4. `표준기저`, `직교기저`, `정규직교기저` 비교 X 한위 너널러는 길이가 /선 너널러

원 한 1 1

- o 표준 기저 (Standard Basis) => 표준 단위벡터 (Standard Unit Vector)
 - 많은 가능한 기저들 중 성분 1개 만이 1 이고, 나머지 성분이 모두 0 인 표준적인 벡터
 - . 例) \mathbf{R}^3 의 표준기저 \mathbf{e}_1 =(1,0,0), \mathbf{e}_2 =(0,1,0), \mathbf{e}_3 =(0,0,1)
- 직교 기저 (Orthogonal Basis)

- <u>기저이면서 직교하는 부분집합</u>

. 서로다른 두 벡터가 항상 수직인 벡터들

ex)
$$a_1 = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$
 $b_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
 $a_2 = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$ $b_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

o 정규직교 기저 (Orthonormal Basis) 같이 = La norm) 나

- 기저미면서 직교하고 그 크게가 모두 1인 부분집합

🎤각 벡터가 모두 단위벡터이고 서로 수직인 벡터들

.. 例) 정규직교기저의 하나의 사례 => 표준 기저

ex) (1=[2] [2]

기저 > 직교 기저 > 정규직교기저 > 표준기저 벡터공간 생성 벡터 내적공간 생성