AN5129

应用说明

针对 STM32WB/WB0 MCU 使用带 2.4 GHz 无线电的低成本 PCB 天线进行曲率设计指南

介绍

本应用笔记专门针对STM32WB和STM32WB0系列微控制器。

使用印刷电路板 (PCB) 天线的主要原因之一是无线电模块的总体成本降低。精心设计和实施的 PCB 印刷天线具有与 SMD (表面贴装器件)陶瓷等效天线类似的性能。

一般来说,陶瓷 SMD 天线的占用空间小于 PCB 印刷天线。对于 PCB 印刷天线解决方案,相对于天线所需空间,PCB 尺寸的增加意味着无线电模块更大,从而增加了 PCB 的成本。但是,PCB 解决方案通常比 SMD 陶瓷天线便宜。

STM32WB和 STM32WB0系列的演示和开发板根据本应用说明实现 PCB印刷天线。

AN5129

一般信息

1 一般信息

本文档适用于STM32WB和STM32WB0系列基于 Arm® 的设备。

笔记:

Arm 是 Arm Limited(或其子公司)在美国和/或其他地方的注册商标。

arm

AN5129 -修订版 5 第 2/22 页

2 坐标系

为了本文的目的,使用下图所示的球面坐标系。

PCB 模块垂直放置(平面 XZ),位于坐标系原点附近。方位角从 X 轴向 Y 轴辐射,仰角从 Z 轴向水平 XY 平面辐射。

有时,与地理和导航系统一样,X 轴称为 "北轴",X 轴称为 "东轴",Z 轴称为 "天顶轴"。

AN5129-修订版 5 第 3/22 ī

3 布局规范

PCB 天线(包括所用 PCB 材料的电气参数)对布局非常敏感。建议使用尽可能接近下图所示的布局。

图 2. PCB 天线尺寸(单位:毫米)

PCB天线的电气参数和性能也由所用的基板决定,特别是芯线的厚度和介电常数。

AN5129-修订版 5 第 4/22 页

下图显示了 PCB 天线区域基板的典型横截面。

图 3.天线区域的 PCB 横截面

建议使用具有下表所定义参数的基材。

表 1.推荐的基板规格

层		A #1944 P		
	标签	价值(百万)	值 (µm)	介电常数 R
顶部阻焊层	S1	0.7	17.78	4.4
铜迹线	电视	1.6	40.64	-
核	碳	= +/\	711.2	4.4
阻焊层,底部	S2	0.7	17.78	4.4

AN5129-修订版5 第 5/22 页

4 阻抗匹配

通过将阻抗电路与 π 拓扑匹配,可以将蛇形PCB天线调整到所需的50 Ω 阻抗。在图2中,阻抗匹配区域用虚线标记。在标称条件下,该天线的阻抗非常接近所需的标称阻抗(50 Ω)。

为了检查此设计的性能,我们制造了一个样品天线(根据本文档涵盖的规格)。下图显示了该天线。

假设制造的样品表现出预期的性能(不需要阻抗匹配),则阻抗匹配电路由两个串联的 100 pF 电容器旁路,如下图所示。

图 5.绕过阻抗匹配电路 - 直接 RF 连接

在连接到带通滤波器 (BPF) 时,已经测量了蛇形天线的所有电气参数,频率范围覆盖 2.4 GHz 至 2.5 GHz。

AN5129 -修订版 5 第 6/22 页

下图以史密斯图显示了天线的复阻抗。

图 6.蛇形天线的复阻抗(史密斯图)

下图显示了 S11 参数的幅度(以对数尺度表示)。

图 7.对数刻度的 S11 参数(笛卡尔图)

AN5129 -修订版 5 第 7/22 页

下图显示了驻波比(SWR)。

图 8.天线驻波比 (SWR)

以下变化会影响PCB天线的辐射阻抗:

- 板尺寸变化
- · 金属屏蔽
- 使用塑料盖
- . 天线附近有其他组件

最佳性能阻抗匹配电路可补偿这些影响,从而对于工作频率实现最佳的 50 Ω 阻抗。

AN5129 -修订版 5 第 8/22 页

5 辐射模式,3-D 可视化

针对中心 ISM 频段频率 2.44175 GHz 进行了辐射模式(电远场幅度 |E|)的三维(3-D)可视化。

图 9.3-D 辐射模式概览

图 10. XZ 平面上的辐射模式

AN5129 -修订版 5

6 辐射模式,二维可视化

在本节中,所有辐射模式均与电远场 |E| 的幅度相关,该幅度已归一化并以对数刻度显示(单位为 dB)。这意味着最大全局辐射模式(电远场 |E| 的最大幅度)以 0 dB 级表示。

为了详细显示天线辐射图,我们给出了三个二维(2-D)主切口。考虑球面坐标系中模块的方向,如图1所示。

三维 (3-D) 远场辐射模式可视为 3-D 模式的三个 2-D 切口。这些切口使用以下主要平面(见图11):

- · —个水平 XY 平面
 - 两个垂直平面:XZ 平面和 YZ 平面

下图中各图的颜色如下:

- · 蓝色图绘制在水平 XY 平面上,其中方位角从 X 轴上的 0° 向 Y 轴辐射,直到达到 X 轴上的 360°。
- 红色图绘制在 XZ 平面上,其中仰角 θ 从 Z 轴上的 0° 向 X 轴的正部分辐射,直到在 Z 轴的负部分达到 180° 。在此图中(由 XZ 平面切割),当 X < 0 时,仰角 θ 为负。
- 绿色图绘制在 YZ 平面上,其中仰角 θ 从 Z 轴上的 0° 向 Y 轴的正部分辐射,直到达到 Z 轴负部分的 180° 。对于此图(按 YZ 平面切割),当 Y < 0 时,仰角 θ 为负。

图 11.使用二维图可视化三维辐射图的主要平面

本节使用短偶极子仅用于比较和澄清的目的。

AN5129 -修订版 5 第 10/22 页

6.1 YZ 平面上的辐射模式

图 13和图 14中的第一个辐射模式显示了 YZ 平面上的正常电场辐射模式 |E|(远场)。下图显示了模块方向与 YZ 平面的关系以及该图。

图 12. YZ 平面上绘制的远场辐射图

笔记: 辐射水平几乎恒定,并且辐射在此平面上几乎是全向的。对于垂直方向的偶极子,此模式相当于水平辐射。

AN5129-修订版 5

图 13. YZ 平面上的归一化辐射模式(极坐标图)

下图显示了与上图相同的辐射模式,以笛卡尔图表示。

AN5129 -修订版 5 第 12/22 页

6.2 XY 平面上的辐射模式

图 16和图 17中的第二个远场辐射模式表示在 XY 平面上绘制的电场 |E| 的归一化幅度。下图显示了模块方向与 XY 平面的关系以及该图。

图 15. XY 平面上绘制的远场辐射模式

对于垂直取向的偶极子,该模式相当于垂直辐射。

请注意,当接收器位于偶极天线的 Z 轴时,此解决方案不会像标准偶极天线那样呈现盲方向。在此解决方案中,最大衰减在 XY 方向上介于 10 到 14 dB 之间。

AN5129-修订版 5 第 13/22 同

图 16. XY 平面上的归一化辐射模式(极坐标图)

下图显示了 XY 平面上的远 |E| 场辐射模式,与上图相同,以笛卡尔图表示。

AN5129 -修订版 5 第 14/22 页

6.3 XZ 平面上的辐射模式

图 19和图 20中的第三个和最后一个辐射模式表示 XZ 平面上的归一化电场辐射模式 |E|(远场)。下图显示了模块相对于 XZ 平面的方向和此图。

图 18. XZ 平面上绘制的远场辐射模式

AN5129-修订版 5 第 15/22

对于水平方向的偶极子,该模式相当于垂直辐射。

图 19. XZ 平面上的归一化辐射模式(极坐标图)

下图显示了与上图相同的 XZ 平面上的远电场辐射模式,以笛卡尔图表示。

图 20. XZ 平面上的归一化辐射模式(笛卡尔图)

AN5129 -修订版 5 第 16/22 页

AN5129

表现

7 表现

在中心ISM频段频率2.44175 GHz时,天线显示以下关键性能参数:

- · 指向性:2.21 dB
- · 增益:1.95 dBi
- 最大强度:0.125 W/球面度

AN5129 -修订版 5

AN5129

机械和 PCB 冲击

8 机械和 PCB 冲击

如果接地平面太近,这种天线在最终产品中的集成度可能会降低。在没有接地平面的情况下,天线周围必须留有足够的空间。

笔记: 任何金属物体都会影响天线和辐射模式的性能。同样,如果设备是手动操作的,用户的手和身体位置可能会影响天线的设计

AN5129-修订版 5 第 18/22 页

修订历史

表 2.文档修订历史

田期	版本	更改
2018年1月17日	1	初始版本
2018年9月14日	2	更新了文件的发布范围
2019年2月25日	3	更新了文件的发布范围
2019年4月23日	4	更新了图 2。PCB 天线尺寸(单位:毫米)
2024年4月12日	5	更新: · 文件标题 · 章节介绍 · 第1部分:一般信息 常规文档清理。

内容

1—舟	设信息	2	
2坐标	示系统	3	
3布尼	勋 范	4	
4阻抗	九匹配	6	
5辐射图,3D可视化9			
6辐射	视化10		
	6.1	YZ平面上的辐射模式1	1
	6.2	XY平面上的辐射模式1	3
	6.3	XZ平面上的辐射模式1	5
7性前	£	17	
8机械和 PCB 影响		影响18	
修订	历史	19	
图表	月录	21	

图片列表

冬]	1. 球面坐标系	3	
冬 2	2. PCB 天线尺寸(单位:毫米)4		
图 3	3.天线区域的 PCB 横截面	5	
冬	4. 带有蜿蜒天线的 802.15.4 和 BLE PCB 的一部分(比例约为 4:1)		6
图 5	5. 绕过阻抗匹配电路 - 直接射频连接		6
图 (6.蛇形天线的复阻抗(史密斯图)	7	
	7. 对数刻度的 S11 参数(笛卡尔图)		
	8. 天线驻波比(SWR)		
	9. 3-D辐射图概述	9	
冬]	10. XZ 平面上的辐射模式9		
冬]	11.使用 2-D 图可视化 3-D 辐射图的主要平面		10
冬]	12. YZ 平面上绘制的远场辐射图	11	
冬]	13. YZ 平面上的归一化辐射图(极坐标图)		12
冬]	14. YZ 平面上的归一化辐射图(笛卡尔图)	12	
冬]	15. XY 平面上绘制的远场辐射模式	13	
冬]	16. XY 平面上的归一化辐射图(极坐标图)		14
冬]	17. XY 平面上的归—化辐射图(笛卡尔图)	14	
	18. XZ 平面上绘制的远场辐射模式		
冬]	19. XZ 平面上的归一化辐射图(极坐标图)		16
冬 2	20. XZ 平面上的归一化辐射图(笛卡尔图)	16	

重要通知 请仔细阅读

STMicroelectronics NV 及其子公司("ST")保留随时更改、更正、增强、修改和改进 ST产品和/或本文档的权利,恕不另行通知。购买者应在下订单前获取有关 ST产品的最新相关信息。ST产品根据订单确认时有效的 ST销售条款和条件销售。

购买者对 ST 产品的选择、挑选和使用负全部责任,ST 对应用协助或购买者产品的设计不承担任何责任。

ST 在此不授予任何明示或暗示的知识产权许可。

如果转售的 ST 产品的规定与此处所述的信息不同,则 ST 对该产品授予的任何保证将失效。

ST 和 ST 徽标是 ST 的商标。有关 ST 商标的更多信息,请参阅www.st.com/trademarks。所有其他产品或服务名称均为其各自所有者的财产。

本文档中的信息取代并替换了该文档之前任何版本中提供的信息。

© 2024 STMicroelectronics - 保留所有权利

AN5129 ·修订版 5 第 22/22 司