INTEGRATED CIRCUITS

DATA SHEET

74LVC139Dual 2-to-4 line decoder/demultiplexer

Product specification Supersedes data of 2003 May 19

Dual 2-to-4 line decoder/demultiplexer

74LVC139

FEATURES

- Wide supply voltage range from 1.2 V to 3.6 V
- Inputs accept voltages up to 5.5 V
- CMOS low power consumption
- · Direct interface with TTL levels
- · Demultiplexing capability
- Two independent 2-to-4 decoders
- · Multifunction capability
- · Active LOW mutually exclusive outputs
- Output drive capability 50 Ω transmission lines at 125 $^{\circ}\text{C}$
- In accordance with JEDEC standard no. 8-1A
- ESD protection: HBM EIA/JESD22-A114-A exceeds 2000 V MM EIA/JESD22-A115-A exceeds 200 V.

DESCRIPTION

The 74LVC139 is a high-performance, low-voltage and low-power Si-gate CMOS device, superior to most advanced CMOS compatible TTL families.

The 74LVC139 is a dual 2-to-4 line decoder/demultiplexer. This device has two independent decoders, each accepting two binary weighted inputs (nA0 and nA1) and providing four mutually exclusive active LOW outputs $(n\overline{Y}0 \text{ to } n\overline{Y}3)$. Each decoder has an active LOW input $(n\overline{E})$.

When $n\overline{E}$ is HIGH, every output is forced HIGH. The enable input can be used as the data input for a 1-to-4 demultiplexer application.

QUICK REFERENCE DATA

GND = 0 V; T_{amb} = 25 °C; t_r = $t_f \le$ 2.5 ns.

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t _{PHL} /t _{PLH}	propagation delay	$C_L = 50 \text{ pF}; V_{CC} = 3.3 \text{ V}$		
	nA to n \overline{Y} n		2.9	ns
	nĒ to nŸn		2.7	ns
C _I	input capacitance		5.0	pF
C _{PD}	power dissipation capacitance per multiplexer	V _{CC} = 3.3 V; notes 1 and 2	17	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

$$P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$$
 where:

 f_i = input frequency in MHz;

f_o = output frequency in MHz;

C_L = output load capacitance in pF;

V_{CC} = supply voltage in Volts;

N = total load switching outputs;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.

2. The condition is $V_I = GND$ to V_{CC} .

Dual 2-to-4 line decoder/demultiplexer

74LVC139

FUNCTION TABLE

See note 1

	INPUT		OUTPUT				
ηĒ	nA0	nA1	n ₹0	n ₹1	n ₹2	n ₹3	
Н	Х	Х	Н	Н	Н	Н	
L	L	L	L	Н	Н	Н	
L	Н	L	Н	L	Н	Н	
L	L	Н	Н	Н	L	Н	
L	Н	Н	Н	Н	Н	L	

Note

1. H = HIGH voltage level;

L = LOW voltage level;

X = don't care.

ORDERING INFORMATION

	PACKAGE										
TYPE NUMBER	TEMPERATURE RANGE	PINS	PACKAGE	MATERIAL	CODE						
74LVC139D	-40 °C to +125 °C	16	SO16	plastic	SOT109-1						
74LVC139DB	-40 °C to +125 °C	16	SSOP16	plastic	SOT338-1						
74LVC139PW	–40 °C to +125 °C	16	TSSOP16	plastic	SOT403-1						
74LVC139BQ	-40 °C to +125 °C	16	DHVQFN16	plastic	SOT763-1						

Dual 2-to-4 line decoder/demultiplexer

74LVC139

PINNING

PIN	SYMBOL	DESCRIPTION
1	1Ē	enable input (active LOW)
2	1A0	address input
3	1A1	address input
4	1 <u>Y</u> 0	output (active LOW)
5	1 <u>Y</u> 1	output (active LOW)
6	1\overline{Y}2	output (active LOW)
7	1 \overline{Y} 3	output (active LOW)
8	GND	ground (0 V)
9	2 Y 3	output (active LOW)
10	2₹2	output (active LOW)
11	2 <u>Y</u> 1	output (active LOW)
12	2 Y 0	output (active LOW)
13	2A1	address input
14	2A0	address input
15	2Ē	enable input (active LOW)
16	V _{CC}	positive supply voltage

Dual 2-to-4 line decoder/demultiplexer

74LVC139

Dual 2-to-4 line decoder/demultiplexer

74LVC139

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CC}	supply voltage	for maximum speed performance	2.7	3.6	V
		for low-voltage applications	1.2	3.6	V
VI	input voltage		0	5.5	V
Vo	output voltage		0	V _{CC}	V
T _{amb}	operating ambient temperature	in free air	-40	+125	°C
t _r , t _f	input rise and fall times	V _{CC} = 1.2 V to 2.7 V	0	20	ns/V
		V _{CC} = 2.7 V to 3.6 V	0	10	ns/V

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134); voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CC}	supply voltage		-0.5	+6.5	V
I _{IK}	input diode current	V _I < 0	_	-50	mA
VI	input voltage	note 1	-0.5	+6.5	V
I _{OK}	output diode current	V _O > V _{CC} or V _O < 0 V	_	±50	mA
Vo	output voltage	note 1	-0.5	V _{CC} + 0.5	V
Io	output source or sink current	V _O = 0 V to V _{CC}	_	±50	mA
I _{CC} , I _{GND}	V _{CC} or GND current		_	±100	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}; \text{ note } 2$	_	500	mW

Notes

- 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
- 2. For SO16 packages: above 70 °C derate linearly with 8 mW/K.

For SSOP16 and TSSOP16 packages: above 60 °C derate linearly with 5.5 mW/K.

For DHVQFN16 packages: above 60 °C derate linearly with 4.5 mW/K.

Dual 2-to-4 line decoder/demultiplexer

74LVC139

DC CHARACTERISTICS

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

CVMDOL	DADAMETED	TEST COND	ITIONS	RAINI	TYP. ⁽¹⁾	MAX.	LINUT
SYMBOL	PARAMETER	OTHER	V _{CC} (V)	MIN.	I TP.	WAX.	UNIT
T _{amb} = -40) °C to +85 °C			-		•	
V _{IH}	HIGH-level input		1.2	V _{CC}	_	_	V
	voltage		2.7 to 3.6	2.0	_	_	V
V _{IL}	LOW-level input		1.2	_	_	GND	V
	voltage		2.7 to 3.6	_	_	0.8	V
V _{OH}	HIGH-level output	$V_I = V_{IH}$ or V_{IL}					
	voltage	$I_O = -100 \mu A$	2.7 to 3.6	V _{CC} - 0.2	_	_	V
		$I_0 = -12 \text{ mA}$	2.7	V _{CC} – 0.5	_	_	V
		$I_0 = -18 \text{ mA}$	3.0	V _{CC} - 0.6	_	_	V
		$I_0 = -24 \text{ mA}$	3.0	V _{CC} – 0.8	_	_	V
V_{OL}	LOW-level output	$V_I = V_{IH}$ or V_{IL}					
	voltage	I _O = 100 μA	2.7 to 3.6	_	_	0.2	V
		I _O = 12 mA	2.7	_	_	0.4	V
		I _O = 24 mA	3.0	_	_	0.55	V
ILI	input leakage current	V _I = 5.5 V or GND	3.6	-	±0.1	±5	μΑ
I _{CC}	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A	3.6	-	0.1	10	μΑ
Δl _{CC}	additional quiescent supply current per input pin	$V_1 = V_{CC} - 0.6 \text{ V};$ $I_O = 0 \text{ A}$	2.7 to 3.6	_	5	500	μΑ

Dual 2-to-4 line decoder/demultiplexer

74LVC139

CVMDCI		TEST COND	ITIONS		T) (D (1)	1443/		
SYMBOL	PARAMETER	OTHER	V _{CC} (V)	MIN.	TYP. ⁽¹⁾	MAX.	UNIT	
T _{amb} = -40	°C to +125 °C		1		-1	-	1	
V _{IH}	HIGH-level input		1.2	V _{CC}	_	_	V	
	voltage		2.7 to 3.6	2.0	_	_	V	
V _{IL}	LOW-level input		1.2	_	_	GND	V	
	voltage		2.7 to 3.6	_	_	0.8	V	
V _{OH}	HIGH-level output	$V_I = V_{IH}$ or V_{IL}						
	voltage	$I_{O} = -100 \mu\text{A}$	2.7 to 3.6	$V_{CC} - 0.3$	_	_	V	
		$I_0 = -12 \text{ mA}$	2.7	V _{CC} - 0.65	_	_	V	
		$I_0 = -18 \text{ mA}$	3.0	V _{CC} - 0.75	_	_	V	
		$I_0 = -24 \text{ mA}$	3.0	V _{CC} – 1	_	_	V	
V _{OL}	LOW-level output	$V_I = V_{IH}$ or V_{IL}						
	voltage	I _O = 100 μA	2.7 to 3.6	_	_	0.3	V	
		I _O = 12 mA	2.7	_	_	0.6	V	
		I _O = 24 mA	3.0	_	_	0.8	V	
l _{Ll}	input leakage current	$V_I = 5.5 \text{ V or GND}$	3.6	_	_	±20	μА	
I _{CC}	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A	3.6	_	_	40	μА	
ΔI_{CC}	additional quiescent supply current per input pin	$V_1 = V_{CC} - 0.6 \text{ V};$ $I_O = 0 \text{ A}$	2.7 to 3.6	_	_	5000	μΑ	

Note

^{1.} Typical values are measured at V_{CC} = 3.3 V and T_{amb} = 25 $^{\circ}C.$

Dual 2-to-4 line decoder/demultiplexer

74LVC139

AC CHARACTERISTICS

GND = 0 V; t_{r} = t_{f} \leq 2.5 ns; C_{L} = 50 pF; R_{L} = 500 $\Omega.$

OVMDOL	DADAMETED	TEST CO	NDITIONS		TVD	DA A V	
SYMBOL	PARAMETER	WAVEFORMS	V _{CC} (V)	MIN.	TYP.	MAX.	UNIT
T _{amb} = -40 °C	to +85 °C; note 1			•	•		
t _{PHL} /t _{PLH}	propagation delay	see Figs 6 and 8	1.2	_	14	_	ns
	nAn to \overline{Y} n		2.7	1.0	3.5	6.3	ns
			3.0 to 3.6	1.0	2.9(2)	5.3	ns
t _{PHL} /t _{PLH}	propagation delay	see Figs 7 and 8	1.2	_	14	_	ns
	nĒ to Ÿn		2.7	1.0	3.1	5.4	ns
			3.0 to 3.6	1.0	2.7(2)	5.0	ns
t _{sk(0)}	skew	note 3	3.0 to 3.6	_	_	1.0	ns
T _{amb} = -40 °C	to +125 °C						
t _{PHL} /t _{PLH}	propagation delay	see Figs 6 and 8	1.2	_	_	_	ns
	nAn to \overline{Y} n		2.7	1.0	_	8.0	ns
			3.0 to 3.6	1.0	_	7.0	ns
t _{PHL} /t _{PLH}	propagation delay	see Figs 7 and 8	1.2	_	_	_	ns
	nE to Yn		2.7	1.0	_	7.0	ns
			3.0 to 3.6	1.0	_	6.5	ns
t _{sk(0)}	skew	note 3	3.0 to 3.6	_	_	1.5	ns

Notes

- 1. All typical values are measured at T_{amb} = 25 °C.
- 2. This typical value is measured at V_{CC} = 3.3 V and T_{amb} = 25 $^{\circ}C.$
- Skew between any two outputs of the same package switching in the same direction. This parameter is guaranteed by design.

Dual 2-to-4 line decoder/demultiplexer

74LVC139

AC WAVEFORMS

Dual 2-to-4 line decoder/demultiplexer

74LVC139

V	Vı	•	V _{EXT}			
V _{CC}	\ \v_1	CL	R _L	t _{PLH} /t _{PHL}	t _{PZH} /t _{PHZ}	t _{PZL} /t _{PLZ}
1.2 V	V _{CC}	50 pF	$500~\Omega^{(1)}$	open	GND	$2 \times V_{CC}$
2.7 V	2.7 V	50 pF	500 Ω	open	GND	$2 \times V_{CC}$
3.0 V to 3.6 V	2.7 V	50 pF	500 Ω	open	GND	$2 \times V_{CC}$

Note

1. The circuit performs better when R_L = 1000 Ω .

Definitions for test circuit:

 R_L = Load resistor.

 \mathbf{C}_{L} = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to the output impedance Z_0 of the pulse generator.

Fig.8 Load circuitry for switching times.

Dual 2-to-4 line decoder/demultiplexer

74LVC139

PACKAGE OUTLINES

SO16: plastic small outline package; 16 leads; body width 3.9 mm

SOT109-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	10.0 9.8	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.010 0.004	0.057 0.049	0.01	0.019 0.014	0.0100 0.0075	0.39 0.38	0.16 0.15	0.05	0.244 0.228	0.041	0.039 0.016	0.028 0.020	0.01	0.01	0.004	0.028 0.012	0°

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE		REFER	RENCES		EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT109-1	076E07	MS-012				99-12-27 03-02-19	

Dual 2-to-4 line decoder/demultiplexer

74LVC139

SSOP16: plastic shrink small outline package; 16 leads; body width 5.3 mm

SOT338-1

DIMENSIONS (mm are the original dimensions)

						-,												
UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	2	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	6.4 6.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	1.00 0.55	8° 0°

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT338-1		MO-150				99-12-27 03-02-19

Dual 2-to-4 line decoder/demultiplexer

74LVC139

TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm

SOT403-1

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	ø	v	w	у	Z ⁽¹⁾	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.40 0.06	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE	
SOT403-1		MO-153			-99-12-27 03-02-18	

Dual 2-to-4 line decoder/demultiplexer

74LVC139

DHVQFN16: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body 2.5 x 3.5 x 0.85 mm SOT763-1

Dual 2-to-4 line decoder/demultiplexer

74LVC139

DATA SHEET STATUS

LEVEL	DATA SHEET STATUS ⁽¹⁾	PRODUCT STATUS(2)(3)	DEFINITION
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

Notes

- 1. Please consult the most recently issued data sheet before initiating or completing a design.
- 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
- 3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors – a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

© Koninklijke Philips Electronics N.V. 2004

SCA76

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

R20/04/pp17

Date of release: 2004 Mar 15

Document order number: 9397 750 12971

Let's make things better.

Philips Semiconductors

