Universidade de São Paulo

EP2 - MAP3121

Um problema inveres para obtenção de distribuição de Temperatura

MAP3121

Nome Otavio Henrique Monteiro NUSP 10774159

10 de Julho de 2020

Conteúdo

Desesenvolvimento 2.1 Tarefas																					
2.1																					
	2.1.1																				
	2.1.2	Item	(b)																		
	2.1.3																				
2.2	Testes																				
	2.2.1	Item	(a)																		
	2.2.2																				
	2.2.3	Item	(c)																		
	2.2.4	Item	(d)																		

1 Introdução e Objetivos

A distribuição de temperatura numa barra foi estudada no EP1, utilizando métodos numéricos para a determinação do problema direto, que é dado pela seguinte equação diferencial parcial:

$$u_t(t,x) = u_{xx}(t,x) + f(t,x) \text{ em } [0,T] \times [0,1]$$

 $u(0,x) = u_0(x) \text{ em } [0,1]$
 $u(t,0) = g_1(t) \text{ em } [0,T]$
 $u(t,1) = g_2(t) \text{ em } [0,T]$

$$(1)$$

Na segunda parte do exercício programa iremos desenvolver a solução do problema inverso da equação do calor, ou seja, determinar as intensidades de fontes de calor a partir dos valores finais da temperatura (em tempo T). Pelo método de Cranck-Nicolson (desenvolvido no EP1) iremos encontrar vetores referentes à distribuição de temperatura para diferentes forçantes (cada em um ponto p_k , k de 1 a nf). Iremos então montar o sistema linear correspondente à solução pelo método dos Mínimos Quadrados, que sera solucionado por meio do uso da decomposição LDL^t . Realizados os testes de funcionamento, utilizaremos uma distribuição final de temperatura fornecida, $u_T(x)$, para determinar os valores de intensidade das fontes em pontos já conhecidos (sem e com ruído).

2 Desesenvolvimento

2.1 Tarefas

$2.1.1 \quad \text{Item (a)}$

Para os diferentes pontos p_1, \cdot, p_k temos fontes descritas por $f(t, x) = r(t)g_h^k(x)$, $k = 1, \cdot, nf$, onde definimos $g_h^k(x) = \frac{1}{h}$, se $p_k - \frac{h}{2} \le x \le p_k + \frac{h}{2}$ e $g_h^k(x) = 0$ caso contrário e escolhemos $r(t) = 10(1 + \cos{(5t)})$. Escolhemos também $u_0(x) = 0$ e $g_1(t) = g_2(t) = 0$. Assim, utilizando o método de Cranck-Nicolson desenvolvido no EP1 e descrito na equação 2.1.1 encontramos os vetores $u_k(T, x_i)$, $i = 1, \dots, N-1$, considerando que M = N.

$$\begin{bmatrix} 1 + \lambda & -\frac{\lambda}{2} & 0 & \cdots & 0 \\ -\frac{\lambda}{2} & 1 + \lambda & -\frac{\lambda}{2} & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 1 + \lambda & -\frac{\lambda}{2} \\ 0 & \cdots & 0 & -\frac{\lambda}{2} & 1 + \lambda \end{bmatrix} \times \begin{bmatrix} u_1^{k+1} \\ u_2^{k+1} \\ \vdots \\ u_{N-2}^{k+1} \\ u_{N-1}^{k+1} \end{bmatrix} = b$$

$$b = \begin{bmatrix} u_1^k + \frac{\lambda}{2}(u_0^k - 2u_1^k + u_2^k) + \frac{\Delta t}{2}(f_1^k + f_1^{k+1}) + \lambda g_1(t^{k+1}) \\ u_2^k + \frac{\lambda}{2}(u_1^k - 2u_2^k + u_3^k) + \frac{\Delta t}{2}(f_2^k + f_2^{k+1}) \\ \vdots \\ u_{N-2}^k + \frac{\lambda}{2}(u_{N-3}^k - 2u_{N-2}^k + u_{N-1}^k) + \frac{\Delta t}{2}(f_{N-2}^k + f_{N-2}^{k+1}) \\ u_{N-1}^k + \frac{\lambda}{2}(u_{N-2}^k - 2u_{N-1}^k) + \frac{\Delta t}{2}(f_{N-1}^k + f_{N-1}^{k+1}) + \lambda g_2(t^{k+1}) \end{bmatrix}$$
(2)

2.1.2 Item (b)

Devemos então montar o sistema linear correspondente à solução do problema de mínimos quadrados, descrito pela equação 3. Sabendo que o produto interno pode ser descrito por $< u, v > = \sum_{i=1}^{N-1} u(x_i)v(x_i).$

$$\begin{bmatrix} \langle u_{1}, u_{1} \rangle & \langle u_{2}, u_{1} \rangle & \cdots & \langle u_{nf}, u_{1} \rangle \\ \langle u_{1}, u_{2} \rangle & \langle u_{2}, u_{2} \rangle & \cdots & \langle u_{nf}, u_{2} \rangle \\ \vdots & \vdots & \vdots & \vdots \\ \langle u_{1}, u_{nf} \rangle & \langle u_{2}, u_{nf} \rangle & \cdots & \langle u_{nf}, u_{nf} \rangle \end{bmatrix} \times \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{nf} \end{bmatrix} = \begin{bmatrix} \langle u_{T}, u_{1} \rangle \\ \langle u_{T}, u_{2} \rangle \\ \vdots \\ \langle u_{T}, u_{nf} \rangle \end{bmatrix}$$
(3)

Inferimos, desse modo, que $u_T(x) = \sum_{k=1}^{nf} a_k u_k(T,x)$, pois podemos verificar na pri-

mirerimos, desse modo, que
$$u_T(x) = \sum_{k=1}^{N} a_k u_k(T, x)$$
, pois podemos verificar na primira linha do sistema 3 que: $\langle u_T, u_1 \rangle = \sum_{i=1}^{N-1} u_T(x_i) u_1(x_i) = a_1 \cdot \left[\sum_{i=1}^{N-1} u_1(x_i) u_1(x_i) \right] + a_2 \cdot \left[\sum_{i=1}^{N-1} u_2(x_i) u_1(x_i) \right] + \cdots + a_{nf} \cdot \left[\sum_{i=1}^{N-1} u_{nf}(x_i) u_1(x_i) \right].$

$$\sum_{i=1}^{N-1} u_T(x_i) u_1(x_i) = \sum_{i=1}^{N-1} [a_1 u_1(x_i) u_1(x_i) + a_2 u_2(x_i) u_1(x_i) + \dots + a_{nf} u_{nf}(x_i) u_1(x_i)]$$

Podemos colocar os coeficientes a_k dentro das somatórias e simplificá-las temos: $\sum_{i=1}^{N-1} u_T(x_i) u_1(x_i) = \sum_{i=1}^{N-1} \left[a_1 u_1(x_i) u_1(x_i) + a_2 u_2(x_i) u_1(x_i) + \cdots + a_{nf} u_{nf}(x_i) u_1(x_i) \right]$ Observando a presença de $u_1(x_i)$ em ambos os lados da equação, é trivial notar a relação apontada anteriormente entre u_T , a_k e $u_k(T, x_i)$.

2.1.3 Item (c)

Diferentemente dos sistemas lineares do EP1, o sistema correspondente ao problema dos mínimos quadrados não gera uma matriz esparsa nem tridiagonal. Desse modo, foi necessário readaptar o código utilizado no EP1 de modo a, utilizando o método de decomposição de matrizes simétricas de Cholesky e solucionando os sistemas encontrados, encontrar as intensidades do sistema linear referente ao problema de mínimos quadrados. Inicialmente decompomos a matriz da forma de A da equação 3 em LDL^t , solucionando como: $Ax = b \rightarrow LDL^t x = b$, LDy = b, $L^t x = y$.

2.2 Testes

Para todos os testes foram utilizados T = 1 e $r(t) = 10(1 + \cos 5t)$.

2.2.1 Item (a)

Utilizamos para esse item as seguintes definições:

- N = 128
- nf = 1
- $p_1 = 0.35$
- $u_T(x_i) = 7u_1(T, x_i)$

Desse modo o programa encontrou $a_1 = 7$, sendo a solução trivial de $[164.171][a_1] = [1149.2]$. Para tal foi utilizada a hipótese de que $\langle u_T, u_1 \rangle = \langle 7u_1, u_1 \rangle = 7 \langle u_1, u_1 \rangle$, verificável pelo produto interno analisado anteriormente. O mesmo raciocínio foi aplicado ao Item (b), que define u_T como uma combinação linear de $u_{1,\dots,nf}$.

2.2.2 Item (b)

Utilizamos para esse item as seguintes definições:

- N = 128
- nf = 4
- $p_1 = 0.15$, $p_2 = 0.3$, $p_3 = 0.7$, $p_4 = 0.8$
- $u_T(x_i) = 2.3u_1(T, x_i) + 3.7u_2(T, x_i) + 0.3u_3(T, x_i) + 4.2u_4(T, x_i)$

Encontramos assim o sistema de equações da problema de mínimos quadrados para o calculo das intensidades:

Derradeiramente, achamos os valores das intensidades (como esperado, são os mesmos valores de intensidade fornecidos anteriormente):

•
$$a_1 = 2.3$$
, $a_2 = 3.7$, $a_3 = 0.3$ e $a_4 = 4.2$

2.2.3 Item (c)

Para esse item, os dados são adquiridos do arquivo *teste.txt*, que contém os pontos em que existem fontes, bem como a temperatura final para 2048 pontos. Temos assim, as seguintes considerações:

- N = 128, 256, 512, 1024 e 2048
- nf = 10

O valor de N a ser utilizado será selecionado em tempo de execução pelo usuário, e os pontos serão escolhidos de acordo com a relação de N com 2048 (i.e. tomam-se os valores de $\frac{2048}{N}$ em $\frac{2048}{N}$).

Assim, chegamos aos valores de a_k , com $k=1,\cdots,nf$ para os diferentes valores de N escolhidos.

[a]	N=128	N=256	N=512	N=1024	N=2048
a1	2,78	1,65	1,25	1,11	1,00
a 2	3,89	4,64	4,86	4,93	5,00
a3	2,06	2,16	2,07	1,99	2,00
a4	1,33	1,30	1,42	1,50	1,50
a5	2,41	2,32	2,23	2,20	2,20
a6	3,00	3,05	3,07	3,09	3,10
a7	0,44	0,53	0,65	0,66	0,60
a8	1,43	1,36	1,26	1,25	1,30
a9	4,77	4,34	4,04	3,93	3,90
a10	-1,20	-0,35	0,21	0,42	0,50

Tabela 1: Intensidades encontradas para diferentes valores de N, com u_T original fornecido (item c)

Após encontrados os valores de intensidade, podemos calcular os valores de temperatura final (para as intensidades encontradas) por: $\sum_{k=1}^{nf} a_k u_k(T, x_i)$, como verificada anteriormente. Definimos o erro quadrático discreto pela equação 4, calculando seu valor para cada N.

$$E = \sqrt{\Delta x \sum_{i=1}^{N-1} \left(u_T(x_i) - \sum_{k=1}^{nf} a_k u_k(T, x_i) \right)^2}$$
 (4)

	N=128	N=256	N=512	N=1024	N=2048
\mathbf{E}	0,1714230	0,0842522	0,0361489	0,0124500	0,0009696

Tabela 2: Erro quadrático calculado para diferentes valores de N, entre as temperaturas encontradas e as temperaturas originais fornecidas.

Podemos ver que o valor de temperatura final encontrada converge para a original com o aumento no valor de N, minimizando o erro, que tem seu menor valor para N=2048. Isso pode ser visto também nos gráficos correspondentes à reconstrução do valor final com as intensidades encontradas em comparação com o valor oficial.

Figura 1: Comparação entre o valor Oficial de u_T e o encontrado para diferentes valores de N

Figura 2: Comparações de u_T para os diferentes valores de N

2.2.4 Item (d)

Nesse teste as considerações são as mesmas do item anterior, porém os dados de temperatura final foram tratados com um ruído aleatório, descrito pela equação: $u_{T.ruido}(x_i) = u_T(x_i) \cdot (1. + r\epsilon)$, onde $\epsilon = 0.01$ e r é um número randômico entre -1 e 1.

[a]	N=128	N=256	N=512	N=1024	N=2048
a1	2,86	1,62	1,19	1,11	0,98
a2	3,85	4,66	4,96	4,93	5,03
a3	1,87	2,11	1,99	1,99	1,97
a4	1,55	1,37	1,47	1,50	1,52
a5	2,28	2,32	2,21	2,20	2,20
a6	3,16	3,00	3,08	3,09	3,09
a7	-0,14	0,57	0,56	0,66	0,59
a8	1,96	1,38	1,36	1,25	1,31
a9	4,71	4,22	4,01	3,93	3,93
a10	-1,18	-0,25	0,22	0,42	0,48

Tabela 3: Intensidades encontradas para diferentes valores de N, com u_T tratado com ruído (item d)

Do mesmo modo que no item anterior podemos calcular o erro quadrático para cada

valor de N segundo a equação 4. "E" foi calculado com os valores de u_T originais do arquivo, já "E_ruido" com u_{T_ruido} definido anteriormente.

	N=128	N=256	N=512	N=1024	N=2048
\mathbf{E}	0,1741790	0,0855369	0,0381527	0,0144684	0,0080491
E_ruido	0,2004690	0,1332570	0,1085960	0,1028760	0,1026950

Tabela 4: Erros quadráticos para diferentes valores de N. "E" corresponde ao erro calculado entre os valores encontrados (encontrados usando os valores tratados com ruído) e os valores originais fornecidos. "E_ruido" corresponde ao erro calculado entre os valores encontrados e os valores originais tratados com ruído.

Figura 3: Comparações de u_T para os diferentes valores de N

Observamos que o valor das intensidades é ligeiramente diferente do obtido sem o tratamento com ruído, tendo erros quadráticos mais elevados. Desse modo podemos concluir que o sistema é robusto para pequenas variações, mas pode ter seu valor final de intensidades deslocado.

3 Referências

[1] Equipe de Métodos Numéricos. Um problema inverso para obtenção de distribuição de Temperatura - MAP3121, 2020.