Snow Depth Retrieval and Downscaling using Satellite Laser Altimetry, Machine Learning, and Climate Reanalysis

A Case Study in Mainland Norway

Zhihao LIU

2023-05-13

Summary

Seasonal snow plays a crucial role as water reservoirs and energy balance component, but accurately estimating the depth of the snowpack remains a challenge, particularly in remote areas. ICESat-2 laser altimetry has the potential to provide precise snow depth measurements by comparing satellite-based snow surface elevation profiles with high-quality Digital Elevation Model (DEM) of the snow-free ground. However, the satellite's acquisition pattern is sparse both in time and space, raising the need for additional steps to produce a spatially complete snow-depth map.

This study generated downscaled snow depth maps by employing a machine-learning regressor to combine snow depths derived from ICESat-2 ATL08 product (2018-2022) with ERA-5 Land data. The methodology involves careful co-registering the data, applying bias correction on DEMs using ICESat-2 surface elevations from snow-free conditions as a reference. Subsequently, snow depth maps are generated by statistically downscaling ERA-5 time-series data on snow depth with the derived snow depth, using terrain, vegetation, and wind parameters. Our results are able to reproduce snow depth patterns at the hill-slope scale, achieving an R-Squared value of 0.68 and a Spearman correlation coefficient of 0.81 when compared to lidar-based snow depth acquired in Hardangervidda, Norway. This approach is applicable globally in any location where accurate snow-free DEMs are available.

Additionally, this study contributes a Gradient Descent Co-registration algorithm, which offers possibilities for handling large-scale datasets at a fine resolution. And, a bias correction workflow is utilized to address uncertainties of DEM and ICESat-2, which refines the conventional elevation differencing workflow of producing snow depth.

The thesis is structured as follows: *Chapter 1* provides an introduction to the role of snow cover, observations techniques and thesis objectives. *Chapter 2* reviews the key concepts of the methodologies, including snow depth variability, satellite laser altimetry, DEM uncertainties, co-registration, machine learning, climate reanalysis, downscaling techniques. *Chapter 3* presents a workflow for snow depth retrieval, including gradient descent co-registration, evaluating DEM against ICESat-2 ATL08, applying bias correction, and downscaling of ERA-5 using ICESat-2 derived snow depth. *Chapter 4* presents the methodology's application in mainland Norway, including snow depth validations. *Chapter 5* discusses the uncertainties and limitations. Finally, *Chapter 6* concludes remarks.

Keywords: Snow depth, ICESat-2, Co-registration, Machine learning, Bias correction, Statistical downscaling

Contents

Ac	cknowledgements											
Su	Summary											
Contents												
List of Figures												
	List	of Table	es		X							
1.	. Introduction											
	1.1.	The Ro	ole of Snow Cover		1							
		1.1.1.	Energy balance component		1							
		1.1.2.	Climate indicator		1							
		1.1.3.	Water reservoir		2							
		1.1.4.	Ecological habitats		2							
		1.1.5.	Thermal insulator		3							
		1.1.6.	Geohazards		5							
	1.2.	The Ch	hallenges of the Snow Observation		5							
		1.2.1.	Snow cover		5							
		1.2.2.	Snow mass		6							
	1.3.	3. Objectives										
	1.4.	Thesis	s structure		9							
2.	Scie	Scientific Overview 11										
	2.1.	The Va	ariability of the Snow Cover	1	11							
		2.1.1.	Spatial variability	1	11							
		2.1.2.	Temporal variability	1	12							
	2.2.	DEM .		1	14							
		2.2.1.	DEM products	1	14							
		2.2.2.	DEM uncertainties	1	15							
		2.2.3.	DEM Co-registration	1	18							
	2.3.	ICESat	t-2 Altimetry	1	19							
		231	Addressing DEM errors by ICESat-2	5	20							

Contents

		2.3.2. Snow depth from ICESat-2	21			
	2.4.	Machine Learning and XGBoost	22			
		2.4.1. Hyperparameters of XGBoost	24			
	2.5.	Climate Reanalysis and Downscaling	24			
		2.5.1. Statistical downscaling and subgrid variability of snow depth	26			
3.	Stud	ly Area and Methodologies	29			
	3.1.	Research Design	29			
	3.2.	The Physical Geographical Setting	30			
	3.3.	The Data Setting	31			
		3.3.1. ICESat-2 ATL08	31			
		3.3.2. DEMs	35			
		3.3.3. Terrain and vegetation features	35			
		3.3.4. EAR5 Land: snow and wind features	38			
	3.4.	Gradient Descent Co-registration	39			
		3.4.1. Noise suppression	40			
	3.5.	Regression Model	42			
		3.5.1. Bias correction	42			
		3.5.2. Statistical downscaling	43			
		3.5.3. Hyperparameters and cross-validation	46			
		3.5.4. Feature engineering	46			
	3.6.	Evaluation of Snow Depth	49			
		3.6.1. ICESat-2 derived snow depth vs lidar derived snow depth	49			
		3.6.2. ICESat-2 derived snow depth vs ERA5 Land snow depth	50			
		3.6.3. Downscaled snow depth vs lidar derived snow depth	50			
4.	Resu	ılts	51			
	4.1.	Co-registration	51			
	4.2.	Binning Analysis: DEM Comparison	52			
	4.3.	Feature Importance and Regression Performance of Bias Correction 5				
	4.4.	ICESat-2 Derived Snow Depth and Validation	60			
	4.5.	ICESat-2 Derived Snow Depth vs ERA5 Land	62			
	4.6.	Modeled Snow Depth and Validation	64			
	4.7.	Feature Importance of Downscaling Regression	64			
5.	Disc	ussion	69			
	5.1.	GDC vs NuthKaab Co-registration	69			
	5.2.	The Uncertainties: ICESat-2, DEM and Bias Correction	70			
		5.2.1 ICESat-2 ATI 08: skewness and curvature	70			

Contents

		5.2.2.	Uncertainties in DEMs: vegetation, resolution, snowpack	72
		5.2.3.	Assumptions behind bias correction: snow-on vs snow-free	74
	5.3.	ICESat	-2 Derived Snow Depth: Cutting-out	74
	5.4.	Statist	ical Downscaling: Noise and Randomization	75
6.	Con	cluding	Remarks and Future Outlooks	79
Re	feren	ces		81
A. Appendix				
	A.1.	Additio	onal Figures	95
	A.2.	Techni	cal Details of ICESat-2 ATL08	100
		A.2.1.	Processing and QC Steps of ICESat-2 ATL08 Land products	100
	A.3.	Recom	mendation For Winter Canopy Height Correction	102
	A.4. The Consistency of ICESat-2 ATL08 Snow-free Segments		nsistency of ICESat-2 ATL08 Snow-free Segments	103
	A.5. Code Repository		Repository	105
		A.5.1.	Offset adjustment: spatial aggregation, linear adjustment and quantile mapping	ţ105
		A.5.2.	Gradient descent co-registration	106
		A 5 3	XSnow	106