Лабораторная работа №3.2.4 Свободные колебания в электрическом контуре Джокер Бэтмен, Б02-000, 25.09.2021

Введение

Цель работы: исследование свободных колебаний в электрическом колебательном контуре.

В работе используются: генератор импульсов, электронное реле, магазин сопротивлений, магазин ёмкостей, катушка индуктивности, электронный осциллограф с разделительной панелью, измеритель RLC.

Теоретическая справка

Условие реализации режима затухающих колебаний в LCR-контуре имеет вид

$$0 < R < 2\sqrt{\frac{L}{C}} = R_{\rm \kappa p},$$

где $R_{\rm kp}$ – критическое сопротивление.

При выполнении этого условия напряжение $U_C(t)$ на конденсаторе зависит от времени как

$$U_C(t) = U_0 e^{-\gamma t} \cos(\omega_1 t + \varphi_0).$$

Здесь
$$\gamma=\frac{R}{2L},$$
а $\omega_1=\sqrt{\frac{1}{LC}-\frac{R^2}{4L^4}}.$

Несложно заметить, что выражения для напряжения $U_C(t)$ и тока I(t) можно при должном подборе начальной фазы записать в виде

$$U_C(t) = U_{C0}e^{-\gamma t} \left(\cos \omega_1 t + \frac{\gamma}{\omega_1} \sin \omega_1 t\right),$$

$$I(t) = C\dot{U}_C = -\frac{2U_{C0}}{R_{\text{KD}}} \frac{\omega_0}{\omega_1} e^{-\gamma t} \sin \omega_1 t.$$

С помощью этих формул можно параметрически представить траекто-рии системы на фазовой плоскости переменных (U_C, I) .

На рисунке 1, а) показаны зависимости напряжения и тока в контуре от времени e безразмерных переменных $u(x)=\frac{U_C(x)}{U_{C0}},\ j(x)=\frac{R_{\rm Kp}I(x)}{2U_{C0}},\ {\rm rge}\ x=\frac{\omega_1t}{2\pi}.$ На рисунке 1, б) показана фазовая траектория этих колебаний на плоскости (u,j), представляющая собой скручивающуюся к точке (0,0) спираль.

Период затухающих колебаний равен

$$T_1 = \frac{2\pi}{\omega_1} > T_0,$$

т.е. наличие потерь в контуре приводит к увеличению периода колебаний.

Рис. 1 — Затухающие колебания: а) ток в контуре j(x) и напряжение на конденсаторе u(x), б) траектория системы на фазовой плоскости (u, j)

Другими характеристиками процесса затухания являются *время затухания* x

 $\tau = \frac{2L}{R},$

за которое амплитуда колебаний убывает в e раз, и логарифмический декремент затухания

 $\Theta = \ln \frac{U_k}{U_{k+1}} = \gamma T_1,$

где U_k и U_{k+1} – два последовательных максимума рассматрваемой величины

С логарифмическим декрементом связана ещё одна важнейшая характеристика колебательного контура — его добротность Q:

$$Q \equiv \frac{\pi}{\Theta} = \frac{1}{2} \sqrt{\frac{R_{\rm \kappa p}^2}{R^2} - 1}.$$

При $Q\gg 1$ можно с хорошей точностью заменить ω_1 на ω_0 в уравнениях для зависимости напряжения и тока в контуре от времени, что вносит относительную погрешность порядка $\frac{1}{O^2}$.

Экспериментальная установка

На рисунке 2 приведена схема установки для исследования свободных колебаний в контуре, содержащем постоянную индуктивность L с активным сопротивлением R_L , а также переменные ёмкость C и сопротивление R. Картина колебаний напряжения на ёмкости наблюдается на экране двух-канального осциллографа. Выходные клеммы ЭО выведены на отдельную панель Π .

Для периодического возбуждения колебаний в контуре используется генератор импульсов Г5-54. С выхода генератора по коаксиальному кабелю импульсы поступают на колебательный контур через электронное реле, смонтированное в отдельном блоке. Реле содержит диодный тиристор D и ограничительный резистор R_1 .

Рис. 2 — Схема установки для исследования свободных колебаний

Каждый импульс заряжает конденсатор C, после чего генератор отключается от колебательного контура, и в контуре возникают свободные затухающие колебания. Напряжение на конденсаторе U_C поступает на вход канала X ЭО, а напряжение на сопротивлении R, пропорциональное току I в контуре ($I \propto \frac{\mathrm{d}U_C}{\mathrm{d}t}$), поступает на вход канала Y. В двухканальном режиме работы ЭО а экране можно наблюдать затухающие колебания напряжения и тока одновременно, а при отключении внутренней развёртки ЭО — в режиме X-Y — фазовую диаграмму. Входное сопротивление осциллографа велико (≈ 1 М Ω), так что его влиянием на контур можно пренебречь.

При включенной развёртке по времени картина затухающих колебаний представлена в координатах (t,U_C) и $(t,\frac{\mathrm{d}U_C}{\mathrm{d}t})$, при выключенной – в координатах $(U_C,\frac{\mathrm{d}U_C}{\mathrm{d}t})$. В этих координатах картина незатухающих коебаний (при $\gamma=0$) представляет собой эллипс, а затухающих (при $\gamma>0$) – скручивающуюся спираль.

Ход работы

Перед началом работы подключим генератор через реле ко входу X ЭО и запустим на генераторе прямоугольные импульсы частотой $\nu_0=100~\Gamma$ ц, длительностью $\sim 5~\rm mkc$ и амплитудой $\approx 30~\rm B$. Настроив осциллограф, проверим, совпадает ли период повторения импульсов, указанный на генераторе, с измерениями по горизонтальной шкале ЭО. Видим, что при развёртке 1 мс период импульса занимает на экране 9,9 делений т.е. отклонение составляет примерно 1% при указанном в ТО осциллографа максимальном отклонении 3%, что позволяет сделать вывод о работоспособности ЭО.

Подберём развёртку так, чтобы на экране умещалось несколько импульсов. Зарегистрированная при этом картина качественно показана ниже на рисунке 3.

І. Измерение периодов свободных колебаний

Соберём схему согласно рисунку 2. Установим на магазине сопротивлнеий величину R=0, а на магазине ёмкостей – величину C=0,02 мк Φ . Получим на экране ОЭ картину свободных затухающих колебаний, подобрав частоту развёртки так, чтобы расстояние x_0 между импульсами, поступающими с

Рис. 3 — Регистирируемая при подготовке приборов к работе картина на экране осциллографа

генератора, занимало почти весь экран. В настоящей работе оно равно $9,8\pm0,1$ дел.

Измерим на экране расстояние x, которое занимают несколько полных периодов n. Зная период задающих колебания импульсов $T_0=\frac{1}{\nu}=0,01$ с и x_0 , найдём период колебаний контура:

$$T = \frac{T_0 x}{n x_0}.$$

Для оценки погрешностей заметим, что относительная погрешность определения длины нескольких периодов сравнима с относительной погрешностью определения x_0 , тогда относительная погрешность определения периода затухающих колебаний складывается из удвоенного вклада погрешности определения x_0 и погрешности определения T_0 , откуда $\varepsilon_T = 1,5\%$.

Проведём измерения периодов при постоянном x_0 , изменяя ёмкость в диапазоне от 0.02 мк Φ до 0.90 мк Φ . Занесём полученные данные в талицу 1. Занесём в таблицу также значения периода, рассчитанные по теоретической формуле $T=2\pi\sqrt{LC}$. Будем использовать значение $L=(199,22\pm0,20)$ м Γ н, измерение которого будет описано в части III Хода работы.

Таблица 1 – Зависимость периода T затухающих колебаний от ёмкости C

C ,мк Φ	0,02	0,05	0,10	0,20	0,30	0,40	0,50	0,60	0,75	0,90
х,делВ	9,5	9,4	8,8	8,7	7,7	8,8	7,9	8,7	7,3	8,0
n	24	15	10	7	5	5	4	4	3	3
Т,мс	0,40	0,63	0,88	1,24	1,54	1,76	1,98	2,18	2,43	2,67
T_{th} ,MC	0,40	0,63	0,89	1,25	1,54	1,77	1,98	2,17	2,43	2,66

Видим, что значения T и T_{th} очень точно совпадают в пределах погрешностей, что говорит о точности исходных измерений. Относительная погрешность определения периода равна половине относительной погреш-

ности определения L, равной 0,1%. Зная всё это, построим для наглядности график $T(T_{th})$, который представлен ниже на рисунке 4.

Рис. 4 — Зависимость экспериментального значения периода затухающих колебаний T от теоретического T_{th} . Прямая проведена с помощью МНК

II. Критическое сопротивление и декремент затухания

Приняв L=200 мГн, рассчитаем ёмкость C, при которой собственная частота колебаний контура $\nu_0=\frac{1}{2\pi\sqrt{LC}}$ составит 5 кГц. Получим значение $C=\frac{1}{4\pi^2\nu_0^2L}=0,00507$ мкФ. Рассчитаем также критическое сопротивление контура с такими параметрами, оно равно $R_{\rm kp}=4\pi\nu_0L=12566~\Omega.$

Установим на магазине ёмкость C=0,005 мк Φ , наиболее близкую к рассчитанной выше. Будем увеличивать сопротивление R от нуля до $R_{\rm кp}$, наблюдая картину затухающих колебаний на экране ЭО. Колебательный режим переходит в апериодический примерно при $R_{\rm kp}=12000~\Omega$, будем в дальнейшем использовать его.

Приступим к измерению логарифмического декремента затухания. Установим сопротивление $R=0,1R_{\rm kp}=1200~\Omega$. Получим на экране ЭО картину колебаний. Сместим горизонтальную ось симметрии вниз экрана для повышения точности измерений. Несложно показать, что при декременте $\Theta \geq \ln 2$ абсолютная погрешность измереия будет лишь расти с увеличением числа разделяющих максимумы периодов, поэтому для почти всех R будем измерять лишь отношение соседних максимумов. Проведём измерения для R различных значений R в диапазоне от R0, R1, до R2, до R3, до R4, до R5. Логарифмический декремент затухания находится по формуле

$$\Theta = \frac{1}{n} \ln \frac{A_k}{A_{k+n}}.$$

Абсолютная погрешность σ_{Θ} получается из относительных погрешностей измерения амплитуд A_i и A_f (погрешность величин, выбираемых на ма-

газинах, считаем пренебрежимо малой). Занесём все результаты в таблицу 2.

Таблица 2 — Зависимость логарифмического декремента затухания Θ от сопротивления контура R

$\frac{R}{R_{\text{\tiny KP}}}$	0,100	0,125	0,150	0,175	0,200	0,225	0,250	0,300
R , $\kappa\Omega$	1,2	1,5	1,8	2,1	2,4	2,7	3,0	3,6
A_i , дел	7,4	7,4	7,4	7,4	7,4	7,4	7,4	7,4
A_f , дел	1,0	3,4	2,8	2,4	2,0	1,7	1,4	1,0
n	3	1	1	1	1	1	1	1
Θ	0,67	0,78	0,98	1,13	1,31	1,47	1,67	2,00
σ_{Θ}	0,03	0,03	0,04	0,04	0,05	0,06	0,07	0,10
$X, 10^{-7}\Omega^{-2}$	6,52	4,23	2,96	2,19	1,68	1,33	1,08	0,76
Y	2,23	1,64	1,04	0,78	0,58	0,46	0,36	0,25
σ_Y	0,20	0,13	0,08	0,06	0,04	0,04	0,03	0,03

В дальнейшем в работе будет измерено омическое сопротивление витков катушки при 5 кГц, которое равно $R_L = (38, 40 \pm 0, 04)~\Omega$. Видим, что тогда при вычислении $R_{\Sigma} = R + R_L$ погрешностью σ_{R_L} можно будет пренебречь (в особенности по сравнению с погрешностью определения декремента).

(в особенности по сравнению с погрешностью определения декремента). Приняв обозначения
$$X=\frac{1}{R_\Sigma^2}$$
 и $Y=\frac{1}{\Theta^2}$, можно показать, что $R_{\rm kp}=2\pi\sqrt{\frac{\Delta Y}{\Delta X}}$. Вычислим величины $X,\,Y$ и σ_Y и тоже занесём их в таблицу 2.

Построим график Y(X). Он представлен ниже на рисунке 5. Помимо того, что для определения критического сопротивления можно использовать наклон графика, ясно, что точка пересечения графика с осью X соответствует точке, в которой логарифмический декремент затухания устремляется к бесконечности, т.е. к точке перехода к апериодическому режиму, а значит, X-координата этой точки равна $R_{\rm кp}^{-2}$.

значит, X-координата этой точки равна $R_{\rm kp}^{-2}$. Непосредственно из графика находим $\frac{\Delta Y}{\Delta X}=(3,65\pm0,32)\cdot10^6~\Omega^2,$ откуда находим $R_{\rm kp}=(12,34\pm0,53)~{\rm k}\Omega.$ Видим, что при этом определить критическое сопротивление по точке пересечения графика с осью абсцисс в какой бы то ни было вменяемой точностью практически невозможно.

Теоретическое значение критического сопротивления $R_{\rm kp}=2\sqrt{\frac{L}{C}}=(12,624\pm0,006)~{\rm k}\Omega,$ т.е. в пределах погрешности оно совпадает с полученным в эксперименте.

III. Свободные колебания на фазовой плоскости

Переключим ЭО на двухканальный режим для одновременного наблюдения осциллограмм тока и напряжения. Подберём масштабы и частоту развёртки так, чтобы оба сигнала были представлены на временном интервале, слегка превышающем период повторения импульсов с генератора. Полученная картина будет качественно совпадать с показанной на рисунке 1, а).

Для наблюдения затухающих колебаний на фазовой плоскости переключим развёртку Θ 0 в положение X-Y. На магазине сопротивлений выберем значение $R=0,1R_{\rm kp}$. Подберём масштаб спирали, удобный для измерений. Спираль качественно совпадает с теоретической, показанной на рисунке 1,

Рис. 5 — График в координатах X-Y для определения критического сопротивления. Прямая проведена с помощью МНК

б). Для повышения точности при измерениях будем сдвигать центр спирали к краям экрана.

При том же значении C, что и в части II Хода работы, пронаблюдаем за изменением спирали при увеличении сопротивления от 0.1 до $0.3R_{\rm Kp}$. Видим, что спираль закручивается слабее и становится менее плотной с ростом R.

Для определения Θ измерим максимумы A_i и A_f отклонения витков спирали по оси x, разделёных целым число периодов n, для максимального и минимального значений R из использованного в работе диапазона. Занесём результаты в таблицу 3. Погрешность Θ здесь будет определяться аналогично. Также внесём в таблицу значения добротности контура, рассчитанное теретически из величин его параметров, а также значения добротности, вычисленные по формуле

$$Q = \frac{\pi}{\Theta},$$

и величину погрешности σ_Q .

Таблица 3 — Зависимость добротности контура Q от сопротивления R, измеренная с помощью спирали на фазовой плоскости

$\frac{R}{R_{\rm \kappa p}}$	A_i	A_f	n	Θ	Q_{th}	Q	σ_Q
0,1	7,4	1,1	3	0,64	5,26	5,02	0,24
0,3	7,4	1,1	1	1,91	1,73	1,68	0,08

Наконец, отсоединим катушку от цепи и измерим её омическое сопротивление R_L и индуктивность L с помощью измерителя LCR при значениях частоты 50 Γ ц, 1 к Γ ц и 5 к Γ ц. Занесём результаты измерений в таблицу 4. Отметим, что погрешность измерения измерителя LCR равна 0,1%.

Стоит отметить, что результат измерения R зависит от частоты. Это происходит потому, что вклад в активное сопротивление катушки вносят

Таблица 4 — Внутреннее сопротивление катушки R_L и её индуктивность L при различных частотах ν переменного тока

ν , к Γ ц	0,05	1,00	5,00
R_L, Ω	11,04	18,62	38,40
L , м Γ н	203,8	199,2	199,2

омические потери не только в витках катушки, но и в её сердечнике, а также потери на перемагничивание, очевидно растущие с увеличением частоты.

Вывод

В данной работе были исследованы свободные колебания в электрическом колебательном контуре.

В первой части работы был измерен период свободных затухающих колебаний, и экспериментально с высокой точностью была подтверждена соответствующая теоретическая зависимость.

Во второй части работы был измерен декремент затухания контура. С его помощью было найдено критическое сопротивление контура $R_{\rm kp}=(12,34\pm0,53)~{\rm k}\Omega,$ в пределах погрешности совпадающее с теоретически предсказанным $R_{\rm kp}=(12,624\pm0,006)~{\rm k}\Omega,$ что говорит о точности используемого метода.

В третьей части работы были исследованы свободные колебания на фазовой плоскости, зарегистрирована спираль и её поведение при изменении сопротивления контура. Была измерена добротность контура Q, полученные значения при различных сопротивлениях (см. таблицу 3) в пределах погрешностей совпали с теоретически предсказанными, что вновь говорит о точности и корректности проведённых измерений.