21 External Reset

The chip is loaded with default values during power on via its internal power-on reset. In order to reset the chip to power on defaults, any of the supply voltages monitored by internal reset circuitry (VSA, +5VOUT or VCC_IO) must be cycled. VCC is not monitored. Therefore, VCC must not be switched off during operation of the chip. As +5VOUT is the output of the internal voltage regulator, it cannot be cycled via an external source except by cycling VSA. It is easiest and safest to cycle VCC_IO in order to completely reset the chip. Also, current consumed from VCC_IO is low and therefore it has simple driving requirements. Due to the input protection diodes not allowing the digital inputs to rise above VCC_IO level, all inputs must be driven low during this reset operation. When this is not possible, an input protection resistor may be used to limit current flowing into the related inputs.

In case, VCC becomes supplied by an external source, make sure that VCC is at a stable value above the lower operation limit once the reset ends. This normally is satisfied when generating a 3.3V VCC IO from the +5V supply supplying the VCC pin, because it will then come up with a certain delay.

22 Clock Oscillator and Input

The clock is the timing reference for all functions: the chopper, dcStep, blank time, etc. Many parameters are scaled with the clock frequency; thus, a precise reference allows a more deterministic result. The factory-trimmed on-chip clock oscillator provides a good and stable timing for most use cases.

22.1 Using the Internal Clock

Directly tie the CLK input to GND near to the IC if the internal clock oscillator is to be used. It will be sufficient for applications, where a velocity precision of roughly +-4% is tolerable.

22.2 Using an External Clock

When an external clock is available, a frequency of 10 MHz to 16 MHz is recommended for optimum performance. The duty cycle of the clock signal is uncritical, as long as minimum high or low input time for the pin is satisfied (refer to electrical characteristics). Up to 18 MHz can be used, when the clock duty cycle is 50%. Make sure, that the clock source supplies clean CMOS output logic levels and steep slopes when using a high clock frequency. The external clock input is enabled with the second positive polarity seen on the CLK input.

Hint

Switching off the external clock frequency prevents the driver from operating normally. Therefore, an internal watchdog switches back to internal clock in case the external signal is missing for more than roughly 32 internal clock cycles.

22.2.1 Considerations on the Frequency

A higher frequency allows faster step rates, faster SPI operation and higher chopper frequencies. On the other hand, it causes more power dissipation in the TMC2160 digital core and 5V voltage regulator. Generally a frequency of 10 MHz to 12 MHz should be sufficient for most applications. At higher clock frequency, the VSA supply voltage should be connected to a lower voltage for applications working at more than 24V nominal supply voltage. For reduced requirements concerning the motor dynamics, a clock frequency of down to 8 MHz (or even lower) can be considered.

23 Absolute Maximum Ratings

The maximum ratings may not be exceeded under any circumstances. Operating the circuit at or near more than one maximum rating at a time for extended periods shall be avoided by application design.

Parameter	Symbol	Min	Max	Unit
Supply voltage operating with inductive load	V _{VS} , V _{VSA}	-0.5	60	V
Supply and bridge voltage short time peak (limited by	V _{VSMAX}		64	V
peak voltage on charge pump output and Cxx pins*)	▼ VSMAX			
VSA when different from VS	V _{VSAMAX}	-0.5	60	V
Peak voltages on Cxx bootstrap pins and VCP	V_{CxCP}		76	V
Supply voltage V12	V _{12VOUT}	-0.5	14	V
Peak voltages on BM pins (due to stray inductivity)	V _{BMx}	-6	V _{VS} +6	V
Peak voltages on Cxx bootstrap pins relative to BM	V_{CxBMx}	-0.5	16	V
I/O supply voltage on VCC_IO	V_{VIO}	-0.5	5.5	V
digital VCC supply voltage (normally supplied by 5VOUT)	V _{VCC}	-0.5	5.5	V
Logic input voltage	$V_{\rm I}$	-0.5	V_{VIO} +0.5	V
Maximum current to / from digital pins	${ m I_{IO}}$		+/-500	mΑ
and analog low voltage I/Os (short time peak current)				
5V regulator output current (internal plus external load)	${ m I}_{\sf 5VOUT}$		30	mΑ
5V regulator continuous power dissipation (V_{VSA} -5V) * I_{SVOUT}	P _{5VOUT}		1	W
12V regulator output current (internal plus external load)	I _{12VOUT}		20	mΑ
12V regulator continuous power dissipation (V _{VSA} -12V) *	P _{12VOUT}		0.5	W
I_{12VOUT}				
Junction temperature	T _J	-50	150	°C
Storage temperature	T _{STG}	-55	150	°C
ESD-Protection for interface pins (Human body model, HBM)	V _{ESDAP}		4	kV
ESD-Protection for handling (Human body model, HBM)	V _{ESD}		1	kV

^{*)} Stray inductivity of power routing will lead to ringing of the supply voltage when driving an inductive load. This ringing results from the fast switching slopes of the driver outputs in combination with reverse recovery of the body diodes of the output driver MOSFETs. Even small trace inductivities as well as stray inductivity of sense resistors can easily generate a few volts of ringing leading to temporary voltage overshoot. This should be considered when working near the maximum voltage.

24 Electrical Characteristics

24.1 Operational Range

Parameter	Symbol	Min	Max	Unit
Junction temperature	T _J	-40	125	°C
Supply voltage for motor and bridge	V _{VS}	10	55	٧
Supply voltage VSA	V_{VSA}	10	50	٧
Supply voltage for VSA and 120UT (internal gate voltage	V _{12VOUT} ,	10	13	٧
regulator bridged)	V_{VSA}			
Lower Supply voltage (reduced spec, short to GND		8		٧
protection not functional), lower limit depending on	V_{VS}			
MOSFETs gate threshold voltage and load current				
I/O supply voltage on VCC_IO	V_{VIO}	3.00	5.25	V

24.2 DC and Timing Characteristics

DC characteristics contain the spread of values guaranteed within the specified supply voltage range unless otherwise specified. Typical values represent the average value of all parts measured at +25°C. Temperature variation also causes stray to some values. A device with typical values will not leave Min/Max range within the full temperature range.

Power supply current	DC-Chara	DC-Characteristics						
	$V_{VS} = V_{VSA}$	= 24.0V						
Parameter	Symbol	Conditions	Min	Тур	Max	Unit		
Total supply current, driver	Is	f _{CLK} =12MHz / internal		18	24	mA		
disabled I_{VS} + I_{VSA}		clock						
VSA supply current (VS and VSA	I_{VSA}	f _{CLK} =12MHz / internal		15		mΑ		
separated)		clock, driver disabled						
Total supply current, operating,	Is	f _{CLK} =12MHz, 23.4kHz		25		mΑ		
MOSFETs AOD4126, I _{VS} + I _{VSA}		chopper, no load						
Internal current consumption	I_{VCC}	f _{CLK} =12MHz		10		mA		
from 5V supply on VCC pin								
Internal current consumption	I_{VCC}	f _{CLK} =16MHz		12.5		mΑ		
from 5V supply on VCC pin								
IO supply current on VCC_IO	I_{VIO}	no load on outputs,		15	30	μΑ		
(typ. at 5V)		inputs at V_{IO} or GND						
		Excludes pullup /						
		pull-down resistors						

Motor driver section	DC- and Timing-Characteristics V _{VS} = 24.0V; Tj=50°C					
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
RDS _{ON} lowside off driver	Ronl	Gate off		1.8	3	Ω
RDS _{ON} highside off driver	R _{ONH}	Gate off		2.2	3.5	Ω
Gate drive current low side	I_{SLPON0}	DRVSTRENGTH=0		200		mΑ
MOSFET turning on at 2V V _{GS}	I_{SLPON2}	DRVSTRENGTH=2		400		mΑ
	I_{SLPON3}	DRVSTRENGTH=3		600		mΑ
Gate drive current high side	I_{SLPON0}	DRVSTRENGTH=0		150		mA
MOSFET turning on at 2V V _{GS}	I _{SLPON2}	DRVSTRENGTH=2		300		mA
	I_{SLPON3}	DRVSTRENGTH=3		450		mΑ
BBM time via internal delay (start	t _{BBM0}	BBMCLKS=0	75	100		ns
of gate switching off to start of		BBMTIME=0				
gate switching on)	t _{BBM16}	BBMTIME=16		200		ns
	t _{BBM16}	BBMTIME=24		375	500	ns

Charge pump	DC-Chara	DC-Characteristics						
Parameter	Symbol	Conditions	Min	Тур	Max	Unit		
Charge pump output voltage	V _{VCP} -V _{VS}	operating	V _{12VOUT} -	V _{12VOUT} -		V		
Charge pump voltage threshold for undervoltage detection	V _{VCP} -V _{VS}	rising, using internal 5V regulator voltage	4.5	5	6.5	V		
Charge pump frequency	f _{CP}			1/16 f _{CLKOSC}				

Linear regulator	DC-Characteristics V _{VS} = V _{VSA} = 24.0V					
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output voltage	V _{5VOUT}	T _J = 25°C	4.80	5.0	5.20	٧
Deviation of output voltage over the full temperature range	V _{SVOUT(DEV)}	drivers disabled T _J = full range		+/-30	+/-100	mV
Deviation of output voltage over the full supply voltage range	V _{SVOUT(DEV)}	drivers disabled, internal clock T _A = 25°C V _{VSA} = 10V to 30V			+/-50	mV / 10V
Output voltage	V _{12VOUT}	operating, internal clock T _J = 25°C	10.8	11.5	12.2	V

Clock oscillator and input	Timing-Ch	Timing-Characteristics					
Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
Clock oscillator frequency	f _{CLKOSC}	t _J =-50°C		11.7		MHz	
(factory calibrated)	f _{CLKOSC}	t _J =50°C	11.5	12.0	12.5	MHz	
	f _{CLKOSC}	t _J =150°C		12.1		MHz	
External clock frequency	f _{CLK}		4	10-16	18	MHz	
(operating)							
External clock high / low level	t _{CLKH} /	CLK driven to	10			ns	
time	t _{CLKL}	$0.1~V_{VIO}$ / $0.9~V_{VIO}$					
External clock timeout detection	t _{CLKH1}	CLK driven high	32		48	cycles	
in cycles of internal f _{CLKOSC}						f_{CLKOSC}	

Short detection	DC-Chara	DC-Characteristics					
Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
Short to GND / Short to VS detector delay (Start of gate switch on to short detected)	t _{SD0}	FILT_ISENSE=0 S2xx_LEVEL=6 shortdelay=0	0.5	0.85	1.1	μs	
Including 100ns filtering time	t _{SD1}	shortdelay=1	1.1	1.6	2.2	μs	
Short detector level S2VS	V_{BM}	S2VS_LEVEL=15	1.4	1.56	1.72	V	
(measurement includes drop in sense resistor)		S2VS_LEVEL=6	0.55	0.625	0.70	V	
Short detector level S2G	V _S - V _{BM}	<i>S2G_LEVEL</i> =15; VS<52V	1.2	1.56	1.9	V	
		<i>S2G_LEVEL</i> =15; VS<55V	0.85			V	
		<i>S2G_LEVEL</i> =6; VS<52V	0.46	0.625	0.80	V	

Detector levels	DC-Chara	DC-Characteristics					
Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
V _{VSA} undervoltage threshold for RESET	V _{UV_VSA}	V _{VSA} rising	3.6	4	4.6	V	
V _{SVOUT} undervoltage threshold for RESET	V _{UV_5VOUT}	V _{SVOUT} rising		3.5		V	
$V_{\text{VCC_IO}}$ undervoltage threshold for RESET	V _{UV_VIO}	V_{VCC_IO} rising (delay typ. 10 μ s)	2.0	2.5	3.0	V	
V _{VCC_IO} undervoltage detector hysteresis	V _{UV_VIOHYST}			0.3		V	
Overtemperature prewarning 120°C	T _{OTPW}	Temperature rising	100	120	140	°C	
Overtemperature shutdown 136 °C	T _{OT136}	Temperature rising		136		°C	
Overtemperature shutdown 143 °C	T _{OT143}	Temperature rising		143		°C	
Overtemperature shutdown 150 °C	T _{OT150}	Temperature rising	135	150	170	°C	

Sense resistor voltage levels		DC-Characteristics f _{CLK} =16MHz					
Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
Sense input peak threshold voltage (low sensitivity) (V _{SRxH} -V _{SRxL})	V _{SRT}	GLOBALSCALER=0 csactual=31 sin_x=248 Hyst.=0; I _{BRxy} =0		325		mV	
Sense input tolerance / motor current full scale tolerance -using internal reference	I _{COIL}	GLOBALSCALER=0	-5		+5	%	

Digital pins	DC-Chara	DC-Characteristics					
Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
Input voltage low level	V _{INLO}		-0.3		0.3 V _{VIO}	V	
Input voltage high level	V_{INHI}		$0.7 V_{VIO}$		V _{VIO} +0.3	V	
Input Schmitt trigger hysteresis	V_{INHYST}			0.12		V	
				V_{VIO}			
Output voltage low level	V _{OUTLO}	I_{OUTLO} = 2mA			0.2	V	
Output voltage high level	V _{OUTHI}	$I_{\text{OUTHI}} = -2mA$	V _{VIO} -0.2			V	
Input leakage current	I _{ILEAK}		-10		10	μΑ	
Pullup / pull-down resistors	R _{PU} /R _{PD}		132	166	200	kΩ	
Digital pin capacitance	С			3.5		pF	

24.3 Thermal Characteristics

The following table shall give an idea on the thermal resistance of the package. The thermal resistance for a four-layer board will provide a good idea on a typical application. Actual thermal characteristics will depend on the PCB layout, PCB type and PCB size. The thermal resistance will benefit from thicker CU (inner) layers for spreading heat horizontally within the PCB. Also, air flow will reduce thermal resistance.

Parameter	Symbol	Conditions	Тур	Unit
Typical power dissipation	P _D	stealthChop or spreadCycle, 40 or 20kHz chopper, 24V, internal supply regulators	0.6	W
Thermal resistance junction to ambient on a multilayer board	R _{TMJA}	Dual signal and two internal power plane board (2s2p) as defined in JEDEC EIA JESD51-5 and JESD51-7 (FR4, 35µm CU, 70mm x 133mm, d=1.5mm)	21	K/W
Thermal resistance junction to board	R _{TJB}	PCB temperature measured within 1mm distance to the package leads	8	K/W
Thermal resistance junction to case	R _{TJC}	Junction temperature to heat slug of package	3	K/W

Table 24.1 Thermal characteristics TQFP48-EP

The thermal resistance in an actual layout can be tested by checking for the heat up caused by the standby power consumption of the chip. When no motor is attached, all power seen on the power supply is dissipated within the chip.

25 Layout Considerations

25.1 Exposed Die Pad

The TMC2160 uses its die attach pad to dissipate heat from the gate drivers and the linear regulator to the board. For best electrical and thermal performance, use a reasonable amount of solid, thermally conducting vias between the die attach pad and the ground plane. The printed circuit board should have a solid ground plane spreading heat into the board and providing for a stable GND reference.

25.2 Wiring GND

All signals of the TMC2160 are referenced to their respective GND. Directly connect all GND pins under the device to a common ground area (GND, GNDP, GNDA and die attach pad). The GND plane right below the die attach pad should be treated as a virtual star point. For thermal reasons, the PCB top layer shall be connected to a large PCB GND plane spreading heat within the PCB.

Attention

Place the TMC2160 near to the MOSFET bridge and sense resistor GND in order to avoid ringing leading to GND differences and to dangerous inductive peak voltages.

25.3 Supply Filtering

The 5VOUT output voltage ceramic filtering capacitor (2.2 to 4.7 μ F recommended) should be placed as close as possible to the 5VOUT pin, with its GND return going directly to the GNDA pin. This ground connection shall not be shared with other loads or additional vias to the GND plane. Use as short and as thick connections as possible. For best microstepping performance and lowest chopper noise an additional filtering capacitor should be used for the VCC pin to GND, to avoid digital part ripple influencing motor current regulation. Therefore, place a ceramic filtering capacitor (470nF recommended) as close as possible (1-2mm distance) to the VCC pin with GND return going to the ground plane. VCC can be coupled to 5VOUT using a 2.2 Ω or 3.3 Ω resistor in order to supply the digital logic from 5VOUT while keeping ripple away from this pin. A 100 nF filtering capacitor should be placed as close as possible to the VSA pin to ground plane.

Please carefully read chapters 3.3 and 3.4 to understand the special considerations with regard to layout and component selection for the external MOSFET power bridges.

25.4 Layout Example

Schematic (TMC2160+MOSFETs shown)

1- Top Layer (assembly side)

2- Inner Layer (GND)

3- Inner Layer (supply VS) 4- Bottom Layer HOROGEI-OIV

Figure 25.1 Layout example

26 Package Mechanical Data

26.1 Dimensional Drawings TQFP48-EP

Drawings not to scale. 4X bbb Y T-U Z D/2 PIN1 CORNER EXPOSED PAD Ė E1 0.2295 E1/2 E/2 **-** 25 D1/2 BOTTOM VIEW D1 DETAIL F 4X aaa H T-U Z TOP VIEW 48X b -- □ ccc Y Υ SEATING PLANE SIDE VIEW

Figure 26.1 Dimensional drawings TQFP48-EP

Parameter	Ref	Min	Nom	Max
total thickness	Α	-	-	1.2
stand off	A1	0.05	-	0.15
mold thickness	A2	0.95	1	1.05
lead width (plating)	b	0.17	0.22	0.27
lead width	b1	0.17	0.2	0.23
lead frame thickness	С	0.09	-	0.2
(plating)				
lead frame thickness	c1	0.09	-	0.16
body size X (over pins)	D		9.0	
body size Y (over pins)	E		9.0	
body size X	D1		7.0	
body size Y	E1		7.0	
lead pitch	e		0.5	
lead	L	0.45	0.6	0.75
footprint	L1		1 REF	
	Θ	0°	3.5°	7°
	Θ1	0°	-	-
	Θ2	11°	12°	13°
	Θ3	11°	12°	13°
	R1	0.08	-	-
	R2	0.08	-	0.2
	S	0.2	-	-
exposed die pad size X	M	4.9	5	5.1
exposed die pad size Y	N	4.9	5	5.1
package edge tolerance	aaa			0.2
lead edge tolerance	bbb			0.2
coplanarity	ссс			0.08
lead offset	ddd			0.08
mold flatness	eee			0.05

26.2 Package Codes

Туре	Package	Temperature range	Code & marking
TMC2160-TA	TQFP-EP48 (RoHS)	-40°C +125°C	TMC2160-TA

27 Disclaimer

TRINAMIC Motion Control GmbH & Co. KG does not authorize or warrant any of its products for use in life support systems, without the specific written consent of TRINAMIC Motion Control GmbH & Co. KG. Life support systems are equipment intended to support or sustain life, and whose failure to perform, when properly used in accordance with instructions provided, can be reasonably expected to result in personal injury or death.

Information given in this data sheet is believed to be accurate and reliable. However no responsibility is assumed for the consequences of its use nor for any infringement of patents or other rights of third parties which may result from its use.

Specifications are subject to change without notice.

All trademarks used are property of their respective owners.

28 ESD Sensitive Device

The TMC2160 is an ESD sensitive CMOS device sensitive to electrostatic discharge. Take special care to use adequate grounding of personnel and machines in manual handling. After soldering the devices to the board, ESD requirements are more relaxed. Failure to do so can result in defect or decreased reliability.

29 Table of Figures

FIGURE 1.1 TMC2160 STEP/DIR APPLICATION DIAGRAM	5
FIGURE 1.2 TMC2160 STANDALONE DRIVER APPLICATION DIAGRAM	6
FIGURE 1.3 AUTOMATIC MOTOR CURRENT POWER DOWN	8
FIGURE 1.4 ENERGY EFFICIENCY WITH COOLSTEP (EXAMPLE)	
FIGURE 2.1 TMC2160-TA PACKAGE AND PINNING TQFP-EP 48 (7X7MM2 BODY, 9X9MM2 WITH LEADS)	
FIGURE 3.1 STANDARD APPLICATION CIRCUIT	14
FIGURE 3.2 EXTERNAL GATE VOLTAGE SUPPLY	
FIGURE 3.3 MILLER CHARGE DETERMINES SWITCHING SLOPE	
FIGURE 3.4 SLOPES, MILLER PLATEAU AND BLANK TIME	
FIGURE 3.5 BRIDGE PROTECTION OPTIONS FOR POWER ROUTING INDUCTIVITY	
FIGURE 3.6 RINGING OF OUTPUT (BLUE) AND GATE VOLTAGES (YELLOW, CYAN) WITH UNTUNED BRIGE	
FIGURE 3.7 SWITCHING EVENT WITH OPTIMIZED COMPONENTS (WITHOUT / AFTER BULK DIODE CONDUCTION)	19
FIGURE 3.8 EXAMPLE FOR BRIDGE WITH TUNED COMPONENTS (SEE SCOPE SHOTS)	
FIGURE 4.1 SPI TIMING	
FIGURE 6.1 MOTOR COIL SINE WAVE CURRENT WITH STEALTHCHOP (MEASURED WITH CURRENT PROBE)	
FIGURE 6.2 STEALTHCHOP2 AUTOMATIC TUNING PROCEDURE	
FIGURE 6.3 SCOPE SHOT: GOOD SETTING FOR PWM_REG	
FIGURE 6.4 SCOPE SHOT: TOO SMALL SETTING FOR PWM_REG DURING AT#2	
FIGURE 6.5 SUCCESSFULLY DETERMINED PWM_GRAD(_AUTO) AND PWM_OFS(_AUTO)	
FIGURE 6.6 VELOCITY BASED PWM SCALING (PWM_AUTOSCALE=0)	
FIGURE 6.7 TPWMTHRS FOR OPTIONAL SWITCHING TO SPREADCYCLE	
FIGURE 7.1 CHOPPER PHASES	
FIGURE 7.2 NO LEDGES IN CURRENT WAVE WITH SUFFICIENT HYSTERESIS (MAGENTA: CURRENT A, YELLOW & BLUE: SENSE	
RESISTOR VOLTAGES A AND B)	
FIGURE 7.3 SPREADCYCLE CHOPPER SCHEME SHOWING COIL CURRENT DURING A CHOPPER CYCLE	
FIGURE 7.4 CLASSIC CONST. OFF TIME CHOPPER WITH OFFSET SHOWING COIL CURRENT	
FIGURE 7.5 ZERO CROSSING WITH CLASSIC CHOPPER AND CORRECTION USING SINE WAVE OFFSET	
FIGURE 9.1 CHOICE OF VELOCITY DEPENDENT MODES	
FIGURE 10.1 SHORT DETECTION	
FIGURE 11.1 FUNCTION PRINCIPLE OF STALLGUARD2	
FIGURE 11.2 EXAMPLE: OPTIMUM SGT SETTING AND STALLGUARD2 READING WITH AN EXAMPLE MOTOR	
FIGURE 13.1 STEP AND DIR TIMING, INPUT PIN FILTER	
FIGURE 14.1 DIAG OUTPUTSFIGURE 14.1 DIAG OUTPUTS	
FIGURE 15.1 DCSTEP EXTENDED APPLICATION OPERATION AREA	
FIGURE 15.2 MOTOR MOVING SLOWER THAN STEP INPUT DUE TO LIGHT OVERLOAD. LOSTSTEPS INCREMENTED	
FIGURE 15.3 FULL SIGNAL INTERCONNECTION FOR DCSTEP	
FIGURE 15.4 DCO INTERFACE TO MOTION CONTROLLER – STEP GENERATOR STOPS WHEN DCO IS ASSERTED	
FIGURE 16.1 LUT PROGRAMMING EXAMPLE	
FIGURE 18.1 CURRENT SETTING AND FIRST STEPS WITH STEALTHCHOP	
FIGURE 18.2 TUNING STEALTHCHOP AND SPREADCYCLE	
FIGURE 18.3 ENABLING COOLSTEP (ONLY IN COMBINATION WITH SPREADCYCLE)	
FIGURE 18.4 SETTING UP DCSTEP (USING TMC4361 AS MOTION CONTROLLER)	
FIGURE 20.1 STANDALONE OPERATION WITH TMC2160 (PINS SHOWN WITH THEIR STANDALONE MODE NAMES)	
FIGURE 25.1 LAYOUT EXAMPLE	
FIGURE 26.1 DIMENSIONAL DRAWINGS TQFP48-EP	

30 Revision History

Version	Date	Author	Description
		BD= Bernhard Dwersteg	
V0.91	2018-MAY-25	BD	First version of datasheet based on datasheet TMC5160 V1.04
V1.00	2018-JUN-06	BD	Added errata / limitations for initial tuning of AT#1 / AT#2 phase
			Minor wording, added evaluation board drawing
V1.01	2018-OKT-29	BD	Minor changes, added -T suffix option, S2G >52V hints/limits updated

Table 30.1 Document Revisions

31 References

[TMC2160-EVAL] TMC2160-EVAL Manual

[AN001] Trinamic Application Note 001 - Parameterization of spreadCycle™, <u>www.trinamic.com</u>

[AN002] Trinamic Application Note 002 - Parameterization of stallGuard2™ & coolStep™,

www.trinamic.com

[AN003] Trinamic Application Note 003 - dcStep™, www.trinamic.com

Calculation sheet TMC2160_Calculations.xlsx