PREDICTING RISK OF PATIENT READMISSION

Team Members:

- Tatiana Celine
- Kamal Ali
- William Muthama
- Gilead Gad
- Simon Muema
- Graffin Kiprotich

GitHub Repository: Predictive Model for Patient Readmission Risk

Project Objective

The primary objective is to develop a predictive model that can accurately identify patients at high risk of readmission. Such a model will help healthcare providers proactively manage patient care and reduce costs.

CRISP-DM Methodology

The CRISP-DM method was used in this project to ensure a systematic approach to predicting patient readmission risk. By following CRISP-DM, the project team was able to align the model development with the healthcare objective of identifying high-risk patients, making sure each phase; from understanding business needs, to preparing and analyzing data, directly contributed to this goal. This structured approach provided a clear path from initial data exploration to model evaluation, helping the team address the complexities of medical data while focusing on building a reliable predictive model that healthcare providers can use effectively.

1. Business Understanding

Understanding the problem of hospital readmissions is critical, as it affects patient outcomes and hospital costs. This project aims to:

- Identify key predictors of readmission risk.
- Assess the correlation of patient characteristics and hospital metrics with readmission likelihood.
- Develop a model that flags high-risk patients, aiding hospital staff in improving patient management strategies.

Key Questions:

- What patient characteristics are highly correlated with readmission?
- How significant is the length of stay in predicting readmission risk?
- Can actionable insights be derived from the predictive model?

2. Data Understanding

The dataset used includes detailed patient information across demographics, hospital visits, medical treatments, and readmission indicators. Key columns considered include:

- **Demographics:** age, gender, weight.
- **Hospital Metrics:** time in hospital, number of procedures, number of medications, outpatient/emergency/inpatient visits.
- **Medical Metrics:** number of lab procedures, primary care specialty, diabetes medication status
- Target Variable: readmission indicator.

This phase involved an initial review to determine available data and assess each feature's relevance to predicting readmission.

3. Data Preparation

3.1 Data Import and Library Setup

Libraries were imported to support data analysis, cleaning, and modeling processes. Essential libraries include those for data handling, visualization, and machine learning.

3.2 Data Cleaning

Steps taken for data cleaning include:

- **Dropping Unlisted Columns:** Non-essential columns were removed to focus on relevant data.
- **Handling Missing Values:** Missing data was identified and handled appropriately to prevent bias in modeling.
- Handling Duplicated: Repeated values in the unique identifier column were removed.

4. Exploratory Data Analysis (EDA)

The EDA phase provided insight into the data distribution, relationships, and outliers:

- **Data Distribution Analysis:** Reviewed the spread of continuous variables like age, weight, and time in hospital.
- **Feature Correlation:** Analyzed correlations to identify which features significantly impact readmission risk.
- Outlier Detection and Treatment: Identified outliers that could skew model performance, considering medical context for appropriate handling.

5. Further Data Cleaning Based on EDA

Adjustments were made to the data based on findings from EDA, ensuring the dataset was well-prepared for modeling. This phase included refining feature selection and removing any remaining inconsistencies.

6. Modeling and Evaluation

Multiple models were developed, evaluated, and compared to find the best predictive approach for readmission risk. The process involved:

- **Model Selection:** Various machine learning algorithms were explored, including logistic regression, decision trees, and ensemble methods.
- **Hyper-parameter Tuning:** Conducted to optimize each model's performance.
- Cross-Validation: Used to validate model robustness and avoid overfitting.
- **Evaluation Metrics:** Performance measured using accuracy, precision, recall, and F1-score, focusing on models with high recall to minimize missed high-risk patients.

7. Predictive Modeling and Final Evaluation

The final model selection was based on achieving a balanced performance that maximized readmission detection accuracy while minimizing false positives. Testing on unseen data provided a realistic evaluation of model effectiveness.

8. Conclusion and Future Work

The project concluded with a successful model for predicting patient readmission. Key takeaways include:

- The importance of specific patient demographics and hospital metrics in determining readmission likelihood.
- The need for continuous data updates to enhance model adaptability.

Future recommendations include integrating real-time patient data and exploring advanced deep learning models for potentially improved performance.