Package 'nCopula'

June 12, 2017

Type Package

Title Copula Construction Tools

Version 0.1.0
Description
Construct and use hiearchical Archimedean copulas with multivariate compound distributions
Depends R (>= 3.3), copula
Imports Deriv, gtools, mgcv, stringr, stringi, compiler, gsl, Ryacas, methods, Matrix, stabledist
License GPL (>= 2)
LazyData FALSE
RoxygenNote 5.0.1
Suggests knitr, rmarkdown
VignetteBuilder knitr
Author Simon-Pierre Gadoury [aut, cre]
Maintainer Simon-Pierre Gadoury <spgadou@me.com></spgadou@me.com>
Traintainer Simon Fierre Gadoury Spgadodeine. Comp
R topics documented:
AMH 2
Clayton
dCop
Frank
GAMMA
GeneticCodes
GEO
LOG
Node
pCompCop
pCop
rCompCop
rCompCop2
rCop
SIBUYA
Index 13

2 Clayton

AMH

Construction of an Archimedean Copula Class Object

Description

Constructs an archm class object with a given parameter and dimension.

Usage

```
AMH(param, dim = 2L)
```

Arguments

param Parameter of the copula

dim Dimension of the copula (>= 2), which is, by default, 2 density Should the expression of the density be computed?

Author(s)

Simon-Pierre Gadoury

Clayton

Construction of an Archimedean Copula Class Object

Description

Constructs an archm class object with a given parameter and dimension.

Usage

```
Clayton(param, dim = 2L, density = FALSE)
```

Arguments

param Parameter of the copula

dim Dimension of the copula (>= 2), which is, by default, 2 density Should the expression of the density be computed?

Author(s)

dCop 3

Description

Density for Archimedean Copulas Objects

Usage

```
dCop(copula, vector = TRUE, express = FALSE, code = FALSE,
  operator = "")
```

Arguments

copula An Archimedean copula class object

vector If false, returns a function with $(x_1, x_2, ..., x_{dim}, alpha)$ as arguments.

express If true, returns an expression.

code If true, copies the LaTeX code to clipboard.

operator Type of cumputer used (only necessary in the case of internal problem)

Value

Either an expression, function or code.

Author(s)

Simon-Pierre Gadoury

Frank	Construction of an Archimedean Copula Class Object

Description

Constructs an archm class object with a given parameter and dimension.

Usage

```
Frank(param, dim = 2L)
```

Arguments

param Parameter of the copula

dim Dimension of the copula (>= 2), which is, by default, 2 density Should the expression of the density be computed?

Author(s)

4 GAMMA

GAMMA

Construction of a Child Class Object

Description

Constructs a Child class object for a given parameter and arguments

Usage

```
GAMMA(par, unif, struc = NULL)
```

Arguments

par Dimension of the distribution

unif Uniform structure, a numeric vector of grouped numbers.

i.e. c(1,2,3) is translated as being c(u1, u2, u3).

struc Nesting structure of the form

X(par1, c(i,...), list(Y(par2, c(j,...), NULL), Z(par3, c(k,...), NULL))),

where X, Y, and Z are compatible functions (see 'details'). It is to note that if struc is NULL, the function will automatically be of class Child. For continuous

distributions (i.e. GAMMA), struc is always NULL.

Slots

Param The name of the parameter used

parameter The value of the parameter

dimension The dimension

type The type of function (either child or mother)

arguments The corresponding arguments (ex.: arguments 1 and 2 imply 'u1' and 'u2')

structure The structure below the node of type 'Mother'

Laplace Expression of the LST

LaplaceInv Expression of the inverse LST

PGF Expression of the pgf

PGFInv Expression of the inverse pgf

simul Fonction to sample from the distribution

theta I don't know honestly

cop Construct an Archimedean copula with this distribution

Der Fonction to compute the expression of the 'k'th derivative of either the 'PGF', 'PGFInv', 'Laplace' or 'LaplaceInv'

FUN Fonction to compute the function of the 'k'th derivative of either the 'PGF', 'PGFInv', 'Laplace' or 'LaplaceInv'

Author(s)

GeneticCodes 5

Examples

GeneticCodes

Obtain the genetic codes of a structure

Description

Obtain the genetic codes of a structure

Usage

```
GeneticCodes(str)
```

Arguments

str

The structure

Value

A list of of the structure's genetic codes.

Author(s)

Simon-Pierre Gadoury

GE0

Construction of a Mother or Child Class Object

Description

Constructs either a Mother or Child class object for a given parameter, arguments, and nesting structure.

Usage

```
GEO(par, unif, struc)
```

Arguments

par Dimension of the distribution

unif Uniform structure, a numeric vector of grouped numbers.

i.e. c(1,2,3) is translated as being c(u1, u2, u3).

struc Nesting structure of the form

X(par1,c(i,...),list(Y(par2,c(j,...),NULL),Z(par3,c(k,...),NULL))),

where X, Y, and Z are compatible functions (see 'details'). It is to note that if struc is NULL, the function will automatically be of class Child. For continuous

distributions (i.e. GAMMA), struc is always NULL.

6 Gumbel

Slots

```
parameter The value of the parameter
dimension The dimension
type The type of function (either child or mother)
arguments The corresponding arguments (ex.: arguments 1 and 2 imply 'u1' and 'u2')
structure The structure below the node of type 'Mother'
```

Laplace Expression of the LST

LaplaceInv Expression of the inverse LST

PGF Expression of the pgf

PGFInv Expression of the inverse pgf

Param The name of the parameter used

simul Fonction to sample from the distribution

theta I don't know honestly

cop Construct an Archimedean copula with this distribution

Der Fonction to compute the expression of the 'k'th derivative of either the 'PGF', 'PGFInv', 'Laplace' or 'LaplaceInv'

FUN Fonction to compute the function of the 'k'th derivative of either the 'PGF', 'PGFInv', 'Laplace' or 'LaplaceInv'

Author(s)

Simon-Pierre Gadoury

Examples

```
GEO(0.5, NULL, list(GAMMA(1/30, c(5,6), NULL),
                    GEO(0.1, NULL, list(GAMMA(1/30, c(1,2), NULL),
                                        GAMMA(1/30, c(3,4), NULL)))))
```

Gumbel

Construction of an Archimedean Copula Class Object

Description

Constructs an archm class object with a given parameter and dimension.

Usage

```
Gumbel(param, dim = 2L)
```

Arguments

param Parameter of the copula

Dimension of the copula (>= 2), which is, by default, 2 dim Should the expression of the density be computed? density

Author(s)

LOG 7

LOG	Construction of a Mother or Child Class Object
-----	--

Description

Constructs either a Mother or Child class object for a given parameter, arguments, and nesting structure.

Usage

```
LOG(par, unif, struc)
```

Arguments

par Dimension of the distribution

unif Uniform structure, a numeric vector of grouped numbers.

i.e. c(1,2,3) is translated as being c(u1, u2, u3).

struc Nesting structure of the form

X(par1, c(i,...), list(Y(par2, c(j,...), NULL), Z(par3, c(k,...), NULL))),

where X, Y, and Z are compatible functions (see 'details'). It is to note that if struc is NULL, the function will automatically be of class Child. For continuous

distributions (i.e. GAMMA), struc is always NULL.

Slots

Param The name of the parameter used

parameter The value of the parameter

dimension The dimension

type The type of function (either child or mother)

arguments The corresponding arguments (ex.: arguments 1 and 2 imply 'u1' and 'u2')

structure The structure below the node of type 'Mother'

Laplace Expression of the LST

LaplaceInv Expression of the inverse LST

PGF Expression of the pgf

PGFInv Expression of the inverse pgf

simul Fonction to sample from the distribution

theta I don't know honestly

cop Construct an Archimedean copula with this distribution

Der Fonction to compute the expression of the 'k'th derivative of either the 'PGF', 'PGFInv', 'Laplace' or 'LaplaceInv'

FUN Fonction to compute the function of the 'k'th derivative of either the 'PGF', 'PGFInv', 'Laplace' or 'LaplaceInv'

Author(s)

pCompCop

Examples

Node

Obtain a node with its genetic code

Description

Obtain a node with its genetic code

Usage

```
Node(path, str)
```

Arguments

path Genetic code of the node

str The structure

Author(s)

Simon-Pierre Gadoury

pCompCop

Density, Cdf, and Random Number Generator for Copulas Constructed Through Compounding

Description

Density, Cdf, and Random Number Generator for Copulas Constructed Through Compounding

Usage

```
pCompCop(FUN, func = FALSE, code = FALSE, operator = "")
```

Arguments

FUN Object of class Mother func If true, returns a function

code If true, copies the LaTeX code to the clipboard

operator Type of cumputer used (only necessary in the case of internal problem)

Details

rCompCop2 is more general (and easier to use) than rCompCop, but is slower.

Author(s)

pCop 9

рСор	Cdf, and Random Number Generator for Copulas

Description

Cdf, and Random Number Generator for Copulas

Usage

```
pCop(copula, vector = TRUE, express = FALSE, code = FALSE,
  operator = "")
```

Arguments

copula An Archimedean copula class object

vector If false, returns a function with $(x_1, x_2, ..., x_{dim}, alpha)$ as arguments.

express If true, returns an expression.

code If true, copies the LaTeX code to clipboard.

operator Type of cumputer used (only necessary in the case of internal problem)

Value

Either an expression, function, code, or sampled data.

Author(s)

Simon-Pierre Gadoury

rCompCop	Density, Cdf, and Random Number Generator for Copulas Con-
	structed Through Compounding

Description

Density, Cdf, and Random Number Generator for Copulas Constructed Through Compounding

Usage

```
rCompCop(n, FUN, level)
```

Arguments

n	Number of realisations	
FUN	Object of class Mother	
level	Number of imbrications	

Details

rCompCop2 is more general (and easier to use) than rCompCop, but is slower.

10 rCop

Author(s)

Simon-Pierre Gadoury

rCompCop2

Density, Cdf, and Random Number Generator for Copulas Constructed Through Compounding

Description

Density, Cdf, and Random Number Generator for Copulas Constructed Through Compounding

Usage

```
rCompCop2(n, str)
```

Arguments

n Number of realisations str Object of class Mother

Details

rCompCop2 is more general (and easier to use) than rCompCop, but is slower.

Author(s)

Simon-Pierre Gadoury

rCop

Density, Cdf, and Random Number Generator for Copulas

Description

Density, Cdf, and Random Number Generator for Copulas

Usage

```
rCop(n, copula)
```

Arguments

n Number of realisations

copula An Archimedean copula class object

Value

Sampled data.

Author(s)

SIBUYA 11

SIBUYA	Construction of a Mother or Child Class Object	

Description

Constructs either a Mother or Child class object for a given parameter, arguments, and nesting structure.

Usage

```
SIBUYA(par, unif, struc)
```

Arguments

par Dimension of the distribution

unif Uniform structure, a numeric vector of grouped numbers.

i.e. c(1,2,3) is translated as being c(u1, u2, u3).

struc Nesting structure of the form

X(par1, c(i,...), list(Y(par2, c(j,...), NULL), Z(par3, c(k,...), NULL))),

where X, Y, and Z are compatible functions (see 'details'). It is to note that if struc is NULL, the function will automatically be of class Child. For continuous

distributions (i.e. GAMMA), struc is always NULL.

Slots

Param The name of the parameter used

parameter The value of the parameter

dimension The dimension

type The type of function (either child or mother)

arguments The corresponding arguments (ex.: arguments 1 and 2 imply 'u1' and 'u2')

structure The structure below the node of type 'Mother'

Laplace Expression of the LST

LaplaceInv Expression of the inverse LST

PGF Expression of the pgf

PGFInv Expression of the inverse pgf

simul Fonction to sample from the distribution

theta I don't know honestly

cop Construct an Archimedean copula with this distribution

Der Fonction to compute the expression of the 'k'th derivative of either the 'PGF', 'PGFInv', 'Laplace' or 'LaplaceInv'

FUN Fonction to compute the function of the 'k'th derivative of either the 'PGF', 'PGFInv', 'Laplace' or 'LaplaceInv'

Author(s)

12 SIBUYA

Examples

```
GEO(0.5, NULL, list(GAMMA(1/30, c(5,6), NULL),
GEO(0.1, NULL, list(GAMMA(1/30, c(1,2), NULL),
GAMMA(1/30, c(3,4), NULL)))))
```

Index

```
AMH, 2
Clayton, 2
dCop, 3
Frank, 3
GAMMA, 4
GeneticCodes, 5
GEO, 5
Gumbel, 6
LOG, 7
Node, 8
pCompCop, 8
pCop, 9
rCompCop, 9
rCompCop2, 10
rCop, 10
SIBUYA, 11
```