55. Матрицы Адамара. (Вторая) конструкция Пэли с квадратичными вычетами при n=2p+2, p=4m+1.

Утверждение (свойства кронекеровского произведения):

- 1. $(A \otimes B)^T = A^T \otimes B^T$
- 2. $(A \otimes B)(C \otimes D) = (AC) \otimes (BD)$
- **Δ** 1. $C = A \otimes B, D = C^T$. Тогда $d_{pb+q,kb+l} = c_{kb+l,pb+q} = a_{kp}b_{lq} = (A)_{pk}^T(B)_{ql}^T \Rightarrow$ по определению $D = A^T \otimes B^T$
 - 2. Покажем, что это правда для случаев когда размеры A, C и B, D попарно равны и все матрицы квадратные. Тогда можно просто рассмотреть их произведение как блочных матриц.

$$\begin{pmatrix} a_{11}B & \dots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{n1}B & \dots & a_{nn}B \end{pmatrix} \begin{pmatrix} c_{11}D & \dots & c_{1n}D \\ \vdots & \ddots & \vdots \\ c_{n1}D & \dots & c_{nn}D \end{pmatrix} = \begin{pmatrix} R_{11} & \dots & R_{1n} \\ \vdots & \ddots & \vdots \\ R_{n1} & \dots & R_{nn} \end{pmatrix}$$

где $R_{ij} = \sum_{k=1}^{n} (a_{ik}B)(c_{kj}D)$ (утверждение из Википедии) = $(\sum_{k=1}^{n} a_{ik}c_{kj})BD = (AC)_{ij}BD$ \Rightarrow по определению получили $(AC) \otimes (BD)$

Лемма:

- 1. Если $p \equiv 1 \pmod{4}$, то Q_p симметрична
- 2. $Q_pQ_p^T=pE_p-I_p$, где I_p матрица состоящая полностью из единиц

▲ 1.

$$\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}} = (-1)^{\frac{4k}{2}} = 1 \Rightarrow \left(\frac{i-j}{p}\right) = \left(\frac{-1}{p}\right) \left(\frac{j-i}{p}\right) = \left(\frac{j-i}{p}\right) \Rightarrow Q_{ij} = Q_{ji}$$

2. В первой конструкции Пэли мы показали, что скалярное произведение различных строк Q_p равно -1. Скалярное произведение строк i,j - это элемент на позиции i,j в $Q_pQ_p^T$. Очевидно, что на диагонали будут стоять числа p-1, так как в каждой строке ровно p-1 ненулевой элемент, каждый из которых равен ± 1 . Таким образом, получается, что $Q_pQ_p^T=pE_p-I_p$

II конструкция Пэли: Пусть $p \equiv 1 \pmod{4}$. Если в матрице

$$A = \left(\begin{array}{cc} 0 & e^T \\ e & Q_p \end{array}\right)$$

где e — столбец из единиц размера $p,\ Q_p$ - матрица Якобсталя порядка p, заменить 0 на матрицу $M_0=\begin{pmatrix} 1 & -1 \\ -1 & -1 \end{pmatrix},$ а ± 1 на матрицу $\pm \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}=\pm M_1,$ то получится матрица Адамара порядка 2p+2.

 \blacktriangle Найдем AA^T (пригодится нам в будущем). В левом верхнем углу очевидно будет стоять p, так как просто перемножили столбец из единиц на строку. Остальные элементы первой строки/столбца будут нулями, так как они равны сумме всех символов Лежандра

по p. Просто перемножая матрицы заметим, что в оставшемся пространстве у нас получится матрица $I_p+Q_pQ_p^T=I_p+pE_p-I_p=pE_p$ (по пункту 2 леммы). Таким образом, $AA^T=pE_{p+1}$

Пусть H - матрица которая получилась после замен. Тогда так как нули находятся только на главной диагонали

$$H = A \otimes M_1 + E_{p+1} \otimes M_0$$

$$HH^T=(A\otimes M_1+E_{p+1}\otimes M_0)(A\otimes M_1+E_{p+1}\otimes M_0)^T=(A\otimes M_1+E_{p+1}\otimes M_0)(A^T\otimes M_1^T+E_{p+1}\otimes M_0^T)$$

Заметим, что $M_1^T=M_1,M_0^T=M_0,M_1M_0=-M_0M_1$

$$HH^{T} = (A \otimes M_{1})(A^{T} \otimes M_{1}) + (E_{p+1} \otimes M_{0})(A^{T} \otimes M_{1}) + (A \otimes M_{1})(E_{p+1} \otimes M_{0}) + (E_{p+1} \otimes M_{0})(E_{p+1} \otimes M_{0}) =$$

$$= (AA^{T}) \otimes M_{1}^{2} + A^{T} \otimes (M_{0}M_{1}) - A \otimes (M_{0}M_{1}) + E_{p+1} \otimes M_{0}^{2}$$

 $A=A^T$ (по пункту 1 леммы), $AA^T=pE_{p+1}$. Матрицы M_0,M_1 являются матрицами Адамара $\Rightarrow M_i^2=M_i^TM_i=2E_2$

$$HH^T = pE_{p+1} \otimes 2E_2 + E_{p+1} \otimes 2E_2 = 2pE_{2p+2} + 2E_{2p+2} = (2p+2)E_{2p+2} \blacksquare$$