

### 线性回归

hongqianglv@xjtu.edu.cn 西安交通大学



### 回归分析概述

- 一、变量间的关系及回归分析的基本概念
  - 1、变量间的关系

变量之间的关系,大体可分为两类:

- (1)确定性关系或函数关系:研究的是确定现象非随机变量间的关系。
- (2) 统计依赖或相关关系:研究的是非确定现象随机变量间的关系。



#### 函数关系:

圆面积 =  $f(\pi, \text{半径}) = \pi \cdot \text{半径}^2$ 

统计依赖关系/统计相关关系:

农作物产量=ƒ(气温,降雨量,阳光,施肥量)

对变量间统计依赖关系的考察主要是通过回归分析 (regression analysis)或相关分析(correlation analysis)来 完成的:

回归分析: 自变量是可测和可控的非随机变量

相关分析: 自变量也是随机变量或者不可控变量



#### 相关性关系:

变量之间的关系并不确定,而是表现为具有随机性的一种"趋势"。即对自变量x的同一值,在不同的观测中,因变量Y可以取不同的值,而且取值是随机的,但对应x在一定范围的不同值,对Y进行观测时,可以观察到Y随x的变化而呈现有一定趋势的变化。







- 如:身高与体重,不存在这样的函数可以由身高计算出体重,但从统计意义上来说,身高者,体也重。
- 如:父亲的身高与儿子的身高 之间也有一定联系,通常父亲 高,儿子也高。





我们以一个例子来建立回归模型

 例1:根据2013年《中国统计年鉴》的数据, 2012年中国各地区城镇居民人均年消费支 出和可支配收入数据见下表.

| 地区  | 可支配收<br>入x(万元) | 消费支出<br>y(万元) | 地区 | 可支配收<br>入x(万元) | 消费支出<br>y(万元) |
|-----|----------------|---------------|----|----------------|---------------|
| 北京  | 3. 647         | 2. 405        | 上海 | 4. 019         | 2. 625        |
| 天津  | 2. 963         | 2. 002        | 江苏 | 2. 968         | 1. 883        |
| 河北  | 2. 054         | 1. 253        | 浙江 | 3. 455         | 2. 155        |
| 山西  | 2. 041         | 1. 221        | 安徽 | 2. 102         | 1. 501        |
| 内蒙古 | 2. 315         | 1. 772        | 福建 | 2. 806         | 1. 859        |
| 辽宁  | 2. 322         | 1. 659        | 江西 | 1. 986         | 1. 278        |
| 吉林  | 2. 021         | 1. 461        | 山东 | 2. 576         | 1. 578        |
| 黑龙江 | 1. 776         | 1. 298        | 河南 | 2. 044         | 1. 373        |

| 地区 | 可支配收<br>入x(万元) | 消费支出<br>y(万元) | 地区 | 可支配收<br>入x(万元) | 消费支出<br>y(万元) |
|----|----------------|---------------|----|----------------|---------------|
| 湖北 | 2. 084         | 1. 450        | 云南 | 2. 107         | 1. 388        |
| 湖南 | 2. 132         | 1. 461        | 西藏 | 1. 803         | 1. 118        |
| 广东 | 3. 023         | 2. 240        | 陕西 | 2. 073         | 1. 533        |
| 广西 | 2. 124         | 1. 424        | 甘肃 | 1. 716         | 1. 285        |
| 海南 | 2. 092         | 1. 446        | 青海 | 1. 757         | 1. 235        |
| 重庆 | 2. 297         | 1. 657        | 宁夏 | 1. 983         | 1. 407        |
| 四川 | 2. 031         | 1. 505        | 新疆 | 1. 792         | 1. 389        |
| 贵州 | 1. 870         | 1. 259        |    |                | 7             |





散点图 X:可支配收入,

Y:消费支出

可支配收入x的变化是引起消费支出Y的变化的主要因素,其他因素的影响是次要的.

从散点图看出,引起消费支出Y的变化的 主要部分可以表示为

 $\mu(x) = a + bx$ , 其中 a, b是未知参数.

另一部分是由其他随机因素引起的, 记为 $\varepsilon$ 即  $Y = a + bx + \varepsilon$ .

- lacksquare 一般概率模型: $\mathit{Y}$ =确定性成分+随机误差, $\mathit{Y}$ 为因变量。
- 确定性成分= E(Y), 随机误差的均值等于 0, 则  $Y=E(Y)+\varepsilon$
- 若E(Y)与自变量 x 之间为线性关系时, E(Y)=a+bx
- 一元线性回归模型:  $Y = a + bx + \varepsilon$ 
  - 模型中,Y = x 的线性函数(部分)加上误差项
  - 线性部分反映了由于 x 的变化而引起的Y的变化
  - 误差项 ε 是随机变量
    - 反映了除x和Y之间的线性关系之外的随机因素对Y的影响
    - 是不能由 x 和 Y之间的线性关系所解释的变异性
  - a和 b 称为模型的参数

#### 新安文道大学 XI'AN JIAOTONG UNIVERSITY

#### 一元线性回归

1. 线性性: Y = X存在线性相关关系,即

$$E(Y) = a + bx$$

- 2. 正态性: 误差项 $\varepsilon$ 是一个服从数学期望为0的正态分布的随机变量,即 $\varepsilon \sim N(0, \sigma^2)$ ,  $E(\varepsilon)=0$
- 3. 均等性:对于所有的 x 值, $\epsilon$ 的方差 $\sigma^2$  都相同
- 4. 独立性: 对于每一个特定的 x 值,它所对应的 $\varepsilon$ 与其他 x 值所对应的 $\varepsilon$ 不相关,对于一个特定的 x 值,它所对应的 Y 值与其他 x 所对应的 Y值也不相关

对从总体(x,Y)中抽取的一个样本 $(x_1,Y_1),(x_2,Y_2),...,(x_n,Y_n)$ 

一元线性回归模型:

$$\begin{cases} Y_i = a + bx_i + \varepsilon_i, i = 1, 2, ..., n, \\ \varepsilon_i \sim N(0, \sigma^2), 且相互独立, \\ a, b(回归系数), \sigma^2 未知. \end{cases}$$

根据样本 估计a, b, 记为 $\hat{a}$ ,  $\hat{b}$ , 和为y关于x一元线性回归

 $\hat{y} = \hat{a} + \hat{b} x$ 





#### 一元线性回归要解决的问题:

```
参数估计: \begin{cases} (1) \ a, b \text{ 的估计;} \\ (2) \ \sigma^2 \text{ 的估计;} \end{cases}
```

参数检验及  $\{(3)$  线性假设的显著性检验;  $\{(4)$  回归系数 $\{(4)$  的置信区间;  $\{(5)\}$  的点预测.

# ジェーテスの大学 一元线性回归

#### a和b 的最小二乘估计

使因变量的观察值与估计值之间的离差平方和达到最小来 求得  $\hat{a}$  和  $\hat{h}$  的方法。

$$Q(a,b) = \sum_{i=1}^{n} (y_i - a - bx_i)^2$$
取最小值.

根据

$$\frac{\partial Q}{\partial a} = -2\sum_{i=1}^{n} (y_i - a - bx_i) = 0$$

$$\frac{\partial Q}{\partial b} = -2\sum_{i=1}^{n} (y_i - a - bx_i)x_i = 0$$

# 海安交通大學 一元线性回归

得方程组
$$\begin{cases}
 na + (\sum_{i=1}^{n} x_i)b = \sum_{i=1}^{n} y_i \\
 (\sum_{i=1}^{n} x_i)a + (\sum_{i=1}^{n} x_i^2)b = \sum_{i=1}^{n} x_i y_i
\end{cases}$$

由于xi不全相同,方程组的系数行列式

$$\begin{vmatrix} n & \sum_{i=1}^{n} x_{i} \\ \sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} x_{i}^{2} \end{vmatrix} = n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2} = n \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} \neq 0$$

## 海安京通大學 一元线性回归

$$\hat{b} = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - (\sum_{i=1}^{n} x_{i})(\sum_{i=1}^{n} y_{i})}{n \sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}},$$

$$\hat{a} = \frac{1}{n} \sum_{i=1}^{n} y_i - \frac{\hat{b}}{n} \sum_{i=1}^{n} x_i = y - \hat{b} x$$

其中 
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \quad \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i.$$

在得到a,b的估计 $\hat{a},\hat{b}$ 后,对于给定的x,

方程

$$\hat{y} = \hat{a} + \hat{b}x$$

称为Y关于x的经验回归方程,简称回归方程.

$$\hat{y} = \overline{y} + \hat{b}(x - \overline{x}),$$

对于样本值 $(x_1, y_2), (x_2, y_2), \cdots (x_n, y_n)$ ,回归直线通过散点图的几何中心 $(\bar{x}, \bar{y})$ .

# 海安交通大學 一元线性回归

$$S_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} x_i^2 - \frac{1}{n} (\sum_{i=1}^{n} x_i)^2$$

$$S_{yy} = \sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} y_i^2 - \frac{1}{n} (\sum_{i=1}^{n} y_i)^2$$

$$S_{xy} = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

$$= \sum_{i=1}^{n} x_i y_i - \frac{1}{n} (\sum_{i=1}^{n} x_i)(\sum_{i=1}^{n} y_i),$$

$$\hat{b} = \frac{S_{xy}}{S_{xx}}, \qquad \hat{a} = \frac{1}{n} \sum_{i=1}^{n} y_i - (\frac{1}{n} \sum_{i=1}^{n} x_i) \hat{b}.$$



例 为研究某一化学反应过程中,温度 $x(^{0}C)$ 对产品得率Y(%)的影响,测得数据如下.

| 温度 <b>x(°C)</b> | 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170 | 180 | 190 |
|-----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 得率 <b>Y(%)</b>  | 45  | 51  | 54  | 61  | 66  | 70  | 74  | 78  | 85  | 89  |

这里自变量x是普通变量,Y是随机变量。 画出散点图如下,



观察散点图,  $\mu(x)$ 具有线性函数a + bx的形式.



随机变量 Y 符合一元线性回归模型所述的条件, 求 Y 关于 x 的线性回归方程.

|   | Х    | У   | <b>x</b> <sup>2</sup> | y <sup>2</sup> | xy     |
|---|------|-----|-----------------------|----------------|--------|
|   | 100  | 45  | 10000                 | 2025           | 4500   |
|   | 110  | 51  | 12100                 | 2601           | 5610   |
|   | 120  | 54  | 14400                 | 2916           | 6480   |
|   | 130  | 61  | 16900                 | 3721           | 7930   |
|   | 140  | 66  | 19600                 | 4356           | 9240   |
|   | 150  | 70  | 22500                 | 4900           | 10500  |
|   | 160  | 74  | 25600                 | 5476           | 11840  |
|   | 170  | 78  | 28900                 | 6084           | 13260  |
|   | 180  | 85  | 32400                 | 7225           | 15300  |
|   | 190  | 89  | 36100                 | 7921           | 16910  |
| Σ | 1450 | 673 | 218500                | 47225          | 101570 |

# 新安克通大學 一元线性回归

角子: 
$$S_{xx} = 218500 - \frac{1}{10} \times 1450^2 = 8250$$

$$S_{xy} = 101570 - \frac{1}{10} \times 1450 \times 673 = 3985$$

$$\hat{b} = S_{xy}/S_{xx} = 0.48303$$

$$\hat{a} = \frac{1}{10} \times 673 - \frac{1}{10} \times 1450 \times 0.48303 = -2.73935$$

回归直线方程  $\hat{y} = -2.73935 + 0.48303x$ 

#### $\sigma^2$ 的估计

 $\sigma^2$  越小,用回归函数  $\mu(x) = a + bx$  作为 Y 的近似导致的均方误差就越小.

$$E\{[Y-(a+bx)]^2\}=E(\varepsilon^2)=D(\varepsilon)+[E(\varepsilon)]^2=\sigma^2.$$

利用回归函数  $\mu(x) = a + bx$ 

去研究随机变量Y与x的关系就愈有效

为了估计 $\sigma^2$ ,引入残差平方和

$$|\hat{y}_i = \hat{y}|_{x=x_i} = \hat{a} + \hat{b}x_i$$
,

 $y_i - \hat{y}_i$ 为 $x_i$ 处的残差.

残差平方和

$$Q_e = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - \hat{a} - \hat{b}x_i)^2$$

它是经验回归函数在 $x_i$ 处的函数值  $\widehat{\mu(x)} = \hat{a} + \hat{b}x$ 

与 $x_i$ 处的观察值 $y_i$ 的偏差的平方和.

$$Q_e = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} [y_i - \overline{y} - \hat{b}(x_i - \overline{x})]^2$$

$$=\sum_{i=1}^{n}(y_{i}-\bar{y})^{2}-2\hat{b}\sum_{i=1}^{n}(x_{i}-\bar{x})(y_{i}-\bar{y})+(\hat{b})^{2}\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}$$

# 而安京通大學 一元线性回归

 $\sigma^2$  的无偏估计量为

$$\sigma^2 = \frac{Q_e}{n-2} = \frac{1}{n-2} [S_{yy} - (\hat{b})^2 S_{xx}].$$

## 海安交通大學 一元线性回归

例 求上例中方差的无偏估计.

解 
$$S_{yy} = \sum_{i=1}^{n} y_i^2 - \frac{1}{n} (\sum_{i=1}^{n} y_i)^2$$

$$= 47225 - \frac{1}{10} \times 673^2$$

$$= 1932.1$$
又知 $S_{xx} = 8250$ , $\hat{b} = 0.48303$ 

$$\underline{Q_e} = S_{yy} - (\hat{b})^2 S_{xx} = 7.23$$

$$\hat{\sigma}^2 = \underline{Q_e}/(n-2) = 7.23/8 = 0.90$$

#### 可化为一元线性回归

方法——通过适当的变量变换,化成一元线性 回归问题进行分析处理.

几种常见的可转化为一元线性回归的模型

1. 
$$Y = \alpha e^{\beta x} \cdot \varepsilon$$
,  $\ln \varepsilon \sim N(0, \sigma^2)$ .

其中 $\alpha, \beta, \sigma^2$ 是与x无关的未知参数.

将
$$Y = \alpha e^{\beta x} \cdot \varepsilon$$
两边取对数,

得 
$$\ln Y = \ln \alpha + \beta x + \ln \varepsilon.$$

$$\Leftrightarrow \ln Y = Y', \ln \alpha = a, \ \beta = b, \quad x = x', \quad \ln \varepsilon = \varepsilon'$$

#### 而步交通大學 XI'AN JIAOTONG UNIVERSITY

转化为一元线性回归模型:

$$Y'=a+bx'+\varepsilon', \quad \varepsilon'\sim N(0,\sigma^2).$$

2. 
$$Y = \alpha + \beta h(x) + \varepsilon$$
,  $\varepsilon \sim N(0, \sigma^2)$ .

其中 $\alpha, \beta, \sigma^2$ 是与x无关的未知参数.

h(x)是x的已知函数,

$$\Leftrightarrow \alpha = a, \quad \beta = b, \quad h(x) = x',$$

转化为一元线性回归模型:

$$Y' = a + bx' + \varepsilon$$
,  $\varepsilon \sim N(0, \sigma^2)$ .



例 下表是 1957 年美国旧轿车价格的调查资料, 今以 x 表示轿车的使用年数, Y 表示相应的平均价格(以美元计), 求 Y 关于 x 的回归方程.

| 年数 <b>x</b> | 1    | 2    | 3    | 4    | 5   | 6   | 7   | 8   | 9   | 10  |
|-------------|------|------|------|------|-----|-----|-----|-----|-----|-----|
| 价格Y         | 2651 | 1943 | 1494 | 1087 | 765 | 538 | 484 | 290 | 226 | 204 |



### 解 做散点图,Y与x呈指数关系,





选择模型 
$$Y = \alpha e^{\beta x} \cdot \varepsilon$$
,  $\ln \varepsilon \sim N(0, \sigma^2)$ .

变量变换 
$$Y'=a+bx'+\varepsilon'$$
,  $\varepsilon'\sim N(0,\sigma^2)$ .

其中
$$\ln Y = Y'$$
,  $a = \ln \alpha$ ,  $b = \beta$ ,  $x' = x$ ,  $\varepsilon' = \ln \varepsilon$ 

#### 数据变换后得

| x' = x       | 1      | 2      | 3      | 4      | 5      |
|--------------|--------|--------|--------|--------|--------|
| $y' = \ln y$ | 7.8827 | 7.5720 | 7.3092 | 6.9912 | 6.6399 |
| x' = x       | 6      | 7      | 8      | 9      | 10     |
| $y' = \ln y$ | 6.2879 | 6.1821 | 5.6699 | 5.4205 | 5.3181 |

$$\hat{b} = -0.2977, \quad \hat{a} = 8.1646.$$

$$\hat{y}' = -0.2977x' + 8.1646.$$

代回原变量,得曲线回归方程

$$\hat{y} = \exp(\hat{y}') = \exp(-0.2977x + 8.1646)$$
$$= 3514.3e^{-0.2977x}.$$