Persistance topologique

David Cohen-Steiner

Plan

- Homologie.
- Persistance topologique : définition et calcul [ELZ02].
- Stabilité de la persistance et applications.

Exemple

- Combien de vallées dans ce graphe?
- Comment distinguer le bruit topologique du signal?

Bruit topologique en 3D

Composantes, cavités et poignées "parasites".

Complexe simplicial

- Union de simplexes X.
- L'intersection de deux simplexes de X est une face.

Chaînes simpliciales mod 2

- k-chaîne de \mathbb{X} = union de k-simplexes de \mathbb{X} (k = 0, 1, 2, ...).
- L'ensemble des k-chaînes de \mathbb{X} muni de la différence symétrique forme un $\mathbb{Z}/2\mathbb{Z}$ espace vectoriel $C_k(\mathbb{X})$.

Opérateur de bord

- On note $\partial_k(s)$ le bord d'un k-simplexe s de \mathbb{X} .
- Cela définit une application linéaire $\partial_k : C_k(\mathbb{X}) \to C_{k-1}(\mathbb{X})$.

Groupes d'homologie

$$C_{k+1}(\mathbb{X}) \xrightarrow{\partial_{k+1}} C_k(\mathbb{X}) \xrightarrow{\partial_k} C_{k-1}(\mathbb{X})$$

- Espace des cycles $Z_k(\mathbb{X}) = \ker (\partial_k) \subset C_k(\mathbb{X})$.
- Espace des bords $B_k(\mathbb{X}) = \operatorname{im} (\partial_{k+1}) \subset C_k(\mathbb{X})$.
- Le bord d'une chaîne est un cycle : $B_k(X) \subset Z_k(X)$.
- On défi nit $H_k(\mathbb{X}) = Z_k(\mathbb{X})/B_k(\mathbb{X}) = \ker(\partial_k)/\operatorname{im}(\partial_{k+1})$.

 $H_0(X)$

■ La dimension de $H_0(\mathbb{X})$ est le nombre de composantes connexes de \mathbb{X} .

 $H_1(\mathbb{X})$

La dimension de $H_1(\mathbb{X})$ est le "nombre de boucles indépendantes" de \mathbb{X} . Ici $H_1(\mathbb{X}) = \mathbb{Z}/2\mathbb{Z}$.

 $H_1(\mathbb{X})$

La dimension de $H_1(\mathbb{X})$ est le "nombre de boucles indépendantes" de \mathbb{X} . Ici $H_1(\mathbb{X}) = \mathbb{Z}/2\mathbb{Z}$.

 $H_1(\mathbb{X})$

La dimension de $H_1(\mathbb{X})$ est le "nombre de boucles indépendantes" de \mathbb{X} . lci $H_1(\mathbb{X}) = \mathbb{Z}/2\mathbb{Z}$.

 $H_1(X)$

 $\bullet \dim H_1(\mathbb{X}) = 3.$

 \bullet dim $H_1(\mathbb{X}) = 2$.genre.