Lecture 1: Introduction and Encodings

LING-351 Language Technology and LLMs

Instructor: Hakyung Sung

August 25, 2025

*Acknowledgment: These course slides are based on materials by Lelia Glass @ Georgia Tech (Course: Language & Computers)

Table of contents

- 1. Introduction
- 2. Lesson plan
- 3. What is language?
- 4. Language vs. Writing
- 5. Encoding
- 6. Digital encoding of writing
- 7. Wrap-up

Introduction

• Instructor: Dr. Hakyung Sung

- Instructor: Dr. Hakyung Sung
 - $\cdot\,$ PhD in Linguistics, MS in Computer Science @ University of Oregon

- Instructor: Dr. Hakyung Sung
 - PhD in Linguistics, MS in Computer Science @ University of Oregon
- Grader: Bea (Bey-uh) Pulido

- · Instructor: Dr. Hakyung Sung
 - PhD in Linguistics, MS in Computer Science @ University of Oregon
- · Grader: Bea (Bey-uh) Pulido
 - · a second year Experimental Psychology graduate student

- Instructor: Dr. Hakyung Sung
 - PhD in Linguistics, MS in Computer Science @ University of Oregon
- · Grader: Bea (Bey-uh) Pulido
 - · a second year Experimental Psychology graduate student
- Time: Tu/Th 2:00PM-3:15PM

- Instructor: Dr. Hakyung Sung
 - PhD in Linguistics, MS in Computer Science @ University of Oregon
- · Grader: Bea (Bey-uh) Pulido
 - · a second year Experimental Psychology graduate student
- Time: Tu/Th 2:00PM-3:15PM
- · Office: EAS 3173

- · Instructor: Dr. Hakyung Sung
 - PhD in Linguistics, MS in Computer Science @ University of Oregon
- · Grader: Bea (Bey-uh) Pulido
 - · a second year Experimental Psychology graduate student
- Time: Tu/Th 2:00PM-3:15PM
- · Office: EAS 3173
- Office hour: TuTh 3:30-4:30 in-person, or Zoom by appointment

- · Instructor: Dr. Hakyung Sung
 - PhD in Linguistics, MS in Computer Science @ University of Oregon
- · Grader: Bea (Bey-uh) Pulido
 - · a second year Experimental Psychology graduate student
- Time: Tu/Th 2:00PM-3:15PM
- · Office: EAS 3173
- Office hour: TuTh 3:30-4:30 in-person, or Zoom by appointment
- Course website: https://hksung.github.io/Fall25_LING351/

- · Instructor: Dr. Hakyung Sung
 - PhD in Linguistics, MS in Computer Science @ University of Oregon
- · Grader: Bea (Bey-uh) Pulido
 - · a second year Experimental Psychology graduate student
- Time: Tu/Th 2:00PM-3:15PM
- · Office: EAS 3173
- Office hour: TuTh 3:30-4:30 in-person, or Zoom by appointment
- Course website: https://hksung.github.io/Fall25_LING351/
- Email: hksgla@rit.edu

• We'll explore the interaction between language and technology. Topics including:

- We'll explore the interaction between language and technology. Topics including:
 - Writing assistance tools

- We'll explore the interaction between language and technology. Topics including:
 - · Writing assistance tools
 - Computer-assisted language learning

- We'll explore the interaction between language and technology.
 Topics including:
 - · Writing assistance tools
 - · Computer-assisted language learning
 - Chatbots

- We'll explore the interaction between language and technology.
 Topics including:
 - · Writing assistance tools
 - · Computer-assisted language learning
 - · Chatbots
 - Machine translation

 $\boldsymbol{\cdot}$ To understand these systems, basic coding skills are helpful

- · To understand these systems, basic coding skills are helpful
- We will do hands-on exercises during class (Python tutorials)

- · To understand these systems, basic coding skills are helpful
- We will do hands-on exercises during class (Python tutorials)
- No prior coding experience is required—tutorials will start from the very beginning

• Bird, S., Klein, E., & Loper, E. (2009). Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit [NLTK]

• Bird, S., Klein, E., & Loper, E. (2009). Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit [NLTK]

- Bird, S., Klein, E., & Loper, E. (2009). Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit [NLTK]
- Glass, I., Dickinson, M., Brew, C., & Meurers, D. (2024). *Language and Computers* (2nd edition) [LC].

- Bird, S., Klein, E., & Loper, E. (2009). Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit [NLTK]
- Glass, I., Dickinson, M., Brew, C., & Meurers, D. (2024). Language and Computers (2nd edition) [LC].

- Bird, S., Klein, E., & Loper, E. (2009). Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit [NLTK]
- Glass, I., Dickinson, M., Brew, C., & Meurers, D. (2024). *Language* and *Computers* (2nd edition) [LC].
- · All books are available as pdf. (publicly available).

- Bird, S., Klein, E., & Loper, E. (2009). Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit [NLTK]
- Glass, I., Dickinson, M., Brew, C., & Meurers, D. (2024). *Language* and *Computers* (2nd edition) [LC].
- · All books are available as pdf. (publicly available).
- · Please check course website.

$[a \times b]$ a = number; b = points

- Exercises [4 × 10]: 40%
- Assignments [2 × 10] 20%
- Paper presentations [2 × 5] 10%
- · Online exams 30%
 - Midterm [1 × 15] 15%
 - Final [1 × 15]: 15%

- Exercises [4 × 10]: 40%
- These are individual assignments, usually based on the work you complete during in-class lab sessions.

- Exercises [4 × 10]: 40%
- These are individual assignments, usually based on the work you complete during in-class lab sessions.
- If you finish your exercises in class, please submit them then.

- Exercises [4 × 10]: 40%
- These are individual assignments, usually based on the work you complete during in-class lab sessions.
- If you finish your exercises in class, please submit them then.
- The official deadline is the end of Friday of the same week, giving you an extra day to work on them outside of class if needed.

• Exercises [4 × 10]: 40%

Week	Date	Topic	Readings	Due (Friday , 11:59 pm)
1	8/26	Introduction, Encoding	[LC] Ch.1	
	8/28	Writer's aids: Spelling errors	[LC] Ch.2.1-2.3	
2	9/2	Writer's aids: Grammar errors	[LC] Ch.2.5-2.8	
	9/4	Computer-assisted language learning	[LC] Ch. 3	
3	9/9	Text as data	[LC] Ch. 4.1-4.3	
	9/11	Python tutorial 1	Ch. 4.1-4.3	Exercise 1
4	9/16	Python tutorial 2		
	9/18	Python tutorial 3		Exercise 2
5	9/23	Python tutorial 4		
	9/25	Python tutorial 5		Exercise 3

9	10/21	Building a chatbot	[LC] Ch. 8.3	
	10/23	Prompt engineering		Exercise 4

• Exercises [4 × 10]: 40%

Week	Date	Topic	Readings	Due (Friday, 11:59 pm)
1	8/26	Introduction, Encoding	[LC] Ch.1	
	8/28	Writer's aids: Spelling errors	[LC] Ch.2.1-2.3	
2	9/2	Writer's aids: Grammar errors	[LC] Ch.2.5-2.8	
	9/4	Computer-assisted language learning	[LC] Ch. 3	
3	9/9	Text as data	[LC] Ch. 4.1-4.3	
	9/11	Python tutorial 1		Exercise 1
4	9/16	Python tutorial 2		
4	9/18	Python tutorial 3		Exercise 2
5	9/23	Python tutorial 4		
3	9/25	Python tutorial 5		Exercise 3
9	10/21	Building a chatbot	[LC] Ch. 8.3	
	10/23	Prompt engineering		Exercise 4

· Please bring your laptop on these days!

- · Assignments [2 × 10] 20%
- · Paper presentations [2 × 5] 10%
- https://youtube.com/shorts/Yg7WrDt5I1E?si=12YMKYi_OJRj9c6r

 To apply NLP technologies to a given domain, we need at least a basic understanding of that domain (and ideally, a more advanced one).

- To apply NLP technologies to a given domain, we need at least a basic understanding of that domain (and ideally, a more advanced one).
- Read research articles on the use of NLP in the (1) humanities,
 (2) social sciences, (3) language studies, and (4) the impact of
 LLMs, with an emphasis on conceptual understanding.

- To apply NLP technologies to a given domain, we need at least a basic understanding of that domain (and ideally, a more advanced one).
- Read research articles on the use of NLP in the (1) humanities,
 (2) social sciences, (3) language studies, and (4) the impact of
 LLMs, with an emphasis on conceptual understanding.
- · All paper links are on the course website!

- To apply NLP technologies to a given domain, we need at least a basic understanding of that domain (and ideally, a more advanced one).
- Read research articles on the use of NLP in the (1) humanities,
 (2) social sciences, (3) language studies, and (4) the impact of
 LLMs, with an emphasis on conceptual understanding.
- · All paper links are on the course website!
- 2 people will be grouped to present papers in each area.

· Weeks 10-13

10	10/28	Prompt engineering	
	10/30	Paper presentation (Papers 1, 2)	
11	11/4	Paper presentation (3, 4)	
11	11/6	Paper presentation (5, 6)	
12	11/11	Paper presentation (7, 8)	
	11/13	Paper presentation (9, 10)	Assignment 1
13	11/18	Paper presentation (11, 12)	
13	11/20	Paper presentation (13, 14)	
14	11/25	Paper presentation (15, 16)	
	11/27	Thanksgiving break (No class)	
15	12/2	Paper presentation (17, 18)	
	12/4	Final wrap-up	Assignment 2

· Week 6

9/30	Word vectors	[LC] Ch. 4.4	
10/2	Text classification	[LC] Ch. 5	Student presentation topics submission

· Assignments [2 × 10]: 20%

10	10/28	Prompt engineering	
	10/30	Paper presentation (Papers 1, 2)	
11	11/4	Paper presentation (3, 4)	
	11/6	Paper presentation (5, 6)	
12	11/11	Paper presentation (7, 8)	
12	11/13	Paper presentation (9, 10)	Assignment 1
13	11/18	Paper presentation (11, 12)	
	11/20	Paper presentation (13, 14)	
14	11/25	Paper presentation (15, 16)	
	11/27	Thanksgiving break (No class)	
15	12/2	Paper presentation (17, 18)	
	12/4	Final wrap-up	Assignment 2

• Each group presents twice (Rounds 1–9; Rounds 10–18).

· Assignments [2 × 10]: 20%

10	10/28	Prompt engineering	
	10/30	Paper presentation (Papers 1, 2)	
11	11/4	Paper presentation (3, 4)	
	11/6	Paper presentation (5, 6)	
12	11/11	Paper presentation (7, 8)	
12	11/13	Paper presentation (9, 10)	Assignment 1
13	11/18	Paper presentation (11, 12)	
	11/20	Paper presentation (13, 14)	
14	11/25	Paper presentation (15, 16)	
	11/27	Thanksgiving break (No class)	
15	12/2	Paper presentation (17, 18)	
	12/4	Final wrap-up	Assignment 2

- Each group presents twice (Rounds 1–9; Rounds 10–18).
- For each round, students will also submit a short assignment summarizing what they learned from (1) the presented studies and (2) other presentations.

· Assignments [2 × 10]: 20%

10	10/28	Prompt engineering	
	10/30	Paper presentation (Papers 1, 2)	
11	11/4	Paper presentation (3, 4)	
- 11	11/6	Paper presentation (5, 6)	
12	11/11	Paper presentation (7, 8)	
12	11/13	Paper presentation (9, 10)	Assignment 1
13	11/18	Paper presentation (11, 12)	
	11/20	Paper presentation (13, 14)	
14	11/25	Paper presentation (15, 16)	
	11/27	Thanksgiving break (No class)	
15	12/2	Paper presentation (17, 18)	
	12/4	Final wrap-up	Assignment 2

- Each group presents twice (Rounds 1–9; Rounds 10–18).
- For each round, students will also submit a short assignment summarizing what they learned from (1) the presented studies and (2) other presentations.
- Assignments are released at the start of each round and due at the end of the presentation day.

- · Online exam: 30%
 - Midterm [1 × 15]: 10%
 - Final [1 × 15]: 10%

• 2-hr grading window: Any assignment submitted online will automatically have a 2-hour grading window. This will be applied by the system, and no action is required from students.

- 2-hr grading window: Any assignment submitted online will automatically have a 2-hour grading window. This will be applied by the system, and no action is required from students.
- Late penalty: Late assignments will incur a 10% deduction per day, for up to 5 days (e.g., 1 day late = 10% off). After 5 days, the assignment will receive a grade of zero.

- 2-hr grading window: Any assignment submitted online will automatically have a 2-hour grading window. This will be applied by the system, and no action is required from students.
- Late penalty: Late assignments will incur a 10% deduction per day, for up to 5 days (e.g., 1 day late = 10% off). After 5 days, the assignment will receive a grade of zero.
- Extenuating circumstances: Whenever possible, please request an official document that can prove the circumstances—this allows me to accommodate you fairly while respecting your privacy.

- 2-hr grading window: Any assignment submitted online will automatically have a 2-hour grading window. This will be applied by the system, and no action is required from students.
- Late penalty: Late assignments will incur a 10% deduction per day, for up to 5 days (e.g., 1 day late = 10% off). After 5 days, the assignment will receive a grade of zero.
- Extenuating circumstances: Whenever possible, please request an official document that can prove the circumstances—this allows me to accommodate you fairly while respecting your privacy.
 - If that is not possible, contact me as soon as you can. Extensions are generally not granted retroactively.

- 2-hr grading window: Any assignment submitted online will automatically have a 2-hour grading window. This will be applied by the system, and no action is required from students.
- Late penalty: Late assignments will incur a 10% deduction per day, for up to 5 days (e.g., 1 day late = 10% off). After 5 days, the assignment will receive a grade of zero.
- Extenuating circumstances: Whenever possible, please request an official document that can prove the circumstances—this allows me to accommodate you fairly while respecting your privacy.
 - If that is not possible, contact me as soon as you can. Extensions are generally not granted retroactively.
- No extensions will be granted for the **online exam**.

• For the group works, all members are expected to contribute their time and effort equally.

- For the group works, all members are expected to contribute their time and effort equally.
- Each submission will include a section outlining both individual and group contributions, which will be evaluated separately.

- For the group works, all members are expected to contribute their time and effort equally.
- Each submission will include a section outlining both individual and group contributions, which will be evaluated separately.
- Collaboration with AI tools is permitted, but you are responsible for the quality and integrity of the work produced.

- For the group works, all members are expected to contribute their time and effort equally.
- Each submission will include a section outlining both individual and group contributions, which will be evaluated separately.
- Collaboration with AI tools is permitted, but you are responsible for the quality and integrity of the work produced.
- You must acknowledge and document how AI tools were used in your work (including individual exercises).

Pause

Any questions?

Course logistics

- · Course logistics
- What is language

- Course logistics
- What is language
- Language vs. Writing

- · Course logistics
- What is language
- · Language vs. Writing
- Encoding

- · Course logistics
- · What is language
- · Language vs. Writing
- Encoding
- Digital encoding of writing

- · Course logistics
- · What is language
- · Language vs. Writing
- Encoding
- · Digital encoding of writing
- Review

- · Course logistics
- · What is language
- · Language vs. Writing
- Encoding
- · Digital encoding of writing
- · Review

- · Course logistics
- · What is language
- · Language vs. Writing
- Encoding
- · Digital encoding of writing
- · Review

Key idea: Language \neq writing; multiple writing systems exist.

Charles Hockett's Design Features of Language (1960)

Modality:

Spoken language is produced with the vocal tract and perceived by the auditory system; Signed language is produced with the body and perceived visually.

- · Modality:
 - Spoken language is produced with the vocal tract and perceived by the auditory system; Signed language is produced with the body and perceived visually.
- Intentionality:
 Language is produced deliberately for communication.

- · Modality:
 - Spoken language is produced with the vocal tract and perceived by the auditory system; Signed language is produced with the body and perceived visually.
- Intentionality:
 Language is produced deliberately for communication.
- Transitoriness:
 Language is ephemeral unless recorded.

- · Modality:
 - Spoken language is produced with the vocal tract and perceived by the auditory system; Signed language is produced with the body and perceived visually.
- Intentionality:
 Language is produced deliberately for communication.
- Transitoriness:
 Language is ephemeral unless recorded.
- Interchangeability:
 Anything you can hear, you can also say.

Charles Hockett's Design Features of Language (1960)

· Modality:

Spoken language is produced with the vocal tract and perceived by the auditory system; Signed language is produced with the body and perceived visually.

- Intentionality:
 Language is produced deliberately for communication.
- Transitoriness:
 Language is ephemeral unless recorded.
- Interchangeability:
 Anything you can hear, you can also say.
- Total feedback:

 Speakers can hear themselves and monitor their speech.

Primacy of communication:
 Language is used primarily for communication—not as a secondary function.

- Primacy of communication:
 Language is used primarily for communication—not as a secondary function.
- Semanticity:
 Specific words or signs are linked to specific meanings.

- Primacy of communication:
 Language is used primarily for communication—not as a secondary function.
- Semanticity:
 Specific words or signs are linked to specific meanings.
- Arbitrariness:
 The connection between a sign and its meaning is largely conventional

- Primacy of communication:
 Language is used primarily for communication—not as a secondary function.
- Semanticity:
 Specific words or signs are linked to specific meanings.
- Arbitrariness:
 The connection between a sign and its meaning is largely conventional.
- Discreteness:
 Continuous variation is categorized into discrete mental units.

What's language?

- · Primacy of communication:
 - Language is used primarily for communication—not as a secondary function.
- Semanticity:
 Specific words or signs are linked to specific meanings.
- Arbitrariness:
 The connection between a sign and its meaning is largely conventional.
- Discreteness:
 Continuous variation is categorized into discrete mental units.
- Displacement:
 Language allows reference to things not present—past, future, imaginary.

What's language?

· Primacy of communication:

Language is used primarily for communication—not as a secondary function.

· Semanticity:

Specific words or signs are linked to specific meanings.

· Arbitrariness:

The connection between a sign and its meaning is largely conventional.

· Discreteness:

Continuous variation is categorized into discrete mental units.

· Displacement:

Language allows reference to things not present—past, future, imaginary.

· Prevarication:

Language can be used to lie or deceive.

Which are Languages?

Let's test Hockett's design features!

Are the following systems languages?

Why or why not?

· Can music express specific meanings?

- · Can music express specific meanings?
- $\boldsymbol{\cdot}$ Can it refer to imaginary or absent things?

- · Can music express specific meanings?
- Can it refer to imaginary or absent things?
- · Can music be used to lie?

- · Can music express specific meanings?
- · Can it refer to imaginary or absent things?
- · Can music be used to lie?
- Is the relationship between musical symbols and meanings arbitrary?

- · Can music express specific meanings?
- · Can it refer to imaginary or absent things?
- · Can music be used to lie?
- Is the relationship between musical symbols and meanings arbitrary?

Small group discussion

- How many of Hockett's features does music meet?
- Is Python a Language?
- Is Mathematics a Language?

Language vs. Writing

• Tell stories, ask questions, learn, plan, imagine alternate realities

- Tell stories, ask questions, learn, plan, imagine alternate realities
- Coordinate with others and build culture

- Tell stories, ask questions, learn, plan, imagine alternate realities
- · Coordinate with others and build culture
- · All human societies use it

- Tell stories, ask questions, learn, plan, imagine alternate realities
- · Coordinate with others and build culture
- · All human societies use it
- Estimated age: 100,000–200,000 years

- · Tell stories, ask questions, learn, plan, imagine alternate realities
- · Coordinate with others and build culture
- · All human societies use it
- Estimated age: 100,000–200,000 years
- Evidence? Archaeological findings (e.g., symbolic beads, tools, burial sites)

Figure 1: Clay tablet inscribed with the earliest known writing system, cuneiform—recording the receipt of barley and malt (around 3000 BCE, left)—and a close-up of cuneiform text on a mudbrick (around 1200 BCE).

Sourced from: https://en.wikipedia.org/wiki/Cuneiform

Writing is another amazing technology!

· Records language, which is otherwise ephemeral

Writing is another amazing technology!

· Records language, which is otherwise ephemeral

- · Records language, which is otherwise ephemeral
- · Makes language usable across time and space

- · Records language, which is otherwise ephemeral
- · Makes language usable across time and space
- Enables wide communication—even with strangers

- · Records language, which is otherwise ephemeral
- · Makes language usable across time and space
- Enables wide communication—even with strangers

- · Records language, which is otherwise ephemeral
- · Makes language usable across time and space
- Enables wide communication—even with strangers
- · Key to history, law, science, culture

- · Records language, which is otherwise ephemeral
- · Makes language usable across time and space
- Enables wide communication—even with strangers
- · Key to history, law, science, culture
- · Not all people or societies use writing

- · Records language, which is otherwise ephemeral
- · Makes language usable across time and space
- Enables wide communication—even with strangers
- · Key to history, law, science, culture
- · Not all people or societies use writing
- Estimated age: 5,000–6,000 years

Case 1. Same writing system, different languages:

Case 1. Same writing system, different languages:

· Latin alphabet used in: English, French, German, Vietnamese

Case 1. Same writing system, different languages:

· Latin alphabet used in: English, French, German, Vietnamese

Case 2. Same language, different writing systems:

Case 1. Same writing system, different languages:

· Latin alphabet used in: English, French, German, Vietnamese

Case 2. Same language, different writing systems:

· Chinese: traditional vs. simplified vs. pinyin (Latinized)

馬 马 mǎ

Traditional character Simplified character Pinyin Latinization

Figure 1.1: 'Horse' (mā) written in three different writing systems for Mandarin Chinese.

• Turkish: Arabic script (pre-1928) vs. Latin script (modern)

Case 1. Same writing system, different languages:

· Latin alphabet used in: English, French, German, Vietnamese

Case 2. Same language, different writing systems:

· Chinese: traditional vs. simplified vs. pinyin (Latinized)

馬 马 mǎ

Traditional character Simplified character Pinyin Latinization

Figure 1.1: 'Horse' (mā) written in three different writing systems for Mandarin Chinese.

- Turkish: Arabic script (pre-1928) vs. Latin script (modern)
- · Japanese: 1 language, 3 scripts—hiragana, katakana, kanji

"French is written in the English alphabet."

"French is written in the English alphabet."

Hmm... Something's off! Is there such a thing as an "English" alphabet?

"French is written in the English alphabet."

Hmm... Something's off!
Is there such a thing as an "English" alphabet?

• Both English and French use the **Latin alphabet**, a writing system shared by many languages.

"French is written in the English alphabet."

Hmm... Something's off!
Is there such a thing as an "English" alphabet?

- Both English and French use the **Latin alphabet**, a writing system shared by many languages.
- But! Each language uses it differently:
 - · French includes letters with diacritics: é, è, ê, ç
 - English doesn't use those in native words.

"French is written in the English alphabet."

Hmm... Something's off!
Is there such a thing as an "English" alphabet?

- Both English and French use the **Latin alphabet**, a writing system shared by many languages.
- But! Each language uses it differently:
 - · French includes letters with diacritics: é, è, ê, ç
 - · English doesn't use those in native words.
- So, it's not that French borrows "English's" alphabet— they both adapt a shared system for their own phonology and grammar.

Move on

How language and writing work in language technology?

Writing systems in NLP

What is NLP?

Writing systems in NLP

What is NLP?

Natural Language Processing (NLP) is the field that enables computers to understand, analyze, and generate human language.

Writing systems in NLP

What is NLP?

Natural Language Processing (NLP) is the field that enables computers to understand, analyze, and generate human language.

 To process language with computers, NLP requires a way to encode language → that's where writing systems come in.

Writing systems in NLP

What is NLP?

Natural Language Processing (NLP) is the field that enables computers to understand, analyze, and generate human language.

- To process language with computers, NLP requires a way to encode language → that's where writing systems come in.
- Evolution of writing technologies: clay → papyrus → printing press → digital text

Writing systems in NLP

What is NLP?

Natural Language Processing (NLP) is the field that enables computers to understand, analyze, and generate human language.

- To process language with computers, NLP requires a way to encode language → that's where writing systems come in.
- Evolution of writing technologies: clay → papyrus → printing press → digital text
- Digital writing allows for new forms of communication and makes language machine-readable.

Pause

Any questions?

Encoding

• Language = (mostly arbitrary) sound-meaning pairs

Three major systems:

- Language = (mostly arbitrary) sound-meaning pairs
- Writing encodes sound, meaning, or syllables, but usually not all three.

Three major systems:

- Language = (mostly arbitrary) sound-meaning pairs
- Writing encodes sound, meaning, or syllables, but usually not all three.

Three major systems:

• Alphabetic: $symbol \rightarrow sound$

- Language = (mostly arbitrary) sound-meaning pairs
- Writing encodes sound, meaning, or syllables, but usually not all three.

Three major systems:

 \cdot Alphabetic: symbol \to sound

• Syllabic: symbol \rightarrow syllable

- Language = (mostly arbitrary) sound-meaning pairs
- Writing encodes sound, meaning, or syllables, but usually not all three.

Three major systems:

• Alphabetic: $symbol \rightarrow sound$

• Syllabic: $symbol \rightarrow syllable$

• Logographic: symbol \rightarrow meaning

• Each character = one sound or articulatory gesture

- Each character = one sound or articulatory gesture
- English has some exceptions:

- Each character = one sound or articulatory gesture
- English has some exceptions:
 - · Silent letters: knee, debt

- Each character = one sound or articulatory gesture
- English has some exceptions:
 - · Silent letters: knee, debt
 - · One sound, multiple letters: running, revolution

- Each character = one sound or articulatory gesture
- English has some exceptions:
 - · Silent letters: knee, debt
 - · One sound, multiple letters: running, revolution
 - One letter, multiple sounds: tax

- Each character = one sound or articulatory gesture
- English has some exceptions:
 - · Silent letters: knee, debt
 - · One sound, multiple letters: running, revolution
 - · One letter, multiple sounds: tax
 - Homophones: colonel/kernel, bank (river/finance)

- Each character = one sound or articulatory gesture
- English has some exceptions:
 - · Silent letters: knee, debt
 - · One sound, multiple letters: running, revolution
 - · One letter, multiple sounds: tax
 - · Homophones: colonel/kernel, bank (river/finance)
- · Examples: Latin, Greek, Cyrillic alphabets

1. Alphabetic systems (Example)

- The Cyrillic alphabet is used for Russian and other nearby languages.
- · Some letters resemble Latin characters, but others are unique.

International Phonetic Alphabet (IPA)

• Each character = exactly one sound

International Phonetic Alphabet (IPA)

- Each character = exactly one sound
- Useful for linguists: consistent sound representation across languages

International Phonetic Alphabet (IPA)

- Each character = exactly one sound
- Useful for linguists: consistent sound representation across languages
- Different charts for (1) vowels and (2) consonants

International Phonetic Alphabet (IPA)-Vowels

 $Figure 1.2: International \ Phonetic \ Alphabet \ of \ vowels \ (https://commons.wikimedia.org/wiki/File:Ipa-chart-vowels.png)$

International Phonetic Alphabet (IPA)-Consonants

	Bila	bial	Labiodental	Dent	al	Alveolar	Postalveolar	Retro	oflex	Palata		Velar	Uv	ular	Phary	ngeal	Glot	ctal
Plosive	p	b				t d		t	d	c j		k g	q	G			?	
Nasal		m	m			n			η	n		ŋ		N				
rill		В				r								R				
Tap or Flap						ſ			r									
Fricative	ф	β	f v	θ	ð	s z	∫ 3	ş	Z,	çj		хγ	χ	R	ħ	S	h	ĥ
Lateral fricative						łВ					T							
Approximant			υ			.1			ન	j	T	щ						
ateral approximant				1					l	λ		L						

Figure 1.3: International Phonetic Alphabet of consonants (https://commons.wikimedia.org/wiki/Category:IPA consonant charts)

Figure 2: Textbook, p. 8

The broad class of alphabetic systems also includes abjads.

· Only consonants are written

מחשב	מחשב	מחשב				
$b \check{s} x m$	$b \check{s} x m$	$b \check{s} x m$				
$[\max \int ev]$	[mexu av]	$[\max a \exists av]$				
'computer'	'is digitized'	'with + he thought'				
Figure 1.4: Example of Hebrew (abjad) text.						

The broad class of alphabetic systems also includes abjads.

- · Only consonants are written
- Vowels are inferred from context

מחשב	מחשב	מחשב				
$b \check{s} x m$	$b \check{s} x m$	$b \check{s} x m$				
$[\max \int ev]$	[mexu av]	$[\max a \exists av]$				
'computer'	'is digitized'	'with + he thought'				
Figure 1.4: Example of Hebrew (abjad) text.						

The broad class of alphabetic systems also includes abjads.

- · Only consonants are written
- · Vowels are inferred from context
- · Examples: Hebrew, Arabic

מחשב	מחשב	מחשב
$b \check{s} x m$	$b \check{s} x m$	$b \check{s} x m$
$[\max \int ev]$	$[\text{mexu} \int \text{av}]$	$[\maxa \int av]$
'computer'	'is digitized'	'with + he thought'
Figure	1.4: Example of Hebr	ew (abjad) text.

The broad class of alphabetic systems also includes abjads.

- · Only consonants are written
- · Vowels are inferred from context.
- · Examples: Hebrew, Arabic
- Often written right to left

מחשב	מחשב	מחשב
bšxm	b š x m	b š x m
[max∫ev]	[mexu∫av]	[mexaʃav]
'computer'	'is digitized'	'with + he thought'

Figure 1.4: Example of Hebrew (abjad) text.

• Syllabic systems map symbols to whole syllables; larger sound units than alphabetic systems.

- Syllabic systems map symbols to whole syllables; larger sound units than alphabetic systems.
- Syllable: a unit of pronunciation having one vowel sound, with or without surrounding consonants.

- Syllabic systems map symbols to whole syllables; larger sound units than alphabetic systems.
- Syllable: a unit of pronunciation having one vowel sound, with or without surrounding consonants.
- All human languages have syllables, but syllable structure varies by languages.

- Syllabic systems map symbols to whole syllables; larger sound units than alphabetic systems.
- Syllable: a unit of pronunciation having one vowel sound, with or without surrounding consonants.
- All human languages have syllables, but syllable structure varies by languages.
- · Syllabary: A set of written characters representing syllables

- Syllabic systems map symbols to whole syllables; larger sound units than alphabetic systems.
- Syllable: a unit of pronunciation having one vowel sound, with or without surrounding consonants.
- All human languages have syllables, but syllable structure varies by languages.
- · Syllabary: A set of written characters representing syllables
- Japanese: simple syllables (e.g., sashimi, omasake) → few combinations → syllabaries work well.

- Syllabic systems map symbols to whole syllables; larger sound units than alphabetic systems.
- Syllable: a unit of pronunciation having one vowel sound, with or without surrounding consonants.
- All human languages have syllables, but syllable structure varies by languages.
- · Syllabary: A set of written characters representing syllables
- Japanese: simple syllables (e.g., sashimi, omasake) → few combinations → syllabaries work well.
- English: allows complex clusters (e.g., spark) → many possible syllables → syllabaries become impractical.

3. Logographic systems

Symbol is a meaning (not sound)

 $Figure~1.8:~U.S.~National~Park~Service~symbols~(pictographs). \\ (http://commons.wikimedia.org/wiki/File:National_Park_Service_sample_pictographs.svg)$

Figure 3: p. 14

3. Logographic systems

- Symbol is a meaning (not sound)
- No pure logographic systems for human language

 $Figure~1.8:~U.S.~National~Park~Service~symbols~(pictographs). \\ (http://commons.wikimedia.org/wiki/File:National_Park_Service_sample_pictographs.svg)$

Figure 3: p. 14

3. Logographic systems

- Symbol is a meaning (not sound)
- · No pure logographic systems for human language
- Examples: icons, signage (e.g., national park symbols)

Figure 1.8: U.S. National Park Service symbols (pictographs). (http://commons.wikimedia.org/wiki/File:National_Park_Service_sample_pictographs.svg)

Figure 3: p. 14

Example: Chinese Characters

- Represent syllables
- Combine logographic and phonetic elements: "semantic-phonetic compounds"
- · Over time: symbols become more abstract

Figure 4: p. 14

· Chinese characters often combine:

- · Chinese characters often combine:
 - a **semantic element** (gives a clue to meaning)

- · Chinese characters often combine:
 - · a semantic element (gives a clue to meaning)
 - a **phonetic element** (gives a clue to pronunciation)

- · Chinese characters often combine:
 - a **semantic element** (gives a clue to meaning)
 - a **phonetic element** (gives a clue to pronunciation)

• Example: **mā** "mother" is written with:

- · Chinese characters often combine:
 - · a semantic element (gives a clue to meaning)
 - a **phonetic element** (gives a clue to pronunciation)

- Example: mā "mother" is written with:
 - · Left side: woman semantic component

- · Chinese characters often combine:
 - · a semantic element (gives a clue to meaning)
 - · a phonetic element (gives a clue to pronunciation)

- Example: mā "mother" is written with:
 - · Left side: woman semantic component
 - · Right side: mă "horse" phonetic component

- · Chinese characters often combine:
 - · a semantic element (gives a clue to meaning)
 - · a phonetic element (gives a clue to pronunciation)

- Example: mā "mother" is written with:
 - · Left side: woman semantic component
 - · Right side: må "horse" phonetic component
- Tone is important:

- · Chinese characters often combine:
 - · a semantic element (gives a clue to meaning)
 - · a phonetic element (gives a clue to pronunciation)

- Example: mā "mother" is written with:
 - · Left side: woman semantic component
 - · Right side: mă "horse" phonetic component
- Tone is important:
 - · mă (horse) = down-up tone

- · Chinese characters often combine:
 - · a semantic element (gives a clue to meaning)
 - a phonetic element (gives a clue to pronunciation)

- Example: mā "mother" is written with:
 - · Left side: woman semantic component
 - · Right side: mă "horse" phonetic component
- Tone is important:
 - · må (horse) = down-up tone
 - · mā (mother) = high flat tone

Hybrid systems

• Chinese: semantic + phonetic compounds (as we just discussed in the previous slide)

Hybrid systems

- Chinese: semantic + phonetic compounds (as we just discussed in the previous slide)
- · Korean: syllable blocks built from alphabetic elements

• Diacritics? (e.g., accents, tone marks; $i \rightarrow \hat{i}$, \hat{i} , \hat{i} , \hat{i} , \hat{j} $\rightarrow \hat{j}$)

- Diacritics? (e.g., accents, tone marks; $i \rightarrow \hat{i}$, \hat{i} , \bar{i} , \bar{i} , $j \rightarrow \hat{j}$)
- Word/sentence/paragraph boundaries (spaces, punctuation)

- Diacritics? (e.g., accents, tone marks; $i \rightarrow i$, i, \bar{i} , \bar{i} , \bar{i} / $j \rightarrow j$)
- · Word/sentence/paragraph boundaries (spaces, punctuation)
- Capitalization? Italics? Quotation marks?

- Diacritics? (e.g., accents, tone marks; $i \rightarrow \hat{i}$, \hat{i} , \bar{i} , \bar{i} , $j \rightarrow \hat{j}$)
- Word/sentence/paragraph boundaries (spaces, punctuation)
- · Capitalization? Italics? Quotation marks?
- · Direction: Left-to-right, right-to-left, top-to-bottom

- Diacritics? (e.g., accents, tone marks; $i \rightarrow i$, \hat{i} , \bar{i} , \bar{i} , $j \rightarrow \hat{j}$)
- Word/sentence/paragraph boundaries (spaces, punctuation)
- · Capitalization? Italics? Quotation marks?
- · Direction: Left-to-right, right-to-left, top-to-bottom
- Boustrophedon: alternating direction per line

• Emoji = very meaning-based

· Emoji = very meaning-based

· Shared across languages, not a full writing system

· Emoji = very meaning-based

- · Shared across languages, not a full writing system
- Convey emotions and objects, not full grammar

• Emoji = very meaning-based

- · Shared across languages, not a full writing system
- · Convey emotions and objects, not full grammar
- · Original meaning not recoverable

Digital encoding of writing

• Bits = 0 or 1

- Bits = 0 or 1
- Bytes = 8 bits (can represent 2^8 = 256 values)

- Bits = 0 or 1
- Bytes = 8 bits (can represent 2^8 = 256 values)
- ASCII: 7 bits = 128 characters (good for English)

- Bits = 0 or 1
- Bytes = 8 bits (can represent 2^8 = 256 values)
- ASCII: 7 bits = 128 characters (good for English)
- Unicode: up to 32 bits = millions of characters (all scripts)

- Bits = 0 or 1
- Bytes = 8 bits (can represent 2^8 = 256 values)
- ASCII: 7 bits = 128 characters (good for English)
- Unicode: up to 32 bits = millions of characters (all scripts)
- UTF-8: variable-length encoding using 8-bit blocks

- Bits = 0 or 1
- Bytes = 8 bits (can represent 2^8 = 256 values)
- ASCII: 7 bits = 128 characters (good for English)
- Unicode: up to 32 bits = millions of characters (all scripts)
- UTF-8: variable-length encoding using 8-bit blocks
- Multi-byte characters use special flags in the first bit

How is speech encoded on a computer?

Waveform

How is speech encoded on a computer?

Spectogram

Figure 1.16: A spectrogram for Thursday.

· Language can be transmitted across time/space at scale

- · Language can be transmitted across time/space at scale
- Humans understand language qualitatively

- · Language can be transmitted across time/space at scale
- Humans understand language qualitatively
- Computers process it quantitatively (bits, bytes)

- · Language can be transmitted across time/space at scale
- Humans understand language qualitatively
- · Computers process it quantitatively (bits, bytes)
- · Writing represents **sound**, not **meaning** or **reference**

- · Language can be transmitted across time/space at scale
- Humans understand language qualitatively
- · Computers process it quantitatively (bits, bytes)
- · Writing represents sound, not meaning or reference
- One of the ongoing challenges for NLP system is "How to approximate meaning"?

Crowdsourcing platforms

- · "Emoji Dick" was created on Amazon Mechanical Turk
- MTurk = gig work platform ("artificial artificial intelligence")
- · Named after 18th c. fake chess-playing machine
- · Used in linguistics/psych experiments, data labeling, ML
- · Pros: fast, scalable, cheaper than lab studies
- · Concerns: ethics, pay, quality, fairness

• Quiz: Can different languages share the same writing system?

- · Quiz: Can different languages share the same writing system?
- **Answer:** Yes e.g., English and Spanish both use the Latin alphabet.

- · Quiz: Can different languages share the same writing system?
- Answer: Yes e.g., English and Spanish both use the Latin alphabet.
- Writing systems can be categorized as:

- · Quiz: Can different languages share the same writing system?
- Answer: Yes e.g., English and Spanish both use the Latin alphabet.
- · Writing systems can be categorized as:
 - Alphabetic systems

- · Quiz: Can different languages share the same writing system?
- Answer: Yes e.g., English and Spanish both use the Latin alphabet.
- · Writing systems can be categorized as:
 - · Alphabetic systems
 - Syllabic systems

- · Quiz: Can different languages share the same writing system?
- Answer: Yes e.g., English and Spanish both use the Latin alphabet.
- · Writing systems can be categorized as:
 - · Alphabetic systems
 - · Syllabic systems
 - Logographic systems