# DSO530 Statistical Learning Methods

Lecture 6 part II: Shrinkage Methods

Dr. Xin Tong Department of Data Sciences and Operations Marshall School of Business University of Southern California xint@marshall.usc.edu

Bias: occur introduced by approximating real life problem will hange Vaccionce: Amount by which astmated nodel would hange I we used a different training set.

# Bias-variance trade-off (optional)

y = f(x) + x y = f(x) + x y = f(x) + x• Suppose the true relation between x and y is

• Based on training set  $\{(x_1, y_1), \dots, (x_n, y_n)\}$ , we construct  $\hat{f}$  to estimate f

the discrepancy is  $y_0 - \hat{f}(x_0)$ 

where 
$$Var(\hat{f}(x_0)) = E[\hat{f}(x_0) - E(\hat{f}(x_0))]^2$$
 where  $Var(\hat{f}(x_0)) = E[\hat{f}(x_0) - E(\hat{f}(x_0))]^2$  and  $Bias(\hat{f}(x_0)) = E[\hat{f}(x_0) - f(x_0)]$  where  $Var(\hat{f}(x_0)) = E[\hat{f}(x_0) - f(x_0)]$  and  $Var(\hat{f}(x_0)) = Var(\hat{f}(x_0))$  where  $Var(\hat{f}(x_0)) = E[\hat{f}(x_0) - f(x_0)]$  and  $Var(\hat{f}(x_0)) = E[\hat{f}(x_0) - f(x_0)]$  where  $Var(\hat{f}(x_0)) = E[\hat{f}(x_0) - f(x_0)]$  and  $Var(\hat{f}(x_0)) = E[\hat{f}(x_0) - f(x_0)]$  and  $Var(\hat{f}(x_0)) = E[\hat{f}(x_0) - f(x_0)]$  where  $Var(\hat{f}(x_0)) = E[\hat{f}(x_0) - f(x_0)]$  and  $Var(\hat{f}(x_0)) = E[\hat{f}(x_0) - f(x_0)]$ 

 $E\left(y_0 - \hat{f}(x_0)\right)^2$  over all possible values of  $x_0$  in the test set.

• Then the expected test MSE at  $x_0$  is

as bias / vacionce ) & vice versa

2/10

# Shrinkage methods $p>n,p \approx n \ \& \ n > p$ .

- We can fit a model containing all p predictors using a technique that constrains or regularizes the coefficient estimates, or equivalently, that shrinks the coefficient estimates towards zero.
- Shrinking the coefficient estimates can significantly reduce their variance (with some cost in bias).
- Best known shrinkage methods: ridge regression and the lasso.
- The ridge regression coefficient estimates  $\hat{\beta}_{\lambda}^{R}$  are the values that

The ridge regression coefficient estimates 
$$\hat{\beta}_{\lambda}^{R}$$
 are the values that minimize 
$$\sum_{i=1}^{n} \left( y_{i} - \beta_{0} - \sum_{j=1}^{p} \beta_{j} x_{ij} \right)^{2} + \lambda \sum_{j=1}^{p} \beta_{j}^{2} = RSS + \lambda \sum_{j=1}^{p} \beta_{j}^{2} + \lambda \sum_{j=1}^{p}$$

the *i*th observation 
$$x_i$$
.

• Lasso: find  $\hat{\beta}^L_{\lambda}$  that minimizes  $\beta_s$  is rever penalized.

• Lasso:  $\sum_{i=1}^n \left( y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^p |\beta_j| = RSS + \lambda \sum_{j=1}^p |\beta_j|$ .

In lase, b, is penalized, in vidge 5; is penalized.

because predictors are treated [cynally in pully tenen.]

- In contrast to the usual least squares approach, rescaling the predictors is more important in shrinkage methods. Why?
- $\lambda$  is an important penalty parameter that controls the amount of shrinkage.
- What happens when  $\lambda = 0$  and  $\lambda \to \infty$ ?
- $\bullet$  How do we choose the tuning parameter  $\lambda$  ? Cross-validation
- Lasso tends to give sparser models compared to ridge (better for model interpretability), and it tends to perform better when the true model is sparse.
- But we do not know a priori which is better for prediction accuracy.

- In contrast to the usual least squares approach, rescaling the predictors is more important in shrinkage methods. Why?
- ullet  $\lambda$  is an important penalty parameter that controls the amount of • What happens when  $\lambda=0$  and  $\lambda\to\infty$ ? are used.
- How do we choose the tuning parameter  $\lambda$  ? Cross-validation
- Lasso tends to give sparser models compared to ridge (better for model interpretability), and it tends to perform better when the true model is sparse.

• But we do not know a priori which is better for prediction accuracy.

### Ridge regression does NOT give you sparse models



**FIGURE 6.4.** The standardized ridge regression coefficients are displayed for the Credit data set, as a function of  $\lambda$  and  $\|\hat{\beta}_{\lambda}^{R}\|_{2}/\|\hat{\beta}\|_{2}$ .

- Note  $\|\beta\|_2 = \sqrt{\beta_1^2 + \dots + \beta_p^2}$
- ullet  $\hat{eta}$  denotes the vector of least squares estimate



**FIGURE 6.5.** Squared bias (black), variance (green), and test mean squared error (purple) for the ridge regression predictions on a simulated data set, as a function of  $\lambda$  and  $\|\hat{\beta}_{\lambda}^{R}\|_{2}/\|\hat{\beta}\|_{2}$ . The horizontal dashed lines indicate the minimum possible MSE. The purple crosses indicate the ridge regression models for which the MSE is smallest.

#### Lasso encourages sparse models



**FIGURE 6.6.** The standardized lasso coefficients on the Credit data set are shown as a function of  $\lambda$  and  $\|\hat{\beta}_{\lambda}^{L}\|_{1}/\|\hat{\beta}\|_{1}$ .

-Note  $\|\beta\|_1 = |\beta_1| + \cdots + |\beta_p|$ 

# Another fomulation of ridge and lasso

- The Lasso's sparsity is better interpreted by an alternative formulation of Lasso and ridge regression
- ullet  $\lambda$  and s has some corresponding relationships.



**FIGURE 6.7.** Contours of the error and constraint functions for the lasso (left) and ridge regression (right). The solid blue areas are the constraint regions,  $|\beta_1| + |\beta_2| \le s$  and  $\beta_1^2 + \beta_2^2 \le s$ , while the red ellipses are the contours of the RSS.

# High-dimensional setting

- High-dimensional settings: the scenarios where the number of predictors p is comparable to or larger than the sample size n
- A situation common in modern biology and medical sciences, but less so in business
- Including more variables into the regression, we potentially might find some useful features, but this benefit needs to be weighted against including many noise features.
- Example: Suppose 20 features are useful to predict a numerical outcome, and we fix sample size (say at n=50). Please compare the following three scenarios

  i) Use all 20 features for prediction

  The state of the state of 20 features for prediction and the state of the state

  - ii) Use 18 of the above 20 features for prediction
  - iii) Use all 20 features, plus 100 noise features for prediction
- Answer: i) is clearly better than iii). It is hard to compare i) and ii)

#### High-dimensional setting

- High-dimensional settings: the scenarios where the number of predictors p is comparable to or larger than the sample size n
- A situation common in modern biology and medical sciences, but less so in business
- Including more variables into the regression, we potentially might find some useful features, but this benefit needs to be weighted against including many noise features.
- Example: Suppose 20 features are useful to predict a numerical outcome, and we fix sample size (say at n=50). Please compare the following three scenarios
  - i) Use all 20 features for prediction
  - ii) Use 18 of the above 20 features for prediction
  - iii) Use all 20 features, plus 100 noise features for prediction
- Answer: i) is clearly better than iii). It is hard to compare i) and ii)
  only based on this abstract description.

# More about shrinkage methods



- We covered shrinkage methods: ridge regression and Lasso
- Note that shrinkage methods are NOT limited these methods
- Other common ones include SCAD, elastic net, etc.
- In the so-called ultra high-dimensional settings (i.e.,  $p \gg n$ ), people

sometimes use a two-step approach: marginal screening + shrinkage

methods

| MS 1000 divided | MS 100