$\operatorname{CB}\,\operatorname{N}^\circ 2$ - $\operatorname{Calcul}\,\operatorname{alg\'ebrique}$ - $\operatorname{Trigonom\'etrie}$ - $\operatorname{Sujet}\,1$

1. Résoudre le système suivant :

$$\begin{cases} x+y-z=1\\ x-2y+2z=-2\\ 2x-y-2z=-1 \end{cases} S = \{(0,1,0)\}$$

- **2.** Soit $n \in \mathbb{N}^*$.
 - a. Exprimer simplement

$$\sum_{k=1}^{n} \left((k+1)^3 - k^3 \right)$$

Par télescopage, on a : $\sum_{k=1}^{n} ((k+1)^3 - k^3) = (n+1)^3 - 1$

b. Développer $(k+1)^3$ et en déduire que

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

La formule du binôme de Newton donne : $(k+1)^3 = k^3 + 3k^2 + 3k + 1$; on a donc :

$$\sum_{k=1}^{n} \left((k+1)^3 - k^3 \right) = \sum_{k=1}^{n} (3k^2 + 3k + 1). \text{ On en déduit que } \sum_{k=1}^{n} k^2 = \frac{1}{3} \left((n+1)^3 - 1 - 3 \sum_{k=1}^{n} k - \sum_{k=1}^{n} 1 \right)$$
 et donc
$$\sum_{k=1}^{n} k^2 = \frac{1}{3} \left(n^3 + 3n^2 + 3n - 3 \frac{n(n+1)}{2} - n \right) = \frac{n(n+1)(2n+1)}{6}$$

c. Calculer

$$\sum_{1 \le i \le j \le n} i$$

$$\sum_{1 \le i \le j \le n} i = \sum_{j=1}^{n} \sum_{i=1}^{j} i = \sum_{j=1}^{n} \frac{j(j+1)}{2} = \frac{1}{2} \left(\sum_{j=1}^{n} j^2 + \sum_{j=1}^{n} j \right) = \frac{1}{2} \left(\frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} \right) = \frac{n(n+1)(n+2)}{6}$$

3. Résoudre dans \mathbb{R} :

a.
$$\cos(2x) + \sin(x) = 1 \Leftrightarrow 1 - 2\sin^2(x) + \sin(x) = 1 \Leftrightarrow \sin(x) (1 - 2\sin(x)) = 0$$

 $\Leftrightarrow \left(\sin(x) = 0 \lor \sin(x) = \frac{1}{2}\right) \Leftrightarrow x \in \bigcup_{k \in \mathbb{Z}} \left\{k\pi, \frac{\pi}{6} + 2k\pi, \frac{5\pi}{6} + 2k\pi\right\}$

b.
$$\cos(x) - \sin(x) = \sqrt{2} \Leftrightarrow \cos\left(x + \frac{\pi}{4}\right) = 1 \Leftrightarrow x \equiv -\frac{\pi}{4}[2\pi] \Leftrightarrow x \in \bigcup_{k \in \mathbb{Z}} \left\{-\frac{\pi}{4} + 2k\pi\right\}$$

$$\mathbf{c.} \quad |\cos(x)| \leq \frac{1}{2} \quad \Leftrightarrow -\frac{1}{2} \leq \cos(x) \leq \frac{1}{2} \Leftrightarrow x \in \bigcup_{k \in \mathbb{Z}} \left(\left[\frac{\pi}{3} + 2k\pi, \frac{2\pi}{3} + 2k\pi \right] \cup \left[\frac{4\pi}{3} + 2k\pi \frac{5\pi}{3} + 2k\pi \right] \right)$$
$$\Leftrightarrow x \in \bigcup_{k \in \mathbb{Z}} \left[\frac{\pi}{3} + k\pi, \frac{2\pi}{3} + k\pi \right]. \text{ Ce résultat s'obtient en observant le cercle trigonométrique.}$$

4. Résoudre dans $\mathbb R$ les inéquations suivantes :

a.
$$\sqrt{x^2 + x - 2} \le x + 1$$

Domaine de validité : $D_v =]-\infty, -2] \cup [1, +\infty[$

- \leadsto Si $x \le -2$: l'inégalité n'est pas vérifiée car si $x \le -2$ alors x+1 < 0 et un nombre positif n'est jamais inférieur à un nombre strictement négatif.
- \leadsto Si $x \ge 1$: les deux membres de l'inégalité étant positifs, on peut appliquer la fonction "carré" qui est croissante sur \mathbb{R}^+ et l'inéquation équivaut à $-3 \le x$ ce qui est toujours vérifié sur $[1, +\infty[$.

Finalement, $S = [1, +\infty[$

b.
$$|x^2 - x - 1| \le 1$$
 $\Leftrightarrow -1 \le x^2 - x - 1 \le 1 \Leftrightarrow \begin{cases} x^2 - x \ge 0 \\ \text{et} \\ x^2 - x - 2 \le 0 \end{cases}$ $\Leftrightarrow \begin{cases} x \in]-\infty, 0] \cup [1, +\infty[\\ \text{et} \\ x \in [-1, 2] \end{cases}$ $\Leftrightarrow x \in [-1, 0] \cup [1, 2]$

c. $\frac{x+1}{m+2} \le x$ où m désigne un paramètre réel différent de -2.

$$\frac{x+1}{m+2} \le x \Leftrightarrow \frac{(m+1)x-1}{m+2} \ge 0 \Leftrightarrow \frac{m+1}{m+2}x - \frac{1}{m+2} \ge 0$$

$$\rightsquigarrow$$
 Si $m = -1$ $S = \emptyset$

$$\Rightarrow \text{ Si } m \in]-\infty, -2[\cup]-1, +\infty[\quad \text{ alors } \quad \frac{m+1}{m+2} > 0 \quad \text{et } S = \left[\frac{1}{m+1}, +\infty\right[$$

$$ightharpoonup ext{Si } m \in]-2,-1[$$
 alors $\frac{m+1}{m+2} < 0$ et $S = \left]-\infty, \frac{1}{m+1}\right]$

$\operatorname{CB}\,{}_{\mathrm{N}}{}^{\circ}2$ - $\operatorname{Calcul}\,{}_{\mathrm{ALG\acute{E}BRIQUE}}$ - $\operatorname{Trigonom\acute{e}trie}$ - $\operatorname{Sujet}\,2$

1. Résoudre le système suivant :

$$\begin{cases} x + y + 2z = 0 \\ x + 2y - z = 1 \\ 2x - y + z = 0 \end{cases} S = \left\{ \left(\frac{1}{4}, \frac{1}{4}, -\frac{1}{4} \right) \right\}$$

- **2.** Soit $n \in \mathbb{N}^*$.
- a. Exprimer simplement

$$\sum_{k=1}^{n} \left(k^3 - (k-1)^3 \right)$$

Par télescopage, on a : $\sum_{k=1}^{n} (k^3 - (k-1)^3) = n^3$

b. Développer $(k-1)^3$ et en déduire que

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

La formule du binôme de Newton donne : $(k-1)^3 = k^3 - 3k^2 + 3k - 1$; on a donc :

$$\sum_{k=1}^{n} (k^3 - (k-1)^3) = \sum_{k=1}^{n} (3k^2 - 3k + 1). \text{ On en déduit que } \sum_{k=1}^{n} k^2 = \frac{1}{3} \left(n^3 + 3 \sum_{k=1}^{n} k - \sum_{k=1}^{n} 1 \right) \text{ et donc } \sum_{k=1}^{n} k^2 = \frac{1}{3} \left(n^3 + 3 \frac{n(n+1)}{2} - n \right) = \frac{n(n+1)(2n+1)}{6}$$

c. Calculer

$$\sum_{0 \le i \le j \le n} j$$

$$\sum_{0 \le i \le j \le n} j = \sum_{j=0}^{n} \sum_{i=0}^{j} j = \sum_{j=0}^{n} j(j+1) = \sum_{j=0}^{n} j^2 + \sum_{j=0}^{n} j = \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} = \frac{n(n+1)(n+2)}{3}$$

- **3.** Résoudre dans \mathbb{R} :
 - **a.** $\cos(x) + \sin(2x) = 0 \Leftrightarrow \cos(x) + 2\cos(x)\sin(x) = 0 \Leftrightarrow \cos(x)(1 + 2\sin(x)) = 0$ $\Leftrightarrow \left(\cos(x) = 0 \lor \sin(x) = -\frac{1}{2}\right) \Leftrightarrow x \in \bigcup_{k \in \mathbb{Z}} \left\{\frac{\pi}{2} + k\pi, -\frac{\pi}{6} + 2k\pi, -\frac{5\pi}{6} + 2k\pi\right\}$

b.
$$\cos(x) + \sin(x) = \sqrt{2} \Leftrightarrow \cos\left(x - \frac{\pi}{4}\right) = 1 \Leftrightarrow x \equiv \frac{\pi}{4}[2\pi] \Leftrightarrow x \in \bigcup_{k \in \mathbb{Z}} \left\{\frac{\pi}{4} + 2k\pi\right\}$$

 $\mathbf{c.} \quad |\sin(x)| \leq \frac{1}{2} \quad \Leftrightarrow -\frac{1}{2} \leq \sin(x) \leq \frac{1}{2} \Leftrightarrow x \in \bigcup_{k \in \mathbb{Z}} \left(\left[-\frac{\pi}{6} + 2k\pi, \frac{\pi}{6} + 2k\pi \right] \cup \left[\frac{5\pi}{6} + 2k\pi \frac{7\pi}{6} + 2k\pi \right] \right)$ $\Leftrightarrow x \in \bigcup_{k \in \mathbb{Z}} \left[-\frac{\pi}{6} + k\pi, \frac{\pi}{6} + k\pi \right]. \text{ Ce résultat s'obtient en observant le cercle trigonométrique.}$

4. Résoudre dans $\mathbb R$ les inéquations suivantes :

- a. $1-2x < \sqrt{x^2-x-2}$ Domaine de validité : $D_v =]-\infty, -1] \cup [2, +\infty[$
 - \rightarrow Si $x \ge 2$: l'inégalité est vérifiée car si $x \ge 2$ alors 1 2x < 0 et un nombre strictement négatif est toujours strictement inférieur à un nombre positif.
 - \leadsto Si $x \le -1$: les deux membres de l'inégalité étant positifs, on peut appliquer la fonction "carré" qui est croissante sur \mathbb{R}^+ et l'inéquation équivaut à $3x^2 3x + 3 < 0$ ce qui n'est jamais vérifié car le discriminant est strictement négatif.

Finalement, $S = [2, +\infty[$

$$\mathbf{b.} \quad |2x^2 + x - 2| \le 1 \quad \Leftrightarrow -1 \le 2x^2 + x - 2 \le 1 \Leftrightarrow \begin{cases} 2x^2 + x - 1 \ge 0 \\ \text{et} \\ 2x^2 + x - 3 \le 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x \in]-\infty, -1] \cup \left[\frac{1}{2}, +\infty\right[\\ \text{et} \\ x \in \left[-\frac{3}{2}, 1\right] \end{cases} \Leftrightarrow x \in \left[-\frac{3}{2}, -1\right] \cup \left[\frac{1}{2}, 1\right]$$

c. $\frac{x-1}{m-2} \le x$ où m désigne un paramètre réel différent de 2

$$\frac{x-1}{m-2} \le x \Leftrightarrow \frac{(m-3)x+1}{m-2} \ge 0 \Leftrightarrow \frac{m-3}{m-2}x + \frac{1}{m-2} \ge 0$$

$$\rightsquigarrow$$
 Si $m=3$ $S=\mathbb{R}$

$$\Rightarrow \text{ Si } m \in]-\infty, 2[\cup]3, +\infty[\quad \text{ alors } \quad \frac{m-3}{m-2} > 0 \quad \text{et } S = \left[\frac{1}{3-m}, +\infty\right[$$

$$ightharpoonup ext{Si } m \in]2,3[$$
 alors $\frac{m-3}{m-2} < 0$ et $S = \left] -\infty, \frac{1}{3-m} \right]$