Compiler Design

Fatemeh Deldar

Isfahan University of Technology

1402-1403

The subset construction

```
initially, \epsilon-closure(s_0) is the only state in Dstates, and it is unmarked; while ( there is an unmarked state T in Dstates ) { mark T; for ( each input symbol a ) { U = \epsilon-closure(move(T, a)); if ( U is not in Dstates ) add U as an unmarked state to Dstates; Dtran[T, a] = U; } }
```

• Computing ϵ -closure(T)

```
push all states of T onto stack; initialize \epsilon-closure(T) to T; while ( stack is not empty ) {
    pop t, the top element, off stack;
    for ( each state u with an edge from t to u labeled \epsilon )
        if ( u is not in \epsilon-closure(T) ) {
            add u to \epsilon-closure(T);
            push u onto stack;
      }
}
```

Example

Example

• The start state A of the equivalent DFA is ϵ -closure(0), or A = {0, 1, 2, 4, 7}

$$Dtran[A, a] = \epsilon - closure(move(A, a)) = \epsilon - closure(\{3, 8\}) = \{1, 2, 3, 4, 6, 7, 8\}$$

$$Dtran[A, b] = \epsilon - closure(\{5\}) = \{1, 2, 4, 5, 6, 7\}$$

NFA STATE	DFA STATE	a	b
$\{0, 1, 2, 4, 7\}$	A	B	C
$\{1, 2, 3, 4, 6, 7, 8\}$	B	B	D
$\{1, 2, 4, 5, 6, 7\}$	C	B	C
$\{1, 2, 4, 5, 6, 7, 9\}$	D	B	E
$\{1, 2, 4, 5, 6, 7, 10\}$	E	B	C

Example

Simulation of an NFA

```
1) S = \epsilon \text{-}closure(s_0);

2) c = nextChar();

3) while (c != eof) \{

4) S = \epsilon \text{-}closure(move(S, c));

5) c = nextChar();

6) \}

7) if (S \cap F != \emptyset) return "yes";

8) else return "no";
```

Basis

Induction

Induction

NFA for the concatenation of two regular expressions

Induction

Example

- a) $({\bf a}|{\bf b})^*$.
- b) $({\bf a}^*|{\bf b}^*)^*$.
- c) $((\epsilon | \mathbf{a}) \mathbf{b}^*)^*$.
- d) $(\mathbf{a}|\mathbf{b})^*\mathbf{a}\mathbf{b}\mathbf{b}(\mathbf{a}|\mathbf{b})^*$.

Algorithm

- 1. Construct a syntax tree T from the augmented regular expression (r)#
- 2. Compute *nullable*, *firstpos*, *lastpos*, and *followpos* for *T*
- 3. Construct *Dstates*, the set of states of DFA *D*, and *Dtran*, the transition function for *D*, using the following algorithm

• Example: Regular expression $(a|b)^*abb$

- Syntax tree for $(a|b)^*abb\#$
 - To each leaf not labeled ϵ , we attach a unique integer as the position of the leaf

- Functions Computed From the Syntax Tree
 - nullable(n) is true for a syntax-tree node n if and only if the subexpression represented by n has ϵ in its language
 - firstpos(n) is the set of positions in the subtree rooted at n that correspond to the first symbol of at least one string in the language of the subexpression rooted at n
 - lastpos(n) is the set of positions in the subtree rooted at n that correspond to the last symbol of at least one string in the language of the subexpression rooted at n
 - followpos(p), for a position p, is the set of positions q in the entire syntax tree that can come after p

$\overline{\hspace{1cm}}$ Node n	nullable(n)	$\mathit{firstpos}(n)$
A leaf labeled ϵ	true	Ø
A leaf with position i	false	$\{i\}$
An or-node $n = c_1 c_2$	$nullable(c_1)$ or	$firstpos(c_1) \cup firstpos(c_2)$
	$nullable(c_2)$	
A cat-node $n = c_1 c_2$	$nullable(c_1)$ and	$\textbf{if} \; (\; nullable(c_1) \;)$
	$nullable(c_2)$	$firstpos(c_1) \cup firstpos(c_2)$
		$\mathbf{else}\;\mathit{firstpos}(c_1)$
A star-node $n = c_1^*$	true	$\mathit{firstpos}(c_1)$

Example

• *firstpos* and *lastpos* for nodes in the syntax tree for $(a|b)^*abb\#$

