

2E102 - Source d'énergie électrique et capteurs

ER2 du 16 novembre 2017, 1 heure. Sans document ni calculatrice.

Notation sur 50 points : deux points pour une réponse juste, moins un demi-point pour une réponse fausse, zéro point en l'absence de réponse. Une réponse au plus autorisée par question (sinon moins un demi-point à la question).

S.I. : unités de base du Système International.

N° étudiant :
Prénom:
Nom:

Énergie (20 points)

Q1. Dans le domaine de l'énergie, TEP signifie Tonne Equivalent...

□ Plutonium

X Pétrole

□ Personne

□ Pollution

Q2. La puissance instantanée consommée ou fournie par un dipôle dont la tension à ses bornes est $u(t) = U\sqrt{2}\sin(\omega t)$ et le courant le parcourant $i(t) = I\sqrt{2}\sin(\omega t - \phi)$ est

Xu(t)i(t)

□ Ulcosφ

□ Ulsinω

□ 2UI

Q3. La valeur efficace d'un signal s(t) de période T se calcule ainsi (analyse dimensionnelle possible...) :

 $\mathbf{X}_{1}\sqrt{\frac{1}{T}\int_{0}^{T}s^{2}(t)dt}$

 $\Box \frac{1}{T} \int_0^T s^2(t) dt$

$$\Box \frac{1}{T} \sqrt{\int_0^T s^2(t) dt}$$

Q4. Soit une puissance à acheminer donnée (par exemple d'une centrale électrique à un transformateur). Pour minimiser les pertes en ligne il faut

XIa tension la plus élevée possible et le facteur de puissance le plus proche de 1 possible

- $\hfill \square$ la tension la plus basse possible et le facteur de puissance le plus proche de 0 possible
- □ la tension la plus élevée possible et la puissance réactive la plus élevée possible
- □ la tension la plus basse possible et la puissance réactive la plus proche de 1 possible

Q5. Dans le cadre du cours n°5 de 2E102 (par Marc Hélier), « Smart grids » peut se traduire en français par

X gestion intelligente de l'énergie

□ grille élégante

□ maîtrise de l'énergie nucléaire

□ utilisation de petites voitures électriques

Q6 à Q10. Les alternateurs présents dans les génératrices éoliennes peuvent être composés d'enroulements réalisés avec du fil de cuivre. Ils sont alors représentés par une résistance montée en série avec une inductance.

 $i(t) = I\sqrt{2}sin(2\pi ft)$

f = 50 Hz

U = 250 V

 $R = 40 \Omega$

 $L = 3/(10\pi) H$

Q6. L'allure du diagramme de Fresnel relatif à ce circuit est (le courant est pris comme référence ici) :

П

	Z = R + jLw	·> module d	le Z = racir	ne carrée de	(40^2 + (2pi*50* 3/10	
	Q7. Le module de l'impédance complexe de ce circuit vaut =r.c. de (1600 + 90					
	X 50 Ω	40 Ω	\Box 100 Ω	\square 300 Ω		
	Q8. L'intensité (□ 2,5 A	efficace vaut X I 5 A	□ 2300 A	□ 10 kA	I = U/module de Z I = 250V/50ohms	
R*I	Q9. La tension efficace aux borne X 200 V □ 230 V		es de la résistance vaut □ 150 V □ 5,5 V		1 – 230 7/300111113	
=40*5 phi) = UR/U	Q10. Le facteur □ 1,98	de puissance vau X 0,8	t □ 0,53	□ 1		
e schéma de Q6) do Capteur : généralités (8	. ,	= 200/250 = 4	*200/1000	= 0,8		
Q11. Qu'est-ce que l'err Le manque d'épaisseu Le manque de sensibil	r du capteur ité du capteur		XL'influenc	e du capteur sur ce du mesurande		
Q12. Soit deux capteurs permettant de détermin tension mesurée U. U capteurs en faisant passile mesurande de 0 S.I. à deux capteurs (figure 1). □ est plus rapide que le grande que le B □ est plus rapide que le petite que le B □ est plus lent que le E grande que le B X est plus lent que le E	er le mesurande n Jn expérimentati er de manière qua 3 S.I. et mesure la Il en déduit que l B et a une bande B et a une bande 3 et a une bande	n à partir d'une eur teste ces asi-instantanée a tension U des le capteur A e-passante plus e-passante plus -passante plus	2,5 Lossian [N] unisual at 1,5 Lossian [N] unisu			
petite que le B			capteur A (ırande m (en S.I.	nps [s]), tension de sortie du eur B (UB) (en volt) en	
Q14. Le capteur de la qu dans le temps (A reste c	surande en S.I. (ui é (par exemple a mmètre une résis prigine (état neuf, née en unité du m $X_{\square} 1$ = R/Ausagé = uestion 13 est dan constant et vaut 5)	nité omise par la suprès 1 an d'utilis latance de 10 Ω ma A = 10). Il fait do nesurande en S.I.) = 10/5 = 2; va la l'état usagé. On . Cette erreur d'é	suite). Pour le sation) A vaut le sation) A vaut le sation de de la considère que talonnage (dé	capteur à l'état t 5. Avec le cap a valeur du mesu absolue sur le r ée de m: m = te la courbe d'ét crite en Q13) en	neuf A vaut 10 et pour teur usagé (A = 5), un urande m en utilisant la mesurande, erreur dite 4 = R/Aneuf = 10/10 = 1 alonnage n'évolue plus traîne une	
□ moins bonne fidélité □ d	iminution des erreu	irs systematiques L	diminution de	s erreurs aleatoire:	x Amoins bonne justesse	
Capteurs de températur	- 10 m - ! - + - \					

□ 0,35°C⁻¹

□≈3°C

S = dR/dT = 100 ohms * a en °C-1

□ ≈3°C/Ω

X 0,35 Ω/°C

RPt100 appelée R: R augmente quand T augmente.

Q16. Une sonde Pt100 est utilisée pour déterminer une température connaissant sa courbe d'étalonnage (rappelée à la question 15). Pour mesurer la résistance de la sonde Pt100 et éviter le phénomène d'emballement thermique, quel circuit préconisez-vous ? (Vous supposerez que les appareils de mesure sont parfaits.)

 $f{X}$ Générateur de tension, ampèremètre et sonde Pt100 : les 3 $\,$ en série $\,$ non! Générateur de tension, ampèremètre et sonde Pt100 : les 3 en parallèle augmente --> PJ diminue: pas d'embal.

 $PJ = U^2/R --> T$ augmente --> R

non!□ Générateur de courant, voltmètre et sonde Pt100 : les 3 en série

PJ = RI^2 --> T augmente --> R

☐ Générateur de courant, voltmètre et sonde Pt100 : les 3 en parallèle

augmente --> PJ augmente: emballement

Q17. Soit une CTN dont la résistance a comme expression R(T) = $R_0 \exp[\beta(1/T - 1/T_0)]$ avec $R_0 = 5 \text{ k}\Omega$, $T_0 = 300 \text{ K}$ et β = 1000 K. Quelle est l'incertitude sur la température mesurée pour une température vraie de 27°C si la température est directement déduite de la mesure de R(T) avec un ohmmètre dont l'incertitude sur la résistance vaut ±0,5% ? (Vous pourrez par exemple calculer dans un 1er temps le TCR.)

X≈ ±0,45°C

 $\square \approx \pm 1 \text{ K}$

□ ≈ ±0,15°C

□ ≈ ±2 K

Fig.2. Coefficient Seebeck pour différents thermocouples (Q18).

Fig.3. Courbe d'étalonnage d'un capteur de champ magnétique (Q19).

Q18. Soit un thermocouple composé d'un matériau A et d'un matériau B. Vous savez que son type est E, J, K, R, S ou T et cherchez à le déterminer. Pour cela vous placez la jonction A-B à une température de 0°C et les deux extrémités du thermocouple à une température de 20°C. Vous mesurez au voltmètre une tension de 0,75 mV. Vous répétez l'opération avec cette fois la jonction A-B à 250°C et les deux extrémités du thermocouple à 270°C. Vous mesurez alors au voltmètre une tension de 1,05 mV. Quel est le type de ce thermocouple ? (Vous pourrez vous servir de la figure 2.)

 \Box E coef Seebeck SAB: SAB(autour de 0°C) = 750microvolt/20°C = 37,5microvolt/°C --> T ou K SAB(autour de 250°C) = 1050microvolt/20°C = 52,5microvolt/°C --> T ou J Capteurs de champ magnétique (8 points)

Q19. Soit un capteur de champ magnétique dont la courbe d'étalonnage est donnée sur la figure 3. Que vaut B si la tension mesurée est de 3 V ±0,1 V (c'est-à-dire avec une incertitude de mesure) ?

X 200 ± 40 gauss □ 250 ± 30 gauss □ 225 ± 10 gauss □ 175 ± 20 gauss

V = 2.5 + B/400 en volt avec B en gauss --> V = 3V alors B = 200gauss et dV/dB = 1/400

Q20. Soit un capteur à effet Hall donnant la valeur du champ magnétique B à partir de la mesure de la tension Vmes. Rappelons que Vmes = RHIB/z où RH est la constante de Hall, I le courant injecté par un générateur de courant dans le matériau et z l'épaisseur du matériau. L'utilisateur souhaite améliorer la sensibilité d'un facteur 4 en modifiant I (R_H et z inchangés : on suppose que les variations de température due à la variation de la puissance deltaV*400

en V/gauss deltaB = =0,1*400en gauss

S = dV/dB = RH * I / z --> I est x4 pour que S x4PJoule = RI^2 donc PJoule x16

0,15

0,1 -

0,05

-0,05

-0,1

V_D [V]

	e sont pas influentes). Quel 1 être augmentée d'un fact 4	•	ence sur la puissance dissipée X16	par effet Joule
L Z	□ 4	□ 0	N ₁₀	
Q21. Quelle doit-être l'un dimension ?	nité de R _H pour que l'équa	ation du capteur	à effet Hall $V_{mes} = R_H IB/z$ soit	homogène en
X m³/C	□ Vm/A	□ Vm/T	□ AT/Vm	
RH en Vm/(AT)	or (m/s)*T = (V/m) (d ésistance Géante) est utilis	of force de Lo	orentz) donc T = Vs/m^ ues durs pour	2 donc RH en
		□ écrire	□ lire, écrire et effa	$= m^3/(A^*V^s)$
Capteurs d'éclairement (6 points)			= m^3/C
	s) quand la fréquence de l'orant, HF : circuit-ouvert	éclairement tenc	e de caractéristique : figure 4 l vers zéro (BF) et quand elle te générateur de courant, HF : co résistance, HF : court-circuit	end vers l'infini
· · · · · · · · · · · · · · · · · · ·	W/cm², quelle est la <i>meil</i> .	leure relation er □ I _D (m. X I _D (m.	re 4. Pour un éclairement ϕ contre I_D et ϕ dans le $3^{\text{ème}}$ quad A) $\approx -\phi (\text{mW/cm}^2)/200$ A) $\approx -\phi (\text{mW/cm}^2)/20$	drant (I_D et V_D
sur la figure 4. Que vaut	l'éclairement si V _{mes} = 0,2 ' liser une autre méthode.)	$= 8 k\Omega$ et une ph	pour la carac à 2mW/cn notodiode dont la caractéristiq tracer la droite de charge sur $^2 \qquad \square \approx 1,7 \text{ mW/cm}^2$	ue est donnée en mW/
ID = -Vmes/RLOA	D = -0.2/8 en mA et	phi = -ID(mA	a)*20 (phi en mW/cm^2)
0 mW/cm ² 0,4 mW/cm ² 1,2 mW/cm ² 1,6 mW/cm ² 2 mW/cm ²	3)*20 = 4/8 = 0,5mW	Fig.4. pour (Q23 a Autre droit> II E + V> VI> VI Place VD = droite	I _D (V _D) d'une photodiode différents éclairements à Q25). e méthode: e de charge: E = -RLO D = -(E + VD)/RLOAD à D - Vmes = 0 D = 0,2-1,2 D = -1V r le point E -1V sur la de charge:	à tracer
-1 -0,8 -0,6 -0,4	-0,2 0 0,2 0,4	1 1 1	spond à L 0,5mW/gcm2cuit avec pho	todiode (Q25).