Towards a model-independent measurement of γ through $B^{\pm} \rightarrow D(\rightarrow 4\pi)K^{\pm}$ decays with LHCb and CLEO-c

Claire Prouve, Jonas Rademacker – University of Bristol

Measurement of CKM angle y through interference in $B^{\pm} \rightarrow D(\rightarrow f_D)K^{\pm}$

Partial decay width

$$d\Gamma(B \to D^{0}(\to f_{D})K^{-}) \propto A_{B}^{2} \cdot \left(A_{D^{0}}^{2} + r_{B}^{2} A_{\bar{D^{0}}}^{2} + 2r_{B} \mathbb{R}(A_{D^{0}} A_{\bar{D^{0}}}^{*} e^{-i(\delta_{B} - \gamma)}) \right) dp$$

y becomes an observable in the interference term

Reconstruction of the D mesons in self-conjugate final state $f_D = \pi^+(p_1) \pi^+(p_2) \pi^-(p_3) \pi^-(p_4)$

$$\begin{array}{c} \text{CP-conjugation*} \\ A_{\bar{D^0}}(\pi^+(\vec{p_1})\pi^+(\vec{p_2})\pi^-(\vec{p_3})\pi^-(\vec{p_4})) & \stackrel{?}{=} A_{D^0}(\pi^+(-\vec{p_3})\pi^+(-\vec{p_4})\pi^-(-\vec{p_4})\pi^-(-\vec{p_1})\pi^-(-\vec{p_2})) \\ \frac{A_{D^0}(\pi^+(\vec{p_1})\pi^+(\vec{p_2})\pi^-(\vec{p_3})\pi^-(\vec{p_4}))}{A_{\bar{D^0}}(\pi^+(\vec{p_1})\pi^+(\vec{p_2})\pi^-(\vec{p_3})\pi^-(\vec{p_4}))} = \frac{|A_{D^0}(\pi^+(\vec{p_1})\pi^+(\vec{p_2})\pi^-(\vec{p_3})\pi^-(\vec{p_4}))|}{|A_{\bar{D^0}}(\pi^+(\vec{p_1})\pi^+(\vec{p_2})\pi^-(\vec{p_3})\pi^-(\vec{p_4}))|} \\ \frac{A_{D^0}(\pi^+(\vec{p_1})\pi^+(\vec{p_2})\pi^-(\vec{p_3})\pi^-(\vec{p_4}))}{|A_{\bar{D^0}}(\pi^+(\vec{p_1})\pi^+(\vec{p_2})\pi^-(\vec{p_3})\pi^-(\vec{p_4}))|} \\ \text{strong phase difference} \\ \text{between A_{D^0} and $A_{\bar{D}^0}$} \end{array}$$

All amplitudes and phases depend on the point in phase space → Dalitz plot analysis in 5 dimensions

In order to extract y the analysis has to be performed in bins of phase space.

amplitude-weighted average of $cos(\Delta\delta)$ amplitude-weighted average of $sin(\Delta\delta)$

(*) Assuming no CP-V in the D decays and neglecting 2nd order effects from charm mixing.

Model independent determination of c_i and s_i with CLEO-c using correlated D meson pairsfrom Ψ(3770) —ĐD

 C_i : Reconstruct D $\rightarrow 4\pi$ as flavour or CP eigenstate by using opposite side tagging \rightarrow combine information of CP (M^{\pm}_{i}) and flavour (K_i) Dalizt plots $\Psi(3770)$

 $(\pi^{+}(p_1)\pi^{+}(p_2)$ Flavour/ CP eigenstate

 $M_i^{\pm} = h_{CP^{\pm}} \left(K_i \pm 2c_i \sqrt{K_i K_{\bar{i}}} + K_{\bar{i}} \right)$

$$\pi^{-}(\mathsf{p}_3) \ \pi^{-}(\mathsf{p}_4) \) \qquad \qquad M_i^{\pm} = h_{CP^{\pm}} \left(K_i \pm 2c_i \sqrt{K_i K_{\bar{i}}} + K_{\bar{i}} \right)$$

 S_i : Reconstruct $\Psi(3770) \rightarrow (DD) \rightarrow (4\pi)(4\pi')$ and use **interference** effects between both possible decay paths

Event rate in ith bin of first and jth bin of second Dalitz plot:

$$egin{aligned} M_{ij} &= h_{corr} \left(K_i K_{ar{j}} + K_{ar{i}} K_j
ight. \ &- 2 \sqrt{K_i K_{ar{j}} K_{ar{i}} K_j} \left(c_i c_j + s_i s_j
ight)
ight) \end{aligned}$$

Model inspired binning

The highest sensitivity to γ can be obtained by using bins with minimal variation of $\Delta\delta$.

Note: The binning only influences the sensitivity of the γ measurement but **not the** γ **value itself**.

Analysis procedure for the future:

Measurement of c_i and s_i using

Chamber ~ 9500 flavour tagged

~ 1000 CP tagged $D(\rightarrow 4\pi)$ events

and performing a 5 dimensional fit for each bin in phase space.

2. LHCb

Simultaneous fit of r_B , δ_B and γ in all bins of phase space using

a few $10^3 B^{\pm} \rightarrow D(\rightarrow 4\pi)K^{\pm}$ events

and the c_i and s_i extracted from CLEO-c.