

DATA VISUALIZATION WITH GGPLOT2

Statistics with Geoms

ggplot2, course 2

- Statistics
- Coordinates
- Facets
- Themes
- Data Visualization Best Practices
- Case Study: California Health Information Survey

Statistics Layer

- Two categories of functions
 - Called from within a geom
 - Called independently
- stat_


```
> p <- ggplot(iris, aes(x = Sepal.Width))
> p + geom_histogram()
```



```
> p <- ggplot(iris, aes(x = Sepal.Width))
> p + geom_histogram()
> p + geom_bar()
```



```
> p <- ggplot(iris, aes(x = Sepal.Width))
> p + geom_histogram()
> p + geom_bar()
> p + stat_bin()
```


grouping by fill

```
> ggplot(mtcars, aes(x = factor(cyl), fill = factor(am))) +
    geom_bar()
> ggplot(mtcars, aes(x = factor(cyl), fill = factor(am))) +
    stat_bin()
```


stat_

stat_bin()

geom_

geom_histogram()

geom_bar()

geom_freqpoly()


```
stat_bin()
> ggplot(mtcars, aes(x = mpg)) +
    geom_histogram(fill = "skyblue") +
    geom_freqpoly(col = "red")
stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
```


stat_	geom_
stat_smooth()	geom_smooth()

> ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, col = Species)) +
 geom_point()

stat_	geom_	
stat_smooth()	geom_smooth()	

```
> ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, col = Species)) +
    geom_point() +
    geom_smooth()
```


stat_	geom_
stat_smooth()	geom_smooth()

```
> ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, col = Species)) +
        geom_point() +
        geom_smooth(se = FALSE)
geom_smooth: method="auto" and size of largest group is <1000, so using
loess. Use 'method = x' to change the smoothing method.</pre>
```


stat_	geom_	
stat_smooth()	geom_smooth()	

```
> ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, col = Species)) +
    geom_point() +
    geom_smooth(se = FALSE, span = 0.4)
```


stat_	geom_
stat_smooth()	geom_smooth()

```
> ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, col = Species)) +
    geom_point() +
    geom_smooth(method = "lm")
```


stat_	geom_	
stat_smooth()	geom_smooth()	

```
> ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, col = Species)) +
    geom_point() +
    geom_smooth(method = "lm", se = FALSE)
```


stat_	geom_
stat_smooth()	geom_smooth()

```
> ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, col = Species)) +
    geom_point() +
    geom_smooth(method = "lm", fullrange = TRUE)
```


Other stats_functions

stat_	geom_
stat_bin()	geom_histogram()
stat_bin()	geom_bar()
stat_bin() geom_freqp	
stat_smooth()	geom_smooth()
stat_boxplot()	geom_boxplot()
stat_bindot()	geom_dotplot()
stat_bin2d() geom_bin2d(
stat_binhex()	geom_hex()
stat_contour() geom_contou	
stat_quantile() geom_quantile	
stat_sum()	geom_count()

DATA VISUALIZATION WITH GGPLOT2

Let's practice!

DATA VISUALIZATION WITH GGPLOT2

Statistics outside Geoms

Basic Plot

```
> ggplot(iris, aes(x = Species, y = Sepal.Length)) +
    geom_point(position = position_jitter(0.2))
```


Calculating Statistics

```
> set.seed(123)
> xx <- rnorm(100)
> mean(xx)
[1] 0.09040591
> mean(xx) + (sd(xx)*c(-1, 1))
[1] -0.822410 1.003222
> library(Hmisc)
> smean.sdl(xx, mult = 1)
     Mean Lower
                            Upper
 0.09040591 - 0.82240997 1.00322179
```


Calculating Statistics


```
> ggplot(iris, aes(x = Species, y = Sepal.Length)) +
    stat_summary(fun.data = mean_sdl, fun.args = list(mult = 1))
```

uses geom_pointrange() by default

NOT RECOMMENDED!

95% Confidence Interval

```
> ERR \leftarrow qt(0.975, length(xx) - 1) * (sd(xx) / sqrt(length(xx)))
> mean(xx) + (ERR* c(-1, 1)
[1] -0.09071657 0.27152838
> # Hmisc
> smean.cl.normal(xx)
      Mean Lower Upper
0.09040591 - 0.09071657 0.27152838
> # ggplot2
> mean_cl_normal(xx)
             ymin ymax
1 0.09040591 -0.09071657 0.2715284
```



```
> ggplot(iris, aes(x = Species, y = Sepal.Length)) +
    stat_summary(fun.data = mean_cl_normal, width = 0.1)
```

use any function, as long as output has expected format

Other stat_functions

stat_	description
stat_summary()	Summarise y values at distinct x values
stat_function() Compute y values from a function of x values	
stat_qq()	Perform calculations for a quantile-quantile plot

MASS::mammals

Normal distribution

QQ plot

DATA VISUALIZATION WITH GGPLOT2

Let's practice!