Polynômes II

On désignera par \mathbb{K} l'ensemble \mathbb{R} ou \mathbb{C} .

QCOP POL02.1

Soit $P \in \mathbb{K}[X]$ de degré 3, dont on note $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{C}$ les racines complexes.

- Énoncer et démontrer les relations coefficients racines pour P.
- On prend $P = X^3 + X + 1$. Calculer

$$\alpha_1 + \alpha_2 + \alpha_3$$
 et $\frac{1}{\alpha_1} + \frac{1}{\alpha_2} + \frac{1}{\alpha_3}$.

QCOP POL02.2

- lacktriangle Énoncer les relations coefficients racines pour un polynôme $P \in \mathbb{K}[X]$ de degré $n \in \mathbb{N}^*$.
- Les écrire explicitement pour un polynôme de degré 2, 3 et 4.
- Soit P un polynôme de degré 2 tel que P(1) = 0.

Le polynôme P admet-il une autre racine réelle? Si oui, l'exprimer en fonction des coefficients de P.

QCOP POL02.3

- Énoncer la formule de Taylor pour les polynômes.
- Énoncer et démontrer la caractérisation de la multiplicité des racines d'un polynôme par les dérivées successives.
- Soit $P \in \mathbb{K}[X]$ tel que 0 est racine de P' d'ordre 3.
 - (a) Le nombre 0 est-il nécessairement racine de P?
 - (b) Si 0 est racine de P, que dire de la multiplicité de 0 en tant que racine de P?

QCOP POL02.4

- \blacksquare Énoncer le théorème de Bézout dans $\mathbb{K}[X]$.
- ${\it P}$ Soient $P,Q,R\in \mathbb{K}[X]$. Montrer que

$$\left. egin{aligned} P \wedge R &= 1 \\ Q \wedge R &= 1 \end{aligned} \right\} \quad \Longrightarrow \quad \left(PQ \right) \wedge R = 1.$$

 $\mbox{\ensuremath{\mbox{$\chi$}}}\mbox{\ensuremath{\mbox{Soient}}}\mbox{\ensuremath{\mbox{P}}},\mbox{\ensuremath{\mbox{Q}}}\in \mathbb{K}[\mbox{\ensuremath{\mbox{K}}}]\mbox{\ensuremath{\mbox{Y}}}\mbox{\ensuremath{\mbox{q}}\mbox{\ensuremath{\mbox{q}}}\mbox{\ensuremath{\mbox{q}}\mbox{\ensuremath{\mbox{q}}}\mbox{\ensuremath{\mbox{q}}}\mbox{\ensuremath{\mbox{q}}}\mbox{\ensuremath{\mbox{q}}}\mbox{\ensuremath{\mbox{q}}}\mbox{\ensuremath{\mbox{q}}}\mbox{\ensuremath{\mbox{q}}}\mbox{\ensuremath{\mbox{q}}}\mbox{\ensuremath{\mbox{q}}\mbox{\ensuremath{\mbox{q}}}\mbox{\ensuremath{\mbox{q}}}\mbox{\ensuremath{\mbox{q}}\mbox{\ensuremath{\mbox{q}}}\mbox{\ensuremath{\mbox{q}}\mbox{\ensuremath{\mbox{q}}}\mbox{\ensuremath{\mbox{q}}}\mbox{\ensuremath{\mbox{q}}}\mbox{\ensuremath{\mbox{q}}\mbox{\ensuremath{\mbox{q}}}\mbox{\ensuremath{\mbox{q}}\mbox{\ensuremath{\mbox{q}}\mbox{\ensuremath{\mbox{q}}\mbox{\ensuremath{\mbox{q}}\mbox{\ensuremath{\mbox{q}}\mbox{\ensuremath{\mbox{q}}\mbox{\ensuremath{\mbox{q}}\mbox{\ensuremath{\mbox{q}}\mbox{\ensuremath{\mbox{q}}\mbox{\$

Montrer que

$$\begin{cases} \forall k \in \mathbb{N}, & P^k \wedge Q = 1 \\ \forall k, \ell \in \mathbb{N}, & P^k \wedge Q^\ell = 1. \end{cases}$$

QCOP POL02.5

Soit $P \in \mathbb{K}[X]$.

 \blacksquare Donner la définition de « P est irréductible dans $\mathbb{K}[X]$ ».

X On suppose que P est irréductible dans $\mathbb{K}[X]$. Montrer que

P possède une racine dans \mathbb{K} \iff $\deg(P) = 1$.

? On suppose que $deg(P) \leq 3$. Montrer que

P n'a pas de racine dans $\mathbb{K} \implies P$ est irréductible dans $\mathbb{K}[X]$.

On pourra raisonner par contraposée.

Le résultat précédent reste-t-il vrai si deg(P) > 3?

QCOP POL02.6

Soit $n \in \mathbb{N}$. Soient $x_0, \dots, x_n \in \mathbb{K}$ deux à deux distincts.

Soient $y_0, \dots, y_n \in \mathbb{K}$ quelconques. Montrer qu'il existe un unique $L \in \mathbb{K}_n[X]$ tel que

$$\forall i \in \llbracket 0, n \rrbracket, \quad L(x_i) = y_i.$$

On pourra utiliser des arguments d'algèbre linéaire.

2 (a) Soit $k \in [0, n]$. Expliciter ce polynôme L, que l'on notera L_k , lorsque

$$\forall i \in \llbracket 0, n \rrbracket, \quad y_i = \delta_i^k.$$

- **(b)** Montrer que la famille $(L_0, ..., L_n)$ ainsi obtenue est une base de $\mathbb{K}_n[X]$.
- **Soit** $P \in \mathbb{K}_n[X]$. Montrer que

$$P=\sum_{k=0}^n P(x_k)\mathsf{L}_k.$$