SD-Lora: Scalable Decoupled Low-Rank Adaptation for Class Incremental Learning

Yichen Wu^{1,2}*, Hongming Piao¹*, Long-Kai Huang⁴†, Renzhen Wang³, Wanhua Li², Hanspeter Pfister², Deyu Meng^{3,6}, Kede Ma¹†, Ying Wei^{5†}

¹City University of Hong Kong, ²Harvard University, ³Xi'an Jiaotong University, ⁴Tencent AI Lab, ⁵Zhejiang University, ⁶Pengcheng Laboratory

- Problem / objective
 - 기존 Continual Learning 방법들의 scalability 문제
- Contribution / Key idea
 - Scalable Decoupled LoRA (SD-LoRA)
 - Incrementally adds LoRA components by separating the magnitude and direction learning.

SD-LoRA: CL method with foundation models

- 1. Rehearsal-free
- 2. Inference-efficient
- 3. End-to-end optimized

Table 1: Comparisons of existing CL methods with foundation models in terms of three desirable properties: 1) *Rehearsal-free* (*i.e.*, without memory for sample storage), 2) *inference efficiency* (*i.e.*, without additional computational overhead during inference), and 3) *end-to-end optimization* (of all model parameters for CL objectives).

Method	Rehearsal-free	Inference Efficiency	End-to-end Optimization
L2P (Wang et al., 2022b)	1	Х	Х
DualPrompt (Wang et al., 2022a)	1	X	×
CODA-Prompt (Smith et al., 2023)	✓	X	/
HiDe-Prompt (Wang et al., 2024a)	X	X	✓
InfLoRA (Liang & Li, 2024)	×	✓	✓
SD-LoRA(Ours)	✓	✓	✓

two variants of SD-LoRA

- 1. Rank reduction
- 2. Knowledge distillation

,based on the observations: "The importance of the incrementally learned LoRA directions diminishes as CL progresses"

Preliminaries: Class-Incremental Learning

- 목표: Perform well on both the current task and all previous tasks.
- 학습: CE loss of task t. When training on \mathcal{D}_t , no data from previous tasks $\{\mathcal{T}_k\}_{k=1}^{t-1}$ is accessible.

$$\ell\left(\mathcal{D}_{t};\boldsymbol{\theta}\right) = \frac{1}{|\mathcal{D}_{t}|} \sum_{i=1}^{|\mathcal{D}_{t}|} \ell\left(f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{t}^{(i)}\right), y_{t}^{(i)}\right), \tag{1}$$

□ 평가: Average loss across all tasks encountered so far.

$$rac{1}{t}\sum_{k=1}^{t}\ell(\mathcal{V}_{k};oldsymbol{ heta})$$
 test split of \mathcal{T}_{k}

- Notation:
 - a. N sequential classification tasks: $\{\mathcal{T}_1, \mathcal{T}_2, \dots, \mathcal{T}_N\}$
 - b. Training split of \mathcal{T}_t : $\mathcal{D}_t = \{m{x}_t^{(i)}, y_t^{(i)}\}_{i=1}^{|\mathcal{D}_t|}$ (: image, label)

Preliminaries: LoRA (Low-Rank Adaptation)

- □ 정의: Constrain the parameter updates during fine-tuning to lie in a low-rank subspace.
- \Box For a given layer of f_{θ} , the LoRA-updated output:

$$h' = \mathbf{W}_0 x + \Delta \mathbf{W} x = (\mathbf{W}_0 + \mathbf{A} \mathbf{B}) x. \tag{2}$$

parameter update expressed as the product of two learnable matrices. original weight matrix of a layer in the classifier f_{θ}

Figure 1: Illustration of the parameter update in (a) Vanilla LoRA and (b) the proposed SD-LoRA, where the current task index is t = 2 and $r, r_1, r_2 \ll \min\{m, n\}$.

SD-LoRA

aa

Figure 1: Illustration of the parameter update in (a) Vanilla LoRA and (b) the proposed SD-LoRA, where the current task index is t = 2 and $r, r_1, r_2 \ll \min\{m, n\}$.

How SD-LoRA mitigates catastrophic forgetting?

aa