Kvantna kriptografija Tehničko i naučno pisanje

Ana Mladenović,

Igor Glišović, mi22292@alas.matf.bg.ac.rs Željko Zekavičić, mi22130@alas.matf.bg.ac.rs Nađa Lazarević, mi22175@alas.matf.bg.ac.rs mi22119@alas.matf.bg.ac.rs

> Matematički fakultet Univerzitet u Beogradu

> > Beograd, 2022.

Literatura

 Zasnovano na seminarskom radu: Kvantna kriptografija; Igor Glišović, Željko Zekavičić, Nađa Lazarević, Ana Mladenović

Uvod

- Kriptografija očuvanje tajnosti podataka
- Razvoj klasične kriptografije OneTimePad
- Problem moderne kriptografije: "Kvaka 22"

Komunikacija između pošiljaoca i primaoca je sigurna

Kriptografski sistem je siguran

Istorijat

- Sigurna komunikacija pitanje sve od praistorije pa do XX veka
- Stephen Weisner tvorac kvantne kriptografije
- C.H.Bennet, G. Brassard kvantna kriptografija na delu
- Arthur Ekert kvantna isprepletanost

Slika 1: *Polarizacija fotona - osnova kvantne kriprografije*

Kvantna mehanika, kvantni računari

- Aspekti kvantne mehanike
 - aspekt prirodne neodređenosti
 - aspekt kvantnog sprezanja
 - uticaj međusobnog delovanja čestica
- Osnova kvantnih računara kvantni biti, kubiti

Slika 2: bit (levo), kubit (desno)

Kvantni protokoli, kvantna razmena ključa

- Distribucija kvantnih ključeva (QKD Quantum Key Distribution) i različiti protokoli
 - BB84 protokol ("pripremi i izmeri")
 - E91 protokol (isprepletanost kubita)

Slika 3: Metodika rada BB84 protokola

Vrste napada na sistem i odbrana

- Nekoliko vrsta napada na kriptografske sisteme:
 - "Middleman" napad
 - PNS (photon-number splitting) napad
 - Hakerski napad
 - DOS (denial of service) napad
- Zaštitu obezbeđujemo sigurnim i pouzdanim sistemom

Slika 4: PNS napadač iskorišćava slabost sistema

Implementacija kvantne kriptografije

- Što je veća udaljenost slanja nesigurniji je sistem
- Kineski istraživači "pouzdani" relejni čvorovi
- Shorov algoritam za faktorizaciju brojeva

Naziv i godina projekta	Dužina prenosa
Prenos novca Creditanstalt banke, Austrija 2004.	1.45 km
IdQuantique i Deckpoint kolaboracija, Švajcarska 2005.	10 km
Povezivanje Kanarskih ostrva, Španija 2006.	144 km
SECOQC, prvi kvantno-kriptografski računar, Austrija 2008.	200 km

Tabela 1: Razvoj dužine prenosa kvantno-kriptografskih sistema

Zaključak

- Veoma sigurni sistemi koji se razvijaju i danas
- Šira primena je trenutno nemoguća zbog cene implementacije potrebne infrastrukture
- Primena kvantne kriptografije u budućnosti je izvesna

Slika 5: "Luksuz" korišćenja ovakvih sistema sada mogu priuštiti samo najimućnije firme, poput Toshibe