

970 980 990 1000 1010 1020
 AGTTTACCG CATTTCACA CTAGATGGCA TCGTCCCAC CGGTAGCAGG TCATGAAGCT
 TCCAATGGC GTAAAACGT GATCTACCGT AGGCAGGGTG CCCATCGTCC AGTACCTTCGA

 1030 1040 1050 1060 1070 1080
 GACCAAGGCA AGTCCTTTCGA GGGGAAAGAA AATCAGGAAA AAAAAAAATT TTAGAAGCAT
 CTGGTCCCGT TTAUCAAAGT CCCCCCTCTT TTAGTCCITT TTTTTTTAA ATCTTTGTA

 1090 1100 1110 1120 1130 1140
 TTCAAGAACG AAGATGGAAAT AATTCACAA AACAGGTGCT TTCTCCCCA CCATGCCAC
 AACTCTTCG TTCTACCTTA TAAACATGTT TGTGTGAGA AAGAGGGGT GGTACGGCTGG

 1150 1160 1170 1180 1190 1200
 CGGGAGCTCC ACTGATATGG ACAGATAGC TTTACAOCTA CAITCAAAAC ACACACACAC
 GCCCTCGAGG TGACTATACC TGTCTTATCG AAATGTGAT GTAAAGTTTG TGTGTGTGTC

 1210 1220 1230 1240 1250 1260
 ACACACACAC ACACACACAC ACACACACAC ACACACACAT GTTTTCTTCC CTCCCTCCAC
 TGTGTGTGTC TGTGTGTGTC TGTGTGTGTC TGTGTGTGTC CAAAGAAGG GAGGGACGTC

 1270 1280 1290 1300 1310 1320
 TTCCCTCCCAT TCTCTGTGGT CCCAANGAGA TGACCATATT GACTGTAGAA ATCACACAC
 AAGGAGGGTA AGAGACACCA GGTTTCTCT ACTGGTATAA CTGACATCTT TAGTGTGGTG

 1330 1340 1350 1360 1370 1380
 CATAAAAGCC CATCTGGAG CCATTICCAAG ACTGATCTT TTATCAATTAA GGTTTGAAATT
 GTATTTTCGG GTAGACCCCTC GGTAAAGGTC TGACTAGAAA ATAGTAAATT CCAAACTTAA

 1390 1400 1410 1420 1430 1440
 CTTGCCACGT GTGGGTTTTA ACCTTTTAG GGATTTTAT CTAGCGGCAC TCACCTGCTT
 GAACGGTGCA CACCCAAAT TCCAAAANTC CCTAAAAATA GATGGCCGIG AGTGGACGAA

 1450 1460 1470 1480 1490 1500
 CCCGTGAAAT GTGAGAATT CACTGGCTT GGTCACTAA TCGAATGAT CTATGGTTTG
 GGGACACTTA CAACTCTTA GTCACCCGAA CCAGTCGATT ACCTTTACTA GATAACAAAC

 1510 1520 1530 1540 1550 1560
 ACTTAAATGT GAAAGGAAAA AAAAGAAGGG GGAAAAGGAG GGAGGGAGAA AGAGGGGAAG
 TGAATTACA CTTTCCTTTT TTTCTTCCC CCTTTTCCTC CCTCCCTCTT TCTCCCTTC

 1570 1580 1590 1600 1610 1620
 GGAAAACCTGC CTTTTATGCC TATTGCTACT CTAACATTTT GTCCTTCACC TTCCACTTGG
 CCTTTGACG GAAAATACGG ATAACGATGA GATTGTAAA CAGAGAGTGG AACGTGAACC

 1630 1640 1650 1660 1670 1680
 TTCTTCAATG GAAAGACTGG ATAGAAAGCT GGGAGCCAGC CAGGGATAGG AGGAGTGTGT
 AAGAAGTTAC CTTTCTGACC TATCTTTCGA CCCTCGGTCG GTCCCTATCC TCCCTACACA

 1690 1700 1710 1720 1730 1740
 GTGTGTGTGG GGGGGGGTGG GCAGCAAGCA GAGCCTTAA GACAGAGAAG AGGCTGCTAG
 CACACACACC CCCCCCCCCACU CGTCGTTGCT CTGGAAATCT CTGTCTCTTC TCGGACGATC

 1750 1760 1770 1780 1790 1800
 AGAYCATGAG CTTCTTTGAA GACCCCTAGT GCTAACAGGA ATAGTTCCTA ACCAGGTAGC
 TCTTCTACTC GAARGAACT CTGGGGATCA CGATTGTCT TATCAAGGAT TGGTCCATCG

 1810 1820 1830 1840 1850 1860
 TGTGGTCACG TGAATGGGT GGAAGSCTG GCTTGTCTT TTGCTTGCT GTGCCAGCCTT
 ACACCAAGTGC ACTGAGCGA CCTTCGGAC CGAAACAGAA AAACGAACGA CACGTCGGAA

FIG. 1

Title: GLP-2 RECEPTOR GENE
 PROMOTER AND USES THEREOF
 Inventor(s): Daniel J. DRUCKER
 DOCKET NO.: 016777/0463

PCT/US2007/044369

1870	1880	1890	1900	1910	1920
GAACAAACAC CCTGGCCCTCT	TGAAACCCA CTTTTCATCA	CCCCCTCAGAT	GAAGAAGTAA		
CTTGTTCGTG GGACCGGAGA	AACCTGGGGT GATAAAGTG	CGGGAGTC	CITCCTCATT		
1930	1940	1950	1960	1970	1980
TCGTACCTG GAGGAACTTG	ATGGGTTTAA GTGAACCTAGG	GCAGAGGGTG	GANGGTTTG		
ACCATGGAAC CTCTCTATGAC	TACCCAAGTT CACTTGATCC	CCTCTCCAC	CTTCCAAAAC		
1990	2000	2010	2020	2030	2040
TAAACCTAACT CTGAAAGTGGG	GTGTTGGTIA GTAGTAGGCC	ATGAAATACCA	TAAXXATATC		
AATGGTATTG GACTTCACCC	CACRACCAAT CATTCATCGG	TACTTATGGT	ATTTTTATAG		
2050	2060	2070	2080	2090	2100
TGTCAAGGTGG CCACACCATC	ACTCTGTICA GAACACAACG	CCCCACTCAG	AAACACGGGA		
ACAGTCCACC GGTCTCGTAG	TGACACRACT	CTTGTGTTTC	CGGGTGAAGTC	TTGTGCGGCT	
2110	2120	2130	2140	2150	2160
CAATTGAAAG GCACCAACCT	CCGTGCTTC	TACCCGTTGT	TTTGTGTTACCG	TGTAAACCGA	
GTAAACTTTC CGTGGTTCGA	GGCACCSAAGG	ATGGGCAACA	AAACAATGGC	ACATTTCCGT	
2170	2180	2190	2200	2210	2220
ACTCCTACTCT CGGCACTGAA	CAGGTTTTTG	CTGGGAGCCT	GGGGGCTGGA	GCTGTTGCT	
TGACTTCAGA CCCGCTGACTT	GTCCGAAACAC	GACGTCTGGG	CCCCAGACCT	CCACACACAGA	
2230	2240	2250	2260	2270	2280
CTGACACAGG AAAACTCAIC	TTGTTACTAT	GGCTAGTAG	TAACCACGGG	GCTCTGAGAT	
GACTTGTCC TTTTGAGTAG	AAACATGATA	CCGTATACATC	ATTTGGTGCCT	CGAGACTCTA	
2290	2300	2310	2320	2330	2340
AGGCCUAGGC TGGTGCGGTT	TRGAAAGTT	TGATGCTTTA	GAACAAATC	GTGGCTTAAA	
TUGGGAUTCG AUCACGGCAA	AUCUUTTCAA	ACTACGAAAT	CTTGTGTTAG	CACCGAATT	
2350	2360	2370	2380	2390	2400
AGAAGCCTAC CTGGCATGGG	GGCCCATCT	CTTCAAGUAT	CCGAATCTCA	ATCTGGTGT	
TCTTCGGATG GACCTAACCC	CCGGTAGGGA	GAAGTCGCTA	CCCCTAGAGT	TAAGACCAGCA	
2410	2420	2430	2440	2450	2460
GTGGCTAAGA ATAGAAATCCT	CGGAATGGTA	ACCAATGCTT	GCTTTTCTT	CTGGGCTTGC	
CACCCATTCT TATCTTTAGGA	CCCTTACCAT	TGTTACAGAA	CGAAAAAGAA	GACCCGAACG	
2470	2480	2490	2500	2510	2520
TGAGGAAGTC CGAGGCACCG	TAGACGTCCT	GGGGGTAGGT	CTGGGAAAAA	TCTCCAAAGA	
ACTCCTTCAG GGTCCCTCGC	ATCTCCAAUA	CCCCUATCCA	QACCCCTTTT	AGAGGGTTCT	
2530	2540	2550	2560	2570	2580
TTTTAGGAGG CGCAGGGCGG	GGATCAGAAA	CTTUGAGATT	CGGTAGAGTG	CTGTAGAGCA	
AAAATCTTCC CGTCCCGCGC	CTTACTCTT	GAACCTCAA	CCCRCTCTAGC	GACATCTCGT	
2590	2600	2610	2620	2630	2640
ACTCAGACAG TCGCGGGCT	GAAGAGGACT	TGTGCAAACA	CTTCCTCTCT	GGACAGGGAG	
TGAGTCTGTC AGCGCGCGGA	CTTCTCTGA	ACACGTTTGT	GAAGGAGAGA	CTTGTCTCTC	
2650	2660	2670	2680	2690	2700
GAATGCAGGA GGCACCGGC	TGCACTACAT	CTTGGAGTGT	TGGAGGGATG	TGCTCTGCACT	
CTTACGTCTT CGGGTGGCGG	ACGTCATGTA	GAACCTCACA	ACCTCCTTAC	ACGGACGTGA	
2710	2720	2730	2740	2750	2760
TGTGAAAGGG CGCCACGAGG	ACGAGGCCCC	AACCAAGCCC	GGCAGTGCCC	ACTAGATGCA	
ACACTTTCCC CGGGTCTTC	TGCTCCGGGG	TTGGTTGGGG	CCGTCACGGG	TCATCTACGT	
2770	2780	2790	2800	2810	2820
GGAGGGTCC CTGCCCCGGG	CGCACAGTWC	GGCTCCCTGC	GGCCCCGGGG	CCGTGAGTC	
CTCTCCGAGG GATGGGGCCC	GGGTGTCW	CCGAGGGACG	CCGGCTCCCC	GGACTTAAQAG	

Primer transcriptional start site (S' end of rat brain 5'-rRNA product).

Corresponds to translational start site in rat/human GLP-2R gene.

FIG. 1 Cont.

Putative translational start site in murine GLP-2 Receptor gene.

2830 2840 2850 2860 2870 2880
TCCACKCCCC CGGGATGAGT CGGCCTCTGGG GCGCTGGGAC GCGCTTCUUC TCCCTGCTTC
AGGTCGGGT GCGCTAOGCA GCGGAGACCC CGGGACCCCTG CGGGAAACGAG AGGGACGAAG

2890 2900 2910 2920 2930 2940
TGCTGGTTTC CATCAACCAA GTTAAAACAG ATTTTTATTTC CTCAATTGTC TTGTTAATAT
ACGACCAAAG GTACTTCGTT CATTCTTGTC TAAAAATAAG GAGTAAGCAG ACGATTATAA

2950 2960 2970 2980 2990 3000
TATCAGTTGT GCATGTTTC TGAGTGTACA AGCAATTAG GCGCCGTTGTA GGCAATTGG
ATAGTCACA CGTACAAAAG ACTCACATCT TCGTTAATTC CGGGGCACAT CGGTAAACC

3010 3020 3030 3040 3050 3060
GTAAGAATAA AACCATATTA ACAAATAGAG GCTCAACCCAC AACCCCAAGTA CCATTCTGCT
CAATTCTTNTT TTGGTATAAT TCTTTTACU'C CGAGTGGGTG TTGGGUTCMT CGTAAGACGA

3070 3080 3090 3100 3110 3120
CACTTTTCAAT ATTTTGGGTG ATTTTTAAAAA AAATTCCTTT TTCTGTGCAT TAAATTACAC
GTGACAGTA TAAAACCGAC TAAAAATTTT TTTAAGAGAA AAGACACGTA ATAAAATGTG

3130 3140 3150 3160 3170 3180
AGCCGAAATT TCGGCCTTAA

3'-End of murine GLP-2 Receptor gene sequenced to date.

FIG. 1 cont.

Title: GLP-2 RECEPTOR GENE
PROMOTER AND USES THEREOF
Inventor(s): Daniel J. DRUCKER
DOCKET NO.: 016777/0463

100-1000 5-#23

Sequence alignment of the 5' end of the mGLP-2 receptor gene with the 5' end of the cDNA encoding the rat GLP-2R.

Putative transcriptional start site.

Sequence alignment of the 5' end of the mGLP-2 receptor gene with the 5' end of the cDNA encoding the rat GLP-2R.

The 5' end of the cDNA encoding the rat GLP-2R (cloned by 5'-RACE) is presented in alignment with the corresponding region of sequence encoding the murine GLP-2R. The upstream initiator ATG codon is present in the rat sequence, and the downstream initiator ATG codon is conserved between in both the rat and murine sequences encoding the GLP-2R. The sequence corresponding to the putative 5'-UTR (untranslated region) is nearly identical between the rat and murine sequences presented.

FIG. 2

Title: GLP-2 RECEPTOR GENE
PROMOTER AND USES THEREOF
Inventor(s): Daniel J. DRUCKER
DOCKET NO.: 016777/0463

FIG. 3 260

Title: GLP-2 RECEPTOR GENE
PROMOTER AND USES THEREOF
Inventor(s): Daniel J. DRUCKER
DOCKET NO.: 016777/0463

FIG. 4

Title: GLP-2 RECEPTOR GENE
PROMOTER AND USES THEREOF
Inventor(s): Daniel J. DRUCKER
DOCKET NO.: 016777/0463

FIG. 5

Title: GLP-2 RECEPTOR GENE
PROMOTER AND USES THEREOF
Inventor(s): Daniel J. DRUCKER
DOCKET NO.: 016777/0463

FIG. 6

۸۷

→ 5'-end

5'-UTR

rat GLP-2R cDNA

rat GLP-2R	caccgcc tgca	gtacatctt ggatgttgg agggatgtgc ctgcacttgt gaacggggcgcc caccgcc ^y tgca ^y gtacatctt ggatgttgg agggatgtgc ctgcacttgt gaaaggggcgcc human GLP-2R	gagaaggcc cagaagg acggc ggacggcc ccctacttgt gaaagggtgcac gaggaag atgc 38	ATG AGG CCC ACG AGG CCC ATG AAG CTG
mouse GLP-2R	ggctggcc tggc	gtgcacatctt ggacggcttag agagatgtac ccctacttgt gaaagggtgcac gaggaag atgc Y ^{est} Y ^Y		

rat GLP-2R GCT GGG AGG CCC TTC CTC GCC CTG CTT CTG CTT TCC ATC AAG CAA
mouse GLP-2R GCT GGG ACG CCC TTC CTC TCC CTG CTT CTG CTT TCC ATC AAG CAA
human GLP-2R GCT GGG AGG CCC TTC CTC ACT CTG GTC CTG GTT TCC ATC AAG CAA
246

Sac II | Sma I | Pst I | Xba I

1.5-Kb-GLP-2R Promoter | ***nls-LacZ***

५

8 a. 8 d.

- १० -

५

β -Galactosidase
GLP-2R

Preimmune β -Galactosidase

Title: GLP-2 RECEPTOR GENE
PROMOTER AND USES THEREOF
Inventor(s): Daniel J. DRUCKER
DOCNET NO.: 016777/0463

Figure
10

GLP-2R β -Galactosidase

Title: GLP-2 RECEPTOR GENE
Promoter(s): Dantel 1, DRUGER
Imvemtor(s): Dantel 1, DRUGER
DOCID: 016777/0463

Figure