PRÁCTICAS CON ARDUINO

Práctica 8: Sensor de IR. (Snap4arduino)

Grupo de Trabajo

Juan Antonio Perez. IES Murillo 30 abril 2018

Finalidad de la práctica

En esta práctica veremos cómo utilizar los sensores de infrarrojos en nuestros proyectos. Lo haremos con una práctica muy sencilla un sensor de infrarrojo y dos led. Cuando no hay obstáculo se encenderá el led rojo y cuando detecte uno se encenderá el verde.

Información

Los **sensores infrarrojos** son unos componentes electrónicos compuestos normalmente de un **LED infrarrojo** y un **fototransistor** colocados uno al lado del otro, de forma que el LED actúa como emisor y el fototransistor como receptor. El LED infrarrojo emite luz infrarroja, o sea, de mayor longitud de onda (o

menor frecuencia) que la podemos ver los humanos, así que para nosotros es invisible. Si esta luz choca contra una superficie blanca se reflejará y llegará al fototransistor. Si por el contrario golpea en una superficie negra, el material absorberá la mayoría de la luz y no llegará al fotorreceptor.

Este sensor tiene 3 pines de conexión, **5V** y **GND** para la alimentación y **OUT** para enviar la señal al Arduino que nos indicará si está llegando o no el reflejo del LED al

fototransistor, y además incorpora un LED y un **potenciómetro**. Funciona de esta forma:

Si está llegando la luz al fotorreceptor se iluminará un LED en el sensor y enviará una señal LOW al exterior.

- Si no está llegando no se iluminará el LED y enviará una señal HIGH.
- Mediante el potenciómetro ajustamos la sensibilidad del fotorreceptor.

Hardware necesario

- Placa Arduino uno
- Placa protoboard
- Sensor de infrarrojos
- Cables de conexión
- Led rojo
- Led verde
- 2 resistencias de 220 Ohm.

I. Esquema de conexiones

II. Esquema electrónico

Programación

```
SNAP4ARDUINO
                                                   IDE ARDUINO
                                       int LEDverde = 5;
                                       int LEDrojo = 3;
cuando se pulse
                                       int IR = 8; //Entrada digital conectada al
                                       sensor infrarrojo
si (lectura digital 8 -) = falso
                                       void setup()
 fijar pin digital 3 → en 🕦
 fijar pin digital 5 → en 🐠
                                       pinMode( LEDverde, OUTPUT); // LED
sino
                                       como salida
 fijar pin digital 3 → en 🐠
                                       pinMode(LEDrojo, OUTPUT); // LED
 fijar pin digital 5 → en 🕦
                                       como salida
esperar 1 segs
                                       pinMode(IR, INPUT);//Sensor
                                       infrarrojo como entrada
                                       void loop()
                                       int valor = digitalRead(IR); //leemos el
                                       valor del sensor infrarrojo
                                       if (valor == LOW){
                                       digitalWrite(LEDverde, HIGH);
                                       digitalWrite(LEDrojo, LOW);
                                        else {
                                        digitalWrite(LEDverde, LOW);
                                       digitalWrite(LEDrojo, HIGH);
```


Actividades y propuestas de mejora

Diseña el programa de control de un vehículo robotizado con dos servos de rotación continua. De modo que sea capaz de esquivar los obstáculos mediante uno o más sensores de este tipo.

