ANSWER 2 OF 3

DERWENT IN RMATION LTD PIX COPYRIGHT 2000

ACCESSION NUMBER:

1982-61729E [30] WPIX

TITLE:

Amphoteric copolymers esp. used as emulsifiers for polymerisation - are of styrene , methacrylate (s) or

acrylonitrile with (meth)acrylic acid or maleic anhydride

and aminoalkyl (meth)acrylate(s).

DERWENT CLASS:

A14 A97 F09 G02

INVENTOR(S):

HAMBRECHT, J; HOEHR, L; NAARMANN, H; REICHEL, F; RICHTER,

1

PATENT ASSIGNEE (S):

(BADI) BASF AG

COUNTRY COUNT:

PATENT INFORMATION:

PATENT NO KIND DATE WEEK LA PG MAIN IPC DE 3047688 A 19820722 (198230) * 19

PRIORITY APPLN. INFO: DE 1980-3047688 19801218 INT. PATENT CLASSIF.: C08F212-04; C08F220-34

BASIC ABSTRACT:

3047688 A UPAB: 19930915 DE

Amphoteric copolymers (I) with a mol. wt. of 500-5000 are prepd. by continuous bulk polymerisation of 1 mol. N-contg. monomer (I) with an amino and/or quaternary amino gp., 1.5-10 mol. (w.r.t. 1 mol. (I) nonionic, hydrophobic, ethylenically unsatd. monomer (II) and 0.5-1.5 mol. (w.r.t. to 1 mol. (I) ethylenically unsatd. carboxylic acid (III) at 180-400 deg.C and above 1 bar in the absence of regulators.

(I) is pref. of formula CH2:CR3C(O)A-B-NR1R2 (where A is O or NH; B is CnH2n; n is 1-8; R1 and R2 are CmH2m+1, m is 1-4 and R3 is H or Me). (II) is (alpha-methyl) styrene, methacrylates of 1-8C alcohols and/or acrylonitrile. (III) is (meth)acrylic acid and/or maleic anhydride.

(I) are emulsifiers and can be used in the prepn. of aq. polymer dispersions and esp. (surface) sizes for paper.

FILE SEGMENT: CPI

FIELD AVAILABILITY: AB

CPI: A04-D01; A04-F01; A07-B; A08-S05; A12-B03A; MANUAL CODES:

A12-W06B; F05-A06B; F05-A06C; G02-A05C

Aktenzeichen:

Anmeldetag:

Offenlegungstag:

2

C 08 F 212/04 C 08 F 220/00

C 08 F 220/04 C 08 F 220/12

P 30 47 688.1 C 08 F 220/44

18. 12. 80 22. 7.82

DEUTSCHES PATENTAMT

(7) Anmelder:

BASF AG, 6700 Ludwigshafen, DE

(72) Erfinder:

Hambrecht, Jürgen, Dipl.-Chem. Dr., 6903 Neckargemünd, DE; Naarmann, Herbert, Dipl.-Chem. Dr., 6719 Wattenheim, DE; Richter, Konrad, Dipl.-Chem. Dr., 6700 Ludwigshafen, DE; Reichel, Fritz, Dipl.-Chem. Dr., 6945 Hirschberg, DE; Höhr, Lothar, Dipl.-Chem. Dr., 6520 Worms, DE

Werfahren zur Herstellung amphoterer Copolymerisate und deren Verwendung als Emulsator

10

15

Patentansprüche

- Verfahren zur Herstellung von amphoteren Copolymerisaten eines Molekulargewichts von 500 bis 5000, <u>dadurch</u> <u>gekennzeichnet</u>, daß man eine Monomerenmischung aus
 - a) 1,5 bis 10 Mol mindestens eines nichtionischen, hydrophoben, ethylenisch ungesättigten Monomeren,
 - b) l Mol mindestens eines stickstoffhaltigen Monomeren, das eine Amino- und/oder eine quaternäre Aminogruppe trägt, und
 - c) 0,5 bis 1,5 Mol mindestens einer ethylenisch ungesättigten Carbonsäure, wobei sich die Mengenangaben für die Monomeren a) und c) jeweils auf 1 Mol der Monomeren b) beziehen, kontinuierlich bei Temperaturen von 180 bis 400°C und Drücken oberhalb 1 bar in Abwesenheit von Reglern in
- 20 Verfahren gemäß Anspruch 1, <u>dadurch gekennzeichnet</u>, daß man eine Monomerenmischung aus
 - a) Styrol, &-Methylstyrol, Acrylsäure- und Methacrylsäureester von einwertigen C₁- bis C₈-Alkoholen und Acrylnitril
- b) einer Verbindung der Formel

Masse polymerisiert.

$$H_{2}C = C - C - A - B - N R^{2}$$
(I)

in der

A = 0, NH,

B = $C_{n_{2n}}^{H_{2n}}$, n = 1 bis 8,

R¹, R² = $C_{m_{2m+1}}^{H_{2m+1}}$, m = 1 bis 4 und

R³ = H, CH₃

bedeutet,

- c) Acrylsäure, Methacrylsäure und/oder Maleinsäureanhydrid polymerisiert.
- 3. Amphotere Copolymerisate, hergestellt durch kontinuierliche Polymerisation einer Monomerenmischung aus
 - a) 1,5 bis 10 Mol mindestens eines nichtionischen, hydrophoben, ethylenisch ungesättigten Monomeren,
 - b) 1 Mol mindestens eines stickstoffhaltigen Monomeren, das eine Amino- und/oder quaternäre Aminogruppe trägt, und
- 20 c) 0,5 bis 1,5 Mol mindestens einer ethylenisch ungesättigten Carbonsäure, wobei sich die Mengenangaben für die Monomeren a) und c) jeweils auf 1 Mol der Monomeren b) beziehen,

in Masse bei Temperaturen von 180 bis 400°C und
Drücken oberhalb 1 bar in Abwesenheit von Reglern.

- 4. Verwendung der amphoteren Copolymerisate nach den Ansprüchen 1 bis 3 als Emulgator.
- Verwendung der amphoteren Copolymerisate nach den Ansprüchen 1 bis 3 zum Emulgieren von Masse- und Oberflächenleimungsmitteln für Papier.

35

10

0050,1034829

Verfahren zur Herstellung amphoterer Copolymerisate und deren Verwendung als Emulgator

Aus der GB-PS 1 185 283 sind amphotere Copolymerisate bekannt, die durch Polymerisieren von Monomerenmischungen 5 aus einem basischen Monomeren, z.B. Dialkylaminoalkylacrylaten oder Acrylamiden, mindestens einer äthylenisch ungesättigten Carbonsäure und mindestens einem wasserunlöslichen neutralen copolymerisierbaren Monomeren in Lösung oder vorzugsweise in wäßriger Emulsion hergestellt 10 werden. Diese bekannten amphoteren Copolymerisate haben ein relativ hohes Molekulargewicht. Sie werden beispielsweise zum Beschichten von Oberflächen, insbesondere als antithrombogene Beschichtungsmassen in der medizinischen Technik sowie auch als Oberflächenleimungsmittel für 15 Papier verwendet. Die bekannten amphoteren Copolymerisate besitzen jedoch nur eine ungenügende Wirksamkeit bei der Anwendung als Leimungsmittel für Papier und auch als Emulgator.

Aus der DE-AS 25 02 172 sind anionische Papierleimungsmittel bekannt, die durch Copolymerisieren von Monomerenmischungen aus

- a) 30 bis 80 Gew% C_2 bis C_{12} -Olefine mit endständiger Doppelbindung und/oder Vinyläthern,
- b) 2 bis 35 Gew% Acrylsäure und/oder Methacrylsäure und
- c) 5 bis 35 Gew% Maleinsäureanhydrid, Maleinsäure, Fumarsäure, Itaconsäure, Vinylphosphonsäure und Vinylmilchsäure bei Temperaturen zwischen 130 und 320°C
 und Drücken oberhalb 1 bar hergestellt werden.

Die DE-OS 2 519 581 betrifft Papierleimungsmittel, die durch kontinuierliche Copolymerisation von Monomerenmischungen aus 30 bis 85 Gew% $\rm C_{2^-}$ bis $\rm C_{12^-}$ Olefinen mit endständiger Doppelbindung und/oder Vinyläthern und 15 bis

25

30

0050/034829

BASF Aktiengesellschaft

5

15

20

- 2 --4

70 Gew% basischen Acryl- und/oder Methacrylverbindungen, ...B. Dialkylaminoacrylestern oder -amiden, bei Temperaturen zwischen 130 und 320°C hergestellt werden. Die anionischen bzw. die basische Monomere einpolymerisiert enthaltenden Papierleimungsmittel haben zwar auch emulgierende Eigenschaften, diese sind jedoch für die meisten Zwecke nicht ausreichend.

Aufgabe der Erfindung ist es, niedrig molekulare Copolyme-10 risate zur Verfügung zu stellen, die sich als Emulgator eignen.

Die Aufgabe wird erfindungsgemäß gelöst durch amphotere Copolymerisate, hergestellt durch kontinuierliche Copolymerisation einer Monomerenmischung aus

- a) 1,5 bis 10 Mol mindestens eines nichtionischen hydrophoben ethylenisch ungesättigten Monomeren,
- b) 1 Mol mindestens eines stickstoffhaltigen Monomeren, das eine Amino- und/oder eine quaternäre Aminogruppe trägt und
- c) 0,5 bis 1,5 Mol mindestens einer ethylenisch ungesättigten Carbonsäure, wobei sich die Mengenangaben für die Monomeren a) und c) jeweils auf 1 Mol der Monomeren b) beziehen,
- in Masse bei Temperaturen von 180 bis 400°C und Drücken oberhalb 1 bar in Abwesenheit von Reglern.

Die Monomeren der Gruppe a) für die Herstellung des amphoteren Copolymerisats sind nichtionische, hydrophobe, ethylenisch ungesättigte Verbindungen. Es handelt sich hierbei um solche Monomeren, die in Wasser nicht merklich löslich sind und - alleine polymerisiert - hydrophobe Polymerisate bilden. Solche Monomere sind beispielsweise vinylaromatische Monomere, wie Styrol und substituierte Styrole, z.B. Methylstyrol oder Ethylstyrol, Carbonsäureester von

- 3--

O. Z. 0050/034829

ethylenisch ungesättigten C₃- bis C₆-Mono- und -dicarbonsäuren und einwertigen Alkoholen mit 1 bis 8, Kohlenstoffatomen, die Nitrile der genannten Carbonsäuren sowie
Vinylester von 1 bis 12 Kohlenstoffatomen enthaltenden
aliphatischen Carbonsäuren, Alkene mit 2 bis 10 Kohlenstoffatomen, vorzugsweise mit endständiger Doppelbindung,
wie Ethylen oder Diolefine, insbesondere Butadien und
Isopren. Vorzugsweise verwendet man aus dieser Monomerengruppe Styrol, Acrylsäureester, Methacrylsäureester,
Vinylacetat und Vinylpropionat. Von den Acrylsäureestern
seien insbesondere Methylacrylat, Ethylacrylat, n-Propylacrylat, i-Propylacrylat, n-Butylacrylat, i-Butylacrylat
und Ethylhexylacrylat hervorgehoben.

Es ist selbstverständlich auch möglich, Mischungen der genannten Monomeren zu verwenden, z.B. Mischungen aus Styrol
und Ethylhexylacrylat, Styrol und n- oder i-Butylacrylat,
Styrol, i-Butylacrylat und Acrylnitril oder Vinylisobutyläther. Die Monomeren der Gruppe a) sind in der Monomerenmischung, bezogen auf 1 Mol der Monomeren der Gruppe b) zu
1,5 bis 10, vorzugsweise 3 bis 8 Mol enthalten.

Die bei der Copolymerisation eingesetzte Monomerenmischung enthält als Komponente b) mindestens ein stickstoffhaltiges Monomeres, das eine amino- und/oder quaternäre Aminogruppe trägt. Verbindungen dieser Art haben die allgemeine Formel

0.z. 0050/034829

BASF Aktiengesellschaft

in der

A = 0, NH,

B =
$$C_{n2n}$$
, n = 1 bis 8,

 R^{1} , $R^{2} = C_{m}H_{2m+1}$, m = 1 bis 4 und

 $R^{3} = H$, CH_{3}

bedeutet.

Die quaternierten Verbindungen können mit Hilfe der folgenden Formel

$$H_{2}C=C-C-A-B-N-R^{2}$$

$$R^{1}$$

$$X^{-}$$
(II)

15 X = OH, Cl, Br, CH₃-OSO₃H $R^4 = C_m H_{2m+1}$, m = 1 bis 4 charakterisiert werden. Die übrigen Substituenten haben die oben angegebene Bedeutung.

Die Verbindungen der Formel II werden in der Regel als kationische Monomeren, die der Formel I als basische Monomeren bezeichnet. Basische, äthylenisch ungesättigte Monomere sind beispielsweise Acrylsäure- und Methacrylsäure- ester von Aminoalkoholen, z.B. Diäthylaminodiäthylacrylat, Diäthylaminoäthylmethacrylat, Dimethylaminopropylacrylat, Dimethylaminopropylmethacrylat, Dibutylaminopropylacrylat, Dibutylaminopropylmetharylat, Dimethylaminoneopentylacrylat, Dibutylaminopropylmetharylat, Dimethylaminoneopentylacrylat, Aminogruppen enthaltende Derivate des Acrylamids oder Methacrylamids, wie Acrylamidodimethylpropylamin, Methacrylamidodimethylpropylamin und Methacrylamidodimethylpropylamin.

Die quaternären Verbindungen der Formel II werden erhalten, indem man die basischen Monomeren der Formel I mit

35

- - -

0. Z. 0050/034829

-7.

bekannten Quaternisierungsmitteln umsetzt, z.B. mit Benzylchlorid, Äthylchlorid, Butylbromid, Dimethylsulfat und Diäthylsulfat. Diese Monomeren verlieren in der quaternisierten Form ihren basischen Charakter.

5

10

15

20

Als Monomere der Gruppe c) werden ethylenisch ungesättigte Carbonsäuren verwendet. Es handelt sich bei dieser Gruppe von Monomeren im wesentlichen um ethylenisch unge--sättigte C_3 - bis C_6 -Mono- und Dicarbonsäuren, z.B. Acrylsäure, Methacrylsäure, Itaconsäure, Maleinsäure, Maleinsäureanhydrid, Styrolcarbonsäuren und Halbester der Maleinsäure mit einwertigen Alkoholen mit 1 bis 8 Kohlenstoffatomen. Vorzugsweise verwendet man Acrylsäure, Methacrylsäure und Maleinsäureanhydrid. Die für die Copolymerisation einzusetzende Monomerenmischung enthält die Monomeren der Gruppe c), bezogen auf 1 Mol der Monomeren b) in einer Menge von 0,5 bis 1,5 Mol. Die Polymerisate enthalten Einheiten der Monomeren in den Mengen, wie sie in den zur Polymerisation eingesetzten Monomerenmischungen vorliegen. Die Molverhältnisse der Monomeren a : b : c liegen zwischen den Werten 20 : 1 : 3 und 3 : 2 : 1. In diesen Grenzen erhält man Copolymerisate, die wasserlöslich sind. Das Molekulargewicht der Copolymerisate beträgt 500 bis 5000, vorzugsweise 1000 bis 3500.

25

30

Die Eigenschaften der amphoteren Copolymerisate können durch Einpolymerisieren von Monomeren der Gruppe d) modifiziert werden. Zu dieser Gruppe von Monomeren gehören Acrylnitril und Methacrylnitril sowie die Amide von ethylenisch ungesättigten Mono- und Dicarbonsäuren mit 3 bis 6 C-Atomen, vorzugsweise Acrylamid und Methacrylamid. Die Monomeren der Gruppe d) sind, bezogen auf 1 Mol der Monomeren b), zu 0 bis 1 Mol in der Monomerenmischung enthalten.

BASF Aktiengesellschaft

-8-

O.Z. 0050/034829

Die amphoteren Copolymerisate können außerdem durch Copolymerisieren der Monomerenmischung a) bis c) und gegebenenfalls d) in Gegenwart von Monomeren der Gruppe e) modifiziert werden. Es handelt sich bei diesen Monomeren um
nichtionische, hydrophile, ethylenisch ungesättigte Verbindungen, die mindestens zwei reaktive Zentren besitzen,
z.B. N-Methylolacrylamid, N-Methylolmethacrylamid, sowie
die mit einwertigen C₁ - bis C₆-Alkoholen verätherten
N-Methylolacrylamide und N-Methylolmethacrylamide. Di-,
Tri- und Tetraallylether von Pentaerythrit und Sorbit,
Triallylcyanurat, Butandioldiacrylat und Divinyldioxan.
Die Monomeren der Gruppe e) sind, bezogen auf 1 Mol der
Monomeren der Gruppe 1), zu 0 bis 0,5, vorzugsweise 0 bis
0,3 Mol in der Monomerenmischung enthalten.

Die amphoteren Copolymerisate werden hergestellt, indem man die Monomeren der Gruppen a) bis c) und gegebenenfalls d) und e) kontinuierlich bei Temperaturen von 180 bis 400, vorzugsweise 250 bis 350°C copolymerisiert. Die Copolymerisation wird in Abwesenheit von Reglern bei Drücken oberhalb 1 bar durchgeführt. Die Drücke liegen im allgemeinen zwischen 3 und 50 bar. Man kann jedoch auch bei Drücken bis 100 bar oder sogar darüber polymerisieren, benötigt jedoch dann entsprechend ausgelegte Apparaturen.

25

30

35

5

10

15

20

Als Polymerisationsapparatur kann z.B. ein Druckkessel, eine Druckkesselkaskade, ein Druckrohr oder auch ein Druckkessel mit einem nachgeschalteten Reaktionsrohr, das mit einem statischen Mischer versehen ist, verwendet werden. Vorzugsweise polymerisiert man die Monomeren in mindestens zwei hintereinander geschalteten Polymerisationszonen. Dabei kann die eine Reaktionszone aus einem druckdichten Kessel, die andere aus einem druckdichten Reaktionsrohr, vorzugsweise einem beheizbaren statischen Mischer bestehen. Wenn man die Polymerisation in zwei hintereinander

10

15

0.2. 0050/034829

geschalteten Zonen durchführt, erhält man Umsätze, die oberhalb von 99 % liegen. Während der Polymerisation ist es zweckmäßig, für eine gute Durchmischung der Komponenten zu sorgen, beispielsweise dadurch, daß man die Polymerisation in einem druckdichten Kessel vornimmt, der mit einem Rührer ausgestattet ist oder Polymerisationsrohre mit statischen Mischern verwendet. Um ein Ankleben des Polymerisates an den Innenwänden der Polymerisationsapparatur zu verhindert, kann man den Druck in der Polymerisationszone periodisch absenken. Dies geschieht am einfachsten dadurch, daß man am Ende der Polymerisationszone ein Druck halteventil einbaut, das den Druck in der Polymerisationsapparatur periodisch ändert. Die Frequenz der Druckänderungen kann zwischen 1 und 100/min liegen, die Amplitude zwischen 10 und 100 atm.

Bei der Copolymerisation können die bekannten Radikalbildner verwendet werden, beispielsweise Azoverbindungen, organische Peroxide, wie Benzoylperoxid und Lauroylperoxid
oder Hydroperoxide, wie tert.-Butylhydroperoxid. Man kann
auch Oligomere von p- oder m-Diisopropylbenzol oder anderen Verbindungen einsetzen, deren C-C-Bindung leicht
thermisch gespalten werden kann. Bezogen auf die Monomerenmischung verwendet man 0,01 bis 0,1 Gew% eines Polymerisationinitiators. Styrol und dessen Derivate können auch in
Abwesenheit von Polymerisationsinitiatoren mit anderen
Monomeren der Gruppe a) und den Monomeren der Gruppen b)
bis d) copolymerisiert werden.

Die Copolymerisation der obengenannten Monomerengruppen wird kontinuierlich durchgeführt, wobei die Verweilzeiten der Monomeren in der Polymerisationszone etwa 2 bis 60 vorzugsweise 5 bis 30 Minuten betragen. Die Copolymerisation wird in Abwesenheit von Reglern in Masse vorgenommen. Es können jedoch geringe Mengen eines nicht regeln-

BASF Aktiengesellschaft

-8-

0.2. 0050/034629

- 10 -

den Lösungsmittels, wie Dioxan, Toluol, Dimethylformamid, Tetrahydrofuran, Benzol, Xylol und Essigsäure verwendet werden. Die Menge solcher Lösungsmittel beträgt, bezogen auf die Monomerenmischung, 2 bis 20 Gew. 7. Die Lösungsmittel werden aus dem Reaktionsgemisch, das den Reaktor verläßt, mit Hilfe einer gesonderten Entgasungseinheit, z.B. eines Fallstromverdampfers, entfernt. Dieser energieaufwendige Verfahrensschritt erübrigt sich jedoch, sofern die Polymerisation gemäß der bevorzugten Ausführungsform der Erfindung in Abwesenheit von Lösungsmitteln durchgeführt wird. Nach dem erfindungsgemäßen Verfahren erhält man die amphoteren Copolymerisate in besonders hoher Raum-Zeit-Ausbeute (1 bis 50 kg/l. h).

- Die aus dem Reaktor kommende Polymerisatschmelze kann in Wasser oder verdünnten wäßrigen Säuren oder Basen gelöst werden. Vorzugsweise löst man die amphoteren Copolymerisate in Wasser.
- Die amphoteren Copolymerisate werden als Emulgator ver-20 wendet, z.B. bei der Herstellung von wäßrigen Polymerisatdispersionen oder auch zum Emulgieren von Masse- und Oberflächenleimungsmitteln für Papier. Verwendet man diese Co-polymerisate als Emulgator, so prägen sie das Eigenschaftsbild der damit hergestellten wäßrigen Polymerdisper-25 sionen bzw. der Masse- und Oberflächenleimungsmittel. Diese Produkte sind dann ebenfalls amphoter. Um beispielsweise amphotere Polymerisatdispersionen herzustellen, bedient man sich des dafür üblichen Emulsionspolymerisationsverfahrens, das jedoch dahingehend abgewandelt wird, 30 daß man anstelle der gebräuchlichen Emulgatoren und Netzmittel die oben beschriebenen amphoteren Copolymerisate als Emulgator verwendet. Die amphoteren Copolymerisate werden in Wasser gelöst, das vorzugsweise angesäuert ist. Die Konzentration des amphoteren Copolymerisats in der 35

-8-

0.2. 0050/034829

- M.

wäßrigen Lösung liegt in dem Bereich von etwa 2 bis 25 Gew%. Diese wäßrige Lösung ist der Emulgator für die Emulsionspolymerisation und wird gleichzeitig als Vorlage für die Emulsionspolymerisation verwendet.

5

10

15

20

Nach dem Verfahren der Emulsionspolymerisation werden nichtionische monoethylenisch ungesättigte Monomere polymerisiert. Hierzu gehören beispielsweise Alkene mit 2 bis 12 Kohlenstoffatomen, vorzugsweise solche mit endständiger Doppelbindung, wie Ethylen oder Diolefine, insbesondere Butadien und Isopren sowie vinylaromatischen Monomere, z.B. Styrol und substituierte Styrole, z.B. x-Methylstyrol und Ethylstyrol. Geeignete Monomere dieser Gruppe sind außerdem Carbonsäureester aus ethylenisch ungesättigten C_2 - bis C_6 -Mono- und -Dicarbonsäuren und einwertigen Alkoholen mit 1 bis 18, vorzugsweise 4 bis 12 Kohlenstoffatomen, die Nitrile der genannten Carbonsäuren, sowie Vinylester von 1 bis 12 Kohlenstoffatome enthaltenden aliphatischen Carbonsäuren. Vorzugsweise verwendet man aus dieser Monomerengruppe Styrol, n-Butylacrylat, i-Butylacrylat, Ethylhexylacrylat, Laurylacrylat, Acrylnitril, Methacrylnitril, Vinylacetat und Vinylproprionat.

pie Emulsionspolymerisation erfolgt in dem Temperaturbereich von 40 bis 150, vorzugsweise 60 bis 100°C unter Verwendung üblicher Mengen an wasserlöslichen Polymerisationsinitiatoren. Die obere Grenze für die Polymerisationsinitiatoren beträgt 4 Gew%, bezogen auf die zu polymerisierenden Monomeren. Geeignete Polymerisationsinitiatoren für
die Emulsionspolymerisation sind beispielsweise Peroxide,
Hydroperoxide, Wasserstoffperoxid und anorganische Peroxide, z.B. Wasserstoffperoxid, Kaliumperoxodisulfat oder
auch Redoxsysteme, wie Kaliumperoxodisulfat/Additionsprodukte von Bisulfiten an Aldehyde sowie tert.-Butylhydroperoxid/Ascorbinsäure.

5

- 10 -

0.2. 0050/034829

- 12-

Die Emulsionspolymerisation wird in Gegenwart der amphoteren Copolymerisate als Emulgator durchgeführt. Die Mengen an amphoterem Copolymerisat, das als Emulgator bei der Emulsionspolymerisation verwendet wird, beträgt pro 1 Gewichtsteil der zu polymerisierenden Monomeren, 0,01 bis 0,4 Gewichtsteile (bezogen auf festes amphoteres Copolymerisat).

Obwohl die Emulsionspolymerisation vorzugsweise in Abwesenheit von sonst üblichen Emulgatoren durchgeführt wird, 10 können jedoch zusätzlich bekannte Emulgatoren in einer Menge bis zu 3 Gewichtsprozent, bezogen auf das Emulsionspolymerisat, mitverwendet werden. Geeignete Emulgatoren sind beispielsweise nichtionische Emulgatoren, die durch Ethoxylierung von Phenol oder Phenolderivaten, z.B. Octyl-15 phenol oder Nonylphenol erhalten werden. Solche Emulgatoren enthalten 4 bis 30 Mol Ethylenoxid/Mol Phenol. Außerdem eignen sich kationische Emulgatoren, beispielsweise Dimethyl-C₁₂-Fettalkylbenzylammoniumchlorid, Laurylamidotrimethylammoniumsulfat, Dimethyl-dodecylammoniumsulfat 20 oder -sacchanuat.

Es ist selbstverständlich auch möglich, außer den amphoteren Copolymerisaten auch noch Mischungen aus nichtionischen und kationischen Emulgatoren bei der Emulsionspolymerisation zu verwenden. Die bisher gebräuchlichen Emulgatoren können jedoch auch nach der Herstellung des Emulsionspolymerisates zur Dispersion zugegeben werden, um sie zu stabilisieren.

30

35

25

Die amphoteren Copolymerisate können aber auch als Emulgator für die Herstellung von Masseleimungsmitteln für Papier verwendet werden. Sie eignen sich beispielsweise zum Emulgieren von Fettalkyldiketenen (z.B. Stearyldiketen) oder substituierten Bernsteinsäureanhydriden (Umset-

- 11 -- 11 - **O.Z.** 0050/034829

zungsprodukte aus Oligomeren des Isobutens, Butens, Butadiens oder Propylens mit Maleinsäureanhydrid).

Wässrige Lösungen der amphoteren Copolymerisate dienen außerdem als Emulgator bei der Herstellung von wäßrigen Polymerdispersionen, die als Oberflächenleimungsmittel für Papier eingesetzt werden. Es handelt sich hierbei im wesentlichen um die oben beschriebenen Emulsionspolymerisate.

10

15

20

Die in den Beispielen angegebenen Teile sind Gewichtsteile, die Prozentangaben beziehen sich auf das Gewicht der Stoffe. Die in der Beschreibung und in den Beispielen angegegebenen Molgewichte wurden dampfdruckosmometrisch in Chloroform bei einer Konzentration von 0,1 Gew% und einer Temperatur von 37°C bestimmt (Mechrolab-Osmometer). Der Leimungsgrad der Papiere wurde mit Hilfe des Cobb-Wertes nach DIN 53132 und der Tintenschwimmzeit in Min. bis zum 50 prozentigen Durchschlag mit einer Normtinte nach DIN 53126 bestimmt.

Beispiel 1

In einer Polymerisationsapparatur, bestehend aus einem

0,7 l fassenden Druckkessel und einem nachgeschalteten,
mit statischen Mischern versehenem Druckrohr von 1,5 l
Inhalt, wurde pro Stunde eine Mischung aus 56 Teilen
2,6 Mol Styrol, 14 Teilen (1 Mol) Acrylsäure und 30 Teilen
(0,9 Mol) Methacrylsäuredimethylaminopropylamid kontinuierlich zugeführt, wobei jedes Monomere mit Hilfe einer Pumpe
gefördert und nach dem Vermischen der Monomerenströme in
den Reaktor gepreßt wurde. Die mittlere Verweilzeit der
Monomeren in der Polymerisationszone betrug 15 Minuten,
die Raum-Zeit-Ausbeute 5 kg/l.h. Die Polymerisation wurde
bei einer Temperatur von 270°C und einem Druck von 28 bar

BASF Aktiengesellschaft

- 12 -_14_ **O.Z.** 0050/034829

durchgeführt. Der Umsatz war größer als 99,5 %. Die Polymerschmelze wurde kontinuierlich ausgetragen. Das Copolymerisat hatte ein Molekulargewicht 3000.

5 Beispiel 2

Eine Mischung aus 44 Teilen Isobutylacrylat, 26 Teilen Styrol, 10 Teilen Methacrylsäure und 20 Teilen Acrylsäurediethylaminopropylamid wurde in der in Beispiel 1 beschriebenen Apparatur bei einer Temperatur von 240°C unter einem Druck von 30 bar kontinuierlich copolymerisiert. Die mittlere Verweilzeit der Monomeren in der Reaktionszone betrug 10 Minuten, der Umsatz 99,6 %. Das Copolymerisat hatte ein Molgewicht von 3400. Die Raum-Zeit-Ausbeute betrug 10 kg/l.h.

Beispiel 3

Eine Mischung aus 35 Teilen Styrol, 15 Teilen Essigsäure,
9 Teilen Acrylsäure und 21 Teilen Methacrylsäuredimethylaminopropylamid wurde in der in Beispiel 1 beschriebenen
Apparatur kontinuierlich bei einer Temperatur von 220°C
polymerisiert. Die mittlere Verweilzeit der Monomeren in
der Reaktionszone betrug 8 Minuten, der Druck 36 bar. Der
Umsatz lag oberhalb von 99,5 %. Die als Lösungsmittel verwendete Essigsäure und die nicht umgesetzten Monomeren wurden aus der Polymerisatschmelze bei einem Druck von 10 bis
15 mbar und Temperaturen von 120 bis 180°C entfernt. Man
erhielt ein Copolymerisat mit einem Molekulargewicht von
2800, bei einer Raum-Zeit-Ausbeute von 2 kg/l.h.

Beispiel 4

Eine Mischung aus 56 Teilen Styrol, 14 Teilen Acrylsäure und 30 Teilen Methacrylsäuredimethylaminopropylamid wurde

- 13 -

O.Z. 0050/034829

in Gegenwart von 0,1 Teilen Azobisisobutyronitril in der im Beispiel 1 angegebenen Apparatur kontinuierlich bei einer Temperatur von 240°C und einer Verweilzeit von 12 Minuten polymerisiert. Der Druck in der Polymerisationszone betrug 33 bar. Man erhielt ein amphoteres Copolymerisat, das ein Molekulargewicht von 3400 hatte. Die Raum-Zeit-Ausbeute lag bei 12 kg/l.h.

Beispiel 5

10

15

5

Eine Mischung aus 50 Teilen Styrol, 16 Teilen Acrylsäure und 32 Teilen Methacrylsäuredimethylaminobutylamid wurde in der in Beispiel 1 angegebenen Apparatur kontinuierlich bei einer Temperatur von 300°C und einem Druck von 56 bar polymerisiert. Der Umsatz betrug 99,7 %, die mittlere Verweilzeit der Monomeren in der Reaktionszone 10 Minuten. Man erhielt ein amphoteres Copolymerisat mit einem Molekulargewicht von 1600. Die Raum-Zeit-Ausbeute betrug 21 kg/l.h.

20

25

30

35

Vergleichsbeispiel 1

Gemäß der GB-PS 1 185 283, Beispiel 7, wurde eine Mischung aus 56 Teilen Styrol, 14 Teilen Acrylsäure und 30 Teilen Methacrylsäuredimethylaminopropylamid, 5 Teilen Laurylamidotrimethylammoniummethosulfat und 185 Teilen Wasser durch heftiges Rühren emulgiert. Die Emulsion wurde geteilt, die Hälfte davon in einem Rührkolben mit 60°C Innentemperatur gegeben und dazu eine Lösung von 0,2 Teilen Natriumhydrogensulfit in 2 Teilen Wasser und 0,4 Teilen Kaliumperoxidisulfat in 12 Teilen Wasser zugetropft. Nachdem die Temperatur des Kolbeninhalts auf 68°C gestiegen war, gab man die restliche Monomerenemulsion innerhalb von 25 Minuten zu. In der gleichen Zeit wurden außerdem 0,4 Teile Kaliumperoxodisulfat in 12 Teilen Wasser zuge-

- 14 -- 16**0. Z.** 0050/034829

tropft. Nach Zugabe der Monomerenemulsion wurde die Mischung noch 6 Stunden auf eine Temperatur von 65 bis 70°C erhitzt. Man erhielt ein Copolymerisat, das ein Molekulargewicht von mehr als 30000 hatte.

5

Anwendungsbeispiele

Herstellung der Dispersionen 1 bis 5

Die in den Beispielen 1 bis 5 erhaltenen amphoteren Copolymerisate sowie das gemäß Vergleichsbeispiel 1 hergestellte Copolymerisat wurden jeweils als Emulgator bei der
Herstellung eines Emulsionscopolymerisates nach der folgenden allgemeinen Vorschrift verwendet:

15

20

25

105 Gewichtsteile der amphoteren Copolymerisate gemäß den Beispielen 1 bis 5 bzw. gemäß Vergleichsbeispiel 1 wurden in einer Mischung aus 60 Teilen Eisessig, 545 Teilen Wasser und 0,04 Gewichtsteilen FeSO₄.7H₂O bei 85°C gelöst. Dann wurden 4 Teile einer 30 %igen Wasserstoffperoxidlösung zugesetzt. Anschließend fügte man innerhalb von 2 Stunden bei einer Temperatur des Reaktionsgemisches von 85°C eine Mischung aus 126 Teilen Isobutylacrylat und 66 Gewichtsteilen Styrol und separat davon 80 Gewichtsteile einer 6 %igen Wasserstoffperoxidlösung zu. Danach wurde noch eine Stunde bei einer Temperatur von 85°C nachpolymerisiert. Man erhielt Dispersionen mit den in Tabelle 1 angegebenen Kenndaten.

30

- 15 -- 12 **0.2.** 0050/034829

Tabelle 1

	Leimungsmittel	Copolymerisat gemäß	Feststoff-	LD-Wert
5		verwendeter Emul- gator Beispiel	gehalt Gew%	%
	Dispersion 1	1	28,7	93
	Dispersion 2	2	30,7	97
	Dispersion 3	3	31,4	99
10	Dispersion 4	Ц	31,8	99
	Dispersion 5	5	30,4	98
	Vergleichsdis- persion 1	Vergleich 1	29,7	62

Der LD-Wert ist ein Maß für die Teilchengröße der Dispersion. Zur Bestimmung des LD-Wertes (Lichtdurchlässigkeit) wird die Dispersion in 0,01 %iger, wäßriger Lösung in einer Küvette mit 2,5 cm Kantenlänge mit Licht der Wellenlänge 546 nm vermessen. Mit Hilfe der Mie-Theorie" läßt sich daraus der Teilchendurchmesser berechnen (vgl. B. Verner, M. Barta, B. Sedlacek, Tables of Scattering Functions for Spherical Particles, Prag 1976, Edice Marco, Rada D-DATA, SVAZEK D-1.

Verwendung der Dispersionen 1 bis 5 und der Vergleichsdispersion 1 als Leimungsmittel für Papier

A. Oberflächenleimung

Verfahrensweise und Prüfmethoden:

Ein Prüfpapier mit folgenden Kenndaten wurde verwendet: Holzfrei Offset, 14 % Asche (Clay), 25° SR; 1 % Alaun; in der Masse ungeleimt. Dann wurden wäßrige Präparationslösungen hergestellt, die jeweils 0,45 % eines der in der Tabelle 2 genannten Leimungsmittel (fest gerechnet) und je-

30

BASF Aktienges Uschaft

- 16 --18**0.2.** 0050/034629

weils 6,0 % Kartoffelstärke enthielten. Die Leimungswerte, die mit den jeweiligen Präparationen erhalten wurden, sind in der Tabelle 2 zusammengestellt.

5 Tabelle 2

	Leimungsmittel	Cobb-Wert (1 min)	50 % Tintendurchschlag (min)
	Dispersion 1	21	20
10	Dispersion 2	20	38
	Dispersion 3	19	36
	Dispersion 4	18	47
	Vergleichsdis- persion 1	24	18

15

B. Masseleimung

Verfahrensweise:

Einer Stoffsuspension (100 % gebleichter Fichtensulfitzellstoff vom Mahlgrad 35°SR mit einem Zusatz von 20 % China 20 Clay und 2 % Alaun) wurden jeweils bei einer Stoffdichte von 0,5 % unter Rühren 1,25 % (bezogen auf Feststoff) der untengenannten Leimungsmittel zugefügt. Der pH-Wert der Stoffsuspension und des Verdünnungswassers wurde auf 5,5 eingestellt. Als Retentionsmittel wurden 0,3 % eines modi-25 fizierten Polyethylenimins kurz vor der Blattbildung auf einem Rapid-Köthen-Blattbildner zugesetzt. Der Leimungsgrad der so erhaltenen Normblätter wurde nach dem Trocknen und Klimatisieren (24h, 60 % rel. Feuchtigkeit, 20°C) bestimmt. Die Ergebnisse sind in der Tabelle 3 zusammenge-30 stellt.

- 17 -

O.Z. 0050/034629

Tabelle 3

	Leimungsmittel	Cobb-Wert (1 min)	50 % Tinten- (min)
5			
	Dispersion 1	30	13
	Dispersion 2	26	14
	Dispersion 3	30	11
	Dispersion 4	28	18
10	Vergleichsdispersion 1	33	9

In einer weiteren Versuchsreihe verwendete man als Stoffmodell entstippte Wellpappabfälle und Zeitungen (50:50).
Die Leimung wurde ohne Alaunzusatz im neutralen Medium mit
1,25 % (fest) der unten angegebenen Dispersionen durchgeführt. Die Blätter wurden ohne Retentionsmittel gebildet.
Folgende Ergebnisse wurden erhalten:

Tabelle 4

~~	
- Z+ 1	
2.4	

15

Leimungsmittel	Cobb-Wert (1 min)	50 % Tintendurch- schlag (min)
Dispersion 1	36	35
Dispersion 2	31	46
Dispersion 3	30	55
Dispersion 4	27	60
Vergleichsdispers	ion 1 40	20