作 业

1.	下列选项中,降低进程优先级的合理时机是		
	A. 进程的时间片用完 B. 进程刚完成 I/O, 进入就绪队列		
	C. 进程长期处于就绪队列中 D. 进程从就绪态转为运行态		
2.	某个进程从等待(阻塞)状态进入就绪状态,可能是由于。		
	A. 正在运行的进程运行结束		
	B. 正在运行的进程执行了 P(WAIT)操作		
	C. 正在运行的进程执行了 V(SIGNAL)操作		
	D. 正在运行的进程时间片用完		
3.	下面关于进程的叙述不正确的是。		
	A. 进程申请 CPU 得不到满足时,其状态变为就绪状态。		
	B. 在单 CPU 系统中,任一时刻有一个进程处于运行状态。		
	C. 优先级是进行进程调度的重要依据,一旦确定不能改变。		
	D. 进程获得处理机而运行是通过调度而实现的。		
4.	进程和线程是两个既相关又有区别的概念,下面描述中,不正确的是。		
	A. 线程是申请资源和调度的独立单位		
	B. 每个进程有自己的虚存空间,同一进程中的各线程共享该进程虚存空间		
	C. 进程中所有线程共享进程的代码段		

- D. 不同的线程可以对应相同的程序 5. 下面哪一种情况不会引起进程之间的切换? A. 进程调用本程序中定义的 sinx 函数进行数学计算 B. 进程处理 I/O 请求 C. 进程创建了子进程并等待子进程结束 D. 产生中断 6. 一个计算问题的程序分成三个可以独立执行的程序模块:输入、计算和打印,每一批 数据都需顺序被这些模块执行。当有多批数据时,这三个程序模块中可以并行运行的 是。 A. 输入、计算和打印 B. 输入和计算 C. 计算和打印 D. 打印和输入 7. 某计算机系统只有一个 CPU, 采用多用户多任务操作系统。假设当前时刻处于用户态 (user mode) ,系统中共有 10 个用户进程,则处于就绪状态的用户进程数最多有 ____个。 A. 0 B. 1 C. 9 D. 10 8. 设有3个作业,它们的到达时间和运行时间如表所示,并在一台处理机上按单道方式 运行。如按响应比高者优先算法,则作业执行是次序是__。 A. J1 \ J2 \ J3 \ B. J1 \ J3 \ J2 C. J2、J3、J1 D. J3、J2、J1
 - 表 作业到达时间和运行时间表

作业	到达时间	运行时间
1	8:00	2小时
2	8:30	1 小时
3	9:30	0.25 小时

- 9. 下列关于时间片轮转调度算法的叙述中,哪个是不正确的?
 - A. 在时间片轮转调度算法中,系统将CPU的处理时间划分成若干个时间段
 - B. 就绪队列中的诸进程轮流在 CPU 运行,每次最多运行一个时间片
 - C. 当时间片结束时,运行进程自动让出 CPU,该进程进入等待队列
 - D. 如果时间片长度很小,则调度程序抢占 CPU 的次数频繁,加重系统开销
- 10.响应比最高者优先算法综合考虑了作业的等待时间和计算时间,响应比的定义是
 - A. 作业周转时间与等待时间之比 B. 作业周转时间与计算时间之比
- - C. 作业等待时间与计算时间之比 D. 作业计算时间与等待时间之比
- 11.下列进程调度算法中,综合考虑进程等待时间和执行时间的是
 - A. 时间片轮转调度算法 B. 短进程优先调度算法
- - C. 先来先服务调度算法 D. 高响应比优先调度算法
- 12.在分时操作系统中,进程调度经常采用 算法。
 - A. 先来先服务 B. 最到优先权 C. 时间片轮转 D. 随机
- 13. 下列哪一个进程调度算法会引起进程的饥饿问题?
 - A. 先来先服务(FCFS)算法 B. 时间片轮转(RR)算法
 - C. 优先级(Priority) 算法 D. 多级反馈队列算法

- 14.某系统的进程状态图如图所示。
 - (1)说明一个进程发生变迁3、4、6的原因。
 - (2) 下述因果变迁是否会发生? 若会,在什么情况下发生?

a. 3->5 b. 6->4 c. 6->7

(3) 根据此进程状态图,说明该系统的 CPU 调度策略和调度效果。

15. 描述一下内核在两个进程间进行上下文切换需要完成的工作。

16.设有一组进程,它们需要占用 CPU 的时间及优先级如下所示:

P1 10 3
P2 1 1

进程 CPU时间 优先级

*P*3 2 3

P4 1 4

*P*5 5 2

假设各进程在时刻0按P1、P2、P3、P4、P5的顺序到达。

- (1) 画出分别采用调度算法FCFS(先来先服务)、SJF(最短作业优先)、非抢占式优先级(nonpreemptive priority,数值小的优先级大)及RR(时间片轮转,时间片为1)时的调度顺序甘特图(Gantt chart)。
- (2) 计算各种调度算法下每个进程的周转时间(turnaround time)和平均周转时间?
- (3) 计算各种调度算法下每个进程的等待时间(waiting time) 和平均周转时间?
- (4) 哪个调度算法可以得到最小的平均等待时间?
- 17. 很多 CPU 调度算法都带参数。比如 RR(时间片轮转)调度算法中,有一个参数代表时间片大小; 多级反馈队列调度算法的参数包括队列数、每个队列的调度策略、进程

在队列间迁移的准则等。由于参数的不同,一个调度算法可能导致和其他调度算法一致的结果,如 FCFS 算法就是当时间片为无穷大时的 RR 算法,下面各组调度算法有这样的关系吗?

- (1) 基于优先级的调度算法与SJF调度算法
- (2) 多级反馈队列调度算法与FCFS调度算法
- (3) 基于优先级的调度算法与FCFS调度算法
- (4) RR与SJF