Санкт-Петербургский государственный университет Математико-механический факультет Кафедра физической механики

Методы измерений и электромеханические системы Отчёт по лабораторной работе \mathbb{N}^1

«Многократные прямые измерения физических величин и обработка результатов наблюдений»

Выполнила студентка:

Агеева Екатерина Дмитриевна группа: 23.C02-мм

Проверил:

к.ф.-м.н., доцент Кац Виктор Михайлович

Содержание

1	Введение			
	1.1 I	Решаемые задачи	2	
2	Осно	вная часть	2	
	2.1	Георетическая часть	2	
		Эксперимент		
		Обработка данных и обсуждение результатов		
		Таблицы		
		Графики	8	
3	Выво	ОД	10	

1 Введение

Измерения физических величин всегда содержат некоторое отклонение от истинного значения, так как не существует абсолютно точных приборов и методов, поэтому важно оценивать степень точности.

Существуют разные виды погрешностей: одни возникают из-за случайных изменений условий эксперимента, другие обусловлены особенностями используемого оборудования и методик, а третьи связаны с ошибками оператора. Чтобы уменьшить влияние таких отклонений, измерения проводят многократно, получая серию значений, которые затем анализируются.

Оценка погрешности является неотъемлемой частью любого эксперимента, так как позволяет повысить точность получаемых данных и сделать выводы более обоснованными. Корректный учёт возможных ошибок в измерениях обеспечивает надёжность полученных результатов и их применимость в научных и технических исследованиях.

1.1 Решаемые задачи

- 1. Освоить методику использования измерительного прибора для многократного прямого измерения физической величины.
- 2. Выполнить простейшую статистическую обработку серии результатов наблюдений при прямых измерениях.

2 Основная часть

2.1 Теоретическая часть

При проведении физических измерений невозможно получить экспериментальные данные без отклонения от истинного значения. Погрешности измерений бывают:

- Систематические, которые возникают из-за несовершенства метода измерений или калибровки прибора. Они проявляются одинаково при каждом измерении.
- Случайные, возникающие из-за случайных факторов и не имеющие определённого направления, их можно уменьшить за счет многократных измерений.
- Грубые (промахи), которые возникают из-за ошибок экспериментатора и должны исключаться при обработке данных.

Обычно общее значение записывается в виде:

$$X = X \pm \Delta X \tag{1}$$

где X — полученное экспериментальное значение, а ΔX — приближенная погрешность измерения. Но на самом деле утверждать можно только то, что X попадает в этот диапазон только с какой-то вероятностью, и она тем выше, чем точнее проведены измерения.

При многократных измерениях получают серию значений, которая называется выборкой:

$$x_1, x_2, x_3, ..., x_n$$
 (2)

Для уменьшения влияния случайных погрешностей проводят серию измерений и вычисляют среднее арифметическое:

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 (3)

где n – количество измерений, x_i – отдельные результаты измерений. Чем больше измерений проведено, тем точнее будет полученное среднее значение.

Дисперсия (средняя квадратичная погрешность отдельного наблюдения) оценивается по формуле:

$$\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1} (x_i - \overline{x})^2} \tag{4}$$

Средняя квадратичная погрешность среднего определяется как:

$$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}},\tag{5}$$

Это означает, что увеличение числа измерений помогает уточнить значение величины и уменьшить интервал, в котором с определённой вероятностью лежит значение X. Он задаётся как:

$$x = \overline{x} \pm \sigma_{\overline{x}},\tag{6}$$

2.2 Эксперимент

Блок-схема установки приведена на рис. 1. На рис. 2 и рис. 3 представлены частотомер и генератор импульсов.

Генератор сигналов передаёт на частотомер последовательность прямоугольных импульсов с заданными параметрами. Частота измеряется на двух шкалах: грубой и точной. Для измерений используется генератор импульсов Г5-15 и частотомер Ч3-32.

Рис. 1. Блок-схема установки для измерения частоты импульсов

Рис. 2. Фотография частотомера Ч3-32

2.3 Обработка данных и обсуждение результатов

Вычисление погрешности прибора:

$$\gamma_f = \frac{\gamma_f}{f} * 100\% \tag{7}$$

$$\gamma_f = \pm (\gamma_0 + \frac{1}{(f_x * T)}) * 100\% \tag{8}$$

Рис. 3. Фотография генератора импульсов

Где γ_0 — основная относительная погрешность частоты, $\gamma_0=\pm 5*10^{-7};\ f_x$ — измеряемая частота в Гц; T — время измерения в c, T=0,1 с. на грубой шкале, T=1 с. на точной шкале.

Таблицы

Таблица 1. Измерения на грубой шкале

N⁰	Диапазон показаний	Результаты отдельных	Погрешность прибора
	использованной шка-	наблюдений	на данной шкале
П.П.	лы прибора	(f_i)	(Δf)
	(кГц)	(кГц)	(кГц)
1	$0-10^5$	4.56	0.0100
2	$0-10^5$	4.54	0.0100
3	$0-10^5$	4.54	0.0100
4	$0-10^5$	4.56	0.0100
5	$0-10^5$	4.56	0.0100
6	$0-10^5$	4.56	0.0100
7	$0-10^5$	4.58	0.0100
8	$0-10^5$	4.56	0.0100
9	$0-10^5$	4.58	0.0100
10	$0-10^5$	4.56	0.0100

Таблица 2. Результаты точных измерений

7.4	Результаты отдельных	Случайные отклоне-	Погрешность прибора
$N_{\overline{0}}$	наблюдений	ния от среднего	на данной шкале
П.П.	(f_i)	$(d_i = f_i - \overline{f})$	$(d_i^2 = (f_i - \overline{f})^2)$
	(кГц)	(кГц)	$(\kappa\Gamma \mu^2)$
1	4.566	0.022	0.000484
2	4.564	0.020	0.000400
3	4.564	0.020	0.000400
4	4.563	0.019	0.000361
5	4.562	0.018	0.000324
6	4.564	0.020	0.000400
7	4.550	0.006	0.000036
8	4.542	-0.002	0.000004
9	4.540	-0.004	0.000016
10	4.538	-0.006	0.000036
11	4.542	-0.002	0.00004
12	4.542	-0.002	0.00004
13	4.542	-0.002	0.00004
14	4.540	-0.004	0.000016
15	4.542	-0.002	0.000004
16	4.542	-0.002	0.000004
17	4.542	-0.002	0.00004
18	4.542	-0.002	0.000004
19	4.542	-0.002	0.000004
20	4.542	-0.002	0.000004
21	4.544	0.000	0.000000
22	4.544	0.000	0.000000
23	4.544	0.000	0.000000
24	4.544	0.000	0.000000
25	4.544	0.000	0.000000
26	4.542	-0.002	0.000004
27	4.542	-0.002	0.000004
28	4.540	-0.004	0.000016
29	4.540	-0.004	0.000016
30	4.542	-0.002	0.000004
31	4.540	-0.004	0.000016
32	4.542	-0.002	0.000004
33	4.540	-0.004	0.000016
34	4.540	-0.004	0.000016
35	4.540	-0.004	0.000016

Mo	Результаты отдельных	Случайные отклоне-	Погрешность прибора
$N_{\overline{0}}$	наблюдений	ния от среднего	на данной шкале
П.П.	(f_i)	$(d_i = f_i - \overline{f})$	$(d_i^2 = (f_i - \overline{f})^2)$
	(кГц)	(кГц)	$(\kappa\Gamma \mathfrak{U}^2)$
36	4.538	-0.006	0.000035
37	4.540	-0.004	0.000016
38	4.540	-0.004	0.000016
39	4.540	-0.004	0.000016
40	4.540	-0.004	0.000016
41	4.540	-0.004	0.000016
42	4.538	-0.006	0.000036
43	4.540	-0.004	0.000016
44	4.538	-0.006	0.000036
45	4.540	-0.004	0.000016
46	4.538	-0.006	0.000036
47	4.538	-0.006	0.000036
48	4.538	-0.006	0.000036
49	4.542	-0.002	0.000004
50	4.541	-0.003	0.000009
	\overline{f} =4.544	$\sum_{i=1}^{50} d_i = 0.004$	$\sum_{i=1}^{50} d_i^2 = 0.0002907$

Таблица 3. Таблица распределения

		Количество попа-	Доля полного числа
$N_{\overline{0}}$	Границы интервалов	даний результата в	результатов, попадаю-
п.п.	т раницы интервалов	интервал	щих в этот интервал
		(Δn)	$\left \left(\delta n = \frac{\Delta n}{n} \right) \right $
1	[4.538, 4.540)	7	0.14
2	[4.540, 4.542)	16	0.32
3	[4.542, 4.544)	15	0.3
4	[4.544, 4.546)	5	0.1
5	[4.546, 4.548)	0	0
6	[4.548, 4.550)	0	0
7	[4.550, 4.552)	1	0.02
8	[4.552, 4.554)	0	0
9	[4.554, 4.556)	0	0
10	[4.556, 4.558)	0	0

		Количество попа-	Доля полного числа
$N_{\overline{0}}$	Граници и интеррацор	даний результата в	результатов, попадаю-
п.п.	Границы интервалов	интервал	щих в этот интервал
		(Δn)	$\left \left(\delta n = \frac{\Delta n}{n} \right) \right $
11	[4.558, 4.560)	0	0
12	[4.560, 4.562)	0	0
13	[4.562, 4.564)	2	0.04
14	[4.564, 4.566)	3	0.06
15	[4.566, 4.568)	1	0.02

Высчитанные величины:

Дисперсия: $\sigma = 0.007780$

Средняя квадратичная погрешность среднего: $\sigma_f = 0.001100$

 $f = 4.544 \pm 0.001100$

Случайная и системная погрешности имеют одинаковый порядок, поэтому суммарная погрешность: $\sigma=\sqrt{(\frac{\sigma_f}{3})^2+\sigma_f^2}=0,001065$

Графики

На рис. 4, рис. 5, рис. 6, рис. 7 приведены результаты работы программы gnuplot.

Рис. 4. График зависимости результатов наблюдений от времени

Рис. 5. График распределения результатов наблюдений на числовой оси

Рис. 6. Гистограмма распределения

Рис. 7. График зависимости

3 Вывод

Измерения всегда сопровождаются погрешностями, и их анализ играет ключевую роль в обработке экспериментальных данных. Я познакомилась с методикой использования измерительного прибора - частотомера ЧЗ-32 - для многократных прямых измерений. Научилась основным методам оценки точности, среди которых: вычисление среднего значения, средней квадратичной погрешности, дисперсии, построение гистограммы, графика зависимости. Количество измерений влияет на точность результата: чем больше данных, тем выше надёжность оценки измеряемой величины. Вероятностный анализ позволяет оценить вероятность попадания истинного значения в заданный интервал, что важно для корректного представления результатов измерений.

https://github.com/st117208/Workshop1 (дата обращения: 07.03.2025)