

Hasta ahora el estudio de los circuitos abarcó el **estado permanente** (o también denominado **régimen permanente**)

Pero ¿qué pasa entre el instante en que **accionamos una llave** para energizar un circuito y el momento en que alcanzamos dicho estado permanente?

DEFINICIONES

Régimen permanente

Es un estado de equilibrio en el cual, no habiendo cambios de los valores de la fuente ni de los elementos del circuito, *las funciones que representan tensiones y corrientes en el circuito se mantienen inalterables*

Régimen transitorio

Es la transición entre dos estados permanentes diferentes, luego de que una fuente o algún elemento del circuito cambia algunos de sus parámetros, produciéndose una perturbación en las respuestas, hasta que finalmente se alcanza un nuevo estado de equilibrio

Respuesta forzada o permanente

Corresponde a la señal que aparece en el circuito en las condiciones de régimen permanente, es decir, es *forzada* por efecto de la fuente

Respuesta natural o libre

Se asocia con la **forma** de la evolución del régimen transitorio y depende de los elementos pasivos del circuito (R, L y/o C)

Respuesta completa

Es la suma de la respuesta natural o libre más la respuesta forzada o permanente

¿Cómo se asocian estos fenómenos con la matemática que los representa?

SOLUCIÓN DE LA ECUACIÓN DIFERENCIAL DEL CIRCUITO

Las leyes de Ohm y Kirchhoff siguen valiendo para todo t

$$u_f(t) = u_R(t) + u_L(t) + u_C(t)$$

Utilizando las ecuaciones constitutivas en función de la corriente

$$u_f(t) = R \cdot i(t) + L \cdot \frac{di(t)}{dt} + \frac{1}{C} \int i(t) \cdot dt$$

Derivando ambos miembros

$$\frac{du_f}{dt} = R\frac{di}{dt} + L\frac{d^2i}{dt^2} + \frac{1}{C}i$$

Ecuación diferencial general que describe el comportamiento de un circuito $\it RLC$

Matemáticamente, esta ecuación diferencial tiene una solución i(t), la cual es suma de la solución homogénea más una solución particular

Físicamente, la corriente i(t) del circuito (respuesta total o completa), es la suma de dos componentes: $i_n(t)$ debida a los elementos del circuito (respuesta natural) e $i_p(t)$ debida a la fuente (respuesta permanente o forzada)

"REGLAS DE ORO" DEL CAPACITOR Y DEL INDUCTOR

Surgen a partir de las ecuaciones constitutivas

$$i_C(t) = C \frac{du(t)}{dt} \neq \infty$$

en un capacitor no pueden existir variaciones instantáneas de tensión (para que ello ocurra, la corriente de carga del capacitor debería ser *infinito*)

$$u_L(t) = L \frac{di(t)}{dt} \neq \infty$$

en un inductor no pueden existir variaciones instantáneas de corriente (en ese caso, la tensión sobre el inductor debería ser *infinito*)

INTRODUCCIÓN A LA SOLUCIÓN DE CIRCUITOS EN RÉGIMEN TRANSITORIO

Independientemente de si la fuente que excita al circuito es *continua* o *alterna*, o si se trata de una fuente de *tensión* o de *corriente*, los *conceptos* y las *expresiones matemáticas* generales que describen el fenómeno son las mismas.

Por ejemplo

En este caso general, $u_f(t)$ es una expresión genérica de la tensión de la fuente, que puede ser continua o alterna.

Se puede escribir la expresión general de LKT como

$$u_f(t) = R \cdot i(t) + \frac{1}{C} \int_{-\infty}^{t} i(t) \cdot dt$$

$$= \text{ o, derivando, } \Rightarrow \frac{du_f}{dt} = R\frac{di}{dt} + \frac{1}{C}i$$

Se sabe que una ecuación diferencial tiene dos soluciones, una *particular* y otra *homogénea*.

Además, esta última es siempre una *exponencial decreciente* que depende de los coeficientes de la ecuación diferencial (*respuesta natural* o *libre*).

Mientras que la solución particular solo dependerá de la función que representa a la fuente (*respuesta forzada* o *permanente*).

SERIE RC CON FUENTE DE TENSIÓN CONTINUA

Condiciones iniciales nulas ($U_{C0}=0$)

$$u_f(t) = U_f$$

$$u_f(t) = R \cdot i(t) + \frac{1}{C} \int_{-\infty}^{t} i(t) \cdot dt$$

Derivando ambos miembros

$$\frac{du_f}{dt} = R\frac{di}{dt} + \frac{1}{C}i$$

$$0 = R\frac{di}{dt} + \frac{1}{C}i$$
pues $u_f(t)$ es constante

$$0 = R\frac{di}{dt} + \frac{1}{C}$$

La solución de esta ecuación diferencial es

$$i(t) = k \cdot e^{-\tau}$$

donde $\tau = RC$, constante de tiempo del circuito

¿Cómo se determina k?

Hay que tener en cuenta las condiciones de borde del sistema

$$i(t) = I_0 \cdot e^{\frac{-t}{RC}}$$

Además

$$i_t(t) = i_n(t) + i_p(t)$$

Con
$$i_n(t) = I_0 \cdot e^{\frac{-t}{RC}}$$
 e $i_p(t) = 0$

$$i_p(t) = 0$$

CIRCUITO SERIE RC CON FUENTE DE TENSIÓN CONTINUA

Condiciones iniciales nulas (U_{C0} =0)

CONSTANTE DE TIEMPO

CIRCUITO SERIE RC CON FUENTE DE TENSIÓN *CONTINUA*

Condiciones iniciales nulas $(U_{C0}=0)$

¿Cómo es la tensión en ${\it R}$ y en ${\it C}$?

Debe observarse que aquí también

$$u_{tC}(t) = u_{nC}(t) + u_{pC}(t)$$

$$u_{tR}(t) = u_{nR}(t) + u_{pR}(t)$$

¿Cómo son sus expresiones?

 $u_{C}(t)$ se puede determinar utilizando la ecuación constitutiva

$$\frac{1}{C}\int i(t)\cdot dt$$

o mediante la diferencia entre $u_f(t)$ y $u_R(t)$, pues

$$u_R(t) = i(t) \cdot R$$

Debe recordarse que siempre, para todo t

$$u_f(t) = u_R(t) + u_C(t)$$

GRÁFICAS

CIRCUITO SERIE RC CON FUENTE DE TENSIÓN CONTINUA

Condiciones iniciales nulas (U_{C0} =0)

CONSTANTE DE TIEMPO

¿Cuándo termina el transitorio?

¿Cuánto vale el error en 5 \(\tau \)?

CIRCUITO SERIE RC CON FUENTE DE TENSIÓN *CONTINUA*

Condiciones iniciales NO nulas $(U_{C0}\neq 0)$

$$u_f(t) = U_f$$

$$u_f(t) = R \cdot i(t) + \frac{1}{C} \int_{-\infty}^{t} i(t) \cdot dt$$

Se repite el razonamiento anterior, teniendo en cuenta ahora que el capacitor está cargado

$$i_n(t) = k_0 \cdot e^{\frac{-t}{RC}}$$

$$k_0 = I_0 = \frac{U_f - U_{C0}}{R}$$

GRÁFICAS

Caso válido si

$$U_{c0} > 0$$

(es decir, si la polaridad de U_{C0} es la indicada en el circuito)

CIRCUITO SERIE RC SIN FUENTE Y CON $U_{CO} \neq 0$

Se supone que las *condiciones iniciales* son *no nulas* ($U_{C0}\neq 0$)

$$0 = R \cdot i(t) + \frac{1}{C} \int_{-\infty}^{t} i(t) \cdot dt$$

$$0 = R\frac{di}{dt} + \frac{1}{C}i$$

Se repite el razonamiento anterior, teniendo en cuenta que el capacitor está inicialmente cargado y no hay fuente

GRÁFICAS

Ejercicio:

Escribir las ecuaciones que describen el comportamiento y explicar

RESUMEN - CIRCUITO SERIE RC

En el circuito
$$i_t = i_n + i_p$$
 (la corriente es común a R y C)

En el capacitor
$$u_{tC} = u_{nC} + u_{pC}$$

En el resistor
$$u_{tR} = u_{nR} + u_{pR}$$

Además, por 2da ley de Kirchhoff: $u_f = u_C + u_R = U_f$

$$u_f = u_C + u_R = U_f$$

$$i_n = I_0 \cdot e^{\frac{-t}{\tau}} = \frac{U_f}{R} \cdot e^{\frac{-t}{RC}}$$
 e $i_p = 0$
$$i_t = \frac{U_f}{R} \cdot e^{\frac{-t}{RC}}$$

$$i_{t} = \frac{U_{f}}{R} \cdot e^{\frac{-t}{RC}}$$

$$u_{nR} = i_n R = I_0 \cdot e^{\frac{-t}{\tau}} \cdot R = U_f \cdot e^{\frac{-t}{RC}} \qquad e \qquad u_{pR} = 0$$

$$u_{tR} = U_f \cdot e^{\frac{-t}{RC}}$$

$$u_{tR} = U_f \cdot e^{\frac{-t}{RC}}$$

$$u_{tC} = \frac{1}{C} \int i \cdot dt \quad \text{o} \quad u_{tC} = u_f - u_{tR} = U_f - u_{tR}$$

OTROS CIRCUITOS RC

Condiciones iniciales nulas $(I_{L0}=0)$

$$u_f(t) = U_f$$

$$u_f(t) = U_f$$

$$u_f(t) = R \cdot i(t) + L \cdot \frac{di(t)}{dt}$$

Se sabe que

$$i_{t}\left(t\right) = i_{n}\left(t\right) + i_{p}\left(t\right)$$

Con $i_p(t) = \frac{U_f}{P}$ e $i_n(t) = k \cdot e^{\frac{-i}{\tau}}$

¿Cómo se determinan k y τ ?

Al igual que antes, de la solución de la homogénea, resulta:

Finalmente resulta

$$au = \frac{1}{I}$$

CIRCUITO SERIE RL CON FUENTE DE TENSIÓN CONTINUA

Condiciones iniciales nulas ($I_{L0}=0$)

 $k = k \cdot e^{\frac{L}{R}} + \frac{U_f}{L}$ $k = -\frac{U}{R}$

- ¿Cuándo termina el transitorio?
- ¿Cuánto vale el error en 5 t?

CIRCUITO SERIE RL CON FUENTE DE TENSIÓN *CONTINUA*

Condiciones iniciales nulas ($I_{L0}=0$)

¿Cómo es la tensión en ${\it R}$ y en ${\it L}$?

Debe observarse que aquí también

$$u_{tL}(t) = u_{nL}(t) + u_{pL}(t)$$

$$u_{tR}(t) = u_{nR}(t) + u_{pR}(t)$$

GRÁFICAS

¿Cómo son sus expresiones?

 $u_L(t)$ se puede determinar utilizando la ecuación constitutiva

$$u_L = L \cdot \frac{di}{dt}$$

o mediante la diferencia entre $u_f(t)$ y $u_R(t)$

SERIE RL CON FUENTE DE TENSIÓN CONTINUA

Condiciones iniciales NO nulas $(I_{I,0}\neq 0)$

$$u_f(t) = U_f$$

$$u_f(t) = R \cdot i(t) + L \cdot \frac{di(t)}{dt}$$

$$i_n\left(t
ight)$$
 homogénea => natural

Otra vez tenemos como soluciones $i_n(t)$ homogénea => natural $i_p(t)$ particular => forzada o permanente

Se repite el razonamiento ya visto, teniendo en cuenta que el inductor está "cargado"

$$i_t(t=0) = Io$$

CIRCUITO SERIE RL CON FUENTE DE TENSIÓN CONTINUA

Condiciones iniciales no nulas $(I_{L0} \neq 0)$

La corriente del circuito

$$i_t(t) = \left(Io - \frac{U_f}{R}\right) e^{\frac{-t}{L/R}} + \frac{U_f}{R}$$

Las tensiones en L y R

$$u_{R}(t) = \left(Io \cdot R - U_{f}\right) \cdot e^{\frac{-t}{L/R}} + U_{f}$$

$$u_L(t) = \left(U_f - Io \cdot R\right) \cdot e^{\frac{-t}{L/R}}$$

GRÁFICAS

Para pensar: a) Resolver el caso con condiciones iniciales no nulas y sin fuente (el circuito RL se cierra mediante un corto).
b) Otras combinaciones RL con fuentes de tensión y corriente

CIRCUITO SERIE RL CON FUENTE DE TENSIÓN SENOIDAL

Se supone que las condiciones iniciales son nulas $(I_{L0}=0)$

$$u_f(t) = U_f \cdot sen(\omega t)$$

$$u_f(t) = R \cdot i(t) + L \cdot \frac{di(t)}{dt}$$

Se sabe que
$$i_t(t) = i_n(t) + i_p(t)$$

$$con i_n(t) = k \cdot e^{\frac{-t}{\tau}}$$

$$y \quad i_p(t) = I_p \cdot sen(\omega t - \theta) = \frac{U_f}{\sqrt{R^2 + (\omega L)^2}} \cdot sen(\omega t - \theta)$$

$$con \theta = arctg\left(\frac{\omega L}{R}\right)$$

¿Cómo se determinan k y τ ?

De la solución de la homogénea

$$\tau = \frac{L}{R}$$

CIRCUITO SERIE RL CON FUENTE DE TENSIÓN SENOIDAL

Condiciones iniciales nulas $(I_{L0}=0)$

De
$$i_t(t) = i_n(t) + i_p(t)$$

$$i_{t}(t) = i_{n}(t) + i_{p}(t)$$

$$i_{t}(t) = k \cdot e^{\frac{-t}{L/R}} + I_{p} \cdot sen(\omega t - \theta)$$

Y en
$$t=0$$

$$k = I_p \cdot sen\theta = \frac{U_f}{\sqrt{R^2 + (\omega L)^2}} \cdot sen\theta$$
 ¿Por qué?

Finalmente resulta

$$i_{t}(t) = \frac{U_{f}}{\sqrt{R^{2} + (\omega L)^{2}}} \cdot sen\theta \cdot e^{\frac{-t}{L/R}} + \frac{U_{f}}{\sqrt{R^{2} + (\omega L)^{2}}} \cdot sen(\omega t - \theta)$$

Gráficamente

CIRCUITO SERIE RL CON FUENTE DE TENSIÓN SENOIDAL

Condiciones iniciales nulas ($I_{L0}=0$)

$$R\cong X_L$$

CIRCUITO SERIE RL CON FUENTE DE TENSIÓN SENOIDAL

Condiciones iniciales nulas ($I_{L0}=0$)

$$R << X_L$$

CIRCUITO SERIE RL CON FUENTE DE TENSIÓN SENOIDAL

$$R\cong X_L$$

BIBLIOGRAFÍA

Circuitos eléctricos. Parte 1: Deorsola-Morcelle, Cap 6.

Principios y aplicaciones de ingeniería eléctrica: Rizzoni, Cap 5.

Circuitos eléctricos: Nilsson, Cap 8.

Análisis básico de circuitos eléctricos: Johnson-Hilburn-Johnson, Cap 8.

Teoría de circuitos eléctricos: Sanjurjo-Lázaro-de Miguel, Cap 2.

Análisis de circuitos en ingeniería: Hayt-Kemmerly, Cap 4 y 5.

Circuitos eléctricos: Dorf, Cap 7; 8 y 9.

Circuitos: Carlson, Cap 9.

Análisis introductorio de circuitos: Boylestad, Cap 22.

Circuitos eléctricos y magnéticos: Spinadel, Cap 1.