Language Models are Open Knowledge Graphs²

Chenguang Wang¹, Xiao Liu², and Dawn Song¹

¹ University of California, Berkeley
² Tsinghua University

Outline

- Match & Map (MaMa) Approach Match Stage Map Stage
- S Experimental Results

- This work presents an unsupervised approach for the task of recovery of factual knowledge stored in pre-trained language models (LMs) (GPT-2/3, BERT) to construct knowledge graphs (KGs).
- KG constructed with a single forward pass of a pre-trained LMs (no fine-tuning) over a textual corpus.
- Two-stage approach, referred as Match & Map (MaMa):
 - 1 Match: Generate candidate facts by matching of facts in the textual corpus with those in the LM.
 - **2** Map: Generates an *Open* KG by mapping of matched candidate facts to fixed as well as open KG schemas.

Match & Map (MaMa) Approach

Outline

- Match & Map (MaMa) Approach Match Stage Map Stage
- 3 Experimental Results

Match Stage

- Generates candidate facts from a textual corpus.
- Leverages General and World Knowledge from large-scale corpora embedded in LMs.
- Goal: match knowledge stored in LMs with facts in the corpus.
- Facts represented as a triplet: (head, relation, tail), matched via an efficient beam search in the attention weight matrices of the LM.

Beam Search

- Builds the corresponding facts between entities for every entity pair (h,t) in a sentence.
- Search maintains k-best matched candidate facts, determined by an associated matching degree computed using attention weights.
- Effectively performs one of three actions:
 - **1) START**: Search from head h, adding as initial candidate.
 - **2 YIELD**: Add new intermediate candidate, based on next largest attended token. 'x' marks prior tokens not considered in search.
 - **3 STOP**: Search reached tail t, implying addition of candidate as a valid candidate fact.
- Algorithm is run in bidirectional manner to compensate for facts in reverse.

Beam Search

Step	Action	Intermediate candidates	Matching degrees
0	START	(Dylan,	0
1	YIELD	(Dylan, is	0.3
2	YIELD	(Dylan, is songwriter	0.7
3	STOP	(Dylan, is, songwriter)	0.7

(a) Matching example.

	_{Query:} Dylan	is	a	songwri	tei
<i>Key:</i> Dylan	×	x	×	х	
is	0.3	×	×	x	
a	0.1	0.2	×	х	
songwriter	0.1	0.4	0.2	x	

(b) Attention matrix for matching degree calculation.

⁸Wang, Liu, and Song 2020.

Filter

Following matching, facts of form (h, r, t) filtered as per useful constraints:

- **1** Matching Degree of (h, r, t) lies above a threshold.
- 2 Distinct frequency of r is above a threshold.
- **3** Relation r is a contiguous sequence in the sentence.

Map Stage

- Produces an open KG using matched candidate facts.
- Mapping to both fixed and open schema: based on existence of schema of candidate facts into an existing KG.
- Open KG comprises of mapped and unmapped facts corresponding to fixed and open schema:
 - $\textbf{0} \ \, \mathsf{Mapped:} \ \, (Dylan, is, songwriter) \ \, \mathsf{mapped} \ \, \mathsf{to} \\ (BobDylan.Q392, occupation.P106, Songwriter.Q753110) \ \, \mathsf{as} \ \, \mathsf{per} \ \, \mathsf{Wikidata} \ \, \mathsf{schema}.$
 - 2 Unmapped: (Dylan, signed, AlbertGrossman) partially mapped to (BobDylan.Q392, sign, AlbertGrossman.Q708584) in open schema.
- Mapping to fixed KG schema achieved by entity linking of (h,t) to (h_k,t_k) and relation mapping of (h_k,r,t_k) to (h_k,r_k,t_k) .

Outline

- Match & Map (MaMa) Approach Match Stage Map Stage
- 3 Experimental Results

Experiments and Results

Method	Precision %	Recall%	F1%
OpenIE 5.1 ²	56.98	14.54	23.16
Stanford OpenIE (Angeli et al., 2015)	61.55	17.35	27.07
MAMA-BERT _{BASE} (ours)	61.57	18.79 _	$\bar{28.79}$
MAMA-BERT _{LARGE} (ours)	61.69	18.99	29.05
MAMA-GPT-2 (ours)	61.62	18.17	28.07
$MAMA$ -GPT- 2_{MEDIUM} (ours)	62.10	18.65	28.69
$MAMA$ -GPT- 2_{LARGE} (ours)	62.38	19.00	29.12
MAMA-GPT-2 _{XL} (ours)	62.69	19.47	29.72

Table 2: Compare the quality of mapped facts on TAC KBP.

Method	Precision %	Recall %	F1%
Stanford OpenIE (Angeli et al., 2015)	23.32	13.09	16.77
MAMA-BERT _{LARGE} (ours)	29.52	16.56	21.22
MaMa-GPT-2 _{XL} (ours)	31.32	17.42	22.39

Table 3: Compare the quality of mapped facts on Wikidata.

Observations

- Generation of improved KGs compared to Stanford OpenIE, with better precision but moderate recall.
- Larger/Deeper LMs produce higher quality KGs
- Significant factor of unmapped facts are due to incorrect/missing entity linking and incorrect relation mapping.

Percentage
k) 33.1%
24.8%
23.8%
18.3%

Table: Percentage of contribution to precision errors in a sample of 100 documents

Parameter Study

- Larger beam size yields better F1 scores over held-out data.
- Larger matching degree threshold and larger distinct relation threshold decreases F1 scores.
- Attention weights of last layer work better than averaged weights.
- For reduction across multi-heads, mean reduction proved better performant.

Bibliography

Wang, Chenguang, Xiao Liu, and Dawn Song (2020). "Language Models are Open Knowledge Graphs". In: *CoRR* abs/2010.11967. arXiv: 2010.11967. URL: https://arxiv.org/abs/2010.11967.