

# Universidade Estadual de Campinas

FACULDADE DE ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO

**EE531** (Laboratório de Eletrônica Básica I)

Prof. Fabiano Fruett

| Data da realização do experimento: | / / | Turma: |
|------------------------------------|-----|--------|

### Experimento IV – Transistor MOS

# 1 Objetivo:

Determinação experimental das curvas características de um transistor MOS. Emprego do Transistor MOS como amplificador, inversor lógico e oscilador em anel.

#### 2 Componentes:

1 CI 4007 1 Resistor de cada valor:  $100 \Omega$ ;  $10 k\Omega$ 

2 Soquetes de 14 pinos 3 Capacitores de 10 nF

## **3** Parte Experimental:

- Trace as curvas  $V_{\rm DS} \times I_{\rm D}$ , parametrizadas por  $V_{\rm GS}$  do transistor MOSFET canal N. Use  $V_{\rm GS}$ =1, 2, 4 e 8 V. Faça 0 V <  $V_{\rm DS}$  < 10 V. Aumente a densidade de pontos nas proximidades dos joelhos de cada curva. Para isto, use duas fontes de tensão independentes, conforme mostrado na Figura 1. OBS: Os transistores que não estiverem sendo usados devem ter o dreno conectado à fonte. (1, 2), (4, 5), (9, 11, 12) e (13, 14).
- 3.2 Indique no próprio gráfico, do MOSFET caracterizado, cada região de operação (linear, saturação e corte).
- Faça a alteração no circuito conforme mostrado na Figura 2. Para  $V_{\rm GS} > V_{\rm t}$ , em qual região de operação o MOSFET está operando? Trace a curva  $V_{\rm GS} \times I_{\rm D}$  (use  $V_{\rm GS} = 0.5$ , 1, 2, 4, 6, 8 e 10 V). A partir do gráfico, proponha um método para determinar  $\mu C_{\rm OX} \frac{W}{L}$  e também a tensão de limiar  $V_{\rm t}$ .



Figura 1:  $V_{\rm DS} \times I_{\rm D}$ 

Figura 2:  $V_{GS} \times I_{D}$ 

# 4 Aplicações analógicas:

4.1 Calcule a componente DC do sinal de entrada  $v_{\rm IN}$  para que o amplificador (fonte comum) mostrado na Figura 3 tenha um ganho de -10. Monte o circuito amplificador mostrado na Figura 3. Aplique um sinal senoidal de baixa amplitude e freqüência de 1 kHz. Ajuste  $V_{\rm IN}$  para obter o ganho de -10. Verifique o ganho experimentalmente e compare com o teórico.



Figura 3: Amplificador

Figura 4: Inversor lógico

# 5. Aplicações digitais:

5.1 A Figura 4 mostra o esquema elétrico de um inversor lógico. Aplique na entrada um sinal senoidal com as seguintes características:  $V_{pp}$ =5 V,  $V_{offset}$ =2.5 V,

- frequência =100 Hz. Utilize o modo de operação XY do osciloscópio para obter a característica de transferência deste inversor.
- Aplique agora na entrada uma forma de onda quadrada com a mesma amplitude anterior  $V_{\rm pp}$ =5V,  $V_{\rm offset}$ =2.5 V. Retire o osciloscópio do modo XY e visualize a entrada e saída em função do tempo. Escolha uma frequência que possibilite medir os tempos de subida, de descida e de atraso da saída. Meça os tempos e conclua. Imprima, mostrando em uma mesma tela, os sinais de entrada e de saída.
- 5.3 Monte o circuito oscilador em anel mostrado na Figura 5. Explique o funcionamento do circuito e meça a frequência de oscilação. Imprima.



Figura 5: Oscilador em anel

5.4 Desenhe o esquema elétrico de uma porta NAND que pode ser construída com um único CI 4007.

### 4. Bibliografia

- 4.1 A. S. Sedra, K.C.Smith, Microeletrônica, Makron Books Ltda
- 4.2 R. Boylestad e L. Nashelsky, Dispositivos Eletrônicos e Teoria de Circuitos, Prentice-Hall.