ECE 6200 Lecture II Definitions

Blaine Swieder

7 September 2025

Definition 0.1 (SISO). A SISO or Single Input Single Output is a type of system with only one input or output.

Definition 0.2 (MIMO). A MIMO or Multiple Input Multiple Output is a type of system with more than one input or output.

Definition 0.3 (Continuous-Time System). A continuous-time system with signals that are defined at every time instance $t \in \mathbb{R} \to u(t)$ and y(t).

Definition 0.4 (Discrete-Time System). A discrete-time system with signals that are only defined at discrete time instants $kT, k \in \mathbb{Z} \to u[k] := u[kT]$ and y[k] := y[kT].

• $T \in \mathbb{R}$ is a fixed sampling time.

Definition 0.5 (Static Systems). Static Systems are memory-less systems whose output $y(t_0)$ at time $t = t_0$ depends on the input $u(t_0)$ at that time only. That is, it is independent of inputs at past or future times.

Definition 0.6 (Dynamical Systems). *Dynamical Systems* possess memory as a result of which their output $y(t_0)$ at time $t = t_0$. In other words, their present output may depend on past or future inputs.

Definition 0.7 (Casual Systems). Casual Systems are example of dynamic system whose output depends upon past or current inputs, but not on future inputs are casual systems.

Definition 0.8 (State of a System). The **state** $x(t_0)$ of a system at time $t = t_0$ is the information at t_0 that, together with the input u(t), for $t \ge t_0$, determines uniquely the output y(t) for all $t \ge t_0$

Definition 0.9 (Lumped System). A system is said to be a lumped system if its state variables are finite.

Definition 0.10 (Distributed System). A system is known as a distributed system if it has infinite state variables.

Definition 0.11 (Linear System). A system is known as a linear system via the superposition principle that satisfies both the additivity and homogeneity properties.

Definition 0.12 (Nonlinear System). A system is known as a nonlinear system if it does not satisfy the superposition principle.