Due: 09/24/2015

Be sure to do all your work on separate paper, and include all steps where appropriate. All homework must follow the formatting rules posted on Blackboard.

- 1. For some convergent fixed-point iterative scheme, $x_{n+1} = g(x_n)$, on [0,1], we have $x_0 = 1$ and $x_1 = \frac{1}{2}$. Suppose further that for all $x \in [0,1]$, $|g'(x)| \leq \frac{1}{3}$.
 - (a) Compute the error bound for x_7 .
 - (b) Determine the minimum number of iterations needed to approximate the fixed-point to within 10^{-6} using and $x_0 = 1$.
- 2. Let $g(x) = \frac{1}{5}(x+1)^{3/2}$.
 - (a) Prove that g has a unique-fixed point in [0,1].
 - (b) For $x_{n+1} = g(x_n)$, compute the error bound for x_5 starting with $x_0 = 0$.
 - (c) Determine the minimum number of iterations needed to approximate the fixed-point to within 10^{-8} using $x_0 = 0$
- 3. Verify that $x = \sqrt{a}$ is a fixed point of the function

$$g(x) = \frac{1}{2} \left(x + \frac{a}{x} \right).$$

Determine the order of convergence of the sequence $x_{n+1} = g(x_n)$ as it converges to $x = \sqrt{a}$.

4. Consider the iterative scheme

$$x_{n+1} = 0.4 + x_n - 0.1x_n^2, \quad n \ge 0$$

Will this scheme converge to the fixed point x = 2? If yes, find its rate of convergence.

5. Both of the following sequences will converge to the fixed-point $\sqrt{5}$. Determine analytically which one will do so at a faster rate.

(a)
$$x_{n+1} = x_n + 1 - \frac{x_n^2}{5}$$

(b)
$$x_{n+1} = \frac{x_n^2 + 5}{2x_n}$$