The group G is isomorphic to the group labelled by [24, 5] in the Small Groups library. Ordinary character table of $G \cong C4 \times S3$:

	1a	2a	4a	2b	3a	4b	2c	4c	12a	6a	4d	12b
χ_1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	-1	1	1	1	-1	-1	-1	1	1	-1
χ_3	1	-1	1	1	1	-1	-1	1	1	1	-1	1
χ_4	1	1	-1	1	1	-1	1	-1	-1	1	-1	-1
χ_5	1	-1	-E(4)	-1	1	E(4)	1	E(4)	-E(4)	-1	-E(4)	E(4)
χ_6	1	-1	E(4)	-1	1	-E(4)	1	-E(4)	E(4)	-1	E(4)	-E(4)
χ_7	1	1	-E(4)	-1	1	-E(4)	-1	E(4)	-E(4)	-1	E(4)	E(4)
χ_8	1	1	E(4)	-1	1	E(4)	-1	-E(4)	E(4)	-1	-E(4)	-E(4)
χ_9	2	0	-2	2	-1	0	0	-2	1	-1	0	1
χ_{10}	2	0	2	2	-1	0	0	2	-1	-1	0	-1
χ_{11}	2	0	-2 * E(4)	-2	-1	0	0	2 * E(4)	E(4)	1	0	-E(4)
χ_{12}	2	0	2 * E(4)	-2	-1	0	0	-2 * E(4)	-E(4)	1	0	E(4)

Trivial source character table of $G \cong C4 \times S3$ at p = 2:

Normalisers N_i			N_2		N_3	N_4	1	V_5	N_6	N_7	N_8
p-subgroups of G up to conjugacy in G	P_1		P_2		P_3	P_4	1	5	P_6	P_7	P_8
Representatives $n_j \in N_i$				3a	1a	1a	1a	3a	1a	1a	1a
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	8	8	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12}$	8	-4	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	4	4	4	4	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	4	-2	4	-2	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	4	4	0	0	4	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	4	4	0	0	0	4	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	2	2	2	0	0	2	2	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	-1	2	-1	0	0	2	-1	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	2	2	2	2	2	0	0	2	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	2	2	2	0	0	0	0	0	2	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	1	1	1	1	1	1	1	1	1	1

```
P_1 = Group([()]) \cong 1
```

- $N_1 = Group([(1,2)(3,6)(4,7)(5,16)(8,12)(9,13)(10,21)(11,22)(14,18)(15,19)(17,24)(20,23),(1,3,4,9)(2,6,7,13)(5,10,11,17)(8,14,15,20)(12,18,19,23)(16,21,22,24),(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24),(1,5,12)(2,8,16)(3,10,18)(4,11,19)(6,14,21)(7,15,22)(9,17,23)(13,20,24)]) \cong C4 \times S3$ $N_2 = Group([(1,2)(3,6)(4,7)(5,16)(8,12)(9,13)(10,21)(11,22)(14,18)(15,19)(17,24)(20,23),(1,3,4,9)(2,6,7,13)(5,10,11,17)(8,14,15,20)(12,18,19,23)(16,21,22,24),(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24),(1,5,12)(2,8,16)(3,10,18)(4,11,19)(6,14,21)(7,15,22)(9,17,23)(13,20,24)]) \cong C4 \times S3$ $N_3 = Group([(1,2)(3,6)(4,7)(5,16)(8,12)(9,13)(10,21)(11,22)(14,18)(15,19)(17,24)(20,23),(1,3,4,9)(2,6,7,13)(5,10,11,17)(8,14,15,20)(12,18,19,23)(16,21,22,24),(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24),(1,5,12)(2,8,16)(3,10,18)(4,11,19)(6,14,21)(7,15,22)(9,17,23)(13,20,24)]) \cong C4 \times S3$ $N_3 = Group([(1,2)(3,6)(4,7)(5,16)(8,12)(9,13)(10,21)(11,22)(14,18)(15,19)(17,24)(20,23),(1,3,4,9)(2,6,7,13)(5,10,11,17)(8,14,15,20)(12,18,19,23)(16,21,22,24),(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24),(1,5,12)(2,8,16)(3,10,18)(4,11,19)(6,14,21)(7,15,22)(9,17,23)(13,20,24)]) \cong C4 \times C3$
- $N_4 = Group([(1,7)(2,4)(3,13)(5,22)(6,9)(8,19)(10,24)(11,16)(12,15)(14,23)(17,21)(18,20), (1,2)(3,6)(4,7)(5,16)(8,12)(2,24), (1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24)]) \cong C4 \times C2$
- $N_5 = Group([(1,3,4,9)(2,6,7,13)(5,10,11,17)(8,14,15,20)(12,18,19,23)(16,21,22,24),(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24),(1,2)(3,6)(4,7)(5,16)(8,12)(9,13)(10,21)(11,22)(14,18)(15,19)(17,24)(20,23),(1,5,12)(2,8,16)(3,10,18)(4,11,19)(6,14,21)(7,15,22)(9,17,23)(13,20,24)]) \cong C4 \times S3$
- $N_6 = Group([(1,2)(3,6)(4,7)(5,16)(8,12)(9,13)(10,21)(11,22)(14,18)(15,19)(17,24)(20,23), (1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24), (1,3,4,9)(2,6,7,13)(5,10,11,17)(8,14,15,20)(12,18,19,23)(16,21,22,24)]) \cong C4 \times C2$ $N_7 = Group([(1,6,4,13)(2,3,7,9)(5,21,11,24)(8,18,15,23)(10,22,17,16)(12,14,19,20), (1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24), (1,2)(3,6)(4,7)(5,16)(8,12)(9,13)(10,21)(11,22)(14,18)(15,19)(17,24)(20,23)]) \cong C4 \times C2$
- $N_8 = Group([(1,2)(3,6)(4,7)(5,16)(8,12)(9,13)(10,21)(11,22)(14,18)(15,19)(17,24)(20,23), (1,3,4,9)(2,6,7,13)(5,10,11,17)(8,14,15,20)(12,18,19,23)(16,21,22,24), (1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24)]) \cong C4 \times C2$

 $P_2 = Group([(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24)]) \cong C2$

 $P_3 = Group([(1,2)(3,6)(4,7)(5,16)(8,12)(9,13)(10,21)(11,22)(14,18)(15,19)(17,24)(20,23)]) \cong \mathbb{C}_2$

 $P_4 = Group([(1,7)(2,4)(3,13)(5,22)(6,9)(8,19)(10,24)(11,16)(12,15)(14,23)(17,21)(18,20)]) \cong \mathbf{C2}$

 $P_5 = Group([(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24),(1,3,4,9)(2,6,7,13)(5,10,11,17)(8,14,15,20)(12,18,19,23)(16,21,22,24)]) \cong C4$

 $P_6 = Group([(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24),(1,2)(3,6)(4,7)(5,16)(8,12)(9,13)(10,21)(11,22)(14,18)(15,19)(17,24)(20,23)]) \cong C2 \times C2$

 $P_7 = Group([(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24), (1,6,4,13)(2,3,7,9)(5,21,11,24)(8,18,15,23)(10,22,17,16)(12,14,19,20)]) \cong C4$

 $P_8 = Group([(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24),(1,3,4,9)(2,6,7,13)(5,10,11,17)(8,14,15,20)(12,18,19,23)(16,21,22,24),(1,2)(3,6)(4,7)(5,16)(8,12)(9,13)(10,21)(11,22)(14,18)(15,19)(17,24)(20,23)]) \cong C4 \times C2$