

Biodiversity in National Parks

Data Analysis Capstone Project Paul Kim 10/11/2020

Background

- For this project, we were to act as a data analyst for the National Park Service. We were to help them analyze data on endangered species from several different parks.
- One of the main asks was to analyze whether there are any patterns or themes to the types of species that become endangered.
- The source of the data to be analyzed: 'species_info.csv'
- The file includes categories of species, their scientific and common names, and conservation status
- The different categories include: mammals, birds, reptiles, amphibians, fish, vascular and nonvascular plants
- There are a total of 5541 different species (scientific and common names)
- Majority of species fall under the conservation status of No Intervention

The conservation status of the species

scientific_name	conservation_status	
15	Endangered	0
4	In Recovery	1
5363	No Intervention	2
151	Species of Concern	3
10	Threatened	4

 After analyzing the data using Panda Python library and visualizing the results in Matplotlib, approximately 97% of all the species in national parks do not require any protection.

Percentage of Endangered Species

	category	not_protected	protected	percent_protected
0	Amphibian	72	7	0.088608
1	Bird	413	75	0.153689
2	Fish	115	11	0.087302
3	Mammal	146	30	0.170455
4	Nonvascular Plant	328	5	0.015015
5	Reptile	73	5	0.064103
6	Vascular Plant	4216	46	0.010793

- The number and percentage of species that are protected were found by finding species that were NOT labeled with 'No Intervention'
- Based on the output, it seems, for example, that Mammal is more likely to be endangered than Amphibians (17% protected vs. 8.8% respectively).

Chi Square Significance Test

- We used a Chi Square significance test to verify the hypothesis that mammals are more likely to be endangered than birds
- When comparing two pieces of categorical data, a Chi Square test is a good method to utilize
- The first test (screenshot 1) shows a pvalue > 0.05, thus the difference between Mammal and Bird categories is NOT significant
- The second test (screenshot 2) shows a pvalue < 0.05, thus the difference between Mammal and Reptile IS significant

Recommendation

- Based on the results, I would advise the conservations to focus their efforts on Mammals instead of Reptiles
- Similarly, Birds show to be the second most endangered categories shadowing Mammals
- Even though 97% of the species do not require protection, special attention should be placed to the vulnerable species (that 3%) to preserve their existence

Sheep in National Parks

- Another dataset that was analyzed is from: 'observations.csv'
- This dataset contained the number of observations of the species in each National Park that was used in the previous graphs
- The below graph illustrates the amount of observations of sheep in each National Park per week

Sheep in National Parks

- Three type of sheep species were identified in the observed ata:
 - Ovis aries = Domestic Sheep, Mouflon, Red Sheep, Sheep (Feral)
 - Ovis canadensis = Bighorn Sheep
 - Ovis canadensis sierrae = Sierra
 Nevada Bighorn Sheep
- Based on the data set, we found that 15% of the sheep at Bryce National Park have foot and mouth disease
- Park Rangers at Yellowstone National Park have been trying to reduce the rate of disease in their park
- The scientists want to test whether the program is working
- They want to be able to detect reductions >= 5% points

park_name	observations
Bryce National Park	250
Great Smoky Mountains National Park	149
Yellowstone National Park	507
Yosemite National Park	282
	Bryce National Park Great Smoky Mountains National Park Yellowstone National Park

Sheep in National Parks - Sample size

- To determine the sample size, we were instructed to use the Codcademy sample size calculator found here:
 - https://s3.amazonaws.com/codecademy-content/courses/learn-hypothesis-testing/a_b_s ample_size/index.html
- Inputs for the calculation, as follows:
 - Baseline conversion rate = 15%
 - Statistical significance = 90%
 - o Minimum detectable effect = 5 * 100/15 = 33.3%
- The sample size produced = 870
- Taking this sample size and the table from the previous slide, the number of weeks to observe enough sheep was calculated for Bryce National Park and Yellowstone National Park:
 - Bryce National Park = 870 / 250 = 3.48
 - Yellowstone National Park = 870 / 507 = 1.71

THANK YOU!