Практикум 3. Комплексные числа (1).

Цель работы — изучение основных операций над комплексными числами, построение изображения комплексных чисел на плоскости, обучение использованию средств пакета Anaconda для иллюстраций вышеперечисленных понятий.

Продолжительность работы - 2 часа.

Оборудование, приборы, инструментарий – работа выполняется в компьютерном классе с использованием пакета Anaconda.

Порядок выполнения

- 1. Упражнения выполняются параллельно с изучением теоретического материала.
- 1. После выполнения каждого упражнения результаты заносятся в отчёт.
- 2. При выполнении упражнений в случае появления сообщения об ошибке рекомендуется сначала самостоятельно выяснить, чем оно вызвано, и исправить команду; если многократные попытки устранить ошибку не привели к успеху, то проконсультироваться с преподавателем.
- 3. Дома доделать упражнения из раздела «Краткие теоретические сведения и практические упражнения», которые Вы не успели выполнить во время аудиторного занятия.
- 4. После выполнения упражнений выполнить дополнительные упражнения для самостоятельной работы и ответить на контрольные вопросы и (см. ниже).
- 5. Подготовить отчёт, в который включить упражнения из раздела «Краткие теоретические сведения и практические упражнения» и упражнения для самостоятельной работы. Отчёт представить либо в формате интерактивного питон-скрипта (ipynb), либо в виде документа Microsoft Word. Файл следует назвать по следующей схеме pin_10_Ivanov_P_01_s1 (группа, фамилия, инициалы, номер лабораторной, семестр). Отчет должен содержать по каждому выполненному упражнению: № упражнения, текст упражнения; команды, скопированные из командного окна, с комментариями к ним и результаты их выполнения, включая построенные графики; тексты руthоп фукнций; выводы.

Краткие теоретические сведения

и практические упражнения

1. Действия с комплексными числами

Для ввода комплексного числа можно пользоваться встроенной функцией complex (a,b), где а - действительная, b — мнимая часть вводимого комплексного числа. Также можно использовать конструкции a+bj, в которых мнимые части комплексных чисел сопровождаются буквой j.

Пример 1.

a = complex(3.5, -2)

print(a)

b = 4+5j

print(b)

Сложение, вычитание, умножение и возведение в степень комплексных чисел в МАТLAB осуществляется с помощью тех же встроенных функций и с использованием тех же символов, которые служат для аналогичных операций над действительными числами.

Пример 2

a=1j

print(a**2)

z=(3-1j)*(2+4j)

print(z)

b = z/2j

print(b)

Упражнение 1.

Вычислить:

1)
$$(2+3i)(3-i)$$
;

2)
$$(1-i)^3 - (1+i)^3$$
;

3)
$$i^k$$
, где $k = 1, 2, 3, ..., 8$;

4)
$$\frac{2-3i}{1+4i} + \frac{1}{4-i}$$
.

В таблице 1 приведены встроенные в библиотченом модуля numpy python функции, с помощью которых можно находить для комплексных чисел действительную, мнимую части, модуль, аргумент, сопряженное число.

Таблица 1. Операции с комплексными числами		
Реализующая	Символ	Описание
функция		
np.conj (z)	z	Для комплексного числа z находит
		\overline{z} .
		Для матрицы комплексных чисел z находит
		матрицу, полученную путем замены элементов
		матрицы z на сопряженные числа и
		транспонирования полученной в результате
		замены матрицы.
np.real (z)		Для комплексного числа z находит
		действительную часть $Re(z)$.
		Для массива z комплексных чисел находит
		массив действительных частей элементов z
np.imag (z)		Для комплексного числа <i>z</i> находит мнимую
		часть $Im(z)$.
		Для массива z комплексных чисел находит
		массив мнимых частей элементов z .
np.abs(z)		Для комплексного числа z находит его модуль.
		Для массива z комплексных чисел возвращает
		массив модулей элементов z
np.angle(z)		Для массива комплексных чисел z возвращает
		массив аргументов элементов z. Значение
		аргумента измеряется в радианах и находится в
		пределах $[-\pi;\pi]$

Пример 3

import numpy as np

z = 3-7j

print(np.conj(z))

print(np.real(z))

print(np.imag(z))

print(np.abs(z))

y = np.array([3+4j, 8-6j])

print(np.abs(y))

z=np.array([1, 1j, -1, -1j])

print(np.abs(z))

print(np.angle(z))

Упражнение 2.

Вычислить
$$z_1\overline{z}_2$$
 и $\left(\frac{\overline{z}_1}{z_2}\right)^2$, если z_1 =1 - $i\sqrt{3}$, $z_2 = \sqrt{3} + i$.

Упражнение 3. Найти действительную и мнимую части комплексного числа, его модуль, аргумент, найти сопряженное ему число:

1)
$$(4-5i)(5-6i^3)$$
; 2) $(1+i)^{15}$.

2. Изображение чисел на комплексной плоскости

Комплексное число можно изображать на комплексной плоскости точкой или радиус-вектором этой точки.

Пример 4 В одной системе координат изобразить точками следующие комлексные числа: 2+3j, 2-3j, -2+3j, -2-3j.

```
import numpy as np
x = np.array([2+3j, 2-3j, -2+3j, -2-3j])
plt.plot()
plt.scatter(np.real(x),np.imag(x), marker="*", color="green", s=30)
plt.axis('equal')
plt.axhline(y=0, color='k')
```

plt.axvline(x=0, color='k')

import matplotlib.pyplot as plt

plt.grid(True)

plt.title('Complex numbers')

plt.xlabel('Re(z)')

```
plt.ylabel('Im(z)')
plt.show()
```

Пример 4 (продолжение). Изобразим в одной системе координат теже самые комплексные числа, но уже в виде радиусвекторов.

```
import matplotlib.pyplot as plt
import numpy as np
x = np.array([2+3j, 2-3j, -2+3j, -2-3j])
orig = np.zeros(4)
plt.plot()
q = plt.quiver(orig,orig, np.real(x), np.imag(x),
angles='xy', scale_units='xy', scale=1, color="green")
plt.axis([-4,4,-4,4])
plt.axhline(y=0, color='k')
plt.axvline(x=0, color='k')
plt.grid(True)
plt.title('Complex numbers')
plt.xlabel('Re(z)')
plt.ylabel('Im(z)')
plt.show()
```

Упражнение 4. В одной системе координат изобразить векторами разного цвета числа $z_1 = 1 + 3i$, $z_2 = 3 + 4i$, $z_3 = z_1 + z_2$, $z_4 = z_1 - z_2$. Нанести координатную сетку, отобразить оси линиями черного цвета, подписать их. Масштаб по осям сделать одинаковым. Подписать графическое окно. Прокомментировать геометрический смысл суммы и разности комплексных чисел.

Пример 5. Найти и изобразить точками на комплексной плоскости корни $\sqrt[4]{1+i}$. Добавить к рисунку окружность, на которой лежат все корни

plt.plot(np.real(zroot), np.imag(zroot), '*g') # если указан тип маркера, но не задан стиль линии, то табличные строки маркером метятся, но друг с другом отрезками прямых не соединяются.

```
plt.axhline(y=0, color='k')
plt.axvline(x=0, color='k')
plt.axis('equal')
t = np.linspace(0,2*np.pi,100)
plt.plot(r**(1/6)*np.cos(t),r**(1/6)*np.sin(t),':')
```

Добавляем к рисунку окружность, на которой лежат все корни

Упражнение 5. Найти и изобразить точками на комплексной плоскости все корни $\sqrt[4]{2\sqrt{3}-2i}$. Изобразить пунктиром окружность, на которой эти точки лежат. Построить штрих-пунктиром правильный многоугольник с вершинами в этих точках. Нанести сетку, отобразить оси линиями черного цвета, подписать их. Масштаб по осям сделать одинаковым. Подписать графическое окно.

Пример 6. Построить на комплексной плоскости множество точек, заданных условием |z|=4.

```
import matplotlib.pyplot as plt
import numpy as np
r=5
t = np.linspace(0,2*np.pi,100)
z = r*(np.cos(t)+1j*np.sin(t))
plt.plot(np.real(z),np.imag(z),'r')
plt.grid(True)
plt.axis('equal')
plt.axhline(y=0, color='k')
plt.axvline(x=0, color='k')
plt.title('|z|='+str(r))
plt.xlabel('Re(z)')
plt.ylabel('Im(z)')
plt.show()
```


Упражнение 6. Написать программу, строящую на комплексной плоскости множество точек, заданных условием Arg(z) = const. Используя написанную программу, построить на комплексной плоскости множество точек, заданных условием:

1)
$$Arg(z) = \frac{\pi}{4}$$
; 2) $Arg(z) = \frac{5\pi}{6}$.

Рисунки сделать либо в одной системе координат, либо в одном графическом окне, разделенном на 4 подобласти.

Задания для самостоятельной работы

- **1.** Выполнить упражнения из раздела «Краткие теоретические сведения и практические упражнения», которые не успели сделать в аудитории.
 - 2. Ответить на контрольные вопросы:
 - 1) Каким образом можно ввести комплексное число?
 - 2) Что такое вещественная и мнимая часть комплексного числа?
 - 3) Как осуществляются арифметические действия над комплексными числами?
 - 4) Что такое модуль и аргумент комплексного числа?
 - 5) Чему равны модуль и аргумент произведения и частного комплексных чисел?
 - 6) Сколько существует корней n-ой степени из комплексного числа? Как они расположены на комплексной плоскости?

3. Самостоятельно выполнить упражнения:

Упражнение С1.

Вычислить:

- 1) $(1+2i)^2(1-i)$;
- 2) $(1-i)^4 (1+i)^4$;
- 3) i^k , где k = 20, 21, ..., 40 (использовать операцию поэлементного возведения массива в степень);

4)
$$\frac{2+5i}{1-3i} + \frac{1}{1-i}$$
 (результаты вывести в различных форматах).

Упражнение С2.

Вычислить
$$z_1\overline{z}_2$$
 и $\left(\frac{\overline{z}_1}{z_2}\right)^2$, если $z_1=\sqrt{3}$ - i , $z_2=1+i\sqrt{3}$.

Упражнение С3. Найти действительную и мнимую части комплексного числа, его модуль, аргумент, найти сопряженное ему число:

1)
$$(5+4i)(3-2i^3)$$
; 2) $(1-i)^{13}$.

Упражнение С4. Найти и изобразить точками на комплексной плоскости все корни $\sqrt[6]{-1-\sqrt{3}i}$. Изобразить пунктиром окружность, на которой эти точки лежат. Построить штрих-пунктиром правильный многоугольник с вершинами в этих точках. Нанести сетку, отобразить оси линиями черного цвета, подписать их. Масштаб по осям сделать одинаковым. Подписать графическое окно.

Упражнение С5. Используя написанную программу, построить на комплексной плоскости множество точек, заданных условием:

1)
$$Arg(z) = -\frac{3\pi}{4}$$
; 2) $Arg(z) = -\frac{\pi}{3}$.

Рисунки сделать либо в одной системе координат, либо в одном графическом окне, разделенном на 4 подобласти.