Московский Физико-Технический Институт

Кафедра Общей физики Лабораторная работа №3.3.5

Эффект Холла в металлах

Маршрут III

6 октября 2018 г. 13 октября 2018 г. Работу выполнил Валиев Ринат, 711 гр.

Под руководством Г.И. Лапушкина, к.ф.-м.н.

Подготовка к работе

Цель работы

Измерение подвижности и концентрации носителей заряда в металлах.

Изучение эффекта Холла.

Теоретическая часть

В данной работе будет рассматриваться эффект Холла. Его суть состоит в следующем. Пусть через однородную пластину металла вдоль оси x течет ток I (Puc. 1).

Если эту пластину поместить в магнитное поле, направленное по оси y, то между гранями A и Б появляется разность потенциалов. В самом деле, на электрон, движущийся со скоростью $\langle v \rangle$ в электромагнитном поле, действует сила Лоренца:

Рис. 1: Образец с током в магнитном поле

$$\boldsymbol{F}_{\scriptscriptstyle\mathrm{J}} = -e\boldsymbol{E} - e\langle \boldsymbol{v} \rangle \times \boldsymbol{B}$$

где, как и выше, e — абсолютная величина заряда электрона, ${\bm E}$ — напряженность электрического тока, ${\bm B}$ — индукция магнитного поля. В нашем случае сила, обусловленная вторым слагаемым, направлена вдоль оси z:

$$F_B = e|\langle v_x \rangle|B$$

Здесь $|\langle v_x \rangle|$ — абсолютная величина дрейфовой скорости электронов вдоль оси x, возникающая под действием внешнего электрического поля.

Под действием этой силы электроны отклоняются к грани B, заряжая ее отрицательно. На грани A накапливаются нескомпенсированные положительные заряды. Это приводит к возникновению электрического поля E_z , направленный от A к B, которое действует на электроны с силой $F_e = eE_z$, направленный против F_B . В установившемся режиме сила F_e уравновешивает F_B , и накопление зарядов прекращается.

$$E_z = |\langle v_x \rangle| B$$

$$U_{\rm AB} = -E_z l = -|\langle v_x \rangle| B l$$

В этом и состоит эффект Холла. Второе слагаемое в силе Лоренца, с которым связан эффект, часто называют "холловским".

Найдем ЭДС Холла:

$$I=ne|\langle v_x
angle|l\cdot a$$
 $\mathscr{E}_x=U_{\mathrm{AB}}=-rac{IB}{nea}=-R_x\cdotrac{IB}{a},$ где $R_x=rac{1}{ne}$

Измеряя величину R_x , можно по формуле найти концентрацию носителей тока n, а по знаку возникающей между гранями A и B разности потенциалов установить характер проводимости – электронный или дырочный.

Установка и измерения

Оборудование: электромагнит с источником питания, источник постоянного тока, микровольтметр, амперметры, милливеберметр, образцы из серебра и цинка.

Рис. 2: Схема установки для исследования эффекта Холла в металлах

По знаку \mathscr{E}_x можно определить характер проводимости — электронный или дырочный. Для этого необходимо знать направление тока в образце и направление магнитного поля.

Измерив ток I в образце и напряжение U_{34} между контактами 3 и 4 в отсутствие магнитного поля, можно, зная параметры образца, рассчитать проводимость материала образца по очевидной формуле:

 $\sigma = \frac{IL_{34}}{U_{34}al}$

где L_{34} – расстояние между контактами 3 и 4, a – толщина образца, l – его ширина.

Ход работы

• Прокалибруем электромагнит:

I, A	0.10	0.20	0.30	0.40	0.50	0.60	0.74	0.86	0.99	1.29
B, м T л	147	260	391	523	637	744	889	965	1028	1125

Таблица 1: Калибровка электромагнита

• Параметры образцов:

	L_{34} , mm	a, mm	l, mm
Цинк	4	0.08	10
Серебро	14.5	0.09	10

Таблица 2: Характеристики образцов

 \bullet Построим график зависимости B(I) при калибровке электромагнита:

Рис. 3: Зависимость B(I) для таблицы 2

• Проведем измерения ЭДС Холла. Каждый раз будем измерять начальный U_0 , который вызван несовершенством контактов 2, 4 и при фиксированном токе через образец остается неизменным. Значение U_0 с учетом знака следует принимать за нулевое.

Измерения проводим для серебра и цинка в обратном направлении.

Серебро			$U_0 = 0$	мкВ,	I	= 0.2 A	4	
I, A	0,20	0,36	0,43	0,55	0,64	0,78	0,96	1,25
U, мкВ	0,8	1,2	1,4	1,6	2	2,2	2,4	2,6
\mathscr{E}_x , мкВ	8	12	14	16	20	22	24	26
В, мТл	271	483	567	697	783	899	1015	1124

Серебро	$U_0 = -8 \text{ мкB},$					I =	0.4 A		
I, A	0,20	0,36	$0,\!45$	0,57	0,70	0,80	0,93	1,05	1,20
U, мкВ	4	10	14	20	26	30	34	36	38
\mathscr{E}_x , мкВ	12	18	22	28	34	38	42	44	46
В, мТл	271	483	589	717	836	914	999	1059	1112

Серебро		$U_0 =$	=-12 N	икВ,	I =	0.6 A	
I, A	0,21	0,39	0,60	0,80	1,00	1,20	1,24
U, мкВ	-6	8	24	36	44	48	52
\mathscr{E}_x , мк B	6	20	36	48	56	60	64
B, м T л	285	520	746	914	1036	1112	1122
Серебро		$U_0 =$	= -28 N	икВ,	I =	0.8 A	
I, A	0,20	0,40	0,60	0,80	1,00	1,20	1,24
U, мкВ	-8	12	32	52	60	68	70
\mathscr{E}_x , мк B	20	40	60	80	88	96	98
B, м T л	271	531	746	914	1036	1112	1122
	1						
Серебро		U_0	= -28	мкВ,	<i>I</i> =	1 A	
Серебро І, А	0,20	$U_0 = 0,40$		мкВ, 0,81	I = 1,00		1,25
	0,20						1,25
I, A	-	0,40	0,61	0,81	1,00	1,20	
I, A U , MKB	-4	0,40	0,61	0,81 68	1,00 80	1,20 88	92
I , A U , MKB \mathscr{E}_x , MKB	-4 24	0,40 24 52 531	0,61 48 76	0,81 68 96 921	1,00 80 108 1036	1,20 88 116	92
I , A U , MKB \mathscr{E}_x , MKB B , MTJI	-4 24	0,40 24 52 531	0.61 48 76 755 $= -32 M$	0,81 68 96 921	1,00 80 108 1036	1,20 88 116 1112 -1 A	92
I , A U , мкВ \mathscr{E}_x , мкВ B , мТл	-4 24 271	$0,40$ 24 52 531 $U_0 =$	0,61 48 76 755 $= -32$ N $0,60$	0,81 68 96 921 MKB, 0,80	1,00 80 108 1036 $I =$	1,20 88 116 1112 -1 A 1,19	92 120 1124
I , A U , MKB \mathcal{E}_x , MKB B , MT π Cepe6po I , A	-4 24 271 0,20	$0,40$ 24 52 531 $U_0 = 0,40$	0,61 48 76 755 $= -32$ N $0,60$	0,81 68 96 921 MKB, 0,80	1,00 80 108 1036 $I = 1,00$	1,20 88 116 1112 -1 A 1,19 -164	92 120 1124 1,25
I , A U , мкВ \mathscr{E}_x , мкВ B , мТл Серебро I , A U , мкВ	-4 24 271 0,20 -40	$0,40$ 24 52 531 $U_0 = 0,40$ -76	$ \begin{array}{r} 0.61 \\ 48 \\ 76 \\ 755 \\ = -32 \text{ N} \\ 0.60 \\ -124 \\ \end{array} $	0,81 68 96 921 MKB, 0,80 -144	$ \begin{array}{c} 1,00 \\ 80 \\ 108 \\ 1036 \\ I = \\ 1,00 \\ -156 \end{array} $	1,20 88 116 1112 -1 A 1,19 -164	92 120 1124 1,25 -168

Цинк		$U_0 = 7$	72 мкВ	,	I = 1 A	
I, A	0,20	0,40	0,61	0,80	1,00	1,25
U, MKB	52	28	8	-12	-20	-30
\mathscr{E}_x , мк B	-20	-44	-64	-84	-92	-102
В, мТл	271	531	755	914	1036	1124

Таблица 3: Полученные данные для нахождения ЭДС Холла в образцах из серебра и цинка

• Определим тип носителей заряда по правилу левой руки. Для таблиц 3 приведем график $\mathscr{E}_x(B)$:

Рис. 4: Зависимость \mathscr{E}_x от B. Данные взяты из совокупности таблиц 3

Для каждой прямой на Рис. 4 найдены также их угловые коэффициенты. Внесем их в таблицу для большей наглядности и построим по этим данным график k(I):

I, A	0.2	0.4	0.6	0.8	1	-1
k , мк B/T л	0.219	0.428	0.681	0.928	1.113	-1.507
Δ_k , мк $\mathrm{B/T}$ л	0.2	0.2	0.2	0.2	0.3	0.3

Таблица 4: Таблица значений коэффициентов наклона для графика зависимости k(I)

Рис. 5: График зависимости k(I) из Таблицы 4

• По графику из Рис. 5 найдем постоянную Холла для серебра. А для цинка определим из соответствующего графика из Рис. 4.

$$R_{\text{серебро}} = -ka = -1.3284 \cdot 10^{-6} \cdot 0.09 \cdot 10^{-3} = -1.2 \cdot 10^{-10} \text{м}^3 / \text{Кл}$$

$$R_{\text{цинк}} = -\frac{\mathcal{E}_{\text{цинк}}}{B} \frac{a}{I} = 0.965 \cdot 10^{-6} \cdot 0.08 \cdot 10^{-3} = 0.8 \cdot 10^{-10} \text{м}^3 / \text{Кл}$$

Также найдем для каждого образца концентрацию носителей заряда:

$$n_{\text{серебро}} = \frac{1}{R_{\text{серебро}}e} = 5.2 \cdot 10^{28} \; (\text{м}^3)^{-1}$$
 $n_{\text{цинк}} = \frac{1}{R_{\text{цинк}}e} = 8.1 \cdot 10^{28} \; (\text{м}^3)^{-1}$

Затем заполним финальную таблицу, используя все данные и формулы:

$$\sigma = rac{IL_{34}}{U_{34}al}$$
 $\sigma = enb$ Серебро: $I=1~A,~U_{34}=166~{
m mkB}$ Цинк: $I=1~A,~U_{34}=132~{
m mkB}$

Металл	$R_x \pm \Delta R_x$	Носитель	$n \pm \Delta n, (\mathbf{m}^3)^{-1}$	$\sigma \pm \Delta \sigma$, $(O_M \cdot M)^{-1}$	$b, \frac{\mathrm{cm}^2}{(\mathrm{B} \cdot \mathrm{c})}$
		-	$(5.2 \pm 1.5) \cdot 10^{28}$		117 ± 13
Цинк	$+0.8 \pm 0.2$	+	$(8.1 \pm 2) \cdot 10^{28}$	$(3.4 \pm 0.3) \cdot 10^7$	25 ± 6

Таблица 5: Финальная таблица с результатами для обеих образцов

Металл	$R_{ m Ta6л}, \frac{10^{-10} \ { m M}^3}{{ m K}{ m J}}$	σ , $(O_{\rm M} \cdot {}_{\rm M})^{-1}$	$b, \frac{\mathrm{cm}^2}{(\mathrm{B} \cdot \mathrm{c})}$
Серебро	-0.90	$6.25 \cdot 10^7$	56
Цинк	+1.04	$1.7\cdot 10^7$	17.5

Таблица 6: Табличные данные для сравнивания с результатами

Итоги

В работе исследован эффект Холла в металлах, найдены некоторые характеристики для образцов из разных материалов. Некоторые табличные данные не совпадают с результатами нашей работы, однако они достаточно точно описывают характеристики образцов.

Также установили знак носителей зарядов в данных образцах металлов.