

Description

The VSM9N06 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

V_{DS} = 60V,I_D =9A

 $R_{DS(ON)} < 15 m\Omega \ @ \ V_{GS} = 10V \quad (Typ:10 m\Omega)$

 $R_{DS(ON)} < 18m\Omega @ V_{GS}=4.5V$ (Typ:14m Ω)

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Low gate to drain charge to reduce switching losses

Application

- Power switching application
- Load switch

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM9N06-S8	VSM9N06	SOP-8	-	-	-

Absolute Maximum Ratings (T_c=25℃unless otherwise noted)

3 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	,	,			
Parameter	Symbol	Limit	Unit		
Drain-Source Voltage	V _{DS}	60	V		
Gate-Source Voltage	V _G s	±20	V		
Drain Current-Continuous	I _D	9	А		
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	6.4	Α		
Pulsed Drain Current	I _{DM}	36	А		
Maximum Power Dissipation	P _D	2.6	W		
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 150	$^{\circ}$		

Thermal Characteristic

Thermal Resistance,Junction-to-Ambient (Note 2)	$R_{\theta JA}$	48	°C/W
---	-----------------	----	------

Electrical Characteristics (TC=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250µA	60		-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =60V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS},I_{D}=250\mu A$	1.2	1.8	2.2	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =9A	-	10	15	mΩ
Drain-Source On-State Resistance		V _{GS} =4.5V, I _D =9A		14	18	mΩ
Forward Transconductance	g FS	V _{DS} =5V,I _D =9A	25	-	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	V _{DS} =30V,V _{GS} =0V,	-	2180	-	PF
Output Capacitance	Coss		-	350	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	270	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}	V_{DD} =30V, R_L =1 Ω V_{GS} =10V, R_{GEN} =3 Ω	-	8.5	-	nS
Turn-on Rise Time	t _r		-	6	-	nS
Turn-Off Delay Time	t _{d(off)}		-	30	-	nS
Turn-Off Fall Time	t _f		-	5	-	nS
Total Gate Charge	Qg	V _{DS} =30V,I _D =9A,	-	58	-	nC
Gate-Source Charge	Q _{gs}		-	8	-	nC
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	17	-	nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =9A	-	-	1.2	V
Diode Forward Current (Note 2)	Is	-	-	-	9	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF=9A	-	30	-	nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	44	-	nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- **3.** Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** EAS condition: Tj=25 $^{\circ}$ C,V_{DD}=50V,V_G=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Rdson On-Resistance((2))

Figure 3 Rdson-Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 11 Normalized Maximum Transient Thermal Impedance

Square Wave Pluse Duration(sec)