Teoria da Decisão II

Atividade: Programação Linear

Problema de alocação de recursos: Produção de cimento Emmanuel Sader Filho

Professores: Luciane e Orlando

UFF Abril/2022

Apresentação do problema

O estudo em questão busca solucionar um problema típico de programação linear relativo ao planejamento de produção de uma indústria cimenteira na perspectiva de proporcionar o melhor resultado financeiro possível.

COMPOSIÇÃO DO CIMENTO PORTLAND:

De acordo com ABCP (2002) em seu Boletim Técnico (BT-106), o cimento portland é composto de clínquer e de adições, sendo o clínquer o principal componente e que está presente em todos os tipos de cimento portland, e o que define os diferentes tipos de cimento são as adições, podendo estas variar em cada tipo de cimento.

COMPOSIÇÃO DO CIMENTO PORTLAND:

- Clinquer;
- Adições
 - Gessos;
 - Escória de alto forno;
 - Materiais Pozolânicos;
 - Materiais Carbonáticos

Baterias de fornos de produção de clínquer na Ternium

2.1.4 TIPOS DE CIMENTOS

2.1.4.1. CIMENTO PORTLAND COMUM E COMPOSTOS

A ABCP (2002) informa que o primeiro cimento portland lançado no mercado brasileiro foi o CP, que atualmente corresponderia ao CPI, que é um tipo de cimento comum sem qualquer adição além de gesso. Já os cimentos compostos, tem sua composição entre os cimentos portland comuns e os com adições. Atualmente os cimentos compostos representam aproximadamente 75% da produção industrial brasileira, e são utilizados na maioria das aplicações. O Quadro 2 a seguir demonstra as composições dos cimentos portland comuns e compostos.

			Composição			
Tipo de cimento portland	Sigla	Clínquer + gesso	Escória granulada de alto forno (sigla E)	Material pozolânico (sigla Z)	Material carbonático (sigla F)	Norma Brasileira
Comum	CP I CP I-S	100 99-95		NBR 5732		
Composto	CP II-E CP II-Z CP II-F	94-56 94-76 94-90	6-34 - -	- 6-14 -	0-10 0-10 6-10	NBR 11578

Quadro 2: Composição dos Cimentos Portland Comuns e Compostos Fonte: ABCP - Associação Brasileira de Cimento Portland (2002).

2.1.4.2. CIMENTO PORTLAND DE ALTO FORNO E POZOLÂNICO

O consumo de energia durante a produção de cimento é muito alto, desta forma, a indústria cimenteira foi motivada a busca de medidas para diminuir este consumo energético, e entre vários materiais analisados, as escórias de granuladas de alto forno e os materiais pozolânicos obtiveram sucesso. Com isso surgiram os cimentos portland de alto-forno e os pozolânicos.

ſ							
	Tipo de cimento portland	Sigla	Clínquer + gesso	Escória granulada de alto forno	Material pozolânico	Material carbonático	Norma Brasileira
	Alto-Forno	CP Ⅲ	65-25	35-70	1	0-5	NBR 5735
	Pozolânico	CP IV	85-45	-	15-50	0-5	NBR 5736

Quadro 3 - Composição dos Cimentos Portland de Alto-Forno e Pozolânicos Fonte: ABCP - Associação Brasileira de Cimento Portland (2002). Ativa

2.1.4.3. CIMENTO PORTLAND DE ALTA RESISTÊNCIA INICIAL

Mesmo que tenha uma norma separada pela ABNT, o cimento portland de alta resistência inicial é um tipo particular do cimento portland comum, mas que atinge altas resistências já nos primeiros dias de aplicação.

Esta alta resistência inicial é conseguida pela dosagem diferente de calcário e argila na produção de clínquer, e também a moagem mais fina do cimento, desta maneira, quando reage com água, adquire altas resistências com maior velocidade. O Quadro 4 demonstra a composição do cimento portland de alta resistência inicial.

Tipo de		Composição (
cimento	ento Sigla Clinquer		Material carbonático	Norma Brasileira
Alta Resistência Inicial	CP V-ARI	100-95	0-5	NBR 5733

Quadro 4 - Composição do Cimento Portland de Alta Resistência Inicial Fonte: ABCP - Associação Brasileira de Cimento Portland (2002).

COMPARATIVO DAS CURVAS DE RESISTENCIA À COMPRESSÃO CONFORME O TIPO DE

CIMENTO

APRESENTAÇÃO DO PROBLEMA

Busca-se resolver um problema de programação linear sobre o planejamento de produção de uma indústria cimenteira na perspectiva de proporcionar o melhor resultado financeiro possível.

Esta indústria pode produzir até três tipos de cimento (Cimento A, Cimento B e Cimento C) e as tabelas a seguir demonstram os requisitos necessários para a fabricação dos mesmos.

A tabela 1 demonstra os percentuais de adição dos componentes em cada tipo de cimento produzido (Limitações de Utilização).

COMPONENTES (%)	CIMENTO						
COMPONENTES (70)	Α	В	С				
Clinquer	51%	27%	90%				
Escória de Alto Forno	34%	65%	0%				
Gesso	5%	3%	5%				
Material Carbonático	10%	5%	5%				
Aditivo	0%	0%	0%				

Tabela 1: Composição dos Cimentos Produzidos Fonte: Os Autores (2015)

A tabela 2 a seguir demonstra a capacidade anual de produção de clínquer da indústria em estudo (Limitação de Produção de Clinquer).

PRODUÇÃO CLINQUER	PROD./DIA (t)	DIAS FUNC. (Ano)	PRODUÇÃO ANO (t)	
Forno (A)	1.800	300	540.000	
Forno (B)	1.800	300	540.000	
Forno (C)	2.000	100	200.000	
Total			1.280.000	

Tabela 2: Capacidade Anual de Produção de Clínquer Fonte: Os Autores (2015)

A tabela 3 em seguida demonstra a capacidade anual de produção de cimento da indústria (Limitação de Produção de Cimento).

PRODUÇÃO CIMENTO	PRODUTIVIDADE (t/h)	HORAS FUNC. (h/Dia)	DIAS FUNC.	PRODUÇÃO ANO (t)
Moinho 1	100	19	300	570.000
Moinho 2	100	19	300	570.000
Moinho 3	100	18	300	540.000
Total				1,680,000 _{Wind}

Tabela 3: Capacidade Anual de Produção de Cimento Fonte: Os Autores (2015)

Acesse Configuraç

A tabela 4 ilustra os limites máximos de disponibilidade de compra de escória de alto forno, gesso, material carbonático e aditivo. A tabela 4 ilustra os limites máximos de disponibilidade de compra de escória de alto forno, gesso, material carbonático e aditivo.

QTDES CONSUMIDAS	LIMITE MÁXIMO			
Escória de Alto Forno	900.000			
Gesso	100.000			
Material Carbonático	300.000			
Aditivo	50.000			

Tabela 4: Disponibilidade de Compra de Insumos / Matérias Primas Fonte: Os autores (2015)

Outra limitação que o problema apresenta é a quantidade de clínquer que poderá ser vendida a terceiros e não ser utilizada na fabricação de cimento. A tabela 5 a seguir demonstra esta informação.

CONTRIBUIÇÃO MARGINAL	R\$/t
Cimento A	42,00
Cimento B	60,00
Cimento C	12,00
Clinquer	32,00

Tabela 6: Contribuição Marginal dos Produtos Vendidos Fonte: Os Autores (2015)

LIMITAÇÃO VENDA CLINQUER	t
Clinquer	400.000

Tabela 5: Limitação de Venda de Clínquer a Terceiros. Fonte: Os Autores (2015)

A tabela 6 demonstra a contribuição marginal de cada tipo de cimento produzido por esta indústria e também a contribuição do clínquer vendido. A contribuição marginal, de acordo com Andrade (2009) é a receita líquida menos os custos fixos e variáveis e no exemplo proposto foi excluído dos custos variáveis os componentes constantes na tabela 4.

O preço de compra de cada insumo que foi excluído dos custos variáveis para o cálculo da contribuição marginal ilustrada na tabela 6 está demonstrado na tabela 7 a seguir.

PREÇOS INSUMOS	R\$/t
Escória de Alto Forno	60,00
Gesso	120,00
Material Carbonático	30,00
Aditivo	15,00
Tabala 7, Duasas Inac	

Tabela 7: Preços Insumos

Fonte: Os Autores (2015)

FUNÇÃO OBJETIVO

A partir das contribuições marginais de cada cimento e do clínquer e deduzindo o custo das matérias primas e insumos utilizados a função objetivo representara o lucro liquido total.

LIMITAÇÃO VENDA CLINQUER t

Clinquer 400.000

CONTRIBUIÇÃO MARGINAL R\$/t

Cimento A 42,00

Cimento B 60,00

Cimento C 12,00

Clinquer 32,00

PREÇOS INSUMOS R\$/t

Escória de Alto Forno 60,00

Gesso 120,00

Material Carbonático 30,00

Aditivo 15,00

 $MAX = 42,00 \cdot X1 + 60,00 \cdot X2 + 12,00 \cdot X3 + 32,00 \cdot X4 - 60,00 \cdot (34\% \cdot X1 + 65\% \cdot X2 + 0\% \cdot X3) - 120,00 \cdot (5\% \cdot X1 + 3\% \cdot X2 + 5\% \cdot X3) - 30,00 \cdot (10\% \cdot X1 + 5\% \cdot X2 + 5\% \cdot X3) - 15,00 \cdot (0\% \cdot X1 + 0\% \cdot X2 + 0\% \cdot X3)$

VARIÁVEIS

As variáveis são compostas pelas quantidades de cimento e clínquer a serem produzidos e/ou vendidos e são demonstrados da seguinte forma:

X1- Quantidade de Cimento A;

X2 – Quantidade de Cimento B;

X3 – Quantidade de Cimento C;

X4 – Quantidade de Clínquer.

RESTRIÇÃO DE UTILIZAÇÃO

Será composta pela soma dos resultados obtidos da multiplicação da quantidade produzida de cada tipo de cimento pelos percentuais de utilização de cada um dos insumos/matérias primas.

Escória de Alto Forno	34% . X ₁	+	65% . X ₂	+	$0\% \ . \ X_3 \le 900.000$
Gesso	5% . X ₁	+	3% . X_2	+	$5\% \ . \ X_3 \le 100.000$
Material Carbonático	10% . X ₁	+	5% . X ₂	+	$5\% \ . \ X_3 \le 300.000$
Aditivo	$0\% . X_1$	+	0% . X_2	+	$0\% \ . \ X_3 \le 50.000$

RESTRIÇÕES DE UTILIZAÇÃO

RESTRIÇÃO DA VENDA DE CLÍNQUER

A venda de clínquer é referente a quantidade máxima vendida a outro fabricantes de cimento. E é expressa conforme abaixo.

Venda de Clínquer X4 ≤ 400.000

RESTRIÇÃO DE PRODUÇÃO

As funções abaixo representam o limite máximo de produção de cimento e o consumo máximo de clínquer somado com a quantidade de clínquer vendida a outros fabricantes de cimento.

Cimento $X1 + X2 + X3 \le 1.680.000$ Clínquer $51\% \cdot X1 + 27\% \cdot X2 + 90\% \cdot X3 + X4 \le 1.280.000$

RESTRIÇÕES DE UTILIZAÇÃO

```
Variáveis de decisão:
```

- X1- Quantidade de Cimento A;
- X2 Quantidade de Cimento B;
- X3 Quantidade de Cimento C;
- X4 Quantidade de Clínquer.

```
MAX = 42,00 . X1 + 60,00 . X2 + 12,00 . X3 + 32,00 . X4 - 60,00 . (34% . X1 + 65% . X2 + 0% . X3) - 120,00 . (5% . X1 + 3% . X2 + 5% . X3) - 30,00 . (10% . X1 + 5% . X2 + 5% . X3) - 15,00 . (0% . X1 + 0% . X2 + 0% . X3)

Sujeito a:
```

Escória de Alto Forno	34% . X ₁	+	65% . X ₂	+	$0\% \ . \ X_3 \le 900.000$
Gesso	5% . X ₁	+	3% . X_2	+	$5\% \ . \ X_3 \le 100.000$
Material Carbonático	10% . X ₁	+	5% . X ₂	+	$5\% \ . \ X_3 \le 300.000$
Aditivo	$0\% . X_1$	+	0% . X_2	+	$0\% \ . \ X_3 \le 50.000$

```
Venda de Clínquer X4 \le 400.000
Cimento X1 + X2 + X3 \le 1.680.000
Clínquer 51\% . X1 + 27\% . X2 + 90\% . X3 + X4 \le 1.280.000
X1,x2,x3 e x4 positivos
```

RESTRIÇÕES DE UTILIZAÇÃO

```
Variáveis de decisão:
X1– Quantidade de Cimento A;
X2 – Quantidade de Cimento B;
X3 – Quantidade de Cimento C;
X4 – Quantidade de Clínquer.
MAX = 12,66 \cdot X1 + 15,9 \cdot X2 + 4,5 \cdot X3 + 32,00 \cdot X4
Sujeito a:
Escória de Alto Forno 0.34 \text{ X1} + 0.65 \text{ X2} + 0.00 \text{ X3} \leq 900.000
                          0.05 X1 + 0.03 X2 + 0.05 X3 < 100.000
Gesso
Material Carbonático 0.10 \text{ X1} + 0.05 \text{ X2} + 0.05 \text{ X3} \leq 300.000
Aditivo
                         0.00 X1 + 0.00 X2 + 0.00 X3 < 50.000
  Venda de Clínquer X4 ≤ 400.000
  Cimento X1 + X2 + X3 \le 1.680.000
  Clinquer 51% . X1 + 27\% . X2 + 90\% . X3 + X4 \le 1.280.000
  X1,x2,x3 e x4 positivos
```