#### LABORATORY 9

#### **Boost Converters**

### Guide

### **Boost Converters**

We have tried to use resistors (voltage dividers) to transform voltages but found that these solutions suffer from very poor efficiency: A significant fraction of the total power is dissipated in the resistors and not available for the load. Moreover, dividers are limited to lower the voltage. This is problematic in many applications such as micro electro mechanical systems (MEMS) which often require high voltages for operation.

We can overcome both problems by using inductors and capacitors. Since these elements (ideally) only store but do not dissipate power, much higher transformation efficiencies are attainable.

In this laboratory we design and test a special kind of switching power supply called boost converter that boosts the input voltage to a higher value and configure the circuit to generate 15V from a 5V input. Figure 1 shows the schematic diagram. The device labeled IRF510 is a transistor. The diode conducts current only in the direction of the arrow.



Fig. 1 Boost Converter

Before this lab, you are supposed to have read all the given materials and have the basic concepts and strict derivation about this circuit. Here we will give a simple analyze of it. To analyze the circuit we assume first that it works correctly, and the output voltage is 15V. The voltage  $V_c$  is a pulse train and changes between 0V and 5V.

- When  $V_c = 5V$  the transistor (IRF510) is on and behaves essentially like a short circuit. Then  $V_{boost} = 0V$  and  $V_{diode} = V_{boost} - V_{out} = -15V$ . Since  $V_{diode}$  is negative, the diode does not conduct any current, i.e. it behaves like an open circuit.
- With  $V_c = 0V$  the situation reverses: now the transistor is off and the diode conducts.



Fig. 2 Boost converter operating principle with the switch closed (a) and open (b).

Fig. 2 illustrates both situations: In situation (a),  $V_c = 5V$  the supply voltage appears across the inductor. From the differential equation for inductance we observe that inductors integrate voltage. Therefore the inductor current is a ramp with slope determined by the value of  $V_{in}$  and L; In situation (b) the inductor again integrates the voltage  $V_{in} - V_{out} = -10V$  that appears across it. In steady state the current increase and decrease must be identical as otherwise the average current would continually increase or decrease. Since it is negative the current through the inductor decreases, as shown in Fig. 3.

Since voltage is proportional to the slope of the current, we note intuitively that reducing the ratio of  $T_{\rm off}/T_{\rm on}$  results in higher output voltage  $V_{out}$ . This is because the positive slope is proportional to  $V_{in}$  and the negative slope of the decreasing current is proportional to  $V_{out}$ - $V_{in}$ . In the laboratory we will analyze this relationship quantitatively.



Fig 3. Boost converter timing diagram.

## Reference

- [1] UC Berkeley, course EECS100, Fall 2009.
- [2] UC Berkeley, course EE40, Fall 2011.

# Lab 9 Prelab

| Name                                                                                                                  |                                                                                 |                                    | TA              |                          |                 |
|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------|-----------------|--------------------------|-----------------|
| Teammate                                                                                                              |                                                                                 | S                                  | Score           |                          |                 |
|                                                                                                                       |                                                                                 |                                    |                 |                          |                 |
| You are required to sin Note: you are suggest software before class.                                                  | sted to finish                                                                  | the report p                       | part (especial  | ly part four)            | in simulation   |
| TASK 1                                                                                                                |                                                                                 |                                    |                 |                          |                 |
| THIS TASK IS DES<br>BOOST CONVERTE<br>ENOUGH ATTENTION                                                                | ER. IF YOU                                                                      | ARE UNFA                           |                 |                          |                 |
| Let's first derive an exexpressions for $\Delta I_L$ during the answer. Same for the soluting $T_{on}$ $\Delta I_L =$ | uring $T_{on}$ and $T_{on}$ and $T_{on}$ value of L (see simulation residuals). | $T_{off}$ . At this pose below) yo | oint, enter onl | y the expression         | ons. Once you   |
| During $T_{off}$ $\Delta I_L = $                                                                                      |                                                                                 |                                    |                 |                          |                 |
| Once reaching the steel equations above and s                                                                         | _                                                                               |                                    | _               | and $T_{\it off}$ is zer | o. Equate the   |
| $V_{out}$ / $V_{in}$ =                                                                                                |                                                                                 |                                    |                 |                          |                 |
| Remarkably this resulted and uctance. Calculate                                                                       |                                                                                 |                                    |                 | dependent of th          | ne value of the |
| $T_{on}$ / $T_{off}$ =                                                                                                |                                                                                 |                                    |                 |                          |                 |

For simplicity, in this laboratory we will generate  $T_{on}$  and  $T_{off}$  with the pulse generator. More practical implementations adjust this ratio dynamically to keep the value of constant in the presence of variations of  $V_{in}$  and the load current. Calculate the value of  $T_{on}/T_{off}$  that keeps  $V_{out}$  constant despite varying  $V_{in}$ .

$$V_{in} = 3V$$
  $T_{on} / T_{off} =$ 

$$V_{in} = 10V$$
  $T_{on} / T_{off} =$ 

Since the expression of  $T_{on}/T_{off}$  is too inconvenient, positive duty cycle D,  $T_{on}/(T_{on} + T_{off})$ , can be introduced to express of voltage gain,  $V_{out}/V_{in}$ . What's the relationship between voltage gain and D?

 $V_{out}/V_{in} =$ 

To finalize the design of the boost converter we must determine the operating frequency f = I/T with  $T = T_{on} + T_{off}$ , and the values of L and  $C_{filt}$ . We pick f = 100 kHz to account for the frequency limitation of solderless breadboards. From this we can calculate  $T_{on}$  and  $T_{off}$  and then solve for L from one of the equations for  $\Delta I_L$ . Keeping this variation to  $\Delta I_L = 5$  mA. Round L to the nearest available value (use the resistor scale, i.e. multiples of 10, 12, 15, etc).

| •   |  |  |  |
|-----|--|--|--|
| L = |  |  |  |

During  $T_{on}$  the diode is not conducting and the entire current to the load comes from  $C_{filt}$ . Because of this the output voltage will drop. Keeping this drop to  $\Delta V_{out} = 28$  mV for  $R_L = 1$  k $\Omega$  determines the value of  $C_{filt}$  (use the next larger available value in the lab). Realizing that  $\Delta V_{out} << V_{out}$  we conclude that the current through transistor is approximately constant,  $I_{RL} = V_{out} / R_{L}$ .

 $C_{filt} = \underline{\hspace{1cm}}$ 

#### TASK 2

ALL DETAILS OF THIS PART ARE REQUIRED TO BE COMPLETED IN SIMULATION SOFTWARE

If the value of selected inductor is small enough, a novel waveform of  $i_L$  that's different from the one in Fig. 3 can be observed. In this novel waveform,  $i_L$  will decrease to zero and last for a certain time. Choose an appropriate resistance (maybe 1k or 10k), change the inductor in your boost converter to observe this phenomenon and draw the waveform of  $i_L$  below.

| Does the magnitude of V <sub>out</sub> vary?                                                                     |                               |
|------------------------------------------------------------------------------------------------------------------|-------------------------------|
| In this condition, which parameter(s) is (are) related to the magnitude of load, $T_{on}/T_{off}$ , capacitance) | f V <sub>out</sub> ? (such as |
| 2. Attach your simulation schematics diagram and results here.                                                   | / 13pt                        |

| Electric Circuit | Fall 2016 | Pingqiang Zhou |
|------------------|-----------|----------------|
|                  |           |                |
|                  |           |                |
|                  |           |                |
|                  |           |                |
|                  |           |                |
|                  |           |                |
|                  |           |                |
|                  |           |                |
|                  |           |                |
|                  |           |                |
|                  |           |                |
|                  |           |                |
|                  |           |                |
|                  |           |                |
|                  |           |                |
|                  |           |                |
|                  |           |                |
|                  |           |                |
|                  |           |                |
|                  |           |                |
|                  |           |                |
|                  |           |                |

### Lab 9 Report

| Name     | TA Checkoff |
|----------|-------------|
| Teammate | Score       |
|          |             |

#### TASK 3

Now you are ready to test the boost converter in the laboratory. Although it is designed to generate 15V, it can produce voltages in excess of 30V e.g. when the input voltage is chosen higher than 5V. Also, complete the entire circuit before turning on power. Especially do not omit the diode and load resistor. Measure  $V_{in}$ , D and  $V_{out}$  with the oscilloscope and compare your result to simulation result.

Complete the sheet below.

TA CHECKOFF

| V <sub>in</sub> /V | D    | V <sub>out</sub> /V | THEORY |
|--------------------|------|---------------------|--------|
| 3                  |      | 15                  |        |
| 5                  |      | 15                  |        |
| 10                 |      | 15                  |        |
|                    | 0.5  | 20                  |        |
|                    | 0.75 | 20                  |        |
|                    | 0.8  | 20                  |        |
| 5                  | 0.3  |                     |        |
| 5                  | 0.5  |                     |        |
| 5                  | 0.75 |                     |        |

In actual circuit, 5 V input and 15V output, vary the load resistor R from  $1k\Omega$  to  $20 k\Omega$  and graph both sets of results on the graph below. Label the axes!



| TA       | CHECKOFF |  |
|----------|----------|--|
| $I \cap$ | CHECKOTT |  |

#### TASK 4

Ideally the voltage gain should be independent of  $V_{in}$  and the current  $I_{RL}$  through the resistor. In practice it drops because of the constant boost factor and the series resistance of the inductor and diode, and the finite on-resistance of the transistor. Practical implementations of boost converters include additional circuitry that monitors the output voltage and dynamically adjusts  $T_{on}/T_{off}$  to ensure a constant  $V_{out}$ .

Give an 5 V input, and the calculated  $T_{on}/T_{off}$  to get a calculated output of 15V.

|             | Measured | Simulated |
|-------------|----------|-----------|
| $V_{out} =$ |          |           |

Now vary  $T_{on}$  (without changing the frequency f) to adjust measured Vout back to 15V. Compare measurement results with your understanding of the circuit. Fill in the calculated,

simulated, and measured values of  $T_{on}$  and  $T_{off}$  that restore  $V_{out}$  to its design value while keeping f constant.

|                  | Measured                                | Simulated | Calculated |
|------------------|-----------------------------------------|-----------|------------|
| During $T_{on}$  | $\Delta I_L = \underline{\hspace{1cm}}$ |           |            |
| During $T_{off}$ | $\Delta I_L =$                          |           |            |

Explain discrepancies between measured, simulated, and calculated results for above all.

| 1 |  |
|---|--|
| 1 |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
| ١ |  |

#### **EXTRA TASK**

Boost converter is a very basic and classical converter with the advantage of high efficiency, few components and easy understanding. However, its drawback is obvious, it is unable to reduce input voltage. Buck converter is classical step-down converter. Its operating modes are shown as follow. Its components are the same with boost converter. Built a buck converter with the components for boost converter and draw buck converter's topology in the box. Also, show the step-down ability of your circuit to your TA.



Fig 2. Buck converter operating principle with the switch closed (a) and open (b).

| TA CHECKOFF |                  |
|-------------|------------------|
|             | Prelab:of 40 Pt. |
|             | Report:of 70 Pt. |
|             | Total:of 110 Pt  |