

CBGL: Fast Monte Carlo Passive Global Localisation of 2D LIDAR Sensor

Alexandros Filotheou

Setup & Motivation

Definition 1. The Cumulative Absolute Error per

LIDAR pose $\boldsymbol{p}(x,y,\theta)$ and estimate $\hat{\boldsymbol{p}}(\hat{x}, \hat{y}, \hat{\theta}). \ \boldsymbol{p} - \hat{\boldsymbol{p}} = (\Delta \hat{\boldsymbol{l}}, \Delta \hat{\theta})$

Ray (CAER) metric

1200

800

400

 $\Delta \hat{\theta} \; [\mathrm{rad}]$

0

 $O_{rientation\ error} \Delta \hat{\theta}_{[rad]}$

1.0 1.5

 $\|\Delta \hat{\boldsymbol{l}}\|_2$ [m]

Real $S_R(\mathbf{p})$ and virtual $S_V(\hat{p})$ scans, in the local coordinate frame of each sensor

The gist

The method estimates the pose of a 2D LIDAR given only a single measurement and the map of the environment, while

- being robust against
 - -environment repetitions
 - -map distortions
 - -sensor noise
 - -sensor FOV (radial & angular)
- executing at ≈ 1 sec per 100 m² of environment area
- requiring no parameters to be tuned
- making no assumptions about the environment

because CAER (eq. (1))

- scales with position and orientation error
- computationally cheap O(sensor rays)

Experiments with real and synthetic data

ALS [1] 0.500 1.956	Time [sec]
CBGL 0.041 0.011	6.15 1.61

[1] Naoki Akai, "Reliable Monte Carlo Localization for Mobile Robots" Journal of Field Robotics, 2023