Genome-free mRNA-Seq Data Analysis

BayPass: Outlier testing with SNPs

WGCNA: Gene co-expression network analysis

Genome-free mRNA-Seq Data Analysis

BayPass: Outlier testing with SNPs

One species
Multiple populations
Biallelic SNPs

Which SNPs might be under selection?

F_{st}-based Outlier Testing:

Test for loci with unusually high F_{ST}

F_{st}-based Outlier Testing:

Test for loci with unusually high F_{ST}

Assumes that neutral loci have approximately the same $F_{\rm st}$

"However, in subdivided populations, by chance the measured $F_{\rm sT}$ can differ substantially from this expectation, causing even neutral genes to vary, sometimes substantially, in their $F_{\rm sT}$ s. $F_{\rm sT}$ outlier tests attempt to account for this neutral variation in $F_{\rm sT}$ and determine which loci have $F_{\rm sT}$ large enough or small enough to show significant evidence of selection. The challenge with outlier tests is to identify how much variation in $F_{\rm sT}$ among loci would be expected (i.e. the null distribution of $F_{\rm sT}$) in the absence of selection."

Lotterhos & Whitlock 2014

Neutral SNP under different scenarios

F_{st}-based Outlier Testing

Older methods: BayeScan, FDIST2

- Assume evolutionary independence
 - Null distribution assumes specific demographic history
 - Independent divergence from a common ancestor
- Perform poorly w/ IDB, expansion, migration, etc.
- May give many false positives

F_{st}-based Outlier Testing

Newer methods: BayEnv, BayPass

- Account for population structure
 - Estimate coancestry/covariance among populations
 - X^TX: F_{ST} analog standardized by among-pop covariance
- Perform better in non-equilibrium situations
- Test for covariance with environmental factors

F_{st}-based Outlier Testing

Newer methods: BayEnv, BayPass

- Account for population structure
 - Estimate coancestry/covariance among populations
 - X^TX: F_{st} analog standardized by among-pop covariance
- Perform better in non-equilibrium situations
- Test for covariance with environmental factors

BayPass Input

Fortran

Population-level allele counts (required)

May be in chromosomal order, if known

```
--- file begins here ---
81 19 86 14 2 98 8 92 32 68 23 77
89 11 81 19 9 91 1 99 27 73 27 73
89 11 91 9 0 0 15 85 77 23 80 20
```

Covariate data file (optional)

```
--- file begins here ---
150 1500 800 300 200 2500
181.5 172.6 152.3 191.8 154.2 166.8
1 1 0 0 1 1
0.1 0.8 -1.15 1.6 0.02 -0.5
```

Core model: Estimate covariance

Gautier 2015

Core model: Calculate X^TX for all SNPs

Calibrate & determine significance via simulated data

Covariate model: Importance Sampling

Estimate Bayes Factor for SNP-covariate association

Covariate model: Auxiliary Covariate

Estimate Bayes Factor for SNP-covariate association, allowing incorporation of marker position

BayPass: What is it good for?

Identifying selection between non-equilibrium populations, with or without marker position information

Genome-free mRNA-Seq Data Analysis

WGCNA: Gene co-expression network analysis

One or more species Multiple conditions Normalized expression data

Which genes are changing expression?

Which genes are differentially expressed between treatments?

Lockwood et al. 2010

Gene-by-gene methods: DESeq, EdgeR

- Assess each gene independently
- Enrichment analysis to identify important pathways / processes

Lots of natural variation, 10K+ tests – what's really important?

Co-expression network analysis: WGCNA, MEGENA

- Identify modules of co-expressed genes
- Associate modules with traits/conditions of interest
- Enrichment analysis within modules to identify important pathways / processes

Co-expression network analysis: WGCNA, MEGENA

- Identify modules of co-expressed genes
- Associate modules with traits/conditions of interest
- Enrichment analysis within modules to identify important pathways / processes

S. Mohammed H. Oloomi

Gene expression values

Similarity (Co-expression) score

Network adjacency matrix

S. Mohammed H. Oloomi

WGCNA Input

R package

Normalized gene expression data (required) May be transformed, but does not have to be

```
F2 14
                                          F2 15
                                                   F2 19
                                                                        F2 23
                                                               F2 20
                                                 0.04830 -0.15197410
MT00000044 -0.01810
                     0.0642 6.44e-05 -0.05800
                                                                      -0.00129
                                                                      0.09340
MMT00000046 -0.07730 -0.0297
                             1.12e-01 -0.05890
                                                 0.04430 -0.09380000
MMT00000051 -0.02260
                     0.0617 -1.29e-01
                                        0.08710 -0.11500 -0.06502607
                                                                      0.00249
MT00000076 -0.00924 -0.1450
                              2.87e-02 -0.04390
                                                 0.00425 -0.23610000
                                                                     -0.06900
                     0.0582 -4.83e-02 -0.03710
                                                 0.02510
                                                                      0.04450
MT00000080 -0.04870
            0.17600
                    -0.1890 -6.50e-02 -0.00846 -0.00574 -0.01807182
                                                                     -0.12500
MT00000149
                     0.1860
                             2.14e-01 0.12000
                                                 0.02100
                                                          0.06222751
                                                                      0.22600
```

Trait data file (optional)

```
weight g length cm ab fat other fat total fat X100xfat weight Trigly
              10.5
                      3.81
                                 2.78
                                           6.59
                                                       17.342105
                                                                      14
    38.0
              10.8
                      1.70
                                 2.05
                                           3.75
                                                       11.194030
                                                                     109
              10.0
                      1.29
                                1.67
                                           2.96
                                                        8.731563
    44.3
                                                                      71
              10.3
                      3.62
                                 3.34
                                           6.96
                                                       15.711061
    32.9
               9.7
                      2.08
                                 1.85
                                           3.93
                                                       11.945289
    44.8
                                           6.92
                                                                      34
                                 3.20
               10.3
                      3.72
                                                       15.446429
```

Gene annotation information (optional)

Langfelder & Horvath 2008

WGCNA Overview

Rationale: make use of interaction patterns among genes

Tools: correlation as a measure of co-expression

Identify modules

Rationale: module (pathway) based analysis

Tools: hierarchical clustering, Dynamic Tree Cut

Relate modules to external information

Array Information: clinical data, SNPs, proteomics Gene Information: ontology, functional enrichement

Rationale: find biologically interesting modules

Study module relationships

Rationale: biological data reduction, systems-level view

Tools: Eigengene Networks

Find the key drivers in interesting modules

Rationale: experimental validation, biomarkers

Tools: intramodular connectivity, causality testing

Langfelder & Horvath 2008

Step 1: Construct co-expression network

Langfelder & Horvath 2008

Step 1: Construct co-expression network

Langfelder & Horvath 2008

Step 1: Construct co-expression network

Computationally intensive – can perform all at once (ideal), or blockwise with gene subsets

Langfelder & Horvath 2008

Step 2: Relate Modules with Traits

http://www.incodom.kr/Biological_network/WGCNA

Step 2: Relate Modules with Traits

Hilliard et al. 2012

Identify expression patterns associated with a specific biological response.

Rose et al. 2015

Annotate genes add GO terms, etc. Within-module enrichment analyses.

Xue et al. 2013

Plot networks & identify key "hub" genes.

Prudencio et al. 2015

Compare expression similarity among different conditions.

Jiang et al. 2014

WGCNA: What is it good for?

Identifying & exploring the gene networks underlying regulatory variation.