolumeMatTerm

Description: Integrate material parameter m over a domain. Uses approximation of y variable.

Definition:

$$\int_{\Omega} m$$

Arguments:

material	m (can have up to two dimensions)
$continued. \ldots$	

$\dots continued$	
parameter	y
shape	shape of material parameter parameter
mode	'const' or 'vertex' or 'ele- ment_avg'

 $Syntax: \verb|di_volume_integrate_mat.<|i>.<r>|(<material>, <parameter>, <shape>, <mode>)|$

13.9 dw_surface_integrate

Class: IntegrateSurfaceOperatorTerm

Definition:

 $\int_{\Gamma} q$

Syntax: dw_surface_integrate.<i>.<r>(<virtual>)

13.10 dw_volume_integrate

Class: IntegrateVolumeOperatorTerm

Definition:

 $\int_{\Omega} g$

Syntax: dw_volume_integrate.<i>.<r>(<virtual>)

13.11 dw_volume_wdot

 ${\bf Class:}\ {\bf WDotProductVolumeTerm}$

Description: Volume $L^2(\Omega)$ weighted dot product for both scalar and vector (not implemented

in weak form!) fields. Can be evaluated. Can use derivatives.

Definition:

 $\int_{\Omega} yqp, \int_{\Omega} y\underline{v} \cdot \underline{u}, \int_{\Omega} ypr, \int_{\Omega} y\underline{u} \cdot \underline{w}$

Arguments:

material	weight function y
----------	---------------------

Syntax: dw_volume_wdot.<i>.<r>(<arguments>) where <arguments> is one of:

13.12 dw_volume_wdot_scalar_th

 ${\bf Class:}\ {\bf WDotSProductVolumeOperatorTHTerm}$

Description: Fading memory volume $L^2(\Omega)$ weighted dot product for scalar fields. Can use derivatives.

Definition:

$$\int_{\Omega} \left[\int_0^t \mathcal{G}(t-\tau) p(\tau) \, d\tau \right] q$$

Syntax: dw_volume_wdot_scalar_th.<i>.<r>(<ts>, <material>, <virtual>, <state>)

14 Terms in termsLinElasticity

14.1 de_cauchy_strain

Class: CauchyStrainTerm

Description: Cauchy strain tensor averaged in elements.

Definition: vector of

$$\forall K \in \mathcal{T}_h : \int_{T_K} \underline{\underline{e}}(\underline{w}) / \int_{T_K} 1$$

 $Syntax: de_cauchy_strain.<i>.<r>(<parameter>)$

14.2 de_cauchy_stress

Class: CauchyStressTerm

Description: Cauchy stress tensor averaged in elements.

Definition: vector of

$$\forall K \in \mathcal{T}_h : \int_{T_K} D_{ijkl} e_k l(\underline{w}) / \int_{T_K} 1$$

 $Syntax: \ \, \texttt{de_cauchy_stress.} \\ \texttt{<i><<} \texttt{<} \texttt{(} \\ \texttt{<} \texttt{material>}, \\ \texttt{<} \texttt{parameter>})$

14.3 dw_lin_elastic

Class: LinearElasticTerm

Description: General linear elasticity term, with D_{ijkl} given in the usual matrix form exploiting symmetry: in 3D it is 6×6 with the indices ordered as [11, 22, 33, 12, 13, 23], in 2D it is 3×3 with the indices ordered as [11, 22, 12]. Can be evaluated. Can use derivatives.

Definition:

$$\int_{\Omega} D_{ijkl} \ e_{ij}(\underline{v}) e_{kl}(\underline{u})$$

Syntax: dw_lin_elastic.<i>.<r>(<arguments>) where <arguments> is one of:

<material>, <virtual>, <state>
<material>, <parameter_1>, <parameter_2>

14.4 dw_lin_elastic_iso

Class: LinearElasticIsotropicTerm

Description: Isotropic linear elasticity term.

Definition:

$$\int_{\Omega} D_{ijkl} \ e_{ij}(\underline{v}) e_{kl}(\underline{u}) \text{ with } D_{ijkl} = \mu(\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}) + \lambda \ \delta_{ij}\delta_{kl}$$

Syntax: dw_lin_elastic_iso.<i>.<r>(<material>, <virtual>, <state>)

14.5 dw lin elastic th

Class: LinearElasticTHTerm

Definition:

$$\int_{\Omega} \left[\int_{0}^{t} \mathcal{H}_{ijkl}(t-\tau) \, \frac{\mathrm{d}e_{kl}(\underline{u}(\tau))}{\mathrm{d}\tau} \, \mathrm{d}\tau \right] \, e_{ij}(\underline{v})$$

Syntax: dw_lin_elastic_th.<i>.<r>(<ts>, <material>, <virtual>, <state>)

15 Terms in termsBiot

$15.1 \, dw_biot$

Class: BiotTerm

Description: Biot coupling term with α_{ij} given in vector form exploiting symmetry: in 3D it has the indices ordered as [11, 22, 33, 12, 13, 23], in 2D it has the indices ordered as [11, 22, 12]. Corresponds to weak forms of Biot gradient and divergence terms. Can be evaluated.

Definition:

$$\int_{\Omega} p \ \alpha_{ij} e_{ij}(\underline{v}), \ \int_{\Omega} q \ \alpha_{ij} e_{ij}(\underline{u})$$

Syntax: dw_biot.<i>.<r>(<arguments>) where <arguments> is one of:

<material>, <virtual>, <state>
 <material>, <state>, <virtual>
<material>, <parameter_v>, <parameter_s>

15.2 dw_biot_th

Class: BiotTHTerm

Description: Can have time derivatives.

Definition:

$$\int_{\Omega} \left[\int_{0}^{t} \alpha_{ij}(t-\tau) p(\tau) \right] d\tau d\tau d\tau d\tau, \quad \int_{\Omega} \left[\int_{0}^{t} \alpha_{ij}(t-\tau) e_{kl}(\underline{u}(\tau)) d\tau d\tau d\tau \right] d\tau$$

Syntax: dw_biot_th.<i>.<r>(<arguments>) where <arguments> is one of:

<ts>, <material>, <virtual>, <state> <ts>, <material>, <state>, <virtual>

16 Term caches in cachesFiniteStrain

16.1 finite_strain_tl

Class: FiniteStrainTLDataCache
cache = term.get_cache('finite_strain_tl', <index>)
data = cache(<data name>, <ig>, <ih>, state)

17 Term caches in cachesBasic

17.1 cauchy_strain

Class: CauchyStrainDataCache
cache = term.get_cache('cauchy_strain', <index>)
data = cache(<data name>, <ig>, <ih>, state, get_vector)

17.2 div_vector

Class: DivVectorDataCache
cache = term.get_cache('div_vector', <index>)
data = cache(<data name>, <ig>, <ih>, state)

17.3 grad_scalar

```
Class: GradScalarDataCache
cache = term.get_cache( 'grad_scalar', <index> )
data = cache( <data name>, <ig>>, <ih>>, state )
```

17.4 grad_vector

```
Class: GradVectorDataCache
cache = term.get_cache( 'grad_vector', <index> )
data = cache( <data name>, <ig>>, <ih>>, state )
```

17.5 mat_in_qp

```
Class: MatInQPDataCache
cache = term.get_cache( 'mat_in_qp', <index> )
data = cache( <data name>, <ig>, <ih>, mat, ap, assumed_shapes, mode_in )
```

17.6 state_in_surface_qp

```
Class: StateInSurfaceQPDataCache
cache = term.get_cache( 'state_in_surface_qp', <index> )
data = cache( <data name>, <ig>, <ih>>, state )
```

17.7 state_in_volume_qp

```
Class: StateInVolumeQPDataCache
cache = term.get_cache( 'state_in_volume_qp', <index> )
data = cache( <data name>, <ig>>, <ih>>, state, get_vector )
```

17.8 volume

```
Class: VolumeDataCache
cache = term.get_cache( 'volume', <index> )
data = cache( <data name>, <ig>>, <ih>>, region, field )
```