STAT 22000: Homework 11

Zixi Li

Problem 1 Confidence interval and significance level

- (a) H_o will be rejected at significance level $\alpha = 0.05$, because $\alpha = 0.05$ corresponds to a 95% confidence level, and $\mu = 3$ is not in the 95% confidence level.
- (b) H_o will not be rejected at significance level $\alpha = 0.01$, because $\alpha = 0.01$ corresponds to a 99% confidence level, and $\mu = 3$ is in the 99% confidence level.

Problem 2 P-value and confidence interval

- (a) $\mu = 10$ is not included in the 95% confidence interval, because 95% confidence interval corresponds to 0.05 significance level, and p-value 0.03 will make H_0 be rejected at 0.05 significance level.
- (b) $\mu = 10$ is included in the 99% confidence interval, because 99% confidence interval corresponds to 0.01 significance level, and p-value 0.03 will make H_0 fail to be rejected at 0.01 significance level.

Problem 3 Allergies and antigens levels

(a)

Based on the above boxplot, we can see there are some outliers, and the shape is right-skewed, so it's not appropriate to construct a t-confidence interval for the mean endotoxin level at the homes of children without allergy.

(b)

bwplot(log(Endotoxin), horizontal=T)

Based on the above boxplot, we can see there are only two outliers, and the shape is not skewed, so it's more appropriate to construct a t confidence interval for the mean of the log endotoxin level at the homes of children without allergy.

(c)

We can find the sample mean \bar{x} =6.91658 and the sample SD s=0.858441 and the critical value $t^*=2.00856$ using the following R codes:

```
mean(log(Endotoxin))

## [1] 6.91658

sd(log(Endotoxin))

## [1] 0.858441

qt(0.05/2,df=51-1,lower.tail = F)

## [1] 2.00856
```

Then the 95% t-confidence interval can be calculated as:

$$\bar{x} \pm t^* \frac{s}{\sqrt{n}} = 6.91658 \pm 2.00856 \times \frac{0.858441}{\sqrt{51}} = (6.67514, 7.15802)$$

Problem 4 Measurements of body dimensions

(a)

Here I make a histogram for the height of the 260 women and calculate the population mean and SD using the following R codes:

We can see that the population mean $\mu = 164.872$, the SD $\sigma = 6.5446$. From the shape of histogram we know there's no obvious outlier nor clear skewness.

(b) (1)

Here I plot the 90% z-CI with known population SD σ : $\bar{x} \pm 1.645 \sigma / \sqrt{n}$ with following codes:

```
samp = do(100)*favstats(sample(population, size=5))
sigma=sd(population)
samp=transform(samp, lower=mean-1.645*sigma/sqrt(5))
samp=transform(samp, upper=mean+1.645*sigma/sqrt(5))
plot_ci(samp, mu=mean(population))
```


For the 100 CIs constructed, we notice 11 of them have missed the true population mean, the proportion of intervals that include the true population mean is 89%, which is close to nominal level 90%.

(b) (2)

Here I plot the 90% z-CI with unknown population SD: $\bar{x} \pm 1.645 s/\sqrt{n}$ with following codes:

```
samp=transform(samp, lower=mean-1.645*sd/sqrt(5))
samp=transform(samp, upper=mean+1.645*sd/sqrt(5))
plot_ci(samp, mu=mean(population))
```


For the 100 CIs constructed, we notice 18 of them have missed the true population mean, the proportion of intervals that include the true population mean is 82%, which is lower than nominal level 90%.

(b) (3)

Here I plot the 90% t-intervals: $\bar{x} \pm t^* s / \sqrt{n}$ with following codes, where $t^* = 2.13185$

```
qt(0.1/2, df=4, lower.tail = F)
```

```
## [1] 2.13185
```

```
samp=transform(samp, lower=mean-2.13185*sd/sqrt(5))
samp=transform(samp, upper=mean+2.13185*sd/sqrt(5))
plot_ci(samp, mu=mean(population))
```


For the 100 CIs constructed, we notice 9 of them have missed the true population mean, the proportion of intervals that include the true population mean is 91%, which is close to nominal level 90%.