CS270-B Advanced Digital Image Processing

Lecture 14 Image Debluring

(Introduction and Formulation)

Yuyao Zhang PhD

zhangyy8@shanghaitech.edu.cn

SIST Building-3 420

Overview-Deblur

Overview-Deblur

original

optical blur

motion blur

spatial quantization (discrete pixels)

additive intensity noise

The properties of the lens are limited

Optical Blurry

Chromatic aberration

Spherical aberration

PSF

Diffraction, which is caused by the wave nature of light, as long as light passes through the aperture, diffraction occurs.

PSF, point spread function caused by the diffraction.

PSF

=

Reality

 χ

PSF

C

Observed image

y

Inverse Filter

Wiener Filter

Image domain

$$y = c * x + n$$

Frequency domain Y = CX + N

$$Y = CX + N$$

Looking for a function H that minimize expectation of error:

$$\min_{H} E[\|X - HY\|^2]$$

$$\min_{H} E^{2}[X] - HE[XY] - H^{*}E[YX] + H^{2}E^{2}[Y]$$

$$H_{opt} = \frac{E[XY]}{E^2[Y]} = \frac{CE^2[X]}{CE^2[X] + E^2[N]}$$

Debluring in image domain

Image domain $\min_{\mathbf{x}} \|\mathbf{y} - c * \mathbf{x}\|^2 + \|\nabla \mathbf{x}\|^2$

Blurred image with noise

w/o regularization

Regularization

GT image

Overview-Motion Blurring

- The objective is to restore a degraded image to its original form.
- An observed image can often be modelled as:

$$g(x,y) = \iint c(x - x', y - y') f(x', y') dx' dy' + n(x, y)$$

where the integral is a convolution, c is the point spread function of the imaging system, and n is additive noise.

• The objective of image restoration in this case is to estimate the original image f from the observed degraded image g.

Maximum a posteriori (MAP)

Estimation

Removing Camera Shake from a Single Photograph

Rob Fergus, Barun Singh, Aaron Hertzmann, Sam T. Roweis and William T. Freeman

Massachusetts Institute of Technology and University of Toronto

Overview

Original

Our algorithm

上海科技大学 ShanghaiTech University

Close-up

Original

Naïve Sharpening

Our algorithm

Image formation process

Blurry image

Sharp image

Blur kernel

Input to algorithm

Model is approximation

Desired output

Convolution operator

Why is this hard?

Simple analogy:

11 is the product of two numbers.

What are they?

No unique solution:

$$11 = 1 \times 11$$

$$11 = 2 \times 5.5$$

$$11 = 3 \times 3.667$$

etc.....

Need more information !!!!

Multiple possible solutions Sharp image

Blurry image

RAY AND MARIA STATA CENTER

Natural image statistics

Characteristic distribution with heavy tails

Histogram of image gradients

Blury images have different statistics

Histogram of image gradients

Parametric distribution

.....

Histogram of image gradients

Use parametric model of sharp image statistics

Uses of natural image statistics

- Denoising [Roth and Black 2005]
- Superresolution [Tappen et al. 2005]
- Intrinsic images [Weiss 2001]
- Inpainting [Levin et al. 2003]
- Reflections [Levin and Weiss 2004]
- Video matting [Apostoloff & Fitzgibbon 2005]

Corruption process assumed known

Existing work on image deblurring

Software algorithms:

Extensive literature in signal processing community

Mainly Fourier and/or Wavelet based

Strong assumptions about blur

→ not true for camera shake

Assumed forms of blur kernels

Image constraints are frequency-domain power-laws

Existing work on image deblurring

Hardware approaches

Image stabilizers

Dual cameras

Ben-Ezra and Nayar 2004

Coded shutter

Raskar et al. SIGGRAPH 2006

Our approach can be combined with these hardware methods

Three sources of information

1. Reconstruction constraint:

Estimated sharp image

J.

Estimated blur kernel

Input blurry image

2. Image prior:

Distribution of gradients

3. Blur prior:

Positive & Sparse

How do we use this information?

Obvious thing to do:

- Combine 3 terms into an objective function
- Run conjugate gradient descent
- This is Maximum a-Posteriori (MAP)

How do we use this information?

Since these statistics are based on the image gradients rather than the intensities, we perform the optimization in the gradient domain

$$\nabla Y = \nabla X \otimes K$$

Given the measured image gradients ∇Y , we can write the posterior distribution over the unknowns with Bayes' Rule:

$$p(K, \nabla X | \nabla Y) \propto p(\nabla Y | K, \nabla X) p(\nabla X) p(K)$$

$$= \prod_{i} N(\nabla Y(i) | (K \otimes \nabla X(i)), \sigma^{2})$$

$$= \prod_{i} \sum_{c=1}^{C} N(\nabla X | 0, \nu_{c}) \prod_{j} \sum_{d=1}^{D} \pi_{d} E(K_{j} | \lambda_{d})$$

Loss Function

• The variational algorithm minimizes a cost function representing the distance between the approximating distribution and the true posterior, measured as:

$$KL(q(K, \nabla X, \sigma^2)||p(K, \nabla X|\nabla Y))$$

• The independence assumptions in the variational posterior allows the cost function C_{KL} to be factored:

$$\left\langle log \frac{q(\nabla X)}{p(\nabla X)} \right\rangle_{q(\nabla X)} + \left\langle log \frac{q(K)}{p(K)} \right\rangle_{q(K)} + \left\langle log \frac{q(\sigma^{-2})}{p(\sigma^{2})} \right\rangle_{q(\sigma^{-2})}$$

Results from MAP estimation

Input blurry image

Maximum a-Posteriori (MAP) Our method: Variational Bayes

Variational Bayesian method

 $p(K, \nabla X | \nabla Y)$

#Y<#X+#K

Variational Bayesian method

$$\underset{\{K,X\}}{\operatorname{argmax}} p(K,X|Y) \to \underset{\{K\}}{\operatorname{argmax}} p(K|Y)$$

$$p(K|Y) = \int_{X} p(K, X|Y) dX$$

Overview of algorithm

1. Pre-processing

- 2. Kernel estimation
 - Multi-scale approach

- 3. Image reconstruction
 - Standard non-blind deconvolution routine

Preprocessing

Bayesian inference too slow to run on whole image

Infer kernel from this patch

Initialization

Input image Remove gamma Convert to grayscale correction User selects patch from image Initialize 3x3 blur kernel Initial image estimate Blurry patch Initial blur kernel

上海科技大学 ShanghaiTech University

Inferring the kernel: multiscale method

Use multi-scale approach to avoid local minima:

Image Reconstruction

ShanghaiTech Universit

Results on real images

Submitted by people from their own photo collections Type of camera unknown

Output does contain artifacts

- Increased noise
- Ringing

Compares well to existing methods

Close-up of garland

Original

Matlab's deconvblind

Our output

Original photograph

Photoshop sharpen more

Original photograph

Our output

Original photograph

Our output

Matlab's deconvblind

Close-up of child

Image artifacts & estimated kernels

Note: blur kernels were inferred from large image patches, NOT the image patterns shown

Summary

Method for removing camera shake from real photographs

First method that can handle complicated blur kernels

Uses natural image statistics

Non-blind deconvolution currently simplistic

Things we have yet to model:

- Correlations in colors, scales, kernel continuity
- JPEG noise, saturation, object motion

A Neural Approach to Blind Motion Deblurring

[1] Chakrabarti, A. (2016). A neural approach to blind motion deblurring. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part III 14 (pp. 221-235). Springer International Publishing.

Learning a Convolutional Neural Network for Non-uniform Motion Blur Removal

[1] Jian Sun, Wenfei Cao, Zongben Xu, Jean Ponce, Learning a Convolutional Neural Network for Non-uniform Motion Blur Removal, CVPR, 2015.

Scale-recurrent Network for Deep Image Deblurring

[1] Xin Tao, Hongyun Gao, Xiaoyong Shen, Jue Wang, Jiaya Jia Scale-recurrent Network for Deep Image Deblurring, CVPR 2018

Uncertainty-Aware Unsupervised Image Deblurring with Deep Residual Prior

[1] Xiaole Tang, Xile Zhao, Jun Liu, Jianli Wang, Yuchun Miao, Tieyong Zeng, Uncertainty-Aware Unsupervised Image Deblurring with Deep Residual Prior, CVPR 2023

Self-supervised Non-uniform Kernel Estimation with Flow-based Motion Prior for Blind Image Deblurring

[1] Z. Fang, F. Wu, W. Dong, X. Li, J. Wu and G. Shi, "Self-supervised Non-uniform Kernel Estimation with Flow-based Motion Prior for Blind Image Deblurring," 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 2023, pp. 18105-18114, doi: 10.1109/CVPR52729.2023.01736.

ID-Blau: Image Deblurring by Implicit Diffusion-based reBLurring AUgmentation

[1] Jia-Hao Wu, Fu-Jen Tsai, Yan-Tsung Peng, Chung-Chi Tsai, Chia-Wen Lin, Yen-Yu Lin ID-Blau: Image Deblurring by Implicit Diffusion-based reBLurring AUgmentation, CVPR 2024

Joint coil sensitivity and motion correction in parallel MRI with a self-calibrating score-based diffusion model

[1] Lixuan Chen, Xuanyu Tian, Jiangjie Wu, Guoyan Lao, Yuyao Zhang, Hongjiang Wei. "Joint Coil Sensitivity and Motion Correction in Parallel MRI with a Self-Calibrating Score-Based Diffusion Model." Medical Image Analysis, 2025 Feb 21;102:103502.

