Université de Technologie de Belfort-Montbéliard

Cours d'IN41

Chapitre 7 – Signaux et systèmes discrets

Semestre de printemps 2016

Table des matières

1	Signaux discrets			2
	1.1	Signaux classiques		
		1.1.1	Impulsion unité	2
		1.1.2	Saut unité	2
		1.1.3	Exponentielle numérique	2
		1.1.4	Sinusoïde	2
		1.1.5	Phaseur de pulsations ω_0	2
	1.2	Propri	étés des signaux discrets	3
2	Svst	èmes n	umériques	3

1 Signaux discrets

 χ : séquence de nombres dans laquelle le n^{eme} nombre est x(n) Notation : $\chi = \{x(n)\}$ avec $-\infty < n < +\infty$

1.1 Signaux classiques

1.1.1 Impulsion unité

$$\delta(n) = \begin{cases} 1 & \text{si } n = 0 \\ 0 & \text{sinon} \end{cases}$$

1.1.2 Saut unité

$$\Gamma(n) = \begin{cases} 1 & \text{si } n >= 0 \\ 0 & \text{sinon} \end{cases} = \sum_{k=0}^{+\infty} \delta(n-k)$$

$$\delta(n) = \Gamma(n) - \Gamma(n-1)$$

1.1.3 Exponentielle numérique

$$x(n) = R^n \Gamma(n)$$

 $\begin{aligned} &\text{Si} \ -1 < R < 1 \implies \text{exponentielle décroissante} \\ &\text{Si} \ |R| > 1 \implies \text{exponentielle croissante} \end{aligned}$

1.1.4 Sinusoïde

$$x(n) = \cos(n\omega_0 + e)$$
 et $\omega_0 = 2\pi f_0 t_e$

1.1.5 Phaseur de pulsations ω_0

$$x(n) = e^{in\omega_0}$$

Propriétés des signaux discrets 1.2

Énergie totale : $E(\infty) = \sum_{-\infty}^{+\infty} ||x(n)||^2$ Puissance moyenne : $P_n = \lim_{N \to +\infty} \frac{1}{N} \sum_{-N/2}^{N/2} |x(n)|^2 \ P$ -périodique : $x(n) = x(n+P) \forall n$

Systèmes numériques 2

Schéma 7

Notation : $y(n) = T\{x(n)\}$

Classification:

• statique : y(n) ne dépend que de x(n) au même instant ;

• dynamique : y(n) est une fonction de x(n) aux instants antérieurs ou égaux à n et/ou des échantillons de sortie.

Exemple:

$$y(n) = b_0 x(n) + b_1 x(n-1) + a_1 y(n-1) + a_2 y(n-2)$$

Schéma fonctionnel ou diagramme fontionnel : illustration graphique des opérations effectuées sur le signal d'entrée ainsi que les connexions les reliant (addition, multiplication, décalage avant et arrière)

$$y(n) = \frac{1}{2}((x_1(n) + x_1(n-1))x_2(n)) - \frac{1}{4}y(n-1)$$

3

Illustration 8

Interconnexion des systèmes :

En cascade : $x_1(n)$