In-silico HLA typing from RNA-seq data

Vitor R. C. Aguiar^{1,2} Maria Gutierrez-Arcelus^{1,2}

Methods

RNA-seq data processing

We used trim_galore (https://github.com/FelixKrueger/TrimGalore) to perform adapter and quality trimming on the RNA-seq reads. We then aligned reads to the human reference genome GRCh38 with STAR¹.

HLA typing

In order to call HLA alleles from the RNA-seq data, we used two independent approaches: (1) HLApers², which integrates STAR¹ and Salmon³ to map reads to HLA allele sequences and infer the most likely HLA genotypes; and (2) Kourami⁴, a graph-guided approach to assemble HLA allele sequences.

We used HLApers v1.2_dev with HLA reference sequences from the IPD-IMGT/HLA database⁵ v3.52.0. We performed read extraction from STAR's BAM files with HLApers bam2fq in order to extract unmapped reads and reads mapping to the MHC region, which we used as input for HLApers genotype to infer HLA types.

We used Kourami⁴ v0.9.6 with its built-in HLA database based on IPD-IMGT/HLA⁵ v3.24.0. As a first step, we used hla-mapper⁶ v4.3 to correct for mapping bias at HLA genes in the BAM files from STAR. Then, we extracted reads mapped to HLA genes with the script alignAndExtract_hs38.sh, and ran Kourami using as input the reads realigned to its built-in HLA panel.

 $^{^{1}}$ Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA

² Broad Institute of MIT and Harvard, Cambridge, MA, USA

Code availability

 ${\it Code is available at https://github.com/gutierrez-arcelus-lab/hla_mis-c}$

Results

$sample_id$	locus	h	allele_hlapers	allele_kourami
Key_45	HLA-A	1	A*02:05:01	A*02:05:01G
Key_45	HLA-A	2	A*30:02:01	A*30:61/A*30:80
Key_45	HLA-B	1	B*07:02:01	B*07:02:01G
Key_45	HLA-B	2	B*51:08:01	B*51:08:01
Key_45	HLA-C	1	C*07:02:01:01	C*07:02:01G
Key_45	HLA-C	2	C*16:02:01	C*16:02:01G
Key_71	HLA-A	1	A*03:01:01:01	A*03:01:01G
Key_71	HLA-A	2	A*30:01:01	A*30:01:01G
Key_71	HLA-B	1	B*14:02:01	B*14:02:01G
Key_71	HLA-B	2	B*15:10:01	B*15:10:01
Key_71	HLA-C	1	C*03:04:02	C*03:04:02
Key_71	HLA-C	2	C*08:02:01	C*08:02:01G
Key_72	HLA-A	1	A*02:01:01	A*02:01:01G
Key_72	HLA-A	2	A*02:01:01	A*02:01:01G
Key_72	HLA-B	1	B*15:01:01:01	B*15:01:01G
Key_72	HLA-B	2	B*18:01:01	B*18:01:01G
Key_72	HLA-C	1	C*03:03:01:01	C*03:03:01G
Key_72	HLA-C	2	C*07:01:01	C*07:01:01G
Key_74	HLA-A	1	A*11:01:01	A*11:01:01G
Key_74	HLA-A	2	A*30:01:01	A*30:01:01G
Key_74	HLA-B	1	B*35:01:01	B*35:01:01G
Key_74	HLA-B	2	B*52:01:01	B*52:01:01G
Key_74	HLA-C	1	C*04:01:01	C*04:01:01G
Key_74	HLA-C	2	C*12:02:02	C*12:02:01G
Key_75	HLA-A	1	A*02:01:01	A*02:01:01G
Key_75	HLA-A	2	A*03:01:01:01	A*02:26/A*02:237
Key_75	HLA-B	1	B*18:01:01	B*18:01:01G
Key_75	HLA-B	2	B*40:01:02	B*40:01:01G
Key_75	HLA-C	1	C*03:04:01	C*03:04:01G
Key_75	HLA-C	2	C*12:03:01	C*12:03:01G
Key_76	HLA-A	1	A*23:01:01	A*23:01:01G
Key_76	HLA-A	2	A*32:01:01	A*32:01:01G
Key_76	HLA-B	1	B*07:02:01	B*07:02:01G

$\overline{\mathrm{sample_id}}$	locus	h	allele_hlapers	allele_kourami
	HLA-B	2	B*52:01:01	B*52:01:01G
Key_76	HLA-C	1	C*07:02:01:01	C*07:02:01G
Key_76	HLA-C	2	C*12:02:02	C*12:02:01G

References

- 1. Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2012).
- 2. Aguiar, V. R. C., César, J., Delaneau, O., Dermitzakis, E. T. & Meyer, D. Expression estimation and eQTL mapping for HLA genes with a personalized pipeline. *PLOS Genetics* **15**, e1008091 (2019).
- 3. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. *Nature Methods* **14**, 417–419 (2017).
- 4. Lee, H. & Kingsford, C. Kourami: Graph-guided assembly for novel human leukocyte antigen allele discovery. *Genome Biology* **19**, (2018).
- 5. Robinson, J. et al. IPD-IMGT/HLA database. Nucleic Acids Research (2019) doi:10.1093/nar/gkz950.
- 6. Castelli, E. C., Paz, M. A., Souza, A. S., Ramalho, J. & Mendes-Junior, C. T. Hlamapper: An application to optimize the mapping of HLA sequences produced by massively parallel sequencing procedures. *Human Immunology* **79**, 678–684 (2018).