Name of student:
Batch No: Enrollment No
COURSE NAME: LINEAR ALGEBRA AND ORDINARY DIFFERENTIAL EQUATIONS
B.TECH TUTORIAL QUIZ-2 SPRING SEMESTER 2018-19 COURSE CODE: EMAT102L MAX. TIME: 20 min COURSE CREDIT: 3-1-0 MAX. MARKS: 10
1. Check whether $\{(a_1, a_2, a_3) \in \mathbb{R}^3 : a_1^2 + a_2^2 + a_3^2 \le 1\}$ is a subspace of \mathbb{R}^3 or not? [3] Not a subspace as $\bigwedge \mathcal{A} = 4 \in \mathbb{R}$ and $\chi = \left(\frac{1}{2}, 0, 0\right) \in \mathbb{W}$,
2. Find the basis and dimension of subspace $W = \{(x, y, z, w) \in \mathbb{R}^4 : w - z = y - x\}$ of \mathbb{R}^4 and extend it to form the basis of \mathbb{R}^4 . [5]
Here $W = \{(x, y, z, w) \in \mathbb{R}^4 : w - z = y - x\}$
= { (x, y, z, y-x+z) EIR+ : x, y, z EIR}
$= \left\{ x(1,0,0,-1) + y(0,1,0,1) + 2(0,0,1,1) : x,y,z \in \mathbb{R} \right\}$ $\Rightarrow W = \text{span} \left\{ (1,0,0,-1), (0,1,0,1), (0,0,1,1) \right\}.$
20 (
Also, {(1,0,0,-1), (0,1,0,1), (0,0,1,1)} is linearly independent.
$\implies \{(1,0,0,-1),(0,1,0,1),(0,0,1,1)\} \text{ is a basis of } W.$
To extend the basis { (1,0,0,-1), (0,1,0,1), (0,0,1,1)} of W
to form the basis of IR+, we need one more vector as dim IR+=4.
Let us take that vector as (0,0,0,1), then
$ \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \text{ is in the row exhelon farm.} $
Scanned by CamScanner

$$\Rightarrow$$
 basis of $IR^4 = \{(1,0,0,-1), (0,1,0,1), (0,0,1,1), (0,0,0,1)\}.$

3. Is
$$\mathbb{R}^2$$
 with vector addition and scalar multiplication defined as

$$(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2), \quad \lambda(x_1, x_2) = (\lambda x_1, 0)$$

a vector space?

Not a vector space as
$$1.(x_1, x_2) \neq (x_1, x_2)$$
.

Hue
$$1.(x_1, x_2) = (x_1, 0) + (x_1, x_2)$$

for $(x_1, x_2) \in IR^2$,

or If we take
$$x=(x_1,x_2)=(1,2)\in\mathbb{R}^d$$
, then

$$1.x = 1.(1,2) = (1,0) + (1,2) = x$$

the rape of long of