CS F364 Design & Analysis of Algorithms

ALGORITHMS - COMPLEXITY

Complexity Classes

- P ² NP

COMPLEXITY CLASSES P = NP

- $o P \subseteq NP$
 - Why?
 - Is $P \subset NP$ or is P = NP?
 - oThe question is often referred to as the $P \stackrel{?}{=} NP$ problem

COMPLEXITY CLASSES P = NP

- Arguments:
 - $P \subset NP$
 - oThere is a long list of problems known to be in \mathbb{NP} (i.e. certificates can be verified in polynomial time) but not known to be in \mathbb{P} (i.e. no one has found a polynomial time algorithm for solving them)
 - Examples: ISO, KNAPSACK, TSP
 - ₽ = N₽
 - o No problem has been proved to be in $\mathbb{NP} \mathbb{P}$

COMPLEXITY CLASSES P, NP, AND EXP

- o In fact we know that:
 - \bullet P \subseteq NP \subseteq EXP
- o and we know that
 - \bullet P \subset EXP