Example Application Principle Component Analysis

Frederik Mallmann-Trenn 6CCS3AIN

PCA Example

 Say you have a bunch of house listings and you would like to group them into student housing, regular and luxury

PCA Example

- Let's say we have the following features
 - Floor size (m^2)
 - Number of rooms
 - Distance supermarket
 - Distance King's
 - Hipster vibe
- Let's say we want to reduce to two features to have a nice visual representation.
- Can we reduce it to two features?

Why does PCA work?

- Reduce to two or three features
 - Size
 - ▶ Floor size (m²)
 - Number of rooms
 - Location
 - Distance supermarket
 - Distance King's
 - Hipster vibe
- Why does this make sense?

- For example the floor size and the number of rooms are often correlated
- Let's see how it would look like if we compressed both dimensions to one dimension

■ If we take the line that minimises the Least Squares Distance, we get ...

- If we take the line that minimises the Least Squares Distance, we get ...
- ... the following projection of the points.

■ After cleaning up, this is what we get

What if we take a different line? (purple)?

- The spread here is the variance of the data
- And we would like to maximise it.

- The spread here is the variance of the data
- And we would like to maximise it.
- \blacksquare Intuitively, the more variance we capture, the better we can approximate the higher-dimensional space (here d=2)

- The spread here is the variance of the data
- And we would like to maximise it.
- Intuitively, the more variance we capture, the better we can approximate the higher-dimensional space (here d=2)
- If we compare them, we see that the points are less spread out on the purple line
- The black line actually maximises the spread and therefore is the best for approximating the higher-dimensional space

- Left: New input
- Right: Two potential lines onto which we can project.
- Consider projecting to a **horizontal** and a **vertical** line.

- This is how the output would looks like
- Which line retains more information?

- This is how the output would looks like
- Which line retains more information?
- Clearly the black line, all points on the purple line are at the same location.

3D to 2D

- Let's say our three dimensions $(x_1, x_2, \text{ and } x_3)$ are as on the l.h.s.
 - Distance supermarket
 - Distance King's
 - Hipster vibe
- \blacksquare Then after reducing it to 2D it looks like the r.h.s.
- We may also wish to reduce it to just a line (1D), but we can see that this would be very lossy

5D to 3

- If we plot our 5D data using the components we found (1 for size and 2 for location)
- We get this 3D plot
- We can see that our different classes student housing, regular and luxury are well-separated.

5D to 3

- If we plot our 5D data using the components we found (1 for size and 2 for location)
- We get this 3D plot
- We can see that our different classes student housing, regular and luxury are well-separated.
- This is the whole point: reduce the information, but keep the important information!

19