Problem

As shown in the figure, AB is the diameter of a semicircle and CD is a chord parallel to AB. Connect AD and extend it to meet BE of the perpendicular of AB at E. Draw $EF \perp AC$ and meets the extension of AC at F, F is the foot of perpendicular. Show that AC = CF.

Solution

Since $\angle F = \angle B = 90^\circ$, points A, B, E, and F are concyclic. $\angle AFB = \angle AEB = \gamma$. Since CD//AB, arcs $AC = BD, \angle DAB = \angle CBA = \alpha$. In Rt $\triangle ABE, \alpha + \gamma = 90^\circ$.

In Rt $\triangle BCF$, $\angle FBC+\gamma=90^\circ$. So $\angle FBC=\alpha$. BC is the perpendicular bisector of AF in $\triangle BAF$. So AC=CF.