

Algorithm design and analysis Divide and Conquer

Nguyễn Quốc Thái

CONTENT

- (1) Review Recursion
- (2) Sorting Problem
- (3) Divide-and-Conquer Analysis of Divide-and-Conquer Merge Sort Quick Sort
- (4) Summary (Algorithm design and analysis)
- (5) Exam

Review Recursion

Fibonacci Number

- Recursion: a function makes one or more calls to itself during execution
- Powerful for performing repetitive tasks

```
Base case
Avoid infinite recursion

def fibonacci(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fibonacci(n-1) + fibonacci(n-2)

Smaller instance
    fibonacci(4)

E> 3
```


Review Recursion

Fibonacci Number


```
def fibonacci(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fibonacci(n-1) + fibonacci(n-2)
```

□→ 3

T(n) is $O(2^n)$

Sorting Problem

Sorting Problem

Input: a sequence of n number $\langle a_1, a_2, ..., a_n \rangle$

Output: a permutation (reordering) <a'_1, a'_2,..., a'_n>

such that $a'_1 \le a'_2 \le ... \le a'_n$

Sorting Problem

Sorting Problem Selection Sort

```
def selection_sort(array):
    n = len(array)
    for step in range(n):
        min_idx = step
        for i in range(step + 1, n):
            if array[i] < array[min_idx]:</pre>
                min_idx = i
        array[step], array[min_idx] = array[min_idx], array[step]
    return array
```


Sorting Problem

Sorting Problem Insertion Sort

```
def insertion_sort(S):
    n = len(S)
    for step in range(1, n):
        key = S[step]
        i = step - 1
        while i >= 0 and key < S[i]:
            S[i + 1] = S[i]
            i = i - 1
        S[i + 1] = key
    return S</pre>
```


- Use recursion in an algorithmic design
- > Three steps:
 - **Divide** the problem into a number of subproblems: smaller instances of the same problem
 - **Conquer** the subproblems by solving recursively. If they are small enough, solve the subproblems as base cases.
 - **Combine** the solutions to the subproblems into the solution for the original problem

- Use recursion in an algorithmic design
- Three steps:
 - Divide
 - Conquer
 - Combine

- Use recursion in an algorithmic design
- > Three steps:
 - Divide
 - Conquer
 - Combine

- Use recursion in an algorithmic design
- > Three steps:
 - Divide
 - Conquer
 - Combine
- Example:
 - Merge Sort
 - Quick Sort

Schema

```
DivideConquer(n)
       if n <= n0:
                                    # If n enough small (base case)
              return solve(A)
       else:
              # Divide into a subproblems, each instance: n/b
              subproblem in subproblems:
                     DivideConquer(n/b)
              combine(all subproblems)
       return solution
```


MERGE SORT

- Divide: divide the n-element sequence into two subsequences of n/2 elements each base case: sequence has length = 1, is already sorted
- Conquer: sort the two subsequences recursively using merge sort
- Combine: merge the two sorted subsequences to produce the sorted sequence

MERGE SORT

MERGE SORT

MERGE SORT

Divide – Conquer - Combine

Merge is the key operation in merge sort

MERGE SORT

Divide – Conquer - Combine

Merge is the key operation in merge sort

MERGE SORT

Merge Function

MERGE SORT

Merge Function

Subarray S_1 $\begin{bmatrix} 2 & 5 & 7 & 30 \\ i=0 \end{bmatrix}$

Subarray S_2 4 8 j=0

Subarray S_1 $\begin{bmatrix} 2 & 5 & 7 & 30 \end{bmatrix}$ i=1

Subarray S_2 4 8 j=0

Compare

2 4

4

5

Combined array S'

i+j=0

Compare Combined array S'

MERGE SORT

Merge Function

Subarray S₁ 2 5 7 30

i=1

Subarray S₂ 4 8

j=1

Subarray S_1 2 5 7 30 i=2

Subarray S₂

4 8 j=1

Compare

5

8

Combined array S'

2 4 5 i+j=2

Compare

7

8

Combined array S'

2 4 5 7 i+j=3

MERGE SORT

Merge Function

Subarray S₁

5

30

i=3

Compare

30

8

Combined array S'

5 8

i+j=4

Subarray S₂

8

j=1

Compare

30

Combined array S'

2 5 8 30 4

i+j=5

Subarray S₁

5

30

i=3

Subarray S₂

8

j=2

21

MERGE SORT

Merge Function

The number of compare operation?

```
def merge(S1, S2, S):
    i = j = 0
    while i + j < len(S):
        if j == len(S2) or (i < len(S1) and S1[i] < S2[j]):
            S[i+j] = S1[i]
            i += 1
        else:
            S[i+j] = S2[j]
            j += 1</pre>
S = [2, 5, 7, 30, 4, 8]
S1 = [2, 5, 7, 30]
S2 = [4, 8]
merge(S1, S2, S)
S
```

[2, 4, 5, 7, 8, 30]

MERGE SORT

Merge Function

$T(n)_{merge}$ is O(n)

```
def merge(S1, S2, S):
    i = j = 0
    while i + j < len(S):
        if j == len(S2) or (i < len(S1) and S1[i] < S2[j]):
            S[i+j] = S1[i]
            i += 1
        else:
            S[i+j] = S2[j]
            j += 1</pre>
S = [2, 5, 7, 30, 4, 8]
S1 = [2, 5, 7, 30]
S2 = [4, 8]
merge(S1, S2, S)
S
```

[2, 4, 5, 7, 8, 30]

MERGE SORT

```
def merge(S1, S2, S):
    i = j = 0
    while i + j < len(S):
        if j == len(S2) or (i < len(S1) and S1[i] < S2[j]):
            S[i+j] = S1[i]
            i += 1
        else:
            S[i+j] = S2[j]
            j += 1</pre>
S = [2, 5, 7, 30, 4, 8]
S1 = [2, 5, 7, 30]
S2 = [4, 8]
merge(S1, S2, S)
S
```

```
[2, 4, 5, 7, 8, 30]
```

```
def merge sort(S):
    n = len(S)
    if n < 2:
                          Base case
       return
    mid = n//2
                            Divide
    S1 = S[0:mid]
    S2 = S[mid:n]
    merge sort(S1)
                           Conquer
    merge sort(S2)
                          Combine
    merge(S1, S2, S)
S = [7, 2, 5, 30, 16, 8, 4, 17]
merge sort(S)
[2, 4, 5, 7, 8, 16, 17, 30]
```


MERGE SORT

Analysis of Divide-and-Conquer

- Described by recursive equation
- > Suppose T(n) is the running time on a problem of size n

$$T(n) = \begin{cases} O(1) & \text{if } n \leq n_c \\ aT(n/b) + D(n) + C(n) & \text{if } n > n_c \end{cases}$$

Where:

- a: number of subproblems
- n/b: size of each subproblem
- D(n): cost of divide operation
- C(n): cost of combination operation

MERGE SORT

- > Analysis of MERGE SORT
 - Divide: D(n) = O(1)
 - **Conquer:** a=2, b=2 => 2T(n/2)
 - **Combine:** C(n) = O(n)

$$T(n) = \begin{cases} 0(1) & \text{if } n = 1 \\ 2T(n/2) + 0(n) & \text{if } n > 1 \end{cases}$$

$$T(n) = \begin{cases} c & \text{if } n = 1 \\ 2T(n/2) + cn & \text{if } n > 1 \end{cases}$$

Compute T(n)

MERGE SORT

- Analysis of MERGE SORT
 - Divide: D(n) = O(1)
 - **Conquer:** a=2, b=2 => 2T(n/2)
 - **Combine:** C(n) = O(n)

$$T(n) = \begin{cases} 0(1) & \text{if } n = 1 \\ 2T(n/2) + 0(n) & \text{if } n > 1 \end{cases}$$

$$T(n) = \begin{cases} c & \text{if } n = 1 \\ 2T(n/2) + cn & \text{if } n > 1 \end{cases}$$

Compute T(n)

Recursion-tree Method

Master Theorem

The Recursion-tree Method

- > Idea:
 - Each node represents the cost of a single subproblem
 - Sum up the costs with each level to get level cost
 - Sum up all the level costs to get total cost
- > Particularly suitable for divide-and-conquer recurrence
- > Best used to generate a good guess, tolerating "sloppiness"
- If trying carefully to draw the recursion-tree and compute cost, then used as direct proof

Recursion-tree for MERGE SORT

$$T(n) = 2T(n/2) + cn$$

Recursion-tree for MERGE SORT

$$T(n) = 2T(n/2) + cn$$

n

Total: cnlogn + cn

Recursion-tree for MERGE SORT

$$T(n) = 2T(n/2) + cn$$

T(n) is O(nlogn)

Recursion-tree for T(n) = T(n/3) + T(2n/3) + O(n)

T(n) is O(nlogn)

Master Method/Theorem

```
T(n) = aT(n/b) + f(n)
```

 $a \ge 1$, b > 1 are positive integers, f(n) is non-negative function

Three case:

```
Case 1: n^{\log_b(a)-\epsilon} > f(n); then T(n) is O(n^{\log_b(a)})
```

Case 2:
$$n^{\log_b(a)} = f(n)$$
; then $T(n)$ is $O(n^{\log_b(a)} * \log(n))$

Case 3:
$$n^{\log_b(a)+\epsilon} < f(n)$$
; then $T(n)$ is $O(f(n))$

Master Theorem for MERGE SORT

$$T(n) = 2T(n/2) + n$$

=> a=2, b=2, f(n)=n
=> $n^{\log_b(a)} = n^{\log_2(2)} = n = f(n)$

By Case 2: $n^{\log_b(a)} = f(n)$; then T(n) is $O(n^{\log_b(a)} * \log(n))$ => T(n) is $O(n\log n)$

Master Theorem

$$T(n) = 9T(n/3) + n$$

$$=> a=9, b=3, f(n)=n$$

$$=> n^{\log_b(a)} = n^{\log_3(9)} = n^2$$

$$=> f(n) = n = n^{\log_3(9) - \epsilon} \text{ for } \epsilon = 1$$
By Case 1: $n^{\log_b(a) - \epsilon} > f(n)$; then $T(n)$ is $O(n^{\log_b(a)})$

$$=> T(n) \text{ is } O(n^2)$$

MERGE SORT

```
def merge(S1, S2, S):
    i = j = 0
    while i + j < len(S):
        if j == len(S2) or (i < len(S1) and S1[i] < S2[j]):
            S[i+j] = S1[i]
            i += 1
        else:
            S[i+j] = S2[j]
            j += 1</pre>
S = [2, 5, 7, 30, 4, 8]
S1 = [2, 5, 7, 30]
S2 = [4, 8]
merge(S1, S2, S)
S
```

[2, 4, 5, 7, 8, 30]

```
T(n) = 2T(n/2) + O(n)T(n) \text{ is } O(n\log n)
```

```
[6]
    def merge sort(S):
        n = len(S)
        if n < 2:
                                Base case
            return
        mid = n//2
        S1 = S[0:mid]
                              Divide: O(1)
        S2 = S[mid:n]
        merge_sort(S1)
                               Conquer: 2T(n/2)
        merge sort(S2)
                                Combine: O(n)
        merge(S1, S2, S)
    S = [7, 2, 5, 30, 16, 8, 4, 17]
    merge_sort(S)
```


QUICK SORT

- Divide: A sequence S is divided into subarrays by selection x: a pivot element (a specific element from S)
 - L: elements less than pivot
 - R: elements greater than pivot
- **Conquer:** Sort the two subarrays L and R by recursive calls to quicksort
- **Combine:** Subarrays are already sorted => no work is needed to combine

QUICK SORT

Divide:

Select the Pivot element: the last element in S

7 2 5 30 16 8 4 17

Rearrange the sequence

QUICK SORT

QUICK SORT

Divide:

Select the Pivot element: the last element in S

Rearrange the sequence

QUICK SORT

```
def partition(low, high, S):
    pivot, pointer = S[high], low

for i in range(low, high):
    if S[i] <= pivot:
        S[i], S[pointer] = S[pointer], S[i]
        pointer += 1

S[pointer], S[high] = S[high], S[pointer]

return pointer</pre>
```

```
T(n)_{divide} is ???
```

```
def quicksort(low, high, S):
    if len(S) == 1:
                                     Base case
        return S
    if low < high:
                                       Divide
        p = partition(low, high, S)
        quicksort(low, p-1, S)
                                     Conquer
        quicksort(p+1, high, S)
S = [7, 2, 5, 30, 16, 8, 4, 17]
low = 0
high = len(S)-1
quicksort(low, high, S)
```


QUICK SORT

- > Analysis of QUICK SORT
 - Divide: O(n)
 - **Conquer:** a=2, => $T(n/b_1) + T(n/b_2)$
 - Combine:

$$T(n) = \begin{cases} 0(1) & \text{if } n = 1 \\ T(n/b_1) + T(n/b_2) + 0(n) & \text{if } n > 1 \end{cases}$$

$$T(n) = \begin{cases} c & \text{if } n = 1 \\ T(n/b_1) + T(n/b_2) + cn & \text{if } n > 1 \end{cases}$$

Compute b₁, b₂

QUICK SORT

- > Analysis of QUICK SORT
- Worst-case partitioning
 - Partition at the last element, the largest element
 "bad" split: sequence into two subsequences of size 0 and n-1
 - Divide: O(n)
 - **Conquer:** a=2, => T(n-1)

$$T(n) = \begin{cases} c & \text{if } n = 1 \\ T(n-1) + cn & \text{if } n > 1 \end{cases}$$

QUICK SORT

- **Analysis of QUICK SORT**
- **Worst-case partitioning**

$$T(n) = \begin{cases} c & \text{if } n = 1 \\ T(n-1) + cn & \text{if } n > 1 \end{cases}$$

$$if n = 1$$

$$if n > 1$$

Subproblem sizes

Total partitioning time for all subproblems of this size

0

QUICK SORT

- > Analysis of QUICK SORT
- Best-case partitioning
 - Partition at the average element
 - => "good" split: sequence into two subsequences of size (n-1)/2
 - Divide: O(n)
 - **Conquer:** a=2, => 2T((n-1)/2)

$$T(n) = \begin{cases} c & \text{if } n = 1 \\ 2T((n-1)/2) + cn & \text{if } n > 1 \end{cases}$$

QUICK SORT

- > Analysis of QUICK SORT
- Best-case partitioning

$$T(n) = \begin{cases} c & \text{if } n = 1\\ 2T((n-1)/2) + cn & \text{if } n > 1 \end{cases}$$

T(n) is O(nlogn)

Subproblem

Total partitioning time

for all subproblems of

QUICK SORT

- > Analysis of QUICK SORT
- Average-case partitioning
 - Partition at the any element
 - => Example: partitioning algorithm always produces a 9-to-1 proportional split
 - **Divide:** O(n)
 - **Conquer:** a=2, => T(n/10) + T(9n/10)

$$T(n) = \begin{cases} c & \text{if } n = 1 \\ T(n/10) + T(9n/10) + cn & \text{if } n > 1 \end{cases}$$

QUICK SORT

- Analysis of QUICK SORT
- Average-case partitioning

$$T(n) = \begin{cases} c & \text{if } n = 1 \\ T(n/10) + T(9n/10) + cn & \text{if } n > 1 \end{cases}$$

T(n) is O(nlogn)

QUICK SORT

```
def partition(low, high, S):
    pivot, pointer = S[high], low

for i in range(low, high):
    if S[i] <= pivot:
        S[i], S[pointer] = S[pointer], S[i]
        pointer += 1

S[pointer], S[high] = S[high], S[pointer]

return pointer</pre>
```

Worst case: T(n) is O(n²)
Best case: T(n) is O(nlogn)
Average case: T(n) is O(nlogn)

```
def quicksort(low, high, S):
    if len(S) == 1:
        return S
    if low < high:
        p = partition(low, high, S)
        quicksort(low, p-1, S)
        quicksort(p+1, high, S)
S = [7, 2, 5, 30, 16, 8, 4, 17]
low = 0
high = len(S)-1
quicksort(low, high, S)
S
```

Base case

Divide: O(n)

Conquer: $T(n/b_1)+T(n/b_2)$

QUICK SORT

Divide: A sequence *S* is divided into subarrays by selection *x*: a pivot element (a specific element from *S*)

L: elements less than pivot. R: elements greater than pivot

- Conquer
- Pivot Selection
 - The last element

The first element

Random

The median-of-three

SUMMARY

- > Three steps:
 - Divide Conquer Combine
- > Analysis:

T(n) is the running time on a problem of size n

$$T(n) = \begin{cases} O(1) & \text{if } n \leq n_c \\ aT(n/b) + D(n) + C(n) & \text{if } n > n_c \end{cases}$$

Use: Recursion-tree or Master Method

- Example
 - Merge Sort O(nlogn)
 - Quick Sort Worst: O(n²) Best: O(nlogn) Average: O(nlogn)

SUMMARY ALGORITHM ANALYSIS

COMPUTATIONAL COMPLEXITY

Steps to calculate computational complexity

Python code

[6] S = [1, 2, 3]
n = len(S)
for i in range(n):
 for j in range(n):
 total = S[i] + S[j]
 print(total)
 print('- - - -')

Characterize Function

 $T(n) = an^2 + bn + c$

 $O(n^2)$

Asymptotic Notation

$$T(n) = (c_3 + c_4 + c_5)n^2 + (c_2 + c_3 + c_6)n$$

$$+ (c_0 + c_1 + c_2)$$

$$\leq (c_0 + c_1 + 2c_2 + 2c_3 + c_4 + c_5 + c_6)n^2$$

$$= c'n^2$$
For $c' = c_0 + c_1 + 2c_2 + 2c_3 + c_4 + c_5 + c_6$, $n_0 = 1$

COMPUTATIONAL COMPLEXITY

- > Running time complexity: The number of primitive operations that are performed
- A function f(n): characterizes the number of primitive operations that are performed as a function of the input size n
- Most important functions:

constant	logarithm	linear	n-log-n	quadratic	cubic	exponential
1 (c)	logn	n	nlogn	n^2	n^3	a ⁿ

COMPUTATIONAL COMPLEXITY

Asymptotic Analysis

$$f(n)$$
 is $O(g(n))$: $f(n) \le cg(n)$, for $n \ge n_0$

f(n) is
$$\Omega(g(n))$$
: f(n) \geq cg(n), for $n \geq n_0$

f(n) is
$$\Theta(g(n))$$
: $c_1g(n) \le f(n) \le c_2g(n)$, for $n \ge n_0$

> Example:

$$n^{1/logn}$$
 is $O(1)$

$$7\log n + 1$$
 is $O(\log n)$

$$4^{\log n} + 5n \text{ is } O(n^2)$$

$$3n^2$$
 - 2nlogn is $\Omega(n^2)$

$$3n\log n + 2^{\log n} + 5\log n$$
 is $\Theta(n\log n)$

COMPUTATIONAL COMPLEXITY

Example:

Bubble Sort

```
1. def bubble_sort(s):
```

- 2. n = len(s)
- 3. for step in range(n):
- 4. for i in range(0, n-step-1):
- 5. if s[i] > s[i+1]:
- 6. temp = s[i]
- 7. s[i] = s[i+1]
- 8. s[i+1] = temp

COMPUTATIONAL COMPLEXITY

Example:

Bubble Sort

(Optimized)

```
1. def optimized_bubble_sort(s):
     n = len(s)
     for step in range(n):
4.
        swapped = false
        for i in range(0, n-step-1):
5.
6.
           if s[i] > s[i+1]:
7.
               temp = s[i]
8.
               s[i] = s[i+1]
9.
               s[i+1] = temp
10.
               swapped = true
11.
        if not swapped:
12.
            break
```


COMPUTATIONAL COMPLEXITY

Example:

Bubble Sort

(Optimized)

- 1. def bubble_sort(s):
- 2. n = len(s)
- 3. for step in range(n):
- 4. for i in range(0, n-step-1):
- 5. if s[i] > s[i+1]:
- 6. temp = s[i]
- 7. s[i] = s[i+1]
- 8. s[i+1] = temp

- 1. def optimized_bubble_sort(s):
- 2. n = len(s)
- 3. for step in range(n):
- 4. swapped = false
- 5. for i in range(0, n-step-1):
- 6. if s[i] > s[i+1]:
- 7. temp = s[i]
- 8. s[i] = s[i+1]
- 9. s[i+1] = temp
- 10. swapped = true
- 11. if not swapped:
- 12. break

COMPUTATIONAL COMPLEXITY

Example:

Bubble Sort

(Optimized)

- 1. def bubble_sort(s):
- 2. n = len(s)
- 3. for step in range(n):
- 4. for i in range(0, n-step-1):
- 5. if s[i] > s[i+1]:
- 6. temp = s[i]
- 7. s[i] = s[i+1]
- 8. s[i+1] = temp

 $O(n^2)$

- 1. def optimized_bubble_sort(s):
- 2. n = len(s)
- 3. for step in range(n):
- 4. swapped = false
- 5. for i in range(0, n-step-1):
- 6. if s[i] > s[i+1]:
- 7. temp = s[i]
- 8. s[i] = s[i+1]
- 9. s[i+1] = temp
- 10. swapped = true
- 11. if not swapped:
- 12. break

Best case: O(n)

Average case: O(n²)

Worst case: $O(n^2)$

SUMMARY ALGORITHM DESIGN

Algorithm Design

ALGORITHM

- > Brute Force: based on problem statement and definitions
- **Recursion:** function makes one or more calls to itself during execution
- **Divide-and-Conquer:** divide (problem => subproblems), conquer: recursively, combine (subproblems => original problem)
- **Two pointer (Technique):** The idea here is to iterate two different parts of the array simultaneously to get the answer faster

Algorithm Design

SEARCHING PROBLEM

Input: a sorted sequence of n number $\langle a_1, a_2, ..., a_n \rangle$, key

Output: index of key in the sequence if exist, -1 if not exist

	Searching		Time Complexity			
	Algorithm	Best Case	Average Case	Worst Case		
Brute Force	Linear Search	O(1)	O(n)	O(n)		
Recursion	Binary Search	O(1)	O(logn)	O(logn)		

Algorithm Design

SORTING PROBLEM

Input: a sequence of n number $\langle a_1, a_2, ..., a_n \rangle$

Output: a permutation (reordering) <a'₁, a'₂,..., a'_n>; such that a'₁ \le a'₂ \le ... \le a'_n

	Sorting Algorithm	Time Complexity		
		Best Case	Average Case	Worst Case
Brute Force	Selection Sort	$O(n^2)$	$O(n^2)$	$O(n^2)$
Brute Force	Brute Force Insertion Sort		$O(n^2)$	$O(n^2)$
Brute Force	Bubble Sort	$O(n^2)$	$O(n^2)$	$O(n^2)$
Brute Force	Optimized Bubble Sort	O(n)	$O(n^2)$	$O(n^2)$
DC	Merge Sort	O(nlogn)	O(nlogn)	O(nlogn)
DC	Quick Sort	O(nlogn)	O(nlogn)	$O(n^2)$

EXAM

- > Zoom: 08:00 P.M 25/06/2022
- > Time: 90 mins
- Submission file (colab-ipynb)
- **Contents:**
 - Q1: Algorithm Analysis (Asymptotic Analysis)
 - Q2: Algorithm Analysis (Step by step)
 - Q3: Algorithm Analysis (Compute T(n) using recursion tree and master method)
 - Q4: Algorithm Design (Without code)
 - Q5: Algorithm Design (With code)
 - Q6: Algorithm Design (Improve code)

Reference

- (1) Introduction to Algorithms, 3rd Edition; Thomas H.Cormen et al; 2009
- (2) Data Structures & Algorithms; Michael T.Goodrich et al; 2013
- (3) Algorithms, 4th; Robert Sedgewick et al; 2011

Thanks! Any questions?