Homework 5 Solutions

Problem 1: Kirsch Solution

Using equations of stresses around a cylindrical cavity, calculate near-wellbore effective radial σ_{rr} and hoop $\sigma_{\theta\theta}$ stresses for a vertical well 8in diameter in the directions of S_{hmin} (4500 psi – acting E-W) and S_{Hmax} (6000 psi) up to 3ft of distance. The result should be presented as plots of stresses (σ_{rr} , $\sigma_{\theta\theta}$) as a function of distance from the center of the wellbore.

(a) $P_p = 3200psi$ and $P_w = 3200psi$

```
In [1]: import numpy as np
                    import matplotlib.pyplot as plt
                    # Given parameters
                    Pp = 3200 # Pore pressure [psi]
                    Pw = 3200 # Wellbore pressure [psi]
                    a = 4 # Wellbore radius, a [in]
                    S_hmin = 4500 # Minimum total horizontal stress [psi]
                    S_Hmax = 6000 # Maximum total horizontal stress [psi]
                    sigma_hmin = S_hmin - Pp # Minimum effective horizontal stress [psi]
                    sigma_Hmax = S_Hmax - Pp # Maximum effective horizontal stress [psi]
                    # Calculate the radial stress, \sigma r and the tangential (hoop) stress, \sigma \vartheta \vartheta based on r and theta
                    r = np.linspace(4, 35, 31) # distance measured from the center of the wellbore [in]
                    theta = 0 *(np.pi/180) # \vartheta is the angle between the direction of SHmax and the point at which stress is being considered [°]
                   sigma_rr_0 =(((sigma_Hmax+sigma_hmin)/2)*(1-((a**2)/(r**2)))+(((sigma_Hmax-sigma_hmin)/2)*(1-(4*((a**2)/(r**2)))+(3*((a**4)/(r**4)))*np.cos(theta = 90 *(np.pi/180) # 0 is the angle between the direction of SHmax and the point at which stress is being considered [°] sigma_rr_90 =(((sigma_Hmax+sigma_hmin)/2)*(1-((a**2)/(r**2)))+(3*((a**4)/(r**4)))*np.cos(theta = 90 *(np.pi/180) # 0 is the angle between the direction of SHmax and the point at which stress is being considered [°] sigma_rr_90 =(((sigma_Hmax+sigma_hmin)/2)*(1-((a**2)/(r**2)))+(3*((a**4)/(r**4)))*(1-(a**2)/(r**2)))*(1-(a**2)/(r**2)))*(1-(a**2)/(r**2))*(1-(a**2)/(r**2))*(1-(a**2)/(r**2))*(1-(a**2)/(r**2))*(1-(a**2)/(r**2))*(1-(a**2)/(r**2))*(1-(a**2)/(r**2))*(1-(a**2)/(r**2))*(1-(a**2)/(r**2))*(1-(a**2)/(r**2))*(1-(a**2)/(r**2))*(1-(a**2)/(r**2))*(1-(a**2)/(r**2))*(1-(a**2)/(r**2))*(1-(a**2)/(r**2))*(1-(a**2)/(r**2))*(1-(a**2)/(r**2))*(1-(a**2)/(r**2)/(r**2))*(1-(a**2)/(r**2)/(r**2))*(1-(a**2)/(r**2)/(r**2))*(1-(a**2)/(r**2)/(r**2))*(1-(a**2)/(r**2)/(r**2))*(1-(a**2)/(r**2)/(r**2))*(1-(a**2)/(r**2)/(r**2))*(1-(a**2)/(r**2)/(r**2))*(1-(a**2)/(r**2)/(r**2))*(1-(a**2)/(r**2)/(r**2)/(r**2)/(r**2))*(1-(a**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**2)/(r**
                    sigma\_thetatheta\_90 = (((sigma\_Hmax+sigma\_hmin)/2)*(1+((a**2)/(r**2)))) - (((sigma\_Hmax-sigma\_hmin)/2)*(1+(3*((a**4)/(r**4))))*np.cos
                    # Plotting
                    plt.plot(r, sigma_rr_0, '--k', label=r'$\sigma_{rr} (\theta=0°)$',)
                   plt.plot(r, sigma_thetatheta_0, '-k', label=r'$\sigma_{\theta\theta} (\theta=0°)$',)
plt.plot(r, sigma_rr_90, '--r', label=r'$\sigma_{rr} (\theta=90°)$',)
                    plt.plot(r, sigma_thetatheta_90, '-r', label=r'$\sigma_{\theta\theta} (\theta=90°)$',)
                    # Plot labels
                    plt.xlabel('Distance from Center of Wellbore [in]')
                    plt.ylabel('Stress [psi]')
                    plt.legend()
                     # Axis range
                    plt.xlim([0, 35])
                    plt.ylim([0, 7000])
                      † Change plot size
                    fig = plt.gcf()
                    fig.set size inches(10, 6)
```



```
In [2]: import numpy as np
                                    import matplotlib.pyplot as plt
                                    # Given parameters
                                   Pp = 3200 # Pore pressure [psi]
                                   Pw = 4000 # Wellbore pressure [psi]
                                   a = 4 # Wellbore radius, a [in]
                                   S_hmin = 4500 # Minimum total horizontal stress [psi]
                                   S_Hmax = 6000 # Maximum total horizontal stress [psi]
                                   sigma_hmin = S_hmin - Pp # Minimum effective horizontal stress [psi]
                                   sigma_Hmax = S_Hmax - Pp # Maximum effective horizontal stress [psi]
                                   # Calculate the radial stress, \sigma rr and the tangential (hoop) stress, \sigma \vartheta \vartheta based on r and theta
                                   r = np.linspace(4, 35, 31) # distance measured from the center of the wellbore [in]
                                   theta = 0 *(np.pi/180) # \vartheta is the angle between the direction of SHmax and the point at which stress is being considered [°]
                                   sigma\_rr\_0 = (((sigma\_Hmax + sigma\_hmin)/2)*(1 - ((a**2)/(r**2))) + (((sigma\_Hmax - sigma\_hmin)/2)*(1 - (4*((a**2)/(r**2))) + (3*((a**4)/(r**4))) + (3*((a**4)/(r**4)/(r**4))) + (3*((a**4)/(r**4)/(r**4))) + (3*((a**4)/(r**4)/(r**4))) + (3*((a**4)/(r**4)/(r**4)/(r**4))) + (3*((a**4)/(r**4)/(r**4)/(r**4))) + (3*((a**4)/(r**4)/(r*
                                    sigma\_thetatheta\_0 = (((sigma\_thmax + sigma\_hmin)/2)*(1+((a**2)/(r**2)))) - (((sigma\_thmax - sigma\_thmin)/2)*(1+(3*((a**4)/(r**4))))*np.cos((a**4)/(r**4)))) + (((sigma\_thmax - sigma\_thmin)/2)*(1+(3*(a**4)/(r**4))))*np.cos((a**4)/(r**4)))) + (((sigma\_thmax - sigma\_thmin)/2)*(1+(3*(a**4)/(r**4))))*np.cos((a**4)/(r**4)))) + (((sigma\_thmax - sigma\_thmin)/2)*(1+(3*(a**4)/(r**4))))) + (((sigma\_thmax - sigma\_thmin)/2)*(1+(3*(a**4)/(r**4)))))*np.cos((a**4)/(r**4)))) + (((sigma\_thmax - sigma\_thmin)/2)*(1+(3*(a**4)/(r**4))))) + (((sigma\_thmax - sigma\_thmin)/2)*(1+(3*(a**4)/(r**4)))))) + (((sigma\_thmax - sigma\_thmin)/2)*(1+((sigma\_thmax - sigma\_thmin)/2)*(1+((sigma\_thmax - sigma\_thmin)/2)*(1+((sigma\_thmax - sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1+((sigma\_thmin)/2)*(1
                                    theta = 90 *(np.pi/180) # \vartheta is the angle between the direction of SHmax and the point at which stress is being considered [°]
                                    sigma\_rr\_90 = (((sigma\_Hmax + sigma\_nmin)/2)*(1 - ((a**2)/(r**2)))) + (((sigma\_Hmax - sigma\_nmin)/2)*(1 - (4*((a**2)/(r**2))) + (3*((a**4)/(r**2)))) + (3*((a**4)/(r**2))) + (3*((a**4)/(a**4)/(r**2))) + (3*((a**4)/(r**2))) + (3*((a**4)/(r**2
                                   # Plotting
                                   plt.plot(r, sigma_rr_0, '--k', label=r'$\sigma_{rr} (\theta=0°)$',)
                                  plt.plot(r, sigma_thetatheta_0, '-k', label=r'$\sigma_{\theta}(\theta=0°)$',)
plt.plot(r, sigma_rr_90, '--r', label=r'$\sigma_{\theta}(\theta=0°)$',)
                                   plt.plot(r, sigma\_thetatheta\_90, '-r', label=r'\$\sigma\_\{\theta\theta\}\ (\theta=90^\circ)\$',)
                                     # Plot labels
                                   plt.xlabel('Distance from Center of Wellbore [in]')
                                   plt.ylabel('Stress [psi]')
                                   plt.legend()
                                     # Axis range
                                   plt.xlim([0, 35])
                                   plt.ylim([0, 7000])
                                     # Change plot size
                                   fig = plt.gcf()
                                   fig.set_size_inches(10, 6)
                                  4
```


Problem 2: Effect of Overpressure

Consider the problem solved in class (Wellbore: vertical; Site: onshore, 7000 ft of depth, $S_{hmin} = 4300psi$, $S_{Hmax} = 6300psi$; Rock properties: UCS = 3,500psi, $\mu = 0.6$, $T_s = 800psi$).

(a) Calculate wellbore pressure and corresponding mud weight for (i) $w_{BO}=70^\circ$, (ii) $w_{BO}=0^\circ(P_{Wshcar})$, and (iii) for inducing tensile fractures (P_b) for $\lambda_p=0.52$ and $\lambda_p=0.60$. Compare with $\lambda_p=0.44$ solved in class. How does the drilling mud window change with overpressure?

We can calculate the wellbore pressure for a predetermined breakout angle:

$$P_{wBO} = P_p + \frac{(\sigma_{Hmax} + \sigma_{hmin}) - 2(\sigma_{Hmax} - \sigma_{hmin})\cos(\pi - w_{BO}) - UCS}{1 + q}$$

Wellbore breakouts occur when the stress anisotropy σ_1/σ_3 surpasses the shear strength limit of the wellbore rock. Maximum anisotropy is found at $\theta=\pi/2$ and $3\pi/2$, so the lower limit of wellbore pressure P_{Wshear} is

$$P_{Wshear} = P_p + \frac{3\sigma_{hmin} - \sigma_{Hmax} - UCS}{1 + q}$$

Wellbore tensile (or open mode) fractures occur when the minimum principal stress σ_3 on the wellbore wall goes below the limit for tensile stress: the tensile strength. The minimum hoop stress is located on the wall of the wellbore (r=a) and at $\theta=0$ and π , so the upper limit of wellbore pressure P_b to prevent wellbore tensile (or open mode) fractures from forming is:

$$P_b = P_p + 3\sigma_{hmin} - \sigma_{Hmax} + T_s + \sigma^{\Delta T}$$

The mud window gets smaller as over pressure increases. The wellbore becomes unstable when P_b is smaller than P_{wRO} .

```
In [3]: import pandas as pd

excel_file = 'HW5.xlsx'
DataQ2Summary = pd.read_excel(excel_file, sheet_name=2)
DataQ2Summary.head(5)
```

Out[3]:

	λр	wBO [°]	PwBO [psi]	Pwshear [psi]	Pb [psi]	PwBO [ppg]	Pwshear [ppg]	Pb [ppg]	wBO [°].1	PwBO [psi].1	Pwshear [psi].1	Pb [psi].1	PwBO [ppg].1	Pwshear [ppg].1	Pb [ppg].1
0 0	.44	70	3640	4279	4320	10.0	11.8	11.9	. 0	4279	4279	3532	11.8	11.8	9.7
1 0	.52	70	3928	4567	3761	10.8	12.5	10.3 -	0	4567	4567	2970	12.5	12.5	8.2
2 0	.60	70	4217	4855	3202	11.6	13.3	8.8	0	4855	4855	2409	13.3	13.3	6.6

```
In [4]: import numpy as np
          import matplotlib.pyplot as plt
          lambda_p = DataQ2Summary['\lambda_p']
PwBO_70 = DataQ2Summary['PwBO [psi]']
          Pwshear_70 = DataQ2Summary['Pwshear [psi]']
          Pb_70 = DataQ2Summary['Pb [psi]']
          PwBO_0 = DataQ2Summary['PwBO [psi].1']
          Pwshear_0 = DataQ2Summary['Pwshear [psi].1']
          Pb_0 = DataQ2Summary['Pb [psi].1']
          # Change plot size
          fig = plt.gcf()
          fig.set_size_inches(20, 5)
          # Plot data
          plt.subplot(1, 2, 1)
          plt.plot(PwBO_70,lambda_p,'tab:orange', label='$P_{wBO}$')
plt.plot(Pwshear_70,lambda_p,'tab:blue', label='$P_{wshear}$')
          plt.plot(Pb_70,lambda_p,'tab:gray', label='$P_b$')
          # Plot labels
          plt.xlabel('Wellbore Pressure [psi]')
         plt.ylabel('Overpressure Parameter, $\lambda_p$')
plt.title('Wellbore Breakout Angle ($w_{B0}$) of 70°')
          plt.legend()
          # Axis range
          plt.xlim([3000, 5000])
          plt.ylim([0.4, 0.65])
          plt.show()
```



```
In [5]: # Change plot size
    fig = plt.gcf()
    fig.set_size_inches(9, 5)
    # Plot data
    plt.plot(PwBo_0,lambda_p,'tab:blue', label='$P_{wB0}=P_{wshear}$')
    plt.plot(Pb_0,lambda_p,'tab:gray', label='$P_b$')
    # Plot labels
    plt.xlabel('Wellbore Pressure [psi]')
    plt.ylabel('Overpressure Parameter, $\lambda_p$')
    plt.title('Wellbore Breakout Angle ($\psi_{\text{80}}$) of 0°')
    plt.legend()
    # Axis range
    plt.xlim([1000, 6000])
    plt.ylim([0.4, 0.65])
    plt.show()
```


Tensile fractures will occur in the azimuth of S_{Hmax} . For Dallas-Forth Worth region, the azimuth of S_{Hmax} is E30°N or 060°.

Shear fractures (wellbore breakouts) will occur in the azimuth of S_{hmin} . For Dallas-Forth Worth region, the azimuth of S_{hmin} is N30°W or 150°.

Problem 3: Effect of Stress Anisotropy (Differential Stress)

Consider the following problem, Wellbore: vertical; Site: onshore, 2 km of depth, $\lambda_p=0.44$, $\sigma_{hmin}=0.4\sigma_V$; Rock properties: UCS=7MPa, q=3.9, $T_s=2MPa$. Calculate wellbore pressure and corresponding mud weight for (i) $w_{BO}=45^\circ$, (ii) $w_{BO}=0^\circ$, and (iii) for inducing tensile fractures for

```
(a) \sigma_{Hmax} = 0.6 \sigma_V
```

(b) $\sigma_{Hmax} = 0.8\sigma_V$

(c) $\sigma_{Hmax} = 1.0\sigma_V$

```
In [6]: import pandas as pd
    excel_file = 'HW5.xlsx'
    DataQ3Summary = pd.read_excel(excel_file, sheet_name=4)
    DataQ3Summary.head(3)
```

Out[6]:

	σHmax/ σV	σHmax/ σhmin	wBO [°]	PwBO [MPa]	Pwshear [MPa]	Pb [MPa]	PwBO [ppg]	Pwshear [ppg]	Pb [ppg]	-	wBO [°].1	PwBO [MPa].1	Pwshear [MPa].1	Pb [MPa].1	PwBO [ppg].1	Pwshear [ppg].1	Pb [ppg].1
(0.6	1.5	45	25.6	26.2	37.7	10.7	11.0	15.8	-	0	26.2	26.2	37.7	11.0	11.0	15.8
1	0.8	2.0	45	28.1	29.3	32.5	11.7	12.2	13.6	-	0	29.3	29.3	32.5	12.2	12.2	13.6
2	1.0	2.5	45	30.6	32.5	27.4	12.8	13.6	11.5	-	0	32.5	32.5	27.4	13.6	13.6	11.5

```
In [7]: import numpy as np
           import matplotlib.pyplot as plt
           σHmaxσhminratio = DataQ3Summary['σHmax/σhmin']
           PwBO_45 = DataQ3Summary['PwBO [MPa]']
           Pwshear 45 = DataQ3Summary['Pwshear [MPa]']
           Pb_45 = DataQ3Summary['Pb [MPa]']
           PwBO_0 = DataQ3Summary['PwBO [MPa].1']
Pwshear_0 = DataQ3Summary['Pwshear [MPa].1']
           Pb_0 = DataQ3Summary['Pb [MPa].1']
           # Change plot size
           fig = plt.gcf()
           fig.set_size_inches(20, 5)
           # Plot data
           plt.subplot(1, 2, 1)
           plt.plot(PwBO_45,GHmaxohminratio,'tab:orange', label='$P_{wBO}$')
plt.plot(Pwshear_45,GHmaxohminratio,'tab:blue', label='$P_{wshear}$')
           plt.plot(Pb_45, \u03c4Hmax\u03c6hminratio, 'tab:gray', label='\u03c4P_b\u03c4')
           # Plot labels
           plt.xlabel('Wellbore Pressure [MPa]')
plt.ylabel('$\sigma_{Hmax}/\sigma_V$')
plt.title('Wellbore Breakout Angle ($w_{BO}$) of 45°')
           plt.legend()
           # Axis range
           plt.xlim([20, 40])
           plt.ylim([1, 3])
           plt.show()
```



```
In [8]: # Change plot size
fig = plt.gcf()
fig.set_size_inches(9, 5)
# Plot data
plt.plot(PwBO_0, oHmaxohminratio, 'tab:blue', label='$P_{wBO}=P_{wshear}$')
plt.plot(Pb_0, oHmaxohminratio, 'tab:gray', label='$P_b$')
# Plot Labels
plt.xlabel('wellbore Pressure [MPa]')
plt.ylabel('$\sigma_{Hmax}/\sigma_v$')
plt.title('wellbore Breakout Angle ($w_{BO}$) of 0°')
plt.legend()
# Axis range
plt.xlim([20, 60])
plt.ylim([1, 3])
plt.show()
```


(d) How does the drilling mud window change with σ Hmax/ σ Hmin?

As $\sigma_{Hmax}/\sigma_{hmin}$ increases, the mud window becomes narrower. The wellbore becomes unstable when P_b is smaller than P_{wBO} . More stress anisotropy creates a less stable wellbore.

Problem 4: Offshore

Consider the same formation as above but in offshore conditions, Wellbore: vertical; Site: offshore, 2 km of total depth, 500 m of water, hydrostatic pore pressure, $\sigma_{hmin}=0.4\sigma_V$, $\sigma_{Hmax}=0.8\sigma_V$; Rock properties: UCS=7MPa, q=3.9, $T_s=2MPa$. Calculate wellbore pressure and corresponding mud weight for (i) $w_{BO}=45^\circ$, (ii) $w_{BO}=40^\circ$, and (iii) for inducing tensile fractures.

```
In [9]: import pandas as pd

excel_file = 'HW5.xlsx'
DataQ3Summary = pd.read_excel(excel_file, sheet_name=6)
DataQ3Summary.head(3)
```

Out[9]:

	wBO [°]	PwBO [MPa]	Pwshear [MPa]	Pb [MPa]	PwBO [ppg]	Pwshear [ppg]	Pb [ppg]
0	0	26.6	26.6	29.9	11.1	11.1	12.5
1	45	25.7	26.6	29.9	10.7	11.1	12.5

Problem 5: Horizontal Wells

Evaluate wellbore stability for horizontal wells that you will need to exploit in a gas reservoir subjected to a strike-slip stress environment.

(a) Draw cross-sections of wellbores drilled parallel to S_{hmin} and S_{Hmax} , identify involved stresses, and clearly mark expected positions of tensile fractures and wellbore breakouts.

In a strike-slip fault we have $S_{hmin} < S_{v} < S_{Hmax}$

- (b) The horizontal wells lie at about 8000ft depth where it is estimated that $S_h min = 50 MPa$, $S_H max = 70 MPa$ and $\lambda_p = 0.6$. The unconfined compressive strength of the rock is 8500psi, $\mu = 1.0$, and $T_s = 0 psi$ is a good estimate for tensile strength, given the large density of natural fractures. Determine the mechanical stability limits on wellbore pressure for both horizontal well directions considered.
- (c) Determine mud density window appropriate for these wells (keep in mind potential lost circulation).

```
In [10]: import pandas as pd
    excel_file = 'HW5.xlsx'
    Datag3Summary = pd.read_excel(excel_file, sheet_name=8)
    Datag3Summary.head(3)
```

Out[10]:

Horizontal Well Direction	σmax	σmin	wBO [°]	PwBO [psi]	Pwshear [psi]	Pb [psi]	PwBO [ppg]	Pwshear [ppg]	Pb [ppg]
0 Horizontal in direction of SHmax	3200	2450	45	4538	4602	8950	10.9	11.1	21.5
1 Horizontal in direction of Shmin	5350	3200	45	5253	5437	9050	12.6	13.1	21.8

(d) Which one appears to have a wider mud window? Justify

The lateral drilled parallel to maximum horizontal stress has a wider mud window because the difference between the inplane max and min stress $(\sigma_{Hmax} - \sigma_{hmin})$ is smaller