





# deal.II Users and Developers Training

March 21 - 24 2016

Timo Heister (heister@clemson.edu) Luca Heltai (luca.heltai@sissa.it)







# Parallel Computing: Introduction



A modern CPU: Intel Core i7

### **Basics**

- Single cores are not getting (much) faster
- "the free lunch is over": http://www.gotw.ca/publi cations/concurrency-ddj. htm
- Concurrency is only option:
  - SIMD/vector instructions
  - Several cores
  - Several chips in one node
  - Combine nodes into supercomputer



## Hierarchy of memory

- Latency: time CPU gets data after requesting
- Bandwidth: how much data per second?
- prefetching of data, "cache misses" are expensive
- automatically managed by processor

| CPU                |          | Capacity    | Bandwidth  | Latency |
|--------------------|----------|-------------|------------|---------|
| Registers          | -        | 256 Bytes   | 24000 MB/s | 2 ns    |
| 1. Level Cache     | -        | 8 KBytes    | 16000 MB/s | 2 hs    |
| 2. Level Cache     | -        | 96 KBytes   | 8000 MB/s  | 6 hs    |
| 3. Level Cache     | · —      | 2 MBytes    | 888 MB/s   | 24 ns   |
| Main Memory        | <b>-</b> | 1536 MBytes | 1000 MB/s  | ll2 hs  |
| Swap Space on Disk |          |             |            |         |

#### Latency Numbers Every Programmer Should Know



https://gist.github.com/hellerbarde/2843375

#### Amdahl's Law

- Task: serial fraction s, parallel fraction p=1-s
- N workers (whatever that means)
- Runtime: T(N) = (1-s)T(1)/N + sT(1)
- Speedup T(1)/T(N), N to infinity:
   max\_speedup = 1/ s
- http://en.wikipedia.org/wiki/Amdahl%27s\_law
- Reality:  $T(N) = (1-s)T(1)/N + sT(1) + aN + bN^2$

### Summary

- Computing much faster than memory access
- Parallel computing required: no free lunch!
- Communication is serial fraction (or worse when increasing with N!)
- Communication in Amdahl's law is main challenge in parallel computing