Assignment 3

1 Q1

- 1. G' is not necessarily a pseudorandom generator. G is pseudorandom for random input in $\{0,1\}^{2|s|}$, for which the probability is $2^{-2|s|}$, but the probability of an input of $s||0^{|s|}$ is only $2^{-|s|}$. So input of this are not random and therefore the output need not be pseudorandom.
- 2. G' is necessarily a pseudorandom generator. Suppose |G(s)| = l(n). Since G is a pseudorandom generator, there is a distinguisher D such that

$$|\Pr_{y \leftarrow U_{I(n)}}[D(y) = 1] - \Pr_{s \leftarrow U_n}[D(G(s)) = 1]| \le \epsilon(n)$$

Then suppose there is a distinguisher D' for G'. If the challenger provides a uniform distributed string y, the success probability is

$$\Pr_{y \leftarrow U_{l(n)}}[D'(y) = 1] = \Pr_{y \leftarrow U_{l(n)}}[D(y) = 1] = \frac{1}{2}$$

If the challenger provides a string G'(s), the success probability is

$$\Pr_{s \leftarrow U_n}[D'(G'(s)) = 1] = \Pr_{s \leftarrow U_n}[D'(s_1||G(s_2)) = 1]$$

And since $s = s_1 || s_2$ and $s_1, s_2 \in \{0, 1\}^{|s|/2}$, it chooses s_1 with probability $2^{-|s|/2}$ and s_2 with probability $2^{-|s|/2}$. Thus, D' cannot distinguish s_1 with random string and can distinguish $G(s_2)$ as D can.

$$\Pr_{s \leftarrow U_n} [D'(s_1 || G(s_2)) = 1] = \Pr_{s \leftarrow U_n} [D(G(s)) = 1]$$

Therefore,

$$|\Pr_{y \leftarrow U_{l(n)}}[D'(y) = 1] - \Pr_{s \leftarrow U_n}[D'(G'(s)) = 1]| \le \epsilon(n)$$

If *G* is pseudorandom, then $\epsilon(n)$ is negligible. So *G'* is necessarily pseudorandom.

2 O2

Suppose there is a distinguisher D with oracle O. The distinguisher D queries O with x_1 , x_2 and $x_1 + x_2$, and outputs 1 if and only if $O(x_1) + O(x_2) = O(x_1 + x_2)$. Therefore,

- if O = F, then $\Pr[D^{F(\cdot)}(1^n) = 1] = 1$ (since F is under the field of $\mathbb{F}_2 = (\{0, 1\}, \oplus, \cdot))$
- if O = f chosen uniformly from $Func_n$, then $\Pr[D^{f(\cdot)}(1^n) = 1] = 2^{-n}$

The difference is $|\Pr[D^{F(\cdot)}(1^n) = 1] - \Pr[D^{f(\cdot)}(1^n) = 1]| = 1 - 2^{-n}$, which is not negligible. Therefore, F is not a pseudorandom function.

3 Q3

Suppose there is a ditinguisher D and an oracle O. With input 1^n , A can query oracle many times, in the following steps.

- 1. $r \leftarrow_R \{0,1\}^n$
- 2. y := O(r)
- 3. return the ciphertext $\langle r, y \oplus m \rangle$ to *A*

At any time, A outputs 2 message m_x , $m_2 \in \{0,1\}^n$ to D, and D does the following steps.

- 1. $r \leftarrow_R \{0,1\}^n, b \leftarrow \{0,1\}$
- 2. y := O(r)
- 3. return the ciphertext $\langle r, y \oplus m_b \rangle$ to *A*

A can still access oracle and then finally outputs b' to D. If b' = b then D outputs 1; otherwise, outputs 0. Therefore, we have

1. If $O = F_k$, then $y := F_k(r)$. So

$$\Pr[D^{F(\cdot)}(1^n) = 1] = \Pr[PrivK_{A,\Pi}^{CPA}(n) = 1]$$

2. If O = f, then y := f(r). So

$$\Pr[D^{f(\cdot)}(1^n) = 1] = \Pr[PrivK_{A.\tilde{\Pi}}^{CPA}(n) = 1]$$

Since CTR-mode uses PRF F_k in each block, then

$$|\Pr[D^{F(\cdot)}(1^n) = 1] - \Pr[D^{f(\cdot)}(1^n) = 1]| \le negl(n)$$

Combining them, we can get

$$|\Pr[PrivK_{A,\Pi}^{CPA}(n)=1] - \Pr[PrivK_{A,\tilde{\Pi}}^{CPA}(n)=1]| \leq negl(n)$$

4 Q4

- 1. It is EAV-secure but not CPA-secure.
 - (a) EAV-secure Since F_k is a PRF, eavesdropper cannot distinguish it with uniformly random string. Thus it is EAV-secure.
 - (b) not CPA-secure Since F_k is deterministic, $F_k(0^n)$ outputs the same at each time. Thus this scheme is not CPA-secure.
- 2. It is EAV-secure but not CPA-secure.
 - (a) EAV-secure

Suppose there exists an efficient attacker *A* such that

$$\Pr[PrivK_{A,\Pi}^{eav}(n)=1] > \frac{1}{2} + \epsilon(n)$$

Since $\Pr[A(U_n) = 1] \le \frac{1}{2}$ and $\Pr[A(m \oplus k) = 1] = \Pr[PrivK_{A,\Pi}^{eav}(n) = 1] > \frac{1}{2} + \epsilon(n)$, where $k \leftarrow_R \{0,1\}^n$, we have

$$|\Pr[A(m \oplus k) = 1] - \Pr[A(U_n) = 1]| > \epsilon(n)$$

Define $D: \{0,1\}^n \to \{0,1\}$ as : $D(y) = A(y \oplus m)$. D is efficient since A is efficient, but we have

$$|\Pr[D(k)) = 1] - \Pr[D(m \oplus U_n) = 1]| > \epsilon(n)$$

Since $m \oplus U_n \equiv U_n$, it contradicts that k is a random string. Therefore, such A does not exist and such scheme is EAV-secure.

(b) not CPA-secure

The attacker A knows that the ciphertext c is generated from either m_1 or m_2 . A can query oracle O for the ciphertext c_1 and c_2 of m_1 and m_2 , and output b' = 1 if $c_1 = c$; otherwise, output b' = 0. Since the scheme is deterministic, A will always win, i.e., it is not CPA-secure.

3. It is neither EAV-secure nor CPA-secure.

Since G is deterministic and the random string r can be learnt from the ciphertext, attacker can compute G(r) and reveal the message. Thus this scheme is not secure.

- 4. It is EAV-secure but not CPA-secure.
 - (a) EAV-secure

Since $k \leftarrow_R \{0,1\}^n$ and F_k is a PRF, $F_k(r)$ and $F_k(r+1)$ are uniformly and independently distributed in $\{0,1\}^n$. There is no attacker that can distinguish $< r, m \oplus F_k(r), m \oplus F_k(r+1) >$ with random string. Thus, it is EAV-secure.

(b) CPA-secure

Since $k \leftarrow_R \{0,1\}^n$, $r \leftarrow_R \{0,1\}^n$, it will get uniformly independently random $F_k(r)$ (or $F_k(r+1)$) at each time to encrypt. So the encryption of the scheme is indeterministic. Thus, the scheme is CPA-secure.

5 Q5

1. It is not CPA-secure.

Suppose that the attacker *A* outputs 2 messages

$$m^1 = m_1^1 || m_2^1,$$

 $m^2 = m_1^2 || m_2^2$

The challenger will give back the ciphertext $c = c_1 ||c_2|| c_3$ with

$$c_1 = p_k(x_1),$$

$$c_2 = p_k(c_1 \oplus x_2),$$

$$c_3 = p_k(c_2 \oplus r)$$

where $x_1 \in \{m_1^1, m_1^2\}, x_2 \in \{m_2^1, m_2^2\}, r \in \{0, 1\}^m$.

Then A can query the encryption oracle for the message m^1 and receive the ciphertext $c' = c'_1||c'_2||c'_3|$. If $c_1 = c'_1$, then A outputs b' = 1; otherwise, A outputs b' = 2. A will always win in this construction.

2. It is CPA-secure.

Suppose that the attacker *A* outputs 2 messages

$$m^1 = m_1^1 || m_2^1,$$

 $m^2 = m_1^2 || m_2^2$

The challenger will give back the ciphertext $c = c_1 ||c_2|| c_3$ with

$$c_1 = p_k(r),$$

$$c_2 = p_k(c_1 \oplus x_1),$$

$$c_3 = p_k(c_2 \oplus x_2)$$

where
$$x_1 \in \{m_1^1, m_1^2\}, x_2 \in \{m_2^1, m_2^2\}, r \in \{0, 1\}^m$$
.

Since p_k is a PRP and r is chosen uniformly from $\{0,1\}^m$, A cannot distinguish $c_1 = p_k(r)$ with a random string, and the same for c_2 , c_3 . Therefore, it is CPA-secure.

6 Q6

1. Reordering the block m_i of message does not change the tag. That is, the attacker can queries oracle $MAC(\cdot)$ for

$$m = m_1 || ... || m_l$$

And get the return as

$$t = F_k(m_1) \oplus ... \oplus F_k(m_l)$$

Then the attacker can output (m', t') as

$$\begin{split} m' &= m_2 || m_1 ... m_l \\ t' &= F_k(m_2) \oplus F_k(m_1) \oplus ... \oplus F_k(m_l) = F_k(m_1) \oplus F_k(m_2) \oplus ... \oplus F_k(m_l) \end{split}$$

which satisfies $Vrfy_k(m,t) = 1$ and $m' \notin \{m\}$

2. Suppose the attacker queries oracle $MAC(\cdot)$ for the following 3 messages.

$$m^{1} = m_{1}||m_{2},$$

 $m^{2} = m_{3}||m_{2},$
 $m^{3} = m_{3}||m_{4}$

And the oracle returns corresponding 3 tags.

$$t^{1} = F_{k}([1]_{2}||m_{1}) \oplus F_{k}([2]_{2}||m_{2}),$$

$$t^{2} = F_{k}([1]_{2}||m_{3}) \oplus F_{k}([2]_{2}||m_{2}),$$

$$t^{3} = F_{k}([1]_{2}||m_{3}) \oplus F_{k}([2]_{2}||m_{4}),$$

Then the attacker can outputs (m, t) as

$$m = m_1 \oplus m_2 \oplus m_3 = m_1 || m_4,$$

 $t = t_1 \oplus t_2 \oplus t_3 = F_k([1]_2 || m_1) \oplus F_k([2]_2 || m_4)$

which satisfies $Vrfy_k(m,t) = 1$ and $m \notin \{m^1, m^2, m^3\}$

3. The uniform r might not influence the authentication code. The attacker can take $m \in \{0,1\}^{\frac{n}{2}}$, i.e., there is only one block, and then take $r = [1]_2 || m$. So the attacker can compute the tag as $t = ([1]_2 || m, F_k([1]_2 || m) \oplus F_k([1]_2 || m)) = ([1]_2 || m, 0^n)$. Therefore, the attacker can output $(m, t) = (m, ([1]_2 || m, 0^n))$ where no matter what m is chosen, $Vrfy_k(m, t) = 1$.

7 **Q**7

Suppose the attacker queries oracle $MAC(\cdot)$ for the following 2 messages.

$$m^1 = m_1^1 || m_2^1,$$

 $m^2 = m_1^2 || m_2^2$

And the oracle returns corresponding 2 tags.

$$t^{1} = t_{1}^{1}||t_{2}^{1} = F_{k}(m_{1}^{1})||F_{k}(F_{k}(m_{2}^{1})),$$

$$t^{2} = t_{1}^{2}||t_{2}^{2} = F_{k}(m_{1}^{2})||F_{k}(F_{k}(m_{2}^{2}))$$

Then the attacker can outputs (m, t) as

$$m = m_1^1 || m_2^2,$$

$$t = t_1^1 || t_2^2 = F_k(m_1^1) || F_k(F_k(m_2^2))$$

which satisfies $Vrfy_k(m,t) = 1$ and $m \notin \{m^1, m^2\}$

8 Q8

- 1. Suppose there is a PPT attacker A attacking the scheme (E', D') in a chosen-ciphertext attack. Let **ValidQuery** be the event that A submits a new, valid ciphertext to its decryption oracle.
 - (a) $Pr[ValidQuery] \le negl(n)$. Proof as below.

It is obvious that if **ValidQuery** occurs then in the **MAC-forge** experiment, the adversary has forged a new, valid pair (c, t). Let $q(\cdot)$ be the polynomial upper bound of the number of decryption-oracle queries made by A.

Consider the adversary A_M attacking the message authentication code Π_M with A running as its subroutine. A_M is given input 1^n and has access to a MAC oracle $Mac_{k_M}(\cdot)$.

i.
$$k_E \leftarrow_R \{0,1\}^n, i \leftarrow_R \{1,...,q(n)\}$$

- ii. Run A on input 1^n . A can query encryption oracle and decryption oracle at any time. Then A outputs 2 messages m_0 , m_1 to A_M and A_M directly outputs to the challenger, the ciphertext from the challenger is also directly transmitted to A and A outputs $b' \in \{0,1\}$.
 - When *A* queries encryption oracle for the message *m*.

A.
$$c \leftarrow Enc_{k_E}(m)$$

- B. Query the MAC oracle for c and receive t in response. Return < c, t > to A.
- When A queries decryption oracle for the ciphertext $\langle c, t \rangle$.
 - If this is the i-th decryption oracle query, output (c, t) and halt.
 - Otherwise,
 - * If < c, t > was a response to a previous encryption oracle query for a message m, return m.
 - * Otherwise, return error.

If A_M correctly guesses the first index i for which **ValidQuery** occurs, A_M succeeds in experiment **MAC-forge** $A_M,\Pi_M(n)$. The probability that A_M guesses i correctly is 1/q(n). Therefore,

$$\Pr[MAC - forge_{A_M,\Pi_M}(n) = 1] \geq \Pr[ValidQuery]/q(n)$$

Since Π_M is a secure MAC and q is polynomial, then $Pr[ValidQuery] \leq negl(n)$.

(b) $\Pi = (E', D')$ is CCA-secure. Proof as below. We have

$$\begin{split} \Pr[PrivK_{A,\Pi}^{cca}(n) = 1] &= \Pr[PrivK_{A,\Pi}^{cca}(n) = 1 | ValidQuery] \Pr[ValidQuery] \\ &+ \Pr[PrivK_{A,\Pi}^{cca}(n) = 1 | \overline{ValidQuery}] \Pr[\overline{ValidQuery}] \\ &\leq \Pr[ValidQuery] + \Pr[PrivK_{A,\Pi}^{cca}(n) = 1 \land \overline{ValidQuery}] \end{split}$$

Since Pr[ValidQuery] is negligible, we need to show that

$$\Pr[PrivK_{A,\Pi}^{cca}(n) = 1 \land \overline{ValidQuery}] \le \frac{1}{2} + negl(n)$$

Consider the adversary A_E attacking Π_E in a chosen-plaintext attack with A running as its subroutine. A_E is given input 1^n and has access to $Enc_{k_E}(\cdot)$.

i.
$$k_E \leftarrow_R \{0, 1\}^n$$

- ii. Run A on input 1^n .
 - When A queries encryption oracle for the message m.
 - A. Query $Enc_{k_E}(\cdot)$ and receive c in response.

B.
$$t \leftarrow Mac_{k_M}(c)$$
. Return $< c, t >$ to A .

- When A queries decryption oracle for the ciphertext < c, t >.
 - If < c, t > was a response to a previous encryption oracle query for a message m, return m.
 - Otherwise, return error.
- iii. When A outputs the 2 messages m_0 , m_1 to A_M , A_M directly outputs to the challenger and receives the challenge ciphertext c. Then compute $t \leftarrow Mac_{k_M}(c)$ and return < c, t > to A as the challenge ciphertext.
- iv. Output the same b' as output by A.

A running as a subroutine of A_E is distributed identically to A in experiment $PrivK_{A,\Pi}^{cca}(n)$ until **ValidQuery** occurs. Therefore,

$$\begin{split} \Pr[PrivK^{cpa}_{A_E,\Pi_E}(n) = 1] &\geq \Pr[PrivK^{cpa}_{A_E,\Pi_E}(n) = 1 \land \overline{ValidQuery}] \\ &= \Pr[PrivK^{cca}_{A,\Pi}(n) = 1 \land \overline{ValidQuery}] \end{split}$$

Since Π_E is CPA-secure, then

$$\Pr[PrivK_{A_E,\Pi_E}^{cpa}(n) = 1] \le \frac{1}{2} + negl(n)$$

Thus, we have

$$\Pr[PrivK_{A,\Pi}^{cca}(n) = 1 \land \overline{ValidQuery}] \le \frac{1}{2} + negl(n)$$

Above all, Π is CCA-secure.

2. Suppose the encryption is $E_k'(x) = (y, t)$, where $y = E_k(m) = f_k(r||m)$ with $r \leftarrow_R \{0, 1\}^n$, which is CPA-secure and even CCA-secure, and $t = f_k^{-1}(y)$, which is a secure MAC. However, the encryption yields that

$$y = E_k(m) = f_k(r||m)$$

$$t = f_k^{-1}(y) = f_k^{-1}(f_k(r||m)) = r||m$$

We can see that the message is revealed in the tag. Therefore, if using the same key, the scheme is not CCA-secure, even CPA-secure.

9 Q9

1. The main idea is to modify the message but keep the final block of tag the same. Suppose the attacker queries oracle $MAC(\cdot)$ for the following 2 messages.

$$m^1 = m_1^1 || m_2^1,$$

 $m^2 = m_1^2 || m_2^2$

And the oracle returns corresponding 2 tags.

$$t^{1} = t_{1}^{1} || t_{2}^{1},$$

$$t^{2} = t_{1}^{2} || t_{2}^{2}$$

By the property of basic CBC-MAC, we can know that $t_1^1 = F_k(m_1^1)$, $t_1^2 = F_k(m_1^2)$. Suppose the modified message is $m = m_1^1 || x$, then we have

$$MAC(m) = MAC(m_1^1||x) = F_k(m_1^1)||F_k(F_k(m_1^1) \oplus x) = t_1^1||F_k(t_1^1 \oplus x)$$

Since we need to keep the last block of the tag the same, let $t_1^1 \oplus x = m_1^2$, i.e., $x = t_1^1 \oplus m_1^2$. Then we have

$$MAC(m) = t_1^1 || F_k(t_1^1 \oplus x) = t_1^1 || F_k(m_1^2) = t_1^1 || t_1^2$$

Therefore, the attacker can outputs (m, t) as

$$m = m_1^1 || (t_1^1 \oplus m_1^2),$$

$$t = t_1^1 || t_1^2$$

which is a valid pair of message and tag.

2. Suppose the attacker queries oracle $MAC(\cdot)$ for an one-block message m and gets the corresponding tag $t = \langle t_0, t_l \rangle$. Then $(m \oplus r, \langle t_0 \oplus r, t_l \rangle)$, where $r \leftarrow_R \{0, 1\}^n$, is a valid pair of message and tag.

10 Q10

1. Let SameNumber be the event that Alice and Bob receive the same number. We have

$$\begin{aligned} \Pr[SameNumber] &= 1 - \Pr[\overline{SameNumber}] \\ &= 1 - (1 - \frac{1}{10 \cdot 10 \cdot 26}) \\ &= \frac{2599}{2600} \end{aligned}$$

2. Let **A** be the event that at least 2 license plates have the same number. Suppose the number of this type of license plates that they can issue is *n*, then

$$Pr[A] = 1 - Pr[\overline{A}]$$

$$= 1 - \prod_{i=1}^{n-1} (1 - \frac{i}{10 \cdot 10 \cdot 26})$$

By Taylor expansion, we have

$$e^x \approx 1 + x$$

Thus, $e^{-\frac{i}{2600}} \approx 1 - \frac{i}{2600}$. So we have

$$\Pr[A] \approx 1 - \prod_{i=1}^{n-1} e^{-\frac{i}{2600}}$$

$$= 1 - e^{\sum_{i=1}^{n-1} - \frac{i}{2600}}$$

$$= 1 - e^{\frac{n(n-1)}{2} \cdot \frac{-1}{2600}}$$

$$\approx 1 - e^{\frac{-n^2}{5200}}$$

Since we want $\Pr[A] < 1\%$, then we have $n < \sqrt{2600 \ln(\frac{100}{99})} \approx 5.11$. Therefore, the maximum number of this type of license plates that they can issue is 5.

3. Let **A** be the event that at least 2 license plates have the same number. Suppose *n* more digits are needed, then

$$Pr[A] = 1 - Pr[\overline{A}]$$

$$= 1 - \prod_{i=1}^{49} (1 - \frac{i}{10 \cdot 10 \cdot 26 \cdot 10^n})$$

Still by Taylor expansion, we have

$$Pr[A] \approx 1 - \prod_{i=1}^{49} e^{-\frac{i}{2600 \cdot 10^n}}$$
$$= 1 - e^{\sum_{i=1}^{49} -\frac{i}{2600 \cdot 10^n}}$$
$$= 1 - e^{\frac{-1176}{2600 \cdot 10^n}}$$

Since we want $\Pr[A] < 1\%$, then we have $n > \log_{10}(\frac{1176}{26\ln(\frac{100}{99})}) - 2 \approx 1.65$. Therefore, 2 more digits are needed at least.

11 Q11

Assume \tilde{H} is not a collision resistant hash function, i.e.,

$$\exists x \neq y, \tilde{H}^s(x) = \tilde{H}^s(y)$$

Therefore, we have $H^s(H^s(x)) = H^s(H^s(y))$.

- If $H^s(x) = H^s(y)$, then (x, y) is a pair of collision of H.
- If $H^s(x) \neq H^s(y)$, we can let $x' = H^s(x)$, $y' = H^s(y)$ such that (x', y') is a pair of collision of H since $H^s(H^s(x)) = H^s(H^s(y))$.

Therefore, H is not collision resistant, which contradicts the prerequisite. Thus, \tilde{H} is a collision resistant hash function.