Линейная Алгебра

Чепелин Вячеслав

19.02.2025

Содержание

1 Линейные отображения	2
1.1 Основные определения. Теорема о ранге и дефекте линейного отображения	2
1.2 Матрица линейного отображения. Координатный изоморфизм. Формула замены	
матрицы линейным отображением при замене базиса	5
1.3 Инварианты линейного отображения	7
1.4 Собственные числа и собственные векторы линейного оператора	11
1.5 Оператор простой структуры (о.п.с). Проекторы. Спектральное разложение. Функция	от
диагонализированной матрицы	14
Информация о курсе	16

1 Линейные отображения

1.1 Основные определения. Теорема о ранге и дефекте линейного отображения.

U,V — линейные пространства над одним полем $K(\mathbb{R},\mathbb{C})$

Отображение $\mathcal{A}:U\to V$ называется **линейным** (или гомоморфизмом), если:

$$\forall \lambda \in K \forall u_1, u_2 \in V : \mathcal{A}(u_1 + \lambda u_2) = \mathcal{A}(u_1) + \lambda \mathcal{A}(u_2)$$

Замечания.

- 1. $\mathcal{A}(u) = \mathcal{A}u$
- 2. При фиксированном аргументе и разных отображениях $\mathcal{A}u\mathcal{B}$, $\mathcal{A}u$ и $\mathcal{B}u$ являются векторами и их можно складывать и домножать на скаляр.
- 3. $\mathcal{A}\mathbb{O}_U = \mathbb{O}_V$

 $\forall \lambda \in K, \mathcal{A}, \mathcal{B}: U \to V$ — линейные отображения:

• $\lambda \mathcal{A}: U \to V$ — умножение отображения на скаляр:

$$\forall u \in U : (\lambda \mathcal{A})u = \lambda(\mathcal{A}u)$$

• $\mathcal{A} + \mathcal{B} : U \to V$ — сумма отображений:

$$\forall u \in U : (\mathcal{A} + \mathcal{B})u = \mathcal{A}u + \mathcal{B}u$$

Нулевое линейное отображение $\mathcal{O}:U\to V$:

$$\forall u \in U : \mathcal{O}u = \mathbb{O}_V$$

Заметим, что \mathcal{O} — нейтральный элемент относительно сложения отображений.

Заметим, что $-1\mathcal{A} = -\mathcal{A}$ — элемент, обратный \mathcal{A} относительно сложения отображений.

Оказывается, что выполняются все 8 аксиом линейного пространства, значит обозначим $L(U,V)=\mathrm{Hom}_K(U,V)=\mathrm{Hom}(U,V)$, как линейное пространство всех линейных отображений из U в V.

 $\mathcal{A} \in L(U, V)$:

- $\operatorname{Im}(\mathcal{A}) = \{v \in V, v = \mathcal{A}u \mid \forall u \in U\}$ образ линейного отображения, является линейным подпространством.
- $\operatorname{Ker}(\mathcal{A}) = \{u \in U \mid \mathcal{A}u = \mathbb{O}_v\}$ ядро линейного отображения, является линейным подпространством. Ядро всегда не пустое, так как $\mathbb{O}_U \in \operatorname{Ker}(\mathcal{A})$.

 $\operatorname{rg} \mathcal{A} = \dim(\operatorname{Im}(\mathcal{A})) -$ ранг отображения.

 $\operatorname{def} \mathcal{A} = \operatorname{dim}(\operatorname{Ker}(\mathcal{A})) - \operatorname{дефект}$ отображения.

 $\mathcal{A} \in L(U,V)$:

• A - сюръекция, если:

$$\operatorname{Im} \mathcal{A} = V \Leftrightarrow \operatorname{rg} \mathcal{A} = \dim(V)$$

• A — **инъекция**, если:

$$\operatorname{Ker} \mathcal{A} = \{ \mathbb{O}_V \} \Leftrightarrow \operatorname{def} \mathcal{A} = 0$$

То есть:

$$\forall u_1, u_2 \in U: \mathcal{A}u_1 = \mathcal{A}u_2 \Rightarrow u_1 = u_2$$

$$\mathcal{A}u_1 = \mathcal{A}u_2 \Leftrightarrow \mathcal{A}(u_1 - u_2) = \mathbb{O}_V \Leftrightarrow u_1 - u_2 \in \operatorname{Ker} \mathcal{A}$$

• A -биекция (изоморфизм), если:

$$\begin{cases} \operatorname{Im} \mathcal{A} = V \\ \operatorname{Ker} \mathcal{A} = \{\mathbb{O}_U\} \end{cases} \Leftrightarrow \begin{cases} \operatorname{rg} \mathcal{A} = \dim V \\ \operatorname{def} \mathcal{A} = 0 \end{cases}$$

- A эндоморфизм (линейный оператор), если U = V.
- $\mathcal{A}-$ **автоморфизм**, если является изоморфизмом и эндоморфизмом, то есть:

$$\begin{cases} U = V \\ \operatorname{rg} \mathcal{A} = \dim(V) \\ \operatorname{def} \mathcal{A} = 0 \end{cases}$$

Пусть $U=K^n, V=K^m, \mathcal{A}:U\to V=A=\left(a_{ij}\right)_{m\times n}, a_{ij}\in K$, то есть отображение представляет собой умножение матрицы на вектор. Тогда:

- $\operatorname{Im} \mathcal{A} = \operatorname{Im} A = \{y \in K^m \mid y = Ax \forall x \in K^n\} = \operatorname{span}(A_1,...,A_n)$ образ матрицы.
- Определение ранга $A \in M_{m \times n}$ совпадает с определением ранга $A \in L(K^n,K^m)$:

$$\operatorname{rg} A = \dim \operatorname{span}(A_1, ..., A_n) = \operatorname{rg} A$$

- A сюръекция $\Leftrightarrow \operatorname{rg} A = m$
- $\ker A = \{x \in k^n \mid Ax = 0\}$ ядро матрицы, общее решение СЛОУ Ax = 0.
- $\operatorname{def} A = \operatorname{dim} \operatorname{Ker} A$ размерность общего решения СЛОУ Ax = 0, то есть $n \operatorname{rg} A$ дефект матрицы.
- $\dim U = n = \det A + \operatorname{rg} A$

Если отображение $\mathcal{A} = A$:

• Инъекция, то:

$$def A = 0 \Leftrightarrow n - rg A = 0 \Leftrightarrow rg A = n$$

• Изоморфизм, то:

$$\begin{cases} \operatorname{rg} A = n \\ \operatorname{rg} A = m \end{cases} \Leftrightarrow n = m$$

Значит матрица квадратная. По теореме об изоморфизме:

• Автоморфизм, то:

$$\operatorname{rg} A = n = m \Leftrightarrow \exists A^{-1}$$

• Эндоморфизм, то:

$$n = m \Leftrightarrow K^n = K^m$$

 $\mathcal{A}\in L(W,V), \mathcal{B}\in L(U,W).$ $\mathcal{AB}:U\to V=\mathcal{A}\cdot\mathcal{B}$ — Произведение (композиция) отображений. Очевидно, что $\mathcal{A}\cdot\mathcal{B}\in L(U,V).$

Свойства:

- 1. \mathcal{A}, \mathcal{B} изоморфизмы $\Rightarrow \mathcal{A} \cdot \mathcal{B}$ изоморфизм.
- 2. $\mathcal{A}(\mathcal{B}_1+\mathcal{B}_2)=\mathcal{A}\mathcal{B}_1+\mathcal{A}\mathcal{B}_2,$ $(\mathcal{A}_1+\mathcal{A}_2)\mathcal{B}=\mathcal{A}_1\mathcal{B}+\mathcal{A}_2\mathcal{B}$ левая и правая дистрибутивность.
- 3. $\forall \lambda \in K : \mathcal{A}(\lambda \mathcal{B}) = (\lambda \mathcal{A})\mathcal{B} = \lambda(\mathcal{A}\mathcal{B})$

4.
$$\mathcal{C} \in L(V,\Omega) : \mathcal{A}(\mathcal{BC}) = (\mathcal{AB})\mathcal{C} = \mathcal{ABC}$$

Тогда $\mathrm{End}(V)$ — множество всех эндоморфизмов на V, является ассоциативной унитальной алгеброй. Нейтральным элементом для произведения служит E_V : $\forall v \in V : \mathrm{E}_V v = v$

Если $\mathcal{A} \in L(U,V)$ — изоморфизм, то $\exists \mathcal{A}^{-1}: V \to U \Rightarrow \mathcal{A}^{-1} \in L(V,U)$ — тоже изоморфизм.

$$\mathcal{A}\mathcal{A}^{-1}=\mathbf{E}_U$$

$$\mathcal{A}^{-1}\mathcal{A}=\mathcal{E}_V$$

 $\forall v_1 = \mathcal{A}u_1, \lambda v_2 = \mathcal{A}u_2$

$$\begin{split} \mathcal{A}u_1 + \lambda \mathcal{A}u_2 &= \mathcal{A}(u_1 + \lambda u_2) = v_1 + \lambda v_2 \\ u_1 + \lambda u_2 &= \mathcal{A}^{-1}v_1 + \lambda \mathcal{A}^{-1}v_2 = \mathcal{A}^{-1}(v_1 + \lambda v_2) \end{split}$$

Значит $\mathcal{A}^{-1} \in L(V,U)$

 $\mathcal{A} \in \operatorname{End}(V)$ — изоморфизм $\Leftrightarrow \mathcal{A} \in \operatorname{Aut}(V)$ — множество всех автоморфизмов.

Значит $\mathcal{A}^{-1} \in \operatorname{End}(V) \Leftrightarrow \mathcal{A}^{-1} \in \operatorname{Aut}(V)$ — обратный оператор к \mathcal{A} .

$$\mathcal{A}\mathcal{A}^{-1} = \mathcal{A}^{-1}\mathcal{A} = \mathcal{E}_V$$

Пусть $U_0 \subseteq U$ — линейное подпространство, $\mathcal{A} \in L(U,V)$.

Тогда $\mathcal{A}_0 = \mathcal{A}\mid_{U_0}: U_0 \to V$ — сужение линейного отображения на линейное подпространство U_0 .

$$\forall u \in U_0 : \mathcal{A}_0 u = \mathcal{A} u$$

 $\mathcal{A}_0 \in L(U_0,V)$ — линейное отображение.

Утверждение. Если $\mathcal{A}\in L(U,V)$ — изоморфизм, то $\mathcal{A}_0=\mathcal{A}\mid_{U_0}\in L(U_0,\operatorname{Im}\mathcal{A}_0)$ — изоморфизм.

Доказательство:

- Сюръекция очевидно.
- Инъекция: $\ker \mathcal{A}_0 \subseteq \ker \mathcal{A} = \{\mathbb{0}_U\} \Rightarrow \ker \mathcal{A}_0 = \{\mathbb{0}_U\}$

Значит \mathcal{A}_0 — изоморфизм.

Q.E.D.

Теорема о ранге и дефекте линейного отображения:

$$\forall \mathcal{A} \in L(U, V) : \dim(V) = \det \mathcal{A} + \operatorname{rg} \mathcal{A}$$

Доказательство:

Пусть $U_0=\operatorname{Ker}\mathcal{A}\subseteq U$ — линейное подпространство.

Пусть $U_1 \subseteq U$ — линейное подпространство и прямое дополнение U_0 : $U_0 \oplus U_1 = U$

$$\begin{split} \mathcal{A}_1 &= \mathcal{A}\mid_{u_1} \in L(u_1,\operatorname{Im}\mathcal{A}_1) \\ \forall u \in U \exists ! \, u = u_0 + u_1, u_0 \in U_0, u_1 \in U_1 \\ \mathcal{A}u &= \mathcal{A}u_0 + \mathcal{A}u_1 = \mathcal{A}u_1 \\ \operatorname{Im}\mathcal{A} &= \operatorname{Im}\mathcal{A}_1 \Rightarrow \operatorname{rg}\mathcal{A} = \operatorname{rg}\mathcal{A}_1 \end{split}$$

Покажем, что \mathcal{A}_1 — изоморфизм:

- Сюръекция очевидно.
- Инъекция:

$$\begin{array}{l} \operatorname{Ker} \mathcal{A}_1 \subseteq U_1 \\ \operatorname{Ker} \mathcal{A}_1 \subseteq \operatorname{Ker} \mathcal{A} \end{array} \} \Rightarrow \operatorname{Ker} \mathcal{A}_1 \subseteq U_0 \cap U_1 = \{ \mathbb{0}_U \}$$

 \mathcal{A}_1 — изоморфизм, значит:

$$\dim U_1 = \dim \operatorname{Im} \mathcal{A}_1 = \dim \operatorname{Im} \mathcal{A} = \operatorname{rg} \mathcal{A}$$

$$U_0 \oplus U_1 = U \Leftrightarrow \dim U = \dim U_0 + \dim U_1 = \operatorname{def} \mathcal{A} + \operatorname{rg} \mathcal{A}$$

Q.E.D.

Следствие (характеристика автоморфизма).

$$\mathcal{A} \in \operatorname{Aut}(V) \Leftrightarrow \operatorname{rg} \mathcal{A} = \dim V$$
 (то есть $\operatorname{Im} \mathcal{A} = V$) $\Leftrightarrow \operatorname{def} \mathcal{A} = 0$ (то есть $\operatorname{Ker} \mathcal{A} = \{\mathbb{O}_V\}$)

1.2 Матрица линейного отображения. Координатный изоморфизм. Формула замены матрицы линейным отображением при замене базиса.

$$\mathcal{A} \in L(U, V)$$

$$\xi = (\xi_1, ..., \xi_n)$$
 — базис U

$$\eta = (\eta_1,...,\eta_m)$$
 — базис V

$$u \in U \underset{\text{координатный изоморфизм}}{\longleftarrow} u = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} \in K^n, u = \sum_{i=1}^n u_i \xi_i$$

$$v \in V \underset{\text{координатный изоморфизм}}{\longleftarrow} v = \begin{pmatrix} v_1 \\ \vdots \\ v_m \end{pmatrix} \in K^m, v = \sum_{j=1}^m v_j \eta_j$$

Пусть $v \in V = \mathcal{A}u, u \in U$:

$$v = \mathcal{A}\left(\sum_{i=1}^n x_i \xi_i\right) = \sum_{i=1}^n x_i \mathcal{A}\xi_i, \mathcal{A}\xi_i \in V$$

$$\operatorname{Im} \mathcal{A} = \operatorname{span}(\mathcal{A}\xi_1, ..., \mathcal{A}\xi_n)$$

$$\operatorname{rg} \mathcal{A} = \operatorname{rg}(\mathcal{A}\xi_1, ..., \mathcal{A}\xi_n)$$

$$\mathcal{A}\xi_i = \sum_{j=1}^m a_{ji}\eta_j \underset{\text{координатный изоморфизм}}{\longleftarrow} A_i = \begin{pmatrix} a_{1i} \\ \vdots \\ a_{mi} \end{pmatrix} \in K^m$$

 $A=(A_1,...,A_n)=\left(a_{ij}\right)_{m\times n}$ — матрица линейного отображения $\mathcal A$ в базисах ξ,η пространств U и V соответственно.

Так как A_i — координатный изоморфизм, то по свойствам изоморфизма:

$$\operatorname{rg}(\mathcal{A}) = \operatorname{rg}(\mathcal{A}\xi_1,...,\mathcal{A}\xi_n) = \operatorname{rg}(A_1,...,A_n) = \operatorname{rg}(A)$$

$$(\mathcal{A}\xi_1, ..., \mathcal{A}\xi_n) = (\eta_1, ..., \eta_m)A$$

 $\mathcal{A} \in \mathrm{End}(V), e = (e_1, ..., e_n)$ — базис V

$$\mathcal{A}e_i = \sum_{j=1}^n a_{ji}e_j \Leftrightarrow (\mathcal{A}e_1,...,\mathcal{A}e_n) = (e_1,...,e_n)A.$$

A — квадратная **матрица оператора** $\mathcal A$ в базисе e

Утверждение. $\dim U = n, \dim V = m$:

$$L(U,V) \cong M_{m \times n}$$

Доказательство:

- Взаимноодназначность уже есть
- Линейность проверим:

$$\lambda \in K : \mathcal{A} + \lambda \mathcal{B} \stackrel{?}{\leftrightarrow} A + \lambda B$$

Где A и B — соответствующие матрицы для \mathcal{A} и \mathcal{B} в базисах (ξ, η) .

$$\begin{split} i &= 1...n: (\mathcal{A} + \lambda \mathcal{B})\xi_i = \mathcal{A}\xi_i + \lambda \mathcal{B}\xi_i = \sum_{j=1}^m a_{ji}\eta_j + \lambda \sum_{j=1}^m b_{ji}\eta_j = \sum_{j=1}^m \left(a_{ji} + \lambda b_{ji}\right)\eta_j \\ & \left(\mathcal{A} + \lambda \mathcal{B}\right) \leftrightarrow \left(a_{ji} + \lambda b_{ji}\right)_{m \times n} = \left(a_{ji}\right)_{(m \times n)_\lambda} \left(b_{ji}\right)_{m \times n} = A + \lambda B \end{split}$$

Утверждение. $\mathcal{A} \in L(W,V), \mathcal{B} \in L(U,W); \omega, \eta, \xi$ — базисы W,V,U;A — матрица \mathcal{A} в базисах $(\omega,\eta);B$ — матрица \mathcal{B} в базисах $(\xi,\omega) \Rightarrow AB$ — матрица \mathcal{AB} в базисах (ξ,η) .

Доказательство:

$$\begin{split} \mathcal{AB}\xi_i &= \mathcal{A}(\mathcal{B}\xi_i) = \mathcal{A}\left(\sum_{k=1}^p b_{ki}\omega k\right) = \\ &= \sum_{k=1}^p b_{ki}\mathcal{A}\omega_k = \sum_{k=1}^p b_{ki}\sum_{j=1}^m a(jk)\eta_j = \\ &= \sum_{j=1}^m \left(\sum_{k=1}^p a(jk)b_{ki}\right)\eta_j = \sum_{j=1}^m (AB)_{ji}\eta_j \end{split}$$

Следствие. $\mathcal{A}\in L(U,V)$ — изоморфизм, A — матрица \mathcal{A} в базисах $(\xi,\eta)\Rightarrow A^{-1}$ — матрица \mathcal{A}^{-1} в базисах (η,ξ) .

Пусть X — матрица \mathcal{A}^{-1} . Тогда:

$$\mathcal{A}\mathcal{A}^{-1} = \mathcal{E}_V \Leftrightarrow AX = E$$

$$\mathcal{A}^{-1}\mathcal{A} = \mathcal{E}_V \Leftrightarrow XA = E$$

 $\mathcal{A}-$ изоморфизм $\Leftrightarrow \dim V = \dim V = n = \operatorname{rg} \mathcal{A} = \operatorname{rg} A \Leftrightarrow \exists A^{-1} \Rightarrow X = A^{-1}$

$$\mathcal{A} \in L\Big(\underset{\xi}{U}, \underset{\eta}{V}\Big)$$

$$v = Au$$

$$v \overset{\eta}{\leftrightarrow} \mathbf{v} \in K^m$$

 $u \overset{\xi}{\leftrightarrow} u \in K^n$

$$\begin{split} \sum_{j=1}^m \mathbf{v} \eta_j &= v = \mathcal{A} u = \sum_{i=1}^n \mathbf{u}_i \mathcal{A} \xi_i = \sum_{i=1}^n \mathbf{u}_i \sum_{j=1}^m a_{ji} \eta_j = \sum_{i=1}^n \sum_{j=1}^m a_{ji} \mathbf{u}_i \eta_j \\ \mathbf{v} &= \sum_{i=1}^n a_{ji} \mathbf{u}_i \Leftrightarrow \mathbf{v} = A u \end{split}$$

Значит v=Au — форма записи отображения $\mathcal A$ в базисах (ξ,η) , где u — координаты u в ξ , а v — координаты v в η .

Теорема (Формула замены матрицы линейного отображения при замене базиса).

 $\mathcal{A} \in L(U,V), \xi, \xi'$ — базисы U, η, η' — базисы U:

$$\left. \begin{array}{l} \mathcal{A} & \longleftrightarrow & A \\ \mathcal{A} & \longleftrightarrow & A' \\ \mathcal{A} & \longleftrightarrow & A' \end{array} \right\} \Rightarrow A' = T_{\eta \to \eta'}^{-1} A T_{\xi \to \xi'}$$

Доказательство:

Построим схему отображений:

Следствие. $\mathcal{A} \in \text{End}(V)$; e, e' — базисы V:

$$\left. \begin{array}{l} \mathcal{A} \leftrightarrow A \\ \mathcal{A} \leftrightarrow A' \\ \mathcal{A} \leftrightarrow A' \end{array} \right\} \Rightarrow A' = T_{e \to e'}^{-1} A T_{e \to e'}$$

Квадратные матрицы A и B — **подобны**, если \exists невырожденная матрица C такая, что $B = C^{-1}AC$

Значит матрицы операторов в разных базисах подобны.

Замечание.

$$\begin{array}{c} v = \mathcal{A}u \underset{(\xi,\eta)}{\longleftrightarrow} \mathbf{v} = A\mathbf{u} \\ v = \mathcal{A}u \underset{(\xi',\eta')}{\longleftrightarrow} \mathbf{v'} = A'\mathbf{u'} \end{array} \right\} \Rightarrow \begin{cases} \mathbf{v'} = T_{\eta \to \eta'}^{-1} \mathbf{v} \\ \mathbf{u} = T_{\xi \to \xi'} \mathbf{u'} \end{cases}$$

$$\mathbf{v'} = T_{\eta \to \eta'}^{-1} \mathbf{v} = T_{\eta \to \eta'}^{-1} A\mathbf{u} = T_{\eta \to \eta'}^{-1} AT_{\xi \to \xi'} \mathbf{u'} = A'\mathbf{u'}$$

Значит форма записи линейного отображения не зависит от выбора базиса.

1.3 Инварианты линейного отображения.

Инвариант — некоторое свойство объекта, которое не меняется при определенных действиях и преобразованиях.

 \mathcal{A} — линейное отображение. Ранг и дефект инварианты относительно выбора базиса.

Пусть $\mathcal{A} \in \operatorname{End}(V)$. Пусть $e_1, ..., e_n$ — базис v.

Как мы знаем, $\exists ! D$ n-форма, такая что $D(e_1,...,e_n)=1.$ Тогда **определитель линейного оператора**:

$$\det \mathcal{A} = \det(\mathcal{A}e_1,...,\mathcal{A}e_n) = D(\mathcal{A}e_1,...,\mathcal{A}e_n)$$

Замечание. $\det \mathcal{A} = D(\mathcal{A}e_1,...,\mathcal{A}e_n) = D(Ae_1,...,Ae_n) = \det A$ — определение определителя линейного оператора и матрицы соотносятся.

Теорема.

$$\forall \mathcal{A} \in \text{End}(V), \det \mathcal{A} = \det A$$

Доказательство:

Возьмем $e=\left(e_{1},...,e_{n}\right)$ базис V. Тогда:

$$\begin{split} \mathcal{A} & \longleftrightarrow_{\text{вз. однозначно}} A = \left(a_{ij}\right)_{n \times n} \\ \det \mathcal{A} &= D(\mathcal{A}e_1, ..., \mathcal{A}e_n) = D\Bigg(\sum_{i=1}^n a_{i1}e_{i_1}, ..., \sum_{i=1}^n a_{in}e_{i_n}\Bigg) = \\ &= \sum_{i_1=1}^n ... \sum_{i_n=1}^n a_{i_{11}} \cdot ... \cdot a_{i_{nn}} D\Big(e_{i_1}, ..., e_{i_n}\Big) = \\ &= \sum_{\sigma \in S_n} a_{i_11} \cdot ... \cdot a_{i_nn} \cdot (-1)^{\varepsilon(\sigma)} D(e_1, ..., e_n) = \det A \end{split}$$

Q.E.D.

Замечание. A и B подобные матрицы, то $\det A = \det B$.

Замечание. $\det \mathcal{A}$ — инвариант линейного оператора, он не зависит от базиса.

Следствие 1. $\forall n$ -форма f на V:

$$\forall \xi_1, ..., \xi_n \in V : f(\mathcal{A}\xi_1, ..., \mathcal{A}\xi_n) = \det Af(\xi_1, ..., \xi_n)$$

Доказательство:

Возьмем $e=(e_1,...,e_n)$ — базис V. $\mathcal{A}\underset{e}{\leftrightarrow}A$. Это значит, что мы берем матрицу линейного оператора в данном базисе.

$$f(\mathcal{A}e_1,...,\mathcal{A}e_n) \xrightarrow{\text{из доказательства теоремы}} \det Af(e_1,...,e_n)$$

На самом деле $\alpha=f(e_1,...,e_n)$, поэтому:

$$\forall \xi_1,...,\xi_n: g(\xi_1,...,\xi_n) \coloneqq f(\mathcal{A}\xi_1,...,\mathcal{A}\xi_n)$$

Заметим, что g - полилинейное, т.к. f полилинейное и \mathcal{A} - линейное отображение. Также g - антисимметричное, т.к. f - антисимметричное. откуда g-n-форма. Заметим интересный факт:

$$g(e_1, ..., e_n) = f(Ae_1, ..., Ae_n) = \det A \cdot f(e_1, ..., e_n)$$

откуда:

$$g(\xi_1,...,\xi_n) = g(e_1,...,e_n) D(\xi_1,...,\xi_n) = \det A \cdot \alpha D(\xi_1,...,\xi_n) = \det A \cdot f(\xi_1,...,\xi_n)$$

Замечание. Мы можем вывести 9-ое свойство определителя по-другому. Пусть $\mathcal{A} = A_{n \times n}$ — линейный оператор умножения. $f = D, B_j \in K^n$. Тогда:

$$\det(AB_1, ..., AB_N) = \det A \cdot \det B$$

Следствие 2. $\mathcal{A}, \mathcal{B} \in \text{End}(V) \Rightarrow \det(\mathcal{AB}) = \det \mathcal{A} \cdot \det \mathcal{B}$

Доказательство:

Пусть e - базис V. Тогда $\mathcal{A} \overset{e}{\leftrightarrow} A, \mathcal{B} \overset{e}{\leftrightarrow} B$. Также $\mathcal{AB} \overset{e}{\leftrightarrow} AB$ по свойству. откуда:

$$\det \mathcal{AB} = \det(AB) = \det A \cdot \det B = \det \mathcal{A} \cdot \det \mathcal{B}$$

Q.E.D.

Следствие 3. $\mathcal{A} \in \mathrm{Aut}(V) \Leftrightarrow \det A \neq 0$. Причем $\det \mathcal{A}^{-1} = \frac{1}{\det \mathcal{A}}$

Доказательство:

$$\mathcal{A} \in \operatorname{Aut}(V) \Leftrightarrow \begin{cases} \mathcal{A} \in \operatorname{End}(V) \\ \operatorname{изоморфизм} \Leftrightarrow \begin{cases} \mathcal{A} \in \operatorname{End}(V) \\ \operatorname{def} \mathcal{A} = \dim \ker \mathcal{A} = 0 \end{cases} \Leftrightarrow \begin{cases} \mathcal{A} \in \operatorname{End}(V) \\ \operatorname{rg} \mathcal{A} = n \end{cases} \Leftrightarrow \begin{cases} \mathcal{A} \overset{e}{\leftrightarrow} A, \det A \neq 0 \\ \operatorname{rg} A = n \end{cases}$$

Мы знаем, что существует \mathcal{A}^{-1} . А также $\mathcal{A}\cdot\mathcal{A}^{-1}=\varepsilon$. откуда по свойству 3 получаем, что $\det\mathcal{A}^{-1}=\det\mathcal{A}$

Q.E.D.

Следствие 4. $\det(\mathcal{A}\mathcal{A}^{-1})=1=\det\mathcal{A}\cdot\det\mathcal{A}^{-1}$

Вспомним старое определение $\operatorname{tr} A = \sum_{i=1}^n a_{ii}$ - след матрицы.

Теорема (о следе подобных матриц).

Если A и B подобны, то $\operatorname{tr} A = \operatorname{tr} B$.

Доказательство:

A и B подобны $\Leftrightarrow \exists C: B = C^{-1}AC$. Пусть $C^{-1} = S = \left(s_{ij}\right)$. откуда:

$$\operatorname{tr} B = \sum_{i=1}^{n} b_{ii} = \sum_{i=1}^{n} \sum_{j=1}^{n} s_{ij} (AC)_{ji} = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} s_{ij} \cdot a_{jk} \cdot c_{ki} = \sum_{j=1}^{n} \sum_{k=1}^{n} a_{jk} \sum_{i=1}^{n} c_{ki} s_{ij}$$

Заметим, что $(CS)_{kj}=\delta_{kj}$, где $\delta_{kj}=\left\{egin{matrix} 1,k=j\\0,k
eq j \end{matrix}
ight.$ Так что получаем, что

$$\operatorname{tr} B = \sum_{i=1}^{n} a_{ii} = \operatorname{tr} A$$

Q.E.D.

Следствие. $\forall \mathcal{A} \in \operatorname{End}(V) \Rightarrow \operatorname{tr}(A) = \operatorname{tr} A'$, где A и A' матрицы оператора \mathcal{A} в базисе e и e' соответственно.

 $\mathcal{A} \in \operatorname{End}(V), \operatorname{tr} \mathcal{A} = \operatorname{tr} A -$ след оператора.

Замечание. след оператора инвариантен из следствия выше.

Линейное подпространство $L\subset V$ называется **инвариантным** относительно линейного оператора $\mathcal{A}\in \mathrm{End}(V)$, если $\forall v\in L, \mathcal{A}v\in L$.

Теорема 1.

 $L\subset V$ - линейное подпространство. L - инвариантно относительно $\mathcal{A}\in\mathrm{End}(V)$. Тогда \exists базис пространства V матрица, такой что матрица оператора \mathcal{A} в этом базисе будет иметь ступенчатый \mathfrak{sud} , при этом размерность $A^1=k\times k, k=\dim L$.

$$A = \begin{pmatrix} A^1 & * \\ 0 & A^2 \end{pmatrix}$$

Доказательство:

 $L = \text{span}(e_1, ..., e_k)$ - базис L.

Дополним базис L до базиса $V: V = \text{span}(e_1, ..., e_k, e_{k+1}, ..., e_n)$.

Запишем матрицу A по определению:

$$\forall e_i \in L: \mathcal{A}e_i \in L \Rightarrow \mathcal{A}e_i = \sum_{j=1}^k a_{ji}e_j \Leftrightarrow A_i = \begin{pmatrix} a_{1i} \\ \vdots \\ a_{ki} \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

откуда
$$A = \begin{pmatrix} a_{11} & \dots & a_{1k} & * & \dots & * \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ a_{k1} & \dots & a_{k1} & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & * & \dots & * \end{pmatrix} \Rightarrow A^1 = \begin{pmatrix} a_{11} & \dots & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{k1} & \dots & a_{k1} \end{pmatrix}$$

Q.E.D.

Теорема 2.

 $V=igoplus_{i=1}^m L_i$, L_i инвариантны относительно $\mathcal{A}\Rightarrow\exists$ базис пространства V, такое что матрица оператора \mathcal{A} будет иметь блочно-диагональный вид:

$$\begin{pmatrix} A^1 & \dots & \dots & \mathbb{O} \\ \vdots & A^2 & \dots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \mathbb{O} & \dots & \dots & A^n \end{pmatrix}$$

Доказательство:

Пусть базис $V \stackrel{\text{по эквив. условию } \oplus}{=\!=\!=\!=\!=}$ объединение базисов L_i .

$$L_i = \operatorname{span} \left(e_1^i, ..., e_{k_i}^i\right), \dim L_i = k_i$$

Построим матрицу по определению. Не трудно заметить, что для каждого L_i из доказательства прошлой теоремы, все кроме соответствующих строчек для L_i будет зануленно.

Q.E.D.

Замечание. $A_i \leftrightarrow A|_{L_i} \in \operatorname{End}(L_i)$.

Теорема 3.

$$V=igoplus_{i=1}^m L_i$$
, L_i инвариантны относительно $\mathcal{A}\Rightarrow\operatorname{Im}\mathcal{A}=igoplus_{i=1}^m\operatorname{Im}\mathcal{A}|_{L_i}$, где $\mathcal{A}|_{L_i}\in L(L_i,V)$

Доказательство:

$$\forall v \in V: \operatorname{Im} \mathcal{A} \ni \mathcal{A}v = \mathcal{A} \sum_{i=1}^m v_i = \sum_{i=1}^m \mathcal{A}v_i \in \operatorname{Im} A|_{L_i}$$

Тогда всё, что нам осталось проверить это то, что наши пространства дизъюнкты. Но, если присмотреться к тому, что у нас написано, то у нас для любого вектора из ${\rm Im}\,\mathcal{A}$ существует лишь одно разложение через ${\rm Im}\,A|_{L_i}$, что соответствует эквивалентному определению прямой суммы.

Q.E.D.

1.4 Собственные числа и собственные векторы линейного оператора

 $\lambda \in K$ называется **собственным числом** $\mathcal{A} \in \operatorname{End}(V)$, если $\exists v \in V, v \neq 0$. $\mathcal{A}v = \lambda v$. Такой v называют **собственным вектором** собственного числа λ .

$$\lambda \in K : \begin{cases} \mathcal{A}v = \lambda v \\ v \neq 0 \end{cases} \Leftrightarrow \begin{cases} (A - \lambda \varepsilon)v = 0 \\ v \neq 0 \end{cases} \Leftrightarrow \begin{cases} v \in \ker(A - \lambda \varepsilon) \\ v \neq 0 \end{cases} \Leftrightarrow$$

v — собственный вектор собственного числа λ .

 $V_{\lambda}=\ker(A-\lambda \varepsilon)-$ собственное подпространство $\mathcal A$ соответствующего собственного числа λ . Это мн-во всех собственных векторов V, отвечающим собственному числу λ и нулевой вектор.

$$\gamma(\lambda) = \dim V_{\lambda}$$
 — геометрическая кратность.

Свойства.

- 1. V_{λ} инвариантно относительно $(\mathcal{A} \lambda \varepsilon)$.
- 2. V_{λ} инвариантно относительно \mathcal{A} .
- 3. $\gamma(\lambda)$ инвариант относительно базиса.

Условие существования собственного числа $\lambda \in K_{\mathcal{A}}$ — собственное число, v — собственный вектор $\Leftrightarrow \ker(A - \lambda \varepsilon)$ нетривиально $\Leftrightarrow \det(\mathcal{A} - \lambda \varepsilon) \neq 0 \Leftrightarrow \operatorname{rg}(\mathcal{A} - \lambda \varepsilon) \neq n \Leftrightarrow \det(\mathcal{A} - \lambda \varepsilon) = 0$

Т.к. определитель линейного оператора инвариантен, то:

$$\det(A - \lambda \varepsilon) = 0 \Leftrightarrow \det(A - \lambda E) = 0$$

$$\chi(t) = \det(\mathcal{A} - t\varepsilon)$$
 — характеристический многочлен оператора \mathcal{A} .

Т.к. det оператора инвариантен $\chi(t)=\det(A-tE)$, где A - матрица линейного оператора $\mathcal A$ в некотором базисе.

$$\chi(t) = \begin{vmatrix} a_{11} - t & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - t & \dots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - t \end{vmatrix} = (-1)^n \cdot t^n + (-1)^{n-1} \big(\operatorname{tr} A t^{n-1} \big) + \dots + \det A$$

По теореме Виета:

$$\begin{cases} t_1+\ldots+t_n=\operatorname{tr} A\\ t_1\cdot\ldots\cdot t_n=\det A \end{cases}$$

Заметим, что λ — собственное число $\mathcal{A}\Leftrightarrow egin{cases} \lambda\in K\\ \chi(\lambda)=0 \text{ - корень хар. мн.} \end{cases}$ Замечание. Если все корни хар. мн. $\in K$, то $egin{cases} \lambda_1+\ldots+\lambda_n=\operatorname{tr} A\\ \lambda_1\cdot\ldots\cdot\lambda_n=\det A \end{cases}$

Спектром оператора \mathcal{A} называется множество $\{(\lambda, \alpha(\lambda))\}, \alpha(\lambda)$ - кратность λ лин. оператора в хар. уравнении (алгебраическая кратность). Спектр это множество пар.

Простой спектр — все кратности равны 1.

Теорема 1.

$$orall \mathcal{A} \in \mathrm{End}(V)$$
. $orall \lambda$ с.ч. $\mathcal{A}: 1 \leq \gamma(\lambda) \leq \alpha(\lambda)$

Доказательство:

$$\lambda$$
 с.ч. $\mathcal{A} \Leftrightarrow \ker(\mathcal{A} - \lambda \varepsilon) = V_\lambda$ не тривиально $\Leftrightarrow \gamma_1 = \dim V_\lambda \geq 1.$

Пусть $\dim V_{\lambda} = \gamma, V_{\lambda}$ инвариантно относительно \mathcal{A} , значит по теореме 1 об инварианте подпространств существует V такой, что матрица оператора $\mathcal A$ будет иметь ступенчатый вид:

$$A = \begin{pmatrix} A^1 & * \\ 0 & A^2 \end{pmatrix}$$

$$\dim A^1 = \gamma \times \gamma, V = \mathrm{span}\big(e_1,...,e_\gamma,e_{\gamma+1},...,e_\gamma\big)$$

При построении матрицы оператора \mathcal{A} :

$$\mathcal{A}e_i=\lambda e_i\Leftrightarrow A_i=egin{pmatrix} \vdots \\ 0 \\ \lambda \\ 0 \\ \vdots \end{pmatrix}$$
 - λ на i -ой строчке. Немного распишем:

$$\chi(t) = \det(A - tE) =$$

$$= \begin{vmatrix} A^1 - tE_{\gamma imes \gamma} & * & \\ \mathbb{O} & A^2 - tE_{(n-\gamma) imes (n-\gamma)} \end{vmatrix} \frac{\text{по 6-ому св-ву определителей}}{} = |A^1 - tE| A^2 - tE| = \chi_{A^1}(t) \cdot \chi_{A^2}(t) =$$

$$= (\lambda - t)^{\gamma} \chi_{A_2}(t) \Rightarrow$$

 $\Rightarrow \lambda$ корень $\chi(t)$, причем кратность $\geq \gamma$, т.к λ может оказаться корнем χ_{A^2}

Q.E.D.

Теорема 2.

 $\lambda_1,\lambda_2,...,\lambda_n$ попарно различные с.ч $\mathcal{A},v_1,...,v_n$ соответствуют с.в. $\Rightarrow v_1,...,v_n$ – линейно независимы.

Доказательство:

Докажем по индукции:

- База: $m=1:\lambda_1,v_1\Rightarrow$ линейно независимы.
- Индукционный переход: Пусть верно для m, докажем для m+1:

От противного: Пусть $\lambda_1,...,\lambda_m,\lambda_{m+1}$ попарно различные собственные числа.

 $v_1,...,v_m$ — линейно независимы по предположению. $v_1,...,v_m,v_{m+1}$ - линейно зависимы. Откуда: $v_{m+1}=\sum\limits_{i=1}^m \alpha_i v_i$. С одной стороны:

$$\mathcal{A}v_{m+1} = \lambda_{m+1}v_{m+1} = \lambda_{m+1}\sum_{i=1}^{m}\alpha_i v_i$$

С другой стороны:

$$\begin{split} \mathcal{A}v_{m+1} &= \mathcal{A}\sum_{i=1}^m \alpha_i v_i = \sum_{i=1}^m \alpha_i \mathcal{A}v_i = \sum_{i=1}^m \alpha_i \lambda_i v_i \\ &\sum_{i=1}^m (\lambda_{m+1} - \lambda_i) a_i v_i = 0 \end{split}$$

Но мы знаем, что $v_1,...,v_m$ линейно независимы. Откуда эта линейная комбинация тривиальна, но с другой стороны, она такой быть не может, потому что $\exists \alpha_i \neq 0$, для которого v_i не равен нулю, а так же, исходя из того что искомые с.ч. попарно различны, то $v_{m+1}-v_i \neq 0$. Откуда комбинация нетривиальна. Противоречие.

Q.E.D.

Следствие $\lambda_1,...,\lambda_m$ попарно различные с.ч. $\mathcal{A}\Rightarrow\bigoplus_{i=1}^m V_{\lambda_i}$, т.е V_{λ_i} дизъюнктны.

Доказательство:

$$\mathbb{0} = v_1 + \ldots + v_m, v_i \in V_{\lambda_i}$$

Если в сумме какой-то из векторов не нулевой, то это собственный вектор, а собственные вектора для различных с.ч. линейно независимы. Противоречие. откуда все вектора в сумме нулевые, откуда подпространства дизъюнктны.

Q.E.D.

Теорема 3

 $V = igoplus_{i=1}^m L_i$, L_i инвариантно относительно $\mathcal{A} \in \operatorname{End}(V)$. Тогда:

$$\chi(t) = \det(\mathcal{A} - t\varepsilon) = \prod_{i=1}^{m} \chi_{\mathcal{A}_i}(t)$$

Доказательство:

Смотрим теорему 3 об инв. подпр. Матрица А - блочно-диагональная:

$$A = \begin{pmatrix} A^1 & \dots & \dots & \mathbb{0} \\ \vdots & A^2 & \dots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \mathbb{0} & \dots & \dots & A^n \end{pmatrix}$$

Тогда
$$\chi(t)=\det(A-tE)$$
 $\xrightarrow{\text{по 6-ому свойству опр.}}\prod_{i=1}^m\det(A^i-tE)=\prod_{i=1}^m\chi_{A_i}(t)$

Q.E.D.

1.5 Оператор простой структуры (о.п.с). Проекторы. Спектральное разложение. Функция от диагонализированной матрицы.

 $\mathcal{A} \in \mathrm{End}(V)$ называется **оператором простой структуры (о.п.с)**, если \exists базис пространства V такой, что матрица оператора \mathcal{A} в этом базисе имеет диагональный вид.

$$\Lambda = \operatorname{diag}(\lambda_1, ..., \lambda_n) = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{pmatrix}$$

Заметим, что в таком случае собственные числа оператора $\mathcal A$ будут λ_i , а так же собственные вектора этих чисел - соотв. столбики (легко проверить умножением). Отсюда все корни характеристического многочлена $\chi \in K \Leftrightarrow \sum_{\lambda \in \mathcal C \setminus \mathcal A} \alpha(\lambda) = n = \dim V$.

Теорема.

 $\forall A \in \mathrm{End}(V),$ если $\sum\limits_{\lambda \text{ -c.ч. } \mathcal{A}} \alpha(\lambda) = n,$ то тогда:

$$\mathcal{A} \ \ \text{- o.п.c} \Leftrightarrow \forall \lambda \ \ \text{- c.ч.} \ \gamma(\lambda) = \alpha(\lambda) \Leftrightarrow \sum_{\lambda \text{-c.ч.} \ \mathcal{A}} \gamma(\lambda) = n = \dim V$$

Доказательство:

 $\sum\limits_{\lambda \text{ -c.ч. }\mathcal{A}}\alpha(n)=n \Leftrightarrow$ все корни $\chi \in K$, откуда \mathcal{A} - о.п.с.

 $\mathcal A$ о.п.с. $\Leftrightarrow \exists$ базис V такой, что матрица диагональна \Leftrightarrow

$$\Leftrightarrow V = \bigoplus_{\lambda - \text{ c.u.}} V_{\lambda} \Leftrightarrow \sum_{\lambda - \text{ c.u.}} \gamma(\lambda) = n = \dim V$$

Q.E.D.

Следствие. Если все корни характ. многочлена $\in K$, а также все $\alpha(\lambda)=1$ (спектр простой), то $\mathcal A$ - о.п.с.

 $A_{n imes n}$ называется **диагонализируемой**, если она подобна диагональной.

Теорема (критерий диагональности матрицы A).

это перепишем

A подобна диагональной \Leftrightarrow матрица о.п.с \mathcal{A} в некотором базисе

Доказательство:

Пусть A - диагонализируемая \Leftrightarrow подобна диагональной \Leftrightarrow \exists невырожд Т: $T^{-1}AT = \Lambda = \mathrm{diag}(\lambda_1,...,\lambda_n)$. V - линейное пространство над полем K. $e = (e_1,...,e_n)$ - базис V.

Пусть A - матрица в базисе e. Тогда $Ae_j = \sum\limits_{i=1}^n a_{ij}e_i$. $v = (v_1,...,v_n)$ - базис.

Откуда
$$v_1,...,v_n=(e_1,...,e_n)T_{e\to v}\Rightarrow \mathcal{A}\stackrel{v}{\leftrightarrow})A'=T^{-1}AT=\Lambda$$

 $\mathcal A$ о.п.с, A - матрица в некотором базисе $e=(e_1,...,e_n)$. Возьму $v_1,...,v_n$ - базис V, где v_i - собственный вектор $\mathcal A$. Заметим, что так как $\mathcal A$ о.п.с, то такой базис существует.

Теперь давайте возьмем матрицу перехода из $T_{e o v}$. Тогда $\mathcal{A}\stackrel{v}{\leftrightarrow})A'=T^{-1}AT=\Lambda\Rightarrow A$ подобна диагональной

Q.E.D.

Алгоритм поиска диагонального представления матрицы подобной диагональной

- 1. Найти спектр: если все корни $\chi \in K$, переходим к 2.
- 2. Найти все $\gamma(\lambda)$, если $\forall \lambda$ с.ч $\gamma(\lambda) = \alpha(\lambda)$, то перейти к 3.
- 3. $T_{\text{\tiny Kah.} \rightarrow v} = (v_1,...,v_n) \ T^{-1}AT = \Lambda$

Информация о курсе

Поток — у2024. Группы М3138-М3139.

Преподаватель — Кучерук Екатерина Аркадиевна.

