

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

The Hua matrix and inequalities related to contractive matrices

Minghua Lin

Department of Mathematics, Shanghai University, Shanghai, 200444, China

ARTICLE INFO

Article history: Received 8 April 2016 Accepted 2 September 2016 Available online 8 September 2016 Submitted by P. Semrl

MSC:

15A45

15A42

47A30

Keywords:
Hua matrix
Contractive matrix
Singular value
Eigenvalue
Inequality

ABSTRACT

We first deny a conjecture raised in Xu et al. (2011) [14] and then we present some eigenvalue or singular value inequalities related to contractive matrices.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The Hua matrix is

$$\mathbf{H} = \begin{bmatrix} (I - A^*A)^{-1} & (I - B^*A)^{-1} \\ (I - A^*B)^{-1} & (I - B^*B)^{-1} \end{bmatrix},$$

E-mail address: m_lin@i.shu.edu.cn.

where A, B are $n \times n$ strictly contractive matrices (i.e., matrices whose spectral norm is less than one). This block matrix first appears in Hua's study of the theory of functions of several complex variables; see [9]. The Hua matrix is a source for matrix inequalities. For example, the positivity of the Hua matrix immediately leads to

$$|\det(I - A^*B)|^2 \ge \det(I - A^*A)\det(I - B^*B),$$
 (1.1)

which is known as Hua's determinantal inequality in the literature (e.g., [16, p. 231]). More examples can be found in [3,4,12]. There is a renewed interest in the Hua matrix and its analogues in recent years; see [2,10,11,13,14]. A remarkable property about the Hua matrix is the positive partial transpose property. That is, the partial transpose of **H**, viz.,

$$\mathbf{H}^{\tau} = \begin{bmatrix} (I - A^*A)^{-1} & (I - A^*B)^{-1} \\ (I - B^*A)^{-1} & (I - B^*B)^{-1} \end{bmatrix}$$

is again positive semidefinite.

In this article, we first address a conjecture raised in [14], then we present some eigenvalue or singular value inequalities involving contractive matrices. The paper is concluded with some comments and a new conjecture along this line of study.

The remaining of this section is devoted to some notation used in this article. Let \mathbb{M}_n be the set of all $n \times n$ complex matrices; the identity matrix of \mathbb{M}_n is denoted by I. For any $X \in \mathbb{M}_n$, X^* stands for the conjugate transpose of X. For two Hermitian matrices X, Y of the same size, we write $X \geq Y$ to mean X - Y is positive semidefinite. Saying that $X \in \mathbb{M}_n$ is contractive is the same as saying $I \geq X^*X$. If the eigenvalues of a square matrix X are all real, then we denote $\lambda_j(X)$ the jth largest eigenvalue of X. The singular values of a complex matrix X are the eigenvalues of $|X| := (X^*X)^{1/2}$, and we denote $\sigma_j(X) := \lambda_j(|X|)$. The geometric mean of two positive definite matrices $X, Y \in \mathbb{M}_n$ is defined as $X \sharp Y := X^{1/2} (X^{-1/2} Y X^{-1/2})^{1/2} X^{1/2}$. Its weighted version is defined as $X \sharp_t Y := X^{1/2} (X^{-1/2} Y X^{-1/2})^t X^{1/2}$, $0 \leq t \leq 1$. It is known that the notion of (weighted) geometric mean could be extended to cover all positive semidefinite matrices; see [5, p. 107].

2. A conjecture in [14]

When considering possible extensions of the Hua matrix to higher number of blocks, it is known (see [2,13]) that in general the following block matrices are no longer positive semidefinite for $m \geq 3$:

$$\mathbf{H}_{(m)} = \begin{bmatrix} (I - A_1^* A_1)^{-1} & (I - A_2^* A_1)^{-1} & \cdots & (I - A_m^* A_1)^{-1} \\ (I - A_1^* A_2)^{-1} & (I - A_2^* A_2)^{-1} & \cdots & (I - A_m^* A_2)^{-1} \\ \vdots & \vdots & & \vdots \\ (I - A_1^* A_m)^{-1} & (I - A_2^* A_m)^{-1} & \cdots & (I - A_m^* A_m)^{-1} \end{bmatrix},$$

$$\mathbf{H}_{(m)}^{\tau} = \begin{bmatrix} (I - A_1^* A_1)^{-1} & (I - A_1^* A_2)^{-1} & \cdots & (I - A_1^* A_m)^{-1} \\ (I - A_2^* A_1)^{-1} & (I - A_2^* A_2)^{-1} & \cdots & (I - A_2^* A_m)^{-1} \\ \vdots & \vdots & & \vdots \\ (I - A_m^* A_1)^{-1} & (I - A_m^* A_2)^{-1} & \cdots & (I - A_m^* A_m)^{-1} \end{bmatrix},$$

where $A_1, \ldots, A_m \in \mathbb{M}_n$, are strictly contractive.

Xu, Xu and Zhang (see [14, Corollary 2]) observed that $\mathbf{H}^{\tau} = \mathbf{H}_{(2)}^{\tau}$ has at least n eigenvalues greater than or equal to 2, and then they made the following conjecture.

Conjecture 2.1. Let $A_1, \ldots, A_m \in \mathbb{M}_n$ be strictly contractive. Then both $\mathbf{H}_{(m)}$ and $\mathbf{H}_{(m)}^{\tau}$ have at least n eigenvalues greater than or equal to m.

Ruling out the trivial case m=1, we shall show the conjecture is true if m=2.

Proposition 2.2. The Hua matrix \mathbf{H} defined in Section 1 has at least n eigenvalues greater than or equal to 2.

Proof. By [14, Theorem 4],

$$\mathbf{H}^{\tau} \geq \begin{bmatrix} I & I \\ I & I \end{bmatrix}.$$

It follows

$$P\mathbf{H}^{\tau}P^{T} \ge P \begin{bmatrix} I & I \\ I & I \end{bmatrix} P^{T} = 2I,$$

where $P := \frac{1}{\sqrt{2}} \begin{bmatrix} I & I \end{bmatrix}$ is a partial isometry. Apparently,

$$P\mathbf{H}^{\tau}P^{T} = P\mathbf{H}P^{T}.$$

This yields

$$\lambda_n(\mathbf{H}) \ge \lambda_n(P\mathbf{H}P^T) = \lambda_n(P\mathbf{H}^{\tau}P^T) \ge \lambda_n(2I) = 2,$$

in which the first inequality is by a result of Poincaré (see e.g., [16, p. 271]) and the second inequality is clear (see e.g., [16, Theorem 8.11]). \Box

When $m \geq 3$, Conjecture 2.1 fails; see the Appendix for a counterexample.

3. New results

For any $X \in \mathbb{M}_n$, it is known that the determinant of X is equal to the product of all its eigenvalues, moreover, $|\det X| = \prod_{j=1}^n \sigma_j(X)$. Hua's determinantal inequality (1.1) has the following variants

$$\prod_{j=1}^{n} \sigma_{j}^{2}(I - A^{*}B) \ge \prod_{j=1}^{n} \lambda_{j} \Big((I - A^{*}A)(I - B^{*}B) \Big)
= \prod_{j=1}^{n} \sigma_{j} \Big((I - A^{*}A)(I - B^{*}B) \Big),
\prod_{j=1}^{n} \sigma_{j}(I - A^{*}B) \ge \prod_{j=1}^{n} \lambda_{j} \Big((I - A^{*}A) \sharp (I - B^{*}B) \Big)
= \prod_{j=1}^{n} \lambda_{j} \Big((I - A^{*}A)^{1/2}(I - B^{*}B)^{1/2} \Big).$$

In [11, Proposition 3.1], the present author proved the following strengthening of Hua's determinantal inequality.

Proposition 3.1. Let $A, B \in \mathbb{M}_n$ be contractive. Then for $j = 1, \ldots, n$

$$\sigma_j^2(I - A^*B) \ge \sigma_j\Big((I - A^*A)(I - B^*B)\Big).$$

It is natural to ask whether other variants of Hua's determinantal inequality have similar strengthening. The answer turns out to be yes. We shall prove the following general result.

Theorem 3.2. Let $\begin{bmatrix} M_{11} & M_{12} \\ M_{12}^* & M_{22} \end{bmatrix} \in \mathbb{M}_{2n}$, with each block nonsingular, be positive semidefinite. If $M_{11}^{-1} + M_{22}^{-1} \le M_{12}^{-1} + (M_{12}^*)^{-1}$, then for each $j = 1, \ldots, n$

$$\sigma_j^2(M_{12}) \le \lambda_j(M_{11}M_{22}),\tag{3.1}$$

$$\sigma_j^2(M_{12}) \le \sigma_j(M_{11}M_{22}),\tag{3.2}$$

$$\sigma_j(M_{12}) \le \lambda_j(M_{11} \sharp M_{22}),$$
(3.3)

$$\sigma_j(M_{12}) \le \lambda_j(M_{11}^{1/2}M_{22}^{1/2}).$$
 (3.4)

Proof. By a result of Fan and Hoffman [6, p. 73], it is known

$$2\sigma_j(M_{12}^{-1}) \ge \lambda_j(M_{12}^{-1} + (M_{12}^*)^{-1}). \tag{3.5}$$

On the other hand, by a result of Bhatia and Kittaneh [6, p. 262], we have

$$\lambda_j(M_{11}^{-1} + M_{22}^{-1}) \ge 2\sigma_j(M_{11}^{-1/2}M_{22}^{-1/2}) = 2\sqrt{\lambda_j(M_{11}^{-1}M_{22}^{-1})}.$$
 (3.6)

Combining (3.5), (3.6) with $M_{11}^{-1} + M_{22}^{-1} \le M_{12}^{-1} + (M_{12}^*)^{-1}$ gives

$$\sigma_i^2(M_{12}^{-1}) \ge \lambda_j(M_{11}^{-1}M_{22}^{-1}),$$

which is equivalent to (3.1) by noting that $\sigma_j(X^{-1}) = \frac{1}{\sigma_{n-j+1}(X)}$, j = 1, ..., n, for every invertible $X \in \mathbb{M}_n$ and $\lambda_j(X^{-1}) = \frac{1}{\lambda_{n-j+1}(X)}$, j = 1, ..., n, for every invertible $X \in \mathbb{M}_n$ having all eigenvalues real.

The proof of (3.2) is similar except for that (3.6) should be replaced by

$$\lambda_j(M_{11}^{-1} + M_{22}^{-1}) \ge 2\sqrt{\sigma_j(M_{11}^{-1}M_{22}^{-1})},$$

which is ensured by a result, previously conjectured in [7], recently established by Drury [8].

As $M_{11}^{-1} + M_{22}^{-1} \ge 2M_{11}^{-1} \sharp M_{22}^{-1}$ implies

$$\lambda_j(M_{11}^{-1} + M_{22}^{-1}) \ge 2\lambda_j(M_{11}^{-1} \sharp M_{22}^{-1}),$$

(3.3) can be similarly proved.

The proof of (3.4) is similar except for that (3.6) should be replaced by

$$\lambda_j(M_{11}^{-1} + M_{22}^{-1}) \ge 2\lambda_j(M_{11}^{-1/2}M_{22}^{-1/2}),$$

which is by [7, Eq. (3.12)]. \square

This immediately yields

Corollary 3.3. Let $A, B \in \mathbb{M}_n$ be contractive. Then for $j = 1, \ldots, n$

$$\sigma_{j}^{2}(I - A^{*}B) \ge \lambda_{j} \Big((I - A^{*}A)(I - B^{*}B) \Big),$$

$$\sigma_{j}(I - A^{*}B) \ge \lambda_{j} \Big((I - A^{*}A) \sharp (I - B^{*}B) \Big),$$

$$\sigma_{j}(I - A^{*}B) \ge \lambda_{j} \Big((I - A^{*}A)^{1/2}(I - B^{*}B)^{1/2} \Big).$$

We remark that neither (3.1), (3.2), (3.3) nor (3.4) is stronger than the other, although it is known by the theory of majorization (e.g., [16, Chapter 10]) that

$$\prod_{j=1}^{k} \lambda_{j}^{2}(M_{11} \sharp M_{22}) \leq \prod_{j=1}^{k} \lambda_{j}^{2}(M_{11}^{1/2} M_{22}^{1/2})$$

$$\leq \prod_{j=1}^{k} \sigma_{j}^{2}(M_{11}^{1/2} M_{22}^{1/2}) = \prod_{j=1}^{k} \lambda_{j}(M_{11} M_{22})$$

$$\leq \prod_{j=1}^{k} \sigma_{j}(M_{11} M_{22})$$

for $k = 1, \ldots, n$.

The following result complements Proposition 3.1 and Corollary 3.3.

Theorem 3.4. Let $A, B \in \mathbb{M}_n$ be contractive. Then for $j = 1, \ldots, n$

$$\sigma_{j}^{2}(I - AB^{*}) \ge \lambda_{j} \Big((I - A^{*}A)(I - B^{*}B) \Big),$$

$$\sigma_{j}^{2}(I - AB^{*}) \ge \sigma_{j} \Big((I - A^{*}A)(I - B^{*}B) \Big),$$

$$\sigma_{j}(I - AB^{*}) \ge \lambda_{j} \Big((I - A^{*}A) \sharp (I - B^{*}B) \Big),$$

$$\sigma_{j}(I - AB^{*}) \ge \lambda_{j} \Big((I - A^{*}A)^{1/2}(I - B^{*}B)^{1/2} \Big).$$

Proof. Similar to the argument in the proof of Theorem 3.2, it suffices to show

$$2\sigma_j(I - AB^*) \ge \lambda_j((I - A^*A) + (I - B^*B)). \tag{3.7}$$

It is known (see [6, p. 262]) that

$$2\sigma_i(AB^*) \le \lambda_i(A^*A + B^*B),$$

which is equivalent to

$$2U|AB^*|U^* \le A^*A + B^*B$$

for some unitary matrix $U \in \mathbb{M}_n$. It follows

$$2(I - U|AB^*|U^*) \ge (I - A^*A) + (I - B^*B). \tag{3.8}$$

By a result of Thompson [16, p. 289],

$$I = |I - AB^* + AB^*|$$

$$\leq V|I - AB^*|V^* + W|AB^*|W^*$$

for some unitary matrices $V, W \in \mathbb{M}_n$. Pre-post multiplying both sides with UW^*, WU^* , respectively, gives

$$I - U|AB^*|U^* \le UW^*V|I - AB^*|V^*WU^*. \tag{3.9}$$

Combining (3.8) and (3.9) and taking eigenvalues on both sides give the required (3.7). \square

When taking products for j from 1 to n on both sides in each of the inequality in Theorem 3.4, we would again recover Hua's determinantal inequality, since

$$|\det(I - AB^*)| = |\det(I - BA^*)| = |\det(I - A^*B)|.$$

4. Comments and a conjecture

If $A, B \in \mathbb{M}_n$ are strictly contractive and $U \in \mathbb{M}_n$ is unitary, then by [14, Theorem 1] the block matrix

$$\begin{bmatrix} (I - A^*A)^{-1} & (U - B^*A)^{-1} \\ (U^* - A^*B)^{-1} & (I - B^*B)^{-1} \end{bmatrix}$$

is positive semidefinite. This implies the following generalization of Hua's determinantal inequality

$$|\det(U - A^*B)|^2 \ge \det(I - A^*A)\det(I - B^*B).$$
 (4.1)

Based on what we discussed in Section 3, it is natural to ask whether (4.1) has the corresponding improvements. However, simulations suggest the following inequalities are not valid in general

$$\sigma_{j}^{2}(U - A^{*}B) \geq \lambda_{j} \Big((I - A^{*}A)(I - B^{*}B) \Big),$$

$$\sigma_{j}^{2}(U - A^{*}B) \geq \sigma_{j} \Big((I - A^{*}A)(I - B^{*}B) \Big),$$

$$\sigma_{j}(U - A^{*}B) \geq \lambda_{j} \Big((I - A^{*}A)\sharp (I - B^{*}B) \Big),$$

$$\sigma_{j}(U - A^{*}B) \geq \lambda_{j} \Big((I - A^{*}A)^{1/2}(I - B^{*}B)^{1/2} \Big).$$

Another idea of thought is the weighted extension of the inequalities in Section 3. We are able to prove the following result.

Theorem 4.1. Let $A, B \in \mathbb{M}_n$ be contractive and let $\frac{1}{p} + \frac{1}{q} = 1$, p > 1. Then for $j = 1, \ldots, n$

$$\sigma_j^2(I - AB^*) \ge \lambda_j \Big((I - |A|^p)^{2/p} (I - |B|^q)^{2/q} \Big),$$

$$\sigma_j(I - AB^*) \ge \lambda_j \Big((I - |A|^p) \sharp_{\frac{1}{q}} (I - |B|^q) \Big),$$

$$\sigma_j(I - AB^*) \ge \lambda_j \Big((I - |A|^p)^{1/p} (I - |B|^q)^{1/q} \Big).$$

Proof. In view of the proof of Theorem 3.4, it suffices to show

$$\sigma_j(I - |AB^*|) \ge \lambda_j \left(\frac{1}{p}(I - |A|^p) + \frac{1}{q}(I - |B|^q)\right).$$

But this follows immediately from a result of Ando (see [1] or [15, p. 30]) which says that there is a unitary matrix U such that

$$U|AB^*|U^* \le \frac{1}{p}|A|^p + \frac{1}{q}|B|^q.$$

However, we have not been able to prove other weighted counterparts of the inequalities in Section 3. We make the following conjecture.

Conjecture 4.2. Let $A, B \in \mathbb{M}_n$ be contractive and let $\frac{1}{p} + \frac{1}{q} = 1$, p > 1. Then for $j = 1, \ldots, n$

$$\sigma_{j}^{2}(I - A^{*}B) \geq \lambda_{j} \Big((I - |A|^{p})^{2/p} (I - |B|^{q})^{2/q} \Big),$$

$$\sigma_{j}^{2}(I - A^{*}B) \geq \sigma_{j} \Big((I - |A|^{p})^{2/p} (I - |B|^{q})^{2/q} \Big),$$

$$\sigma_{j}(I - A^{*}B) \geq \lambda_{j} \Big((I - |A|^{p}) \sharp_{\frac{1}{q}} (I - |B|^{q}) \Big),$$

$$\sigma_{j}(I - A^{*}B) \geq \lambda_{j} \Big((I - |A|^{p})^{1/p} (I - |B|^{q})^{1/q} \Big);$$

$$\sigma_{j}^{2}(I - AB^{*}) \geq \sigma_{j} \Big((I - |A|^{p})^{2/p} (I - |B|^{q})^{2/q} \Big).$$

Interestingly, numerical simulations we have run so far support the above conjecture. Proving or disproving any of the inequalities in the list would be of great interest.

Acknowledgements

The author is grateful to J.-C. Bourin and S. Drury for fruitful discussions. Thanks are also due to the referee and the editor for helpful comments. The work is supported in part by a grant from NNSFC.

Appendix A

A.1. Counterexample to Conjecture 2.1

Take

$$A_1 = \begin{bmatrix} 0.4384 & -0.1847 \\ -0.4632 & -0.2698 \end{bmatrix}, \ A_2 = \begin{bmatrix} -0.6753 & -0.1516 \\ -0.0252 & 0.3000 \end{bmatrix}, \ A_3 = \begin{bmatrix} 0.1932 & 0.2771 \\ 0.5897 & 0.0462 \end{bmatrix}.$$

A calculation gives

$$\mathbf{H}_{(3)} = \begin{bmatrix} 1.6918 & 0.0833 & 0.7633 & 0.0954 & 0.8287 & -0.1518 \\ 0.0833 & 1.1238 & -0.1489 & 0.9311 & 0.0780 & 0.9259 \\ 0.7633 & -0.1489 & 1.8755 & 0.2005 & 0.8530 & 0.1225 \\ 0.0954 & 0.9311 & 0.2005 & 1.1488 & -0.1562 & 0.9502 \\ 0.8287 & 0.0780 & 0.8530 & -0.1562 & 1.6452 & 0.1443 \\ -0.1518 & 0.9259 & 0.1225 & 0.9502 & 0.1443 & 1.0983 \end{bmatrix}$$

whose eigenvalues are 0.0677, 0.1198, 0.9271, 1.0994, 2.9759, 3.3934. So only one eigenvalue of $\mathbf{H}_{(3)}$ is larger than 3.

$$\mathbf{H}_{(3)}^{\tau} = \begin{bmatrix} 1.6918 & 0.0833 & 0.7633 & -0.1489 & 0.8287 & 0.0780 \\ 0.0833 & 1.1238 & 0.0954 & 0.9311 & -0.1518 & 0.9259 \\ 0.7633 & 0.0954 & 1.8755 & 0.2005 & 0.8530 & -0.1562 \\ -0.1489 & 0.9311 & 0.2005 & 1.1488 & 0.1225 & 0.9502 \\ 0.8287 & -0.1518 & 0.8530 & 0.1225 & 1.6452 & 0.1443 \\ 0.0780 & 0.9259 & -0.1562 & 0.9502 & 0.1443 & 1.0983 \end{bmatrix}$$

whose eigenvalues are 0.0747, 0.1157, 0.9085, 1.1153, 2.9758, 3.3934. Again only one eigenvalue of $\mathbf{H}_{(3)}^{\tau}$ is larger than 3.

References

- [1] T. Ando, Matrix Young inequalities, Oper. Theory Adv. Appl. 75 (1995) 33–38.
- [2] T. Ando, Positivity of operator-matrices of Hua-type, Banach J. Math. Anal. 2 (2008) 1–8.
- [3] T. Ando, Hua-Marcus inequalities, Linear Multilinear Algebra 8 (1980) 347-352.
- [4] R. Bellman, Representation theorems and inequalities for Hermitian matrices, Duke Math. J. 26 (1959) 485–490.
- [5] R. Bhatia, Positive Definite Matrices, Princeton University Press, Princeton, 2007.
- [6] R. Bhatia, Matrix Analysis, Grad. Texts in Math., vol. 169, Springer-Verlag, New York, 1997.
- [7] R. Bhatia, F. Kittaneh, Notes on matrix arithmetic-geometric mean inequalities, Linear Algebra Appl. 308 (2000) 203-211.
- [8] S.W. Drury, On a question of Bhatia and Kittaneh, Linear Algebra Appl. 437 (2012) 1955–1960.
- [9] L.-K. Hua, Inequalities involving determinants, Acta Math. Sin. 5 (1955) 463–470 (in Chinese); see also Transl. Amer. Math. Soc. Ser. 2 32 (1963) 265–272.
- [10] Y. Li, M. Zheng, S. Hu, Some new results for Hua-type operator matrices, Linear Algebra Appl. 506 (2016) 212–225.
- [11] M. Lin, Inequalities related to 2 × 2 block PPT matrices, Oper. Matrices 9 (2015) 917–924.
- [12] M. Marcus, On a determinantal inequality, Amer. Math. Monthly 65 (1958) 266-268.
- [13] C. Xu, Z. Xu, F. Zhang, Revisiting Hua-Marcus-Bellman-Ando inequalities on contractive matrices, Linear Algebra Appl. 430 (2009) 1499-1508.
- [14] G. Xu, C. Xu, F. Zhang, Contractive matrices of Hua type, Linear Multilinear Algebra 59 (2011) 159–172.
- [15] X. Zhan, Matrix Inequalities, Springer, Berlin, 2002.
- [16] F. Zhang, Matrix Theory: Basic Results and Techniques, second edition, Springer, New York, 2011.