AFEIC: Advanced Forensic Ext4 Inode Carving

Andreas Dewald ¹ Sabine Seufert ²

¹ERNW Research GmbH

²Basys GmbH

Date: 23.03.2017

In cooperation with Friedrich-Alexander University Erlangen (FAU)

Dewald, Seufert Ext4 Inode Carving Date: 23.03.2017 1 / 19

Outline

- Introduction
 - Motivation
 - Ext4 file system
- 2 Inode Recovery
 - Outline
 - Phases
 - Proof of concept implementation
- 3 Evaluation
- 4 Conclusion

- Postmortem file system forensics often requires reconstruction of lost or deleted files
- File carving on Ext4 has its limits
- Metadata analysis might not be possible if essential metadata is overwritten or modified
- ⇒ Attempt combination of carving and metadata analysis
 - Use of search patterns to carve inode structures
 - Interpret carved metadata for file recovery

3 / 19

Ext4 file system - General

- Ext4 file system stores metadata in the superblock and group descriptor table
- Layout is based on sequential blocks of 1024, 2048 or 4096 bytes
- Blocks are numbered and grouped into block groups

Ext4 file system - Flex groups

 Flex groups: Inode tables, block bitmaps and inode bitmaps of multiple block groups are merged into one block group

5 / 19

Ext4 file system - Sparse option

- Sparse option
 - Conceptually, superblock and group descriptor table are copied in every block group
 - With the sparse option enabled, block groups contain these copies only if their number . . .
 - ... is 0 or 1
 - ... is a power of $3 \Rightarrow 3, 9, 27, ...$
 - ... is a power of $5 \Rightarrow 5$, 25, 125, ...
 - ... is a power of $7 \Rightarrow 7$, 49, 343, ...

Dewald, Seufert Ext4 Inode Carving Date: 23.03.2017 6 / 19

Ext4 file system - Sparse option

Ext4 file system - Inodes

- An inode table spans a certain number of inodes representing files
- Inodes contain information essential for file recovery
 - File type
 - Time stamps
 - File size
 - Extents
 - etc.
- Extents reference a file's content data blocks
 - In contrast, the predecessor Ext3 uses indirect block pointers

Dewald, Seufert Ext4 Inode Carving Date: 23.03.2017 8 / 19

- Since inodes do not have magic bytes, a combination of heuristic search patterns is used to find inode structures
- Found inodes can be interpreted:
 - Inodes of regular files are used to recover file content
 - Inodes of directories are used to recover file names (optional)
- Inode number: Index of inode within inode table
 - Can be determined from physical address
 - Is needed to lookup the file name

- Recovery process is performed in five phases:
 - 1. Initialization:

Gather all required/available Ext4 parameters

2. Inode carving:

Find potential inodes using search patterns

- Directory tree (optional)
 Inodes representing directories are recovered and interpreted to acquire the directory tree
- Regular files: Inodes representing regular files are recovered
- Files without content: (optional)
 Remaining directory tree is built and files are created without file content

Inode Recovery

Inode attributes

Offset	Length	Description		
0	2	mode (file type and access)		
2	2	lower 16 bit user-ID		
4	4	lower 32 bit file size		
8	4	atime		
12	4	ctime		
16	4	mtime		
20	4	dtime		
24	2	lower 16 bit group ID		
26	2	link count		
28	4	sector count		
32	4	flags		
36	4	unused		
40	60	block pointers or extent data structure		
		• • •		
132	16	additional space for time stamps		
		•		

Dewald, Seufert Ext4 Inode Carving Date: 23.03.2017 11 / 19

Recovery process is performed in five phases:

- Initialization:
 Gather all required/available Ext4 parameters
- Inode carving: Find potential inodes using search patterns
- Directory tree (optional)
 Inodes representing directories are recovered and interpreted to acquire the directory tree
- Regular files: Inodes representing regular files are recovered
- Files without content: (optional)
 Remaining directory tree is built and files are created without file content

Content data mode:

- Regular files are recovered and named after their inodes' physical address
- Inodes from data blocks are recovered as well (e.g. Ext4 journal)
- Necessary Ext4 parameters: block size

Metadata mode:

- Directory tree structure is built from inodes of directories inode number → file name
- Necessary Ext4 parameters: block and inode size, inode ratio, flex group size, sparse and 64 bit option

Calculation of inode number

$$f(a) = \left(\frac{a - (bg_a + o_s + o_i + o_r)}{i} + n_i + 1\right)$$

a = physical address [Byte]

 $bg_a = offset to block group for address a [Byte]$

i = inode size [Byte]

 n_i = number of inodes per block group

 $o_s = \text{size of superblock and GDT } [Byte]$

 $o_i = \text{size of bitmaps } [Byte]$

$$o_r = egin{cases} 1024 \ \textit{Byte} & \text{if block size} = 1024 \ \textit{Byte} \\ 0 & \text{else} \end{cases}$$

- (ロ) (個) (差) (差) (差) (2) (2) (2)

Inode Recovery

Proof of concept implementation

- Usable as a module for the Sleuthkit Framework Version 4.1.3
- Inode carving patterns and Ext4 parameters can be configured
- Inodes found in the Ext4 journal can be recovered without interpreting it
- Duplicate files are ignored (Content data mode)
- Full directory structure can be recovered independently of contents

Dewald, Seufert Ext4 Inode Carving Date: 23.03.2017 15 / 19

Evaluation

Correctness

Image name and mode	all inodes	regular files	folders
small.img	128	121	7
metadata mode		121	7
content data mode		124	0
small_newFiles.img	349	340	9
metadata mode		340	9
content data mode		355	0
small_fastExt4.img	128	121	7
metadata mode		118	5
content data mode		119	0
small_fastdiffExt4.img	128	121	7
metadata mode		0	0
content data mode		125	0
small_fastNTFS.img	128	121	7
metadata mode		121	7
content data mode		124	0

Dewald, Seufert Ext4 Inode Carving Date: 23.03.2017 16 / 19

Evaluation

Selectivity

• Testcase: Ubuntu 12.04 (16 GB)

• Selectivity of search patterns:

pattern	hits	t-miss	a-miss	select.
access rights	151k	1.02M	99.9M	0.6%
time interval	72.3k	207k	238k	0.003%
time consist.	209k	5.71M	1.42G	8.89%
link count	201k	29.8M	7.59G	47.6%
extent flag	166k	13.4M	3.28G	20.6%
extent header	166k	515k	53.2k	0.004%
file type	151k	4.51M	905M	5.7%

Conclusion

- Inodes can be found using search patterns without using the superblock
- With some parameters of the Ext4 file system, additional metadata or files from the journal can be recovered
- Reformatted Ext4 file systems contain recoverable data
- Combination of file carving and metadata analysis is suitable on Ext4

Dewald, Seufert Ext4 Inode Carving Date: 23.03.2017 18 / 19

Thank you for your attention. Questions?

Slides and open-source tool: https://www1.cs.fau.de/content/ext4-file-recovery

Dewald, Seufert Ext4 Inode Carving Date: 23.03.2017 19 /