Tanya Gyanmote

tgyanmot@ucsc.edu

Fall 2022

CSE13S Assignment 2 - A Small Numerical Library

Programming Analysis:

This program implements functions, created in mathlib.c which is a small numerical library and has a corresponding test harness. The functions in mathlib.c, sin, cos, sin-1 (arcsin), cos-1 (arccos), tan-1 (arctan) program the Taylor series expansion near some point f(a). The program takes certain command line arguments like -a, -s, etc;

Sin(x)

 $my_sin(x)$ I created has a similar output to the library sin(x) with an acceptable difference. I created $my_sin(x)$ using the pseudocode I had mentioned in my Design Document. As you can see the pink line is from $my_sin(x)$ and the green is from the library sin(x) value and you can't see a difference between them, they blend in together into a blue line. The difference is within an exceptional margin of error.

Cos(x)

 $my_cos(x)$ I created has a similar output to the library cos(x) with an acceptable difference. I created $my_cos(x)$ using the pseudocode I had mentioned in my Design Document. As you can see the pink line is from $my_cos(x)$ and the green is from the library cos(x) value and you can't see a difference between them, they blend in together into a blue line. The difference is within an exceptional margin of error.

Arcsin(x)

 $my_cos(x)$ I created has a similar output to the library cos(x) with an acceptable difference. I created $my_cos(x)$ using the pseudocode I had mentioned in my Design Document. As you can see the pink line is from $my_arcsin(x)$ and the green is from the library asin(x) value and you can't see a difference between them, they blend in together into a blue line. The difference is within an exceptional margin of error.

Arccos(x)

 $my_arccos(x)$ I created has a similar output to the library acos(x) with an acceptable difference. I created $my_arccos(x)$ using the pseudocode I had mentioned in my Design Document. As you can see the pink line is from $my_arccos(x)$ and the green is from the library acos(x) value and you can't see a difference between them, they blend in together into a blue line. The difference is within an exceptional margin of error.

Arctan(x)

my_arctan(x) I created has a similar output to the library atan(x) with an acceptable difference. I created my_arctan(x) using the pseudocode I had mentioned in my Design Document. As you can see the pink line is from my_arctan(x) and the green is from the library atan(x) value and you can't see a difference between them, they blend in together into a blue line. The difference is within an exceptional margin of error.

Log(x)

 $my_log(x)$ I created has a similar output to the library log(x) with an acceptable difference. I created $my_log(x)$ using the pseudocode I had mentioned in my Design Document. As you can see the pink line is from $my_log(x)$ and the green is from the library log(x) value and you can't see a difference between them, they blend in together into a blue line. The difference is within an exceptional margin of error.