ECUACIONES NO LINEALES

En este capítulo nos interesamos por algunos métodos básicos de resolución de ecuaciones o sistemas de ecuaciones no lineales de la forma

$$f(x) = 0$$
;

el problema consiste en encontrar x, donde $f: \mathbb{R} \to \mathbb{R}$ y $x \in \mathbb{R}$, para el caso de una sola ecuación, o $f: \mathbb{R}^n \to \mathbb{R}^n$, y $x = (x_1, \dots, x_n) \in \mathbb{R}^n$, para el caso de un sistema de ecuaciones. Para el caso escalar (una sola ecuación), la solución x se denomina raíz de la función f.

Métodos de convergencia garantizada

El método de la bisección. Se basa en el conocido teorema de Cálculo:

Teorema del Valor Intermedio. Sea $f:[a,b] \subset \mathbb{R} \to \mathbb{R}$ función continua en el intervalo [a,b] y supongamos que f(a) < f(b). Entonces para cada z tal que f(a) < z < f(b), existe un $x_0 \in (a,b)$ tal que $f(x_0) = z$. La misma conclusión se obtiene para el caso que f(a) > f(b).

En particular, si f(a) y f(b) tienen signos opuestos, entonces un valor intermedio es precisamente z = 0, y por lo tanto, el Teorema del Valor Intermedio nos asegura que debe existir x_0 tal que $f(x_0) = 0$, es decir, debe haber por lo menos una raíz de en el intervalo (a, b). El método de bisección sigue los siguientes pasos (o algoritmo):

- 1. Encontrar valores iniciales x_a , x_b tales que $f(x_a)$ y $f(x_b)$ tienen signos opuestos, es decir, $f(x_a) \cdot f(x_b) < 0$.
- 2. La primera aproximación a la raíz se toma igual al punto medio entre x_a y x_b : $x_r = \frac{x_a + x_b}{2}$.
- 3. Evaluar $f(x_r)$. Forzosamente debemos caer en uno de los siguientes casos:
 - (a) $f(x_a) \cdot f(x_r) = 0$: En este caso se tiene que $f(x_r) = 0$ y por lo tanto ya localizamos la raíz.
 - (b) $f(x_a) \cdot f(x_r) < 0$: la raíz se encuentra en el intervalo $[x_a, x_r]$. Redefinimos entonces x_b como x_r .
 - (c) $f(x_a) \cdot f(x_r) > 0$: la raíz se encuentra en el intervalo $[x_r, x_b]$. Redefinimos entonces x_a como x_r .
- 4. El proceso se vuelve a repetir con el nuevo intervalo, hasta que el error sea suficientemente pequeño, menor que un valor de tolerancia.

Examinando la velocidad de convergencia, sea x_n el n-ésimo valor de x_r en el algoritmo, para $n = 1, 2, \ldots$ Es fácil comprobar a partir del algoritmo que

$$lpha = \lim_{n o \infty} x_n, \qquad |lpha - x_n| \le \left(rac{1}{2}
ight)^n (x_b - x_a)$$

Definición. Una secuencia $(x_n)_{n\in\mathbb{N}}$ se dice convergente a α , con orden $p\geq 1$ si

$$|\alpha - x_{n+1}| \le C|\alpha - x_n|^p, \quad \forall n.$$

para alguna constante C>0. Si p=1 se dice que la sucesión converge linealmente a α . En este caso es necesario que $C\leq 1$ (C<1 en la práctica); la constante C es llamada taza de convergencia lineal.

Según esta definición el método de la bisección tiene convergencia lineal con una taza de convergencia igual a 1/2.

Observaciones.

- 1. El método de la bisección puede llegar a ser en algunos casos, demasiado lento, pero al menos es un método en que la convergencia está garantizada.
- 2. El método es sólo aplicable al caso escalar (de una sola ecuación), y no se generaliza al caso de sistemas de ecuaciones.

Métodos de convergencia veloz

El método de Newton-Raphson. Está basado en el uso de una línea tangente como aproximación de f(x), cerca de los puntos donde el valor de la función es cero. Supongamos que tenemos la aproximación x_k a la raíz α de f(x). Trazamos la

recta tangente a la curva en el punto $(x_k, f(x_k))$, es decir $y = f(x_k) + f'(x_k)(x - x_k)$; ésta cruza al eje en un punto x_{k+1} que será nuestra siguiente aproximación a la raíz α . El método de la tangente define entonces la sucesión de aproximaciones a α de la manera siguiente:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, 2, \dots$$

donde $x_0 \in [a, b]$ se supone conocido y $f'(x) \neq 0, \forall x \in [a, b]$.

Teorema 1. Sea $f \in C^2([a,b])$ y sean m_1, M_2 tales que

$$m_1 \leq \min_{x \in [a,b]} |f'(x)| \quad y \quad \max_{x \in [a,b]} |f''(x)| \leq M_2.$$

 $Si m_1 > 0$, entonces para la sucesión del método de Newton-Raphson se tiene que

$$|\alpha - x_{k+1}| \le \frac{M_2}{2m_1} |x_{k+1} - x_k|^2, \quad k = 0, 1, 2, \dots$$

Teorema 2. Sea $f \in C^1([a,b])$, tal que f''(x) es continua en una vecindad de α , y $f'(\alpha) \neq 0$. Entonces si x_0 se escoge suficientemente cercano de α , se tiene la convergencia $\lim_{n\to\infty} x_n = \alpha$, y más precisamente :

$$\lim_{n \to \infty} \frac{\alpha - x_{n+1}}{(\alpha - x_n)^2} = -\frac{f''(\alpha)}{2f'(\alpha)}$$

Observaciones.

- 1. La interpretación del teorema 2, es que la convergencia del método de Newton-Raphson tiene un comportamiento asintótico en orden p=2.
- 2. El teorema 1, nos provee de una estimación a posteriori del error ; note que si se itera hasta que

$$|x_{k+1} - x_k| \le \sqrt{\frac{2m_1\epsilon}{M_2}}$$

entonces, del Teorema se obtiene $|\alpha - x_{k+1}| \leq \epsilon$.

3. La validez en la estimación del Teorema 1 es independiente de si la sucesión x_n converge, o no a α , pero evidentemente interesa el caso convergente. La convergencia, está asegurada por el Teorema 2, bajo la hipótesis de que x_0 esté suficientemente cerca de la solución α . A pesar que la demostración indica de manera precisa que significa estar suficientemente cerca, no hay una fórmula práctica para verificar si estamos suficiente cerca o no.

Demostración del Teorema 1. Considere el desarrollo de Taylor de $f(x_{k+1})$ respecto a x_k :

$$f(x_{k+1}) = f(x_k) + (x_{k+1} - x_k)f'(x_k) + \frac{1}{2}(x_{k+1} - x_k)^2 f''(\xi)$$
 (1)

para ξ entre x_{k+1} y x_k . De la fórmula de Newton-Raphson, se tiene

$$(x_{k+1} - x_k)f'(x_k) = -f(x_k)$$

que reemplazada en (1) conduce a:

$$|f(x_{k+1})| \le \frac{1}{2}|x_{k+1} - x_k|^2 M_2. \tag{2}$$

Como $f(\alpha) = 0$, por el teorema del Valor Medio existe η entre α y x_{k+1} tal que

$$|f(x_{k+1})| = |f(\alpha) - f(x_{k+1})| = |f'(\eta)||\alpha - x_{k+1}|.$$

Puesto que $0 < m_1 \le |f'(\eta)|$, entonces

$$|\alpha - x_{k+1}| \le \frac{1}{m_1} |f(x_{k+1})| \le \frac{M_2}{2m_1} |x_{k+1} - x_k|^2,$$

donde en la última desigualdad se usó (2).

Demostración del Teorema 2. Consideremos un intervalo $I=[\alpha-\varepsilon,\alpha+\varepsilon],$ y sea

$$M = \frac{\max\limits_{x \in I} |f''(x)|}{2\min\limits_{x \in I} |f'(x)|}$$

Considerando el desarrollo de Taylor de la demostración anterior (1) y la fórmula de Newton-Raphson, se tiene que

$$|\alpha - x_1| \le M|\alpha - x_0|^2 \implies M|\alpha - x_1| \le (M|\alpha - x_0|)^2.$$

Escogiendo entonces x_0 de modo que $|\alpha - x_0| \leq \varepsilon$ y $M|\alpha - x_0| < 1$, se asegura la convergencia del método. En efecto, se deduce primero que nada $M|\alpha - x_1| < 1$, y $M|\alpha - x_1| \leq M|\alpha - x_0|$, con lo cual $|\alpha - x_1| \leq \varepsilon$. Aplicando este mismo argumento para x_1, x_2, \ldots , sucesivamente, se tiene que $|\alpha - x_n| \leq \varepsilon$, y $M|\alpha - x_n| < 1$ para todo $n \geq 1$. Para demostrar la convergencia, usamos nuevamente (1), lo que da

$$|\alpha - x_{n+1}| \le M|\alpha - x_n|^2 \implies M|\alpha - x_{n+1}| \le (M|\alpha - x_n|)^2$$

y por lo tanto, inductivamente se deduce

$$|\alpha - x_n| \le \frac{1}{M} (M|\alpha - x_0|)^{2^n}$$

y como $M|\alpha - x_0| < 1$, esto prueba que $\lim_{n \to \infty} x_n = \alpha$. Retomando (1), con un valor ξ_n entre x_n y α , y haciendo $\xi_n \to \alpha$, cuando $n \to \infty$, se tiene

$$\lim_{n \to \infty} \frac{\alpha - x_{n+1}}{(\alpha - x_n)^2} = -\lim_{n \to \infty} \frac{f''(\xi_n)}{2f'(x_n)} = -\frac{f''(\alpha)}{2f'(\alpha)}$$

Ejemplo. Resultados obtenidos por los métodos de *Bisección* y *Newton-Raphson*. Resolución de la siguiente ecuación con error menor que $tol = 10^{-5}$.

$$x^2 - 2 = 0$$

Bisección	Newton-Raphson
1.500000000000000	2.000000000000000
1.250000000000000	1.5000000000000000
1.375000000000000	1.41666666666667
1.437500000000000	1.41421568627451
1.40625000000000	1.41421356237469
1.42187500000000	
1.41406250000000	
1.41796875000000	
1.41601562500000	
1.41503906250000	
1.41455078125000	
1.41430664062500	
1.41418457031250	
1.41424560546875	
1.41421508789063	
1.41419982910156	
1.41420745849609	
1.41421127319336	

El método de la Secante. Cuando la función f es derivable, pero su derivada es demasiado difícil de evaluar, conviene utilizar el método de la secante en lugar del método de Newton-Raphson que simplemente consiste en reemplazar la derivada $f'(x_k)$ por la secante $\frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$. Es decir

$$x_{k+1} = x_k - f(x_k) \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})}, \qquad k = 1, \dots$$

con x_0 , x_1 dados. Al igual que en el método de Newton-Raphson, la convergencia tampoco está siempre garantizada, pero cuando tiene lugar, es bastante veloz con un orden de convergencia levemente inferior a la de Newton-Raphson. Más precisamente, se tiene el siguiente Teorema :

Teorema. Sea $f \in C^2([a,b])$ y $f'(\alpha) \neq 0$. Entonces si x_0 y x_1 se escogen suficientemente cercanos de α , se tiene la convergencia $\lim_{n\to\infty} x_n = \alpha$, y más precisamente :

$$\lim_{n \to \infty} \frac{|\alpha - x_{n+1}|}{|\alpha - x_n|^{\frac{1+\sqrt{5}}{2}}} = \left| \frac{f''(\alpha)}{2f'(\alpha)} \right|^{\frac{\sqrt{5}-1}{2}}$$

Es decir, la convergencia del método de la secante, tiene un comportamiento asintótico de orden $p = \frac{1+\sqrt{5}}{2} \approx 1.618$.

Sistemas de Ecuaciones no lineales

Una de las ventajas del método de Newton-Raphson además de su velocidad de convergencia, es que se puede generalizar facilmente a sistemas de ecuaciones no lineales, conocido como método de Newton.

Sea $f: \mathbb{R}^n \to \mathbb{R}^n$ una función de varias variables, no-lineal. Interesa resolver el sistema de ecuaciones f(x) = 0, donde $x = (x_1, \dots, x_n)^t \in \mathbb{R}^n$ representa al vector de incógnitas. Al igual que en el método de Newton-Raphson, buscamos una aproximación de la solución mediante un desarrollo de Taylor. Supongamos que $\alpha = (\alpha_1, \dots, \alpha_n)^t \in \mathbb{R}^n$ es la solución del sistema de ecuaciones, y que $f = (f_1, \dots, f_n)$ es dos veces diferenciable, entonces aplicando el desarrollo en series de Taylor para funciones de varias variables de $f(\alpha)$ en torno a $x^k = (x_1^k, \dots, x_n^k)^t$, se tiene el siguiente sistema de igualdades escrito de manera matricial :

$$0 = f(\alpha) = f(x_k) + F(x_k)(\alpha - x^k) + \frac{1}{2}G(\xi)[(\alpha - x^k), (\alpha - x^k)]$$

donde ξ es un punto de \mathbb{R}^n situado en un segmento comprendido entre los puntos α y x^k , $F(x_k)$ es la matriz Jacobiana de f en x_k , es decir

$$F(x_k) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x^k) & \dots & \frac{\partial f_1}{\partial x_n}(x^k) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1}(x^k) & \dots & \frac{\partial f_n}{\partial x_n}(x^k) \end{pmatrix},$$

y $G(\xi): \mathbb{R}^{2n} \to \mathbb{R}^n$ es una función bilineal, en que cada componente $G_i(\xi)$, con $G = (G_1, \dots, G_n)$ está definida por la forma cuadrática asociada al Hessiano de f_i , es decir $G_i(\xi)[a,b] = a^t H_i(\xi)b$, donde $(H_i(\xi))_{j,\ell} = \left(\frac{\partial^2 f_i}{\partial x_j \partial x_\ell}(\xi)\right)$ corresponde a la matriz de segundas derivadas de f_i . Suponiendo que el tercer término del lado derecho en

el desarrollo de Taylor $G(\xi)[(\alpha-x^k),(\alpha-x^k)]$, es pequeño de modo que podemos despreciarlo, y suponiendo además que el jacobiano es invertible en x_k , entonces podemos despejar la raiz α

$$\alpha \approx x^k - F(x^k)^{-1} f(x^k)$$

El método de Newton para Sistemas Nolineales.

El método consiste en que dada la aproximación de la solución x^k , tomar simplemente como nueva aproximación x^{k+1} igual al valor del lado derecho de la expresión anterior. Es decir

$$x^{k+1} = x^k - F(x^k)^{-1} f(x^k), \qquad k = 0, 1, 2, \dots$$

donde x_0 es la aproximación inicial. En la práctica, no invertimos la matriz $F(x^k)$. Utilizamos un método menos costoso que consiste en resolver en cada iteración un sistema de ecuaciones lineal :

$$\left\{ \begin{array}{l} \operatorname{Para} x^0 \in \mathbb{R}^n \text{ dado, y } k = 0, \dots \\ \operatorname{sea} \delta^k \text{ solución de } F(x^k) \delta^k = -f(x^k) \\ x^{k+1} = x^k + \delta^k \end{array} \right.$$

Observación. Los teoremas de convergencia, y estimación del error del método de Newton-Raphson se pueden generalizar al caso de sistemas, reemplazando el valor absoluto por la norma $\|\cdot\|_{\infty}$, es decir

$$\|\alpha - x^{k+1}\|_{\infty} \le B\|\alpha - x^k\|_{\infty}^2, \quad , k = 0, 1, \dots$$

donde B > 0 es una cierta constante que depende del Jacobiano y del Hessiano de f.

Ejemplo : Resolución del siguiente sistema de ecuaciones con error menor que $tol = 10^{-5}$.

$$\begin{cases} y^2 + x^2 = 1 \\ y = x^2 \end{cases}$$

Funciones a utilizar:

$$f(x,y) = \left[\begin{array}{c} x^2 + y^2 - 1 \\ y - x^2 \end{array} \right]$$
 y $F(x,y) = \left[\begin{array}{cc} 2x & 2y \\ -2x & 1 \end{array} \right]$

Localización de las raíces:

Programa en pseudocódigo:

$$(x_0,y_0) \colon \text{datos iniciales}$$

$$k=0,1,2,\dots$$

$$\text{Resolver} \begin{bmatrix} 2x_k & 2y_k \\ -2x_k & 1 \end{bmatrix} \begin{bmatrix} \Delta x_k \\ \Delta y_k \end{bmatrix} = \begin{bmatrix} 1-x_k^2-y_k^2 \\ x_k^2-y_k \end{bmatrix}$$

$$x_{k+1} = x_k + \Delta x_k, \qquad y_{k+1} = y_k + \Delta y_k$$

$$\text{Si } \sqrt{\Delta x_k^2 + \Delta y_k^2} < \text{tol} \to \boxed{\text{FIN}}$$

$$\text{Regreso}$$

Resultados obtenidos:

x	y
1.000000000000000	1.0000000000000000
0.83333333333333	0.66666666666667
0.78809523809524	0.61904761904762
0.78615406630609	0.61803444782168
0.78615137776208	0.61803398874999

 $\begin{array}{l} {\rm Octubre,\,2003.} \\ {\rm GBG/MCP/RRS/MSC} \end{array}$

http://www.ing-mat.udec.cl/pregrado/asignaturas/521230/