The Monge Gap: A Regularizer to Learn All Transport Maps

https://github.com/Sisha3342/MongeGap

Team: A. Palanevich Project suggested by: M. Gazdieva

Yandex School of Data Analysis, December 2023

Table of Contents

- Problem Statement
- 2 The Monge gap
- Seriments
- 4 Conclusion

Table of Contents

- Problem Statement
- 2 The Monge gap
- Experiments
- 4 Conclusion

Optimal transport

The Monge problem

$$W_c(\mathbb{P},\mathbb{Q}) = \inf_{\mathcal{T}\sharp\mathbb{P}=\mathbb{Q}} \int_{\Omega} c(\mathbf{x},\mathcal{T}(\mathbf{x})) d\mathbb{P}(\mathbf{x}).$$

Recent papers consider maps $T = \nabla f_{\theta}$, where f_{θ} is an input convex neural network (ICNN), and fit θ with SGD using samples. Despite their mathematical elegance, fitting OT maps with ICNNs raises many challenges¹:

¹Alexander Korotin et al. "Do neural optimal transport solvers work? a continuous wasserstein-2 benchmark". In: *Advances in Neural Information Processing Systems* 34 (2021), pp. 14593–14605.

Recent papers consider maps $T = \nabla f_{\theta}$, where f_{θ} is an input convex neural network (ICNN), and fit θ with SGD using samples. Despite their mathematical elegance, fitting OT maps with ICNNs raises many challenges¹:

• Some of their parameters must be non-negative.

A. Palanevich The Monge Gap YSDA 2023

¹Korotin et al., "Do neural optimal transport solvers work? a continuous wasserstein-2 benchmark".

Recent papers consider maps $T = \nabla f_{\theta}$, where f_{θ} is an input convex neural network (ICNN), and fit θ with SGD using samples. Despite their mathematical elegance, fitting OT maps with ICNNs raises many challenges¹:

- Some of their parameters must be non-negative.
- Parameters initialization.

A. Palanevich The Monge Gap YSDA 2023

¹Korotin et al., "Do neural optimal transport solvers work? a continuous wasserstein-2 benchmark".

Recent papers consider maps $T = \nabla f_{\theta}$, where f_{θ} is an input convex neural network (ICNN), and fit θ with SGD using samples. Despite their mathematical elegance, fitting OT maps with ICNNs raises many challenges¹:

- Some of their parameters must be non-negative.
- Parameters initialization.
- Min-max minimization problem.

A. Palanevich The Monge Gap YSDA 2023

¹Korotin et al., "Do neural optimal transport solvers work? a continuous wasserstein-2 benchmark".

Recent papers consider maps $T = \nabla f_{\theta}$, where f_{θ} is an input convex neural network (ICNN), and fit θ with SGD using samples. Despite their mathematical elegance, fitting OT maps with ICNNs raises many challenges¹:

- Some of their parameters must be non-negative.
- Parameters initialization.
- Min-max minimization problem.
- Relevance of the imposed constraints.

¹Korotin et al., "Do neural optimal transport solvers work? a continuous wasserstein-2 benchmark".

Table of Contents

- Problem Statement
- 2 The Monge gap
- Experiments
- 4 Conclusion

A new paper proposes a radically different approach: the Monge gap², which introduces a regularizer to solve the OT problem. It has the following advantages:

²Théo Uscidda and Marco Cuturi. "The Monge Gap: A Regularizer to Learn All Transport Maps". In: arXiv preprint arXiv:2302.04953 (2023).

A new paper proposes a radically different approach: the Monge gap², which introduces a regularizer to solve the OT problem. It has the following advantages:

• Generalizes to arbitrary costs.

²Uscidda and Cuturi, "The Monge Gap: A Regularizer to Learn All Transport Maps".

A new paper proposes a radically different approach: the Monge gap², which introduces a regularizer to solve the OT problem. It has the following advantages:

- Generalizes to arbitrary costs.
- No architecture constraints.

 $^{^2}$ Uscidda and Cuturi, "The Monge Gap: A Regularizer to Learn All Transport Maps".

A new paper proposes a radically different approach: the Monge gap², which introduces a regularizer to solve the OT problem. It has the following advantages:

- Generalizes to arbitrary costs.
- No architecture constraints.
- Simple minimization algorithm.

Definition and properties

The Monge Gap

$$\mathcal{M}_{\rho}^{c}(T) = \int_{\Omega} c(\mathbf{x}, T(\mathbf{x})) d\rho(\mathbf{x}) - W_{c}(\rho, T\sharp\rho).$$

Definition and properties

The Monge Gap

$$\mathcal{M}_{\rho}^{c}(T) = \int_{\Omega} c(\mathbf{x}, T(\mathbf{x})) d\rho(\mathbf{x}) - W_{c}(\rho, T\sharp \rho).$$

Properties:

• For any vector field $T, \mathcal{M}_{o}^{c}(T) \geq 0$.

Definition and properties

The Monge Gap

$$\mathcal{M}^{c}_{
ho}(T) = \int_{\Omega} c(\mathbf{x}, T(\mathbf{x})) \mathrm{d}
ho(\mathbf{x}) - W_{c}(
ho, T\sharp
ho).$$

Properties:

- For any vector field $T, \mathcal{M}_{\rho}^{c}(T) \geq 0$.
- T is a c-OT map between ρ and $T\sharp \rho \leftrightarrow \mathcal{M}^c_{\rho}(T) = 0$.

Geometrical intuition

Minimization problem: generic costs

We directly parametrize T as a neural network T_{θ} and solve the optimization problem:

Loss for generic costs

$$\min_{ heta} \mathcal{L}(heta) = \Delta(T_{ heta}\sharp \mu,
u) + \lambda_{\mathsf{MG}} \mathcal{M}^{ extsf{c}}_{\mu}(T).$$

Minimization problem: structured costs

For structured costs, i.e., $c(\mathbf{x}, \mathbf{y}) = h(\mathbf{x} - \mathbf{y})$ with h beeing strictly convex, the proposed method can be modified.

OT map for structured costs

$$T_{\theta}: \mathbf{x} \mapsto \mathbf{x} - \nabla h^* \circ F_{\theta}(\mathbf{x}).$$

A. Palanevich The Monge Gap YSDA 2023

³Chen-Hao Chao et al. "Quasi-Conservative Score-based Generative Models". In: arXiv preprint arXiv:2209.12753 (2022).

Minimization problem: structured costs

For structured costs, i.e., $c(\mathbf{x}, \mathbf{y}) = h(\mathbf{x} - \mathbf{y})$ with h beeing strictly convex, the proposed method can be modified.

OT map for structured costs

$$T_{\theta}: \mathbf{x} \mapsto \mathbf{x} - \nabla h^* \circ F_{\theta}(\mathbf{x}).$$

Because F_{θ} is a conservative vector field, we use an additional regularizer³ to point it and optimize the following loss:

Loss for structured costs

$$\min_{\theta} \mathcal{L}(\theta) = \Delta(T_{\theta} \sharp \mu, \nu) + \lambda_{\mathsf{MG}} \mathcal{M}^{\mathsf{c}}_{\rho}(T_{\theta}) + \lambda_{\mathsf{cons}} \mathcal{C}_{\rho}(F_{\theta}).$$

³Chao et al., "Quasi-Conservative Score-based Generative Models".

Table of Contents

- Problem Statement
- 2 The Monge gap
- Seriments
- 4 Conclusion

Wasserstein-2 benchmark

We use the Korotin eq al. 2021 benchmark for pairs of gaussians mixtures μ, ν in dimension $d \in \{2, 4, \dots, 26\}$ for which the optimal map for the squared Euclidean cost is known. We report the next metrics:

Wasserstein-2 benchmark

We use the Korotin eq al. 2021 benchmark for pairs of gaussians mixtures μ, ν in dimension $d \in \{2, 4, \dots, 26\}$ for which the optimal map for the squared Euclidean cost is known. We report the next metrics:

Unexplained variance percentage

$$\mathcal{L}_2^{\mathsf{UV}}(\hat{\mathcal{T}}) = 100 \cdot rac{\mathbb{E}_{\mu} \left\| \hat{\mathcal{T}}(X) - \mathcal{T}^*(X)
ight\|_2^2}{\mathsf{Var}_{
u}(X)}.$$

Wasserstein-2 benchmark

We use the Korotin eq al. 2021 benchmark for pairs of gaussians mixtures μ, ν in dimension $d \in \{2, 4, \dots, 26\}$ for which the optimal map for the squared Euclidean cost is known. We report the next metrics:

Unexplained variance percentage

$$\mathcal{L}_2^{\mathsf{UV}}(\hat{\mathcal{T}}) = 100 \cdot rac{\mathbb{E}_{\mu} \left\| \hat{\mathcal{T}}(X) - \mathcal{T}^*(X)
ight\|_2^2}{\mathsf{Var}_{
u}(X)}.$$

The Sinkhorn divergence

$$S_{\ell_2^2,\epsilon}(
u,\hat{T}\sharp\mu) = W_{\ell_2^2,\epsilon}(\mu,
u) - rac{1}{2}(W_{\ell_2^2,\epsilon}(\mu,\mu) + W_{\ell_2^2,\epsilon}(
u,
u)).$$

The Monge Gap YSDA 2023 13 / 19

Figure: Reference

Figure: Replication

Single-cell genomics

Predicting the response of cells to a perturbation is a central question in biology. We predict responses of cells populations to cancer treatments using the proteomic dataset⁴. The dataset used can be accessed <u>here</u>.

⁴Charlotte Bunne et al. "Learning Single-Cell Perturbation Responses using Neural Optimal Transport". In: *bioRxiv* (2021). DOI: 10.1101/2021.12.15.472775. eprint: https:

//www.biorxiv.org/content/early/2021/12/15/2021.12.15.472775.full.pdf.
URL: https://www.biorxiv.org/content/early/2021/12/15/2021.12.15.472775.

Figure: Reference

Figure: Replication

Table of Contents

- Problem Statement
- 2 The Monge gap
- 3 Experiments
- 4 Conclusion

Conclusion

- Studied the proposed regularization approach.
- Implemented regularizers/models and assessed their performance on selected tasks.
- Got quite close results for the $\mathcal{L}_2^{\text{UV}}$, while the replication's $S_{\ell_2^2,\epsilon}$ is worse than the original one.

The Monge Gap YSDA 2023 18 / 19

References

- Bunne, Charlotte et al. "Learning Single-Cell Perturbation Responses using Neural Optimal Transport". In: bioRxiv (2021). DOI: 10.1101/2021.12.15.472775. eprint: https://www.biorxiv.org/content/early/2021/12/15/2021.12.15.472775.full.pdf. URL: https://www.biorxiv.org/content/early/2021/12/15/2021.12.15.472775.
- Chao, Chen-Hao et al. "Quasi-Conservative Score-based Generative Models". In: arXiv preprint arXiv:2209.12753 (2022).
- Korotin, Alexander et al. "Do neural optimal transport solvers work? a continuous wasserstein-2 benchmark". In: *Advances in Neural Information Processing Systems* 34 (2021), pp. 14593–14605.
- Uscidda, Théo and Marco Cuturi. "The Monge Gap: A Regularizer to Learn All Transport Maps". In: arXiv preprint arXiv:2302.04953 (2023).