Automatic Learning of Summary Statistics for Approximate Bayesian Computation Using Deep Learning

Samuel Wiqvist, Ph.D. student, Lund University.

Work with: Pierre-Alexandre Mattei (ITU), Umberto Picchini (GU/Chalmers), and Jes Frellsen (ITU).

What we will talk about today

- Introduction to ABC;
- How to leverage deep learning methods to learn the summary statistics for ABC;
 - Present the main results from the paper: Partially Exchangeable Networks and Architectures for Learning Summary Statistics in Approximate Bayesian Computation (accepted for ICML 2019);
- We will have a practical focus and run ABC for a simple model (the Beta-Binomial model).

Approximate Bayesian Computation: Simulation based inference

- ABC in a nut-shell: Simulations-based inference method where we generate parameter proposal θ^{\star} and accept θ^{\star} if the generated data $y^{\star} \sim p(y|\theta^{\star})$ is *similar* to our observed data y^{obs} ;
- ABC only requires that we can simulate data from a computer simulator of our model $p(y|\theta)$.
- Thus, ABC is very generic, and can be applied for models where the likelihood function is intractable.

• Curse-of-dimensionality: Instead of comparing the data sets we compare a set of summary statistics s = S(y). The main focus of our work is how to automatically learn the summary statistics. (For example for dynamic models, summaries can be autocorrelations, cross-covariances, stationary mean. For i.i.d. data could be quantiles, mean and standard deviation etc.;)

Approximate Bayesian Computation: Rejection sampling method

- Generate \tilde{N} independent proposals $\theta^i \sim p(\theta)$, and corresponding data sets $y^i \sim p(y|\theta^i)$ from the computer simulator $p(y|\theta)$;
- Compute the summary statistics $s^i = S(y^i)$ for each $i = 1, ..., \tilde{N}$;
- Compute the distances $\Delta(s^i, s^{\text{obs}})$ for each $i = 1, \dots, \tilde{N}$.
- Retain proposals θ^i corresponding to those $\Delta(s^i, s^{\text{obs}})$ such that $\Delta(s^i, s^{\text{obs}}) \leq \epsilon$, for some $\epsilon \geq 0$;
- We sample from $p_{ABC}^{\epsilon}(\theta^{\star}|s^{obs})$.

ABC rejection sampling for the Beta-Binomial model

Model:

$$y \sim \text{Binomial}(m, p),$$

 $p \sim \text{Beta}(\alpha, \beta).$

```
In [2]: # Define the model and the prior distribution.

Random.seed!(12) # fix random numbers

# model parameters

m = 4; n = 5; p\_true = 0.7

# define the data generating function

data\_generator(p) = rand(Binomial(m,p),n)

# generate data

y\_obs = data\_generator(p\_true)

# prior

\alpha = 2; \beta = 2

prior = Beta(\alpha, \beta);
```

ABC rejection sampling for the Beta-Binomial model

```
In [4]:
        # ABC rejection sampling algorithm
         function abc rs(;N proposals::Int, ∈::Real, S::Function)
             abc posterior samples = zeros(N proposals)
             nbr accepted proposals = 0
             s obs = S(y obs) # compute summary statistics for obs. data
             for i in 1:N proposals
                 p star = rand(prior) # sample parameter proposal from prio
                 y star = data generator(p star) # generate data from the c
         omputer simulator
                 \Delta = abs(S(y star)-s obs) # compute ABC distance
                 if \Delta <= \epsilon \# accapte proposal
                     nbr accepted proposals += 1
                     abc posterior samples[nbr accepted proposals] = p star
                 end
             end
             return abc posterior samples[1:nbr accepted proposals]
         end;
```

ABC rejection sampling for the Beta-Binomial model

```
In [30]: # Run ABC rejection sampling
  abc_posterior_samples = abc_rs(N_proposals = 10^6, ε = 0.1, S=S_h
  andpicked);
  @printf "Acceptance rate: %.2f %" length(abc_posterior_samples)/1
  0^6*100
```

Acceptance rate: 6.76 %

In [31]: # plot posterior inference results
plot_abc_inference_results(abc_posterior_samples);

How to select/learn summary statistics

- The summary statistics *should* be low-dimensional and informative for the parameters (in the ideal case sufficient).
- The problem of selecting informative summary statistics is the main challenge when applying ABC in practice;
- Usually, summary statistics are ad-hoc and "handpicked" out of subject-domain expertise. For example for dynamic models, summaries can be autocorrelations, crosscovariances, stationary mean. For i.i.d. data could be quantiles, mean and standard deviation etc.;
- Several methods to learn/select summary statistics have been developed (see (Prangle, 2015) for a review on these methods);

Learning summary statistics using linear regression

- An important paper is Fearnhead & Prangle, 2012 where they use linear regression to learn summary statistics, they also show that the posterior mean is the *best* (in terms of loss for the posterior mean) summary statistic;
- The semi-automatic ABC method (Fearnhead & Prangle, 2012):
 - We can sample a set of parameter-data pairs $(\theta^i, y^i)_{1 \le i \le N}$, by sampling θ^i from the prior $p(\theta)$, and then simulate corresponding data set y^i from the simulator $p(y|\theta)$;
 - Learn the posterior mean from the *N* simulations, using a linear regression model:

$$\theta_j^i = E(\theta_j | y^i) + \xi_j^i = b_{0_j} + b_j h(y^i) + \xi_j^i.$$

■ After fitting the linear regression model $S_j(y^*) = \tilde{b}_{0_j} + \tilde{b}_j h(y^*)$ is the j:th summary statistics for the proposed data set y^* .

Semi-automatic ABC for the Beta-Binomial model: Step 1: Generate data

```
In [7]: # generate parameter-data pairs
N = 1000
parameters = rand(prior, N)
data = zeros(N,5)
for i in 1:N; data[i,:] = data_generator(parameters[i]); end
```

Semi-automatic ABC for the Beta-Binomial model: Step 2: Fit linear regression model

Semi-automatic ABC for the Beta-Binomial model: Step 2: Run ABC algorithm

In [26]: # Run ABC rejection sampling
 abc_posterior_samples = abc_rs(N_proposals = 10^6, ∈ = 0.02, S=S_
 semi_auto);
 @printf "Acceptance rate: %.2f %%" length(abc_posterior_samples)/1
 0^6*100

Acceptance rate: 6.80 %

In [27]: # plot posterior inference results
 plot_abc_inference_results(abc_posterior_samples);

Replacing linear regression with multilayer perceptron (MLP) network

 In Jiang et al., 2017 they replace the linear regression model with a MLP network, thus they have following regression model:

$$\theta^i = E(\theta|y^i) + \xi^i = f_{\beta}(y^i) + \xi^i.$$

Where f_{β} is the MLP parameterized by the weights β .

<img src="fig/dnn_structure.PNG" width="800" height="800" align =
"bottom"/>

Source: (Jiang et al., 2017).

Partially exchangeable networks (PENs)

- Markovian data is partially exchangeable (which is a property that charaterizes Markovian data the same way as exchangeability characterizes i.i.d. data);
- Now, PEN is desigen such that it is invariant to the partial exchangeability property of Markovian data;
- We can write the PEN regression model as:

$$\theta^{i} = E(\theta|y^{i}) + \xi^{i} = \rho_{\beta_{\rho}} \left(y_{1:d}^{i}, \sum_{l=1}^{M-d} \phi_{\beta_{\phi}}(y_{l:l+d}^{i}) \right) + \xi^{i}.$$

 The advantage of PEN is that the architecture leverages the partial exchangeability property of Markovian data, and thus PEN does not have to *learn* this property.

Results for the AR2 model

Model:

$$y_l = \theta_1 y_{l-1} + \theta_2 y_{l-2} + z_l, \qquad z_l \sim N(0, 1).$$

<img src="fig/ar2_10_6.svg" width="10000" height="10000" align =
"bottom"/>

Results for the AR2 model

Model:

$$y_l = \theta_1 y_{l-1} + \theta_2 y_{l-2} + z_l, \qquad z_l \sim N(0, 1).$$

<img src="fig/ar2_10_5.svg" width="10000" height="10000" align =
"bottom"/>

Results for the AR2 model

Model:

$$y_l = \theta_1 y_{l-1} + \theta_2 y_{l-2} + z_l, \qquad z_l \sim N(0, 1).$$

<img src="fig/ar2_10_4.svg" width="10000" height="10000" align =
"bottom"/>

Results for the AR2 model

Model:

$$y_l = \theta_1 y_{l-1} + \theta_2 y_{l-2} + z_l, \qquad z_l \sim N(0, 1).$$

<img src="fig/ar2_10_3.svg" width="10000" height="10000" align =
"bottom"/>

Conclusions

- A practical introduction to ABC for a simple model (the Beta-Binomial model)
- We have studied how deep learning methods can be used to learn summary statistics for ABC, and presented the entire workflow for a simple example;
- PEN is particularly useful to use for time-series data since the network leverages the Markovian structure of the data.

• In Wiqvist et al. 2019 we show how it is possible to obtain good results for several models, including non-Markovian data (for many more details and examples see (Wiqvist et al. 2019)).

The end

Homepage: http://www.maths.lu.se/staff/samuel-wiqvist/)

Slides: https://github.com/SamuelWiqvist/<a href="https://github.com/samuelwi

Github: SamuelWigvist

Twitter: samuel_wiqvist

References

Fearnhead, P. and Prangle, D. *Constructing summary statistics for approximate bayesian computation: semi-automatic approximate Bayesian computation.* Journal of the Royal Statistical Society: Series B, 74(3):419–474, 2012.

Jiang, B., Wu, T.-y., Zheng, C., and Wong, W. H. *Learning summary statistic for approximate Bayesian computation via deep neural network*. Statistica Sinica, pp. 1595–1618, 2017.

Prangle, D. Summary statistics in approximate Bayesian computation. arXiv:1512.05633, 2015.

Wiqvist, S., Mattei P-A., Picchini U., and Frellsen J. *Partially Exchangeable Networks and Architectures for Learning Summary Statistics in Approximate Bayesian Computation*, arXiv:1901.10230, 2019.

Extra slide: ABC rejection sampling for the Beta-Binomial model

```
In [12]:
         # ABC rejection sampling algorithm
          function abc_rs_without_summary_stats(;N_proposals::Int, €::Real)
              abc posterior samples = zeros(N proposals)
              nbr accepted proposals = 0
              for i in 1:N proposals
                  p star = rand(prior) # sample parameter proposal from prio
                  y_star = data_generator(p_star) # generate data from the d
          ata model
                  \Delta = sum(abs.(sort(y star)-sort(y obs))) # compute ABC dist
          ance
                  if \Delta \le \epsilon # accept proposal
                       nbr accepted proposals += 1
                      abc_posterior_samples[nbr_accepted_proposals] = p_star
                  end
              end
              return abc posterior samples[1:nbr accepted proposals]
          end;
```

Extra slide: ABC rejection sampling for the Beta-Binomial model

```
In [13]: # Run ABC rejection sampling abc_posterior_samples = abc_rs_without_summary_stats(N_proposals = 10^6, \epsilon = 0); @printf "Acceptance rate: %.2f %%" length(abc_posterior_samples)/1 0^6*100
```

Acceptance rate: 0.35 %

In [14]: # plot posterior inference results
plot_abc_inference_results(abc_posterior_samples);

Extra slide: Approximate Bayesian Computation: Approximate posterior

- The joint distribution of accapted parameter-data paris $(\theta^{\star}, s^{\star})$ is $p(\theta^{\star}, s^{\star}) = p(s^{\star} | \theta^{\star}) p(\theta^{\star}) I(\Delta(s^{\star}, s^{\text{obs}}) \leq \epsilon),$ where $s^{\text{obs}} = S(y^{\text{obs}})$, I indicator kernel, Δ distance function, and ϵ the threshold.
- Now assume that $S(s^\star) = S(s^{\text{obs}})$ iff $y^\star = y^{\text{obs}}$ and let $\epsilon = 0$. Now marginlizing s^\star yields the true posterior: $p(\theta^\star|s^{\text{obs}}) = \int p(s^\star|\theta^\star)p(\theta^\star)I(\Delta(s^\star,s^{\text{obs}}) \leq \epsilon)ds^\star = p(y|\epsilon)$
- However, in (almost) all situations we sample from an approximate posterior:

$$p_{\mathrm{ABC}}^{\epsilon}(\theta^{\star}|s^{\mathrm{obs}}) \propto \int p(s^{\star}|\theta^{\star})p(\theta^{\star})I(\Delta(s^{\star},s^{\mathrm{obs}}) \leq \epsilon)ds^{\star}.$$

Extra slide: Results for the AR2 model with observation noise

Model:

$$y_l = \theta_1 y_{l-1} + \theta_2 y_{l-2} + z_l, \qquad z_l \sim N(0, 1).$$

Extra slide: Results for the MA2 model with observation noise

Model:

$$y_i = x_i + e_i, e_i \sim N(0, \sigma_\epsilon),$$

 $x_i = z_i + \theta_1 z_{i-1} + \theta_2 z_{i-2}, z_i \sim N(0, 1).$

