5. TERMINAL VELOCITY OF FALLING PARTICLES

5.1 Numerical Methods

Solution of a single nonlinear algebraic equation..

5.2 Concepts Utilized

Calculation of terminal velocity of solid particles falling in fluids under the force of gravity.

5.3 Course Useage

Fluid dynamics.

5.4 Problem Statement

A simple force balance on a spherical particle reaching terminal velocity in a fluid is given by

$$v_t = \sqrt{\frac{4g(\rho_p - \rho)D_p}{3C_D\rho}}$$
 (13)

where v_t is the terminal velocity in m/s, g is the acceleration of gravity given by g = 9.80665 m/s², ρ_p is the particles density in kg/m³, ρ is the fluid density in kg/m³, D_p is the diameter of the spherical particle in m and C_D is a dimensionless drag coefficient.

The drag coefficient on a spherical particle at terminal velocity varies with the Reynolds number (Re) as follows (pp. 5-63, 5-64 in Perry³).

$$C_D = \frac{24}{Re}$$
 for $Re < 0.1$ (14)

$$C_D = \frac{24}{Re}(1 + 0.14Re^{0.7})$$
 for $0.1 \le Re \le 1000$ (15)

$$C_D = 0.44$$
 for $1000 < Re \le 350000$ (16)

$$C_D = 0.19 - 8 \times 10^4 / Re$$
 for $350000 < Re$ (17)

where $Re = D_p v_t \rho / \mu$ and μ is the viscosity in Pa·s or kg/m·s.

- (a) Calculate the terminal velocity for particles of coal with $\rho_p = 1800 \text{ kg/m}^3$ and $D_p = 0.208 \times 10^{-3} \text{ m}$ falling in water at T = 298.15 K where $\rho = 994.6 \text{ kg/m}^3$ and $\mu = 8.931 \times 10^{-4} \text{ kg/m}$ s.
- (b) Estimate the terminal velocity of the coal particles in water within a centrifugal separator where the acceleration is $30.0 \ g$.