Importing Libraries

import warnings
warnings.filterwarnings('ignore')

import pandas as pd
import numpy as np

import seaborn as sns
import matplotlib.pyplot as plt
import plotly.express as px

from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive

Loading Dataset

pd.set_option('display.max_columns', None)
burnoutDf=pd.read_csv('/content/drive/MyDrive/burnout). csv')
burnoutDf

	Employee ID	Date of Joining	Gender	Company Type	WFH Setup Available	Designation	Resource Allocation	Mental Fatigue Score	I
0	fffe32003000360033003200	2008- 09-30	Female	Service	No	2.0	3.0	3.8	
1	fffe3700360033003500	2008- 11-30	Male	Service	Yes	1.0	2.0	5.0	
2	fffe31003300320037003900	2008- 03-10	Female	Product	Yes	2.0	NaN	5.8	
3	fffe32003400380032003900	2008- 11-03	Male	Service	Yes	1.0	1.0	2.6	
4	fffe31003900340031003600	2008- 07-24	Female	Service	No	3.0	7.0	6.9	
					•••				
22745	fffe31003500370039003100	2008- 12-30	Female	Service	No	1.0	3.0	NaN	
22746	∰≘33003000350031003800	2008-	Female	Product	Vac	3 በ	6.0	67	

convert into dateTime dataType
burnoutDf["Date of Joining"]= pd.to_datetime(burnoutDf["Date of Joining"])

 $\ensuremath{\mbox{\sc \#}}$ give the number of rows and columns burnout Df.shape

(22750, 9)

general information
burnoutDf.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 22750 entries, 0 to 22749
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Employee ID	22750 non-null	object
1	Date of Joining	22750 non-null	datetime64[ns]
2	Gender	22750 non-null	object
3	Company Type	22750 non-null	object
4	WFH Setup Available	22750 non-null	object
5	Designation	22750 non-null	float64
6	Resource Allocation	21369 non-null	float64
7	Mental Fatigue Score	20633 non-null	float64
8	Burn Rate	21626 non-null	float64
<pre>dtypes: datetime64[ns](1),</pre>		float64(4), obj	ect(4)
memo	ry usage: 1.6+ MB		

show top 5 rows
burnoutDf.head()

dtype='object')

#check for null values
burnoutDf.isna().sum()

Employee ID Date of Joining Gender Company Type 0 WFH Setup Available 0 Designation a Resource Allocation 1381 Mental Fatigue Score 2117 Burn Rate 1124 dtype: int64

check the duplicate values
burnoutDf.duplicated().sum()

а

calculate the mean , std, min, max and count of every attributes burnoutDf.describe()

	Designation	Resource Allocation	Mental Fatigue Score	Burn Rate
count	22750.000000	21369.000000	20633.000000	21626.000000
mean	2.178725	4.481398	5.728188	0.452005
std	1.135145	2.047211	1.920839	0.198226
min	0.000000	1.000000	0.000000	0.000000
25%	1.000000	3.000000	4.600000	0.310000
50%	2.000000	4.000000	5.900000	0.450000
75%	3.000000	6.000000	7.100000	0.590000
max	5.000000	10.000000	10.000000	1.000000

```
# show the unique values
for i, col in enumerate(burnoutDf.columns):
    print(f"\n\n{burnoutDf[col].unique()}")
    print(f"\n{burnoutDf[col].value_counts()}\n\n")
```

```
['fffe32003000360033003200' 'fffe3700360033003500' 'fffe31003300320037003900' ... 'fffe390032003000' 'fffe33003300320036003900' 'fffe3400350031003800']
fffe32003000360033003200
                                    1
fffe3600360035003500
fffe3800360034003400
                                    1
fffe31003000310033003600
fffe31003400350031003700
                                   1
fffe33003400340032003400
fffe32003100370036003600
                                    1
fffe31003900310035003800
                                    1
fffe32003400320034003200
                                    1
fffe3400350031003800
Name: Employee ID, Length: 22750, dtype: int64
```

```
2008-03-10T00:00:00.0000000000' '2008-11-03T00:00:00.000000000'
       '2008-07-24T00:00:00.0000000000' '2008-11-26T00:00:00.000000000'
       '2008-01-02T00:00:00.000000000' '2008-10-31T00:00:00.000000000'
      '2008-12-27T00:00:00.0000000000' '2008-03-09T00:00:00.000000000'
      '2008-03-16T00:00:00.000000000'
                                       '2008-05-12T00:00:00.0000000000
      '2008-01-20T00:00:00.000000000' '2008-02-23T00:00:00.000000000'
      '2008-05-14T00:00:00.000000000'
                                       '2008-02-03T00:00:00.0000000000
      '2008-03-17T00:00:00.0000000000' '2008-03-28T00:00:00.000000000'
      '2008-05-29T00:00:00.0000000000' '2008-06-27T00:00:00.000000000'
      '2008-08-31T00:00:00.0000000000' '2008-01-15T00:00:00.000000000'
      '2008-05-04T00:00:00.000000000' '2008-11-17T00:00:00.000000000'
      '2008-09-14T00:00:00.0000000000' '2008-10-09T00:00:00.000000000'
       '2008-10-11T00:00:00.000000000' '2008-09-18T00:00:00.000000000'
      '2008-09-16T00:00:00.0000000000
                                      '2008-12-16T00:00:00.000000000
      '2008-05-03T00:00:00.000000000'
                                       '2008-08-04T00:00:00.000000000
      '2008-07-31T00:00:00.0000000000'
                                       '2008-06-17T00:00:00.000000000
      '2008-04-28T00:00:00.000000000'
                                       '2008-10-30T00:00:00.0000000000
      '2008-02-27T00:00:00.000000000'
                                       '2008-06-22T00:00:00.000000000'
      '2008-02-18T00:00:00.0000000000' '2008-06-24T00:00:00.000000000'
      '2008-12-08T00:00:00.0000000000' '2008-08-05T00:00:00.000000000'
      '2008-04-11T00:00:00.0000000000' '2008-03-26T00:00:00.000000000'
       '2008-08-09T00:00:00.000000000'
                                       '2008-08-28T00:00:00.000000000'
      '2008-03-21T00:00:00.0000000000' '2008-07-22T00:00:00.000000000'
      '2008-05-20T00:00:00.0000000000' '2008-01-23T00:00:00.000000000
      '2008-09-10T00:00:00.0000000000
                                       '2008-05-26T00:00:00.000000000'
      '2008-12-22T00:00:00.0000000000'
                                       '2008-04-08T00:00:00.0000000000
      '2008-02-25T00:00:00.000000000'
                                       '2008-04-24T00:00:00.000000000
      '2008-01-08T00:00:00.0000000000' '2008-11-20T00:00:00.000000000'
      '2008-09-11T00:00:00.0000000000' '2008-06-11T00:00:00.000000000'
      '2008-02-28T00:00:00.0000000000' '2008-08-20T00:00:00.000000000'
      '2008-10-18T00:00:00.0000000000' '2008-08-14T00:00:00.000000000'
      '2008-07-17T00:00:00.0000000000' '2008-07-05T00:00:00.0000000000'
       '2008-02-04T00:00:00.0000000000' '2008-08-01T00:00:00.000000000'
      '2008-05-01T00:00:00.0000000000' '2008-05-21T00:00:00.000000000'
      'מממב' ממיממי ממיממי 'מממממממממ' 'ממפ' ממיממי ממיממי
# Drop irrelevant column
burnoutDf=burnoutDf.drop(['Employee ID'],axis=1)
# check the skewness of the attributes
intFloatburnoutDf=burnoutDf.select_dtypes([np.int, np.float])
for i. col in enumerate(intFloatburnoutDf.columns):
  if (intFloatburnoutDf[col].skew() >= 0.1):
    print("\\",col, "feature is Positively Skewed and value is: ", intFloatburnoutDf[col].skew())
  elif (intFloatburnoutDf[col].skew() <= -0.1):</pre>
      print("\n",col, "feature is Negatively Skewed and value is: ", intFloatburnoutDf[col].skew())\\
 else:
        print("\n",col, "feature is Normally Distributed and value is: ", intFloatburnoutDf[col].skew())
      Designation feature is Normally Distributed and value is: 0.09242138478903683
      Resource Allocation feature is Positively Skewed and value is: 0.20457273454318103
      Mental Fatigue Score feature is Negatively Skewed and value is: -0.4308950578815428
      Burn Rate feature is Normally Distributed and value is: 0.045737370909640515
# Replace the null values with mean
burnoutDf['Resource Allocation'].fillna(burnoutDf['Resource Allocation'].mean(),inplace=True)
burnoutDf['Mental Fatigue Score'].fillna(burnoutDf['Mental Fatigue Score'].mean(),inplace=True)
burnoutDf['Burn Rate'].fillna(burnoutDf['Burn Rate'].mean(),inplace=True)
# check for null values
burnoutDf.isna().sum()
     Date of Joining
     Gender
     Company Type
     WFH Setup Available
     Designation
     Resource Allocation
     Mental Fatigue Score
                             0
     Burn Rate
     dtype: int64
# show the correlation
burnoutDf.corr()
```

['2008-09-30T00:00:00.000000000' '2008-11-30T00:00:00.000000000'

	Designation	Resource Allocation	Mental Fatigue Score	Burn Rate
Designation	1.000000	0.852046	0.656445	0.719284
Resource Allocation	0.852046	1.000000	0.739268	0.811062
Mental Fatigue Score	0.656445	0.739268	1.000000	0.878217

Data Visualization

```
# Plotting Heat map to check correlation
corr=burnoutDf.corr()
sns.set(rc={'figure.figsize':(14,12)})
fig = px.imshow(corr, text_auto=True, aspect="auto")
fig.show()
```



```
# Count plot Distribution of "Gender"
plt.figure(figsize=(10,8))
sns.countplot(x="Gender", data=burnoutDf, palette="magma")
plt.title("plot Distribution of Gender")
plt.show()
```

plot Distribution of Gender

```
12000
```

```
# Count plot distribution of "Company Type"
plt.figure(figsize=(10,8))
sns.countplot(x="Company Type", data=burnoutDf, palette="Spectral")
plt.title("plot distribution of Company Type")
plt.show()
```



```
# Count plot distribution of "WFH Setup Available"
plt.figure(figsize=(10,8))
sns.countplot(x="WFH Setup Available", data=burnoutDf, palette="dark:salmon_r")
plt.title("plot distribution of WFH_Setup_Availble")
plt.show()
```

plot distribution of WFH_Setup_Availble

Count-plot diaatribution of attributes with the help of Histogram
burn_st=burnoutDf.loc[:,'Date of Joining':'Burn Rate']
burn_st=burn_st.select_dtypes([int, float])
for i, col in enumerate(burn_st.columns):
 fig = px.histogram(burn_st, x=col, title="Plot Distribution of "+col, color_discrete_sequence=['indianred'])
 fig.update_layout(bargap=0.2)
 fig.show()

Burn rate on the basis of Designation

Plot distribution of Burn Rate on the basis of Gender
fig = px.line(burnoutDf, y="Burn Rate", color="Gender", title="Burn Rate on the basis of Gender",color_discrete_sequence=px.colors.qualit
fig.update_layout(bargap=0.2)
fig.show()

Burn Rate on the basis of Gender

Plot distribution of mental fatigue score on the basis of Designation
fig = px.line(burnoutDf, y="Mental Fatigue Score", color="Designation", title="Mental Fatigue vs Designation",color_discrete_sequence=px.
fig.update_layout(bargap=0.2)
fig.show()

Mental Fatigue vs Designation

```
10
8
8
```

```
# plot distribution of "Designation vs mental fatigue"as per Company type , Burn rate and Gender
sns.relplot(
   data=burnoutDf, x="Designation", y="Mental Fatigue Score", col="Company Type",
   hue="Company Type", size="Burn Rate", style="Gender",
   palette=["g", "r"], sizes=(50, 200)
)
```


Label Encoding

```
# label encoding and assign in new variable
from sklearn import preprocessing
Lable_encode = preprocessing.LabelEncoder()
# assign in new variable
burnoutDf['GenderLable'] = Lable_encode.fit_transform(burnoutDf['Gender'].values)
burnoutDf['Company_TypeLable'] = Lable_encode.fit_transform(burnoutDf['Company Type'].values)
burnoutDf['WFH_Setup_AvailableLable'] = Lable_encode.fit_transform(burnoutDf['WFH Setup Available'].values)
# check assigned values
gn = burnoutDf.groupby('Gender')
gn = gn['GenderLable']
gn.first()
     Gender
               0
     Female
     Male
     Name: GenderLable, dtype: int64
# check assigned values
ct = burnoutDf.groupby('Company Type')
ct = ct['Compant_TypeLabel']
ct.first()
     Company Type
     Product
     Service
                1
     Name: Compant_TypeLabel, dtype: int64
```

```
# check assigned values
wsa = burnoutDf.groupby('WFH Setup Available')
wsa = wsa['WFH_Setup_AvailableLable']
wsa.first()
     WFH Setup Available
     No
           0
     Yes
            1
     Name: WFH_Setup_AvailableLable, dtype: int64
# show last 10 rows
burnoutDf.tail(10)
                                                                             Mental
             Date of
                              Company WFH Setup
                                                                 Resource
                                                                                         Burn
                      Gender
                                                 Designation
                                                                            Fatigue
                                 Type Available
                                                               Allocation
             Joining
                                                                                         Rate
                                                                              Score
               2008-
      22740
                               Product
                                                           3.0
                                                                       6.0 7.300000 0.550000
                      Female
                                              No
               09-05
               2008-
      22741
                                                                       5.0 6.000000 0.452005
                        Male
                               Product
                                              No
                                                           20
               01-07
               2008-
      22742
                                                                       5.0 8.100000 0.690000
                        Male
                               Product
                                              No
                                                           3.0
               07-28
               2008-
      22743
                      Female
                               Product
                                              Yes
                                                           1.0
                                                                       3.0 6.000000 0.480000
               12-15
               2008-
      22744
                        Male
                               Product
                                              No
                                                           3.0
                                                                       7.0 6.200000 0.540000
               05-27
               2008-
      22745
                                                                       3.0 5.728188 0.410000
                      Female
                                                           1.0
                               Service
                                              Nο
               12-30
               2008-
                                                                       6.0 6.700000 0.590000
      22746
                      Female
                               Product
                                             Yes
                                                           3.0
               01-19
               2008-
      22747
                        Male
                               Service
                                             Yes
                                                           3.0
                                                                       7.0 5.728188 0.720000
               11-05
Feature Selection
# feature selection
columns=['Designation', 'Resource Allocation', 'Mental Fatigue Score',
       'GenderLable', 'Company_TypeLable', 'WFH_Setup_Available']
x=burnoutDf[columns]
y=burnoutDf['Burn Rate']
print(x)
            Designation Resource Allocation Mental Fatigue Score GenderLable
                    2.0
                                    3.000000
                                                           3.800000
                    1.0
                                     2.000000
                                                           5.000000
     1
                                                                                1
                                     4,481398
                                                           5.800000
     2
                    2.0
                                                                                0
                                     1.000000
                                                           2.600000
     3
                    1.0
                                                                                1
                                     7.000000
                                                           6.900000
     4
                    3.0
                                                                                0
     22745
                    1.0
                                     3.000000
                                                           5.728188
                                                                                0
     22746
                    3.0
                                     6.000000
                                                           6.700000
     22747
                    3.0
                                     7.000000
                                                           5.728188
                                                                                1
     22748
                    2.0
                                     5.000000
                                                           5.900000
     22749
                                     6.000000
                                                           7.800000
                    3.0
            Company_TypeLable
     a
                            1
     1
                            1
     2
                             0
     3
                            1
     4
                            1
     22745
                            1
     22746
                             0
     22747
                            1
     22748
                            1
     22749
     [22750 rows x 5 columns]
print(y)
     0
              0.16
```

0.36

0.49

1

GenderLable Co

1

1

0

0

0

```
0.20
              0.52
     22745
              0.41
     22746
              0.59
     22747
              0.72
     22748
              0.52
     22749
              0.61
     Name: Burn Rate, Length: 22750, dtype: float64
Implementing PCA
# principle component analysis
from sklearn.decomposition import PCA
pca = PCA(0.95)
x_pca = pca.fit_transform(x)
print("PCA shaoe of x is: ",x_pca.shape, "and original shape is: ", x.shape)
print("% of importance of selected features is:", pca.explained_variance_ratio_)
print("The number of features selected through PCA is:", pca.n_components_)
     PCA shaoe of x is: (22750, 4) and original shape is: (22750, 5) % of importance of selected features is: [0.80288084\ 0.11418113\ 0.03102338\ 0.0268774\ ]
     The number of features selected through PCA is: 4
Data Splitting
# Data Splitting in train and test
from sklearn.model_selection import train_test_split
x_train_pca, x_test, v_train, v_test = train_test_split(x_pca,y, test_size = 0.25, random_state=10)
# print the shape of splitted data
print(x_train_pca.shape, x_test.shape, v_train.shape, v_test.shape)
     (17062, 4) (5688, 4) (17062,) (5688,)
MODEL IMPLEMENTATION
Random Forest Regressor
from sklearn.metrics import r2_score
# Random Forest Regressor
from sklearn.ensemble import RandomForestRegressor
rf_model = RandomForestRegressor()
rf_model.fit(x_train_pca, v_train)
train_pred_rf = rf_model.predict(x_train_pca)
train_r2 = r2_score(v_train, train_pred_rf)
test_pred_rf = rf_model.predict(x_test)
test_r2 = r2_score(v_test, test_pred_rf)
# Accuracy score
print("Accuracy score of train data: "+str(round(100*train_r2, 4))+" %")
print("Accuracy score of the test data: "+str(round(100*test_r2, 4))+" %")
     Accuracy score of train data: 89.7017 %
     Accuracy score of the test data: 84.4071 %
AdaBoost Regressor
# AdaBoost regressor
from sklearn.ensemble import AdaBoostRegressor
abr_model = AdaBoostRegressor()
abr_model.fit(x_train_pca, v_train)
train_pred_adboost = abr_model.predict(x_train_pca)
train_r2 = r2_score(v_train, train_pred_adboost)
test_pred_adaboost = abr_model.predict(x_test)
test_r2 = r2_score(v_test, test_pred_adaboost)
# Accuracy score
print("Accuracy score of train data: "+str(round(100*train_r2, 4))+" %")
print("Accuracy score of the test data: "+str(round(100*test_r2, 4))+" %")
```

Accuracy score of train data: 77.6054~% Accuracy score of the test data: 77.2549~%

BURNOUT PREDICTION

```
import numpy as np
import pandas as pd

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.tree import DecisionTreeRegressor
from sklearn.linear_model import LinearRegression, Ridge, Lasso
import warnings
warnings.filterwarnings(action='ignore')

burnoutDf=pd.read_csv('/content/drive/MyDrive/burnout. csv')
```

burnoutDf

	Employee ID	Date of Joining	Gender	Company Type	WFH Setup Available	Designation	Resource Allocation	Mental Fatigue Score	I
0	fffe32003000360033003200	2008- 09-30	Female	Service	No	2.0	3.0	3.8	
1	fffe3700360033003500	2008- 11-30	Male	Service	Yes	1.0	2.0	5.0	
2	fffe31003300320037003900	2008- 03-10	Female	Product	Yes	2.0	NaN	5.8	
3	fffe32003400380032003900	2008- 11-03	Male	Service	Yes	1.0	1.0	2.6	
4	fffe31003900340031003600	2008- 07-24	Female	Service	No	3.0	7.0	6.9	
22745	fffe31003500370039003100	2008- 12-30	Female	Service	No	1.0	3.0	NaN	
22746	∰⊖33003000350031003800	2008-	Female	Product	Vac	3 በ	6.0	67	

burnoutDf.info()

```
<class 'pandas.core.frame.DataFrame'>
     RangeIndex: 22750 entries, 0 to 22749
     Data columns (total 9 columns):
     # Column
                              Non-Null Count Dtype
     ---
          -----
                                -----
                           22750 non-null object
22750 non-null object
22750 non-null object
         Employee ID
     0
      1
         Date of Joining
          Gender
          Company Type
                                22750 non-null object
          WFH Setup Available 22750 non-null object
          Designation 22750 non-null float64
Resource Allocation 21369 non-null float64
          Mental Fatigue Score 20633 non-null float64
      8 Burn Rate
                                 21626 non-null float64
     dtypes: float64(4), object(5)
     memory usage: 1.6+ MB
def preprocess_inputs(df):
    df = df.copy()
    # Drop Employee ID column
    df = df.drop('Employee ID', axis=1)
    # Drop rows with missing target values
    missing_target_rows = df.loc[df['Burn Rate'].isna(), :].index
    df = df.drop(missing_target_rows, axis=0).reset_index(drop=True)
    # Fill remaining missing values with column means
    for column in ['Resource Allocation', 'Mental Fatigue Score']:
        df[column] = df[column].fillna(df[column].mean())
    # Extract date features
    df['Date of Joining'] = pd.to_datetime(df['Date of Joining'])
    df['Join Month'] = df['Date of Joining'].apply(lambda x: x.month)
```

df['Join Day'] = df['Date of Joining'].apply(lambda x: x.day)

```
df = df.drop('Date of Joining', axis=1)
    # Binary encoding
    df['Gender'] = df['Gender'].replace({'Female': 0, 'Male': 1})
    df['Company Type'] = df['Company Type'].replace({'Product': 0, 'Service': 1})
    df['WFH Setup Available'] = df['WFH Setup Available'].replace({'No': 0, 'Yes': 1})
    # Split df into X and y
    y = df['Burn Rate']
    X = df.drop('Burn Rate', axis=1)
    # Train-test split
    X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7, shuffle=True, random_state=1)
    # Scale X
    scaler = StandardScaler()
    scaler.fit(X_train)
    X_{\text{train}} = \text{pd.DataFrame(scaler.transform(}X_{\text{train}}), index=X_{\text{train.index}}, columns=X_{\text{train.columns}})
    X_test = pd.DataFrame(scaler.transform(X_test), index=X_test.index, columns=X_test.columns)
    return X_train, X_test, y_train, y_test
X_train, X_test, y_train, y_test = preprocess_inputs(burnoutDf)
X_train
                                                                                   Mental
                                      WFH Setup
                                                                    Resource
                          Company
                                                                                                Join
               Gender
                                                 Designation
                                                                                   Fatigue
                                                                                                       Join Dav
                             Type
                                      Available
                                                                 Allocation
                                                                                               Month
                                                                                     Score
                        -1.379211
                                      -1 087295
                                                                                  0.475128
      8275 -0.954022
                                                     0.725025
                                                                    0.768001
                                                                                             0.433442 -0.649693
              1.048194
                         0.725052
                                      -1.087295
                                                                    1.270205
                                                                                  1.131455
                                                                                             1.596251 -0.536187
      21284
                                                     1.604608
      16802
              1.048194
                         0.725052
                                       -1.087295
                                                    -0.154557
                                                                    0.768001
                                                                                  0.420434
                                                                                             1.305549
                                                                                                      0.371860
      3271
              1.048194
                         -1.379211
                                       -1.087295
                                                     1.604608
                                                                    2.274612
                                                                                  1.733089
                                                                                             0.142739
                                                                                                       1.620424
      5302
             -0.954022
                         -1.379211
                                       -1.087295
                                                    -0.154557
                                                                   -0.236406
                                                                                  0.475128
                                                                                             0.724144 -0.422682
      10955 -0.954022
                         0.725052
                                                    -0.154557
                                                                    0.768001
                                                                                            -1.020070 -1.444234
                                       -1.087295
                                                                                  0.803292
      17289 -0.954022
                         0.725052
                                       0.919713
                                                     0.725025
                                                                   -0.236406
                                                                                 -0.509363
                                                                                            -0.147963 0.712377
      5192 -0.954022
                         0.725052
                                       0.919713
                                                     0.725025
                                                                    0.265797
                                                                                             1.014847 0.031342
                                                                                 -1.165690
      12172 1.048194
                         -1.379211
                                       0.919713
                                                    -1.913723
                                                                   -1.743017
                                                                                 -1.220384
                                                                                             0.433442 -1.671246
       235 -0.954022
                         0.725052
                                       -1.087295
                                                                                 -2.861202 -0.729368 0.031342
                                                    -1.913723
                                                                   -1 743017
y_train
     8275
              0.61
     21284
              0.81
     16802
              0.62
     3271
              0.73
     5302
              0.43
     10955
              0.58
     17289
              0.39
     5192
              0.24
     12172
              0.18
              0.00
     235
     Name: Burn Rate, Length: 15138, dtype: float64
models = {
                           Linear Regression": LinearRegression(),
    " Linear Regression (L2 Regularization)": Ridge(),
    " Linear Regression (L1 Regularization)": Lasso(),
                               Decision Tree": DecisionTreeRegressor()
for name, model in models.items():
    model.fit(X_train, y_train)
    print(name + " trained.")
```

Linear Regression trained.

Decision Tree trained.

Linear Regression (L2 Regularization) trained. Linear Regression (L1 Regularization) trained.

}