Measuring the Cryptographic Security of S-Boxes with Efficient Implementations

Christopher A. Wood

April 8, 2013

Agenda

- Rijndael Review
- Design Criteria and Implementation Considerations
- 3 Measuring S-box Security
 - Some Other Nonlinear Transformations
- 4 Implementation Strategies
 - Composite Fields
 - Composite Fields for Rijndael
 - Tower Field Isomorphic Functions
- 5 16-bit S-boxes

Rijndael - The Advanced Encryption Standard

- Four main operations
 - Add round key
 - Shift rows
 - Substitute bytes
 - Mix columns

Add Round Key

Shift Rows

Substitute Bytes

Substitute Bytes

This affine transformation can also be represented algebraically as follows

$$b_i' = b_i \oplus b_{(i+4) mod 8} \oplus b_{(i+5) mod 8} \oplus b_{(i+6) mod 8} \oplus b_{(i+7) mod 8} \oplus c_i$$

where *i* is the *i*th bit of the input byte *b* and $c = \langle 01100011 \rangle$.

Mix Columns

Mix Columns MDS Matrix

$$\begin{bmatrix} r_0 \\ r_1 \\ r_2 \\ r_3 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 1 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 3 \\ 3 & 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix}$$

Algorithm security fundamentals

- Strive for high confusion and diffusion
 - Confusion complex relationship between the secret key and ciphertext
 - Diffusion dissipation of plaintext bits throughout ciphertext bits

Implementation Considerations

- Design against common cryptanalysis techniques
- Linear transformations
 - Linear permutations
 - Circular shifts
 - Modular addition
- Nonlinear transformations
 - S-boxes
 - ARX functions
 - Chaotic recurrence relations

S-boxes

- Bijective functions from $\mathbb{F}_2^n \to \mathbb{F}_2^n$.
- Designed for optimal nonlinearity and algebraic complexity.
 - Maximize the avalanche property of the S-box for all input/output pairs.
 - Minimize the differential propagation probability
 - Maximize complexity of the algebraic expression for the S-box in \mathbb{F}_2^n

S-boxes

- Random and fixed structure (i.e. Rijndael s-box) designs have been proposed based on susceptibility to differential cryptanalysis
 - Fixed structure are more beneficial for security analysis and proof purposes
- Various construction criteria have been proposed
 - Nydberg (91) "A perfect nonlinear S-box is a substitution transformation with evenly distributed directional derivatives."
 - Dawson and Tavares (91) static and dynamic criteria supporting claim for high branch numbers and avalanche property
 - .

Measuring security

- Linear behavior
 - Exhibit avalanche effect and adherence to Strict Avalanche Criterion (SAC)
- Nonlinear behavior
 - Branch number
 - Direct measurement of nonlinear behavior

Avalanche effect

A function $f: \mathbb{F}_2^n \to \mathbb{F}_2^n$ exhibits the *avalanche effect* if and only if

$$\sum_{x\in\mathbb{F}_2^n}\operatorname{wt}(f(x)\oplus f(x\oplus c_i^n))=n2^{n-1},*$$

for all $i(1 \le i \le n)$, where $c_i^n = [0, 0, ..., 1, ..., 0]$ (where a 1 is in the *n*th position of the vector of cardinality n).

*wt indicates the Hamming Weight function

SAC

A function $f: \mathbb{F}_2^n \to \mathbb{F}_2^n$ satisfies the *Strict Avalanche Critertion (SAC)* if for all $i(1 \le i \le n)$ the following equation holds:

$$\sum_{\mathbf{x}\in\mathbb{F}_2^n} f(\mathbf{x}) \oplus f(\mathbf{x} \oplus \mathbf{c}_i^n) = (2^{n-1}, 2^{n-1}, ..., 2^{n-1})$$

This simply means that $f(x) \oplus f(x \oplus c_i^n)$ is balanced for every pair of elements in \mathbb{F}_2^n with Hamming distance of 1.

S-box specific nonlinear measurements

The nonlinearity of an *n*-bit S-Box from $\mathbb{F}_2^n \to \mathbb{F}_2^n$ can be measured by

$$P_{\mathcal{S}} = \max_{0 \neq a, b} |\{x \in \mathbb{F}_2^n : S(x+a) - S(x) = b\}|$$

where $a, b \in \mathbb{F}_2^n$.

Bent Functions

The correlation between a Boolean function $f: \mathbb{F}_2^n \to \mathbb{F}_2$ and a linear function $x \mapsto u \cdot x$ is defined as

$$c_f(u) = \frac{1}{2^n} (|\{x \in \mathbb{F}_2^n : f(x) = u \cdot x\}| - |\{x \in \mathbb{F}_2^n : f(x) \neq u \cdot x\}|)$$

A Boolean function is thus called bent if

$$|c_f(u)| = 2^{\frac{-n}{2}},$$

for all $u \in \mathbb{F}_2^n$. Note that n must be even in order for f to be bent.

Vector Bent Functions

- Perfect nonlinearity of Boolean functions strongly correlates to cryptographic strength
- Nydberg's "perfect nonlinear functions" vectorial Boolean functions

A vector function $f: \mathbb{F}_2^n \to \mathbb{F}_2^m$ is said to be *bent* if

- $w \cdot f_i$ is bent for all $w \neq 0, 1 < i < m$.
- f is perfectly nonlinear $(f(x+\alpha)=f(x))$ is uniformly distributed as x varies, for all fixed $\alpha \in \mathbb{F}_2^n \{0\}$).

APN S-boxes

A function $f: \mathbb{F}_2^n \to \mathbb{F}_2^n$ is said to be *almost perfect nonlinear* (APN) if

$$|\{x: f(x+\alpha)+f(x)=\beta\}| \leq 2,$$

for all fixed $\alpha \in \mathbb{F}_2^n - \{0\}$. Some examples include:

- $f: \mathbb{F}_2^n \to \mathbb{F}_2^n, f(x) = x^3$
- $f: \mathbb{F}_2^n \to \mathbb{F}_2^n, f(x) = x^{2^k+1}$ (i.e. any odd power exponent)

Differentially δ -Uniform S-box functions

A function $f: \mathbb{F}_2^n \to \mathbb{F}_2^n$ is said to be *differentially* δ -uniform if

$$|\{x: f(x+\alpha)+f(x)=\beta\}| \leq \delta,$$

Small values for δ are desirable - indicates higher degree of nonlinearity.

ARX functions

- Nonlinear functions consisting of a combination of addition, bitwise rotation, and bitwise XOR operations
- Analysis of differential propagation is difficult
 - Differential properties of sub-operations need to be considered (adp[⊕], xdp⁺)
- Most susceptible to rotational cryptanalysis
 - Threefish was attacked using a combination of rotational cryptanalysis with a rebound attack (Khovratovich et al, 2010) led to adjustment of Threefish rotation constants

Chaotic recurrence relations

- Chaotic systems are defined by:
 - Sensitivity to initial conditions
 - Topologically mixing (i.e. covers entire state space)
 - Dense (and long) periodic orbits
- Some recurrence relations exhibit "chaotic" behavior (e.g. the Logistic Map)

$$x_{n+1} = rx_n(1-(x_n))$$

Chaos in the Logistic Map

Changing Gears

Now that we've measure the security and chosen the right S-box, we must now implement it!

Composite Fields

A composite field is a pair

$$\{GF(2^n), Q(y) = y^n + \sum_{i=0}^{n-1} q_i y^i, q_i \in GF(2)\}$$

 $\{GF((2^n)^m), P(x) = x^m + \sum_{i=0}^{m-1} p_i x^i, p_i \in GF(2^n)\},$

where $GF(2^n)$ is constructed from GF(2) by Q(y), and $GF((2^n)^m)$ is constructed from $GF(2^n)$ by P(x). Also, $GF((2^n)^m)$ is a degree m extension of $GF(2^n)$.

Rijndael S-box

The S-box in Rijndael is defined as follows:

$$F(x) = Ax^{-1} \oplus b,$$

where $x, b \in GF(2^8)$.

Computing the inverse of x with combinational logic in hardware is *very* expensive. What can we do?

Computing the Inverse with Composite Fields

Every element in a field $GF(2^{nm})$ can be represented by a polynomial with coefficients from $GF(2^n)$ using an irreducible polynomial of the form $x^2 + Ax + B$ (we assume m = 2). Thus, if $\alpha \in GF(2^{nm})$, and $\alpha = bx + c$, where $b, c \in GF(2^n)$, then:

$$\alpha^{-1} = (bx + c)^{-1} = b(b^2B + bcA + c^2)^{-1} + (c + bA)(b^2B + bcA + c^2)^{-1}$$

Now we compute the inverse over $GF(2^n)$, leading to less required hardware resources.

Composite Field Representations

Research has systematically examined all composite field extensions for $GF(2^8)$, seeking to minimize the area.

$$\begin{split} GF(2^4) &\rightarrow GF((2^4)^2) \\ GF(2^2) &\rightarrow GF((2^2)^4) \\ GF(2^2) &\rightarrow -GF((2^2)^2) \rightarrow GF(((2^2)^2)^2) \end{split}$$

A systematic evaluation must check all tower field extensions **and** all irreducible polynomials.

8-Bit S-Boxes

Satoh tower field design - $GF(((2^2)^2)^2)$

Composite Fields for Rijndael

16-Bit S-Boxes

Proposed design - $GF((((2^2)^2)^2)^2)$

Question: How deep should this recursion go? What yields the minimal hardware area?

Tower Field Isomorphic Functions

The isomorphic functions are constructed as follows (assume we're constructing a function for mapping $GF(2^{nm}) \to GF((2^n)^m)$):

- Find two generators α and β ($\alpha \in GF(2^{nm})$ and $\beta \in GF((2^n)^m)$), where α and β are roots of the same primitive irreducible polynomial.
- Map $\alpha^k \to \beta^k$ for $1 \le k \le 2^{nm}$ (mapping basis elements of $GF(2^{nm}) \to GF((2^n)^m)$). If the mapping doesn't hold group homomorphism, find the next generator β and repeat.

Isomorphic Function Generation - Primitive Irreducible Polynomials

The isomorphic mappings are constructed as follows (assume we're constructing a function for mapping $GF(2^{nm}) \to GF((2^n)^m)$):

- Find two generators α and β ($\alpha \in GF(2^{nm})$ and $\beta \in GF((2^n)^m)$), where α and β are roots of two respective primitive polynomials.
- Map α^k to β^k for $1 \le k \le 2^{nm}$.
- Multiplication and addition homomorphism is guaranteed.

$$\alpha^t = \alpha^i + \alpha^j \rightarrow \beta^t = \beta^j + \beta^j$$

Isomorphic Function Generation - Exhaustive Searches

- Find two generators α and β ($\alpha \in GF(2^{nm})$ and $\beta \in GF((2^n)^m)$).
- Map α^k to β^k for $1 \le k \le 2^{nm}$ (multiplication homomorphism holds)
- For all $0 \le i \le 2^{nm} 1$ check to see if $\alpha^i + 1 \to \beta^i + 1$.
- Multiplication and addition homomorphism is now guaranteed.

Matrix Transformation T

The matrix **T** can be generated with the following algorithm.

- Let β be a generator of $GF((2^n)^m)$ such that $\alpha^i \in GF(2^{nm})$ is mapped to β^i for all $0 \le i \le 2^{nm} 1$ (α forms a basis of $GF((2^n)^m)$).
- Compute $\alpha^0, \alpha^1, \alpha^2, ..., \alpha^{nm-1}$.
- Define the columns of T as the transpose of each nm-dimensional bit vector of these powers:

$$\mathbf{T} = \begin{bmatrix} (\alpha^{nm-1})^T & \dots & (\alpha^1)^T (\alpha^0)^T \end{bmatrix}$$

An Example

$$\alpha = x$$
 and $\beta = xy$

$$(x^7 + x^6 + x^5 + x^2 + x + 1) \rightarrow [(x^3 + x^2 + x + 1)y + (x^3 + x^2 + 1)]$$

T =
$$[(xy^{nm-1})^T \dots (xy^1)^T (xy^0)^T]$$

$$\begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$

Another Example

- $lacktriangleq \alpha = x$ and eta = xy (same homomorphic mapping)
- $(x^6) \rightarrow [(x^2)y + (x^3 + x^2 + 1)]$
- **T** = $[(xy^{nm-1})^T \dots (xy^1)^T (xy^0)^T]$

$$\begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$

Different Tower Field Decompositions for 16-bit S-boxes

$$(1) \; GF(2^{16}) \to GF((2^8)^2)$$

(2)
$$GF(2^{16}) \rightarrow GF((2^4)^4)$$

$$(3) \; \textit{GF}(2^{16}) \to \textit{GF}((2^2)^8)$$

We need only study these decompositions - optimal tower-field decompositions for smaller fields are in the literature.

Multiplicative Inverse Calculations

The derivation gets messy very quick...

$$(b*x^3 + c*x^2 + d*x + e)*(f*x^3 + g*x^2 + h*x + i) = k*(x^4 + A*x^3 + B*x^2 + C*x + D) + 1$$

$$f
ightarrow rac{1}{x^3 \left(e + dx + cx^2 + bx^3
ight)} \left(1 - ei + Dk - ehx - dix + Ckx
ight) \\ \left(-egx^2 - dhx^2 - cix^2 + Bkx^2 - dgx^3 - chx^3 - bix^3 + Akx^3 - cgx^4
ight) \\ \left(-bhx^4 + kx^4 - bgx^5
ight)$$

Are there easier ways to calculate the inverse?

Finding Capable Polynomials

- Primitive polynomials always work for the mapping
 - Let α be a primitive root of the field $F_2[x]/P(x)$ and $P(\alpha)=0$
 - Arr P(x) is therefore a primitive polynomial
 - Powers α (which are linearly independent) can be used to form a standard basis
- Exhaustive generate all primitive polynomials up to degree 16 (there exists $a_p(n) = \frac{\phi(p^n-1)}{n}$ polynomials for degree n)
- Choose the one that has the lowest transformation and multiplication/inverse costs

Finding Capable Polynomials (cont'd)

Degree	Primitive Polynomials
1	<i>x</i> + 1
2	x^2+x+1
3	$x^3 + x + 1$, $x^3 + x^2 + 1$
4	$x^4 + x^3 + 1, x^4 + x + 1$
5	$x^5 + x^2 + 1$, $x^5 + x^3 + x^2 + x + 1$, $x^5 + x^4 + x^3 + x + 1$

For n = 16, we have $a_2(16) = \frac{\phi(2^16-1)}{n} = 2048$ different primitive polynomials.

Choosing the Right Transform

- Let T^* be the optimal transformation matrix in the set of transformations \mathcal{T} .
- The "cost" of transforms is the number of 1s in the matrix **T***.
- The "cost" of the inverse is dependent on the polynomial selection.

$$T^* = \min_{T_i \in \mathscr{T}} \{ C(\textit{transform}) + C(\textit{inverse}) + C(\textit{invTransform}) \}$$

- **Examine** all primitive polynomials for P(x), Q(x), R(x)
- Generate all possible composite field transformations
- Pick the one with least cost

Exhaustively Searching All S-boxes

- Loop over invertible binary matrices and all constants for affine transformation
- For each valid mapping, measure the cryptographic strength using the Boolean function analysis software
- Pick the one with the best properties

An Interesting Case

- Nyberg's Power Mapping: $F(x) = x^{2^k+1}$
- These functions are 2-differentially uniform with a \mathcal{N}_l equal to precisely $2^{n-1} 2^{\frac{n-1}{2}}$.
 - That's better than the inverse mapping $F(x) = x^{-1}$
- In a normal basis, this reduces to squaring (which is free) and multiplications
- For hardware, does this yield a more efficient and more secure mapping for 16-bit S-boxes?