Mortgage Data Analysis

A Capstone Project for a mortgage lender

Shige Tajima, Ph.D.

linkedin.com/in/stajima github.com/shigetajima **Loan Processing Stages**

- Money "Funded"

Motivations on "Locked to Funded" study

- Prediction of "Locked to Funded" time
- How to reduce "locked to funded"
- Identify most important features
- Estimation of the lock period
- * Prediction of "Locked to Funded" and reducing it will be beneficial to both the company and customers

Data set

- Data is from a mortgage lender in the Bay Area.
- Many features (~500) including 200 categorical features
 - Fees/costs
 - Status of tasks
 - Milestone dates
 - Info on customers and company staff
- Loan processing procedures changed a few times since the company started

Locked to Funded (# of days)

Cohort (# of months since the company started)

EDA / Feature Engineering

New features added:

A = # of active loans per day

B = avg # of active loans for each loan

C = # of available staff for each day

D = Loan Weight = B / C

EDA / Feature Engineering

New features added:

A = # of active loans per day

B = avg # of active loans for each loan

C = # of available staff for each day

D = Loan Weight = B / C

"Loan Weight" (x) shows a correlation with "Locked To Funded" (y)

Analysis #1 -- Regression models

- Prediction of "locked to funded"
- Lasso: found two dominant features:
 - Fees for extending the lock period
 - Loan weight
- Models and R2 scores

models	Cross validation R2 score	
OLS	0.57	
Random forest	0.60	
Ada Boost	0.62	
Gradient Descent Boosting	0.66	

Analysis #2 -- Classification models

Prediction of Locked to Funded "period"

- "Locked to funded" data were divided into 5 bins
- Used Random Forest Classifier
- Use top 50 features and do Grid Search to optimize params (n_estimators, max_features, max_depth, etc)
- Random Forest: cross validation accuracy = 0.54

Top features are related to:

- Fees for extending the lock period
- Loan weight

Future work

- Staff / pair performance analysis
- Estimation of the loan processing cost
- Estimation of # of days from "Locked" to "Clear to Close" (a major milestone before money is 'funded')

Thank you!

Shige Tajima, Ph.D.

stjm05@gmail.com linkedin.com/in/stajima github.com/shigetajima

Backup slides

Analysis - OLS

Feature selection criteria:

- 1. Correlation with 'y' (locked_to_funded) (> 0.2)
- 2. Small VIF (Variance Inflation Factor) (< 5.0)
- 3. Large Statistical Significance: (p_value < 0.05)

Lasso regularization was used to identify most important features

 \rightarrow select 5 best features, and use them in OLS:

OLS Results

- 5-fold cross validation score = 0.57
- Dominant features found
 - process_lock_extension_fee_s,
 - loan_overlap_weight_s,
 - appraisal_ordered_to_received_c,
 - commission_due_c (negative)

Random Forest Regressor-- Feature Importances

5-fold cross_val_score = 0.60 (avg)

1.	process_lock_extension_fee_s	(0.280300)
2.	Extension_bps_c	(0.221298)
3.	loan_overlap_weight_s	(0.145513)
4.	loan_weight_s	(0.023385)
5.	appraisal_ordered_to_received_c	(0.012643)
6.	nstaff_s	(0.012452)
7.	commission_due_c	(0.007477)
8.	gross_revenue_c	(0.006962)
9.	rate_closing_costs_total_c	(0.006785)
10	. days_since_opp_created_c	(0.006541)

