Machine learning to efficiently linearize system for control

Outline

Efficiency

Dual method

Nengo questions

Efficiency in data

32.5

35.0

37.5

40.0

42.5

45.0

47.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0

Lorentz system

$$||W_{true} - W_{expe}||$$

Efficiency in data

Tanh system

Efficiency in data

$$\sum_{i=1}^{5} |f_{true} - f_{expe}|$$
 comparison of the 5 lowest frequency

• => Partial observation : $(x_k, y_k) K$ samples

• Real number of dimension: n

• Library functions : (h_k) N functions

• Assume $K \leq N$

Gaussian radial basis function

$$g_k(\mathbf{x}) = e^{-\gamma \|\mathbf{x} - \mathbf{x}_k\|^2}$$

$$P_X, P_Y = g_k(x), g_k(y)$$

$$U = P_Y P_X^{\dagger}$$

$$\widetilde{\mathbf{L}}_{\mathbf{data}} = \frac{1}{T_s} \log(\mathbf{P}_{\mathbf{y}} \, \mathbf{P}_{\mathbf{x}}^{\dagger})$$

Gaussian radial basis function

$$g_k(\mathbf{x}) = e^{-\gamma \|\mathbf{x} - \mathbf{x}_k\|^2}$$

$$P_X, P_Y = g_k(x), g_k(y)$$

$$U = P_Y P_X^{\dagger}$$

$$\widetilde{\mathbf{L}}_{\mathbf{data}} = \frac{1}{T_s} \log(\mathbf{P}_{\mathbf{y}} \, \mathbf{P}_{\mathbf{x}}^{\dagger})$$

$$\begin{pmatrix} \mathbf{F}(\mathbf{x}_1) \cdot \nabla f(\mathbf{x}_1) \\ \vdots \\ \mathbf{F}(\mathbf{x}_K) \cdot \nabla f(\mathbf{x}_K) \end{pmatrix} = \begin{pmatrix} Lf(\mathbf{x}_1) \\ \vdots \\ Lf(\mathbf{x}_K) \end{pmatrix} \approx \widetilde{\mathbf{L}}_{\mathbf{data}} \begin{pmatrix} f(\mathbf{x}_1) \\ \vdots \\ f(\mathbf{x}_K) \end{pmatrix}$$

$$\left(egin{array}{c} \mathbf{\hat{F}}(\mathbf{x}_1)^T \ draphi \ \mathbf{\hat{F}}(\mathbf{x}_K)^T \end{array}
ight) pprox \widetilde{\mathbf{L}}_{\mathbf{data}} \left(egin{array}{c} \mathbf{x}_1^T \ draphi \ \mathbf{x}_K^T \end{array}
ight)$$

Assume

 N_F new N

$$\hat{F}_j(\mathbf{x}_k) = \sum_{l=1}^{N_F} \hat{w}_j^l h_l(\mathbf{x}_k)$$

j dimension of x

$$\begin{pmatrix} \hat{F}_{j}(\mathbf{x}_{1}) \\ \vdots \\ \hat{F}_{j}(\mathbf{x}_{K}) \end{pmatrix} = \mathbf{H}_{\mathbf{x}} \begin{pmatrix} \hat{w}_{1}^{j} \\ \vdots \\ \hat{w}_{N_{F}}^{j} \end{pmatrix}$$

$$\mathbf{H}_{\mathbf{x}} = \left(egin{array}{c} \mathbf{h}(\mathbf{x}_1)^T \ dots \ \mathbf{h}(\mathbf{x}_K)^T \end{array}
ight)$$

$$\min_{\mathbf{w} \in \mathbb{R}^{N_F}} \left\| \mathbf{H}_{\mathbf{x}} \mathbf{w} - \begin{pmatrix} \hat{F}_j(\mathbf{x}_1) \\ \vdots \\ \hat{F}_j(\mathbf{x}_K) \end{pmatrix} \right\|_2^2 + \rho \|\mathbf{w}\|_1$$

Solutions:

$$w = H_{\chi}^{\dagger} F_{j}$$

Regression pytorch

Partial observation

• Real state X = (x,y,z) measure $\tilde{X} = (x_0 \dots x_{-12})$

• Assume $\exists T$, $X = T(\tilde{X})$

Objective: learning T with the dual method

Learning transformation T

$$\widetilde{\mathbf{L}}_{\mathbf{data}} = \frac{1}{T_s} \log(\mathbf{P}_{\mathbf{y}} \, \mathbf{P}_{\mathbf{x}}^{\dagger})$$

$$F = L.T(\tilde{X})$$

$$H = h(T(\tilde{X}))$$

$$\min_{T,\mathbf{w}\in\mathbb{R}^{N_F}} \left\| \mathbf{H}_{\mathbf{x}}\mathbf{w} - \left(egin{array}{c} \hat{F}_j(\mathbf{x}_1) \\ draightarrow \\ \hat{F}_j(\mathbf{x}_K) \end{array}
ight)
ight\|_2^2 + \ldots$$

Results

Learning T and

$$w = H_{x}^{\dagger} F_{j}$$

```
[[ 0. , 0. , 0. ],
[-10. , 28. , 0. ],
[ 10. , -1. , 0. ],
[ 0. , 0. , -2.66666667],
[ 0. , 0. , 0. ],
[ 0. , 0. , 1. ],
[ 0. , -1. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
```

Giving true coefficients,

Results

No information on coefficients, loss from the paper

```
[[-2.5555,
            8.1897,
                     6.9786],
 [ 5.9662,
            7.6933,
                     7.4589],
            8.3858,
                     6.5323],
  4.9569,
            2.9042,
  7.6605,
                     4.9652],
  6.4618,
            6.2735,
                     3.6411],
  9.9235,
            5.9405,
                     4.6084],
                     6.2848],
  7.4591,
            8.0647,
 [ 3.7401,
            0.9815,
                    1.3724],
  5.2372,
            7.3788,
                     5.1739],
            8.1022,
 [-1.2567]
                    1.3520]]
```


Results

• Learning knowing w_{true}

Nengo

- Weights?
- Decoder?

Questions?