RL Traffic Signal Control

David Sanwald May 9, 2018

Table of contents

- 1. Introduction
- 2. Reinforcement Learning
- 3. Traffic Light Control

Introduction

Reinforcement Learning

Machine Learning

- · Supervised Learning
 - · Classification
 - · Regression
- · Unsupervised Learning
 - · Clustering
 - ٠ ..
- Reinforcement Learning

Agent Environment

Figure 1: Agent environment interface

Markov Decission Process

Markov Decission Process is defined by quatuple $\langle \mathcal{S}, \mathcal{P}, \mathcal{R}, \mathcal{A} \rangle$

- \cdot S, a set of states
- \cdot \mathcal{P} , a state transition matrix defining the probabilities of some possible next state s' given any state s

$$\mathcal{P}^a_{ss'} = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$$

- a reward function $\mathcal{R}_s^a = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$
- \cdot \mathcal{A} , a set of actions

Policy

- · specifies agent's behaviour
- mapping of state to action

$$\pi(s) = a$$

$$\mathbb{P}(a|s) = \pi(a|s)$$

Markov Property

- The future is conditionally independent of the past given the presence
- · implies memorylessnes

$$\mathbb{P}[S_{t+1}|S_1,\dots,S_t] = \mathbb{P}[S_{t+1}|S_t]$$

Taxonomy of RL

Value Function

Expected return

- from state s and action a
- given policy π

$$Q^{\pi}(s,a) = \mathbb{E}[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots | s,a]$$

decomposable into

$$Q^{\pi}(s, a) = \mathbb{E}[r + \gamma Q^{\pi}(s', a')|s, a]$$

8

Optimal Value Function

· optimal value function

$$Q^*(s,a) = \max_{\pi} Q^{\pi}(s,a) = Q^{\pi^*}(s,a)$$

optimal policy

$$\pi^*(s) = \operatorname*{argmax}_{a} Q^*(s, a)$$

decomposition into

$$Q^*(s,a) = \mathbb{E}_{s'}[r + \gamma \max_{a'} Q^*(s',a')|s,a]$$

TD Learning

Off Policy learning

Q-learning

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \underbrace{[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a)}_{\text{target}} - \underbrace{Q(S_t, A_t))}_{\text{prediction}}]$$

On Policy learning

Sarsa

$$Q(S_{t}, A_{t}) \leftarrow Q(S_{t}, A_{t}) + \alpha[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_{t}, A_{t}))]$$

Backup Diagrams

Figure 2: backup diagram for Q-learning and Sarsa

Q-learning

```
Initialize Q(s,a) arbitrarily
Initialize S
repeat

Choose A from S using policy derived from Q
Take action A observe R, S'
Choose A' from S' using policy derived from Q
Q(S,A) \leftarrow Q(SA) + \alpha[R + \gamma \max_a Q(S',a) - Q(SA)]
S \leftarrow S'
until S is terminal
```


Function Approximation

Why Function Approximation?

- · large state spaces
- slow learning
- need for generalization

Naive Function Approximation

$$Q(s, a, \theta) \approx Q(s, a)$$

$$\mathcal{L}(\theta) = \mathbb{E}\left[\left(r + \gamma \max_{a'} Q(s', a', \theta) - Q(s, a, \theta)\right)^{2}\right]$$

$$\frac{\partial \mathcal{L}(\theta)}{\partial \theta} = \mathbb{E}\left[\left(r + \gamma \max_{a'} Q(s', a', \theta) - Q(s, a, \theta)\right) \frac{\partial Q(s, a, \theta)}{\partial \theta}\right]$$

Deadly Triad

Deadly Triad

- function approximation
- · off policy learning
- bootstrapping

atari arcade games

DQN

HUMAN-LEVEL CONTROL THROUGH DEEP REINFORCEMENT LEARNING¹

- · (almost) raw pixel input
- one agent/set of network weights
- · comparable to human performance on 29 of 49 games

17

¹NATURE FEBRUARY 2015

experience replay

target network

error clipping

decorrelates

- inhibits loops
- · sample efficiency

limits gradient magnitude

experience replay

- store experience $e_t = (s_t, a_t, r_t, s_{t-1})$ in $D_t = \{e_1, \dots, e_t\}$
- at timestep t update $(s, a, r, s') \sim U(D)$

fixed target network

- separate target network $\tilde{Q}(s,a,\theta^-)$ and online network $Q(s,a,\theta)$
- TD error becomes $r + \gamma \max_{a'} Q(s', a', \theta^-) Q(s, a, \theta)$

DQN architecture

DQN conclusion

- · generality
- · decoupling of learning algorithm and domain
- · no manual feature construction
- · not as general as it might seem
- closely tied to strengths and weaknesses of NNs

Traffic Light Control

TLC as MDP

RL learns to maximize expected total reward in an MDP (best case)

- construct state signal
- · determine reward function
- · chose set of actions
- simulate environment dynamics

Table 1: My caption

frames	information	order		
1	position	0		
2	velocity	1		
3	acceleration	2		
4	jerk	3		
5	jounce	4		

$$s = \begin{bmatrix} 1 \\ 0 \\ 5 \\ 4 \end{bmatrix}$$

Figure 3: intersection with 4 approaches

Figure 4: Crop used for demonstrating different state representations

1	1	1	1	1	1	0	0	0	0	0	0
0	0.07	0.16	0.1	0.05	0	0	0	0	0	0	0

Figure 5: position and speed matrix for vehicle lengths 5m and 2m

Why is RL TLC hard?

- compound state, hard to extract and process features
- · extremely noisy, hard to interpret, difficult to train
 - · no Bayesian Optimization etc. for hyperparameter tuning
 - reproducibility problems
- not attractive for researchers from either one area "beyond the hype"

difficult but maybe still a good idea?

- not scalable for multiple intersections
- \cdot does not profit from flexiblity and abstraction
- suffers from abstraction costs

my own experience

- dissapointing attitudes and transparence
- implementation matters
- strenghs and limits of ANNs
- \cdot big chances in a short amount of time