Productivity and Efficiency Analysis

2) Data envelopment analysis

c) Production theory

Timo Kuosmanen

Aalto University School of Business

https://people.aalto.fi/timo.kuosmanen

Data envelopment analysis (DEA)

Specification of the DEA formulation implies certain assumptions regarding:

1) Production technology (returns to scale)

2) Efficiency metric (input, output orientation)

Illustrative example

Firm	Input	Output
A	20	20
В	40	30
С	40	50
D	60	40
Е	70	60
F	50	20

Illustrative example: Output oriented CRS efficiency of unit F

Illustrative example: Output oriented VRS efficiency of unit F

Illustrative example: Input oriented CRS efficiency of unit F

Illustrative example: Input oriented CRS efficiency of unit F

Production technology

General representation of technology: Production Possibility Set (PPS)

 $T = \{(\mathbf{x}, \mathbf{y}) \mid \text{inputs } \mathbf{x} \text{ can produce outputs } \mathbf{y} \}$

Connection to production function: in the single output case where output y is a scalar, the PPS can be stated as

$$T = \{(\mathbf{x}, \mathbf{y}) \mid f(\mathbf{x}) \geq y \}$$

In other words, production function f characterizes the boundary of the PPS.

Production technology

Three classical axioms:

- 1) Free disposability: If $(x',y') \in T$, then $(x,y) = (x' + a,y' b) \in T$ for all $a \ge 0$, $b \ge 0$.
- 2) Convexity: If $(x',y') \in T$ and $(x'',y'') \in T$, then $(x,y) = c(x',y') + (1-c)(x'',y'') \in T$ for all c≥0.
- 3) Constant returns to scale (CRS): If $(x',y') \in T$ then $(x,y) = d(x',y') \in T$ for all $d \ge 0$.

Stated in terms of production function f, these axioms imply that 1) f is monotonic increasing, 2) f is concave, and 3) f is linearly homogenous.

Classic DEA technology (CRS)

Denote the observed data by input matrix **X** and output matrix **Y**. The classic DEA technology is

$$T^{DEA-CRS} = \{(\mathbf{x}, \mathbf{y}) \mid \mathbf{x} \geq \mathbf{X}\lambda; \mathbf{y} \leq \mathbf{Y}\lambda; \lambda \geq \mathbf{0}\}.$$

Minimum extrapolation theorem 1:

TDEA-CRS is the smallest set that

- contains all observed data points and
- satisfies axioms 1-3

DEA technology (VRS)

We can relax the CRS axiom 3. The resulting *variable* returns to scale (VRS) technology is

$$T^{DEA-VRS} = \{(\mathbf{x}, \mathbf{y}) \mid \mathbf{x} \geq \mathbf{X}\lambda; \mathbf{y} \leq \mathbf{Y}\lambda; \lambda \geq \mathbf{0}; \mathbf{1}'\lambda = \mathbf{1}\}.$$

Note the sum of λ weights must be equal to 1.

Minimum extrapolation theorem 2:

TDEA-VRS is the smallest set that

- contains all observed data points and
- satisfies axioms 1-2

Free disposable hull (FDH)

We can relax the convexity axiom 2, too. The resulting free disposable hull (FDH) technology is

$$T^{FDH} = \{(\mathbf{x}, \mathbf{y}) \mid \mathbf{x} \geq \mathbf{X}\lambda; \mathbf{y} \leq \mathbf{Y}\lambda; \mathbf{1}'\lambda = 1; \lambda \in \{0, 1\}\}.$$

Note the λ weights must be either 0 or 1.

Minimum extrapolation theorem 3:

TFDH is the smallest set that

- contains all observed data points and
- satisfies axiom 1

Efficiency metrics

In DEA, efficiency is measured as a distance from the evaluated unit $(\mathbf{x}_i, \mathbf{y}_i)$ to the boundary of T^{DEA}

The most commonly used efficiency metric is Farrell's (1957) radial input and output oriented efficiency

measures

DIAGRAM 1.

Next lesson

2d) Statistical approach to DEA

