

Decision Trees are a type of Machine Learning model

- They were originally introduced for classification tasks
- ...And they provide a prediction via recursive splitting

Decision Trees are a type of Machine Learning model

- Decision Trees consist of nodes, connected by parent-child relations
- There is a single root with no parent. Nodes with no child are called leaves

Decision Trees are a type of Machine Learning model

- The decision process always starts from the root
- ...And leaf nodes are labeled with a prediction

Decision Trees are a type of Machine Learning model

- Non-leaves node correspond to a fork in the decision process
- ...When making predictions, a child is picked based on the value of one attribute

Decision Trees are a type of symbolic ML models

...Actually, they are among the best examples of a symbolic technique

- They are interpretable
- They reason using discrete concepts
- They are easy to analyze

They are very versatile

- They can handle both categorical and numerical input
- They can handle inputs with missing values
- They can approximate non-linear relation

They serve as the basis for some of the most effective ML methods

...Such as Random Forests, Gradient Boosted Trees, and Extra Randomized Trees

Decision trees are constructed via a recursive algorithm

- learn(x, y, n):
 - if a stopping condition is met: :
 - return a leaf labeled with the majority class
 - if the termination condition is not satisfied:
 - pick an optimal attribute j and threshold θ
 - $n_{left} = learn(x_{x_i \le \theta}, y_{x_i \le \theta})$
 - $n_{right} = learn(x_{x_i > \theta}, y_{x_i > \theta})$
 - connect n_{left} and n_{right} to the n

The process starts by calling learn with the original training set and n = root

How do we evaluate an attribute and threshold?

Typically, we look at the uniformity of the resulting split

- We say that a j, θ is better
- ...If it leads to more uniform training sets in the children nodes

In detail:

- We consider the two vectors $y_{x_j \le \theta}$ and $y_{x_j > \theta}$
- For each of them we compute a impurity index $H(y_{x_i \le \theta})$ and $H(y_{x_i < \theta})$
- Then we average over the set size:

$$\frac{|y_{x_{j} \le \theta}|}{|y|} H(y_{x_{j} \le \theta}) + \frac{|y_{x_{j} > \theta}|}{|y|} H(y_{x_{j} > \theta})$$

In practice, there are a few important adjustments (we will not cover them)

Common impurity criteria include

The Gini index:

$$H(y) = \sum_{k \in K} p_k (1 - p_k)$$

The information entropy

$$H(y) = -\sum_{k \in K} p_k \log(p_k)$$

The misclassification index:

$$H(y) = 1 - \max(p_k)$$

In all notations, p_k is the frequency of class k in the output vector y

How do we get the attribute and threshold to be evaluated?

We start with a main observation

- lacktriangle Two thresholds heta' and heta'' actually make a difference
- ...Only if they lead to different splits

So we can actually enumerate all attribute/threshold combinations!

- We loop over all the attributes
- lacktriangle We consider all the values for the attributes in the training input data $oldsymbol{x}$
- ...And we evaluate all the resulting splits

At the end of the process we have the best j, θ pair

- It may seem like an expensive calculation
- ...But in fact it can be performed very quickly

The termination condition has some flexibility

- We stop after a certain depth
- We stop if there are not enough examples
- We stop if there is no way to obtain children with enough examples

By tweaking the conditions we can prevent overfitting

Decision trees can handle missing values in the dataset

- If we need to split on attribute j, which is missing for an example
- ...Then we consider fractions of that example
 - ullet The fractions depend on how attribute $oldsymbol{j}$ is distributed for the known examples
- One fraction goes in $\hat{x}_{x_i \leq \theta}$, the other in $\hat{x}_{x_i > \theta}$

Loading and Preparing the Data

Let's test the approach on the weather.csv dataset

We start by loading the data and encoding the categorical attributes:

```
In [2]: data = pd.read_csv('data/weather.csv', sep=',')
        data['windy'] = data['windy'].astype('category').cat.codes
        data['play'] = data['play'].astype('category').cat.codes
        data['outlook'] = data['outlook'].astype('category').cat.codes
        data.head()
Out[2]:
            outlook temperature humidity windy play
         0 2
                  85
                            85
                  80
                            90
         2 0
                  83
                            86
         3 1
                  70
                            96
         4 1
                            80
```

- There's no need to use a one-hot encoding for outlook
- ...Soince with the splitting mechanism a categorical encoding is enough

Loading and Preparing the Data

Then we separate the training and test set

```
In [3]: from sklearn.model_selection import train_test_split
    input_cols = [c for c in data.columns if c != 'play']
    X, y = data[input_cols], data['play']
    X_tr, X_ts, y_tr, y_ts = train_test_split(X, y, test_size=0.34, random_state=0)
    print(f'#examples: {len(X_tr)} (training), {len(X_ts)} (test)')

#examples: 9 (training), 5 (test)
```

There no need to normalize the input data

- Not even from an interpretation purpose!
- We'll get to that later :-)

Learning a Tree

We will use scikit-learn to learn a DT

First, we build the model:

```
In [4]: from sklearn.tree import DecisionTreeClassifier
mdl = DecisionTreeClassifier()
```

Special termination conditions can be specified when building the object

Then we call the fit method:

```
In [5]: mdl.fit(X_tr, y_tr);
```

- The process is the same we used for Linear Regression
- Actually, all scikit-learns model have the same basic API

Plotting the Tree

We can now have a look at the trained tree

```
In [6]: from sklearn.tree import plot_tree
            plt.figure(figsize=figsize)
            plot_tree(mdl);
            plt.tight_layout(); plt.show()
                                                                         x[2] \le 82.5
                                                                         gini = 0.494
                                                                         samples = 9
                                                                        value = [5, 4]
                                        x[1] \le 70.0
                                                                                                         x[2] \le 95.5
                                        gini = 0.375
                                                                                                          gini = 0.32
                                        samples = 4
                                                                                                         samples = 5
                                        value = [1, 3]
                                                                                                         value = [4, 1]
                         gini = 0.0
                                                         gini = 0.0
                                                                                          gini = 0.0
                                                                                                                           gini = 0.0
                        samples = 1
                                                         samples = 3
                                                                                         samples = 4
                                                                                                                          samples = 1
                                                        value = [0, 3]
                                                                                         value = [4, 0]
                                                                                                                         value = [0, 1]
                        value = [1, 0]
```

Evaluting the Tree

Our DT can be evaluated as any other classification model

