Levantamiento¹ de límites¹ en teoría de mónadas¹ 2-dimensional¹

Martin Szyld Universidad de Buenos Aires - CONICET

XXVI ERAG @ ICAS, Buenos Aires, Argentina

K es la categoría de conjuntos. $K \xrightarrow{T} K$ es el funtor "monoide libre":

$$TX = \{[x_1...x_n] \mid x_i \in X\}, \quad T(f)([x_1...x_n]) = [f(x_1)...f(x_n)].$$

K es la categoría de conjuntos. $K \stackrel{T}{\longrightarrow} K$ es el funtor "monoide libre":

$$TX = \{[x_1...x_n] \mid x_i \in X\}, \quad T(f)([x_1...x_n]) = [f(x_1)...f(x_n)].$$

Tiene la siguiente estructura:

$$K \xrightarrow{id} K$$
, $i_X(x) = [x]$, $K \xrightarrow{T \circ T} K$, $TTX \xrightarrow{m_X} TX$ concatenar

que cumple los axiomas: i unidad para m, m asociativa.

K es la categoría de conjuntos. $K \stackrel{T}{\longrightarrow} K$ es el funtor "monoide libre":

$$TX = \{[x_1...x_n] \mid x_i \in X\}, \quad T(f)([x_1...x_n]) = [f(x_1)...f(x_n)].$$

Tiene la siguiente estructura:

$$K \xrightarrow{id} K$$
, $i_X(x) = [x]$, $K \xrightarrow{T \circ T} K$, $TTX \xrightarrow{m_X} TX$ concatenar

que cumple los axiomas: i unidad para m, m asociativa.

(T, m, i) es un ejemplo de mónada en $K, T \equiv$ "teoría de monoides"

K conjuntos, $A \in K$. Objetivo: expresar en términos de (T, m, i) a qué equivale una estructura de monoide para A.

K conjuntos, $A \in K$. Objetivo: expresar en términos de (T, m, i) a qué equivale una estructura de monoide para A.

TAmonoide libre: $(A, \bullet, 1)$ monoide $\leadsto \exists \; ! \; a$ morfismo de monoides tq

$$A \xrightarrow{i_A} TA \qquad \textcircled{1} \qquad \qquad a[x] = x$$

$$a[] = 1$$

$$a[] = 1$$

$$A \qquad \textcircled{2b} \qquad a[x_1...x_n...x_m] = a[x_1...x_n] \bullet a[x_{n+1}...x_m]$$

K conjuntos, $A \in K$. Objetivo: expresar en términos de (T, m, i) a qué equivale una estructura de monoide para A.

TA monoide libre: $(A, \bullet, 1)$ monoide $\leadsto \exists ! a$ morfismo de monoides tq

$$A \xrightarrow{i_A} TA \qquad \underbrace{1}_{a} \qquad \underbrace{a[x] = x}_{a[] = 1}$$

$$\underbrace{a[] = 1}_{A} \qquad \underbrace{a[] = 1}_{A}$$

$$\underbrace{a[x] = x}_{a[] = 1}$$

Obs: la estructura de monoide de A queda determinada por a:

$$x \bullet y = a[x] \bullet a[y] = a[x, y], \qquad 1 = a[].$$

K conjuntos, $A \in K$. Objetivo: expresar en términos de (T, m, i) a qué equivale una estructura de monoide para A.

TA monoide libre: $(A, \bullet, 1)$ monoide $\leadsto \exists ! a$ morfismo de monoides tq

$$A \xrightarrow{i_A} TA \qquad \underbrace{1}_{a} \qquad \underbrace{a[x] = x}_{a[] = 1}$$

$$\underbrace{a[] = 1}_{A} \qquad \underbrace{a[x] = x}_{a[x] = 1}$$

$$\underbrace{a[x] = x}_{a[x] = 1}$$

$$\underbrace{a[x] = x}_{a[x] = 1}$$

Obs: la estructura de monoide de A queda determinada por a:

$$x \bullet y = a[x] \bullet a[y] = a[x, y], \qquad 1 = a[].$$

Y luego ② y ② equivalen a
$$T(a)$$
 ② ↓ a (ejercicio)
$$TA \xrightarrow{\qquad \qquad } A$$

Mónadas y sus álgebras

000

Monoides \equiv "modelos" de $T \equiv T$ -álgebras

K conjuntos, $A \in K$. Objetivo: expresar en términos de (T, m, i) a qué equivale una estructura de monoide para A.

TA monoide libre: $(A, \bullet, 1)$ monoide $\rightarrow \exists ! a$ morfismo de monoides to

$$A \xrightarrow{i_A} TA \qquad 1 \qquad \qquad a[x] = x$$

$$a[] = 1$$

$$a[\cdot x_n \cdot$$

Obs: la estructura de monoide de A queda determinada por a:

$$x \bullet y = a[x] \bullet a[y] = a[x, y], \qquad 1 = a[].$$

Y luego ② y ③ equivalen a
$$T(a)$$
 ② ↓ a (ejercicio)
$$TA \xrightarrow{a} A$$

Amonoide $\equiv TA \stackrel{a}{\longrightarrow} A$ tq ① y ② $\equiv_{\mbox{def}} (A,a)$ es T-álgebra.

 \bullet Mónada: $K \overbrace{\stackrel{i \downarrow}{i \downarrow}}^{i d} K$ unidad para $K \overbrace{\stackrel{m \downarrow}{m}}^{T \circ T} K$ asociativa.

• Mónada: $K \xrightarrow{i \downarrow} K$ unidad para $K \xrightarrow{T \circ T} K$ asociativa.

•
$$T$$
-álgebra: $TA \xrightarrow{a} A$ tq $A \xrightarrow{i_A} TA$ $TA \xrightarrow{TA} TA \xrightarrow{m_A} TA$ $A \xrightarrow{i_A} TA \xrightarrow{T} A \xrightarrow{T}$

• Mónada: $K \xrightarrow{id} K$ unidad para $K \xrightarrow{T \circ T} K$ asociativa.

• Morfismos de T-álgebra: $(A,a) \xrightarrow{f} (B,b)$ es $A \xrightarrow{f} B$ tq $TA \xrightarrow{Tf} TB$ $\downarrow b \text{ (en el ejemplo da morfismo de monoides)}$ $A \xrightarrow{f} B$

• Mónada: $K \xrightarrow{id} K$ unidad para $K \xrightarrow{T \circ T} K$ asociativa.

- Morfismos de T-álgebra: $(A,a) \xrightarrow{f} (B,b)$ es $A \xrightarrow{f} B$ tq $TA \xrightarrow{Tf} TB$ $\downarrow b \text{ (en el ejemplo da morfismo de monoides)}$ $A \xrightarrow{f} B$
- \bullet Se tiene un funtor de olvido $T\text{-}Alg \stackrel{U}{\longrightarrow} K$

La 2-categoría T- Alg_s

Diferencia: \mathcal{K} es 2-categoría, las flechas son 2-funtores, las transformaciones son 2-naturales.

La 2-categoría T- Alg_s

Diferencia: \mathcal{K} es 2-categoría, las flechas son 2-funtores, las transformaciones son 2-naturales.

• 2-Mónada: $\mathcal{K} \xrightarrow{id} \mathcal{K}$ unidad para $\mathcal{K} \xrightarrow{T \circ T} \mathcal{K}$ asociativa.

La 2-categoría T-Alq_s

Diferencia: \mathcal{K} es 2-categoría, las flechas son 2-funtores, las transformaciones son 2-naturales.

• 2-Mónada: $\mathcal{K} \xrightarrow{id} \mathcal{K}$ unidad para $\mathcal{K} \xrightarrow{m \downarrow} \mathcal{K}$ asociativa.

•
$$T$$
-álgebra: $TA \xrightarrow{a} A$ tq $A \xrightarrow{i_A} TA$ $TA \xrightarrow{m_A} TA$ $A \xrightarrow{a} A$ $A \xrightarrow{i_A} TA \xrightarrow{a} A$

La 2-categoría T- Alg_s

Diferencia: \mathcal{K} es 2-categoría, las flechas son 2-funtores, las transformaciones son 2-naturales.

• 2-Mónada: $\mathcal{K} \xrightarrow{i \downarrow} \mathcal{K}$ unidad para $\mathcal{K} \xrightarrow{T \circ T} \mathcal{K}$ asociativa.

 $\bullet \ T\text{-\'algebra:} \ TA \xrightarrow{a} A \ \operatorname{tq} \ \bigvee_{id}^{i_A} TA \qquad TTA \xrightarrow{m_A} TA \\ \downarrow a \ , \qquad \downarrow a \\ A \qquad TA \xrightarrow{a} A$

 \bullet Morfismo (estricto) de T-álgebra: $A \stackrel{f}{\longrightarrow} B$ tq $\stackrel{T}{a} \bigvee_{f} D \bigoplus_{g} B$

La 2-categoría T- Alg_s

Diferencia: \mathcal{K} es 2-categoría, las flechas son 2-funtores, las transformaciones son 2-naturales.

- 2-Mónada: $\mathcal{K} \xrightarrow{i \downarrow} \mathcal{K}$ unidad para $\mathcal{K} \xrightarrow{T \circ T} \mathcal{K}$ asociativa.
- \bullet Morfismo (estricto) de T-álgebra: $A \stackrel{f}{\longrightarrow} B$ tq $a \bigg| \begin{picture}(120,10) \put(0,0){\line(1,0){100}} \put(0,0){\$
- \bullet 2-cell: es 2-cell de ${\mathcal K}$ con una condición extra.

La 2-categoría T-Alq_s

Diferencia: \mathcal{K} es 2-categoría, las flechas son 2-funtores, las transformaciones son 2-naturales.

- 2-Mónada: $\mathcal{K} \xrightarrow{id} \mathcal{K}$ unidad para $\mathcal{K} \xrightarrow{m\psi} \mathcal{K}$ asociativa.
- \bullet Morfismo (estricto) de T-álgebra: $A \stackrel{f}{\longrightarrow} B$ tq $a \bigg| \begin{picture}(100,0) \put(0,0) \put(0,0)$
- ullet 2-cell: es 2-cell de ${\mathcal K}$ con una condición extra.
- Se tiene un 2-funtor de olvido T- $Alg_s \xrightarrow{U} \mathcal{K}$

Se tiene una 2-mónada T tal que sus álgebras son las...

• Categorías monoidales (tensoriales). Morfismos estrictos:

$$F: C \longrightarrow D$$
 tal que $F(1) = 1$, $F(C \otimes C') = FC \otimes FC'$

Se tiene una 2-mónada T tal que sus álgebras son las...

- Categorías monoidales (tensoriales). Morfismos estrictos: $F: C \longrightarrow D$ tal que F(1) = 1, $F(C \otimes C') = FC \otimes FC'$
- Categorías con algún tipo de límite elegido (objeto terminal, productos finitos, límites finitos...). Morfismos estrictos: $F: C \longrightarrow D$ tal que F(L) = L'

Se tiene una 2-mónada T tal que sus álgebras son las...

- Categorías monoidales (tensoriales). Morfismos estrictos: $F: C \longrightarrow D$ tal que F(1) = 1, $F(C \otimes C') = FC \otimes FC'$
- Categorías con algún tipo de límite elegido (objeto terminal, productos finitos, límites finitos...). Morfismos estrictos: $F: C \longrightarrow D$ tal que F(L) = L'

La noción de morfismo estricto no es la noción util en estos ejemplos.

Se tiene una 2-mónada T tal que sus álgebras son las...

- Categorías monoidales (tensoriales). Morfismos estrictos: $F: C \longrightarrow D$ tal que F(1) = 1, $F(C \otimes C') = FC \otimes FC'$
- Categorías con algún tipo de límite elegido (objeto terminal, productos finitos, límites finitos...). Morfismos estrictos: $F: C \longrightarrow D$ tal que F(L) = L'

La noción de morfismo estricto no es la noción util en estos ejemplos.

• P, L 2-categorías, X: familia de objetos de $P \leadsto T$ 2-mónada con $K = P^X$ tal que T- $Alg_s = Hom_s(P, L)$, $UF = (Fp)_{p \in P}$. Levantamiento de límites \equiv límites se calculan punto a punto en $Hom_s(P, L)$.

Se tiene una 2-mónada T tal que sus álgebras son las...

- Categorías monoidales (tensoriales). Morfismos estrictos: $F: C \longrightarrow D$ tal que F(1) = 1, $F(C \otimes C') = FC \otimes FC'$
- Categorías con algún tipo de límite elegido (objeto terminal, productos finitos, límites finitos...). Morfismos estrictos: $F: C \longrightarrow D$ tal que F(L) = L'

La noción de morfismo estricto no es la noción util en estos ejemplos.

• P, L 2-categorías, X: familia de objetos de $P \leadsto T$ 2-mónada con $K = P^X$ tal que T- $Alg_s = Hom_s(P, L)$, $UF = (Fp)_{p \in P}$. Levantamiento de límites \equiv límites se calculan punto a punto en $Hom_s(P, L)$.

Es relevante para la teoría de 2-funtores playos el resultado anterior con Hom_p en lugar de Hom_s .

Para obtener las nociones más relevantes de morfismos en los ejemplos anteriores (morfismos de categorias tensoriales, funtores que preservan los limites, etc) se debe *relajar* la noción de morfismo.

$\Omega\text{-morfismos}$ de T-'algebras

Para obtener las nociones más relevantes de morfismos en los ejemplos anteriores (morfismos de categorias tensoriales, funtores que preservan los limites, etc) se debe *relajar* la noción de morfismo.

Un lax morfismo $A \stackrel{f}{\longrightarrow} B$ entre $T\text{-}\'{a}lgebras$ tiene una 2-cell estructural

$$TA \xrightarrow{Tf} TB$$

$$\downarrow a \qquad \qquad \downarrow \overline{f} \qquad \downarrow b$$

$$A \xrightarrow{f} B$$

• lax (ℓ) morfismo: \overline{f} es cualquier 2-cell.

Para obtener las nociones más relevantes de morfismos en los ejemplos anteriores (morfismos de categorias tensoriales, funtores que preservan los limites, etc) se debe *relajar* la noción de morfismo.

Un lax morfismo $A \stackrel{f}{\longrightarrow} B$ entre $T\text{-}\'{a}lgebras$ tiene una 2-cell estructural

$$TA \xrightarrow{Tf} TB$$

$$\downarrow a \qquad \downarrow \downarrow \overline{f} \qquad \downarrow b$$

$$A \xrightarrow{f} B$$

- **1** lax (ℓ) morfismo: \overline{f} es cualquier 2-cell.
- **2** pseudo (p) morfismo: \overline{f} inversible.

Para obtener las nociones más relevantes de morfismos en los ejemplos anteriores (morfismos de categorias tensoriales, funtores que preservan los limites, etc) se debe *relajar* la noción de morfismo.

Un lax morfismo $A \stackrel{f}{\longrightarrow} B$ entre $T\text{-}\'{a}lgebras$ tiene una 2-cell estructural

$$TA \xrightarrow{Tf} TB$$

$$\downarrow a \qquad \qquad \downarrow \overline{f} \qquad \downarrow b$$

$$A \xrightarrow{f} B$$

- **1** lax (ℓ) morfismo: \overline{f} es cualquier 2-cell.
- 2 pseudo (p) morfismo: \overline{f} inversible.
- **3** morfismo estricto (s): \overline{f} una identidad.

Para obtener las nociones más relevantes de morfismos en los ejemplos anteriores (morfismos de categorias tensoriales, funtores que preservan los limites, etc) se debe *relajar* la noción de morfismo.

Un lax morfismo $A \stackrel{f}{\longrightarrow} B$ entre $T\text{-}\'{a}lgebras$ tiene una 2-cell estructural

$$TA \xrightarrow{Tf} TB$$

$$\downarrow a \qquad \qquad \downarrow \overline{f} \qquad \downarrow b$$

$$A \xrightarrow{f} B$$

- $\ \, \textbf{0}\ \, \text{lax}\ (\ell)$ morfismo: \overline{f} es cualquier 2-cell.
- **2** pseudo (p) morfismo: \overline{f} inversible.
- $\ \, \mathbf 0 \,$ morfismo estricto $(s) \colon \overline{f}$ una identidad.

Más en general, si se fija una familia Ω de 2-cells de \mathcal{K} , decimos que f es un Ω -morfismo si $\overline{f} \in \Omega$.

Para obtener las nociones más relevantes de morfismos en los ejemplos anteriores (morfismos de categorias tensoriales, funtores que preservan los limites, etc) se debe *relajar* la noción de morfismo.

Un lax morfismo $A \stackrel{f}{\longrightarrow} B$ entre $T\text{-}\'{a}lgebras$ tiene una 2-cell estructural

$$TA \xrightarrow{Tf} TB$$

$$\downarrow a \qquad \qquad \downarrow \bar{f} \qquad \downarrow b$$

$$A \xrightarrow{f} B$$

- **1** lax (ℓ) morfismo: \overline{f} es cualquier 2-cell.
- 2 pseudo (p) morfismo: \overline{f} inversible.
- $\ensuremath{\mathfrak{S}}$ morfismo estricto $(s)\colon \overline{f}$ una identidad.

Más en general, si se fija una familia Ω de 2-cells de \mathcal{K} , decimos que f es un Ω -morfismo si $\overline{f} \in \Omega$.

Se define así una 2-categoría T- Alg^{Ω} que tiene como casos particulares a T- Alg_p , T- Alg_p , T- Alg_{ℓ} (tomando Ω_s , Ω_p , Ω_{ℓ}).

 ${\cal K}~$ una categoría, ${\cal T}$ una mónada, ${\cal F}$ un funtor.

 $U\ crea\ \mathrm{lim}F\colon \mathrm{se}\ \mathrm{le}\ \mathrm{da}\ \mathrm{a}\ \mathrm{lim}F\ \mathrm{una}$ estructura de T-algebra tal que sea $\mathrm{lim}\overline{F}$ (se levanta el límite de F a lo largo de U)

 ${\cal K}~$ una categoría, ${\cal T}$ una mónada, ${\cal F}$ un funtor.

U crea $\lim F$: se le da a $\lim F$ una estructura de T-algebra tal que sea $\lim \overline{F}$ (se levanta el límite de F a lo largo de U)

Resultados previos

• (del caso V-enriquecido) T- $Alg \xrightarrow{U} K$ crea todos los límites.

 $\mathcal K$ una 2-categoría, T una 2-mónada, F un 2-funtor.

 $U\ crea\ \mathrm{lim}F\colon \mathrm{se}\ \mathrm{le}\ \mathrm{da}\ \mathrm{a}\ \mathrm{lim}F\ \mathrm{una}$ estructura de $T\text{-algebra}\ \mathrm{tal}\ \mathrm{que}\ \mathrm{sea}\ \mathrm{lim}\overline{F}$ (se levanta el límite de F a lo largo de U)

Resultados previos

• (del caso \mathcal{V} -enriquecido) T- $Alg_s \xrightarrow{U} \mathcal{K}$ crea todos los (2-)límites.

 ${\mathcal K}$ una 2-categoría, Tuna 2-mónada, Fun 2-funtor.

 $U\ crea\ \mathrm{lim}F\colon \mathrm{se}\ \mathrm{le}\ \mathrm{da}\ \mathrm{a}\ \mathrm{lim}F\ \mathrm{una}$ estructura de $T\text{-algebra}\ \mathrm{tal}$ que sea $\mathrm{lim}\overline{F}$ (se levanta el límite de F a lo largo de U)

Resultados previos

- (del caso \mathcal{V} -enriquecido) T- $Alg_s \xrightarrow{U} \mathcal{K}$ crea todos los (2-)límites.
- 2 T- $Alg_p \xrightarrow{U} \mathcal{K}$ crea lax y pseudolímites [BKP,89].

 $\mathcal K$ una 2-categoría, T una 2-mónada, F un 2-funtor.

 $U\ crea\ \mathrm{lim}F\colon \mathrm{se}\ \mathrm{le}\ \mathrm{da}\ \mathrm{a}\ \mathrm{lim}F\ \mathrm{una}$ estructura de $T\text{-algebra}\ \mathrm{tal}$ que sea $\mathrm{lim}\overline{F}$ (se levanta el límite de F a lo largo de U)

Resultados previos

- (del caso V-enriquecido) T- $Alg_s \xrightarrow{U} \mathcal{K}$ crea todos los (2-)límites.
- **③** T- $Alg_{\ell} \xrightarrow{U} \mathcal{K}$ crea oplax límites [Lack,05].

Levantamiento de límites

 $\mathcal K$ una 2-categoría, T una 2-mónada, F un 2-funtor.

 $U\ crea\ \mathrm{lim}F\colon \mathrm{se}\ \mathrm{le}\ \mathrm{da}\ \mathrm{a}\ \mathrm{lim}F\ \mathrm{una}$ estructura de $T\text{-algebra}\ \mathrm{tal}\ \mathrm{que}\ \mathrm{sea}\ \mathrm{lim}\overline{F}$ (se $\mathit{levanta}\ \mathrm{el}\ \mathrm{l\'imite}\ \mathrm{de}\ F$ a lo largo de U)

Resultados previos

- (del caso \mathcal{V} -enriquecido) T- $Alg_s \xrightarrow{U} \mathcal{K}$ crea todos los (2-)límites.
- $\bullet \ \ \textit{T-Alg}_{\textcolor{red}{\ell}} \overset{\textit{U}}{\longrightarrow} \mathcal{K} \ \text{crea oplax limites [Lack,05]}.$

Nota: los límites se pueden tomar *con peso*, y las proyecciones son morfismos estrictos.

Levantamiento de límites

 ${\mathcal K}$ una 2-categoría, Tuna 2-mónada, Fun 2-funtor.

 $U\ crea\ \mathrm{lim}F\colon \mathrm{se}\ \mathrm{le}\ \mathrm{da}\ \mathrm{a}\ \mathrm{lim}F\ \mathrm{una}$ estructura de $T\text{-algebra}\ \mathrm{tal}\ \mathrm{que}\ \mathrm{sea}\ \mathrm{lim}\overline{F}$ (se $\mathit{levanta}\ \mathrm{el}\ \mathrm{l\'imite}\ \mathrm{de}\ F$ a lo largo de U)

Resultados previos

- (del caso \mathcal{V} -enriquecido) T- $Alg_s \xrightarrow{U} \mathcal{K}$ crea todos los (2-)límites.
- **③** T- Alg_{ℓ} \xrightarrow{U} \mathcal{K} crea oplax límites [Lack,05].

Nota: los límites se pueden tomar *con peso*, y las proyecciones son morfismos estrictos.

Veremos un teorema que unifica y generaliza estos resultados

• transformación natural
$$A \xrightarrow{F \atop \theta \downarrow G} B$$
: $FA \xrightarrow{\theta_A \atop G} GA \atop \downarrow Gf \atop \downarrow FB \xrightarrow{\theta_B} GB$

• transformación natural
$$A \xrightarrow{F \atop \theta \downarrow G} B$$
: $FA \xrightarrow{\theta_A \atop G} GA \atop \downarrow Gf \atop \downarrow FB \xrightarrow{\theta_B} GB$

• cono (para F, con vértice $E \in B$): es una transf. natural

$$A \xrightarrow{\frac{\triangle E}{\theta \Downarrow}} B, \text{ i.e. } E \xrightarrow{\theta_A} FA$$

$$\downarrow^{Ff}$$

$$\theta_B \to FB$$

• transformación natural
$$A \xrightarrow{F \atop \theta \downarrow G} B$$
: $FA \xrightarrow{\theta_A} GA \atop \downarrow Gf \atop \downarrow FB \xrightarrow{\theta_B} GB$

• cono (para F, con vértice $E \in B$): es una transf. natural

$$A \xrightarrow{\frac{\triangle E}{\theta \Downarrow}} B, \text{ i.e. } E \xrightarrow{\theta_A} FA$$

$$\downarrow^{Ff}$$

$$\theta_B \to FB$$

• límite de F: es un cono π (para F, con vértice L) universal:

$$\mathcal{B}(E,L) \xrightarrow{\pi_*} \operatorname{Conos}(E,F)$$

es una bivección.

• transformación natural
$$A \xrightarrow{F \atop \theta \Downarrow} B$$
: $FA \xrightarrow{\theta_A} GA \atop \downarrow Gf \atop \downarrow FB \xrightarrow{\theta_B} GB$

• cono (para F, con vértice $E \in B$): es una transf. natural

$$A \xrightarrow{\begin{array}{c} \triangle E \\ \hline \theta \Downarrow \\ \hline F \end{array}} B, \text{ i.e. } E \xrightarrow{\begin{array}{c} \theta_A \\ \hline \pi_A \end{array}} FA$$

• límite de F: es un cono π (para F, con vértice L) universal:

$$\mathcal{B}(E,L) \xrightarrow{\pi_*} \operatorname{Conos}(E,F)$$

es una biyección.

• transformación natural
$$A \xrightarrow{F \atop \theta \downarrow G} B$$
: $FA \xrightarrow{\theta_A \atop G} GA \atop \downarrow Gf \atop \downarrow FB \xrightarrow{\theta_B \atop \theta_B} GB$

• cono (para F, con vértice $E \in B$): es una transf. natural

$$A \xrightarrow{\xrightarrow{\triangle E}} B, \text{ i.e. } E \xrightarrow{\exists !} L \xrightarrow{\pi_B} FB$$

• límite de F: es un cono π (para F, con vértice L) universal:

$$\mathcal{B}(E,L) \xrightarrow{\pi_*} \operatorname{Conos}(E,F)$$

es una biyección.

σ - ω -límites (Gray, 1974 "revisited")

Fijamos \mathcal{A},\mathcal{B} 2-categorías, $\Sigma\subseteq\mathrm{Fl}(\mathcal{A}),\,\Omega\subseteq2\text{-cells}(\mathcal{B})$

σ - ω -límites (Gray, 1974 "revisited")

Fijamos \mathcal{A}, \mathcal{B} 2-categorías, $\Sigma \subseteq \text{Fl}(\mathcal{A}), \Omega \subseteq 2\text{-cells}(\mathcal{B})$

• transf. σ - ω -natural $\mathcal{A} \xrightarrow{\Gamma \atop \theta \downarrow} \mathcal{B}$: transf. lax natural

σ - ω -límites (Gray, 1974 "revisited")

Fijamos \mathcal{A}, \mathcal{B} 2-categorías, $\Sigma \subseteq \operatorname{Fl}(\mathcal{A}), \Omega \subseteq 2\text{-cells}(\mathcal{B})$

• transf. σ - ω -natural $\mathcal{A} \xrightarrow{\Gamma \atop \theta \downarrow } \mathcal{B}$: transf. lax natural

$$FA \xrightarrow{\theta_A} GA$$

$$Ff \downarrow \qquad \psi \theta_f \qquad \int Gf \quad \text{tal que } \theta_f \in \Omega \text{ cuando } f \in \Sigma.$$

$$FB \xrightarrow{\theta_B} GB$$

• σ - ω -cono (para F, con vértice $E \in \mathcal{B}$): es una transf. σ - ω -natural

$$\mathcal{A} \xrightarrow{\xrightarrow{\Delta E}} \mathcal{B}, \text{ i.e. } E \xrightarrow{\theta_A} FA \\ \downarrow^{F_f} \text{ tq } \theta_f \in \Omega \text{ cuando } f \in \Sigma.$$

• Morfismos de σ - ω -cono: modificaciones $\theta \xrightarrow{\eta} \theta'$, i.e.

$$E \xrightarrow[\theta_A]{\eta_A \Downarrow} FA \quad \text{tales que} \quad E \xrightarrow[\theta_B]{\theta_A} FA$$

$$\downarrow \theta_A & \downarrow \theta_f \Downarrow \theta_f' \downarrow Ff$$

$$\downarrow \theta_B & \downarrow \theta_B & \downarrow \theta_B & \downarrow FB$$

• Morfismos de σ - ω -cono: modificaciones $\theta \xrightarrow{\eta} \theta'$, i.e.

• El σ - ω -límite de F es el σ - ω -cono universal:

$$\mathcal{B}(E,L) \xrightarrow{\pi_*} \sigma\text{-}\omega\text{-}\mathrm{Conos}(E,F)$$

es un isomorfismo de categorías.

$$\mathcal{B}(E,L) \xrightarrow{\pi_*} \sigma\text{-}\omega\text{-}\mathrm{Conos}(E,F)$$

$$\mathcal{B}(E,L) \xrightarrow{\pi_*} \sigma\text{-}\omega\text{-}\mathrm{Conos}(E,F)$$

En objetos:
$$\varphi \longleftrightarrow \theta$$

$$E \xrightarrow{\theta_A} FA$$

$$\downarrow \theta_f L \qquad \downarrow \pi_f \qquad \downarrow FB$$

$$\theta_B \rightarrow FB$$

$$\mathcal{B}(E,L) \xrightarrow{\pi_*} \sigma\text{-}\omega\text{-}\mathrm{Conos}(E,F)$$

En objetos: $\varphi \longleftrightarrow \theta$

$$E \xrightarrow{\psi \theta_f} L \xrightarrow{\pi_A} FA$$

$$\downarrow \psi \pi_f \mid Ff$$

$$\downarrow \pi_B \mid FB$$

$$\mathcal{B}(E,L) \xrightarrow{\pi_*} \sigma\text{-}\omega\text{-}\mathrm{Conos}(E,F)$$

En objetos: $\varphi \longleftrightarrow \theta$

$$E \xrightarrow{\eta \theta_f} L \xrightarrow{\pi_A} FA$$

$$\downarrow f$$

• Se tienen las nociones duales de transf. σ - ω -opnatural, que inducen σ - ω -oplímites, donde se invierten las 2-cells.

$$\mathcal{B}(E,L) \xrightarrow{\pi_*} \sigma\text{-}\omega\text{-}\mathrm{Conos}(E,F)$$

En objetos: $\varphi \longleftrightarrow \theta$

$$E \xrightarrow{\eta \theta_f} L \xrightarrow{\pi_A} FA$$

$$\downarrow \varphi \qquad \downarrow \varphi \qquad \downarrow FB$$

- Se tienen las nociones duales de transf. σ - ω -opnatural, que inducen σ - ω -oplímites, donde se invierten las 2-cells.
- Las nociones de límites lax, pseudo y estricto (2-límite) se obtienen con las elecciones particulares de $\Omega = \Omega_{\ell}, \Omega_{p}, \Omega_{s}$.

Límites Ω' -compatibles

Fijemos otra familia Ω' de 2-cells. Decimos que el σ - ω -límite de F es compatible con Ω' si el isomorfismo

$$\mathcal{B}(E,L) \xrightarrow{\pi_*} \sigma\text{-}\omega\text{-}\mathrm{Conos}(E,F)$$

en flechas

$$E \xrightarrow[\varphi']{\alpha \Downarrow} L \leftrightarrow E \xrightarrow[\theta_A]{\eta_A \Downarrow} FA$$

se restringe a Ω' : $\alpha \in \Omega'$ sii cada η_A lo está.

Límites Ω' -compatibles

Fijemos otra familia Ω' de 2-cells. Decimos que el σ - ω -límite de F es compatible con Ω' si el isomorfismo

$$\mathcal{B}(E,L) \xrightarrow{\pi_*} \sigma\text{-}\omega\text{-}\mathrm{Conos}(E,F)$$

en flechas

$$E \xrightarrow[\varphi']{\alpha \Downarrow} L \leftrightarrow E \xrightarrow[\theta_A]{\eta_A \Downarrow} FA$$

se restringe a Ω' : $\alpha \in \Omega'$ sii cada η_A lo está.

Ejemplos: Si Ω' es Ω_s, Ω_p u Ω_ℓ , todo σ - ω -límite es compatible con Ω' .

Consideramos $\Sigma \subseteq \operatorname{Fl}(\mathcal{A})$, $\Omega, \Omega' \subseteq 2\text{-cells}(\mathcal{K})$. Los $\sigma\text{-}\omega\text{-límites}$ se toman siempre con respecto a Σ y Ω .

Consideramos $\Sigma \subseteq \operatorname{Fl}(\mathcal{A})$, $\Omega, \Omega' \subseteq 2\text{-cells}(\mathcal{K})$. Los σ - ω -límites se toman siempre con respecto a Σ y Ω .

Cómo le damos a $L = \sigma$ - ω -limF una estructura de T-álgebra tal que las proyecciones son morfismos estrictos?

Consideramos $\Sigma \subseteq \operatorname{Fl}(\mathcal{A})$, $\Omega, \Omega' \subseteq 2\text{-cells}(\mathcal{K})$. Los σ - ω -límites se toman siempre con respecto a Σ y Ω .

Cómo le damos a $L = \sigma$ - ω -limF una estructura de T-álgebra tal que las proyecciones son morfismos estrictos?

Consideramos $\Sigma \subseteq \operatorname{Fl}(\mathcal{A})$, $\Omega, \Omega' \subseteq 2\text{-cells}(\mathcal{K})$. Los σ - ω -límites se toman siempre con respecto a Σ y Ω .

Cómo le damos a $L = \sigma$ - ω -limF una estructura de T-álgebra tal que las proyecciones son morfismos estrictos?

Necesitamos 2-cells θ_f que den un σ - ω -cono:

$$TL \xrightarrow{T\pi_{A}} TFA \xrightarrow{a} FA$$

$$TL \xrightarrow{\Psi\theta_{f}} Ff$$

$$TFB \xrightarrow{b} FB$$

 $\theta_f \in \Omega \text{ if } f \in \Sigma$:

Consideramos $\Sigma \subseteq \operatorname{Fl}(\mathcal{A})$, $\Omega, \Omega' \subseteq 2\text{-cells}(\mathcal{K})$. Los σ - ω -límites se toman siempre con respecto a Σ y Ω .

Cómo le damos a $L = \sigma$ - ω -limF una estructura de T-álgebra tal que las proyecciones son morfismos estrictos?

$$\begin{array}{c|c} TFA \stackrel{a}{\longrightarrow} FA \\ \downarrow \theta_f : TL & \downarrow T\pi_f & TFf & \stackrel{Ff}{\Longrightarrow} & \downarrow Ff \\ \downarrow T\pi_B & \downarrow & \downarrow & \downarrow \\ TFB & \longrightarrow & FB \end{array}$$

$$\theta_f \in \Omega \text{ if } f \in \Sigma$$
:

Consideramos $\Sigma \subseteq \operatorname{Fl}(\mathcal{A})$, $\Omega, \Omega' \subseteq 2\text{-cells}(\mathcal{K})$. Los σ - ω -límites se toman siempre con respecto a Σ y Ω .

Cómo le damos a $L = \sigma$ - ω -oplimF una estructura de T-álgebra tal que las proyecciones son morfismos estrictos?

$$\uparrow \theta_f \colon TL \xrightarrow{T\pi_A} TFA \xrightarrow{a} FA$$

$$\uparrow TTF \downarrow \qquad \downarrow Ff$$

$$\uparrow TTF \downarrow \qquad \downarrow Ff$$

$$\uparrow TFB \xrightarrow{b} FB$$

$$\theta_f \in \Omega \text{ if } f \in \Sigma$$
:

Consideramos $\Sigma \subseteq \operatorname{Fl}(\mathcal{A})$, $\Omega, \Omega' \subseteq 2\text{-cells}(\mathcal{K})$. Los σ - ω -límites se toman siempre con respecto a Σ y Ω .

Cómo le damos a $L = \sigma$ - ω -oplimF una estructura de T-álgebra tal que las proyecciones son morfismos estrictos?

$$\uparrow \theta_f \colon TL \xrightarrow{T\pi_A} TFA \xrightarrow{a} FA$$

$$\uparrow T\pi_f TFf \xrightarrow{\overline{Ff}} \downarrow Ff$$

$$T\pi_B \xrightarrow{T} TFB \xrightarrow{b} FB$$

$$\theta_f \in \Omega \text{ if } f \in \Sigma$$
: $T(\Omega) \subseteq \Omega$

Consideramos $\Sigma \subseteq \operatorname{Fl}(\mathcal{A})$, $\Omega, \Omega' \subseteq 2\text{-cells}(\mathcal{K})$. Los σ - ω -límites se toman siempre con respecto a Σ y Ω .

Cómo le damos a $L = \sigma$ - ω -oplimF una estructura de T-álgebra tal que las proyecciones son morfismos estrictos?

$$\uparrow \theta_f \colon TL \xrightarrow{T\pi_A} \uparrow \qquad \downarrow FA \xrightarrow{a} FA$$

$$\uparrow T\pi_f \quad TFf \quad Ff \downarrow Ff$$

$$\uparrow T\pi_B \downarrow \qquad \downarrow Ff$$

$$\uparrow TFB \xrightarrow{b} FB$$

$$\theta_f \in \Omega \text{ if } f \in \Sigma$$
: $T(\Omega) \subseteq \Omega$, $\Omega' \subseteq \Omega$

Consideramos $\Sigma \subseteq \operatorname{Fl}(\mathcal{A})$, $\Omega, \Omega' \subseteq 2\text{-cells}(\mathcal{K})$. Los σ - ω -límites se toman siempre con respecto a Σ y Ω .

Cómo le damos a $L = \sigma$ - ω -oplimF una estructura de T-álgebra tal que las proyecciones son morfismos estrictos?

$$\uparrow \theta_f \colon TL \xrightarrow{T\pi_A} \uparrow \qquad \downarrow FA \xrightarrow{a} FA$$

$$\uparrow T\pi_f \quad TFf \quad Ff \downarrow Ff$$

$$\uparrow T\pi_B \downarrow \qquad \downarrow Ff$$

$$\uparrow TFB \xrightarrow{b} FB$$

$$\theta_f \in \Omega \text{ if } f \in \Sigma: \ T(\Omega) \subseteq \Omega , \Omega' \subseteq \Omega \Rightarrow TL \xrightarrow{\ell} L.$$

Consideramos $\Sigma \subseteq \operatorname{Fl}(\mathcal{A}), \Omega, \Omega' \subseteq 2\text{-cells}(\mathcal{K})$. Los σ - ω -límites se toman siempre con respecto a Σ y Ω .

> Cómo le damos a $L = \sigma$ -oplimF una estructura de T-álgebra tal que las proyecciones son morfismos estrictos?

Necesitamos 2-cells θ_f que den un σ - ω -opcono:

$$\uparrow \theta_f \colon TL \xrightarrow{T\pi_A} TFA \xrightarrow{a} FA$$

$$\uparrow T\pi_f TFf \xrightarrow{Ff} Ff$$

$$TFB \xrightarrow{b} FB$$

$$\theta_f \in \Omega \text{ if } f \in \Sigma: \ T(\Omega) \subseteq \Omega , \Omega' \subseteq \Omega \Rightarrow TL \stackrel{\ell}{\longrightarrow} L.$$

Si L es Ω' -compatible $\Rightarrow (TL,\ell)$ es el límite buscado.

Teorema: Sea $\Sigma \subseteq \operatorname{Fl}(\mathcal{A})$, $\Omega, \Omega' \subseteq 2\text{-cells}(\mathcal{K})$. Si $T(\Omega) \subseteq \Omega$ y $\Omega' \subseteq \Omega$, entonces $T\text{-}Alg^{\Omega'} \xrightarrow{U} \mathcal{K}$ crea $\sigma\text{-}\omega\text{-oplimites}\ \Omega'\text{-compatibles}$.

la prueba sigue las ideas de la diapositiva anterior.

Teorema: Sea $\Sigma \subseteq \operatorname{Fl}(\mathcal{A})$, $\Omega, \Omega' \subseteq 2\text{-cells}(\mathcal{K})$. Si $T(\Omega) \subseteq \Omega$ y $\Omega' \subseteq \Omega$, entonces $T\text{-}Alg^{\Omega'} \xrightarrow{U} \mathcal{K}$ crea $\sigma\text{-}\omega\text{-oplimites }\Omega'\text{-compatibles}$.

la prueba sigue las ideas de la diapositiva anterior.

Deducimos el resultado para límites con peso pues estos se pueden expresar como σ - ω -límites.

Teorema: Sea $\Sigma \subseteq \operatorname{Fl}(\mathcal{A})$, $\Omega, \Omega' \subseteq 2\text{-cells}(\mathcal{K})$. Si $T(\Omega) \subseteq \Omega$ y $\Omega' \subseteq \Omega$, entonces $T-Ala^{\Omega'} \xrightarrow{U} \mathcal{K}$ crea σ - ω -oplimites Ω' -compatibles.

la prueba sique las ideas de la diapositiva anterior.

Deducimos el resultado para límites con peso pues estos se pueden expresar como σ - ω -límites.

El caso $\Omega, \Omega' \in \{\Omega_{\ell}, \Omega_{p}, \Omega_{s}\}\$

 $T(\Omega) \subseteq \Omega \checkmark$, Ω' -compatible \checkmark

Teorema: Sea $\Sigma \subseteq \operatorname{Fl}(\mathcal{A})$, $\Omega, \Omega' \subseteq 2\text{-cells}(\mathcal{K})$. Si $T(\Omega) \subseteq \Omega$ y $\Omega' \subseteq \Omega$, entonces $T-Alg^{\Omega'} \xrightarrow{U} \mathcal{K}$ crea σ - ω -oplimites Ω' -compatibles.

la prueba sique las ideas de la diapositiva anterior.

Deducimos el resultado para límites con peso pues estos se pueden expresar como σ - ω -límites.

El caso $\Omega, \Omega' \in \{\Omega_{\ell}, \Omega_{p}, \Omega_{s}\}\$

 $T(\Omega) \subseteq \Omega \checkmark$, Ω' -compatible \checkmark

La única hipótesis que queda es $\Omega' \subseteq \Omega$. Además, si $\Omega' \subseteq \Omega_p$ puedo invertir las 2-cells y tachar el "op".

Teorema: Sea $\Sigma \subseteq \operatorname{Fl}(\mathcal{A})$, $\Omega, \Omega' \subseteq 2\text{-cells}(\mathcal{K})$. Si $T(\Omega) \subseteq \Omega$ y $\Omega' \subseteq \Omega$, entonces $T-Ala^{\Omega'} \xrightarrow{U} \mathcal{K}$ crea σ - ω -oplimites Ω' -compatibles.

la prueba sique las ideas de la diapositiva anterior.

Deducimos el resultado para límites con peso pues estos se pueden expresar como σ - ω -límites.

El caso $\Omega, \Omega' \in \{\Omega_{\ell}, \Omega_{p}, \Omega_{s}\}\$

 $T(\Omega) \subseteq \Omega \checkmark$, Ω' -compatible \checkmark

La única hipótesis que queda es $\Omega' \subseteq \Omega$. Además, si $\Omega' \subseteq \Omega_p$ puedo invertir las 2-cells y tachar el "op".

• (con $\Omega = \Omega' = \Omega_s$) T-Al $q_s \xrightarrow{U} \mathcal{K}$ crea todos los límites.

Teorema: Sea $\Sigma \subseteq \operatorname{Fl}(\mathcal{A})$, $\Omega, \Omega' \subseteq 2\text{-cells}(\mathcal{K})$. Si $T(\Omega) \subseteq \Omega$ y $\Omega' \subseteq \Omega$, entonces $T-Alg^{\Omega'} \xrightarrow{U} \mathcal{K}$ crea σ - ω -oplimites Ω' -compatibles.

la prueba sique las ideas de la diapositiva anterior.

Deducimos el resultado para límites con peso pues estos se pueden expresar como σ - ω -límites.

El caso $\Omega, \Omega' \in \{\Omega_{\ell}, \Omega_{p}, \Omega_{s}\}\$

 $T(\Omega) \subseteq \Omega \checkmark$, Ω' -compatible \checkmark

La única hipótesis que queda es $\Omega' \subseteq \Omega$. Además, si $\Omega' \subseteq \Omega_p$ puedo invertir las 2-cells y tachar el "op".

- (con $\Omega = \Omega' = \Omega_s$) T-Al $q_s \xrightarrow{U} \mathcal{K}$ crea todos los límites.
- (con $\Omega = \Omega' = \Omega_n$) T-Al $q_n \xrightarrow{U} \mathcal{K}$ crea σ -límites (en particular lax y pseudolímites).

Teorema: Sea $\Sigma \subseteq \operatorname{Fl}(\mathcal{A})$, $\Omega, \Omega' \subseteq 2\text{-cells}(\mathcal{K})$. Si $T(\Omega) \subseteq \Omega$ y $\Omega' \subseteq \Omega$, entonces $T\text{-}Alg^{\Omega'} \xrightarrow{U} \mathcal{K}$ crea $\sigma\text{-}\omega\text{-oplimites }\Omega'\text{-compatibles}$.

la prueba sigue las ideas de la diapositiva anterior.

Deducimos el resultado para límites con peso pues estos se pueden expresar como $\sigma\text{-}\omega\text{-}\text{límites}.$

El caso $\Omega, \Omega' \in {\Omega_{\ell}, \Omega_p, \Omega_s}$

 $T(\Omega) \subseteq \Omega \checkmark$, Ω' -compatible \checkmark

La única hipótesis que queda es $\Omega' \subseteq \Omega$. Además, si $\Omega' \subseteq \Omega_p$ puedo invertir las 2-cells y tachar el "op".

- (con $\Omega = \Omega' = \Omega_s$) T-Alg_s $\stackrel{U}{\longrightarrow} \mathcal{K}$ crea todos los límites.
- ② (con $\Omega = \Omega' = \Omega_p$) T- $Alg_p \xrightarrow{U} \mathcal{K}$ crea σ -límites (en particular lax y pseudolímites).
- (con $\Omega = \Omega' = \Omega_{\ell}$) T-Alg $_{\ell} \xrightarrow{U} \mathcal{K}$ crea oplax limites.

Gracias!

Referencias

[BKP,89] Blackwell R., Kelly G. M., Power A.J., Two-dimensional monad theory, JPAA 59.

[Gray,74] Gray J. W., Formal category theory: adjointness for 2-categories, Springer LNM 391.

[Lack,05] Lack S., Limits for lax morphisms, ACS 13.

A general limit lifting theorem for 2-dimensional monad theory fue aceptado en JPAA, 2017 y está en arXiv.

Present and future work

- The 2-category $Hom_{\sigma,\omega}(F,G)$ as a 2-category of weak morphisms.
- More examples like that one, in which Ω is not one of $\Omega_{\ell,p,s}$ (may arise from weak equivalences?)
- Bilimit lifting (projections probably won't be strict).
- Other results from 2-dimensional monad theory (flexibility, biadjunctions).