Traffic Aware Precoder Design for Space Frequency Resource Allocation

Ganesh Venkatraman[†], Antti Tölli, Le-Nam Tran and Markku Juntti

Email: {gvenkatr, antti.tolli, le.nam.tran, markku.juntti}@ee.oulu.fi

Centre for Wireless Communications (CWC),
Department of Communications Engineering (DCE),
University of Oulu, Oulu, FI-90014

Outline

Introduction

System Model & Problem Formulation

Centralized Solutions

Existing Q-WSRM Formulation

JSFRA Formulation (SINR Relaxation)

JSFRA Formulation (MSE Reformulation)

Distributed Solutions

Primal & ADMM based decompositions KKT based Distributed Solution

Simulation Results

Centralized Solutions
Distributed Solutions

KKT based Approach

Time Correlated Fading Performance

Conclusions

Introduction

Introduction and Motivation

- Complex algorithms are adopted to maximize throughput to satisfy the data requirements from higher layers
- Available wireless resources are to be utilized efficiently to minimize the backlogged packets
- Spatial and Frequency resources are exploited to empty the packets waiting at the BSs
- ▶ We discuss precoder designs for multiple users MIMO-OFDM setup to minimize the number of queued packets

System Model & Problem Formulation

Symbols used

- ▶ OFDM system with N sub-channels and N_B BSs, each equipped with N_T transmit antennas
- ▶ Let K be the total number of users with N_R antennas
- Let ${\cal B}$ and ${\cal U}$ denote the set of coordinating BSs and users in the system
- Let L be the total available spatial streams for a user k, given by $\min(N_T, N_R)$

System Model

 \triangleright The Ith spatial signal received on sub-channel n of user k is given by

$$\hat{d}_{l,k,n} = \mathbf{w}_{l,k,n}^{H} \mathbf{H}_{b_{k},k,n} \, \mathbf{m}_{l,k,n} d_{l,k,n} + \mathbf{w}_{l,k,n}^{H} \mathbf{n}_{l,k,n} + \mathbf{h}_{b_{l},k,n}^{H} \mathbf{n}_{l,k,n} + \mathbf{h}_{b_{l},k,n}^{H} \sum_{i \in \mathcal{U} \setminus \{k\}} \mathbf{h}_{b_{l},k,n} \sum_{j=1}^{L} \mathbf{m}_{l,l,n} d_{l,l,n} \quad (1)$$

▶ where m_{I,k,n} and w_{I,k,n} are transmit and receive beamformers corresponding to the /th spatial stream on the nth sub-channel of user k

System Model

- $ightharpoonup \mathbf{H}_{b_k,k,n} \in \mathbb{C}^{N_R \times N_T}$ denotes the channel between BS b_k and user k
- $ightharpoonup d_{l,k,n}$ and $n_{l,k,n}$ correspond to data symbol and equivalent noise on lth spatial stream of user k
- Using the above notations, the SINR seen by the Ith spatial stream on the nth sub-channel for user k is given by

$$\gamma_{l,k,n} = \frac{\left| \mathbf{w}_{l,k,n}^{\mathrm{H}} \mathbf{H}_{b_k,k,n} \mathbf{m}_{l,k,n} \right|^2}{\hat{N}_0 + \sum_{(j,i) \neq (l,k)} \left| \mathbf{w}_{l,k,n}^{\mathrm{H}} \mathbf{H}_{b_i,k,n} \mathbf{m}_{j,i,n} \right|^2}$$
(2)

 $\qquad \qquad \text{where } \grave{\textit{N}}_0 = \| \boldsymbol{w}_{\textit{I},k,\textit{n}}^{\mathrm{H}} \boldsymbol{n}_{\textit{I},k,\textit{n}} \|^2$

Queueing Model

- ▶ Each user is associated with backlogged packets of size Q_k packets.
- Queued packets Q_k of each user follows dynamic equation at the ith instant as

$$Q_k(i+1) = \left[Q_k(i) - t_k(i)\right]^+ + \lambda_k(i) \tag{3}$$

- where $t_k = \sum_{n=1}^{N} \sum_{l=1}^{L} t_{l,k,n}$ denotes the total number of transmitted packets corresponding to user k in the previous ith instant
- \triangleright λ_k represents the fresh arrivals of user k at BS b_k

Problem Formulation

- Objective to minimize the number of backlogged packets waiting at BSs
- Optimization variables transmit precoders and receive beamformers
- MIMO-OFDM scheduling of users across sub-channels is inherently performed by precoders

Centralized Solutions

Queue-Weighted Sum Rate Maximization (Q-WSRM)

- Q-WSRM formulation is the result of minimizing the conditional Lyapunov drift[†]
- Q-WSRM formulation is also called as back pressure algorithm, since it
 acts greedily in minimizing the backlogged packets at each instant

$$\underset{t_{l,k,n}}{\mathsf{minimize}} \quad \sum_{k \in \mathcal{U}} \left\{ Q_k(i)^2 - Q_k(i-1)^2 \right\},$$

• where Q_k follows the dynamic Queue expression in (3)

[†] Neely, Michael J. "Stochastic network optimization with application to communication and queueing systems." Synthesis Lectures on Communication Networks 3.1 (2010): 1-211.

Queue-Weighted Sum Rate Maximization (Q-WSRM)

 Q-WSRM formulation, which is obtained by solving Lyapunov drift, is given by

maximize
$$\sum_{k \in \mathcal{U}} Q_k \left(\sum_{n=1}^N \sum_{l=1}^L t_{l,k,n} \right)$$
 (4a)

$$\sum_{n=1}^{N} \sum_{l=1}^{L} t_{l,k,n} \le \frac{Q_k}{Q_{k,n}}$$
 (4b)

- Queue-Rate product is maximized
- Users with more number of backlogged packets are favored over good channel users

JSFRA Formulation (SINR Relaxation)

- ightharpoonup Centralized Design precoders are designed by a controller, which are then used by all BSs in ${\cal B}$
- ▶ The objective used to design transmit precoders is

$$v_k = \left| Q_k - \sum_{n=1}^{N} \sum_{l=1}^{L} t_{l,k,n} \right|^q$$
 (5)

- ► To generalize the objective, we use $\tilde{v}_k \triangleq a_k^{\frac{1}{q}} v_k$, where a_k is arbitrary weights used control the priorities
- Exponent q plays different role based on the value it assumes
 - \triangleright $\ell_{a=1}$ results in greedy allocation
 - ho $\ell_{q=2}$ ideal for the delay or buffer size limited scenarios
 - $ightharpoonup \ell_{q=\infty}$ provides fair resource allocation in each transmission instant

JSFRA Formulation (SINR Relaxation)

 Optimization problem with queue difference objective is nonconvex due to the constraint

$$\underset{\mathbf{m}_{I,k,n}}{\text{minimize}} \qquad \left| Q_k - \sum_{n=1}^{N} \sum_{l=1}^{L} \log \left(1 + \gamma_{I,k,n} \right) \right|^q \tag{6a}$$

subject to
$$\gamma_{I,k,n} \leq \frac{\left|\mathbf{w}_{I,k,n}^H \mathbf{H}_{b_k,k,n} \mathbf{m}_{I,k,n}\right|^2}{\beta_{I,k,n}}$$
 (6b)

$$\dot{N}_{0} + \sum_{(j,i)\neq(l,k)} |\mathbf{w}_{l,k,n}^{\mathbf{H}} \mathbf{H}_{b_{j},k,n} \mathbf{m}_{j,i,n}|^{2} \le \beta_{l,k,n}$$
 (6c)

- The nonconvex constraints are approximated by sequence of convex subsets and solved iteratively by successive convex approximation (SCA) method
- Receive beamformers are designed by the MMSE receivers using the converged transmit precoders

JSFRA Formulation (MSE Reformulation)

Alternatively, we solve the queue minimization problem by utilizing the relation between the MSE and the SINR as

$$\epsilon_{l,k,n} = (1 + \gamma_{l,k,n})^{-1}$$
 (7)

- Equivalence is valid only when the receivers are designed with the mean squared error (MSE) objective, i.e., using MMSE receivers
- Problem involves nonconvex constraint

$$t_{l,k,n} \leq -\log_2(\epsilon_{l,k,n}) \tag{8a}$$

$$\epsilon_{l,k,n} = \mathbb{E}[(d_{l,k,n} - \hat{d}_{l,k,n})^{2}] = |1 - \mathbf{w}_{l,k,n}^{H} \mathbf{H}_{b_{k},k,n} \mathbf{m}_{l,k,n}|^{2} + \sum_{(j,i) \neq (l,k)} |\mathbf{w}_{l,k,n}^{H} \mathbf{H}_{b_{i},k,n} \mathbf{m}_{j,i,n}|^{2} + \mathring{N}_{0}$$
(8b)

JSFRA Formulation (MSE Reformulation)

- ► The nonconvex constraint is approximated by a sequence of convex constraints, which is performed using SCA technique
- ▶ The iterative procedure is carried out until convergence or for suitable number of iterations
- ► The above reformulation works only with the MMSE receiver

Distributed Solutions

Distributed Methods

- Small System centralized approach is viable, provided channel remains constant for multiple transmission slots
- ► However, overhead involved in the centralized design scales up significantly as the network size grows
- Distributed approaches based on primal decomposition or ADMM can be used to reduce the signaling requirements
- Signaling involved in the design of precoders are only scalar interference variables
- Approximated convex subproblem in each SCA step is performed via distributed methods

Primal Decomposition Method

- Precoder design is based on master-slave approach
- ► Interference to the neighboring BS users are bounded by a scalar variable, treated as a constant in subproblems
- ► The interference thresholds are determined by the master problem and used in each slave subproblem constraint as

$$\zeta_{l,k,n,b} \ge \sum_{i \in \mathcal{U}_b} \sum_{j=1}^{L} |\mathbf{w}_{l,k,n}^{\mathbf{H}} \mathbf{H}_{b,k,n} \mathbf{m}_{j,i,n}|^2 \ \forall b \in \bar{\mathcal{B}}_{b_k}.$$
 (9)

ADMM based Decomposition Method

- The ADMM is superior to other distributed schemes in terms of the convergence speed
- ADMM includes an additional quadratic term

$$\|\mathbf{v}_{k}\|_{q} + \sum_{l,k,n} \nu_{l,k,n}^{(j)} \left(\zeta_{b} - \zeta_{b}^{(j)}\right) + \frac{\rho}{2} \|\zeta_{b} - \zeta_{b}^{(j)}\|^{2}$$
 (10)

in objective, where $\zeta_b^{(j)}$ is global consensus variable

- \triangleright $\zeta_{I,k,n,b}$ in (9) is treated as an optimization variable in ADMM
- Consensus variables are updated upon exchanging corresponding local $\zeta_{l,k,n,b}$'s among coordinating BSs

KKT based Distributed Solution

- Decentralization methods involve significant signaling exchanges via backhaul
- Overhead is large for multi-antenna receivers iterative design should reduce the backlogged packets significantly in first few iterations
- ► To achieve that, we design precoders by solving the Karush-Kuhn-Tucker (KKT) equations of the JSFRA problem via MSE reformulation
- Group update of all involved optimization variables to speed up the convergence of precoder design

Simulation Results

Centralized Solutions

Figure: System Model - $\{N, N_B, K, N_T, N_R\} = \{2, 3, 9, 4, 2\}$

Distributed Solutions

Figure: System Model - $\{N, N_B, K, N_T, N_R\} = \{3, 2, 8, 4, 1\}$

Performance of KKT based Approach

Figure: System Model - $\{N, N_B, K, N_T, N_B\} = \{5, 2, 8, 4, 1\}$

Time Correlated Fading Performance

Figure: System Model - $\{N, N_B, K, N_R\} = \{3, 2, 8, 1\}$ after 250 transmissions

Conclusions

Conclusions

- ► We studied cross layer problem of designing transmit and receive beamformers based on the number of residual packets
- Since the problem is nonconvex, we solve the problem iteratively by solving convex subproblems in each iteration
- We also proposed a practical way of implementing the precoder design in a distributed manner by solving the KKT expressions
- ► Extensions of the proposed work in time-correlated fading scenario with limited number of information exchange cycle is in progress

Questions!

