Sliding Window Proposal

New values are picked uniformly from a sliding window of size δ centered on x.

Tuning parameter: δ

Bolder proposals: increase δ More modest proposals: decrease δ

Works best when the effect on the probability of the data is similar throughout the parameter range

Multiplier Proposal

New values are picked from the equivalent of a sliding window on the log-transformed *x* axis.

Tuning parameter: $\lambda = 2 \ln a$ Bolder proposals: increase λ More modest proposals: decrease λ

Works well when changes in small values of x have a larger effect on the probability of data than changes in large values of x. Example: branch lengths.

LOCAL

Three internal branches - a, b, and c - are chosen at random. Their total length is changed using a multiplier with tuning paremeter λ .

One of the subtrees A or B is picked at random.

It is randomly reinserted on a + b + c according to a uniform distribution

Bolder proposals: increase λ More modest proposals: decrease λ

Changing λ has little effect on the boldness of the proposal

Dirichlet proposal

New values are picked from a Dirichlet (or Beta) distribution centered on *x*.

Tuning parameter: α

Bolder proposals: decrease α More modest proposals: increase α

Works well for proportions, such as revmat and statefregs.

Node Slider

Two adjacent branches a and b are chosen at random

The length of a + b is changed using a multiplier with tuning paremeter λ

The node x is randomly inserted on a + b according to a uniform distribution

Bolder proposals: increase λ

More modest proposals: decrease λ

The boldness of the proposal depends heavily on the uniform reinsertion of x, so changing λ may have limited effect

Extending TBR

An internal branch a is chosen at random

The length of a is changed using a multiplier with tuning paremeter λ

The node x is moved, with one of the adjacent branches, in subtree A, one node at a time, each time the probability of moving one more branch is p (the extension probability).

The node *y* is moved similarly in subtree B.

Bolder proposals: increase *p*

More modest proposals: decrease p

Changing λ has little effect on the boldness of the proposal.