一、单选题(共 10 题,每题 3 分)

- 1、下列哪个复数是 1 i 的三次方根(
- A. $\sqrt[6]{2}(\cos\left(-\frac{\pi}{12}\right) + i\sin\left(-\frac{\pi}{12}\right))$ B. $\sqrt[6]{2}(\cos\left(-\frac{5\pi}{12}\right) + i\sin\left(-\frac{5\pi}{12}\right))$
- C. $\sqrt[6]{2}(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right))$ D. $\sqrt[6]{2}(\cos\left(-\frac{5\pi}{6}\right) + i\sin\left(-\frac{5\pi}{6}\right))$
- 2、已知函数 $f(z) = \frac{\overline{z}}{z}$,则 $\lim_{z \to 0} f(z) = ($) B、1 C、-1 D、不存在
- A. 0

- 3、关于复曲线 $z(t)=t+i\,t^2,\,t\in[0,\pi]$ 的形状描述,以下说法正确的是(B、一段直线 C、一段圆弧 D、一段双曲线
- A、一段抛物线

- 4、如果 f(z) 在 $z=z_0$ 处可导,则以下说法错误的是()
- A、f(z) 在 z_0 处必定连续。
- B、f(z) 在 z_0 处必定解析。
- C、f(z) 在 z_0 处必定满足柯西-黎曼方程。
- D、极限 $\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) f(z_0)}{\Delta z}$ 必定存在。
- 5、函数 $f(z) = x^2y iy^2$ 在下面哪个点可导()

- 6、以下哪个函数是周期函数(
- A, Ln(z) B, $\overline{z}z$ C, $\sqrt[3]{z}$ D, e^z

- 7、以下哪个函数的积分 $\int_{\mathcal{C}} f(z)dz$ 与路径 \mathcal{C} 无关(

- A, f(z) = Im(z) B, $f(z) = \sin(z)^n$ C, $f(z) = \overline{z}$ D, $f(z) = |z|^2$
- 8、以下哪个级数绝对收敛()

- A, $\sum_{n=1}^{\infty} i^n$ B, $\sum_{n=1}^{\infty} \frac{i^n}{\sqrt{n}}$ C, $\sum_{n=1}^{\infty} \frac{i^n}{n}$ D, $\sum_{n=1}^{\infty} \frac{i^n}{n^2}$

9、z = 0 是函数 $\frac{\sin(z)}{z}$ 的奇点,其类型是(

A、可去奇点 B、1级极点 C、2级极点 D、本性奇点

10、已知 f(t)为周期信号, c_n 为其离散频谱, ω_0 为基频,则以下关于 f(t) 的傅里叶 级数表达正确的是()

A, $f(t) = \sum_{n=0}^{\infty} c_n e^{in\omega_0 t}$ B, $f(t) = \sum_{n=-\infty}^{\infty} c_n e^{in\omega_0 t}$ C, $f(t) = \sum_{n=0}^{\infty} c_n e^{-in\omega_0 t}$ D, $f(t) = \sum_{n=-\infty}^{\infty} c_n e^{-in\omega_0 t}$

二、填空题(共10题,每题3分)

1、复数 $z = (1+i)^2$, 其实部 Re(z) =____

2、已知 $f(z) = x^2 + i xy$, 计算函数值 f(2-i) 并化简为 "x + iy" 的形式

3、将复数 $\left(-\frac{\sqrt{3}}{2}\right)^{77}$ 计算化简为 "x+iy" 的形式 …… and quite in the state of the

4、计算函数值 sin(2i) 并化简为 "x + iy" 的形式___

5、已知函数 $f(z) = x^2 + y^2 + i(x^2 - y^2)$, 计算导数值 $f'(1-i) = _____$

6、已知复曲线 $C: z(t) = t^2 + i$, $t \in [0,1]$, 计算积分 $\int_C \overline{z} \, dz$ 并化简为 "x + iy"的形式

7、计算积分 $\oint_{z|=1} \frac{e^z}{z^4} dz$ 并化简为 "x + iy" 的形式_____

8、计算幂级数 $\Sigma_{n=0}^{\infty} (1-i)^n z^n$ 的收敛半径_____

9、函数 $f(z) = \frac{1}{(1-z)^2}$ 在圆环 $1 < |z| < \infty$ 上可以展成洛朗级数 $\sum_{n=-\infty}^{+\infty} c_n z^n$, 试求出

负幂项 $\frac{1}{25}$ 的系数 $c_{-5} =$ _____

10、已知非周期函数 $f(t) = \begin{cases} 1 & -1 < t < \frac{1}{\lambda} \\ 0 & \text{其他} \end{cases}$, $F(\omega)$ 是 f(t) 的傅里叶变换, 计算 F(1)

的值并化简为 "x + iy" 的形式____

重庆理工大学考试试卷

2019~2020 学年第 1 学期

	2019	2020 3	一八流流	11	N1
班级		考试科目。	复变函数与积分变换	And the Angle of the Control of the	
	N 7 Product City Cont.	Evil Andrew	F	The second secon	1

三、计算题(共4题,每题10分)。显于实际。点语的 医对及 0= x 、2

 $\cdot = (i-1) \cap i \cap i$

WAY AND TO THE

- 1、将复数 $(\sqrt{3}+i)$ ^{1†}计算化简为" $r(\cos(\theta)+i\sin(\theta))$ "的形式。
- 第 (a) 大王大王以順、殿基氏 $_{00}$ 、 治真異故類音, $_{00}$ 大王短順 同以下大于 $_{00}$ 館外 $_{00}$ を $_{00}$ を

f(z) = u(x,y) + iv(x,y)为解析函数 $a_n Z = (1)$ $a_n Z = (1)$

- 3、计算复积分 $\oint_C \frac{e^z}{(z-1)^2(z+i)} dz$ 并将结果化简为 "x+iy" 的形式,其中闭曲线 C |z|=2,方向为正向。
- 4、试用 Laplace 变换求解微分方程: $y'' + y' = e^{-t}$, y(0) = y'(0) = 0。

产贷的提价(sin(2)) 等级现分。24-25-3