EE 201: Data Analysis Project (Autumn 2021)

Shashank P

200010048@iitdh.ac.in

Question 2

Given $Z = X + 10Y \implies Z - X = 10Y$, Taking Expection and Variance on both sides:

$$\mathbb{E}[Z - X] = 10 \,\mathbb{E}[Y] \; ; \, Var[Z - X] = 100 \, Var[Y]$$

X(a,b): Uniform random variable with a=-3, b=3 and $\mathbb{E}\left[X\right]=\frac{a+b}{2}=0$ $Y\colon \sum_{i=1}^k W_i$ and W_i 's are i.i.d $\implies \mathbb{E}\left[Y\right]=k\,\mathbb{E}\left[W\right]$ and $Var\left[Y\right]=kVar\left[W\right]$ The equations we get are:

$$\mathbb{E}[Z] = 10 k \mathbb{E}[W] \tag{1}$$

$$Var[Z - X]^* = 100 k Var[W]$$
 (2)

* $[Z-X \ can \ be \ obtained \ by \ subtracting \ each \ Z_i \ data \ with \ a \ uniform \ R.V. \ X(-3,3)]$

On doing the following operation $\frac{Eq(1)^2}{Eq(2)}$:

$$\tfrac{\mathbb{E}[Z]^2}{Var[Z-X]} = k \, \tfrac{\mathbb{E}[W]^2}{Var[W]} \implies k = \left(\tfrac{Var[W]}{\mathbb{E}[W]^2} \right) \, \tfrac{\mathbb{E}[Z]^2}{Var[Z-X]}$$

• Exponential distribution

$$\mathbb{E}[W] = \frac{1}{\lambda} \text{ and } Var[W] = \frac{1}{\lambda^2}$$

$$\implies k = \frac{\mathbb{E}[Z]^2}{Var[Z - X]} \text{ Using (1): } \boxed{\frac{1}{\lambda} = \frac{\mathbb{E}[Z]}{10k}}$$

• Rayleigh distribution

$$\mathbb{E}[W] = \sigma \sqrt{\frac{\pi}{2}} \text{ and } Var[W] = \sigma^2(\frac{4-\pi}{2})$$

$$\implies k = \left(\frac{4-\pi}{\pi}\right) \frac{\mathbb{E}[Z]^2}{Var[Z-X]} \text{ Using (1): } \sigma = \frac{\mathbb{E}[Z]}{10k} \sqrt{\frac{2}{\pi}}$$

• Half-normal distribution

$$\mathbb{E}[W] = \sigma \sqrt{\frac{2}{\pi}} \text{ and } Var[W] = \sigma^2(\frac{\pi - 2}{\pi})$$

$$\implies k = \left(\frac{\pi - 2}{2}\right) \frac{\mathbb{E}[Z]^2}{Var[Z - X]} \text{ Using (1): } \sigma = \frac{\mathbb{E}[Z]}{10k} \sqrt{\frac{\pi}{2}}$$

On comparing, we select the distribution whose 'k' value is closest to $\{2,3,4\}$. Then using the 'k' value we can compute the parameter of the corresponding distribution as shown above.

Computation for the given data:

Distribution: Exponential

k = 2

Parameter $\frac{1}{\lambda} = 4$ *nearest integer