[86.03/66.25] Dispositivos Semiconductores 1er Cuatrimestre 2020

TBJ - Modelo de pequeña señal

- 1. Polarización
- 2. Modelo de pequeña señal
- 3. Corriente de colector de pequeña señal

Pregunta:

¿Cuánto vale la variación de la corriente de colector i_c si la fuente de polarización V_{BB} tuviera un ruido de $1uV_{RMS}$?

Datos del circuito:

- Beta = 200
- VA = 100V
- $V_{RF}(ON) = -0.7V$

Polarización:

Malla de entrada:

$$V_{BB} - I_{BQ}R_B - V_{BE(ON)} - V_{CC} = 0V$$

Malla de salida:

$$V_{CC} + V_{CE} + I_{CQ}R_{C} = 0V$$

Suponemos M.A.D.

$$I_{CQ} = I_{BQ} * Beta$$

Resolviendo:

$$-I_{BQ} = (V_{CC} - V_{BB} + V_{BE(ON)}) / R_{B} \rightarrow 12uA$$

 $I_{CQ} = -12uA \times 200 = -2.4mA$
 $|I_{CQ}| \sim I_{FQ}$

 V_{CEQ} = (1.2kOhm . 2.4mA) - 5V = 2.88V - 5V = -2.12V < -0.2V Verifica M.A.D. V_{REO} = -0.7V -> Verifica M.A.D.

Modelo de pequeña señal

Datos:
Beta = 200
VA = 100V
VBE(ON) = -0.7V
V_{CE-SAT} = -0.2V

Transconductancia de salida

• gm =
$$I_{CQ} / V_{TH}$$

Resistencia de entrada

r_π = Beta . 1/gm

Efecto de modulación de ancho de la base - Efecto Early.

•
$$r_o = V_A/I_{CQ}$$

Modelo de pequeña señal

Datos:
Beta = 200
VA = 100V
VBE(ON) = -0.7V
V_{CE-SAT} = -0.2V

Transconductancia de salida

- $gm = |I_{CO}| / V_{TH} = 2.4 \text{mA} / 26 \text{mV}$
- gm = 92mMho -> ic = gm.v_{he}

Resistencia de entrada

- r₌ = Beta . 1/gm
- $r_{\pi} = 200 \cdot 1/(92 \text{mMho})$

Efecto de modulación de ancho de la base - Efecto Early.

- $r_o = V_A/I_{CQ}$
- $r_0 = 100 / 2.4 \text{mA} \sim 41 \text{kOhm}$

¿Cómo queda en el circuito del problema?

```
Datos:

Beta = 200

VA = 100V

VBE(ON) = -0.7V

V<sub>CE-SAT</sub> = -0.2V
```


Reorganizando el circuito...

¿Cómo se propaga el ruido a la corriente ic?

Datos:

Beta = 200

VA = 100V

VBE(ON) = -0.7V

V_{CE-SAT} = -0.2V

¿Cómo se propaga el ruido a la corriente ic?


```
ic_1 = gm \text{ vbe -> ¿Cuánto vale } v_{BE}?

Divisor resistivo:

v_{be} = 1uV * (r_pi / (r_pi + RB))

v_{be} = 1uV * 2.1kOhm / (2.1kOhm +275kOhm)

v_{be} = 1uV * 7.6e-3 = 7.6nV
```

ic₁ = 7.6nV * 92mMho ~ 700pA

 $ic = gm vbe + go vce = ic_1 + ic_2$

¿Cómo se propaga el ruido a la corriente ic?

<u>Datos</u>:

Beta = 200

VA = 100V

VBE(ON) = -0.7V

V_{CE-SAT} = -0.2V

La tensión de señal en el colector del transistor:

•
$$v_{ce} = -ic * (RC // ro)$$

Pero sabemos que:

- RC << ro
- $v_{ce} = -ic * (RC)$

$$v_{ce} = -700pA*1.2kOhm = -837nV.$$

- v_{ce} / ro = 837nV / 41kOhm ~ 20pA
- 20pA << 700pA

Por lo que podemos asegurar en este caso qué:

•
$$ic = ic_1 + ic_2 \sim ic_1$$

Resumen:

Polarización

- V_{CEQ} = -2.12V
- $I_{BQ} = -12uA$
- I_{CQ}= -2.4mA

En señal:

- v_{BE} = 7.6nV
- $v_{CF} = -837 \text{nV}$
- $i_{BE} = 7.6 \text{nV} / r_{\pi} = 7.6 \text{nV} / 2.1 \text{kOhm} = 3.6 \text{pA}$
- i_C= 700pA

