This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PAT-NO:

JP02001191949A

DOCUMENT-IDENTIFIER: JP 2001191949 A

TITLE:

REINFORCING TOOL AND REINFORCING

METHOD FOR HOLLOW

STRUCTURE

PUBN-DATE:

July 17, 2001

INVENTOR-INFORMATION:

NAME

COUNTRY

MATSUKI, NOBUAKI

N/A

ASSIGNEE-INFORMATION:

NAME

COUNTRY

NEOEX LAB INC

N/A

APPL-NO: JP2000001858

APPL-DATE: January 7, 2000

INT-CL (IPC): B62D025/04, B62D029/04

ABSTRACT:

PROBLEM TO BE SOLVED: To provide a reinforcing tool for a hollow structure capable of efficiently reinforcing the hollow structure from the inside.

SOLUTION: This reinforcing tool 20 for the hollow structure 1 is arranged in the hollow section 6 of the hollow structure 1 to reinforce the hollow structure 1. The reinforcing tool 20 is provided with a reinforcing member 21 having partition walls 21a, 21b extending in the longitudinal direction of the hollow section 6 to partition the hollow section 6 into a plurality of split

chambers Sc, Sr on the cross section and a foaming base material 30 foamed into a foamed body to cut off at least one split chamber Sr within a plurality of split chambers Sc, Sr. The hollow structure 1 is reinforced nearly uniformly in the width direction and the vertical direction by a plurality of split chambers Sc, Sr and the foam body. Since the foaming base material 30 is foamed in the split chamber the positioning of the foamed body is facilitated.

COPYRIGHT: (C) 2001, JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-191949 (P2001 - 191949A)

(43)公開日 平成13年7月17日(2001.7.17)

(51) Int.Cl.7

體別記号

FΙ

テーマコート*(参考)

B62D 25/04

29/04

B62D 25/04

3 D 0 0 3 Z

29/04

В

審査請求 未請求 請求項の数7 〇L (全 8 頁)

(21) 出題番号

特顧2000-1858(P2000-1858)

(22)出願日

平成12年1月7日(2000.1.7)

(71)出願人 000247166

株式会社ネオックスラボ

愛知県豊田市陣中町2丁目19番地6

(72)発明者 松木 伸明

愛知県日進市浅田町平子4-1150-802

(74)代理人 100064344

弁理士 岡田 英彦 (外3名)

Fターム(参考) 30003 AA01 BB01 CA17 CA32 CA36

(54) 【発明の名称】 中空構造物の補強具及び補強方法

(57)【要約】

【課題】 中空構造物を内側から効率的に補強できる中 空構造物の補強具を提供する。

【解決手段】 本発明は、中空構造物1の中空部6に配 設されてその中空構造物1を補強する中空構造物1の補 強具20であって、中空部6の長手方向に延び、その中 空部6を横断面において複数の分割室Sc, Srに仕切 る仕切り壁21a, 21bを有する補強部材21と、発 泡して発泡体となることで、複数の分割室Sc、Srの うち少なくとも一つの分割室Srを遮断する発泡性基材 30とを備えている。このため、中空構造物1は複数の 分割室Sc、Sr及び発泡体の働きで幅方向及び縦方向 にほぼ均等に補強される。また、発泡性基材30は分割 室内で発泡するため、発泡体の位置決めも容易になる。

1

【特許請求の範囲】

【請求項1】 中空構造物の中空部に配設されてその中 空構造物を補強する中空構造物の補強具であって、 前記中空部の長手方向に延び、その中空部を横断面にお いて複数の分割室に仕切る仕切り壁を有する補強部材 と、

発泡して発泡体となることで、前記複数の分割室のうち 少なくとも一つの分割室を遮断する発泡性基材と、を備 えていることを特徴とする中空構造物の補強具。

【請求項2】 請求項1に記載された中空構造物の補強 10 に向上させる方法が好適に使用されている。 具において、

発泡性基材は、発泡して発泡体となることで中空構造物 の内壁面と補強部材とを結合させることを特徴とする中 空構造物の補強具。

【請求項3】 請求項1に記載された中空構造物の補強 具において、

複数の分割室を遮断するための発泡性基材のうち少なく とも一つの発泡性基材は、他の発泡性基材と異なる種類 であることを特徴とする中空構造物の補強具。

【請求項4】 中空構造物の中空部に配設されてその中 20 空構造物を補強する中空構造物の補強具であって、

前記中空部の長手方向に延び、中空部を横断面において 複数の分割室に仕切る仕切り壁を有する補強部材と、

前記仕切り壁と交差する方向に設けられ、中空部を縦断 面において複数の分割室に仕切る横壁と、を有すること を特徴とする中空構造物の補強具。

【請求項5】 中空構造物の中空部に配設されてその中 空構造物を補強する中空構造物の補強具であって、

前記中空部の長手方向に延び、その中空部を横断面にお いて複数の分割室に仕切る仕切り壁を有する補強部材を 30 備えており、

補強部材は、その横断面において複数に分割された分割 体により構成されることを特徴とする中空構造物の補強 具。

【請求項6】 請求項1から請求項5のいずれかに記載 の中空構造物の補強具において、

補強部材は、その横断面の形状が略格子形であることを 特徴とする中空構造物の補強具。

【請求項7】 中空構造物の中空部の長手方向に延び、 その中空部を横断面において複数の分割室に仕切る仕切 40 め、例えば、中空構造物の補強のみならず、耐振性の向 り壁を有する補強部材を成形する工程と、

その補強部材を中空構造物の中空部に配設する工程と、 複数の分割室のうち少なくとも一つの分割室で発泡性基 材を発泡させて、その発泡により得られた発泡体で分割 室を遮断する工程と、を備えることを特徴とする中空構 造物の補強方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、車両のフレーム、 ピラー等の中空構造物の中空部に配設されてその中空構 50 補強部材を一体成形するよりも製作が容易になる。さら

造物を補強する中空構造物の補強具に関する。

[0002]

【従来の技術】近年、車両のボディ等は軽量化のため鉄 板の薄肉化が進んでいる。しかし、鉄板の薄肉化により 強度が低下するため、車両のフレーム、ピラー等の中空 構造物120(図7(A)参照)では、強度が必要とさ れる部位の中空部に剛性の高い発泡体123を充填した り(図7(B)参照)、あるいは補強板124を挟んで 溶接することにより(図7(C)参照)、強度を部分的

[0003]

【発明が解決しようとする課題】しかし、中空部に剛性 の高い発泡体123を充填する方法では発泡体123を 希望位置に位置決めするのが難しく、中空構造物120 の補強効率が低い。また、補強板124を挟んで溶接す る方法では幅方向の強度に対して縦方向の強度が低くな り、やはり中空構造物120の補強効率が低い。

【0004】本発明は、上記問題点に鑑みなされたもの であり、従来よりも効率的に中空構造物を補強できる補 強具の提供を目的とする。

[0005]

【課題を解決するための手段】上記した課題は、各請求 項の発明によって解決される。請求項1の発明による と、補強部材の仕切り壁によって中空構造物の中空部は その横断面において複数の分割室に仕切られる。さら に、複数の分割室のうち少なくとも一つの分割室は発泡 性基材が発泡して発泡体となることで遮断される。この ため、中空構造物は複数の分割室及び発泡体の働きで幅 方向及び縦方向にほぼ均等に補強される。また、発泡性 基材は分割室内で発泡するため、発泡体の位置決めも容 易になる。即ち、中空構造物は分割室及び発泡体により 内側から効率的に補強される。

【0006】請求項2の発明によると、発泡性基材は発 泡して発泡体となることで中空構造物の内壁面と補強部 材とを結合させるため、中空構造物と補強部材との間で ガタが発生しない。

【0007】請求項3の発明によると、複数の分割室を 遮断するための発泡性基材のうち少なくとも一つの発泡 性基材は、他の発泡性基材と異なる種類である。このた 上や遮音性の向上を図ることも可能になる。

【0008】請求項4の発明によると、補強部材の仕切 り壁によって中空構造物の中空部を横断面において複数 の分割室に仕切り、さらに横壁によって中空部を縦断面 において複数の分割室に仕切るため、中空構造物を長手 方向、幅方向にバランス良く補強することができる。

【0009】請求項5の発明によると、補強部材はその 横断面において複数に分割された分割体により構成され るため、その補強部材の横断面形状が複雑な場合には、

に、中空構造物が長手方向に湾曲する場合等でもその中 空構造物の曲がりに合わせて補強部材を成形できるよう になる。

【0010】請求項6の発明によると、補強部材はその 横断面の形状が略格子形であるため、中空構造物の横断 面形状に係らずバランス良く補強を行える。

【0011】請求項7の発明によると、補強部材の仕切 り壁によって中空構造物の中空部はその横断面において 複数の分割室に仕切られる。さらに、複数の分割室のう ち少なくとも一つの分割室は発泡性基材が発泡して発泡 10 体となることにより遮断される。このため、中空構造物 は複数の分割室及び発泡性基材の働きにより、内側から 効率的に補強される。

[0012]

【発明の実施の形態】 (第一の実施の形態)以下、図1 ~図3に基づいて、本発明の第一の実施の形態に係る中 空構造物の補強具の説明を行う。本実施の形態に係る中 空構造物の補強具は、車両ボディのピラー、ロッカーパ ネル、ルーフサイドパネル等の中空構造物の補強具に関 する。ここで、図1(A)は補強具を中空構造物に取付 20 けた状態を表す斜視図、図1 (B) はその補強具の要部 斜視図、図2(A)は図1(A)のIIA- IIA矢視断面 図、図2(B)は図2(A)のB-B矢視断面図である。 また、図3(A)は発泡性基材が発泡した後の図1 (A)のIIA- IIA矢視断面図、図3(B)は図3(A) のB-B矢視断面図である。

【0013】中空構造物1は、図1(A)に示されるよ うに、断面略台形状のインナーパネル2とアウターパネ ル3とから構成されており、そのインナーパネル2とア ウターパネル3とが互いのフランジ部2f,3fでスポ 30 ット溶接されることにより、断面略六角形状の中空部6 が形成される。また、中空構造物1の中空部6内には所 定位置にその中空構造物1を補強する補強具20が取付 けられる。

【0014】補強具20は、中空構造物1の変形を防ぐ ためにその中空構造物1を内側から補強する所定長さす 法の補強部材21を備えている。補強部材21は、図1 (B) に示されるように、中空構造物1の長手方向に延 びる一対の横仕切り壁21aと一対の縦仕切り壁21b とが格子状に組み合わされることにより成形される。こ 40 のように、横仕切り壁21 aと縦仕切り壁21 bとが格 子状に組み合わされるため、補強部材21の中央には長 手方向に角筒部24が形成され、その角筒部24の周囲 に四個のU字溝部25と四個のL字溝部26とが形成さ ns.

【0015】そして、その補強部材21が中空構造物1 に収納されることにより、図1(A)に示されるよう に、中空構造物1の内部には補強部材21の角筒部24 による中央分割室Scと、補強部材21のU字溝部2

される。即ち、中空構造物1の中空部6は補強部材21 によって長手方向に延びる中央分割室Scとその中央分 割室Scの回りに形成された八個の周囲分割室Srとに 分割される。

【0016】補強部材21の角筒部24の周囲には長手 方向所定位置にU字溝部25、L字溝部26を横断する 一対のホルダプレート27がフランジ状に固定されてい る。そして、それらのホルダプレート27とU字溝部2 5、あるいはL字溝部26とによって画成される各々の 凹部に後記する発泡性基材30がセットされる。ホルダ プレート27は発泡性基材30が中空構造物1の横断方 向に発泡膨張するように発泡方向を規制する部材であ り、その所定位置に発泡性基材30を固定する係合部材 (図示されていない)が装着されている。

【0017】ホルダプレート27はその外形が中空構造 物1の中空部6の横断面形状とほぼ等しい形状に成形さ れており、その寸法は中空部6の内周壁面との間に適宜 の隙間(塗料が通過できる程度の隙間)が生じる寸法に 設定されている(図2(A), (B)参照)。

【0018】補強部材21の下端部には、長手方向両側 にその補強部材21をインナーパネル2の取付け孔2k に固定するための係止クリップ29が形成されている。 係止クリップ29は、図2(A)に示されるように、補 強部材21の縦仕切り壁21bに接続された台座部29 dと、その台座部29dの下面から突出してインナーパ ネル2の取付け孔2kの心方向に延びる脚部29aと、 その脚部29aの先端部両側から折り返し状に延出して 取付け孔2kと弾性的に係合する弾性係止片29tとを 備えている。ここで、インナーパネル2の取付け孔2k 及び補強部材21の係止クリップ29の位置は、補強部 材21の角筒部24が中空構造物1の中空部6とほぼ同 心となる位置に設定される。なお、図2(A)には、係 止クリップ29を補強部材21の長手方向両側に形成し た例を示したが、補強部材21の支持バランスを考慮し て途中位置に適宜形成しても良い。

【0019】補強部材21、ホルダプレート27及び係 止クリップ29等は一般的に樹脂の射出成形により一体 成形される。なお、補強部材21は横断面において複数 に分割された分割体により構成しても良い。ここで、補 強部材21等の材料としては、耐熱性を有する硬質合成 樹脂、望ましくは強化繊維が混入された硬質合成樹脂が 好適に使用される。硬質合成樹脂としては、例えば、ポ リアミド(PA)、ポリプロピレン(PP)、ポリエチ レンテレフタレート(PET)、ポリブチレンデレフタ レート(PBT)、エポキシ(EP)、不飽和ポリエス テル樹脂等が用いられる。また、強化繊維としては、例 えば、ガラス繊維、カーボン繊維、ケプラー繊維等が用 いられる。さらに、硬質合成樹脂に対する強化繊維の混 入割合は、30~40重量%に設定される。即ち、補強部材 5、L字溝部26による八個の周囲分割室Srとが形成 50 21のホルダプレート27が本発明の横壁に相当する。

【0020】発泡性基材30は、発泡して発泡体40と なることで八個の周囲分割室Sァを遮断する部材であ り、補強部材21のU字溝部25、L字溝部26と一対 のホルダプレート27とによって画成される各々の凹部 に嵌合できる形状に成形されている。また、発泡性基材 30の材料としては、金属面や合成樹脂面に対し接着性 を有する合成樹脂を主成分とし、これに発泡剤、ガラス 繊維のような強化用の繊維状物質等が混合され、車両ボ ディの焼付け塗装の際の熱(例えば、110℃~190℃前後 の温度)によって発泡し、高剛性の発泡体40となる発 10 泡性材料が好適に使用される。

【0021】次に、中空構造物1を補強する手順につい て説明する。先ず、補強部材21と一体に成形された一 対のホルダプレート27間の凹部に各々の発泡性基材3 Oがセットされて補強具20が構成される(図1(B) 参照)。次に、補強具20の係止クリップ29がインナ ーパネル2の取付け孔2kに嵌め込まれ、補強具20が インナーパネル2の所定位置に固定される。

【0022】次に、インナーパネル2とアウターパネル 3とが互いのフランジ2f,3fにおいてスポット溶接 20 され、図1(A)に示されるように、断面略六角形状の 中空構造物1が形成される。この状態で、中空構造物1 の中空部6には所定位置に補強具20がその中空部6と ほぼ同心となるように取付けられ、その補強具20のホ ルダプレート27及び発泡性基材30と中空部6の内周 壁面との間には塗料が通過できる程度の隙間が形成され る(図2(A), (B)参照)。

【0023】このようにして、中空構造物1を有する車 両のボディが成形されると、そのボディが焼付け塗装さ れる。そして、その焼付け塗装の際の外部加熱によっ て、補強具20の各々の発泡性基材30が、図3(A) (B) に示されるように、発泡膨張して発泡体40とな る。発泡性基材30はホルダプレート27によって両側 から挟持されているため、その発泡性基材30はホルダ プレート27に沿う方向の発泡が効果的に促進される。 即ち、ホルダプレート27は発泡方向をコントロールす る働きもあるため、発泡体の充填効率もコントロールで

【0024】発泡体40は補強具20の補強部材21及 びホルダプレート27に接着されるとともに、そのホル 40 ダプレート27から押出された発泡体40はホルダプレ ート27と中空構造物1の内周壁面との隙間を塞いでそ の内周壁面に強固に接着される。即ち、補強具20によ って中空構造物1の中空部6に形成された周囲分割室S rは発泡体40によって遮断され、補強具20はその発 泡体40によって中空構造物1に結合される。なお、補 強具20の角筒部24の働きにより中央分割室Scには 発泡体40が入り込むことはない。

【0025】このように、本実施の形態に係る中空構造

1a, 21bによって中空構造物1の中空部6はその横 断面において複数の分割室Sc, Srに仕切られる。さ らに、複数の分割室Sc,Srのうち周囲分割室Srは 発泡性基材30が発泡して発泡体40となることで遮断 される。このため、中空構造物1は複数の分割室Sc, Sr及び発泡体40の働きで幅方向及び縦方向にほぼ均 等に補強される。また、発泡性基材30はホルダプレー ト27で両側から拘束された状態で周囲分割室Sェ内で 発泡するため、発泡体40の位置決めも容易になる。即 ち、中空構造物1は分割室Sc、Sr及び発泡体40に より内側から効率的に補強される。

【0026】また、補強具20の発泡性基材30は発泡 して発泡体40となることで中空構造物1の内壁面と補 強部材21等とを結合させるため、中空構造物1と補強 部材21との間でガタが発生しない。また、補強部材2 1の仕切り壁21a, 21bによって中空構造物1の中 空部6を横断面において複数の分割室Sc, Srに仕切 り、さらにホルダプレート27によって中空部6を縦断 面において複数の分割室に仕切るため、中空構造物1を 長手方向、幅方向にバランス良く補強することができ

【0027】また、補強部材21はその横断面の形状が 略格子形であるため、中空構造物1の横断面形状に係ら ずバランス良く補強を行える。また、補強部材21は樹 脂製であるため、鉄板等の補強板と比べると軽く、さほ ど重量増加にならない。なお、本実施の形態では断面略 六角形状の中空構造物 1 における補強具について説明し たが、中空構造物1の断面形状は略六角形以外に略四角 形、五角形、楕円形等であっても良い。

【0028】(第二の実施の形態)以下、図4に基づい て、本発明の第二の実施の形態に係る中空構造物の補強 具の説明を行う。本実施の形態に係る中空構造物の補強 具は、第一実施の形態における発泡性基材の配置を変更 したものであり、その他の構造は第一実施の形態の場合 と同様である。本実施の形態に係る補強部材60は、角 筒部64の周囲所定位置にU字溝部65、L字溝部66 を横断する平行な三枚のホルダプレート67を備えてい る。そして、それらのホルダプレート67とU字溝部6 5、あるいはL字溝部66とによって画成される複数の 凹部のうち予め決められた凹部に第一の発泡性基材72 が収納されている。

【0029】即ち、本実施の形態においては、図4 (A) において手前のホルダプレート67と中央のホル ダプレート67との間では、図4(C)に示される凹部 の位置に第一の発泡性基材72が収納される。また、中 央のホルダプレート67と後方のホルダプレート67と の間では、図4(C)の状態から周方向に一区画ずれた 状態で第一の発泡性基材72が収納される。このよう に、第一の発泡性基材72が中空構造物1の長手方向に 物1の補強具20によると、補強部材21の仕切り壁2 50 分散されるため、図示されていない発泡体により補強部

材60を中空構造物1に固定する際のバランスが向上す る。ここで、第一の発泡性基材72の材料としては、第 一の実施の形態で使用された発泡性基材30と同じ材料 が使用される。

7

【0030】また、補強部材60の角筒部64の内部に は、図4(B), (C)に示されるように、第二の発泡 性基材74が収納される。第二の発泡性基材74は第一 の発泡性基材72よりも高倍率で発泡する発泡性基材で あり、その発泡体(図示されていない)は第一の発泡性 基材72による発泡体(図示されていない)よりも格段 10 に比重が小さく、さらに強度も小さい。しかし、その第 二の発泡性基材74による発泡体で補強部材60の角筒 部64の内部が塞がれることにより、中空構造物1の遮 音効果が向上する。また、第二の発泡性基材74の発泡 体は第一の発泡性基材72の発泡体よりも比重が格段に 小さいため、角筒部64に発泡体を充填してもさほど重 量が増加しない。

【0031】なお、本実施の形態では、三枚のホルダプ レート67を使用して第一の発泡性基材72を中空構造 物1の長手方向に分散させる例を示したが、複数組のホ 20 ルダプレートを使用して各組毎にホルダプレートを長手 方向に離した状態で第一の発泡性基材72を分散させる 方法でも可能である。

【0032】(第三の実施の形態)以下、図5に基づい て、本発明の第三の実施の形態に係る中空構造物の補強 具の説明を行う。本実施の形態では、補強部材の長手方 向に直角な断面形状を、図5(A)、(B)に示される ように、簡易格子形に変更したものであり、その他の構 造は第一実施の形態に係る中空構造物の補強具と同様で ある。このように、補強部材80の断面形状が簡易格子 30 形になるため、その補強部材80の軽量化及びコスト低 減を図ることができる。

【0033】また、補強部材80は、樹脂の射出成形に より一体成形しても良いし、図5(C)、(D)に示さ れるように、横断面において複数に分割された分割体8 1,82,83をそれぞれ成形し、中空構造物にセット する際にそれらの分割体81,82,83を接着剤や溶 着等により組み立てても良い。さらに、補強部材80の 横断面形状が複雑で射出成形が不可能な場合でも、分割 0の製作が可能になる。また、分割体81,82,83 から補強部材80を組み立てることにより、中空構造物 が長手方向に湾曲する場合等でも、その中空構造物の曲 がりに合わせて補強部材80を成形することが可能とな る。なお、図5(D)に示されるように、断面T字形の 分割体83を二個組み合わせて補強部材80を形成する ほうが、図5(C)に示されるように、異なる形状の分 割体81,82から補強部材80を形成するよりも在庫 管理上好ましい。

【0034】(第四の実施の形態)以下、図6に基づい 50 性基材74及び高剛性発泡性基材118を良好に発泡さ

て、本発明の第四の実施の形態に係る中空構造物の補強 具の説明を行う。本実施の形態に係る中空構造物の補強 具は、補強部材の格子の数を増加させて中央分割室を囲 む周囲分割室の数を増やし、周囲分割室に種々の発泡性 基材を収納できるようにしたものである。

【0035】補強部材100は八枚の横板101~10 8と六枚の縦板111~116とが格子状に組み合わさ れることにより成形される。そして、第二横板102、 第五横板105、第三縦板113及び第四縦板114に より画成される中央分割室Scに第二実施の形態で使用 された高倍率で発泡する高倍率発泡性基材74の薄板が セットされる。

【0036】第一横板101、第六横板106、第一縦 板111及び第六縦板116の外側には制振性の高い

(比較的弾性を有する) 発泡体が得られる制振発泡性基 材117がセットされる。また、中央分割室Scを所定 の厚みで囲む分割室、即ち、第一横板101、第六横板 106、第二縦板112及び第五縦板115の内側にあ る分割室であって中央分割室Scの外側にある第一周囲 分割室Saには、高剛性の発泡体が得られる高剛性発泡 性基材118がセットされる。

【0037】第一周囲分割室Saの外側で第一縦板11 1の内側に位置する第二周囲分割室Sbには発泡時に激 しく発熱する発熱発泡性基材119がセットされる。ま た、第一周囲分割室Saの外側で第六縦板116の内側 に位置する第三周囲分割室Scにも発熱発泡性基材11 9がセットされる。

【0038】そして、中空構造物を有する車両のボディ が焼付け塗装される際の外部加熱によって、各々の発泡 性基材74,117,118,119が発泡膨張する。 即ち、第一横板101、第六横板106、第一縦板11 1及び第六縦板116の外側に位置する制振発泡性基材 117が発泡すると、その発泡体によって補強部材10 0と中空構造物の内壁面との間の分割室が塞がれ、補強 部材100が中空構造物(図示されていない)に接着さ れるとともに、その発泡体によって中空構造物に加わる 振動をある程度吸収できるようになる。また、中央分割 室Scに位置する高倍率発泡性基材74が発泡すること により、その発泡体によって中央分割室Scが塞がれ、 体81,82,83から組み立てることで、補強部材8 40 さほど重量のアップを伴なわずに中空構造物の遮音効果 を向上させることができる。

> 【0039】さらに、中央分割室Scを囲む第一周囲分 割室Saに位置する高剛性発泡性基材118が発泡する ことにより、その発泡体によって第一周囲分割室Saが 塞がれ、補強部材100の剛性が向上する。また、第二 周囲分割室Sb及び第三周囲分割室Scに位置する発熱 発泡性基材119が発泡することによりその発熱発泡性 基材119が発熱し、その発熱により焼付け塗装の際の 加熱温度が低くても制振発泡性基材117、高倍率発泡

せることができる。

【0040】なお、本実施の形態においては、高剛性発泡性基材118及び発熱発泡性基材119の外側に制振発泡性基材117を配置する例を示したが、高剛性発泡性基材117とを入れ替えても良い。また、高剛性発泡性基材117とを入れ替えても良い。また、高剛性発泡性基材118、発熱発泡性基材119及び制振発泡性基材117を互い違いに配置することも可能である。さらに、第一から第三実施の形態においては、固形の発泡性基材を使用する例を示したが、補強部材の格子により形成される分割室に蓋を装着でき10るようにすれば、粉末、粒体あるいは液体の発泡性基材を使用することも可能である。これによって、発泡性基材の成形精度を考慮する必要がなくなる。

【0041】また、第一から第四実施の形態では車両ボディのロッカーパネル、ルーフサンドパネル等の中空構造物に本発明の補強具を使用する例を示したが、車両ボディ以外、例えば、建築物、船舶等の建造物を構成する中空構造物に本発明の補強具を使用することも可能である。

【0042】なお、第一の実施の形態から第四の実施の20 形態により把握される発明であって特許請求の範囲に記 載されていない発明を以下に追記する。

- 1) 請求項3において、補強部材の内部に収納される 発泡性基材は中空構造物の内壁面と補強部材とを結合さ せるための発泡性基材よりも高倍率で発泡する。このた め、補強部材の内部の発泡体の比重が小さくなり、さほ ど重量アップを伴なわずに中空構造物の遮音効果を向上 させることができる。
- 2) 請求項3において、複数の分割室を遮断するため の発泡性基材のうち少なくとも一つの発泡性基材は、他 30 の発泡性基材よりも発泡時における発熱性が高い。この ため、焼付け塗装の際の加熱温度が低くても他の発泡性 基材を良好に発泡させることができる。
- 3) 請求項3において、複数の分割室を遮断するため の発泡性基材のうち少なくとも一つの発泡性基材は、他 の発泡性基材よりも得られた発泡体の剛性が高い。この ため、補強部材の剛性が向上する。
- 4) 請求項3において、複数の分割室を遮断するための発泡性基材のうち少なくとも一つの発泡性基材は、他の発泡性基材よりも得られた発泡体の弾力性が大きい。このため、中空構造物に加わる振動をある程度吸収できる。
- 5) 請求項4において、発泡して発泡体となることで、複数の分割室のうち少なくとも一つの分割室を遮断する発泡性基材を備えている。このため、補強部材及び発泡体により、中空構造物を長手方向、幅方向にバラン

ス良く補強できる。

[0043]

【発明の効果】本発明によると、中空構造物は複数の分割室及び発泡体の働きで幅方向及び縦方向にほぼ均等に補強される。さらに、発泡性基材は分割室内で発泡するため、発泡体の位置決めも容易になる。即ち、中空構造物は分割室及び発泡体により内側から効率的に補強される。

10

【図面の簡単な説明】

0 【図1】本発明の第一の実施の形態に係る中空構造物の 補強具の取付け状態を表す斜視図(A図)、補強具の要 部斜視図(B図)である。

【図2】図1 (A)のIIA -IIA矢視断面図 (A図)、A図のB-B矢視断面図 (B図)である。

【図3】発泡後の状態を表す図1 (A)のIIA -IIA矢視 断面図(A図)、A図のB-B矢視断面図(B図)である。

【図4】本発明の第二の実施の形態に係る中空構造物の補強具の要部斜視図(A図)、中空構造物に取付けた状態を表す縦断面図(B図)、B図のC-C矢視断面図(C図)である。

【図5】本発明の第三の実施の形態に係る中空構造物の補強具における補強部材の横断面形状図(A図、B.図)、補強部材を構成する分割体の横断面形状図(C図、D図)である。

【図6】本発明の第四の実施の形態に係る中空構造物の 補強具における横断面形状図である。

【図7】従来の中空構造物の斜視図(A図)、及び中空構造物に補強具を装着した状態を表す斜視図(B図、C図)である。

【符号の説明】

S c 中央分割室

Sr 周囲分割室

1 中空構造物

20 補強具

21 補強部材

21a 横仕切り壁

21b 縦仕切り壁

27 ホルダプレート (横壁)

40 30 発泡性基材

40 発泡体

74 高倍率発泡性基材

117 制振発泡性基材

118 高剛性発泡性基材

119 発熱発泡性基材

06/16/2004, EAST Version: 1.4.1

