INTRODUÇÃO A ELETRÔNICA

Prof. Dr. Hugo Valadares Siqueira

Especialização em Automação e Controle de Processos Industriais

Contato:

hugosiqueira@utfpr.edu.br

 Slides de aula pessoal.utfpr.edu.br/hugosiqueira

COMPOSIÇÃO DO CURSO

- Introdução à eletricidade
 - Objetivo: contextualização
- Fundamentos de eletricidade básica
 - Conceitos e elementos básicos
- Circuitos elétricos e eletrônicos
 - Conceitos e técnicas básicas de análise
- Resistores, capacitores e indutores
 - Funcionamento, análises e aplicações
- Diodos, transistores, amplificadores operacionais, entre outros
 - Funcionamento, análises e aplicações

Bibliografias Básicas

Referencias Básicas:

- SEDRA, Adel S. e SMITH Denneth C. Microeletrônica. 4. ed. São Paulo: Pearson Education do Brasil, 2000.
- MALVINO, Albert Paul. Eletrônica. Volume I. 4. ed. São Paulo: Makron Books, 1995. 747 p.
- MALVINO, Albert Paul. Eletrônica. Volume II. 4. ed. São Paulo: Makron Books, 1995. 558 p.
- BOYLESTAD, Robert e NASHELSKY, Louis. Dispositivos
 Eletrônicos e Teoria de Circuitos. 6. Ed. Editora Prentice Hall,
 2000.
- PERTENCE JUNIOR, Antônio. Eletrônica Analógica –
 Amplificadores Operacionais e Filtros Ativos. 6. Ed. Editora Bookman, 2009. 304 p.

METODOLOGIA DIDÁTICA

- Aulas expositivas e dialogadas
- Experimentos em laboratório
- CRITÉRIOS DE AVALIAÇÃO
 - N1: LISTA DE EXERCÍCIOS
 - Data de entrega: 27/06/2015
 - N2: RELATÓRIOS
 - Data de entrega: 27/06/2015
- COMPOSIÇÃO DA NOTA FINAL
 - MÉDIA = N1.0,5 + N2.0,5

COMPOSIÇÃO DA NOTA

RELATÓRIO DO ÚLTIMO EXPERIMENTO (PESO - 50%)

- -PROJETO DE UM AMPLIFICADOR OPERACIONAL COM **INVERSÃO DE SINAL E GANHO "3"**
- -COLOCAR OS CRITÉRIOS PARA ESCOLHA DO TIPO DE CONFIGURAÇÃO (REALIMENTAÇÃO)
- -COLOCAR OS CÁLCULOS REFERENTES AO EQUACIONAMENTO DO CIRCUITO USADO E O DIMENSIONAMENTO PARA OBTENÇÃO DO GANHO DESEJADO
- -SEGUIR AS DIRETRIZES PARA ELABORAÇÃO DE RELATÓRIO ENVIADAS PELO PROFESSOR
- -O RELATÓRIO DEVE SER BEM OBJETIVO, NA REV. DE LITERATURA. COLOCAR APENAS REFERÊNCIAS COM RELAÇÃO DIRETAMENTE COM O PROJETO

AVALIAÇÃO ESCRITA - EXERCÍCIOS (PESO - 50%)

- RESOLVER OS EXERCÍCIOS DE FORMA MANUSCRITA
- NÃO SERÃO ACEITAS RESOLUÇÕES DIGITALIZADAS
- É OBRIGATÓRIA A APRESENTAÇÃO DOS CÁLCULOS
- NÃO SERÃO ACEITAS APENAS AS RESPOSTAS

OBJETIVOS DO CURSO

- Introduzir conceitos relacionados à eletricidade
- Analisar e resolver circuitos elétricos e eletrônicos básicos
- Compreender o funcionamento e as aplicações dos diversos componentes eletroeletrônicos, dentre eles:
 - resistores
 - capacitores
 - indutores
 - diodos
 - transistores
 - amplificadores operacionais
- Familiarização com os aparelhos de medição e análise de circuitos eletrônicos (lab. de eletrônica)

INTRODUÇÃO À ELETRICIDADE

1- ELETROSTÁTICA

- PROCESSOS DE ELETRIZAÇÃO
- FORÇA ELETROSTÁTICA
- CAMPO ELÉTRICO
- LEI DE COULOMB
- POTENCIAL ELÉTRICO

2- GRANDEZAS ELÉTRICAS BÁSICAS

• DEFINIÇÕES, UNIDADES E PARÂMETROS

3- ELETRODINÂMICA

- ANÁLISE DE CIRCUITOS ELÉTRICOS EM CORRENTE CONTÍNUA
- ANÁLISE DE CIRCUITOS ELÉTRICOS EM CORRENTE ALTERNADA

DIAGRAMAS DE CIRCUITO

 Finalidade: representar circuitos elétricos no papel ou em softwares de análise

 Apresentam componentes, como baterias, chaves, resistores, capacitores, transistores, fios condutores, etc

DIAGRAMAS EM BLOCOS

- Descrevem um circuito ou sistema de forma simplificada
- O problema geral é desmembrado em blocos funcionais
- Os blocos são interligados para mostrar a relação entre eles

DIAGRAMAS PICTURIAIS

- Fornecem detalhes do circuito
- Mostram os componentes com seu aspecto físico

DIAGRAMAS ESQUEMÁTICOS

- Esquemas representativos de circuitos elétricos por meio de simbologia padrão
- Mais comumente utilizado

Eletrostática

Estuda os fenômenos relacionados com cargas elétricas em repouso

O átomo

O núcleo é formado por:

Prótons → cargas elétricas positivas Nêutrons → não têm carga elétrica

Nas órbitas, estão os Elétrons → cargas elétricas negativas

Eletrostática

 Cada elemento químico apresenta uma combinação única de elétrons e prótons, sendo estes em número igual em seu estado puro.

 Ex: COBRE: 29 e-, apenas 1e- na camada de valência, de fácil remoção

PRINCÍPIO DA ATRAÇÃO E REPULSÃO

- SÍMBOLOS USUAIS PARA CARGA ELÉTRICA PUNTIFORME: "q" ou "Q"
- UNIDADE: COULOMB [C]
- CARGA ELEMENTAR: $q = 1.6x10^{-19}C$

CARGAS ELÉTRICAS DE MESMO SINAL SE ATRAEM E DE SINAIS DIFERENES SE REPELEM

LEI DE COULOMB

 Duas cargas elétricas QA e QB interagem entre si com forças de mesma intensidade F, sendo:

$$F = \frac{K.QA.QB}{d^2}$$

Na qual:

 $K= 9x10^9 \text{ N.m}^2/\text{C}^2$ (no vácuo e no ar) Q_A e Q_B = módulos das cargas em [C] d = distância em [m]

- Quanto maior "d" → menor "F" → e- mais afastados sofrem menor atração com o núcleo (+)
- Quanto ↑ o nº de "e-" na C.V. → menor energia necessária para retirá-los

Condutores

Muitos elétrons livres à temperatura ambiente.

Exemplos: cobre e alumínio.

Num condutor, <u>quando eletrizado</u>, os elivres distribuem-se na **superfície externa** pois, devido a repulsão mútua entre eles buscam assim o maior afastamento possível.

Isolantes

Poucos elétrons livres à temperatura ambiente. Exemplos: ar, borracha e vidro.

- ELETRIZAÇÃO DOS CORPOS
 - ELETRIZAÇÃO DE UM CORPO NEUTRO
 - RETIRANDO "e-":

• INSERINDO "e-":

- CÁLCULO DA QUANTIDADE DE CARGA

$$Q = n.e$$

em que:

 $e = -1.6x10^{-19}C$ (carga de um elétron)

"n" positivo = número de elétrons retirados

"n" negativo = número de elétrons inseridos

ELETROSTÁTICA – PROCESSOS DE ELETRIZAÇÃO

Contato

Indução

ATRITO

 AS CARGAS SÃO GERADAS PELO ATRITO ENTRE DOIS MATERIAIS COM PELO MENOS UM "ISOLANTE"

CONTATO

- ENTRE DOIS METAIS

INDUÇÃO

ELETROSTÁTICA – PRINCÍPIO DA CONSERVAÇÃO DAS CARGAS

 ENUNCIADO: NUM SISTEMA ISOLADO, A SOMA ALGÉBRICA DAS CARGAS ELÉTRICAS POSITIVAS E NEGATIVAS É CONSTANTE

 – PARA CORPOS IDÊNTICOS (MATERIAL E FORMATO)

Q1 = Q2 = Qtotal/2

CAMPO ELÉTRICO

- REGIÃO DE FORÇA EXISTENTE AO REDOR DE UMA CARGA CAPAZ DE INFLUENCIAR CARGAS ELÉTRICAS PRÓXIMAS
- É REPRESENTADO POR LINHAS DE CAMPO
- É UMA GRANDEZA VETORIAL
- SÍMBOLO USUAL: "E"
- UNIDADE: newton/coulomb [N/C]

Quadro resumo

Grandeza Vetorial	Símbolo	Unidade de Medida
Campo Elétrico	E	newton/coulomb [N/C]

CAMPO ELÉTRICO

- INTENSIDADE DO CAMPO ELÉTRICO DE UMA CARGA

$$E = \frac{K.Q}{d^2}$$

em que:

K=9x10⁹ N.m²/C² (vácuo e ar)

Q = módulo da carga em [C]

d = distância em [m]

unidade=
$$\underline{N.m^2.C} = \underline{N}$$

 $C^2.m^2$

O campo diminui com o aumento da distância

CAMPO ELÉTRICO

- COMPORTAMENTO DAS LINHAS DE CAMPO
 - CARGAS DE SINAIS CONTRÁRIOS

CARGOS DE SINAIS IGUAIS

- CAMPO ELÉTRICO UNIFORME (CEU)
 - LINHAS DE CAMPO PARALELAS, COM VETOR CAMPO ELÉTRICO IDÊNTICO EM QUALQUER PONTO ENTRE AS PLACAS

CAMPO ELÉTRICO - APLICAÇÕES TUBO DE RAIOS CATÓDICOS

- ELETROCARDIOGRAMA

CAMPO ELÉTRICO - APLICAÇÕES

- CAPACITOR
 - FLASH DE MAQ. FOTOGRÁFICAS

- RESSONÂNCIA MAGNÉTICA

POTENCIAL ELÉTRICO

 Quando uma carga é colocada em local com campo elétrico, ela adquire potencial elétrico

- INTENSIDADE

 Independe do valor da carga "q"

$$V = \frac{K.Q}{d}$$

em que:

K=9x10⁹ N.m²/C² (no vácuo e no ar) Q = valor absoluto da carga elétrica em [C]

d = distância em [m]

Carga positiva ⇒ potencial positivo Carga negativa ⇒ potencial negativo Unidade = Volts (V)

POTENCIAL ELÉTRICO

O módulo do potencial diminui com o aumento da distância.

$$V = \frac{K.Q}{d}$$

Na mesma linha de campo os potenciais são iguais

POTENCIAL ELÉTRICO DEVIDO A VÁRIAS CARGAS

$$V_P = V_1 + V_2 + V_3 + ... + V_n$$

$$V_{P} = k \frac{Q_{1}}{d_{1}} + k \frac{(-Q_{2})}{d_{2}} + k \frac{(-Q_{3})}{d_{3}} + ... + k \frac{Q_{n}}{d_{n}}$$

CAPACITÂNCIA E CAPACITORES

CAPACITÂNCIA

• Conceito associado à capacidade de um condutor em armazenar cargas elétricas. Esta capacidade depende de suas dimensões e do material com que é feito.

meio eletrostático (K)

Considerando que toda a carga Q está no centro do condutor, o potencial elétrico em sua superfície será: V = (K.Q)/R de onde se tira a relação Q/V = R/K

CAPACITÂNCIA

• COM O ↑ DA CARGA, SEU POTENCIAL ↑ PROPORCIONALMENTE, JÁ QUE *R* E K SÃO CONSTANTES:

$$Q_1/V_1 = Q_2/V_2 = Q_3/V_3 = = Q/V = C$$

• ESTA CONSTANTE DE PROPORCIONALIDADE É CHAMADA DE CAPACITÂNCIA, UNIDADE FARAD (F)

$$C = Q/V$$

• CAPACITÂNCIA = CAPACIDADE DE CARGA QUE UM CONDUTOR PODE ARMAZENAR POR UNIDADE DE TENSÃO

CAPACITOR

- DEFINIÇÃO: componente eletrônico capaz de armazenar energia (CAPACITÂNCIA) num campo elétrico (desequilíbrio interno de cargas)
- CONSTITUIÇÃO: dois condutores isolados (PLACAS) com formato qualquer, separados por um material isolante (DIELÉTRICO)
- FOMATO:

CAPACITORES

- PRINCIPAIS TIPOS
- cerâmica (valores baixos até cerca de 1 µF)
- poliestireno (geralmente na escala de picofarads)
- poliéster (de aproximadamente 1 nF até 10 μF)
- polipropileno (baixa perda, alta tensão, resistente a avarias)
- eletrolítico (de alta potência, compacto mas com muita perda, na escala de 1 μF a 1000 μF)

CAPACITORES

CAPACITOR
 CERÂMICO

algarismo (3)

CAPACITORES

- CAPACITOR ELETROLÍTICO
 - TEM POLARIDADE

CAPACITÂNCIA: 68 uF

CAPACITOR DE PLACAS PARALELAS: CAPACITÂNCIA

$$C = Capacitance$$

$$C = \frac{k}{d} \frac{A}{\ell} \varepsilon_0$$

A =Area of plates

d = Plate spacing (thickness of dielectric)

 $\mathcal{E}_{\mathrm{o}} \; = \;$ permissividade absoluta no vácuo

 $\mathcal{E}_{o} = 8,85.10^{-12} \,\text{F/m}$

k = constante dielétrica

DIELÉTRICO

- CAPACITÂNCIAS ELEVADAS
 - AUMENTO DA ÁREA
 - REDUÇÃO DA DISTÂNCIA ENTRE AS PLACAS

DIELÉTRICOS COMUNS

Dielétrico	constante dielétrica
Vácuo	1
Papel	3,5
Vidro	7,75
Porcelana	6,5
Polietileno	2,3

ASSOCIAÇÃO DE CAPACITORES

PARALELO

•
$$C_{eq} = \frac{q}{V} = C_1 + C_2 + C_2$$
;

$$C_{eq} = \sum_{j=1}^{n} C_j$$

ASSOCIAÇÃO DE CAPACITORES

• SÉRIE

•
$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$$

$$\frac{1}{C_{eq}} = \sum_{j=1}^{n} \frac{1}{C_j}$$

ASSOCIAÇÃO DE CAPACITORES

- APLICAÇÕES
 - MICROELETRÔNICA
 - ELETRÔNICA DE POTÊNCIA
 - INFORMÁTICA
 - ELETRODOMÉSTICOS
 - ELETRÔNICA AUTOMOTIVA
 - ELETRÔNICA ESPACIAL
 - ETC...

ELETRODINÂMICA

Tensão Elétrica

• Se considerarmos dois pontos A e B de um campo elétrico, sendo VA e VB os seus potenciais elétricos, definimos tensão elétrica ou diferença de potencial, ddp, entre os pontos A e B, através da expressão:

$$\mathbf{U}_{\mathrm{AB}} = \mathbf{V}_{\mathrm{A}} - \mathbf{V}_{\mathrm{B}}$$

• Tensão Elétrica (E, V ou U)

Estudo das cargas elétricas em movimento.

Intensidade da Corrente Elétrica

Definimos intensidade de corrente elétrica como sendo a quantidade de carga que passa numa seção transversal de um condutor durante um certo intervalo de tempo.

Símbolo I Unidade de Medida ampère [A] Corrente Elétrica Real: nos metais, os elétrons movimentam-se no sentido contrário do campo elétrico. Sentido: do potencial menor para o maior.

Corrente Elétrica Convencional: considera a corrente como sendo formada por cargas positivas. Sentido: do potencial maior para o menor

Analogia com a Hidráulica

A corrente de água existe por causa da d.d.p. gravitacional entre as caixas d'água.

A diferença de potencial (ddp) é necessária para que haja condução de eletricidade, porque produz um movimento de cargas elétricas.

LEI DE OHM

Se colocar-mos a mesma resistência nos dois circuitos ...

 Se aplicarmos a mesma tensão nos dois circuitos e mudarmos a resistência...

Mantendo a tensão fixa e variando a resistência a corrente varia no sentido oposto

Conclusão

Quanto maior a tensão Maior a corrente elétrica

Quanto maior a resistência Menor a corrente elétrica

Lei de OHM

$$I = \frac{V}{R}$$

Observe dois canos de água.

Em qual deles a água passa com maior facilidade?

I CEACP 2014 — INTRODUÇÃO A ELETRÔNICA

QUANTO MAIOR O COMPRIMENTO DO CONDUTOR MENOR A INTENSIDADE DE CORRENTE ELÉTRICA CIRCULANDO POR ELE.

VAMOS PEGAR MAIS DOIS CANOS DE ÁGUA.

EM QUAL DOS DOIS CANOS A ÁGUA PASSA COM MAIOR FACILIDADE ?

OBSERVE O
BRILHO DA
LÂMPADA DO
CONDUTOR FINO

QUANTO MAIOR A SEÇÃO DO CONDUTOR MAIOR A INTENSIDADE DE CORRENTE ELÉTRICA CIRCULANDO POR ELE.

VAMOS PEGAR MAIS DOIS CANOS DE ÁGUA.

EM UM DELES COLOCAREMOS ALGUNS OBJETOS

EM QUAL DELES A ÁGUA PASSA COM MAIOR FACILIDADE ?

ALGUNS MATERIAIS OFERECEM MAIOR OU MENOR RESISTÊNCIA À PASSAGEM DA CORRENTE ELÉTRICA.

COBRE

NIQUEL CROMO

A ESTAS RESISTÊNCIAS DAMOS O NOME DE Resistência Específica OU Resistividade, REPRESENTADA PELA LETRA GREGA ρ.

Conclusão

Maior o **comprimento** do condutor – maior a **resistência**Maior a **seção** do condutor – menor a **resistência**A **resistência** depende do **material**

As observações realizadas permitem escrever a seguinte relação:

$$R = \rho \cdot \frac{I}{A}$$

Onde:

- R Resistência elétrica do condutor (Ω);
- ρ Resistividade do condutor (Ω .mm2/m);
- I Comprimento do condutor (m) e
- A Seção do condutor (mm2).

Resistividade dos materiais

MATERIAL	ρ	MATERIAL	ρ
Alumínio Bronze Carbono Chumbo Cobre Constantan Estanho Ferro Latão	0,0292 0,067 50,00 0,22 0,0162 0,000005 0,115 0,096 0,067	Manganina Mercúrio Níquel Ouro Prata Platina Tungstênio Zinco	0,48 0,96 0,087 0,024 0,0158 0,106 0,055 0,056

RESISTORES

Resistores, para que servem?

a – <u>Potenciômetros multivoltas</u> - Tem o corpo compridinho e um eixo tipo sem-fim. Girando este eixo, ele varia a resistência bem devagar. É usado em circuitos onde o ajuste da resistência deve ser bem preciso. Veja abaixo:

b - <u>Varistor</u> – É um resistor especial que diminui a sua resistência quando a tensão nos seus terminais aumenta. É usado na entrada de força de alguns aparelhos, protegendo-os de um aumento de tensão da rede elétrica. Quando a tensão nos terminais ultrapassa o limite do componente, ele entra em curto, queima o fusível e desliga o aparelho.

Potenciômetro Linear

Potenciômetro Não-Linear

c - <u>Termistor</u> – Este tipo de resistor varia a resistência com a temperatura. Existem os termistores positivos (PTC) que aumentam a resistência quando esquentam e os negativos (NTC) que diminuem a resistência quando esquentam. É usado em circuitos que requerem estabilidade mesmo quando a temperatura de operação aumente.
TIPOS DE TERMISTORES NTC TIPOS DE TERMISTORES PTC

TIPOS DE TERMISTORES PTC USADOS NOS CIRCUITOS DE DESMAGNETIZAÇÃO DOS TVS

d - <u>Barra de resistores</u> - São vários resistores interligados dentro de uma única peça, tendo um terminal comum para todos. É usado em circuitos que requerem economia de espaço. Também pode ser chamado de resistor package (pacote de resistores).

 Fotorresistores - Também chamados de LDR, variam a resistência de acordo com a luz incidente sobre ele. Quanto mais claro, menor é a sua resistência. São usados em circuitos sensíveis a iluminação ambiente.

Representação de Resistores

Cor	1 ^a faix a	2 ^a faixa	3ª faixa	Multiplicador	<u>Tolerância</u>	Coef. de Temperatura
<u>Preto</u>	0	0	0	×10°		
<u>Marrom</u>	1	1	1	×10¹	±1% (F)	100 ppm
<u>Vermelho</u>	2	2	2	×10²	±2% (G)	50 ppm
<u>Laranja</u>	3	3	3	×10³		15 ppm
<u>Amarelo</u>	4	4	4	×10 ⁴		25 ppm
<u>Verde</u>	5	5	5	×10 ⁵	±0.5% (D)	
<u>Azul</u>	6	6	6	×10 ⁶	±0.25% (C)	
<u>Violeta</u>	7	7	7	×10 ⁷	±0.1% (B)	
<u>Cinza</u>	8	8	8	×10 ⁸	±0.05% (A)	
Branco	9	9	9			
<u>Ouro</u>					±5% (J)	
<u>Prata</u>					±10% (K)	
Sem cor					±20% (M)	

 c – <u>Resistores SMD</u> – A leitura é indicada no corpo através de um número. O terceiro algarismo é o número de zeros a ser acrescentado aos primeiros. Observe:

Exercício 07

Indique o valor dos resistores abaixo:

d - <u>Valores padronizados de resistores de grafite</u> - São os valores encontrados no mercado: 1 - 1,1 - 1,2 - 1,3 - 1,5 - 1,8 - 2 - 2,2 - 2,4 - 2,7 - 3 - 3,3 - 3,9 - 4,3 - 4,7 - 5,1 - 5,6 - 6,2 - 6,8 - 7,5 - 8,2 - 9,1 e os múltiplos e sub múltiplos de 10 de cada valor destes até 10 M.

ASSOCIAÇÃO DE RESISTORES ASSOCIAÇÃO EM SÉRIE

RESISTOR EQUIVALENTE

Req 16.800 Ω

$$R_{eq} = R_1 + R_2 + R_3$$

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

$$i = i_1 = i_2 = i_3$$

ASSOCIAÇÃO EM PARALELO

RESISTOR EQUIVALENTE

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

Req

$$= \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

FACILITANDO O CÁLCULO R₁

 $R_3 = 5600 \Omega$

5600 = 1866,66 Ω Req

ELETROSTÁTICA - EXERCÍCIOS

- Exemplo1: sejam duas esferas metálicas idênticas, com Q₁=32 C e Q₂ = - 2 C. Caso sejam colocadas em contato físico e depois separadas, qual a carga final de cada uma?
- Exemplo2: Ao aproximar-se uma carga fortemente negativa de Q1(final)do exemplo 1, pelo seu lado esquerdo e após alguns segundos aterrar o lado oposto, o corpo ficará com carga resultante negativa ou positiva?

EXERCÍCIOS – POTENCIAL ELÉTRICO

 Qual o valor do potencial elétrico gerado por uma carga puntiforme Q = 6μC, situada no vácuo, num ponto A a 20 cm da mesma ?

2) Duas cargas puntiformes Q1 = 4 μC e Q2 = -8μC estão separadas por uma distância d = 50 cm. Determinar: (a) o potencial elétrico resultante num ponto A, situado na reta que une as cargas e a 20 cm de Q1; (b) o valor da energia potencial elétrica das cargas.

CAPACITORES – EXERCÍCIOS

 Um capacitor plano é conectado a uma pilha de força eletromotriz constante, como mostra a figura, adquirindo carga elétrica Q. Mantendo-o conectado à pilha, afastam-se as placas até que a distância entre as mesmas seja o triplo da inicial. Ao término do processo, sua carga elétrica será:

CAPACITORES - EXERCÍCIOS

 Um capacitor plano é conectado a uma pilha de força eletromotriz constante, como mostra a figura, adquirindo carga elétrica Q. Mantendo-o conectado à pilha, afastam-se as placas até que a distância entre as mesmas seja o triplo da inicial. Ao término do processo, sua carga elétrica será:

Re solução:

$$C_0 = \frac{\varepsilon \cdot A}{d_0}$$
 e $C = \frac{\varepsilon \cdot A}{d}$ onde $d = 3d_0 \Rightarrow C_0 = 3C$

A ddp nos terminais do capacitor não mudou.

$$U_0 = U \Rightarrow \frac{Q_0}{C_0} = \frac{Q}{C} \Rightarrow \frac{Q_0}{3C} = \frac{Q}{C} \Rightarrow Q = \frac{Q_0}{3}$$

CAPACITORES – EXERCÍCIOS

Dois capacitores de capacidades eletrostáticas $C_1 = 2\mu F$ e $C_2 = 6\mu F$ estão associados <u>em série</u> e ligados a uma fonte que fornece uma ddp constante de 20 V. Determinar:

- a) a capacidade eletrostática do capacitor equivalente;
 b) a carga elétrica de cada capacitor;
- c) a ddp nas armaduras de cada capacitor.

CAPACITORES – EXERCÍCIOS

- Dois capacitores de capacidades eletrostáticas C₁ = 2μF e C₂ = 6μF estão associados <u>em série</u> e ligados a uma fonte que fornece uma ddp constante de 20 V. Determinar:
 - a) a capacidade eletrostática do capacitor equivalente;
 - b) a carga elétrica de cada capacitor;
 - c) a ddp nas armaduras de cada capacitor.
- a) Calculo da capacidade equivalente:

$$C_s = \frac{C_1.C_2}{C_1+C_2} = \frac{2.6}{2+6} = 1.5 \mu F$$

c) Como
$$U = \frac{Q}{C}$$
, temos: $U_1 = \frac{Q}{C_1} = \frac{30\mu C}{2\mu F} \rightarrow U_1 = 15V e$

$$U_2 = \frac{Q}{C_2} = \frac{30\mu C}{6\mu F} \rightarrow U_1 = 5V$$

b) A carga do capacitor equivalente é igual à carga de cada capacitor: $Q_1 = Q_2 = Q$

$$Q = C_s.U \rightarrow Q = 1.5 \mu F.20V \Rightarrow Q = 30 \mu C$$