Machine Learning 1

Regression & Classification

Agenda

- Missing Values
- Introduction to Machine Learning
- Scikit-Learn
- Regression
- Classification

Missing Values: NaN

```
string_data = Series(['aardvark', 'artichoke', np.nan, 'avocado'])
string data
      aardvark
0
     artichoke
           NaN
       avocado
dtype: object
string_data.isnull()
    False
     False
      True
     False
dtype: bool
```

Strategy 1: filtering out missing values

```
from numpy import nan as NA
data = Series([1, NA, 3.5, NA, 7])
data.dropna()
    1.0
  3.5
    7.0
dtype: float64
data[data.notnull()]
    1.0
    3.5
    7.0
dtype: float64
```

Strategy 1: filtering out missing values

	0	1	2		
0	1.0	6.5	3.0		
1	1.0	NaN	NaN		
2	NaN	NaN	NaN		
3	NaN	6.5	3.0		

cleaned

	0	1	2		
0	1.0	6.5	3.0		

Strategy 2: filtering out some missing values

	0	1	2		
0	1.0	6.5	3.0		
1	1.0	NaN	NaN		
2	NaN	NaN	NaN		
3	NaN	6.5	3.0		

```
data.dropna(how='all')
```

	0	1	2		
0	1.0	6.5	3.0		
1	1.0	NaN	NaN		
3	NaN	6.5	3.0		

Strategy 2: filtering out some missing values

```
data[4] = NA
data
```

	0	1	2	4
0	1.0	6.5	3.0	NaN
1	1.0	NaN	NaN	NaN
2	NaN	NaN	NaN	NaN
3	NaN	6.5	3.0	NaN

data.dropna(axis=1, how='all')

	0	1	2
0	1.0	6.5	3.0
1	1.0	NaN	NaN
2	NaN	NaN	NaN
3	NaN	6.5	3.0

Strategy 3.1: filling in missing values

df.fillna(0)

	0	1	2		
0	-0.204708	0.000000	0.000000		
1	-0.555730	0.000000	0.000000		
2	0.092908	0.000000	0.000000		
3	1.246435	0.000000	-1.296221		
4	0.274992	0.000000	1.352917 -0.371843 -0.539741		
5	0.886429	-2.001637			
6	1.669025	-0.438570			

Strategy 3.2: filling in missing values

df.fillna({1: 0.5, 2: -1})

	0	1	2		
0	-0.577087	0.500000	-1.000000		
1	0.523772	0.500000	-1.000000		
2	-0.713544	0.500000	-1.000000		
3	-1.860761	0.500000	0.560145		
4	-1.265934	0.500000	-1.063512		
5	0.332883	-2.359419	-0.199543		
6	-1.541996	-0.970736	-1.307030		

Strategy 3.3 forward filling missing values

```
df = DataFrame(np.random.randn(6, 3))
df.ix[2:, 1] = NA; df.ix[4:, 2] = NA
df
```

	0	1	2		
0	-0.831154	-2.370232	-1.860761		
1	-0.860757	0.560145	-1.265934		
2	0.119827	NaN	0.332883		
3	-2.359419	NaN	-1.541996		
4	-0.970736	NaN	NaN		
5	0.377984	NaN	NaN		

Strategy 3.3 forward filling missing values

df.fillna(method='ffill')

	0	1	2		
0	-0.831154	-2.370232	-1.860761		
1	-0.860757	0.560145	-1.265934		
2	0.119827	0.560145	0.332883		
3	-2.359419	0.560145	-1.541996		
4	-0.970736	0.560145	-1.541996		
5	0.377984	0.560145	-1.541996		

Strategy 3.3 forward filling missing values

df.fillna(method='ffill', limit=2)

	0	1	2		
0	-0.831154	-2.370232	-1.860761		
1	-0.860757	0.560145	-1.265934		
2	0.119827	0.560145	0.332883		
3	-2.359419	0.560145	-1.541996 -1.541996 -1.541996		
4	-0.970736	NaN			
5	0.377984	NaN			

Agenda

- Missing Values
- Introduction to Machine Learning
- Scikit-Learn
- Regression
- Classification

Machine learning

- T = tasks to be performed
- E = experience (usually in the form of history datasets)
- P = performance for an algorithm for T using E

Typical Paradigms of Recognition

Types of ML approaches

- Regression
 - Linear regression
 - Structured output regression
- Classification
 - Generative vs. Discriminative
 - Supervised, unsupervised, semi-supervised, weakly supervised
 - Linear, nonlinear
 - Ensemble methods
 - Probabilistic
- Structure Learning
 - Graphical Models
 - Margin based approaches

Agenda

- Missing Values
- Introduction to Machine Learning
- Scikit-Learn
- Regression
- Classification

Scikit-learn: ML in Python

scikit-learn is a Python module integrating classic machine learning algorithms in the tightly-knit world of scientific Python packages (numpy, scipy, matplotlib)

Tools for:

- Regression
- Classification
- Clustering
- Dimensionality Reduction
- Model Selection

Scikit-learn: http://scikit-learn.org/

Classification

Identifying to which category an object belongs to.

Applications: Spam detection, Image recognition.

Algorithms: SVM, nearest neighbors,

random forest, ... - Examples

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices. **Algorithms**: SVR, ridge regression, Lasso,

Examples

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation,

Grouping experiment outcomes

Algorithms: k-Means, spectral clustering,

mean-shift, ... — Examples

Fit and predict

- All models (Classification and regression) implement at least two functions:
 - fit(x, y) Fit the model to the given dataset
 - predict(x) Predict the y values associated with the x values

```
>>> clf = linear_model.Lasso(alpha = 0.1)
>>> clf.fit([[0, 0], [1, 1]], [0, 1])
Lasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000,
    normalize=False, positive=False, precompute=False, random_state=None,
    selection='cyclic', tol=0.0001, warm_start=False)
>>> clf.predict([[1, 1]])
array([ 0.8])
```

Agenda

- Missing Values
- Introduction to Machine Learning
- Scikit-Learn
- Regression
- Classification

Regression: fitting "lines"

- Example: Price of a used car
- x : car attributes

y: price

$$y = g(x \mid \theta)$$

g () model,

 θ parameters

Supervised Learning: Regression

- Regression: tries to fit a mathematical function that describes the learning data set E to minimize some error function
- Example: House price prediction
 - E = house prices ("targets") with characteristics on # rooms, location, sq footage, etc.
 - T = predict the house sale price
 - P = how well the estimator can accurately predict the actual sale price

Linear Regression: House Price Prediction

- UC Irvine House Dataset: Boston House Prices for 506 homes
 - http://archive.ics.uci.edu/ml/datasets/Housing

```
from sklearn.datasets import load_boston

boston = load_boston()

print boston.DESCR
```

Boston Housing Dataset: 13 Attributes

```
CRIM per capita crime rate by town
```

ZN proportion of residential land zoned for lots over 25,000 sq.ft.

INDUS proportion of non-retail business acres per town

CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)

NOX nitric oxides concentration (parts per 10 million)

RM average number of rooms per dwelling

AGE proportion of owner-occupied units built prior to 1940

DIS weighted distances to five Boston employment centres

RAD index of accessibility to radial highways

TAX full-value property-tax rate per \$10,000

PTRATIO pupil-teacher ratio by town

3k 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town

LSTAT % lower status of the population

MEDV Median value of owner-occupied homes in \$1000's

Visualizing Boston House Prices

```
plt.hist(boston.target, bins=50)
plt.xlabel("Prices in $1000s")
plt.ylabel("Number of Houses")
```


Visualizing Influence of # Rooms

```
# the 5th column in "boston" dataset is "RM" (# rooms)
plt.scatter(boston.data[:,5], boston.target)
plt.ylabel("Prices in $1000s")
plt.xlabel("# rooms")
                                              50
                                           Prices in $1000s
                                              30
                                              10
```

rooms

Visualizing Influence of # Rooms with fit

Start by creating a DataFrame that can be used by Seaborn

```
boston_df = DataFrame(boston.data)
boston_df.columns = boston.feature_names
boston_df['Price'] = boston.target
boston_df.head(5)
```

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	Price
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33	36.2

Visualizing Influence of # Rooms with fit

```
sns.lmplot('RM', 'Price', data=boston_df)
```


Ridge regression

Linear prediction: $\hat{y}_i = \mathbf{w} \cdot \mathbf{x}_i$

Loss function:

$$L = \sum_{i} \frac{1}{2} (\hat{y}_i - y_i)^2 + \frac{1}{2} \lambda |\mathbf{w}|^2$$
 Fit quality Penalty

Both the fit quality and the penalty can be changed.

Changing the penalty

•
$$|\mathbf{w}| = \sqrt{\sum_i w_i^2}$$
 is called the " L_2 norm"

• $|\mathbf{w}|_1 = \sum_i |w_i|$ is called the " L_1 norm"

• In general $|\mathbf{w}|_p = \sqrt[p]{\sum_i |w_i|^p}$ is called the " L_p norm"

The LASSO

Loss function:

$$L = \sum_i \frac{1}{2} (\hat{y}_i - y_i)^2 + \frac{1}{2} \lambda |\mathbf{w}|_1$$
 Fit quality Penalty

LASSO regularization path

- Most weights are exactly zero
- "sparse solution", selects a small number of explanatory variables
- This can help avoid overfitting when p>>N
- Models are easier to interpret but remember there is no proof of causation.
- Path is piecewise-linear

Agenda

- Missing Values
- Introduction to Machine Learning
- Scikit-Learn
- Regression
- Classification

Supervised Learning: Classification

- Classification: assign discrete labels to input data
- Example: Medical image diagnosis
 - E = CAT medical scans with labels ("targets") on (1) tumor, or (2) no tumor
 - T = predict tumor or not tumor for new images
 - P = how well the estimator can accurately predict tumor or not

Supervised Learning: Use Cases

- Prediction of future cases: Use the rule to predict the output for future inputs
- Knowledge extraction: The rule is easy to understand
- Compression: The rule is simpler than the data it explains
- Outlier detection: Exceptions that are not covered by the rule, e.g., fraud

Classification: Oranges and Lemons

Classification: Oranges and Lemons

Classification problem

- Given: Training set
 - labeled set of *N* input-output pairs
 - $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^{N}$
 - $y = \{1, ..., K\}$
- Goal: Given an input x, assign it to one of K classes

- Examples:
 - Spam filter
 - Handwritten digit recognition

Digit Recognition

• Input: pixel grids

• Output: a digit 0-9

Naïve Bayes Classifier

• Given:

- Prior P(Y)
- n conditionally independent features X given the class Y
- For each X_i, we have likelihood P(X_i|Y)

• Decision rule:

$$y^* = h_{NB}(\mathbf{x}) = \arg \max_{y} P(y) P(x_1, \dots, x_n \mid y)$$

= $\arg \max_{y} P(y) \prod_{i} P(x_i \mid y)$

Example Distribution

Linear classifiers

- Linear classifiers:
 - Decision boundaries are linear functions
 - d-1 dimensional hyper-plane within the d dimensional input space.
 - Examples
 - Perceptron
 - Support vector machine
 - Decision Tree
 - KNN
 - Naive Bayes classifier
 - Linear Discriminant Analysis (or Fisher's linear discriminant)

Linear classifiers

- Linearly separable
 - Data points can be exactly classified by a linear decision surface.
- Binary classification
 - Target variable
 - $y \in \{0,1\}$
 - $y \in \{-1,1\}$

Decision boundary

- Discriminant function : $f(x; w) = w^T x$
 - $x = [1 x_1 x_2 ... x_d]$
 - $\mathbf{w} = [w_0 \ w_1 \ w_2 \ ... \ w_d]$
 - w_0 : bias
- if $f(x; w) = w^T x \ge 0$ then C1 else C2

- Decision boundary: f(x; w) = 0
 - The sign of f(x; w) predicts binary class labels

Linear Decision boundary (Perceptron)

Linear Decision boundary (Decision Tree)

Linear Decision boundary (K Nearest Neighbor)

Non-Linear Decision boundary

Decision boundary

Linear classifier

$$3 + \frac{3}{4}x_1 + x_2 = 0$$
if $w^T x \ge 0$ then $y = 1$ else $y = -1$

$$w = [3, 0.75, 1]$$

Non-linear decision boundary

- Choose non-linear features
 - Classifier still linear in parameters w

$$-1 + x_1^2 + x_2^2 = 0$$

$$\phi(x) = [1, x_1, x_2, x_1^2, x_2^2, x_1 x_2]$$

$$w = [-1, 0, 0, 1, 1, 0]$$

if
$$\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}) \ge 0$$
 then $y = 1$ else $y = -1$

Linear boundary: geometry

Unsupervised Learning

- Data has no labels (no "outputs")
- Clustering: Grouping similar instances
- Goal is to find similarity among the data to "discover" labels from the data itself

• Examples:

- Customer segmentation: given purchase behaviors and demographics, classify type of consumers for different marketing campaigns.
- Image compression: Color quantization
- Bioinformatics: Learning motifs

Reinforcement Learning

- Learning a policy: A sequence of outputs
- No supervised output but delayed reward
- Credit assignment problem
- Game playing
- Robot in a maze
- Multiple agents, partial observability, ...

APPENDIX

Learning Associations

Basket analysis:

 $P(Y \mid X)$ probability that somebody who buys X also buys Y where X and Y are products/services.

Example: P (chips | beer) = 0.7

Classification

- Example: Credit scoring
- Differentiating between low-risk and high-risk customers from their income and savings

Discriminant: IF $income > \theta_1$ AND $savings > \theta_2$ THEN low-risk ELSE high-risk

Classification: Applications

- Aka Pattern recognition
- Face recognition: Pose, lighting, occlusion (glasses, beard), make-up, hair style
- Character recognition: Different handwriting styles.
- Speech recognition: Temporal dependency.
- Medical diagnosis: From symptoms to illnesses
- Biometrics: Recognition/authentication using physical and/or behavioral characteristics: Face, iris, signature, etc

• ...

Face Recognition

Training examples of a person

Test images

