Gate-level Minimization

CS207 Chapter 3

James YU yujq3@sustech.edu.cn

Department of Computer Science and Engineering Southern University of Science and Technology

Jun. 24, 2021

Gate-level minimization

- The complexity of digital logic gates to implement a Boolean function is directly related to the complexity of algebraic expression.
- Gate-level minimization is the design task of finding an optimal gate-level implementation of Boolean functions describing a digital circuit.
 - Difficult by hand for more than few inputs.
 - Typically by computer, need to understand the underlying principle.

The map method

- The map method, first proposed by Veitch and slightly improvised by Karnaugh, provides a simple, straightforward procedure for the simplification of Boolean functions.
 - Called Karnaugh map.
- The map is a diagram consisting of *squares*. For n variables on a Karnaugh map there are 2^n numbers of squares.
 - Each square or cell represents one of the minterms.
 - Since any Boolean function can be expressed as a sum of minterms, it is possible to recognize a Boolean function graphically in the map from the area enclosed by those squares whose minterms appear in the function.

Two-variable K-map

• A two-variable system can form four minterms

- The two-variable Karnaugh map is a useful way to represent any of the 16 Boolean functions.
 - Example:

$$A + B = A(B + B') + B(A + A')$$

= $AB + AB' + AB + A'B = AB + AB' + A'B$

• So the squares corresponding to AB, AB', and A'B are marked with 1.

- Since there are eight minterms for three variables, the map consists of eight cells or squares.
 - Minterms are arranged, not according to the binary sequence, but according to the sequence similar to the gray code.
 - Between two consecutive rows or columns, only one single variable changes its logic value from 0 to 1 or from 1 to 0.

AB	C_{00}	01	11	10
0	m_0	m_1	m_3	$ m_2 $
1	m_4	m_5	m_7	m_6

- To understand the usefulness of the map for simplifying the Boolean functions, we must observe the basic properties of the adjacent squares.
 - Any two adjacent squares in the Karnaugh map differ by only one variable, which
 is complemented in one square and uncomplemented in one of the adjacent
 squares.
 - The sum of two minterms can be simplified to a single AND term consisting of less number of literals.
 - $m_1 + m_5 = A'B'C + AB'C = (A' + A)B'C = B'C$

AB	C_{00}	01	11	10
0	m_0	m_1	m_3	m_2
1	m_4	m_5	m_7	m_6

• Example: Simplify the Boolean function F = A'BC + A'BC' + AB'C' + AB'C.

AB	C_{00}	01	11	10
0	0	0	1	1
1	1	1	0	0

- The first row: A'BC + A'BC' = A'B.
- The second row: AB'C' + AB'C = AB'.
- F = A'B + AB'.

• Example: Simplify the Boolean function F = A'BC + AB'C' + ABC + ABC'.

AB	C_{00}	01	11	10
0	0	0	1	0
1	1	0	1	1

- The third column: A'BC + ABC = BC.
- The second row: AB'C' + ABC' = AC'.
- F = BC + AC'.

• Example: Simplify the Boolean function $F = \sum (1, 2, 3, 5, 7)$.

AB	C_{00}	01	11	10
0	0	1	1	1
1	0	1	1	0

• F = C + A'B.

• Example: Simplify the Boolean function $F = \sum (0, 2, 4, 5, 6)$.

AB	C_{00}	01	11	10
0	1	0	0	1
1	1	1	0	1

• F = C' + AB'.

有う針技大学 SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY

 Similar to the method used for two-variable and three-variable Karnaugh maps, four-variable Karnaugh maps may be constructed with 16 squares consisting of 16 minterms

				W IL
D'A	D_{00}	01	11	10
00 A	m_0	m_1	m_3	m_2
01	m_4	m_5	m_7	m_6
11	m_{12}	m_{13}	m_{15}	m_{14}
10	m_8	m_9	\overline{m}_{11}	m_{10}

- Two, four, or eight adjacent squares can be combined to reduce the number of literals in a function
- The squares of the top and bottom rows as well as leftmost and rightmost columns may be combined.
 - When two adjacent squares are combined, it is called a pair and represents a term with three literals.
 - Four adjacent squares, when combined, are called a quad and its number of literals is two.
 - If eight adjacent squares are combined, it is called an octet and represents a term with one literal.
 - If, in the case all sixteen squares can be combined, the function will be reduced to 1.

• Example: Simplify the Boolean function $F = m_1 + m_5 + m_{10} + m_{11} + m_{12} + m_{13} + m_{15}$.

•
$$A'B'C'D + A'BC'D = A'C'D$$

•
$$ABC'D' + ABC'D = ABC'$$
,

•
$$F = A'C'D + ABC' + ACD + AB'C$$
.

- This reduced expression is not a unique one
 - If pairs are formed in different ways, the simplified expression will be different.

			4	W IL
AB_{γ}	D_{00}	01	11	10
00 A		1		
01		1		
11	1	1	1	
10			1	1

- Example: Simplify the Boolean function $F = m_1 + m_5 + m_{10} + m_{11} + m_{12} + m_{13} + m_{15}$.
- F = A'C'D + ABC' + ABD + AB'C.

			_	A IF
AB_{γ}	D_{00}	01	11	10
A^{00}		1		
01		1		
11	1	1	1	
10			1	1

有分科技大学 SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY

- Example: Simplify the Boolean function $F = \sum (7, 9, 10, 11, 12, 13, 14, 15)$.
- F = AB + AC + AD + BCD.

			V	W IL
AB_{γ}	D_{00}	01	11	10
00				
01			1	
11	1	1	1	1
10		1	1	1
.0				

=AB+AC+AD'

有方科技大学 SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY

• Example: Plot the logical expression F(A,B,C,D) = ABCD + AB'C'D' + AB'C + AB on a four-variable Karnaugh map.

$$F(A, B, C, D)$$
= $ABCD + AB'C'D' + AB'C + AB$
= $ABCD + AB'C'D' + AB'C(D + D')$
+ $AB(C + C')(D + D')$
= ...
= $\sum (8, 10, 11, 12, 13, 14, 15)$

			4	W IL S
AB_{\wedge}	D_{00}	01	11	10
A_{00}				
01				
11	1	1	1	1
10	1		1	1
10				

有分科技大学 SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY

• Simplify the expression $F(A, B, C, D) = \sum (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14).$

			\ <u>'</u>	WIL
AB_{γ}	D_{00}	01	11	10
00	1	1		1
01	1	1		1
11	1	1		1
10	1	1		

• Simplify the expression F(A, B, C, D) = A'B'C' + B'CD' + A'BCD' + AB'C'.

$$F(A, B, C, D)$$

$$= A'B'C'(D + D') + B'CD'(A + A')$$

$$+ A'BCD' + AB'C'(D + D')$$

$$= A'B'C'D + A'B'C'D' + AB'CD'$$

$$+ A'B'CD' + A'BCD' + AB'C'D$$

$$+ AB'C'D'$$

$$= \sum (0, 1, 2, 6, 8, 9, 10)$$

$$= B'C' + B'D' + A'CD'$$

			\ <u>'</u>	W IL
AB_{\wedge}	D_{00}	01	11	10
A 00	1	1		1
01				1
11				
10	1	1		1

- Simplify the expression $F(A, B, C, D) = \sum (3, 4, 5, 7, 9, 13, 14, 15).$
 - It may be noted that one quad can also be formed, but it is redundant as the squares contained by the quad are already covered by the pairs which are essential.
- F = A'BC' + A'CD + AY'D + ABC.

				W IL
AB_{γ}	D_{00}	01	11	10
00 A			1	
01	1	1	1	
11		1	1	1
10		1		

- Simplify the expression $F(A, B, C, D) = \prod (0, 1, 4, 5, 6, 8, 9, 12, 13, 14).$
 - The above expression is given in respect to the maxterms.
 - 0's are to placed instead of 1's at the corresponding maxterm squares.
- $\bullet \ F = C(B' + D).$

				916
AB_{γ}	D_{00}	01	11	10
00 A	0	0	1	1
01	0	0	1	0
11	0	0	1	0
10	0	0	1	1
10	0	0	1	1

- Simplify the expression $F(A, B, C, D) = \prod (0, 1, 4, 5, 6, 8, 9, 12, 13, 14).$
 - The other way to achieve the minimized expression is to consider the 1's of the Karnaugh map.
- F = CD + B'C = C(B' + D).

				916
AB_{C}	D_{00}	01	11	10
A^{00}	0	0	1	1
01	0	0	1	0
11	0	0	1	0
10	0	0	1	1

Five-variable K-map

- Karnaugh maps with more than four variables are not simple to use.
 - The number of cells or squares becomes excessively large and combining the adjacent squares becomes complex.
 - A five-variable Karnaugh map contains 2^5 or 32 cells.

Prime Implicants

- A *prime implicant* is a product term obtained by combining the maximum possible number of adjacent squares in the map.
- The prime implicants of a function can be obtained from the map by combining all possible maximum numbers of squares.
 - If a minterm in a square is covered by only one prime implicant, that prime implicant is said to be essential.
- Gate-level minimization:
 - Determine all essential prime implicants.
 - Find other prime implicants that cover remaining minterms.
 - · Logical sum all prime implicants.

Don't care conditions

- In practice, Boolean function is not specified for certain combinations of input variables.
 - Input combinations never occur during the process of a normal operation.
 - Those input conditions are guaranteed never to occur.
- Such input combinations are called *don't-care conditions*.
- These input combinations can be plotted on the Karnaugh map for further simplification.
 - The don't care conditions are represented by d or X in a K-map.
 - They can be either 1 or 0 upon needed.

Don't care conditions

有分科技大学 SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY

- Simplify the expression $F(A, B, C, D) = \sum (1, 3, 7, 11, 15), d = \sum (0, 2, 5).$
- F = A'B' + CD.

			4	W IL
AB_{γ}	D_{00}	01	11	10
00	X	1	1	X
01		X	1	
11			1	
10			1	

Don't care conditions

有方科技大学 SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY

- Simplify the expression $F(A, B, C, D) = \sum (1, 3, 7, 11, 15), d = \sum (0, 2, 5).$
- F = A'D + CD.

			<u> </u>	4 IL
AB_{γ}	D_{00}	01	11	10
O0 A	Χ	1	1	Х
01		X	1	
11			1	
10			1	
			•	•

More examples

• Using the Karnaugh map method obtain the minimal sum of the products expression for the function $F(A,B,C,D)=\sum (0,2,3,6,7)+d(8,10,11,15).$