E2.8	(Maths	3)	2012
1104.0	uviatus	J	4014

B.ENG. AND M.ENG. EXAMINATIONS 2012

PART II Paper 3: MATHEMATICS (ELECTRICAL AND INFORMATION SYSTEMS ENGINEERING)

Date Thursday 7th June 2012 2.00 - 4.00 pm

DO NOT OPEN THIS PAPER UNTIL THE INVIGILATOR TELLS YOU TO.

Answer FOUR questions.

A mathematical formulae sheet is provided.

[Before starting, please make sure that the paper is complete; there should be 6 pages, with a total of SIX questions. Ask the invigilator for a replacement if your copy is faulty.]

1. (i) Consider the function

$$f(x, y) = x^3 - 6x^2 + 7x - y^2 + 2yx - 3$$
.

Find the gradient vector
$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$
.

Use this to identify the direction of the constant contour at (0, 0). Identify the locations of the stationary points of f(x, y). Classify each stationary point as a maximum, minimum or saddle point.

(ii) Sketch the function $g(x, y) = x^6 + y^6$.

Write down the location of its stationary point.

Explain, in words, why classifying this stationary point is difficult and explain what would be required in order to provide a classification.

2. (i) Consider the function u below:

$$u = x^3 / 6 + 4x^2 - xy^2 / 2 - 4y^2.$$

Show that it satisfies Laplace's equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$$

Use the Cauchy-Riemann equations to construct a conjugate function v.

Construct from u and v an analytic function f(z).

Show that f(z) can be put in the form

$$f(z) = az^3 + bz^2 + c$$

and find a and b (c is an arbitrary constant).

(ii) Consider the map $w = z^2$ (which is conformal everywhere except at z = 0). The straight line u = 1 (for all v) in the w-plane meets the straight line v = 0 (for all u) at right angles.

Explain what the angle of intersection of these curves is when they are mapped to the z-plane.

PLEASE TURN OVER

3. (i) Find the residue of

$$F(z) = \frac{1}{(1+z^2)}$$
 at $z = i$.

(ii) Consider the function

$$\frac{1}{(z^3-8)(z-1)^2} \ .$$

State the location of all of its poles in the z-plane and state if they are single or multiple poles.

Evaluate the contour integral

$$\oint \frac{1}{(z^3 - 8)(z - 1)^2} dz ,$$

when the contour is a counter-clockwise circle of radius 1 with centre at $z = \frac{3}{2}$.

Sketch the contour and the location of the poles.

Evaluate the integral when the contour is a counter-clockwise circle of radius 1 with centre z=100.

Hint: The residue of a complex function f(z) at a pole z=a of multiplicity m is given by the expression

$$\lim_{z \to a} \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} \{ (z-a)^m f(z) \} .$$

3

4. (i) Defining the convolution of f(t) with g(t) as $\int_{-\infty}^{\infty} f(t') g(t-t') dt'$, find the convolution of $f(t) = \sum_{n=-\infty}^{\infty} \delta(t-t_n)$ (the Shannon sampling function) with a function g(t).

Show that the Fourier transform of this convolution is $\sum_{n=-\infty}^{\infty} e^{-i\omega t_n} \, \overline{g}(\omega).$

(ii) It is the case that:

$$\int_{-\infty}^{\infty} \frac{e^{ip\omega}}{\omega} d\omega = \begin{cases} +i\pi & p > 0 ; \\ -i\pi & p < 0 . \end{cases}$$

Consider a counter-clockwise contour integral in the z-plane $\oint_C \frac{e^{ipz}}{z} dz$ where

p>0 and where C is a semi-circular contour in the upper half-plane of radius R, with a suitable semi-circular indentation into the upper half-plane of radius r around z=0. Use Jordan's Lemma to show that in the limits $R\to\infty$ and $r\to0$

$$\int_{-\infty}^{\infty} \, \frac{e^{ip\omega}}{\omega} \, d\omega \; = \; + i \, \pi \quad \text{where} \; \; w, \, p \; \; \text{are real and} \; \; p > 0.$$

Explain briefly why a different contour must be used for p < 0.

Use the above integral to show that the inverse Fourier transform of $F(\omega) = \frac{\cos \omega}{\omega}$ is:

$$F(t) = \begin{cases} +i/2 & t > 1; \\ 0 & -1 \le t \le 1; \\ -i/2 & t < -1. \end{cases}$$

It might be useful to consider the three cases when t > 1, $-1 \le t \le 1$ and t < -1 separately.

- 5. (i) Show that the Fourier transform of f(t+a) is $e^{ia\omega} \overline{f}(\omega)$ and that the Fourier transform of $e^{\alpha t} f(t)$ is $\overline{f}(\omega + i\alpha)$ (where α can be real, complex or imaginary).
 - (ii) Using Plancherel's integral relation between f(t) and g(t):

$$\int_{-\infty}^{\infty} f(t)g^*(t)dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \overline{f}(\omega)\overline{g}(\omega)d\omega$$

and using Fourier transforms, show that

$$\int_{-\infty}^{\infty} e^{-|t|} \cos(\omega_0 t + \phi) dt = \frac{e^{i\phi} + e^{-i\phi}}{1 + \omega_0^2} , \qquad (1)$$

where ω_0 and ϕ are real constants. You may need to use the definition

$$\delta(\Omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{\pm i\Omega\tau} d\tau .$$

Find the right hand side of equation (1) when $\phi = -\pi/2$.

Why, when $\phi = -\pi/2$, is this result obvious from inspection of the integrand of the left hand side of equation (1)?

6. Show that the Laplace transform of $\frac{d^3x}{dt^3}$ is

$$s^3 \overline{x}(s) - s^2 x(0) - s \frac{dx(0)}{dt} - \frac{d^2 x(0)}{dt^2}$$
,

where you may use the result that the Laplace transform of $\frac{d^2x}{dt^2}$ is

$$s^2 \overline{x}(s) - sx(0) - \frac{dx(0)}{dt}$$
.

Recall the notation that $\overline{x}(s)$ is the Laplace transform of x(t) and

$$x(0) = x(t=0), \quad \frac{dx(0)}{dt} = \frac{dx(t=0)}{dt}, \quad \frac{d^2x(0)}{dt^2} = \frac{d^2x(t=0)}{dt^2}.$$

Prove that the Laplace transform of t^2 is $2/s^3$ (for Re(s) > 0).

Find the Laplace transform of $e^{-2t} t^2$.

Consider the third order differential equation

$$\frac{d^3x}{dt^3} + 6\frac{d^2x}{dt^2} + 12\frac{dx}{dt} + 8x = f(t) ,$$

with
$$x = \frac{dx}{dt} = \frac{d^2x}{dt^2} = 0$$
 at $t = 0$.

Show that

$$x(t) = \frac{1}{2} \int_0^t e^{-2v} v^2 f(t-v) dv$$
.

	EXAMINATION QUESTIONS/SOLUTIONS 2011-2012	Course
		(3) EEIT
Question .	TOPIC Real Valued Functions	Marks & seen/unseen
Parts		
	- $\frac{2}{3}$ = $\frac{3}{3}$ $\frac{2}{3}$ - $12x + 7 + 2y$; $\frac{2}{3}$ = $-2y + 2x$. - At (0,0) $\nabla_f = (7,0)$. ∇_f is perpendicular to the constant contours. - ∇_f is parallel to x-axis so constant contour is parallel to the y-axis at (0,0).	2 4
	-Stationary points have $\nabla_1 = 0$ it jollows that $x = y$ and $x = 3x^2 - 10x + 7 = (3x - 7)(x - 1) = 0$.	27/4
	-Therefore (7/3,7/3) and (1,1) are stabionary pts.	2
	- $f_{xx} = 6x - 12$; $f_{xy} = 2$; $f_{yy} = -2$ - $at(1,1)$ $f_{xx} = -6$ <0 and $f_{xy} - f_{xx} f_{yy} = 4 - 12 = -8$ <0 => (1) 15 a Maximum. - $at(7/3,17/3)$ $f_{xy} - f_{xx} f_{yy} = 4 - 2.72 = 870$ => saddle pomt.	2 4
b) _	stationary pt. This is hard to classify as all of its second differentials are zero at the origin, so the classification tests	
_	for stationarity are unclear. In order to classify this one needs to other consider higher order terms in a tailor expansion about (0,0). Showlest	2
	Jails	
	Setter's initials Checker's initials	Page number

	EXAMINATION QUESTIONS/SOLUTIONS 2011-2012	Course
		EEIL
		(3)
		()
uestion	TOPIC Complex Variables	
2		Marks & seen/unseen
arts		seen/ unseen
a) -	$4x = 3x^2 + 8x - y^2$; $4y = -2yx - 8y$	4
	Uxoc = x+8 ; uyy = -x-8	
	Usex + llyy =0.	
		7
	Vy= ux = x2-y2+8x; Vx=-4y= yx+8y	7
	V= 323 - 43 + 8xy + A(cc) integrating 0 w.r.fy	
	V= yx2 +8yx +B(y) integrating @w.r.t. x.	
	=> AGO = C ; R(y) = -43/6+C.	
	=> V=>24/2 -43/6 + 8>cy +c.	
	(2) = 2c3 - y2x +4x2-4y2 + i(x2y - y3 + 8xy +c)	2]_
	$f(2) = \frac{1}{6}z^3 + 4z^2 + c$; $a = \frac{1}{6}$; $b = 4$.	3
.)		7
5) —	Since the map is conformal at the intersection of	27
	ti=1 and v=0 and conformal maps are angle	4
	preserving then since the curves meet at nort-	1
or	angles in the w-plane the same is true in the z-plane.	4
	- und and v= Dane curves of constant u and v' and it	
	is true that such curses meet at right anybs in z (in	
00	regions of analyticity).	
3	22-y'+ 2ixy = u+iv; v=0 => x=0 and y=0 curves in ?	8
	11=1=> >c?-1=y?. These ares intersed at 2=(1,0)	
	Accept any reasonable argument that they meet at	
	right angles.	
	(pt)	
	(including a security (if andidates find a circle fellipse => 214)	
	Setter's initials Charker's initials	Page number
	NZ	

EXAMINATION QUESTIONS/SOLUTIONS 2011-2012	Course EE II (3)
Question TOPIC Contour Integrals	Marks & seen/unseen
Parts a) $f(z) = \frac{1}{1+z^2} = \frac{1}{(z-i)(z+i)} = \frac{1}{2}$ (simple pode at $z=i$)	2
or $f(z) = \frac{h(z)}{g(z)} = \frac{1}{1+z^2}$ so $\frac{h(z)}{g(z)} = \frac{1}{2z} = \frac{1}{2i}$ at $z = i$ simple pole.	2
b) - Pole of multiplicity 2 at z=1 - Pole of multiplicity 1 at z3=8 must get all three poles z3=8ei 2TTN n=1,0,1 z=2,2eizT/3	2 3
20'27/3 - if the calculated poles, even wrong ones, are displayed then award - but need either contour sense or ares labels.	1
- Residue at 1: $\frac{1}{1!} \frac{1}{1!} 1$	3
=>2 Residue at 2: write $(2^3-8) = (2-2)(2^2+22+4)$ => Residue lim $(2-2)$ = 1 = 1 $2->2$ $(2-2)(2^2+22+4)(2-1)^2$ $(4+4+4).1$ 12	3
Residue theorem states that the value of the integral is 277; x (sum of residues enclosed) certing but used	2
$= 2\pi i \times \left(\frac{1}{12} - \frac{3}{49}\right) = i\pi \frac{13}{294} \text{math correct use}$	2
the orem tells us this integral is zero.	2
Setter's initials Checker's initials	Page number

EXAMINATION QUESTIONS/SOLUTIONS	2011-2012	Course
		(3) EE II
Question TOPIC Fourier Transforms 4	8.	Marks & seen/unseen
a) - 5 (t') g(t-t') dt' = 5 = 8(t-tn)g/ (t-t')	1=59(t-tn)	2
- Seiwt & g(t+n)dt=ESeiw(En+tn)g(En)d7	cn = Ze āω)	2
b) - p>o consider contour suchy's cauchy's R	k(₹) = ω	2 5
= lim = [Seipz dz + Jeipz dz + Je z dz + Je	w dw]	3
- By Jordan's Cemma (since) = >0 as R	Shingubin	2
Hr substitute z=rei0 as r > 0 eipz = eipreia = eipz dz Hr Z	Tire in	2
From & = -iTI Prom & eipw dw = iTI. Pro. For pro consider contour Nor produced show the Mr. Some arguments show the Mr. Some arguments show the Mr. Some arguments show the Mr. In the upper half plane. Need eight of Need eight so so contour in lower half		2.
Setter's initials N 3 Checker's initials		Page numbe

	EXAMINATION QUESTIONS/SOLUTIONS 2011-2012	Course EE IL
		(3)
Question 4 Con	TOPIC Fourier Transforms.	Marks & seen/unseen
Parts b)-	- F(t) = 1 Seint cos in dw	2
	$=\frac{1}{2\pi}\int e^{i\omega}\cos d\omega$ $=\frac{1}{2\pi}\int \frac{e^{i(t+1)\omega}}{e^{i(t+1)\omega}}d\omega + \int \frac{e}{2\omega}d\omega$ $=\frac{1}{2\pi}\int \frac{e^{i(t+1)\omega}}{2\omega}d\omega + \int \frac{e}{2\omega}d\omega$ $=\frac{1}{2\pi}\int \frac{e^{i(t+1)\omega}}{2\omega}d\omega + \int \frac{e}{2\omega}d\omega$	
	From above integral. when $t>1$ In the standard $t-1>10$ so $I_1=I_2=i\pi$ $F(t)$	2)
	=> $F(t) = \frac{1}{21} \times \frac{2i\pi}{2} = \frac{i}{2}$. When $6x - 1 \le t \le 1$ $I_1 = i\pi$; $I_2 = -i\pi_2$ => $F(t) = 0$	3
	When I ted I = Iz = -i 1 /2 => F(6) = -i/2.	
		1
	Setter's initials Checker's initials	Page numbe

	EXAMINATION QUESTIONS/SOLUTIONS 2011-2012	EEIL (3)
Question	TOPIC Fourier Transforms	Marks & seen/unseen
arts a)	Jeint (t+a)dt = Jein(t-a) (t)dz = Jwie iwa chango d variables t+a=t	3
	change of variables that. Seint cet f(t) dt = feint (t) dt = f(w) = f(w) toe) require this line core quit wor hill as marks? withing +i(w) tion = tiw = works?	3
b)	FTCelt'] = Jeteindt + jeteint	4
	defining $t' = -t$; $I_2 = -\int_0^\infty e^{-t} e^{i\omega t} dt = \int_0^\infty e^{i\omega t} dt$ $= \left[\frac{10}{100}\right]_0^\infty = \frac{1}{1-i\omega}$ $I_1 = \frac{1}{100} + 1$; $I_1 + I_2 = \frac{2}{1+\omega^2}$	
	= T[eig Sw-wo) + eig Sw+wo)].	4
	= $\Pi[e^{i\phi}\delta(\omega-\omega_0) + e^{i\phi}\delta(\omega+\omega_0)]$. (asing deft δ = junction). - $\int e^{i\phi}\cos(\omega_0 t + \phi)dt = \frac{1}{2\pi}\int_{1+\omega^2}^{2\pi} e^{i\phi}\delta(\omega-\omega_0) + e^$	Jan 3
	- If $\phi = -\pi_{12}$ RHS is zero. In this case the integrand is an odd function and so must integrate to zero T e^{-1t} even and simust odd J	3

	EXAMINATION QUESTIONS/SOLUTIONS 2011-2012	Course
		EE II (3)
Question 6	TOPIC La place Transforms	Marks & seen/unseen
Parts	-LT[d3xx]= sest = [5cest] - sest idt	4
	$= \frac{3}{5} \frac{1}{5} (t=0) + \frac{1}{5} \times LT[\frac{1}{5}]$ $= \frac{3}{5} \frac{3}{5} \frac{3}{5} (s) - \frac{3}{5} \times (s) - \frac{3}{5} (s) - $	5
	= 2[[est] + 1 [est] = 2/53	3
or full marks - eed to state in hull the shift theo	en. LT $[e^{2t}t^2]$ well $[t][e^{at}f(t)] = F(s-a)$ so en. LT $[e^{2t}f(t)] = \overline{f(s+2)}$ so LT $[e^{2t}t^2] = 2/(s+2)^3$.	4
	$\frac{7(5)}{7(5)} = \frac{1}{10}$ $\frac{7(5)}{(5+2)^3}$	7
	Treat $\overline{z}(s) = \overline{g}(s)\overline{f}(s) = \overline{g}(s) = \overline{f}(s+2)^3$. From the Laplace convolution theorem and notifies $a(t) = e^{-2t}L^2$.	
	noting g(t) = e-2t t2/2 2(t) = \(\text{f} \ \text{e} \ \ \text{2} \ \ \text{l} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	If $f^2e^{(s+2)t}dt=\frac{2}{(s+2)^3}$ one more line of a roument required some where for hill makes the	
	Setter's initials Chacker's initials	Page numbe