# AstroBytes, Data Analytics Report, NSSC 2021

Rohan Kumar $^{1,*}$  and Ankush Kumar Singh $^{2,!}$ 

 $^1 IISER,\ Kolkata$   $^2 IIT(ISM),\ Dhanbad$   $^* Corresponding\ author:\ Rohan\ Kumar,$  rohankumarprasad@yahoo.com  $^! Team\ Leader:\ Ankush\ Kumar\ Singh,\ 20 je0155@fme.iitism.ac.in$ 

December 13, 2021

## Problem 1

To begin the analysis we will first import the standard library Lightkurve.

```
import lightkurve as lk
```

We can now download the lightcurve data for  $Kepler-17^1$  and plot it.

```
1 lc_KIC=lk.search_lightcurve("KIC 10619192")[38].download()
2 lc_KIC.plot()
```



Figure 1: Kepler-17 Lightcurve

<sup>&</sup>lt;sup>1</sup>TIC 273874849, KIC 10619192

To make the lightcurve usable we will remove the the outliers and NAN-values and plot the clean lightcurve.

```
1 lc_KIC=lc_KIC.remove_outliers()
2 lc_KIC=lc_KIC.remove_nans()
3 lc_KIC.plot()
```



Figure 2: Clean lightcurve

To remove the long term trends we will faltten<sup>2</sup> out the lightcurve, doing this will in a sense magnify the local trends in which we are interested in for exo-planets study.

```
flat_lc=lc_KIC.flatten()
flat_lc.plot()
```



Figure 3: Flat Lightcurve

<sup>&</sup>lt;sup>2</sup>normalize

We can now convert the flat\_lc to an astropy table and store the flux values in new variable and calculate the mean and standard deviation using NumPy. For CDPP<sup>3</sup> we will use the lightkurve.estimate\_cdpp().

```
flux=flat_lc.to_table()['flux']
import numpy as np
std=np.std(flux)
mean=np.mean(flux)
cdpp=flat_lc.estimate_cdpp()
\sigma = 0.0045~es^{-1}
mean flux = \bar{x} = 0.9989~es^{-1}
CDPP = 1271.0180~ppm
```

#### Problem 2

We will now calculate and plot the BLS<sup>4</sup> periodogram of the flat\_lc,

```
bls=flat_lc.to_periodogram(method='bls')
bls.plot()
```



Figure 4: BLS Periodogram

We know that BLS Periodogram is a power spectrum which shows the dominant periods in the time series data. So we can use this fact to extract the transit duration and time period of revolution.

```
planet_period = bls.period_at_max_power
planet_dur = bls.duration_at_max_power

Transit Duration = 0.1 d

Time Period = 1.4857 d
```

 $<sup>^3</sup>$ Combined Differential Photometric Precision

<sup>&</sup>lt;sup>4</sup>Box Least Square

To verify whether the time period obtained above is correct or not we will fold the light curve with stated period and plot the folded lightcurve,

```
folded_lc = flat_lc.fold(period=1.4856943)
folded_lc.plot()
```



Figure 5: Folded Lightcurve with Period=1.4857 d

We can see from the above figure a distinct dip around -0.4 which means we have correctly determined the period of the planet.

We can now make a model curve by using the  ${\rm BLS^5}$  and giving it the same time period and transit time to get a model lightcurve.



Figure 6: Model Lightcurve

 $<sup>^5 \</sup>mathrm{Box}\text{-fitting Least Squares}$ 

To calculate the relative flux  $\operatorname{dip}(\frac{\Delta F}{F})$ ,

```
model_flux=planet_model.fold(planet_period, planet_t0)['flux']
min=np.min(model_flux)
max=np.max(model_flux)
rfd=(max-min)/max
```

Relative Flux Dip = 
$$\frac{\Delta F}{F} = 0.015807545862905243 \approx 0.0158$$

### Problem 3

To start the analysis of the star  $Kepler-21^6$  in quarter 2,5,6,7 we will first download the short cadence lightcurve data and plot the lightcurve,



Figure 7: Quarter 2 Time[BKJD] 231-258

 $<sup>^6\</sup>mathrm{KIC}\ 3632418,\ \mathrm{TIC}\ 121214185$ 



Figure 8: Quarter 5 Time [BKJD] (a)443-475, (b)476-503, (c)504-538







Figure 9: Quarter 6 Time[BKJD] (a)539-566, (b)567-598, (c)599-629







Figure 10: Quarter 7 Time[BKJD] (a)630-660, (b)661-690, (c)691-719

Now we will stitch the lightcurve of different quarter to get the long term behaviour of the star over all the quarters.

```
1 lc_stitched = lc_collection.stitch()
2 lc_stitched.plot()
```



Figure 11: Stitched lightcurve over quarters 2,5,6,7

Now we will remove the outliers and the NAN-values from the composite lightcurve to make the result more accurate.

```
clean_lc=lc_stitched.remove_outliers()
clean_lc=lc_stitched.remove_nans()
clean_lc.plot()
```



Figure 12: Clean lightcurve

As we are interested in the short term details of this composite lightcurve<sup>7</sup> we can flatten the lightcurve to remove the long term behaviour of the star and plot the flattened lightcurve.

 $<sup>^7\</sup>mathrm{Here}$  we are interested in the stellar osscilations which happens at very high frequencies compared to the long the term behaviour we can see here.

```
1 lc_stitched_flat=clean_lc.flatten()
2 lc_stitched_flat.plot()
```



Figure 13: Flattened lightcurve

We will now plot the periodogram to see the data in frequency domain.

```
pg=lc_stitched_flat.to_periodogram(normalization='psd')
pg.plot(scale='log')
```



Figure 14: Periodogram in frequency domain

From the given document<sup>8</sup> we know that when we draw the periodogram of a solar-type oscillator star, we get a peak around  $10^3~\mu Hz$ . Therefore we zoomed into the region within the range of 700-1500  $\mu Hz$  and found a peak around  $10^3~\mu Hz$  as mentioned above.



Figure 15: Periodogram zoomed near power excess region around  $10^3 \mu \text{Hz}$ 

As the above plot is very noisy thus to make it usable we will smooth it out using scipy.signal.medfilt(),

```
freq=pg.to_table()['frequency']
pw=pg.to_table()['power']
from scipy.signal import medfilt
smooth=medfilt(pw)
fig =plt.figure(figsize=(12.5,7),facecolor='white')
plt.plot(freq,smooth,'k')
plt.xlabel(r'Frequency [$\mu$Hz]',fontsize=20)
plt.ylabel(r'Power [$\frac{1}{\mu Hz}$]',fontsize=20)
plt.legend(['KIC 3632418'])
plt.show()
```

 $<sup>^8 {\</sup>rm Astroseismology}$ 



Figure 16: Smoothed out Periodogram

For the *Gaussian* enevlope we have taken the distinct peaks with power greater than  $4 \times 10^{-11} Hz^{-1}$  were selected and stored in an array which was then used for the *Gaussian* fitting to get the envelope, for the fitting process we used <code>lmfit.Model()</code>.

```
1 x = []
2 y=[]
  for i in range(len(freq)):
      if (smooth[i]>4e-11):
          x.append(freq[i])
          y.append(smooth[i])
  from lmfit import Model
def gaussian(x, amp, cen, wid):
      "1-d gaussian: gaussian(x, amp, cen, wid)"
11
      return (amp/(np.sqrt(2*np.pi)*wid)) * np.exp(-(x-cen)**2 /(2*
12
      wid**2))
13
14 gmod = Model(gaussian)
16 result = gmod.fit(y, x=x, amp=9e-11, cen=1150, wid=1000)
```

We then use  $print(result.fit_report())$  to get the parameters for the Gaussian envelope,

```
2 [[Model]]
      Model(gaussian)
  [[Fit Statistics]]
4
      # fitting method
                          = leastsq
      # function evals
                          = 123
      # data points
      # variables
                          = 2.5757e-21
      chi-square
9
10
      reduced chi-square = 2.5757e-22
      Akaike info crit = -643.650708
      Bayesian info crit = -641.955860
12
  [[Variables]]
13
      amp: 2.5869e-08 +/- 1.6467e-08 (63.65\%) (init = 9e-11)
14
      cen: 1125.47295 +/- 56.1484650 (4.99%) (init = 1150)
      wid: 168.600608 + - 116.586197 (69.15\%) (init = 1000)
16
17
  [[Correlations]] (unreported correlations are < 0.100)
      C(amp, wid) = 0.993
18
      C(amp, cen) = 0.680
19
      C(cen, wid) = 0.674
```

We can now use the calculated parameters of the Gaussian envelope to plot it.

```
gauss=gaussian(freq,2.5869e-08,1125.47295,168.600608)
fig =plt.figure(figsize=(12.5,7),facecolor='white')
plt.plot(freq,smooth,'k')
plt.plot(freq,gauss,'r')
plt.xlabel(r'Frequency [$\mu$Hz]',fontsize=20)
plt.ylabel(r'Power [$\frac{1}{\mu Hz}$]',fontsize=20)
plt.legend(['KIC 3632418','Gaussian Fit'])
plt.show()
```



Figure 17: Periodogram with Gaussian envelope

From the Gaussian envelope parameter we can get the  $\nu_{\rm max}$  and for the  $\Delta\nu$  we can use the following code.

```
seismology = pg.flatten().to_seismology() #using seismology
    function of Lightkurve library
seismology.estimate_numax(method='acf2d')
seismology.estimate_deltanu()
```

$$\nu_{\rm max} = 1125.2730 \ \mu Hz$$

$$\Delta \nu = 60.72 \; \mu Hz$$

Now we will use above calculated values to get the radius(R) and mass(M) of Kepler-21 using the following expressions,

$$\frac{M}{M_{\odot}} \simeq \left(\frac{\nu_{max}}{\nu_{max,\odot}}\right)^3 \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-4} \left(\frac{T_{eff}}{T_{eff,\odot}}\right)^{1.5}$$

$$\frac{R}{R_{\odot}} \simeq \left(\frac{\nu_{max}}{\nu_{max,\odot}}\right) \left(\frac{\Delta \nu}{\Delta \nu_{\odot}}\right)^{-2} \left(\frac{T_{eff}}{T_{eff,\odot}}\right)^{0.5}$$

where  $\nu_{\rm max,\odot}=3090\mu Hz,~\Delta\nu_{\rm max,\odot}=135.1\mu Hz,~T_{\rm eff,\odot}=5777.2K,$  temperature of the star  $T_{\rm eff}=6200K,$ 

$$R = 1.8676R_{\odot}$$

$$M = 1.3158 M_{\odot}$$

#### Problem 4

We will first import the standard libraries,

```
import numpy as np
import astropy.constants as const
```

To calculate the radius of Kepler-17 b we will use,

$$\frac{\Delta F}{F} = \left(\frac{R_p}{R_s}\right)^2 \tag{1}$$

We are given the value of  $R_s = 1.01R_{\odot}$  and we already calculated the value of  $\frac{\Delta F}{F}$  here, we can now calculate  $R_p$  which is the radius of Kepler-17 b.<sup>9</sup>

$$R_p = 1.2357R_J = 13.8511R_{\bigoplus} = 88343703.6673 \text{ m}$$

Since the time period of the planet and mass of star is known, we can use Kepler's third law to compute the orbital radius of the planet.

$$T^2 = \frac{4\pi^2 a^3}{G(M_s + M_p)}$$

We can make the following assumptions  $a = R_{\rm orbit}^{10}$  and  $M_s + M_p \approx M_s^{11}$  we already have the value of  $M_s = 1.04 M_{\odot}$ , these assumptions simplifies the above equation.

$$T^2 = \frac{4\pi^2 R_{orbit}^3}{G(M_s)}$$

$$R_{orbit} = 0.0258 \text{ AU} = 3862103236.9458 \text{ m}$$

<sup>&</sup>lt;sup>9</sup>Here ⊙, ⊕ and J stands for solar, earth and jupiter parameters respectively.

 $<sup>^{10}\</sup>mathrm{It's}$  given in the problem statement to assume that the orbit is circular.

 $<sup>^{11}\</sup>mathrm{Here}$  we are talking about a star planet binary system which means that  $M_s >> M_p.$ 

Mass of  $Kepler-17\ b$  can be found using conservation of angular momentum.

$$M_s V_s = M_p V_p$$

We already have the values of  $M_s=1.04M_{\bigodot}$  and  $V_s=0.228$  km/s,  $V_p$  can be calculated by,

$$V_p = \frac{D}{T}$$

where D is the circumference of the orbit  $2\pi R_{orbit}$  and T is the time period,

$$V_p = \frac{2\pi R_{orbit}}{T}$$

This means the expression for  $M_p$  becomes.

$$M_p = \frac{M_s V_s T}{2\pi R_{orbit}}$$

$$M_p = 1.3137 M_J = 417.6202 M_{\bigoplus} = 2.4941 \times 10^{27} kg$$

$$\rho = 863.5712 \text{ kg } m^{-3}$$

Now we will do the classification of  $Kepler-17\ b$  according to the above calculated parameters.



Figure 18: Classification of Exo-Planets<sup>12</sup>

Coordinate of  $Kepler-17\ b$  in this plot will be  $(M_p,R_p)$  and this comes out to be  $(417.6202M_{\bigoplus},0.0258AU)$ , we can clearly see that it is in the *Jovian worlds* region. This means that  $Kepler-17\ b$  is a gas giant. We can also say that it's a *Jupiter* like planet because it's mass is  $1.3137M_J$ .

Now to comment whether the planet is Hot Jupiter or Cold Jupiter we will use the surface temperature of the host star Kepler-17 which is  $5781 \pm 85K^{13}$  which is very close to the surface temperature of the Sun. We also know that  $R_{orbit} = 0.0258AU$  and for a Sun like star Continued Habitable Zone is around 0.95AU - 1.15AU and we can see that  $R_{orbit}$  is much less than 1AU, this means that the planet is very close to the host star which implies that Kepler-17 b is a Hot Jupiter.

 $<sup>^{12}\</sup>mathrm{Plot}$  used is taken from https://arxiv.org/abs/1603.08614

<sup>&</sup>lt;sup>13</sup>This data is taken from https://arxiv.org/abs/1110.5462

# Error Analysis

| Kepler-17 b                 |          |            |                   |
|-----------------------------|----------|------------|-------------------|
| Parameter                   | Standard | Calculated | Error(percentage) |
|                             | data     | data       |                   |
| Orbital Period[d]           | 1.4857   | 1.4857     | 0.00              |
| Transit Duration[h]         | 2.276    | 2.4        | 5.45              |
| Orbital Semi-Major Axis[AU] | 0.0268   | 0.0258     | 3.73              |
| Radius $[R_J]$              | 1.33     | 1.2357     | 7.09              |
| $Mass[M_J]$                 | 2.47     | 1.3137     | 46.81             |
| Density[g $cm^{-3}$ ]       | 1.3      | 0.8636     | 33.57             |
| Kepler-21                   |          |            |                   |
| $\mathrm{Mass}[M_{\odot}]$  | 1.408    | 1.3158     | 6.55              |
| Radius $[R_{\odot}]$        | 1.902    | 1.8676     | 1.81              |

In the above table for the standard data column we have used the values from  $\underline{\text{here}}$  for  $Kepler\text{-}17\ b$  and from  $\underline{\text{here}}$  for Kepler-21.

We can observe large error in the measurement of mass of  $Kepler-17\ b$ , hence a large difference in its density, from the standard data. This could be due to incorrect measurement of stellar velocity.