日本国特許

PATENT OFFICE
JAPANESE GOVERNMENT

 REC'E
 1
 8 DEC 1998

 WIPO
 PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日

4

Date of Application:

1997年11月11日

出 願 番 号 Application Number:

平成 9年特許願第308523号

出 願 人 Applicant (s):

旭化成工業株式会社

PRIORITY DOCUMENT

1998年12月 4日

特許庁長官 Commissioner, Patent Office 保佑山建橋區

THE METALTHIA - SAGRIAR

【書類名】 特許願

【整理番号】 X09-01333

【提出日】 平成 9年11月11日

【あて先】 特許庁長官

【国際特許分類】 A61K 37/02

【発明の名称】 トロンボモジュリン持続性製剤

【請求項の数】 3

【発明者】

【住所又は居所】 静岡県富士市鮫島2番地の1 旭化成工業株式会社内

【氏名】 鶴田 一壽

【発明者】

【住所又は居所】 静岡県富士市鮫島2番地の1 旭化成工業株式会社内

【氏名】 清水 啓友

【特許出願人】

【識別番号】 000000033

【氏名又は名称】 旭化成工業株式会社

【代表者】 山本 一元

【手数料の表示】

【予納台帳番号】 011187

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【物件名】 受託証 1

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 トロンボモジュリン持続性製剤

【特許請求の範囲】

【請求項1】 可溶性トロンボモジュリンを有効成分とする皮下投与または筋肉注射のための持続性製剤。

【請求項2】 可溶性トロンボモジュリンが、配列番号1または配列番号2に 記載のアミノ酸配列をコードするDNAを宿主細胞にトランスフェクトして得ら れる可溶性トロンボモジュリンである請求項1に記載の持続性製剤。

【請求項3】 持続性製剤中に、さらに塩酸プロカイン、またはベンジルアルコールの少なくともいずれか1つを含有することを特徴とする請求項1又は2に記載の持続性製剤。

【発明の詳細な説明】

[0001]

【産業上の利用分野】

本発明は、可溶性トロンボモジュリンを有効成分とする皮下投与または筋肉注射のための持続性製剤に関する。

[0002]

【従来の技術】

トロンボモジュリンは、トロンビンと特異的に結合し、トロンビンによるプロテインCの活性化を著しく促進する作用を有する物質である。プロテインCは、血液凝固線溶系において重要な役割を演じているビタミンK依存性のたん白質であり、トロンビンの作用により活性化され、活性型プロテインCとなる。この活性型プロテインCは、生体内で血液凝固系因子の活性型第V因子、および活性型第VIII因子を失活させ、また血栓溶解作用を有するプラスミノーゲンアクチベーターの産生に関与していることが知られている〔鈴木宏治、医学のあゆみ、第125巻、901頁(1983年)〕。

[0003]

したがって、トロンボモジュリンは、このトロンビンによるプロテインCの活性化を促進して抗血液凝固作用と血栓溶解作用を示す活性型プロテインCを大量

に生産せしめるものであり、抗血液凝固剤又は血栓溶解剤として有用であるとされている。

従来、トロンボモジュリンは、ヒトを始めとする種々の動物種の血管内皮細胞上に発現している糖たん白質として発見取得されたが、発明者らのグループにより、始めてクローニングに成功した。即ち、遺伝子工学的手法を用いてヒト肺でDNAライブラリーから、シグナルペプチドを含むヒトトロンボモジュリン前駆体の遺伝子をクローニングし、そしてトロンボモジュリンの全遺伝子配列を解析し、18アミノ酸残基のシグナルペプチドを含む575残基のアミノ酸配列が明らかにされている(特開平1-6219号公報)。シグナルペプチドが切断されたマチュアなトロンボモジュリンは、そのマチュアなペプチドのN末端側よりN末端領域(1-226番目)、6つのEGF様構造をもつ領域(227-462番目)、O型糖鎖付加領域(463-498番目)、膜貫通領域(499-521)、そして細胞質内領域(522-557番目)の5つの領域から構成されており、そして全長のトロンボモジュリンと同じ活性を有する部分(即ち、最小活性単位)は、6つのEGF様構造をもつ領域のうちN末端側から4、5、6番目のEGF様構造からなる部分であることが知られている [M. Zushiら、J. Biol. Chem., 246, 10351-10353 (1989)]。

少なくとも、膜貫通領域を含有しないように調製されたトロンボモジュリンにおいては、界面活性剤の非存在下でも綺麗に溶解することができる性質(以下、可溶性ということがある)を有し、例えば、N末端領域と6つのEGF様構造をもつ領域とO型糖鎖付加領域の3つの領域のみからなる(即ち、配列番号1の19~516位のアミノ酸配列からなる)トロンボモジュリン(D123と略することがある)は、組換え技術の応用により取得できること、そしてその組換え体トロンボモジュリンは、天然のトロンボモジュリンの活性を有していることが確認されている(特開平1-6219号公報)。

[0005]

[0004]

因みに、遺伝子においては、自然の変異または取得時の変異により、多くのケースで認められる通り、ヒトにおいても多形性の変異が見つけられており、上述

の575残基のアミノ酸配列からなるヒトトロンボモジュリン前駆体の第473位のアミノ酸においてValであるものと、Alaであるものが現在確認されている。このアミノ酸をコードする塩基配列においては、第1418位において、それぞれTとCとの変異に相当する〔Wenら、Biochemistry 26,4350-4357(1987)〕。しかし、活性及び物性においては、全く相違なく、両者は実質的に同一と考えることができる。したがって、上述の配列番号1のアミノ酸配列からなるトロンボモジュリンは、配列番号2のアミノ酸配列からなるトロンボモジュリンの多形性のペプチドであり、実質的に同一と判断できる。

[0006]

また、従来トロンボモジュリンの用途としては、例えば、心筋梗塞、血栓症(例えば、急性期又は慢性期の脳血栓症、動脈又は静脈の急性又は慢性の末梢血栓症等)、寒栓症(例えば、急性期又は慢性期の脳寒栓症、動脈又は静脈の急性又は慢性の末梢寒栓症等)、末梢血管閉塞症(例えば、バージャー病、レイノー病等)、閉塞性動脈硬化症、血管炎(例えば、全身性ループスエリトマトーデス(SLE)、ベーチェット病、多発性硬化症、川崎病、公安病等)、心臓手術に続発する機能性障害、移植臓器の合併症、血管内血液凝固症候群(DIC)、狭心症、一過性脳虚血発作、妊娠中毒症、糖尿病、肝VOD(Liver venolcclusive disease;劇症肝炎や骨髄移植後の肝静脈閉塞症)、深部静脈血栓症(DVT;Deep venous thrombosis)等の疾患の治療及び予防に用いられることが期待されている。

[0007]

トロンボモジュリンはもともと血管内皮細胞表面に存在するものであり、またその作用部位は血管内であることから、トロンボモジュリンを投与する場合には、静脈注射で行なうことが直接的であり、従来より最も好ましいと信じられていた。例えば、特開平1-6219号公報には点滴静注の例が記載されている。

[0008]

【発明が解決しようとする課題】

しかしながら、患者の容体や利便に合わせた選択肢となり得る他の便利な従来

にない製剤等の開発は必要である。

[0009]

【課題を解決するための手段】

これまでの報告や発表では、トロンボモジュリンが静脈投与以外の投与により積極的に使用されることは必ずしも明確ではなかったが、本発明者らは、配列番号1の19-516位のアミノ酸配列であるD123の皮下投与製剤を作製し、血中濃度持続時間の検討を行ったところ、可溶性トロンボモジュリンの血中濃度が確認されるばかりでなく、特にD123において著しい持続時間の延長が認められることをはじめて確認した。

[0010]

このことから、可溶性トロンボモジュリン、好ましくはD123を有効成分と する皮下投与製剤およびに筋肉注射製剤が持続性製剤として、有用性や安全性に おいて望ましいことを見出し、本発明を完成するに至った。

即ち、本発明は、可溶性トロンボモジュリンを有効成分とする皮下投与または 筋肉注射のための持続性製剤である。

[0011]

本発明でトロンボモジュリンとは、トロンビンに結合し、トロンビンによるプロテインCの活性化を促進する作用を有する物質であれば特に限定されず、また、可溶性トロンボモジュリンとは、上記のトロンボモジュリンとしての活性を有し、界面活性剤の非存在下でも容易に溶解し得る物質であり、例えば、注射用蒸留水に対して、少なくとも1mg/m1、好ましくは3mg/m1の溶解性が得られるものが好ましい。可溶性トロンボモジュリンとしては、例えば、トロンボモジュリンの最小活性単位である、6つのEGF様構造を持つ領域のうちのN末端側から4、5、6番目の構造(即ち、配列番号1および配列番号2の367ー480位)を少なくとも有するアミノ酸配列からなるペプチドが挙げられる。このなかで特に好ましい可溶性トロンボモジュリンとしては、配列番号1または配列番号2のアミノ酸配列をコードするDNAをベクターにより宿主細胞にトランスフェクトして調製される形質転換細胞が産生し得るペプチドが挙げられる。この形質転換細胞が産生し得るペプチドとしては、配列番号1および配列番号2の

19-516位のアミノ酸配列からなるペプチドが好ましい例として挙げられる。その他に宿主細胞によっては、シグナル部分がそのままや、前記配列番号1および配列番号2の17-516位のアミノ酸配列からなるペプチド、又はそれらの混合物であってもよい。勿論これらのペプチドは極めて溶解性が高いもので、前述の溶解性を十分に有するものである。本発明において、上記の配列番号1および配列番号2の19-516位のアミノ酸配列からなるペプチドは特に好ましい。またその他に、配列番号1および配列番号2の367-480位のアミノ酸配列からなるペプチド(配列番号1の367-480位のアミノ酸配列からなるペプチド(配列番号1の367-480位のアミノ酸配列からなるペプチド(配列番号1の367-480位のアミノ酸配列からなるペプチドをE456と略することがある。特開平5-213998号公報においてその製造例が記載されている)も例示される。

[0012]

さらに、これらのペプチドは、前記のアミノ酸配列を有すればよいのであって、糖鎖が付いていても、又付いていなくともよく、特に限定されるものではない。また、宿主細胞の種類により、糖鎖の種類や、付加位置や付加の程度は相違するものであり、いずれも用いることができる。

これらのペプチドを製造するに際して用いることのできる宿主細胞としては、チャイニーズハムスター卵巣(CHO)細胞、COS-1細胞、COS-7細胞、VERO(ATCC CCL-81)細胞、BHK細胞、イヌ腎由来MDCK細胞、ハムスターAV-12-664細胞等が、またヒト由来細胞としてHeLa細胞、WI38細胞、ヒト293細胞等が挙げられる。CHO細胞においては、DHFR CHO細胞がさらに好ましい。

[0013]

また、遺伝子操作の過程において、大腸菌等の微生物も多く使われ、それぞれ に適した宿主-ベクター系を使用することが好ましく、上述の宿主細胞において も、適宜のベクター系を選択することができる。

遺伝子組換え技術に用いるトロンボモジュリンの遺伝子は、クローニングされており、そしてトロンボモジュリンの遺伝子組換え技術を用いた製造例が開示されており、さらにはその精製品を得るための精製方法も知られている(特開平1-6219、特開平2-255699、特開平5-213998、特開平5-3

10787、特開平7-155176、J. Biol. Chem., 264, 10351-10353, 1989)。したがって本発明のトロンボモジュリンは、上記の報告に記載されている方法を用いることにより、あるいはそれらに記載の方法に準じることにより製造することができる。例えば特開平1-6219号では、全長のトロンボモジュリンをコードするDNAを含むプラスミドpsV2TMJ2を含む、Escherichia coli K-12 strain DH5(ATCC 寄託番号67283号)を開示しているが、出願人らは、再度、同じ菌株(Escherichia coli DH5/psV2TMJ2)を生命研に寄託した(FERM BP-5570)。この全長のトロンボモジュリンをコードするDNAを原料として、公知の遺伝子操作技術によって、本発明のトロンボモジュリンを調製することができる。

[0014]

本発明に用いられる可溶性トロンボモジュリンは、従来公知の方法またはそれ に準じて調製すればよいが、例えば、前記山本らの方法(特開平1-6219号 、実施例参照)、又は特開平5-213998号公報を参考にすることができる 。すなわちヒト由来のトロンボモジュリン遺伝子を遺伝子操作技術により、例え ば、配列番号1のアミノ酸配列をコードするDNAとなし、さらに必要に応じた 改変を行うことも可能である。この改変としては、例えば、配列番号2のアミノ 酸配列をコードするDNAとなすために、配列番号1のアミノ酸配列の第473 位のアミノ酸をコードするコドン(特に、第1418位の塩基)に、メソッド イン エンザイモロジー (Method in Enzymology) 、第100巻、第468頁(1983年)、アカデミックプレス(Academic Press)に記載の方法に従って、 部位特異的変異を行う。例えば、配列番号3の塩基配列を含むDNA断片及び配 列番号5に示された塩基配列を有する変異用合成DNAを用い、上記部位特異的 変異を行い、配列番号2のアミノ酸配列をコードするDNA(具体的には、配列 番号4の塩基配列よりなる)となすことができる。このようにして、調製したD NAを、例えばチャイニーズハムスター卵巣(CHO)細胞に組み込んで、形質 転換細胞とし、適宜選択し、この細胞を培養して得た培養液から、公知の方法に より精製された可溶性トロンボモジュリンが製造できる。前述の通り配列番号1

のアミノ酸配列をコードするDNAを前記宿主細胞にトランスフェクトすることが好ましい。本発明に用いられるトロンボモジュリンの生産方法は、上記の方法に限定されるものではなく、すなわち、体液等から抽出精製することでも可能であるし、又トロンボモジュリンを生産する組織またはこれら組織培養液等から抽出精製することも、又必要によりさらに蛋白分解酵素により切断処理することも可能である。

[0015]

次いで上記により取得された培養上清、または培養物からのトロンボモジュリ ンの単離精製方法は、公知の手法〔堀尾武一編集;蛋白質・酵素の基礎実験法〕 に準じて行なうことができる。例えば、トロンボモジュリンと逆の電荷を持つ官 能基を固定化したクロマトグラフィー担体と、トロンボモジュリンの間の相互作 用を利用したイオン交換クロマトグラフィーの使用も好ましい。また、トロンボ モジュリンとの特異的親和性を利用したアフィニティークロマトグラフィーも好 ましい例として挙げられる。吸着体の好ましい例として、トロンボモジュリンの リガンドであるトロンビンやトロンボモジュリンの抗体を利用する例が挙げられ る。これらの抗体としては、適宜の性質、或いは適宜のエピトープを認識するト ロンボモジュリンの抗体を利用することができ、例えば、特公平5-42920 号公報、特開昭64-45398号公報、特開平6-205692号公報などに 記載された例が挙げられる。また、トロンボモジュリンの分子量サイズを利用し た、ゲル濾過クロマトグラフィーや限外濾過が挙げられる。そしてまた、疎水性 基を固定化したクロマトグラフィー担体と、トロンボモジュリンのもつ疎水性部 位との間の疎水結合を利用した疎水性クロマトグラフィーが挙げられる。これら の手法は適宜組み合わせることができる。精製の程度は、使用目的等により選択 できるが、例えば電気泳動、好ましくはSDS-PAGEの結果が単一バンドと して得られるか、もしくは単離精製品のゲル濾過HPLCまたは逆相HPLCの 結果が単一のピークになるまで純粋化することが望ましい。

[0016]

培養物を粗精製しトロンボモジュリン活性を有する画分を回収し、ついでアフィにティーカラムのDIP-TB(diisopropylphosporyl thrombin agarose)で主精製しトロンボモジュリン活性が強い画分を回収し、回収画分を濃縮し、ゲルろ過にかけトロンボモジュリン活性画分を純品として取得する精製方法 [五味ら;Blood、75、1396-1399、1990]が挙げられる。指標とするトロンボモジュリン活性としては、例えばトロンビンによるプロテインC活性化の促進活性が挙げられる。その他に、好ましい精製法を例示すると以下の通りである。

[0017]

トロンボモジュリンと良好な吸着条件を有する適当なイオン交換樹脂を選定し、イオン交換クロマト精製を行なう。特に好ましい例としては、0.18M N a C 1を含む0.02Mトリス塩緩衝液(p H 7.4)で平衡化したQーセファロースFFを用いる方法である。適宜洗浄後、例えば0.3M N a C 1含む0.02Mトリス塩酸緩衝液(p H 7.4)で溶出し粗精製品のトロンボモジュリンを得ることができる。

[0018]

次に、例えばトロンボモジュリンと特異的親和性を持つ物質を樹脂に固定化しアフィニティークロマト精製を行なうことができる。好ましい例としてDIPートロンピンーアガロースカラムの例と、抗トロンボモジュリンモノクローナル抗体カラムの例が挙げられる。DIPートロンピンーアガロースカラムは、予め、例えば、100mM NaCl及び0.5mM塩化カルシウムを含む20mMトリス緩衝液(pH7.4)で平衡化せしめ、上記の粗精製品をチャージして、適宜の洗浄を行い、例えば、1.0M NaCl及び0.5mM塩化カルシウムを含む20mMトリス緩衝液(pH7.4)で溶出し精製品のトロンボモジュリンを取得することができる。また抗トロンボモジュリンモノクローナル抗体カラムにおいては、予めCNBrにより活性化したセファロース4B(ファルマシア社)に、抗トロンボモジュリンモノクローナル抗体を溶解した0.5MNaС1含有0.1MNaHCO3 緩衝液(pH8.3)に接触させ、セファロース4Bに抗トロンボモジュリンモノクローナル抗体をカップリングさせた樹脂を充填した

カラムを、予め例えば1. 0M NaCl含む20mMリン酸塩緩衝液(pH7.3)で平衡化し、適宜の洗浄の後、例えば、0. 3M NaCl含む100m Mグリシン塩酸緩衝液 (pH3.0)にて溶出せしめる方法が例示される。

[0019]

さらに好ましくは、例えば、300mM NaClを含む100mMがリシン塩酸緩衝液(pH3.5)で平衡化せしめたSP-セファロースカラムに、上記の精製品をチャージする。トロンボモジュリンの種類によるが、通常は、300mM NaClを含む100mMがリシン塩酸緩衝液(pH3.5)で洗浄を開始し、洗浄液の吸光度280nmのピーク立ち上がりから立ち下がりまでの洗浄液を得、適当な緩衝液で中和し、高純度精製品として取得することができる。また、100mM NaClを含む100mMがリシン塩酸緩衝液(pH3.5)で平衡化し、次いで精製品をチャージし、100mM NaClを含む100mMがリシン塩酸緩衝液(pH3.5)で洗浄し、300mM NaClを含む100mMがリシン塩酸緩衝液(pH3.5)で洗浄し、300mM NaClを含む100mMがリシン塩酸緩衝液(pH3.5)で洗浄し、300mM NaClを含む100mMがリシン塩酸緩衝液(pH3.5)で流冷し、300mM NaClを含む100mMがリシン塩酸緩衝液(pH3.5)で流治し、溶出液を適当な緩衝液で中和し、高純度精製品として取得することもできる。これらは、限外濾過により濃縮することが好ましい。

[0020]

さらに、ゲル濾過による緩衝液交換を行なうことも好ましい。例えば、50m MNaC1を含む20mMリン酸塩緩衝液(pH7.3)で平衡化せしめたSepahcry1 S-300カラムもしくはS-200カラムに、限外濾過により濃縮した高純度精製品をチャージし、50mM NaC1を含む20mMリン酸塩緩衝液(pH7.3)で展開分画し、トロンビンによるプロテインCの活性化の促進活性の確認を行ない活性画分を回収し緩衝液交換した高純度精製品を取得することができる。

[0021]

かくして取得された精製された可溶性トロンボモジュリンについて、皮下投与による血中濃度の検出を行なったところ、可溶性トロンボモジュリンの皮下投与においてもトロンボモジュリンが血中に検出できることが確認された。特にD123(配列番号1のアミノ酸配列をコードするDNAを宿主細胞にトランスフェ

クトして得られる可溶性トロンボモジュリン)を有効成分とする可溶性トロンボモジュリンを皮下投与すると、E456に比べて血中のトロンボモジュリン濃度が著しく持続することが確認された。したがって、本発明によれば、好ましい持続性製剤が提供される。

[0022]

本発明においては、さらに、局部麻酔剤を含有せしめることも好ましい。または防腐剤を含有せしめることも好ましい。

この局部麻酔剤として、塩酸プロカインまたはベンジルアルコールが好ましい例として挙げられる。局部麻酔剤の添加量は、通常、注射液量の0.5~10%、好ましくは1~5%が例示される。この構成により、患者の皮下注射時の痛みを軽減させ、場合によれば、自己注射も可能となるものであり、患者の通院等の利便が著しく貢献するものである。

[0023]

さらに必要に応じて、特開平6-321805号公報、特開平1-6219号公報等に開示される通り、アミノ酸、塩類、糖質、界面活性剤、アルブミン、ゼラチン等を添加しても良いし、また、防腐剤を添加することも好ましく、例えば、パラ安息香酸エステル類が好ましい例として挙げられ、パラ安息香酸メチルが特に好ましい例として挙げられる。防腐剤の添加量は、通常0.01~1.0%が例示され、好ましくは0.1~0.3%が挙げられる。

[0024]

これらの添加方法は特に限定されないが、凍結乾燥とする場合には、通常予想される通り、例えば、添加物を直接トロンボモジュリン含有溶液に添加したり、またはあらかじめ添加物を水、注射用蒸留水あるいは適当な緩衝液に溶解して互いに添加混合する方法にて溶液を調製し、凍結乾燥する方法が挙げられる。

本発明の持続性製剤としては、注射液の形態で提供されても、また凍結乾燥製剤を使用時に溶解して使用する形態で提供されてもよい。

[0025]

また、例えば製剤化工程においては、アンプルまたはバイアルに、水、注射用 蒸留水あるいは適当な緩衝液1mlあたり0.05~15mg、好適には0.1

~5 m g のトロンボモジュリン及び上記添加物を含有する溶液を、例えば0.5 ~10 m l 充填し、凍結乾燥するか、またはそのままに水溶液注射用製剤として調製できる。このような製剤は、例えば1日1~3回投与として0.01~100 m g 含有した注射用水溶液として得ればよい。

[0026]

この水溶液注射用製剤の急性毒性を調べたところ、各群 5 匹の雌雄 S D ラットを用いて、トロンボモジュリン量として 1 8 0 mg/kgの用量で静脈内投与しても死亡例は 1 例も見られなかった。また、 1 8 0 mg/kgの用量で皮下注射を行なった際も死亡例は 1 例も見られなかった。

本発明の持続性製剤は、皮下に投与することにより、その持続性が発揮される。また、筋肉注射としても同様に使用できるが、特に皮下投与が好ましい。

[0027]

【実施例】

以下、実施例及び比較例により本発明を具体的に説明するが、本発明は何らこれらによって限定されるものではない。

[0028]

【参考例】本実施例で用いる可溶性トロンボモジュリンの生産

[0029]

【参考例1】

実施例に用いる可溶性トロンボモジュリンD123(主に配列番号1の19-516位のアミノ酸からなる)は、前記山本らの方法(特開平1-6219号の実施例10に記載の方法)に従って行った。すなわち配列番号1のアミノ酸配列をコードするDNA(具体的には、配列番号3の塩基配列よりなる)を、チャイニーズハムスター卵巣(CHO)細胞にトランスフェクションして、この形質転換細胞の培養液より定法の精製法にて、精製された可溶性トロンボモジュリンを取得した。

[0030]

【比較例1】

0. 01%ポリソルベート80 (商品名; Tween80) を含有する10 m

Mリン酸塩緩衝食塩液(pH=7.4)を用いて、参考例1に記載の可溶性トロンボモジュリンを 10μ g/ml、 50μ g/ml、 250μ g/mlの各濃度に調整し、静脈内注射用被検液とした。

[0031]

【実施例1】

 $40 \, \mathrm{mg/ml}$ の局方ベンジルアルコール、 $0.3 \, \mathrm{%}$ パラ安息香酸メチル及び $0.01 \, \mathrm{\%Tween80}$ を含有する $10 \, \mathrm{mMJ}$ ン酸塩緩衝食塩液($\mathrm{pH=7}$. 4) を用いて、参考例1 に記載の可溶性トロンボモジュリンを $10 \, \mathrm{\mug/ml}$ 、 $50 \, \mathrm{\mug/ml}$ 、 $250 \, \mathrm{\mug/ml}$ の各濃度に調整し、皮下注射用被検液Aとし

[0032]

た。

【実施例2】

40 m g / m l の局方塩酸プロカイン、0.3%パラ安息香酸メチル及び0.01% T w e e n 80を含有する10 m M リン酸塩緩衝食塩液(p H = 7.4)を用いて、参考例 l に記載の可溶性トロンボモジュリンを 10 μ g / m l、50 μ g / m l、250 μ g / m l の各濃度に調整し、皮下注射用被検液 B とした。【0033】

【試験例1】

 $9\sim10$ 週齢のSD 系雄性ラット(日本チャールス・リバー社)の背部皮下あるいは尾静脈に、表1 に示した用量の被検液を $1\,\mathrm{m}\,1\,/\,k\,g$ で投与し、経時的に採血を行った。

[0034]

【表1】

投与方法	被検液	濃度	投与液量	投与量	n数
		$(\mu g/ml)$	(ml/kg)	$(\mu g/kg)$	
静脈内	静脈内注射用	10	1	10	3
Ħ	"	50	n	50	n
		250	"	250	II .
皮下	皮下注射用被検液A	10	1	10	3
II .	Ħ	50	n	50	"
#	n	250	n	250	jj .

[0035]

各時点の血漿中の可溶性トロンボモジュリン濃度を酵素免疫測定法(ELISA)にて測定し、その値を図1に示した。本測定法としては、固相化抗体としてR4B6を、標識抗体としてR4D1を組み合わせたELISAによる公知の濃度測定法を実施して行なった(特開平6-205692号公報)。血漿中濃度推移より求めた薬物速度論的パラメータを表2に示した。

[0036]

【表2】

投与方法	被検液	投与量	Tmax	Cmax	T1/2	AUC (0-∞)	MRT
		$(\mu g/kg)$	(hr)	(ng/ml)	(hr)	(µg hr/ml)	(hr)
静脈内	静脈内注射用	10	0	322. 7	6. 1	2. 02	6. 1
ø	jj	50	0	1346. 2	7. 8	10. 75	7. 9
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	"	250	0	6138.3	7. 2	44. 79	7. 2
皮下	皮下注射用被検液A	10	32. 2	21. 4	17. 4	1. 06	38. 4
#	Ħ	50 -	23. 4	140. 3	19. 9	7. 01	38. 8
#	a	250	8. 3	661.5	16. 7	42. 67	36. 6

[0037]

表2に示すように、皮下注射用被検液Aでは、いずれの投与量においてもMRT(平均滞留時間)は皮下投与の方が静脈内投与よりも大きく、加えて図1から明らかなように、皮下投与が静脈内投与に比べて著しく血中濃度持続時間が長いことが判明した。皮下注射用被検液Bについては、皮下注射用被検液Aとほぼ同じ結果が得られた。これらのことより皮下投与経路は従来の静脈内投与経路に比べて有効な治療レベルを維持するための血中濃度の維持がなされることが確認された。また、皮下投与時のBA(生物学的利用率)値はいずれの用量においても50%以上であり、良好な吸収が認められた。

[0038]

【発明の効果】

本発明の持続性製剤によれば、著しく血中濃度持続時間を延長させることが可能であった。したがって、投与回数を減少させることができるとともに、静脈注射剤に比べて少量で有効な可溶性トロンボモジュリン製剤を提供することが可能となる。

[0039]

静脈注射剤は、患者への投与に当たって感染の危険等から医師による投与が必要である。しかし、皮下注射は静脈注射のような危険も少なく、インシュリンの例に見られるような患者による自己注射も可能となる。

特に、その際局部麻酔剤を併用する場合には、患者の疼痛を伴うことなく、負担を軽減することができる。

[0040]

また皮下注射は、静脈注射とは異なり、投与により血管を傷つけることがない ため、抗血液凝固剤であるトロンボモジュリンを投与するのに都合がよい投与形態を提供するものである。

[0041]

【配列表】

配列番号:1

配列の長さ:516

配列の型:アミノ酸

配列の種類:蛋白質

配列

Met Leu Gly Val Leu Val Leu Gly Ala Leu Ala Leu Ala Gly Leu Gly

1 5 10 15

Phe Pro Ala Pro Ala Glu Pro Gln Pro Gly Gly Ser Gln Cys Val Glu

20 25 30

His Asp Cys Phe Ala Leu Tyr Pro Gly Pro Ala Thr Phe Leu Asn Ala

35 40 45

Ser Gln Ile Cys Asp Gly Leu Arg Gly His Leu Met Thr Val Arg Ser

50 55 60

Ser Val Ala Ala Asp Val Ile Ser Leu Leu Leu Asn Gly Asp Gly Gly

65 70 75 80

Val Gly Arg Arg Leu Trp Ile Gly Leu Gln Leu Pro Pro Gly Cys

85 90 95

Gly Asp Pro Lys Arg Leu Gly Pro Leu Arg Gly Phe Gln Trp Val Thr

			100					105					110		
Gly	Asp	Asn	Asn	Thr	Ser	Tyr	Ser	Arg	Trp	Ala	Arg	Leu	Asp	Leu	Asn
		115					120					125			
Gly	Ala	Pro	Leu	Cys	Gly	Pro	Leu	Cys	Val	Ala	Val	Ser	Ala	Ala	Glu
	130					135	,				140				
Ala	Thr	Val	Pro	Ser	Glu	Pro	Ile	Trp	Glu	Glu	Gln	Gln	Cys	Glu	Val
145					150					155					160
Lys	Ala	Asp	Gly	Phe	Leu	Cys	Glu	Phe	His	Phe	Pro	Ala	Thr	Cys	Arg
				165					170					175	
Pro	Leu	Ala	Val	Glu	Pro	Gly	Ala	Ala	Ala	Ala	Ala	Val	Ser	Ile	Thr
			180					185					190		
Tyr	Gly	Thr	Pro	Phe	Ala	Ala	Arg	Gly	Ala	Asp	Phe	Gln	Ala	Leu	Pro
		195					200					205			
Val	Gly	Ser	Ser	Ala	Ala	Val	Ala	Pro	Leu	Gly	Leu	Gln	Leu	Met	Cys
	210					215					220				
Thr		Pro	Pro	Gly	Ala		Gln	Gly	His	Trp		Arg	Glu	Ala	Pro
Thr 225		Pro	Pro	Gly	Ala 230		Gln	Gly	His	Trp 235		Arg	Glu	Ala	Pro 240
225	Ala				230	Val	Gln Glu			235	Ala				240
225	Ala				230	Val				235	Ala				240
225 Gly	Ala Ala	Trp	Asp	C ys 245	230 Ser	Val Val		Asn	Gly 250	235 G1 y	Ala Cys	Glu	His	Ala 255	240 C y s
225 Gly	Ala Ala	Trp	Asp	C ys 245	230 Ser	Val Val	Glu	Asn	Gly 250	235 G1 y	Ala Cys	Glu	His	Ala 255	240 C y s
225 Gly Asn	Ala Ala	Trp Ile	Asp Pro 260	Cys 245 Gly	230 Ser	Val Val Pro	Glu	Asn Cys 265	Gly 250 Gln	235 Gly Cys	Ala Cys Pro	Glu	His Gly 270	Ala 255 Ala	240 Cys Ala
225 Gly Asn	Ala Ala	Trp Ile	Asp Pro 260	Cys 245 Gly	230 Ser	Val Val Pro	Glu	Asn Cys 265	Gly 250 Gln	235 Gly Cys	Ala Cys Pro	Glu	His Gly 270	Ala 255 Ala	240 Cys Ala
225 Gly Asn Leu	Ala Ala Gln	Trp Ile Ala 275	Asp Pro 260 Asp	Cys 245 Gly Gly	230 Ser Ala	Val Val Pro	Glu Arg Cys	Asn Cys 265 Thr	Gly 250 Gln Ala	235 Gly Cys	Ala Cys Pro	Glu Ala Thr 285	His Gly 270 Gln	Ala 255 Ala Ser	240 Cys Ala Cys
225 Gly Asn Leu	Ala Ala Gln	Trp Ile Ala 275	Asp Pro 260 Asp	Cys 245 Gly Gly	230 Ser Ala Arg	Val Val Pro	Glu Arg Cys 280	Asn Cys 265 Thr	Gly 250 Gln Ala	235 Gly Cys	Ala Cys Pro	Glu Ala Thr 285	His Gly 270 Gln	Ala 255 Ala Ser	240 Cys Ala Cys
225 Gly Asn Leu Asn	Ala Ala Gln Asp 290	Trp Ile Ala 275 Leu	Asp Pro 260 Asp Cys	Cys 245 Gly Gly	230 Ser Ala Arg	Val Val Pro Ser Phe 295	Glu Arg Cys 280	Asn Cys 265 Thr	Gly 250 Gln Ala Pro	235 Gly Cys Ser	Ala Cys Pro Ala Pro 300	Glu Ala Thr 285 Asp	His Gly 270 Gln	Ala 255 Ala Ser	240 Cys Ala Cys
225 Gly Asn Leu Asn	Ala Ala Gln Asp 290	Trp Ile Ala 275 Leu	Asp Pro 260 Asp Cys	Cys 245 Gly Gly Glu Met	230 Ser Ala Arg	Val Val Pro Ser Phe 295	Glu Arg Cys 280 Cys	Asn Cys 265 Thr	Gly 250 Gln Ala Pro	235 Gly Cys Ser	Ala Cys Pro Ala Pro 300	Glu Ala Thr 285 Asp	His Gly 270 Gln	Ala 255 Ala Ser	240 Cys Ala Cys

Pro	Gln	Arg	Cys	Val	Asn	Thr	Gln	Gly	Gly	Phe	Glu	Cys	His	Cys	Tyr
			340					345					350		
Pro	Asn	Tyr	Asp	Leu	Val	Asp	Gly	Glu	Cys	Val	Glu	Pro	Val	Asp	Pro
		355					360					365			
Cys	Phe	Arg	Ala	Asn	Cys	Glu	Tyr	Gln	Cys	Gln	Pro	Leu	Asn	Gln	Thr
	370					375					380				
Ser	Tyr	Leu	Cys	Val	Cys	Ala	Glu	Gly	Phe	Ala	Pro	Ile	Pro	His	Glu
385					390					395					400
Pro	His	Arg	Cys	Gln	Met	Phe	Cys	Asn	Gln	Thr	Ala	Cys	Pro	Ala	Asp
				405					410					415	
Cys	Asp	Pro	Asn	Thr	Gln	Ala	Ser	Cys	Glu	Cys	Pro	Glu	Gly	Tyr	Ile
			420					425					430		
Leu	Asp	Asp	Gly	Phe	Ile	Cys	Thr	Asp	Ile	Asp	Glu	Cys	Glu	Asn	Gly
		435					440					445			
Gly	Phe	Cys	Ser	Gly	Val	Cys	His	Asn	Leu	Pro	Gly	Thr	Phe	Glu	Cys
	450					455					460				
Ile	Cys	Gly	Pro	Asp	Ser	Ala	Leu	Val	Arg	His	Ile	Gly	Thr	Asp	Cys
465					470					475					480
Asp	Ser	Gly	Lys	Val	Asp	Gly	Gly	Asp	Ser	Gly	Ser	Gly	Glu	Pro	Pro
		٠		485					490					495	
Pro	Ser	Pro	Thr	Pro	Gly	Ser	Thr	Leu	Thr	Pro	Pro	Ala	Val	Gly	Leu
			500					505					510		
Val	His	Ser	Gly												
		515													
配列	番号	.: 2	ı												

配列

配列の長さ:516

配列の型:アミノ酸

配列の種類:蛋白質

Met	Leu	Gly	Val	Leu	Val	Leu	Gly	Ala	Leu	Ala	Leu	Ala	Gly	Leu	Gly
1				5					10					15	
Phe	Pro	Ala	Pro	Ala	Glu	Pro	Gln	Pro	Gly	Gly	Ser	Gln	Cys	Val	Glu
			20					25					30		
His	Asp	Cys	Phe	Ala	Leu	Tyr	Pro	Gly	Pro	Ala	Thr	Phe	Leu	Asn	Ala
		35					40					45			
Ser	Gln	Ile	Cys	Asp	Gly	Leu	Arg	Gly	His	Leu	Met	Thr	Val	Arg	Ser
	50					55					60				
Ser	Val	Ala	Ala	Asp	Val	Ile	Ser	Leu	Leu	Leu	Asn	Gly	Asp	Gly	Gly
65					70					75					80
Val	Gly	Arg	Arg	Arg	Leu	Trp	He	Gly	Leu	Gln	Leu	Pro	Pro	Gly	Cys
				85					90					95	
Gly	Asp	Pro	Lys	Arg	Leu	Gly	Pro	Leu	Arg	Gly	Phe	Gln	Trp	Val	Thr
			100					105					110		
Gly	Asp	Asn	Asn	Thr	Ser	Tyr	Ser	Arg	Trp	Ala	Arg	Leu	Asp	Leu	Asn
		115					120					125			
Gly		Pro	Leu	Cys	Gly		Leu	Cys	Val	Ala		Ser	Ala	Ala	Glu
	130					135					140				
	Thr	Val	Pro	Ser		Pro	Ile	Ţrp	Glu		Gln	Gln	Cys	Glu	
145					150					155					160
Lys	Ala	Asp	Gly		Leu	Cys	Glu	Phe	His	Phe	Pro	Ala	Thr		Arg
				165					170				_	175	
Pro	Leu	Ala		Glu	Pro	Gly	Ala		Ala	Ala	Ala	Val		He	Thr
_			180					185					190	_	_
Tyr	Gly		Pro	Phe	Ala	Ala		Gly	Ala	Asp	Phe		Ala	Leu	Pro
		195	_		. 1		200	_	_	.		205	_		•
Val	_	Ser	Ser	Ala			Ala	Pro	Leu	Gly		Gln	Leu	Met	Cys
	210					215					220				

Thr Ala Pro Pro Gly Ala Val Gln Gly His Trp Ala Arg Glu Ala Pro

225					230					235					240
Gly	Ala	Trp	Asp	Cys	Ser	Val	Glu	Asn	Gly	Gly	Cys	Glu	His	Ala	Cys
				245					250					255	
Asn	Ala	Ile	Pro	Gly	Ala	Pro	Arg	Cys	Gln	Cys	Pro	Ala	Gly	Ala	Ala
			260					265					270		
Leu	Gln	Ala	Asp	Gly	Arg	Ser	Cys	Thr	Ala	Ser	Ala	Thr	Gln	Ser	Cys
		275					280					285			
Asn	Asp	Leu	Cys	Glu	His	Phe	Cys	Val	Pro	Asn	Pro	Asp	Gln	Pro	Gly
	290					295					300				
Ser	Tyr	Ser	Cys	Met	Cys	Glu	Thr	Gly	Tyr	Arg	Leu	Ala	Ala	Asp	Gln
305					310					315					320
His	Arg	Cys	Glu	Asp	Val	Asp	Asp	Cys	Ile	Leu	Glu	Pro	Ser	Pro	Cys
				325					330					335	
Pro	Gln	Arg	Cys	Val	Asn	Thr	Gln	Gly	Gly	Phe	Glu	Cys	His	Cys	Tyr
			340					345					350		
Pro	Asn	Tyr	Asp	Leu	Val	Asp	Gly	Glu	Cys	Val	Glu	Pro	Val	Asp	Pro
		355					360					3 65			
Cys	Phe	Arg	Ala	Asn	Cys	Glu	Tyr	Gln	Cys	Gln	Pro	Leu	Asn	Gln	Thr
	370					375					380				
Ser	Tyr	Leu	Cys	Val	Cys	Ala	Glu	Gly	Phe	Ala	Pro	Ile	Pro	His	Glu
385					390					395					400
Pro	His	Arg	Cys	Gln	Met	Phe	Cys	Asn	Gln	Thr	Ala	Cys	Pro	Ala	Asp
				405					410					415	
Cys	Asp	Pro	Asn	Thr	Gln	Ala	Ser	Cys	Glu	Cys	Pro	Glu	Gly	Tyr	Ile
			420					425					430		
Leu	Asp	Asp	Gly	Phe	Ile	Cys	Thr	Asp	Ile	Asp	Glu	Cys	Glu	Asn	Gly
		435					440					445			
Gly	Phe	Cys	Ser	Gly	Val	Cys	His	Asn	Leu	Pro	Gly	Thr	Phe	Glu	Cys

50

Ile Cys Gly Pro Asp Ser Ala Leu Ala Arg His Ile Gly Thr Asp Cys
465 470 475 480

Asp Ser Gly Lys Val Asp Gly Gly Asp Ser Gly Ser Gly Glu Pro Pro
485 490 495

Pro Ser Pro Thr Pro Gly Ser Thr Leu Thr Pro Pro Ala Val Gly Leu
500 505 510

Val His Ser Gly

515

配列番号:3

配列の長さ:1548

配列の型:塩基配列

配列の種類:DNA

配列

ATG CTT GGG GTC CTG GTC CTT GGC GCG CTG GCC CTG GCC CGC CTG GGG 48 TTC CCC GCA CCC GCA GAG CCG CAG CCG GGT GGC AGC CAG TGC GTC GAG 96 CAC GAC TGC TTC GCG CTC TAC CCG GGC CCC GCG ACC TTC CTC AAT GCC 144 AGT CAG ATC TGC GAC GGA CTG CGG GGC CAC CTA ATG ACA GTG CGC TCC 192 TCG GTG GCT GCC GAT GTC ATT TCC TTG CTA CTG AAC GGC GAC GGC GGC 240 GTT GGC CGC CGC CTC TGG ATC GGC CTG CAG CTG CCA CCC GGC TGC 288 GGC GAC CCC AAG CGC CTC GGG CCC CTG CGC GGC TTC CAG TGG GTT ACG 336 GGA GAC AAC AAC ACC AGC TAT AGC AGG TGG GCA CGG CTC GAC CTC AAT 384 432 GCC ACT GTG CCC AGC GAG CCG ATC TGG GAG GAG CAG CAG TGC GAA GTG 480 AAG GCC GAT GGC TTC CTC TGC GAG TTC CAC TTC CCA GCC ACC TGC AGG 528 CCA CTG GCT GTG GAG CCC GGC GCC GCG GCT GCC GCC GTC TCG ATC ACC 576 TAC GGC ACC CCG TTC GCG GCC CGC GGA GCG GAC TTC CAG GCG CTG CCG 624 GTG GGC AGC TCC GCC GCG GTG GCT CCC CTC GGC TTA CAG CTA ATG TGC 672 ACC GCG CCG CCC GGA GCG GTC CAG GGG CAC TGG GCC AGG GAG GCG CCG 720 GGC GCT TGG GAC TGC AGC GTG GAG AAC GGC GGC TGC GAG CAC GCG TGC 768

AAT	GCG	ATC	CCT	GGG	GCT	CCC	CGC	TGC	CAG	TGC	CCA	GCC	GGC	GCC	GCC	816
CTG	CAG	GCA	GAC	GGG	CGC	TCC	TGC	ACC	GCA	TCC	GCG	ACG	CAG	TCC	TGC	864
AAC	GAC	CTC	TGC	GAG	CAC	TTC	TGC	GTT	CCC	AAC	CCC	GAC	CAG	CCG	GGC	912
TCC	TAC	TCG	TGC	ATG	TGC	GAG	ACC	GGC	TAC	CGG	CTG	GCG	GCC	GAC	CAA	960
CAC	CGG	TGC	GAG	GAC	GTG	GAT	GAC	TGC	ATA	CTG	GAG	CCC	AGT	CCG	TGT	1008
CCG	CAG	CGC	TGT	GTC	AAC	ACA	CAG	GGT	GGC	TTC	GAG	TGC	CAC	TGC	TAC	1056
CCT	AAC	TAC	GAC	CTG	GTG	GAC	GGC	GAG	TGT	GTG	GAG	CCC	GTG	GAC	CCG	1104
TGC	TTC	AGA	GCC	AAC	TGC	GAG	TAC	CAG	TGC	CAG	CCC	CTG	AAC	CAA	ACT	1152
AGC	TAC	CTC	TGC	GTC	TGC	GCC	GAG	GGC	TTC	GCG	CCC	ATT	CCC	CAC	GAG	1200
CCG	CAC	AGG	TGC	CAG	ATG	TTT	TGC	AAC	CAG	ACT	GCC	TGT	CCA	GCC	GAC	1248
TGC	GAC	CCC	AAC	ACC	CAG	GCT	AGC	TGT	GAG	TGC	CCT	GAA	GGC	TAC	ATC	1296
CTG	GAC	GAC	GGT	TTC	ATC	TGC	ACG	GAC	ATC	GAC	GAG	TGC	GAA	AAC	GGC	1344
GGC	TTC	TGC	TCC	GGG	GTG	TGC	CAC	AAC	CTC	CCC	GGT	ACC	TTC	GAG	TGC	1392
ATC	TGC	GGG	CCC	GAC	TCG	GCC	CTT	GTC	CGC	CAC	ATT	GGC	ACC	GAC	TGT	1440
GAC	TCC	GGC	AAG	GTG	GAC	GGT	GGC	GAC	AGC	GGC	TCT	GGC	GAG	CCC	CCG	1488
CCC	AGC	CCG	ACG	CCC	GGC	TCC	ACC	TTG	ACT	CCT	CCG	GCC	GTG	GGG	CTC	1536
GTG	CAT	TCG	GGC													1548

配列番号: 4

配列の長さ:1548

配列の型:塩基配列

配列の種類:DNA

配列

ATG	CTT	GGG	GTC	CTG	GTC	CTT	GGC	GCG	CTG	GCC	CTG	GCC	GGC	CTG	GGG	48
TTC	CCC	GCA	CCC	GCA	GAG	CCG	CAG	CCG	GGT	GGC	AGC	CAG	TGC	GTC	GAG	96
CAC	GAC	TGC	TTC	GCG	CTC	TAC	CCG	GGC	CCC	GCG	ACC	TTC	CTC	AAT	GCC	144
AGT	CAG	ATC	TGC	GAC	GGA	CTG	CGG	GGC	CAC	CTA	ATG	ACA	GTG	CGC	TCC	192
TCG	GTG	GCT	GCC	GAT	GTC	ATT	TCC	TTG	CTA	CTG	AAC	GGC	GAC	GGC	GGC	240
GTT	GGC	CGC	CGG	CGC	CTC	TGG	ATC	GGC	CTG	CAG	CTG	CCA	CCC	GGC	TGC	288
GGC	GAC	CCC	AAG	CGC	CTC	GGG	CCC	CTG	CGC	GGC	TTC	CAG	TGG	GTT	ACG	336

GGA	GAC	AAC	AAC	ACC	AGC	TAT	AGC	AGG	TGG	GCA	CGG	CTC	GAC	CTC	AAT	384
GGG	GCT	CCC	CTC	TGC	GGC	CCG	TTG	TGC	GTC	GCT	GTC	TCC	GCT	GCT	GAG	432
GCC	ACT	GTG	CCC	AGC	GAG	CCG	ATC	TGG	GAG	GAG	CAG	CAG	TGC	GAA	GTG	480
AAG	GCC	GAT	GGC	TTC	CTC	TGC	GAG	TTC	CAC	TTC	CCA	GCC	ACC	TGC	AGG	528
CCA	CTG	GCT	GTG	GAG	CCC	GGC	GCC	GCG	GCT	GCC	GCC.	GTC	TCG	ATC	ACC	576
TAC	GGC	ACC	CCG	TTC	GCG	GCC	CGC	GGA	GCG	GAC	TTC	CAG	GCG	CTG	CCG	624
GTG	GGC	AGC	TCC	GCC	GCG	GTG	GCT	CCC	CTC	GGC	TTA	CAG	CTA	ATG	TGC	672
ACC	GCG	CCG	CCC	GGA	GCG	GTC	CAG	GGG	CAC	TGG	GCC	AGG	GAG	GCG	CCG	720
GGC	GCT	TGG	GAC	TGC	AGC	GTG	GAG	AAC	GGC	GGC	TGC	GAG	CAC	GCG	TGC	768
AAT	GCG	ATC	CCT	GGG	GCT	CCC	CGC	TGC	CAG	TGC	CCA	GCC	GGC	GCC	GCC	816
CTG	CAG	GCA	GAC	GGG	CGC	TCC	TGC	ACC	GCA	TCC	GCG	ACG	CAG	TCC	TGC	864
AAC	GAC	CTC	TGC	GAG	CAC	TTC	TGC	GTT	CCC	AAC	CCC	GAC	CAG	CCG	GGC	912
TCC	TAC	TCG	TGC	ATG	TGC	GAG	ACC	GGC	TAC	CGG	CTG	GCG	GCC	GAC	CAA	960
CAC	CGG	TGC	GAG	GAC	GTG	GAT	GAC	TGC	ATA	CTG	GAG	CCC	AGT	CCG	TGT	1008
CCG	CAG	CGC	TGT	GTC	AAC	ACA	CAG	GGT	GGC	TTC	GAG	TGC	CAC	TGC	TAC	1056
CCT	AAC	TAC	GAC	CTG	GTG	GAC	GGC	GAG	TGT	GTG	GAG	CCC	GTG	GAC	CCG	1104
TGC	TTC	AGA	GCC	AAC	TGC	GAG	TAC	CAG	TGC	CAG	CCC	CTG	AAC	CAA	ACT	1152
AGC	TAC	CTC	TGC	GTC	TGC	GCC	GAG	GGC	TTC	GCG	CCC	ATT	CCC	CAC	GAG	1200
CCG	CAC	AGG	TGC	CAG	ATG	TTT	TGC	AAC	CAG	ACT	GCC	TGT	CCA	GCC	GAC	1248
TGC	GAC	CCC	AAC	ACC	CAG	GCT	AGC	TGT	GAG	TGC	CCT	GAA	GGC	TAC	ATC	1296
CTG	GAC	GAC	GGT	TTC	ATC	TGC	ACG	GAC	ATC	GAC	GAG	TGC	GAA	AAC	GGC	1344
GGC	TTC	TGC	TCC	GGG	GTG	TGC	CAC	AAC	CTC	CCC	GGT	ACC	TTC	GAG	TGC	1392
ATC	TGC	GGG	CCC	GAC	TCG	GCC	CTT	GCC	CGC	CAC	ATT	GGC	ACC	GAC	TGT	1440
GAC	TCC	GGC	AAG	GTG	GAC	GGT	GGC	GAC	AGC	GGC	TCT	GGC	GAG	CCC	CCG	1488
CCC	AGC	CCG	ACG	CCC	GGC	TCC	ACC	TTG	ACT	CCT	CCG	GCC	GTG	GGG	CTC	1536
GTG	CAT	TCG	GGC													1548

配列番号:5

配列の長さ:21

配列の型:塩基配列

配列の種類:DNA

配列

AATGTGGCGG GCAAGGGCCG A

21

【図面の簡単な説明】

【図1】

ラットへ可溶性トロンボモジュリンを投与した場合の血漿中可溶性トロンボモ ジュリン濃度の経時変化を示す。

なお、IVは静脈注射を、SCは皮下注射を示す。

【書類名】 図面

【図1】

【書類名】 要約書

【要約】

【構成】 可溶性トロンボモジュリンを有効成分とする皮下投与または筋肉注射 のための持続性製剤が提供される。

【効果】 著しく血中濃度持続時間を延長させることが可能であり、投与回数を減少させることができ、危険性の少なく、自己注射も可能なトロンボモジュリン製剤を提供することが可能となる。

【選択図】 選択図なし

【書類名】

職権訂正データ

【訂正書類】

特許願

<認定情報・付加情報>

【特許出願人】

申請人

【識別番号】

00000033

【住所又は居所】

大阪府大阪市北区堂島浜1丁目2番6号

【氏名又は名称】

旭化成工業株式会社

出願人履歴情報

識別番号

[000000033]

1. 変更年月日 1990年 8月16日

[変更理由] 新規登録 住 所 大阪府大阪市北区堂島浜1丁目2番6号

氏 名 旭化成工業株式会社