筆答専門試験科目(午前) システム制御系(数学)

2022 大修

時間 9:30~11:30

注意事項

- 1. 問題1から問題4まで、すべてについて解答せよ。
- 2. 解答始めの合図があるまで問題冊子を開かないこと。
- 3. 解答は問題ごとに別々の答案用紙に記入せよ。 各答案用紙の裏面も解答に使用してよいが、ひとつの問題は1枚に収めること。
- 4. 解答開始の合図があったら、各答案用紙の受験番号欄に受験番号を、解答欄左上にその答案用紙で解答する問題番号を、試験科目名欄に科目名「システム制御系(数学)」を記入せよ。なお、答案用紙に氏名は書かないこと。
- 5. 提出時には、答案用紙を使わなかった分も含め全て提出すること。

(このページは落丁ではありません。問題は次ページ以降に記載されています。)

問1 次の極限値を求めよ。

$$\lim_{x \to 0} \frac{e^x + e^{-x} - x^2 - 2}{\sin^2 x - x^2}$$

問2

(1) 次の複素積分を求めよ。ただし、積分路 C は複素平面上の $|z-\pi i|=1$ で表される円周上を反時計回りに一周する経路とする。ここで、 $i=\sqrt{-1}$ とする。

$$\oint_C \frac{\cosh\frac{z}{4}}{z - \pi i} dz$$

(2) 次の複素積分を求めよ。ただし、積分路 C は複素平面上の |z|=2 で表される 円周上を反時計回りに一周する経路とする。ここで、 $i=\sqrt{-1}$ とする。

$$\oint_C \frac{e^{2z}}{(z+i)^3} dz$$

問3

(1) 次の関数のマクローリン級数を求めよ。ただし、 α と x は実数とする。

$$f(x) = (1+x)^{\alpha}$$

(2) (1)で求めた級数は、 α の値によって収束する条件が異なる。この級数が収束する x の範囲を求めよ。

(問題1終わり)

問1 次式で与えられる行列 *A* の固有値をすべて求めよ。また、それぞれの固有値に対する固有ベクトルを求めよ。なお、固有ベクトルは要素の絶対値の和が 1 になるように規格化すること。

$$A = \begin{bmatrix} 1 & -1 & -1 \\ 0 & 1 & -1 \\ -1 & 0 & 2 \end{bmatrix}$$

間2 間1の行列 A の固有値のうち、絶対値が最小となるものを λ_1 、絶対値が最大となるものを λ_2 とおく。 λ_1 および λ_2 に対応する間 1 で求めた固有ベクトルをそれぞれ p,q とおく。このとき、以下の方程式の解 r のうち、そのユークリッドノルム ||r|| が最小となるものを求めよ。なお、 I_3 は 3×3 の単位行列である。

$$(A - \lambda_2 I_3)r = q$$

- **問3** 問2のベクトル p,q および r を用いて,行列 $P = [p \ q \ r]$ を定義する。このとき, P の逆行列 P^{-1} を求めよ。また, $B = P^{-1}AP$ を求めよ。
- **問4** 問3の行列 B を考える。非負の実数 $t \ge 0$ に対する e^{-Bt} の全ての行列要素を求めよ。

0 以上の整数値をとる独立な確率変数 X,Y を考え、それぞれ以下の確率分布 f(X)、g(Y) に従うとする。ここで、0 < q < 1、 $\lambda > 0$ である。また、E[] は期待値を表す。以下の間に答えよ。導出過程も示すこと。

$$f(X=x) = \frac{\lambda^x e^{-\lambda}}{x!}$$

$$g(Y = y) = \begin{cases} (1 - q)q^{y-1} & (y > 0) \\ 0 & (y = 0) \end{cases}$$

- **問1** ある確率変数 S の分散が σ_S^2 であるとき, $\sigma_S^2 = E[S^2] (E[S])^2$ が成立することを示せ。
- **問2** 確率変数 X のモーメント母関数 $M_{x}(t)$ は次のように表される。

$$M_X(t) = E[e^{Xt}] = \sum_{x=0}^{\infty} e^{xt} f(X = x) = \exp(\lambda(e^t - 1))$$

モーメント母関数とモーメントの関係を利用して、確率変数 X の平均 μ_X と分散 σ_X^2 を求め、 λ を用いて表せ。

間3 確率変数 Y のモーメント母関数 $M_Y(t)$ が次の式で表されることを示せ。 なお、 $t < -\log_e q$ とする。

$$M_Y(t) = \frac{(1-q)e^t}{1-qe^t}$$

- **間4** 確率変数 Z = X + Y とするとき、Z のモーメント母関数 $M_Z(t)$ を、X と Y のモーメント母関数 $M_X(t)$ と $M_Y(t)$ を用いて表せ。
- **問5** q = 0.5, $\lambda = 1$ とし, $t < \log_e 2$ とする。
 - (1) 確率変数 Z = X + Y のモーメント母関数 $M_Z(t)$ を求めよ。
 - (2) モーメント母関数 $M_z(t)$ の t に関する微分を求めよ。
 - (3) 確率変数 Z の平均 μ_Z を求めよ。

(問題3終わり)

2つの独立な実変数 x, t の実関数 u(x,t) は, t に関するラプラス変換が可能であるとする。実関数 u(x,t) は以下の偏微分方程式,境界条件,初期条件を満たす。

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} + \sin \pi t \sin \pi x \qquad (0 \le x \le 1, \quad 0 \le t < \infty)$$
 (1)

境界条件:
$$u(0,t) = u(1,t) = 0$$

初期条件:
$$u(x,0) = \frac{\partial u}{\partial t}(x,0) = 0$$

なお, u(x,t) の t に関するラプラス変換 U(x,s) は, 複素数 s を変数として次式で表される。

$$U(x,s) = \int_0^\infty u(x,t)e^{-st}dt$$

以下の問に答えよ。導出過程も示すこと。

- **問1** 式(1)をラプラス変換し、初期条件を考慮して、U(x,s) の x に関する微分方程式を導出せよ。
- 問2 問1で導出した微分方程式を解き、解 U(x,s) を求めよ。
- **問3** 問2で得られた解をラプラス逆変換し、解 u(x,t) を求めよ。

(問題4終わり)

筆答専門試験科目(午前) システム制御系 (数学) 時間 9:30~11:30

2022 大修

追試験

これ以降は、追試験の問題です。 システム制御系では、系の方針により、

2022年4月入学追試験の過去問題も公開しております。

注意事項

- 1. 問題1から問題4まで、すべてについて解答せよ。
- 2. 解答始めの合図があるまで問題冊子を開かないこと。
- 3. 解答は問題ごとに別々の答案用紙に記入せよ。 各答案用紙の裏面も解答に使用してよいが、ひとつの問題は1枚に収めること。
- 4. 解答開始の合図があったら、各答案用紙の受験番号欄に受験番号を、解答欄左上にその 答案用紙で解答する問題番号を、試験科目名欄に科目名「システム制御系(数学)」を 記入せよ。なお,答案用紙に氏名は書かないこと。
- 5. 提出時には、答案用紙を使わなかった分も含め全て提出すること。

(このページは落丁ではありません。問題は次ページ以降に記載されています。)

問1 テイラー展開を使って、次の極限値を求めよ。ただし、a、b は実数とする。

$$\lim_{x \to \infty} \left\{ \sqrt{(x+a)(x+b)} - \sqrt{(x-a)(x-b)} \right\}$$

問2

(1) 次の複素積分を求めよ。ただし、積分路 C_1 は複素平面上の $|z+\pi i|=1$ で表される 円周上を反時計回りに一周する経路とする。ここで、 $i=\sqrt{-1}$ とする。

$$\oint_{C_1} \frac{e^{\frac{z}{3}}}{z + \pi i} dz$$

(2) 留数を求めることにより、次の複素積分を求めよ。ただし、積分路 C_2 は複素平面上の |z|=2 で表される円周上を反時計回りに一周する経路とする。ここで、 $i=\sqrt{-1}$ とする。

$$\oint_{C_2} \frac{e^{-z}}{(z-i)^2} dz$$

問3 以下の曲線および直線で囲まれる図形 D を考える。

曲線
$$y = \frac{2\log_e(x+1)}{x+1}$$
 (ただし $x > -1$),

直線
$$x = e^2 - 1$$
, 直線 $x = \frac{1}{e} - 1$, 直線 $y = 0$

- (1) 図形 D の面積 S を求めよ。
- (2) 図形 D をx軸のまわりに回転してできる回転体の体積 V を求めよ。

実数 t の微分可能な実関数 $f_1(t)$, $f_2(t)$, $f_3(t)$, $f_4(t)$ に対して、それらの線形結合

 $f(t) = a_1 f_1(t) + a_2 f_2(t) + a_3 f_3(t) + a_4 f_4(t)$ $(a_1, a_2, a_3, a_4$ は実数)

で表される関数全体のなす空間を $span\{f_1(t),f_2(t),f_3(t),f_4(t)\}$ と表す。以下の問に答えよ。

問1 次式で与えられる行列 T の逆行列を求めよ。

$$T = \frac{1}{4} \begin{bmatrix} 4 & 0 & 3 & 0 \\ 0 & 4 & 0 & 3 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

問2 以下の空欄(1)~(5)を適切な数式で埋めよ。(1)~(4)の答は a_1, a_2, a_3, a_4 を用いて表せ。

 $X = \text{span} \{ \sin t, \cos t, \sin 3t, \cos 3t \}$ を考えると、Xの要素 f は

 $f(t) = a_1 \sin t + a_2 \cos t + a_3 \sin 3t + a_4 \cos 3t \quad (a_1, a_2, a_3, a_4 は実数)$

と表される。この f の t に関する微分 f' も X の要素である。すなわち、f' は

 $f'(t) = b_1 \sin t + b_2 \cos t + b_3 \sin 3t + b_4 \cos 3t$ $(b_1, b_2, b_3, b_4$ は実数)

と表される。ここで, $b_1=$ 1 1 1 1 1 1 1 2 1

$$\begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} = N \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix}$$

を満足する行列 N= (5) を、X の要素を t で微分する写像の、基底 $\{\sin t,\cos t,\sin 3t,\cos 3t\}$ に関する行列表示と呼ぶ。

問3 $X = \text{span} \{ \sin t, \cos t, \sin 3t, \cos 3t \}$ とする。

(1) 次式を満足する実数 c_1, c_2, c_3, c_4 および d_1, d_2, d_3, d_4 を求めよ。

$$\sin^3 t = c_1 \sin t + c_2 \cos t + c_3 \sin 3t + c_4 \cos 3t$$

 $\cos^3 t = d_1 \sin t + d_2 \cos t + d_3 \sin 3t + d_4 \cos 3t$

- (2) X の任意の要素 f が $\sin t$, $\cos t$, $\sin^3 t$, $\cos^3 t$ の線形結合で表せることを示せ。
- (3) Xの要素 f を t で微分する写像の、基底 $\{\sin t, \cos t, \sin^3 t, \cos^3 t\}$ に関する行列表示を求めよ。

(問題2終わり)

- **間1** 形と見た目が同じ2つのコイン A, B をランダムに1つ選び, 選んだコインを2回投げたところ, 1回目が表で, 2回目が裏であった。コインには表と裏しかなく, コイン A の表の出る確率は 0.6, コイン B の表の出る確率は 0.5 である。
 - (1) 選んだコインが A である尤度 L_A と、選んだコインが B である尤度 L_B を求めよ。
 - (2) 選んだコインが A である事後確率 P_A と、選んだコインが B である事後確率 P_B を求めよ。
- **問2** 3つの工場 A, B, C である製品が作られており、それぞれの生産割合は 0.6, 0.3, 0.1 である。また、それぞれの不良品が発生する割合を F_A , F_B , F_C とする。製品の不良が報告されたとき、その不良品が工場 A で生産された確率を F_A , F_B , F_C を用いて表せ。

$$y(a_1, a_2) = a_1 x_1 + a_2 x_2 + \varepsilon$$

ここで a_1 , a_2 は測定パラメータであり, ϵ は下記の確率密度関数に従う誤差である。

$$f(\varepsilon) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{\varepsilon^2}{2}\right]$$

測定パラメータを変化させながら、測定を3回行い、次のような結果を得た。

測定パラメータ (a ₁ , a ₂)	(1,0)	(0,1)	(1,1)
測定値 y	-5	7	1

- (1) 3回測定したときの x_1 と x_2 に関する尤度Lを求めよ。
- (2) 最尤法により x_1 と x_2 を推定せよ。
- (3) 文献から、 x_1 と x_2 の差 x_1 $-x_2$ は、平均 1、分散 2 の正規分布に従うことが確認された。この情報を事前確率に利用して、3 回測定したときの x_1 と x_2 を事後確率最大化法により推定せよ。

(問題3終わり)

独立変数 t の関数 u(t) に関する以下の微分方程式を解く。

$$\frac{d^2u}{dt^2} - 2t\frac{du}{dt} + 4u = 0\tag{1}$$

ここで、関数 u(t) の t=0 まわりの級数展開を式(2)とおき、式(1)の解の候補とする。

$$u(t) = \sum_{n=0}^{\infty} c_n t^n \tag{2}$$

以下の問に答えよ。導出過程も示すこと。

- **問1** c_n の漸化式を求めよ。
- **間2** 間1で求めた漸化式について、偶数項 n=2m と奇数項 n=2m+1 の場合にわけて考える。なお、m は 0 以上の整数である。偶数項について、 c_2 および c_{2m} ($m \ge 2$)を求めよ。さらに、奇数項について c_3 および c_{2m+1} ($m \ge 2$)を求めよ。なお、解答には m, c_0 , c_1 を用いても良い。
- 問3 u(t) の収束半径を調べよ。
- **問4** $c_0 = c_1 = 1$ とする。 u(t) の近似解を t の 7 次項まで求めよ。