MATH 131—HOMEWORK 7

Ricardo J. Acuña (862079740)

Q1 Suppose U,V and W are finite-dimensional vector spaces and $S \in \mathcal{L}(V,W)$ and $T \in \mathcal{L}(U,V)$. Prove that $\dim(\text{range }ST) \leq \min\{\dim(\text{range }S),\dim(\text{range }T)\}$

Pf.

Let U,V and W be finite-dimensional vector spaces spaces and $S \in \mathcal{L}(V,W)$ and $T \in \mathcal{L}(U,V)$.

 $ST: U \to W$ defined by $ST(u) = S(T(u)), u \in U$

range ST = ST(U) = S(T(U)) = S(range T)

 \Rightarrow range $ST = \{ \mathbf{w} \in W | \exists \mathbf{v} \in \text{range } T : \mathbf{w} = S(v) \}$

 \Rightarrow range $ST \le \text{range } S \Rightarrow \text{dim}(\text{range } ST) \le \text{dim}(\text{range } S)$ (1)

Let $B_{T(U)} = \{v_i\}_{i=1}^n$ be a basis for range T,

then $B_{S(T(U))} = \{S(v_i)\}_{i=1}^n$ spans range ST (by Q2 HW6)

If T is surjective, then range T = V,

so range ST = S(V) = range S

If T is not surjective, then either $B_{S(T(U))}$ is linearly independent or not.

If $B_{S(T(U))}$ is linearly independent, then $\dim(\operatorname{range} ST) = n = \dim(\operatorname{range} T)$

If $B_{S(T(U))}$ is not linearly independent, then we can reduce it to a basis of range ST,

accordingly $\dim(\mathrm{range}\; ST) < n = \dim(\;\mathrm{range}\; T)$

In both cases, $\dim(\text{range } ST) < \dim(\text{ range } T)$ (2)

If $\dim(\operatorname{range} S) < \dim(\operatorname{range} T)$, then $\dim(\operatorname{range} ST) \leq \dim(\operatorname{range} S)$, which is always true by (1).

If $\dim(\text{range }T) \leq \dim(\text{range }S)$, then $\dim(\text{range }ST) \leq \dim(\text{range }T)$, by (2).

So, $\dim(\operatorname{range} ST) \leq \min\{\dim(\operatorname{range} T), \dim(\operatorname{range} S)\}.$

Q2 Suppose that V is finite-dimensional and $T \in \mathcal{L}(V,W)$. Prove that T is injective if and only if there exists $S \in \mathcal{L}(W,V)$ such that ST is the identity map on V.

 $\underset{\sim}{\text{Pf}}$.

$$\forall V,W:\dim(V)\in\mathbb{N}:T\in\mathcal{L}(V,W)$$

- (\Rightarrow) Assume T is injective
- \Rightarrow null $T = \{0\}$
- $\Rightarrow \dim(V) = \dim(\text{null } T) + \dim(\text{range } T)$
- $= \dim(\{0\}) + \dim(\text{range } T)$
- $= 0 + \dim(\text{range } T) = \dim(\text{range } T)$
- $\Rightarrow \dim(V) = m = \dim(\operatorname{range} T)$ (0)
- Let $B_0 = \{v_i\}_{i=1}^m$, be a basis for V,

then
$$B = \{T(v_i) = w_i\}_{i=1}^m$$
, is a basis for range T (by 0)

One can extend B to a basis $B' = \{w_i\}_{i=1}^n, m \le n$

Define,
$$S:W \to V$$
 by $\begin{cases} S(w_i) = v_i, 1 \leq i \leq m \\ S(w_i) = 0, m < i \leq n \end{cases}$

$$ST(v_i) = S(T(v_i)) = S(w_i) = v_i = id_V(v_i), 1 < i < m \label{eq:started}$$

$$\Rightarrow \exists S \in \mathcal{L}(W,V) : ST = id_V$$

$$(\Leftarrow) \text{ Assume } \exists S \in \mathcal{L}(W,V) : ST = id_V$$

$$\forall v_x, v_y \in V: T(v_x) = T(v_y)$$

$$\Rightarrow S(T(v_x)) = S(T(v_y))$$

$$\Rightarrow ST(v_x) = ST(v_y)$$

$$\Rightarrow id_V(v_x) = id_V(v_y)$$

$$\Rightarrow v_x = v_y$$

 $\Rightarrow T$ is injective

So.

T is injective $\Leftrightarrow \exists S \in \mathcal{L}(W,V): ST = id_V$

Q3 Suppose $T \in L(P_2(\mathbb{R}), P_4(\mathbb{R}))$ is the linear map defined by

$$Tp = x^2p$$
.

(1) Find the matrix of T with respect to the standard basis.

$$\mathcal{E} = \{1, x, x^2\}$$

$$\mathcal{F} = \{1, x, x^2, x^3, x^4\}$$

$$T1 = x^2 \\ 1 = x^2 \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}_{\mathcal{F}} Tx = x^2 \\ x = x^3 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}_{\mathcal{F}} Tx^2 = x^2 \\ x^2 = x^4 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}_{\mathcal{F}}$$

$$\Rightarrow [T]_{\mathcal{F} \leftarrow \mathcal{E}} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(2) Verify the fundamental theorem of linear maps.

range
$$T = \text{span } \{x^2, x^3, x^4\}$$

null
$$T = \text{span } \{0\}$$
, since $x^2p = 0$, has only solution $p = 0, \forall x$

$$\dim P_2(\mathbb{R}) = |\mathcal{E}| = 3 = 0 + 3 = \dim \left\{ 0 \right\} + \dim \left\{ x^2, x^3, x^4 \right\} \checkmark$$

Q4 Let $S, T \in \mathcal{L}(V, W)$ and $\lambda \in F$. Let $\mathcal{E} = \{e_1, ..., e_n\}$ be a basis of V, and $\mathcal{F} = \{f_1, ..., f_m\}$ be a basis of W. Show that there are identities of matrices as following:

$$[S+T]_{\mathcal{F}\leftarrow\mathcal{E}} = [S]_{\mathcal{F}\leftarrow\mathcal{E}} + [T]_{\mathcal{F}\leftarrow\mathcal{E}},$$

and

$$[\lambda S]_{\mathcal{F} \leftarrow \mathcal{E}} = \lambda [S]_{\mathcal{F} \leftarrow \mathcal{E}}.$$

Pf.

 $\text{Let }S,T\in\mathcal{L}(V,W)\text{ and }\lambda\in\mathbb{F}.\text{ Let }\mathcal{E}=\{e_1,...,e_n\}\text{ be a basis of }V,\text{ and }\mathcal{F}=\{f_1,...,f_m\}\text{be a basis of }W.$

$$\exists a_{ji} \in \mathbb{F}: S(e_i) = \textstyle \sum_{j=1}^m a_{ji} f_j \Rightarrow [S]_{\mathcal{F} \leftarrow \mathcal{E}} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}$$

and

$$\exists b_{ji} \in \mathbb{F}: T(e_i) = \textstyle \sum_{j=1}^m b_{ji} f_j \Rightarrow [T]_{\mathcal{F} \leftarrow \mathcal{E}} = \begin{bmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{m1} & \cdots & b_{mn} \end{bmatrix}$$

$$\Rightarrow [S]_{\mathcal{F}\leftarrow\mathcal{E}} + [T]_{\mathcal{F}\leftarrow\mathcal{E}} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} + \begin{bmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{m1} & \cdots & b_{mn} \end{bmatrix} = \begin{bmatrix} a_{11}+b_{11} & \cdots & a_{1n}+b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1}+b_{m1} & \cdots & a_{mn}+b_{mn} \end{bmatrix}$$

$$(S+T)(e_i) := S(e_i) + T(e_i) = \sum_{j=1}^m a_{j,i} f_j + \sum_{j=1}^m b_{j,i} f_j = \sum_{j=1}^m (a_{j,i} + b_{j,i}) f_j = \sum_{j=1}^m a_{j,i} f_j = \sum_{j=1}^m a_{j,j} f_j = \sum_{j=1}^$$

$$\Rightarrow [S+T]_{\mathcal{F}\leftarrow\mathcal{E}} = \begin{bmatrix} a_{11}+b_{11} & \cdots & a_{1n}+b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1}+b_{m1} & \cdots & a_{mn}+b_{mn} \end{bmatrix}$$

$$\Rightarrow [S+T]_{\mathcal{F}\leftarrow\mathcal{E}} = [S]_{\mathcal{F}\leftarrow\mathcal{E}} + [T]_{\mathcal{F}\leftarrow\mathcal{E}}$$

$$\lambda S(e_i) = \lambda \sum_{j=1}^m a_{j,i} f_j = \sum_{j=1}^m \lambda a_{j,i} f_j$$

Also,

$$\Rightarrow [S]_{\mathcal{F} \leftarrow \mathcal{E}} = \begin{bmatrix} \lambda a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ \lambda a_{m1} & \cdots & \lambda a_{mn} \end{bmatrix}$$

and

$$\begin{split} [S]_{\mathcal{F}\leftarrow\mathcal{E}} &= \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \Rightarrow \lambda[S]_{\mathcal{F}\leftarrow\mathcal{E}} = \lambda \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} = \begin{bmatrix} \lambda a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ \lambda a_{m1} & \cdots & \lambda a_{mn} \end{bmatrix} \\ \Rightarrow [\lambda S]_{\mathcal{F}\leftarrow\mathcal{E}} &= \lambda[S]_{\mathcal{F}\leftarrow\mathcal{E}} \end{split}$$

_

Q5 Suppose $D \in \mathcal{L}(P_3(\mathbb{R}), P_2(\mathbb{R}))$ is the differential map defined by

$$Dp = p'$$

Find a basis $\mathcal E$ of $P_3(\mathcal R)$ and a basis $\mathcal F$ of $P_2(\mathcal R)$ such that the matrix of D with respect to these bases is

$$[D]_{\mathcal{F}\leftarrow\mathcal{E}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$Dx = 1, D\frac{1}{2}x^2 = x, D\frac{1}{3}x^3 = x^2, D1 = 0$$

So,
$$\mathcal{E} = \{x, \frac{1}{2}x^2, \frac{1}{3}x^3, 1\}$$
, and $\mathcal{F} = \{1, x, x^2\}$, or $\mathcal{E} = \{x, x^2, x^3, 1\}$, and $\mathcal{F} = \{1, 2x, 3x^2\}$,

or
$$\mathcal{E} = \{2000 + x, 2000 + x^2, 2000 + x^3, 5\}$$
, and $\mathcal{F} = \{1, 2x, 3x^2\}$

Really, bunch, infinitely many.

Q6 Find linear maps $S, T \in \mathcal{L}(\mathbb{R}^2)$ such that $ST \neq TS$.

$$S,T\in\mathcal{L}(\mathbb{R}^2):\{e_1,e_2\}$$
 is the standard basis for \mathbb{R}^2

$$S: \mathbb{R}^2 \to \mathbb{R}^2$$
 defined by

$$S(e_1) = e_1$$

$$S(e_2) = 2e_2$$

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 defined by

$$T(e_1) = e_2$$

$$T(e_2) = 2e_1$$

$$\Rightarrow ST(e_1) = S(T(e_1)) = S(e_2) = 2e_2 \text{ and } ST(e_2) = S(T(e_2)) = S(2e_1) = 2S(e_1) = 2e_1$$

$$\Rightarrow TS(e_1) = T(S(e_1)) = T(e_1) = e_2 \text{ and } TS(e_2) = T(S(e_2)) = T(2e_2) = 2T(e_2) = 2(2e_1) = 4e_1$$

$$\Rightarrow ST \neq TS$$