Problem Statement

Add two nonnegative integers a and b. We are only allowed to add or subtract single units from the numbers.

Size of the problem.

a+6

Base Cares:

$$2: a = 0$$
, result = 6

These two bare cases makes the first base care redundant.

3: b = 0, result = a

The second & third base cares gawantees that a & b will be pointive for all the recurrive cares.

Problem Decomposition

Reduce the size of the problem by 1 unit.

We can subtract one wit from either a or b.

Recursion Diagram

Inputs $(a,b) \longrightarrow a+b$ $(a-1,b) \longrightarrow a-1+b$

We need to extend the solution to the sub problem in order to find solution to the original problem

This can be done by adding I to the solution to the sub problem.

Rocursive Case:

f(a,b) = f(a-1,b) + 1

Mathematical Representation &

$$f(a,b) = \begin{cases} a & \text{if } b=0\\ b & \text{if } a=0\\ f(a-1,b)+1 & \text{if } a>0 & 8 & 6>0 \end{cases}$$

Lode & mathematical Representation:

def add
$$(a,b)$$

if $a=0$

return b

else $f(a,b)=b$

return a

else $f(a-1,b)+1$

end

end

Option 2

Reduce the size of the problem by subtracting a writ from b instead of a f(a,b) = f(a,b-1) + 1

speed: - Slow if b is large (: more Latts needed to reach bare care)

Efficient Solution:

Choose smallest input parameter to reduce

۵	b	Number of Calls
10,000	2	2
2	10000	٥٥٥٥٥١

Decomposition Approach 1:

Decrement the smallest input parameter.

Size of the subproduen

min(a, b) - 1

Recursive Rule

if a < b

$$f(a,b) = f(a-1, b) + 1$$

$$f(a,b) = f(a,b-1) + 1$$

Mathematical function

$$f(a,b) = \begin{cases} a & \text{if } b = 0 \\ b & \text{if } a = 0 \\ f(a-1,b) & \text{if } a < b \ (a \neq 0 \ b \neq 0) \\ f(a,b-1) & \text{if } b \leq a \ (a \neq 0 \ b \neq 0) \end{cases}$$

pseudo code :-

return 6

else if 6=0

return a

clre if 2

else if a < breturn add (a-1, b) + 1 Recursive cases

return add (a, b-1) + 1

Decomposition Approach #2

Decrement both parameters (reduces the size of the problem)

Recursive d'agram

Recursive Rule :-

$$f(a,6) = f(a-1,6-1) + 2$$
 for $a > 0 & 6 > 0$

prendo code

if
$$a = 0$$
return b
Bare cares

Else if $b = 0$
return a

Else

return a
 $add(a-1,b-1) + 2$ Recurring Care end

Aaaaa