

LECTURE 5:

ADVANCED RECURRENT NEURAL NETWORKS

University of Washington, Seattle

Fall 2025

Previously in EEP 596...

- Tanh function
- new hidden state
- previous hidden state
- X_t input
- → concatenation

Previously in EEP 596...

OUTLINE

Part 1: Gated RNNs

- Need for Gated RNNs
- Long Short-Term Memory (LSTM)
- Gated Recurrent Unit (GRU)
- RNN extensions on LSTM/GRU

Part 2: Encoder-Decoder RNNs

- Many to many RNN Recap
- Encoder-Decoder Architecture
- Training Encoder-Decoder RNNs

GATED RNNs

Need for Gated RNNs

Long Short-Term Memory (LSTM)

Gated Recurrent Unit (GRU)

Recap: Backpropagation in RNNs

→ Forward Backward output hidden h_0 x_0 χ_2 χ_4 input

Recap: Backpropagation in RNNs

→ Forward ← Backward

Backpropagation is performed backward in time

Vanishing and Exploding Gradients

- → Forward
- ← Backward

output

hidden

input

Vanishing and Exploding Gradients

- → Forward ← Backward
- output

hidden

input

Longer input sequence → higher risk of Vanishing/Exploding Gradients!

Vanishing and Exploding Gradients

Need for better RNN architecture capable of processing longer sequence

Gated RNNs

Vanilla RNN

Vanilla RNN

- Tanh function
- new hidden state
- h₁₃ previous hidden state
- X_t input
- → concatenation

Vanilla RNN

- Tanh function
- new hidden state
- h₁₋₁ previous hidden state
- X_t input
- → concatenation

$$a^{(t)} = b + Wh^{(t-1)} + Ux^{(t)}$$

$$h^{(t)} = \tanh(a^{(t)})$$

$$o^{(t)} = c + Vh^{(t)}$$

$$\hat{y}^{(t)} = \operatorname{softmax}(o^{(t)})$$

LSTM (Long Short-Term Memory)

Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." *Neural computation* 9.8 (1997): 1735-1780.

LSTM (Long Short-Term Memory)

$$egin{aligned} f_t &= \sigma_g(W_f x_t + U_f h_{t-1} + b_f) \ i_t &= \sigma_g(W_i x_t + U_i h_{t-1} + b_i) \ o_t &= \sigma_g(W_o x_t + U_o h_{t-1} + b_o) \ c_t &= f_t \circ c_{t-1} + i_t \circ \sigma_c(W_c x_t + U_c h_{t-1} + b_c) \ h_t &= o_t \circ \sigma_h(c_t) \end{aligned}$$

Operation

Pointwise

Transfer

Concatenate Copy

Cell state

- Unique to LSTM
- Long term memory of the model

Forget gate f_t

Decides what is relevant to keep from previous steps

Input gate i_t

Decides what information is relevant to add from the current step

Output Gate o_t

Combined with cell state to determines next hidden state

LSTM divides original hidden state into

1. long-term memory (cell state) and 2. context (LSTM hidden state)

LSTM (Long Short-Term Memory)

Vanilla RNN

$$h_t = \sigma(wh_{t-1}).$$

$$egin{aligned} rac{\partial h_{t'}}{\partial h_t} &= \prod_{k=1}^{t'-t} w \sigma'(w h_{t'-k}) \ &= \underbrace{w^{t'-t}}_{!!!} \prod_{k=1}^{t'-t} \sigma'(w h_{t'-k}) \end{aligned}$$

$$rac{\partial c_{t'}}{\partial c_t} = \prod_{k=1}^{t'-t} \sigma(v_{t+k}).$$

LSTM (Long Short-Term Memory)

Vanilla RNN

$$egin{align} h_t &= \sigma(wh_{t-1}). \ &rac{\partial h_{t'}}{\partial h_t} = \prod_{k=1}^{t'-t} w \sigma'(wh_{t'-k}) \ &= \underbrace{w^{t'-t}}_{111} \prod_{k=1}^{t'-t} \sigma'(wh_{t'-k}) \end{split}$$

Gradient decays or grow exponentially if $w \neq 1$

$$rac{\partial {c_t}'}{\partial {c_t}} = \prod_{k=1}^{t'-t} \sigma(v_{t+k}).$$

No exponential decay or growth term

Gated RNNs

Chung, Junyoung, et al. "Empirical evaluation of gated recurrent neural networks on sequence modeling." *arXiv preprint arXiv:1412.3555* (2014).

GRU: Detailed Architecture

Information Flow in GRU

Information Flow in GRU

Reset gate r_t

How much of the past information h_{t-1} should be retained with respect to new input x_t to form new \tilde{h}_t candidate

Update gate z_t

 $(1-z_t)$ How much of the past information h_{t-1} should be discarded (z_t) How much of new information \tilde{h}_t should make into final h_t

GRU keeps original RNN input-output structure (x_t, h_t) by letting z_t to handle both data **retention** and **attrition**

ENCODER-DECODER RNNs

Many-to-Many RNN Recap

Encoder-Decoder Architecture

Training Encoder-Decoder RNNs

RNN Configurations

Many-to-Many

many to many

Encoder-Decoder Architecture

Encoder

Encoded State

Decoder

Encoder-Decoder Architecture

Input sequence length to Encoder (Tx) can be different from the output sequence length of Decoder (Ty)

TRAINING ENCODER-DECODER

Training Encoder-Decoder

Target Sequence

Training Encoder-Decoder

Target Sequence Loss START

Backpropagation in Time

Next episode in EEP 596...

Attention and Transformer

