Index

A		
Adjoint	Operators	pp.134 - 135
	otically Stable	pp.82 - 84
Attracti	ng Fixed Point	pp.83 - 84
Attracti	veness	p.83
C		
Causal S	Systems	pp.3-4
Cayley I	Hamilton Theorem	pp.121 - 122
Charact	eristic Equation	p.37
Complex	c Conjugate Transpose	pp.40 - 44
Conditio	on Number (Of a Matrix)	pp.61 - 62
Controll	ability	p.132
Controll	ability Gramian	p.135
Convolu	tion	pp.2-4
Convolu	tion (Discrete)	pp.14, 17
D		
Detectal	ple	pp.145 - 146, 149
Diagona	l Coordinate Form	pp.38 - 46
Diagona	lization	p.46
Dot Pro	duct	p.41
E		
Eigenval	ue	pp.36 - 45, 56 - 59
Eigenve	etor	pp.36 - 45
Eigenve	etor (Left)	pp.50 - 51
Equilibr	ium Point	pp.1, 5 - 10, 79 - 84
F		
Frequen	cy Response	pp.98, 105
Frobeniu	ıs Norm	pp.62, 102 - 117
G		
Globally	Asymptotically Stable	p.93
H		
H_{∞} Nor		pp.108 - 119
	an Matrix	p.107
Homoge	· ·	p.1
Hurwitz	Matrix	pp.94 - 96
I	_	
_	Response	pp.19 - 20, 29 - 30, 36
Induced		pp.103 - 104
Infinity		pp.100 - 101
Inner Pr	oduct	p.41
J		0.5
	iouville Formula	p.27
Jordan l	Blocks	pp.46 - 50, 56 - 59, 77 - 78
K	Ol 122 M - 1	100 100
K Step (Observability Matrix	pp.138 - 139

	Kalman Rank Test	p.136
L		
	L1 Norm	pp.100 - 101
	L2 Induced Gain of a System	p.108
	L2 Norm	pp.100 - 101
	Lagrangian Multipliers	p.126
	Laplace Transform	pp.29 - 33
	Limit Cycle	p.82
	Linear Time Invariance	pp.8 - 9, 17
	Linearity	p.15
	Linearity (Systems)	p.1
	Linearization at a Fixed Point	pp.1, 7-10
	Lyapunov Functions	pp.85 - 96, 117 - 119, 124 - 126
M		
	Marginally Stable	pp.53, 56
	Markov Parameters	p.20
	Matrix Exponentiation	pp.26 - 27,36
	Matthew Equation	p.27
	Memoryless Systems	p.4
	Minimum Energy Input	pp.127 - 129, 133 - 136
	Modal Contributions of Initial Conditions	pp.41 - 45,51
	Modal Decomposition	pp.35 - 45,51
	Model Uncertainty	pp.109 - 115
N		
	Negative Semidefinite Matrix	p.93
	Neumann Series	p.22
	Nilpotent Matrix	p.35
	Normal Matrix	pp.36 - 46
O		
	Observability	pp.136 - 139
	Observer Based Controller	pp.148 - 149
	Output Feedback Design	p.147
P		
	P Norm	pp.100 - 102
	Parallel Linkage Mechanisms	pp.59 - 60
	Pbh Test	p.136
	Phase Coordinate Form	p.6
	Phase Portrait	p.35
	Poles (Transfer Function)	pp.58 - 59
	Positive Definite Matrix	p.87
	Positive Semidefinite Matrix	p.125
	Power Spectral Density	pp.116 - 119
.=	Principle Minors	p.88
Q		107
_	Quadratic Programming	pp.125 - 126
R		
	Radially Unbounded	p.89

Reachability	pp.120 - 126, 130, 132
Reachability Gramian	pp.124 - 129, 133 - 135
Resolvent	pp.17 - 18, 30, 36
Resonance	p.50
Routh Hurwitz Criterion	pp.77 - 80
S	
Shift Operator	pp.1-2
Signal Norms	pp.96 - 104
Singular Value Decomposition	pp.104 - 110, 128 - 129
Singular Vectors	p.106
Small Gain Theorem	pp.109 - 114
Stability	pp.80 - 84
Stabilizable	pp.141 - 143, 149
Stable	pp.53 - 59,91 - 94
State Estimator Controller	pp.144 - 147
State Feedback Controller	pp.140 - 144
State Space Model	p.5
State Transition Matrix	pp.11 - 13
State Vector	p.5
Superposition	pp.1, 13
Supremum	p.98
Symmetric Matrix	pp.86 - 96
System Norms	pp.99 - 120
T	
Taylor Series Expansion	pp.7 - 8
Time Invariance	pp.1-4
Toeplitx Matrix	p.3
Traction	pp.60 - 61
Transfer Function	pp.18 - 20, 36, 52
Transmission	p.61
U	
Underactuated Robotic Mechanisms	pp.59 - 77
Unitary Diagonal Coordinate Transformation	pp.38 - 43,50
V	
Variance Amplication	p.117
Variations of Constants Formula	pp.24,54
Virtual Work	pp.63 - 64
W	
White in Time Gaussian Processes	pp.115 - 119
Z	
Z Transform	pp.14 - 22