

AIDE À LA DÉCISION : MODÈLES, ALGORITHMES, IMPLÉMENTATIONS K. Belahcene, V. Mousseau, F. Sabatino, A. Wilczynski

T.P. évalué

1 Localisation d'entrepôts

Une grande entreprise désire ouvrir des nouveaux entrepôts pour desservir ses centrales d'achat (clients). Chaque nouvelle implantation d'un entrepôt a un coût fixe et permet de livrer les centrales d'achat (clients) à proximité du site. Chaque livraison effectuée a un coût qui dépend de la distance à parcourir. On dispose de 12 sites pour construire les entrepôts et de 12 centrales d'achat (clients) à desservir. Le tableau ci-dessous donne le coût (en $K \in$) de livraison de la demande complète d'un client (en colonne) par un des entrepôts (en ligne). Par exemple, le coût par unité pour livrer le client 9 (dont la demande totale est 30) à partir du dépôt 1 est $60K \in /30$, i.e. $2K \in$ par unité. Les livraisons impossibles sont matérialisées par le symbole ∞ .

	Clients											
	1	2	3	4	5	6	7	8	9	10	11	12
dépôt 1	100	80	50	50	60	100	120	90	60	70	65	110
dépôt 2	120	90	60	70	65	110	140	110	80	80	75	130
dépôt 3	140	110	80	80	75	130	160	125	100	100	80	150
dépôt 4	160	125	100	100	80	150	190	150	130	∞	∞	∞
dépôt 5	190	150	130	∞	∞	∞	200	180	150	∞	∞	∞
dépôt 6	200	180	150	∞	∞	∞	100	80	50	50	60	100
dépôt 7	100	80	50	50	60	100	120	90	60	70	65	110
dépôt 8	120	90	60	70	65	110	140	110	80	80	75	130
dépôt 9	140	110	80	80	75	130	160	125	100	100	80	150
dépôt 10	160	125	100	100	80	150	190	150	130	∞	∞	∞
dépôt 11	190	150	130	∞	∞	∞	200	180	150	∞	∞	∞
dépôt 12	200	180	150	∞	∞	∞	100	80	50	50	60	100

Table 1: Coûts (K€) pour livrer la totalité de la demande d'un client à partir d'un dépôt

Par ailleurs, pour chaque entrepôt, on dispose des informations suivantes : un coût fixe (en $K \in$) de construction à inclure dans la fonction objectif et une capacité limitée. De plus, on connaît la demande de chaque client de manière précise. Ces informations sont regroupées dans les Tables 2 et 3.

Dans tous les cas, la demande des clients doit être satisfaite, mais une centrale d'achat peut être livrée par plusieurs entrepôts. On s'interroge sur la question des entrepôts à ouvrir pour minimiser le coût total de leur construction et des livraisons qu'ils devront assurer.

е	entrepôt	1	2	3	4	5	6	7	8	9	10	11	12
	coût	3500	9000	10000	4000	3000	9000	9000	3000	4000	10000	9000	3500
C	capacité	300	250	100	180	275	300	200	220	270	250	230	180

Table 2: Données entrepôts

client	1	2	3	4	5	6	7	8	9	10	11	12
demande	120	80	75	100	110	100	90	60	30	150	95	120

Table 3: Demandes clients

- 1. Pour mettre en place le réseau de distribution, quels sont les choix à opérer ? En conséquence, quelles sont les variables de décision ? Précisez la nature des variables définies (continues, entières, binaires)
- 2. Spécifiez ces variables en Python.
- 3. Il est évident que lorsqu'un entrepôt n'est pas ouvert, on ne peut pas servir des clients à partir de cet entrepôt. Comment garantir cette propriété par une contrainte liant les variables représentant l'ouverture d'un entrepôt i et la quantité livrée au client j à partir de l'entrepôt i?
- 4. Ecrire cette contrainte en Python.
- 5. Quelles autres contraintes faut-il imposer au programme mathématique? Ecrire ces contraintes.
- 6. Ecrire ces contraintes en Python.
- 7. Quelle est la fonction objectif que vous souhaitez optimiser?
- 8. Ecrire la fonction objectif en Python.
- 9. Donner la solution optimale. En déduire le réseau de distribution résultant de cette solution.