

UT is the Vector from o to the cy of the aircraft TE is the vector from o to the cy in Etrame coordinates TE would be represented as [0] [m] PB is the vector from 0 to the cyin B frame coordinates To would be represented as

2)  $\vec{V}^E = \frac{d}{dt} \vec{r}$  says the inernal Velocity is equal to the Esname derivative of r VE is the inertal velocity in Eframe coordinates represented as VE= [0/00] [] VR is the mertial velocity in B frame coordinates represented as VB = [1000] []

3) TWEB is the angular velocity of the B frame as seen WEB is WEB represented in E trame coordinates as [ ] [ ] WEB IS WEB represented in B frame coordinates as

- 4)  $\frac{d^{n}}{dt}$   $\vec{r}$  is the Berame elerivative of  $\vec{r}$  in E traine coordinates  $(\frac{d^{n}}{dt}\vec{r})_{E}$  is the Berame derivative of  $\vec{r}$  in E traine coordinates represented as  $[0\ 0\ 0]^{T}$   $[\frac{d^{n}}{dt}\vec{r}]_{B}$  is the Berame derivative of  $\vec{r}$  in Berame coordinates represented as  $[0\ 0\ 0]^{T}$  $[\frac{d^{n}}{dt}]_{B}$ 
  - (d F) E is the Etranse derivative of the inertial velocity

    in E frame coordinates represented as [100] [5]

    (d B) E) is the B frame derivative of the inertial relatity

    in B frame coordinates represented as [000] [5]

- 7)  $\hat{f} = m \hat{x}$  which is is a vector  $\hat{f}_E = m (\hat{x}_F^E \hat{v}_E^E)_E$  which is  $[-m \circ 0]^T[V]$   $\hat{f}_B = m (\hat{x}_F^E \hat{v}_E^E)_B$  which is  $[-m \circ 0]^T[V]$ 
  - 8)  $\vec{V} = \vec{W} + \vec{V}$   $\vec{V} = 10 \vec{E} \begin{bmatrix} \vec{x} \end{bmatrix} \vec{W} = 2\vec{N} + 3\vec{E} 1\vec{D} \begin{bmatrix} \vec{x} \end{bmatrix}$   $\vec{V} = \vec{V} \vec{W} = -2\vec{N} + 7\hat{E} + 1\vec{D} \begin{bmatrix} \vec{x} \end{bmatrix}$   $\vec{V} = -2\vec{N} + 7\hat{E} + 1\vec{D} \begin{bmatrix} \vec{x} \end{bmatrix}$   $\vec{V}_{B} = \begin{bmatrix} -7 & -2 \cdot -(0s\phi + s)\vec{M}\phi & -7 \cdot -s\vec{M}\phi + cos\phi \end{bmatrix}$   $\vec{V}_{B} = \begin{bmatrix} 7 & 2\cos\phi + s\vec{M}\phi & 2\sin\phi + \cos\phi \end{bmatrix}$