(19) Korea Intellectual Property Office (KR)(12) Patent Gazette (A)

(51) Int. Cl.⁷ C07D 239/38 (11) Publication No.: 2001-0061856

(43) Publication Date: July 7, 2001

(21) Application No.: 10-1999-0064402(22) Filing Date: December 29, 1999

(71) Applicant: DONGWHA PHARMACEUT. CO., LTD.

Kyu Un Whang

5, Soonwha-dong, Joong-gu, Seoul, Korea

(72) Inventor(s) Sung Joon Yoon

1420-11, Shinlim 5-dong, Gwanak-gu, Seoul, Korea

Sang Wook Lee

Kumho Apt. #105-1601, 149-1, Bakdal 2-dong,

Manan-gu, Anyang-shi, Kyeonggi-do, Korea

Nam Du Kim

Hyundai 1st Apt. #102-306, 628, Okryeon-dong,

Yeonsu-gu, Incheon, Korea

Yong Kyun Park

Block Seohae Apt. #103-1804, 138, Eunhaeng district,

Daeya-dong, Shiheung-shi, Kyeonggi-do, Korea

Geun Hyung Lee

707-298, Anyang 5-dong, Manan-gu, Anyang-shi,

Kyeonggi-do, Korea

Jong Woo Kim

305-85, Bisan 3-dong, Dongan-gu, Anyang-shi,

Kyeonggi-do, Korea

Hee Jeong Park

68-79, Bakdal-dong, Manan-gu, Anyang-shi,

Kyeonggi-do, Korea

Whan Bong Jang

Poong Jeon Villa #B-101, 479, Bupyeong 5-dong,

Bupyeong -gu, Incheon, Korea

(74) Agent(s) Won Hee Lee

Request for Examination: Not Filed

[Title of Invention]

Novel 5-pyrimidinecarboxamide derivatives and pharmaceutical compositions thereof [Abstract]

The present invention relates to a novel 5-pyrimidine carboxamide derivative, a process for the preparation thereof and a pharmaceutical composition containing it. Specifically, 5-pyrimidinecarboxamide derivative represented by the following formula, non-nucleic acid based compound, exhibits the effects of inhibiting HBV(Hepatitis B Virus) proliferation as well as HIV (Human Immunodeficiency Virus) proliferation, and thus, it can be used as a agent for preventing and treating Hepatitis B and acquired immune deficiency syndrome. [Formula I]

$$\begin{array}{c|c}
& & & \\
& & & \\
& & & \\
S & & & \\
N & & & \\
R_3 & & & \\
\end{array}$$

$$\begin{array}{c}
& & \\
N & & \\
R_2 & & \\
N & & \\
R_3 & & \\
\end{array}$$

Wherein R₁, R₂, R₃ and n are as described in the specification

(19) 대한민국특허청(KR) (12) 공개특허공보(A)

(51) . Int. Cl. ⁷ C07D 239/38

(11) 공개번호 특2001-0061856

(43) 공개일자 2001년07월07일

(21) 출원번호

10-1999-0064402

(22) 출원일자

1999년12월29일

(71) 출원인

동화약품공업주식회사

황규언

서울 중구 순화동 5번지

(72) 발명자

윤성준

서울특별시관악구신림5동1420-11

이상욱

경기도안양시만안구박달2동149-1금호아파트105동1601호

김남두

인천광역시연수구옥런동628현대1차102동306호

박용균

경기도시흥시대야동은행지구138블럭서해아파트103동1804호

이근형

경기도안양시만안구안양5동707-298

김종우

경기도안양시동안구비산3동305-85

박회정

경기도안양시만안구박달동68-79호

장환봉

인천광역시부평구부평5동479번지풍전주택B동101호

(74) 대리인

이원회

심사청구 : 없음

(54) 신규의 5-피리미딘카르복스아미드 유도체 및 그를포함하는 약학적 조성물

요한

본 발명은 신규의 5-피리미딘카르뵥스아미드 유도체, 그의 제조방법 및 그를 포함하는 약학적 조성물에 관한 것으로서, 구체적으로 비핵산계 화합물인 하기 화학식 1로 표시되는 5-피리미딘카르복스아미드 유도체는 HBV (Hepatitis B Virus) 중식 뿐만 아니라 HIV (Human Immunodeficiency Virus) 중식을 억제하는 효과를 나타내므로 B형 간염 및 후천성 면역 결핍증의 치료제 및 예방제로서 유용하게 사용될 수 있다.

화학의 1

상기 식에서, R_1 , R_2 , R_3 및 n은 명세서에 기재된 바와 같다.

병세서

발명의 상세한 설명

발명의 목적

발명이 속하는 기술 및 그 분야의 종례기술

본 발명은 신규의 5-피리미딘카르복스아미드 유도체에 관한 것으로, 보다 상세하게는 HBV 및 HIV의 증식 억제 효과가 뛰어나며, 하기 화학식 1로 표시되는 신규의 5-피리미딘카르복스아미드 유도체 및 그의 약학적으로 허용되는 염, 그의 제조방법과 상기 화합물을 유효 성분으로 하는 항바이러스용 약학적 조성물에 관한 것이다.

화학식 1

$$\begin{array}{c|c}
 & O \\
 & N + (CH_{\frac{1}{2}})_{n} R_{1} \\
 & R_{2} \\
 & R_{3}
\end{array}$$

상기 화학식 1에서,

 R_1 은 하이드록시; $C_1 \sim C_5$ 인 직쇄 또는 분쇄상 알킬기; $C_1 \sim C_5$ 인 직쇄 또는 분쇄상 알콕시기; $C_2 \sim C_6$ 인 직쇄 또는 분쇄상 하이드록시알킬기; $C_2 \sim C_6$ 인 디알킬아미노기; $C_2 \sim C_5$ 인 알콕시카르보닐기 및/또는 하이드록시기로 치환된, $C_2 \sim C_6$ 인 직쇄 또는 분쇄상 알킬기; 또는 치환되지 않거나 $C_1 \sim C_5$ 인 알킬기로 치환된 N, O, S 중에서 선택되는 $1 \sim 3$ 개의 해데로 원자를 포함하는, 포화 또는 불포화된 5원자 또는 6원자 해데로고리 화합물이며, R_1 은 비대칭 탄소를 포함하거나 포함하지 않고,

 R_2 는 H; 또는 $C_1 \sim C_4$ 인 직쇄 또는 분쇄상 알킬기이고,

또는 R_1 과 R_2 가 서로 결합하여 포화된 5원자 또는 6원자의 헤테로고리 화합물을 형성하고, 이 때 헤테로고리에는 N, O, S 중에서 선택되는 $1\sim3$ 개의 헤테로 원자가 포함되며 헤테로고리는 치환되지 않거나 $C_1\sim C_5$ 인 직쇄 또는 분쇄상 알킬기 또는 $C_2\sim C_6$ 인 직쇄 또는 분쇄상 하이드록시알킬기로 치환되고,

R3는 인다졸-5-일; 또는 인다졸-6-일이고,

n은 0~4의 정수이다.

B형 간염 바이러스 (Hepatitis B virus, HBV; 이하 "HBV" 라 함)는 만성 또는 급성 간염을 일으키고 악화될 경우 간경화와 간암의 원인이 되는 병원체로서, 전세계적으로 3억의 인구가 HBV에 감염된 것으로 추산되고 있다 (Tiollais & Buendia, Sci. Am., 264, 48, 1991). 따라서 B형 간염의 치료 및 예방을 목적으로, HBV의 분자생물학적 특징을 비롯하여 HBV와 간질환과의 관련성에 대해 많은 연구가 진행되어 왔으며 B형 간염에 대한 백신 및 진단 시약도 다양하게 개발되었다. 또한 B형 간염의 치료제를 개발하기 위한 노력이 지속적으로 진행 중이다.

HBV의 게놈은 중합효소 유전자 (P; polymerase), 표면 항원 유전자 (S; surface protein; pre-S1, pre-S2, S), 중심 항원 유전자 (C; core protein; pre-C, C), X 단백질 유전자 등의 4가지 유전자로 구성된다. 이 중 중합효소, 표면 항원, 중심 항원 유전자는 구조 단백질을 발현하고, X 단백질 유전자는 조절 단백질을 발현하는 것으로 알려져 있다.

HBV 중합효소 유전자는 전체 바이러스 게놈의 80%를 차지하고 845개의 아미노산으로 구성된 94kD 크기의 단백질을 생산하는데, 이 중합효소 단백질에는 바이러스 게놈의 복제에 필요한 일련의 기능들이 포함된다. 즉, 효소 활성으로 i) 단백질 시발체 (protein primer), ii) RNA 의존 DNA 중합효소 (RNA dependent DNA polymerase, RT), iii) DNA 의존 DNA 중합효소 (DNA dependent DNA polymerase, DDDP), iv) RNA 분해효소 (RNase H) 기능 등이 하나의 폴리펩타이드에 존재한다. 이 중 중합효소 단백질의 역전사 활성에 대해서는 카프란 (Kaplan) 등이 처음으로 밝혔으며, 이를 통해 HBV의 복제 기작에 대한 많은 연구가 이루어졌다.

HBV는 비리은 (virion) 외부의 표면 항원 단백질이 간세포-특이 수용체 (specific receptor)에 인식되어 간세포 내로 들어가는데, 이 때 HBV 중합효소 활성에 의해 불완전한 이중나선 DNA의 나머지 부분이 합성되어 HBV DNA 게놈이 완성된다. 완성된 HBV DNA 게놈은 세포 내 RNA 중합효소 활성에 의하여 전게놈 (pre-genomic) mRNA 와 중심항원 (C), 표면 항원 (S), 조절 단백질 (X) 등의 mRNA를 생산한다. 이들 mRNA로부터 바이러스 단백질이 만들어지며, 특히 중합효소 단백질은 바이러스 게놈을 합성하는 역할을 하며 중심 항원 단백질 및 전게놈 mRNA 등과 레플리카좀 (replicasome)이라는 구조물을 형성한다. 이를 캡시드화 (encapsidation)라고 하는데, 중합효소 단백질은 3'-말단에 글루탐산이 반복되는 부위의 핵산 친화력으로 캡시드화가 용이하다. 레플리카좀이 형성되면 HBV 중합효소 단백질의 역전사 활성에 의해 (-) DNA 사슬이 합성되고, DNA 의존 DNA 중합효소 활성에 의해 (+) DNA 사슬이 합성되고 이는 다시 전게놈 mRNA들을 생산하며, 이러한 과정이 반복됨으로써 세포 내에 200~300개 이상의 게놈 DNA 풀 (pool)이 유지된다 (Tiollais and Buendia, Scientific American, 264: 48-54, 1991).

한편 HBV와 HIV는 서로 다른 종류의 바이러스지만 이들의 증식 과정에는 공통된 복제 과정이 있다. 즉, 바이러스 RN A로부터 DNA로 전사가 일어나는 역전사 과정과 역전사로 생성된 RNA-DNA 하이브리드의 RNA 부분을 분해 소거하는 과정이 공통적이다.

최근 후천성 면역 결핍증 (Acquired Immune Deficiency Syndrome, AIDS; 이하 "에이즈"라 함) 또는 대상포진 감염증의 치료제로 개발되어 오던 라미부딘 (lamivudine), 팜비어 (famvir) 등의 핵산계 (nucleosides) 화합물의 HBV 억제제로서의 유용성에 대해 보고된 바 있다 (Gerin J. L, Hepatology, 14: 198-199, 1991; Lok A. .S. P., J. Vira I Hepatitis, 1: 105-124, 1994; Dienstag, J. L.et al., New England Journal of Medicine, 333: 1657-1661, 1 995). 그러나 이러한 핵산계 화합물들은 값이 매우 비싸서 환자의 경제적인 부담이 크고, 더욱이 핵산계 화합물들은 본질적으로 부작용, 즉 독성, 내성 바이러스의 출현 및 약물 투여 중단 후 재발 등에 있어 심각한 문제점을 내포하고 있기 때문에 B형 간염 치료제로서는 부적합한 것으로 알려져 있다. 따라서 비핵산계 (non-nucleosides) 화합물 중에서 B형 간염 치료제를 개발하려는 노력이 이어졌으며, HBV에 대해 항바이러스 활성을 갖는 퀴놀론계 화합물 (유럽 특허공개 제563732호, 제563734호), 이리도이드계 화합물 (대한민국 특허공개 제94-1886호), 테레프탈산아미드 유도체 (대한민국 특허출원 제 96-72384호, 제 97-36589호, 제99-5100호) 등이 보고되었다. 그러나 많은 노력에도 불구하고 아직까지는 B형 간염에 대한 뚜렷한 치료제는 개발되어 있지 않으며, B형 간염의 치료는 주로 대증요법 (對症療法)에 의존하고 있는 실정이다.

한편 에이즈는 체내의 세포 면역 기능이 뚜렷하게 떨어져 보통 사람에게서는 볼 수 없는 희귀한 각종 감염증이 발생하고 이것이 전신에 퍼지는 질환으로서, 에이즈 바이러스인 HIV (Human Immunodeficiency Virus, 이하 " HIV" 라 함

)의 주된 공격목표는 면역 기능을 조절하는 T 세포 중 하나인 보조 T 세포 (helper T cell)인 것으로 알려져 있다. 보조 T 세포가 HIV에 감염되어 괴사를 일으키면 인체의 면역 기능이 제대로 작용하지 못하여 면역 결핍 상태를 일으키며, 이로 인해 치명적인 감염과 악성 종양 등을 일으키게 된다. 에이즈 환자는 1981년 미국에서 처음으로 발견된 이래, 1993년 187개국에서 85만 명이 넘는 것으로 보고되었다 (세계보건기구 (WHO)의 1993년 말 보고서). 더욱이 세계보건기구의 보고에 의하면, 2000년까지 3천만~4천만 명이 더 감염되어 그 중 1천만~2천만 명이 발병할 것으로 예측하였다.

현재 에이즈 치료에는 HIV의 중식 과정을 억제하는 약물이 가장 널리 사용되고 있는데, 1987년 가장 먼저 개발된 지도부딘 (Zidovudine (ZDV), 이전에는 Azidothymidine (AZT)로 명명되었음), 지도부딘에 의한 부작용이 있거나 치료 효과가 나타나지 않을 때 대체약으로서 1991년 개발된 디다노신 (Didanosine (ddI)) 및 1992년 지도부딘과 병용 사용이 허가된 잘시타빈 (Zalcitabine (ddC)) 등이 있다. 이들 약물은 에이즈 환자의 중세를 완화시키고 HIV 감염자의 에이즈로의 이행을 늦추거나 생존 기간을 다소 연장시키는 효과를 나타낸다. 그러나 완치 능력은 없으며 내성 및 부작용이 문제가 되고 있다.

이에 본 발명자들은 부작용 및 독성이 적고, 내성 바이러스 출현이 낮은 새로운 B형 간염의 치료제 개발을 목적으로 HBV에 대해 우수한 항바이러스 활성을 나타내는 비핵산계 화합물을 개발하기 위해 노력한 결과, 상기 화학식 1로 표시되는 신규의 5-피리미딘카르복스아미드 유도체를 합성하였으며 이 물질이 HBV 중식 억제 효과 뿐만 아니라 HIV 중식 억제 효과가 우수함을 밝힘으로써 본 발명을 완성하였다.

발명이 이유고자 하는 기술적 과게

본 발명의 목적은 HBV 및 HIV의 증식 억제 효과가 뛰어난 새로운 5-피리미딘카르복스아미드 유도체와 약학적으로 허용되는 그의 염 및 그의 제조방법을 제공하는 것이다.

또한 본 발명의 목적은 상기 화합물을 유효 성분으로 하며 부작용이 적고 경제적인, B형 간염 또는 에이즈 치료 및 예방을 위한 약학적 조성물을 제공하는 것이다.

발명의 구성 및 작용

상기 목적을 달성하기 위하여, 본 발명에서는 하기 화학식 1로 표시되는 새로운 5-피리미딘카르복스아미드 유도체 및 약학적으로 허용되는 그의 염을 제공한다.

화학식 1

$$S \xrightarrow{N} \begin{array}{c} O \\ N + (CH_2) \\ R_2 \\ NH \\ R_3 \end{array}$$

상기 화학식 1에서,

 R_1 은 하이드록시; $C_1 \sim C_5$ 인 직쇄 또는 분쇄상 알킬기; $C_1 \sim C_5$ 인 직쇄 또는 분쇄상 알콕시기; $C_2 \sim C_6$ 인 직쇄 또는 분쇄상 하이드록시알킬기; $C_2 \sim C_6$ 인 디알킬아미노기; $C_2 \sim C_5$ 인 알콕시카르보닐기 및/또는 하이드록시기로 치환된, $C_2 \sim C_6$ 인 직쇄 또는 분쇄상 알킬기; 또는 치환되지 않거나 $C_1 \sim C_5$ 인 알킬기로 치환된 N, O, S 중에서 선택되는 $1 \sim 3$ 개의 헤테로 원자를 포함하는, 포화 또는 불포화된 5원자 또는 6원자 헤테로고리 화합물이며, R_1 은 비대칭 탄소를 포함하거나 포함하지 않고,

 R_2 는 H; 또는 $C_1 \sim C_1$ 인 직쇄 또는 분쇄상 알킬기이고,

또는 R_1 과 R_2 가 서로 결합하여 포화된 5원자 또는 6원자의 헤테로고리 화합물을 형성하고, 이 때 헤테로고리에는 N, O, S 중에서 선택되는 $1\sim3$ 개의 헤테로 원자가 포함되며 헤테로고리는 치환되지 않거나 $C_1\sim C_5$ 인 직쇄 또는 분쇄상 알킬기 또는 $C_2\sim C_5$ 인 직쇄 또는 분쇄상 하이드톡시알킬기로 치환되고,

R3는 인다졸-5-일; 또는 인다졸-6-일이고,

n은 0~4의 정수이다.

상기 화학식 1에서 R_1 과 R_2 가 서로 결합하여 5원자 또는 6원자의 헤테로고리 화합물을 형성하고 이 때 헤테로고리에는 $N,\,O,\,S$ 중에서 선택되는 $1\sim3$ 개의 헤테로 원자가 포함되는 경우, n은 0이다. 또한 이 헤테로고리는 치환되지 않거나 $1\sim C_5$ 인 직쇄 또는 분쇄상 알킬 또는 $1\sim C_5$ 인 직쇄 또는 분쇄상 하이드록시알킬기로 치환될 수 있다.

또한 상기 화학식 1에서 R_1 이 비대칭 탄소를 포함하는 경우 화학식 1의 화합물은 R 또는 S의 광학 이성질체이며, 본 발명은 이들 광학 이성질체와 라세믹 혼합물을 모두 포함한다.

본 발명에서 인다좈-5-일 및 인다졸-6-일은 각각 하기 화학식 2와 화학식 3으로 표시된다.

화학식 2

화학식 3

본 발명의 화학식 1의 화합물은 약학적으로 허용 가능한 염의 형태로 사용할 수 있으며, 염으로는 약학적으로 허용 가능한 유리산 (free acid)에 의해 형성된 산 부가염이 유용하다. 화학식 1의 화합물은 당해 기술 분야에서 통상적인 방법에 따라 약제학적으로 허용되는 산 부가염을 형성할 수 있다. 유리산으로는 유기산과 무기산을 사용할 수 있으며, 무기산으로는 염산, 브롬산, 황산, 인산 등을 사용할 수 있고 유기산으로는 구연산 (citric acid), 초산, 젖산, 주석산 (tartaric acid), 말레인산, 푸마르산 (fumaric acid), 포름산, 프로피온산 (propionic acid), 옥살산, 트리플루오로아세트산, 벤조산, 글루콘산, 메탄술폰산, 글리콜산, 숙신산, 4-톨루엔술폰산, 갈룩투론산, 엠본산, 글루탐산 또는 아스파르트산 등을 사용할 수 있다.

또한 본 발명에서는 하기 반응식 1로 표시되는 화학식 1의 5-피리미딘카르복스아미드 유도체의 제조방법을 제공한다

반응되 1

상기 반응식 1에서, R₁, R₂, R₃ 및 n은 화학식 1에서 정의한 바와 같다.

본 발명의 제조방법은

- 1) 4-클로로-2-메틸티오-5-피리미딘카르복실산 에틸 에스테르 (2)와 5-아미노인다졸 또는 6-아미노인다졸 (3)을 염기 존재 하에 적당한 온도 및 적당한 용매 중에서 반응시켜 5-피리미딘카르복실산 에틸 에스테르 유도체 (4)를 제조하는 단계 (단계 1);
- 2) 상기 단계 1에서 제조된 5-피리미딘카르복실산 에틸 에스테르 유도체 (4)를 알칼리 조건으로 가수분해하여 5-피리미딘카르복실산 유도체 (5)를 제조하는 단계 (단계 2); 및
- 3) 상기 단계 2에서 제조된 5-피리미단카르복실산 유도체 (5) 를 N,N-디메틸포름아미드 (DMF)와 티오닐클로라이드 (SOCl2) 존재 하에서 빌스마이어 (Vilsmeier) 중간체로 활성화 시킨 후, 아민 화합물 (6)과 반응시켜서 화학식 1의 5-피리미단카르복스아미드 유도체를 제조하는 단계 (단계 3)로 이루어진다.

상기 단계 1, 단계 2 및 단계 3에서 출발 물질 및 반응 물질로 사용되는 4-클로로-2-메틸티오-5-피리미딘카르복실 산 에틸 에스테르 (2), 5-아미노인다졸 또는 6-아미노인다졸 (3) 및 아민 화합물 (6)은 상업적으로 시판되는 물질로 서 용이하게 구입하여 사용할 수 있다.

또한 상기 단계 3의 아민 화합물 (6)은 화학식 $_1$ 의 화합 $_{\rm B}$ 에 치환기 (-NR2-(CH2)n-R1)을 도입하기 위한 물질로 서, 치환기의 종류에 따라 적절한 아민 화합물 (6)을 선택할 수 있으며 이는 당해 기술 분야에 속하는 통상의 지식을 가진 자라면 용이하게 선택하여 사용할 수 있다.

상기 단계 1을 좀 더 구체적으로 설명하면, 염기로는 유기 염기를 사용할 수 있으며, 예를 들어 트리에틸아민,N,N-디이소프로필에틸아민,N-메틸모르포린,N-메틸피페리딘, 4-디메틸아미노피리딘,N,N-디메틸아닐린, 2,6-루티딘, 피리딘 등과 같은 일반적인 삼급 유기 염기를 사용하는 것이 바람직하다.

또한 상기 단계 2를 좀 더 구체적으로 설명하면, 가수분해에 사용하는 알칼리 물질은 수산화나트륨, 수산화칼륨, 탄산나트륨, 탄산칼륨 등이 바람직하다. 이 때 가수분해를 통해 5-피리미딘카르복실산 유도체 (5)를 거의 정량적으로 제조할 수 있다.

반응 용매로는 물과 메탄올, 에탄올 등의 알코올류와의 혼합 용매를 사용하는 것이 바람직하다.

반응 온도는 30∼60℃인 것이 바람직하고, 30분 ~ 3시간 동안 반응시키는 것이 바람직하다.

또한 상기 단계 3을 좀 더 구체적으로 설명하면, 30~50℃의 온도 범위에서N,N-디메틸포름아미드와 티오닐 클로라이드를 가열하여 빌스마이어 시약 (Vilsmeier Reagent)을 생성하고 이것에 의해서 5-피리미딘카르복실산 유도체 (5)를 활성화시킨 후, 0~20℃의 온도에서 아민 화합물 (6)과 반응시켜 화학식 1의 5-피리미딘카르복스아미드 유도체를 제조한다.

이 때, 반응 용매로는 프로톤 (proton)을 해리시킬 수 없는 (aprotic) 용매가 바람직하며, 예를 들어 클로로포름, 메틸 렌 클로라이드, 아세토니트릴, 테트라하이드로퓨란, 에테르 등이 바람직하다.

또한 본 발명에서는 화학식 1의 5-피리미딘카르복스아미드 유도체 또는 약학적으로 허용되는 그의 염을 유효 성분으로 포함하는 B형 간염의 치료제 또는 예방제용 약학적 조성물을 제공한다.

또한 본 발명에서는 화학식 1의 5-피리미딘카르복스아미드 유도체 또는 약학적으로 허용되는 그의 염을 유효 성분으로 포함하는 후천성 면역 결핍증의 치료제 또는 예방제용 약학적 조성물을 제공한다.

본 발명의 화학식 1로 표시되는 5-피리미딘카르복스아미드 유도체는 HBV와 HIV의 증식 과정에 공통적으로 존재하는 복제 과정, 즉 바이러스 RNA로부터 DNA로 역전사가 일어나고 생성된 RAN-DNA 하이브리드에서 RNA 부분이 분해 되는 과정을 저해하는 작용 기전을 갖고 있어. HBV 뿐만 아니라 HIV에 대해서도 증식 억제 활성을 갖는다.

화학식 1의 화합물은 임상 투여시에 경구 또는 비경구로 투여, 예를 들어 정맥 내, 피하, 복강 내 또는 국소 적용할 수 있으며, 일반적인 의약품 제제의 형태로 사용될 수 있다.

본 발명의 약학적 조성물을 임상적으로 이용시에는 약제학적 분야에서 통상적인 담체와 함께 배합하여 약제학적 분야에서 통상적인 제제, 예를 들면 정제, 캅셀제, 트로키제, 액제, 현탁제 등의 경구 투여용 제제; 주사용 용액 또는 현탁액, 또는 주사시에 주사용 증류수로 제조하여 사용할 수 있는 즉시 사용형 주사용 건조분말 등의 형태인 주사용 제제 등의 다양한 제제로 제형화할 수 있다.

화학식 1의 화합물의 유효 용량은 일반적으로 성인에게 10~500 mg/kg이고, 바람직하기로는 50~300 mg/kg이며, 의사 또는 약사의 판단에 따라 일정 시간 간격으로 1일 수회, 바람직하기로는 하루 1~6회 분할 투여될 수 있다.

이하 본 발명을 실시예에 의하여 더욱 상세하게 설명한다.

단, 하기 실시예들은 본 발명을 예시하는 것으로 본 발명의 내용이 실시예에 의해 한정되는 것은 아니다.

< 제조예 1> 4-(1HH-5-인다졸립아미노)-2-메틸티오-5-피리미딘카르복실산 에틸 에스테르의 제조

메탄을 70 配에 4-클로로-2-메틸티오-5-피리미딘카르복실산 에틸 에스테르 5 g, 5-아미노인다졸 3.15 g 및 트리에틸아민 3.5 配를 차례로 가한 후, 30℃에서 3시간 동안 반응시켰다. 반응 혼합물을 냉각하여 20℃에서 1시간 동안 교반시킨 후 여과하여 메탄을 20 配로 세척하였다. 얻어진 결정을 40~50℃에서 진공 건조하여 6.15 g (수율 87%)의 목적 화합물을 얻었다.

m.p.: 199~201 ℃

 1 H-NMR (DMSO-d₆), ppm : δ 1.34(t, 3H), 2.42(s, 3H), 4.34(m, 2H), 7.48(d, 1H), 7.53(d, 1H), 8.06(d, 2H), 8.70(s, 1H), 10.18(s, 1H), 13.10(br s, 1H)

< 제조예 2> 4-(1HH-6-인다졸릴아미노)-2-메틸티오-5-피리미딘카르복실산 에틸 에스테르의 제조

메탄을 70 ㎖에 4-클로로-2-메틸티오-5-피리미딘카르복실산 에틸 에스테르 5 g, 6-아미노인다졸 3.15 g 및N,N -디이소프로필에틸아민 4.2 ㎖을 차례로 가한 후, 30~35℃에서 4시간 동안 반응시켰다. 반응 혼합물을 냉각하여 20 ℃에서 1시간 동안 교반시킨 후 여과하고 메탄을 20 ㎖로 세척하였다. 얻어진 결정을 40~50℃에서 진공 건조하여 5 .8 g (수율 82%)의 목적 화합물을 얻었다.

m.p.: 212~214 ℃

¹ H-NMR (DMSO-d₆), ppm : δ 1.33(t, 3H), 2.53(s, 3H), 4.33(m, 2H), 7.10(d, 1H), 7.70(d, 1H), 8.00(s, 1H), 8.22(s, 1H), 8.72(s, 1H), 10.40(s, 1H), 13.09(br s, 1H)

< 제조예 3> 4-(1HH-5-인다졸릴아미노)-2-메틸티오-5-피리미딘카르복실산의 제조

메탄을 80 ㎡에 상기 제조예 1에서 제조된 4-(1H-5-인다졸릴아미노)-2-메틸티오-5-피리미딘카르복실산 에틸에스테르 5 g을 가하고, 20~25℃에서 물 30 ㎡와 3N수산화나트륨 수용액 15 ㎡를 서서히 가한 후 가열하여 40~50℃에서 1시간 동안 가수분해시켰다. 반응물을 냉각하여, 20℃에서 3N염산 수용액을 서서히 가해 pH ="5로" 맞추고물 100 ㎡를 서서히 가하였다. 반응물을 20℃에서 1시간 동안 교반시킨 후 여과하고 물 30 ㎡로 세척하였다. 얻어진결정을 50℃에서 진공 건조하여 4.44 g (수율 97%)의 목적 화합물을 얻었다.

m.p.: > 270 ℃

 1 H-NMR (DMSO-d₆), ppm: δ 2.45(s, 3H), 7.49(d, 1H), 7.53(d, 1H), 8.05(s, 1H), 8.10(s, 1H), 8.68(s, 1H), 10.50(s, 1H), 13.09(br s.1H)

< 제조예 4> 4-(1HH-6-인다졸릴아미노)-2-메틸티오-5-피리미딘카르복실산의 제조

출발물질로서 제조예 2에서 제조된 4-(1H-6-인다졸릴아미노)-2-메틸티오-5-피리미딘카르복실산 에틸 에스테르를 사용한 것을 제외하고는, 상기 제조예 3과 동일한 제조방법으로 실시하여 목적 화합물 (수율 95%)을 얻었다.

m.p.: > 270 ℃

 1 H-NMR (DMSO-d₆), ppm : δ 2.56(s, 3H), 7.10(d, 1H), 7.72(d, 1H), 8.01(s, 1H), 8.25(s, 1H), 8.73(s, 1H), 10.81(br s,1H), 13.06(br s,1H)

< 실시예 1>NN-하이드록시에틸-N-N-메틸-4-(1HH-5-인다졸릴아미노)-2-메틸티오-5-피리미딘카르뵥스 아미드의 제조

메틸렌 클로라이드 120 ㎖에N,N-디메틸포름아미드 1.1 ㎖와 티오닐 클로라이드 1.2 ㎖를 가하고 가열하여 2시간 동안 환류시킨 후, 제조예 3에서 제조된 4-(1H-5-인다졸릴아미노)-2-메틸티오-5-피리미딘카르복실산 3 g을 가하여 10시간 동안 환류시켰다. 반응물을 냉각하여 0~5℃에서 2-(메틸아미노)에탄올 4 ㎖를 서서히 가하고 1시간 동안 교반시켰다. 반응물에 메탄올 80 ㎖를 가하고 5분 동안 교반한 후 여과하여 불순물을 제거하였다. 여액을 감압 농축하여 얻은 고체를 메탄율과 물의 1:1 혼합 용매에 넣고 3N수산화나트륨 수용액 3 ㎖를 가하여 1시간 동안 교반시킨 후 여과하고 물로 세척하였다. 얻어진 고체를 메틸렌 클로라이드와 이소프로필 에테르의 1:4 혼합 용매로 재결정하여 1.6 1 g (수율 45%)의 목적 화합물을 얻었다.

m.p.: 106~114 ℃

 1 H-NMR (DMSO-d₆), ppm : δ 2.40(s,3H), 2.99(s,3H), 3.43(br s,2H),3.56(br s,2H), 7.44(d, 1H), 7.50(d, 1H), 7.93(br s,1H), 8.03(s, 1H), 8.14(s, 1H), 8.93(br s, 1H), 13.03(br s 1H)

상기 실시예 1과 같은 합성 방법을 통해, 실시예 2~실시예 27의 화합물을 제조하^였다. 하기표 1에 실시예 2~실시예 27에서 제조된 화합물의 명칭, 수율, 재결정에 사용된 용매, 결정의 녹는점 및 제조에 사용된 출발물질인 5-피리미단 카르복실산 유도체 (5)와 아민 화합물 (6)을 나타내었다. 또한 하기표 2에 실시예 2~실시예 27에서 제조된 화합물에 대한1H-NMR 결과를 나타내었다.

[3], [a]

실시예번	화합물의 명칭				
<u> </u>	5-괴리미딘카르복실산 유도체	아민 화합물 (6)	재결정 용매	수율(%	녹는점(℃
	(5)))
2	N-하이드록시에틸-N-메틸-4	-(1H-6-인다졸릴아미노)	-2-메틸티오-5-피리미딘카르복스아미드		
	제조예 4	2-(메틸아미노)에탄올	클로로포름/이소프로필 에테르 (1:4)	52	93~97
3	N-[(1R)-1-(하이드록시메틸)	프로필]-4-(1H-5-인다콜	들릴아미노)-2-메틸티오-5-피리미딘카르복	스아미드	
	제조예 3	(R)-2-아미노-1-부탄	메탄올/클로로포름/이소프로필 에테르 (1:2	44	219~22
		올	:10)		2
4	N-[(1R)-1-(하이드록시메틸)	프로필]-4-(1H-6-인다졸	·릴아미노)-2-메틸티오-5-피리미딘카르복	스아미드	
	제조예 4	(R)-2-아미노-1-부탄	메탄올/이소프로필 에테르(1:5)	65	234~23
		윤			7
5	4-(1H-5-인다졸릴아미노)-N-(2-메톡시에틸)-2-메틸티오-5-피리미딘카르복스아미드				
	제조예 3	2-메톡시에틸아민	아세톤/이소프로필 에테르 (1:4)	72	214~21
					7
6	4-(1H-6-인다졸릴아미노)-N-(2-메톡시에틸)-2-메틸티오-5-피리미딘카르복스아미드				
	제조예 4	2-메톡시에틸아민	아세톤/이소프로필 에테르 (1:4)	75	225~22
					8
7	N,N-디메틸-4-(1H-5-인다졸릴아미노)-2-메틸티오-5-피리미딘카르복스아미드				
	제조예 3	디메틸아민 에탄올용액(3	메탄올/에틸 아세테이트/헥산 (1:5:5)	41	101~10
		3%)			5

[H 1b]

실시예번	화합물의 명칭				·····		
호	5-피리미딘카르복실산 유도체 (5)	아민 화합물 (6)	재결정 용매	수율(%)	녹는점(℃)		
8	N,N-디메틸-4-(1H-6-인다졸	릴아미노)-2-메틸티오-5-피	리미딘카르복스아미드				
	제조예 4	디메틸아민 에탄올 용액 (33%)	메탄올/에틸 아세테이트/헥산 (1:5:5)	38	164~16 6		
9	N-[2-(디메틸아미노)에틸]-4-	-(1H-5-인다졸릴아미노)-2-1	메틸티오-5-피리미딘카르복스아미드				
	제조예 3	N,N-디메틸에틸렌디아민	클로로포름/에테르/메탄을 (3:3:1)	43	111~11 4		
10	N-[2-(디메틸아미노)에틸]-4-	(1H-6-인다졸릴아미노)-2-	메틸티오-5-피리미딘카르복스아미드		<u> </u>		
	제조예 4	N,N-디메틸에틸렌디아민	클로로포름/에테르/메탄을 (3:3:1)	35	162~16 7		
11	4-(1H-5-인다졸릴아미노)-2-	·메틸티오-N-[2-(4-모르포리	닐)에틸]-5-피리미딘카르복스아미드	I	<u>I · </u>		
	제조예 3		클로로포름/에테르/메탄을 (3:3:1)	52	113~11 7		
12	4-(1H-6-인다졸릴아미노)-2-	메틸티오-N-[2-(4-모르포리	닐)에틸]-5-피리미딘카르복스아미드	L	1		
	제조예 4	4-(2-아미노에틸)모르포린	클로로포름/에테르/메탄올 (3:3:1)	56	226~22 8		
13	4-(1H-5-인다쏠릴아미노)-N-	-(4-메틸-1-피페라지닐)-2-	메틸티오-5-피리미딘카르복스아미드		1-		
	제조예 3	v	메틸렌 클로라이드/헥산 (1:4)	64	251~25 3		
14	4-(1H-6-인다졸릴아미노)-N-	-(4-메틸-1-피페라지닐)-2-	메틸티오-5-피리미딘카르복스아미드	L	<u> </u>		
	제조예 4		메틸렌 클로라이드/헥산 (1:4)	53	244~24 7		
15	4-(1H-5-인다졸릴아미노)-N- 르복스아미드	-[(1S)-1-(메톡시카르보닐)-((2R)-2-하이드록시프로필]-2-메틸터	I오-5-≖	리미딘카		
	제조예 3	L-트레오닌메틸에스테르	메탄올	76	227~23 2		
16	4-(1H-6-인다졸릴아미노)-N- 르복스아미드	-[(1S)-1-(메록시카르보닐)-(2R)-2-하이드록시프로필]-2-메틸터	오-5-포	l리미딘카		
	제조예 4	L-트레오닌메틸에스테르	메탄올	78	226~22 8		
17	4-(1H-5-인다졸릴아미노)-2-메틸티오-N-(3-피리딜)메틸-5-피리미딘카르복스아미드						
	제조예 3	3-(아미노메틸)피리딘	메탄올/에태르 (1:3)	62	268~27 0		
			<u> </u>				

[H. 1c]

실시예번	화합물의 명칭				
호	5-피리미딘카르복실산 유도체	아민 화합물 (6)	재결정 용매	수율(%	녹는점(℃
	(5)))
18	4-(1H-6-인다졸릴아미노)-2	-메틸티오-N-(3-피리딜)메틸	-5-피리미딘카르복스아미드		
	제조예 4	3-(아미노메틸)피리딘	메탄올/에테르 (1:3)	74	253~25
					6
19	4-(1H-5-인다졸릴아미노)-2		에틸]-5-피리미딘카르복스아미드		
	제조예 3	2-(2-아미노에틸)피리딘	메틸렌 클로라이드/에테르 (1:2)	49	220~22
				<u> </u>	3
20			에틴]-5-피리미딘카르복스아미드	·	
	제조예 4	2-(2-아미노에틸)피리딘	메틸렌 클로라이드/에테르 (1:2)	56	230~23
				<u> </u>	1
21			노)-2-메틸티오-5-피리미딘카르복스아		
	제조예 3	1-(3-아미노프로필)이미다졸	클로로포름/이소프로필 에테르 (1:3)	53	121~12
				<u></u>	5
22			노)-2-메틸티오-5-피리미딘카르복스아		
	제조예 4	1-(3-아미노프로필)이미다졸	메탄골/에테르 (1:3)	61	230~23
00	4 (111 5 A)=1 % =1 A) =1 1		adil o delondade	L	2
23	4-(1H-5-인다졸릴아미노)-5		the state of the s	I ca	1.50 15
!	제조예 3	1-메틸피페라진	메틸렌 클로라이드/이소프로필 에테르 (1:2)	57	153~15
24	4-(1H-6-인다졸릴아미노)-5	[[4 - 레티 _ 1 _ 파페리키니)리	/	<u> </u>	5
24	제조예 4	-[(4-메틸-1-퍼페다시틸)//- 1-메틸피페라진	-모듈J-2-메틸더도파더라인 메틸렌 클로라이드/이소프로핌 에테르 (47	102~10
-	제조배 4	1-매월퍼페다전	메틸렌 블로다이크/이오프로틸 에데트 (1:2)	47	6
25	5_[[4_(2_차이드록시에티)_1		1-47 H-5-인다졸릴아미노)-2-메틸티오피리『	1다	10
23	J-[[4-(2-이시_국시재일) 1 제조예 3		클로로포름/이소프로필 에테르 (1:3)	58	166~17
	M27 0	지		30	0
26	5-[[4-(2-하이드루시에틴)-1		H-6-인다졸릴아미노)-2-메틸티오피리	1日	10
"	제조예 4		클로로포름/이소프로필 에테르 (1:3)	52	114~11
	- 1 · 1	지		.	7
27	4-(1H-5-인다졸릴아미노)-2:		-5-피리미딘카르복스아미드		
	제조예 3	4-아미노모르포린	메탄올/물 (1:1)	60	239~24
	. , -		·		2
L			<u> </u>		

[H 2a]

실시예	NMR 용매	¹H-NMR 데이타 (ppm)	
2	$DMSO-d_6$	δ 2.49(s, 3H), 3.00(s, 3H), 3.45(br s, 2H), 3.56(br s, 2H), 7.15(d, 1	
		H), 7.67(d, 1H), 7.97(s, 1H), 8.05(br s, 1H), 8.22(s, 1H), 9.04(br s	
		, 1H), 13.00(br s, 1H)	
3	DMSO-d ₆	δ 0.88(t, 3H), 1.45(m, 1H), 1.63(m, 1H), 2.47(s, 3H), 3.45(m, 2H),	
		3.89(br s, 1H), 7.49(m, 2H), 8.03(s, 1H), 8.12(s, 1H), 8.32(d, 1H),	
		8.71(s, 1H), 11.22(s, 1H), 13.03(br s, 1H)	
4	DMSO-d ₆	δ 0.88(t, 3H), 1.46(m, 1H), 1.65(m, 1H), 2.56(s, 3H), 3.43(m, 2H),	
		3.89(br s, 1H), 7.05(d, 1H), 7.70(d, 1H), 7.99(s, 1H), 8.28(s, 1H),	
		8.38(d, 1H), 8.77(s, 1H), 11.50(s, 1H), 12.99(br s, 1H)	
5	DMSO-d ₆	δ 2.46(s, 3H), 3.28(s, 3H), 3.46(m, 4H), 7.45(d, 1H), 7.52(d, 1H), 8	
		.03(s, 1H), 8.12(s, 1H), 8.66(s, 1H), 8.84(br s, 1H), 11.22(s, 1H), 1	
		3.05(br s, 1H)	
6	DMSO-d ₆	δ 2.56(s, 3H), 3.27(s, 3H), 3.46(m, 4H), 7.05(d, 1H), 7.69(d, 1H), 7	
	_	.99(s, 1H), 8.27(s, 1H), 8.71(s, 1H), 8.89(br s, 1H), 11.51(br s, 1H	
), 13.05(br s, 1H)	
7	DMSO-d ₆	δ 2.34(s, 3H), 2.92(s, 6H), 7.41(m, 2H), 7.86(d, 1H), 7.97(s, 1H), 8	
	, in the second	.07(d, 1H), 9.10(s, 1H), 12.96(br s, 1H),	
8	DMSO-d ₆	δ 2.49(s, 3H), 2.99(s, 6H), 7.16(d, 1H), 7.67(d, 1H), 7.97(s, 1H), 8	
		.04(d, 1H), 8.20(s, 1H), 9.31(br s, 1H), 13.00(br s, 1H)	
9	$DMSO-d_6$	δ 2.25(s, 6H), 2.52(m, 5H), 3.41(m, 2H), 7.48(d, 1H), 7.55(d, 1H),	
		8.06(s, 1H), 8.14(s, 1H), 8.65(s, 1H), 8.76(br s, 1H), 11.23(br s, 1H	
), 13.10(br s, 1H)	
10	DMSO-d ₆	δ 2.18(s, 6H), 2.42(m, 2H), 2.49(s, 3H), 3.36(m, 2H), 7.45(d, 1H),	
		7.52(d, 1H), 8.03(s, 1H), 8.11(s, 1H), 8.65(s, 1H), 8.76(br s, 1H),	
		11.22(br s, 1H), 13.08(br s, 1H)	
11	$DMSO-d_6 + TFA-d_1$	δ 2.50(s, 3H), 3.14(t, 2H), 3.34(t, 2H), 3.54(d, 2H), 3.68(m, 4H), 3	
		.96(d, 2H), 7.48(m, 1H), 7.58(d, 1H), 8.06(t, 2H), 8.71(s,1H)	
12	$DMSO-d_6$	δ 2.36(s, 4H), 2.49(s, 3H), 3.26(s, 2H), 3.34(d, 2H), 3.50(s, 4H), 6	
		.97(d, 1H), 7.63(d, 1H), 7.91(s, 1H), 8.20(s, 1H), 8.61(s, 1H), 8.71	
		(br s, 1H), 11.41(s, 1H), 12.97(br s, 1H)	
13	$DMSO-d_6 + TFA-d_1$	δ 2.37(s, 3H), 2.82(s, 3H), 3.13 - 3.22(m, 6H), 3.49(d, 2H), 7.49(d	
		, 1H), 7.57(d, 1H), 8.03(s, 1H), 8.07(s, 1H), 8.67(s, 1H)	
14	$DMSO-d_6 + TFA-d_1$	δ 2.58(s, 3H), 2.82(s, 3H), 3.13 - 3.25(m, 6H), 3.47(d, 2H), 7.13(d	
		, 1H), 7.73(d, 1H), 8.06(s, 1H), 8.18(s, 1H), 8.69(s,1H)	
15	DMSO-d ₆	δ 1.16(d, 3H), 2.47(s, 3H), 3.68(s, 3H), 4.19(m, 1H), 4.50(br s, 1H)	
		, 5.03(d, 1H), 7.45(d, 1H), 7.52(d, 1H), 8.04(s, 1H), 8.10(s, 1H), 8	
		.71(d, 1H), 8.80(s, 1H), 10.86(s, 1H), 13.06(br s, 1H)	
DMSO: dimeth	ylsulfoxide, TFA: trifluoroacetic aci		

[丑, 26]

실시예	NMR 용매	¹H-NMR 데이타 (ppm)
16	DMSO-d ₆	δ 1.16(d, 3H), 2.56(s, 3H), 3.68(s, 3H), 4.19(m, 1H), 4.51(br s, 1H)
		, 5.04(d, 1H), 7.05(d, 1H), 7.69(d, 1H), 7.99(s, 1H), 8.25(s, 1H), 8.
		77(d, 1H), 8.85(s, 1H), 11.11(br s, 1H), 13.05(br s, 1H)
17	DMSO-d ₆	δ 2.54(s, 3H), 4.60(d, 2H), 7.44(m, 1H), 7.52(d, 1H), 7.59(d, 1H), 7
		.84(d, 1H), 8.11(d, 1H), 8.19(d, 1H), 8.54(d, 1H), 8.66(s, 1H), 8.78
		(d, 1H), 9.43(br s, 1H), 11.23(s, 1H), 13.13(br s, 1H)
18	DMSO-d ₆	δ 2.56(s, 3H), 4.53(d, 2H), 7.05(m, 1H), 7.37(m, 1H), 7.69(d, 1H),
		7.77(m, 1H), 7.98(s, 1H), 8.27(s, 1H), 8.47(m, 1H), 8.59(d, 1H), 8.
		77(s, 1H), 9.41(t, 1H), 11.43(br s, 1H), 13.03(br s, 1H)
19	DMSO-d ₆	δ 2.47(s, 3H), 3.01(t, 2H), 3.63(t, 2H), 7.22(t, 1H), 7.29(d, 1H), 7.
		45(d, 1H), 7.52(d, 1H), 7.71(t, 1H), 8.04(s, 1H), 8.13(s, 1H), 8.51(
		s, 1H), 8.58(s, 1H), 8.86(br s, 1H), 11.17(br s, 1H), 13.06(br s, 1H)
20	DMSO-d ₆	δ 2.56(s, 3H), 3.01(t, 2H), 3.64(t, 2H), 7.05(d, 1H), 7.22(t, 1H), 7.
		30(d, 1H), 7.70(d, 2H), 7.99(s, 1H), 8.27(s, 1H), 8.50(s, 1H), 8.63(
		s, 1H), 8.92(br s, 1H), 11.47(br s, 1H), 13.03(br s, 1H)
21	DMSO-d ₆	δ 1.98(t, 2H), 2.47(s, 3H), 3.24(t, 2H), 4.04(t, 2H), 6.88(s, 1H), 7.2
		1(s, 1H), 7.45(d, 1H), 7.52(d, 1H), 7.66(s, 1H), 8.03(s, 1H), 8.13(s
22	DMSO-d ₆	δ 1.98(m, 2H), 2.57(s, 3H), 3.26(m, 2H), 4.04(t, 2H), 6.89(s, 1H), 7
		.05(d, 1H), 7.21(s, 1H), 7.69(t, 2H), 7.98(s, 1H), 8.28(s, 1H), 8.69(
		s, 1H), 8.81(t, 1H), 11.43(br s, 1H), 13.06(br s, 1H)
23	$DMSO-d_6 + TFA-d_1$	δ 2.48(s, 3H), 2.82(s, 3H), 3.06(t, 2H), 3.31(br s, 2H), 3.47(d, 2H),
		4.26(br s, 2H), 7.45(d, 1H), 7.56(d, 1H), 7.87(s, 1H), 8.06(s, 1H),
		8.31(s, 1H)
24	$DMSO-d_6 + TFA-d_1$	δ 2.44(s, 3H), 2.77(s, 3H), 3.00(t, 2H), 3.25(br s, 2H), 3.42(d, 2H),
		4.24(br s, 2H), 7.18(d, 1H), 7.69(d, 1H), 7.86(s, 1H), 8.00(s, 1H),
		8.30(s, 1H)
25	DMSO-d ₆	δ 2.39(t, 5H), 2.49(d, 4H), 3.48(m, 6H), 4.13(t, 1H), 7.44(d, 1H), 7
		.49(d, 1H), 7.92(d, 1H), 8.02(s, 1H), 8.08(s, 1H), 9.11(s, 1H), 13.0
		2(br s, 1H)
26	$DMSO-d_6 + TFA-d_1$	δ 2.45(s, 3H), 3.14(d, 4H), 3.49(br s, 4H), 3.72(s, 2H), 4.22(br s, 2
		H), 7.22(d, 1H), 7.71(d, 1H), 7.89(s, 1H), 8.05(s, 1H), 8.34(s, 1H)
27	DMSO-d ₆	δ 2.53(s, 3H), 2.96(s, 4H), 3.74(s, 4H), 7.52(d, 1H), 7.59(d, 1H), 8
		.06(s, 1H), 8.19(s, 1H), 8.61(s, 1H), 9 83(s, 1H), 10.95(s, 1H), 13.
		12(br s, 1H)

< 실험예 1> HBV 중합효소에 대한 생체외 역전사 활성 저해 효과

화학식 1의 화합물들이 HBV 중합효소의 역전사 활성을 저해하는 효과를 알아보기 위하여, 하기와 같은 생체외 (in v itro) 실험을 실시하였다.

본 발명자들은 대장균에서 발현시켜 분리한 HBV의 재조합 중합효소 단백질, 그의 제조방법 및 그의 효소 활성을 측정하는 방법에 대해 이미 특허 출원한 바 있으며 (대한민국 특허출원 제94-3918호 및 제96-33998호), 본 실험에서는 상기와 같이 대장균에 발현시킨 HBV 중합효소를 사용하였다.

본 발명에서 사용된 생체외에서 B형 간염 바이러스 중합효소의 역전사효소 활성을 측정하는 방법은 다음과 같다. 기본적인 원리는 효소면역학적 방법 (ELISA)과 동일하며, 바이오틴- (biotin-), DIG- (digoxigenin-)으로 수식된 뉴클레오티드를 기질에 포함시켜 반응시킨 다음, 중합된 기질을 과산화효소가 붙어 있는 항-DIG 항체로 인식하는 방법을 이용하였다.

HBV 중합효소 20μ 를 스트렙타비딘 (streptavidin)으로 코팅된 웰에 넣고 반응 혼합물 [각각 10μ M의 DIG-UTP , Biotin-UTP, 46 mM Tris-HCl, 266 mM KCl, 27.5 mM MgCl $_2$, 9.2 mM DTT 기질/프라이머 하이브리드] 20μ l , 시험 물질 20μ l (농도가 각각 1, 0.1, 0.01μ l/ml이 되도록 첨가)를 섞어 $22 ^{\circ}$ C에서 15시간 반응시켰다. 이 때 HBV 중합효소의 작용에 의해 DNA가 만들어지고 디그옥시게닌 (digoxigenin) 및 바이오틴이 붙은 뉴클레오티드가 포함되었기 때문에 이 DNA는 웰 바닥에 코팅되어 있던 스트렙타비딘과 결합하게 된다. 반응이 끝나면 남아 있는 불순물 등을 제거하기 위해 각 웰 당 250μ l의 세척 완충액 (pH 7.0)으로 30초씩 5번 씻어 주었다. 각 웰에 항-DIG-POD 항체 (anit-DIG-POD antibody)를 200μ l에 가하여 $37 ^{\circ}$ C에서 1시간 동안 반응시킨 후, 불순물을 제거하기 위해 세척 완충액으로 각 웰을 씻어 주었다. 그 후 POD (peroxidase)의 기질인 ABTS™를 각각 200μ l에 가하여 30분간 상온에서 반응시키고 ELISA 판독기를 이용하여 405 nm에서의 흡광도를 측정하였다.

HBV 중합효소의 역전사 활성에 대한 저해율은 시험 화합물을 넣지 않은 대조군을 기준으로 계산하였으며, 그 결과를 하기표 3에 나타내었다.

[E. 3a]

HBV 중합효소의 역전사 활성에 대한 저해 효과

시험 화합물	HBV-RT의 활성 저해율 (%)			
	1 μg/mℓ	0.1 μg/ml	0.01 μg/ml	
실시예 1	75	54	30	
실시예 2	70	48	22	
실시예 3	82	59	44	
실시예 4	85	55	36	
실시예 5	58	40	13	
실시예 6	60	42	25	
실시예 7	77	61	42	
실시예 8	54	30	10	
실시예 9	80	51	15	
실시예 10	92	66	54	
실시예 11	64	39	10	
실시예 12	67	40	12	
실시예 13	78	54	40	
실시예 14	72	46	28	
실시예 15	51	40	18	
실시예 16	82	63	50	
실시예 17	97	76	53	
실시예 18	98	79	55	
실시예 19	88	60	48	

[丑 3b]

HBV 중합효소의 역전사 활성에 대한 저해 효과

시험 화합물	HBV-RT의 활성 저해율 (%)			
	1 μg/mℓ	0.1 μg/ml	0.01 μg/ml	
실시예 20	95	70	52	
실시예 21	80	56	41	
실시예 22	91	58	32	
실시예 23	82	58	43	
실시예 24	62	40	26	
실시예 25	53	32	11	
실시예 26	59	43	15	
실시예 27	90	61	46	

상기표 3에서 볼 수 있듯이, 본 발명의 화합물들은 1 μ g/ml의 농도에서 HBV 중합효소에 대한 활성 저해율이 70% 이상, 최고 98%에 이르는 등 HBV 중합효소의 활성을 억제하는 효과가 매우 우수하다. 또한 본 발명의 화합물들은 비핵산계 물질이므로 핵산계 물질들이 갖고 있는 독성 및 내성 바이러스의 조기 출현 등의 문제점을 해결할 수 있을 것으로 기대되며, 핵산계 물질들과 작용 기전이 상이하므로 핵산계 물질들과 병용요법제로도 사용할 수 있다.

이와 같이 본 발명의 화합물들은 HBV의 복제에 중요한 역할을 하는 HBV 중합효소의 활성을 저해하는 효과가 우수하므로 이를 기전으로 HBV의 중식을 억제할 수 있으며, 따라서 B형 간염의 예방제 및 치료제로서 유용하게 사용될 수 있다.

< 실험예 2> HBV 생산 세포주를 이용한 HBV 증식 저해 활성 효과

화학식 1의 화합물들이 HBV 생산 세포주의 중식을 저해하는 효과를 알아보기 위하여, 하기와 같은 실험을 실시하였다

항바이러스 활성을 검색하기 위해 인간 간암 세포주인 HepG 2.2.15를 이용하여 HBV가 복제, 중식되는 정도를 측정하였다.

세포 농도를 1×10⁵ 세포수/㎡로 조정한 다음 24-웰 세포 배양판에 1 ㎡/웰 씩 분주하였다. 이것을 37℃의 5% CO 2 배양기에서 배양하였는데, 매일 배지를 갈아주며 세포가 충분히 자랄 때 (confluent)까지 3~4일간 배양하였다. 세포가 충분히 자란 뒤, 최종 농도가 각각 0.01, 0.1, 1 μg/㎡이 되도록 시험 화합물을 가해 주었다. 시험 화합물을 가하고 1 주일 후 배양액을 취하여 5,000 rpm에서 10분간 원심분리하였다. 상등액 25 ㎡를 새 튜브에 옮기고, 각각 5 ㎡의 용해 (lysis) 용액 [0.54N NaOH, 0.06% NP40]을 첨가하여 37℃에서 1시간 동안 배양하였다. 배양 후 중화 용액 [0.09N HCl, 0.1M Tris-HCl, pH 7.4] 30 ㎡를 첨가하여 경쟁적 PCR (Competitive Polymerase Chain Reaction)을 위한 반응액으로 사용하였다.

PCR은 HBV의 중심 항원 (core) 유전자 서열을 주형으로 하여 수행하였다. 25 pmol의 각 시발체, 250 μ M dNTP, 5 μ의 상기 PCR 반응액 [0.54N NaOH, 0.06% NP40, 0.09N HCl, 0.1M Tris-HCl, pH 7.4]에 1 유니트 (unit)의 Tag 중합효소를 가하여 PCR 반응시켰다.

PCR로 증폭된 DNA는 아가로스 겔로 전기영동한 후, 영상 분석기 (Gel Doc 1000, BIO-RAD)를 이용하여 HBV의 DNA를 정량 분석함으로써 본 발명의 화합물들의 HBV 증식 저해 활성을 평가하였다.

양성 대조군으로는 3TC (lamivudine)를 사용하였으며, 시험 화합물과 같은 농도로 처리하였다. HBV 중식 저해 활성 율은 시험 화합물을 넣지 않은 대조군을 기준으로 계산하였으며, 그 결과를 하기표 4에 나타내었다.

[3L4]

HBV 증식 저해 활성 효과

시험 화합물	HBV 증식 저해 활성율 (%)			
	$1 \mu g/m\ell$	0.1 μg/ml	0.01 μg/ml	
실시예 1	65	48	20	
실시예 7	70	52	25	
실시예 10	88	57	43	
실시예 17	92	65	40	
실시예 18	97	75	47	
실시예 19	84	55	38	
실시예 20	93	68	44	
실시예 27	86	50	29	
3TC	99	80	48	

상기표 4에서 볼 수 있듯이, 본 발명의 화합물들은 비핵산계 물질로서 1 μ g/ml의 농도에서 HBV에 대한 증식 저해 활성율이 80% 이상, 최고 97%에 이르는 등 HBV 중합효소의 역전사 활성을 억제하는 효과가 매우 우수하다. 특히, 본 발명의 화합물들은 비핵산계 물질이므로 핵산계 물질 등이 갖고 있는 독성 및 내성 바이러스의 조기 출현 등의 문제점을 해결할 수 있을 것으로 기대된다. 또한 핵산계 물질들은 중합효소의 활성 도메인에 작용하는 반면 본 발명의 화합물들은 알로스테릭 바인딩 포켓 (allosteric binding pocket)에 작용할 것으로 예상되므로, 본 발명의 화합물들은 핵산계물질들과의 병용요법제로도 사용할 수 있다.

이와 같이 본 발명의 화합물들은 HBV의 복제 단계 중 역전사 단계에 중요한 역할을 하는 HBV 중합효소의 역전사 활성을 저해하는 효과가 우수하므로 이를 기전으로 HBV의 증식을 억제할 수 있으며, 따라서 B형 간염의 예방제 및 치료제로서 유용하게 사용될 수 있다.

< 실험예 3> HIV 역전사 효소에 대한 생체외 활성 저해 효과

화학식 1의 화합물들이 HIV 역전사 효소의 활성을 저해하는 효과를 알아보기 위하여, 하기와 같은 생체외 실험을 실시하였다.

비방사성 역전사 효소 분석 키트 (Non-radioactive reverse transcriptase assay Kit, Boehringer Mannheim)를 사용하여 생체의 저해 활성을 측정하였다.

스트립타비딘 (streptavidin)으로 코팅된 웰에 HIV 역전사 효소 $20~\mu$ (40~ng)을 넣고, 주형-시발체 하이브리드 poly(A)· 을리고(dT) $_{15}$ 와 DIG-(디그옥시게닌)-dUTP, 바이오틴-dUTP, TTP가 포함된 반응 혼합액 (reaction mixture) $20~\mu$ l를 가한 후, 여기에 최종 농도 0.1, $1~\mu g/m$ l가 되도록 시험 화합물을 가하여 1시간 동안 37 C에서 반응시 컸다. 이 때, HIV 역전사 효소의 작용에 의하여 RNA로부터 DNA가 만들어지며, 디그옥시게닌 (digoxigenin)과 바이오틴 (biotin)이 표지된 뉴클레오티드가 함께 포함되어 있으므로 DNA가 웰의 바닥에 코팅되어 있는 스트렙타비딘과 결합하게 된다.

반응 종료 후, 남아 있는 불순물을 제거하기 위해 각 웰 당 250 μ 의 세척용 완충 용액 (pH 7.0)으로 30초간 5회 세척 하였다. 세척 후 항-DIG-POD 항체를 200 μ 씩 가하여 37℃에서 1시간 동안 반응시키고, 불순물 제거를 위해 다시 상기와 같은 세척용 완충 용액으로 세척하였다. 세척 후 각 웰에 POD (peroxidase)의 기질 (substrate)인 ABTS™을 각각 200 μ 씩 가하여 30분간 상은에서 반응시켰다. 반응 종료 후, ELISA 판독기를 이용하여 각 용액의 405 nm에서의 흡광도를 측정함으로써 HIV의 역전사 효소 활성이 저해된 정도를 정량하였다. HIV 역전사 효소 활성에 대한 저해 율은 시험 화합물을 넣지 않은 대조군을 기준으로 계산하였으며, 그 결과를 하기표 5에 나타내었다.

[£ 5]

HIV 역전사 효소 활성에 대한 저해 효과

시험 화합물	HIV-RT 활성 저해율	(%)		
	1 μg/mℓ	0.1 μg/mℓ		
실시예 1	84	52		
실시예 2	80	47		
실시예 8	81	53		
실시예 10	77	51		
실시예 11	75	48		
실시예 12	89	50		
실시예 21	72	44		

상기표 5에서 볼 수 있듯이, 본 발명의 화합물들은 1 μ g/ml의 농도에서 HIV-RT (HIV 역전사 효소)에 대한 활성 저해 율이 80% 이상, 최고 89%에 이르는 등 HIV 역전사 효소의 활성을 억제하는 효과가 매우 우수하다. 특히, 본 발명의 화합물들은 비핵산계 물질이므로 핵산계 물질 등이 갖고 있는 독성 및 내성 바이러스의 조기 출현 등의 문제점을 해결할 수 있을 것으로 기대된다. 또한 핵산계 물질들은 중합효소의 활성 도메인에 작용하는 반면 본 발명의 화합물들은 알로스테릭 바인딩 포켓 (allosteric binding pocket)에 작용할 것으로 예상되므로, 본 발명의 화합물들은 핵산계 물질들과의 병용요법제로도 사용할 수 있다.

이와 같이 본 발명의 화합물들은 HIV의 복제 단계 중 역전사 단계에 중요한 역할을 하는 HIV 역전사 효소의 활성을 저해하는 효과가 우수하므로 이를 기전으로 HIV의 중식을 억제할 수 있으며, 따라서 후천성 면역 결핍중의 예방제 및 치료제로서 유용하게 사용될 수 있다.

< 실험예 4> 세포 독성 시험

화학식 1의 화합물들이 세포 독성 (cytotoxicity)을 나타내는지 알아보기 위하여, HepG2 세포를 이용하여 일반적으로 널리 알려진 MTT 분석 방법으로 시험관 내 (in vitro) 실험을 실시하였다.

그 결과, 실험에 사용된 화합물은 모두 CC_{50} 이 $100~\mu\text{g/ml}$ 이상으로서, 세포에 대한 독성이 매우 적은 물질인 것으로 판명되었다.

< 실험예 5> 랫트에 대한 경구 투여 급성 독성 실험

화학식 1의 화합물의 급성 독성을 알아보기 위하여 하기와 같은 실험을 수행하였다.

6주령의 특정병원부재 (SPF) SD계 랫트를 사용하여 급성 독성 실험을 실시하였다. 군당 6 마리씩의 동물에 실시예 1 ~27의 화합물을 각각 0.5% 메틸셀룰로스 용액에 현탁하여 4 g/kg/15㎡의 용량으로 1회 경구 투여하였다. 시험 물질 투여 후 동물의 폐사 여부, 임상 증상 및 체중 변화 등을 관찰하고 혈액학적 검사와 혈액 생화학적 검사를 실시하였으며 부검하여 육안으로 복강 장기와 흉강 장기의 이상 여부를 관찰하였다. 시험 결과, 시험 물질을 투여한 모든 동물에서 특기할 만한 임상 증상은 없었고 폐사된 동물도 없었으며, 또한 체중 변화, 혈액검사, 혈액 생화학 검사, 부검 소견 등에서도 독성 변화는 관찰되지 않았다. 이상의 결과 실험된 화합물은 모두 랫트에서 4 g/kg까지 독성 변화를 나타내지 않으며, 경구 투여 최소 치사량 (LD50)은 4 g/kg 이상인 안전한 물질로 판단되었다.

발명의 효과

상기에서 살펴 본 바와 같이, 본 발명에 의한 상기 화학식 1로 표시되는 신규의 5-피리미딘카르복스아미드 유도체는 HBV 및 HIV의 증식을 억제하는 효과가 뛰어나고 부작용도 적으므로 B형 간염 및 후천성 면역 결핍증의 예방제 및 치료제로서 유용하게 사용될 수 있다. 특히, 본 발명의 화합물들은 비핵산계 물질이기 때문에 핵산계 물질들이 갖고 있는 독성 및 내성 바이러스의 조기 출현 등의 문제점을 해결할 수 있을 것으로 기대된다. 또한 핵산계 화합물들은 중합효소의 활성 도메인에 작용하는 반면 본 발명의 화합물들은 알로스테릭 바인딩 포켓에 작용할 것으로 예상되므로, 본 발명

의 화합물들은 핵산계 화합물들과의 병용요법제로도 사용될 수 있는 장점이 있다.

(57) 청구의 범위

청구항 1.

하기 화학식 1로 표시되는 5-피리미딘카르복스아미드 유도체 및 약학적으로 허용 가능한 그의 염,

화학식 1

$$\begin{array}{c|c}
 & O \\
 & N + CH_2 \rightarrow R_1 \\
 & R_2 \\
 & R_3
\end{array}$$

상기 화학식 1에서,

 R_1 은 하이드록시; $C_1 \sim C_5$ 인 직쇄 또는 분쇄상 알킬기; $C_1 \sim C_5$ 인 직쇄 또는 분쇄상 알콕시기; $C_2 \sim C_6$ 인 직쇄 또는 분쇄상 하이드록시알킬기; $C_2 \sim C_6$ 인 디알킬아미노기; $C_2 \sim C_5$ 인 알콕시카르보닐기 및/또는 하이드록시기로 치환된, $C_2 \sim C_6$ 인 직쇄 또는 분쇄상 알킬기; 또는 치환되지 않거나 $C_1 \sim C_3$ 인 알킬기로 치환된 N, O, S 중에서 선택되는 $1 \sim 3$ 개의 헤테로 원자를 포함하는, 포화 또는 불포화된 5원자 또는 6원자 헤테로고리 화합물이며, R_1 은 비대칭 탄소를 포함하거나 포함하지 않고.

R₂는 H; 또는 C₁ ~ C₄ 인 직쇄 또는 분쇄상 알킬기이고.

또는 R_1 과 R_2 가 서로 결합하여 포화된 5원자 또는 6원자의 헤테로고리 화합물을 형성하고, 이 때 헤테로고리에는 N, O, S 중에서 선택되는 $1\sim3$ 개의 헤테로 원자가 포함되며 헤테로고리는 치환되지 않거나 $C_1\sim C_5$ 인 직쇄 또는 분쇄상 알킬기 또는 $C_2\sim C_6$ 인 직쇄 또는 분쇄상 하이드록시알킬기로 치환되고,

R₃는 인다졸-5-일; 또는 인다졸-6-일이고,

n은 0~4의 정수이다.

청구항 2.

- 1) 4-클로로-2-메틸티오-5-피리미딘카르복실산 에틸 에스테르 (2)와 5-아미노인다졸 또는 6-아미노인다졸 (3)을 염기 존재 하에 반응시켜 5-피리미딘카르복실산 에틸 에스테르 유도체 (4)를 제조하는 단계 (단계 1);
- 2) 상기 단계 1에서 제조된 5-피리미딘카르복실산 에틸 에스테르 유도체 (4)를 알칼리 조건으로 가수분해하여 5-피리미딘카르복실산 유도체 (5)를 제조하는 단계 (단계 2); 및
- 3) 상기 단계 2에서 제조된 5-피리미딘카르복실산 유도체 (5) 을 N,N-디메틸포름아미드 (DMF)와 티오닐클로라이드 (SOCI2) 존재 하에서 빌스마이어 (Vilsmeier) 중간체로 활성화 시킨 후, 아민 화합물 (6)과 반응시켜서 화학식 1의 5-피리미딘카르복스아미드 유도체를 제조하는 단계 (단계 3)로 이루어지는 제 1 항의 5-피리딘카르복스아미드 유도체의 제조방법.

반용식 1

상기 반응식 1에서, R_1 , R_2 , R_3 및 n은상기에서 정의된 바와 같다.

청구항 3.

제 1 항의 5-피리미딘카르복스아미드 유도체 또는 그의 약학적으로 허용 가능한 염을 유효 성분으로 함유하는 B형 간염 치료제 또는 예방제용 약학적 조성물.

청구항 4.

제 1 항의 5-피리미딘카르복스아미드 유도체 또는 그의 약학적으로 허용 가능한 염을 유효 성분으로 함유하는 후천성 면역 결핍증 치료제 또는 예방제용 약학적 조성물.