NOM et PRENOM:

$2M220\ 2019-2020\ Interro\ n^{\rm o}\ 1$

Durée : 20 minutes

Les résultats doivent être justifiés avec soin. Si vous faites appel à un théorème du cours, il doit être énoncé avec précision.

Question 1 : Soient $a,b \in \mathbf{Z} \setminus \{0\}$. Montrer : $a \mid b$ si et seulement si $a^3 \mid b^3$.

Réponse :

Question 2 : Déterminer tous les diviseurs positifs de n=400, leur nombre et leur somme.

 ${\bf R\acute{e}ponse}:$

NOM et PRENOM:

$2M220\ 2019-2020\ Interro\ n^{\rm o}\ 2$

 $Dur\'ee:20\ minutes$

Les résultats doivent être justifiés avec soin. Si vous faites appel à un théorème du cours, il doit être énoncé avec précision.

Question 1 : Résoudre $51x + 24y = 6 \ (x, y \in \mathbf{Z})$.

Réponse :

Question 2 : Déterminer toutes les valeurs possibles de $x^3 \pmod{7}$ (où $x \in \mathbf{Z}$). En déduire que si $7 \mid (x^3 + 2y^3)$, alors $7 \mid x$ et $7 \mid y$. **Réponse** :

NOM et PRENOM:

$2M220\ 2019-2020\ Interro\ n^{\rm o}\ 3$

Durée : 20 minutes

Les résultats doivent être justifiés avec soin. Si vous faites appel à un théorème du cours, il doit être énoncé avec précision.

Question 1 : Résoudre le système $3x \equiv 8 \pmod{10}, x \equiv 4 \pmod{7}.$ **Réponse :**

Question 2 : Déterminer $a \in \{0,1,\ldots,10\}$ tel que $2020^{2024} \equiv a \pmod{11}$. Réponse :