Topología: Tarea #5

Jonathan Andrés Niño Cortés 25 de febrero de 2015

1. Considere la relación de equivalencia sobre \mathbb{R} definida por

$$x \sim y \Leftrightarrow x = y \lor x, y \in \mathbb{Z}.$$

Muestre que \mathbb{R}/\sim es de Fréchet-Urysohn pero no es primero contable.

Demostración. Esta relación de equivalencia induce una función cociente $f: \mathbb{R} \to \mathbb{R}/\sim$ tal que envia un elemento $x \in \mathbb{R}$ a su respectiva clase de equivalencia x_{\sim} . Y sabemos que X es abierto en la topología de \mathbb{R}/\sim si y solo si $f^{-1}(X)$ es abierto en \mathbb{R} . De esta definición, se deduce que f es continua.

Primero demostremos que \mathbb{R}/\sim es de Fréchet-Urysohn.

Tome cualquier conjunto A de \mathbb{R}/\sim . Primero vamos a demostrar que $f(\overline{f^{-1}(A)}) = \overline{A}$. La contenencia \subseteq esta dada porque f es continua, luego $f(\overline{f^{-1}(A)}) \subseteq \overline{f(f^{-1}(A))} = \overline{A}$. Para la otra contenencia tome un elemento $x_{\sim} \in \overline{A}$, luego todo vecindario de x_{\sim} interseca a A. Si $x \neq 0_{\sim}$ entonces $f^{-1}(x_{\sim}) = \{x\}$ y tenemos que todo vecindario U de x que no contenga a níngun entero es saturado y por lo tanto f(U) es un vecindario de x_{\sim} de donde concluimos que interseca a A y por lo tanto U debe intersecar a $f^{-1}(A)$. Si U contiene a un elemento de \mathbb{Z} , siempre se puede tomar una vecindad V dentro de esta vencindad que no contenga níngun punto de \mathbb{Z} . Por ejemplo, podemos tomar una bola centrada en x tal que su radio sea menor a $\min(\lceil x \rceil - x, x - \lfloor x \rfloor)$ y que este contenida en U y por lo anterior $V \cap f^{-1}(A) \neq \emptyset$ y por lo tanto $U \cap f^{-1}(A) \neq \emptyset$.

Ahora, para el caso en que $x_{\sim} = 0_{\sim}$, tomemos $f^{-1}(\{0_{\sim}\}) = \mathbb{Z}$. Sea U una vecindad de 0_{\sim} . Entonces la preimagen, $f^{-1}(U)$ es un conjunto abierto en \mathbb{R} tal que contiene a \mathbb{Z} y además tenemos que $f^{-1}(A) \cap f^{-1}(U) \neq \emptyset$. Entonces debe existir un $p \in \mathbb{Z}$ tal que \mathbb{Z} esta en la clausura de $f^{-1}(A)$. Supongamos por contradicción que este no es el caso. Luego por cada entero z existe un vecindario V_z tal que $f^{-1}(A) \cap V_z = \emptyset$. Si tomamos $V = \bigcup_{z \in \mathbb{Z}} V_z$, vemos que es un abierto saturado pues se puede ver como la unión de la clase de equivalencia de los enteros y las clases de equivalencia de los demás puntos que son sus respectivos singletons. Luego f(V) sería una vecindad de 0_{\sim} que no interseca a A contradiciendo el hecho que $0_{\sim} \in \overline{A}$. Entonces el dicho elemento p existe y por lo tanto $f(p) = 0_{\sim} \in f(\overline{f^{-1}(A)})$.

Por lo demostrado anteriormente, para cualquier $x \in \overline{A}$ existe un $y \in \overline{f^{-1}(A)}$ tal que f(y) = x. Por otro lado \mathbb{R} es metrizable y por lo tanto es de Fréchet-Urysohn. Entonces existe una sucesión $(a_n) \subseteq f^{-1}(A)$ que converge a y. Finalmente, por el Teorema 21.3 del Munkres la sucesión $f(a_n) \subseteq A$ converge a f(y) = x. Con esto concluimos que \mathbb{R}/\sim es de Fréchet-Urysohn.

Ahora para demostrar que no es primero contable vamos a suponer que este es el caso y vamos a utilizar un argumento de diagonalización para llegar a una contradicción.

Entonces suponga por contradicción que \mathbb{R}/\sim es primero contable. En particular para 0_{\sim} existe una familia contable de vecindades \mathcal{B} tal que para cualquier vecindario U de 0_{\sim} , existe un $B \in \mathcal{B}$ tal que $B \subseteq U$. Sea $(B_n)_{n \in \mathbb{N}}$ una enumeración de \mathcal{B} . Además, para cada $B_n \in \mathcal{B}$ se cumple que $\mathbb{Z} \subseteq f^{-1}(B_n)$, y además que $f^{-1}(B_n)$ es abierto. Luego para cada $z \in \mathbb{Z}$ existe una bola abierta (con la métrica usual de \mathbb{R}) de radio menor a 1/2 tal que esta contenida en $f^{-1}(B)$. \mathbb{Z} también es enumerable, luego existe una enumeración $(B_{\epsilon_{nm}}(z_m))_{m \in \mathbb{N}}$ de las bolas mencionadas anteriormente.

Ahora defina el conjunto V como

$$V = \bigcup_{n \in \mathbb{N}} B_{\epsilon_{nn}/2}(z_n)$$

Claramente f(V) es un vecindario de 0_{\sim} pues es la imagen de un conjunto saturado abierto que contiene a todos los enteros. Vamos a demostrar que ningún B_n es subconjunto de f(V). Tome cualquier B_n , entonces $z_n + 3/4\epsilon_{nn}$ pertenece a $f^{-1}(B_n)$ pero no pertenece a V, luego $B_n \not\subseteq f(V)$. Llegamos a una contradicción con el hecho que debía existir un $B \in \mathcal{B}$ que estuviera contenido en f(V). Concluimos que no puede existir una familia contable con esta propiedad y por lo tanto \mathbb{R}/\sim no es primero contable.

2. Suponga que U es un subespacio abierto de \mathbb{R}^n . Pruebe que U es conexo si y sólo si U es conexo por caminos. Muestre que si n=1, la hipótesis de que U es abierto se puede omitir.

Demostración. Un lado de la equivalencia esta dado en el Munkres. Suponga que U es conexo por caminos y tome $A \cup B$ una separación de U. Sea $f : [a,b] \to U$ cualquier camino en U. Por un teorema tenemos que f([a,b]) es conexo, pues es la imagen continua de un conjunto conexo. Pero entonces tenemos que $f([a,b]) \subseteq A$ o $f([a,b]) \subseteq B$. Concluimos que no puede haber ningun camino que conecte a un punto de A con un punto de B, lo que contradice el hecho que U es conexo por caminos.

Para el converso primero vamos a demostrar los siguientes lemas

Lema 1. Sean $x, y, z \in X$ un espacio topológico. Si x, y están conectados por un camino y, z también, entonces x, z están conectados por un camino.

Demostración. Sea $f:[a,b] \to X$ un camino de x a y y $g:[b,c] \to X$ un camino de y a $z.[a,b] \cap [b,c] = \{b\}$ y f(b) = g(b) = y. Además las dos funciones son continuas por lo que podemos usar el lema de pegamiento para contruir la función $h:[a,c] \to X$ tal que h(w) = f(w) si $w \in [a,b]$ y h(w) = g(w) si $w \in [b,c]$ y esta función es continua por lo cual es un camino entre x y z.

Lema 2. Sean $x, y \in X$ un espacio topológico. Si hay un camino de x a y entonces hay un camino de y a x.

Demostración. Sea $f:[a,b] \to X$ un camino de x a y. Si componemos f con la función $g:[a,b] \to [a,b]$ tal que g(c)=a+b-c. que es continua obtenemos la función $h=f\circ g:[a,b] \to X$ tal que es continua y $h(a)=f\circ g(a)=f(a+b-a)=f(b)=y$ y $h(b)=f\circ g(b)=f(a+b-b)=f(a)=x$. Por lo tanto h es un camino de y a x. \square

Ahora, tomese $x \in U$ y defina C_x como el conjunto de los puntos y en U que estan conectados con x por medio de un camino. Primero observemos que $x \in C_x$ pues podemos tomar como camino la función constante f(c) = x, por lo cual C_x no es vacío. Ahora vamos a probar que C_x es abierto. Tome cualquier elemento $y \in C_x$ entonces existe un camino f de x a y. Pero además, como U es abierto, existe una bola abierta centrada en y y contenida en U. En el Munkres mencionan que las bolas abiertas (y cerradas) son conexas por caminos. Luego hay un camino entre y y cualquier otro punto dentro de la bola. Entonces, por el Lema 1 hay un camino entre x y cualquier punto en la bola por lo que la bola esta contenida en C_x y por lo tanto y es punto interior.

Pero también tenemos que C_x es cerrado. Tome cualquier punto y que no este contenido en C_x . Si suponemos que existe una bola de y contenida en U que interseca a C_x entonces podemos tomar un elemento z en la intersección y tendriamos que hay un camino de x a z y de z a y por lo que también habría un camino de x a y. Esto contradice el hecho que $y \notin C_x$. Por lo tanto, cualquier bola abierta contenida en U que contenga a y esta contenida en C_x^C . Concluimos que C_x esta cerrado. Pero U es conexo por lo que los únicos conjuntos que pueden ser cerrado y abiertos son el vacío y U. Pero C_x no es vacío, por lo cual concluimos que $C_x = U$. Finalmente llegamos a que U es conexo por caminos pues para cualquier par de puntos $y, z \in U$ existe un camino de y a x (utilizando el Lema 2) y un camino de x a x por lo que hay un camino de y a x (utilizando el Lema 1).

Para el caso cuando n=1, entonces U sería un subespacio de \mathbb{R} que es un continuo lineal. Vamos a demostrar que la hipotesis de abierto no es necesaria para demostrar que U es conexo por caminos. Sea U un subconjunto conexo de \mathbb{R} y tome $a,b\in U$. Si a=b entonces el camino constante los conecta. Supongamos sin pérdida de generalidad que a < b, pues si hay un camino de a a b entonces por el Lema 2 hay un camino de

b a a. Si tomamos cualquier elemento c tal que a < c < b entonces $c \in U$. Si esto no fuera así entonces $(-\infty,c) \cap U$ y $(c,\infty) \cap U$ sería una separación de U, y U no sería conexo. Entonces si tomamos la función identidad de [a,b] esta sería un camino de a a b. Concluimos que U es conexo por caminos.

3. Sea $p: X \to Y$ una aplicación cociente. Demuestre que si Y y los conjuntos de la forma $p^{-1}(\{y\})$ son conexos, entonces X también es conexo.

Demostración. Suponga por contradicción que X no es conexo y tome $A \cup B$ una separación de X. Entonces para todo $y \in Y$ se cumple que $p^{-1}(y) \subseteq A$ o $p^{-1}(y) \subseteq B$ por la suposición de que estos conjuntos son conexos. Vemos que A y B son conjuntos saturados abiertos. Por lo tanto p(A) y p(B) serían una separación de Y. Esto porque p(A) y p(B) son abiertos, $p(A) \cup p(B) = p(A \cup B) = p(X) = Y$ y $p(A) \cap p(B) = \emptyset$ porque si $y \in p(A) \cap p(B)$, entonces $p^{-1}(y) \subseteq A$ porque A es saturado y $p^{-1}(y) \subseteq B$ porque B es saturado, y esto contradice el hecho que $A \cap B = \emptyset$.

Por lo tanto llegamos a una contradicción con la conexidad de Y. Entonces X debe ser conexo.

- 4. Sea (X, d) un espacio métrico. Para cada $p \in X$ y $\epsilon \in \mathbb{R}^+$, definimos $B_{\epsilon}(p) = \{x \in X : d(p, x) < \epsilon\}$ y $C_{\epsilon}(p) = \{x \in X : d(p, x) \le \epsilon\}$. Para cada afirmación diga si es verdadera o falsa.
 - (a) Para todo $p \in X$ y todo $\epsilon \in \mathbb{R}^+$, $B_{\epsilon}(p)$ es conexo.

Demostración. Falso. Tome $X = \mathbb{Z}$ con la métrica heredada como subespacio de \mathbb{R} que genera la topología discreta y tome $B_2(0)$. Entonces $B_2(0) = \{-1, 0, 1\}$ y claramente $B_2(0)$ es disconexa pues $\{0\}$ sería un clopen diferente de X o vacío contenido en la topología de subespacio de $B_2(0)$.

(b) Si $B_{\epsilon}(p)$ es conexo entonces $C_{\epsilon}(p)$ es conexo.

Demostración. Falso. Tome de nuevo $X = \mathbb{Z}$ con la métrica heredada como subespacio de \mathbb{R} y tome $B_1(0)$. Vemos que $B_1(0) = \{0\}$ es conexo porque todo singleton es conexo. Pero $C_1(0) = \{-1, 0, 1\}$ que como vimos anteriormente no es conexo.

(c) Si $C_{\epsilon}(p)$ es conexo entonces $B_{\epsilon}(p)$ es conexo.

Demostración. Falso. Tome $X = S' - \{(1,0)\}$ el círculo unitario de X sin el punto $\{(1,0)\}$ como subespacio de \mathbb{R}^2 y con la métrica heredada del mismo pero acotada por $\sqrt{2}$ (i.e $\overline{d}(x,y) = \min(d(x,y),\sqrt{2})$ que se demostro en una tarea anterior que es una métrica y que genera la misma topología que d). Entonces

tome la bola $B_{\sqrt{2}}((\sqrt{2}/2,\sqrt{2}/2))$. Se puede ver que esta bola es disconexa, pues existe una separación, a saber el arco abierto entre $(-\sqrt{2}/2,\sqrt{2}/2)$ y (1,0) y el arco abierto de (1,0) a $(\sqrt{2}/2,-\sqrt{2}/2)$. Pero la bola cerrada $C_{\sqrt{2}}((\sqrt{2},\sqrt{2}))=X$ por nuestra métrica. Y X si es conexo pues la función $f:(0,1)\to X$ tal que $f(t)=(\cos(t),\sin(t))$ es una función continua y es sobreyectiva. Por lo tanto, como (0,1) es conexo X también lo es.

(d) Si $B_{\epsilon}(p)$ y $B_{\delta}(q)$ son conexos entonces $B_{\epsilon}(p) \cap B_{\delta}(q)$ es conexo.

Demostración. Falso. Tome X = S' con la métrica heredada como subespacio de \mathbb{R}^2 y tome las bolas $B_{\sqrt{3}}((1,0))$ y $B_{\sqrt{3}}((-1,0))$.

Además recuerde que la función $f:[0,2\pi]\to X$ tal que $f(t)=(\cos(t),\sin(t))$ es una aplicación cociente. De igual manera la función $g:[-pi,pi]\to X$ tal que $g(t)=(\cos(t),\sin(t))$ es otra aplicación cociente.

Entonces la bola $B_{\sqrt{3}}((-1,0))$ sería el arco en sentido antihorario desde $(1/2,\sqrt{3}/2)$ hasta $(1/2,-\sqrt{3}/2)$ y la bola $B_{\sqrt{3}}((1,0))$ sería el arco en sentido antihorario desde $(-1/2,-\sqrt{3}/2)$ hasta $(-1/2,\sqrt{3}/2)$. Las bola centrada en -1 es conexa pues su preimagen sobre la función f sería $(\pi/3,5\pi/3)$ que es conexo. La bola centrada en 1 también también es conexa pues su preimagen por g es el intervalo abierto $(-2\pi/3,2\pi/3)$. Pero la intersección entre estas bolas no es conexa. Sería la unión de dos arcos conexos disyuntos. Por un lado el arco de $(1/2,\sqrt{3}/2)$ a $(-1/2,\sqrt{3}/2)$ y por el otro el arco de $(-1/2,-\sqrt{3}/2)$ a $(1/2,-\sqrt{3}/2)$ y claramente no son conexos pues los dos arcos forman una separación de la intersección.

(e) Si $B_{\epsilon}(p)$ y $B_{\epsilon}(q)$ son conexos y $d(p,q) < 2\epsilon$ entonces $B_{\epsilon}(p) \cup B_{\epsilon}(q)$ es conexo.

Demostración. Falso. Tome $X = \mathbb{Z} - \{-2, 0, 2\}$ y tome las bolas $B_2(-1)$ y $B_2(1)$. Nótese que $d(-1, 1) = 2 < 2\epsilon = 4$. Además, $B_2(-1) = \{-1\}$ y $B_2(1) = \{1\}$ son conexos pues son singletons. Pero $B_2(-1) \cup B_2(1) = \{-1, 1\}$ que no es conexo porque, por ejemplo, el singletón $\{-1\}$ sería un clopen no trivial de $B_2(-1) \cup B_2(1)$.