

תרגול 3 – אביב 2019

<u>סטטיקה של רובוט טורי</u>

בהינתן עומס חיצוני $F_e=\begin{bmatrix}f_x&f_y&f_z&M_x&M_y&M_z\end{bmatrix}^T$ נרצה לחשב כוחות מוכללים במפרקים: , i - כוח מוכלל שמופעל על מפרק הi - כוח מוכלל שמופעל על מפרק הi - כוח מוכלל שמופעל על מפרק היעקוביאן:

$$N = J^T F_e$$

ניתן לבטא את $F_{_{\!arepsilon}}$ במערכת העולם או במערכת הכלי ולקחת את היעקוביאן במערכת המתאימה.

תכנון מסלול

ניתן לתכנן מסלול במרחב המפרקים או במרחב הקרטזי.

תכנון מסלול במרחב המפרקים

נשתמש בתכנון מסלול במרחב המפרקים כאשר צורת התנועה במרחב קרטזי אינה חשובה.

יתרונות:

- אין סכנה להגיע לנקודות סינגולריות או לצאת ממרחב העבודה של הרובוט.
 - תרגום נוח למרחב הקרטזי בעזרת קינמטיקה ישירה.

חסרונות:

• קשה לדמיין צורת מסלול במרחב קרטזי, המסלול אינו אינטואיטיבי.

שלבי תכנוו:

- 1. מעוניינים שתנועת רובוט תהיה חלקה, לכן נבחר פו' רציפה שתגדיר צורת המסלול דרך נקודות ביניים כתלות בזמן. לאחר מכן נדגום את הפו' ונקבל נק' ביניים של תנועת הרובוט.
 - 2. הזמן הדרוש לכל קטע (בין שתי נקודות המסלול) הוא זהה עבור כל אחד מהמפרקים.
 - 3. נשתמש בפולינום ממעלה ח. מעלת הפולינום נקבעת בהתאם למספר אילוצים.

תכנון מסלול במרחב הקרטזי

נשתמש בתכנון מסלול במרחב הקרטזי כאשר צורת התנועה במרחב הקרטזי הינה חשובה.

יתרונות:

- צורת המסלול במרחב אינטואיטיבית וניתן לתכנן אותה בקלות.
- ניתן להימנע מהתנגשות במכשולים שלא נלקחו בחשבון בזמן בניית מרחב עבודה של הרובוט.

חסרונות:

- יש סכנה להגיע לנקודות סינגולריות או לצאת ממרחב העבודה של הרובוט.
- תרגום למרחב המפרקים בעזרת קינמטיקה ההפוכה, יכול להיות מסורבל.

שלבי תכנון:

- 1. נניח נדרש מסלול תנועה בצורת קו ישר.
- 2. כאן בעזרת פולינום מתאים נבנה פו' רציפה עבור קואורדינאטות X, ולאחר מכן נציב למשוואה 2 ליניארית לקבלת קואורדינאטה Y ו-Z מתאימות לכל X. כך נקבל קו ישר.

נמצא את ערכי המפרקים במהלך התנועה בעזרת פתרון הקינמטיקה ההפוכה.

<u>תרגיל 1</u>

נתון רובוט בעל 3 דרגות חופש.

נתונות גם מטריצת הטרנספורמציה והיעקוביאן:

$${}^{0}A_{t} = \begin{bmatrix} s_{1} & c_{1}s_{2} & c_{1}c_{2} & c_{1}c_{2}d_{3} \\ -c_{1} & s_{1}s_{2} & s_{1}c_{2} & s_{1}c_{2}d_{3} \\ 0 & -c_{2} & s_{2} & h + s_{2}d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}, J = \begin{bmatrix} -s_{1}c_{2}d_{3} & -c_{1}s_{2}d_{3} & c_{1}c_{2} \\ c_{1}c_{2}d_{3} & -s_{1}s_{2}d_{3} & s_{1}c_{2} \\ 0 & c_{2}d_{3} & s_{2} \\ 0 & s_{1} & 0 \\ 0 & -c_{1} & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

ידוע שמסת הכלי היא $\,m$. דרוש למצוא את כוחות המפרקים הדרושים לייצוב הכלי.

תרגיל 1 – פתרון:

 $F_e = \begin{bmatrix} 0 & 0 & -mg & 0 & 0 & 0 \end{bmatrix}^T$ תחילה נבטא את משקל הכלי:

נציב: . $N = J_{WORLD}^T F_e$ נציב: מבוטא במערכת העולם, ולכן מבוטא מבוטא במערכת העולם, ולכן

$$N = J_{WORLD}^{T} F_{e} = \begin{bmatrix} -s_{1}c_{2}d_{3} & c_{1}c_{2}d_{3} & 0 & 0 & 0 & 1 \\ -c_{1}s_{2}d_{3} & -s_{1}s_{2}d_{3} & c_{2}d_{3} & s_{1} & -c_{1} & 0 \\ c_{1}c_{2} & s_{1}c_{2} & s_{2} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ -mg \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -mgc_{2}d_{3} \\ -mgs_{2} \end{bmatrix}$$

וקטור N מבטא את הכוח שהכלי מפעיל על המפרקים – על מנת לאזן אותו, נדרוש כוח בגודל זהה Nובכיוון מנוגד:

$$\tau = -N = \begin{bmatrix} 0 & mgc_2d_3 & mgs_2 \end{bmatrix}^T$$

תרגיל 2

רובוט בעל דרגת חופש סיבובית אחת נמצא במנוחה בנקודה $\theta_0 = \theta(t=0) = 25^0$ יש להניע את איבצע שיבצע מקדמי חיד מדרגה פולינום שניות. מצא שניות. פולישית שלישית שלישית שלישית הרובוט לנקודה $\theta_f = \theta \left(t = 5\right) = 100^0$ את התנועה כך שהרובוט יהיה במנוחה בנקודת הסיום הנדרשת.

תרגיל 2 – פתרון: תחילה ננסח את האילוצים. עבור המיקום ההתחלתי והסופי:

$$\theta_0 = \theta(t=0) = 25^0 = \frac{5}{36}\pi, \ \theta_f = \theta(t=5) = 100^0 = \frac{5}{9}\pi$$

ועבור המהירות ההתחלתית והסופית:

$$\dot{\theta}_0 = \dot{\theta}(t=0) = 0, \ \dot{\theta}_f = \dot{\theta}(t=5) = 0$$

ידוע כי נדרש לבטא את פרופיל התנועה בעזרת פולינום ממעלה שלישית:

$$\theta(t) = a_3 t^3 + a_2 t^2 + a_1 t + a_0 \Rightarrow \dot{\theta}(t) = 3a_3 t^2 + 2a_2 t + a_1$$

בסך הכל יש לנו 4 אילוצים ו-4 פרמטרים חופשיים - $a_0, ..., a_3$ בסך הכל יש לנו 4 אילוצים ו-4 פרמטרים חופשיים נציב את האילוצים בפולינומים ונקבל 4 משוואות עם 4 נעלמים:

$$\theta(0) = a_0 = \frac{5}{36}\pi \quad \theta(t=5) = a_3 5^3 + a_2 5^2 + \frac{5}{36}\pi = \frac{5}{9}\pi$$

$$\dot{\theta}(0) = a_1 = 0 \qquad \dot{\theta}(t=5) = 3a_3 5^2 + 2a_2 5 = 0$$

$$\Rightarrow \begin{cases} 125a_3 + 25a_2 = \frac{15}{36}\pi \\ 75a_3 + 10a_2 = 0 \end{cases} \Rightarrow \begin{cases} 25 & 125 \\ 10 & 75 \end{cases} \begin{bmatrix} a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} \frac{5}{12}\pi \\ 0 \end{bmatrix} \Rightarrow \begin{cases} a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 0.12 & -0.2 \\ -0.016 & 0.04 \end{bmatrix} \begin{bmatrix} \frac{5}{12}\pi \\ 0 \end{bmatrix} = \begin{bmatrix} 0.05\pi \\ -\frac{1}{150}\pi \end{bmatrix}$$

 $\theta(t) = -\frac{1}{150}\pi t^3 + 0.05\pi t^2 + \frac{5}{36}\pi$ נקבל שפרופיל התנועה הנדרש הוא

<u>תרגיל 3</u>

בשרטוט נתון רובוט מישורי בעל 2 דרגות חופש:

- - המהירות ההתחלתית והסופית הדרושה לאלמנט הקצה היא אפס.
 - התאוצה ההתחלתית והסופית הדרושה לאלמנט הקצה היא אפס.

תן ביטויים מפורשים עבור מיקום, מהירות ותאוצת אלמנט הקצה כתלות בזמן t כאשר t כאשר . $t \in [0,T]$

ב. מהן מהירויות ותאוצות המפרקים שדרוש לספק לרובוט, כך שיתקיים המסלול הדרוש עבור אלמנט הקצה?

תרגיל 3 – פתרון:

א. ננסח את האילוצים:

$$x(t=0) = x_0$$
 $x(t=T) = x_f$
 $\dot{x}(t=0) = 0$ $\dot{x}(t=T) = 0$
 $\ddot{x}(t=0) = 0$ $\ddot{x}(t=T) = 0$
 $y(t=0) = y_0$ $y(t=T) = y_f$
 $\dot{y}(t=0) = 0$ $\dot{y}(t=T) = 0$
 $\ddot{y}(t=0) = 0$ $\ddot{y}(t=T) = 0$

לכל קואורדינטה 6 אילוצים ← פולינום ממעלה 5:

$$x(t) = a_5 t^5 + a_4 t^4 + a_3 t^3 + a_2 t^2 + a_1 t + a_0$$

$$\dot{x}(t) = 5a_5t^4 + 4a_4t^3 + 3a_3t^2 + 2a_5t + a_1$$

$$\ddot{x}(t) = 20a_5t^3 + 12a_4t^2 + 6a_3t + 2a_2$$

נציב את האילוצים בפולינומים:

$$x(0) = a_0 = x_0$$
 $x(T) = a_5T^5 + a_4T^4 + a_3T^3 + x_0 = x_f$

$$\dot{x}(0) = a_1 = 0$$
 $\dot{x}(T) = 5a_5T^4 + 4a_4T^3 + 3a_3T^2 = 0$

$$\ddot{x}(0) = 2a_2 = 0$$
 $\ddot{x}(T) = 20a_5T^3 + 12a_4T^2 + 6a_3T = 0$

$$a_3 = \frac{10(x_f - x_0)}{T^3}, a_4 = \frac{-15(x_f - x_0)}{T^4}, a_5 = \frac{6(x_f - x_0)}{T^5}$$
 :נקבל

לכן פולינום עבור x יהיה:

$$x(t) = \frac{(x_f - x_0)}{T^3} \left[\frac{6}{T^2} t^5 - \frac{15}{T} t^4 + 10t^3 \right] + x_0$$

על מנת לקבל קו ישר נדרוש:

$$y(t) = \frac{y_f - y_0}{x_f - x_0} x(t) + \frac{x_f y_0 - x_0 y_f}{x_f - x_0}$$

$$\dot{y}(t) = \frac{y_f - y_0}{x_f - x_0} \dot{x}(t)$$

$$\ddot{y}(t) = \frac{y_f - y_0}{x_f - x_0} \ddot{x}(t)$$

$$y(0) = \frac{y_f - y_0}{x_f - x_0} x_0 + \frac{x_f y_0 - x_0 y_f}{x_f - x_0} = y_0$$

$$\dot{y}(0) = \frac{y_f - y_0}{x_f - x_0} \dot{x}(0) = 0$$

$$\ddot{y}(0) = \frac{y_f - y_0}{x_f - x_0} \ddot{x}(0) = 0$$

על מנת לעבור למרחב המפרקים נשתמש בקינמטיקה ההפוכה:

$$\theta_1(t) = \operatorname{atan2}(y(t), x(t))$$

$$d_2(t) = \sqrt{x^2(t) + y^2(t)}$$

ב. נציב את התוצאות מהמרחב הקרטזי לתוך ערכי המפרקים לפי הקינמטיקה ההפוכה:

$$\theta_{1}(t) = \operatorname{atan2}(y(t), x(t)) = \operatorname{atan}\left(\frac{y}{x}\right)$$

$$\dot{\theta}_{1}(t) = -\frac{1}{\left(\frac{y}{x}\right)^{2} + 1} \frac{y}{x^{2}} \dot{x} + \frac{1}{\left(\frac{y}{x}\right)^{2} + 1} \dot{x} \dot{y} = -\frac{y}{y^{2} + x^{2}} \dot{x} + \frac{x}{y^{2} + x^{2}} \dot{y}$$

$$d_{2}(t) = \sqrt{x^{2}(t) + y^{2}(t)}$$

$$\dot{d}_{2}(t) = \frac{x}{\sqrt{x^{2} + y^{2}}} \dot{x} + \frac{y}{\sqrt{x^{2} + y^{2}}} \dot{y}$$

עבור התאוצות נחשב באופן דומה.

אפשרות נוספת – שימוש ביעקוביאן:

$$\begin{split} \dot{P} &= J\dot{q} \Rightarrow \dot{q} = \left(J\right)^{-1}\dot{P} \\ J_L &= \begin{bmatrix} -d_2\sin\theta_1 & \cos\theta_1 \\ d_2\cos\theta_1 & \sin\theta_1 \end{bmatrix} \Rightarrow \left(J_L\right)^{-1} = \frac{1}{d_2} \begin{bmatrix} -\sin\theta_1 & \cos\theta_1 \\ d_2\cos\theta_1 & d_2\sin\theta_1 \end{bmatrix} \\ \begin{bmatrix} \dot{\theta}_1 \\ \dot{d}_2 \end{bmatrix} &= \frac{1}{d_2} \begin{bmatrix} -\sin\theta_1 & \cos\theta_1 \\ d_2\cos\theta_1 & d_2\sin\theta_1 \end{bmatrix} \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} -\frac{\sin\theta_1}{d_2} & \frac{\cos\theta_1}{d_2} \\ \cos\theta_1 & \sin\theta_1 \end{bmatrix} \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \\ &= \begin{bmatrix} -\frac{d_2\sin\theta_1}{d_2^2} & \frac{d_2\cos\theta_1}{d_2^2} \\ \frac{d_2\cos\theta_1}{d_2} & \frac{d_2\sin\theta_1}{d_2} \end{bmatrix} \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} -\frac{y}{x^2 + y^2} & \frac{x}{x^2 + y^2} \\ \frac{x}{\sqrt{x^2 + y^2}} & \frac{y}{\sqrt{x^2 + y^2}} \end{bmatrix} \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} \\ \ddot{P} &= \dot{J}\dot{q} + J\ddot{q} \Rightarrow \ddot{q} = J^{-1}(\ddot{P} - \dot{J}\dot{q}) \end{split}$$