Vanderbilt University Leadership, Policy and Organizations Class Number 9952 Spring 2017

Model Specification

We'll be working today with the wage2 dataset, which includes monthly wages of male earners along with a variety of characteristics. We'll be attempting to esimtate some fairly standard wage models, but we'll also try to answer the most vexing question for many students: what variables should I put in my model?

The most important answer to that question is to use theory. Theory and previous results are our only guide—the data simply can't tell you by themselves what belongs in the model and what doesn't. However, we can use a combination of theory and applied data analysis to come up with a model that fits the data well and says something interesting about theory.

Missing Data

Before we start with all that, let's talk again about how Stata handles missing data. Let's assume that we want to estimate several nested models, first with hours, education and age, then the same model with mother's education, then the same model with father's education, then a final model with all variables. Our results look like this:

. reg lwage hou	rs educ age					
Source	SS					Number of obs = 935 F(3, 931) = 46.91
Model	21.7514568	3	7.25048559 .15457018			Prob > F = 0.0000 R-squared = 0.1313 Adj R-squared = 0.1285
Total	165.656294	934	.177	362199		Root MSE = .39315
lwage		Std.	Err.	t	P> t	[95% Conf. Interval]
educ age	.0616404 .0227339	.0058	3814 1411	10.48 5.49	0.000	00821150011906 .0500981 .0731827 .0146069 .0308608
. reg lwage hou			2026	31.20	0.000	5.063366 5.743191
Source	SS	df		MS		Number of obs = 857 F(4, 852) = 38.47
Model	22.8514162	4	5.71	285406		Prob > F = 0.0000
Residual	126.509635	852	.148	485487		R-squared = 0.1530 Adj R-squared = 0.1490
Total	149.361051	856	. 174	487209		Root MSE = .38534
lwage	Coef.	Std.	Err.	t	P> t	[95% Conf. Interval]

hours educ age meduc _cons	.0525597 .0243798 .0184424 5.33402	.0049725 .1776844	-3.16 8.15 5.70 3.71 30.02	0.002 0.000 0.000 0.000 0.000	00941150021989 .0398957 .0652236 .0159896 .03277 .0086826 .0282022 4.98527 5.682771
Source	SS	df	MS		Number of obs = 741
Model Residual 	108.836202	4 5.05 736 .147 740 .174	875274 		F(4, 736) = 34.17 Prob > F = 0.0000 R-squared = 0.1566 Adj R-squared = 0.1521 Root MSE = .38455
lwage	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
hours educ age feduc _cons	.0475258 .0262759 .0172076	.0019639 .0070026 .0045806 .0047569 .1897058	-3.59 6.79 5.74 3.62 28.58	0.000 0.000 0.000 0.000 0.000	01089640031855 .0337785 .0612732 .0172834 .0352685 .0078689 .0265462 5.048692 5.79355
. reg lwage ho	ours educ age	feduc meduc			
Source 	20.519095 106.292836		MS 381899 453682 758834		Number of obs = 722 F(5, 716) = 27.64 Prob > F = 0.0000 R-squared = 0.1618 Adj R-squared = 0.1560 Root MSE = .3853
lwage	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
hours educ age feduc meduc _cons	.046006 .0249456 .0114239 .0132414	.0019821 .0072322 .0046705 .0055571 .0063094 .1929204	-3.60 6.36 5.34 2.06 2.10 28.02	0.000 0.000 0.000 0.040 0.036 0.000	01103210032495 .0318071 .0602049 .0157762 .034115 .0005138 .022334 .0008543 .0256285 5.026024 5.783539

The results are extermely problematic because each set of results is on a different sample! The first set has 857 observations, the second 741, and down to 722 for the final one. Stata performs casewise deletion when running regressions, and doesn't adjust unless you tell it to. In this case none of the standard tests of model fit are relevant, because it's not the same sample.

The solution is to use the e(sample) command to limit the sample to the relevant analysis sample. First, run the model that restricts the data the most (has the most missing data), then limit subsequent models using the statement if e(sample) == 1.

Selecting Variables: Stepwise Regression OR A Cautionary Tale of Woe

When selecting variables for a model, students are sometimes tempted by the dark side of step-wise regression, which is a step on the path toward the greater evil that is data mining. I will illustrate why this is a bad idea. The basic idea with stepwise regression is to eliminate variables from the model one at a time—if the variable is not significant, it gets dropped. However, this method is very sensitive to the overall group of variables used, essentially just pushing decisions one step back, and then using an arbitrary non-theoertical standard for variable inclusion. There is no good theoretical reason to use this procedure.

Selecting Variables: RESET test

One question that comes up frequently is whether one or more variables ought to be expressed as quadratic or higher-order polynomials in the equation. The RESET test can help with this problem. Specifying the RESET test without any options means that Stata will fit the model with the second, third and fourth powers of \hat{y} . Specifying the option rhs will use powers of the individual regressors.

In Stata, we would run:

```
. reg lwage hours age educ
  Adj R-squared = 0.1285
Root MSE = .39315
     Total | 165.656294 934 .177362199
______
     lwage | Coef. Std. Err. t P>|t| [95% Conf. Interval]
hours | -.0047011 .0017887 -2.63 0.009 -.0082115 -.0011906
age | .0227339 .0041411 5.49 0.000 .0146069 .0308608
educ | .0616404 .0058814 10.48 0.000 .0500981 .0731827
     _cons | 5.403279 .1732026 31.20 0.000 5.063366 5.743191
. estat ovtest
Ramsey RESET test using powers of the fitted values of lwage
     Ho: model has no omitted variables
             F(3, 928) = 0.32

Prob > F = 0.808
                           0.8089
. estat ovtest, rhs
Ramsey RESET test using powers of the independent variables
     Ho: model has no omitted variables
             F(9, 922) = 2.12
              Prob > F =
                          0.0255
```

The result of the first test is not significant, but the result of the second test is. This indicates that we might want to include some additional powers of the right hand variables. Let's begin by introducing a quadratic function of age:

```
. gen agesq=age^2
. label var agesq "Age squared"
. reg lwage hours educ age agesq
                                           Number of obs = 935

F(4, 930) = 35.15

Prob > F = 0.0000

R-squared = 0.1313
     Source |
_____
      Model | 21.7551592 4 5.43878981
                                                  R-squared = 0.1313
Adj R-squared = 0.1276
   Residual | 143.901135 930 .154732403
  _____
                                                               = .39336
      Total | 165.656294 934 .177362199
                                                   Root MSE
     lwage |
                                       t P>|t| [95% Conf. Interval]
                 Coef. Std. Err.
              .0615585 .0059083 10.42 0.000 .0499634
.0388675 .1043805 0.27 0.7
      hours |
                                                                  -.0011876
                                                                  .0731536
      educ |
       age | .0388675 .1043805 0.37 0.710 -.1659811
                                                                 .2437162
      agesq | -.0002425 .0015678 -0.15 0.877 -.0033193 .0028343 
_cons | 5.138356 1.721371 2.99 0.003 1.760134 8.516578
. test age agesq
 (1) age = 0
 (2) agesq = 0
      F(2, 930) = 15.07
           Prob > F =
                       0.0000
```

The two terms for age are jointly significant, but it looks like we could safely exclude age squared from the model without any loss of model fit.

Now let's try education squared:

```
. gen educsq=educ^2
. la var educsq "Education squared"
. reg lwage hours age educ educsq
                                 df
                                           MS
                                                               Number of obs =
      Source |
                                                               F(4, 930) =
-----+----+-----
                                                                                     36.27
                                                              Prob > F = 0.0000
R-squared = 0.1350
      Model | 22.3576551 4 5.58941378
    Residual | 143.298639 930 .154084558
                                                                Adj R-squared = 0.1312
       Total | 165.656294 934 .177362199
                                                               Root MSE
                                                                               = .39254
                    Coef. Std. Err. t P>|t| [95% Conf. Interval]
       lwage |

    hours | -.004608
    .0017866
    -2.58
    0.010
    -.0081141

    age | .0243563
    .0042147
    5.78
    0.000
    .0160848

    educ | .2161619
    .0781252
    2.77
    0.006
    .0628397

                                                                                 -.0011018
                                                                                 .0326278
      educsq | -.0054912 .0027685 -1.98 0.048 -.0109245
_cons | 4.286926 .5887928 7.28 0.000 3.13141
                                                                                 - . 000058
                                                                    3.13141 5.442443
```

This does result in a statistically significant increase in model fit. The way I would prefer approaching this problem is to fully specify the model, then restrict it appropriately, like so:

```
. /*Preferred method */
. reg lwage hours age agesq educ educsq
Total | 165.656294 934 .177362199
                                                              Root MSE = .39273
      lwage | Coef. Std. Err. t P>|t| [95% Conf. Interval]
       hours | -.0046056 .0017875 -2.58 0.010 -.0081135
age | .050602 .1043806 0.48 0.628 -.154247
                                                                                . 255451
        agesq | -.0003944 .0015672 -0.25 0.801 -.0034699

    educ |
    .2169837
    .0782328
    2.77
    0.006
    .0634502
    .3705171

    educsq |
    -.0055252
    .0027732
    -1.99
    0.047
    -.0109676
    -.0000828

    _cons |
    3.849225
    1.836393
    2.10
    0.036
    .2452658
    7.453184

. test age agesq
 (1) age = 0
 (2) agesq = 0
        F(2, 929) = 16.71
             Prob > F = 0.0000
. test educ educsq
 (1) educ = 0
 (2) educsq = 0
       F(2, 929) = 56.44

Prob > F = 0.0000
```

Selecting Variables: Non-Nested Models

In many situations, models are based on competing hypotheses, and so they don't nest within one another. Let's say we have one model that posits education as the key to wages, another that posits iq as the key to wages. To test whether one is better than the other, we use the Davidson-Mackinnon test:

·	165.656294				Adj R-squared = 0.1022 Root MSE = .39905
lwage	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
hours iq _cons	0041302 .0089535 6.053607	.0018124 .0008698 .1150416	-2.28 10.29 52.62	0.023 0.000 0.000	0076870005734 .0072465 .0106606 5.827837 6.279378
. reg lwage hou	ırs educ				
	SS				Number of obs = 935 F(2, 932) = 53.62
Model Residual	17.0930188 148.563276	2 8.54650938 932 .159402656			Prob > F = 0.0000 R-squared = 0.1032 Adj R-squared = 0.1013
	165.656294				Root MSE = .39925
					[95% Conf. Interval]
hours	0044454	.0018159	-2.45	0.015	00800910008817
educ _cons	.0611697 6.150426	.108791	10.24 56.53	0.000	.0494497 .0728898 5.936923 6.36393
	with X = [hg with Z = [h	ours iq] ours educ]			
HO: M1 t(931) H1: M2 p-val					
HO: M2 t(931) H1: M1 p-val	5.9764 0.0000	7 0			
Cox-Pesaran tes	st for non-ne	sted model	s		
HO : M1 N(0,1)	-8.8774	4			
H1 : M2 p-val	0.0000	0			
HO: M2 N(0,1) H1: M1 p-val	-9.0544 0.0000	9			

The results of this test indicate that it would be better to include both of these models, in a sort of "super" model.

Interactions

Interactions can be difficult to understand, but they are key to getting a handle on sometimes important moderating variables in an analysis.

Interactions with two binary variables

Let's say we're interested in whether marriage affects wages differently for black and white men. The specification of an interaction between the two binary variables of white and married would look like this:

. reg lwage hou	rs age educ	i.blac	k#i.n	married iq	meduc	south urban		
Source	SS	df		MS		Number of obs F(10, 846)		857 29.83
Model	38.9381574	10	3.89	9381574		Prob > F	=	0.0000
Residual	110.422894			0523515		R-squared	=	
+-						Adj R-squared	=	0.2520
Total	149.361051	856	. 174	1487209		Root MSE	=	.36128
lwage	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
hours	0063301	.0017	273	-3.66	0.000	0097204		0029398
age	.0220385	.0040	456	5.45	0.000	.0140979		0299792
educ	.0363765	.0068	217	5.33	0.000	.0229871		0497659
1								
black#								
married								
0 1	.1817023	.0438		4.14	0.000	.0956506		.267754
10	2750052	.1036		-2.65	0.008	478503		0715073
1 1	.0597192	.0605	138	0.99	0.324	0590557		.178494
. !						2212122		
iq	.0039649	.0010		3.80	0.000	.0019162		0060137
meduc	.0104632	.0047		2.18	0.029	.0010483		0198781
south	0729291	.0276		-2.64	0.008	1271531		0187051
urban	.179466	.0280		6.39	0.000	.1243228		2346092
_cons	5.084363	.1866	763	27.24	0.000	4.717961	5	.450766

Interactions with a binary and continous variable

Let's say we're interested in whether education affects wages differently for black and white men. The specification of an interaction between a binary variable and a continous variable would look like this:

. reg lwage ho	urs age educ	black	i.bla	ck#c.educ	marrie	d iq meduc so	uth	urban
Source	SS			MS		Number of obs F(10, 846)		
Model	38.7974052	10	3.87	974052		Prob > F		
Residual	110.563646	846	.130	689889		R-squared	=	0.2598
+						Adj R-squared	=	0.2510
Total	149.361051	856	. 174	487209		Root MSE	=	.36151
lwage	Coef.	Std.	Err.	t	P> t	[95% Conf.	 Int	terval]
hours	0063045	.00)173	-3.64	0.000	0097001		.002909
age	.0215072	.0040	455	5.32	0.000	.0135669	. (294476
educ	.0378404	.0069	883	5.41	0.000	.0241239	. (0515569
black	.1034702	.2766	783	0.37	0.709	4395862	. 6	3465265
black#c.educ 1 1	0196117	.0215	854	-0.91	0.364	0619789	.()227554

married		.2051596	.0402851	5.09	0.000	.1260892	.28423
iq		.0040191	.0010442	3.85	0.000	.0019695	.0060687
meduc		.0102747	.0047964	2.14	0.032	.0008604	.0196889
south		069586	.0276172	-2.52	0.012	1237922	0153798
urban		.179133	.0281112	6.37	0.000	.1239572	.2343088
_cons	1	5.05532	.187864	26.91	0.000	4.686586	5.424055

Interactions with two continous variables

Finally let's say we think that eductation will affect your wages differently depending on your age. The specification of an interaction between two continous variables would look like this:

. reg lwage ho	ours age educ	c.age#c.edu	ıc black	married	iq meduc south	urban
	SS				Number of obs F(10, 846)	
Model					Prob > F	
Residual					R-squared	
					Adj R-squared	
Total	149.361051	856 .174	1487209		Root MSE	= .36089
lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
t						
hours	0066151	.0017294	-3.83	0.000	0100095	0032208
age	0280105	.0260076	-1.08	0.282	0790575	.0230364
educ	0876756	.0645406	-1.36	0.175	2143541	.0390029
i						
c.age#c.educ	.0037019	.0019136	1.93	0.053	0000542	.0074579
I						
black	1466181	.0430343	-3.41	0.001	2310847	0621515
married	.2063299	.0402134	5.13	0.000	.1274003	.2852596
iq	.0040003	.0010423	3.84	0.000	.0019545	.0060461
meduc		.0047844		0.035	.0006897	.019471
south	06698	.0276104	-2.43	0.015	121173	
	.182844		6.50			.2380569
_cons		.8848456				

The do file has extensive examples of how to use margins to create nice plots of various types of interactions. We'll go over these in class.

Not-so-quick Exercise

In pairs, I would like you to estimate the best possible model using the wage2 dataset. Think about model specification and functional form, with an eye toward possible non-linearities and other issues. Generate a do file that walks through your process of identifying the best model. Generate a fancy graph that shows the predictions made by your model.