12. Az \mathbb{R}^n tér, vektorműveletek azonosságai, (generált) altér (példák), (triviális) lineáris kombináció, alterek metszete, generátorrendszer, lineáris függetlenség (kétféle definíció). Lin.ftn rendszer hízlalása, generátorrendszer ritkítása, kicserélési lemma, FG-egyenlőtlenség és következménye.

1. Az Rⁿ tér

Def: $A \times B = \{(a, b) : a \in A, b \in B\}$ az A és B-beli elemekből álló rendezett párok halmaza. Hasonlóan

 $A_1 \times A_2 \times \ldots \times A_n = \{(a_1, a_2, \ldots, a_n) : a_i \in A_i \forall i\}$ a rendezett n-esek halmaza. Végül

 $A^n := A \times A \times ... \times A$ az *n*-szeres Descartes-szorzat jelölése.

Megj: (1) A továbbiakban \mathbb{R}^n elemeivel fogunk dolgozni. Ezeket n magasságú vektoroknak fogjuk hívni, jelezve, hogy (általában) oszlopvektorként gondolunk rájuk.

Példa: $\begin{pmatrix} e \\ \pi \\ 42 \end{pmatrix} \in \mathbb{R}^3, \quad \underline{0} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \in \mathbb{R}^n \text{, ill. } \underline{e}_i = \begin{pmatrix} \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \in \mathbb{R}^n, \text{ utóbbi}$

esetben az 1-es felülről az i-dik helyen áll.

Megj: (1) A továbbiakban \mathbb{R}^n elemeivel fogunk dolgozni. Ezeket n magasságú vektoroknak fogjuk hívni, jelezve, hogy (általában) oszlopvektorként gondolunk rájuk. **Def**: $0, e_i$

(2) Ha n világos a szövegkörnyezetből, akkor \mathbb{R}^n elemeit vektoroknak, \mathbb{R} elemeit pedig skalároknak fogjuk nevezni. Konvenció: A jelölés során az oszlopvektorokat aláhúzással különböztetjük meg a skalároktól.

Megj: A vektorok tehát itt és most nem "irányított szakaszok", hanem ennél általánosabb fogalmat takarnak: az irányított szakaszok is tekinthetők vektornak, de egy vektor a mi tárgyalásunkban nem feltétlenül irányított szakasz.

2. Vektorműveletek azonosságai

Állítás: Az \mathbb{R}^n tér vektoraival történő számolásban néhány fontos szabály sokat segít. Tetsz. $\underline{u},\underline{v},\underline{w}\in\mathbb{R}^n$ vektorokra és $\lambda,\mu\in\mathbb{R}$ skalárokra az alábbiak teljesülnek

- (1) $\underline{u} + \underline{v} = \underline{v} + \underline{u}$ (az összeadás kommutatív)
- (2) $(\underline{u} + \underline{v}) + \underline{w} = \underline{u} + (\underline{v} + \underline{w})$ (az összeadás asszociatív)
- (3) $\lambda(\underline{u} + \underline{v}) = \lambda \underline{u} + \lambda \underline{v}$ (egyik disztributivitás)
- (4) $(\lambda + \mu)\underline{u} = \lambda \underline{u} + \mu \underline{u}$ (másik disztributivitás)
- (5) $(\lambda \mu)\underline{u} = \lambda(\mu \underline{u})$ (skalárral szorzás asszociativitása)

Biz: Mivel mindkét művelet koordinátánként történik, elég az egyes azonosságokot koordinátánként ellenőrizni. Ezek viszont éppen a valós számokra (azaz a skalárokra) vonatkozó, jól ismert szabályok.

Konvenció: $\underline{v} \in \mathbb{R}^n$ esetén $-\underline{v} := (-1) \cdot v$.

Megj: Vektorok között nem csak az összeadás, hanem a kivonás is értelmezhető: $\underline{u} - \underline{v} := \underline{u} + (-1)\underline{v}$. Ezáltal a kivonás is egyfajta összeadás, tehát az összadásra vonatkozó szabályok értelemszerű változatai a kivonásra is érvényesek.

A vektorokkal történő számoláskor érvényes szabályok nagyon hasonlók a valós számok esetén megszokott szabályokhoz.

3. (Generált) altér (példák)

Def: $\emptyset \neq V \subseteq \mathbb{R}^n$ az \mathbb{R}^n tér altere (jel: $V \leq \mathbb{R}^n$), ha V zárt a műveletekre: $\underline{x} + \underline{y}, \lambda \underline{x} \in V$ teljesül $\forall \underline{x}, \underline{y} \in V$ és $\forall \lambda \in \mathbb{R}$ esetén. **Példa:** \mathbb{R}^2 -ben tetsz. origón áthaladó egyenes pontjaihoz tartozó vektorok alteret alkotnak. \mathbb{R}^3 -ban tetsz. origón áthaladó sík vagy egyenes pontjainak megfelelő vektorok alteret alkotnak.

Kérdés: Mik az \mathbb{R}^n tér alterei, és hogyan lehet ezeket megkapni? **Megf:** Ha $V \leq \mathbb{R}^n$, $\underline{x}_1, \underline{x}_2, \dots, \underline{x}_k \in V$ és $\lambda_1, \dots, \lambda_k \in \mathbb{R}$, akkor $\sum_{i=1}^k \lambda_i \underline{x}_i = \lambda_1 \cdot \underline{x}_1 + \dots + \lambda_k \cdot \underline{x}_k \in V$.

Def: Az $\underline{x}_1, \ldots, \underline{x}_k$ által generált altér a $\langle \underline{x}_1, \ldots, \underline{x}_k \rangle$ halmaz. Ez a legszűkebb olyan altér, ami mindezen vektorokat tartalmazza. Megf: (1) Alterek metszete altér: $V_i \leq \mathbb{R}^n \ \forall i \Rightarrow \bigcap_i V_i \leq \mathbb{R}^n$. (2) $\{\underline{0}\} \leq \mathbb{R}^n$. (3) $\mathbb{R}^n \leq \mathbb{R}^n$. Def: \mathbb{R}^n triviális alterei: $\{\underline{0}\}, \mathbb{R}^n$.

4. (Triviális) lineáris kombináció

Def: A $\sum_{i=1}^{\kappa} \lambda_i \underline{x}_i$ kifejezés az $\underline{x}_1, \ldots, \underline{x}_k$ lineáris kombinációja. Triviális lineáris kombináció: $0 \cdot \underline{x}_1 + \ldots + 0 \cdot \underline{x}_k$. Megf: $(V \leq \mathbb{R}^n) \Longleftrightarrow (V$ zárt a lineáris kombinációra) Biz: \Rightarrow : $\lambda_i \underline{x}_i \in V$ $\forall i$ esetén, így a $\sum_{i=1}^k \lambda_i \underline{x}_i$ összegük is V-beli. \Leftarrow : Ha $\underline{x}, \underline{y} \in V$ és $\lambda \in \mathbb{R}$, akkor $\underline{x} + \underline{y}$ ill. $\lambda \underline{x}$ lineáris kombinációk. Mivel V zárt a lináris kombinációra, ezért $\underline{x} + \underline{y}, \lambda \underline{x} \in V$. Ez tetszőleges $\underline{x}, \underline{y}, \lambda$ esetén fennáll, tehát V zárt a műveletekre, vagyis altér.

5. Alterek metszete

Def: Az $\underline{x}_1, \ldots, \underline{x}_k$ által generált altér a $\langle \underline{x}_1, \ldots, \underline{x}_k \rangle$ halmaz. Ez a legszűkebb olyan altér, ami mindezen vektorokat tartalmazza. Megf: (1) Alterek metszete altér: $V_i \leq \mathbb{R}^n \ \forall i \Rightarrow \bigcap_i V_i \leq \mathbb{R}^n$. (2) $\{\underline{0}\} \leq \mathbb{R}^n$. (3) $\mathbb{R}^n \leq \mathbb{R}^n$. Def: \mathbb{R}^n triviális alterei: $\{\underline{0}\}, \mathbb{R}^n$.

6. Generátorrendszer

Def: Az $\underline{x}_1,\ldots,\underline{x}_k\in\mathbb{R}^n$ vektorok a $V\leq\mathbb{R}^n$ altér generátorrendszerét alkotják, ha $\langle\underline{x}_1,\ldots,\underline{x}_k\rangle=V$. **Példa:** $\underline{e}_1,\underline{e}_2,\ldots,\underline{e}_n$ az \mathbb{R}^n generátorrendszere, hisz minden \mathbb{R}^n -beli vektor előáll az egységvektorok lineáris kombinációjaként, azaz $\langle\underline{e}_1,\ldots,\underline{e}_n\rangle=\mathbb{R}^n$. Ha \mathbb{R}^2 -ben ha \underline{u} és \underline{v} nem párhuzamosak, akkor $\{\underline{u},\underline{v}\}$ generátorrendszer, hiszen bármely \underline{z} vektor előállítható \underline{u} és \underline{v} lineáris kombinációjaként. (Ehhez \underline{u} és \underline{v} egyenesére kell a "másik" vektorral párhuzamosan vetíteni az előállítandó \underline{z} vektort.) Hasonlóan, ha \mathbb{R}^3 -ban három vektor nem esik ugyanarra az origón átmenő síkra, akkor ez a három vektor generátorrendszert alkot.

7. Lineáris függetlenség 1.

Def: Az $\underline{x}_1, \dots, \underline{x}_k \in \mathbb{R}^n$ vektorok lineárisan függetlenek, ha a nullvektort csak a triviális lineáris kombinációjuk állítja elő:

$$\lambda_1 \underline{x}_1 + \ldots + \lambda_k \underline{x}_k = \underline{0} \Rightarrow \lambda_1 = \ldots = \lambda_k = 0.$$

Ha a fenti vektorok nem lin. ftn-ek, akkor lineárisan összefüggők. **Példa:** $\underline{e}_1,\underline{e}_2,\ldots,\underline{e}_n$ lin. ftn \mathbb{R}^n -ben, hisz ha $\lambda_1\underline{e}_1+\ldots\lambda_n\underline{e}_n=\underline{0}$ akkor az *i*-dik koordináta 0 volta miatt $\lambda_i=0$, tehát a lineáris kombináció triviális.

 \mathbb{R}^2 -ben két vektor akkor lin.öf, ha párhuzamosak. Tehát ha nem párhuzamosak, akkor lin. ftn-ek. ($\underline{0}$ minden vektorral párhuzamos.) \mathbb{R}^3 -ban pedig az igaz, hogy ha három vektor nem esik ugyanarra az origón átmenő síkra, akkor ez a három vektor lineárisan független rendszert alkot.

Megj: A lin.ftn-ség (akárcsak a lin.öf tulajdonság) vektorok egy halmazára és nem az egyes vektorokra vonatkozik. Hasonló igaz a generátorrendszerre. Az, hogy egy konrét <u>v</u> vektor benne van egy lin.ftn (vagy lin.öf vagy generátor-) rendszerben lényegében semmi információt nem ad <u>v</u>-ről.

8. Lineáris függetlenség 2.

Lemma: $\{\underline{x}_1, \dots, \underline{x}_k\}$ lineárisan független vektorrendszer \iff egyik \underline{x}_i sem áll elő a többi lineáris kombinációjaként.

Biz: A fenti állítások tagadásainak ekvivalenciáját igazoljuk.

Tfh {x₁,...,x_k} nem lineárisan független, azaz

 $\lambda_1\underline{x}_1+\ldots+\lambda_k\underline{x}_k=\underline{0}$ és $\lambda_i\neq 0$. Ekkor \underline{x}_i előállítható a többiből:

$$\underline{x}_i = \frac{-1}{\lambda_i} \cdot \left(\lambda_1 \underline{x}_1 + \ldots + \lambda_{i-1} \underline{x}_{i-1} + \lambda_{i+1} \underline{x}_{i+1} + \ldots \lambda_k \underline{x}_k \right) .$$

2. Most tfh valamelyik xi előáll a többi lineáris kombinációjaként:

$$\underline{x}_i = \lambda_1 \underline{x}_1 + \ldots + \lambda_{i-1} \underline{x}_{i-1} + \lambda_{i+1} \underline{x}_{i+1} + \ldots \lambda_k \underline{x}_k$$
. Ekkor $\{\underline{x}_1, \ldots, \underline{x}_k\}$ nem lineárisan független, hiszen a nullvektor megkapható nemtriviális lineáris kombinációként:

$$\underline{0} = \lambda_1 \underline{x}_1 + \ldots + \lambda_{i-1} \underline{x}_{i-1} + (-1) \cdot \underline{x}_i + \lambda_{i+1} \underline{x}_{i+1} + \ldots \lambda_k \underline{x}_k . \quad \Box$$

Állítás: Tfh
$$\underline{v} \in \mathbb{R}^n$$
, $\underline{v} \notin G$ és $\langle G \cup \{\underline{v}\} \rangle = V \leq \mathbb{R}^n$. Ekkor $(\langle G \rangle = V) \iff (\underline{v} \in \langle G \rangle)$

Megj: A fenti állítás tkp azt mondja ki, hogy egy V altér generátorrendszeréből pontosan akkor tudunk egy elemet elvenni úgy, hogy a maradék vektorok továbbra is generátorrendszert alkossanak, ha a kihagyott elem előáll a maradék elemek lineáris kombinációjaként.

 $\mathsf{Biz:} \Rightarrow : \mathsf{Mivel} \ \langle \mathsf{G} \rangle = \mathsf{V} = \langle \mathsf{G} \cup \{\underline{\mathit{v}}\} \rangle, \ \mathsf{ez\'{e}rt} \ \underline{\mathit{v}} \in \mathsf{V} \ \mathsf{\'{e}s} \ \underline{\mathit{v}} \in \langle \mathsf{G} \rangle.$

 $\Leftarrow: \ \mathsf{Tetsz}. \ \underline{\underline{u}} \in V \ \mathsf{elemr\"{o}l} \ \mathsf{azt} \ \mathsf{kell} \ \mathsf{megmutatni}, \ \mathsf{hogy} \ \underline{\underline{u}} \in \langle \mathit{G} \rangle.$

Mivel $\underline{v} \in \langle G \rangle$, feltehető, hogy $\underline{v} = \sum_{\underline{g} \in G} \lambda_{\underline{g}} \underline{g}$.

Tudjuk, hogy $\underline{u} \in V = \langle G \cup \{\underline{v}\} \rangle$, ezért $\underline{u} = \lambda \underline{v} + \sum_{\underline{g} \in G} \mu_{\underline{g}}\underline{g}$.

Ebbe behelyettesítve a fenti kifejezést $\underline{u} = \sum_{\underline{g} \in G} (\mu_{\underline{g}} + \lambda \cdot \overline{\lambda_{\underline{g}}})\underline{g}$ adódik, azaz $\underline{u} \in \langle G \rangle$. Ez bmely $\underline{u} \in V$ -re igaz, így $\langle G \rangle = V$.

9. <u>Lin.ftn rendszer hízlalása</u>

Megf: (1) A $\{0\}$ nem lineárisan független: $1 \cdot 0 = 0$.

- (2) Két vektor akkor lin.ftn, ha nem egymás skalárszorosai.
- (3) R²-ben két vektor pontosan akkor lineárisan független, ha (irányított szakaszként) nem párhuzamosak. Bármely két nem párhuzamos R²-beli vektor generálja R²-t. (ábra)
- (4) Ha $\langle G \rangle = V$ és $G \subseteq G' \subseteq V \leq \mathbb{R}^n$, akkor $\langle G' \rangle = V$, azaz generátorrendszert (V-n belül) hízlalva generátorrendszer marad.
- (5) $F \subseteq \mathbb{R}^n$ lin.ftn és $F' \subseteq F$, akkor F' is lin.ftn, azaz lin.ftn rendszert ritkítva lin.ftn marad.

10. Generátorrendszer ritkítása

Megf: (1) A $\{0\}$ nem lineárisan független: $1 \cdot 0 = 0$.

- (2) Két vektor akkor lin.ftn, ha nem egymás skalárszorosai.
- (3) R²-ben két vektor pontosan akkor lineárisan független, ha (irányított szakaszként) nem párhuzamosak. Bármely két nem párhuzamos R²-beli vektor generálja R²-t. (ábra)
- (4) Ha $\langle G \rangle = V$ és $G \subseteq G' \subseteq V \leq \mathbb{R}^n$, akkor $\langle G' \rangle = V$, azaz generátorrendszert (V-n belül) hízlalva generátorrendszer marad.
- (5) $F \subseteq \mathbb{R}^n$ lin.ftn és $F' \subseteq F$, akkor F' is lin.ftn, azaz lin.ftn rendszert ritkítva lin.ftn marad.

11. Kicserélési lemma

Lemma: Tfh $F = \{\underline{f}_1, \dots, \underline{f}_k\} \subseteq \mathbb{R}^n$ lin.ftn és $\underline{f} \in \mathbb{R}^n$. Ekkor $(F \cup \{\underline{f}\} \text{ lin.ftn.}) \iff (\underline{f} \notin \langle F \rangle)$

Köv: (Kicserélési lemma) Ha $F \subseteq V \subseteq \mathbb{R}^n$ lin.ftn. és $\langle G \rangle = V$ gen.rsz. akkor $\forall \underline{f} \in F \exists \underline{g} \in G$, amire $F \setminus \{\underline{f}\} \cup \{\underline{g}\}$ is lin.ftn.

Megj: A kicserélési lemma szerint bárhogy is törlünk a V altér egy ftn rendszeréből egy vektort, az pótolható V generátorrendszerének egy alkalmas elemével úgy, hogy a kapott rendszer lin.ftn marad.

Biz: Legyen $F' := F \setminus \{\underline{f}\}$. Indirekt bizonyítunk.

Tfh $F' \cup \{\underline{g}\}$ egyetlen $\underline{g} \in G$ -re sem lin. ftn. Ekkor az előző lemma miatt $\underline{g} \in \langle F' \rangle$ teljesül minden $g \in G$ -re. Ezért $G \subseteq \langle F' \rangle$, ahonnan $\langle G \rangle \subseteq \langle F' \rangle$ következik. Ebből pedig $\underline{f} \in V = \langle G \rangle \subseteq \langle F' \rangle$, azaz $\underline{f} \in \langle F' \rangle$ adódik. A fenti lemma miatt $\{f\} \cup F' = F$ nem lin. ftn, ami ellentmondás.

Az indirekt feltevés hamis, így $\exists g \in G$, amire $F' \cup \{g\}$ lin.ftn. \square

12. <u>FG-Egyenlőtlenség</u> és következményei

FG-egyenlőtlenség: Tfh G a $V \leq \mathbb{R}^n$ altér generátorrendszere, és $F \subseteq V$ lin.ftn. Ekkor $|F| \leq |G|$.

Megj: Magyarul: altérben egy ftn. rendszer sosem nagyobb, mint egy generátorrendszer.

Biz: Legyen $F_0 := F$. Ha $F_0 \subseteq G$, akkor $|F_0| \le |G|$. Ha $F_0 \not\subseteq G$, akkor $F_0 \setminus G \ne \emptyset$, legyen mondjuk $\underline{f} \in F_0 \setminus G$. A kicserélési lemma miatt van olyan $\underline{g} \in G$, amire $F_1 := F_0 \setminus \{\underline{f}\} \cup \{\underline{g}\}$ lin.ftn. Ezzel az F_1 -gyel ugyanezt folytatva kapjuk az F_2 , F_3 , ..., lin.ftn rendszereket. Előbb-utóbb olyan F_i -hez jutunk, amivel ez már nem folytatható, mert $F_i \subseteq G$. Ekkor $|F_0| = |F_1| = \ldots = |F_i| \le |G|$, győztünk.

Köv: Ha $F \subseteq \mathbb{R}^n$ lin.ftn, akkor $|F| \le n$. Biz: Láttuk, hogy $G = \{\underline{e}_1, \dots, \underline{e}_n\}$ az \mathbb{R}^n generátorrendszere. Az FG-egyenlőtlenség miatt $|F| \le |G| = n$.

Allítás: Tfh $F = \{\underline{f}_1, \dots, \underline{f}_k\} \subseteq \mathbb{R}^n$ lin.ftn. és $\underline{f} \in \langle F \rangle$. Ekkor \underline{f} egyértelműen áll elő F-beli vektorok lin.komb.-jaként. Biz: Mivel $f \in \langle F \rangle$, ezért \underline{f} előáll az F-beliek lin.komb.-jaként. Tfh $\underline{f} = \lambda_1 \underline{f}_1 + \dots + \lambda_k \underline{f}_k = \mu_1 \underline{f}_1 + \dots + \mu_k \underline{f}_k$ két előállítás. Ekkor $\underline{0} = \underline{f} - \underline{f} = (\lambda_1 - \mu_1)\underline{f}_1 + \dots + (\lambda_k - \mu_k)\underline{f}_k$. Mivel F lin.ftn, a JO-on álló lineáris kombináció triviális, azaz $\lambda_i = \mu_i \ \forall i$. Így a két fenti előállítás megegyezik, vagyis f csak egyféleképp áll elő az F-beliek lin.komb-jaként.