Contrôle sur les codes correcteurs et détenteurs d'erreurs

1. Code de Hamming

1. On veut déterminer le nombre k de bits de contrôle d'une séquence.

La séquence est A1A6128₁₆ de taille n = 28 bits. On doit avoir $2^k - k \ge n + 1$.

On a donc $2^6 - 6 \ge 28 + 1 \le 58 \ge 29$.

Le nombre de bits de contrôle est donc k = 6.

2. Parmis les positions proposées, les positions 13 et 26 sont contrôlées par le bit de contrôle k_4 car le $4^{\grave{e}^{me}}$ bit de leur codage binaire est à 1.

2. Code de Redondance Cyclique

2.1 Calcul du CRC d'une séquence binaire

La séguence est 1101011011

Le polynôme générateur est $G(x) = x^8 + x^7 + x^6 + x^4 + x^2 + 1$

 $1101011011 \div 111010101 = 1 et R(x) = 11110001$

On ajoute donc les d bits de R(x) à la fin de S(x) pour trouver la séquence transmise

T(x) . D'où :

T(x) = 110101101111110001

2.2 Vérification d'une séquence binaire

La séquence T(x) donnée est la suivante : 0x29DA8. Cela donne la séquence suivante en base 2: 1010011101101000.

Le polynôme fourni pour la vérification est : $G(x) = x^8 + x^7 + x^6 + x^4 + x^2 + 1$

On cherche le reste dela division suivante modulo 2 : $\frac{T(x)}{G(x)}$.

Le reste trouvé est 0. Il n'y a donc pas d'erreur.