4 Ergänzungen

4.1 Die homotope Version des Cauchyschen Integralsatzes

Definition 4.1. Seien X ein normierter Vektorraum, $D \subseteq X$ offen und $\Gamma_0, \Gamma_1 \subseteq D$ stetige geschlossene Wege mit Parametrisierungen $\gamma_0, \gamma_1 \in C([a, b], X)$. Die Wege Γ_0 und Γ_1 heißen homotop über D, wenn es eine Funktion $h \in C([0, 1] \times [a, b], X)$ gibt, so dass

$$h(s,t) \in D$$
, $h(0,t) = \gamma_0(t)$, $h(1,t) = \gamma_1(t)$
und $h(s,a) = h(s,b) \quad \forall (s,t) \in [0,1] \times [a,b]$.

Die Funktion h heißt dann Homotopie und man schreibt

$$\Gamma_0 \sim \Gamma_1 \text{ oder } \gamma_0 \sim \gamma_1.$$

Falls dabei $\Gamma_1 = \{x_0\}$, also $\gamma_1(t) = x_0$ für alle $t \in [a, b]$ und ein $x_0 \in D$, so heißt Γ_0 nullhomotop, und man schreibt $\Gamma_0 \sim 0$. Wenn alle geschlossenen Wege nullhomotop sind, dann heißt D einfach zusammenhängend.

Beispiel 4.2. (a) Seien $\Gamma_i = \partial B(0, r_i)$ mit

$$\gamma_j(t) = r_j e^{it}, \quad t \in [0, 2\pi], \quad j = 0, 1, \quad 0 < r_0 < r_1, \quad D = \mathbb{C} \setminus \{0\}.$$

Dann sind die Kreislinien Γ_0 und Γ_1 über D homotop mit

$$h(s,t) = (sr_1 + (1-s)r_0)e^{it}$$
 für $s \in [0,1], t \in [0,2\pi].$

(b) Jedes sternförmige Gebiet D mit Zentrum x_0 ist einfach zusammenhängend. Eine geschlossene Kurve Γ kann dabei mittels der Homotopie

$$h(s,t) = (1-s)\gamma(t) + sx_0 \in \overrightarrow{\gamma(t)x_0} \subseteq D$$

auf dem konstanten Weg $\{x_0\}$ zusammengezogen werden.

4 Ergänzungen

(c) Das Gebiet $D = \mathbb{C} \setminus \{0\}$ ist einfach zusammenhängend. Dabei ist der Weg $\Gamma_0 = \partial \mathbb{D}$ über D weder zu $\Gamma_1 = \{1\}$ noch zu $\Gamma_2 = \partial B(2,1)$ homotop. Es gilt aber $\Gamma_1 \sim \Gamma_2$.

(d) Das Gebiet $D = \mathbb{D} \setminus (\mathrm{i}(-1,0) \cup [-\frac{1}{2},\frac{1}{2}])$ ist einfach zusammenhängend, aber nicht sternförmig.

Theorem 4.3 (Homotope Version des Cauchyschen Integralsatzes). Seien $D \subseteq \mathbb{C}$ ein Gebiet, $f \in H(D)$ und $\Gamma_0, \Gamma_1 \subseteq D$ geschlossene Kurven mit $\Gamma_0 \underset{D}{\sim} \Gamma_1$. Dann gilt:

$$\int_{\Gamma_0} f(z) \, \mathrm{d}z = \int_{\Gamma_1} f(z) \, \mathrm{d}z.$$

Insbesondere gilt

$$\int_{\Gamma_0} f(z) \, \mathrm{d}z = 0$$

für jede nullhomotope Kurve $\Gamma_0 \subseteq D$. Wenn D einfach zusammenhängend ist, folgt also

$$\int_{\Gamma} f(z) \, \mathrm{d}z = 0$$

für jede geschlossene Kurve Γ .

Bemerkung 4.4. (a) Theorem 2.23, 3.10, 3.16 und Korollar 3.17 gelten für alle nullhomotopen Kurven Γ in beliebigen Gebieten $G \subseteq \mathbb{C}$.

(b) Beispiel 4.2(c) folgt aus Theorem 4.3 für $f(z)=\frac{1}{z},\,z\in D=\mathbb{C}\setminus\{0\}.$ Denn

$$\int_{\partial D} \frac{1}{z} dz = 2\pi \neq 0 = \int_{\{1\}} \frac{1}{z} dz = \int_{\partial B(2,1)} \frac{1}{z} dz.$$

Beweis von 4.3. Seien $\gamma_0, \gamma_1 \colon [0,1] \to D$ Parametrisierungen von Γ_0 und Γ_1 (OBdA a = 0 und b = 1), $h \in C([0,1]^2, \mathbb{C})$ mit

$$h(s,t) \in D$$
, $h(j,t) = \gamma_j(t)$, $h(s,0) = h(s,1) \quad \forall 0 \le s, t \le 1$, $j = 0, 1$.

Da $[0,1]^2$ kompakt ist, ist $h([0,1]^2\subset D$ kompakt und h gleichmäßig stetig. Somit existiert ein $\varepsilon>0$ mit $B(z,\varepsilon)\subseteq D$ für alle $z\in h([0,1]^2)$ und es exisitert $\delta>0$ mit

$$|h(s,t) - h(s',t')| < \varepsilon,$$

falls $(t,s), (t',s') \in [0,1]^2$ mit

$$|t - t'|^2 + |s - s'|^2 < \delta^2.$$
 (*)

Wähle $n \in \mathbb{N}$ mit $\frac{\sqrt{2}}{n} < \delta$ und setze

$$z_{jk} = h\left(\frac{j}{n}, \frac{k}{n}\right) \in D, \quad j, k = 0, 1, \dots, n.$$

Beachte: $z_{jn} = h(\frac{j}{n}, 1) = h(\frac{j}{n}, 0) = z_{j0}$, $z_{0k} = h(0, \frac{k}{n}) = \gamma_0(\frac{k}{n})$ und $z_{nk} = h(1, \frac{k}{n}) = \gamma_1(\frac{k}{n})$. Weiter setzen wir

$$I_{jk} := \left[\frac{j}{n}, \frac{j+1}{n}\right] \times \left[\frac{k}{n}, \frac{k+1}{n}\right], \quad j, k = 0, \dots, n-1.$$

Mit (*) folgt $h(I_{jk}) \subseteq B(z_{jk}, \varepsilon) \subseteq D$, da der Durchmesser von $I_{jk} \frac{\sqrt{2}}{n}$ ist. Ferner, da jede Kugel konvex ist, liegt das Viereck V_{jk} mit den Ecken

$$z_{jk}, z_{jk+1}, z_{j+1k+1}, z_{j+1k} \in h(I_{jk})$$

in $B(z_{ik}, \varepsilon)$. Der Integralsatz liefert für $D = B(z_{ik}, \varepsilon)$

$$\int_{\partial V_{jk}} f(z) \, \mathrm{d}z. \tag{**}$$

Betrachte Polygonzüge P_j mit den Ecken

$$z_{i0} = z_{in}, z_{i1}, z_{i2}, \dots, z_{in-1}, \quad j = 0, \dots, n.$$

Behauptung 1: Für $j = 0, 1, \dots, n-1$ gilt $\int_{P_j} f(z) dz = \int_{P_{j+1}} f(z) dz$.

Behauptung 2:
$$\int_{\Gamma_0} f(z) dz = \int_{P_0} f(z) dz$$
, $\int_{\Gamma_1} f(z) dz = \int_{P_n} f(z) dz$.

Aus den Behauptungen 1 und 2 folgt das Theorem.

4.2 Laplace Transformationen

Sei $f: \mathbb{R}_+ \to \mathbb{C}$ lokal integrierbar, das heißt f ist messbar und |f| ist integrierbar auf allen Intervallen [0, b], b > 0. Weiter sei f auf einem Intervall $[t_0, \infty)$ exponentiell beschränkt, das heißt es gibt $M \ge 0$, $\omega \in \mathbb{R}$, $t_0 \ge 0$, so dass

$$|f(t)| \le M e^{\omega t} \qquad (\forall t \ge t_0).$$

Es sei $\omega(f)$ das Infimum der obigen ω ; $\omega(f)$ heißt exponentielle Wachstumsschranke.

Bemerkung. Für $f(t) = e^{-t^2}$ gilt $\omega(f) = -\infty$; für g(t) = t ist $\omega(g) = 0$ und das Infimum wird nicht angenommen; für $h(t) = e^{t^2}$ gilt $\omega(h) = \infty$ (stets $\forall t \geq 0$).

Beweis. Es gilt:

$$e^{-t^2} \le e^{\frac{\omega^2}{4}} e^{\omega t} \quad (\forall \omega \in \mathbb{R}, \ t \ge 0) \implies \omega(f) = -\infty.$$

Ferner:

$$t \le \frac{1}{e^{\omega}} \quad (\forall \omega > 0, \ t \ge 0) \implies \omega(g) \le 0.$$

Aber es gibt kein M > 0 mit $t \leq M$, für alle $t \geq 0$. Folglich ist $\omega(g) = 0$.

Die letzte Behauptung beweist man ähnlich.

Nach Beispiel 2.28 existiert die Laplacetransformation

$$(\mathcal{L}f)(\lambda) = \hat{f}(\lambda) := \int_0^\infty e^{-\lambda t} f(t) dt$$

für alle $\lambda \in \mathbb{C}$ mit $\operatorname{Re} \lambda > \omega(f)$ und \hat{f} ist auf

$$\{\lambda \in \mathbb{C} : \operatorname{Re} \lambda > \omega(f)\}\$$

holomorph. Weiter gilt:

$$\hat{f}^{(n)}(\lambda) = (-1)^n \int_0^\infty e^{-\lambda t} t^n f(t) \, dt = (-1)^n \mathcal{L}(q_n f)(\lambda) \qquad (\forall n \in \mathbb{N}), \tag{4.1}$$

wobei $q_n(t) = t^n$, Re $\lambda > \omega(f)$. Sei ferner $g: \mathbb{R}_+ \to \mathbb{C}$ lokal integrierbar mit $\omega(g) < \infty$. Seien $\alpha, \beta \in \mathbb{C}$. Dann gilt:

$$\omega(\alpha f + \beta g) \le \max\{\omega(f), \omega(g)\} < \infty$$

und

$$\mathcal{L}(\alpha f + \beta g) = \alpha \mathcal{L}(f) + \beta \mathcal{L}(g) \tag{4.2}$$

auf $\{\lambda : \operatorname{Re} \lambda > \max\{\omega(f), \omega(g)\}\}\$. Sei nun $f \in C^k(\mathbb{R}_+, \mathbb{C})$ mit

$$w := \max_{0 \le j \le k} \omega\left(f^{(j)}\right) \qquad (k \in \mathbb{N}_0).$$

Dann gilt

$$\mathcal{L}(f^{(k)})(\lambda) = \lambda^k \hat{f}(\lambda) - \sum_{j=0}^{k-1} \lambda^j f^{(k-j-1)}(0), \qquad \forall \operatorname{Re} \lambda > \omega.$$
(4.3)

Beweis. Für k = 1: Sei Re $\lambda > \omega$. Dann ist

$$\lambda \hat{f}(\lambda) = \lim_{b \to \infty} \int_0^b \underbrace{\lambda e^{-\lambda t}}_{= -\frac{d}{dt} e^{-\lambda t}} f(t) dt = \lim_{b \to \infty} \left(+ \int_0^b e^{-\lambda t} f'(t) dt + f(0) - e^{-\lambda b} f(b) \right) \stackrel{\text{Re } \lambda > \omega}{=} \mathcal{L}(f')(\lambda) + f(0),$$

wobei die partielle Integration mit (2.1) wie in Ana 1 gerechtfertigt werden kann. Der Rest der Behauptung folgt per Induktion.

Betrachte nun das Polynom $p(t) = a_n t^n + \dots + a_1 t + 1_0$ mit $a_0, \dots, a_n \in \mathbb{R}$, $a_n \neq 0$ und die Differentialgleichung

$$\begin{cases}
p\left(\frac{\mathrm{d}}{\mathrm{d}t}\right)(u) = a_n u^{(n)} + a_{n-1} u^{(n-1)} + \dots + a_1 u' + a_0 u = f, \ t \ge 0, \\
u(0) = u_0, \ u'(0) = u_1, \dots, u^{(n-1)}(0) = u_{n-1}.
\end{cases}$$
(4.4)

Dabei sind $u_0, \ldots, u_{n-1} \in \mathbb{R}$ und ein stetiges $f : \mathbb{R}_+ \to \mathbb{R}$ mit $\omega(f) < \infty$ gegeben.

Aus Analysis II wissen wir es gibt eine Lösung $u \in C^n(\mathbb{R}_+)$. Setze weiterhin

$$v(t) = (u(t), \dots, u^{(n-1)}(t)), \quad v_0 = (u_0, \dots, u_{n-1}), \quad g = (0, \dots, 0, f).$$

Dann exisitert eine Hauptfundamentallösung e^{tA} mit

$$v(t) = e^{tA}v_0 + \int_0^t e^{(t-s)A} f(s) ds, \qquad (t \ge 0).$$

Ferner existieren $M_1, M_2 \geq 0$ und $\omega_1, \omega_2 \in \mathbb{R}$ mit

$$\|e^{tA}\| \le M_1 e^{\omega_1 t}, \quad |g(t)|_2 \le M_2 e^{\omega_2 t}, \quad t \ge 0.$$

Sei $\omega = \max\{\omega_1, \omega_2\}$. Dann:

$$\left| u^{(k)}(t) \right| \leq |v(t)|_2 \leq M_1 e^{\omega_1 t} |v_0|_2 + \int_0^t M_2 e^{\omega_2 (t-s)} M_1 e^{\omega_1 s} ds
\leq M_1 |v_0|_2 e^{\omega t} + M_1 M_2 t e^{\omega t} \quad (k \in \{0, \dots, n-1\}, \ t \geq 0).$$

Mit (4.4) folgt die entsprechende Abschätzung für $u^{(n)}$. Also ist $\omega(u^{(k)}) \leq \omega$ für alle $k = 0, \ldots, n$, also sind alle Ableitungen exponentiell beschränkt.

Wende nun \mathcal{L} auf (4.4) für Re $\lambda > \omega$ an. Dann gilt:

wende
$$\operatorname{nun} \mathcal{L}$$
 auf (4.4) for $\operatorname{Re} \lambda > \omega$ and $\operatorname{Dahn girt.}$

$$\hat{f}(\lambda) = \mathcal{L}\left(p\left(\frac{\operatorname{d}}{\operatorname{d}t}\right)(u)\right)(\lambda) \stackrel{(4.2)}{=} \sum_{k=0}^{n} a_k \mathcal{L}\left(u^{(k)}\right)(\lambda) \stackrel{(4.3)}{=} \sum_{k=0}^{n} a_k \lambda^k \hat{u}(\lambda) - \underbrace{\sum_{k=1}^{n} \sum_{j=0}^{k-1} a_k \lambda^j \underbrace{u^{(k-j-1)}(0)}_{\stackrel{(4.4)}{=} u_{k-j-1}}}_{=:q(\lambda)}$$

. Also gilt $\hat{f} = p\hat{u} - q$ und somit

$$\hat{u}(\lambda) = \frac{1}{p(\lambda)}\hat{f}(\lambda) + \frac{q(\lambda)}{p(\lambda)} \tag{4.5}$$

für alle $\lambda \in \mathbb{C}$ mit Re $\lambda > \omega$, $p(\lambda) \neq 0$. Hierbei sind f, p und q gegeben! Es stellen sich noch folgende Fragen:

- 1) Wie kann man \hat{f} berechnen?
- 2) Existiert \mathcal{L}^{-1} ? Gibt es eine Formel?

Beispiel 4.5. (a) $f = \mathbbm{1}_{[a,b)}$ wobei $0 \le a < b \le \infty$. Für $b = \infty$ gilt

$$|f(t)| \le 1 \le e^{\omega t}, \quad \forall \omega > 0, \ t \ge 0$$

und

$$\nexists \omega \leq 0, \ M \geq 0 \text{ mit } |f(t)| \leq M e^{\omega t}, \quad \forall t \geq 0.$$

Folglich ist $\omega(f) = 0$. Für $b < \infty$ gilt

$$|f(t)| \le \left\{ \begin{array}{l} 1, \ t < b \\ 0, \ t \le b \end{array} \right\} \le e^{\omega b} e^{-\omega t} \quad (\forall t \ge 0, \ \omega \in \mathbb{R}).$$

Folglich ist $\omega(f) = -\infty$. Sei Re $\lambda > \omega(f)$. Dann:

$$\hat{f}(\lambda) = \int_0^\infty e^{-\lambda t} f(t) dt = \int_a^b e^{-\lambda t} dt = \begin{cases} b - a, & \text{falls } b < \infty, \\ \frac{1}{\lambda} (e^{-\lambda a} - e^{-\lambda b}), & b < \infty, \ \lambda \neq 0, \\ \frac{1}{\lambda} e^{-\lambda a}, & b = \infty. \end{cases}$$

Für $b = \infty$ hat \hat{f} also eine eindeutige holomorphe Fortsetzung auf $\mathbb{C} \setminus \{0\}$.

(b) $f(t)=t^m$ für festes $n\in\mathbb{N}$. Wie oben gilt $\omega(f)=0$. Sei Re $\lambda>0$. Dann:

$$\hat{f}(\lambda) = \mathcal{L}(q_n \mathbb{1}) \stackrel{\text{(4.1)}}{=} (-1)^n \hat{\mathbb{1}}(\lambda)^{(n)} \stackrel{\text{(a)}}{=} (-1)^n \left(\frac{\mathrm{d}}{\mathrm{d}\lambda}\right)^n \frac{1}{\lambda} = n! \ \lambda^{-(n+1)}$$

Folglich existiert keine holomorphe Fortsetzung auf $\mathbb{C} \setminus \{0\}$ mit Pol(n+1)ter Ordnung in o.

(c) $f(t) = e^{at} =: e_a(t)$ für festes $a \in \mathbb{C}$. Es gilt $\omega(f) = \operatorname{Re} a$. Für $\operatorname{Re} \lambda > \operatorname{Re} a$ gilt:

$$\hat{f}(\lambda) = \int_0^\infty e^{-\lambda t} e^{at} dt = \lim_{b \to \infty} \int_0^b e^{(a-\lambda)t} dt = \lim_{b \to \infty} \frac{e^{(a-\lambda)t}}{a-\lambda} \Big|_0^b = \frac{1}{\lambda - a}.$$

Also gibt es keine holomorphe Fortsetzung auf $\mathbb{C} \setminus \{0\}$.

Veralgemeinerung: Verschiebungsregel: Sei $a \in \mathbb{C}$, f mit $\omega(f) < \infty$, f lokal integrierbar. Sei Re $\lambda > \text{Re } a + \text{Re } \omega(f)$. Dann gilt:

$$\mathcal{L}(e_a f)(\lambda) = \int_0^\infty \underbrace{e^{-\lambda t} e^{at}}_{e^{-(\lambda - a)t}} f(t) dt = \hat{f}(\lambda - a). \tag{4.6}$$

(d) $f(t) = \cos(\alpha t)$ für festes $\alpha \in \mathbb{R}$. Dann ist

$$f = \frac{1}{2}(e_{i\alpha} + e_{-i\alpha})$$

und damit

$$\mathcal{L}(f) = \frac{1}{2} (\hat{\mathbf{e}}_{i\alpha} + \hat{\mathbf{e}}_{-i\alpha}) \stackrel{(c)}{=} \frac{1}{2} \left(\frac{1}{\lambda - i\alpha} + \frac{1}{\lambda + i\alpha} \right) = \frac{1}{\lambda^2 + \alpha^2}.$$

Hierbei ist $\omega(f) = 0$ und Re $\lambda > 0$. Weiter hat \hat{f} eine holomorphe Fortsetzung auf $\mathbb{C} \setminus \{\pm i\alpha\}$.

(e) $f(t) = t^{\alpha - 1}$, t > 0, f(0) = 0, wobei $\alpha > 0$ fest. Dann ist f integrierbar auf [0, b] für alle b > 0 und

$$|f(t)| \le 1, \quad \forall t \ge 1 \implies \omega(f) \le 0.$$

Es gilt ferner: $\omega(f) = 0$. Sei $\lambda > 0$. Dann gilt:

$$\hat{f}(\lambda) = \int_0^\infty e^{-\lambda t} t^{\alpha - 1} dt \stackrel{s = \lambda t}{=} \int_0^\infty e^{-s} \left(\frac{s}{\lambda}\right)^{\alpha - 1} \frac{1}{\lambda} ds = \lambda^{-\alpha} \Gamma(\alpha)$$

nach Beispiel 2.39. Die Formel gilt auf \mathbb{C}_+ (mit $\lambda^{-\alpha} = e^{-\alpha \log \lambda}$). Weiter hat \hat{f} eine holomorphe Fortsetzung auf $\Sigma_{\pi} = \mathbb{C} \setminus \mathbb{R}_-$.

(f) Sei f(t) = n für $t \in [n^2, (n+1)^2)$. Dann ist $\omega(f) = 0$. Sei Re $\lambda > 0$. Dann:

$$\hat{f}(\lambda) = \sum_{n=0}^{\infty} \int_{n^2}^{(n+1)^2} n e^{-\lambda t} dt = \frac{1}{\lambda} \left(\sum_{n=1}^{\infty} n e^{-n^2 \lambda} - \sum_{n=0}^{\infty} n e^{-(n+1)^2 \lambda} \right) \stackrel{j=n+1}{=} \frac{1}{\lambda} \sum_{j=1}^{\infty} e^{-j^2 \lambda}.$$

Remmert II, §11.2.4 liefert: Es gibt kein $iz \in i\mathbb{R}$, so dass \hat{f} eine holomorphe Fortsetzung auf eine Umgebung von iz hat (Kronecker).

Seien $f, g: \mathbb{R}_+ \to \mathbb{C}$ messbar mit

$$|f(t)| \le M_1 e^{\omega_1 t}, \quad |g(t)| \le M_2 e^{\omega_2 t}$$

für alle $t \geq 0$ und Konstanten $M_1, M_2 \geq 0$ und $\omega_1, \omega_2 \in \mathbb{R}$. Dann definieren wir die Faltung f * g durch:

$$(f * g)(t) = \int_0^t f(t - s)g(s) ds, \quad t \ge 0.$$

Diese ist integrierbar.

Beweis. Sei $\omega = \max\{\omega_1, \omega_2\}, \operatorname{Re} \lambda > \omega$. Setze $D = \{(s, t) \in \mathbb{R}^2 : 0 \le s \le t\}$. Dann:

$$\left| e^{-\lambda t} \mathbb{1}_D(s,t) f(t-s) g(s) \right| \le e^{-\operatorname{Re} \lambda t} \mathbb{1}_D(s,t) M_1 e^{\omega(t-s)} M_2 e^{\omega s} = e^{-t \operatorname{Re} \lambda} \mathbb{1}_D(s,t) M_1 M_2 e^{\omega t} =: \varphi(s,t).$$

Damit:

$$\int_{\mathbb{R}^2} \varphi(s,t) ds dt = \int_0^\infty t M_1 M_2 e^{(\omega - \operatorname{Re} \lambda)t} dt < \infty \qquad (\operatorname{Re} \lambda > \omega).$$

Also ist φ integrierbar auf \mathbb{R}^2 und somit auch die Faltung.

Für die Laplacetransformation der Faltung gilt dann:

$$\mathcal{L}(f * g)(t) = \int_{0}^{\infty} e^{-\lambda t} \int_{0}^{t} f(t - s)g(s) ds dt$$

$$\stackrel{\text{Fubini}}{0 \le s \le t < \infty} \int_{0}^{\infty} \int_{s}^{\infty} e^{-\lambda(t - s)} f(t - s)e^{-\lambda s} g(s) dt ds$$

$$\stackrel{t = r + s}{= t - s} \int_{0}^{\infty} e^{-\lambda r} \int_{0}^{\infty} e^{-\lambda r} f(r) dr ds = \hat{f}(\lambda)\hat{g}(\lambda)$$

$$(4.7)$$

für alle λ mit Re $\lambda > \max \{\omega_1, \omega_2\}$.

Erinnerung: Sei $J \subseteq \mathbb{R}$ ein Intervall. Eine Nullmenge $N \subseteq J$ ist eine Borelmenge mit

$$\int_N dx = \int_J \mathbb{1}_N(x) dx = 0.$$

Man sagt, dass $f,g\colon J\to\mathbb{C}$ fast überall gleich sind, wenn es eine Nullmenge $N\subseteq J$ gibt mit f(t)=g(t) für alle $t\in J\setminus N$. Eine Nullmenge kann kein Intervall mit Länge >0 enthalten (*). Wenn $\varphi\in C^1(J)$, dann ist auch $\varphi(N)$ eine Nullmenge (vgl. Analysis 3, Lem. 3.33 oder Übung 3.2).

Theorem 4.6 (Eindeutigkeitssatz für die Laplacetransformation). Seien $f, g: \mathbb{R}_+ \to \mathbb{C}$ messbar und es gebe Konstanten $M \geq 0$ und $\omega \in \mathbb{R}$ mit $|f(t)|, |g(t)| \leq Me^{\omega t}$ für alle $t \geq 0$. Weiter gebe es Zahlen l > 0 und $\lambda_0 \geq \omega + l$, sodass $\hat{f}(\lambda_n) = \hat{g}(\lambda_n)$ für alle $\lambda_n = \lambda_0 + nl$ gilt, $n \in \mathbb{N}_0$. Dann ist f = g fast überall und f(t) = g(t) für alle gemeinsamen Stetigkeitsstellen $t \geq 0$ von f und g.

Beweis. Setze h = f - g (das ist messbar). Es gilt $|h(t)| \le 2Me^{\omega t}$ für alle $t \ge 0$ und $\hat{h}(\lambda_n) = \hat{f}(\lambda_n) - \hat{g}(\lambda_n) = 0$ für alle $n \in \mathbb{N}_0$. Damit folgt

$$0 = \int_0^\infty e^{-nlt} e^{-\lambda_0 t} h(t) dt.$$

Nun machen wir eine Transformation $\tau = e^{-lt} \iff t = -\frac{\ln \tau}{l}, \frac{d\tau}{dt} = -le^{-lt} = -l\tau$:

$$0 = \int_0^1 \tau^n \underbrace{e^{\frac{\lambda_0}{l} \ln \tau} h\left(-\frac{\ln \tau}{l}\right) \frac{1}{l\tau}}_{=:\varphi(\tau), \ 0 < \tau \le 1} d\tau.$$

Beachte: φ ist messbar, $\varphi \leq \frac{1}{l\tau} \mathrm{e}^{\frac{\lambda_0}{l} \ln \tau} 2M \mathrm{e}^{-\omega \frac{\ln \tau}{l}} = \frac{M}{l} \tau^{\frac{\lambda_0}{l} - \frac{\omega}{l} - 1} \leq \frac{M}{l}$, da $0 < \tau \leq 1$ und $\lambda_0 - \omega \geq l$. Lemma 4.7 zeigt dann, dass $\varphi = 0$ fast überall $\Longrightarrow h = 0$ fast überall $\Longrightarrow f = g$ fast überall.

Sei t eine gemeinsame Stetigkeitsstelle von f und g und $N \subseteq \mathbb{R}_+$ eine Nullmenge mit f(s) = g(s) für alle $s \in \mathbb{R}_+ \setminus N$. Nach (*) existiert eine Folge $t_n \to t$ mit $t_n \in \mathbb{R}_+ \setminus N \implies f(t_n) = g(t_n)$ für alle $n \in \mathbb{N}$. Mit $n \to \infty$ folgt f(t) = g(t).

Lemma 4.7. Sei $\varphi \in L^2((0,1))$ mit $\int_0^1 t^n \varphi(t) dt = 0$ für alle $n \in \mathbb{N}_0$. Dann ist $\varphi = 0$ fast überall.

Beweis. Sei $\varepsilon > 0$. Nach dem Approximationssatz von Weierstrass (Analysis 3) existieren Polynome p_1, p_2 mit $\|\operatorname{Re} \varphi - p_1\|_{\infty} \le \varepsilon \|\operatorname{Im} \varphi - p_2\|_{\infty} \le \varepsilon$. Setze $p = p_1 + \mathrm{i} p_2$. Dann ist $\|\varphi - p\|_{\infty} = \|\operatorname{Re} \varphi - p_1 + \mathrm{i}(\operatorname{Im} \varphi - p_2)\|_{\infty} \le 2\varepsilon$. Sei etwa $p(t) = \sum_{k=0}^m b_k t^k$. Dann: