PETUNJUK PRAKTIKUM

Praktikum Sistem Digital

Laboratorium Dasar Teknik Elektro

Sekolah Teknik Elektro Dan Informatika Institut Teknologi Bandung 2024

Buku Petunjuk Praktikum Sistem Digital EL 2102

Percobaan IV Komunikasi UART pada FPGA

v.1.0

Mervin T. Hutabarat

Arif Sasongko

Eric Agustian

Harry Septanto

M. Zakiyullah R.

Ardimas Andi Purwita

Nina Lestari

Sekolah Teknik Elektro Dan Informatika Institut Teknologi Bandung 2024

DAFTAR ISI

RIWAYAT DOKUMEN	IV
ATURAN LABORATORIUM	V
ATURAN UMUM LABORATORIUM	v
KELENGKAPAN	v
PERSIAPAN	v
PERGANTIAN JADWAL	V
SANKSI	V
PANDUAN UMUM KESELAMATAN DAN PENGGUNAAN PERALATAN LABORATORIUM.	VII
KESELAMATAN	VII
BAHAYA LISTRIK	VII
BAHAYA BENDA TAJAM DAN LOGAM	VIII
Lain-lain	
PENGGUNAAN PERALATAN PRAKTIKUM	
SANKSI	
TABEL SANKSI PRAKTIKUM	IX
KOMUNIKASI UART PADA FPGA	11
1.1 TUJUAN	11
1.2 PERSIAPAN	11
CATATAN	11
1.3 DASAR TEORI	11
UART	11
ASCII	12
USB to TTL	13
1.4 TUGAS PENDAHULUAN	15
1.5 PERCOBAAN	16
PERALATAN YANG DIGUNAKAN	16
PERCOBAAN 4: IMPLEMENTASI KOMUNIKASI UART PADA FPGA	16
1.6 MENGAKHIRI PERCOBAAN	17
APENDIKS	18
DE10-LITE FPGA BOARD	18
PIN ASSIGNMENT OF SLIDE SWITCHES	19
PIN ASSIGNMENT OF CLOCK	20
PIN ASSIGNMENT OF PUSH BUTTON	21
PIN ASSIGNMENT OF LEDS	22
PIN ASSIGNMENT OF 7-SEGMENT DISPLAYS	23

CONTOH PEMBERIAN COMMENT PADA VHDL2	25
-------------------------------------	----

RIWAYAT DOKUMEN

VERSI	TANGGAL	CATATAN PERUBAHAN
1.1	14 November 2024	Pengubahan panjang pesan pendek pada tugas pendahuluan.
		Pengubahan jumlah alamat rx buffer yang dibaca pada percobaan (langkah 12).
		Perbaikan judul Bab percobaan.
1.0	28 oktober 2024	Pembuatan dokumen.

ATURAN LABORATORIUM

ATURAN UMUM LABORATORIUM

KELENGKAPAN

Setiap praktikan wajib berpakaian lengkap, mengenakan **celana panjang/ rok, kemeja** dan mengenakan **sepatu**. Untuk memasuki ruang laboratorium Praktikan wajib membawa kelengkapan berikut:

- Modul praktikum
- Buku Catatan Laboratorium (BCL)
- Alat tulis (dan kalkulator, jika diperlukan)
- Name tag
- Kartu Praktikum

PERSIAPAN

SEBELUM PRAKTIKUM

Sebelum mengikuti percobaan sesuai jadwalnya, sebelum memasuki laboratorium praktikan harus mempersiapkan diri dengan melakukan hal-hal berikut:

- Membaca dan memahami isi modul praktikum,
- Mengerjakan Tugas Pendahuluan
- Mengerjakan hal-hal yang harus dikerjakan sebelum praktikum dilaksanakan, misalnya mengerjakan perhitungan-perhitungan, menyalin source code, mengisi Kartu Praktikum dlsb.,
- Mengisi daftar hadir di Tata Usaha Laboratorium,
- Mengambil kunci loker dan melengkapi administrasi peminjaman kunci loker dengan meninggalkan kartu identitas (KTM/ SIM/ KTP).

SELAMA PRAKTIKUM

Setelah dipersilahkan masuk dan menempati bangku dan meja kerja, praktikan haruslah:

- Memperhatikan dan mengerjakan setiap percobaan dengan waktu sebaik-baiknya, diawali dengan kehadiran praktikan secara tepat waktu,
- Mengumpulkan Kartu Praktikum pada asisten,
- Mendokumentasikan dalam Buku Catatan Laboratorium. (lihat Petunjuk Penggunaan BCL) tentang hal-hal penting terkait percobaan yang sedang dilakukan.

SETELAH PRAKTIKUM

- Memastikan BCL telah ditandatangani oleh asisten,
- Mengembalikan kunci loker dan melengkapi administrasi pengembalian kunci loker (pastikan kartu identitas KTM/ SIM/ KTP diperoleh kembali),
- Mengerjakan laporan dalam bentuk SoftCopy (lihat Panduan Penyusunan Laporan di laman https://ldte.stei.itb.ac.id/panduan/)),

Mengirimkan file laporan dengan cara mengunggah di laman https://praktikum.stei.itb.ac.id. Waktu pengiriman paling lambat jam 11.00 WIB, dua hari kerja berikutnya setelah praktikum, kecuali ada kesepakatan lain antara Dosen Pengajar dan/ atau Asisten.

PERGANTIAN JADWAL

KASUS BIASA

Pertukaran jadwal hanya dapat dilakukan per orang dengan modul yang sama. Langkah untuk menukar jadwal adalah sebagai berikut:

Lihatlah format Pertukaran Jadwal di https://ldte.stei.itb.ac.id/panduan/ pada halaman Panduan

- Salah satu praktikan yang bertukar jadwal harus mengirimkan e-mail ke <u>labdasar@stei.itb.ac.id</u>.
 Waktu pengiriman paling lambat jam 16.30, sehari sebelum praktikum yang dipertukarkan
- Pertukaran diperbolehkan setelah ada email konfirmasi dari Lab. Dasar

KASUS SAKIT ATAU URUSAN MENDESAK PRIBADI LAINNYA

Jadwal pengganti dapat diberikan kepada praktikan yang sakit atau memiliki urusan mendesak pribadi.

- Praktikan yang hendak mengubah jadwal untuk urusan pribadi mendesak harus memberitahu staf tata usaha laboratorium sebelum jadwal praktikumnya melalui email.
- Segera setelah praktikan memungkinkan mengikuti kegiatan akademik, praktikan dapat mengikuti praktikum pengganti setelah mendapatkan konfirmasi dari staf tata usaha laboratorium dengan melampirkan surat keterangan dokter bagi yang sakit atau surat terkait untuk yang memiliki urusan pribadi.

KASUS "KEPENTINGAN MASSAL"

"Kepentingan massal" terjadi jika ada lebih dari 1/3 rombongan praktikan yang tidak dapat melaksanakan praktikum pada satu hari yang sama karena alasan yang terkait kegiatan akademis.

SANKSI

Pengabaian aturan-aturan di atas dapat dikenakan sanksi pengguguran nilai praktikum terkait.

PANDUAN UMUM KESELAMATAN DAN PENGGUNAAN PERALATAN LABORATORIUM

KESELAMATAN

Pada prinsipnya, untuk mewujudkan praktikum yang aman diperlukan partisipasi seluruh praktikan dan asisten pada praktikum yang bersangkutan. Dengan demikian, kepatuhan setiap praktikan terhadap uraian panduan pada bagian ini akan sangat membantu mewujudkan praktikum yang aman.

BAHAYA LISTRIK

- Perhatikan dan pelajari tempat-tempat sumber listrik (stop-kontak dan circuit breaker) dan cara menyala-matikannya. Jika melihat ada kerusakan yang berpotensi menimbulkan bahaya, laporkan pada asisten
- Hindari daerah atau benda yang berpotensi menimbulkan bahaya listrik (sengatan listrik/ strum) secara tidak disengaja, misalnya kabel jala-jala yang terkelupas dll.
- Tidak melakukan sesuatu yang dapat menimbulkan bahaya listrik pada diri sendiri atau orang lain
- Keringkan bagian tubuh yang basah karena, misalnya, keringat atau sisa air wudhu
- Selalu waspada terhadap bahaya listrik pada setiap aktivitas praktikum

Kecelakaan akibat bahaya listrik yang sering terjadi adalah tersengat arus listrik. Berikut ini adalah hal-hal yang harus diikuti praktikan jika hal itu terjadi:

- Jangan panik
- Matikan semua peralatan elektronik dan sumber listrik di meja masing-masing dan di meja praktikan yang tersengat arus listrik
- Bantu praktikan yang tersengat arus listrik untuk melepaskan diri dari sumber listrik
- Beritahukan dan minta bantuan asisten, praktikan lain dan orang di sekitar anda tentang terjadinya kecelakaan akibat bahaya listrik

BAHAYA API ATAU PANAS BERLEBIH

- Jangan membawa benda-benda mudah terbakar (korek api, gas dll.) ke dalam ruang praktikum bila tidak disyaratkan dalam modul praktikum
- Jangan melakukan sesuatu yang dapat menimbulkan api, percikan api atau panas yang berlebihan
- Jangan melakukan sesuatu yang dapat menimbulkan bahaya api atau panas berlebih pada diri sendiri atau orang lain
- Selalu waspada terhadap bahaya api atau panas berlebih pada setiap aktivitas praktikum

Berikut ini adalah hal-hal yang harus diikuti praktikan jika menghadapi bahaya api atau panas berlebih:

- Jangan panik
- Beritahukan dan minta bantuan asisten, praktikan lain dan orang di sekitar anda tentang terjadinya bahaya api atau panas berlebih
- Matikan semua peralatan elektronik dan sumber listrik di meja masing-masing
- Menjauh dari ruang praktikum

BAHAYA BENDA TAJAM DAN LOGAM

- Dilarang membawa benda tajam (pisau, gunting dan sejenisnya) ke ruang praktikum bila tidak diperlukan untuk pelaksanaan percobaan
- Dilarang memakai perhiasan dari logam misalnya cincin, kalung, gelang dll.
- Hindari daerah, benda atau logam yang memiliki bagian tajam dan dapat melukai
- Tidak melakukan sesuatu yang dapat menimbulkan luka pada diri sendiri atau orang lain

LAIN-LAIN

Dilarang membawa makanan dan minuman ke dalam ruang praktikum

PENGGUNAAN PERALATAN PRAKTIKUM

Berikut ini adalah panduan yang harus dipatuhi ketika menggunakan alat-alat praktikum:

- Sebelum menggunakan alat-alat praktikum, pahami petunjuk penggunaan alat itu. Petunjuk penggunaan beberapa alat dapat didownload di http://labdasar.ee.itb.ac.id
- Perhatikan dan patuhi peringatan (warning) yang biasa tertera pada badan alat
- Pahami fungsi atau peruntukan alat-alat praktikum dan gunakanlah alat-alat tersebut hanya untuk aktivitas yang sesuai fungsi atau peruntukannya. Menggunakan alat praktikum di luar fungsi atau peruntukannya dapat menimbulkan kerusakan pada alat tersebut dan bahaya keselamatan praktikan
- Pahami rating dan jangkauan kerja alat-alat praktikum dan gunakanlah alat-alat tersebut sesuai rating dan jangkauan kerjanya. Menggunakan alat praktikum di luar rating dan jangkauan kerjanya dapat menimbulkan kerusakan pada alat tersebut dan bahaya keselamatan praktikan
- Pastikan seluruh peralatan praktikum yang digunakan aman dari benda/ logam tajam, api/ panas berlebih atau lainnya yang dapat mengakibatkan kerusakan pada alat tersebut
- Tidak melakukan aktifitas yang dapat menyebabkan kotor, coretan, goresan atau sejenisnya pada badan alat-alat praktikum yang digunakan

SANKSI

Pengabaian uraian panduan di atas dapat dikenakan sanksi tidak lulus mata kuliah praktikum yang bersangkutan

TABEL SANKSI PRAKTIKUM

Berlaku mulai: 14 Agustus 2017

Level	Waktu	Kasus	Sanksi	Pengurangan nilai per modul
Akademik	Saat dan setelah praktikum	Semua kegiatan plagiasi (mencontek):	Gugur praktikum	
	•	tugas pendahuluan, test dalam praktikum, laporan praktikum		
		Sengaja tidak mengikuti praktikum		
Berat	Saat praktikum	Tidak hadir praktikum	Gugur modul	
	P 3	Terlambat hadir praktikum		
		Pakaian tidak sesuai: kemeja, sepatu		
		Tugas pendahuluan tidak dikerjakan/hilang/tertinggal		
Ringan	Saat Praktikum	Pertukaran jadwal tidak sesuai aturan/ketentuan		-25 nilai akhir
		Tidak mempelajari modul sebelum praktikum/tidak mengerti isi modul	Dikeluarkan dari praktikum	-25 nilai akhir
		BCL tertinggal/hilang		-100% nilai BCL
		Name Tag tertinggal/hilang		-10 nilai akhir
		Kartu praktikum tertinggal/hilang		-25 nilai akhir
		Kartu praktikum tidak lengkap data dan foto		-10 nilai akhir
		Loker tidak dikunci/kunci tertinggal		-10 nilai akhir

Setelah Praktikum	Tidak ada paraf asisten di BCL/kartu praktikum	-25 nilai akhir
	Terlambat mengumpulkan laporan	-1/min nilai akhir, maks -50
	Terlambat mengumpulkan BCL	-1/min nilai BCL, maks -50
	Tidak bawa kartu praktikum saat pengumpulan BCL	-50 nilai BCL
	Tidak minta paraf admin saat pengumpulan BCL	-50 nilai BCL

Catatan:

- 1. Pelanggaran akademik menyebabkan gugur praktikum, nilai praktikum E
- 2. Dalam satu praktikum, praktikan maksimal boleh melakukan
 - a. 1 pelanggaran berat dan 1 pelanggaran ringan; atau
 - b. 3 pelanggaran ringan
- 3. Jika jumlah pelanggaran melewati point 2, praktikan dianggap gugur praktikum.
- 4. Praktikan yang terkena sanksi gugur modul wajib mengganti praktikum pada hari lain dengan nilai modul tetap 0. Waktu pengganti praktikum ditetapkan bersama asisten. Jika praktikan tidak mengikuti ketentuan praktikum (pengganti) dengan baik, akan dikenakan sanksi gugur praktikum.
- 5. Setiap pelanggaran berat dan ringan dicatat/diberikan tanda di kartu praktikum
- 6. Waktu acuan adalah waktu sinkron dengan NIST
- 7. Sanksi yang tercantum di tabel adalah sanksi minimum.
- 8. Sanksi yang belum tercantum akan ditentukan kemudian.

KOMUNIKASI UART PADA FPGA

1.1 TUJUAN

- 1. Mempelajari komunikasi UART pada FPGA.
- 2. Mengimplementasikan komunikasi UART antara komputer dan FPGA.
- 3. Memahami ASCII (American Standard Code for Information Interchange).

1.2 PERSIAPAN

Pelajari tentang komunikasi UART dan DE10-Lite. Install driver chip UART (Prolific PL2303 dan CH340) pada laptop Anda. Kerjakan **tugas pendahuluan** dan kumpulkan sesuai ketentuan yang berlaku.

CATATAN

Untuk seluruh percobaan 4 ini, Anda harus membuat kode VHDL sebelum praktikum. Pastikan kode benar dan sudah disimulasikan menggunakan ModelSIM atau Questa. Jika ada pelanggaran berupa copy paste sebagian atau seluruh code VHDL, praktikan dikenai sanksi nilai nol dan/atau tidak lulus praktikum.

1.3 DASAR TEORI

UART

UART merupakan singkatan dari Universal Asynchronous Receiver Transmitter. UART mengirimkan data dalam ukuran 1 byte per kiriman. Pengiriman ini melalui 1 kabel saja. UART dapat beroperasi dalam mode Half-duplex maupun Full-duplex. Parameter UART yang harus diperhatikan:

- BAUD rate (9600, 19200, 115200, ...),
- Number of Data bit (7 atau 8 bit),
- Parity bit (on, off),
- Stop bit (0, 1, 2),
- Flow control (none, on, hardware).

Konfigurasi parameter ini harus sama di sisi transmitter dan receiver. BAUD rate menunjukkan jumlah bit per detik. 9600 BAUD berarti ada 9600 bit per detik. Jumlah data bit yang biasa dipakai adalah 8. Parity bit ditambahkan di akhir data. Stop bit selalu bernilai 1 dan dapat berjumlah 0, 1, atau 2. Biasanya digunakan 1 stop bit. Flow control sudah jarang digunakan, biasanya diatur ke NONE.

Gambar 1 Format data UART

Sumber:

- https://nandland.com/uart-rs-232-serial-port-com-port/
- https://nandland.com/uart-serial-port-module/

IMPLEMENTASI DI FPGA

Pada saat implementasi UART di FPGA, hal yang harus diperhatikan adalah Clock pada FPGA dan BAUD rate yang digunakan. Ukuran tiap bit dalam UART dihitung dengan rumus $bit_{size} = \frac{clock}{BAUDrate}$. Clock dalam Hz. Semakin tinggi BAUD rate, maka transfer rate akan semakin tinggi juga. Hal lain yang akan mempengaruhi transfer rate dan kesuksesan komunikasi UART adalah koneksi fisik. Pada DE10-Lite tidak ada konektor khusus Serial (UART), sehingga digunakan GPIO. Modul Serial (USB to TTL) dihubungkan ke GPIO. Kualitas koneksi ini dapat beragam. Karena itu digunakan BAUD rate rendah (9600) dalam percobaan ini.

Pada saat modul USB to TTL dihubungkan ke FPGA, kabel RX dari modul tersebut harus terhubung dengan pin TX pada FPGA. Begitu juga kabel TX terhubung pada pin RX di FPGA. **Kabel dihubungkan pada saat board FPGA tidak dalam kondisi menyala**.

Catatan:

- Anda dapat mencari informasi dan pengetahuan terkait UART dan implementasinya pada
 FPGA di internet. Pelajari contoh-contoh yang ada.
- Pelajari kode UART yang akan digunakan pada percobaan ini. Kode dapat diunduh di MS Teams.

Gambar 2 GPIO pada DE10-Lite. Sumber: manual DE10-Lite

ASCII

ASCII merupakan singkatan dari American Standard Code for Information Interchange. ASCII digunakan dalam pertukaran informasi dan komunikasi. ASCII memetakan simbol / karakter yang ada ke dalam kode angka. Tabel lengkap ASCII dapat dilihat di: https://www.ascii-code.com/.

Dalam percobaan ini, Anda akan menggunakan ASCII dalam komunikasi UART. Simbol yang akan digunakan tertera pada Tabel 1.

Tabel 1 ASCII Table 0 - 9 dan A - J

Simbol	Hexadesimal
0	30
1	31
2	32
3	33
4	34
5	35
6	36
7	37
8	38
9	39
Α	41
В	42
С	43
D	44
E	45
F	46
G	47
Н	48
I	49
J	4A

USB TO TTL

Merupakan modul yang mengubah input TTL menjadi USB. Ada beragam IC dengan fungsi ini, salah satunya PL2303 yang digunakan pada percobaan ini. Modul ini memiliki koneksi 4 kabel: VCC (merah), Ground (hitam), TX (hijau) dan RX (putih).

Gambar 3 Contoh Modul PL2303. Sumber: tokopedia

Pada percobaan ini, kabel yang dihubungkan hanya 3 buah, yaitu Ground, RX, dan TX. RX dihubungkan ke pin TX FPGA. TX dihubungkan ke pin RX FPGA. Ground dihubungkan ke pin Ground FPGA. Perhatikan GPIO FPGA pada Gambar 2.

APLIKASI SERIAL DI KOMPUTER

Ada beragam aplikasi terminal komunikasi serial untuk komputer, baik windows, linux, maupun macOS. Aplikasi yang akan digunakan pada percobaan ini adalah **RealTerm**. Aplikasi ini dapat diunduh secara gratis. Aplikasi ini akan digunakan untuk mengirimkan dan menerima data melalui serial. Pelajari penggunaan aplikasi ini. Bagi pengguna macOS, dapat mengunduh aplikasi **SerialTool**.

Gambar 4 RealTerm Serial Capture Program

1.4 TUGAS PENDAHULUAN

- 1. Jelaskan bagaimana cara kerja komunikasi UART!
- 2. Rancang dan buatlah kode VHDL untuk:
 - a. ASCII to BINER converter. (hanya angka)
 - b. BINER to ASCII converter. (hanya angka)
- 3. Lakukan simulasi untuk kedua converter tersebut!
- 4. Buatlah satu pesan pendek (32 karakter) dan tuliskan kode ASCII untuk setiap karakter. Tulis dalam bentuk tabel!

PERHATIKAN! Segala bentuk plagiarisme dalam pengerjaan tugas pendahuluan ini akan diberikan sanksi yang tegas.

1.5 PERCOBAAN

PERALATAN YANG DIGUNAKAN

- Komputer/PC yang telah terinstal program Quartus Prime Lite dan Aplikasi Terminal Serial (RealTerm atau SerialTool).
- FPGA development board, tipe DE10-Lite beserta perlengkapannya yang meliputi:
 - a. Board FPGA tipe DE10-Lite
 - b. Catu daya+ kabel dan konektor tambahan
 - c. Kabel USB-Blaster
- Modul USB to TTL (PL2303 atau CH340).
- Kode VHDL ASCII to 7Segment converter yang benar dan bekerja.
- Kode simple UART (yang dapat diunduh di MS Teams): modul4uart-vhdl.zip.
 - o uart.vhd
 - uart_rx.vhd
 - uart_tx.vhd
 - asciiHex.vhd
- file string data untuk pengujian (MESSAGE.txt).

PERCOBAAN 4: IMPLEMENTASI KOMUNIKASI UART PADA FPGA

Gambar 5 Sistem yang akan dibuat pada percobaan

Pada percobaan ini, praktikan diminta untuk mengimplementasikan ASCII-to-7Segment converter, yang telah dibuat di tugas pendahuluan, pada FPGA board. Masukan dan luaran sesuai dengan Tabel 2.

Tabel 2 Masukan dan Luaran pada FPGA

Masukan	
i_DATA	Slide switch [7 0]
i_SEND	Button0
i_DISPLAY	Button1
i_RX	GPIO
Luaran	
o_hex	HEX0
o_DATA_OUT	LED [70]
o_TX	GPIO

PROSEDUR PERCOBAAN:

- 1. Buatlah folder sebagai direktori kerja baru untuk praktikum kali ini.
- 2. Jalankan program QUARTUS.
- 3. Buatlah project baru dengan nama project uart.
- 4. Kemudian *copy* semua *script* yang telah dibuat sebagai tugas pendahuluan sebelumnya dan script UART ke dalam folder tersebut.
- 5. Buatlah ASCII to 7Segment converter (simbol sesuai Tabel 1) dengan menggunakan template script (asciiHex.vhd) yang telah disediakan.
- 6. Gunakan uart.vhd sebagai top entity.
- 7. Compile dan implementasikan ke FPGA board.
- 8. Kirimkan string data yang telah ditentukan (ada di dalam file MESSAGE.txt) melalui aplikasi terminal serial.
- 9. Atur switch untuk memilih alamat data (0 255).
- 10. Tekan button1 (i_DISPLAY) hingga data ditampilkan di 7Segment (HEX0) dan LED [7...0].
- 11. Periksa apakah nilai yang ditampilkan di 7Segment sesuai dengan kode ASCII pada LED. Catat di BCL.
- 12. Lakukan untuk beragam alamat data (0 255). Minimal 20 alamat berbeda.
- 13. Siapkan pesan pendek yang sudah Anda buat di tugas pendahuluan.
- 14. Atur switch pada nilai tertentu (0 255) sesuai dengan tabel yang Anda buat.
- 15. Tekan button O. Amati pada aplikasi terminal serial, simbol apa yang ditampilkan. Catat di BCL. (Display diatur untuk menampilkan ASCII).
- 16. Lakukan secara berurut sesuai pesan pendek Anda.
- 17. Screenshot atau foto tampilan aplikasi terminal setelah semua karakter di pesan pendek Anda diterima.

1.6 MENGAKHIRI PERCOBAAN

Prosedur untuk mengakhiri percobaan:

- Sebelum keluar dari ruang praktikum, rapikan meja praktikum. Rapikan kabel dan matikan komputer, osiloskop, generator sinyal, dan power supply DC. Cabut daya dari jala-jala ke kit FPGA dan letakkan kembali pada tempat semula.
- 2. Periksa lagi lembar penggunaan meja. Praktikan yang tidak menandatangani **lembar penggunaan meja** atau merapikan meja ketika praktikum berakhir akan mendapatkan **potongan nilai sebesar minimal 10**.
- 3. **Pastikan asisten telah menandatangani catatan percobaan kali ini** pada Buku Catatan Laboratorium Anda. Catatan percobaan yang tidak ditandatangani oleh asisten tidak akan dinilai.

APENDIKS

DE10-LITE FPGA BOARD

PIN ASSIGNMENT OF SLIDE SWITCHES

Figure 3-15 Connections between the slide switches and MAX 10 FPGA

Table 3-4 Pin Assignment of Slide Switches

Signal Name	FPGA Pin No.	Description	I/O Standard
SW0	PIN_C10	Slide Switch[0]	3.3-V LVTTL
SW1	PIN_C11	Slide Switch[1]	3.3-V LVTTL
SW2	PIN_D12	Slide Switch[2]	3.3-V LVTTL
SW3	PIN_C12	Slide Switch[3]	3.3-V LVTTL
SW4	PIN_A12	Slide Switch[4]	3.3-V LVTTL
SW5	PIN_B12	Slide Switch[5]	3.3-V LVTTL
SW6	PIN_A13	Slide Switch[6]	3.3-V LVTTL
SW7	PIN_A14	Slide Switch[7]	3.3-V LVTTL
SW8	PIN_B14	Slide Switch[8]	3.3-V LVTTL
SW9	PIN_F15	Slide Switch[9]	3.3-V LVTTL

PIN ASSIGNMENT OF CLOCK

Warning !!

Do not modify the clock generator settings.

Incorrect setting will cause the system to not work.

Figure 3-12 Clock circuit of the FPGA Board

Table 3-2 Pin Assignment of Clock Inputs

Signal Name	FPGA Pin No.	Description	I/O Standard
ADC_CLK_10	PIN_N5	10 MHz clock input for ADC (Bank 3B)	3.3-V LVTTL
MAX10_CLK1_50	PIN_P11	50 MHz clock input(Bank 3B)	3.3-V LVTTL
MAX10_CLK2_50	PIN_N14	50 MHz clock input(Bank 3B)	3.3-V LVTTL

Sumber Clock yang digunakan adalah 50 MHz. Gunakan blok fungsi untuk mengatur clock masukan supaya sesuai yang diinginkan.

PIN ASSIGNMENT OF PUSH BUTTON

Push button bernilai 1 jika tidak ditekan dan bernilai 0 jika ditekan.

Figure 3-13 Connections between the push-button and MAX 10 FPGA

Figure 3-14 Switch debouncing

Table 3-3 Pin Assignment of Push-buttons

Signal Name	FPGA Pin No.	Description	I/O Standard
KEY0	PIN_B8	Push-button[0]	3.3 V SCHMITT TRIGGER"
KEY1	PIN_A7	Push-button[1]	3.3 V SCHMITT TRIGGER"

PIN ASSIGNMENT OF LEDS

LED akan menyala jika mendapat nilai HIGH dan akan mati jika mendapat nilai LOW.

Figure 3-16 Connections between the LEDs and MAX 10 FPGA

Table 3-5 Pin Assignment of LEDs

Signal Name	FPGA Pin No.	Description	I/O Standard
LEDR0	PIN_A8	LED [0]	3.3-V LVTTL
LEDR1	PIN_A9	LED [1]	3.3-V LVTTL
LEDR2	PIN_A10	LED [2]	3.3-V LVTTL
LEDR3	PIN_B10	LED [3]	3.3-V LVTTL
LEDR4	PIN_D13	LED [4]	3.3-V LVTTL
LEDR5	PIN_C13	LED [5]	3.3-V LVTTL
LEDR6	PIN_E14	LED [6]	3.3-V LVTTL
LEDR7	PIN_D14	LED [7]	3.3-V LVTTL
LEDR8	PIN_A11	LED [8]	3.3-V LVTTL
LEDR9	PIN_B11	LED [9]	3.3-V LVTTL

PIN ASSIGNMENT OF 7-SEGMENT DISPLAYS

Segment akan menyala jika mendapatkan nilai LOW dan akan mati jika mendapat nilai HIGH.

Figure 3-17 Connections between the 7-segment display HEX0 and the MAX 10 FPGA

Table 3-6 Pin Assignment of 7-segment Displays

Signal Name	FPGA Pin No.	Description	I/O Standard
HEX00	PIN_C14	Seven Segment Digit 0[0]	3.3-V LVTTL
HEX01	PIN_E15	Seven Segment Digit 0[1]	3.3-V LVTTL
HEX02	PIN_C15	Seven Segment Digit 0[2]	3.3-V LVTTL
HEX03	PIN_C16	Seven Segment Digit 0[3]	3.3-V LVTTL
HEX04	PIN_E16	Seven Segment Digit 0[4]	3.3-V LVTTL
HEX05	PIN_D17	Seven Segment Digit 0[5]	3.3-V LVTTL
HEX06	PIN_C17	Seven Segment Digit 0[6]	3.3-V LVTTL
HEX07	PIN_D15	Seven Segment Digit 0[7], DP	3.3-V LVTTL
HEX10	PIN_C18	Seven Segment Digit 1[0]	3.3-V LVTTL
HEX11	PIN_D18	Seven Segment Digit 1[1]	3.3-V LVTTL
HEX12	PIN_E18	Seven Segment Digit 1[2]	3.3-V LVTTL
HEX13	PIN_B16	Seven Segment Digit 1[3]	3.3-V LVTTL

HEX14	PIN_A17	Seven Segment Digit 1[4]	3.3-V LVTTL
HEX15	PIN_A18	Seven Segment Digit 1[5]	3.3-V LVTTL
HEX16	PIN_B17	Seven Segment Digit 1[6]	3.3-V LVTTL
HEX17	PIN_A16	Seven Segment Digit 1[7] , DP	3.3-V LVTTL
HEX20	PIN_B20	Seven Segment Digit 2[0]	3.3-V LVTTL
HEX21	PIN_A20	Seven Segment Digit 2[1]	3.3-V LVTTL
HEX22	PIN_B19	Seven Segment Digit 2[2]	3.3-V LVTTL
HEX23	PIN_A21	Seven Segment Digit 2[3]	3.3-V LVTTL
HEX24	PIN_B21	Seven Segment Digit 2[4]	3.3-V LVTTL
HEX25	PIN_C22	Seven Segment Digit 2[5]	3.3-V LVTTL
HEX26	PIN_B22	Seven Segment Digit 2[6]	3.3-V LVTTL
HEX27	PIN_A19	Seven Segment Digit 2[7] , DP	3.3-V LVTTL
HEX30	PIN_F21	Seven Segment Digit 3[0]	3.3-V LVTTL
HEX31	PIN_E22	Seven Segment Digit 3[1]	3.3-V LVTTL
HEX32	PIN_E21	Seven Segment Digit 3[2]	3.3-V LVTTL
HEX33	PIN_C19	Seven Segment Digit 3[3]	3.3-V LVTTL
HEX34	PIN_C20	Seven Segment Digit 3[4]	3.3-V LVTTL
HEX35	PIN_D19	Seven Segment Digit 3[5]	3.3-V LVTTL
HEX36	PIN_E17	Seven Segment Digit 3[6]	3.3-V LVTTL
HEX37	PIN_D22	Seven Segment Digit 3[7] , DP	3.3-V LVTTL
HEX40	PIN_F18	Seven Segment Digit 4[0]	3.3-V LVTTL
HEX41	PIN_E20	Seven Segment Digit 4[1]	3.3-V LVTTL
HEX42	PIN_E19	Seven Segment Digit 4[2]	3.3-V LVTTL
HEX43	PIN_J18	Seven Segment Digit 4[3]	3.3-V LVTTL
HEX44	PIN_H19	Seven Segment Digit 4[4]	3.3-V LVTTL
HEX45	PIN_F19	Seven Segment Digit 4[5]	3.3-V LVTTL
HEX46	PIN_F20	Seven Segment Digit 4[6]	3.3-V LVTTL
HEX47	PIN_F17	Seven Segment Digit 4[7] , DP	3.3-V LVTTL
HEX50	PIN_J20	Seven Segment Digit 5[0]	3.3-V LVTTL
HEX51	PIN_K20	Seven Segment Digit 5[1]	3.3-V LVTTL
HEX52	PIN_L18	Seven Segment Digit 5[2]	3.3-V LVTTL
HEX53	PIN_N18	Seven Segment Digit 5[3]	3.3-V LVTTL
HEX54	PIN_M20	Seven Segment Digit 5[4]	3.3-V LVTTL
HEX55	PIN_N19	Seven Segment Digit 5[5]	3.3-V LVTTL
HEX56	PIN_N20	Seven Segment Digit 5[6]	3.3-V LVTTL
HEX57	PIN_L19	Seven Segment Digit 5[7] , DP	3.3-V LVTTL

CONTOH PEMBERIAN COMMENT PADA VHDL

```
-- Nama : Joy Boy

-- NIM : 13223200

-- Rombongan : X

-- Kelompok : 0

-- Percobaan : 0

-- Tanggal : 8 Oktober 2024
-- Deskripsi
-- Fungsi : melakukan penjumlahan 1 bit A dan 1 bit B serta 1 bit Cin.
-- input : A, B, dan Carry in
-- input : A, B, dan Carry in -- output : S
       tput : S hasil penjumlahan
: CARRY nilai lebih dari hasil penjumlahan
: Aout, Bout, dan Cout flag untuk nilai input, dapat disambungkan pada LED
                                                 hasil penjumlahan
-- Library
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
-- Define entity
entity Tutorial2 is
-- Define port
                 B, Cin : in std_logic; -- ini adalah input S, CARRY, Aout, Bout, Cout : out std_logic -- ini adalah output
     port ( A, B, Cin
end:
-- Define architecture
architecture behavioral of Tutorial2 is
begin
     -- Assign input A to Aout
    Aout <= A;
     -- Assign input B to Bout
     Bout
              <= B;
     -- Assign input Cin to Cout
     Cout <= Cin;
     -- Assign value of summation to S
    S <= (A XOR B) XOR Cin;
     -- Assign value of carry out to CARRY
    CARRY <= (Cin AND (A XOR B)) OR (A AND B);
```