ER Modeling

(Course Instructor: Bidur Devkota)

Figure: Design Phase

1. Databse Design Phases:

The main phases of database design are:

- 1. Phase 1: Requirements collection and analysis.
 - get a description of the user requirements.
 - Interview prospective database users to understand and document their data requirements
 - prepare **users' requirements** and **functional requirements** of the database application
- 2. Phase 2: Conceptual Design.
 - Develop conceptual schema for the database with High-Level Conceptual Data Model:
 - entity types,
 - o relationship types,
 - constraints
 - do not include implementation details.
 - Act as a reference to ensure:
 - o all data requirements are met
 - requirements do not include conflicts.
- 3. Phase 3: Logical design (data model mapping/Implementation)
 - Transform the high level conceptual schema into a lower- level implementation model.
 - Result of this phase is the schema as an implemented data model of the DBMS.
- 4. Phase 4: Physical design.
 - Decision about the internal storage structures, access paths and file organizations for the database files.

Example:

Design a database schema to fulfill the requirements for a company.

- Employees, departments, and projects
- Company is organized into departments
- Department controls several projects
- Employee: require each employee's name, Social Security number, address, salary, sex (gender), and birth date
- Keep track of the dependents of each employee

Figure: ER diagram for a company

Notations:

ER- Diagram is a visual representation of data that describe how data is related to each other.

Rectangles: This symbol represent entity types

Ellipses: Symbol represent attributes

Diamonds: This symbol represents relationship types

Lines: It links attributes to entity types and entity types with other relationship types

Primary key: attributes are underlined

Double Ellipses: Represent multi-valued attributes

2. Entity-Relationship (ER) Model

- a high- level conceptual data model.
- By Peter Chen in 1976
- **illustrates the real world situations** with concepts, used by general people.
- **Logically** describes a representation of the real world.
- Do **NOT** describe machine-related aspects.
- grouping of data into entities
- main concepts: entity, attribute, and relationship.

• Entity:

- o a "thing" (an object or an event) in the real world:
- distinguishable from other things.
- Entity types represent sets of objects and are pictured by rectangular nodes.
- Examples of entities:
 - •Person: Employee, Student, Patient
 - •Place: Store, Building
 - •Object: Machine, product, and Car •Event: Sale, Registration, Renewal
 - •Concept: Account, Course

• Characteristic of Entity:

- Concrete physical Existence like:
 - Employee, Collage, Car, Book, Dog, etc.
- Described by its attributes:
 - an EMPLOYEE entity may have a Name, Age, Address, DOB, etc.
- Determined by particular value of its attributes:
 - An Employee Name= "Hari", Age=21, Address=Pokhara, DOB:1998-08-09
 - **Another** Employee Name= "Sita", Age=20, Address=Baglung, DOB:1999-08-12

Entity sets may not be disjoint.

- E.g, it is possible to define the entity set of all employees of a Supermarket (employee) and the entity set of all customers of the Supermarket (customer). A person entity may be an employee entity, a customer entity, both, or neither.
- An **entity type** defines a set of entities with same attribute:
 - Eg. employee entity type and company entity type
- An entity is an instance of an entity type.
- An **entity set is the collection of all entities of a particular entity type in the database** at any point in time.

Relationship

- o an **association** among two or more entities.
- E.g. Ram **works** in the Chemistry department.
- Entities take part in relationships.
- Relationships: verbs or verb phrases.

Weak Entities

- o doesn't have its key attribute.
- It can be identified uniquely by considering the primary key of another entity.
- For that, weak entity sets need to have participation.
- ° E.g. "Trans No" is a discriminator within a group of transactions in an ATM.

Strong Entity Set	Weak Entity Set	
Strong entity set always has a primary key.	It does not have enough attributes to build a primary key.	
It is represented by a rectangle symbol.	It is represented by a double rectangle symbol.	
It contains a Primary key represented by the underline symbol.	It contains a Partial Key which is represented by a dashed underline symbol.	
The member of a strong entity set is called as dominant entity set.	The member of a weak entity set called as a subordinate entity set.	
Primary Key is one of its attributes which helps to identify its member.	In a weak entity set, it is a combination of primary key and partial key of the strong entity set.	
In the ER diagram the relationship between two strong entity set shown by using a diamond symbol.	The relationship between one strong and a weak entity set shown by using the double diamond symbol.	
The connecting line of the strong entity set with the relationship is single.	The line connecting the weak entity set for identifying relationship is double.	

• Attribute:

- **property** or **characteristic** of an entity type.
- **Each attribute has a value drawn from some domain** (set of meaningful values).
- Attributes name are written in an **ellipse** by **connecting it to its associated entity**
- Attributes may also be associated with relationships
- An attribute is associated with exactly one entity or relationship.
- Example:
 - an employee entity may be described by the employee's name, age, address, dob, and job
 - An Employee Name= "Hari", Age=21, Address=Pokhara, DOB:1998-08-09, job: programmer

• Types of attributes :

- Composite versus Simple(atomic):
 - can be divided into smaller subparts :
 - Name can First Name, Middle Name, Lastname.
 - Address can have Street_Address, city, state and postal_code

- Single-valued versus Multivalued:
 - Single Valued: Age is a single-valued attribute of person.
 - **multivalued** attribute may take on more than one value:
 - E.g. An EMPLOYEE may have more than one degree

- Stored versus Derived.
 - Derived attributes: Attributes Contain values that are calculated from other attributes.
 - **Age** can be **derived** from attribute Birthdate.
 - **Birthdate** is **stored** attribute.

- Null values:
 - Some values may not be applicable e.g. **Deceased Date**
- Complex values:

- Nested Composite and multi-valued attributes .
- Example:
 - **PreviousDegrees** of a STUDENT is a composite multi-valued attribute denoted by {PreviousDegrees(College, Year, Degree, Field)}.
 - Address and Phone

Student

Roll_no	Name	Class	Age
1	Andrew	5	12
2	Andrew	5	12
3	Augusto	5	11

Key:

- $\circ \quad \text{important constraint on the entities} \\$
- Key is an **attribute** or a group of attributes that **uniquely identify** individual entity in an entity set.
- o E.g.
 - Student's **Roll Number** is unique for each person.
 - Employee = {**EID**, Name, Address, Age, Salary}
 - •Definite keys are any set that involving EID

- •Possible keys might be {Name, Address}
- •Unlikely keys: {Name}, {Age}

•Primary Key:

- The primary key is the **minimal set of attributes which uniquely identifies** any row of a table.
- key that is chosen as an identifying mechanism for the whole entity set
- indicated by <u>underlying</u> attributes in the ER model.

References:

The Instructor do not own the contents (text and images) of this documents collected from various sources:

- A. Silberschatz, H.F. Korth, and S. Sudarshan, Database System Concepts, 4th Edition, McGraw Hill (ISBN: 0-07-120413)
- Raghu Ramakrishnan, and Johannes Gehrke, Database Management Systems, McGraw-Hill, 2003. (ISBN: 0-07-246563-8)
- Sawsan Abu_TaleB and Randa Al_Dallah (2009), Chapter 3: Data modeling using the Entity-Relationship Model, Available Online: https://www.kau.edu.sa/GetFile.aspx?
 id=144658&fn=Ch3_Data%20modeling%20using%20the%20Entity%20Relationship %20Model 2.pdf
- https://s3.amazonaws.com/ppt-download/dbmschap3-190406084105.pdf?response-content-disposition=attachment&Signature=k0wi6dlx2uVU9DmBhkrmAz0Avqo
 %3D&Expires=1597851105&AWSAccessKevId=AKIAIA5TS2BVP74IAVEQ
- https://afteracademy.com/blog/what-are-super-key-primary-key-candidate-key-and-foreign-keys
- https://www.guru99.com/er-diagram-tutorial-dbms.html
- https://cnx.org/contents/aM2VUeRT@1/Data-Modeling-Using-Entity-Relationship-Model

•