КАНСПЕКТЫ

матанблин

Ваши вопросы следующие:

Множество
Декартово (прямое) произведение
Свойство бесконечности (поглощение единицы)
Комплексное число
Функция
Последовательность
Предел последовательности (по Коши)
Метрическое пространство
Мощность множества больше
Биекция
Инъекция
Сюръекция
Первый замечательный предел
Второй замечательный предел
Неравенство Бернулли
Неравенство Коши
Арифметическое пространство
Предел функции (по Коши)
Предел функции (по Гейне)
Производная
Формула Лейбница
Вычисление производной через логарифмы
Точка разрыва 1-го рода
Точка разрыва 2-го рода
Устранимый разрыв
Первообразная функции
Неопределенный интеграл
Дифференциал функции
Обобщенная теорема о среднем
Теорема Ферма
Теорема Ролля
Теорема Лагранжа
Теорема Коши о среднем
Формула Тейлора
Остаток Пеано
Остаток Лагранжа
Остаток Коши
Остаток Шлемильха-Роша
Стандартные разложения в формулу Тейлора

Множество — одно из первичных понятий математикии, не требуещего своего определения. Это совокупность, собрание каких-либо объектов произвольной природы, мыслимых как единое целое. С множествами можно производить определенные операции по неким правилам, например, \cap пересекать, \cup объединять, \setminus вычитать, \triangle вычислять симметрическую разность, дополнять и вычислять декартово прямое произведение.

Пусть даны множества $A = \{c, m, y, \partial, e, u\}, B = \{y, u, e, u\},$ тогда:

- пересечение $A \cap B = \{x \mid x \in A \land x \in B\} = \{y, e, n\}$
- объединение $A \cup B = \{x \mid x \in A \lor x \in B\} = \{c, m, y, u, \partial, e, u, u\}$
- разность $A \setminus B = \{x \mid x \in A \land x \notin B\} = \{c, m, \partial\}, \ B \setminus A = \{x \mid x \in B \land x \notin A\} = \{u, u\}$
- симметрическая разность $A \triangle B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B) = \emptyset$ (Ø только для данных A и B!)
- дополнение $C_U A = U \setminus A \equiv \{x \in U \mid x \notin A\} = \{a, 6, 6, 6, 7, 26, 3, ..., м, 0, n, p, $, ..., $a\},$ где U универсальное множество (в данном случае русский алфавит)

Декартово (прямое) произведение двух множеств — множество, элементами которого являются все возможные упорядоченные пары элементов исходных множеств.

$$X \times Y = \{(x, y) \mid x \in X, \ y \in Y\}$$

Например:

$$X = \{1, 2\}, Y = \{3, 4\}$$

 $X \times Y = \{(1, 3), (1, 4), (2, 3), (2, 4)\}$

Свойство бесконечности (поглощение единицы)

$$|\mathbb{N}| + 1 = |\mathbb{N}|$$

Комплексное число (\mathbb{C}) — выражение вида

$$x+iy$$
, где $x,y\in\mathbb{R}$, а $i-$ мнимая единица.

Комплексные числа можно *складывать*, *вычитать*, *умножать*, *делить*, но нельзя *сравнивать*! Комплексное число отлично от нуля!

$$|z| = \sqrt{x^2 + y^2} \, - \,$$
модуль комплексного числа

Функция — всякое однозначное отображение из одного множества в другое.

Последовательность — всякая функция из множества \mathbb{N} чисел в \mathbb{R} или в \mathbb{C} .

Предел последовательности (по Коши) — число A называется пределом последовательности $\{x_n\}$ при $n \to \infty$, если $\forall \varepsilon > 0$ найдется зависящий от него натуральный индекс n такой, что для всех последующих элементов последовательности с большим индексом выполняется неравенство $|x_n - A| < \varepsilon$.

$$\forall \varepsilon > 0 \ \exists \ N = N(\varepsilon) \in \mathbb{N}; \ \forall n > N \ |f_n - A| < \varepsilon$$

Метрическое пространство — непустое множество, в котором определены функции метрики:

- 1. $\rho(x,y)=0 \iff x=y, \ \rho(x,y)\geq 0$ расстояние равно 0
- 2. $\rho(x,y) = \rho(y,x)$ симметричность
- 3. $\rho(x,z) \leq \rho(x,y) + \rho(y,z)$ неравенство треугольника

Например:

- $\rho(x,y) = |y-x|$ метрика
- $\rho(x,y) = |x \cdot y|$ не метрика
- $\rho(x) = x^2$ некорректный пример

Мощность множества больше

 $|A| > |B| \Leftrightarrow$ для B существует биекция только с некоторым подмножеством множества A, но не со всем множеством A.

Например: $|\mathbb{N}| = |\mathbb{Z}| = |\mathbb{Q}|, \quad |\mathbb{N}| < |\mathbb{R}|$

Биекция

— это такая функция отображения из множества X в множество Y, при которой для каждого образа существует лишь **один** прообраз.

Инъекция

— это такая функция отображения из множества X в множество Y, при которой для каждого образа существует **не более одного** прообраза.

Сюръекция

— это такая функция отображения из множества X в множество Y, при которой для каждого образа существует **не менее одного** прообраза.

Первый замечательный предел

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

следствия:

$$\sin(x) \sim x \sim \arcsin(x) \sim \operatorname{tg}(x) \sim \arctan(x)$$

$$\cos(x) \sim 1$$

$$\lim_{x \to 0} \frac{1 - \cos x}{\frac{x^2}{2}} = 1$$

Второй замечательный предел

$$\lim_{n \to \infty} (1 + \frac{1}{n})^n = e$$

Следствия:

1.
$$\lim_{u \to 0} (1+u)^{\frac{1}{u}} = e$$

2.
$$\lim_{x \to 0} (1 + \frac{k}{x})^x = e^k$$

3.
$$\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$$

4.
$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

5.
$$\lim_{x\to 0} \frac{a^x-1}{x\ln a} = 1$$
 для $a>0, \ a\neq 1$

6.
$$\lim_{x \to 0} \frac{(1+x)^{\alpha} - 1}{\alpha x} = 1$$

Неравенство Бернулли

$$(1+\alpha)^n\geqslant 1+n\alpha$$
, где $\alpha\geqslant -1, n\in\mathbb{N}$

Неравенство Коши

$$\sqrt[n]{a_1,...,a_n} \leqslant \frac{a_1+...+a_n}{n}$$
, где $a_1,...,a_n > 0$

Арифметическое пространство — такое метрическое пространство, в котором в качестве множества точек рассматривается множество строк длины n и ещё n действительных (\mathbb{R}) чисел, а расстояние берётся евклидово.

$$\mathbb{R}^n = \{ (x_1, ..., x_n) \mid x_1, ..., x_n \in \mathbb{R} \}$$
$$(\mathbb{R}^n, \ \rho(\vec{x}, \vec{y})) = \sqrt{(x_1 - y_1)^2 + ... + (x_n - y_n)^2}$$

Предел функции (по Коши) — число A называется пределом функции f(x) при $x \to x_0$, если для любого $\varepsilon > 0$ существует зависящеее от него положительное число $\delta > 0$ такое, что для любого x из области определения функции D(f) из неравенства $0 < |x - x_0| < \delta$ следует неравенство $|f(x) - A| < \varepsilon$.

$$A=\lim_{x\to x_0}f(x) \iff \forall \ \varepsilon>0 \ \exists \ \delta=\delta(\varepsilon)>0:$$

$$\forall \ x\in D(f) \ \text{из неравенства} \ 0<|x-x_0|<\delta \ \Rightarrow \ |f(x)-A|<\varepsilon$$

Предел функции (по Гейне) — число A называется пределом функции f(x) при $x \to x_0$, если для любой последовательности аргументов $\{x_n\}_{n=1}^{\infty}$ выполняются 3 свойства:

$$\begin{cases} \{x_n\} \subset D(f) \\ x_n \to x_0, \\ x_0 \notin \{x_n\}_{n=1}^{\infty}. \end{cases} \Rightarrow \lim_{n \to \infty} f(x_n) = A$$

Производная функции f(x) в точке x — это предел отношения приращения функции к приращению её аргумента, когда последний стремится к нулю, при условии, что этот предел существует и конечен.

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta f(x)}{\Delta x}.$$

Формула Лейбница

$$(uv)^{(n)} = \sum_{k=0}^n C_n^k \cdot u^{(n-k)} \cdot v^{(k)}$$
 , где $C_n^k = \frac{n!}{k!(n-k)!}$

Вычисление производной через логарифмы

$$y' = \left(\frac{\sqrt[4]{2x+3} \cdot \sqrt[5]{3x+4}}{(3x+5)^8}\right)$$

$$\ln a^n = n \ln a$$

$$\ln y = \frac{1}{4} \ln(2x+3) + \frac{1}{5} \ln(3x+4) - 8\ln(3x+5)$$

$$y' = y \cdot (\ln y)'$$

$$\frac{y'}{y} = (\ln y)' = \frac{1}{4} \cdot \frac{2}{2x+3} + \frac{1}{5} \cdot \frac{3}{3x+4} - 8 \cdot \frac{3}{3x+5}$$

$$\Rightarrow y' = (\frac{1}{4x+6} + \frac{3}{15x+20} - \frac{24}{3x+5}) \cdot \frac{\sqrt[4]{2x+3} \cdot \sqrt[5]{3x+4}}{(3x+5)^8}$$

для $(x^x)'$:

$$(x^x)' = (y)' = y(\ln y)' = x^x(\ln x^x)' = x^x(x \ln x)' = x^x(1 + \ln x)$$

для
$$(x^{x^x})'$$
:

$$(x^{x^x})' = (y)' = x^{x^x} (x^x \ln x)' = x^{x^x} (x^x (1 + \ln x) \cdot \ln x + x^{x-1})$$

Точка разрыва 1-го рода — точка, в которой нарушено условие непрерывности функции, в которой существуют и конечны оба односторонних предела 1-го рода.

Точка разрыва 2-го рода

— точка, в которой хотя бы один из двух односторонних пределов 1-го рода не существует либо равен ∞ .

Устранимый разрыв — если существуют левый и правый пределы функции f(x) в точке, и они равны, но не совпадают со значанием функции в точке a, или точка a не определена, то точка a называется точкой устранимого разрыва.

Первообразная функции — функция, производная которой равна заданной функции.

Неопределенный интеграл — множество всех тех функций, производная которых равна заданной функции.

Дифференциал функции — часть её приращения, главная и линейная по приращению аргумента, который стремится к нулю.

$$d(f(x)) = f(x)'dx$$

$$\Rightarrow f'(x) = \frac{d(f(x))}{dx}$$

дифференциал 2-го порядка:

$$d^{2}(y) = d(dy) = d(f'(x)dx) = (f'(x)dx)'dx = [((f'(x))'dx + f'(x)(dx)']dx =$$

$$= (f''(x)dx)dx = f''(x) \cdot (dx)^{2}$$

$$\Rightarrow d^{2}(y) = f''(x) \cdot (dx)^{2}$$

дифференциал *п*-го порядка:

$$d^{n}(y) = f^{(n)}(x) \cdot (dx)^{n}$$

Обобщенная теорема о среднем

Пусть функции f(x), g(x) определена на отрезке [A,B], дифференцируемы (n+1) раз на (A,B), точка $a\in (A,B),\ g^{(n+1)}(x)\neq 0\ \ \forall\ x\in (A,B).$ Тогда существует хотя бы одна точка $c\in (x,a)$ или (a,x), такая что

$$\frac{f^{(n+1)}(c)}{g^{(n+1)}(c)} = \frac{R_{n,a}(x,f)}{R_{n,a}(x,g)} = \frac{f(x) - f(a) - f'(a) \cdot (x-a) - \dots - \frac{f^{(n)}(a)}{n!} \cdot (x-a)^n}{g(x) - g(a) - g'(a) \cdot (x-a) - \dots - \frac{g^{(n)}(a)}{n!} \cdot (x-a)^n}$$

Следствия:

- 1. n = 0, Теорема Коши о среднем
- 2. $n=0, g(x)\equiv x,$ Теорема Лагранэнса
- 3. $n = 0, \ g(x) \equiv x, \ f(x) = f(b), \ x = b, -$ Теорема Ролля
- 4. $g(x) = (x-a)^{n-1}$ формула Тейлора с остатком Лагранжа

Теорема Ферма

— если функция f(x) определена в окрестности точки x_0 и достигает в ней экстремум, а также имеет в точке x_0 производную — конечную или бесконечную, определенного знака, то эта производная равна нулю.

Теорема Ролля

Пусть функция f(x):

- 1. непрерывна на отрезке [a, b]
- 2. дифференцируема на интервале (a,b)
- 3. имеет на концах отрезка равные значения f(a) = f(b)

тогда \exists хотя бы одна точка $c \in (a,b)$ такая, что f'(c) = 0.

Контр-пример:

$$\operatorname{tg} x = \begin{cases} \operatorname{tg} x, \text{ если } |x| < \frac{\pi}{2}; \\ x, \text{ если } x = \pm \frac{\pi}{2} \end{cases}$$

$$a = \frac{\pi}{2}; \ b = \frac{\pi}{2}$$
 $y' = (\operatorname{tg} x)' = \frac{1}{\cos^2 x} \neq 0$

Теорема Лагранжа

Пусть функция f(x) непрерывна на отрезке [a,b], дифференцируема в каждой точке интервала (a,b), тогда найдется хотя бы одна точка $c \in (a,b)$, такая что

$$f'(c) = \operatorname{tg} \alpha = \frac{f(b) - f(a)}{b - a}$$

Теорема Коши о среднем

Пусть функции f(x) и g(x) непрерывны на отрезке [a,b], дифференцируемы на интервале (a,b), причем $g'(x) \neq 0$ для любого $x \in (a,b)$. Тогда найдется хотя бы одна точка $c \in (a,b)$, такая что

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Геометрический смысл:

 $\forall \ c \in (a,b)$: касательная в c параллельна хорде AB

Формула Тейлора

Пусть функция f(x) дифференцируема (k+1) раз в точке a и непрерывна на отрезке [a,x] или [x,a]. Тогда

8

$$f(x) = \boxed{f(a) + \frac{f'(a)}{1!} \cdot (x-a) + \frac{f''(a)}{2!} \cdot (x-a)^2 + \ldots + \frac{f^{(k)}(a)}{k!} \cdot (x-a)^k} + \boxed{R_{k,a}(x,f)}$$
 остаточное слагаемое

Остаток Пеано

$$R_{k,a}(x,f) = \bar{o}((x-a)^k) = (x-a)^k \cdot h_k(x), \text{ где } h_k(x) \xrightarrow[(x\to a)]{} 0$$

— достаточно существования у функции f(x) k производных в точке x = a.

Остаток Лагранжа

$$\exists \ C = C_L \in (a,x)$$
 или $(x,a): \quad R_{k,a}(x,f) = \frac{f^{(k+1)}(C_L)}{(k+1)!} \cdot (x-a)^{k+1}$

Остаток Коши

$$\exists \ C = C_K \in (a,x)$$
 или $(x,a):$ $R_{k,a}(x) = \frac{f^{(k+1)}(C)}{k!} \cdot \boxed{(x-C)^k \cdot (x-a)}$ \parallel $(x-a)^{k+1} \cdot \Theta^k$ $\Theta = \frac{C-x}{a-x}$ $\Theta(x-a) = (x-c)$ $C = x + \Theta(a-x)$ $0 \leqslant \Theta < 1$

Остаток Шлемильха-Роша

$$R_{k,a}(x,f) = \left(\frac{x-a}{x-c}\right)^p \cdot \frac{(x-c)^{k+1}}{p \cdot n!} \cdot f^{(k+1)}(c)$$

Частные случаи:

- 1. $p = n + 1 \implies$ остаток превращяется в *остаток Лагранжа*
- 2. $p=1 \Rightarrow$ получаем остаток Коши

Из каждого из остатков Коши и Лагранжа следует Пеано:

$$\frac{\frac{f^{(k+1)}(c)}{(k+1)!} \cdot (x-a)^{k+1}}{(x-a)^k} = \frac{f^{(k+1)}(c)}{(k+1)!} \cdot (x-a) \xrightarrow[(x\to a)]{} 0$$

Стандартные разложения в формулу Тейлора

при $x \to 0$:

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \overline{o}(x^7);$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \overline{o}(x^6);$$

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \overline{o}(x^5);$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4!} + \frac{x^5}{5!} - \overline{o}(x^6);$$

$$\operatorname{sh}(x) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \overline{o}(x^7);$$

$$\operatorname{ch}(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \overline{o}(x^6);$$