Rappel protocole RIP

Le protocole RIP s'appuie sur l'algorithme de Bellman-Ford pour calculer les plus courts chemins dans un réseau, en prenant en compte le nombre de sauts (c'est-à-dire le nombre de routeurs intermédiaires).

L'algorithme du protocole RIP repose sur le partage d'informations entre routeurs pour déterminer les meilleures routes vers différents sous-réseaux. Chaque routeur communique avec ses voisins en échangeant des vecteurs de distance, c'est-à-dire des couples (adresse, distance), qui représentent la distance en nombre de sauts vers une machine spécifique. Ces échanges permettent aux routeurs de construire et mettre à jour leurs tables de routage.

Dans la phase d'initialisation, chaque routeur transmet les adresses de ses voisins et les distances associées. Ensuite, le protocole RIP procède à des échanges périodiques entre les routeurs. Lorsqu'un routeur reçoit une information de son voisin, plusieurs scénarios peuvent se produire :

- 1. Découverte d'une nouvelle route vers un sous-réseau inconnu : le routeur l'ajoute à sa table.
- 2. Découverte d'une route plus courte vers un sous-réseau connu : le routeur met à jour sa table en remplaçant l'ancienne route par la nouvelle.
- 3. Réception d'une nouvelle route plus longue : le routeur ignore cette information.
- 4. Réception d'une **route existante**, mais **plus longue**, vers un routeur, en **passant par le même voisin** (la même passerelle) : le routeur **met à jour sa table** en **ajoutant cette nouvelle route** (cela implique qu'il y a eu un problème avec une liaison).

La distance maximale est limitée à 15 routeurs intermédiaires. En cas de panne d'une liaison, on utilisera une distance de 16 (qui correspond à une distance infinie).

On considère le réseau suivant :

Figure 1: Un exemple de réseau

Question 1

Pour chaque sous-réseau (identifié avec une lettre de A à F), indiquez l'adresse du réseau ainsi que le nombre de machines possible dans le réseau.

Figure 2: Les différents sous-réseaux du réseau

Sous-réseau	Adresse	Première IP	Dernière IP
A			
В			
С			
D			
Е			
F			

Vous pouvez utiliser l'espace suivant pour des calculs éventuels :

Correction exercice 1

Sous-réseau	Adresse sous-réseau	Première IP	Dernière IP
A	192.168.1.0	192.168.1.1	192.168.1.254
В	192.168.3.0	192.168.3.1	192.168.3.254
С	10.1.1.0	10.1.1.1	10.1.1.2
D	10.1.2.0	10.1.2.1	10.1.2.2
Е	10.1.3.0	10.1.3.1	10.1.3.2
F	192.168.2.0	192.168.2.1	192.168.2.254

Question 2

Indiquez les tables de routage des trois routeurs lors de la phase d'initialisation du protocole RIP.

R1:

Destination	Passerelle	Interface	Métrique

R2:

Destination	Passerelle	Interface	Métrique

R3:

Destination	Passerelle	Interface	Métrique

Correction exercice 2

R1:

Destination	Passerelle	Interface	Métrique
192.168.1.0/24	/	eth0	0
10.1.1.0/30	/	eth1	0
10.1.2.0/30	/	eth2	0

R2:

Destination	Passerelle	Interface	Métrique
192.168.2.0/24	/	eth0	0
10.1.1.0/30	/	eth1	0
10.1.3.0/30	/	eth2	0

R3:

Destination	Passerelle	Interface	Métrique
192.168.3.0/24	/	wlan0	0
10.1.2.0/30	/	eth1	0
10.1.3.0/30	/	eth2	0

Question 3

Quels sont les vecteurs de distance (composés de l'adresse du réseau et de la métrique) reçus :

- par le routeur R1 de la part du routeur R2 :
- par le routeur R1 de la part du routeur R3 :
- par le routeur R2 de la part du routeur R1 :
- par le routeur R2 de la part du routeur R3 :
- par le routeur R3 de la part du routeur R1 :
- par le routeur R3 de la part du routeur R2 :

Correction exercice 3

- vecteurs reçus par R1 de R2: (192.168.2.0, 0), (10.1.1.0, 0) et (10.1.3.0, 0)
- vecteurs recus par R1 de R3: (192.168.3.0, 0), (10.1.2.0, 0) et (10.1.3.0, 0)
- vecteurs reçus par **R2** de **R1**: (192.168.1.0, 0), (10.1.1.0, 0) et (10.1.2.0, 0)
- vecteurs reçus par **R2** de **R3**: (192.168.3.0, 0), (10.1.2.0, 0) et (10.1.3.0, 0)
- vecteurs reçus par R3 de R1: (192.168.1.0, 0), (10.1.1.0, 0) et (10.1.2.0, 0)
- vecteurs reçus par R3 de R2: (192.168.2.0, 0), (10.1.1.0, 0) et (10.1.3.0, 0)

Question 4

Complétez la table de routage du routeur R1 après réception des vecteurs de distance de R2 puis de R3 (dans cet ordre là).

Destination	Passerelle	Interface	Métrique

Question 5

On coupe la liaison entre R1 et R2.

Quel **vecteur de distance** est transmis par **R1** à ses **routeurs voisins** une fois qu'il a détecté la **panne** ?

Question 6

On considère la table de routage de R2 suivante, après la panne de la liaison entre R1 et R2 :

Destination	Passerelle	Interface	Métrique
192.168.2.0/24		eth0	0
10.1.1.0/30		eth1	16
10.1.2.0/30	10.1.1.1	eth1	16
10.1.3.0/30		eth2	0
192.168.1.0/24	10.1.1.1	eth1	16
192.168.3.0/24	10.1.3.2	eth2	1

R2 reçoit de **R3** les vecteurs de distance (192.168.1.0, 1) et (10.1.2.0, 0).

Modifiez la table de routage de R2 en conséquence :

Destination	Passerelle	Interface	Métrique
192.168.2.0/24		eth0	0
10.1.1.0/30		eth1	16
10.1.2.0/30			
10.1.3.0/30		eth2	0
192.168.1.0/24			
192.168.3.0/24	10.1.3.2	eth2	1