Machine Learning in High Dimension IA317

Thomas Bonald & Charlotte Laclau

2023 - 2024

Machine learning

Supervised learning

- Classification
- Regression

Unsupervised learning

- Similarity
- Clustering
- Anomaly detection

High dimension

Data = n samples, each with d features

$$X \in \mathbb{R}^{n \times d}$$

High dimension d >> 1 (possibly larger than n)

Examples

- Textual data (bags of words)
- Medical data
- Customer data

Data might be **heterogeneous** (e.g., mix of numerical features and categorical features).

Curse of dimensionality

In high dimension:

- ► samples tend to be **isolated**
- ▶ distances tend to be **equal**
- computations are expensive

Example (numerical features)

► For $X, Y \sim \mathcal{N}(0, I_d)$,

$$||X-Y||^2\sim 2\chi^2(d)$$

Pairwise distance $D = ||X - Y|| \sim \sqrt{2}\chi(d)$:

$$\mathrm{E}(D) = \sqrt{2} \frac{\Gamma(\frac{d+1}{2})}{\Gamma(\frac{d}{2})} = O(\sqrt{d}) \quad \mathrm{var}(D) = k - \mathrm{E}(D)^2 = O(1)$$

Example (binary features)

▶ For $X, Y \sim \mathcal{U}(\{0,1\}^d)$ and the Hamming distance,

$$d(X,Y) \sim \mathcal{B}(d,\frac{1}{2}) \approx \mathcal{N}(\frac{d}{2},\frac{d}{4})$$
 when $d \to +\infty$

▶ Pairwise distance D = ||X - Y||:

$$E(D) = O(\sqrt{d}) \quad var(D) = O(1)$$

Real data: MNIST

$$X \in \{0, \dots, 255\}^{n \times d}$$

 $n = 10,000$ samples
 $d = 28 \times 28 = 784$


```
291136211
29573533116
295731113
29573111
29573111
2977311
2977311
2977311
2977311
2977311
2977311
2977311
2977311
2977311
2977311
2977311
2977311
```

Classification by **nearest neighbors** \rightarrow accuracy \approx 92%

Outline

- 1. Nearest neighbors
- 2. Locally sensitive hashing
- 3. Dimension reduction
- 4. Ensemble methods
- 5. Naive Bayes*
- 6. Sparse regression*
- 7. Anomaly detection

```
Each block = 1 lecture + 1 lab (2 graded ^*)
```

Not covered:

- ► Deep learning (see IA307)
- ► NLP (see IA312)
- Kernel methods (see IA326)
- ► Graph methods (see SD212)

Information & Evaluation

Moodle

```
https://moodle.r2.enst.fr/
For general information, slides, notebooks, etc.
```

Attendance

Presence to the labs is mandatory A single absence over the 7 labs is tolerated

Evaluation

2 graded labs (20% each) Final quiz (60%)