Computer System Design Test #2 Note Sheet

ISA

CPU and ISA versions:

OF U and ISA	versions:		
Processor	Address Bus	Data Bus	Control Bus
8086	20 bit	16 bit	
8088	20 bit	8 bit	
80286	24 bit	16 bit	
80386			
80486			
Pentium I	32 bit	32 bit	
Pentium II			
Pentium III			
Pentium IV	32/36 bit	32 bit	
Pentium D	32/36 bit	32/64 bit	

Address Time: Driven by internals of the processor, the PCLK cycle where address is output (Ts)

Data Time: Driven by internals of processor, the PCLK cycle(s) where data is sent/recieved (Tc)

Wait State: Driven by ICs outside the processor when >1 PCLK is needed to complete work

Ready_n: Signal that allows external devices to insert wait states

Address Space, IO Space:

Memory map

I/O Map

	<i>U</i> F
ſ	64KB
	Boot ROM
ſ	64KB
	Option ROM
ſ	128KB
	Device ROM
ſ	128KB
	Video Memory
Ī	640KB
	Conventional
l	Memory

DMAC1CS#
PIC1CS#
PITCS#
MISC1CS#
MISC2CS#
PIC2CS#
DMAC2CS#
NCPCS#

Address Decoders: Typically made using a MUX, unique address lines as the select lines and M/IO# going into the enable

Register:

 $\mathbf{AX:}$ General Purpose Register (GPR), ALU input and the output

BX: GPR, ALU input

CX: GPR or the loop index

DX: GPR, holds values in fast memory

CS: Code Seg Reg, holds start of code seg

DS: Data Seg Reg, points to user variables

SS: Stack Seg Reg, start of stack

ES: Extrasegment Reg, stores an extra segment

IP: Instruction Pointer, inside the current CS

SP: Stack pointer, inside the current SS

Address Generation from Registers: Shift CS left by 4, add IP. Carry bit is saved in >286

Little-Endian Byte Ordering: LSB at the lowest address

Extended Memory: Memory past 1Meg, accessable by a 286 in real mode (carry out of CS+IP is 1)

Cardinal Rules:

- In any system based on the X86 microprocessors, every memory and I/O storage location contains 1 byte, no more or less.
- 2. Every memory and I/O address is considered to be either an even or odd address
- When the 80286 microprocessor reads from or writes to an even address, the data is transferred over the lower data path. Upper path for an address.

Control Signals:

Processor Signals:

BHE#: Byte High Enable, D15-D8 are used in transfer A0: Odd (1) or even (0) address accessed

M/IO#	# S1#	S0#	Cycle Type	ISA Line Assert
0	0	0	Interrupt ack.	none
0	0	1	I/0 read	IOWC#
0	1	0	I/0 write	IORC#
1	0	0	Halt shutdown	none
1	0	1	Mem read	(S)MWTC#
1	1	0	Mem write	(S)MRDC#

Bus Signals:

Upper Enable: Read the name

Lower Enable: Read the name

Copy Enable: copy from upper half to lower

 $\mathbf{DT/R\#}$: Data transmit/recieve, tell tranceivers what direction to allow flow

Copy Enable: turns on/off steering logic

SA0: Same as A0

Bus Mastering:

HOLD: input to the processor requesting the processor stop driving the bus

HLDA: output from the process indicating the bus is now undriven

LOCK#: output from processor, set by software indicating the current instruction set is being executed atomically

Power on Reset: Holds the processor in reset for a certain amount of time after turn on

First Bus Cycle: CS and IP set to F000h and FFF0h respectively. First instruction from top 16 bytes of memory space. Address Latch: see SA

LA vs. SA:

LA: Latchable address lines, on the 16 bit half, updated before address phase to allow mem cards to perform bank selection

SA: Latched version of the processor address lines on lower half. Presented during address phase, held until next address phase.

ALE: Add. Latch En., indicates address lines valid

Bus Steering Logic: routes data from up half to low half, needed for 8 bit compatibility

Data Bus Transceivers: half duplex latches that control data flow direction on up/low halves of bus

Stretching the Transfer Time (Wait States): For operations that require more than 1 PCLK cycle

Default Wait States / Ready Timers:

16-bit RAM 1 8-bit RAM 4 16-bit I/0 1 8-bit I/0 4

NOWS#: reduces the number of wait states to 0 for 16-bit, 1 for 8-bit

CHRDY#: card forces extra wait states by deasserting

Protected Mode vs. Real Mode:

Protected Mode: Only have access to 1M of memory, compatible with 8086

 $m {\bf Real~Mode:}$ Have acces to 1M + the extended memory, compatible with 80286+

ISA Bus Structure:

ISA Bus Cycle Timing:

BCLK: Derived from input clock, designed to be 8MHz Device Size Indication:

M16#: signals whether a device is capable of 16 bit memory transactions. 0 = 8 bit device. 1 = 16 bit

I016#: Sames as M16#, but for I/O devices

ISA Bus Cycles:

Detailed view of 286 Bus Cycle:

Detailed View of ISA Bus Cycle: