Facultad de Matemática y Computación (UH) Ciencia de la Computación Matemática Numérica

Clase Práctica 5: Sistemas de ecuaciones lineales: Sin $O(n^3)$ ni matrices :-/.

Curso 2024

Lo elemental, mi querido Watson

Ejercicio 1: Jacobi y Gauss Seidel (90 000 créditos)

Dado el sistema de ecuaciones lineales Ax = b

$$\begin{pmatrix} 9 & 3 & 4 \\ -3 & 7 & -3 \\ 2 & 2 & -10 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

- a) Resuélvalo utilizando el método de Jacobi.
- b) Resuélvalo utilizando el método de Gauss Seidel.

c)

Ejercicio 2: ¿Y esas cosas convergen? (130 000 créditos)

Sea Ax = b un sistema de ecuaciones lineales, y sea $x_{k+1} = Bx_k + d$ un esquema iterativo para resolver Ax = b.

Demuestre que si existe una norma de matrices ||.||, tal que ||B|| < 1, entonces la sucesión $\{x_0, x_1, \ldots\}$, obtenida a partir del esquema iterativo, converge a la solución del sistema.

Dificultad_de_los_Ejercicios++

Ejercicio 3: Jacobi Gauss – Seidel (150 000 créditos)

Existen condiciones bajo las cuales se puede asegurar la convergencia del método de Gauss–Seidel a partir de los valores de las distintas normas de la matriz de iteración del método de Jacobi. ¿Cuáles son estas condiciones?¹

Ejercicio 4: Convergencia al seguro (150 000 créditos)

Una matriz $A = (a_{ij})$ es **estrictamente dominante por fila** si para toda fila i se cumple que $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$.

Demuestre que si una matriz es estrictamente dominante por fila, entonces el método de Jacobi converge para cualquier solución inicial x_0 , y que además, el método de Gauss-Seidel también converge y lo hace más rápido :-o.

Sugerencia: Si A es una matriz dominante por filas, ¿cuál es la norma infinito de la matriz de iteración de Jacobi?

Ejercicio 5: ¿Eh? ¡Pero si no se cumple! (200 000 créditos)

Demuestra que la iteración de punto fijo $x_{k+1} = Bx_k + c$, con

$$B = \left(\begin{array}{cc} 0.9 & 1000\\ 0 & 0.9 \end{array}\right),$$

converge, aunque $||B||_1 > 1000$, $||B||_{\infty} > 1000$.

Sugerencia para despistar: ¿Cuánto vale $\lim_{m\to\infty} ||B^m||_{\infty}$?

Ejercicio 6: Diga NO al derroche de memoria. (200 000 créditos)

Sea el sistema de ecuaciones lineales $A_n x = b_n$, donde $b_i = 1$, para todo $i = \overline{1, n}$, y la matriz A se define como $A = (a_{ij})$ con:

- $a_{i,i} = 5$ para todo $i = 1 \dots n$,
- $a_{i,i+1} = 3 \text{ para } i = 1 \dots n-1,$
- $a_{i,1} = 1 \text{ para } i = 2 \dots n, y$
- $a_{i,j} = 0$ en otro caso.

Resuelva el sistema $A_{1000}x = b_{1000}$, con un error relativo menor que 10^{-8} , sin guardar en memoria (ni en disco) la matriz A_{1000} ni el vector b_{1000} .

¹Esto es un teorema que está en casi todos los materiales sobre métodos iterativos para ceros de funciones que dice algo como: si la norma infinito de la matriz de Jacobi es menor que 1, entonces pasa tal y más cuál cosa, si la norma 1 de la matriz de Jacobi... y así.

Ver (y demostrar) para creer

Ejercicio 7: Matriz de iteración de Gauss Seidel (200 000 créditos)

Demuestre que la iteración de Gauss Seidel para resolver iterativamente el sistema de ecuaciones lineales Ax = b se puede expresar matricialmente como:

$$x_{i+1} = -(L+D)^{-1}Ux_i + (L+D)^{-1}b,$$

donde L es una matriz triangular inferior con ceros en la diagonal, U es una matriz triangular superior con ceros en la diagonal, D es una matriz diagonal y A = L + D + U.

Ejercicio 8: Ejemplos que valen más que mil palabras². (500 000 créditos)

Existe un teorema que establece condiciones de convergencia para los métodos de Jacobi y Gauss—Seidel³. De acuerdo con este teorema existen escenarios en los que el método de Jacobi converge más rápido que el de Gauss—Seidel, y existen situaciones bajo las cuales el método de Jacobi puede converger y el de Gauss—Seidel no. El objetivo de este ejercicio es ilustrar esas condiciones y para ello se le pide que:

- a) Encuentre (si puede) un sistema de ecuaciones lineales en el que los métodos de Jacobi y Gauss Seidel converjan, pero en el que Jacobi lo haga más rápido que Gauss Seidel. $(200\ 000)$
- b) Encuentre (si puede) un sistema de ecuaciones lineales en el que el método de Jacobi converja, pero Gauss Seidel no. (200 000)
- c) Redacte una composición de no más de tres paírafos⁴ donde describa los pasos realizados por usted para encontrar los ejemplos (o para no encontrarlos⁵ :-(). $(100\ 000)$

Bibliografía recomendada

- Elementary Numerical Analysis, An algorithmic approach. 3rd Edition
 S. D. Conte y Carl de Boor. McGraw-Hill Book Company. 1980.
- Numerical Methods. 9th Edition. J. D. Faires y R. L. Burden. Brooks Cole Publishing, 2010.
- Scientific Computing. An Introductory Survey. 2nd Edition M. Heath. McGraw-Hill Book Company, 2002.

 $^{^2}$ Y más de cien mil créditos :-o.

³¡Taratatáaan! Acabas de encontrar una pregunta secreta por un valor de 30 000 créditos: ¿Cuál de los ejercicios de esta clase práctica está relacionado con esta pregunta?

⁴(pero también con no menos de tres párrafos)

⁵En caso de que no pueda encontrar los ejemplos, pero su composición sea interesante, amena de leer, y sirva de ayuda a los futuros buscadores de ejemplos, se pueden recibir entre 10 000 y 100 000 créditos.

- Accuracy and stability of numerical algorithms. 2nd Edition. Nicholas J. Higham SIAM. 2002.
- Otras fuentes de información sobre matemática numérica y métodos iterativos para la solución de sistemas de ecuaciones lineales.
- Writing fiction for dummies. Randy Ingermanson & Peter Economy. Wiley Publishing Inc. 2010.
- Wired for story: The writer's guide to using brain science to hook readers from the very first sentence. Lisa Cron. Ten Speed Press. 2012.

¡Ejercicio secreto y escondido! (1 000 000 de créditos :-o)

¡Has encontrado un ejercicio secreto! ¡Y escondido! Bueno... en realidad, solo has encontrado la parte de secreto, aún te falta la parte que está escondida. Bueno, por si acaso, y como motivación, aquí te decimos que si realizas este ejercicio puedes ganar hasta un millón de créditos. Pero como son 1 millón de créditos la cosa no puede ser así tan fácil... ¿verdad? Suerte con eso :-). Lo único que sí te garantizamos es que la orientación del ejercicio está en este documento :-D.