1. Odchylky přímek od rovin

Ve všech úlohách značí S_{XY} střed úsečky XY.

- **Úloha 1** (Motivační). V krychli ABCDEFGH určete odchylku následujících přímek a rovin: (a) EG a FGH, (b) AB a FGH, (c) CD a EDH, (d) BF a ABC, (e) BD a EDH, (f) GS_{BF} a ABE, (g) GS_{BF} a FGH.
- **Úloha 2** (Z pondělí). V krychli ABCDEFGH určete odchylku následujících přímek a rovin: (a) S_{EC} a ABC, (b) CF a BCH, (c) FH a ACH, (d) CH a ADH, (e) $S_{EH}C$ a ABC.
- \star Úloha 3 (Skutečné krychlové výzvy). V krychli ABCDEFGHurčete odchylku následujících přímek a rovin: (a) AG a EBC, (b) $S_{AE}G$ a EBC.
 - **Úloha 4.** V kvádru ABCDEFGH, kde |AB| = 5, |BC| = 4, |AE| = 3 je S střed hodní podstavy (EFGH). Určete odchylku přímky BS od roviny BCG.
 - **Úloha 5.** Je dán jehlan ABCDV, kde |AB| = a = 4, |BC| = b = 3 a v = 5. Určete odchylku (a) BV od ABC, (b) AS_{CV} a ABC, (c) AB a BCV, \star (d) AV a BCV.
- \star Úloha 6. V krychli ABCDEFGHzvolme body $X,\,Y,\,Z$ libovolně uvnitř stran $AB,\,AD$ a AE. Nechť O je kolmý průmět A do roviny XYZ. (a) Dokažte, že přímka XO je kolmá na přímku YZ (a podobně pro další dva body). (b) Co je zač Ov trojúhelníku XYZ? Co jsme právě dokázali?
- * Úloha 7 (Nijak nesouvisející s předchozím). Uzavřená lomená čára, která sama sebe neprotíná, prochází všemi vrcholy určité krychle a láme se pouze v nich. Dokažte, že alespoň jeden segment oné čáry se shoduje s hranou oné krychle.

- **1.** (a) 0° (b) 0° (c) 90° (d) 90° (e) 45° (f) $arctg(2) \doteq 63^{\circ}26'$ (g) $arctg(\frac{1}{2}) \doteq 26^{\circ}34'$
- **2.** (a) $\arctan(\frac{1}{\sqrt{2}}) \doteq 35^{\circ}16'$ (b) 30° (c) $\arctan(\sqrt{2}) \doteq 54^{\circ}44'$ (d) 45° (e) $\arctan(\frac{2}{\sqrt{5}}) \doteq 41^{\circ}49'$
- **3.** (a) $arctg(2) \doteq 63^{\circ}26'$ (b) 45°
- **4.** $\doteq 34^{\circ}44'$
- **5.** (a) arctg 2 \doteq 63°26′ (b) arctg $\frac{2}{3}$ \doteq 33°41′ (c) arctg $\frac{5}{2}$ \doteq 68°12′ (d) arcsin $\frac{8}{\sqrt{145}}$ \doteq 41°38′