Gate-Level Minimization

section instructor: **Ufuk Çelikcan**

Complexity of Digital Circuits

- Directly related to the complexity of the algebraic expression we use to build the circuit.
- Truth table
 - may lead to different implementations
 - Question: which one to use?
- Optimization techniques of algebraic expressions
 - So far, ad hoc.
 - Need more systematic (algorithmic) way
 - Karnaugh (K-) map technique
 - Quine-McCluskey
 - Espresso

Two-Variable K-Map

Two variables: x and y

4 minterms:

•
$$m_0 = x'y'$$
 $\rightarrow 00$

•
$$m_1 = x'y$$
 $\rightarrow 01$

•
$$m_2 = xy'$$
 $\rightarrow 10$

•
$$m_3 = xy$$
 $\rightarrow 11$

y		
×	0	1
0	m_0	m_1
1	m_2	m_3

У у		
x	0	1
0	1	1
1	1	0

$$F = m_0 + m_1 + m_2 = x'y' + x'y + xy'$$

- **>**F = ...
- **>**F = ...
- **>**F = ...

Remember the Shortcuts

$$> x + x = x \leftrightarrow x \cdot x = x$$

$$> x + 1 = 1 \leftrightarrow x \cdot 0 = 0$$

$$> x + xy = x \leftrightarrow x \cdot xy = x$$
 [Absorption]

$$>$$
 $(x + y)' = x' \cdot y' \leftrightarrow (x.y)' = x' + y'$ [DeMorgan]

У у		
x	0	1
0	1	1
1	1	0

$$F = m_0 + m_1 + m_2 = x'y' + x'y + xy'$$

$$F = x' + y'$$

 We can do the same optimization by combining adjacent cells.

Three-Variable K-Map

- Adjacent squares: they differ by only one variable, which is primed in one square and not primed in the other
 - $\mathbf{m}_{2} \longleftrightarrow \mathbf{m}_{6}, \mathbf{m}_{3} \longleftrightarrow \mathbf{m}_{7}$
 - \blacksquare $m_2 \leftrightarrow m_0$, $m_6 \leftrightarrow m_4$

Example: Three-Variable K-Map

• $F_1(x, y, z) = \sum (2, 3, 4, 5)$

- $F_1(x, y, z) =$
- $F_2(x, y, z) = \sum (3, 4, 6, 7)$

• $F_2(x, y, z) =$

Example: Three-Variable K-Map

• $F_1(x, y, z) = \sum (2, 3, 4, 5)$

yz x	00	01	11	10
0	0	0	1	1
1	1	1	0	0

•
$$F_1(x, y, z) =$$

•
$$F_2(x, y, z) = \sum (3, 4, 6, 7)$$

yz				
x	00	01	11	10
0	0	0	1	0
1	1	0	1	1

•
$$F_2(x, y, z) =$$

Example: Three-Variable K-Map

• $F_1(x, y, z) = \sum (2, 3, 4, 5)$

•
$$F_1(x, y, z) = xy' + x'y$$

•
$$F_2(x, y, z) = \sum (3, 4, 6, 7)$$

$$\cdot_{10} F_2(x, y, z) = XZ' + YZ$$

In 3-Variable Karnaugh Maps

- 1 alone square represents one minterm with 3 literals
- 2 adjacent squares represent a term with 2 literals
- 4 adjacent squares represent a term with 1 literal
- 8 adjacent squares produce a function that is always equal to 1.

Example

• $F_1(x, y, z) = \sum (0, 2, 4, 5, 6)$

$$F_1(x, y, z) =$$

Example

• $F_1(x, y, z) = \sum (0, 2, 4, 5, 6)$

$$F_1(x, y, z) =$$

Example

• $F_1(x, y, z) = \sum (0, 2, 4, 5, 6)$

$$F_1(x, y, z) =$$

Finding Sum of Minterms

 If a function is not expressed in sum of minterms form, it is possible to get it using K-maps

- Example: F(x, y, z) = x'z + x'y + xy'z + yz

Finding Sum of Minterms

 If a function is not expressed in sum of minterms form, it is possible to get it using K-maps

$$- \underline{Example}: F(x, y, z) = x'z + x'y + xy'z + yz$$

$$F(x, y, z) = x'y'z + x'yz + x'yz' + xy'z + xyz$$

Four-Variable K-Map

- Four variables: x, y, z, t
 - 4 literals
 - 16 minterms

 $F(x,y,z,t) = \Sigma (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$

$$F(x,y,z,t) =$$

 $F(x,y,z,t) = \Sigma (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$

\ zt				
xy	00	01	11	10
00	1	1	0	1
01	1	1	0	1
11	1	1	0	1
10	1	1	0	0

$$F(x,y,z,t) =$$

 $F(x,y,z,t) = \Sigma (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$

$$F(x,y,z,t) =$$

• F(x,y,z,t) = x'y'z' + y'zt' + x'yzt' + xy'z'

• F(x,y,z,t) =

• F(x,y,z,t) = x'y'z' + y'zt' + x'yzt' + xy'z'

zt				
xy	00	01	11	10
00	1	1	0	1
01	0	0	0	1
11	0	0	0	0
10	1	1	0	1

•
$$F(x,y,z,t) =$$

• F(x,y,z,t) = x'y'z' + y'zt' + x'yzt' + xy'z'

• F(x,y,z,t) =

Prime Implicants

- Prime Implicant: is a product term obtained by combining maximum possible number of adjacent squares in the map
- If a minterm can be covered by only one prime implicant, that prime implicant is said to be an essential prime implicant.
 - A single 1 on the map represents a prime implicant if it is not adjacent to any other 1's.
 - Two adjacent 1's form a prime implicant, provided that they are not within a group of four adjacent 1's.
 - So on

• $F(x,y,z,t) = \Sigma (0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)$

\zt				
xy	00	01	11	10
ху 00				
01				
11				
10				

• $F(x,y,z,t) = \Sigma (0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)$

zt				
xy	00	01	11	10
00	1	0	1	1
01	0	1	1	0
11	0	1	1	0
10	1	1	1	1

• $F(x,y,z,t) = \Sigma (0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)$

zt					
xy	00	01	11	10	
00	1	0	1	1	
01	0	1	1	0	
11	9	1	1	0	
10	1	1	1	1	
•					•

$$F(x,y,z,t) = y't' + yt + xy' + zt$$

· Which ones are the essential prime implicants?

• $F(x,y,z,t) = \Sigma (0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)$

zt					
xy	00	01	11	10	
00	1	0	1	1	
01	0	1	1	0	
11	9	1	1	0	
10	1	1	1	1	
•		•	•		-

· Why are these the essential prime implicants?

• $F(x,y,z,t) = \Sigma (0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)$

zt					zt				
xy	00	01	11	10	_ xy\	00	01	11	10
00	1/	0	1	1	00	mo	m_1	m_3	m ₂
01	0	1	1	0	01	m_4	m ₅	m_7	m ₆
11	0	1	1	0	11	m ₁₂	m ₁₃	m ₁₅	m ₁₄
10	1	1	1	1	10	m ₈	m ₉	m ₁₁	m ₁₀
	1			1					

- y't' essential since m_0 is covered only in it
- · yt essential since m₅ is covered only in it
- They together cover m_0 , m_2 , m_8 , m_{10} , m_5 , m_7 , m_{13} , m_{15}

- m₃, m₉, m₁₁ are not yet covered.
- How do we cover them?
- There is actually more than one way.

\zt				1
xy	00	01	11 2	10
00	1	0	1	1
01	0	1	13	0
11	0	1	1	0
10	1	1	1	1
			4	

- Both y'z and zt covers m₃ and m₁₁.
- m₉ can be covered in two different prime implicants:

- m_3 , $m_{11} \rightarrow zt$ or y'z
- $m_9 \rightarrow xy'$ or xt

- F(x, y, z, t) = yt + y't' + zt + xt or
- F(x, y, z, t) = yt + y't' + zt + xy' or
- F(x, y, z, t) = yt + y't' + y'z + xt or
- F(x, y, z, t) = yt + y't' + y'z + xy'
- Therefore, what to do
 - 1. Find out all the essential prime implicants
 - Then find the other prime implicants that cover the minterms that are not covered by the essential prime implicants. There are more than one way to choose those.
 - Simplified expression is the logical sum of the essential implicants plus the other implicants

Five-Variable Map

Downside:

- Karnaugh maps with more than four variables are not simple to use anymore.
- 5 variables \rightarrow 32 squares, 6 variables \rightarrow 64 squares
- Somewhat more practical way for F(x, y, z, t, w) :

tw					tw				
yz	00	01	11	10	yz	00	01	11	10
00	m_0	m_1	m_3	m ₂	00	m ₁₆	m ₁₇	m ₁₉	m ₁₈
01	m_4	m ₅	m_7	m_6	01	m ₂₀	m ₂₁	m ₂₃	m ₂₂
11	m ₁₂	m ₁₃	m ₁₅	m ₁₄	11	m ₂₈	m ₂₉	m ₃₁	m ₃₀
	m ₈		m ₁₁	m ₁₀	10	m ₂₄	m ₂₅	m ₂₇	m ₂₆

Many-Variable Maps

- Adjacency:
 - Each square in the x = 0 map is adjacent to the corresponding square in the x = 1 map.
 - For example, $m_4 \rightarrow m_{20}$ and $m_{15} \rightarrow m_{31}$
- 6-variables: Use four 4-variable maps to obtain
 64 squares required for six variable optimization
- Alternative way: Can use computer programs
 - Quine-McCluskey method
 - Espresso method

Example: Five-Variable Map

 $F(x, y, z, t, w) = \Sigma (0, 2, 4, 6, 9, 13, 21, 23, 25, 29, 31)$

• F(x,y,z,t,w) =

Example: Five-Variable Map

 $F(x, y, z, t, w) = \Sigma (0, 2, 4, 6, 9, 13, 21, 23, 25, 29, 31)$

tw					tw				
yz	00	01	11	10	yz	00	01	11	10
00	1			1	00				
01	1			1	01		1	1	
11		1			11		1	1	
10		1			10		1		
× = 0				× = 1					

• F(x,y,z,t,w) =

Example: Five-Variable Map

 $F(x, y, z, t, w) = \Sigma (0, 2, 4, 6, 9, 13, 21, 23, 25, 29, 31)$

• F(x,y,z,t,w) =

Product of Sums Simplification

- So far
 - simplified expressions from Karnaugh maps are in <u>sum of products</u> form.
- Simplified <u>product of sums</u> can also be derived from Karnaugh maps.
- Method:
 - A square with 1 actually represents a "minterm"
 - Similarly an empty square (a square with 0) represents a "maxterm".
 - Treat the 0's in the same manner as we treat 1's
 - The result is a simplified expression in product of sums form.

- $F(x, y, z, t) = \Sigma (0, 1, 2, 5, 8, 9, 10)$
 - Simplify this function in
 - a. sum of products
 - b. product of sums

\zt	•			
xy	00	01	11	10
xy 00	1	1		1
01		1		
11				
10	1	1		1

$$F(x, y, z, t) =$$

- $F(x, y, z, t) = \Sigma (0, 1, 2, 5, 8, 9, 10)$
 - Simplify this function in
 - a. sum of products
 - b. product of sums

$$F(x, y, z, t) =$$

- $F(x, y, z, t) = \Sigma (0, 1, 2, 5, 8, 9, 10)$
 - Simplify this function in
 - a. sum of products
 - b. product of sums

$$F(x,y,z,t) = y't' + y'z' + x'z't$$

- 1. Find F'(x,y,z,t) in Sum of Products form by grouping 0's
- 2. Apply DeMorgan's theorem to F' (use dual theorem) to find F in Product of Sums form

\zt				
xy	00	01	11	10
00	1	1	0	1
01	0	1	0	0
11	0	0	0	0
10	1	1	0	1

- 1. Find F'(x,y,z,t) in Sum of Products form by grouping 0's
- 2. Apply DeMorgan's theorem to F' (use dual theorem) to find F in Product of Sums form

- 1. Find F'(x,y,z,t) in Sum of Products form by grouping 0's
- 2. Apply DeMorgan's theorem to F' (use dual theorem) to find F in Product of Sums form

$$F' = yt' + zt + xy$$

- 1. Find F'(x,y,z,t) in Sum of Products form by grouping 0's
- 2. Apply DeMorgan's theorem to F' (use dual theorem) to find F in Product of Sums form

$$F(x,y,z,t) = (y'+t)(z'+t')(x'+y')$$

F(x,y,z,t) = y't' + y'z' + x'z't: sum of products implementation

F = (y' + t)(x' + y')(z' + t'): product of sums implementation

Product of Maxterms

- If the function is originally expressed in the product of maxterms canonical form, the procedure is also valid
- Example:

$$-F(x, y, z) = \Pi(0, 2, 5, 7)$$

$$F(x, y, z) =$$

Product of Maxterms

 If the function is originally expressed in the product of maxterms canonical form, the procedure is also valid

Example:

$$-F(x, y, z) = \Pi(0, 2, 5, 7)$$

$$F(x, y, z) =$$

Product of Maxterms

- If the function is originally expressed in the product of maxterms canonical form, the procedure is also valid
- Example:

$$-F(x, y, z) = \Pi(0, 2, 5, 7)$$

$$F(x, y, z) =$$

$$F(x, y, z) = x'z + xz'$$

Product of Sums

- To enter a function F, expressed in product of sums, in the map
 - 1. take its complement, F'
 - 2. Find the squares corresponding to the terms in F',
 - 3. Fill these square with 0's and others with 1's.
- Example:
 - F(x, y, z, t) = (x' + y' + z')(y + t)
 - F'(x, y, z, t) =

Product of Sums

- To enter a function F, expressed in product of sums, in the map
 - 1. take its complement, F'
 - 2. Find the squares corresponding to the terms in F',
 - 3. Fill these square with 0's and others with 1's.
- Example:

-
$$F(x, y, z, t) = (x' + y' + z')(y + t)$$

- F'(x, y, z, t) =

zt				
xy	00	01	11	10
xy 00	0			0
01				
11			0	0
10	0			0

Don't Care Conditions

- Some functions are not defined for certain input combinations
 - Such function are referred as <u>incompletely</u> <u>specified functions</u>
 - therefore, the corresponding output values do not have to be defined
 - This may significantly reduces the circuit complexity
 - Example: A circuit that takes the 10's complement of decimal digits

Unspecified Minterms

- For unspecified minterms, we do not care what the value the function produces.
- Unspecified minterms of a function are called don't care conditions.
- We use "X" symbol to represent them in Karnaugh map.
- Useful for further simplification
- The symbol X's in the map can be taken as 0 or 1 to make the Boolean expression even more simplified

Example: Don't Care Conditions

- $F(x, y, z, t) = \Sigma(1, 3, 7, 11, 15) function$
- $d(x, y, z, t) = \Sigma(0, 2, 5) don't care conditions$

zt						
xy	00	01	11	10	F =	
00	X	1	1	X		
01	0	X	1	0	F₁ =	or
11	0	0	1	0	. 1	
10	0	0	1	0	F ₂ =	

Example: Don't Care Conditions

- $F(x, y, z, t) = \Sigma(1, 3, 7, 11, 15) function$
- $d(x, y, z, t) = \Sigma(0, 2, 5) don't care conditions$

zt						
xy	00	01	11	10	F =	
00	X	1	1	X		
01	0	X	1	0	F₁ =	or
11	0	0	1	0	• 1	
10	0	0	1	0	F_2 =	

Example: Don't Care Conditions

- $F_1 = zt + x'y' = \Sigma(0, 1, 2, 3, 7, 11, 15)$
- $F_2 = zt + x't = \Sigma(1, 3, 5, 7, 11, 15)$
- The two functions are algebraically unequal
 - But as far as the function F is concerned: both functions are acceptable
- Look at the simplified product of sums expression for the same function F.

zt				
xy	00	01	11	10
00	X	1	1	X
01	0	X	1	0
11	0	0	1	0
₅₈ 10	0	0	1	0

- Better than kmap for computers because a computer cant break down a graphical thing like Kmap, but it can easily solve by QM
- It is functionally identical to Karnaugh mapping,
- but the tabular form makes it more efficient for use in computer algorithms,
- and it also gives a deterministic way to check that the minimal form of a Boolean function has been reached.
- It is sometimes referred to as the tabulation method.

• $F(x1,x2,x3,x4)=\Sigma 2,4,6,8,9,10,12,13,15$

mi	x1	x2	х3	x4	
2	0	0	1	0	
4	0	1	0	0	
8	1	0	0	0	
6	0	1	1	0	
9	1	0	0	1	
10	1	0	1	0	
12	1	1	0	0	
13	1	1	0	1	
15	1	1	1	1	

	Lis	st 1					Lis	t 2				L	ist	3		
mi	x1	x2	х3	х4		mi	x1	x2	х3	x4		mi	x1	x2	х3	х4
2	0	0	1	0	ok	2,6	0	-	1	0		8,9,12,13	1	-	0	-
4	0	1	0	0	ok	2,10	-	0	1	0		8,12,9,13	1	-	0	-
8	1	0	0	0	ok	4,6	0	1	-	0		Fir	nish	ed		
6	0	1	1	0	ok	4,12	-	1	0	0						
9	1	0	0	1	ok	8,9	1	0	0	-	ok					
10	1	0	1	0	ok	8,10	1	0	-	0						
12	1	1	0	0	ok	8,12	1	-	0	0	ok					
13	1	1	0	1	ok	9,13	1	-	0	1	ok					
15	1	1	1	1	ok	12,13	1	1	0	-	ok					
						13,15	1	1	-	1						

List 1					List 2				List 3							
mi	x1	x2	х3	x4	mi	x1	x2	х3	x4		mi	x1	x2	х3	x4	
					2,6	0	-	1	0	t2	8,9,12,13	1	-	0	-	1
					2,10	_	0	1	0	t3						
					4,6	0	1	-	0	t4	Fir	nish	ed			
					4,12	-	1	0	0	t5						
					8,10	1	0	-	0	t6						
					13,15	1	1	-	1	t7						

	2	4	6	8	9	10	12	13	15
t1				X	Х		X	X	
t2	X		X						
t3	X					X			
t4		X	X						
t5		X					X		
t6				X		Х			
t7								X	X

	2	4	6	10	
t2	X		X		
t3	X			X	
t4		X	X		
t5 -		X			t5 is a subset of t4
t6				X	t6 is a subset of t3

$$F(x1,x2,x3,x4)=t1+t7+t3+t4$$

= $x1x3' + x1x2x4 + x2'x3x4' + x1'x2x4'$

NAND and NOR Gates

NAND and NOR gates are easier to fabricate

Design with NAND or NOR Gates

It is beneficial to derive conversion rules <u>from</u>
 Boolean functions given in terms of AND, OR, an
 NOT gates <u>into</u> equivalent NAND or NOR
 implementations

New Notation

- Implementing a Boolean function with NAND gates is easy if it is in sum of products form.
- Example: F(x, y, z, t) = xy + zt

ALWAYS USE THIS

INTERMEDIATE

FORM WITH

BUBBLES TO AVOID

$$F(x, y, z, t) = ((xy)')' + ((zt)')'$$

The Conversion Method

• Example: $F(x, y, z) = \sum (1, 3, 4, 5, 7)$

$$F = z + xy'$$

$$F = (z')' + ((xy')')'$$

Example: Design with NAND Gates

- Summary
 - 1. Simplify the function
 - 2. Draw a NAND gate for each product term
 - 3. Draw a NAND gate for the OR gate in the 2nd level,
 - 4. A product term with single literal needs an inverter in the first level. Assume single, complemented literals are available.

Multi-Level NAND Gate Designs

- The standard form results in two-level implementations
- Non-standard forms may raise a difficulty
- Example: F = x(zt + y) + yz'4-level implementation

Example: Multilevel NAND...

$$F = x(zt + y) + yz'$$

Design with Multi-Level NAND Gates

Rules

- 1. Convert all AND gates to NAND gates
- 2. Convert all OR gates to NAND gates
- 3. Insert an inverter (one-input NAND gate) at the output if the final operation is AND
- 4. Check the bubbles in the diagram. For every bubble along a path from input to output there must be another bubble. If not so, complement the input literal

Another (Harder) Example

- Example: F = (xy' + xy)(z + t')
 - (three-level implementation)

Example: Multi-Level NAND Gates

Design with NOR Gates

- NOR is the dual operation of NAND.
 - All rules and procedure we used in the design with NAND gates apply here in a similar way.
 - Function is implemented easily if it is in <u>product of</u> sums form.

Logic operations with NOR gates

Example: Design with NOR Gates

• F = (x+y) (z+t) w

Example: Design with NOR Gates

• F = (xy' + zt) (z + t')

Harder Example

• Example: F = x(zt + y) + yz'

Exclusive-OR Function

The symbol: ⊕

$$\triangleright$$
 x \oplus y = xy' + x'y

$$\rightarrow$$
 (x \oplus y)' = xy + x'y'

Properties

1.
$$x \oplus 0 = x$$

2.
$$x \oplus 1 = x'$$

3.
$$x \oplus x = 0$$

4.
$$x \oplus x' = 1$$

5.
$$x \oplus y' = x' \oplus y = (x \oplus y)' : XNOR$$

Commutative & Associative

$$\triangleright$$
 x \oplus y = y \oplus x

$$\rightarrow$$
 $(x \oplus y) \oplus z = x \oplus (y \oplus z)$

Exclusive-OR Function

- XOR gate is <u>not</u> universal
 - Only a limited number of Boolean functions can be expressed in terms of XOR gates
- XOR operation has very important applications in arithmetic and error-detection circuits.
- Odd Function

$$(x \oplus y) \oplus z = (xy' + x'y) \oplus z$$

$$= (xy' + x'y) z' + (xy' + x'y)' z$$

$$= xy'z' + x'yz' + (xy + x'y') z$$

$$= xy'z' + x'yz' + xyz + x'y'z$$

$$= \sum (4, 2, 7, 1)$$

$$yz$$

$$x \quad 00 \quad 01 \quad 11 \quad 10$$

$$0 \quad 0 \quad 1 \quad 0 \quad 1$$

$$1 \quad 1 \quad 0 \quad 1 \quad 0$$

Odd Function

- If an odd number of variables are equal to 1, then the function is equal to 1.
- Therefore, multivariable XOR operation is referred as "odd" function.

Odd & Even Functions

Odd function

• $(x \oplus y \oplus z)' = ((x \oplus y) \oplus z)'$

Adder Circuit for Integers

- Addition of two 2-bit numbers
 - Z = X + Y
 - $X = (x_1 x_0)$ and $Y = (y_1 y_0)$
 - $Z = (z_2 z_1 z_0)$
- Bitwise addition
 - 1. $z_0 = x_0 \oplus y_0 \text{ (sum)}$ $c_1 = x_0 y_0 \text{ (carry)}$
 - 2. $z_1 = x_1 \oplus y_1 \oplus c_1$ $c_2 = x_1 y_1 + x_1 c_1 + y_1 c_1$
 - 3. $z_2 = c_2$

Adder Circuit

$$z_1 = x_1 \oplus y_1 \oplus c_1$$

 $c_2 = x_1 y_1 + x_1 c_1 + y_1 c_1$

$$z_0 = x_0 \oplus y_0$$

$$c_1 = x_0 y_0$$

 $z_2 = c_2$

Comparator Circuit with NAND gates

• F(X>Y)

$$X = (x_1 x_0)$$
 and $Y = (y_1 y_0)$

$y_1 y_0$				
$x_1 x_0$	00	01	11	10
00				
01				
11				
10				

Comparator Circuit with NAND gates

• F(X>Y)

$$X = (x_1 x_0)$$
 and $Y = (y_1 y_0)$

$y_1 y_0$				
$x_1 x_0$	00	01	11	10
00	0	0	0	0
01	1	0	0	0
11	1	1	0	1
10	1	1	0	0

$$F(x_1, x_0, y_1, y_0) = x_1y_1' + x_1x_0y_0' + x_0y_0'y_1'$$

Comparator Circuit - Schematic

Comparator Circuit - Simulation

