LABORATORIUM SIECI KOMPUTEROWYCH

Data wykonania ćwiczenia:	11.05.2023
Rok studiów:	2
Semestr:	4
Grupa studencka:	2
Grupa laboratoryjna:	2В

Ćwiczenie nr. 11

Temat: Budowanie sieci w oparciu o przełącznik i router

Osoby wykonujące ćwiczenia:

1. Igor Gawłowicz

Katedra Informatyki i Automatyki

1. Określenie właściwości fizycznych urządzeń pracujących w intersieci

Po wciśnięciu na router o nazwie **East** możemy zobaczyć jego fizyczną formę, z której jesteśmy w stanie wyczytać wszystkie dostępne porty na tylnym panelu urządzenia takie jak:

Ethernet, Serial czy Vlan

Następnie z konsoli CLI możemy otrzymać dokładne dane: \

East>show ip interface	IP-Address	OK? Method	l Status
	IF-Addi ESS	OK: MECHOC	1 Status
Protocol			
GigabitEthernet0/0	172.30.1.1	YES NVRAM	up
down			
GigabitEthernet0/1	172.31.1.1	YES NVRAM	up
down			
Serial0/0/0	10.10.10.1	YES NVRAM	down
down			
Serial0/0/1	unassigned	YES NVRAM	down
down			
Vlan1	172.29.1.1	YES NVRAM	up
down			

Po wprowadzeniu polecenia **show interface gigabitethernet 0/0** *alternatywnie dla każdego z powyższych*

Dla portu z powyższego polecenia możemy odczytać że domyślna szerokość pasma dla tego portu to 1000000 Kbit.

Dla portu seryjnego domyślna szerokość to 1544 Kbit

Jest jeszcze jedna wyróżniająca się rzecz w naszym routerze, którą są złącza rozszerzeń w tym przypadku mamy je 4. Dla porównania w Switchu 2 mamy 5 portów rozszerzeń. \

2. Wybierz poprawne moduły dla połączeń

W sytuacji w której mamy połączyć 3 komputery do naszego routera bez możliwości użycia switcha możemy wykorzystać nasze wejścia rozszerzeniowe HWIC-4ESW. W ten sposób moglibyśmy podłączyć 4 hostów.

Aby zapewnić gigabitowe połączenie optyczne pomiędzy switchem 2 i 3 możemy wykorzystać moduł PT-SWITCH-NM-1CGE.

Wracając do routera możemy sprawdzić nasz wybór poprzez dodanie naszego modułu do urządzenia przeciągając go. Jednak najpierw powinniśmy wyłączyć router. Po podłączeniu nasz router powinien wyglądać w sposób następująćy.

Taka sama sytuacja z naszym switchem.

Możemy teraz zobaczyć że nasz moduł został umieszczony w 5 złączu

	Interface	IP-Address	OK? Method Status
Proto	ocol		
	FastEthernet0/1	unassigned	YES manual down
down		J	
	FastEthernet1/1	unassigned	YES manual down
down			
	FastEthernet2/1	unassigned	YES manual down
down			
	GigabitEthernet3/1	unassigned	YES manual down
down			
	FastEthernet4/1	unassigned	YES manual down
down	C: ::E! E/4		VEC 1 1
d =	GigabitEthernet5/1	unassigned	YES manual down
down	Vlan1	unassianod	VEC manual administratively down
down	VIAIII	unassigned	YES manual administratively down

3. Łączenie urządzeń

Po połączeniu całej sieci urządzeń powiniśmy otrzymać coś takiego:

Interface	IP-Address	OK? Method	Status	
Protocol				
GigabitEthernet0/0	172.30.1.1	YES NVRAM	up	up
GigabitEthernet0/1	172.31.1.1	YES NVRAM	up	up
Serial0/0/0	10.10.10.1	YES NVRAM	up	up
Serial0/0/1	unassigned	YES NVRAM	down	
down				
FastEthernet0/1/0	unassigned	YES unset	up	up
FastEthernet0/1/1	unassigned	YES unset	up	up
FastEthernet0/1/2	unassigned	YES unset	up	up
FastEthernet0/1/3	unassigned	YES unset	up	
down				
Vlan1	172.29.1.1	YES NVRAM	up	ир

Następnie przejdziemy do podłączania urządzeń bezprzewodowych, zaczynając od laptopa możemy zauważyć że po uruchomieniu sieci bezprzewodowej, połączenie działa bez zarzutów. Jednakowo postąpimy z tabletem.

Możemy też zmienić ustawienia łączności na 3g/4g obie opcje dają nam dostęp do internetu.