

Computação em nuvem

Prof. Dr. Marcos A. Simplicio Jr.
Laboratório de Arquitetura e Redes de Computadores
Departamento de Engenharia de Computação e
Sistemas Digitais
Escola Politécnica da Universidade de São Paulo

Objetivos – Aula 6

 Discutir em maiores detalhes alguns dos principais desafios relacionados a serviços em nuvem.

Desafios da nuvem: rede

- Requer uma conexão constante à (Inter/Intra)net:
 - Não é possível usar os recursos da nuvem (aplicativos ou documentos) sem estar conectado a ela.
 - Em áreas em que a **conexão não é confiável**, isto pode ser um enorme problema.
 - > Deve ser levado em consideração no projeto do sistema
 - Ex.: capacidade de operar parcialmente mesmo sem nuvem

Desafios da nuvem: recursos

Não funciona bem com conexões lentas:

- Uma conexão de baixa velocidade pode impedir o acesso aos recursos da nuvem.
- Aplicações baseadas na Web consomem banda, bem como o download de documentos grandes.

Pode haver limitação de recursos:

- Muitas aplicações web não têm todas as **funcionalidades** de suas equivalentes executadas localmente.
 - Ex.: recursos no Microsoft Word vs. Google Docs

Novos serviços podem exigir adaptação da própria nuvem (algo não tão simples em uma nuvem pública)

Desafios da nuvem: eficiência

- Requer projeto adequado para evitar lentidão:
 - Mesmo com conexão rápida: acesso web (ex.: via TCP/IP) mais lento do que acesso local (ex.: SATA)
 - Sistemas tolerantes a atraso são menos sujeitos a esses problemas
 - Ex.: geração de planilhas gerenciais no final do mês
 - Recomenda-se projetar sistemas que minimizem troca de dados com nuvem
 - Ex.: banco de dados e servidor de aplicação co-alocados na nuvem

Desafios da nuvem: projeto

Dados podem ser perdidos

- Em tese, **replicação** na nuvem previne perda de dados
 - Projeto adequado prevê replicação em localizações geográficas distintas, para evitar efeito de acidentes naturais
- Forma de replicação deve ser levada em consideração na análise de riscos do sistema
 - Pode-se também considerar uso de backup local.
- Nuvem: ideal para computação paralela:
 - Projeto de sistema deve ter em mente necessidade de escalonamento de processos
 - Modularidade é essencial, e.g., para escalar cada módulo quando necessário

Desafios da nuvem: portabilidade

Preocupações gerais:

- Nuvens distintas usam protocolos **e APIs diferentes** e comumente **incompatíveis**
 - Esforço necessário para trocar de provedor de nuvem pode superar desejo de migrar, apesar de serviço insatisfatório.

- Muitos sistemas usam soluções proprietárias
 - Migração pode exigir adaptações (linguagem, estrutura, ...)
- Mitigação: esforços de **padronização** vêm ocorrendo

- Ex.: Open Virtualization Format 2.0 (OVF) permite tradução entre formatos proprietários de máquinas virtuais
- Leitura: http://www.networkcomputing.com/cloud-infrastructure/10-tools-to-prevent-cloud-vendor-lock-in/d/d-id/1108679?page_number=2

O quão segura é a nuvem?

- A nuvem é mais protegida contra vírus e intrusões?
- **Isolamento** entre múltiplos usuários: garantias de que usuários não autorizados não conseguirão acessar seus dados, compartilhados no mesmo ambiente?
- Legislação aplicada a seus dados: país do usuário da nuvem, do provedor de nuvem ou daquele em que os dados estão no momento?
- Privacidade dos dados?
- Remoção dos dados da nuvem (originais e backups)?
- > Interfaces e APIs: elas são seguras?

Vírus e intrusões (de computadores e rede):

- O bom da nuvem: **responsabilidade** é <u>compartilhada</u> com provedores de nuvem
- Nuvem: fortes investimentos em ferramentas e pessoal de segurança, além de aplicação de patches.

 Ameaça é maior (nuvem é alvo preferencial), mas vulnerabilidade é menor (sistema é bastante protegido)

State of Cloud Security Report (2012)	Nuvem	Instalações próprias
% Organizações que soferam tentativas de ataque	53%	44%
#Médio de ataques bem sucedidos	27.8	61.4

Fonte: http://searchcloudcomputing.techtarget.com/opinion/Clouds-are-more-secure-than-traditional-IT-systems-and-heres-why

Vírus e intrusões (de computadores e rede):

- Isso <u>não significa</u> que pode-se delegar aos provedores todas as tarefas de segurança
 - Sistemas mal projetados continuam sendo vulneráveis na nuvem
- Formas de mitigação (consumidor da nuvem):

- **Projetar** sistemas **com segurança** em mente, usando práticas de **codificação segura** (OWASP, CERT, ...)
- Usar mecanismos de **segurança de rede** (TLS, IPsec, Firewall, IDS...) na arquitetura do sistema

• Entender interfaces e APIs da nuvem

- Isolamento entre usuários:
 - Rede: tecnologias de redes virtuais (VLAN)

- Contanto que equipamentos de rede sejam corretamente configurados pelo provedor de nuvem, probabilidade de ataque é mínima
- Máquinas: tecnologia de virtualização

 Mas, como qualquer software, também apresenta vulnerabilidades

- Isolamento entre máquinas virtuais: XEN
 - Principal ameaça: negação de serviço

XEN: vulnerabilidades por ano

XEN: vulnerabilidades por tipo

Fonte: http://www.cvedetails.com/vendor/6276/XEN.html

- Plataforma de programação .NET
 - Principal ameaça: execução de código arbitrário

Fonte: http://www.cvedetails.com/product/2002/Microsoft-.net-Framework.html?vendor id=26

Legislação aplicada?

- País do consumidor da nuvem, do provedor de nuvem ou de onde os dados estão armazenados?
- Contrato entre partes é possível

Privacidade dos dados?

Marco Civil Brasileiro: quebra de sigilo somente com ordem judicial.

• **Estados Unidos**: diversas leis (inclusive **Ato Patriota**) permite quebras de sigilo junto a empresas americanas

Legislação e privacidade: exemplos

 Em geral, empresas são obrigadas a entregar dados à justiça (de seu país ou do país dos dados)

- https://www.google.com/transparencyreport/
- https://govtrequests.facebook.com/
- http://www.microsoft.com/about/corporatecitizenship/enus/reporting/transparency/

- Mas há casos de disputa quando a jurisdição é "cinza"
 - http://www.dailymail.co.uk/news/article-2692392/Justice-Department-battles-Microsoft-access-data-stored-overseasdatabases-legal-case-implications-tech-companies.html
- Porém, há também casos de acessos pelo próprio provedor...

http://www.wired.com/2014/03/transparency_reports/

- Proteção dos dados na nuvem
 - Se dados não precisam ser processados na nuvem: cifração no cliente antes de enviá-los para a nuvem
 - Ex.: Boxcryptor ou CryptSync cifram dados antes de enviar para a nuvem (Dropbox, Google Drive, ...)
 - Caso contrário (mais complexo):
 - Algumas técnicas: anonimização, criptografia (quase) homomórfica, ou ruído
 - Permitem criar **nuvens híbridas** em cenários com requisitos fortes de segurança
 - Para maior controle legal, pode-se exigir localização específica dos dados
 - Cláusula possível em Acordos de Nível de Serviço (SLAs)

Leitura recomendada: CSA "Treacherous Twelve"

- Data Breaches
- 2. Weak Identity, Credential and Access Management
- 3. Insecure APIs
- 4. System and Application Vulnerabilities
- Account Hijacking
- 6. Malicious Insiders
- 7. Advanced Persistent Threats (APTs)
- 8. Data Loss
- 9. Insufficient Due Diligence
- 10. Abuse and Nefarious Use of Cloud Services
- 11. Denial of Service
- 12. Shared Technology Issues

Referência: https://cloudsecurityalliance.org/group/top-threats/

Resumo

- Discutir em maiores detalhes alguns dos principais desafios relacionados a serviços em nuvem.
 - Dependência de serviços de Internet
 - Pode haver perdas de desempenho se serviços locais precisam se comunicar frequentemente com nuvem
 - Importante o **projeto** de sistemas voltados a computação paralela e distribuída
 - Portabilidade entre provedores ("vendor lock-in")
 - Segurança: privacidade dos dados e questões legais
- Importante: avaliar riscos para negócio

