Compsci 590T Homework 6

Student: Brian Sun, Collaborator: Thai On

1 Problem 1.a

After the algorithm terminate to show every student assign to best(s) we need to show there exist no student $s_i \in S_{sad}$, $S_{sad} \subseteq S$ such that $M(s_i) \neq best(s_i)$ which means there cannot exist a list of available hospital $H' \subseteq H \setminus M(s_i), h \in H'$ such that $h >_{s_i} M(s_i)$ and $s_i >_h M^{-1}(h)$

There will have four cases we need to consider if it can satisfy:

set $h_i \in H'$

For case 4:

- 1: $M^{-1}(h_j) >_{h_j} s_i \land M(s_i) \geq_{s_i} h_j$
- 2: $M^{-1}(h_j) >_{h_j} s_i \wedge M(s_i) <_{s_i} h_j$
- 3: $M^{-1}(h_j) <_{h_j} s_i \wedge M(s_i) \succeq_{s_i} h_j$ 4: $M^{-1}(h_j) <_{h_j} s_i \wedge M(s_i) <_{s_i} h_j$

 $(\star)best(s)$ is the hospital that s ranks highest amongst all of its valid hospitals

For both case 1 and 2:

if h_i rank it's current student more than s_i that means h_i is not valid, so no matter how s_i rank h_i , h_i will stick with $M^{-1}(h_i)$. Since there are no valid hospital other $M(s_i)$ therefore base on (\star) , $M(s_i) \simeq best(s_i)$ For case 3:

if there exist hospital that rank s_i higher than it's current student but s_i rank those hospital lower or equally to $M(s_i)$ which means $M(s_i)$ rank the highest amongst all the valid hospitals since there are no hospital has a higher ranking, so base on (\star) , $M(s_i)$ is $best(s_i)$

if there exist hospital that rank s_i higher than it's current student and s_i also rank those hospital higher than $M(s_i)$ which is a blocking pair, but this cannot happen since Gale-Shapley algorithm always return stable matching.

Overall there are no cases shows s_i can get assign a hospital that is not the highest rank amongst all of it's valid hospitals. Therefore s is match to best(s)

2 Problem 1.b

In the stable match M hospital h_i pair with student $s^* = M^{-1}(h_i)$ if $M^{-1}(h_i) \not\simeq worst(h_i)$ that means there exist student s, $s^* >_{h_i} s$ and (s, h_i) is in another stable match M'.

This cannot happen since in M we know s^*, h_i is the valid pair and base on Problem 1.a we know h_i is $best(s^*)$.

Therefore in M' if h got match with s that means s^* will match with some other hospital h_j and since h_j got match with s^* so h_j is a valid hospital for s^* , since $h_j \not\simeq best(s^*)$, so $h_i \succeq_{s^*} h_j$.

So we will have two cases:

- 1. $s^* >_{h_i} s$ and $h_i >_{s^*} h_j$
- 2. $s^* >_{h_i} s$ and $h_i \simeq_{s^*} h_j$

Case (1): Since we know: $s^* >_{h_i} s$ and $h_i >_{s^*} h_j$ so there will have a blocking pair.

Case (2): Gale-Shapley algorithm don't have randomize picking, therefore s^* will always pair with h_i under Gale-Shapley algorithm.

Therefore there are no student exist that is worse than s^* .

3 Problem 2.a

Assume it is not unique stable matching which:

There are at least 2 students have different hospital between match M and M'

Define S_{change} be the set of student who has different assign hospital between match M and M'

let s be the highest ranking student in S_{change}

In stable matching M student s will pair with h

In stable matching M' student s will pair with h'

Assume $h >_s h'$ then we know:

If M' happen there will have two possible reasons:

- 1. s want to pair with h, but h pair with the other student s' and h like s' more than s such that $s' >_h s$. So s has to pair with some other hospital h'.
- 2. h want to pair with s, but s pair with the other hospital h' and s like h' more than h such that $h' \succeq_s h$. Reason 1:

This cannot happen. Since for all students $s' \in S$, $s' >_h s$ has the same assign hospital between match M and M' therefore we know h cannot match with s'.

Reason 2:

this cannot happen if $h' >_s h$. This will have 2 cases which are:

a. $h' >_s h$ and $s >_{h'} s^*$

b. $h' >_s h$ and $s^* >_{h'} s$

Case (a): if this is true then in M, since student s pair with hospital h: (s,h) and h' pair with another student s^* : (s^*,h') . This will create a blocking pair since $h' >_s h$, and since s^* is in S_{change} so $s >_{h'} s^*$. Therefore case (a) cannot happen.

Case (b): we know $s^* >_{h'} s$ cannot happen base on reason 1. Which s must have higher ranking than s^* and bring back to case (a).

Therefore this instance is a unique stable matching since all the possible reasons to make multiple stable matching are not valid.

4 Problem 2.b

Base on question 1 we know:

- (\star) best(s) be the hospital that s ranks highest amongst all of its valid hospitals
- (\bullet) worst(s) be the least preferred hospital that could be assigned to s under some stable matching A: if student propose to hospital under G-S algorithm then student will get best(s) and hospital get worst(h). B: if hospital propose to student under G-S algorithm then hospital will get best(h) and student will get worst(s).
- 1. Set $M_{student}$ be the stable match for student propose to hospital under G-S algorithm and base on A and (\star) we know $s \in S$, $M_{student}(s) \geq_s M'(s)$ where $M_{student}(s)$ is the assign hospital to student s by $M_{student}$ and M'(s) is the assign hospital to student s by any stable match M'.
- 2. Set $M_{hospital}$ be the stable match for hospital propose to student under G-S algorithm and base on B and (\bullet) we know $s \in S$, $M_{hospital}(s) \leq_s M'(s)$ where $M_{hospital}(s)$ is the assign hospital to student s by $M_{hospital}$ and M'(s) is the assign hospital to student s by any stable match M'.

So base on 1. and 2. We know $M_{student}(s) \geq_s M'(s) \geq_s M_{hospital}$ where M'(s) is the assign hospital to student s by any stable match M'. Given $M_{student} = M_{hospital}$ then we got $M_{student}(s) \geq_s M'(s) \geq_s M_{hospital}(s) = M_{student}(s)$. Therefore $M_{student} = M'$ so the stable matching is unique.

5 Problem 3

The least number should be 2 student and 2 hospital. Because if you have 2 student and 1 hospital or 1 student and 2 hospital then one student or hospital will left out. As well as 1 student and 1 hospital both student and hospital only have one choice.

An example for 2 student and 2 hospital will be:

$$s_a: h_a > h_b$$
 $h_a: s_b > s_a$
 $s_b: h_b > h_a$ $h_b: s_a > s_b$

Run G-S algorithm with student propose to hospital we got:

$$M: (s_a, h_a), (s_b, h_b)$$

Run G-S algorithm with hospital propose to student we got:

$$M': (s_a, h_b), (s_b, h_a)$$

Since G-S algorithm return stable matching and M and M' are different therefore this instance gives more than one stable matching.

6 Problem 4

Stable matching is not always exist in this case for example:

$$s_a: s_b > s_c > s_d$$

$$s_b: s_c > s_a > s_d$$

$$s_c: s_a > s_b > s_d$$

$$s_d: s_a > s_a > s_c$$

We can have 3 possible matching:

1.
$$(s_a, s_b), (s_c, s_d)$$

$$2. (s_a, s_c), (s_b, s_d)$$

3.
$$(s_a, s_d), (s_b, s_c)$$

Matching (1.) is not a stable matching since $s_c >_{s_b} s_a$ and $s_b >_{s_c} s_d$ therefore s_b and s_c prefer each other more then their current partner so it's a blocking pair.

Matching (2.) is not a stable matching since $s_b >_{s_a} s_c$ and $s_a >_{s_b} s_d$ therefore s_a and s_b prefer each other more then their current partner so it's a blocking pair.

Matching (3.) is not a stable matching since $s_c >_{s_a} s_d$ and $s_a >_{s_c} s_b$ therefore s_a and s_c prefer each other more then their current partner so it's a blocking pair.

7 Problem 5.a

Base on the question we know both M and M' are valid stable matching and every student $s \in S$ has to pick between M(s) and M'(s) therefore we know every student will have a hospital to pair with.

To make sure this the out put is a stable matching we have to make sure: 1. there are no student causing a blocking pair. 2. There exist no student pair with two hospitals or a hospital pair with two students.

1. Assume the match from $M \vee M'$ has (s,h) and there exist a student s_i that he prefer $h >_{s_i} M \vee M'(s_i)$ and h prefer s_i more than s as well. Since (s,h) happen therefore we know it's either in M or M' and since s_i want h more than the option in M and M' which will create a blocking pair in the match where (s,h) at. Since both M and M' are stable matching, therefore this situation cannot happen.

2. For example $M \vee M'(s) = h$ and $M \vee M'(h) = s'$ cannot happen, because this situation create a blocking pair.

Base on the example we know there will have two possible pair: (s,h) and (s',h). Since we know M and M' both are stable matching therefore (s,h) is happen in either M or M' and (s',h) is happen in the other one.

Since we know $M \vee M'(h)$ is h less preferred student between M and M' therefore $s >_h s'$. We also know $M \vee M'(s)$ is s more preferred hospital between M and M' therefore $h >_s h'$ Since $s >_h s'$ and $h >_s h'$ therefore $M \vee M'(s) = h$ and $M \vee M'(h) = s'$ cannot happen.

8 Problem 5.b

 $M \geqslant M'$ or $M' \geqslant M$ is not true. For example:

$$\begin{array}{lll} s_1:h_2>h_1>h_3>h_4 & & h_1:s_1>s_2>s_3>s_4\\ s_2:h_1>h_2>h_3>h_4 & & h_2:s_2>s_1>s_3>s_4\\ s_3:h_3>h_4>h_1>h_2 & & h_3:s_4>s_3>s_1>s_2\\ s_4:h_4>h_3>h_1>h_2 & & h_4:s_3>s_4>s_1>s_2 \end{array}$$

Base on this instance we define:

$$M = (s_1, h_2)(s_2, h_1)(s_3, h_4)(s_4, h_3)$$

$$M' = (s_1, h_1)(s_2, h_2)(s_3, h_3)(s_4, h_4)$$

M is a stable matching since s_1, s_2, h_3, h_4 got their first choice. And both s_3, s_4 prefer h_3, h_4 more than h_1, h_2 therefore M is a stable matching since there are no blocking pair.

M' is a stable matching since s_3, s_4, h_1, h_2 got their first choice. And both s_1, s_2 prefer h_1, h_2 more than h_3, h_4 therefore M is a stable matching since there are no blocking pair.

So base on M and M' we know s_1, s_2 prefer M and s_3, s_4 prefer M' therefore $M \ge M'$ or $M' \ge M$ is not true.

9 Problem 5.c

 $M_{student}$ be the stable match of student propose to hospital under G-S algorithm. $M_{hospital}$ be the stable match of hospital propose to student under G-S algorithm.

Define C be the set of all stable matching.

set $M' \in C \setminus M_{hospital}$ be the lowest one from student perspective such that $\forall M \in C \setminus (M', M_{hospital}), M \succeq_s M'$.

Base on lattice structure $M \vee M'$ student will always pick the better one.

Therefore the best case scenario will be $M^* \vee M_{student}$, $M^* \in C$. Since $M_{student}$ return best(s), so there are no stable match that is better than $M_{student}$. And base on the definition of $M \vee M'$ the outcome of $M^* \vee M_{student}$ will be $M_{student}$.

The worst case scenario will be $M' \vee M_{hospital}$. Since $M_{hospital}$ return the worst(s), so there are no stable match that is worst than $M_{hospital}$. And base on the definition of $M \vee M'$ the outcome of $M' \vee M_{hospital}$ will be M'.