感知机例题

如下图所示的训练数据集,其正实例点是 $x_1 = (3,3)^T$, $x_2 = (4,3)^T$, 负实例点是 $x_3 = (1,1)^T$,试用基本的感知机学习算法求感知机模型 $f(x) = \mathrm{sign}(w \cdot x + b)$ 。 这里, $w = \left(w^{(1)}, w^{(2)}\right)^T$, $x = \left(x^{(1)}, x^{(2)}\right)^T$, 初始值可取 $w_0 = 0$, $b_0 = 0$, 损失函数采用 $\min_{w,b} L(w,b) = -\sum_{x_k \in M} y_k \left(w^T \cdot x_k + b\right)$,参数更新公式采用 $w_{t+1} = w_t + \eta y_k x_k$, $b_{t+1} = b_t + \eta y_k$, $\eta = 1$, k = 1, 2, 3, $y_1 = y_2 = +1$, $y_3 = -1$ 。

解: 构建最优化问题:

$$\min_{w,b} L(w,b) = -\sum_{x_k \in M} y_k (w \cdot x_k + b)$$

下面求解向量参数 w 和标量 b 。

- (1) 取初值 $w_0 = 0$, $b_0 = 0$
- (2)下面,对于不能正确分类的点,就更新参数w和b,若可以正确分类该点,就不更新。

对 $x_1 = (3,3)^T$, $y_1(w_0 \cdot x_1 + b_0) = 0$, 未能被正确分类, 更新 w 和 b,

$$w_1 = w_0 + y_1 x_1 = (3,3)^T$$
, $b_1 = b_0 + y_1 = 1$

得到线性模型

$$w_1 \cdot x + b_1 = 3x^{(1)} + 3x^{(2)} + 1$$

(3) 对 x_1 , x_2 , 显然 $y_k(w_1 \cdot x_k + b_1) > 0$, 被正确分类, 不修改w和b;

对 $x_3 = (1,1)^T$, $y_3(w_1 \cdot x_3 + b_1) < 0$, 被误分类, 更新w和b。

$$w_2 = w_1 + y_3 x_3 = (2, 2)^{T+}$$
, $b_2 = b_1 + y_3 = 0$

得到线性模型

$$w_2 \cdot x + b_2 = 2x^{(1)} + 2x^{(2)}$$

如此继续下去,直到

$$w_7 = (1,1)^T$$
, $b_7 = -3$

$$w_7 \cdot x + b_7 = x^{(1)} + x^{(2)} - 3$$

对所有数据点 $y_k(w_7 \cdot x_k + b_7) > 0$,没有误分类点,损失函数达到极小。

分离超平面:

$$x^{(1)} + x^{(2)} - 3 = 0$$

感知机模型为:

$$f(x) = sign(x^{(1)} + x^{(2)} - 3)$$

迭代过程见下表

迭代次数	误分类点	W	b	$w \cdot x + b$
0		0	0	0
1	X_1	$(3,3)^T$	1	$3x^{(1)} + 3x^{(2)} + 1$
2	X_3	$(2,2)^T$	0	$2x^{(1)} + 2x^{(2)}$
3	X_3	$(1,1)^T$	-1	$x^{(1)} + x^{(2)} - 1$
4	X_3	$(0,0)^{T}$	-2	-2
5	X_1	$(3,3)^T$	-1	$3x^{(1)} + 3x^{(2)} - 1$
6	x_3	$(2,2)^T$	-2	$2x^{(1)} + 2x^{(2)} - 2$
7	X_3	$(1,1)^T$	-3	$x^{(1)} + x^{(2)} - 3$
8	0	$(1,1)^T$	-3	$x^{(1)} + x^{(2)} - 3$

这是在计算中误分类点先后取 $x_1, x_2, x_3, x_4, x_5, x_6$ 到的分离超平面和感知机模型。

如果在计算中误分类点依次取 $x_1, x_3, x_3, x_2, x_3, x_3, x_3, x_4, x_3, x_3, x_4, x_3, x_4, x_5, x_5$ 面是 $2x^{(1)} + x^{(2)} - 5 = 0$ 。

感知机学习算法采用不同的初始值或选取不同的误分类点,解可以不同。