Resultant = 2000N

$$F_1 = 800N$$

 $F_2 = 1400N$
 $O = ?$
 $R = \sqrt{F_1^2 + F_2^2 + 2F_1 F_2} \cos \theta$

$$(2000)^{2} = (800)^{2} + (1400)^{2} + 2(1400)(800) \cos \theta$$

$$T = T \sin 20^{\circ} \hat{i} - T \cos 20^{\circ} \hat{j}$$

$$T = 266.775 \hat{i} - 732.960 \hat{j} N$$

Force at 'point A' and point B will be equal

Moment at B'

Moment at 'O'

The winch pulls the cable by 200 mm/s thus Velocity is constant

dv = 0 thus acceleration is Zero'

T = 100 x 9.81 = 981 N

Tension in cable 1 is T/4

Tension 9n CD =
$$300 \times 9.81$$

 $T_{cD} = 294.3 N \longrightarrow 0$

Tension in BC = 294.3. COS450

$$\Sigma F_y = 0$$

$$\Sigma F_{y} = 0$$

 $N - 82 \cos 16.67^{\circ} - T s 8n 40^{\circ} = 0$ \longrightarrow 1

$$\Sigma F_{\kappa} = 0$$
82 Sin 16.67° + T cos 40° - F = 0 ____ 2

$$\Sigma M_c = 0$$

$$\mu = \frac{N}{F} = \frac{86.41}{91.48} = \mu_s = 0.4094$$

\$80.5 = 16.84. 175. Sin 56.70 + 16.84. 850. COS 56.70 S= 128.87 mm

$$\Sigma F_y = 0 \implies N_A - 90 \times 9.81 - 15 \times 9.82 = 0$$
 $N_A = 1030.05 N$

$$\cos \theta = \frac{4}{1.6} = S = \frac{d}{\cos \theta} = 70.955.4$$

```
In [1]:
             Type: Bananna
             Program no.: 1
             Question no.: 1
             Problem no. as per Question PDF: 2
         from math import acos, degrees
         F1 = float(input("Enter the magnitude of F1 (in N): "))
         F2 = float(input("Enter the magnitude of F2 (in N): "))
         R = float(input("Enter the resultant force (in N): "))
         cos_{theta} = (R^{**2} - F1^{**2} - F2^{**2}) / (2 * F1 * F2)
         theta = degrees(acos(cos_theta))
         print(f"The angle between the forces is: {theta:.4f} degrees")
        The angle between the forces is: 51.3178 degrees
In [16]:
             Type: Bananna
             Program no.: 2
             Question no.: 2
             Problem no. as per Question PDF: 5
         from math import sin, cos, tan, radians
         tension = float(input('Enter The Tension T: '))
         #To Find Tension T in Vector Form
         print(f'The Tension T in vector Form: {'{:.2f}'.format(tension * sin(radians(20))
         #To Calculate Moment at Mb and Mo
         M_b = float('\{:.2f\}'.format((tension * sin(radians(50)) * (0.298))))
         print(f'Moment at B: {M_b} Nm')
         print(f'The Moment at 0: {'{:.2f}}'.format(M_b + (tension * sin(radians(50)) * (@
        The Tension T in vector Form: 266.78i - 732.96j N
        Moment at B: 178.06
        The Moment at 0: 253.94
In [3]: '''
             Type: Orange
             Program no.: 3
             Question no.: 3
             Problem no. as per Question PDF: 8
         mass = float(input("Enter the mass of the load (in kg): "))
         num_segments = int(input("Enter the number of cable segments supporting the load
         g = 9.81 # Acceleration due to gravity in m/s^2
         total_tension = mass * g # Total tension in the system
         tension per segment = total tension / num segments # Tension per segment
         print(f"Total tension in the cable system (T): {total_tension:.2f} N")
         print(f"Tension in each segment (T/{num_segments}): {tension_per_segment:.2f} N"
        Total tension in the cable system (T): 981.00 N
        Tension in each segment (T/4): 245.25 N
```

```
In [6]:
                               Type: Orange
                               Program no.: 4
                               Question no.: 4
                               Problem no. as per Question PDF: 9
                      from math import sin, cos, tan, radians
                      weight = float(input("Enter the weight of the object (kg): "))
                      angle_AC = float(input("Enter the angle between AC and vertical (degrees): "))
                      angle_BC = float(input("Enter the angle between BC and vertical (degrees): "))
                      g = 9.81
                      T_CD = weight * g
                      print(f"Tension in CD (T_CD): {T_CD:.2f} N")
                      T_AC = T_CD * cos(radians(angle_AC))
                      print(f"Tension in AC (T_AC): {T_AC:.2f} N")
                      T_BC = T_CD * cos(radians(angle_BC))
                      print(f"Tension in BC (T_BC): {T_BC:.2f} N")
                   Tension in CD (T_CD): 294.30 N
                  Tension in AC (T_AC): 147.15 N
                  Tension in BC (T_BC): 208.10 N
In [14]: '''
                               Type: Jackkfruit
                              Program no.: 5
                               Question no.: 5
                               Problem no. as per Question PDF: 18
                      from math import sin, cos, tan, radians
                      man_weight = float(input('Enter the weigth of the Man: '))
                      cart_weight = float(input('Enter the weigth of the Cart: '))
                      theta = 16.667
                      # To find T
                      T = float('\{:.2f\}'.format((cart_weight * sin(radians(theta))) / cos(radians(40))
                      N = float('\{:.2f\}'.format(man_weight * sin(radians(theta)) + T * cos(radians(40)
                      #To Find F
                      F = float('{:.2f}'.format(man_weight * cos(radians(theta)) + T * cos(radians(40
                      #To Find Mu
                      print(f"The Co-efficient of Friction is: {'{:.3f}'.format(N/F)}")
                      #To Find Distance
                      dist = '{:.2f}'.format((T * 175 * sin(radians(40 + theta)) + T * 850 * cos(radians(40 + theta)) + T * 850 * cos(radians(
                      print(f"The Minimum Distance is: {dist} m")
                   The Co-efficient of Friction is: 0.398
                  The Minimum Distance is: 126.02
In [17]:
                               Type: Jackkfruit
                               Program no.: 6
                               Question no.: 6
```

```
Problem no. as per Question PDF: 19
from math import sin, cos, tan, radians
painter_weight = float(input('Enter mass of the painter: '))
ladder_weight = float(input('Enter the mass of the ladder: '))
ladder_height = float(input('Enter Ladder Height: '))
static_friction = float(input('Enter the Co-Efficient of static friction: '))
#To Find Na
N_a = painter_weight * 9.81 + ladder_weight * 9.81
#To Find X
X = (N_a * 1.5 - ladder_weight * 9.81 * 0.75 - static_friction * N_a * 3.71 ) /
X = float('{:.3f}'.format(X))
D = 1.5 - X
cosine_of_ladder = ladder_height / 1.5
#To Find Distance S
S = D * cosine_of_ladder
print(f'The Maximum Distance that Painter Can Climb without Sliping is: {'{:.2f}}
```

The Maximum Distance that Painter Can Climb without Sliping is: 2.55 m