1

Assignment 2

EE24BTECH11005 - Arjun Pavanje

A. FILL IN THE BLANKS

1) Let a, b, c be positive real numbers. Let

$$\theta = \tan^{-1}\left(\sqrt{\frac{a(a+b+c)}{bc}}\right) + \tan^{-1}\left(\sqrt{\frac{b(a+b+c)}{ca}}\right) + \tan^{-1}\left(\sqrt{\frac{c(a+b+c)}{ab}}\right)$$
Then $\tan(\theta) = \underline{\qquad} \qquad (1981 - 2Marks)$

- 2) The numerical value of $\tan \left\{ 2 \tan^{-1} \left(\frac{1}{5} \right) \frac{\pi}{4} \right\}$ is equal to ______ (1984 2Marks)
- 3) The greater of the two angles

$$A = 2 \tan^{-1} \left(2 \sqrt{2} - 1 \right) \text{ and}$$

$$B = 3 \sin^{-1} \left(\frac{1}{3} \right) + \sin^{-1} \left(\frac{3}{5} \right)$$
(1989 – 2*Marks*)

is _____

C. MCQs with One Correct Answer

1) The value of $\tan \left[\cos^{-1}\left(\frac{4}{5}\right) + \tan^{-1}\left(\frac{2}{3}\right)\right]$ is

(1983 - 1Mark)

a) $\frac{6}{17}$

b) $\frac{7}{16}$

c) $\frac{16}{7}$

d) None

2) If we consider only the principle values of the inverse trigonometric functions then the value of

$$\tan\left(\cos^{-1}\left(\frac{1}{5\sqrt{2}}\right) - \sin^{-1}\left(\frac{4}{\sqrt{17}}\right)\right) \tag{1994}$$

. (20

is

(1994)

a) $\frac{\sqrt{29}}{3}$

b) $\frac{29}{3}$

c) $\frac{\sqrt{3}}{29}$

d) $\frac{3}{29}$

3) The number of real solutions of

$$\tan^{-1}\left(\sqrt{x(x-1)}\right) + \sin^{-1}\left(\sqrt{x^2 + x + 1}\right) = \frac{\pi}{2}$$

is

(1999 - 2Marks)

a) zero

b) one

c) two

d) infinite

4) If

$$\sin^{-1}\left(x - \frac{x^2}{2} + \frac{x^3}{4} - \ldots\right) + \cos^{-1}\left(x^2 - \frac{x^4}{2} + \frac{x^6}{4} - \ldots\right) = \frac{\pi}{2}$$

for
$$0 < |x| < \sqrt{2}$$
, then x equals

(2001S)

		_
a) $\frac{1}{2}$	b) 1	
c) $-\frac{1}{2}$	d) -1	
5) The value of <i>x</i> for which		
S	$\operatorname{in}\left(\cot^{-1}\left(1+x\right)\right) = \cos\left(\tan^{-1}\left(x\right)\right)$	
is		(2004S)
a) $\frac{1}{2}$	b) 1	
c) 0	d) $-\frac{1}{2}$	
6) If $0 < x < 1$, then		
$\sqrt{1+x^2} \left[\left\{ x \cos \left(\cot^{-1} (x) \right) + \sin \left(\cot^{-1} (x) \right) \right\} \right] $	$\cot^{-1}(x)\Big)\Big\}^2-1\Big]^{\frac{1}{2}}$	=
is		(2008)
a) $\frac{x}{\sqrt{1+x^2}}$	b) <i>x</i>	
c) $x \sqrt{1 + x^2}$	d) $\sqrt{1 + x^2}$	
7) The value of		
	$\cot\left(\sum_{n=1}^{23}\cot^{-1}\left(1+\sum_{k=1}^{n}2k\right)\right)$	
is		(JEEAdv.2013)
a) $\frac{23}{25}$	b) $\frac{25}{23}$	
c) $\frac{23}{24}$	d) $\frac{24}{23}$	
D. MCQs	WITH ONE OR MORE THAN ONE CORRECT	
1) The principal value of $\sin^{-1} \left(\sin \left(\frac{2}{3} \right) \right)$		(1986 - 2Marks)
a) $-\frac{2\pi}{3}$	b) $\frac{2\pi}{3}$	
c) $\frac{4\pi}{3}$	d) none	
2) If $\alpha = 3 \sin^{-1} \left(\frac{6}{11}\right)$ and $\beta = 3 \cos^{-1} \left(\frac{6}{11}\right)$ and $\beta = 3 \cos^{-1} \left(\frac{6}{11}\right)$	$s^{-1}\left(\frac{4}{9}\right)$, where the inverse trigonometric fortion(s) is(are)	functions take only the (<i>JEEAdv</i> .2015)
a) $\cos(\beta) > 0$	b) $\sin(\beta) < 0$	

c) $\cos(\alpha + \beta) > 0$

d) $\cos(\alpha) < 0$

3) For non-negative integers n, let

$$f(n) = \frac{\sum_{k=0}^{n} \sin\left(\frac{k+1}{n+2}\pi\right) \sin\left(\frac{k+2}{n+2}\pi\right)}{\sum_{k=0}^{n} \sin^2\left(\frac{k+1}{n+2}\pi\right)}$$

Assuming $\cos^{-1}(x)$ takes values in $[0, \pi]$, which of the following options is/are correct (*JEEAdv*.2019)

a)
$$\lim_{n\to\infty} f(n) = \frac{1}{2}$$

b)
$$f(4) = \frac{\sqrt{3}}{2}$$

b)
$$f(4) = \frac{\sqrt{3}}{2}$$

c) If $\alpha = \tan(\cos^{-1}(f(6)))$, then $\alpha^2 + 2\alpha - 1 = 0$
d) $\sin(7\cos^{-1}(f(5))) = 0$

d)
$$\sin(7\cos^{-1}(f(5))) = 0$$

E. Subjective Problems

1) Find the value of:

$$\cos\left(2\cos^{-1}(x) + \sin^{-1}(x)\right)$$

where
$$0 \le \cos^{-1}(x) \le \pi$$
 and $-\frac{\pi}{2} \le \sin^{-1}(x) \le \frac{\pi}{2}$ (1981 – 2*Marks*)
2) Find all the solution of

$$4\cos^2(x)\sin(x) - 2\sin^2(x) = 3\sin(x)$$

(1983 - 2Marks)