CREDIT RISK ANALYSIS

Ankit Kumar Verma Bharath N Karthik Chivukula

Slide 1: Title Slide

• Title: Credit Risk Analysis & Loan Approval Prediction

 Presented by: Ankit Kumar Verma, Bharath N, Karthik Chivukula

• Date: 04 FEB 2025

Slide 2: Project Overview

Objective: Build a classification model to predict loan approval based on applicant and credit bureau data.

Datasets Used:

- Applications Dataset (application_base.csv)
- Bureau Dataset (bureau.csv)

Slide 3: Business Problem

- Home Credit needs a reliable model to assess loan applicants.
- Goal: Reduce loan defaults while maximizing approvals.
- Use historical credit behavior to predict risk.

Slide 4: Data Understanding & Cleaning

- Applications Data: Demographic & financial details of applicants.
- Bureau Data: Past credit history at trade level.
- Challenges:
 - Missing Values → Handled using median imputation.
 - Categorical Variables → Encoded using Label Encoding.
 - Class Imbalance → Addressed using SMOTE.

Slide 5: Feature Engineering

- Bureau data is at trade level, needs aggregation.
- New features created:
 - Total number of trades per applicant.
 - Number of active/closed trades.
 - Max overdue days.
 - Average days credit was held.
- Merged aggregated bureau features with applications dataset.

Slide 6: Exploratory Data Analysis (EDA)

- Income Distribution: Applicants with higher income have lower default risk.
- Credit Amount vs. Default Rate: Higher loan amounts increase risk.
- Feature Correlations: Identified key influencing variables.

Slide 7: Handling Class Imbalance

Problem: Default cases (TARGET=1) are much fewer than TARGET=0

Solution:

- Applied SMOTE to generate synthetic examples.
- Improved recall for predicting high-risk applicants

Slide 8: Model Selection & Training

- Models Used:
 - Random Forest (Baseline Model)
 - XGBoost (Boosting Model)
 - Logistic Regression (Benchmark Model)
- Data Split: 80% Training | 20% Testing
- Feature Scaling: Standardized numerical features.

Slide 9: Model Evaluation Metrics

- Classification Metrics Used:
- Precission 0.93
- **Recall** 0.98
- **ROC-AUC** Score 0.6240
- Best Performing Model: XGBoost (ROC-AUC = 0.6897)

Slide 10: Feature Importance (Random Forest)

Key Features Identified:

- AMT_CREDIT (Loan Amount Requested)
- DAYS_CREDIT(Past credit History Length)
- CREDIT_DAY_OVERDUE(Overdue Days in Past Loans)

Business Insights: Applicants with a history of long overdue payments are more likely to default.

Slide 11: Business Recommendations

- **1.Auto-Approve:** Low-risk applicants (Credit Score > 0.7).
- **2.Manual Review:** Medium-risk applicants (0.3 ≤ Score ≤ 0.7).
- **3.Reject Loans:** High-risk applicants (Score < 0.3).
- **4.Interest Rate Adjustment:** Increase rates for medium-risk applicants.
- 5.Encourage Collateral: For high loan amounts to reduce risk.

Slide 12: Conclusion & Next Steps

- Successfully built a credit risk classification model.
- XGBoost performed best with a ROC-AUC of 0.6240
- Business insights support better loan approval strategies.
- Future Work:
 - Deploy the model for real-time loan approvals.
 - Enhance feature selection with deep learning techniques.

Slide 13: Thank You!

• Q&A

Contact:

Ankit Kumar Verma [ankit.sain4@gmail.com]

Bharath N [bharath.bglr.15@gmail.com]

Karthik Chivukula [90karthik.c@gmail.com]

GitHub Repository:

https://github.com/bharathn15/Credit-Risk-Analysis