Manas Jha

RA1911003010643

Implementation of Uncertain Methods of an Application

Aim- Implementation of UNCERTAIN METHODS – DEMPSTER SHAFER THEORY

		Date
3		Paul 5
3		Problem Formation: To solve inference problem representing uncertain methods to obtain a belief function. Using the mass function which cambination sules obtain the Dempster quile of combination.
		uncertain man to
3		Junction. Usi 1:
3-		has built-in comprehensive time and the mass function which
		combination. Twee obtain the Dempster sule of
3		
3		Till at
-		Initial State Final State
7		Total Source
3—	M1	? \\ \(\alpha': 0.4 \) \\ \\ \(\alpha': 0.2 \) \\ \\ \alpha': 0.1 \) \\ \\ \\ \alpha': 0.3 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
		abc':0.3}
3	144	?\a':0.4, b':0.2, ab:0.1, ?\ac':0.157894, abc':0.3} ?\b':0.5, \c':0.3, \ac':0.3, \abc':0.0\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	100121	abc':0.0, ac:0.3, abc':0.0, abcoo, al:0.2103
		a':0.05
	1	Poroblem Solving: The combination is colorated from the two sets of masses un and us in the
		he combination is calculated from the
		two sets of masses in and in the
		following way:
		1) J D W [6]-0
		Mor (A)=(m, Amz)(A) (A) (B) mr(c)
		mor (M)-(M) (A) Ext I Em (B) m2(C)
		I'M BACZA # P
		where $K = E m_1(P)(m_2(c))$
		Combination of my 2m2 21 bit : 0. 7, 8 a 13: 0.2499, 2'c 1, a 13: 0.1499, 2'c 1:0.0999
		ALI'S - 0.7 07 213, 0.2400 Stall 13, 0.1600 21 Risance
		() () () () () () () () () ()

Algorithm-

Step 1: Start

Step 2: Each piece of evidence is represented by a separate belief function

Step 3: Combination rules are then used to successively fuse all these belief functions in order to obtain a belief function representing all available evidence. Step 4: Specifically, the combination (called the joint mass) is calculated from the two sets of masses m1 and m2 in the following manner:

```
• m1,2(\emptyset) = 0
```

- m1,2(A)=(m1⊕m2)(A)=(1/1−K) ∑B∩C=A≠Ø m1(B) m2(C)
- where,
- K=∑B∩C=Ø m1(B) m2(C) K

K is a measure of the amount of conflict between the two mass sets.

Step 5: In python Mass-Function has the built-in combination rules.

Step 6: Stop

Code-

from numpy import *

Do NOT use, just for illustration of the D-S combination rules implementation def DempsterRule(m1, m2):

```
## extract the frame of discernment
sets=set(m1.keys()).union(set(m2.keys()))
result=dict.fromkeys(sets,0)
## Combination process
for i in m1.keys():
    for j in m2.keys():
        if set(str(i)).intersection(set(str(j))) == set(str(i)):
            result[i]+=m1[i]*m2[j]
        elif set(str(i)).intersection(set(str(j))) == set(str(j)):
            result[j]+=m1[i]*m2[j]
```

normalize the results

```
f= sum(list(result.values()))
for i in result.keys():
    result[i] /=f
    return result

m1 = {'a':0.4, 'b':0.2, 'ab':0.1, 'abc':0.3}
m2 = {'b':0.5, 'c':0.2, 'ac':0.3, 'a':0.0}
print(DempsterRule(m1, m2))
```

Output-

input
{'ab': 0.0, 'b': 0.5263157894736842, 'abc': 0.0, 'c': 0.10526315789473682, 'ac': 0.15789473684210523, 'a': 0.21052631578947364}

Result-

Hence, the Implementation of Dempster Shafer Theory is done successfully.