Graphs and Search Algorithms

Social Network Backend

Want to build social network app tracking:

- users
- friend relationship between some pairs of users

Graph Basics

Network is a **graph**:

• nodes or vertices $V = \{A, B, C, D, E, F\}$

Graph Basics

Network is a graph:

- nodes or vertices $V = \{A, B, C, D, E, F\}$
- edges $E = \{\{A, B\}, \{A, C\}, \{B, C\}, \ldots\}$

Graph Basics

Network is a **graph**:

- nodes or vertices $V = \{A, B, C, D, E, F\}$
- edges $E = \{\{A, B\}, \{A, C\}, \{B, C\}, \ldots\}$
 - can be directed (one-way) or undirected

$$V = \{A, B, C, D, E, F\}$$

$$E = \{\{A, B\}, \{A, C\}, \{B, C\}, \ldots\}$$

$$V = \{A, B, C, D, E, F\}$$

$$E = \{\{A, B\}, \{A, C\}, \{B, C\}, \ldots\}$$

2. Adjacency list

 $A:\{B,C\}$

 $B : \{A, C\}$

 $C: \{A, B, E\}$

. . .

$$V = \{A, B, C, D, E, F\}$$

$$E = \{\{A, B\}, \{A, C\}, \{B, C\}, \ldots\}$$

- 2. Adjacency list
- 3. Adjacency matrix

	$\mid A \mid$	B	C	D	E	F
A B	0	1	1	0	0	0
B						
C						
D						
E						
F						

$$V = \{A, B, C, D, E, F\}$$

$$E = \{\{A, B\}, \{A, C\}, \{B, C\}, \ldots\}$$

- 2. Adjacency list
- 3. Adjacency matrix

	$\mid A \mid$	B	C	D	E	F
\overline{A}	0	1	1	0	0	0
B	1	0	1	0	0	0
C	1	1	0	0	1	0
D	0	0	0	0	0	1
E	0	0	1	0	0	0
F	0	0	0	0 0 0 0 0 1	0	0

What is the space cost of each option?

Raw lists:

Adjacency list:

Graph Data Structs Graph Data Structs

What is the space cost of each option?

Raw lists: O(|V| + |E|)

Adjacency list: O(|V| + |E|)

Adjacency matrix: $O(|V|^2)$

Raw lists:

Adjacency list:

Raw lists: search entire edge list O(|E|)

Adjacency list:

Raw lists: search entire edge list O(|E|)

Adjacency list: search one adjacency list (technically O(|V|))

Raw lists: search entire edge list O(|E|)

Adjacency list: search one adjacency list (technically O(|V|))

Adjacency matrix: look up entry O(1)

Given a vertex, who are the neighbors?

Raw lists: search entire edge list O(|E|)

Adjacency list:

Graph Operations

Given a vertex, who are the neighbors?

Raw lists: search entire edge list O(|E|)

Adjacency list: nothing to do... O(1)

Adjacency matrix: search row of matrix O(|V|)

Given a social network containing people (vertices) and friend relationships (edges), **A** is in the same friend network as **B** if

- they are the same person
- A is friends with someone that is in the same friend network as B

Are **A** and **E** in the same friend network?

Are **A** and **E** in the same friend network?

Basic idea: start at **A** and "flood fill" along edges, and see if we ever hit **E**

(We will need to create a "visited" flag for vertices)

friendNetwork(A,B)

for each vertex v:

v.visited = false;

return search(A);

search(v)

if(v == B) return true;

if(v.visited) return false;

v.visited = true;

for each neighbor w:

if(search(w))

return true;

return false;

friendNetwork(A,B)

for each vertex v:

v.visited = false;

return search(A);

(are there potential issues?)

search(v)

if(v == B) return true;

if(v.visited) return false;

v.visited = true;

for each neighbor w:

if(search(w))

return true;

return false;

Iterative Version

```
friendNetwork(A,B)
                         while(!S.empty())
                          \mathbf{v} = S.pop();
for each vertex v:
  v.visited = false;
                          if(v == B) return
                           true;
stack S = \{A\};
                          if(v.visited) continue;
                          v.visited = true;
                          for each neighbor w:
                            S.push(w);
```

raturn falas:

Iterative Version

friendNetwork(A,B)

for each vertex v:

v.visited = false;

stack $S = \{A\};$

depth-first search (DFS)

```
while(!S.empty())
 \mathbf{v} = S.pop();
 if(v == B) return
  true;
 if(v.visited) continue;
 v.visited = true;
 for each neighbor w:
  S.push(w);
```

raturn falas.

Kevin Bacon Problem • F

Given a social network and two people **A**, **B**, what is the shortest chain of friends from **A** to **B**?

Ex:

 $bacon(\mathbf{A}, \mathbf{A}) = 0$

 $bacon(\mathbf{A}, \mathbf{E}) = 2$

bacon(C, D) = infinity

Kevin Bacon Problem

Intuition: when calculating bacon(**A**, *) we still want to flood-fill, but we need to guarantee we search friends **before** friends-of-friends

Breadth-First Search

```
friendNetwork(A,B)
                           while(!Q.empty())
for each vertex v:
                            \mathbf{v} = \mathbf{Q}.\mathsf{pop}();
                            if(v == B) return
  v.visited = false;
                             true;
queue Q = \{A\};
                            if(v.visited) continue;
                            v.visited = true;
                            for each neighbor w:
                              Q.push(w);
```

raturn falas:

Kevin Bacon Problem

```
bacon(A,B)
                                while(!Q.empty())
for each vertex v:
                                  \mathbf{v} = \mathbf{Q}.\mathsf{pop}();
                                  if(v == B) return v.dist;
  v.visited = false;
                                  if(v.visited) continue;
  v.dist = infinity;
queue Q = \{A\};
                                  v.visited = true;
A.dist = 0;
                                  for each neighbor w:
                                   Q.push(w);
                                   \mathbf{w}.dist = \mathbf{v}.dist + 1;
                                return infinity;
```