Q₁ (b)

E₁t = E₁t
$$\Rightarrow$$
 E₁ cind₁ = E₂ sind₂

Jin = Jan \Rightarrow of E₁ circl₁ = of E₂ circl₂

From \bigcirc . E₂ = $\frac{g_1}{g_2}$ circl₂

E₃ \bigcirc circl₃

From \bigcirc . Shot = $\frac{g_1}{g_2}$ circl₄

Since Sind₂ 4 cird₃ d₂ = 1

We can know cird₂ = 1-sind₂ \bigcirc

Squaring \bigcirc \Rightarrow E₁ = $(\frac{g_1}{g_2}$ cotal₃) $\stackrel{?}{=}$ $\stackrel{?}{=}$

From \bigcirc and \bigcirc . we can get cond₃ = 1- $(\frac{E_1 \sin k_1}{E_2})^3$

From \bigcirc and \bigcirc . we can get cond₃ = 1- $(\frac{E_1 \sin k_1}{E_2})^3$

Therefore we can get that $\stackrel{?}{=}$ E₂ $(\frac{g_1}{g_2}$ cond₁) $\stackrel{?}{=}$ $(\frac{g_1}{g_2}$ cond₂)

Direction: tan $g_2 = \frac{g_1}{g_2}$ tand₁.

(b)

Ban - Pin = $f_3 \Rightarrow f_3$ E₁ cond₁ - f_4 E₂ E₃

Also . Ean = f_5 cond₂ and E₁n = f_4 cond₄.

⇒ $f_5 = f_2$ $\frac{g_1}{g_3}$ E₁ cond₄ - f_4 E₄ cond₄.

(c)

Therefore can conclude that $g_1 = g_2 = g_3$.

From Part (a) . E₃ = E₁ and tand₂ = tand₄.

From Part (b) , $f_6 = (f_5 - f_4)$ · E₁ cond₄.

G2

(a)

$$I = D_2 = I_{hot}$$
 $I = D_2 = I_{hot}$
 $I = D_2 = I_{hot}$