${ \begin{array}{c} {\rm Pr\'actico~3} \\ {\rm Matem\'atica~Discreta~I-A\~no~2019/1} \\ {\rm FAMAF} \end{array} }$

1. Hallar el cociente y el resto de la división de:

a) 1	35 por 23,	c) $135 \text{ por } -23,$	e) 127 por 99,
b) -	-135 por 23,	d) -135 por -23,	f) -98 por -73.
Ţ	 2. a) Si a = b · q + r, con b ≤ r < 2b, hallar el cociente y el resto de la división de a por b. b) Repetir el ejercicio anterior, suponiendo ahora que -b ≤ r < 0. 		
3. Dado $m \in \mathbb{N}$ hallar los restos posibles de m^2 y m^3 en la division por $3,4,5,7,8,11.$			
4. Expresar en base 10 los siguientes enteros:			
a) ($(1503)_6$	$c) (1111)_{12}$	$e) (12121)_3$
<i>b</i>) ($1111)_2$	$d) (123)_4$	$f) (1111)_5$
5. Conv	vertir		

a) $(133)_4$ a base 8, b) $(B38)_{16}$ a base 8, c) $(3506)_7$ a base 2, d) $(1541)_6$ a base 4.

6. Calcular: a) $(2234)_5 + (2310)_5$ b) $(10101101)_2 + (10011)_2$.

7. Sean $a,\,b,\,c\in\mathbb{Z}.$ Demostrar las siguientes afirmaciones:

a) Si ab = 1, entonces a = b = 1 ó a = b = -1.

b) Si $a, b \neq 0$, a|b y b|a, entonces a = b ó a = -b.

c) Si a|1, entonces a = 1 ó a = -1.

d) Si $a\neq 0,\; a|b\;$ y $\;a|c,$ entonces $\;a|(b+c)\;$ y $\;a|(b-c).$

e) Si $a \neq 0$, a|b y a|(b+c), entonces a|c.

f) Si $a \neq 0$ y a|b, entonces $a|b \cdot c$.

8. Dados b,centeros, probar las siguientes propiedades:

a) 0 es par y 1 es impar.

- b) Si b es par y $b \mid c$, entonces c es par. (Por lo tanto, si b es par, también lo es -b).
- c) Si b y c son pares, entonces b+c también lo es.
- d) Si un número par divide a 2, entonces ese número es 2 ó -2.
- e) La suma de un número par y uno impar es impar.
- f) b+c es par si y sólo si b y c son ambos pares o ambos impares.
- 9. Sea $n \in \mathbb{Z}$. Probar que n es par si y sólo si n^2 es par.
- 10. Probar que n(n+1) es par para todo n entero.
- 11. Sean $a, b, c \in \mathbb{Z}$. ¿Cuáles de las siguientes afirmaciones son verdaderas? Justificar las respuestas.
 - a) $a \mid b \cdot c \Rightarrow a \mid b \circ a \mid c$.
 - b) $a \mid (b+c) \Rightarrow a \mid b \text{ \'o } a \mid c$.
 - c) $a \mid c \ y \ b \mid c \Rightarrow a \cdot b \mid c$.
 - $d) \ a \mid c \ y \ b \mid c \Rightarrow (a+b) \mid c$.
 - e) a, b, c > 0 y $a = b \cdot c$, entonces $a \ge b$ y $a \ge c$.
- 12. Probar que cualquiera sea $n \in \mathbb{N}$:
 - a) $3^{2n+2} + 2^{6n+1}$ es múltiplo de 11.
 - b) $3^{2n+2} 8n 9$ es divisible por 64.
- 13. Decir si es verdadero o falso justificando:
 - a) $3^n + 1$ es múltiplo de $n, \forall n \in \mathbb{N}$.
 - b) $3n^2 + 1$ es múltiplo de 2, $\forall n \in \mathbb{N}$.
 - c) $(n+1) \cdot (5n+2)$ es múltiplo de 2, $\forall n \in \mathbb{N}$.
- 14. Probar que para todo $n \in \mathbb{Z}$, $n^2 + 2$ no es divisible por 4.
- 15. Probar que todo entero impar que no es múltiplo de 3, es de la forma $6m\pm 1$, con m entero.
- 16. a) Probar que el producto de tres enteros consecutivos es divisible por 6.
 - b) Probar que el producto de cuatro enteros consecutivos es divisible por 24.
- 17. Si $a \cdot b$ es un cuadrado y a y b son coprimos, probar que a y b son cuadrados.
- 18. Probar que si a y b son enteros entonces $a^2 + b^2$ es divisible por 7 si y sólo si a y b son divisibles por 7. ¿Es lo mismo cierto para 3? ¿Para 5?

Matemática Discreta I FAMAF

- 19. Encontrar (7469, 2464), (2689, 4001), (2447, -3997), (-1109, -4999).
- 20. Calcular el máximo común divisor y expresarlo como combinación lineal de los números dados, para cada uno de los siguientes pares de números:
 - a) 14 y 35,

c) 12 y 52,

e) 12 y 532.

b) 11 y 15,

- d) 12 v -52
- 21. Mostrar que 725 y 441 son coprimos y encontrar enteros m, n tales que $m \cdot 725 +$ $n \cdot 441 = 1.$
- 22. Dado un entero $a, a \neq 0$, hallar (0, a).
- 23. Calcular el máximo común divisor entre 606 y 108 y expresarlo como combinación lineal de esos números.
- 24. Probar que no existen enteros x e y que satisfagan x + y = 100 y (x, y) = 3.
- 25. a) Sean a y b coprimos. Probar que si $a \mid b \cdot c$ entonces $a \mid c$.
 - b) Sean a y b coprimos. Probar que si $a \mid c \ y \ b \mid c$, entonces $a \cdot b \mid c$.
- 26. Probar que si $n \in \mathbb{Z}$, entonces los números 2n+1 y $\frac{n(n+1)}{2}$ son coprimos.
- 27. Calcular el mínimo común múltiplo de los siguientes pares de números
 - a) a = 12 y b = 15. c) a = 140 y b = 150. e) $a = 2^2 \cdot 3 \cdot 5 \text{ y } b = 2 \cdot 5 \cdot 7.$

- b) a = 11 y b = 13. d) $a = 3^2 \cdot 5^2 \text{ y } b = 2^2 \cdot 11.$
- 28. Encontrar todos los enteros positivos a y b tales que (a, b) = 10 y [a, b] = 100.
- 29. a) Probar que si d es divisor común de a y b, entonces $\frac{(a,b)}{d} = \left(\frac{a}{d}, \frac{b}{d}\right)$.
 - b) Probar que si $a, b \in \mathbb{Z}$ no nulos, entonces $\frac{a}{(a,b)}$ y $\frac{b}{(a,b)}$ son coprimos.
- 30. Probar que 3 y 5 son números primos.
- 31. Determinar cuáles de los siguientes números son primos: 113, 123, 131, 151, 199, 503.
- 32. Dar todos los números primos positivos menores que 100.
- 33. Probar que si p_k es el k-ésimo primo positivo entonces

$$p_{k+1} \le p_1 \cdot p_2 \cdot \dots \cdot p_k + 1$$