Also, do the assigned HW problems. This is just in addition to HW.

ALWAYS JUSTIFY YOUR ANSWER!

Computations

- 1. Describe all abelian groups of order 243 (up to isomorphism) as direct sums of cyclic groups of prime power order as $\mathbb{Z}_{p^{n_1}} \oplus \mathbb{Z}_{p^{n_2}} \oplus \cdots \oplus \mathbb{Z}_{p^{n_s}}$. Answer: We use $243 = 3^5$:
 - All abelian groups of order $243 = 3^5$ can be described using partitions of 5 which are: (5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1).
 - Corresponding groups are: $H_1 = \mathbb{Z}_{3^5}, \quad H_2 = \mathbb{Z}_{3^4} \times \mathbb{Z}_{3^1}, \quad H_3 = \mathbb{Z}_{3^3} \times \mathbb{Z}_{3^1}, \quad H_4 = \mathbb{Z}_{3^3} \times \mathbb{Z}_{3^1} \times \mathbb{Z}_{3^1}, \quad H_5 = \mathbb{Z}_{3^2} \times \mathbb{Z}_{3^2} \times \mathbb{Z}_{3^1},$ $H_6 = \mathbb{Z}_{3^2} \times \mathbb{Z}_{3^1} \times \mathbb{Z}_{3^1} \times \mathbb{Z}_{3^1}, \quad H_7 = \mathbb{Z}_{3^1} \times \mathbb{Z}_{3^1} \times \mathbb{Z}_{3^1} \times \mathbb{Z}_{3^1} \times \mathbb{Z}_{3^1}.$
 - Therefore all abelian groups (up to isomorphism) of order 243 are: $H_1 = \mathbb{Z}_{243}, \quad H_2 = \mathbb{Z}_{81} \times \mathbb{Z}_3, \quad H_3 = \mathbb{Z}_{27} \times \mathbb{Z}_9, \quad H_4 = \mathbb{Z}_{27} \times \mathbb{Z}_3 \times \mathbb{Z}_3, \quad H_5 = \mathbb{Z}_9 \times \mathbb{Z}_9 \times \mathbb{Z}_3, \quad H_6 = \mathbb{Z}_9 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3, \quad H_7 = \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3$
- 2. Describe all abelian groups of order 360 (up to isomorphism) as direct sum of cyclic groups of prime power order (notice different primes). Answer: We use $360 = 2^3 3^2 5^1$:
 - Sylow 2-subgroup $|G_{(2)}| = 2^3 = 8$. All abelian groups of order 2^3 can be described using partitions of 3 which are: (3), (2, 1), (1, 1, 1). Corresponding groups are \mathbb{Z}_{2^3} , $\mathbb{Z}_{2^2} \times \mathbb{Z}_{2^1}$, $\mathbb{Z}_{2^1} \times \mathbb{Z}_{2^1} \times \mathbb{Z}_{2^1}$. Therefore all abelian groups (up to isomorphism) of order 8 are: $H_1 = \mathbb{Z}_8$, $H_2 = \mathbb{Z}_4 \times \mathbb{Z}_2$, $H_3 = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$
 - Sylow 3-subgroup $|G_{(3)}| = 3^2 = 9$. All abelian groups of order 3^2 can be described using partitions of 2 which are: (2), (1, 1). Corresponding groups are \mathbb{Z}_{3^2} , $\mathbb{Z}_{3^1} \times \mathbb{Z}_{3^1}$. Therefore all abelian groups (up to isomorphism) of order 9 are: $K_1 = \mathbb{Z}_9$, $K_2 = \mathbb{Z}_3 \times \mathbb{Z}_3$
 - Sylow 5-subgroup |G₍₅₎| = 5¹ = 5.
 All abelian groups of order 5¹ can be described using partitions of 1 which are: (1).
 Corresponding groups are Z₅₁. Therefore all abelian groups (up to isomorphism) of order 5 are:
 J₁ = Z₅.
 - All possible (up to isomorphism) abelian groups of order 360, are products of one of the H_1, H_2, H_3 with one of K_1, K_2 with J_1 : $H_1 \times K_1 \times J_1 = \mathbb{Z}_8 \times \mathbb{Z}_9 \times \mathbb{Z}_5$ $H_2 \times K_1 \times J_1 = \mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_9 \times \mathbb{Z}_5$

$$H_3 \times K_1 \times J_1 = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_9 \times \mathbb{Z}_5$$

$$H_1 \times K_2 \times J_1 = \mathbb{Z}_8 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_5$$

$$H_2 \times K_2 \times J_1 = \mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_5$$

$$H_3 \times K_2 \times J_1 = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_5$$

3. Describe all abelian groups of order 360 up to isomorphism using cyclic decomposition as: $\mathbb{Z}_{m_1} \oplus \mathbb{Z}_{m_2} \oplus \cdots \oplus \mathbb{Z}_{m_t}$ where $m_2|m_1, m_3|m_2, \ldots, m_t|m_{t-1}$.

<u>Answer:</u> By making the tables of powers of primes as I did in class, you can get the above groups isomorphic to the following groups:

$$H_{1} \times K_{1} \times J_{1} = \mathbb{Z}_{8} \times \mathbb{Z}_{9} \times \mathbb{Z}_{5} \cong \mathbb{Z}_{360}$$

$$H_{2} \times K_{1} \times J_{1} = \mathbb{Z}_{4} \times \mathbb{Z}_{2} \times \mathbb{Z}_{9} \times \mathbb{Z}_{5} \cong \mathbb{Z}_{180} \times \mathbb{Z}_{2}$$

$$H_{3} \times K_{1} \times J_{1} = \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{9} \times \mathbb{Z}_{5} \cong \mathbb{Z}_{90} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$$

$$H_{1} \times K_{2} \times J_{1} = \mathbb{Z}_{8} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} \cong \mathbb{Z}_{120} \times \mathbb{Z}_{3}$$

$$H_{2} \times K_{2} \times J_{1} = \mathbb{Z}_{4} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} \cong \mathbb{Z}_{60} \times \mathbb{Z}_{6}$$

$$H_{3} \times K_{2} \times J_{1} = \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} \cong \mathbb{Z}_{30} \times \mathbb{Z}_{6} \times \mathbb{Z}_{2}$$

- 4. Let $G = \mathbb{Z}_{81} \oplus \mathbb{Z}_{27} \oplus \mathbb{Z}_3$.
 - (a) Describe all elements of order 81.
 - (b) Describe all elements of order 27.
 - (c) Describe all elements of order 9.
 - (d) Describe all elements of order 3.
- 5. Let $G = \mathbb{Z}_8 \oplus \mathbb{Z}_{27} \oplus \mathbb{Z}_5$.

Answer: We will use the following facts:

All elements in G are of the form (a, b, c) with $a \in \mathbb{Z}_8, b \in \mathbb{Z}_{27}, c \in \mathbb{Z}_5$.

The orders are given by: |(a, b, c)| = lcm(|a|, |b|, |c|).

- (a) Describe all elements of order 8. <u>Answer:</u> $|(a,b,c)| = lcm(|a|,|b|,|c|) = 8 \implies |a| = 8, |b| = 1, |c| = 1 \implies a \in \{1,3,5,7\}, b = 0, c = 0 [\{(1,0,0), (3,0,0), (5,0,0), (7,0,0)\}]$
- (b) Describe all elements of order 24. <u>Answer:</u> $|(a,b,c)| = lcm(|a|,|b|,|c|) = 24 \implies |a| = 8, |b| = 3, |c| = 1 \implies a \in \{1,3,5,7\}, b \in \{9,18\}, c = 0$ $\overline{\{(1,9,0), (3,9,0), (5,9,0), (7,9,0)\}, \{(1,18,0), (3,18,0), (5,18,0), (7,18,0)\}}$
- (c) Describe all elements of order 5. <u>Answer:</u> $|(a,b,c)| = lcm(|a|,|b|,|c|) = 5 \implies |a| = 1, |b| = 1, |c| = 5 \implies a = 0, b = 0, c \in \{1,2,3,4\} [\{(0,0,1), (0,0,2), (0,0,3), (0,0,4)\}]$
- (d) Describe all elements of order 120. <u>Answer:</u> $|(a, b, c)| = lcm(|a|, |b|, |c|) = 120 \implies |a| = 8, |b| = 3, |c| = 5 \implies a \in \{1, 3, 5, 7\}, b \in \{9, 18\}, c \in \{1, 2, 3, 4\}$

(e) Describe all elements of order 1.

<u>Answer:</u> $|(a, b, c)| = lcm(|a|, |b|, |c|) = 1 \implies |a| = 1, |b| = 1, |c| = 1 \implies a = 0, b = 0, c = 0 |\{(0, 0, 0)\}|$

6. Let $G = \mathbb{D}_6 = \langle s, r \mid |s| = 2, |r| = 6, srs = r^5 = r^{-1} \rangle$.

Answer: We will use the following description of elements of G:

 $G = \mathbb{D}_6 = \{e, r, r^2, r^3, r^4, r^5, s, sr, sr^2, sr^3, sr^4, sr^5\}.$

(a) Find the possible numbers n_p of Sylow p-subgroups for each prime p||G|.

Answer: The order of G is $|G| = 2 \cdot 6 = 2^2 \cdot 3$. So the primes are p = 2 and p = 3.

From Sylow theorems: (1) $n_p||G|$ and (2) $n_p \equiv 1 \pmod{p}$.

- p=2
- $(1) n_p ||G| \implies n_2 |12 \implies n_2 \in \{1, 2, 3, 4, 6, 12\}$
- (2) $n_p \equiv 1 \pmod{p} \implies n_2 \equiv 1 \pmod{2} \implies n_2 \in \{1, 3, 5, 7, 9, 11\}.$
- $n_2 \in \{1, 3\}$
- p = 3
- $\overline{(1) \ n_p} ||G| \implies n_3 |12 \implies n_3 \in \{1, 2, 3, 4, 6, 12\}$
- (2) $n_p \equiv 1 \pmod{p} \implies n_3 \equiv 1 \pmod{3} \implies n_3 \in \{1, 4, 7, 10, \}.$
- $n_3 \in \{1, 4\}.$
- (b) For each prime p||G| describe all Sylow p-subgroups?

Answer:

Orders of elements of $G = D_6$:

$$o(e) = 1, o(r) = 6, o(r^2) = 3, o(r^3) = 2, o(r^4) = 3, o(r^5) = 6,$$

 $o(s) = 2, o(sr) = 2, o(sr^2) = 2, o(sr^3) = 2, o(sr^4) = 2, o(sr^5) = 2$

p=2

 $\overline{\text{Since}} |G| = 2^2 \cdot 3$, the order of Sylow 2-subgroups is equal to 2^2 , i.e. $|P_{(2)}| = 4$.

Orders of elements in Sylow 2-subgroups must be powers of 2 and divide 4.

Therefore: 1,2 or 4.

 $P_{(2),1} = \langle r^3, s \rangle = \{e, r^3, s, sr^3\}$ (you have to check that it is a subgroup)

 $P_{(2),2} = \langle r^3, sr \rangle = \{e, r^3, sr, sr^4\}$ (you have to check that it is a subgroup)

 $P_{(2),3} = \langle r^3, sr^2 \rangle = \{e, r^3, sr^2, sr^5\}$ (you have to check that it is a subgroup)

p = 3

Since $|G| = 2^2 \cdot 3$, the order of any Sylow 3-subgroup is equal to 3, i.e. $|P_{(3)}| = 3$.

Orders of elements in Sylow 3-subgroups must be powers of 3 and divide 3.

Therefore: 1 or 3.

 $P_{(3)} = \langle r^2 \rangle = \{e, r^2, r^4\}$ (you have to check that it is a subgroup)

There are no more elements of order 3, therefore this is the only Sylow 3-subgroup.

(c) For each prime p|G| show explicitly how all Sylow p-subgroups are conjugate?

The three Sylow 2-subgroups $\{P_{(2),1}, P_{(2),2}, P_{(2),3}\}$ are conjugate:

$$\begin{split} &P_{(2),1} = \{e, r^3, s, sr^3\} \\ &rP_{(2),1}r^{-1} = \{rer^{-1}, rr^3r^{-1}, rsr^{-1}, rsr^3r^{-1}\} = \{e, r^3, sr^5r^{-1}, sr^5r^3r^{-1}\} \\ &rP_{(2),1}r^{-1} = \{e, r^3, sr^4, sr\} = P_{(2),2} \\ &r^2P_{(2),1}r^{-2} = \{r^2er^{-2}, r^2r^3r^{-2}, r^2sr^{-2}, r^2sr^3r^{-2}\} = \{e, r^3, sr^5r^5r^{-2}, sr^5r^5r^3r^{-2}\} \end{split}$$

$$r^{2}P_{(2),1}r^{-2} = \{r^{2}er^{-2}, r^{2}r^{3}r^{-2}, r^{2}sr^{-2}, r^{2}sr^{3}r^{-2}\} = \{e, r^{3}, sr^{5}r^{5}r^{-2}, sr^{5}r^{5}r^{3}r^{-2}\}$$

$$r^{2}P_{(2),1}r^{-2} = \{e, r^{3}, sr^{2}, sr^{5}\} = P_{(2),3}$$

$$\{P_{(2),1}, P_{(2),2}, P_{(2),3}\} = \{P_{(2),1}, rP_{(2),1}r^{-1}, r^2P_{(2),1}r^{-2}\}$$

$$p = 3$$

There is only one Sylow 3-subgroup $\{P_{(3)}\}$, so $gP_{(3)}g^{-1}=P_{(3)}$ for all $g\in G$.

7. Let $G = \mathbb{D}_5 = \langle s, r \mid |s| = 2, |r| = 5, srs = r^4 = r^{-1} \rangle$.

Answer: We will use the following description of elements of G:

$$G = \mathbb{D}_5 = \{e, r, r^2, r^3, r^4, s, sr, sr^2, sr^3, sr^4\}.$$

(a) Find the possible numbers n_p of Sylow p-subgroups for each prime p||G|. Answer: The order of G is $|G| = 2 \cdot 5$. So the primes are p = 2 and p = 5.

From Sylow theorems: (1) $n_p||G|$ and (2) $n_p \equiv 1 \pmod{p}$.

$$\underline{p=2}$$

- $(1) n_p ||G| \implies n_2 |10 \implies n_2 \in \{1, 2, 5, 10\}$
- (2) $n_p \equiv 1 \pmod{p} \implies n_2 \equiv 1 \pmod{2} \implies n_2 \in \{1, 3, 5, 7, 9\}.$

$$n_2 \in \{1, 5\}$$

$$p = 5$$

- $(1) \ n_p ||G| \implies n_5 |10 \implies n_5 \in \{1, 2, 5, 10\}$
- $(2) n_p \equiv 1 \pmod{p} \implies n_5 \equiv 1 \pmod{5} \implies n_5 \in \{1, 6\}.$

$$n_5 \in \{1\}, \text{ i.e. } n_5 = 1.$$

(b) For each prime p||G| describe all Sylow p-subgroups?

Answer:

$$p=2$$

Since $|G| = 2 \cdot 5$, the order of Sylow 2-subgroups is equal to 2, i.e. $|P_{(2)}| = 2$.

$$P_{(2),1} = \langle s \rangle = \{e, s\}$$

$$P_{(2),2} = \langle sr \rangle = \{e, sr\}$$
 (you have to check that $(sr)(sr) = e$

$$P_{(2),3} = \langle sr^2 \rangle = \{e, sr^2\}$$
 (you have to check that $(sr^2)(sr^2) = e$

$$P_{(2),4} = \langle sr^3 \rangle = \{e, sr^3\}$$
 (you have to check that $(sr^3)(sr^3) = e$

$$P_{(2),5} = \langle sr^4 \rangle = \{e, sr^4\}$$
 (you have to check that $(sr^4)(sr^4) = e$

Notice that this agrees nicely with $n_2 = 5$, so there are 5 Sylow 2-subgroups.

$$p = 5$$

Since $|G| = 2 \cdot 5$, the order of Sylow 5-subgroups is equal to 5, i.e. $|P_{(5)}| = 5$. $P_{(5)} = \langle r \rangle = \{e, r, r^2, r^3, r^4\}$

This is the only Sylow 5-subgroup which agrees with $n_5 = 1$.

(c) For each prime p||G| show explicitly how all Sylow p-subgroups are conjugate? p=2

It will be used $rs = sr^4$ which follows from $srs = r^4$.

Consider $P_{(2),1} = \langle s \rangle = \{e, s\}$. For simplicity denote it by P.

$$\begin{split} rPr^{-1} &= r\left\langle s\right\rangle r^{-1} = r\{e,s\}r^{-1} = \{rer^{-1},rsr^{-1}\} = \{e,sr^3\} = P_{(2),4} \\ r^2P(r^2)^{-1} &= r^2\left\langle s\right\rangle r^{-2} = r^2\{e,s\}r^{-2} = \{r^2er^{-2},r^2sr^{-2}\} = \{e,sr\} = P_{(2),2} \\ r^3P(r^3)^{-1} &= r^3\left\langle s\right\rangle r^{-3} = r^3\{e,s\}r^{-3} = \{r^3er^{-3},r^3sr^{-3}\} = \{e,sr^4\} = P_{(2),5} \\ r^4P(r^4)^{-1} &= r^4\left\langle s\right\rangle r^{-4} = r^4\{e,s\}r^{-4} = \{r^4er^{-4},r^4sr^{-4}\} = \{e,sr^2\} = P_{(2),3} \\ r^{-5} &= r^{-5} \end{split}$$

 $\overline{P_{(5)}} = \langle r \rangle = \{e, r, r^2, r^3, r^4\}$ is the only Sylow 5-subgroup.

Every conjugate of Sylow 5-subgroup is again Sylow 5-subgroup by problem #15 (notice I added a few problems).

So all conjugates of $P_{(5)}$ are equal to $P_{(5)}$, i.e. $gP_{(5)}g^{-1}=P_{(5)}$ for all $g\in G$.

8. Let $G = S_4$.

- (a) Find the possible numbers n_p of Sylow p-subgroups for each prime p||G|.
- (b) For each prime p||G| describe all Sylow p-subgroups?
- (c) For each prime p||G| show explicitly how all Sylow p-subgroups are conjugate?

9. Let $G = \mathbb{Z}_{15}^{\times}$.

- (a) Find the possible numbers n_p of Sylow p-subgroups for each prime p||G|.
- (b) For each prime p||G| describe all Sylow p-subgroups?
- (c) For each prime p||G| show explicitly how all Sylow p-subgroups are conjugate?

10. Let $G = \mathbb{Z}_{36}^{\times}$.

Answer: First notice that the elements of $G = \mathbb{Z}_{36}^{\times}$ are the integers between 1 and 35 which are relatively prime to 36, i.e. $G = \mathbb{Z}_{36}^{\times} = \{i \mid 1 \leq i \leq 35, \ gcd(i, 36) = 1\} = \{1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35\}.$

Check, there should be $\varphi(36) = \varphi(2^2 3^2) = \varphi(2^2) \varphi(3^2) = (2-1)2(3-1)3 = 12$ elements.

(a) Find the possible numbers n_p of Sylow p-subgroups for each prime p||G|.

 $|G| = 12 = 2^2 3$. So, one should consider primes p = 2 and p = 3.

- One can compute n_2 and n_3 using Sylow theorems: (1) $n_p||G|$ and (2) $n_p \equiv 1 \pmod{p}$.
- Another way: since G is abelian, all subgroups are normal.
- One more Sylow theorem For each prime p, all Sylow p-subgroups are conjugate.
- From the last two statements it follows that for each prime p=2 and p=3 there is exactly one Sylow p-subgroup.

-
$$n_2 = 1$$
, $n_3 = 1$.

(b) For each prime p||G| describe all Sylow p-subgroups?

Answer: In order to find Sylow subgroups, we need to compute orders of elements:

If $a \in G$ then |a|||G|. Therefore, possible orders of elements in $G = \mathbb{Z}_{36}^{\times}$ must divide 12. Possible orders: 1,2,3,4,6,12.

Sylow 2-subgroup can have only elements of order 1,2,4. $|P_2| = 4$

Sylow 3-subgroup can have only elements of order 1,3. $|P_3|=3$ $(5, 5^2 = 25, 5^3 = 17, 5^4 = 13, 5^5 = 29, 5^6 = 1)$ implies $|5| = 6, |5^2| = 3, |5^3| = 2$ Sylow 3-subgroup $P_3 = \langle 25 \rangle = \{13, 25, 1\}$ since $25^3 = 1$ Sylow 2-subgroup $P_2 = \{17, 19, 35, 1\}$

(c) For each prime p||G| show explicitly how all Sylow p-subgroups are conjugate? Answer:

There is only one Sylow 2-subgroup P_2 . Therefore all conjugates of P_2 are equal to P_2 , i.e. $gP_2g^{-1} = P_2$ for all $g \in G = \mathbb{Z}_{36}^{\times}$.

There is only one Sylow 3-subgroup P_3 . Therefore all conjugates of P_3 are equal to P_3 , i.e. $gP_3g^{-1}=P_3$ for all $g\in G=\mathbb{Z}_{36}^{\times}$.

Theoretic Questions

- 11. Write the definition of p-subgroup.
- 12. Write the definition of Sylow p-subgroup.

Proofs

- 13. Let H be a subgroup of a group G. Let $g \in G$. Prove that gHg^{-1} is a subgroup of G. Proof:
 - Claim 1: $aHa^{-1} \subset G$, i.e. is a subset of G. Proof of Claim 1: If $x \in aHa^{-1}$, then $x = aha^{-1}$ for some $h \in H$. Since $H \subset G$, then $h \in G$. Since G is a group it is closed under inverses and multiplications. Therefore $aha^{-1} \in G$. Therefore $x \in G$. Therefore $aHa^{-1} \subset G$.
 - Claim 2: $aHa^{-1} \neq \emptyset$, i.e. is a nonempty set. Proof of Claim 2: Since H is a subgroup of G, the identity of G is in H, i.e. $e \in H$. Therefore $aea^{-1} \in aHa^{-1}$. So $e = aea^{-1}$ using inverse and identity properties in a group. Therefore $e \in aHa^{-1}$. Therefore $aHa^{-1} \neq \emptyset$.
 - Claim 3: If $x, y \in aHa^{-1}$, then $xy \in aHa^{-1}$. Proof of Claim 3: Let $x, y \in aHa^{-1}$. Then, there exist $h_1, h_2 \in H$ such that $x = ah_1a^{-1}$ and $y = ah_2a^{-1}$, by defin of aHa^{-1} . Therefore $xy = (ah_1a^{-1})(ah_2a^{-1}) = ah_1eh_2a^{-1} = ah_1h_2a^{-1} = aha^{-1}$ where $h = h_1h_2$. Then $h \in H$ (H is closed under operation since it is a subgroup). Therefore $xy \in aHa^{-1}$.
 - Claim 4: If $x \in aHa^{-1}$, then $x^{-1} \in aHa^{-1}$. Proof of Claim 4: Let $x \in aHa^{-1}$. Then there exist an $h \in H$ such that $x = aha^{-1}$. $x^{-1} = (aha^{-1})^{-1} = (a^{-1})^{-1}h^{-1}a^{-1} = ah^{-1}a^{-1}.$ Since H is a subgroup, it is closed under inverses. Therefore $h^{-1} \in H$. So $x^{-1} \in aHa^{-1}$.

- Conclusion: aHa^{-1} is a subgroup in G. This follows by the Theorem on subgroups: A nonempty subset of a group is a subgroup if it is closed under group operation and inverses.
- 14. Let H be a subgroup of a group G. Let $g \in G$. Prove that the conjugate subgroup gHg^{-1} is isomorphic to H. Proof:
 - Define $f: H \to gHg^{-1}$ by $f(x) := gxg^{-1}$.
 - Claim 1: f is a group homomorphism. Proof of Claim 1: Have to show f(xy) = f(x)f(y) for all $x, y \in H$. $f(xy) \stackrel{\text{(def. of f)}}{=} g(xy)g^{-1} \stackrel{\text{(identity e)}}{=} gxeyg^{-1} \stackrel{\text{(inverse)}}{=} gx(g^{-1}g)yg^{-1} \stackrel{\text{(associative)}}{=} (gxg^{-1})(gyg^{-1}) \stackrel{\text{(def. of f)}}{=} f(x)f(y)$ Therefore f(xy) = f(x)f(y) for all $x, y \in H$. Therefore f is a group homomorphism.
 - Claim 2: f is injective (one-to-one).
 Proof of Claim 2: Have to show: If f(x₁) = f(x₂) then x₁ = x₂.
 Suppose f(x₁) = f(x₂). Then gx₁g⁻¹ = gx₂g⁻¹.
 Use cancellation law on the left for g and get x₁g⁻¹ = x₂g⁻¹
 Use cancellation law on the right side for g⁻¹ and get x₁ = x₂
 Therefore f(x₁) = f(x₂) implies x₁ = x₂. Therefore f is injective by definition.
 - Claim 3: f is surjective (onto). Proof of Claim 3: Have to show: given $y \in gHg^{-1}$ there is $x \in H$ such that f(x) = y. $y \in gHg^{-1}$ implies there is an $x \in H$ such that $y = gxg^{-1}$. Therefore $f(x) = gx.g^{-1} = y$. Therefore f is onto, i.e. surjective.
 - Therefore $f: H \to gHg^{-1}$ is a group homomorphism which is bijection, hence it is an isomorphism by definition of isomorphism.
- 15. Let P be a Sylow p-subgroup of a finite group G. Let $g \in G$. Prove that the conjugate subgroup gPg^{-1} is a Sylow p-subgroup of G. Proof:
 - Let $|G| = p^k m$, with p prime, $k \ge 1$, gcd(p, m) = 1.
 - Sylow p-subgroups are subgroups P such that $|P| = p^k$.
 - Let P be a Sylow p-subgroup of G. Let gPg^{-1} be a conjugate of P.
 - $\bullet \ \mbox{Then} \ gPg^{-1} \cong P \mbox{ by Problem \#14.}$ Therefore
 - $|gPg^{-1}| = |P| = p^k$. Therefore gPg^{-1} is Sylow p-subgroup.
- 16. Let H be a subgroup of a group G. Let conj.cl(H) be the conjugacy class of H. Prove that H is a normal subgroup of G if and only if |conj.cl(H)| = 1. Proof:

- Recall: A subgroup H of G is normal subgroup of G if $gHg^{-1} = H$ for all $g \in G$.
- Recal definition: $conj.cl(H) = \{gHg^{-1} \mid g \in G\}$
- Proof of (\Rightarrow) Suppose H is normal subgroup in G. Then $gHg^{-1} = H$ for all $g \in G$. Therefore $conj.cl(H) = \{H\}$. Therefore |conj.cl(H)| = 1.
- Proof of (\Leftarrow) Suppose |conj.cl(H)| = 1. Then $conj.cl(H) = \{H\}$ since $H \in conj.cl(H)$. Therefore $gHg^{-1} = H$ for all $g \in G$. Therefore H is normal subgroup in G.
- 17. Let G be a group. Let G act on $X = \{subgroups \ of \ G\}$ by conjugation. Let H be a subgroup of G. Prove that H is a normal subgroup of G if and only if o(H), the orbit of H, has only one point.

Proof:

- Use the fact that the orbit of a subgroup H under conjugation action is the same as the conjugacy class of H.
- o(H) = conj.cl(H)
- Apply Problem #16.
- 18. Let $n_p = \#\{\text{Sylow } p\text{-subgroups of } G\}$. Suppose $n_p = 1$. Let P be a p-Sylow subgroup of G. prove that P is a normal subgroup. Proof:
 - Suppose $n_p = 1$. Then
 - $\#\{\text{Sylow p-subgroups}\}=1.$
 - Let P be a Sylow p-subgroup. Then all conjugates of P are also Sylow p-subgroups by problem #15.
 - $\{gPg^{-1} \mid g \in G\} = \{\text{conjugates of } P\} \subseteq \{\text{ Sylow p-subgroups}\} = \{P\} \text{ since there is only one Sylow p-subgroup.}$
 - $gPg^{-1} = P$ for all $g \in G$. Therefore P is normal subgroup in G.
- 19. Let G be a group. Suppose $|G| = p^k m$ where p is prime, $k \ge 1$, m > 1, gcd(p, m) = 1. Suppose $n_p = 1$. Prove that G has a normal subgroup. Proof:
 - Suppose $n_p = 1$. Therefore
 - $\#\{\text{Sylow p-subgroups}\}=1$.
 - Let P be a Sylow p-subgroup. Then all conjugates of P are also Sylow p-subgroups by problem #15.
 - $\{gPg^{-1} \mid g \in G\} = \{\text{conjugates of } P\} \subseteq \{\text{ Sylow p-subgroups}\} = \{P\} \text{ since there is only one Sylow p-subgroup.}$
 - $gPg^{-1} = P$ for all $g \in G$. Therefore P is normal subgroup in G.

- 20. Let G be a group of order |G|=33. Prove that G has a normal subgroup. Proof:
- 21. Let G be a group of order |G| = 21. Prove that G has a normal subgroup.
 - $|G| = 21 = 3 \cdot 7$. So we consider primes p = 3 and p = 7.
 - p = 3. Then:
 - $(1) \ n_p||G| \implies n_3|21 \implies n_3 \in \{1, 3, 7, 21\}$
 - (2) $n_p \equiv 1 \pmod{p} \implies n_3 \equiv 1 \pmod{3} \implies n_3 \in \{1, 7, 10, 13\}.$

Therefore n_3 might be 1 or 7.

- p = 7. Then:
 - $(1) \ n_p||G| \implies n_7|21 \implies n_7 \in \{1, 3, 7, 21\}$
 - $(2) \ n_p \equiv 1 \pmod{p} \implies n_7 \equiv 1 \pmod{7} \implies n_7 \in \{1, 8\}.$

Therefore $n_7 = 1$.

- Since $n_7 = 1$ it follows by Problem #18 that Sylow 7-subgroup is normal subgroup in G.
- Notice that we could not conclude that $n_3 = 1$ and anything about Sylow 3-subgroup, but we could conclude that Sylow 7-subgroup is normal in G.
- 22. Let G be a group of order |G|=2p where $p\neq 2$ is prime. Prove that G is not simple. Proof:
 - Recall, group G is simple if it does not have any proper normal subgroups H, i.e. if it does not have normal subgroup H, so that $\{e\} \subseteq H \subseteq G$.
 - \bullet p is prime. Then:
 - $(1) n_p||G| \implies n_p|2p \implies n_p \in \{1, 2, p, 2p\}$
 - (2) $n_p \equiv 1 \pmod{p} \implies n_p \in \{1, p+1\}.$

Notice since p is prime and $p \neq 2$ it follows that $p + 1 \neq 2$, $p + 1 \neq p$, $p + 1 \neq 2p$ (If p + 1 = 2p then 1 = p which gives a contradiction that p is prime.)

- Conclusion: $n_p = 1$.
- The Sylow p-subgroup P is normal in G by Problem #18.
- $1 implies <math>|\{e\}| < |P| < |G|$ which implies $\{e\} \subsetneq P \subsetneq G$
- The Sylow subgroup P is proper normal subgroup of G. Therefore G is not simple.
- 23. Let G be a group of order |G| = 56. Prove that G is not simple.
- 24. Let G be a group of order |G| = 125. Prove that the center Z(G) of G has at least 5 elements. Proof: Use the same proof as done in class for $|G| = p^k$ since $|G| = 5^3$ and prove that |Z(G)| > 5 and therefore Z(G) has at least 5 elements.
- 25. Let G be a group of order |G| = 125. Prove that G is not simple. Proof:

- The center Z(G) of G is a subgroup (proved several weeks ago).
- The center Z(G) of G is a normal subgroup (proved several weeks ago).
- The center Z(G) of G has at least 5 elements.
- The center Z(G) of G is a proper normal subgroup.
- The group G is not simple.
- 26. Prove that abelian group of order 55 must be cyclic.
- 27. Prove that $\mathbb{Z}_8 \times \mathbb{Z}_5 \cong \mathbb{Z}_{40}$.
- 28. Prove that every group of order 5 is cyclic.
- 29. Prove that every group of prime order is cyclic.
- 30. Prove that every group of prime order p is isomorphic to \mathbb{Z}_p .
- 31. Prove that every group of order 4 is either cyclic or isomorphic to Klein Four Group. Proof: Done in class.
- 32. Prove that every group of order 4 is isomorphic either to \mathbb{Z}_4 or to $\mathbb{Z}_2 \oplus \mathbb{Z}_2$.

True -False - Sometimes

- 33. True -False Sometimes
 - T F S Let P_p be a Sylow p-subgroup of G. Then P_p is normal subgroup.
 - T F S Let $G = (\mathbb{Z}_n, +_n)$, let P_p be a Sylow p-subgroup of G. Then P_p is normal subgroup.
 - T F S Let G be a group with |G| = 150. Let P_2 be a Sylow 2-subgroup of G. Then $|P_2| = 2$.
 - T F S Let G be a group with |G| = 150. Let P_5 be a Sylow 5-subgroup of G. Then $|P_5| = 5$.
 - T F S Let G be a group, |G| = 150. Let P_5 be a Sylow 5-subgroup of G. Then $|P_5| = 25$.
 - T F S $\mathbb{Z}_4 \times \mathbb{Z}_5 \cong \mathbb{Z}_{20}$.
 - $T \ F \ S \ \mathbb{Z}_4 \times \mathbb{Z}_2 \cong \mathbb{Z}_8.$
 - $T F S \mathbb{Z}_4 \times \mathbb{Z}_4 \cong \mathbb{Z}_4.$
 - $T \lceil F \rceil S \mathbb{Z}_4 \times \mathbb{Z}_4 \cong \mathbb{Z}_{16}.$
 - $T F S \mathbb{Z}_2 \times \mathbb{Z}_2 \cong \mathbb{Z}_4.$
 - T F S $\mathbb{Z}_2 \times \mathbb{Z}_2 \cong K$, the Klein Four Group.

Examples

34. Give an example of a group G and a p-subgroup of G which is not Sylow p-subgroup of G.

- 35. Give an example of a group G and a p-subgroup of G which is Sylow p-subgroup of G.
- 36. Give an example of a group G and a subgroup of G which is not a p-subgroup of G.
- 37. Consider the Klein Four Group:

$$K = \{e, a, b, c \mid a^2 = b^2 = c^2 = e, ab = ba = c, bc = cb = a, ac = ca = b\}.$$

- (a) Make the Cayley table for K.
- (b) Make the Cayley table for $\mathbb{Z}_2 \oplus \mathbb{Z}_2$.
- (c) Write an explicit isomorphism $f: K \to \mathbb{Z}_2 \oplus \mathbb{Z}_2$.