2018-2019 年度红桥区一模数学试卷

	一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只有一项是符合题目要求的							
P	1. 计算 4+ (-3) 的结果	果等于						
	A7	B. 7	C1	D. 1				
A	2. sin30°的值等于							
	A. $\frac{1}{2}$	B. 1	c. $\frac{\sqrt{2}}{2}$	D. $\frac{\sqrt{3}}{2}$				
14	3. 下列图形中,可以看	作是中心对称图形的是						
	A. 🔷	В.	c. 📵	D. 🔒				
B	4. 天津西站在 2019 年	春运的首日运输旅客达	42000人次,将4200	00 用科学记数法表示应为				
	A. 42x10 ³	B. 4.2×10 ⁴	C. 4.2×10 ³	D. 0.42×10 ⁵				
ß	5. 右图是由 5 个相同的	正方体组成的立体图形	,它的主视图是		(
	A	В.	c.	D	Ţ			
C	6. 估计√41的值在							
	A.4和5之间	B.5和6之间	C.6和7之间	D. 7 和 8 之间				
B	7. 方程组 $x+y=6$ 的解	羚						
	A. $\begin{cases} x=4 \\ y=2 \end{cases}$	B. $\begin{cases} x=2 \\ y=4 \end{cases}$	C. $\begin{cases} x=1 \\ y=5 \end{cases}$	D. $\begin{cases} x=3 \\ y=3 \end{cases}$				
A	8. 计算 $\frac{2x+1}{3x-1} - \frac{2-x}{3x-1}$	的结果为						
224	A. 1	B1	C. $\frac{3}{3x-1}$	D. $\frac{x+3}{3x-1}$				
D	9. 若点 A(-1, y ₁), B (1	, y₂), C (3, y₃)在反	比例函数 $y=-\frac{6}{x}$ 的图象	聚上,则 y₁,y₂,y₃ 的大小关	系是			
,	A. y ₁ <y<sub>2<y<sub>3</y<sub></y<sub>	B. y ₂ <y<sub>1<y<sub>3</y<sub></y<sub>	C. V3 <v2<v1< td=""><td>D. V2<v2<v1< td=""><td></td></v2<v1<></td></v2<v1<>	D. V2 <v2<v1< td=""><td></td></v2<v1<>				
C	10. 如图,将△ABC 沿直约	龙 DE 折叠后,使得点	B与点A重合,若AC=	=5, ^ADC 的周长为 17, 则	BC 的长先			
,	A. 7	B. 10	C. 12	D. 22	E			
					3 D C			
9	11. 如图,在正方形 ABCI —	D中,E为AD的中点	,P为AB上的一个动,	点,若 AB=2,则 PE+PC 的	最小值为			
,	A. 1+2√2	B. 2√3	C. 2+√5	D. √13				
					т С			

愛智康

C 12. 如图,二次函数 y=ax²+bx+c 的图象经过点 A (-1, 0),点 B (3, 0),点 C(4, y₁),点 D (x₂, y₂) 是抛物线上任意一点,有下列结论: ②二次函数 y=ax²+bx+c 的最小值为-4a; ②若-1≤x₂≤4,则-4a≤y₂≤5a; ③若 x₂>4,则

 $y_2>y_1$; ④一元二次方程 $cx^2+bx+a=0$ 的两个根为 1 和 $-\frac{1}{3}$. 其中正确结论的个数是

A. 1

B. 2

C. 3

D. 4

- 二、填空题 (本大题共6小题,每小题3分,共18分)
- 13. 计算 x⁷÷x³ 的结果等于____X⁴

- 18. 如图,将 A ABC 放在每个小正方形的边长为 A 的网格中,点 A A,点 B ,点 C 均落在格点上, P 为 B BC 与网格线的交点,连接 AP.
- (I) BC 的长等于 2 13
- (II) Q为边BC上一点,请在如图所示的网格中,用无刻度的直尺,画出线段AQ,使∠PAQ=45°,并简要说明点Q的位置是如何找到的(不要求证明)_____

三、解答题(本大题共7小题,共66分。解答应写出文字说明、演算步骤或推理过程)

19. (本小题 8分)

请结合题意填空,完成本题的解答.

- (1) 解不等式①, 得 X>一
- (II) 解不等式②, 得__x≤}
- (Ⅲ) 把不等式①和②的解集在数轴上表示出来:

20. (本小题 8分)

某足球队为了解运动员的年龄情况,作了一次年龄调查,根据足球运动员的年龄(单位:岁),绘制出如下的统计图① 和图②。请根据相关信息,解答下列问题:

- (I) 本次接受调查的足球运动员人数为_______, 图①中m的值为_
- (II) 求统计的这组足球运动员年龄数据的平均数、众数和中位数。

2740+50

文和·超级和概中,15出现的次数最高、故其令和为达中位和、制之数和报,由小刊大排刊,第25年26个和为15. 放射设备为15. 15

受智康

21. (本小题 10分) 已知 AB 为⊙O 的直径,EF 切⊙O 于点 D,过点 B 作 BH⊥EF 于点 H,交⊙O 于点 C,连接 BD.

- (I) 如图①, 若∠BDH=65°, 求∠ABH的大小;

22. (本小题 10 分)

如图,两根竹竿 AB 和 AC 斜靠在墙 BD 上,量得∠ABD=37°,∠ACD=45°,BC=50cm,求竹竿 AB 和 AC 的长(结 果精确到 0.1cm).

E. LAW = LDOCO LCOB

参考数据: sin37°≈0.60, cos37°≈0.80, tan37°≈0.75, √2≈1.41.

:, LABH=LABD+LDBH=JD

23. (本小题 10分)

某公司要购买一种笔记本供员工学习时使用。在甲文具店不管一次购买多少本,每本价格为 2 元,在乙文具店购买同样的笔记本,一次购买数量不超过 20 时,每本价格为 2 元;一次购买数量超过 20 时,超过部分每本价格为 1.8 元设在同一家文具店一次购买这种笔记本的数量为 x(x 为非负整数).

(I) 根据题意,填写下表:

一次购买数量 (本)	10	20	30	40	
甲文具店付款金额 (元)	20	40	60	&0	
乙文具店付款金额 (元)	24	48	66	84	

(Π) 设在甲文具店购买这种笔记本的付款金额为 y_1 元,在乙文具店购买这种笔记本的付款金额为 y_2 元,分别写出 y_1 , y_2 关于 x 的函数关系式;

(皿) 当x≥50时,在哪家文具店购买这种笔记本的花费少? 请说明理由. 144、5人、=2x(x≥0人x为<u>教</u>教)

西,全省:1/2.

2x =1.8x+12

U.2x=12

x = 60

当べきかけ、 り、:/w. りょ:/0>

·· 当50 EX < 60 时,在甲文县在购买领 当x = 60 时 两个文县在均可 当x > 60 时 在乙文县在购买领

受智康

24. (本小题 10 分)

在平面直角坐标系中,O 为原点,点 A(4,0),点 B (0,3),把 $^{\Delta}$ ABO 绕点 A 顺时针旋转,得 $^{\Delta}$ AB'O',点 B,O 旋转后的对应点为 B',O' 记旋转角为 $^{\Delta}$.

- (I) 如图①, 若α=90°, 求 BB'的长;
- (Ⅱ)如图②, 若α=120°, 求点 O'的坐标:
- (ш) 记 K 为 AB 的中点,S 为 4 KO'B' 的面积,求 S 的取值范围(直接写出结果即可).

年:山在RLAOB中

:: AB=5

在RtaBB'丰

AB : AB'=5

: BB' = JE

小作 O'PLX和于P

- 1 d=120°
- :. LOAU =120'
- : 20'Ap = 60
- : A0' = A0 = 4
- : Ap=2. 0'p=2/3
- :, op = 0A+Ap=6
- ·· 0' (6, 2\bar{3})

亚, 辛≤S≤翠

& JEKMI O'B' JM

DI SAKOB' = 1 . 0'B'. KM

0'运动轨迹为AUA为

圆心. Ao为丰轻的图

- "1 0'13'多L AV".
- ら0'B' t70Aラ0'
- 2: KA= = AB= = < AO'
- :K在OA内
- :. 为以沒有因AB与OA 多

P. la (PELERABL)

以为KM最小值 KQ为KM最大值

:, kp=3, ka=13

9 5S 5 39

▲ 莨智康

25. (本小题 10分)

抛物线 $y = \frac{1}{2} x^2 + bx + c$ 与 y 轴交于点 C (0, -4), 与 x 轴交于点 A, B, 且 B (2, 0).

- (I) 求该抛物线的解析式;
- (II)若点 P 是线段 AB 上的一动点,过点 P 作 PE//AC,交 BC 于点 E,连接 CP,求△PCE 面积的最大值:
- (III) 若点 D 为 OA 的中点,点 M 是线段 AC 上一点,且△OMD 为等腰三角形,求 M 点的坐标

$$\begin{array}{c}
-4 = C \\
0 = \frac{1}{2}x4+2h+C \\
\therefore b = 1 \\
C = 4 \\
\therefore 2 = \frac{1}{2}x^{2}+x-4 \\
\text{(II)} PFLBGFF \\
i3 P(m,0) \\
\therefore BP = 2-m. AP = m-4. \\
\therefore PE | AC \\
\therefore BP = BB \\
E = 2D - M (2-m) = 3 (2-m) \\
\therefore BE = 2D - 3D + 3m \\
CE = 2D - 3D + 3m \\
CE = 2D - 3D + 3m \\
CE = 2D - 3D + 3m \\
E PF = BP - Shi B = (2-m) - 3D \\
= (2-m) - 3D \\
\end{array}$$