Mattei Lucas Note: 2/20 (score total : 2/20)

Nom et prénom, lisibles :

+152/1/24+

Identifiant (de haut en bas):

QCM THLR 4

	Lucan MATTE!
2/2	Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0.
	Q.2 Le langage $\{ \bigcap^n \bigcap^m \forall n, m \in \mathbb{N} \}$ est
2/2	☐ non reconnaissable par automate fini ☐ fini ☐ vide ☑ rationnel
	Q.3 Le langage $\{ \Box^n \Box^n \Box^n \mid \forall n \in \mathbb{N} : 42! \le n \le 51! \}$ est
-1/2	🗌 rationnel 🗵 fini 🌘 non reconnaissable par automate fini 🔲 vide
	Q.4 Quels langages ne vérifient pas le lemme de pompage?
-1/2	 ☐ Certains langages reconnus par DFA ☐ Tous les langages non reconnus par DFA ☐ Certains langages non reconnus par DFA ☐ Certains langages non reconnus par DFA
-1/2	 Q.5 Un langage quelconque □ n'est pas nécessairement dénombrable □ peut avoir une intersection non vide avec son complémentaire ☑ est toujours inclus (⊆) dans un langage rationnel □ peut n'être inclus dans aucun langage dénoté par une expression rationnelle
	Q.6 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a+b)^*a(a+b)^{n-1}$):
-1/2	Il n'existe pas.
	Q.7 Si $L_1 \subseteq L \subseteq L_2$, alors L est rationnel si:
-1/2	\square L_1, L_2 sont rationnels \square L_2 est rationnel \square L_1, L_2 sont rationnels et $L_2 \subseteq L_1$ \square L_1 est rationnel
	Q.8 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a+b+c+d)^*a(a+b+c+d)^{n-1}$):
-1/2	$\frac{n(n+1)(n+2)(n+3)}{4}$ \boxtimes 2^n \square 4^n \blacksquare Il n'existe pas.
	Q.9 Déterminiser cet automate: $\xrightarrow{a,b} \xrightarrow{a,b} \xrightarrow{a,b} \xrightarrow{a,b}$
•	

2/2

Q.10 Comment marche la minimisation de Brzozowski d'un automate A?

2/2

 \Box $T(Det(T(Det(T(\mathcal{A})))))$

 \square $Det(T(Det(T(Det(\mathscr{A})))))$

 \Box T(Det(T(Det(A))))

 \triangle $Det(T(Det(T(\mathscr{A}))))$

Fin de l'épreuve.

5