Département d'Informatique Module : Algèbre 01 (1^{ère} Année LMD 2022-2023)

Durée : 1^h 30^m

<u>Examen Fínal</u>

EXERCICE 01 (04pts):

- 1) Soit $n \in \mathbb{N}$. Montrer par disjonction des cas que $n(n^2 + 2)$ est un multiple de 3.
- 2) Montrer par l'absurde que $(\forall n \in \mathbb{N}^*, \exists p \in \mathbb{N}^* : n = p^2) \Longrightarrow (\forall q \in \mathbb{N}^* : 2n \neq q^2)$.

EXERCICE 02 (06pts):

- 1. Résoudre dans \mathbb{R} l'équation $-x^2 + x = 0$.
- 2. Pour chaque $a \in \mathbb{R}$, resoudre dans \mathbb{R} l'équation $-x^2 + x a = 0$.
- 3. Soit $f : \mathbb{R} \to \mathbb{R}$ l'application définie par: Pour tout $x \in \mathbb{R}$, f(x) = x(1-x). f est-elle injectivite ? Est-elle surjectivite ?
- 4. Montrer que l'application $g: \left[\frac{1}{2}, +\infty\right[\to \left] -\infty, \frac{1}{4}\right]$ définie par g(x) = f(x) est bijective.

EXERCICE 03 (04pts):

Soit \mathcal{R} la relation définie sur \mathbb{Z} par :

 $\forall a, b \in \mathbb{Z} : a\mathcal{R}b \iff (a - b \text{ est divisible par 2 ou par 3}).$

- Étudier la réflexivité, la symétrie, l'antisymétrie et la transitivité de \mathcal{R} . Conclure.

EXERCICE 04 (06pts):

Soit * la loi de composition définie dans \mathbb{R} par : $\forall x, y \in \mathbb{R}$: $x * y = x + y + \frac{1}{10}$.

- 1. Montrer que (R,*) est un groupe abélien.
- 2. Montrer que l'application g définie par : $g(x) = 5x + \frac{1}{2}$ est un homomorphisme du groupe $(\mathbb{R},*)$ dans le groupe $(\mathbb{R},+)$.
- 3. Soit $H = \left\{ \frac{2n-1}{10} , n \in \mathbb{Z} \right\}$, Montrer que (H,*) est un sous-groupe de $(\mathbb{R},*)$

<u>Bon courage</u>

Corrigé de l'Examen final

EXERCICE 01 (4pts):

1) Soit $n \in \mathbb{N}$. On a:

 $\underline{1^{\text{er}} \text{ cas}}$: Si n = 3k, $avec \ k \in \mathbb{N}$ alors $n(n^2 + 2) = 3k((3k)^2 + 2)$ qui est un multiple de 3.

2ème cas: Si
$$n = 3k + 1$$
, avec $k \in \mathbb{N}$ alors $n(n^2 + 2) = (3k + 1)((3k + 1)^2 + 2) = (3k + 1)(9k^2 + 6k + 1 + 2)$
= 3(3k + 1)(3k² + 2k + 1) qui est un multiple de 3.

$$3^{\text{ème}}$$
 cas: Si $n = 3k + 2$, avec $k \in \mathbb{N}$ alors $n(n^2 + 2) = (3k + 2)((3k + 2)^2 + 2) = (3k + 2)(9k^2 + 12k + 4 + 2)$
= $3(3k + 2)(3k^2 + 4k + 2)$ qui est un multiple de 3

Par suite, dans tous les cas $n(n^2 + 2)$ est un multiple de 3......(2pts)

Exercíce 02(6pts):

- 1) $-x^2 + x = 0 \iff x(1-x) = 0 \iff (x = 0 \text{ ou } x = 1), \text{ donc l'ensemble des solutions } S = \{0,1\}....(01pt)$
- 2) $-x^2 + x a = 0$ est une équation de second degré, calculons son discriminant : $\Delta = 1 4a$ Si $a > \frac{1}{4}$, alors $\Delta < 0$, donc il n'y a pas de solutions dans \mathbb{R} . (0.5pt) Si $a \le \frac{1}{4}$, alors $\Delta \ge 0$, donc on a les solutions : $x_1 = \frac{1 + \sqrt{1 - 4a}}{2}$ et $x_2 = \frac{1 - \sqrt{1 - 4a}}{2}$...(1pt)
- 4.1) Soient $x_1, x_2 \in \left[\frac{1}{2}, +\infty\right[$:

$$g(x_1) = g(x_2) \Rightarrow x_1(1 - x_1) = x_2(1 - x_2) \Rightarrow x_1 - x_2 = x_1^2 - x_2^2$$

$$\Rightarrow x_1 - x_2 = (x_1 - x_2)(x_1 + x_2) \Rightarrow (x_1 - x_2)(x_1 + x_2 - 1) = 0$$

$$\Rightarrow (x_1 - x_2 = 0) \text{ ou } (x_1 + x_2 - 1 = 0) \Rightarrow (x_1 = x_2) \text{ ou } (x_1 = 1 - x_2)$$

$$\Rightarrow (x_1 = x_2) \text{ ou } \left(x_1 = x_2 = \frac{1}{2}\right), \text{ car } 1 - x_2 \ge \frac{1}{2} \Rightarrow x_2 \le \frac{1}{2} \Rightarrow x_2 = \frac{1}{2}$$

$$\Rightarrow x_1 = x_2.$$
(0) Integral (0) Integra

Alors g est injective.

4.2) Soit $y \in \left[-\infty, \frac{1}{4}\right]$, d'après 2), l'équation g(x) = y admet au moins une solution x dans \mathbb{R} .

On a
$$x_1 - \frac{1}{2} = \frac{1 + \sqrt{1 - 4y}}{2} - \frac{1}{2} = \frac{\sqrt{1 - 4y}}{2} \ge 0$$
 d'où $x_1 \ge \frac{1}{2}$ (0.5pt)

et
$$x_2 - \frac{1}{2} = \frac{1 - \sqrt{1 - 4y} - 1}{2} = \frac{-\sqrt{1 - 4y}}{2} \le 0$$
 d'où $x_2 \le \frac{1}{2}$(0.5pt)

Alors il suffit de prendre $x = \frac{1+\sqrt{1-4y}}{2} \in \left[\frac{1}{2}, +\infty\right[$, pour avoir y = g(x).

Par suite g est bijective.

EXERCICE 03 (04pts):
1) Soit $a \in \mathbb{Z}$ on $a: a-a=0$ est divisible par 2 ou par 3, c-à-d: $a\mathcal{R}a$
Alors \mathcal{R} est réflexive
2) Soient $a, b \in \mathbb{Z}$, on a:
$a\mathcal{R}b \implies a-b$ est divisible par 2 ou par 3
\Rightarrow $-(a-b)$ est divisible par 2 ou par 3
$\Rightarrow b - a$ est divisible par 2 ou par 3
$\Rightarrow b\mathcal{R}a$
Alors \mathcal{R} est symétrique(lpt)
3) On a par exemple $(6-3)$ est divisible par 2 ou par 3 et $(3-6)$ est divisible par 2 ou par 3 et $(3 \neq 6)$
C.à.d: $\exists a, b \in \mathbb{Z}$, $a\mathcal{R}b$ et $b\mathcal{R}a$ et $a \neq b$.
Alors \mathcal{R} n'est pas antisymétrique(1pt)
4) On a par exemple $(6-3)$ est divisible par 2 ou par 3 et $(3-1)$ est divisible par 2 ou par 3 et
(6-1 n'est pas divisible ni par 2, ni par 3).
C.à.d: $\exists a, b, c \in \mathbb{Z}$, $a\mathcal{R}b$ et $b\mathcal{R}c$ et $\overline{a\mathcal{R}c}$.
Alors ${\mathcal R}$ n'est pas transitive(1pt)
On conclut que \mathcal{R} n'est pas une relation d'ordre et n'est pas une relation d'équivalence(0.5pt)
EXERCICE 04 (06pts):
1.1) Soient $x, y \in \mathbb{R}$, on a: $x + y + \frac{1}{10} \in \mathbb{R}$ c-à-d $x * y \in \mathbb{R}$.
Alors $*$ est une loi interne dans \mathbb{R} . (0.5pt)
1.2) Soient $x, y \in \mathbb{R}$, on a:
$x * y = x + y + \frac{1}{10} = y + x + \frac{1}{10} = y * x$
Alors * est une loi commutative. (0.5pt)
1.3) Soient $x, y, z \in \mathbb{R}$, on a: $(x * y) * z = \left(x + y + \frac{1}{10}\right) * z = x + y + \frac{1}{10} + z + \frac{1}{10} = \left(x + \left(y + z + \frac{1}{10}\right) + \frac{1}{10}\right)$
$= \left(x + (y * z) + \frac{1}{10}\right) = x * (y * z)$
Alors * est associative. (0.5pt)
1.4) Cherchons $e \in \mathbb{R}$, tel que $\forall x \in \mathbb{R} : x * e = e * x = x$. On a: $x * e = x \iff x + e + \frac{1}{10} = x \iff e = -\frac{1}{10}$
10 10
Puisque $\frac{1}{2} \in \mathbb{R}$ at $\frac{1}{2}$ and commutative alors $a = \frac{1}{2}$ and $\frac{1}{2}$ defined the last $\frac{1}{2}$ and $\frac{1}{2}$
Puisque $-\frac{1}{10} \in \mathbb{R}$ et * est commutative, alors $e = -\frac{1}{10}$ est l'élément neutre de la loi *(<i>Ipt</i>)
1.5) Soit $x \in \mathbb{R}$, cherchons $x' \in \mathbb{R}$, tel que $x * x' = x' * x = -\frac{1}{10}$
10

2) Soient $x, y \in \mathbb{R}$, on a:

$$g(x*y) = g\left(x + y + \frac{1}{10}\right) = 5\left(x + y + \frac{1}{10}\right) + \frac{1}{2} = 5x + 5y + \frac{1}{2} + \frac{1}{2} = \left(5x + \frac{1}{2}\right) + \left(5y + \frac{1}{2}\right) = g(x) + g(y).$$

Alors g est un homomorphisme du groupe $(\mathbb{R},*)$ dans le groupe $(\mathbb{R},+)$(1pt)

3) On a:
$$e = -\frac{1}{10} = \frac{2(0)-1}{10} \in H$$
. (0.5pt)

Soient $x, y \in H$, alors $\exists n, m \in \mathbb{Z}$, $x = \frac{2n-1}{10}$, $y = \frac{2m-1}{10}$, on a:

$$x * y^{-1} = x * \left(-y - \frac{1}{5}\right) = \left(\frac{2n-1}{10}\right) * \left(-\frac{2m-1}{10} - \frac{1}{5}\right) = \left(\frac{2n-1}{10}\right) * \left(\frac{-2m-1}{10}\right) = \frac{2n-1}{10} + \frac{-2m-1}{10} + \frac{1}{10}$$
$$= \frac{2(n-m)-1}{10} \in H \text{, car } n-m \in \mathbb{Z}.$$