Reductions and Approximations

Christopher Siu

Tractability and Solvability

Definition

A problem is **tractable** if and only if it is solvable in worst-case polynomial time.

A problem that is not tractable is said to be intractable.

Example

The Sorting Problem is tractable (and, thus, solvable).

Example

The Knapsack Problem is solvable but intractable.

Example

The Halting Problem is unsolvable (and, thus, intractable).

Decision Problems

Definition

A decision problem is one whose solution is either "yes" or "no".

- □ Decision problems contrast with **optimization problems**.
 - The solution is neither "yes" nor "no".
 - ☐ The solution is associated with some "best" value.

Example

The Hamiltonian Path Problem is a decision problem.

Example

The Traveling Salesperson Problem is an optimization problem.

Decision Problems

Example

Consider the Traveling Salesperson Problem:

- ☐ Given a complete, weighted graph...
- □ ...find the Hamiltonian cycle of minimum weight.
- An optimization problem can be restated as a decision problem by introducing a **threshold**.

Example

Consider the decision version of TSP:

- \square Given a complete, weighted graph and a threshold k...
- \square ...find a Hamiltonian cycle of weight $\leq k$.

Complexity Classes

Definition

A **complexity class** is a set of problems with similar computational complexities.

- \square \mathcal{EXP} is the class of problems solvable in exponential time.
- \square *PSPACE* is the class of problems solvable in polynomial space.
- \square \mathcal{BQP} is the class of problems solvable by a quantum computer in polynomial time with reasonably low chance of error.

Definition

 ${\cal P}$ is the class of decision problems solvable in polynomial time.

Complexity Classes

Definition

 \mathcal{NP} is the class of decision problems for which a "yes" answer is checkable in polynomial time.

- □ A decision problem is not necessarily easy to *solve*.
- □ A solution to a decision problem is often easy to *check*.

Example

Recall the Traveling Salesperson Problem:

- Checking a solution to optimization TSP requires comparing it to all other Hamiltonian cycles.
- \square Checking a solution to decision TSP requires verifying that it is Hamiltonian and has weight $\leq k$.

Complexity Classes

Definition

 $\mathcal{NP} ext{-Hard}$ is the class of problems at least as hard as every other problem in \mathcal{NP} .

Definition

 $\mathcal{NP} ext{-}\mathbf{Complete}$ is the class of problems in both \mathcal{NP} and $\mathcal{NP} ext{-}\mathbf{Hard}$.

- \square Problems in \mathcal{NP} are easy to check; problems in \mathcal{NP} -Hard are hard to solve.
- □ Problems in *NP*-Complete have solutions which can be *checked* efficiently but not *found* efficiently.

Corollary

If a problem is easy to solve, then it is easy to check: $\mathcal{P} \subseteq \mathcal{NP}$

\mathcal{P} and \mathcal{NP}

\mathcal{P} and \mathcal{NP}

Example (cont.)

The decision version of TSP is \mathcal{NP} -Complete:

- Finding a Hamiltonian cycle of weight $\leq k$, or determining that one does not exist, has complexity $O(|V|^2 \cdot 2^{|V|})$.
- $\hfill\Box$ Checking that a cycle is Hamiltonian and of weight $\leq k$ has complexity $O(|\mathit{V}|).$
- □ If $\mathcal{P} = \mathcal{NP}$, then there exist polynomial time algorithms to solve \mathcal{NP} -Complete problems we haven't found them yet.
- □ If $\mathcal{P} \neq \mathcal{NP}$, then there exist \mathcal{NP} -Complete problems which we will never be able to solve in polynomial time.

Definition

A **reduction** from a problem A to a problem B consists of:

- \square An algorithm f, transforms instances of A into those of B
- \square An algorithm h, transforms solutions of B into those of A ...such that no solution to B implies no solution to A.

Example

Consider reducing Maximum Element to Sorting:

Where:

- \Box *f* is the identity function.
- ☐ MERGESORT sorts the sequence in descending order.
- \square *h* returns the first element of the sorted sequence.

- \square A reduction uses an algorithm for B to solve A.
- \square It is typically required that the complexities of f and h be negligible compared to that of the algorithm for B.

Corollary

If A is reducible to B, then B is at least as hard as A.

 \square If B were easier than A, then the algorithm for B could be used to solve A, making A exactly as hard as B.

Example (cont.)

Suppose there existed a MAGICSORT with complexity < O(n). Then MAXELEMENT would also have complexity < O(n).

The Boolean Satisfiability Problem

Definition

A proposition is either true or false, but not both.

- □ Propositions may be combined using **logical operators**:
 - \blacksquare Negation ("¬p")
- lacksquare Disjunction (" $p \lor q$ ")
 - $lue{}$ Conjunction (" $p \wedge q$ ")
- **...**
- □ Propositions are closed under these operations.

Example

Given that $p \equiv F$, $q \equiv F$, and $r \equiv T$, $(p \lor \neg q) \land r \equiv T$.

Definition

A proposition is **satisfiable** if and only if there exists an assignment of truth values to its variables such that it is true.

The Boolean Satisfiability Problem

Definition

A proposition in **conjunctive normal form**, or "CNF", is a conjunction of clauses, where each clause is a disjunction of literals.

- □ A sub-proposition, typically parenthesized, is called a "clause".
- □ A variable identifier, optionally negated, is called a "literal".
- □ In other words, a proposition in CNF is an "'and' of 'or's".

Example

 $(p \vee \neg q) \wedge (\neg p \vee q)$ is in CNF.

Example

 $(p \land \neg q) \lor (\neg p \land q)$ is not in CNF.

The Boolean Satisfiability Problem

Consider the following problem:

☐ Given a proposition in CNF with exactly 3 literals per clause, determine whether or not it is satisfiable.

Example

Given:

$$(p \lor q \lor r) \land (\neg p \lor r \lor \neg p) \land (\neg r \lor \neg r \lor \neg r)$$

... $p \equiv F$, $q \equiv T$, $r \equiv F$ is a satisfying assignment.

The Cook-Levin Theorem

The Boolean Satisfiability Problem, or "SAT", is \mathcal{NP} -Complete.

Corollary

The 3-Satisfiability Problem, or "3-SAT", is \mathcal{NP} -Complete.

The Clique Problem

Consider the following problem:

□ Given a graph, find a maximum **clique**, a subgraph containing exactly one edge between every distinct pair of vertices.

Example

Given:

 $...\{v_0, v_2, v_3\}$ induces a maximum clique.

The Clique Problem

Theorem

The (Decision) Clique Problem is \mathcal{NP} -Complete.

Example

Consider reducing 3-SAT to Clique:

The Clique Problem

Example (cont.)

Given $(p \lor q \lor r) \land (\neg p \lor r \lor \neg p) \land (\neg r \lor \neg r \lor \neg r)$:

The Vertex Cover Problem

Consider the following problem:

☐ Given a graph, find a minimum **vertex cover**, a subset of vertices incident to every edge in a graph.

Example

Given:

 $...\{v_0, v_1, v_2\}$ is a minimum vertex cover.

The Vertex Cover Problem

Theorem

The (Decision) Vertex Cover Problem is \mathcal{NP} -Complete.

Example

Consider reducing Clique to Vertex Cover:

The Vertex Cover Problem

Definition

The **complement** of a simple graph G=(V,E), denoted \overline{G} , is a simple graph where $(u,v)\in \overline{E}$ if and only if $(u,v)\notin E$.

- □ Vertices that are not in a vertex cover cannot be connected.
- \square $S \subseteq V$ is a vertex cover of \overline{G} iff V S induces a clique of G.

Example (cont.)

Karp's Twenty-One \mathcal{NP} -Complete Problems

Example

m Vertex Cover can be used to solve the Clique Problem, and m Clique can be used to solve the Vertex Cover Problem.

- □ All of the following problems are reducible to one another:
 - Boolean Satisfiability
 - 3-Satisfiability
 - Clique
 - Vertex Cover

- *k*-Colorability
- Hamiltonian Cycle
- Knapsack
- □ ...
- □ If any of these problems can be solved in polynomial time, then they *all* can (and, thus, it will be the case that $\mathcal{P} = \mathcal{NP}$).

Approximations

Approximation Algorithms

□ Assuming that $P \neq NP$, none of the NP-Complete problems can be solved in polynomial time.

Definition

An **approximation algorithm** is one that efficiently approximates a solution to a problem.

- $\hfill \Box$ Approximations are applied to $\mathcal{NP}\text{-Hard}$ optimization problems.
 - $lue{}$ Problems not in $\mathcal{NP} ext{-Hard}$ are already relatively easy to solve.
 - Decision problems have inapproximable solutions.
- □ Approximations are typically compared to optimal algorithms.

Approximation Ratios

Definition

An algorithm has an **approximation ratio** of ρ if and only if an approximate solution A is at most ρ times worse than the optimal solution Opt.

- \square A ρ -approximation is an algorithm with a ratio of ρ .
 - For minimization problems, $OPT \le A \le \rho \cdot OPT$.
 - For maximization problems, $1/\rho \cdot \text{OPT} \leq A \leq \text{OPT}$.
- □ A 1-approximation algorithm is an optimal algorithm.

Example

Simply returning every vertex in a graph G=(V,E) yields a $\mid V \mid$ -approximation of Vertex Cover.

- □ A **matching**, a subset of edges such that no two edges share an endpoint, can be found greedily in polynomial time.
- ☐ The endpoints of a maximal matching form a vertex cover.

Example

Given:

 $...\{(v_0, v_2), (v_1, v_4)\}$ is a maximal matching, and $\{v_0, v_1, v_2, v_4\}$ is a vertex cover.

```
ApproximateVertexCover(G = (V, E))
```

Input: A graph G

Output: A vertex cover of *G*

1: **let** S be \emptyset

2: for all $e = (u, v) \in E$ do

3: if $u \notin S$ and $v \notin S$ then

4: **let** S be $S \cup \{u, v\}$

5: return S

Example

- 1 Add (v_0, v_2) .
- 2 Skip (v_0, v_3) .
- **3** Skip (v_1, v_2) .
- 4 Add (v_1, v_4) .

- **5** Skip (v_2, v_3) .
- 6 Skip (v_2, v_4) .
- **7** Return $\{v_0, v_1, v_2, v_4\}$.

Note than an optimal vertex cover has cardinality 3.

Example

- \square The optimal solution includes at least 1 vertex for each edge.
- ☐ The approximation includes exactly 2 vertices for each edge.
- \square Opt $< A < 2 \cdot \text{Opt}$

APPROXIMATEVERTEXCOVER is a 2-approximation.

- ☐ Each edge is considered exactly once.
- \square Each vertex is considered at most $\deg(v)$ times.
- \square Vertices are collectively considered 2|E| times.

Approximate Vertex Cover has complexity O(|E|).

Consider the following problem:

☐ Given a complete graph with weights satisfying the **triangle inequality**, find the Hamiltonian cycle of minimum weight.

Example

Given:

...the edge (v_0, v_2) violates the triangle inequality: $8 \le 3 + 4$.

- □ A Hamiltonian cycle less one edge forms a spanning tree.
- □ An MST can be found greedily in polynomial time.

Example

Given:

...a Hamiltonian cycle of minimum weight is $(v_0, v_1, v_3, v_2, v_4, v_0)$, and $(v_0, v_1, v_3, v_2, v_4)$ defines a spanning tree.

ApproximateMetricTSP(G = (V, E))

Input: An complete, weighted graph ${\it G}$ with weights satisfying the triangle inequality

Output: A Hamiltonian cycle in G

- 1: **let** T be MinimumSpanningTree(G)
- 2: for all $v \in V$ do
- 3: **let** v be "unexplored"
- 4: **let** s be any vertex in V and P be the vertices of $\mathrm{Explore}(T,s)$, sorted in ascending order by previsit number
- 5: **return** P + (s)

Example

- **1** Construct an MST: $\{(v_0, v_1), (v_2, v_3), (v_1, v_4), (v_1, v_3)\}$
- 2 Traverse tree edges: $(v_0, v_1, v_3, v_2, v_3, v_1, v_4, v_1, v_0)$
- **3** Bypass duplicate vertices: $(v_0, v_1, v_3, v_2, v_4, v_0)$

Note that an optimal Hamitonian cycle has weight 21.

Example

- □ A Hamiltonian cycle cannot be lighter than an MST.
- □ By the triangle inequality, bypassing cannot increase weight.
- □ MST \leq OPT $-w_e \leq$ OPT $\leq A \leq 2 \cdot$ MST

APPROXIMATEMETRICTSP is a 2-approximation.

- \square Constructing an MST has complexity $O(|E|\log|E|)$.
- \square Exploring a spanning tree has complexity O(|V|).
- □ Preordering vertices while exploring adds negligible complexity.

ApproximateMetricTSP has complexity $O(|E|\log |E|)$.

Approximating General TSP

Theorem

Approximating general TSP with any constant ratio ρ is \mathcal{NP} -Hard.

Example

Consider reducing Hamiltonian Cycle to Approximate TSP:

Approximating General TSP

Example (cont.)

Given a Hamiltonian graph G and $\rho=2$:

