MA Quant II Midterm Revision^a

Felipe Balcazar

NYU

March 17, 2021

^aThanks to Pedro L. Rodríguez

What are we doing?

- Observe the world.
- ▶ Intuit a relationship between Y and $X = (X_1, X_2, ..., X_p)$.

$$Y = f(X) + \epsilon$$

- ightharpoonup Y = systematic component (S) + random error term (E)
- S: systematic information that X provides about Y.
- E: random error term with mean 0 and independent of X.
- ► Task: estimate *f* using random samples from the population.

Why are we doing it?

1. Prediction:

- $\hat{Y} = \hat{f}(X)$
- Note: \hat{f} is an estimate of f.
- $Y \hat{Y} = f(x) + \epsilon \hat{f}(X) = (f(X) \hat{f}(X)) + \epsilon$
- prediction error = reducible error + irreducible error

2. Inference:

- ▶ Draw conclusions about the true model from observed data.
- ▶ Understand relationship between Y and $X = (X_1, X_2, ..., X_p)$.
- ightharpoonup Ex. How does Y change if we vary X_1 .

How do we estimate f?

There are many methods. All boil down to:

- 1. Sample data (preferably random).
- 2. Use sampled data to estimate f.

Two approaches:

- 1. Parametric:
 - \blacktriangleright Make assumptions on the functional form of f.
 - Estimate parameters using training data.
- Non-Parametric:
 - Don't rely on assumptions about f.
 - Often times more accurate but less interpretable.

Ordinary Least Squares (OLS)

- Parametric.
- Functional form: linear.

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_p x_{pi} + \epsilon_i$$

Estimation method: minimize residual sum of squares (RSS).

$$RSS = e_1^2 + e_2^2 + \dots + e_n^2$$

where
$$e_i = y_i - \hat{y}_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \hat{\beta}_2 x_{2i} + ... + \hat{\beta}_p x_{pi})$$

True model vs. Fitted model

- Fitted model is an approximation of the true model.
- ▶ Formally: $f(x) \neq \hat{f}(x)$ but hopefully $f(x) \approx \hat{f}(x)$
- ▶ Moreover: $\epsilon \neq e$
- ▶ English: the error term \neq residual.
- ► Recall: $Y \hat{Y} = f(x) + \epsilon \hat{f}(X) = (f(X) \hat{f}(X)) + \epsilon$
- prediction error = reducible error + irreducible error
- ightharpoonup residual = reducible error + ϵ
- ▶ Also important: estimator \neq estimate.
- Estimator = method of estimation (ex. OLS).
- Estimate = result of applying an estimator to a given sample.

Fitted values, residuals and coefficients

▶ We believe:
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$$

We estimate:
$$\hat{\beta}_0$$
, $\hat{\beta}_1$, $\hat{\beta}_2$

Fitted values:
$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2$$

Fitted values:
$$\hat{Y} = \beta_0 + \beta_1 \hat{X}_1 + \beta_2 \hat{X}_1$$

Residual: $\hat{Y} - \hat{Y}$

How does a unit change in X_1 affect Y (ceteris paribus)?

$$(\hat{\beta}_0 + \hat{\beta}_1 X_{1_2} + \hat{\beta}_2 X_2) - (\hat{\beta}_0 + \hat{\beta}_1 X_{1_1} + \hat{\beta}_2 X_2)$$

$$= \hat{\beta}_1 X_{1_2} - \hat{\beta}_1 X_{1_1} = \hat{\beta}_1 (X_{1_2} - X_{1_1}) = \hat{\beta}_1 * 1$$

Properties of OLS estimators

These are algebraic facts of OLS, not assumptions.

- 1. $\bar{Y} = \hat{\beta}_1 + \hat{\beta}_2 \bar{X}$
- $2. \ \hat{\hat{Y}} = \bar{Y}$
- 3. $\bar{e}_i = 0$
- 4. $\rho(e_i, \hat{Y}_i) = 0$
- 5. $\rho(e_i, \hat{X}_i) = 0$

English:

- 1. Regression line passes through means of sample values (\bar{X}, \bar{Y})
- 2. Mean of the predicted values = mean of the observed values
- 3. Sample mean of the residuals = 0
- 4. Correlation between residuals and predicted values of Y=0
- 5. Correlation between residuals and observed values of X=0

Gaus Markov Assumptions

Assumptions about the true model necessary to make inferences.

- 1. $E[(u_i|X_i)] = 0$
- 2. $Cov(u_i, u_i) = 0 \ \forall i \neq j$
- 3. $Var(u_i|X_i) = \sigma^2 \ \forall i$
- 4. $Cov(u_i, X_i) = 0 \ \forall i$
- 5. $Y = \beta X + \epsilon$

English:

- 1. For any value of X the disturbances average out to 0
- 2. The disturbance term is independent across observations
- 3. The variance of the disturbance term is the same for all i
- 4. The disturbances are exogenous
- 5. The regression model is properly specified

Normality assumption

To make inferences on the coefficient estimates we assume:

$$\epsilon_i \sim N(0, \sigma^2)$$

From this assumption it follows that:

$$\hat{eta}_{p} \sim N(eta_{p}, \sigma_{\hat{eta}_{p}})$$

This assumption allows us to perform hypotheses test.

Elements of a statistical test:

- 1. Null hypothesis, H_0 .
 - ► Ex. $H_0: \beta_1 = 0$
 - ▶ English: there is no relationship between Y and X_1 .
- 2. Alternative hypothesis, H_1 .
 - \triangleright Ex. $H_1: \beta_1 \neq 0$
 - ▶ English: there is a relationship between Y and X_1 .
- 3. Test statistic (TS).
 - ► Ex. t-statistic: $t = \frac{\hat{\beta}_1 \beta_0}{SF(\hat{\beta}_1)} = \frac{\hat{\beta}_1 0}{SF(\hat{\beta}_1)}$
 - Measures # of std. deviations that $\hat{\beta}_1$ is away from the null.
- 4. Rejection region (RR).
 - \triangleright Values of TS for which H_0 will be rejected in favor of H_1 .
 - \triangleright Ex. RR = *t-stat* > *k* for some choice of *k*.

Two types of errors we want to minimize:

- 1. Type I error: we reject H_0 when H_0 is true.
 - Probability of *Type I error* = α .
- 2. Type II error: we accept H_0 when H_1 is true.
 - ▶ Probability of *Type II error* = β .

We use α to define the rejection region.

- ightharpoonup RR = t-stat > k for some choice of k.
- \triangleright k determined by fixing α and choosing corresponding t-value.
- ► For small samples use the t-distribution (recall normality ass.)
- ▶ p-value smallest level of α for which the observed data indicate H_0 should be rejected.

Figure 1: Hypothesis Testing

Source: Mathematical Statistics with Applications (7th Edition).

Figure 2: Hypothesis Testing

```
A Small-Sample Test for \mu
     Assumptions: Y_1, Y_2, \dots, Y_n constitute a random sample from a normal
     distribution with E(Y_i) = \mu.
     H_0: \mu = \mu_0.
    H_a\colon \begin{cases} \mu > \mu_0 & \text{(upper-tail alternative)}. \\ \mu < \mu_0 & \text{(lower-tail alternative)}. \\ \mu \neq \mu_0 & \text{(two-tailed alternative)}. \end{cases}
    Test statistic: T = \frac{\overline{Y} - \mu_0}{S/\sqrt{n}}.

Rejection region: \begin{cases} t > t_{\alpha} & \text{(upper-tail RR).} \\ t < -t_{\alpha} & \text{(lower-tail RR).} \\ |t| > t_{\alpha/2} & \text{(two-tailed RR).} \end{cases}
     (See Table 5, Appendix 3, for values of t_{\alpha}, with \nu = n - 1 df.)
```

Source: Mathematical Statistics with Applications (7th Edition).

Confidence intervals

Assuming $\hat{\beta}_p \sim N(\beta_p, \sigma_{\hat{\beta}_p})...$

The two-sided CI for β with confidence coefficient $1 - \alpha$ is:

$$\hat{\beta} \pm z_{\frac{\alpha}{2}} SE(\hat{\beta})$$

Relationship to hypothesis testing: recall two-tailed test...

$$-z_{\alpha/2} \le \frac{\hat{\beta} - \beta_0}{\sigma_{\hat{\beta}}} \le z_{\alpha/2}$$

$$\Rightarrow \hat{\beta} - z_{\alpha/2}\sigma_{\hat{\beta}} \le \beta_0 \le \hat{\beta} + z_{\alpha/2}\sigma_{\hat{\beta}}$$

Usually we have $\beta_0 = 0$.

Properties of estimators

1. Bias

Systematic deviation of estimates from true parameter.

2. Variance

Spread of the estimates of an estimator.

Figure 3: Bias-Variance Tradeoff

Variance of OLS estimators

$$Var(\hat{\beta}_{j}) = \frac{\sigma^{2}}{SST_{j}(1-R_{j}^{2})'}$$
 for $j = 1, 2, ..., k$

- where $SST_j = \sum_{i=1}^n (x_{ij} \bar{x}_j)^2$ is the total variation in x_j .
- $ightharpoonup R_i^2 = R^2$ from regressing x_i on all other x's (inc. intercept).
- We don't usually know σ^2 (variance of disturbance term).
- Use sample estimate:

$$\hat{\sigma}^2 = \frac{1}{(n-k-1)} \sum_{i=1}^n \hat{u}_i^2 = \frac{1}{(n-k-1)} \sum_{i=1}^n e_i^2 = \frac{RSS}{(n-k-1)}$$

Assessing model accuracy

Two common measures:

- 1. residual standard error.
- 2. R^2 statistic.

Residual standard error (RSE):

- ightharpoonup Recall: $Y = f(X) + \epsilon$.
- ightharpoonup Y = systematic component (S) + random error term (E)
- \triangleright Even if we knew f(X) we would not perfectly predict Y.
- \blacktriangleright RSE is an estimate of the standard deviation of ϵ .
- ightharpoonup pprox avg. amount response will deviate from true regression line.

$$RSE = \sqrt{\frac{1}{n-2}RSS} = \sqrt{\frac{1}{n-2}\sum_{i=1}^{n}(y_i - \hat{y}_i^2)}$$

- Absolute measure of lack of fit.
- ▶ Not always clear what a good RSE is.

Assessing model accuracy

R² statistic:

- ▶ A proportion (hence a value between 0 and 1).
- Easier to interpret.
- ▶ Proportion of variability in *Y* that can be explained using *X*.

$$R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$

TSS = total sum of squares and <math>RSS = residual sum of squares.

F-test 1

- ► Test-statistic for multiple regression setting.
- \vdash $H_0: \beta_1 = \beta_2 = \cdots \beta_p = 0$
- ▶ H_1 : at least one $\beta_i \neq 0$

$$F = \frac{(TSS - RSS)/p}{RSS/(n-k-1)}$$

Where k = number of parameters and n = number of observations.

F-test 2

- ▶ We might want to test a particular subset q of the coefficients.
- \vdash $H_0: \beta_{p-q+1} = \beta_{p-q+2} = \cdots \beta_p = 0$
- ▶ H_1 : at least one $(\beta_1,...,\beta_q) \neq 0$

$$F = \frac{(RSS_0 - RSS)/q}{RSS/(n-k-1)}$$

 $RRS_0 = RRS$ for the model excluding the q parameters.

RRS = RRS for the full (unrestricted) model.

Reading regression output

Recommend: https://stats.idre.ucla.edu/stata/ output/regression-analysis/