Public Policy 529 Midterm Exam Winter 2017

Student ID number (8-digits):
1. Suppose that the number of hours people sleep has a normal distribution with a mean of 7 and a standard deviation of 1.2.
(a) What percentage of people sleep less than 7.5 hours?
(b) What percentage of people sleep less than 5.5 hours?
(c) What percentage of people sleep 6 to 8 hours?

	f you were to take repeated samples of size n =200 from this population, calculating the ample mean each time, in what range would 95% of the sample means fall?
	ecent survey of people who voted for Donald Trump (n =712), 51% of respondents say that owling Green Massacre shows why Trump's immigration policy is needed.
(a) C	Calculate a 99% confidence interval for this estimate.
(b) I:	nterpret this confidence interval.

3. The table below is the joint probability distribution for two variables in the American population. One variable indicates whether a person was born in this country (yes, no). The other variable shows opinions on how important it is to speak English (very, fairly, not very, not at all).

Importance of	Born	in this C	ountry?
Speaking English	Yes	No	Total
Very	.62	.11	.73
Fairly	.18	.03	.21
Not Very	.04	.00	.04
Not at All	.02	.00	.02
Total	.86	.14	1.00

- (a) What are the measurement levels of these two variables?
- (b) What is P(Yes or Fairly)?

(c) What is P(No and Very)?

(d) What is P(Very | Yes)? What is P(Very | No)?

(e) Are these two variables independent of each other? How do you know?

4. In random sample survey, the mean amount of time spent commuting to work or school w minutes (s =15; n =900).	as 25
(a) Construct a 95% confidence interval for this mean.	
(b) Interpret this confidence interval	
(b) Interpret this confidence interval.	
5. Answer true or false to the following questions.	
(a) According to the Central Limit Theorem, the sampling distribution of the sample me always normal even if the population distribution is highly skewed.	ean is
(b) A survey researcher calls only during daytime hours, producing a sample with a high portion of retirees. The responses to the survey questions thus contain response bias.	ı pro-
(c) The larger the standard deviation of a variable in the population, the lower the lever precision when estimating the population mean with a sample mean.	vel of
(d) If a measurement strategy has validity, but low reliability, the consequence is bias.	

6.	When people buy a used car that turns out to have lots of mechanical problems, they call it a "lemon." Suppose that 20% of used cars on the market are lemons. Before buying, you can take a car to a mechanic to check it out. If the car is a lemon, there is an 80% chance that the mechanic will identify it as a lemon. On the other hand, the mechanic will wrongly identify 15% of good cars as lemons.
	(a) Make a joint probability distribution table or probability tree to represent this situation.
	(b) What is the probability that a car taken to the mechanic will be called a lemon?
	(c) What is the probability that a car is actually a lemon if the mechanic says it is okay?

7. The table below shows answers to a survey question that asks how often the respondent trusts other people.

How Often Trust Others?	Freq.	Percent	Cum.
1. Always Trust	37	2.99	2.99
2. Usually Trust	427	34.49	37.48
3. Usually Do Not Trust	628	50.73	88.21
4. Never Trust	146	11.79	100.00
Total	1,238	100.00	

- (a) What is the measurement level of this variable?
- (b) Calculate all appropriate measures of central tendency.

(c) What proportion of people say that they always or usually trust others?

(d) Find an 80% confidence interval for the proportion that you found in part (c).

List of Formulas

Descriptive and Distributional Statistics

$$\bar{y} = \frac{\sum y_i}{n}$$

$$s^2 = \frac{\sum (y_i - \bar{y})^2}{n-1}$$

$$Z = \frac{y - \mu_y}{\sigma}$$

$$IQR = Q_3 - Q_1$$

$$SS = \sum (y_i - \bar{y})^2$$

$$s = \sqrt{\frac{\sum (y_i - \bar{y})^2}{n - 1}}$$

$$\sigma_{\bar{y}} = \frac{\sigma}{\sqrt{n}}$$

Probability

$$P(B|A) = \frac{P(A \text{ and } B)}{P(A)}$$

$$P(A \text{ and } B) = P(A) \times P(B|A)$$

$$P(\sim A) = 1 - P(A)$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$P(A \text{ and } B) = P(A) \times P(B)$$

Confidence Intervals and Significance Tests

$$Z \text{ or } t = \frac{\bar{y} - \mu_0}{\hat{\sigma}_{\bar{y}}}$$

$$\hat{\sigma}_{\hat{\pi}} = \sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n}}$$

$$Z = \frac{\hat{\pi} - \pi_0}{\hat{\sigma}_{\pi_0}}$$

$$c.i. = \bar{y} \pm t \cdot \hat{\sigma}_{\bar{y}}$$

$$\hat{\sigma}_{\bar{y}} = \frac{s}{\sqrt{n}}$$

$$c.i. = \bar{y} \pm Z \cdot \hat{\sigma}_{\bar{v}}$$

$$\hat{\sigma}_{\pi_0} = \sqrt{\frac{\pi_0(1-\pi_0)}{n}}$$

$$\text{c.i.} = \hat{\pi} \pm Z \cdot \hat{\sigma}_{\hat{\pi}}$$

TABLE A: Normal curve tail probabilities. Standard normal probability in right-hand tail (for negative values of z, probabilities are found by symmetry)

	Second Decimal Place of z									
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641
0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0722	.0708	.0694	.0681
1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
1.8	.0359	.0352	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
2.9	.0019	.0018	.0017	.0017	.0016	.0016	.0015	.0015	.0014	.0014
3.0 3.5 4.0 4.5 5.0	.00135 .000233 .0000317 .00000340 .000000287									

Source: R. E. Walpole, Introduction to Statistics (New York: Macmillan, 1968).

TABLE B: t Distribution Critical Values

			Confider	nce Level					
	80%	90%	95%	98%	99%	99.8%			
	Right-Tail Probability								
df	t.100	t.050	t.025	t.010	t.005	t.001			
1	3.078	6.314	12.706	31.821	63.656	318.289			
2 3	1.886	2.920	4.303	6.965	9.925	22.328			
	1.638	2.353	3.182	4.541	5.841	10.214			
4	1.533	2.132	2.776	3.747	4.604	7.173			
5	1.476	2.015	2.571	3.365	4.032	5.894			
6	1.440	1.943	2.447	3.143	3.707	5.208			
7	1.415	1.895	2.365	2.998	3.499	4.785			
8	1.397	1.860	2.306	2.896	3.355	4.501			
9	1.383	1.833	2.262	2.821	3,250	4.297			
10	1.372	1.812	2.228	2.764	3.169	4.144			
11	1.363	1.796	2.201	2.718	3.106	4.025			
12	1.356	1.782	2.179	2.681	3.055	3.930			
13	1.350	1.771	2.160	2.650	3.012	3.852			
14	1.345	1.761	2.145	2.624	2.977	3.787			
15	1.341	1.753	2.131	2.602	2.947	3.733			
16	1.337	1.746	2.120	2.583	2.921	3.686			
17	1.333	1.740	2.110	2.567	2.898	3.646			
18	1.330	1.734	2.101	2.552	2.878	3.611			
19	1.328	1.729	2.093	2.539	2.861	3.579			
20	1.325	1.725	2.086	2.528	2.845	3.552			
21	1.323	1.721	2.080	2.518	2.831	3.527			
22	1.321	1.717	2.074	2.508	2.819	3.505			
23	1.319	1.714	2.069	2.500	2.807	3.485			
24	1.318	1.711	2.064	2.492	2.797	3.467			
25	1.316	1.708	2.060	2.485	2.787	3.450			
26	1.315	1.706	2.056	2.479	2.779	3.435			
27	1.314	1.703	2.052	2.473	2.771	3.421			
28	1.313	1.701	2.048	2.467	2.763	3.408			
29	1.311	1.699	2.045	2.462	2.756	3.396			
30	1.310	1.697	2.042	2.457	2.750	3.385			
40	1.303	1.684	2.021	2.423	2.704	3.307			
50	1.299	1.676	2.009	2.403	2.678	3.261			
60	1.296	1.671	2.000	2.390	2.660	3.232			
80	1.292	1.664	1.990	2.374	2.639	3.195			
100	1.290	1.660	1.984	2.364	2.626	3.174			
∞	1.282	1.645	1.960	2.326	2.576	3.091			

Source: "Table of Percentage Points of the *t*-Distribution." Computed by Maxine Merrington, Biometrika, 32 (1941): 300. Reproduced by permission of the Biometrika trustees.