2009~2010 学年第 1 学期期末考试试卷

《人工智能基础》(A卷 共1页)

(考试时间: 2010年1月18日)

题号	1	 111	四	五	六	七	八	成绩	核分人签字
得分									

一、问题求解(20分)

在 4×4 的国际象棋棋盘上放置 4 个皇后,要求 4 个皇后在横、竖和斜线上都相互不能攻 击. 试用基于状态空间搜索和约束满足两种求解方法来求解该问题.

二、博弈问题证明(15分)

一堆硬币9枚,两人轮流从中取1,2或3枚.拣起最后一枚硬币的人输. 试证明后走者总能赢.

三、博弈树剪枝(10分)

一博弈树如图所示.

解答下列问题:

- (1) 计算各结点的倒推估值.
- (2) 画出 α - β 剪枝的结果.
- (3) 标出 A 点的最佳着法.

四、归结原理(10分)

已知

- (1) $\forall x \forall y \forall z \forall s (P(x, y, z, s) \rightarrow P(z, y, z, \text{walk}(x, z, s)))$.
- (2) $\forall x \forall y \forall z \forall s (P(x, y, x, s) \rightarrow P(y, y, y, \text{carry}(x, y, s))).$
- (3) $\forall s (P(b_0, b_0, b_0, s) \rightarrow R(\operatorname{climb}(s))).$
- (4) $P(r_0,b_0,c_0,s_0)$.

结论

 $\exists sR(s)$.

试用归结原理给出证明.

五、知识表示(15分)

- (1) 简述知识表示的表示观、分类体系和各类表示方法的基本特点.
- (2) 简要论述知识表示是人工智能的基本原理之一.

六、机器学习(15分)

- (1) 简述机器学习的基本类型.
- (2) 已知D是训练数据,H是假设集, $L_c(x)$ 表示以C编码x的长度. 最小描述长度原理(MDL)可表示为

$$h_{\text{MDL}} = \underset{h \in H}{\operatorname{arg \, min}} L_{C_1}(h) + L_{C_2}(D \mid h) .$$

试给出最小描述长度原理的 MAP 解释.

七、Agents (15分)

- (1) 简答 agent 的界定及其基本属性.
- (2) 一收益矩阵如右表所示。问: 有没有优势策略? 若有是什么? 有没有 Nash 平衡? 若有是哪些结局? 哪些结局是 Pareto 最优的? 哪些可使社会福利最大化?

7	j	Ć	d	С		
	d		1		2	
	d	1		4		
			4		3	
_	С	2		3		