${\bf REAL~ANALYSIS} \\ {\bf TOPIC~VIII~-~TOPOLOGICAL~SPACES~(DRAFT)}$

PAUL L. BAILEY

ABSTRACT. We define $topological\ spaces$, which are sets together with the additional structure provided by a collection of open sets. We give examples and develop their basic properties.

Contents

1.	Topological Spaces	2
1.1.	. Topological Spaces	2
1.2.	. Neighborhoods	3
1.3.	. Refinements	6
2.	Continuous Functions	8
2.1.	. Continuous Functions	8
2.2.	. Open and Closed Maps	9
2.3.	. Homeomorphisms	9
3.	Subspaces, Products and Quotients	10
3.1.	. Subspaces	10
3.2.	. Products	11
3.3.	. Quotients	11
4.	Connectedness	11
4.1.	. Clopen Sets	11
4.2.	. Separation	12
4.3.	. Connectedness	12
4.4.	. Components	14
4.5.	. Dedekind Property	14
4.6.		14
5.	Compactness	15
5.1.	. Covers	15
5.2.	. Finite Intersection Property	16
5.3.	. Sequential Compactness	16
6.	Separation	17
6.1.	. Separation Axioms	17
6.2.	. Closed Point Spaces	17
6.3.	. Hausdorff Spaces	18
6.4.	. Regular Spaces	20
6.5.	. Normal Spaces	20

Date: February 14, 2015.

1. Topological Spaces

1.1. Topological Spaces.

1.1.1. Topologies.

Definition 1. A topological space is a set X together with a collection of subsets $\mathcal{T} \subset \mathcal{P}(X)$ such that

- **(T1)** $\emptyset \in \mathfrak{T}$ and $X \in \mathfrak{T}$;
- **(T2)** $\mathcal{U} \subset \mathcal{T} \Rightarrow \cup \mathcal{U} \in \mathcal{T}$;
- **(T3)** $\mathcal{U} \subset \mathcal{T}$ and \mathcal{U} finite $\Rightarrow \cap \mathcal{U} \in \mathcal{T}$.

The collection \mathcal{T} is called a *topology* on X. A subset $A \subset X$ is called *open* if $A \in \mathcal{T}$, and is called *closed* if $X \setminus A \in \mathcal{T}$.

Example 1. Let X be a set and let $\mathcal{T} = \{\emptyset, X\}$. Then (X, \mathcal{T}) is a topological space and \mathcal{T} is called the *trivial* topology on X.

Example 2. Let X be a set and let $\mathcal{T} = \mathcal{P}(X)$. Then (X, \mathcal{T}) is a topological space and \mathcal{T} is called the *discrete* topology on X.

Example 3. Let X be a set and let $\mathfrak{T} = \{A \subset X \mid X \setminus A \text{ is finite }\}$. Then (X,\mathfrak{T}) is a topological space and \mathfrak{T} is called the *cofinite* topology on X.

Example 4. Let X be a set and let $\mathfrak{T} = \{A \subset X \mid X \setminus A \text{ is countable } \}$. Then (X,\mathfrak{T}) is a topological space and \mathfrak{T} is called the *cocountable* topology on X.

Definition 2. Let X be a set. A *tower* of subsets of X is a collection $\mathfrak{T} \subset \mathfrak{P}(X)$ which contains the empty set and the entire set and is totally ordered by inclusion.

Example 5. Let X be a set and \mathcal{T} a tower of subsets of X. Then \mathcal{T} is a topology on X, called a *tower topology*.

Example 6. Let X be a totally ordered set. For $a \in X$, set

$$L_a = \{ x \in X \mid x < a \}$$
 and $R_a = \{ x \in X \mid x > a \}.$

Set

$$\mathcal{L} = \{L_a \mid a \in X\} \cup \{\emptyset, X\} \quad \text{and} \quad \mathcal{R} = \{R_a \mid a \in X\} \cup \{\emptyset, X\}.$$

Then \mathcal{L} is a topology on X, called the *left order topology*, and \mathcal{R} is a topology on X, called the *right order topology*.

1.1.2. Cotopologies.

Definition 3. Let X be a set and let $A \subset \mathcal{P}(X)$.

The *cocollection* of \mathcal{A} is defined to be the collection of complements of sets in \mathcal{A} .

Definition 4. Let X be a set and let \mathcal{F} be a collection of subsets of X such that

- (C1) $\varnothing \in \mathfrak{C}$ and $X \in \mathfrak{C}$;
- (C2) $\mathcal{C} \subset \mathcal{F} \Rightarrow \cap \mathcal{C} \in \mathcal{F}$;
- (C3) $\mathcal{C} \subset \mathcal{F}$ and \mathcal{C} finite $\Rightarrow \cup \mathcal{C} \in \mathcal{F}$.

Then \mathcal{C} is called a *cotopology* on X.

Proposition 1. Let X be a set and $\mathfrak{T} \subset \mathfrak{P}(X)$. Let \mathfrak{F} be the cocollection of \mathfrak{T} . Then \mathfrak{T} is a topology on X if and only if \mathfrak{F} is a cotopology on X.

Proof. The empty set is in \mathcal{T} if and only if the entire set is in \mathcal{F} , and the entire set is in \mathcal{T} if and only if the empty set is in \mathcal{F} .

By DeMorgan's laws, a union of sets in \mathcal{T} is in \mathcal{T} if and only if the intersection of their complements is in \mathcal{F} , and a finite intersection of sets in \mathcal{T} is in \mathcal{T} if and only if the union of their complements is in \mathcal{F} .

1.1.3. Kuratowski Operators.

Definition 5. Let X be a set. A Kuratowski operator on X is a function

$$K: \mathcal{P}(X) \to \mathcal{P}(X)$$

such that

- **(K1)** $K(\emptyset) = \emptyset;$
- **(K2)** $A \subset K(A)$;
- **(K3)** K(K(A)) = K(A);
- **(K4)** $K(A \cup B) = K(A) \cup K(B)$.

Proposition 2. Let X be a set and let K be a Kuratowski operator on X. If $A \subset B \subset X$, then $K(A) \subset K(B)$.

Proof. Note that $B = A \cup (B \setminus A)$, and by **(K4)**, we have $K(B) = K(A) \cup K(B \setminus A)$. Thus $K(A) \subset K(B)$.

Proposition 3. Let X be a set and let K be a Kuratowski operator on X. Let $\mathcal{F} = K(\mathcal{P}(X))$ and let \mathcal{T} be the cocollection of \mathcal{F} . Then (X,\mathcal{T}) is a topological space.

Proof. It suffices to show that \mathcal{F} is a cotopology.

By property **(K1)**, $K(\emptyset) = \emptyset$, so $\emptyset \in \mathcal{F}$.

Since $K(X) \in \mathcal{P}(X)$, $K(X) \subset X$. By property **(K2)**, $X \subset K(X) \subset X$. Thus K(X) = X so $X \in \mathcal{F}$.

Let $\mathcal{C} \subset \mathcal{F}$. By property **(K2)**, we have $\cap \mathcal{C} \subset K(\cap \mathcal{C})$. By property **(K3)**, K(C) = C for every $C \in \mathcal{C}$; also it is clear that $\cap \mathcal{C} \subset C$ for every $C \in \mathcal{C}$. By the previous proposition, we have $K(\cap \mathcal{C}) \subset K(C) = C$. Since C is arbitrary, $K(\cap \mathcal{C}) \subset \cap \mathcal{C}$. Thus $\cap \mathcal{C} = K(\cap \mathcal{C})$, so $\cap \mathcal{C} \in \mathcal{F}$.

Let \mathcal{C} be a finite subset of \mathcal{F} . Then $\mathcal{C} = \{C_1, \dots, C_n\}$ for some $n \in \mathbb{N}$. By **(K4)** and induction, $\bigcup_{i=1}^n C_i = \bigcup_{i=1}^n K(C_i) = K(\bigcup_{i=1}^n C_i)$. Thus $\bigcup \mathcal{C} = K(\bigcup \mathcal{C})$, so $\bigcup \mathcal{C} \in \mathcal{F}$.

1.2. Neighborhoods.

Definition 6. Let X be a topological space and let $x \in X$. A neighborhood of x is a subset $N \subset X$ such that there exists an open set $U \subset N$ with $x \in U$.

Remark 1. Let X be a topological space and let $x \in X$. If U is an open set containing x, then U is itself a neighborhood of x, and is referred to as an open neighborhood. Thus there exists at least one neighborhood of x; indeed, X is open and contains x.

We are interested in sets A whose intersection with neighborhoods of x are nonempty, in which case we say that A intersects the neighborhood. If $x \in A$, then every neighborhood of x intersects A; this is the less interesting case for us.

Clearly A intersects every neighborhood of x if and only if A intersects every open neighborhood of x; the forward direction is immediate and the reverse direction is given by considering a neighborhood which does not intersect A, which must contain an open neighborhood which does not intersect A.

Definition 7. A deleted neighborhood of x is a set of the form $N \setminus \{x\}$, where N is a neighborhood of x.

Remark 2. Let X be a topological space and let $x \in X$. If $N \setminus \{x\}$ is a deleted neighborhood of x which does not intersect A, then either N does not intersect A or there is an open set $U \subset N$ such that x is the only element of A in that open set.

1.2.1. Closure Points.

Definition 8. Let X be a topological space and let $A \subset X$.

A closure point of A is a point $x \in X$ such that every neighborhood of x intersects A.

The *closure* of $A \subset X$ is the set of closure points of A and is denoted \overline{A} .

Proposition 4. Let X be a topological space and $A \subset X$. Then \overline{A} is the intersection of the closed sets of X which contain A.

Proposition 5. Let X be a topological space and $A \subset X$. Then A is closed if and only if $A = \overline{A}$.

Proposition 6. Let X be a topological space. Then closure is a Kuratowski operator, that is, for $A, B \subset X$,

- **(K1)** $\overline{\varnothing} = \varnothing$;
- **(K2)** $\underline{A} \subset \overline{A};$
- **(K3)** $\overline{A} = \overline{A}$;
- **(K4)** $\overline{(A \cup B)} = \overline{A} \cup \overline{B}$.

Proof. The first two are immediate from the definition.

From **(K2)** we have $\overline{A} \subset \overline{A}$. Suppose that $x \in \overline{A}$. Then every open neighborhood of x intersects \overline{A} . For any open neighborhood U of x, let $y \in U \cap \overline{A}$. Then every open neighborhood of y intersects A. Since U is an open neighborhood of y, U intersects A. Thus $x \in \overline{A}$.

Suppose that $x \notin \overline{A} \cup \overline{B}$. Then there exists a neighborhoods U, V of x such that $U \cap A = \emptyset$ and $V \cap B = \emptyset$. Then $U \cap V$ is a neighborhood of x such that $(U \cap V) \cap (A \cup B) = \emptyset$. So $x \notin \overline{(A \cup B)}$. Therefore $\overline{(A \cup B)} \subset \overline{A} \cup \overline{B}$.

Suppose that $x \in \overline{A} \cup \overline{B}$. Then every open neighborhood of x intersects A or B, so it intersects $A \cup B$. Thus $x \in \overline{A} \cup \overline{B}$, so $\overline{A} \cup \overline{B} \subset \overline{(A \cup B)}$.

Proposition 7. Let X be a topological space. If $A \subset B \subset X$, then $\overline{A} \subset \overline{B}$.

Proof. Let $y \in \overline{A}$. Then every neighborhood of y intersects A. Since $A \subset B$, every neighborhood of y intersects B. Thus $y \in \overline{B}$.

1.2.2. Interior Points.

Definition 9. Let X be a topological space and let $A \subset X$.

An interior point of A is a point $x \in X$ such that A contains a neighborhood of x.

The *interior* of A is the set of interior points of A and is denoted A° .

Proposition 8. Let X be a topological space and let $A \subset X$. Then A° is the union of the open sets contained in A.

Proposition 9. Let X be a topological space and let $A \subset X$. Then A is open if and only if $A = A^{\circ}$.

Proposition 10. Let X be a topological space and let $A \subset X$. Then

- (a) $A^{\circ} = X \setminus \overline{(X \setminus A)};$
- **(b)** $\overline{A} = X \setminus (X \setminus A)^{\circ}$;
- (c) $A \subset B \Rightarrow A^{\circ} \subset B^{\circ}$;
- $(\mathbf{d}) (A^{\circ})^{\circ} = A^{\circ};$
- (e) $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$.

1.2.3. Boundary Points.

Definition 10. Let X be a topological space and let $A \subset X$.

A boundary point of A is a point $x \in X$ such that every neighborhood of x intersects A and $X \setminus A$.

The boundary of A is the set of boundary points of A and is denoted ∂A .

Proposition 11. Let X be a topological space and let $A \subset X$. Then

- (a) $\partial A = \overline{A} \setminus A^{\circ}$;
- **(b)** $\partial A = \overline{A} \cap \overline{(X \setminus A)}$;
- (c) $\partial A = \partial (X \setminus A)$;
- (d) $\overline{A} = A \cap \partial A$;
- (e) $A^{\circ} = A \setminus \partial A$;
- (f) $\partial(\partial A) \subset \partial A$;
- (g) $A \cap B \cap \partial(A \cap B) = A \cap B \cap (\partial A \cup \partial B)$.

Proposition 12. Let X be a topological space and let $A \subset X$. Then $\partial A = \emptyset$ if and only if A is both open and closed.

Proof.

- (\Rightarrow) Suppose that $\partial A=\varnothing$. Then $\overline{A}\subset A^\circ$. But $A^\circ\subset A\subset \overline{A}$, so $A^\circ=A=\overline{A}$. Thus A is both open and closed.
- (\Leftarrow) Suppose that A is both open and closed. Then $A^{\circ} = A = \overline{A}$, so $\partial A = \overline{A} \setminus A^{\circ} = \emptyset$.

1.2.4. Limit Points.

Definition 11. Let X be a topological space and let $A \subset X$.

A limit point of A is a point $x \in X$ such that every deleted neighborhood of x intersects A.

The *limit* of A is the set of limit points of A and is denoted A'.

Proposition 13. Let X be a topological space and $A, B \subset X$.

- (a) $A \subset B \Rightarrow A' \subset B'$;
- **(b)** $(A \cup B)' = A' \cup B';$
- (c) $\overline{A} = A \cup A'$.

Corollary 1. A subset of a topological space is closed if and only if it contains all of its limit points.

1.2.5. Isolated Points.

Definition 12. Let X be a topological space and let $A \subset X$.

An isolated point of A is a point $x \in A$ such that some deleted neighborhood of x is contained in $X \setminus A$.

The *isolation* of A is the set of isolated points of A and is denoted A^{\odot} .

Proposition 14. Let X be a topological space and $A \subset X$.

- (a) $A^{\odot} \subset A$;
- **(b)** $A^{\odot} \subset \partial A$;
- (c) $\overline{A} = A' \sqcup A^{\odot}$.

1.3. Refinements.

1.3.1. Refinements.

Definition 13. Let X be a set and let S and T be topologies on X.

If $S \subset T$, we say that S is a *courser* topology than T and that T is a *finer* topology than S.

Remark 3. The coarsest topology on a set is the trivial topology and the finest topology on a set is the discrete topology.

Proposition 15. Let X be a set and let $\{\mathcal{T}_{\alpha} \mid \alpha \in A\}$ be a collection of topologies on X. Then $\mathcal{I} = \bigcap_{\alpha \in A} \mathcal{T}_{\alpha}$ is a topology on X.

Proof. Since the empty set and the entire set are in every topology, they are in the intersection.

If $\mathcal{U} \subset \mathcal{I}$, then $\mathcal{U} \subset \mathcal{I}_{\alpha}$ for every α . Thus $\cup \mathcal{U} \in \mathcal{I}_{\alpha}$ for every α , so $\cup \mathcal{U} \in \mathcal{I}$.

If $\mathcal{U} \subset \mathcal{I}$, then $\mathcal{U} \subset \mathcal{T}_{\alpha}$ for every α . If \mathcal{U} is a finite collection, $\cap \mathcal{U} \in \mathcal{T}_{\alpha}$ for every α , so $\cap \mathcal{U} \in \mathcal{I}$.

1.3.2. Generated Topologies.

Definition 14. Let X be a set and let $A \in \mathcal{P}(X)$.

The topology generated by \mathcal{A} is the intersection of all the topologies on X which contain \mathcal{A} , and is denoted $\langle \mathcal{A} \rangle$.

Remark 4. The topology generated by a collection $\mathcal{A} \subset \mathcal{P}(X)$ is the coarsest topology on X in which all of the sets in \mathcal{A} are open.

1.3.3. Bases.

Definition 15. Let X be a set.

A basis for a topology on X is a collection of subsets $\mathcal{B} \subset \mathcal{P}(X)$ such that

- **(B1)** $\cup \mathcal{B} = X;$
- **(B2)** if $B_1, B_2 \in \mathcal{B}$ and $p \in B_1 \cap B_2$, then there exists $B_3 \in \mathcal{B}$ with $p \in B_3$ and $B_3 \subset B_1 \cap B_2$.

Proposition 16. Let X be a set and let \mathcal{B} be a basis for a topology on X. Let \mathcal{T} be the collection of unions of sets in \mathcal{B} . Then \mathcal{T} is a topology on X, and $\mathcal{T} = \langle \mathcal{B} \rangle$.

Proof. We consider the empty set to be the empty union, so $\emptyset \in \mathcal{T}$. By basis property **(B1)**, the entire set is in \mathcal{T} . By definition of \mathcal{T} , any union of sets in \mathcal{T} is also in \mathcal{T} .

Let $U_1, U_2 \in \mathcal{T}$. Since U_1 and U_2 are the unions of basis sets, for every $p \in U_1 \cap U_2$ there exist basis sets $B_1 \subset U_1$ and $B_2 \subset U_2$ such that $p \in B_1 \cap B_2$. By basis property (2), there exists a basis set $B_p \subset B_1 \cap B_2 \subset U_1 \cap U_2$ with $p \in B_p$. Then

$$U_1 \cap U_2 = \bigcap_{p \in U_1 \cap U_2} \{p\} \subset \bigcap_{p \in U_1 \cap U_2} B_p \subset U_1 \cap U_2,$$

so
$$U_1 \cap U_2 = \bigcap_{p \in U_1 \cap U_2} B_p$$
 is open.

Remark 5. Every topology on a set X has itself as a basis. Bases are not necessarily unique.

 $1.3.4.\ Subbases.$

Definition 16. Let X be a set.

A *subbasis* for a topology on X is a collection of subsets $S \subset \mathcal{P}(X)$ such that the collection of all finite intersections of sets in S form a basis for a topology on X.

Remark 6. Every basis is a subbasis.

Proposition 17. Let X be a set and let $S \subset \mathcal{P}(X)$. If $\cup S = X$, then S is a subbasis for a topology on X. Let \mathcal{B} be a basis which is the collection of all finite intersections of sets in S. Then $\langle S \rangle = \langle \mathcal{B} \rangle$.

Proof. Basis property (**B1**) is given and basis property (**B2**) is obvious. The second claim follows immediately from the first. \Box

Remark 7. If \mathcal{T} is a topology on X, then $\mathcal{S} \subset \mathcal{P}(X)$ is a subbasis for \mathcal{T} if and only if $\langle \mathcal{S} \rangle = \mathcal{T}$.

1.3.5. Equivalent Bases.

Definition 17. Let X be a set.

Two subbases $\mathcal{B}_1, \mathcal{B}_2 \subset \mathcal{P}(X)$ are *equivalent* if they generate the same topology on X.

Proposition 18. Let X be a set with bases \mathcal{B}_1 and \mathcal{B}_2 . Then \mathcal{B}_1 and \mathcal{B}_2 are equivalent if and only if for $p_1 \in B_1 \in \mathcal{B}_1$ there exists $B_2 \in \mathcal{B}_2$ such that $p_1 \in B_2 \subset B_1$ and for $p_2 \in B_2 \in \mathcal{B}_2$ there exists $B_1 \in \mathcal{B}_1$ such that $p_2 \in B_1 \subset B_2$.

Proof. Let $\mathfrak{I}_1 = \langle \mathfrak{B}_1 \rangle$ and $\mathfrak{I}_2 = \langle \mathfrak{B}_2 \rangle$. Let $U \in \mathfrak{I}_1$. Then $U = \bigcup_{\alpha \in A} B_{\alpha}$ for some $\{B_{1,\alpha} \mid \alpha \in A\} \subset \mathfrak{B}_1$. For each $p \in U$ there exists $B_{1,\alpha}$ such that $p \in B_{1,\alpha}$. By hypothesis there exists $B_{2,\alpha} \in \mathfrak{B}_2$ such that $p \in B_{2,\alpha} \subset B_{1,\alpha}$. Thus U is the union of such $B_{2,\alpha}$ and in \mathfrak{I}_2 . Therefore $\mathfrak{I}_1 \subset \mathfrak{I}_2$. Similarly, $\mathfrak{I}_2 \subset \mathfrak{I}_1$.

Proposition 19. Let X be a totally ordered set. For $a \in X$, let $L_a = \{x \in X \mid x < a\}$. and let $R_a = \{x \in X \mid x > a\}$. Then $S = \{L_a \mid a \in X\} \cup \{R_a \mid a \in X\}$ is a subbasis for a topology on X.

For $a, b \in X$, let $I_{a,b} = \{x \in X \mid a < x < b\}$. Let $\mathcal{B} = \{I_{a,b} \mid a, b \in X\}$. Then \mathcal{B} forms the basis for a topology on X which is generated by the subbasis \mathcal{S} . The topology generated by \mathcal{B} is called the total order topology on X.

Remark 8. The standard topology on the real numbers is a total order topology.

2. Continuous Functions

2.1. Continuous Functions.

Definition 18. Let X and Y be spaces and $f: X \to Y$.

We say that f is *continuous* if for every open set $V \subset Y$, $f^{-1}(V) \subset X$ is open.

Definition 19. Let X and Y be spaces and $f: X \to Y$ and let $x_0 \in X$.

We say that f is *continuous at* x_0 if for every neighborhood V of $f(x_0)$ there exists a neighborhood U of x_0 such that $f(U) \subset V$.

Proposition 20. Let X and Y be spaces and $f: X \to Y$. Then f is continuous if and only if f is continuous at every point in X.

Proof. Suppose that f is continuous, and let $x_0 \in X$. Let V be a neighborhood of $y_0 = f(x_0)$. Then $U = f^{-1}(V)$ is a neighborhood of x_0 which maps into V.

Conversely, suppose that f is continuous at every point in X. Let $V \subset Y$ be open and let $U = f^{-1}(V)$. For every $x \in U$, V is a neighborhood of f(x), so there exists an open neighborhood U_x of x such that $f(U_x) \subset V$. But then $U_x \subset U$, and U is the union of such sets; thus U is open, and f is continuous.

Proposition 21. Let X and Y be spaces and $f: X \to Y$. If X has the discrete topology or Y has the trivial topology then f is continuous.

Proposition 22. Let X and Y be spaces and $f: X \to Y$. Then f is continuous if and only if for every closed set $F \subset Y$, $f^{-1}(F) \subset X$ is closed.

Proof.

- (\Rightarrow) Suppose that f is continuous. Let $F \subset Y$ be closed. Let $U = Y \setminus F$; then U is open, so $f^{-1}(U)$ is open, so $X \setminus f^{-1}(U)$ is closed. But $X \setminus f^{-1}(U) = f^{-1}(Y \setminus U) = f^{-1}(F)$.
- (\Leftarrow) Suppose that for every closed set $F \subset Y$, $f^{-1}(F)$ is closed in X. Let $U \subset Y$ be open; then $Y \setminus U$ is closed in Y, so $f^{-1}(Y \setminus U)$ is closed in X. Thus $f^{-1}(U) = X \setminus f^{-1}(Y \setminus U)$ is open in X. Therefore f is continuous.

Proposition 23. Let X and Y be spaces and $f: X \to Y$. Then f is continuous if and only if for every $A \subset X$, $f(\overline{A}) \subset \overline{f(A)}$.

Proof.

- (⇒) Suppose that f is continuous. Let $A \subset X$ and let $y \in f(\overline{A})$. Then y = f(x) for some point $x \in \overline{(A)}$. Let V be an open neighborhood of y. Then $f^{-1}(V)$ is open in X and contains x. Thus there exists $a \in A \cap f^{-1}(V)$, and $f(a) \in V$; that is, V intersects f(A). Therefore $y \in \overline{f(A)}$, and $f(\overline{A}) \subset \overline{f(A)}$.
 - (\Leftarrow) Suppose that for every $A \subset X$, $f(\overline{A}) \subset \overline{f(A)}$.

Let $F \subset Y$ be closed and let $A = f^{-1}(F)$. Then f(A) = F, and since F is closed, $\overline{f(A)} = F$. Thus $F = f(A) \subset f(\overline{A}) \subset \overline{f(A)} = F$. This shows that $f(\overline{A}) = F$, so $\overline{A} \subset f^{-1}(F) = A$; since $A \subset \overline{A}$, we see that $A = \overline{A}$, so A is closed. Therefore f is continuous.

Proposition 24. Let X and Y be topological spaces and let $f: X \to Y$ be contin*uous.* Let $A \subset X$. Then

- (a) $f(A)^{\circ} \subset f(A^{\circ});$ (b) $f(A)^{\odot} \subset f(A^{\odot}).$

Proof. Let $y \in f(A)^{\circ}$. Then $y \in f(A)$, so y = f(x) for some $x \in X$. Also there exists an open set V in Y such that $y \in V \subset f(A)$. Since f is continuous, $f^{-1}(V) \subset A$ is an open neighborhood of x contained in A, so $x \in A^{\circ}$, and $y \in f(A^{\circ})$. Therefore $f(A)^{\circ} \subset f(A^{\circ})$; this proves (a).

Let $y \in f(A)^{\odot}$). Then $y \in f(A)$, and there exists an open neighborhood V of y in Y such that $V \cap (f(A) \setminus \{y\}) = \emptyset$. Then $f^{-1}(V) \cap A = \{y\}$, so $y \in f(A)^{\odot}$. Therefore $f(A)^{\odot} \subset f(A^{\odot})$; this proves **(b)**.

2.2. Open and Closed Maps.

Definition 20. Let X and Y be spaces and let $f: X \to Y$.

We say that f is open if for every open set $U \subset X$, $f(U) \subset Y$ is open.

We say that f is *closed* if for every closed set $F \subset X$, $f(F) \subset Y$ is closed.

Proposition 25. Let X and Y be topological spaces and let $f: X \to Y$ be a function. Let \mathfrak{B} be a basis for X. If f(B) is open in Y for every $B \in \mathfrak{B}$, then f is an open map.

Proof. Let $U \subset X$ be open. Then $U = \bigcup_{\alpha \in I} B_{\alpha}$ for some collection $\{B_{\alpha} \in \mathcal{B} \mid \alpha \in$ I) of basis sets. Thus $f(U) = f(\bigcup_{\alpha \in I} B_{\alpha}) = \bigcup_{\alpha \in I} f(B_{\alpha})$; since $f(B_{\alpha})$ is open for every $\alpha \in I$, then so is f(U).

Example 7. Let $X = \{(x,y) \in \mathbb{R}^2 \mid x = 0 \text{ or } y = 0\}$ and let $Y = \mathbb{R}$. Let $f: X \to Y$ by f(x,y) = x. Then f is a surjective continuous closed map which is not open. It is not open because, for example, the set $\{(0,y) \mid y \in (1,2)\}$ is open in X but projects onto a point in \mathbb{R} .

Example 8. Let $X = \mathbb{R}$ and $Y = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$. Define $f: X \to Y$ by $f(x) = (\cos x, \sin x)$. Then f is a surjective continuous open map which is not closed. It is open because it is open on a basis for the topology of \mathbb{R} consisting of open intervals whose width is less than 2π . It is not closed because, for example, the set $\{x \in \mathbb{R} \mid x = 2\pi n + \frac{\pi}{2n}\}$ is closed in X but its image in Y has a limit point (1,0) which is not in the image.

Definition 21. Let X and Y be spaces and let $f: X \to Y$. We say that f is bicontinuous if it is both open and continuous.

Proposition 26. Let $f: X \to Y$ be a bijective function between spaces. Then f is open if and only if f^{-1} is continuous.

2.3. Homeomorphisms.

Definition 22. Let X and Y be spaces. A homeomorphism between X and Y is a function $f: X \to Y$ which is bijective, open, and continuous. If there exists a homeomorphism between X and Y, we say that X and Y are homeomorphic.

Proposition 27. Let (X, S) and (Y, T) be topological spaces. Then X and Y are homeomorphic if and only if there exists an inclusion preserving bijection between S and T.

Proposition 28. The empty space is unique. Up to homeomorphism, a one point space is unique.

Proposition 29. Let $S = \{0,1\}$ and $\mathfrak{T} = \{\emptyset, \{0\}, S\}$. Then \mathfrak{T} is a topology on S and (S,\mathfrak{T}) is called the Sierpinski space.

Proposition 30. Up to homeomorphism, there are exactly three spaces with two elements.

Proof. Let $X = \{a, b\}$. The trivial space and the discrete space on X are clearly distinct.

The only other possibilities for a topology on X are $\mathfrak{T}_a = \{\varnothing, \{a\}, X\}$ are $\mathfrak{T}_b = \{\varnothing, \{b\}, X\}$. Permuting a and b is a homeomorphism between (X, \mathfrak{T}_a) and (X, \mathfrak{T}_b) .

Remark 9. In the above notation, sending a to 0 and b to 1 is a homeomorphism between (X, \mathcal{T}_a) and the Sierpinski space. Homeomorphisms preserve all properties relevant to topology. For this reason, (X, \mathcal{T}_a) and (X, \mathcal{T}_b) may also be called the Sierpinski space.

3. Subspaces, Products and Quotients

3.1. Subspaces.

Definition 23. Let (X, \mathcal{T}) be a topological space and let $Y \subset X$. The *subspace topology* relative to Y is collection of subsets of Y

$$\mathfrak{I}(Y) = \{ U \cap Y \mid U \in \mathfrak{I} \}.$$

Proposition 31. Let (X, \mathcal{T}) be a topological space and let $Y \subset X$. Then $(Y, \mathcal{T}(Y))$ is a topological space, called a subspace of (X, \mathcal{T}) . The open sets of $(Y, \mathcal{T}(Y))$ are called relatively open in X and the closed sets are called relatively closed in X.

Remark 10. Every subspace of a trivial, discrete, cofinite, or cocountable space is respectively trivial, discrete, cofinite, or cocountable.

Proposition 32. Let (X, \mathfrak{T}) be a topological space and let $Y \subset X$. Then $\mathfrak{T}(Y) \subset \mathfrak{T}$ if and only if $Y \in \mathfrak{T}$.

Definition 24. Let X be a space and let Y be a subspace of X. Then the map $i: Y \to X$ defined by $y \mapsto y$ is called the *inclusion map*.

Proposition 33. Let X be a space and let Y be a subspace of X. Then the inclusion map $i: Y \to X$ is continuous.

Definition 25. Let X and Y be spaces and let $f: X \to Y$.

We say that f is relatively open if for every open $U \subset X$, f(U) is relatively open in f(X).

We say that f is an *embedding* if f is injective, continuous, and relatively open.

Proposition 34. Let $f: X \to Y$ be an embedding. Then X is homeomorphic to the subspace $f(X) \subset Y$.

3.2. Products.

Definition 26. Let \mathcal{X} be a nonempty family of topological spaces and let $\times \mathcal{X}$ be their Cartesian product. For $X \in \mathcal{X}$, let π_X be the projection from $\times \mathcal{X}$ onto X.

Let $S = \{\pi_X^{-1}(U) \mid X \in \mathcal{X} \text{ and } U \text{ open in } X\}$. Then $\langle S \rangle$ is called the *product topology* on $\times \mathcal{X}$.

A cartesian product of a family of spaces endowed with the product topology is called the *product space* of the family.

Proposition 35. The product of a family of trivial spaces is trivial. The product of a family of discrete spaces is discrete if and only if the family is finite.

Proposition 36. Let $\mathfrak{X} = \{X_{\alpha} \mid \alpha \in A\}$ be a nonempty family of spaces and let \mathfrak{B} be the set of cartesian products of one open set from each space such that all but finitely many of these open sets are the entire space. Then \mathfrak{B} is a basis for the product topology on $\times \mathfrak{X}$.

Proposition 37. Let X be a family of spaces and let $\times X$ be endowed with the product topology. Then for every $X \in X$, the projection function $\pi_X : \times X \to X$ is continuous.

Proposition 38. Let X be a family of spaces and let $\times X$ be the cartesian product endowed with some topology. Suppose that for every $X \in X$, the projection function $\pi_X : \times X \to X$ is continuous. Then the topology on $\times X$ is at least as fine as the product topology.

3.3. Quotients.

Definition 27. Let (X, \mathcal{T}) be a topological space, Y a set, and $q: X \to Y$ a surjective function. Let $\mathcal{V} = \{V \subset Y \mid f^{-1}(V) \in \mathcal{T}\}$. Then \mathcal{V} is a topology on Y, called the *quotient topology* on Y induced by q. The function q is called the or the *quotient projection* of X onto Y.

Proposition 39. A quotient projection in continuous.

Proposition 40. The quotient topology is the finest topology such that the quotient projection is continuous.

Proposition 41. Let X be a family of topological spaces and let $\times X$ be the product space. For $X \in X$, let $\pi_X : \times X \to X$ be the cartesian projection. Then X is endowed with the quotient topology induced by π_X .

4. Connectedness

4.1. Clopen Sets.

Definition 28. Let X be a topological space and let $A \subset X$. We say that A is *clopen* if A is both open and closed.

Proposition 42. Let X be a topological space and let $A \subset X$. Then A is clopen if and only if for every $c \in \overline{A}$ there exists a neighborhood U of c such that $U \subset A$.

4.2. Separation.

Definition 29. Let X be a space and let $A, B \subset X$.

We say that A and B are *separated* if there exist disjoint open sets $U, V \subset X$ such that $A \subset U$ and $B \subset V$. This relationship is denoted A|B. The pair (U, V) is called a *separation* of (A, B).

Proposition 43. In a trivial space two sets are separated if and only if one of them is empty. In a discrete space two sets are separated if and only if they are disjoint. In a cofinite space two nonempty sets are separated if and only if they are disjoint and finite.

Proposition 44. Let X be a space and let $A, B \subset X$. Then A|B if and only if $\overline{A} \cap B = A \cap \overline{B} = \emptyset$.

Proof.

- (\Rightarrow) Let (U,V) be a separation of (A,B). Then for any $b\in B, V$ is a neighborhood of b which is disjoint from A. Thus b in not in \overline{A} . Similarly, A does not intersect \overline{B} .
- (\Leftarrow) Suppose $\overline{A} \cap B = A \cap \overline{B} = \emptyset$. Let $U = X \setminus \overline{B}$ and $V = X \setminus \overline{A}$. Then U and V are open and form a separation of A and B.

Proposition 45. Let X be a space with subsets A, B, and C. Then

- (a) $\varnothing |A;$
- **(b)** $A|B \Rightarrow B|A;$
- (c) $A|B \text{ and } C \subset A \Rightarrow C|B;$
- (d) $A|B \text{ and } A|C \Rightarrow A|(B \cup C);$

Proposition 46. Let X be a space and let $A, B \subset X$. The following conditions are equivalent:

- i. A|B;
- ii. A and B are disjoint relatively closed subsets of $A \cup B$;
- **iii.** A and B are disjoint relatively open subsets of $A \cup B$.

Proof.

- (i) \Rightarrow (ii) Suppose $\overline{A} \cap B = A \cap \overline{B} = \emptyset$. Since $A \subset \overline{A}$, A and B are disjoint. Since no point in B is in the closure of A, every point in B has a neighborhood which is disjoint from A. Let V be the union of these neighborhoods. Then V is open, $B \subset V$, and $V \cap A = \emptyset$. Similarly there exists and open set U such that $A \subset U$ and $U \cap B = \emptyset$. Then $U \cap A = A$ is relatively open in $A \cup B$ and so is $V \cap B = B$.
- (ii) \Rightarrow (iii) Suppose that A and B are disjoint relatively closed sets in $A \cup B$. Then $A \cup B \setminus B = A$ and $A \cup B \setminus A = B$ are relatively open.
- (iii) \Rightarrow (i) Suppose that A and B are disjoint relatively open sets in $A \cup B$. Then there exist open sets $U, V \subset X$ such that $A \subset U, B \subset V$, and $A \cap V = B \cap U = \emptyset$. Then no point of A is in the closure of B and vice versa. Thus $\overline{A} \cap B = A \cap \overline{B} = \emptyset$.

4.3. Connectedness.

Definition 30. Let X be a space and let $A \subset X$.

We say that A is separated if it is the union of two nonempty separated sets, and A is connected if it is not separated.

Proposition 47. Every subset of a trivial space is connected. A subset of a discrete space is connected if and only if it contains at most one element.

Proposition 48. Let X be a space. The following conditions are equivalent.

- **i.** X is connected;
- **ii.** X is not the disjoint union of two nonempty open sets;
- **iii.** X is not the disjoint union of two nonempty closed sets;
- iv. if $A \subset X$ is nonempty and clopen, then A = X.
- *Proof.* (i) \Rightarrow (ii) Suppose that $X = U \cup V$ with U, V open and disjoint. Then U and V are neighborhoods of the points they contain, and form a separation.
- (ii) \Rightarrow (iii) Suppose that $X = C \cup F$ with C, F closed and disjoint. Let $U = X \setminus F$ and $V = X \setminus C$. Then U and V are open and disjoint and their union is X.
- (iii) \Rightarrow (iv) Let C be a proper nonempty subset of X which is clopen. Then $F = X \setminus C$ is closed.
- (iv) \Rightarrow (i) Suppose X is not connected. Then X is the union of nonempty separated sets A and B. Let (U,V) be a separation of (A,B). Then $A\subset U, B\cap U=\varnothing$, and $A\cup B=X$ together imply that $X=U\cup B$. Thus B is closed. Similarly, A is closed so B is also open.
- **Proposition 49.** Let X be a space and let $A, B, C \subset X$. Suppose that A|B, C is connected, and $C \subset A \cup B$. Then $C \subset A$ or $C \subset B$.
- **Proposition 50.** Let Q be a collection of connected subsets of a space X and C a connected subset of X which is not separated from any member of Q. Then $C \cup (\cup Q)$ is connected.
- *Proof.* Let $Y = C \cup (\cup A)$ and suppose that $Y = A \cup B$ for some separated sets A and B. Thus $C \subset A$ or $C \subset B$. Suppose, without loss of generality, that $C \subset A$. Then for $Q \in \mathcal{Q}$, since Q is connected, $Q \subset A$ or $Q \subset B$. If $Q \subset B$, then C|Q, contrary to our hypothesis. Thus $Q \subset A$. Thus A = Y and $B = \emptyset$. Thus Y is connected.
- **Corollary 2.** Let Q be a collection of connected subsets of a space X. If $\cap Q$ is nonempty, then $\cup Q$ is connected.
- **Proposition 51.** Let C be a connected subset of a space X and suppose that $C \subset A \subset \overline{C}$. Then A is connected. In particular, \overline{C} is connected.
- *Proof.* Let U and V be disjoint open sets such that $A \subset U \cup V$. Then $C \subset U$ or $C \subset V$. Suppose, without loss of generality, that $C \subset U$. If $a \in A \cap V$, then V is a neighborhood of a which is disjoint from C and $a \notin \overline{C}$, contradicting our hypothesis. Thus $A \subset U$, and A cannot be separated.
- **Proposition 52.** The continuous image of a connected set is connected.
- Proof. Let $f: X \to Y$ be a continuous function Let $C \subset X$ and let D = f(C). Suppose that $D \subset f(X) \subset Y$ is not connected. Then there exist disjoint open sets $V_1, V_2 \subset Y$ such that $V_1 \cap D$ and $V_2 \cap D$ are nonempty. Then $U_1 = f^{-1}(V_1)$ and $U_2 = f^{-1}(V_2)$ are disjoint open sets in X and $U_1 \cap C$ and $U_2 \cap C$ are nonempty. This implies that C is not connected.
- **Proposition 53.** Let X be a family of spaces and let $\times X$ be the Cartesian product endowed with the product topology. If every $X \in X$ is connected, then $\times X$ is connected.

4.4. Components.

Proposition 54. The connected subsets of a space X are partially ordered by inclusion.

Definition 31. A *component* of a topological space is a maximal connected subset.

Proposition 55. The only component of a connected space is the space itself. The components of a discrete space are the singleton sets.

Proposition 56. The components of a space partition the space.

Proof. Let $x \in X$ and let C be the union of all connected subsets of X which contain x. Then C is connected and is clearly maximal. Thus X is the union of its components.

Let D be another component of X. If $C \cap D$ is nonempty, then $C \cup D$ is connected, and by the maximality of C, D = C.

Proposition 57. If C is a component of a space X, then C is closed.

Proof. Since C is connected, so is \overline{C} . Since $C \subset \overline{C}$ and C is a maximal connected set, $C = \overline{C}$.

Proposition 58. Two distinct components of a space are separated.

Proof. Let C and D be components of a space X and suppose that they are not separated. Then $\overline{C} \cap D$ or $C \cap \overline{D}$ is nonempty. Suppose, without loss of generality, that $\overline{C} \cap D$ is nonempty and let $x \in \overline{C} \cap D$. Since $C = \overline{C}$, $x \in C$. Thus $x \in C \cap D$ so C = D.

Proposition 59. If C is a component of a space X and $C \subset Y \subset X$, then C is a component of the subspace Y.

4.5. Dedekind Property.

Definition 32. An ordered set X has the *Dedekind* property provided that for each decomposition $X = A \cup B$, where A and B are nonempty and a < b whenever $a \in A$ and $b \in B$, either A contains a maximal element or B contains a minimal element, but not both.

Proposition 60. A nonempty connected subset of an ordered space is infinite.

Proposition 61. An ordered space is connected if and only if it has the Dedekind property.

Corollary 3. Intervals of real numbers are connected.

4.6. Path Connectedness.

Definition 33. Let X be a space. Let I = [0,1] be the unit interval in \mathbb{R} . A path in X is a continuous function $\gamma: I \to X$. The points $a = \gamma(0)$ and $b = \gamma(1)$ are called the *endpoints* of the path, and γ is referred to as a path between a and b.

Definition 34. A space X is *path connected* if for every two points in X there is a path between them.

Proposition 62. If X is path connected, then X is connected.

Proof. Suppose X is not connected. Then there exist disjoint nonempty open sets $U, V \subset X$ such that $U \cup V = X$. Let $a \in U$ and $b \in V$. Suppose γ is a path from a to b Then the image of γ is connected because I is. But $U \cap \gamma(I)$ and $V \cap \gamma(I)$ are disjoint and relatively open in $\gamma(I)$, so $\gamma(I)$ is separated, producing a contradiction.

Example 9. Let $X = \{(x,y) \in \mathbb{R}^2 \mid x \in [0,1] \cap \mathbb{Q} \text{ and } y \in [0,1]\}$. Then X is connected but not path connected.

5. Compactness

5.1. Covers.

Definition 35. Let X be a space and $A \subset X$. A cover of A is a collection of sets $\mathcal{E} \subset \mathcal{P}(X)$ such that $A \subset \cup \mathcal{E}$. If each set $E \in \mathcal{E}$ is open, then \mathcal{E} is called and open cover. If only finitely many sets are in \mathcal{E} , then \mathcal{E} is called a finite cover. Notice that the word finite applies to \mathcal{E} whereas the word open applies to the sets in \mathcal{E} .

If \mathcal{E} is a cover of A, a *subcover* of \mathcal{E} is a subset of \mathcal{E} which is itself a cover. The set A is *compact* if every open cover of A contains a finite subcover.

Proposition 63. The compact subsets of a discrete space are the finite subsets. In a trivial space or a cofinite space, every subset is compact.

Proposition 64. Finite subsets of any space are compact.

Definition 36. Let X be a space and let $A \subset X$. A basis cover of a A is a cover by members of a fixed basis for the topology on X.

Proposition 65. Let X be a space and $A \subset X$. Then A is compact if and only if every basis cover of A contains a finite subcover.

Proof. The forward direction is immediate, because a basis cover is an open cover. For the other direction, let \mathcal{B} be a basis and suppose that every cover of A by members of \mathcal{B} has a finite subcover. Let \mathcal{U} be an open cover of A. Then each member of $U \in \mathcal{U}$ is the union of members of \mathcal{B} . Let \mathcal{E}_U be a collection of basis sets such that $\cup \mathcal{E}_U = U$. Let \mathcal{E} the be union of these collections. Then \mathcal{E} is a basis cover and thus has a finite subcover \mathcal{D} . Each set in \mathcal{D} is contained in one of the original open sets in \mathcal{U} ; the collection of these sets is now a finite subcollection of \mathcal{U} which covers A.

Definition 37. Let X be a space, $\mathcal{E} \subset \mathcal{P}(X)$, and $Y \subset X$. The *relative collection* of \mathcal{E} on Y is

$$\mathcal{E} \cap Y = \{ E \cap Y \mid E \in \mathcal{E} \}.$$

Proposition 66. If X is a space and $A \subset Y \subset X$, then A is compact in X if and only if A is compact with respect to the subspace topology on Y.

Proof. Let $\mathcal{U} \subset \mathcal{P}(X)$ be an open cover of A. Since $A \subset Y$, $\mathcal{U} \cap Y$ is an open cover of A in Y, and all such covers are of this form. Let $\mathcal{V} \subset \mathcal{U}$ so that $(\mathcal{V} \cap Y) \subset (\mathcal{U} \cap Y)$. Then \mathcal{V} covers A if and only if $\mathcal{V} \cap Y$ covers A.

Proposition 67. A closed subset of a compact set is compact.

Proof. Let X be a space and let K be a compact subset of X. Let $F \subset K$ be closed. Let \mathcal{U} be an open cover of F. Then $\mathcal{U} \cup \{X \setminus F\}$ is an open cover for K and thus has a finite subcover. If $X \setminus F$ is in this subcover of K, remove it; now we have a finite subcover of F.

Proposition 68. The continuous image of a compact set is compact.

Proof. Let $f: X \to Y$ be a continuous function and let $K \subset X$ be compact. Let \mathcal{V} be an open cover of f(K). Let $\mathcal{U} = \{f^{-1}(V) \mid V \in \mathcal{V}\}$. Then \mathcal{U} is an open cover of K, and has a finite subcover \mathcal{M} . Suppose $|\mathcal{U}| = n$, and enumerate \mathcal{U} so that $\mathcal{U} = \{U_i \mid i = 1, \ldots, n\}$. For each i, select $V_i \in \mathcal{V}$ such that $U_i = f^{-1}(V_i)$. Let $\mathcal{W} = \{V_i \mid i = 1, \ldots, n\}$. Then $\mathcal{W} \subset \mathcal{V}$ is a finite subcover of f(K).

Proposition 69. Let X be a family of spaces and let $\times X$ be the Cartesian product endowed with the product topology. If every $X \in X$ is compact, then $\times X$ is compact.

5.2. Finite Intersection Property.

Definition 38. Let \mathcal{C} be a collection of sets. We say that \mathcal{C} has the *finite intersection property* if for every $\mathcal{D} \subset \mathcal{C}$,

$$|\mathfrak{D}| < \infty \Rightarrow \cap \mathfrak{D} \neq \varnothing.$$

Proposition 70. A space X is compact if and only if every collection of closed subsets of X with the finite intersection property has nonempty intersection.

Proof.

- (\Rightarrow) Let \mathcal{F} be a collection of closed sets in X with the finite intersection property but empty intersection. Then $\mathcal{U} = \{X \smallsetminus F \mid F \in \mathcal{F}\}$ is an open cover for X. Let $\mathcal{V} \subset \mathcal{U}$ be a finite subcollection. Then $\mathcal{C} = \{X \smallsetminus V \mid V \in \mathcal{V}\}$ is a finite subcollection of \mathcal{F} and so has nonempty intersection. Since $\cup \mathcal{V} = X \smallsetminus \cap \mathcal{C}$, \mathcal{V} is not a cover for X so X is not compact.
- (⇐) Suppose that X is not compact and let \mathcal{U} be an open cover with no finite subcover. Let $\mathcal{F} = \{X \setminus U \mid U \in \mathcal{U}\}$. Let $\mathcal{C} \subset \mathcal{F}$ be a finite subcollection and let $\mathcal{V} = \{X \setminus C \mid C \in \mathcal{C}\}$. Then $\cap \mathcal{C} = X \setminus \cup \mathcal{V}$ and since \mathcal{V} does not cover X, $\cap \mathcal{C}$ is nonempty. Thus \mathcal{F} has the finite intersection property, but since \mathcal{U} covers X, $\cap \mathcal{F} = \emptyset$.

5.3. Sequential Compactness.

Definition 39. A space is called *sequentially compact* if every sequence of points in X has a cluster point.

Proposition 71. A space is sequentially compact if and only if every sequence of distinct points has a cluster point.

Proposition 72. A space is sequentially compact if and only if every infinite subset has a limit point.

Remark 11. There exist compact spaces which are not sequentially compact, and there exist sequentially compact spaces which are not compact. However, in a metric space, the notions are equivalent.

6. Separation

6.1. Separation Axioms.

Definition 40. The following conditions on a topological space X are known as *separation axioms*:

 T_0 : Given two points in X, at least one of them lies in an open set not containing the other.

 T_1 : Given two points in X, each of them lies in an open set not containing the other.

 T_2 : Given two points in X, there exist disjoint open sets, each containing exactly one of the points.

 T_3 : Given a point and a closed set in X not containing the point, there exist disjoint open sets, one containing the point and one containing the closed set.

 T_4 : Given two disjoint closed sets in X, there exist disjoint open sets, each containing exactly one of the closed sets.

T₅: Given two subsets $A, B \subset X$ with $(A \cap \overline{B}) \cup (\overline{A} \cap B) = \emptyset$, there exist disjoint open sets, each containing exactly one of the subsets.

We say that X is a T_n space if X satisfies the T_n axiom for n = 0, 1, 2, 3, 4, 5.

Proposition 73. The separation axioms are hierarchical in the following sense:

$$T_5 + T_1 \Rightarrow T_4 + T_1 \Rightarrow T_3 + T_1 \Rightarrow T_2 \Rightarrow T_1 \Rightarrow T_0.$$

Proposition 74. The product of a family of T_n spaces is a T_n space for n = 0, 1, 2, 3.

Proposition 75. A nonempty trivial space is not a T_0 space but is T_3 and T_4 .

Proposition 76. The natural numbers with the right order topology are a T_0 space but not a T_1 space.

Proposition 77. The Sierpinski space is a T_0 space which is not a T_1 space.

Proposition 78. An infinite cofinite space is a T_1 space but not a T_2 , T_3 , nor a T_4 space.

Proposition 79. Discrete spaces are T_5 spaces.

6.2. Closed Point Spaces.

Definition 41. A T_1 space is called a *closed point space*.

Proposition 80. A space X is a T_0 space if and only if $\overline{\{x\}} = \overline{\{y\}} \Rightarrow x = y$ for all $x, y \in X$.

Proposition 81. A space X is a T_1 space if and only if all of the singleton subsets of X are closed.

Proposition 82. A space X is a T_1 space if and only if all of the finite subsets of X are closed.

Proposition 83. A space X is a T_1 space if and only if singleton sets are equal to the intersection of all neighborhoods containing them.

6.3. Hausdorff Spaces.

Definition 42. A T_2 space is called a *Hausdorff space*.

Proposition 84. A space X is a Hausdorff space if and only if singleton sets are equal to the intersection of all closed neighborhoods containing them.

Proposition 85. A space X is a Hausdorff space if and only if for every pair of disjoint compact sets K_1, K_2 there exist disjoint open sets U_1, U_2 such that $K_1 \subset U_1$ and $K_2 \subset U_2$.

Proposition 86. A compact subset of a Hausdorff space is closed.

Proof. Let X be a Hausdorff space and K a compact subset of X. Let $y \in X \setminus K$ and for each $x \in K$, let U_x and V_x be disjoint open sets such that $x \in U_x$ and $y \in V_x$. Then sets $\{U_x \mid x \in K\}$ cover K and thus have a finite subcover $\{U_{x_1}, \ldots, U_{x_n}\}$. Then $V_y = \bigcap_{i=1}^n U_{x_i}$ is an open neighborhood of y which is disjoint from K. The complement of K in K is the union of all such sets, and is therefore open. Thus K is closed.

Proposition 87. If X is a Hausdorff space then every sequence in X which has a limit point converges.

Proof. Let X be a Hausdorff and let $x : \mathbb{N} \to X$ be a sequence in X which has a limit point p. Let $q \in X$. If p and q are distinct, there exist disjoint neighborhoods of p and q, and x is eventually in the neighborhood of p, and so is not eventually in the neighborhood of q. Therefore q is not a limit point.

Proposition 88. Let X be a compact space and Y a Hausdorff space. Let $f: X \to Y$ be continuous and bijective. Then f is a homeomorphism.

Proof. It suffices to show that f is an closed map. Since X is compact, every closed subset of X is compact. Its image in Y is compact because f is continuous. Since Y is Hausdorff, this image is closed.

Proposition 89. If X is a space, Y is a Hausdorff space, and $f: X \to Y$ is continuous, then the set $D = \{(x, f(x)) \mid x \in X\}$ is a closed subset of $X \times Y$.

Proof. Let $Z=X\times Y$ and let $(x,y)\in Z\smallsetminus D$. Since Y is Hausdorff, there exist disjoint open neighborhoods U of f(x) and V of y. Since $f^{-1}(U)$ contains x and is disjoint from $f^{-1}(V)$, x is not a limit point of $f^{-1}(V)$ and so $x\notin \overline{f^{-1}(V)}$. Let $O=f^{-1}(U)\smallsetminus \overline{f^{-1}(V)}$. Then O is an open set containing x so $(x,y)\in O\times V$. Also $O\times V$ is disjoint from D.

This shows that very point is the complement of D is contained in an open set disjoint from D. Therefore D is closed.

Corollary 4. A space X is Hausdorff if and only if the diagonal of $X \times X$ is closed.

Proof. Suppose X is Hausdorff. Then the identity map on X is continuous, so $D = \{(x, id(x)) \mid x \in X\} = \{(x, x) \mid x \in X\}$ is closed.

Let X be a space and suppose that $D = \{(x, x) \mid x \in X\}$ is closed. Then for $y \neq x$ there exists of basis neighborhood $U \times V$ of (x, y) such that $U \times V \cap D = \emptyset$, where U and V are open subsets of X with $x \in U$ and $y \in V$.

Since $(x,x) \notin U \times V$, $x \notin V$. Since $(y,y) \notin U \times V$, $y \notin U$. Thus X is Hausdorff. \Box

6.3.1. The Tube Lemma. We prove the following:

Proposition 90. Let X and Y be topological spaces, with Y compact and Hausdorff. Let $f: X \to Y$. Then f is continuous if and only if the graph of f is closed.

Definition 43. Let X and Y be topological spaces and let $x_0 \in X$. The *fiber* over x in $X \times Y$ is the set $\{x\} \times Y$. A *tube* over x in $X \times Y$ is a set of the form $A \times Y$, where $x \in A \subset X$.

Lemma 1 (Tube Lemma). Let X and Y be topological spaces, with Y compact. Let $x \in X$ and let G be an open subset which contains the fiber over x. Then G contains an open tube over x.

Proof. Sets of the form $U \times V$, where U is open in X and V is open in Y, form a basis for the topology of $X \times Y$. Thus G is the union of such sets.

For each $y \in Y$, select a basis neighborhood $U_y \times V_y \subset G$ of (x,y) in the fiber over x. The V_y form a cover of Y, and thus have a finite subcover V_1, \ldots, V_n ; let U_1, \ldots, U_n be the corresponding subsets of X so that $U_i \times V_i$ cover the fiber over x. Let $U = \bigcap_{i=1}^n U_i$; then U is open in X and contains x. Now $\bigcup_{i=1}^n U \times V_i = U \times Y \subset G$ is a tube over x which is contained in G.

Lemma 2. Let X and Y be topological spaces, with Y compact. Then the projection $\pi_Y: X \times Y \to Y$ given by $(x, y) \mapsto y$ is a closed map.

Proof. Let $F \subset X \times Y$ be a closed set in $X \times Y$, and let $x \in X \setminus f(F)$. Since the complement of F in $X \times Y$ is an open set which contains the fiber over x, it contains a tube over x. The projection of this tube onto X is an open set containing x which is disjoint from f(F). Thus the complement of f(F) in X is open.

Proposition 91. Let X and Y be topological spaces, with Y compact. Let $f: X \to Y$ be a function whose graph is closed. Then f is continuous.

Proof. It suffices to show that the inverse image of a closed set is closed. Let C be a closed set in Y. Since projection is continuous, $\pi_Y^{-1}(C)$ is closed in $X \times Y$. Let F be the intersection of this inverse image with the graph of f. Then F is closed in $X \times Y$. Since Y is compact, the projection π_X is a closed map, so $\pi_X(F)$ is closed in X. But $\pi_X(F) = f^{-1}(C)$.

Lemma 3. Let X and Y be topological spaces. Let $f: X \to Y$ be a continuous function. Let $g: X \to X \times Y$ be the function given by $x \mapsto (x, f(x))$. Then g is continuous.

Proof. Let G be an open set in $X \times Y$. Intersection G with the graph of f if $g^{-1}(G)$ is empty, then it is open, so assume that it is nonempty and let $x \in g^{-1}(G)$. Let $U \times V$ be a basis neighborhood of (x, f(x)) which is contained in G. Then $f^{-1}(V) \cap \pi_X(G)$ is open in $X, x \in f^{-1}(V) \cap \pi_X(G)$, and $f^{-1}(V) \cap \pi_X(G)$ is contained in $g^{-1}(G)$. \square

Proposition 92. Let X and Y be topological spaces, with Y Hausdorff. Let $f: X \to Y$ be a continuous function. Then the graph of f is closed.

Proof. Let F be the graph of f. Let $(x,y) \in X \times Y \setminus F$. Then $y \neq f(x)$; let V_1 and V_2 be open neighborhoods in Y of y and f(x) respectively which are disjoint. Let $g: X \to X \times Y$ be the map given by $x \mapsto (x, f(x))$. Then $U = g^{-1}(X \times V_2)$ is open in X, and $U \times V_1$ is an open neighborhood of (x,y) which does not intersect F. Thus the complement of F is open.

6.4. Regular Spaces.

Definition 44. A T_3 space which is also a T_1 space is called *regular*.

Proposition 93. A space X is regular if and only if every neighborhood of a point in X contains a closed neighborhood.

Proposition 94. A space X is a regular space if and only if for every pair of disjoint sets K, F such that K is compact and F is closed there exist disjoint open sets U, V such that $K \subset U$ and $F \subset V$.

Proposition 95. A compact Hausdorff space is regular.

6.5. Normal Spaces.

Definition 45. A T_4 space which is also a T_1 space is called *normal*.

Proposition 96. A space X is normal if and only if for every closed set F in X and every open set U in X containing F there exists an open set V such that $F \subset V \subset \overline{V} \subset U$.

Proposition 97. A compact regular space is normal.

DEPARTMENT OF MATHEMATICS, BASIS SCOTTSDALE $Email\ address$: paul.bailey@basised.com