Table Of Content

- > The RLC series circuit
- > Values of constant and boundary conditions
- > Analytical solution
- Numerical solutions
 - 1. Euler Method
 - 2. Runge Kutta 2
 - 3. Runge Kutta 4
 - 4. ODEINT()
 - > Comparison
 - 1. Value of function
 - 2. Error

The RLC Series Circuit

Consider an electrical circuit containing a resistor, an inductor, and a capacitor Such a circuit is called an *RLC* series circuit. *RLC* circuits are used in many electronic systems, most notably as tuners in AM/FM radios. Such circuits can be modeled by second-order, constant-coefficient differential equations.

Let I(t) denote the current in the *RLC* circuit and q(t) denote the charge on the capacitor. Furthermore, let L denote inductance in henrys (H), R denote resistance in ohms (Ω) , and C denote capacitance in farads (F). Last, let E(t) denote electric potential in volts (V).

<u>Kirchhoff's voltage rule</u> states that the sum of the voltage drops around any closed loop must be zero. So, We have

$$E_L + E_R + E_C = E(t)$$

And we know that

$$E_L = L \frac{dI}{dt}$$

Next, according to Ohm's law,

$$E_R = RI$$
.

Last, the voltage drop across a capacitor is proportional to the charge, q, on the capacitor, with proportionality constant 1/C. Thus,

$$E_c = \frac{1}{C}q$$

Adding these terms together, we get

$$L\frac{dI}{dt} + RI + \frac{1}{C}q = E(t)$$

Taking derivative and we know, I= (dq)/(dt), then

L
$$\frac{d^2I}{dt^2} + R\frac{dI}{dt} + \frac{1}{c}I = E'(t)$$
 ---(1)

Boundary conditions and value of constant

Find the current in an RLC series circuit where L=10H, R=30 Ω , C=0.02F, and E(t)=50sin(2t). Assume the initial charge on the capacitor is 0 C and the initial current is 0 A.

Analytical solution

E'(t)=100cos(2t), Putting all the values in equation (1)

$$10\frac{d^2I}{dt^2} + 30\frac{dI}{dt} + \frac{1}{0.02}I = 100\cos(2t)$$

$$10\frac{d^2I}{dt^2} + 30\frac{dI}{dt} + 50I = 100\cos(2t)$$

Now, solve this:

$$10r^{2} + 30r + 50 = 0$$

$$r^{2} + 3r + 5 = 0$$

$$(r^{2} + 3r + \frac{9}{4}) - \frac{9}{4} + 5 = 0$$

$$(r^{2} + \frac{3}{2})^{2} + \frac{11}{4} = 0$$

$$r_{1} = -\frac{3}{2} + \frac{\sqrt{11}}{2}, r_{2} = -\frac{3}{2} - \frac{\sqrt{11}}{2}$$

Roots are imaginary, so complementary equation is:

$$I_c = e^{at}(c_1 \cos(bt) + c_2 \sin(bt))$$

$$I_c = e^{-\frac{3}{2}t}(c_1 \cos\left(\frac{\sqrt{11}}{2}t\right) + c_2 \sin\left(\frac{\sqrt{11}}{2}t\right))$$

The particular solution is:

$$I_p = A\cos(2t) + B\sin(2t)$$

As $E(t) = 50\cos(2t)$, then we have

$$\omega = 2 \text{ and } E_0 = 50$$

$$S = \omega L - \frac{1}{\omega C} = 2(10) - \frac{1}{2(0.02)} = -5$$

$$A = -\frac{E_0 S}{R^2 + S^2} = -\frac{50 * (-5)}{30^2 + (-5)^2} = \frac{10}{37}$$

$$A = \frac{E_0 R}{R^2 + S^2} = \frac{50 * (30)}{30^2 + (-5)^2} = \frac{60}{37}$$

So, the particular equation will be

$$I_p = \frac{10}{37}\cos(2t) + \frac{60}{37}\sin(2t)$$

Hence

$$q(t) = q_c + q_p$$

$$I(t) = e^{-\frac{3}{2}t} (c_1 \cos\left(\frac{\sqrt{11}}{2}t\right) + c_2 \sin\left(\frac{\sqrt{11}}{2}t\right)) + \frac{10}{37}\cos(2t) + \frac{60}{37}\sin(2t)$$

I(0)=0 so,

$$q(0) = e^{0}(c_{1}(1) + 0) + \frac{10}{37}(1) + 0$$
$$0 = c_{1} + \frac{10}{37} = c_{1} = -\frac{10}{37}$$

As I'(0)=0 so,

$$q'^{(0)} = -\frac{3}{2}c_1 + \frac{\sqrt{11}}{2}c_2 + \frac{120}{37}$$
$$c_2 = -\frac{270}{37\sqrt{11}}$$

So, the solution is

$$q(t) = e^{-\frac{3}{2}t} \left(-\frac{10}{37} \cos\left(\frac{\sqrt{11}}{2}t\right) - \frac{270}{37\sqrt{11}} \sin\left(\frac{\sqrt{11}}{2}t\right)\right) + \frac{10}{37} \cos(2t) + \frac{60}{37} \sin(2t)$$

Numerical solutions

First I write the true solution as function named 'func()'

```
def func(t):
    return math.exp(-3*t/2)*((-10/37)*math.cos(math.sqrt(11)*t/2) +(-
270/(math.sqrt(11)*37))*math.sin(math.sqrt(11)*t/2)) + (10/37)*(math.cos(2
*t) +6*math.sin(2*t))  # represents the equation by analytical sol.

t = np.linspace(0, 10, 101)  #t are the points

Tsol=[]  #consist the true solution values on range t
  for i in t:
    Tsol.append(func(i))
```

Numerical method 1

I first solve using **Euler method (Rk1)**

```
import numpy as np
import matplotlib.pyplot as plt
def pend(I, t, b, c):
    return np.array([I[1], 10*math.cos(2*t) -b*I[1] - c*I[0]])
t = np.linspace(0, 10, 101) #t are the points
b = 3
c = 5
y0 = np.array([0,0])
def rungekutta1(f, y0, t, args=()):
    n = len(t)
    y = np.zeros((n, len(y0)))
    y[0] = y0
    for i in range (n - 1):
        y[i+1] = y[i] + (t[i+1] - t[i]) * f(y[i], t[i], *args)
    return y
solrk1 = rungekutta1(pend, y0, t, args=(b, c))
plt.plot(t, Tsol, 'r', label='TRUE(t)')
plt.plot(t, solrk1[:, 0], 'b', label='I(t)')
```

```
plt.legend(loc='best')
plt.xlabel('t')
plt.grid()
plt.show()
```


Here exact solution and Euler solution are shown

Error:

```
err=[]
for i in range(len(t)):
    err.append(Tsol[i]-solrk1[:,0][i])

from tabulate import tabulate
table=[['T','True value','Numerical method value','Error']]
for i in range(len(t)):
    table.append([t[i],Tsol[i],solrk1[:,0][i],err[i]])
print(tabulate(table,headers='firstrow',tablefmt='fancy_grid'))
```

Т	True value	Numerical method value Erro	
0	0	0	0
0.1	0.0450121	0	0.0450121
0.2	0.160375	0.1	0.0603746
0.3	0.31775	0.268007	0.0497431
0.4	0.491195	0.472717	0.0184779
0.5	0.65799	0.685148	-0.0271584
0.6	0.799217	0.879885	-0.0806673

0.7	0.900132	1.03597	-0.135841
0.8	0.950321	1.13748	-0.187155
0.9	0.943688	1.17373	-0.230038
1	0.878279	1.13931	-0.261029
1.1	0.755967	1.03381	-0.277841
1.2	0.582027	0.861379	-0.279352
1.3	0.364612	0.630138	-0.265526

• • •

Error plot-it range from [-0.3,+0.3]

```
SumOfSquare=0
absoluteSum=0

for i in range(len(t)):
   SumOfSquare=SumOfSquare=+ err[i]**2
   absoluteSum=absoluteSum + abs(err[i])
#root mean square error
RMSE=math.sqrt(SumOfSquare)/len(t)
#Mean absolute Error
MAE=absoluteSum/len(t)

print("Root Mean Square Error",RMSE)
print("Mean Absolute Error",MAE)
```

Root Mean Square Error 0.0023231623115292756 Mean Absolute Error 0.1805415810222416

Numerical method 2

I have solved it with runge kutta 2 method

```
import numpy as np
import matplotlib.pyplot as plt
def pend(I, t, b, c):
    return np.array([I[1], 10*math.cos(2*t) -b*I[1] - c*I[0]])
t = np.linspace(0, 10, 101) #t are the points
b = 3
c = 5
y0 = np.array([0,0])
def rungekutta2(f, y0, t, args=()):
    n = len(t)
    y = np.zeros((n, len(y0)))
    y[0] = y0
    for i in range(n - 1):
       h = t[i+1] - t[i]
        y[i+1] = y[i] + h * f(y[i] + f(y[i], t[i], *args) * h / 2., t[i] +
 h / 2., *args)
    return y
solrk2 = rungekutta2(pend, y0, t, args=(b, c))
plt.plot(t, Tsol, 'r', label='TRUE(t)')
plt.plot(t, solrk2[:, 0], 'b', label='I(t)')
plt.legend(loc='best')
plt.xlabel('t')
plt.grid()
plt.show()
                      TRUE(t)
                1.5
```


Here true solution and Rk2 solution are shown-good overlap

Error:

```
err=[]
for i in range(len(t)):
    err.append(Tsol[i]-solrk2[:,0][i])

from tabulate import tabulate
table=[['T','True value','Numerical method value','Error']]
for i in range(len(t)):
    table.append([t[i],Tsol[i],solrk2[:,0][i],err[i]])
print(tabulate(table,headers='firstrow',tablefmt='fancy_grid'))
```

Т	True value	Numerical method value	Error
0	0	0	0
0.1	0.0450121	0.05	-0.0049879
0.2	0.160375	0.169579	-0.00920413
0.3	0.31775	0.330008	-0.0122583
0.4	0.491195	0.505153	-0.0139576
0.5	0.65799	0.672259	-0.0142691
0.6	0.799217	0.8125	-0.013283
0.7	0.900132	0.911311	-0.0111789
0.8	0.950321	0.958516	-0.00819493
0.9	0.943688	0.94829	-0.00460157
1	0.878279	0.878958	-0.00067907
1.1	0.755967	0.752667	0.0033005
1.2	0.582027	0.57494	0.00708749
1.3	0.364612	0.354147	0.0104651

•••

```
plt.plot(t, err, 'b', label='err')
plt.xlabel('t')
plt.ylabel('error')
```


Error plot-it range from [-0.015, +0.015]

```
SumOfSquare=0
absoluteSum=0
for i in range(len(t)):
    SumOfSquare=SumOfSquare=+ err[i]**2
    absoluteSum=absoluteSum + abs(err[i])

#root mean square error
RMSE=math.sqrt(SumOfSquare)/len(t)

#Mean absolute Error
MAE=absoluteSum/len(t)

print("Root Mean Square Error = ",RMSE)
print("Mean Absolute Error = ",MAE)
```

Root Mean Square Error = 6.773633528449245e-05 Mean Absolute Error = 0.010669684938809777

Numerical method 3

Here I have solve the problem using runge kutta 4

```
import numpy as np
import matplotlib.pyplot as plt
def pend(I, t, b, c):
    return np.array([I[1], 10*math.cos(2*t) -b*I[1] - c*I[0]])
t = np.linspace(0, 10, 101) #t are the points
b = 3
c = 5
y0 = np.array([0,0])
def rungekutta4(f, y0, t, args=()):
    n = len(t)
    y = np.zeros((n, len(y0)))
    y[0] = y0
    for i in range (n - 1):
        h = t[i+1] - t[i]
        k1 = f(y[i], t[i], *args)
        k2 = f(y[i] + k1 * h / 2., t[i] + h / 2., *args)
        k3 = f(y[i] + k2 * h / 2., t[i] + h / 2., *args)
        k4 = f(y[i] + k3 * h, t[i] + h, *args)
        y[i+1] = y[i] + (h / 6.) * (k1 + 2*k2 + 2*k3 + k4)
    return y
solrk4 = rungekutta4(pend, y0, t, args=(b, c))
plt.plot(t, Tsol, 'r', label='TRUE(t)')
plt.plot(t, solrk4[:, 0], 'b', label='Q(t)')
#plt.plot(t, solrk4[:, 1], 'g', label='I(t)')
plt.legend(loc='best')
plt.xlabel('t')
plt.grid()
plt.show()
```


Here true solution and RK4 solution are shown-very good overlap

Error:

```
err=[]
for i in range(len(t)):
    err.append(Tsol[i]-solrk4[:,0][i])

from tabulate import tabulate
table=[['T','True value','Numerical method value','Error']]
for i in range(len(t)):
    table.append([t[i],Tsol[i],solrk4[:,0][i],err[i]])
print(tabulate(table,headers='firstrow',tablefmt='fancy grid'))
```

	Sudoi D	TIBELOW , CARLEIN	ic famoy
Т	True value	Numerical method value	Error
0	0	0	0
0.1	0.0450121	0.0450126	-5.2872e-07
0.2	0.160375	0.16038	-5.93693e-06
0.3	0.31775	0.317764	-1.45489e-05
0.4	0.491195	0.49122	-2.47751e-05
0.5	0.65799	0.658025	-3.51971e-05
0.6	0.799217	0.799262	-4.46238e-05
0.7	0.900132	0.900184	-5.21232e-05
0.8	0.950321	0.950378	-5.70335e-05
0.9	0.943688	0.943747	-5.89585e-05
1	0.878279	0.878337	-5.77507e-05
1.1	0.755967	0.756021	-5.34844e-05
1.2	0.582027	0.582074	-4.64241e-05
1.3	0.364612	0.364649	-3.69874e-05
1.4	0.114164	0.11419	-2.57075e-05
1.5	-0.15722	-0.157207	-1.31944e-05

•••

```
plt.plot(t, err, 'b', label='err')
plt.xlabel('t')
```

```
plt.ylabel('error')
```


Error plot-it range from $[-6*e^{-5}, 6*e^{-5}]$

```
SumOfSquare=0
absoluteSum=0
for i in range(len(t)):
    SumOfSquare=SumOfSquare=+ err[i]**2
    absoluteSum=absoluteSum + abs(err[i])

#root mean square error
RMSE=math.sqrt(SumOfSquare)/len(t)

#Mean absolute Error
MAE=absoluteSum/len(t)

print("Root Mean Square Error = ",RMSE)
print("Mean Absolute Error = ",MAE)
```

Root Mean Square Error = 6.15400560774608e-07 Mean Absolute Error = 3.8478353957005165e-05

Numerical method 4

Here i have used **ODEINT()** method provided by scipy.integrate

```
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint
def pend(I, t, b, c):
    return np.array([I[1], 10*math.cos(2*t) -b*I[1] - c*I[0]])
t = np.linspace(0, 10, 101) #t are the points
b = 3
c = 5
y0 = np.array([0,0])
sol = odeint(pend, y0, t, args=(b, c))
plt.plot(t, sol[:, 0], 'b', label='I(t)')
plt.plot(t, Tsol, 'r', label='TRUE(t)')
plt.legend(loc='best')
plt.xlabel('t')
plt.grid()
plt.show()
                            I(t)
                             TRUE(t)
                       1.0
                       0.5
                       0.0
                      -0.5
                      -1.0
```

Here true solution and odeint() solution are shown- perfect overlap

Error:

```
err=[]
for i in range(len(t)):
  err.append(Tsol[i]-sol[:,0][i])
```

```
from tabulate import tabulate

table=[['T','True value','Numerical method value','Error']]
for i in range(len(t)):
   table.append([t[i],Tsol[i],sol[:,0][i],err[i]])
print(tabulate(table,headers='firstrow',tablefmt='fancy_grid'))
```

Т	True value	Numerical method value	Error	
0	0	0	0	
0.1	0.0450121	0.0450121	-8.47081e-09	
0.2	0.160375	0.160375	-3.33487e-09	
0.3	0.31775	0.31775	-5.32497e-09	
0.4	0.491195	0.491195	-8.83683e-09	
0.5	0.65799	0.65799	-9.94509e-09	
0.6	0.799217	0.799217	-1.14286e-08	
0.7	0.900132	0.900132	-1.24914e-08	
0.8	0.950321	0.950321	-1.30613e-08	
0.9	0.943688	0.943688	-1.18179e-08	
1	0.878279	0.878279	-1.06712e-08	
1.1	0.755967	0.755967	-8.02636e-09	
1.2	0.582027	0.582027	-3.77872e-09	
1.3	0.364612	0.364612	-6.00168e-09	
1.4	0.114164	0.114164 -8.11913e-09		
1.5	-0.15722	-0.15722	-9.16919e-09	

•••

```
plt.plot(t, err, 'b', label='Q(t)')
plt.xlabel('t')
plt.ylabel('error')
```


Error plot-it range from [-4*e⁻⁸, 4 *e⁻⁸]

```
SumOfSquare=0
absoluteSum=0
for i in range(len(t)):
    SumOfSquare=SumOfSquare=+ err[i]**2
    absoluteSum=absoluteSum + abs(err[i])

#root mean square error
RMSE=math.sqrt(SumOfSquare)/len(t)

#Mean absolute Error
MAE=absoluteSum/len(t)

print("Root Mean Square Error = ",RMSE)
print("Mean Absolute Error = ",MAE)
```

Root Mean Square Error = 6.552547503490991e-11 Mean Absolute Error = 1.3431390947033232e-08

Comparison

Value of function

Table

```
from tabulate import tabulate
table=[['T','True value','RK1/Euler','RK2','RK4','ODEINT()']]
for i in range(0,101,10):
   table.append([t[i],Tsol[i],solrk1[:,0][i],solrk2[:,0][i],solrk4[:,0][i],
sol[:,0][i]])
print(tabulate(table,headers='firstrow',tablefmt='fancy_grid'))
```

Т	True value	RK1/Euler	RK2	RK4	ODEINT()
0	0	0	0	0	0
1	0.878279	1.13931	0.878958	0.878337	0.878279
2	-1.37158	-1.47345	-1.38505	-1.37163	-1.37158
3	-0.170775	-0.345919	-0.15539	-0.170783	-0.170775
4	1.56254	1.86254	1.56028	1.5626	1.56254
5	-1.11001	-1.19661	-1.12417	-1.11006	-1.11001
6	-0.641885	-0.873565	-0.627487	-0.641908	-0.641885
7	1.64339	1.9244	1.6456	1.64346	1.64339
8	-0.725707	-0.727825	-0.741973	-0.725737	-0.725707
9	-1.03936	-1.31872	-1.02803	-1.03939	-1.03936

10 | 1.59074 | 1.82538 | 1.59759 | 1.59081 | 1.59074

Graph

```
plt.plot(t, Tsol, 'r', label='TRUE(t)')
plt.plot(t, solrk1[:, 0], 'b', label='RK1')
plt.plot(t, solrk2[:, 0], 'G', label='RK2')
plt.plot(t, solrk4[:, 0], 'Y', label='RK4')
plt.plot(t, sol[:, 0], 'K', label='ODEINT()')
plt.legend(loc='best')
plt.xlabel('t')
plt.grid()
plt.show()
```


True,RK2,RK4,ODEINT() are overlap and has same as black graph.

Error

Table

```
from tabulate import tabulate
```

```
table=[['t','Error in RK1','Error in RK2','Error in RK4','Error in ODEINT(
)']]
for i in range(0,101,10):
   table.append([t[i],e1[i],e2[i],e3[i],e4[i]])
print(tabulate(table,headers='firstrow',tablefmt='fancy grid'))
```

t	Error in RK1	Error in RK2	Error in RK4	Error in ODEINT()
0	0	0	0	0
1	-0.261029	-0.00067907	-5.77507e-05	-1.06712e-08
2	0.101864	0.013464	4.55567e-05	1.21471e-09
3	0.175143	-0.015385	7.76339e-06	3.47527e-08
4	-0.299995	0.00226477	-5.91734e-05	-6.14231e-09
5	0.086601	0.0141555	4.42651e-05	-1.25809e-08
6	0.231681	-0.0143974	2.28914e-05	1.4757e-08
7	-0.281005	-0.0022108	-6.35844e-05	-6.64405e-09
8	0.00211761	0.0162657	3.00006e-05	-3.89777e-08
9	0.279363	-0.0113256	3.86352e-05	-7.57566e-09
10	-0.234639	-0.00684137	-6.21555e-05	6.61807e-09

```
plt.plot(t, e1, 'b', label='RK1')
plt.plot(t, e2, 'G', label='RK2')
plt.plot(t, e3, 'Y', label='RK4')
plt.plot(t, e4, 'K', label='ODEINT()')

plt.legend(loc='best')
plt.xlabel('t')
plt.grid()
plt.show()
```


RK4,ODEINT() are overlapped and has same error as black graph.

