Analysis II Definitions

By Shun (@shun4midx)

Definitions

2-18-25 (Week 1): Riemann-Stieltjes Integrals (Functions of Bounded Variation)

Definition 1.1. Let $I \subseteq \mathbb{R}$ be an interval, $f: I \to \mathbb{R}$ be a function.

- (1) f is non-increasing/decreasing if $f(x) \ge / > f(y) \ \forall x \le y, \ x, y \in I$
- (2) f is non-decreasing/increasing if $f(x) \le / < f(y) \ \forall x \le y, \ x, y \in I$
- (3) f is **monotonic** if (1) or (2) holds

Definition 1.2. Let $f: I \to \mathbb{R}$ be monotonic. For $x \in I$, define:

- The **left limit** at x to be $\underline{f(x-) = \lim_{y < x, y \to x} f(y)}$ if $(x \varepsilon, x) \cap I \neq \emptyset$ for $\varepsilon > 0$ (e.g. we cannot just pick a point at the boundary)
- The **right limit** at x to be $f(x+) = \lim_{y>x, y\to x} f(y)$ if $(x, x+\varepsilon) \cap I \neq \emptyset$ for $\varepsilon>0$

Definition 1.3. Let a < b and $[a, b] \in \mathbb{R}$ be a segment.

- A partition or a subdivision of [a,b] is a finite sequence $P=(x_k)_{0\leq k\leq n}$ s.t. $a=x_0< x_1< \cdots < x_n=b$, where n is the length of P. We denote $\mathrm{Supp}(P):=\{x_k\mid 0\leq k\leq n\}$ as the support of P.
- For a <u>finite subset</u> $A \subseteq [a, b]$ with $a, b \in A$, we may find a partition P of [a, b] s.t. Supp(P) = A. This is called the **partition corresponding to** A.
- We say $[x_{k-1}, x_k]$ is the k^{th} subinterval of P, $\underline{\Delta x_k := x_k x_{k-1}}$, $1 \le k \le n$. Then, we say the mesh size of P is $||P|| := \max_{1 \le k \le n} \Delta x_k$
- Let P, P' be partitions. If $Supp(P) \subseteq Supp(P')$, then we say P' is **finer** than P, and we say $\underline{P \subseteq P'}$. This also implies $||P|| \le ||P'||$.
- Let P_1 , P_2 be partitions. Define their **joint partition** or **smallest comon refinement** to be $\underline{P := P_1 \vee P_2}$, which is the partition P with support = Supp $(P_1) \cup$ Supp (P_2) .
- We denote $\underline{\mathcal{P}([a,b])}$ as the collection of **all** possible partitions of [a,b].

Definition 1.4. Let $f:[a,b]\to\mathbb{R}$ be a function, $P=(x_k)_{0\leq k\leq n}\in\mathcal{P}([a,b])$, define $\Delta f_k:=f(x_k)-f(x_{k-1})$ for $1\leq k\leq n$. Define $V_P(f):=\sum_{k=1}^n|\Delta f_k|$ and $V_f=V_f([a,b])=\sup_{P\in\mathcal{P}([a,b])}V_P(f)\in[0,\infty]$ to be the **total variation** of f. We say that f is of **bounded variation** if $V_P<+\infty$. We write $\mathcal{BV}([a,b])=\mathcal{BV}([a,b],\mathbb{R})$ for the collection of such functions defined on [a,b].

2-20-25 (Week 1): Properties of Bounded Variation

Definition 2.1. Let $f \in \mathcal{BV}$. Define its **variation function** to be $V: [a,b] \longrightarrow \mathbb{R}$

$$x \longmapsto \begin{cases} 0 & \text{if } x = a \\ V_f([a, b]) & \text{if } x \in (a, b] \end{cases}$$

2-25-25 (Week 2): Riemann-Stieltjes Integrals

Definition 3.1. Let $P = (x_k)_{0 \le k \le n} \in \mathcal{P}([a, b])$. For every $1 \le k \le n$, take $t_k \in [x_{k-1}, x_k]$ and write $t = (t_k)_{0 \le k \le n}$. We call (P, t) a **tagged partition**, where t contains **tagged points** of P.

Then, the **R-S sum** of f w.r.t. α for (P,t), is $\underline{S_{P,t}(f,\alpha)} = \sum_{k=1}^n f(t_k) \Delta \alpha_k = \sum_{k=1}^n f(t_k) [\alpha(x_k) - \alpha(x_{k-1})]$. (Notice that t is used for f and x is used for α).

Definition 3.2. The **(RS) condition** is when $\exists L \in \mathbb{R}$, s.t. $\forall \varepsilon > 0$, $\exists \mathcal{P}_{\varepsilon} \in \mathcal{P}([a,b])$, s.t. $\forall P \supseteq \mathcal{P}_{\varepsilon}$, **tagged points** t of P, we have $|S_{P,t}(f,\alpha) - L| < \varepsilon$. If **(RS)** holds, we say f is **R-S integrable**, and define the unique L to be its **integral**, $\int_a^b f d\alpha = \int_a^b f(x) d\alpha(x)$.

Definition 3.3. We write $R(\alpha; a, b) = R(\alpha)$ for the set of **functions** f satisfying **(RS)**.

Example 3.1. KEY CONSTRUCTION EXAMPLE. (What if f and α share the same discontinuities) Let $f, \alpha : [-1, 1] \to \mathbb{R}$ to be $f = \alpha = \mathbb{1}_{x \ge 0}$. Consider a partition $P \in \mathcal{P}([-1, 1])$ with $\underline{x_k = 0}$ for some k. \forall tagged points t of P, $S_{P,t}(f, \alpha) = f(t_k) \Delta \alpha_k = f(t_k) = \boxed{\mathbb{1}_{t_k = x_k = 0}}$. Hence, (RS) does not hold

Definition 3.4. The **(RS') condition** is when $\exists L \in \mathbb{R}$, s.t. $\forall \varepsilon > 0$, $\exists \delta > 0$, s.t. $\forall P \in \mathcal{P}([a,b])$ with $\max_{1 \le k \le n} |x_k - x_{k-1}| = ||P|| < \delta$, any tagged points t, we have $|S_{P,t}(f,\alpha) - L| < \varepsilon$. By def, **(RS')** \Rightarrow **(RS)**.

Example 3.2. Let $f = \mathbbm{1}_{x>0}$, $\alpha = \mathbbm{1}_{x\geq 0}$, $\delta \in (0,1)$ and $P \in \mathcal{P}([0,1])$, s.t. $||P|| < \delta$, then $\exists k$, s.t. $\underline{x_{k-1} = -\frac{\delta}{2}}$, $x_k = \frac{\delta}{2}$. Then, $S_{P,t}(f,\alpha) = f(t_k)[\alpha(x_k) - \alpha(x_{k-1})] = f(t_k) = \boxed{\mathbbm{1}_{t_k>0}}$, which **depends on tagged points**. Here we have **(RS) but not (RS')**

Definition 3.5. For a < b, any bounded $\alpha : [a, b] \to \mathbb{R}$, $f \in R(\alpha; a, b)$, we define $\int_b^a f d\alpha = -\int_a^b f d\alpha$. We also write $R(\alpha; a, b) = R(\alpha; b, a)$. (This is for our convenience in future theorems)

2-27-25 (Week 2): Step Function Integrators

Definition 4.1. Given $\alpha:[a,b]\to\mathbb{R}$, it is a **step function** if $\exists P\in\mathcal{P}([a,b])$, s.t. $\underline{f|_{[x_{k-1},x_k]}}$ is **constant** for $1\leq k\leq n$. We define the **jump** at x_k to be $\underline{\alpha_k:=\alpha(x_k^+)-\alpha(x_k^-)}$, with $\alpha_0:=\overline{\alpha(x_0^+)}-\alpha(x_0)$ and $\alpha_n:=\alpha(x_n)-\alpha(x_n^-)$.

3-4-25 (Week 3): Darboux Summations and Riemann's Condition

Definition 5.1. Let $P \in \mathcal{P}([a,b])$ and define for $1 \leq k \leq n$, $M_k = M_k(f) := \sup\{f(x) \mid x \in [x_{k-1},x_k]\}$ and $m_k = m_k(f) := \inf\{f(x) \mid x \in [x_{k-1},x_k]\}$. We define the **upper and lower Darboux sums** as $U_P(f,\alpha) = \sum_{k=1}^n M_k(f) \Delta \alpha_k$ and $L_P(f,\alpha) = \sum_{k=1}^n m_k(f) \Delta \alpha_k$ (Note, no tagged points are needed for these defs. Also, when $\alpha(x) = x$, these are the upper and lower Riemann sums)

Definition 5.2. Suppose α is **nondecreasing**, then the **upper/lower Stieltjes integrals** of f w.r.t. α are $\overline{I}(f,\alpha) = \overline{\int_a^b} f d\alpha := \inf\{U_P(f,\alpha) \mid P \in \mathcal{P}([a,b])\}$ and $\underline{I}(f,\alpha) = \int_a^b f d\alpha := \inf\{U_P(f,\alpha) \mid P \in \mathcal{P}([a,b])\}$.

Definition 5.3. Let $\alpha:[a,b]\to\mathbb{R}$ be **nondecreasing**. We say f satisfies **Riemann's condition** w.r.t. α on [a,b] if $\forall \varepsilon>0$, exists $P_{\varepsilon}\in\mathcal{P}([a,b])$, s.t. $\forall~P\supset P_{\varepsilon}$, we have $\underline{0\leq U_P(f,\alpha)-L_P(f,\alpha)<\varepsilon}$ (Again, tagged points don't matter here)

3-6-25 (Week 3): Riemann's Condition

Example 6.1. IMPORTANT. The **converse** of $f \in R(\alpha; a, b) \Rightarrow f^2 \in R(\alpha; a, b)$ **does not hold**. Consider over $x \in [0, 1]$, define $f(x) = 2 \cdot \mathbb{I}_{x \notin \mathbb{Q}} - 1$. We have $f^2 \in R(\alpha; a, b)$ but $f \notin R(\alpha; a, b)$.

3-11-25 (Week 4): Fundamental Theorems of Calculus

Definition 7.1. Let $I \subseteq \mathbb{R}$ be an interval, $f, F: I \to \mathbb{R}$ be functions. If $\underline{F'(x) = f(x)} \ \forall x \in \text{int}(I)$, we say F is a **primitive** or **antiderivative** of f.

3-13-25 (Week 4): Integrals Depending on a Parameter and Riemann Integrals

Definition 8.1. Let $S \subseteq \mathbb{R}$ be a subset. We say S has **measure zero** if $\forall \varepsilon > 0$, \exists a **countable** family $\{U_i = (a_i, b_i) \mid i \in I\}$ of open intervals s.t.:

- $S \subseteq \bigcup_{i \in I} (a_i, b_i)$ ("S can be covered by these open intervals")
- The sum of lengths satisfy $\sum_{i \in I} |U_i| = \sum_{i \in I} (b_i a_i) \leq \varepsilon$

where $|U_i| = b_i - a_i$ denotes the length of the open interval U_i for $i \in I$.

3-25-25 (Week 6): Lesbegue's Criterion

Definition 9.1. Let $f:[a,b] \to \mathbb{R}$ be a **bounded** function. For any subset $A \subseteq [a,b]$, define the **oscillation** of f on A to be $\Omega_f(A) := \sup\{f(x) - f(y) \mid x, y \in A\}$.

For $x \in [a, b]$, define the **oscillation** of f at x to be $\omega_f(x) := \lim_{h \to 0^+} \Omega_f(B(x, h) \cap [a, b])$. (The idea is to view the point as an infinitely small ball. Also, $\Omega_f(A)$ has actually appeared before in **Darboux sums**)

3-27-25 (Week 6): Sequences and Series

Definition 10.1. Let $(a_n)_{n\geq 1}$ be a **real-valued sequence**. We say it **converges** to $l \in \mathbb{R}$ if $\forall \varepsilon > 0, \ \exists N \geq 1$, s.t. $|x_0 - l| \leq \varepsilon \ \forall n \geq N$.

Definition 10.2. In a **complete** vector space, to check for convergence, we just need <u>Cauchy's Condition</u>: $\forall \varepsilon > 0, \ \exists N > 0, \ \text{s.t.} \ \forall m, n \geq N, \ |a_m - a_n| < \varepsilon \ (\textit{Good because we don't need to know the limit } l)$

Definition 10.3. Let $(a_n)_{n\geq 1}$ and $(b_n)_{n\geq 1}$ be two real sequences. Here are some asymptotic notations.

- We say a is **dominated** by b, denoted by $a_n = O(b_n)$, if \exists **bounded sequence** $c = (c_n)_{n \ge 1}$ and $N \in \mathbb{N}$, s.t. $a_n = c_n b_n \ \forall n \ge N$
- We say a is **negligible** compared to b, denoted by $a_n = o(b_n)$, if \exists sequence $\varepsilon = (\varepsilon_n)_{n \geq 1}$ that **converges to 0** and $N \in \mathbb{N}$, s.t. $a_n = \varepsilon_n b_n \ \forall n \geq N$
- We say a is **equivalent** to b, i.e. $a_n \sim b_n$, if \exists sequence $c = (c_n)_{n \geq 1}$ that **converges to 1** and $N \in \mathbb{N}$, s.t. $a_n = c_n b_n \ \forall n \geq N$

Definition 10.4. Let $(u_n)_{n>0}$ be a sequence in a normed vector space $(W, ||\cdot||)$

- Define $S_0 := 0$, $S_n = u_1 + \cdots + u_n$ for $n \ge 1$. The series with general term u_n is the sequence $(S_n)_{n\ge 1}$, denoted as $\sum_{n\ge 1} u_n$. This is called the **n-th partial sum** of $\sum u_n$
- We say $\sum u_n$ converges if $(S_n)_{n\geq 0}$ converges in $(W,||\cdot||)$. We denote the limit as $\sum_{n\geq 1}u_n$
- If $\sum_{n\geq 1} u_n$ converges, we define its <u>n-th remainder</u> by $R_n = \sum_{k=1}^{\infty} u_k \sum_{k=1}^n u_k = \sum_{k=n+1}^{\infty} u_k$

Definition 10.5. Given a **Banach space** $(W, ||\cdot||)$, $\sum u_n$ **converges** iff **Cauchy's Criterion** holds, i.e. $\forall \varepsilon > 0, \ \exists N > 0$, s.t. $\forall n \geq N, \forall k \geq 1, \boxed{||u_{n+1} + \cdots + u_{n+k}|| < \varepsilon}$. (This is not the definition, this requires proof, but this is the definition of this useful criterion, so I decided to still put it here!)

Definition 10.6. Suppose $(W, ||\cdot||)$ is a **Banach space**, and let $\sum u_n$ be a series with general terms in W

- If $\sum ||u_n||$ converges, we say the series $\sum u_n$ converges absolutely (Notice, this is conv w/o norm)
- If $\sum u_n$ converges but **not absolutely**, we say $\sum u_n$ converges conditionally