MAT1120

Robin A. T. Pedersen

November 8, 2016

Contents

1	For	ord		3		
4	4 Kpt.4 - Vektorrom					
	4.1^{-}	Vekto	r rom og underrom	3		
		4.1.1	Definisjon - vektorrom	3		
		4.1.2	Definisjon - underrom	4		
		4.1.3	Teorem 1	4		
	4.2	Nullro	om, kolonnerom og lineærtransformasjoner	4		
		4.2.1	Definisjon - nullrom	4		
		4.2.2	Teorem 2	4		
		4.2.3	Definisjon - kolonnerom	4		
		4.2.4	Teorem 3	4		
		4.2.5	Definisjon - lineærtransformasjon	5		
		4.2.6	Begrep - kjerne (kernel)	5		
	4.3	Lineæ	ert uavhengige mengder: basiser	5		
		4.3.1	Teorem 4	5		
		4.3.2	Definisjon - basis	5		
		4.3.3	Teorem 5 - utspennende mengde teoremet	5		
		4.3.4	Teorem 6	5		
	4.4	linatsystemer	6			
		4.4.1	Teorem 7 - unik representasjon teoremet	6		
		4.4.2	Definisjon - \mathcal{B} -koordinater	6		
		4.4.3	Begrep - koordinatskiftematrise	6		
		4.4.4	Teorem 8	6		
		4.4.5	Begrep - isomorfi	6		
	4.5	Dimer	nsjon av vektorrom	6		
		4.5.1	Teorem 9	6		
		4.5.2	Teorem 10	6		
		4.5.3	Definisjon - dimensjon	7		
		4.5.4	Teorem 11	7		
		4.5.5	Teorem 12 - basisteoremet	7		
		4.5.6	Observasion - DimNul og DimCol	7		

	4.6	Rang							
	4.7	Basisskifte							
	1.,	4.7.1							
	4.8	Ikke eksamensrelevant							
	4.9	Anvendelser til Markovkjeder							
	4.9	4.9.1							
		4.9.1							
5	Kpt.5 - Egenverdier og Egenvektorer 8								
	5.1	Egenvektor og egenverdier							
		5.1.1 8							
	5.2	Den karakteristisk ligningen							
		5.2.1 8	3						
	5.3	Diagonalisering	3						
		5.3.1	3						
	5.4	Egenvektorer og lineærtransformasjoner	3						
		5.4.1 8	3						
	5.5	Komplekse egenverdier	3						
		5.5.1 8							
	5.6	Diskrete dynamiske systemer							
		5.6.1 8							
	5.7	Anvendelser til differensialligninger							
	0.,	5.7.1							
	5.8	Iterative estimater for egenverdier? TODO							
	0.0	5.8.1							
		0.0.1	,						
6	Kpt	.6 - Ortogonalitet og Minstekvadrater)						
	6.1	Indre produkt, lengde og ortogonalitet)						
		6.1.1)						
	6.2	Ortogonale mengder							
	•	6.2.1							
	6.3	Ortogonal projeksjon							
	0.0	6.3.1							
	6.4	Gram-Schmidt prosessen							
	0.1	6.4.1							
	6.5	Minstekvadraters problem							
	0.0	6.5.1	-						
	6.6	Anvendelser til lineære modeller							
	0.0								
	e 7	6.6.1 TODO							
	6.7	Indreproduktrom? TODO							
	0.0	6.7.1							
	6.8	Anvendelser til indreproduktrom							
		6.8.1)						

7	Kpt	t.7 - Symmetriske Matriser og Kvadratisk Form	10
	7.1	Diagonalisering av symmetriske matriser	10
		7.1.1	10
	7.2	Kvadratisk form	10
		7.2.1	10
	7.3	Begrenset optimalisering? TODO	10
		7.3.1	10
	7.4	Singulærverdidekomposisjon	10
		7.4.1	10
	7.5	Ikke pensum? TODO	10
8	Not	at 1	10
		8.0.1	10
9	Not	tat 2	10
		9.0.2	10

1 Forord

Dette er en oversikt over alle definisjoner, teoremer og lignende fra læreboka i MAT1120.

NB! Noensteder har jeg skrevet $c \in \mathbb{R}$, men det kan hende at \mathbb{C} hadde fungert like fint. Lignende "feil" kan finnes andre steder.

4 Kpt.4 - Vektorrom

4.1 Vektor rom og underrom

4.1.1 Definisjon - vektorrom

Et vektorrom er en ikketom mengde V. Den består av såkalte *vektorer*. Disse vektorene må være beskrevet av 2 operasjoner: Addisjon og skalarmultiplikasjon.

De to operasjonene defineres av følgende aksiomer: La $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$

- 1. $\mathbf{u} + \mathbf{v} \in V$
- $2. \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- 3. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
- 4. $\exists \mathbf{0} \in Vs.a.\mathbf{u} + \mathbf{0} = \mathbf{u}$
- 5. $\forall \mathbf{u} \in V, \ \exists -\mathbf{u} \in V s.a.\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$
- 6. $c\mathbf{u} \in V, c \in \mathbb{R}$
- 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
- 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$

9.
$$c(d\mathbf{u}) = (cd)\mathbf{u}$$

10.
$$1u = u$$

4.1.2 Definisjon - underrom

Et underrom H er en delmengde av V. H er et underrom av V. To egenskaper må være oppfylt:

- 1. H er lukket under addisjon. $\mathbf{u} + \mathbf{v} \in H$, $\forall \mathbf{u}, \mathbf{v} \in H$
- 2. H er lukket under skalarmultiplikasjon. $c\mathbf{u} \in H, \ \forall c \in \mathbb{R}$

4.1.3 Teorem 1

Hvis $\mathbf{v}_1,...,\mathbf{v}_p$ er i et vektorrom V, så er $\mathrm{Span}\{\mathbf{v}_1,...,\mathbf{v}_p\}$ et underrom av V.

4.2 Nullrom, kolonnerom og lineærtransformasjoner

4.2.1 Definisjon - nullrom

Nullromet til en $m \times n$ matrise A, er mengden av alle løsninger av $A\mathbf{x} = \mathbf{0}$.

$$Nul(A) = \{ \mathbf{x} : \mathbf{x} \in \mathbb{R}^n, A\mathbf{x} = \mathbf{0} \}$$

4.2.2 Teorem 2

Nullrommet til A $m \times n$, er et underrom av \mathbb{R}^n .

Med andre ord: $A\mathbf{x} = \mathbf{0}$ har m homogene lineære ligninger, med n ukjente. Mengden av løsninger er et underrom av \mathbb{R}^n .

4.2.3 Definisjon - kolonnerom

Kolonnerommet til $m \times n$ matrisen A, er mengden av alle lineærkombinasjoner av kolonnene i A.

$$A = [\mathbf{a}_1 \quad \dots \quad \mathbf{a}_n]$$

$$\operatorname{Col}(A) = \operatorname{Span}\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$$

4.2.4 Teorem 3

Kolonnerommet til A $m \times n$, er et underrom av \mathbb{R}^m .

Med andre ord: Kolonnene i A har m elementer i hver vektor. Kolonnerommet er alle lineærkombinasjoner av disse, og har derfor m elementer i hver vektor.

4.2.5 Definisjon - lineærtransformasjon

En lineærtransformasjon T fra et vektorrom V til et annet vektorrom W, er en regel som gir hver \mathbf{x} i V en unik vektor $T(\mathbf{x})$ i W.

To egenskaper må oppfylles

- 1. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}), \ \forall \ \mathbf{u}, \mathbf{v} \in V$
- 2. $T(c\mathbf{u}) = cT(\mathbf{u}), \ \forall \ c \in \mathbb{R}^n$

4.2.6 Begrep - kjerne (kernel)

Praktisk talt synonymt med nullrom.

4.3 Lineært uavhengige mengder: basiser

4.3.1 Teorem 4

En mengde $\{\mathbf{v}_1,...,\mathbf{v}_p\}$ (minst 2 vektorer) er lineært avhengig hvis (minst) en vektor kan skrives som en lineærkombinasjon av de andre vektorene.

4.3.2 Definisjon - basis

La H være et underrom av vektorrommet V. En mengde $\mathcal{B} = \{\mathbf{b}_1, ..., \mathbf{b}_p\}$ i V, er en basis for H hvis:

- 1. \mathcal{B} er lineært uavhengig
- 2. underrommet utspent av \mathcal{B} er det samme som H. Altså, $H = \text{Span}\{\mathbf{b}_1, ..., \mathbf{b}_p\}$

4.3.3 Teorem 5 - utspennende mengde teoremet

La $S = \{\mathbf{v}_1, ..., \mathbf{v}_p\}$ være en mengde i V, og la $H = \text{Span}\{\mathbf{v}_1, ..., \mathbf{v}_p\}$.

- 1. Hvis \mathbf{v}_k er en lin.komb. av de andre vektorene, så kan man fjerne den fra mengden og den vil fremdeles utspenne H.
- 2. Hvis $H \neq \{0\}$, så er en delmengde av S en basis for H.

4.3.4 Teorem 6

Pivotkolonnene til en matrise A, utgjør en basis for Col(A).

Man velger altså de kolonnene i A som er lineært uavhengige.

4.4 Koordinatsystemer

4.4.1 Teorem 7 - unik representasjon teoremet

La $\mathcal{B} = \{\mathbf{b}_1, ..., \mathbf{b}_n\}$ være en basis for et vektorrom V. Da fins in unik mengde $c_1, ..., c_n \in \mathbb{R}$ s.a.

$$\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n, \quad \forall \ \mathbf{x} \in V$$

4.4.2 Definisjon - \mathcal{B} -koordinater

Hvis $\mathcal{B} = \{\mathbf{b}_1, ..., \mathbf{b}_n\}$ er en basis for V, og $\mathbf{x} \in V$. Koordinatene til \mathbf{x} relativt til \mathcal{B} , er vekter $c_1, ..., c_n$ s.a.

$$\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n$$

Med andre ord: \mathcal{B} -koordinatene til $\mathbf{x} = [\mathbf{x}]_{\mathcal{B}} = (c_1, ..., c_n)$.

4.4.3 Begrep - koordinatskiftematrise

Koordinatskiftematrisen $P_{\mathcal{B}}$, tar en vektor fra \mathcal{B} til standardbasis i \mathbb{R} ,

$$\mathbf{x} = P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$$

Hvor $P_{\mathcal{B}}$ lages enkelt ved

$$P_{\mathcal{B}} = [\mathbf{b}_1 \ \mathbf{b}_2 \ \dots \ \mathbf{b}_n]$$

4.4.4 Teorem 8

La $\mathcal{B} = \{\mathbf{b}_1, ..., \mathbf{b}_n\}$ være en basis for vektorrommet V. Da er koordinatavbildningen $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ en-til-en lineærtransformasjon fra V $p\mathring{a}$ \mathbb{R}^n .

4.4.5 Begrep - isomorfi

En isomorfi er en en-til-en og på lineærtransformasjon. Altså: den dekker hele V og enhver \mathbf{x} har en unik $T(\mathbf{x})$.

4.5 Dimensjon av vektorrom

4.5.1 Teorem 9

Hvis et vektorrom V har en basis $\mathcal{B} = \{\mathbf{b}_1, ..., \mathbf{b}_n\}$, så er alle mengder i V med fler enn n vektorer lineært avhengig.

4.5.2 Teorem 10

Hvis et vektorrom V har en basis med n vektorer, så må alle basiser for V ha nøyaktig n vektorer.

4.5.3 Definisjon - dimensjon

Hvis V er utspent av en endelig mengde, så er V endelig-dimensjonalt. Dimensjonen til V, Dim V, er antall vektorer i en basis for V.

Hvis V ikke er utspent av en endelig mengde, så er V uendelig-dimensjonalt. Dimensjonen til nullvektorrommet $\{\mathbf{0}\}$ er null.

4.5.4 Teorem 11

La H være et underrom av et endelig-dimensjonalt vektorrom V. Alle lineært uavhengige mengder i V kan utvides, hvis nødvendig, til en basis for H.

H er også endelig-dimensjonalt.

 $\dim H \leq \dim V$

4.5.5 Teorem 12 - basisteoremet

La V være et p-dimensjonalt vektorrom, $p \ge 1$.

Alle lin.uavh. mengder med nøyaktig p elementer i V, er en basis for V. Alle mengder som spenner V med nøyaktig p elementer, er en basis for V.

4.5.6 Observasjon - DimNul og DimCol

Dimensjonen til Nul(A) er antall fri variable i $A\mathbf{x} = \mathbf{0}$. Dimensjonen til Col(A) er antall pivot-kolonner i A.

4.6 Rang

4.6.1

TODO

4.7 Basisskifte

4.7.1

TODO

4.8 Ikke eksamensrelevant

Ikke eksamensrelevant.

4.9 Anvendelser til Markovkjeder

4.9.1

TODO

Kpt.5 - Egenverdier og Egenvektorer
Egenvektor og egenverdier
Den karakteristisk ligningen
)
Diagonalisering
2.10.80-1101202-11-8
)
,
Egenvektorer og lineærtransformasjoner
)
Komplekse egenverdier
)
Diskrete dynamiske systemer
)
Anvendelser til differensialligninger
)
Iterative estimater for egenverdier? TODO
<u> </u>
)

6	Kpt.6 - Ortogonalitet og Minstekvadrater
6.1	Indre produkt, lengde og ortogonalitet
6.1.1	
TOD	0
6.2	Ortogonale mengder
6.2.1	
TOD	0
6.3	Ortogonal projeksjon
6.3.1	
TOD	0
6.4	Gram-Schmidt prosessen
6.4.1	
TOD	0
6.5	Minstekvadraters problem
6.5.1	
TOD	0
6.6	Anvendelser til lineære modeller
6.6.1	
TOD	0
6.7	Indreproduktrom? TODO
6.7.1	
TOD	0
6.8	Anvendelser til indreproduktrom
6.8.1	

TODO

7 Kpt.7 - Symmetriske Matriser og Kvadratisk Form

– 1	T)' 1' '		, • 1	, •
7.1	Diagonalisering	277	cymmatricka	matricar
1.1	Diagonanscring	αv	SYMMING ISKC	manisci

7.1.1

TODO

7.2 Kvadratisk form

7.2.1

TODO

7.3 Begrenset optimalisering? TODO

7.3.1

TODO

7.4 Singulærverdidekomposisjon

7.4.1

TODO

7.5 Ikke pensum? TODO

Ikke pensun? TODO

8 Notat 1

8.0.1

TODO

9 Notat 2

9.0.2

TODO