

Qualcomm Technologies, Inc.

PM8916

Device Specification

80-NK808-1 Rev. G

December 11, 2014

Confidential and Proprietary – Qualcomm Technologies, Inc.

© 2014 Qualcomm Technologies, Inc. and/or its affiliated companies. All rights reserved.

NO PUBLIC DISCLOSURE PERMITTED: Please report postings of this document on public servers or websites to: DocCtrlAgent@qualcomm.com.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of Qualcomm Technologies, Inc.

MSM is a product of Qualcomm Incorporated, Inc.

Questions or comments: https://support.cdmatech.com

Restricted Distribution: Not to be distributed to anyone who is not an employee of either Qualcomm Technologies, Inc. or its affiliated companies without the express approval of Qualcomm Configuration Management.

Qualcomm is a trademark of Qualcomm Incorporated, registered in the United States and other countries. MSM is a trademark of Qualcomm Incorporated, Inc. registered in the United States and other countries. All Qualcomm Incorporated trademarks are used with permission. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

Contents

1	Intr	oduction		13
	1.1		ntation overview	
	1.2	PM8916	introduction	14
	1.3	PM8916	features	16
		1.3.1	Highlighted features integrated into the PM8916	16
		1.3.2	Summary of PM8916 device features	16
	1.4	Terms an	d acronyms	19
	1.5		narks	
2	Pin	Definitio	ns	21
	2.1		neter definitions	
	2.2	Pin descr	riptions	23
3	Elec	ctrical Sp	oecifications	31
	3.1	Absolute	maximum ratings	31
	3.2		g conditions	
	3.3		er consumption	
	3.4	_	ogic characteristics	
	3.5	Input pov	ver management	35
		3.5.1	Over-voltage protection	35
		3.5.2	External supply detection	35
		3.5.3	Linear battery charger	
		3.5.4	Battery voltage monitoring system	38
		3.5.5	Voltage mode battery monitoring system (VM-BMS)	39
		3.5.6	Battery-temperature monitoring (BTM) and battery-presence detection (I specifications 41	BPD)
		3.5.7	Coin cell charging	43
	3.6	Output po	ower management	43
		3.6.1	Reference circuit	46
		3.6.2	Buck SMPS	46
		3.6.3	Linear regulators	51
		3.6.4	Internal voltage-regulator connections	
	3.7	General h	nousekeeping	55
		3.7.1	Analog multiplexer and scaling circuits	

4

		3.7.2	AMUX input to ADC output end-to-end accuracy	. 58
		3.7.3	HK/XO ADC circuit	6
		3.7.4	System clocks	6
		3.7.5	Real-time clock	65
		3.7.6	Over-temperature protection (smart thermal control)	. 66
	3.8	User inter	faces	. 66
		3.8.1	Current drivers	. 66
		3.8.2	Vibration motor driver	. 67
	3.9	IC-level in	nterfaces	6
		3.9.1	Poweron circuits and the power sequences	67
		3.9.2	OPT[2:1] hardwired controls	. 70
		3.9.3	SPMI and the interrupt managers	. 70
	3.10	General-p	purpose input/output specifications	
	3.11	Multipurp	oose pin specifications	. 72
	3.12	Audio cod	decdec	. 72
		3.12.1	Audio inputs and Tx processing	. 72
		3.12.2	Audio outputs and Rx processing	. 75
		3.12.3	Support circuits	
			nformation	•
4		nanical I	nformation	81
	4.1	_	nysical dimensions	
	4.2		ing	
			Specification-compliant devices	
	4.3		dering information	
		4.3.1	Specification-compliant devices	
	4.4		oisture-sensitivity level	
	4.5	Thermal c	characteristics	. 85
5	Carr	ier. Stora	age, & Handling Information	86
	5.1			
	3.1	5.1.1	Tape and reel information	
	5.2			
	3.2	5.2.1	Bagged storage conditions	
		5.2.2	Out-of-bag duration	
	5.3		Out-oi-bag duration	
	3.3	5.3.1	Baking	
		5.3.2	Electrostatic discharge	
	5.4		abel and packing for shipment	
	5.4	Darcode I	uber und packing for simplicite	00
6	PCE	Mountir	ng Guidelines	89
	6.1	RoHS con	mpliance	. 89
	6.2	SMT para	imeters	. 89
		6.2.1	Land pad and stencil design	
		6.2.2	Reflow profile	

		6.2.3 SMT peak package-body temperature	92
		6.2.4 SMT process verification	92
	6.3	Daisy-chain components	92
	6.4	Board-level reliability	93
	6.5	High-temperature warpage	94
7	Part	Reliability	95
	7.1	Reliability qualifications summary	95
		7.1.1 PM8916 reliability evaluation report for NSP device (SMIC)	95
	7.2	Qualification sample description	

Tables

Table 1-1 Primary PM8916 device documentation	13
Table 1-2 PM8916 device features	16
Table 1-3 Terms and acronyms	19
Table 1-4 Special symbols	
Table 2-1 I/O description (pad type) parameters	22
Table 2-2 Pin descriptions – input power management functions	23
Table 2-3 Pin descriptions – output power management functions	24
Table 2-4 Pin descriptions – general housekeeping functions	
Table 2-5 Pin descriptions – user interface functions	26
Table 2-6 Pin descriptions – audio	
Table 2-7 Pin descriptions – IC-level interface functions	27
Table 2-8 Pin descriptions – configurable input/output functions	28
Table 2-9 Pin descriptions – input DC power	29
Table 2-10 Pin descriptions – grounds	29
Table 3-1 Absolute maximum ratings	31
Table 3-2 Operating conditions	
Table 3-3 DC power supply currents	33
Table 3-4 Audio power supply peak current	33
Table 3-5 Digital I/O characteristics	34
Table 3-6 External source interface performance specifications	35
Table 3-7 Linear charger specifications	36
Table 3-8 Trickle charging performance specifications	37
Table 3-9 UVLO performance specifications	39
Table 3-10 SMPL performance specifications	39
Table 3-11 Battery fuel-gauge specifications	39
Table 3-12 State of charge (SOC) specifications	40
Table 3-13 Battery interface specifications	41
Table 3-14 Battery-temperature monitoring calculations	42
Table 3-15 Coin cell charging performance specifications	43
Table 3-16 Regulator high-level summary	44
Table 3-17 Voltage-reference performance specifications	46
Table 3-18 SMPS performance specifications	47
Table 3-19 LDO performance specifications	51
Table 3-20 Internal voltage regulator connections	53
Table 3-21 Boost specifications	54
Table 3-22 Analog multiplexer and scaling functions	55
Table 3-23 Analog multiplexer performance specifications	56
Table 3-24 AMUX input to ADC output end-to-end accuracy	58
Table 3-25 HK/XO ADC performance specifications	61
Table 3-26 XO controller, buffer, and circuit performance specifications	62
Table 3-27 RC oscillator performance specifications	64

Table 3-28 RTC performance specifications	. 65
Table 3-29 Vibration motor driver performance specifications	. 67
Table 3-30 Poweron circuit performance specifications	. 68
Table 3-31 OPT_1 and OPT_2 PON parameters	. 70
Table 3-32 Programmable GPIO configurations	. 71
Table 3-33 VOL and VOH for different driver strengths	. 71
Table 3-34 Multipurpose pin performance specifications	. 72
Table 3-35 Analog microphone input performance	. 72
Table 3-36 Ear output performance, 32 Ohm load unless specified	. 75
Table 3-37 HPH output performance, 16 Ohm load unless specified	. 7 <i>e</i>
Table 3-38 Mono speaker driver outputs performance, 8 Ohm load and + 12 dB gain unless	
otherwise specified	
Table 3-39 Microphone bias specifications	
Table 4-1 PM8916 device marking line definitions	
Table 4-2 Device identification code / ordering information details	
Table 6-1 Qualcomm typical SMT reflow-profile conditions (for reference only)	
Table 7-1 Silicon reliability results for SMIC	
Table 7-1 Package reliability results for SMIC	. 96
Table 7-1 Package reliability results for SMIC	

Figures

Figure 1-1	High-level PM8916 functional block diagram	15
Figure 2-1	PM8916 pin assignments (top view)	21
Figure 3-1	LBC flowchart	38
Figure 3-2	Battery-temperature monitoring	42
Figure 3-3	S1 PFM efficiency plots	49
Figure 3-4	S2 PFM efficiency plots	49
	S3 PFM efficiency plots	
Figure 3-6	S4 PFM efficiency plots	5 0
Figure 3-7	Multiplexer offset and gain errors	60
Figure 3-8	Analog-multiplexer load condition for settling time specification	60
Figure 3-9	Poweron sequence	69
Figure 4-1	6.2 x 6.2 x 0.86 mm outline drawing	82
Figure 4-2	PM8916 device marking (top view, not to scale)	83
Figure 4-3	Device identification code	84
Figure 5-1	Carrier tape drawing with part orientation	86
Figure 5-2	Tape handling	87
Figure 6-1	Stencil printing aperture area ratio (AR)	90
Figure 6-2	Acceptable solder-paste geometries	90
Figure 6-3	Qualcomm typical SMT reflow profile	91
	Qualcomm typical SMT reflow profile	

Revision history

Revision	Date	Description
Α	November 2013	Initial release
В	January 2014	Updated the pin numbers in Table 2-3, Table 2-4, Table 2-6, Table 2-9 and Table 2-10 to match the pin map.
С	May 2014	 ■ Global: □ Replaced HF-SMPS with SMPS □ Updated PM8916 support for MSM8916/MSM8936 and MSM8939 ■ Table 1-1: Updated document reference ■ Table 1-2: Updated the MPPs configuration to sink up to 40 mA ■ Updated Figure 1-1; High-level PM8916 functional block diagram ■ Figure 2-1: Updated the pin map ■ Figure 2-9: Updated the pad name for A13 ■ Table 3-2: Updated the max value for USB_IN ■ Table 3-1, Table 3-21, Table 3-35 to Table 3-39: Updated tables with initial silicon data ■ Table 2-1, Table 3-8, Table 3-9, Table 3-13, Table 3-15, Table 3-16, Table 3-17, Table 3-18, Table 3-20, Table 3-23, Table 3-25, Table 3-26, Table 3-27, Table 3-28, Table 3-33, Table 3-34: Updated the TBD values ■ Added Table 3-12 ■ Table 3-2, Table 3-4: Removed supplies that connect to PM8916 on the PCB level and are not open to the use of external supply sources ■ Table 3-6: Added External source interface performance specifications table ■ Added Table 3-11 - Battery fuel-gauge specifications ■ Table 3-21: Added a specification and a note for boost output voltage and a boost output voltage step ■ Section 3.6.2.1: Added efficiency plots (Figure 3-2 to Figure 3-5)

Revision	Date	Description
D	July 2014	 Table 1-2 updated low dropout linear regulators as 3 NMOS and 15 PMOS LDOs
		■ Table 1-3 added the terms LBC and VM-BMS to the terms and acronym table
		■ Table 2-1 updated TBDs for V_M pad supply options
		■ Table 3-2 updated with VDD_EAR_SPKR min and max operating voltage
		■ Table 3-3 updated with final current consumption numbers and respective operating conditions
		■ Table 3-16 updated rated current values for all LDOs
		■ Section 3.6.3: Updated the section and TBD values in Table 3-19
		■ Table 3-20 updated
		 Supply voltage for BB_CLKx and BMS IADC updated
		□ VREG_L2 default V updated
		■ Table 3-21 updated:
		 Overshoot typical and max percentage
		 Voltage dip due to transient typical voltage
		 Voltage spike due to transient typical voltage
		■ Section 3.8.1 current drivers' description modified
		■ Table 3-30: updated TBD values
		■ Table 3-31: replaced SMB1360 with external charger
		■ Table 3-35 updated:
		 Analog microphone input typical THD+N for -1 dBV in all gain settings.
		 Analog microphone frequency response max value from 20 Hz to 200 Hz
	<0	 Analog microphone power supply rejection
		□ Rx to Tx crosstalk attenuation
		■ Table 3-36 updated:
		 All specifications for Ear output specific to 8 kHz, 16 bits and 16 kHz, 16 bits
		□ Ear output power
		□ Ear output DC offset max voltage
		□ Ear turn on/off CnP typical value
		■ Table 3-37 updated:
		 All specifications for HPH output specific to 8 kHz 16 bits, 48 kHz,16 bits and 48 kHz 24 bits
		□ HPH full-scale output typical voltage
		□ HPH output power
		 Test conditions of headphone output load
		□ HPH PSRR
		□ HPH IMD2

Revision	Date	Description
D (contd.)		■ Table 3-38 updated:
E	August 2014	 assembly sites Updated the over-voltage protection of USB source from 15 V to 16 V for linear battery charger in Section 1.3.1 Updated the OVP to +16 V in Table 1-2 Updated a few values in Table 3-6, Table 3-7 and Table 3-8 Added battery voltage accuracy parameter for load up to 150 mA in Table 3-7 Removed rows pertaining to input voltage in Table 3-7, since they were repeated from Table 3-6 Added a note on audio performance data in Section 3.12 Updated the expected use for S1, S2 and L5 in Table 3-16 Updated Table 3-22 with the correct description, input and output value range Added Table 3-24, AMUX input to ADC output end-to-end accuracy Updated capacitance, VOH and VOL values and buffer output impedance in Table 3-26 In Table 3-30; updated values, added a row on Tps_hold_off and removed footnote for tps_hold Added a note in Section 3.10 stating that, GPIO_1 and GPIO_2 do not support VPH_PWR domain. Updated full-scale input voltage lower limit to -0.5 dBV in Table 3-35 Added footnotes in Table 3-38

Revision	Date	Description
F	September 2014	 Updated the pad type for E11 in Table 2-6 Updated the pad type for A10 in Table 2-7 Clarified description of t_{ps_hold} in Table 3-30 and updated value of t_{reset0} and t_{reset1} Added condition under which CHG_LED_SINK can be used in Section 3.8.1 Corrected number of MPPs from eight to four in Section 3.11 In Table 4-1, PM8916 device marking line definitions, Expanded the names of assembly sites and added SPIL as an assembly site for PM8916 Added additional row E, and changed the line naming to numeric
G	December 2014	 Updated TBDs in Table 2-1 and Section 4.4 Added special function feature for GPIO_4 in Table 2-8 Added Figure 3-1, LBC flowchart Updated the max value of IDD_{sleep} in Table 3-3 Added note on the maximum rated current for the LDOs in Section 3.6 Updated the rated current for L2 and L5 in Table 3-16 Added 'Boost output current' parameter to Table 3-21 Removed Phase noise parameter in high power mode in Table 3-26 as this feature is not supported. Updated the upper limit of the 'typical input range' of MPP1 to MPP4 from 5.1 V to 4.5 V in Table 3-22 Added note on CBL_PWR_N pull up in Section 3.9.1 Added 'Output voltage accuracy' parameter to Table 3-39 Added DAC full-scale input in Table 3-35 Added DAC full-scale output for ear, headphone and speaker in Table 3-36, Table 3-37 and Table 3-38 Updated ear/headphone receive noise and SNR in Table 3-36 and Table 3-37 Added microphone bias output voltage accuracy in Table 3-39 Updated the TBD values in Section 3.7.6 Added note on GPIO1 and GPIO2 GPIOC special functionality under Section 3.10 Added TSMC as a fab in Table 4-1 Updated Table 4-2 with CS information for variant, RR= 03

1 Introduction

1.1 Documentation overview

Technical information for PM8916 is primarily covered by the documents listed in Table 1-1, and all should be studied for a thorough understanding of the IC and its applications. Released PM8916 documents are posted on the CDMATech Support website (https://support.cdmatech.com) and are available for download.

(3)

Table 1-1 Primary PM8916 device documentation

Document number	Title/description
80-NK808-1	PM8916 Device Specification
(this document)	Provides all PM8916 electrical and mechanical specifications. Additional material includes pin assignment definitions; shipping, storage, and handling instructions; PCB mounting guidelines; and part reliability. This document can be used by the company purchasing departments to facilitate procurement.
80-NK808-4	PM8916 Device Revision Guide
Provides a history of PM8916 revisions. It explains how to identify the varevisions and discusses known issues (or bugs) for each revision and ho around them.	
80-NK808-21	PM8916 Power Management IC Training Slides
	■ Detailed functional and interface descriptions
	■ Key design guidelines are illustrated and explained, including:
	□ Technology overviews
	□ DC power distribution
	□ Interface schematic details
	□ PCB layout guidelines
	 External component recommendations
	 Ground and shielding recommendations

This PM8916 device specification is organized as follows:

- Chapter 1 Provides an overview of PM8916 documentation, shows a high-level PM8916 functional block diagram, lists the device features, and lists terms and acronyms used throughout the document.
- Chapter 2 Defines the IC pin assignments.
- Chapter 3 Defines the IC electrical performance specifications, including absolute maximum ratings and recommended operating conditions.
- Chapter 4 Provides IC mechanical information, including dimensions, markings, ordering information, moisture sensitivity, and thermal characteristics.
- Chapter 5 Discusses shipping, storage, and handling of PM8916 devices.
- Chapter 6 Presents procedures and specifications for mounting the PM8916 onto printed circuit boards (PCBs).
- Chapter 7 Presents PM8916 reliability data, including definitions of the qualification samples and a summary of qualification test results.

1.2 PM8916 introduction

The PM8916 device (Figure 1-1) integrates all wireless handset power management, general housekeeping, and user interface support functions into a single mixed-signal IC. Its versatile design is suitable for multimode, multiband phones, and other wireless products such as data cards and PDAs.

The PM8916 mixed-signal HV-CMOS device is available in the 176-pin nanoscale package (NSP) that includes several ground pins for improved electrical ground, mechanical stability, and thermal continuity.

Since the PM8916 device includes many diverse functions, its operation can be understood better by studying the major functional blocks individually. Therefore, the PM8916 document set is organized by the device functionality as follows:

- Input power management
- Output power management
- General housekeeping
- User interfaces
- IC interfaces
- Configurable pins either multipurpose pins (MPPs) or general-purpose input/output (GPIOs) that can be configured to function within some of the other categories.

Most of the information contained in this document is organized accordingly – including the circuit groupings within the block diagram (Figure 1-1), pin descriptions (Chapter 2), and detailed electrical specifications (Chapter 3). See the *PM8916 Power Management IC Training Slides* (80-NK808-21) for more detailed diagrams and descriptions of the PM8916 device functions and interfaces.

PM8916 Device Specification Introduction

Figure 1-1 High-level PM8916 functional block diagram

1.3 PM8916 features

NOTE Some of the hardware features integrated within the PM8916 must be enabled through the modem IC software. See the latest version of the applicable software release notes to identify the enabled PMIC features.

1.3.1 Highlighted features integrated into the PM8916

- Dual SIM dual active (DSDA) support
- Bidirectional battery UICC alarm (BUA) for graceful UICC shutdown upon battery or UICC removal.
- Linear battery charger
 - □ USB source with built-in 16 V over-voltage protection (OVP)
 - □ Integrated OVP FET
- Four GPIOs of which two can output high-speed clocks
- Pulse width modulator (PWM) for dimming control of external WLED IC driver
- Home row LED driver
- Plug-and-play support
- Programmable reset control
- Audio Codec (ADCs and DACs), Stereo head phone, Ear and speaker amplifiers. The digital decimator and interpolator chains exist in the corresponding MSMTM (MSM8916/MSM8936/MSM8939).

1.3.2 Summary of PM8916 device features

Table 1-2 lists the features of the PM8916 device.

Table 1-2 PM8916 device features

Feature	PM8916 capability				
Input power management	Input power management				
Supported external power source	USB				
Over-voltage protection	Fully integrated up to +16 V (integrated OVP FET)				
Supported battery technologies	Lithium-ion, lithium-ion polymer				
Charger regulation method	Linear battery charger Autonomous charging modes Trickle charging				
Supported charging modes	Trickle, constant current, and constant voltage modes. Enhanced automation for lesser software interaction				
Charger on indication	Dedicated charging indication LED current sink				
Voltage, current, & temperature sensors	Internal and external nodes; reported to on-chip state-machine				

Table 1-2 PM8916 device features (cont.)

Feature	PM8916 capability
Battery monitoring system	Voltage Mode Battery Monitoring system (VM-BMS)
Coin cell or capacitor backup	Keep-alive power source; orchestrated charging
Output voltage regulation	
Switched-mode power supplies:	Four Buck converters
	One 5 V Boost converter
Low dropout linear regulators	20 LDOs
	■ 3 NMOS LDOs
	■ 15 PMOS LDOs
	 2 custom low-noise LDOs for the clock system
Pseudo-capless LDO designs	All LDOs except L1, L2, and L3
LPDDR support	Reference voltage output for LPDDR2/LPDDR3
General housekeeping	40 °
On-chip ADC	Shared housekeeping (HK) and XO support
Analog multiplexing for ADC	
■ HK inputs	 Many internal nodes and external inputs, including configurable MPPs
■ XO input	■ Dedicated pin (XO_THERM)
Over-temperature protection	Multistage smart thermal control
19.2 MHz oscillator support	XO (with on-chip ADC)
XO controller and XO outputs	Four sets:
	Two low-noise RF outputs
<	Two low-power baseband outputs
Sleep clock output	One (dedicated)
32 kHz clock source	XO/586 and RC CAL circuits provide real-time clock with alarm. 32,768 Hz crystal oscillator is not supported.
Realtime clock	RTC clock circuits and alarms
Audio inputs	■ Three single-ended inputs
	■ Two ADCs
Multi-button headset control (MBHC)	■ Up to five button MBHC headset support
	 One input for headset jack detection
Audio outputs	■ Four outputs – Ear, HPHL + HPHR, Class-D speaker driver
	■ Three DACs
	 Over current protection on HPH, EAR, and speaker outputs
Multiple input/output audio sample rates	 Supports sample rates 8 kHz, 16 kHz, 32 kHz, and 48 kHz

Table 1-2 PM8916 device features (cont.)

Feature	PM8916 capability
User interfaces	
Pulse width modulator	Dimming control of external WLED driver
Home row LED driver	Current sink through even MPPs
Other current drivers	■ MPPs can be configured to sink up to 40 mA
	 ATC indicator (see input power management features)
Vibration motor driver	1.2 to 3.1 V in 100 mV increments
IC-level interfaces	
Primary status and control	2-line SPMI
Interrupt managers	Supported by SPMI
Optional hardware configurations	OPT bits select hardware configuration
Power sequencing	Power on, power off, and soft resets
Extra features	External regulator; detects inputs; battery-enabled UICC alarm; UIM support (x2)
Configurable I/Os	
MPPs	Four; configurable as digital in/out; level-translating bidirectional I/Os; analog multiplexer inputs; current sinks; VREF buffer outputs; MPP1 and MPP3 are fixed for VDD_PX_BIAS and VREF_DAC respectively
GPIO pins	Four; configurable as digital inputs or outputs or level-translating I/Os; all are faster than MPPs
Package	
Size	6.2 mm x 6.2 mm
Pin count and package type	176 pin WB-NSP

1.4 Terms and acronyms

Table 1-3 defines terms and acronyms used throughout this document.

Table 1-3 Terms and acronyms

Term or acronym	Definition
ADC	Analog-to-digital converter
AMSS	Advanced mobile subscriber station (software)
ВОМ	Bill of materials
BPF	Bandpass filter
bps	Bits per second
CDMA	Code division multiple access
СР	Charge pump
DAC	Digital-to-analog converter
DMIC	Digital microphone
ESD	Electrostatic discharge
ESR	Effective series resistance
I2C	Inter-integrated circuit
I2S	Inter-IC sound
IIR	Infinite impulse response
kbps	Kilobits per second
LBC	Linear battery charger
LDO	Low dropout (linear regulator)
LPF	Low-pass filter
MAD	Microphone activity detection
MBHC	Multibutton headset control
MIC or mic	Microphone
NS	Noise shaper
NVM	Nonvolatile memory
OEM	Original equipment manufacturer
OSR	Over-sampling rate
PA	Power amplifier
PCB	Printed circuit board
PCM	Pulse-coded modulation
PGA	Programmable gain amplifier
RoHS	Restriction of hazardous substances
Rx	Receive, receiver
SLIMbus	Serial low-power inter-chip media bus
SMT	Surface-mount technology

Table 1-3 Terms and acronyms (cont.)

Term or acronym	Definition
SNR	Signal-to-noise ratio
spkr	Speaker
ST	Sidetone
TCXO	Temperature-compensated crystal oscillator
Tx	Transmit, transmitter
VM-BMS	Voltage mode battery monitoring system
WCD	WSP coder/decoder
WLNSP	Wafer-level nanoscale package
WSP	Wafer-scale package
XO	Crystal oscillator
ZIF	Zero intermediate frequency

1.5 Special marks

Table 1-4 lists some special symbols used in this document.

Table 1-4 Special symbols

Mark	Definition
[]	Brackets ([]) sometimes follow a pin, register, or bit name. These brackets enclose a range of numbers. For example, DATA [7:4] may indicate a range that is 4 bits in length, or DATA[7:0] may refer to eight DATA pins.
_N	A suffix of _N indicates an active low signal. For example, PON_RESET_N.
0x0000	Hexadecimal numbers are identified with an x in the number, (for example, 0x0000). All numbers are decimal (base 10) unless otherwise specified. Non-obvious binary numbers have the term binary enclosed in parentheses at the end of the number, [for example, 0011 (binary)].
I	A vertical bar in the outside margin of a page indicates that a change has been made since the previous revision of this document.

2 Pin Definitions

The PM8916 is available in the 176 NSP – see Chapter 4 for package details. Figure 2-1 shows a high-level view of the pin assignments for the PM8916.

Figure 2-1 PM8916 pin assignments (top view)

2.1 I/O parameter definitions

Table 2-1 I/O description (pad type) parameters

Symbol	Description					
Pad attribute						
Al	Analog input					
AO	Analog output					
DI	Digital input (CMOS)					
DO	Digital output (CMOS)					
PI	Power input; a pin that handles 10 mA or more of current flow into the device					
PO	Power output; a pin that handles 10 mA or more of current flow out of the device					
Z	High-impedance (high-Z) output					
Pad voltage gro	upings					
V_INT	Internally generated supply voltage for some power on circuits					
V_PAD	Supply for modem IC interfaces; connected internally to VREG_L5					
V_XBB	Supply for XO low-power (BB) output buffers; connected internally to VREG_L7					
V_XRF	Supply for XO low-noise (RF) output buffers; connected internally to LDO VREG_RF_CLK					
V_G	Selectable supply for GPIO circuits; options include: 0 = VBAT 1 = VBAT 2 = VREG_L2 3 = VREG_L5					
V_M	Selectable supply for MPP circuits; options include: 0 = VBAT 1 = VBAT 2 = VREG_L2 3 = VREG_L5					
GPIO pin config	urations					
GPIO pins, when	configured as inputs, have configurable pull settings					
NP	No internal pull enabled					
PU	Internal pull-up enabled					
PD Internal pull-down enabled						
GPIO pins, when	configured as outputs, have configurable drive strengths					
Н	High: ~ 0.9 mA at 1.8 V; ~ 1.9 mA at 2.6 V					
M	Medium: ~ 0.6 mA at 1.8 V; ~ 1.25 mA at 2.6 V					
L	Low: ~ 0.15 mA at 1.8 V; ~ 0.3 mA at 2.6 V					

2.2 Pin descriptions

The following tables list the descriptions of all the respective pins, organized by their functional group:

- Table 2-2 Input power management
- Table 2-3 Output power management
- Table 2-4 General housekeeping
- Table 2-5 User interfaces
- Table 2-6 Audio
- Table 2-7 IC-level interfaces
- Table 2-8 Configurable input/output GPIO and MPPs
- Table 2-9 Power supply pins
- Table 2-10 Ground pins

Table 2-2 Pin descriptions – input power management functions

Pad #	Pad name and/or function	Pad name or alt function	Pad characteristics ¹		Functional description
	and/or randion		Voltage	Туре	
Linear char	ger		01/11/		
N13, P13	USB_IN	100	_	PI	Input power from USB source
C2	AVDD_BYP	lie.	_	AO	Bypass cap for internal analog circuits
P14	VPRE_BYP	ALTERNATION OF THE PARTY OF THE	-	AO	VPRE regulator load capacitor
BMS circui	ts		1	1	
N12, P12	VBAT		_	PI, PO	Battery node; input during battery operation, output during charging
M12	VBAT_SNS		_	Al	Battery voltage sense point
Coin cell o	keep-alive battery	1	1	1	1
L11	VCOIN		_	AI, AO	Sense input or charge output

^{1.} Refer to Table 2-1 for parameter and acronym definitions.

Table 2-3 Pin descriptions – output power management functions

Dod #	Pad name	Pad chara	cteristics ¹	Eurotional description
Pad #	and/or function	Voltage	Туре	Functional description
Switched-mo	de power supply (SMPS)	circuits		
A5, B5, C5	VSW_S1	_	PO	Buck converter S1 switching output
E5	VREG_S1	_	Al	Buck converter S1 sense point
A8, B8, C8	VSW_S2	_	PO	Buck converter S2 switching output
F7	VREG_S2	_	Al	Buck converter S2 sense point
M4, N4, P4	VSW_S3	_	PO	Buck converter S3 switching output
J8	VREG_S3	_	Al	Buck converter S3 sense point
M7, N7, P7	VSW_S4	_	РО	Buck converter S4 switching output
K8	VREG_S4	_	Al	Buck converter S4 sense point
A12, B12	VSW_BOOST	- 📣	PI	Boost converter switching net
A11, B11	VREG_BOOST	-	PO	Boost converter output voltage
LDO linear re	egulators			
P2	VREG_L1	12-0	PO	Linear regulator L1 output
M1	VREG_L2	<u> </u>	PO	Linear regulator L2 output
P1	VREG_L3	- 10	PO	Linear regulator L3 output
M10, M9	VREG_L4	-75	PO	Linear regulator L4 output
P10	VREG_L5	102	PO	Linear regulator L5 output
M8	VREG_L6	(3/3 ³) -	PO	Linear regulator L6 output
L3	VREG_L7	_	PO	Linear regulator L7 output
F1	VREG_L8	_	РО	Linear regulator L8 output
C1	VREG_L9	_	PO	Linear regulator L9 output
D4	VREG_L10	_	PO	Linear regulator L10 output
G3	VREG_L11	_	PO	Linear regulator L11 output
В3	VREG_L12	_	PO	Linear regulator L12 output
D3	VREG_L13	_	PO	Linear regulator L13 output
G2	VREG_L14	_	PO	Linear regulator L14 output
G1	VREG_L15	_	PO	Linear regulator L15 output
E3	VREG_L16	_	PO	Linear regulator L16 output
A3	VREG_L17	_	PO	Linear regulator L17 output
A1	VREG_L18	_	PO	Linear regulator L18 output
K3	VREG_RFCLK	_	PO	Linear regulator for RF CLK output
N3	1		PO	Linear regulator for XO output

Table 2-3 Pin descriptions – output power management functions (cont.)

Pad #	Pad name	Pad characteristics ¹		Functional description				
I du #	and/or function	Voltage	Туре	Tunctional description				
Bandgap volt	Bandgap voltage reference (VREF) circuits							
D1	REF_BYP	_	AO	Bandgap reference bypass cap				

^{1.} Refer to Table 2-1 for parameter and acronym definitions.

Table 2-4 Pin descriptions – general housekeeping functions

Pad #	Pad name and/or function	Pad name or alt function	Pad characteristics ³		Functional description
			Voltage	Туре	Functional description
GPIO ass	signments for general	housekeeping fur	nctions ¹		
MPP ass	ignments for general h	ousekeeping fun	ctions ²	1	
Analog r	multiplexer and HK/X	O ADC circuits		"	
K2	XO_THERM			Al	ADC input – XO thermistor
F11	PA_THERM		-	Al	AMUX input – PA thermistor output
M11	BAT_THERM		_	Al	AMUX input – Battery thermistor output
G9	BAT_ID		- 20	Al	AMUX input – Battery ID
19.2 MHz	XO circuits		Miller		
J1	XTAL_19M_IN	A	7.00 V	Al	19.2 MHz crystal input
H2	XTAL_19M_OUT		_	AO	19.2 MHz crystal output
L1	RF_CLK1	7303	V_XRF	DO	RF (low-noise) XO output 1
L2	RF_CLK2		V_XRF	DO	RF (low-noise) XO output 2
F2	BB_CLK1		V_XBB	DO	Baseband (low power) XO output 1
F3	BB_CLK2		V_XBB	DO	Baseband (low power) XO output 2
E4	BB_CLK1_EN		V_PAD	DI	Baseband XO output 1 enable
Sleep clo	ock	!			
G6	SLEEP_CLK		V_PAD	DO	Sleep clock to modem IC and others
VREF ou	itputs				
N14	VREF_BAT_THM		_	AO	Reference voltage for XO thermistor
A2	VREF_LPDDR		_	AO	Reference voltage for LPDDR 2 / LPDDR 3 memory

^{1.} GPIOs are used for other general housekeeping functions not listed here; those details will be included in future revisions of this document. To assign a GPIO a particular function, identify the application's requirements and map each GPIO to its function – carefully avoiding assignment conflicts. Table 2-8 lists all the GPIOs.

^{2.} MPPs are used for other general housekeeping functions not listed here; those details will be included in future revisions of this document. To assign an MPP a particular function, identify the application's requirements and map each MPP to its function – carefully avoiding assignment conflicts. Table 2-8 lists all the MPPs.

^{3.} Refer to Table 2-1 for parameter and acronym definitions.

Table 2-5 Pin descriptions – user interface functions

Pad #	Pad name and/or function	Pad name or	Pad characteristics ³		Functional description		
		alt function	Voltage	Туре	i unctional description		
GPIO as	ssignments for user i	interface functions ¹					
MPP assignments for user interface functions ² Low-voltage current drivers							
Low-vo	Itage current driver				<i>A</i> 5.		
Low-vo M13	Itage current driver		_	AO	Charging indication LED driver output		
M13			_	AO	Charging indication LED driver output		

^{1.} GPIOs are used for other general housekeeping functions not listed here; those details will be included in future revisions of this document. To assign a GPIO a particular function, identify the application's requirements and map each GPIO to its function – carefully avoiding assignment conflicts. Table 2-8 lists all the GPIOs.

Table 2-6 Pin descriptions - audio

Pad #	Pad name and/or function	unction of function	Pad chara	cteristics1	Functional description
rau #			Voltage	Туре	Functional description
L12	MIC_BIAS1	200	_	AO	Microphone bias #1
J11	MIC_BIAS2		_	AO	Microphone bias #2
D13, D14	CP_VNEG		-	AO	Charge pump negative output
B14	CP_C1_P		-	AO	Charge pump fly cap terminal 1
C14	CP_C1_N		-	AO	Charge pump fly cap terminal 2
K13	MIC1_IN		-	Al	Main mic
K11	MIC2_IN		-	Al	Headset mic
J10	MIC3_IN		-	Al	Second mic
K14	HS_DET		-	Al	Headset detection
F13	EARO_P		_	AO	Earpiece PA + output
G13	EARO_M		-	AO	Earpiece PA - output
F12	HPH_L		-	AO	Headphone PA left channel output
G11	HPH_REF		-	Al	Headphone PA ground sensing
G12	HPH_R		-	AO	Headphone PA right channel output
F14	SPKR_DRV_P		_	AO	Class-D speaker amp + output
E12, E13	SPKR_DRV_M		_	AO	Class-D speaker amp - output
F8	PDM_CLK		_	DI	PDM clock signal and master clock for codec

^{2.} MPPs are used for other general housekeeping functions not listed here; those details will be included in future revisions of this document. To assign an MPP a particular function, identify the application's requirements and map each MPP to its function – carefully avoiding assignment conflicts. Table 2-8 lists all the MPPs.

^{3.} Refer to Table 2-1 for parameter and acronym definitions.

Table 2-6 Pin descriptions – audio (cont.)

Pad #	Pad name	Pad name or	Pad chara	cteristics ¹	Functional description
I au #	and/or function	alt function	Voltage	Туре	Tunctional description
E8	PDM_SYNC		-	DI	PDM synchronization signal
E11	PDM_TX		_	DO	PDM Tx data channel
E10	PDM_RX0		-	DI	PDM RX0 data channel
F10	PDM_RX1		-	DI	PDM RX1 data channel
F9	PDM_RX2		_	DI	PDM RX2 data channel
J14	HPH_VNEG		_	Al	Headphone amplifier negative supply

^{1.} Refer to Table 2-1 for parameter and acronym definitions.

Table 2-7 Pin descriptions – IC-level interface functions

Pad #	Pad name	Pad name or	Pad chara	cteristics ³	Functional description
rau #	and/or function	alt function	Voltage	Туре	T unctional description
GPIO as	ssignments for IC-lev	el interface functior	ns ¹		
MPP as	signments for IC-leve	el interface function	s^2	A	
Powerd	on circuit inputs	4 11	2.5	O)	
L10	CBL_PWR_N		V_INT	DI	Cable poweron detect input
K10	KPD_PWR_N		V_INT	DI	Keypad poweron detect input
H5	OPT_2	10	V_INT	DI	Option HW configuration control bit 2
D5	OPT_1	720)	V_INT	DI	Option HW configuration control bit 1
G5	PS_HOLD		V_PAD	DI	Power-supply hold control input
C3	RESIN_N		V_INT	DI	PMIC reset input
Powerd	on circuit outputs a	nd primary PM/mo	dem IC inter	face signals	5
A10	SPMI_CLK		V_PAD	DI	Slave and PBUS interface clock
B10	SPMI_DATA		V_PAD	DI, DO	Slave and PBUS interface data
F5	PON_RST_N		V_PAD	DO	Poweron reset output control

^{1.} GPIOs are used for other general housekeeping functions not listed here; those details will be included in future revisions of this document. To assign a GPIO a particular function, identify the application's requirements and map each GPIO to its function – carefully avoiding assignment conflicts. Table 2-8 lists all the GPIOs.

^{2.} MPPs are used for other general housekeeping functions not listed here; those details will be included in future revisions of this document. To assign an MPP a particular function, identify the application's requirements and map each MPP to its function – carefully avoiding assignment conflicts. Table 2-8 lists all the MPPs.

^{3.} Refer to Table 2-1 for parameter and acronym definitions.

Table 2-8 Pin descriptions – configurable input/output functions

Pad #	Pad name	Configurable function	Pad chara	cteristics ¹	Functional description
rau #	rau IIaille	Comigurable function	Voltage	Туре	Functional description
Predefi	ned MPP fun	ctions – available only at	the assigne	ed MPPs	
L4	MPP_1		_	AO-Z	Configurable MPP
		VDD_PX_BIAS	_	AO	Reference for modem IC I/O
K4	MPP_2		_	AO-Z	Configurable MPP
		HR_LED_SNK	_	AO	Home row LED current sink
J4	MPP_3		_	AO-Z	Configurable MPP
		VREF_DAC	_	AO	Reference for modem IC DAC
J5	MPP_4		_	AO-Z	Configurable MPP
		WLED_PWM	_	DO	PWM control for external WLED driver
Predefi	ned GPIO fui	nctions – available only a	t the assign	ed GPIOs	
J7	GPIO_1		V_G	DO-Z	Configurable GPIO
		UIM_BATT_ALM		DI, DO	Battery removal alarm for UIM and UIM battery alarm input to the MSM
H6	GPIO_2		V_G	DO-Z	Configurable GPIO
		NFC_CLK_REQ	- 3	DI DI	NFC control signal to request clock
N11	GPIO_3		V_G	DO-Z	Configurable GPIO
		WTR_LDO_EN	OTO ICI	DO	Enable signal to power WTR with external LDO
L8	GPIO_4	10	V_G	DO-Z	Configurable GPIO
		EXT_BUCK_EN	_	DO	Enable signal for external buck converter to power applications core of MSM8936/MSM8939. SLEEP_CLK output is a special function for non-MSM8936/MSM8939 platform

^{1.} Refer to Table 2-1 for parameter and acronym definitions.

NOTE All MPPs default to their high-Z state at powerup and must be configured after powerup for their intended purposes. All GPIOs default to 10 µA pulldown at powerup and must be configured after powerup for their intended purposes.

NOTE Configure unused MPPs as 0 mA current sinks (high-Z) and GPIOs as digital inputs with their internal pull-downs enabled.

Table 2-9 Pin descriptions - input DC power

Pad #	Pad name	Functional description
N1, N2 ¹	VDD_L1_2_3	Power supply for LDO L1, L2, and L3 circuits
N9, P9	VDD_L4_5_6	Power supply for LDO L4, L5, and L6 circuits
B1, B2, E1, E21 ²	VDD_L8_9_10_11_12_13_ 14_15_16_17_18	Power supply for LDO L8 to L18 circuits
M2	VDD_XO_RFCLK	Power supply for LDO VREG_XO and VREG_RF_CLK circuits
M3	VDD_L7	Power supply for LDO L7 circuits
A6, B6, C6	VDD_S1	Power supply for S1 buck converter
A7, B7, C7	VDD_S2	Power supply for S2 buck converter
M5, N5, P5	VDD_S3	Power supply for S3 buck converter
M6, N6, P6	VDD_S4	Power supply for S4 buck converter
Audio input power		A(O)*
A13	NC	Can be connected to VBAT to maintain backward compatibility with version 1.1 of PM8916
H13	VDD_HPH	Headphone amplifier positive supply
G14	VDD_EAR_SPKR	Ear and class-D speaker amplifier supply
D12	VDD_AUDIO_IO	I/O supply for codec
C11, C12	VDD_CP	Charge pump power supply

^{1.} Pad N1 and N2 have been combined to same input voltage group from rev 2.0

Table 2-10 Pin descriptions - grounds

Pad #	Pad name	Functional description
PM88916		
A14, B13	GND_BOOST	Boost ground net
D6, D7, D10, D11, E7, E9, G4, G7, G8, G10, H7, H8, H10, H11, H12, J6, K5, K9	GND	Ground for non-specialized circuits
L13	GND_DRV	Ground for vibrator driver
D2	GND_REF	Ground for bandgap reference circuit
A4, B4, C4	GND_S1	Ground for S1 buck converter circuits
A9, B9, C9	GND_S2	Ground for S2 buck converter circuits
N3, P3	GND_S3	Ground for S3 buck converter circuits
N8, P8	GND_S4	Ground for S4 buck converter circuits
J2	GND_XO	Ground for XO circuits
J3	GND_RF	Ground for RF circuits

^{2.} Pads B1, B2 and E1, E2 have been combined to same input voltage group from rev 2.0

Table 2-10 Pin descriptions – grounds (cont.)

Pad #	Pad name	Functional description
N10	GND_XOADC	Ground for XO ADC circuits
H3	GND_XO_ISO	Dedicated ground for XO substrate noise isolation
C13	GND_CP	Charge pump ground
E14	GND_SPKR	Class-D speaker amp ground
J13	GND_CFILT	Ground reference for PMIC bias
J12	GND_AUDIO_REF	Ground reference
		Connection for audio CODEC

3 Electrical Specifications

3.1 Absolute maximum ratings

Absolute maximum ratings (Table 3-1) reflect conditions that PM8916 may be exposed to outside of the operating limits, without experiencing immediate functional failure. They are limiting values, to be considered individually when all other parameters are within their specified operating ranges. Functionality and long-term reliability can only be expected within the operating conditions, as described in Section 3.2.

Table 3-1 Absolute maximum ratings

	Parameter					
Power supply and related	l sense voltages					
USB_IN	Input power from USB source	-0.5	16	V		
VDD_xx	PMIC power-supply voltages not listed elsewhere	-0.5	6	V		
VBAT, VBAT_SNS	Main battery voltage Steady state Transient (< 10 ms)	-0.5 -0.5	6 7	V		
VDD_EAR_SPKR	Power for ear and speaker driver	-0.5	6	V		
Signal pins				1		
V_IN	Voltage on any non-power-supply pin ¹	-0.5	V _{XX} + 0.5	V		

^{1.} VXX is the supply voltage associated with the input or output pin to which the test voltage is applied.

3.2 Operating conditions

Operating conditions include parameters that are under the control of the user: power-supply voltage and ambient temperature (Table 3-2). The PM8916 meets all performance specifications listed in Section 3.3 through Section 3.11 when used within the operating conditions, unless otherwise noted in those sections (provided the absolute maximum ratings have never been exceeded).

Table 3-2 Operating conditions

	Parameter	Min	Тур	Max	Units				
Power supply and re	elated sense voltages	es							
USB_IN	Input power from USB source	4.35	_	6.2	V				
VDD_xx	PMIC power-supply voltages not listed elsewhere ¹	3.0	3.6	4.5	V				
VBAT, VBAT_SNS	Main battery voltage ¹	3.0	3.6	4.5	V				
VCOIN	Coin cell voltage	2.0	3.0	3.25	V				
VDD_EAR_SPKR	Power for ear and speaker driver	3.0	3.7/5.0	5.50	V				
Signal pins		Į.	·	-					
V_IN	Voltage on any non-power-supply pin ¹	0	_	V _{XX} + 0.5	V				
Thermal conditions	V.Co.								
T _c	Operating temperature (case)	- 30	+25	+85	°C				

^{1.} V_{XX} is the supply voltage associated with the input or output pin to which the test voltage is applied.

3.3 DC power consumption

This section specifies DC power supply currents for the various IC operating modes (Table 3-3). Typical currents are based on IC operation at room temperature (+25°C) using default parameter settings.

Table 3-3 DC power supply currents

	Parameter	Comments	Min	Тур	Max	Units
IDD _{active1} ¹	Supply current, active mode		_	4.2	6	mA
IDD _{active2} ²	Supply current, active mode	1	- all	5.5	7.5	mA
IDD _{sleep} ³	Supply current, sleep mode 32 kHz sleep clock	7	-	290	450	μΑ
IDD _{off_ship} ⁴	Supply current, off mode	2	-	5	18	μΑ
IDD _{coin}	Coincell supply current, off mode					
	XTAL off (IDD _{cc xoff}) ⁷		_	2	2.5	μΑ
	RC calibration (IDD _{cc_rccal}) ⁸	Average current	_	5	8	μA
IDD _{CHG} ⁵	USB charger supply current	Sleep mode	-	13.3	15	mA
IDD _{USB} 6	USB charger current in suspend	Good battery, not charging	-	_	1.65	mA

- 1. $IDD_{active1}$ is the total supply current from a main battery with PM8916 on, crystal oscillators on, XO and BBCLK1 on at 19.2 MHz, driving no load, and these voltage regulators on with no load at the following: VREG_S1 = 1.15 V, VREG_S2 = 1.15 V, VREG_S3 = 1.35 V, VREG_S4 = 2.15 V, VREG_L2 = 1.2 V, VREG_L3 = 1.15 V, VREG_L5 = 1.8 V, VREG_L7 = 1.8 V, VREG_L8 = 2.9 V, VREG_L11 = VREG_L12 = 2.95 V, VREG_L13 = 3.075 V, MPP1 is on as analog buffer, and VREF_LPDDR2 is on
- 2. $IDD_{active2}$ is the total supply current from a main battery with PM8916 on and $IDD_{active1}$ condition plus: $VREG_L1 = 1.225 \text{ V}$, $VREG_L4 = 2.05 \text{ V}$, $VREG_L6 = 1.8 \text{ V}$, $VREG_L14 = 1.8 \text{ V}$, $VREG_L17 = 2.85 \text{ V}$, $VREG_RFCLK$ and RFCLK1 on
- 3. IDD_{sleep} is the total supply current from a main battery with PM8916 on, crystal oscillators on and these voltage regulators on with no load at the following: $VREG_S1 = 1.15 \text{ V}$ (PFM), $VREG_S3$ (PFM) = 1.35 V, $VREG_S4$ (PFM) = 2.15 V, $VREG_L2$ (LPM) = 1.2 V, $VREG_L3$ (LPM) = 1.15 V, $VREG_L5$ (LPM) = 1.8 V, and $VREF_LPDDR2$ is on
- 4. Total supply current from a main battery with PM8916 off and the 32 kHz crystal oscillator on. This only applies when the temperature is between -30°C and 60°C.
- 5. IDD_{CHG} is the total supply current from a charger, with the device configured into the sleep mode as specified in Note 2 above with USB IN = 6 V and VMAXSEL setting = 4.2 V.
- 6. IDD_{USB} is the total supply current drawn from a USB charger when the phone has a good battery (> 3.2 V), and the phone is not drawing charging current from USB. When USB is suspended, the phone is not allowed to draw more than 2.5 mA from a PC. Specification allows for 850 μ A current into external components connected to VBUS in this case.
- 7. IDD_{cc_xoff} is the total supply current from a 3.0 V coincell with PM8916 off and the 32 kHz crystal oscillator off. This only applies when the temperature is between -30°C and 60°C.
- 8. IDD_{cc_rccal} is the total supply current from a 3.0 V coincell with PM8916 off, the 32 kHz crystal oscillator off and RCCAL enabled with nominal settings. This only applies when the temperature is between -30°C and 60°C.

Table 3-4 Audio power supply peak current

	Parameter	Min	Тур	Max	Units
VDD_EAR_SPKR	Power for ear and speaker driver	_	_	1.0	Α

3.4 Digital logic characteristics

PM8916 digital I/O characteristics such as voltage levels, current levels, and capacitance are specified in Table 3-5.

Table 3-5 Digital I/O characteristics

	Parameter	Comments	Min	Тур	Max	Units
V _{IH}	High-level input voltage ¹		0.65 x V _{IO}	-	$V_{IO} + 0.3^{5}$	V
V _{IL}	Low-level input voltage		-0.3	-	0.35 x V _{IO} ⁵	V
V _{SHYS}	Schmitt hysteresis voltage		15	-	_	mV
IL	Input leakage current ²	V_{IO} = max, V_{IN} = 0 V to V_{IO}	-200	-	+ 200	nA
V _{OH}	High-level output voltage	I _{out} = I _{OH}	V _{IO} - 0.5	-	V _{IO}	V
V _{OL}	Low-level output voltage	I _{out} = I _{OL}	0	-	0.45	V
I _{OH}	High-level output current ³	V _{out} = V _{OH}	3	-	_	mA
I _{OL}	Low-level output current ³	V _{out} = V _{OL}	_	-	-3	mA
I _{OH_XO}	High-level output current ³	XO digital clock outputs only	6	-	_	mA
I _{OL_XO}	Low-level output current ³	XO digital clock outputs only	_	-	-6	mA
C _{IN}	Input capacitance ⁴	mid.	_	_	5	pF

^{1.} VIO is the supply voltage for the MSM/PMIC interface (most PMIC digital I/Os).

^{2.} MPP and GPIO pins comply with the input leakage specification only when configured as digital inputs, or set to their tri-state mode.

^{3.} Output current specifications apply to all digital outputs unless specified otherwise, and are superseded by specifications for specific pins (such as MPP and GPIO pins).

^{4.} Input capacitance is guaranteed by design, but is not 100% tested.

^{5.} V_{IO} = VREG_L5

3.5 Input power management

All parameters associated with input power management functions are specified.

3.5.1 Over-voltage protection

PM8916 has power FET and charging current sensing feature. After the OVP/UVD comparators detect a valid charging source, the power FET driver is enabled. The USBIN voltage is monitored by the OVP comparator with a threshold voltage of 6.2 V. When USBIN exceeds this threshold, the comparator outputs a logic signal to turn off the power FET driver, which turns off the power FET within 1 μ s.

3.5.2 External supply detection

The PMIC continually monitors the external supply voltages like USB_IN and the battery supply voltage VBAT. Internal detector circuits measure these voltages to recognize when an external supply is connected or removed, and verify that it is within its valid range when connected. Hysteresis prevents undesired switching near the thresholds, and status is reported to the on-chip state machine and to the modem IC via interrupts.

Performance specifications related to detecting external supply voltages and protecting the PMIC are presented in future revisions of this document.

Table 3-6 External source interface performance specifications

	Parameter	Comments	Min	Тур	Max	Units
Negative voltage pr	otection				1	
V_NEG	Negative input voltage	USB_IN	-0.3	-	-	V
Undervoltage detec	tion (UVD)	1	ll .	II.	1	I.
V(thr_coarse)	Coarse detect threshold	USB_IN – rising	1.3	1.7	2.0	V
V(thr_uvd_r) ¹	UVD threshold	USB_IN - rising		4.0		V
V(hyst_uvd)	UVD threshold hysteresis	USB_IN	150	200	250	mV
Overvoltage detecti	on (OVD)	,	ı.		1	
V(thr_ovd_r)	OVD setting	USB_IN – rising	6.0	6.2	6.4	V
V(hyst_ovd)	OVD threshold hysteresis	USB_IN – falling	150	200	250	mV
t(db_ovd_r)	OVD debounce	USB_IN – rising	_	1.0		μs
t(db_ovd_f)	OVD debounce	USB_IN – falling	_	0	_	ms

Table 3-6 External source interface performance specifications (cont.)

Parameter		Comments	Min	Тур	Max	Units
Recommended	d OVP output (SMBC input)		•	l	<u>'</u>	
USB_IN	Charger input voltage ²		4.35	-	6.5	V
V _{IN_MIN}	Charge current accuracy		-10		+10	%
	Input voltage limit programmable range	26.2 mV steps	4.229		5.0652	V
	Input voltage limit accuracy		%-3		3	%

^{1.} Meets the 4.4 V VBUS minimum from an unloaded bus-powered hub as specified in the USB 2.0 specification.

3.5.3 Linear battery charger

3.5.3.1 LBC specifications

Table 3-7 Linear charger specifications

Parameter	Min	Тур	Max	Unit	Note
Battery/VDD voltage programmable range	4.0	4.20	4.775	V	25 mV steps
Battery/VDD voltage accuracy	-1		1	%	
(Including line & load regulation and temperature variation – up to 150 mA load)					
Charge current programmable range	90		1440	mA	90 mA steps
Charge current accuracy	-10		+10	%	
FET resistance from USBIN to VBAT		332	420	mΩ	
VBATDET comparator threshold accuracy	-2		2	%	
Battery charge termination current					
I _{BAT_MAX} : 90–450 mA		7		%	
I _{BAT_MAX} : 540–1440 mA		7.4			
IBAT_TERM accuracy					
$I_{BAT_MAX} = 90 \text{ mA}$	-3		+7	mA	
I _{BAT_MAX} : 180–450 mA	-7		+7	mA	
I _{BAT_MAX} : 540–1440 mA	-15		+15	%	

^{2.} This is the recommended operating range. The acceptable operating range is defined by the UVD and OVD thresholds specified elsewhere in this table.

3.5.3.2 Charging-specific linear charger specifications

Battery charging is controlled by a PMIC state-machine. The first step in the automated charging process determines if trickle charging is needed. Charging of a *severely* depleted battery must begin with trickle charging (Table 3-8) to limit the current, avoid pulling VDD down, and protect the battery from more charging current than it can handle. Once a minimum battery voltage is established using trickle charging, constant-current charging is enabled to charge the battery quickly – this mode is sometimes called fast charging. Once the battery approaches its target voltage, the charge is completed using constant-voltage charging.

Table 3-8 Trickle charging performance specifications

Parameter	Comments	Min	Тур	Max	Units
Trickle charge – current		81	90	99	mA
Trickle charge – current accuracy			+/- 10%	•	
Trickle voltage – threshold programmable range	15.62 mV steps, 2.796 V default	2.5	_	2.9842	V
Trickle voltage – threshold accuracy		-2	-	+2	%
Trickle voltage – threshold hysteresis	VBAT falling	50	90	130	mV
Trickle voltage – threshold debounce	VBAT rising	_	1	_	sec
	VBAT falling		1		ms
System weak – threshold programmable range	18.75 mV steps; 3.2 V default Detect depleted battery	3.0	3.206	3.581	V
System weak – threshold accuracy	C. C	-2	_	+2	%
System weak – threshold falling hysteresis	VBAT falling	70	110	150	mV
System weak – threshold debounce	VBAT rising/falling	_	1	_	ms

Constant-current charging

The PMIC parameters associated with constant-current charging are specified in the following subsections:

External supply detection
 Battery voltage monitoring system
 Section 3.5.2

Additional performance specifications for constant-current charging are not required.

Constant-voltage charging

The PMIC parameters associated with constant-voltage charging are specified in the following subsections:

External supply detection
 Battery voltage monitoring system
 Section 3.5.2

Additional performance specifications for constant-voltage charging are not required.

VPH_PWR_EN 0→1 Power-On from Charger Auto Trickle Charge B T_MAX = 90mA(Enum Timer Expir VPH_PWR_OK 0→1 ? HW-controlled charging Charging SW configuration HW-managed SW configurable autonomous charging Fast Charging MP_EN Y (default) Charging Done
Charger Off
Power-On from Batter

Figure 3-1 shows the LBC flowchart.

Figure 3-1 LBC flowchart

3.5.4 Battery voltage monitoring system

3.5.4.1 Under-voltage lockout

The handset supply voltage (VDD) is monitored continuously by a circuit that automatically turns off the device at severely low VDD conditions.

UVLO events do not generate interrupts. They are reported to the modem IC via the PON_RESET_N signal. UVLO-related voltage and timing specifications are listed in Table 3-9.

Table 3-9 UVLO performance specifications

Parameter	Comments	Min	Тур	Max	Units
Rising threshold voltage	Programmable value, 50 mV steps	1.675	2.725	3.225	V
Hysteresis	175 mV setting	125	175	225	mV
	300 mV setting	250	300	350	mV
Falling threshold voltage	175 mV hysteresis setting	1.500	2.550	3.050	V
	300 mV hysteresis setting	1.375	2.425	2.925	V
UVLO detection interval		-	1	-	μs

3.5.4.2 SMPL

The PMIC SMPL feature initiates a poweron sequence if the monitored VDD drops out of range and then returns in-range within a programmable interval. When enabled by software, SMPL achieves immediate and automatic recovery from momentary power loss (such as a brief battery disconnect when the device is jarred).

SMPL performance specifications are given in Table 3-10.

Table 3-10 SMPL performance specifications

Parameter	Comments		Тур	Max	Units
Minimum SMPL interval	Programmable range	0.5	_	2	S

3.5.5 Voltage mode battery monitoring system (VM-BMS)

Table 3-11 Battery fuel-gauge specifications

Parameter	Comments	Min	Тур	Max	Units
Effective number of bits (ENOB) of battery-voltage measurement		_	13	_	bits
OCV measurement	Accuracy	-15	_	15	mV
	Repeatability (with charger attached)	-3	_	3	mV

Table 3-12 State of charge (SOC) specifications

Parameter	Comments	Typ ¹	Max ²	Units
SOC accuracy after poweron				
Battery capacity > 80% or < 20%)	SOC accuracy at any time during a charge or discharge cycle after powering on with settled battery with capacity > 80% or < 20%	-	±15	%
Battery capacity between 20% and 80%	SOC accuracy at any time during a charge or discharge cycle after powering on with settled battery, with capacity between 20% and 80%	-	±25	%

^{1.} Valid at 25°C.

^{2.} Valid over a temperature range of -20°C to 70°C.

3.5.6 Battery-temperature monitoring (BTM) and battery-presence detection (BPD) specifications

If BAT_ID is not used, that pin can be grounded. If BAT_THERM is not used, it too can be grounded, and the software's battery temperature feature *must be* disabled. If external charger is used, then BAT_THERM should be grounded.

Battery interface specifications are given in Table 3-13.

Table 3-13 Battery interface specifications

Parameter	Comments	Min	Тур	Max	Units						
Battery-temperature monitoring (BTM)											
Cold-comparator threshold programmable settings	Fraction of VREF_BAT_THM; selectable as 70% or 80%	70	-	80	%						
Cold-comparator offset		-10	ı	+10	mV						
Cold-comparator voltage hysteresis 70% setting 80% setting	VREF_BAT_THM falling (battery warming)	-80 -70	-	-40 -35	mV mV						
Cold-comparator debounce	VBAT_THM rising VBAT_THM falling	0.5 0.5	-	2.5 2.5	ms s						
Hot-comparator threshold programmable settings	Fraction of VREF_BAT_THM; selectable as 25% or 35%	25	_	35	%						
Hot-comparator offset		-10	-	+10	mV						
Hot-comparator voltage hysteresis 35% setting 25% setting	VREF_BAT_THM failing (battery cooling)	25 15	- -	50 30	mV mV						
Hot-comparator debounce	VBAT_THM rising VBAT_THM falling	0.5 0.5	-	2.5 2.5	ms s						
Battery-presence detection (BPD)	1			I							
BPD-comparator threshold	Fraction of VREF_BAT_THM	_	95	_	%						
BPD-comparator offset		-50	_	+50	mV						
BPD-comparator debounce VREF_BAT_THM rising (battery removal) VREF_BAT_THM falling (battery insertion)		1 –	_ 1	6 -	μs s						

Figure 3-2 shows the BTM block diagram, and Table 3-14 lists the equations for calculating the Rs1 and Rs2 external resistors needed to support the BTM feature.

Figure 3-2 Battery-temperature monitoring

Table 3-14 Battery-temperature monitoring calculations

Battery charging window	BTM comparator thresholds	Min
0°C to 40/45°C	70%/35%	Rs1 = 39 (Rcold - Rhot)/70 Rs2 = (3Rcold -13Rhot)/10
-10°C to 60°C	80%/25%	Rs1 = 3 (Rcold - Rhot)/11 Rs2 = (Rcold -12Rhot)/11

3.5.7 Coin cell charging

Coin cell charging is enabled through software control and powered from VBAT. The on-chip charger is implemented using a programmable voltage source and a programmable series resistor. The modem IC reads the coin cell voltage through the PMIC's analog multiplexer to monitor charging. Coin cell charging performance is specified in Table 3-15.

Table 3-15 Coin cell charging performance specifications

Parameter	Comments	Min	Тур	Max	Units
Target regulator voltage	V _{IN} > 3.3 V, I _{CHG} = 100 μA	2.5	3.1	3.2	V
Target series resistance	64	800	_	2100	Ω
Coin cell charger voltage error	I _{CHG} = 0 μA	-5	-	5	%
Coin cell charger resistor error		-20	_	20	%
Dropout voltage ¹	I _{CHG} = 2 mA	_	-	200	mV
Ground current, charger enabled	PMIC = off; VCOIN = open				
VBAT = 3.6 V, T = 27°C		_	4.5	_	μΑ
VBAT = 2.5 to 5.5 V		_	_	8	μΑ

^{1.} Set the input voltage (VBAT) to 3.5 V. Note the charger output voltage; call this value V_0 . Decrease the input voltage until the regulated output voltage (V_1) drops 100 mV ($V_1 = V_0 - 0.1 \text{ V}$). The voltage drop across the regulator under this condition is the dropout voltage ($V_{dropout} = VBAT - V_1$).

3.6 Output power management

Output power management circuits include:

- Bandgap voltage reference circuit
- Buck SMPS circuits
- LDO linear regulators

The PM8916 provides all the regulated voltages needed for most wireless handset applications. Independent regulated power sources are required for various electronic functions to avoid signal corruption between diverse circuits, support power-management sequencing, and to meet different voltage-level requirements.

A total of 24 programmable voltage regulators are provided by the PM8916, with all outputs derived from a common bandgap reference circuit. Each regulator can be set to a low-power mode for power savings.

A high-level summary of all regulators and their intended uses is presented in Table 3-16.

PM8916 Device Specification Electrical Specifications

Table 3-16 Regulator high-level summary

Function	Circuit type	Default voltage (V) ¹	Programmable range (V)	Specified range (V)	Rated current (mA)	Default on	Expected use
S1	SMPS	1.15	0.375–1.562	0.5–1.35	2500	Y	MSM8x16 IC core circuit (modem, camera SS, graphics core, etc.) MSM8x36/MSM8x39 IC core circuit (modem)
S2	SMPS	1.15	0.375–1.562	0.9–1.35	3000	Υ	MSM8x16 A53 application processor cores MSM8x36/MSM8x39 IC core circuit (camera SS, graphics core, etc.)
S3	SMPS	1.3	0.375–1.562	1.25–1.35	1800	Y	Analog blocks of WAN, WLAN, source for GR1 (LDOs L1 and L3) and GR2 (LDO L2) rails
S4	SMPS	2.1	1.55–2.325	1.85–2.15	1500	Y	Codec analog and source for GR3 (LDOs L4, L5 & L6) and GR7 (LDO L7) rails
L1	NMOS LDO	1.2875	0.375–1.525	1.0–1.225	250	N	WTR low voltage rail
L2	NMOS LDO	1.2	0.375–1.525	1.2	600	Υ	Memory (EBI/LPDDR2/LPDDR3/eMMC) and MIPI analog rails
L3	NMOS LDO	1.15	0.375–1.525	0.75–1.35	350	Υ	Modem IC
L4	PMOS LDO	2.05	1.75–3.337	1.8–2.1	150	N	WTR and GPS eLNA
L5	PMOS LDO	1.8	1.75–3.337	1.8	200	Υ	Codec and memory 1.8 V rails, WLAN IO
L6	PMOS LDO	1.8	1.75–3.337	1.8	150	Y	Camera, display and transducer 1.8 V rails and HK ADC
L7	PMOS LDO	1.8	1.75–3.337	1.8–1.9	110	Υ	Modem, WTR, BB_CLK driver
L8	PMOS LDO	2.9	1.75–3.337	2.9	400	Υ	eMMC/NAND core
L9	PMOS LDO	3.3	1.75–3.337	3.3	600	N	Connectivity IC (WCN3620/WCN3660)
L10	PMOS LDO	2.7	1.75–3.337	2.8	150	N	Camera (Front and Rear) analog rails
L11	PMOS LDO	2.8	1.75–3.337	2.95	800	Υ	SD/MMC card
L12	PMOS LDO	2.8	1.75–3.337	1.8/2.95	50	Υ	MSM8x16/MSM8x36/MSM8x39 memory rail for SD
L13	PMOS LDO	3.075	1.75–3.337	3.075	50	Υ	Codec and USB 3 V analog rails
L14	PMOS LDO	1.8	1.75–3.337	1.8/3.3	55	N	UIM 1

PM8916 Device Specification Electrical Specifications

Table 3-16 Regulator high-level summary (cont.)

Function	Circuit type	Default voltage (V) ¹	Programmable range (V)	Specified range (V)	Rated current (mA)	Default on	Expected use
L15	PMOS LDO	1.8	1.75–3.337	1.8/3.3	55	N	UIM 2
L16	PMOS LDO	1.8	1.75–3.337	1.8/3.3	55	N	UIM 3
L17	PMOS LDO	2.85	1.75–3.337	2.85	450	N	LCD, transducers and camera 2.85 V rails
L18	PMOS LDO	2.7	1.75–3.337	2.7	150	N	Qualcomm® RF360 TM
VREF	_	0.6125	_	- /\		Υ	LPDDR reference
MPP1	_	1.250	_	- \	<i>y</i>	Υ	MSM pad bias
VREG_XO	Low noise LDO	1.8	1.38–2.22	1.8	5		XO oscillator circuits
VREG_RF_ CLK	Low noise LDO	1.8	1.38–2.22	1.8	5		Low noise clock buffers

^{1.} Default voltages and poweron states may depend on option pin (OPT_x) or SBL settings.

NOTE Since PM8916 has wirebond package, rated current of the LDOs will be less than the design specification. For example, although L1 is N1200 LDO type which is designed for 1.2 A, its rated current is limited to 250 mA mainly due to losses in the bond wire.

3.6.1 Reference circuit

All PMIC regulator circuits and some other internal circuits are driven by a common, on-chip voltage reference circuit. An on-chip series resistor supplements an off-chip $0.1~\mu F$ bypass capacitor at the REF_BYP pin to create a lowpass function that filters the reference voltage distributed throughout the device.

NOTE Do not load the REF_BYP pin. Use an MPP configured as an analog output if the reference voltage is needed off-chip.

Applicable voltage-reference performance specifications are given in Table 3-17.

Table 3-17 Voltage-reference performance specifications

Parameter	Comments	Min	Тур	Max	Units
Nominal internal VREF	At REF_BYP pin	_	1.250	-	V
Output voltage deviations	4()				
Normal operation	Over-temperature only, -20 to +120°C	-0.32	_	+0.32	%
Normal operation	All operating conditions	-0.50	_	+0.50	%
Sleep mode	All operating conditions	-1.0	_	+1.0	%

3.6.2 Buck SMPS

The buck converter is a switched-mode power supply that provides an output voltage lower than its input voltage, and is therefore also known as a step-down converter. The PM8916 IC includes four SMPS. The SMPS bucks support PWM and PFM modes.

Pertinent performance specification is given in Table 3-17.

Table 3-18 SMPS performance specifications

Parameter	Comments	Min	Тур	Max	Units
Input voltage range		3		4.5	V
Rated load current (I_rated) PWM mode	Continuous current delivery				
S1	V _{IN} = 3.0 V	1.5	_	_	
	V _{IN} = 3.2 V	2.0	_	_	
	V _{IN} = 3.4 V	2.5	_	_	
S2	V _{IN} = 3.0 V	2.0	-	_	Α
	V _{IN} = 3.2 V	2.2	_	_	
	V _{IN} = 3.4 V	3.0	_	_	
S3	V _{IN} = 3.0 V	1.0	-	_	
	V _{IN} = 3.2 V	1.2	_	_	
	V _{IN} = 3.4 V	1.8	_	_	
S4	V _{IN} = 3.0 V	0.8	_	_	
	V _{IN} = 3.2 V	1.0	_	_	
	V _{IN} = 3.4 V	1.5	-	_	
PFM mode	Programmable	80			mA
Peak current limit (through inductor)	VREG pin shorted; current limit is set	70% *	I_limit	130%	mA
	via SPMI programming.	I_limit		I_limit	
Voltage error	a dille				
PWM mode	V_out > 1.0 V, I_rated / 2	-1	_	1	%
	V_out < 1.0 V, I_rated / 2	-10	_	10	mV
PFM mode	V_out > 1.0 V, I_rated / 2	-3	_	3	%
	V_out < 1.0 V, I_rated / 2	-30	_	30	mV
Overall error (includes voltage error, load and line regulation and errors due to temperature and process)					
PWM mode	V_out > 1.0 V, I_rated /2	-2	_	2	%
	V_out < 1.0 V, I_rated /2	-20	_	20	mV
PFM mode	V_out > 1.0 V, I_rated /2	-5	_	5	%
	V_out < 1.0 V, I_rated /2	-50	_	50	mV
Temperature coefficient		-100	-	100	ppm/C
Enable settling time	From enable to within 1% of final value programmable in PBS		500		рs
Enable overshoot	V_out > 1.0 V, no load			3	%
	V_out < 1.0 V, no load	_	_	30	mV
Voltage step settling time per LSB	To within 1% of final value	_	-	10	μs

Table 3-18 SMPS performance specifications (cont.)

Parameter	Comments	Min	Тур	Max	Units
Response to load transitions	PWM mode				
Dip due to low-to-high load	S1, S3, S4: 40 mA to 440 mA	_	40	_	mV
	S2: 40 mA to 1040 mA				
Spike due to high-to-low load	S1, S3, S4: 440 mA to 40 mA	_	70	_	mV
	S2: 1040 mA to 40 mA				
Line transient response	Using 3.6 V to 3.0 V square waveform with 10 µs rise/fall time and frequency of 217 Hz, I_load = 750 mA		8		mV
Output ripple voltage	Tested at the switching frequency; Cap ESR < 20 $m\Omega$				
PWM pulse-skipping mode	40 mA load; 20 MHz measurement bandwidth	-	20	40	mVpp
PWM non-pulse-skipping mode	I_rated; 20 MHz measurement bandwidth	_	10	20	mVpp
	50 mA load; 20 MHz measurement	_	50	70	mVpp
PFM mode	bandwidth				
Load regulation	V_in ≥ V_out + 1 V; I_load = 0.05 * I_rated to I_rated	_	0.25	_	%
Line regulation	V_in = 3.2 V to 4.2 V; I_load = 100 mA	_	0.25	_	%/V
Power-supply ripple rejection (PSRR)	Ag.				
50 Hz to 1 kHz	azhi.	_	40	_	dB
1 kHz to 100 kHz	A.74.00	_	20	_	dB
100 kHz to 1 MHz	le in	-	30	_	dB
Output noise	VREF = 0.625 V				
F < 5 kHz		_	-101	_	dBm/Hz
F = 5 kHz to 10 kHz		_	-106	_	dBm/Hz
F = 10 kHz to 500 kHz		_	-106	_	dBm/Hz
F = 500 kHz to 1 MHz		_	-116	_	dBm/Hz
F > 1 MHz		-	-116	_	dBm/Hz
Peak output impedance vs frequency	1 kHz–1 MHz	_	150	_	mΩ
Ground current					
PWM mode, no load		_	550	750	μΑ
PFM mode, no load		_	20	30	μΑ
PFM mode, no load (with current boost)		-	30	45	μΑ

3.6.2.1 Efficiency plots

Figure 3-3 to Figure 3-6 show the efficiency plots for $V_{in} = 3.7 \text{ V}$.

PM8916 Device Specification Electrical Specifications

Figure 3-3 S1 PFM efficiency plots

Figure 3-4 S2 PFM efficiency plots

PM8916 Device Specification Electrical Specifications

Figure 3-5 S3 PFM efficiency plots

Figure 3-6 S4 PFM efficiency plots

3.6.3 Linear regulators

20 low dropout linear regulator designs are implemented within the PMIC:

- 3 NMOS LDOs
- 15 PMOS LDOs
- PMOS for on-chip clock circuits
 - ☐ These LDOs are not used off-chip, so their performance specifications are not published.

All other LDO performance specifications are presented in Table 3-19.

Table 3-19 LDO performance specifications

Parameter	Comments	Min	Тур	Max	Units
Output voltage ranges					
Programmable range					
All NMOS	12.5 mV steps	0.375	_	1.525	V
All PMOS	25 mV steps from 0.75 to 1.525 V	1.75	_	3.337	V
	50 mV steps from 1.50 to 4.90 V				
Rated load current (I_rated), normal	Continuous current delivery				
L1		_	_	250	mA
L2	, 20,	_	_	400	mA
L3	Mild.	_	_	350	mA
L4	OZ.	_	_	150	mA
L5	Continuous current delivery	_	-	175	mA
L6	10.	_	-	150	mA
L7	2007	_	-	110	mA
L8	G.	_	-	400	mA
L9		_	-	600	mA
L10		_	_	150	mA
L11		_	_	800	mA
L12		_	_	50	mA
L13		_	_	50	mA
L14		_	_	55	mA
L15		_	_	55	mA
L16		_	_	55	mA
L17		_	_	450	mA
L18		_	_	150	mA
Rated load current, low-power mode	Continuous current delivery				
L1, L2		_	_	100	mA
L3		_	_	60	mA
L4 - L13, L17, L18		_	_	10	mA
L14 - L16		_	-	5	mA
Pass FET power dissipation		_	-	600	mW

Table 3-19 LDO performance specifications (cont.)

Parameter	Comments	Min	Тур	Max	Units
Overall error at default voltage (includes DC voltage error, load ¹ and line regulations and errors due to temperature and process)					
Normal mode		-3	_	3	%
Low-power mode		-4	_	4	%
Tomporature coefficient	6	-100		100	nnm°C
Temperature coefficient			_	100	ppm°C
Transient settling time Transient over/under-shoot Normal mode	To within 1% of final value	20	100	200	μs
All NMOS LDOs	0.25 * I_rated to 0.75 * I_rated load	-4	_	4	%
All PMOS LDOs	step 0.1 * I_rated to 0.9 * I_rated load step	-70	_	100	mV
Dropout voltage	NPM, I load = I rated				
All NMOS LDOs		_	_	120	mV
All PMOS LDOs		_	_	300	mV
All NMOS LDOs	LPM, I_load = I_rated	_	_	15	mV
All PMOS LDOs	Li W, I_loud = I_luteu	_	_	300	mV
Load regulation	V_in > V_out + 0.5 V;				
Normal mode, all LDOs except L1	0.01 * I_rated to I_rated	_	_	2.1	%
Normal mode, L11	6 mA to 600 mA	_	_	2.1	%
Line regulation					
Normal mode		_	_	0.75	%/V
Power-supply ripple rejection Normal mode					
50 Hz to 1 kHz	All NMOS LDOs	_	70	_	dB
1 kHz to 10 kHz		_	60	_	dB
10 kHz to 100 kHz		_	40	_	dB
100 kHz to 1 MHz		_	30	_	dB
50 Hz to 1 kHz	All PMOS LDOs	_	43	_	dB
1 kHz to 10 kHz		_	35	_	dB
10 kHz to 100 kHz		_	13	_	dB
100 kHz to 1 MHz			13		dB
Low-power mode	All NMOS LDOs				
50 Hz to 1 kHz		_	50	_	dB
1 kHz to 100 kHz		_	40	_	dB
Short-circuit current limiting ²		Not pre	esent for	any of the	e LDOs.

Table 3-19 LDO performance specifications (cont.)

Parameter	Comments	Min	Тур	Max	Units
Soft current limit during startup	Current above I_rated	-	I_rated + 150	_	mA
Ground current					
Normal mode, no load					
All NMOS		_	75	100	μΑ
All PMOS		-	35	60	μΑ
Low-power mode, no load					
All NMOS	6-1		12	15	μΑ
All PMOS LDOs			5	6.5	μΑ
Bypass mode	N				
All NMOS LDOs		_	10	13	μΑ
All PMOS LDOs	40.	_		1	μΑ
Bypass mode on-resistance					
L1 & L2		_	20	40	mΩ
L3	20.	_	30	60	mΩ
L4	7 60.	_	0.75	1.15	Ω
L6	in this	_	1.1	1.66	Ω
L7, L10, L12, L18	©I.	_	2.2	2.4	Ω
L8, L9, L11, L17	ALITA STATE OF THE	_	0.56	0.84	Ω
L13, L16	alie.	_	6.6	10	Ω

^{1.} For LDO L11 alone, overall error is specified for a load of 0-400 mA instead of its rated current.

3.6.4 Internal voltage-regulator connections

Some regulator supply voltages and/or outputs are connected internally to power other PMIC circuits. These circuits will not operate properly unless their supplies are correct; this requires:

- Certain regulator supply voltages must be delivered at the right value.
- Corresponding regulator sources must be enabled and set to the proper voltages.

These requirements are summarized in Table 3-20.

Table 3-20 Internal voltage regulator connections

Feature	Regulator/ Connection	Default V	Comments
GPIO	VPH_PWR ¹	3.6	Available supplies for GPIO
	VREG_L2	1.8	
	VREG_L5	1.8	

^{2.} If a short is anticipated at the output of any of the LDOs, additional current protection circuits should be added. Alternatively, an external LDO with short circuit protection in lieu of PM8916 internal LDO should be used.

Table 3-20 Internal voltage regulator connections (cont.)

Feature	Regulator/ Connection	Default V	Comments
MPP	VPH_PWR	3.6	Available supplies for MPP
	VREG_L2	1.2	
	VREG_L5	1.8	
Clocks	VREG_L5	1.8	Sleep clock pad (Vio)
	VREG_XO	1.8	XO core
	VREG_RF_CLK	1.8	Low-noise output buffers (RF_CLKx)
	VREG_L7	1.8	Low-power output buffers (BB_CLKx) The BB_CLKx buffer supply L7 is forced on by BB_ CLKx_EN.
SPMI	VREG_L5	1.8	SPMI pad (Vio)
AMUX	max{VBAT, USB_IN}	-	VADC (AMUX + XOADC) supply
BMS	VREG_L6	1.8	BMS IADC supply L6 is forced on by BMS for OCV measurement.
Miscellaneous	VREG_L5	1.8	

^{1.} GPIO_1 and GPIO_2 do not support VPH_PWR domain.

Table 3-21 Boost specifications

Parameter	Test conditions	Min	Тур	Max	Units
Boost efficiency	3.7 V input, 2.2 µH inductor, 600 mA load	84	88	_	%
	3.7 V input, 2.2 µH inductor, 900 mA load	80	87	_	%
Absolute voltage accuracy	CCM at 5.5 V	-3	0	3	%
Temperature coefficient	600 mA load current	-100	_	100	ppm/°C
Overshoot Regulator turn on/off, load off, voltage step		-	5	9	%
Voltage dip due to transient	6 mA to 600 mA current step	_	340	500	mV
Voltage spike due to transient	600 mA to 6 mA current step	_	300	500	mV
Settling time		_	_	200	μs
Load regulation	V _{in} < V _{out} + 1 V with load from I _{rated} /100 to I _{rated}	-	-	3	%
Line regulation	600 mA load current	_	2	2	%/V
Zero-load Idle current		_	0.5	2	mA
Boost output ripple 600 mA load, 20 µF capacitor, 1.6 MHz clock rate		_	_	80	mV
Boost output voltage	8 Ω	4.0	5.0	5.5	V
	4 Ω	4.0	5.0	5.0	V

Table 3-21 Boost specifications (cont.)

Boost output voltage step	_	50	_	mV
Boost output current	_	_	900	mA

3.7 General housekeeping

The PMIC includes many circuits that support handset-level housekeeping functions – various tasks that must be performed to keep the handset in order. Integration of these functions reduces the external parts count and the associated size and cost. Housekeeping functions include an analog switch matrix, multiplexers, and voltage scaling; an HK/XO ADC circuit; system clock circuits; a real-time clock for time and alarm functions; and over-temperature protection.

3.7.1 Analog multiplexer and scaling circuits

A set of analog switches, analog multiplexers, and voltage scaling circuits select and condition a single analog signal for routing to the on-chip HK/XO ADC. The multiplexer and scaling functions are summarized in Table 3-22.

Table 3-22 Analog multiplexer and scaling functions

Ch#	Description	Typical input range (V)	Scaling	Typical output range (V)
0	USB_IN pin	0.5–16	1/10	0.05–1.6
1 to 4	RESERVED	-	_	-
5	VCOIN	0.15–3.25	1/3	0.05–1.08
6	VBAT_SNS	2.5–4.5	1/3	0.83–1.5
7	VBAT_VPH_PWR	0.15–1.8	1/3	0.05-0.72
8	DIE_TEMP	0.4–0.9	1/1	0.4–0.9
9	VREF_0P625	0.625	1/1	0.625
10	VREF_1P25	1.25	1/1	1.25
11	CHG_TEMP	0.1–1.7	1/1	0.1–1.7
12	BUFFERED_VREF_0P625	0.625	1/1	0.625
13	RESERVED	-	_	-
14	GND_REF	For calibration	_	-
15	VDD_VADC	For calibration	_	-
16	MPP1	0.1–1.7	1/1	0.1–1.7
17	MPP2	0.1–1.7	1/1	0.1–1.7
18	MPP3	0.1–1.7	1/1	0.1–1.7
19	MPP4	0.1–1.7	1/1	0.1–1.7
20 to 31	RESERVED	-	_	-
32	MPP1	0.3–4.5	1/3	0.1–1.7

Table 3-22 Analog multiplexer and scaling functions (cont.)

33	MPP2	0.3–4.5	1/3	0.1–1.7
34	MPP3	0.3–4.5	1/3	0.1–1.7
35	MPP4	0.3–4.5	1/3	0.1–1.7
36 to 47	RESERVED	_	-	_
48	BAT_THERM	0.1–1.7	1/1	0.1–1.7
49	BAT_ID	0.1–1.7	1/1	0.1–1.7
50	XO_THERM without AMUX buffer	0.1–1.7	1/1	0.1–1.7
51 to 53	RESERVED	- N	_	_
54	PA_THERM	0.1–1.7	1/1	0.1–1.7
55 to 59	RESERVED	∠ O,	_	_
60	XO_THERM through AMUX buffer ¹	0.1–1.7	1/1	0.1–1.7
255	Module power off ²		_	-

^{1.} These amux inputs come from off-chip thermistor circuits.

NOTE Gain and offset errors are different through each analog multiplexer channel. Each path should be calibrated individually over its valid gain and offset settings for best accuracy.

Performance specifications pertaining to the analog multiplexer and its associated circuits are listed in Table 3-23.

Table 3-23 Analog multiplexer performance specifications

Parameter	Comments ²	Min	Тур	Max	Units
Supply voltage	Connected internally to VREG_L6	_	1.8 V	_	V
Output voltage range					
Full specification compliance		0.20	_	VL6 - 0.20	V
Degraded accuracy at edges		0.05	_	VL6 - 0.05	V
Input referred offset errors					
Channels with x1 scaling		-2.0	_	+2.0	mV
Channels with 1/3 scaling		-1.5	_	+1.5	mV
Channels with 1/4 scaling		-3.0	_	+3.0	mV
Channels with 1/6 scaling		-3.0	_	+3.0	mV

^{2.} Channel 32 should be selected when the analog multiplexer is not being used; this prevents the scalers from loading the inputs.

Table 3-23 Analog multiplexer performance specifications (cont.)

Parameter	Comments ²	Min	Тур	Max	Units
Gain errors, including scaling	Excludes VREG_L8 output error				
Channels with x1 scaling		-0.20	_	+0.20	%
Channels with 1/3 scaling		-0.15	_	+0.15	%
Channels with 1/4 scaling		-0.30	_	+0.30	%
Channels with 1/6 scaling		-0.30	-	+0.30	%
Integrated nonlinearity (INL)	Input referred to account for scaling	-3	-	+3	mV
Input resistance	Input referred to account for scaling				
Channels with x1 scaling		10	b _	_	$M\Omega$
Channels with 1/3 scaling		1	_	_	$M\Omega$
Channels with 1/4 scaling		0.5	_	_	$M\Omega$
Channels with 1/6 scaling		0.5	_	_	$M\Omega$
Channel-to-channel isolation	f = 1 kHz	50	_	-	dB
Output settling time	C _{load} = 65 pF	_	-	25	μs
Output noise level	f = 1 kHz	_		2	μV/Hz ^{1/2}

^{1.} The AMUX output and a typical load is modeled in Figure 3-8. After S1 closes, the voltage across C2 settles within the specified settling time.

- 2. Multiplexer offset error, gain error, and INL are measured as shown in Figure 3-7. Supporting comments:
- The nonlinearity curve is exaggerated for illustrative purposes.
- Input and output voltages must stay within the ranges stated in this table; voltages beyond these ranges result in nonlinearity and are beyond specification.
- Offset is determined by measuring the slope of the endpoint line (m) and calculating its Y-intercept value (b): Offset = $b = y1 m \cdot x1$
- Gain error is calculated from the ideal response and the endpoint line as the ratio of their two slopes (in percentage):

 $Gain_error = [(slope \ of \ endpoint \ line)/(slope \ of \ ideal \ response) - 1] \cdot 100\%$

- INL is the worst-case deviation from the endpoint line. The endpoint line removes the gain and offset errors to isolate nonlinearity:

INLmin = min[Vout (actual at Vx input) - Vout (endpoint line at Vx input)]

INLmax = max[Vout (actual at Vx input) - Vout (endpoint line at Vx input)]

AMUX input to ADC output end-to-end accuracy specifications are listed in Table 3-25.

PM8916 Device Specification Electrical Specifications

3.7.2 AMUX input to ADC output end-to-end accuracy

Table 3-24 AMUX input to ADC output end-to-end accuracy

	Typical in range					l output nge	AMUX	(input to ADC out RSS ²	put end-to-end ac	curacy,	AMUX		put end-to-end ac	curacy,	
AMUX	Function		Automatic			Without	calibration	Internal	calibration	Without o	alibration	Internal c	alibration	Recommended method of	
ch#	runction	Min (V)	Max (V)	scaling	Min (V)	Max (V)	Accuracy corresponding to min input voltage	Accuracy corresponding to max input voltage	calibration ⁵ for the channel						
0	USB_IN pin (divided by 10)	4.35	6.3	1/10	0.435	0.63	4.97	3.92	2.38	2.3	9.59	7.92	3.86	3.46	Absolute
1–4		-	-	_	-	-	-	-	- W	_	-	_	-	_	
5	VCOIN pin	2	3.25	1/3	0.67	1.08	3.1	2.2	0.7	0.52	5.7	4.37	1.4	1.08	Absolute
6	VBAT_SNS pin	2.5	4.5	1/3	0.83	1.5	2.64	1.89	0.6	0.47	5.0	3.76	1.24	0.93	Absolute
7	VBAT pin	2.5	4.5	1/3	0.83	1.5	2.64	1.89	0.6	0.47	5.0	3.76	1.24	0.93	Absolute
8	Die-temperature monitor	0.4	0.9	1	0.4	0.9	4.75	2.4	1.0	1.22	8.0	4.7	2.00	1.22	Absolute
9	0.625 V reference voltage	0.625	0.625	1	0.625	0.625	3.27	3.27	0.71	0.71	5.95	5.95	1.47	1.47	Absolute – part of calibration
10	1.25 V reference voltage	1.25	1.25	1	1.25	1.25	2.05	2.05	0.5	0.5	4.08	4.08	1.01	1.01	Absolute – part of calibration
11	Charger temperature	0.1	1.7	1	0.1	1.7	18.42	1.79	3.66	0.46	25.64	3.58	6.22	0.9	Absolute
12	VREF_0p625_buf	0.625	0.625	1	0.625	0.625	3.27	3.27	0.71	0.71	5.95	5.95	1.47	1.47	Absolute – part of calibration
13		-	-	_	-	-	_	-	_	_	-	_	-	_	
14–15	GND_REF, VDD_ADC	-	-	_	-	-	_	-	_	_	-	-	-	_	
16–19	MPP_01 to MPP_04 pin	0.1	1.7	1	0.1	1.7	18.00	1.76	4.0	0.47	26.00	3.59	6.00	0.88	Absolute or ratiometric depending on application
20–31		-	_	_	-	-	_	-	-	_	-	-	-	_	
32–35	MPP_01 to MPP_04 pin	0.3	5.1	1/3	0.1	1.7	18.33	1.78	3.67	0.45	25.67	3.59	6.33	0.9	Absolute or Ratiometric depending on application
36–47		-	-	-	-	_	_	-	_	_	-	-	-	_	
48	BAT_THERM	0.1	2.0	1.0	0.1	1.7	18.42	1.79	3.7	0.46	25.64	3.58	6.22	0.9	Ratiometric
49	BAT_ID	0.1	2.0	1.0	0.1	1.7	18.42	1.79	3.7	0.46	25.64	3.58	6.22	0.9	Ratiometric
50	XO_THERM pin direct 1	0.1	1.7	1	0.1	1.7	18.42	1.79	3.66	0.46	25.64	3.58	6.22	0.9	Ratiometric

PM8916 Device Specification Electrical Specifications

Table 3-24 AMUX input to ADC output end-to-end accuracy

	Typical input range					l output nge	AMUX input to ADC output end-to-end accuracy, RSS ^{2, 3} (%)			AMUX input to ADC output end-to-end accuracy, WCS ^{1, 4} (%)							
AMUX	Function			Automatic			Without o	alibration	Internal o	alibration	Without c	alibration	Internal c	alibration	Recommended method of		
ch #	Tunction	Min (V)		Max (V)	scaling	ax S	Min (V)	Max (V)	Accuracy corresponding to min input voltage	Accuracy corresponding to max input voltage	Accuracy corresponding to min input voltage	Accuracy corresponding to max input voltage	Accuracy corresponding to min input voltage	Accuracy corresponding to max input voltage	Accuracy corresponding to min input voltage	Accuracy corresponding to max input voltage	calibration ⁵ for the channel
51–53		-	-	_	-	_	-	-		_	_	_	-	-			
54	PA THERM	0.1	2.0	1.0	0.1	1.7	18.42	1.79	3.7	0.46	25.64	3.58	6.22	0.9	Ratiometric		
55–59		-	-	-	-	-	-	-	A -	-	-	-	-	-			
60	XO_THERM pin through AMUX	0.1	1.7	1	0.1	1.7	18.42	1.79	3.66	0.46	25.64	3.58	6.22	0.9	Ratiometric		
255	Module power off	-	_	-	_	_	_	-	_	_	_	_	-	-			

XO_THERM to ADC output end-to-end accuracy.
The min and max accuracy values correspond to min and max input voltage to the AMUX channel.
Accuracy is based on root sum square (RSS) of the individual errors.

Accuracy is based on worst-case straight sum (WCS) of all errors.
 Absolute uses 0.625 V and 1.25 V MBG voltage reference as calibration points. Ratiometric uses the GND_XO and VREF_XO_THM as calibration points.

Figure 3-7 Multiplexer offset and gain errors

Figure 3-8 Analog-multiplexer load condition for settling time specification

3.7.3 HK/XO ADC circuit

The analog-to-digital converter circuit is shared by the housekeeping (HK) and 19.2 MHz crystal oscillator (XO) functions. A 2:1 analog multiplexer selects which source is applied to the ADC:

- The HK source the analog multiplexer output discussed in Section 3.7.1; or
- The XO source the thermistor network output that estimates the 19.2 MHz crystal temperature.

HK/XO ADC performance specifications are listed in Table 3-25.

Table 3-25 HK/XO ADC performance specifications

Parameter	Comments	Min	Тур	Max	Units
Supply voltage	Connected internally to VREG_L6	-	1.8	-	V
Resolution		-	-	12	bits
Analog input bandwidth		1	100	-	kHz
Sample rate	XO/8	-	2.4	-	MHz
Offset error	Relative to full-scale	-1	-	1	%
Gain error	Relative to full-scale	-1	-	1	%
INL	15-bit output	-8	-	8	LSB
DNL	15-bit output	-4	-	4	LSB

3.7.4 System clocks

The PMIC includes several clock circuits whose outputs are used for general housekeeping functions, and elsewhere within the handset system. These circuits include a 19.2 MHz XO with multiple controllers and buffers, an RC oscillator, and sleep clock outputs. Performance specifications for these functions are presented in the following subsections.

3.7.4.1 19.2 MHz XO circuits

An external crystal is supplemented by on-chip circuits to generate the desired 19.2 MHz reference signal. Using an external thermistor network, the on-chip ADC, and advanced temperature-compensation software, the PMIC eliminates the large and expensive VCTCXO module required by previous-generation chipsets. The XO circuits initialize and maintain valid pulse waveforms and measure time intervals for higher-level handset functions. Multiple controllers manage the XO warmup and signal buffering, and generate the desired clock outputs (all derived from one source):

- Low-noise outputs RF_CLKx enabled internally or can be enabled via properly configured GPIOs.
- Low-power output BB_CLK1 enabled by the dedicated control pin BB_CLK1_EN; this output is used as the modem IC's clock signal.
- Low-power output BB_CLK2 enabled internally or can be enabled via a properly configured GPIO.

Since the different controllers and outputs are independent, circuits other than those needed for the WAN can operate even while the modem IC is asleep and its RF circuits are powered down.

The XTAL_19M_IN and XTAL_19M_OUT pins are incapable of driving a load – the oscillator will be significantly disrupted if either pin is externally loaded.

As described in Section 3.7.4.3, an RC oscillator is used to drive some clock circuits until the XO source is established.

The 19.2 MHz XO circuit and related performance specifications are listed in Table 3-26.

Table 3-26 XO controller, buffer, and circuit performance specifications

Parameter	Comments	Min	Тур	Max	Units
XO circuits					
Operating frequency	Set by external crystal	3 -	19.2	_	MHz
Load conditions					
Capacitance		_	7.0	_	pF
Resistance		1.1	_	-	kΩ
Startup time					
when XO is disabled in mission mode	arr.	-	_	10.0	ms
When XO is disabled in CalRC mode	mad.cu	_	_	20.0	ms
Supply voltage = VREG_XO	Input buffer and core XO circuits	_	1.8	_	V
Power-supply quiescent current	O. The	_	60	_	μA
Low-noise outputs: RF_CLKx	2001				
Voltage swing	A.	1.65	1.8	1.95	Vpp
Duty cycle		48	50	52	%
Buffer output impedance					
at 1x drive strength		40	50	62	Ω
at 2x drive strength		31	38	50	Ω
at 3x drive strength		24	28	36	Ω
at 4x drive strength		17	20	25	Ω
Phase noise in NPM					
at 10 Hz		_	-86	-	dBc/Hz
at 100 Hz		_	-116	_	dBc/Hz
at 1 kHz		_	-134	_	dBc/Hz
at 10 kHz		_	-144	_	dBc/Hz
at 100 kHz		_	-144	_	dBc/Hz
at 1 MHz		-	-144	_	dBc/Hz
Supply = VREG_RF_CLK	Output buffers	_	1.8		V
Low-power outputs: BB_CLK					_1

Table 3-26 XO controller, buffer, and circuit performance specifications (cont.)

Parameter	Comments	Min	Тур	Max	Units
Output levels					
Logic high (V _{OH})		0.65 x V _{DD}	_	_	V
Logic low (V _{OL})		_	-	0.35 x V _{DD}	V
Output duty cycle		44	50	56	%
USB jitter	Specified values are peak-to-				
0.5 MHz to 2 MHz	peak period jitter.	- 6	_	50	ps
> 2 MHz		-0	-	100	ps
Buffer output impedance	Current drive capabilities meet	0.7	-		
at 1x drive strength	the output levels specified	40	50	62	Ω
at 2x drive strength	above.	31	38	50	Ω
at 3x drive strength		24	28	36	Ω
at 4x drive strength		17	20	25	Ω
Supply voltage = VREG_L7	Output buffers	_	1.8	_	V

3.7.4.2 19.2 MHz XO crystal requirements

Crystal performance is critical to a wireless product's overall performance. Guidance is available within 19.2 MHz Modem Crystal Qualification Requirements and Approved Suppliers (80-V9690-19). This document includes:

- Data needed from crystal suppliers to demonstrate compliance
- Approved suppliers for different crystal configurations
- Discussion of various schematic options

3.7.4.3 RC oscillator

The PMIC includes an on-chip RC oscillator that is used during startup, and as a backup to other oscillators. Pertinent performance specifications are listed in Table 3-27.

Table 3-27 RC oscillator performance specifications

Parameter	Comments	Min	Тур	Max	Units
Oscillation frequency		14	19.2	24	MHz
Duty cycle		30	50	70	%
Divider in SLEEP_CLK path		_	586	_	_
Power-supply current	N	-	_	80	μΑ

3.7.4.4 Sleep clock

Source options:

- Calibrated low-frequency RC oscillator.
 - □ Used as a source of RTC clock when PMIC is off; requires a qualified coin cell or super capacitor to support RTC when the battery is removed.
 - Periodically uses the XO signal for calibration, achieving accuracy suitable for RTC without an external crystal.
- The 19.2 MHz XO divided by 586 (32.7645 kHz nominal) This is the source of sleep clock and RTC clock when the device is in active and sleep mode.
- The 19.2 MHz RC oscillator divided by 586 (32.7645 kHz nominal) The 19.2 MHz RC oscillator is an on-chip circuit with coarse frequency accuracy.
 - □ Used during PMIC powerup until the software switches over to XO/586.
 - □ Used in active or sleep mode only if other sources are unavailable.

The PMIC sleep-clock output is routed to the modem IC via SLEEP_CLK. It is also available for other applications using properly configured GPIOs.

Related specifications presented elsewhere include:

- 19.2 MHz XO circuits (Section 3.7.4.1)
- RC oscillator (Section 3.7.4.3)
- Output characteristics (voltage levels, drive strength, etc.) are defined in Section 3.4.

3.7.5 Real-time clock

The real-time clock (RTC) functions are implemented by a 32-bit real-time counter and one 32-bit alarm, both configurable in one-second increments. The primary input to the RTC circuits is the selected sleep-clock source (calibrated low-frequency oscillator, or divided-down 19.2 MHz XO). Even when the phone is off, the selected oscillator and RTC continue to run off the main battery.

If the main battery is present and an SMPL event occurs, RTC contents are corrupted. As power is restored, the RTC pauses and skips a few seconds. The device must reacquire system time from the network to resume the usual RTC accuracy. Similarly, if the main battery is not present and the voltage at VCOIN drops too low, RTC contents are again corrupted. In either case, the RTC reset interrupt is generated. A different interrupt is generated if the oscillator stops, also causing RTC errors.

If RTC support is needed when the battery is removed, a qualified coin-cell or super capacitor is required on the VCOIN pin of the PMIC. If only SMPL support is needed when the battery is removed, a capacitor with effective capacitance of at least 10 uF is required on the VCOIN pin of the PMIC.

Pertinent RTC specifications are listed in Table 3-28.

Table 3-28 RTC performance specifications

Parameter	Comments	Min	Тур	Max	Units	
Tuning resolution	With known calibrated source	_	3.05	_	ppm	
Tuning range	C.	-192	-	192	ppm	
Accuracy (phone off) XO/586 as RTC source	Phone on	_	_	24	ppm	
CalRC as RTC source	Phone off, valid battery present Phone off, valid coin cell present		_ _	50 200	ppm ppm	

3.7.6 Over-temperature protection (smart thermal control)

The PMIC includes over-temperature protection in stages, depending on the level of urgency as the die temperature rises:

- Stage 0 normal operating conditions (less than 110°C).
- Stage 1 110°C to 130°C; an interrupt is sent to the modem IC without shutting down any PMIC circuits.
- Stage 2 130°C to 150°C; an interrupt is sent to the modem IC and unnecessary high-current circuits are shut down.
- Stage 3 greater than 150°C; an interrupt is sent to the modem IC and the PMIC is completely shut down.

Temperature hysteresis is incorporated such that the die temperature must cool significantly before the device can be powered on again. If any start signals are present while at Stage 3, they are ignored until Stage 0 is reached. When the device cools enough to reach Stage 0 and a start signal is present, the PMIC will power up immediately.

3.8 User interfaces

In addition to housekeeping functions, the PMIC also includes these circuits in support of common handset-level user interfaces: LED current sinks; and vibration motor driver.

3.8.1 Current drivers

There are two current drivers available:

- Even MPPs which could be used as home row driver
- CHG_LED_SINK to drive LED during charging. This pin cannot be used to drive LED if LBC is not used (OPT_1 is grounded)

3.8.2 Vibration motor driver

The PMIC supports silent incoming-call alarms with its vibration motor driver. The vibration driver is a programmable voltage output that is referenced to VDD; when off, its output voltage is VDD. The motor is connected between VDD and the VIB_DRV_N pin.

Performance specifications for the vibration motor driver circuit are listed in Table 3-29.

Table 3-29	Vibration motor	driver perf	formance specifications
-------------------	-----------------	-------------	-------------------------

Parameter	Comments	Min	Тур	Max	Units
Output voltage (V _m) error ¹ Relative error	VDD > 3.2 V; $I_m = 0$ to 175 mA; V_m setting = 1.2 to 3.1 V	-6	_	6	%
Absolute error	Total error = relative + absolute	-60	-	60	mV
Headroom ²	I _m = 175 mA	_	_	200	mV
Short-circuit current	VIB_DRV_N = VDD	225	_	600	mA

^{1.} The vibration motor driver circuit is a low-side driver. The motor is connected directly to VDD, and the voltage across the motor is Vm = VDD - Vout, where Vout is the PMIC voltage at VIB_DRV_N.

3.9 IC-level interfaces

The IC-level interfaces include poweron circuits; the SPMI; interrupt managers; and miscellaneous digital I/O functions like level translators, detectors, and controllers. Parameters associated with these IC-level interface functions are specified in the following subsections. GPIO and MPP functions are also considered part of the IC-level interface functional block, but they are specified in their own sections (Section 3.10 and Section 3.11, respectively).

3.9.1 Poweron circuits and the power sequences

Dedicated circuits continuously monitor several events that might trigger a poweron sequence, including KPD_PWR_N, CBL_PWR_N, charger insertion, RTC, or SMPL. If any of these events occur, the PMIC circuits are powered on, the handset's available power sources are determined, the correct source is enabled, and the modem IC is taken out of reset.

Hardware configuration controls (OPT[2:1]) determine which regulators are included during the initial poweron sequence, as defined in Section 3.9.2. An example sequence will be made available in future revisions of the document.

The I/Os to/from the poweron circuits are basic digital control signals that must meet the voltage-level requirements stated in Section 3.4. The KPD_PWR_N and CBL_PWR_N inputs are pulled up to an internal voltage, dVdd (CBL_PWR_N is internally pulled high to dVdd using additional weak FET). Additional poweron circuit performance specifications are listed in Table 3-30. More complete definitions for time intervals included in this table are provided in the PM8916 *Power Management IC Training Slides* (80-NK808-21).

^{2.} Adjust the programmed voltage until the lowest motor voltage occurs while still meeting the voltage accuracy specification. This lowest motor voltage (Vm = VDD - Vout) is the headroom.

Table 3-30 Poweron circuit performance specifications

Parameter	Comments	Min	Min Typ Max		Units
Internal pullup resistor	At KPD_PWR_N and CBL_PWR_N pins	-	200	-	kΩ
Sequence time intervals ¹		1	+		+
t _{reg1}	Poweron event to first regulator on ²	_	33	_	ms
t _{reset1}	Last default regulator on to PON_RESET_N = H	_	450	_	us
tps_hold	Time after which PMIC will turn off if PS_HOLD is not driven high by MSM	133.33	200	300	ms
t _{reset0}	PON_RESET_N = L to first regulator off	_	200	_	ms
t ps_hold_off	Delay from PS_HOLD dropping to PON_ RESET_N going low	_	175	-	us
Primary PON sequence					
KYPD_PWR_N	Could be any PON trigger	_	0.00	_	ms
S4	Time from PON trigger to S4 being enabled	_	56.00	-	ms
S3	Time from S4 enable to S3 being enabled	_	4.00	_	ms
L3	Time from S3 enable to L3 being enabled	_	2.40	_	ms
S1	Time from L3 enable to S1 being enabled	_	340.00	_	us
S2	Time from S1 enable to S2 being enabled	-	1.80	_	ms
GPIO4	Time from S2 enable to GPIO4 being enabled	-	1.60	-	ms
MPP1	Time from GPIO4 enable to MPP1 being enabled	-	6.70	_	ms
L5	Time from MPP1 enable to L5 being enabled	-	725.00	-	us
L7	Time from L5 enable to L7 being enabled	-	125.00	-	us
BB_CLK1	Time from L7 enable to BB_CLK1 being enabled	_	25.00	_	ms
L6	Time from L7 enable to L6 being enabled	_	510.00	_	us
L2	Time from L6 enable to L2 being enabled	_	210.00	_	us
L13	Time from L2 enable to L13 being enabled	-	350.00	-	ms
L8	Time from L13 enable to L8 being enabled	_	350.00	_	us
L12	Time from L8 trigger to L12 being enabled	_	350.00	_	us
L11	Time from L12 trigger to L11 being enabled	-	350.00	_	us
PON_RESET_N	_N Time from L11 enable to PON_RESET_N going high		t _{reset1}	_	ms
PS_HOLD	Time from PON_RESET_N high to PS_HOLD going high	-	t _{ps_hold}	-	ms

^{1.} Timing is derived from the divided-down XO clock source (32.7645 kHz typical); tolerances are set accordingly.

^{2.} The first regulator poweron time treg1 depends on the bandgap reference decoupling capacitor at REF_BYP. The specified value is based on 0.1 μ F. This time does not include the default 16 ms keypad debounce and the 16 ms UVLO debounce timers. If these debounce timers are increased, then the treg1 value will also increase.

Figure 3-9 Poweron sequence

3.9.2 OPT[2:1] hardwired controls

Two pins (OPT_1 and OPT_2) can be used to configure PON parameters. The usable configurations are shown in Table 3-31.

Table 3-31 OPT_1 and OPT_2 PON parameters

Pins	Hi-Z	GND
OPT_1	External charger not present	External charger present
OPT_2	External APC buck (S5) not present	External APC busk (S5) present

Each OPT combination results in a unique set of poweron parameters: which regulators default on at powerup, the order those regulators are turned on, the voltage settings of some of those regulators, and whether external regulators are turned on via MPP or GPIO controls during the poweron sequence. In essence, the OPT combination customizes the poweron sequence for each chipset.

NOTE Connecting either of these pins to VDD will force the PMIC to shut down.

3.9.3 SPMI and the interrupt managers

The SPMI is a bidirectional, two-line digital interface that meets the voltage- and current-level requirements stated in Section 3.4.

PMIC interrupt managers support the chipset modem and its processors, and communicate with the modem IC via SPMI. Since the interrupt managers are entirely embedded functions, additional performance specifications are not required.

3.10 General-purpose input/output specifications

The four general-purpose input/output (GPIO) ports are digital I/Os that can be programmed for a variety of configurations (Table 3-32). Performance specifications for the different configurations are included in Section 3.4.

NOTE Unused GPIO pins should be configured as inputs with 10 μA pulldown.

Table 3-32 Programmable GPIO configurations

Configuration type	Configuration description				
Input	1. No pullup				
	2. Pullup (1.5, 30, or 31.5 μA)				
	3. Pulldown (10 μA)				
	4. Keeper				
Output	Open-drain or CMOS				
	Inverted or non-inverted				
	Programmable drive current; see Table 3-33 for options				
Input/output pair	Requires two GPIOs. Input and output stages can use different power supplies, thereby implementing a level translator. See Table 3-33 for supply options.				

GPIOs default to digital input with 10 uA pulldown at poweron. During poweron, PBS programs GPIO_4 as digital output high at VDD level to enable the external buck converter. Before they can be used for their desired purposes, they need to be reconfigured appropriately.

GPIO_1 and GPIO_2 do not support VPH_PWR domain.

GPIOs are designed to run at a 4 MHz rate to support high-speed applications (only GPIO1 and GPIO2 are GPIOC capable). The supported rate depends on the load capacitance and IR drop requirements. If the application specifies load capacitance, then the maximum rate is determined by the IR drop. If the application does not require a specific IR drop, then the maximum rate can be increased by increasing the supply voltage and adjusting the drive strength according to the actual load capacitance. Table 3-33 lists output voltages for different driver strengths.

Table 3-33 VOL and VOH for different driver strengths

Supply voltage		Minimum load current			
	VOL, VOH	Low-strength driver	Medium-strength driver	High-strength driver	
1.8 V	VOH = VDD - 0.3 V = 1.5 V VOL = 0.3 V	0.15 mA	0.6 mA	0.9 mA	
2.6 V	VOH = VDD - 0.45 V = 2.15 V VOL = 0.45 V	0.3 mA	1.25 mA	1.9 mA	
2.85 V	VOH = VDD - 0.4 V = 2.45 V VOL = 0.4 V	0.3 mA	1.1 mA	1.7 mA	
3.3 V	VOH = VDD - 0.45 V = 2.85 V VOL = 0.45 V	0.39 mA	1.4 mA	2.1 mA	

3.11 Multipurpose pin specifications

The PM8916 includes four multipurpose pins (MPPs), and they can be configured for any of the functions specified within Table 3-34. All MPPs are high-Z at poweron. During poweron, PBS programs MPP_01 as analog output, which is used as a reference for modem IC 3 V I/Os.

Table 3-34 Multipurpose pin performance specifications

Parameter	Comments	Min	Тур	Max	Units
MPP configured as digital	input ¹	(A)			
Logic high input voltage		0.65 * V_M	-	-	V
Logic low input voltage			_	0.35 * V_M	V
MPP configured as digital	output ¹				
Logic high output voltage	I _{out} = I _{OH}	V_M - 0.45	_	V_M	V
Logic low output voltage	I _{out} = I _{OL}	0	_	0.45	V
	10				
MPP configured as analog	input (analog multiplexer input)	1		1	
Input current		-	_	100	nA
Input capacitance	O.F.	_	_	10	pF
MPP configured as analog	output (buffered VREF output)				
Output voltage error	-50 μA to +50 μA	-	_	12.5	mV
Temperature variation	Due to buffer only; does not include VREF variation (see Table 3-17)	-0.03	-	0.03	%
Load capacitance	200	_	_	25	pF
Power-supply current		_	0.17	0.2	mA
MPP configured as level to	ranslator	1		-	
Maximum frequency		4	-	_	MHz

^{1.} Input and output stages can use different power supplies, thereby implementing a level translator. See Table 2-1 for V_M supply options. Other specifications are included in Section 3.4.

3.12 Audio codec

NOTE All audio performance data are collected above PMIC Vbatt of 3.4 V, unless otherwise specified.

3.12.1 Audio inputs and Tx processing

Table 3-35 Analog microphone input performance

Parameter Test conditions		Min	Тур	Max	Units				
Microphone amplifier gain = 0 dB (minimum gain)									
Input referred noise	Single-ended, A-weighted, capless	_	18.5	25.1	μVrms				

Table 3-35 Analog microphone input performance (cont.)

Parameter	Test conditions	Min	Тур	Max	Units
Signal to noise ratio	Single-ended, A-weighted, capless	92.0	94.0	_	dB
THD+N ratio	f = 1.02 kHz; single-ended input; bandwidth				
	200 Hz to 20 kHz, capless				
	Analog input = -1 dBV	_	-83.0	-70.0	dB
	Analog input = -60 dBV, A-weighted	_	-35.0	-32.0	dB
Microphone amplifier ga	ain = 6 dB	(S).	1	1	11
Input referred noise	Single-ended, A-weighted, capless	<u> </u>	10.0	13.0	μVrms
Signal to noise ratio	Single-ended, A-weighted, capless	91.0	94.0	_	dB
THD+N	f = 1.02 kHz; single-ended input; bandwidth	-			
	200 Hz to 20 kHz, capless				
	Analog input = -1 dBV	_	-82.5	-70.0	dB
	Analog input = -60 dBV, A-weighted	_	-34.0	-30.0	dB
Microphone amplifier ga	ain = 12 dB (typical gain)		II.	1	I
Input referred noise	Single-ended, A-weighted, capless	-	5.5	7.1	μVrms
Signal to noise ratio	Single-ended, A-weighted, capless	91.0	93.5	_	dB
THD+N	f = 1.02 kHz; single-ended input; bandwidth				
	200 Hz to 20 kHz, capless				
	Analog input = -1 dBV	_	-83.0	-70.0	dB
	Analog input = -60 dBV, A-weighted	_	-33.5	-30.0	dB
Microphone amplifier ga	ain = 18 dB		II.	1	I
Input referred noise	Single-ended, A-weighted, capless	-	3.5	6.3	μVrms
Signal to noise ratio	Single-ended, A-weighted, capless	87	91.0	_	dB
THD+N	f = 1.02 kHz; single-ended input; bandwidth				
	200 Hz to 20 kHz, capless				
	Analog input = -1 dBV	_	-82.0	-70.0	dB
	Analog input = -60 dBV, A-weighted	_	-31.0	-28.0	dB

Table 3-35 Analog microphone input performance (cont.)

Parameter	Test conditions	Min	Тур	Max	Units
Microphone amplifier gain	= 21 dB		<u> </u>	1	
Input referred noise	Single-ended, A-weighted, capless	_	2.8	4.2	μVrms
Signal to noise ratio	Single-ended A-weighted, capless	85.0	89.0	_	dB
THD+N	f = 1.02 kHz; single-ended input; bandwidth 200 Hz to 20 kHz, capless Analog input = -1 dBV Analog input = -60 dBV A-weighted	<u> </u>	-81.5 -28.5	-70.0 -25.0	dB dB
Microphone amplifier gain	= 24 dB (maximum gain)		l	1	1
Input referred noise	Single-ended A-weighted, capless	_	2.6	4.2	μVrms
Signal to noise ratio	Single-ended A-weighted, capless	84.0	87.5	_	dB
THD+N	f = 1.02 kHz; single-ended input; bandwidth 200 Hz to 20 kHz, capless Analog input = -1 dBV Analog input = -60 dBV A-weighted		-82.0 -26.0	-60.0 -22.0	dB dB
Frequency response (from	n mic input to PCM all sample rates)				
Frequency response	Digital gain = 0 dB; analog gain = 0 dB; Analog input = -20 dBV Passband: 20 Hz to 200 Hz Passband: 200 Hz to 0.4 * Fs Transition band 1 at 0.4375 * Fs Transition band 2 at 0.499 * Fs	-0.05 -0.05 -1.5 -	0 0 -0.7 -25.0	0.05 0.05 0.5 -24.0	dB dB dB dB
	Stopband at 0.5625 * Fs	-	-75.0	-70.0	dB
General requirements		T-	I-	1	1
Absolute gain error	Analog input = -20 dBV, 1.02 kHz	-20.5	-20.0	-19.5	dB
Full-scale input voltage	Single-ended 1 kHz input. Input signal level required to get 0 dBFS digital output	-0.5	0	0.5	Vrms
Power supply rejection (1.8 V)	100 mVpp square wave imposed on the PMIC Vbatt input; analog input = 0 Vrms, terminated with 0 Ω; keep the bypass capacitors on power pins and measure 100 mV ripple at the power pins				
	0 < f < 1 kHz	75.0	86.0	_	dB
	1< f < 5 kHz	75.0	82.0	_	dB
	f > 5 kHz	60.0	70.0	_	dB
Intermodulation distortion (IMD2)	Analog input = 12993 Hz and 14993 Hz equal amplitude tones at -6 dBV; wideband (WB) audio	65.0	85.0	_	dB
	Analog input = 41 Hz and 7993 Hz equal amplitude tones at -6 dBV, WB voice	50.0	90.0	_	dB
	Analog input = 498 Hz and 2020 Hz equal amplitude tones at -6 dBV, narrowband (NB) voice	60.0	90.0	_	dB

Parameter	Test conditions	Min	Тур	Max	Units
Input impedance	Capless input	1.0	_	_	MΩ
	Input disabled	3.0	_	_	MΩ
Input capacitance	Capless input	_	_	15.0	pF
Rx →Tx crosstalk attenuation	Tx path measurement with -5 dBV Rx path signal; f = 1 kHz, 10 kHz, and 20 kHz	80.0	97.0	_	dB
Interchannel isolation	20 < f < 20 kHz, one input terminated with 1 kΩ and the other input gets 1 kHz at -5 dBV; measure the digital output of the terminated channel	90.0	100.0	_	dB

3.12.2 Audio outputs and Rx processing

Table 3-36 Ear output performance, 32 Ohm load unless specified

Parameter	Test conditions	Min	Тур	Max	Units
EAR: 8 kHz, 16 bits			1	1	
Receive noise	A-weighted; input = -999 dBFS, 6 dB gain mode	-	7.8	16.0	μVrms
	A-weighted; input = -999 dBFS, 1.5 dB gain mode	-	5.8	12.0	μVrms
Signal to noise ratio	Ratio of full scale output to output noise level, VDD_ EAR_SPKR = 3.7 V or 5 V, 1.5 dB gain mode	102.0	108.0	_	dB
	Ratio of full scale output to output noise level, VDD_ EAR_SPKR = 3.7 V or 5 V, 6 dB gain mode	100.0	106.0	_	dB
THD+N	PCMI = -1 dBFS (band limited from 200 Hz to 20 kHz), VDD_EAR_SPKR = 3.7 V or 5 V	-	-80.0	-70.0	dB
	PCMI = -60 dBFS (band limited from 200 Hz to 20 kHz), VDD_EAR_SPKR = 3.7 V or 5 V, A-weighted	-	-34.5	-31.0	dB
EAR: 16 kHz, 16 bits			1	1	
Receive noise	A-weighted; input = -999 dBFS, 6 dB gain mode	-	7.8	16.0	μVrms
	A-weighted; input = -999 dBFS, 1.5 dB gain mode	_	5.8	12.0	μVrms
Signal to noise ratio	Ratio of full scale output to output noise level, VDD_ EAR_SPKR = 3.7 V or 5 V, 1.5 dB gain	102.0	108.0	_	dB
	Ratio of full scale output to output noise level, VDD_ EAR_SPKR = 3.7 V or 5 V, 6 dB gain mode	100.0	106.0	_	dB
THD+N	PCMI = -1 dBFS (band limited from 200 Hz to 20 kHz), VDD_EAR_SPKR = 3.7 V or 5 V	_	-74.0	-70.0	dB
	PCMI = -60 dBFS (band limited from 200 Hz to 20 kHz), VDD_EAR_SPKR = 3.7 V or 5 V, A-weighted	-	-34.5	-31.0	dB
Other characteristics	;			•	
Full-scale output	f = 1.02 kHz, 6 dB gain mode	1.8	2.0	2.1	Vrms
voltage	f = 1.02 kHz, 1.5 dB gain mode	1.0	1.2	1.3	Vrms

Table 3-36 Ear output performance, 32 Ohm load unless specified (cont.)

Parameter	Test conditions	Min	Тур	Max	Units
DAC full-scale output		_	_	1.0	Vrms
Output power	f = 1.02 kHz, 6 dB gain mode, 32 Ω , THD+N <1%	120.0	124.5	_	mW
	f = 1.02 kHz, 6 dB gain mode, 16 Ω THD+N < 1%	235.0	243.0	_	mW
	f = 1.02 kHz, 6 dB gain mode, 10.67 Ω THD+N < 1%	310.0	320.0	_	mW
Output load		10.7	32.0	50000	Ω
Output capacitance	Total capacitance between EARO_P and EARO_M, including PCB capacitance and EMI	<u> </u>	_	500	pF
Tx → Rx crosstalk attenuation	Rx path measurement with -5 dBFS Tx path signal; f = 1 kHz	90.0	100.0	_	dB
Power supply rejection	0 < f < 1 kHz; 100 mVpp sine wave imposed on VDD_EAR_SPKR; PCMI = -999 dBFS, 6 dB gain mode	70.0	90.0	_	dB
	1 kHz < f < 5 kHz; 100 mVpp sine wave imposed on VDD_EAR_SPKR; PCMI = -999 dBFS, 6 dB gain mode	60.0	82.0	_	dB
	5 kHz < f < 20 kHz; 100 mVpp sine wave imposed on VDD_EAR_SPKR; PCMI = -999 dBFS, 6 dB gain mode	50.0	78.0	_	dB
Disabled output impedance	Measured externally, with amplifier disabled	1.0	_	_	ΜΩ
Output common mode voltage	Measured externally, with amplifier disabled	1.52	1.60	1.68	V
Output DC offset	3,713	0	0.135	3.0	mV
Turn on/off click and pop level	A-weighted	_	-66.0	-54.0	dBVpp

Table 3-37 HPH output performance, 16 Ohm load unless specified

Parameter	Test conditions	Min	Тур	Max	Units			
HPH: 8 kHz, 16 bits								
Receive noise	A-weighted; input = -999 dBFS, VDD_CP = 1.9 V	_	4.7	6.5	μVrms			
Signal to noise ratio	Ratio of full scale output to output noise level, VDD_CP = 1.9 V	99.0	102.5	_	dB			
THD+N	PCMI = -1 dBFS (band limited from 200 Hz to 20 kHz), VDD_CP = 1.9 V	_	-80.0	-70.0	dB			
	PCMI = -60 dBFS (band limited from 200 Hz to 20 kHz), VDD_CP = 1.9 V, A-weighted	_	-35.0	-31.0	dB			
HPH: 48 kHz, 16 bits	,		1.		1			
Receive noise	A-weighted; input = -999 dBFS, VDD_CP = 1.9 V	_	4.7	6.5	μVrms			
Signal to noise ratio	Ratio of full scale output to output noise level, VDD_CP = 1.9 V	99.0	102.5	_	dB			

Table 3-37 HPH output performance, 16 Ohm load unless specified (cont.)

Parameter	Test conditions	Min	Тур	Max	Units
THD+N	PCMI = -1 dBFS (band limited from 200 Hz to 20 kHz), VDD_CP = 1.9 V	-	-88.0	-75.0	dB
	PCMI = -60 dBFS (band limited from 200 Hz to 20 kHz), VDD_CP = 1.9 V or, A-weighted	-	-36.0	-32.0	dB
HPH: 48 kHz, 24 bits					
Receive noise	A-weighted; input = -999 dBFS, VDD_CP = 1.9 V	9	4.7	6.5	μVrms
Signal to noise ratio	Ratio of full scale output to output noise level, VDD_CP = 1.9 V	99.0	102.5	_	dB
ΓHD+N	PCMI = -1 dBFS (band limited from 200 Hz to 20 kHz), VDD_CP = 1.9 V	-	-89.0	-80.0	dB
	PCMI = -60 dBFS (band limited from 200 Hz to 20 kHz), VDD_CP = 1.9 V, A-weighted	-	-43.0	-40.0	dB
Other characteristics				<u>'</u>	
Full-scale output voltage	f = 1.02 kHz, 0 dB FS; 16 ohm load; VDD_CP = 1.9 V	0.50	0.59	0.64	Vrms
	f = 1.02 kHz, 0 dB FS; 32 ohm load; VDD_CP = 1.9 V	0.96	0.99	1.00	Vrms
DAC full-scale output	thrit	_	_	1.00	Vrms
Output power	f = 1.02 kHz, 16 Ω load; VDD_CP = 1.9 V	15.6	21.5	25.6	mW
	f = 1.02 kHz, 32 Ω load; VDD_CP = 1.9 V	27.0	30.8	32.0	mW
Output load	0 dBV maximum output	26	32	50000	Ω
	-4.5 dBV maximum output	13	16	50000	Ω
Output capacitance	Total capacitance on HPH output (single-ended), including PCB capacitance and EMI	-	-	1000	pF
$Tx \rightarrow Rx$ crosstalk attenuation	Rx path measurement with -5 dBFS Tx path signal. f = 1 kHz	90.0	100.0	_	dB
Interchannel isolation (separate GND for HPH_L & R)	20 < f < 20 kHz, measured channel output = -999 dBFS, second DAC channel output = -5 dBFS	90.0	97.0	_	dB
Interchannel gain error	Delta between left and right channels, input = 1 kHz at -20 dBFS	-	0.03	0.30	dB
Interchannel phase error	Delta between left and right channels, input = 1 kHz at -20 dBFS	-	0.07	0.50	deg
Power supply rejection	0 < f < 20 kHz; 100 mVpp sine wave imposed on VPH_PWR; PCMI = -999 dBFS	80.0	90.9	_	dB
Intermodulation distortion (IMD2)	Digital input = 12993 Hz and 14993 Hz equal amplitude tones at -6 dBFs	70.0	81.0	_	dB
	Digital input = 41 Hz and 7993 Hz equal amplitude tones at -6 dBFs	65.0	75.0	_	dB
	Analog input = 498 Hz and 2020 Hz equal amplitude tones at -6 dBFS	70.0	77.0	_	dB

Table 3-37 HPH output performance, 16 Ohm load unless specified (cont.)

Parameter	Test conditions	Min	Тур	Max	Units
Disabled output impedance	Measured externally, with amplifier disabled	1.0	_	_	МΩ
Output DC offset	Input = -999 dBFS	0	0.1	1.5	mV
Turn on/off click and pop level	A-weighted, 16 Ω or 32 Ω	_	-81.0	-62.0	dBVpp

Table 3-38 Mono speaker driver outputs performance, 8 Ohm load and + 12 dB gain unless otherwise specified

Parameter	Test conditions	Min	Тур	Max	Units
SPKR_DRV; 48 k	Hz, 16 bits				
Receive noise	A-weighted; input = -999 dBFS, VDD_EAR_SPKR = 5 V	_	50.0	100.0	μVrms
THD+N	Pout = 1.5 W, 1 kHz, VDD_EAR_SPKR = 5.5 V	-	-86.5	-80.0	dB
	Pout = 1.2 W, 1 kHz, VDD_EAR_SPKR = 5 V	-	-86.0	-80.0	dB
	Pout = 1 W, 1 kHz, VDD_EAR_SPKR = 4.2 V	-	-36.0	-20.0	dB
	Pout = 850 mW, 1 kHz, VDD_EAR_SPKR = 4.2 V	-	-78.0	-40.0	dB
	Pout = 700 mW, 1 kHz, VDD_EAR_SPKR = 3.8 V	-	-76.0	-40.0	dB
	Pout = 250 mW 1 kHz, VDD_EAR_SPKR = 3.4 V	-	-77.0	-40.0	dB
Other characteris	tics			1	
DAC full-scale output	Mala	-	_	1	Vrms
Level translation	f = 1 kHz, gain = 12 dB				
	Input = -3 dBFS, VDD_EAR_SPKR = 3.7 V	7.3	8.9	9.5	dBV
	Input = -1.5 dBFS, VDD_EAR_SPKR = 5.5 V	9.2	10.4	11.5	dBV
Output power	f = 1 kHz				
(Pout)	Vdd = 3.6 V THD + N ≤ 1%; 15 μH + 8 Ω + 15 μH	670	690	_	mW
	Vdd = 3.6 V THD + N ≤ 1%; 15 μH + 4 Ω + 15 μH	900	1100	_	mW
	Vdd = 3.8 V THD + N ≤ 1%; 15 μH + 8 Ω + 15 μH	698	720	-	mW
	Vdd = 4.2 V THD + N ≤ 1%; 15 μH + 8 Ω + 15 μH	929	956	_	mW
	Vdd = 5 V THD+N ≤1%; 15 μH + 8 Ω + 15 μH	1200	1500	_	mW
	Vdd = 5 V THD+N ≤1%; 15 μH + 4 Ω + 15 μH	1500	2000	_	mW
Power supply rejection	200 mVpp sine wave imposed on PMIC_BATT; digital input = -999 dBFS ¹				
	f = 217 Hz	60.0	79.0	_	dB
	f = 1 kHz	60.0	79.0	_	dB
	f = 10 kHz	40.0	50.0		
	f = 20 kHz	40.0	50.0	_	dB

Table 3-38 Mono speaker driver outputs performance, 8 Ohm load and + 12 dB gain unless otherwise specified (cont.)

Parameter	Test conditions	Min	Тур	Max	Units
Output DC offset	Speaker driver enabled, input = -999 dBFs	-3.0	0.20	3.0	mV
Efficiency	Vdd = 3.7 V				
	Pout = 500 mW; 15 μH + 8 Ω + 15 μH	85	90	_	%
	Pout = 1 W; 15 μH + 4 Ω + 15 μH	78	85	_	%
	Vdd = 5 V				
	Pout = 1 W, 115 μH + 8 Ω + 15 μH	73	81	_	%
	Pout = 2 W, 15 μH + 4 Ω + 15 μH	61	72	_	%
Shutdown current	Amplifier disabled	7-0	0.1	1	μΑ
Turn on time	7	-	0.2	10	ms
Click and pop	No signal, turn on/off, mute/unmute, A-weighted	-	0.6	10	mVpp
Disabled output impedance	40 ,	25	_	_	kΩ
Load capacitance		_	_	_	pF
VDD/GND	Vdd = 5.5 V, square wave, 20 Hz to 20 kHz,	_	_	0.52	nΗ
inductance	40 hours				

^{1.} With 200 mVpp sine wave imposed on VSW_BOOST and digital input = -999 dBFS, PSRR is higher than 90 dB typical for all test cases.

3.12.3 Support circuits

Table 3-39 Microphone bias specifications

Parameter	Test conditions	Min	Тур	Max	Units
Output voltage	3 mA microphone load	1.6	_	2.85	V
Output voltage accuracy		-3		+3	%
Output current	2 microphone loads of 1 to 1.5 mA each	2.0	3.0	_	mA
Output switch to ground	On resistance	_	_	20	Ω
	Sink current	2.0	_	_	mA
Output noise	0.1 μF bypass	0.0	2.4	3.0	μVrms
Power supply rejection	100 mVpp applied to PMIC Vbatt input				
	at 20 Hz	90	_	_	dB
	at 200 Hz to 1 kHz	90	_	_	dB
	at 5 Hz	90	_	_	dB
	at 10 kHz	90	_	_	dB
	at 20 kHz	85	_	_	dB

^{2.} Bypass capacitors should be placed after the series ferrite bead at the amplifier's output. Having a capacitor directly at the speaker-driver output reduces class-D efficiency and increases power consumption.

Table 3-39 Microphone bias specifications

Inter-mic isolation	DC current = 50 μ A, 2.2 $k\Omega$ bias resistor;				
	20 Hz to 200 Hz	70.0	72.6	_	dB
	200 Hz to 1 kHz	67.0	72.6	_	dB
	1 kHz to 2 kHz	67.0	72.0	_	dB
	2 kHz to 5 kHz	65.0	70.9	_	dB
	5 kHz to 10 kHz	60.0	69.2	_	dB
	10 kHz to 20 kHz	54.0	66.4	-	dB
	20 kHz to 80 kHz	32.0	_	_	dB
Output capacitor value	External bypass mode	0.1	0.1	0.5	μF
	No external bypass mode	6-7	_	270	pF

4 Mechanical Information

4.1 Device physical dimensions

The PM8916 is available in the 176-pin nanoscale package (176 NSP) that includes dedicated ground pins for improved grounding, mechanical strength, and thermal continuity. The 176 NSP has a 6.2×6.2 mm body with a maximum height of 0.86 mm. Pin 1 is located by an indicator mark on the top of the package. Figure 4-1 shows a simplified version of the 176 NSP outline drawing.

NOTE Download the 176 NSP outline drawing (NT90-NJ441-1) from the CDMATech Support website:

https://downloads.cdmatech.com/qdc/drl/objectId/090100148232be90

If you have permission to view the document, a prompt will be displayed to initiate the download.

NOTE Subscribe to the package drawing to be notified of any changes.

PM8916 Device Specification Mechanical Information

Figure 4-1 6.2 x 6.2 x 0.86 mm outline drawing

This is a simplified outline drawing. Download the complete, up-to-date package outline drawing: https://downloads.cdmatech.com/qdc/drl/objectId/090100148232be90

4.2 Part marking

4.2.1 Specification-compliant devices

Figure 4-2 PM8916 device marking (top view, not to scale)

Table 4-1 PM8916 device marking line definitions

Line	Marking	Description			
1	QUALCOMM	Qualcomm name or logo			
2	<product Name></product 	QTI product name			
3	PBB	P = product configuration code ■ See Table 4-2 for assigned values. BB = feature code ■ See Table 4-2 for assigned values.			
Е	Blank or random	Additional content as necessary			
4	FXXXXXX	F = supply source code ■ F = A: SMIC ■ F = B: TSMC XXXXXXX = traceability information			
5	AXYWWRR	A = assembly site code ■ A = U: Amkor, China ■ A = V: StatsChipPAC, China ■ A = E: ASE, Taiwan ■ A = K: SPIL, Taiwan X = Traceability information YWW = Date code RR = product revision ■ See Table 4-2 for assigned values. ■ • = dot identifying pin 1			

For complete marking definitions of all PM8916 variants and revisions, refer to the *PM8916 Device Revision Guide* (80-NK808-4).

4.3 Device ordering information

4.3.1 Specification-compliant devices

This device can be ordered using the identification code shown in Figure 4-3 and explained below.

Figure 4-3 Device identification code

Device ordering information details for all samples available to date are summarized in Table 4-2.

Table 4-2 Device identification code / ordering information details

PMIC variant	P value RR value		HW ID #		
PM8916		5,0			
ES1	0.0.1	01	1.1		
CS	0	02	2.0		
CS	0	03	2.0.1		

4.4 Device moisture-sensitivity level

Plastic-encapsulated surface mount packages are susceptible to damage induced by absorbed moisture and high temperature. QTI follows the latest IPC/JEDEC J-STD-020 standard revision for moisture-sensitivity qualification. *The PM8916 devices are classified as MSL3 at 250°C*. This is the MSL classification temperature, which is defined as the minimum temperature of moisture sensitivity testing during device qualification.

Additional MSL information is included in:

- Section 5.2 Storage
- Section 5.3 Handling
- Section 7.1 Reliability qualifications summary

IC Packing Methods and Materials Specification (80-VK055-1)

4.5 Thermal characteristics

Rather than provide thermal resistance values θ_{JC} and θ_{JA} , validated thermal package models are provided through the CDMATech Support website. A thermal model for each device is provided within the *Power_Thermal* subfolder for each chipset family. Designers can extract thermal resistance values by conducting their own thermal simulations.

NOTE Click the link below to download the PM8916 thermal package model from the CDMATech Support website.

This link will be included in a future revision of this document.

If you have permission to view the document, a prompt will be presented for initiating the download.

NOTE Subscribe to the PM8916 thermal package model to be notified of any changes.

5 Carrier, Storage, & Handling Information

5.1 Carrier

5.1.1 Tape and reel information

All Qualcomm carrier tape systems conform to EIA-481 standards.

A simplified sketch of the PM8916 tape carrier is shown in Figure 5-1, including the proper part orientation, maximum number of devices per reel, and key dimensions.

Figure 5-1 Carrier tape drawing with part orientation

Tape-handling recommendations are shown in Figure 5-2.

Figure 5-2 Tape handling

5.2 Storage

5.2.1 Bagged storage conditions

PM8916 devices delivered in tape and reel carriers must be stored in sealed, moisture barrier, antistatic bags. Refer to the ASIC Packing Methods and Materials Specification (80-VK055-1) for the expected shelf life.

5.2.2 Out-of-bag duration

The out-of-bag duration is the time a device can be on the factory floor before being installed onto a PCB. It is defined by the device MSL rating.

5.3 Handling

Tape handling was described in Section 5.1.1. Other (IC-specific) handling guidelines are presented below.

5.3.1 Baking

It is not necessary to bake the PM8916 devices if the conditions specified in Section 5.2.1 and Section 5.2.2 have not been exceeded.

It is necessary to bake the PM8916 devices if any condition specified in Section 5.2.1 or Section 5.2.2 has been exceeded. The baking conditions are specified on the moisture-sensitive caution label attached to each bag; refer to the *IC Packing Methods and Materials Specification* (80-VK055-1) for details.

If baking is required, the devices must be transferred into trays that can be baked to at least 125°C. Devices should not be baked in tape and reel carriers at any temperature

5.3.2 Electrostatic discharge

Electrostatic discharge (ESD) occurs naturally in laboratory and factory environments. An established high-voltage potential is always at risk of discharging to a lower potential. If this discharge path is through a semiconductor device, destructive damage may result.

ESD countermeasures and handling methods must be developed and used to control the factory environment at each manufacturing site.

Qualcomm products must be handled according to the ESD Association standard: ANSI/ESD S20.20-1999, *Protection of Electrical and Electronic Parts, Assemblies, and Equipment*.

PM8916 ESD ratings will be available in future revisions of this document.

5.4 Barcode label and packing for shipment

Refer to the ASIC Packing Methods and Materials Specification (80-VK055-1) for all packing-related information, including barcode-label details.

6 PCB Mounting Guidelines

6.1 RoHS compliance

The device is lead-free and RoHS-compliant. Qualcomm defines its lead-free (or Pb-free) semiconductor products as having a maximum lead concentration of 1000 ppm (0.1% by weight) in raw (homogeneous) materials and end products. Qualcomm package environmental programs, RoHS compliance details, and tables defining pertinent characteristics of all Qualcomm IC products are described in the *IC Package Environmental Roadmap* (80-V6921-1).

6.2 SMT parameters

This section describes Qualcomm board-level characterization-process parameters. It is included to assist customers with their SMT process development; it is not intended to be a specification for their SMT processes.

6.2.1 Land pad and stencil design

The land-pattern and stencil recommendations presented in this section are based on Qualcomm internal characterizations for lead-free solder pastes on an eight-layer PCB, built primarily to the specifications described in JEDEC JESD22-B111.

Qualcomm recommends characterizing the land patterns according to each customer's processes, materials, equipment, stencil design, and reflow profile prior to PCB production. Optimizing the solder-stencil pattern design and print process is critical to ensure print uniformity, decrease voiding, and increase board-level reliability.

General land-pattern guidelines:

- Non-solder-mask-defined (NSMD) pads provide the best reliability.
- Keep the solder-able area consistent for each pad, especially when mixing via-in-pad and non-via-in-pad in the same array.
- Avoid large solder mask openings over ground planes.
- Traces for external routing are recommended to be less than or equal to half the pad diameter, to ensure consistent solder-joint shapes.

One key parameter that should be evaluated is the ratio of aperture area to sidewall area, known as the area ratio (AR). Qualcomm recommends square apertures for optimal solder-paste release. In this case, a simple equation can be used relating the side length of the aperture to the stencil thickness (as shown and explained in Figure 6-1). Larger area ratios enable better transfer of solder paste to the PCB, minimize defects, and ensure a more stable printing process. Inter-aperture spacing should be at least as thick as the stencil; otherwise, paste deposits may bridge.

Figure 6-1 Stencil printing aperture area ratio (AR)

Guidelines for an acceptable relationship between L and T are listed below, and are shown in Figure 6-2:

- R = L/4T > 0.65 best
- $0.60 \le R \le 0.65$ acceptable
- \blacksquare R < 0.60 not acceptable

Stencil	Stencil thickness, T (μm)							
Aperture	75	80	85	90	95	100	105	110
L (µm)								
210	0.70	0.66	0.62	0.58	0.55	0.53	0.50	0.48
220	0.73	0.69	0.65	0.61	0.58	0.55	0.52	0.50
230	0.77	0.72	0.68	0.64	0.61	0.58	0.55	0.52
240	0.80	0.75	0.71	0.67	0.63	0.60	0.57	0.55
250	0.83	0.78	0.74	0.69	0.66	0.63	060	0.57
260	0.87	0.81	0.76	0.72	0.68	0.65	0.62	0.59

Figure 6-2 Acceptable solder-paste geometries

Qualcomm provides an example PCB land pattern and stencil design for the 176 NSP package.

NOTE Click the link below to download the 176 NSP land/stencil drawing (LS90-ND965-1) from the CDMATech Support website.

https://downloads.cdmatech.com/qdc/drl/objectId/0901001481d3a949

If you have permission to view the document, a prompt will be presented for initiating the download.

NOTE Subscribe to the land/stencil drawing to be notified of any changes.

Click the **Help** button to download the latest revision of *Using CDMA Tech Support Documents and Downloads User Guide* (80-V7273-1). This document includes subscription instructions.

6.2.2 Reflow profile

Reflow profile conditions typically used by Qualcomm for lead-free systems are listed in Table 6-1, and are shown in Figure 6-3.

Table 6-1 Qualcomm typical SMT reflow-profile conditions (for reference only)

Profile stage	Description	Temp range	Condition
Preheat	Initial ramp	< 150°C	3°C/sec max
Soak	Flux activation	150 to 190°C	60 to 75 sec
Ramp	Transition to liquidus (solder-paste melting point)	190 to 220°C	< 30 sec
Reflow	Time above liquidus	220 to 245°C ¹	50 to 70 sec
Cool down	Cool rate – ramp to ambient	< 220°C	6°C/sec max

^{1.} During the reflow process, the recommended peak temperature is 245°C (minimum). This temperature should not be confused with the peak temperature reached during MSL testing, as described in Section 6.2.3.

Figure 6-3 Qualcomm typical SMT reflow profile

6.2.3 SMT peak package-body temperature

This document states a peak package-body temperature in three other places within this document; without explanation, they may appear to conflict. The three places are listed below, along with an explanation of the stated value and its meaning within that section's context.

1. Device moisture-sensitivity level

PM8916 devices are classified as MSL3 @ 250°C. The temperature (250°C) included in this designation is the lower limit of the range stated for moisture resistance testing during the device qualification process, as explained in #2 below.

2. Reliability qualifications summary

One of the tests conducted for device qualification is the moisture resistance test. Qualcomm follows J-STD-020-C, and hits a peak reflow temperature that falls within the range of $260^{\circ}\text{C} + 0/-5^{\circ}\text{C}$ (255 to 260 °C).

3. Reflow profile

During a production board's reflow process, the temperature seen by the package must be controlled. Obviously, the temperature must be high enough to melt the solder and provide reliable connections. However, it must not go so high that the device might be damaged. The recommended peak temperature during production assembly is 245°C. This is comfortably above the solder melting point (220°C), yet well below the proven temperature reached during qualification (250°C or more).

6.2.4 SMT process verification

Qualcomm recommends verification of the SMT process prior to high-volume board assembly, including:

- In-line solder-paste deposition monitoring
- Reflow-profile measurement and verification
- Visual and X-ray inspection after soldering to confirm adequate alignment, solder voids, solder-ball shape, and solder bridging
- Cross-section inspection of solder joints for wetting, solder-ball shape, and voiding

6.3 Daisy-chain components

Daisy-chain packages use the same processes and materials as actual products; they are recommended for SMT characterization and board-level reliability testing. In fact, all SMT process recommendations described above can be performed using daisy-chain components.

Ordering information will be made available in the future revisions of this document.

Daisy-chain PCB routing recommendations are available for download.

NOTE Click the link below to download the 176 NSP daisy-chain interconnect drawing (DS90-ND965-1) from the CDMATech Support website.

https://downloads.cdmatech.com/qdc/drl/objectId/0901001481d3a945

If you have permission to view the document, a prompt will be presented for initiating the download.

NOTE Subscribe to the daisy-chain interconnect drawing to be notified of any changes.

Click the **Help** button to download the latest revision of *Using CDMATech Support Documents and Downloads User Guide* (80-V7273-1). This document includes subscription instructions.

6.4 Board-level reliability

Qualcomm conducts characterization tests to assess the device's board-level reliability, including the following physical tests on evaluation boards:

- Drop shock (JESD22-B111)
- Temperature cycling (JESD22-A104)
- Cyclic bend testing optional (JESD22-B113)

Board-level reliability data is available for download.

NOTE Click the link below to download the 176 NSP board-level reliability data (BR80-TBD) from the CDMATech Support website.

This link will be included in a future revision of this document.

If you have permission to view the document, a prompt will be presented for initiating the download.

NOTE Subscribe to the board-level reliability document to be notified of any changes.

6.5 High-temperature warpage

Qualcomm measures high-temperature warpage using a shadow moire system; the measured data is available for download.

NOTE Click the link below to download the 176 NSP high-temperature warpage data (WP80-TBD) from the CDMATech Support website.

This link will be included in a future revision of this document.

If you have permission to view the document, a prompt will be presented for initiating the download.

NOTE Subscribe to the high-temperature warpage document to be notified of any changes.

7 Part Reliability

7.1 Reliability qualifications summary

7.1.1 PM8916 reliability evaluation report for NSP device (SMIC)

Table 7-1 Silicon reliability results for SMIC

Tests, standards, and conditions	Sample size	Result
DPPM rate (ELFR) and average failure rate (AFR) in FIT	305*	0F/305
(λ) failure in billion device-hours		*ELFR = 435 DPPM
HTOL: JESD22-A108-A		
Com		
nid.	233**	0F/233
Zhi.		**AFR = 16 FIT
Mean time to failure (MTTF) t = $1/\lambda$ in million hours	233	62.5
ESD - Human-body model (HBM) rating	3	2000 V
JESD22-A114-F		
ESD - Charge-device model (CDM) rating	3	500 V
JESD22-C101-D		
Target 500 V		
(Total samples from one wafer lot)		
Latch-up (I-test): EIA/JESD78A	6	Pass
Trigger current: ±100 mA; temperature: 85°C		
(Total samples from one wafer lot)		
Latch-up (Vsupply overvoltage): EIA/JESD78A	6	Pass
Trigger voltage: Each VDD pin, stress at 1.5 × V _{DD} max per		
device specification; temperature: 85°C		
(Total samples from one wafer lot)		

Table 7-1 Package reliability results for SMIC

Tests, standards, and conditions	SCC assembly source sample size	ASE-kh assembly source sample size	ATC assembly source sample size	Result
Moisture resistance test (MRT): J-STD-020C	462	462	462	Pass
Reflow at 260°C +0/-5°C				
SCS/ASE/ATC, total samples from three different assembly lots		0		
Temperature cycle: JESD22-A104-D	231	231	231	Pass
Temperature: -55°C to 125° C; number of cycles: 1000				
Soak time at min/max temperature: 8-10 min	- 10			
Cycle rate: 2 cycles per hour (cph)	6-3			
Preconditioning: JESD22-A113-F		1		
MSL1; reflow temperature: 260°C +0/-5°C				
SCS/ASE/ATC, total samples from three different assembly lots				
Unbiased highly accelerated stress test JESD22-A118	231	231	231	Pass
130°C/85% RH and 96 hrs duration	.011			
Preconditioning: JESD22-A113-F	9.0			
MSL1; reflow temperature: 260°C +0/-5°C				
SCS/ASE/ATC, total samples from three different assembly lots				
High-temperature storage life: JESD22-A103-C	231	231	231	Pass
Temperature 150° C; duration: 500, 1000 hrs				
SCS/ASE/ATC, total samples from three different assembly lots				
Flammability	NA	NA	NA	Pass
UL-STD-94				
Note: Flammability test – not required				
QTI ICs are exempt from the flammability requirements due to their sizes per UL/EN 60950-1, as long as they are mounted on materials rated V-1 or better. Most PWBs onto which QTI ICs mount are rated V-0 (better than V-1).				
Physical dimensions: JESD22-B100-A	78	78	78	Pass
Case outline drawing: QTI internal document				
SCS/ASE/ATC, total samples from three different assembly lots				
Solder ball shear: JESD22-B117	15	15	15	Pass
SCS/ASE/ATC, total samples from three different assembly lots				
Internal/external visual SCS/ASE/ATC, total samples from three different assembly lots	78	78	78	Pass

7.2 Qualification sample description

Device characteristics

Device name: PM8916Package type: 176 NSP

■ Package body size: 6.2 mm x 6.2 mm x 0.86 mm

■ Lead count: 176

Lead composition: SAC125NiFab process: 0.18 µm HV-CMOS

■ Fab sites: SMIC and TSMC

Assembly sites: ATC, SCC, ASEKh and SPIL

Solder ball pitch: 0.4 mm