Referencia - ICPC

Mathgic

Junio 2025

${\rm \acute{I}ndice}$

	0.1. OJO	4
1.	Ideas	4
	1.1. Ideas de Catalán	4
2	Estructuras básicas	,
4.	2.1. Min stack	4
	2.2. Min queue	
	2.3. Heap actualizable	
9	Teoría de números	Ē
υ.	3.1. Criba de Eratóstenes	5
	3.1.1. Criba	
	3.1.2. Criba sobre un rango	
	3.1.3. Criba segmentada	5
	3.1.4. Criba lineal	5 6
	3.3. Solución de ecuaciones diofánticas lineales	6
	3.4. Funciones multiplicativas	6
	3.4.1. Función Phi de Euler	6
	3.4.2. Función sigma	
	3.4.3. Función de Moebius	
	3.5. Factorización Pollard Rho	7
4.	Combinatoria	8
	4.1. Números de Catalán	
	4.2. Números de Narayana	
	4.3. Particiones Enteras	9
5.	Cálculo	ę
	5.1. Transformada de Fourier	
	5.1.1. FFT	
	5.1.2. Multiplicar polinomios	S
6.	Formulazas	10
	6.1. Lógica - Conjuntos - Bitwise	
	6.2. Combinatoria	
	6.3. Geometría	10
7.	Métodos numéricos	11
	7.1. Inversa de Matriz con Gauus-Jordan	
	7.2. Sistemas de ecuaciones lineales	
	7.5. Sistemas de ecuaciones modulo 2	11
8.	Sparse table	12
9.	Fenwick Tree	12
10	Segment Tree	12
-0	10.1. Actualizaciones puntuales	
	10.2. Actualizaciones sobre rangos	
	10.3. Sparse segment tree	13
11	Sqrt decomposition	1 4
_		14

2.Grafos	14
12.1. Caminos mínimos	14
12.1.1. Dijkstra	14
12.1.2. Bellman-Ford	14
12.1.3. Floyd-Warshall	14
12.1.4. Johnson's algorithm	15
12.2. Árboles	15
12.2.1. MST	15
12.2.2. Block-Cut Tree	16
12.2.3. LCA	17
12.2.4. Sack	17
12.3. Máximo flujo	18
12.3.1. Algunos problemas de flujos	18
12.3.2. Edmonds-Karp	18
12.3.3. Dinic	19
12.3.4. MCMF	20
12.4. SCC	21
12.4.1. Kosajaru	21
12.5. 2-Sat	22
l3.Treap	22
14.Strings	23
14.1. KMP	23
14.1.1. Autómata de KMP	23
14.2. Suffix array	23
14.2.1. Construcción	23
14.2.2. Prefijo común más largo	24
14.3. Aho-Corasick	24
14.4. Suffix tree	25
	0.0
15.Geometría 15.1. Convex hull	26
15.1. Convex null	20
16.Utilidades	26
16.1. Plantilla tree	26
16.2. Números aleatorios	26
16.3. Subset sum optimization	26
16.4. Bitsets de tamaño (casi) dinámico	27
	27
17.1. Útiles	
17.2. Iterar	
17.3. Gospers' Hack	
17.4. Subset Sum con bitset	27
18.Máximo de funciones	28
18.1. Li-Chao Tree	

0.1. OJO

- a) Se usan macros (MAXN, LOGN, etc) con arreglos estáticos para más comodidad, pero puede causar RTE o MLE cuando los valores son grandes. Pensar en usar vector<> (STL) cuando sea conveniente.
- b) Temario (no oficial): Topic list.
- c) agréguenle errores/consejos que hay que tener en cuenta sobre las implementaciones y no estemos mucho tiempo tratando de encontrar el error.

1. Ideas

1.1. Ideas de Catalán

Ideas que se usan en las demostraciones de que algo se cuenta con Catalán y sirven para conteos similares:

- 1. Partir en dos conjuntos y distribuir. Usar la misma idea de la recurrencia de los números de Catalán: $(0, n-1), (1, n-2), \ldots, (k, n-1-k)$.
- 2. Reflejar los caminos malos. Si queremos contar caminos monótonos que (0,0) y (n,m), por debajo de una diagonal paralela a la que une dichas esquinas, en una cuadrícula de $n \times m$, contemos todos los caminos $\binom{n+m}{n}$ y restemos los caminos que pasan sobre la diagonal. Digamos que la diagonal es y=x+k, entonces los caminos malos pasan al menos una vez por y=x+k+1: toma el primer punto (x',x'+k+1) sobre el que un camino pasa por y=x+k+1 y refléjalo, nota que todos empiezan en (x',x'+k+1)-(x'+k+1,x')=(-k-1,k+1). Entonces los caminos malos son biyectivos a los caminos que van de (-k-1,k+1) a (n,m).

2. Estructuras básicas

2.1. Min stack

```
template<typename T> struct min_stack{
    stack<pair<T, T>> st;
    min_stack(){}
    min_stack(const T &MAXVAL){init(MAXVAL);}
    void init(const T &MAXVAL){
        st.push(make_pair(MAXVAL, MAXVAL));}
    void push(const T &v){st.push(make_pair(v, init) init) init) init);}
    void push(const T &v){st.push(make_pair(v, init) init) init) init);}
    T top(){return st.top().second());}
    T top(){return st.top().first;}
    void pop(){if(st.size() > 1)st.pop();}
    T minV(){return st.top().second;}
    int size(){return st.size() - 1;}
    bool empty(){return size() == 0;}
};
```

2.2. Min queue

```
template<typename T> struct min_queue{
    min_queue(const T &MAXVAL){
```

```
p_in.init(MAXVAL); p_out.init(MAXVAL);}
void push(const T &v){p_in.push(v);}
T front(){transfer(); return p_out.top();}
void pop(){transfer(); p_out.pop();}
int size(){return p_in.size()+p_out.size();}
T minV() {
    return min(p_in.minV(), p_out.minV());}
bool empty(){ return size() == 0;}
void transfer(){
    if(p_out.size()) return;
    while(p_in.size()){
        p_out.push(p_in.top());
        p_in.pop();
    }
} min_stack<T> p_in, p_out;
};
```

2.3. Heap actualizable

```
template<class TPriority, class TKey> class
→ UpdatableHeap{
public:
        UpdatableHeap(){
        TPriority a;
        TKey b;
        nodes.clear();
        nodes.push_back( make_pair(a, b) );
    pair<TPriority, TKey> top() {return
    \rightarrow nodes[1];}
    void pop(){
        if(nodes.size() == 1) return;
        TKey k = nodes[1].second;
        swap_nodes(1, nodes.size() - 1);
        nodes.pop_back();
        position.erase(k);
        heapify(1);
    }
    void insert_or_update(const TPriority &p,

→ const TKey &k){
        int pos;
        if(is_inserted(k)){
            pos = position[k];
            nodes[pos].first += p;
            position[k] = pos = nodes.size();
            nodes.push back( make pair(p, k) );
        heapify(pos);
    bool is_inserted(const TKey &k) {
        return position.count(k);
    }
    int get size() {
        return (int)nodes.size() - 1;
    }
    void erase(const TKey &k){
        if(!is_inserted(k)) return;
        int pos = position[k];
        swap_nodes(pos, nodes.size() - 1);
```

```
nodes.pop_back();
        position.erase(k);
        heapify(pos);
    }
private:
    vector<pair<TPriority, TKey>> nodes;
    map<TKey, int> position;
    void heapify(int pos){
        if(pos >= nodes.size()) return;
        while(1 < pos && nodes[pos / 2] <=
        → nodes[pos]){
            swap_nodes(pos / 2, pos);
            pos /= 2;
        int 1 = pos * 2, r = pos * 2 + 1, maxi =
        if(1 < nodes.size() && nodes[1] >
        → nodes[maxi]) maxi = 1;
        if(r < nodes.size() && nodes[r] >

    nodes[maxi]) maxi = r;

        if(maxi != pos){
            swap_nodes(pos, maxi);
            heapify(maxi);
        }
    }
    void swap_nodes(int a, int b){
        position[ nodes[a].second ] = b;
        position[ nodes[b].second ] = a;
        swap(nodes[a], nodes[b]);
    }
};
```

3. Teoría de números

3.1. Criba de Eratóstenes

3.1.1. Criba

Complejidad: Tiempo $O(n \log \log n)$ - Memoria extra O(n). Calcula los primos menores o iguales a n.

```
void criba(int n, vi &primos){
    primos.clear();
    if(n < 2) return;
    vector<bool> no_primo(n + 1);
    no_primo[0] = no_primo[1] = true;
    for(ll i = 3; i * i <= n; i += 2){
        if(no_primo[i]) continue;
        for(ll j = i * i; j <= n; j += 2 * i)
            no_primo[j] = true;
    }
    primos.push_back(2);
    for(int i = 3; i <= n; i += 2)
        if(!no_primo[i]) primos.push_back(i);
}</pre>
```

3.1.2. Criba sobre un rango

Complejidad: Tiempo $O(\sqrt{b} \log \log \sqrt{b} + (b - a) \log \log(b - a))$ - Memoria extra $O(\sqrt{b} + b - a)$. Calcula los primos en el intervalo [a, b].

```
void criba_rango(ll a, ll b, vector<ll> &primos){
    a = max(a, 011);
   b = max(b, 011);
    ll tam = b - a + 1;
    vi primos_raiz;
    criba(sqrt(b) + 1, primos_raiz);
    bool no_primo[tam] = {};
    primos.clear();
    for(ll p : primos_raiz){
        ll ini = p * max(p, (a + p - 1) / p);
        for(ll m = ini; m \le b; m += p)
            no_primo[m - a] = true;
    for(ll i = 0; i < tam; ++i)
    if(!(no_primo[i] || i + a < 2))
        primos.push_back(i + a);
}
```

3.1.3. Criba segmentada

Complejidad: Tiempo $O(\sqrt{n}\log\log\sqrt{n}+n\log\log n)$ - Memoria extra $O(\sqrt{n}+S)$. Cuenta la cantidad de primos menores o iguales a n.

```
int cuenta_primos(int n){
    if(n < 2) return 0;
    const int S = sqrt(n);
    vi primos_raiz;
    criba(sqrt(n) + 1, primos_raiz);
    int ans = 0;
    bool no_primo[S + 1] = {};
    for(int ini = 0; ini <= n; ini += S){</pre>
        memset(no_primo, 0, S + 1);
        for(int p : primos_raiz){
             int m = p*max(p, (ini+p-1)/p)-ini;
             for(; m <= S; m += p) no_primo[m]=1;
        }
        for(int i=0; i<S && i + ini <= n; ++i)</pre>
        if(!no_primo[i] && 1 < i + ini) ans++;</pre>
    return ans;
}
```

3.1.4. Criba lineal

Complejidad: Tiempo O(n) - Memoria extra O(n). Calcula los primos menores o iguales a n y el menor primo que divide a cada entero en [2,n]. ADVERTENCIA: es O(n) pero tiene una constante grande.

```
void criba_lineal(int n, vi &primos){
   if(n < 2) return;
   vi lp(n + 1);
   for(ll i = 2; i <= n; ++i){
      if(!lp[i]) primos.push_back(lp[i] = i);
      for(int j = 0; i * primos[j] <= n; ++j){
            lp[i * primos[j]] = primos[j];
            if(primos[j] == lp[i]) break;
      }
}</pre>
```

3.2. Algoritmo extendido de Euclides

Complejidad: Tiempo $O(\log(\max(a,b)))$ - Memoria extra O(1). Encuentra una solución a la ecuación $ax + by = \gcd(a,b)$.

```
int gcd_ext(int a, int b, int &x, int &y){
   if(!b){ x = 1; y = 0; return a; }
   int x1, y1, g = gcd_ext(b, a % b, x1, y1);
   x = y1;
   y = x1 - y1 * (a / b);
   return g;
}
```

3.3. Solución de ecuaciones diofánticas lineales

Complejidad: Tiempo $O(\log(\max(a,b)))$ - Memoria extra O(1). Encuentra una solución a la ecuación ax + by = c o determina si no existe solución.

Cambia a la siguiente (anterior) solución |cnt| veces. g := gcd(a, b).

Cuenta la cantidad de soluciones x, y con $x \in [minx, maxx]$ y $y \in [miny, maxy]$.

```
int cuenta soluciones(int a, int b, int c, int
   minx, int maxx, int miny, int maxy) {
    int x, y, g;
    if(!encuentra_solucion(a, b, c, x, y, g))
    → return 0;
    /// ax + by = c ssi (a/q)x + (b/q)y = c/q
    /// Dividimos entre q para simplificar y no
    \hookrightarrow dividir a cada rato
    a /= g;
    b /= g;
    /// Signos de a, b nos sirven para pasar a la
    /// siguiente (anterior) solucion
    int sign_a = a > 0 ? +1 : -1;
    int sign_b = b > 0 ? +1 : -1;
    /// pasa a la minima solucion tal que minx <=
    cambia_solucion(x, y, a, b, (minx - x) / b);
    /// si x < minx, pasa a la siguiente para que
    \rightarrow minx <= x
```

```
if(x < minx) cambia_solucion(x, y, a, b,</pre>

    sign b);

if(x > maxx) return 0; /// si x > maxx,
\rightarrow entonces no hay x solution tal que x in
\hookrightarrow [minx, maxx]
int lx1 = x;
/// pasa a la maxima solucion tal que x \le
\hookrightarrow maxx
cambia_solucion(x, y, a, b, (maxx - x) / b);
if(x > maxx) cambia solucion(x, y, a, b,
\rightarrow -sign_b); /// si x > maxx, pasa a la
\hookrightarrow solucion anterior
int rx1 = x;
/// hace todo lo anterior pero con y
cambia_solucion(x, y, a, b, -(miny - y) / a);
if(y < miny) cambia_solucion(x, y, a, b,
→ -sign_a);
if(y > maxy) return 0;
int 1x2 = x;
cambia_solucion(x, y, a, b, -(maxy - y) / a);
if(y > maxy) cambia_solucion(x, y, a, b,

    sign_a);

int rx2 = x;
/// como al encontrar las x tomando y como
→ criterio no nos asegura
/// que esten ordenadas, entonces las
\hookrightarrow ordenamos
if(1x2 > rx2) swap(1x2, rx2);
/// obtenemos la interseccion de los
\hookrightarrow intervalos
int lx = max(lx1, lx2);
int rx = min(rx1, rx2);
if(lx > rx) return 0; /// no existen
→ soluciones, interseccion vacia
/// las soluciones (por x) van de b en b (b/g
\rightarrow en b/g pero dividimos al principio)
return (rx - lx) / abs(b) + 1;
```

3.4. Funciones multiplicativas

3.4.1. Función Phi de Euler

Complejidad: Tiempo O(d) - Memoria extra O(n). d es la cantidad de factores primos de n. Cuenta la cantidad de coprimos con n menores a n.

```
int phi(int n){
   if(n <= 1) return 1;
   if(!dp[n]){
      int pot = 1, p = lp[n], n0 = n;
      while(n0 % p == 0){ pot *= p; n0 /= p; }
      dp[n] = (pot / p) * (p - 1) * phi(n0);
   } return dp[n];
}</pre>
```

3.4.2. Función sigma

Sigma 0 (σ_0) . Complejidad: Tiempo O(d) - Memoria extra O(n). d es la cantidad de factores primos de n. Cuenta la cantidad de divisores de n.

}

```
11 sigma0(int n){
    if(n <= 1) return 1;
    if(!dp[n]){
        ll exp = 0, p = lp[n], n0 = n;
        while(n0 % p == 0){ exp++; n0 /= p; }
        dp[n] = (exp + 1) * sigma0(n0);
    } return dp[n];
}</pre>
```

Sigma 1 (σ_1) . Complejidad: Tiempo O(d) - Memoria extra O(n). d es la cantidad de factores primos de n. Calcula la suma de los divisores de n.

```
11 sigma1(int n){
    if(n <= 1) return 1;
    if(!dp[n]){
        ll pot = 1, p = lp[n], n0 = n;
        while(n0 % p == 0){ pot *= p; n0 /= p; }
        dp[n] = (pot*p - 1) / (p-1) * sigma1(n0);
    } return dp[n];
}</pre>
```

3.4.3. Función de Moebius

Complejidad: Tiempo O(d) - Memoria extra O(n). d es la cantidad de factores primos de n. Devuelve 0 si n no es divisible por algún cuadrado. Devuelve 1 o -1 si n es divisible por al menos un cuadrado. Devuelve 1 si n tiene una cantidad par de factores primos. Devuelve -1 si n tiene una cantidad impar de factores primos.

```
int moebius(int n){
    if(n <= 1) return 1;
    if(dp[n] == -7){
        int exp = 0, p = lp[n], n0 = n;
        while(n0 % p == 0){ exp++; n0 /= p; }
        dp[n] = (exp > 1 ? 0 : -1 * moebius(n0));
    } return dp[n];
}
```

3.5. Factorización Pollard Rho

Complejidad: $O(\sqrt[4]{n})$. Inicializar con PollardRho::init() y para factorizar un número PollardRho::factorize(n).

```
//COMPIADO Y PEGADOPORCUESTIONES DE TIEMPO
namespace PollardRho {
    mt19937 rnd(chrono::steady_clock::now()
    .time_since_epoch().count());
    const int P = 1e6 + 9;
    11 seq[P];
    int primes[P], spf[P];
    inline 11 add_mod(11 x, 11 y, 11 m){
        return (x += y) < m ? x : x - m; }
    inline ll mul_mod(ll x, ll y, ll m) {
        ll res = _{int128}(x) * y % m;
        return res;
        // ll res = x * y - (ll)((long double)x *
        \rightarrow y/m + 0.5) * m;
        // return res < 0 ? res + m : res;
    inline ll pow_mod(ll x, ll n, ll m) {
```

```
11 \text{ res} = 1 \% \text{ m};
    for (; n; n >>= 1) {
         if (n \& 1) res = mul mod(res, x, m);
        x = mul mod(x, x, m);
    }
    return res;
}
// D(it * (logn)^3), it = number of rounds
\rightarrow performed
inline bool miller rabin(ll n) {
    if (n<=2 || (n & 1 ^ 1)) return (n==2);
    if (n < P) return spf[n] == n;</pre>
    11 c, d, s = 0, r = n - 1;
    for (; !(r & 1); r >>= 1, s++) {}
    // each iteration is a round
    for(int i=0; primes[i] <n && primes[i] <32;</pre>
     → i++){
         c = pow_mod(primes[i], r, n);
         for(int j = 0; j < s; j++){
             d = mul_mod(c, c, n);
             if (d==1\&\&c!=1\&\&c!=n-1) return 0;
             c = d;
         } if (c!=1) return 0;
    } return 1;
void init() {
    int cnt = 0;
    for(int i = 2; i < P; i++){
         if(!spf[i]) primes[cnt++] = spf[i]=i;
         for(int j=0,k;(k=i*primes[j])<P;j++){</pre>
             spf[k] = primes[j];
             if (spf[i] == spf[k]) break;
         }
    }
// returns 0(n^(1/4))
11 pollard_rho(ll n) {
    while(1){
         11 x=rnd()%n,y=x,c=rnd()%n,u=1,v,t=0;
         11 *px = seq, *py = seq;
         while(1){
             *py++ = y = add_mod(mul_mod(y, y,
             \rightarrow n), c, n);
             *py++ = y = add_mod(mul_mod(y, y,
             \rightarrow n), c, n);
             if((x = *px++) == y) break;
             u = mul_mod(u, abs(y - x), n);
             if(!u) return __gcd(v, n);
             if(++t == 32){
                 t = 0;
                 if((u = \_gcd(u,n))>1 && u<n)
                      return u;
             }
         }
        if(t && (u = \_gcd(u, n)) > 1 && u<n)
             return u;
    }
}
```

```
vector<ll> factorize(ll n) {
    if(n == 1) return vector <1l>();
    if(miller_rabin(n)) return vector<ll>{n};
    vector<ll> v, w;
    while(n > 1 && n < P){
        v.push_back(spf[n]); n /= spf[n];
    }
    if(n >= P){
        ll x = pollard_rho(n);
        v = factorize(x);
        w = factorize(n / x);
        v.insert(v.end(), all(w));
    } return v;
}
```

4. Combinatoria

4.1. Números de Catalán

Se puede calcular con $C_0 = C_1 = 1$,

$$C_n = \sum_{k=0}^{n-1} C_k C_{n-1-k} = \frac{1}{n+1} {2n \choose n} = \frac{4n+2}{n+2} C_{n-1}, \ n \ge 2.$$

El n-ésimo número de Catalán C_n cuenta

- La cantidad de secuencias de paréntesis balanceadas de longitud 2n.
- La cantidad de maneras distintas de agrupar n+1 factores con paréntesis.
- La cantidad de triangulaciones de un polígono convexo de n+2 lados.
- La cantidad de maneras de unir 2n puntos en una circunferencia con cuerdas sin que ningún par se corte.
- La cantidad de árboles binarios completos con n nodos internos no isomorfos. Los nodos internos son aquellos con dos hijos.
- La cantidad de árboles binarios enraizados completos no isomorfos con n+1 hojas.
- La cantidad de árboles enraizados planos no isomorfos con n+1 nodos.
- La cantidad de árboles binarios no isomorfos con exactamente n nodos.
- La cantidad de caminos monótonos en un tablero de $n \times n$ que van de (0,0) a (n,n) sin que cruce la diagonal que une (0,0) con (n,n).
- La cantidad de permutaciones de tamaño n que son ordenables con una pila (mientras top() $\leq x$, pop(). Luego push(x). Al final haz pop() de los elementos restantes de la pila). Equivalentemente la cantidad de permutaciones que no contienen el patrón 231: no existen índices i < j < k tales que $a_k < a_i < a_j$.

- La cantidad de permutaciones de tamaño n que no contienen el patrón 123: no existen índices i < j < k tales que $a_i < a_j < a_k$.
- La cantidad de particiones no cruzadas de un conjunto de tamaño n.
- La cantidad de maneras de cubrir una escalera con n escalones, con la altura del i-ésimo escalón siendo i, mediante n rectángulos.
- La cantidad de maneras de unir n cuadros de 1×1 tales que cada cuadro tenga a otro cuadro adyacente a sus lados y, cada columna de cuadros tenga una altura absoluta mayor o igual a la altura absoluta a la columna previa. Cada uno de estos polígonos tiene un perímetro de 2n + 2.

Triángulo de Catalán. Sean $n, k \in \mathbb{Z}_{\geq 0}$, definamos

$$C_{n,k} = \begin{cases} 0, & n < k \text{ o } n, k < 0, \\ 1, & n = k = 0, \\ C_{n,k-1} + C_{n-1,k}, & k \le n. \end{cases}$$

Entonces $C_{n,n} = C_n = \sum_{k=1}^{n-1} C_{n-1,k}$. El número $C_{n,k}$ se puede interpretar como la cantidad de caminos desde (n,k) del Triángulo de Catalán hasta (0,0). Por lo que tiene sentido que $C_{n,n} = C_n$, dado que $C_{n,n}$ es la cantidad de caminos monótonos desde (n,n) a (0,0) en un tablero de $n \times n$ que no cruzan la diagonal que une (0,0) y (n,n).

Figura 4.1: Triángulo de Catalán hasta n = 6.

4.2. Números de Narayana

Sean $n, k \in \mathbb{Z}^+$ con $k \leq n$, los números de Narayana se definen como

$$N(n,k) = \frac{1}{n} \binom{n}{k} \binom{n}{k-1}.$$

Se cumple que

$$N(n,k) = N(n, n - k + 1),$$

$$\sum_{k=1}^{n} N(n,k) = C_n,$$

donde C_n es el n-ésimo número de Catalán. El número V(n,k) cuenta

- La cantidad de secuencias de paréntesis balanceadas con 2n paréntesis y k distintos anidamientos, es decir, k ocurrencias de la subcadena ().
- La cantidad de caminos distintos desde (0,0) a (2n,0) dando pasos hacia arriba o abajo y siempre avanzando una unidad en cada paso (diagonales), de manera que haya exactamente k picos. Equivalentemente a la cantidad de maneras de ordenar n 1's y n (-1)'s en una secuencia a_i tales que si S_i es la suma parcial de a_i , entonces $\{S_i\}$ tiene exactamente k máximos locales.

N(4, k)	Paths			
N(4, 1) = 1 path with 1 peak				
N(4, 2) = 6 paths with 2 peaks:	~^~			
N(4, 3) = 6 paths with 3 peaks:	~~~~~~ ~~~~~			
N(4, 4) = 1 path with 4 peaks:				

Figura 4.2: Caminos de (0,0) a (8,0) que cuenta N(4,k).

- La cantidad de árboles enraizados con n+1 nodos y k hojas.
- La cantidad de particiones no cruzadas de un conjunto de tamaño n en exactamente k subconjuntos.

4.3. Particiones Enteras

Genera todas las particiones de un número n como suma de enteros positivos en orden no creciente.

Complejidad: Tiempo $O\left(\frac{13^{\sqrt{n}}}{n}\right)$ – Memoria extra O(n).

```
void generar(int n, int maximo, vi &actual){
   if(n == 0){// Aqui trabajar con actual
      return; }
   for(int i = min(n, maximo); i >= 1; --i){
      actual.pb(i);
      generar(n - i, i, actual);
      actual.pop_back();
   }
}
```

La función de partición p(n), que cuenta el número de formas distintas de escribir n como suma de enteros positivos sin importar el orden,

n	1	2	3	4	5	6	7	8
p(n)	1	2	3	5	7	11	15	22
n	9	10	11	12	13	14	15	16
p(n)	30	42	56	77	101	135	176	231

Tabla 1: Particiones enteras

Tiene la siguiente aproximación asintótica para valores grandes de n, conocida como la fórmula de Hardy-Ramanujan:

$$p(n) \sim \frac{1}{4n\sqrt{3}} \exp\left(\pi\sqrt{\frac{2n}{3}}\right)$$

5. Cálculo

5.1. Transformada de Fourier

5.1.1. FFT

Complejidad: Tiempo $O(n \log n)$ - Memoria extra $O(n \log n)$, donde n es el grado del polinomio P.

```
using comp = complex<double>;
const double PI = acos(-1);
vector<comp> FFT(vector<comp> &P, bool inversa){
    int n = P.size();
    if(n == 1) return P;
    vector<comp> Pe, Po;
    for(int i = 0; i < n; ++i)
        if(i % 2) Po.pb(P[i]);
        else Pe.pb(P[i]);
    vector<comp> eval_Pe = FFT(Pe, inversa);
    vector<comp> eval_Po = FFT(Po, inversa);
    vector<comp> eval(n);
    double angulo = 2*PI / n * (inversa? -1 : 1);
    comp w(1), w_n(cos(angulo), sin(angulo));
    for(int i = 0; i < n / 2; ++i){</pre>
        eval[i] = eval_Pe[i] + w * eval_Po[i];
        eval[i+n/2] = eval Pe[i] - w*eval Po[i];
        if(inversa){eval[i]/=2; eval[i+n/2]/=2;}
        w *= w_n;
    } return eval;
}
```

5.1.2. Multiplicar polinomios

Complejidad: Tiempo $O(n \log n)$ - Memoria extra $O(n \log n)$, donde n es el grado máximo del polinomio A o B.

```
vi multiplicar(vi A, vi B){
    vector<comp> cA(all(A)), cB(all(B));
    int n = 1;
    while(n < A.size() + B.size()) n *= 2;</pre>
    cA.resize(n);
    cB.resize(n);
    vector<comp> val_A = FFT(cA, false);
    vector<comp> val_B = FFT(cB, false);
    for(int i=0; i<n; ++i) val A[i] *= val B[i];</pre>
    val_A = FFT(val_A, true);
    vi res(n);
    for(int i = 0; i < n; ++i)</pre>
        res[i] = round(val_A[i].real());
    int carry = 0;
    for(int i = 0; i < n; i++){ res[i] += carry;</pre>
        carry = res[i] / 10; res[i] %= 10;
    } return res;
```

6. Formulazas

6.1. Lógica - Conjuntos - Bitwise

 \oplus es el xor (o diferencia simétrica de conjuntos).

- 1. $a|b = a \oplus b + a\&b$
- 2. $a \oplus (a \& b) = (a|b) \oplus b$
- 3. $b \oplus (a \& b) = (a|b) \oplus a$
- 4. $(a\&b) \oplus (a|b) = a \oplus b$
- 5. $a + b = a|b + a\&b = a \oplus b + 2(a\&b)$
- 6. $a-b = (a \oplus (a \& b)) ((a|b) \oplus a) = ((a|b) \oplus b) ((a|b) \oplus a)$
- 7. $a-b=(a\oplus(a\&b))-(b\oplus(a\&b))=((a|b)\oplus b)-(b\oplus(a\&b))$

Si p, q son predicados, entonces:

- 1. $(p \lor q) \iff -(-p \land -q)$.
- $2. (p \implies q) \iff (-p \lor q).$
- 3. $(p \oplus q) \iff -(p \iff q)$.

6.2. Combinatoria

Inclusión-Exclusión. Sean A_1, \ldots, A_n conjuntos, entonces

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{\varnothing \neq J \subseteq [n]} (-1)^{|J|-1} \left| \bigcap_{j \in J} A_j \right|$$

Cantidad de elementos en exactamente r conjuntos. Sean A_1, \ldots, A_n conjuntos y $0 \le r \le n$, la cantidad de elementos en exactamente r conjuntos A_i es

$$\sum_{m=r}^{n} (-1)^{m-r} {m \choose r} \sum_{\substack{J \subseteq [n] \\ |J|=m}} \left| \bigcap_{j \in J} A_j \right|$$

Teorema del binomio generalizado. Para $x \in \mathbb{R}$ y $a,b \in \mathbb{C}$ se cumple

$$(a+b)^x = \sum_{k=0}^{\infty} {x \choose k} a^x b^{x-k},$$

$$\binom{x}{k} = \frac{1}{k!} \prod_{j=0}^{k-1} (x-j) = \frac{x(x-1)(x-2)\cdots(x-k+1)}{k!}.$$

ES FIBONACCI (En un icpc, el de la Cangurera lo usó). En el *Triángulo de Pascal*, los elementos en una "diagonal" satisfacen

$$F_{n+1} = \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n-k}{k},$$

donde F_{n+1} es el (n+1)-ésimo número de Fibonacci.

Palo de Hockey. Para $n y r (n \ge r)$, se cumple

$$\sum_{k=r}^{n} \binom{k}{r} = \binom{n+1}{r+1}.$$

Derangements. ¿Cuántos trastornos mentales distintos de tamaño n hay? (Según Google Translator). Considera los conjuntos $\{A_k\}_{k=1}^{k=n}$ donde A_k es la cantidad de permutaciones con el punto fijo $p_k = k$. La cantidad de permutaciones con al menos un punto fijo es

$$P := \left| \bigcup_{i=1}^{n} A_i \right| = \sum_{\varnothing \neq J \subseteq [n]} (-1)^{|J|-1} \left| \bigcap_{j \in J} A_j \right|$$
$$= \sum_{\varnothing \neq J \subseteq [n]} (-1)^{|J|-1} (n - |J|)! = \sum_{i=1}^{n} (-1)^{i-1} \binom{n}{i} (n - i)!,$$

entonces la cantidad de desarreglos es n!-P. Si d_n es la cantidad de desarreglos de tamaño n se cumple $d_n=(n-1)(d_{n-1}+d_{n-2})$ con $d_1=0$ y $d_0=d_2=1$. También se cumple $d_n=n!d_{n-1}+(-1)^n$. Sea $0 \le k \le n$ y $d_{n,k}$ la cantidad de desarreglos de tamaño n con exactamente k puntos fijos, entonces $d_{n,k}=\binom{n}{k}d_{n-k}$.

6.3. Geometría

Teorema de los círculos de Descartes. Si cuatro círculos son mutuamente tangentes de curvatura $k_i=1/r_i$ el teorema dice:

$$(k_1 + k_2 + k_3 + k_4)^2 = 2(k_1^2 + k_2^2 + k_3^2 + k_4^2)$$
$$k_4 = k_1 + k_2 + k_3 \pm 2\sqrt{k_1 k_2 + k_2 k_3 + k_3 k_1}$$

Formula de Heron. Dado un trinangulo de lados a,b,c, escribimos su semiperimetro $s=\frac{a+b+c}{2},$ inradio r, y cuirunradio R.

$$Area = \sqrt{s(s-a)(s-b)(s-c)}$$

$$2R = \frac{abc}{2\sqrt{s(s-a)(s-b)(s-c)}}$$

$$r = \sqrt{\frac{(s-a)(s-b)(s-c)}{s}}$$

Fórmula de Brahmagupta. Para el Area se vale algo similar en cuadrilateros ciclicos

$$Area = \sqrt{(s-a)(s-b)(s-c)(s-d)}$$

Para no cíclicos, $\theta =$ promedio de dos ángulos opuestos, p y q diagonales

$$Area = \sqrt{(s-a)(s-b)(s-c)(s-d) - abcd\cos^2\theta}$$

$$=\sqrt{K}$$

donde $K = (s - a)(s - b)(s - c)(s - d) - \frac{1}{4}(ac + bd + pq)(ac + bd - pq).$

Multidimensional ($Como\ Chang$). Para más dimensiones, si A es la matriz con filas estos vectores

$$Volumen_n = \frac{1}{n!} \sqrt{\det(AA^T)}$$

7. Métodos numéricos

7.1. Inversa de Matriz con Gauus-Jordan

Complejidad: Tiempo $O\left(n^3\right)$ - Memoria $O\left(n^2\right)$

```
#define eps 0.0001
vector<vector<double>>

    gauss(vector<vector<double>> m){
    int tam = m.size();
    vector<vector<double>> id(tam,

    vector<double>(tam));

    for(int i=0; i<tam; i++) id[i][i] = 1;</pre>
    for(int i=0; i<tam; i++){</pre>
         // buscar un no 0 para poner en (i,i)
        if(abs(m[i][i]) < eps){
             int j=i+1
             while(abs(m[j][i]) > eps && j<tam){</pre>
                 swap(m[j], m[i]);
                 swap(id[j], id[i]); j++;
             if(j == tam){/*...*/}//no invertible
         /// ponner un uno en (i,i) /// modificar
         \hookrightarrow la fila i
        double tmp = m[i][i];
        for(int k=0; k<tam; k++)</pre>
             id[i][k] /= tmp, m[i][k] /= tmp;
         /// poner columna i en todo 0, excepto
         \hookrightarrow casilla (i,i)
        for(int j=0; j<tam; j++){</pre>
             if(j==i) continue;
             //a la fila j le restamos la fila i
             tmp = m[j][i];
             for(int k=0; k<tam; k++){</pre>
                 m[j][k] = m[j][k]-tmp*m[i][k];
                 id[j][k] = id[j][k]-tmp*id[i][k];
        }
    } return id;
}
vector<double> matporvec(vector<vector<double>>
   &m, vector<double> &b){
    vector<double> ans(b.size());
    for(int i=0; i < b.size(); i++)</pre>
    for(int k=0; k<b.size(); k++)</pre>
        ans[i] += m[i][k]*b[k];
    return ans;
}
```

7.2. Sistemas de ecuaciones lineales

Dado un sistema de n ecuaciones con m incógnitas. Devuelve el numero de soluciones del sistema 0, 1 o ∞ y si existe al menos una solución la guarda en el vector ans. Complejidad: Tiempo O((n+m)nm) - Memoria O(nm).

```
const double EPS = 1e-9;
const int INF = 2; // it doesn't actually have to
   be infinity or a big number
int gauss(vector<vector<double>> a,
   vector<double> &ans){
    int n = (int) a.size();
    int m = (int) a[0].size() - 1;
    vi where (m, -1);
    for(int col=0,row=0; col<m && row<n; ++col){</pre>
        int sel = row;
        for (int i=row; i<n; ++i)</pre>
        if(abs(a[i][col])>abs(a[sel][col]))sel=i;
        if(abs(a[sel][col]) < EPS) continue;</pre>
        for(int i=col; i<=m; ++i)</pre>
             swap(a[sel][i], a[row][i]);
        where[col] = row;
        for(int i=0; i<n; ++i)</pre>
        if(i != row){
             double c = a[i][col] / a[row][col];
             for(int j=col; j<=m; ++j)</pre>
                 a[i][j] -= a[row][j] * c;
        } ++row;
    } ans.assign (m, 0);
    for(int i=0; i<m; ++i) if(where[i] != -1)
        ans[i] = a[where[i]][m] / a[where[i]][i];
    for(int i=0; i<n; ++i){</pre>
        double sum = 0;
        for(int j=0; j<m; ++j)</pre>
             sum += ans[j] * a[i][j];
        if(abs(sum - a[i][m]) > EPS) return 0;
    }
    for(int i=0; i<m; ++i) if(where[i] == -1)</pre>
        return INF;
    return 1;
}
```

7.3. Sistemas de ecuaciones modulo 2

Dado un sistema de n ecuaciones con m incógnitas modulo 2. Devuelve el numero de soluciones del sistema 0, 1 o ∞ y si existe al menos una solución la guarda en el vector ans. Complejidad: Tiempo O((n+m)nm) Memoria O(nm).

```
int gauss (vector<bitset<MAXN>> A, int n, int m,
    bitset<MAXN> &ans){
    // where[i] guarda el indice de la ecaucion
    → donde se puede despejar variable i, -1 si
    → es independiente
    vi where(m, -1);
    // Matriz "diagonal"
    for(int col=0,row=0; col<m && row<n; ++col){
        // busca pivote
        for(int i = row; i<n; ++i) if(A[i][col]){
        swap (A[i], A[row]);
    }
}</pre>
```

```
break;
    } if(!A[row][col]) continue;
    where [col] = row;
    // poner 0 todos lados
    for(int i=0; i<n; ++i)</pre>
    if(i != row && A[i][col]) A[i] ^= A[row];
    ++row;
// sacar respuesta // variables
\rightarrow independientes = 1, t
for(int i = 0; i < m; ++i)</pre>
    ans[i] = where[i] == -1 ? 1 :
    // si hay alguna variable libre
for(int i = 0; i < m; ++i) if(where[i] == -1)</pre>
    return INF;
return 1;
```

8. Sparse table

}

Complejidad: Tiempo de precalculo $O(n \log n)$ - Tiempo en responder $O(\log(r-l+1))$ - Tiempo en responder para operaciones idempotentes O(1) - Memoria extra $O(n \log n)$. LOGN es $\lceil \log_2(MAXN) \rceil$. Indexado en 0.

```
struct sparse_table{
    int n, NEUTRO;
    vvi ST;
    vi lg2;
    int f(int a, int b){return a + b;}
    sparse_table(int _n, int data[]){
        n = n;
        NEUTRO = 0;
        lg2.resize(n + 1);
        lg2[1] = 0;
        for(int i=2; i<=n; ++i)lg2[i]=lg2[i/2]+1;
        ST.resize(lg2[n] + 1, vi(n + 1, NEUTRO));
        for(int i=0; i<n; ++i)ST[0][i] = data[i];</pre>
        for(int k = 1; k \le lg2[n]; ++k){
            int fin = (1 << k) - 1;
            for(int i = 0; i + fin < n; ++i)
            ST[k][i]=f(ST[k-1][i],
                       ST[k-1][i+(1<<(k-1))]);
        }
    }
    int query(int 1, int r){
        if(1 > r) return NEUTRO;
        int ans = NEUTRO;
        for(int k = lg2[n]; 0 \le k; --k){
            if(r - 1 + 1 < (1 << k)) continue;
            ans = f(ans, ST[k][1]);
            1 += 1 << k;
        }
        return ans;
    int queryIdem(int 1, int r){
        if(l > r) return NEUTRO;
        int lg = lg2[r - 1 + 1];
        return f(ST[lg][l], ST[lg][r-(1<<lg)+1]);
```

```
}
·;
```

9. Fenwick Tree

Complejidad: Tiempo en responder $O(\log n)$ - Tiempo de actualización $O(\log n)$ - Memoria extra O(n). Indexado en 1.

```
struct fenwick_tree{
    int n;
    vi BIT;
    fenwick_tree(int _n){
        n = n;
        BIT.resize(n + 1);
    void add(int pos, int x){
        while(pos <= n){</pre>
            BIT[pos] += x;
            pos += lsb(pos);
        }
    }
    int sum(int pos){
        int res = 0;
        while(pos){
            res += BIT[pos];
            pos -= lsb(pos);
        } return res;
    }
};
```

10. Segment Tree

```
struct node{
   int val, lazy;
   node():val(0), lazy(0){}
   node(int x, int lz = 0):val(x), lazy(lz){}
   const node operator+(const node &b)const{
      return node(val + b.val);
   }
}
```

10.1. Actualizaciones puntuales

Complejidad: Tiempo de precalculo O(n) - Tiempo en responder $O(\log n)$ - Tiempo de actualización $O(\log n)$ - Memoria extra O(n). Indexado en 1.

```
struct segment_tree{
    struct node{...};
    vector<node> nodes;
    segment_tree(int n, int data[]){
        nodes.resize(4 * n + 1);
        build(1, n, data);
    }
    void build(int left, int right, int data[],
        int pos = 1){
        if(left == right){
            nodes[pos] = node(data[left]);
    }
}
```

```
return;
        }
        int mid = (left + right) / 2;
        build(left, mid, data, pos * 2);
        build(mid + 1, right, data, pos * 2 + 1);
        nodes[pos] = nodes[pos*2]+nodes[pos*2+1];
    void update(int x, int idx, int left, int

    right, int pos = 1){
        if(idx < left || right < idx) return;</pre>
        if(left == right){
            nodes[pos].val += x;
            return;
        }
        int mid = (left + right) / 2;
        update(x, idx, left, mid, pos * 2);
        update(x, idx, mid+1, right, pos*2+1);
        nodes[pos] = nodes[pos*2]+nodes[pos*2+1];
    node query(int 1, int r, int left, int right,
    \rightarrow int pos = 1){
        if(r < left || right < 1) return node();</pre>
        if(1 <= left && right <= r)</pre>
            return nodes[pos];
        int mid = (left + right) / 2;
        return query(1, r, left, mid, pos*2) +
         \rightarrow query(1, r, mid+1, right, pos*2+1);
    }
};
```

10.2. Actualizaciones sobre rangos

Complejidad: Tiempo de precalculo O(n) - Tiempo en responder $O(\log n)$ - Tiempo de actualización $O(\log n)$ - Memoria extra O(n).

```
struct segment_tree{
    struct node{...};
    vector<node> nodes;
    segment_tree(int n, int data[]){...}
    void build(...){...}
    void combine_lz(int lz, int
    → pos){nodes[pos].lazy += lz;}
    void apply_lz(int pos, int tam){
        nodes[pos].val += nodes[pos].lazy * tam;
        nodes[pos].lazy = 0;
    void push_lz(int pos, int left, int right){
        int len = abs(right - left + 1);
        if(1 < len){
            combine_lz(nodes[pos].lazy, pos*2);
            combine_lz(nodes[pos].lazy, pos*2+1);
        } apply_lz(pos, len);
    void update(int x, int 1, int r, int left,

    int right, int pos = 1){
        push_lz(pos, left, right);
        if(r < left || right < 1) return;</pre>
        if(1 <= left && right <= r){</pre>
            combine_lazy(x, pos);
```

```
push_lazy(pos, left, right);
            return;
        }
        int mid = (left + right) / 2;
        update(x, 1, r, left, mid, pos * 2);
        update(x, 1, r, mid+1, right, pos*2+1);
        nodes[pos] = nodes[pos*2]+nodes[pos*2+1];
    node query(int 1, int r, int left, int right,
    \rightarrow int pos = 1){
        push_lz(pos, left, right);
    }
};
10.3.
        Sparse segment tree
struct node{
    11 lazy, maxi, sum;
    node *left = nullptr, *right = nullptr;
    node(): lazy(0), maxi(0), sum(0){}
    void extend(){
        if(left) return;
        left = new node;
        right = new node;
    }
    void combine_lz(ll lz){
        lazy += lz;
    void apply_lz(ll len){
        sum += len * lazy; lazy = 0;
    void push_lz(ll L, ll R){
        int len = R - L + 1;
        11 \text{ mid} = L + (R - L) / 2;
        if(len){
            extend();
            left->combine_lz(lazy);
            right->combine_lz(lazy);
        }
        apply_lz(len);
    void update(ll x, ll l, ll r, ll L, ll R){
        push_lz(L, R);
        if(r < L || R < 1) return;
```

if(1 <= L && R <= r){

combine_lz(x);
push_lz(L, R);

11 mid = L + (R - L) / 2;

11 query(11 1, 11 r, 11 L, 11 R){

if(r < L || R < 1) return 0;

if(1 <= L && R <= r) return sum;</pre>

left->update(x, 1, r, L, mid);

right->update(x, 1, r, mid + 1, R); sum = left->sum + right->sum;

return;

push_lz(L, R);

extend();

extend();

}

}

```
11 \text{ mid} = L + (R - L) / 2;
         return left->query(1, r, L, mid) +

    right->query(1, r, mid + 1, R);

    }
};
```

11. Sqrt decomposition

Algoritmo de MO 11.1.

Complejidad: Tiempo en responder $O((n+q)\sqrt{n}F +$ $q \log q$), donde O(F) es la complejidad de add() y remove().

```
const int block_size = 300;
struct query {
    int 1, r;
    int block, i;
    bool operator<(const query &b) const {</pre>
        if(block == b.block) return r < b.r;</pre>
        return block < b.block;</pre>
};
void add(int idx){/// TO-DO}
void remove(int idx){/// TO-DO}
int get_answer(){return 0; /// TO-DO}
vi solve(vector<query> &queries) {
    vi answers(queries.size());
    sort(queries.begin(), queries.end());
    int cur_1 = 0, cur_r = -1;
    for(query q : queries){
        while(cur_l > q.1) add(--cur_l);
        while(cur_r < q.r) add(++cur_r);</pre>
        while(cur_l < q.1) remove(cur_l++);</pre>
        while(cur_r > q.r) remove(cur_r--);
        answers[q.i] = get_answer();
    } return answers;
}
```

Grafos 12.

```
struct edge{
    int from, to;
    11 w;
    const bool operator<(const edge &b)const{</pre>
        return w > b.w;
};
struct pos{
    int from;
    11 c;
    const bool operator<(const pos &b)const{
        return c > b.c;
};
```

12.1. Caminos mínimos

12.1.1. Dijkstra

```
Complejidad: Tiempo O(|E|\log|V|) - Memoria extra
O(|E|).
11 dijkstra(int a, int b, vector<edge> graph[]){
    11 dist[MAXN];
    bool vis[MAXN] = {};
    fill(dist, dist + MAXN, LLONG_MAX);
   priority_queue<pos> q;
    q.push(pos{a, 0});
    dist[a] = 0;
    while(!q.empty()){
        pos act = q.top();
        q.pop();
        if(vis[act.from]) continue;
        vis[act.from] = true;
        for(edge &e : graph[act.from]){
            if(dist[e.to] <= dist[e.from] + e.w)</pre>

→ continue;

            dist[e.to] = dist[e.from] + e.w;
            q.push(pos{e.to, dist[e.to]});
    } return dist[b];
}
12.1.2. Bellman-Ford
   Complejidad: O(|V||E|).
vi bellman_ford(int s, int n, vector<edge>
vi d(n, (cycles ? 0 : INT_MAX));
    d[s] = 0;
    vi P(n, −1); /// Predecesor
    for(int i = 0; i < n - 1; ++i){
        for(edge &e : edges){
            if(d[e.from] == INT_MAX) continue;
            if(d[e.to] > d[e.from] + e.w){
                d[e.to] = d[e.from] + e.w;
                P[e.to] = e.from;
            }
        }
    }
    int last_relax = -1;
    for(edge &e : edges){
        if(d[e.from] == INT_MAX) continue;
        if(d[e.to] > d[e.from] + e.w){
            d[e.to] = d[e.from] + e.w;
            P[e.to] = e.from;
            last_relax = e.to;
    if(last_relax == -1) return d;
    return {}; /// VACIO
}
12.1.3. Floyd-Warshall
```

Complejidad: $O(|V|^3)$.

```
vvi floyd_warshall(int n){
    const int INF = INT_MAX; // para evitar
    → overflow después
    vvi d(n, vi(n, INF));
    /// aqui inicializa con la lista/matriz de
    \hookrightarrow adyacencia
    /// luego calcula la dp
    for(int k = 0; k < n; ++k){
        for(int i = 0; i < n; ++i){
            for(int j = 0; j < n; ++j){
                 if(d[i][k]==INF || d[k][j]==INF)
                     continue;
                 if(d[i][j] > d[i][k] + d[k][j])
                 \rightarrow d[i][j] = d[i][k] + d[k][j];
            }
        }
    } return d;
}
```

12.1.4. Johnson's algorithm

Complejidad: $O(|V||E|\log |V|)$. Sea $p:V\to\mathbb{R}$ una función potencial del grafo. El algoritmo es como sigue:

- 1. Hacemos una transformación en el grafo cambiando los pesos w a w'(u, v) = w(u, v) + p(u) p(v).
- 2. Calculamos la distancia mínima $d':V\times V\to \mathbb{R}$ desde cada nodo a todos los demás con Dijkstra.
- 3. Finalmente, la distancia mínima de u a v en el grafo original es d(u,v) = d'(u,v) p(u) + p(v).

La función potencial p puede ser cualquiera. Usando Bellman-Ford se puede calcular el potencial p(u) como el camino más corto que termina (o empieza) en u.

12.2. Árboles

12.2.1. MST

Prim. Complejidad: Tiempo $O(|E|\log|V|)$. eCost [MAXN] es el arreglo de costos mínimos de cada nodo para incluirlo en el MST.

```
11 prim(vector<edge> graph[]){
    11 e_cost[MAXN], ans = 0;
    bool vis[MAXN] = {};
    fill(e_cost, e_cost + MAXN, LLONG_MAX);
    priority_queue<edge> q;
    q.push(edge{1, 1, 0});
    while(q.size()){
        int node = q.top().to;
        11 w = q.top().w; q.pop();
        if(vis[node]) continue; vis[node] = true;
        for(edge &e : graph[node]){
            if(vis[e.to] || e_cost[e.to] <= e.w)</pre>

→ continue;

            e cost[e.to] = e.w;
            q.push(e);
        \} ans += w;
    } return ans;
}
```

```
Kruskal. Complejidad: Tiempo O(|E| \log |E|).
11 kruskal(vector<edge> &edges, int n){
    sort(all(edges));
    dsu mset(n);
    11 \text{ res} = 0;
    for(edge &e : edges){
        if(mset.root(e.from) == mset.root(e.to))

→ continue;

        mset.join(e.from, e.to);
        res += e.w;
    }
    return res;
}
   Boruvka. Complejidad: Tiempo O(|E|\log|V|). |V| =
n. dsu.join() devuelve true si la unión se llevó a cabo o
false en otro caso.
11 boruvka(vector<edge> &edges, int n){
    dsu mset(n);
    int min_edge[n];
    11 \text{ res} = 0;
    while(mset.cnt_comp > 1){
        fill(min_edge, min_edge + n, -1);
        for(int i = 0; i < edges.size(); ++i){</pre>
             int u = mset.root(edges[i].from);
             int v = mset.root(edges[i].to);
             if(u == v) continue;
             if(min_edge[u] == -1 || edges[i].w <</pre>

→ edges[min edge[u]].w) min edge[u]

             if(min_edge[v] == -1 || edges[i].w <</pre>

→ edges[min_edge[v]].w) min_edge[v]

             \hookrightarrow = i;
        }
        for(int i = 0; i < n; ++i){
             int idx_e = min_edge[i];
             if(idx_e == -1) continue;
            res += mset.join(edges[idx_e].from,

    edges[idx_e].to) *

             → edges[idx_e].w;
    } return res;
}
   MST dirigido. Complejidad: O(|E| \log |V|). AGRE-
GAR PEQUEÑA DESCRIPCIÓN.
/// MEJORAR ESTA COSA, SOLO LO COPIE Y
→ PEGUÉ porcuestionesdetiempo
const int N = 3e5 + 9;
const ll inf = 1e18;
template<typename T> struct PQ {
    11 sum = 0;
    priority_queue<T, vector<T>, greater<T>> Q;
    void push(T x) { x.w -= sum; Q.push(x); }
```

T pop() { auto ans = Q.top(); Q.pop(); ans.w

→ += sum; return ans; }

int size() { return Q.size(); }

```
void add(ll x) { sum += x; }
    void merge(PQ &x){
        if (size() < x.size()){</pre>
            swap(sum, x.sum);
            Q.swap(x.Q);
        while(x.size()){
            auto tmp = x.pop();
            tmp.w -= sum;
            Q.push(tmp);
        }
    }
};
struct edge {
    int u, v; ll w;
    bool operator > (const edge &rhs) const {

    return w > rhs.w; }

};
struct DSU {
    vi par;
    DSU (int n) : par(n, -1) {}
    int root(int i) { return par[i] < 0 ? i :</pre>

    par[i] = root(par[i]); }

    void set_par(int c, int p) { par[c] = p; }
// returns parents of each vertex
// each edge should be distinct
// it assumes that a solution exists (all
→ vertices are reachable from root)
// 0 indexed
// Takes ~300ms for n = 2e5
vi DMST(int n, int root, const vector<edge>
vi u(2 * n - 1, -1), par(2 * n - 1, -1);
    edge par_edge[2 * n - 1];
    vi child[2 * n - 1];
    PQ < edge > Q[2 * n - 1];
    for(auto e : edges) Q[e.v].push(e);
    for(int i = 0; i < n; i++)</pre>
        Q[(i+1) \% n].push({i, (i+1) \% n, inf});
    int super = n;
    DSU dsu(2 * n - 1);
    int head = 0;
    while (Q[head].size()) {
        auto x = Q[head].pop();
        int nxt_root = dsu.root(x.u);
        if (nxt_root == head) continue;
        u[head] = nxt root;
        par_edge[head] = x;
        if (u[nxt_root] == -1) head = nxt_root;
        else {
            int j = nxt_root;
            //Nota: no estoy seguro de que esto
             \rightarrow sea correcto para la complejidad
             → deseada:
            //ino es obligatorio detectar primero
             → cuál es el más grande para tener
             \hookrightarrow el
            //análisis tipo light?
            do {
```

```
Q[j].add(-par_edge[j].w);
                //Q[super].merge(move(Q[j]));
                Q[super].merge(Q[j]);
                assert(u[j] != -1);
                child[super].push_back(j);
                j = dsu.root(u[j]);
            } while (j != nxt_root);
            for(auto u : child[super]) par[u] =

    super, dsu.set_par(u, super);

            head = super++;
        }
    }
    vi res(2 * n - 1, -1);
    queue<int> q; q.push(root);
    while (q.size()) {
        int u = q.front();
        q.pop();
        while (par[u] != -1) {
            for (auto v : child[par[u]]) {
                if (v != u) {
                    res[par_edge[v].v] =

    par_edge[v].u;

                     q.push(par_edge[v].v);
                    par[v] = -1;
                }
            }
            u = par[u];
        }
    res[root] = root; res.resize(n);
    return res;
}
int main() {
    ios_base::sync_with_stdio(0); cin.tie(0);
    int n, m, root; cin >> n >> m >> root;
    vector<edge> edges(m);
    for(auto &e : edges) cin >> e.u >> e.v >>

    e.w;

    auto res = DMST(n, root, edges);
    unordered_map<int, int> W[n];
    for (auto u : edges) W[u.v][u.u] = u.w;
    11 \text{ ans} = 0;
    for(int i = 0; i < n; i++) if(i != root)</pre>
        ans += W[i][res[i]];
    cout << ans << '\n';
    for(auto x : res) cout << x << ' ';</pre>
    cout << '\n';
12.2.2. Block-Cut Tree
CIÓN.
/// MEJORAR ESTA COSA, SOLO LO COPIE Y
```

Complejidad: O(n)? AGREGAR PEQUENA DESCRIP-

```
→ PEGUÉ porcuestionesdetiempo
vvi comps;//nodes in each component
vvi bcc; //nodes to components that it belong
vi st;//internal stack
```

```
depth[node] = d;
vi low, num;
int id;
                                                         P[0][node] = p;
                                                         for(int k = 1; k \le LOGN; ++k)
int sz;
                                                              P[k][node] = P[k - 1][P[k - 1][node]];
void dfs_biconnected(vvi &g, int u, int pre){
                                                         for(int child : tree[node]) if(p != child)
  low[u] = num[u] = ++id;
                                                             precalc(child, node, d + 1);
  st.push_back(u);
                                                     }
                                                     int LCA(int a, int b){
  for(auto v: g[u]) {
    if(!num[v]) {
                                                         if(depth[b] < depth[a]) swap(a, b);</pre>
                                                         int dif = depth[b] - depth[a];
      dfs_biconnected(g, v, u);
      low[u] = min(low[u], low[v]);
                                                         for(int k = LOGN; 0 \le k; --k)
      if(low[v] >= num[u]) {
                                                              if(is_on(dif, k)) b = P[k][b];
        int x;
                                                         if(a == b) return a;
        comps.pb(vi());
                                                         for(int k = LOGN; 0 \le k; --k){
        do {
                                                              if(P[k][a] != P[k][b]){
          x = st.back();
                                                                  a = P[k][a];
                                                                  b = P[k][b];
          st.pop_back();
          bcc[x].push_back(sz);
          comps.back().pb(x);
                                                         }
        } while(x ^ v);
                                                         return P[0][a];
        bcc[u].push_back(sz);
                                                     }
        comps.back().pb(u);
                                                     int nth_ancestor(int u, int n){
        sz++;
                                                         for(int k = LOGN; 0 \le k; --k)
      }
                                                              if(is_on(n, k)) u = P[k][u];
    } else if(v != pre) low[u] = min(low[u],
                                                         return u;
                                                     }
    \rightarrow num[v]);
}
                                                     12.2.4. Sack
vi utoubt;//its component or its AP index
                                                        Complejidad: Tiempo O(|V| \log |V|). Indexado en 1.
vb uisart; //u is AP?
vvi bt;//block cut tree
                                                     void precalc(int node, int p = 0){
void generateBlockCutTree(vvi &g){
                                                         subtree_size[node] = 1;
    int n = g.size();
                                                         depth[node] = depth[p] + 1;
    sz = id = 0;
                                                         for(int v : tree[node]){
    bcc.resize(0); low.resize(0); num.resize(0);
                                                              if(v == p) continue;
    bcc.resize(n); low.resize(n); num.resize(n);
                                                              precalc(v, node);
    dfs_biconnected(g, 0, 0);
                                                              subtree_size[node] += subtree_size[v];
    bt.resize(sz);
    utoubt.resize(0); utoubt.resize(n);
                                                     }
    uisart.resize(0); uisart.resize(n);
                                                     void add(int node, int x, int p = 0){
    for(int u = 0; u < n; u++){
                                                         /// add node here
        if(bcc[u].size() > 1) { //Articulation
                                                         /// add subtree
            utoubt[u] = sz++;
                                                         for(int v: tree[node])
            uisart[u] = true;
                                                              if(v != p && !big[v])
            bt.pb(vi());
                                                                  add(v, x, node);
            for(auto v: bcc[u]){
                bt[utoubt[u]].pb(v);
                                                     void dfs(int node, bool keep, int p = 0){
                bt[v].pb(utoubt[u]);
                                                         int maxi = -1, big_child = -1;
                                                         for(int v : tree[node])///Searchfor big_child
        } else //Not articulation point
                                                             if(v != p && subtree_size[v] > maxi)
            utoubt[u] = bcc[u][0];
                                                                maxi = subtree_size[v], big_child = v;
    }
                                                         for(int v : tree[node])
}
                                                              if(v != p && v != big_child)
                                                                  dfs(v, false, node); /// run a dfs
12.2.3. LCA
                                                                  \hookrightarrow on small childs and clear them
                                                         if(big_child != -1)
   Complejidad: Tiempo de preproceso O(|V| \log |V|).
                                                              dfs(big_child, true, node),
Tiempo de LCA y n-ésimo ancestro O(\log |V|). 1-index.

    big[big_child] = 1; /// big_child

void precalc(int node, int p = 0, int d = 1){
                                                              → marked as big and not cleared
```

```
add(node, 1, p);
/// answer queries here
if(big_child != -1) big[big_child] = 0;
if(!keep) add(node, -1, p);
}
```

12.3. Máximo flujo

12.3.1. Algunos problemas de flujos

■ Maximum Weight Closure. Sea N_1 una clausura de G y $N_2 = V \setminus N_1$, tenemos que $w(N_1) = \sum_{i \in N_1^+} w_i - \sum_{i \in N_1^-} |w_i|$ y $Cap.Corte = \sum_{i \in N_2^+} w_i + \sum_{i \in N_1^-} |w_i|$. Entonces

$$Cap.Corte + w(N_1) = \sum_{i \in N_1^+} w_i + \sum_{i \in N_2^+} w_i.$$

- Mínima cobertura de vértices. En grafos generales es NP-Completo. En grafos bipartitos el máximo emparejamiento es igual al numero de vertices en la mínima cobertura. Para el problema con pesos en los nodos, unimos s a todos los nodos en L con capacidad igual al peso de cada nodo, unimos los nodos de R a t de la misma manera y unimos los nodos de L a R con capacidad infinita. El máximo flujo es el peso mínimo de la mínima cobertura.
- Máximo conjunto independiente. Cualquier conjunto independiente es el complemento de alguna cobertura de vértices.
- Mínimo cubrimiento de caminos independientes. En grafos generales es NP-hard. En DAG's duplicamos los nodos en un lado IN y un lado OUT. Conectamos s al lado OUT y el lado IN a t. Las aristas del DAG las agregamos del lado OUT al lado IN. Sea M el máximo emparejamiento de la red anterior, entonces el mínimo cubrimiento es |V| M.
- Mínimo cubrimiento de caminos NO necesariamente independientes. En grafos generales es NP-hard. En DAG's transformamos el DAG a su clausura transitiva y aplicamos el problema anterior.
- Teorema de Mirsky. En todo POSET, el tamaño de la cadena de mayor tamaño es igual al número de anticadenas necesarias para cubrir todos los elementos del conjunto.
- Teorema de Dilworth. En todo POSET, el tamaño de la anticadena de mayor tamaño es igual al número de cadenas necesarias para cubrir todos los elementos del conjunto.
- Teorema de Hall. Un grafo bipartito con subconjuntos L y R tiene un emparejamiento de tamaño |L| si y sólo si para todo subconjunto W de L, se cumple que $|W| \leq |N_G(W)|$, donde $N_G(W)$ es el conjunto de vértices vecinos de alguno de los vértices en W.

12.3.2. Edmonds-Karp

```
Complejidad: Ford-Fulkerson O(|E| \cdot F), Edmonds-
 Karp O(|V||E|^2).
    Ejemplo de uso
 int main(){
     int n,m,a,b; cin >> n >> m;
     vector< vector<edge> > elGrafo(n);
     while( m-- ){
         cin >> a >> b >> c;
         elGrafo[a-1].push_back({a-1,b-1,c,c,0}
          → );
     }
     //Flujo maximo
     ford_fulkerson ff(elGrafo);
     cout << ff.get_max_flow( 0, n-1 ) << '\n';</pre>
     //corte minimo
     vector< vector<edge> > residual =

    ff.get_residual_graph();

     vector<bool> visitados(n,false);
     queue<int> q;
     q.push(0);
     visitados[0]=true;
     while( !q.empty() ){
         int u = q.front(); q.pop();
         for( edge& e : residual[u] ){
              if( e.c>0 && !visitados[e.to] ){
                  visitados[e.to] = true;
                  q.push(e.to);
              }
         }
     }
     for( int u=0; u<n; u++ ){</pre>
         for( edge& e : grafo[u] ){
              if( visitados[u] && !visitados[e.to]
              \rightarrow && e.w > 0){
                  cout << u+1 << " " << e.to+1 <<
                     endl;
              }
         }
     }
 struct edge {
     int from, to;
     11 w; /// weight
     11 c; /// capacity
     11 f; /// flow
|};
```

```
}
class ford_fulkerson {
                                                           }
public:
    ford_fulkerson (vector<vector<edge>> &graph)
                                                         }
    bool find_and_update(int s, int t, ll &flow){
    11 get_max_flow(int s, int t){
                                                             queue<int> q;
        init();
                                                             // Desde donde llego y con que arista
        11 f = 0;
                                                             vpii from(graph.size(), {-1, -1});
        while(find_and_update(s, t, f)){}
                                                             q.push(s);
                                                             from[s] = \{s, -1\};
        return f;
    }
                                                             bool found = 0;
    vi get st cut(const int &s){
                                                             while(q.size() && !found){
        bool vis[graph.size()] = {};
                                                                 int u = q.front(); q.pop();
        vi S;
                                                                 for(int eI : edge_indexes[u]){
        queue<int> q;
                                                                     if(edges[eI].c > edges[eI].f &&
        q.push(s);
                                                                        from[edges[eI].to].first== -1){
        S.pb(s);
                                                                          from[edges[eI].to] = {u, eI};
        vis[s] = true;
                                                                          q.push(edges[eI].to);
        while(q.size()){
                                                                          if(edges[eI].to == t)found=1;
                                                                     }
            int u = q.front(); q.pop();
                                                                 }
            for(int eI : edge_indexes[u]){
                                                             }
                if(edges[eI].c > edges[eI].f &&

    !vis[edges[eI].to]){
                                                             if(!found) return false;
                    q.push(edges[eI].to);
                                                             11 u_flow = LLONG_MAX;
                    vis[edges[eI].to] = true;
                                                             int cur = t;
                                                             while(cur != s) {
                    S.pb(edges[eI].to);
                }
                                                                 u_flow = min(u_flow,
            }

→ edges[from[cur].se].c -
        }

→ edges[from[cur].se].f);
        return S;
                                                                 cur = from[cur].fi;
    }
                                                             }
    vector<vector<edge>> get_residual_graph(){
                                                             cur = t;
        vector<vector<edge>>
                                                             while(cur != s){

¬ residual(graph.size());

                                                                 edges[from[cur].se].f += u flow;
        for(int i=0; i<edges.size(); i+=2){</pre>
                                                                 edges[from[cur].se^1].f -= u_flow;
            const edge& e = edges[i];
                                                                 cur = from[cur].fi;
            if(e.c > 0){
                residual[e.from].pb({e.from,
                                                             flow += u_flow;
                 \rightarrow e.to, e.w, e.c - e.f, e.f});
                                                             return 1;
                residual[e.to].pb({e.to, e.from,
                                                         }
                                                     };
                 \rightarrow -e.w, e.f, -e.f});
        } return residual;
                                                     12.3.3. Dinic
    }
private:
                                                        Complejidad: O(|V|^2|E|).
    vector<vector<edge>> graph; /// graph (to,
    \rightarrow capacity)
                                                     const int MAXV = 32767; /// 2^15 - 1
    vector<edge> edges; /// List of edges
                                                     template<class T = 11> struct dinic{
    → (including the inverse ones)
                                                         dinic(short V){this->V = V;}
    vvi edge_indexes; /// indexes of edges going
                                                         const static bool SCALING = 1;
    → out from each vertex
                                                         bool sorted = 0;
    void init(){
                                                         short s, t, V;
      edges.clear();
                                                         int lim = 1; /// Para escalado
      edge_indexes.clear();
                                                         const T INF = numeric_limits<T>::max();
      edge_indexes.resize(graph.size());
                                                         short level[MAXV]; /// distancia desde s
      for(int u = 0; u < graph.size(); u++){}
                                                         short ptr[MAXV]; /// arista que va explorando
         for(edge &e : graph[u]){
                                                         struct edge{
           edges.pb({u, e.to, e.w, e.c, 0});
                                                             short to, rev;
           edges.pb({e.to, u, -e.w, 0, 0});
                                                             T cap, flow, mcap;
           edge_indexes[u].pb(edges.size()-2);
                                                             bool operator<(const edge &b)const{return</pre>
           edge_indexes[e.to].pb(edges.size()-1);

    mcap > b.mcap;
}
```

```
};
vector<edge> adj[MAXV];
vi adj_cur[MAXV]; /// aristas del grafo de
\rightarrow nivel
void add_edge(short u, short v, T cap, bool

    is_directed = 1){
    if(u == v) return;
    T add = (is_directed ? 0 : cap);
    adj[u].push_back({v, adj[v].size(), cap,
    \rightarrow 0, cap + add});
    adj[v].push_back({u, (short)adj[u].size()
     \rightarrow - 1, add, 0, cap + add});
void mysort(){
    if(sorted) return;
    sorted = 1;
    for(int i = 0; i < V; ++i){
        sort(all(adj[i]));
        for(int j=0; j<adj[i].size(); ++j)</pre>
        adj[adj[i][j].to][adj[i][j].rev].rev
         \rightarrow = j;
    }
}
bool bfs(){
    for(int i = 0; i < V; ++i){</pre>
        adj_cur[i].clear();
        adj_cur[i].reserve(adj[i].size());
    queue<short> q;
    q.push(s);
    fill(level, level + V, -1);
    level[s] = 0;
    while(q.size()){
        short u = q.front(); q.pop();
        if(u == t) return 1;
        for(int i=0; i < adj[u].size(); ++i){</pre>
             edge &e = adj[u][i];
             if(e.mcap < lim) break;</pre>
             if(level[e.to] == -1 \&\& e.cap -
             \rightarrow e.flow >= lim){
                 level[e.to] = level[u] + 1;
                 adj_cur[u].push_back(i);
                 q.push(e.to);
             } else if(level[e.to] == level[u] +1
             \rightarrow && e.cap - e.flow >= lim){
                 adj_cur[u].push_back(i);
        }
    } return 0;
T dfs(short u, T flow, vector<short> &S, bool
\rightarrow save = 0){
    if(save) S.push_back(u);
    if(u == t) return flow;
    for(; ptr[u] < adj_cur[u].size();</pre>
     → ++ptr[u]){
        edge &e = adj[u][adj_cur[u][ptr[u]]];
        if(T pushed = dfs(e.to, min(flow,
         → e.cap - e.flow), S, save)){
             e.flow += pushed;
```

```
adj[e.to][e.rev].flow -= pushed;
                 if(e.cap-e.flow < lim) ptr[u]++;</pre>
                 return pushed;
             }
        } return 0;
    11 get_max_flow(short source, short sink){
        s = source; t = sink;
        mysort();
        vector<short> S;
        11 \text{ flow} = 0;
        lim = SCALING ? (1 << 30) : 1;
        for(; 0 < lim; lim >>= 1){
             while(bfs()){
                 memset(ptr, 0, sizeof(ptr));
                 while(T pushed = dfs(s, INF, S))
                     flow += pushed;
        } return flow;
    vector<short> get_st_cut(){
        vector<short> S;
        memset(ptr, 0, sizeof(ptr));
        dfs(s, INF, S, true);
        return S;
};
12.3.4. MCMF
   Complejidad: Tiempo
        O\left(\min\{|E|^2|V|\log(|V|), F|E|\log(|V|)\}\right).
const int MAXV = (1 \ll 15) - 1;
template<class T = 11> struct mcmf{
    mcmf(short V){this->V = V;}
    short s, t, V;
    const T INF = numeric_limits<T>::max();
    vector<T> p;
    struct edge{
        short to, rev;
        T cap, flow, mcap, w;
        bool operator<(const edge &b)const{return</pre>

    mcap > b.mcap;}

    };
    vector<edge> adj[MAXV];
    void add_edge(short u, short v, T cap, T w,
    → bool is directed = 1){
        if(u == v) return;
        T add = (is_directed ? 0 : cap);
        adj[u].push_back({v, adj[v].size(), cap,
         \rightarrow 0, cap + add, w});
        adj[v].push_back({u, (short)adj[u].size()
         \rightarrow - 1, add, 0, cap + add, -w});
    struct pos{
        short from;
        T c;
        const bool operator<(const pos</pre>
```

```
};
                                                             cur_node = P[cur_node];
                                                         }
vector<T> bellman_ford(){
    vector<T> d(V);
                                                         return {flow, new_cost};
    for(int i = 0; i < V - 1; ++i){
        for(int u = 0; u < V; ++u){
                                                     pair<T, T> get_max_flow(short source, short
            for(edge &e : adj[u]){

    sink, const T MAX_FLOW = 1e8){
                if(d[e.to] > d[u] + e.w &&
                                                         s = source;
                 \rightarrow e.cap > 0){
                                                         t = sink;
                    d[e.to] = d[u] + e.w;
                                                         p = bellman_ford();
                                                         T flow = 0, cost = 0;
            }
                                                         while(flow < MAX_FLOW){</pre>
                                                             pair<T, T> pushed = dijkstra(MAX_FLOW
        }
    } return d;
                                                              → - flow);
}
                                                             if(!pushed.first) break;
pair<T, T> dijkstra(const T MAX_FLOW){
                                                             flow += pushed.first;
    vector<T> d(V, INF);
                                                             cost += pushed.second;
    vi P(V, -1), P_e(V, -1);
    priority_queue<pos> q;
                                                         return {flow, cost};
    q.push({s, 0});
                                                     }
                                                 };
    d[s] = 0;
    while(q.size()){
        pos act = q.top(); q.pop();
                                                         SCC
                                                 12.4.
        if(act.c != d[act.from]) continue;
        for(int j=0; j<adj[act.from].size();</pre>
                                                 12.4.1. Kosajaru
        → ++j){
            edge &e = adj[act.from][j];
                                                    Complejidad: Tiempo O(n).
            if(e.cap - e.flow <= 0) continue;</pre>
            T_w = e.w+p[act.from] - p[e.to];
                                                 void dfs(int node, vi graph[], bool vis[], vi
            if(d[e.to] <= d[act.from] + _w)</pre>
                                                 continue;
                                                     if(vis[node]) return;
            d[e.to] = d[act.from] + w;
                                                     vis[node] = true;
            q.push(pos{e.to, d[e.to]});
                                                     for(int v : graph[node])
            P[e.to] = act.from;
                                                         dfs(v, graph, vis, topo_ord);
            P_e[e.to] = j;
                                                     topo_ord.push_back(node);
        }
                                                 }
                                                 void assign_scc(int node, vi inv_graph[], bool
    for(int i = 0; i < V; ++i) if(d[i] < INF)</pre>

    vis[], vi &scc, const int id){
        d[i] += -p[s] + p[i];
                                                     if(vis[node]) return;
    for(int i = 0; i < V; ++i) if(d[i] < INF)</pre>
                                                     vis[node] = true;
        p[i] = d[i];
                                                     scc[node] = id;
    if(P[t] == -1) return {0, 0};
                                                     for(int v : inv_graph[node])
    T flow = MAX_FLOW;
                                                         assign_scc(v, inv_graph, vis, scc, id);
    int cur_node = t;
    while(cur_node != s){
                                                 pair<int, vi> kosajaru(int n, vi graph[], vi
        flow = min(flow, adj[ P[cur_node] ][
                                                 → inv_graph[]){
        → P_e[cur_node] ].cap - adj[
                                                     bool vis[n] = {};
        → P[cur_node] ][ P_e[cur_node]
                                                     vi topo_ord;
        → ].flow);
                                                     for(int i = 0; i < n; ++i)
        cur_node = P[cur_node];
                                                         dfs(i, graph, vis, topo_ord);
                                                     reverse(all(topo_ord));
    T new_cost = 0;
                                                     memset(vis, 0, sizeof(vis));
    cur_node = t;
                                                     vi scc(n);
    while(cur_node != s){
                                                     int id = 0;
        adj[ P[cur_node] ][ P_e[cur_node]
                                                     for(int u : topo ord) if(!vis[u])
        → ].flow += flow;
                                                         assign_scc(u, inv_graph, vis, scc, id++);
        new_cost += adj[ P[cur_node] ][
                                                     return {id, scc};
        → P_e[cur_node] ].w * flow;
        adj[cur_node] [adj[ P[cur_node] ][
                                                 pair<vvi, vvi> build_scc_graph(int n, vi graph[],
        → P_e[cur_node] ].rev ].flow -=
                                                    int n_scc, const vi &scc){
        \hookrightarrow flow;
                                                     vvi scc_graph, inv_scc_graph;
```

12.5. 2-Sat

Complejidad: Tiempo en responder O(n).

```
struct two sat{
    int n;
    vvi graph, inv_graph;
    vi scc, ans;
    vector<bool> vis;
    two_sat(){}
    two_sat(int _n){
        n = n;
        graph.resize(2 * n);
        inv_graph.resize(2 * n);
        scc.resize(2 * n);
        vis.resize(2 * n);
        ans.resize(n);
    void add_edge(int u, int v){
        graph[u].push_back(v);
        inv_graph[v].push_back(u);
    /// al menos una es verdadera
    void add_or(int p, bool val_p, int q, bool
    \rightarrow val_q){
        add_edge(p+(val_p? n:0), q+(val_q? 0:n));
        add_edge(q+(val_q? n:0), p+(val_p? 0:n));
    /// exactamente una es verdadera
    void add_xor(int p, bool val_p, int q, bool
    \rightarrow val_q){
        add_or(p, val_p, q, val_q);
        add_or(p, !val_p, q, !val_q);
    /// p y q tienen el mismo valor
    void add_and(int p, bool val_p, int q, bool
    \rightarrow val_q){
        add_xor(p, !val_p, q, val_q);
    }
    /// Kosajaru
    void dfs(int node, vi &topo_ord){...}
    void assign_scc(int node, const int id){...}
    /// construye respuesta
    bool build_ans(){
        fill(all(vis), false);
        vi topo_ord;
        for(int i=0; i<2*n; ++i)dfs(i, topo_ord);</pre>
```

```
fill(all(vis), false);
reverse(all(topo_ord));
int id = 0;
for(int u : topo_ord) if(!vis[u])
         assign_scc(u, id++);
for(int i = 0; i < n; ++i){
        if(scc[i] == scc[i + n]) return 0;
        ans[i] = (scc[i] < scc[i + n] ? 0:1);
} return 1;
}
</pre>
```

13. Treap

Complejidad: Tiempo O(log(n)) - Memoria O(n). Para treap implicito (arreglo dinamico) cambiar en insert/erase a $split_by_pos()$.

```
struct treap{
    typedef struct _node{
        11 x;
        int freq, cnt;
        11 p;
        _node *1, *r;
        _node(ll _x): x(_x), p(((ll)(rand()) <<
        cnt(1), freq(1), l(nullptr), r(nullptr){}
        ~_node(){delete 1; delete r;}
        void recalc(){
            cnt = freq;
            cnt += ((1) ? (1->cnt) : 0);
            cnt += ((r) ? (r->cnt) : 0);
        }
    }* node;
   node root;
    node merge(node 1, node r){
        if(!1 || !r) return 1 ? 1 : r;
        if(1->p < r->p){
            r->1 = merge(1, r->1);
            r->recalc();
            return r;
        } else {
            1->r = merge(1->r, r);
            1->recalc();
            return 1;
        }
    void split_by_value(node n, ll d, node &1,
    \rightarrow node &r){
        1 = r = nullptr;
        if(!n) return;
        if(n->x < d){
            split_by_value(n->r, d, n->r, r);
            1 = n;
        } else {
            split_by_value(n->1, d, 1, n->1);
        n->recalc();
```

```
}
void split_by_pos(node n, int pos, node &1,

→ Node &r, int l_nodes = 0){
    1 = r = NULL;
    if(!n) return;
    int cur_pos = (n->1) ? (1_nodes +
    \rightarrow n->1->cnt) : l_nodes;
    if(cur_pos < pos){</pre>
        splitFirstNodes(n->r, pos, n->r, r,

    cur_pos + 1);

        1 = n;
    } else {
        splitFirstNodes(n->1, pos, 1, n->1,
        → l_nodes);
        r = n;
    n->recalc();
treap(): root(NULL){}
void insert_value(ll x){
    node 1, m, r;
    split_by_value(root, x, 1, m);
    split_by_value(m, x + 1, m, r);
    if(m){
        m->freq++;
        m->cnt++;
    } else m = new _node(x);
    root = merge(merge(1, m), r);
}
void erase_value(ll x){
    node 1, m, r;
    split_by_value(root, x, 1, m);
    split_by_value(m, x + 1, m, r);
    if(!m || m->freq == 1){
        delete m;
        m = nullptr;
    } else {
        m->freq--;
        m->cnt--;
    root = merge(merge(1, m), r);
}
```

14. Strings

14.1. KMP

};

Complejidad: Tiempo O(|s|) - Memoria extra O(|s|).
vi prefix_function(const string &s){
 int n = s.size();
 vi pi(n);
 for(int i = 1; i < n; ++i){
 int j = pi[i - 1];
 while(j && s[i] != s[j]) j = pi[j - 1];
 pi[i] = j + (s[i] == s[j]);
 } return pi;
}</pre>

14.1.1. Autómata de KMP

Complejidad: Tiempo O(|s|k) - Memoria extra O(|s|k), donde k es el tamaño del alfabeto.

14.2. Suffix array

14.2.1. Construcción

Complejidad: Tiempo $O(|s|\log(|s|))$ - Memoria O(|s|). Calcula la permutación que corresponde a los sufijos ordenados lexicográficamente. SA[i] es el índice en el cual empieza el i-ésimo sufijo ordenado.

```
int SA[MAXN], mrank[MAXN];
int tmpSA[MAXN], tmp_mrank[MAXN];
void counting sort(int k, int n){
    int freqs[MAXN] = {};
    for(int i = 0; i < n; ++i){
        if(i + k < n) freqs[ mrank[i + k] ]++;</pre>
        else freqs[0]++;
    int m = max(100, n);
    for(int i = 0, sfs = 0; i < m; ++i){
        int f = freqs[i];
        freqs[i] = sfs;
        sfs += f;
    }
    for(int i = 0; i < n; ++i){
        if(SA[i] + k < n) tmpSA[ freqs[mrank[</pre>
         \hookrightarrow SA[i] + k]]++] = SA[i];
        else tmpSA[ freqs[0]++ ] = SA[i];
    for(int i = 0; i < n; ++i) SA[i] = tmpSA[i];</pre>
}
void buildSA(string &str){
    int n = str.size();
    for(int i = 0; i < n; ++i){
        mrank[i] = str[i] - '#';
        SA[i] = i;
    }
    for(int k = 1; k < n; k <<= 1){
        counting_sort(k, n);
        counting_sort(0, n);
        int r = 0;
        tmp_mrank[SA[0]] = 0;
```

```
for(int i = 1; i < n; ++i){
            if(mrank[ SA[i] ] != mrank[ SA[i - 1]
            → ] || mrank[ SA[i] + k ] != mrank[
            \rightarrow SA[i - 1] + k])
                tmp_mrank[ SA[i] ] = ++r;
            else tmp_mrank[ SA[i] ] = r;
        }
        for(int i = 0; i < n; ++i) mrank[i] =</pre>

    tmp_mrank[i];

    }
}
inline bool suff_compare1(int idx,const string
return (s.substr(idx).compare(0,
    → pattern.size(), pattern) < 0);</pre>
inline bool suff_compare2(const string
   &pattern, int idx) {
    return (s.substr(idx).compare(0,
    → pattern.size(), pattern) > 0);
pair<int,int> match(const string &pattern) {
    int *low = lower_bound (SA, SA + s.size(),

→ pattern, suff_compare1);
    int *up = upper_bound (SA, SA + s.size(),

→ pattern, suff_compare2);
    return make_pair((int)(low - SA),(int)(up -

    SA));
}
```

14.2.2. Prefijo común más largo

Complejidad: Tiempo O(|s|) - Memoria O(|s|). Calcula la longitud del prefijo común más largo entre dos sufijos consecutivos (lexicográficamente) de s. lcp[i] guarda la respuesta para el i-ésimo sufijo y el (i-1)-ésimo sufijo.

```
int lcp[MAXN];
void build_lcp(string &str){
    int n = str.size();
    int phi[n];
    phi[SA[0]] = -1;
    for(int i = 1; i < n; ++i) phi[ SA[i] ] =</pre>
    \hookrightarrow SA[i - 1];
    int plcp[n];
    int k = 0;
    for(int i = 0; i < n; ++i){</pre>
         if(phi[i] == -1){
             plcp[i] = 0;
             continue;
         while(i + k < n \&\& phi[i] + k < n \&\&
         \rightarrow str[i + k] == str[phi[i] + k]) k++;
         plcp[i] = k;
         k = \max(k - 1, 0);
    for(int i = 0; i < n; ++i) lcp[i] =
     → plcp[SA[i]];
}
```

14.3. Aho-Corasick

Construción en O(mk), donde m es el tamaño total de los strings y k el tamaño del alfabeto.

```
struct aho_corasick{
     const static int K = 26;
     const char index = 'a';
     struct vertex{
         int next[K];
         bool terminal = false;
         int p = -1;
         char p_edge;
         int link = -1;
         int terminal_link = -1;
         int go[K];
         vertex(int p = -1, char c = '\$') : p(p),
         → p_edge(c){
             memset(next, -1, K*sizeof(int));
             memset(go, -1, K*sizeof(int));
     };
     vector<vertex> aho;
     aho_corasick(){ aho.resize(1); }
     void add_string(const string &s){
         int u = 0;
         for(char c : s){
             int e = c - index;
             if(aho[u].next[e] == -1){
                 aho[u].next[e] = aho.size();
                 aho.emplace_back(u, c);
             u = aho[u].next[e];
         } aho[u].terminal = 1;
     int get_link(int u){
         if(aho[u].link == -1){
             if(!u || !aho[u].p) aho[u].link = 0;
             else aho[u].link =

    go(get_link(aho[u].p),

             → aho[u].p_edge);
         } return aho[u].link;
     }
     int go(int u, char c){
         int e = c - index;
         if(aho[u].go[e] == -1){
             if(aho[u].next[e] != -1)
                 aho[u].go[e] = aho[u].next[e];
             else aho[u].go[e] = !u ? 0 :

    go(get_link(u), c);

         } return aho[u].go[e];
     }
     int get_terminal_link(int u){
         if(aho[u].terminal_link == -1){
             if(!u || !aho[u].p)
                 aho[u].terminal_link = 0;
             else aho[u].terminal_link =

    get_terminal_link(get_link(u));

         } return aho[u].terminal_link;
     }
|};
```

14.4. Suffix tree

COPIADO Y PEGADO POR

```
/// MEJORAR ESTA COSA, SOLO LO COPIE Y
→ PEGUÉ porcuestionesdetiempo
const int inf = 1e9;
const int maxn = 1e6;
int s[maxn];
map<int, int> to[maxn];
//Root is the vertex 0
//f_pos[i] is the initial index with the letter
\rightarrow of the edge that goes from the parent of i to
//len[i] is the number of letters in the edge
\hookrightarrow that enters in i
//slink[i] is the suffix link
int len[maxn], f_pos[maxn], slink[maxn];
int node, pos;
int sz = 1, n = 0;
int make_node(int _pos, int _len){
    f_pos[sz] = pos;
    len [sz] = _len;
    return sz++;
}
void go_edge(){
    while(pos > len[to[node][s[n - pos]]]){
        node = to[node][s[n - pos]];
        pos -= len[node];
}
void add_letter(int c){
    s[n++] = c;
    pos++;
    int last = 0;
    while(pos > 0){
        go_edge();
        int edge = s[n - pos];
        int &v = to[node][edge];
        int t = s[f_pos[v] + pos - 1];
        if(v == 0){
            v = make_node(n - pos, inf);
            //v = make_node(n - pos, 1);
            slink[last] = node;
            last = 0;
        } else if(t == c) {
            slink[last] = node;
            return;
        } else {
            int u = make_node(f_pos[v], pos - 1);
            to[u][c] = make_node(n - 1, inf);
            to[u][t] = v;
            f_pos[v] += pos - 1;
            len [v] -= pos - 1;
            v = u;
            slink[last] = u;
            last = u;
        }
```

```
if(node == 0) pos--;
        else node = slink[node];
    }
}
void correct(int s size){
    len[0] = 0;
    for (int i = 1; i < sz; i++){
        if (f_pos[i] + len[i] - 1 >= s_size){
            len[i] = (s\_size - f\_pos[i]);
    }
void print_suffix_tree(int from){
    cout << "Edge entering in " << from << " has</pre>

    size " << len[from];
</pre>
    cout << " and starts in " << f_pos[from] <<</pre>
    → endl;
    cout << "Node " << from << " goes to: ";</pre>
    for (auto u : to[from]){
        cout << u.second << " with " <<
        cout << endl;</pre>
    for (auto u : to[from]){
        print_suffix_tree(u.second);
}
void build(string &s){
    for (int i = 0; i < sz; i++){
        to[i].clear();
    }
    sz = 1;
    node = pos = n = 0;
    len[0] = inf;
    for(int i = 0; i < s.size(); i++)</pre>
        add_letter(s[i]);
    correct(s.size());
}
void cutGeneralized(vi &finishPoints){
    for (int i = 0; i < sz; i++){
        int init = f_pos[i];
        int end = f_pos[i] + len[i] - 1;
         → lower_bound(finishPoints.begin(),

    finishPoints.end(), init) -

    finishPoints.begin();

        if ((idx != finishPoints.size()) &&
         \hookrightarrow (finishPoints[idx] <= end)){//Must be
            len[i] = (finishPoints[idx] -
            \rightarrow f_pos[i] + 1);
            to[i].clear();
        }
    }
}
```

```
void build_generalized(vector<string> &ss){
    for (int i = 0; i < sz; i++){
        to[i].clear();
    }
    sz = 1;
    node = pos = n = 0;
    len[0] = inf;
    int sep = 256;
    vi finishPoints;
    int next = 0;
    for (int i = 0; i < ss.size(); i++){</pre>
        for (int j = 0; j < ss[i].size(); j++){</pre>
            add_letter(ss[i][j]);
        next += ss[i].size();
        finishPoints.push_back(next);
        add_letter(sep++);
        next++;
    }
    correct(next);
    cutGeneralized(finishPoints);
}
```

15. Geometría

15.1. Convex hull

Complejidad: $O(n \log n)$. AGREGAR PEQUEÑA DESCRIPCIÓN.

```
/// MEJORAR ESTA COSA, SOLO LO COPIE Y
→ PEGUÉ porcuestionesdetiempo
struct pt {
    double x, y;
};
int orientation(pt a, pt b, pt c) {
    double v = a.x*(b.y-c.y)+b.x*(c.y-a.y) +
    \rightarrow c.x*(a.y-b.y);
    if(v < 0) return -1; // clockwise
    if(v > 0) return +1; // counter-clockwise
    return 0;
}
bool cw(pt a, pt b, pt c, bool
→ include_collinear){
    int o = orientation(a, b, c);
    return o < 0 || (include_collinear && !o);
bool collinear(pt a, pt b, pt c){
    return orientation(a, b, c) == 0; }
void convex_hull(vector<pt>& a, bool

    include_collinear = 0){
    pt p0 = *min_element(all(a), [](pt a, pt b){
        return make_pair(a.y, a.x) <
           make_pair(b.y, b.x);
    });
    sort(all(a), [&p0](const pt& a, const pt& b){
        int o = orientation(p0, a, b);
        if(o == 0)
```

```
return (p0.x-a.x)*(p0.x-a.x) +
        (p0.y-a.y)*(p0.y-a.y)
             < (p0.x-b.x)*(p0.x-b.x) +
             \rightarrow (p0.y-b.y)*(p0.y-b.y);
    return o < 0;
});
if(include_collinear){
    int i = (int)a.size()-1;
    while(i >= 0 && collinear(p0, a[i],
    \rightarrow a.back())) i--;
    reverse(a.begin()+i+1, a.end());
}
vector<pt> st;
for(int i = 0; i < a.size(); i++){</pre>
    while(st.size()>1 && !cw(st[st.size()-2],

    st.back(), a[i], include_collinear))
         st.pop back();
    st.pb(a[i]);
}
a = st;
```

16. Utilidades

16.1. Plantilla tree

16.2. Números aleatorios

16.3. Subset sum optimization.

Complejidad: $O(N\sqrt{N})$. Si queremos obtener calcular el conjunto de sumas posibles en subconjuntos de un arreglo A, en el cual se cumple que $\sum a_i = N$ y todo $a_i \geq 0$, podemos obtener exactamente el mismo conjunto con un arreglo comprimido de tamaño \sqrt{N} generado por la siguiente función:

```
vi compress(vector<ll>& a){
    sort(a.rbegin(), a.rend());
    int n = a.size();
    a.pb(0);
    vi weights;
    int pi = 0;
    for(int i = 1; i <= n; i++){
        if(a[i] != a[i - 1]){
            ll cnt = i - pi;
            ll x = a[i - 1];
        }
}</pre>
```

```
11 j = 1;
    while(j < cnt){
        weights.pb(x * j);
        cnt -= j;
        j *= 2;
    }
    weights.pb(x * cnt);
    pi = i;
    }
} return weights;
}</pre>
```

El 3k-trick explota que las sumas generadas por el arreglo [a,a,a] son exactamente las mismas que en [2a,a]. Podemos juntar elementos y repetirlo hasta que a solo haya dos copias de cada elemento distinto en el nuevo arreglo, acotando el numero de elementos a $O(\sqrt{N})$. El proceso de compresión toma $O(N\log_2(N))$.

16.4. Bitsets de tamaño (casi) dinámico

El código ejecutado dentro de func(sz) usará un bitset con tamaño de la potencia de 2 más cercano a sz.

```
template<int len = 1> void func(int sz){
   if(sz > len){
     func<std::min(len * 2, MAXLEN)>(sz);
     return;
   }
  bitset<len> bs;
   //usa aquí tu bitset dinámico
}
```

17. Bitmask

```
#define is_on(S, j) (S & (111 << (j)))
\#define\ set\_bit(S,\ j)\ (S\mid=\ (1ll\ <<\ (j)))
#define clear_bit(S, j) (S &= ~(1ll << (j)))
#define toggle_bit(S, j) (S \hat{}= (1ll << (j)))
#define lsb(S) ((S) & -(S))
#define clear_lsb(S) (S &= (S - 1))
\#define\ set\_all(S,\ n)\ (S=(1ll\ <<(n))\ -\ 1ll)
#define clear\_trailing\_ones(S) (S &= (S + 1))
\#define\ set\_last\_bit\_off(S)\ (S \mid = (S + 1))
#define is_power_of_two(S) (!((S) & ((S) - 1)))
#define nearest_power_of_two(S) ((int)pow(2,
\rightarrow (int)((log((double)(S)) / log(2)) + 0.5)) )
#define is_divisible_by_power_of_two(n, k) !((n)
→ & ((1ll << (k)) - 1))
#define modulo(S, N) ((S) \& ((N) - 1)) // S % N,
\rightarrow N potencia de 2
```

17.1. Útiles

Hay algunas funciones de gcc que nos pueden ayudar para hacer más eficiente nuestro código y evitar algunos bucles:

```
// number of leading O-bits in x, starting at the

→ most significant bit position. If x is O is

→ undefined
int __builtin_clz(unsigned int x)
// number of trailing O-bits in x, starting at

→ the least significant bit position. If x is O

→ undefined.
int __builtin_ctz(unsigned int x)
// he parity of x, i.e. the number of 1-bits in x

→ modulo 2.
int __builtin_parity(unsigned int x)
```

17.2. Iterar

Dada una máscara m, iterar sobre todos sus subconjuntos

```
for(int x=m; x;){
    --x &= m;
    //...
}
```

El código anterior itera las máscaras válidas desde la más grande hasta la más pequeña (ojo el código no itera sobre x = m) La complejidad de iterar sobre todas las submáscaras de todos los números de 1 a 2^n es $O(3^n)$.

17.3. Gospers' Hack

Sirve para generar todos las máscaras de n bits, que tengan exactamente k bits a 1 (y que sean menores o iguales que 2^n).

Complejidad $O\left(\binom{n}{k}\right)$?

```
void GospersHack(int k, int n) {
  int set = (1 << k) - 1;
  int limit = (1 << n);
  while (set < limit) {
    DoStuff(set);
    // Gosper's hack:
    int c = set & - set;
    int r = set + c;
    set = (((r ^ set) >> 2) / c) | r;
  }
}
```

DoStuff() is meant to be replaced with a function that processes each different value that set takes.

17.4. Subset Sum con bitset

Dado una una arreglo de tamaño n ver si es psoible encontrar es la suma objetivo S. Nota: w es el tamaño del bloque de bits procesados en paralelo (normalmente 32 o 64). Complejidad: Temporal $O\left(n \times \frac{S}{w}\right)$ - Memoria O(S)

```
bool subsetSumBitset( vi& arr, int S) {
   bitset<10001> dp; // tam >= S+1
   dp[0] = 1;
   for(int x : arr) dp |= (dp << x);
   return dp[S];
}</pre>
```

18. Máximo de funciones

18.1. Li-Chao Tree

Dado un conjunto A con M valores a evaluar, y N funciones (tales que cada una de ellas se intersecta con el resto a lo más una vez), te devuelve $\max_{i \in [N]} \left(f_i(a) \right)$ para cualquier

 $a \in A.$ Complejidad: Responder y agregar O(log M) .

```
struct Function {
    11 m;
    11 b;
    11 eval(11 x){
        if (m == LLONG_MIN) return LLONG_MIN;
        return m*x+b;
    }
    Function(){ m = LLONG_MIN;}
    Function(ll m_, ll b_): m(m_), b(b_){ }
};
struct LiChaoTree {
    vector<ll> values;
    11 maxV;
    Function *functions;
    LiChaoTree(vector<ll> &values_){
        values = values_;
        sort(all(values));
        functions =new Function[values.size()*4];
        maxV = values.size();
    //Range from l to r - 1
    ll get(ll x){
        return get(x, 1, 0, maxV);
    ll get(ll x, int v, int l, int r){
```

```
int m = (1 + r) / 2;
    11 mv = values[m];
    if(r - 1 == 1){
        return functions[v].eval(x);
    } else if(x < mv){
        return max(functions[v].eval(x),
         \rightarrow get(x, 2 * v, 1, m));
    } else {
        return max(functions[v].eval(x),
         \rightarrow get(x, 2 * v + 1, m, r));
}
void addFunction(Function f){
    addFunction(f, 1, 0, maxV);
void addFunction(Function f, int v, int 1,
\rightarrow int r){
    int m = (1 + r) / 2;
    11 mv = values[m];
    ll lv = values[1];
    bool lef = f.eval(lv) >

    functions[v].eval(lv);

    bool mid = f.eval(mv) >

    functions[v].eval(mv);

    if(mid)//Si el actual pierde en el medio
        swap(functions[v], f);
    if(r - 1 == 1) return;
    else if(lef != mid)//El cruce esta en izq
        addFunction(f, 2 * v, 1, m);
    else addFunction(f, 2 * v + 1, m, r);
~LiChaoTree(){ delete[] functions; }
```

};