Aufgabe 35

 $g=1-e^{2\pi i \frac{1}{x}}$ ist holomorph auf \mathbb{C}^{\times} als Komposition holomorpher Funktionen. Es gilt

$$1 - e^{2\pi i \frac{1}{n}} = 1 - e^{2\pi i n} = 1 - e^{0} = 0 \qquad \forall n \in \mathbb{N}.$$

Das ist allerdings kein Widerspruch zum Identitätssatz, da \mathbb{C}^{\times} kein Gebiet ist.

Aufgabe 36

Sei zunächst $N=\{z\in\mathbb{C}|f(z)=0\}$. Wir betrachten nun die Funktion $h(z)=\frac{|g(z)|}{|f(z)|}$. h ist also holomorph und beschränkt (wegen $|g(z)|\leq |f(z)|$) für alle $z\in\mathbb{C}\setminus N$. Besitzt N einen Häufungspunkt, so ist nach Identitätssatz $f\equiv 0$ und daher $g\equiv 0=0\cdot f$. Hat N hingegen keinen Häufungspunkt, so gibt es zu jedem Punkt $z_0\in N$ eine offene Kreisscheibe $K_r(z_0)$ mit Radius r, in der kein anderer Punkt aus N liegt. Auf $K_r(z_0)$ ist nun h beschränkt und holomorph, sodass sich h analog zu Aufgabe 24c auf $K_r(z_0)$ holomorph und insbesondere stetig fortsetzen lässt. Damit ist $h(z_0)$ ebenfalls ≤ 1 . Dies lässt sich für alle $z_0\in N$ durchführen und somit erhalten wir, dass h sich auf ganz $\mathbb C$ holomorph fortsetzen lässt und dabei immer noch durch 1 beschränkt bleibt. Nach dem Satz von Liouville ist also $h\equiv c$ konstant. Also ist $\forall z\in\mathbb C\setminus N: g=c\cdot f$. Für alle $z\in N$ gilt $g(z)=0=c\cdot 0=c\cdot f(z)$, da $g(z)\leq f(z)=0$.