(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-61955

(43)公開日 平成6年(1994)3月4日

(51) Int.Cl.⁶

識別配号

庁内整理番号

FΙ

技術表示箇所

H04H 5/00

G 8020-5K

審査請求 未請求 請求項の数8(全 7 頁)

(21)出顯番号

(22)出願日

特願平4-210149

平成4年(1992)8月6日

(71)出願人 000116024

ローム株式会社

京都府京都市右京区西院溝崎町21番地

(72)発明者 竹田 克

京都市右京区西院漕崎町21番地 ローム株

式会社人

(72)発明者 林 成嘉

京都市右京区西院溝崎町21番地 ローム株

式会社内

(74)代理人 弁理士 佐野 静夫

(54) 【発明の名称】 ステレオマルチプレクサ回路及びその発振回路

(57)【要約】

【目的】無調整化に適した発振回路及びそれを用いたステレオマルチプレクサ回路を提供する。

【構成】本発明のステレオマルチプレクサ回路は、(L+R)信号と、(L-R)信号と、パイロット信号とからなるコンポジット信号の処理に必要な発振信号を、時定数をもつフィルタ7a、7bと、発振条件を充足するように前記フィルタの出力を入力側へ帰還する反転増幅器とから成る正弦波発振回路7によって得るとともに、該発振回路7の発振周波数を前記パイロット信号を用いて制御する。フィルタは差動増幅器より成るgm増幅器とコンデンサとで構成されており、前記差動増幅器の定電流源は、その定電流設定用のトリミング回路に接続されている。

1

【特許請求の範囲】

【請求項1】 R信号成分及びL信号成分を有する第1の 音声信号と、R信号成分及びL信号成分を有する第2の 音声信号と、パイロット信号とからなるコンポジット信 号を処理してL信号及びR信号を出力するステレオマル チプレクサ回路において、

前記コンポジット信号の処理に必要な発振信号を時定数をもつフィルタと、発振条件を充足するように前記フィルタの出力を該フィルタの入力側へ帰還する手段とから成る発振回路によって得るとともに、該発振回路の発振 10 周波数を前記パイロット信号を用いて制御するようにしたことを特徴とするステレオマルチプレクサ回路。

【請求項2】前記発振回路の出力は前記パイロット信号により位相検波器で位相検波され、その位相検波出力で前配フィルタの時定数が制御されることを特徴とする請求項1に記載のステレオマルチプレクサ回路。

【請求項3】前記フィルタはgm増幅器とコンデンサとでローパスフィルタ型に構成されており、前記位相検波出力によってgm増幅器のgmが制御されることを特徴とする請求項2に記載のステレオマルチプレクサ回路。

【請求項4】前記gm增幅器は差動増幅器で構成されており、その定電流が前記位相検波出力で可変されることを特徴とする請求項3に記載のステレオマルチプレクサ回路。

【請求項5】前記フィルタは差動増幅器より成るgm増幅器とコンデンサで構成されており、前記差動増幅器の定電流源は、その定電流設定用のトリミング回路に接続されている請求項1に記載のステレオマルチプレクサ回路。

【請求項6】前記フィルタは差動増幅器よりなる従続接続された一対のgm増幅器と、コンデンサとから構成されており、一方のgm増幅器を成す差動増幅器の定電流が前記パイロット信号に基いて制御され、他方のgm増幅器を成す差動増幅器の定電流源は、温度補償回路に接続されていることを特徴とする請求項1に記載のステレオマルチプレクサ回路。

【請求項7】前記発振器の出力を用いてL信号及びR信号に含まれるパイロット信号をキャンセルするパイロットキャンセラ回路を有する請求項1乃至請求項6のいずれかに記載のステレオマルチプレクサ回路。

【請求項8】時定数をもつフィルタと、発振条件を充足するように前記フィルタの出力を入力側へ帰還する手段とからなり、前記フィルタは差勁増幅器より成るgm増幅器とコンデンサとで構成されており、前記差勁増幅器の定電流源は、その定電流設定用のトリミング回路に接続されていることを特徴とする発振回路。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はFMチューナ等に用いら 件を充足するように前配フィルタの出力を入力側へ帰還れるステレオマルチプレクサ回路及びそれに用いる発振 50 する手段とから成る発振回路によって得るとともに、該

回路に関するものである。

[0002]

【従来の技術】この種のステレオマルチプレクサ回路は、例えば(L+R)音声信号と(L-R)音声信号と パイロット信号とから成るコンポジット信号を処理して 左右のチャンネル信号L、Rを出力するが、そのコンポ ジット信号の処理に際して発振信号を用いる。

2

【0003】従来のステレオマルチプレクサ回路に使用されているVCO(電圧制御型発振回路)はICに外付けしたCR時定数で発振周波数を調整する構成となっていた。そして、他にはセラミック発振子を外付けし、調整を廃した方式があり、その発振子としては456kHzのセラミック発振子を用いたものが多い。

[0004]

【発明が解決しようとする課題】しかしながら、このような従来の回路では経年変化や温度依存性が発振子の特性に依るため、発振子としてセラミック発振子を用いた場合には、それらの経年変化や温度依存性は良好であるが、VCOのフリーラン周波数も発振子の特性のみで決ってしまうため、コンポジット信号の処理に必要な19kHzや38kHz等の比較的低い周波数を得るためにセラミック発振子の456kHzを分周(24分周、12分周)するための分周器が沢山必要となり、ICのチップ面積が増大するという欠点があった。

【0005】しかもその分周によって得られる周波数 (例えば19kHz) は矩形波であるため、コンポジット信号中のパイロット信号を出力チャンネルにおいてキャンセルするために分周出力を正弦波に変換しなければ ならないという面倒もあった。

「【0006】本発明はこのような点に鑑みなされたものであって、セラミック発振子等を必要としない発振回路及びそれを用いたステレオマルチプレクサ回路を提供することを目的とする。本発明の他の目的は無調整化に適した発振回路及びそれを用いたステレオマルチプレクサ回路を提供することにある。

[0007]

【課題を解決するための手段】上配の目的を達成する本 発明の発振回路は、時定数をもつフィルタと、発振条件 を充足するように前配フィルタの出力を入力側へ帰還す 40 る手段とからなり、前記フィルタは差勁増幅器より成る gm増幅器とコンデンサとで構成されており、前記差勁 増幅器の定電流源は、その定電流設定用のトリミング回 路に接続されている。

【00008】また本発明のステレオマルチプレクサ回路は、R信号成分及びL信号成分を有する第1の音声信号と、R信号成分及びL信号成分を有する第2の音声信号と、パイロット信号とからなるコンポジット信号の処理に必要な発振信号を、時定数をもつフィルタと、発振条件を充足するように前記フィルタの出力を入力側へ帰還する手段とから成る発振回路によって得るとともに、該

3

発振回路の発振周波数を前記パイロット信号を用いて制 御するようにしている。

[0009]

【作用】このような構成によると、差動増幅器の定電流をコントロール信号で制御することによってgmを制御し、発振問波数を任意かつ安定に制御することができる。また、フリーラン発振時の定電流をトリミング調整することで、フィルタの構成素子のパラツキを吸収できるため、周波数のトリミングが容易であるとともに、ステレオマルチプレクサ回路の無調整化を実現できる。

【0010】更に、上記正弦波発振回路をICとして形成する場合、コンデンサの温度係数はほぼ0である。従って、発振周波数の温度依存性はgmの温度係数によって規定されるが、定電流に所定の温度係数をもたせてgmの温度係数とキャンセルさせることで比較的簡単に発振周波数の温度補正が可能である。

【0011】また、任意の点で同一の周波数でかつ任意の位相差をもった信号を取り出すことができるため、P LL(フェーズ・ロックド・ループ)化したときに移相器が不要である。

[0012]

【実施例】以下、本発明の実施例について説明する。図1は本発明を実施したステレオマルチプレクサ回路の全体の構成図であり、同図において、入力端子2には検波回路1でモノラル検波して得られたステレオ・コンポジット信号が与えられる。このステレオ・コンポジット信号は50Hz~15kHzの帯域(L+R)信号と、19kHzのパイロット信号と、38kHzをキャリアとする(L-R)信号とからなっている。

【0013】コンポジット信号が与えられる位相検波器3には別途VCOユニット5の正弦波発振回路7からの発振信号が与えられる。正弦波発振回路7は19kHzを目標にフリーラン発振するように設計されているが、それ自身の発振周波数は19kHzからずれるので、位相検波器3の出力によって19kHzの発振周波数となるように制御されるようになっている。

【0014】位相検波器3に与えられるコンポジット信号中のパイロット信号(19kHz)に対し正弦波発振回路7から与えられる信号(A)は略90°の位相差である。そして両者の位相差が90°のとき、位相検波器 40で検出されるエラー信号(E)は0となり、位相差が90°からずれると、そのずれの方向と、ずれ景に応じた信号が検波出力として出力される。このエラー信号(E)はフィルタ4で直流化された後、VCOユニット5の電圧・電流変換回路6で電流に変換され、その電流信号によって正弦波発振回路7の発振周波数を前配エラー信号が0になるように制御する。これによって正弦波発振回路7の発振周波数は正しく19kHzとなる。その際、正弦波発振回路7の出力(A)はパイロット信号に対し90°の位相差となり、出力(B)は0°とな 50

る。

【0015】正弦波発振回路7は時定数をもつ2つのフィルタ7a、7bを従続接続し、その山力を人力側へ帰還することによって発振を行なうように構成されている。そして、フィルタ7a、7bの時定数をエラー信号で制御することによって発振周波数を可変できるように構成されているが、この正弦波発振回路7の具体的な構成については、後で図3を参照して詳細に説明する。

【0016】さて、前配正弦波発振回路7の出力(B) 10 は同期検波器8に与えられ、ここで入力端子2から与えられるコンポジット信号中のパイロット信号と乗算される。同期検波器8の出力は次段のコンパレータ9で予め定めた基準値と比較され、その基準値以上であればLED(発光ダイオード)10が点灯し、ステレオ放送であることが表示される。基準値未満であればLED10は点灯しない。このため、入力端子2から与えられる信号はパイロット信号(19kHz)が存在しないとき(従ってステレオ放送でないとき)は同期検波器8による検波出力は0であるので、LED10は点灯しない。

1 【0017】入力端子2に与えられたコンポジット信号は乗算器11にも与えられるが、この乗算器11には別途38kHzの正弦波が与えられる。この正弦波は正弦波発振回路7の出力(A)(B)を乗算器12で乗算して19kHzの正弦波発振周波数を2倍にした成分を取り出すことによって得られる。乗算器11からはL信号とR信号が線路14、15にそれぞれ出力されるが、これらの出力には19kHzのパイロット信号が乗っているので、この不要成分(パイロット信号)をパイロットキャンセラ回路17、18で正弦波発振回路7からの出力(B)を用いてキャンセルするようにしている。その際、出力(B)は増幅器16で増幅された後、パイロットキャンセラ回路17、18へ与えられる。

【0018】ここで、前記乗算器11の具体的構成を図2に示し、説明する。図2において、端子19を通してコンポジット信号が入力され、端子20、21間に38kHzの正弦波信号が与えられる。コンポジット信号はダブルパランス型の差動増幅器の下段の差動対トランジスタT1、T2で増幅されて、それらのコレクタ側に出力される。これらの出力は上段の差動対トランジスタT3~T6が38kHzの正弦波信号によりスイッチング制御されることにより、出力端子26にはL信号、出力端子27にはR信号として導出される。24、25はそれぞれ負荷抵抗を示している。

【0019】次に前配VCOユニット5の詳細を示す図3について説明する。図中、電圧・電流変換回路6は端子40を介して与えられる位相検波器3からのエラー信号(電圧)を(+)入力端子に受ける演算増幅器41と、この演算増幅器41の出力によって電流値が可変される可変電流源42、43とからなっている。

【0020】44は後で説明するが、正弦波発振回路7

の回路上のパラツキを補正するための調整回路であり、 定電流駆動されるトランジスタQ34、パッファ増幅器 46、トランジスタQ35、トリミング回路45、トラ ンジスタQ36、Q37、Q38等よりなっている。ト リミング回路45は後で説明するが、複数の電流源用ト ランジスタの動・不動をレーザトリミングにより設定す ることによって、その全体の出力電流値が正弦波発振回 路7のパラツキを吸収するように決められている。18 は正弦波発振回路7の温度特性を補正し、温度に影響さ れない安定な発振を行なうことができるように成す温度 10 特性補償回路である。

【0021】正弦波発振回路7はフィルタ7a、7b以 外にフィルタ7bの出力をフィルタ7aの入力側へ18 0°反転して与える増幅度1の反転増幅器49を有して いる。フィルタ7aは図示の如く接続された一対のgm 増幅器gm1、gm2とコンデンサC1とでローパスフ ィルタとして構成されており、フィルタ7bも同じく一 対のgm増幅器gm3、gm4とコンデンサC2とでロ ーパスフィルタとして構成されている。

【0022】前記gm増幅器gm1~gm4はいずれも 20 差動増幅器で構成されている。出力端子51の出力

(B) が反転増幅器49で反転されて、出力(B)の位*

 $fo = (1/2\pi) \cdot \{1/(RE \times C)\} \cdot (i1/i0) \cdots (1)$

と表わされる。ここで、コンデンサの容量Cはコンデン サC1、C2をチッ化膜等で形成することにより温度の 影響を受けないようにすることができる。一方、REは 温度特性をもつ。そこで、i 1/i0の温度特性を適当 に選んでやれば、発振周波数 foは温度特性をもたない ことになる。

【0025】温度特性補償回路48はこの目的で設けら 30 れたものであって、その出力によってgm増幅器gm 2、gm4の定電流用トランジスタQ11、Q22を制 御することによって11を制御している。尚、温度特性 補償回路48において、トランジスタQ28~Q31は 定電流源を構成している。

【0026】上記(1)式において、RE、C及びi 1 /i0は回路を構成する各素子のパラツキによってパラ ツクので、発振周波数 foも製品ごとに異なった値とな る。もちろん、foは図1に示される制御ループによっ てパイロット周波数 (19kHZ) になるように制御さ 40 れるが、正弦波発振回路7自体のパラツキが大きい場合 には、制御範囲を超えてしまい、パイロット周波数で発 振ができない状態となる。

【0027】そこで、本実施例において、パラツキをg m増幅器gm1、gm3の定電流(フリーラン発振時の 定電流)のトリミング調整によって抑えるようにするの が、調整回路44である。この調整回路44の中心を成 すのはトリミング回路45であるので、このトリミング 回路45の詳細を図4に示し説明する。同図において、 トリミング回路45は全体がカレントミラー回路として 50 振周波数を任意かつ安定に制御することができる。また

*相に対し180°の位相差でgm増幅器のトランジスタ Q7のペースに入力される。このgm増幅器gm1の出 力は次段のgm増幅器gm2のトランジスタQ15の山 カからエミタフォロアトランジスタQ16のエミッタに 導出されるが、このエミッタでの位相はトランジスタQ 7のペースでの位相に対し90°進んだものとなってい

【0023】この信号はgm増幅器gm3及びgm1を 経た後、エミッタフォロアQ27のエミッタ側へ導出さ れるが、このエミッタでの位相は更にトランジスタQ1 6のエミッタの位相よりも90°進んでいる。即ち、g m増幅器は1対で入力を90°移相して出力する。従っ て、2対のgm増幅器によって180°の移相を行なう が、その出力を更に反転増幅器49で180°反転して gm増幅器gm1へ帰還することにより発振が実現され る。 端子50は発振出力を取り出すようになっている。 【0024】コンデンサC1とC2の容量値は互いに等 しくС1=С2=Cとし、トランジスタQ7、Q8及び Q18、Q19のエミッタ抵抗RE1、RE2、RE 3、RE4はいずれも等しく、RE1=RE2=RE3 =RE4=REとすると、正弦波発振回路?のフリーラ ン発振周波数 foは、

構成されており、その入力側トランジスタQ40に対 し、4個の出力トランジスタQ41~Q44が設けら れ、これらの出力側トランジスタQ41~Q44の各々 のコレクタには導体部P1~P4が図示の如く接続さ れ、それらの導体部P1~P4の他端は共通に接続され ている。

- 【0028】導体部P1~P4はレーザービーム53に よってカットできるようになっており、カットされた導 休部に対応するトランジスタは実質的に除かれる(不作 動設定される)ことになる。出力側トランジスタQ4 1、Q42、Q43、Q44はその電流が例えば入力電 流 I に対し、 I 、 2 I 、 4 I 、 8 I という具合いに選ば れているので、導体部P1~P4のカットにより動作し うるトランジスタの組合せを選ぶことによりトータルの 出力電流として、I、2I、3I、4I、5I、・・ 、15 [のうち1つを設定することができる。
- 【0029】尚、図4の例に拘泥することなく、出力側 のトランジスタをいくつ設けてもよく、また、それらの 電流値を適当な値に定めてもよいことはいうまでもな い。図4において、52はカレントミラー回路であり、
 - (a) (b) は図3の(a) (b) に対応している。

【0030】上述したように本実施例では、正弦波発振 回路?を時定数をもつフィルタ?a、?bで構成し、そ のフィルタを差動増幅器よりなるgm増幅器とコンデン サで構成しているので、その差動増幅器の定電流をコン トロール信号で制御することによってgmを制御し、発

のパラツキを吸収できるため、周波数のトリミングが容 易であるとともに、ステレオマルチプレクサ回路の無調 整化を実現できる。

【0031】更に、上記正弦波発振回路を「Cとして形 成する場合、コンデンサC1、C2の温度係数はほぼ0 である。従って、発振周波数の温度依存性はgmの温度 係数によって規定されるが、定電流に所定の温度係数を もたせてgmの温度係数をキャンセルすることで比較的 簡単に発振周波数の温度補正が可能である。

【0032】また、端子50、51で示されるように任 10 器が不要である。 意の点で同一の周波数でかつ任意の位相差をもった信号 を取り出すことができるため、PLL(フェーズ・ロッ クド・ループ)化したときに移相器が不要である。

[0033]

【発明の効果】以上説明したように本発明によれば、差 動増幅器の定電流をコントロール信号で制御することに よってgmを制御し、発振周波数を任意かつ安定に制御 することができる。また、フリーラン発振時の定電流を トリミング調整することで、フィルタの構成素子のパラ ツキを吸収できるため、周波数のトリミングが容易であ 20 るとともに、ステレオマルチプレクサ回路の無調整化を 実現できる。また、時定数をもつフィルタで構成した発 振回路は正弦波発振回路として構成できるので、ステレ オマルチプレクサ回路においてパイロットキャンセルす る際に、この発振回路の出力をそのまま用いることがで きる。

[図2]

【0034】更に、上記発援回路をICとして形成する 場合、コンデンサの温度係数はほぼ0である。従って、 発振周波数の温度依存性はgmの温度係数によって規定 されるが、定電流に所定の温度係数をもたせてgmの温 度係数をキャンセルすることで比較的簡単に発振周波数 の温度補正が可能である。

【0035】また、任意の点で同一の周波数でかつ任意 の位相差をもった信号を取り出すことができるため、P LL (フェーズ・ロックド・ループ) 化したときに移相

【図面の簡単な説明】

(5)

【図1】本発明を実施したステレオマルチプレクサ回路 のプロック図。

【図2】その一部の具体的回路図。

【図3】その正弦波発振回路の回路構成図。

【図4】そのトリミング回路の回路構成図。

【符号の説明】

3 位相検波器

5 VCOユニット

7 正弦波発振回路

7a、7b フィルタ

17、18 パイロットキャンセラ回路

44 調整回路

45 トリミング回路

48 温度特性補償回路

49 反転增幅器

【図4】

【図1】

[図3]

