6.10 1)
$$f'(x) = 3x^2$$

$$f''(x) = 6x$$

$$\begin{array}{c|cccc}
 & 0 & \\
\hline
6x & -0 & + \\
f'' & -0 & + \\
f & & & \\
f & & & \\
\end{array}$$

$$f(0) = 0^3 = 0$$

Le point (0;0) est un point d'inflexion.

2)
$$f(x) = \frac{x^3 - 8}{x} = x^2 - \frac{8}{x} = x^2 - 8x^{-1}$$

 $f'(x) = 2x + 8x^{-2}$

$$f'(x) = 2x + 8x^{-2}$$

$$f''(x) = 2 - 16x^{-3} = 2 - \frac{16}{x^3} = \frac{2x^3 - 16}{x^3} = \frac{2(x^3 - 8)}{x^3}$$

$$= \frac{2(x-2)(x^2+2x+4)}{x^3}$$

	0 2		
2	+	+	+
x-2	_	- (+
$x^2 + 2x + 4$	+	+	+
x^3	_	+	+
f''	+	- (+
f	$\overline{}$	_ ir	ıfl 🥧

$$f(2) = \frac{2^3 - 8}{2} = 0$$

Le point (0;2) est un point d'inflexion.

3)
$$f'(x) = 3x^2 - 6x - 9$$

 $f''(x) = 6x - 6 = 6(x - 1)$

$$\begin{array}{c|cccc}
6 & + & + \\
\hline
x-1 & - & 0 & + \\
\hline
f'' & - & 0 & + \\
f & & & & & \\
\end{array}$$

$$f(1) = 1^3 - 3 \cdot 1^2 - 9 \cdot 1 + 9 = -2$$

Le point (1; -2) est un point d'inflexion.

4)
$$f'(x) = \left(\frac{x}{x^2 + 3}\right)' = \frac{(x)'(x^2 + 3) - x(x^2 + 3)'}{(x^2 + 3)^2} = \frac{1(x^2 + 3) - x \cdot 2x}{(x^2 + 3)^2}$$

$$= \frac{3 - x^2}{(x^2 + 3)^2}$$

$$f''(x) = \left(\frac{3 - x^2}{(x^2 + 3)^2}\right)' = \frac{(3 - x^2)'(x^2 + 3)^2 - (3 - x^2)((x^2 + 3)^2)'}{((x^2 + 3)^2)^2}$$

$$= \frac{-2x(x^2 + 3)^2 - (3 - x^2)2(x^2 + 3)}{(x^2 + 3)^4}$$

$$= \frac{-2x(x^2 + 3)^2 - 4x(3 - x^2)(x^2 + 3)}{(x^2 + 3)^4}$$

$$= \frac{-2x(x^2 + 3)((x^2 + 3) + 2(3 - x^2))}{(x^2 + 3)^3} = \frac{-2x(-x^2 + 9)}{(x^2 + 3)^3}$$

$$= \frac{2x(x^2 - 9)}{(x^2 + 3)^3} = \frac{2x(x + 3)(x - 3)}{(x^2 + 3)^3}$$

$$= \frac{2x}{(x^2 + 3)^3} = \frac{2x(x + 3)(x - 3)}{(x^2 + 3)^3}$$

$$= \frac{2x}{(x^2 + 3)^3} = \frac{-3x^2}{(x^2 + 3)^4} = \frac{-2x(-x^2 + 9)}{(x^2 + 3)^3}$$

$$= \frac{2x}{(x^2 + 3)^3} = \frac{-3x^2}{(x^2 + 3)^4} = \frac{-2x(-x^2 + 9)}{(x^2 + 3)^3}$$

$$= \frac{2x(x^2 - 9)}{(x^2 + 3)^3} = \frac{2x(x + 3)(x - 3)}{(x^2 + 3)^3}$$

$$= \frac{-3x(x^2 + 3)^2 - 4x(3 - x^2)(x^2 + 3)}{(x^2 + 3)^4} = \frac{-2x(-x^2 + 9)}{(x^2 + 3)^3}$$

$$= \frac{2x(x^2 + 3)(x^2 + 3)(x - 3)}{(x^2 + 3)^3}$$

$$= \frac{2x(x^2 + 3)(x^2 + 3)(x - 3)}{(x^2 + 3)^3}$$

$$= \frac{-2x(x^2 + 3)(x^2 + 3)(x^2 + 3)}{(x^2 + 3)^4}$$

$$= \frac{-2x(x^2 + 3)(x^2 + 3)(x^2 + 3)}{(x^2 + 3)^4}$$

$$= \frac{-2x(x^2 + 3)(x^2 + 3)(x^2 + 3)}{(x^2 + 3)^4}$$

$$= \frac{-2x(x^2 + 3)(x^2 + 3)(x^2 + 3)}{(x^2 + 3)^4}$$

$$= \frac{-2x(x^2 + 3)(x^2 + 3)(x^2 + 3)}{(x^2 + 3)^3}$$

$$= \frac{-2x(x^2 + 3)(x^2 + 3)(x^2 + 3)}{(x^2 + 3)^3}$$

$$= \frac{-2x(x^2 + 3)(x^2 + 3)(x^2 + 3)}{(x^2 + 3)^3}$$

$$= \frac{-2x(x^2 + 3)(x^2 + 3)(x^2 + 3)(x^2 + 3)}{(x^2 + 3)^3}$$

$$= \frac{-2x(x^2 + 3)(x^2 + 3)(x^2 + 3)(x^2 + 3)}{(x^2 + 3)^3}$$

$$= \frac{-2x(x^2 + 3)(x^2 + 3)(x^2 + 3)(x^2 + 3)(x^2 + 3)}{(x^2 + 3)^3}$$

$$= \frac{-2x(x^2 + 3)(x^2 + 3)(x^2 + 3)(x^2 + 3)(x^2 + 3)}{(x^2 + 3)^3}$$

$$= \frac{-2x(x^2 + 3)(x^2 + 3)(x^2$$

$$f(-3) = \frac{-3}{(-3)^2 + 3} = -\frac{1}{4}$$

 $f(-3) = \frac{-3}{(-3)^2 + 3} = -\frac{1}{4}$ Le point $(-3; -\frac{1}{4})$ est un point d'inflexion.

$$f(0) = \frac{0}{0^2 + 3} = 0$$

 $f(0) = \frac{0}{0^2+3} = 0$ Le point (0;0) est un point d'inflexion.

$$f(3) = \frac{3}{3^2 + 3} = \frac{1}{4}$$

Le point $(3; \frac{1}{4})$ est un point d'inflexion.

