SUMMARY

Improve mixing time in Gibbs Sampling via Tree Blocks that group correlated variables together.

Introduction

Given: Graphical Model with known Parameters.

Goal: Estimate $\mathbb{E}[h(X)]$

E.g.: $1_A(x)$, $\sum_i X_i$

Generate Samples: $X^{(1)}, X^{(2)}, \dots X^{(N)}$

Empirical Estimator

$$\mu_0 = \frac{1}{N} \sum_{i=1}^{N} h(X^{(i)})$$

Gibbs Sampling—one way to generate samples.

Blocked Gibbs Sampling

Current Sample: $X^{(t)}$

$$X_{1,3}^{(t+1)} \mid X_{2,4,5,6}^{(t)}$$

$$X_{2,4,5}^{(t+1)} \mid X_{1,3}^{(t+1)}, X_6^{(t)}$$

$$X_6^{(t+1)} \mid X_{1,2,3,4,5}^{(t+1)}$$

Next Sample: $X^{(t+1)}$

Why?

Sampling is now more difficult.

BUT, Chain mixes faster \implies better samples.

How to Block?

STRATEGY

- We will focus only on **Tree Partitions**.
 - Otherwise Problem is too big.
- Inference on Trees is easy (Belief Propagation converges in linear time).
- Will consider **correlations** between variables when developing tree blocks.

WHY CORRELATIONS?

MC:
$$X^{(1)} \to X^{(2)} \to \cdots \to X^{(t)} \to X^{(t+1)} \to \cdots$$
, Eqlbm Distribtuion: π

 $L_0(\pi) = \{h : \Omega \to \mathbb{R} : \mathbb{E}_{\pi}h(X) = 0, \mathbb{V}_{\pi}h(X) < \infty\}, \langle h, g \rangle = \operatorname{Covar}_{\pi}(h(X), g(X))\}$ $(L_0(\pi), \langle \cdot, \cdot \rangle)$ is a Hilbert Space.

Define $F: L_0(\pi) \to L_0(\pi)$, $[Fh](z) = \mathbb{E}[h(X^{(1)})|X^{(0)} = z]$

Fact: $|\mathbb{E}^{(n)}h(X) - \mathbb{E}_{\pi}h(X)| \leq C ||F||^n ||h||$

 $||F|| = \sup_{f,g} Corr(f(X^{(t+1)}), g(X^{(t)}))$

Correlated Variables in different blocks \implies successive samples correlated.

So this is what we want:

ALGORITHMS

- Baseline: Greedy Tree Growing Algorithm
- Our Algorithm: Greedy Edge Selection Algorithm

Greedy Edge Selection Algorithm

- 1. Construct an ordered list of edges, E, with E[0]being the highest weight edge. Edges are vertex pairs (i, j).
- 2. Initialize an all-zero n-dimensional integer list Vof vertex colors.
- (V[i] is the color of vertex i, and V[i] = 0 meansthat vertex *i* has not yet been colored.)
- 3. Initialize n empty vertex sets: $T_1, ..., T_n$ (Logically, T_i is the set of vertices labeled with color *i*.)
- 4. Initialize unusedColor = 1.
- 5. For each edge e = (i, j) in E, • If V[i] = V[j] = 0,
 - Set V[i] = V[j] = unusedColor
 - ► Add *i*, *j* to *T*_{unusedColor} ▶ Increment *unusedColor* by 1
 - Else if V[i] = 0 and $V[j] \notin getOtherNeighborColors({i}, e),$ • Set V[i] = V[j]
 - Add *i* to $T_{V[i]}$
 - Else if V[j] = 0 and $V[i] \notin getOtherNeighborColors({j}, e),$ • Set V[j] = V[i]
 - Add j to $T_{V[i]}$
 - Else if $V[i] \neq 0$ and $V[j] \neq 0$ and $V[i] \notin getOtherNeighborColors(T_i, e)$,
 - For each $k \in T_i$, set V[k] = V[i]
 - Set $T_i = T_i \cup T_i$ • Set $T_i = \emptyset$
 - Otherwise do nothing
- 6. For each vertex i, if V[i] = 0, set
- V[i] = unusedColor, unusedColor + +
- 7. Output $\{T_i: T_i \neq \emptyset\}$

Greedy Tree Growing Algorithm

- 1. Initialize i = 0 and V to the vertex set. 2. While $V \neq \emptyset$
 - Select $v \in V$
 - Start a new tree T_i and a priority queue Q_i . Add v to Q_i ▶ While $Q_i \neq \emptyset$
 - Pop u from Q_i .
 - Initialize neighborsInT = 0. ▶ For all $v \in T_i$, if $u \in N(v)$, increment *neighborsInT*
 - If neighborsInT ≤ 1 ,
 - Add u to T_i and remove v from V• Add N(u) to Q_i .
- 3. Return $\{T_i\}$

Greedy Edge Selection Algorithm performs much better when max tree size is not limited.

As max tree size is controlled, Greedy Tree Growing Algorithm caught up.

Lists

- You can make
- lists, that
- allow people to see quickly

Матн

Include math within the text is as simple as 1 + 1 = 2. You can also highlight more important equations like this:

$$\int_{0}^{1} \sin(x) + \cos^{2}(x) + \alpha x \, dx$$

PICTURES

EXPERIMENTS

Remember to put lots of figures on your poster... Nobody reads anymore!

Conclusion

Much less annoying than PowerPoint. Copy and Paste from your document. Overall, a great idea!