CMPT 733 Further Topics in Deep Learning

Sequence learning, Sentiment analysis, Word2Vec, DL-Vis

Steven Bergner

Overview

- Recap: Overfitting remedies
- Deep learning for sequences
- Natural language processing, e.g.
 - Sentiment analysis
 - Word embeddings
- Visualization for Deep Learning

Strategies against Overfitting (continued)

Lower generalization error without impacting training error

Dropout

- Random sample of connection weights is set to zero
- Train different network model each time
- Learn more robust, generalizable features

Ensemble of subnetworks

Multitask learning

- Shared parameters are trained with more data
- Improved generalization error due to increased statistical strength
- Missing components of y are masked from the loss function

Components of popular architectures

Convolution as edge detector

Gabor wavelets (kernels)

derivative

(curvature)

Local average, first derivative

Gabor-like learned kernels

Features extractors provided by pretrained networks

Max pooling translation invariance

- Take max of certain neighbourhood
- Often combined, followed by downsampling

Max pooling transform invariance

Types of connectivity

Local connection: like convolution, but no sharing

Convolution calculation illustrated

Choosing architecture family

- No structure → fully connected
- Spatial structure → convolutional
- Sequential structure → recurrent

Optimization Algorithm

- Lots of variants address choice of learning rate
- See <u>Visualization of Algorithms</u>
- AdaDelta and RMSprop often work well

Gradient Clipping

- Add learning rate time gradient to update parameters
- Believe direction of gradient, but not its magnitude

Development strategy

- Identify needs: High accuracy or low accuracy?
- Choose metric
 - Accuracy (% of examples correct), Coverage (% examples processed)
 - Precision TP/(TP+FP), Recall TP/(TP+FN)
 - Amount of error in case of regression
- Build end-to-end system
 - Start from baseline, e.g. initialize with pre-trained network
- Refine driven by data

Software for Deep Learning

Current Frameworks

- Tensorflow / Keras
- PyTorch
- DL4J
- Caffe (superseded by Caffe2, which is merged into PyTorch)
- And many more
- Most have CPU-only mode but much faster on NVIDIA GPU

Recap: Choosing architecture family

- No structure → fully connected
- Spatial structure → convolutional
 - Adjacency or order of inputs has meaning
- Sequential structure → recurrent

Sequence Modeling with Recurrent Nets

Classical Dynamical Systems

- Recurrent network models a dynamical system that is updated in discrete steps over time
- Function f takes input from time t to output at time t+1
- Rules persist across time

Unfolding Computation Graphs

- Recurrent graph can be unfolded, where hidden state h is influencing itself
- Backprop through time is just backprop on unfolded graph

Recurrent Hidden Units

 Can have more than one layer

Sequence Input, Single Output

Example

Sentiment analysis of text

Fully Connected Graphical Model

 Too many dependencies among variables, if each has its own set of parameters

RNN Graphical Model

- Organize variables according to time with single update rule
- Finite set of relationships may extend to infinite sequences
- h acts as "memory state" summarizing relevant history

Recurrence only through output

Avoid backprop through time

Mitigation: Teacher forcing(

 Use actual or expected output from the training dataset at current time y(t) as input o(t) to the next time step, rather than generated output

Backprop stops when it reaches y(t-1) via o(t-1)

Bidirectional RNN

 Later information may be used to reassess previous observations

LSTMs

Use addition over time instead of multiplication

Further Architectures

- <u>Transformers</u>
- Deep Reinforcement Learning

Visualization for DL

- Tensorboard: Visualizing Learning
- How to use t-SNE efficiently

Model visualization

- LSTM-Vis: http://lstm.seas.harvard.edu/client/index.html
- Building blocks of interpretability

Sources

- I. Goodfellow, Y. Bengio, A. Courville "Deep Learning" MIT Press 2016 [link]
- Apala Guha's CMPT 733 slides