[Working Title] Using a neural interface for interaction in virtual reality

an HCI study

Masters Thesis

To obtain the academic degree M.Sc.

Julius Neudecker 2025850

First examiner: Prof. Dr.Roland Greule Second examiner: Dipl. Inf. Rüdiger Höfert

preliminary version from May 25, 2021

Contents

1	Introduction	4
	1.1 Management Summary	5
	1.2 Brain-Computer-Interfaces	6
	1.3 Working principle	7
	1.4 Related work	9
	1.5 Use case "Neural Interface in VR"	9
	1.6 Hypothesis	11
2	Technological challenges	12
	2.1 Resolution of the Interface	12
	2.2 Constraints	12
3	Survey Structure and layout	13
	3.1 Considerations	13
	3.2 Survey structure	13
	3.3 Survey	13
4	Survey results	14
5	Findings	15
6	Conclusion	16
	6.1 Results	16
	6.2 Future Work	16
7	Acknowledgements	17
Α	Material	18
	A.1 Surveys, Protocols, etc	18
Lis	st of Figures	19
Lis	st of Tables	20
Bibliography		
		21

Abstract

Modern technology evolved to pick up the eletric signals emitted from the human brain in order to generate user input to eletronic equipment. This study aims to evaluate a demo use-case by using a neural interface from nextmind to control user interactions in Virtual Reality.

1 Introduction

In recent years significant progress has been made on the development of interfaces which relies on direct interaction with the brain itself. The latest popular example is Neuralink with their monkey learning to play the game Pong only by using its brain (Neuralink (2021)). However there are more examples of a working interfacem, which will be discussed in section 1.4, since this vast area of research is an intersection between several areas of research: medical engineering, neuroscience, computer science and HCI^1 . These interfaces are generally called Brain-Computer-Interface or BCI in short. Microsoft Research (23/10/2020) has a very precise definition of the scope:

Brain-Computer Interface (BCI) is a system that measures central nervous system (CNS) activity and converts it into artificial output that replaces, restores, enhances, supplements, or improves the natural CNS output and thereby changes the ongoing interactions between the CNS and its external or internal environment. BCI is direct communication pathway between an enhanced or wired brain and an external device.

As of Q2 2021 there are already devices available for consumers to buy, which fall into this category. This opens up possibilities for a widespread application of these kind of interfaces. Nevertheless, new ways of interacting with computers require some degree of resarch to define useful and user-friendly ways to interact with such technology. This study aims to provide insight into one aspect of this process.

After a thorough disussion about the state of research in this field, the research hypothesis will be defined based on considerations about future use cases. Subsequently a user survey will be designed, carried out and conclusively evaluated to put the results into context.

¹Human Computer Interaction

1.1 Management Summary

In the 2018 Gartner Hype Cycle report (Gartner (24/05/2021)), which is shown in figure 1.1, BCIs are denoted as to be on the brink of the peak of inflated expectations:

Figure 1.1: Gartner report of emerging technologies 2018

It is important to note though that as of 2018, it'll still take more than 10 years to reach a plateau of productivity. Although there is no mention about this technology in subsequent reports in the following year, two market revenue forecasts from 2015 until 2022 and 2018 until 2022 show a similar pattern in figure 1.2.

Figure 1.2: Statista revenue forecast as of 2015 and 2018

Essentially the market revenue expectation has been very inflated from 2015 on so that it was corrected downwards in 2018. But although the absolutes growth was projected to only a small fraction, the relative growth potential stayed about the same of doubling within the next seven years. This is

very indicative for the technology being overhyped, as Gartner explains: (Gartner (24/05/2021))

A wave of "buzz" builds and the expectations for this innovation rise above the current reality of its capabilities. In some cases, an investment bubble forms, as happened with the web and social media

Nevertheless, what this technology sets apart from other featured technologies is the fact that is has been around for a few decades and has been continuously researched upon. A strong indicator is the amount of organizations and conferences held about this entire discipline, as can be seen in section 1.4. The fact that is has only been on the radar of early adopters and tech-enthusiasts in conjuction with market revenue projections is a strong indicator that this technology has reached a level of maturity which makes a widespread application outside of laboratories somewhat feasible.

The latest 2020 Gartner Hype Cycle report shows already the enhanced version of bidirectional BCIs (titled "2-Way Brain Machine Interface") on the slope of innovation:

Figure 1.3: Gartner report of emerging technologies 2020

All in all, there are strong indicators that the technology gained traction over the last few years and could be considered a worthwile investment if approached with care.

1.2 Brain-Computer-Interfaces

In this section a general overview of the working principle of these interfaces will be provided. Since this study is aimed at computer science and HCI², the neuroscience and medical domain will be only covered very briefly.

²Human Computer Interaction

First studies began by Vidal (1973), who investigated the possibility to use EEG³ waves, which were first recorded by Berger (1929), as a way to create a direct interaction between a machine and a human brain.

There are three types of BCIs: invasive, partially invasive and non invasive. This depicts the degree of intrusion into the skull and brain tissue. *Invasive* BCIs are electrodes, which are implanted directly into or onto the grey matter of the brain. This can cause long term issues like scars and also degraded singal strength according to Abdulkader et al. (2015). Partially invasive BCI however are although located within the skull not in direct contact with the grey matter. Non-Invasive BCI are only placed on the head without intrusion of any tissue. Due to the direct contact, invasive BCI provide the best resolution of the measured signals. Non-invasive BCI in comparison suffer from signal degradation and deformation of the cranial bone tissue. Therefore partially invasive BCI are a compromise between good signal strength and the risk of medical conditions. Another potential advantage of non-invasive BCIs is that these Interfaces could be easier mass-produced and become affordable to consumers. Also they don't require specialized medical knowledge and equipment to operate.

The way these interfaces work is based on the same principle: A human brain emits electrical signals, which can be picked up. According to Vidal (1973), they can be described as follows:

"Embedded in this sustained "spontaneous" or "ongoing" electrical activity, short, distinctive (0.5-2 sec) waveforms can be found that are evoked, for instance, when a brief sensory message (stimulus) such as a brief illumination of the visual field or a tap on the forearm is received by the subject."

Based on the origin within the brain, these can be correlated to certain stimuli, mental and emotional states (Jardim-Gonçalves (2018)) and according to Waldert (2016) been used to drive an external effector or affecting internal body parts and functions. The external effector is the use case which is being examined in this study.

Without a BCI, interaction with a computer requires some physical interaction with devices such as keyboards, mouses or gestures on a touch screen. There are mainly two different reasons, why these devices are a constraint to speed and efficiency of HCI. The first reason is a limitation on interaction speed: Although there is no definitive concensus about the speed of thinking, alone being able to type along the spoken word is unattainable for non-professional typists. A professional typist has to be able to type at 180 - 220 WPM⁴ according to NCRA (25/05/2021). ScienceDaily (25/05/2021) made a survey with 168.000 volunteers, where the fastest typists weren't even able to come close to this mark with 120 WPM. Therefore it is safe to assumt that typing in the same speed as thinking is impossible except for rare individuals who devoted a significant time practicing. Secondly: in applications such as games, where reaction time and accuracy is the fundamental element for success or failure, an interaction based on motoric interaction with a physical pointing device has some significant drawbacks like limited accuracy, if the whole chain of wrist movement in conjunction with a mouse is under scrutiny.

If a BCI was to replace these types interaction, these constraints could potentially be alleviated and interaction based on physical interaction rendered obsolete.

1.3 Working principle

Before any deeper considerations in regard to the general scope of this study can be made, it is important to understand the working principle of the BCI, which will be used. Although the vendor of the BCI in question does not disclose any details of the inner workings itself, it is safe to assume that the underlying technique used is the so called *Steady State Visually Evoked Potential* - SSVEP in short. Sokol (1976) provides detailed inside into the topic from a neuroscientific point of view. The general principle however is that any visual stimuli cause a certain pattern of waves within the visual cortex of the brain. These patterns can be used to evaluate if a certain pattern is being seen *and* in fokus of the person.

 $^{^3} Electroence phalogram \\$

⁴Words Per Minute

Figure 1.4: How VEP works in principle citation?

This is being done by subsequently feeding the sensor data through a trained neural network. The objects, which are being seen by the person, have been labeled neurotags (NextMind (23/11/2020)) from the vendor of the BCI. These neurotags can provide two different readouts: If it is triggered (i.E. seen) and the confidence, which depicts the level of focus of the user on the neurotag (NextMind (18/11/2020)).

Figure 1.5: Physical layout of the sensor

The physical layout of the sensor is show at figure 1.5. It has 18 eletrodes, which are arragend in pairs to cover the area, where the visual cortex is located at on the back of the cranium. It is battery driven and communicates via the Bluetooth LowEnergy protocol.

1.4 Related work

As previously mentioned in section 1, research on BCIs is partitioned between four different domains: medical engineering, neuroscience, computer science and HCI. Apart from commercial entities such as Microsoft or IBM and scientific journals, the majority of the research community is clustered in three organizations:

- ICBCI (International Conference of Brain Computer Interfaces), which is a department of the WASET (World Academy of Science Engineering and Technology)
- EMBS (Engineering in Medicine and Biology Society), which is a department of the IEEE
- BCI Society, which is an entity of its own

There are also research efforts in the east-asian region, according to corresponding tech-sites such as Global Times (20/04/2021) and Techwire Asia (24/05/2021) but due to a language barrier, these sources cannot be considered.

To narrow the scope, where this research paper is located at, the considerations from section 1.5 are taken into accout. As already established in section 1.3, the sensor used in this study uses SSVEP and is non-invasive in nature. Therefore the general scope of this research is located in the realm of non-invasive BCI based on SSVEP used for HCI.

Oralhan and Tokmakçi (2016) and Resalat et al. (2011) investigated the effects of different twinkle frequencies and duty cycles on the efficiency on precision of SSVEP BCI. They found that a certain combination of these parametres on fact could improve the ITR⁵. Lee et al. (2016) used a similar approach and found the ideal combination in conjuction with Korean characters. S. M. Abdullah (2014) used a consumer ready BCI by *EMOTIV* to create a *Matrix-Speller* in the Bengali-Language to allow people who have lost the ability to communicate to express themselves again. Chen et al. (2020) also used a SSVEP BCI to implement a BCI-speller and scrutinized the tradeoff between responsiveness and accuracy. Chen et al. (2020) designed an interface which is operated by a SSVEP BCI to control a robot arm, wich could administer food to disabled people. Soroush and Shamsollahi (2018) developed a SSVEP BCI which overcomes the necessity for training the sensor to the user who wears it. The prototype reached a similar precision as *trained* interfaces. Gergondet and Kheddar (2015) investigated and selected certain visual stimuli which work best with certain use cases. Meriño et al. (2017) made a study, where participants controlled a UAV by using a SSVEP. Peters et al. (2018) used simulated impairments to examine if usage of a SSVEP is still possible with medical conditions which affects speech and ocular impairments.

Although not strictly within the SSVEP domain, the study by Beveridge et al. (2017) showed very promising results by not using visual stimuli but mechanical ones, where he had teenagers playing a racing videogame with the aid of mechanical stimuli.

There is a massive ongoing research effort to make the life of people who are suffering under ALS⁶ better and improve their ability to communiate normally, by using SSVEP, a hybrid between an SSVEP and P300⁷ or purely P300 based BCI. A significant number of relevant studies has been published in the BCI Society Journal: Sugata et al. (2016), Holz et al. (2015), Speier et al. (2017), Geronimo and Simmons (2017), Speier et al. (2018), Mowla et al. (2017), Huggins et al. (2016). All these studies aimed to provide a better understanding and performance of using BCI on people with medical conditions, which imply serious physival impairments.

1.5 Use case "Neural Interface in VR"

Before any use case can be conceived, it has to be determined what kind of interaction this interface allows. Section 1.2 covered briefly the concept of input taxonomies to elaborate optimization potentials

⁵Information Transfer Rate

 $^{^6}$ Amyotrophic lateral sclerosis

⁷An Event Related Potential (ERP) BCI

with BCIs. According to Find some source an input taxonomy depicts the DOF⁸ and the granularity and magnitudes in regard to the interface which this interface offers.

Figure 1.6: Taxonomy of the nextmind BCI. Todo: Create taxo schema

Figure 1.6 shows the input taxonomy of the BCI in question. It is derived from the API 9 endpoints which the the SDK 10 of the sensor offers: NextMind (18/11/2020). The only two tracking resuls are hit and confidence. Where hit is a two state interaction: the neurotag is being seen by the user and subsequently recognized by the sensor and its backend or it is not. The confidence property depicts the attention which the user is paying to the neurotag. This is a continuous decimal value between 0 and 1. The fact that these types of interaction are based on neural activity raises the question if a pure mapping of continuous and discrete input modalities to established interfaces would be beneficial to the user experience. Under the reasonable assumption that without any training the metric focus can only be deliberately controlled on a very coarse level, the necessary sensitiveness required for modern GUIs can not be achieved with this particular sensor. The remaining two state property, which can be utilized to select or deselect certain objects also only allows for limited interaction. However, these neurotags can be placed in arbitrary places. Although a toggle-like behavior is not mentioned explicitly, it might be possible to de-select any activated neurotag when the focus property falls under a certain value.

Based on the previous reasoning, the following questions can be raised in regard to the feasibility of any interface which could potententially be conceived with this technology:

- How fast is the perceived and measured reaction time of these neurotags?
- What is the minimum size the neurotags have to have in order to be recognizable?
- Is the interface usable for brains of all ages or do gerontological effects have an effect on usability?
- Do certain medical conditions (i.e. attentiveness disorder) have an impact on the usability?
- How fast can a user switch between neurotags?
- Is a BCI controlled GUI intuitive to use?

⁸Dimensions Of Freedom

⁹Application Programming Interface

 $^{^{10}}$ Software Development Kit

• Does a personal affinity to technology have an influence on the perceived difficulty of interaction?

These questions can be clustered into two groups: neurological and interaction. Although these considerations open up a vast space of potential cases. Therefore the priority is to examine wheter these interfaces are generally usable by the majority of users and if these interfaces are intuitive to use.

1.6 Hypothesis

The considerations in the previous section leads to these two hypothesis:

"Age does not have a detrimental effect on the ability to use a non-invasive BCI based on VEP technology."

and

"VEP BCI operated GUIs are intuitive to use."

2 Technological challenges

Due to being non-invasive there must exist certain drawbacks with this technology. I want to examine the shortcomings and possible ways to overcome these. A valuable resource of information might be nextminds homepage.

2.1 Resolution of the Interface

- definition of the resolution parameter
- ITR
- accuracy
- input taxonomy diagram
- how to examine with survey

2.2 Constraints

As far as I understood, the interface allows for four different interaction goals. It would be interesting to see, which kinds of interaction are possible.

- Interaction objects
- interaction types in regard to input taxonomy
- evaluation in user survey

3 Survey Structure and layout

Before any survey can be designed, certain considerations like sample size, population ... ref to döring/bortz for details have to be taken into account. Also depending on the desired outcome of the survey, the questionnaire has to be defined.

3.1 Considerations

- what are my tools
- how to I operationalize the values for context
- What are my performance indicators
- Quantitative sampling to prove hypothesis
- gender equal

•

3.2 Survey structure

Based on the findings, I want to define the survey in this section.

- item 1
- •

3.3 Survey

How is the survey carried out. This depends largely on the outcome of section survey structure.

- item 1
- ...

4 Survey results

Once the study has been structured and carried out, I can write down the results.

5 Findings

This section also depends on the outcomes in context to the resarch question.

6 Conclusion

6.1 Results

Summarizing the results and findings of the study briefly.

6.2 Future Work

Based on the findings and new devices on the horizon, this should give a brief outlook on how to continue this research.

7 Acknowledgements

. . .

A Material

A.1 Surveys, Protocols, etc.

Neque porro quisquam est qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit...

List of Figures

1.1	Gartner report of emerging technologies 2018	,
1.2	Statista revenue forecast as of 2015 and 2018	,
1.3	Gartner report of emerging technologies 2020	(
1.4	How VEP works in principle citation?	8
1.5	Physical layout of the sensor	8
1.6	Taxonomy of the nextmind BCI. Todo: Create taxo schema	L(

List of Tables

Bibliography

- Neuralink. The first fully-implanted 1000+ channel brain-machine interface, 2021. URL https://neuralink.com/blog/.
- Microsoft Research. Brain-computer interfaces microsoft research, 23/10/2020. URL https://www.microsoft.com/en-us/research/project/brain-computer-interfaces/.
- Gartner. 5 trends drive the gartner hype cycle for emerging technologies, 2020, 24/05/2021. URL https://www.gartner.com/smarterwithgartner/5-trends-drive-the-gartner-hype-cycle-for-emerging-technologies-2020/.
- Statista. Global brain computer interface market size 2018 and 2025 | statista, 24/05/2021a. URL https://www.statista.com/statistics/1015013/worldwide-brain-computer-interface-market-value/.
- Statista. Global brain computer interface market size 2015 and 2022 | statista, 24/05/2021b. URL https://www.statista.com/statistics/1015039/worldwide-brain-computer-interface-market-value/.
- J. J. Vidal. Toward direct brain-computer communication. Annual review of biophysics and bioengineering, 2:157–180, 1973. ISSN 0084-6589. doi: 10.1146/annurev.bb.02.060173.001105.
- H. Berger. Über das elektroenkephalogramm des menschen. Archiv für psychiatrie und nervenkrankheiten, 1929. URL https://pure.mpg.de/rest/items/item_2281721/component/file_2281720/content.
- Sarah N. Abdulkader, Ayman Atia, and Mostafa-Sami M. Mostafa. Brain computer interfacing: Applications and challenges. *Egyptian Informatics Journal*, 16(2):213–230, 2015. ISSN 11108665. doi: 10.1016/j.eij.2015.06.002.
- R. Jardim-Gonçalves, editor. 9th International Conference on Intelligent Systems 2018 (IS'18): "Theory, research and innovation in applications": conference proceedings, [Piscataway, New Jersey], 2018. IEEE. ISBN 978-1-5386-7097-2.
- Stephan Waldert. Invasive vs. non-invasive neuronal signals for brain-machine interfaces: Will one prevail? *Frontiers in neuroscience*, 10:295, 2016. ISSN 1662-4548. doi: 10.3389/fnins.2016.00295.
- NCRA. Certified realtime captioner (crc) | ncra, 25/05/2021. URL https://www.ncra.org/certification/certified-realtime-captioner.
- ScienceDaily. The traits of fast typists discovered by analyzing 136 million keystrokes sciencedaily, 25/05/2021. URL https://www.sciencedaily.com/releases/2018/04/180405101720.htm.
- Samuel Sokol. Visually evoked potentials: Theory, techniques and clinical applications. Survey of Ophthalmology, 21(1):18–44, 1976. ISSN 00396257. doi: 10.1016/0039-6257(76)90046-1.
- NextMind. Technology | nextmind, 23/11/2020. URL https://www.next-mind.com/technology/.
- NextMind. Struct trackingresults, 18/11/2020. URL https://www.next-mind.com/documentation/unity-sdk/api-reference/api/NextMind.NeuroTags.TrackingResults.html.
- Global Times. Fudan university unveils self-developed remote bci chip global times, 20/04/2021. URL https://www.globaltimes.cn/page/202104/1221323.shtml.

Bibliography

- Techwire Asia. China's first wireless brain-computer interface chip for animals goes on display in shanghai, 24/05/2021. URL https://www.yicaiglobal.com/news/china-first-wireless-brain-computer-interface-chip-for-animals-goes-on-display-in-shanghai.
- Zeki Oralhan and Mahmut Tokmakçi. The effect of duty cycle and brightness variation of visual stimuli on ssvep in brain computer interface systems. *IETE Journal of Research*, 62(6):795–803, 2016. doi: 10.1080/03772063.2016.1176543.
- Seyed Navid Resalat, Seyed Kamaledin Setarehdan, Fardin Afdideh, and Ali Heidarnejad. Appropriate twinkling frequency and inter-sources distance selection in ssvep-based hci systems. In *ICSIPA 2011*, [Piscataway, N.J.], 2011. IEEE. ISBN 9781457702426. doi: 10.1109/icsipa.2011.6144105.
- Jungnyun Lee, Mincheol Whang, Jaehong Yoon, Minji Park, and Jonghwa Kim. Optimized interstimulus interval (isi) and content design for evoking better visual evoked potential (vep) in brain-computer interface applications. *Brain-Computer Interfaces*, 3(4):186–196, 2016. ISSN 2326-263X. doi: 10.1080/2326263X.2016.1253524.
- S. M. Abdullah. Emotiv epoc bengali brain computer interface controlled by single emokey. 2014. URL https://www.researchgate.net/profile/s_m_abdullah_al_mamun/publication/261329521_emotiv_epoc_bengali_brain_computer_interface_controlled_by_single_emokey.
- Zuo Chen, Jialing Li, Yujie Liu, and Pingchuan Tang. A flexible meal aid robotic arm system based on ssvep. In 2020 IEEE International Conference on Progress in Informatics and Computing (PIC). IEEE, 2020. ISBN 9781728170862. doi: 10.1109/pic50277.2020.9350785.
- Pedram Zanganeh Soroush and Mohammad B. Shamsollahi. A non-user-based bci application for robot control. In 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES). IEEE, 2018. ISBN 9781538624715. doi: 10.1109/iecbes.2018.8626701.
- Pierre Gergondet and Abderrahmane Kheddar. Ssvep stimuli design for object-centric bci. Brain-Computer Interfaces, 2(1):11–28, 2015. ISSN 2326-263X. doi: 10.1080/2326263X.2015.1051432.
- Lenis Meriño, Tapsya Nayak, Prasanna Kolar, Garrett Hall, Zijing Mao, Daniel J. Pack, and Yufei Huang. Asynchronous control of unmanned aerial vehicles using a steady-state visual evoked potential-based brain computer interface. *Brain-Computer Interfaces*, 4(1-2):122–135, 2017. ISSN 2326-263X. doi: 10.1080/2326263X.2017.1292721.
- Betts Peters, Matt Higger, Fernando Quivira, Steven Bedrick, Shiran Dudy, Brandon Eddy, Michelle Kinsella, Tab Memmott, Jack Wiedrick, Melanie Fried-Oken, Deniz Erdogmus, and Barry Oken. Effects of simulated visual acuity and ocular motility impairments on ssvep brain-computer interface performance: An experiment with shuffle speller. *Brain-Computer Interfaces*, 5(2-3):58–72, 2018. ISSN 2326-263X. doi: 10.1080/2326263X.2018.1504662.
- Ryan Beveridge, Shane Wilson, and Damien Coyle. Can teenagers control a 3d racing game using motion-onset visual evoked potentials? *Brain-Computer Interfaces*, 4(1-2):102–113, 2017. ISSN 2326-263X. doi: 10.1080/2326263X.2016.1266725.
- Hisato Sugata, Masayuki Hirata, Yu Kageyama, Haruhiko Kishima, Jinichi Sawada, and Toshiki Yoshimine. Relationship between the spatial pattern of p300 and performance of a p300-based brain-computer interface in amyotrophic lateral sclerosis. *Brain-Computer Interfaces*, 3(1):1–8, 2016. ISSN 2326-263X. doi: 10.1080/2326263X.2015.1132080.
- Elisa Mira Holz, Loic Botrel, and Andrea Kübler. Independent home use of brain painting improves quality of life of two artists in the locked-in state diagnosed with amyotrophic lateral sclerosis. *Brain-Computer Interfaces*, 2(2-3):117–134, 2015. ISSN 2326-263X. doi: 10.1080/2326263X.2015.1100048.
- William Speier, Nand Chandravadia, Dustin Roberts, S. Pendekanti, and Nader Pouratian. Online bei typing using language model classifiers by als patients in their homes. *Brain-Computer Interfaces*, 4(1-2):114–121, 2017. ISSN 2326-263X. doi: 10.1080/2326263X.2016.1252143.

Bibliography

- Andrew M. Geronimo and Zachary Simmons. The p300 'face' speller is resistant to cognitive decline in als. $Brain-Computer\ Interfaces,\ 4(4):225-235,\ 2017.\ ISSN\ 2326-263X.\ doi: 10.1080/2326263X.\ 2017.1338013.$
- William Speier, Corey Arnold, Nand Chandravadia, Dustin Roberts, Shrita Pendekanti, and Nader Pouratian. Improving p300 spelling rate using language models and predictive spelling. *Brain-Computer Interfaces*, 5(1):13–22, 2018. ISSN 2326-263X. doi: 10.1080/2326263X.2017.1410418.
- Md Rakibul Mowla, Jane E. Huggins, and David E. Thompson. Enhancing p300-bci performance using latency estimation. $Brain-Computer\ Interfaces,\ 4(3):137-145,\ 2017.$ ISSN 2326-263X. doi: 10.1080/2326263X.2017.1338010.
- Jane E. Huggins, Ramses E. Alcaide-Aguirre, and Katya Hill. Effects of text generation on p300 brain-computer interface performance. *Brain-Computer Interfaces*, 3(2):112–120, 2016. ISSN 2326-263X. doi: 10.1080/2326263X.2016.1203629.

I hereby confirm that this thesis is my own work and that I have not sought or used inadmissible help of third parties to produce this work and that I have clearly referenced all sources used in this thesis. I have fully referenced and used inverted commas for all text directly or indirectly quoted from a source.

Place and date

Julius Neudecker