Efekt Rungego

Zadanie 1. Napisz funkcję, która przyjmuje jako parametr wektor punktów x_0, \ldots, x_n z przedziału [-1,1] i tworzy wykres z punktami x_j na osi odciętych i średnią geometryczną odległości do pozostałych punktów na osi rzędnych. Wyświetl wyniki dla:

- punktów Czebyszewa dla n=10,20,50
- punktów Legendre'a dla n = 10, 20, 50
- punktów równomiernie rozmieszczonych od $x_0 = -1$ do $x_n = 1$ dla n = 10, 20, 50.

Punkty Legendre'a to zera wielomianów Legendre'a – pomocna może być funkcja numpy.polynomial.legendre.legroots.

Zadanie 2. Wyznacz wielomiany interpolujące funkcje

$$f_1(x) = \frac{1}{1 + 25x^2}$$
 na przedziale $[-1, 1]$,

$$f_2(x) = \exp(\cos(x))$$
 na przedziale $[0, 2\pi]$,

używając:

- wielomianów Lagrange'a z równoodległymi węzłami
- kubicznych funkcji sklejanych z równoodległymi węzłami
- wielomianów Lagrange'a z węzłami Czebyszewa

$$x_j = -\cos(\theta_j) \quad \theta_j = \frac{2j-1}{2n}\pi, \ 1 \le j \le n.$$
 (1)

(a) Dla funkcji Rungego, $f_1(x)$, z n=12 węzłami interpolacji przedstaw na wspólnym wykresie funkcję $f_1(x)$ oraz wyznaczone wielomiany interpolacyjne i funkcję sklejaną. W celu stworzenia wykresu wykonaj próbkowanie funkcji $f_1(x)$ i wielomianów interpolacyjnych na 10 razy gęstszym zbiorze (próbkowanie jednostajne w x dla węzłów równoodległych, jednostajne w θ dla węzłów Czebyszewa). Pamiętaj o podpisaniu wykresu i osi oraz o legendzie.

(b) Wykonaj interpolację funkcji $f_1(x)$ i $f_2(x)$ z n=4,5,...,50 węzłami interpolacji, używając każdej z powyższych trzech metod interpolacji. Ewaluację funkcji, wielomianów interpolacyjnych oraz funkcji sklejanych przeprowadź na zbiorze 500 losowo wybranych punktów z dziedziny funkcji. Stwórz dwa rysunki, jeden dla $f_1(x)$, drugi dla $f_2(x)$. Na każdym rysunku przedstaw razem wykresy normy wektora błędów (czyli długości wektora) na tym zbiorze punktów w zależności od liczby węzłów interpolacji, n, dla każdej z trzech metod interpolacji.

Która metoda interpolacji jest najbardziej dokładna, a która najmniej?

Uwagi.

 Interpolację funkcjami sklejanymi można zaimplementować funkcją scipy.interpolate.CubicSpline.
Nie należy używać funkcji scipy.interpolate.interp1d.