

Sensitive Gate Silicon Controlled Rectifier

General Description

Glassivated PNPN devices designed for high volume consumer applications such as temperature, light, and speed control; process and remote control, and warning systems where reliability of operation is important.

Features

- Glassivated Surface for Reliability and Uniformity
- Power Rated at Economical Prices
- Practical Level Triggering and Holding Characteristics
- Flat,Rugged,Thermopad Construction for Low Thermal Resistance
- Sensitive Gate Triggering

Maximum Ratings ($T_j=25$ unless otherwise specified)

T_{stg} ——Storage Temperature
T _j ——Operating Junction Temperature
V _{DRM} — Peak Repetitive Off-State Voltage(Forward) 400V
V _{RRM} — Peak Repetitive Off-State Voltage(Reverse) 400V
It (RMS) ——On-State R.M.S Current (180° Conduction Angles, $T_C = 80 ^{\circ}$ C)4A
$I_{T(AV)}$ ——On-State Average Current (180° Conduction Angles, T_C = 80 °C)2.55A
ITSM ——Surge On-State Current (1/2 Cycle, 60Hz, Sine Wave, Non-repetitive, $T_j = 110 ^{\circ}\text{C}$) 20A
I^2t —Circuit Fusing Considerations(t = 8.3ms) — 1.65 A^2 s
P_{GM} ——Forward Peak Gate Power Dissipation (Pulse Width 1.0 μsec , T_c =80) —— 0.5W
$P_{G(AV)}$ ——Forward Average Gate Power Dissipation (Pulse Width 1.0 μ sec, T_c =80)0.1W
I_{GM} ——Forward Peak Gate Current (Pulse Width 1.0 μ sec, T_c =80)0.2A

HC106D

$\textbf{Electrical Characteristics} \text{ (} T_{\text{C}}\text{=}25 \text{ } \text{ unless otherwise specified)}$

Symbol	Items	Min.	Тур.	Max.	Unit	Conditions
I_{DRM}	Peak Repetitive Forward or					V _{AK} =Rated V _{DRM} or V _{RRM}
or	Reverse Blocking Current.					$R_{KG}=1000 \text{ ohms}$
I_{RRM}				10	uA	$T_j=25$
				100		$T_{j}=110$
V_{TM}	Peak Forward On-State Voltage (1)			2.2	V	I _{FM} =1A
I_{GT}	Gate Trigger Current (2)					$V_{AK} = 6V(DC)$, $R_L = 100$ ohms
			15	200	uA	$T_j=25$
			35	500		T_{j} =-40
V_{GT}	Gate Trigger Voltage (2)					$V_{AK} = 6V(DC)$, $R_L = 100$ ohms
		0.4	0.6	0.8	V	$T_j=25$
		0.5	0.75	1.0		T_{j} =-40
V_{GRM}	Peak Reverse Gate Voltage			6.0	V	IGR=10 uA
$V_{ m GD}$	Gate Non-Trigger Voltage	0.2			V	V _{AK} =12V, R _L =100 ohms
						$T_{j}=110$
I_{H}	Holding Current					Initiating current=20mA,
						Gate open, $V_D = 12V(DC)$
			0.19	3.0	mA	$T_j=25$
			0.33	6.0		$T_{i} = -40$
			0.07	2.0		$T_{j}=110$
I_{L}	Latching Current					$V_{AK} = 12V, I_G = 20mA$
			0.2	5.0	mA	$T_j=25$
			0.35			$T_{i} = -40$
Rth(j-c)	Thermal Resistance			3.0	/W	Junction to Case
Rth(j-a)	Thermal Resistance			75	/W	Junction to Ambient
TL	Maximum Lead Temperature for Soldering Purpose 1/8", from case for 10 Seconds			260		
dv/dt	Critical Rate-of-Rise Off-state Voltage		8.0		V/µs	V_{AK} = Rated V_{DRM} , Exponential waveform , R_{GK} =1000 ohms Gate open Tj =110

(1) Pulse Test: Pulse Width 2.0ms, Duty Cycle 2%

(2) R_{GK} is not included in measurement

HC106D

Performance Curves

Figure 1. Average Current Derating

Figure 2. Maximum On-State Power Dissipation

Figure 3. Typical Gate Trigger Current versus Junction Temperature

Figure 4. Typical Holding Current versus Junction Temperature

Figure 5. Typical Gate Trigger Voltage versus Junction Temperature

Figure 6. Typical Latching Current versus Junction Temperature