Introducción a los Algoritmos

MSc Edson Ticona Zegarra

Taller de Programación 2025

Contenido

Introducción

Notación asintótica

Contenido

Introducción

Notación asintótica

Definiciones

Un algoritmo se define como un procedimiento, definido por una serie de instrucciones o pasos, que recibe un conjunto de valores de entrada y retorna un conjunto de valores de salida.

¿Cómo se mide la eficiencia de un algoritmo?

- Dado un problema, y dos algoritmos que resuelven dicho problema, intuitivamente podemos decir que el algoritmo que resuelve el problema más rápido es el mejor de los dos, o el más eficiente.
- ► En general se puede decir que aquel algoritmo que resuelve el problema en la *menor* cantidad de pasos es el más eficiente.
- Cuando hablamos del análisis de un algoritmo, nos referimos a estimar los recuros que requiere el algoritmo, en términos de memoria y tiempo.

Ejemplo

- ► La cantidad de pasos que un algoritmo requiere para terminar su ejecución depende, por lo general, de la cantidad de datos de entrada.
- ► Ejemplo: diseñar un algoritmo que, dado un conjunto de números, encuentre el menor de todos ellos.

Ejemplo

```
input: A es un conjunto de n números. output: min es el menor elemento de A. min \leftarrow A[0]; for a \in A do | if a < min then | min \leftarrow a end end return min
```

- ▶ Denotemos como T(n) la cantidad de pasos necesarios para la ejecución total del algoritmo.
- ▶ Donde *n* representa el número de elementos de entrada.

Ejemplo

```
input: A es un conjunto de n números.
output: min es el menor elemento de A.
min \leftarrow A[0];
                                                       /* c<sub>1</sub> */
                                                 /* n veces */
for a \in A do :
   if a < min then;
                                                        /* c_2 */
 min \leftarrow a;
end
return min
```

Sumando, queda $T(n) = c_1 + n * (c_2 + c_3)$

Contenido

Introducción

Notación asintótica

Notación Big-O

Para facilitar el análisis introducimos la notación asintótica

Definition

Decimos que T(n) = O(f(n)) si $T(n) \le f(n)$ para todo $n \ge n_0$

- Es decir, la notación Big-O marca una cota superior.
- ▶ Entonces, en el ejemplo previo, T(n) = O(n)

Notación Big-Omega

Analogamente, podemos definir limites inferiores

Definition

Decimos que $T(n) = \Omega(f(n))$ si $T(n) \ge f(n)$ para todo $n \ge n_0$

- Es decir, la notación *Big-Omega* marca una cota inferior.
- ▶ Entonces, en el ejemplo previo, $T(n) = \Omega(n)$

Notación Big-Theta

Finalmente, se puede usar ambos límites

Definition

Decimos que $T(n) = \Theta(f(n))$ si $c_1 f(n) \leq T(n) \leq c_2 f(n)$ para todo $n \geq n_0$

- Es decir, la notación Big-Theta marca cotas inferiores y superiores.
- ▶ Entonces, en el ejemplo previo, $T(n) = \Theta(n)$

Complejidad Temporal y Espacial

- ► Se define como *complejidad temporal* de un algoritmo al tiempo necesario por un algoritmo para su ejecución.
- Se define como complejidad espacial de un algoritmo a la memoria requerida por un algoritmo para su ejecución.
- ► En este curso, cuando hablemos de *complejidad* nos estamos refiriendo a la complejidad temporal.
- Siempre utilizamos notación asintótica para expresar cualquier complejidad.
- Usualmente estamos interesados en las cotas superiores, pues marcan el peor de los casos de la ejecución de los algoritmos, y nos referimos a esta cuando se habla simplemente de complejidad.

Algoritmos eficientes

Definition

Se considera un algoritmo como eficiente cuando su complejidad es polinómica.

- Por ejemplo, sea A un algoritmo cuya complejidad es $O(n^{100})$ y B un algoritmo cuya complejidad es $O(2^n)$
- ▶ entonces, A se dice que a es eficiente y B, de complejidad exponencial, no lo es.