IT-Security (ITS) B1 DIKU, E2024

Today's agenda

Intrusion detection defined

Intrusion detection in theory

Intrusion detection in practice

Signature detection, anomaly detection, log analysis

Next time: Malware + Forensics

Intrusion Detection defined

Overall security goals

Prevent as much as possible with *best practices* such as secure coding, whitelisting, patching, secure configurations and more

Anticipate breaches and **build to contain** with defence in depth, segmentation, least privilege, etc.

Detect and respond when things go wrong

Learn and **repeat**

Intrusion Detection process / key activities

Intrusion Detection is the process of monitoring and analyzing system events, to identify and report such intrusions

Threat Assessment

How are we exposed (as a company, our business processes, and underlying IT)?

Visibility

What is the right level of insight we need in our systems and applications to detect intrusions?

Data Collection

How do we collect data to support our visibility needs?

Data Analysis

How do we analyse the data for signs of intrusions?

Incident Response

What do we do when we discover an attack?

Intrusions defined

What is an intrusion? Or, when does it go from being an event to something more.

An intrusion or incident is an event on a host or network that violates security policy, or is an imminent threat to put a system in an unauthorized state.

Not all **intrusion attempts** are successful, not all **intrusions** lead to **compromise**. The criticality of an intrusion/incident depends, on the stage in which it was discovered (anything non-targeted before Initial Access is borderline relevant), on the systems affected, the accounts compromised, the type of adversary, their motivation, and more.

Is this an incident?

[**] IIS vti inf access attempt [**]

10/10-22-10:17:13 63.209.91.31:4791 -> 84.2.3.13:80

TCP TTL:116 TOS:0x0 ID:6075 DF

***PA* Seq:0x1CB4699 Ack:0x2AE6F9 Win:0x217C

[Mon Oct 10 10:17:13 2022] [error] [client 63.209.91.31]

File does not exist: /usr/local/apache/htdocs/ vti inf.html

[Mon Oct 10 10:17:14 2022] [error] [client 63.209.91.31]

File does not exist: /usr/local/apache/htdocs/_vti_bin/shtml.exe/_vti_rpc

← IDS alert

NIST Security Incident Handling process

National Institute of Standards and Technology U.S. Department of Commerce

Special Publication 800-61 Revision 2

Computer Security Incident Handling Guide

Recommendations of the National Institute of Standards and Technology

Paul Cichonski Tom Millar Tim Grance Karen Scarfone

Intrusions by the numbers

If or when?

"There are two kinds of companies.

There are those who've been hacked and those who don't know they've been hacked."

Former FBI Director, James Comey

Overall trends in Intrusion Detection

Figure 39. Discovery over time in breaches

Overall trends in Intrusion Detection

Intrusion Detection in Theory

True/false positive/negative

We have **events**, **sensors**, **HIDS** and **NIDS**: the **intrusion detection problem** is to determine whether an event is from a distribution of events of intruder behavior, or from a legitimate user distribution.

	intrusion	no intrusion			
alarm raised	True Positive (TP)	False Positive (FP)			
	intrusion detected	false alarm			
no alarm raised	False Negative (FN) intrusion missed	True Negative (TN) normal operation			

False positive rate	$FPR = \frac{FP}{(FP+TN)}$
True negative rate	TNR = 1 - FPR
False negative rate	FNR = 1 - TPR
True positive rate	$TPR = \frac{TP}{(TP+FN)}$
Alarm precision	$AP = \frac{TP}{(TP+FP)}$

Figure 11.1: IDS event outcomes (left) and metrics (right). FP and FN (yellow) are the classification errors. TPR is also called the *detection rate*.

Intrusion detection: approaches

IDS approach	Alarm when	Pros, cons, notes
signature-based	events match	signatures built from known attacks;
(expert defines	known-bad patterns	fast, accurate (fewer false positives);
malicious patterns)		detects only already-known attacks
specification-based	events deviate	manually developed spec of allowed;
(expert defines	from per-application	can detect new attacks;
allowed actions)	specifications of	no alarm on newly seen allowed event;
	legitimate actions	specs are protocol- or program-specific
anomaly-based	events deviate	need training period to build profiles;
(learning-based	from profiles	can detect new attacks;
profile of normal)	of normal	false alarms (abnormal may be benign);
		accuracy depends on features profiled

Table 11.1: IDS methodologies. Signature-based approaches use expert-built patterns (manual denylists). Specification approaches use expert-built specs (manual allowlists). Anomaly approaches define "normal" behavior from training data (empirical allowlists).

Intrusion Detection in Practice

Nmap

Snort

Bro/Zeek

Scanning

nmap

-sS (TCP SYN)

-sT (TCP connect)

nmap 127.0.0.1

nmap -sT 127.0.0.1

nmap -sT -O 127.0.0.1

nmap -sV -p 80,443 127.0.0.1

nmap -sV -script=vulnscan 127.0.0.1

Scanning

Echo request

Echo reply

Port scanning

DATA

Port open!

SYN SYN-ACK

Port closed!

SYN

Blocked by firewall?

SYN

Port open!

UDP

UDP

UDP

Port closed (blocked by firewall?)!

UDP

ICMP port unreachable

Port closed or blocked by firewall or port open but expecting specific data?

UDP

Snort

Snort rule to detect the packet used to exploit a vulnerability in CVS.

alert tcp \$EXTERNAL_NET any -> 130.225.254.12 2401 (msg:"CVS server heap overflow attempt"; flow:to_server,established; content:"|45 6e 74 72 79 20 43 43 43 43 43 43 43 43 43 43 43 43 2f 43 43|"; offset:0; depth:20; dsize: >512; threshold: type limit, track by_dst, count 1, seconds 60; sid:1000000; rev:1; classtype:attempted-admin;)

Example: Files sent over the network

Intrusion Detection in Even More Practice

Where should we focus?

Visibility

Q: What is the right level of insight we need in our systems and applications to detect intrusions?

A: Study how hackers actually hack: The Cyber Kill Chain:

MITRE ATT&CK

The Cyber Kill Chain is a good resource, but somewhat high-level. MITRE ATT&CK to the rescue:

ATT&CK Matrix for Enterprise											
Initial Access	Execution	Persistence	Privilege Escalation	Defense Evasion	Credential Access	Discovery	Lateral Movement	Collection	Command and Control	Exfiltration	Impact
Drive-by Compromise	AppleScript	.bash_profile and .bashrc	Access Token Manipulation	Access Token Manipulation	Account Manipulation	Account Discovery	AppleScript	Audio Capture	Commonly Used Port	Automated Exfiltration	Data Destruction
Exploit Public-Facing Application	CMSTP	Accessibility Features	Accessibility Features	Binary Padding	Bash History	Application Window Discovery	Application Deployment Software	Automated Collection	Communication Through Revnovable Media	Data Compressed	Data Encrypted fo
External Remote Services	Command-Line Interface	Account Manipulation	AppCert DLLs	AITS Jobs	Brute Force	Browser Bookmark Discovery	Distributed Component Object Model	Clipboard Data	Connection Proxy	Data Encrypted	Defacement
Hardware Additions	Compiled HTML File	AppCert DLLs	Applnit DLLs	Bypass User Account Control	Credential Dumping	Domain Trust Discovery	Exploitation of Remote Services	Data from Information Repositories	Sustom Command and Control Protocol	Data Transfer Size Limits	Disk Content Wip
Replication Through Removable Media	Control Panel Items	Applnit DLLs	Application Shimming	Clear Command History	Credentials in Files	File and Directory Discovery	Logon Scripts	Data from Local System	Custom Cryptographic Protocol	Exfiltration Over Alternative Protocol	Disk Structure Wi
Spearphishing Attachment	Dynamic Data Exchange	Application Shimming	Bypass User Account Control	CMSTP	Credentials in Registry	Network Service Scanning	Pass the Hash	Data from Network Shared Drive	Data Encoding	Exfiltration Over Command and Control Channe	Endpoint Denial of Service
Spearphishing Link	Execution through API	Authentication Package	DL' Search Order Nijacking	Code Signing	Exploitation for Credential Access	Network Share Discovery	Pass the Ticket	Data from Removable Media	Data Obfuscation	Exfiltration Over Other Wetwork Medium	Firmware Corrupt
Spearphishing via Service	Execution through Module Load	BITS Jobs	Dylib Hijacking	Compile After Delivery	Forced Authentication	Network Sniffing	Remote Desktop Protocol	Data Staged	Domain Fronting	Exfiltration Over Physical Medium	Inhibit System Recovery
Supply Chain Compromise	Exploitation for Client Execution	Bootkit	Exploitation for Privilege Escalation	Compiled HTML File	Hooking	Password Policy Discovery	Remote File Copy	Email Collection	Domain Generation Algorithms	Scheduled Transfer	Network Denial of Service
Trusted Relationship	Graphical User Interface	Browser Extensions	Extra Window Memory Injection	Component Firmware	Input Capture	Peripheral Device Discovery	Remote Services	Input Capture	Fallback Channels		Resource Hijackii
N-11-1 A			File System Permissions	Component Object Model	II DI	Daniela Carres Diagram	Replication Through	Mary In the December	Mark base Deserve		Runtime Data

Which ATT&CK Techniques to focus on?

All?

Or, some? And if so, then which?

Look at the evidence, i.e. tecniques observed in the wild – either by ourself or reported in freely available information aka (open source) threat intelligence.

For example, in their 2021 X-Force Threat Intelligence Index, IBM notes their observations on the Initial Access tactic:

Visibility

Possible data sources, include:

Initial Access: Scan and exploit

Initial Access: Phishing

Initial Access: Credential theft

Example mail server log

```
2022-10-10T11:29:49 0000000Z,user@company.com,UserLoggedIn,[Details]  
2022-10-10T11:31:34 0000000Z,user@company.com,UserLoggedIn,[Details]  
2022-10-10T11:31:42.0000000Z,user@company.com,FilePreviewed,[Details]  
2022-10-10T11:31:45.0000000Z,user@company.com,UserLoggedIn,[Details]  
2022-10-10T11:31:47.0000000Z,user@company.com,UserLoggedIn,[Details]  
2022-10-10T11:32:44.0000000Z,user@company.com,UserLoggedIn,[Details]  
2022-10-10T11:32:54.0000000Z,user@company.com,UserLoggedIn,[Details]  
2022-10-10T11:42:30.0000000Z,user@company.com,Set-Mailbox,[Details]  
2022-10-10T11:49:33.0000000Z,user@company.com,New-InboxRule,[Details]  
2022-10-10T11:55:24.0000000Z,user@company.com,UserLoggedIn,[Details]
```

Example web server log

```
[Oct 1 12:47:57 2022] 87.118.116.103:46928 [200]: /pressroom.php
[Oct 1 12:47:57 2022] 87.118.116.103:46930 [404]: /favicon.ico - No such file or directory
[Oct 1 12:47:57 2022] Notice: Undefined index: tag in /tmp/php/pressroom.php on line 17
[Oct 1 12:48:05 2022] 87.118.116.103:46932 [200]: /pressroom.php?tag=news
[Oct 1 12:48:14 2022] 87.118.116.103:46934 [200]: /pressroom.php?tag=events
[Oct 1 12:48:14 2022] 87.118.116.103:46936 [200]: /pressroom.php?tag=research
[Oct 1 12:48:18 2022] 87.118.116.103:46938 [200]: /pressroom.php?tag=foo
[Oct 1 12:48:18 2022] Notice: Non-existent tag requested: foo
[Oct 1 12:48:55 2022] 87.118.116.103:46946 [200]: /pressroom.php?tag=error.log
[Oct 1 12:49:10 2022] 87.118.116.103:46950 [200]: /pressroom.php?tag=../../etc/passwd
```

CVE-2021-41773 Apache path traversal

critical: Path traversal and file disclosure vulnerability in Apache HTTP Server 2.4.49 (CVE-2021-41773)

A flaw was found in a change made to path normalization in Apache HTTP Server 2.4.49. An attacker could use a path traversal attack to map URLs to files outside the directories configured by Alias-like directives.

If files outside of these directories are not protected by the usual default configuration "require all denied", these requests can succeed. If CGI scripts are also enabled for these aliased pathes, this could allow for remote code execution.

This issue is known to be exploited in the wild.

This issue only affects Apache 2.4.49 and not earlier versions.

Acknowledgements: This issue was reported by Ash Daulton along with the cPanel Security Team

Reported to security team	2021-09-29
fixed by r1893775 in 2.4.x	2021-10-01
Update 2.4.50 released	2021-10-04
Affects	2.4.49

Example DNS log

```
30-09-2022 01:29:55 UDP Rcv 10.232.65.43
                                            0 (3)www(7)qstatic(3)com(0)
30-09-2022 01:29:55 UDP Snd 10.232.65.43
                                          R Q (3)www(7)gstatic(3)com(0)
30-09-2022 01:29:55 UDP Rcv 10.201.120.30
                                            Q (5)login(4)live(3)com(0)
30-09-2022 01:29:55 UDP Snd 10.201.120.30 R 0 (5)login(4)live(3)com(0)
30-09-2022 01:29:55 UDP Rcv 10.230.20.106
                                            Q (2)gg(6)google(3)com(0)
30-09-2022 01:29:55 UDP Snd 10.230.20.106 R Q (2)qq(6)qoogle(3)com(0)
30-09-2022 01:29:55 UDP Rcv 10.201.100.45
                                           0 (4)pool(3)ntp(3)org(0)
30-09-2022 01:29:55 UDP Snd 10.201.100.45 R Q (4)pool(3)ntp(3)org(0)
30-09-2022 01:29:55 UDP Rcv 10.201.100.65
                                           0 (5) vahoo(3) com(0)
30-09-2022 01:29:55 UDP Snd 10.201.100.65 R Q (5)yahoo(3)com(0)
```

Example DHCP log

```
10,2022/09/09,08:30:01,Assign,10.201.22.101,WS10012A,8c164566564e
10,2022/09/09,08:33:12,Assign,10.201.22.108,WS10022A,8c1645665a4b,
10,2022/09/09,08:33:55,Assign,10.201.22.109,WS10052A,8c164566779e,
10,2022/09/09,08:34:01,Assign,10.201.22.110,WS10044A,8c164566464c,
11,2022/09/09,08:34:32,Renew,10.201.22.122,VM10081A,005056c00001,
10,2022/09/09,08:34:34,Assign,10.201.22.130,WS10012A,8c16456651aa
11,2022/09/09,08:35:45,Renew,10.201.22.133,VM10110A,005056cee001,
10,2022/09/09,08:35:53,Assign,10.201.22.134,WS10072A,8c16456ab1a4b,
12,2022/09/09,08:37:01,Release,10.201.22.110,WS10048A,8c16456694c,
10,2022/09/09,08:37:10,Assign,10.201.22.110,WS10097A,8c164561239e,
```

Example firewall log

```
Mar 1 11:28:47 Built inbound UDP id 4253 from 192.38.84.35/7179 to 130.226.237.14/53
Mar 1 11:28:47 Teardown TCP id 4198 duration 0:00:00 bytes 7194 TCP FINs from in
Mar 1 11:28:47 Deny TCP from 10.150.96.249/54735 to 130.226.237.153/4433 flags RST ACK
Mar 1 11:28:47 Built inbound UDP id 4254 from 192.38.84.42/61918 to 130.226.237.14/53
Mar 1 11:28:47 Built inbound UDP id 4257 from 10.202.55.102/64651 to 130.226.237.14/53
Mar 1 11:28:47 Built outbound UDP id 4259 from 130.226.142.7/53 to 130.226.237.14/20238
Mar 1 11:28:47 Built inbound UDP id 4258 from 10.202.55.21/53921 to 130.226.237.14/53
Mar 1 11:28:47 Built outbound UDP id 4255 from 130.226.237.173/53 to 130.226.237.14/27800
Mar 1 11:28:47 Teardown TCP id 4210 duration 0:00:00 bytes 0 TCP FINs
Mar 1 11:28:47 Built inbound id 4260 TCP from 10.209.100.121/62921 to 130.226.237.153/4433
```

Example firewall log

```
Jun 4 14:23:01 src=192.168.30.143 dst=46.30.215.95 tcp spt=42449 dpt=80 len=60 syn [Details]
Jun 4 14:23:01 src=46.30.215.95 dst=192.168.30.143 tcp spt=80 dpt=42449 len=60 ack syn [Details]
Jun 4 14:23:01 src=192.168.30.143 dst=46.30.215.95 tcp spt=42449 dpt=80 len=52 ack [Details]
Jun 4 14:23:01 src=192.168.30.143 dst=46.30.215.95 tcp spt=42449 dpt=80 len=39 ack psh [Details]
Jun 4 14:23:01 src=46.30.215.95 dst=192.168.30.143 tcp spt=80 dpt=42449 len=52 ack [Details]
Jun 4 14:23:01 src=46.30.215.95 dst=192.168.30.143 tcp spt=80 dpt=42449 len=67 ack psh [Details]
Jun 4 14:23:01 src=192.168.30.143 dst=46.30.215.95 tcp spt=42449 dpt=80 len=52 ack [Details]
Jun 4 14:23:01 src=46.30.215.95 dst=192.168.30.143 tcp spt=80 dpt=42449 len=64 ack psh [Details]
Jun 4 14:23:01 src=46.30.215.95 dst=192.168.30.143 tcp spt=80 dpt=42449 len=62 ack [Details]
Jun 4 14:23:01 src=192.168.30.143 dst=46.30.215.95 tcp spt=42449 dpt=80 len=52 ack [Details]
Jun 4 14:23:01 src=46.30.215.95 dst=192.168.30.143 tcp spt=80 dpt=42449 len=62 ack [Details]
Jun 4 14:23:01 src=46.30.215.95 dst=192.168.30.143 tcp spt=80 dpt=42449 len=52 ack [Details]
Jun 4 14:23:01 src=46.30.215.95 dst=192.168.30.143 tcp spt=80 dpt=42449 len=52 ack [Details]
```

Example Windows server Security Log

```
Information 10-06-2021 05:00:00 Microsoft Windows security auditing. 4624 Logon
Information 10-06-2021 04:55:29 Microsoft Windows security auditing. 4625 Logon
Information 10-06-2021 04:55:27 Microsoft Windows security auditing. 4624 Logon
Information 10-06-2021 04:55:27 Microsoft Windows security auditing. 4624 Logon
Information 10-06-2021 04:55:27 Microsoft Windows security auditing. 4648 Logon
Information 10-06-2021 04:55:27 Microsoft Windows security auditing. 4673 Sensitive Privilege Use
Information 10-06-2021 04:55:27 Microsoft Windows security auditing. 4648 Logon
Information 10-06-2021 04:55:27 Microsoft Windows security auditing. 4648 Logon
Information 10-06-2021 04:55:27 Microsoft Windows security auditing. 4648 Logon
Information 10-06-2021 04:55:27 Microsoft Windows security auditing. 4673 Sensitive Privilege Use
Information 10-06-2021 04:55:10 Microsoft Windows security auditing. 4673 Sensitive Privilege Use
```

Indicators of compromise in Intrusion Detection

Indicators of compromise (IOCs)

Technical characteristics that identify a known threat, attacker methodology, or other evidence of compromise, e.g.:

C2 domains

IPs used in attack

Special GET requests

Malware file system locations

Malware hashes

Memory artifacts

Duqu IOCs

</IndicatorItem>

IOCs and "The Pyramid of Pain"

IOC (hash) strategy

```
Collect IOC file hashes
```

For each host in my network:

Calculate file hashes

Match against IOC list

Problems:

What if attacker updates the malware?

What if we get a match = IOC fidelity

Refined approach

Same as before but in stead of all files, calculate only for executables that **autostart**

Plus: Look for new entries or hosts with entries unlike most, i.e. **anomalies** instead of IOCs only

