Supplementary Zeeman Data for the First Spectrum of Ruthenium (RuI)

J. Rand McNally, Jr. and K. G. Kessler

(July 22, 1959)

Zeeman data are listed for 207 lines of Ru I between 2400 and 5400 A, all of which have been classified. The spectrograms were made at the Massachusetts Institute of Technology and were analyzed there and at the National Bureau of Standards.

Harrison and McNally ² published Zeeman data for 450 lines of the first spectrum of ruthenium (Ru 1) in 1940. In addition unresolved patterns were measured by McNally for 175 lines, but these have never been published.³ Further Zeeman observations were made in 1949 by Meggers with the Bitter magnet at the Massachusetts Institute of Technology. These plates were measured by Kessler in the course of preparing material for the preceding paper. Zeeman data for 32 additional lines obtained from this last set of observations, together with the unpublished material from McNally's thesis for 175 lines are listed below.

The observations were all made with electrodes of 1 part ruthenium powder mixed with 5 parts of silver powder. The experimental conditions and techniques used are fully described by Harrison and McNally.2

The wavelengths (in air) of these lines are given in column 1 of table 1. The observed g-value for the lower energy level involved in the transition producing the line is given in column 2, and that for the upper level is given in column 3. The complete designations for these lines are given in the preceding paper.

In the case of unresolved patterns of classified lines, where a q-value is known for one of the energy levels, the other g-value can be calculated from the separation of the strongest "n" components when the J-values are unequal, or from the separation of the "p" components when the J-values are equal. The g-values derived in this way are designated "n" or "p" to indicate which set of components was used. The known observed g-value that was used in the calculation is shown in parentheses.

The entry "Mc" in column 4 indicates that the data are taken from McNally's thesis,3 and "K" denotes q-values determined at NBS.

TABLE 1

TABLE 1.											
	Wavelength	Lower level	Upper level	Source							
	A	$Obs.\ g$	Obs. g								
	2392, 425 2464, 699 2467, 576 2476, 869 2496, 56	0. 005 1. 49 1. 21 1. 532 1. 429	0. 388 2. 02 1. 21 1. 255 1. 134	Me K K K K							
	2501. 885 2544. 22 2558. 540 2560. 265 2567. 893	(1. 089) 1. 31 (1. 196) (1. 624) (1. 284)	$\begin{array}{cccc} 1.\ 029 & n \\ 1.\ 31 \\ 1.\ 24 & n \\ 1.\ 322 & p \\ 1.\ 541 & p \end{array}$	Ме К К Ме Ме							
	2592. 022 2593. 700 2605. 347 2605. 853 2611. 045	1. 624 1. 033 1. 428 1. 07 1. 22	1. 372 1. 092 1. 022 1. 06 1. 62	K Me K K K							
	2651. 839 2702. 833 2721. 562 2730. 932 2735. 727	1. 267 1. 183 1. 248 1. 066 (1. 397)	1. 485 1. 454 1. 473 1. 470 1. 474 n	К К К К Ме							
	2754, 603 2810, 029 2817, 092 2840, 537 2891, 645	$egin{array}{c} (1.\ 089) \\ 1.\ 269 \\ 0.\ 998 \\ (1.\ 284) \\ (1.\ 16) \\ \end{array}$	$\begin{array}{cccc} 1.\ 552 & p \\ 1.\ 462 & \\ 1.\ 560 & \\ 1.\ 198 & p \\ 1.\ 16 & n \end{array}$	Мс Мс К Мс Мс							
	2913. 163 2914. 294 2915. 614 2916. 251 2917. 132	$\begin{array}{c} 1.71 \\ 0/0 \\ (1.190) \\ (1.35) \\ (1.684) \end{array}$	$\begin{array}{cccc} 0/0 & n \\ 1. \ 115 \\ 1. \ 030 & p \\ 1. \ 35 & n \\ 1. \ 115 & p \end{array}$	Мс Мс Мс Мс Мс							
	2920. 949 2928. 487 2936. 005 2937. 336 2939. 676	0/0 (1.684) (1.232) (1.795) (1.086)	0. 440 1. 084 p 1. 527 p 1. 533 p 0. 923 p	К Мс Мс Мс Мс							
	2950. 532 2955. 348 2993. 273 3008. 797 3013. 354	$egin{array}{c} (1.\ 041) \\ (0.\ 757) \\ 1.\ 218 \\ (1.\ 25) \\ (1.\ 196) \\ \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Мс Мс Мс Мс К							

Oak Ridge National Laboratory.
 G. R. Harrison and J. R. McNally, Jr. Phys. Rev. 58, 703 (1940).
 J. R. McNally, Jr., Thesis, Mass. Inst. Technol. (1941) unpublished.

Table 1.—Continued

TABLE 1. Continued				TABLE 1. Continued			
Wavelength	Lower level	Upper level	Source	Wavelength	Lower level	Upper level	Source
A	Obs. g	Obs. g	á	A	Obs. g	Obs. g	
3057. 353 3064. 834 3077. 542 3084. 521 3096. 565	1. 239 (1. 255) (1. 534) 1. 315 (1. 086)	1. 192 1. 205 n 1. 528 n 1. 116 1. 073	$\begin{array}{c} Mc\\ Mc\\ Mc\\ Mc\\ Mc\\ \end{array}$	3814. 848 3817. 293 3835. 983 3838. 069 3850. 441	1. 14 (1. 164) 1. 186 (1. 563) 1. 45	1. 21 1. 189 n 1. 540 1. 526 n 1. 45 n	Me Me Me Me Me
3105. 278 3118. 065 3129. 835 3132. 874 3144. 265	1. 164 0. 72 0. 000 1. 550 (0. 992)	0. 702 1. 16 2. 383 1. 029 1. 022 n	Me Me Me Me Me	3857, 551 3862, 690 3864, 851 3905, 993 3923, 486	$egin{array}{l} (0.992) \\ (0.834) \\ 0/0 \\ (1.343) \\ 1.033 \\ \end{array}$	$\begin{array}{cccc} 1.\ 012 & n \\ 0.\ 853 & n \\ 0.\ 78 & n \\ 1.\ 061 & p \\ 1.\ 048 \end{array}$	Me Me Me Me Me
3153. 831 3170. 088 3174. 128 3179. 025 3193. 509	1. 561 (1. 190) 1. 251 (1. 175) 1. 007	1. 309 1. 272 p 1. 020 1. 143 n 1. 094	Me Me Me Me Me	3924. 636 3937. 919 3941. 672 3950. 041 3952. 290	$egin{array}{c} (1.\ 007) \\ 1.\ 53 \\ (1.\ 315) \\ (1.\ 007) \\ (0.\ 676) \\ \end{array}$	$\begin{array}{ccc} 1.\ 07 & p \\ 1.\ 48 \\ 1.\ 711 & p \\ 0.\ 962 & n \\ 1.\ 006 \end{array}$	K Me Me Me Me
3250. 002 3251. 893 3277. 564 3306. 179 3324. 999	(1. 447) 0. 76 (0. 992) (1. 624) 0. 008	1. 108 p 0. 76 n 1. 059 1. 702 n 1. 019	Mc Mc Mc Mc K	3974. 504 4005. 089 4014. 153 4026. 492 4028. 434	$egin{array}{l} (1.420) \\ (1.175) \\ 0.69 \\ (1.070) \\ (1.086) \\ \end{array}$	1. 470 1. 004 p 0. 69 0. 703 1. 358 p	Me Me K K Me
3341. 090 3345. 316 3348. 704 3351. 930 3356. 201	1. 440 (1. 447) (1. 349) (1. 089) 0. 70	$\begin{array}{ccccc} 1. & 015 \\ 1. & 393 & n \\ 1. & 207 & p \\ 1. & 716 & p \\ 0. & 70 & n \end{array}$	K Mc Mc Mc Mc	4040. 474 4046. 883 4062. 854 4076. 730 4108. 055	0. 997 0. 693 (1. 007) 1. 233 (1. 190)	1. 055 1. 058 0. 926 p 0. 524 1. 487 p	K K Mc K Mc
3364. 100 3378. 034 3385. 161 3390. 899 3414. 641	1. 08 (1. 397) 1. 194 (1. 175) (1. 447)	1. 08 1. 374 n 1. 194 n 1. 078 p 1. 434 n	K Mc Mc Mc Mc	4134. 854 4156. 254 4159. 168 4175. 436 4182. 455	$\begin{array}{c} (1.\ 684) \\ (1.\ 007) \\ (1.\ 041) \\ (1.\ 007) \\ (1.\ 175) \end{array}$	$\begin{array}{cccc} 1.\ 066 & p \\ 1.\ 035 & p \\ 1.\ 036 & n \\ 1.\ 219 & p \\ 1.\ 137 & n \end{array}$	Me Me Me Me Me
3428. 319 3443. 153 3446. 670 3455. 385 3456. 621	1. 404 (1. 196) (1. 175) 1. 19 1. 14	1. 462 1. 464 p 1. 118 n 0. 45 0. 92	Mc Mc Mc K K	4185. 465 4239. 660 4281. 941 4312. 494 4314. 308	$\begin{array}{c} 1.\ 08 \\ (0.\ 697) \\ 1.\ 164 \\ 0.\ 71 \\ 1.\ 590 \end{array}$	$\begin{array}{ccc} 1.\ 08 \\ 1.\ 081 & n \\ 1.\ 174 & \\ 0/0 & p \\ 1.\ 609 & \\ \end{array}$	K K Mc Mc
3459. 585 3467. 051 3494. 254 3498. 944 3502. 418	(1. 624) 0. 754 1. 250 (1. 397) (1. 420)	1. 446 1. 020 1. 452 1. 379 n 1. 460 n	Me Me K Me Me	4325. 059 4338. 675 4340. 351 4364. 108 4394. 970	$\begin{array}{c} 1.\ 327 \\ (1.\ 343) \\ (1.\ 041) \\ (1.\ 343) \\ (1.\ 164) \end{array}$	1. 438 0. 938 p 0. 895 p 0. 796 p 1. 047 p	K Me Me Me Me
3537. 941 3587. 204 3601. 487 3625. 197 3626. 740	(1. 249) 1. 036 1. 041 (1. 534) 0. 840	$\begin{array}{cccc} 1. & 269 & n \\ 1. & 036 & n \\ 1. & 220 \\ 1. & 558 & n \\ 0. & 919 \end{array}$	Me Me Mc Mc Me	4438. 343 4439. 745 4645. 09– 4774. 004 5133. 895	(1. 162) (1. 086) 1. 005 (0. 927) (0. 757)	$ \begin{array}{c} 0.438 & p \\ 1.024 & n \\ (1.013) \\ 0.900 & n \\ 1.029 & p \end{array} $	K Mc Mc Mc Mc
3672. 059 3672. 378 3676. 952 3701. 312 3738. 914	(0. 834) (1. 684) (1. 175) 0. 000 1. 029	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Mc Mc Mc Mc Mc	5142. 772 5171. 026 5266. 469 5280. 812 5284. 089	$\begin{array}{c} (1.420) \\ (1.447) \\ 1.337 \\ 1.426 \\ 1.282 \\ 1.22 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mc Mc Mc Mc Mc
3742. 798 3746. 218 3781. 171 3786. 065 3803. 191	(1. 164) 1. 28 1. 006 (1. 000) 0. 923	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mc Mc Mc Mc Mc	Washington,		1. 19 (Paper	Ме 63 A 3-1