Computer Vision Project

Daniel Paredes

Outline

- Introduction
- Feature Detectors and Descriptors
 - Harris + FREAK
 - SURF
- RANSAC
- Pose Estimation
 - Fundamental Matrix
 - Essential Matrix
 - Triangulation
- Results / Conclusions

Feature Points

Feature Points — Match Points

Feature Detectors

[http://hristoalexiev.blogspot.com]

HarrisCorner Detector

SURF detectorBlob detector

Feature Detectors + Feature Descriptors

1	1	→	<i>†</i>	†	×	1	*
*	×	K	1	K	4	*	1
1	1	1	+	+	1	1	×
1	-	1	~	K	†	1	+
\	1	×	×	K	×	×	→
†	←	K	+	K	+	†	†
†	~	K	×	1	K	<i>†</i>	*
K	*	1	+	*	K	†	K

[http://hristoalexiev.blogspot.com]

[FREAK-Alahi.2012]

Harris
Corner
Detector

FREAK:
Feature
Descriptor

SURF: Feature Detector and Descriptor

Harris Corner Detector + FREAK

[http://hristoalexiev.blogspot.com]

Harris Corner Detector

Detects points, in which the gradient changes in two orthogonal directions

[http://hristoalexiev.blogspot.com]

HarrisCorner Detector

Five steps:

- 1. Color to grayscale
- 2. Spatial derivative calculation
- 3. Structure tensor setup
- 4. Harris response calculation
- 5. Non-maximum suppression

2. Image gradients:

$$I_x = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix} * I$$

$$I_y = \begin{vmatrix} -1\\0\\1 \end{vmatrix} * I$$

3. Structure tensor setup

$$M = \sum_{(x,y) \in W} egin{bmatrix} I_x^2 & I_x I_y \ I_x I_y & I_y^2 \end{bmatrix} = egin{bmatrix} \sum_{(x,y) \in W} I_x^2 & \sum_{(x,y) \in W} I_x I_y \ \sum_{(x,y) \in W} I_x I_y & \sum_{(x,y) \in W} I_y^2 \end{bmatrix}$$

4. Harris response calculation

$$R = det(M) - k(trace(M))^2 = \lambda_1\lambda_2 - k(\lambda_1 + \lambda_2)^2$$
 $k \in [0.04, 0.06]$

 λ_1 , λ_2 are the eigenvalues of M

4. Harris response calculation

- 4. Non-maximum suppression
 - Filter to find the maximum values within a window of size W
 - Several points with R>0 can be very close

+

[http://hristoalexiev.blogspot.com]

HarrisCorner Detector

[FREAK-Alahi.2012]

FREAK: Feature Descriptor

Sampling Pattern

Paired Points:

- Discard correlated
 Points
- Maximizing variance of pairs

$$F = \sum_{0 \le a < N} 2^a T(P_a)$$

$$T(P_a) = \begin{cases} 1 & \text{if } (I(P_a^{r_1}) - I(P_a^{r_2}) > 0, \\ 0 & \text{otherwise,} \end{cases}$$

Descriptor of size N, with P_a pairs

SURF

 $\mathbf{x} = (x,y)$ is a point in an image I. The Hessian is given by:

$$\mathcal{H}(\mathbf{x},\sigma) = \begin{bmatrix} L_{xx}(\sigma) & L_{xy}(\sigma) \\ L_{yx}(\sigma) & L_{yy}(\sigma) \end{bmatrix} * \mathcal{I}$$

$$\begin{bmatrix} L_{xx}(\sigma) & L_{xy}(\sigma) \\ L_{yx}(\sigma) & L_{yy}(\sigma) \end{bmatrix}$$

[SURF-Bay.2008]

a)
$$\mathsf{L}_{\mathsf{x}\mathsf{y}}$$

$$\begin{bmatrix} L_{xx}(\sigma) & L_{xy}(\sigma) \\ L_{yx}(\sigma) & L_{yy}(\sigma) \end{bmatrix}$$

Approximation!

[SURF-Bay.2008]

a)
$$\mathsf{D}_{\mathsf{x}\mathsf{y}}$$

Candidates: $det(H) = D_{xx}D_{yy} - (0.9D_{xy})^2$

3D Non-maximum suppression

Haar Wavelet Filters

For each detected feature

- 1 Interested Area
- Divided 4x4 Sub-areas

Example: SURF

Feature Detector

Feature Descriptor

Comparison: Harris-FREAK vs SURF

LENA - Rotation and Scaling

ROOFS - Perspective

BUILDING - Rotation

Number of features

	Lena	Roof	Building
SURF	521	1557	109
	306	1061	130
Harris +	362	2124	274
FREAK	263	1646	274

Matched Features

	Lena	Roof	Building
SURF	79	135	72
Harris + FREAK	34	77	135

Time in sec

	Lena	Roof	Building
SURF	0.1206	0.1020	0.0222
	0.0555	0.0767	0.0244
Harris +	0.2472	0.2225	0.0938
FREAK	0.1326	0.1873	0.0907

- SURF is faster
- Harris detects more features
- SURF get more matches

RANSAC

RANSAC

Refinement of matching points

- 1. Select a random subset of the original data.
- 2. Model fitting with subset Least Squares Regression
- 3. Test Model with full data Get number of Inliers
- 4. If the number of inliers < threshold, keep trying

RANSAC - Homography

RANSAC - Homography

$$\begin{bmatrix} 0 & 0 & 0 & -u_1 & -v_1 & -1 & v_1'u_1 & v_1'v_1 & v_1' \\ u_1 & v_1 & 1 & 0 & 0 & 0 & -u_1'u_1 & -u_1'v_1 & -u_1' \\ 0 & 0 & 0 & -u_2 & -v_2 & -1 & v_2'u_2 & v_2'v_2 & v_2' \\ u_2 & v_2 & 1 & 0 & 0 & 0 & -u_2'u_2 & -u_2'v_2 & -u_2' \\ \vdots & \vdots \end{bmatrix} \begin{bmatrix} h_1 \\ h_2 \\ h_3 \\ h_4 \\ h_5 \\ h_6 \\ h_7 \\ h_8 \\ h_9 \end{bmatrix}$$

 $A\mathbf{h} = \mathbf{0}$

RANSAC

- 1. Random subset At least 4 Point
- 2. Model fitting: minimize | Ah 0 |

Solution: SVD(A) = USV^T, h =
$$v_9$$

3. Inliers: all points such that

dist(
$$u'$$
, uH_{est}) + dist(u , $H^{-1}u'$) > threshold

4. If the number of inliers < threshold, keep trying

RANSAC: Pre match - SSD

287 Points

296 Points

180 Matches

RANSAC:

287 Points

296 Points

91 Matches

Pose Estimation

- It maps points in image 1 to lines in image 2
- Encapsulates the geometry between two views
- Require any knowledge of the camera's internal parameter

$$\begin{bmatrix} x_i' & y_i' & 1 \end{bmatrix} \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix} = 0$$

$$\begin{bmatrix} x_i' & y_i' & 1 \end{bmatrix} \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix} = 0$$

How do we find **F**?

Given m point correspondences...
$$\begin{bmatrix} x_1x'_1 & x_1y'_1 & x_1 & y_1x'_1 & y_1y'_1 & y_1 & x'_1 & y'_1 & 1 \\ \vdots & \vdots \\ x_mx'_m & x_my'_m & x_m & y_mx'_m & y_my'_m & y_m & x'_m & y'_m & 1 \end{bmatrix} \begin{bmatrix} f_{11} \\ f_{21} \\ f_{31} \\ f_{12} \\ f_{22} \\ f_{32} \\ f_{13} \\ f_{23} \\ f_{33} \end{bmatrix} = 0$$
 The Eight Point Algorithm

The Eight Point Algorithm

$$Af = 0$$

The Eight Point Algorithm

min ||
$$Af ||^2$$
 such that || $f ||^2 = 1$

Solution: SVD(A) = USV^T, $f = v_9$

```
F = \begin{bmatrix}
-0.0000 & 0.0000 & -0.0125 \\
-0.0000 & -0.0000 & 0.0190 \\
0.0150 & -0.0177 & -0.9995
\end{bmatrix}
ans = \begin{bmatrix} X_2^T F X_1 = 0 \end{bmatrix}
```

-1.4948e-04

$$x = PX$$
 P=K[R|t]

$$x = PX$$
 $P = K[R|t]$

$$\mathbf{K} = \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \text{Left sensor} \\ \text{fx} & 1398.41 \\ \text{fy} & 1398.41 \\ \text{cx} & 923.113 \\ \text{cy} & 550.247 \end{bmatrix}$$

$$\begin{bmatrix} \text{Right sensor} \\ \text{fx} & 1401.62 \\ \text{fy} & 1401.62 \\ \text{cx} & 944.482 \\ \text{cy} & 548.772 \end{bmatrix}$$

$$\mathbf{x} = P\mathbf{X}$$
 $\mathbf{P} = \mathbf{K} [\mathbf{R} | \mathbf{t}]$
 $\mathbf{E} = \mathbf{K}_2^{\mathsf{T}} \mathbf{F} \mathbf{K}_1$

Relates normalized image points

$$\mathbf{x} = P\mathbf{X}$$
 $\mathbf{P} = \mathbf{K} [\mathbf{R} | \mathbf{t}]$ $\mathbf{K}^{-1}\mathbf{x} = [\mathbf{R} | \mathbf{t}] \mathbf{X}$
 $\mathbf{x}' = [\mathbf{R} | \mathbf{t}] \mathbf{X}$
 $\mathbf{x}' = [\mathbf{R} | \mathbf{t}] \mathbf{X}$
 $\mathbf{x}' = \mathbf{P}' \mathbf{X}$

Relates normalized image points
 Normalized image coordinates have the origin at the optical center of the image

The Essential Matrix for a pair of cameras of the form:

$$P'_1 = [10] \text{ and } P'_2 = [Rt]$$

$$E = [t]_x R = SR$$

$$S = \begin{bmatrix} 0 & -t_z & t_y \\ t_z & 0 & -t_x \\ -t_y & t_x & 0 \end{bmatrix}$$

$$\mathsf{E} = [\mathsf{t}]_{\mathsf{x}} \mathsf{R} = \mathsf{SR} \qquad W = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \ Z = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

If
$$[U,\sim,V] = \text{svd}(E)$$

 $S_1 = -UZU^T$, $S_2 = -S_1$
 $R_1 = -UW^TV^T$, $R_2 = UWV^T$

$$E = [t]_x R = SR$$

There are 4 possible solutions for P_2 '

$$P_2' = [R_1 \ t]$$

$$P_{2}' = [R_{1} - t]$$

$$P_{2}' = [R_{2} t]$$

$$P_2' = [R_2 - t]$$

$$E = [t]_x R = SR$$

There are 4 possible solutions for P_2 '

$$P_{2}' = [R_{1} t]$$

$$P_{2}' = [R_{1} - t]$$

$$P_{2}' = [R_{2} t]$$

$$P_2' = [R_2 - t]$$

We have to test them all!!

Recall:

$$\mathbf{X}_1 = \mathbf{P}_1 \mathbf{X}$$

$$\mathbf{x_1} = P_1 X$$

 $\mathbf{x_2} = P_2 X$

Recall:

$$\mathbf{x_1} = \mathbf{P_1} \mathbf{X}$$

$$\mathbf{x_2} = \mathbf{P_2} \mathbf{X}$$

$$P_i = \begin{bmatrix} p_i^{1T} \\ p_i^{2T} \\ p_i^{3T} \end{bmatrix}$$

$$P_{i} = \begin{bmatrix} p_{i}^{1T} \\ p_{i}^{2T} \\ p_{i}^{3T} \end{bmatrix} \qquad \begin{bmatrix} x_{1}p_{1}^{3T} - p_{1}^{1T} \\ y_{1}p_{1}^{3T} - p_{1}^{2T} \\ x_{2}p_{2}^{3T} - p_{2}^{1T} \\ y_{2}p_{2}^{3T} - p_{2}^{2T} \end{bmatrix} \mathbf{X} = 0$$

Solve: AX = 0

Solution: SVD(\mathbf{A}) = USV^T, X = $\mathbf{v}_{\mathbf{A}}$

Recall:

$$\mathbf{x_1} = \mathbf{P_1} \mathbf{X}$$

$$\mathbf{x_2} = \mathbf{P_2} \mathbf{X}$$

$$P_i = egin{bmatrix} p_i^{1T} \\ p_i^{2T} \\ p_i^{3T} \end{bmatrix}$$

$$P_{i} = \begin{bmatrix} p_{i}^{1T} \\ p_{i}^{2T} \\ p_{i}^{3T} \end{bmatrix} \begin{bmatrix} x_{1}p_{1}^{3T} - p_{1}^{1T} \\ y_{1}p_{1}^{3T} - p_{1}^{2T} \\ x_{2}p_{2}^{3T} - p_{2}^{1T} \\ y_{2}p_{2}^{3T} - p_{2}^{2T} \end{bmatrix} \mathbf{X} = 0$$

For each point!

Solve: AX = 0

Solution: SVD(\mathbf{A}) = USV^T, X = $\mathbf{v}_{\mathbf{A}}$

X-Y view

X-Y view

Conclusions:

- Feature detection is important, but feature description is critical

Scaling, rotation, translation, and other transformations Matching is based on feature descriptors

- Computational Expensive: SVD
- It's a recipe: Implementation is straightforward

Questions?