ARTIFICIAL INTELLIGENCE (AI) FUZZY LOGIC

Shreya Ghosh

Assistant Professor, Computer Science and Engineering IIT Bhubaneswar

FUZZY LOGIC

- Dictionary meaning of fuzzy is not clear, noisy etc
 - Example: Is the picture on this slide is fuzzy?

FUZZY LOGIC

Our world is better described with "Fuzzily"!

MEMBERSHIP FUNCTION

- Imagine you want to describe how hot a day is.
- Classical logic: Yes | No. Fuzzy logic: allows us to say how hot the day is on a scale from 0 to 1.
 - If the temperature is 10°C or below, it's not hot at all, so the membership value is 0.
 - If the temperature is **30°C** or above, it's definitely hot, so the membership value is 1.
 - For temperatures between I0°C and 30°C, it's somewhere in between:For 20°C, it might be 0.5 hot (partially hot).
 - For 25°C, it might be **0.75** hot.

RULES FOR EVALUATING COMPLEX STATEMENTS

- AND condition.
 - Imagine you are deciding whether to go for a walk. You want to go if it is warm AND not raining.
 - If it is 70% warm and 40% not raining, how comfortable would you feel about going for a walk?
 - You would feel **only 40% comfortable** because even though it's somewhat warm, there's a bigger chance of rain.
 - the strength of this "truth" depends on the **weaker** condition, because both have to be satisfied.

RULES FOR EVALUATING COMPLEX STATEMENTS

- OR condition.
 - You want to decide whether to relax. You will relax if it is either sunny OR you have free time. If it is 80% sunny and you have 30% free time, how much would you relax?
 - You would likely relax **80**% because it's mostly sunny, even though you have little free time.
 - the strength of this "truth" depends on the stronger condition.

Huzzy Logic row wet an object satisfies a vague discription.

Truth value is b/w D and I.

Rules for evaluating fuzzy truly, T, Of a complex sentence are $T(A \wedge B) = min(T(A), T(B))$ T(AVB) = max(T(A), T(B))T(TA) = 1 - T(A)

Example: Cardiac Health Management

Fuzzy Rules

- 1. Diet is low AND Exercise is high ⇒ Balanced
- 2. Diet is high OR Exercise is low ⇒ Unbalanced
- 3. Balanced \Rightarrow Risk is low
- 4. Unbalanced ⇒ Risk is high

For a person it is given that:

- Diet = 3000 calories per day
- Exercise = burning 1000 calories per day

What is the risk of heart disease?

$$f_{diet\,high}(x) = \frac{1}{5000}x$$

$$f_{diet\,low}(x) = 1 - \frac{1}{5000}x$$

$$f_{diet\,high}(x) = \frac{1}{5000}x$$

$$f_{diet low}(x) = 1 - \frac{1}{5000}x$$
regation of this

$$f_{diet\,high}(x) = \frac{1}{5000}x$$

$$f_{diet\,low}(x) = 1 - \frac{1}{5000}x$$

For daily calorie intake of 3000:

Membership for Diet-High = 3000 / 5000 = 0.6 Membership for Diet-Low = 0.4

$$f_{exercise\ high}(x) = \frac{1}{2000}x$$

$$f_{exercise\ low}(x) = 1 - \frac{1}{2000}x$$

$$f_{exercise\ high}(x) = \frac{1}{2000}x$$

$$f_{exercise\ low}(x) = 1 - \frac{1}{2000}x$$

For daily calorie burned of 1000:

Membership for Exercise-High = 1000 / 2000 = 0.5 Membership for Exercise-Low = 0.5

RULE EVALUATION

Fuzzy Rules

- 1. Diet is low AND Exercise is high ⇒ Balanced
- 2. Diet is high OR Exercise is low ⇒ Unbalanced
- 3. Balanced \Rightarrow Risk is low
- 4. Unbalanced \Rightarrow Risk is high

Rule Evaluation

Truth(Diet-High) = 0.6

Truth(Diet-Low) = 0.4

Truth(Exercise-High) = 0.5

Truth(Exercise-Low) = 0.5

Diet is low AND Exercise is high ⇒ Balanced

Truth(Balanced) = min { Truth(Diet-Low), Truth(Exercise-High) } = min { 0.4, 0.5 } = 0.4

Diet is high OR Exercise is low ⇒ Unbalanced

Truth(Unbalanced) = max { Truth(Diet-High), Truth(Exercise-Low) } = max { 0.6, 0.5 } = 0.6

Balanced ⇒ Risk is low

Truth(Risk-Low) = Truth(Balanced) = 0.4

Unbalanced ⇒ Risk is high

Truth(Risk-High) = Truth(Unbalanced) = 0.6

Now from this Truth values, we need to get the actual Probability

Next membership function

Fruth value (Risk-high)
surse = 0.6 **Risk-High Evaluation** actual likelihood for heart disease Risk High $f_{risk\,high}(x) = \frac{1}{125}x$ 0.40.2 20 40 60 80 Nont need to see intersections curves

Risk-Low Evaluation

$$T(Risk 10w) = 0.4$$

 $0.4 = 0.8 - \frac{2}{125}$
 $2 = 50$

Defuzzification

$$\int_{0}^{100} fag gregated risk. dz$$
= $\int_{0}^{50} 0.4 dz + \int_{125}^{75} \frac{1}{125} z dz + \int_{0.6}^{100} 0.6 dz$
= $\int_{0}^{50} x \cdot 0.4 dz + \int_{125}^{75} \frac{1}{25} z dz + \int_{50}^{100} 0.6 dz$
= $\int_{0}^{50} x \cdot 0.4 dz + \int_{125}^{75} \frac{1}{25} z dz + \int_{50}^{100} 0.6 dz$
= $\int_{0}^{50} x \cdot 0.4 dz + \int_{125}^{75} \frac{1}{25} z dz + \int_{50}^{100} 0.6 dz$
= $\int_{0}^{50} x \cdot 0.4 dz + \int_{125}^{75} \frac{1}{25} z dz + \int_{50}^{100} 0.6 dz$
= $\int_{0}^{50} x \cdot 0.4 dz + \int_{125}^{75} \frac{1}{25} z dz + \int_{50}^{100} 0.6 dz$
= $\int_{0}^{50} x \cdot 0.4 dz + \int_{125}^{75} \frac{1}{25} z dz + \int_{50}^{100} 0.6 dz$
= $\int_{0}^{50} x \cdot 0.4 dz + \int_{125}^{75} \frac{1}{25} z dz + \int_{50}^{100} 0.6 dz$
= $\int_{0}^{50} x \cdot 0.4 dz + \int_{125}^{75} \frac{1}{25} z dz + \int_{50}^{100} 0.6 dz$
= $\int_{0}^{50} x \cdot 0.4 dz + \int_{125}^{75} \frac{1}{25} z dz + \int_{50}^{100} 0.6 dz$
= $\int_{0}^{50} x \cdot 0.4 dz + \int_{125}^{75} \frac{1}{25} z dz + \int_{50}^{100} 0.6 dz$
= $\int_{0}^{50} x \cdot 0.4 dz + \int_{125}^{75} \frac{1}{25} z dz + \int_{50}^{100} 0.6 dz$
= $\int_{0}^{50} x \cdot 0.4 dz + \int_{125}^{75} \frac{1}{25} z dz + \int_{50}^{100} 0.6 dz$
= $\int_{0}^{50} x \cdot 0.4 dz + \int_{125}^{75} \frac{1}{25} z dz + \int_{50}^{100} 0.6 dz$
= $\int_{0}^{50} x \cdot 0.4 dz + \int_{125}^{75} \frac{1}{25} z dz + \int_{50}^{100} 0.6 dz$
= $\int_{0}^{50} x \cdot 0.4 dz + \int_{125}^{75} \frac{1}{25} z dz + \int_{50}^{75} 0.6 dz$
= $\int_{0}^{50} x \cdot 0.4 dz + \int_{125}^{75} \frac{1}{25} z dz + \int_{125}^{75} z dz + \int_{1$

the person is 47.5%.

Area under this