实验报告

分光计-1312 李佩哲 PB21051049 2022 年 5 月 12 日

1 实验目的

通过调节和使用分光计,测量三棱镜与注水三棱镜的折射角.

2 原理

一束单色光经三棱镜两次折射后,出射光与入射光之间的会形成夹角 δ ,称为偏向角. 当棱镜顶角 A 一定时, δ 随入射角 i_1 的变化而变化. 由几何关系知,当且仅当入射角 i_1 等于出射角 i_2' 时,有 $\delta_{\min}=i_1-i_1'=i_1-\frac{A}{2}$,其中 i_1' 为第一次折射的折射角. 于是 $i_1=\frac{1}{2}(\delta_{\min}+A)$.

根据折射定律,有 $\sin i_1 = n \sin i_1' = n \sin \frac{A}{2}$. 结合上式可知

$$n = \frac{\sin\frac{(\delta_{\min} + A)}{2}}{\sin\frac{A}{2}}$$

3 实验仪器

分光计、低压汞灯、三棱镜、平面镜、注水三棱镜

4 测量记录

原始数据见附件 1.

整理如下

序号	$ heta_1/^\circ$	$\theta_2/^\circ$	$\theta_1'/^\circ$	$\theta_2'/^\circ$
1	220.62	40.62	340.65	160.62
2	220.62	40.62	340.64	160.62
3	220.62	40.62	340.65	160.60

表 1: 测棱镜顶角

序号	$ heta_1/^\circ$	$ heta_2/^\circ$	$\theta_1'/^\circ$	$ heta_2'/^\circ$
1	36.27	216.17	342.62	162.55
2	38.17	218.08	344.70	164.67
3	37.82	217 75	344 37	164 27

表 3: 紫光 δ_{min}

序号	$ heta_1/^\circ$	$ heta_2/^\circ$	$\theta_1'/^\circ$	$\theta_2'/^\circ$
1	35.50	215.47	344.50	164.50
2	35.60	215.52	344.57	164.52
3	35.58	215.49	344.15	164.12

表 2: 绿光 δ_{\min}

序号	$ heta_1/^\circ$	$ heta_2/^\circ$	$\theta_1'/^\circ$	$ heta_2'/^\circ$
1	37.27	217.17	346.22	166.15
2	34.87	214.82	343.32	163.25
3	36.00	215.92	344.97	164.92

表 4: 黄光 δ_{min}

光质	$\theta_1/^\circ$	$ heta_2/^\circ$	$\theta_1'/^\circ$	$\theta_2'/^\circ$
绿光	16.87	196.82	353.25	173.20
紫光	17.27	197.20	353.25	173.20
黄光	16.75	196.72	353.25	173.20

表 5: 注水三棱镜

5 分析与讨论

由表1可知,棱镜两光学表面法向方向夹角 $\Phi = \frac{1}{2} \left(\left| \theta_1 - \theta_1' \right| + \left| \theta_2 - \theta_2' \right| \right) = 120.01^\circ$,所以棱镜顶角 $A = 180^\circ - \Phi = 59.99^\circ$.

因此,结合表2可知,由于 θ_1 与 θ_1' 之间跨过了 $0^\circ(360^\circ)$ 刻度线,因此 $\left|\theta_1-\theta_1'\right|$ 应改变形式为 $\left|\theta_1-\theta_1'+360^\circ\right|$. 从而最小偏向角 $\delta_{\min}=\frac{1}{2}\left(\left|\theta_1-\theta_1'+360^\circ\right|+\left|\theta_2-\theta_2'\right|\right)=51.13^\circ$. 故三棱镜对绿光的折射率 $n=\frac{\sin\frac{(\delta_{\min}+A)}{2}}{\sin\frac{A}{2}}\approx 1.6497$,不确定度 u=0.3791. 故 $n_{\text{sg}}=1.6497\pm0.3791$.

同理由表3、4可得, $n_{\mbox{\scriptsize \#}}=1.6729\pm0.1650$, $n_{\mbox{\scriptsize \#}}=1.6486\pm0.5032$.

将 $n_{\$}$, $n_{\$}$, $n_{\$}$, $n_{\$}$ 代入柯西色散公式 $n(\lambda)=a+\frac{b}{\lambda^2}+\frac{c}{\lambda^4}$, 解得 a=1.6563, $b=-7.6698\times 10^{-15}$, $c=1.7014\times 10^{-27}$. 画出曲线如下图 1 所示

图 1: 色散曲线

对于注水三棱镜,由表5同理计算可得 $n'_{\mbox{\mbox{\tiny \sharp}}}=1.3384,\; n'_{\mbox{\tiny \sharp}}=1.3334,\; n'_{\mbox{\tiny \sharp}}=1.3319.$

6 思考

已调好望远镜光轴垂直主轴,若将平面镜取下后,又放到载物台上(放的位置与拿下前的位置不同),发现两镜面又不垂直望远镜光轴了,是因为再次放上平面镜后平面镜镜面不再垂直于主轴,因此镜面与望远镜也不垂直;这不能说明望远镜光轴还没调好.