CHAPITRE 20

Fractions rationnelle

Table des matières

Ι	Construction de $\mathbb{K}(X)$	2
II	Décomposition en éléments simples	6

Première partie $\label{eq:construction} \mbox{Construction de } \mathbb{K}(X)$

Proposition Définition

On définit la relation $\sim \text{sur } \mathbb{K}[X] \times (\mathbb{K}[X] \setminus \{0\})$ par

$$(P,Q) \sim (A,B) \iff PB = QA$$

Cette relation est une relation d'équivalence. On note $(\mathbb{K}[X] \times (\mathbb{K}[X] \setminus \{0\}))/_{\sim}$. Les éléments de $\mathbb{K}(X)$ sont appelés <u>fractions rationnelles</u>.

On note $\frac{P}{Q}$ la classe d'équivalence du couple (P,Q).

Proposition

Soient $(P,Q) \in \mathbb{K}[X] \times (\mathbb{K}[X] \setminus \{0\})$ et $R \in \mathbb{K}[X] \setminus \{0\}$. Alors

$$\frac{PR}{QR} = \frac{P}{Q}$$

Definition

Soit $(P,Q) \in \mathbb{K}[X] \setminus (\mathbb{K}[X] \setminus \{0\})$. On dit que la fraction $\frac{P}{Q}$ est sous forme irréductible si $P \wedge Q = 1$.

Proposition Définition

Soient $(P,Q) \sim (A,B)$. Alors

$$\deg(P) - \deg(Q) = \deg(A) - \deg(B)$$

Le <u>degré</u> de $\frac{P}{Q}$ est $\deg(P) - \deg(Q)$. On note ce "nombre" $\deg\left(\frac{P}{Q}\right)$.

Proposition Définition

Soient $(P,Q) \sim (A,B)$ et $(R,S) \sim (C,D)$. Alors, $(PR,QS) \sim (AC,BD)$. Le <u>produit</u> de $\frac{P}{Q}$ avec $\frac{R}{S}$ est $\frac{PR}{QS}$

Proposition Définition

Avec les notations précédentes,

$$(PS+RQ,QS)\sim (AD+BC,BD)$$

On définit la somme de $\frac{P}{Q}$ et $\frac{R}{S}$ par

$$\frac{P}{Q} + \frac{R}{S} = \frac{PS + RQ}{QS}$$

I

Théorème

$$(\mathbb{K}(X), +, \times)$$
 est un corps.

Proposition

$$\forall P, A \in \mathbb{K}[X], \forall Q \in \mathbb{K}[X] \setminus \{0\}, \qquad \frac{P}{Q} + \frac{A}{Q} = \frac{P+A}{Q}$$

Proposition

$$i: \begin{array}{ccc} \mathbb{K}[X] & \longrightarrow & \mathbb{K}(X) \\ P & \longmapsto & \frac{P}{1} \end{array} \quad \text{est un morphisme d'anneaux injectif.}$$

Definition

Soient
$$\lambda \in \mathbb{K}$$
 et $F = \frac{P}{Q} \in \mathbb{K}(X)$. On pose

$$\lambda F = \frac{\lambda P}{Q} = \frac{\lambda}{1} \times \frac{P}{Q}$$

Proposition

$$\left(\mathbb{K}(X),+,\cdot\right) \text{ est un } \mathbb{K}\text{-espace vectoriel et } i: \begin{array}{ccc} \mathbb{K}[X] & \longrightarrow & \mathbb{K}(X) \\ P & \longmapsto & \frac{P}{1} \end{array} \text{ est linéaire.}$$

Remarque

On peut identifier
$$P \in \mathbb{K}[X]$$
 avec $\frac{P}{1} \in \mathbb{K}(X)$ i.e. écrire $P = \frac{P}{1}$ et alors $\left\{\mathbb{K}[X] \text{ est un sous-anneau de } \mathbb{K}(X) \right\}$ $\left\{\mathbb{K}[X] \text{ est un sous-espace vectoriel de } \mathbb{K}(X) \right\}$ De plus, les deux définitions de degré coïncident.

Proposition

Soit
$$F, G \in \mathbb{K}(X)$$
.

1.
$$\deg(F+G) \leq \max(\deg F, \deg G)$$

Si $\deg(F) \neq \deg(G)$ alors $\deg(F+G) = \max(\deg F, \deg G)$;

2.
$$deg(FG) = deg(F) + deg(G)$$
:

4

3. Si
$$F \neq 0$$
, deg $\left(\frac{1}{F}\right) = -\deg(F)$.

Deuxième partie Décomposition en éléments simples

Définition Lemme

$$\forall F \in \mathbb{K}(X), \exists ! (E,G) \in \mathbb{K}[X] \times \mathbb{K}(X), \begin{cases} F = E + G \\ \deg(G) < 0 \end{cases}$$

On dit que E est la partie entière de F.

Lemme

Soit
$$F = \frac{P}{AB}$$
 avec
$$\begin{cases} (P,A,B) \in \mathbb{K}[X]^3; \\ A \neq 0; B \neq 0; \\ A \wedge B = 1; \deg F < 0. \end{cases}$$

Alors,

$$\exists ! (U,V) \in \mathbb{K}[X]^2, \begin{cases} F = \frac{U}{A} + \frac{V}{B} \\ \deg\left(\frac{U}{A}\right) < 0 \text{ et } \deg\left(\frac{V}{R}\right). \end{cases}$$

Lemme

Soit $H \in \mathbb{K}[X]$ irréductible, $n \in \mathbb{N}_*$, $P \in \mathbb{K}[X]$, $F = \frac{P}{H^n}$ et deg F < 0. Alors,

$$\begin{cases} \exists ! (U, V) \in \mathbb{K}[X]^2, F = \frac{U}{H^n} + \frac{V}{H^{n-1}}; \\ \deg U < \deg H; \\ \deg \left(\frac{V}{H^{n+1}}\right) < 0. \end{cases}$$

Théorème

Théorème de décomposition en éléments simples sur $\mathbb C$

Soit $F \in \mathbb{K}(X)$, $F = \frac{P}{Q}$ la forme irréductible de F. On note (z_1, \ldots, z_p) les racines complexes de Q et (μ_1, \ldots, μ_p) leur multiplicité. Alors,

$$\exists ! (E, a_{1,1}, \dots, a_{1,\mu_1}, a_{2,1}, \dots, a_{2,\mu_2}, \dots, a_{p,1}, \dots, a_{p,\mu_p}) \in \mathbb{C}[X] \times \mathbb{C}^{\deg Q},$$

$$F = E + \sum_{i=1}^{p} \left(\sum_{j=1}^{\mu_i} \frac{a_{i,j}}{(X - z_i)^j} \right).$$