```
In [1]: import pandas as pd
          import numpy as np
          import matplotlib.pyplot as plt
          import seaborn as sns
 In [2]: dataset = pd.read_csv('titanic.CSV')
 In [3]: dataset.head(3)
 Out[3]:
                                                     Siblings/Spouses Parents/Children
             Survived Pclass
                                 Name
                                          Sex Age
                                                                                         Fare
                                                             Aboard
                                                                              Aboard
                              Mr. Owen
          0
                    0
                           3
                                 Harris
                                         male 22.0
                                                                   1
                                                                                    0
                                                                                        7.2500
                                Braund
                              Mrs. John
                                Bradley
                              (Florence
          1
                    1
                                        female 38.0
                                                                   1
                                                                                    0 71.2833
                                 Briggs
                                Thayer)
                                 Cum...
                                  Miss.
          2
                    1
                           3
                                  Laina female 26.0
                                                                   0
                                                                                       7.9250
                              Heikkinen
 In [5]:
         dataset.isnull().sum()
 Out[5]: Survived
                                      0
          Pclass
                                      0
          Name
                                      0
          Sex
                                      0
                                      0
          Age
          Siblings/Spouses Aboard
                                      0
          Parents/Children Aboard
                                      0
          Fare
                                      0
          dtype: int64
 In [ ]: # So no null value is present in above data
 In [7]: | np.percentile(dataset['Age'], 25), np.percentile(dataset['Age'], 75)
 Out[7]: (20.25, 38.0)
In [13]: np.percentile(dataset['Age'], 0), np.percentile(dataset['Age'], 100), np.percentile
Out[13]: (0.42, 80.0, 28.0)
In [14]: | dataset['Age'].min(), dataset['Age'].max(), dataset['Age'].median()
Out[14]: (0.42, 80.0, 28.0)
```

In [16]: # So in above 2 rows, min. age account for 0% percentile and max. age accounts for # and median age is 50% percentile of age

In [17]: dataset.describe()

Out[17]:

	Survived	Pclass	Age	Siblings/Spouses Aboard	Parents/Children Aboard	Fare
count	887.000000	887.000000	887.000000	887.000000	887.000000	887.00000
mean	0.385569	2.305524	29.471443	0.525366	0.383315	32.30542
std	0.487004	0.836662	14.121908	1.104669	0.807466	49.78204
min	0.000000	1.000000	0.420000	0.000000	0.000000	0.00000
25%	0.000000	2.000000	20.250000	0.000000	0.000000	7.92500
50%	0.000000	3.000000	28.000000	0.000000	0.000000	14.45420
75%	1.000000	3.000000	38.000000	1.000000	0.000000	31.13750
max	1.000000	3.000000	80.000000	8.000000	6.000000	512.32920

```
In [20]: #If you see closely on age you can see that
```

```
# min(0%) : 0.42

# Q1 : 25% : 20.25

# Q2 : 50% : 28.00

# Q3 : 75% : 38.00

# Q4 : max(80%): 80.00

# So you can see the buge difference between
```

So you can see the huge difference between Q3 and Q4. So it is clear that outlier # Also difference between min (0%) and Q1 is significant larger, so there is also c # median (Q2) is 28, so it is evident that the median is inclined towards left side # So this whole analysis tell that there is definitely outlier present in this data

```
In [23]: # To show it in the boxplot
    sns.boxplot(x='Age', data=dataset)
    plt.show()
```



```
In [25]: # To show it in the boxplot
    sns.boxplot(x='Fare', data=dataset)
    plt.show()
```



```
In [ ]:

In [ ]:
```