Solutions PDF Generated from: solutions-openai-generated/labs/lab-02-solutions-set- 02.json

Question A

Fill out the truth table, which describes the operation of a full adder. We use the inputs A, B, CI and the outputs are called S and CO.

1	A	1	В	1	CI	-	S	1	CO	1	
-		-1					-		-		-
1	0	1	0	-	0	- 1	0	-	0	1	
1	0	-	0	-	1	- 1	1	- [0	1	
1	0	1	1	-	0	- 1	1	-	0	1	
1	0	1	1	-	1	- 1	0	-	1	1	
1	1	-	0	-	0	- 1	1	- [0	1	
1	1	-	0	-	1	- 1	0	- [1	1	
1	1	1	1	-	0	- 1	0	- [1	1	
1	1	1	1	-	1	-	1		1	1	

Question B

Derive the Boolean equations for both outputs of a full adder. Apply logic minimization techniques to come up with a simplified full adder circuit.

```
Answer:
```

```
Boolean equations for A and B outputs of a full adder are:

A= Cin XOR AIN XOR BIN

B= Cout = AIN AND BIN OR Cin AND (AIN XOR BIN)

Logic minimization technique:

A= Cin XOR AIN XOR BIN

B = AIN AND BIN OR Cin (AIN XOR BIN) // simplified equation

Simplified full adder circuit:

A = AIN XOR BIN

B = AIN XOR Cin (AIN XOR BIN)
```

Question C

Draw the schematic of the full adder circuit according to the equations you have derived.

The full adder circuit is given in the following diagram:

[Full Adder Circuit diagram]

Question D

Execution Time

0:00:30.761409

OpenAI Parameters

```
Model: text-davinci-003, Max. Tokens: 1024, Temperature: 1, N: 1
```