Übungen zur Vorlesung

Datenanalyse - Dr. Terveer, Vogt, Pohl

Sommersemester 2022

Blatt 6 24.05.2022

Aufgabe 15 (p-Value von Blatt 5) In diesem Tutorium können noch Fragen zu Teilaufgaben von Blatt 5 nach Bedarf beantwortet werden, welche den p-value behandeln (in Aufgabe 13 und 14).

Aufgabe 16 (ML-Schätzer) Es seien X_1, \ldots, X_N u.i.v. Zufallsvariablen mit der Dichte $p(x,\theta) = \frac{6x(x+\theta)}{2+3\theta} 1_{[0;1]}(x)$. Dabei sei $\theta > 0$.

- a) Zeigen Sie: $EX_1 = \frac{3+4\theta}{4+6\theta}$ für alle $\theta > 0$.
- b) Weisen Sie nach, dass $\hat{\theta}_{0N} = \frac{4\bar{X}_N 3}{4 6\bar{X}_N}$ ein konsistenter Schätzer für θ ist (dabei sei \bar{X}_N das arithmetische Mittel der X_1, \dots, X_N).
- c) Bestimmen Sie die Log-Likelihoodfunktion und leiten Sie die Bestimmungsgleichung $(\sum_{n=1}^N \frac{1}{x_n+\theta}) \frac{3N}{2+3\theta} = 0 \text{ für den Maximum-Likelihood-Schätzer her.}$

Aufgabe 17 (Gütekriterien für Schätzer) Die Firma Flonzmacher und Söhne (FuS) möchte für ihr neuestes Produkt, den Hyper-Flonz, die Preisbereitschaft der Kunden in Erfahrung bringen. Man nimmt an, dass die Preisbereitschaft X stetig gleichverteilt in $[0; \theta]$ ist, d.h. es gilt $P(X \leq x) = F_{\theta}(x) = \frac{x}{\theta}$ für $0 \leq x \leq \theta$. Die Marketing-Abteilung stellt das Produkt N ausgewählten gleichartigen Kunden von FuS vor und erfragt die Preisbereitschaft als Realisierung von u.i.v.-Zufallsvariablen X_1, \ldots, X_N mit der Verteilungsfunktion F_{θ} . Zur Schätzung von θ wird folgende Schätzfunktionen geprüft: $T = \max(X_1, \ldots, X_N)$,

- a) Zeigen Sie: Die Verteilung von T hat die (stetige) WS-Dichte $g(t) = \frac{N}{\theta^N} t^{N-1}$ für $t \in [0; \theta]$ und g(t) = 0 sonst. Hinweise: Überlegen Sie sich hierzu, dass $P(T \le x) = F_{\theta}(x)^n$ für $0 \le x \le \theta$. Wie erhält man aus der VF von T eine WS-Dichte?
- b) Bestimmen Sie einen erwartungstreuen Schätzer $S = c \cdot T$ mit geeignetem $c \in \mathbb{R}$.
- c) Prüfen Sie, welche der Schätzfunktionen T, S asymptotisch erwartungstreu ist.
- d) Berechnen Sie Varianz, Bias und MSE von T und S.
- e) Prüfen Sie, ob S konsistent im quadratischen Mittel ist.