

Genotype-by-environment interactions across discrete climate regions in U.S. beef cattle

Harly Durbin Ph.D. student, University of Missouri Intern, Angus Genetics, Inc.

Phenotype =

<u>G</u>enotype

Nutrition & management

Weather & climate

Environment

Phenotype =

<u>G</u>enotype

Nutrition & management

Weather & climate

Environment

Genotype*Environment

- Beef cattle spend most of life on pasture in a wide range of environments, management strategies
- Genetic evaluations conducted at the national level estimate of average performance of progeny across all environments

• P: How much does cattle growth differ between environmental regions?

• E: How much of the difference is due to management & environment vs. genotype?

• **G x E:** How much re-ranking of genotypes across regions? What variants significantly interact with the environment?

Predicting genetic merit for weaning weaning weight

$$y = Xb + Z_1u + Z_2m + Z_3p + e$$

- y = weaning weight at ~7 months of age adjusted to 205 days
- b = fixed contemporary group effect (environment)
- u = random genetic effect of calf (direct)
- m = random genetic effect of dam (maternal)
- p = random maternal permanent environment effect

Continuous **Discrete** climate K-means clustering — environmental variables regions Temperature Precipitation Troy Rowan Elevation

Estimating the effect of environment: contemporary groups

Set of animals who had equal opportunity to perform:

- Managed alike at same farm
- Same sex, close in age
- Exposed to the same environmental conditions
 & feed resources

$$y = Xb + Z_1u + Z_2m + Z_3p + e$$

Contemporary group solution

Weaning weight contemporary group solutions

(1990-present)

- 2: Southeast
- 8: Fescue Belt
- 5: Arid Prairie
- 1: Desert
- 7: Forested Mountains
- 9: Upper Midwest & Northeast
- 3: High Plains

$$P = G + E + G^* E$$

Estimating the extent of G x E interaction

Random regression (reaction norm) models

- Genotypes regressed on continuous variable (i.e., temperature, disease incidence, etc.)
 - Each genotype has a unique curve
- Difficult to capture stressors that aren't explicitly measured

$P = G + E + G^*E$

Multivariate models

- Observations on the same variable made under different conditions treated as separate (potentially correlated) traits
- Genetic correlation (r_g) interpreted as degree of reranking across environments
 - 0.8 threshold (Falconer, 1952)
- May be better for capturing local stressors & interactions

Multivariate model data & methods

- Keep:
 - Records after 1990
 - Contemporary groups with at least 15 animals
 - Zip codes with at least 10 years of data (maternal effect calculation)
- Within High Plains and comparison region, sample zip codes up to ~100,000 total records
- Calculate variance components & genetic correlations using AIREMLF90
 - 10 bootstrapped iterations with re-sampling

$$P = G + E + G^*E$$

Minimal G x E in weaning weight direct

Region	N records	Min. r _g	Mean r _g	Max. r _g	SD r _g
1: Desert	113,834	0.805	0.860	0.914	0.039
2: Southeast	259,394	0.757	0.867	0.921	0.050
3: High Plains	1,659,770	-	_	_	-
5: Arid Prairie	129,173	0.802	0.867	0.916	0.038
7: Forested Mountains	549,759	0.752	0.859	0.892	0.048
8: Fescue Belt	831,581	0.819	0.868	0.961	0.050
9: Upper Midwest & Northeast	416,763	0.848	0.893	0.953	0.043

P = G + E + G*E

Possible G x E in weaning weight maternal

Region	N records	Min. r _g	Mean r _g	Max. r _g	SD r _g
1: Desert	113,834	0.800	0.861	0.945	0.055
2: Southeast	259,394	0.672	0.772	0.892	0.068
3: High Plains	1,659,770	-	_	_	-
5: Arid Prairie	129,173	0.783	0.867	0.915	0.050
7: Forested Mountains	549,759	0.778	0.847	0.904	0.047
8: Fescue Belt	831,581	0.665	0.815	0.950	0.087
9: Upper Midwest & Northeast	416,763	0.794	0.854	0.950	0.052

 $P = G + E + G^*E$

Single-step GWAS

- Combines genotyped and non-genotyped pedigreed animals using BLUPF90 (Aguilar et al., 2019)
 - Genotypes "projected" onto non-genotyped animals
 - Calculate p-values using PVE
- Animals genotyped 18K ~50K commercial assays, imputed to 54K
 - 168,980 phenotyped/10,472 genotyped animals in High Plains
 - 137,901 phenotyped/10,407 genotyped animals in Southeast
 - 123,461 phenotyped/10,429 genotyped animals in Fescue Belt

Weaning weight (direct effect)

Weaning weight (maternal effect)

Conclusions

- Little evidence for G x E in weaning weight direct
- Possible G x E in maternal effect of weaning weight
- Calving season

Future directions

- Yearling weight & birth weight
- Robustness: genotypes that show consistent performance across environmental regions
- Genotype imputation to higher density

Acknowledgements

- AGI team
 - Dr. Steve Miller
 - Dr. Duc Lu
 - Dr. Dan Moser
 - Kelli Retallick
 - Lou Ann Adams
 - Jason Kenyon
 - Cody Combs
- ANGUS GENETICS

Data provided by the American Angus Association

- MU team
 - Dr. Jared Decker
 - Dr. Bob Schnabel
 - Helen Yampara-Iquise
 - Troy Rowan
 - Dr. Camila Urbano-Braz
 - Sara Nilson
 - Jenna Kalleberg
- Photos c/o Oak Hollow Angus and Rowan Ranch
- I'm funded by USDA grant MOC00051167,

 "Identifying local adaptation and creating regionspecific genomic predictions in beef cattle."
- Thanks to the USDA NRSP8 Jorgenson Award for funding my trip here!!

MU Animal Genomics is recruiting Ph.D. students & post-docs!!!!

Jared Decker

deckerje@missouri.edu

epop_gen_JED on Twitter

Bob Schnabel schnabelremissouri.edu

"Yes ... I believe there's a question in the back."

Weaning weight direct (spring calving)

Weaning weight maternal (spring calving)

Weaning weight contemporary group solutions reflect year-to-year environmental trends Mean contemporary group solution 560 1: Desert ✓ 2: Southeast ✓ 3: High Plains 520 5: Arid Prairie 7: Forested Mountains √ 8: Fescue Belt 9: Upper Midwest & Northeast 480 National average 440 P = E + G + G*E1980 2010 2020 1990 2000

Weaning weight contemporary group solutions reflect year-to-year environmental trends

1980

1990