Qualitative Evaluation

Why evaluation is crucial

Quickly debug prototypes by observing people use them

Methods reveal what a person is thinking about

Qualitative Evaluation

Evaluating interfaces

Lecture /slide deck produced by Saul Greenberg, University of Calgary, Canada

Overview

Why evaluation is crucial

Quickly debug prototypes by observing people use them

Methods reveal what a person is thinking about

Why bother?

Tied to the usability engineering lifecycle

Pre-design

investing in new expensive system requires proof of viability

Initial design stages

develop and evaluate initial design ideas with the user

Why bother?

Iterative design

- does system behavior match the user's task requirements?
- are there specific problems with the design?
- what solutions work?

Acceptance testing

verify that system meets expected user performance criteria

o 80% of 1st time customers will take 1-3 minutes to withdraw \$50 from the automatic teller design evaluation

Naturalistic approach

Observation occurs in realistic setting

- real life
- Provides useful, realistic data
- More likely to generalize (though do not assume it will)

Problems

- hard to arrange and do
- time consuming

Experimental approach

Experimenter controls all environmental factors

- study relations by manipulating independent variables
- observe effect on one or more dependent variables
- nothing else changes

There is no difference in user performance (time and error rate) when selecting an item from a pull down or a pull right menu of 4 items

Validity

External validity

- confidence that results applies to real situations
- usually good in natural settings

Internal validity

- confidence in our explanation of experimental results
- usually good in experimental settings

Trade-off: Natural vs Experimental

- precision and direct control over experimental design versus
- desire for maximum generalizability in real life situations

Usability engineering approach

Observe people using systems in simulated settings

- people brought in to artificial setting that simulates aspects of real world setting
- people given specific tasks to do
- observations / measures made as people do their tasks
- look for problem areas / successes
- good for uncovering 'big effects'

Usability engineering approach

Is the test result relevant to the usability of real products in real use outside of lab?

Problems

- non-typical users tested
- non-typical tasks
- different physical environment
- different social context
 - motivation towards experimenter vs motivation towards boss

Partial Solution

- use real users
- task-centered system design tasks
- environment similar to real situation

Usability engineering approach

How many users should you observe?

- observing many users is expensive
- but individual differences matter
 - o best user 10x faster than slowest
 - o best 25% of users ~2x faster than slowest 25%

partial solution

- reasonable number of users tested
- reasonable range of users
- big problems usually detected with handful of users
- small problems / fine measures need many users

Discount usability evaluation

Low cost methods to gather usability problems

approximate: capture most large and many minor problems

How?

- qualitative:
 - o observe user interactions
 - o gather user explanations and opinions
 - o produces a description, usually in non-numeric terms
 - o anecdotes, transcripts, problem areas, critical incidents...
- quantitative
 - o count, log, measure something of interest in user actions
 - o speed, error rate, counts of activities,

Discount usability evaluation

Methods

- inspection
- extracting the conceptual model
- direct observation
 - o think-aloud
 - o constructive interaction
- query techniques (interviews and questionnaires)
- continuous evaluation (user feedback and field studies)

Inspection

Designer tries the system (or prototype)

- does the system "feel right"?
- benefits
 - o can catch some major problems in early versions
- problems
 - o not reliable as completely subjective
 - o not valid as introspector is a non-typical user
 - o intuitions and introspection are often wrong

Inspection methods help

- task centered walkthroughs
- heuristic evaluation

Conceptual model extraction

How?

- show the user static images of
 - o the prototype or screens during use
- ask the user explain
 - o the function of each screen element
 - o how they would perform a particular task and why they think that

What?

- Initial conceptual model
 - o how person perceives a screen the very first time it is viewed
- Formative conceptual model
 - How person perceives a screen after its been used for a while

Value?

- good for eliciting people's understanding before & after use
- poor for examining system exploration and learning

Direct observations

Evaluator observes users interacting with system

- in lab:
 - o user asked to complete a set of pre-determined tasks
- in field:
 - o user goes through normal duties

Value

- excellent at identifying gross design/interface problems
- validity depends on how controlled/contrived the situation is

Simple observation method

User is given the task Evaluator just watches the user

Problem

 does not give insight into the user's decision process or attitude

Think aloud method

Users speak their thoughts while doing the task

- what they are trying to do
- why they took an action
- how they interpret what the system did
- gives insight into what the user is thinking
- most widely used evaluation method in industry

o may alter the way users do the task

o unnatural (awkward and uncomfortable)

hard to talk if they are concentrating

Hmm, what does this do? I'll try it... Ooops, now what happened?

Example Usability Test

Drawing some cats!

https://www.youtube.com/watch?v=9wQkLthhHKA

Constructive interaction method

Two people work together on a task

- monitor their normal conversations
- removes awkwardness of think-aloud

Co-discovery learning

use semi-knowledgeable "coach" and novice

only novice uses the interface

o novice ask questions

o coach responds

gives insights into two user group

Recording observations

How do we record user actions for later analysis?

- otherwise risk forgetting, missing, or misinterpreting events
- paper and pencil
 - o primitive but cheap
 - o observer records events, comments, and interpretation
 - o hard to get detail (writing is slow)
 - o 2nd observer helps...
- audio recording
 - o good for recording think aloud talk
 - o hard to tie into on-screen user actions
- video recording
 - o can see and hear what a user is doing
 - o one camera for screen, rear view mirror useful...
 - o initially intrusive

Recording observations

There is software for this:

- Silverback (http://silverbackapp.com/)
- •Morae (http://www.techsmith.com/morae.htm)
 - This one is EXPENSIVE!
- Camtasia

Interviews

Good for pursuing specific issues

- vary questions to suit the context
- probe more deeply on interesting issues as they arise
- good for exploratory studies via open-ended questioning
- often leads to specific constructive suggestions

Problems:

- accounts are subjective
- time consuming
- evaluator can easily bias the interview
- prone to rationalization of events/thoughts by
 - o user's reconstruction may be wrong

How to Interview

Plan a set of central questions

- a few good questions gets things started
 o avoid leading questions
- focuses the interview
- could be based on results of user observations

Let user responses lead follow-up questions

follow interesting leads vs bulldozing through question list

Retrospective testing interviews

Post-observation interview to

- perform an observational test
- create a video record of it
- have users view the video and comment on what the
 - o clarify events that occurred during system use
 - o excellent for grounding a post-test in
 - o avoids erroneous reconstruction
 - users often offer concrete suggestior

tem use

I didn't see it.

Why don't you
make it look like

Critical incidence interviews

People talk about incidents that stood out

- usually discuss extremely annoying problems with fervor
- not representative, but important to them
- often raises issues not seen in lab tests

Tell me about
the last big
problem you had
with Word

I can never get my figures in the right place. Its really annoying. I spent hours on it and I had to...

Questionnaires and Surveys

Questionnaires / Surveys

- preparation "expensive," but administration cheap
 can reach a wide subject group (e.g. mail)
- does not require presence of evaluator
- results can be quantified

But

only as good as the questions asked

Questionnaires and Surveys

How

- establish the purpose of the questionnaire
 - o what information is sought?
 - o how would you analyze the results?
 - o what would you do with your analysis?
- do not ask questions whose answers you will not use!
- determine the audience you want to reach
- determine how would you will deliver / collect the questionnaire
 - o on-line for computer users
 - o web site with forms
 - o surface mail
 - pre-addressed reply envelope gives far better response

Continuous Evaluation

Monitor systems in actual use

- usually late stages of development
 - o ie beta releases, delivered system
- fix problems in next release

User feedback via gripe lines

- users can provide feedback to designers while using the system
 - o help desks
 - o bulletin boards
 - o email
 - built-in gripe facility
- best combined with trouble-shooting facility
 - o users always get a response (solution?) to their gripes

What you now know

Debug designs by observing how people use them

- quickly exposes successes and problems
- specific methods reveal what a person is thinking
- but naturalistic vs laboratory evaluations is a tradeoff

Methods include

- conceptual model extraction
- direct observation
 - o think-aloud
 - o constructive interaction
- query via interviews, retrospective testing and questionnaires
- continuous evaluation via user feedback and field studies

You know now

Why evaluation is crucial

Quickly debug prototypes by observing people use them

Methods reveal what a person is thinking about

Primary Sources

This slide deck is partly based on concepts as taught by:

- Nielsen, J. (1993) Usability Engineering, Chapter 6: Usability testing
- Gomoll, Kathleen & Nicol, Anne (1990) User Observation:
 Guidelines for Apple Developers, Apple Inc., January
- Dumas, J.S. and Redish, J.C. A Practical Guide to Usability Testing. Revised Edition. (1999)
- Gould, J. (1988) How to design usable systems. In Readings in Human Computer Interaction: Towards the Year 2000 (2nd Edition). Baecker, R., Grudin, J., Buxton, W., and Greenberg, S. (1995). Morgan-Kaufmann.