ESERCIZIO 3

Un fissatore spinale presenta una sezione circolare piena riportata in figura, sottoposta ai carichi riportati (in modulo, $M_x=20~{\rm Nm}$ e $M_z=50~{\rm Nm}$). Sia R, il raggio della sezione pari a 5 mm, si svolgano i seguenti punti:

- si identifichino le tensioni che nascono a seguito dei carichi applicati, motivando le formule adottate;
- si calcolino e si rappresentino gli andamenti, i valori massimi e i versi delle tensioni;
- nota una σ_{amm} pari a 180 MPa, verificare i punti maggiormente sollecitati con il metodo di Von Mises.

Sezione circolare piena

Verifica con Von Mises:

$$\sigma_{eq} = \sqrt{\sigma_z^2 + 3\tau_z^2}$$

Rappresentare andamenti, versi e valori sulla sezione di seguito:

Università degli Studi di Padova Dipartimento di Ingegneria dell'Informazione

Corso di BIOMECCANICA (INP7078879) Prova scritta del 01.02.2023, A.A. 2022-2023

Nota: le reazioni vincolari ed i diagrammi delle azioni interne vanno riportati negli appositi spazi presenti nel testo (si rammenta che il momento va disegnato dalla parte delle fibre che tende); lo sviluppo di tutti i calcoli (in forma ordinata) deve essere allegato al compito utilizzando i soli fogli a quadretti forniti. NON UTILIZZARE MATITA E PENNA ROSSA sui fogli da consegnare.

TESTO 1

Cognome: Nome: Matricola:

ESERCIZIO 1

Si risolva la struttura riportata in figura. Si indichino di seguito:

- le reazioni vincolari, completando la tabella sottostante (positive se concordi al verso riportato);
- le azioni interne, tracciando i corrispondenti andamenti quotati negli schemi di pagina 2.

$H_{ m A}(o)$:	$V_{ m A}(\uparrow)$:	$M_{ m A}(\circlearrowleft)$:
$H_{\mathrm{B}}(\rightarrow)$:	$V_{ m B}(\uparrow)$:	$M_{ m B}(\circlearrowleft)$:

4

Esercizio 1: Diagrammi delle azioni interne.

$$\longrightarrow$$
 M

Esercizio 2

Un cubetto di cemento osseo (si supponga elastico, lineare, isotropo), é sottoposto ad uno stato di tensione biassiale riportato in figura. Si assuma un modulo elastico E pari a 2 GPa e un coefficiente di Poisson ν di 0.25. Si calcoli la **variazione volumetrica** del cubetto rispetto alla configurazione indeformata. Si riportino tutti i passaggi con giustificazione di eventuali assunzioni.

