

Распределенные системы хранения и обработки данных

Владислав Белогрудов, ЕМС

vlad.belogrudov@gmail.com

Лекция 7

OpenStack - свободная платформа для развертывания собственной облачной инфраструктуры

Содержание лекции

- Собственное «облако»
 - Зачем
 - Отличия от решений виртуализации серверов
- История развития
- Проекты
 - Swift
 - Glance
 - Nova
 - Cinder
 - Quantum

Собственное «облако» - кому и зачем?

Private Cloud

Public Cloud

Движущие силы

- Большие размеры предприятия
- Эффективное использование оборудования
- Экономия денежных средств
- Уменьшение затрат на администрирование
- Гибкость и масштабируемость
- Безопасность

Ценное храним у себя

Private Cloud или Виртуализация?

- Автоматизация
- Самообслуживание
- Денежные отношения

Cloud Computing Reference Architecture

Cloud Service Provider

Cloud Service

Creator

Cloud Service

Consumer

Архитектура облака (made easy)

AWS -> Eucalyptus -> OpenStack

- Amazon Web Services (2006)
- Rackspace (1998) Rackspace Cloud (2008)
- Eucalyptus (2009)

История создания OpenStack (1)

- NASA космическое агентство
 - исследования для американского правительства
- Правительство США хотят "облака"
 - облака это модно
 - обращаются в NASA
- AWS
 - самое «крутое» облако на тот момент
- Госструктуры не хотят зависеть от частных фирм
 - выбирают Eucalyptus

История создания OpenStack (2)

• NASA Nebula – контейнер для построения «облака» с Eucalyptus внутри:

История создания OpenStack (3)

- У NASA возникают проблемы с Eucalyptus:
 - низкая надежность
 - трудно масштабировать
 - проект отчасти проприетарный (сначала коммерческие релизы, затем свободные, сложно вносить изменения)
- 2010 старт на «переписать все заново» (NASA for people)
- Python, Message Queues, независимость от чего-либо

История создания OpenStack (4)

- Rackspace 2009/2010 переписать Cloud Files & Cloud Servers, отдать в Open Source
- NASA + Rackspace решают вместе выпустить новые Cloud Files & Cloud Servers

Free Massively Scalable Independent

OpenStack = Open

- Open Source
- Open Design
- Open Development
- Open Community
- Open to anyone of any size

Проекты OpenStack

Nova (Compute) Swift (Storage) Glance (Image) Cinder (Volume) Quantum (Network) Dashboard (User Interface)

Архитектура Swift

- Прокси
- Кольца
- Зоны
- Контейнеры
- Объекты
- Разделы
- Реплики
- Hardware?

Swift – объектное хранилище

 Простое распределенное хранилище с интерфейсом HTTP (без централизованного управления):

PUT /APIx.y/account/container/object

md5sum: Aa Bb Cc Dd xx xx xx xx xx xx xx xx ...

3 уникальных сервера для хранения копий

Swift - где мои файлы?

GET /APIx.y/account/container

md5sum

Карты контейнер->сервер

Glance – абстрактный каталог

- Хранит каталог виртуальных образов дисков
- Сами файлы хранятся
 - локально
 - Веб
 - Amazon S3
 - Swift

Glance - интеграция

Nova – OpenStack Compute

- Независима от гипервизора
- Независима от расположения элементов все компоненты можно запустить на одном физическом сервере или виртуальной машине.
- Масштабируема до 1.000.000 и более серверов

Nova vs. «традиционные облака»

Традиционный IaaS

OpenStack

Advanced Message Queuing Protocol

Nova API

- API или Cloud Controller
- Принимает запросы клиентов через OpenStack API или Amazon EC2 API

• Авторизует, сам отвечает на несложные

запросы

Nova Scheduler

- Распределяет запросы по физическим серверам
- Алгоритмы от простых round-robin до собственных (код на Python)

Планировщики (куда поместить ВМ)

- Filter (default) только для Compute
 - AggregateMultiTenancyIsolation
 - AvailabilityZoneFilter
 - ComputeCapabilitiesFilter
 - ComputeFilter
 - DifferentHostFilter
 - SameHostFilter
 - RamFilter
- Chance Storage
- Multi (Compute + Storage)

Фильтрация + Взвешивание

Compute Worker

Network Worker

- Настраивает маршрутизацию
- Создает правила для брандмауэра
- Раздает ІР адреса

Коммуникация между ВМ

Volume Worker

Compute

Cinder – Block Storage as a Service

Quantum – Network as a Service

- Поддержка Software Defined Networking
- Хитрая маршрутизация
- Обеспечение уровня сервиса
- Пользователи сами строят свою сеть

SDN с высоты птичьего полета

Приложения:

протоколы, политики, маршрутизация, балансировка

Контроль:

топология, общее управление ресурсами, абстракция

Данные:

Пересылка пакетов в соответствии с правилами в таблицах, сбор статистик

Спасибо!

EMAIN OF THE PROPERTY OF THE P