Matematika I

Séria úloh 11

1. (7b) Daná je všeobecná rovnica kužeľosečky $4x^2+y^2+24x-4y+24=0. \label{eq:control}$

Doplňte:

a)	(2b)	Kanonická rovnica (rovnica v štandardnom tvare) kužeľosečky je
b)	(1b)	Typ kužeľosečky je
c)	(3b)	Napíšte, ak existujú
	$c_1)$	súradnice stredu kužeľosečky:
	$c_2)$	súradnice ohniska resp. ohnísk kužeľosečky:
	c_3	súradnice vrcholu resp. vrcholov kužeľosečky:
d)	(1b)	Znázornite kužeľosečku a v náčrte popíšte jej charakteristické prvky.

2. (2b) Vyberte funkciu, ktorej definičný obor je znázornený na obrázku.

a)
$$f(x,y) = \sqrt{x} + \ln(4 - x^2 - y^2)$$

b)
$$f(x,y) = \arcsin x + \sqrt{4 - x^2 - y^2}$$

c)
$$f(x,y) = \frac{\ln(x+1)}{\sqrt{4-x^2-y^2}}$$

d)
$$f(x,y) = \frac{\arcsin(x+y)}{\sqrt{4-x^2-y^2}}$$

3. (6b) Vypočítajte

$$\iint\limits_{M} xy \, \mathrm{d}x \mathrm{d}y,$$

kde množina M je mnohouholník s vrcholmi $A=[1,0],\,B=[2,0],\,C=[2,2],\,D=[1,3].$

Výsledok:

4. (4b) Bod M má v cylindrickej súradnicovej sústave nasledujúce súradnice: $M = \left\lceil \sqrt{2}, \frac{3\pi}{4}, \sqrt{6} \right\rceil$.

a) (2b) Vyberte správnu odpoveď: Súradnice bodu M v pravouhlej súradnicovej sústave sú:

a)
$$M = [1, -1, \sqrt{6}]$$

c)
$$M = [-1, 1, \sqrt{6}]$$

b)
$$M = [-1, -1, \sqrt{6}]$$

d)
$$M = [1, 1, \sqrt{6}]$$

b) (2b) Znázornite tento bod M v pravouhlej súradnicovej sústave.

Náčrt:

5. (8b	o) Daná je lineárna obyčajná diferenciálna rovnica (LODR) $y'(x) + y(x) = x + 1$.
a) ((2b) Napíšte charakteristickú rovnicu k danej diferenciálnej rovnici.
(Charakteristická rovnica je:
	(2b) Nájdite fundamentálny systém riešení diferenciálnej rovnice s nulovou pravou stranou.
]	Fundamentálny systém riešení je
b)	(2b) Nájdite partikulárne riešenie uvedenej nehomogénnej rovnice.
]	Partikulárne riešene je
c) ((2b) Napíšte všeobecné riešenie danej lineárnej diferenciálnej rovnice.
-	Všeobecné riešenie danej LODR je
6. (4b	o) Vypočítajte $\lim_{[x,y] \to [1,3]} (x^3 - xy + 2y).$
	$[x,y]{ ightarrow}[1,3]$
-	${ m V\acute{y}sledok:}$
7. (6b	o) Nájdite rovnicu dotykovej roviny τ ku grafu funkcie $f(x,y) = \frac{1}{x+2y}$ v bode $T = \left[-1, y_0, \frac{1}{3}\right]$.
((2b) Nájdite y_0 a uveďte súradnice dotykového bodu :
((4b) Rovnica dotykovej roviny τ je:
8. (6b	o) Daná je funkcia $f(x,y) = 3x^4 - x^2y^3 + y^2$, bod $A = [1, -1]$ a vektor $\vec{l} = (-1, 2)$.
a)	(3b) Nájdite gradient funkcie $f(x,y)$ v bode A .
(Gradient funkcie $f(x,y)$ v bode A je
b) ((3b) Vypočítajte deriváciu funkcie $f(x,y)$ v bode A v smere vektora \vec{l} .
]	Derivácia funkcie $f(x, y)$ v bode A v smere vektora \vec{l} je

a) Načrtnite oblasť M :	
Náčrt:	
Pomocou matematických vzťahov popíšte hranice oblast	i M:
(a) (2b) <i>AB</i>	
(b) (2b) BC	
(c) (2b) CD	
(d) (2b) AD	
b) (5b) Nájdite lokálne extrémy danej funkcie $f(x,y)$ v oblasti M . Ak hľadané lokálne extrémy nie sú, napíšte "nie sú".	
Doplňte odpoveď: Funkcia $f(x,y)$ má v bode	lokálne
c) Nájdite viazané lokálne extrémy danej funkcie $f(x,y)$ na hraniciac lokálny extrém nejestvuje, napíšte "nie je".	h oblasti M . Ak hľadaný
(a) (3b) Na hranici AB má funkcia $f(x,y)$ v bode vi	azané lokálne
(b) (3b) Na hranici BC má funkcia $f(x,y)$ v bode vi	azané lokálne
(c) (3b) Na hranici CD má funkcia $f(x,y)$ v bode vi	azané lokálne
(d) (3b) Na hranici AD má funkcia $f(x,y)$ v bode vi	azané lokálne
d) (2b) Nájdite najväčšiu a najmenšiu hodnotu funkcie $f(x,y)$ na o	blasti M .
Najväčšia hodnota funkcie $f(x,y)$ je:	
Najmenšia hodnota funkcie $f(x,y)$ je:	
f(x,y) joint in the standard $f(x,y)$ joint in the standard $f(x,y)$	

9. (27b) Daná je funkcia $f(x,y)=4x+6y-x^2-y^2$ a oblasť M. Oblasť M je mnohouholník ABCD s vrcholmi $A=[0,0],\ B=[4,0],\ C=[4,5]$ a D=[0,5].