Tutorial Basics of Probability Theory

Statistics and Data Analysis

Tutors: Lune & Inga

Calculate the full path probabilities.

Flip-and-Draw Scenario P(blue)= 0,35 0.7 P(heads) Draw = 0.5P(red) 0,15 = 0.3 flip P(blue) 0.25 =0.5P(tails) = 0.5 Draw P(red) 0.25 = 0.5

Solution:

P(heads, blue) = 0.5*0.7=0,35

P(heads, red) = 0.5*0.3=0.15

P(tails, blue) = 0.5*0.5=0.25

P(tails,red) = 0.5*0.5=0.25

Conditional Probability Table

John is going to work by train everyday. He wonders if the arriving time of the train is connected to the weather/season. So he started recording the numbers.

Calculate the missing values

	On Time	Delayed	Σ
Spring	0,2		0,25
Summer			0,25
Autumn		0,08	
Winter	0,04		0,25
Σ		0,45	

Conditional Probability Table

	On Time	Delayed	Σ
Spring	0,2	0,05	0,25
Summer	0,14	0,11	0,25
Autumn	0,17	0,08	0,25
Winter	0,04	0,21	0,25
Σ	0,55	0,45	1

More probability calculation

	On Time	Delayed	Σ
Spring	0,2	0,05	0,25
Summer	0,14	0,11	0,25
Autumn	0,17	0,08	0,25
Winter	0,04	0,21	0,25
Σ	0,55	0,45	1

Let's consider this table. Calculate the following probabilities:

P(Winter | Delayed) =

P(Not summer | On Time)=

P(Delayed | Spring) =

More probability calculation

	On Time	Delayed	Σ
Spring	0,2	0,05	0,25
Summer	0,14	0,11	0,25
Autumn	0,17	0,08	0,25
Winter	0,04	0,21	0,25
Σ	0,55	0,45	1

$$P(Winter|Delayed) = \frac{0,21}{0,45} = \frac{7}{15}$$

$$P(Notsummer|OnTime) = \frac{(0,2+0,17+0,04)}{0,55} = \frac{41}{55}$$

$$P(Delayed|Spring) = \frac{0,05}{0,25} = \frac{1}{5}$$

Bayes Rule - Task

Medical Diagnostic Test

There is a cancer test, which has a true positive rate (positive, when the person has cancer) of 0.85 and a true negative rate of 0.95. The general probability to get this type of cancer is 0.02%.

Calculate the probability of a patient having cancer given a positive test result using the Bayes Theorem.

Bayes Rule - Solution

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)} = \frac{P(A \mid B) \times P(B)}{P(A)}$$

For this task:

$$P(Cancer = True | Test = Positive) = \frac{P(Test = Positive | Cancer = True) * P(Cancer = True)}{P(Test = Positive)}$$

Probabilities taking from the text:

P(Test=positive| cancer=true)=0.85 P(Cancer=True) = 0.0002 P(Test=Negative | Cancer=False) = 0.95

Calculation of P(Test=Positive):

P(Cancer=True | Test=Positive) = 0.85 * 0.0002 / P(Test=Positive)

P(Cancer=False) = 1 - P(Cancer=True) = 0.9998

P(Test=Positive|Cancer=False) = 1 - P(Test=Negative | Cancer=False) = 0.05

P(Test=Positive) = 0.85 * 0.0002 + 0.05 * 0.9998 = 0.05016

P(Cancer=True | Test=Positive) = P(Test=Positive|Cancer=True) * P(Cancer=True) / P(Test=Positive) = 0.003389154704944

More Practice! Commute problem

A person uses his car 30% of the time, walks 30% of the time and rides the bus 40% of the time as he goes to work. He is late 10% of the time when he walks; he is late 3% of the time when he drives; and he is late 7% of the time he takes the bus.

 What is the probability he took the bus if he was late?

Solution

What is the probability he took the bus if he was late?

$$P(B|L) = \frac{P(B,L)}{P(L)} \qquad P(B|L) = \frac{0.07 * 0.4}{P(L)}$$

$$P(L) = P(W, L) + P(B, L) + P(D, L)$$
 $P(B|L) = 0.418$
= $0.1 * 0.3 + 0.07 * 0.4 + 0.03 * 0.3$
= 0.067

Commute problem

A person uses his car 30% of the time, walks 30% of the time and rides the bus 40% of the time as he goes to work. He is late 10% of the time when he walks; he is late 3% of the time when he drives; and he is late 7% of the time he takes the bus.

 What is the probability he walked if he is on time?

Solution

What is the probability he walked if he is on time?

$$P(W|T) = \frac{P(W,T)}{P(T)} = \frac{0.3 * 0.9}{P(T)}$$

$$P(T) = 1 - P(L) = 0.933$$
 $P(W|T) = 0.289$

Coin problem

Consider 3 coins where two are fair, yielding heads with probability 0.50, while the third yields heads with probability 0.75. If one randomly selects one of the coins and tosses it 3 times, yielding 3 heads - what is the probability this is the biased coin?

Coin problem solution

Consider 3 coins where two are fair, yielding heads with probability 0.50, while the third yields heads with probability 0.75. If one randomly selects one of the coins and tosses it 3 times, yielding 3 heads - what is the probability this is the biased coin?

$$= \frac{1/3 * (0.75)^3}{2/3 * (0.5)^3 + 1/3 * (0.75)^3} = 0.6279$$

Bayes' Theorem expression

Dayes Hireorem expression

Find an expression for P(A|B) in terms of these four probabilities.

Suppose P(A), $P(\overline{A})$, P(B|A), and $P(B|\overline{A})$ are known.

Solution

$$P(A|B) = \frac{P(A,B)}{P(B)}$$

$$P(A|B) = \frac{P(B|A) P(A)}{P(B|A) P(A) + P(B|\overline{A}) P(\overline{A})}$$

Q&A