Anomaly detection in onboard-recorded flight data using cluster analysis

Anomaly Detection In Onboard-Recorded Flight Data Using Cluster Analysis

Lishuai Li, PhD Candidate, MIT (<u>lishuai@mit.edu</u>)

Maxime Gariel, Postdoc, MIT (<u>maxime.gariel@gmail.com</u>)

R. John Hansman, Professor, MIT (rjhans@mit.edu)

Rafael Palacios, Professor, Comillas Pontifical University, Spain (<u>rafael.palacios@iit.upcomillas.es</u>)

30th DASC

October 18, 2011

Motivation

Aviation safety management

- Past: learn from accidents
- Now: proactively identify safety hazards during routine operations

Massive data collected during routine flights

- Can be used to improve safety and operations
- Data recorded onboard by Flight Data Recorder (FDR) or Quick Access Recorder (QAR)
- No. of parameters: 88-2000
- Sample rate: 0.25-8 Hz

Fatal Accident Rate - Commercial Jet Fleet¹

Onboard Recorded Flight Data Example²

Current Data Analysis

- Current analysis method commonly used in Flight Operational Quality Assurance (FOQA) programs
 - Exceedance analysis
 - ✓ Detect anomalous events by pre-specified limits

Event	Parameters and safety limits
Takeoff Climb Speed High	HAT > x ft, $HAA < x ft$, $CAS > V2 + x kts$
Excessive Power Increase	HAT < 500 ft, Δ of N ₁ > x
Operation Below Glideslope	Glide Slope Deviation Low > x dots, HAT < x ft

Statistical analysis on specific queries

Limitation: Only known issues are examined

Objective

- Develop a method to detect anomalous flights
 - From routine FDR/QAR data
 - Without specification of what parameters to watch and their thresholds
- Characterize data patterns of multivariate time series
 - Identify nominal cases and abnormal cases
- Identify anomalous flights, which are then referred to domain experts for further review

Approach

- Multivariate Cluster Analysis
 - Identify clusters of similar flights based on multiple flight parameters

- Perform cluster analysis in a hyperspace where each data point represents a flight
 - Identify nominal clusters
 - Detect outliers

- Need to transform data recordings to a form applicable for cluster analysis
 - Convert all time series to a vector for each flight

Three-Step Process

General Approach

Detailed Steps

Method Evaluation

- A limited set of FDR data was available for this research
 - 2881 flights
 - 7 aircraft types (13 model variants)
- Subsets by aircraft model were separately evaluated
 - Available flight parameters vary by aircraft model
 - Results of B777 subset were presented in this paper
 - ✓ Number of flights: 365
 - ✓ Number of flight parameters: 69
- Applied the multivariate cluster analysis approach
 - Three-step process
- Evaluated results from cluster analysis
 - Anomalous flights
 - Nominal clusters

Step 1: Time-series to Vectors

Obtain samples referring to <u>a specific event</u>

Takeoff Phase

Track samples from <u>applying takeoff</u> power to 90 sec after takeoff

Approach Phase

Back track samples from <u>touchdown</u> to 6nm before touchdown

Form a vector for each flight:

$$V = [X_0, X_1, L_1, X_{90}, Y_0, Y_1, L_1, Y_{90}, L_1]$$
91 samples per parameter

68 parameters for takeoff

69 parameters for approach ("Radio Height" only available during approach)

Step 2: Dimension Reduction

 Due to the sparseness of this dataset, need to reduce dimensions to increase data density for cluster analysis

Number of data points 365 flights

<< Number of dimensions

6279 for approach; 6188 for takeoff

- Principal Component Analysis (PCA)
 - Transform data to a new coordinate system
 - ✓ The 1st PC captures the greatest variance by any projection of the data; the 2nd PC captures the second greatest variance; and so on

Keep the first K PCs that explain more than 90% variance

Step 3: Cluster Analysis

- Density-based clustering algorithm: DBSCAN
 - Find density-connected points progressively to form a cluster
 - Advantages:
 - ✓ Handle outliers in the data
 - ✓ No need to know how many clusters in advance
 - ✓ Discover clusters of arbitrary shape
- Two global parameters:
 - &
- Max. radius of the neighborhood
- Distance between points
- MinPts
 - Min. number of points in an ε -neighborhood

• A cluster is created if at least *MinPts* lie within a ball of radius ε centered at a point

Sensitivity Analysis of DBSCAN Parameters

Sensitivity Analysis of ε and *MinPts on B777 Approach*

■ Sensitivity analysis of *MinPts* and ε was conducted

- Results were not sensitive to MinPts on the B777 dataset
 MinPts = 5 was used
- Results were sensitive to ε on the B777 dataset ε was set to find the top 1%, 3% or 5% outliers

Method Evaluation Results

Evaluation dataset

- Aircraft type: B777
- 365 flights
- 14 airports as origin or destination
- 69 flight parameters

Evaluation procedure

- Separate analysis for approach phase and takeoff phase
- Identified top 1%, 3% and 5% outliers
- Inspected all anomalous flights for abnormal behaviors
- Examined commonalities for flights in nominal clusters

Anomalous Flights Identified in Approach Phase

	Flight ID	1%	3%	5%	Abnormal Behaviors	Abnormal Type	
√	373547	Х	Х	Х	Fast	High energy approach	
	377844	Х	X	х	High, line up late	High energy approach	
	378688	х	X	х	Fast, unstable airspeed	High energy approach	
✓	377288		X	х	Initially fast	High energy approach	
	383780		X	х	Low, slow	Low energy approach	
	375698		X	х	Low, high power	Low energy approach	
✓	383270		Х	х	Low, unusual yaw trim	Low energy approach	
	372235		Х	Х	Hot weather	Weather effect	
	371044		Х	х	Abnormal high pitch	Other unusual operation	
	371045		Х	х	Line up late	Other unusual operation	
	377860			х	Fast	High energy approach	
✓	379685			Х	Initially fast, then slow	High energy approach	
	371040			Х	Fast	High energy approach	
	379665			Х	Strong crosswind	Weather effect	
	383285			Х	Unusual flap setting	Other unusual operation	
	384110			х	Unusual flap setting	Other unusual operation	

Types of abnormal behaviors

- High energy approach, low energy approach, weather effect, other unusual operation
- Example anomalous flights of each identified type are shown in the following slides
 - Example flights are indicated by ✓

Anomalous Flight: 373547 – Fast Approach

Anomalous Flight: 383780 – Low & Slow Approach

Anomalous Flight: 371044 – Abnormal Pitch

Anomalous Flight: 379665 – Crosswind Approach

Anomalous Flights Identified in Takeoff Phase

	Flight ID	1%	3%	5%	Abnormal Behaviors	Type
\checkmark	370715	Х	Х	Х	Accelerate fast, climb fast, light	High power takeoff
	380219	Х	Х	Х	Early rotation, crosswind	High power takeoff
	371045	Х	Х	Х	Reduced takeoff power, climb slow, accelerate slow	Low power takeoff
	371046	Х	Х	Х	Reduced takeoff power, climb slow, accelerate slow	Low power takeoff
	377862		Х	Х	Early rotation, climb out high and fast, light	High power takeoff
	385702		Х	Х	Climb out high, high normal load, high pitch attitude	High power takeoff
	378692		Х	Х	Extended period of applying takeoff power	Other unusual operation
	386369		Х	Х	Early turn after takeoff	Other unusual operation
	370723		Х	Х	Spoiler raise, strong wind	Other unusual operation
	380217			Х	Early rotation, early turn	High power takeoff
	383285			Х	Early rotation, early turn, light	High power takeoff
	384110			Х	Climb out high, early turn, light	High power takeoff
	385160			Х	Climb out high, high pitch rotation, light	High power takeoff
\checkmark	379636			Х	Reduced takeoff power, climb slow, accelerate slow	Low power takeoff
	369755			Х	Reduced takeoff power, climb slow, accelerate slow	Low power takeoff
	385444			Х	Reduced takeoff power, climb slow, accelerate slow	Low power takeoff
	370019			Х	Reduced takeoff power, climb slow, accelerate slow	Low power takeoff
	368486			Х	Reduced takeoff power, climb slow, accelerate slow	Low power takeoff
	368487			Х	Reduced takeoff power, climb slow, accelerate slow	Low power takeoff
	372209			Х	Start with reduced power then switch to normal power,	Low power takeoff
					climb slow, accelerate slow	
√	373921			Х	Double-rotation, early turn	Other unusual operation
	369204			Х	Excessive reduction of power after takeoff	Other unusual operation

- Types of abnormal behaviors
 - High power takeoff, low power takeoff, other unusual operation
- Example anomalous flights of each identified type are shown in the following slides
 - Example flights are indicated by ✓

Anomalous Flight: 370715 – Light & Fast Takeoff

Anomalous Flight: 379636 – Low Power Takeoff

Anomalous Flight: 373921 – Double-Rotation

Multiple Nominal Clusters

- Multiple clusters were identified in the takeoff phase for B777
 - Cluster 1 Most common flights
 ✓ 341 flights
 - Cluster 2 Takeoffs from a specific high altitude airport, OR Tambo International Airport (ICAO: FAJS), near the city of Johannesburg, South Africa
 ✓ 8 flights
 - Cluster 3 Takeoffs with reduced takeoff power setting
 ✓ 7 flights
- Multiple nominal data patterns can be classified by cluster analysis

Multiple Nominal Clusters

Practical Issue

- How many outlier flights should be identified?
 - 3400 flights per day at a major airline (e.g. AA, Southwest)
 - 1% outliers → 30+ flights need to be reviewed per day
 - Tradeoff between workload of reviewing and chance of identifying emerging risks
- Evaluating whether abnormal types (repetitive abnormal cases)
 can be identified in the cluster space

Anomalous flights (identified in B777 approach) plotted by the first two principal components

Conclusions

- Developed a method to detect anomalous flights using cluster analysis
 - Advantages
 - ✓ Minimum prior knowledge of data required
 - ✓ Identify multiple nominal data patterns
 - Limitation
 - ✓ Current transformation method is only applicable to flight phases start or end with a specific event
- Applied the proposed method on a dataset of B777 flights for takeoff phase and approach phase
- Initial evaluation indicates that cluster analysis is a promising approach for anomaly detection in FDR/QAR data

Next Steps

Method testing

Apply the method on a larger set of airline data

Method evaluation

- Challenge: ground truth not available
- Evaluate results with domain experts
- Cross-validate by comparing with other methods
 - ✓ Candidate method: NASA MKAD method (Das et al. 2010*)

Method development

- Auto-classification of repetitive anomalous cases
- Tools to support expert review of anomalous flights
 - ✓ Specifically identify anomalies in time and flight parameters when identified anomalous flights are reviewed

^{*} Das, S., Matthews, B. L., Srivastava, A. N., & Oza, N. C. (2010). Multiple kernel learning for heterogeneous anomaly detection: algorithm and aviation safety case study. *Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining* (pp. 47–56). ACM.

Thank you!

Questions?

Backup Slides

Anomalous Flight: 383285 – Unusual Flap Setting

Anomalous Flight: 372209 – Power Change Before Rotation

Sensitivity Analysis of DBSCAN Parameters

Sensitivity Analysis of ε and *MinPts on B777 Takeoff*

Yiew publication stats