UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

DEPARTAMENTO DE INFORMÁTICA

INF 285 - Computación Científica Ingeniería Civil Informática

04: Raíces en 1D (II)

Método de Punto Fijo

Convergencia Lineal

Definición 1

Sea e_i el error en la iteración i de un método iterativo. Si

$$\lim_{i\to\infty}\frac{e_{i+1}}{e_i}=S<1$$

el método se dice que obedece una convergencia lineal con orden S.

Ejemplo:
$$g_1(x) = -\frac{3}{2}x + \frac{5}{2}$$
 $g_2(x) = -\frac{1}{2}x + \frac{3}{2}$

Método de Punto Fijo

Convergencia Lineal

Teorema 1

Asuma que g es continuamente diferenciable, y que

$$g(r) = r$$
 y $S = |g'(r)| < 1$.

Entonces el método de punto fijo converge linealmente con orden S al punto fijo r para puntos iniciales suficientemente cercanos a r.

Método de Punto Fijo

Ejemplo 1

Aplicar el método de punto fijo para resolver la ecuación:

$$\cos x = \sin x$$

Determine además el orden de convergencia.

Teorema 2 (Taylor)

Sea x y x_0 números reales, y f(x) k+1-veces continuamente diferenciable en el intervalo entre x y x_0 , entonces existe un número c entre x y x_0 tal que:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \cdots + \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k + \frac{f^{(k+1)}(c)}{(k+1)!}(x - x_0)^{k+1}$$

$$k = 1 \longrightarrow f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(c)}{2!}(x - x_0)^2$$

Algoritmo

$$x_0$$
 = punto inicial

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$
 para $i = 0, 1, 2, ...$

Es una iteración de punto fijo!

$$g_N(x) = x_i - \frac{f(x_i)}{f'(x_i)}$$

Ejemplo

$$x^3 + x - 1 = 0$$

Aplicamos Newton:

$$x_{i+1} = x_i - \frac{x_i^3 + x_i - 1}{3x_i^2 + 1}$$
$$= \frac{2x_i^3 + 1}{3x_i^2 + 1}$$

Tomemos $x_0 = -0.7$

Ejemplo

i	x_i	$f(x_i)$
0	-0.700000000000	-2.043000000000
1	0.127125506073	-0.870820032061
2	0.957678119176	0.836010097011
3	0.734827794995	0.131614147030
4	0.684591770685	0.005436583884
5	0.682332174204	0.000010474580
6	0.682327803844	0.000000000039
7	0.682327803828	-0.000000000000
8	0.682327803828	-0.000000000000

Convergencia cuadrática

Definición 2

Sea e_i el error después de la iteración i de un método iterativo. La iteración es **cuadráticamente convergente** si

$$M = \lim_{i \to \infty} \frac{e_{i+1}}{e_i^2} < \infty$$

Convergencia cuadrática

Teorema 3

Sea f una función continua dos veces diferenciable con f(r) = 0. Si $f'(r) \neq 0$, entonces el método de Newton es local y cuadráticamente convergente a r. El error e_i en la iteración i satisface:

$$\lim_{i \to \infty} \frac{e_{i+1}}{e_i^2} = M$$

donde

$$M = \frac{f''(r)}{2f'(r)}$$

Ejemplo

i	x_i	$f(x_i)$	$ x_i - r $	e_i/e_{i-1}^2
0	-0.7000000000000	-2.043000000000	1.382327803828	
1	0.127125506073	-0.870820032061	0.555202297755	0.290555545009
2	0.957678119176	0.836010097011	0.275350315348	0.893270657937
3	0.734827794995	0.131614147030	0.052499991167	0.692449448864
4	0.684591770685	0.005436583884	0.002263966857	0.821394147405
5	0.682332174204	0.000010474580	0.000004370376	0.852665558844
6	0.682327803844	0.000000000039	0.000000000016	0.855089890131
7	0.682327803828	-0.000000000000	0.0000000000000	

Para
$$x^3 + x - 1 = 0 \Rightarrow f'(x) = 3x^2 + 1 \Rightarrow f''(x) = 6x$$
.

Evaluamos en $x_c\approx 0.6823$ y entrega $M\approx 0.85.$

Ejemplo 2

Utilizar el método de Newton para encontrar una raíz de $f(x) = x^2$

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} = x_i - \frac{x_i^2}{2x_i} = \frac{x_i}{2}$$

Tomemos $x_0 = 1$

i	x_i	$ x_i - r $	e_i/e_{i-1}
0	1.000	1.000	
1	0.500	0.500	0.500
2	0.250	0.250	0.500
3	0.125	0.125	0.500
:	:	•	:

La convergencia es lineal con S = 1/2.

Ejemplo 3

Utilizar el método de Newton para encontrar una raíz de $f(x) = x^m$

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

$$= x_i - \frac{x_i^m}{mx_i^{m-1}}$$

$$= \frac{m-1}{m}x_i$$

Además

$$r = 0 \Rightarrow e_i = |x_i - r| = x_i \Rightarrow e_{i+1} = Se_i \Rightarrow S = (m-1)/m$$

Definición 3

Asuma que r es una raíz de una función diferenciable f, es decir, f(r) = 0. Entonces si

$$0 = f(r) = f'(r) = f''(r) = \cdots f^{(m-1)}(r) = 0$$
 pero $f^{(m)}(r) \neq 0$

se dice que f tiene una raíz de multiplicidad m en r.

Ejemplo 4

Determinar la multiplicidad de la raíz r = 0 de

$$f(x) = \sin x + x^2 \cos x - x^2 - x$$

y estimar el número de iteraciones, usando el método de Newton, para obtener una convergencia de al menos 6 decimales de precisión.

$$f(x) = \sin x + x^{2} \cos x - x^{2} - x$$

$$f'(x) = \cos x + 2x \cos x - x^{2} \sin x - 2x - 1$$

$$f''(x) = -\sin x + 2\cos x - 4x \sin x - x^{2} \cos x - 2$$

$$f'''(x) = -\cos x - 6\sin x - 6x \cos x + x^{2} \sin x$$

$$f(0) = f'(0) = f''(0) = 0, f'''(0) = -1, \text{ luego } m = 3.$$

Modificado

Si la multiplicidad de una raíz es conocida, entonces la convergencia del método de Newton puede ser mejorada

Teorema 4

Si f es (m+1) veces continuamente diferenciable en [a,b], el cual contiene una raíz r de multiplicidad m > 1, entonces el método de Newton modificado

$$x_{i+1} = x_i - \frac{mf(x_i)}{f'(x_i)}$$

converge local y cuadráticamente a r.

Tomemos el ejemplo anterior con

$$f(x) = \sin x + x^2 \cos x - x^2 - x,$$

donde sabemos que la raiz r = 0 tiene multiplicidad 3, entonces:

$$x_{i+1} = x_i - \frac{3f(x_i)}{f'(x_i)}$$

i	x_i
0	1.0000000000000000
1	0.16477071958224
2	0.01620733771144
3	0.00024654143774
4	0.00000006072092
5	-0.00000000238988

Ejemplo 5

Apliquemos el método de Newton a

$$f(x) = 4x^4 - 6x^2 - 11/4$$

 $con x_0 = 1/2.$

$$f(x) = 4x^4 - 6x^2 - 11/4$$

$$f'(x) = 16x^3 - 12x$$

La iteración queda:

$$x_{i+1} = x_i - \frac{4x_i^4 - 6x_i^2 - 11/4}{16x_i^3 - 12x_i}$$

 $_{
m Ejemplo}$

i	x_i
0	0.500000000000000
1	-0.500000000000000
2	0.500000000000000
3	-0.500000000000000
4	0.500000000000000
5	-0.500000000000000
6	0.500000000000000
7	-0.500000000000000
8	0.500000000000000
9	-0.500000000000000
10	0.500000000000000

Ejemplo

Ejercicio 1

Considere la siguiente ecuación

$$8x^4 - 12x^3 + 6x^2 - x = 0$$

Para cada una de las soluciones $x_1 = 0$ y $x_2 = 1/2$, decida cuál método converge más rápido (para 8 decimales de precisión), el método de Newton o de la Bisección.