

SEQUENCE LISTING

<110> Wu, Shilan
Hayashi, Jon H.
Kinne, Lyle P.
Dierks, Peter M.

<120> Lepidoptera Voltage-Gated Calcium Channels

<130> FMC 60290

<160> 83

<170> PatentIn version 3.2

<210> 1
<211> 5047
<212> DNA
<213> Heliothis virescens

<400> 1
ggttggcggc agcgcaggag gcggcgaaaa cgcaggctcg cgcggcgcca gctgatacca 60
tgggcggcgc gcaccagccc gctactccag gcccgagctc actctttata tttgccgacg 120
aaaatcctat tcggaggtac acaaagttca tcatcgagt gcccggcttc gagtacgcgg 180
tgctgcttac catcatcgcc aactgcgtgg tgctggcgct ggaggagcat ttgcctaacf 240
gcpataagac catcttagca cagaatctgg aaaagaccga ggcgtacttt ttaggaatat 300
tttgtttaga agcctcgtaaaaatcttag ccttaggttt tgttttacac agggatcgt 360
atcttaggaa cgtttggAAC atcatggatt tttcggtt agtaactggt atcatcacgc 420
agctgcccgt cgcgcagcc gacgtcgact tcaggacctt gcgtgccatt aggggtgctga 480
ggccccctaa attagtatcg ggcgttccta gtctgcaagt ggtactgaag tccatcataa 540
aggcgatggc gccgttgctg cagatcgcc tcctgggtct tttcgcgata gtcatcttcg 600
ctatcatcggt cctcgagttc tactcagggg cgctgcataa gacttggat aatttagaaag 660
atatttagtga aatagtaaat gaaggcgata gtgcgacgcc gtgttaacgcg gacaacgtga 720
gttttagcacc atttggggca aacgtgtgtg attatgagaa gagcacgtgt ttagagaaat 780
gggagggggcc gaacaggggt attacgtcct tcgacaacat cggcttcgct atgctcaccc 840
tcttccagtg cattaccatg gagggctgga ccgcaatcct ctattggacg aatgacgcgc 900
taggttagtgc gttcaactgg atttactttg tgcctctcat agtattgggt tcattctta 960
tgctcaactt agttctcggt gtccttagcg gtgagttcgc taaagaaaga gagaaagtag 1020
aaaatagaca agaatttctt aaattaagaa gacagcagca actcgagaga gaactcaatg 1080
gttacgttga gtggatttgg aaagcagagg aagtaatatt agcagaagaa agaacaacag 1140
aagaagaaaa aatgcacata atagaagcac ggagaagagc agcggccaaa aagaagttaa 1200
aaaaccttgg taaaagtaaa agcacagata cagaagagga agaacaagat gaagactgcg 1260
gtgatgacgg tttctaaaaa agcaaagctc ggtcagccgg gaggttgcg gacttctggc 1320

gggctgagaa gaggtttcg	tttggatca ggcacacagt	gaagacccag tggttctact	1380
ggtcgtcat tgtcttggtg	ctcttcaaca cgatatgcgt	cgctgttagag cattatagac	1440
aacccaagtg gctgacttcg	ttttatact atgccgaatt	tgtttcctg gggttgtca	1500
tgatggagat gtgggtgaag	atgtatgcgc ttgggcccgc	aatctacttc gagtcgtcct	1560
tcaaccggtt cgactgcgtg	gtcatctccg gctccatctt	cgaggtcgtg tggtctgagg	1620
tcaagggtgg ctccctcggt	ctatctgtcc tgagagctct	aagactgtt aggatattta	1680
aggtcaccaa gtactggtca	tcgctccgga acctggtgat	atctctcctc aactcaatga	1740
gatccatcat ctcgctgctg	ttccctgctct tcctgttcat	tctcatcttc gcactgctcg	1800
gcatgcagct gttcggggga	cagttcaact tcgaggacgg	cacgcccgg accaacttca	1860
acacctttcc tatcgcggtt	ttaactgtct tccagatcct	aacaggtgaa gattggaacg	1920
aagtgtatgt a tagcggcattc	cagtcacagg gcggcatcca	gagaggcatg atctactctc	1980
tatactttgt catcctcgtc	ttatttggca actacacgct	gctgaacgtg ttcccttgcta	2040
tcgctgtcga caacttggct	aacgcccagg aattgacggc	ggcagaagag gaacaagtcg	2100
aggaggacaa ggagaaaacag	ctccaggaat tggagaaaagg	gatgggtgca ttacacgcgg	2160
tggacggcac tccaccggga	gtagatctaa gtccctcttc	gccgacgagt aggaagaaca	2220
aaaagaaaaga agaggccaaa	aaagaagatg aagatgaggt	accagatgga cccaaaaccaa	2280
tgctgccata ttctgtccatg	tttattttgt cacctactaa	tccaaattagg cgaggcgcac	2340
actgggttgt aaatttaaga	tatttgatt ttttatcat	ggtagttata tgtatgagtt	2400
ctgcggcttt agcggctgaa	gaccccgtag tggagagag	tgacaggaac aaaatcctga	2460
actacttcga ttacgcgttc	acgggcgtgt tcaccgtgga	gatgctgctg aagatagtgg	2520
acctcggcat cctgttccac	ccgggcccct acctgcgcga	cctgtggaac atcatggatg	2580
ccgcccgtgt catatgcgccc	cttgcagct tcggatttga	gatcggaggc gtaaaaaagg	2640
gggcggggca gaatctgtcc	acaataaaat cgtaagagt	gttacgagtg ctcagacctt	2700
tgaaaactat aaaacgagtt	ccaaagttaa aagcagtgtt	tgactgtgtt gtgaactctt	2760
tgaaaaacgt cattaacatt	ctcattgtgt acatattgtt	tcaattcata ttgcgtgaa	2820
ttgcagttca acttttaat	ggtaaatttt ttcactgcaa	cgatatcagt aagaataactt	2880
ttgaagactg ccaagggtcg	tatbtcgtgt acgagtcaaa	cagcttgctg ccgaaagtca	2940
accagcgcac gtggacgacg	caatccctcc attacgacaa	cgtcgccgtg gctatgctta	3000
cgtgttcgc cgtgcagact	ggggaggggt ggccacaagt	attacaaaat tcaatggccg	3060
ccacctacga agacagggga	cccatacaaa atttcgaat	agaaatgtcc atattttata	3120
tagttactt cgtgggtttt	cctttcttct ttgttaacat	attcgtagct ctgataatta	3180
tcacatttca agagcaggc	gaagctgagc ttcaaggatgg	tgaatttgat aagaatcaga	3240

aatcgtgtat agacttcacg atagaagcgc gacctctcgagggtatatg ccaagcaaaa 3300
gggcgagttt taagtacaaa gtgtggagaa tagttgtctc tacgccctc gagtacttca 3360
tcatgacgct gatcgccctc aacacattgt tgctcatgtat gaagttcac gaggctccac 3420
cactactcat ggacatatta acattcatga acctcgtctt tacgaccctc ttccttctcg 3480
agaccgtatt gaagctgatc gccttcgggt gtacgaattt ttcaaagac ctttggaaata 3540
cattcgattt tattacggtc attgaaagta ttattgacgc cctcattatg gagtttggcg 3600
agaacacatt caacgtcggt ttccttcgccc tggccgagc cgccgactg atcaagctgc 3660
tccgacaggg ctacactatt cgatactgc tctggacatt cgtcagagt ttcaaagcct 3720
taccctacgt gtgccttctc atcgcatgc tattcttcat ctacccatc atcggatgc 3780
aggtgtttgg caatatagaa ttaacaccag agtctgacat gaacagacac aacaatttc 3840
gaagcttcat tcaagcactc atgctactgt tcagatgcgc aacggcgag tcgtggcca 3900
acataatgtt ggcttgccgc aaacccgcca agtgcgacat agcagctgga aaggcctcca 3960
acgaagaatg tggaaagtacg ctgcctacg cctacttcgt atctttata ttcttctgtt 4020
cgtttcttat gttgaatttg ttctgtctg ttattatgga taactttgac tacctaacga 4080
gggactcgtc catcctcgcc gcacatcatc ttgatgaatt tgtagaata tggcgagaat 4140
atgatccaaa cgccacgggt aagatccatt atacagaat gtatgatag ttgaagaata 4200
tggatccgcc tctggggttt ggtacaataat gtccaaatag actagcatat aagaagctt 4260
ttagaatgaa tatgccgcta gacgatgagg ggaaagttaa tttacaaca acactattt 4320
ccttaatacg agaaaaacttg aacataaaaa tgagatctcc cgaggaaatg gaccaagcag 4380
atgaggaatt aaggaaaca ataacccaca tttggccatt acaagcgaag aagatgctg 4440
acctgctgggt gcctcgaaac gatgtactca acgctggaaa actgaccgtc gggagat 4500
acgctggact tctaattcctc gagagttgga gatctacaag gttcaagcag aatgggtttc 4560
cggtacttggaa actacaagga tcacaccacg cctcaatggc gtcgttggac gagggacggt 4620
tacaagctcc tcacacgtac cagaatggac accaccatgg gagatcatcc agtttaagac 4680
gaacgcccag tccaagaaga cgaggccact acggaggta tcatcacgt atcggattct 4740
cagacaccgt cagcaacgtc gtcgagatag taaagcatga acaccagaga cacggcgaa 4800
cgcacagagc gccccactac taccacccac atgtttggc cccgataggt gagcggagc 4860
gggaccgcga gtggcgggag tggcgcgacc gtcctggc ggcgcgggc ggcgcggcg 4920
ggccgcggccg ccagttgccc cccacgcccc ccaagccgtc cacgctacag gtcaagcagc 4980
agccacccat caccagaatc agccacagcc cctcacactt atcgctaagg cacaccgtca 5040
gagaacc 5047

<210> 2
<211> 1662
<212> PRT
<213> Heliothis virescens

<400> 2

Met Gly Gly Ala His Gln Pro Ala Thr Pro Gly Pro Ser Ser Leu Phe
1 5 10 15

Ile Phe Ala Asp Glu Asn Pro Ile Arg Arg Tyr Thr Lys Phe Ile Ile
20 25 30

Glu Trp Pro Pro Phe Glu Tyr Ala Val Leu Leu Thr Ile Ile Ala Asn
35 40 45

Cys Val Val Leu Ala Leu Glu Glu His Leu Pro Asn Gly Asp Lys Thr
50 55 60

Ile Leu Ala Gln Asn Leu Glu Lys Thr Glu Ala Tyr Phe Leu Gly Ile
65 70 75 80

Phe Cys Val Glu Ala Ser Leu Lys Ile Leu Ala Leu Gly Phe Val Leu
85 90 95

His Arg Gly Ser Tyr Leu Arg Asn Val Trp Asn Ile Met Asp Phe Phe
100 105 110

Val Val Val Thr Gly Ile Ile Thr Gln Leu Pro Ile Ala Pro Ala Asp
115 120 125

Val Asp Phe Arg Thr Leu Arg Ala Ile Arg Val Leu Arg Pro Leu Lys
130 135 140

Leu Val Ser Gly Val Pro Ser Leu Gln Val Val Leu Lys Ser Ile Ile
145 150 155 160

Lys Ala Met Ala Pro Leu Leu Gln Ile Gly Leu Leu Val Leu Phe Ala
165 170 175

Ile Val Ile Phe Ala Ile Ile Gly Leu Glu Phe Tyr Ser Gly Ala Leu
180 185 190

His Lys Thr Cys Tyr Asn Leu Glu Asp Ile Ser Glu Ile Val Asn Glu
195 200 205

Gly Asp Ser Ala Thr Pro Cys Asn Ala Asp Asn Val Ser Leu Ala Pro
210 215 220

Phe Gly Ala Asn Val Cys Asp Tyr Glu Lys Ser Thr Cys Leu Glu Lys
Page 4

225

230

235

240

Trp Glu Gly Pro Asn Arg Gly Ile Thr Ser Phe Asp Asn Ile Gly Phe
245 250 255

Ala Met Leu Thr Val Phe Gln Cys Ile Thr Met Glu Gly Trp Thr Ala
260 265 270

Ile Leu Tyr Trp Thr Asn Asp Ala Leu Gly Ser Ala Phe Asn Trp Ile
275 280 285

Tyr Phe Val Pro Leu Ile Val Leu Gly Ser Phe Phe Met Leu Asn Leu
290 295 300

Val Leu Gly Val Leu Ser Gly Glu Phe Ala Lys Glu Arg Glu Lys Val
305 310 315 320

Glu Asn Arg Gln Glu Phe Leu Lys Leu Arg Arg Gln Gln Gln Leu Glu
325 330 335

Arg Glu Leu Asn Gly Tyr Val Glu Trp Ile Cys Lys Ala Glu Glu Val
340 345 350

Ile Leu Ala Glu Glu Arg Thr Thr Glu Glu Glu Lys Met His Ile Ile
355 360 365

Glu Ala Arg Arg Arg Ala Ala Lys Lys Lys Leu Lys Asn Leu Gly
370 375 380

Lys Ser Lys Ser Thr Asp Thr Glu Glu Glu Glu Gln Asp Glu Asp Cys
385 390 395 400

Gly Asp Asp Gly Phe Leu Lys Ser Lys Ala Arg Ser Ala Gly Arg Phe
405 410 415

Ala Asp Phe Trp Arg Ala Glu Lys Arg Phe Arg Phe Trp Ile Arg His
420 425 430

Thr Val Lys Thr Gln Trp Phe Tyr Trp Phe Val Ile Val Leu Val Leu
435 440 445

Phe Asn Thr Ile Cys Val Ala Val Glu His Tyr Arg Gln Pro Lys Trp
450 455 460

Leu Thr Ser Phe Leu Tyr Tyr Ala Glu Phe Val Phe Leu Gly Leu Phe
465 470 475 480

Met Met Glu Met Trp Val Lys Met Tyr Ala Leu Gly Pro Arg Ile Tyr
Page 5

485

490

495

Phe Glu Ser Ser Phe Asn Arg Phe Asp Cys Val Val Ile Ser Gly Ser
500 505 510

Ile Phe Glu Val Val Trp Ser Glu Val Lys Gly Gly Ser Phe Gly Leu
515 520 525

Ser Val Leu Arg Ala Leu Arg Leu Leu Arg Ile Phe Lys Val Thr Lys
530 535 540

Tyr Trp Ser Ser Leu Arg Asn Leu Val Ile Ser Leu Leu Asn Ser Met
545 550 555 560

Arg Ser Ile Ile Ser Leu Leu Phe Leu Leu Phe Leu Phe Ile Leu Ile
565 570 575

Phe Ala Leu Leu Gly Met Gln Leu Phe Gly Gly Gln Phe Asn Phe Glu
580 585 590

Asp Gly Thr Pro Pro Thr Asn Phe Asn Thr Phe Pro Ile Ala Leu Leu
595 600 605

Thr Val Phe Gln Ile Leu Thr Gly Glu Asp Trp Asn Glu Val Met Tyr
610 615 620

Asp Gly Ile Gln Ser Gln Gly Gly Ile Gln Arg Gly Met Ile Tyr Ser
625 630 635 640

Leu Tyr Phe Val Ile Leu Val Leu Phe Gly Asn Tyr Thr Leu Leu Asn
645 650 655

Val Phe Leu Ala Ile Ala Val Asp Asn Leu Ala Asn Ala Gln Glu Leu
660 665 670

Thr Ala Ala Glu Glu Glu Gln Val Glu Glu Asp Lys Glu Lys Gln Leu
675 680 685

Gln Glu Leu Glu Lys Gly Met Gly Ala Leu His Ala Val Asp Gly Thr
690 695 700

Pro Pro Gly Val Asp Leu Ser Pro Ser Ser Pro Thr Ser Arg Lys Asn
705 710 715 720

Lys Lys Lys Glu Glu Ala Lys Lys Glu Asp Glu Asp Glu Val Pro Asp
725 730 735

Gly Pro Lys Pro Met Leu Pro Tyr Ser Ser Met Phe Ile Leu Ser Pro
Page 6

740

745

750

Thr Asn Pro Ile Arg Arg Gly Ala His Trp Val Val Asn Leu Arg Tyr
755 760 765

Phe Asp Phe Phe Ile Met Val Val Ile Cys Met Ser Ser Ala Ala Leu
770 775 780

Ala Ala Glu Asp Pro Val Val Glu Glu Ser Asp Arg Asn Lys Ile Leu
785 790 795 800

Asn Tyr Phe Asp Tyr Ala Phe Thr Gly Val Phe Thr Val Glu Met Leu
805 810 815

Leu Lys Ile Val Asp Leu Gly Ile Leu Phe His Pro Gly Ala Tyr Leu
820 825 830

Arg Asp Leu Trp Asn Ile Met Asp Ala Ala Val Val Ile Cys Ala Leu
835 840 845

Val Ser Phe Gly Phe Glu Ile Gly Gly Val Lys Lys Gly Ala Gly Gln
850 855 860

Asn Leu Ser Thr Ile Lys Ser Leu Arg Val Leu Arg Val Leu Arg Pro
865 870 875 880

Leu Lys Thr Ile Lys Arg Val Pro Lys Leu Lys Ala Val Phe Asp Cys
885 890 895

Val Val Asn Ser Leu Lys Asn Val Ile Asn Ile Leu Ile Val Tyr Ile
900 905 910

Leu Phe Gln Phe Ile Phe Ala Val Ile Ala Val Gln Leu Phe Asn Gly
915 920 925

Lys Phe Phe His Cys Asn Asp Ile Ser Lys Asn Thr Phe Glu Asp Cys
930 935 940

Gln Gly Ser Tyr Phe Val Tyr Glu Ser Asn Ser Leu Leu Pro Lys Val
945 950 955 960

Asn Gln Arg Thr Trp Thr Thr Gln Ser Phe His Tyr Asp Asn Val Ala
965 970 975

Val Ala Met Leu Thr Leu Phe Ala Val Gln Thr Gly Glu Gly Trp Pro
980 985 990

Gln Val Leu Gln Asn Ser Met Ala Ala Thr Tyr Glu Asp Arg Gly Pro
Page 7

995

1000

1005

Ile Gln Asn Phe Arg Ile Glu Met Ser Ile Phe Tyr Ile Val Tyr
1010 1015 1020

Phe Val Val Phe Pro Phe Phe Val Asn Ile Phe Val Ala Leu
1025 1030 1035

Ile Ile Ile Thr Phe Gln Glu Gln Gly Glu Ala Glu Leu Gln Asp
1040 1045 1050

Gly Glu Ile Asp Lys Asn Gln Lys Ser Cys Ile Asp Phe Thr Ile
1055 1060 1065

Glu Ala Arg Pro Leu Glu Arg Tyr Met Pro Ser Lys Arg Ala Ser
1070 1075 1080

Phe Lys Tyr Lys Val Trp Arg Ile Val Val Ser Thr Pro Phe Glu
1085 1090 1095

Tyr Phe Ile Met Thr Leu Ile Val Leu Asn Thr Leu Leu Leu Met
1100 1105 1110

Met Lys Phe His Glu Ala Pro Pro Leu Leu Met Asp Ile Leu Thr
1115 1120 1125

Phe Met Asn Leu Val Phe Thr Thr Phe Phe Leu Leu Glu Thr Val
1130 1135 1140

Leu Lys Leu Ile Ala Phe Gly Cys Thr Asn Phe Phe Lys Asp Pro
1145 1150 1155

Trp Asn Thr Phe Asp Phe Ile Thr Val Ile Gly Ser Ile Ile Asp
1160 1165 1170

Ala Leu Ile Met Glu Phe Gly Glu Asn Thr Phe Asn Val Gly Phe
1175 1180 1185

Leu Arg Leu Phe Arg Ala Ala Arg Leu Ile Lys Leu Leu Arg Gln
1190 1195 1200

Gly Tyr Thr Ile Arg Ile Leu Leu Trp Thr Phe Val Gln Ser Phe
1205 1210 1215

Lys Ala Leu Pro Tyr Val Cys Leu Leu Ile Ala Met Leu Phe Phe
1220 1225 1230

Ile Tyr Ala Ile Ile Gly Met Gln Val Phe Gly Asn Ile Glu Leu

1235

1240

1245

Thr Pro Glu Ser Asp Met Asn Arg His Asn Asn Phe Arg Ser Phe
1250 1255 1260

Ile Gln Ala Leu Met Leu Leu Phe Arg Cys Ala Thr Gly Glu Ser
1265 1270 1275

Trp Pro Asn Ile Met Leu Ala Cys Arg Lys Pro Ala Lys Cys Asp
1280 1285 1290

Ile Ala Ala Gly Lys Ala Ser Asn Glu Glu Cys Gly Ser Thr Leu
1295 1300 1305

Ala Tyr Ala Tyr Phe Val Ser Phe Ile Phe Phe Cys Ser Phe Leu
1310 1315 1320

Met Leu Asn Leu Phe Val Ala Val Ile Met Asp Asn Phe Asp Tyr
1325 1330 1335

Leu Thr Arg Asp Ser Ser Ile Leu Gly Ala His His Leu Asp Glu
1340 1345 1350

Phe Val Arg Ile Trp Ala Glu Tyr Asp Pro Asn Ala Thr Gly Lys
1355 1360 1365

Ile His Tyr Thr Glu Met Tyr Asp Met Leu Lys Asn Met Asp Pro
1370 1375 1380

Pro Leu Gly Phe Gly Asn Lys Cys Pro Asn Arg Leu Ala Tyr Lys
1385 1390 1395

Lys Leu Ile Arg Met Asn Met Pro Leu Asp Asp Glu Gly Lys Val
1400 1405 1410

Asn Phe Thr Thr Thr Leu Phe Ala Leu Ile Arg Glu Asn Leu Asn
1415 1420 1425

Ile Lys Met Arg Ser Pro Glu Glu Met Asp Gln Ala Asp Glu Glu
1430 1435 1440

Leu Arg Glu Thr Ile Thr His Ile Trp Pro Leu Gln Ala Lys Lys
1445 1450 1455

Met Leu Asp Leu Leu Val Pro Arg Asn Asp Val Leu Asn Ala Gly
1460 1465 1470

Lys Leu Thr Val Gly Lys Ile Tyr Ala Gly Leu Leu Ile Leu Glu
Page 9

1475	1480	1485
Ser Trp Arg Ser Thr Arg Phe Lys Gln Asn Gly Val Pro Val Leu		
1490	1495	1500
Glu Leu Gln Gly Ser His His Ala Ser Met Glu Ser Leu Asp Glu		
1505	1510	1515
Gly Arg Leu Gln Ala Pro His Thr Tyr Gln Asn Gly His His His		
1520	1525	1530
Gly Arg Ser Ser Ser Leu Arg Arg Thr Pro Ser Pro Arg Arg Arg		
1535	1540	1545
Gly His Tyr Gly Gly Tyr His His Asp Ile Gly Phe Ser Asp Thr		
1550	1555	1560
Val Ser Asn Val Val Glu Ile Val Lys His Glu His Gln Arg His		
1565	1570	1575
Gly Arg Thr His Arg Ala Pro His Tyr Tyr His Pro His Val Trp		
1580	1585	1590
Ala Pro Ile Gly Glu Arg Glu Arg Asp Arg Glu Trp Arg Glu Trp		
1595	1600	1605
Arg Asp Arg Ser Trp Glu Arg Glu Gly Ala Arg Arg Gly Arg Gly		
1610	1615	1620
Arg Gln Leu Pro Pro Thr Pro Thr Lys Pro Ser Thr Leu Gln Val		
1625	1630	1635
Lys Gln Gln Pro Pro Ile Thr Arg Ile Ser His Ser Pro Ser His		
1640	1645	1650
Leu Ser Leu Arg His Thr Val Arg Glu		
1655	1660	
<210> 3		
<211> 429		
<212> DNA		
<213> Aphis gossypii		
<400> 3		
aggcgccggt tgccgccccac gcccaacaaa ccgtcgtcgc tgcagctccg gcccggcac		60
cactcggcct cgataaaactt tccgaagctg aacgcgtcgc cgacgcgcgg ccaaccggcc		120
tcgctgccca aaccgcccgcg cgtcaacatg tcgtccacgt cgacggccgc ggccgtggcc		180
cggcagagca tggccatgac cgccatgccg ccgctcagct tcgagcaggc catgtcgatc		240

ggccgcagt gccggctact gccgtcgccg gtgcgcaacg ggtacgcgtc gtcgtcgcc 300
aagcagcagc agcagcagca gcagccgtcg tcgtcgctgt cgggtccgc gatcaggcgg 360
caaaagagcg gcggcggtgg ccgggtgagc agccggcaca gcgattcgga cgaggacgac 420
tggtgctaa 429

<210> 4
<211> 142
<212> PRT
<213> *Aphis gossypii*

<400> 4

Arg Arg Arg Leu Pro Pro Thr Pro Asn Lys Pro Ser Ser Leu Gln Leu
1 5 10 15

Arg Pro Pro His His Ser Ala Ser Ile Asn Phe Pro Lys Leu Asn Ala
20 25 30

Ser Pro Thr Arg Gly Gln Pro Ala Ser Leu Pro Lys Pro Pro Pro Val
35 40 45

Asn Met Ser Ser Thr Ser Thr Ala Ala Ala Val Ala Arg Gln Ser Met
50 55 60

Ala Met Thr Ala Met Pro Pro Leu Ser Phe Glu Gln Ala Met Ser Ile
65 70 75 80

Gly Arg Ser Gly Arg Leu Leu Pro Ser Pro Val Arg Asn Gly Tyr Ala
85 90 95

Ser Ser Ser Ser Lys Gln Gln Gln Gln Gln Gln Pro Ser Ser Ser
100 105 110

Ser Ser Val Ser Ala Ile Arg Arg Gln Lys Ser Gly Gly Gly Arg
115 120 125

Val Ser Ser Arg His Ser Asp Ser Asp Glu Asp Asp Trp Cys
130 135 140

<210> 5
<211> 5306
<212> DNA
<213> *Heliothis virescens* and *Aphis gossypii*

<400> 5
cagctatac catggcgccg gcgcaccaggc ccgctactcc agggcccgac tcactctta 60
tatttgccga cgaaaatcct attcgaggt acacaaagtt catcatcgag tggccgcct
tcgagtagc ggtgctgctt accatcatcg ccaactgcgt ggtgctggcg ctggaggagc 120
180

attingctaa cgcgataag accatcttag cacagaatct ggaaaagacc gaggcgtact 240
ttttaggaat atttgtgta gaagcctcgtaaaaaatctt agccttaggt tttgtttac 300
acaggggatc gtatcttagg aacgttgaa acatcatgaa tttttcggtt gtagtaactg 360
gtatcatcac gcagctgccg atcgcgccag ccgacgtcga cttcaggacc ttgcgtgcca 420
ttagggtgct gaggcccctt aaatttagtat cgggcgttcc tagtctgcaa gtggtaactga 480
agtccatcat aaaggcgatg gcgcgttgc tgcagatcgg ctcctgggtt ctttcgcga 540
tagtcatctt cgctatcatc ggcctcgagt tctactcagg ggcgtcgtt aagacttgg 600
ataatttaga agatatttagt gaaatagtaa atgaaggcga tagtgcgacg ccgtgttaacg 660
cggacaacgt gagtttagca ccatttgggg caaacgtgtg tgattatgag aagagcacgt 720
gtttagagaa atgggagggg ccgaacaggg gtattacgtc cttcgacaac atcggcttcg 780
ctatgctcac cgtcttccag tgcattacca tggagggctg gaccgcaatc ctctattgga 840
cgaatgacgc gctaggttgt gcgttcaact ggatttactt tgtgcctctc atagtattgg 900
gttcattctt tatgctcaac ttagttctcg gtgtccttag cggtgagttc gctaaagaaa 960
gagagaaaagt agaaaaataga caagaatttc ttaaattaag aagacagcag caactcgaga 1020
gagaactcaa tggttacgtt gagtgattt gtaaaggcaga ggaagtaata ttagcagaag 1080
aaagaacaac agaagaagaa aaaatgcaca taatagaagc acggagaaga gcagcggcca 1140
aaaagaagtt aaaaaacctt ggtaaaagta aaagcacaga tacagaagag gaagaacaag 1200
atgaagactg cggtgatgac ggtttctaa aaagcaaagc tcggcagcc gggaggttt 1260
cggaacctcg gcgggctgag aagaggtttgc ggtttggat caggcacaca gtgaagaccc 1320
agtggttcta ctggttcgtc attgtcttgg tgctttcaa cacgatatgc gtcgtgttag 1380
agcattatag acaacccaag tggctgactt cgttttata ctatgccaa tttgtgttcc 1440
tggggttgtt catgatggag atgtgggtga agatgtatgc gcttgggccc cgaatctact 1500
tcgagtcgtc cttcaaccgg ttcgactgcp tggtcatctc cggctccatc ttcgaggtcg 1560
tgtggctctga ggtcaagggt ggctcctcg gtctatctgt cctgagagct ctaagactgt 1620
tgaggatatt taaggtcacc aagtactggt catcgctccg gaacctggtg atatctctcc 1680
tcaactcaat gagatccatc atctcgctgc tgttcctgct cttccgttcc attctcatct 1740
tcgcactgct cggcatgcag ctgttcccc gacagttcaa cttcgaggac ggcacgccc 1800
cgaccaactt caacaccttt cctatcggt tgtaactgt cttccagatc ctaacagggt 1860
aagattggaa cgaagtgtatg tatgacggca tccagtcaca gggcggcatc cagagaggca 1920
tgatctactc tctatacttt gtcatcctcg tcttatttgg caactacacg ctgctgaacg 1980
tgttccttgc tatcgctgtc gacaacttgg ctaacgccc ggaattgacg gcggcagaag 2040
aggaacaagt cgaggaggac aaggagaaac agctccagga attggagaaa gggatgggtg 2100

cattacacgc ggtggacggc actccaccgg gagtagatct aagtccctct tcgccgacga 2160
gtaggaagaa caaaaagaaa gaagaggcca aaaaagaaga tgaagatgag gtaccagatg 2220
gaccaaaacc aatgctgcca tattcgcca tgtttatttt gtcacctact aatccaatta 2280
ggcgaggcgc acactgggtt gtaaatttaa gatatttga ttttttatac atggtagtta 2340
tatgtatgag ttctgcggct ttagcggtg aagacccgt agtggaaagag agtgacagga 2400
acaaaaatcct gaactacttc gattacgcgt tcacggcgt gttcaccgtg gagatgctgc 2460
tgaagatagt ggacctcgcc atccgttcc acccgggcgc ctacctgcgc gacctgtgga 2520
acatcatgga tgccgcccgtc gtcatatgcg cccttgtca gttcggtttt gagatcgag 2580
gcgtaaaaaa gggggcgggg cagaatctgt ccacaataaa atcgttaaga gtgttacgag 2640
tgctcagacc tttgaaaact ataaaacgag ttccaaagtt aaaagcagtg tttgactgtg 2700
ttgtgaactc tttgaaaaac gtcattaaca ttctcattgt gtacatattt tttcaattca 2760
tattcgctgt aattgcagtt caactttta atggtaaatt ttttcaactgc aacgatata 2820
gtaagaatac ttttgaagac tgccaagggt cgtatccgt gtacgagtca aacagcttc 2880
tgccgaaagt caaccagcgc acgtggacga cgcaatcctt ccattacgac aacgtcggc 2940
tggctatgct tacgctgttc gccgtgcaga ctggggaggg gtggccacaa gtattacaaa 3000
attcaatggc cgccacctac gaagacaggg gaccataca aaattttca atagaaatgt 3060
ccatatttttata tagtttac ttcgtgggt ttccttctt ctttgttaac atattcgtag 3120
ctctgataat tattcacattt caagagcagg gcgaagctga gtttcaggat ggtgaaattt 3180
ataagaatca gaaatcgtgt atagacttca cgatagaagc gcgacctctc gagaggtata 3240
tgccaagcaa aaggcgagttttaagtaca aagtgtggag aatagttgtc tctacgcctt 3300
tcgagttactt catcatgacg ctgatcgcc tcaacacatt gttgctcatg atgaagttc 3360
acgaggctcc accactactc atggacatata taacattcat gaacctcgac tttacgac 3420
tcttccttctt ctagaccgtt ttgaagctga tcgccttcgg gtgtacgaat ttttcaag 3480
acccttggaa tacattcgat tttattacgg tcattggaaat tattattgac gccctcatta 3540
tggagtttgg cgagaacaca ttcaacgtcg gtttccttcg cctgttccga gccgcgcgac 3600
tgatcaagct gctccgacag ggctacacta ttcggataact gctctggaca ttcgtgcaga 3660
gtttcaaagc cttaccctac gtgtgccttc tcatcgcat gctattcttc atctacgcca 3720
tcatcggat gcaggtgttt ggcaatata gatataacacc agagtctgac atgaacagac 3780
acaacaattt tcgaagcttc attcaagcac tcatgctact gttcagatgc gcaacggcgc 3840
agtcgtggcc caacataatg ttggcttgcc gcaaaccgcgcaagtcgcac atagcagctg 3900
gaaaggcctc caacgaagaa tgtggaaagta cgctcgccata cgccctacttc gtatcttta 3960
tattcttcgtt ttcgtttctt atgttgaatt tgttcgttgc tgttattatg gataactttg 4020

actacctaac	gagggactcg	tccatcctcg	gcgcacatca	tcttgatgaa	tttggtagaa	4080
tatggcaga	atatgatcca	aacgccacgg	gtaagatcca	ttatacagaa	atgtatgata	4140
tgttgaagaa	tatggatccg	cctctgggt	ttggtaacaa	atgtccaaat	agactagcat	4200
ataagaagct	tattagaatg	aatatgccgc	tagacgatga	ggggaaagtt	aattttacaa	4260
caacactatt	tgccttaata	cgagaaaact	tgaacatcaa	aatgagatct	cccgaggaaa	4320
tggaccaagc	agatgaggaa	ttaagggaaa	caataacc	cattggcca	ttacaagcga	4380
agaagatgct	cgacctgctg	gtgcctcgaa	acgatgtact	caacgctgga	aaactgaccg	4440
tcgggaagat	atacgctgga	cttctaatcc	tcgagagttg	gagatctaca	aggttcaagc	4500
agaatggtgt	tccggactcg	gaactacaag	gatcacacca	cgcctcaatg	gagtcgttgg	4560
acgagggacg	gttacaagct	cctcacacgt	accagaatgg	acaccaccat	gggagatcat	4620
ccagtttaag	acgaacgccc	agtccaagaa	gacgaggcca	ctacggaggt	tatcatcacg	4680
atatcggtt	ctcagacacc	gtcagcaacg	tcgtcgagat	agtaaagcat	gaacaccaga	4740
gacacggg	aacgcacaga	gcccact	actaccaccc	acatgtttgg	gccccgatag	4800
gtgagcggga	gcgggaccgc	gagtggcggg	agtggcgcga	ccgctcctgg	gagcgcgagg	4860
gcgcgcgc	cggccgcagg	cggccgttgc	cgcccacg	caacaaccg	tcgtcgctgc	4920
agctccggcc	gccgcaccac	tcggcctcg	taaacttcc	gaagctgaac	gcgtcgccga	4980
cgcgcggcca	accggcctcg	ctgccaaac	cgccgcccgt	caacatgtcg	tccacgtcga	5040
cggccgcggc	cgtggcccg	cagagcatgg	ccatgaccgc	catgccgcg	ctcagcttcg	5100
agcaggccat	gtcgatcg	cgcagtggcc	ggctactg	gtcgccgg	cgcaacgggt	5160
acgcgtcg	gtcgccaag	cagcagcagc	agcagcagc	gccgtcg	tcgtcg	5220
tgtccgcgat	caggcggcaa	aagagcggc	gcggtgccg	ggtgagcagc	cggcacagcg	5280
attcggacga	ggacgactgg	tgctaa				5306

<210> 6
 <211> 1764
 <212> PRT
 <213> *Heliothis virescens* and *Aphis gossypii*

<400> 6

Met Gly Gly Ala His Gln Pro Ala Thr Pro Gly Pro Ser Ser Leu Phe
1 5 10 15

Ile Phe Ala Asp Glu Asn Pro Ile Arg Arg Tyr Thr Lys Phe Ile Ile
20 25 30

Glu Trp Pro Pro Phe Glu Tyr Ala Val Leu Leu Thr Ile Ile Ala Asn
35 40 45

Cys Val Val Leu Ala Leu Glu Glu His Leu Pro Asn Gly Asp Lys Thr
50 55 60

Ile Leu Ala Gln Asn Leu Glu Lys Thr Glu Ala Tyr Phe Leu Gly Ile
65 70 75 80

Phe Cys Val Glu Ala Ser Leu Lys Ile Leu Ala Leu Gly Phe Val Leu
85 90 95

His Arg Gly Ser Tyr Leu Arg Asn Val Trp Asn Ile Met Asp Phe Phe
100 105 110

Val Val Val Thr Gly Ile Ile Thr Gln Leu Pro Ile Ala Pro Ala Asp
115 120 125

Val Asp Phe Arg Thr Leu Arg Ala Ile Arg Val Leu Arg Pro Leu Lys
130 135 140

Leu Val Ser Gly Val Pro Ser Leu Gln Val Val Leu Lys Ser Ile Ile
145 150 155 160

Lys Ala Met Ala Pro Leu Leu Gln Ile Gly Leu Leu Val Leu Phe Ala
165 170 175

Ile Val Ile Phe Ala Ile Ile Gly Leu Glu Phe Tyr Ser Gly Ala Leu
180 185 190

His Lys Thr Cys Tyr Asn Leu Glu Asp Ile Ser Glu Ile Val Asn Glu
195 200 205

Gly Asp Ser Ala Thr Pro Cys Asn Ala Asp Asn Val Ser Leu Ala Pro
210 215 220

Phe Gly Ala Asn Val Cys Asp Tyr Glu Lys Ser Thr Cys Leu Glu Lys
225 230 235 240

Trp Glu Gly Pro Asn Arg Gly Ile Thr Ser Phe Asp Asn Ile Gly Phe
245 250 255

Ala Met Leu Thr Val Phe Gln Cys Ile Thr Met Glu Gly Trp Thr Ala
260 265 270

Ile Leu Tyr Trp Thr Asn Asp Ala Leu Gly Ser Ala Phe Asn Trp Ile
275 280 285

Tyr Phe Val Pro Leu Ile Val Leu Gly Ser Phe Phe Met Leu Asn Leu
290 295 300

Val Leu Gly Val Leu Ser Gly Glu Phe Ala Lys Glu Arg Glu Lys Val
305 310 315 320

Glu Asn Arg Gln Glu Phe Leu Lys Leu Arg Arg Gln Gln Gln Leu Glu
325 330 335

Arg Glu Leu Asn Gly Tyr Val Glu Trp Ile Cys Lys Ala Glu Glu Val
340 345 350

Ile Leu Ala Glu Glu Arg Thr Thr Glu Glu Glu Lys Met His Ile Ile
355 360 365

Glu Ala Arg Arg Arg Ala Ala Lys Lys Lys Leu Lys Asn Leu Gly
370 375 380

Lys Ser Lys Ser Thr Asp Thr Glu Glu Glu Gln Asp Glu Asp Cys
385 390 395 400

Gly Asp Asp Gly Phe Leu Lys Ser Lys Ala Arg Ser Ala Gly Arg Phe
405 410 415

Ala Asp Phe Trp Arg Ala Glu Lys Arg Phe Arg Phe Trp Ile Arg His
420 425 430

Thr Val Lys Thr Gln Trp Phe Tyr Trp Phe Val Ile Val Leu Val Leu
435 440 445

Phe Asn Thr Ile Cys Val Ala Val Glu His Tyr Arg Gln Pro Lys Trp
450 455 460

Leu Thr Ser Phe Leu Tyr Tyr Ala Glu Phe Val Phe Leu Gly Leu Phe
465 470 475 480

Met Met Glu Met Trp Val Lys Met Tyr Ala Leu Gly Pro Arg Ile Tyr
485 490 495

Phe Glu Ser Ser Phe Asn Arg Phe Asp Cys Val Val Ile Ser Gly Ser
500 505 510

Ile Phe Glu Val Val Trp Ser Glu Val Lys Gly Gly Ser Phe Gly Leu
515 520 525

Ser Val Leu Arg Ala Leu Arg Leu Leu Arg Ile Phe Lys Val Thr Lys
530 535 540

Tyr Trp Ser Ser Leu Arg Asn Leu Val Ile Ser Leu Leu Asn Ser Met
545 550 555 560

Arg Ser Ile Ile Ser Leu Leu Phe Leu Leu Phe Leu Phe Ile Leu Ile
565 570 575

Phe Ala Leu Leu Gly Met Gln Leu Phe Gly Gly Gln Phe Asn Phe Glu
580 585 590

Asp Gly Thr Pro Pro Thr Asn Phe Asn Thr Phe Pro Ile Ala Leu Leu
595 600 605

Thr Val Phe Gln Ile Leu Thr Gly Glu Asp Trp Asn Glu Val Met Tyr
610 615 620

Asp Gly Ile Gln Ser Gln Gly Gly Ile Gln Arg Gly Met Ile Tyr Ser
625 630 635 640

Leu Tyr Phe Val Ile Leu Val Leu Phe Gly Asn Tyr Thr Leu Leu Asn
645 650 655

Val Phe Leu Ala Ile Ala Val Asp Asn Leu Ala Asn Ala Gln Glu Leu
660 665 670

Thr Ala Ala Glu Glu Glu Gln Val Glu Glu Asp Lys Glu Lys Gln Leu
675 680 685

Gln Glu Leu Glu Lys Gly Met Gly Ala Leu His Ala Val Asp Gly Thr
690 695 700

Pro Pro Gly Val Asp Leu Ser Pro Ser Ser Pro Thr Ser Arg Lys Asn
705 710 715 720

Lys Lys Lys Glu Glu Ala Lys Lys Glu Asp Glu Asp Glu Val Pro Asp
725 730 735

Gly Pro Lys Pro Met Leu Pro Tyr Ser Ser Met Phe Ile Leu Ser Pro
740 745 750

Thr Asn Pro Ile Arg Arg Gly Ala His Trp Val Val Asn Leu Arg Tyr
755 760 765

Phe Asp Phe Phe Ile Met Val Val Ile Cys Met Ser Ser Ala Ala Leu
770 775 780

Ala Ala Glu Asp Pro Val Val Glu Glu Ser Asp Arg Asn Lys Ile Leu
785 790 795 800

Asn Tyr Phe Asp Tyr Ala Phe Thr Gly Val Phe Thr Val Glu Met Leu
805 810 815

Leu Lys Ile Val Asp Leu Gly Ile Leu Phe His Pro Gly Ala Tyr Leu
820 825 830

Arg Asp Leu Trp Asn Ile Met Asp Ala Ala Val Val Ile Cys Ala Leu
835 840 845

Val Ser Phe Gly Phe Glu Ile Gly Gly Val Lys Lys Gly Ala Gly Gln
850 855 860

Asn Leu Ser Thr Ile Lys Ser Leu Arg Val Leu Arg Val Leu Arg Pro
865 870 875 880

Leu Lys Thr Ile Lys Arg Val Pro Lys Leu Lys Ala Val Phe Asp Cys
885 890 895

Val Val Asn Ser Leu Lys Asn Val Ile Asn Ile Leu Ile Val Tyr Ile
900 905 910

Leu Phe Gln Phe Ile Phe Ala Val Ile Ala Val Gln Leu Phe Asn Gly
915 920 925

Lys Phe Phe His Cys Asn Asp Ile Ser Lys Asn Thr Phe Glu Asp Cys
930 935 940

Gln Gly Ser Tyr Phe Val Tyr Glu Ser Asn Ser Leu Leu Pro Lys Val
945 950 955 960

Asn Gln Arg Thr Trp Thr Thr Gln Ser Phe His Tyr Asp Asn Val Ala
965 970 975

Val Ala Met Leu Thr Leu Phe Ala Val Gln Thr Gly Glu Gly Trp Pro
980 985 990

Gln Val Leu Gln Asn Ser Met Ala Ala Thr Tyr Glu Asp Arg Gly Pro
995 1000 1005

Ile Gln Asn Phe Arg Ile Glu Met Ser Ile Phe Tyr Ile Val Tyr
1010 1015 1020

Phe Val Val Phe Pro Phe Phe Phe Val Asn Ile Phe Val Ala Leu
1025 1030 1035

Ile Ile Ile Thr Phe Gln Glu Gln Gly Glu Ala Glu Leu Gln Asp
1040 1045 1050

Gly Glu Ile Asp Lys Asn Gln Lys Ser Cys Ile Asp Phe Thr Ile
1055 1060 1065

Glu Ala Arg Pro Leu Glu Arg Tyr Met Pro Ser Lys Arg Ala Ser
1070 1075 1080

Phe Lys Tyr Lys Val Trp Arg Ile Val Val Ser Thr Pro Phe Glu
1085 1090 1095

Tyr Phe Ile Met Thr Leu Ile Val Leu Asn Thr Leu Leu Leu Met
1100 1105 1110

Met Lys Phe His Glu Ala Pro Pro Leu Leu Met Asp Ile Leu Thr
1115 1120 1125

Phe Met Asn Leu Val Phe Thr Thr Phe Phe Leu Leu Glu Thr Val
1130 1135 1140

Leu Lys Leu Ile Ala Phe Gly Cys Thr Asn Phe Phe Lys Asp Pro
1145 1150 1155

Trp Asn Thr Phe Asp Phe Ile Thr Val Ile Gly Ser Ile Ile Asp
1160 1165 1170

Ala Leu Ile Met Glu Phe Gly Glu Asn Thr Phe Asn Val Gly Phe
1175 1180 1185

Leu Arg Leu Phe Arg Ala Ala Arg Leu Ile Lys Leu Leu Arg Gln
1190 1195 1200

Gly Tyr Thr Ile Arg Ile Leu Leu Trp Thr Phe Val Gln Ser Phe
1205 1210 1215

Lys Ala Leu Pro Tyr Val Cys Leu Leu Ile Ala Met Leu Phe Phe
1220 1225 1230

Ile Tyr Ala Ile Ile Gly Met Gln Val Phe Gly Asn Ile Glu Leu
1235 1240 1245

Thr Pro Glu Ser Asp Met Asn Arg His Asn Asn Phe Arg Ser Phe
1250 1255 1260

Ile Gln Ala Leu Met Leu Leu Phe Arg Cys Ala Thr Gly Glu Ser
1265 1270 1275

Trp Pro Asn Ile Met Leu Ala Cys Arg Lys Pro Ala Lys Cys Asp
1280 1285 1290

Ile Ala Ala Gly Lys Ala Ser Asn Glu Glu Cys Gly Ser Thr Leu
1295 1300 1305

Ala Tyr Ala Tyr Phe Val Ser 1310 Phe Ile Phe Phe Cys 1315 Ser Phe Leu 1320

Met Leu Asn Leu Phe Val Ala 1325 Val Ile Met Asp Asn 1330 Phe Asp Tyr 1335

Leu Thr Arg Asp Ser Ser Ile 1340 Leu Gly Ala His His 1345 Leu Asp Glu 1350

Phe Val Arg Ile Trp Ala Glu 1355 Tyr Asp Pro Asn Ala 1360 Thr Gly Lys 1365

Ile His Tyr Thr Glu Met Tyr 1370 Asp Met Leu Lys Asn 1375 1380 Met Asp Pro

Pro Leu Gly Phe Gly Asn Lys 1385 Cys Pro Asn Arg Leu 1390 Ala Tyr Lys 1395

Lys Leu Ile Arg Met Asn Met 1400 Pro Leu Asp Asp Glu 1405 Gly Lys Val 1410

Asn Phe Thr Thr Thr Leu Phe 1415 Ala Leu Ile Arg Glu 1420 1425 Asn Leu Asn

Ile Lys Met Arg Ser Pro Glu 1430 Glu Met Asp Gln Ala 1435 Asp Glu Glu 1440

Leu Arg Glu Thr Ile Thr His 1445 Ile Trp Pro Leu Gln 1450 Ala Lys Lys 1455

Met Leu Asp Leu Leu Val Pro 1460 Arg Asn Asp Val Leu 1465 Asn Ala Gly 1470

Lys Leu Thr Val Gly Lys Ile 1475 Tyr Ala Gly Leu Leu 1480 Ile Leu Glu 1485

Ser Trp Arg Ser Thr Arg Phe 1490 Lys Gln Asn Gly Val 1495 1500 Pro Val Leu

Glu Leu Gln Gly Ser His His 1505 Ala Ser Met Glu Ser 1510 1515 Leu Asp Glu

Gly Arg Leu Gln Ala Pro His 1520 Thr Tyr Gln Asn Gly His His His 1525 1530

Gly Arg Ser Ser Ser Leu Arg 1535 Arg Thr Pro Ser Pro Arg Arg Arg 1540 1545

Gly His Tyr Gly Gly Tyr His His Asp Ile Gly Phe Ser Asp Thr
1550 1555 1560

Val Ser Asn Val Val Glu Ile Val Lys His Glu His Gln Arg His
1565 1570 1575

Gly Arg Thr His Arg Ala Pro His Tyr Tyr His Pro His Val Trp
1580 1585 1590

Ala Pro Ile Gly Glu Arg Glu Arg Asp Arg Glu Trp Arg Glu Trp
1595 1600 1605

Arg Asp Arg Ser Trp Glu Arg Glu Gly Ala Arg Arg Gly Arg Arg
1610 1615 1620

Arg Arg Leu Pro Pro Thr Pro Asn Lys Pro Ser Ser Leu Gln Leu
1625 1630 1635

Arg Pro Pro His His Ser Ala Ser Ile Asn Phe Pro Lys Leu Asn
1640 1645 1650

Ala Ser Pro Thr Arg Gly Gln Pro Ala Ser Leu Pro Lys Pro Pro
1655 1660 1665

Pro Val Asn Met Ser Ser Thr Ser Thr Ala Ala Ala Val Ala Arg
1670 1675 1680

Gln Ser Met Ala Met Thr Ala Met Pro Pro Leu Ser Phe Glu Gln
1685 1690 1695

Ala Met Ser Ile Gly Arg Ser Gly Arg Leu Leu Pro Ser Pro Val
1700 1705 1710

Arg Asn Gly Tyr Ala Ser Ser Ser Ser Lys Gln Gln Gln Gln Gln
1715 1720 1725

Gln Gln Pro Ser Ser Ser Ser Ser Val Ser Ala Ile Arg Arg Gln
1730 1735 1740

Lys Ser Gly Gly Gly Arg Val Ser Ser Arg His Ser Asp Ser
1745 1750 1755

Asp Glu Asp Asp Trp Cys
1760

<210> 7
<211> 2068
<212> DNA

<213> Heliothis virescens

<400> 7

tgttaagtgt atacagtcaa atgtgcact tatgacgaag gctcaaccac tatggatcac	60
tttaggcggc gaccccgcta caagctccga aggggcttag cagattcaaa ctattcgaa	120
ccatcgtcgg agctgtcgct tgacgaagac aaggaggcgc tgcgccgca gaaggaagcg	180
caggctatca aacagcttgg caaggcacgg gagaagccag tggcgttcgc ggtgcgcacc	240
aatgtgtcat acgatggcac cgtggacgac gattcgccgg tgcacggcag cgcatctcc	300
ttcgaggtgc gcgatttct ccacatcaag gagaagtacg acaacaactg gtggatcggg	360
cggctcgtga aggagggcag cgacgtggc ttcatcccgt cggccgtaa gctggaggcc	420
gtgcggtcgg ggctgggcgc gcggcgctac ccgcggcccg cgtccgcccgc gccgcacgcg	480
ccgcacgcgc cgccccctctc cagaggtac acccccccca cggccggcga ggagtcggac	540
ggcgcggggc gcggggcgggg cggggcgcg ggggggaagg agaagcgc aa gccgttcttc	600
aagaaggcgg aggctcgac gccgtacgac gtggtccct ccatgcggcc cgtcgtcatc	660
gtggggccca gcctcaaggg atacgaggc accgacatga tgcagaaggc tttgtttgat	720
tttctaaaaa gacgcttga aggaggata ataataacgc gcgtatggc cgacatatct	780
ctcgcgaagc gctctctgct caacaacccg tcgaaacgag ccatcatgga gcgttccaac	840
tcgcgcctca cttgcctcgc tgaagtgcag gctgaaatcg agaggatatt cgagctggct	900
cggactctcc aattggtagt gctggactgt gacaccatca accccccctc acagctcgcc	960
aagacctcgc tggctccac catcgtagt ctgaaaatct ccagtccaa ggtgctacag	1020
cggctgatca agtcgcgggg gaagggcag accaagaacc tgtcggtca gatggtgct	1080
gctgagaagc tggcgcagtg cccgcctgac atgttcgacg tgatccttga tgagaaccag	1140
ctcgaggatg cttgcgaaca tatacgtaa tatttagagg cgtactggcg cgacgcac	1200
ccgcccgtgc cggaggaggc ggcgcggcgc cgccccgtgc cgacgcac caacgcgcac	1260
gccatgcctg gcggcaggc cgcgcggcgc cggccggagc gcctggagga ggagtactac	1320
ccgcgcggcgc agcgctgcga gcggtagcgc cgccgttacc cgacgcacta ccacgatgtac	1380
gggcccgtact acccgcgaaa gcgcgcgcac gcggcgcacg cggcggcgcc gcacgcgcg	1440
tacgggcacg actacacgcg cgacgcgtac gcgcgcgagg agtacggcgcg cgactacgcg	1500
cgcgaggagc gcgagcggcg gcgcgcgc gaggccggcgc acgactacgg gcgtcgcc	1560
cgcgcgctca acgctgtgtg agccgcggcga cgactacgg ccgtcgccgc gcgcgctcaa	1620
cgctgtgtga gcccggac gactacggc cgtcgcgcg cgcgcgtcaac gctgtgtgag	1680
ccgcccggacg actacgggc gtcgcgcgc ggcgtcaacg ctgtgtgagc cgccggacga	1740
ctacgggcgc tgcgcgcgc cgctcaacgc tgtgttagtgc cggccgcctc gcgcacgcgc	1800
tgccgcaccg cgccgcgcgc tgccgcgtcc cggccgtcgcc cggccgtcgct	1860

tgccggcaatt gtataaaattt tacatacaga acgtaagagg ggcttaagttt agtaccgtta 1920
gatattatcc gtttcccatt ttttgaacat actctgttat tatattgcatt cgtctgtact 1980
tcattttgc aatcattttgt aaataaaaata ctttatatcg aaaaaaaaaa aaaaaaaaaa 2040
aaaaaaaaaa aaaattaaaaa aaaaaaaaa 2068

<210> 8
<211> 509
<212> PRT
<213> Heliothis virescens

<400> 8

Met Asp His Phe Arg Arg Arg Pro Arg Tyr Lys Leu Arg Arg Gly Ser
1 5 10 15

Ala Asp Ser Asn Tyr Ser Gln Pro Ser Ser Glu Leu Ser Leu Asp Glu
20 25 30

Asp Lys Glu Ala Leu Arg Arg Glu Lys Glu Ala Gln Ala Ile Lys Gln
35 40 45

Leu Asp Lys Ala Arg Glu Lys Pro Val Ala Phe Ala Val Arg Thr Asn
50 55 60

Val Ser Tyr Asp Gly Thr Val Asp Asp Ser Pro Val His Gly Ser
65 70 75 80

Ala Ile Ser Phe Glu Val Arg Asp Phe Leu His Ile Lys Glu Lys Tyr
85 90 95

Asp Asn Asn Trp Trp Ile Gly Arg Leu Val Lys Glu Gly Ser Asp Val
100 105 110

Gly Phe Ile Pro Ser Pro Val Lys Leu Glu Ala Val Arg Ser Gly Leu
115 120 125

Gly Ala Arg Arg Tyr Pro Arg Pro Ala Ser Ala Ala Pro His Ala Pro
130 135 140

His Ala Pro Pro Leu Ser Arg Gly Ser Thr Pro Pro Thr Pro Gly Glu
145 150 155 160

Glu Ser Asp Gly Ala Gly Arg Gly Arg Gly Gly Ala Gly Gly Lys
165 170 175

Glu Lys Arg Lys Pro Phe Phe Lys Lys Ala Glu Ala Ser Thr Pro Tyr
180 185 190

Asp Val Val Pro Ser Met Arg Pro Val Val Ile Val Gly Pro Ser Leu
195 200 205

Lys Gly Tyr Glu Val Thr Asp Met Met Gln Lys Ala Leu Phe Asp Phe
210 215 220

Leu Lys Arg Arg Phe Glu Gly Arg Ile Ile Ile Thr Arg Val Met Ala
225 230 235 240

Asp Ile Ser Leu Ala Lys Arg Ser Leu Leu Asn Asn Pro Ser Lys Arg
245 250 255

Ala Ile Met Glu Arg Ser Asn Ser Arg Ser Thr Cys Leu Ala Glu Val
260 265 270

Gln Ala Glu Ile Glu Arg Ile Phe Glu Leu Ala Arg Thr Leu Gln Leu
275 280 285

Val Val Leu Asp Cys Asp Thr Ile Asn His Pro Ser Gln Leu Ala Lys
290 295 300

Thr Ser Leu Ala Pro Thr Ile Val Tyr Leu Lys Ile Ser Ser Pro Lys
305 310 315 320

Val Leu Gln Arg Leu Ile Lys Ser Arg Gly Lys Gly Gln Thr Lys Asn
325 330 335

Leu Ser Val Gln Met Val Ala Ala Glu Lys Leu Ala Gln Cys Pro Pro
340 345 350

Asp Met Phe Asp Val Ile Leu Asp Glu Asn Gln Leu Glu Asp Ala Cys
355 360 365

Glu His Ile Ala Glu Tyr Leu Glu Ala Tyr Trp Arg Ala Thr His Pro
370 375 380

Pro Val Pro Glu Glu Ala Ala Pro Ala Arg Pro Val Pro Arg Thr His
385 390 395 400

Asn Ala His Ala Met Pro Gly Gly Arg Ser Arg Ala Ala Arg Pro Glu
405 410 415

Arg Leu Glu Glu Glu Tyr Tyr Pro Arg Gly Glu Arg Cys Glu Arg Tyr
420 425 430

Glu Arg Gly Tyr Pro Arg Asp Tyr His Glu Tyr Gly Pro Glu Tyr Pro
435 440 445

Arg Glu Arg Ala His Ala Ala His Ala Ala Ala Pro His Asp Ala Tyr
450 455 460

Gly His Asp Tyr Thr Arg Asp Ala Tyr Ala Arg Glu Glu Tyr Gly Arg
465 470 475 480

Glu Tyr Ala Arg Glu Glu Arg Glu Arg Arg Arg Glu Arg Glu Pro Pro
485 490 495

Asp Asp Tyr Gly Pro Ser Arg Arg Ala Leu Asn Ala Val
500 505

<210> 9

<211> 2116

<212> DNA

<213> Heliothis virescens

<400> 9

gctcgcgacc gtcgcacatcg acggtagtgc ggcagctccg atgtgccgccc accacggccg 60
accacgacgc gatcccactg gtggtccgca gtggccacca cctgcccaca tgtcgtaaca 120
tgtatgggta caacaaccaa gggcacgggt acaacaagt tttacacag ggctcagcag 180
attcaaacta ttgcacacca tcgtcggagc tgctcgcttga cgaagacaag gaggcgctgc 240
gccgcgagaa ggaagcgcag gctatcaaac agctggacaa ggcacggag aagccagtgg 300
cgttcgcgtt gcgcaccaat gtgtcatacg atggcaccgt ggacgacgt tcgcccgtgc 360
acggcagcgc gatctccccc gaggtgcgcg attttctcca catcaaggag aagtacgaca 420
acaactggtg gatcgggcgg ctcgtgaagg agggcagcga cgtggcttc atcccgtcgc 480
ccgtgaagct ggaggccgtg cggtcggggc tggcgcgcg gcgcgtacccg cggccgcgt 540
ccgccccgcgc gcacgcgcgc cacgcgcgc ccctctccag agtagcacc ccccccacgc 600
ccggcggaga gtcggacggc gcggggcgcg ggcggggcgg gggcgcgggg gggaggaga 660
agcgcaagcc gttcttcaag aaggcggagg cgtcgacgcc gtacgacgtg gtgcctcca 720
tgccggccgt cgtcatcgtg gggccagcc tcaaggata cgaggtcacc gacatgtgc 780
agaaggctt gttgatttt ctcaaaagac gctttgaagg caggatcatc atcacgcgcg 840
tgcagtcgtatattcattt gccaaacgga cgcaaaacgc gcccaagaaa ccgttcgtatc 900
agagggccgg taacaggacc aactgttag ccgaggtcca ggctgaaatc gagaggat 960
tcgagctggc tcggactctc caattggtag tgctggactg tgacaccatc aaccaccct 1020
cacagctcgc caagacctcg ctggctccca ccatcgtgtc cctgaaaatc tccagtc 1080
aggtgctaca gccgcgtatc aagtgcggg ggaaggggca gaccaagaac ctgtcgggtgc 1140
agatggtggc tgctgagaag ctggcgcagt gcccgcctga catgttcac gtgatcc 1200
atgagaacca gctcgaggat gcttgcgaac atatagctga atatttagag gcgtactggc 1260

gcgcgacgca	cccgccggtg	ccggaggagg	cggcgcggc	gcgcggcg	ccgcgcacgc	1320
acaacgcgca	cgccatgcct	ggcggcaggt	cccgcgcggc	gcggccggag	cgcctggagg	1380
aggagtagta	cccgcgccgc	gagcgctgcg	agcggtacga	gcgcggctac	ccgcgcgact	1440
accacgagta	cgggccccgag	tacccgcggg	agcgcgcgca	cgcggcgcac	gcggcggcgc	1500
cgcacgacgc	gtacgggcac	gactacacgc	gcgacgcgta	cgcgcgcgag	gagtacggc	1560
gcfagtagcgc	gcgcgaggag	cgcgagcggc	ggcgcgagcg	cgagccgccc	gacgactacg	1620
ggccgtcgcg	ccgcgcgctc	aacgctgtgt	gagccgcgg	acgactacgg	gccgtcgcc	1680
cgcgcgctca	acgctgtgt	agccgcgg	cgactacgg	ccgtcgcc	gcgcgctcaa	1740
cgcgtgtga	gccgcccggac	gactacggc	cgtcgcc	cgcgctcaac	gctgtgtgag	1800
ccgcccggacg	actacgggccc	gtcgccgcgc	gcgcgctcaac	ctgtgttagt	ccgcccgcct	1860
cgcgcacgccc	gtgcccgcacc	gcgcgcgc	gtgcccgc	ccgtgccc	tccgcgtcg	1920
ccgcccgtgc	ttgcggcaat	tgtataaatt	ttacatacag	aacgtaagag	gggctaagtt	1980
tagtaccgtt	agatattatc	cgttccat	ttttgaaca	tactctgtaa	ttatattgca	2040
tcgtctgtac	ttcattgttg	caatcatttg	taaataaaaat	actttatatc	aaaaaaaaaa	2100
aaaaaaaaaa	aaaaaaa					2116

<210> 10

<211> 510

<212> PRT

<213> Heliothis virescens

<400> 10

Met Met Gly Tyr Asn Asn Gln Gly His Gly Tyr Asn Lys Leu Phe Thr
 1 5 10 15

Gln Gly Ser Ala Asp Ser Asn Tyr Ser Gln Pro Ser Ser Glu Leu Ser
 20 25 30

Leu Asp Glu Asp Lys Glu Ala Leu Arg Arg Glu Lys Glu Ala Gln Ala
 35 40 45

Ile Lys Gln Leu Asp Lys Ala Arg Glu Lys Pro Val Ala Phe Ala Val
 50 55 60

Arg Thr Asn Val Ser Tyr Asp Gly Thr Val Asp Asp Asp Ser Pro Val
 65 70 75 80

His Gly Ser Ala Ile Ser Phe Glu Val Arg Asp Phe Leu His Ile Lys
 85 90 95

Glu Lys Tyr Asp Asn Asn Trp Trp Ile Gly Arg Leu Val Lys Glu Gly

100

105

110

Ser Asp Val Gly Phe Ile Pro Ser Pro Val Lys Leu Glu Ala Val Arg
115 120 125

Ser Gly Leu Gly Ala Arg Arg Tyr Pro Arg Pro Ala Ser Ala Ala Pro
130 135 140

His Ala Pro His Ala Pro Pro Leu Ser Arg Gly Ser Thr Pro Pro Thr
145 150 155 160

Pro Gly Glu Glu Ser Asp Gly Ala Gly Arg Gly Arg Gly Gly Ala
165 170 175

Gly Gly Lys Glu Lys Arg Lys Pro Phe Phe Lys Lys Ala Glu Ala Ser
180 185 190

Thr Pro Tyr Asp Val Val Pro Ser Met Arg Pro Val Val Ile Val Gly
195 200 205

Pro Ser Leu Lys Gly Tyr Glu Val Thr Asp Met Met Gln Lys Ala Leu
210 215 220

Phe Asp Phe Leu Lys Arg Arg Phe Glu Gly Arg Ile Ile Ile Thr Arg
225 230 235 240

Val Gln Ser Asp Ile Ser Leu Ala Lys Arg Thr Gln Asn Ala Pro Lys
245 250 255

Lys Pro Phe Val Glu Arg Ala Gly Asn Arg Thr Asn Cys Leu Ala Glu
260 265 270

Val Gln Ala Glu Ile Glu Arg Ile Phe Glu Leu Ala Arg Thr Leu Gln
275 280 285

Leu Val Val Leu Asp Cys Asp Thr Ile Asn His Pro Ser Gln Leu Ala
290 295 300

Lys Thr Ser Leu Ala Pro Thr Ile Val Tyr Leu Lys Ile Ser Ser Pro
305 310 315 320

Lys Val Leu Gln Arg Leu Ile Lys Ser Arg Gly Lys Gly Gln Thr Lys
325 330 335

Asn Leu Ser Val Gln Met Val Ala Ala Glu Lys Leu Ala Gln Cys Pro
340 345 350

Pro Asp Met Phe Asp Val Ile Leu Asp Glu Asn Gln Leu Glu Asp Ala
Page 27

355

360

365

Cys Glu His Ile Ala Glu Tyr Leu Glu Ala Tyr Trp Arg Ala Thr His
370 375 380

Pro Pro Val Pro Glu Glu Ala Ala Pro Ala Arg Pro Val Pro Arg Thr
385 390 395 400

His Asn Ala His Ala Met Pro Gly Gly Arg Ser Arg Ala Ala Arg Pro
405 410 415

Glu Arg Leu Glu Glu Tyr Tyr Pro Arg Gly Glu Arg Cys Glu Arg
420 425 430

Tyr Glu Arg Gly Tyr Pro Arg Asp Tyr His Glu Tyr Gly Pro Glu Tyr
435 440 445

Pro Arg Glu Arg Ala His Ala Ala His Ala Ala Ala Pro His Asp Ala
450 455 460

Tyr Gly His Asp Tyr Thr Arg Asp Ala Tyr Ala Arg Glu Glu Tyr Gly
465 470 475 480

Arg Glu Tyr Ala Arg Glu Glu Arg Glu Arg Arg Arg Glu Arg Glu Pro
485 490 495

Pro Asp Asp Tyr Gly Pro Ser Arg Arg Ala Leu Asn Ala Val
500 505 510

<210> 11
<211> 2282
<212> DNA
<213> Heliothis virescens

<400> 11
ggctctgcag ctttcaggcc tccctgaaaa ctgtgaaaat tcatttagaaa agtgcatatt 60
tatcataactt gtgttgtact aaactgtgca cccgttgtac atagtggata ttgtttgtga 120
aaactggcg taacattgta tgctgtacgc gcggcggtgc cgtggggggc atgcgccggc 180
ggcgctgagg catgagcgcg ggcgcgcgc cggatcccc cgaccaccc cgccaccacc 240
gccaacaccc tcagggctca gcagattcaa actattcgca accatcgctg gagctgtcgc 300
ttgacgaaga caaggaggcg ctgcgcgcg agaaggaagc gcaggctatc aaacagctgg 360
acaaggcacg ggagaagcca gtggcggtcg cggtgcgac caatgtgtca tacgtggca 420
ccgtggacga cgattcgccg gtgcacggca ggcgcgtctc cttcgagggtg cgcgatttc 480
tccacatcaa ggagaagtac gacaacaact ggtggatcgg gcccgtcg aaggaggcga 540
gcgacgtggg cttcatcccg tcgccccgtga agctggaggc cgtgcggcgtcg gggctggcg 600

cgcggcgcta	cccgcgcccc	gcgtccgccc	cgccgcacgc	gccgcacgcg	ccgccccctct	660
ccagaggtag	cacccccc	acgcccgtat	tgccatcggt	cgatcgaggc	gaggagtcgg	720
acggcgcccc	gcgcggggcg	ggcgggggcg	cgggggggaa	ggagaagcgc	aagccgttct	780
tcaagaaggc	ggaggcgatcg	acgcccgtacg	acgtggtgcc	ctccatgcgg	cccgctgtca	840
tcgtggggcc	cagcctcaag	ggatacgagg	tcaccgacat	gatgcagaag	gctttgttg	900
attttctcaa	aagacgcttt	gaaggcagga	tcatcatcac	gcgcgtgcag	tctgatatat	960
cattggccaa	acggacgcaa	aacgcgcccc	agaaaccgtt	cgtagagagg	gccggtaaca	1020
ggaccaactg	tttagccgag	gctgaaatcg	agaggatatt	cgagctggct	cggaactctcc	1080
aattggtagt	gctggactgt	gacaccatca	accacccctc	acagctcgcc	aagacctcgc	1140
tggctccac	catcggttac	ctgaaaatct	ccagtcccaa	ggtgctacag	cggtgtatca	1200
agtcgcgggg	gaagggcag	accaagaacc	tgtcggtgca	gatggtggt	gctgagaagc	1260
tggcgcagtg	cccgccctgac	atgttcgacg	tgatccttga	tgagaaccag	ctcgaggatg	1320
cttgcgaaca	tatagctgaa	tat tagagg	cgtactggcg	cgcgacgcac	ccgcccgtgc	1380
cggaggaggc	ggcgcccccg	cgccccgtgc	cgcgcacgc	caacgcgcac	gccatgcctg	1440
accccccctgc	taacactgga	ggacatcgcg	agagatccga	ctcctatagc	tacgagagag	1500
aaagaggcgg	caggtcccg	gcggcgccgc	cggagcgcct	ggaggaggag	tactacccgc	1560
gcggcgagcg	ctgcgagcgg	tacgagcg	gctaccccg	cgactaccac	gagtacggc	1620
ccgagtaccc	gcgggagcgc	gcgcacgcgg	cgcacgcgg	ggcgcgcac	gacgcgtacg	1680
ggcacgacta	cacgcgcgac	gcgtacgcgc	gcgaggagta	cggcgcgag	tacgcgcgc	1740
aggagcgcga	gcggcgccgc	gagcgcgagc	cgcggacga	ctacggccg	tcgcgcccgc	1800
cgcgtcaacgc	tgtgtgagcc	gccggacgac	tacggccgt	cgcgcgcgc	gctcaacgct	1860
gtgtgagccg	ccggacgact	acggggcgtc	gcgcgcgcgc	ctcaacgctg	tgtgagccgc	1920
cggacgacta	cgggcccgtcg	cgcgcgcgc	tcaacgctgt	gtgagccgc	ggacgactac	1980
ggggccgtcgc	gccgcgcgc	caacgctgt	tagtgcgc	cgcctcgccgc	acgcgtgcc	2040
gcaccgcgc	gcgcgcgtcc	gcatgccgt	ccgcgtcccg	ctgcgcgc	gctgcttgcg	2100
gcaatttgtat	aaattttaca	tacagaacgt	aagaggggt	aagttagta	ccgttagata	2160
ttatccgttt	cccattttt	gaacatactc	tgtattata	ttgcacgtc	tgtacttcat	2220
tgttgcaatc	atttgtaaat	aaaatactt	atatcgaaaa	aaaaaaaaaa	aaaaaaaaaa	2280
aa						2282

<210> 12
 <211> 541
 <212> PRT
 <213> Heliothis virescens

<400> 12

Met Ser Ala Ala Arg Ala Pro Asp Pro Arg Asp Pro Pro Arg His His
1 5 10 15

Arg Gln His Pro Gln Gly Ser Ala Asp Ser Asn Tyr Ser Gln Pro Ser
20 25 30

Ser Glu Leu Ser Leu Asp Glu Asp Lys Glu Ala Leu Arg Arg Glu Lys
35 40 45

Glu Ala Gln Ala Ile Lys Gln Leu Asp Lys Ala Arg Glu Lys Pro Val
50 55 60

Ala Phe Ala Val Arg Thr Asn Val Ser Tyr Asp Gly Thr Val Asp Asp
65 70 75 80

Asp Ser Pro Val His Gly Ser Ala Ile Ser Phe Glu Val Arg Asp Phe
85 90 95

Leu His Ile Lys Glu Lys Tyr Asp Asn Asn Trp Trp Ile Gly Arg Leu
100 105 110

Val Lys Glu Gly Ser Asp Val Gly Phe Ile Pro Ser Pro Val Lys Leu
115 120 125

Glu Ala Val Arg Ser Gly Leu Gly Ala Arg Arg Tyr Pro Arg Pro Ala
130 135 140

Ser Ala Ala Pro His Ala Pro His Ala Pro Pro Leu Ser Arg Gly Ser
145 150 155 160

Thr Pro Pro Thr Pro Asp Val Pro Ser Phe Asp Arg Gly Glu Glu Ser
165 170 175

Asp Gly Ala Gly Arg Gly Arg Gly Gly Ala Gly Gly Lys Glu Lys
180 185 190

Arg Lys Pro Phe Phe Lys Lys Ala Glu Ala Ser Thr Pro Tyr Asp Val
195 200 205

Val Pro Ser Met Arg Pro Val Val Ile Val Gly Pro Ser Leu Lys Gly
210 215 220

Tyr Glu Val Thr Asp Met Met Gln Lys Ala Leu Phe Asp Phe Leu Lys
225 230 235 240

Arg Arg Phe Glu Gly Arg Ile Ile Ile Thr Arg Val Gln Ser Asp Ile
Page 30

245

250

255

Ser Leu Ala Lys Arg Thr Gln Asn Ala Pro Lys Lys Pro Phe Val Glu
260 265 270

Arg Ala Gly Asn Arg Thr Asn Cys Leu Ala Glu Ala Glu Ile Glu Arg
275 280 285

Ile Phe Glu Leu Ala Arg Thr Leu Gln Leu Val Val Leu Asp Cys Asp
290 295 300

Thr Ile Asn His Pro Ser Gln Leu Ala Lys Thr Ser Leu Ala Pro Thr
305 310 315 320

Ile Val Tyr Leu Lys Ile Ser Ser Pro Lys Val Leu Gln Arg Leu Ile
325 330 335

Lys Ser Arg Gly Lys Gly Gln Thr Lys Asn Leu Ser Val Gln Met Val
340 345 350

Ala Ala Glu Lys Leu Ala Gln Cys Pro Pro Asp Met Phe Asp Val Ile
355 360 365

Leu Asp Glu Asn Gln Leu Glu Asp Ala Cys Glu His Ile Ala Glu Tyr
370 375 380

Leu Glu Ala Tyr Trp Arg Ala Thr His Pro Pro Val Pro Glu Glu Ala
385 390 395 400

Ala Pro Ala Arg Pro Val Pro Arg Thr His Asn Ala His Ala Met Pro
405 410 415

Asp Pro Pro Ala Asn Thr Gly Gly His Arg Glu Arg Ser Asp Ser Tyr
420 425 430

Ser Tyr Glu Arg Glu Arg Gly Gly Arg Ser Arg Ala Ala Arg Pro Glu
435 440 445

Arg Leu Glu Glu Glu Tyr Tyr Pro Arg Gly Glu Arg Cys Glu Arg Tyr
450 455 460

Glu Arg Gly Tyr Pro Arg Asp Tyr His Glu Tyr Gly Pro Glu Tyr Pro
465 470 475 480

Arg Glu Arg Ala His Ala Ala His Ala Ala Pro His Asp Ala Tyr
485 490 495

Gly His Asp Tyr Thr Arg Asp Ala Tyr Ala Arg Glu Glu Tyr Gly Arg
Page 31

500

505

510

Glu Tyr Ala Arg Glu Glu Arg Glu Arg Arg Arg Glu Arg Glu Pro Pro
 515 520 525

Asp Asp Tyr Gly Pro Ser Arg Arg Ala Leu Asn Ala Val
 530 535 540

<210> 13
 <211> 4383
 <212> DNA
 <213> *Aphis Gossypii*

<400> 13
 gtatcgatcg gtccgcggct ggccggccga cagtgcgatg cacagtgtca ttagtgtcc 60
 agcgacggcg acgggagacg gacatcgccg gtctaataa aacaaacccg ataacataat 120
 aataataat catattattt tcataatatca taatataata ataattattt tcgctggat 180
 tatatagtat taattacgtt cgtgctcgtc cggttcaaca atatcataat cgtcactgt 240
 aaatattata atatataattt actttaaatc ttgcgttcctc tcgacgactt actatacact 300
 ataatttaat atttttatca ctatttatta acgttatata cccataaaaa tataatacaa 360
 aagtaaatta tatcatatta tatactataa ttttattgtt atataacgtt gtacaaattt 420
 ccgcgtatcc agtaactata tatattacga gtatattata tatagtatat tatttttattt 480
 gtaaagacag acaataacat gaaatccgcc aaagtcttgg tcgccttatt cctatacggg 540
 tgtttcatgg ttccggaaatg cattcaacac gacaataacg aaccgtcaa aacggctcg 600
 ctgcaaacgt gggctgaaaa attatatttt gaattgtgaa actgcggaga atatataaca 660
 aatcgaaaat cactgcaaac caaatataac aaggaatcaa aattagaagc aaggaatggg 720
 caaattttgg tagcaaataat ttgcagtgtt atcaaataa tgcgttataa aaaacaacaa 780
 tctttaaaaa gaattttaga aagcgttcaa caagttgcag ttccagcaca cgacgtgaa 840
 cctccggca atgattataa gattcgaaat tcaaaaaccaa aaaaagctac cccagatacc 900
 aacatattat taaatgtatct aaaagaaaat tctcattttt acaatacgcc tgcgttata 960
 acttatagtt ctgtacacat accaacttat gtttatgacc gggccactga agtaattaag 1020
 gctatcaaat ggtcagaaaaa cctggatgcg acatttaaaa aaaactacga aaccgatcca 1080
 agattatcgt ggcaatattt tggttgtaca actggttca tgcgacaatt tccagcaatg 1140
 caatggccag aggaaccaga agatttgtat gactgtcga tgcgaccttgcgttgcgtt 1200
 gcagcagccca gtccttaagga tattttata ttagtcgata attctgggtc aatgtatggg 1260
 caaagtaaaa tcattgcccag acatgtgata aatacattat tggatacatt atcagtgaac 1320
 gactacgtga atgttcttgcgtt atttagtaat gtaacgaatg aagtagtgcc atgtttcaaa 1380
 ggtttacttag tacaagccac acttgcaaat atccgagaac taaaattagg cgtagaaaaat 1440

attgccgatc caaataatat ctcagattt agcgaagcat taaccaggc gttcgacaca	1500
ctggaaacgt accgcgaacg aaatatgggt gctatgtgt atcaggccat catgttggtt	1560
actgatggag taccagaaaa cttctacgaa ttatTTaaat cacataattg gaagaatgg	1620
acaatggta tgccagtaag agtatttacg tatctaatta gtcgagaact gcctgaaata	1680
agagacatgc aatggatggc ttgtgcgaat catgggtatt ttgttcattt aagtacggt	1740
gaagaagttc gagaacaagt ggtacactat ttaccggtaa tggctagacc attgggttta	1800
caccaatctc atcatccggt tattttggacg ccgttatacg ctgacgttac tgatccaaaa	1860
atgactgatt atttgtggga aaaagaagaa tgtcatcaac agtataatga tacgataagc	1920
tataaaaaaa caaaagacaa attttctat ccaaagaata tagcaaaacg agaacaagat	1980
cggaaaagaa aagaattgga tcaaaatgta aacgtaaata gacaaaaaaaa acacaattt	2040
ataacgtctc ttgcgatgcc agcattcgac aagaaaactg aaatgacaaa agtggcccat	2100
ttacttggtg ttgttggAAC ttagttccc gaagctgatc tacgagaagc aatgtcacct	2160
cacatattgg gtgtcaataa ctatgcattt atcggtacta ataacggttt tattgtcaca	2220
catccagatc tcagaccagt ttttggagat attttgaagc caaattacaa tagcatcgat	2280
gtgactgaag tggaaacttgt cgaatccgac aataacgcaa gggtatttga tcgaagtata	2340
ctcacgcttc gtgatttat catcaatcaa acaactggcg atcgagaaat cactgtgaaa	2400
tatcattacg acaatataag acgtgcaaca acagcagaga gacattatta ttattcgatt	2460
gttgaaggaa ctccatttac agttgtggtt gctttacaag aaaagcactt cggttacaga	2520
gttaaaatac cagaaagatt tcaaactctt aatacaacaa gaacaaccct tttggacctt	2580
ttcaaaagatg atgagtggag aattcatcca gattggctgt attgcagata tgcatacgat	2640
gatggtgata atacgtcatt taaaactcca gaagatgaac ttaaacattt tttaaagaga	2700
atcagtaaaa ccgataattt ttggataaaa tggcctccctc cgagatttt tagtgaatca	2760
tacgactcaa acgggtcaat attgcccggaa gaaaaattcg attgcaaatg ttattgtgac	2820
aaagaactta tgcttagttt gatatacgat gccaaacatga ctaaaggat tttacagaa	2880
gctaaaaatg atacagataa gaaaaaaat ccagcagcgg tcttgatgag tttattaccg	2940
agaaccgaat ttgaaaagag atttggagtg acattagctt ttgttgctac ccatagtgg	3000
ctcaccagat ggatggatta tgaagataaa cccaaacgt catacaattc tgataaccat	3060
gaaaatcaac aaccgcattt cattgacgaa aatgtttact caatcgaa agtttggat	3120
agaaggcgt tcgagtataa tatggtaaac gatgaaagct atgtatattc tgtaccattt	3180
gaaaatgaaa atattaaatc aacattggta acggcgagtc aagcggtttt cgttactagt	3240
aaagaaaata aaaagaaagg tgctgctgca gttgtcggt atcaattcag acactcggt	3300
cttcaagaat tggtttcgaa cattacaaaa cagtgttact cagaaactgg ttgtacggcg	3360

gcaaaggaca	cttgtcaatc	cttagaacgg	gattgctaca	tacttgacaa	taatggttat	3420
attatacgcat	cagaaaatcc	aatggatact	gggaagttct	tcggtaaagt	aaaaggacca	3480
atcatgaata	tgatggtaga	agaaaaaatt	tacaaaaaaaa	taacaatatt	tgattatcaa	3540
ggagtatgtt	ttaagcgaga	aaatgaagat	gattcaaata	gttcgtcatt	tttgtatact	3600
ccgatacatc	atatgaaaca	attaattgga	tggctaata	ggcgtgtatt	atggttggcc	3660
gctcattcaa	atttcagtg	gatgggtct	caggctcaag	ccatattcga	agacgattac	3720
caagaagatg	aagaaagtaa	ttacagttca	gatactat	ccactttaa	gattgaaggc	3780
gaaaaagcat	taaaatacgt	taaaattaat	cgaactcgac	ctaagtcttgc	cgatcgtgtc	3840
gtcgatttgt	ttacgctaac	ttcgaaaatt	ccagaaaagg	ttgaacgtaa	atctatgtgt	3900
gccaggcctt	atgaattgcg	aaaaataatg	aacaccaacc	ttatcttgc	ggtcgtcaac	3960
ggacgggtgc	cagaatcg	taaatccgaa	aattttgaca	ccttaccaga	agaagttatg	4020
tatgacgagt	tcaataattc	gttgggttgt	cacaaagcgt	tttatagttt	accacgacgt	4080
agacctaaaa	cagcttgtat	taggacacat	ccagacgagc	acgaaattta	tgacaaaaatg	4140
tgtggcagca	gtacaataat	tacaattaca	ccaataactt	tgtcagtaat	ttttttttct	4200
acgtttaatt	tgataagg	ttttgtatt	ttttattct	aaatcaaaaa	tttaaattct	4260
cttacttatg	tattgataaa	tattttca	gaagttatct	tcgatgttaa	atattttgtc	4320
tattgcgtt	attacaat	aatatacg	ttaaatcttga	aaaaaaaaaa	aaaaaaaaaa	4380
aaa						4383

<210> 14
 <211> 1245
 <212> PRT
 <213> *Aphis gossypii*

<400> 14

Met Lys Ser Ala Lys Val Leu Val Ala Leu Phe Leu Tyr Gly Cys Phe
 1 5 10 15

Met Val Arg Glu Cys Ile Gln His Asp Asn Asn Glu Pro Val Lys Thr
 20 25 30

Ala Leu Leu Gln Thr Trp Ala Glu Lys Leu Tyr Phe Glu Leu Trp Asn
 35 40 45

Cys Gly Glu Tyr Ile Thr Asn Arg Lys Ser Leu Gln Thr Lys Tyr Asn
 50 55 60

Lys Glu Ser Lys Leu Glu Ala Arg Asn Gly Gln Ile Leu Val Ala Asn
 65 70 75 80

Ile Ser Ser Val Ile Lys Ser Met Met Asp Lys Lys Gln Gln Ser Leu
85 90 95

Lys Arg Ile Leu Glu Ser Val Glu Gln Val Ala Val Ser Ala His Asp
100 105 110

Asp Glu Pro Pro Gly Asn Asp Tyr Lys Ile Arg Asn Ser Lys Pro Lys
115 120 125

Lys Ala Thr Pro Asp Thr Asn Ile Leu Leu Asn Asp Leu Lys Glu Asn
130 135 140

Ser His Phe Tyr Asn Thr Pro Val Asn Thr Thr Tyr Ser Ser Val His
145 150 155 160

Ile Pro Thr Tyr Val Tyr Asp Arg Ala Thr Glu Val Ile Lys Ala Ile
165 170 175

Lys Trp Ser Glu Asn Leu Asp Ala Thr Phe Lys Lys Asn Tyr Glu Thr
180 185 190

Asp Pro Arg Leu Ser Trp Gln Tyr Phe Gly Ser Thr Thr Gly Phe Met
195 200 205

Arg Gln Phe Pro Ala Met Gln Trp Pro Glu Glu Pro Glu Asp Leu Tyr
210 215 220

Asp Cys Arg Met Arg Pro Trp Tyr Val Glu Ala Ala Ala Ser Pro Lys
225 230 235 240

Asp Ile Leu Ile Leu Val Asp Asn Ser Gly Ser Met Met Gly Gln Ser
245 250 255

Lys Ile Ile Ala Arg His Val Ile Asn Thr Leu Leu Asp Thr Leu Ser
260 265 270

Val Asn Asp Tyr Val Asn Val Leu Val Phe Ser Asn Val Thr Asn Glu
275 280 285

Val Val Pro Cys Phe Lys Gly Leu Leu Val Gln Ala Thr Leu Ala Asn
290 295 300

Ile Arg Glu Leu Lys Leu Gly Val Glu Asn Ile Ala Asp Pro Asn Asn
305 310 315 320

Ile Ser Asp Phe Ser Glu Ala Leu Thr Arg Ala Phe Asp Thr Leu Glu
325 330 335

Thr Tyr Arg Glu Arg Asn Met Gly Ala Met Cys Asn Gln Ala Ile Met
340 345 350

Leu Val Thr Asp Gly Val Pro Glu Asn Phe Tyr Glu Leu Phe Lys Ser
355 360 365

His Asn Trp Lys Asn Gly Thr Met Gly Met Pro Val Arg Val Phe Thr
370 375 380

Tyr Leu Ile Ser Arg Glu Leu Pro Glu Ile Arg Asp Met Gln Trp Met
385 390 395 400

Ala Cys Ala Asn His Gly Tyr Phe Val His Leu Ser Thr Val Glu Glu
405 410 415

Val Arg Glu Gln Val Val His Tyr Leu Pro Val Met Ala Arg Pro Leu
420 425 430

Val Leu His Gln Ser His His Pro Val Ile Trp Thr Pro Leu Tyr Ala
435 440 445

Asp Val Thr Asp Pro Lys Met Thr Asp Tyr Leu Trp Glu Lys Glu Glu
450 455 460

Cys His Gln Gln Tyr Asn Asp Thr Ile Ser Tyr Lys Lys Thr Lys Asp
465 470 475 480

Lys Phe Phe Tyr Pro Lys Asn Ile Ala Lys Arg Glu Gln Asp Arg Lys
485 490 495

Arg Lys Glu Leu Asp Gln Asn Val Asn Val Asn Arg Gln Lys Lys His
500 505 510

Asn Leu Ile Thr Ser Leu Ala Met Pro Ala Phe Asp Lys Lys Thr Glu
515 520 525

Met Thr Lys Val Ala His Leu Leu Gly Val Val Gly Thr Asp Val Pro
530 535 540

Glu Ala Asp Leu Arg Glu Ala Met Ser Pro His Ile Leu Gly Val Asn
545 550 555 560

Asn Tyr Ala Phe Ile Val Thr Asn Asn Gly Phe Ile Val Thr His Pro
565 570 575

Asp Leu Arg Pro Val Phe Gly Asp Ile Leu Lys Pro Asn Tyr Asn Ser
580 585 590

Ile Asp Val Thr Glu Val Glu Leu Val Glu Ser Asp Asn Asn Ala Arg
595 600 605

Val Phe Asp Arg Ser Ile Leu Thr Leu Arg Asp Tyr Ile Ile Asn Gln
610 615 620

Thr Thr Gly Asp Arg Glu Ile Thr Val Lys Tyr His Tyr Asp Asn Ile
625 630 635 640

Arg Arg Ala Thr Thr Ala Glu Arg His Tyr Tyr Tyr Ser Ile Val Glu
645 650 655

Gly Thr Pro Phe Thr Val Val Val Ala Leu Gln Glu Lys His Phe Gly
660 665 670

Tyr Arg Val Lys Ile Pro Glu Arg Phe Gln Thr Leu Asn Thr Thr Arg
675 680 685

Thr Thr Leu Leu Asp Leu Phe Lys Asp Asp Glu Trp Arg Ile His Pro
690 695 700

Asp Trp Leu Tyr Cys Arg Tyr Ala Tyr Asp Asp Gly Asp Asn Thr Ser
705 710 715 720

Phe Lys Thr Pro Glu Asp Glu Leu Lys His Phe Leu Lys Arg Ile Ser
725 730 735

Lys Thr Asp Asn Ser Trp Asn Lys Trp Pro Pro Pro Arg Phe Tyr Ser
740 745 750

Glu Ser Tyr Asp Ser Asn Gly Ser Ile Leu Pro Glu Glu Lys Phe Asp
755 760 765

Cys Lys Cys Tyr Cys Asp Lys Glu Leu Met Leu Ser Leu Ile Tyr Asp
770 775 780

Ala Asn Met Thr Lys Gly Ile Phe Thr Glu Ala Lys Asn Asp Thr Asp
785 790 795 800

Lys Lys Lys Asn Pro Ala Ala Val Leu Met Ser Leu Leu Pro Arg Thr
805 810 815

Glu Phe Glu Lys Arg Phe Gly Val Thr Leu Ala Phe Val Ala Thr His
820 825 830

Ser Gly Leu Thr Arg Trp Met Asp Tyr Glu Asp Lys Pro Lys Thr Ser
835 840 845

Tyr Asn Ser Asp Asn His Glu Asn Gln Gln Pro His Phe Ile Asp Glu
850 855 860

Asn Val Tyr Ser Ile Glu Glu Val Trp Tyr Arg Arg Ala Val Glu Tyr
865 870 875 880

Asn Met Val Asn Asp Glu Ser Tyr Val Tyr Ser Val Pro Phe Glu Asn
885 890 895

Glu Asn Ile Lys Ser Thr Leu Val Thr Ala Ser Gln Ala Val Phe Val
900 905 910

Thr Ser Lys Glu Asn Lys Lys Gly Ala Ala Ala Val Val Gly Tyr
915 920 925

Gln Phe Arg His Ser Ala Leu Gln Glu Leu Phe Ser Asn Ile Thr Lys
930 935 940

Gln Cys Tyr Ser Glu Thr Gly Cys Thr Pro Ala Lys Asp Thr Cys Gln
945 950 955 960

Ser Leu Glu Arg Asp Cys Tyr Ile Leu Asp Asn Asn Gly Tyr Ile Ile
965 970 975

Ala Ser Glu Asn Pro Met Asp Thr Gly Lys Phe Phe Gly Lys Val Lys
980 985 990

Gly Pro Ile Met Asn Met Met Val Glu Glu Lys Ile Tyr Lys Lys Ile
995 1000 1005

Thr Ile Phe Asp Tyr Gln Gly Val Cys Phe Lys Arg Glu Asn Glu
1010 1015 1020

Asp Asp Ser Asn Ser Ser Phe Leu Tyr Thr Pro Ile His His
1025 1030 1035

Met Lys Gln Leu Ile Gly Trp Leu Ile Gly Arg Val Leu Trp Leu
1040 1045 1050

Ala Ala His Ser Asn Phe Gln Trp Met Val Ser Gln Ala Gln Ala
1055 1060 1065

Ile Phe Glu Asp Asp Tyr Gln Glu Asp Glu Glu Ser Asn Tyr Ser
1070 1075 1080

Ser Asp Thr Ile Ser Thr Phe Lys Ile Glu Gly Glu Lys Ala Leu
1085 1090 1095

Lys Tyr Val Lys Ile Asn Arg Thr Arg Pro Lys Ser Cys Asp Arg
1100 1105 1110

Val Val Asp Leu Phe Thr Leu Thr Ser Lys Ile Pro Glu Lys Val
1115 1120 1125

Glu Arg Lys Ser Met Cys Ala Arg Pro Tyr Glu Leu Arg Lys Ile
1130 1135 1140

Met Asn Thr Asn Leu Ile Leu Leu Val Val Asn Gly Arg Cys Pro
1145 1150 1155

Glu Ser Ser Lys Ser Glu Asn Phe Asp Thr Leu Pro Glu Glu Val
1160 1165 1170

Met Tyr Asp Glu Phe Asn Asn Ser Leu Gly Cys His Lys Ala Phe
1175 1180 1185

Tyr Ser Leu Pro Arg Arg Arg Pro Lys Thr Ala Cys Ile Arg Thr
1190 1195 1200

His Pro Asp Glu His Glu Ile Tyr Asp Lys Met Cys Gly Ser Ser
1205 1210 1215

Thr Ile Ile Thr Ile Thr Pro Ile Thr Leu Ser Val Ile Phe Phe
1220 1225 1230

Ser Thr Phe Asn Leu Ile Arg Phe Phe Val Ile Phe
1235 1240 1245

<210> 15
<211> 5028
<212> DNA
<213> Heliothis virescens

<400> 15
tgcggccccc gcgctctctc gcgcctgcgc actacaccgc atacctatca accttatcaa 60
tgttcgtcgc ccagtccctc tcgacggtct cacacatcggt aatccctaaa catcatcaat 120
gtcataatta gattagaaac gtaacatgtt ctgccgcaat tctagtcagt gaactcaata 180
acgcagtggt tctgatgtgc aagtgtgtcg gcgccttcgt gttacttctg ctggttttgt 240
tcctggactc cagggactgc tcggctagtg cacaatatga tgccgctggc aaaatatcgc 300
tcaactcggt ccaagcatgg gcggtaagc ttggtactga gctgtatcac ttcggagaat 360
ttatcaccag gaagaaagag gtgcaggata gttttaatc cgctcaagtg gaatcgagag 420
atggggaaaa actagttcag agtatgtcag acgacatacg cgccatgtg gaacttaaga 480
tcagcgccgt caaaaggata gtggaagctg ctgaaaacat ggcgttcgt aaacaaaatg 540

agcccgtaacc tgaagatttt cagttctaca atagcaaaga aatggaggaa ccttgggacg 600
agggtgtcaat cacaacaacg cctgagacag acttcggtca ggaaagttgg atagtacgac 660
cgccgtcaaa gaatgcgcac acgcaacaaa acccacactt ctcaaacatt ccagtaaaca 720
ctaatttttag cagtgtacat gttccaacaa atgtttatgc ttgggcacct gaagttatca 780
agggaatcca ctggtcagag ggactggaca cgcacttcat caataattac cagagcggacc 840
cgacgttatac gtggcaatac ttcggcagct ctactggatt catgagacat tatcccgcat 900
tgaatggag ggctgaccct gtggatattt atgattgtcg aacgcgagcg tggtacatgg 960
aagctgcagc gagtccaaag gatgtaatca ttttagttga tcgtagcggg tcaatgaccg 1020
ggcaaaggcg ggacatcgcc aaacacgtcg ttaccaatat actggatacg ctgggcaaca 1080
acgattttgt caacgttctg acttttgctg acaccgtaga agaaatcgta ccgtgtttg 1140
aagattctct agtgcaggcc actctggaa atatacggga actaaagttg gcgatggaca 1200
gtttgaaac gcaggagata gcaaactttt ccgctgcgt gacgagagct ttcgaactac 1260
tggagatata cagaaataac agtggaggtg caaattgcaa ccaggtata atgctggtaa 1320
cagacggcgt accctacaat tacaaagaaa tatttgagaa atacaactgg aagtatgaga 1380
cccctgtgag agtgtttacg tacctgatag ggcgtgaggt aaaggtcgca gacgtaagag 1440
aggtgaagtg gatggcgtgc gcgaatcgcg gtttctacgt gcatctgagt actctagcgg 1500
aggtgcgcga ggcgtgttg gaacatgtga acgtgctcgc ggcgcgtc gtgctgcaga 1560
gagaaaagca tccgtcgtc tggacacccg tctacgctaa cgtcactgat ccgaaagtag 1620
cagattatct gtgggagcaa cgtgagcgag cagagcagaa agaacgcttc atgagccagc 1680
ggagggacaa gaatctttc aactcgaca aagaacagga tagacgatgg agaattactc 1740
agatgaaaca gggccagtac agtgagctcg gcaattccca gtatcgttta atgacatcgg 1800
tgtccatgcc ggtgtacgac ctccgacaca acgagtcgt agaggagaac ggccagaaag 1860
agatgcgtat tgcttagactg ttgggaatcg ctggcactga cgtaccttctt tctgaaatac 1920
aagctcttat gacaccgtat aagatcggtg tgaatggcta cgcgttata gtaacgaaca 1980
atggttacat cttgatacac ccggatctga ggcgtgttt tcaacaaatc ttgaaaccaa 2040
gctacaacag cgtcgatatg atagaagttg aactcttga cgatgacaga ggccccagga 2100
actttagcaa agagctcact gcactccgaa aagaaattat cgatcaaag acgggcaaca 2160
aggtgatgag tgtcaagtac cattggatg atatgaaaag agtatcccga gcaaaaaggc 2220
attatttctg gacgggtata agcgactccc cttcacgtt ggttgtggca ataccagaga 2280
attacggccg ccaccgcac acgccaccac cgactgatga tatccacagg ctgtctctca 2340
catccaagaa catctcgca aggcaacttcc tgtcggataa gtggagcggtt catcctgact 2400
ggatgtatttgc cccgcattat gaacgcacgt ttgcaactgc tgaggatgag cttctctatt 2460

tcttggagcg cgtcgctaag cctggctggc gctggcctgc caaggcctcg tccccggagc 2520
accacaagaa taaacctgga catgagcggc ataacaacgg aacaccagaa acgagagaaa 2580
ggagcaaaat atccaatagc accccaagga atgagtatta ctgcgatcat ggcttgatgc 2640
aggccttgtt gtatgacgac agaaatacag cttggtttaa caagagcatc tctgattctg 2700
catctgatga gaaagccccca ttgacaaaag tgatcggatt gttgccgagg gtggagttca 2760
ttcaacggtt tgggtacatc gtggcgttcc tatcaaccca cagcggacta acgcgctggc 2820
agacccatcc acccaaggaa catgataatg acaaaccaga tttcggcaag caatggccac 2880
gagcgatcga agaagtctgg taccggcgcg cagtcgagca gcactacggt gatcctctga 2940
gctatgtcta cagtgttagac ttgagcactg tcaagttccc cctcaacggtt agcctggctc 3000
tggtcaccgc atcacatgcc gtcttccacg gagacgggca taggaaggct ccagcggctg 3060
tcgttgggtt tcagttcaaa catgagcggc tcagtgaatg gtttataat attacgtctt 3120
cgtgtgaaca taacaaggag tgtacaactt gccagtctga caactggat ttttacctgg 3180
tggacaacaa cgctgggtt attgttagtg aagattccac acagacaggc cagttctcg 3240
gaaggattcg accggacatc atgtcaagat tagtggaga tgaggtgtac aaggcagtgc 3300
atattgtga ttaccaggca gtctgcttca gagagaagaa aactacgaat ccagcgacaa 3360
tgctcttac cccacttgaa aacttgcgc tcgtgatggc atggttcttca gctaccacgg 3420
tctggttcta caactctata acgacagggtt tggctcaagc atccagctac tctttcgatg 3480
acgagaatgt tacacccact gttgcatacc agagctacga aaacgatgaa gagacggatg 3540
acccatacat gtctaaacct ccaaacatgc ggtcttaga acgcgactat gagaagctgg 3600
tgcttataaa ccgaacgcgg ccaactcctt gcgcacagaga gatgtacttg taccacttag 3660
actataacaa cttagacgag aagctgaaca agccagtggc ggagtgcggg cgaccattca 3720
tagctcaaca tgtcaactac acaaacatgc taatgatttg agtagacgcc aattgcccga 3780
aagacgaggt cgccatg tcgggtggatg cgacagaagt gaactataac gagtcgctgc 3840
cttgcctgaa gcatatgcat cccttgtata ggaaggagcc tacttcatgc ataaggaatc 3900
atactgagga gagcaacatc gacatgtgcg gacgcggcag tctacccggc aacagcaaga 3960
catgggttgc gctgagcatc ttttacttag tcaaataat tctggctaa agttaggtt 4020
caaagctaag ggaggtaaag cacaaagcgg ccagaatggg caatgaaggt acaacaaagt 4080
cgatggcgag tgttaggaatg aatataaatc ttctggctgc ctgttcttca tctctctgg 4140
attaccgttg aagaaatcct cactgaaata ttagccattc ttaggtaaat tattaaataa 4200
tgcatacggt aagttggaga gccgggtatt gttttaatg aatattgagg cctggaaactg 4260
cgagcgggca aaggcgtggt ttcaggccta ggtatagat tgaattatac gttttgttaa 4320
aatgtgtcat agtttatcgg aatatttttc gtagttaatc caaagatata tcgatggtaa 4380

taactttaa ttataatcgt	tgctttgtt	tgattattat	tataattgta	ttgatctccg	4440
ctttagaat	aggtagatat	tataaaaaaa	tacatgtcat	tcccacatat	4500
atgatacgag	tatgctccc	ttgtgccaca	ataggaagca	atataaaaat	4560
aaaaattcaa	ttacccccgt	ggtatgtggg	ggtcaatttt	tttaaaattg	4620
aaaaaaaaac	ttttagtatt	aaattatata	gctttgtaa	aacgttggc	4680
taaattctcc	tttatattatg	taatgtttag	atattttctt	tatttccaaa	4740
aaattatttc	cgtcctgctg	gtgaaaaggt	ttcacttatt	aatttggaca	4800
ttacaaacaa	ttagggcaaa	tcttcaaatt	aatttgtttg	cattgaacca	4860
accactggtt	gaaataaaata	tttgtaccta	atattactag	aatttagtat	4920
tgtcatttaa	gtatttgtct	tagaagtcaa	ctatttactg	aattactgaa	4980
ttgtttgtaa	taaataaaatg	attattaaaa	gtaaaaaaaaa	aaaaaaaa	5028

<210> 16
<211> 1271
<212> PRT
<213> Heliothis virescens

<400> 16

Met Cys Lys Cys Val Gly Ala Phe Val Leu Leu Leu Leu Val Leu Phe
1 5 10 15

Leu Asp Ser Arg Asp Cys Ser Ala Ser Ala Gln Tyr Asp Ala Ala Gly
20 25 30

Lys Ile Ser Leu Asn Ser Val Gln Ala Trp Ala Val Lys Leu Gly Thr
35 40 45

Glu Leu Tyr His Phe Gly Glu Phe Ile Thr Arg Lys Lys Glu Val Gln
50 55 60

Asp Ser Phe Lys Ser Ala Gln Val Glu Ser Arg Asp Gly Glu Lys Leu
65 70 75 80

Val Gln Ser Met Ser Asp Asp Ile Arg Ala Met Met Glu Leu Lys Ile
85 90 95

Ser Ala Val Lys Arg Ile Val Glu Ala Ala Glu Asn Met Ala Phe Asp
100 105 110

Lys Gln Asn Glu Pro Val Pro Glu Asp Phe Gln Phe Tyr Asn Ser Lys
115 120 125

Glu Met Glu Glu Pro Trp Asp Glu Val Ser Ile Thr Thr Thr Pro Glu
Page 42

130

135

140

Thr Asp Phe Gly Gln Glu Ser Trp Ile Val Arg Pro Pro Ser Lys Asn
145 150 155 160

Ala His Thr Gln Gln Asn Pro His Phe Ser Asn Ile Pro Val Asn Thr
165 170 175

Asn Phe Ser Ser Val His Val Pro Thr Asn Val Tyr Ala Trp Ala Pro
180 185 190

Glu Val Ile Lys Gly Ile His Trp Ser Glu Gly Leu Asp Thr His Phe
195 200 205

Ile Asn Asn Tyr Gln Ser Asp Pro Thr Leu Ser Trp Gln Tyr Phe Gly
210 215 220

Ser Ser Thr Gly Phe Met Arg His Tyr Pro Ala Leu Lys Trp Arg Ala
225 230 235 240

Asp Pro Val Asp Ile Tyr Asp Cys Arg Thr Arg Ala Trp Tyr Met Glu
245 250 255

Ala Ala Ala Ser Pro Lys Asp Val Ile Ile Leu Val Asp Arg Ser Gly
260 265 270

Ser Met Thr Gly Gln Arg Arg Asp Ile Ala Lys His Val Val Thr Asn
275 280 285

Ile Leu Asp Thr Leu Gly Asn Asn Asp Phe Val Asn Val Leu Thr Phe
290 295 300

Ala Asp Thr Val Glu Glu Ile Val Pro Cys Phe Glu Asp Ser Leu Val
305 310 315 320

Gln Ala Thr Leu Gly Asn Ile Arg Glu Leu Lys Leu Ala Met Asp Ser
325 330 335

Phe Glu Thr Gln Glu Ile Ala Asn Phe Ser Ala Ala Leu Thr Arg Ala
340 345 350

Phe Glu Leu Leu Glu Ile Tyr Arg Asn Asn Ser Gly Gly Ala Asn Cys
355 360 365

Asn Gln Ala Ile Met Leu Val Thr Asp Gly Val Pro Tyr Asn Tyr Lys
370 375 380

Glu Ile Phe Glu Lys Tyr Asn Trp Lys Tyr Glu Thr Pro Val Arg Val
Page 43

385

390

395

400

Phe Thr Tyr Leu Ile Gly Arg Glu Val Lys Val Ala Asp Val Arg Glu
405 410 415

Val Lys Trp Met Ala Cys Ala Asn Arg Gly Phe Tyr Val His Leu Ser
420 425 430

Thr Leu Ala Glu Val Arg Glu Arg Val Leu Glu His Val Asn Val Leu
435 440 445

Ala Arg Pro Leu Val Leu Gln Arg Glu Lys His Pro Val Val Trp Thr
450 455 460

Pro Val Tyr Ala Asn Val Thr Asp Pro Lys Val Ala Asp Tyr Leu Trp
465 470 475 480

Glu Gln Arg Glu Arg Ala Glu Gln Lys Glu Arg Phe Met Ser Gln Arg
485 490 495

Arg Asp Lys Asn Leu Phe Asn Ser Asp Lys Glu Gln Asp Arg Arg Trp
500 505 510

Arg Ile Thr Gln Met Lys Gln Gly Gln Tyr Ser Glu Leu Gly Asn Ser
515 520 525

Gln Tyr Gln Leu Met Thr Ser Val Ser Met Pro Val Tyr Asp Leu Arg
530 535 540

His Asn Glu Ser Val Glu Glu Asn Gly Gln Lys Glu Met Arg Ile Ala
545 550 555 560

Arg Leu Leu Gly Ile Ala Gly Thr Asp Val Pro Leu Ser Glu Ile Gln
565 570 575

Ala Leu Met Thr Pro Tyr Lys Ile Gly Val Asn Gly Tyr Ala Phe Ile
580 585 590

Val Thr Asn Asn Gly Tyr Ile Leu Ile His Pro Asp Leu Arg Pro Val
595 600 605

Phe Gln Gln Ile Leu Lys Pro Ser Tyr Asn Ser Val Asp Met Ile Glu
610 615 620

Val Glu Leu Phe Asp Asp Asp Arg Gly Pro Arg Asn Phe Ser Lys Glu
625 630 635 640

Leu Thr Ala Leu Arg Lys Glu Ile Ile Asp Gln Lys Thr Gly Asn Lys
Page 44

645

650

655

Val Met Ser Val Lys Tyr His Leu Asp Asp Met Lys Arg Val Ser Arg
660 665 670

Ala Lys Arg His Tyr Phe Trp Thr Gly Ile Ser Asp Ser Pro Phe Thr
675 680 685

Leu Val Val Ala Ile Pro Glu Asn Tyr Gly Arg His Arg Ile Thr Pro
690 695 700

Pro Pro Thr Asp Asp Ile His Arg Leu Ser Leu Thr Ser Lys Asn Ile
705 710 715 720

Ser Ala Arg Gln Tyr Leu Ser Asp Lys Trp Ser Val His Pro Asp Trp
725 730 735

Met Tyr Cys Arg His Tyr Glu Arg Thr Phe Ala Thr Ala Glu Asp Glu
740 745 750

Leu Leu Tyr Phe Leu Glu Arg Val Ala Lys Pro Gly Trp Arg Trp Pro
755 760 765

Ala Lys Pro Arg Pro Pro Glu His His Lys Asn Lys Pro Gly His Glu
770 775 780

Arg His Asn Asn Gly Thr Pro Glu Thr Arg Glu Arg Ser Lys Ile Ser
785 790 795 800

Asn Ser Thr Pro Arg Asn Glu Tyr Tyr Cys Asp His Gly Leu Met Gln
805 810 815

Ala Leu Val Tyr Asp Ala Arg Asn Thr Ala Trp Phe Asn Lys Ser Ile
820 825 830

Ser Asp Ser Ala Ser Asp Glu Lys Ala Pro Leu Thr Lys Val Ile Gly
835 840 845

Leu Leu Pro Arg Val Glu Phe Ile Gln Arg Phe Gly Tyr Ile Val Ala
850 855 860

Phe Leu Ser Thr His Ser Gly Leu Thr Arg Trp Gln Thr His Pro Pro
865 870 875 880

Lys Glu His Asp Asn Asp Lys Pro Asp Phe Gly Lys Gln Trp Pro Arg
885 890 895

Ala Ile Glu Glu Val Trp Tyr Arg Arg Ala Val Glu Gln His Tyr Val
Page 45

900

905

910

Asp Pro Leu Ser Tyr Val Tyr Ser Val Asp Leu Ser Thr Val Lys Phe
915 920 925

Pro Leu Asn Val Ser Leu Ala Leu Val Thr Ala Ser His Ala Val Phe
930 935 940

His Gly Asp Gly His Arg Lys Ala Pro Ala Ala Val Val Gly Phe Gln
945 950 955 960

Phe Lys His Glu Arg Leu Ser Glu Trp Phe Asp Asn Ile Thr Ser Ser
965 970 975

Cys Glu His Asn Lys Glu Cys Thr Thr Cys Gln Ser Asp Asn Trp Asp
980 985 990

Cys Tyr Leu Val Asp Asn Asn Gly Trp Val Ile Val Ser Glu Asp Ser
995 1000 1005

Thr Gln Thr Gly Gln Phe Phe Gly Arg Ile Arg Pro Asp Ile Met
1010 1015 1020

Ser Arg Leu Val Glu Asp Glu Val Tyr Lys Ala Val His Ile Val
1025 1030 1035

Asp Tyr Gln Ala Val Cys Phe Arg Glu Lys Lys Thr Thr Asn Pro
1040 1045 1050

Ala Thr Met Leu Phe Thr Pro Leu Glu Asn Leu Arg Leu Val Met
1055 1060 1065

Ala Trp Phe Leu Ala Thr Thr Val Trp Phe Tyr Asn Ser Ile Thr
1070 1075 1080

Thr Gly Leu Ala Gln Ala Ser Ser Tyr Ser Phe Asp Asp Glu Asn
1085 1090 1095

Val Thr Pro Thr Val Ala Tyr Gln Ser Tyr Glu Asn Asp Glu Glu
1100 1105 1110

Thr Asp Asp Pro Tyr Met Ser Lys Pro Pro Asn Met Arg Val Leu
1115 1120 1125

Glu Arg Asp Tyr Glu Lys Leu Val Leu Ile Asn Arg Thr Arg Pro
1130 1135 1140

Thr Pro Cys Asp Arg Glu Met Tyr Leu Tyr Gln Leu Asp Tyr Asn
Page 46

1145

1150

1155

Asn Leu Asp Glu Lys Leu Asn Lys Pro Val Ala Glu Cys Gly Arg
1160 1165 1170

Pro Phe Ile Ala Gln His Val Asn Tyr Thr Asn Met Leu Met Ile
1175 1180 1185

Val Val Asp Ala Asn Cys Pro Lys Asp Glu Val Ala Ala Met Ser
1190 1195 1200

Val Asp Ala Thr Glu Val Asn Tyr Asn Glu Ser Leu Pro Cys Leu
1205 1210 1215

Lys His Met His Pro Leu Tyr Arg Lys Gln Pro Thr Ser Cys Ile
1220 1225 1230

Arg Asn His Thr Glu Glu Ser Asn Ile Asp Met Cys Gly Arg Gly
1235 1240 1245

Ser Leu Pro Gly Asn Ser Lys Thr Trp Val Ser Leu Ser Ile Phe
1250 1255 1260

Leu Leu Val Lys Tyr Tyr Leu Ala
1265 1270

<210> 17

<211> 4892

<212> DNA

<213> Heliothis virescens

<400> 17

cggaaatccct aaacatcatc aatgtcataa ttagattaga aacgtaacat gttctgccgc 60

aattctagtc agtgaactca ataacgcagt gttctgatg tgcaagtgtg tcggcgccct 120

cgtgttactt ctgctggttt tggccctgga ctccaggac tgctcggcta gtgcacaata 180

tgtatccgcgt ggcaaaaatcg cgtcaactc ggtccaagca tggcggtta agtttgtac 240

ttagctgtat cacttcggag aatttatcac caggaagaaa gaggtgcagg atagtttaa 300

atccgctcaa gtggaatcga gagatgggaa aaaactagtt cagagtatgt cagacgacat 360

acgcgcctatg atgaaactta agatcagcgc cgtcaaaagg atagtgaaag ctgctgaaaa 420

catggcggttc gataaacaaa atgagccgt acctgaagat tttcagttct ataatagtaa 480

agaaatggag gaaccctggg acgaggtgtc aatcacaaca acgcctgaga cagacttcgg 540

tcagggaaatg tggatagtac gaccggcgtc aaagaatgcg cacacgcaac aaaacccaca 600

cttctcaaac attccagtaa acactaattt tagcagtgtc catgttccaa caaatgttta 660

tgcttggca cctgaagtta tcaagggaaat ccactggtca gagggactgg acacgcactt 720

catcaataat taccagagcg acccgacgtt atcgtggcaa tacttcggca gctctactgg	780
attcatgaga cattatcccg cattgaaatg gagggctgac cctgtggata tttacgattg	840
tcgaacgcga gcgtggtaca tggaagctgc agcgagtcca aaggatgtta tcatttttagt	900
tgatcgtagc gggtaatga ccgggcaaag acgggacatc gccaaacatg tcgttaccaa	960
tatactggat acgcttggca acaacgattt tgtcaacgtt ctaacttttgcgt 1020	1020
agaagaaatt gtaccgtgtt ttgaagattc tctagtgcag gccactctgg gaaaatacg	1080
ggaactaaag ttggcgatgg acagtttga aacgcaggag atagcaaact tttccgctgc	1140
gctgacgaga gctttcgaac tactggagat atatagaaat aatagtggag gtgcaaattg	1200
caaccaggct ataatgctgg taacagatgg cgtaccctac aattacaaag aaatatttga	1260
gaaatacaac tggaagtatg agaccctgt gagagtgtt acgtaccta tagggcgtga	1320
ggtcgcagac gtaagagagg tgaagtggat ggcgtgcgcg aatcgcgggt tctacgtgca	1380
tctgagttact ctagcggagg tgcgcgagcg cgtgttgaa catgtaacg tgctcgccg	1440
cccgctcggt ctgcagagag aaaagcatcc tgcgtctgg acacccgtct acgctaacgt	1500
cactgatcca aaagttagcag attatctgtg ggagcaacgt gagcggcagc agcagaaaga	1560
acgcttcatg agccagcggg gggacaagaa tctttcaac tcggacaaag aacaggatag	1620
acgatggaga attactcaga tgaaacaggg ccagtacagt gagctcggca attcccagta	1680
tcagttaatg acatcagtgt ccatgccgt gtacgaccc tcgacacaacg agtccgtaga	1740
ggagaacggc cagaaagaga tgcgtattgc tagactgtt ggaatcgctg gcactgacgt	1800
acctcttct gaaatacaag ctctcatgac accgtataag atcgggtgtga atggctacgc	1860
gtttatagta acgaacaatg gttacatctt gatacacccg gatctgaggc ctgtttcca	1920
acaaatcttggaa aaccaagct acaatagcgt cgatatgata gaagttgaac tgaaaagagt	1980
tgacagaggc cccaggaact ttagcaaaga gctcaactgca ctccgaaaag aaattatcga	2040
tcaaaagacg ggcacaacaagg ttaggtgtt caagtaccat ttggatgata tgaaaagagt	2100
atccccgagca aaaaggcatt atttctggac gggtaatgc gactccccct tcacgttgg	2160
tgtggcaata ccagagaatt acggccgcca ccgcacacg ccaccaccga ctgatgatat	2220
ccacaggctg tctctcacct ccaaaaacat ctcggcaagg cagttacgtt cgataaagt	2280
gagcgttcat cctgactgga tgtattgccg gcactatgaa cgcacgttttgcgttca	2340
ggaagagctt ctctatccat tggagcgtgt agccaaagcct ggctggcgct ggcctgcca	2400
gcctcgccc ccggagcacc acaagaacaa acctggacat gagcggcata acaacggAAC	2460
accagaaacg agagaaagga gcaaaaatgc taatagcacc ccaaggaatg agtattattg	2520
cgatcatggc ttgatgcagg ctttgtgtt tgacgcgaga aatacagcct ggtttaacaa	2580
gagcatctt gattctgcat ctgtatggaa agcgggtggag tttattcaac ggtttgggtaa	2640

catcggtggcg ttcctgtcaa cccacagtgg actaacgcgc tggcagaccc acccaccta	2700
agaacatgat aatgacaac cagattcgg caagcaatgg ccgcgagcga tcgaagaagt	2760
ctggtaccga cgccgcagtgc agcagcacta cgtagatcct ttgagctatg tctacagtgt	2820
agacttgagc actgtcaagt tccccctcaa cgtaaggctg gctctggtca ccgcatacaca	2880
tgccgtcttc cacggagacg ggcataggaa ggctccggcg gctgtcggtt ggtttcagtt	2940
caaacatgag cggctcagtgc aatggttga taatattacg tcttcgtgtg aacataacaa	3000
ggagtgtaca acttgccagt ctgacaactg ggactgttac ttgggtggaca acaacggctg	3060
ggttattgtt agtgaagact ccacacagac tggacagttc ttcggaagga ttcgaccaga	3120
catcatgtcg agatttagtt aagatgaagt ctacaaggca gtgcataattt ttgattacca	3180
ggcggctctgc ttcagagaga agaaaactac gaacccagcg acaatgctct ttaccccact	3240
tgaaaacttg cgccctcgta tggcatggtt cttagctacc acggctcggt tctacaactc	3300
cataacgaca ggttggctc aagcatccag ctactccttc gatgacgaga atgttacacc	3360
cactgttgca taccagagct acgaaaacga tgaagagacg gatgacccat acatgtcgaa	3420
acctccaaac atgagggtct tagaacgaga ctatgagaaa ctggtgctta taaacaggac	3480
gcgaccaact ccttgcgaca gagagatgta cttgtaccag ctagactata acaacttaga	3540
cgagaagctg aacaagccag tggcggagtg cgggcgacca ttcatagctc aacacgtcaa	3600
ctatacaaac atgctaattga ttgtggtaga cgccaattgc ccgaaagacg aggtcgacgc	3660
catgtcggtg gatgcgacag aagtgaacta taacgagtcg ctgccttgcc tgaagcatat	3720
gcatcccttg tataggaagc agcctacttc ctgcataagg aatcatactg aggagagcaa	3780
catcgacatg tgccggacgcg gcagtcattc cggcaacagc aagacatgga tttcgctgag	3840
catctttta ctatgtcaaattt attatctggc gtaaaagtgtt ggttcaaagc ttagagaggt	3900
aaagcacaaa gcggccagac tggggaatga aggtgcaata tgccaggta ggaataaata	3960
taaattttct ggctgcctat tctttatctc tctggtatta ccgttaaaga aaacctcact	4020
gaaatatcag ccattcttag gtaaaatttt aaataatgca tacgataagt cggagagccg	4080
ggtattgttt taaatggata ttgaggcctg gaactgcgag cgggcaaaga cgtggttca	4140
ggcctaggtt atagatttaa ttatacgttt tgatctccg cttttagaat aggttagat	4200
ttttcgttag taggtaaatc caaagatata tcgatggtaa caactttaa ttataatcgt	4260
ttctttgtt tgattattat tataattgtt ttgatctccg cttttagaat aggttagat	4320
tataaaaaat acatgtcatt cccacatatc aaattttaaa tgatacgagt atgctcccat	4380
tgtgccacaa taggaagcaa tataaaaata tcataatcaa aattcaatta ccccccgttgt	4440
atgtgggggt caactttta aaaattgtga acaaaaataaa aaaaattata gtataaaatt	4500
atatacgttt tgtaaaaacgt ttggctgcat gatTTTaaat ttccctttat ttatgtataa	4560

ttagatctt ttctttattt ccatatctaa atgttaaattt atttcgtcc tgctggtaa	4620
aaggattcac ttattaattt ggacaatatg caaatgaca aacaattagg gcaaatctc	4680
aaattaattt gttgcattt aaccagttagg tattacacca ctggttgaaa taaatattt	4740
tacctaatac tactagaatt tagtatttcg aatctctgtc atttaagtat ttgtcttaga	4800
agtcaactat ttactgaattt acctactgaa atgtgattgt ttgtttgtaa taaataaaatg	4860
attattaaaa gtattcaaaaa aaaaaaaaaaa aa	4892

<210> 18
<211> 1258
<212> PRT
<213> Heliothis virescens

<400> 18

Met Cys Lys Cys Val Gly Ala Phe Val Leu Leu Leu Leu Val Leu Phe
1 5 10 15

Leu Asp Ser Arg Asp Cys Ser Ala Ser Ala Gln Tyr Asp Ala Ala Gly
20 25 30

Lys Ile Ser Leu Asn Ser Val Gln Ala Trp Ala Val Lys Leu Gly Thr
35 40 45

Glu Leu Tyr His Phe Gly Glu Phe Ile Thr Arg Lys Lys Glu Val Gln
50 55 60

Asp Ser Phe Lys Ser Ala Gln Val Glu Ser Arg Asp Gly Glu Lys Leu
65 70 75 80

Val Gln Ser Met Ser Asp Asp Ile Arg Ala Met Met Glu Leu Lys Ile
85 90 95

Ser Ala Val Lys Arg Ile Val Glu Ala Ala Glu Asn Met Ala Phe Asp
100 105 110

Lys Gln Asn Glu Pro Val Pro Glu Asp Phe Gln Phe Tyr Asn Ser Lys
115 120 125

Glu Met Glu Glu Pro Trp Asp Glu Val Ser Ile Thr Thr Pro Glu
130 135 140

Thr Asp Phe Gly Gln Glu Ser Trp Ile Val Arg Pro Pro Ser Lys Asn
145 150 155 160

Ala His Thr Gln Gln Asn Pro His Phe Ser Asn Ile Pro Val Asn Thr
165 170 175

Asn Phe Ser Ser Val His Val Pro Thr Asn Val Tyr Ala Trp Ala Pro
180 185 190

Glu Val Ile Lys Gly Ile His Trp Ser Glu Gly Leu Asp Thr His Phe
195 200 205

Ile Asn Asn Tyr Gln Ser Asp Pro Thr Leu Ser Trp Gln Tyr Phe Gly
210 215 220

Ser Ser Thr Gly Phe Met Arg His Tyr Pro Ala Leu Lys Trp Arg Ala
225 230 235 240

Asp Pro Val Asp Ile Tyr Asp Cys Arg Thr Arg Ala Trp Tyr Met Glu
245 250 255

Ala Ala Ala Ser Pro Lys Asp Val Ile Ile Leu Val Asp Arg Ser Gly
260 265 270

Ser Met Thr Gly Gln Arg Arg Asp Ile Ala Lys His Val Val Thr Asn
275 280 285

Ile Leu Asp Thr Leu Gly Asn Asn Asp Phe Val Asn Val Leu Thr Phe
290 295 300

Ala Asp Thr Val Glu Glu Ile Val Pro Cys Phe Glu Asp Ser Leu Val
305 310 315 320

Gln Ala Thr Leu Gly Asn Ile Arg Glu Leu Lys Leu Ala Met Asp Ser
325 330 335

Phe Glu Thr Gln Glu Ile Ala Asn Phe Ser Ala Ala Leu Thr Arg Ala
340 345 350

Phe Glu Leu Leu Glu Ile Tyr Arg Asn Asn Ser Gly Gly Ala Asn Cys
355 360 365

Asn Gln Ala Ile Met Leu Val Thr Asp Gly Val Pro Tyr Asn Tyr Lys
370 375 380

Glu Ile Phe Glu Lys Tyr Asn Trp Lys Tyr Glu Thr Pro Val Arg Val
385 390 395 400

Phe Thr Tyr Leu Ile Gly Arg Glu Val Ala Asp Val Arg Glu Val Lys
405 410 415

Trp Met Ala Cys Ala Asn Arg Gly Phe Tyr Val His Leu Ser Thr Leu
420 425 430

Ala Glu Val Arg Glu Arg Val Leu Glu His Val Asn Val Leu Ala Arg
435 440 445

Pro Leu Val Leu Gln Arg Glu Lys His Pro Val Val Trp Thr Pro Val
450 455 460

Tyr Ala Asn Val Thr Asp Pro Lys Val Ala Asp Tyr Leu Trp Glu Gln
465 470 475 480

Arg Glu Arg Ala Glu Gln Lys Glu Arg Phe Met Ser Gln Arg Arg Asp
485 490 495

Lys Asn Leu Phe Asn Ser Asp Lys Glu Gln Asp Arg Arg Trp Arg Ile
500 505 510

Thr Gln Met Lys Gln Gly Gln Tyr Ser Glu Leu Gly Asn Ser Gln Tyr
515 520 525

Gln Leu Met Thr Ser Val Ser Met Pro Val Tyr Asp Leu Arg His Asn
530 535 540

Glu Ser Val Glu Glu Asn Gly Gln Lys Glu Met Arg Ile Ala Arg Leu
545 550 555 560

Leu Gly Ile Ala Gly Thr Asp Val Pro Leu Ser Glu Ile Gln Ala Leu
565 570 575

Met Thr Pro Tyr Lys Ile Gly Val Asn Gly Tyr Ala Phe Ile Val Thr
580 585 590

Asn Asn Gly Tyr Ile Leu Ile His Pro Asp Leu Arg Pro Val Phe Gln
595 600 605

Gln Ile Leu Lys Pro Ser Tyr Asn Ser Val Asp Met Ile Glu Val Glu
610 615 620

Leu Phe Asp Asp Asp Arg Gly Pro Arg Asn Phe Ser Lys Glu Leu Thr
625 630 635 640

Ala Leu Arg Lys Glu Ile Ile Asp Gln Lys Thr Gly Asn Lys Val Met
645 650 655

Ser Val Lys Tyr His Leu Asp Asp Met Lys Arg Val Ser Arg Ala Lys
660 665 670

Arg His Tyr Phe Trp Thr Gly Ile Ser Asp Ser Pro Phe Thr Leu Val
675 680 685

Val Ala Ile Pro Glu Asn Tyr Gly Arg His Arg Ile Thr Pro Pro Pro
690 695 700 705 710 715 720

Arg Gln Tyr Leu Ser Asp Lys Trp Ser Val His Pro Asp Trp Met Tyr
725 730 735

Cys Arg His Tyr Glu Arg Thr Phe Ala Thr Ala Glu Glu Glu Leu Leu
740 745 750

Tyr Phe Leu Glu Arg Val Ala Lys Pro Gly Trp Arg Trp Pro Ala Lys
755 760 765

Pro Arg Pro Pro Glu His His Lys Asn Lys Pro Gly His Glu Arg His
770 775 780

Asn Asn Gly Thr Pro Glu Thr Arg Glu Arg Ser Lys Ile Ser Asn Ser
785 790 795 800

Thr Pro Arg Asn Glu Tyr Tyr Cys Asp His Gly Leu Met Gln Ala Leu
805 810 815

Val Tyr Asp Ala Arg Asn Thr Ala Trp Phe Asn Lys Ser Ile Ser Asp
820 825 830

Ser Ala Ser Asp Glu Lys Ala Val Glu Phe Ile Gln Arg Phe Gly Tyr
835 840 845

Ile Val Ala Phe Leu Ser Thr His Ser Gly Leu Thr Arg Trp Gln Thr
850 855 860

His Pro Pro Lys Glu His Asp Asn Asp Lys Pro Asp Phe Gly Lys Gln
865 870 875 880

Trp Pro Arg Ala Ile Glu Glu Val Trp Tyr Arg Arg Ala Val Glu Gln
885 890 895

His Tyr Val Asp Pro Leu Ser Tyr Val Tyr Ser Val Asp Leu Ser Thr
900 905 910

Val Lys Phe Pro Leu Asn Val Ser Leu Ala Leu Val Thr Ala Ser His
915 920 925

Ala Val Phe His Gly Asp Gly His Arg Lys Ala Pro Ala Ala Val Val
930 935 940

Gly Phe Gln Phe Lys His Glu Arg Leu Ser Glu Trp Phe Asp Asn Ile
945 950 955 960

Thr Ser Ser Cys Glu His Asn Lys Glu Cys Thr Thr Cys Gln Ser Asp
965 970 975

Asn Trp Asp Cys Tyr Leu Val Asp Asn Asn Gly Trp Val Ile Val Ser
980 985 990

Glu Asp Ser Thr Gln Thr Gly Gln Phe Phe Gly Arg Ile Arg Pro Asp
995 1000 1005

Ile Met Ser Arg Leu Val Glu Asp Glu Val Tyr Lys Ala Val His
1010 1015 1020

Ile Val Asp Tyr Gln Ala Val Cys Phe Arg Glu Lys Lys Thr Thr
1025 1030 1035

Asn Pro Ala Thr Met Leu Phe Thr Pro Leu Glu Asn Leu Arg Leu
1040 1045 1050

Val Met Ala Trp Phe Leu Ala Thr Thr Val Trp Phe Tyr Asn Ser
1055 1060 1065

Ile Thr Thr Gly Leu Ala Gln Ala Ser Ser Tyr Ser Phe Asp Asp
1070 1075 1080

Glu Asn Val Thr Pro Thr Val Ala Tyr Gln Ser Tyr Glu Asn Asp
1085 1090 1095

Glu Glu Thr Asp Asp Pro Tyr Met Ser Lys Pro Pro Asn Met Arg
1100 1105 1110

Val Leu Glu Arg Asp Tyr Glu Lys Leu Val Leu Ile Asn Arg Thr
1115 1120 1125

Arg Pro Thr Pro Cys Asp Arg Glu Met Tyr Leu Tyr Gln Leu Asp
1130 1135 1140

Tyr Asn Asn Leu Asp Glu Lys Leu Asn Lys Pro Val Ala Glu Cys
1145 1150 1155

Gly Arg Pro Phe Ile Ala Gln His Val Asn Tyr Thr Asn Met Leu
1160 1165 1170

Met Ile Val Val Asp Ala Asn Cys Pro Lys Asp Glu Val Ala Ala
1175 1180 1185

Met Ser Val Asp Ala Thr Glu Val Asn Tyr Asn Glu Ser Leu Pro
1190 1195 1200

Cys Leu Lys His Met His Pro Leu Tyr Arg Lys Gln Pro Thr Ser
1205 1210 1215

Cys Ile Arg Asn His Thr Glu Glu Ser Asn Ile Asp Met Cys Gly
1220 1225 1230

Arg Gly Ser Leu Pro Gly Asn Ser Lys Thr Trp Ile Ser Leu Ser
1235 1240 1245

Ile Phe Leu Leu Val Lys Tyr Tyr Leu Ala
1250 1255

<210> 19

<211> 35

<212> DNA

<213> Artificial

<220>

<223> PCR Primer

<220>

<221> misc_feature

<222> (35)..(35)

<223> n is a, c, g or t

<400> 19

gagagagaga agagctcttt tttttttt tttvn

35

<210> 20

<211> 20

<212> DNA

<213> Artificial

<220>

<223> PCR Primer

<400> 20

tcgagctgag gtacgaacgc

20

<210> 21

<211> 17

<212> DNA

<213> Artificial

<220>

<223> PCR Primer

<220>

<221> misc_feature

<222> (1)..(1)

<223> n is pseudouridine

<400> 21
nngttcgta cctcagc

17

<210> 22
<211> 33
<212> DNA
<213> Artificial

<220>
<223> PCR Primer

<220>
<221> misc_feature
<222> (25)..(25)
<223> n is a, g, c or t

<220>
<221> misc_feature
<222> (31)..(31)
<223> n is a, g, c or t

<400> 22
gggctacacc atcagaatcc tgytntggac ntt

33

<210> 23
<211> 11
<212> PRT
<213> Artificial

<220>
<223> peptide

<400> 23

Gly Tyr Thr Ile Arg Ile Leu Leu Trp Thr Phe
1 5 10

<210> 24
<211> 32
<212> DNA
<213> Artificial

<220>
<223> PCR Primer

<400> 24
gagtctctgg tcaggtagtc gaarttrtcc at

32

<210> 25
<211> 11
<212> PRT
<213> Artificial

<220>
<223> peptide

<400> 25

Met Asp Asn Phe Asp Tyr Leu Thr Arg Asp Ser
Page 56

1

5

10

<210> 26
<211> 20
<212> DNA
<213> Artificial

<220>
<223> PCR Primer

<400> 26
gatacgaagt aggcgttaggc

20

<210> 27
<211> 6
<212> PRT
<213> Artificial

<220>
<223> peptide

<400> 27

Ala Tyr Ala Tyr Phe Val
1 5

<210> 28
<211> 20
<212> DNA
<213> Artificial

<220>
<223> PCR Primer

<400> 28
cgatgagaag gcacacgtag

20

<210> 29
<211> 6
<212> PRT
<213> Artificial

<220>
<223> peptide

<400> 29

Tyr Val Cys Leu Leu Ile
1 5

<210> 30
<211> 18
<212> DNA
<213> Artificial

<220>
<223> PCR Primer

<400> 30

attttaggtga cactata

18

<210> 31
<211> 20
<212> DNA
<213> Artificial

<220>
<223> PCR Primer

<400> 31
ctacgtgtgc cttctcatcg

20

<210> 32
<211> 20
<212> DNA
<213> Artificial

<220>
<223> PCR Primer

<400> 32
gcctacgcct acttcgtatc

20

<210> 33
<211> 20
<212> DNA
<213> Artificial

<220>
<223> PCR Primer

<400> 33
taatacgact cactataggg

20

<210> 34
<211> 24
<212> DNA
<213> Artificial

<220>
<223> PCR Primer

<400> 34
cgtcgggaag atatacgctg gact

24

<210> 35
<211> 8
<212> PRT
<213> Artificial

<220>
<223> peptide

<400> 35

Val Gly Lys Ile Tyr Ala Gly Leu
1 5

<210> 36
<211> 24
<212> DNA
<213> Artificial

<220>
<223> PCR Primer

<400> 36
cgtcagcaac gtcgtcgaga tagt

24

<210> 37
<211> 8
<212> PRT
<213> Artificial

<220>
<223> peptide

<400> 37

Val Ser Asn Val Val Glu Ile Val
1 5

<210> 38
<211> 45
<212> DNA
<213> Artificial

<220>
<223> PCR Primer

<400> 38
ctaatacgac tcactatagg gcaaggcagtg gtatcaacgc agagt

45

<210> 39
<211> 22
<212> DNA
<213> Artificial

<220>
<223> PCR Primer

<400> 39
ctaatacgac tcactatagg gc

22

<210> 40
<211> 23
<212> DNA
<213> Artificial

<220>
<223> PCR Primer

<400> 40
aaggcagtggat atcaacgcag agt

23

<210> 41

<211> 24
<212> DNA
<213> Artificial

<220>
<223> PCR Primer

<400> 41
aagtactggc catcgctccg gaac

24

<210> 42
<211> 8
<212> PRT
<213> Artificial

<220>
<223> peptide

<400> 42

Lys Tyr Trp Ser Ser Leu Arg Asn
1 5

<210> 43
<211> 24
<212> DNA
<213> Artificial

<220>
<223> PCR Primer

<400> 43
gttccttgct atcgctgtcc acaa

24

<210> 44
<211> 8
<212> PRT
<213> Artificial

<220>
<223> peptide

<400> 44

Phe Leu Ala Ile Ala Val Asp Asn
1 5

<210> 45
<211> 24
<212> DNA
<213> Artificial

<220>
<223> PCR Primer

<400> 45
cgacccttgg cagtcttcaa aagt

24

<210> 46

<211> 8
<212> PRT
<213> Artificial

<220>
<223> peptide

<400> 46

Thr Glu Phe Asp Cys Gln Gly Ser
1 5

<210> 47
<211> 24
<212> DNA
<213> Artificial

<220>
<223> PCR Primer

<400> 47
gacagattct gccccgcacc cttt

24

<210> 48
<211> 8
<212> PRT
<213> Artificial

<220>
<223> peptide

<400> 48

Lys Gly Ala Gly Gln Asn Leu Ser
1 5

<210> 49
<211> 26
<212> DNA
<213> Artificial

<220>
<223> PCR Primer

<220>
<221> misc_feature
<222> (18)..(18)
<223> n is a, c, g or t

<220>
<221> misc_feature
<222> (24)..(24)
<223> n is a, c, g or t

<400> 49
tccggcatcc cctccytnc rgtngt

26

<210> 50
<211> 9
<212> PRT

<213> Artificial

<220>
<223> peptide

<400> 50

Ser Gly Ile Pro Ser Leu Gln Val Val
1 5

<210> 51
<211> 24
<212> DNA
<213> Artificial

<220>
<223> PCR Primer

<400> 51
tatcaccagg ttccggagcg atga

24

<210> 52
<211> 8
<212> PRT
<213> Artificial

<220>
<223> peptide

<400> 52

Ser Ser Leu Arg Asn Leu Val Ile
1 5

<210> 53
<211> 24
<212> DNA
<213> Artificial

<220>
<223> PCR Primer

<400> 53
ctcagaccac acgacacctcg agat

24

<210> 54
<211> 8
<212> PRT
<213> Artificial

<220>
<223> peptide

<400> 54

Ile Phe Glu Val Val Trp Ser Glu
1 5

<210> 55

<211> 24
<212> DNA
<213> Artificial

<220>
<223> PCR Primer

<400> 55
aaactcacgt tgtccgcgtt acac

24

<210> 56
<211> 8
<212> PRT
<213> Artificial

<220>
<223> peptide

<400> 56

Cys Asn Ala Asp Asn Val Ser Leu
1 5

<210> 57
<211> 24
<212> DNA
<213> Artificial

<220>
<223> PCR Primer

<400> 57
ggccgatgat agcgaagatg acta

24

<210> 58
<211> 8
<212> PRT
<213> Artificial

<220>
<223> peptide

<400> 58

Ile Val Ile Phe Ala Ile Ile Gly
1 5

<210> 59
<211> 24
<212> DNA
<213> Artificial

<220>
<223> PCR Primer

<400> 59
cctcggtctt ttccagattc tgtg

24

<210> 60

<211> 8
<212> PRT
<213> Artificial

<220>
<223> peptide

<400> 60

Ala Gln Asn Leu Glu Lys Thr Glu
1 5

<210> 61
<211> 24
<212> DNA
<213> Artificial

<220>
<223> PCR Primer

<400> 61
ggtcttatcg ccgttaggca aatg

24

<210> 62
<211> 8
<212> PRT
<213> Artificial

<220>
<223> peptide

<400> 62

His Leu Pro Asn Gly Asp Lys Thr
1 5

<210> 63
<211> 24
<212> DNA
<213> Artificial

<220>
<223> PCR Primer

<400> 63
gctgatggcg atgaatgaac actg

24

<210> 64
<211> 35
<212> DNA
<213> Artificial

<220>
<223> PCR Primer

<400> 64
cgcggatccg aacactgcgt ttgctggctt tgatg

35

<210> 65

<211> 29
<212> DNA
<213> Artificial

<220>
<223> PCR Primer

<220>
<221> misc_feature
<222> (27)..(27)
<223> n is a, c, g or t

<400> 65
caggagatcg agcgcatctt ygarytngc

29

<210> 66
<211> 9
<212> PRT
<213> Artificial

<220>
<223> peptide

<400> 66

Gln Glu Ile Glu Arg Ile Phe Glu Leu
1 5

<210> 67
<211> 28
<212> DNA
<213> Artificial

<220>
<223> PCR Primer

<220>
<221> misc_feature
<222> (20)..(20)
<223> n is a, c, g or t

<400> 67
gctggttctc gtccaggatn acrtcraa

28

<210> 68
<211> 9
<212> PRT
<213> Artificial

<220>
<223> peptide

<400> 68

Phe Asp Val Ile Leu Asp Glu Asn Gln
1 5

<210> 69
<211> 20
<212> DNA

<213> Artificial

<220>

<223> PCR Primer

<400> 69

tcggactctc caattggtag

20

<210> 70

<211> 6

<212> PRT

<213> Artificial

<220>

<223> peptide

<400> 70

Arg Thr Leu Gln Leu Val
1 5

<210> 71

<211> 20

<212> DNA

<213> Artificial

<220>

<223> PCR Primer

<400> 71

catgtcaggc gggcactgcg

20

<210> 72

<211> 7

<212> PRT

<213> Artificial

<220>

<223> peptide

<400> 72

Ala Gln Cys Pro Pro Asp Met
1 5

<210> 73

<211> 22

<212> DNA

<213> Artificial

<220>

<223> PCR Primer

<400> 73

tggaaagttc ttcggtaaaag ta

22

<210> 74

<211> 19

<212> DNA

<213> Artificial

<220>

<223> PCR Primer

<400> 74

ggcctggcac acatagatt

19

<210> 75

<211> 21

<212> DNA

<213> Artificial

<220>

<223> PCR Primer

<400> 75

cgggatttgct acataacttga c

21

<210> 76

<211> 22

<212> DNA

<213> Artificial

<220>

<223> PCR Primer

<400> 76

tttgtgacaa cccaacgaat ta

22

<210> 77

<211> 23

<212> DNA

<213> Artificial

<220>

<223> PCR Primer

<220>

<221> misc_feature

<222> (15)..(15)

<223> n is a, c, g or t

<220>

<221> misc_feature

<222> (18)..(18)

<223> n is a, c, g or t

<400> 77

gtgcagacct gggcngmnaa ryt

23

<210> 78

<211> 27

<212> DNA

<213> Artificial

<220>

<223> PCR Primer

<400> 78

gccgacgatc atgatggcyt grttrca

27

<210> 79
<211> 21
<212> DNA
<213> Artificial

<220>
<223> PCR Primer

<400> 79
gcgccatgtat ggaacttaag a

21

<210> 80
<211> 21
<212> DNA
<213> Artificial

<220>
<223> PCR Primer

<400> 80
tgccgaagta ctgccacgac a

21

<210> 81
<211> 8
<212> PRT
<213> Artificial

<220>
<223> peptide

<400> 81

Val Gln Thr Trp Ala Glu Lys Leu
1 5

<210> 82
<211> 9
<212> PRT
<213> Artificial

<220>
<223> peptide

<400> 82

Cys Asn Gln Ala Ile Met Ile Val Ser
1 5

<210> 83
<211> 11
<212> PRT
<213> Artificial

<220>
<223> peptide

<400> 83

Pro Leu Thr Lys Val Ile Gly Leu Leu Pro Arg
1 5 10