

## Introduction



### **Introduction-Data Structure**

- German Credit Dataset (multiple variants)
- 9 covariates for classification
- 1 binary output (Good Risk vs Bad Risk)

|   | Age | Sex    | Job | Housing | Saving accounts | Checking account | Credit amount | Duration | Purpose             | Risk |
|---|-----|--------|-----|---------|-----------------|------------------|---------------|----------|---------------------|------|
| 0 | 67  | male   | 2   | own     | NaN             | little           | 1169          | 6        | radio/TV            | good |
| 1 | 22  | female | 2   | own     | little          | moderate         | 5951          | 48       | radio/TV            | bad  |
| 2 | 49  | male   | 1   | own     | little          | NaN              | 2096          | 12       | education           | good |
| 3 | 45  | male   | 2   | free    | little          | little           | 7882          | 42       | furniture/equipment | good |
| 4 | 53  | male   | 2   | free    | little          | little           | 4870          | 24       | car                 | bad  |



### **Introduction-Data Structure-Numeric data**

| 8     | Age         | Job         | Credit amount | Duration    |
|-------|-------------|-------------|---------------|-------------|
| count | 1000.000000 | 1000.000000 | 1000.000000   | 1000.000000 |
| mean  | 35.546000   | 1.904000    | 3271.258000   | 20.903000   |
| std   | 11.375469   | 0.653614    | 2822.736876   | 12.058814   |
| min   | 19.000000   | 0.000000    | 250.000000    | 4.000000    |
| 25%   | 27.000000   | 2.000000    | 1365.500000   | 12.000000   |
| 50%   | 33.000000   | 2.000000    | 2319.500000   | 18.000000   |
| 75%   | 42.000000   | 2.000000    | 3972.250000   | 24.000000   |
| max   | 75.000000   | 3.000000    | 18424.000000  | 72.000000   |



### **Introduction-Data Structure-Categorical data**

```
Sex : ['male' 'female']
Housing : ['own' 'free' 'rent']
Saving accounts: [nan 'little' 'quite rich' 'rich' 'moderate']
Checking account : ['little' 'moderate' nan 'rich']
Purpose : ['radio/TV' 'education' 'furniture/equipment' 'car' 'business'
 'domestic appliances' 'repairs' 'vacation/others']
Risk: ['good' 'bad']
```



### Introduction-Data Structure-Categorical data (continued)

|        | Sex  | Housing | Saving accounts | Checking account | Purpose | Risk |
|--------|------|---------|-----------------|------------------|---------|------|
| count  | 1000 | 1000    | 817             | 606              | 1000    | 1000 |
| unique | 2    | 3       | 4               | 3                | 8       | 2    |
| top    | male | own     | little          | little           | car     | good |
| freq   | 690  | 713     | 603             | 274              | 337     | 700  |



## **Categorical Data Cleaning**

- For now, NaN values were filled with respective mode
- In the end, different methods will be examined as well (dropping columns, dropping rows)
- Afterwards, the categorical features were encoded into integers
   Sex {'female': 0, 'male': 1}

```
{'female': 0, 'male': 1}
Housing
{'free': 0, 'own': 1, 'rent': 2}
Saving accounts
{'little': 0, 'moderate': 1, 'quite rich': 2, 'rich': 3}
Checking account
{'little': 0, 'moderate': 1, 'rich': 2}
Purpose
{'business': 0, 'car': 1, 'domestic appliances': 2, 'education': 3, 'furniture/equipment': 4, 'radio/TV': 5, 'repairs': 6, 'vac ation/others': 7}
Risk
{'bad': 0, 'good': 1}
```

### **Data Distributions - Numeric**





## **Data Distributions - Categorical**





### **Feature Correlation Heatmap**







### **Male-Female vs Credit Amount**





## **Housing vs Credit Amount**





## **Saving Account vs Credit Amount**





## **Checking Account vs Credit Amount**





## Age vs Risk

#### Age Distribution







## Scenario



### **Black Mirror Scenario**

- In a more dystopian scenario, the use of XAI can perpetuate existing biases and discrimination in the lending process.
- If the dataset used to train the model is biased against certain groups of people (e.g., based on race or gender), the model will learn to associate those characteristics with a high-risk score and may unfairly reject loan to qualified borrowers that belong in those groups.
- This lead to a false sense of objectivity and accuracy, enabling lenders to justify decisions that rely on flawed and biased data and hence, making it harder to detect and address instances of discrimination or unfair treatment.

### **White Mirror Scenario**

- Providing explanations of how the risk score was predicted can promote
   fairness and transparency in the lending process
- Understanding the crucial features and their significance in the contribution to the resulting risk, lenders and borrowers can **build trust**, leading to more responsible borrowing and lending practices and thus making more **reliable decisions**.
- Lenders could provide targeted advice to help potential borrowers enhance their creditworthiness and explain in detail how factors such as their job, savings account balance, or credit score influenced their loan approval decision, increasing their chances of future approval.

## Sources of Bias



### **Sources of Bias**

- It is crucial to understand that using gender and age (the are more than 200 forms of human cognitive bias) as a basis for data-driven decisions is typically prohibited by anti-discrimination laws in numerous nations.
- Individuals or institutions that provides decisions based on attributes to other individuals or organizations, are anticipated to make unbiased decisions based on objective factors such us credit history, income, etc. rather than focusing on individual features like gender, age or religion.

## Models



### **Models**

- Random Forests (sklearn)
- GradientBoostingClassifier (sklearn)
- Raw models give very low F1 score (almost 30%) for class 0 (bad risk)
- So oversampling was used to balance classes
- Another decision was to drop "Sex" and "Age" and see resulting F1 score

## **Results**

| Model                        | Resampling | Dropped Columns | Weighted F1 Score |
|------------------------------|------------|-----------------|-------------------|
| Random Forest                | No         | None            | 0.69              |
| Random Forest                | Yes        | None            | 0.88              |
| Gradient Boosting Classifier | No         | None            | 0.64              |
| Gradient Boosting Classifier | Yes        | None            | 0.76              |
| Random Forest                | Yes        | "Sex"           | 0.86              |
| Gradient Boosting Classifier | Yes        | "Sex"           | 0.75              |
| Random Forest                | Yes        | "Sex", "Age"    | 0.84              |
| Gradient Boosting Classifier | Yes        | "Sex", "Age"    | 0.73              |



### **Results-Discussion**

- Removing variables "Sex" and "Age" does not lead to significantly worse results
- This means that we get the same final accuracy without taking into account gender and age of applicants
- This means that the final model is less biased

# Explainability

## **Explainability**

- 2 main methods for midterm: LIME and SHAP
- Comparison between the 2 for same instances
- Both explain why the model chooses final label

### LIME-Comparison RF vs GBC, no resample, all variables





## LIME-Comparison RF vs GBC, oversample, no Sex





### SHAP-RandomForest, no resample, all variables





### SHAP-GBC, no resample, all variables





### SHAP-RandomForest, no resample, all variables, waterfall





### SHAP-GBC, no resample, all variables, waterfall





#### SHAP-RandomForest vs GBC, no resample, all variables, summary





#### SHAP-RandomForest vs GBC, oversample, dropped Sex, summary





### **Conclusions-Dataset**

- Accept/Decline of loan could be crucial
- Declining a loan that can be repaid or accepting one that cannot be repaid has consequences both for bank and for individual
- Reasons for accept or decline should be clear

### **Conclusions-Models**

- Basic unbalanced dataset does not allow for high F1 score on both classes
- If oversampling is performed, then both RandomForest and GradientBoostingClassifier work well
- Dropping column "Sex" and/or "Age" does not significantly decrease performance

## **Conclusions-Explainability**

- Both LIME and SHAP provide useful insights for both models
- LIME gives only local explanations, while SHAP provides some nice global visualizations as well
- According to <u>SHAP</u>: <u>duration of account</u>, and <u>credit</u>
   amount are most important factors (using only
   these 2 covariates leads to 83% F1 score vs 88%)

### **Future Work**

- Expand on theoretical background (scenario and sources of bias)
- Try another method such as anchors and see results
- Discover more useful insights about dataset

