1 Problème: Décomposition cascade d'un filtre IIR

On se propose de programmer sous forme df2 un filtre de fonction de transfert sous forme DF2

$$F(z) \approx \frac{5.1487482 - 9.5204561.z^{-1} + 4.3844229.z^{-2}}{1 - 1.7999576.z^{-1} + 0.8084343.z^{-2}} = \frac{b_0 + b_1.z^{-1} + b_2.z^{-2}}{1 + a_1.z^{-1} + a_2.z^{-2}}.$$

Pour cela on emploie le schéma d'analyse standard de la DF2, rappelé ci-après :

Schéma d'analyse standard de la DF2 $bx_n \\ bx_n \\ bs_n \\ sortie \\ e_n \\ \hline \lambda \\ \hline \lambda \\ \hline \lambda \\ \hline + \\ \hline \lambda \\ \hline + \\ \hline \lambda \\ \hline - \\ 1/(1+a_1.\ z^{-1}+a_2.\ z^{-2}) \\ \hline \hline \\ b_0+b_1.\ z^{-1}+b_2.\ z^{-2} \\ \hline \hline \\ 1/\lambda \\ \hline + \\ \hline \end{array}$

 bx_n, bs_n représentent les bruits de quantification de signal

 X_n représente la variable interne, qui ne doit pas dépasser la pleine échelle de codage

λ est un facteur d'échelle en puissance entière de 2

Pour répondre aux questions suivantes, on pourra se reporter au tableau en annexe, donnant les valeurs des différentes normes à employer [pour chaque calcul , préciser quelle norme de quelle fonction de transfert est

employée, par exemple : $\left\| \frac{1}{1 + a_1 \cdot z^{-1} + a_2 z^{-2}} \right\|_{H_{\infty}}$

1.1 détermination du facteur d'échelle λ

On suppose que e_n occupe la pleine échelle de codage sur N_B bits, et on néglige l'effet du bruit bx_N

- En déduire la plus grande valeur de $\lambda = 2^L$ (en puissance entière de 2) pour que x_n ne dépasse pas la pleine échelle de codage sur N_B bits. Expliquer votre raisonnement et précisez la norme employée.

1.2 Effet des bruits sur la sortie

On s'intéresse uniquement à l'effet des bruits bx_netbs_n sur la sortie s_n : <u>l'entrée</u> e_n <u>est donc supposée identiquement nulle.</u>

- Déterminez tout d'abord l'expression de S(z) dans ce cas
- En déduire la puissance maximale de sortie P_s , en fonction de la puissance P_b des bruits.(rappeler tout d'abord la définition de la puissance, et préciser la norme utilisée)
- En déduire la variance var_s de la sortie, lorsque bx_netbs_n sont des bruits blancs indépendants, de même variance var_b .(rappeler tout d'abord la définition de la variance, et préciser la norme utilisée)
- En déduire la valeur absolue maximale $\sup |s_n|$ de la sortie, lorsque $bx_n et bs_n$ sont des bruits de même module maximal max_b .(préciser la valeur de max_b selon que l'on quantifie par arrondi ou par troncature, ainsi que la norme utilisée)

1.3 codage du filtre en nombres entiers

pour la suite du problème, on supposera $N_B=14$, et $\lambda=2^{-7}$

1.3.1 quantification des coefficients

On donne dans le tableau ci-après les coefficients entiers / décalages correspondant aux coefficients du filtre, quantifiés sur 14 bits :

- Ce tableau contient <u>2 coefficients mal quantifiés</u>, <u>de manière évident</u>. Expliquer les erreurs commises, et <u>corriger les 2 lignes correspondantes</u>

Coefficient réel C_{reel}	Coefficient entier C_{14}	Décalage LC
<i>b</i> 0≈5,1487482	B0 ₁₄ =5272	$L_{B0} = 10$
<i>b</i> 1≈−9,5204561	B1 ₁₄ =-4874	$L_{B1} = 9$
<i>b</i> 2≈4,3844229	B2 ₁₄ =8979	$L_{\rm B2} = 11$
<i>a</i> 1≈−1,7999576	$A1_{16} = -7373$	$L_{A1} = 12$
<i>a</i> 2≈0,8084343	A2 ₁₆ =3311	$L_{A2} = 12$

1.3.2 Schéma naïf d'implémentation

- En raisonnant sur le schéma de principe ci-après, représenter le schéma naïf correspondant [sur lequel ne doivent apparaître que des coefficients entiers, et des décalages à droite ou à gauche...]. Faire également apparaître les bruits de quantification sur ce schéma, et préciser le nombre de bits de codage de chaque variable.

1.3.3 Schéma optimisé d'implémentation

En appliquant les règles d'optimisation du cours, en déduire un schéma optimisé d'implémentation.

1.4 programmation du filtre

écrire un pseudo-programme correspondant au codage du filtre optimisé, en respectant les règles suivantes

- les seules opérations autorisées sont
 - les multiplications entières [résultat 28 bits] = [variable 14 bits] X [coefficient 14 bits]
 - les additions + , soustractions , décalages à droite >> , ou à gauche << , (sur 14 ou 28 bits)
- Les quantifications de signal doivent s'effectuer par arrondi (pas par troncature)
- le nombre de bits des variables doit être précisé dans leur nom
- autant que possible, les lignes de programme doivent être associées à des points du schéma optimisé

ANNEXE: NORMES DES DIFFERENTES FONCTIONS DE TRANSFERT

G(z)	$\ G\ _{_1}$	$\ G\ _{\scriptscriptstyle 2}$	$\ G\ _{\scriptscriptstyle\infty}$
F(z)=N(z)/D(z)	8,7	5,2	5,2
1/D(z)	120	18	120
N(z)	19,1	11,7	19,1