Capítulo 9: Química Nuclear

- 9.1- Natureza das reacções nucleares
- 9.2- Estabilidade nuclear
- 9.3- Radioactividade natural
- 9.4- Transmutação nuclear
- 9.5- Cisão nuclear e fusão nuclear
- 9.6- Aplicação de isótopos
- 9.7- Efeitos biológicos da radiação

9.1- Natureza das reacções nucleares

Com excepcção do ¹/₁ **H**, todos os núcleos contêm dois tipos de partículas fundamentais: os protões e os neutrões.

Todos os elementos com número atómico superior a 83 são radioactivos.

Radioactividade: emissão espontânea de partículas, de radiação electromagnética ou de ambas.

Principais tipos de radiação:

- partículas α (ou núcleos de He com duas cargas: He²⁺);
- partículas β (ou electrões);
- raios γ (ondas electromagnéticas de comprimento de onda muito pequeno:
- : 0,1 nm a 10⁻⁴ nm);
- emissão de positrão
- captação de electrões

Número atómico (Z) = número de protões no núcleoNúmero de massa (A) = número de protões + número de neutrões= número atómico (Z) + número de neutrões

	protão	neutrão	electrão	positrão	partícula $lpha$
	¹ p ou ¹ H	¹ n	$_{-1}^{0}$ e ou $_{-1}^{0}\beta$	$_{+1}^{0}$ e ou $_{+1}^{-0}\beta$	${}^4_2\mathrm{He}$ ou ${}^4_2\alpha$
Α	1	1	0	0	4
Z	1	0	–1	+1	2

Acerto de Equações Nucleares

1. Conservação do número de massa (A).

O número total de protões mais neutrões nos produtos e nos reagentes deve ser o mesmo.

$$^{235}_{92}U + ^{1}_{0}n \longrightarrow ^{138}_{55}Cs + ^{96}_{37}Rb + 2^{1}_{0}n$$

$$^{235}_{92}U + ^{1}_{0}n \longrightarrow ^{138}_{55}Cs + ^{96}_{37}Rb + 2^{1}_{0}n$$

2. Conservação do número atómico (Z) ou carga nuclear.

O número total de cargas nucleares nos produtos e nos reagentes deve ser o mesmo.

$$^{235}_{92}U + ^{1}_{0}n \longrightarrow ^{138}_{55}Cs + ^{96}_{37}Rb + 2^{1}_{0}n$$

$$92 + 0 = 55 + 37 + 0$$

²¹²Po desintegra-se através de emissão alfa. Escreva a equação nuclear acertada da desintegração.

partícula alfa –
$${}_{2}^{4}$$
He ou ${}_{2}^{4}\alpha$

$$^{212}_{84}$$
Po \longrightarrow $^{4}_{2}$ He + $^{A}_{Z}$ X

$$84 = 2 + Z$$
 $Z = 82$

$$^{212}_{84}$$
Po $\longrightarrow {}^{4}_{2}$ He + $^{208}_{82}$ Pb

Comparação de Reacções Químicas e de Reacções Nucleares

Reacções Químicas

- Os átomos são reagrupados pela ruptura e formação de ligações químicas.
- Apenas estão envolvidos os electrões das orbitais atómicas ou moleculares na ruptura e na formação de ligações.
- As reacções são acompanhadas da absorção ou libertação de pequenas quantidades de energia.
- As velocidades das reacções são influenciadas pela temperatura, pela pressão, pela concentração e pela catálise.

Reacções Nucleares

- Os elementos (ou isótopos do mesmo elemento) são convertidos um no outro.
- Podem estar envolvidos os protões, os neutrões, os electrões e outras partículas elementares.
- As reacções são acompanhadas da absorção ou libertação de grandes quantidades de energia.
- As velocidades das reacções normalmente não são afectadas pela temperatura, pela pressão ou pela catálise.

9.2- Estabilidade nuclear e Desintegração Radioactiva

Emissão partículas beta

$${}^{14}_{6}C \longrightarrow {}^{14}_{7}N + {}^{0}_{-1}\beta -$$

$${}^{40}_{19}K \longrightarrow {}^{40}_{20}Ca + {}^{0}_{-1}\beta -$$

$${}^{1}_{0}n \longrightarrow {}^{1}_{1}p + {}^{0}_{-1}\beta -$$

Emissão de positrão

$${}^{11}_{6}C \longrightarrow {}^{11}_{5}B + {}^{0}_{+1}\beta + v$$

$${}^{38}_{19}K \longrightarrow {}^{38}_{18}Ar + {}^{0}_{+1}\beta$$

$${}^{1}_{1}p \longrightarrow {}^{1}_{0}n + {}^{0}_{+1}\beta$$

Captura eletrónica

$$^{37}_{18}Ar + ^{0}_{-1}e \longrightarrow ^{37}_{17}CI + v$$

$${}^{55}_{26}$$
Fe + ${}^{0}_{-1}$ e $\longrightarrow {}^{55}_{25}$ Mn + ν

$$_{1}^{1}p + _{-1}^{0}e \longrightarrow _{0}^{1}n + v$$

Emissão partículas alfa

$${}^{212}_{84}$$
Po $\longrightarrow {}^{4}_{2}$ He + ${}^{208}_{82}$ Pb

Diminuição do n.º de neutrões por 2

Diminuição do n.º de protões por 2

Cisão espontânea

252
Cf \longrightarrow 2^{125}_{49} In + 2^{1}_{0} n

Estabilidade Nuclear

- Determinados números de neutrões e protões têm estabilidade extra
 - n ou p = 2, 8, 20, 50, 82 e 126

Como os números extra estáveis de electrões nos gases nobres $(e^- = 2, 10, 18, 36, 54 e 86)$

- Núcleos com números pares de protões e neutrões são mais estáveis do que os que com números ímpares.
- Todos os isótopos dos elementos com números atómicos superiores a 83 são radioactivos
- Todos os isótopos de Tc e Pm são radioactivos

23.2	Números de Isótopos Estáveis com Números Pares e Ímpares de Protões e de Neutrões		
⋖	Protões	Neutrões	Número de Isótopos Estáveis
TABEL	Ímpar	Ímpar	004
Α	Ímpar	Par	050
-	Par	Ímpar	053
	Par	Par	164

Energia de ligação nuclear (EL): energia necessária para separar o núcleo nos seus protões e neutrões.

Expressa a conversão de massa em energia, que ocorre durante uma reacção extérmica.

Provém de estudos das propriedades nucleares que mostram que as massas dos núcleos são sempre inferiores à soma das massas dos nucleões.

Defeito de massa = diferença entre a massa de um átomo e a soma das massas dos seus protões, neutrões e electrões

Massa
$${}^{19}_{9}$$
F = 18.9984

massa¹⁹F - [9 x (massa
$$p$$
) + 10 x (massa n)]

A Teoria da Relatividade diz que a perda de massa aparece como energia (calor) libertado para a vizinhança.

De acordo com a relação de equivalência massa-energia de Einstein:

$$E = mc^2$$

E = energia

m= massa

C = velocidade da luz

Podemos calcular a quantidade de energia libertada:

$$\Delta E = (\Delta m)c^2$$

$$\Delta m = 18.9984 - 19,15708 = -0.1587 u$$

$$\Delta E = (-0.1587 \text{ u}) \times (3,00 \times 10^8 \text{ m/s})^2 = -1,43 \times 10^{16} \text{ um}^2/\text{s}^2$$

Com os factores de conversão:

Obtemos:

1 Kg =
$$6,0022x10^{26}$$
 u
1 J = 1Kg m²/s²

$$\Delta E = -2,37 \times 10^{-11} J$$

Esta é a quantidade de energia libertada quando se forma um um núcleo de ¹⁹ F a partir de 9 protões e 10 neutrões.

A **Energia de Ligação Nuclear** é de 2,37 x10¹¹J: quantidade de energia necessária para decompor o núcleo em protões e neutrões.

Na formação de 1 mole de núcleos de Fluor a energia libertada é:

$$\Delta E = (-2.37 \times 10^{-11} \text{J}) \times (6.022 \times 10^{23} / \text{mol}) = -1.43 \times 10^{10} \text{ KJ/mol}$$

A energia de ligação nuclear é portanto **1,43 x10**¹⁰ **KJ**, para uma mole de núcleos de F o que representa uma quantidade extremamente grande quando consideramos que as as entalpias das reacções químicas normais são da ordem de apenas **200 KJ**.

A Energia de Ligação Nuclear é uma indicação da estabilidade de um núcleo.

Contudo ao compararmos a estabilidade de dois núcleos temos que ter em conta que possuem números de nucleões diferentes.

Devemos por isso usar a <u>Energia de Ligação por Nucleão</u> que nos permite comparar a energia de todos os núcleos tendo uma base comum.

Exemplo: núcleo de ¹⁹**F**:

Energia de Ligação por Nucleão:
$$2,37 \times 10^{-11} \text{ J} = 1,25 \times 10^{-12} \text{ J} / \text{nucleão}$$
19 nucleões

Os núcleos que estão for a da faixa de estabilidade bem como os núcleos com mais de 83 protões tendem a ser instáveis.

Energia de ligação nuclear por nucleão vs. número de massa

energia de ligação nuclear estabilidade nuclear

9.3- Radioactividade natural

A desintegração de um núcleo radioactivo é por vezes o início de uma série de decaimentos radioactivos, que é uma sequência de reacções nucleares que no final resultam na formação do isótopo mais estável.

Cinética do decaimento radioactivo

Todos os decaimentos radioactivos seguem uma <u>cinética de</u> <u>primeira ordem</u> e o tempo de meia-vida correspondente é dado por:

$$t_{1/2} = 0.693 / \lambda$$

Os tempos de meia-vida variam bastante de isótopo para isótopo:

$$^{238}_{92}$$
 U $\xrightarrow{}$ $^{234}_{90}$ Th + $^{4}_{2}\alpha$ t $_{1/2}$ = 4,51 x 10⁹ anos

²¹⁴ Po
$$\longrightarrow$$
 ²¹⁰Pb + ${}^{4}_{2}\alpha$ t ${}_{1/2}$ = 1,6 x 10⁻⁴ s

Datação:os tempos de meia-vida de certos isótopos têm sido usados Como "relógios atómicos" para determinar a idade de certos "objectos".

Datação pelo Radiocarbono:

$$^{14}_{7}N + ^{1}_{0}n \longrightarrow ^{14}_{6}C + ^{1}_{1}H$$

$$^{14}_{6}C \longrightarrow ^{14}_{7}N + ^{0}_{-1}\beta + \nabla$$

O isótopo C-14 é obtido quando o nitrogénio atómico é bombardeado por raios cósmicos.

$$t_{1/2}$$
 = 5730 anos

Datação pelo Urânio-238

$$^{238}_{92}U \longrightarrow ^{206}_{82}Pb + 8^{4}_{2}\alpha + 6^{0}_{-1}\beta$$

$$t_{1/2}$$
 = 4,51 x 10⁹ anos

9.4- Transmutação nuclear

Radioactividade artificial: difere do decaimento radioactivo pelo facto de ser provocada pelo choque de duas partículas.

Rutherford em 1919 bombardeou uma amostra de N com partículas α:

$$^{14}_{7}N + ^{4}_{2}\alpha \longrightarrow ^{17}_{8}O + ^{1}_{1}p$$

Produziu-se um isótopo do O-17 com emissão de um protão

A reacção pode ser abreviada como:

$$^{14}_{7}N$$
 $(\alpha, p)^{17}_{8}O$

Outro exemplo:

$$^{27}_{13}AI + ^{4}_{2}\alpha \longrightarrow ^{30}_{15}P + ^{1}_{0}n$$

Transmutação Nuclear

Os Elementos Transuranianos			
Número Atómico	Nome	Símbolo	Preparação
093	Neptúnio	Np	$^{238}_{92}\text{U} + ^{1}_{0}\text{n} \longrightarrow ^{239}_{93}\text{Np} + ^{0}_{-1}b$
094	Plutónio	Pu	$^{239}_{93}\text{Np} \longrightarrow ^{239}_{94}\text{Pu} + ^{0}_{-1}b$
095	Amerício	Am	$^{239}_{94}$ Pu + $^{1}_{0}$ n \longrightarrow $^{240}_{94}$ Am + $^{0}_{-1}$ b
096	Cúrio	Cm	$^{239}_{94}$ Pu + $^{4}_{2}a \longrightarrow ^{242}_{96}$ Cm + $^{1}_{0}n$
097	Berquélio	Bk	$^{241}_{95}$ Am + $^{4}_{2}a \longrightarrow ^{243}_{97}$ Bk + $^{1}_{0}$ n
098	Califórnio	Cf	${}^{242}_{96}\text{Cm} + {}^{4}_{2}a \longrightarrow {}^{245}_{98}\text{Cf} + {}^{1}_{0}n$
099	Einsteinio	Es	$^{238}_{92}\text{U} + 15^{1}_{0}\text{n} \longrightarrow ^{253}_{99}\text{Es} + 7^{0}_{-1}b$
100	Férmio	Fm	$^{238}_{92}\text{U} + 17^{1}_{0}\text{n} \longrightarrow ^{255}_{100}\text{Fm} + 8^{0}_{1}b$
101	Mendelévio	Md	$^{253}_{99}\text{Es} + {}^{4}_{2}a \longrightarrow {}^{256}_{101}\text{Md} + {}^{1}_{0}\text{n}$
102	Nobélio	No	${}^{246}_{96}\text{Cm} + {}^{12}_{6}\text{C} \longrightarrow {}^{254}_{102}\text{No} + 4{}^{1}_{0}\text{n}$
103	Laurêncio	Lr	${}^{252}_{98}\text{Cf} + {}^{10}_{5}\text{B} \longrightarrow {}^{253}_{103}\text{Lr} + 5{}^{1}_{0}\text{n}$
104	Ruterfórdio	Rf	${}^{249}_{98}\text{Cf} + {}^{12}_{6}\text{C} \longrightarrow {}^{257}_{104}\text{Rf} + 4{}^{1}_{0}\text{n}$
105	Dúbnio	Db	${}^{249}_{98}\text{Cf} + {}^{15}_{7}\text{N} \longrightarrow {}^{260}_{105}\text{Db} + 4{}^{1}_{0}\text{n}$
106	Sibórgio	Sg	${}^{249}_{98}\text{Cf} + {}^{18}_{8}\text{O} \longrightarrow {}^{263}_{106}\text{Sg} + 4{}^{1}_{0}\text{n}$
107	Bóhrio	Bh	$^{209}_{83}$ Bi + $^{54}_{24}$ Cr \longrightarrow $^{266}_{107}$ Bh + $^{1}_{0}$ n
108	Hássio	Hs	$^{208}_{82}\text{Pb} + ^{58}_{26}\text{Fe} \longrightarrow ^{265}_{108}\text{Hs} + ^{1}_{0}\text{n}$
109	Meitnério	Mt	$^{209}_{83}$ Bi + $^{58}_{26}$ Fe \longrightarrow $^{266}_{109}$ Mt + $^{1}_{0}$ n

9.5- Cisão nuclear

Processo no qual um núcleo pesado (com número de massa > 200) se divide para formar núcleos menores com massas intermédias e um ou mais neutrões.

Como o núcleo pesado é menos estável do que os núcleos que gera este processo liberta uma grande quantidade de energia.

Energia = [massa 235 U + massa n – (massa 90 Sr + massa 143 Xe + 3 x massa n)] x c^2

Energia =
$$3.3 \times 10^{-11} \text{J por}^{235} \text{U} = 2.0 \times 10^{13} \text{ J por mole}^{235} \text{U}$$

Combustão de 1 ton de carvão = 5 x 10⁷ J

Cisão Nuclear

O aspecto significativo da cisão do **Urânio-235** não é apenas a enorme quantidade de energia libertada mas também por se produzirem mais neutrões do que os que são capturados no processo. O que origina a possibilidade de uma **reacção nuclear em cadeia.**

Massa crítica - massa mínima de material cindível necessária para gerar uma reacção nuclear em cadeia auto-sustentável.

Aplicações:*i)* bomba atómica;*ii)* obtenção de electricidade usando o calor da reacção nuclear em cadeia (os reactores nucleares fornecem 20% da energia eléctrica nos EUA).

Subcrítica

Fusão Nuclear- combinação de núcleos pequenos originando núcleos maiores.

Reacção	de Fusão
² H + ² H —	$\rightarrow {}_{1}^{3}H + {}_{1}^{1}H$

$$6,3 \times 10^{-13} \text{ J}$$

$${}_{1}^{2}H + {}_{1}^{3}H \longrightarrow {}_{2}^{4}He + {}_{0}^{1}n$$

$$2.8 \times 10^{-12} \text{ J}$$

$${}_{3}^{6}\text{Li} + {}_{1}^{2}\text{H} \longrightarrow 2 {}_{2}^{4}\text{He}$$

$$3,6 \times 10^{-12} J$$

A fusão nuclear ocorre constantemente no sol.

O Sol é constituído essencialmente por **H** e **He**. No seu interior as temperaturas atingem cerca de 15 milhões de graus celsius.

Como as **reacções de fusão** ocorrem geralmente a temperaturas muito elevadas são denominadas **reacções termonucleares**.

Aplicação: Fonte de energia promissora.

9.6- Aplicação de isótopos

Isótopos Radioactivos na Medicina

- 1 em cada 3 doentes hospitalizado beneficiará de um procedimento médico nuclear
- 24 Na, $t_{1/2}$ = 14,8 h, emissor β , controlo do fluxo sanguíneo
- 131 I, $t_{1/2}$ = 8 d, emissor β , actividade da tiróide
- 123 I, $t_{1/2}$ = 13,3 h, emissor de raios γ , imagens do cérebro
- 18 F, $t_{1/2}$ = 1,8 h, emissor β^+ , tomografia por emissão de positrões
- 99m Tc, $t_{1/2} = 6$ hr, emissor de raios γ , obtenção de imagens

Imagens do cérebro obtidas com um composto marcado com ¹²³I.

Contador Geiger

9.7- Efeitos biológicos da radiação

Depende da parte do corpo irradiada e também do tipo de radiação. Por isso o rad é muitas vezes multiplicado porum factor chamado RBE (relative biological effectiveness).

Unidade para a dose de radiação absorvida:

Radiação absorvida dose (rad): 1 rad = 1 x 10^{-5} J/g de material

Roentgen equivalent for man (rem): 1 rem = 1 rad x RBE

9	Doses de Radiação Médias Anuais para os Americanos		
23.6			
٩	Fonte	Dose (mrem*/ano)	
TABEL	Raios cósmicos	20-50	
AE	Solo e vizinhança	25	
-	Corpo humano**	26	
	Raios X medicinais e dentista	50-75	
	Viagens aéreas	5	
	Descarga de testes nucleares	5	
	Resíduos nucleares	2	
	Total	133-188	

 α -têm o menor poder de penetração

 γ -têm o maior poder de penetração: λ pequenos e energias elevadas e como não têm carga não podem ser detidas tão facilmente por materiais de protecção tais como as partículas α e β .

^{* 1} mrem = 1 milirem = 1×10^{-3} rem.

^{**} A radioactividade no corpo provém dos alimentos e do ar.

A Irradiação de Alimentos

Doses de Irradiação de Alimentos e os seus Efeitos*

Dose	Efeito
Dose baixa [Até 100 krad (1 kGy)]	Inibe o grelar das batatas, nas cebolas e nos alhos.
	Inactiva os embriões de lombriga na carne de porco
	Mata ou impede a reprodução de insectos nos cereais, na fruta e nos vegetais após a colheita.
Dose média [100-1000 krad (1-10 Gy)]	Atrasa o estragar da carne, das aves e do peixe matando os micro- organismos responsáveis pela deterioração.
	Reduz a salmonela e outros patogéneos gerados nos alimentos: na carne, no peixe e nas aves.
	Prolonga o tempo de prateleira atrasando o crescimento de bolores em morangos e algumas outras frutas.
Dose alta [1000 a 10000 krad (10 a 100 Gy)]	Esteriliza a carne, as aves, o peixe e alguns outros alimentos.
	Mata os microorganismos e insectos nas especiarias e nos temperos.

^{*} Fonte: Chemical & Engineering News, 5 de Maio de 1986.