MLS	Dataset	FSR(AIC)	FSR(AICc)	FSR(BIC)	FSR(HQIC) F	SR(GMDL)
	abalone	47.25(3)	47.25(3)	47.25(3)	47.25(3)	47.25(3)
	airfoil_self_noise	48.86(3)	48.86(3)	48.86(3)	48.86(3)	48.86(3)
	auto_mpg	18.42(3)	18.42(3)	18.42(3)	18.42(3)	18.42(3)
	automobile	19.69(3)	19.69(3)	19.69(3)	19.69(3)	19.69(3)
	concrete_data	39.02(3)	39.02(3)	39.02(3)	39.02(3)	39.02(3)
	crime	34.71(3)	34.71(3)	34.71(3)	34.71(3)	34.71(3)
	fertility	106.37(3)	106.37(3)	106.37(3)	106.37(3)	106.37(3)
Ridge	flow	64.26(3)	64.26(3)	64.26(3)	64.26(3)	64.26(3)
	forest	102.12(3)	102.12(3)	102.12(3)	102.12(3)	102.12(3)
	qsar	43.08(3)	43.08(3)	43.08(3)	43.08(3)	43.08(3)
	servo	61.49(3)	61.49(3)	61.49(3)	61.49(3)	61.49(3)
	slump	86.94(3)	86.94(3)	86.94(3)	86.94(3)	86.94(3)
	traffic	44.92(3)	44.92(3)	44.92(3)	44.92(3)	44.92(3)
	wine_red	65.09(3)	65.09(3)	65.09(3)	65.09(3)	65.09(3)
	wine_white	72.80(3)	72.80(3)	72.80(3)	72.80(3)	72.80(3)
Avg. Rar		(3.00)	(3.00)	(3.00)	(3.00)	(3.00)
	abalone	43.03(3)	43.03(3)	43.03(3)	43.03(3)	43.03(3)
	airfoil_self_noise		78.83(3)	78.83(3)	78.83(3)	78.83(3)
SVR	auto_mpg	19.16(3)	19.16(3)	19.16(3)	19.16(3)	19.16(3)
	automobile	20.90(3)	20.90(3)	20.90(3)	20.90(3)	20.90(3)
	concrete_data	38.18(3)	38.18(3)	38.18(3)	38.18(3)	38.18(3)
	crime	36.73 (3)	36.73(3)	36.73(3)	36.73(3)	36.73(3)
	fertility	106.85(3)	106.85(3)		106.85(3)	106.85(3)
	flow	74.07(3)	74.07(3)	74.07(3)	74.07(3)	74.07(3)
	forest	122.11(3)	122.11(3)		122.11(3)	122.11(3)
	gsar	38.02(3)	38.02(3)	38.02(3)	38.02(3)	38.02(3)
	servo	15.84(3)	15.84(3)	15.84(3)	15.84(3)	15.84(3)
	slump	99.12(3)	99.12(3)	99.12(3)	99.12(3)	99.12(3)
	traffic	43.39(3)	43.39(3)	43.39(3)	43.39(3)	43.39(3)
	wine red	65.73 (3)	65.73(3)	65.73(3)	65.73(3)	65.73(3)
	wine_red wine_white	71.62(3)	71.62(3)	71.62(3)	71.62(3)	71.62(3)
Avg. Rar		(3.00)	(3.00)	(3.00)	(3.00)	(3.00)
Avg. Ital	abalone	44.66(3)	44.66(3)	44.66(3)	44.66(3)	44.66(3)
	airfoil_self_noise		13.28(3)	13.28(3)	13.28(3)	13.28(3)
RFR	auto_mpg	14.69(3)	14.69(3)	14.69(3)	14.69(3)	14.69(3)
	automobile	12.49(3)	12.49(3)	12.49(3)	12.49(3)	12.49(3)
	concrete_data	12.40(3)	12.49(3)	12.49(3)	12.49(3) 12.40(3)	12.40(3)
	crime	36.69(3)	36.69(3)	36.69(3)	36.69(3)	36.69(3)
	fertility	103.55(3)	103.55(3)		103.55(3)	103.55(3)
	flow					
	forest	71.35(3) 117.49(3)	71.35(3) 117.49(3)	71.35(3)	71.35(3) 117.49(3)	71.35(3) 117.49(3)
	qsar	38.74(3)	38.74(3)	38.74(3)	38.74(3)	38.74(3)
	qsar servo					
		17.39(3) 77.26(2)	17.39(3)	17.39(3) 77.26(2)	17.39(3)	17.39(3)
	slump traffic	77.36(3)	77.36(3)	77.36(3)	77.36(3)	77.36(3)
		53.98(3)	53.98(3)	53.98(3)	53.98(3)	53.98(3)
	wine_red	59.18(3)	59.18(3)	59.18(3)	59.18(3)	59.18(3)
. D	wine_white	60.65(3)	60.65(3)	60.65(3)	60.65(3)	60.65(3)
Avg. Rar		(3.00)	(3.00)	(3.00)	(3.00)	(3.00)
Mean Ra	nk	(3.00)	(3.00)	(3.00)	(3.00)	(3.00)

Table 1: The 3-fold cross validation relative mean squared error and Friedman ranks for all the datasets when FSR, using several stop criteria (AIC, AICc, BIC, HQIC and GMDL), taking into account some baseline systems (Ridge, SVR and RFR) and the GS sampling strategy.