SF3580

Anna Broms & Fredrik Fruklund

2018/11/11

1 Task 2

1.1 (a)

Insert figure

1.2 (b)

Insert figure

1.3 (c)

Insert figure

The Rayleigh quotient only uses the symmetric part of A in

$$r(\mathbf{x}) = \mathbf{x}^H A \mathbf{x}$$

assuming \mathbf{x} is normalized. The matrix A is no longer symmetric, i.e. $A \neq A^H$, but any square matrix can be decomposed into a symmetric part A_s and a nonsymmetric part A_{ns} by

$$A = \underbrace{\frac{1}{2} \left(A + A^H \right)}_{=A_s} + \underbrace{\frac{1}{2} \left(A - A^H \right)}_{=A_{ns}}.$$

Thus

$$r(\mathbf{x}) = \mathbf{x}^H A_s \mathbf{x} + \mathbf{x}^H A_{ns} \mathbf{x} = \mathbf{x}^H A_s \mathbf{x}$$

since

$$\mathbf{x}^H A_{ns} \mathbf{x} = \mathbf{x}^H A \mathbf{x} - \mathbf{x}^H A^H \mathbf{x} = 0.$$

For a nonsymmetric matrix all avaliable information is not used.

2 Task 3

The performance of different versions of Gram-Schmidt orthogonalizations is investigated when combined with the Arnoldi method. We consider the matrix A constructed by

and m number of iterations in the Arnoldi method

m	SGS time	SGS orth	MGS time	MGS orth	DGS time	DGS orth	TGS time	TGS orth
5	$188 \mathrm{\ ms}$	4.82×10^{-13}						
10	496 ms	2.15×10^{-12}						
20	$1.10 \; s$	1.04×10^{-11}						
50	$4.05 \mathrm{\ s}$	1.06×10^{-10}						
100		4×10^{-11}						

- 2.1 (a)
- 2.2 (b)

3 Task 4

We investigate a primitiv version of the Arnoldi method. Let

4 Task 6

test

5 Task 8

 test