

Matematika Informatika Politeknik Negeri Malang

Pre Test

Apa yang dimaksud

Apa ada metode lain selain

Apa perbedaan Metode Numerik dengan metode yang disebutkan tadi?

Mengapa memilih Metode

Apa yang

Berapa macam

Darimana sumber

Pengantar Metode Numerik

Metode numerik adalah suatu teknik atau metode untuk menyelesaikan masalah yang diformulasikan secara matematis dengan cara operasi hitungan (aritmatik).

Metode Analitik

- Metode penyelesaian model matematika dengan rumus-rumus aljabar yang sudah baku (lazim).
- Metode analitik : metode yang dapat memberikan solusi sebenarnya (exact solution), solusi yang memiliki galat/error = 0.
- Metode analitik hanya unggul pada sejumlah persoalan matematika yang terbatas

Metode Analitik VS Metode Numerik

Metode Numerik

- Solusi selalu berbentuk angka
- Solusi berupa hampiran atau pendekatan
- Terdapat galat (error)

Metode Analitik

- Solusi dalam bentuk fungsi matematika
- Solusi eksak
- Tidak ada galat (error)

Selesaikan integral di bawah ini

$$I = \int_{-1}^{1} (4 - x^2) dx$$

Metode Analitik

$$I = \int_{-1}^{1} (4 - x^2) dx = [4x - x^3/3]_{x=-1}^{x=1} = \{4(1) - (1)/3\} - \{4(-1) - (-1)/3\} = 22/3$$

Contoh

Metode Numerik

$$\begin{split} I &= p + q + r + s \\ &= \{ [f(-1) + f(-1/2)] \times 0.5/2 \} + \{ [f(-1/2) + f(0)] \times 0.5/2 \} + \\ &\{ [f(0) + f(1/2)] \times 0.5/2 \} + \{ [f(1/2) + f(1)] \times 0.5/2 \} \\ &\approx 0.5/2 \{ f(-1) + 2f(-1/2) + 2f(0) + 2f(1/2) + f(1) \} \\ &= 0.5/2 \{ 3 + 7.5 + 8 + 7.5 + 3 \} \\ &= 7.25 \end{split}$$

• Error = |7.25-7.33| = 0.0833

Mengapa Menggunakan Metode Numerik

- TIDAK SEMUA PERMASALAHAN MATEMATIS ATAU PERHITUNGAN DAPAT DISELESAIKAN DENGAN MUDAH.
- KESULITAN MENGGUNAKAN METODE ANALITIK UNTUK MENCARI SOLUSI EXACT DENGAN JUMLAH DATA YANG BESAR,OLEH SEBAB ITU METODE NUMERIK MENJADI PENTING UNTUK MENYELESAIKAN PERMASALAHAN INI.
- PEMAKAIAN METODE ANALITIK TERKADANG SULIT DITERJEMAHKAN KE DALAM ALGORITMA YANG DAPAT DIMENGERTI OLEH KOMPUTER.

Mengapa Menggunakan Metode Numerik

- DIBUTUHKAN METODE YANG MENGGUNAKAN ANALISIS-ANALISIS PENDEKATAN PERSOALAN-PERSOALAN NON LANJAR UNTUK MENGHASILKAN NILAI YANG DIHARAPKAN.
- METODE NUMERIK YANG MEMANG BERANGKAT DARI PEMAKAIAN ALAT BANTU HITUNG ADALAH ALTERNATIF YANG BAIK DALAM MENYELESAIAN PERSOALAN-PERSOALAN

Metode Numerik

- Metode numerik = teknik yang digunakan untuk memformulasikan persoalan matematik sehingga dapat dipecahkan dengan operasi hitungan / aritmatika biasa.
- Solusi angka yang didapatkan dari metode numerik adalah solusi yang mendekati nilai sebenarnya / solusi pendekatan (approximation) dengan tingkat ketelitian yang kita inginkan.
- Karena tidak tepat sama dengan solusi sebenarnya, ada selisih diantara keduanya yang kemudian disebut galat / error.
- Metode numerik dapat menyelesaikan persoalan didunia nyata yang seringkali non linier, dalam bentuk dan proses yang sulit diselesaikan dengan metode

Prinsip Metode Numerik

- Metode numerik ini disajikan dalam bentuk algoritma – algoritma yang dapat dihitung secara cepat dan mudah.
- Pendekatan yang digunakan dalam metode numerik merupakan pendekatan analisis matematis, dan teknik perhitungan yang mudah.
- Algoritma pada metode numerik adalah algoritma pendekatan maka dalam algoritma tersebut akan muncul istilah *iterasi/lelaran* yaitu pengulangan proses perhitungan.

GALAT (KESALAHAN)

- ➤ Penyelesaian secara numerik dari suatu persamaan matematis hanya memberikan nilai perkiraan yang mendekati nilai eksak (yang benar) dari penyelesaian analitis.
- ➤ Penyelesaian numerik akan memberikan kesalahan terhadap nilai eksak

Galat

Galat (kesalahan) terdiri dari tiga macam :

1. Galat Mutlak

Kesalahan mutlak dari suatu angka, pengukuran atau perhitungan. Kesalahan = Nilai eksak – Nilai perkiraan

Contoh: x = 3,141592 dan $x^*=3,14$, maka galat mutlaknya adalah, E = 3,141592 - 3,14 = 0,001592

Galat

2. Galat relatif e dari a

$$e = \frac{E}{a} = \frac{Galat}{NilaiEksak}$$

Sehingga galat relatifnya adalah

$$e = \frac{E}{a} = \frac{0,001592}{3,141592} = 0,000507$$

Prosentase Galat

Prosentase galat adalah 100 kali galat relatif

$$= e * 100\%$$

Sumber Kesalahan

- Kesalahan bawaan contoh: kekeliruan dlm menyalin data salah membaca skala
- Ketidaktepatan data

Kesalahan pemotongan (truncation error)

- Berhubungan dg cara pelaksanaan prosedur numerik Contoh pada deret Taylor tak berhingga :

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \dots$$

- Dapat dipakai untuk menghitung sinus sebarang sudut x dalam radian
- Jelas kita tdk dapat memakai semua suku dalam deret, karena deretnya tak berhingga
- Kita berhenti pada suku tertentu misal x9
- Suku yg dihilangkan menghasilkan suatu galat

Kesalahan pembulatan (round-off error)

- Akibat pembulatan angka
- Terjadi pada komputer yg disediakan beberapa angka tertentu misal; 5 angka :
- Penjumlahan 9,2654 + 7,1625
- hasilnya **16,4279**, **i**ni terdiri 6 angka sehingga tidak dapat disimpan dalam komputer kita dan akan dibulatkan menjadi **16,428**

Post Test

- Jelaskan Macam macam kesalahan atau error
- Berilah 2 contoh kesalahan karena pemotongan
- Berilah 2 contoh kesalahan karena pembulatan
- 4. Diketahui nilai eksas dari perhitungan luas bangunan adalah $403,1476 m^2$, sedangkan nilai perkiraannya adalah $403m^2$, hitung galat mutlak, galat relatif, dan persentase galatnya.

4. Pengukuran panjang jembatan dan pensil memberikan hasil 9999 cm dan 9 cm. Apabila panjang yang benar (eksak)berturut-turut adalah 10.000 cm dan 10 cm, hitung kesalahan absolut dan relatif.

5. Berikan satu contoh angka yang memiliki angka penting 3 dan 4

Angka Bena (signifikan)

- Angka bena adalah angka bermakna, angka penting, atau angka yang dapat digunakan dengan pasti
- Contoh:

```
43.123 memiliki 5 angka bena (yaitu 4, 3, 1, 2, 3)
```

0.1764 memiliki 4 angka bena (yaitu 1, 7, 6, 4)

0.0000012 memiliki 2 angka bena (yaitu 1, 2)

278.300 memiliki 6 angka bena (yaitu 2, 7, 8, 3, 0, 0)

270.0090 memiliki 7 angka bena (yaitu 2, 7, 0, 0, 0, 9, 0)

0.0090 memiliki 2 angka bena (yaitu 9, 0)

1360, 1.360, 0.001360 semuanya memiliki 4 angka bena

Refrensi

- Munir, Rinaldi. 2008. Metode Numerik Revisi Kedua. Informatika Bandung: Bandung
- Cahya Rahmad, ST, M.Kom. Dr. Eng, "Diktat Kuliah Matematika Numerik", Program Studi Manajemen Informatika, Politeknik Negeri Malang

TERIMAKASIH

