RSA Public Key CryptoSystem

"NEW DIRECTIONS IN CRYPTOGRAPHY" DIFFIE AND HELLMAN (76)

- Split the Bob's secret key K to two parts:
- \circ K_E, to be used for encrypting messages to Bob.
- \circ K_D, to be used for decrypting messages by Bob.
- \circ K_E can be made public
- (public key cryptography, asymmetric cryptography)

INTEGER MULTIPLICATION & FACTORING AS A ONE WAY FUNCTION.

Q.: Can a public key system be based on this observation ?????

7

EXCERPTS FROM RSA PAPER (CACM, 1978)

- messages are *private*, and (b) messages can be signed. • The era of "electronic mail" may soon be upon us; we must ensure that two important properties of the We demonstrate in this paper how to build these current "paper mail" system are preserved: (a) capabilities into an electronic mail system.
- method. This method provides an implementation of a concept but not any practical implementation of such motivated our research, since they presented the • At the heart of our proposal is a new encryption "public-key cryptosystem," an elegant concept invented by Diffie and Hellman. Their article system.

THE MULTIPLICATIVE GROUP ZPQ*

Let pand gbe two large primes.

Denote their product N = pq

The multiplicative group $Z_N^* = Z_{pq}^*$ contains all integers in the range [1, pq-1] that are

relatively prime to both p and q. [Prove it]

Since in [1, pq-1] there (p-1) multiples of gand (q-1) multiples of p, the size of the group is

 $\phi(pq) = pq-1-(p-1)-(q-1)=pq-(p+q)+1=(p-1)(q-1),$ so (by Euler's theorem)

for every $x \in Z_{pq}^*$, $x^{(p-1)(q-1)} = 1$.

Exponentiation in Z_{pq}^*

Motivation: We want to exponentiate for encryption.

unique inverse in Z_{pq}^* (in fact multipl. is not a one-Note that not all integers in {1,2,...pq-1} belong to Z_{pq}^{*} . These elements do not necessarily have a to-one mapping)

Question: When is exponentiation to the e-th Let e be an integer, 1 < e < (p-1) (q-1).

power, $x --> x^e$, a one-to-one oper. in Z_{pq}^{x}

EXPONENTIATION IN Zpg*

Claim: If e is relatively prime to (p-1)(q-1)then $x --> x^e$ is a one-to-one op in Z_{pq}

Constructive proof: Since gcd(e, (p-1)(q-1)) e has a multiplicative inverse mod (p-1)(q-1). Denote it by d, then $ed=1+\mathcal{C}(p-1)(q-1)$, C constant.

meaning $\gamma --> \gamma^d$ is the inverse of $x-->x^e$ Let $y=x^e$, then $y^d=(x^e)^d=x^{1+Q(p-1)(q-1)}=$ $x^{1}x^{2}(p^{-1})(q^{-1})=x(x^{(p^{-1})(q^{-1})})^{c}=x^{-1}=x$

RSA Public Key Cryptosystem

- Let N = pq be the product of two primes
- Choose $1 < e < \phi(N)$ such that $gcd(e, \phi(N)) = 1$
- Let d be such that $de = 1 \mod \phi(N)$
- The public key is (e, N)
- The private key is (d, N)
- Encryption of $M \in \mathbb{Z}_N$ by $C = \mathbb{E}(M) = M^e \mod N$
 - Decryption of $C \in \mathbb{Z}_N$ by $M = D(C) = C^d \mod N$

The above mentioned method should not be confused with the exponentiation technique presented by Diffie and Hellman to solve the key distribution problem

WHY DECRYPTION WORKS

- since $ed \equiv 1 \pmod{\phi}$, there is integer k s.t. $ed = 1 + k \phi, \phi = (p - 1)(q - 1)$
- if gcd(m, p) = 1 then (by Fermat) $m^{p-1} \equiv 1 \pmod{p}$.
- raise both sides to the power k(q-1) and then multiply both sides by m, and get

 $m^{1+k(p-1)(q-1)} \equiv m \pmod{p}$

- congruent to 0 mod p, because m = jp, for some $j \ge 1$ • if gcd(m, p) = p (no other possibilities!) then the congruence still holds because both sides 1 (hence m is multiple of p)
- hence, in both cases, $m^{ed} \equiv m \pmod{p}$
- similarly, $m^{ed} \equiv m \pmod{q}$
- since gcd(p, q) = 1, it follows $m^{ed} \equiv m \pmod{N}$

RSA

- o key length is variable
- the longer, the higher security
- 512 bits is common
- o block size also variable
- but |plaintext| \le | \text{N} | (in practice, for avoiding weak cases, |plaintext| < |N|)
- $|\operatorname{ciphertext}| = |\operatorname{N}|$
- o slower than DES
- not used in practice for encrypting long messages
- mostly used to encrypt a secret key, then used for encrypting the message

A SMALL EXAMPLE

- Let p = 47, q = 59, N = pq = 2773. $\phi(N) = 46 \times 58 =$ 2668.
- = 1, so e = 17 is the inverse of 157 mod 2668 [see gcd(156, 1) = gcd(1, 0) = 1, then $157 \times 17 - 2668$ • Pick d = 157 (gcd(2668, 157) = gcd(157, 156) = next slide for details]
- For N = 2773 we can encode two letters per block, using a two digit number per letter:

blank = 00, A = 01, B = 02, ..., Z = 26

• Message: ITS ALL GREEK TO ME is encoded

COMPUTING THE MULTIPLICATIVE INVERSE

- $b = 47, q = 59, N = pq = 2773, \phi(N) = 46 \times 58 = 2668;$ choose d = 157
- integers; d greatest common divisor of a and b) + • Bézout's identity: au + bv = d ($a \ge b$; u, v signed extended Euclid's alg.
- inverse of a (mod b) and v is the multiplicative inverse • if a and b coprime then d = 1, u is the multiplicative of $b \pmod{a}$
- $\circ -1 \times 2668 + 17 \times 157 = 1$ (Bézout)

THE EXTENDED EUCLID'S ALGORITHM

- o given integer x, y s.t. gcd(x,y)=1, find the multiplicative inverse of $x \pmod{y}$
- assume wlog $x \ge y$
- traditional Euclid's alg. for computing gcd(x,y)calculates $r_n = r_{n-2} \% r_{n-1}$, with $r_{-2} = x$, $r_{-1} = y$
 - when $r_n = 0$ gcd has been found, equal to r_{n-1}
- Bézout identity: there exist u, v s.t. ux + vy = 1
- number x^{-1} such that $x^{-1}x \equiv 1 \pmod{y}$, hence, $x^{-1}x$ -1 = ky, for some integer k, that is $x^{-1}x - ky = 1$, or $x^{-1}x + vy = 1$, for some integer v (with v = -k) • the multiplicative inverse of $x \pmod{y}$ is a

THE EXTENDED EUCLID'S ALGORITHM (2)

o we can extend Euclid's algorithm to compute signed integers u_n and v_n s.t., for each n:

$$u_n x + v_n y = r_n$$

(constructive) proof by induction

o let $u_{-2} = 1$, $v_{-2} = 0$, $u_{-1} = 0$, $v_{-1} = 1$ o let $r_n = r_{n-2} - r_{n-1}q_n$, $q_n = \left[r_{n-2} / r_{n-1}\right]$

 $r_{n-2} = u_{n-2}x + v_{n-2}y$, if we compute $r_n = r_{n-2} - r_{n-1}q_n$ • if we set $u_n = u_{n-2} - q_n u_{n-1}$ and $v_n = v_{n-2} - q_n v_{n-1}$, since (by inductive HP) $r_{n-1} = u_{n-1}x + v_{n-1}y$ and $r_n = (u_{n-2} - q_n u_{n-1})x + (v_{n-2} - q_n v_{n-1})y$, namely $= u_{n-2}x + v_{n-2}y - q_n(u_{n-1}x + v_{n-1}y)$ we get $r_n = u_n x + v_n y$

THE EXTENDED EUCLID'S ALGORITHM (3)

• since we halt the algorithm when $r_n = 0$ and $gcd(x, y) = r_{n-1} = 1 \text{ then:}$

$$r_{n-1} = u_{n-1} x + v_{n-1} y = 1$$

• hence $x^{-1} = u_{n-1}$ (unit is unique), and $y^{-1} = v_{n-1}$

v_n	0	1	-16	17	-2668
$oldsymbol{u}_n$	1	0	1	-1	157
$oldsymbol{q}_n$			16	П	156
r_n	2668	157	156	1	0
n	-2	Τ-	0	Π	2

A SMALL EXAMPLE

- N = 2773, e = 17 (10001 in binary)
- 0920 1900 0112 1200 0718 0505 1100 2015 o ITS ALL GREEK TO ME is encoded as
- 0013 0500
- First block M = 0920 encrypts to
- $M^{2} = M^{17} = (((M^{2})^{2})^{2})^{2} \times M = 948 \pmod{2773}$
- The whole message (10 blocks) is encrypted as 0948 2342 1084 1444 2663 2390 0778 0774 0219
- Indeed $0948^d = 0948^{157} = 948^{1+4+8+16+128} = 920$ (mod 2773), etc.

```
static long fastExp(int base, int exp)
QUICK EXPONENTIATION (C CODE)
                                                                                            int lsb = 0x1 \& exp;
                                                                                                                            ф
;
                                                                                                                             ||
*
                                                                            while (exp > 0)
                                                           long b = base;
                                                                                                            exp >>= 1;
                                                                                                                            41
                                                                                                                            if(1sb)
                                             = 1;
                                                                                                                                            *= b;
                                                                                                                                                                            return f
                                              long f
                                                                                                                                            Д
```

Add mod p as needed

CONSTRUCTING AN INSTANCE OF RSA

- Alice first picks at random two large primes, p and *d*
- Let $N = p \cdot q$ be the product of p and q
- Alice then picks at random a large d that is relatively prime to $\phi(N) = (p-1)(q-1)$ $(\gcd(d, \phi(N)) = 1)$
- Alice computes e such that $d \cdot e \equiv 1 \mod \phi(N)$
- \circ Alice publishes the public key (N, e)
- Alice keeps the private key (N, d), as well as the primes p, q and the number $\phi(N)$, in a safe place

RSA: IMPLEMENTATION

- Find *p* and *q*, two large primes
- numbers; they should be different each time a new key is Random (an adversary should not be able to guess these defined)
- Choose suitable e to have a fast encoding
- Use exponentiation algorithm based on repeated squaring:
- Compute power of $2, 4, 8, 16, \dots$

0

- Compute power e by using the binary encoding of e and powers computed in so far (ex.: if e = 3 then 2 multiplications needed; if $e = 2^{16} + 1$ then 5 multiplications needed) 0
- In this way decoding is generally slower (d is large)
- 3. Compute d:
- Euclid's extended algorithm

RSA: IMPLEMENTATION (STEP 1)

1. Find two random primes

Algorithm:

- randomly choose a random large odd integer
- test if it is a prime

Note:

- Prime number are relatively frequent (in [N, 2N] there are $\approx N/\ln N \text{ primes}$
- prime number theorem
- states that the average gap between prime numbers near (http://en.wikipedia.org/wiki/Prime_number_theorem) N is roughly $\ln(N)$
- Hence randomly choosing we expect to find a prime of N bits every $\ln N$ attempts O

RSA: IMPLEMENTATION (STEP 2)

2. Coding algorithm (compute exponentiation)

power of 2, 4, 8, ...) and then executing multiplication Compute power by repeated squaring (so computing (based on binary encoding of the exponent e)

Cost: O(log N) operations

Constant no. of operations if e is small and its binary representation has few ones

Examples: e= 3, 2 multiplications

e= 65537= 2^{16} +1, compute powers M², M⁴, M⁸, M¹⁶,... M⁶⁵⁵³⁶ and then M⁶⁵⁵³⁷ = M^{65536*} * M

(total 16 multiplication)

RSA AS A ONE WAY TRAPDOOR FUNCTION.

TRAP-DOOR OWF

- Definition: $f: D \to R$ is a trapdoor one way function if there is a trapdoor s such that:
- Without knowledge of s, the function f is a one way function
- Given s, inverting f is easy
- Example: $f_{g,p}(x) = g^x \mod p$ is not a trap-door one way function.
- Example: RSA is a trap-door OWF.

RSA: A COLLECTION OF TRAP-DOOR OWF

- o Note: RSA defines a function that depends on the Key
- Definition: Let I be a set of indices and A a finite set. A collection of trap door one-way functions is a set of functions F parameterized by elements in I
- F verifies: For all values i in I there exists f_i such that
- f_i belongs to F
- $f_i:D\rightarrow R_i$ is a trap-door one way function
- o Idea: we need an algorithm that given a security parameter (the key) selects a function in F together with a trapdoor information

ATTACKS ON RSA

Factor N = pq. This is believed hard unless p, q have Recall RSA robustness does not imply it is always robust some "bad" properties. To avoid such primes, it is recommended to

Take p, q large enough (100 digits each).

Make sure p, q are not too close together.

Make sure both (p-1), (q-1) have large prime factors (to foil Pollard's rho algorithm) special-purpose integer factorization algorithm (John Pollard, 1975); particularly effective at splitting composite numbers with small

Some messages might be easy to decode

RSA AND FACTORING

- Fact 1: given n, e, p and q it is easy to compute d
- Fact 2: given n, e
- if you factor n then you can compute $\phi(n)$ and d

Conclusion:

- If you can factor n then you break RSA
- If you invert RSA then you are able to factor n? OPEN PROBLEM

FACTORING RSA CHALLENGES

RSA challenges: factor N = pq:

RSA 426 bits, 129 digits: factorized in 1994 (8 months, 1600 computers in the Internet (10000 Mips))

RSA 576 bits, 173 digits: factorized in dec. 2003, \$10000

RSA 640 bits, nov. 2005, 30 2.2 GHz-Opteron-CPU

Challenge is not active anymore (2007)

distributed effort to crack a 1024-bit RSA key used by the Gpcode Virus. From their website: We estimate it would take around 15 million modern computers, running for June 2008: Kaspersky Labs proposed an international about a year, to crack such a key. (??)

- There are messages easy to decode: if m = 0, 1, n-1 then RSA(m) = m
- notice e must be odd ≥ 3 , hence $(n-1)^e \mod n = n-1$, because $(n-1)^2 \mod n = 1$

SOLUT: rare, use salt

• If both m and e are small (e.g. e = 3) then we might have $m^e < n$; hence

 $m^e \mod n = m^e$

compute eth root in arithmetic is easy: adversary compute it and finds m

SOLUT. Add non zero bytes to avoid small messages

Small e (e.g. e = 3)

o Suppose adversary has two encoding of similar messages such as

 $c_1 = m^3 \mod n \text{ and } c_2 = (m+1)^3 \mod n$

 $\operatorname{Therefore}$

$$m = (c_2 + 2 c_1 - 1) / (c_2 - c_1 + 2)$$

The case m and (am + b) is similar (see next slide)

SOLUT. Choose large e

30

Don Coppersmith* Matthew Franklin** Jacques Patarin*** Michael Reiter

Low-Exponent RSA with Related Messages

Abstract. In this paper we present a new class of attacks against RSA with low encrypting exponent. The attacks enable the recovery of plaintext messages from their ciphertexts and a known polynomial relationship among the messages, provided that the ciphertexts were created using the same RSA public key with low encrypting exponent.

Suppose we have two messages m_1 and m_2 related by a known affine relation

$$m_2 = \alpha m_1 + \beta$$
.

Suppose further that the messages are encrypted under RSA with an exponent of 3 using a single public modulus N.

$$c_i = m_i^3 \mod N, \quad i = 1, 2$$

Then from

$$c_1, c_2, \alpha, \beta, N$$

Eurocrypt 1996

we can calculate the secret messages m_i algebraically as follows:

$$\frac{\beta(c_2 + 2\alpha^3c_1 - \beta^3)}{\alpha(c_2 - \alpha^3c_1 + 2\beta^3)} = \frac{3\alpha^3\beta m_1^3 + 3\alpha^2\beta^2 m_1^2 + 3\alpha\beta^3 m_1}{3\alpha^3\beta m_1^2 + 3\alpha^2\beta^2 m_1 + 3\alpha\beta^3} = m_1 \bmod N.$$

The algebra is more transparent if we assume (without loss of generality) that $\alpha = \beta = 1$.

$$\frac{(m+1)^3 + 2m^3 - 1}{(m+1)^3 - m^3 + 2} = \frac{3m^3 + 3m^2 + 3m}{3m^2 + 3m + 3} = m \mod N. \tag{1}$$

CHINESE REMAINDER THEOREM

o Suppose $n_1, n_2, ..., n_k$ are positive integers which solving the system of simultaneous congruencies integers $a_1, a_2, ..., a_k$, there exists an integer x are pairwise coprime. Then, for any given

$$x \equiv a_i \pmod{n_i} \text{ for } i = 1, \dots, k.$$

 \circ Furthermore, all solutions x to this system are congruent modulo the product $N = n_1 n_2 ... n_k$.

Assume e = 3 and then send the same message three times to three different users, with public keys

$$(3, n_1) (3, n_2) (3, n_3)$$

Attack: adv. knows public keys and

 $m^3 \mod n_1$, $m^3 \mod n_2$, $m^3 \mod n_3$

He can compute (using Chinese remainder theorem) $m^3 \mod (n_1.n_2.n_3)$

• Moreover $m < n_1, n_2, n_3$; hence $m^3 < n_1 \cdot n_2 \cdot n_3$ and $m^3 \mod n_1 \cdot n_2 \cdot n_3 = m^3$

SOLUT. Add random bytes to avoid equal messages • Adv. computes cubic root and gets result

• If message space is small then adv. can test all possible messages

ex.: adv. knows encoding of m and knows that m is either m1=10101010 or m2=01010101 adv encodes m1 and m2 using public key and verifies

o SOLUT. Add random string in the message

- If two user have same n (but different e and d) then bad.
- d, n (somewhat tricky, based on Euler's theorem see for instance "The Handbook of Applied • One user could compute p and q starting from his e, $\operatorname{Cryptography}$ ")
- Then, the user could easily discover the secret key of the other user, given his public key

probability two people choose same n is very very SOLUT. Each person chooses his own n (the

- Multiplicative property of RSA:
- If M = M1*M2 then $(M1*M2)^e$ mod N=((M1e mod N) * (M2e mod N))mod N

messages (chosen ciphertext, see next slide) Hence an adversary can proceed using small

- Can be generalized if M= M1*M2* ...*Mk
- Solut.: padding on short messages

RSA - CHOSEN CIPHERTEXT ATTACK

Adversary wants to decrypt $C = M^e \mod n$

1. adv. computes $X = (C \cdot 2^e) \mod n$

adv. uses X as chosen ciphertext and asks the oracle for $Y = X^d \mod n$

but

 $X = (C \mod n) \cdot (2^e \mod n) = (M^e \mod n) \cdot (2^e \mod n) =$ $= (2M)^e \mod n$

thus adv. got Y = (2M)

RSA - ATTACKS

chosen ciphertext attack:

- Adv. T knows $c = M^e \mod n$
- T randomly chooses X and computes $c' = c X^e$ mod n and ASKS ORACLE TO DECODE c'
- T computes $(c')^d = c^d (X^e)^d = M X \mod n!!$
- (oracle does not answers if M does not verify requirements) o SOLUT: require that messages verify a given structure

CHOSEN PLAINTEXT ATTACK (CPA)

- o Attack model which presumes that attacker has encrypted and obtain corresponding ciphertexts capability to choose arbitrary plaintexts to be
- goal is to gain further information which reduces security of encryption scheme
- Modern cryptography is implemented in software or hardware; for many cases, a CPA is feasible
- CPAs become extremely important in the context of public key cryptography, where the encryption key is public and attackers can encrypt any plaintext they choose.
- Two forms of CPA
- Batch CPA, where all plaintexts are chosen before any of them are encrypted
- Adaptive CPA, where subsequent plaintexts are based on information from the previous encryptions.

RSA - ATTACKS

Implementation attacks

o Timing: based on time required to compute Cd

o Energy: based on energy required to compute (smart card) C^d

o Solut.: add random steps in implementation

RSA - ATTACKS: CONCLUSION

Textbook implementation of RSA is NOT safe

• It does not verify security criteria

o Many attacks

There exists a standard version

o Preprocess M to obtain M' and apply RSA to M' (clearly the meaning of M e M' is the same)

 \mathbf{X}

 \ge

RSA |

PROPERTIES OF RSA

- The requirement $(e, \varphi(n))=1$ is important for uniqueness
- Finding d, given p and q is easy. Finding d given only n and e is assumed to be hard (the RSA assumption)
- The public exponent e may be small. Typically its value is either 3 (problematic) or $2^{16}+1$
- Each encryption involves several modular multiplications. Decryption is longer.

Public-Key Cryptography Standard (PKCS)

Set of standard devised and published by RSA Security; many versions with different goals (1-15). See Wikipedia for details

PKCS#1: standard to send messages using RSA (byte) $m = 0 \parallel 2 \parallel$ at least 8 non-zero bytes $\parallel 0 \parallel M$

(Moriginal message)

- first byte 0 implies message is less than N
- second byte (= 2) denotes encrypting of a message denotes dig. signature) and implies m is not small
- random bytes imply
- same message sent to many people is always different
- space of message is large

RSA AND DATA INTEGRITY: OAEP

- Padding scheme often used together with RSA encryption
- introduced by Bellare and Rogaway: "Optimal Asymmetric Encryption How to Encrypt with RSA" 1994, 1995 (http://cseweb.ucsd.edu/users/mihir/papers/oae.pdf)
- OAEP uses a pair of random oracles G and H to process the plaintext prior to asymmetric encryption
- possible query to a random response from its output domain. a random oracle is a mathematical function mapping every
- when combined with RSA it is secure under chosen plaintext/ciphertext attacks
- OAEP satisfies the following two goals
- Add an element of randomness which can be used to convert a deterministic encryption scheme (e.g., traditional RSA) into a probabilistic scheme.
 - Prevent partial decryption of ciphertexts (or other information leakage) by ensuring that an adversary cannot recover any portion of the plaintext without being able to invert the trapdoor one-way permutation f. Si

OPTIMAL ASYMMETRIC ENCRYPTION PADDING (OAEP)

n=number of bits in RSA modulus k0 and k1=integers fixed by the protocol m=plaintext message, a (n-k0-k1)-bit string G and H=cryptographic hash functions fixed by the protocol

To encode

- messages are padded with k1 zeros to be n k0 bits in length.
 - r is a random k0-bit string
- G expands the k0 bits of r to n k0 bits.
- $X = m00..0 \oplus G(r)$
- H reduces the n k0 bits of X to k0 bits.
- $Y = r \oplus H(X)$
- \circ output is X || Y

To decode

- recover the random string as $r = Y \oplus H(X)$
- recover the message as $m00..0 = X \oplus G(r)$

OAEP - "ALL-OR-NOTHING" SECURITY

"all-or-nothing" security

- o to recover m, you must recover the entire X and the entire Y
- X is required to recover r from Y, and r is required to recover m from X
- changes the result, the entire X, and the entire Y since any bit of a cryptographic hash completely must both be completely recovered

BASIC SCHEME

- A public key encryption scheme includes the following elements:
- A private key k
- A public key k'
- An encryption algorithm, which is a trap door OWF. The trap-door info is the private key
- Public key is published
- Encryption uses the public key (anyone can $\operatorname{encrypt}$)
- Decryption requires the private key

ELGAMAL ENCRYPTION

- Constructed by ElGamal in 1984
- Based on DH and consists of three components: key generator, encryption algorithm, decryption algorithm
- Alice publishes p, $g \in Z_p$ as public parameters
 - g is generator of a cyclic group of order p
- Alice chooses x as a private key and publishes g^x mod p as a public key
 - x chosen at random in {0, 1, ..., p-1}
- Encryption (Bob, for Alice) of $m \in Z_p$ by sending $(g^{y} \bmod p, mg^{xy} \bmod p)$
 - y chosen at random in {0, 1, ..., p-1}
- Decryption: Alice computes $(g^y)^x$ mod $p = g^{xy}$ mod p, then computes $(g^{xy})^{-1}$ mod p for obtaining $mg^{xy}(g^{xy})^{-1}$ m = d pom
- Requires two exponentiations per each block transmitted
- The involved math is not trivial

REAL WORLD USAGE

Two words:

Key Exchange

(use RSA (ElGamal) to define a secret key that is used with a faster protocol like AES)