Location-based Services (LBS): Was ist das?

Begriff

Standortbezogene Dienste liefern Informationen, die sich auf eine bestimmte geographische Position beziehen.

Beispiele aus dem Alltag

- Ein Autofahrer erhält die Dieselpreise der in der Nähe gelegenen Tankstellen
- Ein Mautsystem erfasst die Position eines Fahrzeugs
- Ein Smartphonebesitzer lässt sich am PC den Standort seines unauffindbaren Geräts zeigen
- Ein Routenalarm zeigt einem Radfahrer, dass er sich verfahren hat

Typische Aufgabenstellungen

- Wo bin ich? Wo ist eine bestimmte Person? Wo ist ein Fahrzeug/Gegenstand?
 (Sporadische Ortung und kontinuierliche Überwachung)
- Wie gelange ich zu einem bestimmten Ort? (Ortung, Routenberechnung, Wegführung)
- Suche nach nahegelegenen Points of Interest (POI)
- Ortsbezogene Werbung
- Mobile Arbeitszeiterfassung

Wichtige Rollen

- Dienstnutzer
- Endgerät, z.B. Smartphone, Auto-Bordcomputer
- Informationsanbieter
- Positionsbestimmer (Ortungssystem)
 - Beispiele: GPS, Google-Standortdienst, LKW-Mautsystem
 - Endgeräte-basierte Ortung / Ortung durch Netz / Kombination
- Kommunikationsnetz-Betreiber (z.B. GSM-Provider)

Worum geht es in der Veranstaltung?

MoCalnfo: Mobiles Campus-Informationssystem

- Ortsbezogene Informationen
- Hybride Ortungsverfahren
- Navigation im Innen- und Außenbereich
- Besondere Unterstützung blinder und stark sehbehinderter Nutzer
- Entwicklung innovativer LBS-Technologie
- Erprobung aktueller Entwicklungsmethoden und Frameworks

Inhalt der Veranstaltung

Ziel: Weiterentwicklung von MoCaInfo

- Vorhandenes verstehen
- Neue Konzepte erarbeiten
- Neue Entwicklungsmethoden und Frameworks zur Implementierung benutzen

Projektorientiertes Lernen

- Selbstständige Einarbeitung in komplexe Technik
- Teamfähigkeit
- Selbstorganisiertes Arbeiten
- Anderen komplexe Technik erklären
- Wissenschaftliche Artikel lesen und ggf. auch schreiben

Gelegenheit zum Studienschwerpunkt

Mögliche Studienleistungen durch Projektarbeit

- Diese Veranstaltung als Wahlpflichtfach
- Erweiterungsmöglichkeiten:
 - Masterseminar
 - Masterprojekt
 - Master-Thesis

Einführung in das Projekt

Beispiele für MoCaInfo POIs

- Hörsaaltür: Raumnummer + aktuelle Lehrveranstaltung
- Mensa: Speiseplan, Öffnungszeiten
- Büro: Personen, Sprechzeiten, Telefonnummern
- Getränkeautomat: Bedienungshinweise (speziell für blinde Nutzer)

Aktuelle Forschungsaspekte

- Besonders genaue Positionsbestimmung durch
 - verbesserte Koppelnavigation für Fußgänger (PDR "pedestrian dead reckoning")
 - kontextsensitive dynamische Kombination verschiedener Ortungsmethoden
- Routing für blinde und sehbehinderte Nutzer
- Wegführung für blinde und sehbehinderte Nutzer

Komponenten

MoCaInfo-Historie

- Start Sommersemester 2011 als Studentenprojekt
- Motivation:
 - Was kann man mit modernen Smartphones alles machen?
 - Können nicht blinde und stark sehbehinderte Studierende und Mitarbeiter besonders von den neuen Möglichkeiten profitieren?
 - Softwaretechnische Herausforderungen meistern
- Einige besondere Probleme:
 - Anforderungen an die Barrierefreiheit unbekannt, Beispiel: Sprachausgabe zur Wegführung
 - Keine Erfahrung mit Smartphone-Sensorik
 - Indoor-Ortung: relativ neues Forschungsgebiet
 - Kein Kartenmaterial
 - Wie geht enge Kopplung von CMS und Restsystem?
 - Kartendarstellung auf dem Smartphone

Lösungsansätze und Meilensteile

Barrierefreiheit

- Die Anforderungen an die Gerätebedienung sind für blinde und stark sehbehinderte völlig unterschiedlich. Die Einbeziehung dieser Nutzergruppen in die Entwicklung ist vor allem schon bei der Anforderungsdefinition nötig.
- Unser Standortvorteil: Durch das BLIZ gibt es an der Technische Hochschule Mittelhessen überdurchschnittlich viele blinde und sehbehinderte Studierende und Mitarbeiter.
- Meilensteine:
 - Spezifikation der Anforderungen: Diplomarbeit Christoph Niehaus
 - Erster mobiler Client mit GUI für Sehbehinderte:
 Bachelorarbeit Arthur Klos und Patrick Winter
 - Sprachsteuerung: Diplomarbeit Stefan Kornet

Abtastbereich Langstock

Richtungsanweisungen für Blinde?

Wegführung problematisch: Foyer A-Gebäude

Ortung - Wie geht das?

Klassische Ortungsmethoden

Triangulation, Trilateration, Trägheitsnavigation (Inertialnavigation), Koppelnavigation

Kombination vom Ortungsverfahren

- Außenbereich: GPS
- Innenbereich: ?

Probleme

- WiPos nutzen?
- Vorhandenes WLAN nutzen?
- NFC Tags
- Sensorik

GPS-Prinzip

Scannen von NFC-Etiketten oder QR-Codes

Prinzip

An Türen, Aufzügen, Treppen und anderen POIs werden NFC- oder QR-Etiketten mit ortsspezifischen IDs angebracht. Das Einscannen führt zu einem Verweis auf den Ort und die POI-Info

Vorteile

- billig
- sehr genaue Ortsbestimmung

Nachteile

- erfordert Benutzeraktion
- für blinde Nutzer ggf. schwer auffindbar
- Verteilung und ggf. Wartung nötig
- Nicht für alle Smartphones verfügbar

WLAN-Fingerprinting

Prinzip

- Ein WLAN-Fingerprint eines Orts ist eine Liste der dort sichtbaren Accesspoints zusammen mit deren Signalstärken.
- Eine Datenbank enthält für eine Vielzahl von Positionen deren WLAN-Fingerprints.
- Zur Ortung vergleicht man die aktuellen Signalverhältnisse mit den Datenbankeinträgen. Man ermittelt den Ort, dessen Fingerprint am besten zu den aktuellen Messwerten passt.

Vorteile

- ggf. WiPOS nutzbar (Prof. Dr. Birkel EI)
- ggf. vorhandene Infrastruktur verwendbar

Nachteile

- Aufwand für Fingerprinting
- dichtes WLAN-Netz nötig
- konstante Signalstärke nötig
- ungenau

Sensor-basierte Positionierung

Beispiele für Smartphone-Sensoren

- Gyroskop
- Bewegungssensor
- Magnetfeldsensor
- Barometer

Prinzip

Man benutzt Sensoren, um die Fortbewegungsgeschwindigkeit und -richtung zu messen. Daraus ergibt sich eine Ortsveränderung.

Beispiele

- Gyroskop misst Drehungen in allen 3 Achsen. Kombiniert mit den Werten des Magnetfeldsensors ist ein elektronischer Kompass realisierbar.
- Bewegungssensor misst Beschleunigung in allen Richtungen. Damit ist eine Schritterkennung als Basis für eine Entfernungsmessung möglich.

Vorteile

- kostenlos
- mit anderen Verfahren kombinierbar

Nachteile

- Störfaktoren beeinflussen Genauigkeit
- technisch komplex

Koppelnavigation / Dead Reckoning

Prinzip

Ein Ortungsverfahren liefert in manchen Bereichen keine brauchbare Geoposition (Kfz-GPS im Tunnel). Mit Sensorik-basierten Verfahren wird die aktuelle Position bis zum nächsten Fix (beobachtete Position) interpoliert.

Pedestrian Dead Reckoning (PDR)

- Ein Basis-Ortungsverfahren wird durch ein spezielles Sensorik-basiertes Verfahren ergänzt:
 - Zur Richtungsmessung wird ein elektronischer Kompass eingesetzt
 - Zur Distanzmessung wird ein Schrittzähler verwendet
- Basis-Ortungsverfahren könnten z.B. GPS (außen) und WiFi-Fingerprinting (innen) sein.

Forschungsaspekt: Advanced Dead Reckoning

Problem

- Das Basis-Ortungsverfahren liefert unter ungünstigen Bedingungen nur sehr ungenaue Positionen. Bei GPS z.B. durch hohe Gebäude, bei WLAN-Fingerprinting durch schlechte WLAN-Ausleuchtung.
- Bei ungenauen Messungen des Basisverfahrens ist es u.U. besser, die Sensorik weiter zu benutzen und die Fixes des Basisverfahrens zu verwerfen.
- Wie beurteilt man aber die Brauchbarkeit der Messwerte?

Advanced Dead Reckoning

- Sowohl Basisverfahren als auch Sensor-Messwerte werden auf Brauchbarkeit überprüft.
- Die Sensor-basierte Positionsbestimmung wird abhängig von den Kontextbedingungen gewichtet mit den Messwerten des Basisverfahrens kombiniert.

Meilensteine Positionierung

- Entwicklung eines Tag-Readers und eines Tag-Writers 2012 (Artur Klos)
- Zusammenarbeit mit Prof. Dr. Birkel zur Nutzung von WIPOS (2012)
- Entwicklung eines eigenen Fingerprinting-Systems (Artur Klos, Nils Becker) (2012/2013)
- Installation eines eigenen MoCalnfo-WLAN-Netzes zur Ortung im A20-Gebäude (2013)
- Eigenes PDR-System (Masterprojekt Nils Becker)
- Neues Verfahren mit besserer Genauigkeit (Masterarbeit Nils Becker, 2014)

WiFi-Fingerprinting

Schritterkennung

Dead Reckoning

Advanced Dead Reckoning

(d) alpha=0, equivalent to relative only with first absolute position, determined by WiFi in the lower right corner

Arbeiten mit Karten

Probleme

- Kartenmaterial muss selbst erstellt werden
 - Woher kommen Bilder, Pläne usw.?
 - Tools: Karteneditor
 - Vektorkarten oder Bitmaps?
 - 2D / 3D (Genäude mit mehreren Stockwerken)
 - Datenformat?
- Effizientes Rendering der Karten: Zoomen, Verschieben, Ebenenwechsel

Probleme / Lessons learned

- Eigenentwicklung eines Map-Editors aufwändig
- Eigenentwicklung eines genügend effizienten Map-Renderers zu aufwändig
- Open Streetmaps (OSM) unterstützt bislang keine Innen-Maps
- Google Maps ist durch Lizenzbedingungen ungeeignet

Lösungsweg

- Datenformat OSM-basiert (inkl. Indoor-Proposal) mit eigenen Erweiterungen
- Karteneditor: JOSM
- Rendering durch OSM-GMaps: Kombination von Google-Maps und OSM (Nils Becker)

Der alte Navigationseditor

JOSM - Der aktuelle Navigationseditor

Googlemaps Layer-Konzept

OSM-Beispiel

```
1 <osm version='0.6' generator='JOSM'>
   <!-- building -->
    <relation id='1370729' ...>
       <member type='relation' ref='1370727' role='level -1' />
       <member type='relation' ref='1370728' role='level_0' />
       <tag k='building' v='yes' />
       <tag k='building:levels' v='3' />
       <tag k='building:max_level' v='1' />
       <tag k='building:min_level' v='-1' />
       <tag k='name' v='A20' />
       <tag k='type' v='building' />
13 </relation>
   <!-- floor 1 -->
    <relation id='1370725' ...>
       <member type='way' ref='94551494' role='buildingpart' />
       <tag k='level' v='1' />
       <tag k='level:usage' v='academic' />
       <tag k='name' v='First Floor' />
       <tag k='type' v='level' />
^{21}
  </relation>
    <!-- room -->
    <way id='94551494' ...>
       <nd ref='1098227358' />
       <nd ref='1098226969' />
      <nd ref='1098227303' />
     <nd ref='1098226902' />
     <nd ref='1098227358' />
       <tag k='buildingpart' v='room' />
       <tag k='name' v='1.07' />
    </way>
32
33 <!-- door of room -->
    <node id='1098226902'lat='50.587165546307155' lon='8.682308673862533' ...>
       <tag k='door' v='manual' />
   </node>
37 </osm>
```