Road to IPhO

Преломление в капле

«Объясняя» возникновение радуги, авторы учебных пособий весьма часто ограничиваются указанием на то, что это замечательное природное явление демонстрирует явление дисперсии света. Иногда приводят типичный рисунок двойного преломления луча света в сферической капле воды (рис. 1), позаимствованный еще из работы Р. Декарта. Приведенные утверждения справедливы: действительно изображение радуги формируют солнечные лучи дважды преломившиеся на поверхности капли (и конечно, один раз отразившиеся от ее внутренней поверхности); действительно

показатель преломления воды зависит от длины волны падающего света, поэтому углы выхода лучей из капли различны для различных длин волн. Однако объяснение и описание радуги не столь просто, как это кажется на первый взгляд, хотя эффекты данного явления вполне объяснимы в рамках геометрической оптики.

Рассмотрим прохождение лучей через сферическую каплю. Назовем оптической осью прямую O_1O_2 , проходящую через центр капли и параллельную падающему лучу S_0 . Обозначим:

 S_1 -- луч, сразу отразившийся от поверхности капли;

 S_2 -- луч, испытавший два преломления на поверхности капли;

 S_3 -- луч, испытавший два преломления и одно отражение внутри капли;

 S_4 -- луч, испытавший два преломления и два отражения внутри капли.

Углы, под которыми лучи отходят от капли $\theta_1, \theta_2, \theta_3, \theta_4$, будем отсчитывать от оптической оси. Назовем прицельным параметром ρ отношение расстояния между падающим лучом и оптической осью к радиусу капли. (Для лучей, палающих на каплю, этот параметр изменяется от -1 до +1).

	nagarouphy has karisho, 5 for napamerp homerwork of 1 go 17.
A1	Найдите зависимости углов, под которыми лучи отходят от капли $\theta_1, \theta_2, \theta_3, \theta_4$, от прицельного параметра ρ .
A2	Покажите, что зависимости углов θ_1, θ_2 от прицельного параметра ρ являются монотонными. Покажите, что для лучей S_3, S_4 существуют минимальные значения углов отклонения θ_3, θ_4 . Найдите значения этих минимальных углов.
A3	Покажите, что лучи, вышедшие из различных капель под одинаковыми углами к оптической оси, расположенных в разных точках пространства, дают изображение на сетчатке глаза в виде дуги окружности. Постройте ход этих лучей в глазу человека.
A4	Покажите, что минимальным углам отклонения соответствует яркая граница, которая определяет угловой размер радуги.
A5	Вычислите угловой наблюдаемый размер α основной и вторичной радуги.
A6	Вычислите угловую ширину $\delta \alpha$ каждой дуги радуги. Показателй преломления $n_{\rm красн}=1.329,$ $n_{\rm фиолет}=1.344.$