CMPE 310 Systems Design and Programming

L2: Chapter 1 – Introduction to the Microprocessor and Computer

L2 Objectives

- Describe the purpose of the major components of a computer system
- * Describe the purpose of the three types of buses
- * Describe the role of the CPU
- * List the major components of the CPU
- * Describe the purpose of each of the major CPU components

Architecture

- * "Architecture" can refer to
 - * High-level description of hardware; could be
 - * Overall system
 - * Microprocessor
 - * Subsystem within processor
 - * Operations available to programmer
 - * Instruction set architecture
 - * Other applications to computing (e.g., "software architecture") we won't discuss
- * Commonly used to discuss functional units and how they work together

CMPE 310

2

Microprocessor Architecture

- * The MPU communicates with memory and I/O using the system bus consisting of:
 - Address bus: unidirectional and carries memory and I/O addresses
 - * Data bus: bidirectional; transfers binary data and instructions between MPU and memory and I/O
 - * Control lines: Read and Write timing signals asserted by MPU

Basic Bus Architecture

- * Address:
 - * If I/O, a value between ooooH and FFFFH is issued.
 - * If memory, it depends on the architecture:
 - * **20**-bits (8086/8088)
 - * 24-bits (80286/80386SX)
 - * 25-bits (80386SL/SLC/EX)
 - * **32**-bits (80386DX/80486/Pentium)
 - * 36-bits (Pentium Pro/II/III)
- * Data:
 - * 8-bits (8088)
 - * **16**-bits (8086/80286/80386SX/SL/SLC/EX)
 - * **32**-bits (80386DX/80486)
 - * 64-bits (Pentium/Pro/II/III)
- * Control:
 - * Most systems have at least 4 control bus connections (active low).
 - * MRDC, MWTC, IORC, IOWC.

Basic Bus Architecture

- * Bus Standards
 - * ISA (Industry Standard Architecture): 8 MHz
 - * 8-bit (8086/8088)
 - * 16-bit (80286-Pentium)
 - * EISA: 8 MHz
 - * 32-bit (older 386 and 486 machines).
 - * PCI (Peripheral Component Interconnect): 33 MHz
 - * 32-bit or 64-bit (Pentiums)
 - * New: PCI Express and PCI-X 533 MTS
 - * VESA (Video Electronic Standards Association): Runs at processor speed.
 - * 32-bit or 64-bit (Pentiums)
 - * Only disk and video. Competes with the PCI but is not popular.

Basic Bus Architecture

- Bus Standards
 - * USB (Universal Serial Bus): 1.5 Mbps, 12 Mbps, 480 Mbps and now 5 Gbps.
 - * Newest systems.
 - * Serial connection to microprocessor.
 - * For keyboards, the mouse, modems and sound cards.
 - * To reduce system cost through fewer wires.
 - * AGP (Advanced Graphics Port): 66MHz
 - * Newest systems.
 - * Fast parallel connection: Across 64-bits for 533MB/sec.
 - * For video cards.
 - * Latest AGP 3.0 with peak bandwidth of 2.1GB/s.
 - * To accommodate the new DVD (Digital Versatile Disk) players.

CMPE 310

5

CMPE 310 7

Internal Architecture of the Intel Microprocessor

* High level hardware view

- * Parallel processing → high performance
- * Six functional units:
 - * Bus units
 - Execution unit
 - * Segment unit
 - * Page unit
 - Prefetch unit
 - * Decode unit

Bus Interface Unit

- Responsible for
 - * Fetching instruction
 - * Operation to be executed
 - * Reading and writing of data for memory
 - * Input/output of data for input/output peripherals
- * Information transfers over the bus
 - * De-multiplexed bus
 - * x86
 - * 16-bit data bus
 - * Real-mode: 20-bit address, 1M-byte physical address space
 - * x386DX
 - * 32-bit data bus
 - * Real-mode: 20-bit address, 1M-byte physical address space
 - * Protected-mode: 32-bit address bus, 4G-byte physical address space

Execution Unit

- Responsible for executing instructions
- * Element of the EU
 - * Arithmetic/logic unit (ALU)
 - * Performs the operation identified by the instruction: ADD, SUB, AND...
 - * Flags register
 - * Holds status and control information
 - * General-purpose registers
 - * Holds address or data information
 - * Control ROM
 - * Contains microcode sequences that define operations performed by machine instructions
 - * Special multiply, and shift hardware
 - * Accelerate multiply, divide, and rotate operations

Operations of the Execution Unit

- * Reads instructions from the instruction queue
- * Accesses data
 - * General purpose registers if necessary
 - * Generates memory address of data storage locations in memory if necessary
 - * Passes memory addresses to the segmentation and paging units and requests the bus unit to perform read or write bus cycles to access data operands in memory
- * Performs the operation defined by the instruction on the selected data
- * Tests the state of flags if necessary
 - * Updates flag state based on instruction result

Segmentation and Paging Unit

- Off-load memory-management and protection services from the bus unit
- * Segmentation unit
 - * Implements real-mode and protected-mode segmentation model
 - * Contains general registers, segment registers, and instruction pointer
 - * Holds address and data operand information
- * Segmentation unit address generation logic
 - * Real-mode address generation
 - * CS:IP \rightarrow code
 - * DS:SI → data
 - * Protected-mode address translation
 - * Translates logical address to linear address
 - * Protection checking

Segmentation and Paging Unit

- * Paging unit
 - * Implements protected-mode paging model
 - * Contains translation look-aside buffer
 - * Acts as a cache for recently used page directory entries and page table entries
 - * Translates linear address output of segmentation unit to a physical page address
 - * Not used in real mode

Prefetch Unit

- * Instructions stored in FIFO queue
 - * Holds code until ready for decoding
- * Whenever the queue is not full, prefetch the next sequential instructions
 - * Time to fetch many of the instructions in a microcomputer program is "hidden".

Decode Unit

- * Offloads the responsibility of instruction decoding from the execution unit
 - * Decodes instructions into the microcode instruction format used by the execution unit
- * Contains another instruction queue that holds 3 fully decoded instructions
 - * Decoded instructions are held until requested by the execution unit

Next time

- * Address Space
- * Data organization

STOP

CMPE 310 12