Implementation of elliptic curve cryptography in constrained environments

Anthony Van Herrewege Prof. Dr. Ir. I. Verbauwhede & Prof. Dr. Ir. B. Preneel

18 Februari 2009

Outline

- 1 Introduction
- 2 Elliptic Curve Pairings
- 3 Implementation
- 4 Conclussion

Outline

- 1 Introduction
- 2 Elliptic Curve Pairings
- 3 Implementation
- 4 Conclussion

Introduction

Implement a compact hardware **implementation of** elliptic curve pairings.

Implement a compact hardware implementation of elliptic curve pairings.

- Program in GEZEL
- Optimize in VHDL
- Synthetize to FPGA/ASIC

Outline

- 1 Introduction
- 2 Elliptic Curve Pairings
- 3 Implementation
- 4 Conclussion

Overview

- What?
- 2 Why?
- 3 How?

What?

■ Public key cryptography

What?

- Public key cryptography
- Identity-based cryptography

What?

- Public key cryptography
- Identity-based cryptography
- Calculations over elliptic curves

Elliptic Curve Pairings

- Identity-based cryptography
 - No public key lookup required: eg. P = National identification number

- Identity-based cryptography
 - No public key lookup required: eg. P = National identification number
 - Date-stamped encryption possible: eg. P = Nin + "20091223"

- Identity-based cryptography
 - No public key lookup required: eg. P = National identification number
 - Date-stamped encryption possible: eg. P = Nin + "20091223"
 - Other positive aspects: Fast (1 round) key establishment protocols Ideal for eg. sensor networks

- Identity-based cryptography
 - No public key lookup required:eg. P = National identification number
 - Date-stamped encryption possible: eg. P = Nin + "20091223"
 - Other positive aspects:
 Fast (1 round) key establishment protocols
 Ideal for eg. sensor networks
 - Drawbacks as well: no key revocation, still a central authority, ...

- Identity-based cryptography
 - No public key lookup required:eg. P = National identification number
 - Date-stamped encryption possible: eg. P = Nin + "20091223"
 - Other positive aspects:
 Fast (1 round) key establishment protocols
 Ideal for eg. sensor networks
 - Drawbacks as well: no key revocation, still a central authority, ...
- Key strength comparison [bits]:

RSA 3072 FCC 256

How? - Underlying mathematics

■ Discrete logarithm (DL) problem [hard]:

Given:
$$g, h \in G$$
: $h \stackrel{?}{=} g^a \pmod{n}$

How? - Underlying mathematics

Discrete logarithm (DL) problem [hard]:

Given:
$$g, h \in G$$
: $h \stackrel{?}{=} g^a \pmod{n}$

Computational DL problem [hard]:

Given:
$$g, g^a, g^b, \in G$$
: $h \stackrel{?}{=} g^{ab} \pmod{n}$

How? - Underlying mathematics

■ Discrete logarithm (DL) problem [hard]:

Given:
$$g, h \in G$$
: $h \stackrel{?}{=} g^a \pmod{n}$

■ Computational DL problem [hard]:

Given:
$$g, g^a, g^b, \in G$$
: $h \stackrel{?}{=} g^{ab} \pmod{n}$

Decision DL problem [easy]:

Given:
$$g, g^a, g^b, g^c \in G$$
: $g^c \stackrel{?}{=} g^{ab} \pmod{n}$

How? - Pairings

Q: What group satisfies CDL_{hard} and DDL_{easy} ?

A: Elliptic curve pairing e:

$$e:\, \textit{G}_{1} \times \textit{G}_{1} \rightarrow \textit{G}_{2}$$

Mapping needs to be bilinear, non-degenerate & efficiently computable. Several available pairings:

- 1 Introduction
- 2 Elliptic Curve Pairings
- 3 Implementation
- 4 Conclussion

MALU

Modulo Arithmetic Logical Unit [general]:

MALU

Modulo Arithmetic Logical Unit [optimized]:

Implementation 000000

MALU

Modulo Arithmetic Logical Unit [optimized; d-bits wide]:

Implementation

Wrappers - GF_{2m}

*GF*₂^m Multiplication/Addition:

Wrappers - ECC

ECC Point Addition/Doubling:

Implementation 000000

State of the art

Some currently available implementations:

Name	Platform	Field	Speed
TinyTate	ATMega128L [7.4Mhz]	$\mathbb{F}_{2^{256}}$	30.2s
TinyPBC	ATMega128L [7.4Mhz]	$\mathbb{F}_{2^{256}}$	5.45s
Hankerson	P4 [2.8Ghz]	$\mathbb{F}_{2^{1223}}$	0.07s
Hankerson	P4 [2.8Ghz] (SSE)	$\mathbb{F}_{2^{1223}}$	0.03s

Outline

- 1 Introduction
- 2 Elliptic Curve Pairings
- 3 Implementation
- 4 Conclussion

Progress so far

MALU

Progress so far

- MALU
- ECC functions

Progress so far

- MALU
- ECC functions
- Pairing functions (partial)

To do

■ Complete pairing functions

To do

- Complete pairing functions
- Bugfixing

To do

- Complete pairing functions
- Bugfixing
- Optimization (VHDL)

The end

Questions?