### Metodi statistici per la Neuropsicologia Forense A.A. 2023/2024

APPENDICE - concetti base di statistica

#### Giorgio Arcara

IRCCS San Camillo, Venezia Università degli Studi di Padova







- Nominale
- Ordinale
- Intervallo
- Rapporti

Nominale

Es. neuropsicologico. Patologia del paziente: Parkinson vs Alzheimer

Ordinale

Es. Neuropsicologico. Scolarità dei partecipanti espressa come titolo di stutio(scuola elementare, superiore, Università). Esiste un ordinalità ma non possiamo effettuare operazioni aritmetiche sui valori della scala.

#### Intervalli

Es. classico Temperatura in Celsius.

Possiamo effettuare operazioni come sottrazione e addizione (es. 45° sono 15° in più di 30°. 25° sono 15° in più di 10°). Non può essere usata moltiplicazione: es. non ha senso senso dire che 30° sono il doppio di 15°.

In queste scale lo 0 è arbitrario.

(es. Neuropsicologico: QI di una persona oppure la scolarità espressa in anni.)

# Rapporti

Es. Temperatura in kelvin. Esiste uno 0 assoluto. In questo caso ha senso dire che 20 gradi Kelvin sono il doppio di 10 gradi Kelvin.

(Esempio neuropsicologico: Frequenza di un certo comportamento. Potrebbe essere 0)

### **Notazione**

In generale nelle formule statistiche lettere latine indicano parametri (es. Media, deviazione standard) relativi al campione, mentre lettere greche indicano parametri della popolazione

- *s* = varianza del campione
- $\sigma$  = (sigma) varianza della popolazione

# **Campione vs Popolazione**

**Popolazione:** l'insieme di entità su cui si vogliono effettuare delle inferenze.

Campione: un subset di una popolazione.

Esempi:

Popolazione: gli studenti dell'Università di Padova

Campione: 50 studenti selezionati a random.

Popolazione: tutti gli abitanti dell'Italia

Campione: il campione miei dei dati normativi per la taratura del test

**Popolazione:** l'insieme di entità su cui si vogliono effettuare delle inferenze.

**Campione:** un subset di una popolazione.

Esempio:

Popolazione: gli studenti dell'Università di Padova

**Campione:** 50 studenti selezionati a random.

Popolazione: tutti gli abitanti dell'Italia

Campione: il mio campione dei dati normativi per la taratura del test



l'interesse non è virtualmente nel campione, ma nella popolazione da cui è estratto.

Tra le distribuzioni di dati una delle più comuni è la distribuzione normale (o gaussiana)



È una distribuzione di probabilità definita (da un punto di vista matematico) da questa formula.

$$f(x)=rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}(rac{x-\mu}{\sigma})^2}$$

$$f(x)$$
 = probability density function

$$\sigma$$
 = standard deviation

$$\mu$$
 = mean

f(x), oltre ai valori di x dipende da due soli altri parametri:  $\mu$  = media, e  $\sigma$  = deviazione standard (e e  $\pi$ , le altre sono costanti).

https://en.wikipedia.org/wiki/Normal\_distribution

È una distribuzione rilevante perché molto presente in vari fenomeni naturali.

In psicometria (e quindi in neuropsicologia) è rilevante invari ambiti, ma soprattuto quando si parla di errore di misurazione

L'errore di misurazione è spesso assunto avere distribuzione normale con media pari a 0 e varianza  $\sigma^2$  (sigma<sup>2</sup>)

$$E = N(0, \sigma^2)$$

In R per simulare n valori da una distribuzione normale con media m e deviazione standard $^*$  s

$$rnorm(n, mean=m, sd = s)$$

Esempio con 100 valori a media zero e deviazione standard 2

$$rnorm(100, mean=0, sd = 2)$$

<sup>\*</sup> NOTA: deviazione standard (s) è uguale a radice quadrata varianza  $s = \sqrt{s^2}$