DS 7 version A $_{4\mathrm{h}}$

Exercice 1.

- 1. (a) Définir $S_n(\mathbb{R})$, l'ensemble des matrices symétriques à coefficients réels.
 - (b) Redémontrer qu'il s'agit d'un sous-espace vectoriel de $M_n(\mathbb{R})$.
- 2. En exhibant une base de cet espace, démontrer que $S_2(\mathbb{R})$ est de dimension 3.
- 3. Généralisons : quelle est la dimension de $S_n(\mathbb{R})$?

Exercice 2.

Soient f et g deux endomorphismes d'un espace vectoriel E tels que $f \circ g = \mathrm{id}_E$.

- 1. Montrer que $\operatorname{Im}(g \circ f) = \operatorname{Im}(g)$ et $\operatorname{Ker}(g \circ f) = \operatorname{Ker}(f)$.
- 2. Démontrer que $g \circ f$ est un projecteur. En déduire que $E = \operatorname{Ker}(f) \oplus \operatorname{Im}(g)$.

Exercice 3.

Soit $u \in \mathcal{L}(E)$ un endomorphisme nilpotent. On note p son indice de nilpotence, c'est à dire

$$p = \min\{k \in \mathbb{N}^* \ u^k = 0\}.$$

On se donne $x \in E \setminus \operatorname{Ker}(u^{p-1})$

- 1. Justifier l'existence d'un tel vecteur x.
- 2. Montrer que $(x, u(x), \dots, u^{p-1}(x))$ est libre.
- 3. Supposons dans cette question que E est de dimension finie n. Montrer que $u^n=0_{\mathscr{L}(E)}.$

Exercice 4.

Dans cet exercice, n est un entier naturel non nul et on note $\mathbb{R}_n[X]$ l'ensemble des polynômes à coefficients réels, de degré inférieur ou égal à n. Soit

$$f: \left\{ \begin{array}{ccc} \mathbb{R}_n[X] & \to & \mathbb{R}_n[X] \\ P & \mapsto & XP' - nP \end{array} \right.$$

- 1. Montrer que f est un endomorphisme de $\mathbb{R}_n[X]$.
- 2. En commençant par évaluer f sur les vecteurs de la base canonique de $\mathbb{R}_n[X]$, démontrer que $\mathrm{Im}(f) = \mathbb{R}_{n-1}[X]$.
- 3. Donner la dimension de Ker(f) puis en donner une base.

Exercice 5.

Soit E un \mathbb{K} -espace vectoriel de dimension n. On suppose $n \geq 2$. Soient H_1 et H_2 deux hyperplans de E tels que $H_1 \neq H_2$.

- 1. Rappeler la dimension de H_1 et H_2 .
- 2. En vous appuyant sur l'inclusion $H_1 \subset H_1 + H_2 \subset E$, démontrer que $H_1 + H_2 = E$.
- 3. En déduire la dimension de $H_1 \cap H_2$.
- 4. Soit $x_1 \in H_1 \setminus H_2$ et $x_2 \in H_2 \setminus H_1$.
 - (a) Justifier l'existence de x_1 et de x_2 .
 - (b) Justifier que (x_1, x_2) est libre.
 - (c) Prouver que $H_1 \cap H_2$ et $Vect(x_1, x_2)$ sont supplémentaires dans E.

Exercice 6. Un peu de développements limités.

- 1. <u>Cours</u>. Énoncer la formule de Taylor-Young. En appliquant cette proposition, retrouver le résultat du cours sur le DL en 0 à l'ordre $n \in \mathbb{N}$ de $x \mapsto (1+x)^{\alpha}$ où $\alpha \in \mathbb{R}$.
- 2. Soit f la fonction définie par

$$f: \left\{ \begin{array}{ccc} \mathbb{R}^* & \to & \mathbb{R} \\ t & \mapsto & \frac{t}{e^t - 1} \end{array} \right.$$

(a) Démontrer qu'on a pour f le développement limité suivant au voisinage de 0:

$$f(t) = 1 - \frac{1}{2}t + o(t).$$

(b) Justifier que f est prolongeable par continuité en 0. Que vaut alors f(0)? Justifier que ce prolongement est dérivable en 0. Que vaut f'(0)?

Problème (début).

On définit l'application

$$D: \left\{ \begin{array}{ccc} \mathbb{R}[X] & \to & \mathbb{R}[X] \\ P & \mapsto & P' \end{array} \right.$$

On rappelle que pour un endomorphisme u d'un espace vectoriel E

$$u^0 = \mathrm{id}_E$$
 et $\forall n \in \mathbb{N} \ u^{n+1} = u \circ u^n$.

Partie I - Préliminaires

- 1. Justifier que D est un endomorphisme surjectif de $\mathbb{R}[X]$.
- 2. Soit $P \in \mathbb{R}[X]$ et $n = \deg P$. On suppose que $n \geq 0$.
 - (a) Montrer que $\mathcal{B}_{\mathcal{P}} = (P, P', \dots, P^{(n)})$ est une famille libre de $\mathbb{R}[X]$.
 - (b) Conclure que $\mathcal{B}_{\mathcal{P}}$ est une base de $\mathbb{R}_n[X]$.

Partie II - Sous-espaces stables par D

Soit F un sous-espace vectoriel de $\mathbb{R}[X]$ stable par D, c'est-à-dire :

$$\forall P \in F \quad D(P) \in F.$$

3. si les degrés des polynômes de F sont bornés On suppose que $F \neq \{0\}$ et qu'il existe $N \in \mathbb{N}$ tel que

$$F \subset \mathbb{R}_N[X].$$

(a) Justifier que l'on peut définir un entier naturel n par

$$n = \max \left\{ \deg P \mid P \in F, \ P \neq 0 \right\}.$$

On se donne $P \in F$ tel que $\deg(P) = n$. Justifier que \mathcal{B}_P est une famille de vecteurs de F. La famille \mathcal{B}_P a été définie à la question 2.

(b) Montrer que

$$F = \mathbb{R}_n[X].$$

On pourra considérer le sous-espace vectoriel engendré par \mathcal{B}_p .

- 4. si les degrés des polynômes de F ne sont pas bornés
 On suppose que pour tout N ∈ N il existe P ∈ F tel que deg P > N.
 Montrer que R_N[X] ⊂ F pour tout N ∈ N. Que vaut F?
- 5. conclusion
 Quels sont tous les sous-espaces vectoriels stables par D?