PROGRAMMABLE LOGIC, I/O & BOO... > BOOT AND CONFIGURATION

65463 - Zynq UltraScale+ MPSoC - What devices are supported for configuration?

Search...

FORUMS KNOWLEDGE BASE BLOGS V ABOUT OUR COMMUNITY V ADVANCED SEARCH V

Mar 6, 2023 · Knowledge

TITLE

65463 - Zynq UltraScale+ MPSoC - What devices are supported for configuration?

DESCRIPTION

When choosing a flash device to incorporate with Zynq UltraScale+ MPSoC devices, it is important to consider the following logistical criteria: • Is the device supported for the Xilinx tools?

 Will the device work with the Zynq device BootROM? • Is the device supported with software like U-Boot and Linux?

In addition, there are design considerations which include:

How many pins are required for a configuration method?

• How much flash memory is required?

 How fast can the Zynq device be configured? • How difficult is it to manage the flash device?

Based on the logistical criteria, there are four categories of flash devices:

Xilinx Tested and Supported Flash Devices (See UG908 for Supported Flash Memory Devices)

These devices meet the logistical criteria listed above.

These devices receive regression testing with Xilinx tools and their use is fully supported by Xilinx Technical Support.

Known to Work Flash Devices

These devices are not explicitly supported in the Xilinx tools, but have been known to work with Zynq UltraScale+ MPSoC devices.

Many of these devices are programmed using U-Boot as an alternate programming method, but source changes to U-Boot might have to be made by users in order to configure that

specific device.

Unverified Flash Devices

These devices have not been tested in any way by Xilinx with Zynq UltraScale+ MPSoC devices.

There are NO known issues (but possible limitations) for these devices. The user will be responsible for validating the flash on Zynq UltraScale+ MPSoC, making necessary changes to U-Boot and configuring the device.

Incompatible Flash Devices

These devices will not work on Zynq UltraScale+ MPSoC. Note: Xilinx Technical Support will not be able to provide assistance with designs using "Known to Work" or "Unverified" flash devices.

Xilinx can only provide assistance for the devices listed as 'Xilinx Tested and Supported'.

SOLUTION QSPI

Benefits of QSPI:

• High performance - QSPI is the fastest configuration solution. • Low Pin count - QSPI has the lowest pin count of the configuration solution options besides SD. • Easy management - QSPI can be accessed as linear memory in Zynq devices. In addition, NO bad blocks management is required.

• XIP - QSPI is the only mode that supports execute-in-place Downsides of QSPI:

Low memory density

Vendors. See UG908 for official list.

Vendor	QSPI Flash Families
Micron	MT25, N25Q
Infineon (formerly known as Spansion)	S25FL,S70FL
Macronix	MX25, MX66
ISSI	IS25

Configuration and Specifications

• QSPI24: 24-bit addressing

There are two distinct boot modes relative to QSPI:

• QSPI32: 32-bit addressing NOTE: Flash Devices larger than 16MB (128Mb) are only tested booting in QSPI32.

The QSPI boot image search limit are listed below. MIO Pins Boot Image Search Limit

Memory Configuration

See UG908 for Xilinx Supported Flash Memory Devices

QSPI24 - Single Memory716 MBQSPI24 - Dual Stack Memory8*16 MBQSPI24 - Dual Parallel Memory1332 MBQSPI32 - Single Memory7256 MBQSPI32 - Dual Stack Memory8*256 MBQSPI32 - Dual Parallel Memory13512 MB			
QSPI24 - Dual Parallel Memory 13 32 MB QSPI32 - Single Memory 7 256 MB QSPI32 - Dual Stack Memory 8* 256 MB	QSPI24 - Single Memory	7	16 MB
QSPI32 - Single Memory 7 256 MB QSPI32 - Dual Stack Memory 8* 256 MB	QSPI24 - Dual Stack Memory	8*	16 MB
QSPI32 - Dual Stack Memory 8* 256 MB	QSPI24 - Dual Parallel Memory	13	32 MB
	QSPI32 - Single Memory	7	256 MB
QSPI32 - Dual Parallel Memory 13 512 MB	QSPI32 - Dual Stack Memory	8*	256 MB
	QSPI32 - Dual Parallel Memory	13	512 MB

Here a list of devices that might require special attention. See Notes. Vivado/SDK

NOTE(*): In case of Dual Stack Memory, Zynq UltraScale+ MPSoC only boots from the "lower" QSPI (Same as "Single Memory").

Flash Device	Mode	Vendor	Flash Density	Voltage	Support Category	Flash Programmer	U- Boot	Notes
S25FL064L	Quad Mode - Single - Dual Parallel and Stacked	Infineon	64 Mb		Known to Work		2017.4	
S70FL01GS	Quad Mode - Stacked	Infineon	1024 Mb		Xilinx Supported	See (UG908).	2016.3	This part is two 512 Mb dies in a single package (Dual Stacked Only).
S70FS01GS	Quad Mode - Single - Dual Parallel and Stacked	Infineon	1024 Mb		Incompatible			The S70FS family does not support Dual Out (0x3B/0x3C) and Quad Out (0x6B/0x6C) read commands.
S25FS128S	Quad Mode - Single - Dual Parallel and Stacked	Infineon	128 Mb		Incompatible			The S25FS family does not support Dual Out (0x3B/0x3C) and Quad Out (0x6B/0x6C) read commands.
MX66U1G45G	Quad Mode - Single - Dual Parallel and Stacked	Macronix	1024 Mb	1.8V	Xilinx Supported	See (UG908).	2018.1	In 2018.1 a patch is required. See (Xilinx Answer 71042).
MX66[U/L]2G45	Quad Mode - Single - Dual Parallel and Stacked	Macronix	2048 Mb	1.8V/3.3V	Xilinx Supported	See (UG908).	2019.1	In 2019.1 a patch is required. See (Xilinx Answer 72430) In 2019.x a patch is required for FSBL. See (Xilinx Answer 73087)
MX25[U/L]51245	Quad Mode - Single - Dual Parallel	Macronix	512 Mb	1.8V/3.3V3.3V	Xilinx Supported	See (UG908).	2019.1	In 2019.1 a patch is required. See (Xilinx Answer 72430)

NAND

Benefits of NAND: • High Memory density - NAND is an inexpensive solution for large density devices.

Downsides of NAND: • Lower device performance - Maximum bandwidth is less than QSPI.

 High pin count - NAND devices require more pins than QSPI. • Difficult Management - NAND devices are hard to manage. Bad blocks are a regular concern which require design decisions on how bad blocks will be managed for a particular

system setup. Note:

• To use On-Die ECC with MPSoC, the flash MUST be a MICRON and MUST support bit 3 (Enable/Disable ECC) in Feature Address 90h. The bootROM try to set bit-3 during initialization and reads it back to confirm the ECC scheme to use:

Classification

1 Die, 1 CE#, 1 RB#

• "0" = HW-ECC or SW-ECC • "1" = "On-DIE ECC

Please, let me know if you need anything else. Vendors. See UG908 for official list.

Micron

NAND Flash Families Vendor MT29F

SkyHigh Memory	S34	·ML		
Configuration and Sp	pecifi	cations		
Memory Configura	MIO Pins	Boot	Image Search Limit	
NAND - x8		17	128 N	ИB

The table below highlights few characteristics.

See UG908 for Xilinx Supported Flash Memory Devices

Flash Device	Mode	Vendor	Flash Density	
MT29F2G08AB	x8	Micron	2 Gb	

MT29F8G08AD	x8	Micron	8 Gb	2 Die, 1 CE#, 1 RB#	SLC	onDIE ECC	3.3 V	Unverified Flash			
MT29F8G08AB	x8	Micron	8 Gb	1 Die, 1 CE#, 1 RB#	SLC	8-bit HWECC	3.3 V	Xilinx Supported	See (UG908).	2019.1	
MT29F16G08AB	x8	Micron	16 Gb	1 Die, 1 CE#, 1 RB#	SLC	8-bit HWECC	3.3 V	Xilinx Supported	See (UG908).	2019.1	
MT29F32G08AB	x8	Micron	32 Gb	1 Die, 1 CE#, 1 RB#	SLC	8-bit HWECC	3.3 V	Xilinx Supported	See (UG908).	2015.4	
MT29F64G08AE	x8	Micron	64 Gb	2 Die, 2 CE#, 2 RB#	SLC	8-bit HWECC	1.8 V	Xilinx Supported	See (UG908).	2016.1	
S34ML01G1	x8	SkyHigh Memory	1 Gb	1 Die, 1 CE#, 1 RB#	SLC	1-bit HWECC	3.3 V	Xilinx Supported	See (UG908).	2017.1	
S34ML02G1	x8	SkyHigh Memory	2 Gb	1 Die, 1 CE#, 1 RB#	SLC	1-bit HWECC	3.3 V	Xilinx Supported	See (UG908).	2016.3	
S34ML08G101TFI200	x8	SkyHigh Memory	8 Gb	2 Die, 2 CE#, 2 RB#	SLC	1-bit HWECC	3.3 V	Unverified Flash			
SD											
Benefits of SD:											
High density - SD hasEasy Management - I		-		stem. Bad blocks do not	need to be ma	naged in the us	ser design.				
ownsides of SD:											

Vivado/SDK

Programmer

See (UG908).

Flash

Support

Category

Xilinx

Supported

Voltage

3.3 V

ECC

onDIE ECC

Technology

SLC

U-

Boot

2018.1

Notes

• Slow performance - SD is slower than QSPI • Mechanical considerations - SD cards require a connector.

Configuration and Specifications Memory Configuration

Boot Image Search Limit **MIO Pins** 8,192 files SD Card (4-bit data)

Consult (Xilinx Answer 66779) for the list of SD cards currently tested on Zynq UltraScale+ MPSoC.

Xilinx Supported Devices Any compliant card. See the SD/SDIO Controller Chapter of (UG1085). eMMC

Benefits of eMMC: • High density - eMMC has densities comparable to NAND. • Easy Management - Device is generally managed as a file system. Bad blocks do not need to be managed in the user design.

MIO Pins

12

• Slow performance - eMMC is slower than QSPI **Configuration and Specifications**

Memory Configuration

Downsides of eMMC:

eMMC (8-bit data) **Xilinx Supported Devices:**

8,192 files

Boot Image Search Limit

NOTE (*): (UG908) reports the "Device Alias" as the JEDEC version and density of the flash (i.e. "jedec4.51-16gb").

Flash Density

JEDEC Version

Support Category

Known to Work

Known to Work

There is no need to specify the "Manufacturer" in the tools. Flash Device Vendor

4 GB 4.41 Micron MTFC4GMVEA-4M IT 8 GB 4.41 Micron MTFC8GLVEA-1M WT

MTFC8GAKAJCN-1M IT	Micron	8 GB	5.0	Xilinx Supported	See (UG908).	2017.1	
MTFC32GJDED-4M IT	Micron	32 GB	4.41	Known to Work		2016.3	
MTFC32GAZAQHD	Micron	32 GB	5.1	Xilinx Supported			
MTFC64GJDDN-4M IT	Micron	64 GB	4.41	Known to Work		2016.3	
MTFC64GAKAEEY-4M IT	Micron	64 GB	5.0	Known to Work		2017.3	
THGBMFG6C1LBAIL	Toshiba	8 GB	5.1	Xilinx Supported	See (UG908).	2016.1	
EMMC16G-IB29-PE90	Kingston	16 GB	5.1	Known to Work			
EMMC64G-W525	Kingston	64 GB	5.1	Known to Work		2017.1	
KLM8G1GENS-B041	Samsung	8 GB	4.5	Xilinx Supported	See (UG908).	2017.3	
KLM8G1GEME-B041	Samsung	8 GB	4.5	Xilinx Supported	See (UG908).	2017.3	
SDINBDG4-8G-1225	Sandisk	8 GB	4.5	Xilinx Supported	See (UG908).	2017.3	
MX52LM08A11XVI	Macronix	8 GB	5.1	Xilinx Supported			Firmware Version PRV 08 or later.
JRL NAME 55463 ARTICLE NUMBER 000023331							
PUBLICATION DATE 3/6/2023							

Zynq UltraScale+ MPSoC

Knowledge Base

Community Feedback Survey

Vivado/SDK Flash Programmer (*)

See (UG908).

U-Boot Notes

2017.1

2016.1

Boot and Configuration

AMD

Files (0)

No records found.

Adaptive SoC & FPGA Support

Programmable Logic, I/O & Boot/Co...

68656 - Zynq UltraScale+ MPSoC: QSPI Programming/Booting Checklist	● 10.66K
65468 - Zynq UltraScale+ MPSoC - Booting a Zynq UltraScale+ MPSoC Device	⊙ 3.45K
64375 - Xilinx Zynq UltraScale+ MPSoC Solution Center	• 4.37K
66592 - Zynq UltraScale+ MPSoC - SGMII using PS-GTR	⊙ 13.51K
67157 - Zynq UltraScale+ MPSoC: eMMC Programming Solutions	⊙ 15.65K
TRENDING ARTICLES	

FOLLOW

AXI Basics 1 - Introduction to AXI

RELATED ARTICLES

000036274 - Adaptive SoCs & FPGA Design Tools - Licensing Solution Center

72775 - Vivado IP Change Log Master Release Article <u>Debugging PCle Issues using Ispci and setpci</u>

Quickly install Cable Drivers for Xilinx Platform Cable USB II on Windows 10 Was this article helpful? Choose a general reason -- Choose a general reason --

Description Please, leave us some feedback... Submit

in

Download