

Topic 7: Numerical integration

The trapezium rule: It is a numerical method used to estimate the area under a curve or to estimate the value of an integral where Calculus can't be applicable.

Note: Accurate area under the curve or a value of an integral is obtained by calculus, i.e integration.

Therefore the error in the value obtained by trapezium rule = value obtained by calculus –value by trapezium rule. Consider a function y = f(x), if the area under the curve is divided into equal trapezoids each of width, h

Total area =
$$\int_{a}^{b} f(x)dx$$
 = $A_1 + A_2 + A_3 + A_4$
 $A_1 = \frac{1}{2}h(y_1 + y_2)$
 $A_1 = \frac{1}{2}h(y_2 + y_3)$
 $A_3 = \frac{1}{2}h(y_3 + y_4)$
 $A_4 = \frac{1}{2}h(y_4 + y_5)$

Then the total area = $\frac{1}{2}h(y_1 + 2(y_2 + y_3 + y_4) + y_5)$

$$= \frac{1}{2}h\{y_1 + y_5 + 2(y_2 + y_3 + y_4)\}$$

Hence the general trapezium rule formula can be written as

$$\int_{a}^{b} f(x)dx = \frac{1}{2}h\{y_1 + y_n + 2(y_2 + y_3 + y_4 + \dots + y_{n-1})\}$$

Note:

- 1. The areas $A_1, A_2, A_3, and A_4$ are called strips or sub-intervals
- 2. The x-values, x_1, x_2, x_3, x_4 and x_5 are called ordinates.

$$x_1 = a, x_2 = a + h, x_3 = x_2 + h$$

- 3. Number of subintervals = number of ordinates -1
- 4. $h = \frac{b-a}{n}$, where n=number of subintervals or strips.
- 5. h must remain as a fraction if it does not give an exact decimal
- 6. When dealing with trigonometric functions, leave the calculator in radians

Example 1:

brac

COVID-19 RECOVERY AND RESILIENCE PROGRAMME

- a) Use trapezium rule with 5 subintervals to estimate $\int_{0}^{1} 5^{2x} dx$, and give your answer correct to 3 decimal places.
- b) i) Find the exact value of the $\int_{0}^{1} 5^{2x} dx$ correct to 3 decimal places
 - ii) Calculate the percentage error in your estimation in a) above
 - iii) Suggest how the percentage error may be reduced soln

Note: y values must be atleast 4 decimal places since the final answer is required to 3 decimal places

a)
$$h = \frac{1-0}{5} = 0.2$$

x	у
0	1
0.2	1.9036
0.4	3.6239
0.6	6.8986
0.8	13.1327
1	25
Sub-totals	26 51.1176

Then
$$\int_{0}^{1} 5^{2x} dx = \frac{1}{2} (0.2) \{26 + 2(51.1176)\}$$

=7.71176
 ≈ 7.712

COVID-19 RECOVERY AND RESILIENCE PROGRAMME

b) i)
$$\int_{0}^{1} 5^{2x} dx = \left[\frac{5^{2x}}{2 \ln 5} \right]_{0}^{1} = \frac{5^{2}}{2 \ln 5} - \frac{1}{2 \ln 5} = 7.456$$

Error =
$$|7.456 - 7.712| = 0.256$$

- ii) Percentage error= $\frac{0.256}{7.456} \times 100 = 3.4\%$
- iii) Percentage error can be reduced by increasing the number of subintervals

Example:

Use trapezium rule with 6 ordinates to estimate $\int_0^{\frac{\pi}{3}} \tan x dx \text{ correct to 3}$ decimal places

soln

$$h = \frac{\frac{\pi}{3} - 0}{6 - 1} = \frac{\pi}{15}$$

X	у	
0	0	
$\frac{\pi}{15}$		0.2126
$\frac{2\pi}{15}$		0.4452
$\frac{3\pi}{15}$		0.7263
$\frac{4\pi}{15}$		1.1106
$\frac{\pi}{3}$	1.7321	
Sub-totals	1.7321	2.4947

COVID-19 RECOVERY AND RESILIENCE PROGRAMME

$$\int_0^{\frac{\pi}{3}} \tan x dx = \frac{1}{2} \left(\frac{\pi}{15} \right) \{ 1.732 + 2(2.4947) \} = 0.703873 \approx 0.704$$

ASSIGNMENT 7.1.10

- 1. (a) Use trapezium rule with six strips to estimate $\int_{0}^{\pi} x \sin x dx$ correct to 2dp.
 - (b) Determine the percentage relative error in your estimation.
- 2. Use trapezium rule to estimate the approximate value of $\int_{0}^{1} \frac{1}{1+x^2} dx$ using 6 ordinates correct to 3 decimal places.
- 3. (a) Use the trapezium rule with six ordinates to evaluate, $\int_{0}^{1} \theta \sin \theta d\theta$ correct to three decimal places.
- (b) Find the actual value of, correct to three decimal places.
- (c) Calculate the relative error made in (a) above and state how you would reduce such an error.
- 4. Use trapezium rule with 6- ordinates to estimate the value of $\int_{0}^{\frac{\pi}{4}} (t + \sin t) dt$ corret to three decimal places.