The power of differentiation

Jonathon Hare

Vision, Learning and Control University of Southampton

Topics

- The big idea: optimisation by following gradients
- Recap: what are gradients and how do we find them?
- Recap: Singular Value Decomposition and its applications
- Example: Computing SVD using gradients The Netflix Challenge

Fundamentally, we're interested in machines that we train by optimising parameters

- Fundamentally, we're interested in machines that we train by optimising parameters
 - How do we select those parameters?

- Fundamentally, we're interested in machines that we train by optimising parameters
 - How do we select those parameters?
- In deep learning/differentiable programming we typically define an objective function that we *minimise* (or *maximise*) with respect to those parameters

- Fundamentally, we're interested in machines that we train by optimising parameters
 - How do we select those parameters?
- In deep learning/differentiable programming we typically define an objective function that we *minimise* (or *maximise*) with respect to those parameters
- This implies that we're looking for points at which the gradient of the objective function is zero w.r.t the parameters

• Gradient based optimisation is a big field!

- Gradient based optimisation is a big field!
 - First order methods, second order methods, subgradient methods...

- Gradient based optimisation is a big field!
 - First order methods, second order methods, subgradient methods...
- With deep learning we're primarily interested in first-order methods¹.

¹Second order gradient optimisers are potentially better, but for systems with many variables are currently impractical as they require computing the Hessian.

- Gradient based optimisation is a big field!
 - First order methods, second order methods, subgradient methods...
- With deep learning we're primarily interested in first-order methods¹.
 - Primarily using variants of gradient descent: a function F(x) has a minima² at a point x = a where a is given by applying $a_{n+1} = a \alpha \nabla F(a_n)$ until convergence.

²not necessarily global or unique

¹Second order gradient optimisers are potentially better, but for systems with many variables are currently impractical as they require computing the Hessian.

• Recall that the gradient of a straight line is $\frac{\Delta x}{\Delta y}$.

- Recall that the gradient of a straight line is $\frac{\Delta x}{\Delta y}$.
- For an arbitrary real-valued function, f(a), we can approximate the derivative, f'(a) using the gradient of the secant line defined by (a, f(a)) and a point a small distance, h, away (a + h, f(a + h)): $f'(a) \approx \frac{f(a+h)-f(a)}{h}$.

- Recall that the gradient of a straight line is $\frac{\Delta x}{\Delta v}$.
- For an arbitrary real-valued function, f(a), we can approximate the derivative, f'(a) using the gradient of the secant line defined by (a, f(a)) and a point a small distance, h, away (a + h, f(a + h)): $f'(a) \approx \frac{f(a+h)-f(a)}{h}$.
 - This expression is 'Newton's Difference Quotient'.

- Recall that the gradient of a straight line is $\frac{\Delta x}{\Delta y}$.
- For an arbitrary real-valued function, f(a), we can approximate the derivative, f'(a) using the gradient of the secant line defined by (a, f(a)) and a point a small distance, h, away (a + h, f(a + h)): $f'(a) \approx \frac{f(a+h)-f(a)}{L}$.
 - This expression is 'Newton's Difference Quotient'.
 - As h becomes smaller, the approximated derivative becomes more accurate.

Differentiation 5 / 24

• Recall that the gradient of a straight line is $\frac{\Delta x}{\Delta y}$.

- For an arbitrary real-valued function, f(a), we can approximate the derivative, f'(a) using the gradient of the secant line defined by (a, f(a)) and a point a small distance, h, away (a + h, f(a + h)): $f'(a) \approx \frac{f(a+h)-f(a)}{L}$.
 - This expression is 'Newton's Difference Quotient'.
 - As h becomes smaller, the approximated derivative becomes more accurate.
 - If we take the limit as $h \to 0$, then we have an exact expression for the derivative: $\frac{df}{da} = f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$.

Differentiation 5 / 24

The derivative in 1D

$$y = x^2$$

$$y = x^{2}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{(x+h)^{2} - x^{2}}{h}$$

$$y = x^{2}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{(x+h)^{2} - x^{2}}{h}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{x^{2} + h^{2} + 2hx - x^{2}}{h}$$

$$y = x^{2}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{(x+h)^{2} - x^{2}}{h}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{x^{2} + h^{2} + 2hx - x^{2}}{h}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{h^{2} + 2hx}{h}$$

$$y = x^{2}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{(x+h)^{2} - x^{2}}{h}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{x^{2} + h^{2} + 2hx - x^{2}}{h}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{h^{2} + 2hx}{h}$$

$$\frac{dy}{dx} = \lim_{h \to 0} (h + 2x)$$

$$y = x^{2}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{(x+h)^{2} - x^{2}}{h}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{x^{2} + h^{2} + 2hx - x^{2}}{h}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{h^{2} + 2hx}{h}$$

$$\frac{dy}{dx} = \lim_{h \to 0} (h + 2x)$$

$$\frac{dy}{dx} = 2x$$

Aside: numerical approximation of the derivative

 For numerical computation of derivatives it is better to use a "centralised" definition of the derivative:

•
$$f'(a) = \lim_{h \to 0} \frac{f(a+h)-f(a-h)}{2h}$$

Aside: numerical approximation of the derivative

- For numerical computation of derivatives it is better to use a "centralised" definition of the derivative:
 - $f'(a) = \lim_{h \to 0} \frac{f(a+h) f(a-h)}{2h}$
 - The bit inside the limit is known as the symmetric difference quotient

Aside: numerical approximation of the derivative

- For numerical computation of derivatives it is better to use a "centralised" definition of the derivative:
 - $f'(a) = \lim_{h \to 0} \frac{f(a+h) f(a-h)}{2h}$
 - The bit inside the limit is known as the symmetric difference quotient
 - For small values of *h* this has less error than the standard one-sided difference quotient.

Aside: numerical approximation of the derivative

- For numerical computation of derivatives it is better to use a "centralised" definition of the derivative:
 - $f'(a) = \lim_{h \to 0} \frac{f(a+h) f(a-h)}{2h}$
 - The bit inside the limit is known as the symmetric difference quotient
 - For small values of *h* this has less error than the standard one-sided difference quotient.
- If you are going to use this to estimate derivatives you need to be aware of potential rounding errors due to floating point representations.
 - Calculating derivatives this way using less than 64-bit precision is rarely going to be useful. (Numbers are not represented exactly, so even if h is represented exactly, x + h will probably not be)
 - You need to pick an appropriate *h* too small and the subtraction will have a large rounding error!

Recap: what are gradients and how do we find them? Derivatives of deeper functions

 Deep learning is all about optimising deeper functions; functions that are compositions of other functions

• e.g.
$$z = f \circ g(x) = f(g(x))$$

Recap: what are gradients and how do we find them? Derivatives of deeper functions

 Deep learning is all about optimising deeper functions; functions that are compositions of other functions

• e.g.
$$z = f \circ g(x) = f(g(x))$$

- The chain rule of calculus tells us how to differentiate compositions of functions:

Example: differentiating $z = x^4$

Note that this is a silly example that just serves to demonstrate the principle!

$$z = x^4$$

Example: differentiating $z = x^4$

Note that this is a silly example that just serves to demonstrate the principle!

$$z = x^4$$

$$z = (x^2)^2 = y^2$$
 where $y = x^2$

Example: differentiating $z = x^4$

Note that this is a silly example that just serves to demonstrate the principle!

$$z = x^4$$

 $z = (x^2)^2 = y^2$ where $y = x^2$
 $\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx} = (2y)(2x) = (2x^2)(2x) = 4x^3$

Example: differentiating $z = x^4$

Note that this is a silly example that just serves to demonstrate the principle!

$$z = x^4$$

 $z = (x^2)^2 = y^2$ where $y = x^2$
 $\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx} = (2y)(2x) = (2x^2)(2x) = 4x^3$

Equivalently, from first principles:

$$z = x^{4}$$

$$\frac{dz}{dx} = \lim_{h \to 0} \frac{(x+h)^{4} - x^{4}}{h}$$

$$\frac{dz}{dx} = \lim_{h \to 0} \frac{h^{4} + 4h^{3}x + 6h^{2}x^{2} + 4hx^{3} + x^{4} - x^{4}}{h}$$

$$\frac{dz}{dx} = \lim_{h \to 0} h^{3} + 4h^{2}x + 6hx^{2} + 4x^{3} = 4x^{3}$$

Recap: what are gradients and how do we find them? Vector functions

• What if we're dealing with a *vector* function, y(t)?

Recap: what are gradients and how do we find them? Vector functions

- What if we're dealing with a *vector* function, y(t)?
 - This can be split into its constituent coordinate functions: $\mathbf{y}(t) = (y_1(t), \dots, y_n(t)).$

Recap: what are gradients and how do we find them? Vector functions

- What if we're dealing with a vector function, y(t)?
 - This can be split into its constituent coordinate functions: $\mathbf{y}(t) = (y_1(t), \dots, y_n(t)).$
 - Thus the derivative is a vector (the 'tangent vector'), $\mathbf{y}'(t) = (y_1'(t), \dots, y_n'(t))$, which consists of the derivatives of the coordinate functions.

Differentiation 10 / 24

Recap: what are gradients and how do we find them? Vector functions

- What if we're dealing with a *vector* function, y(t)?
 - This can be split into its constituent coordinate functions: $\mathbf{y}(t) = (y_1(t), \dots, y_n(t)).$
 - Thus the derivative is a vector (the 'tangent vector'), $\mathbf{y}'(t) = (y_1'(t), \dots, y_n'(t))$, which consists of the derivatives of the coordinate functions.
 - Equivalently, $\mathbf{y}'(t) = \lim_{h \to 0} \frac{\mathbf{y}(t+h) \mathbf{y}(t)}{h}$ if the limit exists.

Differentiation 10 / 24

Functions of multiple variables: partial differentiation

- What if the function we're trying to deal with has multiple variables³ (e.g. $f(x, y) = x^2 + xy + y^2$)?
 - This expression has a pair of partial derivatives, $\frac{\partial f}{\partial x} = 2x + y$ and $\frac{\partial f}{\partial y} = x + 2y$, computed by differentiating with respect to each variable x and y whilst holding the other(s) constant.

³A multivariate function

Functions of multiple variables: partial differentiation

- What if the function we're trying to deal with has multiple variables³ (e.g. $f(x, y) = x^2 + xy + y^2$)?
 - This expression has a pair of partial derivatives, $\frac{\partial f}{\partial x} = 2x + y$ and $\frac{\partial f}{\partial y} = x + 2y$, computed by differentiating with respect to each variable x and y whilst holding the other(s) constant.
- In general, the partial derivative of a function $f(x_1, ..., x_n)$ at a point $(a_1, ..., a_n)$ is given by:

$$\frac{\partial f}{\partial x_i}(a_1,\ldots,a_n) = \lim_{h \to 0} \frac{f(a_1\ldots,a_i+h,\ldots,a_n)-f(a_1\ldots,a_i,\ldots,a_n)}{h}.$$

³A multivariate function

Functions of multiple variables: partial differentiation

- What if the function we're trying to deal with has multiple variables³ (e.g. $f(x, y) = x^2 + xy + y^2$)?
 - This expression has a pair of partial derivatives, $\frac{\partial f}{\partial x} = 2x + y$ and $\frac{\partial f}{\partial y} = x + 2y$, computed by differentiating with respect to each variable x and y whilst holding the other(s) constant.
- In general, the partial derivative of a function $f(x_1, ..., x_n)$ at a point $(a_1, ..., a_n)$ is given by: $\frac{\partial f}{\partial x_1}(a_1, ..., a_n) = \lim_{h \to 0} \frac{f(a_1, ..., a_i) f(a_1, ..., a_i)}{h}.$
- The vector of partial derivatives of a scalar-value multivariate function, $f((x_1,\ldots,x_n))$ at a point (a_1,\ldots,a_n) , can be arranged into a vector: $\nabla f(a_1,\ldots,a_n) = (\frac{\partial f}{\partial x_1}(a_1,\ldots,a_n),\ldots,\frac{\partial f}{\partial x_n}(a_1,\ldots,a_n))$.

³A multivariate function

Functions of multiple variables: partial differentiation

- What if the function we're trying to deal with has multiple variables³ (e.g. $f(x, y) = x^2 + xy + y^2$)?
 - This expression has a pair of partial derivatives, $\frac{\partial f}{\partial x} = 2x + y$ and $\frac{\partial f}{\partial y} = x + 2y$, computed by differentiating with respect to each variable x and y whilst holding the other(s) constant.
- In general, the partial derivative of a function $f(x_1, ..., x_n)$ at a point $(a_1, ..., a_n)$ is given by: $\frac{\partial f}{\partial x_i}(a_1, ..., a_n) = \lim_{h \to 0} \frac{f(a_1, ..., a_i) f(a_1, ..., a_i)}{h}.$
- The vector of partial derivatives of a scalar-value multivariate function, $f((x_1, \ldots, x_n))$ at a point (a_1, \ldots, a_n) , can be arranged into a vector: $\nabla f(a_1, \ldots, a_n) = (\frac{\partial f}{\partial x_1}(a_1, \ldots, a_n), \ldots, \frac{\partial f}{\partial x_n}(a_1, \ldots, a_n))$.
 - This is the **gradient** of f at a.

³A multivariate function

Functions of multiple variables: partial differentiation

- What if the function we're trying to deal with has multiple variables³ (e.g. $f(x, y) = x^2 + xy + y^2$)?
 - This expression has a pair of partial derivatives, $\frac{\partial f}{\partial x} = 2x + y$ and $\frac{\partial f}{\partial y} = x + 2y$, computed by differentiating with respect to each variable x and y whilst holding the other(s) constant.
- In general, the partial derivative of a function $f(x_1, ..., x_n)$ at a point $(a_1, ..., a_n)$ is given by: $\frac{\partial f}{\partial x_i}(a_1, ..., a_n) = \lim_{h \to 0} \frac{f(a_1, ..., a_i) f(a_1, ..., a_i)}{h}.$
- The vector of partial derivatives of a scalar-value multivariate function, $f((x_1,\ldots,x_n))$ at a point (a_1,\ldots,a_n) , can be arranged into a vector: $\nabla f(a_1,\ldots,a_n) = (\frac{\partial f}{\partial x_1}(a_1,\ldots,a_n),\ldots,\frac{\partial f}{\partial x_n}(a_1,\ldots,a_n))$.
 - This is the **gradient** of f at a.
- In the case of a vector-valued multivariate function, the partial derivatives form a matrix called the **Jacobian**.

³A multivariate function

Functions of vectors and matrices: partial differentiation

 For the kinds of functions (and programs) that we'll look at optimising in this course have a number of typical properties:

Functions of vectors and matrices: partial differentiation

- For the kinds of functions (and programs) that we'll look at *optimising* in this course have a number of typical properties:
 - They are scalar-valued
 - We'll look at programs with *multiple losses*, but ultimately we can just consider optimising with respect to the *sum* of the losses.

Functions of vectors and matrices: partial differentiation

- For the kinds of functions (and programs) that we'll look at *optimising* in this course have a number of typical properties:
 - They are scalar-valued
 - We'll look at programs with multiple losses, but ultimately we can just consider optimising with respect to the sum of the losses.
 - They involve multiple variables, which are often wrapped up in the form of vectors or matrices, and more generally tensors.

Functions of vectors and matrices: partial differentiation

- For the kinds of functions (and programs) that we'll look at *optimising* in this course have a number of typical properties:
 - They are scalar-valued
 - We'll look at programs with multiple losses, but ultimately we can just consider optimising with respect to the sum of the losses.
 - They involve multiple variables, which are often wrapped up in the form of vectors or matrices, and more generally tensors.
 - How will we find the gradients of these?

The chain rule for vectors

Suppose that $\mathbf{x} \in \mathbb{R}^m$, $\mathbf{y} \in \mathbb{R}^n$, \mathbf{g} maps from \mathbb{R}^m to \mathbb{R}^n and \mathbf{f} maps from \mathbb{R}^n to \mathbb{R} .

The chain rule for vectors

Suppose that $\mathbf{x} \in \mathbb{R}^m$, $\mathbf{y} \in \mathbb{R}^n$, \mathbf{g} maps from \mathbb{R}^m to \mathbb{R}^n and \mathbf{f} maps from \mathbb{R}^n to \mathbb{R} .

If $\mathbf{y} = g(\mathbf{x})$ and $z = f(\mathbf{y})$, then

$$\frac{\partial z}{\partial x_i} = \sum_j \frac{\partial z}{\partial y_j} \frac{\partial y_j}{\partial x_i}.$$

The chain rule for vectors

Suppose that $\mathbf{x} \in \mathbb{R}^m$, $\mathbf{y} \in \mathbb{R}^n$, \mathbf{g} maps from \mathbb{R}^m to \mathbb{R}^n and \mathbf{f} maps from \mathbb{R}^n to \mathbb{R} .

If $\mathbf{y} = g(\mathbf{x})$ and $z = f(\mathbf{y})$, then

$$\frac{\partial z}{\partial x_i} = \sum_j \frac{\partial z}{\partial y_j} \frac{\partial y_j}{\partial x_i}.$$

Equivalently, in vector notation:

$$\nabla_{\mathbf{x}} z = (\frac{\partial \mathbf{y}}{\partial \mathbf{x}})^{\top} \nabla_{\mathbf{y}} z$$

where $\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$ is the $n \times m$ Jacobian matrix of g.

• Conceptually, the simplest way to think about gradients of tensors is to imagine flattening them into vectors, computing the vector-valued gradient and then reshaping the gradient back into a tensor.

- Conceptually, the simplest way to think about gradients of tensors is to imagine flattening them into vectors, computing the vector-valued gradient and then reshaping the gradient back into a tensor.
 - In this way we're still just multiplying Jacobians by gradients.

- Conceptually, the simplest way to think about gradients of tensors is to imagine flattening them into vectors, computing the vector-valued gradient and then reshaping the gradient back into a tensor.
 - In this way we're still just multiplying Jacobians by gradients.
- More formally, consider the gradient of a scalar z with respect to a tensor \mathbf{X} to be denoted as $\nabla_{\mathbf{X}}z$.

- Conceptually, the simplest way to think about gradients of tensors is to imagine flattening them into vectors, computing the vector-valued gradient and then reshaping the gradient back into a tensor.
 - In this way we're still just multiplying Jacobians by gradients.
- More formally, consider the gradient of a scalar z with respect to a tensor \mathbf{X} to be denoted as $\nabla_{\mathbf{X}}z$.
 - Indices into \mathbf{X} now have multiple coordinates, but we can generalise by using a single variable i to represent the complete tuple of indices.

The chain rule for Tensors

- Conceptually, the simplest way to think about gradients of tensors is to imagine flattening them into vectors, computing the vector-valued gradient and then reshaping the gradient back into a tensor.
 - In this way we're still just multiplying Jacobians by gradients.
- More formally, consider the gradient of a scalar z with respect to a tensor \mathbf{X} to be denoted as $\nabla_{\mathbf{X}}z$.
 - Indices into \mathbf{X} now have multiple coordinates, but we can generalise by using a single variable i to represent the complete tuple of indices.
 - For all index tuples i, $(\nabla_X z)_i$ gives $\frac{\partial z}{\partial X_i}$.

The chain rule for Tensors

- Conceptually, the simplest way to think about gradients of tensors is to imagine flattening them into vectors, computing the vector-valued gradient and then reshaping the gradient back into a tensor.
 - In this way we're still just multiplying Jacobians by gradients.
- More formally, consider the gradient of a scalar z with respect to a tensor \mathbf{X} to be denoted as $\nabla_{\mathbf{X}}z$.
 - Indices into **X** now have multiple coordinates, but we can generalise by using a single variable *i* to represent the complete tuple of indices.
 - For all index tuples i, $(\nabla_{\mathbf{X}}z)_i$ gives $\frac{\partial z}{\partial X_i}$.
 - Thus, if $\mathbf{Y} = g(\mathbf{X})$ and $z = f(\mathbf{Y})$ then $\nabla_{\mathbf{X}}z = \sum_{j} (\nabla_{\mathbf{X}} Y_{j}) \frac{\partial z}{\partial Y_{j}}$.

Example: $\nabla_{\boldsymbol{W}} f(\boldsymbol{X} \boldsymbol{W})$

- Let D = XW where the rows of $X \in \mathbb{R}^{n \times m}$ contain some fixed features, and $W \in \mathbb{R}^{m \times h}$ is a matrix of weights.
- Also let $L = f(\mathbf{D})$ be some scalar function of \mathbf{D} that we wish to minimise.

Recap: what are gradients and how do we find them? Example: $\nabla_W f(XW)$

• Let D = XW where the rows of $X \in \mathbb{R}^{n \times m}$ contain some fixed features, and $W \in \mathbb{R}^{m \times h}$ is a matrix of weights.

- Also let $L = f(\mathbf{D})$ be some scalar function of \mathbf{D} that we wish to minimise.
- What are the derivatives of L with respect to the weights W?

Example: $\nabla_{\boldsymbol{W}} f(\boldsymbol{X} \boldsymbol{W})$

• Start by considering a specific weight, W_{uv} : $\frac{\partial L}{\partial W_{uv}} = \sum_{i,j} \frac{\partial L}{\partial D_{ij}} \frac{\partial D_{ij}}{\partial W_{uv}}$.

Recap: what are gradients and how do we find them? Example: $\nabla_W f(XW)$

• Start by considering a specific weight, W_{uv} : $\frac{\partial L}{\partial W_{uv}} = \sum_{i,j} \frac{\partial L}{\partial D_{ii}} \frac{\partial D_{ij}}{\partial W_{uv}}$.

• We know that $\frac{\partial D_{ij}}{\partial W_{uv}} = 0$ if $j \neq v$ because D_{ij} is the dot product of row i of \boldsymbol{X} and column j of \boldsymbol{W} .

Example: $\nabla_{\boldsymbol{W}} f(\boldsymbol{X} \boldsymbol{W})$

- Start by considering a specific weight, W_{uv} : $\frac{\partial L}{\partial W_{uv}} = \sum_{i,j} \frac{\partial L}{\partial D_{ij}} \frac{\partial D_{ij}}{\partial W_{uv}}$.
- We know that $\frac{\partial D_{ij}}{\partial W_{uv}} = 0$ if $j \neq v$ because D_{ij} is the dot product of row i of \boldsymbol{X} and column j of \boldsymbol{W} .
- Therefore, we can simplify the summation to only consider cases where j=v: $\sum_{i,j} \frac{\partial L}{\partial D_{ij}} \frac{\partial D_{ij}}{\partial W_{ijv}} = \sum_{i} \frac{\partial L}{\partial D_{ij}} \frac{\partial D_{iv}}{\partial W_{ijv}}$.

Example: $\nabla_{\boldsymbol{W}} f(\boldsymbol{X} \boldsymbol{W})$

- Start by considering a specific weight, W_{uv} : $\frac{\partial L}{\partial W_{uv}} = \sum_{i,j} \frac{\partial L}{\partial D_{ij}} \frac{\partial D_{ij}}{\partial W_{uv}}$.
- We know that $\frac{\partial D_{ij}}{\partial W_{uv}} = 0$ if $j \neq v$ because D_{ij} is the dot product of row i of \boldsymbol{X} and column j of \boldsymbol{W} .
- Therefore, we can simplify the summation to only consider cases where j=v: $\sum_{i,j} \frac{\partial L}{\partial D_{ij}} \frac{\partial D_{ij}}{\partial W_{uv}} = \sum_{i} \frac{\partial L}{\partial D_{iv}} \frac{\partial D_{iv}}{\partial W_{uv}}$.
- What is $\frac{\partial D_{iv}}{\partial W_{uv}}$?

Example: $\nabla_{\boldsymbol{W}} f(\boldsymbol{X}\boldsymbol{W})$

- Start by considering a specific weight, W_{uv} : $\frac{\partial L}{\partial W_{uv}} = \sum_{i,j} \frac{\partial L}{\partial D_{ij}} \frac{\partial D_{ij}}{\partial W_{uv}}$.
- We know that $\frac{\partial D_{ij}}{\partial W_{uv}} = 0$ if $j \neq v$ because D_{ij} is the dot product of row i of \boldsymbol{X} and column j of \boldsymbol{W} .
- Therefore, we can simplify the summation to only consider cases where j=v: $\sum_{i,j} \frac{\partial L}{\partial D_{ij}} \frac{\partial D_{ij}}{\partial W_{ijv}} = \sum_{i} \frac{\partial L}{\partial D_{ij}} \frac{\partial D_{iv}}{\partial W_{ijv}}$.
- What is $\frac{\partial D_{iv}}{\partial W_{uv}}$?

$$D_{iv} = \sum_{k=1}^{q} X_{ik} W_{kv}$$

Example: $\nabla_{\boldsymbol{W}} f(\boldsymbol{X}\boldsymbol{W})$

- Start by considering a specific weight, W_{uv} : $\frac{\partial L}{\partial W_{uv}} = \sum_{i,j} \frac{\partial L}{\partial D_{ij}} \frac{\partial D_{ij}}{\partial W_{uv}}$.
- We know that $\frac{\partial D_{ij}}{\partial W_{uv}} = 0$ if $j \neq v$ because D_{ij} is the dot product of row i of \boldsymbol{X} and column j of \boldsymbol{W} .
- Therefore, we can simplify the summation to only consider cases where j=v: $\sum_{i,j} \frac{\partial L}{\partial D_{ij}} \frac{\partial D_{ij}}{\partial W_{ijv}} = \sum_{i} \frac{\partial L}{\partial D_{iv}} \frac{\partial D_{iv}}{\partial W_{ijv}}$.
- What is $\frac{\partial D_{iv}}{\partial W_{uv}}$?

$$D_{iv} = \sum_{k=1}^{q} X_{ik} W_{kv}$$

$$\frac{\partial D_{iv}}{\partial W_{uv}} = \frac{\partial}{\partial W_{uv}} \sum_{k=1}^{q} X_{ik} W_{kv} = \sum_{k=1}^{q} \frac{\partial}{\partial W_{uv}} X_{ik} W_{kv}$$

Example: $\nabla_{\boldsymbol{W}} f(\boldsymbol{X} \boldsymbol{W})$

- Start by considering a specific weight, W_{uv} : $\frac{\partial L}{\partial W_{uv}} = \sum_{i,j} \frac{\partial L}{\partial D_{ij}} \frac{\partial D_{ij}}{\partial W_{uv}}$.
- We know that $\frac{\partial D_{ij}}{\partial W_{uv}} = 0$ if $j \neq v$ because D_{ij} is the dot product of row i of \boldsymbol{X} and column j of \boldsymbol{W} .
- Therefore, we can simplify the summation to only consider cases where j=v: $\sum_{i,j} \frac{\partial L}{\partial D_{ij}} \frac{\partial D_{ij}}{\partial W_{ijv}} = \sum_{i} \frac{\partial L}{\partial D_{ij}} \frac{\partial D_{iv}}{\partial W_{ijv}}$.
- What is $\frac{\partial D_{iv}}{\partial W_{uv}}$?

$$D_{iv} = \sum_{k=1}^{q} X_{ik} W_{kv}$$

$$\frac{\partial D_{iv}}{\partial W_{uv}} = \frac{\partial}{\partial W_{uv}} \sum_{k=1}^{q} X_{ik} W_{kv} = \sum_{k=1}^{q} \frac{\partial}{\partial W_{uv}} X_{ik} W_{kv}$$

$$\therefore \frac{\partial D_{iv}}{\partial W_{uv}} = X_{iu}$$

Example: $\nabla_{\boldsymbol{W}} f(\boldsymbol{X} \boldsymbol{W})$

• Putting every together, we have: $\frac{\partial L}{\partial W_{uv}} = \sum_i \frac{\partial L}{\partial D_{iv}} X_{iu}$.

Example: $\nabla_{\boldsymbol{W}} f(\boldsymbol{X} \boldsymbol{W})$

- Putting every together, we have: $\frac{\partial L}{\partial W_{uv}} = \sum_i \frac{\partial L}{\partial D_{iv}} X_{iu}$.
- As we're summing over multiplications of scalars, we can change the order: $\frac{\partial L}{\partial W_{vir}} = \sum_i X_{iu} \frac{\partial L}{\partial D_{iu}}$.

Example: $\nabla_{\boldsymbol{W}} f(\boldsymbol{X} \boldsymbol{W})$

- Putting every together, we have: $\frac{\partial L}{\partial W_{uv}} = \sum_i \frac{\partial L}{\partial D_{iv}} X_{iu}$.
- As we're summing over multiplications of scalars, we can change the order: $\frac{\partial L}{\partial W_{mr}} = \sum_i X_{iu} \frac{\partial L}{\partial D_{ir}}$.
- and note that the sum over i is doing a dot product with row u and column v if we transpose X_{iu} to X_{ui}^{\top} : $\frac{\partial L}{\partial W_{uv}} = \sum_{i} X_{ui}^{\top} \frac{\partial L}{\partial D_{iv}}$.

Example: $\nabla_{\boldsymbol{W}} f(\boldsymbol{X} \boldsymbol{W})$

- Putting every together, we have: $\frac{\partial L}{\partial W_{uv}} = \sum_i \frac{\partial L}{\partial D_{iv}} X_{iu}$.
- As we're summing over multiplications of scalars, we can change the order: $\frac{\partial L}{\partial W_{min}} = \sum_{i} X_{iu} \frac{\partial L}{\partial D_{in}}$.
- and note that the sum over i is doing a dot product with row u and column v if we transpose X_{iu} to X_{ui}^{\top} : $\frac{\partial L}{\partial W_{uv}} = \sum_i X_{ui}^{\top} \frac{\partial L}{\partial D_{iv}}$.
- We can then see that if we want this for all values of \boldsymbol{W} it simply generalises to: $\frac{\partial L}{\partial \boldsymbol{W}} = \boldsymbol{X}^{\top} \frac{\partial L}{\partial \boldsymbol{D}}$.

Let's now change direction - we're going to look at an early success story resulting from using some differentiation and the Singular Value Decomposition (SVD).

For complex A:

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^*$$

where V^* is the *conjugate transpose* of V.

For real A:

$$oldsymbol{A} = oldsymbol{U} oldsymbol{\Sigma} oldsymbol{V}^{ op}$$

- SVD has many uses:
 - Computing the Eigendecomposition:
 - Eigenvectors of AA^{\top} are columns of U,
 - Eigenvectors of $\mathbf{A}^{\top}\mathbf{A}$ are columns of \mathbf{V} ,
 - and the non-zero values of Σ are the square roots of the non-zero eigenvalues of both $\mathbf{A}\mathbf{A}^{\top}$ and $\mathbf{A}^{\top}\mathbf{A}$.

- SVD has many uses:
 - Computing the Eigendecomposition:
 - Eigenvectors of AA^{\top} are columns of U,
 - Eigenvectors of $\mathbf{A}^{\top}\mathbf{A}$ are columns of \mathbf{V} ,
 - and the non-zero values of Σ are the square roots of the non-zero eigenvalues of both $\mathbf{A}\mathbf{A}^{\top}$ and $\mathbf{A}^{\top}\mathbf{A}$.
 - Dimensionality reduction
 - ...use to compute PCA

- SVD has many uses:
 - Computing the Eigendecomposition:
 - Eigenvectors of AA^{\top} are columns of U,
 - Eigenvectors of $\mathbf{A}^{\top}\mathbf{A}$ are columns of \mathbf{V} ,
 - and the non-zero values of Σ are the square roots of the non-zero eigenvalues of both $\mathbf{A}\mathbf{A}^{\top}$ and $\mathbf{A}^{\top}\mathbf{A}$.
 - Dimensionality reduction
 - ...use to compute PCA
 - Computing the Moore-Penrose Pseudoinverse
 - for real \pmb{A} : $\pmb{A}^+ = \pmb{V} \pmb{\Sigma}^+ \pmb{U}^\top$ where $\pmb{\Sigma}^+$ is formed by taking the reciprocal of every non-zero diagonal element and transposing the result.

- SVD has many uses:
 - Computing the Eigendecomposition:
 - Eigenvectors of AA^{\top} are columns of U,
 - Eigenvectors of $\mathbf{A}^{\top}\mathbf{A}$ are columns of \mathbf{V} ,
 - and the non-zero values of Σ are the square roots of the non-zero eigenvalues of both $\mathbf{A}\mathbf{A}^{\top}$ and $\mathbf{A}^{\top}\mathbf{A}$.
 - Dimensionality reduction
 - ...use to compute PCA
 - Computing the Moore-Penrose Pseudoinverse
 - for real \pmb{A} : $\pmb{A}^+ = \pmb{V} \pmb{\Sigma}^+ \pmb{U}^\top$ where $\pmb{\Sigma}^+$ is formed by taking the reciprocal of every non-zero diagonal element and transposing the result.

- SVD has many uses:
 - Computing the Eigendecomposition:
 - Eigenvectors of AA^{\top} are columns of U,
 - Eigenvectors of $\mathbf{A}^{\top}\mathbf{A}$ are columns of \mathbf{V} ,
 - and the non-zero values of Σ are the square roots of the non-zero eigenvalues of both $\mathbf{A}\mathbf{A}^{\top}$ and $\mathbf{A}^{\top}\mathbf{A}$.
 - Dimensionality reduction
 - ...use to compute PCA
 - Computing the Moore-Penrose Pseudoinverse
 - for real A: $A^+ = V \Sigma^+ U^\top$ where Σ^+ is formed by taking the reciprocal of every non-zero diagonal element and transposing the result.
 - Low-rank approximation and matrix completion
 - if you take the ρ columns of \boldsymbol{U} , and the ρ rows of \boldsymbol{V}^{\top} corresponding to the ρ largest singular values, you can form the matrix $\boldsymbol{A}_{\rho} = \boldsymbol{U}_{\rho} \boldsymbol{\Sigma}_{\rho} \boldsymbol{V}_{\rho}^{\top}$ which will be the *best* rank- ρ approximation of the original \boldsymbol{A} in terms of the Frobenius norm.

- There are many standard ways of computing the SVD:
 - e.g. 'Power iteration', or 'Arnoldi iteration' or 'Lanczos algorithm' coupled with the 'Gram-Schmidt process' for orthonormalisation

Jonathon Hare Differentiation 20 / 24

- There are many standard ways of computing the SVD:
 - e.g. 'Power iteration', or 'Arnoldi iteration' or 'Lanczos algorithm' coupled with the 'Gram-Schmidt process' for orthonormalisation
- but, these don't necessarily scale up to really big problems
 - e.g. computing the SVD of a sparse matrix with 17770 rows, 480189 columns and 100480507 non-zero entries!
 - this corresponds to the data provided by Netflix when they launched the *Netflix Challenge* in 2006.

- There are many standard ways of computing the SVD:
 - e.g. 'Power iteration', or 'Arnoldi iteration' or 'Lanczos algorithm' coupled with the 'Gram-Schmidt process' for orthonormalisation
- but, these don't necessarily scale up to really big problems
 - e.g. computing the SVD of a sparse matrix with 17770 rows, 480189 columns and 100480507 non-zero entries!
 - this corresponds to the data provided by Netflix when they launched the *Netflix Challenge* in 2006.
- OK, so what can you do?

- There are many standard ways of computing the SVD:
 - e.g. 'Power iteration', or 'Arnoldi iteration' or 'Lanczos algorithm' coupled with the 'Gram-Schmidt process' for orthonormalisation
- but, these don't necessarily scale up to really big problems
 - e.g. computing the SVD of a sparse matrix with 17770 rows, 480189 columns and 100480507 non-zero entries!
 - this corresponds to the data provided by Netflix when they launched the *Netflix Challenge* in 2006.
- OK, so what can you do?
 - The 'Simon Funk' solution: realise that there is a really simple (and quick) way to compute the SVD by following gradients...

Deriving a gradient-descent solution to SVD

• One of the definitions of rank- ρ SVD of a matrix \boldsymbol{A} is that it minimises reconstruction error in terms of the Frobenius norm.

Jonathon Hare Differentiation 21 / 24

Deriving a gradient-descent solution to SVD

- One of the definitions of rank- ρ SVD of a matrix **A** is that it minimises reconstruction error in terms of the Frobenius norm.
- Without loss of generality we can write SVD as a 2-matrix decomposition $\mathbf{A} = \hat{\mathbf{U}}\hat{\mathbf{V}}^T$ by rolling in the square roots of Σ to both $\hat{\boldsymbol{U}}$ and $\hat{\boldsymbol{V}}$: $\hat{\boldsymbol{U}} = \boldsymbol{U}\boldsymbol{\Sigma}^{0.5}$ and $\hat{\boldsymbol{V}}^{\top} = \boldsymbol{\Sigma}^{0.5}\boldsymbol{V}^{\top}$.

Differentiation 21 / 24

Deriving a gradient-descent solution to SVD

- One of the definitions of rank- ρ SVD of a matrix **A** is that it minimises reconstruction error in terms of the Frobenius norm.
- Without loss of generality we can write SVD as a 2-matrix decomposition $\mathbf{A} = \hat{\mathbf{U}}\hat{\mathbf{V}}^T$ by rolling in the square roots of Σ to both $\hat{\mathbf{U}}$ and $\hat{\mathbf{V}}$: $\hat{\mathbf{U}} = \mathbf{U}\Sigma^{0.5}$ and $\hat{\mathbf{V}}^\top = \Sigma^{0.5}\mathbf{V}^\top$.
- Then we can define the decomposition as finding $\min_{\hat{m{U}},\hat{m{V}}}(\|{m{A}}-\hat{m{U}}\hat{m{V}}^{\top}\|_{\mathrm{F}})$

Jonathon Hare Differentiation 21 / 24

Deriving a gradient-descent solution to SVD

Start by expanding our optimisation problem:

$$\begin{aligned} \min_{\hat{\boldsymbol{U}},\hat{\boldsymbol{V}}}(\|\boldsymbol{A} - \hat{\boldsymbol{U}}\hat{\boldsymbol{V}}^{\top}\|_{F}) &= \min_{\hat{\boldsymbol{U}},\hat{\boldsymbol{V}}}(\sum_{r}\sum_{c}(A_{rc} - \hat{U}_{r}\hat{V}_{c})^{2}) \\ &= \min_{\hat{\boldsymbol{U}},\hat{\boldsymbol{V}}}(\sum_{r}\sum_{c}(A_{rc} - \sum_{p=1}^{\rho}\hat{U}_{rp}\hat{V}_{cp})^{2}) \end{aligned}$$

Jonathon Hare Differentiation 22 / 24

Deriving a gradient-descent solution to SVD

Start by expanding our optimisation problem:

$$\begin{aligned} \min_{\hat{\boldsymbol{U}},\hat{\boldsymbol{V}}}(\|\boldsymbol{A} - \hat{\boldsymbol{U}}\hat{\boldsymbol{V}}^{\top}\|_{F}) &= \min_{\hat{\boldsymbol{U}},\hat{\boldsymbol{V}}}(\sum_{r} \sum_{c} (A_{rc} - \hat{U}_{r}\hat{V}_{c})^{2}) \\ &= \min_{\hat{\boldsymbol{U}},\hat{\boldsymbol{V}}}(\sum_{r} \sum_{c} (A_{rc} - \sum_{p=1}^{\rho} \hat{U}_{rp}\hat{V}_{cp})^{2}) \end{aligned}$$

Let $e_{rc} = A_{rc} - \sum_{p=0}^{\rho} \hat{U}_{rp} \hat{V}_{cp}$ denote the error. Then, our problem becomes:

$$Minimise J = \sum_{r} \sum_{c} e_{rc}^{2}$$

We can then differentiate with respect to specific variables \hat{U}_{rq} and \hat{V}_{cq}

Jonathon Hare Differentiation 22 / 24

Deriving a gradient-descent solution to SVD

We can then differentiate with respect to specific variables \hat{U}_{rq} and \hat{V}_{cq} :

$$\frac{\partial J}{\partial \hat{U}_{rq}} = \sum_{r} \sum_{c} 2e_{rc} \frac{\partial e}{\partial \hat{U}_{rq}} = -2 \sum_{r} \sum_{c} \hat{V}_{cq} e$$
$$\frac{\partial J}{\partial \hat{V}_{cq}} = \sum_{r} \sum_{c} 2e_{rc} \frac{\partial e}{\partial \hat{V}_{cq}} = -2 \sum_{r} \sum_{c} \hat{U}_{rq} e$$

Deriving a gradient-descent solution to SVD

We can then differentiate with respect to specific variables \hat{U}_{rq} and \hat{V}_{cq} :

$$\frac{\partial J}{\partial \hat{U}_{rq}} = \sum_{r} \sum_{c} 2e_{rc} \frac{\partial e}{\partial \hat{U}_{rq}} = -2 \sum_{r} \sum_{c} \hat{V}_{cq} e$$
$$\frac{\partial J}{\partial \hat{V}_{cq}} = \sum_{r} \sum_{c} 2e_{rc} \frac{\partial e}{\partial \hat{V}_{cq}} = -2 \sum_{r} \sum_{c} \hat{U}_{rq} e$$

and use this as the basis for a gradient descent algorithm:

$$\hat{U}_{rq} \Leftarrow \hat{U}_{rq} + \lambda \sum_{r} \sum_{c} \hat{V}_{cq} e_{rc}$$

$$\hat{V}_{cq} \Leftarrow \hat{V}_{cq} + \lambda \sum_{r} \sum_{c} \hat{U}_{rq} e_{rc}$$

Jonathon Hare Differentiation 23 / 24

Deriving a gradient-descent solution to SVD

 A stochastic version of this algorithm (updates on one single item of A at a time) helped win the Netflix Challenge competition in 2009.

Deriving a gradient-descent solution to SVD

- A stochastic version of this algorithm (updates on one single item of A at a time) helped win the Netflix Challenge competition in 2009.
- It was both fast and memory efficient