

### 기상 데이터를 활용한 지하철 혼잡도 예측 및 활용방안

# 호선별 Fold기반 XGBoost를 활용한 지하철 혼잡도 예측 모델 개발



## 기획 배경



### 기획 배경

### 기상에 따른 교통수단 선택

- . 폭우 시 지하철 혼잡도는 약 18.6%, 폭설 시에는 약 15.3% 증가
- → 기상상황을 고려한 혼잡도 예측 전략 필요

### 2. 냉난방 민원

- . 냉난방 민원은 2025년 5월까지 지하철 전체 민원의 75%에 달할 정도로 높음
- → 기상 변수를 반영한 예측을 통해, 지하철 냉난방 조절 시스템에 연동해 냉난방 세기를 선제적으로 조정

### 분석 목표

혼잡도 예측을 통해 지하철 운영 효율화와 혼잡 완화 방 안 마련에 활용 가능한 인사이트 제공

### 분석 프로세스







모델링



### 데이터 정의



### 제공 데 이터

. 지하철 혼잡도 : 시간별 열차 내 밀집도

. 기상 변수 : 시간별 기상 관련 수치

| TM         | Line | station_number | station_name | •• | SI  | ta_chi | Congestion |
|------------|------|----------------|--------------|----|-----|--------|------------|
| 2021010100 | 1    | 150            | 서울역          |    | -99 | -12.6  | 0          |
| 2021010101 | 1    | 150            | 서울역          |    | -99 | -9.8   | 0          |
|            |      |                |              |    |     |        |            |
| 2023123123 | 1    | 150            | 서울역          |    | -99 | -0.2   | 21         |

### 외부 데이터

#### [지하철 주소 데이터]

- . 수집 대상: 서울시 1-8호선 지하철 주소
- . 서울시 대중교통정보에서 station\_name을 기준으로 검색
- . 주소를 자동 스크래핑하는 알고리즘 사용
- . 총 330건의 역 주소를 수집

| 역명 | 주소                   |
|----|----------------------|
| 매봉 | 서울특별시 강남구 도곡2동464-1  |
| 새절 | 서울특별시 은평구 신사2동337-5  |
|    |                      |
| 진접 | 경기 남양주시 진접읍 경복대로 244 |

#### [환승역 데이터]

- . 수집대상 : 환승역 여부 + 환승 노선 개수
- . 서울교통공사 지하철 노선도에서 **호선, 환승역, 해당 역을 지나는 노선의 개수 3**가지를 수기로 수집.

| Line | transfer_station | transfer_station |
|------|------------------|------------------|
| 1    | 인천               | 2                |
| 2    | 신당               | 2                |
|      | •••              |                  |
| 8    | 모란               | 2                |



### 지하철 혼잡도 데이터와 기상 데이터의 전처리 및 파생변수 생성

| 변수명                  | 변수 설명               | 변수명                   | 변수 설명              |
|----------------------|---------------------|-----------------------|--------------------|
| year                 | 탑승 기준 연도            | month                 | 탑승 기준 월            |
| day                  | 탑승 기준 일             | hour                  | 탑승 기준 시간           |
| weekday              | 탑승 기준 요일            | week_of_month         | 지하철 탑승 월중 주차       |
| week_of_year         | 지하철 탑승 월중 주차        | day_of_year           | 지하철 탑승 기준 연중 경과일   |
| is_holiday           | 탑승 기준 휴일 여부         | is_day_before_holiday | 탑승 기준 휴일 전날 여부     |
| is_day_after_holiday | 탑승 기준 휴일 다음날 여부     | is_weekend            | 주말 여부              |
| sin_dow, cos_dow     | weekday의 삼각변환 변수    | sin_hod, cos_hod      | hour의 삼각변환 변수      |
| sin_wom, cos_wom     | week_of_month의 삼각변환 | sin_dom, cos_dom      | day의 삼각변환 변수       |
| sin_doy, cos_doy     | day_of_year의 삼각변환   | sin_woy, cos_woy      | week_of_year의 삼각변환 |
| transfer             | 환승역 여부              | time_period           | 탑승 기준 시간대 구간       |
| address              | 주소 변수               | 신설역.신규관측소             | 신설역/신규관측소 여부       |

### 데이터 전처리



### . 결측치 처리

#### 1-1. 풍속,일강수량,시간 강수량,기온,체감온도,상대습도

. 시간 흐름의 연속성 반영을 위하여 선형 보간법을 적용하여 결측값 보완

#### 1-2. 일사량

. 결측치 비율이 37% 이상으로 변수 제거

| 시간         | 호선 | 역번호 | 역명  | 상하구분 | AWS지점코드 | 기온   | 풍향  | 풍속  | 일강수량 | 시간 강수량 | 상대습도 | 일사량 | 체감온도 | 혼잡도    |
|------------|----|-----|-----|------|---------|------|-----|-----|------|--------|------|-----|------|--------|
| 2024010100 | 1  | 150 | 서울역 | 상선   | 419     | 0.6  | 161 | 2.7 | 4.5  | 0      | 99   | -99 | -0.3 | 0      |
| 2024010101 | 1  | 150 | 서울역 | 상선   | 419     | 0    | 146 | 3.8 | 0    | 0      | 99.4 | -99 | -2.2 | 0      |
| 2024010102 | 1  | 150 | 서울역 | 상선   | 419     | 0.3  | 171 | 3.1 | 0    | 0      | 99.6 | -99 | -2.3 | 2.7378 |
| 2024010105 | 1  | 150 | 서울역 | 상선   | 419     | -0.1 | 176 | 3   | 0    | 0      | 98.1 | -99 | -0.1 | 5.713  |

### . 날짜 및 범주형 타입 변환

#### 2-1. 시간

. datetime 형식으로 변환

#### 2-2. 호선,역번호,역명,상하구분,AWS 지점코드

. 라벨인코딩(Label Encoding)을 사용하여 카테고리화

### . 신규 역/관측소 식별

- . 2024년 데이터의 신설역 식별
- . 구리, 다산, 동구릉, 별내 등 신설역과 신규역번호를 이진변수로 처리하여 자동 식별

## 기상변수와 혼잡도 간의 상관관계 분석



### 조 혼잡도에 영향을 미치는 기상변수



- . 더울수록, 바람이 불수록, 건조할수록 지하철을 이용 하는 경향
- . 즉, <mark>더운 날씨에는 냉방이 되는 지하철</mark>을 이용하고, 비가 오거나 <mark>습한 날씨에는 외출을 줄임</mark>

### 2. 기상변수 간의 높은 상관성 문제

- . 다중공선성 높은 변수를 확인 후, 제거하여 모델의 안정성을 확보하고자 함
- . 상관관계가 높았던 기온과 체감온도는 역시 VIF(분 산팽창지수) 확인 결과, <mark>다중공선성이 심각</mark>

| 체감온도 | 0.24  | 0.13   | 0.08     | 0.99 | -0.10 | -0.06 |      |
|------|-------|--------|----------|------|-------|-------|------|
| 혼잡도  | -0.11 | -0.01  | -0.01    | 0.07 | 0.04  | 0.07  | 0.06 |
| ,    | 对明显生  | 017578 | N1.18288 | 1/2  | 46°   | **    | MAZE |

| 변수   | VIF         | 해석    |  |
|------|-------------|-------|--|
| 체감온도 | 73.17 매우 높음 |       |  |
| 기온   | 71.05       | 매우 높음 |  |

### 다중선형회귀를 통한 기상변수별 혼잡도 영향력 평가



1.614만 건의 표본을 대상으로 다중선형회귀분석을 진행

혼잡도 = 24.9 - 0.11\*상대습도 + 0.02\*일강수량 + 0.06\*시간강수량 + 0.00풍향 + 0.50\*풍속0.18\*기온 - 0.02\*체감기온

#### OLS Regression Results Dep. Variable: Congestion R-squared: Model: Adj. R-squared: 0.023 Method: Least Squares F-statistic: Date: Thu. 26 Jun 2025 Prob (F-statistic): Time: 13:50:35 Log-Likelihood: -7.0570e+07 No. Observations: 16143988 AIC: 1.411e+08 Of Residuals: 16143980 BTC: 1.411e+08 Df Model: Covariance Type: nonrobust P> t [0.025 0.975] coef std err const 24 9056 0.023 1089 478 0.000 24.861 24,950 -0.1109 HM 9.999 -404,901 0.000 -0.111 -0.110 RN DAY 0.0205 0.001 35,661 0.000 0.019 0.022 RN HR1 0.0611 0.004 14.867 0.000 0.053 0.069 TA 0.1846 0.004 50.498 0.000 0.177 9.192 MD 0.0039 4.77e-95 82.782 0.000 0.994 9.994 WS. 0.5000 120,604 0.000 0.492 0.508 0.004 ta chi -0.0205 -6.042 -0.027\_\_\_\_\_\_\_ Omnibus: 6482932.389 0.355 Durbin-Watson Prob(Omnibus): 35510442.394 Jarque-Bera (JB): Skew: 1.872 Prob(JB): 0.00 9.227 Kurtosis: Cond. No. 1.05e+03

### 1. 기온 vs 체감기온

- . 다중공선성으로 인한 왜곡 가능성으로 단순 상관에서는 모두 양의 관계를 보임 하지만, 다중회귀에서는 체감기온이 음의 계수를 가짐
- · 두 변수 중 실제 혼잡도에 더 큰 영향을 주는 기온을 남겨 모델의 안정성을 높임

### 2. 기상변수 영향력 정리

- . 더워지고 바람이 많이 불며 습도가 낮아질수록, 또는 비가 올 때 혼잡도 상승
- . 여름철 냉방 수단으로, 그리고 우천 시 보행 대신 대중교통을 선택하려는 이용객의 이동 패턴이 반영된 결과로 해석됨
- . 기상변수 단독으로는 모델 설명력이 결정계수 0.023로 매우 낮음
- . 혼잡도를 정확하게 예측하기 위해서는 기상 외의 변수들이 필요함

## 기상 외 변수 혼잡도 간의 상관관계



1. 시계열 변수 . 연도, 요일, 시간대의 시계열 변수가 영향을 미침

연도별 혼잡도 상승 추세





2. 시간대 + 상행하행 . 상행선은 출근시간대, 하행성은 퇴근시간대에 혼잡함



### 3. 지하철역 위치

. 지하철역의 위치에 따라 평균 혼잡도의 큰 차이

| 순위       | 위치  | 평균 혼잡도 |
|----------|-----|--------|
| 가장 혼잡    | 관약구 | 35.338 |
| 두 번째로 혼잡 | 구로구 | 31.609 |
| 두 번째로 여유 | 인천  | 11.740 |
| 가장 여유    | 강서구 | 10.791 |

. 환승 노선 수에 따라 혼잡도의 분포 차이



## 분석 방법론



### 1. 호선별 모델 학습의 필요성

호선별로 평균 혼잡도의 차이가 15.9에서 29.7로 폭이 매우 크며, 호선별로 사용 목적이 다른 만큼 <mark>호선별 패턴 학습 필요</mark>



| 호선  | 평균 혼잡도 |
|-----|--------|
| 1호선 | 18.7   |
| 2호선 | 29.7   |
| 3호선 | 20.5   |
| 4호선 | 21.8   |
| 5호선 | 21.6   |
| 6호선 | 15.9   |
| 7호선 | 24.4   |
| 8호선 | 22     |

### 2. 모델에 사용된 최종 피처

| 종류     | 변수                                                                                                                  |
|--------|---------------------------------------------------------------------------------------------------------------------|
| 기상변수   | 상대습도/ 일강수량/ 시간 강수량/ 기온/ 풍향/ 풍속                                                                                      |
| 지하철 변수 | 환승역 여부/ 신설역/ 신규관측소/ 역번호/ 주소/ 상행하행/ AWS 지점 코드                                                                        |
| 주기성 변수 | sin_dom , cos_dom , sin_dow , cos_dow , sin_hod , cos_hod sin_wom , cos_wom , sin_woy , cos_woy , sin_doy , cos_doy |
| 시계열 변수 | (탑승 기준)<br>연/ 월/ 일/ 시간/ 시간대 구간/<br>연중 경과일/ 휴일여부/ 다음날 휴일 여부/<br>휴일 여부/ 주말 여부/ 월중 주차/ 연중 주차/ 요일                       |

## 분석 방법론





네 개의 모델을 적용하여 RMSE를 기준으로 비교한 결과

| Line    | ARD   | LGBM  | CatBoost | XGB  |
|---------|-------|-------|----------|------|
| 1       | 15.08 | 7.87  | 5.47     | 6.85 |
| 2       | 15.61 | 10.43 | 11.66    | 7.88 |
| 3       | 13.59 | 5.82  | 6.42     | 5.66 |
| 4       | 15.09 | 7.91  | 5.38     | 6.82 |
| 5       | 13.58 | 7.16  | 4.99     | 6.08 |
| 6       | 11.45 | 6.8   | 7.71     | 5.28 |
| 7       | 17.96 | 9.99  | 6.82     | 8.44 |
| 8       | 15.1  | 6.82  | 6        | 5.88 |
| Average | 14.68 | 7.85  | 6.8      | 6.61 |

평균 RMSE 6.61로

XGBRegressor가 가장 우수한 성능 보임

### 모델 선정 이유

- . 수치형·범주형·시계열 파생 변수가 혼합된 복잡한 구조의 데이터를 효과적으로 처리
- . 변수 간의 비선형 관계와 상호작용을 잘 반영하는 트리 기반 모델
- . 정규화 항과 조기 종료를 통해 과적합 방지 및 결측치 자동 처리 가능





### 하이퍼파라미터 튜닝

#### 1. 단계적 탐색 전략 적용

- XGBoost 모델의 주요 하이퍼파라미터에 대해 효율적 인 탐색을 위해 RandomSearchCV 적용
- 과적합 방지 및 탐색 시간 효율을 위해 10개의 파라미 터 조합을 샘플링하여 탐색

#### 2. 검증방법 선택

2-1.시계열 데이터 분할

TimeSeriesSplit(n\_split=3)을 검증 분할 전략으로 사 용

2-2.평가기준

. 회귀 모델 성능 지표로 RMSE 채택

### 튜닝 결과 및 효과

최적 파라미터 조합 도출

| no | Hyperparameters  | units |
|----|------------------|-------|
| 1  | n_estimators     | 2000  |
| 2  | learning_rate    | 0.05  |
| 3  | max_depth        | 12    |
| 4  | subsample        | 0.9   |
| 5  | colsample_bytree | 0.8   |
| 6  | reg_alpha        | 0.3   |
| 7  | reg_lambda       | 0.8   |
| 8  | min_child_weight | 3     |
| 9  | gamma            | 0     |

. 예측 성능 및 일반화 향상

### 모델 최적화



### 전체 데이터로 모델 학습

### 1. 전체 데이터 학습 전략

- . 2021~2023년 혼잡도는 연도별로 꾸준히 증가하는 추세
- . **2021~2023**년 데이터를 **8:2**로 분할하여 훈련 및 검증 수 행
- . 2024년은 독립적인 테스트셋으로 활용해 성능 평가
- 최종 모델은 **2021~2023년 전체 데이터를 학습에 활용**

#### 2. 종합 성과 요약

- . 전반적으로 호선별 예측 성능이 향상, 특히 **8호선이 가장** 우수
- . 최종 RMSE 5.231, 6월 27일 기준 전체 8위 달성

#### 3. 호선별 성능 비교

- . 호선별 예측 성능 확인 결과, 8호선이 가장 우수
- . 8호선을 기준으로 모델 사후해석

| Line | RMSE | 결정계수 |
|------|------|------|
| 1    | 0.94 | 0.99 |
| 2    | 0.90 | 0.99 |
| 3    | 0.74 | 0.99 |
| 4    | 0.88 | 0.99 |
| 5    | 0.83 | 0.99 |
| 6    | 0.63 | 0.99 |
| 7    | 1.01 | 0.99 |
| 8    | 0.53 | 0.99 |
|      |      |      |

### 모델 사후해석









시간대와 위치 정보는 혼잡도 예측에 핵심변수로 작용한 반면,

기상 변수는 핵심 변수에 비해 낮은 영향력을 나타냈음



교통 시스템 개선

**혼잡 구간·시간 식별 인프라 투자** 근거 제공

승객 편의성 증진

채널을 통해 혼잡 예측 정보 사전 제공으로 분산 유도



**기상 변수 반영**한 **냉난방 조절** 시스템 연동

> 민원 감 소

**쾌적한 탑승 환경**으로 냉난방 관련 **민원 감소** 

# 감사합니다.

