Reduction to Binary Classification

He He

CDS, NYU

March 30, 2021

Overview

Motivation

- So far, most algorithms we've learned are designed for binary classification.
- Many real-world problems have more than two classes.
- [discussion] What are some potential issues when we have a large number of classes?

Today's lecture

- How to reduce multiclass classification to binary classification?
- How do we generalize binary classification algorithm to the multiclass setting?
- Example of very large output space: structured prediction.

Reduction to Binary Classification

One-vs-All / One-vs-Rest

Setting

- ullet Input space: ${\mathfrak X}$
- Output space: $\mathcal{Y} = \{1, \dots, k\}$

Training

- Train k binary classifiers, one for each class: $h_1, \ldots, h_k : \mathcal{X} \to \mathbb{R}$.
- Classifier h_i distinguishes class i (+1) from the rest (-1).

Prediction

Majority vote:

$$h(x) = \underset{i \in \{1, \dots, k\}}{\arg \max} h_i(x)$$

Ties can be broken arbitrarily.

OvA: 3-class example

Consider a dataset with three classes:

Assumption: each class is linearly separable from the rest.

Ideal case: only target class has positive score.

Train OvA classifiers:

He He (CDS, NYU) DS-GA 1003

OvA: 4-class non-separable example

Consider a dataset with four classes:

Cannot separate red points from the rest. Which classes might have low accuracy?

Train OvA classifiers:

All vs All / One vs One / All pairs

Setting

- ullet Input space: ${\mathfrak X}$
 - Output space: $\mathcal{Y} = \{1, \dots, k\}$

Training

- Train $\binom{k}{2}$ binary classifiers, one for each pair: $h_{ij}: \mathcal{X} \to \mathsf{R}$ for $i \in [1, k]$ and $j \in [i+1, k]$.
- Classifier h_{ij} distinguishes class i (+1) from class j (-1).

Prediction

• Majority vote (each class gets k-1 votes)

$$h(x) = \operatorname*{arg\,max}_{i \in \{1, \dots, k\}} \sum_{j \neq i} \underbrace{h_{ij}(x) \mathbb{I}\{i < j\}}_{\text{class } i \text{ is } +1} - \underbrace{h_{ji}(x) \mathbb{I}\{j < i\}}_{\text{class } i \text{ is } -1}$$

- Tournament
- Ties can be broken arbitrarily.

AvA: four-class example

Consider a dataset with four classes:

Assumption: each pair of classes are linearly separable. More expressive than OvA.

What's the decision region for the red class?

He He (CDS, NYU) DS-GA 1003 March 30, 2021 10 / 15

		OvA	AvA
computation	train test	$O(kB_{train}(n)) \ O(kB_{test})$	$O(k^2 B_{train}(n/k)) \\ O(k^2 B_{test})$
challenges	train	class imbalance	small training set
	test	calibration / scale tie breaking	

Lack theoretical justification but simple to implement and works well in practice (when # classes is small).

Question: When would you prefer AvA / OvA?

Code word for labels

Using the reduction approach, can you train fewer than k binary classifiers?

Key idea: Encode labels as binary codes and predict the code bits directly.

OvA encoding:

class	h_1	h ₂	h ₃	h ₄
1	1	0	0	0
2	0	1	0	0
3	0	0	1	0
4	0	0	0	1

OvA uses k bits to encode each label, what's the minimal number of bits you can use?

Error correcting output codes (ECOC)

Example: 8 classes, 6-bit code

class	h_1	h_2	h_3	h_4	h_5	h_6
1	0	0	0	1	0	0
2	1	0	0	0	0	0
3	0	1	1	0	1	0
4	1	1	0	0	0	0
5	1	1	0	0	1	0
6	0	0	1	1	0	1
7	0	0	1	0	0	0
8	0	1	0	1	0	0

Training Binary classifier h_i :

 \bullet +1: classes whose *i*-th bit is 1

• -1: classes whose *i*-th bit is 0

Prediction Closest label in terms of Hamming distance.

h_1	h_2	h ₃	h ₄	h_5	h ₆
0	1	1	0	1	1

Code design Want good binary classifiers.

- Computationally more efficient than OvA (a special case of ECOC). Better for large k.
- Why not use the minimal number of bits $(\log_2 k)$?
 - If the minimum Hamming distance between any pair of code word is d, then it can correct $\lfloor \frac{d-1}{2} \rfloor$ errors.
 - In plain words, if rows are far from each other, ECOC is robust to errors.
- Trade-off between code distance and binary classification performance.
- Nice theoretical results [Allwein et al., 2000] (also incoporates AvA).

Reduction-based approaches:

- Reducing multiclass classification to binary classification: OvA, AvA, ECOC.
- Key is to design "natural" binary classification problems without large computation cost.

But,

- Unclear how to generalize to extremely large # of classes.
- ImageNet: >20k labels; Wikipedia: >1M categories.

Next, generalize previous algorithms to multiclass settings.