H: the half-space model; *I*: the interior of the disk model; J: the hemisphere model; K: the Klein model; L: the hyperboloid model. → They are isometrically equivalent. ▶ They have their own metric, geodesics, isometries, and so on. Each model supplies its own natural intuitions.

 $\triangleright$  There are 5 models of hyperbolic geometry in  $\mathbb{R}^{D,1}$ :

## Hyperbolic geometry



The five analytic models and their connecting isometries in D=1.





## Hyperbolic geometry

- $\triangleright$  There are 5 models of hyperbolic geometry in  $\mathbb{R}^{D,1}$ :
  - H: the half-space model;
  - *I*: the interior of the disk model;
  - J: the hemisphere model;
  - K: the Klein model;
  - L: the hyperboloid model.
- ▶ They are isometrically equivalent.
- ▶ They have their own metric, geodesics, isometries, and so on.
- ▶ Each model supplies its own natural intuitions.

The five analytic models and their connecting isometries in D=1.



## Hyperbolic geometry

- Space of constant negative curvature (as opposed to flat or Euclidean space, or spherical space)
- ightharpoonup Model for the D=2 hyperbolic space : positive sheet of the hyperboloid defined by

$$x^2 + y^2 - z^2 = -1$$

 $\triangleright$  Distance between points  $(x_1,y_1,z_1)$  and  $(x_2,y_2,z_2)$  is

$$d(1,2) = \operatorname{arccosh}(z_1 z_2 - x_1 x_2 - y_1 y_2)$$

> Polar coordinates

$$x = \sinh(r)\cos(\theta)$$
$$y = \sinh(r)\sin(\theta)$$
$$z = \cosh(r)$$



hyperboloid in  $\mathbb{R}^{2,1}$ 

