

JEFF GILL

Department of Political Science
Division of Biostatistics
Department of Surgery (Public Health Sciences)
Washington University, St. Louis

Reminders

- ► Thank R Its Friday (TRIF) is supported by the Washington University TREC Center (www.obesity-cancer.wustl.edu), School of Medicine.
- ► Meeting times and topics (3-4PM):
 - ▶ January 31, 2014: Analysis of Variance
 - ▶ February 28, 2014: Logistic Regression
 - ▶ March 28, 2014: Principle Components Analysis
 - ▶ April 25, 2014: Survival Analysis
 - ▶ May 30, 2014: Nonparametric Data Analysis
- ► The slides for today are available at http://jgill.wustl.edu/slides/trif3.pdf.

General Modeling Language

► Basic Structure:

```
OV ~ EV1 + EV2
```

where the tilde is a function that saves the formula as an unevaluated expression: formula object.

- ▶ Note that no actual "adding" is being done here in the arithmetic sense.
- ► A constant is automatically implied, same as:

but we can explicitly exclude the constant by:

$$0V \sim -1 + EV1 + EV2.$$

 $0V \sim 0 + EV1 + EV2.$

➤ Special characters:

```
+ - : * / . ^
```

Inline Math Formulas

```
log(OV) ~ EV1 + EV2

OV ~ exp(EV1) + cos(EV2)

OV ~ I(EV1/2) + sqrt(EV2 - mean(EV2))

osha.ols <- lm(INSPT ~ AP + (DI>40) ,data=osha.df)

osha.ols <- lm(INSPT ~ AP + cut(DI,3) ,data=osha.df)</pre>
```

Specifying Interactions

```
OV ~ EV1 + EV2 + EV1:EV2

OV ~ EV1 * EV2

osha.ols <- lm(INSPT ~ D1 + D1:D2, data=osha.df)

osha.ols <- lm(INSPT ~ AP * DI, data=osha.df)

osha.ols <- lm(INSPT ~ AP * DI * SIC1, data=osha.df)</pre>
```

Nesting

```
OV ~ EV1 + county %in% state
OV ~ EV1 + state/county
osha.ols <- lm(INSPT ~ D1 + D2 %in% D1, data=osha.df)
osha.ols <- lm(INSPT ~ D1/D2, data=osha.df)</pre>
```

Gauss-Markov Assumptions for Classical Linear Regression

- ► Functional Form: $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ (X has a leading column of 1's)
- ightharpoonup Mean Zero Errors: $\mathbf{E}[\epsilon] = \mathbf{0}$
- ightharpoonup Homoscedasticity: $Var[\epsilon] = \sigma^2 I$
- ▶ Non-Correlated Errors: $Cov[\epsilon_i, \epsilon_j] = 0, \quad \forall i \neq j$
- ightharpoonup Exogeneity of Explanatory Variables: $Cov[\epsilon_i, \mathbf{X}] = 0$, $\forall i$
- \triangleright Note that every one of these lines has ϵ in it, meaning that these are assumptions about the underlying population values.

Other Considerations

➤ Requirements:

- ▷ conformability of matrix/vector objects
- \triangleright **X** is full rank: k, so **X'X** is invertible (nonsingular).
- ▶ identification condition: not all points lie on a vertical line.
- ightharpoonup Freebee: eventual normality... $\epsilon | \mathbf{X} \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$
- ightharpoonup Toughness: the linear model is both robust to minor violations of the Gauss-Markov assumptions and resistant to outlying values.

Anaemia Data

- ➤ Consider a study of anaemia in women in a given clinic where 20 cases are chosen at random from the full study to get the data here.
- ► From a blood sample we get:
 - ⊳ haemoglobin level (Hb) in grams per deciliter (12–15 g/dl is normal in adult females)
 - ▶ packed cell volume (PCV) in percent of blood volume that is occupied by red blood cells (also called hematocrit, Ht or HCT, or erythrocyte volume fraction, EVF). 38% to 46% is normal in adult females.
- ➤ We also have:
 - ▶ age in years
 - ⊳ menopausal (0=no, 1=yes)
- ➤ There is an obvious endogeneity problem in modeling Hb(g/dl) versus PCV(%).

Anaemia Data

Subject	Hb(g/dl)	PCV(%)	Age	Menopausal
1	11.1	35	20	0
2	10.7	45	22	0
3	12.4	47	25	0
4	14.0	50	28	0
5	13.1	31	28	0
6	10.5	30	31	0
7	9.6	25	32	0
8	12.5	33	35	0
9	13.5	35	38	0
10	13.9	40	40	1
11	15.1	45	45	0
12	13.9	47	49	1
13	16.2	49	54	1
14	16.3	42	55	1
15	16.8	40	57	1
16	17.1	50	60	1
17	16.6	46	62	1
18	16.9	55	63	1
19	15.7	42	65	1
20	16.5	46	67	1

Linear Model of Anaemia

```
anaemia.lm <- lm(Hb ~ PCV + Age + Menapause, data=anaemia)
summary(anaemia.lm)</pre>
```

Residuals:

```
Min 1Q Median 3Q Max -1.601 -0.678 0.216 0.546 1.759
```

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	5.2146	1.5718	3.32	0.0044
PCV	0.0973	0.0346	2.81	0.0125
Age	0.1110	0.0303	3.66	0.0021
Menapause	-0.0241	0.9540	-0.03	0.9802

```
Residual standard error: 1.01 on 16 degrees of freedom Multiple R-squared: 0.851, Adjusted R-squared: 0.823 F-statistic: 30.5 on 3 and 16 DF, p-value: 7.46e-07
```

Trends In The Residuals

Trends In The Residuals

Normality Of The Residuals

Normality Of The Residuals

Another Regression Plot

Code For This Graph With Regression

```
sickle0 <- sickle[sickle$asthma == "noasthma" | sickle$asthma == "noclass",]
sickle1 <- sickle[sickle$asthma == "asthma",]</pre>
pdf("Article.Sickle.Cell/linear.plot.asthma.pdf")
par(mfrow=c(1,1),mar=c(4,4,2,2),col.axis="black",col.lab="black",col.sub="black",
    col="black",bg="white")
plot(sickle1$sac2.satmeantst,sickle1$reticulocyte,pch="+",xlab="",ylab="",
    cex=1.25,col="red")
mtext(side=1,line=2.5,"02 Saturation (Hypoxia)"); mtext(side=2,line=2.5,
    "Reticulocyte Count")
abline(lm(sickle1$reticulocyte ~ sickle1$sac2.satmeantst),col="red",lwd=3)
sickle.cor <- cor(sickle1$reticulocyte, sickle1$sac2.satmeantst)</pre>
se.cor <- sqrt((1-sickle.cor^2)/(nrow(sickle1)-2))</pre>
p.cor <- pnorm(sickle.cor/se.cor)</pre>
text(95,31.5,paste("Asthma COR: ",round(sickle.cor,3)," (",round(se.cor,3),")",sep="")
    cex=0.8,col="red")
text(95,30,paste("Asthma p-value < ",round(p.cor,3),sep=""),cex=0.8,col="red")</pre>
text(95,28.5,paste("Asthma N = ",nrow(sickle1),sep=""),cex=0.8,col="red")
```

Code For This Graph With Regression, Continued

```
points(sickle0$sac2.satmeantst,sickle0$reticulocyte,pch="+",xlab="",ylab="",cex=1.25,
        col="forestgreen")
abline(lm(sickle0$reticulocyte ~ sickle0$sac2.satmeantst),col="forestgreen",lwd=3)
sickle.cor <- cor(sickle0$reticulocyte, sickle0$sac2.satmeantst)
se.cor <- sqrt((1-sickle.cor^2)/(nrow(sickle0)-2))
p.cor <- pnorm(sickle.cor/se.cor)
text(91,31.5,paste("No Asthma COR: ",round(sickle.cor,3)," (",round(se.cor,3),")",
        sep=""), cex=0.8,col="forestgreen")
text(91,30,paste("No Asthma p-value < ",round(p.cor,3),sep=""),cex=0.8,
        col="forestgreen")
text(91,28.5,paste("No Asthma N = ",nrow(sickle0),sep=""),cex=0.8,col="forestgreen")
dev.off()</pre>
```

- ▶ The New York Times Magazine, August 7, 2011, page 13.
- ▶ 24 countries: average survey review of restaurant service quality and a tipping index from three travel etiquette web sites.

➤ The data

Country	Quality	Tip	Country	Quality	Tip
Japan	4.4	0.00	Thailand	3.9	0.03
Canada	3.7	0.16	New_Zealand	3.7	0.07
UAE	3.6	0.10	Germany	3.6	0.08
USA	3.6	0.18	South_Africa	3.5	0.11
Australia	3.4	0.08	Argentina	3.4	0.10
Morocco	3.4	0.07	Turkey	3.4	0.08
India	3.3	0.10	Brazil	3.3	0.07
Vietnam	3.2	0.05	England	3.2	0.10
Greece	3.2	0.08	Spain	3.1	0.08
France	3.1	0.08	Italy	3.0	0.07
Egypt	3.0	0.08	Mexico	3.0	0.13
China	2.9	0.03	Russia	1.7	0.10

Family: gaussian

Link function: identity

N: 24 Estimate of Sigma: 0.485


```
postscript("Class.Multilevel/Images/tipping.ps",height=5,width=7)
par(mfrow=c(1,1), mar=c(5,5,2,2), lwd=2, col.axis="white", col.lab="white",
    col.sub="white",col="white",bg="slategray", cex.lab=1.3)
# PLOT POINTS AND REGRESSION LINES
plot(service$Tip,service$Quality,pch="+",xlab="Tip",ylab="Quality")
abline(service.lm,col="gold3",lwd=5)
abline(h=service.lm$coef[1],col="gold3",lty=3,lwd=2)
# ADD CONFIDENCE BOUNDS AT THREE LEVELS
ruler.df <- data.frame(Tip = seq(-0.1, 2,length=200))</pre>
for (k \text{ in } c(0.99, 0.95, 0.90)) {
    confidence.interval <- predict(service.lm, ruler.df, interval="confidence",</pre>
        level=k)
    lines(ruler.df[,1],confidence.interval[,2],col="peachpuff",lwd=0.75)
    lines(ruler.df[,1],confidence.interval[,3],col="peachpuff",lwd=0.75)
}
 IDENTIFY POTENTIAL OUTLIERS
text(0.113,1.7, "Russia")
text(0.011,4.38, "Japan")
dev.off()
```

How Influential is Japan?

Linear Model Predictions/Forecasts

Linear Model Predictions/Forecasts

➤ The R code for these intervals can be produced by:

```
postscript("Class.Multilevel/linear.prediction.ps")
X \leftarrow \text{rnorm}(25,3,1); Y \leftarrow X + \text{rnorm}(25,2,2)
ruler <- data.frame(X = seq(-3, 8,length=200))
predict.interval <- predict(lm(Y ~ X), ruler, interval="prediction")</pre>
confidence.interval <- predict(lm(Y ~ X), ruler, interval="confidence")</pre>
par(mar=c(1,1,1,1),oma=c(3,3,1,1),mfrow=c(1,1),col.axis="white",col.lab="white",
   col.sub="white",col="white",bg="slategray")
plot(ruler[,1], confidence.interval[,1], type="l",lwd=4,ylim=c(-9,16),col="black")
lines(ruler[,1],confidence.interval[,2], lwd=2, lty=2, col="aquamarine3")
lines(ruler[,1],confidence.interval[,3], lwd=2, lty=2, col="aquamarine3")
lines(ruler[,1],predict.interval[,2], lwd=3, lty=3, col="rosybrown2")
lines(ruler[,1],predict.interval[,3], lwd=3, lty=3, col="rosybrown2")
segments(mean(X),-10,mean(X),mean(Y), lwd=0.5, col="peachpuff")
segments(-3, mean(Y), mean(Y), lwd=0.5, col="peachpuff")
dev.off()
```

```
options()$contrasts
       unordered
                           ordered
"contr.treatment" "contr.poly"
options(contrasts=c("contr.treatment","contr.treatment"))
# POLYNOMIAL: linear, quadratic, cubic,... terms in hypothetical underlying numeric
# variable that takes on equally spaced values for lelves of levels of the factor.
# HELMERT: the difference between negative higher levels where abs(row)=#cats
N <- factor(Nlevs <- c("men", "women"))</pre>
contr.sum(N)
     [,1]
men 1
women -1
contr.treatment(N)
women
men
women
```

```
contr.helmert(N)
      [,1]
men
women
contr.poly(N)
            .L
[1,] -0.70711
[2,] 0.70711
N \leftarrow factor(Nlevs \leftarrow c(1,4,8))
contr.sum(N)
   [,1] [,2]
   1 0
   0 1
    -1 -1
```

```
Introducing R [31]
```

```
contr.treatment(N)
 4 8
1 0 0
4 1 0
8 0 1
contr.poly(N)
             .L
                . Q
[1,] -7.0711e-01 0.40825
[2,] -7.8505e-17 -0.81650
[3,] 7.0711e-01 0.40825
contr.helmert(N)
  [,1] [,2]
   -1 -1
    1 -1
    0 2
```

```
Introducing R [32]
```

contr.helmert(4) [,1] [,2] [,3] 1 -1 -1 -1 2 1 -1 -1 3 0 2 -1

contr.helmert(5)

0

4

0

3

Consequences For a Linear Model

```
Y \leftarrow rnorm(100); X1 \leftarrow rgamma(100,3,2); X2 \leftarrow factor(rbinom(100,2,.6))
contrasts(X2) <- contr.sum(3)</pre>
summary(lm(Y~X1+X2))
Call:
lm(formula = Y ~ X1 + X2)
Residuals:
   Min 1Q Median 3Q Max
-3.0125 -0.5853 -0.0534 0.8055 2.3665
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.00900 0.21297 -0.04 0.97
X1 -0.00147 0.12394 -0.01 0.99
X21 0.21212 0.18800 1.13 0.26
X22 -0.11254 0.14622 -0.77 0.44
Residual standard error: 1.05 on 96 degrees of freedom
Multiple R-squared: 0.0135, Adjusted R-squared: -0.0173
```

F-statistic: 0.439 on 3 and 96 DF, p-value: 0.726

X23

Consequences For a Linear Model

```
contrasts(X2) <- contr.treatment(3)</pre>
summary(lm(Y~X1+X2))
Call:
lm(formula = Y ~ X1 + X2)
Residuals:
   Min 1Q Median 3Q Max
-3.0125 -0.5853 -0.0534 0.8055 2.3665
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.20311 0.29927 0.68 0.50
X1 -0.00147 0.12394 -0.01 0.99
         -0.32465 0.29829 -1.09 0.28
X22
```

```
Residual standard error: 1.05 on 96 degrees of freedom

Multiple R-squared: 0.0135, Adjusted R-squared: -0.0173

F-statistic: 0.439 on 3 and 96 DF, p-value: 0.726
```

-0.31170 0.31345 -0.99 0.32

Consequences For a Linear Model

```
contrasts(X2) <- contr.poly(3)</pre>
summary(lm(Y~X1+X2))
Call:
lm(formula = Y ~ X1 + X2)
Residuals:
   Min 1Q Median 3Q Max
-3.0125 -0.5853 -0.0534 0.8055 2.3665
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.00900 0.21297 -0.04 0.97
X1 -0.00147 0.12394 -0.01 0.99
X2.L -0.22040 0.22164 -0.99 0.32
X2.Q 0.13783 0.17908 0.77 0.44
```

Residual standard error: 1.05 on 96 degrees of freedom

Multiple R-squared: 0.0135, Adjusted R-squared: -0.0173

F-statistic: 0.439 on 3 and 96 DF, p-value: 0.726

Consequences For a Linear Model

```
contrasts(X2) <- contr.helmert(3)</pre>
summary(lm(Y~X1+X2))
Call:
lm(formula = Y ~ X1 + X2)
Residuals:
   Min 1Q Median 3Q Max
-3.0125 -0.5853 -0.0534 0.8055 2.3665
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.00900 0.21297 -0.04 0.97
X1 -0.00147 0.12394 -0.01 0.99
X21 -0.16233 0.14915 -1.09 0.28
X22
         -0.04979 0.07822 -0.64 0.53
Residual standard error: 1.05 on 96 degrees of freedom
```

Multiple R-squared: 0.0135, Adjusted R-squared: -0.0173

F-statistic: 0.439 on 3 and 96 DF, p-value: 0.726

Logistic Regression: Anaemia Example

degrees of freedom

degrees of freedom

Null deviance: 27.7259 on 19

Residual deviance: 5.7632 on 18

Logistic Illustration

Logistic Illustration

```
inv.logit <- function(mu) log(mu/(1-mu))</pre>
logit <- function(Xb) 1/(1+exp(-Xb))</pre>
ana.logit <- glm(Menapause ~ Age, data=anaemia, family=binomial(link=logit))</pre>
postscript("Class.PreMed.Stats/Images/logit.anaemia1.fig.ps")
par(mfrow=c(1,1), mar=c(5,5,2,2), lwd=2, col.axis="white", col.lab="white",
        col.sub="white",col="white",bg="slategray",
        cex.lab=1.3,oma=c(4,2,2,2))
xbeta <- as.matrix(cbind(rep(1,length=nrow(anaemia)),anaemia$Age))</pre>
        %*% coef(ana.logit)
plot(range(xbeta),c(-0.1,1.1),type="n",xlab="Explanatory Variables",
        ylab="Probability of Menapause")
abline(h=c(0,1),col="yellow")
x <- seq(from=min(xbeta),to=max(xbeta),length=100)</pre>
points(xbeta,anaemia$Menapause,col="black",pch=19)
lines(xbeta,logit(xbeta),col="black")
dev.off()
```

Mouse Data

- ➤ This research project looks at the impact of high-fat diet of the mother on prostate cancer outcomes in male pups.
- ➤ Treatment: the "dam" is fed a high fat diet between 54 and 209 weeks.
- ➤ Control: regular mouse chow.
- ➤ The pups are sacrificed between 116 and 446 weeks after birth (includes 15 weeks of weaning).

Poisson GLM

summary(M1)

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                                      -0.4388
                                                 1.2789 - 0.3431
                                                                  0.7315
Age.Group.Weeks1
                                       1.3191
                                                 0.3370 3.9146
                                                                  0.0001
Diet.Treatment
                                       0.8696
                                                 0.2311 3.7624
                                                                  0.0002
                                                                 0.0111
Days.Old.When.Used
                                      -0.0038
                                                 0.0015 - 2.5532
                                                 0.0333 - 0.7454
Body.Weight
                                      -0.0248
                                                                  0.4583
Male.Pups.In.Cage
                                       0.2919
                                                 0.1393 2.0962
                                                                  0.0361
log(Days.Parents.On.Diet.Before.Birth)
                                       0.1262
                                                 0.2647 0.4767
                                                                  0.6336
```

DEVIANCE COMPARISON Null deviance: 106.662 on 52 degrees of freedom Residual deviance: 76.369 on 46 degrees of freedom AIC: 200.4 pchisq(106.662-76.369,df=6,lower.tail=FALSE) [1] 3.4574e-05 # CHECK FOR OVERDISPERSION sum(residuals(M1,type="pearson")^2) [1] 64.559

Gamma GLM of Electoral Politics in Scotland

- On September 11, 1997 Scottish voters overwhelming (74.3%) approved the establishment of the first Scottish national parliament in nearly three hundred years.
- On the same ballot, the voters gave strong support (63.5%) to granting this parliament taxation powers.
- Data: 32 *Unitary Authorities* (also called council districts), U.K. government sources, includes 40 potential explanatory variables

The model for these data using the gamma link function is produced by:

$$\underbrace{g^{-1}(\boldsymbol{\theta})}_{32\times1} = g^{-1}(\boldsymbol{X}\boldsymbol{\beta})$$

$$= -\frac{1}{\boldsymbol{X}\boldsymbol{\beta}}$$

$$= -[\mathbf{1}\beta_0 + \mathbf{COU}\beta_1 + \mathbf{UNM}\beta_2 + \mathbf{MOR}\beta_3 + \mathbf{ACT}\beta_4 + \mathbf{AGE}\beta_5]^{-1}$$

$$= E[\mathbf{Y}] = E[\mathbf{YES}].$$

The systematic component here is $X\beta$, the stochastic component is Y = YES, and the link function is $\theta = -\frac{1}{\mu}$.

Gamma GLM

```
scotland.df <- read.table("http://jgill.wustl.edu/data/scotvote.dat",header=TRUE)</pre>
scottish.vote.glm <- glm((PerYesTax/100) ~ CouncilTax * PerClaimantFemale</pre>
                      + StdMortalityRatio + Active + GDP + Percentage5to15,
                      family=Gamma, data=scotland.df)
graph.summary(scottish.vote.glm)
Family: Gamma Link function: inverse
                          Coef Std.Err. 0.95 Lower 0.95 Upper CIs:ZE+RO
(Intercept)
                                                    0.473 |--0--|
                         -1.777 1.148 -4.026
CouncilTax
                         0.005 0.002
                                           0.002
                                                    0.008
                                                              lol
PerClaimantFemale
                        0.203 0.053
                                           0.099
                                                    0.308
                                                              StdMortalityRatio
                        -0.007 0.003 -0.012 <u>-0.002</u>
                                                              Active
                         0.011 0.004
                                          0.003 0.019
                                                              0.000 0.000
GDP
                                          0.000
                                                    0.000
                                                              Percentage5to15
                         -0.052
                                 0.024 - 0.099
                                                   -0.005
                                                              CouncilTax:PerClaimantFemale 0.000
                                 0.000
                                           0.000
                                                    0.000
                                                              lol
```

N: 32 log-likelihood: 59.892 AIC: -111.784 Dispersion Parameter: 0.0035842

Null deviance: 0.536 on 31 degrees of freedom

Residual deviance: 0.087 on 24 degrees of freedom

New Prostate Dataset

- ▶ Byar DP, Green SB (1980): Bulletin Cancer, Paris, 67:477-488
- ▶ bm, Bone Metastases: no=0 (420), yes=1 (82), the outcome variable.
- ▶ stage, M0: The cancer has not spread past nearby lymph nodes (289), M1: The cancer has spread beyond the nearby lymph nodes (213).
- \triangleright pf, normal activity 0 (450), some required bed-rest 1 (52).
- ▶ sz, Size of Primary Tumor (cm²), median=11.
- ▶ ap, Serum Prostatic Acid Phosphatase, median=0.7.
- ▶ hg, Serum Hemoglobin (g/100ml), median=13.7.

Generalized Additive Models

```
Approximate significance of smooth terms: edf Ref.df Chi.sq p-value
```

s(ap) 3.32 4.03 11.0 0.0270 s(hg) 1.72 2.20 12.2 0.0029 Introducing R [46]