Programare logică și funcțională - examen scris -

<u>Notă</u>

- 1. Subjectele se notează astfel: of 1p; A 1.5p; B 2.5p; C 2.5p; D 2.5p.
- 2. Problemele Prolog vor fi rezolvate în SWI Prolog. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare predicat folosit; (3) specificarea fiecărui predicat (semnificația parametrilor, model de flux, tipul predicatului determinist/nedeterminist).
- 3. Problemele Lisp vor fi rezolvate în Common Lisp. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare funcție folosită; (3) specificarea fiecărei funcții (semnificația parametrilor).

```
A. Fie următoarea definiție de funcție LISP (DEFUN F(N) (COND ((= N 1) 1) (> (F (- N 1)) 2) (- N 2)) (> (F (- N 1)) 1) (F (- N 1))) (T (- (F (- N 1)) 1))
```

Rescrieți această definiție pentru a evita apelul repetat (F (- N 1)). Nu redefiniți funcția. Nu folosiți SET, SETQ, SETF. Justificați răspunsul.

В.	Dându-se	e o listă diferen	i eterogei ta dintre	nă forma cel mai n	tă din nu nic maxir	umere și n din su	i liste li bliste s	iniare ii cel m	nevide nai mar	de n e dintr	umere, re valor	se cer ile mini	e un me dir	program 1 subliste	SWI- e. Se r	PROLOG presupune	care să e că lista
	calculeze de intrare	e conține	e cel puțir	o sublist	ă. <u>De ex</u>	<u>cemplu</u> ,	pentru	i lista [[4, 2, 1	.8], 7,	2, -3, [6, 9, 11	l, 3], ⁴	1, [5, 9,	19]] r	ezultatul	va fi 6.

C. Să se scrie un program PROLOG care generează lista submulţimilor de sumă pară, cu elementele unei liste. Se vor scrie modelele matematice și modelele de flux pentru predicatele folosite.

Exemplu- pentru lista L=[2, 3, 4] \Rightarrow [[],[2],[4],[2,4]] (nu neapărat în această ordine)

- D. Se consideră o listă neliniară. Să se scrie o funcție LISP care să aibă ca rezultat lista inițială în care toate aparițiile unui element e au fost înlocuite cu o valoare e1. Se va folosi o funcție MAP.
 a) dacă lista este (1 (2 A (3 A)) (A)) e este A și e1 este B => (1 (2 B (3 B)) (B))
 b) dacă lista este (1 (2 (3))) și e este A => (1 (2 (3)))