ABE 6933 SML, Fall 2020 A Matrix Algebra Approach to Linear Regression

Instructor: Dr. Nikolay Bliznyuk

29 September, 2020

Matrix as a Rectangular Array

A matrix with r rows and c columns is a rectangular array. It will be represented either in full form

$$\mathbf{A}_{r \times c} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1c} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2c} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots & a_{ic} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{r1} & a_{r2} & \cdots & a_{rj} & \cdots & a_{rc} \end{bmatrix},$$

or in abbreviated form

$$\mathbf{A} = [a_{ij}] \quad i = 1, \dots, r; \ j = 1, \dots, c;$$

or simply by a boldface symbol, such as A.

Transpose of a Matrix: an Illustration

The transpose of a matrix ${\bf A}$ is another matrix, denoted by changing corresponding columns and rows of the matrix ${\bf A}$. For example, if

$$\mathbf{A}_{3\times2} = \begin{bmatrix} 2 & 5 \\ 7 & 10 \\ 3 & 4 \end{bmatrix},$$

then the transpose of A is

$$\mathbf{A}'_{2\times3} = \left[\begin{array}{ccc} 2 & 7 & 3 \\ 5 & 10 & 4 \end{array} \right].$$

Transpose of a Matrix

$$\mathbf{A}_{r \times c} = \begin{bmatrix} a_{11} & \cdots & a_{1c} \\ \vdots & & \vdots \\ a_{r1} & \cdots & a_{rc} \end{bmatrix} = [a_{ij}], \quad i = 1, \dots, r; \quad j = 1, \dots, c.$$

$$\mathbf{A}'_{c \times r} = \begin{bmatrix} a_{11} & \cdots & a_{r1} \\ \vdots & & \vdots \\ a_{1c} & \cdots & a_{rc} \end{bmatrix} = [a_{ji}], \quad j = 1, \dots, c; \quad i = 1, \dots, r.$$

In R, the call to compute A' is t(A).

Addition and Subtraction of Matrices

In general, if

$$\mathbf{A}_{r \times c} = [a_{ij}]$$
 and $\mathbf{B}_{r \times c} = [b_{ij}], \quad i = 1, \dots, r; \quad j = 1, \dots c,$

then

$$\mathbf{A}_{\substack{r \times c}}^+ \mathbf{B} = [a_{ij} + b_{ij}]$$
 and $\mathbf{A}_{\substack{r \times c}}^- \mathbf{B} = [a_{ij} - b_{ij}]$.

In R, standard +/- operations apply, e.g., (A - B) so long as the dimensions are conformable.

Matrix Multiplication - Example

$$\mathbf{AB} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{bmatrix}$$
$$= \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} & a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} \\ a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} & a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} \end{bmatrix}.$$

Matrix Multiplication in General

In general, if $\bf A$ has dimension $r \times c$ and $\bf B$ has dimension $c \times s$, the product $\bf AB$ is a matrix of dimension $r \times s$ whose element in the ith row and jth column is

$$\sum_{k=1}^{c} a_{ik} b_{kj},$$

so that

$$\mathbf{AB}_{r \times s} = \left[\sum_{k=1}^{c} a_{ik} b_{kj} \right] \quad i = 1, \dots, r; \quad j = 1, \dots s$$

In R, AB = A % *% B.

Matrix Multiplication: Alternative Views

$$\mathbf{AB} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{bmatrix}$$
$$= \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} & a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} \\ a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} & a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} \end{bmatrix}.$$

Let
$$C = AB$$
. Recall that $C_{ij} = \sum_{k=1}^{c} a_{ik} b_{kj}$.

Column form representation: We can represent columns of C as linear combinations of the columns of A: $C_j = A \cdot B_j$, where B_j is the jth column of B so that $C = [C_1, C_2, \dots, C_s]$.

We can represent \mathbf{C} in the *outer product form*, i.e., $\mathbf{C} = \sum_{k=1}^{c} \mathbf{A}[,k] \cdot \mathbf{B}[k,]$ using R notation, where $\mathbf{A}[,k]$ is the kth column of \mathbf{A} and $\mathbf{B}[k,]$ is the kth row of \mathbf{B} .

The Identity Matrix

The identity matrix, denoted by \mathbf{I} , is a diagonal matrix whose elements on the main diagonal are all 1s. Premultiplying or postmultiplying any $r \times c$ matrix \mathbf{A} by the identity matrix (of conformable dimensions) leaves \mathbf{A} unchanged. For example,

$$\mathbf{IA} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}.$$

Similarly,

$$\mathbf{AI} = \left[\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right] \left[\begin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] = \left[\begin{array}{cccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right].$$

In general, for any $r \times r$ matrix **A** we have $\mathbf{AI} = \mathbf{IA} = \mathbf{A}$. In R, the $r \times r$ identity matrix can be created as $\operatorname{diag}(\mathbf{r})$.

Linear Dependence/Multicollinearity

Let A be a matrix with columns A_1, \ldots, A_c .

If one can find scalars $\lambda_1, \ldots, \lambda_c$, not all zero, such that

$$\mathbf{A} \cdot \boldsymbol{\lambda} = \lambda_1 \mathbf{A}_1 + \lambda_2 \mathbf{A}_2 + \dots + \lambda_c \mathbf{A}_c = \mathbf{0},$$

where ${\bf 0}$ denotes the zero column vector, the column vectors are linearly dependent.

If the only set of scalars for which the equality holds is $\lambda_1=0,\ldots,\lambda_c=0$, the columns are *linearly independent*.

Let X be the design matrix for a multiple linear regression problem; i.e., columns of X are predictors/features. Collinearity/multicollinearity occurs when the columns matrix X are linearly dependent (loosely, contain redundant information).

Linear Dependence: an Illustration

Consider the following matrix

$$\mathbf{A} = \left[\begin{array}{cccc} 1 & 2 & 5 & 1 \\ 2 & 2 & 10 & 6 \\ 3 & 4 & 15 & 1 \end{array} \right].$$

If $\lambda_1 = 5, \lambda_2 = 0, \lambda_3 = -1, \lambda_4 = 0$, then

$$5\begin{bmatrix}1\\2\\3\end{bmatrix}+0\begin{bmatrix}2\\2\\4\end{bmatrix}-1\begin{bmatrix}5\\10\\15\end{bmatrix}+0\begin{bmatrix}1\\6\\1\end{bmatrix}=\begin{bmatrix}0\\0\\0\end{bmatrix}.$$

In general, linear dependence is not restricted to the situations where one column is a multiple of another column.

Rank of a Matrix

The rank of a matrix is defined to be the maximum number of linearly independent columns in the matrix.

We know that the rank of ${\bf A}$ in our earlier example cannot be 4, since the four columns are linearly dependent.

We can, however, find three columns (1,2, and 4) which are linearly independent. There are no scalars $\lambda_1,\lambda_2,\lambda_4$ such that $\lambda_1 \mathbf{A}_1 + \lambda_2 \mathbf{A}_2 + \lambda_4 \mathbf{A}_4 = \mathbf{0}$ other than $\lambda_1 = \lambda_2 = \lambda_4 = 0$. Thus, the rank of \mathbf{A} in our example is 3.

The rank of a matrix is unique and can equivalently be defined as the maximum number of linearly independent rows. It follows that the rank of an $r \times c$ matrix cannot exceed $\min(r,c)$, the minimum of the two values r and c

Inverse of a Matrix

For a square matrix A of full rank, the inverse of A is a matrix A^{-1} such that $A^{-1}A = AA^{-1} = I$.

For example, the inverse of the matrix

$$\mathbf{A}_{2\times 2} = \left[\begin{array}{cc} 2 & 4\\ 3 & 1 \end{array} \right]$$

is

$$\mathbf{A}_{2\times2}^{-1} = \begin{bmatrix} -.1 & .4\\ .3 & -.2 \end{bmatrix}$$

since

$$\mathbf{A}^{-1}\mathbf{A} = \begin{bmatrix} -.1 & .4 \\ .3 & -.2 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \mathbf{I}$$

or

$$\mathbf{A}\mathbf{A}^{-1} = \begin{bmatrix} 2 & 4 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -.1 & .4 \\ .3 & -.2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \mathbf{I}.$$

Example of an Inverse of a 3x3 Matrix

lf

$$\mathbf{B}_{3\times3} = \left[\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & k \end{array} \right],$$

then

$$\mathbf{B}^{-1} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & k \end{bmatrix}^{-1} = \begin{bmatrix} A & B & C \\ D & E & F \\ G & H & K \end{bmatrix},$$

where

$$\begin{array}{ll} A = (ek - fh)/Z & B = -(bk - ch)/Z & C = (bf - ce)/Z \\ D = -(dk - fg)/Z & E = (ak - cg)/Z & F = -(af - cd)/Z \\ G = (dh - eg)/Z & H = -(ah - bg)/Z & K = (ae - bd)/Z \end{array}$$

and

$$Z = a(ek - fh) - b(dk - fg) + c(dh - eg).$$

Z is called the determinant of the matrix \mathbf{B} .

Solving Systems of Linear Equations

A solution to the system of linear equations Ax = b is a vector x^* for which the identity $Ax^* = b$ is satisfied.

One is generally interested in solving the systems of equations where \mathbf{A} is a square $r \times r$ matrix. Such equations have a unique solution for a general right-hand side \mathbf{b} if and only if \mathbf{A} is of full rank (i.e., invertible), in which case the solution $x^* = \mathbf{A}^{-1}\mathbf{b}$.

Although $x^* = \mathbf{A}^{-1}\mathbf{b}$ is the "mathematical/theoretical" solution, in practice finding \mathbf{A}^{-1} to solve the linear system is generally a bad idea (from the standpoint of numerical accuracy).

In R, the linear system Ax = b may be solved as solve(A,b). In the background, this linear system is solved using efficient matrix factorizations of A, e.g., the "LU" factorization.

In the rare cases where A^{-1} itself is needed (e.g., when we need a covariance matrix of our least squares estimator $\widehat{\beta}$), it can be found as solve(A).

Common Matrix Algebra Identities

$$\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$$

$$(\mathbf{A} + \mathbf{B}) + \mathbf{C} = \mathbf{A} + (\mathbf{B} + \mathbf{C})$$

$$(\mathbf{AB})\mathbf{C} = \mathbf{A}(\mathbf{BC})$$

$$\mathbf{C}(\mathbf{A} + \mathbf{B}) = \mathbf{CA} + \mathbf{CB}$$

$$\lambda(\mathbf{A} + \mathbf{B}) = \lambda \mathbf{A} + \lambda \mathbf{B}$$

$$(\mathbf{A}')' = \mathbf{A}$$

$$(\mathbf{A} + \mathbf{B})' = \mathbf{A}' + \mathbf{B}'$$

$$(\mathbf{AB})' = \mathbf{B}'\mathbf{A}'$$

$$(\mathbf{ABC})' = \mathbf{C}'\mathbf{B}'\mathbf{A}'$$

$$(\mathbf{ABC})' = \mathbf{C}'\mathbf{B}'\mathbf{A}'$$

$$(\mathbf{ABC})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$$

$$(\mathbf{ABC})^{-1} = \mathbf{C}^{-1}\mathbf{B}^{-1}\mathbf{A}^{-1}$$

$$(\mathbf{A}')^{-1} = \mathbf{A}$$

$$(\mathbf{A}')^{-1} = (\mathbf{A}^{-1})'$$

Expectation of a Random Vector or a Matrix

In general, for a random vector \mathbf{Y} the expectation is

$$\mathbf{E}\{\mathbf{Y}\} = [E\{Y_i\}] \quad i = 1, \dots, n.$$

For a random matrix $\mathbf Y$ with dimension $n \times p$, the expectation is

$$\mathbf{E}\{\mathbf{Y}\} = [E\{Y_{ij}\}] \quad i = 1, \dots, n; \quad j = 1, \dots, p.$$

Expectation of a Random Vector: SLR/MLR Example

$$\begin{aligned} \mathbf{Y}_{n \times 1} &= \mathbf{E}\{\mathbf{Y}\} \\ n \times 1 &= \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} E\{Y_1\} \\ E\{Y_2\} \\ \vdots \\ E\{Y_n\} \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix} = \begin{bmatrix} E\{Y_1\} + \varepsilon_1 \\ E\{Y_2\} + \varepsilon_2 \\ \vdots \\ E\{Y_n\} + \varepsilon_n \end{bmatrix}$$

Example: Covariance Matrix I

Let **Y** be a random vector consisting of three rvs Y_1, Y_2, Y_3 .

The variances of the three rvs, $\sigma^2\{Y_i\}$, and the covariances between any two of the rvs, $\sigma\{Y_i,Y_j\}$, are assembled in the covariance matrix of \mathbf{Y} , denoted by $\sigma^2\{\mathbf{Y},\mathbf{Y}\}$ as follows:

$$\boldsymbol{\sigma}^{2}\{\mathbf{Y}\} = \left[\begin{array}{ccc} \sigma^{2}\left\{Y_{1}\right\} & \sigma\left\{Y_{1}, Y_{2}\right\} & \sigma\left\{Y_{1}, Y_{3}\right\} \\ \sigma\left\{Y_{2}, Y_{1}\right\} & \sigma^{2}\left\{Y_{2}\right\} & \sigma\left\{Y_{2}, Y_{3}\right\} \\ \sigma\left\{Y_{3}, Y_{1}\right\} & \sigma\left\{Y_{3}, Y_{2}\right\} & \sigma^{2}\left\{Y_{3}\right\} \end{array} \right].$$

Notice that $\sigma\left\{Y_2,Y_1\right\}=\sigma\left\{Y_1,Y_2\right\}$, since $\sigma\left\{Y_i,Y_j\right\}=\sigma\left\{Y_j,Y_i\right\}$ for all $i\neq j$, $\sigma^2\{\mathbf{Y}\}$ is a symmetric matrix.

In this course, the terms "covariance matrix" and "variance-covariance matrix" are used interchangeably.

Example: Covariance Matrix II

It follows readily that:

$$\boldsymbol{\sigma}^2\{\mathbf{Y}\} = \mathbf{E}\left\{ (\mathbf{Y} - \mathbf{E}\{\mathbf{Y}\}) \cdot (\mathbf{Y} - \mathbf{E}\{\mathbf{Y}])' \right\}.$$

For our illustration, we have

$$\boldsymbol{\sigma}^{2}\{\mathbf{Y}\} = \mathbf{E} \left\{ \left[\begin{array}{c} Y_{1} - E\{Y_{1}\} \\ Y_{2} - E\{Y_{2}\} \\ Y_{3} - E\{Y_{3}\} \end{array} \right] \cdot \left[Y_{1} - E\{Y_{1}\}, Y_{2} - E\{Y_{2}\}, Y_{3} - E\{Y_{3}\} \right] \right\}.$$

If we define
$$\mathbf{Z} = (\mathbf{Y} - \mathbf{E}\{\mathbf{Y}\})$$
, then $\sigma^2\{\mathbf{Y}\} = \mathbf{E}(\mathbf{Z} \cdot \mathbf{Z}')$ and $\left[\sigma^2\{\mathbf{Y}\}\right]_{ij} = Cov(Y_i, Y_j) = Cov(Y_j, Y_i) = \left[\sigma^2\{\mathbf{Y}\}\right]_{ji}$. Cov (Yi, Yj) =E ((Yi-E (Yi)) * (Yj-E (Yj))

Covariance Matrix - General Case

The covariance matrix for a general $n \times 1$ random vector \mathbf{Y} is

$$\boldsymbol{\sigma}^{2}\{\mathbf{Y}\} = \begin{bmatrix} \sigma^{2}\{Y_{1}\} & \sigma\{Y_{1}, Y_{2}\} & \cdots & \sigma\{Y_{1}, Y_{n}\} \\ \sigma\{Y_{2}, Y_{1}\} & \sigma^{2}\{Y_{2}\} & \cdots & \sigma\{Y_{2}, Y_{n}\} \\ \vdots & \vdots & & \vdots \\ \sigma\{Y_{n}, Y_{1}\} & \sigma\{Y_{n}, Y_{2}\} & \cdots & \sigma^{2}\{Y_{n}\} \end{bmatrix}.$$

Notice again that $\sigma^2\{\mathbf{Y}\}$ is a symmetric matrix, i.e., $\left[\sigma^2\{\mathbf{Y}\}\right]_{ij} = \left[\sigma^2\{\mathbf{Y}\}\right]_{ji}$.

For notational transparency, the covariance matrix of \mathbf{Y} is denoted here as $\sigma^2\{\mathbf{Y}\}$. A more common notation is $Var(\mathbf{Y}) = \Sigma_{\mathbf{Y}}$ whenever there are multiple random vectors under consideration, or $Var(\mathbf{Y}) = \Sigma$ if there is no ambiguity.

Expectation and Covariance for a Linear Transformation

Frequently, we shall encounter a random vector \mathbf{W} which is obtained by premultiplying the random vector \mathbf{Y} by a constant matrix \mathbf{A} (a matrix whose elements are fixed):

$$W = AY$$
.

Here, W is called a linear transformation of Y.

Some basic results for this case are

$$\begin{split} \mathbf{E}\{\mathbf{A}\} &= \mathbf{A} \\ \mathbf{E}\{\mathbf{W}\} &= \mathbf{E}\{\mathbf{AY}\} = \mathbf{A}\mathbf{E}\{\mathbf{Y}\} \\ \boldsymbol{\sigma}^2\{\mathbf{W}\} &= \boldsymbol{\sigma}^2\{\mathbf{AY}\} = \mathbf{A}\boldsymbol{\sigma}^2\{\mathbf{Y}\}\mathbf{A}', \end{split}$$

where $\sigma^2\{Y\}$ is the variance-covariance matrix of Y.

Expectation for a Linear Transformation

$$\mathbf{E}\{\mathbf{W}\} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} E\{Y_1\} \\ E\{Y_2\} \end{bmatrix} = \begin{bmatrix} E\{Y_1\} - E\{Y_2\} \\ E\{Y_1\} + E\{Y_2\} \end{bmatrix}$$

Covariance Matrix for a Linear Transformation

$$\begin{split} \boldsymbol{\sigma}^{2}\{\mathbf{W}\} &= \left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right] \left[\begin{array}{cc} \sigma^{2}\left\{Y_{1}\right\} & \sigma\left\{Y_{1}, Y_{2}\right\} \\ \sigma\left\{Y_{2}, Y_{1}\right\} & \sigma^{2}\left\{Y_{2}\right\} \end{array} \right] \left[\begin{array}{cc} 1 & 1 \\ -1 & 1 \end{array} \right] \\ &= \left[\begin{array}{cc} \sigma^{2}\left\{Y_{1}\right\} + \sigma^{2}\left\{Y_{2}\right\} - 2\sigma\left\{Y_{1}, Y_{2}\right\} & \sigma^{2}\left\{Y_{1}\right\} - \sigma^{2}\left\{Y_{2}\right\} \\ \sigma^{2}\left\{Y_{1}\right\} - \sigma^{2}\left\{Y_{2}\right\} & \sigma^{2}\left\{Y_{1}\right\} + \sigma^{2}\left\{Y_{2}\right\} + 2\sigma\left\{Y_{1}, Y_{2}\right\} \end{array} \right] \end{split}$$

Simple Linear Regression Model Using Equations

Our model for the individual observations Y_i is

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i, \quad i = 1, \dots, n.$$

This implies

$$Y_1 = \beta_0 + \beta_1 X_1 + \varepsilon_1,$$

$$Y_2 = \beta_0 + \beta_1 X_2 + \varepsilon_2,$$

$$\vdots$$

$$Y_n = \beta_0 + \beta_1 X_n + \varepsilon_n.$$

Simple Linear Regression using Matrix Algebra

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} 1 & X_1 \\ 1 & X_2 \\ \vdots & \vdots \\ 1 & X_n \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

$$= \begin{bmatrix} \beta_0 + \beta_1 X_1 \\ \beta_0 + \beta_1 X_2 \\ \vdots \\ \beta_0 + \beta_1 X_n \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix} = \begin{bmatrix} \beta_0 + \beta_1 X_1 + \varepsilon_1 \\ \beta_0 + \beta_1 X_2 + \varepsilon_2 \\ \vdots \\ \beta_0 + \beta_1 X_n + \varepsilon_n \end{bmatrix}$$

Multiple Linear Regression Model Using Matrix Algebra I

$$\mathbf{Y}_{n\times 1} = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} \qquad \mathbf{X}_{n\times p} = \begin{bmatrix} 1 & X_{11} & X_{12} & \cdots & X_{1,p-1} \\ 1 & X_{21} & X_{22} & \cdots & X_{2,p-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & X_{n1} & X_{n2} & \cdots & X_{n,p-1} \end{bmatrix}$$
$$\boldsymbol{\beta}_{p\times 1} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-1} \end{bmatrix} \qquad \boldsymbol{\varepsilon}_{n\times 1} = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

Multiple Linear Regression Model Using Matrix Algebra II

In matrix terms, a multiple linear regression (MLR) model is

$$\mathbf{Y}_{n\times 1} = \mathbf{X}_{n\times p} \cdot \stackrel{p\times 1}{\beta} + \stackrel{\boldsymbol{\varepsilon}}{n\times 1}, \quad \text{where}$$

Y is a vector of responses,

 β is a vector of parameters/coefficients,

 ${f X}$ is a matrix of constants (the design matrix), and ${f arepsilon}$ is a vector of uncorrelated errors with expectation ${f E}\{{f arepsilon}\}={f 0}$ and covariance matrix

$$\boldsymbol{\sigma}^{2}_{n\times n}\{\boldsymbol{\varepsilon}\} = \begin{bmatrix} \sigma^{2} & 0 & \cdots & 0 \\ 0 & \sigma^{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \sigma^{2} \end{bmatrix} = \sigma^{2}\mathbf{I}.$$

Least Squares (LS) Estimation for the MLR

$$Q(\mathbf{b}) = \sum_{i=1}^{n} (Y_i - b_0 - b_1 X_{i1} - \dots - b_{p-1} X_{i,p-1})^2.$$

The least squares (LS) solution/estimators are those values of $b_0, b_1, \ldots, b_{p-1}$ that minimize the SSE, here denoted by Q. Define

$$\mathbf{b}_{p \times 1} = \left[\begin{array}{c} b_0 \\ b_1 \\ \vdots \\ b_{p-1} \end{array} \right].$$

In matrix notation,

$$Q(\mathbf{b}) = (\mathbf{Y} - \mathbf{X}\mathbf{b})'(\mathbf{Y} - \mathbf{X}\mathbf{b}) = \|\mathbf{Y} - \mathbf{X}\mathbf{b}\|_{2}^{2}.$$

Expanding, we obtain

$$Q(\mathbf{b}) = \mathbf{Y}'\mathbf{Y} - \mathbf{b}'\mathbf{X}'\mathbf{Y} - \mathbf{Y}'\mathbf{X}\mathbf{b} + \mathbf{b}'\mathbf{X}'\mathbf{X}\mathbf{b} = \mathbf{Y}'\mathbf{Y} - 2\mathbf{Y}'\mathbf{X}\mathbf{b} + \mathbf{b}'\mathbf{X}'\mathbf{X}\mathbf{b}.$$

Normal Equations and the LS Estimator

To find the minimizer of $Q(\mathbf{b})$, differentiate $Q(\mathbf{b})$ wrt \mathbf{b} :

$$\frac{\partial Q(\mathbf{b})}{\partial \mathbf{b}} = -2\mathbf{X}'\mathbf{Y} + 2\mathbf{X}'\mathbf{X}\mathbf{b},$$

set the derivative to 0 and solve.

Notice the solution must satisfy $X' \cdot (Y - Xb) = 0$.

The least squares normal equations are X'Xb = X'Y.

To solve, premultiply both sides by $(\mathbf{X}'\mathbf{X})^{-1}$ (assume this exists):

$$(\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}'\mathbf{X}\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}'\mathbf{Y}.$$

Since $(X'X)^{-1}X'X = I$ and Ib = b, we then find the solution

$$\mathbf{b}^*_{m\times 1} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}, \quad \text{the LS estimator that minimizes } Q(\mathbf{b}).$$

Statistical Model for MLR

How to solve this problem "statistically"? Assume

$$Y_i = \underbrace{x_i'\beta}_{\sum_{j=1}^p x_{ij}\beta_j} + \varepsilon_i,$$

where ε_i 's are independent Normal $(0,\sigma^2)$ rvs. In vector-matrix form,

$$\mathbf{Y}_{n\times 1} = \mathbf{X}_{n\times p}^{p\times 1} \boldsymbol{\beta} + \boldsymbol{\varepsilon}_{n\times 1}.$$

Here, $Y_i \sim \text{Normal}(\boldsymbol{x}_i'\boldsymbol{\beta}, \sigma^2)$; the Y_i 's are independent but not identically distributed.

Since we know the joint pdf of the Y_i 's, we can estimate $\pmb{\beta}$ and σ^2 using the MLE.

Statistical Estimation by MLE I

Step 1: write down the likelihood:

$$L(y_1, \dots, y_n \mid \boldsymbol{\beta}, \sigma^2) = \prod_{i=1}^n f_i(y_i \mid \boldsymbol{\beta}, \sigma^2)$$

$$= \prod_{i=1}^n (2\pi\sigma^2)^{-1/2} \exp\left(-\frac{(y_i - \boldsymbol{x}_i'\boldsymbol{\beta})^2}{2\sigma^2}\right)$$

$$= (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \boldsymbol{x}_i'\boldsymbol{\beta})^2\right).$$

Step 2: obtain the log-likelihood:

$$\ell\left(\boldsymbol{\beta}, \sigma^{2}\right) = \ln\left(L\left(y_{1}, \dots, y_{n} \mid \boldsymbol{\beta}, \sigma^{2}\right)\right)$$
$$= -\frac{n}{2}\ln(2\pi) - \frac{n}{2}\ln(\sigma^{2}) - \frac{1}{2\sigma^{2}}(\boldsymbol{y} - \mathbf{X}\boldsymbol{\beta})'(\boldsymbol{y} - \mathbf{X}\boldsymbol{\beta}).$$

Statistical Estimation by MLE II

Step 3. Find the gradient of $\ell\left(\boldsymbol{\beta},\sigma^2\right)$ with respect to $\boldsymbol{\beta}$ and σ^2 , set the gradient to 0, solve for $\boldsymbol{\beta}$ and σ^2 .

$$\frac{\partial \ell \left(\boldsymbol{\beta}, \sigma^{2}\right)}{\partial \boldsymbol{\beta}} = -\frac{1}{2\sigma^{2}} 2\mathbf{X}'(\boldsymbol{y} - \mathbf{X}\boldsymbol{\beta})$$
$$\frac{\partial \ell \left(\boldsymbol{\beta}, \sigma^{2}\right)}{\partial \sigma^{2}} = -\frac{n}{2} \frac{1}{\sigma^{2}} - \frac{1}{2} \frac{(\boldsymbol{y} - \mathbf{X}\boldsymbol{\beta})'(\boldsymbol{y} - \mathbf{X}\boldsymbol{\beta})}{(\sigma^{2})^{2}}$$

The solution is $\widehat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\boldsymbol{y}$ and $\widehat{\sigma}^2 = \frac{1}{n}(\boldsymbol{y} - \mathbf{X}\widehat{\boldsymbol{\beta}})'(\boldsymbol{y} - \mathbf{X}\widehat{\boldsymbol{\beta}})$.

Step 4. Make sure we found the maximizers of $\ell\left(\beta,\sigma^2\right)$ by showing that all eigenvalues of the matrix of second derivatives of $\ell\left(\beta,\sigma^2\right)$ —known as the Hessian—are negative. (Equivalently, $(-1)\cdot$ Hessian is positive definite.)

The Vector of Fitted Values and the Hat Matrix

Notice that the expressions for the LS and ML estimators coincide. Let's use $\widehat{\beta} = (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}'\mathbf{Y}$ for notational transparency.

Let's express the vector of fitted values $\hat{\mathbf{Y}}$ using the formula for $\hat{\boldsymbol{\beta}}$:

$$\widehat{\mathbf{Y}} = \mathbf{X}\widehat{\boldsymbol{\beta}} = \mathbf{X} \left(\mathbf{X}'\mathbf{X} \right)^{-1} \mathbf{X}'\mathbf{Y} = \mathbf{H}\mathbf{Y},$$

where

$$\mathbf{H}_{n\times n} = \mathbf{X} \left(\mathbf{X}' \mathbf{X} \right)^{-1} \mathbf{X}'.$$

Notice that ${\bf H}$ is symmetric $({\bf H}={\bf H}')$ and idempotent, i.e.,

$$\mathbf{H} = \mathbf{H} \cdot \mathbf{H}$$
.

The Hat Matrix and the Vector of Residuals

We can express the vector of residuals ${\bf e}$ as

$$\underset{n\times 1}{\mathbf{e}} = \mathbf{Y} - \widehat{\mathbf{Y}} = (\mathbf{I} - \mathbf{H}) \cdot \underset{n\times 1}{\mathbf{Y}},$$

where ${\bf H}$ is the hat matrix. The matrix $({\bf I}-{\bf H}),$ like the matrix ${\bf H},$ is symmetric and idempotent.

The variance-covariance matrix of the vector of residuals e is

$$\sigma^2 \{ \mathbf{e} \} = \sigma^2 (\mathbf{I} - \mathbf{H})$$

and is estimated by

$$\mathbf{s}^2\{\mathbf{e}\} = \widehat{\sigma}^2(\mathbf{I} - \mathbf{H}),$$

where $\widehat{\sigma}^2 = SSE/(n-p) = \mathbf{e}'\mathbf{e}/(n-p)$ is referred to as the MSE in ANOVA tables.

Distributional Results when $\varepsilon \sim MVN(\mathbf{0}, \sigma^2\mathbf{I})$

The ML estimatOR is $\widehat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} = \mathbf{AY}$. Hence

$$\begin{split} \mathbf{E}(\widehat{\boldsymbol{\beta}}) &= \left(\mathbf{X}'\mathbf{X}\right)^{-1}\mathbf{X}' \cdot \mathbf{E}(\mathbf{Y}) = \left(\mathbf{X}'\mathbf{X}\right)^{-1}\mathbf{X}'\mathbf{X}\boldsymbol{\beta} = \boldsymbol{\beta}, \\ \boldsymbol{\sigma}^2\{\widehat{\boldsymbol{\beta}}\} &= \mathbf{A} \cdot \boldsymbol{\sigma}^2\{\mathbf{Y}\} \cdot \mathbf{A}' = \ldots = \boldsymbol{\sigma}^2\left(\mathbf{X}'\mathbf{X}\right)^{-1}. \end{split}$$

Additionally,

$$\widehat{m{eta}}\sim \mathsf{Multivariate}.\mathsf{Normal}(m{eta},m{\sigma}^2\{\widehat{m{eta}}\}), \quad \mathsf{and} \quad a'\widehat{m{eta}}\sim \mathsf{Normal}(m{a}'m{eta},m{a}'m{\sigma}^2\{\widehat{m{eta}}\}m{a}),$$

where a is a column vector of constants.

Lastly,

$$\frac{\boldsymbol{a}'\widehat{\boldsymbol{\beta}} - \boldsymbol{a}'\boldsymbol{\beta}}{\widehat{\sigma}\sqrt{\boldsymbol{a}'\left(\mathbf{X}'\mathbf{X}\right)^{-1}\boldsymbol{a}}} \sim t(n-p).$$

Estimation/Prediction of the Mean Response

For given values of X_1, \ldots, X_{p-1} , denoted by $x_{h,1}, \ldots, x_{h,p-1}$, the mean response is denoted by $\mathbf{E}\{Y_h\}$. We define the vector x_h

$$oldsymbol{x}_h = \left[egin{array}{c} 1 \\ x_{h,1} \\ \vdots \\ x_{h,p-1} \end{array}
ight],$$

so that the mean response to be estimated is

$$\mathbf{E}\left\{ Y_{h}\right\} =\boldsymbol{x}_{h}^{\prime}\boldsymbol{\beta}.$$

The estimated mean response corresponding to $oldsymbol{x}_h$ is

$$\widehat{Y}_h = \boldsymbol{x}_h' \widehat{\boldsymbol{\beta}}.$$

Estimation/Prediction of the Mean Response

This estimator $\widehat{Y}_h = oldsymbol{x}_h' \widehat{oldsymbol{eta}}$ is unbiased:

$$\mathbf{E}\left\{\widehat{Y}_{h}\right\} = \boldsymbol{x}_{h}^{\prime}\boldsymbol{\beta} = \mathbf{E}\left\{Y_{h}\right\}$$

and its variance is

$$\sigma^{2}\left\{\widehat{Y}_{h}\right\} = \sigma^{2} x_{h}' \left(\mathbf{X}'\mathbf{X}\right)^{-1} x_{h}.$$

This variance can be expressed as a function of the variance-covariance matrix of the estimated regression coefficients

$$\sigma^2 \left\{ \widehat{Y}_h \right\} = \boldsymbol{x}_h' \sigma^2 \{ \widehat{\boldsymbol{\beta}} \} \boldsymbol{x}_h.$$

Confidence Interval for the Mean of the Response Y_h

Notice that the variance $\sigma^2\left\{\widehat{Y}_h\right\}$ is a function of the covariance matrix $\sigma^2\{\widehat{\boldsymbol{\beta}}\} = \sigma^2\left(\mathbf{X}'\mathbf{X}\right)^{-1}$.

The estimated variance $s^2\left\{\widehat{Y}_h\right\}$ is given by

$$s^{2}\left\{\widehat{Y}_{h}\right\} = MSE \cdot \left(\boldsymbol{x}_{h}'\left(\mathbf{X}'\mathbf{X}\right)^{-1}\boldsymbol{x}_{h}\right) = \boldsymbol{x}_{h}'\mathbf{s}^{2}\left\{\mathbf{b}\right\}\boldsymbol{x}_{h}.$$

The $(1-\alpha)$ confidence limits for $E\left\{Y_h\right\}$ are

$$\widehat{Y}_h \pm t(1 - \alpha/2; n - p)s \left\{\widehat{Y}_h\right\}.$$

Here, $MSE = \frac{SSE}{(n-p)} = \hat{\sigma}^2$ is the square of the "residual standard error" (RSE) reported by R in the summary of an lm object.

Prediction Interval for the Response Y_h

The $(1-\alpha)$ prediction limits for a new observation Y_h corresponding to x_h , the specified values of the covariates, are

$$\widehat{Y}_h \pm t(1 - \alpha/2; n - p) \cdot s\{\text{pred}\},$$

where

$$s^{2}\{\text{pred}\} = MSE + s^{2}\{\widehat{Y}_{h}\} = MSE \cdot (1 + \boldsymbol{x}'_{h}(\mathbf{X}'\mathbf{X})^{-1}\boldsymbol{x}_{h})$$

and $s^2\left\{\widehat{Y}_h\right\}$ is given above.

In R, point-level predictions \widehat{Y}_h , confidence intervals and prediction intervals can be obtained using the function predict.lm.