Finite Difference Method

Simple Finite Difference Approximation to a Derivative

Truncating (1) after the first derivative term gives,

$$U(x_0+h)=U(x_0)+hU_x(x_0)+O(h^2)$$

Rearranging gives,

$$U_{x}(x_{0}) = \frac{U(x_{0}+h)-U(x_{0})}{h} - \frac{O(h^{2})}{h}$$

Neglecting the *O(h)* term gives,

$$U_{x}(x_{0}) \approx \frac{U(x_{0}+h)-U(x_{0})}{h}$$

The las Eq. is called a first order FD approximation to $U \times (x \circ)$ since the approximation error=O(h) which depends on the first power of h.

This approximation is called a forward FD approximation since we start at x_0 and step forwards to the point x_0 +h. h is called the **step size** (h > 0).

Simple Finite Difference Approximation to a Derivative

As an example we choose a simple function for U. Let

$$U(x)=x^3$$

We will find the first order forward FD approximation to U_x (1) using step size h = 0.1

Since

$$U_{x}(x_{0}) \approx \frac{U(x_{0}+h)-U(x_{0})}{h}$$

Substituting for U gives

$$U_{x}(x_{0}) \approx \frac{(x_{0}+h)^{3}-x_{0}^{3}}{h}$$

Replacing x_0 by 1 and h by 0.1 gives,

 $U_x(1) \approx \frac{(1+0.1)^3-1^3}{0.1} = 1,10333$

What if h=0.05?

Lets do it by hand

For simplicity we suppose that U is a function of **only two variables**, t and x.

We will approximate the partial derivatives of U with respect to x.

As t is held constant U is effectively a function of the single variable x so we can use Taylor's formula (1) where the ordinary derivative terms are now partial derivatives and the arguments are (t, x) instead of x.

Finally we will replace the step size h by Δx (to indicate a change in x) so that (1) becomes,

$$U(t, x_0 + \Delta x) = U(t, x_0) + \Delta x U_x(t, x_0) + \frac{\Delta x^2}{2!} U_{xx}(t, x_0) + \dots + \frac{\Delta x^{n-1}}{(n-1)!} U_{n-1}(t, x_0) + O(\Delta x^n)$$
 (2)

Truncating it to O(Δx^2) gives,

$$U(t, x_0 + \Delta x) = U(t, x_0) + \Delta x U_x(t, x_0) + O(\Delta x^2)$$

Now we derive some FD approximations to partial derivatives. Rearranging it gives,

$$U_{x}(t,x_{0}) = \frac{U(t,x_{0}+\Delta x)-U(t,x_{0})}{\Delta x}-O(\Delta x)$$

In numerical schemes for solving PDEs we are restricted to a grid of discrete x values, $x_1, x_2, ..., x_N$, and discrete t levels t_0 , t_1 ,

We will assume a **constant** grid spacing, Δx , in x, so that $x_{i+1} = x_i + \Delta x$.

Evaluating the last equation for a point, (t_n, x_i) , on the grid gives,

$$U_{x}(t_{n},x_{i}) = \frac{U(t_{n},x_{i+1}) - U(t_{n},x_{i})}{\Delta x} - O(\Delta x)$$

We will use the common *subscript/superscript* notation

$$U_i^n = U(t_n, x_i)$$

so that dropping the $O(\Delta x)$ error term,

$$U_{x}(t_{n},x_{i}) \approx \frac{U_{i+1}^{n} - U_{i}^{n}}{\Lambda x}$$

We now derive another FD approximation to U_x (t_n , x_i). Replacing Δx by $-\Delta x$

$$U(t, x_0 - \Delta x) = U(t, x_0) - \Delta x U_x(t, x_0) + O(\Delta x^2)$$

Evaluating it at (t_n, x_i) and rearranging as previously gives,

$$U_x(t_n,x_i) \approx \frac{U_i^n - U_{i-1}^n}{\Delta x}$$

And it is the first order backward difference approximation to U_x (t_n , x_i).

Our first two FD approximations are first order in x but we can increase the order (and so make the approximation more **accurate**) by taking more terms in the Taylor series as follows.

Truncating to $O(\Delta x^3)$, then replacing Δx by $-\Delta x$ and subtracting this new expression from (2) and evaluating at (t_n, x_i) gives, after some algebra,

$$U_x(t_n, x_i) \approx \frac{U_{i+1}^n - U_{i-1}^n}{2 \Lambda x}$$

And is called the second order central difference FD approximation to U_x (t_n , x_i).

Many PDEs of interest contain second order (and higher) partial derivatives so we need to derive approximations to them.

We will restrict our attention to second order *unmixed* partial derivatives i.e. U_{xx} . Truncating (2) to $O(\Delta x^4)$ gives

$$U(t, x_0 + \Delta x) = U(t, x_0) + \Delta x U_x(t, x_0) + \frac{\Delta x^2}{2!} U_{xx}(t, x_0) + \frac{\Delta x^3}{3!} U_{xxx}(t, x_0) + O(\Delta x^4)$$
(3)

Replacing Δx by $-\Delta x$ gives

$$U(t, x_0 - \Delta x) = U(t, x_0) - \Delta x U_x(t, x_0) + \frac{\Delta x^2}{2!} U_{xx}(t, x_0) - \frac{\Delta x^3}{3!} U_{xxx}(t, x_0) + O(\Delta x^4)$$
 (4)

Adding (3) and (4) gives

$$U(t, x_0 + \Delta x) + U(t, x_0 - \Delta x) = 2U(t, x_0) + \Delta x^2 U_{xx}(t, x_0) + O(\Delta x^4)$$

Evaluating at (t_n, x_i)

$$U_{i+1}^n + U_{i-1}^n = 2 U_i^n + \Delta x^2 U_{xx}(t_n, x_i) + O(\Delta x^4)$$

Rearranging it and dropping the $O(\Delta x^2)$ error term gives

$$U_{xx}(t_n, x_i) \approx \frac{U_{i+1}^n - 2U_i^n + U_{i-1}^n}{\Delta x^2}$$
 (5)

And it is the second order symmetric difference FD approximation to $U_{xx}(t_n,x_i)$

partial derivative	finite difference approximation	type	order
$\frac{\partial \mathbf{U}}{\partial \mathbf{x}} = \mathbf{U}_{\mathbf{x}}$	$\frac{{U_{i+1}^n} {- U_i^n}}{\Delta x}$	forward	first in x
$\frac{\partial \mathbf{U}}{\partial \mathbf{x}} = \mathbf{U}_{\mathbf{x}}$	$\frac{{ m U_i^n}{-}{ m U_{i-1}^n}}{\Delta { m x}}$	backward	first in x
$\frac{\partial \mathbf{U}}{\partial \mathbf{x}} = \mathbf{U}_{\mathbf{x}}$	$\frac{U_{i+1}^n - U_{i-1}^n}{2\Delta x}$	central	second in x
$\frac{\partial^2 \mathbf{U}}{\partial \mathbf{x}^2} = \mathbf{U}_{\mathbf{x}\mathbf{x}}$	$\frac{U_{i+1}^{n}-2U_{i}^{n}+U_{i-1}^{n}}{\Delta x^{2}}$	symmetric	second in x

Approximations to partial derivatives with respect to t are derived in a similar manner

partial derivative	finite difference approximation	type	order
$\frac{\partial \mathbf{U}}{\partial \mathbf{t}} = \mathbf{U_t}$	$\frac{U_i^{n+l} - U_i^n}{\Delta t}$	forward	first in t
$\frac{\partial \mathbf{U}}{\partial \mathbf{t}} = \mathbf{U_t}$	$\frac{U_{i}^{n} - U_{i}^{n-l}}{\Delta t}$	backward	first in t
$\frac{\partial \mathbf{U}}{\partial \mathbf{t}} = \mathbf{U_t}$	$\frac{U_i^{n+l} {-} U_i^{n-l}}{2\Delta t}$	central	second in t
$\frac{\partial^2 \mathbf{U}}{\partial \mathbf{t}^2} = \mathbf{U}_{tt}$	$\frac{U_{i}^{n+1}-2U_{i}^{n}+U_{i}^{n-1}}{\Delta t^{2}}$	symmetric	second in t

Example

The 1D linear advection equation is

$$U_t + vU_x = 0$$

where the independent variables are t (time) and x (space). x is restricted to the finite interval [p, q] which is called the computational domain.

 \mathbf{v} is a constant and the dependent variable, $\mathbf{U} = \mathbf{U}(\mathbf{t}, \mathbf{x})$.

Let the initial conditions be,

$$U(0,x)=f(x) p \leq x \leq q$$

A solution is a function U = U(t, x) which satisfies the PDE at all points x in the computational domain and all times t and the initial conditions.

Step by Step

Step 1: Spatial Discretization

The computational domain contains an infinite number of x values so first we must replace them by a finite set. This process is called spatial discretization

For simplicity the computational domain is replaced by a grid of **N** equally spaced grid points. Starting with the first grid point at x=p and ending with the last grid point at x=q, the constant grid spacing, Δx , is,

$$\Delta x = \frac{q - p}{N - 1}$$

The values of x in the discretized computational domain are indexed by subscripts to give,

$$x_1 = p, x_2 = p + \Delta x, ..., x_i = p + (i - 1) \Delta x, ..., x_N = p + (N - 1) \Delta x = q$$

So the grid spacing is constant,

$$X_{i+1} = X_i + \Delta X$$

Fixing t at $t = t_n$ we approximate the spatial partial derivative, U_x at each point (t_n, x_i) using the forward difference formula

$$U_t + vU_x = 0$$
 \longrightarrow $U_t + v\frac{U_{i+1}^n - U_i^n}{\Delta x} = 0$ $\stackrel{\text{Semi-discrete}}{\text{derivative has been discretized}}$

semi-discrete form discretized

Step 2: Time Discretization

Fixing x at $x=x_i$, we approximate the temporal partial derivative, U_t at each point (t_n, x_i) using the first order forward difference formula

$$U_{t} \approx \frac{U_{i}^{(n+1)} - U_{i}^{n}}{\Delta t}$$

and

$$U_{t} + v \frac{U_{i+1}^{n} - U_{i}^{n}}{\Delta x} = 0 \qquad \longrightarrow \qquad \frac{U_{i}^{(n+1)} - U_{i}^{n}}{\Delta t} + v \frac{U_{i+1}^{n} - U_{i}^{n}}{\Delta x} = 0$$

which rearranges to give

$$U_{i}^{(n+1)} = U_{i}^{(n)} - \frac{v \Delta t}{\Delta x} (U_{i+1}^{(n)} - U_{i}^{(n)})$$

It is an example of a FDS to approximate the solution of the PDE. Is a so-called time-marching scheme which enables U values at time level n+1 to be approximated from U values at the previous time level n.

Since all U values are only known exactly at the initial time level is rewritten as

$$u_i^{(n+1)} = u_i^{(n)} - \frac{v \Delta t}{\Delta x} \left(u_{i+1}^{(n)} - u_i^{(n)} \right) \qquad \text{:u(t_n,x_i) is a numerical approximation to U(t_n,x_i)}$$

Step 2: Time Discretization Remarks

- $u(0,x_i) = U(0,x_i)$ but this will **not** be true in general for later times.
- **u** values on the right hand side of are all at time t_n whereas on the left hand side **u** values are all at the **next** timed level $t_n + \Delta t = t_{n+1}$
- It is an example of a time-marching scheme in that (known) data for each grid point at time t_n is used to find data at each grid point at the future time $t_n + \Delta t$. This is called an **iteration** of the scheme. After an iteration of the scheme all u values at each grid point are known at time $t_n + \Delta t$.
- These new values can be used as known data for another iteration of the scheme to give data for each grid point at the next time level.
- This process can be repeated until the required future time is attained.
- The errors in approximating the spatial and temporal derivatives which are used are $O(\Delta x)$ and $O(\Delta t)$ respectively and so it is said to be (formally) first order in space (x) and first order in time (t).
- The grid spacing, Δx , was determined by choosing the number of grid points, N. A larger N gives a smaller Δx and a (hopefully) more accurate solution as spatial derivatives are more accurately approximated. However as N increases compute time increases so there is a trade off between **accuracy and speed**.

Step 2: Time Discretization Remarks

- The time step, Δt , is for the moment, chosen arbitrarily. However a smaller time step will mean that more iterations are needed to reach a stated future time which will obviously increase the compute time.
- In addition, since the result of each iteration is an approximation to the required solution, more iterations could cause the build up of more error.

$$u_i^{(n+1)} = u_i^{(n)} - \frac{v \Delta t}{\Delta x} (u_{i+1}^{(n)} - u_i^{(n)})$$

is said to be an *explicit method* since the value of u at the next time level is given by an explicit formula for each grid point.

MATHEMICAL WARNING:

It does not work for v>0...

PEN AND PAPER CALCULATION

Example

Board II

References

D. M. Causon, C. G. Mingham, Introductory Finite Difference Methods for PDEs Ventus Publishing ApS, ISBN 978-87-7681-642-1 (2010).