Problema

Hipótese desta análise(opcional)

Marília é a cidade que mais empaca por causa de uma minoria de UBS

Importando bibliotecas principais

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as pl
import seaborn as sb
import random, decimal

%matplotlib inline
```

pip install bokeh

Requirement already satisfied: bokeh in /usr/local/lib/python3.6/dist-packages (1.0.4 Requirement already satisfied: pillow>=4.0 in /usr/local/lib/python3.6/dist-packages Requirement already satisfied: numpy>=1.7.1 in /usr/local/lib/python3.6/dist-packages Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages Requirement already satisfied: tornado>=4.3 in /usr/local/lib/python3.6/dist-packages Requirement already satisfied: six>=1.5.2 in /usr/local/lib/python3.6/dist-packages (Requirement already satisfied: packaging>=16.8 in /usr/local/lib/python3.6/dist-packages Requirement already satisfied: Dinja2>=2.7 in /usr/local/lib/python3.6/dist-packages Requirement already satisfied: olefile in /usr/local/lib/python3.6/dist-packages (frc Requirement already satisfied: pyparsing>=2.0.2 in /usr/local/lib/python3.6/dist-packages Requirement already satisfied: MarkupSafe>=0.23 in /usr/local/lib/python3.6/dist-packages Requ

```
from bokeh.io import output_notebook
output_notebook()
```

Importando e Explorando o dataset

```
df = pd.read_csv('dsUnidadeSaudeMunicipio.csv', parse_dates=['DAT_HORA_ATENDIMENTO','DAT_H
df.dtypes
```

```
NOM ENCAMINHAMENTO
                                  object
   NOM_MODALIDADE_ATENDIMENTO
                                   object
   NOM MUNICIPIO
                                   object
                                   object
   NOM_EQUIPE
   NOM TIPO CASO
                                   object
                                   float64
   IDADE
   COD CID
                                   object
   DAT_HORA_PREVISTA
                                   object
   DAT_HORA_EVOLUCAO
                                   object
   DAT_HORA_ANAMNESE
                           datetime64[ns]
                                   object
   DAT HORA ALTA
   QTD EVOLUCAO
                                    int64
   DAT_ULTIMA_EVOLUCAO datetime64[ns]
   NOM_UNIDADE_SAUDE
                                   object
   dtype: object
```

verificando escopos dos municípios

```
df["NOM_MUNICIPIO"].value_counts()
```

```
r MARILIA/SP
                  21428
   GARÇA/SP
                   2224
   VERA CRUZ/SP
                  1798
                   1405
   TUPÃ/SP
                  1161
   LUPÉRCIO/SP
   CLEMENTINA/SP
   MOURÃO/SP
   GUAIÇARA/SP
   GUARAÇAÍ/SP
   CAIABU/SP
   Name: NOM_MUNICIPIO, Length: 169, dtype: int64
```

▼ escopos das unidades de saúde

```
df["NOM UNIDADE SAUDE"].value counts()
```

```
r ∪BS COSTA E SILVA MARILIA
                                       892
   UBS PLANALTO MARILIA
                                       763
   UBS CHICO MENDES MARILIA
                                       724
   UBS SANTA ANTONIETA MARILIA
                                       653
   UBS NOVA MARILIA
                                       617
   PAS VILA CALIFORNIA OSVALDO CRUZ
                                         1
   CENTRO ESPECILIDADES POMPEIA
    SMS - FLORIDA PAULISTA
                                         1
                                         1
   USF VILA GLORIA I ASSIS
    APAE ADAMANTINA
    Name: NOM UNIDADE SAUDE, Length: 373, dtype: int64
```

import random

→ Limpeza e Tratamento de dados

```
def getUnico(quantidade):
  if (quantidade == 1):
    return 1 + (random.randint(0, 200)/1000)
  else:
    return 0 + (random.randint(0, 200)/1000)
def getMarilia(nome):
  if (nome == 'MARILIA/SP'):
    return 1 + (random.randint(0, 200)/1000)
    return 0 + (random.randint(0, 200)/1000)
dfLimpo = df
dfLimpo['UNICO'] = df.apply(lambda row: getUnico(row.QTD_EVOLUCAO), axis=1)
dfLimpo['EHMARILIA'] = df.apply(lambda row: getMarilia(row.NOM_MUNICIPIO), axis=1)
#dfAgrupado = df.groupby('NOM_MUNICIPIO')['QTD_EVOLUCAO'].value_counts()
#dfMunicipio['NOME'] = {k: v for (k, v) in df.groupby('NOM_MUNICIPIO')}
#dfAgrupado['PROPORCAO'] = df.groupby('NOM_MUNICIPIO')['PROPORCAO'].sum()
#dfAgrupado['NOM_MUNICIPIO'] = dfAgrupado.apply(lambda row: getNomeMunicipio(row.NOM_MUNIC
```

dfLimpo['NOM_MUNICIPIO'].value_counts()
dfLimpo.describe()

	IDADE	QTD_EVOLUCAO	UNICO	EHMARILIA
count	48449.000000	48449.000000	48449.000000	48449.000000
mean	49.976938	12.531136	0.041962	0.442280
std	21.240494	14.398104	0.200504	0.496662
min	0.607000	1.000000	0.000000	0.000000
25%	35.330287	5.000000	0.000000	0.000000
50%	52.902890	9.000000	0.000000	0.000000
75%	66.023438	16.000000	0.000000	1.000000
max	101.100150	276.000000	1.000000	1.000000

dfLimpo["NOM_EQUIPE"].value_counts()

 \Box

С>

AMBULATÓRIO SAÚDE MENTAL	11216
ORTOPEDIA E TRAUMATOLOGIA	4178
OFTALMOLOGIA	4062
ENDOCRINOLOGIA E METABOLISMO	3422
CIRURGIA VASCULAR	2396
NEUROLOGIA	2385
ONCOLOGIA CLÍNICA	2183
DERMATOLOGIA	1921
REUMATOLOGIA	1678
OTORRINOLARINGOLOGIA	1576
ONCO-HEMATOLOGIA INFANTIL	1436
UROLOGIA	1080
HEMATOLOGIA ADULTO	956
GINECOLOGIA GERAL	937
CARDIOLOGIA	891
AMB PEDIATRIA ESPECIALIZADA	833
PNEUMOLOGIA	831
CIRURGIA GERAL E DO TRAUMA	756
CIRURGIA PLÁSTICA	734
OBSTETRÍCIA	651
GASTROENTEROLOGIA - CLÍNICA MÉDICA	525
INFECTOLOGIA	511
NEFROLOGIA	506
SERVIÇO DE APOIO AO COLABORADOR	425
NEUROCIRURGIA	360
GERIATRIA GASTROENTEROLOGIA CIRÚRGICA	339
CIRURGIA CABEÇA E PESCOÇO	300
CENTRO DE INFUSÃO	283 193
ONCO GINECOLOGIA	176
RADIOTERAPIA	149
CIRURGIA CARDÍACA	133
CIRURGIA TORÁCICA	133
QUIMIOTERAPIA ADULTO	104
MEDICINA INTERNA	38
SERVIÇO DE NUTRIÇÃO E DIETÉTICA	36
UROLÓGIA	25
GENÉTICA	25
ONCOCLÍNICA	18
IMUNOPATOLOGIA CLÍNICA E ALÉRGICA	16
PRÉ-OPERATÓRIO	13
PSICOLOGIA HOSPITALAR	6
CLÍNICA MÉDICA ESPECIALIZADA	5
ENFERMAGEM	3
HEMOTERAPIA	2
CENTRO CIRÚRGICO	2
BRONCOSCOPIA	1
Name: NOM_EQUIPE, dtype: int64	_

Profiling

import pandas_profiling as pp
pp.ProfileReport(dfLimpo)

- Análises
- ▼ Plot do dataset puro
- ▼ Marilia x Unico x Municipio

```
dfMunicipioUnico = dfLimpo[['QTD_EVOLUCAO','EHMARILIA', 'UNICO', 'NOM_MUNICIPIO']]
dfMunicipioUnico = dfMunicipioUnico[dfMunicipioUnico['NOM_MUNICIPIO'].map(dfMunicipioUnico
%matplotlib inline
dfMunicipioUnico
sb.pairplot(dfMunicipioUnico.sample(1000), hue='NOM_MUNICIPIO',height=7)
#pl.show()
```

C→

<seaborn.axisgrid.PairGrid at 0x7f0fffab30b8>


```
%matplotlib inline
sb.pairplot(dfMunicipioUnico,hue='NOM_MODALIDADE_ATENDIMENTO',height=3)
pl.show()

dfCluster = dfLimpo[['IDADE','PROTOCOLO','NDURACAO']]
X = np.array(dfCluster)
```

Somente UBS de Marilia

```
dfMarilia = dfLimpo[['QTD_EVOLUCAO', 'UNICO', 'NOM_UNIDADE_SAUDE','NOM_MUNICIPIO']]
dfMarilia = dfMarilia[dfMarilia['NOM_UNIDADE_SAUDE'].map(dfMarilia['NOM_UNIDADE_SAUDE'].vatedfMarilia = dfMarilia[dfMarilia['NOM_MUNICIPIO']=='MARILIA/SP']
dfMarilia = dfMarilia.drop('NOM_MUNICIPIO',axis=1)

dfMarilia
sb.pairplot(dfMarilia.sample(1000), hue='NOM_UNIDADE_SAUDE',height=10)
dfMarilia['NOM_UNIDADE_SAUDE'].value_counts()
#pl.show()
```

UBS COSTA E SILVA MARILIA 892 UBS PLANALTO MARILIA 763 UBS CHICO MENDES MARILIA 724 UBS SANTA ANTONIETA MARILIA 653 UBS NOVA MARILIA 617 UBS ALTO CAFEZAL MARILIA 550 CS II GALIA 542 UBS CASTELO BRANCO MARILIA 522 CS II VERA CRUZ 510 Name: NOM_UNIDADE_SAUDE, dtype: int64

▼ Clusterização

```
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=4, random_state=0)
dfCluster
kmeans.fit(X)
kmeans.labels_
dfCluster['cluster'] = kmeans.labels_
```

▼ Plotando o resultado da clusterização

sb.pairplot(dfCluster,hue='cluster')

▼ Regressão

Double-click (or enter) to edit

```
dfLimpo
```

```
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression

dfRegressao = dfLimpo[['EHMARILIA','UNICO']]
```

#dfRegressao = pd.concat([dfRegressao, pd.get_dummies(dfRegressao['NOM_MODALIDADE_ATENDIME

dfRegressao

₽		EHMARILIA	UNICO
	0	0.081	0.189
	1	1.044	0.020
	2	1.200	0.189
	3	0.057	0.105
	4	1.117	0.148
	48444	0.016	0.122
	48445	0.021	0.043
	48446	0.182	0.064
	48447	0.006	0.148
	48448	0.050	0.188

48449 rows × 2 columns

#dfRegressao = dfRegressao.drop('NOM_MODALIDADE_ATENDIMENTO', axis=1)

```
# passando os valores de x e y como Dataframes
X = dfRegressao[['EHMARILIA']]
Y = dfRegressao[['UNICO']]
# criando e treinando o modelo
model = LinearRegression()
```

```
model.fit(X, Y)
```

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

▼ Teste predicao regressao

```
teste = [[1]]
model.predict(teste)

         array([[0.13956553]])
```

▼ Plot regressao

```
%matplotlib inline
# passando os valores de x e y como Dataframes
dfRegressaoPlot = dfRegressao
X = dfRegressaoPlot[['EHMARILIA']]
Y = dfRegressaoPlot[['UNICO']]
# criando e treinando o modelo
model = LinearRegression()
model.fit(X, Y)
Y_pred = model.predict(X)
pl.scatter(X, Y)
pl.plot(X, Y_pred, color='red')
pl.show()
```


▼ Correção dos OUTLIERS

Double-click (or enter) to edit

```
%matplotlib inline
# passando os valores de x e y como Dataframes

dfRegressaoCorrigido = dfLimpo[['EHMARILIA','QTD_EVOLUCAO','UNICO']]

dfRegressaoPlot = dfRegressaoCorrigido[dfRegressaoCorrigido['UNICO']==0]

#dfRegressaoCorrigido = pd.concat([dfRegressaoCorrigido, pd.get_dummies(dfRegressaoCorrigidofRegressaoCorrigidofRegressaoCorrigidofRegressaoCorrigidofRegressaoCorrigidofRegressaoCorrigidofRegressaoCorrigidofRegressaoCorrigidofRegressaoCorrigidofRegressaoPlot
```

₽		EHMARILIA	QTD_EVOLUCAO	UNICO
	20	0.051	5	0.0
	100	0.184	17	0.0
	777	0.165	4	0.0
	1126	0.167	3	0.0
	1264	0.195	25	0.0
	47833	1.010	9	0.0
	47850	1.147	15	0.0
	47880	1.029	10	0.0
	47900	0.052	17	0.0
	48042	0.155	14	0.0

```
X = dfRegressaoPlot[['EHMARILIA']]
Y = dfRegressaoPlot[['QTD_EVOLUCAO']]
# criando e treinando o modelo
model = LinearRegression()
model.fit(X, Y)
Y_pred = model.predict(X)
pl.scatter(X, Y)

pl.plot(X, Y_pred, color='red')
pl.show()
```

С→

241 rows × 3 columns

→ Conclusão

Foi CONSTATADO que Marília é a cidade que mais empaca com uma incidência grande, porém pr tamanho e quantidade populacional.