Aufgabe 1 (12 Punkte)

Sind folgende Polynome irreduzibel in $\mathbb{Q}[x]$? Geben Sie alle Kriterien, die Sie verwenden, detailliert wieder.

- (a) $x^3 + 3x^2 5x 2$
- (b) $x^{2019} + 2018x^2 + 10x + 14$

Aufgabe 2 (12 Punkte)

- (a) Sei K ein Körper, $f \in K[x]$ irreduzibles Polynom. \mathbb{Z} : K[x]/(f) ist ein Körper.
- (b) R, S kommutative Ringe mit $1, I \subset S$ ein Ideal von $S, f : R \longrightarrow S$ Morphismus. $\mathbb{Z}: f^{-1}(I)$ ist Ideal von R und $f^{-1}(I)$ ist Primideal $\Leftrightarrow I$ Primideal.

Aufgabe 3 (12 Punkte)

 $K \subset L \subset M$ Körpererweiterungen.

- (a) Definiere [L:K].
- (b) Gegeben $S \subset L$, definiere K(S).
- (c) Definiere: Was bedeutet L/K algebraisch?
- (d) Seien L/K und M/L algebraisch. $\mathbb{Z}: M/K$ algebraisch.

Aufgabe 4 (12 Punkte)

Betrachte $\alpha = \sqrt{3} + \sqrt{7}$

- (a) Identifiziere die Galois-Gruppe $\operatorname{Gal}\mathbb{Q}(\alpha)/\mathbb{Q}.$
- (b) Bestimme alle Zwischenkörper $\mathbb{Q} \subsetneq K \subsetneq \mathbb{Q}(\alpha)$ und bestimme für jeden Zwischenkörper K ein Element β_K , sodass $K = \mathbb{Q}(\beta_K)$

Aufgabe 5 (12 Punkte)

- (a) Definition: normale Untergruppe
- (b) Beispiel (mit Beweis): Gruppe G und normale Untergruppe $N\subset G,$ wobei $N\neq\{1\}$ und $N\neq G.$
- (c) G eine endliche Gruppe, die auf einer Menge M wirkt. Wähle $x \in M$. \mathbb{Z} : $\#(G \cdot x) \mid \#G$
- (d) G eine Gruppe, Z das Zentrum von G. Z: G/Z ist zyklisch $\Rightarrow G$ abelsch.

Aufgabe:	1	2	3	4	5	Summe:
Punkte:	12	12	12	12	12	60
Ergebnis:						