Examenul de bacalaureat național 2015 Proba E. c) Matematică *M_şt-nat* Clasa a XII-a BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	-2+0.75=	3p
	=-1,25	2 p
2.	Punctele de intersecție cu axele de coordonate sunt $A(3,0)$ și, respectiv, $B(0,4)$	2 p
	Distanța AB este egală cu 5	3p
3.	$(3^{-1})^{2x+10} = 3^4 \Leftrightarrow -2x-10 = 4$	3p
	x = -7	2 p
4.	$C_n^0 + C_n^1 + C_n^2 + \ldots + C_n^n = 2^n$	3 p
	$2^n = 64 \Leftrightarrow n = 6$	2p
5.	MN = 4	2p
	$NP = 4 \Rightarrow \Delta MNP$ este isoscel	3 p
6.	$A_{\Delta ABC} = 24$	2p
	p=12, deci $r=2$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	2 0 0	
	$\det(A(2,0)) = \begin{vmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{vmatrix} =$	3р
	$\begin{vmatrix} 0 & 0 & 2 \end{vmatrix}$	
	=8	2 p
b)	$A(x,a) + A(x,-a) = \begin{pmatrix} x & a & a \\ -a & x & a \\ -a & -a & x \end{pmatrix} + \begin{pmatrix} x & -a & -a \\ a & x & -a \\ a & a & x \end{pmatrix} = \begin{pmatrix} 2x & 0 & 0 \\ 0 & 2x & 0 \\ 0 & 0 & 2x \end{pmatrix} =$	2p
	$=2x \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = 2xA(1,0), \text{ pentru orice numere reale } x \text{ §i } a$	3p
c)	$\det(A(x,-3)) = \begin{vmatrix} x & -3 & -3 \\ 3 & x & -3 \\ 3 & 3 & x \end{vmatrix} = x^3 + 27x$	3p
	$x(x^2 + 27) = 0 \Leftrightarrow x = 0$	2p
2.a)	$x \circ y = 3xy + 3x + 3y + 3 - 1 =$	2p
	=3x(y+1)+3(y+1)-1=3(x+1)(y+1)-1, pentru orice numere reale x şi y	3 p
b)	$a \circ b = 2 \Leftrightarrow (a+1)(b+1) = 1$	2p
	Cum a și b sunt numere întregi, obținem $a = -2$, $b = -2$ sau $a = 0$, $b = 0$	3p

c) $(-1) \circ x = -1$, unde x este number	măr real	2p	
$(-1) \circ 0 \circ 1 \circ \dots \circ 2015 = (-1) \circ ($	$0 \circ 1 \circ \dots \circ 2015) = -1$	3 p	

	$(-1) \circ 0 \circ 1 \circ \dots \circ 2015 = (-1) \circ (0 \circ 1 \circ \dots \circ 2015) = -1$	3p	
SUBIECTUL al III-lea (30 de punct			
1.a)	$f'(x) = e^x + xe^x - e^x =$	3p	
	$=xe^x, x \in \mathbb{R}$	2 p	
b)	$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(\frac{x}{e^{-x}} - e^x + 1 \right) = \lim_{x \to -\infty} \frac{x}{e^{-x}} + 1 = 1$	3p	
	Dreapta $y=1$ este asimptotă orizontală spre $-\infty$ la graficul funcției f	2 p	
c)	$f'(x) = 0 \Leftrightarrow x = 0$	1p	
	$f'(x) \le 0$, pentru orice $x \in (-\infty, 0]$, deci f este descrescătoare pe $(-\infty, 0]$	2 p	
	$f'(x) \ge 0$, pentru orice $x \in [0, +\infty)$, deci f este crescătoare pe $[0, +\infty)$	2p	
2.a)	$\int_{0}^{1} (4x^{3} + 3x^{2} + 2x + 1) dx = (x^{4} + x^{3} + x^{2} + x) \Big _{0}^{1} =$	3p	
	= 4	2p	
b)	$F: \mathbb{R} \to \mathbb{R}$, $F(x) = x^4 + x^3 + x^2 + x + c$, unde $c \in \mathbb{R}$	2 p	
	$F(-1) = 1 \Rightarrow c = 1$, deci $F(x) = x^4 + x^3 + x^2 + x + 1$	3p	
c)	$\int_{0}^{a} f(x)dx + \frac{1}{a} \int_{a}^{0} f(x)dx = \int_{0}^{a} (4x^{3} + 3x^{2} + 2x + 1)dx + \frac{1}{a} \int_{a}^{0} (4x^{3} + 3x^{2} + 2x + 1)dx =$	2p	
	$=(a^4 + a^3 + a^2 + a) - \frac{1}{a}(a^4 + a^3 + a^2 + a) = a^4 - 1$, pentru orice număr real nenul a	3p	