Digital Logic Design:

Lecture 1

Text Books

- 1) Digital Fundamentals by Thomas L. Floyd
- 2) Digital Logic and Computer Design by M. Morris Mano
- There are two digits in binary system, I and o are called bits.
- De In digital circuits, two different voltage levels are used to represent the two bits.

A'1' is represented by the higher voltage level, referred to as a HIGH.

A 'o' is represented by the lower voltage level, referred to as a LOW.

Basic Logic Operation:

NOT operation: The NOT operation changes one logic level to the opposite logic level.

The NOT operation is implemented by a logic circuit known as an inverter.

Inverter Touth Table:

Input	Output
Low (0)	HIGH (1)
HIGH (1)	LOW (0)

Φ If input is A and output is X then, X = A or A

AND operation:

The AND operation produces a HIGH if and only if all the inputs are HIGH.

田 An AND gate can have two ar more inputs and performs AND operation or logical multiplication.

Truth table for a two-input AND gate:

IAMIN 1912				
Inputs			Outputs	
	A	В	Х	
•	0	0	0	
	0	. 1	0	
	1	0	0	
	1 -		1	

Logic expression for the AND Gate: If one input variable is A, the other input variable is B, and the output variable is X, then the Boolean expression is,

$$X = AC$$

OR operation: The OR operation produces a HIGH output when any of the inputs is HIGH.

An or gate has two or more inputs and one output and performs or operation or Logical addition.

$$A \longrightarrow X$$
 $A \longrightarrow Y$
 $A \longrightarrow$

Fig. : Logie symbol for or gate (two-input)

Truth table for a two-input or gate:

Inp	puts	Outputs.	
A	В	X	
0	0	0	
0	ſ	1	
1	. 0	1	
ι	1	1	

For Logic Expression for the or Gate: X = A + B for two-input or gate X = A + B + C for three-input or gate

NAND gate:
The NAND gate performs AND function with inverted output.

Truth table for a two-input NAND gate:

In	puts	Outputs
4	В	X
0	0	. 1
0	1	ı
t	0	1
ľ	ι	D

Expressions for the NAND gate:

The Boolean expression for the output of a twoinput NAND gate is, $X = \overline{AB}$

NOR gate: The NOR gate performs OR operation with an inverted output.

A B Symbol for NOR gate

A DOX A
$$\geq 1$$

B

Truth table for two-input NOR gate:

Inputs		Outputs	
A	В	Χ	
0	o	. <u>I</u> *	
Ŏ	<i>1</i>	0	
t	0	0	
1	ı	0	
l	ı	0	

Logie Expression for NOR gate:

The Boolen expression for the output of a two-input NOR gate is. $X = \overline{A+B}$ or (A+B)'