Branch: CSE & IT

Database Management System

Transaction & Concurrency Control

DPP 03

[NAT]

1. Consider the following schedule

S: $w_1(X)$; $w_1(Y)$; $r_2(X)$; $w_2(Y)$; $r_3(X)$; $w_3(Y)$

How many schedules are conflict equivalent to given schedule (S) ?

[NAT]

2. Consider the following schedule

 $S = r_1(P); r_3(S); w_1(Q); r_2(Q) r_4(Q), w_2(R)$

 $r_5(R)$; $w_4(T)$; $r_5(T)$; $w_5(Q)$

How many serial schedules conflict equal to schedules(S)? _____.

[NAT]

3. Consider the following schedule

 $S = \ r_1(P); \, r_3(S); \, w_1(Q); \, r_2(Q) \ r_4(Q), \, w_2(R);$

 $r_5(R); w_4(T); r_5(T); w_5(Q)$

How many serial schedules view equal to schedule(S)_____?

[MCQ]

4. Consider the following transactions

 $T_1{:}\; r_1(P);\, w_1(P);\, r_1(Q);\, w_1(Q)$

 T_2 : $r_2(P)$; $r_2(Q)$

 T_3 : $w_3(P)$; $w_3(Q)$

How many concurrent schedules between T_1 , T_2 and T_3 transactions _____?

- (a) 400
- (b) 410
- (c) 420
- (d) None

[NAT]

- **5.** How many views equivalent serial schedules are possible for the given schedules below _____
 - S: $w_1(P) r_2(P) w_3(P) r_4(P) w_5(P) r_6(P)$

[MCQ]

- **6.** The goal of concurrency control on database system is to
 - (a) Only allow concurrent execution of transaction that correspond to serial execution of some of the transactions.

Batch: Hinglish

- (b) Allow only transactions that don't access common relationship to run concurrently.
- (c) Execute transactions serially.
- (d) None of the above.

[MCQ]

- **7.** What problem can occur when a DBMS executes multiple transactions concurrently?
 - (a) Lost update problem.
 - (b) Dirty read problem.
 - (c) Incorrect summary problem.
 - (d) All of the above.

[MCQ]

- **8.** Consider the following statements
 - S₁: Every view serializable schedule is conflict serializable.
 - S₂: Some view serializable schedules are conflict serializable.
 - (a) Only S_1 is true.
 - (b) Only S₂ is true
 - (c) Both $S_1 & S_2$ are true
 - (s) Neither S_1 nor S_2 is true

[MCQ]

9. Consider the following schedule involving two transactions

S₁: $r_1(A)$; $r_2(A)$; $w_2(A)$; $r_3(A)$; $w_1(A)$; $w_2(B)$; $r_3(B)$, c_2 , $w_3(A)$; c_1 , c_3

S₂: $r_2(A)$; $r_1(A)$; $w_1(A)$; $w_2(A)$; $w_2(A)$; $r_3(A)$; $w_3(A)$, $r_2(B)$; c_1 , c_3 ; c_2

Which one of the following statements is TRUE?

- (a) S_1 is recoverable and S_2 is not recoverable.
- (b) S_1 is not recoverable and S_2 is recoverable.
- (c) Both S_1 and S_2 are recoverable.
- (d) Both S_1 and S_2 are not recoverable.

[MCQ]

10. Consider the following schedule:

S:
$$r_1(A)$$
; $r_2(C)$; $w_1(A)$; $r_3(A)$ $r_2(B)$; $w_2(B)$, $w_3(A)$; $r_3(B)$; $r_2(A)$

for the schedule S given above two orderings of commits (c_i) operations are specified.

I.
$$c_1$$
; c_3 ; c_2

II.
$$c_1$$
; c_2 ; c_3

Which of the above ordering ensures recoverability of schedule S?

- (a) Only I
- (b) Both I and II
- (c) Only II
- (d) None of these

[MCQ]

11. Consider the following partial schedule 'S' involving two transaction T_1 and T_2

Time	T_1	T_2
t_0	read(P);	
t_1	write(P);	
t_2		read(R);
t ₃		write(R);
t ₄		read(Q);
t ₅		write(Q);
t ₆		read(P);
t ₇		commit;
t ₈	read(Q);	

Suppose that the transaction T_1 fails immediately after time instance 8. Which one of the following is correct?

 S_1 : Schedule S is non recoverable and cannot ensure transaction atomicity

 S_2 : Only T_2 should be aborted and then restarted to ensure truncation atomicity

- (a) Only S₁ is true
- (b) Only S₂ is true
- (c) Both S_1 and S_2 are true
- (d) Both S_1 and S_2 are false

Answer Key

(8) 1.

2. **(10)**

3. **(10)**

4. **(c)**

5. 6. (2)

(a)

7. (d) 8. (b) 9. (a) 10. (d)

11. (a)

Hints & Solutions

1. (8)

Given schedule

S: $w_1(X)$; $w_1(Y)$; $r_2(X)$; $w_2(Y)$; $r_3(X)$; $w_3(Y)$

Conflict equivalent schedules to above schedules.

Transaction T₁ operations must be in same order

There are 2 ways $r_2(X)$ placed such that it must be before $w_2(Y)$ and conflicting pairs should be in precedence.

Hence 2 possibilities to place $r_2(x)$ to avoid conflict equivalence in above schedule.

Total 8 conflict equal schedules to the given schedule.

2. (10)

Constructing the precedence graph

Topological orders

5 ways

Topological orders

Total 10 topological orders.

As we know that number of serial schedule conflict 'S' is equal to number of topological orders.

3. (10)

Final write Q: T₁ T₅

Initial Reads

Data item	Initial reads	Writes
P	T_1	-
Q	-	$T_1 T_5$
R	-	T_2
S	T_3	-
T	-	T_4

Updated reads

$$\begin{array}{c} w_1(Q) \to \ r_2(Q) \\ \\ r_4(Q) \end{array}$$

T₅ also writes Q

$$w_2(R) \rightarrow r_5(Q)$$

$$w_4(T) \rightarrow r_5(T)$$

$$T_{1} \quad T_{5}$$

$$T_{1} \rightarrow T2$$

$$T_{1} \rightarrow T4$$

$$T_{2} \rightarrow T5$$

$$T_{4} \rightarrow T_{5}$$

view equal serial orders

T₄ can be placed in two ways

: There are 10 serial orders.

4. (c)

$$\frac{8!}{4! * 2! * 2!} = 420$$

5.

- Can exchange
- without violation view equal conditions

View equal serial schedules are

 T_1 T_2 T_3 T_4 T_5 T_6

 T_3 T_4 T_1 T_2 T_5 T_6

6. (a)

only allow concurrent execution of transaction that correspond to serial execution of some of the transactions.

7. (d)

All the problems mentioned in option are potential when a DBMS executes multiple transactions concurrently.

8. (b)

Every conflict serializable schedules are view serializable but vice versa is not true. However, some view serializable schedules are conflict serializable.

9. (a)

 S_1 :

T_1	T_2	T ₃
$r_1(A)$		
	$r_2(A)$	
	$w_2(A)$	
		$r_3(A)$
$w_1(A)$		
	$w_2(B)$	
		r ₃ (B)
	c_2	
		$w_3(A)$
c_1		
		c_3

Here the transaction reads the changes of uncommitted transaction but commits itself. So schedule is recoverable.

 S_2 :

$\mathbf{T_1}$	T_2	T_3
	$r_2(A)$	
$r_1(A)$		
$w_1(A)$		
	$w_2(A)$	
	w ₂ (B)	
		r ₃ (A)
		w ₃ (A)
		r ₃ (B)
c_1		
		C 3
•	c_2	

Here T_3 reads the changes of T_2 but T_3 commits before T_2 . So it is not recoverable schedule. Hence, correct option is (a).

10. (d)

T_1	T_2	T_3
$r_1(A)$		
	$r_2(c)$	
$w_1(A)$		
		$r_3(A)$
	r ₂ (B)	
	$w_2(B)$	
		$w_3(A)$
		r ₃ (B)
	$r_2(A)$	
c_1		
		C 3
	c_2	

 T_3 reads the changes of T_2 corresponding to B and commits itself before T_2 . So this schedule is not recoverable

T_1	T_2	T_3
$r_1(A)$		
	r ₂ (c)	
$w_1(A)$		
		$r_3(A)$
	r ₂ (B)	
	$w_2(B)$	
		w ₃ (A)
		r ₃ (B)
	$r_2(A)$	
c_1		
	c_2	
		C ₃

 T_2 reads the changes of T_3 Corresponding to A and commits itself before committing of T_3 . So this schedule is also not recoverable. Hence answer is option (d).

11. (a)

 T_1 gets faild after t_8 , as T_1 is uncommitted at t_1 time and write (P) and T_2 reads P at t_6 and gets committed. Hence uncommitted transaction changes are got read

by other transaction and then gets committed itself hence it is non recoverable.

T₁ gets failed hence not atomic. Hence correct option is a

Any issue with DPP, please report by clicking here: https://forms.gle/t2SzQVvQcs638c4r5
For more questions, kindly visit the library section: Link for web: https://smart.link/sdfez8ejd80if

PW Mobile APP: https://smart.link/7wwosivoicgd4