

# 多传感器融合定位

第1讲 3D激光里程计

主讲人 任 乾

北京理工大学本硕 自动驾驶从业者





- 1. 激光传感器原理
- 2. 整体流程介绍
- 3. 前端里程计方案
- 4. 基于数据集实现



点云地图构建流程





- 1. 激光传感器原理
- 2. 整体流程介绍
- 3. 前端里程计方案
- 4. 基于数据集实现

## ⇒ 前端里程计方案





#### ICP系列—点到点ICP

#### 点集:

$$X = \{x_1, x_2, \cdots, x_{N_x}\}$$

$$Y = \{y_1, y_2, \cdots, y_{N_y}\}$$

其中X和Y是原始点云的子集,选取的是两个点集中能够互相关联的那些点,即 $N_x=N_y$ 

#### 目标:

$$minE(R, t) = min\frac{1}{N_y} \sum_{i=1}^{N_y} ||x_i - Ry_i - t||^2$$







R:旋转矩阵

t:平移





### ICP系列—点到点ICP

$$\begin{split} E(R,t) &= \frac{1}{N_y} \sum_{i=1}^{N_y} \|x_i - Ry_i - t - u_x + Ru_y + u_x - Ru_y\|^2 \\ &= \frac{1}{N_y} \sum_{i=1}^{N_y} \left( \|x_i - u_x - R(y_i - u_y) + (u_x - Ru_y - t)\|^2 \right) \quad \text{ in } u_x \text{ 和 } u_y \text{ in extension in ex$$

其中 $u_x$ 和 $u_y$ 分别是点集X和Y的质心,即

$$u_x = \frac{1}{N_x} \sum_{i=1}^{N_x} x_i$$
$$u_y = \frac{1}{N_y} \sum_{i=1}^{N_y} y_i$$

那么,对于任意的 R ,均可以找到一个 t ,使得  $u_x - Ru_y - t = 0$  , 即  $E_2(R,t) = 0$ 



#### ICP系列—点到点ICP

$$E_{1}(R,t) = \frac{1}{N_{y}} \sum_{i=1}^{N_{y}} \|x_{i} - u_{x} - R(y_{i} - u_{y})\|^{2}$$

$$= \frac{1}{N_{y}} \sum_{i=1}^{N_{y}} \|x'_{i} - Ry'_{i}\|^{2}$$

$$= \frac{1}{N_{y}} \sum_{i=1}^{N_{y}} \left(x'_{i}^{T}x'_{i} + y'_{i}^{T}R^{T}Ry'_{i} - 2x'_{i}^{T}Ry'_{i}\right)$$
与R无关 单位阵

$$\Leftrightarrow E'_1(R,t) = \sum_{i=1}^{N_y} x_i'^T R y_i'$$

 $\min E_1(R,t)$ 



#### ICP系列—点到点ICP

$$E'_{1}(R,t) = \sum_{i=1}^{N_{y}} x'_{i}^{T} R y'_{i} = \sum_{i=1}^{N_{y}} \operatorname{Trace}\left(x'_{i}^{T} R y'_{i}\right) = \sum_{i=1}^{N_{y}} \operatorname{Trace}\left(R y'_{i} x'_{i}^{T}\right) = \operatorname{Trace}\left(\sum_{i=1}^{N_{y}} R y'_{i} x'_{i}^{T}\right) = \operatorname{Trace}(RH)$$

等式(1): 常数的迹等于它自身

等式(2): 
$$\operatorname{tr}(AB) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} b_{ji} = \sum_{i=1}^{m} \sum_{j=1}^{n} b_{ji} a_{ij} = \operatorname{tr}(BA)$$

等式(3): 
$$H = \sum_{i=1}^{N_y} y_i' x_i'^T$$

问题转化为,找到合适的R,使 Trace(RH)达到最大值



#### ICP系列—点到点ICP

定理:若有正定矩阵  $AA^T$ ,则对于任意正交矩阵B,有  $\operatorname{Trace}(AA^T) \geq \operatorname{Trace}(BAA^T)$ 

意义:若能找到R,把  $\operatorname{Trace}(RH)$ 转换成  $\operatorname{Trace}(AA^T)$  的形式,则该R就是我们要找的旋转矩阵

证明:

$$\operatorname{tr}\left(BAA^{T}\right) = \operatorname{tr}\left(A^{T}BA\right) = \sum_{i} a_{i}^{T}\left(Ba_{i}\right)$$

其中 a; 为A的列向量。根据柯西-施瓦茨不等式,有

$$a_i^T(Ba_i) \le \sqrt{\left(a_i^T a_i\right)\left(a_i^T B^T B a_i\right)} = a_i^T a_i$$

因此

$$\operatorname{tr}\left(BAA^{T}\right) = \sum_{i} a_{i}^{T}\left(Ba_{i}\right) \leq a_{i}^{T}a_{i} = \operatorname{tr}\left(AA^{T}\right)$$



#### ICP系列—点到点ICP

目的:找到R,把Trace(RH)转换成Trace( $AA^T$ )的形式

方法:

#### 对H进行SVD分解

$$H = U\Sigma V^T$$

取

$$R = VU^T$$

则有

$$RH = VU^T U \Sigma V^T = V \Sigma V^T = V \Sigma^{\frac{1}{2}} \Sigma^{\frac{1}{2}} V^T = V \Sigma^{\frac{1}{2}} \left( V \Sigma^{\frac{1}{2}} \right)^T$$

旋转R确定之后,易得平移为

$$t = u_x - Ru_y$$







#### NDT系列—经典NDT





#### 点集:

$$X = \{x_1, x_2, \cdots, x_{N_x}\}$$

$$Y = \left\{ y_1, y_2, \cdots, y_{N_y} \right\}$$

目标:  $max\Psi = max \prod_{i=1}^{N_y} f(X, T(p, y_i))$ 

2D模型:  $p = p_3 = [t_x^{i=1} t_y \ \phi_z]^{\mathrm{T}}$ 

3D模型:  $p = p_6 = [t_x \quad t_y \quad t_z \quad \phi_x \quad \phi_y \quad \phi_z]^T$ 





#### NDT系列—经典NDT

均值:

$$\mu = \frac{1}{N_x} \sum_{i=1}^{N_x} x_i$$

协方差:

$$\Sigma = \frac{1}{N_x - 1} \sum_{i=1}^{N_x} (x_i - \mu) (x_i - \mu)^{\mathrm{T}}$$

根据预测的位姿,对点进行旋转和平移:

$$y_i' = T(p, y_i) = Ry_i + t$$

旋转和平移后的点与目标点集中的点在同一 坐标系下,此时可计算各点的概率:

$$f(X, y_i') = \frac{1}{\sqrt{2\pi}\sqrt{|\Sigma|}} \exp\left(-\frac{(y_i' - \mu)^{\mathrm{T}} \Sigma^{-1} (y_i' - \mu)}{2}\right)$$

假设点集 均服从高 斯分布

#### 所有点的联合概率:

$$\Psi = \prod_{i=1}^{N_y} f\left(X, T\left(p, y_i\right)\right)$$

$$= \prod_{i=1}^{N_y} \frac{1}{\sqrt{2\pi}\sqrt{|\Sigma|}} \exp\left(-\frac{(y_i' - \mu)^{\mathrm{T}} \Sigma^{-1} (y_i' - \mu)}{2}\right)$$

#### 取对数, 简化问题:

$$ln\Psi = \sum_{i=1}^{N_y} \left( -\frac{(y_i' - \mu)^{\mathrm{T}} \mathbf{\Sigma}^{-1} (y_i' - \mu)}{2} + ln(\frac{1}{\sqrt{2\pi} \sqrt{|\mathbf{\Sigma}|}}) \right)$$

常数

#### 去除常数项:

$$max\Psi = maxln\Psi = min\Psi_1 = min\sum_{i=1}^{N_y} (y_i' - \mu)^{\mathrm{T}} \mathbf{\Sigma}^{-1} (y_i' - \mu)$$



#### NDT系列—经典NDT

目标函数: 
$$min \sum_{i=1}^{N_y} (y_i' - \mu)^T \mathbf{\Sigma}^{-1} (y_i' - \mu)$$
  $y_i' = T(p, y_i) = Ry_i + t$ 

待求参数: R,t

则: 
$$min \sum_{i=1}^{N_y} (y_i' - \mu)^{\mathrm{T}} \Sigma^{-1} (y_i' - \mu)$$
 
$$= min \sum_{i=1}^{N_y} F_i(p)$$

#### 迭代优化,即找到 $\Delta p$ 使下式中的值达到最小

$$\sum_{i=1}^{N_y} F_i(p + \Delta p) = \sum_{i=1}^{N_y} e_i^{\mathrm{T}}(p + \Delta p) \mathbf{\Sigma}^{-1} e_i(p + \Delta p)$$

#### 泰勒展开:

$$e_{i} (p + \Delta p) \approx e_{i} (p) + \frac{de_{i}}{dp} \Delta p$$

$$= e_{i} + J_{i} \Delta p$$

$$F_{i} (p + \Delta p) = e_{i} (p + \Delta p)^{T} \mathbf{\Sigma}^{-1} e_{i} (p + \Delta p)$$

$$\approx (e_{i} + J_{i} \Delta p)^{T} \mathbf{\Sigma}^{-1} (e_{i} + J_{i} \Delta p)$$

$$= e_{i}^{T} \mathbf{\Sigma}^{-1} e_{i} + 2e_{i}^{T} \mathbf{\Sigma}^{-1} J_{i} \Delta p + \Delta p^{T} J_{i}^{T} \mathbf{\Sigma}^{-1} J_{i} \Delta p$$

$$= F_i(p) + 2b_i^T \Delta p + \Delta p^T H_i \Delta p$$

其中,

$$b_i^T = e_i^T \mathbf{\Sigma}^{-1} J_i$$
$$H_i = J_i^T \mathbf{\Sigma}^{-1} J_i$$

#### 目标函数随自变量的变化为:

$$\Delta F_i(p) = F_i(p + \Delta p) - F_i(p) = 2b_i^T \Delta p + \Delta p^T H_i \Delta p$$

### NDT系列—经典NDT

上述优化问题, 转化为, 找到  $\Delta p$  使  $\Delta F_i(p)$  取得极小值。

#### 令其导数为零:

$$\frac{d\Delta F_i(p)}{d\Delta p} = 2b_i + 2H_i\Delta p = 0$$

即

$$H_i \Delta p = -b_i$$

#### 根据定义:

$$b_i^T = e_i^T \mathbf{\Sigma}^{-1} J_i$$
$$H_i = J_i^T \mathbf{\Sigma}^{-1} J_i$$

因此,只需得到  $J_i$  ,即可求得  $\Delta p$ 

$$J_i = \frac{de_i}{dp}$$



#### NDT系列—经典NDT

#### 2D场景:

$$p = \begin{bmatrix} t_x & t_y & \phi_z \end{bmatrix}^T$$

$$y'_i = T(p, y_i)$$

$$= \begin{bmatrix} \cos \phi_z & -\sin \phi_z \\ \sin \phi_z & \cos \phi_z \end{bmatrix} y_i + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

$$e_i = y'_i - \mu$$

雅克比 
$$J_i = \begin{bmatrix} 1 & 0 & -y_{i1}\sin\phi_z - y_{i2}\cos\phi_z \\ 0 & 1 & y_{i1}\cos\phi_z - y_{i2}\sin\phi_z \end{bmatrix}$$

#### 3D场景:

$$\begin{aligned} p &= [t_x \quad t_y \quad t_z \quad \phi_x \quad \phi_y \quad \phi_z]^{\mathrm{T}} \\ y_i' &= T \left( p, y_i \right) \\ &= R_x R_y R_z y_i + t \\ &= \begin{bmatrix} c_y c_z & -c_y s_z & s_y \\ c_x s_z + s_x s_y c_z & c_x c_z - s_x s_y s_z & -s_x c_y \\ s_x s_z - c_x s_y c_z & c_x s_y s_z + s_x c_z & c_x c_y \end{bmatrix} y_i + \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix} \\ e_i &= y_i' - \mu \end{aligned}$$

雅克比 
$$J_i = \left[ egin{array}{cccccc} 1 & 0 & 0 & 0 & c & f \ 0 & 1 & 0 & a & d & g \ 0 & 0 & 1 & b & e & h \end{array} 
ight]$$

#### 其中

$$a = y_{i1} \left( -s_x s_z + c_x s_y c_z \right) + y_{i2} \left( -s_x c_z - c_x s_y s_z \right) + y_{i3} \left( -c_x c_y \right)$$

$$b = y_{i1} \left( c_x s_z + s_x s_y c_z \right) + y_{i2} \left( -s_x s_y s_z + c_x c_z \right) + y_{i3} \left( -s_x c_y \right)$$

$$c = y_{i1} \left( -s_y c_z \right) + y_{i2} \left( s_y s_z \right) + y_{i3} \left( c_y \right) ; d = y_{i1} \left( s_x c_y c_z \right) + y_{i2} \left( -s_x c_y s_z \right) + y_{i3} \left( s_x s_y \right)$$

$$e = y_{i1} \left( -c_x c_y c_z \right) + y_{i2} \left( c_x c_y s_z \right) + y_{i3} \left( -c_x s_y \right) ; f = y_{i1} \left( -c_y s_z \right) + y_{i2} \left( -c_y c_z \right)$$

$$g = y_{i1} \left( c_x c_z - s_x s_y s_z \right) + y_{i2} \left( -c_x s_z - s_x s_y c_z \right) ; h = y_{i1} \left( s_x c_z + c_x s_y s_z \right) + y_{i2} \left( c_x s_y c_z - s_x s_z \right)$$



#### NDT系列—其他NDT



- 1. Scan Registration using Segmented Region Growing NDT. Das A, Waslander SL. 2014.
- 2. 3D Scan Registration Using the Normal Distributions Transform with Ground Segmentation and Point Cloud Clustering. Das A, Waslander SL. 2013.
- 3. Scan Registration with Multi-Scale K-Means Normal Distributions Transform. Das A, Waslander SL. 2012.



#### LOAM系列—LOAM



整体思想:在点云中提取边缘特征(如树干、墙角等,采用线模型描述)和平面特征(如地面、墙面等,采用面模型描述),匹配时以点到线距离和点到面距离为残差优化位姿。

LOAM: Lidar Odometry and Mapping in Real-time, Ji Zhang and Sanjiv Singh

Code: https://github.com/cuitaixiang/LOAM\_NOTED



## LOAM系列—LOAM

- 1. 提取特征
- 1) 按线数分割

Figure 9-1 VLP-16 Sensor Coordinate System



 ${\it Table 9-1 below} \ {\it lists} \ the fixed vertical lelevation angles for each laser in the sensor, along with vertical corrections. The set of angles vary by sensor model (see {\it Factory Bytes on page 56} for more).$ 



#### LOAM系列—LOAM

- 1. 提取特征
- 2) 计算曲率

$$c = \frac{1}{|\mathcal{S}| \cdot \left\| \boldsymbol{X}_{(k,i)}^L \right\|} \left\| \sum_{j \in \mathcal{S}, j \neq i} \left( \boldsymbol{X}_{(k,i)}^L - \boldsymbol{X}_{(k,j)}^L \right) \right\|$$

该公式计算点i的曲率,其中S代表在i周围,并且和i在同一条扫描线上的点, $oldsymbol{X}_{(k,i)}^L$ 和 $oldsymbol{X}_{(k,j)}^L$ 分别代表点i和j的坐标。





#### LOAM系列—LOAM

- 1. 提取特征
- 4) 按曲率大小筛选特征点

#### 共分4类:

- a. 曲率特别大的点(sharp)
- b. 曲率大的点(less\_shap)
- c. 曲率特别小的点(flat)
- d. 曲率小的点(less\_flat)

曲率最大的点和曲率最小的点可以分别作为特征匹配时计算残差的直线和平面特征点,即后面的X bar

曲率越大 越可以看 是在直线上 曲可以是 越可之 地位 地位 地位 地位 上



典型效果图



#### LOAM系列—LOAM

- 2. 帧间匹配
- 1) 特征关联与损失函数计算



点到直线 的残差



#### 点到线的距离

$$d_{\mathcal{E}} = \frac{\left| \left( \tilde{\boldsymbol{X}}_{(k+1,i)}^{L} - \overline{\boldsymbol{X}}_{(k,j)}^{L} \right) \times \left( \tilde{\boldsymbol{X}}_{(k+1,i)}^{L} - \overline{\boldsymbol{X}}_{(k,l)}^{L} \right) \right|}{\left| \overline{\boldsymbol{X}}_{(k,j)}^{L} - \overline{\boldsymbol{X}}_{(k,l)}^{L} \right|} (1)$$

#### b. 面特征



#### 点到面的距离

$$d_{\mathcal{H}} = \frac{\left| \begin{array}{c} (\tilde{\boldsymbol{X}}_{(k+1,i)}^{L} - \bar{\boldsymbol{X}}_{(k,j)}^{L}) \\ ((\bar{\boldsymbol{X}}_{(k,j)}^{L} - \bar{\boldsymbol{X}}_{(k,l)}^{L}) \times (\bar{\boldsymbol{X}}_{(k,j)}^{L} - \bar{\boldsymbol{X}}_{(k,m)}^{L})) \end{array} \right|}{\left| (\bar{\boldsymbol{X}}_{(k,j)}^{L} - \bar{\boldsymbol{X}}_{(k,l)}^{L}) \times (\bar{\boldsymbol{X}}_{(k,j)}^{L} - \bar{\boldsymbol{X}}_{(k,m)}^{L}) \right|}$$
(2)

把(1)和(2)放在一个模型里,得到总的损失函数为

$$loss = \sum_{i=1}^{N_{\mathcal{E}}} d_{\mathcal{E}i} + \sum_{i=1}^{N_{\mathcal{H}}} d_{\mathcal{H}i} = D\left(\tilde{X}_{k+1,i}^{L}\right)(3)$$



#### LOAM系列—LOAM

- 2. 帧间匹配
- 1) 特征关联与损失函数计算

定义  $t_{k+1}$  时刻的位姿为

$$T_{k+1}^{L} = \left[t_x, t_y, t_z, \theta_x, \theta_y, \theta_z\right]^{T}$$

特征点从当前雷达坐标系投影到目标坐标系

$$\tilde{\boldsymbol{X}}_{(k+1,i)}^{L} = \mathbf{R} \boldsymbol{X}_{(k+1,i)}^{L} + t$$

$$= G\left(\boldsymbol{X}_{(k+1,i)}^{L}, \boldsymbol{T}_{k+1}^{L}\right)$$
(4)

其中

$$t = \left[t_x, t_y, t_z\right]^T$$

一飘表示k+1 帧在k帧下的 表示,不带飘 表示该点在k+ 1帧的表示

$$R = R_y R_x R_z$$

$$= \begin{bmatrix} c_y c_z + s_y s_x s_z & c_z s_y s_x - c_y s_z & c_x s_y \\ c_x s_z & c_x c_z & -s_x \\ c_y s_x s_z - c_z s_y & c_y c_z s_x + s_y s_z & c_y c_x \end{bmatrix}$$

又

$$\begin{cases} c_x = \cos(\theta_x) \\ s_x = \sin(\theta_x) \\ c_y = \cos(\theta_y) \\ s_y = \sin(\theta_y) \\ c_z = \cos(\theta_z) \\ s_z = \sin(\theta_z) \end{cases}$$

#### 合并(3)和(4)得到

$$loss = F\left(\boldsymbol{X}_{(k+1,i)}^{L}, \boldsymbol{T}_{k+1}^{L}\right) = D\left(G\left(\boldsymbol{X}_{(k+1,i)}^{L}, \boldsymbol{T}_{k+1}^{L}\right)\right)(5)$$

## LOAM系列—LOAM

- 2. 帧间匹配
- 2) LM迭代优化

$$m{T}_{k+1}^L \leftarrow m{T}_{k+1}^L - \left( \mathbf{J}^T \mathbf{J} + \lambda \operatorname{diag} \left( \mathbf{J}^\mathrm{T} \mathbf{J} \right) \right)^{-1} \mathbf{J}^\mathrm{T} m{d}$$

其中

$$\mathbf{J} = \frac{\partial \boldsymbol{F} \left( \boldsymbol{X}_{(k+1,i)}^{L}, \boldsymbol{T}_{k+1}^{L} \right)}{\partial \boldsymbol{T}_{k+1}^{L}}$$

$$= \frac{\partial D \left( G \left( \boldsymbol{X}_{(k+1,i)}^{L}, \boldsymbol{T}_{k+1}^{L} \right) \right)}{\partial \boldsymbol{T}_{k+1}^{L}}$$

$$= \frac{\partial D (\tilde{X}_{k+1,i}^{L})}{\partial \tilde{\boldsymbol{X}}_{(k+1,i)}^{L}} \frac{\partial G \left( \boldsymbol{X}_{(k+1,i)}^{L}, \boldsymbol{T}_{k+1}^{L} \right)}{\partial \boldsymbol{T}_{k+1}^{L}}$$

对于线特征, 梯度方向为通过特征点的垂直于直线的方向

该方向有 无女有即和 ,以X飘垂直 的向量 的向量

$$\frac{\partial D(\tilde{X}_{k+1,i}^L)}{\partial \tilde{\boldsymbol{X}}_{(k+1,i)}^L} = [a_{\mathcal{E}}, b_{\mathcal{E}}, c_{\mathcal{E}}]^T$$

注意是 单位向 量

对于面特征, 梯度方向为通过特征点的垂直于平面的方向

$$\frac{\partial D(\tilde{X}_{k+1,i}^L)}{\partial \tilde{X}_{(k+1,i)}^L} = \left[a_{\mathcal{H}}, b_{\mathcal{H}}, c_{\mathcal{H}}\right]^T$$



#### LOAM系列—LOAM

- 2. 帧间匹配
- 2) LM迭代优化

对平移求导

$$\begin{split} &\frac{\partial G\left(\boldsymbol{X}_{(k+1,i)}^{L},\boldsymbol{T}_{k+1}^{L}\right)}{\partial \boldsymbol{t}_{x}} \\ =& \frac{\partial G\left(\mathbf{R}\boldsymbol{X}_{(k+1,i)}^{L}+t\right)}{\partial \boldsymbol{t}_{x}} \\ =& \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \end{split}$$

对角度求导

$$\begin{split} &\frac{\partial G\left(\boldsymbol{X}_{(k+1,i)}^{L},\boldsymbol{T}_{k+1}^{L}\right)}{\partial \boldsymbol{\theta}_{x}} \\ &= \frac{\partial G\left(\mathbf{R}\boldsymbol{X}_{(k+1,i)}^{L}+t\right)}{\partial \boldsymbol{\theta}_{x}} \\ &= \frac{\partial G\left(\mathbf{R}\boldsymbol{X}_{(k+1,i)}^{L}\right)}{\partial \boldsymbol{\theta}_{x}} \\ &= \begin{bmatrix} s_{y}c_{x}s_{z} & c_{z}s_{y}c_{x} & -s_{x}s_{y} \\ -s_{x}s_{z} & -s_{x}c_{z} & -c_{x} \\ c_{y}c_{x}s_{z} & c_{y}c_{z}c_{x} & -c_{y}s_{x} \end{bmatrix} \begin{bmatrix} x_{(k+1,i)} \\ y_{(k+1,i)} \\ z_{(k+1,i)} \end{bmatrix} \end{split}$$

同理,可推导另外两个角度的导数

同理,可推导另外两个方向位移的导数



## LOAM系列—LOAM

- 3. 构建地图
- 1) 合并地图点
- a. 把关键帧的特征点按照位姿转到地图坐标系中
- b. 按照位置和cube尺寸划分到对应的cube中

2) 位姿优化与里程计的方法同理

代码: https://github.com/cuitaixiang/LOAM\_NOTED



#### LOAM系列—ALOAM

#### 主要特点

- 1) 去掉了和IMU相关的部分
- 2) 使用Eigen做位姿转换,简化了代码
- 3) 使用ceres做迭代优化,简化了代码,但降低了效率

这里用四元 数求导

代码: https://github.com/HKUST-Aerial-Robotics/A-LOAM



### LOAM系列—FLOAM

主要特点

1) 整体和ALOAM类似,只是把ceres中的自动求导,转变成了直接使用推导的雅克比矩阵

这里用李 代数求导

代码: https://github.com/wh200720041/floam



#### LOAM系列—LEGO-LOAM

- 1. 主要特点
- 1) 对地面做了分割,减小了特征搜索范围
- 2) 提取特征之前做了聚类,提高了特征质量
- 3) 水平和航向分别优化,提高了效率

计算点到面上 的残差时只包 括地面,不包 括周围环境面 计算线特征时 则不包括地面





#### LOAM系列—LEGO-LOAM

- 2. 特征提取
- 1) 根据线与线之间的夹角,以及点的曲率,筛选出地面点。所有用于匹配的平面点仅使用地面点。
- 2) 在非地面点中,使用广度优先搜索(BFS) 做聚类,聚类中点的数量大于30,才用来筛选线特征。
- 3) 筛选线特征方法,与LOAM中相同





#### LOAM系列—LEGO-LOAM

- 3. 里程计
- 1) 使用地面面特征优化高度和水平角
- 2) 使用线特征优化水平位移和航向角

具体推导过程,可根据LOAM中的六自由度 方法,重新推导此处三自由度方法



代码: https://github.com/RobustFieldAutonomyLab/LeGO-LOAM



- 1. 激光传感器原理
- 2. 整体流程介绍
- 3. 前端里程计方案
- 4. 基于数据集实现



#### 1. KITTI数据集简介

#### 硬件组成:

- 1) 一个64线激光雷达,在车顶的正中心
- 2) 两个彩色摄像头和两个黑白摄像头,在雷达两侧。
- 3) 一个组合导航系统 (OXTS RT 3003) ,在雷达左后方。它可以输出RTK/IMU组合导航结果,包括经纬度和姿态,同时也输出IMU原始数据。



## 参 基于数据集实现

### 1. KITTI数据集简介

#### 安装关系:

图中所示的所有安装关系,都可以在数据集提供标定文件中找到,可直接使用。





### 2. 数据集使用

本课程以ubuntu16.04下的ros kinetic为调试环境,因此需要把数据制作成ros的bag文件。

1) 升级numpy

kitti2bag要求numpy版本>=1.12, ubuntu 16.04 默认的是1.11, 升级可以通过一条指令来完成 sudo pip install -U numpy

- 2) 安装kitti2bag sudo pip install kitti2bag
- 3) 按以下目录存放文件



## **⇒** 基于数据集实现

## 2. 数据集使用

4) 生成bag

kitti2bag -t 2011\_10\_03 -r 0027 raw\_synced

- 5) 测试bag
  - a. roscore
  - b. rviz
  - c. rosbag play

kitti\_2011\_10\_03\_drive\_0027\_synced.bag



参考文章: 从零开始做自动驾驶定位(二): 数据集

## **⇒** 基于数据集实现

#### 3. 里程计工程框架实现

#### 核心思想:

- 1) 通过类的封装,实现模块化
- 2) 把ros流程与c++内部实现分开, 使流程清晰
- 3) 基于c++多态,实现高可扩展性。



#### 参考文章:

从零开始做自动驾驶定位(三): 软件框架

从零开始做自动驾驶定位(四): 前端里程计之初试

从零开始做自动驾驶定位(五): 前端里程计之代码优化

## **⇒** 基于数据集实现

### 4. 里程计精度评价

以组合导航的结果为真值,使用evo工具进行里程计精度评价

1) 安装evo

pip install evo --upgrade --no-binary evo

- 2) 使用evo计算轨迹误差
- a. 分段统计精度 evo\_rpe kitti ground\_truth.txt laser\_odom.txt -r trans part --delta 100 --plot --plot mode xyz
- b. 计算整体轨迹误差 evo\_ape kitti ground\_truth.txt laser\_odom.txt -r full -plot --plot\_mode xyz



#### 分段统计精度



整体轨迹误差



## 感谢聆听 Thanks for Listening

