Optimisation combinatoire multicritère et approximation avec garantie de performance

Laurent Gourvès

lgourves@lami.univ-evry.fr

LaMI, université d'Évry Val d'Essonne en collaboration avec Eric Angel et Evripidis Bampis

Plan de l'exposé

- 1. Optimisation combinatoire multicritère
- 2. Approximation polynomiale et garantie de performance
- 3. Deux problèmes bicritères
 - 3.1 Coupe maximale pondérée
 - 3.2 Ordonnancement sur une machine
- 4. Conclusion

Plan de l'exposé

- 1. Optimisation combinatoire multicritère
- 2. Approximation polynomiale et garantie de performance
- 3. Deux problèmes bicritères
 - 3.1 Coupe maximale pondérée
 - 3.2 Ordonnancement sur une machine
- 4. Conclusion

Optimisation combinatoire

ensemble fini de solutions réalisables

⇒ trouver efficacement la meilleure

Optimisation combinatoire

ensemble fini de solutions réalisables

⇒ trouver efficacement la meilleure

1 objectif obj

Optimisation combinatoire

ensemble fini de solutions réalisables

⇒ trouver efficacement la meilleure

1 objectif obj

ensemble fini de solutions réalisables

⇒ trouver efficacement la meilleure

ensemble fini de solutions réalisables

⇒ trouver efficacement la meilleure

$$k = 2$$

ensemble fini de solutions réalisables

⇒ trouver efficacement les solutions non dominées

$$k = 2$$

ensemble fini de solutions réalisables

⇒ trouver efficacement les solutions non dominées

$$k = 2$$

Courbe de Pareto

Déterminer efficacement la courbe de Pareto est problématique

- taille potentiellement exponentielle
- décider si une solution appartient à la courbe de Pareto = problème généralement NP-complet

Courbe de Pareto

Déterminer efficacement la courbe de Pareto est problématique

- taille potentiellement exponentielle
- décider si une solution appartient à la courbe de Pareto = problème généralement NP-complet

APPROXIMATION POLYNOMIALE

Déterminer efficacement une courbe de Pareto approchée

Plan de l'exposé

- 1. Optimisation combinatoire multicritère
- 2. Approximation polynomiale et garantie de performance
- 3. Deux problèmes bicritères
 - 3.1 Coupe maximale pondérée
 - 3.2 Ordonnancement sur une machine
- 4. Conclusion

Approximation avec garantie de performance ε

minimiser 1 objectif obj

Une solution s est ε -approchée si pour toute solution réalisable s'

$$obj(s) \le (1+\varepsilon)obj(s')$$

Approximation avec garantie de performance ε

minimiser 1 objectif obj

Une solution s est ε -approchée si pour toute solution réalisable s'

$$obj(s) \le (1+\varepsilon)obj(s')$$

minimiser k objectifs $obj_1 \dots obj_k$

Un ensemble de solutions P est une courbe de Pareto ε -approchée si pour toute solution réalisable s', il existe une solution $s \in P$ telle que

$$obj_i(s) \leq (1+\varepsilon)obj_i(s'), i = 1, \dots, k$$

Courbe de Pareto ε -approchée

Courbe de Pareto ε -approchée

<u>Théorème</u>: Un nombre polynomial de solutions suffit pour approcher la courbe de Pareto avec une précision aussi petite que l'on veut. [Papadimitriou & Yannakakis, 2000]

Recherche d'algorithmes polynomiaux qui génèrent une courbe de Pareto ε -approchée

Plan de l'exposé

- 1. Optimisation combinatoire multicritère
- 2. Approximation polynomiale et garantie de performance
- 3. Deux problèmes bicritères
 - 3.1 Coupe maximale pondérée
 - 3.2 Ordonnancement sur une machine
- 4. Conclusion

Coupe maximale pondérée (MAX-CUT)

un poids w_{ij} pour toute arête [ij]

Coupe maximale pondérée (MAX-CUT)

Couper les sommets en deux ensembles (S, \overline{S}) afin de maximiser le poids total $W(S, \overline{S}) = \sum_{i \in S, j \in \overline{S}} w_{ij}$

NP-difficile [Karp, 1972]

algorithme 0.878-approché [Goemans & Williamson, 1995]

Coupe maximale pondérée bicritère

un poids w_{ij} et une longueur l_{ij} pour toute arête [ij]

Maximiser le poids total $W(S,\overline{S})=\sum_{i\in S,j\in \overline{S}}w_{ij}$ ET la longueur totale $L(S,\overline{S})=\sum_{i\in S,j\in \overline{S}}l_{ij}$

Approche

Approximation de la courbe de Pareto avec une seule coupe (S, \overline{S})

Algorithme bicritère α -approché si $W(S, \overline{S}) \geq \alpha \, OPTW$ et $L(S, \overline{S}) \geq \alpha \, OPTL$

Hypothèse : on dispose d'un algorithme boite noire γ -approché pour le problème мах-сит classique

Boite noire : une coupe $(S_1, \overline{S_1})$ t.q. $W(S_1, \overline{S_1}) \geq \gamma \, OPTW$

Boite noire : une coupe $(S_1, \overline{S_1})$ t.q. $W(S_1, \overline{S_1}) \geq \gamma \, OPTW$

Boite noire : une coupe $(S_2, \overline{S_2})$ t.q. $L(S_2, \overline{S_2}) \geq \gamma \, OPTL$

Boite noire : une coupe $(S_1, \overline{S_1})$ t.q. $W(S_1, \overline{S_1}) \geq \gamma OPTW$

Boite noire : une coupe $(S_2, \overline{S_2})$ t.q. $L(S_2, \overline{S_2}) \geq \gamma \, OPTL$

une coupe $(S_3, \overline{S_3})$ telle que $S_3 = (S_1 \cap S_2) \cup (\overline{S_1} \cap \overline{S_2})$

$$Si$$
 $L(S_1, \overline{S_1}) \geq 0.5 \, L(S_2, \overline{S_2})$

Alors Retourner $(S_1, \overline{S_1})$

Sinon $Si \, W(S_2, \overline{S_2}) \geq 0.5 \, W(S_1, \overline{S_1})$

Alors Retourner $(S_2, \overline{S_2})$

Sinon Retourner $(S_3, \overline{S_3})$

Boite noire : algorithme monocritère γ -approché

Théorème : Bi-Approx est un algorithme bicritère $\frac{\gamma}{2}$ -approché pour le problème de la coupe maximale bicritère [WG 2005]

Élément de preuve

$$\begin{array}{ll} \textit{Si} & L(S_1, \overline{S_1}) \geq 0.5 \, L(S_2, \overline{S_2}) \\ \textit{Alors} & \mathsf{Retourner} \; (S_1, \overline{S_1}) \\ \textit{Sinon} & \textit{Si} \; W(S_2, \overline{S_2}) \geq 0.5 \, W(S_1, \overline{S_1}) \\ & \textit{Alors} \; \mathsf{Retourner} \; (S_2, \overline{S_2}) \\ & \textit{Sinon} \; \mathsf{Retourner} \; (S_3, \overline{S_3}) \end{array}$$

 $(S_1, \overline{S_1})$: arêtes rouges + arêtes noires

 $(S_2, \overline{S_2})$: arêtes bleues + arêtes noires

 $(S_3, \overline{S_3})$: arêtes bleues + arêtes rouges

Conséquences positives

Approximabilité

Bi-Approx 0.439-approché

• boite noire = algorithme 0.878-approché [Goemans & Williamson,1995]

Existence

Toute instance du problème bicritère admet une solution réalisable 0.5-approchée

boite noire = algorithme exact

Lien avec l'ordonnancement

2 critères : somme pondérée des dates de terminaison makespan

[Stein & Wein, 1997]

 $\forall \delta>0$, construction d'un ordonnancement N à la fois $\alpha(1+\delta)$ -approché pour le makespan et $\beta(\frac{1+\delta}{\delta})$ -approché pour la somme pondérée des dates de terminaison à partir de

- M, un ordonnancement α -approché pour le makespan
- T, un ordonnancement β -approché pour la somme pondérée des dates de terminaison

Lien avec l'ordonnancement

2 critères : somme pondérée des dates de terminaison makespan

[Stein & Wein, 1997]

 $\forall \delta>0$, construction d'un ordonnancement N à la fois $\alpha(1+\delta)$ -approché pour le makespan et $\beta(\frac{1+\delta}{\delta})$ -approché pour la somme pondérée des dates de terminaison à partir de

- M, un ordonnancement α -approché pour le makespan
- T, un ordonnancement β -approché pour la somme pondérée des dates de terminaison

Approche simultanée : construction d'un compromis à partir de solutions "bonnes" pour chacun des critères pris séparément

Plan de l'exposé

- 1. Optimisation combinatoire multicritère
- 2. Approximation polynomiale et garantie de performance
- 3. Deux problèmes bicritères
 - 3.1 Coupe maximale pondérée
 - 3.2 Ordonnancement sur une machine
- 4. Conclusion

Problème

Exécuter n tâches sur 1 machine

Une solution est une permutation π des tâches \rightarrow pas de temps d'attente

Chaque tâche t_j a

- une durée d'exécution p_j
- un poids w_j

2 critères:

- Poids total : $w(\pi) = \sum_{j=1}^n w_j C_j^{\pi}$
- Coût total : $c(\pi) = \sum_{j=1}^n C_j^{\pi}$

$$1||(\sum_{j} C_{j}, \sum_{j} w_{j} C_{j})$$

Complexité

1 critère : résolution en ordonnant les tâches

par w_j/p_j décroissants [Smith, 1956]

2 critères : NP-difficile [Hoogeveen, 1992]

nombre de solutions parfois exponentiel [IPL, 2005]

	t_{j}
p_j	n^{j-1}
w_j	n^j-1

Approche par pondération des critères

Minimiser $f_{\lambda}(\pi) = \lambda w(\pi) + (1 - \lambda)c(\pi)$ t.q. $0 \le \lambda \le 1$

Approche par pondération des critères

Minimiser
$$f_{\lambda}(\pi) = \lambda w(\pi) + (1 - \lambda)c(\pi)$$
 t.q. $0 \le \lambda \le 1$

Règle de Smith : ordonner selon les $\frac{\lambda w_j + (1-\lambda)}{p_j}$ décroissants

Approche par pondération des critères

Courbe de Pareto : solutions supportées • solutions non supportées •

Générer les solutions supportées

$$\frac{\lambda w_j + (1 - \lambda)}{p_j}$$

Algorithme:

- appliquer la règle de Smith pour une valeur de λ dans chaque intervalle
 - au plus n(n-1)/2 + 1 permutations

$$p_j = n^{j-1}$$
 et $w_j = n^j - 1$

 π_1 et π_2 minimisent la fonction f_λ

 π_1 et π_2 minimisent la fonction f_{λ}

Plusieurs tâches adjacentes ont le même rapport

$$\frac{\lambda w_j + (1 - \lambda)}{p_j}$$

swap de ces tâches adjacentes pour obtenir des ordonnancements intermédiaires

Algorithme

- 1. Générer les permutations supportés $\{\pi_1, \pi_2, \dots, \pi_l\}$ (permutations classées par coûts croissants)
- 2. Générer des permutations intermédiaires entre π_i et π_{i+1} par swaps successifs de tâches adjacentes

 $\frac{\text{Th\'eor\`eme}}{\text{l'algorithme s'ex\'ecute en temps polynomial et}} \text{ l'ensemble des permutations g\'en\'er\'ees constitue}$ une courbe de Pareto (1,0)-approchée pour le problème $1||(\sum_j C_j,\sum_j w_j\,C_j)$

[IPL, 2005]

Plan de l'exposé

- 1. Optimisation combinatoire multicritère
- 2. Approximation polynomiale et garantie de performance
- 3. Deux problèmes bicritères
 - 3.1 Coupe maximale pondérée
 - 3.2 Ordonnancement sur une machine
- 4. Conclusion

Approximation de la courbe de Pareto

Approximation avec 1 solution

Approche simultanée : construction d'un compromis à partir de solutions "bonnes" pour chacun des critères pris séparément

limite : nombre de critères

Approximation avec plusieurs solutions

Approche par pondération des critères : possible lorsque les critères sont homogènes et existence d'un algorithme monocritère exact efficace

Autres approches : adaptation d'algorithmes monocritères pour le cas multicritère (ex : recherche locale)

• $\mathsf{TSP}(1,2)$ multicritère [TCS, 2004]

Perspectives

Étude de problèmes combinatoires multicritères

- approximation avec garantie de performance
- plus de critères
- critères hétérogènes
- inapproximabilité
 - \circ argument de complexité $P \neq NP$
 - non existence

Questions