

QGIS, ses formulaires et expressions pour faire un outil de saisie au poil

Comment exploiter QGIS pour créer une application de saisie et d'exploitation de données professionnelle ?

Michael DOUCHIN - 3LIZ

Les points abordés

- Import d'une donnée "tableur" dans un Geopackage et affichage dans QGIS
- Création et correction de données via des expressions
- Mettre les données en relation
- Créer un formulaire de saisie avancé
- Visualiser les données problématiques ou importantes dans la table attributaire

On privilégiera dans cette présentation l'utilisation d'**expressions** dans QGIS pour la majorité des traitements:

-> pas d'utilisation de requêtes SQL en base de données ou d'algorithmes complexes.

L'exemple choisi

- On fait des observations faunistiques sur le terrain: Moqueur Gorge Blanche à la Martinique
- La saisie est historiquement faite dans un tableur (MS Excel ou LibreOffice Calc)
- Une observation est
 - un point avec une longitude et une latitude,
 - ∘ faite à une **date**,
 - par des observateurs
 - On doit respecter une certaine nomenclature

Les données source

Un fichier au format LibreOffice Calc observations_source.ods

						_		-					
espece_support	date_observati	commentaires	observateurs		hauteur_nid	/ nic	d_nb_oeuf	nid_n	o! nid_ı	nid_	long	jitude	latitude
Maytenus laevigata	12/08/2020	Observation pond	DUPONT Jean	(ACME), DULOUP	3,82	20		0		0 :	L 71	8446,57138	1629776,8986
Pisonia fragans	15/09/2020	Caméra installée	DUPONT Jean	(ACME), DULOUP	2,	32		0	- 1	0 (71	9111,92879	1629578,8868
Pisonia fragans	23/09/2020	Présence de coqu	DUPONT Jean	(ACME), DUBOIS)	2,	30		0		0 (71	9287,53531	1629202,8678
Myrcia citrifolia	23/09/2020		DUPONT Jean	(ACME), DUBOIS !	3,26	60		0		0 (71	6186,33091	1628888,6646
Myrcia citrifolia	23/09/2020		DUPONT Jean	(ACME), DUBOIS	4,/	80		0	- (0 (71	8663,03803	1629327,0948
Pisonia fragans	23/09/2020		DUPONT Jean	(ACME), DUBOIS	2,97	70		0	- (0 (71	8154,58598	1629292,9505
Eugenia ligustrina	23/09/2020	Caméra installée	DUPONT Jean	(ACME), DUBOIS !	2,36	61		0	- 1	0 (71	7713,30872	1630189,9734
Pisonia fragans	23/09/2020		DUPONT Jean	(ACME), DUBOIS	3,′	90		0	- (0 (71	6691,11436	1628843,1457
Maytenus laevigata	23/09/2020		DUPONT Jean	(ACME), DUBOIS	3,82	20		0		0 (71	8487,46142	1628844,6034

Importer la donnée source

- On ajoute la donnée dans QGIS, par glisser-déplacer du fichier LibreOffice dans QGIS
- On ouvre les propriétés de la couche observations_source et visualise les champs dans l'onglet Champs

ld ₹	Nom	Alias	Туре	Type identifié	Longueur	Précision
abc O	espece_support		QString	String	0	0
abc 1	date_observation		QString	String	0	0
abc 2	commentaires		QString	String	0	0
abc 3	observateurs		QString	String	0	0
1.2 4	hauteur_nid		double	Real	0	0
abc 5	nid_nb_oeuf		QString	String	0	0
abc 6	nid_nb_poussin		QString	String	0	0
abc 7	nid_nb_immature		QString	String	0	0
abc 8	nid_nb_adulte		QString	String	0	0
1.2 9	longitude		double	Real	0	0
1.2 10	latitude		double	Real	0	0

Étudier la donnée source

On visualise la table attributaire qui reprend bien ce qu'on avait dans LibreOffice:

	spece_suppor	ate_observatio	:ommentaire:	observateurs	hauteur_nid	nid_nb_oeuf	nid_
1	Myrcia citri	15/05/2013	Program	NULL	2,5	NULL	1
2	Myrcia citri	23/05/2013	Program	NULL	2,16	1	1
3	Pisonia fra	23/05/2013	Program	NULL	3,8	NULL	NU
4	NULL	23/05/2013	Program	NULL	NULL	NULL	NU
5	Myrcia citri	30/05/2013	Program	NULL	2,96	2	NU
6	NULL	30/05/2013	Program	DESCHAMPS Laure (BIRD)	2,98	NULL	NU
7	Damburne	06/06/2013	Program	DESCHAMPS Laure (BIRD)	3	2	0
8	Damburne	13/06/2013	Program	ATICIEN Jérôme (ACME), DESCHAMPS Laure (BI	3,16	NULL	NU
9	Myrcia citri	13/06/2013	NULL	DESCHAMPS Laure (BIRD)	2,41	2	NA
10	NULL	13/06/2013	Program	DESCHAMPS Laure (BIRD)	4,46	NULL	NU
11	NULL	18/06/2013	Program	ATICIEN Jérôme (ACME), DESCHAMPS Laure (BI	2,66	1	NU
12	Myrcia citri	18/06/2013	Program	ATICIEN Jérôme (ACME), DESCHAMPS Laure (BI	3	NSP	NU
13	Damburne	20/06/2013	Program	DESCHAMPS Laure (BIRD)	2,16	NULL	NU
14	Myrcia citri	20/06/2013	Program	DESCHAMPS Laure (BIRD)	2,69	NULL	NU

Sauvegarder cette donnée en GeoPackage

On sauvegarde dans un **GeoPackage** donnees_suivi_moqueur.gpkg dans le **répertoire du projet**, table observations, de type Point même si la table initiale n'est pas spatiale

Format	GeoPa	ckage							
Nom de fichier	GISFR_	GISFR_2022_expressions/qgis/donnees_suivi_moqueur.gpkg 🚳 🗌							
Nom de la couche	observations								
SCR	EPSG:5	490 - RGAF	9 / UT	M zone 20	N		▼ (4		
Encodage		UTF-8							
_			i n n n ó n						
□ N'enregistrer q									
▼ Sélectionner l	es cnam	ps a export	егес	eurs opcio	ns a export				
Nom		Туре					•		
Nom ✓ espece_supp	ort	Type String					_		
							_		
✓ espece_supp	ation	String					•		
espece_supp date_observa	ation es	String String					•		
✓ espece_supp ✓ date_observa ✓ commentaire	ation es	String String String					_		
✓ espece_supp ✓ date_observa ✓ commentaire ✓ observateurs	ation es	String String String String					•		
✓ espece_supp ✓ date_observa ✓ commentaire ✓ observateurs ✓ hauteur_nid ✓ nid_nb_oeuf	ation es	String String String String Real String			Tout désélect	ionner	•		

Ouverture de la couche du GeoPackage dans QGIS

On a **importé** le fichier tableur LibreOffice dans un **Geopackage** comme une couche de **Points**.

- Via l'explorateur de QGIS, on cherche le Dossier du projet,
- On double-clique sur le fichier donnees_suivi_moqueur.gpkg
- ajoute la nouvelle table observations au projet
- On configure la projection, dans notre cas EPSG:5490, UTM Zone 20N (Martinique)
- On modifie la symbologie (gros points bleus avec bordure blanche)

La cuivi maguane garga blancha

Modifier la géométrie via une expression

On va définir les points via la longitude et latitude et une

- On passe cette couche en édition
- On utilise la calculatrice de champs et on modifie la géométrie via une expression make_point("longitude", "latitude")

On visualise alors les points sur la carte

Les géométries sont bien créées et correspondent aux coordonnées. On **sauvegarde** les données via la disquette de la **barre de numérisation**!

QGISFR 2022

On nettoie les valeurs des champs avec des entiers 1/3

Les valeurs **non entières** NAN, NSP, Inconnu, RAS ne doivent pas apparaître dans les champs qui attendent des **entiers**

hauteur_nid	nid_nb_oeuf	nid_nb_poussin
2,41	2	NA
4,46	NULL	NULL
2,66	1	NULL
3	NSP	NULL

On peut appliquer une expression avec la calculatrice de champ sur tous les champs qui doivent contenir des entiers: nid_nb_immature, nid_nb_adulte

```
-- Une condition avec une expression régulière pour ne conserver que les entiers

CASE

WHEN regexp_match(trim("nid_nb_oeuf"), '^\\d+$')

THEN to_int(trim("nid_nb_oeuf"))

ELSE NULL

CASER 2022
```


On nettoie les valeurs des champs avec des entiers 2/3

Pour nid_nb_oeuf, nid_nb_poussin, nid_nb_immature, nid_nb_adulte

hauteur_nid	nid_nb_oeuf	nid_nb_poussin
2,41	2	NA
4,46	NULL	NULL
2,66	1	NULL
3	NULL	NULL

observations — C	Calculatrice de champ	×
☐ Ne mettre à jour que les 0 entités sélectionnées		
Créer un nouveau champ	✓ Mise à jour d'un champ existant	
☐ Créer un champ virtuel		
Nom	The sid shapes	
Type Nombre entier (entier)	abc nid_nb_oeuf	_
Longueur du nouveau champ 0 🗘 Précision 3		
Expression Éditeur de fonction		
	Q Afficher l'aide	
CASE WHEN regexp match(trim("nid nb oeuf"),	row_number	
'^\\d+\$')	AgrégatsChaîne de carac	
G SFR 2000v2to_int(trim("nid_nb_oeuf"))	Champs et ValeConditions	
END	▶ Conversions	

On nettoie les valeurs des champs avec des entiers 3/3

On doit utiliser le **Gestionnaire de bases de données** pour changer le type des champs nid_nb_xxxx de **Texte** à **Entier**

- On crée une connexion vers le GeoPackage
- Sur la table observations, on ouvre le menu Table > Modifier une table, et on choisit le type SMALLINT ou INTEGER

On transforme un champ texte en Date 1/2

Exemple du champ date_observation de type texte, qui contient par exemple un texte 26/06/2013:

On crée un nouveau champ date_obs de type Date via la calculatrice de champ avec:

```
to_date("date_observation", 'dd/MM/yyyy')
-- on aura donc: 2013-06-26
```

• On obtient

date_observation	mmentair	observateurs	uteur_n	1_nb_oe	nb_pou	ո b_imm ն	_nb_adı	longitude	latitude	date_obs
15/05/2013	Ргодг	NULL	2,5	NULL	1	NULL	NULL	714346,73	1630612,1	2013-05-15
13/06/2013	Progr	DESCHAM	4,46	NULL	NULL	NULL	NULL	715925,64	1630965,5	2013-06-13

- On supprime le champ date_observation
- On enregistre

On transforme un champ texte en Date 2/2

• On pourra donc faire des **calculs de date**, par exemple l'âge en jours de l'observation, via

```
to_int(
  day(age(now(), "date_obs"))
)
```

qui renverra par exemple 128 jours

• Ou tester si la date donnée est bien supérieure à la date du jour

```
"date_obs" >= now()
qui renverra Vrai ou Faux
```


On veut créer une table de nomenclature pour les espèces

On souhaite faire une nouvelle table non spatiale dans le Geopackage:

• table especes: pour stocker la liste des espèces support (arbres ou arbustes)

Dans la table source, on a pour l'instant un nom d'espèce dans le champ espece_support :

On pourra ensuite créer des **relations** entre les **observations** et les **espèces**

Créer une table avec les espèces uniques 1/2

• Utiliser l'algorithme Ajouter un champ d'index de valeur unique qui va produire une **nouvelle table** contenant les valeurs distinctes du champ espece_support. Ouvrir la table via l'explorateur

Créer une table avec les espèces uniques 2/2

- La table especes a bien été créée dans le GeoPackage donnees_suivi_moqueur.gpkg. On l'ouvre dans le projet
- Elle contient les champs fid, id_espece et espece_support
- On va conserver uniquement le fid et le champ espece_support, qu'on renomme en nom_scientifique, en modifiant la table depuis les propriétés de la couche, onglet Champs
- On ajoute un identifiant unique uid de type Texte avec la caculatrice de champ et l'expression

```
regexp_replace(uuid(), '[{}]', '')
```

fid	nom_scientifique	uid
1	Myrcia citrifolia	2e79d82e-5bea-4750-bb47-a6c71184ed52
2	Pisonia fragans	82865a40-9ec2-4c37-b61f-89fed11a784d
3	NULL	a699ff96-b49d-43f3-8254-d1e3987ff414
4	Damburneya coriacea	bca4e8a3-b4f7-4937-8fb1-e99b9c7e35b6
5	Ouratea guildingii	9785b7b8-7de0-4876-ba57-05e72ee9210f
6	Maytenus laevigata	b4f74947-0bb8-4d30-b813-541d094975db
7 × × × × × × × × × × × × × × × × × × ×	Eugenia ligustrina	cf31fbae-5f5e-413b-973c-a4027f06ef94

Ajouter une clé étrangère dans la table observations avec l'id de l'espèce

Avec la calculatrice de champs, pour la couche observations, on ajoute un champ id_espece de type Texte et on va le remplir à l'aide d'une expression basée sur:

- la méthode get_feature qui permet de récupérer une ligne d'une autre couche, ici especes en faisant la correspondance entre les valeurs (comme pour une jointure)
- la méthode attributes qui permet de récupérer les valeurs des champs pour cette ligne, ici pour récupérer l'uid créé précédemment

```
attributes(
    get_feature(
        'especes',
        'nom_scientifique',
        "espece_support"
    )
)['uid']
```


Ajouter une clé étrangère dans la table observations avec l'id de l'espèce

• On a bien l'uid de l'espèce ajouté dans le champ id_espece

		-							_		
espece_support	mmentair	servate	uteur_n	d_nb_oe	_nb_pou	1b_imma	_nb_adu	ongitude	latitude	fate_obs	id_espece
Damburneya coria	Ргодг	DES	2,16	NULL	NULL	NULL	NULL	7152	1630	2013	bca4e8a3-b4f7-4937-8fb1-e99b9c7e
Myrcia citrifolia	Progr	DES	2,69	NULL	NULL	NULL	NULL	7170	1631	2013	2e79d82e-5bea-4750-bb47-a6c7118

• On peut supprimer le champ espece_support qui ne servira plus

Récupérer automatiquement la commune de chaque observation

Les **expressions** permettent de gérer les données en relation, par exemple via la méthode aggregate: on va récupérer le **code INSEE** de la commune de chaque observation, par **intersection** entre leurs géométries

• on crée un nouveau champ code_insee de type Texte avec l'expression

```
aggregate(
  layer:='communes',
  aggregate:='max', expression:="code_commune",
  filter:=intersects($geometry, geometry(@parent))
)
```

• On obtient bien le nouveau champ code_insee dans la table

longitude	latitude	date_obs	id_espece	code_insee
714346,7338	1630612	2013-05-15	2e79d82	97230
715925,6404	1630965	2013-06-13	NULL	97230
_R 7 <u>1</u> 55 <u>2</u> 3,0675	1629879	2013-06-18	NULL	97230
714620,8252	1632941	2013-06-18	2e79d82	97228

Créer des relations entre les observations, les communes et les espèces

Dans les **propriétés du projet QGIS**, onglet **Relations**, créer

- Une relation entre les observations et les communes
- Une relation entre les observations et les especes

Visualiser via la table attributaire les données en relation

- Ouvrir la table attributaire des especes
- Passer en vue "Formulaire" via le petit bouton en bas à droite du tableau
- Sélectionner une commune et voir les données d'observations liées

Construire un formulaire de saisie

On souhaite **contrôler la saisie** des observations. On ouvre les propriétés de la couche observations, menu **Formulaire**.

- On passe en mode Conception par glisser/déplacer
- Pour chaque champ, on clique sur son nom, on ajoute un alias
- On réordonne les champs dans l'ordre souhaité.
- On peut créer des groupes et y déplacer les champs

Construire un formulaire de saisie

- Pour certains champs, on les marque en **non éditable**: fid, longitude, latitude
- On choisit pour chacun le type d'outil pour chaque champ:
 - Édition de texte pour fid, commentaire, observateurs
 - Référence de la relation pour id_espece et code_insee avec Autoriser la valeur NULL, Trier par valeur et
 - Date/Heure pour date_obs
 - o Plage pour les champs hauteur_nid, nid_nb_oeuf, nid_nb_poussin,
 nid_nb_immature, nid_nb_adulte entre 0 et 100
- On ajoute des **contraintes**: Non null et

 Renforcer la contrainte non null pour les **champs obligatoires**
- On peut ajouter des contraintes spécifiques:
 "date_obs" > '2000-01-01' pour forcer une date après 2000
- On peut utiliser des expressions pour les **valeurs par défaut**: now() pour la date, x(\$geometry) et y(\$geometry) pour les **coordonnées**

Le formulaire de saisie

Une table attributaire mise en forme selon les valeurs des champs

Quelques exemples d'expression 1/3

- **Couleur continue** pour un vecteur basé sur une palette de couleur https://twitter.com/Qgis_Bzh/status/1207974981918973962
- Rotation ou taille qui dépend de la position du curseur https://twitter.com/kgjenkins/status/1298363142070767617
- Lisser les courbes de niveau SRTM
 https://twitter.com/timlinux/status/1331645809834811394
- Modifier la symbologie ou les étiquettes des objets sélectionnés is_selected() = True
- Couleur d'étiquette basée sur la visibilité d'une couche is_layer_visible():
 https://twitter.com/northroadgeo/status/1208299125604638720

Quelques exemples d'expression 2/3

- Trouver le point le plus proche :
 https://twitter.com/spatialthoughts/status/1421038975955791873
 et https://www.youtube.com/watch?v=iCgDIxUGAp0&t=113s
- Lire les données EXIF d'une image JPG
 https://github.com/qgis/QGIS/commit/754328cbd0a4e5251f03c444
 https://github.com/gis/QGIS/commit/754328cbd0a4e5251f03c444
 https://github.com/gis/QGIS/commit/754328cbd0a4e5251f03c444
 https://github.com/gis/QGIS/commit/754328cbd0a4e5251f03c444
 https://github.com/gis/QGIS/commit/754328cbd0a4e5251f03c444
 https://github.com/gis/QGIS/commit/754328cbd0a4e5251f03c44
 <a href="https://github.com/github.com/github.com/githu
- Récupérer un tableau des éléments d'une multi-géométrie:
 https://twitter.com/cartocalypse/status/1386647274416181253
- Utiliser eval pour créer des expressions dans des expressions. Ex: somme des 31 colonnes de données pour récupérer la somme par mois:

```
eval(
   array_to_string(
    array_foreach(
       generate_series(1, 31),
       concat("VALUE", @element, '"')), ' + '
   )
)
```


Quelques exemples d'expression 3/3

• Déplacer des points de manière aléatoire (floutage)

Attention

- Les expressions ne sont pas faites pour travailler sur des données lourdes: pas d'utilisation de l'index spatial par exemple.
- Si un script Processing fait la même chose, le privilégier pour modifier de la donnée (ex: recherche par intersection)

Merci de votre attention

