Entropy Codings

Coding theory, Symbol codes, Stream codes

October 2018

Content

- Uniquely Decodable
- Prefix codes
- Huffman coding
- Arithmetic coding
- LZW coding

Coding theory - Data compression

- ► How many bits are needed to describe the outcome of an symbol (outcome of a random experiment)?
- Information theory v.s. Coding theory
 - Information theory deals with how best we can compress data, not dealing with how to design coding/decoding algorithms to compress/decompress data
 - Coding theory deals with designing efficient coding scheme to compress/code data

Coding Approach - binary symbol code

- ▶ Compression: compressor function that maps $x \to \dot{x} = c(x)$ which is a bit string
- ▶ Decompression: decompressor function that maps $\dot{x} \rightarrow x = d(\dot{x})$
- ightharpoonup x is called "source symbol", c(x) is called codeword of x

How to evaluate efficiency of a symbol coding scheme?

Given a coding scheme C of source X that maps $x_i \to c(x_i)$. Call l_i length of codeword for symbol x_i Average code length:

$$L(C,X) = \sum_{i} p_i l_i \tag{1}$$

- ▶ $L(C_1, X) < L(C_2, X)$ means C_1 is better than C_2 in terms of data compression ... if both of them are decodable
- ▶ If l_i are equal for all symbols \rightarrow "fix-length coding". Otherwise, ... "variable-length coding"

Decodability

- lacktriangle Given a coding scheme C if we can decode every codeword c_i back to source symbol x_i uniquely, we call C is unquely decodable
- ▶ If a source X has 8 symbols totally, can we code every symbols it with only 2 bits?
 - Answer: No, we cann't (pigean hole principle)
- ► There are two fundamental questions
 - How to test decodability?
 - Is there any fundamental constraint on code lengths for decodability?

Decodability

Symbol	code 1	code 2	code 3	code 4
x_1	0	0	0	0
x_2	0	1	10	01
x_3	1	00	110	011
x_4	10	11	111	0111

- "Code 1"is not uniquely decodable. Codeword "0" can be decoded into 2 different symbols
- ▶ "Code 2"is not uniquely decodable. Codeword "00" can be decoded into x_3 or x_1x_1
- "Code 3"and "code 4"are uniquely decodable. Code 3 is prefix code

How to test decodability?

- ► Two codeword 01 and 01101. 01 is prefix and 101 is dangling suffix
- Prefix code is code that all codeword are not prefix of any other codeword.
- c' = FindPrefix(c): c is prefix of c'
- ▶ sfix = Sufx(c', c): sfix is dangling suffix of c' and c

How to test decodability

```
input: list of codewords list
Result: return "decodable" or "undecodable"
while dangling suffix found do
   foreach c in list do
       c' \leftarrow \texttt{FindPrefix}(c):
       sfix \leftarrow Sufx(c',c);
       if sfix \in list then
           return "undecodable":
       else
           add sfix to list;
       end
   end
end
return "decodable"
```

Prefix codes

- Prefix code is uniquely decodable.
- Prefix code is equivalent to a tree (binary tree), where codewords are leaf nodes
- Prefix code is easily to decode (instanteneous code)

Construct Prefix Code (topdown) - Shanon-Fano code

Given: A set of symbols with their probabilities

Output: a tree presenting a codebook

Algorithm:

- 1. Sort symbols in order of decreasing probabilities
- 2. Create a root node that corresponds to the whole sorted set
- 3. Bisecting the codeword set into left-set and right-set such that both set are ballanced in terms of total probability
- 4. Assign "0" to left-set and "1" to right-set and create child node accordingly
- 5. Repeat the procedure for each left-set and right-set until we cannot process further. The resulting tree is the coding tree.

Shanon-Fano code - Example

symbols	count	code	
A	15	00	
В	7	01	
C	6	10	
D	6	110	
E	5	111	

Construct Prefix Code (bottom up) - Huffman code

Given: A set of symbols with their probabilities

Output: a tree presenting a codebook

Algorithm:

- 1. Sort symbols in order of decreasing probabilities in a queue
- 2. Create leaf nodes, each corresponds to a symbol
- Remove two least probable nodes from the queue and create a parent node of the two nodes. The probability of the new node is sum of probs of it child nodes. Put the new node into the queue.
- 4. Repeat from step 1 until there is a single node in the queue

Huffman code - Example

symbols	count	code	
Α	15	0	
В	7	100	
C	6	101	
D	6	110	
F	5	111	

Shannon Code vs. Huffman Code - Optimality

		Shannon		Huffman		
Symbols	count	I(x)	code	length	code	length
А	15	1.38	00	2	0	1
В	7	2.48	01	2	100	3
C	6	2.70	10	2	101	3
D	6	2.70	110	3	110	3
Е	5	2.96	111	3	111	3
Average/Entropy		2.19		2.28		2.23

Kraft inequality

If l_i are length of codewords c_i , then we have (Kraft-McMillan inequality)

$$\sum_{i} \frac{1}{2^{l_i}} \le 1 \tag{2}$$

When equality happens, $C = \{c_i, \forall i\}$ is called complete code

Optimum code length

- ▶ If C^* is optimal compressor of X, L(C,X) is minimized!
- How to find optimum code length?:

$$L(C,X) \ge H(X) \tag{3}$$

Intepretation:

- Average code length v.s. Entropy: An information source X has entropy H(X) and is coded with a compressor C that has average code length L(C,X)
 - Entropy H(X): average information content of all symbols of the source
 - Average Code Length L(C,X): average amount of data (bits) that is used to represent H(X)

Shanon source coding theorem

Theorem:

▶ N i.i.d. random variables, each with entropy H(X) can be compressed into more than NH(X) bits with negligible risk of information loss, as $N \to \infty$

Theorem - symbol code version

There exists a prefix code with expected code length L(C,X) for source X that satisfies

$$H(X) \le L(C, X) < H(X) + 1$$
 (4)

Optimality of symbol codes

- Huffman code is optimal, Shannon code is suboptimal
 - We cannot find other symbol code that is better than Huffman code
- Disadvantages of Huffman code
 - Poor performance when symbol frequencies are incorrect
 - Poor performance when symbol frequencies are changing
 - ▶ The gap from optimality $L(C,X) H(X) \le 1bit$ is negligible when H(X) is large. But if H(X) is small, it is noticeable.
- ▶ We can improve further if we use other coding approach other than symbol code (E.g.: Stream code)

Stream code - arithmetic code

 Code one symbol at a time cannot improve further to Shannon limit -> Encode a block of symbols at a time

Original source symbols:

$$x_1$$
 x_2 x_3

Combined source symbols:

$$x_1x_1 \quad x_1x_2 \quad x_1x_3$$

$$x_2x_1 \quad x_2x_2 \quad x_2x_3$$

$$x_3x_1 \quad x_3x_2 \quad x_3x_3$$

Stream code - Arithmetic code

- Arithmetic code defines a way to efficiently encode a sequence of symbols into binary string
- ▶ Each sequence of symbols \iff a number in unit interval [0,1) (tag value)

Given:

- Source $X = a_i | \forall i$,
- ▶ Probability (pdf) of each symbol: $Pr(X = a_i) = P(a_i) = p_i$
- ▶ Cdf of each symbol: $F_X(i) = \sum_{k=1}^i P(X=k) = \sum_{k=1}^i p_k$

Assign each symbols onto unit interval [0,1):

- ▶ Symbol *i* is mapped to $[F_X(i-1), F_X(i))$ (*)
- ▶ Denote $I(i) = [F_X(i-1), F_X(i))$

Arithmetic coding

Coding Algorithm: find tag value for a sequence

- 1. Start with interval I = [0, 1)
- 2. Map symbols on I according to (*)
- 3. Read a symbol x from source.
- 4. Let I = I(x). Repeat to step 1

Arithmetic coding - example

Arithmetic coding - Interval contains tag value

$$interval = [l^{(k)}, u^{(k)})$$

```
\begin{split} sequence & & interval \\ NULL : \left\{ \begin{array}{l} l^{(0)} & = & 0 \\ u^{(0)} & = & 1 \end{array} \right. \\ a_i : \left\{ \begin{array}{l} l^{(1)} & = & F_X(i-1) \\ u^{(1)} & = & F_X(i)) \end{array} \right. \\ a_{i} : \left\{ \begin{array}{l} l^{(2)} & = & F_X(i-1) + F_X(j-1)(F_X(i) - F_X(i-1)) \\ & = & l^{(0)} + F_X(j-1)(u^{(0)} - l^{(0)}) \\ u^{(2)} & = & F_X(i-1) + F_X(j)(F_X(i) - F_X(i-1)) \\ & = & l^{(0)} + F_X(j)(u^{(0)} - l^{(0)}) \end{array} \right. \end{split}
```

- Recursively identify intervals as receiving symbols
- ▶ The more symbols received, the narrower intervals become
- The mid-point of the final interval can be used as tag value for a sequence.