Principles and Practices of Microcontroller (Embedded System Design I) -Couse Introduction

Gang Chen (陈刚)

Associate Professor
Institute of Unmanned Systems
School of data and computer science
Sun Yat-Sen University

https://www.usilab.cn/team/chengang/

What is an embedded system?

- Has CPU
- Is app-specific
- Has no OS
- Real-time (Automotive)
- Integrated in device
- Memory constrained

- Peripheral
- Low power
- Small size
- Mobile/Network
- Cost constrained

Embedded, everywhere

What is driving the embedded everywhere explosion?

What is driving the embedded everywhere explosion?

- Some facts
- There are about 100 embedded processors in each PC, not just the main processor.
- A car today has about 100 embedded processors. (ABS, sound system, engine control, emissions control, ...)
- Washers and Dryers
- Others?

A system to design: Overview

A possible implementation

Figure 1.4: Weighing machine with a liquid crystal display, broken down into individual functions.

Outline

Technology Trends

Design Questions

Course Introduction

Lab Introduction

"Roughly every decade a new, lower priced computer class forms based on a new programming platform, network, and interface resulting in new usage and the establishment of a new industry."

Adapted from D. Culler

Moore's Law: IC transistor count doubles every two years

Flash memory scaling: Rise of density & volumes; Fall (and rise) of prices

Figure-1 32Gb MLC NAND Flash contract price trend

Source: DRAMeXchange, Nov. 2009.

Hendy's "Law": Pixels per dollar doubles annually

MEMS Accelerometers: Rapidly falling price and power

MEMS Gyroscope Chip

J. Seeger, X. Jiang, and B. Boser

Energy harvesting and storage:Small doesn't mean powerless...

Outline

Technology Trends

Design Questions

Course Introduction

Lab Introduction

Why study 32-bit MCUs and FPGAs?

Source: iSuppli

What's inside a DSL Modem?

- 1. Telephone decoupling electronics (for ADSL).
- 2. Multicolor LED (displaying network status).
- 3. Single color LED (displaying USB status).
- 4. Main processor, a TNETD7300GDU, TI ARM7.
- 5. JTAG (Joint Test Action Group) port.
- 6. RAM, a single ESMT M12L64164A 8 MB chip.
- 7. Flash memory, obscured by sticker.
- 8. Power supply regulator.
- 9. Main power supply fuse.
- 10. Power connector.
- 11. Reset button.
- 12. Quartz crystal.
- 13. Ethernet port.
- 14. Ethernet transformer, Delta LF8505.
- 15. KS8721B Ethernet PHY.
- 16. USB port.
- 17. Telephone (RJ11) port.
- 18. Telephone connector fuses.

Why study the ARM architecture?

What differentiates these products from one another?

STM32 MCU Family

A embedded systems design example

Integrating power, data, and processing

What else...?

Basic skills to attend competitions

- DJI RoboMaster Robotic Competition
- International Competition of Autonomo us Walking Intelligent Robots
- National Electronic Design Contest
- Tianzhan Cup

Start point for being Geeks

- Start-up Company
- Developing a produce
- Realize your idea

Video

Electronic Design Contest @ SYSU

竞赛通知 | 全国大学生电子设计竞赛中山大学校内选拔赛(初赛)来啦

信发君 中大SEIT学生园地 10月19日

Outline

Technology Trends

Design Questions

Course Introduction

Lab Introduction

Course Scope

Application Oriented Course

- State-of-the-art: STM32 Microcontroller (ARM architecture)
- Architecture of ARM Microprocessor
- Peripheral (I/O) Interfaces
- MCU programming
 - ASM and C programming
 - Python and Scarch
 - IDE (Keil)
 - Debug (JTAG and breakpoints)
- Application of STM32 Microcontroller
- A lot of fun for embedded system design
 - Robot design
 - IOT system design

Package size down to 4.4 x 3.8 mm

Packages:

LQFP64 (10x10), LQFP100 (14x14) LQFP144 (20x20) UFBGA132 (7x7) WLCSP72 (4.4 x 3.8)

Course Scope

- Start TODAY!
- Tutorials to familiarize you ARM, STM32
 Should be fun
 - Learn how to sensor/control physical world
 - Build hardware (include PCBs)
- Should be instructive
 - Program in C, and assembly
 - Learn debugging skills
 - Learn how to interface peripherals to the CPU/MCU
- Are challenging and time-consuming plan ahead

Course Goal

Both Theory and Practice Skill

- Theory: Computer Architecture
- Practice: Development Skill
- Deep understanding on MCU
- Learn how to use MCU to develop a specific system
 - Know development flows
 - Software (Programming)
 - Hardware (Create your own board)

Research Problems

- RISC-V (open ISA)
- DNN on MCU
 - Not intelligent enough

Talk is cheap, show me the 'system'.
-Linus Torvalds

Course Structure

- Grading
 - Project-based (40%)
 - Homework (10%)
 - Open-end Projects: How to choose the topic will be presented in the next slides (30%)
 - With 1 in-class final exam (close book) (30%)
 - Technical report (20%)
 - Topic will be released later on
 - Other factor (10%)
 - Your participations
 - Minute Quizzes
 - Short, Random
 - Over previous day's material

Open-ended Project

- Goal: <u>learn how to build embedded systems</u>
 - By <u>building</u> an embedded system
 - Work in teams
 - Pick a problem of your own interest
 - Meet with instructors to discuss other ideas

- Should be related to the class and emphasize topics
- Scope of project must grow with size of team

Two Board we will provide

STM32F103C8T6 Core Board

Features of STM32F103C8T6 Chip

• STM32F103C8T6 Chip

- LQFP Package
- Pin #: 48
- Cortex-M3 Arm Core
- 72MHz
- Memory
 - 64KByte Flash, 20KByte SRAM
- **I/O**
 - 2x SPI, 3x USART, 2x I2C, 1x CAN, 37x I/O
- · A/D
 - · 2x ADC
- 3 Timers
- Support JTAG/SWD

STM32F407VGT6 Core Board

STM32F407VGT6 Core Board (Designed by our teams)

STM32F407VGT6 Chip

STM32F407VGT6 Chip

- LQFP Package
- Pin #: 100
- Cortex-M4 Arm Core
- 168MHz
- Memory
 - 1MByte Flash, 192+4KByte SRAM
- ·I/O
 - 3x SPI, 3x USART, 3x I2C, 2x CAN
- · 3x ADC
- Support JTAG/SWD

