Learning to Cut in Integer Programming

Siddharth Prasad (CMU)

Joint with Nina Balcan (CMU), Tuomas Sandholm (CMU), and Ellen Vitercik (Stanford)

Branch-and-cut for integer programming

LP guidance to do informed search through feasible set Choose variable i to branch on: add constraints $x[i] \le [x_{LP}^*[i]], x[i] \ge [x_{LP}^*[i]]$

Cutting planes:
Responsible for
breakthrough
speedups of IP solvers

LP optimal

Cutting plane

IP optimal

Prune subtrees if LP relaxation is:

- Integral, or
- Worse than best integral solution found so far

Our contribution:

First formal theory for using ML to select cutting planes

Learning to cut

Best cutting planes for **routing** problems likely not suited for **scheduling**

Application domain modeled by distribution over IPs

Key question: Sample complexity

If cut yields small B&C tree size on average over a training set...

Fresh sample max $c \cdot x$ s.t. $Ax \leq b$ $x \in \mathbb{Z}^n$

...will it yield a small B&C tree on a fresh IP?

Sample complexity

- size of training set s.t. |empirical treesize expected treesize| <= epsilon for all cuts uniformly
- grows linearly in *pseudo-dimension*
- generalization of VC dimension

Cutting planes: Structure and sensitivity

Want to understand B&C tree as a function of cutting plane

Chvátal-Gomory Cuts:

 $\alpha_1 x \leq \beta_1$ of the form $\lfloor uA \rfloor x \leq \lfloor ub \rfloor$, $u \in [0,1]^m$

Theorem: For any IP, $O(\|A\|_{1,1} + \|b\|_1 + n)$ hyperplanes partition $[0,1]^m$ into regions s.t. in each region the cutting plane given by u is the same

i.e. set of CG cuts "effectively finite"

More generally, when does B&C behave identically on:

max
$$c \cdot x$$

s.t. $Ax \leq b$
 $\alpha_1 x \leq \beta_1$
 $x \in \mathbb{Z}^n$

VS

max
$$c \cdot x$$

s.t. $Ax \leq b$
 $\alpha_2 x \leq \beta_2$
 $x \in \mathbb{Z}^n$

Theorem: For any IP, $O(14^n(m+2n)^{3n^2}\tau^{5n^2})$ degree ≤ 5 polynomial hypersurfaces partition \mathbb{R}^{n+1} into regions s.t. in each region the execution of B&C is the same τ = diameter of feasible polytope (roughly)

Proof. Derive piecewise closed form for LP optimum in terms of α , β . B&C actions defined by polynomial boundaries

LP optimum Ir closed form b

Invariant branching

Invariant LP integrality

Invariant B&C execution

Gomory Mixed Integer Cuts:

Parameterized by $u \in [-U, U]^m$, more nuanced rounding than CG cuts, an "infinite" class

Theorem: For any IP, $O(nU^2\|A\|_1\|\boldsymbol{b}\|_1)$ hyperplanes, $2^{O(n^2)}(m+n)^{O(n^3)}\tau^{O(n^3)}$ degree ≤ 10 polynomial hypersurfaces partition $[-U,U]^m$ into regions s.t. in each region the execution of B&C is the same

Learning to cut

Pseudo-dimensions of class of tree-size functions

- Chvátal-Gomory: $O(m \log(||A||_{1.1} + ||b||_1 + n))$
- Gomory mixed integer: $O(mn^3 \log(mn\tau ||A||_1 ||b||_1))$

Cut selection policies

Solvers often use scoring rules to choose from a pool of cuts

E.g., $score(\alpha^T x \le \beta) = distance between cut and x_{LP}^*$

Given d scoring rules, learn mixture μ_1 score₁ + \cdots + μ_d score_d

Theorem: Class of tree-size functions parameterized by μ has pseudo-dim (for CG cuts) $O(dm \log(\|A\|_{1,1} + \|b\|_1 + n))$

General tree search Model captures branching, cutting planes, node selection *simultaneously*

son S_2 S_4 S_7 ode, S_3 S_4 S_5

Theorem: b actions available at each node, take action that maximizes mixture of 2 scoring rules. Pseudo-dim = $O(\Delta^2 + \Delta \log b)$.

Distribution-dependent cut selection can help! Tuning mixture of scoring rules to select knapsack cover

