Ομολογική Άλγεβρα και Κατηγορίες

1η Ομάδα Ασκήσεων

- 1. Να δείξετε ότι οι επόμενες συνθήκες είναι ισοδύναμες για ένα μορφισμό f σε μια κατηγορία \mathcal{C} :
 - (α) ο f είναι ισομορφισμός,
 - (β) ο f είναι μονομορφισμός και διασπώμενος επιμορφισμός,
 - (γ) ο f είναι επιμορφισμός και διασπώμενος μονομορφισμός.
- 2. Έστω M ένα R-πρότυπο και $A,B,C\subseteq M$ τρία υποπρότυπα.
 - (α) Να δείξετε ότι $A + (B \cap C) \subseteq (A + B) \cap (A + C)$.
 - (β) Να βρείτε ένα παράδειγμα, για το οποίο ο εγκλεισμός του (α) είναι γνήσιος. (Υπόδειξη: Αναζητήστε κατάλληλους διανυσματικούς υποχώρους ενός 2-διάστατου διανυσματικού χώρου.)
 - (γ) Αν είναι $A\subseteq C$, τότε να δείξετε ότι ο εγκλεισμός του (α) ισχύει ως ισότητα, δηλαδή ότι $A+(B\cap C)=(A+B)\cap C.^1$
- 3. Έστω R ένας δακτύλιος και $C=\{c\in R: cr=rc$ για κάθε $r\in R\}$ το κέντρο του. (α) Έστω M,N δύο R-πρότυπα. Για κάθε γραμμική απεικόνιση $f:M\longrightarrow N$ και κάθε στοιχείο $c\in C$, ορίζουμε την απεικόνιση $cf:M\longrightarrow N$ θέτοντας $(cf)(x)=cf(x)\in N$ για κάθε $x\in M$. Να δείξετε ότι η απεικόνιση cf είναι γραμμική και ότι με τον ορισμό αυτό η αβελιανή ομάδα $\operatorname{Hom}_R(M,N)$ εφοδιάζεται με τη δομή ενός C-προτύπου.
 - (β) Έστω M,N,L τρία R-πρότυπα. Να δείξετε ότι για κάθε $c\in C$ και γραμμικές απεικονίσεις $f:M\longrightarrow N$ και $g:N\longrightarrow L$, είναι $g(cf)=c(gf)=(cg)f:M\longrightarrow L$.
- 4. Έστω R ένας δακτύλιος, $C=\{c\in R: cr=rc$ για κάθε $r\in R\}$ το κέντρο του και $\mathcal{K}=R\text{-Mod}$ η κατηγορία των R-προτύπων
 - (α) Έστω $c\in C$. Για κάθε R-πρότυπο M θεωρούμε τη γραμμική απεικόνιση $\eta(c)_M=c1_M:M\longrightarrow M.^3$ Να δείξετε ότι οι γραμμικές απεικονίσεις $\eta(c)_M,\ M\in ob(\mathcal{K}),$ αποτελούν τις συνιστώσες ενός φυσικού μετασχηματισμού $\eta(c):1_\mathcal{K}\longrightarrow 1_\mathcal{K}$ από τον ταυτοτικό συναρτητή $1_\mathcal{K}$ της κατηγορίας \mathcal{K} στον εαυτό του.
 - (β) Έστω $\eta:1_{\mathcal K}\longrightarrow 1_{\mathcal K}$ ένας φυσικός μετασχηματισμός από τον ταυτοτικό συναρτητή $1_{\mathcal K}$ της κατηγορίας $\mathcal K$ στον εαυτό του. Να δείξετε ότι υπάρχει ένα μοναδικό στοιχείο $c\in C$, έτσι ώστε $\eta=\eta(c).^4$
 - $(\Upsilon \pi \delta \delta \epsilon i \xi \eta : Εξετάστε τη συνιστώσα <math>\eta_R : R \longrightarrow R$ του φυσιχού μετασχηματισμού $\eta.)$
- 5. Έστω $f: M \longrightarrow N$ ένας διασπώμενος επιμορφισμός R-προτύπων και $s: N \longrightarrow M$ μια γραμμική απεικόνιση με $fs = 1_N$. Θεωρούμε επίσης τον πυρήνα $\ker f$ της f και την ενθετική απεικόνιση $\iota: \ker f \hookrightarrow M$.
 - (α) Έστω $g:N\longrightarrow\ker f$ μια γραμμική απεικόνιση. Να δείξετε ότι η γραμμική

 $^{^1{}m H}$ ιδιότητα αυτή του διατεταγμένου συνόλου των υποπροτύπων του M είναι γνωστή ως ημιεπιμεριστικότητα (modularity).

 $^{^2}$ Έτσι, η σύνθεση των γραμμικών απεικονίσεων δεν είναι μόνο δι-προσθετική αλλά και C-διγραμμική.

³Με βάση τον ορισμό της Άσκησης 3, η απεικόνιση $\eta(c)_M$ είναι η απεικόνιση $x\mapsto cx,\,x\in M$.

 $^{^4}$ Έτσι, η απεικόνιση $c\mapsto \eta(c)$ είναι μια αμφιμονοσημαντη αντιστοιχία μεταξύ του κέντρου του δακτυλίου R και του συνόλου των φυσικών μετασχηματισμών από τον ταυτοτικό συναρτητή της κατηγορίας των R-προτύπων στον εαυτό του.

- απεικόνιση $s' = s + \iota g: N \longrightarrow M$ ικανοποιεί τη σχέση $fs' = 1_N$.
- (β) Έστω $s':N\longrightarrow M$ μια γραμμική απεικόνιση με $fs'=1_N$. Να δείξετε ότι υπάρχει μοναδική γραμμική απεικόνιση $g:N\longrightarrow \ker f$, τέτοια ώστε $s'=s+\iota g.^5$
- 6. Έστω $f:N\longrightarrow M$ ένας διασπώμενος μονομορφισμός R-προτύπων και $r:M\longrightarrow N$ μια γραμμική απεικόνιση με $rf=1_N$. Θεωρούμε επίσης τον συν-πυρήνα $\operatorname{coker} f=M/\operatorname{im} f$ της f και την απεικόνιση πηλίκο $\pi:M\longrightarrow\operatorname{coker} f$.
 - (α) Έστω $g:\operatorname{coker} f\longrightarrow N$ μια γραμμική απεικόνιση. Να δείξετε ότι η γραμμική απεικόνιση $r'=r+g\pi:M\longrightarrow N$ ικανοποιεί τη σχέση $r'f=1_N.$
 - (β) Έστω $r': M \longrightarrow N$ μια γραμμική απεικόνιση με $r'f = 1_N$. Να δείξετε ότι υπάρχει μοναδική γραμμική απεικόνιση $g: \operatorname{coker} f \longrightarrow N$, τέτοια ώστε $r' = r + g\pi$.

 $^{^5}$ Έτσι, η απεικόνιση $g\mapsto s+\iota g$ είναι μια αμφιμονοσήμαντη αντιστοιχία μεταξύ των συνόλων $\operatorname{Hom}_R(N,\ker f)$ και $\operatorname{r-split}(f)=\{s'\in\operatorname{Hom}_R(N,M):fs'=1_N\}.$

 $^{^6}$ Έτσι, η απεικόνιση $g\mapsto r+g\pi$ είναι μια αμφιμονοσήμαντη αντιστοιχία μεταξύ των συνόλων $\operatorname{Hom}_R(\operatorname{coker} f,N)$ και $\operatorname{l-split}(f)=\{r'\in\operatorname{Hom}_R(M,N):r'f=1_N\}.$