| EAIiIB          | Ewa Stachów   |                    | Rok           | Grupa            | Zespół        |  |  |  |  |  |
|-----------------|---------------|--------------------|---------------|------------------|---------------|--|--|--|--|--|
| Informatyka     | Weronika Olch | a                  | II            | 3                | 6             |  |  |  |  |  |
| Pracownia       | Temat:        |                    |               |                  | Nr ćwiczenia: |  |  |  |  |  |
| FIZYCZNA        |               |                    |               |                  |               |  |  |  |  |  |
| WFiIS AGH       | Wiosiek wheas | Mostek Wheastone'a |               |                  |               |  |  |  |  |  |
| Data wykonania: | Data oddania: | Zwrot do poprawki: | Data oddania: | Data zaliczenia: | OCENA:        |  |  |  |  |  |
| 21.10.2016      | 26.10.2016    |                    |               |                  |               |  |  |  |  |  |

# Ćwiczenie nr 32: Mostek Wheastone'a

### 1 Cel ćwiczenia

Celem ćwiczenia było zapoznanie z zasadą działania mostka Wheatstone'a w oparciu o prądowe i napięciowe prawo Kirchoffa służące do opisu złożonych obwodów elektrycznych oraz metody pomiaru nieznanych oporów oraz ich połączeń szeregowych i równoległych zgodnie z prawem Ohma.

### 2 Wstęp teoretyczny



Mostek Wheatstone'a jest jednym z klasycznych sposobów dokładnego pomiaru nieznanego oporu elektrycznego. Załóżmy, że mamy nieznany opór  $R_x$ , znane opory  $R_a$ ,  $R_b$  oraz regulowaną opornicę dekadową o oporze  $R_2$ . Zestawiamy następujący obwód: do szeregowego połączenia oporów  $R_x$ ,  $R_2$  przyłączamy równolegle połączenie szeregowe  $R_a$ ,  $R_b$ . Węzły pomiędzy wspomnianymi parami oporów łączymy galwanometrem. Po przyłożeniu do układu różnicy potencjałów możemy regulować  $R_2$  tak, aby galwanometr wskazywał 0, czyli brak różnicy potencjałów, a co za tym idzie i brak przepływu prądu między odpowiednimi węzłami. Wtedy z praw Ohma i Kirchhoffa możemy wyprowadzić następujące wzory:

$$I_a \cdot R_a = I_x \cdot R_x$$

$$I_b \cdot R_b = I_d \cdot R_2$$

Z powyższych równań wynika równość spadków napięć na odpowiednich oporach oraz równość odpowiednich natężeń prądów, czyli:

$$I_a = I_b$$

$$I_x = I_d$$

Stąd można wyprowadzić wyrażenie na  $R_x$ :

$$R_x = R_a \frac{I_a}{I_x} = R_a \frac{I_b}{I_d} = R_2 \frac{R_a}{R_b}$$

Ponieważ  $R_a$  i  $R_b$  są oporami odcinków tego samego jednorodnego drutu, ich wielkości są proporcjonalne do długości:

$$\frac{R_a}{R_b} = \frac{a}{b} = \frac{a}{l-a}$$

Ostatecznie otrzymujemy, że:

$$R_x = R_2 \frac{a}{l-a}$$

Dokładność pomiaru mostkiem Wheatstone'a z drutem oporowym zależy przede wszystkim od błędu wyznaczenia odległości a. Aby pomiar był najdokładniejszy należy tak dobrać opór  $R_2$ , aby stan równowagi mostka można było uzyskać w przybliżeniu w połowie długości drutu oporowego.

## 3 Układ pomiarowy

Układ mostka Wheatstone'a pokazany został na rysunku w punkcie nr 2 *Wstęp teoretyczny*. W skład obwodu wchodzą:

- Listwa z drutem oporowym, zaopatrzona w podziałkę milimetrową i kontakt ślizgowy umożliwiający zmiany długości odcinków a i b.
- Opornica dekadowa
- Zestaw oporników oznaczony symbolem  $R_x$ , umieszczony na płytce z pleksiglasu.
- ullet Mikroamperomierz G jako wskaźnik zerowania mostka. Jego czułość można regulować.
- Zasilacz.

### 4 Przebieg doświadczenia

Przy przeprowadzaniu eksperymentu skorzystałyśmy z układu pomiarowego, którego schemat przedstawia poniższy rysunek. Pomiędzy punktami A i C znajduje się listwa z drutem oporowym o znanej długości.  $R_2$  jest opornikiem wzorcowym o regulowanej wartości oporu, a  $R_x$  nieznanym oporem, którego wartość chcemy wyznaczyć. Zrównoważenie mostka polega na takim ustawieniu punktu D, aby dla zadanej wartości  $R_2$  przez galwanometr nie płynął prąd.

# 5 Wyniki pomiarów

| Ω | nor | ·nil | z R | - |
|---|-----|------|-----|---|

| $R_1[\Omega]$ 25        | 20    | 30    | 15    | 13    | 10    | 8     | 5     | 18    | 23    |
|-------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| a[mm] 354               | 427   | 331   | 472   | 512   | 599   | 612   | 682   | 427   | 378   |
| $R_{x_1}[\Omega]$ 13,70 | 14,90 | 14,84 | 13,41 | 13,64 | 14,94 | 12,62 | 10,72 | 13,41 | 13,98 |

Wartość średnia oporu:  $\overline{R}_{x_1} \approx 13,62 \Omega$  Niepewność:  $u(R_{x_1}) \approx 0,40 \Omega$ 

| $\sim$            |      | • •          | $\mathbf{r}$ |
|-------------------|------|--------------|--------------|
| ( )               | pori | าปร          | $R_{\sim}$   |
| $\mathbf{\sigma}$ | נוטע | $\mathbf{n}$ | 102          |

| $R_2[\Omega]$     | 20    | 30    | 10    | 35    | 25    | 15    | 18    | 12    | 22    | 28    |
|-------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| a[mm]             | 504   | 407   | 675   | 358   | 438   | 556   | 515   | 619   | 477   | 411   |
| $R_{x_2}[\Omega]$ | 20,32 | 20,59 | 20,77 | 19,52 | 19,48 | 18,78 | 19,11 | 19,50 | 20,07 | 19,54 |

Wartość średnia oporu:  $\overline{R}_{x_2} \approx 19,77~\Omega$  Niepewność:  $u(R_{x_2}) \approx 0,20~\Omega$ 

#### Połączenie szeregowe ( $R_1 \mathbf{z} R_2$ )

| $R_{12}[\Omega]$ 20     | 30    | 35    | 40    | 50    | 45    | 25    | 28    | 32    | 38    |
|-------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| a[mm] 640               | 531   | 500   | 461   | 414   | 436   | 575   | 545   | 526   | 479   |
| $R_{z_s}[\Omega]$ 35,56 | 33,97 | 35,00 | 34,21 | 35,32 | 34,79 | 33,82 | 33,54 | 35,51 | 34,94 |

Wartość średnia oporu:  $\overline{R}_{z_s} \approx 34,67~\Omega$ Niepewność:  $u(R_{z_s}) \approx 0.23 \Omega$ 

Opór obliczony:  $R_{obl} \approx 33,38 \Omega$ Niepewność:  $u(R_{obl}) \approx 0,45 \Omega$ 

#### Połączenie równoległe ( $R_1$ z $R_2$ )

| $R_{12}[\Omega]$ 3     | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 13   |
|------------------------|------|------|------|------|------|------|------|------|------|
| a[mm] 662              | 592  | 560  | 526  | 496  | 467  | 434  | 461  | 427  | 371  |
| $R_{z_r}[\Omega]$ 5,88 | 5,80 | 6,36 | 6,66 | 6,89 | 7,01 | 6,90 | 8,55 | 8,20 | 7,67 |

Wartość średnia oporu:  $\overline{R}_{z_r} \approx 6,99~\Omega$  Niepewność:  $u(R_{z_r}) \approx 0,29~\Omega$  Opór obliczony:  $R_{obl} \approx 8,06~\Omega$  Niepewność:  $u(R_{obl}) \approx 0,10~\Omega$ 

### Opracowanie wyników pomiarów

Aby obliczyć opór  $R_x$  korzystamy z poniższego wzoru:

$$R_x = R_2 \frac{a}{l-a},$$

gdzie  $R_2$  to znana opór wzorcowy, a to zmierzona długość, a l=1000mm to długość listwy z drutem oporowym. Niepewność typu A wartości  $R_x$  wyznaczamy z następującego wzoru:

$$u(R_x) = \sqrt{\frac{\sum (R_i - \overline{R}_x)^2}{n(n-1)}}$$

Po podstawieniu odpowiednich wartości otrzymujemy:

$$u(R_1) = \sqrt{\frac{(13,70 - 13,62)^2 + \dots (13,98 - 13,62)^2}{10(10 - 1)}} \approx 0,40 \Omega$$

$$u(R_2) = \sqrt{\frac{(20,32 - 19,77)^2 + \dots (19,54 - 19,77)^2}{10(10 - 1)}} \approx 0,20 \Omega$$

$$u(R_{z_s}) = \sqrt{\frac{(35,56 - 34,67)^2 + \dots (34,94 - 34,67)^2}{10(10 - 1)}} \approx 0,23 \Omega$$

$$u(R_{z_r}) = \sqrt{\frac{(5,88 - 6,99)^2 + \dots (7,67 - 6,99)^2}{10(10 - 1)}} \approx 0,29 \Omega$$

#### Połączenie szeregowe

Wartość oporu przy połączeniu szeregowym można też obliczyć na podstawie wzoru na opór zastępczy oraz wyznaczonych wartości  $R_{x_1}$  i  $R_{x_2}$ 

$$R_{obl} = R_{x_1} + R_{x_2} \approx 33,38 \,\Omega$$

Niepewność dla wartości wyliczanych ze wzorów na opór zastępczy w obwodzie z połączeniem szeregowym wyznaczamy z prawa przenoszenia niepewności i opisujemy wzorem:

$$u(R_{obl}) = \sqrt{\left(\frac{\delta R_{z_s}}{\delta R_{x_1}}\right)^2 u(R_{x_1})^2 + \left(\frac{\delta R_{z_s}}{\delta R_{x_2}}\right)^2 u(R_{x_2})^2}$$
  
=  $\sqrt{u(R_{x_1})^2 + u(R_{x_2})^2}$   
 $\approx 0.45 \Omega$ 

#### 6.2 Połączenie równoległe

Wartość oporu przy połączeniu równoległym można też obliczyć na podstawie wzoru na opór zastępczy oraz wyznaczonych wartości  $R_{x_1}$  i  $R_{x_2}$ 

$$R_{z_r} = \frac{R_{x_1} R_{x_2}}{R_{x_1} + R_{x_2}} \approx 8,06 \,\Omega$$

$$u(R_{obl}) = \sqrt{\left(\frac{\delta R_{z_r}}{\delta R_{x_1}}\right)^2 u(R_{x_1})^2 + \left(\frac{\delta R_{z_r}}{\delta R_{x_2}}\right)^2 u(R_{x_2})^2}$$

$$= \sqrt{\left(\frac{R_{x_1}}{R_{x_1} + R_{x_2}}\right)^4 u(R_{x_1})^2 + \left(\frac{R_{x_2}}{R_{x_1} + R_{x_2}}\right)^4 u(R_{x_2})^2}$$

$$\approx 0.10 \Omega$$

#### 6.3 Porównanie wartości z pomiarów i wyznaczonych ze wzorów

|                       | Opory zmierzone    | Opory ze wzoru     |  |
|-----------------------|--------------------|--------------------|--|
| Połączenie szeregowe  | $34,67(23) \Omega$ | $33,38(45) \Omega$ |  |
| Połączenie równoległe | $6,99(29) \Omega$  | $8,06(10) \Omega$  |  |

#### 7 Wnioski

- Opory wyznaczone w ćwiczeniu mają zbliżone wartości do obliczonych ze wzorów, jednak nie mieszczą się w granicach niepewności pomiarowych (nawet w granicach niepewności rozszerzonej dla współczynnika rozszerzenia k=2.).
- Błędy mogą wynikać ze złego odczytania wartości z amperomierza, bądź złego odczytania długości drutu, lub niedokładności urządzeń pomiarowych.