First Homework

Ogloblin Ivan

23 апреля 2022 г.

1

1.1

Хоста - 192.168.0.101, Huawei - 121.37.49.12

1.2

номера портов нужны только для транспортного а не для сетевого уровня.

2 Задача

2.1 a

За период времени, когда скорость соединения изменяется от $W/(2\cdot \mathrm{RTT})$ до W/RTT , теряется только один пакет (в самом конце периода). Уровень потерь L — это отношение количества потерянных пакетов к количеству отправленных пакетов. Количество пакетов, отправляемых за цикл: $W/2 + (W/2+1) + L + W = \sum_{n=0}^{W/2} (W/2+n) = (W/2+1)W/2 + \sum_{n=0}^{W} /2n = (W/2+1)W/2 + \frac{W/2(W/2+1)}{2} = W^2/2 + W/2 + W^2/8 + W/4 = W^2 * 3/8 + 3W/4$ Тогда L будет ровно тем к чему мы стримились.

2.2 b

$$L = \frac{1}{W^2 * 3/8 + 3W/4}$$

Для размера окна W $3/8W^2 >> 3/4W$ Тогда $L \approx W^2 * 3/8$

$$W = \sqrt{\frac{8}{3L}}$$

Средняя скорость приблизительно

$$3/4*\sqrt{\frac{8}{3L}}*\frac{Mss}{RTT} = \frac{1.22*MSS}{RTT*\sqrt{L}}$$

3 Задача

3.1

Максимальный размер окна представлен W. Общее количество сегментов (S), отправленных в течение интервала, когда TCP меняет размер окна будет с w/2 до w включительно.

вение интервала, когда ТСТ меняет размер окна будет с
$$w/2$$
 до w включительно.
$$S = w/2 + (w/2) * (1+a) + (w/2) * (1+a)^2 + (w/2) * (1+a)^3 + (w/2) * (1+)^4 + ... + (w/2) * (1+a)^n$$
 Здесь $n = \log_{1+a} 2$, тогда $S = \frac{w(2a+1)}{(2a)}$. Тогда

$$L = 1/S = (2)/(w*(2+1))$$

TCP требуется время, чтобы увеличить размер окна с w/2 до w.

$$n * RTT = loq_{1+a} 2 * RTT$$

Это не зависит от средней пропускной способности ТСР. Средняя пропускная способность ТСР определяется как пропускная способность

$$B = MSS * S/((n+1) * RTT) = MSS/(L * (k+1) * RTT)$$