Correction S2-B4-EV

Exercice 1 : familles de vecteurs

Les questions sont indépendantes.

- 1. Dans \mathbb{R}^3 , on considère la famille $\mathcal{F} = (u_1 = (1, 1, 1), u_2 = (2, 1, 1), u_3 = (1, -1, 1))$.
 - (a) Montrer que \mathcal{F} est une base de \mathbb{R}^3 .

Montrons que \mathcal{F} est libre : soit $(\alpha, \beta, \gamma) \in \mathbb{R}^3$ tel que $\alpha u_1 + \beta u_2 + \gamma u_3 = 0_{\mathbb{R}^3}$. On est ramené au système

$$\left\{ \begin{array}{lll} \alpha+2\beta+\gamma&=&0\\ \alpha+\beta-\gamma&=&0\\ \alpha+\beta+\gamma&=&0 \end{array} \right.$$

En faisant $L_2 \leftarrow L_2 - L_3$ et $L_1 \leftarrow L_1 - L_3$, cela revient à $\begin{cases} \beta & = 0 \\ -2\gamma & = 0 \iff \alpha = \beta = \gamma = 0. \end{cases}$

Ainsi, \mathcal{F} est une famille libre.

Or $Card(\mathcal{F}) = 3 = dim(\mathbb{R}^3)$ et \mathcal{F} est libre donc \mathcal{F} est une base de \mathbb{R}^3 .

(b) Quelles sont les coordonnées de v=(3,2,0) dans la base \mathcal{F} ?

Cherchons $(\alpha, \beta, \gamma) \in \mathbb{R}^3$ tel que $\alpha u_1 + \beta u_2 + \gamma u_3 = v$. On a :

$$\begin{cases} \alpha+2\beta+\gamma &=& 3\\ \alpha+\beta-\gamma &=& 2\\ \alpha+\beta+\gamma &=& 0 \end{cases} \iff \begin{cases} \beta &=& 3 \ (L_1\leftarrow L_1-L_3)\\ -2\gamma &=& 2 \ (L_2\leftarrow L_2-L_3)\\ \alpha+\beta+\gamma &=& 0 \end{cases} \iff \begin{cases} \alpha &=& -2\\ \gamma &=& -1\\ \beta &=& 3 \end{cases}$$

Ainsi, $v = -2u_1 + 3u_2 - u_3$. Les coordonnées de v dans la base \mathcal{F} sont $\begin{pmatrix} -2 \\ 3 \\ -1 \end{pmatrix}$

- 2. On se place dans $E = \mathbb{R}_2[X]$.
 - (a) La famille $\mathcal{F}_1 = (1, X, X^2 + X, X^2)$ est-elle génératrice de E? Justifiez votre réponse.

Oui, la famille \mathcal{F}_1 est génératrice de E car, pour tout $P \in E$, $\exists (a,b,c) \in \mathbb{R}^3$ tel que $P = a + bX + cX^2$. Ainsi, $P = a + bX + 0(X^2 + X) + cX^2$.

(b) La famille $\mathcal{F}_2 = (1, X, X - 2, X^2)$ est-elle une famille libre de E? Justifiez votre réponse.

Non la famille \mathcal{F}_2 est liée car $2 - X + (X - 2) + 0 \times X^2 = 0_E$.

(c) On admet que la famille $\mathcal{F}_3 = (1, X - 1, (X + 1)^2)$ est une base de E. Soit $Q \in E$ le polynôme de coordonnées 1, 2 et -1 dans la base \mathcal{F}_3 . Quelles sont les coordonnées de Q dans la base canonique de E?

On a
$$Q = 1 \times 1 + 2 \times (X - 1) - 1 \times (X + 1)^2 = 1 + 2X - 2 - X^2 - 2X - 1 = -2 + 0X - X^2$$
. Dans la base canonique de E , Q a pour coordonnées $\begin{pmatrix} -2 \\ 0 \\ -1 \end{pmatrix}$.

3. Dans $\mathbb{R}[X]$, on considère $P_0 = 1$, $P_1 = X$, $P_2 = X - 1$ et $P_3 = X + 1$. Soit le sous-espace vectoriel $F = Vect((P_0, P_1, P_2, P_3))$. Trouver la dimension de F, en justifiant soigneusement votre raisonnement.

La famille (P_0, P_1, P_2, P_3) est liée car $P_2 = P_1 - P_0$ et $P_3 = P_0 + P_1$. Ainsi, $F = \text{Vect}((P_0, P_1, P_2, P_3)) = \text{Vect}((P_0, P_1, P_2, P_3)) = \text{Vect}((P_0, P_1))$. On en déduit que la famille (P_0, P_1) est génératrice de F. Or cette famille est libre (non colinéaires), c'est donc une base de F. Par conséquent, $\dim(F) = 2$.

1

Exercice 2 : somme de sev

On se place dans $E = \mathbb{R}^3$. On considère les trois sous-espaces vectoriels :

$$F = \{(x, y, z) \in \mathbb{R}^3, 2x + y = 0\}, G = \text{Vect}((1, 1, 0)) \text{ et } H = \text{Vect}((-1, 2, 3))$$

1. Que représentent géométriquement F, G et H?

F est un plan vectoriel, G et H sont deux droites vectorielles.

2. Trouver rigoureusement une base de F, de G et de H:

Base de F:

On a $F = \{(x, -2x, z), (x, z) \in \mathbb{R}^2\} = \{x(1, -2, 0) + z(0, 0, 1), (x, z) \in \mathbb{R}^2\} = \text{Vect}((e_1, e_2)) \text{ avec } e_1 = (1, -2, 0) \text{ et } e_2 = (0, 0, 1).$ On en déduit que (e_1, e_2) engendre F. Ces deux vecteurs n'étant pas colinéaires, ils forment une famille libre. Ainsi, (e_1, e_2) est une base de F, et au passage $\dim(F) = 2$.

Base de G:

((1,1,0)) engendre G. Or ((1,1,0)) est libre car $(1,1,0)\neq 0_E$. Donc, ((1,1,0)) est une base de G et $\dim(G)=1$.

Base de H: De même que G, ((-1,2,3)) est une base de H et $\dim(H)=1$.

3. Montrer que $H \subset F$. En déduire que $F \cap H \neq \{0_E\}$.

Soit $u \in H$. Il existe $\alpha \in \mathbb{R}$ tel que $u = \alpha(-1, 2, 3) = (-\alpha, 2\alpha, 3\alpha)$. Or, $2 \times (-\alpha) + (2\alpha) = 0$. Donc, $u \in F$. On a montré que $H \subset F$. Ainsi, $F \cap H = H \neq \{0_E\}$.

4. Montrer que $F \cap G = \{0_E\}$.

Soit $u \in F \cap G$. On a $u \in F$ et $u \in G$. Or $u \in G$, d'où, il existe $\alpha \in \mathbb{R}$ tel que $u = \alpha(1, 1, 0) = (\alpha, \alpha, 0)$. Mais, on a aussi $u \in F$ d'où, $2\alpha + \alpha = 0$. Ainsi, $\alpha = 0$. Donc $u = (0, 0, 0) = 0_E$. On a montré que $F \cap G \subset \{0_E\}$. Comme $\{0_E\} \subset F \cap G$, on a bien $F \cap G = \{0_E\}$.

5. Rappeler la définition de $F \oplus G = E$. Est-ce le cas ici? Démontrer votre réponse.

 $F \oplus G = E$ signifie que F + G = E et $F \cap G = \{0_E\}$. On sait déjà que $F \cap G = \{0_E\}$.

De plus, $\dim(F+G) = \dim(F) + \dim(G) - \dim(F\cap G) = 2+1-0 = 3 = \dim(E)$. Comme $F+G \subset E$, on en déduit que F+G=E.

On peut donc conclure que $F \oplus G = E$.

6. Proposer un supplémentaire de H dans E. Justification non demandée.

Par exemple $F' = \{(x, y, z) \in \mathbb{R}^3, x + y + z = 0\}$ qui est un plan vectoriel tel que $F' \cap H = \{0_E\}$.