REAL-TIME NETWORK

Exercise series 1

April 16, 2018

1. Check if the task set below can be handled using worldFIP variable transfers (parameters: 2.5 Mbit/s; hint: you may assume the presence of some maximum length on-demand messaging)

Flow number	Data length	Period=Deadlin	
	[B]	e [ms]	
1	2	2	
2	3	4	
3	3	4	
4	8	8	
5	1	12	
6	8	240	

- 2. What will be the worst case response time in the above case if flow number 6 is handled as on-demand (aperiodic) traffic ?
- 3. Check if the traffic requirements used in the CAN chapter (see below) can be satisfied by worldFIP.

Message	Priorit	Period	Deadlin	Tx time
stream	у		e	
A	3	2.5 ms	2.5 ms	1 ms
В	2	3.5 ms	3.25 ms	1 ms
С	1	3.5 ms	3.25 ms	1 ms

4. Check if the above task set can be handled using worldFIP

Flow number	Tx Time (C)	Period=Deadlin	
	[ms]	e [ms]	
1	0.5	2.5	
2	0.5	2.5	
3	0.5	3.5	
4	0.5	3.5	
5	0.5	3.5	
6	0.5	3.5	

- 5. Check the results obtained in slide 64 of the Ethernet chapter
- 6. Estimate the efficiency of Ethernet Powerlink at 100 Mbit/s using hubs (max. 7 hubs between MN and CN)
- 7. Estimate the efficiency of Ethernet Powerlink at 100 Mbit/s using switches (max. 7 switches between MN and CN)

8. Calculate the response times for the following traffic with CAN at 125kbit/s

	Period=Deadline	Length
Node	[ms]	[byte]
n1	10	8
n2	16	8
n3	16	8
n4	12	8
n5	12	8
n6	16	8

9. What will be probability to miss the deadline for each flow if the error rate λ =30 faults/s?