VECTOR CALCULUS NOTES NICHOLAS HAYEK

Lectures by Prof. Jean Pierre Mutanguha

CONTENTS

I Curves and Surfaces	1		
Vector Spaces	1		
Lines and Planes			
Transformations and Parameterizations			
Differentiation and Continuity			
Surfaces	5		
II Integration	11		
Riemann Integration Point-Set Topology	11 11		
III Vector Fields	17		
Regular Paths Center of Mass	17 17		
Vector Fields			
Surfaces			

I Curves and Surfaces

VECTOR SPACES

Recall the definition of the *inner product* over a vector space *V*:

DEF 1.1

DEF 1.2

- 1. $\langle u, v \rangle = \overline{\langle v, u \rangle} = \langle v, u \rangle$ in \mathbb{R} (where we'll be in this class)
- 2. $\langle au + bw, v \rangle = a \langle u, v \rangle + v \langle w, v \rangle$
- 3. $\langle u, u \rangle \ge 0$, and $= 0 \iff u = 0$

From this, we define the *norm* of $u \in V$ to be $||u|| := \sqrt{\langle u, u \rangle}$. This is well-defined, since $\langle u, u \rangle \ge 0$.

 $\forall u, v \in V, |\langle u, v \rangle| \le ||u|| ||v||$ PROP 1.1

Cauchy-Schwartz Inequality PROP 1.2

 $\forall u, v \in V, ||u + v|| \le ||u|| + ||v||$ Triangle Inequality

The *cross product* of $u, v \in \mathbb{R}$, with respect to \mathbb{R}^3 , is the determinate of the following:

$$u \times v := \begin{pmatrix} \hat{i} & \hat{j} & \hat{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{pmatrix}$$

where $u = \langle u_1, u_2, u_3 \rangle$ and $v = \langle v_1, v_2, v_3 \rangle$. We observe the following two properties of the cross product in \mathbb{R}^3 :

PROP 1.3

- 1. $(u \times v) \cdot u = 0$
- 2. $||u \times v|| = ||u|| ||v|| \sin(\theta)$, where θ is the minimal angle found between u and v. A conceptualization of this property is that "u-cross-v is equal to the area created by the parallelogram bounded by u and v."

Inner products are not just abstractly useful: by defining a norm on continuous functions in C[0,1], with $\langle f,g\rangle = \int_{0,1} f(x)g(x)dx$, we yield inequalities that are otherwise nontrivial via analysis:

$$\left| \int_0^1 f(x)g(x)dx \right| \le \left(\int_0^1 f(x)^2 dx \right)^2 + \left(\int_0^1 g(x)^2 dx \right)^2$$

$$\left(\int_{0}^{1} (f(x) \pm g(x))^{2} dx\right)^{\frac{1}{2}} \le \left(\int_{0}^{1} f(x)^{2} dx\right)^{\frac{1}{2}} + \left(\int_{0}^{1} g(x)^{2} dx\right)^{\frac{1}{2}}$$

LINES AND PLANES

DEF 1.4

Define a *line* $l(t) \in \mathbb{R}^n$ to be a function from $\mathbb{R} \to \mathbb{R}^n$ of the form l(t) = P + td, with $P, d \in \mathbb{R}^n$, $t \in \mathbb{R}$. We call P the "point vector" and d the "direction vector" An alternate form, with two points $P, Q \in \mathbb{R}^n$, would be l(t) = (1 - t)P + tQ, where l(t) lies along the path between P and Q for $t \in [0, 1]$.

DEF 1.5

 $proj_u(v)$, the *projection* of v onto u, is given by

$$(u \cdot v) \frac{v}{\|v\|^2}$$

Distance between a point and line Using this definition, how an we find the shortest path between a point R and a line l(t), which lies between P and Q?

- *Idea 1* We know the desired vector $w = PR\sin(\theta)$, the angle between PR and PQ. To find this value, note that $||PR \times PQ|| = ||PR||||PQ||\sin(\theta)$.
- *Idea 2* We can project R onto PQ, and then subtract this projection from PR.
- *Idea* 3 We can minimize a distance function between R and a point on l, i.e. l(t). Thus, we take $\min_{t \in \mathbb{R}} \|R l(t)\| = \alpha$, and then take $Rl(\alpha)$ to be the shortest path.
- *Idea 4* We can find when $(R l(t)) \cdot d = 0$.

Sometimes called "skew lines"

Distance between 2 lines Consider two lines, l_1 and l_2 , which do not intersect but are not necessarily parallel. What is the minimal distance between l_1 and l_2 ?

- *Idea* 0 Conceptualize this problem as finding the distance between the parallel planes defined by $\{l_1, l_2\}$.
- *Idea 1* We can minimize $||l_1(t) l_2(s)||$ (really, one should minimize the square to make one's life easier).
- *Idea* 2 Pick any two points, say $l_1(T)$ and $l_2(S)$, and project $l_1(T)l_2(S)$ onto $l_1 \times l_2$.
- *Idea 3* Minimize $dist(l_1(t), l_2)$ for fixed t.
- *Idea 4* Find t and s such that $[l_1(t) l_2(s)] \cdot \vec{d_1} = 0$ and $[l_1(t) l_2(s)] \cdot \vec{d_2} = 0$
- *Idea* 5 For lines l_1 , l_2 with direction vectors d_1 , d_2 , let $n = d_1 \times d_2$. Then calculate $\|\text{proj}_n(l_1(x_1) l_2(x_2))\|$, where we may choose any two points $l_1(x_1)$ and $l_2(x_2)$ arbitrarily.

PROP 1.4

 $||u \times v|| = ||u|| ||v|| \sin(\theta)$ gives the area of the parallelogram bounded by u and v.

DEF 1.6

A plane r(s, t) is a function $[0, 1]^2 \to \mathbb{R}^3$ defined by $d_1, d_2 \in \mathbb{R}^3$, two vectors lying

on the plane, and $P \in \mathbb{R}^3$, a point. In particular, $r(s,t) = P + s\vec{d_1} + t\vec{d_2}$. This is called the *parametric form*.

The *point-normal* form of a plane is a function $\mathbb{R}^2 \to \mathbb{R}^3$ given by $a(x-x_0)+DEF 1.7$ $b(y-y_0)+c(z-z_0)=0$, where $\vec{n}=\langle a,b,c\rangle$ is a vector normal to the plane, and $P=\langle x_0,y_0,z_0\rangle$ is a point lying on the plane.

Distance between a point R and a plane r

Idea 1 Minimize ||R - r(s, t)|| (or the square)

Idea 2 $\|\operatorname{proj}_{\vec{n}}(P-R)\|$, where \vec{n} and P are as given in the point-normal form.

TRANSFORMATIONS AND PARAMETERIZATIONS

The following table give general examples of linear transformations $\lambda: \mathbb{R}^n \to \mathbb{R}^m$.

Dimension	Linear	Affine
n = 0	$\lambda(0) = 0$	$\lambda(0) = P$
n = 1	$\lambda(t) = t\vec{d}$	$\lambda(t) = P + t\vec{d}$
n = 2	$\lambda(t,s) = t\vec{d_1} + s\vec{d_2}$	$\lambda(t,s) = P + t\vec{d_1} + s\vec{d_2}$
n = 3	$\lambda(t, s, r) = t\vec{d_1} + s\vec{d_2} + r\vec{d_3}$	$\lambda(t,s) = P + t\vec{d_1} + s\vec{d_2}$ $\lambda(t,s,r) = P + t\vec{d_1} + s\vec{d_2} + r\vec{d_3}$

We also define the following important curves in \mathbb{R}^2 :

Type	Explicit Form	Parametric Form
Ellipse	$x^2 + y^2 = 1$	$r(t) = \left\langle t, \sqrt{1 - t^2} \right\rangle_{t \in [-1, 1]} = \left\langle \cos(t), \sin(t) \right\rangle_{t \in [-\pi, \pi]}$
Hyperbola	$x^2 - y^2 = 1$	$r(t) = \left\langle \sqrt{1 + t^2}, t \right\rangle_{t \in \mathbb{R}} = \left\langle \cosh(t), \sinh(t) \right\rangle_{t \in \mathbb{R}}$
Parabola	$x = y^2$	
Double Cone	$x^2 = y^2$	
Any Function	y = F(x)	$r(t) = \langle t, F(t) \rangle$

Define a *path* in \mathbb{R}^m to be a continuous function $r : \mathbb{R} \to \mathbb{R}^m$, e.g. $[a, b] \to \mathbb{R}^m$.

DEF 1.8

Define a *curve* in \mathbb{R}^m to be the image of a path (i.e. a set of points in \mathbb{R}^m). Remember always the phrase "paths parameterize curves." For example, the unit circle curve is parameterized by the path $r: \mathbb{R} \to \mathbb{R}^2$ given by $r(t) = \langle \cos(t), \sin(t) \rangle$.

DEF 1.9

Define the *tangent line* of \vec{r} at $a \in \mathbb{R}$ to be an affine transformation $l : \mathbb{R} \to \mathbb{R}^m$ satisfying the following:

$$l(t) = r(a) + (t - a)\vec{d} : \vec{d} \neq 0$$
 and $\lim_{t \to a} \frac{||r(t) - l(t)||}{|t - a|} = 0$

E.G. 1.1

– ♦ Examples **\$** –––––

Consider the tangent to the unit circle at a point $a \in \mathbb{R}$: we have $r(a) = \langle \cos(a), \sin(a) \rangle$:

$$l(t) = \langle \cos(t), \sin(t) \rangle + (t - a) \langle d_1, d_2 \rangle$$

Where $\langle d_1, d_2 \rangle \neq 0$. Consider now the limit:

$$\lim_{t \to a} \frac{||r(t) - l(t)||}{|t - a|} = \lim_{t \to a} \frac{1}{|t - a|} \sqrt{(\cos(t) - \cos(a) - (t - a)d_1)^2 + (\sin(t) - \sin(a) - (t - a)d_2)^2}$$

$$= \lim_{t \to a} \sqrt{\left(\frac{\cos(t) - \cos(a)}{t - a} - d_1\right)^2 + \left(\frac{\sin(t) - \sin(a)}{t - a} - d_2\right)^2}$$

$$= \int_{t \to a} \sqrt{(-\sin(a) - d_1)^2 + (\cos(a) - d_2)^2} = 0$$

$$\iff (d_1 = -\sin(a)) \land (d_2 = \cos(a))$$

$$\implies l(t) = \langle -\sin(a), \cos(a) \rangle \quad \Box$$

DIFFERENTIATION AND CONTINUITY

DEF 1.10

DEF 1.11

DEF 1.12

DEF 1.13

Given $\vec{r}: \mathbb{R} \to \mathbb{R}^n$, the *derivative* of \vec{r} at $a \in \mathbb{R}$ is a linear transformation $\vec{\lambda}: \mathbb{R} \to \mathbb{R}^n$ satisfying

$$\lim_{t \to a} \frac{\|r(t) - r(a) - \lambda(t - a)\|}{|t - a|} = 0 \quad \text{or equivalently} \quad \lim_{h \to 0} \frac{\|r(a + h) - r(a) - \lambda(h)\|}{|h|} = 0$$

It is denoted $D\vec{r}_a$, and represented by the $n \times 1$ matrix r'(a). One may now rewrite the tangent line in the form $l(t) = r(a) + \lambda(t-a)$.

The arc length of a curve r(t) in $t \in [a, b]$ is given by

$$s = \int_{a}^{b} ||r'(t)|| dt$$

An arc length parameterization of r(t) is some $t = \alpha(s)$ such that $r(\alpha(s))$ has a unit velocity vector, i.e. $||r'(\alpha(s))|| = 1$. Alternatively, one could find an expression for arc length, and then parameterize r(t) in terms of its arc length. The resultant will be equivalent.

 $\lambda: \mathbb{R}^n \to \mathbb{R}^m$ is *continuous* at \vec{a} if, for any $\varepsilon > 0$, we can find $\delta > 0$ such that

$$\|\vec{x} - \vec{a}\| < \delta \implies \|\lambda(\vec{x}) - \lambda(\vec{a})\| < \varepsilon \ \forall \vec{x} \in \mathbb{R}^n$$

E.G. 1.2

We'll do an arc length parameterization of a semicircle of radius 1 with its center at the origin, i.e. $y = \sqrt{1 - x^2}$. We get the natural parameterization $r(t) = \langle t, \sqrt{1 - t^2} \rangle$, where $t \in [-1, 1]$. We'd like to find a change of parameters $t = \alpha(s)$ such that $||r(\alpha(s))|| = 1$ and $\alpha' \ge 0$.

$$r(\alpha(s)) = \left\langle \alpha(s), \sqrt{1 - \alpha(s)^2} \right\rangle$$

$$r'(\alpha(s)) = \left\langle \alpha'(s), \frac{1}{2} (1 - \alpha(s)^2)^{-\frac{1}{2}} \cdot (-2\alpha(s)\alpha'(s)) \right\rangle$$

$$= \alpha'(s) \left\langle 1, \frac{-\alpha(s)}{\sqrt{1 - \alpha(s)^2}} \right\rangle$$
Then $1 = \|r'(\alpha(s))\| = \alpha'(s) \sqrt{1 + \frac{\alpha(s)^2}{1 - \alpha(s)^2}}$

$$= \frac{\alpha'(s)}{\sqrt{1 - \alpha(s)^2}}$$

Integrating with respect to s, we get $s = \arcsin(\alpha(s)) = \arcsin(t)$. Thus, $t = \sin(s)$, and $s \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$, and we yield the parameterization $\langle \sin(s), \cos(s) \rangle : s \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$.

SURFACES

We note the following quadric surfaces:

Type	Explicit Form
Ellipsoid	$x^2 + y^2 + z^2 = 1$
Elliptic Hyperboloid	$x^2 + y^2 - z^2 = 1$
Elliptic Paraboloids	$x^2 + y^2 - z^2 = -1$
Hyperbolic Paraboloids	$x = y^2 - z^2$
Double Cones	$x^2 = y^2 + z^2$

A surface F(x, y) is called *differentiable* at (a, b) if there exists some linear transformation $\lambda : \mathbb{R}^2 \to \mathbb{R}$ such that

$$\lim_{(h,k)\to(0,0)} \frac{|F(a+h,b+k)-F(a,b)-\lambda(h,k)|}{\|\langle h,k\rangle\|} = 0 \quad \text{or alternatively}$$

$$\lim_{(x,y)\to(a,b)} \frac{|F(x,y)-F(a,b)-\lambda(x-a,y-b)|}{\|\langle x,y\rangle-\langle a,b\rangle} = 0$$

 $\lambda: \mathbb{R}^2 \to \mathbb{R}$, as above, is called the *derivative* of F(x, y) at (a, b), and is denoted by DEF 1.15

 $D_{F_{(a,b)}}$. It is a linear transformation, and may be represented by multiplication by a 1×2 matrix [u, v] for $u, v \in \mathbb{R}$.

— ♠ Examples ♣ —

Let F(x, y) = xy. We consider F at (a, b). Then

$$0 \leq \frac{|F(a+h,b+k) - F(a,b) - \lambda(h,k)|}{\|\langle h,k \rangle\|} = \frac{|(a+h)(b+k) - ab - (uk+vk)|}{\|\langle h,k \rangle\|}$$

$$= \frac{|bh + ak + hk - uh - vk|}{\|\langle h,k \rangle\|} = \frac{|(b-u)h + (a-v)k + hk|}{\|\langle h,k \rangle\|}$$

$$\leq \frac{|b-u||h|}{|h|} + \frac{|a-v||k|}{|k|} + \frac{|h||k|}{|h|} \quad \text{since } |h|, |k| \leq \|\langle h,k \rangle\|$$

$$= |b-u| + |a-v| + |k| \to |b-u| + |a-v|$$

$$= 0 \quad \text{when } b = u, a = v$$

Thus, the desired limit is always \geq and \leq 0, so especially it is 0. Our derivative at (a, b) is then $\lambda(x, y) = bx + ay$.

One may also find these coefficients as the partial derivative of F at (a, b), i.e.

$$\nabla F(a, b) = \left\langle \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y} \right\rangle \Big|_{(a, b)}$$

This is called the *gradient*. Similarly, $\alpha(x, y) = F(a, b) + \lambda(x - a, y - b)$ is called the *affine approximation* of F at (a, b), and is analogous to the tangent line of a curve r at a.

1.1 Characterization of the Derivative

Let $\vec{F} : \mathbb{R}^n \to \mathbb{R}^m$. The derivative of F at \vec{a} , λ , exists and is unique if:

1. \exists a linear transformation $\vec{\lambda} : \mathbb{R}^n \to \mathbb{R}^m$ satisfying

$$\lim_{\vec{h} \to \vec{0}} \frac{\|F(\vec{a} + \vec{h}) - F(\vec{a}) - \lambda(\vec{h})\|}{\|\vec{h}\|} = 0$$

2. \exists a linear transformation $\vec{\lambda}: \mathbb{R}^n \to \mathbb{R}^m$ and a function E such that

$$F(\vec{a} + \vec{h}) - F(\vec{a}) = \lambda(\vec{h}) + ||\vec{h}||E(\vec{h})$$

and E(0) = 0 is continuous at 0.

If $F: \mathbb{R}^n \to \mathbb{R}$ is differentiable at \vec{a} , then all partial derivatives of F at \vec{a} exist. Furthermore, $\lambda(\vec{a}) = \left[\partial_1 F \cdots \partial_n F\right]_{\vec{a}}$.

DEF 1.16

E.G. 1.3

PROP 1.5

Note that the full converse is *false* (as a counterexample, see that the partial derivative of $F = \sqrt{|xy|}$ exist at (0, 0), but it is not differentiable there)

1.2 Partial Converse

If all partial derivatives of $F : \mathbb{R}^n \to \mathbb{R}$ exist near \vec{a} and are continuous at \vec{a} , then F is differentiable at \vec{a} .

 $F: \mathbb{R}^n \to \mathbb{R}$ is called *continuously differentiable* at \vec{a} if all partial derivatives of F DEF 1.17 exist near \vec{a} and are continuous at \vec{a} . We also say that F is C^1 continuous.

PROP 1.6

If $F : \mathbb{R}^n \to \mathbb{R}$ is C^1 continuous at a, then it is differentiable at a.

This is a restating of Thm 1.2 using Def 1.17

PROOF.

Note that the converse to our partial converse is *not* true: i.e. if F is differentiable at \vec{a} , it is not necessarily continuously differentiable at \vec{a} . Some counter examples include F(x, y) = |y| and $\{F(x) = x^2 \sin(\frac{1}{x}) \text{ s.t. } x \neq 0 \text{ and } 0 \text{ otherwise}\}$.

E.G. 1.4

In Example 1.3, we prove (laboriously) that F(x, y) = xy is differentiable for all (a, b). We can now use Thm 1.2 to show this result: the partial derivatives $F_x = y$ and $F_y = x$ exist and are continuous $\forall x, y \in \mathbb{R}$, so F is differentiable $\forall x, y \in \mathbb{R}$.

We may represent the partial derivatives of $\vec{F}: \mathbb{R}^n \to \mathbb{R}^m = \langle F_1, ..., F_m \rangle$ at a using DEF 1.18 the *Jacobian* matrix, denoted $F'(\vec{a})$ or J_a , and defined as follows:

$$F'(a) = J_a = \begin{bmatrix} \frac{\partial F}{\partial x_1} & \cdots & \frac{\partial F}{\partial x_n} \end{bmatrix} \Big|_a = \begin{bmatrix} \nabla^{\mathsf{T}} F_1 \\ \vdots \\ \nabla^{\mathsf{T}} F_m \end{bmatrix} \Big|_a = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \cdots & \frac{\partial F_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_m}{\partial x_1} & \cdots & \frac{\partial F_m}{\partial x_n} \end{bmatrix} \Big|_a$$

1.3 Chain Rule

Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be differentiable at \vec{a} . Let $g: \mathbb{R}^m \to \mathbb{R}^l$ be differentiable at $\vec{b} = f(\vec{a})$. Then

 $h = g \circ f : \mathbb{R}^n \to \mathbb{R}^l$ is differentiable at \vec{a} and $D\vec{h}_{\vec{a}} = D\vec{g}_{\vec{h}} \circ D\vec{f}_{\vec{a}}$

Furthermore, their Jacobians obey [h'(a)] = [g'(b)][f'(a)]

PROOF.

Let λ be the derivative of f. Let \vec{t} , \vec{s} be arbitrary. Then we have

$$f(\vec{a} + \vec{t}) - f(\vec{a}) = \lambda(\vec{t}) + ||\vec{t}|| \varepsilon_1(\vec{t})$$

where $\varepsilon_1 : \mathbb{R}^n \to \mathbb{R}^m$ is continuous and $\vec{0}@\vec{0}$. Similarly, for g:

$$g(\vec{b} + \vec{s}) - g(\vec{b}) = \mu(\vec{s}) + ||\vec{s}|| \varepsilon_2(\vec{s})$$

where μ is the derivative of g, and ε_2 is as above. Our goal is to write $h = g \circ f$ in the same manner. Let $\nu = \mu \circ \lambda$. Then

$$h(\vec{a} + \vec{t}) - h(\vec{a}) = g(f(\vec{a} + \vec{t})) - g(f(\vec{a}))$$

$$= g(f(\vec{a}) + \underbrace{\lambda(\vec{t}) + ||\vec{t}|| \varepsilon_{1}(\vec{t})}) - g(f(\vec{a}))$$

$$= \mu(\vec{s}) + ||\vec{s}|| \varepsilon_{2}(\vec{s})$$

$$= \mu(\lambda(\vec{t}) + ||\vec{t}|| \varepsilon_{1}(\vec{t})) + ||\vec{s}|| \varepsilon_{2}(\vec{s})$$

$$= \mu(\lambda(\vec{t})) + ||\vec{t}|| \mu(\varepsilon_{1}(\vec{t})) + ||\vec{s}|| \varepsilon_{2}(\vec{s})$$

$$= \nu(\vec{t}) + ||\vec{t}|| \underbrace{\left(\mu(\varepsilon_{1}(\vec{t})) + \frac{||\vec{s}||}{||\vec{t}||} \varepsilon_{2}(\vec{s})\right)}_{-\varepsilon_{1}(\vec{t})} \quad \text{if } \vec{t} \neq 0$$

$$\begin{split} \overrightarrow{t} \neq 0 &\implies 0 \leq \|\varepsilon_3(\overrightarrow{t})\| \leq \|\mu(\varepsilon_1(\overrightarrow{t}))\| + \frac{\|\lambda(\overrightarrow{t})\| + \|\overrightarrow{t}\|\|\varepsilon_1(\overrightarrow{t})\|}{\|\overrightarrow{t}\|} \|\varepsilon_2(\overrightarrow{s})\| \\ &\leq M\|\varepsilon_1(\overrightarrow{t})\| + (L + \|\varepsilon_1(\overrightarrow{t})\|)\|\varepsilon_2(\overrightarrow{s})\| \\ & (\text{where } \lambda(\overrightarrow{t}) \leq L\|\overrightarrow{x}\| \text{ and } \mu(\overrightarrow{x})) \leq M\|\overrightarrow{x}\|) \\ & \implies \lim_{\overrightarrow{t} \to 0} \varepsilon_3(\overrightarrow{t}) = 0 \quad \Box \end{split}$$

- ♦ Examples ♣

1. Consider $f(x,y) = \langle x+y, x-y \rangle$ and $g(x,y) = \frac{1}{4}x^2 - \frac{1}{4}y^2$. Then $h = g \circ f : \mathbb{R}^2 \to \mathbb{R}$ is given by

$$\frac{1}{4}(x+y)^2 - \frac{1}{4}(x-y)^2$$

Let $\vec{a} = \langle a_1, a_2 \rangle$. Then $f(a) = b = \langle a_1 + a_2, a_1 - a_2 \rangle$. What about the Jacobian of f?

$$f'(a) = \begin{bmatrix} \partial_1 f_1 & \partial_2 f_1 \\ \partial_1 f_2 & \partial_2 f_2 \end{bmatrix} \Big|_{(a_1, a_2)} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Similarly, for *g* we have

$$g'(b) = \begin{bmatrix} \partial_1 g & \partial_2 g \end{bmatrix} \Big|_{(a_1 + a_2, a_1 - a_2)} = \begin{bmatrix} \frac{1}{2}(a_1 + a_2) - \frac{1}{2}(a_1 - a_2) \end{bmatrix}$$

Then, by the chain rule, we multiple these two matrices to yield

$$\left[\frac{1}{2}(a_1 + a_2) - \frac{1}{2}(a_1 - a_2)\right] \cdot \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} a_2 & a_1 \end{bmatrix}$$

One can (less) manually find that $h = g \circ f$ is xy, and conclude the same.

2. Let *S* be a surface in R^3 given by F(x, y, z) = 0 (this is called a "level surface," e.g. xy - z = 0). Let P = (a, b, c) be a point on *F*, and let *C* be a curve in *S* containing *P*, parameterized by r(t).

Denote $r(t) = \langle x(t), y(t), z(t) \rangle$. Then $g = F \circ r = F(x(t), y(t), z(t)) = 0$. By chain rule, we have $0 = g'(t_0) = F'(P) \cdot r'(t_0)$, where we choose t_0 such that $r(t_0) = \langle a, b, c \rangle$. Then, we observe that

$$0 = \nabla F(P) \cdot \vec{v}(t_0) \implies \nabla F(P) \perp \vec{v}(t_0)$$

Where $\vec{v} = r'$ is the velocity vector of r. By considering all curves that satisfy our construction $C \subset S$, we yield the tangent plane of S at P with normal vector $\vec{n} = \nabla F(P)$. In particular, the point-normal form of the tangent plane of a surface F at P = (a, b, c) is given by

$$\partial_x F(P)(x-a) + \partial_y F(P)(y-b) + \partial_z F(P)(z-c) = 0$$

3. Generally, we can consider $S^{n-1} \subset \mathbb{R}^n$ of $F : \mathbb{R}^n \to \mathbb{R}$. (This is called a *hypersurface*). Suppose this is differentiable at $P \in S$. Let $C \subset S$ be a curve in S through P, parameterized by $r : \mathbb{R} \to \mathbb{R}^n$ and differentiable at t_0 with $r(t_0) = P$.

Then, by the chain rule, $v(t_0) \perp \nabla F(P)$. If $v(t_0) \neq 0$, then the tangent line to C at P has derivative $r(t_0)$. If $\nabla F(P) \neq 0$, then the tangent hyperplane to S at P has a normal vector $n = \nabla F(P)$.

Let $\mathbb{R}^n \to \mathbb{R}$, \vec{a} , $\vec{h} \in \mathbb{R}^n$. Then the *directional derivative* of \vec{F} along \vec{h} at \vec{a} is given by DEF 1.19

$$\partial_{\vec{h}}F(\vec{a}) = \lim_{t \to 0} \frac{F(\vec{a} + t\vec{h}) - F(\vec{a})}{t}$$

For $f: \mathbb{R}^n \to \mathbb{R}^m$ and $\vec{a} \in \mathbb{R}^n$, $\partial_i F(\vec{a}) = \partial_{e_i} F(\vec{a})$ is the partial derivative of F at \vec{a} DEF 1.20

along the i^{th} direction. In particular, for $n \leq 3$, $\partial_x = \partial_{\hat{i}}$, $\partial_y = \partial_{\hat{j}}$, and $\partial_z = \partial_{\hat{j}}$.

Then, if $F: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $\vec{a} \in \mathbb{R}^n$, then

$$\partial_{\vec{h}}F(\vec{a}) = \vec{h} \cdot \nabla F(\vec{a}) = \sum_{i=1}^{n} h_i \partial_i F(\vec{a})$$

Let $f: \mathbb{R}^n \to \mathbb{R}^m$, $\vec{a}, \vec{h} \in \mathbb{R}^n$. By Def 1.19, we have

$$\partial_{\vec{h}} f(\vec{a}) := \lim_{t \to 0} \frac{f(\vec{a} + t\vec{h}) - f(\vec{a})}{t} = \lim_{t \to 0} \frac{g(t) - g(0)}{t} = g'(0) \qquad g(t) := f(\vec{a} + t\vec{h})$$

The *iterated directional derivative* on these parameters, denoted $\partial_{\vec{h}}^i f(\vec{a})$, is $g^{(i)}(0)$.

If f is i-times continuously differentiable at \vec{a} , then we can write

$$\partial_{\vec{h}}^{i}(\vec{a}) = (\vec{h} \cdot \nabla)^{i} f(\vec{a})$$

Let $F: \mathbb{R}^n \to \mathbb{R}$ be differentiable, and let $\vec{a}, \vec{h} \in \mathbb{R}^n$, with $\vec{h} \neq 0$. Then

$$F(\vec{a} + \vec{h}) - F(\vec{a}) = \partial_{\vec{h}} F(c_{\vec{h}}) = \vec{h} \nabla F(c_{\vec{h}})$$
 for some $c_{\vec{h}} \in [\vec{a}, \vec{a} + \vec{h}]$

1.4 Mixed Partials are Equal

Let $f: \mathbb{R}^2 \to \mathbb{R}$, $\vec{a} = \langle a_1, a_2 \rangle$. Let $\partial_1 f$, $\partial_2 \partial_1 f$ be defined near \vec{a} , let $\partial_2 \partial_1 f$ be continuous at \vec{a} , and let $\partial_2 f(\cdot, a_2)$ be defined near \vec{a} .

 $\implies \partial_1 \partial_2 f$ is defined at \vec{a} and $\partial_1 \partial_2 f(\vec{a}) = \partial_2 \partial_1 f(\vec{a})$.

If $f: \mathbb{R}^2 \to \mathbb{R}$ is C^2 continuous near \vec{a} , then $\partial_1 \partial_2 f = \partial_2 \partial_1 f$ at \vec{a} .

 $f: \mathbb{R}^n \to \mathbb{R}$ is *k-times continuously differentiable* at \vec{a} if all k^{th} -order partial derivatives exist near \vec{a} and are continuous at \vec{a} . We also say that f is C^k continuous.

If f is C^k continuous at \vec{a} , then its $(k-1)^{th}$ order partial derivatives are C^1 continuous at \vec{a} .

1.5 Multivariable Taylor's Theorem

Let $f : \mathbb{R}^n \to \mathbb{R}$ be C^k continuous near some $\vec{a} \in \mathbb{R}^n$. For $j \in [1, k]$, let $\alpha_j(\vec{h})$ be defined by

$$\alpha_j(\vec{h}) = \frac{1}{j!} \partial_{\vec{h}}^j f(\vec{a}) = \frac{1}{j!} (\vec{h} \cdot \nabla)^j f(\vec{a}) \quad \forall$$

Let $p(\vec{h}) = \alpha_1(\vec{h}) + ... + \alpha_k(\vec{h})$. Then $G : \mathbb{R}^n \to \mathbb{R}$ by $G(\vec{x}) = f(\vec{a}) + p(\vec{x} - \vec{a})$ is the best degree k approximation of f at \vec{a} .

PROP 1.7

PROP 1.8

PROP 1.9

PROP 1.10 Mean Value Thm.

PROP 1.11

DEF 1.21

PROP 1.12

11 INTEGRATION

II Integration

RIEMANN INTEGRATION

Let \mathcal{B} be a box in \mathbb{R}^n . Choose $F: \mathbb{R}^n \to \mathbb{R}$ which is bounded on the box. Then, informally, F is *integrable* if the limit of its Riemann summation is equivalent across all orderings of tagged partitions.

By the extreme value theorem, if F is continuous on \mathcal{B} , then F is bounded on PROP 2.1 \mathcal{B} .

2.1 Integrability Criterion on Boxes

If *F* is continuous on \mathcal{B} , then *F* is integrable over \mathcal{B} .

2.2 Fubini

Let $\mathcal{B} = [a_1, b_1] \times \cdots \times [a_n, b_n]$. Let $F : \mathbb{R}^n \to \mathbb{R}$ be continuous on \mathcal{B} . Then

$$\int_{\mathcal{B}} F dV^{n} = \int_{x_{n}=a_{n}}^{x_{n}=b_{n}} \cdots \left(\int_{x_{1}=a_{1}}^{x_{1}=b_{1}} F(x_{1},...,x_{n}) dx_{1} \right) \cdots dx_{n}$$

Furthermore, the order of integration doesn't matter.

$$\int_{a}^{b} g(x)dx = g(c)(b-a) \text{ where } a < c < b.$$

PROP 2.2

$$\frac{G(b)-G(a)}{b-a} = G'(c) = g(c)$$
 by the mean value theorem and the FTC.

PROOF.

Point-Set Topology

A set $S \subseteq \mathbb{R}^n$ has zero measure if $\forall \varepsilon > 0$ we can choose a set of open balls such that $S \subseteq \bigcup B(x_i, \varepsilon_i)$ where $\sum \operatorname{vol}(B(x_i, \varepsilon_i)) < \varepsilon$.

In general, hypersurfaces in \mathbb{R}^n have zero measure. Thus, if $F: \mathbb{R}^n \to \mathbb{R}$ is continuous except on a hypersurface, F is still integrable.

 $\vec{p} \in \text{Int}(S)$ is called an *interior point* of S if $\exists \varepsilon > 0$ such that $B(\vec{p}, \varepsilon) \subseteq S$.

- 1. If $S \subseteq \mathbb{R}^n$ has zero measure and $S' \subseteq S$, then S' has zero measure.
- 2. If $S \subseteq \mathbb{R}^n$ has zero measure, then S has no interior points.

Let $S \subseteq \mathbb{R}^n$. Then

- 1. Int(S), the *interior of S*, is the set of all interior points of S
- 2. S is called *open* if S = Int(S).
- 3. S^c , the compliment of S, is $\mathbb{R}^n \setminus S$.
- 4. $p \in S^c$ is called an *exterior point* of S if $\exists \varepsilon > 0$ with $B(p, \varepsilon) \subseteq S^c$.
- 5. Ext(S), the *exterior* of S, is the set of all exterior points of S.
- 6. *S* is *closed* if $S^c = \text{Ext}(S)$.

PROP 2.4

DEF 2.5

PROP 2.5

PROOF.

- 7. $p \in \mathbb{R}^n$ is called a boundary point of S if $p \notin \text{Int}(S) \land p \notin \text{Ext}(S)$.
- 8. The *boundary* of *S*, denoted ∂S , is the set of all boundary points of *S*.
- 9. *S* is bounded if $\exists \mathcal{B}$ with $S \subseteq \mathcal{B} \subsetneq \mathbb{R}^n$.

S is closed \iff S^c is open \iff S contains its boundary.

2.3 Integrable ← Trivial Discontinuities

The set of discontinuities of F in \mathcal{B} has zero measure $\iff F$ is integrable over \mathcal{B} .

Let $\mathcal{D} \subseteq \mathbb{R}^n$ be closed and bounded. Let $f: \mathcal{D} \to \mathbb{R}^n$ be some function. $\hat{f}: \mathbb{R}^n \to \mathbb{R}$ defined by

$$\hat{f}(x) = \begin{cases} f(x) & x \in \mathcal{D} \\ 0 & \text{o.w.} \end{cases}$$

is called the *trivial extension of* f.

f is integrable over \mathcal{D} if its trivial extension is integrable over a box $\mathcal{B} \supseteq \mathcal{D}$.

2.4 Integrability Criterion on Sets

Let $\mathcal{D} \subseteq \mathbb{R}^n$ be closed and bounded, with a boundary that has zero measure. Then, if $f: \mathcal{D} \to \mathbb{R}$ is continuous on \mathcal{D} , then f is integrable.

If f is continuous on \mathcal{D} , then \hat{f} is continuous on both $\operatorname{Int}(\mathcal{D})$ and $\operatorname{Ext}(\mathcal{D})$ (for any point in either of these sets, we can find epsilon balls centered at the point and contained in the set—within these intervals $\hat{f} = f$). Thus, since $\mathcal{D} = \operatorname{Int}(\mathcal{D}) \cup \operatorname{Ext}(\mathcal{D}) \cup \partial \mathcal{D}$, the set of discontinuities of \hat{f} has at most measure 0. Hence, \hat{f} is integrable over any box containing \mathcal{D} , and hence f is integrable over \mathcal{D} by $\underline{\operatorname{Prop 2.5}}$.

13 INTEGRATION

 $\mathcal{D} \subseteq \mathbb{R}^2$ is called *y-simple* if, for $a, b \in \mathbb{R}$ and $g_1, g_2 : \mathbb{R} \to \mathbb{R}$ continuous, we may DEF 2.6 write

$$\mathcal{D} = \begin{cases} a \le x \le b \\ g_1(x) \le y \le g_2(x) \end{cases}$$

Similarly, \mathcal{D} is *x-simple* if

$$\mathcal{D} = \begin{cases} a \le y \le b \\ g_1(y) \le x \le g_2(y) \end{cases}$$

Note that, since $x \in [a, b]$ is closed (hence compact), $g_1(x)$ and $g_2(x)$ are bounded. We reason similarly for x-simple domains.

 $\mathcal{D} \subseteq \mathbb{R}^2$ is elementary if it is y- or x-simple. It is simple if it is both.

DEF 2.7

2.5 Fubini

If $\mathcal{D} \subseteq \mathbb{R}^n$ is elementary and $f : \mathcal{D} \to \mathbb{R}$ is continuous, then

•
$$\mathcal{D}$$
 is y-simple $\implies \iint_{\mathcal{D}} f dA = \int_{x=a}^{x=b} \int_{y=g_1(x)}^{y=g_2(x)} f(x,y) dy dx$

•
$$\mathcal{D}$$
 is x-simple $\implies \iint_{\mathcal{D}} f dA = \int_{y=a}^{y=b} \int_{x=g_1(y)}^{x=g_2(y)} f(x,y) dx dy$

– ♦ Examples ♣ –

E.G. 2.1

1. Consider $\iint_{\mathcal{D}} (1+2y) dA$, where \mathcal{D} is bounded by $y=2x^2$ and $y=1+x^2$. We first find the intersection between these two curves: $2x^2=1+x^2 \implies x=\pm 1$.

VECTOR CALCULUS NOTES 14

Then, by Thm 2.5 (\mathcal{D} is *y*-simple), we write

$$\iint_{\mathcal{D}} (1+2y)dA = \int_{x=-1}^{x=1} \int_{2x^2}^{1+x^2} (1+2y)dydx = \int_{-1}^{1} y+y^2 \Big|_{2x^2}^{1+x^2}$$

$$= \int_{-1}^{1} (1+x^2) + (1+x^2)^2 - 2x^2 - 4x^4$$

$$= \int_{-1}^{1} 1+x^2 + 1 + x^4 + 2x^2 - 2x^2 - 4x^4$$

$$= \int_{-1}^{1} -3x^4 + x^2 + 2 = \frac{-3}{5}x^5 + \frac{1}{3}x^3 + 2x \Big|_{-1}^{1} = 2\frac{-3}{5} + 2\frac{1}{3} + 4$$

$$= 2\left(\frac{-9}{15} + \frac{5}{15} + \frac{30}{15}\right) = \frac{52}{15}$$

2. Consider $\iint_{\mathcal{D}} y dA$, where \mathcal{D} is bounded by $x = y - y^3$, $x = \sqrt{y} - 1$, x = -1, and y = -1 (OOF). By Thm 2.5 (y-simple):

We split this up into two *x*-simple graphs, one in $y \in [-1, 0]$, and one in $y \in [0, 1]$. Then we have $\iint_{\mathcal{D}} = I_1 + I_2$, with

$$I_{1} = \int_{0}^{1} \int_{\sqrt{y}-1}^{y-y^{3}} y dx dy \qquad I_{2} = \int_{-1}^{1} \int_{-1}^{y-y^{3}} y dx dy$$

Computing this integral a hassle. Try it yourself.

15 INTEGRATION

3. We may also flip the bounds of integration using Thm 2.5. For example, consider $\int_0^3 \int_y^3 \sin(x^2) dx dy$. This is a non-elementary integral to evaluate in x. But observe that our bounds are equivalent to $y \in [0, x]$ and $x \in [0, 3]$, so we may re-write this as $\int_0^3 \int_0^x \sin(x^2) dy dx$.

We pick up an *x*, not, after integrating WRT *y*, so this is easy to evaluate!

A set $S \subseteq \mathbb{R}^n$ is called *path-connected* if, for every $a, b \in S$, there exists a continuous mapping containing a and b (i.e., there exists a path between them).

DEF 2.8

In $\mathcal{D} \subseteq \mathbb{R}^n$, we call \mathcal{D} *elementary* if it is closed, bounded, and both its interior and boundary are path-connected.

DEF 2.9

Let $\mathcal{D}, \mathcal{D}^*$ be elementary subsets of \mathbb{R}^n . Let $T: \mathcal{D}^* \to \mathcal{D}$. We call T onto , or *surjective*, if the whole of \mathcal{D} is mapped to, i.e. $\forall d^* \in \mathcal{D} \exists d \in \mathcal{D} : T(d) = d'$.

This is distinct from elementary-ness of $\mathcal{D} \subseteq \mathbb{R}^2$, which we characterized by y and x simple-ness. DEF 2.10

Using the same notation, we call T one-to-one, or injective, if no two points share a mapping, i.e. $\forall d_1^*, d_2^* \in \mathcal{D}^*$, we have $T(d_1^*) = T(d_2^*) \implies d_1^* = d_2^*$.

DEF 2.11

 $S \subseteq \mathbb{R}^n$ is a *hypersurface* if, $\forall s \in S$, $\exists \varepsilon > 0$, an open set $\overrightarrow{0} \in U$, and a function $T: U \to B(s, \varepsilon)$ such that

DEF 2.12

- T is injective on $Int(\mathcal{D}^*)$ and also surjective
- $T(U \cap \{s = \langle x_1, ..., x_n \rangle : x_n = 0\}) = S \cap B(s, \varepsilon)$

For $\mathcal{D} \subseteq \mathbb{R}^n$ and F integrable, $\int_{\mathcal{D}} F dV^n = \int_{\text{Int}(\mathcal{D})} F dV^n$.

PROP 2.6

2.6 Change of Variables

Let $T: \mathcal{D}^* \to \mathcal{D}$ be C^1 and injective on $\operatorname{Int}(\mathcal{D}^*)$. Let $F: \mathcal{D} \to \mathbb{R}$ be integrable over \mathcal{D} . Let [T] be the Jacobian induced by T. Let $F^*: \mathcal{D}^* \to \mathbb{R} = F \circ T$. Then F^* is integrable over \mathcal{D}^* and

$$\int_{\mathcal{D}} F dV = \int_{\mathcal{D}^*} F^* |\det(T)| dV$$

E.G. 2.2

------ 📤 Examples 弗 –

In polar coordinates, $\int_{\mathcal{D}} F dA = \int_{\mathcal{D}^*} F^* r dA$. For this, see that the relevant Jacobian is

$$T' = \begin{bmatrix} \partial_r x & \partial_{\theta} x \\ \partial_r y & \partial_{\theta} y \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -r\sin(\theta) \\ \sin(\theta) & r\cos(\theta) \end{bmatrix} \implies |\det(T')| = |r| = r$$

Consider the area of the following parallelogram:

Then, $x = \frac{2u-v}{3}$ and $y = \frac{u+v}{3}$. Hence, we compute our Jacobian and conclude that $\det(T') = \frac{1}{3}$. However, we may also compute the determinate of the *inverse*'s Jacobian, i.e. u = x + y and v = -x + 2y, which will yield 3, and invert the result. Hence, since the area of the left rectangle is 9, we get an area of 3 for the parallelogram.

2.7 Mean Value Theorem in \mathbb{R}^n

Let $F: \mathcal{D} \to \mathbb{R}$ be integrable over an elementary region $\mathcal{D} \subseteq \mathbb{R}^n$. Let $\overline{F} := \int_{\mathcal{D}} F dV \frac{1}{\operatorname{vol}(\mathcal{D})}$ be the mean value of F. Then

$$\exists c \in \mathcal{D} : F(c) = \overline{F}$$

17 VECTOR FIELDS

III Vector Fields

REGULAR PATHS

 $\vec{r}: [a, b] \to \mathbb{R}^n$ is called a regular path if it is C^1 and ||r'(t)|| > 0 over [a, b].

 $C \subseteq \mathbb{R}^n$ is called a *regular curve* if it is the image of a regular path.

If C is a regular curve, then there exists and unique arc length parameterization $\rho: [0, l] \to \mathbb{R}^n$ of C.

A regular path \vec{r} : $[a, b] \to \mathbb{R}^n$ is *simple* if it is injective (except possibly at its definition of the path \vec{r}).

A regular path \vec{r} : $[a, b] \to \mathbb{R}^n$ is called *closed* if r(a) = r(b).

A regular curve $C \subseteq \mathbb{R}^n$ is called *simple* or *closed* if it is the image of a simple or DEF 3.5 closed path, respectively.

Center of Mass

Regular curves have zero measure, and hence zero n-dimensional volume, but we can measure 1-dimensional volume, i.e. length. Hence, $vol_1(C) := \int\limits_C 1 ds = l$.

Let $\delta: \mathcal{D} \to \mathbb{R}_+$ be an integrable density function. Then mass $(\mathcal{D}) = \int_{\mathcal{D}} \delta dV$. The DEF 3.6 center of mass $\vec{x} \in \mathcal{D}$ is given by

$$x_i = \frac{1}{\text{mass}(\mathcal{D})} \int_{\mathcal{D}} x_i \delta dV$$

The mean value theorem gives the fact that $\exists c : \delta(c) = \overline{\delta}$, where $\overline{\delta} = \frac{\text{mass}(\mathcal{D})}{\text{vol}(\overrightarrow{D})}$.

Let $C \subseteq \mathbb{R}^n$ be a curve parameterized by $r:[a,b] \to \mathbb{R}^n$. Let $\delta: C \to \mathbb{R}_+$ be a PROP 3.2 density function. Then

$$\operatorname{mass}(\mathcal{C}) = \int_{a}^{b} \delta(r(t)) ||r'(t)|| dt$$

$$\operatorname{mass}(\mathcal{C}) = \int_{\mathcal{C}} \delta ds = \int_{0}^{l} \delta(\rho(s)) ds = \int_{\operatorname{ch. of var's}}^{b} \int_{a}^{b} \delta(r(t)) ||r'(t)|| dt$$

where $\rho : [0, l] \to \mathbb{R}^n$ is the arc length parameterization of \mathcal{C} .

PROOF.

PROP 3.3

If $\mathcal{D} = \mathcal{C}$, a curve in \mathbb{R}^n , then the center of mass \vec{x} of \mathcal{C} with respect to $\delta : \mathcal{C} \to \mathbb{R}_+$ is given by

$$x_i = \frac{1}{\text{mass}(C)} \int_{a}^{b} r_i(t) \circ \delta(r(t)) ||r'(t)|| dt$$

where $r(t) = \langle r_1(t), ..., r_n(t) \rangle$: $t \in [a, b]$ parameterizes $C \subseteq \mathbb{R}^n$.

PROOF.

DEF 3.7

PROP 3.4

DEF 3.8

DEF 3.9

PROP 3.5

$$x_i = \left(\int\limits_C x_i \delta ds\right) \frac{1}{\text{mass}(C)} = \frac{1}{\text{mass}(C)} \int\limits_a^b r_i(t) \circ \delta(r(t)) ||r'(t)|| dt \quad \Box$$

VECTOR FIELDS

All curves $C \subseteq \mathbb{R}^n$ henceforth are regular and simple.

An *orientation* on a regular, simple curve C is a continuous function $T: C \to \mathbb{R}^n$ which gives the unit tangent vector to C.

There exist exactly two orientations on $C \subseteq \mathbb{R}^n$, $T : C \to \mathbb{R}^n$ and -T.

A vector field is a function $F : \mathbb{R}^n \to \mathbb{R}^n$.

Fix an orientation T on a curve $C \subseteq \mathbb{R}^n$. The *integral* of F over C is given by

$$\int_{\mathcal{C}} F \cdot T ds := \int_{0}^{l} (F \circ \rho) \cdot \rho'$$

where ρ is the arc length parameterization of C.

Under the conditions of Def 3.9, we have

$$\int_{C} F \cdot T ds = \int_{a}^{b} (F \circ r(t)) \cdot r' dt$$

where $r : [a, b] \to \mathbb{R}^n$ is a parameterization of C.

E.G. 3.1

---- 🌢 Examples 🕭 –

Let $F : \mathbb{R}^3 \to \mathbb{R}^3$ be defined by $F(x, y, z) = \langle 2x, 2y, 2z \rangle = 2 \langle x, y, z \rangle$. Hence, at any point, the vector generated by F will go through the line between the origin and that point (away).

We want to integrate over the triangle $C \subseteq \mathbb{R}^3$ bounded by (1, 0, 0), (0, 1, 0), (0, 0, 1). We orient this path as $(1, 0, 0) \to (0, 1, 0) \to (0, 0, 1)$.

19 VECTOR FIELDS

Then, we split *C* up into 3 parts (the lines traversing each point)

$$C_{1} = r_{1}(t)\langle 1, 0, 0 \rangle + t \langle -1, 1, 0 \rangle$$

$$C_{2} = r_{2}(t) = \langle 0, 1, 0 \rangle + t \langle 0, -1, 1 \rangle$$

$$C_{3} = r_{3}(t) = \langle 0, 0, 1 \rangle + t \langle 1, 0, -1 \rangle$$

$$\implies \int_{C_{1}} F \cdot T ds = \int_{0}^{1} \langle 2(1 - t), 2t, 2(0) \rangle \cdot \langle -1, 1, 0 \rangle dt = \int_{0}^{1} 4t - 2dt$$

$$= [2t^{2} - 2t]_{0}^{1} = 0$$

By symmetry, the integral across C_2 , C_3 will be the same, i.e. $3 \cdot 0 = 0$.

3.1 Line Integrals on Gradient Fields

Let $\mathcal{U} \subseteq \mathbb{R}^n$ be open and $\varphi : \mathcal{U} \to \mathbb{R}^n$ be C^1 continuous. Let $\mathcal{C} \subseteq \mathcal{U}$ be a curve with a parameterization $r : [a, b] \to \mathcal{U}$ and orientation T. Let A = r(a) and B = r(b). Then

$$\int_{C} \nabla \varphi \cdot T \, ds = \varphi(B) - \varphi(A)$$

PROOF.

$$\int_{C} \nabla \varphi \cdot T ds = \int_{a}^{b} \nabla \varphi(r(t)) \cdot r'(t) dt$$

$$\stackrel{\text{CR}}{=} \int_{a}^{b} (\varphi \circ r)'(t) dt \stackrel{\text{FTC}}{=} [\varphi \circ r]_{a}^{b}$$

$$= \varphi(r(b)) - \varphi(r(a)) = \varphi(B) - \varphi(A) \quad \Box$$

A vector field T is called *unit tangent* for a curve $C \subseteq \mathbb{R}^n$ if $T = \langle T_1, T_2 \rangle$ is exactly the unit tangent vector to C (AKA its orientation). Similarly, a vector field n is called *unit normal* for C if $n = \langle T_2, -T_1 \rangle$.

3.2 Jordan Curve Theorem

Let $C \subseteq \mathbb{R}^2$ be a curve. Then there exists an elementary region $D \subseteq \mathbb{R}^2$ such that C is the boundary of D.

PROOF.

The proof of this is beyond the scope of this course.

3.3 Green's Theorem

Let $\mathcal{D} \subseteq \mathcal{U}$ be an elementary region. Fix an orientation $T = \langle T_1, T_2 \rangle$ on $\partial \mathcal{D}$. Let $F : \mathcal{U} \to \mathbb{R}^2$ be a C^1 vector field. Then

$$\int_{\partial \mathcal{D}} F \cdot T ds = \iint_{\mathcal{D}} \partial_1 F_2 - \partial_1 F_1 dA = \iint_{\mathcal{D}} \operatorname{curl}_2(F) dA$$

where
$$\operatorname{curl}_2 = \det \begin{pmatrix} \partial_1 & \partial_2 \\ F_1 & F_2 \end{pmatrix}$$
. Let $n = \langle T_2, -T_1 \rangle$. Then

$$\int_{\partial D} F \cdot n ds = \iint_{D} \partial_{1} F_{1} + \partial_{2} F_{2} = \iint_{D} \operatorname{div}_{2}(F) dA$$

Conceptually, the curl of F at a point \vec{a} gives how much "spinning" is occurring about \vec{a} , and the divergence of F measures the tendency of nearby vectors to "move away" from \vec{a} . (Or, toward, if negative).

Let $\mathcal{U} \subseteq \mathbb{R}^n$ be open and $\varphi : \mathcal{U} \to \mathbb{R}^n$ be C^2 continuous. Then, if F is a vector field and $F = \nabla \varphi$, then F is called a *gradient field*.

A vector field $F : \mathbb{R}^m \to \mathbb{R}^n$ is *conservative* if $\partial_i F_j = \partial_j F_i \ \forall i \neq j$ and $F = \langle F_1, ..., F_n \rangle$.

An open set $\mathcal{U} \subseteq \mathbb{R}^n$ is called *convex* if all line segments between points in \mathcal{U} are contained in \mathcal{U} .

3.4 Conservative \iff Gradient: 2D

Let $\mathcal{U} \subseteq \mathbb{R}^n$ be convex. Let $F : \mathcal{U} \to \mathbb{R}^2$ be a C^1 vector field. Then

F is conservative \iff F is a gradient field

We show this for m = 2. Fix $a \in U$. For any $x \in U$, let [a, x] denote the line segment from a to x (oriented). Define $\varphi : U \to \mathbb{R} : x \mapsto \int\limits_{[a,x]} F \cdot T ds$.

We claim that $\partial_1 \varphi(x) = F_1(x)$. An identical proof for F_2 will establish $F = \nabla \varphi$.

DEF 3.11

DEF 3.12

DEF 3.13

PROOF.

21 VECTOR FIELDS

Expanding

$$x = \langle x_1, x_2 \rangle \implies \partial_1 \varphi(x) = \lim_{h \to 0} \frac{\varphi(x_1 + h, x_2) - \varphi(x_1, x_2)}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \left(\int_{[a, x + he_1]} F \cdot T ds - \int_{[a, x]} F \cdot T ds \right) \quad \text{by def.}$$

$$= \lim_{h \to 0} \frac{1}{h} \int_{[x, x + he_1]} F \cdot T ds \quad \text{by Green}$$

At this point, observe that $\operatorname{curl}(F) = \partial_1 F_2 - \partial_2 F_1 = 0$, since F is conservative, so consider C the curve bounded by $a \to x + he_1 \to x \to a$. Then

$$\int_{[x+he_1,x]} + \int_{[x,a]} + \int_{[a,x+he_1]} = \int_C F \cdot T ds \iint_D \operatorname{curl}(F) = 0$$

Then, continuing from above:

$$\partial_1 \varphi(x) = \lim_{h \to 0} \int_{x_1}^{x_1+h} F_1(t, x_2) dt \stackrel{\text{FTC}}{=} F_1(x_1, x_2) = F_1(x) \quad \Box$$

SURFACES

Let $\mathcal{D} \subseteq \mathbb{R}^2$ be an elementary region. Then $\rho : \mathcal{D} \to \mathbb{R}^3$ be called a *regular*, 2D DEF 3.14 *parameterization* if it is injective and $\|\partial_1 \rho \times \partial_2 \rho\| > 0$.

 $S \subseteq \mathbb{R}^3$ is called a *regular surface* if it is closed, bounded, and $\forall x \in S, \exists \varepsilon > 0$ such DEF 3.15 that $B(x, \varepsilon) \cap S$ is the image of a 2D parameterization.

If $S \subseteq \mathbb{R}^3$ is the image of a regular 2D parameterization, it is a regular surface. PROP 3.6

Let S be a regular surface with a parameterization $\rho: \mathcal{D} \to \mathbb{R}^3$ for some $\mathcal{D} \subseteq \mathbb{R}^2$. Then, for a scalar function $\varphi: S \to \mathbb{R}$, the integral of φ over S is given by

$$\iint\limits_{S} \varphi d\sigma = \iint\limits_{D} (\varphi \circ p) ||\partial_{1} p \times \partial_{2} p|| dA$$

Given a surface $S \subseteq \mathbb{R}^3$ which is path-connected, $\mu \to \mathbb{R}^3$ is called an *orientation* DEF 3.16 *representative* if it is continuous and $\mu(\vec{a})$ is nontrivial and normal to S at \vec{a}

S is *orientable* if an orientation representative exists.

Two orientation representatives μ , ν for S are equivalent if $\mu(\vec{a}) \cdot \nu(\vec{a}) > 0 \ \forall \vec{a} \in S$. DEF 3.18

PROP 3.7

DEF 3.19

If *S* is orientable, then it has exactly 2 distinct orientations *O* and \overline{O} , and hence two unit normal vector fields \vec{n} and $-\vec{n}$, and 2 area elements $d\sigma$ and $-d\sigma$.

Fix an orientation \vec{n} on a regular surface $S \subseteq \mathbb{R}^3$, consisting of the unit normal vector field. Let $\rho : \mathcal{D} \to \mathbb{R}^3$ be its 2D parameterization. Then

$$\iint_{S} F \cdot nd\sigma = \iint_{D} (F \circ \rho) \cdot (\partial_{1}\rho \times \partial_{2}\rho) dA$$

where, in particular $n = \partial_1 \rho \times \partial_2 \rho$. Otherwise, dot instead with $\partial_2 p \times \partial_1 p$.

3.5 Stoke's Theorem

Let $\mathcal{U} \subseteq \mathbb{R}^3$ be open and $S \subseteq \mathcal{U}$ be a C^2 -regular surface. Let $F : \mathcal{U} \to \mathbb{R}^3$ be a C^1 vector field. Fix an orientation T for ∂S . Then

$$\int_{\partial S} \vec{F} \cdot \vec{T} ds = \iint_{S} \operatorname{curl}_{3}(\vec{F}) \cdot ndS$$

where $\operatorname{curl}_3(\vec{F})$ denotes $\nabla \times \vec{F}$, i.e.

$$\det \begin{pmatrix} \hat{i} & \hat{j} & \hat{k} \\ \partial_1 & \partial_2 & \partial_3 \\ F_1 & F_2 & F_3 \end{pmatrix} \quad \text{with } \vec{F} = \langle F_1, F_2, F_3 \rangle$$

3.6 Conservative \iff Gradient, 3D

Let $\mathcal{U} \subseteq \mathbb{R}^3$ be open and convex. Let $F : \mathcal{U} \setminus X \to \mathbb{R}^3$ be a C^1 vector field, where X is finite. Then

$$\operatorname{curl}_3(F) = 0 \iff F = \nabla \varphi$$

for some C^2 function $\varphi: \mathcal{U} \setminus X \to \mathbb{R}$.

We call a vector field G in \mathbb{R}^3 solenoidal if div(G) = 0.

3.7 Solenoidal \iff curl₃

Let $\mathcal{U} \subseteq \mathbb{R}^3$ be open and convex. Let $G: \mathcal{U} \to \mathbb{R}^3$ be a C^2 vector field. Then

$$\operatorname{div}(G) = 0 \iff G = \operatorname{curl}_3(H)$$

for some other C^2 vector field $H: \mathcal{U} \to \mathbb{R}^3$.

23 VECTOR FIELDS

3.8 Gauss's Theorem

Let $\mathcal{U} \subseteq \mathbb{R}^3$ be open, $R \subseteq \mathcal{U}$ be elementary, and $G : \mathcal{U} \to \mathbb{R}^3$ be a C^1 vector field. Then

$$\iint\limits_{\partial R} G \cdot n d\sigma = \iint\limits_{R} \operatorname{div}(G) dV$$

3.9 Stoke's Theorem For Manifolds

Let $U \subseteq \mathbb{R}^n$ be open, $S \subseteq U$ be a regular, C^2 surface. Let ω be a C^1 1-form on U. Then

$$\int_{\partial S} \omega = \iint_{S} d\omega$$

We also have the even more general form: $\int\limits_{\partial M}\omega=\int\limits_{M}d\omega.$