Principes Analyseur récursif Construction de la table d'analyse Caractérisation d'une grammaire LL(1) Quand une grammaire n'est pas LL(1)

Analyseurs LL(k), LL(*)

Mise en œuvre

Les outils n'implantent pas un automate à pile.

Ils utilisent une implémentation récursive.

Dans tous les cas, le choix de l'expansion est indiqué par une table d'analyse.

Principes

Analyseur récursif
Construction de la table d'analyse
Caractérisation d'une grammaire LL(1)
Quand une grammaire n'est pas LL(1)
Analyseurs LL(k), LL(*)

Table d'analyse - exemple

	S	Α	В	D
а	$S \rightarrow AB$	A ightarrow aAb	erreur	erreur
Ь	$S \rightarrow AB$	$A o \epsilon$	B o bB	erreur
d	S o Da	erreur	erreur	D o dD
е	S o Da	erreur	erreur	D o e
#	$S \rightarrow AB$	$A o\epsilon$	$B o \epsilon$	erreur

Table d'analyse LL(1)

Contient toute l'intelligence de l'analyseur syntaxique.

Definition

La table d'analyse Table est un tableau à deux dimensions tel que :

- ▶ chaque colonne est indicée par un non-terminal $\in V_N$;
- ▶ chaque ligne est indicée par un terminal $\in V_T$ ou #;
- ► chaque case contient une production ∈ P ou erreur.

On verra plus tard comment remplir cette table.

19/119

Interprétation de *Table*[a, X]

- ▶ si le terminal $a \in V_T$ est sous la tête de lecture;
- et si le non-terminal en cours de traitement est $X \in V_N$;

alors on consulte Table[a, X].

Si Table[X, a] contient

- $ightharpoonup X
 ightharpoonup \gamma$ alors on choisit une expansion par cette production;
- erreur alors erreur de syntaxe : X et a ne s'accordent pas.