Recurrent Neural Network

By Prof. Seungchul Lee iSystems Design Lab http://isystems.unist.ac.kr/ UNIST

Table of Contents

- I. 1. Recurrent Neural Network (RNN)
 - <u>I. 1.1. Feedforward Network and Sequential Data</u>
 - II. 1.2. Structure of RNN
 - III. 1.3. RNN with LSTM
 - IV. 1.4. RNN and Sequential Data
- II. 2. RNN with Tensorflow
 - <u>I. 2.1. Import Library</u>
 - II. 2.2. Load MNIST Data
 - III. 2.3. Define RNN Structure
 - IV. 2.4. Define Weights and Biases
 - V. 2.5. Build a Model
 - VI. 2.6. Define Cost, Initializer and Optimizer
 - VII. 2.7. Summary of Model
 - VIII. 2.8. Define Configuration
 - IX. 2.9. Optimization
 - X. 2.10. Test
- III. 3. Load pre-trained Model

1. Recurrent Neural Network (RNN)

· RNNs are a family of neural networks for processing sequential data

1.1. Feedforward Network and Sequential Data

- Separate parameters for each value of the time index
- Cannot share statistical strength across different time indices

In [1]:

%%html

<center><iframe src="https://www.youtube.com/embed/oYglxfBtSQk?rel=0"
width="560" height="315" frameborder="0" allowfullscreen></iframe></center>

1.2. Structure of RNN

Recurrence

ullet It is possible to use the **same** transition function f with the same parameters at every time step

Hidden State

- ullet Lossy summary of the the past sequence of inputs up to t
- · Keep some aspects of the past sequence with more precision than other aspects
- ullet Network learns the function f

$$egin{aligned} h^{(t)} &= f\left(h^{(t-1)}, x^{(t)}
ight) \ f\left(h^{(t-1)}, x^{(t)}
ight) &= g\left(Wx_t + Uh_{t-1}
ight) \end{aligned}$$

Deep Recurrent Networks

- Three blocks of parameters and associated transformation
 - 1. From the input to the hidden state (from green to yellow)
 - 2. From the previous hidden state to the next hidden state (from yellow to red)
 - 3. From the hidden state to the output (from red to blue)

1.3. RNN with LSTM

Long-Term Dependencies

- Gradients propagated over many stages tend to either vanish or explode
- Difficulty with long-term dependencies arises from the exponentially smaller weights given to longterm interactions

Long Short-Term Memory (LSTM)

- Allow the network to accumulate information over a long duration
- Once that information has been used, it might be used for the neural network to forget the old state

$$z_{t} = \sigma (W_{z} \cdot [h_{t-1}, x_{t}])$$

$$r_{t} = \sigma (W_{r} \cdot [h_{t-1}, x_{t}])$$

$$\tilde{h}_{t} = \tanh (W \cdot [r_{t} * h_{t-1}, x_{t}])$$

$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \tilde{h}_{t}$$

Summary

- · Connect LSTM cells in a recurrent manner
- · Train parameters in LSTM cells

1.4. RNN and Sequential Data

Series Data Prediction

2. RNN with Tensorflow

- · An example for predicting a next piece of an image
- · Regression problem

2.1. Import Library

In [2]:

```
import tensorflow as tf
from six.moves import cPickle
import numpy as np
import matplotlib.pyplot as plt
```

2.2. Load MNIST Data

• Download MNIST data from the tensorflow tutorial example

In [3]:

```
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
```

```
Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
```

In [4]:

```
# Check data
train_x, train_y = mnist.train.next_batch(10)
img = train_x[9,:].reshape(28, 28)

plt.figure(figsize=(5, 3))
plt.imshow(img,'gray')
plt.title("Label : {}".format(np.argmax(train_y[9])))
plt.xticks([])
plt.yticks([])
plt.show()
```

Label: 8

2.3. Define RNN Structure

In [5]:

```
n_step = 14
n_input = 28

## LSTM shape
n_lstm1 = 10
n_lstm2 = 10

## Fully connected
n_hidden = 100
n_output = 28
```

2.4. Define Weights and Biases

LSTM Cell

• Do not need to define weights and biases of LSTM cells

Fully connected

- Define parameters based on the predefined layer size
- Initialize with a normal distribution with $\mu=0$ and $\sigma=0.01$

```
In [6]:
```

```
weights = {
    'hidden' : tf.Variable(tf.random_normal([n_lstm2, n_hidden], stddev=0.01)),
    'output' : tf.Variable(tf.random_normal([n_hidden, n_output], stddev=0.01))
}
biases = {
    'hidden' : tf.Variable(tf.random_normal([n_hidden], stddev=0.01)),
    'output' : tf.Variable(tf.random_normal([n_output], stddev=0.01))
}
x = tf.placeholder(tf.float32, [None, n_step, n_input])
y = tf.placeholder(tf.float32, [None, n_output])
```

2.5. Build a Model

Build the RNN Network

· First, define the LSTM cells

```
lstm = tf.contrib.rnn.BasicLSTMCell(n_lstm)
```

• Second, compute hidden state (h) and lstm cell (c) with the predefined lstm cell and input

```
h, c = tf.nn.dynamic_rnn(lstm, input_tensor, dtype=tf.float32)
```

In [7]:

```
def build_model(x, weights, biases):
    with tf.variable_scope('rnn'):
        # Build RNN network
        with tf.variable_scope('lstm1'):
            lstm1 = tf.contrib.rnn.BasicLSTMCell(n_lstm1)
            h1, c1 = tf.nn.dynamic_rnn(lstm1, x, dtype=tf.float32)
        with tf.variable_scope('lstm2'):
            lstm2 = tf.contrib.rnn.BasicLSTMCell(n_lstm2)
            h2, c2 = tf.nn.dynamic_rnn(lstm2, h1, dtype=tf.float32)

# Build classifier
        hidden = tf.add(tf.matmul(h2[:,-1,:], weights['hidden']), biases['hidden'])
        hidden = tf.nn.relu(hidden)
        output = tf.add(tf.matmul(hidden, weights['output']), biases['output'])
        return output
```

2.6. Define Cost, Initializer and Optimizer

Loss

· Regression: Squared loss

$$rac{1}{N} \sum_{i=1}^{N} (\hat{y}^{(i)} - y^{(i)})^2$$

Initializer

· Initialize all the empty variables

Optimizer

· AdamOptimizer: the most popular optimizer

In [8]:

```
LR = 0.0005

pred = build_model(x, weights, biases)
loss = tf.square(tf.subtract(y, pred))
loss = tf.reduce_mean(loss)

optm = tf.train.AdamOptimizer(LR).minimize(loss)

init = tf.global_variables_initializer()
```

2.7. Summary of Model

2.8. Define Configuration

- Define parameters for training RNN
 - n_iter: the number of training steps
 - n_prt: check loss for every n_prt iteration

In [9]:

```
n_iter = 2500
n_prt = 100
```

2.9. Optimization

Do not run on CPU. It will take quite a while.

In [10]:

Iter: 0

Cost: 0.00017322145868092775

Iter: 100

Cost: 0.0027603446505963802

Iter: 200

Cost: 0.0017704330384731293

Iter: 300

Cost: 0.0018281807424500585

Iter: 400

Cost: 0.0022316621616482735

Iter: 500

Cost: 0.0019235319923609495

Iter: 600

Cost: 0.0029685343615710735

Iter: 700

Cost: 0.00260598654858768

Iter: 800

Cost: 0.002004891401156783

Iter: 900

Cost: 0.00437586847692728

Iter: 1000

Cost: 0.0031971693970263004

Iter: 1100

Cost: 0.0011580168502405286

Iter: 1200

Cost: 0.0010057692416012287

Iter: 1300

Cost: 0.0005786378751508892

Iter: 1400

Cost: 0.000733629975002259

Iter: 1500

Cost: 0.0027604512870311737

Iter: 1600

Cost: 0.0014676948776468635

Iter: 1700

Cost: 0.0013189016608521342

Iter: 1800

Cost: 0.002196046058088541

Iter: 1900

Cost: 0.0012356654042378068

Iter: 2000

Cost: 0.0031192346941679716

Iter: 2100

Cost: 0.0004458320909179747

Iter: 2200

Cost: 0.00024697737535461783

Iter: 2300

Cost: 0.0025314786471426487

Iter : 2400

Cost: 0.001291859894990921

2.10. Test

- Do not run on CPU. It will take quite a while.
- Predict the MNIST image
- MNIST is 28 x 28 image. The model predicts a piece of 1 x 28 image.
- First, 14 x 28 image will be feeded into a model, then the model predict the last 14 x 28 image, recursively.

In [11]:

```
test_x, test_y = mnist.test.next_batch(10)
test_x = test_x.reshape(-1, 28, 28)
idx = 0
gen_img = []
sample = test_x[idx, 0:14, :]
input_img = sample.copy()
feeding_img = test_x[idx, 0:0+n_step, :]
for i in range(n_step):
    test_pred = sess.run(pred, feed_dict={x: feeding_img.reshape(1, 14, 28)})
    feeding_img = np.delete(feeding_img, 0, 0)
    feeding_img = np.vstack([feeding_img, test_pred])
    gen_img.append(test_pred)
for i in range(n_step):
    sample = np.vstack([sample, gen_img[i]])
plt.imshow(test_x[idx], 'gray')
plt.title('Original Img')
plt.xticks([])
plt.yticks([])
plt.show()
plt.figure(figsize=(4,3))
plt.imshow(input_img, 'gray')
plt.title('Input')
plt.xticks([])
plt.yticks([])
plt.show()
plt.imshow(sample, 'gray')
plt.title('Generated Img')
plt.xticks([])
plt.yticks([])
plt.show()
```

Original Img

Input

Generated Img

3. Load pre-trained Model

- We trained the model on GPU for you.
- You can load the pre-trained model to see RNN MNIST results
- LSTM size
 - n_lstm1 = 128
 - n_lstm2 = 256

In [12]:

```
from RNN import RNN
my_rnn = RNN()
my_rnn.load('./data_files/RNN_mnist/checkpoint/RNN_5000')
```

INFO:tensorflow:Restoring parameters from ./data_files/RNN_mnist/checkpoin
t/RNN_5000
Model loaded from file : ./data_files/RNN_mnist/checkpoint/RNN_5000

• Test with the pre-trained Model

In [13]:

```
test_x, test_y = mnist.test.next_batch(10)
test_x = test_x.reshape(-1, 28, 28)
sample = test_x[0, 0:14,:]
gen_img = my_rnn.predict(sample)
plt.imshow(test_x[0], 'gray')
plt.title('Original Img')
plt.xticks([])
plt.yticks([])
plt.show()
plt.figure(figsize=(4,3))
plt.imshow(sample, 'gray')
plt.title('Input')
plt.xticks([])
plt.yticks([])
plt.show()
plt.imshow(gen_img, 'gray')
plt.title('Generated Img')
plt.xticks([])
plt.yticks([])
plt.show()
```

Original Img

Input

Generated Img

In [14]:

%%javascript

\$.getScript('https://kmahelona.github.io/ipython_notebook_goodies/ipython_notebook_toc.
js')