

Northen blotting with DIG Northern Starter Kit (Roche®)

Lutz Berwanger

Abstract

This script is used for northern blotting with the Roche DIG Northern Starter Kit.

Citation: Lutz Berwanger Northen blotting with DIG Northern Starter Kit (Roche®). protocols.io

dx.doi.org/10.17504/protocols.io.guhbwt6

Published: 27 Mar 2017

Protocol

Prepartion of needed buffers

Step 1.

It is recommended to prepare all needed buffers before start northern blotting.

List of Buffers:

Solution	Preparation	Storage	Use
DIG Easy Hyb Granules	Reconstitue granules adding 64 mL DMPC treated water, dissolve by stirring at 37° C	at +15° C to 25° C for 1 month	As prehybridization and hybridization solution
Washing buffer	0.1 M Maleic acid, 0.15 M NaCl; adjust with NaOH (solid) to pH 7.5 (20° C); 0.3% (v/v) Tween 20	at +15° C to 25° C stable	Removal of unspecific bound antibody
Maleic acid buffer	0.1 M Maleic acid, 0.15 M NaCl; adjust with NaOH (solid) to pH 7.5 (20° C)	at +15° C to 25° C stable	Dilution of Blocking solution
Detection buffer	0.1 Tris-HCl, 0.1 M NaCl, adjustment of pH to 9.5 (20° C)	at +15° C to 25° C stable	Adjustment of pH to 9.5
Blocking solution	Prepare a 10x stock solution	at 8° C stable	Blocking of unspecific binding sites on the membrane

Preperation of hybridization probe

Step 2.

Producing **5S RNA** hybridization probe:

Primer:

TCTTGGTGTCTTTAGCGTCATGGAAC (#460_5S_6803_fw)

TAATACGACTCACTATAGGGACTTGGCATCGGACATTGTGC (#461_T7_5S_6803_rev)

PCR reaction mix:

10 μL	5x Q5 Reaction buffer
1 μL	10 mM dNTPs
2.5 μL	10 μM forward Primer
2.5 μL	10 μM revers Primer
1 μL	template DNA
0.5 μL	Q5 polymerase
ad 50 μL	H ₂ O
<u> </u>	

PCR setup:			Anneal at 71°C
	1	98°C	30 sec
Loop 30x			
	2	98°C	5 sec
	3	71°C	15 sec
	4	72°C	15 sec
end of Loop			
	5	72°C	2 min
	6	4°C	10 sec

₽ NOTES

Lutz Berwanger 20 Dec 2016

5S RNA hybridization probe is an example. PCR recepies vary of course.

Preparation of denaturating 8% PAA gels

Step 3.

Clean glasplates, spacer and combs with 70% EtOH and RNase Away. Assemble gelchamber in casting frame.

Gel mixture for 10 mL:

8% PAA gel:

2 mL	40% PAA (19:1) Rotipage (Roth)
5 g	Urea
1 mL	10x TBE
ad 10 mL	H ₂ O
100 μL	10x APS
10 μL	TEMED

Pour gel and let polymerize at least 2 h at roomtemperature.

O DURATION

02:00:00

In-vitro-transcription of hybridization probe

Step 4.

In-vitro-transcription mixture:

PCR product (0.1-1 μg)	14 μL
T7-Flash 10x reaction buffer	2 μL
DIG RNA labeling mix	2 μL
100 nM DTT	2 μL
RiboGuard RNase Inhibitor	0.5 μL
T7-Flash Enzyme Solution	2 μL

Icubate at 37°C at least 2 h.

O DURATION

02:00:00

NOTES

Lutz Berwanger 20 Dec 2016

Start in-vitro-transcription when assembling gel and stop it, when start hybridization step.

RNA preparation and gel loading

Step 5.

Prepare RNA-probes:

- Use 3 μg of previously extracted RNA (see mentioned protocol) and aquibrilate probes on same level with DEPC-treated H₂O and add 2x RNA loadingbuffer (Thermofisher).
- Prepare mixture of 4 μL high range ladder and 2x RNA loadingbuffer (Thermofisher).
- Denature probes and ladder for 5 min at 95°C and rapidly cool down on ice.
- Load gel and let it run at 25 mA in 1% TBE buffer.

₽ PROTOCOL

. RNA extraction with PGTX

CONTACT: Lutz Berwanger

P NOTES

Lutz Berwanger 20 Dec 2016

It is very important to wash pockets of the gel before loading the gel!

Step 5.1.

Centrifuge for 3 minutes at 4°C and 4.000 g.

O DURATION

00:03:00

Step 5.2.

Resuspend the cell pellet in 1 ml of PGTX. Freeze in liquid nitrogen and store at -20 °C.

A SAFETY INFORMATION

Wear goggles, a lab coat and gloves when dealing with PGTX and liquid nitrogen. Step 5.3.

Incubate for 5 min at 95 °C, shaking at 250 rpm in Thermomixer (Eppendorf)

O DURATION

00:05:00

Step 5.4.

Rapidly chill 5 min on ice.

O DURATION

00:05:00

Step 5.5.

Add 700 µl Chloroform.

✓ Chloroform by Contributed by users

A SAFETY INFORMATION

Wear goggles, a lab coat and gloves when dealing with phenol and chloroform. Step 5.6.

Let the samples incubate for 10 min at room temperature in a Thermomixer. Vortex from time to time.

O DURATION

00:10:00

Step 5.7.

Centrifuge for 15 min at 14.000 g, 4 $^{\circ}$ C. Transfer the upper aqueous phase (**contains RNA**) to a fresh reaction tube and add the same volume (450 μ L) of Aqua- P/C/I (Phenol/Chloroform/Isoamylalcohol).

O DURATION

00:15:00

A SAFETY INFORMATION

Wear goggles, a lab coat and gloves when dealing with phenol and chloroform. Step 5.8.

Thoroughly mix by vortexing. Centrifuge for 15 min at high speed. Transfer the upper aqueous phase to a 1.5 mL reaction tube.

O DURATION

00:15:00

A SAFETY INFORMATION

Wear goggles, a lab coat and gloves when dealing with phenol and chloroform. Step 5.9.

Add 1 volume of isopropanol.

✓ Isopropanol by Contributed by users

Step 5.10.

Mix and incubate for at least 30 min at -20 °C. (Can be left overnight.)

O DURATION

00:30:00

Step 5.11.

Centrifuge at 14.000 g for 30 min.

O DURATION

00:30:00

Step 5.12.

Wash with 75% chilled ethanol. Avoid resuspending the pellet.

Ethyl alcohol, Pure 200 proof, for molecular biology E7023 by Sigma Aldrich

Step 5.13.

Discard supernatant.

Step 5.14.

Centrifuge at 14.000 g.

O DURATION

00:05:00

Step 5.15.

Repeat washing step with 75% chilled ethanol.

NOTES

Lutz Berwanger 19 Dec 2016

Remove excess of EtOH by using a pipet.

Step 5.16.

Air dry pellet at RT. Do not overdry!

O DURATION

00:10:00

Step 5.17.

Resuspend the pellet with 30 μL volume of ddH₂O.

₽ NOTES

Lutz Berwanger 19 Dec 2016

Usually 40 μL DECP-treated H₂O

Step 5.18.

Fill 50 mL Falcon tube with ice. Fill with bacterial liquid culture, up to a volume of 45 mL.

Step 5.19.

Discard supernatant. Resuspend cell pellet in residual water (1 mL). Transfer to 2 mL 'safe lock' tube.

Step 5.20.

O DURATION

00:00:15

Semi-Dry blotting with Trans-Blot SD

Step 6.

Preparation of Semidry blotting sandwich:

- Prepare the transfer buffer (1x TBE Buffer)
- Cut the membrane to the dimensions of the gel. Wet the membrane in transfer buffer.
- Cut filter paper (8 peaces of thick filter paper) to the dimensions of the gel. Wet filter paper in transfer buffer.
- Place 4 of the pre-soaked sheets of thick filter paper onto the platinum anode. Roll a pipet or test tube over the surface of the filter paper to exclude all air bubbles.
- Place the pre-wetted blotting media on top of the filter paper.
- Carefully place the gel on top of the transfer membrane, aligning the gel on the center of the membrane.
- Place the other pre-soaked sheets of filter paper onto the gel. Exclude air bubbles as before.
- Carefully place the cathode onto the stack.

Blot with 2 mA/ cm² membrane for 45 min.

© DURATION

00:45:00

UV-crosslinking

Step 7.

UV-crosslink the wet membrane without prior washing. After crosslinking, membrane can be stored dry at $+8^{\circ}$ C to $+25^{\circ}$ C. If you want to go ahead use the membrane immediately for prehybridization.

Prehybridization

Step 8.

- Prewarm DIG Easy Hyb solution to hybridization temperature (62° C).
- Prehybridize membrane with RNA side facing inwards with DIG Easy Hyb for 30 min with gentle agigation in hybridization flask.

© DURATION

00:30:00

NOTES

Lutz Berwanger 06 Jan 2017

Hybridization temperature differs from one probe to each other.

Hybridization

Step 9.

- Denature DIG-labeled RNA probe from **Step 4** by boiling for **5 min** and rapidly cooling in ice/water.
- Add denatured DIG-labeled RNA probe to hybridization flask and incubate for **6 h** or **over night** with gentle aggigation.

Hybridization is follwed by stringency washes:

- Wash 2 x 5 min in 2x SSC,0.1% SDS at room temperature under constant aggigation.
- Wash 2 x 15 min in 0.1x SSC,0.1% SDS at 62° C under constant aggigation.

Immunnological detect

Step 10.

Stripping and reprobing of RNA blots

Step 11.