Differential Equations

Cauchy Euler Differential Equations:

$$\frac{\alpha x^n d^n}{dx^n} \frac{y + \alpha_{n-1} x^{n-1} d^{n-1}}{dx^{n-1}} \frac{y \dots + \alpha_1 x d y + \alpha_0 y = 0}{dx}$$

$$\frac{x^2 d^2 y + x' d' y + y = 0}{dx^2}$$

Solution:

$$x.D = M$$

$$\chi^{2}.0^{2} = m(m-1)$$

$$\chi^3. D^3 = m(m-1)(m-2)$$

$$x^4.0^4 = m(m-1)(m-2)(m-3)$$

HEROPREMIUM

$\frac{\chi^2 d^2 y + 7\chi d y + 5y = \chi^5}{d\chi^2}$	let x = et
dr ² dr	lnx=t
$(x^2 D^2 + 7xD + 5) y = (e^t)^5$	<u>d</u> = 0.
$(m(m-1)+7m+5)y=e^{5t}$	dk
$(m^2 - m + 7m + 5) y = e^{5t}$	χ.D=m
$(m^2 + 6m + 5)y = e^{5t} \rightarrow equ(A)$	$\chi^{2}.0^{2}=m(m-1)$
(m2+6m+5) is an Auxilary Equation, so	
$m^2 + 6m + 5 = 0$	Q
	•
m(m+1)+s(m+1)=0	i nula si d
(m+1)(m+5) = 0	
m=-1, $m=-5$ [Roots are Real	2 & Distinct)
$y_{e} = C_{1}e^{-t} + C_{2}e^{-5t}$	
as equ(A) is	
$(m^2+6m+5) Y = e^{5+}$	7 (
So $y = \frac{1}{1 - (e^{5t})}$ This w	in for only
m2+6m+5 expone	ents like x5
$y_{p} = \frac{e^{5t}}{5^{3}} = \frac{e^{5t}}{65}$	2
5 ² +6(5)+5 60	
y = yc + yp	
$y = c_1 e^{-t} + c_2 e^{-5t} + \frac{e^{5t}}{c_1}$	
Re-substitution	
$y = c_1(e^t)^{-1} + c_2(e^t)^{-5} + \frac{(e^t)^5}{60}$	
$y = c_1 x^{-1} + c_2 x^{-5} + x^{5}$	
$V - C_1 + C_2 + \frac{\chi^5}{2}$	
$\frac{y = \frac{c_1 + \frac{c_2}{x^2} + \frac{\lambda}{60}}{x^2}$	HERO

3	0 0 0 0 0 0 0	Date:
1	$2 \frac{\chi^2 d^2}{dx^2} y - 2x \frac{d}{dx} y - 4y = x^4$	let x=e ^t
2	dx2 dx	lnx=t
9	$(x^2.0^2 - 2\pi.0 - 4)y = x^4$	d = D
9	$(m(m-1)-2m-4)y = e^{4t}$	dx $x \cdot D = m$
,	$(m^2 - m - 2m - 4) y = e^{4t}$	$\chi^{2} \cdot D^{2} = m(m-1)$
3	$\left(m^2 - 3m - 4\right)y = e^{4t} \rightarrow equ(1)$	
9	(m²-3m-4) is an auxilary Equation, so	
A	$m^2 - 3m - 4 = 0$	
9	$m^2 + m - 4m - 4 = 0$	
3	m (m+1)-4(m+1)=0	
<u> </u>	(m+1)(m-4)=0	
	M=-1, $M=4$ [Roots are real &	Distinct)
9	$So_2 y = C_1 e^{4t} + C_2 e^{-t}$	
5	As equ(1) is	
	$(m^2 - 3m - 4)y = e^{4t}$	yp = e4t 42-3(4)-4
Ch.	y = 1 (e ^{4t}) : $m = 4$	
٥	$y_p = \frac{1}{m^2 - 3m - 4} \frac{(e^{4t})}{m^2 + 3m - 4}$: $m = 4$	$y_{p} = \frac{e^{4t}}{16-16} = \infty$
	As $y_p = \infty$ after putting value of m in	·
_	an untion 250	yp = undefined.
	y - (e4t)(t)> [Multiply with eet"]	
-	2m-3 - (take derivative of Eq	uoction
	yp = t.e4t = t.e4t :. ~	n= 4
2	yρ = t.e4t = t.e4t	
)	Gieneral Solution	
	$y = y_c + y_p$	
,	y = C, e4+ C2e-+ + + + e4+	
)	$y = C_1 e^{4t} + C_2 e^{-t} + \pm \cdot e^{4t}$ $y = c_1 (e^t)^4 + C_2 (e^t)^{-1} + \pm \cdot (e^t)^{\frac{1}{2}}$	
	2	
,	$y = c_1 x^4 + \frac{c_2}{2} + \ln x \left(x^4\right)$	
	7 5	

HERO PREMIUM

$3) \chi^2 d^2 y + \chi d y + 4y = \sin(\theta)$	9 x2			
dx' dx	let x=et			
$[\chi^2 D^2 + \chi D + 4] y = \sin(2 \log \chi)$	$\log x = t$			
[m(m-1) + m+4]y = sin(2t)	0 = D			
$(m^2-m+m+4)y = \sin(2t)$	dx x.D=M			
	$\chi^2.D^2 = m(m-1)$			
m2+4=0 (Auxilary Equation)				
$m = 0 \pm 2i$				
	25 in Bt			
$Y_c = e^{0x} (c_1 \cos 2t + c_2 \sin 2t)$				
$y_c = C_1 \cos 2t + C_2 \sin 2t$	~ ↑			
As $eq.u(1)$ is	y = sin2t			
$\frac{m^2+4]y = \sin(2t)}{m^2+4}$				
$\frac{y_p = \frac{\sin(2t)}{m^2 + 4}}$	$As = m^2 = -\alpha^2$			
	we can only put			
As $y_p = \infty$ after putting value of "m2"	value of m2 in equ			
So , $y_p = t sin 2t$	like yp = sin2t			
(Method 1) 2 m				
$\frac{y_{p}=\left(\frac{t}{2}\right)\left(\frac{1}{m}\right)\sin 2t}{n}$	$\forall p = \infty$			
$\frac{y_{-} + (\int \sin 2t)}{2\pi} : m = D = \frac{d}{dx}, \frac{1}{m} = \int$	Method(2)			
$\frac{y}{y} = \left(\frac{t}{2}\right)\left(\frac{-\cos 2t}{2}\right)$	$y_p = \left(\frac{\pm}{2}\right) \left(\frac{1}{m}\right) \sin 2t$			
$\frac{y_p = -t \cdot \cos 2t}{u}$	$\frac{y_{p}=(\frac{t}{2})(\frac{1}{m^{2}}) \text{ m sin 2t}}{(t)(1) \text{ of cin 2t}}$			
General Solution	$y_{p} = \left(\frac{\pm}{2}\right)\left(\frac{1}{-4}\right)\frac{d}{dx}\sin 2t$ $y_{p} = -\frac{\pm}{8}\cos 2t (2)$			
V = (, (052t +C, 511)2t = 5000				
y = c, cos2 (logx)+C2 sin2(logx) - logx (cos2(logx))				
Y= C1 cos(log x2) + C2 sin(log x2) - logx [cos(log x2)]				
J= C CO3(CO3/C) 7 - 100/20	Ц			
	HERO			

(4) x^3 d^3	2 ./2		
4 × 4 × 2	$2x^2\frac{d^2}{dx^2}y + 2y = 1$	0x+10	let x = e ^t
O.K.	ax-		$\ln x = t$
$(x^3.D^3 + 2x^2.1$	$y^2 + 2 y = 10e^t +$	10e-t	d/dx = D
	m(m-1)+2) y = 10e1		$\chi.D = m$
$\int m^3 - 3m^2 + 2m +$	$2m^2-2m+2$)y = 10	et+10e-t	$\chi^2 \cdot D^2 = m(m-1) = m^2 - m$
$(m^3 - m^2 + 2)v =$	10e+10e+ → e	20.4/(1)	$x^3 \cdot D^3 = m(m-1)(m-2)$
	O [Auxilary Eq		$= (m^2 - m)(m - 2)$
	(Roots are real & i		$= m^3 - 2m^2 - m^2 + 2m$
	$e^{t}[C_{2}cost + C_{3}sint]$		$= m^3 - 3m^2 + 2m$
As eq. U(1)	(250364 6351116)I	= 111 - 5111 + 2111
$[m^3-m^2+2]y = 106$	t + 100-t		
$y_{\rho} = \frac{10e^{t}}{10e^{t}}$	+100-1		
yr - m	$3-m^2+2$		
v net			
$y_p = \frac{10et}{m^3 - m^2}$	+2 m3-m2+	2	
		5.1	
$y_p = \frac{10e^t}{(1)^3 - (1)^2 + 6}$	$\frac{1}{2}$ $3m^2-2m$	- This po	art give a after putting
	5111 - 2	deri	e of "m" so, we take vative of equation
yρ = 10 e++	36)2-26)		
yρ = 5et + 2te	5-F		
General sol	otion		
y = y = +	Jp.		
y = C e + et [C , c	ost + C3 sint) + 5e	t + 2te-t	
y = Ci + pt [cac	ost + c3 sint) + 50	et + 2t	: Pnx=t
et		et	
y = 61 + x(c. c.	os(lnx) + cz sin(l	nx) + $5x$	+ 2 lnx
x		1)	26
Y= 61 + C- x 6	cos((nx)+ (3 x si	n(knx)+	Sx + lnx2
X			76