CALCULUS-BASED PHYSICS-1: MECHANICS (PHYS150-01): WEEK 1

Jordan Hanson September 6th - September 8th, 2017

Whittier College Department of Physics and Astronomy

COURSE INTRODUCTION

- 1. Professor Jordan Hanson
- 2. Contact: 918particle@gmail.com, SLC 200
- 3. Syllabus: whittier.edu
- 4. Office hours: Mondays, Tuesdays at 15:00
- 5. Course pre-requisites: Calculus 1 (concurrently)
- 6. Text: University Physics Volume 1 (openstax.org)
- 7. Homework: ExpertTA (theexpertta.com)

WEEK 1 SUMMARY

Physics - $\phi v \sigma \iota \kappa \acute{\eta}$ - "phusiké": knowledge of nature from $\phi \acute{v} \sigma \iota \varsigma$ - "phúsis": nature

- 1. Methods of approximation
 - Estimating the correct order of magnitude
 - Function approximation
 - Unit analysis
- 2. Coordinate systems and vectors
 - · Cartesian (rectangular) coordinates
 - · Vector addition and subtraction
 - · Time and relativity
- 3. Some concepts from single-variable calculus
 - Limits
 - Differentiation
 - Integration

METHODS OF APPROXIMATION

METHODS OF APPROXIMATION - ESTIMATION (CHAPTER 1.5)

In science and engineering, estimation is to obtain a quantity in the absence of precision, informed by rational constraints.

- 1. Define relevant scales
 - 1 AU for the solar system (distance from Sun to Earth)
 - 1 angstrom (10^{-10} meters) for cell membranes
- 2. Obtain complex quantities from simple ones
 - · Obtain areas and volumes from lengths
 - Obtain rates from numerators and denominators
- 3. Constrain the unknown with upper and lower limits
 - The solar system is less than one light-year across
 - · An insect is at least one millimeter long

METHODS OF APPROXIMATION - ESTIMATION (CHAPTER 1.5)

Estimate the mass of ants in an ant colony. Assume that the colony is a species known to have 10⁵ ants (roughly) per colony.

- A: 0.01 kg
- B: 0.1 kg
- C: 1 kg
- D: 10 kg

An adult blue whale is about 30 meters long. What is the mass of a blue whale calf? (1 tonne = 1000 kg).

- A: 100 kg
- B: 0.5 tonnes
- · C: 5 tonnes
- D: 20 tonnes

METHODS OF APPROXIMATION - ESTIMATION (CHAPTER 1.5)

How long does it take an airliner to fly across the Atlantic ocean? Assume the velocity is 500 mph, and the radius of the Earth is 7000 km.

- A: 10 hours
- B: 15 hours
- · C: 2 hours
- · D: 4 hours

A flock of birds takes one minute to pass overhead, and it is about 100 meters wide, with most birds flying at roughly the same altitude. How many birds are in the flock?

- A: 100 birds
- B: 1,000 birds
- · C: 10,000 birds
- D: 100,000 birds

METHODS OF APPROXIMATION - FUNCTION APPROXIMATION

In science and engineering, function approximation or expanding a function is a technique in which a simple function is used obtain the value of a more complicated function near a point where they are approximately equal.

- 1. Memorizing special cases
 - $\sin(x) \approx x$, when |x| < 1
 - $tan(x) \approx x$, when |x| < 1
 - $(1+x)^{1/2} \approx 1 + \frac{1}{2}x$, when |x| < 1
 - $\exp(x) \approx 1 + x$, when |x| < 1
- 2. Utilizing the Taylor Series (more on this later)

•
$$f(x) \approx f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \dots$$

METHODS OF APPROXIMATION - FUNCTION APPROXIMATION

Figure 1: Certain functions may be approximated by simpler ones. In this case, sin(x) is approximated by x near x = 0, and $(1 + x)^{1/2}$ is approximated by $1 + \frac{1}{2}x$ near x = 0.

METHODS OF APPROXIMATION - FUNCTION APPROXIMATION

The height in meters of a surfer above some average height as he bobs in the waves is described by h(t) = sin(t). What is his height at 1.0 second? What is his height at -1.0 second?

The value of an investment in dollars, v, versus time in years, t, follows the form $v(t) = P\exp(rt)$, where P is the value at t=0, and r=1/3. What is v(1), the value after one year?

- · A: 1 meter. -1 meter
- B: π meters, $-\pi$ meters
- · C: -1 meter, 1 meter
- D: $-\pi$ meters, π meters

- A: ≈ 1/3P
- B: ≈ 2/3P
- C: ≈ 3/2P
- D: $\approx 4/3P$

Physics requires units to relate ideas to the real world, and unit analysis is a powerful tool to eliminate incorrect results and to facilitate estimation.

- 1. SI units, and kilogram-meter-second unit set
 - mass: kilogram (gram = 10^{-3} kg, milligram = 10^{-6} kg)
 - length: meter (millimeter = 10^{-3} m, kilometer = 10^{3} m)
 - time: second (1 year $\approx \pi \times 10^7$ sec, 1 hour = 3600 sec)
- 2. Unit analysis
 - If we are calculating a density, the units should work out to be kg/m³
 - Identifying the fundamental unit in a complex calculation often simplifies it (when done properly, this reveals the beauty of physics)

A millenium is 1000 years. If a glacier retreats at a pace of 10 cm per year, what is this rate in meters per millenium?

Ice has a density of 0.917 grams per centimeter cubed. What is this density in kilograms per meter cubed?

- · A: 0.1 meter per millenium
- B: 1 meter per millenium
- C: 10 meters per millenium
- D: 100 meters per millenium

- A: 91.7 kg/m^3
- B: 917 kg/m³
- C: 9170 kg/m^3
- D: 9.17 kg/m³

Sometimes, the beauty of physics arrises from choosing the right unit.

http://joshworth.com/dev/pixelspace/pixelspace_solarsystem.html

The Sun in this ruler is at 0 km, and Jupiter is at about 780,000,000 km (good luck finding it). Clearly, the kilometer is the wrong unit to choose for interplanetary distances. What if we defined a new unit, the astronomical unit, as the distance between the Earth and the Sun?

Planetary orbital radii in AU (geometric means):

Mercury	0.379
Venus	0.722
Earth	1.00
Mars	1.52
Jupiter	5.20
Saturn	9.54
Uranus	19.2
Neptune	30.1

Figure 2: Why such simple numbers? There is a set of simple relationships between the *orbital period* and the *orbital radius* of planets called Kepler's Laws, which led to the discovery of Newton's Law of Gravity.

ANSWERS

ANSWERS

- · Mass of ants: 0.1 kg
- Mass of baby whale: 5 tonnes
- Length of flight is 10 hours
- Number of birds is 10,000
- Height of surfer is 1.0 meter, -1.0 meter
- Value of investment is 4/3P
- The glacier is retreating at 100 meters per millenium
- Ice has a density of 917 kg/m³