Double Hashing

Double Hashing: - hash(key, i) = (h1(key) + ih2(key)) % m

- \Rightarrow if $h_2(key)$ is relatively prime to m, then it always find a free slot if there is one.
- ⇒ Distributes keys more uniformly than linear probing and quadratic hashing.
- ⇒ No clustering.

49, 63, 56, 52, 54, 48

hash(key, i) =
$$(h_1(key) + ih_2(key))$$
 % m
m = 7
 $h_1(key) = (key \% 7)$
 $h_2(key) = 6 - (key \% 6)$

Why $h_2(key)$ and m should be relatively prime?

Performance Analysis of search

 $\infty = n/m$ (should be ≤ 1)

Assumption: Every probe sequence looks at a random location

 $(1 - \infty)$ Function of the table is empty Expected No. of probes required = $1/(1 - \infty)$