COMP828 Week 10

Auckland University of Technology

Correlation, Regression, Logistic Regression, and more

Objective

- To provide some simple analysis tools (with lots of theoretical details omitted) for your project
- Some of you may know most of the methods already

Correlation

- Correlation (r) is a statistical measure (expressed as a number) that describes the size and direction of a relationship between two variables.
- r ranges between -1 and 1 (inclusive).
 - A positive r indicates a positive relationship (when x increases, y tends to increase).
 - A negative r indicates a negative relationship (when x increases, y tends to decrease).
 - When r = 0, the two variables are uncorrelated.
- The closer to 1 or -1, the stronger the relationship.

Examples

Types of Correlation

- A rough guideline for interpretation (subject to debate):
 - ± 1 : perfect
 - $\pm (0.7,1)$: strong
 - $\pm (0.4,07)$: moderate
 - $-\pm (0.2,0.4)$: weak
 - $-\pm(0,0.2)$: no relationship

Cautions!

- Correlation does not imply causation
 - E.g., sales of ice-cream and sales of sunscreen
- People usually refer "correlation" to the *Pearson's* correlation coefficient, which measures the *linear* relationship between x and y. Lack of linear correlation **does not** mean lack of relationship. (Some non-linear relationship may exist.)

Example: mtcars

	mpg	cyl	disp	hp	drat	wt	qsec	VS	am	gear	carb
Mazda RX4	21.0	6	160	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
Hornet Sporta bout	18.7	8	360	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225	105	2.76	3.460	20.22	1	0	3	1

Correlation between mpg and wt


```
cor(mtcars$mpg,mtcars
$wt)
## [1] -0.8676594
```

 A strong negative correlation was found

Pairwise Correlations for More Variables

```
round (cor (mtcars [, c(1, 3, 4, 5, 6)]), 3)
##
          mpg disp hp drat wt
## mpg 1.000 -0.848 -0.776 0.681 -0.868
## disp -0.848 1.000 0.791 -0.710 0.888
## hp -0.776 0.791 1.000 -0.449 0.659
## drat 0.681 -0.710 -0.449 1.000 -0.712
## wt -0.868 0.888 0.659 -0.712 1.000
```

Linear Regression

- A better way to establish causal relationship
- Dependent variable: y
- Explanatory variable(s): $x_1, x_2, x_3, ..., x_p$
- It is assumed that changes in x cause changes in y

Simple Linear Regression

 A simple linear regression model is a model containing only one explanatory variable:

$$y = \beta_0 + \beta_1 x + e,$$

- where e represents the random errors
- β_1 is the "slope" term, which is the expected change in y when x is increased by one unit
- β_0 is the "intercept" term, which is the expected value of y when x=0

Multiple Linear Regression

 A multiple linear regression model is a model containing more than one explanatory variable:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + e$$

- β_i is the expected change in y when x_i is increased by one unit, holding all other x constant
- β_0 which is the expected value of y when all x=0

Example: mpg vs hp and wt

```
summary(lm(mpg~hp+wt,data=mtcars))$coefficients
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 37.22727012 1.59878754 23.284689 2.565459e-20
## hp -0.03177295 0.00902971 -3.518712 1.451229e-03
## wt -3.87783074 0.63273349 -6.128695 1.119647e-06
```

• Fitted equation:

$$mpg = 37.23 - 0.032 \times hp - 3.88 \times wt$$

- Check the p-value reported in the last column
- Interpret the estimated coefficients
 - When hp is increased by 1 unit, mpg is expected to decrease by 0.032 units, assuming wt remains the same

Logistic Regression

- Used when the dependent variable (y) is binary
- Instead of modelling y directly, the **odds** of y is modelled. Let p=P(y=1), we have

$$\ln\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + e$$

• $\exp(\beta_i)$ is the **odds ratio** (change in odds) when x_i is increased by one unit, holding all other x constant

Example: am vs hp and wt

Fitted equation:

$$\ln\left(\frac{p}{1-p}\right) = 18.87 + 0.036 \times hp - 8.08 \times wt$$

- Interpret the estimated coefficients
 - When hp is increased by 1 unit, the odds ratio of observing a manual car is $\exp(0.036) = 1.04$ [i.e., more likely], assuming wt remains the same

Other Methods for Consideration

- Two-sample t tests for comparing means from two independent samples
- ANOVA for comparing means from more than two samples
- Chi-sq test of independence for testing the association between two qualitative factors