Crime Trends in Seattle

Anirudh Rao Karan Murthy Paromita Banerjee Shreya Agarwal

CRIME INDEX 3 (100 is safest) Safer than 3% of U.S. Cities

Month wise variation in crime:

About the data

- For crime and school data
- The crime data has ~81k rows with 19 columns
- School data has 116 rows with 11 columns

- For housing property data
- 99 rows with 73 columns

Data Cleaning

- > Used shape file to extract the neighborhoods for Latitude and Longitude.
- ➤ Multiple datasets joined by Neighborhood, hence common homogenizing the nomenclature.
- > Rows with NA values for the variables of interest have been removed.

Research questions

- 1. Does the increase in the number of schools in an area increase the occurrence of crimes in that area?
- 2. Does the time of the day correlate with the occurrence of assaults?
- 3. Does crime in a neighborhood correlate with its property value?
- 4. Are there any seasonal variations in the distribution of Crime?

Does the increase in the number of schools in an area increase the occurrence of crimes in that area?

H₀: The increase in the number of schools in an area does not increase the incidence of crimes in that area.

 H_A : The increase in the number of schools in an area increases the incidence of crimes in that area.

Linear Regression Model

Call: lm(formula = area_wise_school_crime\$count_crime ~ area_wise_school_crime\$Total_Schools)

Residuals:

Min 1Q Median 3Q Max -2439.8 -449.2 -96.5 189.0 9083.2

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -900.8 341.0 -2.642 0.0104 *
area_wise_school_crime\$Total_Schools 1281.6 160.2 8.001 3.94e-11 ***
--Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1430 on 62 degrees of freedom Multiple R-squared: 0.508, Adjusted R-squared: 0.5001 F-statistic: 64.02 on 1 and 62 DF, p-value: 3.942e-11

Multiple Regression Model

```
Call:
lm(formula = ml_join$count_crime ~ ml_join$Current + ml_join$count_school)
Residuals:
   Min
            10 Median
                          30
                                 Max
-2464.9 -416.3 9.0 171.6 8959.5
Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
(Intercept) -7.334e+02 6.635e+02 -1.105
                                                  0.274
ml_join$Current -4.403e-04 8.691e-04 -0.507 0.614
ml_join$count_school 1.350e+03 1.659e+02 8.137 3.21e-11 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1428 on 59 degrees of freedom
Multiple R-squared: 0.5316, Adjusted R-squared: 0.5158
F-statistic: 33.49 on 2 and 59 DF, p-value: 1.914e-10
```

Does the time of the day correlate with the occurrence of assaults?

 H_0 : Time of the day does not correlate with the occurrence of assaults H_A : Time of the day correlate with the occurrence of assaults

Assaults vs. Time of the day

Logistic Regression:

$$log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X_1$$

Response: Assault

Predictor: Time of day

```
crime_zillow_merged_df$Crime.Response <- rep(0, nrow(crime_zillow_merged_df))
crime_zillow_merged_df$Crime.Response[crime_zillow_merged_df$Summary.Offense.Code %in% c(1300)] <- 1
sub <- sample(nrow(crime_zillow_merged_df), (nrow(crime_zillow_merged_df) * 0.75))
training <- crime_zillow_merged_df[sub, ]
testing <- crime_zillow_merged_df[-sub, ]
> nrow(training)
[1] 44605
> nrow(testing)
[1] 14869
```

Model:

Assaults vs. Time of the Day

```
call:
glm(formula = training$Crime.Response ~ training$time_slots,
    family = "binomial", data = training)
Deviance Residuals:
    Min
             10 Median
                                       Max
-0.5859 -0.4451 -0.3999 -0.3841
                                    2.4151
Coefficients:
                                     Estimate Std. Error z value Pr(>|z|)
(Intercept)
                                     -1.81040
                                                0.07909 -22.889 < 2e-16 ***
training$time_slots1 PM to 2 PM
                                    -0.14935 0.10437 -1.431 0.152451
training$time_slots10 AM to 11 AM
                                                0.12210 -5.708 1.14e-08 ***
                                    -0.69692
training$time_slots10 PM to 11 PM
                                    -0.73300
                                                0.11293 -6.491 8.54e-11 ***
training$time_slots11 AM to 12 PM
                                    -0.42711
                                                0.11249 -3.797 0.000146 ***
training$time_slots11 PM to midnight -0.40097
                                                0.10930 -3.669 0.000244 ***
training$time_slots12 AM to 1 AM
                                    -0.87732
                                                0.11214 -7.823 5.14e-15 ***
                                                0.10813 -7.025 2.15e-12 ***
training$time_slots12 PM to 1 PM
                                     -0.75959
                                     0.13505
training$time_slots2 AM to 3 AM
                                                0.11304 1.195 0.232212
training$time_slots2 PM to 3 PM
                                    -0.47564
                                                0.10911 -4.359 1.31e-05 ***
training$time_slots3 AM to 4 AM
                                    -0.43712
                                                0.13935 -3.137 0.001708 **
training$time_slots3 PM to 4 PM
                                    -0.61009
                                                0.11108 -5.492 3.97e-08 ***
training$time_slots4 AM to 5 AM
                                    -1.05037
                                                0.18079 -5.810 6.25e-09 ***
                                    -0.42940
training$time_slots4 PM to 5 PM
                                                0.10712 -4.009 6.11e-05 ***
training$time_slots5 AM to 6 AM
                                    -0.16273
                                                0.13856 -1.174 0.240220
                                    -0.71449
training$time_slots5 PM to 6 PM
                                                0.10900 -6.555 5.57e-11 ***
training$time_slots6 AM to 7 AM
                                    -0.45185
                                                0.13818 -3.270 0.001076 **
training$time_slots6 PM to 7 PM
                                    -0.54479
                                                0.10556 -5.161 2.46e-07 ***
training$time_slots7 AM to 8 AM
                                    -0.67535
                                                0.13157 -5.133 2.85e-07 ***
training$time_slots7 PM to 8 PM
                                    -0.59261
                                                0.10885 -5.444 5.20e-08 ***
training$time_slots8 AM to 9 AM
                                    -0.88729
                                                0.13138 -6.754 1.44e-11 ***
training$time_slots8 PM to 9 PM
                                    -0.94417
                                                0.11473 -8.230 < 2e-16 ***
training$time_slots9 AM to 10 AM
                                    -0.74542
                                                0.12141 -6.140 8.28e-10 ***
training$time_slots9 PM to 10 PM
                                    -0.47552
                                                0.10452 -4.550 5.37e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 26207 on 44604 degrees of freedom
Residual deviance: 25953 on 44581 degrees of freedom
AIC: 26001
Number of Fisher Scoring iterations: 5
```

Assaults vs. Time of the Day

> auc(rr_assault) [1] 0.5725203

Assaults vs. Time of the day

Multiple Logistic Regression:

$$log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p$$

Response: Assault

Predictors: Time of day, Neighborhood

Model:

Assaults vs. Time of the Day

```
call:
glm(formula = training$Crime.Response ~ training$time_slots +
   training $Neighborhood, family = "binomial", data = training)
Deviance Residuals:
   Min
             10 Median
-0.8445 -0.4926 -0.3804 -0.2630
                                    3.3180
Coefficients:
                                         Estimate Std. Error z value Pr(>|z|)
(Intercept)
                                         -1.69377
                                                     0.14619 -11.586 < 2e-16 ***
training$time_slots1 PM to 2 PM
                                         -0.15968
                                                     0.10680 -1.495 0.134887
training$time_slots10 AM to 11 AM
                                         -0.77360
                                                     0.12421 -6.228 4.71e-10 ***
training$time_slots10 PM to 11 PM
                                         -0.64103
                                                     0.11499 -5.575 2.48e-08 ***
                                                     0.11483 -4.196 2.72e-05 ***
trainingStime_slots11 AM to 12 PM
                                         -0.48182
training$time_slots11 PM to midnight
                                         -0.36475
                                                     0.11141 -3.274 0.001060 **
training$time_slots12 AM to 1 AM
                                         -0.83064
                                                     0.11398 -7.287 3.16e-13 ***
training$time_slots12 PM to 1 PM
                                         -0.75215
                                                     0.11004 -6.835 8.20e-12 ***
training$time_slots2 AM to 3 AM
                                                     0.11553 1.175 0.240032
                                          0.13573
                                                     0.11147 -4.388 1.14e-05 ***
trainingStime_slots2 PM to 3 PM
                                         -0.48914
training$time_slots3 AM to 4 AM
                                         -0.32399
                                                     0.14209 -2.280 0.022599 *
training$time_slots3 PM to 4 PM
                                         -0.59311
                                                     0.11345 -5.228 1.71e-07 ***
training$time_slots4 AM to 5 AM
                                         -0.98471
                                                     0.18325 -5.374 7.72e-08 ***
training$time_slots4 PM to 5 PM
                                         -0.38962
                                                     0.10937 -3.562 0.000368 ***
training$time_slots5 AM to 6 AM
                                         -0.19000
                                                     0.14142 -1.343 0.179125
training$time_slots5 PM to 6 PM
                                         -0.68601
                                                     0.11118 -6.170 6.81e-10 ***
trainingStime slots6 AM to 7 AM
                                         -0.39658
                                                     0.14119 -2.809 0.004972 **
training$time_slots6 PM to 7 PM
                                         -0.51788
                                                     0.10781 -4.804 1.56e-06 ***
training$time_slots7 AM to 8 AM
                                         -0.69367
                                                     0.13395 -5.179 2.24e-07 ***
training$time_slots7 PM to 8 PM
                                         -0.51421
                                                     0.11111 -4.628 3.70e-06 ***
training$time_slots8 AM to 9 AM
                                         -0.87695
                                                     0.13339 -6.575 4.88e-11 ***
training$time_slots8 PM to 9 PM
                                         -0.86026
                                                     0.11681 -7.364 1.78e-13 ***
training$time_slots9 AM to 10 AM
                                         -0.75962
                                                     0.12352 -6.150 7.76e-10 ***
training$time_slots9 PM to 10 PM
                                         -0.45237
                                                     0.10674 -4.238 2.26e-05 ***
training$NeighborhoodAlki
                                         -0.50568
                                                     0.29291 -1.726 0.084279 .
training Neighborhood Arbor Heights
                                         -1.78740
                                                     0.72487 -2.466 0.013670 *
training$NeighborhoodBeacon Hill
                                         -1.13533
                                                     0.27534 -4.123 3.73e-05 ***
training$NeighborhoodBelltown
                                          0.34743
                                                     0.13683 2.539 0.011113 *
```

```
training $Neighborhood Olympic Hills
                                          -0.05521
                                                      0.20778 -0.266 0.790453
training$NeighborhoodPhinney Ridge
                                          -1.07295
                                                      0.30779 -3.486 0.000490 ***
training $NeighborhoodPinehurst
                                          -0.37805
                                                      0.18088 -2.090 0.036611 *
training $NeighborhoodPortage Bay
                                          -0.76272
                                                     0.47588 -1.603 0.108990
training SNeighborhood Rainier Beach
                                         -1.19296
                                                      0.34373 -3.471 0.000519 ***
training SNeighborhood Rainier View
                                          -2.47470
                                                      0.72091 -3.433 0.000598 ***
training SNeighborhood Ravenna
                                         -1.07504
                                                     0.24487 -4.390 1.13e-05 ***
training$NeighborhoodRiverview
                                          0.39888
                                                      0.22925 1.740 0.081874 .
training Neighborhood Roosevelt
                                          -0.85898
                                                     0.24981 -3.439 0.000585 ***
training SNeighborhood Roxhill
                                          -0.46429
                                                      0.21282 -2.182 0.029138 *
training $Neighborhood 5 eaview
                                         -2.41103
                                                     0.59284 -4.067 4.76e-05 ***
training$NeighborhoodSeward Park
                                         -3.21347
                                                     1.00983 -3.182 0.001462 **
training$NeighborhoodSouth Beacon Hill
                                         -1.26840
                                                     0.43240 -2.933 0.003353 **
training Neighborhood South Delridge
                                          -0.69407
                                                      0.23203 -2.991 0.002779 **
training$NeighborhoodSouth Park
                                          -0.62834
                                                     0.24713 -2.543 0.011004 *
training Neighborhood Sunset Hill
                                          -1.29463
                                                      0.46994 -2.755 0.005871 **
training$NeighborhoodUniversity District -0.18549
                                                     0.14427 -1.286 0.198549
training$NeighborhoodVictory Heights
                                          -0.85701
                                                      0.29930 -2.863 0.004192 **
training$NeighborhoodView Ridge
                                          -0.81022
                                                      0.40536 -1.999 0.045632 *
training$Neighborhoodwallingford
                                          -0.75868
                                                     0.18815 -4.032 5.53e-05 ***
training$NeighborhoodWedgwood
                                         -1.44687
                                                      0.43092 -3.358 0.000786 ***
training Neighborhood West Queen Anne
                                          -0.30337
                                                     0.24872 -1.220 0.222564
training Neighborhoodwest woodland
                                                     0.21567 -2.071 0.038348 *
                                         -0.44668
training SNeighborhood West Take
                                         -1.19989
                                                     0.52275 -2.295 0.021713 *
training SNeighborhood Whittier Heights
                                                     0.34517 -2.810 0.004956 **
                                         -0.96989
training$NeighborhoodWindermere
                                        -14.34547 231.09733 -0.062 0.950503
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 26207 on 44604 degrees of freedom
Residual deviance: 24641 on 44508 degrees of freedom
AIC: 24835
Number of Fisher Scoring iterations: 15
```

Assaults vs. Time of the Day

Does crime in a neighborhood correlate with its property value?

 H_0 : Crime in a neighborhood does not correlate with its property value H_A : Crime in a neighborhood correlates with its property value

Top 3 crime categories in Seattle in 2016

Theft – 21254 incidences

Burglary – 10374 incidences

Vehicle Theft – 7058 incidences incidences

Zillow Data: Property values across 99 neighborhoods in Seattle

Property value categories

- ▶1. Neighborhoods with property value greater than or equal to \$5,50,000
- ▶2. Neighborhoods with property value less than \$5,50,000

Crime across the two property value categories

Property vs Crime Comparison

-122.4

-122.3

Longitude

-122.5

, Map data 32017 Google

-122.2

Logistic Regression:

```
Response : Top 3 crimes (burglary, theft, and vehicle theft)
▶ Predictor: Property values
glm(formula = Indicator ~ Current.Value, family = "binomial",
    data = training_data)
Deviance Residuals:
              10 Median
    Min
                               3Q
                                       Max
-1.8280 -1.3336 0.9475 1.0250
                                    1.1450
Coefficients:
               Estimate Std. Error z value Pr(>|z|)
             -3.826e-01 4.389e-02 -8.717
                                          <2e-16 ***
(Intercept)
Current.Value 1.330e-06 7.123e-08 18.665 <2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 59906 on 44604 degrees of freedom
Residual deviance: 59543 on 44603 degrees of freedom
AIC: 59547
Number of Fisher Scoring iterations: 4
```

Model Accuracy?

```
▶ Training data = 75% of total observations
▶ Testing data = 25% of total observations
Cut-off = 60%
train <- sample(1:nrow(crime_zillow_merged_df), 3/4 * nrow(crime_zillow_merged_df))
test <- -train
training_data <- crime_zillow_merged_df[train,]</pre>
testing_data <- crime_zillow_merged_df[test,]
log.mod <- glm(formula = Indicator ~ Current.Value, family = "binomial", data = training_data)</pre>
summary(log.mod)
predicted_Prob <- predict(log.mod, testing_data, type = "response")</pre>
predictedIndicators = rep(0, nrow(testing_data))
predictedIndicators[predicted_Prob > 0.60] <- 1</pre>
table(predicted = predictedIndicators, actual = testing_data$Indicator)
mean(predictedIndicators==testing_data$Indicator)
         actual
predicted
        0 3077 4284
        1 2727 4781
▷Accuracy = 52.84%
▷ Is there any better model?
```

Random Forests

```
▶ Training data = 75% of total observations
 ▶ Testing data = 25% of total observations
 Cut-off = 60%
rf_model <- randomForest(Indicator~Current.Value, ntree=20, training_data)
predicted_Prob <- predict(rf_model, testing_data, type = "response")</pre>
predictedIndicators = rep(0, nrow(testing_data))
predictedIndicators[predicted_Prob > 0.60] <- 1</pre>
confusion_matrix <- table(predictions = predictedIndicators, actual = testing_data$Indicator)</pre>
mean(predictedIndicators==testing_data$Indicator)
           actual
predictions
          0 3849 4057
          1 1955 5008
 ▶ Accuracy: 62.56%
```

Are there any seasonal variations in the distribution of Crime?

Time Series Analysis of Seattle Crime data of 2016

Decomposition of the Time Series

Determining the Stationarity of the Series

Forecasts from ARIMA(1,1,1)(0,0,1)[30]


```
> fit_w_seasonality
Series: deseasonal_cnt
ARIMA(1,1,1)(0,0,1)[30]
Coefficients:
         ar1
                  ma1
                          sma1
      0.8400
             -0.4890
                       -0.1182
s.e.
     0.0454
               0.0712
                        0.0575
sigma^2 estimated as 56.1: log likelihood=-1231.2
              AICc=2470.52
                             BIC=2485.94
  fit w cosconslity
```

Forecasts from ARIMA(1,1,1)(0,0,1)[30]

Conclusion

Significant findings:

- Although the presence of schools in an area is statistically significant, it might not be a strong predictor of crimes in that particular area
- Property value is statistically significant and is a significant predictor of crimes in that particular area
- Time series analysis shows that there is a trend of the crime occurring over the months.

Limitations

- Data Bias We find significant amount of skewness in the data
- Unavailability of data in standard format
- Forecasting is based on one year data

Future Scope

Include other predictors that could help understand the crime scenario in Seattle. Such as:

- Demographic Data
- Census Data
- Weather Data

Collaborate with SPD

Thank you!