Introduction to Computational Fluid Dynamics using OpenFOAM and Octave

Dr. Lakshman Anumolu (Sr. Research Engineer)
Kumaresh Selvakumar (PhD candidate)
(Session-8)

Instructions: Mon, Wed, Thu (3:30PM-4:30PM IST)
Query session: Sundays 8:30AM-9:00AM IST

Quick Recap

What Did We Discuss?

$$u_i^{n+1} = u_i^n - c\Delta t \left(\frac{\partial u}{\partial x}\right)_i^n \longrightarrow \left(\frac{\partial u}{\partial x}\right)_i^n \approx \frac{u_i^n - u_{i-1}^n}{\Delta x_i}$$
 Upwind

$$\left(\frac{\partial u}{\partial x}\right)_{i}^{n} \approx \frac{u_{i+1}^{n} - u_{i}^{n}}{\Delta x_{i}}$$
 Simple forward difference scheme

$$\left(\frac{\partial u}{\partial x}\right)_{i}^{n} \approx \frac{u_{i+1}^{n} - u_{i-1}^{n}}{2\Delta x_{i}}$$
 Central difference

Current Session

Overview

- Rate of convergence
- Introduction to C++ for OpenFOAM

$$\rho = x^3$$

First order forward difference approximation

$$\left(\frac{d\rho}{dx}\right)_{i} \approx \frac{\rho(x_{i+1}) - \rho(x_{i})}{\Delta x_{i}} + O(\Delta x_{i})$$

Second order central difference approximation

$$\left(\frac{d\rho}{dx}\right)_{i} = \frac{\rho(x_{i+1}) - \rho(x_{i-1})}{2\Delta x_{i}} + O(\Delta x_{i}^{2})$$

$$x_{i-1}$$
 x_i x_{i+1} x_{i+2}

$$\left(\frac{d\rho}{dx}\right)_{i} \approx \frac{\rho(x_{i+1}) - \rho(x_{i})}{\Delta x_{i}} + O(\Delta x_{i})$$

Δx	Error	Rate of convergence
0.1	0.16	-
0.05	0.0775	1.04
0.025	0.038125	1.02

$$\left(\frac{d\rho}{dx}\right)_{i} = \frac{\rho(x_{i+1}) - \rho(x_{i-1})}{2\Delta x_{i}} + O\left(\Delta x_{i}^{2}\right)$$

Δx	Error	Rate of convergence
0.1	0.01	-
0.05	0.0025	2
0.025	0.000625	2

$$\left(\frac{d\rho}{dx}\right)_i \approx \frac{\rho(x_{i+1}) - \rho(x_i)}{\Delta x_i} + O(\Delta x_i)$$

Δχ	Error	Rate of convergence
0.1	0.16	-
0.05	0.0775	1.04
0.025	0.038125	1.02

$$\left(\frac{d\rho}{dx}\right)_{i} = \frac{\rho(x_{i+1}) - \rho(x_{i-1})}{2\Delta x_{i}} + O\left(\Delta x_{i}^{2}\right)$$

Δx	Error	Rate of convergence
0.1	0.01	-
0.05	0.0025	2
0.025	0.000625	2

Introduction to C++ for OpenFOAM

b8_functions_classes.cpp

Next Session

- Finite difference method to solve diffusion equation
- Introduction to C++ for OpenFOAM

Thank you