A REDUCTION OF IMITATION LEARNING AND STRUCTURED PREDICTION TO NO-REGRET ONLINE LEARNING (DAGGER)

임건호

2024.06.21

Reference Link

Introduction

ckground

Previous Work

SMILe

DAgger

Expert 수렴

Optimality

ompanson

Result

Further Works

논문이 풀고자 하는 문제 (제목을 이해해보자)

Imitation Learning when expert policy exists!

- Reduction: Imitation Learning 문제를 근사하여
 다른 문제로 바꾸는 것
- Regret: 매 순간순간 최선의 선택을 하는 것
 (cf. 헛된 일(Exploration)을 하면 후회 함)
- Online Learning: 모델이 전체 데이터를 보지 않고,
 순차적으로 데이터를 받아들이는 학습 방법

$$\frac{1}{N} \sum_{i=1}^{N} \ell_i(\pi_i) - \min_{\pi \in \Pi} \frac{1}{N} \sum_{i=1}^{N} \ell_i(\pi)$$
 (1)

Regret 정의

Introduction

Background

Previous Work

SMILe

DAgger

pert 수렴

matimo el la c

Comparison

Result

Further Works

그래서, 어디에 쓸모가 있을까?

네트워크 구조를 바꾸면서 이전 네트워크의 knowledge를 유지하고 싶을 때

- Catch & Carry (영상)
- Progressive RL (영상)
- PULSE, Neural Categorical Prior(NCP)
- Offline RL이 왜 잘 안되는지 이해할 수 있음

PULSE 학습 과정

Introduction

Background

Previous Work

SMILe

DAgger

roperty xpert 수렴

Optimality

Comparison

Result

Further Works

NAÏVE APPROACH OF IMITATION LEARNING

Def. (Supervised Learning)

 π 와 π^* 이 동일한 state(s ~ d_{π^*})에서 활동한다고 가정하면,

$$\hat{\pi}_{sup} = \underset{\pi \in \Pi}{\arg \min} \mathbb{E}_{s \sim d_{\pi^*}} [\ell(s, \pi)]$$
 (2)

학습된 $\hat{\pi}$ 는 π^* 와 학습 오차로 인해 state의 분포가 다르고, 벗어난 경로를 회복하는 action을 보기 못하여 trajectory 발산

Introduction

Background

Previous Work

SMILe

DAgger

Expert 수림

Ontimality

Comparison

Result

Further Works

NOTATIONS

- T the task horizon
- d_{π}^{t} t 시점의 state의 분포
- $d_{\pi} = \frac{1}{T} \sum_{t=1}^{T} d_{\pi}^{t}$ states의 평균
- C(s, a) cost
- $C_{\pi}(s) = \mathbb{E}_{a \sim \pi(s)}[C(s, a)]$ C의 정의에서 π 고정
- C is bounded in [0, 1]
- $J(\pi) = \sum_{t=1}^{T} \mathbb{E}_{s \sim d_{\pi}^{t}}[C_{\pi}(s)] = T\mathbb{E}_{s \sim d_{\pi}}[C_{\pi}(s)]$ π 에 의한 state에 대한 전체 cost
- ℓ surrogate loss, C와 같을수도, 다를수도 있음 $\Rightarrow \hat{\pi}_{sup}$ 은 π^* 의 state에 대해 ℓ 을 최소화하는 π

Introduction

Background

Previous Work

SMILe

DAgger

roperty

Optimality

Comparison

Result

Further Works

NAÏVE APPROACH

Theorem (Naïve는 Quadratic Loss)

 $\ell(s,\pi) \ \textit{loss of} \ \pi \ \textit{with respect to} \ \pi^*$

$$\mathbb{E}_{\mathsf{s} \sim d_{\pi^*}}[\ell(\mathsf{s},\pi)] = \epsilon$$
 (학습 과정에서 발생한 최대 오차)

$$J(\pi) \le J(\pi^*) + T^2 \epsilon \tag{3}$$

Horizon 길이의 제곱에 비례하는 오차가 발생(tight bound)

Proof

Let, $\ell(s,\hat{\pi}) = I(\hat{\pi}(s) \neq \pi^*(s))$ $\hat{\pi}$ 의 실수(mistake)에 대한 0-1 오차 확률 p_t : π 가 첫 t-step 동안 π^* 에 대해 실수를 하지 않음 d_t : $\hat{\pi}$ 이 실수를 하지 않았을 때 state의 분포

Introduction

Background

Previous Work

SMILe

DAgger

Expert 수렴

Optimality

Comparison

Result

Further Works

Proof (cont'd)

 d_t' : $\hat{\pi}$ 이 적어도 한번 이상 실수 했지만, π^* 를 따라갈 때 분포 π 가 π^* 을 따라가면, 실수를 하거나, 하지 않으므로,

정리하면,
$$d_{\pi^*}^t = p_t d_t + (1 - p_{t-1})d_t'$$

실수를 할때 cost의 상한은 1, 실수를 하지 않으면 $\mathbb{E}_{\mathbf{s}\sim d_t^\pi}(C_t^\pi(\mathbf{s}))$

따라서,
$$J(\pi) \leq \sum_{t=1}^{T} [p_{t-1} \mathbb{E}_{s \sim d_t^{\pi}}(C_t^{\pi}(s)) + (1 - p_{t-1})].$$

Let,
$$\epsilon_i = \mathbb{E}_{s \sim d_{\pi^*}^i}[\ell(s, \hat{\pi})]$$
 for $i = 1, 2, \dots, T$

 π^* 의 state에 대한 $\hat{\pi}$ 의 i 시점에서 오차

(ℓ 의 정의에 의해 $\hat{\pi}$ 을 따라갈 때 t 시점에서 실수할 확률과 같음)

Introduction

Background

Previous Work

Forward Train SMILe

DAgger

xpert 수렴

ptimality

Joinparisor

Result

Further Works

cont'd.

 e_t / e_t' : state d_t / d_t' 에서 π 가 실수할 확률 (ϵ_i 와 다르다) t 시점에 π 는 실수를 하거나, 하지 않으므로,

$$\mathbb{E}_{s \sim d_t^\pi}(C_t^\pi(s)) \leq \mathbb{E}_{s \sim d_t^\pi}(C_t^*(s)) + \epsilon_t,$$

또한,
$$\epsilon_t = p_{t-1}e_t + (1 - p_{t-1})e_t' \rightarrow p_{t-1}e_t \le \epsilon_t$$
 추가로, $p_t = (1 - e_t)p_{t-1}$

그런데, 앞선 $d_t^{\pi^*}$ 계산식에 의하면,

$$J(\pi^*) = \sum_{t=1}^{T} [p_{t-1} \mathbb{E}_{s \sim d_t^{\pi}}(C_t^*(s)) + (1 - p_{t-1}) \mathbb{E}_{s \sim d_t^{\pi}}(C_t^*(s))] \ 0 \ | \ \square$$

$$\implies \sum_{t=1}^{T} p_t - 1\mathbb{E}_{s \sim d_t^{\pi}}(C_t^*(s)) \leq J(\pi^*).$$

Introduction

Background

Previous Work

Forward Training

DAgger

operty

xpert 구님

Comparison

Result

Further Works

Proof (cont'd)

정리하면:

$$J(\pi) \leq \sum_{t=1}^{T} \left[p_{t-1} \mathbb{E}_{s \sim d_{t}^{\pi}} (C_{t}^{\pi}(s)) + (1 - p_{t-1}) \right]$$

$$\leq J(\pi^{*}) + \sum_{t=1}^{T} \sum_{i=1}^{t} \epsilon_{i}$$

$$\leq J(\pi^{*}) + T \sum_{t=1}^{T} \epsilon_{t} = J(\pi^{*}) + T^{2} \epsilon. \tag{4}$$

$$(\epsilon = \frac{1}{T} \sum_{i=1}^{T} \epsilon_i$$
: 학습 오차의 평균)

이 증명은 논문에 포함된 6개 증명 중 하나로서 가장 쉬운(!) 증명이다. ntroduction

Background

Previous Work

SMILe

DAgger

perty

Optimality

Comparison

Result

Further Works

PREVIOUS WORKS

Introduction

Background

Previous Work

Forward Trainin

DAgger

Expert 수렴

Optimality

Comparison

Result

Further Works

FORWARD TRAINING

Data: π_1^0, \ldots, π_T^0 to query and execute π^* .

for i = 1 to T do

Sample *T*-step trajectories by following π^{i-1} ;

Get dataset $\mathcal{D} = \{(s_i, \pi^*(s_i))\}$ of states, actions taken by expert at step i;

Train classifier $\pi_i^i = \arg\min_{\pi \in \Pi} \mathbb{E}_{s \sim \mathcal{D}}(\epsilon_{\pi}(s));$

 $\pi_j^i = \pi_j^{i-1} \text{ for all } j \neq i;$

end

 $\mathbf{return}\ \pi_1^T,\dots,\pi_T^T;$

Introduction

ackground

Previous Work

Forward Training

DAgger

xpert 수렴

Optimality

Comparison

Result

Further Works

FORWARD TRAINING

i가 작을때는, s π^* 위주로 학습하고, i가 커질수록 π^{i-1} 에 의해 학습된 데이터를 이용하여 학습

- $J(\pi) \le J(\pi^*) + uT\epsilon$ (u는 대개 상수, T에 선형)
- π 에 의한 오차를 π^* 으로 복구하는 방법 학습
- T개의 classifier를 학습하므로, T가 큰 경우에 비효율적
- Motion VAE에서 Autoregressive하게 훈련하는 것은 $\pi^i_j = \pi^{i-1}_j$ 조건을 무시한 것으로 볼 수 있음

Introduction

ackground

Previous Work

Forward Training

DAgger

Expert 수렴

Optimality

Comparison

Result

Further Works

STOCHASTIC MIXING ITERATIVE LEARNING (SMILE)

이전 policy를 stochastic하게 혼합하여 학습

Data: π^0 expert π^* 로 초기화

for i = 1 to N do

Execute π^{i-1} to get $\mathfrak{D} = \{(s, \pi^*(s))\}$

Train classifier $\hat{\pi}^i$ = arg min $_{\pi \in \Pi} \mathbb{E}_{s \sim \mathcal{D}}(\epsilon_{\pi}(s))$

$$\pi^{i} = (1 - \alpha)^{i} \pi^{*} + \alpha \sum_{j=1}^{i} (1 - \alpha)^{i-j} \hat{\pi}^{j}$$

end

Remove expert queries: $\tilde{\pi}^N = \frac{\pi^N - (1-\alpha)^N \pi^*}{1 - (1-\alpha)^N}$ (정규화)

- Normalize하여 결국 π_0 제거
- T에 선형인 오차 bound
- 임의의 N을 사용할 수 있어 feasible한 알고리즘

Introduction

ackground

Previous Work

orward Trair

SMILe

DAggei

Property

xpert 수덤

Comparison

Result

Further Works

CAN WE DO BETTER?

Introduction

Background

Previous Work

Forward Tra SMILe

DAgger

Property Expert 수렴

Optimality

Comparison

Result

Further Works

DAGGER ALGORITHM

 $\hat{\pi}$ 가 실수할 수 있는 경로를 모두 합집합(Aggregate)한 데이터셋(\mathfrak{D})을 이용하여 학습

Data: Initial dataset $\mathcal{D} \leftarrow \emptyset$.

Data: Initial policy $\hat{\pi}_1 \in \Pi$. (말그대로 임의의 policy)

for i = 1 to N do

Let $\pi_i = \beta_i \pi^* + (1 - \beta_i) \hat{\pi}_i$;

Sample *T*-step trajectories using π_i ;

Get dataset $\mathcal{D}_i = \{(s, \pi^*(s))\}\$ of visited states by π_i ;

Aggregate datasets: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_i$;

Train classifier $\hat{\pi}_{i+1}$ on \mathfrak{D} ;

end

Result: Best $\hat{\pi}_i$ on validation

Introduction

ackground

Previous Work

Forward T

DAgger

Property

Optimality

omparison

Result

Further Works

DAGGER ALGORITHM

이전(Forward, SMILe)은 D를 한번 사용하고 버렸지만,
 DAgger는 계속해서 사용

- 일반적으로 $\beta_i = p^{i-1}$ 로 설정 (π_1 을 임의로 설정)
- No Regret (Asymptotic Optimal, Stable)
 Immediate/Expected Loss minimization

$$\frac{1}{N} \sum_{i=1}^{N} \ell_i(\pi_i) - \min_{\pi \in \Pi} \frac{1}{N} \sum_{i=1}^{N} \ell_i(\pi) \le \gamma_N \lim_{N \to \infty} 0$$
 (5)

Introduction

ackground

Previous Work

SMILe

---00---

Property

Ontimality

Comparison

Result

Further Works

DAGGER IS NO REGRET

Theorem (Follow the Leader(FTL))

 $\pi_N = argmin \sum_{i=1}^{N-1} \ell_i(\pi)$

FTL is no regret algorithm (다른 paper에서 증명) DAgger은 전체 데이터셋을 optimize하여 학습하므로, FTL을 따르면서 학습하므로 No Regret 성질을 가짐 Introduction

Background

Previous Work

SMII e

DAgger

Property

Expert 수렴

Comparison

Result

Further Works

DAGGER ALGORITHM은 EXPERT에 수렴 (PROOF)

Let $\epsilon_N = \min_{\pi \in \Pi} \frac{1}{N} \sum_{i=1}^N \mathbb{E}_{s \sim d_{\pi_i}}[\ell(s,\pi)]$

the true loss of the best policy in hindsight.

(돌이켜 봤을 때 가장 좋은 policy(student+expert mix)의 loss)

Theorem (Student loss는 ϵ_N 에 수렴)

For DAGGER, if N is $\tilde{O}(T)$, $\exists \hat{\pi} \in \hat{\pi}_{1:N}$ s.t.

 $\mathbb{E}_{s \sim d_{\hat{\pi}}}[\ell(s, \hat{\pi})] \leq \epsilon_N + O(1/T)$

 $(\tilde{O}(T) \succeq \exists k \text{ s.t. } N = O(T \cdot log^k(T)), \text{ polylogarithmic in } T)$

Theorem (Total Cost역시 수렴)

if N is $\tilde{O}(uT)$, $\exists \hat{\pi} \in \hat{\pi}_{1:N}$ s.t.

$$J(\hat{\pi}) \leq J(\pi^*) + uT\epsilon_N + O(1).$$

Introduction

ackground

Previous Work

Forward Tr SMILe

)Agger

Expert 수렴

Optimality

Comparison

Result

Further Works

DAGGER ALGORITHM - FINITE SAMPLE (PROOF)

Trajectory를 모두 sample 할 수 없음 (finite sample, m) $\Rightarrow \hat{\epsilon}_N$ 에 대해 앞선 부등식 증명 가능

앞선 부등식을 만족하는 π̂은 확률적으로 존재

Introduction

ackground

Previous Work

SMILe

DAgger

Property

Expert 수렴 Optimality

`ammarican

Result

Further Works

DAGGER ALGORITHM - ONLINE LEARNING (PROOF)

DAGGER의 No Regret 성질로 more tight upper bound $\Rightarrow \pi_{1:N}$ 중에 가장 좋은 policy와 비슷한 성능

Theorem (State 분포의 차이는 Bounded)

$$||d_{\pi_i} - d_{\hat{\pi}_i}||_1 \le 2T\beta_i$$

Theorem (DAgger Upper Bound)

$$\begin{split} & \exists \hat{\pi} \in \, \hat{\pi}_{1:N} \, s.t. \\ & \mathbb{E}_{s \sim d_{\hat{\pi}}}[\ell(s, \hat{\pi})] \leq \epsilon_N + \gamma_N + \frac{2\ell_{\max}}{N} [n_\beta + T \sum_{i=n_\beta+1}^N \beta_i], \\ & (\gamma_N = average \, regret \, of \, \hat{\pi}_{1:N}) \end{split}$$

 $N \to \infty$ 일때, 두번째, 세번째 항은 0으로 수렴 Finite Sample에서도 $\hat{\pi}$ 는 ϵ_N 에 수렴

Introduction

ackground

Previous Work

Forward Tra

)Agger

Expert 수렴

Optimality

omparison

Result

Further Works

VISUALIZE

Introduction

Background

Previous Work

Forward Tr

DAgger

Expert 수렴

Optimality

Comparison

Result

Further Works

RESULT

Introduction

Background

Previous Work

Forward Training
SMILe

DAgger

Property
Expert 수렴

Optimality

Comparison

Result

Further Works

TASKS

Imitation Learning 문제와 라벨링 문제

• Super Tux Kart: (Image) \rightarrow (Joystick)

• 슈퍼 마리오: (Image) → (4 방향)

• Handwriting 인식: (Image) → (Class)

(a) Super Tux Kart (b) Super Mario

Introduction

Background

Previous Work

Forward Ti

DAgger

Expert 수렴 Optimality

Comparison

Result

Further Works

RESULTS

DAgger(파란색)가 다른 방법보다 더 나은 성능을 보임

(a) Super Tux Kart (Falls Per Lap)

(b) Super Mario (Travelled Stage)

Introduction

Background

Previous Work

Forward Tr SMILe

DAgger

Expert 수렴 Optimality

Comparison

Result

Further Works

AGGREVATE (RL VERSION)

Current Cost 뿐만 아니라 Future Cost까지 고려한 학습 (Cost-to-go)

Data: Initialize $\mathfrak{D} \leftarrow \emptyset$, $\hat{\pi}_1$ to any policy in Π .

for i = 1 to N do

Let
$$\pi_i = \beta_i \pi^* + (1 - \beta_i) \hat{\pi}_i$$
 for $j = 1$ to m do

Sample $t \in \{1, 2, ..., T\};$

Start new trajectory from initial state distribution;

Execute π_i up to time t-1;

Exploration action a_t ;

Execute expert from t + 1 to T;

Estimate of cost-to-go \hat{Q} from t;

end

Dataset $\mathcal{D}_i = \{(s, t, a, \hat{Q})\}$ (이후 Dagger과 동일);

end

return best $\hat{\pi}_i$ on validation.

Introduction

ackground

Previous Work

Forward Tr

DAgger

Proporty

Optimality

Comparison

Result

Further Works

BY THE WAY, HOW WE HANDLED THE PROBLEM OF IMITATION LEARNING?

Introduction

Background

Previous Work

SMILe

DAgger

roperty

Expert 수렴 Optimality

Comparison

Result

Further Works

GAIL (GENERATIVE ADVERSARIAL IMITATION LEARNING)

AMP, ASE, PHC... 등이 사용하는 방법으로서, GAN의 reward를 통해 expert trajectory로 guide

문제

- 1. RL을 사용하여야 함
- 2. GAN의 mode-collapse로 인해 diversity↓

 \Longrightarrow GAIL은 dataset만 가지고 있을 때, π^* 를 생성하는 문제에 대한 방법론임 \therefore expert를 가지고 있을 때에는 굳이 사용할 필요 없음

Introduction

ackground

Previous Work

Forward T

DAgger

roperty

Optimality

Comparison

Result

Further Works

SUPERVISED LEARNING

MotionVAE, ControlVAE 등이 사용하는 방법으로서, autoregressive하게 네트워크의 출력을 입력으로 주어 그 결과가 dataset을 따라가게 gradient 부여

 \implies DAgger은 π^* 를 가지고 있을 때 Supervised Learning을 잘 하기 위한 방법 (이렇게 할 일이 있을까?)

Introduction

ackground

Previous Work

Forward Tra

DAgger

roperty

Optimality

Comparison

Result

Further Works

EXPERT를 가지고 있을 때에는?

Distillation이라는 용어를 사용한 작업들

	목적			
Catch&Carry	Policy input: marker → Image			
Progressive	Adapt Terrain			
NCP	Posterior(future frame) \rightarrow Prior(no future)			
PULSE	Policy structure: MoE → VAE			

Progressive RL 학습 Curriculum (D: distillation, L: learning)

Introduction

Background

Previous Work

SMILe

Agger

Expert 수렴

Optimality

Comparison

Result

Further Works

나의 연구에 어떻게 적용할 수 있을까?

목적: 두 캐릭터에 대해 캡쳐된 모션을 사용하여

- 1. N 캐릭터가 상호작용 하는 모션 생성 혹은
- 2. 상대 캐릭터 행동에 적절한 반응을 하는 모션 생성

현재 구상하는 구조

하나의 네트워크로 학습하면, 결과가 좋지 못하다. Posterior collapse + 동작 6개 학습하는데 8시간 소요 Introduction

Background

Previous Work

Forward Tr

OAgger

Expert 수렴

Optimality

Comparison

Result

Further Works

ABULATION STUDY ON PULSE

PULSE에서는 π_{PHC+} 를 distill 하여 π_{PULSE} 를 학습 Distill하지 않고, na \ddot{i} ve하게 학습한 결과

AMASS-Train*						AMASS-Test*			
Distill	Succ ↑	$E_{\text{g-mpjpe}} \downarrow$	$E_{\rm mpjpe} \downarrow$	$E_{acc}\downarrow$	$E_{vel}\downarrow\mid Succ\uparrow$	$E_{\text{g-mpjpe}} \downarrow$	$E_{\rm mpjpe} \downarrow$	$E_{acc}\downarrow$	$E_{vel}\downarrow$
×	72.0%	76.7	52.8	3.5	8.0 32.6%	98.4	79.4	9.9	16.2
<u> </u>	99.8 %	39.2	35.0	3.1	5.2 97.1%	54.1	43.5	7.0	10.3

(논문 주장) Latent와 Recon이 동시에 학습이 잘 안됨 ⇒ 나의 연구에도 시사하는 바가 있음,

Knowledge를 잘 전달하기 위해서는 어떻게 해야할까?

Introduction

ackground

Previous Work

SMILe

Agger

Expert 수렴 Optimality

Comparison

Result

Further Works

THANK YOU

Introduction

Background

Previous Work

Forward Training
SMILe

DAgger

Property

Expert 수렴 Optimality

Comparison

Result

Further Works

Introduction

Background

Previous Work

Forward Training
SMILe

DAgger

Expert 수렴

Optimality

Comparison

Result

Further Works