Non-negative Monte Carlo estimation of f-divergences

Frank Nielsen*
Sony Computer Science Laboratories Inc.
Tokyo, Japan

6th January 2020

Abstract

We show how to guarantee non-negative Monte Carlo estimations of f-divergences by considering the corresponding extended f-divergences.

1 Problem with naive Monte Carlo estimations of f-divergences

Let (X, F, μ) be a probability space [5] with X denoting the sample space, F the σ -algebra, and μ a reference positive measure. The f-divergence [3, 6] between two probability measures P and Q both absolutely continuous with respect to μ for a convex generator $f:(0,\infty)\to\mathbb{R}$ strictly convex at 1 and satisfying f(1)=0 is

$$I_f(P:Q) = I_f(p:q) = \int p(x)f\left(\frac{q(x)}{p(x)}\right)d\mu(x),$$

where $P = p d\mu$ and $Q = q d\mu$ (i.e., p and q are Radon-Nikodym derivatives with respect to μ). We use the following conventions:

$$0f\left(\frac{0}{0}\right) = 0, \quad f(0) = \lim_{u \to 0^+} f(u), \quad \forall a > 0, 0f\left(\frac{a}{0}\right) = \lim_{u \to 0^+} uf\left(\frac{a}{u}\right) = a \lim_{u \to \infty} \frac{f(u)}{u}.$$

When $f(u) = -\log u$, we retrieve the Kullback-Leibler divergence (KLD):

$$D_{\mathrm{KL}}(p:q) = \int p(x) \log \frac{p(x)}{q(x)} \mathrm{d}\mu(x).$$

The KLD is usually difficult to calculate in closed-form, say, for example, between statistical mixture models [7]. A common technique is to estimate the KLD using Monte Carlo sampling using a proposal distribution r:

$$\widehat{\mathrm{KL}}_n(p:q) = \frac{1}{n} \sum_{i=1}^n \frac{p(x_i)}{r(x_i)} \log \frac{p(x_i)}{q(x_i)},$$

^{*}E-mail: Frank.Nielsen@acm.org. https://franknielsen.github.io/

where $x_1, \ldots, x_n \sim_{\text{iid}} r$. When r is chosen as p, the KLD can be estimated as

$$\widehat{KL}_n(p:q) = \frac{1}{n} \sum_{i=1}^n \log \frac{p(x_i)}{q(x_i)}.$$
 (1)

Monte Carlo estimators are consistent under mild conditions: $\lim_{n\to\infty} \widehat{\mathrm{KL}}_n(p:q) = \mathrm{KL}(p:q)$.

In practice, one problem when implementing Eq. 1, is that we may end up potentially with $\widehat{\mathrm{KL}}_n(p:q) < 0$. This may have disastrous consequences as algorithms implemented by programs consider non-negative divergences to execute a correct workflow. The potential negative value problem of Eq. 1 comes from the fact that $\sum_i p(x_i) \neq 1$ and $\sum_i q(x_i) \neq 1$.

2 Non-negative Monte Carlo estimates from extended fdivergences

One way to circumvent this problem is to consider the extended f-divergences:

Definition 1 (Extended f-divergence) The extended f-divergence for a convex generator f, strictly convex at 1 and satisfying f(1) = 0 is defined by

$$I_f^e(p:q) = \int p(x) \left(f\left(\frac{q(x)}{p(x)}\right) - f'(1) \left(\frac{q(x)}{p(x)} - 1\right) \right) d\mu(x).$$

Indeed, for a strictly convex generator f, let us consider the scalar Bregman divergence [2]:

$$B_f(a:b) = f(a) - f(b) - (a-b)f'(b) \ge 0.$$
(2)

Setting $a = \frac{q(x)}{p(x)}$ and b = 1 in Eq. 2, and using the fact that f(1) = 0, we get

$$f\left(\frac{q(x)}{p(x)}\right) - \left(\frac{q(x)}{p(x)} - 1\right)f'(1) \ge 0.$$

Therefore we define the extended f-divergences as

$$I_f^e(p:q) = \int p(x)B_f\left(\frac{q(x)}{p(x)}:1\right)d\mu(x) \ge 0.$$
 (3)

That is, the formula for the extended f-divergences is

$$I_f^e(p:q) = \int p(x) \left(f\left(\frac{q(x)}{p(x)}\right) - f'(1) \left(\frac{q(x)}{p(x)} - 1\right) \right) d\mu(x) \ge 0. \tag{4}$$

Then we estimate the extended f-divergence using importance sampling of the integral with respect to distribution r, using n variates $x_1, \ldots, x_n \sim_{\text{iid}} p$ as:

$$\hat{I}_{f,n}(p:q) = \frac{1}{n} \sum_{i=1}^{n} f\left(\frac{q(x_i)}{p(x_i)}\right) - f'(1)\left(\frac{q(x_i)}{p(x_i)} - 1\right) \ge 0.$$

For example, for the KLD, we obtain the following Monte Carlo estimator:

$$\widehat{KL}_n(p:q) = \frac{1}{n} \sum_{i=1}^n \left(\log \frac{p(x_i)}{q(x_i)} + \frac{q(x_i)}{p(x_i)} - 1 \right) \ge 0,$$
 (5)

since the extended KLD is

$$D_{\mathrm{KL}^e}(p:q) = \int \left(p(x) \log \frac{p(x)}{q(x)} + q(x) - p(x) \right) \mathrm{d}\mu(x).$$

Eq. 5 can be interpreted as a sum of scalar Itakura-Saito divergences since the Itakura-Saito divergence is scale-invariant: $\widehat{\mathrm{KL}}_n(p:q) = \frac{1}{n} \sum_{i=1}^n D_{\mathrm{IS}}(p(x_i):q(x_i))$ with the scalar Itakura-Saito divergence

$$D_{\rm IS}(a:b) = D_{\rm IS}\left(\frac{a}{b}:1\right) = \frac{a}{b} - \log\frac{a}{b} - 1 \ge 0,$$

a Bregman divergence obtained for the generator $f(u) = -\log u$.

Notice that the extended f-divergence is a f-divergence for the generator

$$f_e(u) = f(u) - f'(1)(u - 1).$$

We check that the generator f_e satisfies both f(1)=0 and f'(1)=0, and we have $I_f^e(p:q)=I_{f_e}(p:q)$. Thus $D_{\mathrm{KL}^e}(p:q)=I_{f_{\mathrm{KL}}^e}(p:q)$ with $f_{\mathrm{KL}}^e(u)=-\log u+u-1$.

Let us remark that we only need to have the scalar function strictly convex at 1 to ensure that $B_f\left(\frac{a}{b}:1\right) \geq 0$. Indeed, we may use the definition of Bregman divergences extended to strictly convex functions but not necessarily smooth functions [4, 8]:

$$B_f(x:y) = \max_{g(y) \in \partial f(y)} \{ f(x) - f(y) - (x-y)g(y) \},$$

where $\partial f(y)$ denotes the subderivative of f at y.

3 Conclusion

The f-divergence $I_f(p:q) = \int p(x) f\left(\frac{q(x)}{p(x)}\right) \mathrm{d}\mu(x)$ is defined for a convex generator satisfying f(1) = 0 since it follows from Jensen inequality that $I_f(p:q) \geq f\left(\int p(x)\frac{q(x)}{p(x)}\mathrm{d}\mu(x)\right) = f(1) = 0$. For densities, the generator f is equivalent to the family of generators $f_{\lambda}(u) = f(u) + \lambda(u-1)$ where $\lambda \in \mathbb{R}$: $I_f(p:q) = I_{f_{\lambda}}(p:q)$. We showed that we can express the f-divergence as a scaled integral of a scalar Bregman divergence: $I_f(p:q) = \int p(x)B_f\left(\frac{q(x)}{p(x)}:1\right)\mathrm{d}\mu(x)$ provided that f'(1) = 0. This can always be done by choosing the equivalent generator f_{λ} such that $f'_{\lambda}(1) = f'(1) + \lambda = 0$, i.e. $\lambda = -f'(1)$. It follows that in order to have the f-divergences satisfying the law of the indiscernibles, we need to have strict convexity of f at 1. Expressing the f-divergence using a Bregman divergence allows one to

- 1. calculate non-negative Monte Carlo estimates $\hat{I}_f(p:q) = \frac{1}{s} \sum_{i=1}^s \frac{p(x_i)}{r(x_i)} B_f\left(\frac{q(x_i)}{p(x_i)}:1\right) \geq 0$ where $x_1, \ldots, x_s \sim_{\text{idd}} r$, a proposal distribution, and
- 2. extend the f-divergences to positive densities.

Furthermore, noticing that $I_{\lambda f}(p:q) = \lambda I_f(p:q)$ for $\lambda > 0$, we may enforce that f''(1) = 1, and obtain a standard f-divergence [1] which enjoys the property that $I_f(p_{\theta}(x):p_{\theta+d\theta}(x)) = d\theta^{\top}I(\theta)d\theta$, where $I(\theta)$ denotes the Fisher information matrix of the parameteric family $\{p_{\theta}\}_{\theta}$ of densities.

References

- [1] S. Amari. *Information Geometry and Its Applications*. Applied Mathematical Sciences. Springer Japan, 2016.
- [2] Lev M Bregman. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. *USSR computational mathematics and mathematical physics*, 7(3):200–217, 1967.
- [3] Imre Csiszár. Information-type measures of difference of probability distributions and indirect observation. *studia scientiarum Mathematicarum Hungarica*, 2:229–318, 1967.
- [4] G. J. Gordon. Approximate solutions to Markov decision processes. PhD thesis, Department of Computer Science, Carnegie Mellon University, 1999.
- [5] Robert W Keener. Theoretical statistics: Topics for a core course. Springer, 2011.
- [6] Frank Nielsen and Richard Nock. On the chi square and higher-order chi distances for approximating f-divergences. *IEEE Signal Processing Letters*, 21(1):10–13, 2013.
- [7] Frank Nielsen and Ke Sun. Guaranteed bounds on the Kullback–Leibler divergence of univariate mixtures. *IEEE Signal Processing Letters*, 23(11):1543–1546, 2016.
- [8] Matus Telgarsky and Sanjoy Dasgupta. Agglomerative Bregman clustering. In *Proceedings* of the 29th International Coference on International Conference on Machine Learning, pages 1011–1018. Omnipress, 2012.