Versuchsbericht zu

E3 – Elektrische Resonanz

Gruppe Mi 10

Alex Oster(a_oste16@uni-muenster.de)

Jonathan Sigrist(j_sigr01@uni-muenster.de)

durchgeführt am 24.01.2018 betreut von Wladislaw Hartmann

Inhaltsverzeichnis

1	Kurzfassung		1
2 Methoden		en	1
	2.1 Auf	bau	1
	2.1.	1 Serienresonanzkreis	1
	2.1.	2 Parallelresonanzkreis	1
	2.2 Uns	sicherheiten	2
3	B Durchführung und Datenanalyse		2
4	Diskussion		3
5	5 Schlussfolgerung		4
6	Anhang		5
	6.1 Uns	sicherheitsrechnung	5

1 Kurzfassung

Dieser Bericht befasst sich mit der Betrachtung von elektrischer Resonanz bei Schwingkreisen. Dazu werden zwei verschiedene Schwingkreise betrachtet. Hierbei handelt es sich um eine Serien- und um eine Parallelschaltung von Kondensator und Spule. Bei fester Eingangsspannung und Frequenz, und

2 Methoden

Dieser Abschnitt beschäftigt sich mit dem Aufbau der beiden Schaltkreise, sowie auch den Unsicherheiten welche bei diesem Versuch auftreten.

2.1 Aufbau

2.1.1 Serienresonanzkreis

Für den Serienresonanzkreis wird der in Abb. 1 dargestellte Aufbau verwendet. Zu erkennen sind ein Frequenzgenerator, ein $10\,\Omega$ Widerstand, an dem ein Multimeter zur Messung der Spannung anliegt, ein Oszilloskop u(t), welches parallel zu der Reihenschaltung von Kondensator C, Spule L mit Innenwiderstand $R_{\rm i}$ und einem bis zu $1\,\mathrm{k}\Omega$ regulierbaren Widerstand $R_{\rm v}$. Der Frequenzgenerator dient als Wechselstromquelle, welcher auf eine feste Frequenz und Spannung eingestellt werden soll.

2.1.2 Parallelresonanzkreis

Der in Abb. 2 dargestellte Schaltkreis für den Parallelresonanzkreis unterscheidet sich von dem Serienschaltkreis lediglich um die Parallelschaltung von Spule L mit Innenwiderstand $R_{\rm i}$, Kondensator C und einem bis zu $10\,{\rm k}\Omega$ regulierbaren Widerstand $R_{\rm p}$. Dieser Block ist wie auch zuvor parallel zu dem Oszilloskop geschaltet. Hier wird die selbe Frequenz, wie auch für den Serienresonanzkreis verwendet, jedoch eine höhere Spannung.

Abbildung 1: Schaltskizze für den Aufbau des in Serie geschalteten Schwingkreises.

2.2 Unsicherheiten

Die bei diesem Versuch auftretenden Unsicherheiten setzen sich aus der Unsicherheit für den Kondensator U_c , für die digitale Anzeige des Multimeters U_{digital} , ... Die Berechnung der kombinierten Unsicherheiten erfolgt nach GUM und ist im Anhang aufgeführt.

3 Durchführung und Datenanalyse

Zur Bestimmung der Resonanzkurve I(f), wird die Stromstärke I in den Schaltkreisen über die gemessenen Spannung und die vorliegenden Widerstände bzw. Impedanzen ermittelt. Dazu dienen folgende Formeln:

Die verwendete Frequenz der Wechselstromquelle für beide Schwingkreise betrug $1000\,\mathrm{Hz}$. Für die Eingangspannungen wurden für den Serienresonanzkreis $2\,\mathrm{V}$ und $5\,\mathrm{V}$

Abbildung 2: Schaltskizze für den Aufbau des in Serie geschalteten Schwingkreises.

für den Parallelresonanzkreis verwendet. Es wurden für verschiedene Widerstände $R_{\rm v}$ (Serie, mit $0\,\Omega$, $200\,\Omega$ und $500\,\Omega$) und $R_{\rm p}$ (parallel, mit $\infty\Omega$ $2\,{\rm k}\Omega$ und $10\,{\rm k}\Omega$) Messungen in Abhängigkeit der Kapazität des Kondensators C durchgeführt.

4 Diskussion

5 Schlussfolgerung

6 Anhang

6.1 Unsicherheitsrechnung

$$x = \sum_{i=1}^{N} x_i; \quad u(x) = \sqrt{\sum_{i=1}^{N} u(x_i)^2}$$

Abbildung 3: Formel für kombinierte Unsicherheiten des selben Typs nach GUM.

$$f = f(x_1, \dots, x_N); \quad u(f) = \sqrt{\sum_{i=1}^{N} \left(\frac{\partial f}{\partial x_i} u(x_i)\right)^2}$$

Abbildung 4: Formel für sich fortpflanzende Unsicherheiten nach GUM.