Restaurant Visitor Forecast

Jay Cheung jaycheung1096@gmail.com

BRIEF SELF INTRO

POSTGRADUATE DIPLOMA IN EDUCATION

Major (Math Education), HKBU

ACCELERATE

Data Science and Machine Learning

Cohort 2

CUHK BSC MATHEMATICS

Double Streams in Enrichment Math and Applied Math

GM TEACHER

EMI secondary school HKDSE Math, M2, Physics

OBJECTIVES

Four Objectives

Insight

Looking into real data of catering industry

Prediction

Precise prediction of restaurant visitors of all kinds

Analysis

possible features
that affect the
number of visitors

Application

Apply similar strategies in HK restaurants

Data Source

DATA

AirREGI, an POS cash register app with reserve system for cafe and restaurants 2016-2017 visit and reserve data of 829 stores located in different locations of Japan Dataset can be obtained in Kaggle.

Technical Requirement

Data Science Methodology

Exploratory Data Analysis

An approach to summarise the main characteristics of the dataset mainly by visualisation.

Feature Engineering

Create new features from the original ones

Modeling

Facebook's Prophet ML Package

Open-source forecasting model by facebook research team

Numerous applications across Facebook

Based on additive model with non-linear trends

Capture **seasonalities** of data plus **holiday** effects

Handles missing data and outliers automatically

XGBoost ML Algorithm

RMSLE (Root Mean Squared Logarithmic Error)

$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (\log(p_i + 1) - \log(a_i + 1))^2}$$

Where:

- *n* is the number of price quotes in the test set
- p_i is your predicted price
- a_i is the actual price
- log(x) is the natural logarithm

The **lower** the better

Penalises an under-predicted estimate more

The difference

between the predicted values and the actual values

ETL process comparison between Python and Tableau

A popular data visualising software for business intelligence

Prophet

air_326ca454ef3558bc no. of visitors train test pred Jan 2016 Mar 2016 May 2016 Jul 2016 Sep 2016 Nov 2016 Jan 2017 Mar 2017

XGBoost

Prophet

air_79f528087f49df06 no. of visitors train test pred Jan 2016 Mar 2016 May 2016 Jul 2016 Sep 2016 Nov 2016 Jan 2017 Mar 2017

XGBoost

thank you

To review the slide Visit: https://https://github.com/
jaycheung1096