# CSC D70: Compiler Optimization Dataflow Analysis

Prof. Gennady Pekhimenko
University of Toronto
Winter 2021

## Refreshing from Last Lecture

Basic Block Formation

Value Numbering

## **Partitioning into Basic Blocks**

- Identify the leader of each basic block
  - First instruction
  - Any target of a jump
  - Any instruction immediately following a jump
- Basic block starts at leader & ends at instruction immediately before a leader (or the last instruction)

```
t1 = 10 * i
      t2 = t1 + j
  5)
      t3 = 8 * t2
      t4 = t3 - 88
  7)
       a[t4] = 0.0
  8)
       j = j + 1
      if j <= 10 goto (3)
(10)
 11)
      if i <= 10 goto (2)
(12)
13)
      t5 = i - 1
 14)
      t6 = 88 * t5
      a[t6] = 1.0
 15)
 16)
      i = i + 1
      if i <= 10 goto (13)
🖈 = Leader
```



ALSU pp. 529-531

4

## **Graph Abstractions**

#### Example 1:

grammar (for bottom-up parsing):

expression: a+a\*(b-c)+(b-c)\*d



## **Graph Abstractions**

#### **Example 1: an expression**

$$a+a*(b-c)+(b-c)*d$$

#### **Optimized code:**

$$t1 = b - c$$

$$t2 = a * t1$$

$$t3 = a + t2$$

$$t4 = t1 * d$$

$$t5 = t3 + t4$$



## How well do DAGs hold up across statements?

#### Example 2

```
a = b+c;
b = a-d;
c = b+c;
d = a-d;
```

DAG – directed acyclic graph



```
Is this optimized code correct?
a = b+c;
d = a-d;
c = d+c;
```

## **Critique of DAGs**

#### Cause of problems

- Assignment statements
- Value of variable depends on TIME

#### How to fix problem?

- build graph in order of execution
- attach variable name to latest value

#### Final graph created is not very interesting

- Key: variable->value mapping across time
- loses appeal of abstraction

## Value Numbering (VN)

More explicit with respect to VALUES, and TIME



- each value has its own "number"
  - common subexpression means same value number
- var2value: current map of variable to value
  - used to determine the value number of current expression

## Algorithm

```
Data structure:
    VALUES = Table of
                      //[OP, valnum1, valnum2}
        expression
                       //name of variable currently holding expression
        var
For each instruction (dst = src1 OP src2) in execution order
 valnum1 = var2value(src1); valnum2 = var2value(src2);
  IF [OP, valnum1, valnum2] is in VALUES
     v = the index of expression
     Replace instruction with CPY dst = VALUES[v].var
  ELSE
     Add
        expression = [OP, valnum1, valnum2]
        var
                   = dst
     to VALUES
     v = index of new entry; tv is new temporary for v
     Replace instruction with: tv = VALUES[valnum1].var OP VALUES[valnum2].var
                               CPY dst = tv:
  set var2value (dst, v)
```

## **More Details**

- What are the initial values of the variables?
  - values at beginning of the basic block
- Possible implementations:
  - Initialization: create "initial values" for all variables
  - Or dynamically create them as they are used
- Implementation of VALUES and var2value: hash tables

```
Assign: a \rightarrow r1, b \rightarrow r2, c \rightarrow r3, d \rightarrow r4
               ADD t1 = r2,r3
a = b+c;
                 CPY r1 = t1
b = a-d;
                 SUB t2 = r1, r4
                 CPY r2 = t2
                 ADD t3 = r2,r3
c = b+c;
                 CPY r3 = t3
                 SUB t4 = r1, r4
d = a-d;
                 CPY r4 = t4
```

## **Conclusions**

- Comparisons of two abstractions
  - DAGs
  - Value numbering
- Value numbering
  - VALUE: distinguish between variables and VALUES
  - TIME
    - Interpretation of instructions in order of execution
    - Keep dynamic state information

## **VN Example**

```
Assign: a \rightarrow r1, b \rightarrow r2, c \rightarrow r3, d \rightarrow r4
               ADD t1 = r2,r3
a = b+c;
                CPY r1 = t1 //(a = t1)
                SUB t2 = r1, r4
b = a-d;
                CPY r2 = t2 //(b = t2)
c = b+c;
                ADD t3 = r2, r3
                CPY r3 = t3 //(c = t3)
                CPY r_{u}^{2} = t2
d = a-d;
```

## **Outline**

- 1. Structure of data flow analysis
- 2. Example 1: Reaching definition analysis
- 3. Example 2: Liveness analysis
- 4. Generalization

## What is Data Flow Analysis?

#### Local analysis (e.g., value numbering)

- analyze effect of each instruction
- compose effects of instructions to derive information from beginning of basic block to each instruction

#### Data flow analysis

- analyze effect of each basic block
- compose effects of basic blocks to derive information at basic block boundaries
- from basic block boundaries, apply local technique to generate information on instructions

## What is Data Flow Analysis? (2)

#### Data flow analysis:

- Flow-sensitive: sensitive to the control flow in a function
- intraprocedural analysis

#### Examples of optimizations:

- Constant propagation
- Common subexpression elimination
- Dead code elimination

## What is Data Flow Analysis? (3)



For each variable x determine:

Value of x?

Which "definition" defines x?

Is the definition still meaningful (live)?

## Static Program vs. Dynamic Execution



- Statically: Finite program
- Dynamically: Can have infinitely many possible execution paths
- Data flow analysis abstraction:
  - For each point in the program:
     combines information of all the instances of the same program point.
- Example of a data flow question:
  - Which definition defines the value used in statement "b = a"?

## **Effects of a Basic Block**

- Effect of a statement: a = b+c
  - Uses variables (b, c)
  - Kills an old definition (old definition of a)
  - new definition (a)
- Compose effects of statements -> Effect of a basic block
  - A locally exposed use in a b.b. is a use of a data item which is not preceded in the b.b. by a definition of the data item
  - any definition of a data item in the basic block kills all definitions of the same data item reaching the basic block.
  - A locally available definition = last definition of data item in b.b.

## **Effects of a Basic Block**

A **locally available definition** = last definition of data item in b.b.

```
t1 = r1+r2 Locally exposed uses? r1
r2 = t1
t2 = r2+r1 Kills any definitions? Any other
r1 = t2 definition
t3 = r1*r1 of t2
r2 = t3
if r2>100 goto L1
```

Locally avail. definition? t2

## **Reaching Definitions**



- Every assignment is a definition
- A definition d reaches a point p
  if there exists path from the point immediately following d to p
  such that d is not killed (overwritten) along that path.
- Problem statement
  - For each point in the program, determine if each definition in the program reaches the point
  - A bit vector per program point, vector-length = #defs

## Reaching Definitions (2)



- Every assignment is a definition
- A definition d reaches a point p
  if there exists path from the point immediately following d to p
  such that d is not killed (overwritten) along that path.
- Problem statement
  - For each point in the program, determine if each definition in the program reaches the point
  - A bit vector per program point, vector-length = #defs

## **Reaching Definitions (3)**



## **Data Flow Analysis Schema**



- Build a flow graph (nodes = basic blocks, edges = control flow)
- Set up a set of equations between in[b] and out[b] for all basic blocks b
  - Effect of code in basic block:
    - Transfer function f<sub>b</sub> relates in[b] and out[b], for same b
  - Effect of flow of control:
    - relates out[b<sub>1</sub>], in[b<sub>2</sub>] if b<sub>1</sub> and b<sub>2</sub> are adjacent
- Find a solution to the equations

## **Effects of a Statement**



- f<sub>s</sub>: A transfer function of a statement
  - abstracts the execution with respect to the problem of interest
- For a statement s (d: x = y + z)
   out[s] = f<sub>s</sub>(in[s]) = Gen[s] U (in[s]-Kill[s])
  - Gen[s]: definitions generated: Gen[s] = {d}
  - Propagated definitions: in[s] Kill[s],
     where Kill[s]=set of all other defs to x in the rest of program

## **Effects of a Basic Block**



- Transfer function of a statement s:
  - out[s] = f<sub>s</sub>(in[s]) = Gen[s] U (in[s]-Kill[s])
- Transfer function of a basic block B:
  - Composition of transfer functions of statements in B
- out[B] =  $f_B(in[B]) = f_{d2}f_{d1}f_{d0}(in[B])$ 
  - = Gen[d<sub>2</sub>] U (Gen[d<sub>1</sub>] U (Gen[d<sub>0</sub>] U (in[B]-Kill[d<sub>0</sub>]))-Kill[d<sub>1</sub>])) -Kill[d<sub>2</sub>]
  - =  $Gen[d_1] U (Gen[d_1] U (Gen[d_0] Kill[d_1]) Kill[d_2]) U$  $in[B] - (Kill[d_0] U Kill[d_1] U Kill[d_2])$
  - = Gen[B] U (in[B] Kill[B])
    - Gen[B]: locally exposed definitions (available at end of bb)
    - Kill[B]: set of definitions killed by B



- a transfer function f<sub>b</sub> of a basic block b:
   OUT[b] = f<sub>b</sub>(IN[b])
   incoming reaching definitions -> outgoing reaching definitions
- A basic block b
  - generates definitions: Gen[b],
    - set of locally available definitions in b
  - kills definitions: in[b] Kill[b], where Kill[b]=set of defs (in rest of program) killed by defs in b
- out[b] = Gen[b] U (in(b)-Kill[b])



- a transfer function f<sub>b</sub> of a basic block b:
   OUT[b] = f<sub>b</sub>(IN[b])
   incoming reaching definitions -> outgoing reaching definitions
- A basic block b
  - generates definitions: Gen[b],
    - set of locally available definitions in b
  - kills definitions: in[b] Kill[b],
     where Kill[b]=set of defs (in rest of program) killed by defs in b
- out[b] = Gen[b] U (in(b)-Kill[b])

## Effects of the Edges (acyclic)



- out[b] = f<sub>b</sub>(in[b])
- Join node: a node with multiple predecessors
- meet operator:

in[b] = out[ $p_1$ ] U out[ $p_2$ ] U ... U out[ $p_n$ ], where  $p_1$ , ...,  $p_n$  are all predecessors of b





```
f Gen Kill
1 {1,2} {0,2,3,4,6}
2 {3,4} {0,1,2,6}
3 {5,6} {1,3}
```

- out[b] = f<sub>b</sub>(in[b])
- Join node: a node with multiple predecessors
- meet operator:

in[b] = out[ $p_1$ ] U out[ $p_2$ ] U ... U out[ $p_n$ ], where  $p_1$ , ...,  $p_n$  are all predecessors of b



- $out[b] = f_b(in[b])$
- Join node: a node with multiple predecessors
- **meet** operator:

 $in[b] = out[p_1] U out[p_2] U ... U out[p_n], where$  $p_1, ..., p_n$  are all predecessors of b



- out[b] =  $f_b(in[b])$
- Join node: a node with multiple predecessors
- meet operator:

in[b] = out[ $p_1$ ] U out[ $p_2$ ] U ... U out[ $p_n$ ], where  $p_1$ , ...,  $p_n$  are all predecessors of b

## **Cyclic Graphs**



- Equations still hold
  - out[b] =  $f_b(in[b])$
  - in[b] = out[p<sub>1</sub>] U out[p<sub>2</sub>] U ... U out[p<sub>n</sub>], p<sub>1</sub>, ..., p<sub>n</sub> pred.
- Find: fixed point solution

## **Reaching Definitions: Iterative Algorithm**

```
input: control flow graph CFG = (N, E, Entry, Exit)
// Boundary condition
   out[Entry] = \emptyset
// Initialization for iterative algorithm
   For each basic block B other than Entry
      out[B] = \emptyset
// iterate
   While (Changes to any out[] occur) {
      For each basic block B other than Entry {
         in[B] = \cup (out[p]), for all predecessors p of B
         out[B] = f_B(in[B]) // out[B]=gen[B] \cup (in[B]-kill[B])
```

## Reaching Definitions: Worklist Algorithm

```
input: control flow graph CFG = (N, E, Entry, Exit)
// Initialize
    out[Entry] = \emptyset
                            // can set out[Entry] to special def
                            // if reaching then undefined use
    For all nodes i
        out[i] = \emptyset
                            // can optimize by out[i]=gen[i]
    ChangedNodes = N
// iterate
   While ChangedNodes \neq \emptyset {
        Remove i from ChangedNodes
        in[i] = U (out[p]), for all predecessors p of i
        oldout = out[i]
        out[i] = f_i(in[i]) // out[i]=gen[i]U(in[i]-kill[i])
        if (oldout # out[i]) {
            for all successors s of i
                add s to ChangedNodes
```

**Example** 



# **Live Variable Analysis**

#### Definition

- A variable  $\mathbf{v}$  is **live** at point p if
  - the value of  $\mathbf{v}$  is used along some path in the flow graph starting at p.
- Otherwise, the variable is dead.

#### Motivation

• e.g. register allocation

#### Problem statement

- For each basic block
  - determine if each variable is live in each basic block
- Size of bit vector: one bit for each variable



## **Transfer Function**

Insight: Trace uses backwards to the definitions

an execution path

control flow

example





$$d3: a = 1$$
  
  $d4: b = 1$ 

$$d5: c = a$$
  
  $d6: a = 4$ 

- A basic block b can
  - generate live variables: Use[b]
    - set of locally exposed uses in b
  - propagate incoming live variables: OUT[b] Def[b],
    - where Def[b]= set of variables defined in b.b.
- transfer function for block b:

# **Flow Graph**



- in[b] = f<sub>b</sub>(out[b])
- Join node: a node with multiple successors
- meet operator:

```
out[b] = in[s_1] U in[s_2] U ... U in[s_n], where s_1, ..., s_n are all successors of b
```

# Flow Graph (2)



- in[b] = f<sub>b</sub>(out[b])
- Join node: a node with multiple successors
- meet operator:

out[b] = 
$$in[s_1] U in[s_2] U ... U in[s_n]$$
, where  $s_1, ..., s_n$  are all successors of b

# **Liveness: Iterative Algorithm**

```
input: control flow graph CFG = (N, E, Entry, Exit)
// Boundary condition
   in[Exit] = \emptyset
// Initialization for iterative algorithm
   For each basic block B other than Exit
      in[B] = \emptyset
// iterate
   While (Changes to any in[] occur) {
      For each basic block B other than Exit {
         out[B] = \cup (in[s]), for all successors s of B
         in[B] = f_B(out[B]) // in[B]=Use[B] \cup (out[B]-Def[B])
```

**Example** 



|            | First Pass     | Second Pass    |
|------------|----------------|----------------|
| OUT[entry] | {m,n,u1,u2,u3} | {m,n,u1,u2,u3} |
| IN[B1]     | {m,n,u1,u2,u3} | {m,n,u1,u2,u3} |
|            |                |                |
| OUT[B1]    | {i,j,u2,u3}    | {i,j,u2,u3}    |
| IN[B2]     | {i,j,u2,u3}    | {i,j,u2,u3}    |
|            |                |                |
| OUT[B2]    | {u2,u3}        | {j,u2,u3}      |
| IN[B3]     | {u2,u3}        | {j,u2,u3}      |
| OUT[B3]    | {u3}           | {j,u2,u3}      |
| IN[B4]     | {u3}           | {j,u2,u3}      |
| OUT[B4]    | {}             | {i,j,u2,u3}    |
|            |                |                |
|            |                |                |
|            |                |                |

## Framework

|                         | Reaching Definitions                                              | Live Variables                                                     |
|-------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|
| Domain                  | Sets of definitions                                               | Sets of variables                                                  |
| Direction               | forward:<br>out[b] = $f_b(in[b])$<br>$in[b] = \land out[pred(b)]$ | backward:<br>$in[b] = f_b(out[b])$<br>$out[b] = \land in[succ(b)]$ |
| Transfer function       | $f_b(x) = Gen_b \cup (x - Kill_b)$                                | $f_b(x) = Use_b \cup (x - Def_b)$                                  |
| Meet Operation (∧)      | U                                                                 | U                                                                  |
| Boundary Condition      | $out[entry] = \emptyset$                                          | $in[exit] = \emptyset$                                             |
| Initial interior points | out[b] = ∅                                                        | in[b] = ∅                                                          |

Other examples (e.g., Available expressions), defined in ALSU 9.2.6

#### Thought Problem 1. "Must-Reach" Definitions

- A definition D (a = b+c) must reach point P iff
  - D appears at least once along on all paths leading to P
  - a is not redefined along any path after last appearance of D and before P
- How do we formulate the data flow algorithm for this problem?

# Thought Problem 2: A legal solution to (May) Reaching Def?



Will the worklist algorithm generate this answer?

## Questions

- Correctness
  - equations are satisfied, if the program terminates.
- Precision: how good is the answer?
  - is the answer ONLY a union of all possible executions?
- Convergence: will the analysis terminate?
  - or, will there always be some nodes that change?
- Speed: how fast is the convergence?
  - how many times will we visit each node?

## **Foundations of Data Flow Analysis**

- 1. Meet operator
- 2. Transfer functions
- 3. Correctness, Precision, Convergence
- 4. Efficiency
- •Reference: ALSU pp. 613-631
- •Background: Hecht and Ullman, Kildall, Allen and Cocke[76]
- •Marlowe & Ryder, Properties of data flow frameworks: a unified model. Rutgers tech report, Apr. 1988

#### **A Unified Framework**

#### Data flow problems are defined by

- Domain of values: V
- Meet operator (V ∧ V → V), initial value
- A set of transfer functions (V → V)

#### Usefulness of unified framework

- To answer questions such as correctness, precision, convergence, speed of convergence for a family of problems
  - If meet operators and transfer functions have properties X, then we know Y about the above.
- Reuse code

# **Meet Operator**

- Properties of the meet operator
  - commutative:  $x \wedge y = y \wedge x$



- idempotent:  $x \wedge x = x$
- associative:  $x \wedge (y \wedge z) = (x \wedge y) \wedge z$
- there is a Top element T such that  $x \wedge T = x$

**Partial Order** 



Meet Operator: Elementwise-min

- Meet operator defines a partial ordering on values
  - $x \le y$  if and only if  $x \land y = x$  (y -> x in diagram)
    - Transitivity: if  $x \le y$  and  $y \le z$  then  $x \le z$
    - Antisymmetry: if  $x \le y$  and  $y \le x$  then x = y
    - Reflexitivity:  $x \le x$

#### **Partial Order**

• Example: let  $V = \{x \mid \text{such that } x \subseteq \{ d_1, d_2 \} \}, \land = \bigcirc$ 



- Top and Bottom elements
  - Top T such that:  $x \wedge T = x$
  - Bottom  $\perp$  such that:  $x \wedge \perp = \perp$
- Values and meet operator in a data flow problem define a semilattice:
  - there exists a T, but not necessarily a  $\bot$ .
- x, y are ordered:  $x \le y$  then  $x \wedge y = x$  (y -> x in diagram)
- what if x and y are not ordered?
  - $x \wedge y \leq x$ ,  $x \wedge y \leq y$ , and if  $w \leq x$ ,  $w \leq y$ , then  $w \leq x \wedge y$

# One vs. All Variables/Definitions

Lattice for each variable: e.g. intersection



Lattice for three variables:





# **Descending Chain**

- Definition
  - The height of a lattice is the largest number of > relations that will fit in a
    descending chain.

$$X_0 > X_1 > X_2 > ...$$

Height of values in reaching definitions?

Height n – number of definitions

- Important property: finite descending chain
- Can an infinite lattice have a finite descending chain?
- Example: Constant Propagation/Folding
  - To determine if a variable is a constant
- Data values
  - undef, ... -1, 0, 1, 2, ..., not-a-constant

#### **Transfer Functions**

- Basic Properties  $f: V \rightarrow V$ 
  - Has an identity function
    - There exists an f such that f(x) = x, for all x.
  - Closed under composition
    - if  $f_1, f_2 \in F$ , then  $f_1 \cdot f_2 \in F$

## Monotonicity

- A framework (F, V, ∧) is monotone if and only if
  - $x \le y$  implies  $f(x) \le f(y)$
  - i.e. a "smaller or equal" input to the same function will always give a "smaller or equal" output
- Equivalently, a framework (F, V, ∧) is monotone if and only if
  - $f(x \wedge y) \leq f(x) \wedge f(y)$
  - i.e. merge input, then apply f is small than or equal to apply the transfer function individually and then merge the result

# **Example**

- Reaching definitions: f(x) = Gen ∪ (x Kill), ∧ = ∪
  - Definition 1:
    - $x_1 \le x_2$ , Gen  $\cup$   $(x_1 Kill) \le Gen \cup (x_2 Kill)$
  - Definition 2:
    - (Gen  $\cup$  ( $x_1$  Kill) )  $\cup$  (Gen  $\cup$  ( $x_2$  Kill) ) = (Gen  $\cup$  (( $x_1 \cup x_2$ ) - Kill))



- Note: Monotone framework does not mean that  $f(x) \le x$ 
  - e.g., reaching definition for two definitions in program
  - suppose:  $f_x$ :  $Gen_x = \{d_1, d_2\}$ ;  $Kill_x = \{\}$
- If input(second iteration) ≤ input(first iteration)
  - result(second iteration) ≤ result(first iteration)

# Distributivity

- A framework  $(F, V, \land)$  is **distributive** if and only if
  - $f(x \wedge y) = f(x) \wedge f(y)$
  - i.e. merge input, then apply f is **equal to** apply the transfer function individually then merge result
- Example: Constant Propagation is NOT distributive



# **Data Flow Analysis**

- Definition
  - Let  $f_1, ..., f_m : \in F$ , where  $f_i$  is the transfer function for node i
    - $f_p = f_{n_k} \cdot ... \cdot f_{n_1}$ , where p is a path through nodes  $n_1, ..., n_k$
    - $f_p$  = identify function, if p is an empty path
- Ideal data flow answer:
  - For each node n:

 $\wedge f_{p_i}$  (T), for all possibly executed paths  $p_i$  reaching n.



But determining all possibly executed paths is undecidable

## **Meet-Over-Paths (MOP)**

- Error in the conservative direction
- Meet-Over-Paths (MOP):
  - For each node n:

```
MOP(n) = \bigwedge f_{p_i}(T), for all paths p_i reaching n
```

- a path exists as long there is an edge in the code
- consider more paths than necessary
- MOP = Perfect-Solution ∧ Solution-to-Unexecuted-Paths
- MOP ≤ Perfect-Solution
- Potentially more constrained, solution is small
  - hence conservative
- It is not safe to be > Perfect-Solution!
- Desirable solution: as close to MOP as possible

# **MOP Example**



Ideal: Considers only 2 paths B1-B2-B4-B6-B7 (i.e., x=1)

B1-B3-B4-B5-B7 (i.e., x=0)

MOP: Also considers unexecuted paths

B1-B2-B4-B5-B7

B1-B3-B4-B6-B7

Assume: B2 & B3 do not update x

# **Solving Data Flow Equations**

- Example: Reaching definitions
  - out[entry] = {}
  - Values = {subsets of definitions}
  - Meet operator: ∪
    - in[b] =  $\cup$  out[p], for all predecessors p of b
  - Transfer functions: out[b] = gen<sub>b</sub> ∪ (in[b] -kill<sub>b</sub>)
- Any solution satisfying equations = Fixed Point Solution (FP)
- Iterative algorithm
  - initializes out[b] to {}
  - if converges, then it computes Maximum Fixed Point (MFP):
    - MFP is the largest of all solutions to equations
- Properties:
  - FP ≤ MFP ≤ MOP ≤ Perfect-solution
  - FP, MFP are safe
  - in(b) ≤ MOP(b)

# **Partial Correctness of Algorithm**

- If data flow framework is monotone, then if the algorithm converges, IN[b] ≤ MOP[b]
- Proof: Induction on path lengths
  - Define IN[entry] = OUT[entry]and transfer function of entry = Identity function
  - Base case: path of length 0
    - Proper initialization of IN[entry]
  - If true for path of length k,  $p_k = (n_1, ..., n_k)$ , then true for path of length k+1:  $p_{k+1} = (n_1, ..., n_{k+1})$ 
    - Assume:  $IN[n_k] \le f_{n_{k-1}}(f_{n_{k-2}}(...f_{n_1}(IN[entry])))$
    - $IN[n_{k+1}] = OUT[n_k] \wedge ...$   $\leq OUT[n_k]$   $\leq f_{n_k}(IN[n_k])$  $\leq f_{n_{k-1}}(f_{n_{k-2}}(...f_{n_1}(IN[entry])))$

#### **Precision**

 If data flow framework is distributive, then if the algorithm converges, IN[b] = MOP[b]



Monotone but not distributive: behaves as if there are additional paths

#### **Additional Property to Guarantee Convergence**

- Data flow framework (monotone) converges if there is a finite descending chain
- For each variable IN[b], OUT[b], consider the sequence of values set to each variable across iterations:
  - if sequence for in[b] is monotonically decreasing
    - sequence for out[b] is monotonically decreasing
      - (out[b] initialized to T)
  - if sequence for out[b] is monotonically decreasing
    - sequence of in[b] is monotonically decreasing

# **Speed of Convergence**

 Speed of convergence depends on order of node visits



Reverse "direction" for backward flow problems

#### Reverse Postorder

```
Step 1: depth-first post order
     main() {
        count = 1;
        Visit(root);
     Visit(n) {
        for each successor s that has not been
 visited
           Visit(s);
        PostOrder(n) = count;
        count = count+1;
Step 2: reverse order
     For each node i
        rPostOrder = NumNodes - PostOrder(i)
```

# Depth-First Iterative Algorithm (forward)

```
input: control flow graph CFG = (N, E, Entry, Exit)
/* Initialize */
    out[entry] = init value
    For all nodes i
       out[i] = T
    Change = True
/* iterate */
    While Change {
       Change = False
       For each node i in rPostOrder {
          in[i] = \( (out[p]) \), for all predecessors p of i
          oldout = out[i]
          out[i] = f, (in[i])
          if oldout # out[i]
             Change = True
```

# **Speed of Convergence**

#### If cycles do not add information

- information can flow in one pass down a series of nodes of increasing order number:
  - e.g., 1 -> 4 -> 5 -> 7 -> 2 -> 4 ...
- passes determined by number of back edges in the path
  - essentially the nesting depth of the graph
- Number of iterations = number of back edges in any acyclic path + 2
  - (2 are necessary even if there are no cycles)

#### What is the depth?

- corresponds to depth of intervals for "reducible" graphs
- in real programs: average of 2.75

#### A Check List for Data Flow Problems

#### Semi-lattice

- set of values
- meet operator
- top, bottom
- finite descending chain?

#### Transfer functions

- function of each basic block
- monotone
- distributive?

#### Algorithm

- initialization step (entry/exit, other nodes)
- visit order: rPostOrder
- depth of the graph

#### **Conclusions**

- Dataflow analysis examples
  - Reaching definitions
  - Live variables

- Dataflow formation definition
  - Meet operator
  - Transfer functions
  - Correctness, Precision, Convergence
  - Efficiency

# CSC D70: Compiler Optimization Dataflow Analysis

Prof. Gennady Pekhimenko
University of Toronto
Winter 2021