Range Trees

The problem

Given a set of n points in 2D, preprocess into a data structure to support fast range queries.

The problem

- n: size of the input (number of points)
- k: size of output (number of points in range)

Given a set of n points in 2D, preprocess into a data structure to support fast range queries.

- No data structure: traverse and check in O(n)
- Goal: static data structure (points are known ahead)
- In 1D: BBST can answer 1D range queries in O(lg n+k) and it's also dynamic (supports inserts and deletes)

Data structures for 2D range queries

2D kd-trees

• Build: O(n lg n)

• Space: O(n)

• Range queries: $O(n^{1/2} + k)$

Different trade-offs!

2D Range trees

• Build: O(n lg n)

• Space: O(n lg n)

Range queries: O(lg²n +k)

1D

- P is a set of points on the real line
- A range query is an interval

• Store the points as a BBST

The k points in the range are in O(lg n) subtrees

A 1-dimensional range query with [25, 90]

screen shot from Mark van Kreveld slides, http://www.cs.uu.nl/docs/vakken/ga/slides5b.pdf)

A 1-dimensional range query with [61, 90]

screen shot from Mark van Kreveld slides, http://www.cs.uu.nl/docs/vakken/ga/slides5b.pdf)

Example of a 1D range query

General 1D range query

Idea

- Denote query $[x_1, x_2] \times [y_1, y_2]$
- Find all points with the x-coordinates in the correct range [x₁, x₂]
- Out of these points, find all points with the y-coord in the correct range [y₁, y₂]

- How?
 - Store points in a BBST by x-coordinate
 - Use it to find all points with the x-coordinates in the correct range [x1, x2]
 - This alone is not enough...

- How?
 - Store points in a BBST by x-coordinate
 - Find all points with the x-coordinates in the correct range [x₁, x₂]
 - They are sitting in O(lg n) subtrees!

- How?
 - Store points in a BBST by x-coordinate
 - Find all points with the x-coordinates in the correct range [x₁, x₂]
 - They are sitting in O(lg n) subtrees!

- How?
 - Store points in a BBST by x-coordinate
 - Find all points with the x-coordinates in the correct range [x₁, x₂]
 - They are sitting in O(lg n) subtrees!

What is a good data structure for range search on y?

P = set of points

RangeTree(P) is

- A BBST T of P on x-coord
- Any node v in T stores a BBST T_{assoc} of P(v), by y-coord

P(v): all points in subtree rooted at v

• To simplify, we'll use BBSTs that store all data in leaves

• To simplify, we'll use BBSTs that store all data in leaves

Example: P = (1,3,4,7,11,13)

Class work

• Show the BBST with all dat in leaves for $P = \{1,2,3,4,5,6,7,8,9,10\}$

 Write pseudocode for the algorithm to build on BuildBBST(P)

P = set of points

RangeTree(P) is

- A BBST T of P on x-coord
- Any node v in T stores a BBST T_{assoc} of P(v), by y-coord

P(v): all points in subtree rooted at v

screen shot from Mark van Kreveld slides, http://www.cs.uu.nl/docs/vakken/ga/slides5b.pdf)

Every internal node stores a whole tree in an associated structure, on y-coordinate

Class work

• Let $P = \{(1,4), (5,8), (4,1), (7,3), (3,2), (2,6), (8,7)\}.$

Draw the points and show the range tree for it.

Questions

- How do you build it and how fast?
- How much space does it take?
- How do you answer range queries and how fast?

How do you build it and how fast?

Building a 2D Range Tree

Let $P = \{p_1, p_2, \dots p_n\}$. Assume P sorted by x-coord.

Algorithm Build2DRT(P)

- Construct the associated structure: build a BBST T_{assoc} on the set of ycoordinates of P
- 2. if P contains only one point:

create a leaf v storing this point, create its Tassoc and return v

- 3. else
 - 1. partition P into 2 sets wrt the median coordinate x_{middle} :

$$P_{left} = \{p \ in \ P. \ p_x <= x_{middle}\}, \quad P_{right} = \dots \quad //keep \ in \ x-order$$

- 2. $V_{left} = Build2DRT(P_{left})$
- 3. $V_{right} = Build2DRT(P_{right})$
- 4. create a node v storing x_{middle} , make v_{left} its left child, make v_{right} its right child, make T_{assoc} its associate structure
- 5. return v

Building a 2D Range Tree

How fast?

- Constructing a BBST on an unsorted set of keys takes O(n lg n)
- The construction algorithm Build2DRT(P) takes

$$T(n) = 2T(n/2) + O(n \lg n)$$

• This solves to O(n lg² n)

Building a 2D Range Tree

Build2DRT can be improved to O(n lg n) with a common trick:
 pre-sort P on y-coord and pass it along as argument

 $//P_{sx}$ is set of points sorted by x-coord, P_{sy} is set of points sorted by y-coord Build2DRT(P_{sx} , P_{sy})

Maintain the sorted sets through recursion

$$P_1$$
 sorted-by-x, P_1 sorted-by-y P_2 sorted-by-x, P_2 sorted-by-y

• If we got the keys in order, a BBST can be built in O(n) time and we got T(n) = 2T(n/2) + O(n) which solves to $O(n \lg n)$

• How much space does a range tree use?

• How much space does a range tree use?

Two arguments can be made:

At each level in the tree, each point is stored exactly once (in the
associated structure of precisely one node). So every level stores all points
and uses O(n) space => O(n lg n)

or

 Each point p is stored in the associated structures of all nodes on the path from root to p. So one point is stored O(lg n) times => O(n lg n)

• How do you answer range queries with a range tree, and how fast?

Range queries with the 2D Range Tree

- Find the split node x_{split} where the search paths for x₁ and x₂ split
- Follow path root to x₁: for each node v
 to the **right** of the path, query its
 associated structure T_{assoc}(v) with
 [y₁,y₂]
- Follow path root to x₂: for each node v
 to the **left** of the path, query its
 associated structure T_{assoc}(v) with
 [y₁,y₂]

How long does this take?

Range queries with the 2D Range Tree

How long does a range query take?

- There are O(lg n) subtrees in between the paths
- We query each one of them using its associated structure
- Querying it's T_{assoc} takes O(lg n_v + k')
- Overall it takes

SUM O(
$$\lg n_v + k'$$
) = O($\lg^2 n + k$)

Comparison Range Tree and kd Tree

2D

n	$\log n$	$\log^2 n$	\sqrt{n}
16	4	16	4
64	6	36	8
256	8	64	16
1024	10	100	32
4096	12	144	64
16384	14	196	128
65536	16	256	256
1M	20	400	1K
16M	24	576	4K

screen shot from Mark van Kreveld slides, http://www.cs.uu.nl/docs/vakken/ga/slides5b.pdf)

P = set of points in 3D

- 3DRangeTree(P)
 - Construct a BBST on x-coord
 - Each node v will have an associated structure that's a 2D range tree for P(v) on the remaining coords

Size:

Size:

• An associated structure for n points uses O(n lg n) space. Each point is stored in all associated structures of all its ancestors => O (n lg² n)

Size:

• An associated structure for n points uses O(n lg n) space. Each point is stored in all associated structures of all its ancestors => O (n lg² n)

Size:

 An associated structure for n points uses O(n lg n) space. Each point is stored in all associated structures of all its ancestors => O (n lg² n)

Size:

 An associated structure for n points uses O(n lg n) space. Each point is stored in all associated structures of all its ancestors => O (n lg² n)

Let's try this recursively

• Let S₃(n) be the size of a 3D Range Tree of n points

Size:

 An associated structure for n points uses O(n lg n) space. Each point is stored in all associated structures of all its ancestors => O (n lg² n)

- Let S₃(n) be the size of a 3D Range Tree of n points
- Find a recurrence for S₃(n)

Size:

 An associated structure for n points uses O(n lg n) space. Each point is stored in all associated structures of all its ancestors => O (n lg² n)

- Let S₃(n) be the size of a 3D Range Tree of n points
- Find a recurrence for S₃(n)
 - Think about how you build it: you build an associated structure for P that's a 2D range tree; then you build recursively a 3D range tree for the left and right half of the points

Size:

 An associated structure for n points uses O(n lg n) space. Each point is stored in all associated structures of all its ancestors => O (n lg² n)

- Let S₃(n) be the size of a 3D Range Tree of n points
- Find a recurrence for S₃(n)
 - Think about how you build it: you build an associated structure for P that's a 2D range tree; then you build recursively a 3D range tree for the left and right half of the points
 - $S_3(n) = 2S_3(n/2) + S_2(n)$

Size:

 An associated structure for n points uses O(n lg n) space. Each point is stored in all associated structures of all its ancestors => O (n lg² n)

- Let S₃(n) be the size of a 3D Range Tree of n points
- Find a recurrence for S₃(n)
 - Think about how you build it: you build an associated structure for P that's a 2D range tree; then you build recursively a 3D range tree for the left and right half of the points
 - $S_3(n) = 2S_3(n/2) + S_2(n)$
 - This solves to O(n lg² n)

Build time:

- Think recursively
- Let B₃(n) be the time to build a 3D Range Tree of n points
- Find a recurrence for B₃(n)
 - Think about how you build it: you build an associated structure for P that's a 2D range tree; then you build recursively a 3D range tree for the left and right half of the points
 - $B_3(n) = 2B_3(n/2) + B_2(n)$
 - This solves to O(n lg² n)

Query:

- Query BBST on x-coord to find O(lg n) nodes
- Then perform a 2D range query in each node ...

Time?

- Let Q₃(n) be the time to answer a 3D range query
- Find a recurrence for Q₃(n)
 - $Q_3(n) = O(\lg n) + O(\lg n) \times Q_2(n)$
 - This solves to O(lg³ n + k)

Comparison Range Tree and kd Tree

3D

n	$\log n$	$\log^4 n$	$n^{3/4}$
1024	10	10,000	181
65,536	16	65,536	4096
1M	20	160,000	32,768
1G	30	810,000	5,931,641
1T	40	2,560,000	1G

screen shot from Mark van Kreveld slides, http://www.cs.uu.nl/docs/vakken/ga/slides5b.pdf)