4. Métricas del proceso

Índice

- Referencias
- Introducción
- Medidas, métricas e indicadores
- Métricas en el proceso y del proyecto
 - Introducción
 - Métricas del software. Clasificación.

Índice

- Métricas de productividad
 - Orientadas al tamaño.
 - Orientadas a la función.
 - Otras métricas
 - Factores que inciden en la productividad.
- Relación entre líneas de código y puntos de función
- Métricas de calidad

Índice

- Introducción.
- Errores.
- Medida de la calidad.
- Eficacia de la eliminación de defectos.
- Línea base de Métricas
- Conclusiones

Referencias

- Pressman, R.S. *Ingeniería del Software. Un Enfoque Práctico. Sexta Edición.* McGraw-Hill, 2005
- Sommerville, I. *Ingeniería del Software*. 7^a edición. Addison-Wesley, 2005

Introducción

- La existencia de medidas numéricas facilita el conocimiento de un fenómeno
- Las métricas del software miden el software de computadora
- Estas métricas sirven para:
 - Utilizarlas en el proyecto para ayudar en la estimación, control de calidad, evaluación de la productividad y control de proyectos.

Introducción

- El desarrollador de software evalúe la calidad de los productos y trabajos técnicos.
- Ayudar en la toma de decisiones *tácticas* según avanza el proyecto.
- Aplicarlas al proceso con la idea de mejorarlo.

Introducción

- Hay cuatro razones para medir:
 - Caracterizar.
 - Evaluar.
 - Predecir.
 - Mejorar.

- Una *medida* proporciona una indicación cuantitativa de la extensión, cantidad, dimensiones, capacidad o tamaño de algunos atributos de un proceso o producto.
 - E.g., un programa tiene 10.000 LDC (líneas de código).

- La *medición* es el acto de determinar una medida
 - E.g., Ana será la encargada de medir las LDC de cada módulo del sistema.

- Una *métrica* es una medida cuantitativa del grado en que un sistema, componente o proceso posee un atributo dado
 - E.g., la *productividad* de este proyecto fue de 500 (LDC/persona-mes)

- Las medidas no sirven para comparar, necesitamos métricas
 - E.g., en el país *A* ganan 1000 (€/pm), y en el país *B* ganan 1500 (€/pm) → ¿viven mejor en el país *B* que en el país *A*? Una *Big Mac* cuesta 3€ en el país *A*, y en el país *B* cuesta 5€. Echemos cuentas.

País *A*: 1000(€/pm)/3(€/BM) = 333,33 (BM/pm)

País *B*: 1500(€/pm)/5(€/BM) = 300 (BM/pm)

Conclusión: no sabemos donde se vive mejor, pero en el país *A* una persona durante un mes puede comer un 11% más de *Big Mac*s que en el país *B*

- Es decir,
 - La medida captura una característica individual.
 - La medición permite capturar dicha característica.
 - La métrica permite relacionar y comparar mediciones.

- Las métricas son el fundamento de los indicadores
- Un *indicador* es una métrica o combinación de métricas que proporcionan una visión profunda del proceso del software, del proyecto de software o del producto en si.

- E.g., en el país A, no han aumentado los sueldos en los últimos tres años, pero el *índice* Big Mac se ha duplicado en ese periodo*
- E.g., la productividad media de nuestra empresa es de 500(LDC/pm) y en el último proyecto ha sido de 250(LDC/pm)

^{*}Esto es *deflación*. Probablemente la tasa de paro se haya disparado: hay que interpretar todos los indicadores simultáneamente

- Nuestros objetivos son establecer:
 - Métricas del proyecto → indicadores del proyecto.
 - Métricas del proceso → indicadores del proceso.
- Los *indicadores del proyecto* permiten al gestor:
 - Evaluar el estado del proyecto en curso.
 - Seguir la pista de riesgos potenciales.

- Detectar áreas problemáticas antes de que se conviertan en críticas.
- Ajustar el flujo y las tareas de trabajo.
- Evaluar la habilidad del equipo del proyecto en controlar la calidad de los productos de trabajo de la IS.
- Los indicadores del proceso permiten:
 - Al gestor, evaluar lo que funciona y lo que no.

- A la organización, tener una visión profunda de la eficacia de un proceso ya existente.
- Mejora estadística del proceso: vincular métricas a actividades del proceso y realizar un análisis estadístico

- Técnicamente no existe gran diferencia entre las métricas del proyecto y del proceso
- Podemos concebir las métricas del proceso como recopilaciones de métricas del proyecto
- En cualquier caso hay métricas *privadas* y otras *públicas*

- Métricas privadas:
 - Índices de defectos.
 - Errores de desarrollo.
- Públicas para el equipo:
 - Índices de defectos.
 - Errores de desarrollo.
 - LDC.
 - PF.

- Las métricas del proceso pueden ser muy útiles, pero hay que saber interpretarlas
- Unas normas básicas de interpretación son
 - Utilizar el sentido común al interpretar los datos.
 - Proporcionar una realimentación regular a particulares y equipos.
 - No utilizar métricas para evaluar a particulares.
 - Establecer métricas claras y objetivos para alcanzarlas.

- No utilizar métricas para amenazar a particulares o equipos.
- Si una métrica identifica un área problemática no se debería considerar como negativa.
- Hay que interpretar todas las métricas en su conjunto, y no primar una en particular.

- Las métricas del proceso son *estratégicas*: determinan el curso del proceso de producción de software
- Las métricas del proyecto son *tácticas*: determinan el curso del proyecto actual
- La primera aplicación de las métricas del proyecto ocurre durante la estimación (datos históricos).

Métricas del proceso y del... Métricas del software

• Como el contexto de uso identifica al tipo de métrica, nos referiremos a las métricas del producto y del proceso como *métricas del software*

Métricas del proceso y del... Métricas del software

MÉTRICAS DEL SOFTWARE	Productividad	Calidad		
Tamaña	euros pgDoc	errores defectos		
Tamaño	LDC KLDC	KLDC KLDC		
PF	euros pgDoc	errores defectos		
(PF, PC, PF3D)	PF PF	PF PF		
Otros	LDC PF euros	<u>errores</u> <u>e</u>		
Otras	per-mes per-mes pgDoc	per-mes e+d		

Métricas del software. Clasificación

- Se obtiene considerando las medidas de productividad y normalizándolas por el tamaño del código, es decir las *Líneas De Código* (LDC)
- Se basan en la utilización de registros sencillos para las *medidas* más relevantes para nuestro proyecto

Proy.	Tipo	Lenguaje	LDC	Esfuerzo*	Coste* €(000)	Paginas Doc.	Errores	Defectos	Personas
P1	Tienda web	PHP	12.100	24	120	365	134	29	3
P2	Tienda web	J2EE	27.200	62	314	1224	321	86	5
P3	Tienda web	J2EE	20.200	43	224	1050	256	64	6

^{*}Incluye todas las actividades de IS (análisis, diseño, codificación y prueba)

Medidas relevantes para el establecimiento de métricas

- ¿Qué es el *esfuerzo*? esfuerzo = #personas * #tiempo
- Es una medida que indica que *da igual* tener dos personas trabajando tres meses, que tres personas trabajando dos meses

$$e = 3(p) * 2(m) = 6(pm)$$

$$e = 2(p) * 3(m) = 6(pm)$$

- Métricas orientadas al tamaño
 - Coste: #euros/#LDC

 ↓mejor
 - e.g. P1: 120000(€)/12100(LDC) = 9,92(€/LDC)
 - Documentación: #pgDoc/#KLDC†mejor

```
e.g. P2: 1224(pgDoc)/27,2(KLDC) = 45(pgDoc/KLDC)
```

- ¿Cómo calcular las LDC?
 - Debe contabilizarse cada línea nueva o modificada.
 - Las líneas para la instrumentación de código (e.g. para las pruebas) no deben incluirse en el tamaño total, salvo que tengan un carácter definitivo.
 - Las líneas de código de programas de prueba tan solo se contabilizan si se desarrollan con el nivel de calidad exigido al entregar el producto.

- Se contabilizan las líneas correspondientes a las llamadas al sistema operativo.
- No se consideran los comentarios.
- No se contabiliza el pseudocódigo.
- Cada ocurrencia de *macro* o *include* se considera como una línea.
- El código generado por *macros* o *includes* solo se considera una vez.

- Las LDC no están comúnmente aceptadas
- Ventajas:
 - Fácil de calcular.
 - Existen muchos modelos de estimación basados en LDC.
 - Existen muchas medidas de LDC

- Inconvenientes:
 - Dependientes de los lenguajes de programación.
 - Perjudican a los programas cortos, pero bien diseñados.
 - Difícil uso en estimación debido al nivel de detalle.

Métricas de productividad Orientadas a la función

- Se obtienen considerando las medidas de productividad y normalizándolas por una medida de la *funcionalidad* entregada por la aplicación
- Como la funcionalidad no se puede medir directamente, se debe derivar indirectamente de otras medidas directas

Métricas de productividad Orientadas a la función

- La funcionalidad de un programa viene representada por el *Punto de Función* (PF), que se deriva de las mediciones del software
- Se calcula en base a la expresión $PF = \text{cuenta-total} * (0,65 + 0,01 * \Sigma_{i=1..14} F_i)$ donde

Métricas de productividad Orientadas a la función

Cálculo de de cuenta-total

- Parámetros de medición:
 - *Entradas de usuario*. Entradas de usuario que proporcionan diferentes datos orientados a la aplicación.
 - Salidas de usuario. Salidas que proporcionan al usuario información orientada a la aplicación (e.g. informes, pantallas, mensajes de error, etc.).

- *Peticiones de usuario*. Entradas interactivas que producen la generación de alguna respuesta del software inmediata en forma de de salida interactiva.
- *Archivos*. Se cuenta cada archivo maestro lógico, i.e., cada grupo de datos que puede ser una parte de una gran base de datos o sistema de archivos.

- *Interfaces externas*. Interfaces legibles por la máquina que se utilizan para transmitir información a otro sistema (e.g. cinta, red, etc.).
- Los *valores de ajuste complejidad* (F_i) se calculan respondiendo a las siguientes preguntas en una escala desde 0 (no importante o aplicable) hasta 5 (absolutamente esencial):

- 1. ¿Requiere el sistema copias de seguridad y de recuperación fiables?
- 2. ¿Se requiere comunicación de datos?
- 3. ¿Existen funciones de procesamiento distribuido?
- 4. ¿Es crítico el rendimiento?
- 5. ¿Se ejecutará el sistema en un entorno operativo existente y fuertemente utilizado?

- 6. ¿Requiere el sistema entrada de datos interactiva?
- 7. ¿Requiere la entrada de datos interactiva que las transacciones de entrada se lleven a cabo sobre múltiples pantallas u operaciones?
- 8. ¿Se actualizan los archivos maestros de forma interactiva?
- 9. ¿Son complejas las entradas, las salidas, los archivos o las peticiones?

- 10. ¿Es complejo el procesamiento interno?
- 11. ¿Se ha diseñado el código para ser reutilizable?
- 12. ¿Están incluidas en el diseño la conversión e instalación?
- 13. ¿Se ha diseñado el sistema para soportar múltiples instalaciones en diferentes organizaciones?
- 14. ¿Se ha diseñado la aplicación para facilitar los cambios y ser fácilmente utilizada por el usuario?

- Una vez calculado el valor PF, las métricas son análogas a las orientadas al tamaño
 - Coste: #euros/#PF ↓mejor
 - Documentación: #pgDoc/#PF†mejor

- La medida de *Punto de Característica* (PC) es una ampliación de la medida de PF
- La medida de PF tiene su origen en aplicaciones de gestión
- Prima por tanto la dimensión de *datos*, obviando cuestiones de complejidad *funcional*

- Esto hace a la medida de PF inadecuada para sistemas de ingeniería o empotrados
- Solución: ampliar los parámetros de medición para tener en cuenta a los algoritmos
- El PC es una ampliación de la medida de PF aplicable a sistemas con una fuerte componente funcional (e.g. tiempo real)

- Consiste en ampliar la tabla de *cuenta-total* de PF con el parámetro de medición *algoritmos*
- Un *algoritmo* es un problema de cálculo limitado que se incluye dentro de un programa
- El factor de ponderación depende de la importancia que se quiera dar a este parámetro (e.g. 10, 15, 20)

- Los PF *tampoco* están comúnmente aceptados
- Ventajas
 - Independientes del lenguaje de programación.
 - Permiten hacer estimaciones más fácilmente.
- Inconvenientes
 - Basadas en cálculos subjetivos.
 - Parámetros y factores no evidentes.
 - No tienen un significado físico directo.

Métricas de productividad Otras métricas

- Son *cruciales* pero no están normalizadas por LDC ni por PF
 - Productividad: #LDC/#persona-mes †mejor
 - e.g. P3: 20200(LDC)/43(pm) = 469,77 (LDC/pm)
 - Productividad: #PF/#persona-mes †mejor

Métricas de productividad Otras métricas

- Coste documentación: #euros/#páginas doc.

↓mejor

P1: 120000(€)/365(pgDoc) = 328,77(€/pgDoc)

Métricas de productividad Factores que inciden en ...

- Los gestores no deben utilizar *directamente* las métricas de productividad para evaluar a la gente
- La razón reside en que no todos los proyectos son iguales
- Hay una serie de *factores* que afectan a la productividad:
 - Factores humanos. Tamaño y experiencia de la organización de desarrollo.

Métricas de productividad Factores que inciden en ...

- Factores del problema. La complejidad del problema que se debe resolver y el número de cambios en las restricciones o los requisitos de diseño.
- Factores del proceso. Técnicas de análisis y diseño que utilizan, lenguajes y herramientas CASE y técnicas de revisión.
- Factores del producto. Fiabilidad y rendimiento del sistema.

Métricas de productividad Factores que inciden en ...

- Factores de recursos. Disponibilidad de herramientas CASE y recursos de hardware y software.
- Si uno de los factores es favorable (desfavorable) la productividad será significativamente más alta (más baja)

Relación entre LDC y PF

- Las LDC y los PF son medidas en principio independientes
- ¿No es razonable suponer que la funcionalidad de un sistema y su tamaño están relacionadas? (e.g. MS-DOS vs. Windows XP)
- Se puede estimar el número de LDC necesarios para construir un PF: backfiring

Métricas de calidad Introducción

- Base de IS: calidad
- Calidad de análisis, diseño, codificación, prueba: *métricas técnicas* o *del producto*
- Efectividad de las actividades de control y garantía de calidad: *métricas de calidad*
- Fallos:
 - Errores: fallos antes de la entrega
 - Defectos: fallos después de la entrega

Métricas de calidad Errores

• Tenemos:

```
    - #errores/#KLDC
    ↓mejor
    e.g. P2: 321(e)/12,1(KLDC) = 26,53 (e/KDLC)
    - #errores/#PF
    ↓mejor
    - #errores/#persona-mes
    ↓mejor
    e.g. P3: 256(e)/43(pm) = 5,95 (e/pm)
```

- Vamos a ver una serie de *factores* que afectan a la calidad y como medirlos
- Corrección
 - Grado en que el software lleva a cabo su función requerida.
 - #defectos/#KLDC
 ↓mejor
 e.g. P1: 29(d)/12,1(KLDC) = 2,4 (d/KLDC)

- #defectos/#PF↓mejor
- Un *defecto* es una falta verificada de conformidad con los requisitos.
- Facilidad de mantenimiento
 - Facilidad con la que se puede corregir un programa si se encuentra un error, se puede adaptar a su entorno si cambia, o mejorar si el cliente desea un cambio de requisitos

- Una métrica orientada al tiempo es el *Tiempo* Medio de Cambio* (TMC): tiempo que se tarda en analizar la petición de cambio, en diseñar una modificación adecuada, implementar el cambio, en probarlo y en distribuir el cambio a todos los usuarios.
- Cuanto más fácil sea de mantener un programa, más bajo tendrá su TMC.

- Una métrica orientada al coste son los desperdicios: coste en corregir defectos encontrados después de haber distribuido el software a los usuarios finales.

- Facilidad de uso
 - Intento por medir lo *amigable* que puede ser un programa con el usuario.
 - Se puede medir en función de cuatro características:
 - Habilidad intelectual y/o física para aprender el sistema.
 - Tiempo requerido para llegar a ser moderadamente eficiente en el uso del sistema.

- Aumento neto de la productividad (sobre el sistema que reemplaza) medida cuando alguien utiliza el sistema de manera moderadamente eficiente.
- Valoración subjetiva (a veces obtenida mediante un cuestionario) de la disposición de los usuarios hacia el sistema.

• La *Eficacia de la Eliminación de Defectos* (EED) indica la capacidad de filtro de las actividades de garantía de calidad y de control, al aplicarse a todas las actividades del marco de trabajo del proceso.

• Considerada globalmente para el proyecto:

$$EED = e/(e+d)$$

donde

e: número de errores encontrados antes de la entrega

d: número de defectos

• Objetivo: EED = 1

- Nótese que si e es muy grande, EED estará próxima a 1 → cuanto más errores encontremos antes de la entrega, mejor funcionarán las técnicas de garantía de calidad
- La EED también puede utilizarse para medir la habilidad de un equipo para encontrar errores antes de pasar a la siguiente AE

 $EED_{i} = e_{i}/(e_{i}+e_{i+1})$ donde

 e_i : errores detectados en la actividad i de IS e_{i+1} : errores detectados en la actividad i+1 de IS que no se detectaron y provienen de la actividad i

• Objetivo $EED_i = 1$

Línea base de métricas

- Una *línea base de métricas* es una recopilación de métricas que sirve para establecer indicadores
- Un ejemplo sencillo es la tabla de medidas de la t27
- No tiene nada que ver con el concepto de línea base que veremos en GCS

Línea base de métricas

- Para ser útil debe tener los siguientes atributos:
 - Los datos deben ser razonablemente exactos.
 - Los datos deben extraerse del mayor número de proyectos que sea posible.
 - Las medidas deben ser consistentes.
 - Las aplicaciones deben ser semejantes para hacer la estimación.

Conclusiones

- Medir: conocer
- Medida, métrica e indicador
- Métricas del proceso, proyecto y software
- Métricas proceso: estratégicas
- Métricas proyecto: tácticas
- Mejoramos el proceso porque es controlable

Conclusiones

- Normas de interpretación de métricas
- Métricas técnicas o del producto
- Métricas de productividad y calidad
- Métricas orientadas al tamaño y a la función
- Relación entre LDC y PF
- Sentido común