Alimentation à découpage

La structure ci-dessous est une alimentation à découpage, alimentée par une source de tension continue de f.e.m E=50 V. On s'intéresse au fonctionnement périodique de période T=50 μ s. La séquence de commande des interrupteurs est la suivante : pour $t \in [0, \alpha T[$, K est fermé et K' est ouvert ; pour $t \in [\alpha T, [$ K est ouvert et K' est fermé.

On suppose dans un premier temps que l'association R/C entourée en pointillée se comporte comme une source de tension idéale U=E' et on se place dans l'hypothèse où le courant dans la bobine L ne s'annule jamais. On note I_m et I_M les valeurs minimales et maximales de i_L .

- \sim Calculer $\langle u_L \rangle$ de deux manières différentes et montrer que $U = E' = \frac{E}{1-\alpha}$.
- ~ On règle α à la valeur $\alpha=0,6$. On accepte pour l'utilisation voulue une ondulation $\Delta i=I_M-I_m$ au maximum de 0,3 A pour cette valeur de α . Déterminer la valeur minimale L_{min} de l'inductance L.
- ~ La puissance moyenne fournie par la source de tension est P=150 W pour $\alpha=0,6$. Pour $L=L_{min}$ déterminer I_M et I_m .
- ~ La puissance moyenne fournie par la source de tension est P=150 W pour $\alpha=0,6$. Pour $L=L_{min}$ déterminer I_M et I_m .
- \sim Tracer sur un chronogramme les caractéristiques courant-tension pour chaque interrupteur sur une période T En déduire le fonctionnement, transistor ou diode, des interrupteurs.
- \sim Quelle est la valeur moyenne U_0 de la tension u_K aux bornes de l'interrupteur K?

On se place toujours dans les conditions P=150 W pour $\alpha=0,6$. La tension U aux bornes de l'association parralèle R//C n'est pas constante : c'est une fonction périodique du temps qui présente une légère ondulation autour de sa valeur moyenne E'. On suppose que cela ne modifie pas les courants i_L , i_K et $i_{K'}$.

- \sim Déterminer littéralement les intensités moyennes I_R et I_C des courants dans la charge R et dans le condensateur C en fonction de α , R et E.
- \sim Déterminer numériquement les valeurs moyennes de P_R et de P_C des puissances dissipées dans R et dans C.

Alimentation par un hacheur en série

On alimente un récepteur f.e.m. E de résistance R par un hacheur série selon le schéma ci-dessous. E_G et E sont positifs.

Les interrupteurs sont supposés parfaits, la période est T et le rapport cyclique α : au cours de chaque période, l'interrupteur commandé est fermé pendant une durée αT puis ouvert pendant une durée $(1-\alpha)T$. On suppose que l'intensité i qui traverse la bobine est quasiment constante.

- \clubsuit Pour réaliser la condition i pratiquement constante, faut-il augmenter ou diminuer l'inductance L ou la période T?
- \clubsuit Etudier l'évolution de l'état de la diode au cours d'une période et tracer le chronogramme de $u_D(t)$. Quel est le signe de i?
- \clubsuit En régime périodique établi, déterminer les valeurs moyennes de $u_D(t)$, $u_L(t)$, u(t) et i(t), notées respectivement U_D , U_L , U et I.
- \clubsuit En supposant i constant, tracer le chronogramme de i_G , le courant débité par le générateur. Quelle est avec cette approximation sa valeur moyenne I_G ?
- \clubsuit Ecrire l'équation différentielle vérifiée par i(t) pendant une phase d'ouverture de Th. En déduire une condition pour que le taux d'ondulation $\frac{I_{max}-I_{min}}{I}$ soit inférieur à 1%.

Redresseur shunt

Partant de la tension sinusoïdale du réseau, on cherche à obtenir une tension continue présentant une ondulation la plus faible possible, par un exemple pour recharger une batterie. On considère pour l'instant le redresseur double-alternance représenté sur la figure ci-dessous, constitué d'un transformateur supposé parfait et d'un pont de Graetz, la charge étant modélisée par une résistance $R_L = 1,0$ k Ω .

La tension du réseau est une tension sinusoïdale de valeur efficace 230 V et de fréquence f=1/T=50 Hz. Le transformateur parfait convertit la tension du réseau en une tension sinusoïdale de même fréquence mais à une tension efficace de 18 V.

- En supposant les diodes idéales, tracer la forme de la tension u_s sur deux périodes du signal d'entrée. Déterminer l'amplitude, la valeur efficace et la valeur moyenne du signal de sortie u_s . On notera U_e l'amplitude de u_e .
- Quelle est la caractéristique d'une diode réelle ? On remarque qu'en réalité, l'amplitude U_s aux bornes de la résistance est de 24 V. Evaluer la tension de seuil des diodes, en supposant qu'elles sont toutes identiques.

Afin de filtrer le signal et ne conserver que sa composante continue, on ajoute un condensateur en sortie de montage.

- En utilisant un condensateur de capacité $C = 100 \mu F$, quelle est la durée caractéristique τ de décharge du condensateur ? Tracer l'allure de la courbe de $u_c(t)$ et justifier que l'on obtient une tension "presque" continue.
- En supposant que la décharge a lieu pendant la quasi totalité de la demi-période et que $\tau \gg T/2$, montrer que l'ondulation de tension vaut :

$$\frac{|\Delta u_c|}{u_c^{max}} \simeq \frac{T}{2R_L C}$$