MULTIMEDIA UNIVERSITY STUDENT ID NO

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2019/2020

TMA1301 - COMPUTATIONAL METHODS

(All sections / Groups)

4 MARCH 2020 9.00am – 11.00am (2 Hours)

INSTRUCTIONS TO STUDENT

- 1. This question paper consists of 4 pages with 3 questions only.
- 2. Attempt ALL THREE questions. The distribution of the marks for each question is given.
- 3. Please write your answers in the Answer Booklet provided and start each solution of a question on a **new page**.
- 4. Show all steps.

QUESTION 1 (5 MARKS)

Given the function $f(x) = \frac{\sin x}{x} - \cos x$.

(a) Rewrite the given f(x) to avoid loss of significance by using the first two nonzero terms in Taylor series expansion. [2.5 marks]

[HINT:
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$$
; $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$; $\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \dots$]

- (b) Calculate the approximated value of f(0.25) by using **SIX DIGIT arithmetic** with rounding. [1 mark]
- (c) The actual value of f(0.25) is 0.02070. Find the relative error from the result obtained in (b). Correct your answer into **FIVE decimal places.** [1.5 mark]

Continued...

QUESTION 2 (15 MARKS)

- (a) Consider the function $f(x) = x^3 5x^2 + 7x 3$.
 - (i) Find f'(x) and f''(x).

[1 mark]

(ii) Using Newton's method, find a root of f(x) starting with $p_0 = 0.9$ by completing the following table. Use **FOUR decimal places** for all workings.

[3 marks]

Iteration,	p_n	$f(p_n)$	$f'(p_n)$
n			
0			7
1			
2			

- (iii) Given the root of f(x) is r = 1, is the convergence linear or quadratic as Newton's method is used to find the root? [1.5 marks]
- (iv) Based on the answer obtained in (iii), find the convergence rate. Hence express the error e_{n+1} in terms of the previous error e_n .

[1.5 marks]

- (b) Consider the definite integral $\int_{2}^{3} \frac{1}{x} dx$. Use **FOUR decimal places** for all workings.
 - (i) Find the actual value for the definite integral.

[1.5 marks]

(ii) Find the number of subintervals if Composite Trapezoidal Rule is used to approximate the definite integral with an error of at most 2×10^{-3} .

[Hint: error formula:
$$-\frac{b-a}{12}h^2f$$
 "(x)]

[4.5 marks]

(iii) With the number of subintervals obtained in (ii), find the approximated value for the definite integral using the Composite Trapezoidal Rule.

[2 marks]

Continued...

QUESTION 3 (20 MARKS)

(a) Consider the following linear system:

$$\begin{bmatrix} 2 & -1 & 2 \\ -6 & 0 & -2 \\ 8 & -1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix}$$

- (i) Use row reduction technique to find an upper triangular U and lower triangular L in the LU factorization of the given linear system. [2.5 marks]
- (ii) Then find the values of x_1 , x_2 and x_3 by using the **L** and **U** obtained from (i).

 [3 marks]
- (b) Given the following system of equations:

$$7w-2x+y+2z = 3$$

$$2w+8x+3y+z = -2$$

$$-w+5y+2z = 5$$

$$2x-y+4z = 4$$

- (i) Construct the equations for w, x, y and z of the above linear system using Jacobi Method. [2 marks]
- (ii) Copy the following table into your Answer Booklet. Complete it by computing one iteration of the Jacobi Method for the constructed equations in (i) starting with [w, x, y, z] = [0, -1, 1, 1]. Write your answers correct to **FOUR decimal places.** [2 marks]

piaces.							
n	w	x	<i>y</i>	Z			
0	0	-1	1	1			
1							

- (c) Determine whether $\lambda = -7$ is the eigenvalue of matrix $A = \begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix}$. [1.5 marks]
- (d) Consider the following data:

x	$x_0 = 1$	$x_1 = 2$	$x_2 = 3$
f(x)		5	4

(i) Construct the Lagrange Coefficients $L_0(x)$, $L_1(x)$ and $L_2(x)$.

[1.5 marks]

(ii) Find the second interpolating polynomial $P_2(x)$ using the results from (i).

[1 mark]

(iii) Approximate the value of f(1.5) from the $P_2(x)$ obtained in (ii).

[0.5 mark]

Continued...

(e) The owner of a motor workshop keeps track on number of cars repaired and the revenue obtained. Based on a sample data, he has the following information:

Number of cars repaired	25	10	15	12	16	24	20	18	10	20	20	18
Revenue(RM'000)	8	3.5	6.5	6	7.5	9	7.8	8	6.8	7	6.5	7

(i) Copy the following table into your Answer Booklet and complete it.

x	у	x^2	xy
25	8		
10	3.5		
15	6.5		
12	6		
16	7.5	"	
24	9		
20	7.8		
18	8		
10	6.8		
20	7		
20	6.5		
18	7		
$\sum x =$	$\sum y =$	$\sum x^2 =$	$\sum xy =$

[2 marks]

(ii) From (i), find the equation of the best fit linear line y = a + bx that models the data by using the least squares method. Round your answers to **FOUR decimal places.**

[Hint:
$$a = \frac{\sum_{i=1}^{n} x_{i}^{2} \sum_{i=1}^{n} y_{i} - \sum_{i=1}^{n} x_{i} y_{i} \sum_{i=1}^{n} x_{i}}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}, \quad b = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

[3 marks]

(iii) From (ii), estimate the revenue (in RM) when 10 cars are repaired.

[1 mark]

End of Page

