Se A è una matrice $n \times n$, quale delle seguenti affermazioni è errata ?

- \bigcirc a. $K(A) = ||A||||A^{-1}||$.
- b. Nessuna delle precedenti.
- \bigcirc c. $K(A) \geq 1$.

Se

$$A = egin{bmatrix} 6 & 0 & 0 \ 0 & 2 & 0 \ 0 & 0 & -4 \end{bmatrix}$$

Allora:

- lacksquare a. $K_2(A) = 3$.
- O b. $K_2(A) = -3$.
- \bigcirc c. $K_2(A) = -6$.

Il mal condizionamento di un sistema lineare è dovuto a:

- a. Nessuna delle precedenti.
- b. Errore inerente.
- O 21 211010 111010111

c. Errore algoritmico.

La risposta corretta è: Errore inerente.

Se il vettore $v=(10^6,1)^T$ è approssimato dal vettore $ilde v=(999996,1)^T$, allora in $||\cdot||_\infty$ l'errore relativo tra v e ilde v è:

- a. Nessuna delle precedenti.
- O b. 4.
- 0.

Dati n+1 punti $\{x_i,y_i\}$, $i=0,\ldots,n$:

- \circ a. Esistono infiniti polinomi di interpolazione di grado $\geq n$.
- \bigcirc b. Esistono due polinomi di interpolazione di grado < n.
- $\ \ \,$ c. Esiste un solo polinomio di interpolazione di grado $\le n$.

Le funzioni di Lagrange $\psi_k(x)$ per costruire il polinomio di interpolazione di n+1 punti sono:

- lacksquare a. Polinomi di grado n.
- b. Nessuna delle precedenti.
- \circ c. Polinomi di grado n+1.

La risposta corretta è: Polinomi di grado n.

Sia $f:\mathbb{R}^n o \mathbb{R}$ differenziabile. Vale:

- a. Nessuna delle precedenti.
- igcup b. Se $abla f(x^*) = 0$ allora x^* è un punto di massimo o minimo locale.
- \circ c. Se $abla f(x^*) = 0$ allora x^* è un punto di massimo o minimo globale.

La risposta corretta è: Nessuna delle precedenti.

Sia $f:\mathbb{R}^n o\mathbb{R}$ funzione convessa . Vale:

- a. Nessuna delle precedenti
- b. Ogni punto di minimo locale è globale.
- \circ c. f ha un solo punto di minimo glogale.

La risposta corretta è: Ogni punto di minimo locale è globale.

Se A è una matrice n imes n tale che det(A) = 0 allora:

- \bigcirc a. A è non singolare.
 - \bigcirc b. A è simmetrica.
- \odot c. A è singolare.

La risposta corretta è: A è singolare.

Se	U	è una matrice $n imes n$ ortogonale allora:	
0	a.	Nessuna delle precedenti.	
	b.	U è definita positiva.	
	c.	U è simmetrica.	
isposta corretta è: Nessuna delle precedenti.			

Data la matrice:

$$A=\left[egin{array}{cc} -2 & 5 \ 0 & 3 \end{array}
ight]$$

calcolare $||A||_{\infty}$ e $||A||_{1}$.

- a. Nessuna delle precedenti.
- \bigcirc b. $||A||_{\infty}=3$ $||A||_{1}=2$
- $| C | A | _{\infty} = 7 | A | _{1} = 8$

Sia

$$A = egin{bmatrix} 2 & 0 & 0 & 0 \ 0 & 3 & 0 & 0 \ 0 & 0 & 2 & 0 \ 0 & 0 & 0 & 4 \end{bmatrix}$$

Allora:

- \bigcirc a. La norma-2 di A è $||A||_2 = 2$.
- \bigcirc b. La norma-2 di A è $||A||_2=2$.
- \odot c. La norma-2 di A è $||A||_2 = 4$.

Usando la notazione scientifica normalizzata con base eta=10, se x=0.006, allora:

- \odot a. La mantissa di x è 0.6 e la parte esponenziale è 10^{-2} .
- b. Nessuna delle precedenti.
- \circ c. La mantissa di x è 6 e la parte esponenziale è 10^{-3} .

La risposta corretta è: La mantissa di x è 0.6 e la parte esponenziale è 10^{-2} .

Il sistema Floating Point $\mathcal{F}(2,3,-2,1)$ contiene:

- oa. 18 numeri.
- Ob. 34 numeri.
- c. Nessuna delle precedenti.

La risposta corretta è: Nessuna delle precedenti.

Il metodo di discesa del gradiente:

- lacktriangledown a. Se lpha è scelto opportunamente, $f\in\mathcal{C}^1$, per ogni x_0 , converge sempre ad un punto \checkmark stazionario di f(x).
- \bigcirc b. Converge sempre ad un minimo di f(x).
- igcup c. Se lpha è scelto opportunamente, $f\in \mathcal{C}^1$, per x_0 , converge sempre ad un minimo di f(x).

La risposta corretta è: Se lpha è scelto opportunamente, $f\in\mathcal{C}^1$, per ogni x_0 , converge sempre ad un punto stazionario di f(x).

lacksquare a. $p_k^T abla f(x_k) < 0$ lacksquare b. $p_k abla f(x_k) < 0$

Una direzione p_k è di discesa per $f(x_k)$ se:

 \bigcirc c. $p_k^T
abla f(x_k) = 0$

La risposta corretta è: $p_k^T
abla f(x_k) < 0$

Siano $\sigma_1 \geq \sigma_2 \geq \sigma_3 \geq \ldots \geq \sigma_n$ i valori singolari di A allora:

- \bigcirc a. $||A||_2 = \sigma_n$
- \bigcirc b. $||A||_F = \sigma_1$
- c. $||A||_2 = \sigma_1$

La risposta corretta è: $||A||_2 = \sigma_1$

Un problema lineare ai minimi quadrati $min||Ax-b||_2^2$, con A matrice $m\times n$ con m>n, ha almeno una soluzione se:

- \circ a. $rg(A) \leq n$.
- b. Entrambe le precedenti.
- \circ c. rg(A)=n.

Il costo computazionale della fattorizzazione di Gauss

$$A=LR$$
, con A $n imes n$, è di:

$$\odot$$
 a. $O\left(\frac{n^3}{3}\right)$

$$\bigcirc$$
 b. $O\left(rac{n^5}{3}
ight)$

$$\bigcirc$$
 c. $O\left(\frac{n}{3}\right)$

La risposta corretta è:
$$O\left(\frac{n^3}{3}\right)$$

La fattorizzazione di Gauss con pivoting (PA=LR) esiste:

- \bigcirc a. Per ogni matrice $A n \times n$.
- lacksquare b. Per ogni matrice A n imes n non singolare.
- c. Nessuna delle precedenti.

La risposta corretta è: Per ogni matrice A n imes n non singolare.

Sia

$$A = egin{bmatrix} rac{1}{2} & 0 & 0 \ 3 & -rac{1}{3} & 0 \ 5 & -rac{1}{2} & rac{1}{2} \end{bmatrix}$$

- a. Il metodo di Gauss-Seidel è convergente per ogni termine noto b.
- b. Il metodo di Gauss-Seidel è convergente solo per alcuni termini noti b.
- o. Il metodo di Gauss-Seidel non converge per ogni termine noto b.

La risposta corretta è: Il metodo di Gauss-Seidel è convergente per ogni termine noto b.