Chapitre 22 - Déterminants

1 Déterminant d'une matrice carrée

1.1 Linéarité par rapport aux colonnes de la variable

Soit M une matrice de $\mathcal{M}_n(\mathbb{K})$, on note ses colonnes $M = (C_1|C_2|\dots|C_n)$ et on note C_j' une autre colonne.

Définition 1.1. Soit $j \in [1, n]$ et $f : \mathcal{M}_n(\mathbb{K}) \longrightarrow \mathbb{K}$, on dit que f est linéaire par rapport à la colonne C_j si pour tout $\alpha \in \mathbb{K}$, pour toute matrice M et pour toute colonne C'_j ,

$$f\left(\left.C_{1}|C_{2}|\ldots|\alpha C_{j}+C_{j}'|\ldots|C_{n}\right)=\alpha f\left(\left.C_{1}|C_{2}|\ldots|C_{j}|\ldots|C_{n}\right)+f\left(\left.C_{1}|C_{2}|\ldots|C_{j}'|\ldots|C_{n}\right)\right)$$

1.2 Antisymétrie par rapport aux colonnes

Définition 1.2. Soit $f: \mathcal{M}_n(\mathbb{K}) \longrightarrow \mathbb{K}$, on dit que f est antisymétrique par rapport aux colonnes de sa variable si pour toute matrice $M = (C_1|C_2|\dots|C_n)$ et pour tous indices i,j

$$f\left(\left.C_1|C_2|\ldots|C_i|\ldots|C_j|\ldots|C_n
ight) = -f\left(\left.C_1|C_2|\ldots|C_j|\ldots|C_i|\ldots|C_n
ight)$$

1.3 Théorème d'existence et d'unicité

Théorème 1.1. Soit $n \in \mathbb{N}^*$. Il existe une unique application $f : \mathcal{M}_n(\mathbb{K}) \longrightarrow \mathbb{K}$ vérifiant les trois propriétés suivantes :

- 1. f est linéaire par rapport à chacune des colonnes de la matrice,
- 2. f est antisymétrique par rapport aux colonnes de la matrice,
- 3. $f(I_n) = 1$.

Cette application s'appelle déterminant et on la note det(M) pour une matrice carrée M.

notations 1.3. Pour une matrice
$$M = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & & a_{nn} \end{pmatrix}$$
, on note $\det M = \begin{vmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{vmatrix}$.

1.4 Dimension 2 et 3

Proposition 1.2. Pour
$$M=\left(\begin{array}{cc} u_1 & v_1 \\ u_2 & v_2 \end{array}\right)\in \mathcal{M}_2(\mathbb{K})$$
, on a
$$\det M=\left|\begin{array}{cc} u_1 & v_1 \\ u_2 & v_2 \end{array}\right|=u_1v_2-u_2v_1.$$

$$\begin{aligned} \textbf{Proposition 1.3. } Pour \ M &= \begin{pmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{pmatrix} \in \mathcal{M}_3(\mathbb{K}), \ on \ a \\ \det(M) &= \begin{vmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{vmatrix} = u_1 v_2 w_3 + v_1 w_2 u_3 + w_1 u_2 v_3 - u_1 w_2 v_3 - v_1 u_2 w_3 - w_1 v_2 u_3. \end{aligned}$$

1.5 Propriétés du déterminant

Proposition 1.4. Le déterminant d'une matrice ayant deux colonnes égales est nul.

$$\det \left(|C_1|C_2|\dots |C_{i-1}|C|C_{i+1}|\dots |C_{j-1}|C|C_{j+1}|\dots |C_n \right) = 0$$

Proposition 1.5.

Si une des colonnes d'une matrice est combinaison linéaire des autres alors son déterminant est nul.

Proposition 1.6. Pour toute matrice $A \in \mathcal{M}_n(\mathbb{K})$ et pour tout scalaire $\lambda \in \mathbb{K}$

$$\det(\lambda.A) = \lambda^n \det(A)$$

2 Déterminant et opérations élémentaires

2.1 Opérations élémentaires sur les colonnes

Proposition 2.1. L'opération élémentaire sur les matrices $C_i \leftarrow C_i + \lambda C_j$, $\lambda \in \mathbb{K}$, ne change pas la valeur du déterminant.

Proposition 2.2. L'opération élémentaire $C_i \leftrightarrow C_j$ change le signe du déterminant.

Proposition 2.3. L'opération $C_i \leftarrow \mu C_i$, $\mu \in \mathbb{K}$ multiplie le déterminant par μ .

Proposition 2.4. Soit M une matrice carrée et E_1 une matrice d'opération élémentaire.

On a $\det(M.E_1) = \det(M)\det(E_1)$.

Si E est une matrice produit de matrices d'opérations élémentaires, alors

 $\det(M.E) = \det(M)\det(E).$

Proposition 2.5. Le déterminant d'une matrice triangulaire inférieure ou supérieure est le produit de ses coefficients diagonaux.

$$\det \left(egin{array}{ccc} lpha_1 & & (*) \ & \ddots & \ (0) & & lpha_n \end{array}
ight) = \prod_{i=1}^n lpha_i$$

Application: Calcul du déterminant par opérations sur les colonnes.

2.2 Matrices inversibles et déterminant

Théorème 2.6. Une matrice carrée A est inversible si et seulement si $\det A \neq 0$.

2.3 Développement selon une ligne ou une colonne

Proposition 2.7. Soit A une matrice de $\mathcal{M}_n(\mathbb{K})$ avec $A = (a_{ij})_{(i,j) \in [\![1,n]\!]^2}$.

On note Δ_{ij} le déterminant extrait de A en supprimant la $i^{i\grave{e}me}$ ligne et la $j^{i\grave{e}me}$ colonne.

On peut calculer $\det A$ en développant par rapport à n'importe quelle ligne p :

$$\det A = \sum_{j=1}^n a_{pj} (-1)^{p+j} \Delta_{pj} \; \; pour \; tout \; p \in \llbracket 1, n
rbracket,$$

ou en développant par rapport à n'importe quelle colonne q :

$$\det A = \sum_{i=1}^n a_{iq} (-1)^{i+q} \Delta_{iq} \; pour \; tout \; q \in \llbracket 1, n
rbracket.$$

Lemme 2.8. Pour toute matrice $B \in \mathcal{M}_{n-1}(\mathbb{K})$, on a

$$\det \left(egin{array}{c|c} 1 & 0 & & \\ \hline 0 & B & & \end{array}
ight) = \det B$$

3 Déterminant d'un produit de matrices

3.1 Déterminant d'un produit

Théorème 3.1. Pour toutes matrices $A, B \in \mathcal{M}_n(\mathbb{K})$, on a $\det(AB) = \det A \cdot \det B$.

3.2 Déterminant de l'inverse

Théorème 3.2. Une matrice A est inversible si et seulement si $\det A \neq 0$ et dans ce cas, on a $\det A^{-1} = \frac{1}{\det A}$.

3.3 Déterminant de la transposée

Théorème 3.3. Soit $A \in \mathcal{M}_n(\mathbb{K})$, on a $\det A^T = \det A$.

3.4 Déterminant d'une famille de vecteurs

Définition 3.1. Soit E un espace vectoriel de dimension finie n et \mathcal{B} une base E. Soit (x_1, x_2, \ldots, x_n) une famille de E. On appelle déterminant de (x_1, x_2, \ldots, x_n) dans la base \mathcal{B} le scalaire :

$$\det_{\mathcal{B}}(x_1, x_2, \ldots, x_n) = \det A$$
 où $A = M_{\mathcal{B}}(x_1, x_2, \ldots, x_n)$.

Proposition 3.4. On $a \det_B(B) = 1$.

3.5 Caractérisation des bases

Théorème 3.5. Soit (u_1, u_2, \ldots, u_n) une famille de n vecteurs d'un espace vectoriel E de dimension n muni d'une base B.

$$(u_1, u_2, \ldots, u_n)$$
 est une base de E si et seulement si $\det_{\mathcal{B}}(u_1, u_2, \ldots, u_n) \neq 0$.

4 Déterminant d'un endomorphisme

4.1 Définition

Définition 4.1.

On appelle déterminant d'un endomorphisme f de E le déterminant de la matrice de f dans une base B de E :

$$\det f = \det(M_B(f)).$$

La valeur du déterminant ne dépend pas de la base choisie.

4.2 Propriétés

Proposition 4.1. Pour tout $f, g \in \mathcal{L}(E)$ avec dim E = n, pour tout $\alpha \in \mathbb{K}$,

$$\det(f \circ g) = \det f \cdot \det g$$

$$\det(\alpha f) = \alpha^n \det f$$

Corollaire 4.2. Soit $f \in \mathcal{L}(E)$ avec E de dimension finie.

$$f$$
 est bijective si et seulement si det $f \neq 0$. Alors det $f^{-1} = \frac{1}{\det f}$.

Théorème 4.3. Soit $f \in \mathcal{L}(E)$ avec E de dimension n finie. Soit B une base de E et x_1, x_2, \ldots, x_n une famille de vecteurs de E. On a

$$\det_B(f(x_1), f(x_2), \dots, f(x_n)) = \det f \times \det_B(x_1, x_2, \dots, x_n).$$