Linguagens Formais e Autômatos

Prof. Daniel Saad Nogueira Nunes

IFB – Instituto Federal de Brasília, Campus Taguatinga

- Expressões regulares são mecanismos que conseguem denotar linguagens regulares.
- Possibilitam uma série de aplicações relacionadas a casamento de padrões e construção de tradutores.
- Possuem uma proximidade grande com os ϵ -NFA.
- Através de uma notação compacta, similar as expressões algébricas, conseguimos expressar qualquer linguagem regular.

- Até o momento, vimos como capturar linguagens através de formalismos que lembram máquinas, como os nossos autômatos finitos.
- Expressões regulares, por sua vez, são um mecanismo declarativo.
 Ao montar uma expressão regular, estamos indicando quais palavras queremos aceitar.

- Diversas aplicações como o grep ou editores de texto possibilitam formas de buscar padrões utilizando expressões regulares.
- Analisadores léxicos, como o Flex ou o Lex, utilizam expressões regulares para classificar o código-fonte em tokens.

Expressões regulares

- Expressões regulares denotam linguagens.
- Por exemplo: a expressão $01^* + 10^*$ denota a linguagem que consiste das palavras que começam com um 0 e são seguidas por qualquer número de 1s, ou que começam com um 1 e são seguidas por qualquer número de 0s.
- Falaremos agora de algumas operações que podem ser realizadas em linguagens para então explicar como os operadores das expressões regulares as representam.

Operações em Linguagens

União de Linguagens

A união de duas linguagens L e M é denotada por $L\cup M$. Por exemplo se $L=\{001,10,111\}$ e $M=\{\epsilon,001\}$, então $L\cup M=\{\epsilon,10,001,111\}$.

Operações em Linguagens

Concatenação de Linguagens

A concatenação das linguagens L e M, denotada por LM é o conjunto de palavras que pode ser formado concatenando uma palavra qualquer de L com outra palavra qualquer de M.

Por exemplo, se $L=\{001,10,111\}$ e $M=\{\epsilon,001\}$, então, $LM=\{001,10,111,001001,10001,111001\}.$

Caso uma linguagem ${\cal L}$ seja concatenada com ela mesma i vezes, temos

$$L^i = \underbrace{LL \dots L}_{i \text{ vezes}}$$

Em especial, $L^0 = \{\epsilon\}.$

Operações em Linguagens

Fecho Kleene, ou estrela

Se L é uma linguagem, então L^* é formada pela concatenação de zero ou mais strings de L. Inclusive a mesma string pode ser utilizada várias vezes. Formalmente temos:

$$L^* = L^0 \cup L^1 \cup L^2 \dots = \bigcup_{i \ge 0} L_i$$

Construção de Expressões Regulares

- Expressões são formadas a partir da composição de expressões elementares com operadores.
- Descreveremos as expressões regulares recursivamente utilizando operadores representando cada uma das operações em linguagens apresentadas.
- Para cada expressão regular E, L(E) denotará a linguagem representada pela expressão E.

Casos base

As expressões regulares elementares podem ser categorizadas em três:

- Constantes: ϵ e \emptyset são expressões regulares que denotam, respectivamente as linguagens $L(\epsilon) = \{\epsilon\}$ e $L(\emptyset) = \emptyset$.
- **Símbolos**: se a é um símbolo qualquer, a denota a linguagem $\{a\}$.
- ullet Variáveis: uma variável L representa uma linguagem L qualquer.

Indução

- **Operador** +: se E e F são expressões regulares, então E+F é uma expressão regular denotando L(E) e L(F). Em outras palavras: $L(E+F)=L(E)\cup L(F)$.
- ② Concatenação: se E e F são expressões regulares, então EF representa a concatenação de L(E) com L(F). Isto é, L(EF) = L(E)L(F).
- **3** Estrela: se E é uma expressão regular, então E^* é uma expressão regular que indica o fecho Kleene de E. Em outras palavras, $L(E^*) = (L(E))^*$.

Indução

- **Operador** + sobrescrito: Se E é uma expressão regular, então E^+ denota EE^* , isto é, todas as palavras que podem ser formadas por uma ou mais concatenações das palavras que estão em L(E). $L(E^+) = L(EE^*).$
- **Parênteses**: Se E é uma expressão regular, (E) também é, e L(E) = L((E)).

Precedência dos operadores

 ${\sf estrela} > {\sf concatena} \\ {\sf ção} > {\sf união}$

3 Exemplos

Exemplos

Considerando o alfabeto $\Sigma = \{a, b\}.$

\overline{E}	L(E)
aa	{aa}
ba^*	Palavras que começam com b e são seguidas por zero ou mais a 's
a^*ba^*	Palavras que contém um único b
(a+b)*b(a+b)*	Palavras que tem, pelo menos , um b
$(a+b)^*aba(a+b)^*$	Palavras que contém a subpalavra aba
$b^{*}(ab^{+})^{*}$	Palavras em que todo a é seguido por, pelo menos , um b
$((a + b)(a + b))^*$	Palavras de comprimento par
ab + ba	Somente as palavras $\{ab, ba\}$
$(a + b)^*$	Σ^*
$(a + b)^*aa(a + b)^*$	Todas as palavras que contém a subpalavra aa
$(a+b)^*(aa+bb)$	Palavras que terminam com aa ou bb

4 Equivalência