158 ЗАДАТАК

Посматра се део рачунара који чине меморија и процесор.

Меморија је капацитета 2^{16} бајтова. Ширина меморијске речи је 1 бајта.

Процесор је са једноадресним форматом инструкција. Подаци су целобројне величине са знаком и без знака дужине два бајта. Адресе у меморији заузимају две суседне меморијске локације, при чему се старији бајт налази на вишој локацији, а млађи бајт на нижој локацији.

У процесору постоји четири специјализована регистра који се налазе у регистарском фајлу. Регистри су адресни регистар (AR), регистар података (DR), индексни регистар (XR) и базни регистар (BR). У процесору постоје и програмска статусна реч PSW, указивач на врх стека SP, регистар IVTP (*Interrupt Vector Table Pointer*), адресни регистар меморије MAR, прихватни регистар податка меморије MDR, прихватни регистар инструкције IR, акумулатора А и програмског бројача PC.

У процесору постоје безадресне инструкције, инструкције условног скока, инструкције безусловног скока и адресне инструкције:

1) Безадресне инструкције

Инструкција	Значење	IR ₃₁₂₄	IR2316	IR ₁₅₀	Дужина
HALT	заустављање рада процесора	1000 0000b	/	/	1B
RTS	повратак из потпрограма	1000 0001b	/	/	1B
RTI	повратак из прекидне рутине	1000 0010b	/	/	1B
INTE	инструкција постављања индикатора I на 1	1000 0011b	/	/	1B
INTD	инструкција постављања индикатора I на 0	1000 0100b	/	/	1B
PUSH	стављање садржаја акумулатора на стек	1000 0101b	/	/	1B
POP	пуњење акумулатора садржајем са стека	1000 0110b	/	/	1B
STBR	пренос садржаја акумулатора у базни регистар	1000 0111b	/	/	1B
STXR	пренос садржаја акумулатора у индексни регистар	1000 1000b	/	/	1B
STAR	пренос садржаја акумулатора у адресни регистар	1000 1001b	/	/	1B

2) Инструкције условног скока

Инструкција	Значење	Услов	IR ₃₁₂₄	IR2316	IR ₁₅₈	IR ₇₀	Дужина
BNEQ	скок на неједнако	Z = 0	1100 0000b	PPPP PPPPb	/	/	2B
BOVF	скок на V = 1	V = 1	1100 0001b	PPPP PPPPb	/	/	2B
JNNG	скок на $N=0$	N = 0	1100 0010b	адреса скока		/	3B
JGRT	апсолутни скок на веће него (са знаком)	$(N \oplus V) \vee Z = 0$	1100 0100b	адреса скока		/	3B

3) Инструкције безусловног скока

Инструкција	Значење	IR ₃₁₂₄	IR2316	IR ₁₅₈	IR ₇₀	Дужина
JMP	апсолутни скок	0100 0000b	адреса скока		/	3B
JSR	апсолутни скок на потпрограм	0100 0001b	адреса скока		/	3B

4) Адресне инструкције

Инструкција	Значење	IR ₃₁₂₄	Дужина	
LD	инструкција преноса у акумулатор 0 инструкција преноса из акумулатора 0 аритметичка инструкција инкрементирања 0			
ST				
INC				
SUB	аритметичка инструкција одузимања	0011 0011b	2001011 0 1 110111110 0 1100111011	
TST	логичка инструкцја логичко множење И - не мења садржај акумулатора		Зависи од начина адресирања	
SIRCEY	копира низ карактера (string) на адресу која је дата као операнд инструкције *			
JADR	1.2			

* STRCPY – адреса изворишног низа карактера се налази у базном регистру.

Начини адресирања:

Адресирање	Значење	IR ₂₃₁₆	IR ₁₅₈	IR ₇₀	Дужина
immed	непосредно адресирање	0000 0000b	податак		4B
memdir	меморијско директно адресирање	0001 0000b	адреса податка		4B
regdir	регистарско директно адресирање (DR)	0010 0000b	/	/	2B
regind	регистарско индиректно адресирање (AR)	0011 0000b	/	/	2B
brpom	базно адресирање са померајем (BR)	0100 0000b	PPPP PPPPb	/	3B
bxpom	базно индексно адресирање са померајем (BR, XR)	0101 0000b	PPPP PPPPb	/	3B

- X битови који се не користе.
- Р битови који представљају померај са знаком.

Формат PSW регистра:

15	14	13	12	11	10	9	8
PSWI	/	/	/	/	/	/	/
							_
7	6	5	4	3	2	1	0
/	/	/	PSWN	PSWZ	PSWC	PSWV	PSWSTART

Неактивна бредност бита PSWSTART зауставља рад процесора, док активна вредност враћа процесор у рад.

Стек расте према нижим меморијским локацијама, а регистар SP указује на прву слободну меморијску локацију.

Захтеве за прекид може да генерише осам контролера периферија који су повезани на већ реализован блок INTERRUPT_INTERFACE_8. На улазе BTN_INTR $_{7..0}$ у блок INTERRUPT_INTERFACE_8 треба довести осам дугмета која симулирају захтеве за прекид контролера периферија. На улаз UEXT $_{2..0}$ треба довести бинарну вредност која представља индекс прихваћеног захтева за прекид. На улаз *inta* треба довести сигнал који је активан у случају да се прихвата неки од захтева за прекид (сигнал за учитавање у регистар BRU). Излаз блока $intr_{7..0}$ представља запамћене захтеве за прекид. Ови прекиди се називају спољашњи маскирајући прекиди јер долазе од уређаја ван процесора и могу бити дозвољени или маскирани јер процесор на њих реагује или не реагује у зависности од тога да ли се у разреду PSWI registra програмске статусне речи PSW налази вредност 1 или 0, респективно. Сматрати да процесор реагује само на ову врсту прекида.

Опслуживање захтева за прекид се састоји из две групе корака.

У оквиру прве групе корака на стеку се чувају програмски бројач РС, акумулатор А и програмска статусна речи PSW. У оквиру друге групе корака утврђује се адреса прекидне рутине. Утврђивање адресе прекидне рутине се реализује на основу садржаја табеле адреса прекидних рутина, која се назива IV табела (*Interrupt Vector Table*), и броја улаза у IV табелу. Стога је у поступку иницијализације целог система у меморији, почев од адресе на коју указује садржај регистра IVTP, креирана IV табела са 8 улаза, тако да се у улазима 7 до 0 налазе адресе прекидних рутина за сваки од прекида који долазе по линијама $intr_7$ до $intr_0$ који долазе из блока INTERRUPT_INTERFACE_8, респективно. Прекиди који долазе по линијама $intr_7$ до $intr_0$ треба уредити по приоритету при чему линија $intr_7$ има највиши, а линија $intr_0$ најнижи ниво приоритета. Број улаза у IV табелу треба да генерише процесор на основу позиције линије $intr_7$ до $intr_0$ највишег нивоа приоритета на којој постоји захтев за прекид.

Реализовати процесор према задатој спецификацији његове архитектуре, и то помоћу блокова FETCH, ADDR, EXEC, INTR и COMMON:

Блок са заједничким секвенцијалним и комбинационим мрежама (COMMON блок). Блок који садржи помоћне регистре, флип-флопове и комбинационе модуле који се користе у више него једној фази извршавања инструкције.

За симулацију процесора потребно је додати дугме BTN_RST који генерише сигнал rst. Активна вредност сигнала rst враћа процесор у почетно стање, а у регистар PC уписује вредност 1000h, у регистар PSW 8001h, у регистар SP F000h, у акумулатор A 0h и у регистар IVTP 0h. Сигнал rst треба искористити у сваком реализованом блоку.

- а) [5 поена] Блок дохватања инструкције (FETCH блок). Блок FETCH креће са фазом читања инструкције уколико се и у флип-флопу FETCH и у биту PSWSTART налази вредност 1. По завршеном читању инструкције уписивањем вредности 1 у флип-флопове ADDR или EXEC стартује се блок ADDR или блок EXEC, док се уписивањем вредности 0 у флип-флоп FETCH зауставља блок FETCH. Дефинисати сигнал grinst који је активан уколико је прочитана инструкција са недефинисаним операционим кодом или у случају недефинисаног начина адресирања или у случају недозвољене комбинације операционог кода и начина адресирања. Одмах при активирању сигнала grinst прећи на учитавање следеће инструкције.
- **б)** [10 поена] Блок формирање адресе и дохватање операнда (ADDR блок). Блок ADDR креће са формирањем адресе операнда и читањем операнда уколико се у флип-флопу ADDR налази вредност 1. По завршеном формирању адресе и дохватања операнда уписивањем вредности 1 у флип-флоп EXEC стартује се блок EXEC и продужава се са извршавањем фазе извршавања операције, док се уписивањем вредности 0 у флип-флоп ADDR зауставља блок ADDR.
- **в)** [10 поена] Блок извршавања операције (ЕХЕС блок). Блок ЕХЕС креће са фазом извршавања операције уколико се у флип-флоп ЕХЕС налази вредност 1. По завршеном извршавању операције уписивање вредности 1 у флип-флоп INTR стартује се блок INTR и продужава се са извршавањем фазе опслуживања прекида, док се уписивањем вредности 0 у флип-флоп EXEC зауставља блок EXEC.
- **г)** [5 поена] Блок опслуживања прекида (INTR блок). Блок INTR креће са фазом опслуживања прекида уколико се у флип-флопу INTR налази вредност 1. По завршетку опслуживања прекида уписивањем вредности 1 у флип-флоп FETCH стартује се блок FETCH и креће се са фазом читања следеће инструкције, док се уписивањем вредности 0 у флип-флоп INTR зауставља блок INTR.

Операциона јединица сваког блока треба да буде реализована директним повезивањем прекидачких мрежа, а сваки блок осим COMMON блока треба да има управљачку јединицу реализовану микропрограмирањем.

Напомена: Начин функционисања блокова FETCH, ADDR, EXEC и INTR треба да буде имплементиран као у литератури (са тим да се заједнички елементи налазе у блоку COMMON). Студенту се препоручује да направи тест програме који тестирају реализоване блокове.

Линкови:

- https://rti.etf.bg.ac.rs/rti/ir2ort2/literatura/Projektovanje_dela_procesora.pdf
- https://rti.etf.bg.ac.rs/rti/ir2ort2/literatura/Organizacija procesora.pdf