BERT

ARLMs vs. MLM

Learning goals

- Understand the concept of self-supervision
- Gain ability to distinguish different types of language models

AGAIN: WHAT IS A LANGUAGE MODEL?

- Statistical model that predicts text that fits well for a given context (typically also text)
- Auto-regressive LMs (ARLMs)
 - Predict one word that is highly likely given a prompt (previous words)
 - For predicting an entire text, repeat the process (i.e., extend the prompt with previously predicted words)
 - To predict a text from scratch, use an extra symbol <START> as the initial prompt

<START>

 \mathbf{w}_{0}

<START>

w_o

<START> the w_0 w_1

 $\langle START \rangle$ the w_0 w_1

<START> the dog w_0 w_1 w_2

dog

 W_2

©

<START>

 \mathbf{w}_{0}

the

 $\mathbf{w_1}$

ARLM: PROBABILISTIC INTERPRETATION

- Gives an estimate for the probability of a sentence using conditional probabilities
- In general:

$$P(A \cap B) = P(B) \cdot P(A|B)$$

• For P(sentence):

$$P(w_1, w_2, \dots, w_n | w_0)$$

$$= P(w_1 | w_0) \cdot P(w_2 | w_0, w_1) \cdot \dots \cdot P(w_n | w_0, \dots, w_{n-1})$$

EXAMPLES OF ARLMS (1)

Neural Machine Translation:

EXAMPLES OF ARLMS (1)

Image Captioning:

MASKED LANGUAGE MODELS (MLM)

- We have seen auto-regressive LMs
 - context: previous words
 - predict: next word
- Another type: Masked LMs (MLMs)
 - context: surrounding words
 - predict: masked word

MLM: PROBABILISTIC INTERPRETATION

- Estimates $P(w_i|w_0, w_1, w_{i-1}, ..., w_{i+1}, w_n)$
- No "clean" estimate for P(sentence), as

$$P(w_1, w_2, ..., w_n | w_0)$$

 $\neq P(w_1 | w_0, w_2, ..., w_n) \cdot P(w_2 | w_0, w_1, w_3, ..., w_n)$

- ARLMs are better than MLMs for generating texts
- Advantage of MLMs: Learning contextualized representations

Self-supervised Learning

DEFINITION

Unsupervised Learning:

- No labels attached to the data
- Learn patterns / clusters from the features only

Supervised Learning:

- (Gold) Labels attached to the data
- Learn from the association between features and labels

Self-Supervised Learning:

- No external labels attached to the data
 - → Samples with suitable labels can be generated from the known structure of the data itself
- Technically supervised learning, but no labeling effort + simultaneous ability to generate massive amounts of labeled data points

SELF-SUPERVISED OBJECTIVES

Self-supervised objectives:

- Skip-gram objective (cf. word2vec)
- Language modeling objective
- Masked language modeling (MLM) objective
- ... and many more possibilities for text data