אינפי 1 סמסטר 2022ג – פתרון חלקי לממ"ח 03

<u>שאלה 1</u>

1. לא נכון.

לא קיים אף y=0 אינו הפונקציה ולכן כך כלומר אינו כך כך אy=0, כלומר אינו כך כך ע $x\in\mathbb{R}\backslash\{3\}$ לא קיים אף לא

 $(\mathbb{R}\setminus\{3\}$ אינה על \mathbb{R} (הערה: הפונקציה כן חחייע ב

.2 נכון.

אז
$$x_1,x_2\in(1,\infty)$$
 עבור $g(x_1)=g(x_2)$ אז

$$g(x_1) = g(x_2) \implies \frac{1}{\sqrt{x_1 - 1}} = \frac{1}{\sqrt{x_2 - 1}} \implies \sqrt{x_1 - 1} = \sqrt{x_2 - 1} \implies x_1 - 1 = x_2 - 1$$

$$\implies x_1 = x_2$$

 $(1,\infty)$ ולכן g חחייע ב

(בתחום הפונקציה) או $x \in (1,\infty)$ כלומר x>1 ולכן y>0 , $x=1+\frac{1}{y^2}$ נסמן $y\in (0,\infty)$ לכל

ומתקיים

$$g(x) = \frac{1}{\sqrt{x-1}} = \frac{1}{\sqrt{1 + \frac{1}{y^2} - 1}} = \frac{1}{\sqrt{\frac{1}{y^2}}} = \frac{1}{\left|\frac{1}{y}\right|} = \left|y\right|^{y>0} = y$$

 $(0,\infty)$ על g ולכן

<u>שאכה 2</u>

. וכוו

זו ההגדרה של פונקציה לא חחייע.

... לא נכון. 2.

$$[0,1]$$
 עולה בקטע בקטע (-1,0) היא יורדת הפונקציה איורדת בקטע (2+x $0 < x \leq 1$

. (שרטוט הגרף יעזור להבין למה) [-1,1] אבל כן חחייע בקטע

-1,1], אילו היתה נוספת דרישת רציפות ב-1,1, הערה: נשים לב שהפונקציה אינה רציפה ב-1,1, הטענה היתה נכונה (עיי שימוש במשפט ערך הביניים).

<u>שאלה 3</u>

נכון.

 $ax \neq 0$ וכן $\lim_{x \to 0} ax = 0$ מקיימת y = ax ,4.39 מקיימת של הרכבת פונקציות , $a \neq 0$ עבור $x \neq 0$ עבור $x \neq 0$, ולכן עבור $x \neq 0$, ולכן

$$\lim_{x \to 0} \frac{\sin ax}{x} = \lim_{x \to 0} a \cdot \frac{\sin ax}{ax} = \lim_{y \to 0} a \cdot \frac{\sin y}{y} = a \cdot 1 = a$$

מכאן

$$\lim_{x \to 0} \frac{\sin 5x - \sin 3x}{\sin x} = \lim_{x \to 0} \frac{\frac{\sin 5x}{x} - \frac{\sin 3x}{x}}{\frac{\sin x}{x}} = \frac{5 - 3}{1} = 2$$

.2 לא נכון.

עבור $-\pi < x < 0$ עבור $\sin x \ge 0 \Rightarrow |\sin x| = \sin x$ מתקיים $0 < x < \pi$ ולכן $\sin x \le 0 \implies |\sin x| = -\sin x$

$$\lim_{x \to 0^{+}} \frac{|\sin x|}{x} = \lim_{x \to 0^{+}} \frac{\sin x}{x} = 1 \quad , \quad \lim_{x \to 0^{-}} \frac{|\sin x|}{x} = \lim_{x \to 0^{-}} \frac{-\sin x}{x} = -1$$

 $\lim_{x \to 0} \frac{|\sin x|}{x}$ ולכן הגבול ווה ל $\lim_{x \to 0} \frac{|\sin x|}{x}$

<u>שאלה 4</u> 1. לא נכון.

$$\lim_{x \to 0} \frac{x^2 \cos \frac{1}{x}}{\tan x} = \lim_{x \to 0} \frac{x}{\tan x} \cdot x \cos \frac{1}{x}$$

(נובע משאלה 67 א ביחידה 4), $\lim_{x\to 0} \frac{x}{\tan x} = 1$

$$\left| x \cos \frac{1}{x} \right| = |x| \left| \cos \frac{1}{x} \right| \le |x| \cdot 1 = |x| \quad \Rightarrow \quad -|x| \le x \cos \frac{1}{x} \le |x|$$

ולכן $\lim_{x\to 0}x\cos\frac{1}{x}=0$ ולכן ולפי משפט הסנדוויץי ולפי $\lim_{x\to 0}\pm \left|x\right|=0$

$$\lim_{x \to 0} \frac{x^2 \cos \frac{1}{x}}{\tan x} = \lim_{x \to 0} \frac{x}{\tan x} \cdot x \cos \frac{1}{x} = 1 \cdot 0 = 0$$

עייי חילוק מונה ומכנה ב x^7 (מותר כי מדובר על $x\to\infty$ כלומר על בסביבה של עייי חילוק (x>0), ולכן (1, ∞)

$$\lim_{x \to \infty} \frac{3x^5 + 2x^2 + 1}{x^5 + x^7 + 1} = \lim_{x \to \infty} \frac{\frac{3}{x^2} + \frac{2}{x^5} + \frac{1}{x^7}}{\frac{1}{x^2} + 1 + \frac{1}{x^7}} = \frac{0 + 0 + 0}{0 + 1 + 0} = 0$$

<u>שאלה 5</u> .1 נכון

$$\lim_{x \to \infty} \sqrt{x^2 + x} - x = \lim_{x \to \infty} \frac{(\sqrt{x^2 + x} - x)(\sqrt{x^2 + x} + x)}{\sqrt{x^2 + x} + x} = \lim_{x \to \infty} \frac{x^2 + x - x^2}{\sqrt{x^2 + x} + x} = \lim_{x \to \infty} \frac{x}{\sqrt{x^2 + x} + x} = \lim_{x \to \infty} \frac{1}{\sqrt{x^2 + x} +$$

את הגבול בשלב האחרון אפשר לחשב עייי החלפת משתנה: $1 = \frac{1}{x} + \frac{1}{x} = 1$ ולפי משפט גבול של הרכבה

.
$$\lim_{x\to\infty} \sqrt{1+\frac{1}{x}} = \sqrt{1} = 1$$
 ורציפות פונקציית השורש,

. לא נכוו.

,
$$y = x^2 + x$$
 משתנה $\lim_{x \to -\infty} x^2 + x = \lim_{x \to -\infty} x(x+1) = "(-\infty) \cdot (-\infty+1)" = \infty$

הרכבה , $\lim_{x\to\infty} x^2 + x = \infty$

$$\lim_{x \to -\infty} \sqrt{x^2 + x} = \lim_{y \to \infty} \sqrt{y} = \infty \quad \Rightarrow \quad \lim_{x \to -\infty} \underbrace{\sqrt{x^2 + x}}_{\to \infty} - \underbrace{x}_{\to -\infty} = "\infty - (-\infty)" = \infty$$

שאלה 6

.1 לא נכון.

$$f(x) = \begin{cases} -x^2 & x \neq 0 \\ -1 & x = 0 \end{cases}, \quad g(x) = \begin{cases} \frac{1}{x^2} & x \neq 0 \\ 2 & x = 0 \end{cases}$$

לכל $\lim_{x \to 0} g(x) = \lim_{x \to 0} \frac{1}{x^2} = \infty$ וגם , f(x) < 0 מתקיים $x \in \mathbb{R}$

$$\lim_{x \to 0} f(x)g(x) = \lim_{x \to 0} (-x^2) \frac{1}{x^2} = \lim_{x \to 0} (-1) = -1 \neq -\infty$$

.2 נכון.

ולכן
$$\lim_{x\to x_0} f(x) = f(x_0) < 0$$
ולכן x_0 ו ביפה ב f

$$\lim_{x \to x_0} f(x)g(x) = "\underbrace{f(x_0)}_{<0} \cdot \infty" = -\infty$$

מתקיים $x\in\mathbb{R}$ מתקיים . x_0 ב המבדל המהותי בין טענות 1 ו 2 הוא הרציפות של f

.
$$\lim_{x \to x_0} f(x) = f(x_0) < 0$$
 לא מבטיחה ש $\lim_{x \to x_0} f(x) < 0$, הרציפות נותנת לא מבטיחה ש $f(x) < 0$

<u>שאלה 7</u>

1. לא נכון.

דוגמא נגדית:
$$x_0=0$$
 אתיהן כמובן רציפות ב $f(x)=x$, $g(x)=0$ ומתקיים דוגמא נגדית: $f(x_0)=0$, ולכן גם $f(x_0)=f(0)=0$ אבל בכל סביבה של $f(x_0)=f(0)=0$, ועבורו $f(x)=x<0$

.2 לא נכון.

.
$$f(0) = 0$$
 אבל , $f(x) = x^2 > 0$ מתקיים $x \neq 0$, ולכל $f(x) = x^2$ אבל , אבל $f(x) = x^2$

ועאלה 8

1. לא נכון

דוגמא נגדית :
$$g(x)=0$$
, $x_0=0$ ב אינה שאינה להראות קל הראות $f(x)=\begin{cases} 1 & x\geq 0 \\ -1 & x<0 \end{cases}$: דוגמא נגדית ב

. תנאי הטענה אם חוצאת הטענה מתקיים ותנאה הטענה ב $f \cdot g(x) = 0$ ו , $x_0 = 0$ רציפה ב

.2 נכון.

נניח שפונקציה אחת רציפה ב x_0 ו השניה אינה רציפה ב x_0 , נניח כי f רציפה ב x_0 ו השניה אינה רציפה בg(x)=h(x)-f(x) אילו בשלילה f רציפה ב x_0 אינה רציפה בf(x)+g(x) רציפה ב x_0 ב x_0

ולכן לא ייתכן שפונקציה אחת רציפה והשניה אינה רציפה ב x_{0} , משמע או ששתיהן רציפות או ששתיהן לא רציפות בנקודה.

<u>שאלה 9</u>

.1. נכון

.(2.16 משפט) ולכן ולכן (בדקו) וו
 $\lim_{n\to\infty} n\sin\frac{1}{n}=1$ מתכנסת הסדרה מתכנסת וולכן (בדקו)

.2. לא נכון.

ולכן (
$$\left[0,\frac{\pi}{2}\right]$$
 ולכן כי $\cos x$ יורדת בקטע וולכן ($\cos \frac{\pi}{3} > \cos \frac{\pi}{3} = \frac{1}{2}$ ולכן ($\left[0,\frac{\pi}{2}\right]$

ואז n>2M כך ש $n\in\mathbb{N}$ קיים $M\in\mathbb{R}$ לכל הרכימדס, לכל מתכונת ארכימדס. $n\cos\frac{1}{n}>\frac{1}{2}n$

ולכן $m\cos\frac{1}{n}>\frac{n}{2}>M$, ולכן $m\cos\frac{1}{n}>\frac{n}{2}>M$ אינו חסם מלעיל של הסדרה. מכאן הסדרה אינה חסומה מלעיל ולכן גם אינה חסומה.

שאלה 10

.1 לא נכון.

 \mathbb{R} ביפה ב f רציפה ב , $f(x) = x \sin x$: דוגמא נגדית

ואז , n>M כך ש $n\in\mathbb{N}$ קיים $M\in\mathbb{R}$ כלכל ואז הסומה מלעיל ב

$$f(2\pi n + \frac{1}{2}\pi) = (2\pi n + \frac{1}{2}\pi)\sin(2\pi n + \frac{1}{2}\pi) = 2\pi n + \frac{1}{2}\pi > 2\pi n > n > M$$

ובאופן דומה מלעיל ב $\mathbb R$ אינה חסומה f ש ומכאן ב $\mathbb R$ ב המלעיל של אינה Mולכן אינה מלעיל ב $\mathbb R$ אינה מלרע ב

$$a_n = 2\pi n + \frac{1}{2}\pi$$
, $\lim_{n\to\infty} a_n = \lim_{n\to\infty} 2\pi n + \frac{1}{2}\pi = \infty$

$$\lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} (2\pi n + \frac{1}{2}\pi) \sin(2\pi n + \frac{1}{2}\pi) = \lim_{n \to \infty} 2\pi n + \frac{1}{2}\pi = \infty$$

$$b_n = 2\pi n$$
, $\lim_{n\to\infty} b_n = \lim_{n\to\infty} 2\pi n = \infty$

$$\lim_{n \to \infty} f(b_n) = \lim_{n \to \infty} (2\pi n) \sin(2\pi n) = \lim_{n \to \infty} 0 = 0$$

 $1.-\infty$ או ל ∞ אווה שאינו שווה ל $1, \lim_{x \to \infty} f(x)$, לא קיים, Heine ולכן לפי הגדרת

.2 נכון.

f . f(N) < M כך ש $N \in \mathbb{R}$ כך אינה חסומה מלרע ולכן כל $M \in \mathbb{R}$ אינו חסם מלרע, ולכן קיים f . f(N) < M מתקיים x < N מתקיים

לסיכום, לכל $M \in \mathbb{R}$ קיים $N \in \mathbb{R}$ כך שלכל $N \in \mathbb{R}$ מתקיים לכל לסיכום, לכל

$$\lim_{x \to -\infty} f(x) = -\infty$$