

LÓGICA COMPUTACIONAL

Test de Validación 1 2016 Modelo C

SOLUCIÓN

1. Compruebe si la deducción que sigue es correcta. Use cálculo con supuestos (**1.5 pt**)

$$p \vee \sim q$$
, $\sim (\sim q \wedge r) \rightarrow \sim p$, $s \wedge t \Rightarrow \sim (q \vee \sim s)$

1. p v ~q	Premisa
2. ~ (~q ∧ r) → ~p	Premisa
3. s ^ t	Premisa
4. q v ∼s	Supuesto (Absurdo)
5. s	Simplificación 3
6. $s \rightarrow q$	Interdefinición (→, v) 4
7. q	Modus Ponens 5,6
8. p	Caso de 1
9. ~q Λ r	Modus Tollens 2,8
10. ~ q (1)	Simplificación 9
11. ∼q	Caso de 1
12. ~q (2)	ldentidad 11
13. ∼q	Canc. Sup. Casos 8-10,11-12
14. q∧~q	Producto 7,13 (Contradicción)
15. ∼ (q v ∼s)	Canc. Sup. Absurdo 4-14

2. Verifique si la formula que sigue es válida (1.5 pt)

$$\sim (p \ v \ \sim q) \rightarrow (((r \rightarrow q) \rightarrow s) \rightarrow (s \ \wedge \sim p))$$

Decir que la fórmula anterior es válida es lo mismo que decir que la siguiente deducción es correcta, usando el Teorema de la Deducción.

$$\sim (p \ V \sim q), (r \rightarrow q) \rightarrow s \Rightarrow s \land \sim p$$

1. \sim (p v \sim q)	Premisa
2. $(r \rightarrow q) \rightarrow s$	Premisa
3. ~p ∧ q	DeMorgan 1
4. ∼p	Simplificación 3
5. q	Simplificación 3
6. r → q	Introducción Antecedente 5
7. s	Modus Ponens 2,6
8. s ∧~p	Producto 7.4