5. (George and Joe) Show that if A is real, square and invertible, then the QR factorization is unique apart from a diagonal scaling by factors of ± 1 . That is, if $A = Q_1R_1 = Q_2R_2$ with Q_1, Q_2 orthogonal, R_1, R_2 upper triangular, then there is a diagonal matrix D with the diagonal entries ± 1 , where $Q_2 = Q_1D$ and $DR_2 = R_1$. In particular, show that if the diagonal entries of R_1, R_2 are all positive, then $Q_1 = Q_2$ and $R_1 = R_2$.

We have

$$Q_{1}R_{1} = Q_{2}R_{2}$$

$$\Rightarrow R_{1} = Q_{1}^{T}Q_{2}R_{2}$$

$$\Rightarrow Q_{1}^{T}Q_{2} = R_{1}R_{2}^{T}$$

Since the product of upper triangular matrices is upper triangular, $\tilde{D} := Q_1^T Q_2$ is upper triangular. We also have

$$\widetilde{D}\widetilde{D}^{T} = Q_{1}^{T}Q_{2}\left(Q_{1}^{T}Q_{2}\right)^{T}$$

$$= Q_{1}^{T}Q_{2}Q_{2}^{T}Q_{1}$$

$$= I$$

This means \tilde{D} is also orthogonal, and $\tilde{D}^T = \tilde{D}^{-1}$. The LHS is lower triangular. The RHS is upper triangular has the inverse of an upper triangular matrix is upper triangular). This forces \tilde{D}^T , and therefore \tilde{D}^T , to be diagonal. The combination of being real, diagonal, and orthogonal forces the entities of \tilde{D}^T to be ± 1 .

Now all of the desired equations hold if $D:=\widetilde{D}$. If everything is positive then $\widetilde{D}=\mathbf{I}$ and the equalities $Q_1=Q_2$ and $R_1=R_2$ follow immediately.