6. Cascode Amplifiers and Cascode Current Mirrors

Sedra & Smith Sec. 7 (MOS portion)

(S&S 5th Ed: Sec. 6 MOS portion & ignore frequency response)

Cascode amplifier is a popular building block of ICs

Cascode Configuration

Signal circuit: Current source becomes an open circuit

Cascode amplifier is a two-stage, CS-CG configuration

Small Signal Model of a Cascode Amplifier

- \blacktriangleright Lengthy analysis to find A_v (and a complicated equation). Simpler to compute open-loop gain (A_{vo}) and R_o .
- \triangleright Text book introduces G_m method to find A_{vo} (See S&S Sec. 1)
- \triangleright Here will find A_{vo} directly from the small signal model.
- However, the solution of and insight into Cascode amplifiers are best obtained using fundamental MOS configurations!

Note that A_{vo} and R_o calculated here are meant to find A_v and guide the choice of the active load. A_{vo} and R_o should be re-calculated for a practical circuit (see slides 14 & 15)

Open-Loop gain of a Cascode amplifier (using small signal model)

Output Resistance of a Cascode amplifier (using small signal model)

Set $v_i = 0$, attach a voltage source v_x , compute i_x , $R_o = v_x / i_x$

 $v_i = v_{gs1} = 0 \rightarrow g_{m1} \ v_{gs1}$ current source becomes open circuit

By KCL around Q2

KVL:
$$v_{gs2} = -i_x r_{o1}$$

KCL:
$$i_2 = i_x - g_{m2}v_{gs2} = i_x + i_x g_{m2}r_{o1} = i_x (1 + g_{m2}r_{o1})$$

KVL:
$$v_x = i_2 r_{o2} + i_x r_{o1} = i_x (1 + g_{m2} r_{o1}) r_{o2} + i_x r_{o1}$$

 $v_x = i_x [(1 + g_{m2} r_{o1}) r_{o2} + r_{o1}]$

$$R_o = \frac{v_x}{i_x} = r_{o1} + r_{o2} + g_{m2} r_{o1} r_{o2}$$

Note:
$$A_v = A_{vo} \times \frac{R'_L + R_o}{R'_L}$$

Gain of a Cascode Amplifier (using MOS Fundamental Configurations)

Cascode (signal circuit)

CG stage

CS stage

$$A_{v2} = v_o / v_1 \approx g_{m2}(r_{o2} \parallel R_L')$$

$$A_{v1} = v_1 / v_i = -g_{m1}(r_{o1} || R_{i2})$$

CG stages "reduces" the load seen by the CS stage by
$$g_{m2}r_{o2}$$

$$R_{L1} = R_{i2} = \frac{r_{o2} + R_L'}{1 + g_{m2}r_{o2}}$$

$$R_{L1} = R_{i2} = \frac{r_{o2} + R'_{L}}{1 + g_{m2}r_{o2}}$$

$$A_{v} = v_{o} / v_{i} = A_{v1} A_{v2} = -g_{m1} g_{m2} (r_{o1} || R_{i2}) (r_{o2} || R'_{L})$$

$$\infty$$
)

Note: Open Loop Gain:
$$(R_L' \to \infty)$$
 $R_{L1} = R_{i2} = \frac{r_{o2} + R_L'}{1 + g_{o2} r_{o2}} = \infty \to A_{vo} = -g_{m1} r_{o1} g_{m2} r_{o2}$

Output Resistance of a Cascode amplifier (from Elementary R forms)

Cascode Amplifier needs a large load

$$A_{v2} = g_{m2}(r_{o2} || R_L')$$

$$A_{v2} = g_{m2}(r_{o2} \parallel R'_{L})$$

$$R_{L1} = R_{i2} = \frac{r_{o2} + R'_{L}}{1 + g_{m2}r_{o2}}$$

$$A_{v1} = -g_{m1}(r_{o1} \parallel R_{i2})$$

$$R_{o} \approx g_{m2} r_{o1} r_{o2}$$

$$A_{v1} = -g_{m1}(r_{o1} \parallel R_{i2})$$

$$R_o \approx g_{m2} r_{o1} r_{o2}$$

For simplicity assume r_{o1} = r_{o2} = r_o and $oldsymbol{g}_{m1}$ = $oldsymbol{g}_{m2}$ = $oldsymbol{g}_m$

$$R'_L$$

$$A_{v2}$$
(CG)

$$R_{i2} = R_{L1}$$

$$A_{v1}$$
 (CS)

$$R_{L}'$$
 $A_{v2}(CG)$ $R_{i2} = R_{L1}$ $A_{v1}(CS)$ $A_{v} = A_{v1} A_{v2}$

$$\infty$$

$$g_m r_o$$

$$\infty$$

$$-g_m r_o$$

$$-g_m r_o - (g_m r_o)^2$$

Max. Gain

$$(g_m r_o) r_o = R_o \qquad g_m r_o$$

$$g_m r_o$$

$$r_o$$

$$-0.5g_m r_o$$

$$r_o - 0.5g_m r_o - 0.5(g_m r_o)^2$$

Practical Gain

$$r_o$$

$$0.5 g_m r_o \qquad 2/g_m \qquad -2 \qquad -g_m r_o$$

$$2/g_m$$

$$-2$$

$$-g_m r_o$$

Same gain as a single CS Amp.

- For comparison, a two-stage CS-amplifier (CS-CS) has a gain of $0.5~(g_m r_o)^2$ for $R'_L = r_o$ and a gain of $(g_m r_o)^2$ for $R'_L = g_m r_o^2$.
 - o Cascode amplifier needs a large load $(R'_L = g_m r_o^2)$.

Cascode amplifier needs a large load to get a high gain

$$R'_{L} = r_{o3}$$

$$A_{v} \approx -g_{m}r_{o}$$

- Gain did not increase compared to a CS amplifier.
- This is still a useful circuit because of its high gain-bandwidth (we see this later).
- > To get a high gain, $A_v = -0.5(g_m r_o)^2$, we need to increase the small-signal resistance of the current mirror to $\approx (g_m r_o) \ r_o$
 - o Cascode current mirror

Cascode Current mirror

- $\begin{array}{l} > \quad \text{Identical MOS: Same } \mu C_{ox} \text{ and } V_t \text{ , } \& \ \frac{(W \, / \, L)_4}{(W \, / \, L)_3} = \frac{(W \, / \, L)_2}{(W \, / \, L)_1} \\ & \circ \ v_{GS1} = v_{GS2} \ \& \ v_{GS3} = v_{GS4} \end{array}$
- Usually: $(W/L)_1=(W/L)_3$ and $(W/L)_2=(W/L)_4$ o $v_{GS1}=v_{GS2}=v_{GS3}=v_{GS4}=v_{GS}$
- Q1 and Q3 are <u>always</u> in saturation
- Q2 and Q4 both have to be in saturation for current mirror to work

$$\circ V_{DS2} > V_{GS} - V_{t}$$

$$\circ V_{DS4} > V_{GS} - V_{t}$$

Straight forward to show
$$I_o = \frac{(W/L)_2}{(W/L)_1} I_{ref}$$

Exercise: Show that a single current mirror (no cascoding) works only if $V_{D2} > V_{\rm OV} - V_{SS}$ and a cascode current mirror requires $V_{D4} > 2V_{OV} - V_{SS}$

Small signal resistance of a cascode current mirror is quite large

 $\overline{R} = r_{o4}(1 + g_{m4}r_{o2}) + r_{o2}$

Transistor numbering is different in different circuits

Be careful in applying formulas!

It is best to use elementary R forms to find \overline{R} instead of formula above.

PMOS cascode current mirror is similar to NMOS version

NMOS Cascode current mirror

D_4 -V_{SS}

PMOS Cascode current mirror

Cascode amplifier with a cascode current mirror/active load

Exercise: Draw the circuit for a PMOS cascode with a cascode current mirror (cascode current mirror would be made of NMOS).

Gain of a Cascode amplifier with a cascode current mirror/active load

$$A_{v2} = v_o / v_1 \approx g_{m2}(r_{o2} \parallel R_L') \approx g_{m2}r_{o2}$$

$$R_{L1} = R_{i2} = \frac{r_{o2} + r_{o3}(1 + g_{m3}r_{o4}) + r_{o4}}{1 + g_{m2}r_{o2}}$$

$$g_{m3}r_{o3}r_{o4}$$

$$\approx \frac{g_{m3}r_{o3}r_{o4}}{g_{m2}r_{o2}}$$

$$A_{v1} = v_1 / v_i = -g_{m1}(r_{o1} \parallel \frac{g_{m3}r_{o3}r_{o4}}{g_{m2}r_{o2}})$$

$$A_{vo} = A_{v1}A_{v2} = -\frac{g_{m1}g_{m2}g_{m3}r_{o1}r_{o2}r_{o3}r_{o4}}{g_{m2}r_{o1}r_{o2} + g_{m3}r_{o3}r_{o4}}$$

Value for the same g_m and r_o

$$A_{v2} \approx g_m r_o$$

$$R_{L1} = R_{i2} \approx r_o$$

$$A_{v1} = -0.5 g_m r_o$$

$$A_{vo} = -0.5 (g_m r_o)^2$$

Output Resistance of a Cascode amplifier with a cascode current mirror/active load

$$\overline{R}_1 = r_{o3}(1 + g_{m3}r_{o4}) + r_{o4}$$

$$\overline{R}_2 = r_{o2}(1 + g_{m2}r_{o1}) + r_{o1}$$

$$R_o = \overline{R}_1 || \overline{R}_2$$

Value for the same g_m and r_o

$$\overline{R}_{\scriptscriptstyle 1} \approx g_{\scriptscriptstyle m} r_{\scriptscriptstyle o}^2$$

$$\overline{R}_2 \approx g_m r_o^2$$

$$R_o = 0.5 g_m r_o^2$$

Why Cascode Amplifiers are popular?

Cascode Amp.

$$A_{vo} = -0.5 (g_m r_o)^2$$

 $R_o = 0.5 g_m r_o^2$

Drawbacks:

- \blacktriangleright While A_{vo} are similar, Cascode has a very R_o (M Ω level).
 - o should be followed with a CS or CD stage (infinite load for cascode)
 - BJT cascodes are not useful.
- \triangleright Low voltage headroom (V_{DD} across 4 MOS)
 - o Folded cascodes solve this.

Benefits:

- Much better high-frequency response (high gain-bandwidth).*
- > Simpler biasing.

2-stage CS Amp.

$$A_{vo} = +0.25(g_m r_o)^2$$

$$R_o = r_o$$

^{*} We will see this later in our discussion of frequency response.

Folded Cascode increases voltage overhead*

PMOS CG stage Biased with I_2

^{*} Folded cascode only helps the voltage overhead issue for difference amplifiers (see S&S pages 999-1000)