

Universidad Autónoma de Nuevo León

Facultad de Ciencias Físico Matemáticas

Maestría en Ciencia de Datos

Materia: Aprendizaje Automático

PIA Modelo de Clasificación

Profesor: José Anastacio Hernández Saldaña

Alumno: Francisco David Treviño Bautista

Matrícula: 562795

Grupo: 1

Fecha de entrega: 26 de julio de 2024

Objetivo

Se usará un conjunto de datos con valores numéricos, para hacer un modelo que predecirá el valor de un campo denominado "engagement".

Conjunto de Datos

El conjunto de datos son archivos en formato .csv, que nos compartió el maestro para el proyecto:

- Train.csv
- Test.csv

Las variables independientes que integran ambos archivos son las siguientes, solamente no comparte el archivo de entrenamiento con el archivo de pruebas el campo a predecir ("engagement"):

- id: identificador numérico entero consecutivo, sin aparente relación con la clasificación
- title_word_count: Cantidad de palabras en el título.
- document_entropy: Entropía del documento.
- Freshness: Frescura del contenido.
- Easiness_ Facilidad del contenido.
- fraction_stopword_presence: Fracción de palabras vacías.
- normalization rate: Tasa de normalización.
- speaker speed: Velocidad del hablante.
- silent_period_rate: Tasa de periodos silenciosos.
- engagement: Indicador de si hubo compromiso (True/False).

Se decide eliminar el campo "id" del conjunto de datos para el modelo, porque es un valor numérico entero consecutivo sin relación aparente.

Análisis Exploratorio

El conjunto de datos tiene 9239 entradas. Los valores medios y desviaciones estándar varían significativamente entre las variables.

Se agrega unas gráficas para un análisis exploratorio con la idea de entender mejor la información del conjunto de datos y la relación entre las variables.

Modelos de Clasificación

Se desarrolló código adicional para realizar las pruebas del conjunto de variables de clasificación, así como las variables objetivo, se evaluaron los siguientes modelos:

- Logistic Regression
- Support Vector Machine
- K-Nearest Neighbors
- Decision Tree Classifier
- Random Forest Classifier
- Gradient Boosting Classifier
- Neural Network
- XGBoost

Árbol Del Modelo Decision Tree Classifier

Árbol Del Modelo Gradient Boosting

Árbol Del Modelo Random Forest

Criterio de Selección del Modelo

En base a los dos conjuntos de datos de datos, uno de entrenamiento y otro de prueba, se deberá encontrar un modelo de clasificación con sus parámetros, utilizando cross-validation con el criterio ROC_AUC que resulte en un valor mayor de 0.75 en el conjunto de validación y prueba.

Evaluación de Modelos

Se evaluaron varios modelos de clasificación usando validación cruzada (ROC AUC), seguido de un ajuste de hiperparámetros utilizando RandomizedSearchCV y GridSearchCV. Aquí se presentan los resultados para cada modelo:

Modelo	Cross-Validation	Validation	Precision	Recall	Validation	F1-
	ROC AUC	Accuracy			ROC AUC	Score
Logistic Regression	0.8446	0.9199	0.6049	0.297	0.8614	0.3984
Support Vector Machine	0.8376	0.9367	0.7727	0.4121	0.8544	0.5375
K-Nearest Neighbors	0.8033	0.928	0.66	0.4	0.81	0.4981
Decision Tree	0.6896	0.9004	0.4497	0.5152	0.7267	0.4802
Random Forest	0.8847	0.9334	0.6721	0.497	0.8983	0.5714
Gradient Boosting	0.8833	0.9356	0.6949	0.497	0.8915	0.5795
Neural Network	0.8841	0.9345	0.6667	0.5333	0.8942	0.5926
XGBoost	0.8826	0.9291	0.6197	0.5333	0.8988	0.5733

Selección del Modelo

El mejor modelo en términos de la métrica Cross-Validation ROC AUC fue Random Forest, con los siguientes mejores parámetros después de RandomizedSearchCV y GridSearchCV:

- RandomizedSearchCV: {'max_depth': 30, 'min_samples_split': 9, 'n_estimators': 84}
- GridSearchCV: {'max_depth': 30, 'min_samples_split': 9, 'n_estimators': 134}

La siguiente gráfica contiene la curva de ROC para todos los modelos evaluados, al final del eje X todas las curvas llegan a valores muy similares, y no se alcanza a distinguir.

Por lo anterior, se generó por separado una gráfica de la curva de ROC para el mejor modelo, Random Forest

Conclusiones

El modelo Random Forest mostró el mejor rendimiento global en Cross-Validation métrica ROC AUC. Los resultados muestran que este modelo tiene una mejor capacidad para distinguir entre clases en comparación con otros modelos evaluados.

El ajuste de hiperparámetros a través de RandomizedSearchCV y GridSearchCV mejoró aún más su rendimiento, lo que sugiere que los parámetros seleccionados están optimizados para este conjunto de datos.

Los gráficos y las tablas presentadas proporcionan mayor claridad de cómo cada modelo se desempeñó y facilitan la comparación entre ellos.

La curva ROC para cada modelo permite visualizar la tasa de verdaderos positivos frente a la tasa de falsos positivos, lo que es muy importante para evaluar la efectividad de los modelos en problemas de clasificación binaria.