- L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, vol. 1895, Springer-Verlag, Berlin, 2007.
- Á. Münnich, Gy. Maksa, and R. J. Mokken, n-variable bisection, J. Math. Psychol. 44 (2000) 569–581.
 doi:10.1006/jmps.1999.1262
- 15. Gy. Nagy, ed., KöMaL—Mathematical and Physical Journal for Secondary Schools, available at http://www.komal.hu.
- Zs. Páles, On the characterization of means defined on a linear space, Publ. Math. Debrecen 31 (1984) 19–27
- 17. S. Presić, Méthode de résolution d'une classe d'équations fonctionnelles linéaries, *Univ. Beograd, Publ. Elektrotechn. Fak. Scr. Math. Fiz.* **115–121** (1963) 21–28.
- 18. , Sur l'équation fonctionnelle $f(x) = H(x, f(x), f(\theta_2 x), \dots, f(\theta_n x))$, Univ. Beograd, Publ. Elektrotechn. Fak. Scr. Math. Fiz. 115–121 (1963) 17–20.
- 19. C. G. Small, Functional Equations and How to Solve Them, Springer Science New York, 2007.
- L. Székelyhidi, Discrete Spectral Synthesis and Its Applications, Springer Monographs in Mathematics, Springer-Verlag, Dordrecht, 2006.

Institute of Mathematics, University of Debrecen, H-4010 Debrecen, Pf. 12, Hungary besse@math.klte.hu

On the Regularity of Operators Near a Regular Operator

Shibo Liu

Abstract. Using the Riesz theorem, we give a new proof that the linear operators near a regular operator are regular.

Dedicated to Professor Shujie Li on the occasion of his 70th birthday

1. INTRODUCTION. Let X be a Banach space and Y be a normed linear space. Recall that $A \in \mathcal{L}(X, Y)$ is a regular operator if $A : X \to Y$ is invertible and the inverse operator $A^{-1} : Y \to X$ is bounded. A classical result in operator theory is the following.

Theorem 1. Let $A \in \mathcal{L}(X, Y)$ be a regular operator. Then there is some $\varepsilon > 0$ such that if $B \in \mathcal{L}(X, Y)$ and $||B - A|| < \varepsilon$, then B is regular.

Let $\Re(X, Y)$ denotes the set of all regular operators from X to Y. Then this theorem means that $\Re(X, Y)$ is open in $\pounds(X, Y)$.

Theorem 1 plays a major role in various area in mathematics. For example, it is used in the proof of the inverse function theorem in Banach spaces; see, e.g., [1, Theorem 4.1.1]. In the traditional proof of Theorem 1, one considers the case X=Y and uses the fact that if $T\in\mathcal{L}(X,X)$ and $\|T\|<1$ then 1_X-T is regular [2, Theorem 17.1.2]. Here 1_X is the identity operator in X. The general case is reduced to the above setting by considering the operator $A^{-1}B$.

The above proof relies on the convergence of series in $\mathcal{L}(X, X)$. In this note, we provide a different proof, which is more geometric in nature, and illustrates another application of the Riesz theorem.

doi:10.4169/000298910X523425

2. PROOF OF THEOREM 1. Since A is regular, we can let $\varepsilon = ||A^{-1}||^{-1}$. Then

$$\varepsilon \|x\| \le \|Ax\|$$
, for all $x \in X$.

If $||B - A|| < \varepsilon$, then $\delta = \varepsilon - ||B - A|| > 0$. For all $x \in X$ we have

$$||Bx|| = ||Ax - (Ax - Bx)||$$

$$\ge ||Ax|| - ||Ax - Bx|| \ge \delta ||x||.$$
 (1)

This inequality implies that B is an injection.

Moreover, the range Im B is closed in Y. In fact, let $y_n = Bx_n$ be a sequence in Im B such that $y_n \to y$. By (1) it follows that x_n is a Cauchy sequence in X. Since X is a Banach space, $x_n \to x$ for some $x \in X$. Now it is easy to show that $y = Bx \in \text{Im } B$.

If we can prove that Im B = Y, then B is invertible and (1) implies that $B^{-1}: Y \to X$ is bounded and the proof is completed.

Assume for a contradiction that Im $B \neq Y$. Since Im B is closed, by the Riesz theorem [2, Lemma 5.2.7], for any $n \in \mathbb{N}$, there exists $y_n \in Y$ such that $||y_n|| = 1$ and

$$1 - \frac{1}{n} < \inf_{y \in \text{Im } B} \|y_n - y\|. \tag{2}$$

Since A is regular, in particular surjective, there exists a (unique) $x_n \in X$ such that $y_n = Ax_n$, so

$$||x_n|| = ||A^{-1}y_n|| \le ||A^{-1}|| ||y_n|| = ||A^{-1}||.$$

Noting that $Bx_n \in \text{Im } B$, we deduce from (2) that

$$1 - \frac{1}{n} < \inf_{y \in \text{Im } B} \|y_n - y\| \le \|y_n - Bx_n\|$$

$$= \|Ax_n - Bx_n\|$$

$$\le \|A - B\| \|x_n\| \le \|B - A\| \|A^{-1}\|.$$

Hence $||B - A|| \ge ||A^{-1}||^{-1} = \varepsilon$. This contradicts $||B - A|| < \varepsilon$, and the proof is concluded.

ACKNOWLEDGMENTS. The author was supported by National Natural Science Foundation of China (10601041).

REFERENCES

- 1. P. Drábek and J. Milota, Methods of Nonlinear Analysis, Birkhäuser, Basel, 2007.
- 2. P. D. Lax, Functional Analysis, Wiley-Interscience, New York, 2002.

Department of Mathematics, Shantou University, Shantou 515063, P.R. China liusb@stu.edu.cn