AccesSim : Une modélisation multiagents interactive et pédagogique de la mobilité piétonne en milieu urbain

Mathian, Sébastien Rey Coyrehourcq

Géographie-Cités (Univ.Paris 1, Univ. Paris 7, CNRS)

LVMT (Université Paris-Est Marne-la-Vallée)

IBISC(Univ. Evry Val d'Essonne)

Key geographic notions tought by simulation

- Pedagogic and interactive project
- Daily mobility in urban fabric, associated with shopping or proximity service

Key geographic notions

- Accessibility of territories
- Interlinkages between geographical scales
- Social / spatial mixity?

AccesSim: principles & framework

- Accessibility in an urban environment
- Focus on regular pedestrian movements
- Daily movements by residents to access services
- 2 points of view on accessibility:
 - the city resident : individuals equal needs to services access => territorial planning
 - the services : frequentation depends upon the overall accessibility and user potential => geo-marketing
- Netlogo modeling

- Accessim
 - Shops and people as individual agents * †
 - Neighborhoods agents
 - City transport network

Developing a teaching tool of geographical core notions

Key concepts: Accessibility in an urban setting, relationships between services localisations, network configuration, accessibilities of the services

Why? To familiarize schoolchilds with the notions of centrality and territorial inequalities

How? By simulating it and by playing it!

Followers: Choose the most popular *OR* the quickest path to the services.

Their constraints

- 1. They *need to go* to the bakeries
- 2. They *have to* come back home after a *fixed* time
- 3. They *memorize* their current path only and its distance cost
 - 4. They *share* this perfect information in their neighborhood

Their limits...

- •They don't come back home... just disappear!
- •They have no habits, each time looks like... the first time

Behaviors of the bakery-agents

- Simple Algorithm
 - Renewal of the stock is deterministic and based upon the children demands (adapted from Comets 2004)

Adjustment variable: stock prepared (cost money)

Behaviors of the neighborhoods

- Memory place
- Knowledge associated

Behaviors of the neighborhoods

2 - Get knowledge

Blackboard communication and reactive optimization

Symbolizes the « collective intelligence »

- Mimics the information exchanged in the school yard
- Blackboard communication (shared read-write memory)
- On the long run results in reactive, non-intentional shortest path "optimization"
- Chocolate taste is uniform

Object "Path"

Congestion: Slow movements on high streets

Agents reluctant to change

Choice between shortest path "so far" and most popular path

T = ratio of times

F = ratio of uses

Threshold for T / F

Dynamic path gestion:

Shortest path is only slowly adopted

Interaction with bakeries dynamics
Blackboards can forget

Vidéos 1 & 2

2 Games

•2 roles for the child-player

- Starting point : already-constituted city (densities, networks)
- Has "authority" over the positioning of all the bakeries
- 3 real-time indicators to assess his development strategy:
 - The rate of satisfied children-agents (to MAX)
 - The average distance they walked (to MIN)
 - The wealth accumulated by the bakeries (to MAX)

BAKER

- GOAL : Be the most popular baker in town
- Starting point : already-constituted city (densities, networks) AND prelocated bakeries
- What's the best possible location for a new bakery ?
- Compares its development to that of other bakeries
- Bakeries disapear if not successful
 trial and error strategies and on-the-fly visual evaluations

Player ergonomy *vs* developer ergonomy => Key parameters and indicators on the front only

Tools for ABM Learning: restitution

paper

	Satisfied (True)	Unsatisfied (False)
The children Council chief:	Madame Contente	Monsieur Fatigué
He assesses if the children are satisfied (if they can go to the bakery in the fixed time budget)	E 3	
Madame Contente= Miss Happy Monsieur Fatigué= Mr Tired		300 No.
The City Mayor:	Madame Réélue	Monsieur Non Réélu
He's happy if he is re-elected. For that, he needs at least of 50% children satisfied. Madame réélue= Miss re-elected	E COOKS	
Monsieur non-réélu= Mister non re-elected	Also Tage Trapasa Trans Salter Assess	After Topic Nagarana Tenson Santania Acressos
Treasury Secretary:	Monsieur Plein aux As	Monsieur Rien dans les Poches
The bakeries have to sell a lot to pay a lot of taxes	3	
Monsieur Plein aux As= Mr Rich Monsieur Rien dans les Poches= Mr Poor		\$ C\$

Results: Benefits from children and modelers points of view

- Several types of player strategies
 - The « Blind red fish » strategy
 - The « Maths professor's son » strategy
- Transmitted notions
 - Spatial inequalities based on accessibility
 - Individual vs. Collective interests
 - Choices, compromises, multi-criteria decision support
 - Good identification of the child-player to the 2 roles
- Positive feedback for the team members on their own modeling projects

Actifs type « 2 »

Cité Descartes : socio-temporal mixity

Actifs type «1 »

Socio-temporal mixity

- Paths instead of zones
 - modelling real-time interaction between agents (cognition)?
 - Spatial mixity / temporal mixity
 - Day users / Night users not implemented yet

Detour

Main street

Vidéo 3

Perspectives

- More « realistic » simulation
 - Importation of real networks from GIS
 - Micro-scale matters: attributes of streets (walkable, bars to sit and talk, etc.)
 - Implementation of time schedules
 - Feedback behaviour for agents : preferences towards homogeneity? Paths version of Schelling segregation model
 - But stick with pedagogic model : what is spatial / social mixity?
- Open question: towards calibration with real-time data
 - Synthetic population generation with adaptative behaviour
 - Cell-phone / agent-based modelling (instead of macro model / OD matrix)

20

Thank you!

