Programación Dinámica

Pablo R. Fillottrani

Depto. Ciencias e Ingeniería de la Computación Universidad Nacional del Sur

Primer Cuatrimestre 2017

Algoritmos y Complejidad

Introducción

└ Generalidades

Introducción

- Programación Dinámica (PD) resuelve problemas a través de combinar soluciones a subproblemas
- PD comienza resolviendo las instancias más simples de los problemas, y guardando sus resultados en alguna estructura de datos especial
- para construir soluciones de instancias más complejas, se divide la instancia en subproblemas más simples y se recuperan los resultados ya calculados de la estructura de datos
- PD se aplica cuando los subproblemas no son indenpendientes entre sí, es decir los subproblemas tienen subsubproblemas en común. Esto se denomina superposición de subproblemas

Programación Dinámica

Introducción

Problema de la mochila

Caminos más Cortos entre todo par

Multiplicación de matrices en cadena

Triangulación optimal de polígonos

Subsecuencia común más larga

Algoritmos y Complejidad

Introducción

Generalidades

Comparación

- "dividir y conquistar" (DYC) resuelve las instancias siempre dividiendo, sin importar cálculos previos. En este contexto, se resolverían varias veces el mismo subproblema (como el primer algoritmo para Fibonacci)
- ▶ DYC se usa cuando no hay superposición de subproblemas, o es casi nula
- un algoritmo de PD resuelve cada subproblema una vez, guardando sus resultados y evitando el trabajo de calcularlo otra vez
- entonces para que se aplique PD tiene que ser eficiente (en tiempo y espacio) almacenar resultados de subproblemas previamente resueltos
- ▶ DYC es una técnica top-down; PD por el contrario es botto

Introducción

Generalidades

▶ subproblemas en el algoritmo DYC de Fibonacci para *n* = 5

Algoritmos y Complejidad

Introducción

└ Generalidades

- ▶ PD se aplica generalmente a problemas de optimización, al igual que los algoritmos *greedy*.
- pasos en el desarrollo de un algoritmo PD:
 - 1. caracterizar la estructura de una solución optimal
 - 2. definir recursivamente el valor de la solución optimal
 - 3. computar el valor de las soluciones a los casos básicos
 - construir las soluciones optimales para instancias grandes a partir de la soluciones ya computadas para instancias más pequeñas

Algoritmos y Complejidad

Introducción

Generalidades

▶ subproblemas en el algoritmo PD de Fibonacci para *n* = 5

Algoritmos y Complejidad

Introducción

☐ Generalidade

Elementos necesarios para aplicar PD

- principio de optimalidad la estructura de una solución optimal a un problema debe contener soluciones optimales a los subproblemas
- aunque parezca obvio, no todos los problemas satisfacen este principio (por ejemplo, el camino simple más largo entre dos nodos de un grafo)
- superposición de subproblemas el "espacio" de subproblemas debe ser pequeño en el sentido de que los subproblemas se repiten una y otra vez, en vez de generar nuevos subproblemas
- ▶ PD generalmente toma ventaja de esta repetición solucionando una única vez cada subproblema

Introducción

Ejemplo simple: coeficientes binomiales

Coeficientes Binomiales

$$\begin{pmatrix} n \\ k \end{pmatrix} = \begin{cases} 1 & \text{si } k = 0 \text{ o } k = n \\ \binom{n-1}{k-1} + \binom{n-1}{k} & \text{si } 0 < k < n \\ 0 & \text{sino} \end{cases}$$

▶ como el caso base suma de a 1, el algoritmo recursivo directo tiene $\Omega(\binom{n}{k})$

Algoritmos y Complejidad

Introducción

Ejemplo simple: coeficientes binomiales

se tiene

	0	1	2	3	4	• • •	<i>k</i> − 1	k
	1							
1 2 3 4	1	1						
2	1	2	1					
3	1	3	3	1				
4	1	4	6	4	1			
<i>n</i> – 1							C(n-1,k-1)	C(n-1,k)
n								C(n,k)

esta tabla se llama triángulo de Pascal, o triángulo de Tartaglia

Introducción

Ejemplo simple: coeficientes binomiales

- no se trata de un problema de optimización, pero la solución está formada por combinación de soluciones de subproblemas
- además, claramente se ve superposición de subinstancias:

$$C(5,3) = C(4,3) + C(4,2) =$$

= $(C(3,3) + C(3,2)) + (C(3,2) + C(3,1)) = ...$

- ▶ se puede suponer que es posible aplicar PD al problema.
- ▶ se puede usar una tabla para guardar resultados intermedios, donde la entrada (i,j) guarda el número C(i,j)

Algoritmos y Complejidad

Introducción

Ejemplo simple: coeficientes binomiales

► el algoritmo para calcularla por filas es:

```
function CoeficientesBinomiales(n,k)
array C[1..n,1..n]
para todo k C[k,0] ::= 1; C[k,k] ::= 1;
FOR i ::= 1 TO TO n
   FOR j ::= 1 TO min(i,k)
        C[i,j] ::= C[i-1,j-1]+C[i-1,j]
   ENDFOR
ENDFOR
RETURN C[n,k]
```


Introducción

Ejemplo simple: coeficientes binomiales

Análisis del tiempo de ejecución

- \triangleright su tiempo y espacio es claramente de $\Theta(nk)$.
- ▶ se puede modificar el algoritmo para que sólo use espacio \(\text{\text{\$\epsilon\$}}(k)\) (ejercicio)

Algoritmos y Complejidad

Introducción

Ejemplo simple: Probabilidad de ganar una serie

la formulación de esta propiedad genera la recurrencia:

$$P(i,j) = \begin{cases} 1 & \text{si } i = 0 \text{ y } j > 0 \\ 0 & \text{si } j = 0 \text{ y } i > 0 \\ pP(i-1,j) + qP(i,j-1) & \text{si } i > 0 \text{ y } j > 0 \end{cases}$$

Introducción

Eiemplo simple: Probabilidad de ganar una serie

Probabilidad de ganar una serie

- ▶ Problema: dos equipos *A* y *B* deben jugar hasta 2*n* − 1 juegos, siendo el ganador el primer equipo que llega a *n* victorias. Para cada juego existe una probabilidad *p* de que gane el equipo *A*, y una probabilidad *q* = 1 − *p* de que gane el equipo *B*. Esta probabilidad es fija para todos los juegos, e independiente de los resultados anteriores. Se quiere encontrar la probabilidad de que el equipo *A* gane la serie
- ▶ se define P(i,j) como la probabilidad de que A gane la serie dado que le faltan i victorias, mientras que a B le faltan j victorias
- ightharpoonup entonces el valor buscado es P(n, n)

Algoritmos y Complejidad

- Introducción

Ejemplo simple: Probabilidad de ganar una serie

sea k = j + i. El algoritmo de cálculo recursivo de P tomaría tiempo:

$$T(1) = c$$

$$T(k) \leq 2T(k-1) + d$$

- ▶ la solución (usando la ecuación característica) es de $O(2^k)$, lo que equivale a $O(4^n)$ si i = j = n
- ▶ esta estructura del problema es similar a la de los coeficientes binomiles tomando P(i,j) como C(i+j,j)

Introducción

Ejemplo simple: Probabilidad de ganar una serie

- ► es posible mejorar este tiempo en forma similar al triángulo de Pascal, calculando *P* por filas, columnas o diagonales
- ▶ para la cota inferior, da un tiempo de $\Omega(\binom{2n}{n}) \ge \frac{4^n}{n}$

Algoritmos y Complejidad

Introducción

Ejemplo simple: Probabilidad de ganar una serie

Algoritmos y Complejidad

Introducción

Ejemplo simple: Probabilidad de ganar una serie

► la matriz *P* resultaría:

- esto demuestra la aplicación del principio de optimalidad en el problema
- ▶ se pueden calcular los elementos de la matriz por diagona

Algoritmos y Complejidad

Introducción

Ejemplo simple: Probabilidad de ganar una serie

Análisis del tiempo de ejecución

- \triangleright su tiempo y espacio es de $\Theta(n^2)$
- ▶ se puede hacer la misma modificación que en el caso anterior para que use espacio en $\Theta(n)$

Introducción

Ejemplo: problema del cambio

Problema del Cambio

- ▶ <u>Problema:</u> se tiene que dar N centavos de cambio, usando la menor cantidad entre monedas de denominaciones $d_1, d_2, d_3, \ldots, d_n$. Se supone cantidad ilimitada de monedas de cada denominación
- el algoritmo greedy visto sólo es correcto para ciertas denominaciones; en otras puede que ni siquiera encuentre una solución a pesar de que ésta exista
- ▶ para definir un algoritmo de PD para este problema, se define C[i,j] la menor cantidad de monedas entre d_1, d_2, \ldots, d_i para pagar j centavos

Algoritmos y Complejidad

Introducción

Ejemplo: problema del cambio

la recurrencia quedaría:

$$C[i,j] = \begin{cases} 0 & \text{si } j = 0 \\ +\infty & \text{si } i = 1 \text{ y } 0 < j < d_i \\ 1 + C[i,j-d_i] & \text{si } i = 1 \text{ y } j \ge d_i \\ C[i-1,j] & \text{si } i > 1 \text{ y } j < d_i \\ \min(C[i-1,j], 1 + C[i,j-d_i]) & \text{si } i > 1 \text{ y } j \ge d_i \end{cases}$$

Introducción

Ejemplo: problema del cambio

- ► la solución está entonces C[n, N]
- una de las dimensiones de la matriz es el conjunto de denominaciones usadas; esto es usual en problemas de PD donde existe una secuencia de objetos a considerar
- ▶ se satisface el principio de optimalidad Si la solución optimal C[n, N] incluye una moneda de d_n entonces deberá estar formada por la solución optimal $C[n, N d_n]$. En cambio si no incluye ninguna moneda de d_n , su valor será la solución optimal a C[n-1, N]

Algoritmos y Complejidad

__ Introducción

Ejemplo: problema del cambio

▶ por ejemplo para N = 8 con $d_1 = 1$, $d_2 = 4$ y $d_2 = 6$ se tiene:

Centavos	0	1	2	3	4	5	6	7	8
$d_1 = 1$	0	1	2	3	4	5	6	7	8
$d_1 = 1$ $d_2 = 4$ $d_3 = 6$	0	1	2	3	1	2	3	4	2
$d_3 = 6$	0	1	2	3	1	2	1	2	2


```
Algoritmos y Complejidad
```

Introducción

Ejemplo: problema del cambio

Algoritmo

Algoritmos y Complejidad

- Introducción

Ejemplo: problema del cambio

- ► Observación: la dependencia del tiempo y el espacio de ejecución en un dato de entrada *N* no es buena porque puede ser arbitrariamente grande
- ¿cómo se modificaría el programa si se dispone de una cantidad limitada de monedas de cada denominación? (ejercicio)

Algoritmos y Complejidad

Introducción

Ejemplo: problema del cambio

- \triangleright el tiempo y el espacio es de $\Theta(nN)$
- este algoritmo sólo encuentra el mínimo número de monedas necesarios, pero no dice cuáles son
- ▶ para encontrar las monedas que forman el cambio, se analiza cada la entrada C[i,j]: si es igual a C[i-1,j] entonces no se usan monedas d_i ; en caso contrario se usa una moneda d_i más las monedas de $C[i,j-d_i]$
- ▶ partiendo de C[n.N] y retrocediendo por fila, o por columna, de acuerdo a su valor, hasta llegar a C[0,0], se obtienen las C[n,N] monedas que forman el cambio
- ▶ este recorrido agrega tareas por tiempo $\Theta(n + C[n, N])$ al algoritmo original

Algoritmos y Complejidad

Problema de la mochila

Definición del problema

- ▶ Problema: se tienen n objetos indivisibles y una mochila. Cada objeto i tiene un peso w_i y un valor v_i; la mochila tiene una capacidad máxima de W. El objetivo es encontrar la carga de la mochila que maximice el valor de lo transportado y se respete su capacidad máxima
- es decir, encontrar valores $x_i = 0, 1$, de forma que

$$\text{maximice } \sum_{i=1}^{n} x_i v_i \qquad \text{siempre que } \sum_{i=1}^{n} x_i w_i \leq W$$

 en esta variante no se permite fraccionar los objetos (ejercicio: mostrar que el algoritmo greedy visto anteriormente no es correcto en este caso) subinstanticas

- para aplicar PD a este problema basta con mostrar que cumple con el principio de optimalidad y que tiene superposición de
- ▶ la función a optimizar es el valor de la carga de la mochila. Este valor depende de W y de la cantidad de objetos considerados
- ▶ sea entonces V[i,j] el máximo valor de una carga de peso a lo sumo j con lo objetos $1,2,\ldots,i$
- ► al igual que en el caso del problema del cambio, una de las dimensiones es el conjunto de objetos

Algoritmos y Complejidad

Problema de la mochila

Ejemplo

▶ por ejemplo, si W = 11

Peso, Valor	0	1	2	3	4	5	6	7	8	9	10	11
$w_1 = 1, v_1 = 1$	0	1	1	1	1	1	1	1	1	1	1	1
$w_2 = 2, v_2 = 6$												
$w_3 = 5, v_3 = 18$	0	1	6	7	7	18	19	24	25	25	25	25
$w_4 = 6, v_4 = 22$	0	1	6	7	7	18	22	24	28	29	29	40
$w_5 = 7, v_5 = 28$	0	1	6	7	7	18	22	28	29	34	35	40

- ightharpoonup el valor de V[i,j] depende de si se incluye o no el objeto i.
- ► la recurrencia es

$$V[i,j] = \begin{cases} 0 & \text{si } j = 0 \\ -\infty & \text{si } i > 0 \text{ y } j < 0 \\ \max(V[i-1,j], & \\ v_i + V[i-1,j-w_i]) & \text{si } i > 0 \text{ y } j > 0 \end{cases}$$

 la dependencia es con elementos de filas anteriores, a lo sumo en la misma columna

Algoritmos y Complejidad

Problema de la mochila

Algoritmo

- el algoritmo para implementar este algoritmo es muy similar al algoritmo para el problema del cambio
- ▶ el tiempo y el espacio es de $\Theta(nW)$
- ▶ para calcular cuáles objetos componen la carga optimal se puede hacer un recorrido adicional desde C[n, W] hasta C[0, 0] de $\Theta(n+W)$

Definición del problema

- ▶ <u>Problema:</u> Sea $G = \langle N, A \rangle$ un grafo dirigido, con pesos. El objetivo es hallar el camino con la mínima distancia entre todo par de nodos. Supondremos el grafo representado por una matriz de adyacencia, y los arcos numerados de 1 a n
- el resultado de resolver este problema sería entonces una matriz D[1..n, 1..n], donde $D[i,j] = \delta(i,j)$ la distancia mínima entre i y j en G (recordar la definición en la parte de algoritmos greedy)
- una solución a este problema consiste en ejecutar n veces el algoritmo de Dijkstra cambiando el nodo origen, y llenando una fila de la matriz en cada iteración
- pero esta solución no es válida si existen arcos con pesos negativos

Algoritmos y Complejidad

Caminos más Cortos entre todo par

- ▶ sea entonces D[i,j,k] la menor distancia entre i y j que tiene como nodos intermedios a 1,2,...,k
- ▶ se debe comparar el camino más corto obtenido hasta entonces (con nodos intermedios 1, ..., k-1), con el camino que va desde i hasta k, y luego de k a j, también sólo con nodos intermedios 1, ..., k-1
- se tiene en cuenta implícitamente el hecho de que un camino optimal no puede pasar dos veces por un nodo
- los valores buscados serán entonces D[i, j, n] que admiten cualquier nodo como nodo intermedio

Caminos más Cortos entre todo par

- ▶ vale el principio de optimalidad en este problema: si k es un nodo en el menor caminio entre i y j, entonces ese camino está formado por el menor camino de i a k y el menor camino de k a j, y estos caminos no contienen i,j,k (esta propiedad se demuestra por el absurdo)
- ▶ entonces, para ir calculando cada D[i,j] se pueden considerar el conjunto de nodos intermedios 1,...,k que pueden ir formando parte de posibles caminos intermedios
- ▶ para cada k, existen dos alternativas: o k pertence al menor camino entre i y j, o no pertenece, y es el mismo que para 1,...,k-1
- ▶ también se puede observar que hay superposición de instancias

Algoritmos y Complejidad

Caminos más Cortos entre todo par

- ▶ los valores iniciales, cuando k = 0 o sea no hay nodos intermedios, corresponden a los pesos de los arcos (i, j)
- la recurrencia queda entonces

$$D[i,j,k] = \begin{cases} G[i,j] & \text{si } k = 0\\ \min(D[i,j,k-1], & \\ D[i,k,k-1] + D[k,j,k-1]) & \text{sino} \end{cases}$$

resultando en un algoritmo de programación dinámica conocido como algoritmo de Floyd-Warshall en $\Theta(n^3)$

Caminos más Cortos entre todo par

Algoritmos y Complejidad

Caminos más Cortos entre todo par

Ejemplo de ejecución del algoritmo de Floyd-Warshall

- el espacio del algoritmo anterior también es de $\Theta(n^3)$
- se puede mejorar el espacio para este cálculo tienendo en cuenta que en toda iteración k:
 - ► cada D[i,j,k] sólo necesita conocer los valores en D[*,*,k-1]. Esto reduce en principio el espacio a $\Theta(n^2)$
 - ▶ para todo $i,j \neq k$, D[k,j,k] = D[k,j,k-1] y D[i,k,k] = D[i,k,k-1], es decir los valores de la fila k y la columna k no cambian en la iteración k
 - ▶ para todo $i, j \neq k$ para actualizar D[i, j, k] sólo se necesita el valor anterior D[i, j, k-1] y los valores de la fila k y la columna k, D[i, k, k-1] y D[k, j, k-1] que no cambian en esta iteración
 - ▶ se puede entonces trabajar sobre la misma matriz de salida, sin usar matrices auxiliares, lo que reduce el espacio a $\Theta(1)$

8 4

∞ 1

0 5

-5 0

Algoritmos y Complejidad

Caminos más Cortos entre todo par

Algoritmos y Complejidad

Caminos más Cortos entre todo par

• el algoritmo resulta muy simple y fácil de implementar

```
function Floyd(G[1..n,1..n])
  array D[1..n,1..n]
  D::=G
  FOR k::=1 TO n
     FOR i::=1 TO n
        FOR j::=1 TO n
        D[i,j]::=min(D[i,j],D[i,k]+D[k,j])
        ENDFOR
     ENDFOR
  ENDFOR
  RETURN D
```


▶ su tiempo es de $\Theta(n^3)$ y el espacio es de $\Theta(1)$

Caminos más Cortos entre todo par

Cálculo de los caminos mínimos

- este algoritmo sólo encuentra las distancias mínimas entre cada par de nodos. Para obtener los nodos que implementan esa distancia es necesario recordar para cada (i,j) cuál es el k que proveyó la mínima distancia entre ellos
- es suficiente con actualizar una matriz adicional P cada vez que se modifica D[i,j], reemplazando la línea interna de los FOR por

```
IF D[i,j]>D[i,k]+D[k,j]
  D[i,j]::=D[i,k]+D[k,j]
  P[i,j]::=k
ENDIF
```

P debe ser inicializada con 0 en todos sus valores

Algoritmos y Complejidad

Caminos más Cortos entre todo par

Clausura transitiva de un grafo

- un grafo sin pesos puede ser usado para representar una relación entre los nodos; si el arco (i,j) existe entonces i esta en relación con j
- entonces para determinar si existe un camino entre un dado par de nodos es necesario calcular la clausura transitiva de la relación
- para esto se asigna peso 1 para los arcos que existen, y se calculan mediante Floyd-Warshall los caminos mínimos del grafo.
 Se pueden usar operaciones binarias en lugar de sumas o mínimos en este caso
- la clausura transitiva se usa en compiladores para poder saber cuáles son los terminales iniciales para todos los símbolos no-terminales de una gramática dada

Algoritmos y Complejidad

Caminos más Cortos entre todo par

Ejemplo de ejecución del algoritmo de Floyd-Warshall

Algoritmos y Complejidad

Multiplicación de matrices en cadena

Definición del problema

- ▶ Problema: se tienen n matrices M₁, M₂,..., M_n, no necesariamente cuadradas, y se quiere encontrar la mejor manera de hallar su producto M₁M₂...M_n. Cada matriz M_i es de tamaño d_{i-1}d_i
- teniendo en cuenta que:
 - ▶ cada producto M_iM_{i+1} se calcula con $d_{i-1}d_id_{i+1}$ productos
 - el producto entre matrices es asociativo, luego $(M_iM_{i+1})M_{i+2} = M_i(M_{i+1}M_{i+2})$
- ▶ entonces es relevante el orden en que se realiza el producto $M_1, M_2, ..., M_n$.
- ejemplo: M_1 de 5×10 , M_2 de 10×20 , M_3 de 20×2 , entonces $M_1(M_2M_3)$ lleva 400 + 100 = 500 productos, y $(M_1M_2)M_3$ lleva 1000 + 200 = 1200 productos

- ▶ el problema entonces consiste en encontrar todas las parentizaciones posibles para $M_1, M_2, ..., M_n$, evaluar la cantidad de productos necesarios, y obtener el menor entre todos ellos
- la cantidad de parentizaciones posibles está definida por la recurrencia

$$T(n) = \sum_{i=1}^{n-1} T(i)T(n-i)$$

con
$$T(1) = 1$$

- ▶ los T(n) forman los llamados números de Catalan y se puede probar que $T(n) \in \Omega(4^n/n^2)$ por inducción
- ▶ luego el algoritmo directo toma tiempo de $\Omega(4^n/n)$ por lo que es inviable en la práctica para n medianos

Multiplicación de matrices en cadena

- ▶ la función a optimizar es la cantidad de productos de reales necesarios para multiplicar una secuencia de matrices. este valor depende de la cantidad de productos necesarios para multiplicar subsecuencias de matrices
- ▶ se define m_{ij} , $i \le j$ como la mínima cantidad de productos necesarios para calcular $M_i ... M_j$. Claramente, sii = j entonces $m_{ij} = 0$ y si j = i + 1 entonces $m_{ij+1} = d_{i-1}d_id_{i+1}$
- ▶ en general, si i < j

$$m_{ij} = \min_{\substack{i \leq k < j \\ i \leq k}} (m_{ik} + m_{(k+1)j} + d_{i-1}d_kd_j)$$

Algoritmos y Complejidad

- este problema satisface el principio de optimalidad
- y tiene también superposición de instancias
- es posible entonces aplicar PD

Algoritmos y Complejidad

• por ejemplo, si d = (10,5,20,30,2):

i∖j	1	2	3	4
1	0	1000	4500	1500
2		0	3000	1400
3			0	1200
4				0

$$m_{13} = \min(m_{12} + m_{33} + d_0 d_2 d_3, m_{11} + m_{23} + d_0 d_1 d_3) =$$

$$= \min(1000 + 6000, 3000 + 1500) = 4500$$

$$m_{24} = \min(m_{23} + m_{44} + d_1 d_3 d_4, m_{22} + m_{34} + d_1 d_2 d_4) =$$

$$= \min(3000 + 300, 1200 + 200) = 1400$$

$$m_{14} = \min(m_{11} + m_{24} + d_0 d_1 d_4, m_{12} + m_{34} + d_0 d_2 d_4,$$

$$m_{13} + m_{44} + d_0 d_3 d_4) =$$

$$= \min(1400 + 100, 1200 + 1000 + 400, 4500 + 600) = 1500$$

Multiplicación de matrices en cadena

Multiplicación de matrices en cadena

Multiplicación de matrices en cadena

Algoritmo

```
function MultMatrices(d[0..n])
array m[1..n,1..n]::=0;
FOR s::=1 TO n-1
FOR i::=1 TO n-s; menor::= +maxint
FOR k::=i TO i+s-1
   tmp::=m[i,k]+m[k+1,i+s]+d[i-1]*d[k]*d[i+s]
   IF tmp<menor THEN menor::=tmp
   ENDFOR
   m[i,i+s]::=menor
   ENDFOR
RETURN m[1,n]</pre>
```


Algoritmos y Complejidad

Triangulación optimal de polígonos

Definición del problema

- el algoritmo anterior tiene muchas aplicaciones, no directamente relacionadas con la multiplicación de matrices. Por ejemplo, para la triangularización de polígonos
- ▶ Problema: se tiene un polígono convexo $\langle v_0, v_1, \dots, v_{n-1} \rangle$ de n lados, siendo v_i los vértices y $\overline{v_{i-1}v_i}$ el lado i. Se quiere encontran una triangularización optimal, de acuerdo a algún criterio dado

Algoritmos y Complejidad

Multiplicación de matrices en cadena

el tiempo ejecución, tomando como barómetro cualquiera de la sentencias del ciclo interno, es:

$$T(n) = \sum_{s=1}^{n-1} \sum_{i=1}^{n-s} \sum_{k=i}^{i+s-1} c = \sum_{s=1}^{n-1} \sum_{i=1}^{n-s} sc =$$

$$= c \sum_{s=1}^{n-1} \sum_{i=1}^{n-s} s = c \sum_{s=1}^{n-1} (n-s)s = nc \sum_{s=1}^{n-1} s - c \sum_{s=1}^{n-1} s^2 =$$

$$= n \frac{c}{2} (n-1)n - (n-1)n(2n-1) \frac{c}{6} = \frac{c}{6} n^3 - \frac{c}{6} n$$

$$\in \Theta(n^3)$$

- ▶ para obtener cuál es la mejor forma de multiplicar la matrices, es suficiente con recordar para cada (i,j) cuál es el k que determinó su menor valor (ejercicio).
- existen algoritmos más eficientes para este problema

Algoritmos y Complejidad

Triangulación optimal de polígonos

- una cuerda $\overline{v_i v_j}$ es el segmento formado por un par de vértice no adyacentes
- toda cuerda divide al polígono en dos subpolígonos
- una triangularización es un conjunto de cuerdas que dividen al polígono en triángulos disjuntos
- ▶ si se tiene un peso $w(\triangle v_i v_j v_k)$ para cada triángulo $\triangle v_i v_j v_k$, entonces una triangularización optimal de un polígono es una triangularización que minimiza la sumatoria de los pesos de los triángulos resultantes

Triangulación optimal de polígonos

- una función común para pesar los triángulos es su perímetro: $w(\triangle v_i v_i v_k) = |v_i v_i| + |v_i v_k| + |v_k v_i|$. Otras pueden usarse
- ightharpoonup cada triangularización de un polígono de n lados consta de n-3cuerdas y n-2 triángulos (ejercicio)

Algoritmos y Complejidad

Triangulación optimal de polígonos

▶ luego cada forma de multiplicar las matrices $A_1 A_2 ... A_{n-1}$ corresponde a una triangularización del polígono

Algoritmos y Complejidad

Triangulación optimal de polígonos

Reducción

- la estructura de este problema es similar a la de la multiplicación cadena de matrices
- ► se define una reducción TRIANGULARIZACIÓN → **CADENAMATRICES**
- ▶ dado un polígono $\langle v_0, v_1, \dots, v_{n-1} \rangle$, se establece una correspondencia entre los lados (excepto $\overline{v_{n-1}v_0}$) y "matrices" A_i , cuyo "tamaño" es $v_{i-1}v_i$ y con "tiempo de multiplicación" $w(\triangle v_i v_i v_k)$

Algoritmos y Complejidad

Triangulación optimal de polígonos

• en el algoritmo, simplemente se reemplaza el costo de cada producto individual. Para las matrices era $d_i * d_i * d_K$, mientras que para la triangularización es $w(\triangle v_i v_i v_k)$

temp::=
$$m[i,k]+m[k+1,i+s]+w(v[i],v[j],v[k])$$

Subsecuencia común más larga

- en bioinformática, es frecuente la necesidad de comparar el ADN de dos o más organismos
- una secuencia de ADN se representa como una cadena en la letras que representan cada una de las bases posible: A (adenina), G (guanina), C (citosina) y T (tiamina). Ejemplo: ACCGGTCGGGATGCACCTGAGAAAGCGG
- un posible criterio de "similitud" entre secuencias de DNA es encontrar la subsecuencia común más larga de bases que aparezca en las secuencias aún en forma no consecutiva
- por ejemplo, para AGCGTAG y GTCAGA la subsecuencia común más larga es GCGA
- no es lo mismo que la subcadena más larga, ya que se permiten otros caracteres en el medio

Algoritmos y Complejidad

Subsecuencia común más larga

Estructura optimal

- un algoritmo de fuerza bruta para resolver LCS es enumerar todas las posibles subsecuencias de X, controlar si también es subsecuencia de Y, y recordar la más larga de ellas
- este algoritmo es de O(2^m), y por lo tanto inviable para m grandes
- sin embargo, es posible comprobar que LCS tiene una subestructura optimal

Algoritmos y Complejidad

Subsecuencia común más larga

Formalización del problema

- ▶ formalmente, dadas una secuencia $X = \langle x_1, x_2, \dots, x_m \rangle$, otra secuencia $Z = \langle z_1, z_2, \dots, z_k \rangle$ es una subsecuencia si existe una secuencia creciente de índices i_1, i_2, \dots, i_k tal que $x_{i_j} = z_j$ para todo $j, 1 \le j \le k$
- ejemplo, para $X = \langle A, G, C, G, T, A, G \rangle$, $Z = \langle G, C, T, G \rangle$ es una subsecuencia con índices 2,3,5,7
- dadas dos secuencias X, Y se dice que Z es una subsecuencia común de X, Y si Z es subsecuencia de X y Z es subsecuencia de Y
- dadas dos secuencias X, Y el problema de la subsecuencia común más larga (LCS) es el problema de encontrar una subsecuencia común de longitud máxima para X, Y

Algoritmos y Complejidad

Subsecuencia común más larga

Subestructura optimal de LCS

Teorema 1

Sean
$$X = \langle x_1, x_2, \dots, x_m \rangle$$
 e $Y = \langle y_1, y_2, \dots, y_n \rangle$. Luego si $Z = \langle z_1, z_2, \dots, z_k \rangle$ es LCS de X, Y y

- ▶ $x_m = y_n$, entonces Z_{k-1} es LCS de X_{m-1} , Y_{n-1}
- $x_m \neq y_m$ y $z_k \neq x_m$, entonces Z es LCS de X_{m-1} , Y
- $ightharpoonup x_m \neq y_m \ y \ z_k \neq y_n$, entonces Z es LCS de X, Y_{n-1}

Demostración.

Se prueban los tres punto por contradicción, llegando en todos los casos a mostrar que Z no es LCS de X, Y.

Subsecuencia común más larga

Solución recursiva

▶ el teorema anterior sugiere la siguiente recurrencia para resolver LCS, siendo C[i,j] el LCS de X_i, Y_i

$$C[i,j] = \begin{cases} 0 & \text{si } i = 0 \text{ o } j = 0 \\ C[i-1,j-1] + 1 & \text{si } i > 0, j > 0 \text{ y } x_i = y_j \\ m\acute{a}x(C[i-1,j],C[i,j-1]) & \text{si } i > 0, j > 0 \text{ y } x_i \neq y_j \end{cases}$$

▶ se puede ver fácilmente que existe superposición de problemas

Algoritmos y Complejidad

Subsecuencia común más larga

Análisis del algoritmo

- \triangleright el algoritmo anterior es de tiempo y espacio en O(mn)
- ► Ejercicio: retornar no sólo la longitud de la LCS entre dos cadenas, sino también una cadena que sea la LCS
- Ejercicio: ¿cómo modificaría el algoritmo para que compute todas las LCS entre dos cadenas, sin aumentar el orden del tiempo ni espacio?

Algoritmos y Complejidad

Subsecuencia común más larga

Algoritmo

```
function LCS(X[1..m], Y[1..n])
array C[1..m,1..n]::=0
FOR i::=1 TO m
FOR j::=1 TO n
IF X[i]==Y[j]
    C[i,j]::=C[i-1,j-1]+1
ELSIF C[i-1,j]>=C[i,j-1]
    C[i,j]::=C[i-1,j]
ELSE
    C[i,j]::=C[i,j-1]
ENDIF
ENDFOR
ENDFOR; RETURN C[m,n]
```

