

Ecny $\{f^i\}_{i=1}^2$ - Sugar, Supprosopens MOIT K $\{e_i\}_{i=1}^2$, To Reproso to: $(f^i,e_i) = \begin{cases} 1, 1=\delta \\ 0, i \neq i \end{cases}$ Ny cs6 $f^1, f^2, -$ венгори столбуч базиса $\{f^i\}_{i=1}^2$, тога верхь равения во: $\binom{\ell_1}{\ell_2}G(\S^1\,\S^2)=E$, the ℓ_1,ℓ_2-b ektops of policy deiß; E-gunussus not pupa

$$A = \begin{bmatrix} -1 & -3 & 5 & 0 \\ 1 & 0 & 6 & -3 \end{bmatrix}$$

$$b_{kpq}=a_{[kp]}$$

$$B = \begin{bmatrix} 1 & 2 & 3 & -1 \\ 2 & 1 & -1 & 3 \end{bmatrix}$$

$$b_{112} = \frac{1}{2}(a_{112} - a_{112}) = 0$$

$$b_{122} = \frac{1}{2}(a_{122} - a_{212}) = \frac{1}{2}(0 - 6) = -3$$

$$b_{212} = -b_{122} = 3$$

$$b_{222} = \frac{1}{2}(a_{221} - a_{222}) = 0$$

Задача 5		
Билинейная форма в в н	екотором базисе задаётся формулой:	
	$b(x,y) = -3\xi^1\eta^1 + 3\xi^1\eta^2 - 2\xi^2\eta^1 - 5\xi^2\eta^2$	
В этой формуле £ ⁶ - коо	одинаты вектора x , а η^i - координаты вектора y .	
Найти матрицу билиней	ной формы б.	
Дробные числа в ответе запись в виде a/b .	вводить с точностью не менее 3 знаков после запятой, для рациональных дробей допустима	
Пример ввода:		
[1,0;0,-3/4]		
		_
		_

$$V_{3}$$
 400 мой дограда получи: $3 = \begin{pmatrix} -3 & 3 \\ -2 & -5 \end{pmatrix}$

Задача 6		
Найти сигнатуру	квадратичной формы $q(x)$, если в стандартном базисе она задаётся формулой:	
	$q(x) = 2{(\xi^1)}^2 + 10\xi^1\xi^2 + 13{(\xi^2)}^2$	
	введите пару чисел, первое из которых будет являться положительным индексом инерции	
	рмы q, а второе - отрицательным.	
Пример ввода	[1, 2]	
		_

 $\int_{\mathcal{X}_{1}}^{y_{1},y_{2},y_{3},y_{4}} \frac{1}{2} \int_{\mathcal{X}_{2}}^{y_{2},y_{3},y_{4},y_{4}} \frac{1}{2} \int_{\mathcal{X}_{2}}^{y_{2},y_{4},y_{$

Отображение $f:V \to |K|$ называтся линей ной дограный, если $\forall V_1, V_2 \in V$, $\lambda \in |K|$ выполнено: $f(V_1 + V_2) = f(V_1) + f(V_2)$ $f(\lambda V_1) = \lambda f(V_1)$

Apo верии выполнение запного условия для донных 5:

 $A. f(\mathcal{V}_{1} + \mathcal{V}_{2}) = -7(X_{1} + y_{1}) + 6(X_{2} + y_{2}) - 7(X_{3} + y_{3}) = -7X_{1} + 6X_{2} - 7X_{3} - 7y_{1} + 6y_{2} - 7y_{3} = f(\mathcal{V}_{1}) + f(\mathcal{V}_{2})$ $A. f(\mathcal{V}_{1} + \mathcal{V}_{2}) = -7(X_{1} + y_{1}) + 6(X_{2} + y_{2}) - 7(X_{3}) = \lambda(-7X_{1} + 6X_{2} - 7X_{3}) = \lambda f(\mathcal{V}_{1})$

 $A. f(\mathcal{V}_1 + \mathcal{V}_2) = -7(X_2 + y_2) + 6(X_3 + y_3) - 7(X_4 + y_4) = -7X_2 + 6X_3 - 7X_4 - 7y_2 + 6y_3 - 7y_4 = f(\mathcal{V}_1) + f(\mathcal{V}_2)$ $A. f(\mathcal{V}_1 + \mathcal{V}_2) = -7(\mathcal{X}_2 + 6X_3) + 6(\mathcal{X}_3 + y_4) = \lambda(-7X_2 + 6X_3 - 7X_4) = \lambda f(\mathcal{V}_1)$

3)
$$f(x) = -7E_2 - 7$$

 $f(\lambda V) = -7(\lambda X_2) - 7 \neq \lambda(-7X_2 - 7) = \lambda f(V)$
 $\Rightarrow f(x) = -7E_2 - 7 - \mu_e \quad \Lambda_u \mu_e = \mu_u s \quad g_{og} = \mu_u$
4) $f(x) = -7E_1^3$
 $f(\lambda V) = -7(\lambda X_1)^3 = -7\lambda^3 X_1^3 \neq -7\lambda X_1^3 = \lambda f(V)$
 $\Rightarrow f(x) = -7E_1^3 - \mu_e \quad \Lambda_u \mu_e = \mu_u s \quad g_{og} = \mu_u$

Mphmenum incress Norpok 200;
$$g(X) = X_1^2 + 4X_1X_2 + 4X_2^2 = (X_1 + 2X_2)^2$$
Nory from coorponemie:
$$\begin{cases} \widehat{X_1} = X_1 + 2X_2 \\ \widehat{X_2} = X_2 \end{cases} \Rightarrow g(X) = \widehat{X_1}^2$$