

More Complex ANOVA & Regression

Institute for Advanced Analytics MSA Class of 2024

n-Way ANOVA

One-Way ANOVA

- 1 variable
- *k* categories

Two-Way ANOVA

- 2 variables
- k_1 and k_2 categories

•

n-Way ANOVA

- *n* variables
- $k_1, k_2, ..., k_n$ categories

Additional Linear Models Terminology

- Model a mathematical relationship between explanatory variables and response variables
- Effect the expected change in the response that occurs with a change in the value of an explanatory variable
 - Main Effect the effect of a single explanatory variable (for example, x_1 , x_2 , x_3)

- Similar to One-Way ANOVA, we need to explore variables to add to our generalized ANOVA model.
- Previously looked at Heating Quality.
- Want to also look at Central Air availability.

```
## # A tibble: 10 x 6
## # Groups:
               Heating QC [5]
      Heating_QC Central_Air
##
                                                        min
                                 mean
                                           sd
                                                 max
##
      <ord>
                 <fct>
                                <dbl> <dbl>
                                              <int>
                                                      <int>
##
                 Ν
                               50050
                                      52255.
                                               87000
                                                      13100
    1 Poor
##
    2 Poor
                              107000
                                         NA
                                              107000 107000
    3 Fair
                               84748. 28267. 158000
##
                                                      37900
    4 Fair
##
                              145165. 38624. 230000
                                                      50000
    5 Typical
##
                              103469. 34663. 209500
                                                      12789
##
    6 Typical
                              142003. 39657. 375000
                                                      60000
    7 Good
                              110811. 38455. 214500
##
                                                      59000
##
    8 Good
                              160113. 54158. 415000
                                                      52000
    9 Excellent
##
                              115062. 33271. 184900
                                                      64000
## 10 Excellent
                              216401. 88518. 745000
                                                      58500
```

```
## # A tibble: 10 x 6
## # Groups:
               Heating QC [5]
      Heating_QC Central_Air
##
                                                         min
                                 mean
                                           sd
                                                 max
##
      <ord>
                 <fct>
                                <dbl> <dbl>
                                              <int>
                                                       <int>
##
    1 Poor
                 Ν
                               50050
                                       52255.
                                               87000
                                                       13100
##
    2 Poor
                              107000
                                          NA
                                              107000 107000
    3 Fair
                                                       37900
##
                               84748, 28267, 158000
    4 Fair
                  Υ
                              145165. 38624. 230000
##
                                                       50000
    5 Typical
                 Ν
                                                       12789
##
                              103469. 34663. 209500
                 Υ
##
    6 Typical
                              142003. 39657. 375000
                                                       60000
##
    7 Good
                 Ν
                              110811. 38455. 214500
                                                       59000
    8 Good
                              160113. 54158. 415000
                                                       52000
##
##
    9 Excellent
                              115062. 33271. 184900
                                                       64000
   10 Excellent
                              216401. 88518. 745000
                                                       58500
```

- Appears to have differences between heating quality levels as well as presence of central air.
- Need statistical proof.


```
ames_aov2 <- aov(Sale_Price ~ Heating_QC + Central_Air, data = train)</pre>
summary(ames aov2)
                                                                 Each variable has
                                                                 F test
                      Sum Sq Mean Sq F value
                                                 Pr(>F)
##
                Df
                                               < 2e-16 ***
## Heating QC
               4 2.891e+12 7.228e+11 147.60
## Central_Air
                 1 2.903e+11 2.903e+11 59.28 2.11e-14 ***
## Residuals 2045 1.002e+13 4.897e+09
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
ames_aov2 <- aov(Sale_Price ~ Heating_QC + Central_Air, data = train)

summary(ames_aov2)

5-1 = 4 for Heating Quality

2-1 = 1 for Central Air

##

## Besiduals

Df

Sum Sq Mean Sq F value Pr(>F)

4 2.891e+12 7.228e+11 147.60 < 2e-16 ***

2.903e+11 2.903e+11 59.28 2.11e-14 ***

## Residuals

2045 1.002e+13 4.897e+09

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

- Similar to One-Way ANOVA, if we have statistical differences among the categories, we want to know where these statistical differences exist.
- Use same approaches as before.

```
tukey.ames2 <- TukeyHSD(ames_aov2)
print(tukey.ames2)
plot(tukey.ames2, las = 1)</pre>
```

```
## $Heating QC
                          diff
##
                                       lwr
                                                         p adj
                                                 upr
## Fair-Poor
                      49176.42 -63650.448 162003.29 0.7571980
## Typical-Poor
                      67781.01 -42800.320 178362.35 0.4506761
## Good-Poor
                      87753.89 -23040.253 198548.03 0.1945181
## Fxcellent-Poor
                     146288.89
                                35818.859 256758.92 0.0028361
## Typical-Fair
                      18604.59
                                 -6326.425
                                            43535.61 0.2484556
## Good-Fair
                      38577.47
                                12718.894
                                            64436.04 0.0004622
## Excellent-Fair
                      97112,47
                                72679.867 121545.07 0.0000000
## Good-Typical
                      19972.87
                                 7050.230 32895.52 0.0002470
## Excellent-Typical
                      78507.88
                                68746,678
                                           88269.07 0.0000000
## Fxcellent-Good
                      58535.00
                                           70467.78 0.0000000
                                46602,229
##
## $Central Air
##
           diff
                     lwr
                              upr p adi
## Y-N 43256.57 31508.27 55004.87
```

95% family-wise confidence level

95% family-wise confidence level

Two-Way ANOVA with Interactions

Additional Linear Models Terminology

- Model a mathematical relationship between explanatory variables and response variables
- **Effect** the expected change in the response that occurs with a change in the value of an explanatory variable
 - Main Effect the effect of a single explanatory variable (for example, x_1 , x_2 , x_3)
 - Interaction Effect the effect of one variable changes as levels of another variable changes (for example, $x_1 \times x_2$, $x_1 \times x_2 \times x_3$)

Two-Way ANOVA with Interactions

- For our model, an interaction between Central Air and Heating Quality would imply both of the following:
 - The impact of Heating Quality on Sale Price differs across levels of Central Air (ex. Difference in price between Excellent and Poor HQ changes if Central Air is or is **not** present)
 - The impact of Central Air on Sale Price differs across levels of Heating Quality (ex. Difference in price between having and not having Central Air changes across levels of HQ)

Interactions – Caution

• Interactions can potentially mask the effects of the variables.


```
ames_aov_int <- aov(Sale_Price ~ Heating_QC*Central_Air, data = train)
summary(ames_aov_int)</pre>
```

```
ames_aov_int <- aov(Sale_Price ~ Heating_QC*Central_Air, data = train)
summary(ames_aov_int)
Same
Heating_QC + Central_Air + Heating_QC:Central_Air</pre>
```

```
ames_aov_int <- aov(Sale_Price ~ Heating_QC*Central_Air, data = train)</pre>
summary(ames aov int)
##
                           Df
                                 Sum Sq Mean Sq F value Pr(>F)
                         4 2.891e+12 7.228e+11 147.897 < 2e-16 ***
## Heating QC
## Central_Air
                            1 2.903e+11 2.903e+11 59.403 1.99e-14 ***
## Heating QC:Central Air 4 3.972e+10 9.930e+09 2.032 0.0875 .
## Residuals
                         2041 9.975e+12 4.887e+09
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
ames_aov_int <- aov(Sale_Price ~ Heating_QC*Central_Air, data = train)</pre>
summary(ames aov int)
##
                           Df
                                 Sum Sq Mean Sq F value Pr(>F)
                            4 2.891e+12 7.228e+11 147.897 < 2e-16 ***
## Heating QC
## Central Air
                            1 2.903e+11 2.903e+11 59.403 1.99e-14 ***
## Heating QC:Central Air
                            4 3.972e+10 9.930e+09 2.032 0.0875 .
## Residuals
                          2041 9.975e+12 4.887e+09
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
tukey.ames_int <- TukeyHSD(ames_aov_int)
plot(tukey.ames_int, las = 1)</pre>
```

95% family-wise confidence level

Differences in mean levels of Heating_QC:Central_Air

Within Effects Testing (Slicing)

- If an interaction exists, we are probably curious to see which of the levels of one variable are different within the level of another variable.
- Testing every possible combination might be overwhelming.
- Slicing performs an F-test for means for one variable within the level of another variable.

Sliced ANOVA

Sliced ANOVA

```
## [[1]]
                      Sum Sq Mean Sq F value Pr(>F)
                Df
##
                 4 2.242e+12 5.606e+11
                                         108.5 <2e-16 ***
## Heating QC
## Residuals 1899 9.809e+12 5.165e+09
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## [[2]]
##
               Df
                     Sum Sq Mean Sq F value Pr(>F)
## Heating QC 4 1.774e+10 4.435e+09 3.793 0.00582 **
## Residuals 142 1.660e+11 1.169e+09
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Central Air – YES

Heating Quality levels different

Central Air – NO

Heating Quality levels different

Assumptions

- The assumptions of n-Way ANOVA are the same as with One-Way ANOVA.
 - Independence of observations
 - Equality of variance
 - Normality of categories

Assumptions

- The assumptions of n-Way ANOVA are the same as with One-Way ANOVA.
 - Independence of observations
 - Equality of variance Levene Test only available for interactions
 - Normality of categories

Assumptions

- The assumptions of n-Way ANOVA are the same as with One-Way ANOVA.
 - Independence of observations
 - Equality of variance (of errors from model)
 - Normality of categories (or errors from model)

Since ANOVA is essentially a linear regression, can use diagnostic approaches of linear regression to assess.

Discussed in later section of course!

Randomized Block Design with ANOVA

OPTIONAL SELF STUDY

Observational or Retrospective Studies

- Groups can be naturally occurring.
 - Ex: Gender and ethnicity
- Random assignment might be unethical or untenable.
 - Ex: Smoking or credit risk groups
- Often you look at what already happened (retrospective) instead of following through to the future (prospective).
- You have little control over other factors contributing to the outcome measure.

Controlled Experiments

- Random assignment might be desirable to eliminate selection bias.
- You often want to look at the outcome measure prospectively.
- You can manipulate the factors of interest and can more reasonably claim causation.
- You can design your experiment to control for other nuisance factors contributing to the outcome measure.

Garlic Bulb Weight Data

- This dataset contains the average garlic bulb weight from different plots of land.
- Compare the effects of fertilizer on average bulb weight.
- Potential nuisance factors:
 - Sun exposure
 - pH for the soil
 - Rain amounts
- Blocking to account for these nuisance factors.

Nuisance Factors

Assigning Treatments within Blocks

Exploring Garlic Data

```
## # A tibble: 32 x 6
      Sector Position Fertilizer BulbWt Cloves BedId
##
       <dbl>
                <dbl>
                            <dbl> <dbl>
                                          <dbl> <dbl>
##
##
                                   0.259
                                           11.6 22961
           1
                                           12.6 23884
##
                                   0.207
##
                                   0.275
                                           12.1 19642
                                           12.1 20384
                                   0.245
##
                                   0.215
                                           11.6 20303
##
##
                                   0.170
                                           12.7 21004
                                   0.225
                                           12.0 16117
##
##
                                   0.168
                                           11.9 19686
                                   0.217
                                           12.4 26527
##
## 10
                                   0.226
                                           11.7 23574
## # ... with 22 more rows
```

Include Blocking Variable in Model

Nuisance Factors

ANOVA with Random Block Design

ANOVA with Random Block Design

Post-hoc Testing

```
tukey.block <- TukeyHSD(block_aov)
plot(tukey.block, las = 1)</pre>
```

Post-hoc Testing

95% family-wise confidence level

Including a Blocking Variable in the Model

- Additional assumptions are as follows:
 - Treatments are randomly assigned within each block.
 - The effects of the treatment factor are constant across the levels of the blocking variable.
- In the garlic example, the design is balanced, which means that there is the same number of garlic samples for every **Fertilizer/Sector** combination.

CONCEPTS

Regression Modeling

- Most practical applications of regression modeling involve using more complicated models than the simple linear regression model.
- Typically, it is better to have more than one variable in a regression model.
- Models with more than one predictor variable are called multiple regression models.

 Models with more than one predictor variable are called multiple regression models.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \varepsilon$$

 Models with more than one predictor variable are called multiple regression models.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \varepsilon$$

- With multiple variables in the model, the interpretation of $\hat{\beta}_j$ changes slightly.
- The estimate $\hat{\beta}_j$ is the predicted (or expected or average) change in y with a one unit increase in x_j given all other variables are held constant.

Fitting the Model

- The method for finding the line of best fit for multiple linear regression is the exact same for simple linear regression – the least squares method.
- The only thing that has changed is the predicted value of the response, \hat{y}_i .

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1,i} + \dots + \hat{\beta}_k x_{k,i}$$

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Picturing the Model: No Relationship

Picturing the Model: A Relationship

- The *linear* in multiple linear regression has nothing to do with the visualization of the fitted plane (or line in 2-dimensions).
- Linear refers to the linear combination of variables in the model.

• For example, mathematically, z is a linear combination of x and y (a and b are just constants/numbers):

$$z = ax + by$$

- The *linear* in multiple linear regression has nothing to do with the visualization of the fitted plane (or line in 2-dimensions).
- Linear refers to the linear combination of variables in the model.

Mathematically, y is a linear combination of the x's and error term:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \varepsilon$$

• Linear regression with 4 variables:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \varepsilon$$

• Linear regression with 4 variables:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \varepsilon$$

• Let $x_3 = x_1^2$ and $x_4 = x_2^2$:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1^2 + \beta_4 x_2^2 + \varepsilon$$

• Still linear regression!

Both Linear Regressions

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1^2 + \beta_4 x_2^2 + \varepsilon$$

GLOBAL & LOCAL INFERENCE

Global vs. Local Test

- In simple linear regression we could just look at the t-test for our slope parameter estimate to determine the utility of our model.
- With multiple parameter estimates comes multiple t-tests.
- Ideally there should be a way of determining whether the model is adequate for predicting y overall, instead of looking at every individual parameter estimate.

Global Hypothesis Test

Null Hypothesis:

- None of the variables are useful in predicting the target variable.
- $\beta_1 = \beta_2 = ... = \beta_k = 0$

Alternative Hypothesis:

- At least one variable is useful in predicting the target variable.
- Not all β_i s equal zero.

Global F-test

• The test statistic for this hypothesis test follows an *F*-distribution and is calculated as follows:

$$F = \frac{\left(\frac{SSR}{k}\right)}{\left(\frac{SSE}{n - (k+1)}\right)}$$

Global F-test

 The test statistic for this hypothesis test follows an F-distribution and is calculated as follows:

$$F = \frac{\left(\frac{SSR}{k}\right)}{\left(\frac{SSE}{n - (k+1)}\right)}$$

Average amount of variation each variable explains (i.e. Mean Square Regression)

"Average" amount of variation left per data point (i.e. Mean Square Error)

F-Distribution

- The F-test comes from the **F-distribution**.
- Characteristics of the Fdistribution:
 - 1. Bounded Below By Zero
 - 2. Right Skewed
 - 3. Numerator **and** Denominator Degrees of Freedom

Global vs. Local Test

- If the global F-test is significant (at least one variable is useful), then we would dive down into the individual t-tests to find which variables are useful.
- Need to test if the values of each of these coefficients are zero to determine if a relationship exists between the response variable y and that specific explanatory variable x.

$$H_0$$
: $\beta_j = 0$, for $j = 1, ..., k$
 H_a : $\beta_i \neq 0$, for $j = 1, ..., k$

```
ames_lm2 <- lm(Sale_Price ~ Gr_Liv_Area + TotRms_AbvGrd, data = train)
summary(ames_lm2)</pre>
```

```
## Call:
## lm(formula = Sale_Price ~ Gr_Liv_Area + TotRms_AbvGrd, data = train)
##
## Residuals:
##
      Min
               1Q Median 3Q
                                    Max
## -528656 -30077 -1230 21427 361465
##
## Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 42562.657 5365.721 7.932 3.51e-15 ***
## Gr Liv Area 136.982 4.207 32.558 < 2e-16 ***
## TotRms AbvGrd -10563.324 1370.007 -7.710 1.94e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 56630 on 2048 degrees of freedom
## Multiple R-squared: 0.5024, Adjusted R-squared: 0.5019
## F-statistic: 1034 on 2 and 2048 DF, p-value: < 2.2e-16
```

```
## Call:
## lm(formula = Sale Price ~ Gr Liv Area + TotRms AbvGrd, data = train)
##
## Residuals:
##
      Min
               1Q Median 3Q
                                     Max
## -528656 -30077 -1230 21427 361465
##
## Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 42562.657 5365.721 7.932 3.51e-15 ***
## Gr Liv Area 136.982 4.207 32.558 < 2e-16 ***
## TotRms AbvGrd -10563.324 1370.007 -7.710 1.94e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 56630 on 2048 degrees of freedom
## Multiple R-squared: 0.5024, Adjusted R-squared: 0.5019
## F-statistic: 1034 on 2 and 2048 DF, p-value: < 2.2e-16
```

```
## Call:
## lm(formula = Sale Price ~ Gr Liv Area + TotRms AbvGrd, data = train)
##
## Residuals:
##
      Min
               1Q Median 3Q
                                     Max
## -528656 -30077 -1230
                           21427 361465
##
## Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 42562.657 5365.721 7.932 3.51e-15 ***
                               4.207 32.558 < 2e-16 ***
## Gr Liv Area 136.982
## TotRms AbvGrd -10563.324 1370.007 -7.710 1.94e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 56630 on 2048 degrees of freedom
## Multiple R-squared: 0.5024, Adjusted R-squared: 0.5019
## F-statistic: 1034 on 2 and 2048 DF, p-value: < 2.2e-16
```


EVALUATING A MODEL

Assumptions for Linear Regression

- The mean of the Ys is accurately modeled by a linear function of the Xs.
- The random error term, ε , is assumed to have a **normal** distribution with a mean of zero.
- The random error term, ε , is assumed to have a **constant variance**, σ^2 .
- The errors are independent.

No perfect collinearity

Multicollinearity

• Multicollinearity – predictor variables are correlated with each other.

- No perfect collinearity (multicollinearity) predictor variables are a perfect linear combination of each other.
 - Only care when collinearity has drastic impact.
 - Linear regression only breaks when collinearity is perfect.

Assumptions through Residuals

plot(ames_lm2)

Multiple Linear vs. Simple Linear Regression

Main Advantage

 Multiple linear regression enables you to investigate the relationship among Y and several independent variables simultaneously.

Main Disadvantages

- Increased complexity makes it more difficult to do the following:
 - ascertain which model is "best"
 - interpret the models

Common Applications

- Multiple linear regression is a powerful tool for the following tasks:
 - Predict to develop a model to predict future values of a response variable (Y) based on its relationships with other predictor variables (Xs)
 - **Explain** to develop an understanding of the relationships between the response variable and predictor variables

Predict

- The terms in the model, the values of their coefficients, and their statistical significance are of secondary importance.
- The focus is on producing a model that is the best at predicting future values of Y as a function of the Xs. The predicted value of Y is given by this formula:

$$\underline{\hat{Y}} = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \ldots + \hat{\beta}_k X_k$$

Explain

- The focus is on understanding the relationship between the dependent variable and the independent variables.
- Consequently, the statistical significance of the coefficients is important as well as the magnitudes and signs of the coefficients.

$$\hat{Y} = \hat{\underline{\beta}}_0 + \hat{\underline{\beta}}_1 X_1 + \ldots + \hat{\underline{\beta}}_k X_k$$

Problem with R^2

• The problem with the calculation of \mathbb{R}^2 in a multiple linear regression is that the addition of any variable (good or bad) will make the \mathbb{R}^2 value increase if even slightly.

$$R^2 = 1 - \underbrace{SSE}$$
 Will never increase with the addition of a variable.

Example with Randomness

Adjusted Coefficient of Determination

- To account for this problem, most people use the **adjusted coefficient** of determination, R_a^2 .
- The calculations are as follows:

$$R_a^2 = 1 - \left[\left(\frac{n-1}{n-(k+1)} \right) \left(\frac{SSE}{TSS} \right) \right]$$

OR

$$R_a^2 = 1 - \left[(1 - R^2) \left(\frac{n - 1}{n - (k + 1)} \right) \right]$$

Adjusted Coefficient of Determination

• The R_a^2 penalizes a model for adding a variable that does not provide any useful information.

$$R_a^2 \leq R^2$$

 The adjusted coefficient of determination loses its interpretation (because it could be negative!), but is better at determining utility of a model.

Example with Randomness

CATEGORICAL PREDICTORS

Dummy Variables

- Categorical variables need to be coded differently because they are not numerical in nature.
- Dummy variables are a common way to code categorical variables.
- Central Air Example (Y, N): $x_1 = \begin{cases} 1 & \text{if Y} \\ 0 & \text{if N} \end{cases}$

Dummy Variable Interpretation

- Categorical variables need to be coded differently because they are not numerical in nature.
- **Dummy variables** are a common way to code categorical variables.
- Central Air Example (Y, N):

$$x_1 = \begin{cases} 1 & \text{if Y} \\ 0 & \text{if N} \end{cases}$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1$$

Average difference between category Y and N.

Dummy Variable Interpretation

Central Air Example (Y, N):

$$x_1 = \begin{cases} 1 & \text{if Y} \\ 0 & \text{if N} \end{cases}$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1$$

Average difference between category Y and N. BUT WHY?

Dummy Variable Interpretation

Central Air Example (Y, N):

$$x_1 = \begin{cases} 1 & \text{if Y} \\ 0 & \text{if N} \end{cases}$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1$$

Average difference between category Y and N. BUT WHY?

$$\hat{y}_{Y} = \hat{\beta}_{0} + \hat{\beta}_{1} \cdot 1 = \hat{\beta}_{0} + \hat{\beta}_{1}$$

$$\hat{y}_{N} = \hat{\beta}_{0} + \hat{\beta}_{1} \cdot 0 = \hat{\beta}_{0}$$

$$\hat{y}_{Y-N} = (\hat{\beta}_{0} + \hat{\beta}_{1}) - \hat{\beta}_{0} = \hat{\beta}_{1}$$

Effects Coding Interpretation

- Categorical variables need to be coded differently because they are not numerical in nature.
- Effects coding is another common way to code categorical variables.
- Central Air Example (Y, N):

$$x_1 = \begin{cases} 1 & \text{if Y} \\ -1 & \text{if N} \end{cases}$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1$$

Average difference between category Y and the overall average of categories Y & N.

Effects Coding Interpretation

Central Air Example (Y, N):

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1$$

Average difference between category Y and the overall average of categories Y & N. BUT WHY?

$$x_1 = \begin{cases} 1 & \text{if Y} \\ -1 & \text{if N} \end{cases}$$

$$\hat{y}_{Y} = \hat{\beta}_{0} + \hat{\beta}_{1} \cdot 1 = \hat{\beta}_{0} + \hat{\beta}_{1}$$

$$\hat{y}_{N} = \hat{\beta}_{0} + \hat{\beta}_{1} \cdot (-1) = \hat{\beta}_{0} - \hat{\beta}_{1}$$

$$\hat{y}_{Avg.} = \frac{\left((\hat{\beta}_{0} + \hat{\beta}_{1}) + (\hat{\beta}_{0} - \hat{\beta}_{1}) \right)}{2} = \hat{\beta}_{0}$$

$$\hat{y}_{Y-Avg} = (\hat{\beta}_{0} + \hat{\beta}_{1}) - \hat{\beta}_{0} = \hat{\beta}_{1}$$

```
ames_lm2 <- lm(Sale_Price ~ Gr_Liv_Area + TotRms_AbvGrd + Central_Air, data = train)
summary(ames_lm2)</pre>
```

```
## Residuals:
               10 Median 30
##
      Min
                                    Max
## -510745 -28984 -2317
                           20273 356742
##
## Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
##
                            6778.879 -1.058
## (Intercept)
                -7169.259
                                               0.29
## Gr_Liv_Area 129.594
                              4.131 31.374 < 2e-16 ***
## TotRms_AbvGrd -8980.938 1335.669 -6.724 2.29e-11
## Central AirY
                54513.082 4762.926 11.445 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 54910 on 2047 degrees of freedom
## Multiple R-squared: 0.5323, Adjusted R-squared: 0.5316
## F-statistic: 776.6 on 3 and 2047 DF, p-value: < 2.2e-16
```

