Raspberry Pi auf Sd-Card installieren

- Installation über Imager
- https://www.raspberrypi.org/downloads/

Downloads

Raspberry Pi OS (previously called Raspbian) is our official operating system for **all** models of the Raspberry Pi.

Use **Raspberry Pi Imager** for an easy way to install Raspberry Pi OS and other operating systems to an SD card ready to use with your Raspberry Pi:

- Raspberry Pi Imager for Windows
- Raspberry Pi Imager for macOS
- Raspberry Pi Imager for Ubuntu

Version: 1.4

Imager anwenden

- OS und SD-Card wählen und starten
- Raspberry Pi OS Lite genügt
 - Seit 2022 64Bit-Version

Neues Tool → Vorkonfiguration - scrollen

- Strg-Shift-x → zusätzliches Menü
 - Hostname auf eigenen Namen setzen
 - pi-Passwort für Seminar iot20220314
 - Wifi-Credentials iot/iot20220314
 - Zeitzone
 - Tastaturlayout
 - **–** ...

Erstinbetriebnahme

- Raspi starten und einige Minuten warten
- Versuch Raspi über SSH zu erreichen
 - ssh pi@iotseminar.local
 - ifconfig → IP V4 Adresse
- IP-Adresse ausfindig machen
 - Router → Netzwerk → Raspi suchen
- Mit ssh pi@192... verbinden
- Raspi aktualisieren
 - sudo apt update && sudo apt full-upgrade
- sudo reboot now

Raspi war unter der IP schon im Netz

Aus known_hosts entfernen

Name	Änderungsdatum	Тур	Größe
id_rsa	12.10.2016 18:07	Datei	2 KB
id_rsa.pub	12.10.2016 18:07	Microsoft Publish	1 KB
int	13 10 2017 12-41	Datei	1 KR
known_hosts	04.12.2019 10:04	Datei	7 KB

33 192.168.0.89 ecdsa-sha2-nistp256 AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBGRj1QeSHMNSj2lYNn/x6MkyKFjuwrb7ud1niGvaPvxw0b
34 192.168.0.108 ecdsa-sha2-nistp256 AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBDu2mtOlhq5KbbJQYVQgH3WLNhofFdmUB9OHOIRFSreA1
35 192.168.0.105 ecdsa-sha2-nistp256 AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBKFPtIEuNkj5HUrIg9gS1cLJ1UDVkkmDZA28YAVT9kzJA
36 192.168.0.56 ecdsa-sha2-nistp256 AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBKFPtIEuNkj5HUrIg9gS1cLJ1UDVkkmDZA28YAVT9kzJAM
37 192.168.0.58 ecdsa-sha2-nistp256 AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBBjPE42ur2+x2cudXUxsDsASuUpxG6zHlDoLaU0sv3Fbzb

38

Wird gleich wieder eingetragen

```
PS D:\work\IOT\IotSamstag> ssh pi@192.168.0.105
The authenticity of host '192.168.0.105 (192.168.0.105)' can't be established.
ECDSA key fingerprint is SHA256:EcdcRitiAenorXjWMqZGgjfoyzOYvtwsxRD2Xk3oCNw.
Are you sure you want to continue connecting (yes/no)? yes
```

Einstiegsaccount pi/raspberry

Bootloader bei Bedarf aktualisieren

pi@raspberrypi4:~ WERBEVIDEO pi@raspberrvpi4:~ s sudo rpi-eeprom-update *** UPDATE AVAILABLE *** BOOTLOADER: update available CURRENT: Do 3. Sep 12:11:43 UTC 2020 (1599135103) LATEST: Do 29. Apr 16:11:25 UTC 2021 (1619712685) RELEASE: default (/lib/firmware/raspberrypi/bootloader/default) Solltest Du Version 2020-09-03 Use raspi-config to change the release. (oder später) haben, ist nichts VL805 FW: Dedicated VL805 EEPROM VL805: up to date weiter zu tun. Ich zeige trotzdem, CURRENT: 000138a1 LATEST: 000138aT pi@raspberrypi4:~ \$ sudo rpi-eeprom-update -a wie man die Version aktualisiert. *** INSTALLING EEPROM UPDATES *** BOOTLOADER: update available CURRENT: Do 3. Sep 12:11:43 UTC 2020 (1599135103) HINWEIS LATEST: Do 29. Apr 16:11:25 UTC 2021 (1619712685) RELEASE: default (/lib/firmware/raspberrypi/bootloader/default) Use raspi-config to change the release. VL805_FW: Dedicated VL805 EEPROM VL805: up to date CURRENT: 000138a1 LATEST: 000138a1 CURRENT: Do 3. Sep 12:11:43 UTC 2020 (1599135103) UPDATE: Do 29. Apr 16:11:25 UTC 2021 (1619712685) BOOTFS: /boot EEPROM updates pending. Please reboot to apply the update. To cancel a pending update run "sudo rpi-eeprom-update -r". pi@raspberrypi4:~ \$ sudo reboot Connection to 172.16.0.160 closed by remote host. Connection to 172.16.0.160 closed.

WLAN konfigurieren

- wpa_supplicant.conf in boot-Folder anlegen
- Funktioniert nicht immer
 - Falsche Zeichen in SSID?

```
ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config=1
country=AT

network={
    ssid="linksysAtHome"
    psk="xxx"
}

network={
    ssid="A1-B5035B"
    psk="xxx"
}
```

Wenn headless Booten über WLAN scheitert

- Kabel anstecken
- Router nach Raspi suchen

sudo raspi-config aufrufen

- Land für WLAN definieren
- WLAN einrichten
 - Bei Bedarf mehrere WLANs einrichten

WLAN-Konfiguration überprüfen

sudo nano /etc/wpa_supplicant/wpa_supplicant.conf

Samba installieren

- https://www.elektronik-kompendium.de/sites/raspberry-pi/2007071.htm
- Test, ob Samba läuft
 - sudo service smbd status
 - sudo service nmbd status
- Samba installieren
 - sudo apt-get install samba samba-common smbclient
- User pi anlegen: sudo smbpasswd -a pi
- Konfiguration: sudo nano /etc/samba/smb.conf
 - Testen: testparm
- Alles lesbar freigeben:

```
[root]
  comment = root readonly
  path = /
  read only = yes
  browsable = yes
```

■ Vor Verbindung kontrollieren, ob nicht bereits eine alte Verbindung zu der IP-Adresse besteht → entfernen

Beschreibbare Freigaben

```
[opt]
  comment = opt
  path = /opt/
  writeable = yes
  browsable = yes

[pi]
  comment = home pi
  path = /home/pi/
  writeable = yes
  browsable = yes
```

- Restart
 - sudo service smbd restart

Samba testen

192.168.0.56 > pi >			
Name	Änderungsdatum	Тур	Größe
.gnupg	13.08.2020 12:14	Dateiordner	
.bash_history	13.08.2020 12:31	BASH_HISTORY-D	1 KB
.bash_logout	27.05.2020 09:10	Bash Logout-Quel	1 KB
.bashrc	27.05.2020 09:10	Bash RC-Quelldatei	4 KB
.profile	27.05.2020 09:10	PROFILE-Datei	1 KB

Git installieren

sudo apt-get install git

Docker installieren

- Scriptverzeichnis in /home/pi/ anlegen
 - mkdir scripts
 - cd scripts
- Docker Installationsskript downloaden und ausführen
 - curl -fsSL https://get.docker.com -o get-docker.sh
 - sudo sh get-docker.sh → dauert etwas
- Benutzer pi zur Dockergruppe hinzufügen
 - sudo usermod -aG docker pi
- Docker testen
 - sudo docker version
 - sudo docker info

docker-compose installieren

- Abhängigkeiten installieren
 - sudo apt-get install -y libffi-dev libssl-dev
 - sudo apt-get install -y python3 python3-pip
- docker-compose über Python installieren
 - sudo pip3 -v install docker-compose → dauert

Service Portainer

```
pi > docker > 🐡 docker-compose.yml
      version: "3.8"
    services:
         portainer:
  4
           image: portainer/portainer:latest
           container name: portainer
           command: -H unix:///var/run/docker.sock
           restart: always
           ports:
             - 9000:9000
 10
             - 8000:8000
           volumes:
 11
             - /var/run/docker.sock:/var/run/docker.sock
 12
             - portainer-data:/data
 13
```

compose-Files strukturieren

- Ein Compose-File mit allen Services
- Unterordner enthalten Volumes, wenn notwendig

docker-compose.yml	07.03.2022 10:57	Yaml-Quelldatei	2 KB
mosquitto	07.03.2022 11:30	Dateiordner	
adynv6-updater	07.03.2022 11:30	Dateiordner	

- Einzelnen Container starten
 - sudo docker-compose up [-d] portainer

Portainer läuft

192.168.0.56:9000

LogServer Seq

```
version: '3'
services:
  seq:
                                                                           Deswegen
     image: datalust/seq:2021.3.6681-arm64
                                                                         armv8 (64bit!)
     ports:
        - 5341:80
     environment:
        ACCEPT_EULA: Y
                                       Events — Seq
                                        \leftarrow \rightarrow C
                                                                        192.168.0.89:5341/#/events
                                       Meistbesucht O Erste Schritte MebUntis
```

<u>lth.</u> 9 {}

Seq 🖡

Personal ∨ ⊨

Mqtt-Broker Mosquitto

Volumes auf Host gemappt → Config

```
mqtt:
24
25
          image: eclipse-mosquitto
26
          container name: mosquitto
          restart: always
27
28
         expose:
29
            - 1883
30
            - 8883
31
            - 9001
32
          ports:
            - 1883:1883
33
34
            - 8883:8883
35
            - 9001:9001
         volumes:
36
            - ./mosquitto/config:/mosquitto/config
37
            - ./mosquitto/log:/mosquitto/log
38
            - ./mosquitto/data:/mosquitto/data
39
            - /etc/localtime:/etc/localtime:ro
40
```

Passwort erzeugen

- Container ohne eigene Config starten
 - Oder in config mit allow anonymous true
- Portainer → Commandline shell

Commandline im Container

- Kennwort erzeugen
 - mosquitto_passwd -c passwordfile user
- Kennwort hinzufügen
 - mosquitto_passwd -b passwordfile user password
- RESTART CONTAINER

- Kennwort löschen
 - mosquitto_passwd -D passwordfile user

Kontrolle im File

Kontrolle des externen Zugriffs

- MQTT-Explorer
 - http://mqtt-explorer.com/

Zugriff auf Logfile über Volume

```
192.168.0.66 > pi > docker > volumes > mosquitto > log
    Name
                                         Änderungsdatum
                                                              Тур
                                                                               Größe
       mosquitto.log
                                                              Textdokument
                                         18.08.2020 15:33
                                                                                     5 KB

    ≡ mosquitto.log ×

≡ mosquitto.log

       1597757598: mosquitto version 1.6.11 starting
       1597757598: Config loaded from /mosquitto/config/mosquitto.conf.
       1597757598: Opening ipv4 listen socket on port 1883.
 66
 67
       1597757598: Opening ipv6 listen socket on port 1883.
       1597757598: Opening ipv4 listen socket on port 8883.
 68
       1597757598: Opening ipv6 listen socket on port 8883.
 69
       1597757598: mosquitto version 1.6.11 running
 70
       1597757607: New connection from 194.166.174.203 on port 8883.
 71
      1597757607: New client connected from 194.166.174.203 as mgtt-explorer-8700ba4c (p2, c1, k60, u'sieglinde').
 72
 73
```

```
GNU nano 3.2 mosquitto.log

1627983959: mosquitto version 2.0.11 starting
1627983959: Config loaded from /mosquitto/config/mosquitto.conf.
1627983959: Opening ipv4 listen socket on port 1883.
1627983959: Opening ipv6 listen socket on port 1883.
1627983959: Opening ipv4 listen socket on port 8883.
1627983959: Opening ipv6 listen socket on port 8883.
1627983959: mosquitto version 2.0.11 running
1627983959: New connection from 192.168.0.20:1956 on port 1883.
1627983959: New client connected from 192.168.0.20:1956 as mqtt-explorer-5d0a4a15 (p2, c1, k60, u'gerald').
```

RPI-Monitor

dotnet 6 installieren

- https://docs.microsoft.com/en-us/dotnet/iot/deployment
 - curl -sSL https://dot.net/v1/dotnet-install.sh | bash /dev/stdin -channel Current
- DAUERT → Mit IotTemplate beginnen
- Pfade setzen
 - echo 'export DOTNET_ROOT=\$HOME/.dotnet' >> ~/.bashrc
 - echo 'export PATH=\$PATH:\$HOME/.dotnet' >> ~/.bashrc
 - source ~/.bashrc
- dotnet --version

Erster Test: Simple WebApi

- mkdir dotnet
- cd dotnet
- dotnet new webapi –n FirstTest
- cd FirstTest
- dotnet build
- dotnet run --urls http://0.0.0.0:5000

Ergebnis

Infrastruktur läuft

