

Bases de la protéomique

Principes et Applications

Extraction des protéines

Les étapes pour la protéomique

Extraction des protéines et purifications

extraction des protéines à partir de cellules, tissus ou organelles intracellulaires

Séparation des protéines

électrophorèse en gel, chromatographie... Possible de ne pas en réaliser

Identification

le plus souvent utilisation de la spectrométrie de masse

Inhibiteurs de protéases et phosphatases

Inhibiteurs

Homogénéisation = mélange complexe dans conditions physiologiques

Toutes les protéines accessibles à la dégradation par des protéases

Endopeptidases: spécifiques de séquences en a.a.

Exopeptidases: peu spécifiques, clivage d'un seul a.a. d'une extrémité (C-term= carboxypeptidases; N-term= aminopeptidases; les deux: dipeptidases)

4 classes: serine proteases, cysteine (thiol) proteases, aspartic proteases, and metalloproteases

Diminution de la quantité de protéines ou de PTMs Perte d'activité

=> Utilisation d'inhibiteurs de protéases ou phosphatase dans le milieu de lyse.

Organism	Number of proteases
Escherichia coli K-12	1436
Saccharomyces cerevisiae	216
Pichia pastoris	125
Homo sapiens	1121

Composés biologiques ou chimiques

Interactions réversibles ou irréversibles

Réversibles:

Inhibition par compétition, se lie au site actif de l'enzyme Inhibiteur incompétitif (uncompetitive inhibitor), se lie au complexe enzyme-substrat

Inhibiteur non compétitif, se lie aussi bien au site actif libre de l'enzyme ou au complexe enzyme-substrat

Irréversibles:

Altération de l'activité de la protéase souvent par formation de liaisons covalentes

Inhibiteurs

Figure 4. Three different commercially-available protease inhibitors. PMSF is a small molecule, E-64 is a peptide-like molecule, and aprotinin is a small protein [3].

Utilisables individuellement ou en cocktail

	Inhibits	Reversibility	Advantages/Disadvantages
AEBSF / Pefabloc	serine proteases	irreversible	Can covalently modify some amino acid residues with a 183 Da AEBS group, leading to problems with mass spectrometry and gel electrophoresis Very stable in aqueous solutions, compared to most other serine protease inhibitors Very low toxicity and can be used in cell culture or animals in vivo.
Aprotinin	serine proteases	reversible	Can stick to some dialysis tubing and column matrices with low ionic strength Can be fluorescently labeled without affecting its inhibitory activity Dissociates from protease at pH<3 or pH>10
Bestatin	some aminopeptidases	reversible	Low stability in aqueous solutions
E-64	cysteine proteases	irreversible	Can be coupled to a matrix for affinity purification of cysteine proteases [16] Very soluble in aqueous solutions High specificity (does not affect other cysteine residues) Cell permeable and low toxicity makes it useful for <i>in vivo</i> studies
EDTA/EGTA	metalloproteases	reversible	Not compatible with immobilized metal affinity chromatography (IMAC) Not compatible with two-dimensional gel electrophoresis Very soluble and stable in aqueous solutions
GM 6001	matrix metalloproteinases	reversible	Can be injected in vivo, e.g., injection i.p. to mice at 100 µg/g daily [17]
Leupeptin	serine/cysteine proteases	reversible	Low stability at the working concentration Not cell permeable May affect assays for determining protein concentration
Pepstatin	aspartic proteases	reversible	Insoluble in aqueous solutions High stability
PMSF	serine proteases	irreversible	Is a neurotoxin and should be handled carefully Limited solubility in aqueous solutions Very unstable in aqueous solutions

Détergents = surfactants (surface acting agents)

Abaisse la tension de surface d'un liquide et la tension d'interface entre deux liquides

Synthétiques ou naturels

Différents types : ionique (anionique ou cationique), non-ionique, zwitterionique

Agent chaotrope:

ex. urée, dénature la molécule par rupture des liaisons hydrogènes (changement des propriétés de l'eau)

Туре	
Ionique	Sodium Dodecyl sulfate (SDS), Sodium deoxycholate, Sodium cholate, sarkosyl, CTAB
Non-ionique	Triton X-100, X-114, DDM, digitonin, tween 20, tween 80, IGEPAL, NP-40
Zwitterionique	CHAPS, CHAPSO, ASB14
Chaotrope	urée

addecyr p D marcosia.

C24H46O11

Mode d'action:

Solubilise les constituants de la membrane plasmique en empêchant les interactions entre eux

Rupture des interactions hydrophobes et solubilisation des protéines

Propriétés générales:

Molécules amphiphiles (amphipathiques) = possède un groupe hydrophile et un groupe hydrophobe (A)

Tête polaire hydrophile et queue non polaire hydrophobe

Partie hydrophobe va se lier aux parties hydrophobes des protéines (B)

Concentration Micellaire Critique (CMC): concentration à laquelle il y a formation de micelles (C) = agrégation . Peut gêner l'analyse si concentration de protéines trop faibles.

CMC des détergents ioniques diminue si concentration en sels augmente

CMC des détergents non ioniques est peu affectée par les sels mais augmente lorsque la température augmente.

Protein-detergent complex

Properties of common detergents. Agg.# = Aggregation number, which is the number of molecules per micelle.

Detergent	Туре	Agg.#	MW mono (micelle)	CMC mM (%w/v)	Cloud Point °C	Dialyzable
Triton X-100	Nonionic	140	647 (90K)	0.24 (0.0155)	64	No
Triton X-114	Nonionic	-	537 (-)	0.21 (0.0113)	23	No
NP-40	Nonionic	149	617 (90K)	0.29 (0.0179)	80	No
Brij-35	Nonionic	40	1225 (49K)	0.09 (0.1103)	>100	No
Brij-58	Nonionic	70	1120 (82K)	0.08 (0.0086)	>100	No
Tween 20	Nonionic	-	1228 (–)	0.06 (0.0074)	95	No
Tween 80	Nonionic	60	1310 (76K)	0.01 (0.0016)	-	No
Octyl glucoside	Nonionic	27	292 (8K)	23-24 (~0.70)	>100	Yes
Octyl thioglucoside	Nonionic	-	308 (–)	9 (0.2772)	>100	Yes
SDS	Anionic	62	288 (18K)	6-8 (0.17-0.23)	>100	No
CHAPS	Zwitterionic	10	615 (6K)	8-10 (0.5-0.6)	>100	Yes
CHAPSO	Zwitterionic	11	631 (7K)	8-10 (~0.505)	90	Yes

SDS

Surfactant **anionique** le plus courant pour solubiliser les protéines

Agit sur liaison non covalentes, **perte de la conformation native et fonction**

Masque la charge des protéines (charge -)

Nécessite une homogénéisation préalable

Pas d'étude d'interaction

Précipite à basse température

Tween

Détergent doux non-ionique

Utilisable en test d'activité

Utilisé comme agents de lavage

Perméabilisation des membranes cellulaires

CHAPS

Détergent zwitterionique

Facilement éliminé par dialyse ou filtre amicon

Utilisé pour isoelectrofocalisation et gel 2D

Variante CHAPSO pour les protéines membranaires

Détergents

Detergent	MW (Da) monomer	MW (Da) micelle	CMC (mM) 25°C	Aggregation No.	Cloud Point (°C)	Avg. Micellar Weight	Strength	Dialyzable	Applications
SDS	289	18,000	7-10	62	>100	18,000	Harsh	Yes	Cell lysis, Electrophoresis, WB, hybridization
Triton X-100	625	90,000	0.2-0.9	100-155	65	80,000	Mild	No	Enzyme immunoassays, IP, Membrane solubilization
CHAPS	615	6,150	6	10	>100	6,150	Mild	Yes	IEF, IP
NP-40	680	90,000	0.059		45-50		Mild	No	IEF
n-dodecyl-β- D-maltoside	511		0.15	98		50,000			Protein Crystallization
Tween-20	1228		0.06		76		Mild	No	WB, ELISA, Enzyme immunoassays
Digitonin	1229	70,000	<0.5	60		70,000	Mild	No	Membrane solubilization

Triton

Non ionique

Plusieurs molécules similaires (triton X-100, Triton X-114, NP-40 (Nonidet P-40), IGEPAL® CA-630)

PEG forme la tête

CMC faible donc difficile à retirer

Triton X-100 pour **extraction protéines membranaires**Compatible CO-IP

Triton X-114 possède un point trouble bas (23° C), **permet séparation de phase** sans haute température

Récupération phase riche en détergent concentrant protéines hydrophobes (membranaires)

Urée

Choatrope

Dénaturation réversible

Applicable en gel 2D et pour les préparations digestion en solution

Détergents

Détergents clivables

Détergents non compatibles avec toutes les techniques d'analyses → Nécessaire de les retirer

Possible d'utiliser des détergents clivables. Utilisation couplée à la digestion enzymatique (diminution de temps de digestion)

RapiGest SF Waters Degradation at low pH

PPS Silent Surfactant Expedeon Degradation at low pH

Invitrosol invitrogen Mix of different surfactant

ProteaseMAX Promega Degradation over the course of digestion

Bonne efficacité d'extraction mais moins que détergents classiques

Détergents clivables

Retirer les détergents car non compatibles avec analyses MS, IEF, IP... ou quantification:

- Précipitation des protéines
- Résine d'affinité
- Gel
- Filtre

Précipitation des protéines

TCA (trichloroacetic acid), TCA/acétone, TCA/ Deoxycholate, Acétone, Chloroforme/méthanol

Prb : remise en suspension → perte de protéines

Chloroform/Methanol

Partitioning

Détergents

Chloroform/Methanol

Filtres de centrifugation

Utilisation de filtres pour retenir les protéines et éliminer les sels et détergents

Efficacité de **récupération limitée**

Utilisée pour des stratégies de digestion enzymatique

Résine d'affinité

Utilisation de spin column contenant de la résine Interaction entre la résine et les protéines Détergents et autres contaminants sont éliminés par centrifugation

 Centrifuge for 1 minute at 1,500 x g to remove the storage buffer. Add 0.4 ml equilibration buffer, centrifuge at 1,500 x g for 1 minute and discard the flow-through.
 Repeat 2 additional times. Add detergent containing sample (25-100 μl) and incubate for 2 minutes at RT.

Detergent	Max. removable concentration	Detergent removal	BSA recovery
SDS	2.5%	99%	95%
Sodium deoxycholate	5%	99%	100%
CHAPS	3%	99%	90%
Octyl glucoside	5%	99%	90%
Octyl thioglucoside	5%	99%	95%
Lauryl maltoside	1%	98%	99%
Triton X-100	2%	99%	87%
Triton X-114	2%	95%	100%
NP-40	1%	95%	91%
Brij-35	1%	99%	97%
Tween 20	0.125%	95%	90%

Dosage des protéines

Dosage

Vérification de l'efficacité de l'extraction Permet de normaliser la quantité de protéines entre les échantillons

Dosage colorimétrique ou par absorbance UV

Utilisation d'un spectrophotomètre Repose sur la loi de Beer-Lambert (absorbance proportionnelle à la concentration du soluté à doser)

Absorption aux UV 280 nm

- Absorption **tryptophane et tyrosine**
- *Gamme 0.05-2mg/ml*
- Précision moyenne
- Interférence: détergents, acides nucléiques

280-260 nm

Combinaison de l'absorbance à 280nm et 260nm (ac. Nucléique)

191-194 nm

- Peptides peuvent absorber vers 190 nm
- Mais **les tampons aussi**
- Gamme 0.01-0.05mg/ml
- Précision moyenne
- Pas dépendant en a.a.
- Interférence: tampon

Dosage par absorption UV

 $C = d x (A_{280 \text{ nm}} x 1,55 - A_{260} \text{ nm} x 0,76)$

d = facteur de dilution de la solution protéique utilisé pour les mesures d'absorbance.

Rapport	Teneur en acides
A _{280nm} /A _{260nm}	nucléiques (%)
1.75	0.0
1.52	0.5
1.36	1.0
1.25	1.5
1.16	2.0
1.03	3.0
0.94	4.0
0.82	6.0
0.75	8.0
0.67	12.0

Mesure par changement de couleur (réaction entre protéines et substance chimique) Quantification par spectrophotométrie Nécessite une courbe standard

Méthode du Biuret

- Cuivre (CU2+) réagit avec les liaisons peptidiques → coloration violet, absorption 550nm
- Méthode linéaire, non dépendante de la composition en a.a.
- Peu sensible (1-6mg/ml)
- Interférence avec les sels d'ammonium

Méthode de Lowry

- Cu2+ réduit en oxydant les a.a. aromatiques (Cu+) qui interagit avec le réactif de Folin → coloration du jaune au bleu, absorption à 750nm
- 0.1-1.5mg/ml
- Interférence avec EDTA, DTT, B-mercapto, Hepes, Tris, tritonX-100, NP-40...

Dosages colorimétriques

Biuret

Lowry

Dosages colorimétriques

BCA (Bicinchoninic acid)

- Dérive du Biuret
- Utilise le cuivre → complexe BCA/cuivre **absorbe à 560nm**
- Sensibilité de 1µg/ml à 2mg/ml
- Sensible aux agents réducteurs, chélateurs ou aa. libres

Méthode de Bradford

- Utilise le Bleu de Coomassie qui se lie à l'arginine (Arg, R), Tyrosine (Tyr, Y), tryptophane (Trp, W), Histidine (His, H) et phénylalanine (Phe, F)
- Coloration rouge absorbe à 470nm. Quand lié aux protéines
 → forme anionique bleue (595nm)
- 5-100µg/ml
- Très sensible à la présence de détergents

Bicinchoninic Acid Assay

Analyse d'Article

ARTICLE RETURN TO ISSUE < PREV

Depletion of High-Molecular-Mass Proteins for the Identification of Small Proteins and Short Open Reading Frame Encoded Peptides in Cellular Proteomes

Liam Cassidy, Philipp T. Kaulich, and Andreas Tholey*

Cite this: J. Proteome Res. 2019, 18, 4, 1725-1734 Publication Date: February 19, 2019 > https://doi.org/10.1021/acs.jproteome.8b00948 Copyright © 2019 American Chemical Society

RIGHTS & PERMISSIONS

Read Online

PDF (5 MB)

Add to Export

Q

UBJECTS: Protein identification, Peptide identification, Peptides and proteins, ~

