

MAXIMILIANO GRECO - GRUPO 5A

- I. CASO 2.1A.
 - 2. TEORÍA
 - 3. APARTADO A
 - 01. PRIMERAS LÍNEAS DE LOS DATOS
 - 02. DESCRIPCIÓN
 - 03. MÉTODO GRÁFICO
 - 04. HETEROCEDASTICIDAD
 - 4. APARTADO B
 - 01. CONTRASTE DE WHITE
 - 5. APARTADO C
 - 01. CONTRASTE DE BREUSCH-PAGAN
 - 6. APARTADO D
 - 01. TRATAMIENTO DE LA HETEROCEDASTICIDAD
 - 02. ESTIMAR ESTRUCTURA HETEROCEDÁSTICA
- II. CASO 2.2.
 - 1. APARTADO A
 - 01. HISTOGRAMA
 - 02. DISTRIBUCIÓN DE FRECUENCIAS
 - 2. APARTADO B
 - 02. PREGUNTAS
 - 3. APARTADO C
 - 02. PREDICCIÓN
 - 4. APARTADO D
 - 01. PREGUNTAS
- III. CASO 2.3.
 - 01. DATOS
 - 02. VALORES PERDIDOS
 - 2. ANÁLISIS UNIVARIANTE
 - 01. Número de diferenciaciones para I(0)
 - 02. TENDENCIA
 - 03. CONTRASTE DICKEY FULLER
 - 3. APARTADO A
 - 01. MODELO 1
 - 02. MODELO 2
 - 03. RESÚMEN
 - 4. APARTADO B
 - 01. PORCENTAJE DE ERROR ABSOLUTO MEDIO
 - 5. APARTADO C
 - 01. IMPULSO RESPUESTA
 - 02. CONCLUSIÓN

CASO 2.1A.

Estimación de una función de consumo con datos de corte transversal.

En este ejercicio vamos a analizar la relación entre el consumo y la renta para un conjunto de familias, tratando de evaluar la función de consumo keynesiana. Los datos se refieren a los gastos en consumo y la renta de 50 familias, que se muestran en la siguiente tabla:

	CONSUMO	F	RENTA	CONSUMO	RENTA
Familia 1	1080,5	1000	Familia 13	3033,8	3400
Familia 26	5782,6	6051	Familia 38	6808,6	8407
Familia 2	1239,8	1020	Familia 14	3310,4	3990
Familia 27	4201,4	6200	Familia 39	7089,8	8900
Familia 3	1540,7	1200	Familia 15	4077,2	4000
Familia 28	6058,7	6406	Familia 40	6236,6	9000
Familia 4	1773,8	1500	Familia 16	2987,6	4010
Familia 29	4946,0	6802	Familia 41	6623,3	9072
Familia 5	1896,5	1990	Familia 17	3812,0	4100
Familia 30	5690,3	7000	Familia 42	7009,1	9300
Familia 6	1691,0	2000	Familia 18	3921,8	4400
Familia 31	5956,6	7043	Familia 43	8645,6	9700
Familia 7	1979,6	2010	Familia 19	4122,2	4800
Familia 32	4556,6	7100	Familia 44	9578,0	9990
Familia 8	1940,0	2020	Familia 20	4530,8	5000
Familia 33	6069,5	7600	Familia 45	7355,0	10000
Familia 9	2502,5	2900	Familia 21	4042,2	5025
Familia 34	7763,9	7992	Familia 46	7276,4	10030
Familia 10	2909,6	3000	Familia 22	3741,6	5103
Familia 35	6254,0	8000	Familia 47	9506,6	10100
Familia 11	2644,7	3032	Familia 23	4720,4	5500
Familia 36	5755,7	8056	Familia 48	8293,7	10506
Familia 12	2813,0	3200	Familia 24	5235,5	5920
Familia 37	6506,8	8201	Familia 49	7443,6	10709
Familia 25	5281,7	6000			

Lo primero que vamos a hacer es un gráfico de dispersión entre las dos variables, para, a continuación hacer la regresión entre ambas. Una vez hecha la regresión y habiendo comentado los resultados desde el punto de vista económico, vamos a tratar de detectar la posible presencia de heterocedasticidad por diversos métodos.

TEORÍA

La función de consumo fué definida por primera vez por John Maynard Keynes (5 de junio de 1883 – 21 de abril de 1946)^[1] en su libro *La Teoría General del Empleo, el Interés y el Dinero* (1936). El objetivo de esta función es calcular la cantidad de consumo en una economía, para ello se define una función C, que es igual a un consumo autónomo (c_a) necesario para subsistir que no depende de la renta corriente y de consumo inducido que sí depende el nivel de renta de la economía.

$$C = c_a + c_y(Y - T)$$

- C = Consumo total
- c_a = Consumo autónomo (c_a 0)
- C_y = Propensión marginal a consumir (\(0\)
- Y-T = Renta disponible

La propensión marginal a consumir, es la proporción de renta que no se ahorra (se destina al consumo). Es importante notar que Keynes asume que el incremento en la renta es menor que el incremento en consumo, de ahí que la propensión marginal a consumir esté entre 0 y 1.

Las teorías mas importantes desarrolladas a partir de la función de consumo de Keynes son la del Gasto en Consumo Relativo de Duesenberry (1949), la de la Renta del Ciclo Vital de Modigliani y Brumberg's (1954) y la de la Renta Permanente de Friedman (1957).^[2]

APARTADO A

PRIMERAS LÍNEAS DE LOS DATOS

	consumo	renta
obs		
1	1080.5	1000
2	1239.8	1020
3	1540.7	1200
4	1773.8	1500
5	1896.5	1990

DESCRIPCIÓN

	consumo	renta
count	49.000000	49.000000
mean	4861.985714	5883.367347
std	2254.407716	2920.202417
min	1080.500000	1000.000000
25%	2987.600000	3400.000000
50%	4720.400000	6000.000000
75%	6506.800000	8201.000000
max	9578.000000	10709.000000

MÉTODO GRÁFICO

Se trata de hacer un gráfico de los **residuos** para ver si su varianza permanece constante. Además, se puede hacer otro gráfico de dispersión de la **serie del cuadrado de los residuos** frente a la variable **Renta al cuadrado** para analizar si existe algún grado de dependencia.

El gráfico de las variables consumo y renta, muestra que la variable consumo tiene mayores fluctuaciones que la serie renta, y además de tener un tendencia determinista creciente, es superior al consumo para casi todas las observaciones.

En este gráfico se puede ver la relación entre el consumo y la renta, se ajusta muy bien linealmente y tienen una relación positiva.

Si aplicamos logaritmos naturales a ambas variables se puede ver que el ajuste mejora.

OI	S	${\tt Regression}$	Results

==========			
Dep. Variable:	consumo	R-squared:	0.930
Model:	OLS	Adj. R-squared:	0.928
Method:	Least Squares	F-statistic:	623.3
Date:	Mon, 04 Jan 2016	Prob (F-statistic):	9.03e-29

Time:		17:29	:04 Log-L	ikelihood:		-382.22
No. Observa	tions:		49 AIC:			768.4
Df Residual	s:		47 BIC:			772.2
Df Model:			1			
Covariance	Type:	nonrob	ust			
=======	coef	std err		P> t	 [0.025	0.9751
				- 1-1	•	•
Intercept	482.1375	195.461	2.467	0.017	88.921	875.354
renta	0.7444	0.030		0.000		
Omnibus:	=======	6.		======== n-Watson:	======	2.158
Prob(Omnibu	s):	0.	045 Jarque	e-Bera (JB):		5.116
Skew:		0.	648 Prob(JB):		0.0775
Kurtosis:		3.	908 Cond.	No.		1.49e+04
========	========					

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.49e+04. This might indicate that there are strong multicollinearity or other numerical problems.

En este gráfico muestra el ajuste entre consumo y su estimación. Se puede ver como en la segunda mitad de las observaciones el residuo es mayor.

- $\hat{c}_a = 482.138(195.461)$
- $\hat{c}_y = 0.744(0.030)$

El resultado de la estimación $c=c_a+c_y\cdot y+u$, nos da como resultado unos parámetros de posición que son acordes con la teoría económica: un consumo autónomo mayor que cero pero con un error estándar muy grande y una propensión marginal al consumo entre 0 y 1, ambos parámetros significativos.

En este modelo, tenemos un consumo autónomo de 482.14€, podría interpretarse como la mínima renta de subsistencia. Y una propensión marginal a consumir del 74.4%, esto es, por cada 100 euros que se incrementa la renta, los individuos

gastan 74.4€ y el resto lo ahorran.

HETEROCEDASTICIDAD

El gráfico de los residuos muestra una que la varianza no es constante.

En el caso de los residuos y renta al cuadrado, vemos que hay una relación, se puede ver como aumenta la dispersión de los residuos al cuadrado cuando aumenta la renta al cuadrado. Esto nos indica que hay un problema de heterocedasticidad.

APARTADO B

CONTRASTE DE WHITE

Lo obtiene Gretl de forma automática haciendo una regresión auxiliar del cuadrado de los residuos sobre la variable exógena y su cuadrado, calculando para esta regresión el producto de T·R2, el cual se distribuye según una Chi-cuadrado con p grados de libertad, siendo p el número de regresores de esta regresión auxiliar.

Contraste de White:

$$c_i = c_a + c_y \cdot y + u_i$$

Se obtiene \hat{u}_i y se plantea la regresión auxiliar:

$$\hat{u}_i = \alpha_0 + \alpha_1 \cdot y_i^2 + v_i$$

EL ESTADÍSTICO DE WHITE

$$W=49\cdot R_{ra}^2\sim \chi^2(1)$$

 H_0 : Homocedasticidad, $\alpha_1 = 0$

 H_a : Heterocedasticidad, $\alpha_1 \neq 0$

White: 13.3226 (0.0013)

 $\chi_{\text{value}}^2(1) = 3.84145882069$

Para este caso, se rechaza la hipótesis nula de homocedasticidad para un nivel de significación del 5 y 1%.

APARTADO C

CONTRASTE DE BREUSCH-PAGAN

1. Estimar el residuo del modelo original:

$$\hat{c} = \hat{c}_a + \hat{c}_v \cdot y + \hat{u}$$

2. Estimar el residuo de la regresión auxiliar:

$$\frac{\hat{u}}{\widetilde{\sigma}_{\hat{c}}} = \hat{\gamma}_1 + \hat{\gamma}_2 \cdot y + \hat{\epsilon}$$

3. El estimador BP:

$$BP = \frac{SE_{ra}}{2} \sim \chi^2(1)$$

 H_0 : Homocedasticidad, $\gamma_2 = 0$

 H_a : Heterocedasticidad, $\gamma_2 \neq 0$

anova

BP = 17.832
$$\chi^2(1) = 5.024$$

$$\chi_{\text{value}}^2(1) = 3.84145882069$$

Como en el anterior apartado, se rechaza la homocedasticidad, para un nivel de significación del 5% la χ^2 de tablas es menor que la obtenida para el BP.

APARTADO D

TRATAMIENTO DE LA HETEROCEDASTICIDAD

Vamos a tratar la posible presencia de heterocedasticidad de la variable renta suponiendo dos tipos de estructuras heterocedásticas

- (1) $V(u_i) = \alpha + \beta \cdot renta_i^2$
- (2) $logV(u_i) = \alpha + \beta \cdot log(renta_i) \longrightarrow$ heterocedasticidad multiplicativa

Para determinar cuál de las dos estructuras es la más adecuada, habrá que hacer las regresiones que corresponda según el supuesto adoptado:

• si (1):
$$\hat{u}^2 = \alpha + \beta \cdot renta_i^2 + v_i$$

• si (2): $log(\hat{u}^2) = \alpha + \beta \cdot log(renta_i) + v_i$

Se aceptará que existe un determinado **tipo de heterocedasticidad** u otro si en el modelo estimado la variable **log renta es significativa**, en ese caso, nos quedaremos con el modelo en que el **t-ratio sea mayor**.

En caso de que se aceptara el primer tipo de heterocedasticidad, para estimar el modelo de forma adecuada debemos aplicar Mínimos Cuadrados Generalizados Factibles, lo cual implica ponderar todas las variables del modelo por la desviación típica de la varianza, es decir, **dividir por la variable Renta**, tanto la variable endógena, como la constante y la variable exógena.

Una vez construidas las nuevas variables, se estima el nuevo modelo por MCO y los nuevos coeficientes estimados ya están libres de problemas de heterocedasticidad. En caso de aceptar **heterocedasticidad multiplicativa**, para corregir el modelo original habría que ponderarlo por:

```
\sqrt{e^{[\alpha+\beta\cdot\log(renta)]}}
```

De este nuevo modelo se pueden **analizar los residuos** para ver si su varianza ya es constante. Hacer el **gráfico** de los **residuos** frente a la variable **Renta** y hacer también el contraste de **White**. **Valorar** también el **cambio** producido en los **parámetros** estimados respecto al modelo inicial.

	OLS Regre	ssion Results			
Dep. Variable:	uhat2			0.2	71
Model:	OLS	Adj. R-squar	ed:	0.2	55
Method:	Least Squares	F-statistic:		17.	45
Date:	Mon, 04 Jan 2016	Prob (F-stat	istic):	0.0001	27
Time:	17:29:06	Log-Likeliho	od:	-713.	34
No. Observations:	49	AIC:		143	1.
Df Residuals:	47	BIC:		143	4.
Df Model:	1				
Covariance Type:	nonrobust				
	coef std	err t	P> t	[0.025	0.975]
	-3.618e+04 1.18e				
	0.0090 0.0				
Omnibus:	26.233	Durbin-Watso		2.5	
Prob(Omnibus):	0.000	Jarque-Bera	(JB):	48.7	80
Skew:	1.608	Prob(JB):		2.56e-	11
Kurtosis:	6.681	Cond. No.		8.80e+	07
					==

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 8.8e+07. This might indicate that there are strong multicollinearity or other numerical problems.

OLS Regression Results

Dep. Variable:	np.log(uhat2)	R-squared:	0.185
Model:	OLS	Adj. R-squared:	0.168
Method:	Least Squares	F-statistic:	10.70
Date:	Mon, 04 Jan 2016	Prob (F-statistic):	0.00201
Time:	17:29:06	Log-Likelihood:	-123.86
No. Observations:	49	AIC:	251.7
Df Residuals:	47	BIC:	255.5

Df Model:		1				
Covariance Type	:	nonrobust				
				.======		
	coef	std err	t	P> t	[0.025	0.975]
Intercept	-8.7203	5.869	-1.486	0.144	-20.527	3.087
np.log(renta)	2.2495	0.688	3.272	0.002	0.866	3.633
==========		========		.=======		=====
Omnibus:		17.278	Durbin-Wa	atson:		2.227
Prob(Omnibus):		0.000	Jarque-Be	era (JB):		20.284
Skew:		-1.420	Prob(JB):	1	3.	94e-05
Kurtosis:		4.369	Cond. No.			115.
==========				.=======		=====

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

A la vista de los modelos, **la estructura (1)** es más significativa que la (2), por tanto planteamos el modelo lineal generalizado, siguiendo dicha estructura.

$$\hat{u}^2 = \alpha + \beta \cdot \text{renta}_i^2 + v_i \text{ (1)}$$

$$\hat{u} = \sqrt{\hat{\alpha} + \hat{\beta} \cdot \text{renta}_i^2 + v_i}$$

ESTIMAR ESTRUCTURA HETEROCEDÁSTICA

$$\frac{\text{consumo}}{\text{renta}} = c_a \cdot \frac{1}{\text{renta}} + c_y + \epsilon_i$$

En este caso los coeficientes tiene la interpretación inversa que en el modelo inicial, de forma que el que acompaña a la renta es el consumo autónomo y la propensión marginal a consumir es el término independiente ya que la endógena es la proporción entre consumo y renta.

	OLS Regres	ssion Results		
Dep. Variable:	consumo by renta	P. garared:	:=======	0.576
-		-		
Model:	OLS			0.567
Method:	Least Squares	F-statistic:		63.96
Date:	Mon, 04 Jan 2016	Prob (F-statistic):		2.57e-10
Time:	17:29:06	Log-Likelihood:		49.920
No. Observations:	49	AIC:		-95.84
Df Residuals:	47	BIC:		-92.06
Df Model:	1			
Covariance Type:	nonrobust			
=======================================				
		t P> t		
		37.917 0.000		
		7.998 0.000		
Omnibus:	1.483	Durbin-Watson:		2.204
Prob(Omnibus):	0.476	Jarque-Bera (JB):		1.236
Skew:	0.199	Prob(JB):		0.539
Kurtosis:	2.331	Cond. No.		4.60e+03
=======================================			.=======	=======

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 4.6e+03. This might indicate that there are strong multicollinearity or other numerical problems.

- $\hat{c}_y = 0.747(0.020)$ $\hat{c}_a = 468.900(58.60)$
- =468.900(58.629)

El modelo transformado puede escribirse como, $\frac{c_i}{y_i} = c_y \cdot \frac{1}{y_i} + c_a + u$, e interpretarse como la proporción de renta que se destina a consumo depende del consumo autónomo, y de la propensión marginal al consumo (porcentaje de consumo) ponderado por la renta.

De esta forma la interpretación no varía, y los parámetros estimados tienen la misma concordancia con la teoría económica (ambos parámetros positivos, y con una propensión marginal al consumo entre 0 y 1 con el añadido que ya no hay problemas de heterocedasticidad.

En este modelo, tenemos un consumo autónomo de 468.9€, es decir, que aunque la renta fuera 0, los individuos gastan esa cantidad. La propensión marginal al consumo, es de 0.747 ligeramente superior a la estimada con anterioridad. Nos dice que si aumenta la renta en un euro el consumo aumenta en 0.747 euros y el resto lo ahorran.

White: 1.73408097966 pvalue: 0.420193277165 • F: 0.843818619397 pvalue: 0.436612947563

El contraste de white ahora nos arroja evidencia en contra de la hipótesis alternativa, por tanto no podemos rechazar la existencia de homocedasticidad para un nivel de significatividad del 5%, pvalue > 0.05.

Si vemos el gráfico de los residuos, vemos que se distribuyen homogéneamente entre los valores del residuo, y no se aprecia a simple vista relación entre los residuos y la nueva variable de renta.

El gráfico muestra los valores reales de la nueva variable endógena, y su estimación, se puede ver el correcto ajuste y unos errores homogéneos.

parametros	modelo1	modelo2
$\stackrel{\wedge}{c}_a$	482.138 (195.461)	468.900 (0.030)
\hat{c}_y	0.744 (0.030)	0.747 (195.461)
R^2	0.928	0.567
JB	5.116 (0.077)	1.236 (0.539)
White	13.323 (0.001)	1.734 (0.420)

Si comparamos los modelos, vamos que cambian los parámetros ligeramente. En el modelo 2 se estima con mayor precisión el consumo autónomo, mientras que en el modelo 1 el mas preciso el la propensión marginal al consumo. Sin embargo el modelo 1 presenta problemas de heterocedasticidad mientras que el modelo 2 sigue los supuestos del MLG.

Sin embargo, con el cambio de modelo, se pierde gran parte del poder explicativo, pasando de un $R^2 = 0.928$ con el modelo 1 a un $R^2 = 0.567$ con el modelo 2.

Como alternativa se podría estimar el modelo 1 con estimaciones robustas.

CASO 2.2.

Influencia de la prohibición de fumar en el trabajo sobre los fumadores en EE.UU.

En este ejercicio se va a estudiar el efecto que tiene sobre el hábito de fumar, el hecho de que las empresas prohiban fumar en el puesto de trabajo. Utilizaremos los datos contenidos en el fichero Smoking.xls que tiene datos de corte transversal de una muestra de 10.000 trabajadores de EE.UU desde 1991 a 1993. El conjunto de datos contiene información sobre si las personas estaban o no estaban sujetas a una prohibición de fumar en el trabajo, si las personas fumaban, y otras características individuales. Las variables y su descripción es la siguiente:

Definiciones de las variables

Variable	Definición
smoker	=1 si el sujeto fuma, =0 si no fuma
smkban	=1 si no se puede fumar en el trabajo, =0 en otro caso
age	edad del sujeto en años
hsdrop	=1 si abandonó sus estudios, =0 en otro caso
hsgrad	=1 si tiene estudios de secundaria, =0 en otro caso
colsome	=1 si tiene educación de bachillerato, =0 en otro caso
colgrad	=1 si tiene licenciatura universitaria, =0 en otro caso
black	=1 si es negro, =0 en otro caso
hispanic	=1 si es hispano =0 en otro caso
female	=1 si es mujer, =0 en otro caso

Nota: El indicador binario de educación indica el máximo grado alcanzado en los estudios, estas variables son excluyentes, por ejemplo, una persona que tenga un título de doctorado universitario tendrá valores 0 en las variables hsdrop, hsgrad, colsome, y colgrad.

APARTADO A

Para conocer un poco las características de los datos:

- Primero haremos un estudio de la distribución de frecuencias de las variables y el histograma de la variable age (edad).
- Después **estimaremos** un **modelo de Probabilidad Lineal** entre la variable **smoker y smkban** y partir del mismo calcularemos:
 - o (i) La probabilidad de **fumar para todos** los trabajadores,
 - o (ii) La probabilidad de fumar para los trabajadores afectados por la prohibición de fumar en el trabajo, -
 - o (iii) La probabilidad de fumar para los trabajadores que pueden fumar en su puesto de trabajo.

Asimismo, a partir de la estimación anterior

- ¿cuál es la diferencia en la probabilidad de fumar entre los trabajadores afectados por la prohibición de fumar en el trabajo y los que no están afectados por dicha prohibición?
- ¿Es estadísticamente significativa esa diferencia?

	smoker	smkban	age	hsdrop	hsgrad	colsome	colgrad	black	hispanic	female
0	1	1	41	0	1	0	0	0	0	1
1	1	1	44	0	0	1	0	0	0	1
2	0	0	19	0	0	1	0	0	0	1
3	1	0	29	0	1	0	0	0	0	1
4	0	1	28	0	0	1	0	0	0	1

	count	mean	std	min	25%	50%	75%	max
smoker	10000	0.2423	0.428496	0	0	0	0	1
smkban	10000	0.6098	0.487819	0	0	1	1	1
age	10000	38.6932	12.113783	18	29	37	47	88
hsdrop	10000	0.0912	0.287908	0	0	0	0	1
hsgrad	10000	0.3266	0.468993	0	0	0	1	1
colsome	10000	0.2802	0.449119	0	0	0	1	1
colgrad	10000	0.1972	0.397905	0	0	0	0	1
black	10000	0.0769	0.266446	0	0	0	0	1
hispanic	10000	0.1134	0.317097	0	0	0	0	1
female	10000	0.5637	0.495951	0	0	1	1	1

 $P_{0.25} = 29.000$ $P_{0.50} = 37.000$

 $P_{0.75} = 47.000$ Moda = 34.000

HISTOGRAMA

El histograma nos informan de la distribución que sigue la variable edad. Se puede ver que se aproxima muy bien a una distribución normal. Presente una asimetría hacia la izquierda. El valor mas frecuente es 34 años, el 25% de los individuos no superan los 29 años, el 50% de los individuos tienen más de 37 años, y el 25% de los individuos que más años tienen superan los 47 años de edad.

DISTRIBUCIÓN DE FRECUENCIAS

El gráfico muestra la probabilidad de que cada variable sea 1 independientemente del resto.

OLS Regression Results

========				======			
Dep. Variabl	.e :	5	smoker	R-sq	uared:		0.008
Model:			OLS	Adj.	R-squared:		0.008
Method:		Least So	quares	F-st	atistic:		75.06
Date:	•	Tue, 05 Jar	2016	Prob	(F-statist	ic):	5.27e-18
Time:		11:	00:50	Log-	Likelihood:		-5675.0
No. Observat	ions:		10000	AIC:			1.135e+04
Df Residuals	:		9998	BIC:			1.137e+04
Df Model:			1				
Covariance T	Covariance Type:						
========	:======						
						-	0.975]
Intercept						0.275	
smkban							
Omnibus:			55.260		======== in-Watson:	:=======	1.851
Prob(Omnibus	s):		0.000	Jarq	ue-Bera (JE	3):	2479.745
Skew:			1.189	Prob	(JB):		0.00
Kurtosis:			2.458	Cond	. No.		2.96
========	.======				========	.=======	

Warnings:

[1] Standard Errors are heteroscedasticity robust (HC1)

	coef	std err	t	P> t	[0.025	0.975]
Intercept	0.2896	0.007	39.879	0.000	0.275	0.304
smkban	-0.0776	0.009	-8.664	0.000	-0.095	-0.060

En este caso el término independiente es la probabilidad de la variable endógena y el parámetro que acompaña a la exógena es el incremento de probabilidad cuando dicha variable toma el valor 1.

Por tanto la probabilidad de fumar para todos los individuos es de 0.29.

La probabilidad de fumar para individuos que tienen prohibido fumar en el puesto de trabajo se reduce en 0.078.

Ambos parámetros significativos.

(i) La probabilidad de fumar para todos los trabajadores:

$$\hat{\beta}_0 = 0.29$$

$$\hat{\sigma}_{\hat{\beta}_0} = 0.007$$

(ii) La probabilidad de fumar para los trabajadores afectados por la prohibición de fumar en el trabajo:

$$\hat{\beta}_0 + \hat{\beta}_1 = 0.212$$

(iii) La probabilidad de fumar para los trabajadores que pueden fumar en su puesto de trabajo:

$$1 - \hat{\beta}_1 = 1.078$$

¿cuál es la diferencia en la probabilidad de fumar entre los trabajadores afectados por la prohibición de fumar en el trabajo y los que no están afectados por dicha prohibición?

Dicha diferencia viene dada por el parámetro estimado:

$$\hat{\beta}_1 = -0.078$$

¿Es estadísticamente significativa esa diferencia?

La significancia nos la proporciona el t-ratio y el pvalue = 0.000, por tanto sí es significativa.

APARTADO B

En segundo lugar, vamos a **estimar** un Modelo de **Probabilidad Lineal** entre la variable **smoker** y las explicativas siguientes: **smkban, age, age2, hsdrop, hsgrad, colsome, colgrad, black, hispanic y female**.

OLS Regression Results							
Dep. Variable:			R-squared:	=======		0.057	
Model:		OLS	Adj. R-squa	-		0.056	
Method:	Leas	t Squares	F-statistic	:		68.75	
Date:	Tue, 05	Jan 2016	Prob (F-sta	tistic):	1.92	e-136	
Time:		11:00:50	Log-Likelih	ood:	- 5	420.7	
No. Observations:		10000	AIC:		1.08	6e+04	
Df Residuals:		9989	BIC:		1.09	4e+04	
Df Model:		10					
Covariance Type:		HC1					
		std err	t	P> t			
Intercept	-0.0141		-0.341		-0.095	0.067	
smkban	-0.0472	0.009	-5.269	0.000	-0.065	-0.030	
age	0.0097	0.002	5.104	0.000	0.006	0.013	
np.power(age, 2	-0.0001	2.19e-05	-6.017	0.000	-0.000	-8.89e-05	
hsdrop	0.3227	0.019	16.559	0.000	0.285	0.361	
hsgrad	0.2327	0.013	18.483	0.000	0.208	0.257	
colsome	0.1643	0.013	13.014	0.000	0.140	0.189	
colgrad	0.0448	0.012	3.720	0.000	0.021	0.068	
black	-0.0276	0.016	-1.714	0.086	-0.059	0.004	
hispanic	-0.1048	0.014	-7.500	0.000	-0.132	-0.077	
female			-3.881			-0.016	
Omnibus:			Durbin-Wats			1.875	
Prob(Omnibus):		0.000	Jarque-Bera (JB):		210	0.981	
Skew:		1.093	Prob(JB):			0.00	
Kurtosis:		2.486	Cond. No.		2.1	1e+04	
=======================================		=======		=======	=======	====	

Warnings:

^[1] Standard Errors are heteroscedasticity robust (HC1)

^[2] The condition number is large, 2.11e+04. This might indicate that there are strong multicollinearity or other numerical problems.

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-0.0141	0.041	-0.341	0.733	-0.095	0.067
smkban	-0.0472	0.009	-5.269	0.000	-0.065	-0.030
age	0.0097	0.002	5.104	0.000	0.006	0.013
np.power(age, 2	-0.0001	2.19e-05	-6.017	0.000	-0.000	-8.89e-05
hsdrop	0.3227	0.019	16.559	0.000	0.285	0.361
hsgrad	0.2327	0.013	18.483	0.000	0.208	0.257
colsome	0.1643	0.013	13.014	0.000	0.140	0.189
colgrad	0.0448	0.012	3.720	0.000	0.021	0.068
black	-0.0276	0.016	-1.714	0.086	-0.059	0.004
hispanic	-0.1048	0.014	-7.500	0.000	-0.132	-0.077
female	-0.0333	0.009	-3.881	0.000	-0.050	-0.016

DEFINO UN INDIVIDUO DE CARÁCTERÍSTICAS:

```
smoker 0
smkban 0
age 33
hsdrop 0
hsgrad 0
colsome 1
colgrad 0
black 0
hispanic 0
female 1
Name: 10, dtype: int64
```

PREGUNTAS

¿Qué tipo de preguntas pueden formularse con esta nueva especificación?

Formular tres preguntas y tratar de responderlas a partir del modelo estimado.

Pueden formularse dos tipos de preguntas una es por el efecto marginal de una variable o por el efecto total para el que hay que definir el estado de todas las variables involucradas.

¿Cuál es la probabilidad de fumar para una mujer de 33 años, con bachillerato, que no tiene prohibido fumar en el trabajo, no es hispana y no es negra?:

$$P\{\text{smoker} = 1 \mid \text{age} = 33, \text{female} = 1, \text{colsome} = 1\} = \hat{\beta}_0 + \hat{\beta}_2 \cdot \text{age} + \hat{\beta}_3 \cdot \text{age}^2 + \hat{\beta}_6 + \hat{\beta}_{10} = 0.293$$

$$\text{sum}(\text{array}([-0.014, 0.319, -0.144, 0.164, -0.033])) = 0.292$$

La probabilidad de fumar para esta mujer blanca de 33 años, es de 29.27%

¿Cuál es la probabilidad de fumar para una mujer de 32 años, con bachillerato, que no tiene prohibido fumar en el trabajo, no es hispana, no es negra?:

La probabilidad de fumar para esta mujer blanca de 33 años, es de 29.15%

¿Cuál es la diferencia en la probabilidad de fumar entre esas mujeres?

La diferencia en la **probabilidad** de fumar en estas mujeres (efecto marginal de la edad) es de 0.11%. Esto significa que el efecto marginal de la edad es de 0.11%.

Además, podemos preguntarnos si la probabilidad de fumar depende o no del nivel de educación, para ello podemos hacer un contraste de significatividad conjunta de las variables educativas. ¿La probabilidad de fumar aumenta o disminuye con el nivel educativo?

F Test

 H_0 : Parámetros(hsdrop = hsgrad = colsome = colgrad = 0)

F: 140.090 (1.0846809960258138e-116)

No podemos aceptar la hipótesis nula de significatividad conjunta. Hay evidencia por tanto para pensar que la probabilidad de fumar es independiente del nivel educativo.

¿Cuál sería la probabilidad de que fumara un niño de 1 año, independientemente del resto de variables consideradas?

$$P{y = 1 | age = 1} = \hat{\beta}_0 + \hat{\beta}_2 \cdot age + \hat{\beta}_3 \cdot age^2$$

La probabilidad de fumar para un niño de 1 año es -0.46%, lo cual no tiene sentido dado que no existen probabilidades negativas.

Sin embargo la edad esta fuera del rango estimado en las variables por lo que no es correcta la estimación.

APARTADO C

Estimar un modelo **Probit y otro Logit** con las variables del apartado a, **comentar las diferencias** observadas con la estimación del Modelo de Probabilidad Lineal.

Calcular en cada caso la probabilidad de fumar según si los trabajadores tienen prohibido fumar en el trabajo.

Notar que cuando Gretl estima un modelo Probit, en la ventana de resultados aparece una columna que llama z, ese valor que pone Gretl es el equivalente al t-ratio habitual y no debe confundirse con el "valor-z" de la distribución Normal acumulada, que es el que hay que calcular para obtener la probabilidad de que ocurra el suceso de la variable endógena.

'smoker ~ smkban'

Optimization terminated successfully.

Current function value: 0.549867

Iterations 5

PROBIT

Probit Regression Results

========	=======	=======				
Dep. Variabl	.e:	sm	noker No.	Observations	::	10000
Model:		Pr	obit Df I	Residuals:		9998
Method:			MLE Df N	Model:		1
Date:	T	ue, 05 Jan	2016 Pseu	ıdo R-squ.:		0.006953
Time:		11:0	0:50 Log-	-Likelihood:		-5498.7
converged:			True LL-1	Null:		-5537.2
			LLR	p-value:		1.711e-18
========	coef	std err	z	P> z	[0.025	0.975]
Intercept	-0.5546	0.021	-26.126	0.000	-0.596	-0.513
smkban	-0.2448	0.028	-8.784	0.000	-0.299	-0.190
=========		========				

LOGIT

Optimization terminated successfully.

Current function value: 0.549867

Iterations 5

Logit Regression Results

Dep. Variabl	.e:	sm	oker No.	Observations	:	10000
Model:		L	ogit Df	Residuals:		9998
Method:			MLE Df	Model:		1
Date:	Tı	ue, 05 Jan	2016 Pse	udo R-squ.:		0.006953
Time:		11:0	0:50 Log	-Likelihood:		-5498.7
converged:		•	True LL-	Null:		-5537.2
			LLR	p-value:		1.711e-18
========						
	coef	std err	z	P> z	[0.025	0.975]
Intercept	-0.8974	0.035	-25.425	0.000	-0.967	-0.828
Intercept	-0.03/4	0.033	-23.423	0.000	-0.907	-0.020
smkban	-0.4153	0.047	-8.801	0.000	-0.508	-0.323

PREDICCIÓN

	MLP	LOGIT	PROBIT
P{y=1 / smkban=1}	0.21204	0.21204	0.21204
P{v=1 / smkban=0}	0.28960	0.28960	0.28960

Los tres modelos predicen la misma probabilidad para los mismos escenarios dada la misma relación.

RESÚMEN DE LOS MODELOS

PARAMETROS	LOGIT	PROBIT	MLP
\hat{eta}_0	-0.897	-0.555	0.290
\hat{eta}_1	-0.415	-0.245	-0.078
sbic	11015.754	11015.754	11368.460

APARTADO D

Usando un modelo Probit, responder a las 3 mismas preguntas que os formulasteis en el apartado b y calcular también la probabilidad de que fume un niño de 1 año, independientemente del resto de variables consideradas y ver cómo cambia la respuesta usando el modelo Probit.

Optimization terminated successfully. Current function value: 0.523587 Iterations 6

		,	ssion Results			
Dep. Variable:		smoker		No. Observations:		0000
Model:	Probit		Df Residual	s:		9989
Method:		MLE	Df Model:			10
Date:	Tue, 05	Jan 2016	Pseudo R-sq	u.:	0.0	5441
Time:		11:00:50	Log-Likelih	ood:	-52	35.9
converged:		True	LL-Null:		-5537.2	
		LLR p-value: 4.891		4.891e	-123	
===========	coef	std err	z	P> z	[0.025	0.975]
			-11.370			
smkban	-0.1586	0.029	-5.471	0.000	-0.215	-0.102
age	0.0345	0.007	4.976	0.000	0.021	0.048
np.power(age, 2	-0.0005	8.28e-05	-5.645	0.000	-0.001	-0.000
hsdrop	1.1416	0.072	15.846	0.000	1.000	1.283
hsgrad	0.8827	0.060	14.766	0.000	0.766	1.000
colsome	0.6771	0.061	11.112	0.000	0.558	0.797
colgrad	0.2347	0.065	3.607	0.000	0.107	0.362
black	-0.0843	0.053	-1.601	0.109	-0.187	0.019
hispanic	-0.3383	0.048	-7.084	0.000	-0.432	-0.245

-0.1117 0.029 -3.877 0.000

-0.168

-0.055

Probit Marginal Effects

Dep. Variable:	smoker				
Method:	dydx				
At:	overall				

	dy/dx	std err	z	P> z	[95.0% Conf. Int.]
smkban	-0.0468	0.009	-5.493	0.000	-0.064
age	0.0102	0.002	4.990	0.000	0.006
np.power(age, 2	-0.0001	2.44e-05	-5.666	0.000	-0.000
hsdrop	0.3370	0.021	16.302	0.000	0.296
hsgrad	0.2606	0.017	15.108	0.000	0.227
colsome	0.1999	0.018	11.244	0.000	0.165
colgrad	0.0693	0.019	3.611	0.000	0.032
black	-0.0249	0.016	-1.601	0.109	-0.055
hispanic	-0.0999	0.014	-7.124	0.000	-0.127
female	-0.0330	0.008	-3.884	0.000	-0.050
==========	========	========		:=======	

Parametros	MLP (B)	Probit (D)
\hat{eta}_0	-0.014	-0.154
\hat{eta}_1	-0.047	-0.011
\hat{eta}_2	0.010	0.003
\hat{eta}_3	-0.000	-0.000
\hat{eta}_4	0.323	0.382
\hat{eta}_5	0.233	0.245
\hat{eta}_6	0.164	0.154
\hat{eta}_7	0.045	0.030
\hat{eta}_8	-0.028	-0.006
\hat{eta}_{9}	-0.105	-0.016
$\hat{\beta}_{10}$	-0.033	-0.008

smoker	0
smkban	0
age	33
hsdrop	0
hsgrad	0
colsome	1
colgrad	0
black	0
hispanic	0
female	1

Name: 10, dtype: int64

PREGUNTAS

¿Cuál es la probabilidad de fumar para una mujer de 33 años, con bachillerato, que no tiene prohibido fumar en el trabajo, no es hispana, no es negra?:

$$P\{\text{smoker} = 1 \mid \text{age} = 33, \text{female} = 1, \text{, colsome} = 1\} = F(\hat{\beta}_0 + \hat{\beta}_2 \cdot \text{age} + \hat{\beta}_3 \cdot \text{age}^2 + \hat{\beta}_6 + \hat{\beta}_{10})$$

La probabilidad de fumar para esta mujer blanca de 33 años, es de 29.47%

¿Cuál es la probabilidad de fumar para una mujer de 32 años, con bachillerato, que no tiene prohibido fumar en el trabajo, no es hispana, no es negra?:

$$P\{\text{smoker} = 1 \mid \text{age} = 32, \text{female} = 1, \text{, colsome} = 1\} = F(\hat{\beta}_0 + \hat{\beta}_2 \cdot \text{age} + \hat{\beta}_3 \cdot \text{age}^2 + \hat{\beta}_6 + \hat{\beta}_{10})$$

= 0.293

La probabilidad de fumar para esta mujer blanca de 32 años, es de 29.32%

¿Cuál es la diferencia en la probabilidad de fumar entre esas mujeres? ¿y que interpretación tiene?

Es el efecto marginal de la edad para una mujer con esas características, y tiene un valor de 0.1%.

La diferencia en la **probabilidad** de fumar en estas mujeres (efecto marginal de la edad) es de 0.14%. Esto significa que el efecto marginal de la edad es de 0.14%.

Además, podemos preguntarnos si la probabilidad de fumar depende o no del nivel de educación, para ello podemos hacer un contraste de significatividad conjunta de las variables educativas. ¿La probabilidad de fumar aumenta o disminuye con el nivel educativo?

<F test: F=array([[116.226]]), p=4.732213059208521e-97, df_denom=9989, df_num=4>

F Test

$$H_0: \beta_4 = \beta_5 = \beta_6 = \beta_7 = 0$$

F: 116.226 (4.732213059208521e-97)

No se acepta la hipótesis nula, las variables educativas no son significativas conjuntamente. Por tanto la probabilidad de fumar es independiente del nivel educativo.

¿Cuál sería la probabilidad de que fumara un niño de 1 año, independientemente del resto de variables consideradas?

$$P\{y = 1 \mid \text{age} = 1\} = F(\hat{\beta}_0 + \hat{\beta}_2 \cdot \text{age} + \hat{\beta}_3 \cdot \text{age}^2) = 0.044$$

La probabilidad de fumar para un niño de 1 año es 4.45%, se puede ver como el modelo probit nos proporciona un resultado cuyo valor tiene sentido con la realidad y la teoría.

CASO 2.3.

Estudio de las relaciones entre los PIB de varios países entre sí. Identificación de países dominantes y países seguidores.

En este ejercicio se trata de estimar un **modelo multiecuacional** en el que se analizan las relaciones entre el **crecimiento del PIB** de tres países cualquiera extraídos de alguna base de datos (Ministerio de Economía, Banco de España, INE, etc.).

Una vez tengamos los datos (preferiblemente trimestrales) del PIB a precios constantes, tendremos que calcular la tasa de crecimiento anual para cada país y luego estimaremos un modelo VAR sin restricciones, Se trata de ver si algún país de los seleccionados actúa como líder y si el resto de países actúan como seguidores.

DATOS

Descripción de los datos, y fuente de recogida.

- Nombre: ÍNDICE ENCADENADO PIB REAL (millones de euros)
- Fuente: EUROSTAT
- Enlace: http://ec.europa.eu/eurostat/web/national-accounts/data/database

VALORES PERDIDOS

Los datos presentan valores perdidos, por tanto se ha requido un tratamiento de limpieza, esto reduce el rango del periodo de la muestra considerablemente, pasando de más de 100 observaciones a 83, el cual es número crítico para poder ser consistentes y sacar conclusiones sobre la muestra.

	germany	spain	uk
TIME			
1975–01–01	NaN	NaN	206 522.0
1975-04-01	NaN	NaN	202 980.6
1975–07–01	NaN	NaN	202 336.9
1975–10–01	NaN	NaN	204 823.2
1976-01-01	NaN	NaN	208 175.8

	germany	spain	uk
TIME			
1995–01–01	532282.4	175965	327356.5
1995-04-01	536668.6	177181	328610.3
1995–07–01	538410.2	178027	332094.4
1995–10–01	538152.2	179278	333514.5
1996-01-01	533089.0	180436	337196.3

	germany	spain	uk
TIME			
2014-07-01	684570.6	260281	493645.2
2014–10–01	688763.3	262050	497349.5
2015-01-01	691149.9	264331	499176.3
2015-04-01	694181.5	266942	502436.8
2015–07–01	696374.6	269039	504777.1

Número de Observaciones 83

ANÁLISIS UNIVARIANTE

Antes de comenzar con el ejercicio de estimación del modelo VAR, se requiere un análisis univariante para comprobar las caracterísitcas de las series.

Número de diferenciaciones para I(0)

Estadístico	Alemania	España	Inglaterra
KPSS	1	2	1
ADF	0	2	2
Phillips-Perron	1	2	1

TENDENCIA

- · No estacionarias.
- Tendencia determinista.
- Posible presencia de tendencia estocástica.
- Posible presencia de ruptura estructural.

Del gráfico podemos ver que las series **no son estacionarias**, puesto que tienen tendencia **determinista** y probablemente **ruptura estructural** en 2008 (comprobar con el test de chow).

La series sabemos que tienen tendencia dado que lo único que hemos hecho es una transformación monótona creciente al aplicar logaritmos. Si tiene tendencia determinista una transformación de este tipo también la tendrá.

Sin embargo faltaría comprobar si las series tienen tendencia estocástica, mediante el correlograma y el contraste de Dickey-Fuller.

El correlograma de la serie nos da pistas sobre la tendencia estocástica, vemos que hay un aplanamiento de la función de autocorrelación propio de las series con tendencia estocástica pero lo comprobamos con la prueba de raíz unitaria.

CONTRASTE DICKEY FULLER

SERIE: Log-PIB CON CONSTANTE Y TENDENCIA

$$H_0: y_{it} \sim I(1)$$

$$H_a: y_{it} \sim I(0)$$

Pais	ADF	pvalue
GERMANY	-3.177	0.089
SPAIN	-2.232	0.472
UK	-1.968	0.619

El contraste de Dickey Fuller no rechaza que las series sean integradas de orden 1 para un nivel de significación del 5%, por tanto las series son al menos I(1). El siguiente paso es diferencia las variables una vez y volver a aplicar el contraste.

PRIMERA DIFERENCIA DEL Log-PIB (Interanual, 1 periodo)

En este caso, las funciones de autocorrelación de las primeras diferencias muestran que para el caso de Alemania y Reino Unido, un correlograma parecido a una caminata aleatoria. Sin embargo para el caso de España, aun persiste ese lento aplanamiento de la FAC, que comentábamos antes, por lo que parece que para este último caso aún no es I(0).

CONTRASTE DICKEY FULLER

SERIE: dLog-PIB CON CONSTANTE

 $H_0: \Delta y_{it} \sim I(1)$

$$H_a: \Delta y_{it} \sim I(0)$$

Pais	ADF	pvalue
GERMANY	-4.117	0.001
SPAIN	-1.362	0.600
UK	-4.423	0.000

El contraste de raíz unitaria nos da evidencia en contra de la hipótesis nula para Alemania y Reino Unido, en cambio no se rechaza para España, por tanto las series en primeras diferencias son I(0) excepto para España que es al menos I(2).

Por tanto a modo de resumen, las series originales no son estacionarias, tienen tendencia determinista y estocástica. Existe sospecha de ruptura estructural que habrá que comprobar para un correcto análisis. Dado que las series para el caso de Alemania y Reino Unido tienen el mismo orden de integración cabe la posibilidad de que estén cointegradas y esto requiere un tratamiento distinto del propuesto en este ejercicio, por tanto dado que el caso de España no se puede dar cointegración continuamos sin hacer el análisis apropiado.

Dado que para estimar el modelo VAR es necesario que las series sean integradas, necesitamos hallar el orden de integración de la serie para España.

El correlograma de las segundas diferencias no muestra nada claro, pare que puede haber una disminución lenta de la función de autocorrelación que indica presencia de raíz unitaria. Lo comprobamos con el contraste de Dickey-Fuller.

CONTRASTE DICKEY FULLER

SERIE: PIB

$$H_0: \Delta^2 y_{it} \sim I(1)$$

$$H_a: \Delta^2 y_{it} \sim I(0)$$

Pais	ADF	pvalue
SPAIN	-2.215	0.026

Para segundas diferencias del PIB de España, la serie es I(0), lo que implica que la serie original para España es I(2).

RESÚMEN

$$Log(PIB_{it}) = y_{it}$$

Pais (i)	Orden de Integración	T. Determinista
GERMANY	$y_{1t} \sim I(1)$	SI
SPAIN	$y_{2t} \sim I(2)$	SI
UK	$y_{3t} \sim I(1)$	SI

APARTADO A

Antes de estimar un VAR, tenemos que **seleccionar el número óptimo de retardos del VAR**, para ello hay que ir a la opción **Modelo-Series temporales-Selección del orden del VAR**, donde le indicamos nuestro conjunto de variables endógenas, exógenas (si las hubiera) y el máximo número de retardos del VAR. Acortaremos el periodo de manera que **dejaremos las 4 últimas observaciones para predecir**.

	germany	spain	uk
TIME			
1997-01-01	0.019560	0.005951	0.021179
1997-04-01	0.019769	0.009848	0.029468
1997-07-01	0.017315	0.004996	0.031761
1997–10–01	0.018849	0.018385	0.039459
1998-01-01	0.032912	0.012328	0.037315

	germany	spain	uk	
TIME				
2013-07-01	0.005161	0.012231	0.021154	
2013-10-01	0.013296	0.028614	0.028065	
2014-01-01	0.023121	0.031464	0.027602	
2014-04-01	0.013519	0.033305	0.030974	
2014-07-01	0.011681	0.032141	0.028106	

Tras decirle a Gretl que estime hasta con **un máximo de 12 retardos**, se nos presentará una pantalla resumen de resultados donde se nos muestran para cada orden del VAR los estadísticos AIC, SBIC y Hannan-Quinn, seleccionaremos el número de retardos mayor que cero que **minimice esos criterios**.

VAR Order Selection

=====				
	aic	bic	fpe	hqic
0	-24.05	-23.95	3.574e-11	-24.01
1	-28.51	-28.09	4.155e-13	-28.35
2	-29.84	-29.10*	1.107e-13	-29.55
3	-29.79	-28.73	1.166e-13	-29.38
4	-29.88	-28.51	1.076e-13	-29.35
5	-30.63	-28.94	5.203e-14	-29.97
6	-30.68	-28.67	5.106e-14	-29.89
7	-30.97	-28.65	3.974e-14	-30.06
8	-31.05	-28.41	3.894e-14	-30.02
9	-31.85	-28.90	1.880e-14*	-30.70*
10	-31.93	-28.66	1.925e-14	-30.65
11	-31.76	-28.17	2.605e-14	-30.36
12	-32.09*	-28.18	2.233e-14	-30.56

^{*} Minimum

```
{'aic': 12, 'bic': 2, 'fpe': 9, 'hqic': 9}
```

Ahora que ya hemos seleccionado el número de retardos, volvemos a estimar el sistema en el menú Modelo-Series temporales-Autorregresión vectorial (VAR), donde tras indicar las opciones adecuadas, se nos mostrarán los resultados de la estimación de cada una de las ecuaciones del sistema, tres en nuestro caso. Analizaremos si existe algún **problema residual** en alguna ecuación mirando los test de autocorrelación **LM(1)**, **ARCH(1)** y **normalidad**, analizando además los **gráficos residuales**.

MODELO 1

```
VAR Estimation Results:
_____
Endogenous variables: germany, spain, uk
Deterministic variables: const
Sample size: 75
Log Likelihood: 814.46
Roots of the characteristic polynomial:
0.872 0.872 0.851 0.6855 0.6855 0.2392
Call:
VAR(y = endog, p = lags)
Estimation results for equation germany:
germany = germany.11 + spain.11 + uk.11 + germany.12 + spain.12 + uk.12 + const
          Estimate Std. Error t value Pr(>|t|)
germany.ll 0.774398 0.117946 6.566 8.52e-09 ***
spain.11
          0.422524
                   0.142251 2.970 0.004109 **
         uk.11
germany.12 -0.006473 0.115514 -0.056 0.955476
spain.12 -0.259471 0.146753 -1.768 0.081533 .
uk.12
         const.
         0.003083 0.001977 1.560 0.123414
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.008927 on 68 degrees of freedom
Multiple R-Squared: 0.8619, Adjusted R-squared: 0.8497
F-statistic: 70.73 on 6 and 68 DF, p-value: < 2.2e-16
Estimation results for equation spain:
_____
spain = germany.11 + spain.11 + uk.11 + germany.12 + spain.12 + uk.12 + const
           Estimate Std. Error t value Pr(>|t|)
germany.ll 0.1175199 0.0917925 1.280 0.20480
          0.9427998 0.1107083 8.516 2.53e-12 ***
spain.11
          0.4779410 0.1426612 3.350 0.00132 **
uk.11
germany.12 -0.2651894 0.0898996 -2.950 0.00436 **
spain.12 -0.1701440 0.1142120 -1.490 0.14092
         -0.4077363 0.1429832 -2.852 0.00575 **
uk.12
         0.0002402 0.0015383 0.156 0.87639
const
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.006947 on 68 degrees of freedom
Multiple R-Squared: 0.8877, Adjusted R-squared: 0.8778
F-statistic: 89.56 on 6 and 68 DF, p-value: < 2.2e-16
```

```
Estimation results for equation uk:
uk = germany.11 + spain.11 + uk.11 + germany.12 + spain.12 + uk.12 + const
          Estimate Std. Error t value Pr(>|t|)
germany.ll -0.110761 0.077405 -1.431 0.15703
spain.ll -0.058732 0.093356 -0.629 0.53138
uk.l1
          1.634689
                   0.120301 13.588 < 2e-16 ***
germany.12 0.010741 0.075809
                             0.142 0.88775
spain.12 0.127775 0.096311 1.327 0.18905
uk.12
         const
          0.003858
                   0.001297
                              2.974 0.00406 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.005858 on 68 degrees of freedom
Multiple R-Squared: 0.9218, Adjusted R-squared: 0.9149
F-statistic: 133.7 on 6 and 68 DF, p-value: < 2.2e-16
Covariance matrix of residuals:
         germany
                  spain
germany 7.969e-05 5.844e-06 1.594e-05
spain 5.844e-06 4.827e-05 1.668e-05
       1.594e-05 1.668e-05 3.432e-05
uk
Correlation matrix of residuals:
               spain
       germany
germany 1.00000 0.09424 0.3048
spain 0.09424 1.00000 0.4099
       0.30481 0.40987 1.0000
uk
```

CONTRASTES

Homocedasticidad

 H_0 : Homocedasticidad

No hay evidencia para rechazar la hipótesis nula de homocedasticidad.

```
ARCH (multivariate)
data: Residuals of VAR object x
```

```
Chi-squared = 209.22, df = 180, p-value = 0.06702
```

Autocorrelación

 H_0 : No Autocorrelación

Hay evidencia en contra de la hipótesis nula, se rechaza la hipótesis de no autocorrelación.

```
Breusch-Godfrey LM test

data: Residuals of VAR object x

Chi-squared = 86.03, df = 45, p-value = 0.000223
```

Normalidad

 H_0 : La muestra proviene de una distribución normal

Según el JB, no se puede rechazar la hipótesis nula.

```
$JB

JB-Test (multivariate)

data: Residuals of VAR object x

Chi-squared = 7.9662, df = 6, p-value = 0.2406

$Skewness

Skewness only (multivariate)

data: Residuals of VAR object x

Chi-squared = 2.6354, df = 3, p-value = 0.4513

$Kurtosis

Kurtosis only (multivariate)

data: Residuals of VAR object x

Chi-squared = 5.3307, df = 3, p-value = 0.1491
```

Estabilidad

 H_0 : Estabilidad

Dado que la serie se mantiene entre las bandas no se puede rechazar la hipótesis nula de estabilidad de los parámetros.

Es posible que encontremos algún problema, por ejemplo, es posible que sea necesario incorporar una **variable ficticia** que dé cuenta de la **crisis del precio del petróleo** ocurrida en los años 70; a esta nueva variable la podemos llamar **D74** y tomará valor 1 durante los cuatro trimestres de 1974 y valor 0 el resto.

MODELO 2

Es el modelo 1 con D08 como variable exógena.

Dado que la crisis del petróleo no entra en el período, y el objetivo es capturar un comportamiento atípico, vamos a introducir una variable ficticia que recoja el efecto de la crisis actual, que llamaremos D08 que tomará valor 1 entre 2008–2011.

ESTIMAR NÚMERO DE RETARDOS

Incorporamos esta nueva variable explicativa a nuestro modelo, le indicamos el periodo de estimación, el número de retardos y para ver si resulta conjuntamente significativa o no debemos ir al menú de contraste de hipótesis del VAR y seleccionar la opción que nos hace un contraste sobre la exogeneidad de las variables. Tras indicarle que queremos analizar la exogeneidad de D74 nos calculará un contraste LR de la razón de verosimilitudes, si el valor del p-valor de este contraste es menor que 0,05, aceptamos que mantenemos dicha variable al nivel de significación del 5%. Comprobar cómo cambian los resultados de las tres ecuaciones estimadas del VAR con esta nueva variable y decidir con base en esos resultados si la mantenemos o no.

 H_0 : Modelo 1 (Restringido)

 H_a : Modelo 2 (Con Ficticia)

El contraste LR nos da evidencia en contra de la hipótesis alternativa (variable ficticia no significativa), por tanto, rechazamos el modelo 1 sin ficticia y trabajaremos en adelante con el modelo 2.

RESÚMEN MODELO 2

Resulta interesante que el modelo estimado tiene problemas de normalidad, y para el caso de Alemania, tiene sólo dos variable significativas.

Los contrastes de causalidad en sentido de granger:

Alemania:

• España e Inglaterra causa en sentido de granger.

España:

• Inglaterra y Alemania causan en sentido granger.

Inglaterra:

• España y Alemania no causan en sentido de granger.

```
Contraste sobre el VAR original:
```

```
Hipótesis nula: los parámetros de regresión son cero para las variables
    d08
    Contraste LR (razón de verosimilitudes): Chi-cuadrado(3) = 41,2448, con valor p = 5,80
231e-09

Sistema VAR, orden del retardo 3
estimaciones de MCO, observaciones 1997:4-2014:3 (T = 68)
Log-verosimilitud = 753,17963
Determinante de la matriz de covarianzas = 4,807696e-14
AIC = -21,2700
BIC = -20,2908
HQC = -20,8820
Contraste Portmanteau: LB(17) = 203,195, gl = 126 [0,0000]
```

Ecuación 1: germany

	Coeficiente	Desv. Típica	Estadístico t	Valor p
const	0,00327783	0,00235137	1,394	0,1686
germany 1	0,840602	0,134378	6,256	5,15e-08 ***
germany_1 germany_2	-0,0486518	0,176294	-0,2760	0,7836
<pre>germany_3 spain_1</pre>	-0,00771409	0,137423	-0,05613	0,9554
	0,596470	0,195455	3,052	0,0034 ***
spain_2	-0,635130	0,264789	-2,399	0,0197 **
spain 3	0,243166	0,184474	1,318	0,1926
uk_1	0,672601	0,184474	3,034	0,0036 ***
uk_2	-0,748377	0,382582	-1,956	0,0553 *
uk_3	0,0636203	0,250850	0,2536	0,8007

```
      Media de la vble. dep.
      0,012848
      D.T. de la vble. dep.
      0,024031

      Suma de cuad. residuos
      0,004734
      D.T. de la regresión
      0,009035

      R-cuadrado
      0,877638
      R-cuadrado corregido
      0,858651

      F(9, 58)
      46,22275
      Valor p (de F
      3,28e-23

      rho
      -0,023140
      Durbin-Watson
      2,019450
```

Contrastes F de restricciones cero:

```
Todos los retardos de germany F(3, 58) = 32,832 [0,0000]
Todos los retardos de spain F(3, 58) = 3,2071 [0,0296]
Todos los retardos de uk F(3, 58) = 4,1124 [0,0103]
Todas las variables, retardo 3 F(3, 58) = 0,71711 [0,5458]
```

Ecuación 2: spain

	Coeficiente	Desv. Típica	Estadístico t	Valor p
const	0,00121224	0,00153768	0,7884	0,4337
germany_1	-0,0196898	0,0878763	-0,2241	0,8235
germany_2	-0,0332798	0,115287	-0,2887	0,7739

```
-1,648
 germany_3 -0,148135
                     0,0898674
                                              0,1047
                      0,127817
                                              5,99e-09 ***
 spain_1 0,871071
                                   6,815
 spain_2 -0,120276 0,173159
                                  -0,6946
                                              0,4901
 spain 3
          -0,000566028 0,120637
                                  -0,004692
                                              0,9963
                                   2,603
          0,377382 0,144966
 uk_1
                                              0,0117 **
 uk 2
          -0,0152370
                      0,250189
                                   -0,06090
                                              0,9516
 uk_3
          -0,299781
                      0,164043
                                   -1,827
                                              0,0728 *
Media de la vble. dep. -0.001423 D.T. de la vble. dep. 0.020576
Suma de cuad. residuos 0,002025 D.T. de la regresión 0,005908
R-cuadrado
                   0,928627 R-cuadrado corregido 0,917552
                   83,84777
                            Valor p (de F
F(9, 58)
                                                6,45e-30
rho
                   0,099362 Durbin-Watson
                                                1,707778
```

Contrastes F de restricciones cero:

```
Todos los retardos de germany F(3, 58) = 4,0820 [0,0107]

Todos los retardos de spain F(3, 58) = 44,642 [0,0000]

Todos los retardos de uk F(3, 58) = 6,6470 [0,0006]

Todas las variables, retardo 3 F(3, 58) = 3,5139 [0,0206]
```

Ecuación 3: uk

	Coeficien	te Desv.	Típica	Estadístico t	Valor p	
const	0,004141	63 0,001	L52504	2,716	0,0087	***
germany_1	-0,109889	0,087	71540	-1,261	0,2124	
germany_2	-0,016192	6 0,114	1340	-0,1416	0,8879	
germany_3	0,041317	1 0,089	91287	0,4636	0,6447	
spain_1	0,138002	0,126	5767	1,089	0,2808	
spain_2	-0,154176	0,171	1735	-0 , 8978	0,3730	
spain_3	0,139691	0,119	9645	1,168	0,2478	
uk_1	1,61335	0,143	3775	11,22	3,65e-16	***
uk_2	-0,756154	0,248	3133	-3,047	0,0035	***
uk_3	0,002527	80 0,162	2695	0,01554	0,9877	
Media de la v	ble. dep.	0,020217	D.T. de	la vble. dep.	0,020722	
Suma de cuad.	residuos	0,001992	D.T. de	la regresión	0,005860	
R-cuadrado		0,930777	R-cuadr	ado corregido	0,920035	
F(9, 58)		86,65188	Valor p	(de F	2,68e-30	
rho		-0,030340	Durbin-	Watson	1,999696	

Contrastes F de restricciones cero:

```
Todos los retardos de germany F(3, 58) = 1,2323 [0,3062]

Todos los retardos de spain F(3, 58) = 1,0029 [0,3981]

Todos los retardos de uk F(3, 58) = 105,47 [0,0000]

Todas las variables, retardo 3 F(3, 58) = 0,68411 [0,5654]
```

Para el sistema en conjunto:

```
Hipótesis nula: el retardo más largo es 2
Hipótesis alternativa: el retardo más largo es 3
Contraste de razón de verosimilitudes: Chi-cuadrado(9) = 19,2769 [0,0229]
Comparación de criterios de información:
Orden de retardos 3: AIC = -21,2700, BIC = -20,2908, HQC = -20,8820
Orden de retardos 2: AIC = -21,2512, BIC = -20,5658, HQC = -20,9796
```

CONTRASTES

RESIDUOS MODELO 2

Homocedasticidad

H_0 : Homocedasticidad

No hay evidencia para rechazar la hipótesis nula de homocedasticidad.

```
ARCH (multivariate)

data: Residuals of VAR object x

Chi-squared = 176.72, df = 180, p-value = 0.5551
```

Autocorreleación

H₀: No Autocorrelación

Hay evidencia en contra de la hipótesis nula, se rechaza la hipótesis de no autocorrelación.

```
Breusch-Godfrey LM test

data: Residuals of VAR object x

Chi-squared = 78.679, df = 45, p-value = 0.001402
```

Normalidad

 H_0 : La muestra proviene de una distribución normal

Según el JB, no se puede rechazar la hipótesis nula.

```
$JB

JB-Test (multivariate)

data: Residuals of VAR object m2

Chi-squared = 7.0553, df = 6, p-value = 0.3158
```

```
$Skewness
```

```
Skewness only (multivariate)

data: Residuals of VAR object m2

Chi-squared = 2.0722, df = 3, p-value = 0.5576

$Kurtosis

Kurtosis only (multivariate)

data: Residuals of VAR object m2

Chi-squared = 4.9831, df = 3, p-value = 0.173
```

Estabilidad

H_0 : Estabilidad

Dado que la serie se mantiene entre las bandas no se puede rechazar la hipótesis nula de estabilidad de los parámetros.

RESÚMEN

	modelo 1	modelo 2
ARCH	✓	✓
BP	×	×
JB	✓	✓
OLS-CUSUM	✓	✓
${ar R}_{Ale}^2$	0.8497	0,858651
$ar{R}_{Esp}^2$	0.8778	0,917552
$ar{R}_{Ing}^2$	0.9149	0,920035

APARTADO B

Una vez determinado el modelo más adecuado, realizaremos **predicciones dinámicas** para cada una de las variables endógenas. Para ello, tras indicarle que deje los últimos 20 valores para representar antes del periodo de predicción. Gretl nos ofrecerá una tabla con los valores reales y predichos, los errores y algunas medidas para evaluar y comparar las predicciones. La mejor **medida para comparar** suele ser el **"porcentaje de error absoluto medio" (EAPM)**, con el que podemos comparar el error medio que comete cada una de las tres ecuaciones.

PORCENTAJE DE ERROR ABSOLUTO MEDIO

País	EAPM
Alemania	36,4
España	24,78
Reino Unido	32,18

Para intervalos de confianza 95%, t(58, .0,025) = 2,002

	germany	predicción	Desv. Típica	Intervalo de confianza 95%
2009:4	-0,029973	-0,030079		
2010:1	0,023375	0,001228		
2010:2	0,042704	0,049795		
2010:3	0,044752	0,051770		
2010:4	0,043569	0,043293		
2011:1	0,054253	0,039076		
2011:2	0,035935	0,042612		
2011:3	0,032098	0,024112		
2011:4	0,023977	0,028345		
2012:1	0,009383	0,016342		
2012:2	0,008216	0,004336		
2012:3	0,005790	0,003488		
2012:4	0,001180	0,005925		
2013:1	-0,005392	-0,000658		
2013:2	0,003067	0,003721		
2013:3	0,005161	0,012866		
2013:4	0,013296	0,010016		
2014:1	0,023121	0,028767		
2014:2	0,013519	0,024502		
2014:3	0,011681	0,022216		
2014:4	0,014551	0,015410	0,008344	-0,001293 - 0,032112
2015:1	0,010885	0,017560	0,013030	-0,008522 - 0,043643
2015:2	0,015828	0,021189	0,016334	-0,011508 - 0,053885
2015:3	0,017096	0,024705	0,018710	-0,012747 - 0,062156

Estadísticos de evaluación de la predicción

Error medio	-0,0051258
Error cuadrático medio	3,2981e-05
Raíz del Error cuadrático medio	0,0057429
Error absoluto medio	0,0051258
Porcentaje de error medio	-36,4
Porcentaje de error absoluto medio	36,4
U de Theil	1,5741
Proporción de sesgo, UM	0,79665
Proporción de regresión, UR	0,11631
Proporción de perturbación, UD	0,087041

Para intervalos de confianza 95%, t(58, .0,025) = 2,002

	spain	predicción	Desv. Típica	Intervalo de confianza 95%
2009:4	-0,016921	-0,011787		
2010:1	0,022809	0,017665		
2010:2	0,044701	0,046842		
2010:3	0,043761	0,050298		
2010:4	0,034866	0,033493		
2011:1	0,008750	0,018900		
2011:2	-0,009596	-0,002795		
2011:3	-0,017054	-0,016471		
2011:4	-0,022960	-0,021514		
2012:1	-0,020190	-0,021201		
2012:2	-0,016699	-0,019875		
2012:3	-0,015057	-0,017499		
2012:4	-0,014117	-0,011847		
2013:1	-0,005319	-0,010143		
2013:2	0,003484	-0,000865		
2013:3	0,012231	0,009943		
2013:4	0,028614	0,015429		
2014:1	0,031464	0,027470		
2014:2	0,033305	0,027156		
2014:3	0,032141	0,026273		
2014:4	0,024368	0,022941	0,005457	0,012018 - 0,033864
2015:1	0,021968	0,015953	0,007980	-0,000021 - 0,031928
2015:2	0,019515	0,012853	0,010649	-0,008463 - 0,034169
2015:3	0,016182	0,011045	0,012847	-0,014671 - 0,036761

Estadísticos de evaluación de la predicción

Error medio	0,0048102
Error cuadrático medio	2,7247e-05
Raíz del Error cuadrático medio	0,0052199
Error absoluto medio	0,0048102
Porcentaje de error medio	24,78
Porcentaje de error absoluto medio	24,78
U de Theil	2,0804
Proporción de sesgo, UM	0,84921
Proporción de regresión, UR	0,1071
Proporción de perturbación, UD	0,043691

Para intervalos de confianza 95%, t(58, .0,025) = 2,002

	uk	predicción	Desv. Típica	Intervalo de confianza 95%
2009:4	-0,012798	-0,015855		
2010:1	0,006710	0,009863		
2010:2	0,016763	0,019470		
2010:3	0,020095	0,020060		
2010:4	0,017516	0,021593		
2011:1	0,021272	0,017809		
2011:2	0,016668	0,022394		
2011:3	0,019808	0,014162		
2011:4	0,020382	0,022031		
2012:1	0,015142	0,018539		
2012:2	0,009963	0,011487		

2012:3	0,011937	0,006354		
2012:4	0,009864	0,013200		
2013:1	0,014227	0,009211		
2013:2	0,021934	0,019818		
2013:3	0,021154	0,027924		
2013:4	0,028065	0,021289		
2014:1	0,027602	0,034612		
2014:2	0,030974	0,026601		
2014:3	0,028106	0,035745		
2014:4	0,029223	0,029283	0,005412	0,018451 - 0,040116
2015:1	0,026784	0,031751	0,010371	0,010990 - 0,052512
2015:2	0,023991	0,034753	0,014263	0,006203 - 0,063304
2015:3	0,022300	0,036819	0,016873	0,003045 - 0,070593

Estadísticos de evaluación de la predicción

Error medio	-0,0075772
Error cuadrático medio	8,7826e-05
Raíz del Error cuadrático medio	0,0093716
Error absoluto medio	0,0075772
Porcentaje de error medio	-32,18
Porcentaje de error absoluto medio	32,18
U de Theil	4,9399
Proporción de sesgo, UM	0,65372
Proporción de regresión, UR	0,34618
Proporción de perturbación, UD	0,00010315

APARTADO C

Por último, realizaremos un estudio **"impulso-respuesta"** con el VAR estimado, esto es, cómo responden las variables endógenas ante un shock en alguna de ellas; para ello se **descompone la varianza de los errores** de predicción de las variables a lo largo de diferentes periodos. Una vez que tenemos modelo VAR con las variables que hayamos seleccionado, iremos a la opción **Gráficos-Respuestas al impulso (todas)** y nos dibujará los efectos impulso-respuesta para un shock de cada variable sobre las demás.

Algo a tener en cuenta es que cuando se calculan los impulso-respuesta ortogonalizados se "normalizan" respecto de la primera variable que seleccionemos, la cual debe ser la que pensemos ejerce mayor influencia sobre las demás, es decir, tenemos que ordenarlas de mayor a menor exogeneidad según creamos. ¿Qué país produce mayores respuestas de los demás ante un shock inicial?

IMPULSO RESPUESTA

ORDEN ELEGIDO

- 1. Alemania
- 2. España
- 3. Inglaterra

En el gráfico se puede ver, que la respuesta del PIB de España en Alemania es mayor que la de Alemania en España.

El efecto de Inglaterra en Alemania es similar al de Alemania sobre Inglaterra pero este último menos intenso.

El efecto de España en Inglaterra es menor que la inversa.

CONCLUSIÓN

Para el caso elegido no parece haber un país que produzca mayores respuestas en los demás.

- 1. https://es.wikipedia.org/wiki/John_Maynard_Keynes ↩
- 2. https://es.wikipedia.org/wiki/Funci%C3%B3n_de_consumo ←