Feuille d'exercices 20. Polynômes

Exercice 20.1 : (niveau 1)

Soit $n \in \mathbb{N}$, $n \geq 2$. Grâce au polynôme $(X+1)^n - 1$, calculer $\prod_{k=1}^{n-1} \sin \frac{k\pi}{n}$.

Exercice 20.2 : (niveau 1)

On pose $A(X) = X^7 - X - 1$ et $B(X) = X^5 + 1$. Démontrer que A et B sont premiers entre eux et trouver l'ensemble des couples $(U, V) \in \mathbb{K}[X]^2$ tels que AU + BV = 1.

Exercice 20.3 : (niveau 1)

Soit $n \in \mathbb{N}$ et $P \in \mathbb{C}[X]$ un polynôme de degré n. On suppose qu'il existe n+1 rationnels distincts x_0, \ldots, x_n tels que, pour tout $k \in \{0, \ldots, n\}, P(x_k) \in \mathbb{Q}$. Montrer que $P \in \mathbb{Q}[X]$.

Exercice 20.4 : (niveau 1)

Quels sont les polynômes de $\mathbb{C}[X]$ tels que $(X^2+1)P''-6P=0$?

Exercice 20.5 : (niveau 1)

Soit $n \in \mathbb{N}^*$.

1°) Pour tout $\varphi \in \mathbb{R}$, factoriser dans $\mathbb{R}[X]$ le polynôme $P_n = X^{2n} - 2X^n \cos \varphi + 1$ en produit de polynômes irréductibles.

2°) Factoriser $Q_n = X^{4n} + 1$ en produit de polynômes irréductibles.de $\mathbb{R}[X]$.

Exercice 20.6: (niveau 1)

Résoudre dans \mathbb{C}^3 le système $\begin{cases} x+y+z &= 1\\ \frac{1}{x}+\frac{1}{y}+\frac{1}{z} &= 1\\ x^2+y^2+z^2 &= -1 \end{cases}.$

Exercice 20.7 : (niveau 1)

Soit $n \in \mathbb{N}^*$. Calculer le reste de la division euclidienne de $P = X^{2n} + X^n + X + 1$ par $Q = (X - 1)^2$.

Exercice 20.8 : (niveau 1)

Soit $n \in \mathbb{N}^*$. Montrer que $(X^2 + X + 1)^2$ divise $(X + 1)^{6n+1} - X^{6n+1} - 1$ dans $\mathbb{R}[X]$.

Exercice 20.9: (niveau 1)

Soit P un polynôme à coefficients réels.

- $\mathbf{1}^{\circ}$) Si P est scindé dans $\mathbb{R}[X]$, montrer que P' est aussi scindé.
- **2°)** Lorsque P est scindé dans $\mathbb{R}[X]$, déterminer le plus petit entier k tel que toutes les racines de $P^{(k)}$ soient simples.

Exercice 20.10: (niveau 2)

On pose $P(X) = X^3 - X - 1$. Montrer que P est irréductible sur $\mathbb{Q}[X]$ et montrer qu'il admet une unique racine réelle.

Exercice 20.11 : (niveau 2)

Soit $A, B \in \mathbb{K}[X]$ et $p \in \mathbb{N}^*$.

Montrer que B divise A si et seulement si $B(X^p)$ divise $A(X^p)$.

Exercice 20.12 : (niveau 2)

Soit $P \in \mathbb{R}[X]$ un polynôme de degré n supérieur ou égal à 2.

Montrer que le graphe de P ne peut contenir n+1 points distincts alignés.

Exercice 20.13: (niveau 2)

Déterminer les couples $(P,Q) \in \mathbb{C}[X]^2$ tels que, pour tout $\theta \in \mathbb{R}$, $P(\cos \theta) = Q(\sin \theta)$.

Exercice 20.14: (niveau 2)

Déterminer les polynômes complexes dont l'application polynomiale associée est surjective puis ceux dont l'application polynomiale associée est injective.

Exercice 20.15 : (niveau 2)

Soient K un sous-corps de \mathbb{C} , $a \in K^*$ et $(n, p) \in \mathbb{N} \times \mathbb{N}^*$.

- 1°) Montrez que le reste de la division euclidienne de $X^n a^n$ par $X^p a^p$ est $a^{pq}(X^r a^r)$, où q et r sont les quotient et reste de la division euclidienne de n par p. Indication: Dans $X^n a^n$, on pourra remplacer X^p par $(X^p a^p) + a^p$ et appliquer la formule du binôme de Newton.
- 2°) Calculez le PGCD de $X^n a^n$ et $X^p a^p$ en fonction du PGCD de n et de p.

Exercice 20.16: (niveau 2)

Soit P un polynôme à coefficients réels de degré inférieur ou égal à n tel que, pour tout $x \in \mathbb{R}, P(x) \geq 0$.

1°) Montrer que, pour tout
$$x \in \mathbb{R}$$
, $P(x) + P'(x) + \frac{P''(x)}{2!} + \dots + \frac{P^{(n)}(x)}{n!} \ge 0$.

2°) Posons
$$R(x) = P(x) + P'(x) + P''(x) + \dots + P^{(n)}(x)$$
.

On se propose de montrer que, pour tout $x \in \mathbb{R}$, R(x) > 0.

- a) Exprimer P en fonction de R.
- b) Conclure en utilisant l'application $t \mapsto e^{-t}R(t)$.

Exercice 20.17 : (niveau 2)

Pour $n\geq 1$ on note P_n l'ensemble des racines primitives n-ièmes de l'unité : $P_n=\{e^{2i\frac{k\pi}{n}}\ /\ k\wedge n=1\}.$

On pose
$$C_1 = X - 1$$
 et $\forall n \ge 2$, $C_n = \prod_{a \in P_n} (X - a)$.

- 1°) Calculer C_2, C_3, C_4, C_6 .
- **2°)** Prouver que, pour tout $n, X^n 1 = \prod_{d \mid n} C_d$.
- $\mathbf{3}^{\circ}$) Soit A,B deux polynômes à coefficients entiers avec B unitaire. Montrer que le quotient et le reste de la division de A par B sont aussi à coefficients entiers.
- 4°) En déduire que, pour tout n, C_n est à coefficients entiers.

Exercice 20.18: (niveau 2)

Trouver les polynômes de $\mathbb{R}[X]$ tels que

$$\forall (x,y) \in \mathbb{R}^2$$
 $P(xy) = P(x)P(y)$.

Exercice 20.19: (niveau 2)

Soit $n \in \mathbb{N}^*$.

- 1°) Exprimer de deux manières le polynôme $L \in \mathbb{R}_{n-1}[X]$ vérifiant $\forall k \in \{1, \ldots, n\}, L(k) = k^{n-1}$.
- 2°) En déduire une expression simplifiée de $\sum_{k=0}^{n} \binom{n+1}{k} (-1)^{n-k} k^n$.

Exercice 20.20: (niveau 2)

Soit P un polynôme dont les coefficients sont des nombres rationnels. Soit a et b deux rationnels avec b > 0 et \sqrt{b} irrationnel.

Montrer que si $P(a + \sqrt{b}) = 0$, alors $P(a - \sqrt{b}) = 0$.

Exercice 20.21 : (niveau 2)

Dans $\mathbb{R}[X]$, chercher le polynôme de degré minimal P vérifiant : $(X-1)^4|(P+1)$ et $(X+1)^4|(P-1)$.

Exercice 20.22 : (niveau 2)

Déterminer tous les polynômes $P \in \mathbb{C}[X]$ tels que P(0) = 0 et $P(X^2 + 1) = P(X)^2 + 1$.

Exercice 20.23: (niveau 2)

Cet exercice utilise le théorème de Lagrange.

Soit K un corps commutatif fini noté $\{0, a_1, ..., a_{q-1}\}$.

- 1°) Montrez que $X^{q-1} 1 = \prod_{i=1}^{q-1} (X a_i)$.
- 2°) En déduire que pour tout nombre premier p, p divise (p-1)! + 1.

Ce résultat porte le nom de théorème de Wilson.

Exercice 20.24: (niveau 2)

1°) Trouver tous les polynômes $P \in \mathbb{R}[X]$ tels que

$$\forall k \in \mathbb{Z} \quad \int_{k}^{k+1} P(t) \, dt = k.$$

 2°) Trouver tous les polynômes $P \in \mathbb{R}[X]$ tels que

$$\forall k \in \mathbb{N}^* \quad \int_k^{k+1} P(t) \, dt = \frac{1}{k}.$$

Exercice 20.25 : (niveau 2)

Si p et q sont deux entiers non nuls premiers entre eux, montrer que $(X-1)(X^{pq}-1)$ est divisible dans $\mathbb{R}[X]$ par $(X^p-1)(X^q-1)$.

Exercice 20.26: (niveau 2)

- 1°) Si $P,Q \in \mathbb{Q}[X]$ sont deux polynômes irréductibles unitaires distincts de $\mathbb{Q}[X]$, montrer qu'ils n'ont aucune racine complexe commune.
- **2°)** Si P est un polynôme irréductible de $\mathbb{Q}[X]$, montrer que P n'a pas de racine complexe multiple.

Exercice 20.27: (niveau 3)

Pour tout $t \in \mathbb{R}$, on pose $ch(t) = \frac{e^t + e^{-t}}{2}$. Pour tout $n \in \mathbb{N}$, montrer l'existence et l'unicité d'un polynôme $P_n \in \mathbb{R}[X]$ tel que, pour tout $t \in \mathbb{R}$, $ch(nt) = P_n(ch(t))$. Déterminer les racines de P_n .

Exercice 20.28: (niveau 3)

Notons $\mathcal{A} = \{ P \in \mathbb{R}[X] / \forall x \ge 0 \ P(x) \ge 0 \}$ et $\mathcal{B} = \{ A^2 + XB^2 / (A, B) \in \mathbb{R}[X]^2 \}.$

- 1°) Montrer que $\mathcal{B} \subset \mathcal{A}$.
- **2°**) Montrer que si $P, Q \in \mathcal{B}$, alors $PQ \in \mathcal{B}$.
- **3°)** Donner une condition nécessaire et suffisante pour que $P \in \mathcal{A}$, portant sur la décomposition de P en facteurs irréductibles dans $\mathbb{R}[X]$.
- 4°) Montrer que A = B.

Exercice 20.29: (niveau 3)

Déterminer l'ensemble des polynômes P de $\mathbb{C}[X]$ tels que $P(X^2) = P(X)P(X-1)$.

Exercice 20.30 : (niveau 3)

Soient m et n deux entiers strictement positifs.

1°) Montrez qu'il existe au moins un couple (U, V) de polynômes de $\mathbb{R}[X]$ tel que $(1): X^mU(X) + (1-X)^nV(X) = 1.$

- 2°) Calculez un couple (U, V) solution de (1) et vérifiant de plus, deq(U) < n et deg(V) < m.
- 3°) Pour le couple (U, V) déterminé lors de la question précédente, montrez qu'il existe deux réels α et β tels que

$$(1-X)V'(X) - nV(X) = \alpha X^{m-1}$$
 et $XU'(X) + mU(X) = \beta(1-X)^{n-1}$.

Exercice 20.31 : (niveau 3)

Déterminer les polynômes P de $\mathbb{C}[X]$ tels que $P(\mathbb{U}) \subset \mathbb{U}$.

Exercice 20.32 : (niveau 3)

Soit A un anneau. Montrer que A est un corps si et seulement si A[X] est principal.

Exercices supplémentaires :

Exercice 20.33 : (niveau 1)

Trouver les polynômes $P \in \mathbb{C}[X]$ tels que $P(X^2) = (X^2 + 1)P(X)$.

Exercice 20.34: (niveau 1)

Soit $n \in \mathbb{N}^*$.

- 1) Résoudre dans $\mathbb{C}: (1+x)^{2n} = (1-x)^{2n}$.
- 2) Calculer le produit des racines non nulles.

Exercice 20.35 : (niveau 1)

Rechercher un polynôme dont les racines a, b, c dans \mathbb{C} vérifient

$$a + b + c = 1$$
, $abc = 1$, $|a| = |b| = |c| = 1$.

Exercice 20.36: (niveau 1)

Calculez le pgcd de P et Q pour :

a)
$$P = X^4 + X^3 - 3X^2 - 4X - 1$$
 et $Q = X^3 + X^2 - X - 1$.

a)
$$P = X^4 + X^3 - 3X^2 - 4X - 1$$
 et $Q = X^3 + X^2 - X - 1$.
b) $P = X^6 + X^5 - X^4 - 2X^3 - X^2 + X + 1$ et $Q = X^5 + X^3 - X^2 - 1$.

c)
$$P = X^4 - 10X^2 + 1$$
 et $Q = X^4 - 4\sqrt{2}X^3 + 6X^2 - 4\sqrt{2}X + 1$.

Exercice 20.37 : (niveau 1)

Soient z_1, \ldots, z_n les racines de l'équation $z^n - 1 = 0$ dans \mathbb{C} .

Pour $(a, b) \in \mathbb{R}^2$, calculez $\prod_{k=1}^n (a + bz_k)$ en fonction de a, b et de n.

Pour $\theta \in \mathbb{R}$, calculez $\prod_{k=1}^{n} (z_k^2 - 2z_k \cos \theta + 1)$ en fonction de n et de θ .

Exercice 20.38 : (niveau 2)

Soit \mathbb{K} un corps dans lequel $2.1_{\mathbb{K}} \neq 0$.

1°) Soit $A \in \mathbb{K}[X]$ tel que A(-X) = A(X).

Montrer que tous les monômes de A sont de degré pair.

 2°) Soit $P \in \mathbb{K}[X]$.

Montrer qu'il existe un unique $\widehat{P} \in \mathbb{K}[X]$ tel que $\widehat{P}(X^2) = P(X)P(-X)$.

Déterminer le degré de \hat{P} en fonction de celui de P.

3°) Montrer que, pour tout $P, Q \in \mathbb{K}[X]$, $\widehat{PQ} = \widehat{PQ}$.

Exercice 20.39 : (niveau 2)

Soit K un corps fini et $f: K \longrightarrow K$ une application. Montrer que f est polynomiale.

Exercice 20.40 : (niveau 2)

Soient P un polynôme dont les coefficients sont des entiers relatifs et $n \in \mathbb{Z}$. On pose m = P(n).

- 1°) Montrez que pour tout élément $k \in \mathbb{Z}$, P(n+km) est divisible par m.
- **2°)** Montrez qu'il n'existe pas de polynôme non constant P à coefficients entiers tel que pour tout n dans \mathbb{Z} , P(n) est un nombre premier.

Exercice 20.41 : (niveau 2)

Soient n un entier strictement positif et $(\alpha, \beta) \in \mathbb{R}^2$ avec $\alpha \neq \beta$. Déterminez deux polynômes U et V dans $\mathbb{R}[X]$ de degré inférieur à 2n-1 tels que

$$(X - \alpha)^{2n}U(X) + (X - \beta)^{2n}V(X) = 1.$$

Exercice 20.42 : (niveau 2)

Soit P un polynôme à coefficients dans un corps \mathbb{K} . Montrer que P(X) = P(1 - X) si et seulement si il existe $Q \in \mathbb{K}[X]$ tel que $P = Q(X^2 - X)$.

Exercice 20.43 : (niveau 2)

Condition pour que $X^8 + X^4 + 1$ divise $X^{8n} + \alpha X^{4n} + \beta$ dans $\mathbb{C}[X]$.

Exercice 20.44: (niveau 2)

Soit $n \in \mathbb{N}^*$.

- $\mathbf{1}^{\circ}$) Quelles sont les racines du polynôme $P_n(X) = (X+i)^{2n+1} (X-i)^{2n+1}$?
- **2°)** En déduire la valeur de $u_n = \prod_{k=1}^n (4 + \cot^2(\frac{k\pi}{2n+1}))$.

Exercice 20.45 : (niveau 2)

Soit $n \in \mathbb{N}$ et $a, b \in \mathbb{Z}$. On pose $P_n = \frac{1}{n!} X^n (bX - a)^n$.

Montrer que pour tout $\ell \in \mathbb{N}$, $P_n^{(\ell)}(0) \in \mathbb{Z}$.

Exercice 20.46: (niveau 2)

Soit p un nombre premier et P un polynôme unitaire à coefficients dans \mathbb{Z} . On dit que $\overline{a} \in \mathbb{Z}/p\mathbb{Z}$ est racine de P modulo p si et seulement si $P(a) \equiv 0[p]$.

- 1°) Montrer que pour tout $S \in \mathbb{Z}[X]$, il existe un unique couple $(Q, R) \in \mathbb{Z}[X]^2$ tel que S = QP + R et $\deg(R) < \deg(P)$.
- **2°)** Montrer que si \overline{a} racine de P modulo p, alors il existe $Q \in \mathbb{Z}[X]$ tel que $P(X) \equiv (X-a)Q(X)[p]$ (i.e chaque coefficient de P(X) est congru modulo p avec le coefficient de même degré de (X-a)Q(X)). En déduire que P admet au plus $\deg(P)$ racines modulo p.

Exercice 20.47 : (niveau 2)

Soit $(a, b, c) \in \mathbb{C}^3$ tel que a + b + c = 0. En utilisant un polynôme, montrer que $a^6 + b^6 + c^6 = 3(abc)^2 - 2(ab + ac + bc)^3$.

Exercice 20.48: (niveau 2)

Soient n_0, n_1, \ldots, n_p des entiers naturels respectivement congrus à $0, 1, \ldots, p$ modulo p+1. Dans $\mathbb{C}[X]$, montrer que $1+X+\cdots+X^p$ divise $X^{n_0}+X^{n_1}+\cdots+X^{n_p}$ et que le quotient est un polynôme dont les coefficients sont dans \mathbb{Z} .

Exercice 20.49: (niveau 2)

Trouver l'ensemble des polynômes P de degré 3 tels que : $P(j) = j^2$, P'(j) = j, $P(j^2) = j$ et $P'(j^2) = j^2$.

Exercice 20.50 : (niveau 2)

Soit $n \in \mathbb{N}^*$ et $a \in \mathbb{R} \setminus \pi \mathbb{Z}$. On pose $P(X) = (X - 1)^n - e^{2ia}(X + 1)^n$.

- 1°) Déterminer les racines de P.
- **2**°) En déduire une expression simple de $\prod_{k=0}^{n-1} \cot(\frac{a+k\pi}{n})$.

Exercice 20.51: (niveau 2)

 \mathbb{K} désigne un sous corps de \mathbb{C} .

Si $P \in K[X]$, montrer que P(P(X)) - X est divisible par P(X) - X.

Exercice 20.52 : (niveau 2)

Soit n un entier supérieur ou égal à 2. Montrer que les racines du polynôme $X^n + X + 1$ sont toutes de module strictement inférieur à 2.

Exercice 20.53: (niveau 3)

Déterminer les racines complexes du polynôme $P(x)=x^5-1$ selon deux approches différentes :

- En écrivant les éventuelles racines sous la forme $re^{i\theta}$ avec $r \geq 0$ et $\theta \in]-\pi,\pi]$.
- En factorisant P sous la forme P(x) = (x-1)Q(x), où Q est un polynôme que l'on écrira sous la forme d'une différence de deux carrés.

En déduire une expression simple de $\cos(\frac{2\pi}{5})$.

Exercice 20.54: (niveau 3)

Pour quels entiers p existe-t-il un polynôme $P \in \mathbb{R}[X]$ tel que, pour tout $\theta \in \mathbb{R}$, $\sin(p\theta) = P(\sin(\theta))$?

Exercice 20.55 : (niveau 3)

Soit K un corps. Soient A et B deux polynômes de K[X], non tous deux constants et premiers entre eux.

- a) Montrez qu'il existe un couple unique, (U_0, V_0) , de polynômes de K[X] vérifiant les conditions suivantes : $AU_0 + BV_0 = 1$; $degU_0 < degB$; $deg(V_0) < degA$.
- b) Montrez que l'ensemble des couples (U, V) de $K[X]^2$ vérifiant AU + BV = 1 est donné par : $U = U_0 + PB$, $V = V_0 PA$, avec $P \in K[X]$.

Exercice 20.56: (niveau 3)

Pour tout $n \in \mathbb{N}^*$, montrer que $X^n - 2$ est irréductible dans $\mathbb{Q}[X]$.

Exercice 20.57 : (niveau 3)

n est un entier strictement positif. $\lambda_1, \ldots, \lambda_n$ sont n réels 2 à 2 distincts. P_1, \ldots, P_n sont n polynômes non nuls de $\mathbb{R}[X]$.

On pose, pour tout $x \in \mathbb{R}$, $f(x) = \sum_{i=1}^{n} e^{\lambda_i x} P_i(x)$. Montrer que le nombre de zéros de f

est inférieur ou égal à $n-1+\sum_{i=1}^n deg(P_i)$.

Exercice 20.58: (niveau 3)

Soit $P, Q \in \mathbb{C}[X]$ deux polynômes tels que, pour tout $z \in \mathbb{C}$, |P(z)| = |Q(z)|. Montrer qu'il existe $u \in \mathbb{U}$ tel que Q = uP.

Exercice 20.59: (niveau 3)

Déterminer tous les polynômes P de $\mathbb{R}[X]$ tels que $P(X^2) = P(X)P(X+1)$.

Exercice 20.60: (niveau 3)

Soit $p \geq 3$ un nombre premier.

- 1°) Montrer que pour tout entier k compris entre 1 et p-1, p divise C_n^k .
- 2°) En déduire que, pour tout entier naturel n, n^p est congru à n modulo p.
- 3°) Soient le polynôme $Q = \sum_{k=0}^{p-1} X^k$, n un entier naturel et $q \neq p$ un diviseur premier de Q(n). Montrer que $n^p \equiv 1 \mod q$. Peut-on avoir $n \equiv 0$ ou $1 \mod q$? En déduire que $q \equiv 1 \mod p$.
- 4°) Montrer que l'ensemble des nombres premiers congrus à 1 modulo p est infini.

Exercice 20.61: (niveau 3)

Une équation diophantienne :

On fixe un nombre premier p différent de 2.

1°) Définissons sur $\mathbb{Z}/p\mathbb{Z}$ la relation binaire R par :

pour tout $x, y \in \mathbb{Z}/p\mathbb{Z}$, $xRy \iff x^2 = y^2$.

Montrer que R est une relation d'équivalence sur $\mathbb{Z}/p\mathbb{Z}$.

En déduire que $C = \{x^2/x \in (\mathbb{Z}/p\mathbb{Z})^*\}$ est de cardinal $\frac{p-1}{2}$.

2°) Montrer que, pour tout $x \in (\mathbb{Z}/p\mathbb{Z})^*, x \in C \iff x^{\frac{p-1}{2}} = 1$.

- **3°)** Montrer que $-1 \in C \iff p \equiv 1$ [4].
- **4**°) On suppose que $p \equiv 3$ [4]. Montrer que l'équation diophantienne $x^2 (p-1)y^2 = pz^2$ n'a aucune solution en l'inconnue (x, y, z) dans $\mathbb{Z}^3 \setminus \{0\}$.

Exercice 20.62: (niveau 3)

Soit P_0, P_1, P_2 et P_3 4 polynômes de $\mathbb{R}[X]$. Montrer qu'il n'existe aucun $\varepsilon > 0$ tel que, pour tout $x \in]-\varepsilon, 0[$, $P_0(x) < P_1(x) < P_2(x) < P_3(x)$ et pour tout $x \in]0, \varepsilon[$, $P_1(x) < P_3(x) < P_0(x) < P_2(x)$.

Exercice 20.63: (niveau 3)

Soit $k \in \mathbb{N}^*$ et (x_0, \dots, x_k) k+1 réels deux à deux distincts. Soit I un intervalle compact de \mathbb{R} contenant ces k+1 réels et $u: I \longrightarrow \mathbb{R}$ une application de classe C^{∞} .

On note u_k le polynôme d'interpolation de Lagrange associé aux conditions suivantes : pour tout $i \in \{0, ..., k\}, u_k(x_i) = u(x_i)$.

1°) Montrer que pour tout $x \in I$, il existe $\beta_x \in I$ tel que

$$u(x) - u_k(x) = \frac{1}{(k+1)!} u^{(k+1)}(\beta_x) \prod_{j=0}^{k} (x - x_j).$$

Indication: on pourra utiliser l'application $g:I\longrightarrow \mathbb{R}$ définie par

$$g(y) = u(y) - u_k(y) - A \prod_{j=0}^{k} (y - x_j)$$
, en choisissant convenablement A.

2°) Montrer qu'on peut choisir l'application $x \mapsto \beta_x$ de sorte que l'application $x \mapsto u^{(k+1)}(\beta_x)$ soit continue sur I.

Exercice 20.64: (niveau 3)

Soit f une application de \mathbb{R} dans \mathbb{R} qui, pour tout $x \in \mathbb{R}$, est polynomiale sur un voisinage de x. Montrer que f est une application polynomiale.