

POLITECHNIKA WARSZAWSKA Wydział Matematyki i Nauk Informacyjnych

PRACA DYPLOMOWA MAGISTERSKA NA KIERUNKU MATEMATYKA SPECJALNOŚĆ STATYSTYKA MATEMATYCZNA I ANALIZA DANYCH

ESTYMACJA W MODELU COXA METODĄ STOCHASTYCZNEGO SPADKU GRADIENTU Z PRZYKŁADAMI ZASTOSOWAŃ W ANALIZIE DANYCH Z THE CANCER GENOME ATLAS

AUTOR:

Marcin Piotr Kosiński

PROMOTOR:

PROF. NDZW. DR HAB. INŻ PRZEMYSŁAW BIECEK

Spis treści

W	prowadzenie	5
Po	dstawy modelu statystycznego	7
1.	Estymacja metodą największej wiarogodności 1.1. Estymacja	ç (
	1.2. Metoda największej wiarogodności	11
	1.3. Asymptotyczne własności estymatora największej wiarogodności	11 12 13
2	Model Coxa	17
4.	2.1. Wprowadzenie do modelu Coxa i nomenklatura	$\frac{17}{17}$
	2.2. Założenia modelu proporcjonalnego ryzyka Coxa	18
	2.3. Estymacja w modelu Coxa	20
	2.3.1. Analityczna estymacja współczynników	21
3.	Numeryczne metody estymacji	23
	3.0.2. Ogólne pojęcia związane ze zbieżnością algorytmu	23
	3.1. Algorytmy spadku wzdłuż gradientu	23
	3.1.1. Algorytm Cauchy'ego	23
	3.1.2. Algorytm Raphsona-Newtona	23
	3.2. Algorytmy stochastycznego spadku wzdłuż gradientu	23
	3.2.1. Metoda estymacji stochastycznego spadku gradientu I	$\frac{23}{23}$
	5.2.2. Metoda estymacji stochastycznego spadku gradientu II	20
4.	Zaimplementowany algorytm	2 5
5.	Analiza danych genomicznych - model Coxa z estymacją metodą stocha-	
	stycznego spadku gradientu	27
	5.1. Opis i pobranie danych	27 27
Α.	Wykorzystane narzędzia	29
в.	Kody w R	31
$\mathbf{C}.$	Dokumentacja pakietu RTCGA	33
Li	seratura	35

Wprowadzenie

+++ Analiza przeżycia. +++

Najbardziej charakterystyczną cechą typowych danych, jakimi posługuje się w analizie przeżycia, jest obecność obiektów, w których końcowe zdarzenie nastąpiło (wówczas ma się do czynienia z obserwacjami kompletnymi), oraz obiektów, w których to zdarzenie (jeszcze) nie nastąpiło (obserwacja ucięta). Ta specyficzna postać danych statystycznych doprowadziła do powstania specjalnych metod stosowanych tylko w analizie czasu trwania zjawisk. Jednym z takich modeli jest model proporcjonalnych hazardów Coxa. Jak podaje [2], model proporcjonalnych hazardów Coxa jest jednym z najszerzej stosowanych modeli w onkologicznych publikacjach naukowych, ale także jedną z najmniej rozumianych metod statystycznych. Wynika to z łatwego dostępu do pakietów statystycznych zawierających programy do analizy przeżyć, modeli regresji i analiz wielowariantowych, ale prawie nigdy nie zawierających dobrego opisu podstawowych zasad działania modelu Coxa. Dostarczają one wyłącznie instrukcje, jak wprowadzić dane i uruchomić odpowiednie procedury w celu uzyskania wyniku. Poniższy praca zawiera pełny opis metodologii modelu proporcjonalnych hazardów Coxa, w tym wyjaśnienie najważniejszych pojęć.

+++++++

Podstawy modelu statystycznego

W pracy zakłada się znajomość podstaw statystyki matematycznej. Aby ujednolicić oznaczenia w niniejszym rozdziale wprowadzona została klasyczna nomenklatura oparta o [18].

Definicja 0.1. Model statystyczny określamy przez podanie rodziny $\{\mathbb{P}_{\theta} : \theta \in \Theta\}$ rozkładów prawdopodobieństwa na przestrzeni próbkowej Ω oraz zmiennej losowej $X : \Omega \to \mathcal{X}$, którą traktujemy jako obserwację. Zbiór \mathcal{X} nazywamy przestrzenią obserwacji, zaś Θ nazywamy przestrzenią parametrów.

Symbol θ jest nieznanym parametrem opisującym rozkład badanego zjawiska. Może być jednowymiarowy lub wielowymiarowy. Determinując opis zjawiska poprzez podanie parametru θ , jednoznacznie wyznaczany jest rozkład rozważanego zjawiska spośród całej rodziny rozkładów prawdopodobieństwa $\{\mathbb{P}_{\theta} : \theta \in \Theta\}$, co umożliwia określenie prawdziwości tezy.

Zakłada się, że przestrzeń próbkowa Ω jest wyposażona w σ -ciało \mathcal{F} . Wtedy:

Definicja 0.2. Przestrzenią statystyczną nazywa się trójkę $(\mathcal{X}, \mathcal{F}, \{\mathbb{P}_{\theta} : \theta \in \Theta\})$.

Wprowadzenie σ -ciała \mathcal{F} sprawia, że przestrzeń statystyczna staje się przestrzenią mierzalną, a więc można na niej określić rodzinę miar $\{\mathbb{P}_{\theta} : \theta \in \Theta\}$, dzięki której da się ustalić prawdopodobieństwa zajścia wszystkich zjawisk w rozważanej teorii.

W celu budowania niezbędnych pojęć potrzebna jest również definicja losowej próby statystycznej, zazwyczaj nazywanej próbkq.

Definicja 0.3. Losową próba statystyczną nazywamy zbiór obserwacji statystycznych wylosowanych z populacji, które są realizacjami ciągu zmiennych losowych o rozkładzie takim jak rozkład populacji.

Estymacja metodą największej wiarogodności

The making of maximum likelihood was one of the most important developments in 20th century statistics. It was the work of one man but it was no simple process (...). John Aldrich o R. A. Fisher'ze

1.1. Estymacja

Estymacja to dział wnioskowania statystycznego będący zbiorem metod pozwalających na uogólnianie wyników badania próby losowej na nieznaną postać i parametry rozkładu zmiennej losowej całej populacji oraz szacowanie błędów wynikających z tego uogólnienia [27].

W statystyce parametrycznej zakłada się, że rozkład prawdopodobieństwa opisujący doświadczenie należy do rodziny $\{\mathbb{P}_{\theta} : \theta \in \Theta\}$, ale nie zna się parametru θ . Można go jednak szacować dzięki estymatorom opartym na statystykach.

Definicja 1.1. Statystyka, dla $X = (X_1, \dots, X_n)$, to odwzorowanie mierzalne $T : \mathcal{X} \to \mathcal{R}$.

Definicja 1.2. Estymatorem parametru θ nazywamy dowolną statystykę T = T(X), gdzie X to próba z badanego rozkładu, o wartościach w zbiorze Θ .

Interpretuje się T jako przybliżenie θ i często estymator θ oznacza symbolem $\hat{\theta}$. Niekiedy w kręgu zainteresowań jest również estymacja $g(\theta)$, gdzie g to ustalona funkcja.

Pewne estymatory mające odpowiednie własności są preferowane nad inne ze względu na większą precyzję bądź ufność oszacowania danego estymatora. Poniżej przedstawione są 2 ważne definicje związane z jakością estymatorów [18], gdy rozmiar próbki X_1, \ldots, X_n jest duży. Mówi się wtedy o własnościach asymptotycznych estymatorów, które z matematycznego punktu widzenia, są twierdzeniami granicznymi, w których n dąży do nieskończoności. Dzięki tym twierdzeniom możliwe jest opisane w przybliżeniu zachowania estymatorów dla dostatecznie dużych próbek. Niestety, teoria asymptotyczna nie dostarcza informacji o tym, jak duża powinna być próbka, żeby przybliżenie było dostatecznie dobre.

Definicja 1.3. Estymator $\hat{g}(X_1, ..., X_n)$ wielkości $g(\theta)$ jest **nieobciążony**, jeśli dla każdego n $\mathbb{E}\hat{g}(X_1, ..., X_n) = g(\theta)$.

Definicja 1.4. Estymator $\hat{g}(X_1, \dots, X_n)$ wielkości $g(\theta)$ jest **zgodny**, jeśli dla każdego $\theta \in \Theta$

$$\lim_{n\to\infty} \mathbb{P}_{\theta}(|\hat{g}(X_1,\ldots,X_n) - g(\theta)| \le \varepsilon) = 1,$$

dla każdego $\varepsilon > 0$.

Definicja 1.5. Estymator $\hat{g}(X_1, \dots, X_n)$ wielkości $g(\theta)$ jest **mocno zgodny**, jeśli

$$\mathbb{P}_{\theta}\left(\lim_{n\to\infty}\hat{g}(X_1,\ldots,X_n)=g(\theta)\right)=1.$$

Zgodność (mocna zgodność) znaczy tyle, że

$$\hat{g}(X_1,\ldots,X_n)\to g(\theta), \qquad (n\to\infty)$$

według prawdopodobieństwa (prawie na pewno). Interpretacja jest taka: estymator jest uznany za zgodny, jeśli zmierza do estymowanej wielkości przy nieograniczonym powiększaniu badanej próbki.

Jednak zgodność (nawet w mocnym sensie) nie jest specjalnie satysfakcjonującą własnością estymatora, a zaledwie minimalnym żądaniem, które powinien spełniać każdy przyzwoity estymator. Dlatego od niektórych estymatorów żąda się silniejszych właściwości, takich jak asymptotyczna normalność.

Definicja 1.6. Estymator $\hat{g}(X_1, \ldots, X_n)$ wielkości $g(\theta)$ jest **asymptotycznie normalny**, jeśli dla każdego $\theta \in \Theta$ istnieje funkcja $\sigma^2(\theta)$, zwana asymptotyczną wariancją, taka że

$$\sqrt{n}(\hat{g}(X_1,\ldots,X_n)-g(\theta)) \xrightarrow{d} \mathcal{N}(0,\sigma^2(\theta)), \quad (n\to\infty).$$

Oznacza to, że rozkład prawdopodobieństwa statystyki $\hat{g}(X_1,\ldots,X_n)$ jest dla dużych n zbliżony do rozkładu

$$\mathcal{N}\left(g(\theta), \frac{\sigma^2(\theta)}{n}\right).$$

Inaczej mówiac, estymator jest asymptotycznie normalny, gdy:

$$\lim_{n\to\infty} \mathbb{P}_{\theta}\left(\frac{\sqrt{n}}{\sigma(\theta)}(\hat{g}(X_1,\ldots,X_n) - g(\theta) \le a\right) = \Phi(a),$$

gdzie $\Phi(x)$ to dystrybuanta standardowego rozkładu normalnego $\mathcal{N}(0,1)$.

Asymptotyczna normalność mówi, że estymator nie tylko zbiega do nieznanego parametru, ale również że zbiega wystarczająco szybko, jak $\frac{1}{\sqrt{n}}$, czyli, że

$$\mathbb{P}_{\theta}\left(\frac{\sqrt{n}}{\sigma(\theta)}(\hat{g}(X_1,\ldots,X_n)-g(\theta)\leq a\right)-\Phi(a)=f(n)\in\eth(\frac{1}{\sqrt{n}}).$$

Jeśli estymator jest asymptotycznie normalny, to jest zgodny, choć nie musi być mocno zgodny.

W dalszej części tego rozdziału zostanie wprowadzone pojęcie estymatora największej wiarogodności oraz zostaną udowodnione dla niego jego właściwości, co utwierdzi w przekonaniu, że metoda największej wiarogodności, przy odpowiednich założeniach, jest metodą konstrukcji rozsądnych estymatorów.

 $\stackrel{d}{\rightarrow} oznacza$ zbieżność wg rozkładu.

1.2. Metoda największej wiarogodności

Metodę największej wiarogodności wprowadził R. A. Fisher w 1922 r. [10], dla której po raz pierwszy procedurę numeryczną zaproponował już w 1912 r. [9]. O burzliwym procesie powstawania metody, o zmianach w jej uzasadnieniu, o koncepcjach, które powstały w obrębie tej metody takich jak parametr, statystyka, wiarogodność, dostateczność czy efektywność oraz o podejściach, które Fisher odrzucił tworząc podstawy pod nową teorię można przeczytać w obszernej pracy dokumentalnej [1].

Metoda ta, jako alternatywa dla metody najmniejszych kwadratów [16], [11], była rozwijana i szeroko stosowana później przez wielu statystyków i wciąż znajduje obszerne zastosowania w wielu obszarach estymacji statystycznej, np. [14], [15], [17].

Aby zdefiniować estymator oparty o metodę największej wiarogodności, należy najpierw wprowadzić pojęcie funkcji wiarogodności.

Definicja 1.7. Funkcją wiarogodności nazywamy funkcję $L:\Theta\to\mathbb{R}$ daną wzorem

$$L(\theta) = L(\theta; x_1, \dots, x_n) = f(\theta; x_1, \dots, x_n),$$

którą rozważamy jako funkcję parametru θ przy ustalonych wartościach obserwacji x_1, \ldots, x_n , gdzie

$$f(\theta; x_1, \dots, x_n) = \begin{cases} \mathbb{P}_{\theta}(X_1 = x_1, \dots, X_n = x_n), & dla \ rozkładów \ dyskretnych, \\ f_{\theta}(x_1, \dots, x_n), & dla \ rozkładów \ absolutnie \ ciągłych. \end{cases}$$

Oznacza to, że wiarogodność jest właściwie tym samym, co gęstość prawdopodobieństwa, ale rozważana jako funkcja parametru θ , przy ustalonych wartościach obserwacji $x = X(\omega)$.

Definicja 1.8. Estymatorem największej wiarogodności parametru θ , oznaczanym $ENW(\theta)$, nazywamy wartość parametru, w której funkcja wiarogodności przyjmuje supremum

$$L(\hat{\theta}) = \sup_{\theta \in \Theta} L(\theta).$$

Ponieważ takie supremum może nie istnieć, niektóre pozycje w literaturze, w definicji estymatora największej wiarogodności, supremum zastępują wartością największą [23], [28], [20].

1.3. Asymptotyczne własności estymatora największej wiarogodności

W tym podrozdziałe zostanie wykazane, że estymator największej wiarygodności jest

- i) zgodny,
- ii) asymptotycznie normalny,
- iii) asymptotycznie nieobciażony.

Asymptotyczna nieobciążoność wynika z asymptotycznej normalności. Dowody w tym rozdziale są znane w literaturze i opierają się o [21] i [28].

1.3.1. Zgodność estymatora największej wiarogodności

Chcąc wykazać zgodność estymatora największej wiarogodności przy pewnych warunkach regularności przydatna będzie poniższa definicja i następujący Lemat.

Definicja 1.9. Funkcja log-wiarogodności to funkcja spełniająca równanie

$$\ell(\theta) = \log(L(\theta)),$$

gdzie przyjmuje się $\ell(\theta) = -\infty$ jeśli $L(\theta) = 0$.

Lemat 1.1. Gdy θ_0 to prawdziwe maksimum funkcji wiarogodności, to dla każdego $\theta \in \Theta$

$$\mathbb{E}_{\theta_0}\ell(\theta) \leq \mathbb{E}_{\theta_0}\ell(\theta_0).$$

Dowód. Rozważając różnicę, przy założeniu ciągłości rozkładu:

$$\mathbb{E}_{\theta_0}\ell(\theta) - \mathbb{E}_{\theta_0}\ell(\theta_0) = \mathbb{E}_{\theta_0}(\ell(\theta) - \ell(\theta_0)) = \mathbb{E}_{\theta_0}(\log f(\theta; X) - \log f(\theta_0; X))$$
$$= \mathbb{E}_{\theta_0}\log \frac{f(\theta; X)}{f(\theta_0; X)},$$

i pamiętając o tym, że $\log t \le t - 1$, można dojść do

$$\mathbb{E}_{\theta_0} \log \frac{f(\theta; X)}{f(\theta_0; X)} \le \mathbb{E}_{\theta_0} \left(\frac{f(\theta; X)}{f(\theta_0; X)} - 1 \right) = \int \left(\frac{f(\theta; x)}{f(\theta_0; x)} - 1 \right) f(\theta_0; x) dx$$
$$= \int f(\theta; x) dx - \int f(\theta_0; x) dx = 1 - 1 = 0.$$

Obie całki równają się 1 jako, że są całkami z funkcji gęstości, zaś równość w nierówności zachodzi tylko wtedy, gdy $\mathbb{P}_{\theta} = \mathbb{P}_{\theta_0}$.

Dzięki temu wynikowi możliwe jest udowodnienie poniższego Twierdzenia.

Twierdzenie 1.2. Pod pewnymi **warunkami regularności** nałożonymi na rodzinę rozkładów prawdopodobieństwa, estymator największej wiarogodności $ENW(\theta)$ jest zgodny, tzn.

$$ENW(\theta) \to \theta \quad dla \quad n \to \infty.$$

 $Dow \acute{o}d.$

1) Z definicji w $ENW(\theta)$ przyjmowana jest wartość największa funkcji $L(\theta)$, a więc tymbardziej funkcji $\ell(\theta) = \log L(\theta)$ oraz funkcji

$$\ell_n(\theta) = \frac{1}{n}\ell(\theta) = \frac{1}{n}\log L(\theta) = \frac{1}{n}\sum_{i=1}^n \log f(\theta; X_i)$$

(zakładając ciągłość rozkładu i niezależność X_1, \ldots, X_n), gdyż ekstremum jest niezmiennicze ze względu na monotoniczną transformację i liniowe przekształcenie jakim jest dzielenie.

- 2) Z Lematu 1.1 wynika, że θ_0 maksymalizuje $\mathbb{E}_{\theta_0}\ell(\theta)$.
- 3) Z Prawa Wielkich Liczb, które jest spełnione gdy założy się, że X_i to realizacje ciągu zmiennych losowych o skończonych wartościach oczekiwanych, wynika, że

$$\ell_n(\theta) = \frac{1}{n} \sum_{i=1}^n \log f(\theta; X_i) \to \mathbb{E}_{\theta_0} \ell(\theta),$$

co ostatecznie oznacza, że $ENW(\theta)$ jest zgodny.

 $\mathbb{E}_{ heta_0}$ oznacza wartość oczekiwaną względem ozkładu parametryzowanego przez $heta_0$.

1.3.2. Asymptotyczna normalność estymatora największej wiarygodności

Fisher w swojej karierze wprowadził wiele pożytecznych pojęć stosowanych do dziś. Jednym z nich jest Informacja Fishera, która zostanie wykorzystana w dowodzie asymptotycznej normalności estymatora największej wiarogodności.

Definicja 1.10. Niech X będzie zmienną losową o gęstości f_{θ} , zależnej od jednowymiarowego parametru $\theta \in \Theta \subset \mathbb{R}$. Informacją Fishera zawartą w obserwacji X nazywa się funkcję

$$\mathcal{I}(\theta) = \mathbb{E}_{\theta}(\ell'(\theta; X))^2 = \mathbb{E}_{\theta}\left(\frac{\partial}{\partial \theta} \log f_{\theta}(X)\right)^2, \tag{1.1}$$

gdzie odpowiednio

$$\begin{split} \mathcal{I}(\theta) &= \int \left(\frac{\partial}{\partial \theta} \log f_{\theta}(x)\right)^{2} f_{\theta}(x) dx \qquad \textit{dla zmiennej ciąglej;} \\ \mathcal{I}(\theta) &= \sum_{x} \left(\frac{\partial}{\partial \theta} \log f_{\theta}(x)\right)^{2} \mathbb{P}_{\theta}(X=x) \; \textit{dla zmiennej dyskretnej.} \end{split}$$

W dowodzie asymptotycznej normalności estymatora największej wiarogodności kluczowymi założeniami są poniższe warunki regularności. Rodzina gęstości musi być dostatecznie regularna aby pewne kroki rachunkowe w dalszych rozumowaniach były poprawne.

Definicja 1.11. Warunki regularności.

- i) Informacja Fishera jest dobrze określona. Zakłada się, że Θ jest przedziałem otwartym, istnieje pochodna $\frac{\partial}{\partial \theta} \log f_{\theta}$, całka/suma we wzorze (1.1) jest bezwzględnie zbieżna (po obłożeniu funkcji podcałkowej modułem całka istnieje i jest skończona) i $0 < \mathcal{I}(\theta) < \infty$.
- ii) Wszystkie gęstości f_{θ} mają jeden nośnik, tzn. zbiór $\{x \in X : f_{\theta}(x) > 0\}$ nie zależy od θ .
- iii) Można przenosić pochodną przed znak całki, czyli zamienić kolejność operacji różniczkowania $\frac{\partial}{\partial \theta}$ i całkowania $\int \dots dx$.

Wprowadzając takie założenia, otrzymano przydatne właściwości Informacji Fishera.

Stwierdzenie 1.3. Jeśli spełnione są warunki regularności (1.11) to:

(i)
$$\mathbb{E}_{\theta} \frac{\partial}{\partial \theta} \log f_{\theta}(x) = 0,$$

(ii) $\mathcal{I}(\theta) = \mathbb{V}ar_{\theta} \left(\frac{\partial}{\partial \theta} \log f_{\theta}(X) \right),$
(iii) $\mathcal{I}(\theta) = -\mathbb{E}_{\theta} \left(\frac{\partial^{2}}{\partial \theta^{2}} \log f_{\theta}(X) \right).$

Dowód tego stwierdzenia można znaleźć w [18].

Patrząc na postać pochodnej funkcji log-wiarogodności

$$\ell'(\theta_0; X) = (\log f(\theta_0; X))' = \frac{f'(\theta_0; X)}{f(\theta_0; X)},$$

można wywnioskować, że nieformalnie interpretacja Informacji Fishera jest miarą tego jak szybko zmieni się funkcja gęstości jeśli delikatnie zmieni się parametr θ w okolicach θ_0 . Biorąc kwadrat i wartość oczekiwaną, innymi słowy uśredniając po X, otrzymuje się uśrednioną wersję tej miary. Jeżeli Informacja Fishera jest duża, oznacza to, że gęstość zmieni się szybko gdyby poruszyć parametr θ_0 , co innymi słowy oznacza, że gęstość z parametrem θ_0 jest znacząco inna i może zostać latwo odróżniona od gęstości z parametrami nie tak bliskimi θ_0 . Oznacza to, że możliwa estymacja θ_0 oparta o takie dane jest dobra. Z drugiej strony, jeżeli Informacja Fishera jest mała, oznacza to, że gęstość dla θ_0 jest bardzo podobna do gęstości z parametrami nie tak bliski do θ_0 , a co za tym idzie, dużo ciężej będzie odróżnić tę gęstość, czyli estymacja będzie słabsza.

Dzięki pojęciu Informacji Fishera i warunkom regularności, możliwe jest udowodnienie poniższego Twierdzenia.

Twierdzenie 1.4. Pod pewnymi warunkami regularności nałożonymi na rodzinę rozkładów prawdopodobieństwa, estymator największej wiarogodności jest asymptotycznie normalny,

$$\sqrt{n}(ENW(\theta) - \theta_0) \to \mathcal{N}\left(0, \frac{1}{\mathcal{I}(\theta_0)}\right).$$

Z Twierdzenia widać, że im większa Informacja Fishera tym mniejsza asymptotyczna wariancja estymatora prawdziwego parametru θ_0 .

Dowód. Ponieważ $ENW(\theta)$ maksymalizuje $\ell_n(\theta) = \frac{1}{n} \sum_{i=1}^n \log f(\theta; X)$, to $\ell'_n(\theta) = 0$.

Dalej, korzystając z Twierdzenia o Wartości Średniej:

$$\frac{g(a) - g(b)}{a - b} = g'(c) \text{ albo } g(a) = g(b) + g'(c)(a - b), \text{ dla } c \in [a, b],$$

gdzie $g(\theta) = \ell'_n(\theta), a = ENW(\theta), b = \theta_0$, można zapisać równość

$$0 = \ell_n'(ENW(\theta)) = \ell_n'(\theta_0) + \ell_n''(\theta_1)(ENW(\theta) - \theta_0), \text{ dla } \theta_1 \in [ENW(\theta), \theta_0],$$

a z niej przejść do postaci

$$\sqrt{n}(ENW(\theta) - \theta_0) = -\frac{\sqrt{n}\ell'_n(\theta_0)}{\ell''_n(\theta_1)}.$$
(1.2)

Z Lematu (1.1) wynika, że θ_0 maksymalizuje $\mathbb{E}_{\theta_0} \ell(\theta_0)$ czyli

$$\mathbb{E}_{\theta_0}\ell'(\theta_0) = 0,\tag{1.3}$$

a to można wstawić do licznika w równaniu (1.2)

$$\sqrt{n}\ell'_n(\theta_0) = \sqrt{n} \left(\frac{1}{n} \sum_{i=1}^n \ell'(\theta_0) - 0 \right)
= \sqrt{n} \left(\frac{1}{n} \sum_{i=1}^n \ell'(\theta_0) - \mathbb{E}_{\theta_0} \ell'(\theta_0) \right) \to \mathcal{N} \left(0, \mathbb{V}ar_{\theta_0}(\ell'(\theta_0)) \right),$$
(1.4)

gdzie zbieżność wynika z Centralnego Twierdzenia Granicznego.

Następnie można rozważyć mianownik w równaniu (1.2). Dla wszystkich θ wynika

$$\ell''(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell''(\theta) \to \mathbb{E}_{\theta_0} \ell''(\theta)$$

z Prawa Wielkich Liczb.

Dodatkowo, ponieważ $\theta_1 \in [ENW(\theta), \theta_0]$ a $ENW(\theta)$ jest zgodny (poprzedni podrozdział), to ponieważ $ENW(\theta) \to \theta_0$, to też $\theta_1 \to \theta_0$, a wtedy

$$\ell_n''(\theta_1) \to \mathbb{E}_{\theta_0} \ell''(\theta_0) = -\mathcal{I}(\theta_0)$$

z punktu (iii) ze Stwierdzenia (1.3).

Wtedy prawa strona równania (1.2), dzięki (1.4)

$$-\frac{\sqrt{n}\ell'_n(\theta_0)}{\ell''_n(\theta_1)} \xrightarrow{d} \mathcal{N}\left(0, \frac{\mathbb{V}ar_{\theta_0}(\ell'(\theta_0))}{(\mathcal{I}(\theta_0))^2}\right).$$

Ostatecznie wariancja

$$\mathbb{V}ar_{\theta_0}(\ell'(\theta_0)) \stackrel{z \stackrel{def}{=}}{=} \mathbb{E}_{\theta_0}(\ell'(\theta_0))^2 - (\mathbb{E}_{\theta_0}\ell'(\theta_0))^2 = \mathcal{I}(\theta_0) - 0,$$

co wynika z definicji Informacji Fishera i (1.3).

Model Coxa

The proportion of my life that I spent working on the proportional hazards model is, in fact, very small. I had an idea of how to solve it but I could not complete the argument and so it took me about four years on and off... Sir David Cox, An interview with Sir David Cox, 2014.

W tym rozdziale zostanie przedstawiony model proporcjonalnych hazardów Coxa. Głównym celem tej pracy jest wykorzystanie, nietypowej w tym modelu, numerycznej metody estymacji współczynników metodą stochastycznego spadku gradientu. Więcej o estymacji metodą stochastycznego spadku gradientu napisane jest w rozdziale 3.2. Definicje i twierdzenia w tym rozdziale oparte są o [8], [26], [2] i [6].

2.1. Wprowadzenie do modelu Coxa i nomenklatura

W analizie przeżycia, w której najczęściej wykorzystywany jest model Coxa, ogromnie popularna jest funkcja hazardu.

Definicja 2.1. Funkcja hazardu to funkcja, która wyraża się wzorem

$$\lambda_{j}(t) = \lim_{h \to 0} \frac{\mathbb{P}(t \le T^{*} \le t + h | T^{*} \ge t)}{h}$$

$$= \lim_{h \to 0} \frac{\mathbb{P}(t \le T^{*} \le t + h)}{h} \cdot \frac{1}{\mathbb{P}(T^{*} \ge t)}$$

$$= \lim_{h \to 0} \frac{F_{j}(t + h) - F_{j}(t)}{h} \cdot \frac{1}{S_{j}(t)} = \frac{f_{j}(t)}{S_{j}(t)}.$$
(2.1)

W powyższej definicji T^* oznacza czas do wystąpienia zdarzenia. Zakłada się, że wewnątrz każdej grupy $j=1,2,\ldots,m$ wyznaczonej przez poziomy zmiennych objaśniających, czasy $T^*_{j,i}$ dla $i=1,\ldots,n_j$ to niezależne zmienne losowe z tego samego rozkładu o zadanej gęstości $f_j(t)$, zaś $S_j(t)$ to $funkcja \ przeżycia$ w grupie j, która spełnia

$$S_j(t) = \mathbb{P}(T_{j,i}^* \ge t) = 1 - F_j(t),$$
 (2.2)

gdzie $F_j(t)$ to dystrybuanta rozkładu zadanego gęstością $f_j(t)$.

2. Model Coxa

Wartość funkcji hazardu w momencie t traktuje się jako chwilowy potencjał pojawiającego się zdarzenia (np. śmierci lub choroby), pod warunkiem że osoba dożyła czasu t. Funkcja hazardu nazywana jest również funkcją ryzyka, intensywnością umieralności (force of mortality), umieralnością chwilową (instantaneous death rate) lub chwilową częstością niepowodzeń (awarii) (failure rate). Ostatniego określenia używa się w teorii odnowy [7], w której analizuje się awaryjność elementów przemysłowych.

Model proporcjonalnych hazardów Coxa [8] jest obecnie najczęściej stosowaną procedurą do modelowania relacji pomiędzy zmiennymi objaśniającymi a przeżyciem lub innym cenzurowanym zdarzeniem. Model ten umożliwia analizę wpływu czynników prognostycznych na przeżycie. Sir David Cox opracował tego typu model dla tabeli przeżyć i zilustrował zastosowanie modelu dla przypadku białaczki, ale model może być stosowany do obliczania przeżyć w odniesieniu do innych chorób, jak w przypadku przeżyć w chorobach nowotworowych lub kardiologicznych po transplantacji serca lub zawałach serca [19].

Definicja 2.2. Model Coxa określa funkcję hazardu dla i-tej obserwacji X_i jako

$$\lambda_i(t) = \lambda_0(t)e^{X_i(t)'\beta},\tag{2.3}$$

gdzie λ_0 to niesprecyzowana nieujemna funkcja nazywana bazowym hazardem, a β to wektor współczynników rozmiaru p, co odpowiada liczbie zmiennych objaśniających w modelu Coxa.

Takie sformułowanie modelu gwarantuje, że funkcja hazardu jest nieujemna.

Model Coxa, dla wersji kiedy współczynniki są stałe w czasie, nazywany jest **modelem proporcjonalnych hazardów**, gdyż stosunek (proporcja) hazardów dla dwóch obserwacji X_i oraz X_j jest stały w czasie:

$$\frac{\lambda_i(t)}{\lambda_j(t)} = \frac{\lambda_0(t)e^{X_i\beta}}{\lambda_0(t)e^{X_j\beta}} = \frac{e^{X_i\beta}}{e^{X_j\beta}} = e^{(X_i - X_j)\beta}.$$

Oznacza to, że hazard dla jednej obserwacji można uzyskać poprzez przemnożenie hazardu dla innej obserwacji przez pewną stałą c:

$$\lambda_i(t) = \frac{e^{X_i'\beta}}{e^{X_j'\beta}} \cdot \lambda_j(t) = c_{ij} \cdot \lambda_j(t).$$

W modelu proporcjonalnych hazardów istotnym elementem jest estymacja stałych c_{ij} .

2.2. Założenia modelu proporcjonalnego ryzyka Coxa

Model Coxa znalazł szerokie zastosowanie z racji na nietypowy bo cenzurowany rodzaj danych, które jest w stanie wykorzystać do estymacji współczynników w modelu, przekładających się na proporcje hazardów. Z uwagi na aspekt praktyczny podyktowany warunkami technicznymi prób klinicznych i badań biologicznych, zbiory danych klinicznych zawierają cenzurowane czasy zdarzeń. Oznacza to, że w wielu przypadkach niemożliwe jest obserwowanie czasu zdarzeń dla wszystkich obserwacji w zbiorze. Niekiedy jest to uwarunkowane zbyt długim czasem do wystąpienia zdarzenia. Czasem jest to związane z zaplanowanym okresem próby klinicznej, który jest krótszy niż czas do zdarzenia dla pacjentów, którzy mogli zostać

włączeni do próby klinicznej pod koniec jej trwania i nie udało się dla nich zaobserwować czasów zdarzeń. W wielu przypadkach pacjenci, traktowani jako obserwacje w zbiorze, znikają z pola widzenia w momencie, gdy np. przestają pojawiać się na wizytach kontrolnych. Może być to spowodowane negatywnymi relacjami z lekarzem prowadzącym lub przeprowadzką. W takich sytuacjach wykorzystuje się daną obserwację do momentu jej ostatniej kontroli. Nie rezygnuje się z tej obserwacji w analizie i wykorzystuje się o niej informacje w pełni dla czasu, w którym przebywała pod obserwacją. Jest to ogromna zaleta modelu Coxa.

Z przyczyny cenzurowanych danych potrzebne są założenia modelu dotyczące cenzurowania czasów, które opierają się o następujące definicje.

Definicja 2.3. Cenzuorwanie prawostronne polega na zaobserwowaniu czasu

$$T = \min(T^*, C),$$

 $gdzie\ T^*$ to prawdziwy czas zdarzenia, zaś C jest nieujemną zmienną losową.

Definicja 2.4. Cenzurowanie jest niezależne jeśli zachodzi

$$\lim_{h\to 0}\frac{\mathbb{P}(t\leq T^*\leq t+h|T^*\geq t)}{h}=\lim_{h\to 0}\frac{\mathbb{P}(t\leq T^*\leq t+h|T^*\geq t,Y(t)=1)}{h},$$

gdzie Y(t) = 1 jeśli do chwili t nie wystąpiło zdarzenie ani cenzurowanie, czyli jednostka pozostaje narażona na ryzyko zdarzenia oraz Y(t) = 0 w przeciwnym wypadku.

Interpretacja tej definicji jest następująca: jednostka cenzurowana w chwili t jest reprezentatywna dla wszystkich innych narażonych na ryzyko zdarzenia w chwili t. Innymi słowy cenzurowanie nie wybiera z populacji osobników bardziej albo mniej narażonych na zdarzenie. Cenzurowanie działa niezależnie od mechanizmu występowania zdarzenia.

Definicja 2.5. Cenzurowanie jest nie-informatywne jeśli zachodzi

$$q(t;\theta,\phi) \equiv q(t;\phi),$$
 (2.4)

gdzie $g(t;\theta,\phi)$ jest funkcją gęstości dla cenzurowań C_i wyrażonych jako niezależne zmienne losowe o jednakowym rozkładzie, zaś prawdzie czasy T_i^* są interpretowane jako niezależne zmienne losowe o jednakowym rozkładzie i funkcji gęstości $f(t;\theta)$, czyli θ parametryzuje jedynie rozkład czasów zdarzeń.

Oznacza to, że cenzurowanie nie daje informacji o parametrach rozkładu czasów zdarzeń.

Terminu cenzurowanie po raz pierwszy w literaturze użył Hald w 1949 r. [13].

Model proporcjonalnych hazardów Coxa oparty jest o założenia, że:

- i) Współczynniki modelu $\beta_k, k=1,\cdots,p$ są stałe w czasie, co przekłada się na to, że stosunek hazardów dla dwóch obserwacji jest stały w czasie.
- ii) Postać funkcjonalna efektu zmiennej niezależnej, czyli postać modelu $\lambda_i(t) = \lambda_0(t)e^{X_i(t)'\beta}$.
- iii) Obserwacje są niezależne.
- iv) Cenzurowanie czasów jest nie-informatywne.
- v) Cenzurowanie czasów jest niezależne (od mechanizmu występowania zdarzenia).

2. Model Coxa

2.3. Estymacja w modelu Coxa

Funkcja hazardu jest wykładniczą funkcją zmiennych objaśniających, nieznana jest natomiast postać bazowej funkcji hazardu, co bez dalszych założeń uniemożliwia estymację standardową metodą największej wiarygodności. Rozwiązaniem Cox'a jest maksymalizacja tylko tego fragmentu funkcji wiarygodności, który zależy jedynie od estymowanych parametrów. W modelu Coxa proporcjonalnych hazardów estymacja współczynników β oparta jest o częściową funkcję wiarogodności, którą wprowadził Cox w 1972 r. [8].

Dla konkretnego czasu zdarzenia t_i , gdzie w zbiorze obserwowanych jest K czasów zdarzeń, prawdopodobieństwo warunkowe ze względu na liczność zbioru ryzyka w czasie t_i , że czas zdarzenia dotyczy i-tej jednostki spośród wciąż obserwowanych jest równe

$$\frac{e^{X_i'\beta}}{\sum\limits_{l\in\mathscr{R}(t_i)}e^{X_l'\beta}},\tag{2.5}$$

gdzie zbiór ryzyka $\mathcal{R}(t_i)$, w chwili t_i , rozumiany jest jako zbiór indeksów obserwacji, które są w danym czasie t_i pod obserwacją.

Chcąc estymować współczynniki metodą największej wiarogodności należy rozważyć funkcję wiarogodności, która dla niezależnego cenzurowania prawostronnego ma postać:

$$L(\theta, \varphi) = L_p(\theta) \cdot L^*(\theta, \varphi), \tag{2.6}$$

gdzie

$$L_p(\theta) = \prod_{i=1}^n f(t_j; \theta)^{\delta_j} S(t_j; \theta)^{1-\delta_j} = \prod_{i=1}^n \lambda(t_j; \theta)^{\delta_j} S(t_j; \theta)$$
(2.7)

to częściowa funkcja wiarogodności, a $L^*(\theta,\varphi)$ zależy od cenzurowania (parametr φ).

Wtedy dla niezależnego cenzurowania i dla czasów zdarzeń, które nie zaszły jednocześnie częściowa funkcja wiarogodności w modelu Coxa ma postać:

$$L_p(\beta) = \prod_{i=1}^{K} \frac{e^{X_i'\beta}}{\sum_{l=1}^{n} Y_l(t_i)e^{X_l'\beta}},$$
(2.8)

gdzie $Y_l(t_i) = 1$, gdy obserwacja X_l jest w zbiorze ryzyka w czasie t_i , i $Y_l(t_i) = 0$ w przeciwnym przypadku, n to liczba obserwacji w zbiorze a K to wspomniana wyżej liczba zaobserwowanych czasów zdarzeń. Zaletą takiej postaci funkcji częściowej wiarogodności jest to, że w jej wzorze nie występuje funkcja bazowego hazardu, zatem estymacja współczynników może odbywać się bez znajomości jej postaci.

Jeśli dodatkowo cenzurowanie jest nie-informatywne, to $L_p(\theta)$ jest **pełną** funkcją wiarogodności, bowiem wówczas

$$L^*(\theta, \varphi) \equiv L^*(\varphi)$$

co bierze się z definicji cenzurowania nie-informatywnego (2.4)

$$g(t;\theta,\phi) \equiv g(t;\phi).$$

Ponieważ model proporcjonalnych hazardów Coxa zakłada niezależność i nie-informatywność cenzurowania zatem można uważać, że częściowa funkcja wiarogodności daje pełną informację o współczynnikach i wnioskowanie w oparciu o nią jest uzasadnione i poprawne.

W sytuacjach, gdy nie jest spełnione założenie nie-informatywności cenzurowania i częściowa funkcja wiarogodności nie jest funkcją wiarogodności w sensie bycia proporcjonalną do prawdopodobieństwa obserwowanego zbioru, można ją traktować jako funkcję wiarogodności dla celów asymptotycznego wnioskowania o współczynnikach modelu, zobacz [?].

2.3.1. Analityczna estymacja współczynników

Standardowo w celu znalezienia maximum, aby ułatwić obliczenia, można rozważaną funkcję obłożyć monotoniczną transformacją jaką jest logarytm, tak aby w konsekwencji otrzymać częściową funkcję log-wiarogodności

$$\ell_p(\beta) = \sum_{i=1}^K X_i' \beta - \sum_{i=1}^K \log \left(\sum_{l \in \mathcal{R}(t_i)} e^{X_l' \beta} \right). \tag{2.9}$$

Numeryczne metody estymacji

Poszukujemy rozwiazan równosci

 $\delta lnLn/\delta\theta = 0.$

Tym razem w ogólnym przypadku zwykle nie znajdziemy analitycznego rozwiazania. W zwiazku z tym jestesmy zdani na metody iteracyjne. Poza tym, byc moze rozwiazanie problemu nie istnieje albo istnieje ich wiele. Zwykle uzywa sie do tego celu, tj. znalezienia rozwiazania, metody Newtona, zwykle w literaturze statystycznej w zastosowaniu do tego problemu, nazywanej metoda Newtona-Raphsona. W efekcie w zasadzie dla kazdego modelu z osobna nalezy badac własności asymptotyczne estymatora najwiekszej wiarygodności.

3.0.2. Ogólne pojęcia związane ze zbieżnością algorytmu

Warunki stopu itp

- 3.1. Algorytmy spadku wzdłuż gradientu
- 3.1.1. Algorytm Cauchy'ego
- 3.1.2. Algorytm Raphsona-Newtona
- 3.2. Algorytmy stochastycznego spadku wzdłuż gradientu
- 3.2.1. Metoda estymacji stochastycznego spadku gradientu I

Algorytm SGD

3.2.2. Metoda estymacji stochastycznego spadku gradientu II

Zaimplementowany algorytm

Analiza danych genomicznych model Coxa z estymacją metodą stochastycznego spadku gradientu

- 5.1. Opis i pobranie danych
- 5.2. Analiza

Dodatek A

Wykorzystane narzędzia

Dodatek B

Kody w R

Dodatek C

Dokumentacja pakietu RTCGA

R documentation

of all in 'RTCGA/man'

May 5, 2015

R topics documented:

	infoTCGA mergeTCGA													
	read.clinical													
Index														8

Description

The Cancer Genome Atlas (TCGA) Data Portal provides a platform for researchers to search, download, and analyze data sets generated by TCGA. It contains clinical information, genomic characterization data, and high level sequence analysis of the tumor genomes. The key is to understand genomics to improve cancer care. RTCGA package offers download and integration of the variety and volume of TCGA data using patient barcode key, what enables easier data possession. This may have an beneficial infuence on impact on development of science and improvement of patients' treatment. Furthermore, RTCGA package transforms TCGA data to form which is convenient to use in R statistical package. Those data transformations can be a part of statistical analysis pipeline which can be more reproducible with RTCGA

Details

For more detailed information visit RTCGA wiki on Github.

Author(s)

Marcin Kosinski [aut, cre] < m.p.kosinski@gmail.com > Przemyslaw Biecek [aut] < przemyslaw.biecek@gmail.com >

2 availableDataSets

See Also

Other RTCGA: availableDataSets; availableDates; availableGenesNames, checkGenesNamesAvailability; checkDataSetsAvailability; downloadTCGA; infoTCGA; mergeTCGA; read.clinical

availableDataSets

TCGA datasets' names

Description

Enables to check TCGA datasets' names for current release date and cohort.

Usage

```
availableDataSets(cancerType, date = NULL)
```

Arguments

cancerType A character of length 1 containing abbreviation (Cohort code) of types of can-

cers to check for available datasets' names on http://gdac.broadinstitute.org/.

date A NULL or character specifying from which date datasets' names should be

checked. By default (date = NULL) the newest available date is used. All available dates can be checked on http://gdac.broadinstitute.org/runs/ or by us-

ing availableDates function. Required format "YYYY-MM-DD".

Value

A vector of available datasets' names to pass to the downloadTCGA function.

See Also

Other RTCGA: RTCGA-package; availableDates; availableGenesNames, checkGenesNamesAvailability; checkDataSetsAvailability; downloadTCGA; infoTCGA; mergeTCGA; read.clinical

Examples

```
## Not run:
availableDataSets( "BRCA" )
availableDataSets( "OV", availableDates()[5] ) # error
## End(Not run)
```

availableDates 3

availableDates

TCGA datasets' releases dates

Description

Enables to check dates of TCGA datasets' releases.

Usage

```
availableDates()
```

Value

A vector of available dates to pass to the downloadTCGA function.

See Also

Other RTCGA: RTCGA-package; availableDataSets; availableGenesNames, checkGenesNamesAvailability; checkDataSetsAvailability; downloadTCGA; infoTCGA; mergeTCGA; read.clinical

Examples

```
## Not run:
availableDates()
## End(Not run)
```

checkDataSetsAvailability

TCGA datasets' names availability

Description

Enables to check TCGA datasets' names availability for current release date and cancer type.

Usage

```
checkDataSetsAvailability(cancerTypes, pattern = "Merge_Clinical.Level_1",
    date = NULL)
```

Arguments

cancerTypes A character vector containing abbreviation (Cohort code) of types of cancers to

check for availability of datasets' name on http://gdac.broadinstitute.org/.

pattern A character vector of length 1 containing a part of a dataset's name to be checked

for availability for current date parameter. By default phrase "Merge_Clinical.Level_1"

is checked.

date A NULL or character specifying from which date datasets' names should be

checked for availability. By default (date = NULL) the newest available date is used. All available dates can be checked on http://gdac.broadinstitute.org/runs/

or by using availableDates function. Required format "YYYY-MM-DD".

Value

A vector of available datasets names to pass to the downloadTCGA function.

See Also

 $Other\ RTCGA: RTCGA-package;\ available DataSets;\ available Dates;\ available Genes\ Names,\ check Genes\ Names\ Availability;\ download\ TCGA;\ infoTCGA;\ mergeTCGA;\ read.\ clinical$

Examples

Description

availableGenesNames returns all available genes' names from genes' expressions dataset, where checkGenesNamesAvailability checks whether genes specified in genes are available in Merge_rnaseqv2__illumina (genes' expressions) dataset.

Usage

```
checkGenesNamesAvailability(rnaseqDir, genes)
availableGenesNames(rnaseqDir)
```

Arguments

 $\label{eq:continuous} A \ directory \ to \ a \ cancer Type. rnaseqv2_illuminahiseq_rnaseqv2_unc_edu_Level_3_RSEM_file$

genes A character - which genes to check for availability in a dataset.

Value

A vector containing genes' names that matched existing names.

See Also

```
Other RTCGA: RTCGA-package; availableDataSets; availableDates; checkDataSetsAvailability; downloadTCGA; infoTCGA; mergeTCGA; read.clinical

Other RTCGA: RTCGA-package; availableDataSets; availableDates; checkDataSetsAvailability; downloadTCGA; infoTCGA; mergeTCGA; read.clinical
```

downloadTCGA 5

Examples

```
## Not run:
    checkGenesNamesAvailability( rnaseqDir, "TP53" )
## End(Not run)
```

downloadTCGA

Download TCGA data

Description

Enables to download TCGA data from specified dates of releases of concrete Cohorts of cancer types. Pass a name of required dataset to the dataSet parameter. By default the Merged Clinical dataSet is downloaded (value dataSet = "Merge_Clinical.Level_1") from the newest available date of release.

Usage

```
downloadTCGA(cancerTypes, dataSet = "Merge_Clinical.Level_1", destDir,
  date = NULL)
```

Arguments

cancerTypes A character vector containing abbreviations (Cohort code) of types of cancers to

download from http://gdac.broadinstitute.org/.

dataSet A part of the name of dataSet to be downloaded from http://gdac.broadinstitute.org/runs/.

By default the Merged Clinical dataSet is downloaded (value dataSet = "Merge_Clinical.Level_

Available datasets' names can be checked using availableDataSets function.

destDir A character specifying a directory into which dataSets will be downloaded.

date A NULL or character specifying from which date dataSets should be down-

loaded. By default (date = NULL) the newest available date is used. All available dates can be checked on http://gdac.broadinstitute.org/runs/ or by using

availableDates function. Required format "YYYY-MM-DD".

See Also

Other RTCGA: RTCGA-package; availableDataSets; availableDates; availableGenesNames, checkGenesNamesAvailability; checkDataSetsAvailability; infoTCGA; mergeTCGA; read.clinical

Examples

```
## Not run:
dir.create( "hre")
downloadTCGA( cancerTypes = "BRCA", dataSet = "miR_gene_expression",
destDir = "hre/" )
downloadTCGA( cancerTypes = c("BRCA", "OV"), destDir = "hre/" )
## End(Not run)
```

6 mergeTCGA

infoTCGA	Information about cohorts from TCGA project
111101007	ingormation about contribution 1 configuration

Description

Function restores codes and counts for each cohort from TCGA project.

Usage

infoTCGA()

Value

A list with a tabular information from http://gdac.broadinstitute.org/.

See Also

Other RTCGA: RTCGA-package; availableDataSets; availableDates; availableGenesNames, checkGenesNamesAvailability; checkDataSetsAvailability; downloadTCGA; mergeTCGA; read.clinical

mergeTCGA M	Merge Clinical data with genes' Mutations and Expressions data
-------------	--

Description

mergeTCGA enables to

Usage

```
mergeTCGA(clinicalDir, rnaseqDir = NULL, mutationDir = NULL, genes)
```

Arguments

mutationDir

clinicalDir	A directory to a cancerType.clin.merged.txt file. cancerType might be BRCA, OV etc. Can be checked using infoTCGA function.
rnaseqDir	A directory to a cancerType.rnaseqv2illuminahiseq_rnaseqv2unc_eduLevel_3RSEM_ file, which is a set with gene's Expressions.

A directory to a Mutation_Packager_Calls.Level folder where are genes'

Mutations files.

For rnaseqDir - which genes' expressions to merge with clinical data in clinicalDir. genes

For mutationDir which gene's mutations to merge with clinical data in clinicalDir.

Value

A cancerType.clin.merged.txt file is updated with newline containing informations about genes passed to genes argument.

read.clinical 7

Note

Original cancerType.clin.merged.txt file will be changed after performing merge operation. Only one of rnaseqDir and mutationDir can be used at a time.

See Also

 $Other\ RTCGA: RTCGA-package;\ availableDataSets;\ availableDates;\ availableGenesNames,\ checkGenesNamesAvailability;\ checkDataSetsAvailability;\ downloadTCGA;\ infoTCGA;\ read.\ clinical$

read.clinical

Read from txt fo;e

Description

TODO

Usage

```
read.clinical(clinicalDir, ...)
```

Arguments

clinicalDir A directo

A directory to a cancerType.clin.merged.txt file. cancerType might be BRCA, OV etc.

Value

A data.frame with clinical data.

See Also

Other RTCGA: RTCGA-package; availableDataSets; availableDates; availableGenesNames, checkGenesNamesAvailability; checkDataSetsAvailability; downloadTCGA; infoTCGA; mergeTCGA

Index

Literatura

- [1] Aldrich J., (1997) R. A. Fisher and the Making of Maximum Likelihood 1912 1922, Statistical Science 1997, Vol. 12, No. 3, 162-176.
- [2] Asselain B., Mould R. F., (2010) Methodology of the Cox proportional hazards model, Journal of Oncology 2010, volume 60, Number 5, 403–409.
- [3] Biecek P., (2011) *Przewodnik po pakiecie R*, Rozprawa doktorska, Oficyna Wydawnicza GiS, wydanie II.
- [4] Bottou L., (2010) Large-Scale Machine Learning with Stochastic Gradient Descent.
- [5] Bottou L., (2012) Stochastic Gradient Descent Tricks.
- [6] Burzykowski T., (2015?) Notatki do przedmiotu Biostatystyka, https://e.mini.pw.edu.pl/sites/default/files/biostatystyka.pdf.
- [7] Cox D. R. (1962) Renewal Theory. Methuen Monograph on Applied Probability & Statistics, London: Methuen.
- [8] Cox D. R., (1972) Regression models and life-tables (with discussion), Journal of the Royal Statistical Society Series B 34:187-220..
- [9] Fisher R. A., (1912) An absolute criterion for fitting frequency curves.
- [10] Fisher R. A., (1922) On the mathematical foundations of theoretical statistics, Philos. Trans. Roy. Soc. London Ser. A 222 309-368.
- [11] Gauss C. F., (1809) Theoria Motus Corporum Coelestium.
- [12] Gagolewski M., (2014) Programowanie w języku R, Wydawnictwo Naukowe PWN.
- [13] Hald A., (1949) Maximum likelihood estimation of the parameters of a normal distribution which is truncated at a known point, Skandinavisk Aktuarietidskrift, 119-134.
- [14] Hutchinson J. B., (1928) The Application of the "Method of Maximum Likelihood" to the Estimation of Linkage, Genetics. 1929 Nov; 14(6): 519–537.
- [15] Kenward M. G., Lesaffre E. and Molenberghs G., (1994) An Application of Maximum Likelihood and Generalized Estimating Equations to the Analysis of Ordinal Data from a Longitudinal Study with Cases Missing at Random, Biometrics Vol. 50, No. 4 (Dec., 1994), pp. 945-953.
- [16] Legendre A. M., (1804) Nouvelles mèthods pour la dètermination des orbites des comètes.
- [17] Millar R. B., (2011) Maximum Likelihood Estimation and Inference: With Examples in R, SAS and ADMB, chapter 6. Some Widely Used Applications of Maximum Likelihood, John Wiley & Sons, Ltd.

44 LITERATURA

[18] Niemiro W., (2011) Skrypt do przedmiotu *Statystyka*, http://www-users.mat.umk.pl/~wniem/Statystyka/Statystyka.pdf

- [19] Norwegian Multicentre Study Group, (1981) Timolol-induced reduction in mortality and reinfarction, The New England Journal of Medicine; 304: 801-7.
- [20] Panchenko D., (2006), Notatki do otwartego kursu MIT Statistics for Applications, Lecture 2: Maximum Likelihood Estimators., http://ocw.mit.edu/courses/mathematics/18-443-statistics-for-applications-fall-2006/
- [21] Panchenko D., (2006), Notatki do otwartego kursu MIT Statistics for Applications, Lecture 3: Properties of MLE: consistency, asymptotic normality. Fisher information., http://ocw.mit.edu/courses/mathematics/18-443-statistics-for-applications-fall-2006/
- [22] R Core Team, (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Wieden, ISBN 3-900051-07-0, http://www.R-project.org/.
- [23] Rydlewski J., (2009) Estymatory Największej Wiarogodności w Uogólnionych Modelach Regresji Nieliniowej, Rozprawa doktorska.
- [24] Sokołowski A., (2010) Jak rozumieć i wykonywać analizę przeżycia http://www.statsoft.pl/Portals/0/Downloads/Jak_rozumiec_i_wykonac_analize_przezycia.pdf
- [25] Statistics Views, (2014) "I would like to think of myself as a scientist, who happens largely to specialise in the use of statistics"—An interview with Sir David Cox.
- [26] Therneau T. M., Grambsch P. M., (2000), Modeling Survival Data: Extending the Cox Model, Springer.
- [27] Wikipedia, encyklopedia wolnego dostępu wikipedia.pl
- [28] Woodcock S, (2014), Notatki do otwartego kursu Uniwersytetu Simona Frasera *ECON* 837, Lecture 11 Asymptotic Properties of Maximum Likelihood Estimators, http://www.sfu.ca/swoodcoc/teaching/sp2014/econ837/11.mle.pdf
- [29] Zieliński R., (1990) Siedem wykładów wprowadzających do statystyki matematycznej, Warszawa, Wydawnictwo Naukowe PWN.

Oświadczenie

Oświadczam, że pracę magisterską pod tytułem "Estymacja w modelu Coxa metodą stochastycznego spadku gradientu z przykładami zastosowań w analizie danych z The Cancer Genome Atlas", której promotorem jest prof. ndzw. dr hab. inż Przemysław Biecek wykonałem samodzielnie, co poświadczam własnoręcznym podpisem.