E 271

OFFLINE ENDSEM ASSIGNMENT

SUBMITTED BY:

MEGH MANOJ BHALERAD

16 EE234

ACADEMIC SESSION January-May 2020

End Semester Examination (Partial)

Course Code : EE871 Course Title : Machine Learning Credits : 3-1-2 : 5 Instructor : Dr. Jora M. Gonda

Weight : 20% Marks : $5 \times 7 = 35$

1. Die name (H_M) and $Pr(H_M \mid \underline{x})$; $H_M \in \mathcal{H} = \{H_4, H_6, H_8, H_{12}, H_{20}\}$ and $\underline{x} = [4, 2, 4, 7, 5]$

Die name (H_M)	$\Pr(H_M \mid \underline{x})$
H8	0.878

- Pr(like|<u>x</u>), <u>x</u> = [round, thick, grey, medi, dark]=.0.25.
- 3. The filled Table is:

	Predicted				
Actual	0	1	Total		
0	217	46	263		
1	26	226	252		
Total	243	272	515		

i) Sensitivity	ii) F1-Score
0.8968	0.8625

- 4. List of indices used for deciding optimal threshold in classification:
 - i) From ROC

ii) Geometric mean of sensitivity and specificity

iii) Youden's J-statistic

iv) From precision v/s recall curve

- v) From F-score or F1-score
- 5. The confusion matrix is:

$p \ge 0.7$	Predicted			
Actual	RED	BLUE	Total	
RED	253	10	263	
BLUE	95	157	252	
Total	348	167	515	

6. The Entropies are:

Outlook	Temperature	Humidity	Wind
0.8364	0.9111	0.78845	0.9242

and the root node is: Humidity

- 7. The results are:
 - The null Hypothesis (H₀) is

• The Alternative Hypothesis (H_01) is

• The test-statistic is (formula)

Value of the test-statistic is

• Threshold on Test statistic is

• Conclusion about the Hypothesis is

: Mean Burning rate is 50 cm/s

: Mean Burning rate differs from 50 cm/s

(sample mean-population mean)/(standard deviation/sqrt(sample size))

: 3.25

: greater than 1.96 and less than -1.96

: Reject the null hypothesis and the mean burning rate differs from 50 cm/s. There is strong evidence to suggest that mean burning rate is greater than 50 cm/s D Since the probability of the 8-faced die is the highest after the last draw = 0.8776, thence it is the die which was chosen.

	D = 4				
Num faces	Hypothesis	Prior (P(H))	P(D H)	P(H) * P(D H)	Posterior (P(H D))
4	H4	0.2	0.25	0.05	0.355029585798816
6	H6	0.25	0.16666666666667	0.041666666666667	0.295857988165681
8	H8	0.2	0.125	0.025	0.177514792899408
12	H12	0.2	0.083333333333333	0.016666666666667	0.118343195266272
20	H20	0.15	0.05	0.0075	0.053254437869823
				0.140833333333333	
	D = 2				
Num faces	Hypothesis	Prior (P(H))	P(D H)	P(H) * P(D H)	Posterior (P(H D))
4	H4	0.355029586	0.25	0.088757396449704	0.513698630136987
6	H6	0.295857988	0.16666666666667	0.04930966469428	0.285388127853881
8	H8	0.177514793	0.125	0.022189349112426	0.128424657534246
12	H12	0.118343195	0.083333333333333	0.009861932938856	0.057077625570776
20	H20	0.053254438	0.05	0.002662721893491	0.01541095890411
				0.172781065088757	

27		D = 4					
28	Num faces	Hypothesis	Prior (P(H))	P(D H)	P(H) * P(D H)	Posterior (P(H D))	
29	4	H4	0.51369863	0.25	0.128424657534247	0.650022871175096	
30	6	H6	0.285388128	0.16666666666667	0.047564687975647	0.240749211546332	
31	8	H8	0.128424658	0.125	0.016053082191781	0.081252858896887	
32	12	H12	0.057077626	0.083333333333333	0.004756468797565	0.024074921154633	
33	20	H20	0.015410959	0.05	0.000770547945205	0.003900137227051	
34					0.197569444444444		
35							
36							
37							
38		D = 7					
39	Num faces	Hypothesis	Prior (P(H))	P(D H)	P(H) * P(D H)	Posterior (P(H D))	
40	4	H4	0.650022871	0	0	0	
41	6	H6	0.240749212	0	0	0	
42	8	H8	0.081252859	0.125	0.010156607362111	0.821874441937107	
43	12	H12	0.024074921	0.083333333333333	0.002006243429553	0.1623455687777	
44	20	H20	0.003900137	0.05	0.000195006861353	0.015779989285193	
45	,				0.012357857653016		
46							
47		D = 5					
48	Num faces	Hypothesis	Prior (P(H))	P(D H)	P(H) * P(D H)	Posterior (P(H D))	
49	4	H4	0	0	0	0	
50	6	H6	0	0.166666666666667	0	0	
51	8	H8	0.821874442	0.125	0.102734305242138	0.877680138972523	
52	12	H12	0.162345569	0.083333333333333	0.013528797398142	0.115579277560168	
53	20	H20	0.015779989	0.05	0.00078899946426	0.006740583467309	
54					0.11705210210454		

2)
$$x = [round, thick, greep, medium, dark]$$

Determine all held like $x = \frac{1}{2}$

Determine the probability =>
$$Pr(like | x)$$

$$P_r\left(x_1 \mid l_{ike}\right) = P\left(x_1 = round \mid l_{ike}\right) = \frac{2}{8} = \frac{1}{4}$$

$$P(\chi_3 = \text{thick} | \text{like}) = \frac{4}{8} = \frac{1}{2}$$

$$P\left(\chi_3 = \text{grey} \mid \text{like}\right) = \frac{4}{8} = \frac{1}{2}$$

$$P(x_4 = \text{medi} | \text{like}) = \frac{2}{8} = \frac{1}{4}$$

$$P(x|like) = \prod_{i=1}^{5} P(x_i|like) = \frac{1}{512}$$

$$P(like|x) = \frac{P(x|like) \times P(like)}{P(x)}$$

$$P(x) = \frac{P(x|like) \times P(like)}{P(x)}$$

$$P(x) = P(x|x) + P(x'=$$

$$P(x) = P(x|x) \cdot P(x|ke) \cdot P(x|ke) \cdot P(x|ke) \cdot P(x|x|ke)$$

$$P(x | dislike) \Rightarrow TP(x_i | dislike)$$

$$=\frac{3}{256}$$
 = $P(x|dislike)$

$$P(like) = \frac{8}{12}$$
, $P(dislike) = \frac{4}{12}$

$$P(x) = \frac{1}{512} \times \frac{8}{12} + \frac{3}{256} \times \frac{4}{12}$$

$$P(x) = \frac{1}{192}$$

$$P(x) = \frac{1}{192} \times \frac{8}{12} = \frac{1}{4}$$

$$P(x) = P(x) = \frac{1}{192} \times \frac{8}{12} = \frac{1}{4}$$

$$P(x) = P(x) = \frac{1}{192} \times \frac{8}{12} = \frac{1}{4}$$

$$P(x) = P(x) = \frac{1}{192} \times \frac{8}{12} = \frac{1}{4}$$

$$P(x) = \frac{1}{192} \times \frac{8}{12} = \frac{1}{4}$$

$$P(x) = \frac{1}{192} \times \frac{8}{12} = \frac{1}{4}$$

$$P(x) = \frac{1}{192} \times \frac{8}{12} = \frac{1}{4}$$

(i) F1 more =
$$\frac{2 \times \text{precision} \times \text{recall}}{\text{precision} + \text{recall}}$$

$$\frac{dp}{dp} = \frac{(1,1)}{(1,1) + (1,1)$$

Recall =
$$\frac{tp}{tp+fn}$$
 => Sensitivity = 0.8968

- 4) Indices for optimal threshold in classification.
 - (i) Geometric mean of sensitivity and specificity. Higher the value, our classifier is better. Choose the threshold having higherst GM of Sensitivity and specificity.
 - (11) Youden Index: Youden index is the rertical distance between the 45° line and the point on the Roc curve. Formula for Youden index is >> YI = Densitivity + Specificity -1
- -> Higher values of YI better than lower Values

 -> choose throshold with highest Youden Index

 (iii) Precision and Reall Curre. The precision recall

curve shows the trade off between precision and recall for different thresholds. Higher area means

- higher precision and recall.

 Nigher precision and recall.

 (hoose the P and R value)

 Closest b (1.1) point

 R
- (iv) F-Kore: Measure of tests accuracy. Threshold (+) [Recall -)

F1-8we + Harmonic mean of precision 4 recall

-> beller Higher F- score one threshold with highest Fscon the @ Choose (V) ROC (urve: True positive rate against the False rate at various threshold settings corresponding to and closest distance to (0,1) i.e and D=FPR

5) (P>, 0.7)	Predi	ded		
Adual	Red	Blue	Total	2 005
Red	253	10	213	⇒2 PDF3 girer
Blue	95	157	252	
Total	348	167	515	

$$5 = -P_{+} \log P_{-} - P_{-} \log P_{-} = -\frac{9}{14} \log_{10} \left(\frac{9}{14}\right) - \frac{5}{14} \log_{10} \left(\frac{5}{14}\right)$$

$$= 0.9403$$

1) Split based on Outlook:

Outlook

Raing

Sonn of Overcost

Neg: 3

Neg: 1

Pos: 4

Pos: 3

Pos: 3

$$-\frac{3}{5}\log_2\left(\frac{3}{5}\right) - \frac{2}{5}\log_2\left(\frac{2}{5}\right) - \frac{1}{4}\log_2\left(\frac{1}{4}\right)$$

$$= 0.971$$

$$= 0.8113$$
Paing

Raing

Neg: 1

Pos: 4

Pos

$$\Rightarrow \frac{5}{14} \times 0.971 + \frac{4}{14} \times 0.8113 + \frac{5}{14} \times 0.7219$$

$$T.G = \Delta S = 0.9403 - 0.8364 = 0.1039$$

$$T.G = S_1 - S_f = 0.02942$$

 $-\frac{2}{5}\log\left(\frac{2}{5}\right) - \frac{5}{7}\log\left(\frac{5}{7}\right) - \frac{3}{7}\log_{2}\left(\frac{3}{7}\right) - \frac{4}{7}\log_{2}\left(\frac{4}{7}\right)$ = 0.8631 = 0.98510.8631 + 0.9852 = 0.9241\$ $\Delta S = S_{i} - S_{t} = 0.01615$ - Hence, highest into gain is in Humidity Hence root node is Humidity)

F) Ma mean burning rate = 50 cm/s = Ho H1 =: U = 50 cm/sec o= 2 cm/sec X= 0.05 The test statistic is (Normalized): $\overline{Z}_{0} = \frac{\overline{\chi} - \mu_{0}}{\sigma/\sqrt{n}} \Rightarrow \frac{51.3 - 50}{2/\sqrt{2}} = \frac{3.25}{2}$ RXXXX SID Since, d= 0.05, - and 0.05 = 0.025 6n either sides of the Normalized gaussian dishbutin F_{W} $\frac{2}{5} > 1.96 \rightarrow d(area) = 0.025$ $\frac{1}{20} < -1.96 \rightarrow d(area) = *0.025$ Hence, witical region bound ares are 0.025 -1.91 D.96 20002r=1.96 7@ -0.025 = -1.96

Dince 20 = 3.27 > 1.96, we reject to Well Hypothesi U: 50 at the 0.05 level of significance. Stated more completely we conclude that the mean burning rate differs from 50 cm/sec, based on a sample of 25 measurements. In fact, there is strong evidence that the mean burning rate exceeds 50 cm/sec.