

ASR6601

RFSW User Guide

Version 1.0.0

Issue Date 2023-12-29

Copyright © 2023 ASR

About This Document

This document introduces the differences in hardware and software between single-pin and complementary-pin controlled RF switches (RFSW), helping customers design RF switches for the ASR6601 LPWAN SoC chip.

Intended Readers

This document is mainly for engineers who use this chip to develop their own platform and products, for instance:

- PCB Hardware Development Engineer
- Software Engineer
- Technical Support Engineer

Included Chip Models

The product models corresponding to this document are as follows.

Model	Flash	SRAM	Core	Package	Frequency
ASR6601SE	256 KB	64 KB	32-bit 48 MHz Arm China STAR-MC1	QFN68, 8*8 mm	150 ~ 960 MHz
ASR6601CB	128 KB	16 KB	32-bit 48 MHz Arm China STAR-MC1	QFN48, 6*6 mm	150 ~ 960 MHz
ASR6601SER	256 KB	64 KB	32-bit 48 MHz Arm China STAR-MC1	QFN68, 8*8 mm	150 ~ 960 MHz
ASR6601CBR	128 KB	16 KB	32-bit 48 MHz Arm China STAR-MC1	QFN48, 6*6 mm	150 ~ 960 MHz

Copyright Notice

© 2023 ASR Microelectronics Co., Ltd. All rights reserved. No part of this document can be reproduced, transmitted, transcribed, stored, or translated into any language in any form or by any means without the written permission of ASR Microelectronics Co., Ltd.

Electrostatic Discharge (ESD) Warning

This product can be damaged by Electrostatic Discharge (ESD). When handling with this device, the people should be very careful to conduct the ESD protection to avoid any device damage caused by ESD event.

Trademark Statement

ASR and ASR Microelectronics Co., Ltd. are trademarks of ASR Microelectronics Co., Ltd.

Other trade names, trademarks, and registered trademarks mentioned in this document are the property of their respective owners and are hereby declared.

Disclaimer

ASR does not give any warranty of any kind and may make improvements and/or changes in this document or in the product described in this document at any time.

This document is only used as a guide, and no contents in the document constitute any form of warranty. Information in this document is subject to change without notice.

All liability, including liability for infringement of any proprietary rights caused by using the information in this document, is disclaimed.

ASR Microelectronics Co., Ltd.

Address: 9F, Building 10, No. 399 Keyuan Road, Zhangjiang High-tech Park, Pudong New Area, Shanghai, 201203, China

Homepage: http://www.asrmicro.com/

Revision History

Date	Version	Release Notes
2023.07	V1.0.0	First Release.

Table of Contents

1.	Over	view	1
	1.1	Single-pin Controlled RFSWs	1
	1.2	Complementary-pin Controlled RFSWs	2
	1.3	Single and Complementary-pin Controlled RFSWs	3
2.	Desi	gn of Single-pin Controlled RFSWs	4
3.	Desig	gn of Complementary-pin Controlled RFSWs	5
	3.1	Design Scheme I for Complementary-pin Controlled RFSWs	5
	3.2	Design Scheme II for Complementary-pin Controlled RFSWs	5
	3.3	Design Scheme III for Complementary-pin Controlled RFSWs	7
	3.4	Comparison of Design Schemes for Complementary-pin Controlled RFSWs	g

List of Tables

Table 1-1 Commonly Used Single-pin Controlled RFSWs in LPWAN	1
Table 1-2 XMSSJR6G0BA Truth Table	2
Table 1-3 Commonly Used Complementary-pin Controlled RFSWs in LPWAN	2
Table 1-4 CKRF2179MM26 Truth Table	3
Table 1-5 Commonly Used Single and Complementary-pin Controlled RFSWs in LPWAN	3
Table 1-6 PE4259 Truth Table	3
Table 2-1 Control Logic of Single-pin Controlled RFSWs	4
Table 3-1 Control Logic of Hardware Design Scheme II for Complementary-pin Controlled RFSWs	6
Table 3-2 Control Logic of Hardware Design Scheme III for Complementary-pin Controlled RFSWs	7
Table 3-3 Comparison of Design Schemes for Complementary-pin Controlled RFSWs	9

List of Figures

Figure 1-1 XMSSJR6G0BA Diagram	. 2
Figure 1-2 CKRF2179MM26 Diagram	. 3
Figure 1-3 PE4259 Functional Block Diagram	. 3
Figure 2-1 Single-pin Controlled RFSW Schematic Reference Design	. 4
Figure 3-1 Hardware Design Scheme I for Complementary-pin Controlled RFSWs	. 5
Figure 3-2 Hardware Design Scheme II for Complementary-pin Controlled RFSWs	. 5
Figure 3-3 Hardware Design Scheme III for Complementary-pin Controlled RFSWs	. 7

1. Overview

Both ASR650X and ASR6601 chips are based on SX1262, switching between TX and RX via RFSW. RFSW is divided into three categories depending on the control signals: the single-pin controlled switch, the complementary-pin controlled switch, and the single- and complementary-pin controlled switch. The first two categories are common, while the single-and complementary-pin controlled RFSW is less common. Generally, the SX1262's internal state machine automatically generates an interrupt signal DIO2 as the control signal for TX and RX switching, which makes the hardware circuit and software design the easiest if with a single-pin controlled RFSW. However, in practice, the complementary-pin controlled RFSW may be used, and the corresponding hardware circuit and software are significantly different from those of the single-pin controlled RFSW. Below are the differences in hardware and software between single-pin and complementary-pin controlled RFSWs.

1.1 Single-pin Controlled RFSWs

The following are the single-pin controlled RFSWs commonly used in LPWAN:

Table 1-1 Commonly Used Single-pin Controlled RFSWs in LPWAN

Company	Part Number	Control Mode	Description	Truth Table	Power Supply
muRata	XMSSJR6G0BA-093	Single-Pin Control	SOI CMOS SPDT Switch for 0.01~6.0 GHz	Single-Pin Control Logic: CTL RF1 RF2 Low ON OFF High OFF ON	1.7~5.0V 3.0V TVP
Maxscend	MXD8625C	Single-Pin Control	SOI CMOS SPDT Switch for 0.1~3.0 GHz	Single-Pin Control Logic: CTL RF1 RF2 Low ON OFF High OFF ON	2.5~3.0V 2.8V TVP
CanaanTek	CAN1630RW	Single-Pin Control	SOI CMOS SPDT Switch for 0.1~2.7 GHz	Single-Pin Control Logic: CTL RF1 RF2 Low ON OFF High OFF ON	2.5~5.0V 2.85V TYP
Will	WS7802DE	Single-Pin Control	SOI CMOS SPDT up to 3 GHz	Single-Pin Control Logic: CTL RF1 RF2 Low ON OFF High OFF ON	2.5~5.0V 2.8V TYP
RDA	RDASW293C	Single-Pin Control	SOI CMOS SPDT up to 6 GHz	Single-Pin Control Logic: CTL RF1 RF2 Low ON OFF High OFF ON	2.4~4.2V 2.85V TYP

Take muRata's XMSSJR6G0BA-093 as an example:

Single-Pin Control Logic Truth						
VDD	CTL	RFC-RF1	RFC-RF2			
VDD	LOW	ON	OFF			
VDD HIGH OFF ON						

Figure 1-1 XMSSJR6G0BA Diagram

Table 1-2 XMSSJR6G0BA Truth Table

III Note:

- 1. The pin order of RF1 (Port1) and RF2 (Port2) is different for different single-pin controlled RFSWs.
- 2. The packages of different RFSWs are different, which should be noted when replacing different RFSWs.

1.2 Complementary-pin Controlled RFSWs

The following are the complementary-pin controlled RFSWs commonly used in LPWAN:

Table 1-3 Commonly Used Complementary-pin Controlled RFSWs in LPWAN

Company	Part Number	Control Mode	Description	Truth Table	Power Supply
HexaWave	HWS408	Complementary- Pin Control	This switch can be used in many wireless digital communication systems like IEEE 802.11b/g WLAN and Bluetooth for transmit/receive selection or antenna diversity function.	VC1 VC2 RFC-RF1 RFC-RF2 Low High ON OFF High Low OFF ON	1.8~6.0 V 3.0 V TYP
GSR	GSR1303S GSR1370C	Complementary- Pin Control	a pHEMT GaAs SPDT operate frequency from DC to 3.0 GHz, application: Wireless LAN (IEEE 802.11b/g) & Bluetooth	VC1 VC2 RFC-RF1 RFC-RF2 Low High ON OFF High Low OFF ON	1.8~5.0 V 3.0 V TYP
CDK	CKRF2214MM66	Complementary- Pin Control	a pHEMT GaAs SPDT operate frequency from 0.05 to 3.0 GHz, application: Wireless LAN (IEEE 802.11b/g) & Bluetooth	VC1 VC2 RFC-RF1 RFC-RF2 Low High ON OFF High Low OFF ON	1.8~5.0 V 3.0 V TYP
CDK	CKRF2179MM26	Complementary- Pin Control	a pHEMT GaAs SPDT operate frequency from 0.05 to 3.0 GHz, application: Wireless LAN (IEEE 802.11b/g) & Bluetooth	VC1 VC2 RFC-RF1 RFC-RF2 Low High ON OFF High Low OFF ON	1.8~5.0 V 3.0 V TYP
NJRC	NJG1801K75 (TE1)	Complementary- Pin Control	a SPDT switch IC suited for switching transmit/receive signals at 802.11a/b/g/n/ac applications.	ON PATH VCTL1 VCTL2 PC-P1 L H PC-P2 H L	2.0~3.3 V 2.8 V TYP
CEL	UPG2214TK	Complementary- Pin Control	NEC's ½W LOW VOLTAGE L, S-BAND SPDT SWITCH L, S-band digital cellular and cordless telephones Bluetooth TM, W-LAN and WLL	Vcont1 Vcont2 IN-OUT1 IN-OUT2 Low High ON OFF High Low OFF ON	1.8~5.3 V 1.8 V, 3.0 V TYP

	Short Range Wireless		
--	----------------------	--	--

Take CKRF2179MM26 as an example:

Figure 1-2	CKRF21	79MM26	Diagram
Figure 1-2	CKRF21	79MM26	Diagram

Complementary-Pin Control Logic Truth						
VC1	VC2	RFC-RF1	RFC-RF2			
LOW	HIGH	ON	OFF			
HIGH	LOW	OFF	ON			

Table 1-4 CKRF2179MM26 Truth Table

1.3 Single and Complementary-pin Controlled RFSWs

The following are the single and complementary-pin controlled RFSWs commonly used in LPWAN:

Table 1-5 Commonly Used Single and Complementary-pin Controlled RFSWs in LPWAN

Company	Part Number	Control Mode	Description	Truth Table	Power Supply
Peregine	PE4259	Both	SPDT High Power UltraCMOS™10 MHz- 3.0 GHz RF Switch	Single-Pin Control Logic: CTRL RFC-RF1 RFC-RF2 High ON OFF Low OFF ON Complementary-Pin Control Logic: nCTRL CTRL RFC-RF1 RFC-RF2 Low High ON OFF High Low OFF ON	1.8~3.3 V 3.0 V TVP

For example, PE4259 can be used as both a single-pin controlled RFSW and a complementary-pin controlled RFSW, as follows:

Figure 1-3 PE4259 Functional Block Diagram

Single-Pin Control Logic Truth					
VDD	CTL	RFC-RF1	RFC-RF2		
VDD	LOW	OFF	ON		
VDD	HIGH	ON	OFF		
Complementary-Pin Control Logic Truth					
nCTRL	CTRL	RFC-RF1	RFC-RF2		
LOW	HIGH	ON	OFF		
HIGH	LOW	OFF	ON		

Table 1-6 PE4259 Truth Table

2. Design of Single-pin Controlled RFSWs

We recommend you to use single-pin controlled RFSWs, which are used for reference design of the official ASR module and on which the SDK of ASR650X and ASR6601 chips are all based.

The following is an example of the hardware design of the ASR6601SE single-pin controlled RFSW. Its model is murata's XMSSJR6G0BA-093. The ASR6601's ANT_SW_CTRL (i.e., SX1262's DIO2 signal) is connected to the RFSW's CTRL (pin6) to control the TX and RX switching. GPIO10 is connected to VDD (pin4) of RFSW, which can be turned off in deep sleep mode to prevent it from leakage (leakage for XMSSJR6G0BA is about 5 uA). The control logic of RFSW is as follows:

Mode	VDD (pin4)	CTRL (pin6)
TX	HIGH	HIGH
RX	HIGH	LOW
Deep Sleep	LOW	LOW

Table 2-1 Control Logic of Single-pin Controlled RFSWs

Figure 2-1 Single-pin Controlled RFSW Schematic Reference Design

For **software design**, please refer to the default SDK.

3. Design of Complementary-pin Controlled RFSWs

3.1 Design Scheme I for Complementary-pin Controlled RFSWs

Hardware design: ANT_SW_CTRL (i.e. DIO2 signal of SX1262) generates a complementary controlled signal through an inverter, controlling VC1 and VC2 of the complementary-pin controlled RFSW with its complementary signal for TX and RX switching.

Figure 3-1 Hardware Design Scheme I for Complementary-pin Controlled RFSWs

Software design: Use the default SDK. No software modifications are required.

3.2 Design Scheme II for Complementary-pin Controlled RFSWs

Hardware design: ANT_SW_CTRL (i.e. DIO2 signal of SX1262) and a GPIO are used to control VC1 and VC2 of the complementary-pin controlled RFSW for TX and RX switching.

Figure 3-2 Hardware Design Scheme II for Complementary-pin Controlled RFSWs

Software design: Based on the default ASR6601 SDK, the software should be modified according to the following control logic:

Table 3-1 Control Logic of Hardware Design Scheme II for Complementary-pin Controlled RFSWs

Mode	VC1 (pin6) GPIO10	VC2 (pin4) ANT_SW_CTRL	
TX	Low	High	
RX	High	Low	
Deep Sleep	Low	Low	
Note: ANT_SW_CTRL is the DIO2 of SX1262.			

The SX126xCheckDeviceReady function in the sx126x.c file should be modified by modifying the code as follows, with newly added code marked in blue:

```
void SX126xCheckDeviceReady( void )
  if((SX126xGetOperatingMode() == MODE_SLEEP) || (SX126xGetOperatingMode() == MODE_RX_DC))
    SX126xWakeup();
    // Switch is turned off when device is in sleep mode and turned on is all other modes
    SX126xAntSwOn();
    (SX126xGetOperatingMode() == MODE_RX)
      X126xAntSwOn();
     e if (SX126xGetOperatingMode( ) == MODE_TX)
     SX126xAntSwOff();
  SX126xWaitOnBusy();
```

III Note:

ANT_SW_CTRL (DIO2) is controllable by the SX1262's internal state machine and is uncontrollable by software. GPIO10 is controllable by software.

3.3 Design Scheme III for Complementary-pin Controlled RFSWs

Hardware design: 2 GPIOs are used to control VC1 and VC2 of the complementary-pin controlled RFSW for TX and RX switching.

Figure 3-3 Hardware Design Scheme III for Complementary-pin Controlled RFSWs

Software design: Based on the default ASR6601 SDK, the software should be modified according to the following control logic:

Table 3-2 Control Logic of Hardware Design Scheme III for Complementary-pin Controlled RFSWs

Mode	VC1 (pin6) GPIO10	VC2 (pin4) GPIO42		
TX	Low	High		
RX	High	Low		
Deep Sleep	Low	Low		
Note: Other GPIOs can also be used at customers' convenience, with the software modified				
accordingly				

The *SX126xCheckDeviceReady* function in the sx126x.c file should be modified by modifying the code as follows, with newly added code marked in blue:

```
void SX126xCheckDeviceReady( void )
{
    if( ( SX126xGetOperatingMode( ) == MODE_SLEEP ) || ( SX126xGetOperatingMode( ) == MODE_RX_DC ) )
    {
        SX126xWakeup( );
        // Switch is turned off when device is in sleep mode and turned on is all other modes
        SX126xAntSwOn( );
    }
    if (SX126xGetOperatingMode( ) == MODE_TX) {
        gpio_init(GPIOA, GPIO_PIN_10, GPIO_MODE_OUTPUT_PP_LOW);
        gpio_init(GPIOC, GPIO_PIN_10, GPIO_MODE_OUTPUT_PP_HIGH);
    } else if (SX126xGetOperatingMode( ) == MODE_RX) {
        gpio_init(GPIOA, GPIO_PIN_10, GPIO_MODE_OUTPUT_PP_HIGH);
        gpio_init(GPIOA, GPIO_PIN_10, GPIO_MODE_OUTPUT_PP_LOW);
    }
    SX126xWaitOnBusy( );
}
```


In addition, the functions SX126xAntSwOn and SX126xAntSwOff in the sx1262-board.c file should be modified by deleting the code of the SX126xAntSwOn function, and modifying the code of the SX126xAntSwOff function to set GPIO10 and GPIO42 to output low level. The modified code is as follows.

```
void SX126xAntSwOn( void )
void SX126xAntSwOff( void )
  gpio_init(GPIOA, GPIO_PIN_10, GPIO_MODE_OUTPUT_PP LOW);
  gpio_init(GPIOC, GPIO_PIN_10, GPIO_MODE_OUTPUT_PP_LOW);
```

🔔 Notice:

Use GPIO10 and GPIO42 (or other GPIOs, with the software modified accordingly) to control VC1 and VC2 of RFSW, both of which are uncontrollable by software. ANT_SW_CTRL (DIO2) is discarded.

3.4 Comparison of Design Schemes for Complementary-pin Controlled RFSWs

Table 3-3 Comparison of Design Schemes for Complementary-pin Controlled RFSWs

Number	Description	Advantages and Disadvantage	Is Recommended
Scheme II	Use ANT_SW_CTRL (i.e. DIO2 signal of SX1262) and a GPIO to control VC1 and VC2 of the complementary-pin controlled RFSW	Advantage: In terms of hardware, the control signals of the complementary-pin controlled RFSW are compatible with the single-pin controlled RFSW circuit, requiring only software modifications according to the corresponding logic. Disadvantage: ANT_SW_CTRL is uncontrollable by software and a GPIO is required.	Recommended
Scheme III	Use 2 GPIOs to control VC1 and VC2 of the complementary-pin controlled RFSW	Advantages: Two GPIOs are used as the control signals of the complementary-pin controlled RFSW, which allows flexible control and adaptation to different hardware solutions. Disadvantages: Two GPIOs are needed, requiring software modifications according to the corresponding logic.	Moderately recommended
Scheme I	A control signal complementary to ANT_SW_CTRL (i.e., the DIO2 signal of SX1262) is generated via an inverter to control VC1 and VC2 of the complementary pin controlled RFSW with ANT_SW_CTRL.	the DIO2 (inverter), no software modifications are required, and a GPIO can be spared. Disadvantages: The complementary-pin controlled RFSW cannot be turned off, and there is leakage in both RFSW and inverter	