```
In [1]: pip install numpy
        Collecting numpyNote: you may need to restart the kernel to use updated pack
        ages.
          Downloading numpy-1.24.3-cp311-cp311-win_amd64.whl (14.8 MB)
             ------ 14.8/14.8 MB 789.5 kB/s eta 0:0
        0:00
        Installing collected packages: numpy
        Successfully installed numpy-1.24.3
         [notice] A new release of pip available: 22.3.1 -> 23.1.2
         [notice] To update, run: python.exe -m pip install --upgrade pip
In [2]: pip install pandas
        Collecting pandas
          Downloading pandas-2.0.1-cp311-cp311-win amd64.whl (10.6 MB)
             ----- 10.6/10.6 MB 849.5 kB/s eta 0:0
        0:00
        Requirement already satisfied: python-dateutil>=2.8.2 in c:\users\venka\appd
         ata\local\programs\python\python311\lib\site-packages (from pandas) (2.8.2)
        Collecting pytz>=2020.1
          Downloading pytz-2023.3-py2.py3-none-any.whl (502 kB)
             ----- 502.3/502.3 kB 955.5 kB/s eta 0:0
        0:00
        Collecting tzdata>=2022.1
          Downloading tzdata-2023.3-py2.py3-none-any.whl (341 kB)
             ----- 341.8/341.8 kB 559.2 kB/s eta 0:0
        0:00
        Requirement already satisfied: numpy>=1.21.0 in c:\users\venka\appdata\local
         \programs\python\python311\lib\site-packages (from pandas) (1.24.3)
        Requirement already satisfied: six>=1.5 in c:\users\venka\appdata\local\prog
        rams\python\python311\lib\site-packages (from python-dateutil>=2.8.2->panda
        s) (1.16.0)
        Installing collected packages: pytz, tzdata, pandas
        Successfully installed pandas-2.0.1 pytz-2023.3 tzdata-2023.3
        Note: you may need to restart the kernel to use updated packages.
         [notice] A new release of pip available: 22.3.1 -> 23.1.2
         [notice] To update, run: python.exe -m pip install --upgrade pip
In [58]:
        import numpy as np
        import pandas as pd
        import seaborn as sns
        import matplotlib.pyplot as plt
```

```
df=pd.read csv(r"C:\Users\venka\OneDrive\Documents\fiat500 VehicleSelection Date
In [59]:
         print(df)
```

```
ID
              model
                     engine_power
                                     age_in_days
                                                        km
                                                             previous_owners
0
          1
             lounge
                                                                               \
                                 51
                                              882
                                                     25000
                                                                            1
1
          2
                                 51
                                             1186
                pop
                                                     32500
                                                                            1
2
          3
              sport
                                 74
                                             4658
                                                    142228
                                                                            1
3
          4
             lounge
                                 51
                                             2739
                                                    160000
                                                                            1
4
          5
                                             3074
                                                                            1
                pop
                                 73
                                                    106880
                                . . .
                                              . . .
       . . .
                 . . .
                                                        . . .
                                                                           . . .
. . .
1533
      1534
              sport
                                 51
                                             3712
                                                    115280
                                                                            1
                                 74
1534
      1535
             lounge
                                             3835
                                                    112000
                                                                            1
1535
      1536
                pop
                                 51
                                             2223
                                                     60457
                                                                            1
1536
      1537
             lounge
                                 51
                                             2557
                                                     80750
                                                                            1
                                 51
                                                     54276
                                                                            1
1537
      1538
                pop
                                             1766
             lat
                         lon
                               price
0
      44.907242
                   8.611560
                                8900
1
      45.666359
                  12.241890
                                8800
2
      45.503300
                  11.417840
                                4200
      40.633171
                                6000
3
                  17.634609
4
      41.903221
                  12.495650
                                5700
             . . .
                         . . .
                                 . . .
. . .
1533 45.069679
                   7.704920
                                5200
1534 45.845692
                   8.666870
                                4600
1535
      45.481541
                   9.413480
                                7500
                                5990
1536
      45.000702
                    7.682270
1537
      40.323410 17.568270
                                7900
[1538 rows x 9 columns]
```

In [60]: |df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1538 entries, 0 to 1537 Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	ID	1538 non-null	int64
1	model	1538 non-null	object
2	engine_power	1538 non-null	int64
3	age_in_days	1538 non-null	int64
4	km	1538 non-null	int64
5	previous_owners	1538 non-null	int64
6	lat	1538 non-null	float64
7	lon	1538 non-null	float64
8	price	1538 non-null	int64

dtypes: float64(2), int64(6), object(1)

memory usage: 108.3+ KB

In [61]: df.head(10)

Out[61]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	pri
0	1	lounge	51	882	25000	1	44.907242	8.611560	89
1	2	рор	51	1186	32500	1	45.666359	12.241890	88
2	3	sport	74	4658	142228	1	45.503300	11.417840	42
3	4	lounge	51	2739	160000	1	40.633171	17.634609	60
4	5	рор	73	3074	106880	1	41.903221	12.495650	57
5	6	рор	74	3623	70225	1	45.000702	7.682270	79
6	7	lounge	51	731	11600	1	44.907242	8.611560	107
7	8	lounge	51	1521	49076	1	41.903221	12.495650	91
8	9	sport	73	4049	76000	1	45.548000	11.549470	56
9	10	sport	51	3653	89000	1	45.438301	10.991700	60
4									•

In [62]: df.tail()

Out[62]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon
1533	1534	sport	51	3712	115280	1	45.069679	7.70492
1534	1535	lounge	74	3835	112000	1	45.845692	8.66687
1535	1536	рор	51	2223	60457	1	45.481541	9.41348
1536	1537	lounge	51	2557	80750	1	45.000702	7.68227
1537	1538	рор	51	1766	54276	1	40.323410	17.56827

In [63]: df.describe()

Out[63]:

	ID	engine_power	age_in_days	km	previous_owners	lat
count	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000
mean	769.500000	51.904421	1650.980494	53396.011704	1.123537	43.541361
std	444.126671	3.988023	1289.522278	40046.830723	0.416423	2.133518
min	1.000000	51.000000	366.000000	1232.000000	1.000000	36.855839
25%	385.250000	51.000000	670.000000	20006.250000	1.000000	41.802990
50%	769.500000	51.000000	1035.000000	39031.000000	1.000000	44.394096
75%	1153.750000	51.000000	2616.000000	79667.750000	1.000000	45.467960
max	1538.000000	77.000000	4658.000000	235000.000000	4.000000	46.795612
4						•

```
In [64]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1538 entries, 0 to 1537
         Data columns (total 9 columns):
              Column
                               Non-Null Count Dtype
              -----
                               -----
         _ _ _
                                              int64
          0
              ID
                               1538 non-null
          1
              model
                               1538 non-null
                                              object
          2
              engine_power
                               1538 non-null
                                              int64
          3
              age_in_days
                               1538 non-null
                                              int64
          4
                               1538 non-null
                                              int64
              previous_owners 1538 non-null
          5
                                              int64
          6
                               1538 non-null
                                              float64
              lat
          7
              lon
                               1538 non-null
                                              float64
              price
                              1538 non-null
          8
                                              int64
         dtypes: float64(2), int64(6), object(1)
         memory usage: 108.3+ KB
In [65]: df.columns
Out[65]: Index(['ID', 'model', 'engine_power', 'age_in_days', 'km', 'previous_owner
         s',
                'lat', 'lon', 'price'],
               dtype='object')
```

In [66]: sns.pairplot(df)

Out[66]: <seaborn.axisgrid.PairGrid at 0x16973151f50>


```
In [67]: sns.displot(['Price'])
```

Out[67]: <seaborn.axisgrid.FacetGrid at 0x1697334d190>


```
In [68]: sns.displot(df['price'])
```

Out[68]: <seaborn.axisgrid.FacetGrid at 0x1696f199c50>


```
In [69]: sns.displot(df['engine_power'])
```

Out[69]: <seaborn.axisgrid.FacetGrid at 0x169788e62d0>

Out[70]: <Axes: >


```
In [71]: from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state
from sklearn.linear_model import LinearRegression
    regr=LinearRegression()
    regr.fit(X_train,y_train)
    print(regr.intercept_)
```

8971.19568349988

In [72]: coeff_df=pd.DataFrame(regr.coef_,X.columns,columns=['coefficient'])
coeff_df

Out[72]:

	coefficient
ID	-0.046704
engine_power	11.646408
age_in_days	-0.898018
km	-0.017232
previous_owners	26.400886
lat	32.189709
lon	0.161073

In [73]: predictions=regr.predict(X_test)
 plt.scatter(y_test,predictions)

Out[73]: <matplotlib.collections.PathCollection at 0x1697abcf590>


```
In [74]: sns.displot((y_test,predictions),bins=50)
```

Out[74]: <seaborn.axisgrid.FacetGrid at 0x1697ab66a50>


```
In [75]: from sklearn import metrics
    print('MAE:',metrics.mean_absolute_error(y_test,predictions))
    print('MSE:',metrics.mean_squared_error(y_test,predictions))
    print('MAE:',np.sqrt(metrics.mean_squared_error(y_test,predictions)))
```

MAE: 593.0876179519931 MSE: 551442.6799691801 MAE: 742.5918663500026

```
In [76]: #accuracy
    regr=LinearRegression()
    regr.fit(X_train,y_train)
    regr.fit(X_train,y_train)
    print(regr.score(X_test,y_test))
```

0.8597136704308868

```
6.LINEAR REGRESSION FIAT DATASET ELASTIC NET - Jupyter Notebook
In [77]: | df.fillna(method='ffill',inplace=True)
In [78]: | x=np.array(df['age_in_days']).reshape(-1,1)
         y=np.array(df['km']).reshape(-1,1)
         df.dropna(inplace=True)
In [79]: X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
         regr.fit(X_train,y_train)
         regr.fit(X_train,y_train)
Out[79]:
          ▼ LinearRegression
          LinearRegression()
In [80]: y_pred=regr.predict(X_test)
         plt.scatter(X_test,y_test,color='y')
         plt.plot(X_test,y_pred,color='b')
         plt.show()
           200000
           150000
           100000
```

2000

3000

4000

1000

50000

```
In [82]: #elasticnet
    from sklearn.linear_model import ElasticNet
    regr=ElasticNet()
    regr.fit(x,y)
    print(regr.coef_)
    print(regr.intercept_)
    y_pred_elastic=regr.predict(X_train)
    mean_squared_error=np.mean((y_pred_elastic-y_train)**2)
    print("Mean Squared Error on test set",mean_squared_error)

[25.89689696]
    [10640.73996329]
    Mean Squared Error on test set 2769977842.8600845
In []:
```