NOM: Prénom:

Groupe:.....

Examen Physique: Mécanique quantique

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif. Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Exercice 1. Questions de cours (5 points – pas de points négatifs pour le QCM)

Document 1 : Niveaux d'énergie associés à l'atome d'hydrogène

E_1	E_2	E_3	E_4	E_{S}	E_6	E_{∞}
-13,6 eV	−3,4 eV	−1,51 eV	-0,850 eV	−0,54 eV	-0,37 eV	0 eV

Le document 1 est utile pour les questions 1 à 4.

1. Pour passer du niveau 4 au niveau 3 :

- a. L'électron a besoin de recevoir de l'énergie sous forme de photon.
- b. L'électron cède de l'énergie sous forme de photon.

2. L'énergie à fournir pour passer de l'état fondamental à l'orbite n = 5 est égale à :

3. La longueur d'onde correspondant à une transition de l'état n = 3 vers l'état n' = 2 vaut :

a.
$$\lambda = hc |\Delta E_{3\rightarrow 2}|$$

b.
$$\lambda = hc \ \Delta E_{3\rightarrow 2}$$

c.
$$\lambda = \frac{hc}{hc}$$

d.
$$\lambda = \frac{hc}{\Delta E_{3\to 2}}$$

4. Si on fournit une énergie de 14 eV à l'électron dans son état fondamental,

a. Rien ne se passe

- c. L'électron à une énergie cinétique de 0,4 eV
- b. L'atome est ionisé, l'électron s'échappe avec une vitesse non nulle
- d. L'électron à une énergie cinétique de -0,4 eV

5. Le spectre du rayonnement d'un corps noir est le graphe de :

- a. La densité d'énergie rayonnée en fonction de la température T.
- c. La densité d'énergie rayonnée en fonction de la longueur d'onde λ .
- b. La température T en fonction de la densité d'énergie rayonnée.
- d. Aucune de ces réponses.

3.	En utilisant l'expression contenue dans le troisième postulat du modèle de Bohr ainsi que l'expression que vous venez de trouver, établir un système de deux équations puis exprimer les rayons r_n des orbites successives accessibles à l'électron en fonction de leur nombre quantique \mathbf{n} , c'est-à-dire le numéro de la couche électronique, de \mathbf{m} , \mathbf{e} et \mathbf{Z} (2pts)
4.	Quel est le plus petit rayon possible pour l'ion hélium (Z=2) et l'ion lithium (Z=3) ? On donne $\frac{\hbar^2}{me^2} = 5.10^{-11} \ m.$ Commenter la vraisemblance du résultat. (0,5pt)
5.	L'énergie de l'électron d'un hydrogénoïde est donne par :
	$E_n = \frac{Z^2 m e^4}{2\hbar^2 n^2} = 13.6 \frac{Z^2}{n^2} (eV)$
	Quelle est l'énergie fondamentale dans le cas de l'ion Hélium et de l'ion Lithium ? Les valeurs expérimentales sont respectivement -54.42 eV et -122.45 eV. Commenter la vraisemblance du résultat en comparant l'énergie d'ionisation de l'hydrogène, de l'ion hélion et de l'ion lithium. (1pt)

Exercice 3: Boite quantique 1D et 2D (9pts)

I. Particule dans une boite 1D :

Document 1 : Niveaux d'énergie associés à l'atome d'hydrogène

Dans cette première partie, on étudie une particule piégée dans une boîte à une dimension et de longueur L, modélisée de la manière suivante (voir schéma ci-contre).

Le potentiel V vaut :

- + ∞ en dehors de [0; L]
- 0 pour $x \in [0; L]$

Fig. 1 : Puits de potentiel infini de largeur L

1. Pour $x \in [0; L]$, donner l'équation de Schrödinger vérifiée par

la fonction d'onde en fonction de la constante de Planck h, de la masse m et de l'énergie E de la particule. (1pt)

Les solutions générales $\psi(x)$ de l'équation de Schrödinger pour $x \in [0;L]$ sont de la forme :

$$\psi(x) = A \cdot \sin(kx) + B \cdot \cos(kx)$$

Avec A et B des constantes à déterminer.

2. Quelles sont les conditions aux limites $\psi(0)$ et $\psi(L)$? (0,5pt)

3. Utiliser la condition concernant $\psi(0)$ pour déterminer une des constantes. (0,5pt)

n donne la relation suivante :			70000	
	k ² =	$=\frac{2mE}{\hbar^2}$		
5. Montrer que l'énergie est ħ, n, L et m. (1 pt)	elle aussi quantifiée. Déte	erminer l'expression	des niveaux d'énergies en en	fonction
		a.		
téressons-nous maintenant à un s solutions obtenues sont du typ		une boîte à deux dim	ensions. La modélisation est	similaire
			r? ? /	,
			$h^2\pi^2/\gamma$	n_x^2 n_y
$\psi_{n_x,n_y}(x,y) = \sqrt{\frac{4}{a.b}} \sin\left(\frac{n_x \cdot n_y}{a}\right)$	$\left(\frac{n_y \cdot \pi \cdot y}{b}\right) \sin\left(\frac{n_y \cdot \pi \cdot y}{b}\right)$	et	$E_{n_x,n_y} = \frac{\hbar^2 \pi^2}{2m} \left(\frac{r}{r} \right)^2$	a^2 b^2
$\psi_{n_x,n_y}(x,y) = \sqrt{\frac{4}{a \cdot b}} \sin\left(\frac{n_x \cdot n_y}{a}\right)$ 6. A partir de maintenant, et l'expression du plus petit i	pour toutes les questions	s suivantes, nous con	`	
6. A partir de maintenant, et	pour toutes les questions	s suivantes, nous con	`	
6. A partir de maintenant, et	pour toutes les questions	s suivantes, nous con	`	
6. A partir de maintenant, et	pour toutes les questions	s suivantes, nous con	`	
6. A partir de maintenant, et	pour toutes les questions	s suivantes, nous con	`	

7.	En quoi ce résultat est surprenant par rapport à la mécanique classique ? (1pt)
8.	Que peut-on dire des niveaux d'énergies (2,1) et (1,2). Comment appelle-t-on cette situation ? (2pts)
9.	Donner l'expression du sixième niveau d'énergie en fonction de E _{min} . Pour quel couple (n _x ,n _y) est-il atteint ? (1pts)