МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа 3.3.1

Измерение удельного заряда электрона методами магнитной фокусировки и магнетрона

Выполнил: Гисич Арсений Б03-102

1 Аннотация

В данной работе было определено отношение заряда электрона к его массе методами магнитной фокусировки и магнетрона.

2 Метод магнитной фокусировки

2.1 Теоретические сведения

Здесь удельный заряд электрона определяется по формуле

$$\frac{e}{m_e} = \frac{8\pi^2 U}{L^2} \left(\frac{n^2}{B_{\Phi}^2}\right),\tag{1}$$

где U — ускоряющий потенциал в электронной трубке, L — путь электрона, B_{Φ} — фокусирующее поле, n — номер фокуса.

2.2 Методика измерений

Рис. 1: Схема установки

Основной частью установки является электронный осциллограф, трубка которого вынута и установлена в длинном соленоиде, создающим магнитное поле. Напряжение на отклоняющие пластины и питание подводятся к трубке многожильным кабелем.

Пучок электронов, вылетающих из катода с разными скоростями, ускоряется анодным напряжением. Пропустив пучок сквозь две узкие диафрагмы, можно выделить электроны с практически одинаковой продольной скоростью. Небольшое переменное напряжение, поступающее с клеммы «Контрольный сигнал» осциллографа на отклоняющие пластины, изменяет только поперечную составляющую скорости. При увеличении магнитного поля линия на экране стягивается в точку, а затем снова удлиняется.

Магнитное поле создается постоянным током, величина которого регулируется ручками источника питания и измеряется амперметром. Ключ служит для изменения направления поля в соленоиде.

Величина магнитного поля определяется с помощью милливеберметра.

На точность результатов может влиять внешнее магнитное поле, особенно продольное.

Измерения магнитного поля с помощью милливеберметра обычно проводятся в предварительных опытах: при отключении ключа устанавливается связь между силой тока и ин-

дукцией магнитного поля в соленоиде.

2.3 Используемое оборудование

- 1. электронно-лучевая трубка;
- 2. соленоид;

- 3. регулируемый источник постоянного тока;
- 4. вольтметр;
- 5. магнитометр.

2.4 Результаты измерений и обработка данных

Параметры установки:

$$L = 26, 5 \, c M$$

$$SN = 3000 \ cm^2$$

$$U_A = 1,230 \pm 0,025 \ \kappa B$$

Результаты измерения калибровочной зависимости B(I) при двух направлениях тока через обмотку представлены в таб. 1 и 2.

I, A	σ_I, A	Φ , м B б	σ_{arPhi} , м B б	B, м T л	σ_B , м T л
0	0,005	0	0,05	0	0,2
1,000	0,005	1,10	0,05	3,7	0,2
1,500	0,005	1,60	0,05	5,3	0,2
2,000	0,005	2,10	0,05	7,0	0,2
2,500	0,005	2,60	0,05	8,7	0,2
3,000	0,005	3,10	0,05	10,3	0,2
3,500	0,005	3,80	0,05	12,7	0,2
4,000	0,005	4,20	0,05	14,0	0,2
4,500	0,005	4,50	0,05	15,0	0,2

Таблица 1: Результаты измерений калибровочной кривой при прямом направлении тока

I, A	σ_I, A	Φ , м B б	σ_{arPhi} , м B б	B, м T л	σ_B , м T л
0	0,005	0	0,05	0	0,2
1,000	0,005	1,00	0,05	3,3	0,2
1,500	0,005	1,50	0,05	5,0	0,2
2,000	0,005	2,10	0,05	7,0	0,2
2,500	0,005	2,70	0,05	9,0	0,2
3,000	0,005	3,20	0,05	10,7	0,2
3,500	0,005	3,70	0,05	12,3	0,2
4,000	0,005	4,40	0,05	14,7	0,2
4,500	0,005	4,80	0,05	16,0	0,2

Таблица 2: Результаты измерений калибровочной кривой при обратном направлении тока

Калибровочный график B(I) представлен на рис. 2.

Рис. 2: Калибровочный график зависимости магнитного поля в соленоиде от тока в его обмотке

Полученные результаты измерения значения I_{ϕ} в зависимости от номера фокуса представлены в таб. 3 и 4.

n	I_{ϕ}, A	$\sigma_{I_{\phi}}, A$
1	1,350	0,005
2	2,060	0,005
3	2,800	0,005
4	3,420	0,005

Таблица 3: Результаты измерений тока фокусировки при прямом направлении тока

n	I_{ϕ}, A	$\sigma_{I_{\phi}}, A$
1	1,360	$0,\!005$
2	2,070	0,005
3	2,730	0,005
4	3,520	0,005

Таблица 4: Результаты измерений тока фокусировки при обратном направлении тока

График зависимости $B_{\phi}(n)$ представлен на рис. 3.

Рис. 3: График зависимости фокусирующего поля от номера n

По формуле (1) вычисляем e/m. Полученное значение:

$$\frac{e}{m} = 1,6 \pm 0,1 \cdot 10^{11} \ K$$
л/кг.

3 Метод магнетрона

3.1 Теоретические сведения

Здесь удельный заряд электрона определяется по формуле

$$\frac{e}{m_e} = \frac{8U_a}{B_{\rm Kp}^2 r_a^2},\tag{2}$$

где U_a — анодное напряжение, $B_{\rm kp}$ — критическое поле, r_a — радиус анода.

3.2 Методика измерений

Два крайних цилиндра изолированы от среднего небольшими зазорами и используются для устранения краевых эффектов на торцах среднего цилиндра, ток с которого используется при измерениях. В качестве катода используется тонкая вольфрамовая проволока. Катод разогревается переменным током, отбираемым от стабилизированного источника питания.

С этого же источника на анод лампы подается напряжение, регулируемое с помощью потенциометра и измеряемое вольтметром.

Рис. 4: Схема установки

Индукция магнитного поля в соленоиде рассчитывается по току I_m , протекающему через обмотку соленоида. Коэффициент пропорциональности между ними указан в установке.

Лампа закреплена в соленоиде. Магнитное поле в соленоиде создается постоянным током, сила которого регулируется ручками источника питания и измеряется амперметром.

3.3 Используемое оборудование

- 1. электронная лампа с цилиндрическим анодом;
- 2. регулируемый источник постоянного тока;
- 3. соленоид;
- 4. вольтметр;
- 5. 2 амперметра.

3.4 Результаты измерений и обработка данных

Параметры установки:

$$K = 3, 5 \cdot 10^{-2} \ T \text{A}/A$$

$$r_a = 12$$
 мм

Результаты измерений зависимостей анодного тока от магнитного поля $I_A(B)$ при различных значениях U_A представлены в таб. 5–10.

I_C, A	σ_{I_C}, A	B, м T л	σ_B , м T л	I_A, A	σ_{I_A}, A
0,060	0,005	2,1	0,2	0,220	0,005
0,100	0,005	3,5	0,2	0,205	0,005
0,110	0,005	3,9	0,2	0,210	0,005
0,120	0,005	4,2	0,2	0,215	0,005
0,125	0,005	4,4	0,2	0,210	0,005
0,130	0,005	4,6	0,2	0,055	0,005
0,140	0,005	4,9	0,2	0,015	0,005
0,150	0,005	5,3	0,2	0,005	0,005
0,160	0,005	5,6	0,2	0,003	0,005
0,170	0,005	6,0	0,2	0,000	0,005

Таблица 5: Результаты измерения $I_A(B)$ при $U_A=70\ B$

I_C, A	σ_{I_C}, A	B, м T л	σ_B , м T л	I_A, A	σ_{I_A}, A
0,060	0,005	2,1	0,2	0,225	$0,\!005$
0,100	0,005	3,5	0,2	0,230	$0,\!005$
0,120	0,005	4,2	0,2	0,225	0,005
0,130	0,005	4,6	0,2	0,220	0,005
0,135	0,005	4,7	0,2	0,225	0,005
0,140	0,005	4,9	0,2	0,065	0,005
0,145	0,005	5,1	0,2	0,030	$0,\!005$
0,150	0,005	5,3	0,2	0,015	0,005
0,160	0,005	5,6	0,2	0,010	0,005

Таблица 6: Результаты измерения $I_A(B)$ при $U_A=80\ B$

I_C, A	σ_{I_C}, A	B, м T л	σ_B , м T л	I_A, A	σ_{I_A}, A
0,060	0,005	2,1	0,2	0,230	$0,\!005$
0,100	0,005	3,5	0,2	0,225	0,005
0,120	0,005	4,2	0,2	0,225	0,005
0,130	0,005	4,6	0,2	0,220	0,005
0,140	0,005	4,9	0,2	0,220	$0,\!005$
0,145	0,005	5,1	0,2	0,090	0,005
0,150	0,005	5,3	0,2	0,030	0,005
0,160	0,005	5,6	0,2	0,010	0,005
0,170	0,005	6,0	0,2	0,000	0,005

Таблица 7: Результаты измерения $I_A(B)$ при $U_A=90\ B$

График зависимостей анодного тока от магнитного поля $I_A(B)$ при различных значениях U_A представлен на рис. 5.

I_C, A	σ_{I_C}, A	B, м T л	σ_B , м T л	I_A, A	σ_{I_A}, A
0,050	0,005	1,8	0,2	0,230	0,005
0,100	0,005	3,5	0,2	0,225	0,005
0,120	0,005	4,2	0,2	0,230	0,005
0,130	0,005	4,6	0,2	0,230	0,005
0,140	0,005	4,9	0,2	0,225	0,005
0,145	0,005	5,1	0,2	0,225	0,005
0,150	0,005	5,3	0,2	0,115	0,005
0,155	0,005	5,4	0,2	0,050	0,005
0,160	0,005	5,6	0,2	0,025	0,005
0,170	0,005	6,0	0,2	0,010	0,005
0,180	0,005	6,3	0,2	0,005	0,005

Таблица 8: Результаты измерения $I_A(B)$ при $U_A=100\ B$

I_C, A	σ_{I_C}, A	B, м T л	σ_B , м T л	I_A, A	σ_{I_A}, A
0,060	0,005	2,1	0,2	0,230	0,005
0,100	0,005	3,5	0,2	0,230	0,005
0,120	0,005	4,2	0,2	0,225	0,005
0,150	0,005	5,3	0,2	0,225	0,005
0,160	0,005	5,6	0,2	0,090	0,005
0,165	0,005	5,8	0,2	0,040	0,005
0,170	0,005	6,0	0,2	0,025	0,005
0,180	0,005	6,3	0,2	0,010	0,005
0,190	0,005	6,7	0,2	0,005	0,005

Таблица 9: Результаты измерения $I_A(B)$ при $U_A=110\ B$

I_C, A	σ_{I_C}, A	B, м T л	σ_B , м T л	I_A, A	σ_{I_A}, A
0,060	0,005	2,1	0,2	0,230	$0,\!005$
0,100	0,005	3,5	0,2	0,230	0,005
0,150	0,005	5,3	0,2	0,225	0,005
0,160	0,005	5,6	0,2	0,225	$0,\!005$
0,165	0,005	5,8	0,2	0,095	0,005
0,170	0,005	6,0	0,2	0,055	0,005
0,180	0,005	6,3	0,2	0,015	0,005
0,190	0,005	6,7	0,2	0,010	0,005
0,200	0,005	7,0	0,2	0,005	0,005

Таблица 10: Результаты измерения $I_A(B)$ при $U_A=120\ B$

Полученные критические значения индукции магнитного поля $B_{\kappa p}$ при различных значениях U_A представлены в таб. 11.

Рис. 5: Семейство зависимостей анодного тока от магнитного поля $I_A(B)$ при различных значениях U_A

U_A, B	$B_{\kappa p}$, м T л	$\sigma_{B_{\kappa p}},$ м T л
70	4,5	0,1
80	4,9	0,1
90	5,0	0,1
100	5,2	0,1
110	5,6	0,1
120	5,8	0,1

Таблица 11: Полученная зависимость $B_{\kappa p}(U_A)$

Полученный график зависимости $B^2_{\kappa p}(U_A)$ представлен на рис. 6.

Рис. 6: График зависимости $B_{\kappa\rho}^2(U_A)$

По формуле (2) вычисляем e/m. Полученное значение:

$$\frac{e}{m} = 1,9 \pm 0,1 \cdot 10^{11} \ K$$
л/кг.

4 Обсуждение результатов и выводы

В данной работе был измерен удельный заряд электрона методами магнитной фокусировки и магнетрона. Результаты измерений:

$$1,6\pm0,1\cdot10^{11}~K_{\it A}/\kappa \it e$$
 — метод магнитной фокусировки $1,9\pm0,1\cdot10^{11}~K_{\it A}/\kappa \it e$ — метод магнетрона

Полученные результаты согласуются в пределах погрешности с табличным значением — $1,76\cdot 10^{11}~K_A/\kappa z$. В методе магнитной фокусировки основной вклад в погрешность вносит погрешность определения коэффициента зависимости $B_{\phi}(n)$. Вероятно, при более точной настройки фокусировки осциллографа можно более точно определить точки фокуса. В методе магнетрона основным источником погрешности является погрешность определения $B_{\kappa p}$, так как низкая чувствительность амперметров не позволяет получить достаточно точек на кривой падения I_A и хорошо промерить эту зависимость. При использовании более чувствительных измерительных приборов можно получить больше точек на этой кривой и, следовательно, точнее определить точки $B_{\kappa p}$.