BECA / Huson / 12.1 IB Math SL

14 December 2017

Test: Vector and calculus

Name:

1a. Line L_1 passes through points A(3, 0, 7) and B(4, -1, 8).

 \overrightarrow{AB} .

[2 marks]

1b. Find an equation for L_1 in the form $oldsymbol{r} = oldsymbol{a} + toldsymbol{b}$.

[2 marks]

$$m{r}=egin{pmatrix} 2\4\7 \end{pmatrix}+segin{pmatrix} 2\1\3 \end{pmatrix}$$
 .

1c. Line L_2 has equation

Find the angle between L_1 and L_2 .

[7 marks]

1d. The lines L_1 and L_2 intersect at point C. Find the coordinates of C.

[6 marks]

$$m{r}=egin{pmatrix} -3 \ -1 \ -25 \end{pmatrix} + p egin{pmatrix} 2 \ 1 \ -8 \end{pmatrix}$$

2a. The line L_1 is represented by the vector equation

A second line L_2 is parallel to L_1 and passes through the point B(-8, -5, 25) .

Write down a vector equation for L_2 in the form $oldsymbol{r}=oldsymbol{a}+toldsymbol{b}$.

[2 marks]

 $m{r}=egin{pmatrix} 5 \ 0 \ 3 \end{pmatrix}+qegin{pmatrix} -7 \ -2 \ k \end{pmatrix}$. **2b.** A third line L_3 is perpendicular to L_1 and is represented by

Show that k=-2 .

[5 marks]

2c. The lines L_1 and L_3 intersect at the point A. Find the coordinates of A.

[6 marks]

$$\overrightarrow{\mathrm{BC}} = \left(egin{array}{c} 6 \ 3 \ -24 \end{array}
ight)_{+}$$
t C where

2d. The lines L_2 and L_3 intersect at point C where

(i) Find \overrightarrow{AB} .

(ii) Hence, find $|\overrightarrow{AC}|$

[5 marks]

$$\overrightarrow{AB} = egin{pmatrix} 6 \ -2 \ 3 \end{pmatrix}_{ ext{ and }} \overrightarrow{AC} = egin{pmatrix} -2 \ -3 \ 2 \end{pmatrix}_{ ext{. Find }} \overrightarrow{BC} \,.$$

[2 marks]

3b. Find a unit vector in the direction of \overrightarrow{AB} .

[3 marks]

3c. Show that \overrightarrow{AB} is perpendicular to \overrightarrow{AC} .

[3 marks]

$$_{ extbf{4a. Let}}f(x)=rac{6x}{x+1}$$
 , for $x>0$. Find $f'(x)$.

[5 marks]

$$_{\mathbf{4b.}\,\mathrm{Let}}g(x)=\ln\!\left(rac{6x}{x+1}
ight)$$
 , for $x>0$.

Show that
$$g'(x)=rac{1}{x(x+1)}$$
 .

[4 marks]

5a. Let
$$f(x) = e^{6x}$$
 . Write down $f'(x)$.

[1 mark]

5b. The tangent to the graph of f at the point $\mathbf{P}(0,b)$ has gradient m .

(i) Show that m=6.

(ii) Find b. [4 marks]

5c. Hence, write down the equation of this tangent.

[1 mark]

6a. The price of a used car depends partly on the distance it has travelled. The following table shows the distance and the price for seven cars on 1 January 2010.

Distance, x km	11 500	7500	13 600	10800	9500	12 200	10400
Price, y dollars	15 000	21 500	12 000	16000	19 000	14500	17000

The relationship between x and y can be modelled by the regression equation y=ax+b.

- (i) Find the correlation coefficient.
- (ii) Write down the value of a and of b.

[4 marks]

6b. On 1 January 2010, Lina buys a car which has travelled 11,000 km.

Use the regression equation to estimate the price of Lina's car, giving your answer to the nearest 100 dollars. [3 marks]

17a. Let
$$f(x) = \frac{1}{x-1} + 2$$
, for $x > 1$.

Write down the equation of the horizontal asymptote of the graph of f.

[2 marks]

17b. Find f'(x).

[2 marks]

 $_{ extbf{17c. Let}}g(x)=ae^{-x}+b$, for $x\geqslant 1$. The graphs of f and g have the same horizontal asymptote.

Write down the value of b.

[2 marks]

17d. Given that g'(1) = -e, find the value of a.

[4 marks]

17e. There is a value of x, for 1 < x < 4, for which the graphs of f and g have the same gradient. Find this gradient.

18a. Let $f(x)=(x-5)^3$, for $x\in\mathbb{R}$.

Find $f^{-1}(x)$. [3 marks]

18b. Let g be a function so that $(f \circ g)(x) = 8x^6$. Find g(x).

[3 marks]

19a. The following diagram shows part of the graph of a quadratic function f.

The vertex is at (1, -9), and the graph crosses the *y*-axis at the point (0, c).

The function can be written in the form

$$f(x) = (x - h)^2 + k$$

Write down the value of h and of k.

 ${f 19b.}$ Let $g(x)=-(x-3)^2+1$. The graph of g is obtained by a reflection of the graph of f in the x-axis, followed by a translation

 $\left(egin{array}{c} p \\ q \end{array}
ight)$

Find the value of p and of q.

[5 marks]

 ${f 20a.}$ Let $f(x)=2\ln(x-3)$, for x>3 . The diagram shows part of the graph of f . Find the equation of the vertical asymptote to the graph of f .

20b. Find the x-intercept of the graph of f.

 ${f 21a}.$ The first three terms of a geometric sequence are $u_1=0.64,\ u_2=1.6$, and $u_3=4$.

Find the value of *r*.

21b. Find the value of S_6 .

21c. Find the least value of n such that $S_n > 75\,000$

[2 marks]

[3 marks]