

June 2015

Version 01

RoHS Compliant

PRODUCT FEATURES

- · Ultrafast Recovery Time
- · Low Recovery Loss
- Soft Reverse Recovery Characteristics
- Low Leakage Current
- Low Forward Voltage
- High Surge Current Capability

APPLICATIONS

- Freewheeling, Snubber, Clamp
- Inversion Welder
- PFC
- Plating Power Supply
- Ultrasonic Cleaner and Welder
- · Converter & Chopper
- UPS

DESCRIPTION

FRED from MacMic utilizes advanced processing techniques to achieve ultrafast recovery times and higher forward current. Its soft recovery characteristics and high reliability suit for wide industrial applications.

ABSOLUTE MAXIMUM RATINGS

T_C =25°C un	less otherwise	specified
----------------	----------------	-----------

Symbol	Parameter/Test Conditions		Values	Unit	
V_R	Maximum D.C. Reverse Voltage		220	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
V_{RRM}	Maximum Repetitive Reverse Voltage	220	V		
I _{F(AV)}	Average Forward Current	T _C =110℃, Per Diode	10		
		T _C =110℃, Per Package	20		
I _{F(RMS)}	RMS Forward Current	T _C =110℃, Per Diode	14	\dashv \land \mid	
I _{FSM}	Non Repetitive Surge Forward Current	T _J =25℃,t=10ms, 50Hz, Sine	150	7 /	
P_D	Power Dissipation		83	W	
T _J	Junction Temperature		-55 to +150	$^{\circ}$	
T _{STG}	Storage Temperature Range		-55 to +125	$^{\circ}$	
Torque	To Heat Sink	Recommended (M3)	1.1	Nm	
R _{thJC}	Junction to Case Thermal Resistance(Per Diode)		1.5	°C /W	
Weight			6	g	

ELECTRICAL CHARACTERISTICS

T_C =25°C unless otherwise specified

Symbol	Parameter/Test Conditions			Тур.	Max.	Unit
	Maximum Dayaraa Laakaga Current	V _R =220V			10	μΑ
I _{RM}	Maximum Reverse Leakage Current	V _R =220V, T _J = 125℃			1	mA
V _F	Forward Voltage	I _F =10A		0.9	1.2	V
		I _F =10A,T _J =125℃		0.8		
trr	Reverse Recovery Time $(I_F = 1A, dI_F/dt = -200A/\mu s, V_R = 30V)$			17	21	ns
trr	Reverse Recovery Time $(I_F = 0.5A, I_R=1A, I_{RR} = 0.25A)$			20	30	ns
trr	Reverse Recovery Time	I _F =10A,V _R =100V,		20		ns
I _{RRM}	Maximum Reverse Recovery Current	dI _F /dt = -200A/μs		2		Α
trr	Reverse Recovery Time	$I_F = 10A, V_R = 100V,$		40		ns
I _{RRM}	Maximum Reverse Recovery Current	$dI_F/dt = -200A/\mu s$, $T_J = 125$ °C		4		Α

Figure 1. Forward Voltage Drop vs Forward Current

Figure 3. Reverse Recovery Current vs dl_F/dt

Figure 5.Forward current vs Case temperature

Figure 2. Reverse Recovery Time vs dl_F/dt

Figure 4. Reverse Recovery Charge vs dl_F/dt

Figure 6.Transient Thermal Impedance

Figure 7. Diode Reverse Recovery Test Circuit and Waveform

