理解 APRS 数据包

John Langner, WB2OSZ - October 2024 Yuluoxk,BG2FFJ - 2025 年 3 月译制

试图理解 APRS(自动数据包报告系统)的数据包可能会让人困惑。有些数据包相当直观,但另一些则晦涩难懂。本文旨在帮助您解读这些神秘的信号,并识别其中的错误。本文仅讨论人类可读的 TNC-2 监控格式,不涉及 AX.25 的 HDLC 帧格式。

我的目标是提供一份更易于理解的入门指南,而非直接让人去阅读协议规范。本文不会涵盖所有可能的特性,而是侧重于理解而非实现。如需深入实现细节,您仍需参考 2000 年发布的原始 APRS 协议规范,以及过去 20 多年间散落各处的补充文档。或者,您也可以在此处找到整合了原始规范及更新的完整版本。

本文约三分之一的内容专门分析本地观测到的错误。其中一些源于有缺陷的实现,另一些则是由 用户操作失误导致的。如果您不想成为"错误示范",请仔细阅读本文。

目录

1	标准	È "TNC-2" 监控格式解析	Г	4
	1.1			
	1.2		备标识符)	
	1.2.:			
	1.3		eater Via Path)	
	1.3.3	1 未使用/已使用的	中继地址	7
	1.3.2	2 数字中继算法		8
	1.4	信息部分		8
2	数据	居包类型		10
	2.1	位置报告		10
	2.2	MIC-E 位置报告		11
	2.2.	1 MIC-E 设备标识符	F	12
	2.3	对象报告(Object Rep	oort)	14

	2.4	遥测(Telemetry)	. 15
	2.4.2	1 遥测数据(Telemetry Data)	. 15
	2.4.2	2 遥测元数据(Telemetry Metadata)	. 16
	2.4.3	3 遥测漫谈(Telemetry Rambling)	. 16
	2.5	消息(Messages)	. 17
	2.5.2	1 简单情况 - 仅限 RF 传输	. 17
	2.5.2	2 更复杂的情况 - 通过 APRS-IS	. 18
	2.6	第三方报头(Third Party header)	. 20
	2.7	天气	.21
	2.7.	1 完整天气报告	.22
	2.7.2	2 目标(Object)报告	.22
	2.7.3	3 国家气象局(NWS)公告	. 23
	2.8	查询与响应	. 24
	2.8.2	1 通用查询(General Queries)	. 24
	2.8.2	2 定向查询(Directed Queries)	. 25
3	注释	🔾 (Comments)	. 27
	3.1	cse/spd - 航向和速度(Course and Speed)	. 27
	3.2	功率,高度,增益 Power, Height, Gain (PHG)	. 27
	3.3	语音频率(Voice Frequency)	. 28
	3.4	高度(Altitude)	.30
	3.5	DAO -提高分辨率	.30
	3.6	Base-91 遥测	. 31
	3.7	!x! 意为不要存档	.32
	3.8	UTF-8 字符	.32
4	观察	≷到的错误示例	.33
	4.1	APRS 频率上非 APRS 格式的数据包	.33
	4.2	缺失系统标识符	.34
	4.3	未注册的系统类型标识符	.35
	4.4	过时的数字中继器格式	.36
	4.5	路径中空的数字中继器名称	.37
	4.6	无效的位置	.37
	4.7	位置报告中的错误时间戳	.38

	4.8	APRS 区分大小写	.38
	4.9	Kenwood Bug - 0xFF bytes	. 39
	4.10	Kenwood Bug - 不当的消息拒绝	. 40
	4.11	Kenwood Bug - 不当的自动回复	.41
	4.12	频率指定错误	.41
	4.13	功率、天线高度与增益错误	.43
	4.14	错误的度数符号字符编码	.43
	4.15	DX 报告中缺少必需的空格	.44
	4.16	错误查询格式	. 44
	4.17	过时的气象数据格式	.45
	4.18	未标记已使用的中继地址	.45
	4.19	RFONLY 与 NOGATE 的错误使用	. 46
	4.20	天啊!这个案例的问题简直数不过来!	.47
	4.21	IGate 破坏 UTF-8 字符的问题	.48
	4.22	中继站对数据包尾部的破坏	.49
	4.23	有缺陷的 IGate 实现或错误配置	. 49
5	dec	ode_aprs 应用程序	.51

1 标准 "TNC-2" 监控格式解析

首先,我们需要理解标准显示格式所传达的信息。APRS 数据包由可变长度的地址部分和信息部分组成,其基本结构如下:

源地址 > 目标地址: 信息

源地址>目标地址,中继1:信息

源地址>目标地址,中继1,...,中继8:信息

地址部分的组成:

- 源地址(Source)-数据包的发送方。
- 目标地址(Destination)-通常标识生成该数据包的系统类型。
- 数字中继路径(Digipeater via path) 一个数据包可能经过和/或已经经过的中继站列表。
- 目标地址(Destination)- 通常标识生成该数据包的系统类型。

当数据包通过无线电传输时, AX.25 协议规定地址必须满足:

- 由1至6个大写字母或数字组成。
- 可包含 0 至 15 之间的数字(如用于 SSID 标识)。

后续我们会看到,在其他应用场景中,这种命名限制可能会放宽。

1.1 源地址说明

源地址字段包含最初发送数据包的电台标识。通常这是一个业余无线电呼号,但您也可能看到描述性的战术呼号。可选的分站标识符(SSID)允许同一呼号下最多区分 16 个不同站点。

有效格式示例:

- N2GH
- N2GH-1
- N2GH-15

无效格式示例:

• N2GH-0 SSID 为 0 时不显示。

• N2GH-16 SSID 最大值为 15。

理解 APRS 数据包 第 4 页

- N2GH -1 呼号与 SSID 间不得有空格。
- n2gh 必须使用大写字母。

6 字符限制源于 1980 年代设计的 AX.25 协议。目前某些国家使用 7 字符呼号系统,此类情况可将完整呼号填入注释字段以供识别。

1.2 目标地址 (通常为设备标识符)

这个名称容易造成混淆。在面向连接的封包无线电通信中,它表示点对点通信的目标电台。

而 APRS 采用无连接的一对多广播模式,因此该字段被用于不同用途。大多数情况下,该字段用于标识生成数据包的设备类型,有时也被称为"tocall"字段。若将其命名为"系统类型"或"设备 ID"会更贴切。

常见示例:

- APDW18
- APWW11
- APTT4

通常末尾数字表示版本号。传统的系统类型列表可查阅 http://www.aprs.org/aprs11/tocalls.txt。该文档内容截至 2021 年底后未再更新。当前最新规范请以以下权威来源为准:https://github.com/aprsorg/aprs-deviceid。

读者练习:尝试查询上述示例以了解其具体含义。

规则:

- 系统/设备标识符以"AP"开头
- 最多6个大写字母和数字
- 不得为空
- 不使用 SSID

有时部分文章中该字段可能显示为"APRS",但这不应按字面理解,它只是表示此处应填入系统类型的占位符。

1.2.1 目标地址 SSID

0

理解 APRS 数据包 第 5 页

我本希望这个概念能悄然淡出。然而,近期关于在 LoRa APRS 中使用该字段以缩短初始数据包长度的讨论,使得这个话题值得重新探讨。

最早的 APRS 追踪器之一 https://web.tapr.org/product_docs/Mic-E/mic-edev/mic-e.manual.pdf 配备了 4个 DIP 开关用于设置目标地址 SSID。其设计理念是中继站会将非零的目标地址转换为标准的中继路径,如下所示:

• [SSID] AX. 25 SSID 功能对照表:

0	使用常规中继路径
	(如有配置)
1	WIDE-1 全向模式
2	WIDE-2
3	WIDE-3
4	WIDE-4
5	WIDE-5
6	WIDE-6
7	WIDE-7

8	北向路径
9	南向路径
10	东向路径
11	西向路径
12	北向路径 + WIDE
13	南向路径 + WIDE
14	东向路径 + WIDE
15	西向路径 + WIDE

这个设计远在 WIDEn-N 标准出现之前就已存在。我一直认为这个功能已经过时,因此没有在我的中继器中实现它。作为实验,我手工制作了几个带有目标地址 SSID(设置为 1 或 2)的 APRS 数据包。结果发现,在我附近的区域,没有任何中继器对这些数据包做出响应。这表明大多数(如果不是全部)应用程序开发者都得出了相同的结论——这个功能已经过时,因此都没有实现它。

1.3 数字中继路径(Digipeater Via Path)

在 VHF/UHF 频段,若所处位置不佳,通信距离往往十分有限。我们通常使用语音中继台(voice repeater)来扩展语音通信范围——这类设备通过在一个频率接收信号,同时以另一频率转发信号。

APRS 系统则采用另一种称为"数字中继台"(digipeater)的中继方式。与双频工作的语音中继不同,数字中继台会完整接收数据包,经评估后可能在同一频率上重新传输。

用户可指定具体的中继台名称,但更常见的做法是使用 WIDEn-n 形式的通用别名(无需了解实际 网络拓扑结构)。以下是一个典型示例:

WB2OSZ>APDW18, WIDE1-1, WIDE2-1: information-part

理解 APRS 数据包 第 6 页

1.3.1 未使用/已使用的中继地址

当数据包首次发送时,其格式如下所示:

WB2OSZ>APDW18, WIDE1-1, WIDE2-2: information-part

此时所有中继地址都处于"未使用"状态。由于中继地址部分没有星号("*")标记,说明您正在接收来自原始发送站(WB2OSZ)的直接信号。

假设中继站 N2GH 转发了这个数据包, 转发后的格式将变为:

WB2OSZ>APDW18, N2GH*, WIDE2-2: information-part

由于 WIDE1-1 的剩余跳数(hop count)为 1,转发后该别名被消耗并替换为实际中继站呼号。中继地址后的星号("*")表示您当前正在接收该中继站的转发信号,且该地址已被使用。

若中继站 W2UB 继续转发此数据包,结果将变为:

WB2OSZ>APDW18, N2GH, W2UB*, WIDE2-1: information-part

W2UB 后面跟着*,表示你正在接收该电台的信号,并且该地址现在已被使用。在中继站字段中最多应有一个*。所有较早的地址都被视为已使用。某些应用程序可能会在每个已使用的地址后添加*,但这是错误的。

特别注意 WIDE2-2 的变化: 其初始跳数为 2, 经一次转发后跳数减 1, 变为 WIDE2-1。

当中继站 WA2NRE 最后转发此数据包时,结果将是:

WB2OSZ>APDW18, N2GH, W2UB, WA2NRE*: information-part

此时你听到 WA2NRE,有中继地址都已耗尽,数据包无法继续被中继转发。

通过这些标记,我们可以还原传输路径:

- 原始发送站:WB20SZ
- 第一跳中继: N2GH(说明 N2GH 能直接接收 WB2OSZ 的信号)
- 第二跳中继: W2UB (说明 W2UB 能接收 N2GH 的信号)
- 第三跳中继: WA2NRE(说明 WA2NRE 能接收 W2UB 的信号)

根据 AX.25 协议规范:

目标站可通过检查地址字段确定数据帧的传输路径,并利用该路径返回数据帧。

理解 APRS 数据包 第 7 页

理论上虽成立,但实践中存在例外。例如当 X 站能接收 Y 站信号,但 Y 站无法接收 X 站信号时,反向路径可能失效。

1.3.2 数字中继算法

数字中继台会检查数据包中继路径中的第一个未使用地址。

如果第一个未使用地址与该中继台相同,则将该地址标记为已使用并重新传输该数据包。

如果第一个未使用地址是该中继台的别名,则将别名替换为实际名称,将地址标记为已使用并重新传输该数据包。

如果第一个未使用地址符合 XXXn-N 模式,且前缀 XXXn 在中继台配置中,则可能会重新传输该数据包。处理方式取决于 SSID 的值(此处用 N 表示)。

N=0 不进行中继。

N=1 进行中继并将通用格式替换为中继台呼号。中继台应始终标识自身,并标记其地址已使用,以便了解实际经过的路径。

 $N \ge 2$ 将 N 减 1 并保留路径中的地址。保持其标记为未使用。在其前插入中继台呼号并将中继台呼号标记为已使用。

在中继路径的已使用部分(人类可读监控格式中"*"字符之前)的电台列表,显示了数据包经过的路径。

数字中继台必须保存过去 30 秒内传输的所有数据包副本,并在此期间不发送重复数据包。重复测试基于除中继路径外的所有内容。

数字中继台应仅更改中继路径。它绝不应更改源地址、目标地址或信息部分。破坏数据包将使重复抑制功能失效。

1.4 信息部分

地址部分之后的所有内容称为信息部分。第一个字符是数据类型指示符(DTI),用于指示后续数据的格式。以下是几个示例:

理解 APRS 数据包 第8页

!=/@ 位置报告
'` MIC-E 位置报告
; 对象报告 t
! "消息"
遥测数据
第三方通信

请注意,唯一被定义的字母是表示遥测数据的"T"。所有其他字母和数字都是无效的。

一般来说,以下字段是固定宽度的可打印 ASCII 字符。我们将在下面探讨更常见的类型。

某些数据包类型在末尾允许有可变长度的自由格式注释。这些注释不仅限于 ASCII 字符。多字节序列可以表示 UTF-8 格式的 Unicode 字符。

回车符(0x0d)或换行符(0x0a)不应出现在末尾。APRS 协议规范未提及它们的可能出现,这可能会导致互操作性问题。IGate 电台会移除末尾的所有 CR/LF 字符。

理解 APRS 数据包 第 9 页

2 数据包类型

数据包类型通常(存在许多特殊情况)由信息部分的第一个字符标识。最常见的数据类型指示符(DTI)包括:

• !=/@ 位置报告

• ' ` MIC-E 位置报告

• T 遥测数据

• } 第三方通信

2.1 位置报告

这可能是您最常见的数据包类型。一个站点正在发送其自身位置和其他信息。根据数据类型指示符,有4种变体:

- ! 无时间戳,不支持 APRS 消息
- = 无时间戳,支持 APRS 消息
- / 有时间戳,不支持 APRS 消息
- @ 有时间戳,支持 APRS 消息

时间戳很少使用,因为默认使用当前时间。如果接收站记录收到的数据包,可以添加时间戳。

这种位置报告类型的本意是传达站点是否支持 APRS 消息功能。

示例:

W1KU-2>APDW16,W1MRA,N3LLO-3*:!4220.00N/07138.00W-PHG2020Northborough MA

让我们将其分解为各个组成部分:

W1KU-2 源站点

APDW16 数据包由 Dire Wolf 1.6 版本生成

W1MRA,N3LLO-3* 数据包已被 W1MRA 转发, 然后又被 N3LLO-3 转发。"*"表示我们正

在接收的站点

理解 APRS 数据包 第 10 页

! 数据类型指示符(DTI),表示位置报告,无时间戳,无消息功能

42 纬度度数。必须正好 2 位数字

20.00 纬度分钟数。必须正好 2 位数字, 小数点, 和 2 位小数

N 纬度半球。必须大写 N 或 S

/ 符号表或覆盖层

071 经度度数。注意前导零。必须正好 3 位数字

38.00 经度分钟数。必须正好 2 位数字, 小数点, 和 2 位小数

W 经度半球。必须大写 W 或 E

- 符号

符号表/覆盖层和符号的组合代表站点类型和地图上显示的图标。"/-"表示房屋。

您可以在 http://www.aprs.org/symbols.html 获取完整列表,或者通过运行带"-S"命令行选项的 direwolf 程序。

之后的所有内容称为注释。某些字符组合可以表示可选的数据类型。其余部分是自由格式文本。我们将在后面的章节中更详细地介绍注释。

2.2 MIC-E 位置报告

MIC-E 格式的设计目的是尽可能缩短数据包。例如::

 $N1JCM-9>TRQP7T,WA1PLE-4*:\c'wl|+>/\"4-}_%<0x0d>$

这些字段的划分如下:

N1JCM-9 源站名称

TRQP7T 其他数据包类型在此处包含产品标识符。MIC-E 格式在此字段中封装了纬度和其他一些信息

理解 APRS 数据包 第 11 页

WA1PLE-4* 使用的数字中继器地址

`和'都表示 MIC-E 格式

c'w 经度

||+ 速度和航向

>/ 符号代码&符号表。本例中表示汽车

` 由两字符后缀标识的消息功能设备

"4-} 选填的高度信息,位于注释字段的开头

其他注释内容

_% Yaesu FTM-400DR

<0x0d> 以十六进制显示的意外回车符。官方协议规范未提及此情况,因此我认

为这是一个缺陷, 所有接收站都需要进行相应的处理。

MIC-E 格式做出了一个不幸的设计决策,即使用了一些不可打印的 ASCII 控制字符。例如:

N1YOQ-1>TRUW5X,UNCAN*,WIDE2-1: c9r<0x1c><0x1f>;#/"5D}Solar Powered Digipeter

某些系统会以十六进制显示这些不可打印字符,例如 `<0x1c>` 和 `<0x1f>`, 而其他系统可能会显示一些奇怪的非 ASCII 字符,或者完全不显示它们。

2.2.1 MIC-E 设备标识符

在前一节中,我们看到 MIC-E 格式的位置报告以'或`开头,后跟 8 个固定位置的字符。之后是一个可选的注释字段。

根据文档,原始 MIC-E 格式在固定部分和注释之间放置了一个空格:

xxxxxxxx (空格) 注释 原始 MIC-E

有时你会看到另一种形式,其中固定部分和注释之间没有任何间隔。在这种情况下,我们无法确定是由何种设备生成的数据包。

理解 APRS 数据包 第 12 页

xxxxxxxx (无空格) *注释*

未知

当 Kenwood 采用 MIC-E 格式时,他们在注释字段前放置了不同的字符,以标识设备类型。

 xxxxxxxx > 注释
 TH-D7

 xxxxxxxx] 注释
 TM-D700

随着后续机型的推出,一个额外的字符被放置在注释的末尾。

 xxxxxxxx > 注释 =
 TH-D72

 xxxxxxxx > 注释 ^
 TH-D74

 xxxxxxxx > 注释 &
 TH-D75

 xxxxxxxx] 注释 =
 TM-D710

这被称为"传统格式"(legacy format)。在后来的实现中,采用了一种新的格式。

- 以`为前缀表示该系统支持消息通信。
- 以'为前缀表示该系统不支持消息通信,例如一个追踪器(tracker)。

现在,在数据包末尾增加了一个两字符后缀,以表示制造商和型号。例如:

xxxxxxxx ` 注释 _(Yaesu FT2D (支持消息通信)xxxxxxxx ` 注释 _0Yaesu FT3D (支持消息通信)xxxxxxxx ` 注释 _3Yaesu FT5D (支持消息通信)

xxxxxxxx ' 注释 | 3Byonics TinyTrack 3 (不支持消息通信)xxxxxxxx ' 注释 | 4Byonics TinyTrack 4 (不支持消息通信)

任何可选的高度信息都会位于注释字段的开头,放置在设备标识符前缀之后,并且在后缀之前。 例如:

xxxxxxxxx ` "4-} comment _(

更多关于 MIC-E 前缀和后缀值的机器可读文件,可在以下链接找到:

https://github.com/aprsorg/aprs-deviceid

应用程序开发者应避免硬编码这些规则,而是建议在运行时读取该文件,以便用户可以更新设备数据库,而无需等待新的软件发布。

理解 APRS 数据包 第 13 页

2.3 对象报告(Object Report)

对象报告与位置报告(Position Report)非常相似,不同之处在于你发送的是关于其他事物的信息,而不是关于你自己的信息。数据类型指示符(Data Type Indicator)是 `;`(分号)。

示例:

W10EM-5>APWW11,EKONCT,WA1PLE-4*:;ELYME *190116z4122.06N/07212.98W#145.03 Packet Node ELYME!W98!

解析为各个部分:

W10EM-5 源站(Source station)

APWW11 生成该数据包的系统类型

EKONCT,WA1PLE-4* 该数据包在 EKONCT 转发后被 WA1PLE-4 接收

; `;`(分号)是数据类型指示符(Data Type Indicator)

TELYME 对象名称(Object name)

任何可打印的 ASCII 字符,包括嵌入的空格

对象名称区分大小写。

需要在末尾补足空格,使字段长度恰好为9个字符

`(下划线)表示删除该对象

190116z 时间戳(Timestamp)。表示本月 19 日 01:16 UTC

这里有一个奇怪的地方:

没有特定时间的情况用 `111111z` 表示, 而它是一个完全有效

的时间格式

为什么是这样的呢?

为什么不直接用空白表示没有时间戳呢?

4122.06N/07212.98W# 位置和符号,与位置报告相同

符号是"DIGI(中心白色)"

理解 APRS 数据包 第 14 页

145.03 看起来像是一个频率,但它的格式不符合标准,因此不会被正

确处理。稍后讨论

Packet Node ELYME 自由格式文本注释(Free-form text comment)

!W98! 提高位置分辨率。DAO(高精度位置编码)将在后面讨论

纬度计算: `41° 22.06` + `0.0090` N 经度计算: `072° 12.98` + `0.0080` W

2.4 遥测(Telemetry)

遥测分为两种类型:

• 实际数据- 只是数字

• 元数据-描述如何解释这些数字的信息

2.4.1 遥测数据(Telemetry Data)

遥测数据的标识符是 `T`, 出现在数据部分的开头。之后的格式如下:

- `#` 后跟三位数字的序列号
- 最多五个数值型的模拟遥测值
- 如果提供了所有五个数值,还可以跟随八个二进制值

原始协议规范仅允许 000 至 255 的数值范围,这仅适用于 8 位模数转换器(ADC)。大约二十年后,该范围被官方放宽至 000 至 999。

示例:

N1YOQ-1>APMIOA,UNCAN,WIDE1*,WIDE2-1:T#196,174,000,000,000,000,00000000

在实际应用中,带有小数点的可变长度数字更为常见。例如:

W1HS-11>APMI06,N1LIT-6,WIDE2*:}N3LLO-2>APRX29,TCPIP,W1HS11*:T#300,38.8,0.0,176.0,55.0,0.0,00000000

所有我测试过的现代应用程序都能识别这种更灵活的格式。这是一个典型的案例,社区在等待官方标准更新之前,就已经达成共识进行改进

理解 APRS 数据包 第 15 页

2.4.2 遥测元数据(Telemetry Metadata)

仅有数字但没有上下文的信息几乎没有意义。例如,它是温度、电池电压,还是河水深度?用于描述数据的信息称为元数据(Metadata)。

APRS 遥测元数据以特定格式的 APRS "消息" 发送,并地址设为发送遥测数据的电台。

N1YOQ-1>APMIOA,N3LLO-3,WIDE1*,WIDE2-1::N1YOQ-1:UNIT.Volt,None,None,None,None,On,On,On,On,Hi,Hi,Hi,Hi

N1YOQ-1>APMI0A,N3LLO-3,WIDE1*,WIDE2-1::N1YOQ-1 :EQNS.0,0.075,0,0,0,0,0,0,0,0,0,0,0,0,0

N1YOQ-1>APMIOA,N3LLO-3,WIDE1*,WIDE2-1::N1YOQ-1 :BITS.11111111,Telemetry test

希望解释遥测数据的接收电台需要记住发送给该电台的遥测元数据,并将其与该电台发送的原始数据结合使用。

每个模拟通道可以有三个缩放系数(Scaling Coefficients),在 EQNS 中定义,我们这里用 `a`、`b`和 `c` 表示。对于传输的值 `x`,最终值的计算公式为:

$$a x^2 + b x + c$$

在上述示例中,遥测数据 `174` 乘以缩放系数 `0.075` 得到: 完整的 EQNS 详细信息可以<u>在 APRS 规范</u>的第 13 章中找到。

在这个示例中,没有 `PARM`,因此没有变量的名称 (例如"电池电压")。

某些实现可能会直接发送 `13.05` 这样的数值,而不进行 8 位整数缩放。

2.4.3 遥测漫谈(Telemetry Rambling)

为什么限制只能有 5 个模拟通道,而不让它更灵活呢?我猜测 APRS 微型接口模块(APRS Micro Interface Module (MIM))可能是先出现的,而 APRS 规范随后才遵循了这一惯例。如果有人知道真实的历史,请告诉我。

关于遥测元数据格式的历史,有人知道吗?如果能使用更直观和简单的方式,比如:

理解 APRS 数据包 第 16 页

T# 数据

TPARM 变量名称/标签

TUNIT 单位

TEQNS 缩放系数

TBITS 位的意义(1或0是否代表"真")

这会不会更好呢?如果有人知道为什么采用目前这种更复杂的格式(即使用"消息"发送到遥测电台),请告诉我。

还有另一种形式的遥测数据,它出现在"评论字段"(Comment)中,以便通过单个数据包传输更多类型的信息。这将在"评论"部分介绍。

想要更深入地了解 APRS 遥测,可以参考:

https://github.com/wb2osz/direwolf/blob/master/doc/APRS-Telemetry-Toolkit.pdf

2.5 消息 (Messages)

在 APRS 中,"消息"有一个非常具体的定义。如果用该术语来指代其他内容,可能会引起混淆。

- 位置报告(Position Reports) 不是"消息"。
- 对象报告(Object Reports) 不是"消息"。
- 状态报告(Status Reports)不是"消息"。
- 天气报告(Weather Reports) 不是"消息"。
- 遥测数据(Telemetry Data)不是"消息"。

虽然大多数 APRS 传输是对所有人的广播,但也可以向特定目标发送"消息"。

2.5.1 简单情况 - 仅限 RF 传输

如果我要向 N2GH 发送一条消息,数据包会如下所示:

理解 APRS 数据包 第 17 页

WB2OSZ-7>APK003::N2GH :Hi, Dave!{001

拆分解析:

WB2OSZ-7> 源地址 APK003 设备标识符

: 结束地址部分

: 消息数据类型指示符

N2GH 收件人(填充空格至 9 个字符)

: 分隔符

Hi, Dave! 消息正文(可包含 UTF-8)

{001 消息 ID

消息 ID 以 行 开头,后跟 1 到 5 个字母或数字。当消息包含 ID 时,接收端需要发送确认(ack),否则发送端会重试,直到收到 ack 或达到最大尝试次数。用户应当被告知消息是否成功送达。

接收端的确认消息:

N2GH>APK003::WB2OSZ-7 :ack001

acknowledgement (确认)是一种特殊的消息,其内容是小写 `ack`,后跟消息 ID。

此外,还有一种更新的消息 ID 格式,例如 `{ab}cd`,可能会在未来的 APRS 规范修订中详细说明。

2.5.2 更复杂的情况 - 通过 APRS-IS

如果目标收件人无法通过本地 RF 网络直接到达,数据包可以通过 IGate 站点,穿越 APRS-IS(APRS 互联网服务),并由另一个 IGate 站点转发。

也可以向互联网上的服务器发送消息,这种情况下"收件人"的规则更宽松。

例如,发送消息到"WHO-IS"服务器:

- (1) WB2OSZ-7>APK003,WIDE1-1,WIDE2-1::WHO-IS :W1AW{0<0x0d>
- (2) WB2OSZ-5>APDW17,WIDE1-1,WIDE2-1:}WHO-IS>APJIW4,TCPIP,WB2OSZ-5*::WB2OSZ-7 :ack0
- (3) WB2OSZ-5>APDW17,WIDE1-1,WIDE2-1:}WHO-IS>APJIW4,TCPIP,WB2OSZ-5*::WB2OSZ-7:C/ARRL HQ OPERATORS CLUB/CT/United States{1012

理解 APRS 数据包 第 18 页

(4) WB2OSZ-7>APK003,WIDE1-1,WIDE2-1::WHO-IS :ack1012<0x0d>

这里发生了很多事情。

第一条数据包 - 来自 WB2OSZ-7 发送给 WHO-IS 的原始消息:

WB2OSZ-7 消息来源

APK003 设备 ID。让你知道如何查找这个信息

WIDE1-1,WIDE2-1 典型的中继路径

":"表示 "APRS 消息"

WHO-IS: "收件人"—— 发送消息的目标地址

该字段必须正好为9个字符,并且后面跟着":",

所以可能需要插入空格填充。

注意, "IS" 是字母 "I" 和 "S", 而不是数字 15

W1AW 消息正文 —— 一个呼号

{0 消息 ID 0,表示需要确认回复

格式为"{"后跟1到5个字母数字字符

重要提示: 收件人通常是无线电台的呼号和 SSID, 但这并非必须。 对于收件人的格式要求较宽松, 因为它可以超过 6 个字符, 或者带有字母数字的 SSID。

接下来,我们看到 WHO-IS 确认收到了消息 ID 0。 接收站在解析消息之前,需要去除第三方包装部分(下方已划掉)。

WB2OSZ-5>APDW17,WIDE1-1,WIDE2-1:}WHO-IS>APJIW4,TCPIP,WB2OSZ-5*::WB2OSZ-7 :ack0

WHO-IS 消息来源 APJIW4 系统 ID

TCPIP,WB2OSZ-5* 由 IGate 添加

: ":"表示 APRS "消息"

WB2OSZ-7: 收件人,填充至9个字符长度

并以":"结束

ack0 小写 "ack" 表示对以下消息 ID 的确认回复

WHO-IS 服务器查询呼号并返回信息。 同样,接收站在解析"消息"之前,必须去除第三方包装部分。

WB2OSZ-5>APDW17,WIDE1-1,WIDE2-1:}WHO-IS>APJIW4,TCPIP,WB2OSZ-5*::WB2OSZ-7 :C/ARRL HQ OPERATORS CLUB/CT/United States{1012

WHO-IS 消息来源

理解 APRS 数据包 第 19 页

APJIW4 系统标识符 = jAPRSIgate

TCPIP,WB2OSZ-5* 由 IGate 站添加

: ":"表示 APRS "消息

WB2OSZ-7: 消息"收件人",填充至9个字符长度,然后跟上":"

C/ARRL HQ OPERATORS CLUB/CT/United States 查询的回复内容。

{1012 消息标识符

最后,原始站点确认收到了该信息。

WB2OSZ-7>APK003,WIDE1-1,WIDE2-1::WHO-IS :ack1012<0x0d>

WB2OSZ-7来源站点APK003来源设备 IDWIDE1-1,WIDE2-1典型的中继路径: ":"表示 "消息"

WHO-IS: 收件人,填充至9个字符长度,并以":"结束

ack1012 确认消息 ID 1012

细心的读者可能会疑惑,为什么以下部分(数据类型指示符为"}")未包含在解释中。

WB2OSZ-5>APDW17,WIDE1-1,WIDE2-1:

这将是我们下一节讨论的主题。

2.6 第三方报头(Third Party header)

第三方报头用于**代表其他人传输数据包**。目前,我只见过 IGate 站点使用它来将 APRS-IS 的数据包 转发到 RF,但实际上,它可以用于其他场景。

也许通过一个示例可以更容易理解。在前一节中,我们看到站点 WHO-IS 想要向 WB2OSZ-7 发送一条消息。APRS-IS 系统知道该台站最近被 IGate WB2OSZ-7 听到,因此 APRS-IS 将这条消息转发给该 IGate。

从 APRS-IS 发出的数据包如下所示:

WHO-IS>APJIW4,TCPIP*,qAC,AE5PL-JF::WB2OSZ-7 :C/ARRL HQ OPERATORS CLUB/CT/United States{1012

首先, IGate 站点会替换 via 路径, 使其变为:

理解 APRS 数据包 第 20 页

WHO-IS>APJIW4,TCPIP,WB2OSZ-5*::WB2OSZ-7:C/ARRL HQ OPERATORS CLUB/CT/United States{1012

via 路径必须严格包含以下内容

TCPIP 表示该数据包来自互联网,且不能再返回互联网。RF 到 APRS-

IS 的 IGate 不能转发带有 TCPIP 标记的数据包

WB2OSZ-5 IGate 站点的名称

* 表示这两个地址已被使用

这个路径格式必须保持不变,否则整个系统将无法正常工作——不能多,也不能少。

然而,这个数据包不能直接通过无线电发送,原因有两个:

- "WHO-IS" 不是一个合法的 AX.25 地址,因为其 SSID 由字母组成
- 源地址字段必须是实际发送该数据包的台站

为了解决这个问题,需要使用一个第三方数据包来封装(或称包裹)原始数据包。最终,通过无 线电发送的数据包如下:

WB2OSZ-5>APDW17,WIDE1-1,WIDE2-1:}WHO-IS>APJIW4,TCPIP,WB2OSZ-5*::WB2OSZ-7 :C/ARRL HQ OPERATORS CLUB/CT/United States{1012

对于接收到该数据包的不同类型台站,其处理方式有所不同。

- (1) 中**继台(digipeater)** 只会检查第一个 via 路径(在"}"之前),不需要了解第三方数据包的内容。
- (2) 想要解析数据包内容的应用程序 必须首先去除封装部分,然后处理剩余的内容。
- (3) **RF 到 IS 的 IGate** 站点首先去除封装部分,然后再进行处理。如果剩余的 via 路径中包含 TCPIP,则不能转发该数据包,以防止形成循环。

这个过程稍微复杂一些,但更详细的内容我们以后再讨论。如果你想进一步了解 APRS 互联网网关("IGates"),可以参考以下文档: https://github.com/wb2osz/direwolf-doc/blob/main/Successful-APRS-IGate-Operation.pdf

2.7 天气

理解 APRS 数据包 第 21 页

2.7.1 完整天气报告

许多业余无线电爱好者拥有家庭气象站,并通过 APRS 共享天气数据。例如:

W1TG2>APU25N,UNCAN*:@091842z4256.20N/07049.42W_310/004g015t081r000p033P002h5 4b10001/ - Hampton, NH Wx<0x0d>

在通常的源地址、类型标识符和中继路径之后,我们可以看到:

@ 位置报告,带有时间戳

091842z 时间戳

4256.20N/07049.42W_位置坐标,与其他位置报告相同,但符号_表示气象站,这是一个特殊情况。在此符号下,天气数据必须按照特定格式提供,而不是普通的注释

10/004 风向(以北为基准,顺时针方向的角度),风速(节)

g015t081r000p033P002h54b10001 天气数据,采用与许多家庭气象站生成的 wxnow.txt 文件相同的格式,因此不需要额外转换

/ - Hampton, NH Wx<0x0d> 注释信息

由于天气站使用特殊符号 , 因此这属于位置报告的一种特例。

解码后的天气数据如下:

风速:4.6 英里/小时,方向 310°,阵风 15;温度:81°F;最近 1 小时降雨量:0.00 英寸;最近 24 小时降雨量:0.33 英寸;自午夜以来的降雨量:0.02 英寸;湿度:54%;气压:29.54 英寸汞柱。

2.7.2 目标(Object)报告

目标报告类似于位置报告,主要区别在于它传递的信息不是关于自身,而是关于其他实体的信息。

一个简单的例子是广告地标、资源信息或本地语音中继站,以便旅途中用户能够了解这些信息。如果构造得当,一些支持 APRS 的无线电设备可以直接根据数据包中的信息设置语音频率。

除了单点位置,目标报告还可以用于定义多边形区域。

理解 APRS 数据包 第 22 页

以下是一个更有趣的目标报告示例,表示在暴雨期间的突发洪水警告(Flash Flood Warning)。原始数据包应该在同一行,但由于页面宽度限制,我们这里将其换行显示:

WZOC-4>APN20H,W1MRA,WA1PLE-4*:} GYXFFW>APRS,TCPIP,WZOC-4*: ;GYXFFWNqA*140145z4443.50NF07012.30Ww FLASH_FLOOD }iOIAdgJ`0T:5P5IAd{DNqAA<0x0d>

WZOC-4>APN20H,W1MRA,WB2OSZ-5*:}BOXTOR>APRS,TCPIP,WZ0C4*:;BOXTORLtA*132230z4158.80N\07125.20Wt033/015 TORNADO }aOIV,KOLQPTbObMcLcJdGV,{DLtAA<0x0d>

第一部分由 APRS-IS 到 RF 的 IGate 站点添加,剩余部分为目标报告。

相应的地图显示将在下一节介绍。

2.7.3 国家气象局(NWS)公告

如果"消息"(Message)的收件人(Addressee)字段以"NWS"开头,则表示该数据包是一条国家气象局公告(National Weather Service Bulletin)。

这是 APRS"消息"格式的另一种特例,在此情况下,收件人不是一个特定的台站。接收系统通常可以选择要处理哪些前缀,而不仅仅是特定台站的名称。

例如:

WZOC-4>APN20H,W1MRA,WB2OSZ-5*:}BOXTOR>APRS,TCPIP,WZOC-4*::NWS-WARN :132230z,TORNADO,MAC005,MAC021,RIC007{DLtAA<0x0d>

某些应用程序(例如 APRSISCE32)可以直接显示受影响的区域。

理解 APRS 数据包 第 23 页

2.8 查询与响应

查询用于请求其他台站回复相关信息。查询有两种格式:

- "通用查询"(General Query):向所有台站发送,可选择限定查询范围。
- "定向查询"(Directed Query):仅针对特定台站发送。

2.8.1 通用查询 (General Queries)

理解 APRS 数据包 第 24 页

通用查询是针对所有台站的,并且仅限于 **RF(无线射频)传播**。IGate 站点不得将来自 RF 的通用查询转发到 APRS-IS。

信息部分格式:

? 信息部分格式

type 查询类型(见下表)

? 结尾的问号

此外,可以选择性地添加目标范围(Target Footprint):

lat 纬度,单位为**度**(浮点数格式,如 34.02),而不是度/分格式。

, 逗号分隔符

long 经度,单位为**度**(如 -117.152,西经和南纬用负数表示)。

, 逗号分隔符

radius 查询半径,单位为英里。例如 0200,必须使用四位数格式。

查询类型	查询内容	响应内容			
APRS	查询所有台站	返回台站的位置和状态信息			
IGATE	查询所有 Internet Gateway(IGate)	返回 IGate 站点的能力信息			
WX	查询所有气象站	返回气象报告(如果气象报告中未包含位置信息, 则附加位置信息)			

查询类型必须全部使用大写字母。

2.8.2 定向查询(Directed Queries)

定向查询是通过 APRS "消息"(Message)发送给特定台站的查询。这类查询不包含消息标识符,因此不会收到自动消息确认(ACK)。IGate 站点会像处理普通消息一样处理这些查询。

定向查询与普通 APRS 消息的区别在于:消息文本的第一个字符是问号(?)。

信息部分格式:

: 冒号,表示数据类型指示符

addr 收信人,必须正好 9 个字符(如不足,需在末尾填充

空格)

: 冒号,紧随收信人之后

? 消息文本的首字符必须是问号

type 定向查询类型(见下表)

理解 APRS 数据包 第 25 页

可选部分:

call 被监听台站的呼号,仅用于某些查询类型。

所有查询类型前面都有问号(?),但只有通用查询的末尾也带问号。

查询类型	查询内容	响应内容
APRSD	查询某个台站直接听到的其他台站	直接听到的台站列表
APRSH	查询某个台站是否听到了特定台站	以 APRS Object 形式返回该台站的位置信息,以及过去 8 小时的听闻统计数据
APRSM	查询某个台站当前未确认或未送达的消息	该台站的所有未确认消息
APRSO	查询某个台站发送的 APRS 对象(Objects)	该台站的 APRS 对象
APRSP	查询某个台站自身的位置	该台站的位置
APRSS	查询某个台站自身的状态	该台站的状态
APRST or PING?	查询某个台站的数据包路径(Trace)	查询某个台站的数据包路径(Trace)

理解 APRS 数据包 第 **26** 页

3 注释(Comments)

位置报告(Position Reports,包括 MIC-E)和对象报告(Object Reports)可以包含自由格式的文本注释。

APRS 并未设计用于以一致的方式添加新属性,因此出现了许多非正式的扩展方式(hacks),其中特定的字符字符串模式会具有特殊的含义。

3.1 cse/spd - 航向和速度(Course and Speed)

cse/spd

航向(Course)为从正北顺时针方向计算的角度(001-360)。 速度(Speed)以节(knots)为单位,使用三位数字表示,必要时补零。 如果数值未知或无关紧要,可以使用零(0)、空格()或句点(.)进行填充。

如果使用此格式,它必须紧跟在位置和符号之后,并且位于任何频率信息或一般注释之前。从技术上讲,这被称为数据扩展(Data Extension)。

3.2 功率,高度,增益 Power, Height, Gain (PHG)

发射机功率与天线高度和增益的结合,可以大致估算传输范围。

它由三个大写字母"PHG"和四个数字组成。

每个字段只有10个可能的值,如下所示:

理解 APRS 数据包 第 27 页

数字	0	1	2	3	4	5	6	7	8	9		equation
功率	0	1	4	9	16	25	36	49	64	81	瓦特	sqrt (P)
高度	10	20	40	80	160	320	640	1280	2560	5120	英尺	log2(H/10)
增益	0	1	2	3	4	5	6	7	8	9	dBi	
方向	全向	25	90	135	180	225	270	315	360	-	度	D/45

高度是指平均地面以上的高度(HAAT),而不是海拔高度。 方向必须始终指定,即使是全向(**0**)。

如果使用,它必须紧跟在位置和符号之后,在任何频率或一般注释之前。技术上它被称为数据扩展。

由于航向/速度和 PHG 都是数据扩展,因此不能在同一数据包中同时使用两者。虽然这样是无效的,但这并没有阻止人们这么做。

有时,您可能会看到一个额外的数字后跟一个"/"字符。

N8VIM>BEACON,N3LLO-3,W1MHL*,WIDE2:!4240.85N/07133.99W_PHG72604/Pepperell, MA. WX. 442.9+ PL100<0x0d>

这个额外的数字表示每小时发射的信标数量,例如此示例中为 4。它可以用来计算该台站的接收可靠性。

这个后来的扩展违反了数据扩展必须为7个字符长的规则。

3.3 语音频率 (Voice Frequency)

人们通常希望公布他们所监听的语音频率。配备 APRS 功能的无线电通常具有 TUNE 或 QSY 按钮,可以将语音频率切换到所选数据包中指定的频率。必须严格遵守精确的格式规则,以便无线电能够解析频率规格。

这只是一个简化的说明,涵盖了最常见的情况。APRS 协议规范 1.2 版第 18 章包含了所有不太常见情况的详细信息。

这部分内容必须出现在注释文本自由格式部分的开头,在任何航向/速度或 PHG 之后。其格式必须完全如下所示。

Frequency: 999 3 位数字,表示 MHz

理解 APRS 数据包 第 28 页

小数点

999 3 位数字, 表示 kHz

MHz 必须完全是这些字母,区分大小写,不得写为 MHZ 或

mHZ 等

这部分内容可选地后面可以跟随 CTCSS 音调和/或频差。

Tone: (空格) 空格分隔符

T 大写字母 T

999 音调的整数部分,若不足 3 位则前面补 0

TX offset: (空格) 空格分隔符

999 偏移量,以十分之一 KHz 为单位,所以 600 kHz 应写为

"060"

如果注释字段中还有其他内容,则应再添加一个空格。

下面是一些正确使用该格式的示例:

W1STJ-9>T2TU4Q,N1SFT,WIDE1,UNCAN,WIDE2*:`c8um^9j/`"4I}146.685MHz T100 -060_1

KB1TOY-9>TRRY9U,W1MHL*,WIDE2-1:`c_"l <0x1c>j/`<mark>449.075MHz T088 -500</mark>_%

W1GBH>TRRQ5Z,WA1PLE-4,WIDE1*:`ca0l7Wj/`"3r}146.655MHz T088 -060 %

N1EZ-7>P0PPPP,N3LLO-3,WIDE1*,WIDE2-1:'vX<0x1c>| <0x1c>| />"3r}146.685MHz T100 -060^

实际上,这些都是 MIC-E 格式,由 Yaesu 和 Kenwood 的无线电生成。无线电台会自动生成正确的格式。

对于语音中继器的对象报告,频率可以出现在对象名称的前 7 个字符中,以使其更为醒目。其余 2 个字符应选择用于使名称唯一。即使存在全球冲突也无所谓,因为这些信息是在本地通过无线 电接收到的。

EKONCT>BEACON:;146.730CT*111111z4134.84N/07206.31Wr146.730MHz T156 R30m ECTN 9P DAILY RASON

在此例中,"R30m"表示中继器的覆盖范围约为 30 英里。我不确定这是否仍然成立,但曾经 Yaesu 无线电无法解析对象名称中的频率。**为获得最大的兼容性,频率也应出现在注释字段中。**

以上仅为最常见的情况。完整的规格可在 APRS 协议规范 1.2 版第 18 章中找到这里。

理解 APRS 数据包 第 29 页

3.4 高度 (Altitude)

在注释字段中的任何位置都可以添加一个可选的高度信息。它必须采用如下格式,字母"A"必须大写,后跟六位数字:

/A=123456

该数字表示海平面以上的高度,单位为英尺(1 英尺≈0.3048 米)。应用程序应将其转换为当地的单位以便显示。

地球表面有相当多的地方位于海平面以下,令人惊讶。MIC-E 格式允许负高度,但/A=格式不允许负值。

许多应用程序已经添加了这一显而易见的微不足道的增强功能。高度也可以表示为负号加上正好五位数字,以保持整体宽度一致。

/A = -12345

如果你遇到某个应用程序不识别这种形式,请鼓励作者添加这一简单的增强功能。如果 APRS 工作组有一天重新成立,我们应该努力将其纳入官方标准。

3.5 DAO -提高分辨率

N83MZ>T2TQ5U,WA1PLE-4*:`c.l+@&'/'"G:} KJ6TMS|!:&0'p|!w#f!|3 MIC-E, Small Aircraft (original primary symbol), Byonics TinyTrack3, In Service N 42 41.5502, W 071 18.8076, 283 km/h (176 MPH), course 210, alt 1764 m (5787 ft) Seq=25, A1=470, A2=625 KJ6TMS

Broken down:

N83MZ 数据包的原始发送者

这不是一个业余呼号, 实际上它是一个飞机注册号

理解 APRS 数据包 第 **30** 页

WA1PLE-4* 我们听到了这个数字中继器

`c.l+@&'/' 经度 71° 18.80

航向 210, 速度 283 km/h

"G:} 高度 1764 米

KJ6TMS 带有发送者业余呼号的注释

|!:&0'p| Base-91 遥测数据(见下一节)

这部分应位于注释文本自由部分之后

!w#f! 纬度加 0.0002, 经度加 0.0076

这部分应位于注释文本自由部分之后

TinyTrack 3

"!" 3 个字符 "!"提供大约两个额外数字的定位精度, 使得分辨率达到约 100 厘米。

详细说明见 APRS 协议规范 1.2 版第 5 章。

3.6 Base-91 遥测

使用与前一节相同的示例, 让我们关注这一部分:

|!:&0'p| Base-91 遥测

不必单独发送遥测数据包,它可以嵌入在注释文本自由部分之后。格式如下:

| 两对至七对字符 |

每对字符代表一个以 91 进制表示的数字。可表示的十进制数值范围为 0 到 8280。第一对表示序列号。如果存在第七对字符,则该数字表示 8 个一位的值。

在此示例中,我们得到:

- 序列号 = 25
- 模拟值 1 = 470
- 模拟值 2 = 625

理解 APRS 数据包 第 31 页

这在 APRS 协议规范 1.2 版第 13 章中有描述。

3.7 !x! 意为不要存档

任何在注释或消息文本字段中包含此字符串的数据包都不应被任何 APRS-IS 数据库存档。它不会显示在 aprs.fi 上。此规则适用于位置、对象、状态和消息。

这里的 x 是字面上的小写 x, 而不是任何字母数字字符的占位符。

3.8 UTF-8 字符

最初,APRS 的创建仅使用 7 位 ASCII 字符集。随着其国际使用的增加,很明显需要比拉丁字母表更多的字母。其他特殊字符(例如度数符号)也非常有用。

大多数现代 APRS 应用程序都能正确处理 UTF-8。下面是一个示例,说明我如何试图提高认识,并找出那些 UTF-8 处理不当的情况。

WB2OSZ-5>APDW17:!4237.14NS07120.83W#PHG7140 Did you know that APRS comments and messages can contain UTF-8 characters? アマチュア無線

理解 APRS 数据包 第 **32** 页

4 观察到的错误示例

不幸的是,经常会看到构造不当的数据包。有时这是由于软件缺陷或配置不当造成的。更多情况下,初学者在缺乏正确指导的情况下,不知道正确的做法。官方的 APRS 文档分散在各处,因此答案并不总是容易找到。

direwolf 经常会检测到错误并给出解释。我的意图不是针对某些人;我只是利用这些真实案例作为教学示例,以便其他人学习并避免犯同样的错误。

如果你发现别人犯了这些错误,请做个好"指导者",帮助他们提高操作技能。

4.1 APRS 频率上非 APRS 格式的数据包

有时,人们会随意发送一些内容,甚至不尝试让其看起来像 APRS。信息部分的第一个字符应该是 APRS 数据类型指示符。

K1EQX-7>APMI03,N1LIT-6,N3LLO-3,WIDE2*:NFMRA// K2LM@nycap.rr.com<0x20>

K1FFK>APMI03,W1MRA,UNCAN,WIDE2*:NOBARC.org // K2LM@nycap.rr.com // N1ATP.com

W1IMD>BEACON,KQ1L-8,AB1OC-10,WIDE2*:W1IMD HIRAM, ME<0x0d>

W2AIQ-1>BEACON,EKONCT,N3LLO-3,WIDE2*:Bi-Directional-I-Gate CODE Enhanced-Re-Tooled for Speed

WA2GUG-15>ID,K1FFK,N3LLO-3,WIDE2*,WIDE1-1:WA2GUG-15/R DISABL/D *-1/B<0x0d>

W3TWA-1>T0TW3W,EKONCT,W1MV-1,WIDE2*:w3twa-3 digi<0x0d>

这处 BBS 在哪里,以便指向天线?它所使用的数据包频率是多少?

WZOC-4>ID,KB1EMU-10,WIDE1,W1MHL*,WIDE2:WZOC-4 BBS [MAYNARD, MA]

如果不发送位置信息,这个就不能算是一个追踪器。

N1HRK-2>BEACON,K1RK-1,WA1PLE-4*:KPC3+ TRACKER N1HRK@ARRL.NET<0x0d>

理解 APRS 数据包 第 33 页

在我看来,如果你在 APRS 频率上传输 AX.25 UI 帧,你至少应该尝试构造一个有效的 APRS 数据包。一般来说,如果你描述的是你自己,使用位置报告;如果描述的是其他事物,则使用对象报告。

4.2 缺失系统标识符

除了 MIC-E 格式之外,目标字段应该包含形如 APxxxx 的系统标识符,以指示生成数据包的设备或应用类型。当你在文档示例中看到"APRS"时,它只是实际值的占位符。我们不知道这些台站所使用的软件类型。

KR2C-1>APRS,WA1PLE-4*,WIDE2-1:}KK7MGJ-7>APWW11,TCPIP,KR2C-1*::W2ILT :N:HOTG Greetings from AZ!

W1YK-1>APRS,WIDE:!4216.47B/07148.43W#PHG5350 W2, WIDE1-1, WPIWA<0x0d>

这里是另一种情况。数据包经过了五次数字中继转发。APRS-IS 只有在 IGate 通过无线接收到该数据包的收件人信息时,才会转发消息给 IGate 站点。没有理由使用极端的数字中继路径,因为收件人并没有离得太远。

N2MH-15>APRS,KD2CIF-1,KC2OUR-1,K1FFK-1,N3LLO-3,WB2OSZ-5*:}WLNK-1>APWLK,TCPIP,N2MH-15*::KD9BBB :You have 1 Winlink mail messages pending{4496

使用 BEACON 会浪费空中时间而无法传递有用的信息。如果是实验性质的,应使用 APZ。

NE1CU-10>BEACON, KB1AEV-15, N3LLO-3, WIDE2*: @221226z4114.44N/07300.72WrMilford CT. PS=12.5V, Shack=85.2F

这些数据包的目标(设备 ID)字段为空。怎么会出现这种情况?!?!?

KB1EZZ-9<mark>>,</mark>W1IMD,UNCAN,WIDE2*:!4413.87N\06936.24Wc205/041/A=000093EMA 902 COMMAND POST

VE9FPG-2<mark>>,</mark>W1LH-9,KQ1L-1,UNCAN,WIDE3*:!4612.01NS06710.74W#PHG5460/W3 CRABBE MTM,NB MARCAN UIDIGI

W1BRI-7<mark>>,</mark>W1MRA*,WIDE2-1:!4217.68N/07130.31W&267/000/A=000204W1BRI vai AT_D878UV PIUS

理解 APRS 数据包 第 34 页

我曾写信给其中一个,他使用的是 Anytone 无线电台。制**造商应该将目标字段硬编码为分配的系统标识符,而 Anytone 允许用户自行设置。**文档几乎不存在,因此 APRS 新手不知道该在此处填写什么。

这里有人在目标字段中放置了呼号。为什么?根据注释看,这可能是另一台 Anytone 无线电台。

KC2DSH-9>N2MH-15,EKONCT,N3LLO-3,WIDE2*:!4041.10N/07428.38W[274/001/A=000132KC2DSH-Anytone-APRS

WIDE1-1 应该出现在数字中继路径中,而不是目标字段中。

WA2NAN>WIDE1-1,VE3PGC,VE2PCQ-3,WIDE2,MTWASH,N3LLO-3*,WIDE2-1:;WA2NAN-1 *062019z4414.41N/07505.66W#FINE, N.Y. DIGI<0x0d>

这也有一个滥用的数字中继路径。数据包已经经过至少 4 个数字中继转发,但仍然有一个未使用的地址。RF 用户不会关心一个离这里 350 英里(560 公里)远的数字中继。这只是在不必要地占用网络资源。

<u>UISS</u> 应用程序给用户提供了 CQ、APRS、BEACON、QST、APRSAT 或自定义的选项。为什么不利用 应用标识符获得免费广告呢?

一些 MIC-E 位置报告缺失了设备标识符。它们是什么?

VE2VL-9>TU3U0X,VE2RAW-3,W1UWS-1,W1MRA*,WIDE2:`eF%o\9v/"41}

N1OHZ>T2QT2T,W1MRA*,WIDE2-1:'cN]I <0x1c>-/

W8BAP-1>S9QS3U,KD8DNS-1,K8GPS-4,MAYVIL,CASCTY,N3TJJ-13,N3TJJ-7,AD3O3,W1MRA*:`nVF<0x1c> <0x1c>#/ repeaters 146.85- PL74.4<0x20>

最后一个数据包有一个滥用的路径。数据包在我听到之前经过了 8 次数字中继转发。我们并不关心你那台离这里 820 英里(1320 公里)的语音中继器。

4.3 未注册的系统类型标识符

此区域许多台站使用的设备/系统标识符为 APN000, 而该标识符并未在数据库中分配。

W1FSH-9>APN000:!4234.38N<0x00>07144.77W<0x00>116/000

N2RJ-9>APN000, MATWAN, WIDE1, KB1AEV-15, N3LLO3, WIDE2*: !4054.45N/07423.84W>154/000

理解 APRS 数据包 第 35 页

KC1OCA-6>APNOOO,KB1AEV-15,N3LLO-3,WIDE2*:!4208.87N/07226.34W[092/000

KB5LNC-6>APN000,KV3B-2,WIDE1,CHATSW,K1RK-1,WIDE2*:!3852.04N/07703.46Wk321/000

W1NIG-1>APN000,W1MHL*,WIDE2-1:!4211.46N/07119.34Wk360/000

KN0O-1>APN000,WA1PLE-4*,WIDE2-1:=4409.52N/06907.06W-123/000VGC beacon N1DDH-10>APN000,N3LLO-3,WIDE1*,WIDE2-2:!4252.57N/07127.70W-

KF1D-9>APN000,W1MRA*,WIDE2-1:=4204.05N/07128.54W>195/019Bryan, KF1D Mobile 13.27V

KC1OCY-9>APN000,WA1PLE-13*,WIDE2-1:=4219.28N/07107.25W>242/022146.520MHZ winlink

KC1PYM-9>APN000,W1MHL*,WIDE2-1:=4215.25N\07056.21Wk034/012Vero VR-N7500 14.05V

AF1SL-9>APN000,W1XM*,WIDE2-1:=4215.13N\07056.30Wk170/022Vero VR-N7500 14.31V

最后两个数据包在注释中包含 Vero VR-N7500。这些是否都是使用这种类型的无线电台,还是同一系统标识符被多个产品甚至多个制造商共用?

4.4 过时的数字中继器格式

通常,第一个数字中继器字段使用通用的数字中继器地址,如 WIDEn-n。注意这里仅使用 "WIDE":

W1YK-1>APRS, WIDE: !4216.47B/07148.43W#PHG5350 W2, WIDE1-1, WPIWA<0x0d>

KQ1L-1>APNU19, WIDE: !4414.82NN07025.15W#PHG5730/KQ1L-1 Streaked Mountain, Buckfield, Me.

K2TGX>APW275,W1MHL*,WIDE:=4156.43N/07111.75WyPHG5260/WinAPRS 2.7.5 - MABRINORTON -275-<630><0x0d>

N1IQI>WIDE,W1MV-1*, WIDE:=4202.59N/07050.08WNrfn Pembroke,ma NTS {UIV32N}<0x0d>

仅使用 "WIDE" 而不带任何数字已过时约 20 年。不幸的是,仍有许多几十年未更新的网站提供错误建议,新手被告知使用不会起作用的方法。

理解 APRS 数据包 第 36 页

4.5 路径中空的数字中继器名称

这非常奇怪。在监视格式中,系统标识符后面有一个逗号,然后是冒号。这意味着在 AX.25 格式中指定了数字中继器,但其名称为空。

W1BKW-4>APNU19,: 14414.97NN06918.50W#PHG5730 W1BKW-4 Coggins Hill, Union, ME

这似乎是为 TNC-2 更换的 EPROM,最后一次更新是在 2004 年。

4.6 无效的位置

K2VUD-1>APK102,WA1PLE-13*,WIDE2-1:=09H6.00N/134E9.00p_306/001g t025r000p000P h55b10249KDvs<0x0d>

让我们逐项解析:

= 位置报告

09H6.00 我们预期的是:

纬度的度数应为 2 位数字

分钟数应为 2 位数字。"H6" 是从哪里来的?

小数点。

分钟的百分之一应为 2 位数字

N 半球

/

134<mark>E</mark>9.00 我们预期的是:

经度的度数应为3位数字

分钟数应为 2 位数字。"E9"是从哪里来的?

小数点

分钟的百分之一应为 2 位数字

气象符号

306..... 气象数据

下面是一个可能是手工编码而非由应用程序生成的示例。

W1YK-1>APRS,WIDE:!4216.47B/07148.43W#PHG5350 W2, WIDE1-1, WPIWA<0x0d>

理解 APRS 数据包 第 37 页

在这里,我们发现"B"而不是预期的"N"来表示半球,所以该位置无效。这很可能是一个打印错误。字母 B 和 N 在键盘上是相邻的。

4216.47<mark>B</mark>

4.7 位置报告中的错误时间戳

之前没有提到这一点,因为这是我第一次看到它被使用。位置报告有一个很少使用的变体,其中包含时间戳。这对于存储移动物体的位置并稍后传输,而不是实时传输,可能会很有用。有三种不同的格式,可以通过查看第7个字符来区分它们。

- •ddhhmmz -- Zulu 时间(GMT、UTC)—— 推荐格式
- o dd = 月份中的日期
- o hh = 小时
- o mm = 分钟
- o z = 字面意思上的上的小写字母 "z"
- •ddhhmm/ -- Local time
- o dd = 月份中的日期
- o hh = 小时
- o mm = 分钟
- o /= 斜杠字符
- •hhmmssh -- Zulu
- o hh = 小时
- o mm = 分钟
- o ss=秒
- o h = 字面意思上的小写字母 "h"

以下数据包的时间戳不符合任何可接受的格式。在这种情况下,时间戳在 "z" 之前仅有 4 位数字,而不是预期的 6 位。

K9WK>APMI0A,CHATSW,WIDE1,K1RK-1,WA1PLE-4*:/0000z3946.09N/07529.71W>K9WK Station.

4.8 APRS 区分大小写

理解 APRS 数据包 第 38 页

APRS 规范要求半球标识必须使用大写字母。

N1EOE>APN391,N1NCI-3*,WIDE2-1:!4216.95<mark>n</mark>/07243.20<mark>w</mark>#phg</mark>6230/ Easthampton MA<0x0d>此示例中存在两个问题:

- 经纬度半球标识符使用了小写的 n(北纬)和w(西经),必须使用大写的 N和 W。
- PHG 代码必须大写, 否则它会被解析为普通文本。

4.9 Kenwood Bug - 0xFF bytes

Kenwood TM-D710 有时会随机在数据包中插入多个 0xFF 字节。

W1SHS-9>4R1X9U,W1MRA,WB2OSZ-

5*:`c0<0x1d>mIL>/]"4T}<0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0

VA2RN-9>T3PSOQ,KA2QYE-10,WIDE1,K1EQX-7,UNCAN,WIDE3*:`eJ1!"&>/]"4h}<0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff>

WS1EC-1>TSTS8S,KA1GJU-3,WIDE1,KB1TSO*:'b5-I <0x1c>-

/]449.225MHz<0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff>

N2KI-9>T1TT7V,K2RVW,WIDE1,K1FFK,N3LLO-3,WIDE2*:`f+: s4k/]"7w}147.390MHz T156 +0 60<0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0

K1MGR-9>T3SX1W,W1IMD,WIDE1,UNCAN,WIDE2*:`b2ol <0x1c>j/]"4;}147.090MHz C100 +060<0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff

K1DSP-9>TSRY7W,K1EQX-7,WIDE1,N3LLO-

 $3,WIDE2*: `eDao^%>/]"5" $147.730 MHz < 0xff > < 0xff >$

理解 APRS 数据包 第 39 页

KE2X-9>TOTX6V,N2ACF-3,WIDE1,KB1AEV-15,N3LLO-3,WIDE2*:`eK[og`j/]"4+}147.390MHz C156 +060<0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0x

W1HS-4>T34S3S,W1UWS-1,WIDE1,N3LLO-3,WIDE2*:'d+mlH<0x1c>R/]"5`}/steve - RV Mobile TMD710<0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0x

此类数据包会在有效信息后填充大量 0xFF 字节,有些情况下甚至掺杂 0x00 和 0x0F 字节:

KC2ASA-9>TR5Q3T,K1EQX-7,WIDE1,N3LLO-

3,WIDE2*:4P<0x00><0x0f>4T<0x00><0x0f>4X<0x00><0x0f>4\<0x00>`eMQI

<0x1c>>/]"3r}445.825MHz T114 -500<0xff><0xf

f><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0

KB1HNZ-9>TSSP5X,W1IMD,WIDE1,KQ1L-8,N3LLO-

3,WIDE2*:4P<0x00><0x0f>4T<0x00><0x0f>4X<0x00><0x0f>4\<0x00>`b64I!p>/]"4:}449.225MHz<
0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff><0xff>

其他 TM-D710 电台并未出现类似异常情况。建议检查使用的固件版本,并尝试更新固件,以观察问题是否得到解决。

4.10 Kenwood Bug - 不当的消息拒绝

以下是一个天气公告:

WZOC-4>APN20H,WA1PLE-4,WIDE1*,WIDE2-1:}BOXMWW>APRS,TCPIP,WZOC-4*::NWS-WARN :091215z,Storm Warning,ANZ236{100AA<0x0d>

三台电台对其做出了消息拒绝(Message Reject)响应:

K2VUD-1>APK102,WA1PLE-4,WIDE1*,WIDE2-1::BOXMWW :rej3<0x0d>

AB1OC-10>APK102,WIDE1-1,WIDE3-3::BOXMWW:rej3<0x0d>

WA1PLE-4>APK102,WIDE2-1::BOXMWW :rej3<0x0d>

"rej"表示接收电台无法接收该消息。例如,一台支持 APRS 的电台可能有有限的消息存储空间,并且当前已满。

理解 APRS 数据包 第 **40** 页

然而,这种行为是不正确的。因为 "ack" (确认) 或 "rej" (拒绝) 回复仅应针对直接发送给该电台的"消息",而不应该对 公告(bulletin)进行此类回复。

此外,这些电台是如何确定消息 ID 3 的?为什么不是 100AA?

4.11 Kenwood Bug - 不当的自动回复

Kenwood 具有一个功能,允许电台对发送给自身的消息进行自动回复(这是对 ACK 的补充)。用户可以配置该功能,使其仅对特定电台或通配符匹配的名称进行响应。

Bob WB4APR 曾对此评论道:"自动回复功能仅用于当操作员暂时无法响应时,向预期的消息发送者传递特殊信息。在大多数情况下,不应将其用于日常操作,因为它会给网络增加不必要的负担。发送电台通常会收到 ACK,这已经足够表明消息已成功传送。"

来看一个实际的观察示例: BOXMWW 和 N1SFT 发送了公告(Bulletins):

WZ0C-4>APN20H,W1MRA,WA1PLE-4*:}BOXMWW>APRS,TCPIP,WZ0C-4*::NWS-WARN :091215z,Storm Warning,ANZ236{100AA<0x0d>

WZOC-4>APN20H,W1MRA*,WIDE2-1:}N1SFT>APWW11,TCPIP,WZOC-4*::BLN0 :NEW ENGL. FUSION GROUP TECHNET SUNDAYS 3PM, WIRES-X RM 28941<0x0d>

Kenwood 电台错误地 向公告发送了自动回复。想象一下,如果所有电台都对公告进行自动回复,网络会变得多么拥挤!

AB1OC-10>APK102,WIDE1-1,WIDE3-3::BOXMWW :AA:Message Recvd. by AB1OC-10<0x0d>

AB1OC-10>APK102,WIDE1-1,WIDE3-3::N1SFT :AA:Message Recvd. by AB1OC-10<0x0d>

自动回复应仅在消息直接发送给该电台时才发送。

Bob WB4APR 最后总结道:"在大多数情况下,自动回复消息对网络而言就是 垃圾信息(SPAM)。"

4.12 频率指定错误

理解 APRS 数据包 第 41 页

有时,你可能希望在 APRS 信息中 宣传你正在监听的语音频率。许多人会将其写入 注释字段(Comment Field),但大多数人都写错了,可能是因为他们不了解标准格式。我们之前已经介绍过正确的格式,以下所有示例都是 错误 的:

K1ASM-9>EB2Q7Z,EKONCT,N3LLO-3,WIDE2*:`d_<0x1c>m6^k/]"47}[scanning]Monitoring 146.520=

K1RBC-9>T3TT5U,W1IMD,WIDE1,UNCAN,WIDE2*: $c\c$ 0x1e>n|\>/ \c 7"5q}Monitoring 146.520 %<0x0d>

K1RTA-3>TQUV2X,W1SGL-2,WA1PLE-4*: bYBl <0x1c>k/"4%}Russ on 146.520 in a 14 Ram and FTM-400XDR %<0x0d>

K5HIP-7>TRQP8Z,K2RVW,WIDE1,K1FFK,W1MRA*,WIDE2:`e1rm_D>/`"66}listening 146.52 0<0x0d>

KC1DDH-9>TRQS7U,W1MRA*:`c;(I}Dj/`<mark>144.390</mark> PL100_%<0x0d>

KC1HHK-9>T2QS5S,WA1PLE-4,WIDE1*:`cYvm!EE/`"5n}KC1HHK - PAUL 146.67_%<0x0d> KE5BM-9>TQSY7S,W1SGL-2,W1MHL,N3LLO-3,WIDE2*:`b(.m,&>/`"3r}Black VW Passat 146.520 & VA 1<0x0d>

N1EZ-1>APWW11,AB1OC-10,WIDE1,W1MRA*,WIDE2:@021909h4255.25N/07134.38WI146.685 in Shack<0x0d>

N1NW>T1ST8T,EKONCT,W1MRA,N3LLO-3,WIDE2*:'d^9I <0x1c>#/]N1NW 146.730 TONE 156.7<0x0d>

K1RV-9>TR1P3W,AJ1L,W1MHL*,WIDE2:`bV8n?V>/`"4F}Monitoring 146.535 Simplex_"<0x0d>

K3JDG-7>APAT81,K1EQX-1,WIDE1,N3LLO-3,WIDE2*:!4316.57N/07343.27W[205/000/A=000246146.730]

这个示例接近正确,但 频率、哑音(Tone)和偏移量(Offset)之间应该有空格。请勿在频率前添加额外的空格。

W1BST>APTT4,W1IMD,WIDE2,UNCAN*,NH3-1:!4341.89NL07109.20W#PHG3660<mark>147.030MHzT088+060</mark>EL#875273 77F 13.7V

请参阅之前的章节以获取 详细的格式说明。

理解 APRS 数据包 第 42 页

这非常重要,因为一些配备 APRS 的无线电台将解析所选位置或对象报告的频率、偏移、音调规格,并允许您通过触摸按钮来设置语音频率。某些应用程序将解析此信息并将其呈现给用户。

如果格式错误,这些功能将无法正常工作!

4.13 功率、天线高度与增益错误

HG 语法很简单,但仍然有人会搞错。有三个要点需要记住:

协议规范明确规定,如果使用可选的 PHG 信息,它应出现在注释部分的最前面,即在自由文本部分之前,以实现最大的兼容性。虽然有些应用程序可以在任意位置识别 PHG,但官方要求它必须放在最前面。

某些应用程序可能会在注释的中间识别 PHG,但 APRS 规范明确规定,它必须紧跟在位置和符号之后。严格遵循标准编写的应用程序会将 PHG 视为自由格式文本的一部分,而不会识别它的特殊意义。

UNCAN>APOT30:!4258.99N/07135.29W# 10.8V 98F PHG37306/ N1PA-Mt Uncanoonuc Digi 它应该像这样重新排列以获得最大的兼容性:

UNCAN>APOT30:!4258.99N/07135.29W#PHG37306/ 10.8V 98F N1PA-Mt Uncanoonuc Digi

T PHG 后面只有 3 位数字,这是无效的,并且 PHG 出现在航向/速度后面,即使格式正确,某些应用程序也可能无法识别。

KE1IU-9>APTT4,WB2OSZ-5*,WIDE2-1:/152720h4236.54N/07118.94W>251/059/PHG404/KE1IUMark@gmail.com

4.14 错误的度数符号字符编码

以下是两个使用错误字符编码表示度数符号的示例:

理解 APRS 数据包 第 43 页

W1TG-1>APU25N,WA1PLE-4,W1MRA*,WIDE2:>232322zDX: W1SGL-2 41.41.93N 70.18.20W 89.5 miles 162<0xf8> 19:14<0x0d>

KG5KTN-1>APWW11,W1WQM,WIDE1,N3LLO-3,WIDE2*:>FN42kw/-DX: KQ1L-8 28.7mi 48<0x0b0> 01:23 4313.42N 07041.56W<0x20>

ASCII 字符集不包含度数符号,因此不同用户采用了各自(错误)的替代方案。第一个示例使用了来自微软代码页 437 的 0xf8,第二个示例则使用了 ISO Latin 1 编码的 0xb0,这两种方式均不正确。

当需要使用非 ASCII 字符时,正确的方法是采用 UTF-8 编码。度数符号°的标准 UTF-8 编码应为两字节序列 **0xc2 0xb0**。

4.15 DX 报告中缺少必需的空格

此处"/-"与"DX"之间应有一个空格:

KG5KTN-1>APWW11,W1WQM,WIDE1,N3LLO-3,WIDE2*:>FN42kw/-DX: KQ1L-8 28.7mi 48<0x0b0> 01:23 4313.42N 07041.56W<0x20>

对于包含网格坐标的状态报告,在符号表与符号代码(本例中的"/-")后必须保留一个空格。虽然 具体原因尚不明确,但协议规范明确要求这一格式。

另一种可能的意图是表示"我正在监听...请通过语音联系"。这种情况下,频率和亚音调参数需遵循特定格式。部分无线电设备能解析此类信息(仅限符合规范时!),并提供切换至该语音频率的选项。

4.16 错误查询格式

查询功能用于请求其他站点回复信息, 其格式分为两种:

全局查询:面向所有站点(可限定地理范围)

定向查询:针对特定站点

APRSD 的意思是"你听到过哪些电台?

N10LA>APAGW,K1EQX-7,W1UWS-1.N1NCI-3,WIDE1,W1MRA*,WIDE2-1,WIDE3-2:?APRSD

该数据包存在三个问题:

理解 APRS 数据包 第 44 页

- (1) 这是通用查询格式,不是针对特定站点的。使用这种极端路径会传播得非常远,可能引发 大量响应
- (2) APRSD 仅适用于定向查询,不可用于全局查询
- (3) 协议规范明确规定,通用查询表单的查询类型后面必须有问号。由于原因 (2) 和 (3), 适当的实现不会对此做出响应。

这个例子:

N1OLA>APWW11,K1EQX-7,N3LLO-3,WIDE1*::VE2PCQ-3:?aprsp

是错误的, 因为查询类型必须使用大写字母。

这个例子:

KE2BSD-7>APY03D,W2AEE,N2ACF-3,WIDE1,KB1AEV-15,N3LLO-3,WIDE2*::KE2BSD-15:?APRSP{25

是错误的,因为定向查询不能包含消息 ID。

4.17 过时的气象数据格式

此数据使用了厂商特定格式而非标准格式:

N8VIM>APN391,AB1OC-10*,WIDE2-

1:\$ULTW00A2007C0317012E27CFFFFA89AB000101B300EB034300000075<0x0d><0x0a>

不建议使用原始气象格式。发送系统应转换为标准完整气象格式。

4.18 未标记已使用的中继地址

注意以下演进过程

KB1TSO>APDW16,WIDE1-1,WIDE2-1:!4242.77NS07113.26W#PHG7150Methuen, MA DIGI KB1TSO>APDW16,WA1PLE-13*,WIDE2-1:!4242.77NS07113.26W#PHG7150Methuen, MA DIGI KB1TSO>APDW16,WA1PLE-13,W1MRA*,WIDE2:!4242.77NS07113.26W#PHG7150Methuen, MA DIGI

WIDE1-1 被正确更改为 WA1PLE-13*。

但 WIDE2-1 被错误更改为 W1MRA*,WIDE2 —— WIDE2 未标记为已使用,最好直接移除。

理解 APRS 数据包 第 45 页

另一个相同问题的案例:

K1RV-9>TR1P3W,AJ1L,W1MHL*,WIDE2: bV8n?V>/"4F}Monitoring 146.535 Simplex "<0x0d>

这两个出问题的中继都运行 Kantronics KPC-3+8.2 固件(设备 ID APN382)。根据多方资料(如 https://www.nwaprs.info/widen-n.html),该设备存在此缺陷(参见文档末尾黄色高亮部分)。

该缺陷导致 TNC 将其呼号"已被中继"标记错误地加在中继器名称上,而非已使用的 WIDE1 路径上。

这是使用 TNC 内置中继功能时出现的问题。可能的解决方案是将其作为 KISS TNC 使用,并通过外部应用中继。但使用旧版 KPC-3+ TNC 在 KISS 模式下配合外部应用中继时,还存在数据包长时间延迟的已知问题(https://blog.aprs.fi/2011/03/kantronics-kpc3-consideredharmful.html)。简单的解决方法可能是连接两条 RS-232 控制线(参见我们花费大量时间定位此问题的案例: https://groups.io/g/direwolf/topic/buggy_sdr_igates/105889286

我们还发现 Microsat(APMI03 和 APMI06)同样存在未标记已使用中继地址的问题。他们是否从 Kantronics 复制了这个缺陷?

W8BAP-1>S9QS3U,KD8DNS-1,K8GPS-4,WOOSTR,N3DXC-2,KD2CIF-1,KC2OUR1,K1FFK*,WIDE1: 'nVF<0x1c> <0x1c>#/ repeaters 146.85- PL74.4<0x20>

W8BAP-1>S9QS3U,KD8DNS-1,N8CUB-4,K8GPS-4,K8GPS-10,WOOSTR,K1FFK,N3LLO3*,WIDE1: nVF<0x1c> <0x1c> #/ repeaters 146.85- PL74.4<0x20>

4.19 RFONLY 与 NOGATE 的错误使用

某些情况下您可能希望将数据包限制在射频链路。此时中继路径中包含 RFONLY 或 NOGATE 标识的 IGate 站点不应转发该数据包。显然,这些标识应当置于中继路径的末端。

以下示例存在错误——发送方将 RFONLY 错误地放置在目标地址字段(该字段本应填写 IGate 站点的应用标识符):

NE1CU-10>RFONLY, EKONCT, N3LLO-3, WIDE2*:} N3XKU-7>APMI04, TCPIP, NE1CU-

10*:@071128z4010.24N/07450.70WIPHG2230 Fairless Hills, PA; I-gate; 12.9v

由于无法确认该 IGate 使用的软件类型,我们难以直接联系相关开发人员提交缺陷报告。

理解 APRS 数据包 第 **46** 页

已知 dxlAPRS 软件存在此缺陷,其他平台可能也存在类似问题。

4.20 天啊! 这个案例的问题简直数不过来!

首先我们发现设备标识符被从第三方有效载荷中复制过来。这是错误的——IGate 软件应该在此声明自己的身份。

WA2GUG-15>TQ0V4V,TCPIP,WA2GUG-15,K1EQX-7,N3LLO-3,WIDE2*,RFONLY,NOGATE:}KB1CRN-14>TQ0V4V,WIDE1-1,WIDE2-1,WB2ZII13,TCPIP,WA2GUG-15*:`e4Tp,Pu/`"4/}Keep on truckin` 1<0x20>

WA2GUG-15>APFIIO,TCPIP,WA2GUG-15,K1EQX-7,N3LLO-3,WIDE2*,RFONLY,NOGATE:}N2YTF3>APFIIO,APRSFI,TCPIP,WA2GUG-15*:@011437h4101.46N/07404.18W>359/056/A=000299call me on 146.52!w%C!

TCPIP 只应出现在第三方有效载荷中,而不是射频路径里。

WA2GUG-15>TQ0V4V,TCPIP,WA2GUG-15,K1EQX-7,N3LLO-3,WIDE2*,RFONLY,NOGATE:}KB1CRN-14>TQ0V4V,WIDE1-1,WIDE2-1,WB2ZII-13,TCPIP,WA2GUG-15*:`e4Tp,Pu/`"4/}Keep on truckin`_1<0x20>

中继器绝不应该重传自己最初发送的数据包。

WA2GUG-15>TQ0V4V,TCPIP,WA2GUG-15,K1EQX-7,N3LLO-3,WIDE2*,RFONLY,NOGATE:}KB1CRN-14>TQ0V4V,WIDE1-1,WIDE2-1,WB2ZII-13,TCPIP,WA2GUG-15*:`e4Tp,Pu/`"4/}Keep on truckin`_1<0x20>

然后,我们在射频中继路径末端看到了 RFONLY 和 NOGATE。为什么?没人这么做,IGate 规范也没这么要求。这可能是善意但无知的尝试,试图阻止其他 IGate 将其发送到 APRS-IS。实际上通过第三方数据包中的 TCPIP 就能防止循环。

WA2GUG-15>TQ0V4V,TCPIP,WA2GUG-15,K1EQX-7,N3LLO-3,WIDE2*,RFONLY,NOGATE:}KB1CRN-14>TQ0V4V,WIDE1-1,WIDE2-1,WB2ZII-13,TCPIP,WA2GUG-15*:`e4Tp,Pu/`"4/}Keep on truckin`_1<0x20>

第三方有效载荷中的路径包含大量多余内容。应该只有 TCPIP、IGate 名称和*,不多不少。

WA2GUG-15>TQ0V4V,TCPIP,WA2GUG-15,K1EQX-7,N3LLO-3,WIDE2*,RFONLY,NOGATE:}KB1CRN-14>TQ0V4V,WIDE1-1,WIDE2-1,WB2ZII-

理解 APRS 数据包 第 47 页

13,TCPIP,WA2GUG-15*:`e4Tp,Pu/`"4/}Keep on truckin`_1<0x20>

最后我们还发现了一个尾部空格。这会干扰"_1"设备标识符的识别,因为它不在结尾。(不一定是 IGate 造成的,可能是链路中其他环节修改所致。Yaesu 电台原本使用回车符 0x0d 结尾,可能在传输过程中被改为空格。)

WA2GUG-15>TQ0V4V,TCPIP,WA2GUG-15,K1EQX-7,N3LLO-3,WIDE2*,RFONLY,NOGATE:}KB1CRN-14>TQ0V4V,WIDE1-1,WIDE2-1,WB2ZII-13,TCPIP,WA2GUG-15*:`e4Tp,Pu/`"4/}Keep on truckin` 1<0x20>

以下 IGate 站点存在相同问题:

N1QQA-10>APWLK,TCPIP,N1QQA-10,KA1GJU-3,WIDE2*,RFONLY,NOGATE:}WLNK1>APWLK,TCPIP,N1QQA-10*::KB1ZGF :ackKC}

VE2PCQ-3>APSMS1,TCPIP,VE2PCQ-3,WA1PLE-4*,RFONLY,NOGATE:}SMSGTE>APSMS1,VE3OTB12,TCPIP,VE2PCQ-3*::VA2JW-9 :rej01

4.21 IGate 破坏 UTF-8 字符的问题

中继站和 IGate 站点应当保持信息部分的完整性(唯一例外:射频到互联网的 IGate 会移除数据包末尾的 CR/LF,因为这是转发至 APRS-IS 时的记录分隔符)

近期进行了 UTF-8 字符测试,以验证不同应用程序的兼容性。

我近期进行了 UTF-8 字符测试,以验证不同应用程序的兼容性。以下是 aprs.fi 捕获的原始数据包(为简洁已移除时间戳),大多数设备都能正确保留非 ASCII 字符(此处非 ASCII 字符以十六进制显示):

WB2OSZ-5>APDW18,qAO,KB1TSO:!4237.14NS07120.83W#PHG7140

Did you know that APRS comments and messages can contain UTF-8 characters?
<0xce><0xa1><0xce><0xb1><0xce><0xb4><0xce><0xb9><0xce><0xbf><0xce><0xb5><0xcf><0x
81><0xce><0xb1><0xcf><0x83><0xce><0xb9><0xcf><0x84><0xce><0xb5><0xcf><0x87><0xce><0xbd><0xcf><0x83><0xce><0xbc><0xbc><0xcf><0x82>

WB2OSZ-5>APDW18,qAR,W1XM:!4237.14NS07120.83W#PHG7140

Did you know that APRS comments and messages can contain UTF-8 characters? <0xe3><0x82><0xa2><0xe3><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x83><0x

理解 APRS 数据包 第 48 页

这些字符已被替换为问号,以替代非 ASCII 字符。

WB2OSZ-5>APDW18,KB1TSO*,W1MRA,W1MV-

1,WIDE2,qAR,NJ1Q:!4237.14NS07120.83W#PHG7140

WB2OSZ-5 > APDW18, N3LLO-

<u>NJ1Q</u>, <u>KC1RGS-4</u>, 和 <u>W1AW</u> 都使用相同的 lGate 应用程序。由于其中继路径没有共同点,这充分证明问题出在 lGate 本身。

4.22 中继站对数据包尾部的破坏

这里我们看到同一个数据包经过不同中继站后产生了差异。其中一个保留了结尾的回车符,另一个却没有。传输路径中的某个环节修改了数据包的信息部分,这是错误的。中继站只应修改中继路径字段,任何对信息部分的修改都会破坏中继站的重复数据抑制机制。

KB1CRN-14>TRTT2S,N3LLO-3,WIDE1,W1MRA*,WIDE2:`c6<0x1c>l#Ou/`"4R}147.045MHz C100 +060 Keep on truckin' 4<0x0d>

KB1CRN-14>TRTT2S,N1SFT,WIDE1,AB1OC-10,WIDE2*:`c6<0x1c>l#Ou/`"4R}147.045MHz C100 +060 Keep on truckin'_4

4.23 有缺陷的 IGate 实现或错误配置

APRS-IS 的默认行为是向 IGate 站发送以下内容:

理解 APRS 数据包 第 **49** 页

- (1) 发送给最近通过射频被 IGate 听到的站的"消息"
- (2) 如果消息被转发,则发送消息发送者的下一个位置报告
- (3) 来自本地站的遥测元数据和遥测数据
- (4) 其他看似随机的数据包(无明显原因)

IGate 站可以选择请求更多内容,但不能少于这些。

正确实现的 IGate 应该只将前两类传递到射频,除非用户基于各种过滤类型明确启用其他数据包。

在普通日子(非 APRS Thursday),这个 IGate 每小时向射频转发 339 个数据包,平均每 10.6 秒一次。

WZ0C-4>APN20H,WA1PLE-4,WIDE1*,WIDE2-1:}N1EDF-15>APDR16,TCPIP,WZ0C4*:=4212.14N/07111.22W\$007/045/A=-00031 https://aprsdroid.org/<0x0d>

WZ0C-4>APN20H,N3LLO-3,WIDE1*,WIDE2-1:}N1RHY>APOSE,TCPIP,WZ0C-4*:@181932z4236.62N/07118.62W>062/003/A=000132JAMIE 51A TEWKSBURY<0x0d>

这些通常是我可以通过射频听到源站的数据包。这只是冗余无用的垃圾堵塞频道。我没有看到其他人使用这种特定类型的 IGate。以下是另一个例子,我正在试验一个新的手持设备:

WB2OSZ-6>APN000:!4237.13N/07120.84Wp000/000 WZ0C-4>APN20H,W1MRA*,WIDE2-

1:}WB2OSZ-6>APN000,TCPIP,WZ0C-

4*:!4237.13N/07120.84Wp000/000<mark><0x0d></mark>

WZ0C-4>APN20H,W1MRA,WB2OSZ-5*:}WB2OSZ-6>APN000,TCPIP,WZ0C-

4*:!4237.13N/07120.84Wp000/000<0x0d>

WZ0C-4>APN20H,W1MRA,AB1OC-10,WIDE2*:}WB2OSZ-6>APN000,TCPIP,WZ0C-

4*:!4237.13N/07120.84Wp000/000<0x0d>

WZOC-4>APN20H,WA1PLE-4,WIDE1*,WIDE2-1:}WB2OSZ-6>APN000,TCPIP,WZOC-

4*:!4237.13N/07120.84Wp000/000<0x0d>

我只发送了一个带有空 digipeater 路径的数据包。又有四个不需要的副本在干扰电波。莫名其妙地附加了一个回车符(0x0d)。

这是有缺陷的 IGate 实现,还是由于用户错误导致的错误配置?

理解 APRS 数据包 第 **50** 页

5 decode_aprs 应用程序

direwolf 软件 TNC 包含一个实用程序,可以解释 APRS 数据包内容并指出多种类型的错误。示例:

(1) 这个数据包正确吗?

N1NW>T1ST8T,EKONCT,W1MRA,N3LLO-3,WIDE2*:'d^9I <0x1c>#/]N1NW 146.730 TONE 156.7<0x0d>

在 Linux 上,可以通过管道将数据包输入 stdin:

\$ echo "N1NW>T1ST8T,EKONCT,W1MRA,N3LLO-3,WIDE2*:'d^9I <0x1c>#/]N1NW 146.730 TONE 156.7" | decode_aprs

N1NW>T1ST8T,EKONCT,W1MRA,N3LLO-3,WIDE2*:'d^9I <0x1c>#/]N1NW 146.730 TONE 156.7 "146.730" in comment looks like a frequency in non-standard format.

For most systems to recognize it, use exactly this form "146.730MHz" at beginning of comment. "156.7" in comment looks like it might be a CTCSS tone in non-standard format.

For most systems to recognize it, use exactly this form "T156" at near beginning of comment, after any frequency.

MIC-E, Generic digipeater, Kenwood TM-D700, In Service N 41 34.8400, W 072 06.2900, 0 km/h (0 MPH), 146.730 MHz, PL 156.7 N1NW 146.730 TONE 156.7

原始数据包以绿色显示。 错误信息以红色显示。 解析结果以蓝色显示。 最后一行是去除嵌入信息后的注释。

(2) 这个数据包是什么意思?

N83MZ>T2TQ5U,WA1PLE-4*:`c.l+@&'/'"G:} KJ6TMS|!:&0'p|!w#f!|3

由于包含"和'字符,直接引用会比较困难。可以:

不带参数运行 decode_aprs 后输入 APRS 数据包。或者将数据包存入文件后指定文件名

理解 APRS 数据包 第 51 页

\$ decode_aprs test.txt

N83MZ>T2TQ5U,WA1PLE-4*: `c.l+@&'/'"G:} KJ6TMS|!:&0'p|!w#f!|3
MIC-E, Small Aircraft (original primary symbol), Byonics TinyTrack3, In Service
N 42 41.5502, W 071 18.8076, 283 km/h (176 MPH), course 210, alt 1764 m (5787 ft)
Seq=25, A1=470, A2=625
KJ6TMS

此例中注释部分被解析为嵌入数据:

!::&0'p|是 Base-91 遥测数据!w#f!增加了位置坐标精度|3是发送设备类型标识

最终注释文本仅保留"KJ6TMS"。源"N83MZ"是战术呼号(本例为飞机尾号),注释中的正式电台呼号用于符合法规要求。

理解 APRS 数据包 第 **52** 页