The Disjoint Set ADT

Subhabrata Samajder

IIIT, Delhi Winter Semester, 26th May, 2023

The Problem

• Some applications involve grouping n distinct elements into a collection of disjoint sets.

- Important operations:
 - FIND: Finding which set a given element belongs to.
 - UNION: Unite two sets.

Outline

- Operations supported by a disjoint-set data structure.
- Look at a simple application of a disjoint-set data structure.
- Present a simple linked-list implementation for disjoint sets.
- Look at a more efficient representation using rooted trees.
 - The running time using the tree representation is linear for all practical purposes.
 - But it is theoretically superlinear.

Disjoint-set Data Structure

Disjoint-set Data Structure

- Maintains a collection $S = \{S_1, S_2, \dots, S_k\}$ of disjoint dynamic sets.
- Each set is identified by a representative, which is some member of the set.
- In some applications, it doesn't matter which member is used as the representative.
 - **Consistent:** If the representative of a dynamic set is asked twice without modifying the set between the requests, then both times the answer should be the same.
- In other applications, there may be a prespecified rule for choosing the representative.
 - **For Example:** Choosing the smallest member in the set (assuming, that the elements can be ordered).

Supported Operations

- Make-Set(x): Creates a new set whose only member (and thus representative) is x.
 - Sets are disjoint $\Rightarrow x$ cannot be in any other set.
- UNION(x, y): $S_x \cup S_y$, where x and y are representatives of S_x and S_y , respectively.
 - Prior to the operation $S_x \cap S_y = \emptyset$.
 - The representative of the resulting set can be any member of $S_x \cup S_y$.z
 - Many implementations of UNION specifically choose the representative of either S_x or S_y as the new representative.
 - The sets in the collection S needs to be disjoint \Rightarrow the sets S_x and S_y are "destroyed" by removing them from S.
- FIND-SET(x): Returns a pointer to the representative of the (unique) set containing x.

- Running times are analyzed in terms of the following two parameters:
 - n: # Make-Set operations.
 - m: # Make-Set operations + # Union operations + # Find-Set operations.

- Running times are analyzed in terms of the following two parameters:
 - n: # MAKE-SET operations.
 - m: # Make-Set operations + # Union operations + # Find-Set operations.
- Sets are disjoint \Rightarrow each UNION operation reduces the number of sets by one.
- : after at most n-1 UNION operations, only 1 set remains.

- Running times are analyzed in terms of the following two parameters:
 - n: # MAKE-SET operations.
 - m: # Make-Set operations + # Union operations + # Find-Set operations.
- Sets are disjoint \Rightarrow each Union operation reduces the number of sets by one.
- : after at most n-1 UNION operations, only 1 set remains.
- \therefore # of UNION operations $\leq n-1$.

- Running times are analyzed in terms of the following two parameters:
 - n: # MAKE-SET operations.
 - m: # Make-Set operations + # Union operations + # Find-Set operations.
- Sets are disjoint \Rightarrow each Union operation reduces the number of sets by one.
- : after at most n-1 UNION operations, only 1 set remains.
- \therefore # of UNION operations $\leq n-1$.
- **Note** Since the Make-Set operations are included in the total number of operations m, we have $m \ge n$.

- Running times are analyzed in terms of the following two parameters:
 - n: # MAKE-SET operations.
 - m: # Make-Set operations + # Union operations + # Find-Set operations.
- Sets are disjoint \Rightarrow each UNION operation reduces the number of sets by one.
- : after at most n-1 UNION operations, only 1 set remains.
- \therefore # of UNION operations $\leq n-1$.
- **Note** Since the Make-Set operations are included in the total number of operations m, we have $m \ge n$.
- **Assumption:** n Make-Set operations are the first n operations performed.

A Simple Application of Disjoint-set Data Structure

Connected Components of an Undirected Graph

- CONNECTED-COMPONENTS(G): Run as a preprocessing step, creates connected components of the graphs G.
- Same-Component(u, v): Answers queries about whether two vertices are in the same connected component.

Connected Components of an Undirected Graph

- CONNECTED-COMPONENTS(G): Run as a preprocessing step, creates connected components of the graphs G.
- Same-Component(u, v): Answers queries about whether two vertices are in the same connected component.

Note:

- When the edges of the graph are "static" (not changing over time) DFS computes the connected components faster.
- But sometimes the edges are added "dynamically".
- Maintain the connected components as each edge is added.
- Then implementation given here can be more efficient than running a new DFS search for each new edge added.

CONNECTED-COMPONENTS(G)
for each vertex $v \in V$ MAKE-SET(v);

Edge processed				Collec	tion of	disjoin	t sets			
Initial sets	{ <i>a</i> }	{ <i>b</i> }	{ <i>c</i> }	{ <i>d</i> }	{e}	{ <i>f</i> }	{g}	{ <i>h</i> }	{ <i>i</i> }	{ <i>j</i> }

CONNECTED-COMPONENTS(G) for each vertex $v \in V$ MAKE-SET(v);

for each edge $(u, v) \in E$

Edge processed				Collec	tion of	disjoin	t sets			
Initial sets	{a}	{ <i>b</i> }	{ <i>c</i> }	{d}	{e}	{ <i>f</i> }	{g}	{ <i>h</i> }	{ <i>i</i> }	{ <i>j</i> }
(b,d)	{ <i>a</i> }	{ <i>b</i> }	{ <i>c</i> }	{ <i>d</i> }	{e}	{ <i>f</i> }	{ g }	{ <i>h</i> }	{ <i>i</i> }	{ <i>j</i> }

Connected-Components(G)
for each vertex $v \in V$ Make-Set(v);
for each edge $(u, v) \in E$ if (Find-Set(u) \neq Find-Set(v))

Edge processed				Collec	tion of	disjoin	t sets			
Initial sets	{a}	{ <i>b</i> }	{ <i>c</i> }	{ <i>d</i> }	{e}	{ <i>f</i> }	{g} {g}	{ <i>h</i> }	{ <i>i</i> }	{ <i>j</i> }
(b,d)	{ a}	{ <i>b</i> }	{ <i>c</i> }	{ <i>d</i> }	{ <i>e</i> }	{ <i>f</i> }	{ g }	{ <i>h</i> }	{ <i>i</i> }	{ <i>j</i> }


```
CONNECTED-COMPONENTS(G)
for each vertex v \in V

MAKE-SET(v);
for each edge (u, v) \in E

if (FIND-SET(u) \neq FIND-SET(v))

UNION(u, v);
```

Edge processed		Collection of disjoint sets								
Initial sets	{a}	{b}								
(b,d)	{ <i>a</i> }	$\{b,d\}$	{ <i>c</i> }		{ <i>e</i> }	{ <i>f</i> }	{ g }	{ <i>h</i> }	{ <i>i</i> }	{ <i>j</i> }


```
CONNECTED-COMPONENTS(G)
for each vertex v \in V

MAKE-SET(v);
for each edge (u, v) \in E

if (FIND-SET(u) \neq FIND-SET(v))

UNION(u, v);
```

Edge processed			Col	lection of	disjoir	nt sets			
(b, d)	{a}	$\{b,d\}$	{c}	{e}	{ <i>f</i> } { <i>f</i> }	{g}	{ <i>h</i> }	{ <i>i</i> }	{ <i>j</i> }
(e, g)	{a}	$\{b,d\}$	{c}	{b}		{g}	{ <i>h</i> }	{ <i>i</i> }	{ <i>j</i> }


```
CONNECTED-COMPONENTS(G)
for each vertex v \in V

MAKE-SET(v);
for each edge (u, v) \in E

if (FIND-SET(u) \neq FIND-SET(v))

UNION(u, v);
```

Edge processed			Col	lection of	f disjoir	nt sets			
(b, d) (e, g)	{a} {a}	$\{b,d\}$ $\{b,d\}$	{c} {c}	{e} {e}	{ <i>f</i> } { <i>f</i> }	{g} {g}	{ <i>h</i> } { <i>h</i> }	{ <i>i</i> } { <i>i</i> }	{ <i>j</i> } { <i>j</i> }


```
CONNECTED-COMPONENTS(G)
for each vertex v \in V

MAKE-SET(v);
for each edge (u, v) \in E

if (FIND-SET(u) \neq FIND-SET(v))

UNION(u, v);
```

Edge processed			C	ollection of	disjoint	sets			
(b, d) (e, g)	{a} {a}	$\{b,d\}$ $\{b,d\}$	{c} {c}	$\{e\}$ $\{e,g\}$	{ <i>f</i> } { <i>f</i> }	{g}	{ <i>h</i> } { <i>h</i> }	{ <i>i</i> } { <i>i</i> }	{ <i>j</i> } { <i>j</i> }


```
CONNECTED-COMPONENTS(G)
for each vertex v \in V

MAKE-SET(v);
for each edge (u, v) \in E

if (FIND-SET(u) \neq FIND-SET(v))

UNION(u, v);
```

Edge processed			Coll	ection of dis	sjoint s	ets		
(e, g)	{a}	$\{b,d\}$	{c}	$\{e,g\}$	{ <i>f</i> } { <i>f</i> }	{ h}	{ <i>i</i> }	{ <i>j</i> }
(a, c)	{a}	$\{b,d\}$	{c}	$\{e,g\}$		{ h}	{ <i>i</i> }	{ <i>j</i> }


```
CONNECTED-COMPONENTS(G)
for each vertex v \in V

MAKE-SET(v);
for each edge (u, v) \in E

if (FIND-SET(u) \neq FIND-SET(v))

UNION(u, v);
```

Edge processed			Coll	ection of dis	sjoint se	ets		
(e, g) (a, c)	{a} {a}	$\{b,d\}$ $\{b,d\}$	{c} {c}	$\{e,g\}$ $\{e,g\}$	{ <i>f</i> } { <i>f</i> }	{h} {h}	{ <i>i</i> } { <i>i</i> }	{ <i>j</i> } { <i>j</i> }


```
CONNECTED-COMPONENTS(G)
for each vertex v \in V

MAKE-SET(v);
for each edge (u, v) \in E

if (FIND-SET(u) \neq FIND-SET(v))

UNION(u, v);
```

Edge processed			Colle	ction of disj	oint set	S		
(e, g) (a, c)	{a} {a, c}	$\{b,d\}$ $\{b,d\}$	{c}	$\{e,g\}$ $\{e,g\}$	{ <i>f</i> } { <i>f</i> }	{ h} { h}	{ <i>i</i> } { <i>i</i> }	{ <i>j</i> } { <i>j</i> }


```
CONNECTED-COMPONENTS(G)
for each vertex v \in V

MAKE-SET(v);
for each edge (u, v) \in E

if (FIND-SET(u) \neq FIND-SET(v))

UNION(u, v);
```

Edge processed			Collection of d	isjoint	sets		
(a, c) (h, i)	$\{a,c\}$ $\{a,c\}$	$\{b,d\}$ $\{b,d\}$	$\{e,g\} \ \{e,g\}$	{ <i>f</i> } { <i>f</i> }	{ <i>h</i> } { <i>h</i> }	{ <i>i</i> } { <i>i</i> }	{ <i>j</i> } { <i>j</i> }


```
CONNECTED-COMPONENTS(G)
for each vertex v \in V

MAKE-SET(v);
for each edge (u, v) \in E

if (FIND-SET(u) \neq FIND-SET(v))

UNION(u, v);
```

Edge processed			Collection of d	isjoint s	sets		
(a, c) (h, i)	{a, c} {a, c}	$\{b,d\}$ $\{b,d\}$	$\{e,g\} \ \{e,g\}$	{ <i>f</i> } { <i>f</i> }	{h} {h}	{ <i>i</i> } { <i>i</i> }	{ <i>j</i> } { <i>j</i> }


```
CONNECTED-COMPONENTS(G)
for each vertex v \in V

MAKE-SET(v);
for each edge (u, v) \in E

if (FIND-SET(u) \neq FIND-SET(v))

UNION(u, v);
```

Edge processed			Collection of o	disjoint	sets		
(a, c) (h, i)	$\{a,c\}$ $\{a,c\}$	$\{b,d\}$ $\{b,d\}$	$\{e,g\} \ \{e,g\}$	{ <i>f</i> } { <i>f</i> }	{h} {h, i}	{ <i>i</i> }	{ <i>j</i> } { <i>j</i> }


```
CONNECTED-COMPONENTS(G)
for each vertex v \in V

MAKE-SET(v);
for each edge (u, v) \in E

if (FIND-SET(u) \neq FIND-SET(v))

UNION(u, v);
```

Edge processed			Collection of di	sjoint se	ets	
(h, i) (a, b)	$\{a,c\}$ $\{a,c\}$	$\{b,d\}$ $\{b,d\}$	$\{e,g\} \ \{e,g\}$	{ <i>f</i> } { <i>f</i> }	$\{h,i\}$ $\{h,i\}$	{ <i>j</i> } { <i>j</i> }


```
CONNECTED-COMPONENTS(G)
for each vertex v \in V

MAKE-SET(v);
for each edge (u, v) \in E

if (FIND-SET(u) \neq FIND-SET(v))

UNION(u, v);
```

Edge processed			Collection of di	sjoint se	ets	
(h, i) (a, b)	{a, c} {a, c}	{b, d} {b, d}	$\{e,g\} \ \{e,g\}$	{ <i>f</i> } { <i>f</i> }	$ \begin{cases} h, i \\ h, i \end{cases} $	{ <i>j</i> } { <i>j</i> }


```
CONNECTED-COMPONENTS(G)
for each vertex v \in V

MAKE-SET(v);
for each edge (u, v) \in E

if (FIND-SET(u) \neq FIND-SET(v))

UNION(u, v);
```

Edge processed		Col	lection of disjo	int sets		
(h, i) (a, b)	$ \begin{cases} a, c \\ a, b, c, d \end{cases} $	{ <i>b</i> , <i>d</i> }	$\{e,g\}$ $\{e,g\}$	{ <i>f</i> } { <i>f</i> }	{h, i} {h, i}	{ <i>j</i> } { <i>j</i> }


```
CONNECTED-COMPONENTS(G)
for each vertex v \in V

MAKE-SET(v);
for each edge (u, v) \in E

if (FIND-SET(u) \neq FIND-SET(v))

UNION(u, v);
```

Edge processed		Collection of d	isjoint s	ets	
(a, b) (e, f)	$\{a,b,c,d\}$ $\{a,b,c,d\}$	$\{e,g\} \ \{e,g\}$	{ <i>f</i> } { <i>f</i> }	$ \begin{cases} h, i \\ h, i \end{cases} $	{ <i>j</i> } { <i>j</i> }


```
CONNECTED-COMPONENTS(G)
for each vertex v \in V

MAKE-SET(v);
for each edge (u, v) \in E

if (FIND-SET(u) \neq FIND-SET(v))

UNION(u, v);
```

Edge processed		Collection of d	isjoint s	ets	
(a, b) (e, f)	$\{a,b,c,d\}$ $\{a,b,c,d\}$	{e, g} {e, g}	{f} {f}	$ \begin{cases} h, i \\ h, i \end{cases} $	{ <i>j</i> } { <i>j</i> }


```
CONNECTED-COMPONENTS(G)
for each vertex v \in V

MAKE-SET(v);
for each edge (u, v) \in E

if (FIND-SET(u) \neq FIND-SET(v))

UNION(u, v);
```

Edge processed		Collection of disj	oint set	S	
(a, b) (e, f)	$ \{a, b, c, d\} \\ \{a, b, c, d\} $	$\{e,g\} \ \{e,f,g\}$	<i>{f}</i>	{h, i} {h, i}	{ <i>j</i> } { <i>j</i> }


```
CONNECTED-COMPONENTS(G)
for each vertex v \in V

MAKE-SET(v);
for each edge (u, v) \in E

if (FIND-SET(u) \neq FIND-SET(v))

UNION(u, v);
```

Edge processed		Collection of disjoint	sets	
$ \begin{array}{c} \hline (e,f) \\ (b,c) \end{array} $	$\{a,b,c,d\}$ $\{a,b,c,d\}$	$ \begin{cases} e, f, g \\ e, f, g \end{cases} $	$ \begin{cases} h, i \\ h, i \end{cases} $	{ <i>j</i> } { <i>j</i> }


```
CONNECTED-COMPONENTS(G)
for each vertex v \in V

MAKE-SET(v);
for each edge (u, v) \in E

if (FIND-SET(u) \neq FIND-SET(v))

UNION(u, v);
```

Edge processed		Collection of disjoint	sets	
$ \begin{array}{c} \hline (e,f) \\ (b,c) \end{array} $	$\{a,b,c,d\}$ $\{a,b,c,d\}$	$ \begin{cases} e, f, g \\ e, f, g \end{cases} $	{h, i} {h, i}	{ <i>j</i> } { <i>j</i> }

Connected Components: An Example


```
CONNECTED-COMPONENTS(G)
for each vertex v \in V

MAKE-SET(v);
for each edge (u, v) \in E

if (FIND-SET(u) \neq FIND-SET(v))

UNION(u, v);
```

Edge processed	Collection of disjoint sets			
(e,f) (b,c)	$\{a,b,c,d\}$ $\{a,b,c,d\}$	$ \begin{cases} e, f, g \\ e, f, g \end{cases} $	{h, i} {h, i}	{ <i>j</i> } { <i>j</i> }

Connected Components: An Example


```
CONNECTED-COMPONENTS(G)
for each vertex v \in V

MAKE-SET(v);
for each edge (u, v) \in E

if (FIND-SET(u) \neq FIND-SET(v))

UNION(u, v);
```

Edge processed	Collection of disjoint sets			
$\overline{(b,c)}$	$\{a,b,c,d\}$	$\{e,f,g\}$	{ <i>h</i> , <i>i</i> }	$\overline{\{j\}}$

SAME-COMPONENT

```
Same-Component(u, v)

if (\text{Find-Set}(u) = \text{Find-Set}(v))

return True;

else

return False;
```

Linked-list Representation of Disjoint Sets

Linked-list Representation

- A simple way to represent disjoint sets.
- Set representative: The first object in each linked list.
- Each object in the linked list contains
 - a set member,
 - a pointer to the object containing the next set member, and
 - a pointer back to the set representative.
- Each list maintains pointers
 - head: which points to the set representative, and
 - tail: which points to the last object in the list.
- Within each linked list, the remaining objects may appear in any order.

An Example

Disjoint sets $S_1 = \{c, h, e, b\}$ and $S_2 = \{f, g, d\}$

• Use the *tail* pointer for g's list to quickly find where to append e's list.

- Use the *tail* pointer for *g*'s list to quickly find where to append *e*'s list.
- Note: The representative of the new set = representative of the set containing g, i.e., f.

Union
$$(e,g) = S_1 \cup S_2$$

Time: Linear in the length of *e*'s list.

Worst Case Complexity

It is not difficult to come up with a sequence of m operations on n objects that requires $\Theta(n^2)$ time.

- Consider *n* objects x_1, x_2, \ldots, x_n .
- # Make-Set operations = n.
- # Union operations = n-1.
- m = n + (n-1) = 2n 1.
- i^{th} UNION operation takes, i.e, UNION (x_i, x_{i+1}) takes i time.
- Worst case complexity:

$$n + \sum_{i=1}^{n} i = \Theta(n^2)$$

.

• : m = 2n - 1, : on an average each operation takes $\Theta(n)$ time.

Operations	Number of objects updated	
$\overline{\text{Make-Set}(x_1)}$	1	
Make-Set (x_2)	1	
:	:	
Make-Set (x_n)	1	
Union (x_1, x_2)	1	
Union (x_2, x_3)	2	
Union (x_3, x_4)	3	
<u>:</u>	:	
Union (x_{n-1}, x_n)	n-1	

Disjoint-set Forests

Disjoint-set Forests: A Faster Implementation

- Sets are represent by rooted trees.
- Each node contain one member.
- Each tree represents one set.
- Each member points (nodes) only to its parent.
- Set representative: The root of each tree.
 - It is it's own parent.
- **Note:** The straightforward algorithms that use this representation are not faster than ones that use the linked-list representation,
- But by introducing the following two heuristics one can achieve the asymptotically fastest disjoint-set data structure known.
 - Union by rank.
 - Path compression.

Operations

- Make-Set: Creates a tree with just one node.
- FIND-SET: Follows the parent pointers until the root of the tree is reached.
 - FIND-PATH: Nodes visited on this path toward the root.

• Union: Make the root of one tree to point to the root of the other.

$$S_2 = \{d, f, g\}$$

$$S_1 = \{b, c, e, h\}$$
 $S_2 = \{d, f, g\}$

Union
$$(e,g) = S_1 \cup S_2$$

Heuristics to Improve the Running Time

So far, we have not improved on the linked-list implementation!

• A sequence of n-1 UNION operations may create a tree that is just a linear chain of n nodes \Rightarrow FIND-SET takes $\Theta(i)$ time \Rightarrow total complexity is $\Theta(n^2)$

• But by using two heuristics one can achieve a running time that is almost linear in the total number of operations *m*.

Heuristics 1: Union by Rank

- **Idea:** During UNION operation, make the root of the tree with fewer nodes point to the root of the tree with more nodes.
- Rather than explicitly keeping track of the size of the subtree rooted at each node, we shall use an approach that eases the analysis.
- For each node, we maintain a rank that is an upper bound on the height of the node.
- Union: Point the root with smaller rank to the root with larger rank.

Heuristics 2: Path Compression

• FIND-SET: Make each node on the FIND-PATH to point directly to the root.

Path compression does not change any ranks.

An Example: Before FIND-Set(a)

An Example: After FIND-Set(a)

Books and Other Materials Consulted

Introduction to Algorithms by Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, Clifford Stein. Thank You for your kind attention!

Questions!!