

CATALOG NO. C-22-A

Murata Electronics North America, Inc.

MURATA ELECTRONICS

Murata Electronics represents the state-ofthe-art in volume manufacturing of leaded and chip multilayer ceramic capacitors. With 50 years of design and manufacturing experience, Murata is the world's largest supplier of ceramic capacitors shipping in excess of 2.5 billion capacitors per month globally. At the same time we maintain one of the highest quality levels in the industry.

In addition to being a world class volume leader, Murata offers a large, comprehensive breadth of capacitor products to the electronics industry in order to meet the needs and range of changing applications today. As technology changes, Murata is a leader in offering the device and packaging format required for modern capacitor applications of today, as well as tomorrow.

Features of Murata ceramic capacitor facilities include:

- Highly automated manufacturing processes to ensure the reliability and repeatability of capacitor products offered to the industry.
- Class 10,000 or better clean room front end operations.
- 100% electrical testing of all components.
- Continuous QC inspection and audits of all materials and processes to ensure product consistency.
- A complete and modern test facility to monitor, maintain, and ensure one of the highest outgoing quality levels available in the industry.
- Dedicated employees who are committed to excellence in servicing our customers and follow the principles set forth in Murata's 1.0 QRS Quality Initiative.

If a capacitor device to meet your specific requirement is not illustrated in this catalog, contact your nearest Murata sales representative's office. Our trained Applications Engineers and sales personnel are ready to become "a small part in your success".

Copyright \circledcirc 1994 by Murata Electronics North America, Inc. All rights reserved.

This literature is not intended to provide all essential information for proper product performance in specific circumstances. Murata Electronics may make improvements and changes to the products without notice. Although effort has been made to insure accuracy, the data in this literature is suggestive only and is not warranted.

Your further inquiry is required to obtain necessary data and warnings for performance in specific product applications and manufacturing circumstances. Please confirm detailed specifications by approving our individual drawings and specification sheets.

Murata Electronics offers these products only under a limited warranty and remedy, and a general exclusion of all other liability, particularly for consequential and incidental harm and for merchantability and fitness for specific use.

TABLE OF CONTENTS

Page

MONOLITHIC CERAMIC CAPACITORS—————	
Introduction to Monolithic Ceramic Capacitors	3
CERAMIC CHIP CAPACITORS	
Part Numbering, Dimensions and Terminations	4
Specifications	5
COG 50 to 200V	
P2H, R2H, S2H, T2H, U2J, SL 50 and 100V	
Part Numbering, Dimensions and Terminations	10
Specifications	
X7R 16-200V	
Z5U 50-200V	
Y5V 16-100V	
X7R, Y5V, 16-50V	
X7R, Z5U, Y5V, 16-25V	
X7R, Y5V, 16V	
CV Chips 500/1KV	
CV Chips 1KV/5KV	
Standard Bar Code Format and Specifications	
Carrier Tape Dimensions	
Reel Dimensions and Bulk Case Packaging	
Marking Specifications	
Mechanical Considerations	
Soldering Considerations	
Automatic Placement Equipment Considerations	
Manufacturing Flow Diagram	36
CONFORMAL COATED RADIAL LEADED CAPACITOR—RPE SERIES	12 Page 12 Pag
Part Numbering and Marking	
Tape and Reel Dimensions	
Test Specifications	
Typical Performance Curves	
Application Notes	
Glossary of Terms	57
MICROWAVE CAPACITORS————————————————————————————————————	
Introduction to Microwave Capacitors	59
Microwave Capacitors	60 - 65
High Frequency Chip Capacitors	
RF Power Multilayer Capacitors	
Single Layer Ceramic Capacitors	71 - 72
CERAMIC DISC CAPACITORS—	
Introduction to Ceramic Capacitors	
Medium Voltage Ceramic Disc Capacitors	
Safety Recognized Capacitors 125VAC-400VAC	
Taped Packaging	
High Voltage Ceramic Disc Capacitors	
High Voltage Ceramic Capacitors.	
High Voltage Power Ceramic Disc Capacitors	96 - 105
VARIABLE CAPACITORS—	
Introduction to Variable Capacitors	107
Trim Capacitors – TZ03	108 - 111
Chip Trimmer Capacitors	
DV11 Series	
General Test Procedures	
Glossary of Specialized Terms	
Tuning Tools	107

THE MONOLITHIC CERAMIC CAPACITOR...

Multilayer monolithic ceramic capacitors represent the current state-of-the-art for providing high capacitance per unit volume in a variety of readily available form factors.

Radial devices are compatible with the high speed automatic insertion equipment used in the assembly of printed circuit boards. Unleaded, unencapsulated chip capacitors are also available in tape and reel packaging for high speed automatic placement in hybrid and printed circuit board assemblies.

All monolithic ceramic capacitor form factors begin as a basic chip which consists of alternating layers of ceramic dielectric on which electrodes are printed. The stacked layers are sintered (fired) at very high temperatures to form a single monolithic device. Internal, alternate electrode layers are connected thru common end terminations to form the basic chip capacitor. Leads are attached in radial form to the chip end termination. The bare leaded chip is then encapsulated with an epoxy contact compound, which meets UL94V-0.

Ceramic dielectric materials of various formulations are available with the most common being COG, X7R and Z5U/Y5V.

TABLE OF CONTENTS

Introduction3
CERAMIC CHIP CAPACITORS
Part Numbering, Dimensions and Terminations – COG and Temperature Compensating4
Specifications – COG and Temperature Compensating5
COG 50 to 200V6 - 7
P2H, R2H, S2H, T2H, U2J, SL 50 and 100V8 - 9
Part Numbering, Dimensions and Terminations – High Dielectric Constant
Specifications – High Dielectric Constant11
X7R 16-200V12 - 13
Z5U 50-200V 14 - 15
Y5V 16-100V 16 - 17
X7R, Y5V, 16-50V – Low Profile and Sub-PLCC
X7R, Z5U, Y5V, 16-25V – Low Profile and Sub-PLCC
X7R, Y5V, 16V – To Replace Electrolytics20
CV Chips 500/1KV21 - 23
CV Chips 1KV/5KV24 - 25

	ar Code Format cifications	26
Carrier Tap	e Dimensions	27
Reel Dimen	sions and Bulk Case Packaging	g28
Marking Sp	ecifications	29
Mechanical	Considerations	30 - 31
Soldering C	Considerations	32 - 34
Automatic		
Manufactur	ing Flow Diagram	36
	AL COATED RADIAL CAPACITOR	
Part Num	bering and Marking	37
COG	50V-500V	
X7R	50V-500V	40 - 41
Z5U	50V-500V	42 - 43
Y5V	00 v 100 v	44 - 45
Temperat	ure Compensating 50V-100V	46
	Electrolytic Replacements	
CV Radia	I Leaded 1KV/5KV	48 - 49
Tape and R	eel Dimensions	50 - 51
Test Specifi	cations	52 - 53
Typical Per	formance Curves	54 - 55
Application	Notes	56
Glossary of	f Terms	57

COG AND TEMPERATURE COMPENSATING

FEATURES

- Miniature size
- No Polarity
- Nickel Barrier Termination Standard – highly resistant to metal migration
- Uniform dimensions and configuration
- Flow for GRM39, 40, 42-6 and Reflow Solderable
- Minimum series inductance
- Tape and Reel Packaging

- Wide selection of capacitance values and voltages
- Largest production capacity and volumn in the world

PART NUMBERING SYSTEM

CHIP DIMENSIONS

DIMENSIONS: in. (mm)	Size	EIA Code	L Length	W Width	T Thickness	g (Min.) Insulation	e Termination
	★GRM 36	0402	.040±.002 (1.0±0.05)	.020±.002 (0.5±0.05)	.020±.002 (0.5±0.05)	.012 (0.3)	.004 (0.1)
	★GRM 39	0603	.060±.006 (1.6±0.15)	.030±.006 (0.80±0.15)		.020 (0.5)	.014±.006 (0.35±0.15)
u u	★GRM 40	0805	.080±.006 (2.0±0.15)	.050±.006 (1.25±0.15)		.030 (0.75)	.020±.010 (0.5±0.25)
e	★GRM 42-6	1206		.040 (1.0)	.020±.010 (0.5±0.25)		
g	★GRM 42-2	1210	.125±.006 (3.2±0.15)	.100±.006 (2.5±0.15)	with capacitance value. See	.040 (1.0)	.020±.010 (0.5±0.25)
	★GRM 43-2	1812	.180±.012 (4.6±0.3)	.125±.008 (3.2±0.2)	capacitance charts on following pages	.080 (2.0)	.025±0.15 (0.63±0.38)
	★GRM 43-4	1825	.180±.012 (4.6±0.3)	.250±.016 (6.35±0.4)	for thickness.	.080 (2.0)	.025±0.15 (0.63±0.38)
	★GRM 44-1	2220*	.220±.012 (5.6±0.3)	.200+.010025 (5.1+0.25-0.5)		.080 (2.0)	.025±.015 (0.63±0.38)
	★GRM 44	2225*	.220±.012 (5.6±0.3)	.250±.016 (6.35±0.4)		.080 (2.0)	.025±.015 (0.63±0.38)

^{*}Non EIA-Standard Size

^{*}Available as standard through authorized Murata Electronics Distributors.

SPECIFICATIONS GRM Series

Refer to EIA-RS198D for other limitations

COG AND TEMPERATURE COMPENSATING

GENERAL

Temperature Coefficient	Temperature Range
$COG = 0 \pm 30 \text{ ppm}^*$	-55° to +125°C
$P2H = N150 \pm 60 ppm$	-55° to +85°C
$R2H = N220 \pm 60 ppm$	-55° to +85°C
$S2H = N330 \pm 60 ppm$	-55° to +85°C
$T2H = N470 \pm 60 ppm$	-55° to +85°C
$U2J = N750 \pm 120 \text{ ppm}$	-55° to +85°C
SL = N1000 to P350	-55° to +85°C

TEST	
Capacitance & Q (Frequency & Voltage):	≤ 1000pF 1 MHz ± 100 MHz @ 1.0 ± .2 Vrms > 1000pF 1 KHz ± 100 KHz @ 1.0 ± .2 Vrms
Q Limits	≤30pF: 400 + (20xC (pF)) >30pF: 1000 minimum
Insulation Resistance (I.R.)	100,000 megohms or 1000 megohms – mfd (whichever is less) with rated voltage applied for 2 minutes max with 50mA limiting current
Dielectric Strength (Flash)	250% of rated voltage for 5 seconds with series resistor limiting charging current to 50mA max.
Aging	Negligible

MECHANICAL

TEST	TEST METHOD	POST TEST LIMITS
Terminal Adhesion	Glass Epoxy Board	≤0603 1.0 lbs. ≥0805 2.2 lbs. No evidence of termination peeling
Deflection	Mounting Capacitor R340 Load Deflection Capacitance meter Supporter	2 mm deflection (paper phenol board) 1 mm deflection (Glass epoxy board) No mechanical damage Cap., DF, IR meet initial limits
Solderability	MIL-STD-202 Method 208F	Contact factory for test limits

ENVIRONMENTAL

TEST	TEST M	ETHOD	POST TEST LIMITS				
Thermal Shock (Air to Air)	MIL-STD-202, Method 107, Cor Post thermal Shock measurements stabilization.	dition A ent shall be taken after 24 hours	Appearance: No visual damage $ \Delta \text{C}:=\pm 2.0\% \text{ or } \pm 0.5 \text{pF (whichever is greater)} \\ \text{Q}:>30 \text{pF}=1,000 \text{ min.,} \leq 30 \text{pF}=400+[20 \times \text{C(pF)}]} \\ \text{I.R.}:=100,000 \text{M}\Omega \text{ min. or } 1,000 \text{M}\Omega \bullet \text{pF (whichever is less)} $				
	RATED VOLTAGE	LOW VOLTAGE	Approximacy No defects				
Humidity	Apply rated voltage for 500 ± 12 hours at 85°C and 85% relative humidity	Apply .5 Vrms for 250 ± 12 hours at 85°C and 85% relative humidity	Appearance: No defects Capacitance: ±3% or ±.3pF (whichever is less) Q: >30pF = 500 min., ≤30pF = 200 + [10 x C(pF)] I.R.: 10,000MΩ or 100MΩ-mfd. (whichever is less)				
	See Note 1	See Note 1	Flash : 250% rated voltage				
Life Test	Apply 200% of rated voltage for maximum operating temperatur		Appearance : No defects Capacitance : $\pm 3\%$ or $\pm .3$ pF (whichever is greater) Q : >30 pF = 500 min., ≤ 30 pF = $200 + [10 \times C(pF)]$ I.R. : $10,000$ M Ω or 100 M Ω -mfd. (whichever is less) Flash : 250% rated voltage				

Note 1: Upon completion of either above test wait 24 hours prior to performing post testing.

Note 2: Upon completion of above test wait 24 hours prior to performing post testing.

COG

MURATA DESIGNATION	GRM 36		GRM 39			GRM 40		0	RM 42-	6	0	RM 42-	2	
EIA TYPE DESIGNATION	0402		0603	- 1		0805			1206		1210			
WVDC	50	50	100	200	50	100	200	50	100	200	50	100	200	
CAPACITANCE (pF) 1.0 Note)														
10				10										
							56							
100	220		160		330	360	220			160		100	240	
		560			510	680		750	750	480			430	
1000								1000	1900			1300	100	
					2400			6200			2400 2700	4400		
(μF) .01											7900			
.1														

Note: Capacitance values = EIA 24 Step = 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82, 91 For values under 1.0pF and other values not listed, contact your local Murata Electronics Sales Office.

	Bulk	Таре											
DIMENSIONS: mm	Pcs/bag (typical)	Pcs/7 inch	(178 mm) reel	Pcs/13 inch	(330 mm) reel								
	Plastic	Paper	Embossed	Paper	Embossed								
T: 0.5 ± 0.05	1000	10000	N/A	N/A	N/A								
T: 0.7 ⁺⁰ _{-0.2}	1000	4000	4000	10000	10000								
T: 0.8 ± 0.1	1000	4000	N/A	10000	N/A								
T: 1.0 ⁺⁰ _{-0.2}	1000	4000	3000	10000	10000								
T: 1.25 +0 +0	1000	N/A	3000	N/A	10000								
T: 1.5 ⁺⁰ _{-0.2}	1000	N/A	2000	N/A	8000								

COG

Note: Capacitance values = EIA 24 Step = 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82, 91 For values under 1.0pF and other values not listed, contact your local Murata Electronics Sales Office.

	Bulk	Таре											
DIMENSIONS (mm)	Pcs/bag (typical)	Pcs/7 inch	(178 mm) reel	Pcs/13 inch (330 mm) re									
	Plastic	Paper	Embossed	Paper	Embossed								
T: 1.25 ⁺⁰ _{-0.2}	1000	N/A	1000	N/A	5000								
T: 1.5 ⁺⁰ _{-0.2}	1000	N/A	1000	N/A	5000								
T: 2.0 ⁺⁰ 0.2	1000	N/A	1000	N/A	4000								

TEMPERATURE COMPENSATING

MURATA DESIGNATION						GRM	39											GRI	VI 40					
EIA TYPE DESIGNATION		0603															08	05						
CHARACTERISTIC		P2H		R2H		2H	H T2		T2H U2		SL	P	P2H		R2H		2H T		!H	U2J		SL		
WVDC	50	100	50	100	50	100	50	100	50	100	50	100	50	100	50	100	50	100	50	100	50	100	50	100
CAPACITANCE (pF) 1.0 (NOTE))												4											
10)																							
								42	100											30				
100	160	120	160	150	220	120							160		180		040		130	220				
							400			440		440	360	360 470	470	470 560	240 470	470	390	220				
									750		750		620		750		820	620			750	750	750	750
1000)																		4000		1000		1000	
																			1900		3500	2000	3500	2000
(μF) .0 ⁻																								

Note: Capacitance values = EIA 24 Step = 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82, 91 For values under 1.0pF and other values not listed, contact your local Murata Electronics Sales Office.

	Bulk	Таре							
DIMENSIONS (mm)	Pcs/bag (typical)	Pcs/7 inch ((178 mm) reel	Pcs/13 inch (330 mm) reel					
	Plastic	Paper	Embossed	Paper	Embossed				
T: 0.7 ⁺⁰ 0.2	1000	4000	4000	10000	10000				
T: 0.8 ±0.1	1000	4000	N/A	10000	N/A				
T: 1.0 ⁺⁰ 0.2	1000	4000	3000	10000	10000				
T: 1.25 ⁺⁰ _{-0.2} *	1000	N/A	3000	N/A	10000				
T: 1.5 ⁺⁰ 0.2	1000	N/A	2000	N/A	8000				

TEMPERATURE COMPENSATING

Note: Capacitance values = EIA 24 Step = 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82, 91 For values under 1.0pF and other values not listed, contact your local Murata Electronics Sales Office.

	Bulk	Таре							
DIMENSIONS (mm)	Pcs/bag (typical)	Pcs/7 inch	(178 mm) reel	Pcs/13 inch (330 mm) reel					
	Plastic	Paper	Embossed	Paper	Embossed				
T: 0.7 ⁺⁰ 0.2	1000	4000	4000	10000	10000				
T: 0.8 ±0.1	1000	4000	4000	10000	10000				
T : 1.0 ⁺⁰ 0.2	1000	4000	3000	10000	10000				
T : 1.25 ⁺⁰ _{-0.2} *	1000	N/A	3000	N/A	10000				
T: 1.5 ⁺⁰ 0.2	1000	N/A	2000	N/A	8000				

HIGH DIELECTRIC CONSTANT TYPE

PART NUMBERING SYSTEM

CHIP DIMENSIONS

DIMENSIONS: in. (mm)	Size	EIA Code	L Length	W Width	T Thickness	g (Min.) Insulation	e Termination
* /	★GRM 36	0402	.040±.002 (1.0±0.05)	.020±.002 (0.5±0.05)	.020±.002 (0.5±0.05)	.012 (0.3)	.004 (0.1)
	★GRM 39	0603	0603			.020 (0.5)	.014±.006 (0.35±0.15)
L	★GRM 40	0805	.080±.006 (2.0±0.15)	.050±.006 (1.25±0.15)		.030 (0.75)	.020±.010 (0.5±0.25)
	★GRM 42-6	1206	.125±.006 (3.2±0.15)	.063±.006 (1.6±0.15)	Note 1: Thickness varies	.040 (1.0)	.020±.010 (0.5±0.25)
9	★GRM 42-2	1210	.125±.006 (3.2±0.15)	.100±.006 (2.5±0.15)	with capacitance value. See	.040 (1.0)	.020±.010 (0.5±0.25)
	★GRM 43-2	1812	.180±.012 (4.6±0.3)	.125±.008 (3.2±0.2)	capacitance charts on following pages	.080 (2.0)	.025±.015 (0.63±0.38)
	★GRM 43-4	1825	.180±.012 (4.6±0.3)	.250±.016 (6.35±0.4)	for thickness.	.080 (2.0)	.025±0.15 (0.63±0.38)
	★GRM 44-1	2220*	.220±.012 (5.6±0.3)	.200+.010025 (5.1+0.25-0.5)		.080 (2.0)	.025±.015 (0.63±0.38)
	★GRM 44	2225*	.220±.012 (5.6±0.3)	.250±.016 (6.35±0.4)		.080 (2.0)	.025±.015 (0.63±0.38)

^{*}Non EIA-Standard Size

CHIP TERMINATION DIAGRAMS

^{*}Available as standard through authorized Murata Electronics Distributors.

SPECIFICATIONS GRM SERIES

HIGH DIELECTRIC CONSTANT TYPE

GENERAL/ELECTRICAL

Capacitance Change with Temperature:	X7R: ±15% ΔCX -55°C to +125°C Z5U: ±25% ΔCX +10°C to +85°C Y5V: ±25% ΔCX -30°C to +85°C						
Capacitance & D.F. (Frequency & Voltage)	X7R:1KHz ±100Hz @ 1.0 ±.2Vrms Z5U:1KHz ±100Hz @ .5 ±.1Vrms Y5V:1KHz ±100Hz @ 1.0 ±.2Vrms						
Dissipation Factor (D.F.)	X7R Z5U Y5V	25 to 100V 2.5% 3.0% 5.0%	16V 3.5% (25V 5%) 9.0%				

Insulation Resistance (I.R.)	X7R 100,000 megohms or 1000 megohms-mfd (whichever is less) Z5U/Y5V 10,000 megohms or 500 megohms-mfd (whichever is less)
Dielectric Strength (Flash)	250% of rated voltage for 5 seconds with series resistor limiting charge current to 50mA max.
Typ. Aging (per Decade)	X7R 3% Z5U 5% Y5V 7%

MECHANICAL

TEST	TEST METHOD	POST TEST LIMITS
Terminal Adhesion	Glass epoxy board	<0603 1.0 lbs. ≥0805 2.2 lbs. No evidence of termination peeling
Deflection	Mounting Capacitor R340 Unit: mm 45 45 Unit: mm Capacitance meter Supporter	2 mm deflection (paper phenol board) 1 mm deflection (Glass epoxy board) No mechanical damage Cap., DF, IR meet initial limits
Solderability	MIL-STD-202 Method 208F	Meets Requirement For specific details contact factory

ENVIRONMENTAL

TEST	TEST N	IETHOD	POST TEST LIMITS			
Thermal Shock (Air to Air)	(deaged) for one (1) hour at 150	test, capacitors shall be heat treated 1°C. Allow capacitors to stabilize at prior to taking initial measurements.	Appearance: No visual damage ΔC: X7R±±12.5% Z5U=±20.0% Y5V=±30.0% D.F.: X7R=2.5% max. @ 25°C, (3.5% max. @ 25°C for 16V Series) Z5U=3.0% max. @ 25°C, (5.0% max. @ 25°C for 25V Series) Y5V=5.0% max. @ 25°C, (9.0% max. @ 25°C for 16V Series) I.R.: X7R=100,000MΩ min. of 1,000MΩ•μF (whichever is less) Z5U/Y5V=10,000Ω or 500MΩ•μF min. (whichever is less)			
	RATED VOLTAGE	LOW VOLTAGE	Appearance: No defects			
Humidity	Apply rated voltage for 500 ± 12 hours at 85°C and 85% relative humidity See Note 1	Apply .5Vrms for 250 ± 12 hours at 85°C and 85% relative humidity	Capacitance: X7R ± 12.5% Δ CX, Z5U/Y5V ±30% Δ CX D.F.: X7R=3.0% max. @ 25°C, (5% max. @ 25°C for 16V Serie Z5U=3.5% max. @ 25°C, (7% max. @ 25°C for 16V Serie Y5V=7.5% max. @ 25°C, (10% max. @ 25°C for 16V Serie I.R.: X7R 10,000M Ω or 100M Ω -mfd. (whichever is less) Z5U/Y5V 1,000M Ω or 50M Ω -mfd. (whichever is less) Flash: 250% rated voltage			
Life Test	Apply 200% of rated voltage for maximum operating temperature See Note 2		Appearance: No defects Capacitance: X7R \pm 12.5% Δ CX, Z5U/Y5V \pm 30% Δ CX D.F.: X7R=3.0% max. @ 25°C, (5% max. @ 25°C for 16V Series) Z5U=3.5% max. @ 25°C, (7% max. @ 25°C for 16V Series) Y5V=7.5% max. @ 25°C, (10% max. @ 25°C for 16V Series) I.R.: X7R 1,000M Ω or 50M Ω -mfd. (whichever is less) Z5U/Y5V 1,000M Ω or 50M Ω -mfd. (whichever is less) Flash: 250% rated voltage			

Note 1: Upon completion of either above test wait 48 hours prior to performing post testing.

Note 2: Upon completion of above test wait 48 hours prior to performing post testing.

HIGH DIELECTRIC CONSTANT TYPE X7R

MURATA DESIGI	NATION	G	RM	36			GRM	39				GRM	40			G	RM 4	12-6			GF	RM 4	2-2	
EIA TYPE DESIG	NATION		0402	2	0603			0805			1206							1210)					
WVDC		16	25	50	16	25	50	100	200	16	25	50	100	200	16	25	50	100	200	16	25	50	100	200
CAPACITANCE	(pF) 100			220			220	220	220			220	220	220			220	220	220					
	1000		4700	4200		3900		3400	1800		2200		6800	1800					2200					1500
	(μF) .01	.01	7200		.012	.027	.018			.015 .027	.012	8200	.017	8600		.022 .033	.015	.015	.019		.022		.027 .033 .047	.048
	.1				ā						.12	J			.1		.1			.12	.1	.068	.1	
										.22					.47	.27				.53	.33	.26		
	1.0																							

Note: Capacitance values = EIA 12 Step = 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82. For values not listed, contact your local Murata Electronics Sales Office. (*For .1 T Max. = 1.4 mm)

	Bulk	Таре						
DIMENSIONS: mm	Pcs/bag (typical)	Pcs/7 inch	(178 mm) reel	Pcs/13 inch (330 mm) reel				
	Plastic	Plastic Paper		Paper	Embossed			
T: 0.5 ± 0.05	1000	10000	N/A	N/A	N/A			
T: 0.7 ⁺⁰ _{-0.2}	1000	4000	4000	10000	10000			
T: 0.8 ±0.1	1000	4000	N/A	10000	N/A			
T: 1.0 ⁺⁰ _{-0.2}	1000	4000	3000	10000	10000			
T: 1.25 ⁺⁰ 0.2 *	1000	N/A	3000	N/A	10000			
T: 1.5 ⁺⁰ _{-0.2}	1000	N/A	2000	N/A	8000			

HIGH DIELECTRIC CONSTANT TYPE X7R

Note: Capacitance values = EIA 12 Step = 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82. For values not listed, contact your local Murata Electronics Sales Office.

	Bulk	Таре							
DIMENSIONS: mm	Pcs/bag (typical)	Pcs/7 inch	(178 mm) reel	Pcs/13 inch (330 mm) reel					
	Plastic	Paper	Embossed	Paper	Embossed				
T: 1.25 ⁺⁰ 0.2	1000	N/A	1000	N/A	5000				
T: 1.5 ⁺⁰ _{-0.2}	1000	N/A	1000	N/A	5000				
T: 2.0 ⁺⁰ _{-0.2}	1000	N/A	1000	N/A	4000				

HIGH DIELECTRIC CONSTANT TYPE Z5U

Note: Capacitance values = EIA 6 Step = 10, 15, 22, 33, 47, 68. For values not listed, contact your local Murata Electronics Sales Office.

STANDARD THICKNESS/PACKAGING SPECIFICATIONS

	Bulk	Таре							
DIMENSIONS: mm	Pcs/bag (typical)	Pcs/7 inch	(178 mm) reel	Pcs/13 inch (330 mm) reel					
	Plastic	Paper	Embossed	Paper	Embossed				
T: 0.7 ⁺⁰ _{-0.2}	1000	4000	4000	10000	10000				
T: 0.8 ± 0.1	1000	4000	N/A	10000	N/A				
T: 1.0 ⁺⁰ _{-0.2}	1000	4000	3000	10000	10000				
T: 1.25 ⁺⁰ _{-0.2} *	1000	N/A	3000	N/A	10000				
T: 1.5 ⁺⁰ 0.2	1000	N/A	2000	N/A	8000				

*GRM 40 T = 1.25 ± .1

HIGH DIELECTRIC CONSTANT TYPE Z5U

Note: Capacitance values = EIA 6 Step = 10, 15, 22, 33, 47, 68. For values not listed, contact your local Murata Electronics Sales Office.

	Bulk	Таре							
DIMENSIONS: mm	Pcs/bag (typical)	Pcs/7 inch	(178 mm) reel	Pcs/13 inch (330 mm) reel					
1	Plastic	Paper	Embossed	Paper	Embossed				
T: 1.25 ⁺⁰ _{-0.2}	1000	N/A	1000	N/A	5000				
T: 1.5 ⁺⁰ _{-0.2}	1000	N/A	1000	N/A	5000				
T: 2.0 ⁺⁰ _{-0.2}	1000	N/A	1000	N/A	4000				

HIGH DIELECTRIC CONSTANT TYPE Y5V

MONAIA DESIG	NATION	G	RM 3	6		GRI	1 39			GRI	/ 1 40			GRM	42-6			GRM	42-2	
EIA TYPE DESI	GNATION		0402			06	03			08	05			12	06			12	10	
WVDC		16	25	50	16	25	50	100	16	25	50	100	16	25	50	100	16	25	50	100
CAPACITANCE	(pF) 1000							1200		2200	2200	6800								
	(μF) .01	.033	.022	.015	.033						.022	.023				.022				
		.047					.047			.068	.047			.068	.047	.057				.047
	.1				.22	.15			.13	.1	.22		.15	.15	1					.12
										.47			.47		.47		.68		.68	
	1.0								1.0				2.2	1.5			1.0	1.0		

Note: Capacitance values = EIA 6 Step = 10, 15, 22, 33, 47, 68. For values not listed, contact your local Murata Electronics Sales Office.

	Bulk		Тар	е	
DIMENSIONS: mm	Pcs/bag (typical)	Pcs/7 inch	(178 mm) reel	Pcs/13 inch	(330 mm) reel
	Plastic	Paper	Embossed	Paper	Embossed
T: 0.5 ± 0.5	1000	10000	N/A	N/A	N/A
T: 0.7 ⁺⁰ 0.2	1000	4000	4000	10000	10000
T: 0.8 ± 0.1	1000	4000	N/A	10000	N/A
T: 1.0 ⁺⁰ _{-0.2}	1000	4000	3000	10000	10000
T: 1.25 ⁺⁰ 0.2 *	1000	N/A	3000	N/A	10000
T: 1.5 ⁺⁰ _{-0.2}	1000	N/A	2000	N/A	8000

HIGH DIELECTRIC CONSTANT TYPE Y5V

Note: Capacitance values = EIA 6 Step = 10, 15, 22, 33, 47, 68. For values not listed, contact your local Murata Electronics Sales Office.

	Bulk		Тар	e	
DIMENSIONS: mm	Pcs/bag (typical)	Pcs/7 inch (178 mm) reel	Pcs/13 inch (3	330 mm) reel
	Plastic	Paper	Embossed	Paper	Embossed
T: 1.25 ⁺⁰ _{-0.2}	1000	N/A	1000	N/A	5000
T: 1.5 ⁺⁰ 0.2	1000	N/A	1000	N/A	5000
T: 2.0 ⁺⁰ 0.2	1000	N/A	1000	N/A	4000

CHIPS – GRM Series FOR LOW PROFILE AND SUB-PLCC HIGH DIELECTRIC CONSTANT TYPE X7R, Y5V GRM 40-037 GRM 40-026

MURATA DESIGNATION			GRM 4	0-024				- 1	GRM 4	0-037					GRM 4	0-026		-
EIA TYPE DESIGNATION			08	05					080	05					080	05		
MAX THICKNESS			.02	20					.02	26					.02	28		
WVDC		16	2	5	50			16	2	5	50		1	6	2	5	50	j
TEMPERATURE Characteristic	X7F	Y5V	X7R	Y5V	X7R	Y5V	X7R	Y5V	X7R	Y5V	X7R	Y5V	X7R	Y5V	X7R	Y5V	X7R	Y5V
CAPACITANCE (pF) 1	00				220									7				
10	00		2000	2000		1000												
			2200	2200	6800													
.01 (μ	F) .01		.01			.01					.01						.012	
	.027	.047		.039			.033		.015	050	.018	.027	.033		.015		.017	.033
							.059			.056								
	.1	.1						.15		.1				.15		.1		.1
1	.0																	

PACKAGING = Bulk: 1,000pcs/bag TAPE AND REEL: 4,000 pcs/7" (178mm) Reel, 10,000 pcs/13" (330mm) Reel Paper tape only.

CHIPS – GRM Series FOR LOW PROFILE AND SUB-PLCC HIGH DIELECTRIC CONSTANT TYPE X7R, Z5U, Y5V

MURATA DESIGNATION	(GRM 4	12-62	5	GRM 4	42-626	G	RM 4	2-224			GRM 4	42-22	5	★ GR	M 42	-221	GRI	/1 42-2	226
EIA TYPE DESIGNATION		12	06		12	06		12	10			12	10			1210			1210	
MAX THICKNESS		.0	24		.0	28		.02	20			.0:	24			.026			.028	
WVDC	16		25		16	25	16		25		16		25			25			25	
TEMPERATURE Characteristic	Y5V	X7R	Z5U	Y5V	Y5V	Y5V	Y5V	X7R	Z5U	Y5V	Y5V	X7R	Z5U	Y5V	X7R	Z5U	Y5V	X7R	Z5U	Y5V
CAPACITANCE (pF) 100		N/A										1000			N/A		N/A			
.01 (μF)				.056				.018		.068			.022					.056		
.1			.1						.1			.1						.082		
	.22			.22	.33	.33	.47			.15	.47		.15	.15		.22			.33	.33
1.0																				

PACKAGING = Bulk: 1,000pcs/bag TAPE AND REEL: 4,000 pcs/7" (178mm) Reel, 10,000 pcs/13" (330mm) Reel Paper tape only.

Note: For X7R, Capacitance values = EIA 12 Step = 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82
For Z5U and Y5V, Capacitance values = EIA 6 Step = 10, 15, 22, 33, 47, 68
For values not listed, please contact your local Murata Electronics Sales Office.

*Available as standard through authorized Murata Electronics Distributors.

MLC CAPACITORS TO REPLACE TANTALUMS AND ELECTROLYTICS

These new monolithic ceramic chip capacitors are specifically designed to replace tantalum and aluminum electrolytic capacitors in a variety of applications. The high frequency performance of these devices make them particularly suitable for use in secondary suppression circuits in switching power supplies and other circuits with high frequency performance requirements.

Lower ESR yields lower net impedance at higher frequencies. Thus a lower value of ceramic capacitance may be sufficient in bypassing and decoupling circuits.

Greater surface mounting flexibility and long-term reliability of ceramic capacitors adds to their overall performance vs. cost ratio as compared to electrolytics.

FEATURES*

- Lower equivalent series resistance
- Lower dissipation factor
- Higher insulation resistance
- Higher break-down voltage
- No polarity considerations
- Long term dielectric stability
- Wider solder profile capability
- Solvent wash compatibility
- *When compared to electrolytic capacitors

BENEFITS*

- Better high frequency performance
- Reduces loss, heat dissipation
- Lower power consumption
- Increased reliability
 - Less over-rating required
- Eliminates insertion mistakes Increases circuit design flexibility
 - No D.C. bias voltage required
- Reduces field failures—increases equipment life Greater surface mount flexibility and durability

EIA Preferred Sizes - Nickel barrier terminations suitable for flow and reflow soldering

MURATA DESIGNATION		★GR	M 39	*GR	M 40	*GRIV	1 42-6	*GRN	A 42-2	**GRI	VI 43-2
EIA TYPE DESIGNATION		06	03	08	05	12	06	12	10	18	12
DIMENSIONS: in. (mm)	L	.060 ± (1.6 ±	.006 0.15)	.080 ± (2.0 ±		.125 ± (3.2 ±			± .006 .015)	.180 ± (4.6 ±	
n.	w		± .008 ± 0.2)	.050 ± (1.25		.060 ± (1.5 ±			± .008 ± 0.2)	.125 ± (3.2 ±	
>e T	T max.	.0.	35 .9)	.0.	53 35)	.06			60 .5)	.08	
g	g min.	.0.	20 .5)	.03	30 75)	.04 (1.			40 .0)	.08	
	е	.014 : (0.35	± .006 ± 0.2)	.020 ± (0.5 ±	± .010 0.25)	.020 ± (0.5 ±		.020 : (0.5 ±	± .010 : 0.25)	.025 ± (0.63 ±	
WVDC		1	6	1	6	1	6	1	6	1	6
TEMPERATURE CHARACTERISTIC:		X7R	Y5V	X7R	Y5V	X7R	Y5V	X7R	Y5V	X7R	Y5V
CAPACITANCE (μF)	.01	.012	.027	.015	4						
	.1		.1		.t	.i					
	.1			.15			.15	.12			
						.33		.47		.39	
									.68	.56	
	1.0				1.0						
	7 (1 +										

Note: For X7R, Capacitance values = EIA 12 Step = 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82 For Z5U and Y5V, Capacitance values = EIA 6 Step = 10, 15, 22, 33, 47, 68 For values not listed, please contact your local Murata Electronics Sales Office.

^{*}Available as standard through authorized Murata Electronics Distributors.
**Contact your local Murata Electronics Sales Office.

MLC CHIP CAPACITORS 500 & 1000V RATED GRM Series

These new surface mount components are designed to meet the growing demand for miniature, reliable chip capacitors, especially where high volume automation is required. Applications include solid state relays, telecom, instrumentation, modems, computer peripherals, and others.

FEATURES

- Standard E.I.A. sizes
- Up to 2X rated voltage tested
- -55°C to +125°C rated

BENEFITS

- Compatible with SMT equipment
- Improves long term reliability
- Suitable for harsh environments

PART NUMBERING SYSTEM

★GRM 42-2 X7R 103 K 500 CAPACITOR CAPACITANCE VALUE CAPACITANCE MARKING Two or 3-digit **TEMPERATURE** VOLTAGE **PACKAGING** TYPE AND SIZE CHARACTERISTICS Indentified by a three-digit TOLERANCE code appears as Identified by ★A=Unmarked necessary to indicate special ★B=EIA Marking C=Non-standard Standard TC's COG=0±30ppm code. First two digits a three-digit GRM-Nickel Barrier Plated represent significant (10pF or less) number Tin (Standard) GR-Palladiumfigures. Last digit specifies C=±.25pF Marking thickness $X7R = \pm 15\%$ Others available upon requirements the number of zeros to D=±.5pF follow. For fractional values (Over 10pF) Silver Please consult request. Reel Diameter/ EIA-481-A (Non-preferred) (1,000 volts your local MENA below 10pF, the letter "R" J=±5% Tape Material Standard K=±10% Sales Office is used as the decimal codes as 1KV) for details. point and the last digit X7R: ★7" Plastic Tape becomes significant. K=±10% *13" Plastic Tape K *Bulk В Some values cannot be taped. Consult your local MENA Sales Office for additional marking and packaging information.

CHIP DIMENSIONS

*EIA PREFERRED SIZE

DIMENSIONS: in. (mm)	Size	EIA Code	L Length	W Width	T Thickness	g Insulation	e Termination
	★GRM 42-6*	1206	.125±.008 (3.2±0.2)	.060±.008 (1.5±0.2)		.040 min. (1.0)	.020±.010 (0.5±0.25)
L N	★GRM 42-2*	1210	.125±.008 (3.2±0.2)	.100±.008 (2.5±0.2)	Note 1:	.040 min. (1.0)	.020±.010 (0.5±0.25)
e	★ GRM 43	1808	.180±.012 (4.6±0.3)	.080±.008 (2.0±0.2)	Thickness varies with	.080 min. (2.0)	.020±.010 (0.5±0.25)
g	★GRM 43-2 *	1812	.180±.012 (4.6±0.3)	.125±.008 (3.2±0.2)	value. See capacitance	.080 min. (2.0)	.020±.010 (0.5±0.25)
	★GRM 43-4 *	1825	.180±.012 (4.6±0.3)	.250±.016 (6.35±0.4)	charts on following pages for	.080 min. (2.0)	.020±.010 (0.5±0.25)
	★GRM 44-1	2220	.220±.012 (5.6±0.3)	200 ^{+.010} (5.1 ^{+0.25} _{-0.5})	thickness.	.080 min. (2.0)	.020±.010 (0.5±0.25)
	★GRM 44	2225	.220±.012 (5.6±0.3)	.250±.016 (6.35±0.4)		.080 min. (2.0)	.020±.010 (0.5±0.25)

^{*}Available as standard through authorized Murata Electronics Distributors.

^{*}Contact your local Murata Sales Office for available standards.

CV CHIP CAPACITORS 500 & 1000V RATED GRM Series

COG

Note: Capacitance values = EIA 12 Step = 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82. For values not listed, contact your local Murata Electronics Sales Office.

COG 500/1KV

DIMENSIONS: mm	Bulk Pcs/bag (typical)	Tape and Reel Pcs/7 inch (178 mm) reel Embossed
T: 1.25 ⁺⁰ 0.2	1000	3000
T : 1.50 ⁺⁰ _{-0.2}	1000 (GRM 42-6 & GRM 42-2) 1000 (GRM 43 to GRM 44-1)	2000 (GRM 42-6 & GRM 42-2) 1000 (GRM 43 to GRM 44-1)
T: 1.65 ⁺⁰ _{-0.2}	1000	2000
T: 2.00 ⁺⁰ _{-0.2}	1000	1000
T: 2.25 ⁺⁰ _{-0.2}	1000	Not Available
T: 2.50 ⁺⁰ _{-0.2}	1000	500
T: 2.76 ± 0.2	1000 (GRM 43 to 43-4, GRM 44-1) 1000 (GRM 44)	500 (GRM 43 to 43-4, GRM 44-1) Not Available (GRM 44)

Paper Tape is not available for 500/1KV. Consult your local Murata Electronics Sales Office for 13-inch reel availability.

CV CHIP CAPACITORS 500 & 1000V RATED GRM Series

X7R

Note: Capacitance values = EIA 12 Step = 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82. For values not listed, contact your local Murata Electronics Sales Office.

COG 500/1KV

DIMENSIONS: mm	Bulk Pcs/bag (typical)	Tape and Reel Pcs/7 inch (178 mm) reel Embossed
T: 1.25 ⁺⁰ _{-0.2}	1000 (GRM 42-6 & GRM 42-2) 1000 (GRM 43)	3000 (GRM 42-6 & GRM 42-2) 1000 (GRM 43)
T: 1.50 +0 -0.2	1000 (GRM 42-6 & GRM 42-2) 1000 (GRM 43 to GRM 44-1)	2000 (GRM 42-6 & GRM 42-2) 1000 (GRM 43 to GRM 44-1)
T: 1.65 ⁺⁰ _{-0.2}	1000	2000
T: 2.00 ⁺⁰ _{-0.2}	1000	1000
T: 2.25 ⁺⁰ 0.2	1000	1000
T: 2.50 ⁺⁰ -0.2	1000	GRM 44-1 500V Not Available GRM 44 1KV Not Available
T: 2.76 ± 0.2	1000 (GRM 43 to 43-4, GRM 44-1) 1000 (GRM 44)	500 (GRM 43 to 43-4, GRM 44-1) Not Available (GRM 44)

Paper Tape is not available for 500/1KV. Consult your local Murata Electronics Sales Office for 13-inch reel availability.

CV CHIP CAPACITORS 1000 TO 5000V RATED GR900 SERIES

These new surface mount components are designed for emerging requirements in high voltage power supplies, video display terminals, and others. Rugged construction improves reliability in environmental extremes, especially found in military/aerospace applications. Special configuration and high reliability screening, including corona testing, are available.

FEATURES*

- Voltage up to 5KV
- -55°C to +125°C rated

BENEFITS

- Improves long term reliability
- Suitable for harsh environments

MURATA DESIGNATION			G	R94	0			0	R950	0			0	GR960	0			0	R97	0			(GR98	0	
DIMENSIONS: in.	L		.28	5 ± .0	015			.38	0 ± .0)15			.48	0 ± .0	015			.59	0 ± .0	015			.69	00 ± .	020	
>	W		.27	0 ± .0	015			.36	0 ± .0)15			.46	0 ± .0	015			.60	5 ± .0	020			.67	'5 ± .	015	
Ver V	Т		.20	00 M	ax.			.25	50 Ma	ax.			.25	50 Ma	ax.			.30	00 M	ax.			.3	25 M	ax.	
9	g		.18	30 M	in.			.2	00 Mi	in.			.2	00 Mi	in.			.2	00 M	in.			.2	00 M	in.	
	е		.02	5 ± .0	015			.02	5 ± .0)15			.02	5 ± .0)15			.02	5 ± .0	015			.02	25 ± .	015	
WVDC		1KV	2KV	3KV	4KV	5KV	1KV	2KV	3KV	4KV	5KV	1KV	2KV	3KV	4KV	5KV	1KV	2KV	3KV	4KV	5KV	1KV	2KV	3KV	4KV	5K
CAPACITANCE	(pF) 100					100																				
				220	220	180				270	220															
	1000 -		680	680					680	680	000				820	560										
	1000	1200	1200					1500	1800					1500	1500					2200	1500				2200	18
							2700	2700					3300	3900					2700	2700				2700	2700	
							5600					6800	6800					6800	6800							
	(μF) .010											.012					.012	.012					.010	.010		H
																	.022					.018	.018			

Note: Capacitance values = EIA 12 Step = 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82. For values not listed, contact your local Murata Electronics Sales Office.

CV CHIP CAPACITORS 1000 TO 5000V RATED GR900 SERIES

muRata

X7R

PART NUMBERING SYSTEM

GR950 X7R 103 K 1KV Α В CAPACITOR TEMPERATURE CAPACITANCE VALUE CAPACITANCE VOLTAGE MARKING Two or three-digit **PACKAGING TYPE AND SIZE** code appears as CHARACTERISTICS Identified by a three-digit **TOLERANCE** Identified by A=Unmarked Bulk=B B=EIA Marking C=Non-standard GR=Palladium-Silver necessary to code. First two digits Standard TC's COG: a three-digit (Tape and COG=0±30ppm (Standard) indicate special represent significant F=±1% Reel not number. 1000=1KV 2000=2KV 3000=3KV 4000=4KV 5000=5KV figures. Last digit specifies the number thickness X7R=±15% $G=\pm 2\%$ Marking available) J=±5% K=±10% requirements. Please consult of zeros to follow. your local factory X7R: K=±10% for details. M=±20% J=±5% on special request

MURATA DESIGNATION			G	GR 94	10			G	R 95	0			G	R 96	0			0	R 97	0			G	R 98	0	
DIMENSIONS: in.	L		.28	35 ± .	015			.38	0. ± 0)15			.48	0 ± .0)15			.59	0 ± .0	015			.69	0 ± .)20	
L	w		.27	'0 ± .	015			.36	0 ± .0)15			.46	0 ± .0)15			.60)5 ± .0	020			.67	5 ± .0)15	
e	T		.21	00 M	ax.			.25	50 Ma	ax.			.25	50 Ma	ax.			.3	00 M	ax.			.32	25 M	ax.	
9	g		.1	80 M	lin.			.21	00 Mi	in.			.2	00 Mi	n.			.2	00 M	in.			.2	00 M	in.	
	е		.02	25 ± .	015			.02	5 ± .0)15			.02	5 ± .0)15			.02	. ± 5.	015			.02	5 ± .	015	
WVDC		1KV	2KV	3KV	4KV	5KV	1KV	2KV	3KV	4KV	5KV	1KV	2KV	3KV	4KV	5KV	1KV	2KV	3KV	4KV	5KV	1KV	2KV	3KV	4KV	5
CAPACITANCE	(pF) 220				270	220																				F
				390							390															
			1000							820						1000										
	1000 -		1000			1500			1200						1500											t
		2200)		2200									2700							2200					
								3900						2700						3300						3
				4700)						4700														5600)
										8200			8200			8200			6800					8200		
	(μF) .010		0.15				.010							Mag	045											+
			.015						.018			.018			.015			.018			.018		.022			
														.033			.039			.033						1
								.047									.039					.056			.047	
		.068											.082						.068					10		
	.10																							.10		t
							.18		H									.18					.22			
												.33														
																	.68					1.0				
	1.0 -																					1.0				t

Note: Capacitance values = EIA 12 Step = 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82. For values not listed, contact your local Murata Electronics Sales Office.

STANDARD BAR CODE FORMAT AND SPECIFICATIONS

MENA STANDARD INNER PACKAGE LABEL

MENA STANDARD SHIPPING LABEL EIA-556 FORMAT

MENA STANDARD BULK CASE LABEL

CHIPS-GRM SERIES TAPE CARRIER DIMENSIONS

TAIL AND LEADER TAPE DIMENSIONS: in. (mm)

CHIPS - GRM SERIES REEL AND BULK DIMENSIONS

REEL DIMENSIONS: in. (mm)

BULK CASE PACKAGING

The state-of-the-art in automatic placement of surface mount monolithic ceramic chip capacitors has been greatly advanced with Murata Electronic's new bulk case packaging which offers an alternative to tape and reel. This new technique features a bulk case which can accommodate up to 50,000 pieces of GRM 36 (0402), up to 15,000 pieces of GRM 39 (EIA 0603), up to 10,000 pieces of GRM 40 (EIA 0805) and up to 5,000 pieces of GRM 42-6 (EIA 1206) capacitors which is considerably more than on a standard reel.

Additionally, this new packaging system facilitates standard bar coding and reduces storage and handling requirements. It also greatly reduces the possibility of mixing parts which is typical of other bulk packaging systems. Overall packaging placement costs are also greatly reduced. (Consult with placement equipment manufacturer to determine capability.)

FEATURES

- Prevents Mixture of Parts
- Reduces Labor Costs
- Reduces Stock Space
- Reduces Inventory Costs
- Improves Production Efficiency
- Reduces Waste

- Improved Inventory Control
- Bar Code Labeling
- Anti-Static Packaging
- Recyclable Packaging
- Placement Reliability
- Eliminates Leader/Tail Tape

BULK CASE DIMENSIONS: mm

CHIPS - GRM SERIES MARKING SPECIFICATIONS

CHIP MARKING SPECIFICATIONS

Alphabetic Character	Significant Figures	Alphabetic Character	Significant Figures	Alphabetic Character	Significant Figures	Numeric Character	Decimal Multiplier
Α	1.0	М	3.0	Υ	8.2	0	10°
В	1.1	N	3.3	Z	9.1	1	10 ¹
С	1.2	Р	3.6	а	2.5	2	10 ²
D	1.3	Q	3.9	b	3.5	3	10 ³
E	1.5	R	4.3	d	4.0	4	10 ⁴
F	1.6	S	4.7	е	4.5	5	10 ⁵
G	1.8	Т	5.1	f	5.0	6	10 ⁶
Н	2.0	U	5.6	m	6.0	7	10 ⁷
J	2.2	V	6.2	n	7.0	8	10 ⁸
K	2.4	W	6.8	t	8.0	9	10 ⁻¹
L	2.7	X	7.5	У	9.0		

MARKING

- The capacitance value is expressed in pF.
- A two character marking system will be used. The first character will be an alphabetic symbol and it will designate the 1st and 2nd figures of capacitance. The second character will be a numerical digit and it will designate the decimal multiplier of capacitance.

Examples: A1 =
$$1 \times 10^{1} = 10 \text{pF}$$

 $J5 = 2.2 \times 10^{5} = 0.22 \mu \text{F}$

- The marking shall appear in black or legible contrast. The orientation of the marking shall be illustrated.
- 4. Marking resistance to solvents per EIA-RS-198 Method 210.

GRM 36/
GRM 39
No Marking

GRM 40

GRM 43-4

TC BAR CODE

Where chip marking is required, bar code designations for temperature coefficients (TC's) will be provided as listed below.

$NPO = \square \square, N150 = \square \square, N220 = \square \square,$
$N330 = \square \square, N470 = \square \square, N750 = \square \square$
$Y5V = \square \square Z5U = \square \square X7B = \square \square$

Other TC Designators are available. Contact Factory.

STORAGE LIFE

Chip component terminations should generally be protected from moisture. In addition, they should also be protected from materials containing chlorine, sulfer compounds or any harmful gases that could cause degradation of the solder. Nylonpolyethylene laminated bags are used for both bulk and reel packaging. These special bags have been developed to keep out moisture and harmful gases. However, the following recommendations should be adhered to:

- All chip components, including tape and reel, should be kept in sealed bags until they are used, in an area where the temperature is less than 40°C and where the humidity is less than 70%.
- 2. The chip components should be used within six months.
- The solderability of the chip components should be rechecked in the event that they are not used in six months.
- Peel strength and shelf life of tape are guaranteed for 1 year when stored under afore said conditions.

MECHANICAL CONSIDERATIONS

COEFFICIENTS OF THERMAL EXPANSION (CTE)

Generally, the most critical components in a surface mount assembly on P.C.B. materials are the ceramic capacitors and resistors. Other passive and active components, although surface mountable, generally have leads or electrodes which are compliant. Ceramic chip capacitors and resistors are leadless.

Mismatches in CTE's between chip and board material will cause stress. Ceramic capacitors with CTE's higher than board materials (i.e. alumina ceramic) will shrink more than the substrate when cooling after solder (above 200 +°C). Lead end termination bonding or ceramic defects can lead to mechanical failures. When chips are mounted on boards with higher CTE's, repeated temperature cycling can contribute to failures by:

cracks in solder fillets

cracks in ceramic components

separation of terminations from chip bodies

Typical ceramic component CTE's are: (IN/IN/°C)

COG Chip Capacitor	8-10x10 ⁻⁶
X7R Chip Capacitor	11-12x10 ⁻⁶
Z5U Chip Capacitor	11-12x10 ⁻⁶
Recommended Expansion Range of P.C.B.:	3-16x10 ⁻⁶

The recommended P.C.B. expansion range accounts for chip terminations which absorb a portion of the thermal stress mismatch.

RECOMMENDED SOLDER REQUIREMENTS

The chip components mounting pad or land should be designed to provide for an electrically and mechanically solid solder joint.

Land dimensions are generally determined by the size of the chips, placement

accuracy and the amount of solder necessary to create a solid joint.

In particular, the ability of chips to withstand mechanical stress such as board flex and temperature cycling is influenced by the amount of solder applied.

The larger the amount of solder applied to the bonding of the chips, the greater the mechanical stress on the chips. In fact, excess solder may cause the chips to crack.

In order to prevent such defects, it is first necessary to consider the size of lands. This in turn determines the amount of solder necessary to form the fillet.

In wave soldering, the soldering area is fully immersed in molten solder. This provides enough solder to form the fillet. However, in reflow soldering, the solder fillet is largely controlled by the amount of solder paste lay down. Therefore, it is recommended that reflow soldering lands be the same or slightly larger than those designed for wave soldering.

Recommended Land Dimensions

(P.C.B.) – Pad dimensions are determined by the mounting requirements, the amount and type of solder system used and the placement technique.

Ceramic Chip Capacitors are susceptible to stresses when applied on P.C.B. materials. Recommended pad dimensions are indicated.

Actual pad dimensions, within the specified range, will depend upon the type of

assembly and soldering system employed:

Wave or Flow Soldering (with adhesive bonding) – Optimum pad width (c)is designated as 2/3 of the chip width (W). Pads larger than the chip width can lead to three (3) potential problems due to stress transfer:

- peel away of chip end termination
- cracks in solder fillet
- cracks in ceramic chip

Stresses are more evenly transferred during wave solder by maintaining pad width as 2/3 width of chip.

Reflow or Vapor Phase Soldering (with solder paste) – Optimum pad is designated as the exact width of the chip.

Pad dimensions for all Murata Electronics chip components are indicated. Adherence to these guidelines will improve the solderability success rate and minimize component movement.

CHIP MONOLITHIC CERAMIC CAPACITOR - GRM - PAD DIMENSIONS

REFLOW SOLDERING								WAVE SOLDERING*					
MURATA Designation	ı	GRM 36	GRM 39	GRM 40	GRM 42-6	GRM 42-2	GRM 43-2	GRM 43-4	GRM 44-1	GRM 44	GRM 39	GRM 40	GRM 42-6
DIMENSIONS: in. (mm)	L	.040±.002 (1.0±.005)	.060±.008 (1.5±0.2)	.080±.008 (2.0±0.2)	.125±.008 (3.2±0.2)	.125±.008 (3.2±0.2)	.180±.012 (4.6±0.3)	.180±.012 (4.6±0.3)	.220±.012 (5.6±0.3)	.220±.012 (5.6±0.3)	.062 (1.6)	.080±.008 (2.0±0.2)	.125±.008 (3.2±0.2)
	w	.020±.002 (0.5±.005)	.030±.008 (0.75±0.2)	.050±.008 (1.25±0.2)	.060±.008 (1.5±0.2)	.100±.008 (2.5±0.2)	.125±.008 (3.2±0.2)	.250±.016 (6.35±0.4)	.220 ^{+.010} (5.1 ^{+.0.25})	.250±.016 (6.35±0.4)	.031 (0.8)	.050±.008 (1.25±0.2)	.060±.008 (1.5±0.2)
a		(0.3 to 0.5)	.016 to .039 (0.4 to 1.0)	.039 to .055 (1.0 to 1.4)	.071 to .098 (1.8 to 2.5)	.071 to .098 (1.8 to 2.5)	.098 to .138 (2.5 to 3.5)	.098 to .138 (2.5 to 3.5)	.106 to .201 (2.7 to 4.7)	.106 to .185 (2.7 to 4.7)	.023 ~ .039 (0.6 ~ 1.0)	.039 to .055 (1.0 to 1.4)	.071 to .098 (1.8 to 2.5)
b		(0.35 to 0.6)	.098 to .161 (2.5 to 4.1)	.118 to .181 (3.0 to 4.6)	.165 to .228 (4.2 to 5.8)	.165 to .228 (4.2 to 5.8)	.217 to .240 (5.5 to 6.1)	.217 to .240 (5.5 to 6.1)	.264 to .327 (6.7 to 8.3)	.264 to .327 (6.7 to 8.3)	.086 ~ .110 (2.2 ~ 2.8)	.118 to .157 (3.0 to 4.0)	.165 to .205 (4.2 to 5.2)
C		(0.4 to 0.6)	.024 to .039 (0.6 to 1.0)	.035 to .063 (0.9 to 1.6)	.047 to .079 (1.2 to 2.0)	.071 to .126 (1.8 to 3.2)	.091 to .165 (2.3 to 4.2)	.157 to .295 (4.0 to 7.5)	.138 to .256 (3.5 to 6.5)	.157 to .295 (4.0 to 7.5)	.031 ~ .035 (0.8 ~ 0.9)	.035 to .047 (0.9 to 1.2)	.047 to .063 (1.2 to 1.6)
d			.020 to .051 (0.5 to 1.3)	.020 to .051 (0.5 to 1.3)	.023 ~ .031 (0.6 ~ 0.8)	.020 to .039 (0.5 to 1.0)	.020 to .039 (0.5 to 1.0)						

MECHANICAL CONSIDERATIONS

P.C.B. Pattern Configurations for Ceramic Chip Capacitors and Resistors for Wave Soldering

Pattern configurations and orientation of ceramic leadless components can affect the resultant fillet during wave solder.

Ideally, ceramic chip terminations should be aligned perpendicular to the direction of wave flow in an end to end or staggered end to end configuration:

In this case a pass through the wave from bottom to top or from top to bottom will deposit sufficient solder on both individual chip terminations resulting in acceptable fillets.

On P.C.B. layouts where ceramic chips are rotated 90° in relation to each other in a body—centered or space—centered pattern, potential soldering problems may occur.

A wave solder pass from top to bottom of the P.C.B. will result in acceptable solder fillets at the chip and terminations which are perpendicular (horizontal in the figure below) to the direction of pass. However, adequate solder may not be deposited on the bottom termination of chips rotated 90° due to termination shadowing by the ceramic chip body. A cold joint could result.

Refinements have been incorporated in wave solder systems including dual waves where the first wave is turbulent and "forces" solder onto component terminations and pad areas. This equipment may reduce the incidence of cold joints in body centered board layouts.

P.C.B. layout and pattern configurations can affect solderability.

P.C.B. Deflection (Bending) and Ceramic Chip Capacitors and Resistors

All surface mount components, but in particular ceramic chip capacitors and resistors, are subject to the mechanical stresses generated during deflection or bending of the printed circuit board.

A test has been developed to establish the capacitors or resistors capability to withstand P.C.B. bending.

The capacitor or resistor is soldered onto the testing board with a eutectic solder. The soldering should be done with an iron or by reflow and should result in a uniform fillet with no thermal shock to the component. A stress is applied in order to depress the board at a rate of 0.5mm per second.

The component shall withstand deflection, dependent upon material of at least 1 mm.

This guideline stresses the need for the user to exercise control in two areas:

- Board warpage as received from the P.C.B. supplier
- 2. The amount of deflection the P.C.B. is subjected to after soldering

P.C.B. PATTERN CONFIGURATIONS

SOLDERING CONSIDERATIONS

Soldering of Passive Surface Mount Components

Surface mount passive components may be soldered to P.C.B.'s and substrates in a variety of methods:

- wave/dual wave
- hot air/convection reflow
- vapor phase reflow
- infrared reflow
- bubble solder immersion
- other (laser, etc.)

Ceramic devices, particularly chip capacitors and resistors, generally have a poor ability to withstand heat shock. Thermal shock may result during soldering and is a natural material characteristic. Chip capacitor failure mechanisms resulting from excessive thermal shock may include:

- micro cracks in the ceramic
- electrical shorts
- insulation resistance degradation in accelerated life test conditions

Users of ceramic chip components can minimize thermal shock by employing a basic process prior to soldering: "WE RECOMMEND THAT YOU PREHEAT THE CERAMIC CHIP COMPONENTS AND BOARD TO WITHIN 100°C OF THE SOLDERING TEMPERATURE:" The time for preheat should be a minimum of one (1) minute.

In addition, the recommended soldering process time-temperature profile for components should be followed. (See application manual for specific details.)

WAVE SOLDERING

INFRARED REFLOW SOLDERING

VAPOR PHASE REFLOW SOLDERING

Vapor phase reflow soldering techniques may be used to attach many surface mount components onto a P.C.B. or substrate at one time. Solder temperatures are controlled precisely due to the known boiling point of the liquid.

Note: For Sizes ≥ 1210, Wave Soldering Not Recommended.

Vapor phase soldering involves condensation heating, whereby the latent heat of a vaporized liquid is released as the vapor condenses on metalization of the parts to be soldered. The phase change from liquid to vapor is rapid and occurs on all exposed surfaces of the part, resulting in uniform heating.

Murata Electronics surface mount components can be successfully attached to a P.C.B. or substrate using the vapor phase reflow technique. Due to the lower soldering temperature, the effect of heat on the components is not severe.

SOLDERING IRON

The soldering iron method is used primarily for rework or breadboarding. It is important that the solder iron tip not touch the ceramic component body. The iron should be applied only to the

termination—solder fillet.

Note: The soldering iron shall be of the nichrome wire heater type with maximum tip diameter of 3.0mm.

Product Na	me	Soldering Iron Tip Temp.	Soldering Time	Iron Output	
Chip Monolithic Ceramic Capacitor	GRM/GR	280°C max.	5 sec. max.	30W max.	

SOLDERING CONSIDERATIONS

RECOMMENDED FLUX AND SOLDER

Flux: Use a resin-based flux, however, do not use a strong acidic flux where the chlorine content exceeds 0.20%.

Solder: Eutectic solder or 60x40 solder should be used for all components,

except GR, where 60x40 solder containing 2 to 2.5% silver should be used.

RECOMMENDED CLEANING CONDITIONS

Product Na	ıme	Cleaning Liquid	Immersion Cleaning	Ultrasonic Cleaning		
Chip Monolithic Ceramic Capacito	GRM	Consult Factory	5 min. max.	1 min. max.		

"DRAWBRIDGING" OR "TOMBSTONING"

refers to the tendency of a chip capacitor or resistor to stand on end during the solder process:

This phenomenon is caused by the relief of surface tension forces during solder wetting

An example is the failure to properly wet each chip end termination equally or at the same time. One end of the chip is raised above the pad and fails to bond to the land area.

Factors which contribute to "drawbridging" include:

A. Improper Pad or Land Design:

Unequal pad sizes for individual chips may result in the chip standing on end on the larger pad.

B. Improper or Unequal Solder on Pads:

A larger solder mass on one chip pad will also cause the chip to stand on end.

C. Misplacement of Chip:

If one component end termination is placed in solder paste and the other termination is not, the "pasted" end will stand up.

D. Poor Chip End Termination:

Component suppliers must evenly and equally control the termination on individual chips. One larger termination on a single chip can lead to "tombstoning."

E. Vibration of Chip Loaded P.C.B.'s Prior to Soldering:

P.C.B.'s with components mounted but not soldered must be handled carefully to not jar and move components.

F. Poor Quality Solder Paste:

Is a problem with surface mount and leaded assemblies. Compatible and high quality materials should be chosen.

G. Improper Solder Temperature:

Excessive and uneven temperature excursions as well as extended dwell times can detrimentally effect solderability and contribute to "drawbridging." Recommended soldering conditions should be followed.

The use of proper design guidelines and materials will minimize chip "drawbridging" and "tombstoning"

THE USE OF ADHESIVES

Bonding chips temporarily to the P.C.B. prior to wave soldering is used extensively in double sided board assembly with underside mounted chip capacitors and resistors.

It is necessary to control the amount of adhesive so that it does not interfere with chip termination and pad contact area and does not bridge between P.C.B. component pads.

The recommended adhesive pattern for 1206 size chips is shown.

A non-conductive, heat cure epoxy resin adhesive with maximum viscosity (10,000 cps or greater) is recommended. Chips should be mounted within 15 minutes of adhesive printing. A U.V. cure of the adhesive after chip placement is common.

Notes Concerning Adhesive Application

Adhesive that is supplied on the substrate tends to spread out and decrease in thickness. It is necessary to keep adhesive thickness constant.

In the case where there is insufficient adhesion, the chip components are apt to fall from the substrate during flow soldering.

Amount of adhesive

The proper amount of adhesive required depends on the size of the chip component.

In the case where too much adhesive is applied, the adhesive is apt to flow onto the lands, which results in bad soldering.

Required Characteristics for Adhesive

The adhesive should be suitable for dispenser use.

After application to the substrate, the adhesive should not spread out excessively.

Consult factory for 0603-0402 information.

The adhesive should be strong enough to firmly hold the components despite the vibrations of the machine during mounting.

The adhesive should have sufficient strength at high temperatures.

The adhesive should have excellent insulation and humidity resistance.

SOLDERING CONSIDERATIONS

Chip Ceramic Capacitor End Terminations

The standard chip ceramic capacitor end termination has been palladium silver.

This termination system has good but limited capabilities to withstand various soldering techniques.

Historically, there have been two (2) primary problems associated with the palladium silver termination:

- Silver leaching or removal from the termination due to high solder temperature excursions and/or long solder dwell times.
- Silver dendrite growth across the external surface of small chip capacitors due to voltage and/or humidity conditions

These problems have resulted in the development of a barrier layer end termination (GRM Series) consisting of three (3) layers:

palladium silver inner layer nickel barrier layer (plated) outer tin layer (plated)

Final chip dimensions are identical to the GR palladium silver termination series. Both chips are available in tape and reel for automatic placement.

The barrier layer termination is superior in soldering performance to the palladium silver termination, and has become the industry standard.

As an example, during wave soldering the 260°C, 3 to 5 second dwell recommended for the palladium silver termination can be increased to 35 to 40 seconds for the barrier layer termination.

The barrier layer termination GRM series is ideally suited for customers manufacturing a multitude of products utilizing vairous solder techniques or for customers who do not closely control the time temperature profile of the soldering process. Leaching of silver during soldering may be eliminated.

SOLDER MASS CONTROL

Ceramic chip capacitors and resistors, as noted previously, are susceptible to thermal and mechanical stresses when mounted on printed circuit boards.

In an assembly operation which screen prints solder paste on land areas of the P.C.B., it is necessary to control the amount of solder paste to allow for adequate transfer of thermal and mechanical stresses from board to ceramic passive components.

In general, the solder mass should be controlled to result in a maximum fillet of 2/3 the overall thickness of the chip capacitor or resistor.

Larger fillets which extend above the component end terminations potentially can contribute to failure by:

Peel-away of the end termination Fillet weld cracks at the top corners Cracks in the ceramic chip

These problems can be minimized by adhering to the "2/3" design guideline for solder mass. (See example)

AUTOMATIC PLACEMENT EQUIPMENT CONSIDERATIONS

Classification of Chip Placers

There are various chip placers on the market today and are classified into three systems: One-by-one, In-line and Multi-shot.

SYSTEM FEATURES

One-by-one system

This system places chip components one-by-one on PCB's. It is suitable for both small-lot production requiring product change-over and for mid-scale mass-production. This system is the most popular.

In-line system

This system places chip components continuously using multiple placing heads. Placing speed is higher than the one-by-one system because of its simultaneous placing capability. This system is suitable for production of PCB's with few chip components.

Multi-shot system

This system places many chip components at the same time on a PCB. Placing speed per component is the highest for available machinery. This system is suitable for mass-production of large quantities of the same product. Components are restricted in size, such as to chip ceramic capacitors, resistors and SOT's.

PLACING SPEED

One-by-one system

Placing speed differs due to dimensions and figures of components. Placing speed (in case of high speed type that can place from small to relatively large size chip components) is 0.2 to 0.4 seconds per component. Placing speed (in case of type that can place all chip components including SOIC) is 0.6 to a few seconds per component.

In-line system

Although placing speed by individual heads is low, placing speed per component is the same speed as that of high speed type one-by-one system. This is due to the placement of chip components at the same time using multiple placing heads.

Multi-shot system

Placing speed is 5-20 seconds per PCB. Though placing speed per component differs, it is 0.025-0.1 seconds per component in case of 200 components on one PCB.

Machine Detection System for Chip Components

Detecting systems are mainly of two types: vacuum sensor and phototube sensor. Phototube sensors have become the preferred method to easily detect pick-up error (such as a component picked up vertically). There is also a newer system which uses an image processor with a CCD camera.

Positioning System of Chip Components

Chip placers (one-by-one and in-line) generally have chuck claws for positioning chip components. Multi-system placers have plate-like jigs for positioning. In case of one-by-one and in-line systems, normally several to 300 grams of pressure is applied to the sides of the chip component.

Cautions for Chip Placing

- Prevention of PCB Warping. If there is a large warp in the PCB, there will be splitting, cracking or other damage to the chip components. It is necessary to prevent these defects by setting back-up pins under the PCB and holding close tolerance on board warpage.
- Adjustment of Lower-Limit Point of Pick-up Nozzle. Usually 100-300 grams is applied by the pick-up nozzle to the top of the chip component during placing. If placing pressure is greater, there will be damage to the chip depending on chip type. It is necessary to prevent defects by adjusting the lower-limit point of the pick-up nozzle.

PICK AND PLACE HEAD

Pick-up nozzle size of chip placer

For small size chip components, a small pick-up nozzle is used. For larger chip components, a large pick-up nozzle is used. Examples of typical pick-up nozzle dimensions used are shown below.

PLACEMENT PRESSURE

100 to 300 grams of pressure is applied to the surface of the chip component by the pick-up nozzle. Breakage of chip component may occur if the placement pressure is not properly adjusted.

CHUCK JAWS

Generally, chuck jaws are shaped like those shown in Fig. 1. However, for chip components which have terminals that are bent outward, chuck jaws such as those shown in Fig. 2 are more appropriate. Chip components with outward bent terminals cannot be aligned properly by chuck jaws as shown in Fig. 1.

CHUCKING PRESSURE

Usually 100 to 300 grams of pressure is applied to the sides of the chip component.

MANUFACTURING FLOW DIAGRAM

CONFORMAL COATED RADIAL LEADS

RPE 110-123

FEATURES:

- Wide capacitance, T.C., voltage and tolerance range
- Industry standard sizes
- Tape and Reel available for auto insertion
- Various lead spacing available
- Marking standard or to customer specification
- Epoxy coating meets UL94V-0

PART NUMBERING SYSTEM

MARKINGS

COG

Note: Other values are available below 10pF. For requirements not shown, please contact your local Murata Electronics Sales Office.

*RPE 121 is not available at 500VDC.

^{*}EIA values available as standard through authorized Murata Electronics Distributors.

COG

DIMENSIONS: in. (mm)

Standard package and lead configurations shown. Other variations and tape and reel data are displayed on pages 52-53. All RPE wire is tinned copper clad steel wire. For other requirements, please contact your local sales office.

MURATA DESIGNATION		*RPE 113 .300 (7.6) .300 (7.6)				★RPI	E 114			★RP	E 117	
L (Max.)		.300	(7.6)			.400	(10.2)			.500	(12.7)	
H (Max.)						.400					(12.7)	
T (Max.)			(4.0)			.157				.200		
L.S.			(5.1)			.200					(10.2)	
WVDC	50	100	200	500	50	100	200	500	50	100	200	500
CAPACITANCE												
(pF) 1.0												
10								lback				
100 –												
100												
				107.0								
			li d	270								
			560									
								820				
1000	1200	1200										1300
	1200	1200		1500								1500
								2200				
		BATERIE	3900				3900					
			3300				0300					
												6200
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					.01				.01	
(μF) .01 –	000	.016			.015	.015					OE (A S	
	.020								.027	.022		
					.039	.033					.030	
					.039					Principle of		
										.056		

Note: Other values are available below 10pF. For requirements not shown, please contact your local Murata Electronics Sales Office.

*EIA values available as standard through authorized Murata Electronics Distributors.

X7R

Note: For requirements not shown, please contact your local Murata Electronics Sales Office.

*RPE 121 is not available at 500VDC.

 $[\]star$ EIA values available as standard through authorized Murata Electronics Distributors.

X7R

Standard package and lead configurations shown. Other variations and tape and reel data are displayed on pages 52-53. All RPE wire is tinned copper clad steel wire. For other requirements, please contact your local sales office.

MURATA Designation		*RPE 113 .300 (7.6) .300 (7.6)				★RP	E 114			★RP	E 117	
L (Max.)		.300	(7.6)			.400	(10.2)			.500	(12.7)	
H (Max.)							(10.2)				(12.7)	
T (Max.)			(4.0)			.157					(5.1)	
L.S.			(5.1)			.200					(10.2)	
WVDC	50	100	200	500	50	100	200	500	50	100	200	500
CAPACITANCE												
(pF) 100												
1000												
				4700								
(μF) .01												
(μι) .στ			.018					.022				
	.039	.039		.033								
												.068
.1			.18					.1				
			.10		.33		.22				.22	.22
		.51				.39	.56			.68		
1.0	1.1					1.0			1.0	.00		
1.0					2.2			111		2.2	1.8	
									3.3			

Note: For requirements not shown, please contact your local Murata Electronics Sales Office.

^{*}EIA values available as standard through authorized Murata Electronics Distributors.

Note: For requirements not shown, please contact your local Murata Electronics Sales Office.

*RPE 121 is not available at 500VDC.

^{*}EIA values available as standard through authorized Murata Electronics Distributors.

DIMENSIONS: in. (mm)

Standard package and lead configurations shown. Other variations and tape and reel data are displayed on pages 52-53. All RPE wire is tinned copper clad steel wire. For other requirements, please contact your local sales office.

MURATA		*RPE 113 .300 (7.6)					D.DE					
DESIGNATION		★RP	E 113			★RPI	E 114			★RP	E 117	
L (Max.)		.300	(7.6)		-	.400	(10.2)				(12.7)	
H (Max.)			(7.6)		4		(10.2)			.500	(12.7)	
T (Max.)		.157	(4.0)			.157	(4.0)				(5.1)	
L.S.			(5.1)		<u> </u>		(5.1)				(10.2)	
WVDC	50	100	200	500	50	100	200	500	50	100	200	500
CAPACITANCE												
(pF) 1000 -												
				5600								
(μF) .01												
								.22				
			.047	.033								
.1		.1						.1				
			.15				.18					.12
	.22						0				.22	.22
						.33						
							.56					
		.68			.82		.00					
1.0					.02							
1.0	1.5					1.2				1.5	1.8	
									2.2	2.2	1.8	
					3.3							
									5.6			
10.0												

Note: For requirements not shown, please contact your local Murata Electronics Sales Office.

*EIA values available as standard through authorized Murata Electronics Distributors.

Y5V

CONFORMAL COATED RADIAL LEADS RPE Series

Note: For requirements not shown, please contact your local Murata Electronics Sales Office. *EIA values available as standard through authorized Murata Electronics Distributors.

Y5V

Standard package and lead configurations shown. Other variations and tape and reel data are displayed on pages 52-53. All RPE wire is tinned copper clad steel wire. For other requirements, please contact your local sales office.

MURATA				Julia.	1	
DESIGNATION	★RPI	E 113	*RPE	114	*RP	E 117
L (Max.)	.300	(7.6)	.400 (1	0.2)	.500	(12.7)
H (Max.)	.300	(7.6)	.400 (1		.500	(12.7)
T (Max.)	.157		.157 ((5.1)
L.S.	.200	(5.1)	.200 ((10.2)
WVDC	50	100	50	100	50	100
CAPACITANCE						
(pF) 1000						
(μF) .01						
.1	.18	.15				
				.27		
		.56	.56			.68
1.0				1.2	1.2	
	1.8					
			2.2			2.2
			3.3			3.3
					6.8	
10.0						
10.0						
					1	

Note: For requirements not shown, please contact your local Murata Electronics Sales Office. *EIA vaules available as standard through authorized Murata Electronics Distributors.

TEMPERATURE COMPENSATING

DIMENSIONS: in. (mm)	#26 AWG copper clad steel LS. ±.031 (.8)	0 min. 040 (1.0) max. epoxy extension	#24 AWG copper clad steel 1.0 min. (25.4) #231 L.S. #2031 (.8) L.S. #2031 (.8)	T run-down coeed plane WG r clad steel 1.0 min. (25.4) Coating run-down not to exceed seating plane
MURATA Designation	*RPE 1	110		1/RPE 122
L (Max.)	.138 (3	.5)	.200	(5.1)
H (Max.)	.120 (3			(6.4)
T (Max.)	.100 (2			(3.2)
L.S.	.100 (2			/.200 (5.1) .
WVDC	50	100	50	100
	1	1	1	1
TC: N150 (P2H) Cap. Range: (pF)	360	360		2200
	1	1	2400	1
TC: N220 (R2H) Cap. Range: (pF)	560	510	2700	2400
	1	1	1	1
TC: N330 (S2H) Cap. Range: (pF)	470	430		
			3300	3000
TO NIAZO (TOLI)	390			240
TC N470 (T2H) Cap. Range: (pF)		510		
	1	1	1200 15	45
			15	15
TC: N750 (U2J) Cap. Range: (pF)	1800	960		
(b.)				4700
				4700

MONOLTIHIC CERAMIC CAPACITOR TO REPLACE ALUMINUM ELECTROLYTICS

RPE 210-260

FEATURES

- High long term reliability (10 to 20 years)
- Non-polarized
- Increased high frequency performance reduces total capacitance requirements for equivalent impedance
- Epoxy coating meets UL94V-0

These new monolithic ceramic capacitors are specifically designed to replace aluminum electrolytic capacitors in a variety of applications. The high frequency performance of these devices makes them particularly suitable for use in the secondary suppression circuits in switching power supplies and other circuits with high frequency performance requirements.

PART NUMBERING SYSTEM

DIMENSIONS: in. (mm)

CAPACITA	NCE RAN	NGE (μF)								
Туре	Rated Volta	age and Ca	pacitance	Range (µF)			Dimensi	ons (mm)		Lead
(Lead Space)	25VDC	50VDC	75VDC	100VDC	W1 max.	L	T max.	F	d	Style
*RPE210 (5.0 mm)	2.2, 3.3, 4.7	1.5, 2.2, 3.3	-	1.0, 1.5	10.0	7.5	4.0	5.0 ± 0.8	0.6 ± 0.05	1
*RPE220 (5.0 mm)	6.8, 10	4.7	_	2.2	12.0	10.0	4.0	5.0 ± 0.8	0.6 ± 0.05	2
*RPE230 (10.0 mm)	15	6.8, 10	;—;	3.3, 4.7	15.0	12.5	5.0	10.0 ± 0.8	0.6 +0.06 -0.05	1
*RPE240 (15.0 mm)	22, 33	15, 22	-	6.8	17.5	17.5	5.0	15.0 ± 0.8	0.8 +0.06 -0.05	1
*RPE250 (15.0 mm)	47	33	10	_	18.0	24.0	7.5	15.0 ± 0.8	0.8 +0.08 -0.05	2
*RPE260 (25.4 mm)	68, 100	47, 68	15, 22	_	21.0	35.0	7.5	25.4 ± 1.5	0.8 +0.08 -0.05	2

FREQUENCY PERFORMANCE CHARACTERISTICS

^{*}Available as standard through authorized Murata Electronics Distributors.

CV LEADED CAPACITORS 1000 TO 5000V RATED RPE900 SERIES

These new radial leaded epoxy encapsulated components are designed for emerging requirements in high voltage power supplies, video display terminals, and others. Rugged construction improves reliability in environmental extremes, especially found in military/aerospace applications. Special configuration and high reliability screening, including corona testing, are available.

FEATURES*

- Voltage up to 5KV
- -55°C to +125°C rated

BENEFITS

- Improves long term reliability
- Suitable for harsh environments

MURATA DESIGNATION			R	PE 9	40			R	PE 95	0			R	PE 96	60			RI	PE 97	0			R	PE 98	30	
DIMENSIONS: in.	L		.40	00 M	ax.			.50	00 Ma	ax.			.60	00 Ma	ax.			.70	00 Ma	ax.			.80	00 Ma	ax.	
H	н		.3	55 M	ax.			.45	55 Ma	ax.			.5	55 Ma	ax.			.65	50 Ma	ax.			.75	50 Ma	ax.	
	T max.		.28	80 M	ax.			.32	27 Ma	ax.			.33	27 Ma	ax.			.37	'5 Ma	ax.			.37	75 Ma	ax.	
LIS	L/S		.30	0 ± .	031			.40	0 ± .0	031			.50	0 ± .0	031			.60	0 ± .0)31			.70	0 ± .0	031	
	Lead Length		1.	00 M	in.			1.0	00 Mi	in.			1.	00 M	in.			1.0	00 Mi	n.			1.0	00 M	in.	
WVDC		1KV	2KV	3KV	4KV	5KV	1KV	2KV	3KV	4KV	5KV	1KV	2KV	3KV	4KV	5KV	1KV	2KV	3KV	4KV	5KV	1KV	2KV	3KV	4KV	5KV
CAPACITANCE	(pF) 100 -					100																				
				220	220	180				270	220															
										270	390															
			680	680					680	680						560										
	1000 -														820	1000										
	1000	1200	1200					1500						1500	1500						1500					
		2200							1800											2200	2200				2200	1800
							2700	2700					3300						2700	2700				2700	2700	
													5000	3900												
							5600					6800	6800					6800	6800							
	(μF) .010 -																						.010	.010		
	(μι).010											.012					.012	.012					11			
																	.022					.018	.018			
																	.022					.027				

CV LEADED CAPACITORS 1000 TO 5000V RATED RPE900 SERIES

X7R

PART NUMBERING SYSTEM

RPE950 X7R 103 K 1KV A В CAPACITOR Two or three-digit TEMPERATURE CAPACITANCE VALUE CAPACITANCE VOLTAGE MARKING PACKAGING TYPE AND SIZE code appears as CHARACTERISTIC Identified by a three-digit TOLERANCE Identified by A=Unmarked Bulk=B a three-digit B=EIA Marking (Tape and C=Non-standard Reel not RPE=Radial Leaded necessary to Standard TC's number. First two digits COG: represent significant figures. Last digit specifies the number of zeros to follow. COG=0±30ppm F=±1% G=±2% number. 1000=1KV indicate special thickness X7R=±15% Marking available) 2000=2KV 3000=3KV 4000=4KV J=±5% K=±10% requirements. Please consult your local factory X7R: K=±10% for details. 5000=5KV M=±20% J=±5% on special request Standard package and lead configurations shown. All RPE wire is 20Awg solder coated copper wire. For other requirements, please contact your local sales office.

MURATA DESIGNATION			R	PE 94	0			RI	PE 95	0			R	PE 96	0			R	PE 97	70			R	PE 98	30	
DIMENSIONS: in.	L		.40	00 Ma	ax.			.50	00 Ma	IX.			.60	00 Ma	łΧ.			.70	00 Ma	ax.			.80	00 Ma	ax.	
H	н		.35	55 Ma	ax.			.45	55 Ma	IX.			.55	55 Ma	łΧ.			.65	50 Ma	ax.			.75	50 Ma	ax.	
	Т		.28	30 Ma	ìΧ.			.32	?7 Ma	IX.			.32	27 Ma	łΧ.			.37	75 Ma	ax.			.37	75 Ma	ax.	
T max.	L/S		.30	0 ± .0	31			.400	0. ± C	31			.50	0 ± .0	31			.60	0 ± .0	031			.70	0 ± .0	031	
	Lead Length		1.0	00 Mi	n.			1.0	00 Mi	n.			1.0	00 Mi	n.			1.0	00 Mi	in.			1.0	00 M	in.	
WVDC		1KV	2KV	3KV	4KV	5KV	1KV	2KV	3KV	4KV	5KV	1KV	2KV	3KV	4KV	5KV	1KV	2KV	3KV	4KV	5KV	1KV	2KV	3KV	4KV	5
CAPACITANCE	(pF) 220 -			390	270	220					390															
										820																
	1000 -		1000						1200	OLO						1000										L
						1500			1200						1500											
		2200			2200									2700						3300	2200					33
				4700				3900			4700									3300						
																									5600	
	(uE) 010						.010			8200			8200			8200			6800					8200		
	(μF) .010 —		.015						.018			.018			.015			.018			.018					
									.010			.010						.010					.022			.0
								.047						.033			.039			.033					.047	
		.068					colo	.017					.082						.068			.056				
	.10 —																							.10		H
							.18											.18					.22			
												.33										317				
		1															.68									
	1.0																					1.0				

CONFORMAL COATED RADIAL LEADS TAPE & REEL for AUTO INSERTION

DIMENSIONS: in. (mm)	Style/Variation Outline	DIMENSIONS: in. (mm)	Style/Variation Outline
HPE121-911 L: .200 (5.0) max. W: .200 (5.0) max. T: .125 (3.15) max. F: .100 (2.5) + .016 (0.4) 008 (0.2) H ₀ : .630 (16.0) ± .020 (0.5) H: .709 (18.0) ± .039 (1.0)	W .250 max H (6.3)	* RPE123-901 L: .300 (7.5) max. W: .216 (5.5) max. T: .125 (3.15) max. F: .205 (5.2) ± .016 (0.4) H ₀ : .630 (16.0) ± .020 (0.5) H: .709 (18.0) ± .039 (1.0)	W.275 ma
* RPE122-901	 +∟ > 1	*RPE 123-906	- L > ↓ ↓
L: .200 (5.0) max. W: .200 (5.0) max. T: .125 (3.15) max. F: .205 (5.2) ± .016 (0.4) H ₀ : .630 (16.0) ± .020 (0.5) H: .709 (18.0) ± .039 (1.0)	W.250 W.250 Max Ho	L: .300 (7.5) max. W: .216 (5.5) max. T: .125 (3.15) max. F: .205 (5.2) ± .016 (0.4) H ₀ : .787 (20.0) ± .020 (0.5) H: .866 (22.0) ± .039 (1.0)	W .275 ma
*RPE 122-905	- L - ↓	*RPE 123-977	<u> </u>
L: .200 (5.0) max. W: .200 (5.0) max. T: .125 (3.15) max. F: .205 (5.2) ± .016 (0.4) H ₀ : .630 (16.0) ± .020 (0.5) H: .787 (20.0) ± .039 (1.0)	W 354 max (9.0) Ho	L: .300 (7.5) max. W: .216 (5.5) max. T: .125 (3.15) max. F: .205 (5.2) ± .016 (0.4) H: .787 (20.0) ± .020 (0.5)	F H
* RPE 122-906		*RPE113-901	List
L: .200 (5.0) max. W: .200 (5.0) max. T: .125 (3.15) max. F: .205 (5.2) ± .016 (0.4) H ₀ : .787 (20.0) ± .020 (0.5) H: .866 (22.0) ± .039 (1.0)	W.250 max H ₀	L: .300 (7.5) max. W: .300 (7.5) max. T: .157 (4.0) max. F: .205 (5.2) ± .016 (0.4) H ₀ : .630 (16.0) ± .020 (0.5) H: .748 (19.0) ± .039 (1.0)	W 394 (10.0)m
*RPE 122-977		*RPE 113-902	
L: .200 (5.0) max. W: .200 (5.0) max. T: .125 (3.15) max. F: .205 (5.2) ± .016 (0.4) H: .787 (20.0) ± .020 (0.5)	H	L: .300 (7.6) max. W: .300 (7.6) max. T: .157 (4.0) max. F: .205 (5.2) ± .016 (0.4) H: .650 (16.5) ± .020 (0.5)	F H
* RPE 122-978		*RPE 113-903	
L: .200 (5.0) max. W: .200 (5.0) max. T: .125 (3.15) max. F: .205 (5.2) ± .016 (0.4) H: .650 (16.5) ± .020 (0.5)	F H	L: .300 (7.6) max. W: .300 (7.6) max. T: .157 (4.0) max. F: .205 (5.2) ± .016 (0.4) H: .689 (17.5) ± .020 (0.5)	The H

^{*} Available as standard through Authorized Murata Electronics Distributors.

CONFORMAL COATED RADIAL LEADS TAPE & REEL for AUTO INSERTION

DIMENSIONS: in. (mm)	Style/Variation Outline	DIMENSIONS: in. (mm)	Style/Variation Outline
*RPE 113-907 L: .300 (7.5) max. W: .300 (7.5) max. T: .157 (4.0) max. F: .205 (5.2) ± .016 (0.4) H: .787 (20.0) ± .020 (0.5)	F H	*RPE 114-903 L: .40 (10.2) max. W: .40 (10.2) max. T: .157 (4.0) max. F: .205 (5.2) ± .016 (0.4) H: .689 (17.5) ± .020 (0.5)	THE H
* RPE114-901 L: .40 (10.2) max. W: .40 (10.2) max. T: .157 (4.0) max. F: .205 (5.2) ± .016 (0.4) H ₀ : .630 (16.0) ± .020 (0.5) H: .748 (19.0) ± .039 (1.0)	W .531 max	*RPE 114-907 L: .400 (10.0) max. W: .400 (10.0) max. T: .157 (4.0) max. F: .205 (5.2) ± .016 (0.4) H: .787 (20.0) ± .020 (0.5)	F H

^{*}Available as standard through Authorized Murata Electronics Distributors.

TAPE & REEL DIMENSIONS: in. (mm)

STANDARD QUANTITY PER REEL

Type & Size	Reel	Ammo
RPE 121	2500	2000
RPE 122	2500	2000
RPE 123	2000	2000
RPE 113	2000	2000
RPE 114	1500	1500

Taping Pitch P	Feed Hole Pitch Po	Feed Hole Position P ₂	Deviation Along Tape △S	Width of Tape Carrier W	Half Width of Tape Carrier W.	Lead Protrusion ℓ	Diameter of Feed Hole D ₀	Total Tape Thickness t	Deviation Across Tape △h	Cutting Position Failure L	Width of Masking Tape W _o	Margin Between Tape W ₂	
.500	.500 ±.008	.250 ±.051	±.079	.709 ±.020	.354 ⁺⁰ 020	039 to .020 (-1.0 to 0.5)	.157±.004 (4.0±0.1)	.028±.008 (0.7±0.2)	±.039 (±1.0)	$.433^{+0}_{039}$ $(11.0^{+0}_{-1.0})$.492 (12.5 min.)	.059±.059 (1.5±1.5)	

SPECIFICATIONS

GENERAL

TEST	SPECIFICATIONS		
Operating	COG: -55°C to +125°C		
Temperature Range	P2H: -55°C to +85°C		
romporatare mange	R2H: -55°C to +85°C		
	S2H: -55°C to +85°C		
	T2H: -55°C to +85°C		
	U2J: -55°C to +85°C		
	X7R: -55°C to +125°C		
	Z5U: +10°C to +85°C		
	Y5V: -30°C to +85°C		
Temperature Coefficient	COG: 0±30ppm/°C over temp. range of -55°C to +125°C	T.C. Tolerance Capacitance (pF)*	T.C. Tolerance (ppm)
	P2H: N150±60ppm/°C over temp. range of -55°C to +85°C		
	R2H: N220±60ppm/°C over temp. range of -55°C to +85°C	10 and over	± 30(G)
	S2H: N330±60ppm/°C over temp. range of -55°C to +85°C	4.0-9.9	± 60(H)
	T2H: N470±60ppm/°C over temp. range of -55°C to +85°C	2.1-3.9 .4-2.0	±120(J)
	U2J: N750±120ppm/°C over temp. range of -55°C to +85°C	.4-2.0	±250(K)
	X7R: ±15% over temp. range of –55°C to +125°C	*Refer to EIA RS198 for limi	tations.
	Z5U: +22, -56% over temp. range of -10°C to +85°C		

TEST	TEST METHOD	REQUIREMENT	
Lead Pull Strength	MIL-STD-202, Method 211A, Test Condition A	Radial direction: RPE 110: 2 lb. min. others: 5 lb. min.	
Solderability	MIL-STD-202, Method 208F.	Lead wire will exhibit >95% coverage on conformal coated units.	
Soldering Heat Parts are immersed in solder bath: RPE 110, $270\pm5^{\circ}$ C for 3 ± 0.5 sec. All other RPE types: $350\pm10^{\circ}$ C for 3 ± 0.5 sec. After 48 ±4 hour for D.F, I.R., and I		Appearance: No Damage $\Delta C: COG=\pm 0.25 pF \text{ or } \pm 2.5\% \text{ (whichever is greater)}. \\ X7R=\pm 7.5\% \text{ max. } Z5U \pm 20\% \text{ max.} \\ Y5V=\pm 20\% \text{ max.} \\ \text{After } 48\pm 4 \text{ hour period, parts should satisfy all initial requirements for D.F., I.R., and Flash Voltage (2.5xWV). (500V=2xWV).} \\ 25\% \text{ max. leaching on each edge.}$	
Vibration	MIL-STD-202 method 204D condition B 10-2,000 Hz, 15 G's	Appearance: No Damage Initial value guarantee	
Shock	MIL-STD-202 Method 213B, Condition I	Appearance: No Damage Initial value guarantee	

SPECIFICATIONS

ELECTRICAL

TEST	TEST METHOD	REQUIREMENT		
Capacitance (Voltage and Frequency)	COG: over 1,000pF 1KHz±100Hz, 1±0.2Vrms up to 1,000pF 1MHz±100KHz, 1±0.2Vrms X7R: 1KHz±100Hz, 1±0.2Vrms Z5U/Y5V: 1KHz±100Hz, .5V±.1Vrms			
Q/Dissipation Factor (Volt. & Freq. same as Cap. Test)	COG: (less than 30pF), Q≥400+(20•C(pF)) @ 25°C (30pF and over), Q≥ 1,000 @ 25°C X7R: D.F. = 2.5% max. @ 25°C Z5U: D.F. = 3.0% max. @ 25°C, (5.0% max. @ 25°C for RPE200 Series) Y5V: D.F. = 3.5% max. @ 25°C			
Insulation Resistance	Apply rated voltage for max. of 2 min. with 50mA limiting current.	COG, X7R : $100,000M\Omega$ or $1,000M\Omega \bullet \mu$ F (whichever is less) Z5U, Y5V : $10,000M\Omega$ or $500M\Omega \bullet \mu$ F (whichever is less).		
Dielectric Strength	2.5 x WV for 5 sec. with a series resistor limiting the charging current to 50 mA max. (500V=WV x 2) (1,000V = WV x 1.5) (2,000 – 5000V = WV x 1.2) (Please see p19, C-19-A)	No dielectric breakdown		
Typical Aging Rate (∆C per decade hour)	COG: negligible X7R: -3.0% Z5U: -5.0% Y5V: -7.0%			

TEST	TEST METHOD	REQUIREMENT
Thermal Shock	MIL-STD-202, method 107, condition A	Appearance: No visual damage
	Prior to starting Thermal Shock test, capacitors shall be heat treated (deaged) for one (1) hour at 150°C. Allow capacitors to stabilize at room temperature for 24 hours prior to taking initial measurements.	ΔC : COG = $\pm 2.0\%$ or ± 0.5 pF (whichever is greater) X7R = $\pm 12.5\%$ Z5U = $\pm 20.0\%$ Y5V = $\pm 30.0\%$
	Post thermal Shock measurement shall be taken after 24 hours stabilization.	Q: COG = 1,000 min. (>30pF), >400+(20•C(pF)) (\leq 30pF) D.F.: X7R = 2.5% max. @ 25°C, Z5U = 3.0% max. @25°C, (5.0% max. @25°C for RPE200 Series) Y5V = 5.0% max. @ 25°C l.R.: COG/X7R = 100,000MΩ min. or 1,000MΩ• μ F (whichever is less) Z5U/Y5V = 10,000MΩ or 500Ω• μ F min. (whichever is less)
Humidity (No Load)	500±12 hours at 40±2°C in 90 to 95% humidity	Appearance: No visual damage
Humidity (Load)	500±12 hours at 40±2°C in 90 to 95% humidity with rated voltage applied (max. current 50mA)	ΔC : COG = ±2.0% or ±0.5pF(whichever is greater) X7R = ±12.5% Z5U = ±30.0%
Life Test	1,000±12 hours at max. rated temperature with 200% rated voltage applied. Prior to starting Life Test, capacitors shall be voltage treated for 1 hour with 200% rated voltage applied at max. rated temperature. Allow capacitors to stabilize for 24 hours prior to taking initial measurements.	Y5V = ±30.0% Q : COG = 500 min. (>30pF) 200+(10•C(pF)) (≤30pF) D.F. : X7R = 3.0% max. @ 25°C,
	Post Life Test measurements shall be taken after 24 hours stabilization.	I.R.: $COG/X7R = 10,000M\Omega$ min. or $100M\Omega \cdot \mu F$ (whichever is less) Z5U/Y5V = 1,000M Ω min. or $500M\Omega \cdot \mu F$ min. (whichever is less)

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

CAPACITANCE VS. TIME (Aging)

IMPEDANCE VS. FREQUENCY

IMPEDANCE VS. FREQUENCY

CONFORMAL COATED RADIAL LEADS APPLICATION NOTES

RADIAL LEAD RPE Series

1. Allowable conditions for Soldering Temperature vs. Time perform soldering within a tolerance range (shaded area).

2. A) When soldering, insert the lead wire into the PCB without mechanically stressing the lead wire.

B) Insert the lead wire into the PCB with a distance appropriate to the lead space.

GLOSSARY OF SPECIALIZED CAPACITOR TERMS

Sometimes called "Insulator," a dielectric is a material whose internal charges are bound and can therefore only move over atomic dimensions. It separates the conductive capacitor plates and is important in determining temperature characteristics, voltage rating, capacity/volume and other characteristics of a capacitor.

2-DISSIPATION FACTOR ("DF"):

The dissipation factor of an insulating material is defined as the ratio of energy dissipated to energy stored in the dielectric. The DF is frequency sensitive and must be specified at a given frequency.

3-QUALITY FACTOR ("Q"):

The Q factor is the ratio of energy stored to energy dissipated and is therefore often taken as the inverse of the DF at low frequency. Sometimes called "Figure of Merit," Q factors must be specified at a given frequency.

4-WORKING (OR "RATED") VOLTAGE:

Nominal continuous voltage which may be applied to a component with no derating of any kind.

5-DIELECTRIC WITHSTANDING VOLTAGE:

The peak voltage which the component is designed to withstand without damage for short periods of time. This value must be specified in terms of frequency, waveform, and time.

6-INSULATION RESISTANCE (IR):

I.R. is the terminal to terminal DC resistance of a capacitor, and must be specified in terms of voltage, temperature, and relative humidity.

Typically expressed as a minimum resistance or as an R•C product.

Example of IR expressed using R•C product: If a material is rated at 500 Ω •F, also expressed as 500M Ω • μ F For 1.0 μ F IR \geq 500 M Ω

 $0.1 \, \mu\text{F} \geq 500 \, \text{M}\Omega$ $0.1 \, \mu\text{F} \geq 5000 \, \text{M}\Omega$ $0.01 \, \mu\text{F} \geq 50,000 \, \text{M}\Omega$

7-TEMPERATURE COEFFICIENT ("TC"):

"TC" is the decimal change in capacity per degree change in environmental temperature. Some dielectrics are very lossy and generate internal heat and for that reason this test is conventionally conducted under "no load" conditions. The standard definition for "TC" in parts per million per degree centigrade is...

$$TC = \frac{(Cx - Co)}{Co} \times \frac{(10^6)}{(Tx - To)} / ^{\circ}C$$

Where "Tx" is the test temperature, "To" is the reference temperature—usually 25°C. "Co" is the capacity measured at the reference temperature and "Cx" is the capacity measured at the test temperature.

8-DRIFT:

The extent in pF or % to which capacitor changes value as a result of temperature exposure. Sometimes called "Retrace," this measurement is usually made under nominal (i.e. room) conditions and is accomplished both before and after the conclusion of temperature excursion. (Note: "Drift" may occasionally be used in the test context of the simple passage of time).

9-TOLERANCE OF CAPACITANCE:

Is defined as the maximum percentage of deviation from the nominal capacitance value when measured at a standard temperature, voltage and frequency.

10-TERMINATION:

This term refers to the material and/or geometry of the terminals of the capacitor.

11-CHIP, MONOLITHIC OR MULTI-LAYER CAPACITOR (MLC):

All of these terms, and any combination of them, refer to a ceramic capacitor style which consists of alternate layers of ceramics and conductive (metallic) surfaces which are compressed and vitrified to form a single "monolithic" structure. Alternate metallic surfaces are then interconnected to form a two terminal capacitor.

12-ESR:

The sum of the equivalent series resistances of the electrode resistance and loss tangent of the dielectric, otherwise known as the real part of the capacitors equivalent circuit impedence (Note: The dielectric loss tangent is frequency dependent as is ESR).

13-AGING:

Aging is the change in the dielectric constant as a function of time. Aging is particularly noticeable in high dielectric materials and is measured as a percentage change per decade of time. Aging decreases logarithmically and becomes less apparent with time.

IOTES			

Murata Electronics meets those objectives by offering one of the world's largest varieties and capabilities of high frequency capacitors for the instrumentation and communications market place.

The MA series ceramic fixed capacitors are miniature, high performance precision components with extremely high Q and high power capabilities up to the gigahertz frequency ranges. The GRH700 series are high frequency chip capacitors popular for communications applications. The GRH700 series chip capacitors were designed for high volume applications where low cost is a primary design objective. This series is intended to bridge the gap between the standard COG chip capacitors and the high performance MA series.

Whether your application calls for the MA series or GRH700 series you can rely on Murata's expertise to supply a reliable, repeatable product for your high frequency applications.

TABLE OF CONTENTS

Page

Microwave Capacitors MA Series Capacitors	60 - 64
MA Series Packaging	65
High Frequency Chip Capacitors GRH708-710 Series	66 - 69
RF Power Multilayer Capacitors UFP Series	70
Single Layer Ceramic Capacitors CLB Series	71-72

MA Series

OUTSTANDING CHARACTERISTICS

- Miniature size
- Very high Q at high frequencies
- High RF power capabilities
- Impervious to environmental conditions
- Low dissipation factors
- Excellent retrace capability (not applicable for X7R styles)
- High temperature stability
- Low noise
- Meets Mil-C-55681 with respect to: Shock, Vibration,
 Moisture Resistance, Solderability, Barometric Pressure,
 Temperature Cycling, Immersion and Salt Spray

4X ACTUAL SIZE (Illustrated with laser marking)

ADDITIONAL FEATURES

- Standard and special marking available
- Packaging options
- Lot processing data available

MA SERIES

For filtering, coupling and impedance matching in most RF circuits, the MA Series chips and leaded devices offer outstanding performance and reliability with the greatest range of values and configurations. MA Series capacitors are also available in military grade CDR styles, consult factory.

MA Series ceramic fixed capacitors are miniature, high performance precision components having extremely high Q and high power capabilities from low frequencies to gigahertz ranges. These "porcelain" multilayer capacitors are extremely stable with variations in temperature, voltage and frequency, and are capable of withstanding the environments encountered in space applications.

MA Series capacitors are designed for miniature state-of-the-art circuit applications. They are small, easy to apply and have extreme

reliability. Units are available in ultra-miniature case size 1 (.055" \times .055" \times .055") or miniature case size 2 (.110" \times .110" \times .100"). Standard case size 1 units are available as chips. Standard case size 2 units are available as chips and also in a leaded configuration.

Clean-room manufacturing technology assures product reliability and automated processing reduces costs and cycle time. Key stages of the operation are monitored and controlled with SPC techniques. Flexibility in design allows the production of non-standard values while maintaining consistent quality objectives.

Please contact the factory for availability of special configurations or high-reliability screening.

MA 18, 58 & 78 Series

CONFIGURATIONS AND DIMENSIONS - CASE SIZE 1

Туре			Dimensions: in. (r		n. (mm) Band			
P90±20 ppm/°C	COG±30 ppm/°C	X7R*	Configuration	Length	W±.010 (.25)	T max.	+.010 Y005 (+.25/1)	Termination
MA18	MA58	MA78*	Y	.07 max. (1.8 max.)	.055 (1.4)	.055** (1.4)	.010 (.25)	Palladium Silver, Ni Interface & Solder (Sn 62)

**.065" (1.65) Max. Thickness, X7R

PART NUMBERING SYSTEM - CASE SIZE 1

MA* 18, 58 & 78 Series

MA 10 & 50 SERIES, P90 & COG - CASE SIZE 1

Cap. Code	Cap. pF	Cap. Tol.	WVDC*
0R1	0.1	В	150
0R2	0.2	"	150
0R3	0.3	B,C	150
0R4	0.4	"	150
★ 0R5	0.5	B,C,D	150
0R6	0.6	"	150
0R7	0.7	"	150
0R8	0.8	"	150
0R9	0.9	"	150
★ 1R0	1.0	"	150
1R1	1.1	"	150
★ 1R2	1.2	"	150
1R3	1.3	"	150
1R4	1.4	"	150
★ 1R5	1.5	u	150
1R6	1.6	"	150
1R7	1.7	''	150
★ 1R8	1.8	"	150
1R9	1.9	"	150
2R0	2.0	"	150
*2R2	2.2	"	150
2R4	2.4	"	150
*2R7	2.7	"	150
3R0	3.0	"	150
★ 3R3	3.3	"	150
3R6	3.6	"	150
★ 3R9	3.9	"	150
4R3	4.3	"	150

	pF	Cap. Tol.	WVDC*
★ 4R7	4.7	B,C,D	150
5R1	5.1	"	150
★ 5R6	5.6	"	150
6R2	6.2	"	150
★ 6R8	6.8	B,C,J,K,M	150
7R5	7.5	"	150
★8R2	8.2	"	150
9R1	9.1	"	150
* 100	10	F,G,J,K,M	150
110	11	u	150
* 120	12	W	150
130	13	11-	150
* 150	15	"	150
160	16	"	150
★ 180	18	11	150
200	20	"	150
* 220	22	"	150
240	24	"	150
* 270	27	"	150
300	30	"	150
* 330	33	"	150
360	36	"	150
* 390	39	"	150
430	43	"	150
* 470	47	"	150
510	51	"	150
* 560	56	"	150
620	62	"	150

Cap. Code	Cap. pF	Cap. Tol.	WVDC*
* 680	68	F,G,J,K,M	150
750	75	"	150
★ 820	82	"	150
910	91	"	150
* 101	100	"	150
111**	110	"	50
121**	120	"	50
131**	130	"	50
* 151**	150	"	50
161**	160	"	50
* 181**	180	"	50
201**	200	"	50
* 221**	220	"	50
241**	240	"	50
* 271**	270	"	50
301**	300	ıı	50
* 331**	330	"	50
361**	360	"	50
* 391**	390	"	50
431**	430	"	50
* 471**	470	"	50
511**	510	"	50
* 561**	560	"	50
621**	620	ıı .	50
* 681**	680	"	50
751**	750	"	50
* 821**	820	"	50
911**	910	"	50
* 102**	1000	"	50

*@ 125°C

**Extended Cap Range, COG only

MA 70 SERIES, X7R - CASE SIZE 1

WVDC***	Cap. Tol.	Cap. pF	Cap. Code
50	K,M,Z	510	511
50	"	560	561
50	"	620	621
50	"	680	681
50	"	750	751
50	"	820	821
50	"	910	911
50	"	1000	102
50	"	1100	112
50	"	1200	122
50	11	1300	132

Cap. Code	Cap. pF	Cap. Tol.	WVDC***
152	1500	K,M,Z	50
162	1600	"	50
182	1800	"	50
202	2000	"	50
222	2200	"	50
242	2400	u	50
272	2700	u	50
302	3000	u	50
332	3300	u	50
362	3600	u u	50
392	3900	u	50

*** @ 85°C

Cap. Code	Cap. pF	Cap. Tol.	WVDC***
432	4300	K,M,Z	50
472	4700	"	50
512	5100	"	50
562	5600	"	50
622	6200	"	50
682	6800	"	50
752	7500	"	50
822	8200	"	50
912	9100	"	50
103	10000	"	50

***@ 85°C

^{*@ 125°}C

*Available as standard through authorized Murata Electronics Distributors.

MA 28, 68 & 88 Series

CONFIGURATIONS AND DIMENSIONS - CASE SIZE 2

	Ту	/pe			Dimensions: in. (mm)				
P90±20 ppm/°C	P90±30 ppm/°C	COG±30 ppm/°C	X7R*	Configuration	L±.020 (.5)***	W±.010 (.25)	T max.	Y±.010 (.25)	- Termination
MA28	MB28	MA68	MA88*	y w	.130 max.	.110 (2.8)	.100** (2.5)	.015 (.4)	Palladium Silver, Ni Interface & Solder (Sn62)
MA22	MB22	MA62	MA82*	r L	.135 (3.4)	_	_	_	Microstrip see note 1

NOTE: Ag ribbon $.093(2.3) \pm .005(.1)$ Wide x $.004(.1) \pm .001(.03)$ Thick x .250(6.35) Long (typical)

PART NUMBERING SYSTEM - CASE SIZE 2

^{**.115(2.92)} Max. Thickness, X7R T.C.

MA* 28, 68 & 88 Series

MA 20 & 60 SERIES, P90 & COG - CASE SIZE 2

Cap. Code	Cap. pF	Cap. Tol.	WVDC*	Cap. Code	Cap. pF	Cap. Tol.	WVDC
0R1	0.1	В	500	*8R2	8.2	B,C,J,K,M	500
0R2	0.2		500	9R1	9.1	"	500
0R3	0.3	B,C	500	* 100	10	F,G,J,K,M	500
0R4	0.4	"	500	110	11	и	500
★ 0R5	0.5	B,C,D	500	★ 120	12	"	500
0R6	0.6	"	500	130	13	"	500
0R7	0.7	"	500	* 150	15	"	500
0R8	0.8	"	500	160	16	"	500
0R9	0.9	"	500	* 180	18	"	500
★ 1R0	1.0	"	500	200	20	"	500
1R1	1.1		500	* 220	22	"	500
*1R2	1.2	·	500	240	24	"	500
1R3	1.3	"	500	* 270	27	"	500
1R4	1.4	u	500	300	30	"	500
★ 1R5	1.5	"	500	* 330	33	"	500
1R6	1.6	"	500	360	36	"	500
1R7	1.7	ii .	500	* 390	39	"	500
★ 1R8	1.8	"	500	430	43	"	500
1R9	1.9	ıı .	500	* 470	47	"	500
2R0	2.0	11	500	510	51	"	500
2R1	2.1	11	500	* 560	56	"	500
*2R2	2.2	"	500	620	62	"	500
2R4	2.4	"	500	* 680	68	"	500
*2R7	2.7	"	500	750	75	"	500
3R0	3.0	"	500	* 820	82	"	500
★ 3R3	3.3	"	500	910	91	"	500
3R6	3.6	"	500	* 101	100	"	500
★ 3R9	3.9	"	500	111	110	"	300
4R3	4.3	"	500	* 121	120	"	300
*4R7	4.7	"	500	131	130	"	300
5R1	5.1	"	500	* 151	150	u u	300
*5R6	5.6	"	500	161	160	"	300
6R2	6.2	"	500	* 181	180	"	300
★ 6R8	6.8	B,C,J,K,M	500	201	200	"	300
7R5	7.5	"	500	* 221	220	"	200

Cap. Code	Cap. pF	Cap. Tol.	WVDC*
241	240	F,G,J,K,M	200
* 271	270	"	200
301	300	"	200
* 331	330	"	200
361	360	"	200
* 391	390	"	200
431	430	"	200
* 471	470	"	200
511	510	"	100
* 561	560	"	100
621	620	"	100
* 681	680	"	50
751	750	"	50
* 821	820	"	50
911	910	"	50
* 102	1000	"	50
112**	1100	"	50
122**	1200	"	50
132**	1300	"	50
152**	1500	"	50
162**	1600	"	50
182**	1800	"	50
202**	2000	"	50
222**	2200	"	50
242**	2400	"	50
272**	2700	"	50
302**	3000	"	50
332**	3300	"	50
362**	3600	"	50
392**	3900	"	50
432**	4300	"	50
472**	4700	"	50
502**	5000	"	50
512**	5100	"	50

*@ 125°C **Extended Cap Range, COG only

*@ 125°C

**@ 85°C

MA 80 SERIES, X7R - CASE SIZE 2

Cap. Code	Cap. pF	Cap. Tol.	WVDC**
512	5100	K,M,Z	100
562	5600	"	100
622	6200	"	100
682	6800	"	100
752	7500	"	100
822	8200	"	100
912	9100	"	100
103	10000	"	100
113	11000	"	100
123	12000	"	100
133	13000	"	100

Cap. Code	Cap. pF	Cap. Tol.	WVDC**
153	15000	K,M,Z	100
163	16000	"	100
183	18000	"	100
203	20000	"	100
223	22000	"	100
243	24000	"	100
273	27000	"	100
303	30000	"	100
333	33000	u ·	100
363	36000	n.	100
393	39000	u	100

*@ 125°C

**@ 85°C

**@ 85°C

^{*}Available as standard through authorized Murata Electronics Distributors.

SPECIFICATIONS AND PACKAGING

MA Series

SPECIFICATIONS

Quality Factor	MA 18/28/58/68; Exceeds MIL-C-55681	
Dissipation Factor	MA 78/88; 2.5% maximum @ 1.0VRMS maximum (f = 1KHz)	
Temperature Coefficient	MA 18/28 Series P90 ±20ppm/°C, (-55°C to +125°C) MA 58/68 Series; COG (NPO ±30ppm/°C -55°C to +125°C) MA 78/88 Series; ±15% maximum (-55°C to +125°C)	
Insulation Resistance	MA 18/28 1000K Megohms at +25°C, 100K Megohms at +125°C MA 58/68 1000K Megohms at +25°C, 100K Megohms at +125°C MA 78/88 100K Megohms or 1000 Megohm μF min., whichever is less (@ 25°C) 10K Megohms or 100 Megohms μF min., whichever is less (@ 125°C)	
Dielectric Test Voltage	MA 18/28/58/68/78/88, 250% of WVDC for 5 seconds	
Capacitance Drift	Meets or Exceeds MIL-C-55681 (Does not apply for MA 78/88)	
Aging	Negligible for MA 18/28/58/68, MA 78/88; 2.5% per decade maximum	
Environmental Tests	MIL-STD-202	
Shock	Method 213, Condition J	
Vibration	Method 204, Condition B	
Moisture Resistance	Method 106	
Solderability	Method 208	
Immersion	Method 104, Condition B	
Barometric Pressure	Method 105, Condition B	
Resistance to Soldering Heat	Method 210, Condition B	
Thermal Shock	Method 107, Condition A	
Life	Method 108, Condition F	
MARKING	MA 18/28/58/68; Laser mark Capacitance Code, Tolerance Code, Logo (where space permits) MA 78/88, Not Marked	

TAPE-AND-REEL PACKAGING

DIMENSIONS: in. (mm)

CONDUCTIVE TAPE

Advantages	Benefits	
Conductive	Prevents static charge build-up	
Flexibility	Insures against crazing, cracking and brittleness	
Dimensional strength	Drive loading will not elongate sprocket holes	
Dimensional stability	Smooth, reliable running on pick and place machines	

Other packaging options available — Consult Factory

ELECTRICAL PROPERTIES

Property	Value	Test Method	
Surface Resistivity	1.8 x 10 ³ ohm/square	ASTM D-257	
Volume Resistivity	1.4 x 10 ² ohm-cm	ASTM D-257	
Electrostatic Decay Time At 0% RH At 10% RH	<1.25 sec (0% RH) <0.1 sec (10% RH)	Fed. Test Method Std. 101C Test Method 4046 (or) MIL B-81705B	

GRH708-710 Series

The GRH708-710 Series was designed specifically as an alternative to "cubic" chip capacitors in high-volume applications where low cost is a primary design objective. This product is manufactured with the same "porcelain" COG ceramic formulation and electrode material as are used in our MA Series. The rectangular shapes of this GRH708-710 Series allow for greater manufacturing automation resulting in lower cost. GRH708-710 capacitors bridge the gap between standard COG chips and the high performance MA Series, offering a low cost, high Q capacitor. Applications include cellular phone, GPS, and RF LAN.

FEATURES

- Miniature sizes
- Stable COG temperature coefficient
- Very high Q at high frequencies
- High RF power handling capabilities

Low noise

Impervious to environmental conditions. Meets MIL-C 55681 with respect to: Thermal Shock, Moisture Resistance, Solderability, Resistance to soldering heat

SPECIFICATIONS

Operating Temperature Range	−55 to + 125°C	
Temperature Coefficient	0 ± 30 ppm/°C	
Working Voltage	See table, Pages 67 and 68	
Dielectric Test Voltage (D.C.)	250% of rated working voltage (except 500 Volt rated @ 200%)	
Capacitance Tolerance	C, D, G, J, K Available: Specials on request	
Quality Factor (Q)/ESR	Consult Factory for Q/see table, page 67 and 68 for ESR	
Insulation Resistance @ 25°C: 0.1 to 470 pF: 1000K Megohms Min. over 470 pF: 100K Megohms Min. over 470 pF: 10K Megohms Min. o		
Marking	All capacitors are marked with Logo, Capacitance Code and Tolerance Code (where space permits) Ink stamping or laser marking available	

DIMENSIONS: in (mm)

	GRH708	GRH710
L	.080 ± 0.12 (2.0 ± 0.3)	.125 ± .016 (3.2 ± 0.7)
W	.050 + .012 (1.25 ± 0.3)	.100 ± .012 (2.5 ± 0.3)
T (max.)	.050 (1.25)	.060 (1.5)
g (min.)	.03 (0.7)	.04 (1.0)
e (min.)	.01 (0.25)	.012 (0.3)

PART NUMBERING

★GRH-708 Series

COG TEMPERATURE COEFFICIENT

Cap. & Tol. in pF	Ref. Freq. MHz	Effective Capacitance	Max ESR	Rated VDC
*1.0 ± .25	250	0.75/1.35	0.142	200
1.1 ± .25	248			0.000
		0.85/1.46	0.140	200
*1.2 ± .25	245	0.95/1.57	0.138	200
1.3 ± .25	243	1.05/1.67	0.136	200
$1.4 \pm .25$	242	1.15/1.78	0.135	200
★1.5 ± .25	242	1.25/1.89	0.134	200
1.6 ± .25	241	1.35/2.00	0.133	200
1.7 ± .25	241	1.45/2.11	0.133	200
*1.8 ± .25	240	1.55/2.21	0.132	200
INVESTIGATION OF THE PROPERTY		N. STORY OF THE CONTROL OF THE CONTR		
1.9 ± .25	239	1.65/2.32	0.132	200
$2.0 \pm .25$	238	1.75/2.43	0.131	200
$2.1 \pm .25$	237	1.85/2.54	0.130	200
*2.2 ± .25	236	1.95/2.65	0.129	200
$2.4 \pm .25$	235	2.15/2.85	0.127	200
*2.7 ± .25	233	2.45/3.19	0.125	200
$3.0 \pm .25$	231	2.75/3.51	0.123	200
★3.3 ± .25	229	3.05/4.02	0.121	200
$3.6 \pm .25$	228	3.35/4.18	0.120	200
★ 3.9 ± .25	227	3.65/4.53	0.119	200
$4.3 \pm .25$	223	4.05/5.01	0.117	200
*4.7 ± .25	220	4.45/5.48	0.115	200
5.1 ± .25	218	4.85/5.88	0.113	200
★5.6 ± .50	215	5.35/6.49	0.111	200
	212		0.110	200
6.2 ± .50		5.83/7.19		
★6.8 ± .50	208	6.30/7.88	0.108	200
$7.5 \pm .50$	206	7.00/8.60	0.106	200
*8.2 ± .50	203	7.70/9.36	0.104	200
9.1 ± .50	199	8.60/10.34	0.102	200
★10 ± .50	196	9.50/11.33	0.100	200
11.000		A STATE OF THE STA	0.098	200
11 ± 5%	193	10.45/12.50		
*12 ± 5%	190	11.40/13.61	0.096	200
13 ± 5%	185	12.35/14.75	0.094	200
14 ± 5%	183	13.30/15.89	0.094	200
*15 ± 5%	182	14.25/17.02	0.092	200
16 ± 5%	180	15.20/18.16	0.090	200
*18 ± 5%	176	17.10/20.42	0.088	200
	173	19.00/22.70	0.087	200
20 ± 5%				200
*22 ± 5%	171	20.90/24.95	0.085	
25 ± 5%	166	23.76/28.39	0.083	200
24 ± 5%	168	22.80/27.20	0.084	200
*27 ± 5%	164	25.69/30.78	0.082	200
28 ± 5%	163	26.63/31.93	0.081	200
ACTIVITIES OF THE PROPERTY OF	163	28.50/34.23	0.080	200
30 ± 5%				200
32 ± 5%	161	30.40/36.51	0.079	
*33 ± 5%	159	31.35/37.65	0.079	200
34 ± 5%	158	32.30/38.83	0.078	200
$36 \pm 5\%$	157	34.20/41.19	0.077	200
*39 ± 5%	155	37.05/44.79	0.075	200
43 ± 5%	153	40.85/49.99	0.073	200
★47 ± 5%	152	44.65/55.19	0.071	200
The second secon			0.070	200
51 ± 5%	151	48.09/59.86		(2000)
★ 56 ± 5%	148	52.40/65.70	0.068	200
62 ± 5%	147	58.50/72.85	0.067	200
★68 ± 5%	146	64.60/80.00	0.065	200
75 ± 5%	145	71.85/88.90	0.063	200
★82 ± 5%	144	78.78/97.30	0.062	200
			0.060	200
91 ± 5%	143	86.70/106.80		
*100 ± 5%	141	96.80/118.30	0.058	200
110 ± 5%	140	106.90/132.80	0.057	100
*120 ± 5%	139	117.00/147.40	0.057	100
130 ± 5%	138	127.10/162.10	0.056	100
140 ± 5%	138	137.20/177.90	0.056	100
1 TO ± 0 /0		101.20/111.00		
★ 150 ± 5%	138	147.23/190.93	0.056	50

^{*}Available as standard through authorized Murata Electronics Distributors.

★GRH-710 Series

COG TEMPERATURE COEFFICIENT

Cap. & Tol. in pF	Ref. Freq. MHz	Effective Capacitance	Max ESR	Rated VDC
★3.3 ± .25	229	3.05/4.02	0.121	500
$3.6 \pm .25$	228	3.35/4.18	0.120	500
★3.9 ± .25	227	3.65/4.53	0.119	500
4.3 ± .25	223	4.05/5.01	0.117	500
★4.7 ± .25	220	4.45/5.48	0.115	500
5.1 ± .25	218	4.85/5.88	0.113	500
★5.6 ± .50	215	5.35/6.49	0.111	500
$6.2 \pm .50$	212	5.83/7.19	0.110	500
★6.8 ± .50	208	6.30/7.88	0.108	500
$7.5 \pm .50$	206	7.00/8.60	0.106	500
★8.2 ± .50	203	7.70/9.36	0.104	500
9.1 ± .50	199	8.60/10.34	0.102	500
*10 ± .50	196	9.50/11.33	0.100	500
11 ± 5%	193	10.45/12.50	0.098	500
★12 ± 5%	190	11.40/13.61	0.096	500
	185		0.094	500
13 ± 5%	11000000	12.35/14.75	W. 12807 V	
14 ± 5%	183	13.30/15.89	0.094	500
★ 15 ± 5%	182	14.25/17.02	0.092	500
16 ± 5%	180	15.20/18.16	0.090	500
★18 ± 5%	176	17.10/20.42	0.088	500
20 ± 5%	173	19.00/22.70	0.087	500
*22 ± 5%	171	20.90/24.95	0.085	500
25 ± 5%	166	23.76/28.39	0.083	500
24 ± 5%	168	22.80/27.20	0.084	500
*27 ± 5%	164	25.69/30.78	0.082	500
28 ± 5%	163	26.63/31.93	0.081	500
30 ± 5%	163	28.50/34.23	0.080	500
32 ± 5%	161	30.40/36.51	0.079	500
*33 ± 5%	159	31.35/37.65	0.079	500
34 ± 5%	158	32.30/38.83	0.078	500
36 ± 5%	157	34.20/41.19	0.077	500
★ 39 ± 5%	155	37.05/44.79	0.075	500
43 ± 5%	153	40.85/49.99	0.073	500
★ 47 ± 5%	152	44.65/55.19	0.071	500
51 ± 5%	151	48.09/59.86	0.070	500
★ 56 ± 5%	148	52.40/65.70	0.068	500
62 ± 5%	147	58.50/72.85	0.067	500
★68 ± 5%	146	64.60/80.00	0.065	500
75 ± 5%	145	71.85/88.90	0.063	500
★82 ± 5%	144	78.78/97.30	0.063	500
91 ± 5%	143	86.70/106.80	0.060	500
★ 100 ± 5%	141	96.80/118.30	0.058	500
110 ± 5%	140	106.90/132.80	0.057	500
120 ± 5%	139	117.00/147.40	0.057	500
130 ± 5%	138	127.10/162.10	0.056	300
140 ± 5%	138		0.056	
		137.20/177.90		300
*150 ± 5%	138	147.23/190.93	0.056	300
160 ± 5%	137	157.32/205.24	0.055	200
180 ± 5%	137	177.76/235.70	0.055	200
200 ± 5%	137	198.38/267.02	0.055	200
220 ± 5%	137	219.03/297.79	0.055	- CONTRACT
		See		200
240 ± 5%	137	239.99/330.21	0.055	100
*270 ± 5%	137	271.77/379.63	0.055	100
300 ± 5%	137	303.68/427.27	0.055	100
*330 ± 5%	137	336.25/476.70	0.055	100
360 ± 5%	137	369.26/525.42	0.055	100
*390 ± 5%	137	402.71/572.84	0.055	100
430 ± 5%	137	447.37/629.26	0.055	100
★470 ± 5%	137	590.96/782.05	0.055	100
510 ± 5%	134	NOT SPECIFIED	0.055	50
620 ± 5%	133	NOT SPECIFIED	0.055	50
		A STATE OF THE PARTY OF THE PAR		
*820 ± 5%	131	NOT SPECIFIED	0.055	50
910 ± 5%	131	NOT SPECIFIED	0.055	50

^{*}Available as standard through authorized Murata Electronics Distributors.

GRH708-710 Series

ENVIRONMENTAL

Aging	Negligible
Environmental Tests	MIL-STD-202
Shock	Method 213, Condition J
Vibration	Method 204, Condition B
Moisture Resistance	Method 106
Solderability	Method 208
Immersion	Method 104, Condition B
Barometric Pressure	Method 105, Condition B
Resistance to Soldering Heat	Method 210, Condition B
Thermal Shock	Method 107, Condition A
Life	Method 108, Condition F

DIMENSIONS: in (mm)

CHIP MARKING: NORMAL - EIA STANDARD

- 1. Chip capacitor marking is available upon request.
- 2. Standard marking is a two character alpha numeric designation to indicate capacitor value. Letter indicates index value. Number indicates multiplier as $2 = 10^2 = 100$. Example: K2 indicates $2.4 \times 10^2 = 240 \text{pF}$ Number Character

						Nullibel Charac	7101
Letter Cod	de					0	10°
A 1	G 1.8	N 3.3	U 5.6	a 2.5	n 7	1	10 ¹
B 1.1	H 2	P 3.6	V 6.2	b 3.5	t 8	2	10 ²
C 1.2	J 2.2	Q 3.9	W 6.8	d 4	y 9	3	10 ³
D 1.3	K 2.4	R 4.3	X 7.5	e 4.5		4	10 ⁴
E 1.5	L 2.7	S 4.7	Y 8.2	f 5		5	10 ⁵
F 1.6	M 3	T 5.1	Z 9.1	m 6		6	10 ⁶
						7	10 ⁷
Color: High Fr	equency chip	s marking is B	LUE (for ink m	arking only)		8	10 ⁸
4. Bar Mark: i.e.,	K2 signifies	COG, 240pF				9	109

10⁹

9

GLASS ENCAPSULATED MINIATURE RF POWER MULTILAYER CAPACITORS

Miniature UFP fixed ceramic capacitors are specifically designed for high voltage and high RF current high frequency applications. They are ideally suited to the latest aerospace and commercial mobile and fixed communication equipment.

Glass encapsulation protects UFP capacitors against corona, contaminants and other environmental factors. Wide, fine silver lead terminations assure minimum inductance and high RF current capabilities. They can withstand temperatures far in excess of soldered units due to solderless lead attachment.

PART NUMBERING SYSTEM

DIMENSIONS: in. (mm)

SPECIFICATIONS

Current: 8 amperes at 25°C (Derated for higher temperatures) 5,000 min. at 1 MHz and 25°C for values 1,000pF and smaller

Tolerances: ±0.5pF for values below 10pF

±5%, ±10% for higher values

*NPOC T.C. also available. Consult your local Murata Electronics Sales Office.

12 KVAR at 25°C typical Power: Voltage: See chart below

*Temperature Coefficient: +90, ±20ppm/°C at 1 MHz

(-55°C to +125°C)

Testing: RF tested to rated specifications

Marking: All capacitors stamp marked with company I.D., cap. code and tolerance

Models	Range of Values (pF)	WVDC	Test Voltage DC	RF Current Amps. RMS at +25°C	RF Voltage RMS at +25°C	KVAR* Rating at +25°C	Voltage Limiting Impedance (ohms)	Current Limiting Impedance (ohms)
	10 to 150 160 to 330	3,600 2,500	7,000 4,500	8 8	3,000 2,000	12 12	750 333.3	187.5 187.5
UFP1	360 to 620	1,200	2,400	8	1,000	6	166.7	93.75
	680 to 1,300	600	1,200	8	500	3	83.3	46.88
	1,500 to 3,000	300	600	8	250	1.5	41.67	23.44

1. When the impedance of the capacitor is higher than the value shown, the limiting factor is the RF voltage shown

2. When the impedance of the capacitor is below the value shown, the limiting factor is the RF current shown.

3. Between these two impedance limits, the KVAR rating is the limiting factor. Formulas for voltage and current are:

 $I = \left(\frac{1,000 \times KVAR}{IMPEDANCE}\right)^{1/2}$ $V = (1,000 \times KVAR \times IMPEDANCE)^{1/2}$

4. RF current rating derates 0.4%/°C from +25°C rating at all higher temperatures to +125°C.

KVAR rating derates 0.5%/°C from +25°C rating at all higher temperatures to +125°C. 6. RF voltage derates 0.16%/°C from +25°C rating at all higher temperatures to +125°C.

PREFERRED VALUES

Case Code	Cap.pF	Cap. Code	Tol.	Case Code	Cap.pF	Cap. Code	Tol.	Case Code	Cap.pF	Cap. Code	Tol.
UFP1	10 11 12 13 15 16 18 20 22 24 27 30 33 36 39 43 47 51 56 62	100* 110 120* 130* 150* 160 180* 220* 240* 270* 300* 330* 360* 390* 430 470* 510 560* 620	J,K J,K J,K J,K J,K J,K J,K J,K J,K J,K	UFP1	82 91 100 110 120 130 150 160 180 200 220 240 270 300 330 360 390 430 470 510	820 910* 101* 111 121* 131* 151* 161 181* 201* 221* 241 271* 301* 331* 361 391* 471 511	J,K J,K J,K J,K J,K J,K J,K J,K J,K J,K	UFP1	680 750 820 910 1,000 1,100 1,200 1,300 1,500 1,600 1,800 2,000 2,200 2,400 2,700 3,000	681 751 821 911* 102* 112 122 132 152 162 182 202 222 242 272 302	J,K J,K J,K J,K J,K J,K J,K J,K J,K J,K

621

J,K

^{750*} *Available as standard through authorized Murata Electronics Distributors: J Tol.

CLB SERIES SINGLE LAYER CERAMIC CAPACITORS FOR MICROWAVE INTEGRATED CIRCUITS

The CLB series of capacitors has been developed to meet the demand for a high reliability capacitor with the ability to withstand high voltages in microwave applications. They are a result of the development of a high density ceramic material and state-of-the-art thin film technology. With CLB single and multiplate ultra-miniature capacitors, manufacturers of microwave products can improve both production yield and quality. The multi-plate series provides the option of using a single device for varied capacitance requirements, effectively minimizing material preparation while reducing time and cost.

FEATURES

- Operation to over 20GHz.
- Ultra-reliable performance and dielectric strength under high temperature and moisture conditions.
- 100 micro inch minimum, gold plated electrode, provides superior adhesion for die bonding and thermocompression wire bonding.
- Safety margin around plate areas eliminates the possibility of electrical shorts.
- Multi-plate designs (binarysegmented capacitance values on one chip) provide a variety of capacitance values for fine tuning.

PART NUMBERING

DIMENSIONS: in. (mm)

TYPE	L	W	T Max.
CLB11	0.010 (0.25) ± 0.002 (0.05)	0.010 (0.25) ± 0.005 (0.13)	0.007 (0.18)
15	$0.015 (0.38) \pm 0.002 (0.05)$	0.015 (0.38) + 0.015 (0.38), -0.005 (0.13)	0.008 (0.2)
12	$0.020 (0.51) \pm 0.002 (0.05)$	$0.020 (0.51) \pm 0.01 (0.25)$	0.010 (0.25)
16	$0.025 (0.64) \pm 0.002 (0.05)$	0.025 (0.64) + 0.02 (0.51), -0.01 (0.25)	0.010 (0.25)
17	0.030 (0.76) ± 0.002 (0.05)	0.030 (0.76) ± 0.015 (0.38)	0.010 (0.25)
13	0.035 (0.90) ± 0.002 (0.05)	0.035 (0.90) + 0.025 (0.64) -0.015 (0.38)	0.010 (0.25)
18	0.050 (1.27) ± 0.004 (0.10)	0.050 (1.27) + 0.04 (1.02), -0.02 (0.51)	0.010 (0.25)
19	0.070 (1.78) ± 0.004 (0.10)	0.070 (1.78) + 0.05 (1.27), -0.03 (0.76)	0.012 (0.3)
10	0.090 (2.29) ± 0.004 (0.10)	0.090 (2.29) + 0.06 (1.52), -0.04 (1.02)	0.014 (0.35)
32	0.020 (0.51) ± 0.002 (0.05)	0.020 (0.51) ± 0.002 (0.05)	0.010 (0.25)
44	0.035 (0.90) ± 0.002 (0.05)	0.020 (0.51) ± 0.002 (0.05)	0.010 (0.25)
53	$0.035 (0.90) \pm 0.002 (0.05)$	0.035 (0.90) ± 0.002 (0.05)	0.010 (0.25)

CAPACITANCE RANGE

SINGLE ELECTRODE

	Гуре	CG	UJ	XL	В	F
01.044	Cap. Range	0.1-0.2	0.3-0.9	0.8-1.8	2.0-18	27-51
CLB11	Tolerance	B, C, D, K	B, C, D, K	B, C, D	C, D, K	K, M
01.045	Cap. Range	0.2-0.8	0.9-2.7	1.8-5.1	5.1-56	62-150
CLB15	Tolerance	B, C, D	C, D	C, D	D, K, M	K, M
01.040	Cap. Range	0.3-1.0	1.0-3.0	2.2-5.6	5.6-68	75-200
CLB12	Tolerance	B, C, D	C, D, K	C, D, K	K, M	М
01.040	Cap. Range	0.3-1.6	2.0-6.2	3.6-11	10-120	130-360
CLB16	Tolerance	B, C, D	D, K	D	K, M	М
CLB17	Cap. Range	0.4-2.0	3.0-7.5	5.6-15	15-130	200-390
	Tolerance	B, C, D	D, K	D, K	K, M	М
01.040	Cap. Range	0.5-2.7	3.3-9.1	6.2-18	16-180	200-560
CLB13	Tolerance	B, C, D	D, K	K	K, M	М
OL D40	Cap. Range	1.0-5.1	7.5-20	15-36	33-390	430-1300
CLB18	Tolerance	C, D	К	K, M	K, M	М
OL D40	Cap. Range	1.8-10.0	13-39	27-75	62-750	750-1800
CLB19	Tolerance	C, D, K	K, M	K, M	K, M	М
CL B10	Cap. Range	3.0-16	20-56	39-110	91-1200	1200-3000
CLB10	Tolerance	D, K	K, M	K, M	K, M	М

NOTE 1: All Capacitance values in pF
NOTE 2: Capacitance values available within the ranges shown above are in EIA E24 steps as denoted below.

MULTI-ELECTRODE

Part Number	Cap. Value (Largest plate) pF
CLB32UJ0R7K	0.7
CLB32XL1R5K	1.5
CLB44UJ1R5K	1.5
CLB44XL3R0K	3.0
CLB53UJ3R0K	3.0
CLB53XL5R9K	5.9

E24 STEP

24	SIEP	
	1.0	3.3
	1.1	3.6
	1.2	3.9
	1.3	4.3
	1.5	4.7
	1.6	5.1
	1.8	5.6
	2.0	6.2
	2.2	6.8
	2.4	7.5
	2.7	8.2
	3.0	9.1

TOLERANCE

B: ± 0.1 pF C: ± 0.25pF D: ± 0.5 pF K: ± 10% M: ± 20%

TEMPERATURE CHARACTERISTICS

CG: 0 ± 30 ppm/°C UJ: -750 ± 120 ppm/°C XL: -2200 ± 500 ppm/°C B: ± 10% + 30, -80% (-25°C to +85°C)

Murata Electronics' extensive line of ceramic disc and high voltage capacitors, described in this catalog, is backed by over 50 years of experience in the design and manufacture of units for every conceivable application. Murata has a manufacturing capability second to none and is the world's largest supplier of ceramic capacitors.

These products are manufactured from the finest ceramic raw materials and on the most efficient auto-assembly machines ever devised for low unit cost, product consistency, and exceptional long-term reliability.

For further information on any Murata product or for application assistance, Murata maintains an experienced staff of application engineers in Smyrna, Georgia who can provide any technical support you may require.

TABLE OF CONTENTS

Page

	- 9
Medium Voltage Ceramic Disc Capacitors Miniature (E.I.A. Class I, II, III) 1KV to 6KV (SL, B, E, F)	76 77 - 78
Safety Recognized Capacitors 125V AC-400V AC KC Type (125V AC-400V AC) KD Type (4KV AC Flash) Standard Compliances Specifications (Safety Capacitors) MB/MF/MG Type Capristors (125V AC) Specifications (Capristors)	
Taped Packaging Safety and Medium Voltage Ceramic Disc Capacitors	87
High Voltage Ceramic Disc Capacitors Temperature Compensating (E.I.A. Class I) 10KV, 15 KV DC (N4700)	90
High Voltage Ceramic Capacitors Temperature Compensating (E.I.A. Class I) 10KV to 40KV DC (DHS Series)	93
High Voltage Power Ceramic Disc Capacitors 5KV to 20KV DC (DC Series)	98 -100 101 102 -103

MINIATURE MEDIUM VOLTAGE CERAMIC DISC CAPACITOR E.I.A. CLASS I, II & III

1-6K VDC

DIMENSIONS: in. (mm)

Tinned copper wire DE04-05—#24 DE06-16—#22 1KV .157 (4.0) 2KV .197 (5.0) 3KV .236 (6.0) 6KV .276 (7.0)

MARKING*

PART NUMBERING SYSTEM

TYPE DE04	LEADS 05	TEMP. CHAR. B	CAPACITANCE 101	TOL.	VOLTAGE 1KV
CAPACITOR TYPE AND SIZE	LEAD SPACING 05=.197 (5) 07=.300 (7.5) 10=.394 (10)	TEMPERATURE CHARACTERISTICS Class I: Per standard EIA specifications Class II & III: TEMPERATURE RANGE: -25°C to +85° MAX. CAP. CHANGE OVER TEMP. RANG B=±10% E=+20, -55% F=+30, -80%		CAPACITANCE TOLERANCE J=±5% K=±10% Z=+80, -20%	VOLTAGE Identified by a one-digit number
NOTE: B, E, F are JIS co EIA temperature charact					

*1KV - SL

PART NUMBER	DIA (mm)	LS (mm)	CAP (pF)
DE0405SL100D1KV	4	5	10
DE0405SL120J1KV	4	5	12
DE0405SL150J1KV	4	5	15
DE0405SL180J1KV	4	5	18
DE0405SL220J1KV	4	5	22
DE0405SL270J1KV	4	5	27
DE0405SL330J1KV	4	5	33
DE0405SL390J1KV	4	5 5	39
DE0405SL470J1KV	4	5	47
DE0505SL560J1KV	5	5	56
DE0505SL680J1KV	5	5	68
DE0605SL820J1KV	6	5	82
DE0605SL101J1KV	6	5	100
DE0605SL121J1KV	6	5 5	120
DE0705SL151J1KV	7	5	150
DE0705SL181J1KV	7	5	180
DE0805SL221J1KV	8	5	220
DE0905SL271J1KV	9	5	270
DE1005SL331J1KV	10	5	330
DE1005SL391J1KV	10	5	390
DE1105SL471J1KV	11	5	470
DE1205SL561J1KV	12	5	560

*2KV - SL

PART NUMBER	DIA (mm)	LS (mm)	CAP (pF)
DE0405SL100D2KV	4	5	10
DE0405SL120J2KV	4	5	12
DE0405SL150J2KV	4	5	15
DE0405SL180J2KV	4	5	18
DE0405SL220J2KV	4	5	22
DE0405SL270J2KV	4	5 5	27
DE0405SL330J2KV	4	5	33
DE0505SL390J2KV	5	5	39
DE0605SL470J2KV	6	5	47
DE0605SL560J2KV	6	5	56
DE0605SL680J2KV	6	5 5	68
DE0705SL820J2KV	7	5	82
DE0705SL101J2KV	7	5	100
DE0805SL121J2KV	8	5	120
DE0805SL151J2KV	8	5 5	150
DE0905SL181J2KV	9		180
DE1005SL221J2KV	10	5	220
DE1105SL271J2KV	11	5 5	270
DE1205SL331J2KV	12		330
DE1307SL391J2KV	13	7.5	390
DE1410SL471J2KV	14	10	470
DE1510SL561J2KV	15	10	560

*3KV - SL

DE0507SL100D3KV	5	7.5	10
DE0507SL120J3KV	5	7.5	12
DE0507SL150J3KV	5	7.5	15
DE0507SL180J3KV	5	7.5	18
DE0507SL220J3KV	5	7.5	22
DE0607SL270J3KV	6	7.5	27
DE0607SL330J3KV	6	7.5	33
DE0607SL390J3KV	6	7.5	39
DE0707SL470J3KV	7	7.5	47
DE0707SL560J3KV	7	7.5	56
DE0807SL680J3KV	8	7.5	68
DE0807SL820J3KV	8	7.5	82
DE0907SL101J3KV	9	7.5	100
DE1007SL121J3KV	10	7.5	120
DE1107SL151J3KV	11	7.5	150
DE1107SL181J3KV	11	7.5	180
DE1207SL221J3KV	12	7.5	220
DE1410SL271J3KV	14	10	270
DE1510SL331J3KV	15	10	330
DF1610SL391J3KV	16	10	390

*6KV - SL

DE0910SL220J6KV	9	10	22
DE0910SL270J6KV	9	10	27
DE0910SL330J6KV	9	10	33
DE0910SL390J6KV	9	10	39
DE0910SL470J6KV	9	10	47
DE1010SL560J6KV	10	10	56
DE1210SL680J6KV	12	10	68
DE1210SL820J6KV	12	10	82
DE1310SL101J6KV	13	10	100
DE1410SL121J6KV	14	10	120
DE1510SL151J6KV	15	10	150

^{*}Available as standard through authorized Murata Electronics Distributors.

MINIATURE MEDIUM VOLTAGE CERAMIC DISC CAPACITORS E.I.A. CLASS I, II & III

PART NUMBER	DIA (mm)	LS (mm)	CAP (pF)
DE0405B101K1KV DE0405B151K1KV DE0405B221K1KV DE0405B331K1KV DE0505B471K1KV DE0605B681K1KV DE0605B102K1KV DE0805B152K1KV DE0805B152K1KV DE0905B222K1KV DE1005B332K1KV DE1205B472K1KV DE1510B682K1KV	4 4 4 5 6 6 8 9 10 12	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	100 150 220 330 470 680 1000 1500 2200 3300 4700 6800
2KV – B			
DE0405B101K2KV DE0405B151K2KV DE0405B221K2KV DE0505B331K2KV DE0505B371K2KV DE0605B471K2KV DE0705B681K2KV DE0805B102K2KV DE0905B152K2KV DE1005B222K2KV DE1205B332K2KV DE1510B472K2KV	4 4 5 6 7 8 9 10 12	5 5 5 5 5 5 5 5 5 5 10	100 150 220 330 470 680 1000 1500 2200 3300 4700
3KV – B			
DE0507B101K3KV DE0507B151K3KV DE0507B221K3KV DE0607B331K3KV DE0607B371K3KV DE0707B471K3KV DE0807B681K3KV DE0907B102K3KV DE1107B152K3KV DE1107B152K3KV DE1510B332K3KV	5 5 6 7 8 9 11 13	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	100 150 220 330 470 680 1000 1500 2200 3300
6KV – B			
DE0910B101K6KV DE0910B151K6KV DE0910B221K6KV DE0910B331K6KV DE1010B471K6KV DE1110B681K6KV DE1310B102K6KV	9 9 9 10 11 13	10 10 10 10 10 10 10	100 150 220 330 470 680 1000
1KV – E			=
DE0505E102Z1KV DE0705E222Z1KV DE0905E472Z1KV DE1307E103Z1KV	5 7 9 13	5 5 5 7.5	1000 2200 4700 10000
2KV – E			4000
DE0605E102Z2KV DE0805E22ZZKV DE1105E47ZZ2KV DE1610E103Z2KV	6 8 11 16	5 5 5 10	1000 2200 4700 10000
3KV – E			
DE0707E102Z3KV DE1007E22ZZ3KV DE1307E472Z3KV	7 10 13	7.5 7.5 7.5	1000 2200 4700
*6KV − E			
DE1110E102Z6KV DE1510E222Z6KV	11 15	10 10	1000 2200
TKV – F	•	-	0000
DE0605F222Z1KV DE0705F472Z1KV DE1005F103Z1KV	6 7 10	5 5 5	2200 4700 10000
*2KV – F			
DE0505F102Z2KV DE0705F22ZZ2KV DE0905F472Z2KV DE1205F103Z2KV	5 7 9 12	5 5 5 5	1000 2200 4700 10000

^{*}Available as standard through authorized Murata Electronics Distributors.

MINIATURE & CONVENTIONAL CERAMIC DISC CAPACITORS SPECIFICATIONS: CLASS I

Test Conditions: Unless otherwise specified, measurements shall be made at +25°C, ± 5 °C, a relative humidity no greater than 70%, and normal atmospheric pressure.

Capacitance: Capacitance shall be within the specified limits when measured at, or corrected to, a temperature of +20°C, a RMS voltage between .05 and 5.0, and a frequency of 1MHz.

"Q", (or Ratio of Reactance to Equivalent Series Resistance): "Q" shall not be less than the limits shown below when measured at +25°C, a RMS voltage between 0.5 and 5.0 and a frequency of 1MHz. Q=30pF and over, \geq 1000 less than 30pF, \geq 400 + 20 × nominal capacitance.

Insulation Resistance: $10,000M\Omega$ minimum when measured between terminals of capacitor 1 minute after application of a test voltage of 500VDC applied through a protective resistance which will limit the charging current to 50mA.

Dielectric Strength: Capacitors shall be subjected to a DC voltage equal to 200% of their rated working voltage, and the voltage shall be applied through a protective resistance that will limit the charging current to 50mA.

Temperature Coefficient and Capacitance Drift: T.C. shall not exceed limits defined in Figure 2 when determined by a single run from +25°C to +85°C. Capacitance drift shall not exceed .3% or .25pF whichever is greater, as determined by the greatest difference between 2 measurements, at +25°C and at +85°C. Each measurement made in determination of temperature coefficient or capacitance drift shall be made after the capacitor has reached thermal stability. Care should be taken to compensate for lead capacitance for extreme accuracy with low capacitance units.

TYPICAL TEMPERATURE CHARACTERISTICS

Humidity Resistance: After exposure for a period of 500 hours to an atmosphere of 95% relative humidity at a temperature of 40°C, capacitor shall have a minimum insulation resistance of 1,000M Ω .

Life: After accurately measuring capacitance as specified in paragraph #1, the capacitor shall be subjected to application of a DC voltage equal to 150% of the rated working voltage for 1,000 hours at $+85^{\circ}$ C. 24 hours after completion of the test, the capacitance drift shall not be more than 1% or .5pF, whichever is greater. "Q" shall not be less than shown above, and insulation resistance shall not be less than 2000M Ω . All units shall be subjected to a DC voltage equal to 150% of the rated working voltage.

Encapsulation: Ceramic disc is coated in an epoxy resin which conforms to UL94V-0.

MINIATURE & CONVENTIONAL CERAMIC DISC CAPACITORS SPECIFICATIONS: CLASS II & III

Test Conditions: Unless otherwise specified, measurements shall be made at +25°C, ±5°C, a relative humidity no greater than 70%, and normal atmospheric pressure.

Capacitance: Capacitance shall be within the specified limits when measured at, or corrected to, a temperature of +20°C, a RMS voltage between .05 and 5.0, and a frequency of 1KHz.

Dissipation Factor, or (Ratio of Equivalent Series Resistance to Reactance): Dissipation Factor shall not be greater than 2.5% for B and E characteristics, or greater than 5% for F.

Insulation Resistance: $10,000M\Omega$ minimum when measured between terminals of capacitor 1 minute after application of a DC test voltage of 500 applied through a protective resistance which will limit the charging current to 50mA.

Dielectric Strength: Capacitors shall be subjected to a DC voltage equal to 200% of their rated working voltage. This voltage shall be applied for 5, ± 1 seconds through a protective resistance that will limit the charging current to 50mA.

Humidity Resistance: After exposure for a period of 500 hours to an atmosphere of 95% relative humidity at a temperature of 40°C, capacitor shall have a minimum insulation resistance of 1,000M Ω .

Life: Capacitors shall be subjected to a DC voltage equal to 150% of the rated working voltage for 1,000 hours at $+85^{\circ}$ C. After this test, dissipation factor shall not be more than twice the stated initial value, and insulation resistance shall not be less than 2,000M Ω .

Encapsulation: Ceramic disc is coated in an epoxy resin which conforms to UL94V-0.

TYPICAL TEMPERATURE CHARACTERISTICS

HR SERIES, HIGH TEMPERATURE (+125°)/ LOW LOSS .3% DISSIPATION FACTOR E.I.A. CLASS I & II

muRata

250-6K VDC

DIMENSIONS: in. (mm)

MARKING*

*HR=High Temperature Guaranteed code SL has no temperature characteristic marking. Working Voltage not marked for 500V. Three-digit capacitance code for values 100pF and higher.

PART NUMBERING SYSTEM

TYPE DE07	LEAI 05		TEMP. CH	IAR.	CAPACITANCE 221	TOL. K	VOLTAGE 1KV
CAPACITOR Type and Size	LEAD SPACING 5, 05 = .197 (5) 7, 07 = .300 (7.5) 0, 10 = .394 (10) 16 = .630 (16)		TEMPERATURE CHARACTERISTICS -25°C to +125°C MAX. CAP. CHANG OVER TEMP. RANG SL= +350-1000ppn	E SE	CAPACITANCE VALUE Expressed in picofarads and identified by a three-digit number. First two digits represent significant figures. Last digit specifies the number of zeros to follow.	CAPACITANCE TOLERANCE J = ± 5% (SL only) K= ± 10%	VOLTAGE Identified by a one, two or thre digit number.
			-25°C to +85°C	+85°C to) +125°C		
		R=	±15%	+15, -	-30%		
		C=	±20%	+15,	-30%		

*1KV - SL

IKV - SL			
PART NUMBER	DIA (mm)	LS (mm)	CAP (pF)
DE507-5SL100D1KV	7	5	10
DE507-5SL120J1KV	7	5	12
DE507-5SL150J1KV	7	5	15
DE507-5SL180J1KV	7	5	18
DE507-5SL220J1KV	7	5	22
DE507-5SL270J1KV	7	5	27
DE507-5SL330J1KV	7	5	33
DE507-5SL390J1KV	7	5	39
DE507-5SL470J1KV	7	5	47
DE507-5SL560J1KV	7	5	56
DE507-5SL680J1KV	7	5	68
DE507-5SL820J1KV	7	5	82
DE507-5SL101J1KV	7	5	100
DE507-5SL121J1KV	7	5	120
DE508-5SL151J1KV	8	5	150
DE508-5SL181J1KV	8	5	180
DE509-5SL221J1KV	9	5 5	220
DE510-5SL271J1KV	10		270
DE511-5SL331J1KV	11	5	330

*3KV - SL

, C.			
PART NUMBER	DIA (mm)	LS (mm)	CAP (pF)
DE507-7SL100D3KV	7	7.5	10
DE507-7SL120J3KV	7	7.5	12
DE507-7SL150J3KV	7	7.5	15
DE507-7SL180J3KV	7	7.5	18
DE507-7SL220J3KV	7	7.5	22
DE507-7SL270J3KV	7	7.5	27
DE507-7SL330J3KV	7	7.5	33
DE507-7SL390J3KV	7	7.5	39
DE507-7SL470J3KV	7	7.5	47
DE508-7SL560J3KV	8	7.5	56
DE508-7SL680J3KV	8	7.5	68
DE509-7SL820J3KV	9	7.5	82
DE510-7SL101J3KV	10	7.5	100
DE511-7SL121J3KV	11	7.5	120

*2KV - SL

DE507-7SL100D2KV	7	7.5	10
DE507-7SL120J2KV	7	7.5	12
DE507-7SL150J2KV	7	7.5	15
DE507-7SL180J2KV	7	7.5	18
DE507-7SL220J2KV	7	7.5	22
DE507-7SL270J2KV	7	7.5	27
DE507-7SL330J2KV	7	7.5	33
DE507-7SL390J2KV	7	7.5	39
DE507-7SL470J2KV	7	7.5	47
DE507-7SL560J2KV	7	7.5	56
DE507-7SL680J2KV	7	7.5	68
DE507-7SL820J2KV	7	7.5	82
DE508-7SL101J2KV	8	7.5	100
DE508-7SL121J2KV	8	7.5	120
DE509-7SL151J2KV	9	7.5	150
DE510-7SL181J2KV	10	7.5	180
DE511-7SL221J2KV	11	7.5	220

^{*}Available as standard through authorized Murata Electronics Distributors.

HR SERIES, HIGH TEMPERATURE (+125°)/LOW LOSS .3% DISSIPATION FACTOR E.I.A. CLASS I & II

250-6K VDC

*250V - R	All values standard through Murata Electronics Distributors.
-----------	--

PART NUMBER	DIA (mm)	LS (mm)	CAP (pF)
DE50-6R221K250V DE50-6R331K250V DE50-6R471K250V DE50-6R681K250V DE50-6R102K250V DE50-7R152K250V DE50-8R222K250V DE50-9R332K250V DE51-0R472K250V DE51-2R682K250V DE51-2R103K250V	6 6 6 6 7 8 9 10 12	5 5 5 5 5 5 5 5 5 5 5	220 330 470 680 1000 1500 2200 3300 4700 6800 10000
0V – C			
DE50-6C331K500V DE50-6C471K500V DE50-7C681K500V DE50-8C102K500V DE50-9C152K500V DE51-0C222K500V DE51-2C332K500V DE51-4C472K500V	6 6 7 8 9 10 12 14	5 5 5 5 5 5 5 10	330 470 680 1000 1500 2200 3300 4700
(V – R			
DE0705R221K1KV DE0705R331K1KV DE0705R471K1KV DE0805R681K1KV DE0905R102K1KV DE1105R152K1KV DE1310R222K1KV DE1510R332K1KV DE1710R472K1KV	7 7 7 8 9 11 13 15	5 5 5 5 5 10 10 10	220 330 470 680 1000 1500 2200 3300 4700
CV – R			
DE0707R221K2KV DE0707R271K2KV DE0807R331K2KV DE0807R391K2KV DE0907R471K2KV DE0907R661K2KV DE1007R681K2KV DE11007R681K2KV DE1107R821K2KV DE1207R102K2KV DE1207R122K2KV DE1207R152K2KV DE1510R222K2KV DE1510R222K2KV DE1710R272K2KV DE1910R332K2KV DE2010R392K2KV DE2110R472K2KV	7R271K2KV 7 7R331K2KV 8 7R331K2KV 8 7R391K2KV 9 7R471K2KV 9 7R561K2KV 10 7R681K2KV 11 7R102K2KV 12 7R122K2KV 12 7R152K2KV 12 7R152K2KV 14 0R222K2KV 15 0R272K2KV 15 0R272K2KV 17 0R32K2KV 19 0R332K2KV 19 0R332K2KV 20		220 270 330 390 470 560 680 820 1000 1200 1500 1800 2200 2700 3300 3900 4700
DE0707R101K3KV	7	7.5	100
DE0707R151K3KV DE0707R181K3KV DE0707R221K3KV DE0707R271K3KV DE0807R331K3KV DE0907R391K3KV DE1007R471K3KV DE11007R561K3KV DE1107R681K3KV DE1107R881K3KV DE1207R821K3KV DE1310R102K3KV DE1410R122K3KV DE1510R152K3KV DE1510R152K3KV DE1710R222K3KV	7 7 7 8 9 10 10 11 12 13 14 15 16 17	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 10 10 10 10	150 180 220 270 330 390 470 560 680 820 1000 1200 1500 1800 2200 2700
KV – R			
DE0915R221K6KV DE1010R331K6KV DE1210R471K6KV DE1310R681K6KV DE1716R102K6KV DE1916R152K6KV DE2116R222K6KV	9 10 12 13 17 19 21	10 10 10 10 16 16	220 330 470 680 1000 1500 2200

^{*}Available as standard through authorized Murata Electronics Distributors.

HR SERIES, HIGH TEMPERATURE (+125°) CERAMIC DISC CAPACITORS SPECIFICATIONS: CLASS I, II & III

Operating Temperature Range: -25°C to +125°C.

Test Conditions: Unless otherwise specified, measurements shall be made at +25°C, ±5°C, a relative humidity no greater than 70%, and normal atmospheric pressure.

Capacitance: Capacitance shall be within the specified limits when measured at, or corrected to, a temperature of +20°C, an RMS voltage 3.0 max, and a frequency of 1MHz. (5.0V max. and 1KHz for Class II & III.)

"Q", (or Ratio of Reactance to Equivalent Series Resistance, Class I only): Less than 30pF, Q>400 +20C in pF. >30pF, Q≥1000.

Dissipation Factor (Class II & III only): Dissipation Factor (tanδ) shall be less than 0.2% (R), 0.3% (C) when measured at temperature of 20°C and 1 ± 0.1 KHz with 1.0 to 3.0Vrms.

Insulation Resistance: $10,000M\Omega$ minimum when measured between terminals of capacitor 1 minute after application of a test voltage of 500VDC applied through a protective resistance which will limit the charging current to 50mA.

Dielectric Strength: Capacitors shall be subjected to a DC voltage equal to 200% of their rated working voltage, and the voltage shall be applied through a protective resistance that will limit the charging current to 50mA.

Temperature Coefficient and Capacitance Drift: Per T.C. graph.

Humidity Resistance: After exposure for a period of 500 hours to an atmosphere of 95% relative humidity at a temperature of 40°C, capacitor shall have a minimum insulation resistance of 1,000M Ω min.

Life: After accurately measuring capacitance as specified in paragraph #1, the capacitor shall be subjected to application of a DC voltage equal to 150% of the rated working voltage for 1,000 hours at +85°C (Class I), +125°C (Class II & III). 24 hours after completion of the test, the capacitance drift shall not be more than +3%. "Q" shall not be less than 350 (Class I), and DF shall not be less than 0.4% (Class II & III). Insulation resistance shall not be less than $2000M\Omega$.

All units shall be subjected to a DC voltage equal to 150% of the rated working voltage.

Encapsulation: Ceramic disc is coated in an epoxy resin which conforms to UL94V-0.

TYPICAL AC/DC BREAKDOWN VOLTAGE

TYPICAL POWER CAPACITY

SAFETY RECOGNIZED CERAMIC DISC CAPACITORS

VA1-KC AC125-MY

DIMENSIONS: in. (mm)

PART NUMBERING SYSTEM

EMPERATURE	0.0000000000000000000000000000000000000			
Z=10°C to +60°C IAX. CAP. CHANGE	CAPACITANCE VALUE Expressed in picofarads and identified by a three- digit number. First two digits represent significant figures. Last digits specifies the number of zeros to follow.	CAPACITANCE TOLERANCE $K = \pm 10\%$ $M = \pm 20\%$ $P = +100\%$, -0%	VOLTAGE VA1 =400VAC Europe 250 VAC North America & Europe 125 VAC North America AC125=125 VAC North America only	LISTED TYPE Designation
71/1	=25°C to +85°C =25°C to +85°C =10°C to +60°C AX. CAP. CHANGE /ER TEMP. RANGE: =±10% =+30, -80% =+30, -85%	=25°C to +85°Č digit number. First two digits represent significant figures. Last digits specifies the number of zeros to follow. =10°C to +85°Č digits represent significant figures. Last digits specifies the number of zeros to follow. =10% contact the first two digits represent significant figures. Last digits specifies the number of zeros to follow.	=25°C to +85°C digit number. First two digits represent P=+100%, -0% significant figures. Last digits specifies the number of zeros to follow. =10°C to +60°C significant figures. Last digits specifies the number of zeros to follow. =10% =430, -80% =+30, -85%	=25°C to +85°C digit number. First two digits represent P =+100%, -0% 125 VAC North America AX. CAP. CHANGE digits specifies the number of zeros to follow. =10°C to +60°C significant figures. Last digits specifies the number of zeros to follow. =±10% America AC125=125 VAC North America only America only =+30, -80%

PART NUMBER	DIMENSION	NS: in. (mm)	Cap.(pF)
PART NOMBER	D max.	L.S.	Сар.(рг)
*DE7090 B 101K VA1-KC	.394 (10)	.300 (7.5)	100
*DE7090 B 151K VA1-KC	.394 (10)	.300 (7.5)	150
*DE7090 B 221K VA1-KC	.394 (10)	.300 (7.5)	220
*DE7090 B 331K VA1-KC	.394 (10)	.300 (7.5)	330
*DE7090 B 471K VA1-KC	.394 (10)	.300 (7.5)	470
*DE7090 B 681K AC125-MY	.394 (10)	.300 (7.5)	680
*DE7090 B 102K VA1-KC	.394 (10)	.300 (7.5)	1000
DE7090 F 152M VA1-KC	.472 (12)	.300 (7.5)	1500
*DE7100 F 222M VA1-KC	.472 (12)	.300 (7.5)	2200
*DE7100 FZ 472P VA1-KC	.472 (12)	.300 (7.5)	4700
*DE7120 F 332M VA1-KC	.551 (14)	.394 (10.0)	3300
DE7120 F 392M VA1-KC	.551 (14)	.394 (10.0)	3900
*DE7150 F 472M VA1-KC	.669 (17)	.394 (10.0)	4700
*DE7150 FZ 103P VA1-KC	.669 (17)	.394 (10.0)	10000
*DE7150 F 103M VA1-KC	.669 (17)	.394 (10.0)	10000

TYPICAL MARKING

- 1. Capacitance by three-digit code
- 2. Cap. tolerance by E.I.A. lettercode
- 3. Safety recognition markings
- 4. Type Designation
- 5. Manufacturer's trademark

SAFETY RECOGNIZED CERAMIC DISC CAPACITORS

ACT4K-KD

DIMENSIONS: in. (mm)

PART NUMBERING SYSTEM

PART NUMBER	D Max. in.: (mm)	L.S.	Cap. Value (pF)
*DE1010 B 101K ACT4K-KD	.394 (10.0)	.394 (10)	100
*DE1010 B 151K ACT4K-KD	.394 (10.0)	.394 (10)	150
*DE1010 B 221K ACT4K-KD	.394 (10.0)	.394 (10)	220
*DE1010 B 331K ACT4K-KD	.394 (10.0)	.394 (10)	330
*DE1010 B 471K ACT4K-KD	.394 (10.0)	.394 (10)	470
*DE1010 E 681M ACT4K-KD	.394 (10.0)	.394 (10)	680
*DE1110 E 102M ACT4K-KD	.433 (11.0)	.394 (10)	1000
*DE1410 E 222M ACT4K-KD	.551 (14.0)	.394 (10)	2200
*DE1610 E 332M ACT4K-KD	.630 (16.0)	.394 (10)	3300
*DE1710 E 392M ACT4K-KD	.669 (17.0)	.394 (10)	3900
*DE1910 E 472M ACT4K-KD	.748 (19.0)	.394 (10)	4700

NOTE: Please refer to page 82 for Standard Recognitions by Part Number.

TYPICAL MARKING

Item		Example
UL Recognized Mark	977	
VDE Approval Mark	£.	
SEMKO Approval Mark	S	Marking on one side
Reinforced Insulation Mark		KD472M
IMQ Approval Mark	•	T4KV ~ (1)
Type Designation	KD	560-2 Y S D
Nominal Capacitance	_	W 3 4
Capacitance Tolerance	_	For DE1910E472MACT4K-KI
Testing Voltage	T4KV	
Manufacturer's Name	(M3	
Manufactured Date Code	_	

^{*}Available as standard through authorized Murata Electronics Distributors.

SAFETY RECOGNIZED CERAMIC DISC CAPACITORS RECOGNIZED STANDARDS

TYPE MY, KD, & KC

TYPE KC

									R	ecognized	Standard N	0.						
	VDE0560-2 BS415 AS3250	-	565-1 - -	SE	V1055	/SEV10	016	SEMI SS443	(0101/ 04-14	UL 1414	EI E101-82	EI E384/14-82	NEMX	MKO 0661/77 0132/85		MKO on 201	DEMKO Section 21	CSA C22.2 No. 0 No. 1
Part Number	_	Χ	Υ	Х	Υ	X	Υ	X	Υ	_	Υ	X, Y	X	Υ	X	Y	X, Y	_
DE7090 B 101K VA1-KC	0	0	0	0	0	_	0	0	0	0	0	0	0	0	0	0	_	0
DE7090 B 151K VA1-KC	0	0	0	0	0	-	_	0	0	0	0	0	0	0	0	0	0	0
DE7090 B 221K VA1-KC	0	0	0	0	0	-	-	0	0	0	0	0	0	0	0	0	0	0
DE7090 B 331K VA1-KC	0	0	0	0	0	-	-	0	0	0	0	0	0	0	0	0	0	0
DE7090 B 471K VA1-KC	0	0	0	0	0	_	_	0	0	0	0	0	0	0	0	0	0	0
DE7090 B 102K VA1-KC	0	0	0	0	0	-	_	0	0	0	0	0	0	0	0	0	0	0
DE7090 F 152M VA1-KC	0	0	0	0	0	_	_	0	0	0	0	0	0	0	0	0	0	0
DE7100 F 222M VA1-KC	0	0	0	0	0	-	_	0	0	0	0	0	0	0	0	0	0	0
DE7120 F 332M VA1-KC	0	0	0	_	_	0	0	0	0	0	0	0	0	0	0	0	0	0
DE7120 F 392M VA1-KC	0	0	0	_	_	0	0	0	0	0	0	0	0	0	0	0	0	0
DE7150 F 472M VA1-KC	0	0	0	_	_	0	0	0	0	0	0	0	0	0	0	0	0	0
DE7150 F 103M VA1-KC	0	0	_	0	0	_	_	0	-	0	0	-	0	_	0	_	_	0
DE7100 FZ 472P VA1-KC	0	_	_	_	_	-	-	0	0	0	0	0	0	0	0	0	0	0
DE7150 FZ 103P VA1-KC	0	_	_	_	_	_	_	0	_	0	0	_	0	_	0	-	_	0
AC Rated Voltage	400	2	50	41	00	2	50	400	/250	125/250	400	250	2	50	4	00	250	125

TYPE KD

						Reco	gnized St	andard N	0.					
Part Number	UL1414	CSA C22.2 No. 0 No. 1	BS 415	SEMKO 101	SS443 04-14	IMQ CEI 12-13	SEV 1016	VDE 0560-2	VDE 0565-1	EI E101 -82	EI E384/ 12-82	NEMKO 661/74	DEMKO Section 101	DEMKO Section 21
DE1010 B 101K ACT4K-KD	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DE1010 B 151K ACT4K-KD	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DE1010 B 221K ACT4K-KD	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DE1010 B 331K ACT4K-KD	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DE1010 B 471K ACT4K-KD	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DE1010 E 681M ACT4K-KD	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DE1110 E 102M ACT4K-KD	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DE1410 E 222M ACT4K-KD	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DE1610 E 332M ACT4K-KD	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DE1710 E 392M ACT4K-KD	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DE1910 E 472M ACT4K-KD	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AC Rated Voltage	250V	125V	400V	400V	250V	400V	250V	250V	400V	25	OV	250V		250V

^{*}Non-Standard Items Available Upon Request

TYPE MY

	Recognized Standard No.						
art Number	UL 1414	CSA C22.2 NO. 1					
E7090 B 681K AC125-MY	0	0					
C Rated Voltage	125/250V	125V					

⁽¹⁾ O: Recognized -: Not Recognized.

⁽²⁾ X capacitors are for use only in positions where failure of the capacitor would not expose anyone to electrical shock. UL/CSA designates the "X" type capacitor for "Across-The-Line" applications.

⁽³⁾ Y capacitors are for use in positions where failure of the capacitor may expose someone to dangerous electrical shock. UL/CSA designates the "Y" type capacitor for "Antenna Coupling" and "Line-By-Pass" applications.

SAFETY RECOGNIZED CERAMIC DISC CAPACITORS SPECIFICATIONS

KC, KD, MY Series

1. Operating Temperature Range

-25°C to +85°C (FZ: -10°C to +60°C)

2. Capacitance

Measured at 1 ± 0.1KHz, 5Vrms max. and 20°C

3. Dissipation Factor (D.F.)

Measured at 1 ± 0.1KHz, 5Vrms max. and 20°C

 $\begin{array}{ll} \underline{TC} & \underline{D.F.} \\ B & \leq 2.5\% \\ E & \leq 2.5\% \\ F, \, FZ & \leq 5.0\% \end{array}$

4. Insulation Resistance (I.R.)

10,000 M Ω min. (at 500V DC for 1 minute).

5. Dielectric Strength

Between both leads:

KC, MY Type: 2,600 VAC for 1 minute. KD Type: 4,000 VAC for 1 minute.

6. Temperature Characteristics

Range

7. Humidity

Capacitor shall be subjected to $40 \pm 2^{\circ}\text{C}$ and a relative humidity of 90 to 95% for 500 ± 12 hours. After placing at room temperature for 1 or 2 hours, conditions shall be as in Table 1.

TABLE 1

Itom	Series					
Item	KC, MY	KD				
Appearance	No physical damage	No physical damage				
I.R.	1500 M Ω min.	1500 MΩ min.				
Dielectric Strength	Per Item 5					

8. Life Test

Capacitor shall be placed in a circulating air chamber at 85 ½ C, 50% RH max. under the following conditions and meet the parameters of Table 2 after measured 4 to 24 hours after testing:

KD, KC, MY Type : Apply 800 VAC for 1500 hours increasing to 1600 VAC for 0.1 seconds once each hour

TABLE 2

Item	Series				
item	KC, MY	KD			
Appearance	No physical damage	No physical damage			
I.R.	1500 M Ω min.	1500 M Ω min.			
Dielectric Strength	Per Item 5				
Discharge Test II	Per Item 10				

9. Discharge Test 1

As in Figure 1, discharge is made 50 times at 5 second intervals from Cd charged to 10kV DC (KC, MY, KD type); the measured results shall meet the parameters of Table 3.

Ct : Capacitor under test

Cd : KC, KD & MY, 1000pF, MX, 500pF R₁ : KC, $4M\Omega$, KD, MY, $100M\Omega$, MX, $5.2M\Omega$ V : KC, KD & MY, 10KVDC, MX, 20KVDC

Fig. 1

TABLE 3

Hom	Series					
Item	KC, MY	KD No physical damage				
Appearance	No physical damage					
Dielectric Strength	Per Item 5					
I.R.	1000 M Ω min.	1000 M Ω min.				

SAFETY RECOGNIZED CERAMIC DISC CAPACITORS SPECIFICATIONS

KC, KD, MY Series

10. Discharge Test II

A single layer of cheesecloth is to be placed around the body of the test capacitor. Each sample is to be subjected to 4 discharges from a dump capacitor charged to a voltage that, when discharged, places 5KV (KC, MY, KD type) across Ct. The interval between succesive discharges is to be 5 seconds. A 240V, 60Hz potential is to be applied across Ct and is to be maintained for 30 seconds after the fourth discharge, unless the circuit is otherwise opened sooner due to breakdown of Ct. The test circuit is shown as Figure 2 and the test results shall meet the parameters of Table 3.

The direct current supply is to be adjusted to provide a potential in accordance with the following.

$$VDC = \frac{5000(Cd + Ct)}{Cd} (V)$$

VDC: Variable direct-current voltage source

S :High-voltage switch

L : Choke coil of approximately 3mil and 0.03Ω

F :Plug fuse rate 30A and 125V

VAC :Supply source rated 120V, 60Hz and 30A

Ct : Capacitor under test

Cd :Dump capacitor

Capacitance Value(s) and Dissipation Factor(s) are as follows:

TABLE 3

	Series							
Item	KC	, MY	KD					
Cap. Value of Ct	0 to 0.005 <i>μ</i> F	0.0051 to 0.05 <i>µ</i> F	0 to 0.005 <i>µ</i> F					
Cap. Value of Cd	0.005 <i>µ</i> F	0.05 <i>µ</i> F	0.005 <i>μ</i> F					
D.F.	0.5%	0.5%						

TABLE 4

Item	Series				
Item	KC, MY, KD				
Appearance	The cheesecloth around capacitor shall not glow or flame.				

11. Flame Test

Capacitor shall be subjected to Figure 3 for 15 sec. and then removed for 15 sec. for 5 cycles.

1st to 4th cycles: 30 sec. max.

5th cycle :60 sec. max. with flame extinguished

12. Encapsulation

Conformally coated in epoxy resin, which conforms to UL94V-6.

CAPRISTORS UL-CSA RECOGNIZED

125 VAC

TYPICAL MARKINGS

Exa	mple	Item	Code
		① Recognized Type	MF,MG
M	F ———	② Manufacturer's Identification	(A113
	C131 (3)	3 Capacitance : Marked with 3 figures	Ex. : C131
2 - M13	R1-2M (4)	④ Resistance Range : R□-□M	Ex. : R1-2N
		⑤ Rated Voltage : (MB type not marked)	125VAC
(5) — 125 VAC	OD + 6	Manufacturer's Date Code : Abbreviation	Ex.: 0D
①—— (SA	®—— <i>1</i>	© CSA Monogram	(\$A)
		UL Recognized Mark	RI

PART NUMBERING SYSTEM

DIMENSIONS: in. (mm)

SPECIFICATIONS

			Ca	pacitor		Resistor		
Part Number	Type Name	Nominal Capacitance	Cap. Tol.	Rated Voltage	Temperature Characteristic	Resistance Range	Rated Power	Circuit
B2R631C131R1-2M-193MB		120-5			Y5P	1-2ΜΩ		
B2R631C131R2.5-4M-193MB	MD	130pF			YOP	2.5-4ΜΩ		
B2R631C271R1-2M-193MB	MB	270pF Y5U -	1-2ΜΩ					
B2R631C271R2.5-4M-193MB				150	2.5-4ΜΩ			
B2R131C131R1-2M-121MF	MF	130pF			Y5P		1/2W	·
B2R131C271R1-2M-121MF		270pF]		Y5U	1-2ΜΩ		
B2R131C471R1-2M-121MF		470pF	+100 _%	100 _% 125 VAC	130			
B2R131C131R2.5-4M-141MG		100-5			Y5P	2.5-4ΜΩ		
B2R131C131R3.2-5.2M-141MG		130pF			YOP	3.2-5.2MΩ		
B2R131C271R2.5-4M-141MG	MC	27005				2.5-4MΩ 3.2-5.2MΩ 2.5-4MΩ		
B2R131C271R3.2-5.2M-141MG	MG	270pF			VEII			
B2R131C471R2.5-4M-141MG		470-5			Y5U			
B2R131C471R3.2-5.2M-141MG		470pF				3.2-5.2MΩ		

Y5P: ±10% (-30-+85°C), Y5U: +22,-56% (-30-+85°C)

SAFETY STANDARDS APPROVAL UL 1414 Across-the-Line Capacitor (MB/MF/MG type) Antenna-Coupling and Line-by-Pass Capacitor (MB/MF/MG type) C22.2 No. 0 C22.2 No. 1 Across-the-Line Capacitor (MG type) Antenna Isolation Capacitors (MB/MF/MG type)

CAPRISTORS UL-CSA RECOGNIZED

Test Conditions: Unless otherwise specified, measurements shall be made at +20°C, ±5 °C, a relative humidity of 65%, and normal atmospheric pressure.

Operating Temperature Range: -30°C to +85°C.

Capacitance: Less than 470pF measured at 1 \pm 0.1 MHz, 5Vrms max, and 20°C. 470pF and over measured at 1 \pm 0.1 KHz, 5Vrms max, and 20°C.

Resistance: Measured with applied voltage between 5 to 50VDC with a resistance bridge or other test method not having a combined limit error exceeding 0.5%.

Dielectric Strength: Between both leads; 1250Vrms, 50 or 60 Hz for 1 minute max. Flash Test; 1300 Vrms, 50 or 60 Hz for 1 sec with current limited to 30 mA.

Terminal Strength: Lead wire shall not be severed nor capristor damaged when a load of 2.19 pounds is applied and held for 1 to 5 seconds.

Solderability: Lead wire shall be soldered and uniformly coated on all axial direction over 34 (75%) of the circumference direction when dipped into molten solder of 230 \pm 5°C for 2 \pm 0.5 seconds.

TYPICAL APPLICATIONS

As shown in the above diagram, insertion loss is very small at VHF and UHF frequencies and excellent performance can be obtained in antenna coupling application.

TAPED PACKAGING MKV & SAFETY CAPACITORS DE SERIES

For MKV to 2KV DC, ≤ 11 mm Dia.
• 12.7mm pitch/lead spacing 5mm (Lead Code: - 979)

For MKV \geq 14mm Dia., 1-3KV DC & Safety Caps (DE7120 & DE7150)

• 30mm pitch/lead spacing 7.5mm (Lead Code: - 477)

For UP to 13mm Dia., 1-3KV DC & Safety Caps (DE7090 & DE7100)

• 15mm pitch/lead spacing 7.5mm (Lead Code: - 486)

For 10mm Lead Spacing
• 25.4mm pitch/lead spacing 10.0mm (Lead Code: - 487)

DIMENSIONS: mm

ITEM	CODE	-979	-486	-487	-477	
Pitch of component	Р	12.7	15.0	25.4	30.0	
Pitch of sprocket hole	P ₀	12.7 ± 0.3	15.0 ± 0.3	12.7 ± 0.3	15.0 ± 0.3	
Lead spacing	F	$5.0 + 0.8 \\ -0.2$	7.5 ± 1.0	10.0 ± 1.0	7.5 ± 1.0	
Length from hole center to component center	P ₂	6.35 ± 1.3	7.5 ± 1.5		7.5 ± 1.5	
Length from hole center to lead	P ₁	3.85 ± 0.7	3.75 ± 1.0	7.7 <u>+</u> 1.5	3.75 ± 1.0	
Body diameter	D		See individual pro	duct specifications		
Deviation along tape, left or right	ΔS	0 ± 1.0		0 <u>+</u> 2.0		
Carrier tape width	W		18.0	<u>+</u> 0.5		
Position of sprocket hole	W_1	9.0 ± 0.5				
Lead distance between reference and bottom planes	Н	20.0	± 1.5 – 1.0	18.0 + 2.0 - 0	20.0 + 1.5 - 1.0	
Protusion length	l		+0.5 /	/ -1.0		
Diameter of sprocket hole	D _o		4.0 -	<u>+</u> 0.1		
Lead Diameter	d	.6 ± 0.05		.65 ± 0.05		
Total tape thickness	t ₁		0.6 -	<u>+</u> 0.3		
Total thickness, tape and lead wire	t ₂		1.5 r	nax.		
Portion to cut in case of defect	L	11.0 +0 -1.0				
Hold down tape width	W ₀	11.5 min.				
Hold down tape position	W ₂	1.5 ± 1.5				
Coating extension on lead	е		3.0 r	nax.		

HIGH VOLTAGE, RADIAL LEADED CERAMIC DISC CAPACITORS E.I.A. CLASS I

10 & 15 KVDC

DIMENSIONS: in. (mm)

PART NUMBERING SYSTEM

PREFFERED VALUES 10 AND 15 KVDC

	CAPACITANCE	WORKING		DI	DIMENSIONS in.: (mm)			
PART NUMBER	(pF)	VOLTAGE (KVDC)	D max.	H max.	T max.	L.S.	E max.	
*DHR12 N4700 221M 10KV	220	10	.472 (12)	.512 (13)	.275 (7)	.375 (9.5)	.197 (5)	
★DHR15 N4700 331M 10KV	330	10	.590 (15)	.630 (16)	.275 (7)	.375 (9.5)	.197 (5)	
★DHR15 N4700 471M 10KV	470	10	.590 (15)	.630 (16)	.275 (7)	.375 (9.5)	.197 (5)	
★DHR17 N4700 681M 10KV	680	10	.669 (17)	.700 (17.8)	.275 (7)	.375 (9.5)	.197 (5)	
*DHR19 N4700 102M 10KV	1,000	10	.748 (19)	.791 (20.1)	.275 (7)	.500 (12.7)	.197 (5)	
*DHR9 N4700 820M 15KV	82	15	.354 (9)	.394 (10)	.330 (8.4)	.500 (12.7)	.197 (5)	
*DHR9 N4700 101M 15KV	100	15	.354 (9)	.394 (10)	.330 (8.4)	.500 (12.7)	.197 (5)	
*DHR12 N4700 151M 15KV	150	15	.472 (12)	.512 (13)	.330 (8.4)	.500 (12.7)	.197 (5)	
*DHR12 N4700 221M 15KV	220	15	.472 (12)	.512 (13)	.330 (8.4)	.500 (12.7)	.197 (5)	
*DHR15 N4700 331M 15KV	330	15	.590 (15)	.630 (16)	.330 (8.4)	.500 (12.7)	.197 (5)	
★DHR17 N4700 471M 15KV	470	15	.669 (17)	.697 (17.7)	.330 (8.4)	.500 (12.7)	.197 (5)	
★DHR19 N4700 681M 15KV	680	15	.748 (19)	.787 (20)	.330 (8.4)	.500 (12.7)	.197 (5)	
*DHR22 N4700 102M 15KV	1,000	15	.866 (22)	.909 (23.1)	.330 (8.4)	.500 (12.7)	.197 (5)	

TYPICAL MARKING

Manufacturer's Identification Capacitance (in 3-digit code) Tolerance (EIA Code) T.C. Rated Voltage

^{*}All preferred values available as standard from authorized Murata Electronics Distributors.

HIGH VOLTAGE, RADIAL LEADED CERAMIC DISC CAPACITORS SPECIFICATIONS: CLASS I

Temperature Range

 $-30 \text{ to } +85^{\circ}\text{C}.$

Capacitance

Capacitance shall be within the specified tolerance when measured at temperature of 25°C and 1 \pm 0.1KHz with 1.0 to 5.0Vrms.

Dissipation Factor

Dissipation Factor shall be less than 1.0% when measured at temperature of 20°C and 1 \pm 0.1KHz with 1.0 to 5.0Vrms.

Insulation Resistance

Insulation resistance shall exceed 10,000 M Ω when measured after 1.0 minute electrification time with 500VDC through the resistor at 1 M Ω .

Dielectric Strength (between terminals)

Capacitor shall not be damaged when 1.5 times of rated DC voltage applied between terminals for 30 seconds through a suitable resistor in a series to limit the charging current to 50mA max.

Encapsulation

Ceramic disc is conformally coated in an epoxy resin which conforms to UL94V-0.

Life Test

Appearance : no visible damage. Capacitance Change : to be within $\pm 10\%$ D.F. : 2.5% max.

D.F. : 2.5% max. Insulation resistance : 1,000 $M\Omega$ min. Dielectric strength : no failure

When tested as follows,

Temperature : $85 \pm 3^{\circ}$

Applied voltage : 1.25 times rated voltage

Period of test : 1000^{+48}_{-0} hours

To be measured at 4 hours after placed at room condition.

Charge-Discharge Test

Appearance : no visible damage Capacitance Change : to be within $\pm 10\%$ D.F. : 2.5% max.

Insulation resistance : 1,000 M Ω min.

When tested as follows,

Temperature : room condition
Applied voltage : rated voltage
Period time : charge for 1 sec.
discharge for 1 sec.

after 2 sec.

Cycle numbers : 20,000 cycles Circuit : see below

To be measured at 1-2 hours after placed at room condition.

E : rated voltage

R1 : circuit protecvtive resistor

R2 : current limiting resistor (10 Amp.)
Co : supplied energy for Cx. Co = 10Cx

Cx : specimen

TEMPERATURE CHARACTERISTICS

CAPACITANCE VS. DC BIAS

Corona Test

Corona shall be measured in the following test circuit. Corona shall be 50 picocoulomb max. in direct reading at 2KVrms (for 10KV rated voltage) or 3KVrms (for 15KV rated voltage).

E : power supply (corona free)
R : circuit protective resistor
CB : by-pass capacitor

Cx : specimen

L : corona pulse pick-up coil
M : corona detector; tuning type

HIGH VOLTAGE, RADIAL LEADED CERAMIC DISC CAPACITORS E.I.A. CLASS II & III

7.5, 10 & 15 KVDC

PART NUMBERING SYSTEM

PREFFERED VALUES - 7.5, 10 AND 15 KVDC

	CAPACITANCE	WORKING		DIM	IENSIONS in.: (mm)	
PART NUMBER	(pF)	VOLTAGE (KVDC)	D max.	H max.	T max.	L.S.	E max.
*DHR9 Y5P 101M 7.5KV *DHR9 Y5P 151M 7.5KV *DHR9 Y5P 221M 7.5KV *DHR10 Y5P 331M 7.5KV *DHR12 Y5P 471M 7.5KV *DHR13 Y5P 681M 7.5KV *DHR13 Y5P 681M 7.5KV *DHR15 Y5P 102M 7.5KV *DHR9 Z5U 471Z 7.5KV *DHR10 Z5U 681Z 7.5KV *DHR11 Z5U 102Z 7.5KV *DHR13 Z5U 152Z 7.5KV *DHR13 Z5U 22Z 7.5KV	100 150 220 330 470 680 1,000 470 680 1,000 1,500 2,200	7.5	.354 (9) .354 (9) .354 (9) .394 (10) .472 (12) .512 (13) .590 (15) .354 (9) .394 (10) .433 (11) .512 (13) .590 (15)	.394 (10) .394 (10) .394 (10) .433 (11) .512 (13) .551 (14) .631 (16) .394 (10) .433 (11) .472 (12) .551 (14) .631 (16)	.275 (7) .275 (7)	.375 (9.5) .375 (9.5)	.157 (4) .157 (4)
*DHR9 Y5P 151M 10KV *DHR9 Y5P 221M 10KV *DHR12 Y5P 331M 10KV *DHR15 Y5P 471M 10KV *DHR15 Y5P 681M 10KV *DHR17 Y5P 102M 10KV *DHR17 Y5P 102M 10KV *DHR24 Y5P 202M 10KV	150 220 330 470 680 1,000 2,000	10	.354 (9) .354 (9) .472 (12) .590 (15) .590 (15) .669 (17) .945 (24)	.394 (10) .394 (10) .512 (13) .630 (16) .630 (16) .700 (17.8) .984 (25)	.275 (7) .275 (7) .275 (7) .275 (7) .275 (7) .275 (7) .275 (7)	.375 (9.5) .375 (9.5) .375 (9.5) .375 (9.5) .375 (9.5) .500 (12.7) .622 (15.8)	.197 (5) .197 (5) .197 (5) .197 (5) .197 (5) .197 (5) .197 (5)
*DHR9 Y5P 101M 15KV *DHR9 Y5P 151M 15KV *DHR12 Y5P 221M 15KV *DHR12 Y5P 331M 15KV *DHR15 Y5P 471M 15KV *DHR17 Y5P 681M 15KV *DHR17 Y5P 681M 15KV	100 150 220 330 470 680 1,000	15	.354 (9) .354 (9) .472 (12) .472 (12) .590 (15) .669 (17) .787 (20)	.394 (10) .394 (10) .512 (13) .512 (13) .630 (16) .700 (17.8) .830 (21.1)	.330 (8.4) .330 (8.4) .330 (8.4) .330 (8.4) .330 (8.4) .330 (8.4) .330 (8.4)	.500 (12.7) .500 (12.7) .500 (12.7) .500 (12.7) .500 (12.7) .500 (12.7) .500 (12.7)	.197 (5) .197 (5) .197 (5) .197 (5) .197 (5) .197 (5) .197 (5)

TYPICAL MARKING

Manufacturer's Identification Capacitance (in pF) Tolerance (EIA Code) T.C. Rated Voltage

^{*}All preferred values available as standard from authorized Murata Electronics Distributors.

HIGH VOLTAGE, RADIAL LEADED CERAMIC DISC CAPACITORS SPECIFICATIONS: CLASS II & III

Temperature Range

-30 to +85°C.

Capacitance

Capacitance shall be within the specified tolerance when measured at temperature of 25°C and 1 ± 0.1KHz with 1.0 to 5.0Vrms.

Dissipation Factor

Dissipation Factor shall be less than 2.5% when measured at temperature of 25°C and 1 \pm 0.1KHz with 1.0 to 5.0Vrms.

Insulation Resistance

Insulation resistance shall exceed 10,000M Ω when measured after 1.0 minute electrification time with 500VDC through the resistor at 1M Ω .

Dielectric Strength (between terminals)

Capacitor shall not be damaged when 1.5 times of rated DC voltage applied between terminals for 30 seconds through a suitable resistor in a series to limit the charging current to 50mA max.

Encapsulation

Ceramic disc is conformally coated in an epoxy resin which conforms to UL94V-0.

Life Test (Conditions)

When tested as follows:

Temperature : $85 \pm 3^{\circ}$

Applied voltage : 1.25 times rated voltage

Period of test : 1,000 ⁺⁴⁸₋₀ hours

To be measured at 4 hours after placed at room condition.

Appearance : no visible damage

Capacitance Change : ± 10% max. for char. Y5P

: ± 20% max. for char. Z5U

D.F. : 5% max.

Insulation resistance : $1,000M\Omega$ min. Dielectric strength : no failure

Charge-Discharge Test

tested as follows:

Temperature : 25°C

Applied voltage : rated voltage
Period time : charge for 1 sec.
after 2 sec.

Cycle numbers : 20,000 cycles Circuit : see below

To be measured at 1-2 hours after test at room condition.

E : rated voltage

R1 : circuit protective resistor

R2 : current limiting resistor (10 Amp.)
Co : supplied energy for Cx. Co = 10Cx

Cx : specimen

Appearance : no visible damage

Capacitance Change : ± 10% max. for char. Y5P

: ± 20% max. for char. Z5U

Dissipation Factor : 5% max. Insulation Resistance : $1,000M\Omega$ min.

TYPICAL TEMPERATURE CHARACTERISTICS

CAPACITANCE VS. DC BIAS 7.5 KV

CAPACITANCE VS. DC BIAS 10 & 15 KV

Corona Test

Corona shall be measured in the following test circuit. Corona shall be 50 picocoulomb max. in direct reading at 2KVrms (for 10KV rated voltage) or 3KVrms (for 15KV rated voltage).

E : power supply (corona free)
R : circuit protective resistor

Cb: by-pass capacitor

Cx : specimen

L : corona pulse pick-up coil
M : corona detector; tuning type

HIGH VOLTAGE CERAMIC CAPACITORS DHS SERIES E.I.A. CLASS I

10 to 40 KVDC

Murata Electronic's new High Voltage Ceramic Capacitors DHS N4700 series is designed to meet the stringent requirements of high voltage applications and feature a low dissipation factor and a low voltage coefficient.

FEATURES

- Epoxy resin encapsulated
- Small size
- Low dissipation factor and low heating value
- Linear temperature characteristic Low DC, AC-voltage coefficient

APPLICATIONS

- HV DC power supplies
- Lightning arrestor voltage distribution systems
- Electron microscopes, synchroscopes
- Lasers (CO₂, Excimer, etc.)
- Electrostatic copying machines

PART NUMBERING SYSTEM

DHS60 -	120	N4700	202	K	40KV
CAPACITOR TYPE AND SIZE	OTHER SPECIFICATION 120: Large terminal No code: Std. Termina	TEMPERATURE CHARACTERISTIC	CAPACITANCE VALUE 3-digit code (pf)	CAPACITANCE TOLERANCE K: ±10% M:±20%	RATED VOLTAGE

TYPICAL MARKING

N4700 Temp. Characteristic 202K Cap Value/Tolerance 40KV Logo/Working Voltage 309A Date Code
--

STANDARD TERMINAL STYLE

De d Norsker	Oit (-F)	Rate	d Voltage	Test Voltage	Dimen	m)	Thread	
Part Number	Capacitance (pF)	KVDC	KVAC(60Hz)	(KVDC)	D	L	Н	Size
* DHS20 N4700 561M 10KV * DHS30 N4700 122M 10KV * DHS30 N4700 182M 10KV * DHS38 N4700 282M 10KV * DHS52 N4700 502M 10KV * DHS60 N4700 802M 10KV	560 1200 1800 2800 5000 8000	10	4	15	.787 (20) 1.18 (30) 1.18 (30) 1.49 (38) 2.04 (52) 2.36 (60)	.63 (16)	.47 (12)	
DHS20 N4700 371M 15KV DHS30 N4700 801M 15KV DHS30 N4700 112M 15KV DHS38 N4700 192M 15KV DHS52 N4700 342M 15KV DHS60 N4700 532M 15KV	370 800 1100 1900 3400 5300	15	6	23	.787 (20) 1.18 (30) 1.18 (30) 1.19 (38) 2.04 (52) 2.36 (60)	.71 (18)	.55 (14)	NO 8-32
DHS20 N4700 281M 20KV DHS30 N4700 601M 20KV DHS30 N4700 881M 20KV DHS38 N4700 142M 20KV DHS52 N4700 252M 20KV DHS60 N4700 402M 20KV	280 600 880 1400 2500 4000	20	8	30	.787 (20) 1.18 (30) 1.18 (30) 1.49 (38) 2.04 (52) 2.36 (60)	.95 (24)	.787 (20)	NC-2B taped holes (2 places Dia: .260 (6.6mm) Hole Depth: 10,15KV:4mr
DHS20 N4700 191M 30KV DHS30 N4700 401M 30KV DHS30 N4700 591M 30KV DHS38 N4700 941M 30KV DHS52 N4700 172M 30KV DHS60 N4700 272M 30KV	190 400 590 940 1700 2700	30	12	45	.787 (20) 1.18 (30) 1.18 (30) 1.49 (38) 2.04 (52) 2.36 (60)	1.10 (28)	.95 (24)	20,30KV:6mr 40KV:8mm
DHS20 N4700 141M 40KV DHS30 N4700 301M 40KV DHS30 N4700 441M 40KV DHS38 N4700 701M 40KV DHS52 N4700 132M 40KV DHS60 N4700 202M 40KV	140 300 440 700 1300 2000	40	16	60	.787 (20) 1.18 (30) 1.18 (30) 1.49 (38) 2.04 (52) 2.36 (60)	1.42 (36)	1.26 (32)	

LARGE TERMINAL STYLE

Part Number	Capacitance	Rate	d Voltage	Test Voltage		Dimensions:	in. (mm)		Thread
	(pF)	KVDC	KVAC(60Hz)	(KVDC)	D	L	d	Н	Size
DHS48-120 N4700 502K 10K DHS60-120 N4700 802K 10K	5000 8000	10 10	4 4	15 15	1.89 (48) 2.78 (60)	0.71 (18) 0.71 (18)		0.55 (14) 0.55 (14)	
DHS48-120 N4700 342K 15K DHS60-120 N4700 532K 15K	3400 5300	15 15	6 6	23 23	1.89 (48) 2.36 (60)	0.79 (20) 0.79 (20)		0.63 (16) 0.63 (16)	
DHS48-120 N4700 252K 20K DHS60-120 N4700 402K 20K	2500 4000	20 20	8 8	30 30	1.89 (48) 2.78 (60)	0.90 (23) 0.90 (23)	0.59 (15)	0.75 (19) 0.75 (19)	ISO M5 Depth: 0.2
DHS48-120 N4700 172K 30K DHS60-120 N4700 272K 30K	1700 2700	30 30	12 12	45 45	1.89 (48) 2.36 (60)	1.02 (26) 1.02 (26)		0.86 (22) 0.86 (22)	Dia: 0.59 (15)
DHS48-120 N4700 132K 40K DHS60-120 N4700 202K 40K	1300 2000	40 40	16 16	60 60	1.89 (48) 2.78 (60)	1.26 (32) 1.26 (32)		1.10 (28) 1.10 (28)	
DHS48-120 N4700 102K 50K	1000 1700	50 50	20 20	75 75	1.89 (48)	1.38 (35)		1.22 (31)	

^{*}Available as standard through authorized Murata Electronics Distributors.

HIGH VOLTAGE CERAMIC CAPACITORS DHS SERIES SPECIFICATIONS

Temperature Range

Operating: -20°C to +85°C Storage: -30°C to +125°C

Capacitance and Tolerance

Capacitance change shall exceed $\pm 20\%$ when measured at 1KHz ± 0.1 KHz at 25°C with not more than 5 ± 0.05 Vrms, AC applied during measurement.

Dissipation Factor

The maximum dissipation factor for these capacitors shall be 0.5%.

Dissipation factor shall be measured at a frequency of 1KHz \pm 0.1KHz at 25°C with not more than 5 \pm 0.5Vrms, AC applied during measurements.

Temperature Characteristics

Characteristic	Temp. Range	Base Temp.	Temp. Coeff.
N4700	-30°C to +85°C	20°	(-4,700 ± 1,000) × 10 ⁻⁶ /°C

Dielectric Strength Test

These capacitors shall withstand the specified test voltage for 1 minute through a current-limiting resistor of 1,000 Ω .

Insulation Resistance

The minimum value of insulation resistance shall be not less than 10,000M Ω at 25°C.

Measurements shall be made after a 1 minute charge at 1,000VDC voltage through a current limiting resistor which shall be not greater than 10M Ω .

Humidity Resistance

After exposure for a period of 100 hours to an atmosphere of 95% relative humidity at a temperature of $+40^{\circ}\text{C}$, capacitors shall have a minimum insulation resistance of $5,000\text{M}\Omega$ and a maximum dissipation factor of 1.5%. Twenty-four hours after removal from the test chamber, capacitors shall be measured in accordance with section 3 and 6.

Life Test

These capacitors shall withstand a test potential of 1.5 times the rated DC voltage for a period of 1,000 hours at an ambient temperature of $+85^{\circ}$ C.

Encapsulation

Ceramic is enclosed in a molded epoxy resin.

Caution for Use

Some chemicals may be harmful to the DHS Series when used as an insulating medium. Please consult with Murata Electronics Product Engineering before exposing these capacitors to chemicals such as Freon, oil, etc.

TYPICAL TEMPERATURE CHARACTERISTICS

TYPICAL VOLTAGE COEFFICIENT

TYPICAL FREQUENCY CHARACTERISTICS

CORONA TEST

HIGH VOLTAGE CERAMIC CAPACITORS DHS SERIES E.I.A. CLASS III

10 to 40 KVDC

FEATURES

- Epoxy resin encapsulated
- Small size

CAPACITANCE VALUE

First two digits represent

zeros to follow.

Expressed in picofarads and

significant figures. Last digits specifies the number of

identified by a three-digit number.

- Highly reliable internal construction
- Wide selection of values
- Up to 40 KVDC working voltage

APPLICATIONS

- Electrostatic copying machines
- Electron microscopes, synchroscopes
- CRT power supplies
- Lightning arrestor voltage distribution systems
- HVDC power supplies
- Lasers (CO₂, Excimer, etc.)

PART NUMBERING SYSTEM

OVER TEMP. RANGE

V = +22%, -82%

TYPE **DHS20**

CAPACITOR

TYPE AND

SIZE

TEMP. CHAR. Z5V

TEMPERATURE CHARACTERISTIC

Temperature Range Z5 = + 10°C to +85°C **MAX. CAP. CHANGE**

CAPACITANCE 681

TOLERANCE

VOLTAGE 10KV

CAPACITANCE

TOLERANCE Z = +80%, -20%

VOLTAGE Identified by a two-digit number in KVDC.

TYPICAL MARKING

Z5V Temp. Characteristic 202Z Cap. Value/Tolerance M 10KV Logo/Working Voltage Date Code 309A

★ PREFERRED VALUES-10, 15, 20, 30 & 40 KVDC

B	Capacitance	Rated Voltage	Test Voltage	Din	nensions: in. (m	ım)	Thread
Part Number	(pF)	KVDC	KVDC	D max.	L	Н	Size
DHS20 Z5V 681Z 10KV DHS24 Z5V 122Z 10KV DHS30 Z5V 202Z 10KV DHS38 Z5V 322Z 10KV DHS43 Z5V 472Z 10KV DHS52 Z5V 652Z 10KV DHS57 Z5V 832Z 10KV DHS60 Z5V 932Z 10KV	680 1,200 2,000 3,200 4,700 6,500 8,300 9,300	10	15	.787(20) .94 (24) 1.18 (30) 1.49 (38) 1.69 (43) 2.04 (52) 2.24 (57) 2.36 (60)	.75 (19) .74 (19) .75 (19) .74 (19) .75 (19) .74 (19) .75 (19) .74 (19)	.66 (17) .66 (17) .66 (17) .66 (17) .66 (17) .66 (17) .66 (17) .66 (17)	
DHS20 Z5V 471Z 15KV DHS24 Z5V 801Z 15KV DHS30 Z5V 132Z 15KV DHS38 Z5V 222Z 15KV DHS43 Z5V 322Z 15KV DHS52 Z5V 462Z 15KV DHS57 Z5V 582Z 15KV DHS60 Z5V 652Z 15KV	470 800 1,300 2,200 3,200 4,600 5,800 6,500	15	23	.787(20) .94 (24) 1.18 (30) 1.49 (38) 1.69 (43) 2.04 (52) 2.24 (57) 2.36 (60)	.90 (23) .90 (23) .90 (23) .90 (23) .90 (23) .90 (23) .90 (23) .90 (23)	.82 (21) .82 (21) .82 (21) .82 (21) .82 (21) .82 (21) .82 (21) .82 (21)	
DHS20 Z5V 351Z 20KV DHS24 Z5V 601Z 20KV DHS30 Z5V 102Z 20KV DHS38 Z5V 162Z 20KV DHS43 Z5V 242Z 20KV DHS52 Z5V 332Z 20KV DHS57 Z5V 432Z 20KV DHS60 Z5V 482Z 20KV	350 600 1,000 1,600 2,400 3,300 4,300 4,800	20	30	.787 (20) .94 (24) 1.18 (30) 1.49 (38) 1.69 (43) 2.04 (52) 2.24 (57) 2.36 (60)	1.02 (26) 1.02 (26) 1.02 (26) 1.02 (26) 1.02 (26) 1.02 (26) 1.02 (26) 1.02 (26)	.94 (24) .94 (24) .94 (24) .94 (24) .94 (24) .94 (24) .94 (24) .94 (24)	No. 8-32 NC-2B taped holes Depth: 4mm
DHS20 Z5V 261Z 30KV DHS24 Z5V 461Z 30KV DHS30 Z5V 781Z 30KV DHS38 Z5V 122Z 30KV DHS43 Z5V 182Z 30KV DHS52 Z5V 252Z 30KV DHS57 Z5V 332Z 30KV DHS60 Z5V 362Z 30KV	260 460 780 1,200 1,800 2,500 3,300 3,600	30	45	.787(20) .94 (24) 1.18 (30) 1.49 (38) 1.69 (43) 2.04 (52) 2.24 (57) 2.36 (60)	1.33 (34) 1.33 (34) 1.33 (34) 1.33 (34) 1.33 (34) 1.33 (34) 1.33 (34) 1.33 (34)	1.25 (32) 1.25 (32) 1.25 (32) 1.25 (32) 1.25 (32) 1.25 (32) 1.25 (32) 1.25 (32)	
DHS20 Z5V 181Z 40KV DHS24 Z5V 341Z 40KV DHS30 Z5V 571Z 40KV DHS38 Z5V 921Z 40KV DHS43 Z5V 132Z 40KV DHS52 Z5V 192Z 40KV DHS57 Z5V 242Z 40KV DHS60 Z5V 272Z 40KV	180 340 570 920 1,300 1,900 2,400 2,700	40	60	.787(20) .94 (24) 1.18 (30) 1.49 (38) 1.69 (43) 2.04 (52) 2.24 (57) 2.36 (60)	1.61 (41) 1.61 (41) 1.61 (41) 1.61 (41) 1.61 (41) 1.61 (41) 1.61 (41) 1.61 (41)	1.53 (39) 1.53 (39) 1.53 (39) 1.53 (39) 1.53 (39) 1.53 (39) 1.53 (39) 1.53 (39)	

^{*}Available as standard through authorized Murata Electronics Distributors.

HIGH VOLTAGE CERAMIC CAPACITORS DHS SERIES SPECIFICATIONS

Temperature Range

Operating: -20°C to +85°C Storage: -30°C to +125°C

Capacitance and Tolerance

Characteristic: Z5V

Temp. Range: -10°C to +85°C

Cap. Change: Within +22%, -82% of 25°C value (Within a

given lot, ±10% of the mean value is typical)

Capacitance shall be measured at a frequency of

1KHz ±0.1KHz at 25°C with not more than 5 ± 0.5Vrms AC

applied during measurement.

Dissipation Factor

The maximum dissipation factor for these capacitors shall be 1.5%.

Dissipation factor shall be measured at a frequency of $1 \text{KHz} \pm 0.1 \text{KHz}$ at 25°C with not more than $5 \pm 0.5 \text{Vrms}$ AC applied during measurements.

Dielectric Strength Test

These capacitors shall withstand the specified test voltage for 1 minute through a current-limiting resistor of 1000Ω .

Ultimate Voltage Breakdown Test

These capacitors shall be capable of withstanding a DC potential of twice the rated DC voltage for a period of 10 seconds. The test voltage shall be applied at a rate not greater than 10KV/second.

Insulation Resistance

The minimum value of insulation resistance shall be not less than $10.000M\Omega$.

Measurements shall be made after a 1 minute charge at 1,000V DC voltage through a current limiting resistor which shall be not greater than 10M Ω .

Humidity Resistance

After exposure for a period of 100 hours to an atmosphere of 95% relative humidity at a temperature of $+40^{\circ}$ C, capacitors shall have a minimum insulation resistance of $5000 M\Omega$ and a maximum dissipation factor of 2%. Twenty-four hours after removed from the test chamber, capacitors shall be measured in accordance with section 3 and 6.

Life Test

These capacitors shall withstand a test potential of 1.5 times the rated DC voltage for a period of 1000 hours at an ambient temperature of +85°C.

Encapsulation

Ceramic is enclosed in a molded epoxy resin.

Caution for Use

Some chemicals may be harmful to the DHS Series when used as an insulating medium. Please consult with Murata Erie Product Engineering before exposing these capacitors to chemicals such as Freon, oil, etc.

TYPICAL VOLTAGE COEFFICIENT

TYPICAL FREQUENCY CHARACTERISTICS

TYPICAL TEMPERATURE CHARACTERISTICS

POWER CERAMIC CAPACITORS DC SERIES

FEATURES

- Rugged construction, small size and light weight
- High voltage and power capability
- High "Q" and IR
- Low series inductance

APPLICATIONS

- Radio communication equipment
- Small broadcasting equipment
- High frequency power supplies for high-frequency heating equipment and ultrasonic appliances
- Testing and measuring instruments

PART NUMBERING SYSTEM

DIMENSIONS: inches

Fig. 1

Fig. 4

DC515, DC514, DC513 Series

TYPE	H±0.05	D±0.05
DC515	.390	.312
DC514	.422	.437
DC513	.484	.562

Fig. 2

DC517 Series

DC509 Series

Fig. 5

DC510, DC518 Series

Fig. 3

2.63±0.24

Fig. 6

 1.89 ± 0.12

POWER CERAMIC CAPACITORS DC SERIES

SPECIFICATIONS

- Operating temperature range −25°C to +85°C
- 2. Storage temperature -25°C to +100°C
- 3. Capacitance
 - T.C. Series

Capacitance shall be measured at a frequency of 1MHz±100KHz at 25°C with not more than 5Vrms. Capacitance shall be within the specified capacitance tolerance.

Hi-K Series
 Capacitance shall be measured at a frequency of 1000Hz±100Hz at 25°C with not more than 5Vrms. Capacitance shall be within the specified capacitance tolerance.

4. Capacitance Tolerance

Capacitance tolerance as shown below.

5. Rated Voltage

Rated voltage as shown below.

6. Withstanding Voltage

There shall be no damage when the specified test voltage is applied for 60 sec. at room temperature.

7. Insulation Resistance

Insulation resistance shall be measured at 1,000V DC for 60 sec. through a resistor of less than 1M Ω . Insulation resistance shall be 10000 M Ω min.

8. Q Factor or Dissipation Factor

T.C. Series

Q factor shall be measured at a frequency of 1000KHz±100KHz at 25°C with not more than 5Vrms. Q factor shall be the following specified values. Capacitance: 30pF and less

Q=400+20•C (C=nominal capacitance)

Capacitance: Over 30pF Q above 1000

Hi-K Series

Dissipation factor shall be measured at a frequency of $1000\text{Hz}\pm100\text{Hz}$ at 25°C with not more than 5Vrms. Dissipation factor shall be 5% max.

9. R.F. Current Rating

R.F. current ratings are to limit the I²R losses and are in rms amperes. Temperature rise of these capacitors shall be 30°C max. above 25°C ambient. 10. Temperature Coefficient

Temperature coefficient shall be the following specified values:

CH 0 ± 60 ppm/°C UJ -750 ± 120 ppm/°C YL -3300 ± 500 ppm/°C F -25°C to +85°C +30% to -80%

11. Humidity Test

Capacitors will withstand 95% relative humidity for 100 hours at +40°C and then dried in room for one hour and measured. Capacitor shall meet specification.

Life Test

Capacitors will withstand a 1000 hour test at +85°C at 140% of rated DC voltage.

13. Standard Test Condition

Temperature: 25°C Relative humidity: 65% The test temperature may range from +5°C to +35°C and test relative humidity from 45% to 85%.

14. Torque Limit 20 in.-lbs.

STANDARD VALUES

	Nom.		Temp.	Rated	Test	R.	F. Max. Am	ps.		Load for 3 Rise Above		
DC 500 Series	Cap. (pF)	Cap. Tol.	Coeff. (ppm/°C)	Volt. (KV DC)	Volt. (KV DC)	1MHz (A)	10MHz (A)	30MHz (A)	1MHz (KVA)	10MHz (KVA)	30MHz (KVA)	Fig
DC505CH030D	3	±0.5pF	CH	5.0	7.5	0.07	0.7	1.4	0.23	2.3	3.2	
DC505CH050D	5	±0.5pF	CH	5.0	7.5	0.11	1.1	1.6	0.38	3.8	2.8	
DC505UJ100K	10	±10%	UJ	5.0	7.5	0.22	1.7	2.3	0.78	4.2	2.9	
DC504CH100K	10	±10%	CH	5.0	7.5	0.22	1.8	2.1	0.78	5.4	2.3	1
DC504UJ200K	20	±10%	UJ	5.0	7.5	0.44	3.1	3.4	1.55	7.5	3.0	
DC503CH100K DC503CH200K DC503UJ300K DC503UJ400K	10 20 30 40	±10% ±10% ±10% ±10%	CH UJ UJ	5.0 5.0 5.0 5.0	7.5 7.5 7.5 7.5	0.22 0.44 0.66 0.89	1.8 2.7 3.6 4.4	2.4 2.8 3.2 3.5	0.78 1.5 2.3 3.1	5.4 5.6 6.7 7.7	3.0 2.0 1.8 1.7	
DC515CH030D	3	±0.5pF	CH	5.0	7.5	0.77	0.7	1.4	0.23	2.3	3.2	
DC515CH050D	5	±0.5pF	CH	5.0	7.5	0.11	1.1	1.6	0.38	3.8	2.8	
DC515UJ100K	10	±10%	UJ	5.0	7.5	0.22	1.7	2.3	0.78	4.2	2.9	
DC514CH100K	10	±10%	CH	5.0	7.5	0.22	1.8	2.1	0.78	5.4	2.3	2
DC514UJ200K	20	±10%	UJ	5.0	7.5	0.44	3.1	3.4	1.55	7.5	3.0	
DC513CH100K DC513CH200K DC513UJ300K DC513UJ400K	10 20 30 40	±10% ±10% ±10% ±10%	CH UJ UJ	5.0 5.0 5.0 5.0	7.5 7.5 7.5 7.5	0.22 0.44 0.66 0.89	1.8 2.7 3.6 4.4	2.4 2.8 3.2 3.5	0.78 1.5 2.3 3.1	5.4 5.6 6.7 7.7	3.0 2.0 1.8 1.7	_
DC510CH100K DC510CH150K DC510CH250K DC510CH400K DC510CH500K DC510UJ500K DC510UJ750K DC510UJ750K DC510UJ151K	10 15 25 40 50 50 75 100	±10% ±10% ±10% ±10% ±10% ±10% ±10% ±10%	CH CH CH CH UJ UJ UJ	7.5 7.5 7.5 7.5 7.5 7.5 7.5 5.0	11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 7.5	0.47 0.61 0.89 1.38 1.7 1.7 2.5 3.4	1.9 2.3 3.1 3.8 4.2 5.0 6.2 7.3	2.2 3.4 5.6 6.8 7.6 8.5 9.0 9.2	3.5 4.0 5.0 5.6 8.9 8.9 13.2 19.0	5.6 5.8 6.1 5.8 5.6 7.9 8.1 8.7	2.5 3.9 6.6 6.3 6.0 7.7 5.6 4.6	3
DC518F501M	500	±20%	F	5.0	7.5	1.1	2.5	3.0	0.4	0.2	0.1	
DC518F102M	1000	±20%	F	5.0	7.5	1.4	3.1	3.7	0.3	0.15	0.08	
DC507CH250K DC507CH500K DC507UJ500K DC507UJ101K DC507UJ201K	25 50 50 100 200	±10% ±10% ±10% ±10% ±10%	CH UJ UJ UJ	15.0 15.0 15.0 15.0 7.5	22.5 22.5 22.5 22.5 11.25	1.7 3.3 3.3 4.6 5.1	6.2 7.4 8.8 12.0 8.5	6.7 8.1 9.0 15.0 15.0	18.5 35.0 35.0 35.0 23.0	22.0 18.0 25.0 22.0 6.2	8.6 7.1 9.1 11.1 6.0	4
DC517CH250K	25	±10%	CH	15.0	22.5	1.7	6.2	6.7	18.5	22.0	8.6	5
DC517CH500K	50	±10%	CH	15.0	22.5	3.3	7.4	8.1	35.0	18.0	7.1	
DC517UJ500K	50	±10%	UJ	15.0	22.5	3.3	8.8	9.0	35.0	25.0	9.1	
DC509CH500K	50	±10%	CH	20.0	30.0	3.1	10.4	16.2	31.5	36.0	28.8	6
DC509CH101K	100	±10%	CH	20.0	30.0	3.8	12.9	19.4	23.5	27.4	20.6	
DC509UJ251K	250	±10%	UJ	20.0	30.0	9.2	13.0	35.0	40.0	11.0	25.0	
DC509YL501K	500	±10%	YL	15.0	22.5	6.7	14.0	23.0	14.0	5.9	5.4	

POWER CERAMIC CAPACITORS DCT & DAT SERIES

These units are designed for such applications as high frequency heating equipment to which high frequency power or high DC or AC voltage is applied.

FEATURES

- Small size and high capacitance
- Linear and reversible temperature characteristics
- Very high "Q" and high insulation resistance from low to high frequencies
- No performance deterioration after extended life - excellent humidity and thermal resistance
- Low series inductance and operable to high frequencies
- Large power capability in small packages due to low dielectric loss when high voltage and high frequency is applied

APPLICATIONS

- Oscillator matching, coupling or bypass circuits in broadcast or radio communication equipments, etc.
- Oscillators, coupling circuit or bypass capacitors in industrial or medical high frequency appliances such as high frequency heating equipments or ultrasonic instruments.
- Coupling capacitors for transmission lines and carrier frequency equipment.

CONSTRUCTION

PART NUMBERING

POWER CERAMIC CAPACITORS DCT & DAT SERIES

DIMENSIONS: inches

NOTE: Other dimensions are on following page.

SPECIFICATIONS

	Сар.	Can		Temp. Rise	e (at 1MHz)		Operating Temp. Range	
Char. Tolerance (at 25°C)	Q (at 1MHz)	I.R. (MΩ)	50°C	70°C	Cap. Temp. Coeff.			
UJ	10%	5×10 ⁻⁴ max. (Q > 2,000)	10,000 min.	50°C max.	30°C max.	(-750 <u>±</u> 120) ×10 ⁻⁶ /°C	-10 to 100°C	
СН	10%	5×10 ⁻⁴ max. (Q > 2,000)	10,000 min.	50°C max.	30°C max.	(0±60) ×10⁻⁶/°C	-10 to 100°C	
АН	10%	5×10 ⁻⁴ max. (Q > 2,000)	10,000 min.	50°C max.	30°C max.	(+100±60) ×10 ⁻⁶ /°C	-10 to 100°C	

MARKING

- 1. Type
- 2. Normal capacitance and tolerance
- 3. Rated voltage (RF)
- 4. Rated voltage (DC) at 50°C and 70°C
- 5. Rated power capacity at 50°C
- 6. Prod. lot no.
- 7. Manufacturer identification

INSULATION COATING

Capacitor surface is coated with insulating resin except terminals. Temp. coefficient is shown by the following color marking.

UJ: Green, CH: Orange, AH: Blue.

POWER CERAMIC CAPACITORS DCT & DAT SERIES STANDARD VALUES

		Rat	ed Volt. (F	(V)		llowable	Allowable		Dimensions: inc	hes	
Part Number	Cap. (pF)	R.F. Peak	0	C	Power	(KVA)	Max. Current				Fi
	(17	Value	50°C	70°C	50°C	70°C	(A)	D ± 10%	T ± .079	H ± .079	
DCT200UJ501K	500	30	25	20	300	200	60	7.874	1.299	2.874	
DCT200UJ102K	1000	30	25	20	300	200	60	7.874	1.299	2.874	
DCT160UJ152K	1500	25	21	17	110	75	40	6.299	1.142	1.929	
DCT140UJ501K	500	30	25	20	90	60	35	5.512	.984	2.087	
DCT140UJ601K	600	30	25	20	90	60	35	5.512	.984	2.087	
DCT140UJ801K	800	30	25	20	90	60	35	5.512	.984	2.087	
DCT140UJ102K	1000	25	21	17	90	60	35	5.512	.866	1.969	
DCT140UJ152K	1500	15	13	10	90	60	35	5.512	.748	1.850	
DCT110UJ301K	300	30	25	20	90	60	27	4.331	1.063	2.087	
DCT110UJ401K	400	30	25	20	90	60	27	4.331	1.063	2.087	
DCT110UJ501K	500	16	13	11	30	20	27	4.331	.748	1.850	
DCT110UJ102K	1000	10	8	7	30	20	27	4.331	.669	1.772	
DCT110UJ152K	1500	9	7	6	22	14	27	4.331	.630	1.732	
DCT110UJ252K	2500	7	6	5	22	14	27	4.331	.591	1.693	
DCT 80UJ301K	300	16	13	11	30	20	20	3.150	.709	1.299	
DCT 80UJ501K	500	14	12	10	15	10	20	3.150	.630	1.220	
DCT 80UJ601K	600	9	8	7	15	10	20	3.150	.551	1.142	
DCT 80UJ801K	800	7	6	5	15	10	20	3.150	.472	1.102	
DCT 80UJ102K	1000	7	6	5	15	10	20	3.150	.551	1.102	
DCT 60UJ101K	100	14	12	10	15	10	15	2.362	.630	1.063	
DCT 60UJ201K	200	14	12	10	15	10	15	2.362	.630	1.063	
DCT 60UJ301K	300	12	10	8.5	7.5	5	15	2.362	.591	1.024	
DCT 60UJ501K	500	6	5	4	7.5	5	15	2.362	.472	.945	
DCT 40UJ500K	50	12	10	8	6	4	10	1.575	.591	1.142	
DCT 40UJ201K	200	6	5	4	4.5	3	10	1.575	.433	.984	
DCT 40UJ301K	300	6	5	4	4.5	3	10	1.575	.374	.945	
DAT 80UJ102K	1000	2	6	5	7	4.5	18	3.150	.1181	1.063	
DAT 80UJ152K	1500	2	6	5	7	4.5	18	3.150	.1181	1.063	
DAT 60UJ501K	500	2	6	5	5	3	14	2.362	.1181	.906	
DAT 60UJ102K	1000	2	6	5	5	3	14	2.362	.1181	.906	
DAT 40UJ301K	300	2	3.5	3	2.2	1.5	8.5	1.575	.0791	.945	
DAT 40UJ501K	500	2	3.5	3	2.2	1.5	8.5	1.575	.0791	.906	
DCT160CH301K	300	36	42	38	225	150	40	6.299	1.142	1.929	
DCT140CH101K	100	31.5	37	34	135	90	35	5.512	1.024	2.047	
DCT140CH201K	200	27	32	28	135	90	35	5.512	.945	1.929	
DCT110CH101K	100	22.5	26	24	67.5	45	27	4.331	.866	1.811	
DCT110CH201K	200	22.5	26	24	67.5	45	27	4.331	.866	1.811	
DCT 80CH101K	100	16	19	17	30	20	20	3.150	.669	1.260	:
DCT140AH201K	200	24	24	19	60	45	35	5.512	.957	1.819	
DCT140AH101K	100	30	32	25	90	60	35	5.512	1.024	1.929	
DCT110AH101K	100	22	24	19	45	30	27	4.331	.866	1.811	

 $1=\pm.02$

CAUTION

For DCT80 thru DCT160 styles, there are two different versions:

DCT140 : tapped terminal.

DCT140-3: tripod terminals with tapped

hole. (Contact your local Murata Erie Sales Office.) Tapped terminals are suitable in cases where banks of capacitors (series-parallel connection) are required. When operating at frequency above 3MHz, it is advisable to use DCT140-3 style because of the improved current distribution of tripod terminals.

POWER CERAMIC CAPACITORS DCT & DAT SERIES

SPECIFICATIONS

1. Operating Temperature Range:

-10°C to +100°C

2. Storage Temperature Range:

-10°C to +100°C

3. Temperature Coefficient (Capacitance Change):

AH: +100, ± 60 ppm/°C

CH: ±60 ppm/°C

UJ: -750, ± 120 ppm/°C

4. Capacitance:

Capacitance shall be within the specified limits when measuring to 1MHZ±100KHz and 25°C with not more than 5Vrms. Capacitance shall be within the specified capacitance tolerance.

5. Capacitance Tolerance:

Tolerance: ±10% (Code: K)

6. Rated Voltage:

Rated voltage as specified.

7. Withstanding Voltage:

(1) DC Withstanding Voltage

There shall be no damage when the test voltage is applied between terminals for 3 minutes after 2 hour (min.) exposure at a constant temperature of 100°C.

(2) High Frequency Withstanding Voltage

There shall be no damage when the test voltage (H.F. peak) of 100KHz to 1,000KHz is applied between terminals for 1 minute.

8. Insulation Resistance:

Insulation resistance shall be 10,000M $\!\Omega$ min. after voltage application of 1,000V DC between terminals.

9. Q (Measured at 1MHz):

UJ, CH, AH: 2,000 min.

*CH, AH Char.: Cap. ≤30pF. See figure below.

10. Power:

Rated power capacity means continuously useable power. This value is specified by 2 types as follows:

Ambient Temp.	Allowable Temp. Rise
50°C	50°C

11. Humidity Test:

After 100 hour exposure to 95% R.H. and 40°C±2°C and 1 hour exposure to a room temperature, the following values shall be guaranteed.

Char.	Q	I.R.	Withstanding Volt.
UJ	1,000 min.	5,000M Ω min.	No damage
СН	1,000 min.	5,000M Ω min.	No damage
AH	1,000 min.	5,000M Ω min.	No damage

*Q: CH, AH Char.: Cap. ≤30pF

12. Marking:

- 1. Type
- 2. Normal capacitance and tolerance
- 3. Rated voltage (H.F.)
- 4. Rated voltage (DC) (at 50°C)
- 5. Rated power capacity (at 50°C)
- 6. Prod. lot no.
- 7. Manufacturer identification

13. Insulation Coating:

Surface of the capacitor (except terminals) is coated with insulating resin.

14. Standard Test Conditions:

Temperature: 25°C, Relative humidity: 65% The test temperature may range from +5°C to +35°C and test relative humidity from 45% to 85%.

15. Maximum current rated at below 20MHz and 70°C.

POWER CERAMIC CAPACITORS DCF & DAF SERIES FEED-THRU TYPE

FEATURES

- Small size, large power handling capability
- Linear and reversible temperature
- characteristics

 Excellent "Q" and I.R. performance over a wide frequency range

 Superior humidity and extended life
- performance

APPLICATIONS

- Antenna couplingBypasses for medical and industrial applications
- Transmission line couplers

STANDARD VALUES

Part Number	Note	Rated Volt.	Nom. Cap.	Rated Power	Rated Reactive	T 1011171	sions: hes	NOTES
T dit Hamboi	7.50 E.E.E.	(KVp)			Current (A) rms	D+10%	L±0.08	1 : Feed-thru current 6A 2 : Feed-thru current 10A
DAF20 N750 501M	1	3	500	2.5	2.8	.630	1.575	3 : Feed-thru current 20A
DAF20 N750 801M	1	3	800	3.6	4.3	.630	1.575	4 : Feed-thru current 50A
DAF20 N750 102M	1	3	1000	5.0	5.6	.654	2.362	5 : Feed-thru current 70A
DCF20 N750 801M	2	3	800	3.6	4.3	.630	1.575	For low frequency current below 20 KH
DCF45 N750 801M	3	8	800	9.6	7.0	1.181	3.543	the rated reactive power may be
DCF45 N750 102M	3	8	1000	12	8.7	1.181	3.543	increased 25% if the ambient tem-
DCF65 N750 102M	4	10	1000	40	15.9	1.772	6.122	perature of 30°C and the upper
DCF80 N750 102M	5	20	1000	50	17.7	2.165	6.299	temperature of 75°C are not exceeded.

CONSTRUCTION

POWER CERAMIC CAPACITORS DCF & DAF SERIES FEED-THRU TYPE

DIMENSIONS: inches

DAF20 N750 501M (801M-102M)

DCF65 N750 102M

DCF20 N750 801M

DCF80 N750 102M

DCF45 N750 801M (102M)

POWER CERAMIC CAPACITORS DE SERIES

These units for extremely high power applications VHF frequency range.

FEATURES

- High volume metric efficiency and small size for their KVA rating
- Linear and reversible temperature characteristics
- High "Q" and I.R.
- Excellent humidity and thermal characteristics
- No performance degradation over extended life

APPLICATIONS

- Radio transmitters
- High power induction heaters
- High power matching, coupling and bypassing
- High power welders

WATER-COOLED CERAMIC R.F. POWER

SPECIFICATIONS

Electrical and Mechanical Tests

Capacitance

Capacitance shall be within the specified limits when measuring to 1MHz±100KHz and 25°C within AC 5Vrms. Capacitance shall be the specified capacitance tolerance.

Insulation Resistance

Insulation resistance shall be 10,000M Ω min. after voltage application of 1 KVDC between terminal.

Withstanding Voltage

There shall be no damage when the test voltage (peak value of double the rated voltage) of 60Hz is applied between terminals for 3 minutes.

Pressure Test

There shall be no damage when the water pressure of 84 psi (6kg/cm²) applied between cooling system for 5 minutes at 25°C.

STANDARD VALUES

Part Number		New	Con	Rated \	olt.	Dated	Rated	Min Water
	Temp. Coefficient	Nom. Cap. (pF)	Cap. Tol. (%)	HF Peak (KVP)	DC (KV)	Rated Power (KVA)	Current (Arms)	Min. Water Flow Rate (1/min)
DE100UJ252M-HF15K	$(-750\pm120)\times10^{-6}$ °C	2500	<u>+</u> 20	15	17	1000	100	1.0
DE125UJ502M-HF14K	$(-750\pm120)\times10^{-6}$ /°C	5000	<u>+</u> 20	14	16	2000	200	1.0
DE150UJ502M-HF20K	$(-750\pm120)\times10^{-6}$ /°C	5000	<u>+</u> 20	20	22	2500	250	1.5

Limits – continuous values of voltage (Ug), current (Ig) and power (Qg) as function of frequency.

DE100UJ252M-HF15K

DE100UJ252M-HF15K

Note 1: Axes of water nipple and 3 terminal screws in one plane within $\pm 2 \text{ deg}$

Note 2: Accessories: 2 ferules 2 metric sleeve nuts M17

Note 3: Axes of water nipples are perpendicular to axes of capacitor in one common plane with ± 2 deg

POWER CERAMIC CAPACITORS DE SERIES

DIMENSIONS: inches

Limits – continuous values of voltage (Ug), current (Ig) and power (Qg) as function of frequency.

DE125UJ502M-HF14K

DE125UJ502M-HF14K

DE150UJ502M-HF20K

DE150UJ502M-HF20K

Note 1: Axes of water nipple and 3 terminal screws in one plane within +2 deg

Note 2: Accessories: 2 ferules 2 metric sleeve nuts M17

Note 3: Axes of water nipples are perpendicular to axes of capacitor in one common plane with ± 2 deg

APPLICATION NOTES:

- Do not allow insulated portion to be exposed to water or moisture: In these cases, electricity may discharge and the ceramic may fail as a result of heat generation.
- Permissible electric power load is influenced by the quantity of refrigerated water. Keep the temperature of displaced water under 50°C at all times.
- Water pressure can withstand a peak of (6 kg/cm²). Use a maximum of (4 kg/cm²) when in continuous use.
- The metallic case for water-cooled parts is connected to the electrode.
- When temperatures go below freezing, there is potential for capacitor breakage due to ice. As a precaution, remove water.
- To protect the capacitor from accidents in the refrigeration system, incorporate protective measures such as a water pressure relay, running water relay and safety valve.

NOTES		

Murata trimmer products feature low cost and high performance and cover the frequency spectrum from the low RF to the Gigahertz range and high resolution devices.

FEATURES:

- High Q's and excellent frequency characteristics
- Linear rotation-capacity characteristics
- Excellent and repetitive temperature characteristics
- Outstanding shock and vibration characteristics

SPECIALS:

It is Murata's policy to automate production procedures, wherever possible, for the purpose of cost and price reduction as well as quality improvement and repeatability. We recognize that many trimmer applications require non-standard assemblies, mounting considerations, or test and packaging needs. For that reason, our trimmer tooling and general procedures have been developed with a unique capability—adaptability.

Contact your local Murata sales office or the Murata application engineering staff for help on specific design problems.

TABLE OF CONTENTS

Page

Trimcaps	
TZ03 Series	108 - 111
Chip Trimmer Capacitors	
TZBX4 Series	112 - 114
TZC03 Series	115 - 117
TZCX3 Series	118 - 120
TZV02 Series	121 - 123
DV11 Series	124
General Test Procedures	125
Glossary of Specialized Terms	126
Tuning Tools	127

TRIMCAP® AXLE-LESS CERAMIC TRIMMER CAPACITORS TZ03 SERIES

The TZ Series ceramic trimmer capacitors are built into and protected by a color coded plastic case. This unique, axleless and solder-less construction protects the unit from damages during assembly and provides exceptionally linear temperature coefficient at low cost.

FEATURES

- Excellent shock and vibration resistance
- Exceptionally linear TC
- Dust and flux resistant construction
- Plastic case meets UL94V-0
- Available on tape and reel for automatic insertion

SPECIFICATIONS

Working Voltage: 100VDC or 50VDC

Withstanding Voltage: 220VDC (100V units) or 110VDC (50V units)

Insulation Resistance: 10⁴MΩ min. (50VDC, C max.)

Operating Torque: .3 to 2 in. -oz.

D. IN.	Capacit	ance (pF)	Temp. Coeff.	Q	Temperature	0	
Part Number	Min.	Max.	(ppm/°C)	(1MHz, °C max.)	(°C)	Case Color	
SINGLE CERAMIC PLA	TE TYPE, 100V S	ERIES					
★TZ03Z2R3 □□169	1.25	2.3 +50 %	NPO ± 200	300 min.	-55 to +85	Black	
*TZ03Z050□□169	1.8	5.0 -0 %	NPO ± 200	300 min.	-55 to +85	Blue	
*TZ03Z070□□169	2.0	7.0 -0 %	NPO ± 200	300 min.	-55 to +85	Blue	
*TZ03Z100□□169	2.7	10.0 +50 %	NPO ± 200	500 min.	-55 to +85	Blue	
*TZ03N100□□169	2.1	10.0 +50 %	N220 ± 200	500 min.	-55 to +85	White	
*TZ03T110□□169	3.0	11.0 -0 %	N450 ± 300	500 min.	-55 to +85	White	
*TZ03T200□□169	4.2	20.0 +50 %	N450 ± 300	500 min.	-55 to +85	Pink	
★TZ03R200 □□169	4.2	20.0 +50 %	N750 ± 300	500 min.	-55 to +85	Red	
★TZ03R300 □□169	5.2	30.0 +50 %	N750 ± 300	500 min.	-55 to +85	Green	
*TZ03P450□□169	6.8	45.0 -0 %	N1200 ± 500	300 min.	-55 to +85	Yellow	
★TZ03P600 □□169	9.8	60.0 +50 %	N1200 ± 500	300 min.	-55 to +85	Brown	
*TZ03P700□□169	12.0	70.0 -0 %	N1200 ± 500	300 min.	-55 to +85	Brown	
MONOLITHIC CERAMIC	C PLATE TYPE, 5	OV SERIES					
★TZ03Z500 □□169	6	50 -0 %	NPO ± 300	300 min.	-55 to +85	Orange	
*TZ03R900□□169	9	90 -0 %	N750 ± 300	300 min.	-55 to +85	Black	
*TZ03R121□□169	10	120 -0 %	N750 ± 300	300 min.	-55 to +85	Black	

^{☐☐:} Terminal Shape

^{*}Available as standard through authorized Murata Electronics Distributors.

TRIMCAP® AXLE-LESS CERAMIC TRIMMER CAPACITORS TZ03 SERIES

Notes: Common dimensions shown on ER Style Tolerances (unless otherwise shown) ±0.02" and ±0.5mm

PART NUMBERING SYSTEM

TRIMCAP® AXLE-LESS CERAMIC TRIMMER CAPACITORS TZ03 SERIES

DIMENSIONS OF TAPE AND AMMO PACK (Unit: mm)

3△△△↑TR169T00	Item	Code	Dimensions (mm)	Remark
The state of the s	h of Component	Р	12.7	
P P ₂ $\triangle h$ $\triangle h$ Pitch	h of Sprocket Hole	Po	12.7 ± 0.3	
	wh from Hole Combon to Lond	P ₁	3.85 ± 0.7	
A W	gth from Hole Center to Lead	P ₂	6.35 ± 1.3	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	d Spacing	F	5.0 ^{+0.8} _{-0.2}	
Carr	ier Tape Width	W	18.0 ± 0.5	
<u>t</u> Hold	d Down Tape Width	Wo	10.0 min.	
Posi	ition of Sprocket Hole	W ₁	9.0 ± 0.5	
Hold	1 Down Tape Position	W ₂	1.5 ± 1.5	
	d Distance between erence and Bottom Planes	Ho	18.0 ± 0.5	
Stan	nd-off	H ₂	1.3 ± 0.5	
	meter of Sprocket Hole	Do	4.0 ± 0.1	
	l Thickness, Tape and Lead Wire	t	1.7 max.	
Devi	iation across Tape	△h	1.5 max.	
Devi	iation along Tape, Left or Right	△S	0 ± 1.5	
Lead	d Diameter	d	ϕ 0.6 ± 0.1	Except 'a' par

Cautions In Handling:

- 1. Do not use in water wash process.
- 2. Do not use water soluable flux for soldering.
- 3. When hand soldering, avoid contact of the soldering iron to the plastic case.
- 4. Do not use locking adhesives to secure rotor in place.
- 5. Avoid applying excessive force to terminals.

VARIABLE CAPACITOR

TRIMCAP® AXLE-LESS CERAMIC TRIMMER CAPACITORS TZ03 SERIES

TECHNICAL DATA

Q AND CAPACITANCE VS FREQUENCY CHARACTERISTICS

Characteristics on curves are measured at the position of maximum rated capacitance value using RF impedance analyzer.

CHIP TRIMMER CAPACITORS TZBX4 SERIES

Murata Electronic's chip trimmer capacitors are specifically designed for automatic surface mount placement. The small size and outstanding performance over a wide frequency spectrum make them entirely compatible with other types of surface mounted components.

FEATURES

- Miniature rectangular shape just 0.16 (4.0) x 0.18 (4.5) x 0.12 (3.0) in. (mm)
- Specifically designed for auto surface placement.
 Designed to withstand solder bath (260 °C, 5 sec.) and flux baths
- Can be reflow soldered
- Conventional snap-in configuration available
- Stable characteristics are a wide frequency range
- Color coded cases makes distinguishing easy

CONSTRUCTION

SPECIFICATIONS

APPLICATIONS

- Transceiver Radio
- VTR SystemAudio Equipment
- ClockPagers

PACKAGING FORMS

- Tape and Reel
- Bulk

ORDERING INFORMATION

NOTE: Taping available for A, B, and E Terminal types only.

	(Capacitance (pF)	Temperature	Q (Min.)		Case
Part Number	Min.	Max.	Coefficient (ppm/°C)	(1MHz, Cmax)	Temperature (°C)	Color
*TZBX4Z030□□110	1.4	3.0 (+ 50% -0%)	NPO ±200	300	-55 to +85	Brown
*TZBX4Z060□□110	2.0	6.0 (+ 50% -0%)	NPO ±200	500	-55 to +85	Blue
* TZBX4Z100 □ □110	3.0	10.0 (+ 50% -0%)	NPO ±300	500	-55 to +85	White
*TZBX4R200□□110	4.5	20.0 (+ 50% -0%)	N750 ±300	500	-55 to +85	Red
*TZBX4P300□□110	6.5	30.0 (+ 50% -0%)	N1200 ± 500	300	-55 to +85	Green
*TZBX4P400□□110	8.5	40.0 (+ 50% -0%)	N1200±500	300	-55 to +85	Yellow
* TZBX4Z250 □ □ 110	4.0	25.0 (+100% -0%)	NPO ±300	300	-55 to +85	Black
* TZBX4R500□□110	7.0	50.0 (+100% -0%)	N750 ±300	300	-55 to +85	Black

[•] Rated voltage... 100VDC • Withstand voltage... 220 VDC • Insulation resistance... 104MΩmin. • Torque... 15 to 100g-cm 50VDC for Z250, R500

LAND DIMENSIONS: in. (mm)

[★]Contact local Murata Electronics Sales Office for standard values in these series.

VARIABLE CAPACITOR

CHIP TRIMMER CAPACITORS TZBX4 SERIES

DIMENSIONS: in. (mm)

DIMENSIONS OF PLASTIC TAPING

CHIP TRIMMER CAPACITORS TZBX4 SERIES

TEMPERATURE COEFFICIENT CHARACTERISTICS

Q AND CAPACITANCE VS FREQUENCY CHARACTERISTICS

Characteristics are measured at the position of maximum rated capacitance value using an RF impedance analyzer.

CHIP TRIMMER CAPACITORS TZC03 SERIES

This new low profile chip trimming capacitor is specifically designed to meet the requirements of high density surface mount applications and automated placement equipment.

FEATURES

- Extremely small size—just 3.2mm x 4.5mm x 1.6mm
- Designed for auto-placement in surface mount applications
- Color-coded
- Heat-resistant resin withstands reflow soldering temperatures
- Can be adjusted with standard adjustment tools

CONSTRUCTION

DIMENSIONS: mm

PART NUMBERING SYSTEM

CAUTION: Do not wash.

SPECIFICATIONS

Capacitance (pF)		Temperature Coefficient	Q	Working	Stator	
Part Number	Min. (max.) Max. (+50%,-0%) (ppm/°C) (1MHz, C max		(1MHz, C max.)) Temperature Range (°C)		
*TZC03Z030A110	1.4	3.0	NPO ± 300	300 min.	-25 to +85	White
*TZC03Z060A110	2.0	6.0	NPO ± 300	500 min.	-25 to +85	Blue
*TZC03R100A110	3.0	10.0	N750 ± 300	500 min.	−25 to +85	White
*TZC03P200A110	5.0	20.0	N1200 ± 500	300 min.	−25 to +85	Red
*TZC03P300A110	6.5	30.0	N1200 ± 500	300 min.	-25 to +85	Green

[•] Rated Voltage...100VDC • Withstand Voltage. . . 220VDC • Insulation Resistance. . . $10^4 M\Omega min$.

^{*}Available as standard through authorized Murata Electronics Distributors.

[•] Torque...15 to 100g-cm

CHIP TRIMMER CAPACITORS TZC03 SERIES

TEMPERATURE COEFFICIENT CHARACTERISTICS

Q VS FREQUENCY CHARACTERISTICS

Characteristics are measured at the position of maximum rated capacitance value using an RF impedance analyzer.

CHIP TRIMMER CAPACITORS TZC03 SERIES

DIMENSIONS: mm FOR PLASTIC TAPE CARRIER

MOUNTING INFORMATION

STANDARD SOLDERING CONDITIONS

SOLDERING CONDITIONS

Soldering temperature and time

Solder within the range indicated by the graph below. If soldering is repeated, note that the allowed time is accumulated.

Soldering with Iron

Use a soldering iron of less than 30W. Complete soldering within 4 seconds at soldering tip temperature of 270°C.

CAUTIONS IN HANDLING

- 1. Do not allow excessive force to be applied to the trimmer capacitor when mounting it on the P.C.B.
- 2. Polarity is noted in dimensional diagram (+ . . . Hot, - . . . Ground).
- 3. Do not clean with solvents.
- 4. Minimal downward pressure should be applied when tuning.
- 5. Non-metallic screwdriver tips may be necessary in some applications. These screwdrivers are available from Murata Electronics (Part Number ME502).
- 6. Locking adhesives are not recommend.

CHIP TRIMMER CAPACITORS TZCX3 SERIES

This new low profile, ultra stable chip trimming capacitor is specifically designed to provide excellent heat resistant characteristics against conventional trimming capacitors. The TZCX3 is best suited for applications where stability and size are of the essence.

FEATURES

- Excellent stability less than ±1% setting drift for capacitance value.
- Alumina stator provides superior heat resistance against severe reflow soldering processes.
- Color coded.
- Wide adjustment slot.
- Designed for auto-placement in surface mount applications.

DIMENSIONS

PART NUMBERING SYSTEM

SPECIFICATIONS

David Number		Capacitance (pF)		Q	01-1 0-1
Part Number	Min.(max.)	Max.(+70%,-0%)	(ppm/°C)	(1MHz, C max.) Stator Color
TZCX3Z030A110	1.5	3.0	NP0 ± 200	500 min.	Brown
TZCX3Z060A110	2.5	6.0	NP0 ± 300	500 min.	Blue
TZCX3R100A110	3.5	10.0	N750 ± 300	500 min.	_
TZCX3P200A110	5.5	20.0	N1200 ± 500	300 min.	Red
Rated Voltage50VDC	 Withstanding Vol 	tage110VDC • Insu	lation Resistance104 MΩmin.	• Torque15~100g•cm	• Operating Temperature25~+85°C

DIMENSIONS: PLASTIC TAPE CARRIER (Unit: mm)

CHIP TRIMMER CAPACITORS TZCX3 SERIES

STANDARD LAND DIMENSIONS (Unit: mm)

CAUTIONS IN HANDLING

- 1. Do not apply excessive force to trimmer when mounting on PCB.
- 2. Locking adhesives are not recommended to lock rotor of trimmer in place.
- 3. Do not clean by water or solvents.
- 4. Downward force applied during adjustment should not exceed 100g.f.

STANDARD SOLDERING CONDITIONS (Reflow)

Note: Recommended solder cream thickness is 200~250 µm

- 5. Adhesives should not be used to mount the trimmer to PCB.
- 6. Silicone oil is used internal to the trimmer capacitor. As this unit is not sealed, the oil may become evident on the outside. This will not influence the characteristics or the soldering of the trimmer capacitor.

CHIP TRIMMER CAPACITORS TZCX3 SERIES

TEMPERATURE COEFFICIENT CHARACTERISTICS

CHIP TRIMMER CAPACITORS TZV02 SERIES

The latest generation of chip trimming capacitors uses Murata Electronic's technology advancements in monolithic construction to obtain an ultra stable, ultra small package with a maximum height of only 1.45mm. The TZV02 is best suited for applications where package size and high reliability are the foremost concerns.

FEATURES

- Smallest size available just 2.3mm x 3.2mm x 1.45mm.
- Designed for auto-placement in surface mount applications.
- Superior heat resistant characteristics against reflow soldering temperatures.
- Rugged construction provides minimized capacitance drift after adjusting.

PART NUMBERING SYSTEM

SPECIFICATIONS

Doub Nambou	Capaci	Capacitance (pF) Te		Q	Stator Color
Part Number	Min. (+0%)	Max. (+100%)	(ppm/°C) (1MHz, C max)		Stator Color
TZV02Z030A110	1.4	3.0	NP0 ± 500	300 min.	White
TZV02Z060A110	2.5	6.0	NP0 ± 500	500 min.	Light Green
TZV02Z100A110	3.0	10.0	NP0 ± 500	500 min.	Light Green
TZV02R200A110	4.5	20.0	N750 ± 500	500 min.	Brown

- Rated Voltage...25VDC Withstanding Voltage...55VDC Insulation Resistance...10thM\(\Omega\) min. Driving Torque...15~100g-cm
- Operating Temperature Range. . .-25~+85°C

DIMENSIONS OF PLASTIC TAPE

CHIP TRIMMER CAPACITORS TZV02 SERIES

STANDARD LAND PATTERN

STANDARD SOLDERING CONDITIONS

CAUTIONS IN HANDLING

- 1. Do not clean by water or solvents.
- 2. Do not exceed 500gf of force when mounting on PCB.
- 3. Polarity is indicated in the dimensional diagram (+...Hot, -...Ground).
- 4. Do not flow solder.

- 5. When adjusting, a downward force of 300gf should not be exceeded.
- 6. Locking adhesives are not recommended.
- 7. Apply flux to terminal area only.
- 8. Do not store or use in a corrosive gaseous environment.

VARIABLE CAPACITOR

CHIP TRIMMER CAPACITORS TZV02 SERIES

TEMPERATURE COEFFICIENT CHARACTERISTICS

TRIMMING CAPACITORS DV11 SERIES

The DV11 Series of ceramic trimmer capacitors is the basic "standard" of the industry. It is extremely rugged and provides exceptional performance into the UHF frequency range. It is particularly applicable where space is not an important problem and where tuning ease is of utmost importance.

FEATURES

- Wide selection of capacitance ranges to 60 pF max.
- Exceptionally linear TC
- Low cost
- Excellent resistance to shock and vibration

SPECIFICATIONS

Operating Temp. Range	-55°C to +125°C		
Working Voltages:	350 VDC for -55°C to +85°C 200 VDC for +85°C to +125°C Except N650 and N1500 units; 200 VDC for -55°C to +85°C 100 VDC for +85°C to +125°C		
Test Voltages	500 VDC		
"Q" Factor	500 min. @ 1 MHz		
Insulation Resistance	10 ⁴ megohms min.		
Tuning Torque	1 to 6 inoz.		

Part Number	Capacitance Range (pF)	Temp. Coeff. (ppm/°C)
★ DV11 — 8A	2.0 to 8.0	NPO
★DV11 — 11B	2.5 to 11.0	N300
★ DV11 — 15D	3.0 to 15.0	N650
★DV11 — 18A	5.5 to 18.0	NPO
★DV11 — 25B	7.0 to 25.0	N300
★DV11 — 35D	9.0 to 35.0	N650
★DV11 — 60Q	15.0 to 60.0	N1500

DIMENSIONS: in. (mm)

ORDERING INFORMATION

CAUTION: Do not wash.

★ Contact local sales office for specific standard values.

VARIABLE CAPACITOR

TRIMMER PRODUCTS GENERAL TEST PROCEDURES

CAPACITANCE:

When measured at room temperature ($25 \pm 5^{\circ}$ C) and a frequency of 0.1 to 1 MHz, the minimum capacitance shall not be greater than the specified min. and the maximum capacitance shall not be less than the specified max.

"Q" FACTOR:

When measured at room temperature using a Boonton Electronic's Type 75A bridge or equivalent at 1 MHz, the trimmer capacitor shall have a "Q" value not less than specified when the trimmer is set at 75% of rated max. capacity (Note: Air dielectric trimmers are usually measured at 100 MHz using a Boonton Radio type 190; Sapphire dielectric trimmers are read at 250 MHz also using the BR 190 or a coaxial line system)

INSULATION RESISTANCE:

Measured at room temperature through a one megohm source resistance, at approximate max. cap. setting shall equal or exceed rated value (Note: Failures measured over 50% Relative Humidity are not counted).

DIELECTRIC STRENGTH:

The capacitor, set at approximate max. capacity shall withstand rated Withstanding Volts for 5 seconds.

TORQUE:

Room temperature torque required to start and maintain rotation shall be within specified range.

TEMPERATURE COEFFICIENT:

The TC shall be measured with the capacitor set at approximately 75% rated max. capacity, then remeasured at -55, -10, +25, +85, and/or +125, and finally, at $+25^{\circ}$ C as required. The Temperature Coefficient shall remain within specified limits.

$$TC = \frac{(Cx - Co)}{Co} X \frac{(10^6)}{(Tx - To)} \ /^{\circ}C$$

CAPACITANCE DRIFT:

Drift is the greatest change between any two readings at 25°C after the normal excursions taken for TC measurements.

ACCELERATED LIFE TEST:

The capacitor shall be set for approximately 75% of rated max. capacity and tested for specified time at twice rated working volts. After return to stabilized room temperature, the capacitor shall remain within specified Q, Insulation Resistance and other limits specified.

TEMPERATURE CYCLING:

The capacitor shall be set for 75% of rated max. capacity and then be subjected to five each of the following cycles.

- 1. -55°C (30 minutes)
- 2. +25°C (15 minutes)
- +85 (or +125) °C (30 minutes)
- 4. +25°C (15 minutes)

The rate of cooling or heating shall not be less than 3°C per minute. The temperature cycles shall be followed by 96 hour exposure to 95% RH at specified temperature. The capacitor shall then be removed and held at 25°C and 50% max. RH Q, Insulation Resistance, and capacity change shall remain within specified limits.

RELATIVE HUMIDITY:

Capacitors shall be set for 75% of rated max. capacity and subjected to specified time of 96% Relative Humidity (RH) at specified atmospheric temperature. (Note: standard time is 96 hours and standard temperature is $+40^{\circ}$ C) The capacitor shall then be removed from the humidity chamber and held at $+25^{\circ}$ C for the specified time with a maximum humidity of 50%. After the test sequence, the capacitor shall be tested for Q, I.R. & capacity change which are all required to remain within specified limits.

TUNING LINEARITY:

Test capacitors are rigidly mounted in the normal manner and turned through a standard number of degrees with capacity measured after each turning procedure. Plotted points shall not deviate from an average straight line by more than the allowable percentage. (i.e., theoretical line point capacity x 100)

NOTES:

Special Measurements and testing.

- Support data and test methods are available on request. Please contact the appropriate product engineering group.
- Špecial tests and test methods can be arranged by contacting your local sales office or the appropriate product manager.

GLOSSARY OF SPECIALIZED TERMS

1. DIELECTRIC:

Sometimes called "Insulator", a dielectric is a material whose internal charges are bound and can therefore only move over atomic dimensions. It separates the conductive capacitor plates and is important in determining temperature characteristics, voltage rating, capacity/volume and other characteristics of a capacitor.

2. DISSIPATION FACTOR (DF):

The dissipation factor of an insulating material is defined as the ratio of energy dissipated to energy stored in the dielectric. The DF is frequency sensitive and must be specified at a given frequency.

3. QUALITY FACTOR ("Q"):

The Q factor is the ratio of energy stored to energy dissipated and is therefore often taken as the inverse of the DF at low frequency. Sometimes called "Figure of Merit," Q factors must be specified at a given frequency.

4. WORKING (OR RATED) **VOLTAGE:**

Nominal continuous voltage which may be applied to a component with no derating of any kind.

5. DIELECTRIC WITHSTANDING ("BREAKDOWN") VOLTAGE:

The peak voltage which the component is designed to withstand without damage for short periods of time. This value must be specified in terms of frequency, waveform, and time.

6. INSULATION RESISTANCE (MEGOHMS):

I.R. is the terminal to terminal DC resistance of a capacitor, and must be specified in terms of voltage, temperature, and relative humidity.

7. TEMPERATURE COEFFICIENT

("TC"):
"TC" is the decimal change in capacity per degree change in environmental temperature. Some dielectrics are very lossy and generate internal heat and for that reason this test is conventionally conducted under "no load" conditions. The standard definition for "TC" in parts per million per degree centigrade is...

$$TC = \frac{(Cx - Co)}{Co} X \frac{(10^6)}{(Tx - To)} \ /^{\circ}C$$

Where "Tx" is the test temperature, "To" is the reference temperature usually 25°C. "Co" is the capacity measured at the reference temperature and "Cx" is the capacity measured at the test temperature.

8. DRIFT:

The extent in pF or % to which capacitor changes value as a result of temperature exposure. Sometimes called "Retrace", this measurement is usually made under nominal (i.e. room) conditions and is accomplished both before and after the conclusion of temperature excursion. (Note: "Drift" may occasionally be used in the test context of the simple passage of time).

9. TERMINATION:

This term refers to the material and/ or geometry of the terminals of the capacitor.

10. RF POWER:

Typically measured in KVA (apparent power) for signals with frequencies greater than 1 MHz. RF Power is limited by the maximum rated voltage or the maximum power the capacitor is able to dissipate.

11. TRIMMER CAPACITOR:

This variable type of capacitor is designed to permit precision adjustment of capacitance value. These trimming capacitors are intended for factory or maintenance adjustments only.

12. RANGE:

Trimmer capacitor range is specified in terms of "Min." and "Max." This specification indicates the guaranteed capacitance values between which the device is intended to be adjustable.

13. TUNING TORQUE:

Specified in terms of inch-ounces or gram-centimeters. Torque is intentionally introduced to trimmer capacitor design to prevent unintended tuning due to shock, vibration or other environmental factors. This requirement is specified in terms of "Min." and "Max."

14. RESOLUTION:

Specified in terms of "pF per turn". This specification indicates the accuracy with which the trimmer can be set to a particular value.

15. LINEARITY:

This term defines the specification for change in capacity per turns or degrees of rotation.

16. REVERSALS:

This term refers to a change of "sign" of the capacity vs. turns characteristic slope.

Part Number *ME501

A general purpose tuning tool for all Murata Erie trimming capacitors. Tuning element is metal.

Part Number *ME502

A high accuracy tuning tool featuring a completely passive, long life *ceramic* tuning element that has *no* incidental effect on the device under adjustment.

^{*}Available as standard through Authorized Murata Electronics Distributors.

CAPACITORS— CHIP, MONOLITHIC

- Miniature size
- Wide capacitance, TC, voltage and tolerance range
- Industry standard sizes
- 8mm and 12mm tape and reel for auto-placements
- Barrier layer termination systems for wave, reflow or vapor phase solder
- Largest production volume and capacity in the industry

★ KIT-GRM36

KIT-GRM36	Com	Tel					
Part No.	Сар.	Tol.					
COG 50V, 100 each value							
GRM36COG0R5C50AB	0.5pF	± .25pF					
GRM36COG010C50AB	1	± .25					
GRM36COG020C50AB	2	± .25					
GRM36COG030C50AB	3	± .25					
GRM36COG040C50AB	4	± .25					
GRM36COG050C50AB	5	± .25					
GRM36COG060D50AB	6	± .5					
GRM36COG070D50AB	7	± .5					
GRM36COG080D50AB	8	± .5					
GRM36COG090D50AB	9	± .5					
GRM36COG100D50AB	10	± .5					
GRM36COG120J50AB	12	±5 %					
GRM36COG150J50AB	15	±5					
GRM36COG180J50AB	18	±5					
GRM36COG220J50AB	22	±5					
GRM36COG270J50AB GRM36COG330J50AB GRM36COG390J50AB GRM36COG470J50AB GRM36COG560J50AB	27 33 39 47 56	±55555 ±±±±					
GRM36COG680J50AB GRM36COG820J50AB GRM36COG101J50AB GRM36COG121J50AB GRM36COG151J50AB	68 82 100 120 150	±55555 ±±±±±					
X7R 50V, 200 each value							
GRM36X7R221K50AB	220 pF	±10%					
GRM36X7R271K50AB	270	±10					
GRM36X7R331K50AB	330	±10					
GRM36X7R391K50AB	390	±10					
GRM36X7R471K50AB	470	±10					
GRM36X7R561K50AB	560	±10					
GRM36X7R681K50AB	680	±10					
GRM36X7R821K50AB	820	±10					
GRM36X7R102K50AB	1000	±10					
GRM36X7R122K50AB	1200	±10					
GRM36X7R152K50AB	1500	± 10					
GRM36X7R182K50AB	1800	± 10					
GRM36X7R222K50AB	2200	± 10					
GRM36X7R272K50AB	2700	± 10					
GRM36X7R332K50AB	3300	± 10					
GRM36X7R392K50AB	3900	±10					
GRM36X7R472K25AB	4700	±10					
GRM36X7R562K25AB	5600	±10					
GRM36X7R682K25AB	6800	±10					
GRM36X7R822K16AB	8200	±10					
GRM36X7R103K16AB	.01μF	± 10					
Y5V 50V, 200 each value							
GRM36Y5V102Z50AB	1000 pF	+80, -20%					
GRM36Y5V222Z50AB	2200	+80, -20					
GRM36Y5V332Z50AB	3300	+80, -20					
GRM36Y5V472Z50AB	4700	+80, -20					
GRM36Y5V103Z50AB	.01 μF	+80, -20					
GRM36Y5V153Z25AB	.015	+80, -20					
GRM36Y5V223Z25AB	.022	+80, -20					
GRM36Y5V333Z16AB	.033	+80, -20					

* STANDARD DISTRIBUTOR ITEMS

★ KIT-GRM39

KIT-GRM39		
Part No.	Сар.	Tol.
COG 100V, 50 each value		
GRM39COG010B100AB GRM39COG1R5B100AB GRM39COG2R2B100AB GRM39COG2R3B100AB GRM39COG4R7B100AB GRM39COG6R8C100AB GRM39COG100D100AB GRM39COG150J100AB GRM39COG220J100AB GRM39COG330J100AB GRM39COG470J100AB GRM39COG470J100AB GRM39COG680J100AB	1 pF 1.5 2.2 3.3 4.7 6.8 10 15 22 33 47 68 100	± .1 pF ± .1 ± .1 ± .1 ± .1 ± .25 ± .5 ±
COG 50V, 50 each value	, ,-	
GRM39COG010B050AB GRM39COG1R5B050AB GRM39COG1R5B050AB GRM39COG3R3B050AB GRM39COG4R7B050AB GRM39COG6R8C050AB GRM39COG100D050AB GRM39COG150J050AB GRM39COG220J050AB GRM39COG330J050AB GRM39COG470J050AB GRM39COG470J050AB GRM39COG680J050AB GRM39COG151J050AB GRM39COG151J050AB GRM39COG151J050AB GRM39COG151J050AB	1 pF 1.5 2.2 3.3 4.7 6.8 10 15 22 33 47 68 100 150 220	± .1 pF ± .1 ± .1 ± .1 ± .25 ± .5 ±
X7R 50V, 50 each value		
GRM39X7R221K050AB GRM39X7R331K050AB GRM39X7R471K050AB GRM39X7R681K050AB GRM39X7R102K050AB GRM39X7R152K050AB GRM39X7R222K050AB GRM39X7R32K050AB GRM39X7R472K050AB GRM39X7R472K050AB GRM39X7R682K050AB GRM39X7R682K050AB	220pF 330 470 680 1000 1500 2200 3300 4700 6800 .01µF	±10% ±10 ±10 ±10 ±10 ±10 ±10 ±10 ±10 ±10
X7R 25V, 50 each value	.01μι	
GRM39X7R472K025AB GRM39X7R682K025AB GRM39X7R103K025AB	4700pF 6200 .01μF	± 10% ± 10 ± 10
X7R 16V, 50 each value		
GRM39X7R153K016AB GRM39X7R223K016AB GRM39X7R333K016AB	.015μF .022 .033	± 10% ± 10 ± 10
Y5V 50V, 50 each value GRM39Y5V152Z050AB	1500°E	1.80 2004
GRM39Y5V132Z050AB GRM39Y5V23Z050AB GRM39Y5V47ZZ050AB GRM39Y5V68ZZ050AB GRM39Y5V103Z050AB GRM39Y5V103Z050AB GRM39Y5V153Z050AB GRM39Y5V223Z050AB	1500pF 2200 3300 4700 6800 .01 µF .015 .022	+80, -20% +80, -20 +80, -20 +80, -20 +80, -20 +80, -20% +80, -20 +80, -20
Y5V 25V, 50 each value		
GRM39Y5V152Z025AB GRM39Y5V22Z7025AB GRM39Y5V332Z025AB GRM39Y5V472Z025AB GRM39Y5V682Z025AB GRM39Y5V103Z025AB GRM39Y5V153Z025AB GRM39Y5V223Z025AB GRM39Y5V223Z025AB GRM39Y5V333Z025AB GRM39Y5V333Z025AB	1500pF 2200 3300 4700 6800 .01 μF .015 .022 .033 .047	+80, -20% +80, -20 +80, -20 +80, -20 +80, -20 +80, -20 +80, -20 +80, -20 +80, -20 +80, -20
Y5V 16V, 50 each value		
GRM39Y5V333Z016AB GRM39Y5V473Z016AB GRM39Y5V683Z016AB GRM39Y5V104Z016AB	.033μF .047 .068 .1	+80, -20% +80, -20 +80, -20 +80, -20

CAPACITORS— CHIP, MONOLITHIC (continued)

★ KIT-GRM40

Part No.	Сар.	Tol.
COG 50V, 50 each value		
GRM40COG010C050AB GRM40COG020C050AB GRM40COG030C050AB GRM40COG040C050AB GRM40COG050D050AB	1pF 2 3 4 5	± .25pF ± .25 ± .25 ± .25 ± .5
GRM40COG060D050AB GRM40COG070D050AB GRM40COG080D050AB GRM40COG090D050AB GRM40COG100D050AB	6 7 8 9 10	± .5 ± .5 ± .5 ± .5
GRM40COG120J050AB GRM40COG150J050AB GRM40COG180J050AB GRM40COG220J050AB GRM40COG330J050AB	12 15 18 22 33	±5 % ±5 ±5 ±5 ±5
GRM40COG390J050AB GRM40COG470J050AB GRM40COG560J050AB GRM40COG680J050AB GRM40COG820J050AB	39 47 56 68 82	±5 ±5 ±5 ±5 ±5
GRM40COG101J050AB GRM40COG121J050AB GRM40COG151J050AB GRM40COG181J050AB GRM40COG221J050AB	100 120 150 180 220	±5 ±5 ±5 ±5
GRM40COG271J050AB GRM40COG331J050AB GRM40COG391J050AB GRM40COG471J050AB	270 330 390 470	±5 ±5 ±5 ±5
X7R 50V, 100 each value		
GRM40X7R391K050AB GRM40X7R471K050AB GRM40X7R561K050AB GRM40X7R681K050AB GRM40X7R821K050AB	390pF 470 560 680 820	±10% ±10 ±10 ±10 ±10
GRM40X7R102K050AB GRM40X7R122K050AB GRM40X7R152K050AB GRM40X7R182K050AB GRM40X7R222K050AB	1000 1200 1500 1800 2200	±10 ±10 ±10 ±10 ±10
GRM40X7R272K050AB GRM40X7R332K050AB GRM40X7R392K050AB GRM40X7R472K050AB GRM40X7R562K050AB	2700 3300 3900 4700 5600	±10 ±10 ±10 ±10 ±10
GRM40X7R682K050AB GRM40X7R822K050AB	6800 8200	± 10 ± 10
GRM40X7R103K050AB GRM40X7R123K050AB GRM40X7R153K050AB GRM40X7R183K050AB GRM40X7R183K050AB GRM40X7R223K050AB	.01 μF .012 .015 .018 .022	± 10 ± 10 ± 10 ± 10 ± 10
Z5U 50V, 100 each value		
GRM40Z5U103M050AB GRM40Z5U123M050AB GRM40Z5U183M050AB GRM40Z5U223M050AB GRM40Z5U333M050AB	.01 μF .012 .018 .022 .033	±20% ±20 ±20 ±20 ±20
GRM40Z5U473M050AB	.047	± 20
Y5V, 25V, 100 each value		
101, 201, 100 caon value		

★KIT-GRM42-6

Part No.	Сар.	Tol.
COG 50V, 50 each value		
GRM42-6COG100D050AB	10pF	± .5pF
GRM42-6COG120J050AB	12	±5 %
GRM42-6COG150J050AB	15	±5
GRM42-6COG180J050AB	18	±5
GRM42-6COG220J050AB	22	±5
GRM42-6COG330J050AB GRM42-6COG390J050AB GRM42-6COG470J050AB GRM42-6COG560J050AB GRM42-6COG680J050AB	33 39 47 56 68	±5 ±5 ±5 ±5
GRM42-6COG820J050AB	82	±5
GRM42-6COG101J050AB	100	±5
GRM42-6COG121J050AB	120	±5
GRM42-6COG151J050AB	150	±5
GRM42-6COG181J050AB	180	±5
GRM42-6COG221J050AB	220	±5
GRM42-6COG271J050AB	270	±5
GRM42-6COG331J050AB	330	±5
GRM42-6COG391J050AB	390	±5
GRM42-6COG471J050AB	470	±5
GRM42-6COG561J050AB	560	±5
GRM42-6COG681J050AB	680	±5
GRM42-6COG821J050AB	820	±5
GRM42-6COG102J050AB	1000	±5
X7R 50V, 100 each value		
GRM42-6X7R331K050AB	330pF	± 10%
GRM42-6X7R391K050AB	390	± 10
GRM42-6X7R471K050AB	470	± 10
GRM42-6X7R561K050AB	560	± 10
GRM42-6X7R681K050AB	680	± 10
GRM42-6X7R821K050AB	820	± 10
GRM42-6X7R102K050AB	1000	± 10
GRM42-6X7R122K050AB	1200	± 10
GRM42-6X7R152K050AB	1500	± 10
GRM42-6X7R182K050AB	1800	± 10
GRM42-6X7R222K050AB	2200	±10
GRM42-6X7R272K050AB	2700	±10
GRM42-6X7R332K050AB	3300	±10
GRM42-6X7R392K050AB	3900	±10
GRM42-6X7R472K050AB	4700	±10
GRM42-6X7R562K050AB	5600	±10
GRM42-6X7R682K050AB	6800	±10
GRM42-6X7R822K050AB	8200	±10
GRM42-6X7R103K050AB	.01 μF	±10
GRM42-6X7R123K050AB	.012	±10
GRM42-6X7R153K050AB	.015	±10
GRM42-6X7R183K050AB	.018	±10
GRM42-6X7R223K050AB	.022	±10
GRM42-6X7R273K050AB	.027	±10
GRM42-6X7R333K050AB	.033	±10
GRM42-6X7R393K050AB	.039	±10
GRM42-6X7R473K050AB	.047	±10
GRM42-6X7R563K050AB	.056	±10
GRM42-6X7R683K050AB	.068	±10
GRM42-6X7R823K050AB	.082	±10
GRM42-6X7R104K050AB	.1	± 10
Z5U 50V, 100 each value	047.5	+ 000/
GRM42-6Z5U473M050AB	.047μF	± 20%
GRM42-6Z5U563M050AB	.056	± 20
GRM42-6Z5U683M050AB	.068	± 20
GRM42-6Z5U823M050AB	.082	± 20
GRM42-6Z5U104M050AB	.1	± 20

[★] STANDARD DISTRIBUTOR ITEMS

CAPACITORS— CHIP, MONOLITHIC (continued)

*KIT-GRM40-TC

Temperature compensating Values below in each of these T.C.'s: P2H, R2H, S2H, T2H, U2J

Part No.	Сар.	Tol.
50V, 50 each value		
GRM40	1 pF 1.5 2.2 3.3 4.7	± .1 pF ± .1 ± .1 ± .1 ± .1
GRM40 6R8C050AB GRM40 100D050AB GRM40 250J050AB GRM40 220J050AB GRM40 330J050AB	6.8 10 15 22 33	± .25 ± .5 ±5 % ±5 ±5
GRM40 - 470J050AB GRM40 - 680J050AB GRM40 - 101J050AB GRM40 - 151J050AB GRM40 - 221J050AB	47 68 100 150 220	±5 ±5 ±5 ±5
GRM40	330 470 680 1000* 1500*	±5 ±5 ±5 ±5

^{*}T2H and U2J only

*KIT-GRM42-6-TC

Temperature compensating

Values below in each of these T.C.'s: P2H, R2H, S2H, T2H, U2J

Part No.	Сар.	Tol.
50V, 50 each value		
GRM42-6	1 pF 1.5 2.2 3.3 4.7	± .1 pF ± .1 ± .1 ± .1 ± .1
GRM42-6 - 6R8C050AB GRM42-6 - 100D050AB GRM42-6 - 150J050AB GRM42-6 - 220J050AB GRM42-6 - 330J050AB	6.8 10 15 22 33	± .25 ± .5 ± 5 % ± 5 ± 5
GRM42-6 - 470J050AB GRM42-6 - 680J050AB GRM42-6 - 101J050AB GRM42-6 - 151J050AB GRM42-6 - 221J050AB	47 68 100 150 220	±5 ±5 ±5 ±5
GRM42-6□□331J050AB GRM42-6□□471J050AB GRM42-6□□681J050AB GRM42-6□□102J050AB GRM42-6□□152J050AB	330 470 680 1000* 1500*	±5 ±5 ±5 ±5

^{*}T2H and U2J only

CAPACITORS— CHIP, MONOLITHIC, ELECTROLYTICS REPLACEMENTS

★KIT-GRM-TA

Tantalum Alternative Part No.	Сар.	Tol.
X7R 16V, 25 each value, *10 e		101.
GRM39X7R153K016AB	.015μF	± 10%
GRM39X7R223K016AB	.022	± 10
GRM39X7R333K016AB	.033	± 10
GRM40X7R153K016AB	.015	± 10
GRM40X7R223K016AB	.022	± 10
GRM40X7R333K016AB	.033	±10
GRM40X7R473K016AB	.047	±10
GRM40X7R683K016AB	.068	±10
GRM40X7R104K016AB	.1	±10
GRM40X7R154K016AB	.15	±10
GRM42-6X7R104K016AB	.1	±10
GRM42-6X7R154K016AB	.15	±10
GRM42-6X7R224K016AB	.22	±10
GRM42-6X7R334K016AB	.33	±10
*GRM42-2X7R154K016AB	.15	±10
*GRM42-2X7R224K016AB	.22	± 10
*GRM42-2X7R334K016AB	.33	± 10
*GRM42-2X7R474K016AB	.47	± 10
*GRM43-2X7R474K016AB	.47	± 10
Y5V 16V, 25 each value, *10	each value	
GRM39Y5V333Z016AB GRM39Y5V473Z016AB GRM39Y5V683Z016AB GRM39Y5V104Z016AB GRM40Y5V333Z016AB GRM40Y5V473Z016AB	.033µF .047 .068 .1 .033	+80, -20% +80, -20 +80, -20 +80, -20 +80, -20 +80, -20
GRM40Y5V683Z016AB	.068	+80, -20
GRM40Y5V104Z016AB	.1	+80, -20
GRM40Y5V154Z016AB	.15	+80, -20
GRM40Y5V224Z016AB	.22	+80, -20
GRM40Y5V334Z016AB	.33	+80, -20
GRM40Y5V474Z016AB	.47	+80, -20
GRM42-6Y5V154Z016AB	.15	+80, -20
GRM42-6Y5V224Z016AB	.22	+80, -20
GRM42-6Y5V334Z016AB	.33	+80, -20
GRM42-6Y5V474Z016AB	.47	+80, -20
GRM42-6Y5V684Z016AB	.68	+80, -20
GRM42-6Y5V105Z016AB	1.0	+80, -20
GRM42-6Y5V155Z016AB	1.5	+80, -20
*GRM42-2Y5V684Z016AB	.68	+80, -20
*GRM42-2Y5V105Z016AB	1.0	+80, -20
*GRM42-2Y5V155Z016AB	1.5	+80, -20
*GRM42-2Y5V225Z016AB	2.2	+80, -20
*GRM43-2Y5V225Z016AB	2.2	+80, -20

[★] STANDARD DISTRIBUTOR ITEMS

CAPACITORS— RADIAL LEADED, MONOLITHIC

- Wide capacitance, T.C., voltage and tolerance range
- Industry standard sizes
- Tape and Reel available for auto insertion
- Various lead spacing available
- Marking standard or to customer specification

*KIT-RPE

KII-NFE		
Part No.	Сар.	Tol.
COG 100V, 50 each value		
RPE110COG1R0C100V RPE110COG2R2C100V RPE110COG4R7C100V RPE110COG4R7C100V RPE110COG180J100V RPE110COG180J100V RPE110COG220J100V RPE110COG330J100V RPE110COG470J100V RPE110COG680J100V RPE110COG680J100V RPE12CCOG680J100V RPE12CCOG331J100V RPE12CCOG331J100V RPE122COG331J100V RPE122COG471J100V RPE122COG471J100V	1pF 2.2 4.7 8.2 10 18 22 33 47 68 82 100 220 330 470 820	± .25pF ± .25 ± .25 ± .25 ±5% ±5 ±5 ±5 ±5 ±5 ±5 ±5 ±5 ±5 ±5
X7R 100V, 50 each value		
RPE122X7R102K100V RPE122X7R222K100V RPE122X7R472K100V RPE122X7R103K100V RPE122X7R23K100V RPE122X7R333K100V RPE122X7R473K100V RPE122X7R473K100V	1,000pF 2,200 4,700 10,000 22,000 33,000 47,000 100,000	±10% ±10 ±10 ±10 ±10 ±10 ±10 ±10
Z5U 50V, 50 each value		
RPE122Z5U224M050V RPE122Z5U334M050V RPE123Z5U474M050V RPE123Z5U105M050V	220,000pF 330,000 470,000 1,000,000	±20% ±20 ±20 ±20

★KIT-RPE-TR*

Part No.	Cap.	Tol.
COG 100V, 50 each value		
RPE122COG1R0C100V RPE122COG2R2C100V RPE122COG4R7C100V RPE122COG8R2D100V RPE122COG100D100V	1pF 2.2 4.7 8.2 10	± .25pF ± .25 ± .25 ± .25 ±5%
RPE122COG180J100V RPE122COG220J100V RPE122COG330J100V RPE122COG470J100V RPE122COG680J100V	18 22 33 47 68	±5 ±5 ±5 ±5 ±5
RPE122COG820J100V RPE122COG101J100V RPE122COG221J100V RPE122COG331J100V RPE122COG471J100V	82 100 220 330 470	±5 ±5 ±5 ±5 ±5
RPE122COG821J100V	820	±5
X7R 100V, 50 each value RPE122X7R102K100V RPE122X7R222K100V RPE122X7R103K100V RPE122X7R103K100V RPE122X7R233K100V RPE122X7R333K100V RPE122X7R473K100V RPE122X7R473K100V	1,000pF 2,200 4,700 10,000 22,000 33,000 47,000 100,000	±10% ±10 ±10 ±10 ±10 ±10 ±10

★KIT-RPE-TR* (continued)

Part No.	Сар.	Tol.
Z5U 100V, 50 each value		
RPE122Z5U103M100V RPE122Z5U104M100V	10,000pF 100,000	±20% ±20
Z5U 50V, 50 each value		
RPE122Z5U224M050V RPE122Z5U334M050V RPE123Z5U474M050V RPE123Z5U105M050V	220,000pF 330,000 470,000 1,000,000	±20% ±20 ±20 ±20

^{*}Supplied with typical Tape & Reel lead forms.

CAPACITORS— DISC, SAFETY

*KIT-SAFETY-CAPACITOR

■ Meet UL, CSA, SEV, VDE, etc. standards

^{*}STANDARD DISTRIBUTOR ITEMS

CAPACITORS— CHIP MONOLITHIC, MICROWAVE

- Miniature sizes
- Very high Q at high frequencies
- High RF power capabilities
 Impervious to adverse environmental conditions
- Low dissipation factors
- Perfect retrace capability
- High temperature stability
- Low noise

★ KIT-MA18-001

(Evaluation Kit)

Part No.	Сар.	Tol.
P90 150V, 5 each val	ue	
MA181R0B	1.0pF	± .1 pF
MA181R8C	1.8	± .25
MA182R7D	2.7	± .5
MA183R3D	3.3	± .5
MA184R7D	4.7	± .5
MA185R7D	5.6	± .5
MA188R2K	8.2	±10 %
MA18100K	10	±10
MA18120K	12	±10
MA18150K	15	±10
MA18220K	22	± 10
MA18360K	36	± 10
MA18470K	47	± 10
MA18560K	56	± 10
MA18820K	82	± 10

★ KIT-MA18-002

Part No.	Сар.	Tol.
P90 150V, 5 each value	ue	
MA180R3B	0.3pF	± .1 pF
MA180R4B	0.4	± .1
MA180R5B	0.5	± .1
MA180R6B	0.6	± .1
MA180R7B	0.7	± .1
MA180R8B	0.8	± .1
MA180R9B	0.9	± .1
MA181R0B	1.0	± .1
MA181R2B	1.2	± .1
MA181R4B	1.4	± .1
MA181R5B	1.5	± .1
MA181R6B	1.6	± .1
MA181R8B	1.8	± .1
MA181R9B	1.9	± .1
MA182R0B	2.0	± .1
MA182R1B	2.1	± .1
MA182R2B	2.2	± .1
MA182R4B	2.4	± .1
MA182R7B	2.7	± .1
MA183R0B	3.0	± .1
MA183R6C	3.6	± .25
MA183R9C	3.9	± .25
MA184R7C	4.7	± .25
MA185R1C	5.1	± .25
MA185R6C	5.6	± .25
MA186R2C MA186R8J MA188R2J MA189R1J MA18100J	6.2 6.8 8.2 9.1	± .25 ±5 % ±5 ±5 ±5

★ STANDARD DISTRIBUTOR ITEMS

★ KIT-MA18-003

(Designer Kit)

Part No.	Сар.	Tol.
P90 150V, 5 each va	lue	
MA181R0B	1.0pF	± .1 pF
MA181R3B	1.3	± .1
MA181R6B	1.6	± .1
MA181R9B	1.9	± .1
MA182R1B	2.1	± .1
MA182R7C	2.7	± .25
MA183R3C	3.3	± .25
MA183R9C	3.9	± .25
MA184R7C	4.7	± .25
MA185R6C	5.6	± .25
MA186R8J	6.8	± 5 %
MA187R5J	7.5	± 5
MA188R5J	8.2	± 5
MA189R1J	9.1	± 5
MA18100J	10	± 5
MA18120J MA18150J MA18180J MA18220J MA18240J	12 15 18 22 24	± ± ± ± ± ± ± ±
MA18270J MA18330J MA18360J MA18390J MA18470J	27 33 36 39 47	± 555555 ± ± 55
MA18560J	56	± 5
MA18680K	68	± 10
MA18750K	75	± 10
MA18820K	82	± 10
MA18910K	91	± 10

*KIT-MA28-001 (1)

*KIT-MA22-001-MS (2)

(Evaluation Kit)

Part No.	Cap.	Tol.
90 500V, 5 each value		
MA281R0C MA282R2D MA283R6D MA285R6D MA287R5D	1.0pF 2.2 3.6 5.6 7.5	± .25pF ± .5 ± .5 ± .5 ± .5
MA28110J MA28160J MA28240J MA28360J MA28510J	11 16 24 36 51	± 5 % ± 5 ± 5 ± 5
MA28750J MA28101J MA28201J MA28471M MA28621M	75 100 200* 470* 620**	± 5 ± 5 ± 5 ± 20 ± 20

^{*300}VDC **200VDC

*KIT-MA28-002 (1) KIT-MA22-002-MS (2)

(Tune Kit)

Part No.	Сар.	Tol.
P90 500V, 5 each val	lue	
MA280R3B MA280R4B MA280R5B MA280R6B MA280R7B	0.3pF 0.4 0.5 0.6 0.7	± .1pF ± .1 ± .1 ± .1 ± .1
MA280R8B MA280R9B MA281R0B MA281R2B MA281R4B	0.8 0.9 1.0 1.2 1.4	± .1 ± .1 ± .1 ± .1

CAPACITORS— CHIP MONOLITHIC, MICROWAVE (continued)

*KIT-MA28-002 (1) (continued) (Tune Kit)

Part No.	Cap.	Tol.	
P90 500V, 5 each valu	P90 500V, 5 each value (continued)		
MA281R5B MA281R6B MA281R8B MA281R9B MA282R0B MA282R1B MA282R2B MA282R4B	1.5pF 1.6 1.8 1.9 2.0 2.1 2.2 2.4	±.1pF ±.1 ±.1 ±.1 ±.1 ±.1 ±.1 ±.1	
MA282R7B MA283R0B MA283R6C MA283R9C MA284R7C MA285R1C	2.7 3.0 3.6 3.9 4.7 5.1	± .1 ± .1 ± .25 ± .25 ± .25 ± .25	
MA285R6C MA286R2C MA286R8J MA288R2J MA289R1J MA28100J	5.6 6.2 6.8 8.2 9.1	± .25 ± .25 ± 5% ± 5 ± 5 ± 5	

*KIT-MA28-003 (1)

(Designer Kit)

Part No.	Cap.	Tol.
P90 500V, 5 each valu	ue e	
MA280R3B	0.3pF	± .1pF
MA280R4B	0.4	± .1
MA280R5B	0.5	± .1
MA280R6B	0.6	± .1
MA280R7B	0.7	± .1
MA280R8B	0.8	± .1
MA280R9B	0.9	± .1
MA281R2B	1.2	± .1
MA281R5C	1.5	± .25
MA281R8C	1.8	± .25
MA282R2C	2.2	± .25
MA282R7C	2.7	± .25
MA283R0C	3.0	± .25
MA283R3C	3.3	± .25
MA283R6C	3.6	± .25
MA284R3C	4.3	± .25
MA285R6C	5.6	± .25
MA286R2C	6.2	± .25
MA286R8J	6.8	± 5%
MA287R5J	7.5	± 5
MA288R2J	8.2	± 5
MA289R1J	9.1	± 5
MA28100J	10	± 5
MA28110J	11 13	± 5 ± 5
MA28130J		
MA28160J	16	± 5
MA28180J	18	± 5 ± 5
MA28240J MA28270J	24 27	± 5 ± 5
MA28300J	30	± 5 ± 5
MA28330J MA28360J	33 36	± 5 ± 5
MA28360J MA28430J	43	± 5 ± 5
MA28470J	47	± 5
MA28560K	56	± 10
MA28620K	62	± 10
MA28680K	68	± 10 ± 10
MA28910K	91	± 10 ± 10
MA28131K	130*	± 10
MA28161K	160*	± 10

*KIT-MA28-003 (1) *KIT-MA22-003MS (2)

(Designer Kit)

Part No.	Cap.	Tol.
90 150V, 5 each val	ue	
MA28181K	180*pF	± 10%
MA28201K	200**	± 10
MA28221K	220**	± 10
MA28241K	240**	± 10
MA28301K	300**	± 10
MA28361M	360**	± 20
MA28431M	430**	± 20
MA28471M	470**	± 20
MA28511M	510**	± 20
MA28561M	560**	± 20
MA28621M	620**	± 20

*300VDC **200VDC

- (1) Termination-Palladium silver, nickel interface, solder (SN62)
- (2) Termination-Microstrip leads

KIT-MA58-001

(Evaluation Kit)

Part No.	Cap.	Tol.
Part No. COG, 5 each	value	
MA581R0B MA581R8C MA582R7D MA583R3D MA584R7D		
MA585R6D MA586R8K MA58100K MA58120K MA58150K		
MA58220K MA58330K MA58470K MA58560K MA58101K		

KIT-MA68-001

(Evaluation Kit)

Part No.	Cap.	Tol.
art No. COG, 5 each	value	
MA681R0C MA682R2D MA683R6D MA685R6D MA686R8D		
MA68100J MA68150J MA68270J MA68330J MA68470J		
MA68680J MA68101J MA68471M MA68681M MA68102M		

GRH708 and 710 DESIGN ENGINEERING KITS

GRH708 and 710 Design Engineering Kits are offered as well. Both kits contain 10 pieces each of 15 different part numbers covering the full range of values in each respective size.

Please consult your local Murata Electronics Sales Office for further information on these kits.

CAPACITORS— CHIP TRIMMING Miniature Size Designed for auto-placement

- Can be immersed in flux and solder bath

★KIT-TZSBOX-1

Part No.	Min. Cap.	Max. Cap.	T.C.
TZ03, 8 each value			
TZ03Z2R3FR169	1.25pF	2.3pF	NPO
TZ03Z050FR169	1.8	5.0	NPO
TZ03Z070FR169	2.0	7.0	NPO
TZ03Z100FR169	2.7	10.0	NPO
TZ03N100FR169	2.1	10.0	N220
TZ03T110FR169	3.0	11.0	N450
TZ03T200FR169	4.2	20.0	N450
TZ03R200FR169	4.2	20	N750
TZ03R300FR169	5.2	30	N750
TZ03P450FR169	6.8	45	N1200
TZ03P600FR169	9.8	60	N1200
TZ03Z500FR169	6	50	NPO
TZ03R900FR169	9	90	N750
TZBX4, 10 each value TZBX4Z030BC110 TZBX4Z060BC110 TZBX4Z100BC110 TZBX4R200BC110 TZBX4P300BC110	1.4pF 2.0 3.0 4.5 6.5	3.0pF 6.0 10.0 20.0 30.0	NPO NPO NPO N750 N1200
TZBX4P400BC110	9.0	40.0	N1200
TZBX4Z250BC110	4.0	25.0	NPO
TZBX4R500BC110	7.0	50.0	N750

★KIT-TZSBOX-2

Part No.	Min. Cap.	Max. Cap.	T.C.
TZBX4, 10 each value			
TZBX4Z030BA110	1.4pF	3.0pF	NPO
TZBX4Z060BA110	2.0	6.0	NPO
TZBX4Z100BA110	3.0	10.0	NPO
TZBX4R200BA110	4.5	20.0	N750
TZBX4P300BA110	6.5	30.0	N1200
TZBX4P400BA110	9.0	40.0	N1200
TZBX4Z250BA110	4.0	25.0	NPO
TZBX4R500BA110	7.0	50.0	N750
TZBX4Z060BB110	2.0	6.0	NPO
TZBX4Z100BB110	3.0	10.0	NPO
TZBX4R200BB110	4.5pF	20.0pF	N750
TZBX4P300BB110	6.5	30.0	N1200
TZBX4Z060BE110	2.0	6.0	NPO
TZBX4Z100BE110	3.0	10.0	NPO
TZBX4R200BE110	4.5	20.0	N750
TZBX4P400BE110	9.0	40.0	N1200
TZC03, 10 each value			
TZC03Z030A110	1.4	3.0	NPO
TZC03Z060A110	2.0pF	6.0pF	NPO
TZC03R100A110	3.0	10.0	N750
TZC03P200A110	5.0	20.0	N1200
TZC03P300A110	6.5	30.0	N1200

^{*}Available as standard through authorized Murata Electronics Distributors.

★KIT-TZSBOX-3

Part No.	Min. Cap.	Max. Cap.	T.C.	
TZBX4, 10 each value				
TZBX4Z030BA110	1.4pF	3.0pF	NPO	
TZBX4Z060BA110	2.0	6.0	NPO	
TZBX4Z100BA110	3.0	10.0	NPO	
TZBX4R200BA110	4.5	20.0	N750	
TZBX4R200BA110	6.5	30.0	N1200	
TZBX4P400BA110	9.0	40.0	N1200	
TZBX4Z250BA110	4.0	25.0	NPO	
TZBX4R500BA110	7.0	50.0	N750	
TZBX4R200BB110	4.5	20.0	N750	
TZBX4P300BB110	6.5	30.0	N1200	
TZBX4Z060BB110	2.0	6.0	NPO	
TZBX4Z100BB110	3.0	10.0	NPO	
TZBX4R200BC110	4.5	20.0	N750	
TZBX4Z060BD110	2.0	6.0	NPO	
TZBX4Z100BD110	3.0	10.0	NPO	
TZBX4R200BD110	4.5	20.0	N750	
TZBX4Z060BE110	2.0	6.0	NPO	
TZBX4Z100BE110	3.0	10.0	NPO	
TZBX4R200BE110	4.5	20.0	N750	
TZBX4R200BB110	2.0	6.0	NPO	
TZBX4Z100BB110	3.0	10.0	NPO	

★KIT-TZSBOX-4

Part No.	Min. Cap.	Max. Cap.	T.C.		
TZ03, 8 each value					
TZ03Z070FR169 TZ03Z100FR169 TZ03T110FR169 TZ03T200FR169 TZ03R200FR169 TZ03R300FR169 TZ03P450FR169 TZ03Z500FR169	2.0pF 2.7 3.0 4.2 4.2 5.2 6.8 6.0	7.0pF 10.0 11.0 20.0 20.0 30.0 45.0 50.0	NPO NPO N450 N450 N750 N750 N1200 NPO		
TZBX4, 10 each value					
TZBX4Z030BA110 TZBX4Z060BA110 TZBX4Z100BA110 TZBX4R200BA110 TZBX4P300BA110 TZBX4P400BA110 TZBX4P400BA110 TZBX4Z250BA110 TZBX4R500BA110	1.4pF 2.0 3.0 4.5 6.5 9.0 4.0 7.0	3.0pF 6.0 10.0 20.0 30.0 40.0 25.0 50	NPO NPO NPO N750 N1200 N1200 NPO N750		
TZC03, 10 each value					
TZC03Z030A110 TZC03Z060A110 TZC03P100A110 TZC03P200A110 TZC03P300A110	1.4 2.0pF 3.0 5.0 6.5	3.0 6.0pF 10.0 20.0 30.0	NPO NPO N750 N1200 N1200		

For Technical Information, call— Regional Sales Offices

Midwest: (810) 348-9975

Northwest: (503) 646-4973

Southwest: (310) 436-8700

Northeast: (617) 356-4155

Southeast: (404) 436-1300

For Catalog Information, call—1-800-831-9172

Marketing Communications 2200 Lake Park Drive Smyrna, Georgia 30080

Telex: 26-1301 Fax: 404-436-3030