GPET Versuch 3

Tim Luchterhand, Paul Nykiel

 $30.\ {\rm April}\ 2017$

4.1 Messung harmonischer Signale

4.1.1 Einstellung des Oszilloskops

Einführung Melden Sie sich zunächst mit ihrem kiz-Account im webvpn an und starten sie die GUI. Verbinden Sie anschließend den Funktionsgenerator des Oszilloskops über ein BNC Kabel mit Kanal 1 des Oszilloskops. Stellen Sie in der GUI für den Funktionsgenerator ein Sinussignal der Frequenz 697 Hz und der Amplitude 1 V ein. Verwenden Sie für die folgenden Messungen lediglich die im Oszilloskop integrierten Messfunktionen.

4.1.1.1 Überprüfen der Funktion

Aufgabe Überprüfen Sie, ob die von Ihnen gesetzte Einstellungen für den Funktionsgenerator der auf dem Schirm des Oszilloskops dargestellten Funktion entsprechen.

Protokoll

Abbildung 4.1: Oszilloskop Screenshot

Abbildung 4.2: GUI Screenshot

4.1.1.2 Measure-Funktion

Aufgabe Geben Sie die Peak-to-Peak Spannung, den Effektivwert, den Offset und die Frequenz des Signals an. Verwenden Sie dazu die "Meas."-Funktion und die Cursor des Oszilloskops.

Protokoll

Abbildung 4.3: GUI Screenshot

4.1.1.3 Plot

Aufgabe Stellen Sie die Skalierung der Anzeige über die GUI so ein, dass 5-8 Perioden des Signals angezeigt werden und geben Sie die Amplitude des Signals an. Speichern Sie den Plot und fügen Sie ihn in das Protokoll ein.

Protokoll

Abbildung 4.4: GUI Screenshot

4.1.2 Fourier-Transformation

Einführung Das Oszilloskop verfügt intern über die Möglichkeit die Fourier Transformierte des dargestellten Zeitsignals zu berechnen. Diese soll im Folgenden verwendet werden. Die Auswahl der FFT-Funktion am Oszilloskop erfolgt über "Math" \rightarrow "Operator" \rightarrow "FFT". Anschließend mussen Spanne und Mittenfrequenz entsprechend des darzustellenden Frequenzbereichs gewählt werden. Unter "Mehr FFT" lassen sich weitere Einstellungen zur FFT vornehmen: die Fensterfunktion und die vertikale Einheit. Mit Hilfe einer Fensterfunktion lässt sich der sogenannte "Leakage effect" vermindern. Dieser tritt in der in der digitalen Signalverarbeitung auf, wenn Blocklängen des zu verarbeitenden Signals endlich sind. Hier soll das "Hanning-Fenster" als Voreinstellung beibehalten werden. Für die vertikale Skalierung gibt es die beiden Möglichkeiten "Decibel" und "V_{RMS}". In der Einstellung "Decibel" wird die vertikale Achse logarithmisch aufgetragen, in der Einstellung " $V_{\rm RMS}$ " linear. Die Rauschleistung ist in diesem Versuch im Allgemeinen sehr viel kleiner als die Signalleistung. Deshalb ist in der linearen Auftragung mit dem bloßen Auge kein Rauschen sichtbar. Aufgrund dessen wählt man für Spektren in der Regel auch die logarithmische Darstellung, welche im Folgenden auch immer gewählt werden sollte. Die vertikale Einstellung lässt sich nicht uber die GUI ändern, diese muss immer händisch am Oszilloskop eingestellt werden.

4.1.2.1 FFT mit dem Oszilloskop

Aufgabe Wenden Sie die im Oszilloskop integrierte FFT-Funktion auf das Zeitsignal aus Teil 1 an um das Spektrum zu bestimmen, plotten sie dieses und geben Sie die gemessene Frequenz an. Sie können die Einstellungen zur FFT entweder direkt am Oszilloskop oder über die GUI vornehmen. Beachten Sie dabei, dass sie den dargestellten Frequenzbereich dem Signal entsprechend sinnvoll wählen. Erfassen Sie das Spektrum uber die GUI und fügen Sie es in das Protokoll ein.

Protokoll

Abbildung 4.5: GUI Screenshot

4.1.2.2 Akustische Ausgabe

Aufgabe Das Signal lässt sich am PC akustisch ausgeben. Dazu muss das Zeitsignal mit der GUI aufgenommen werden. Wählen Sie dazu im Bereich Measurements Type "Wave" und den entsprechenden Kanal. Über den Button "Start" wird die Messung gestartet. Anschließend kann das Signal in der GUI im Bereich "Data" ausgewählt werden und durch drücken des Button "Sound" abgespielt werden. Achten Sie darauf, dass die Lautstärke in Windows nicht zu leise oder ganz abgeschaltet ist. Hören Sie sich das Signal an und beschreiben Sie Ihren Höreindruck.

Protokoll

Abbildung 4.6: GUI Screenshot

4.1.3 FFT vs. Gehör

Aufgabe Stellen Sie am Funktionsgenerator des Oszilloskops unter Verwendung der GUI ein Sinussignal der Frequenz 1477Hz und der Amplitude 1V und einem Offset von 100mV ein.

Protokoll

Abbildung 4.7: GUI Screenshot

4.1.3.1 Plot

Aufgabe Plotten Sie das Signal in Zeit- und Frequenzbereich und geben Sie dabei die Amplitude und den Offset bzw. die gemessene Frequenz an. Wählen Sie den dargestellten Zeitabschnitt so, dass der Signalverlauf erkannt werden kann. Weshalb spielt der Offset im Frequenzbereich keine Rolle?

Protokoll

Abbildung 4.8: GUI Screenshot

4.1.3.2 Höreindruck

Aufgabe Hören Sie sich das Signal an und vergleichen Sie den Höreindruck mit dem zuvor abgespielten Signal.

Protokoll

Abbildung 4.9: GUI Screenshot

4.1.3.3 Höreindruck bei kleinen Frequenz-Differenzen

Aufgabe Stellen Sie nun ein Signal der Frequenz 1480Hz und der Amplitude 1V am Funktionsgenerator ein und hören Sie sich auch dieses Signal an. Können die beiden Signale mit Frequenzen von 1477Hz und 1480Hz akustisch voneinander unterschieden werden? Wenn nicht, weshalb ist dies nicht möglich?

Protokoll

Abbildung 4.10: GUI Screenshot

4.1.3.4 Auflösung

Auflösung Wie groß muss dass Messintervall gewählt werden, damit diese beiden Signale mittels FFT unterschieden werden können? Wie vielen Perioden des Signals mit 1480Hz entspricht dies?

Protokoll

Abbildung 4.11: GUI Screenshot

4.2 Messung periodischer Signale

Einführung Verbinden Sie den Eingang des externen Trigges am Oszilloskop (auf der Rückseite) und den "TTL/CMOS OUTPUT" des externen Funktionsgenerators mit einem BNC Kabel. Bei einigen Funktionsgeneratoren muss der

"SYNC Out" gewählt werden. Stellen Sie anschließend den Trigger des Oszilloskops auf "extern" ein. Das Oszilloskop wird nun auf das Signal des externen Frequenzgenerators getriggert. Im Folgenden werden ein Signal des externen und ein Signal des internen Funktionsgenerators über ein T-Stück addiert und auf Kanal 1 geführt. Verbinden Sie dazu den Ausgang des externen Funktionsgenerators über die eine Seite des T-Stücks mit Kanal 1 des Oszilloskops. Stellen Sie nun ein Sinussignal der Frequenz 697 Hz ein. VSS soll dabei etwa 2 V betragen. Überprüfen Sie die Amplitude des Signals auf dem Schirm des Oszilloskops. Stellen Sie am Funktionsgenerator des Oszilloskops ein Signal der Frequenz 1336 Hz, Amplitude 1 V und Offset 0 V ein. Addieren Sie die beiden Signale unter Verwendung des T-Stücks indem Sie das Ausgangssignal des Funktionsgenerators des Oszilloskops über ein BNC-Kabel auf das zweite Ende des T-Stücks geben.

4.2.0.1 Stehende Welle

Aufgabe Wieso erhält man keine stehende Welle auf dem Schirm des Oszilloskops? Weshalb spielt das bei der Berechnung der FFT keine Rolle?

Protokoll

4.2.0.2 Plot

Aufgabe Plotten Sie einen geeigneten Ausschnitt des Summensignals im Zeitbereich. Geben Sie den Minimal- und Maximalwert des Signals an.

Protokoll

4.2.0.3 Höreindruck

Aufgabe Hören Sie sich einen geeigneten Zeitausschnitt des Summensignals mit Hilfe der "Sound"-Funktion an und beschreiben Sie den Höreindruck.

Protokoll

4.2.0.4 Frequenzbereich

Aufgabe Transformieren Sie das Signal in den Frequenzbereich und plotten Sie es. Geben Sie die auftretenden Frequenzen an.

Protokoll

4.2.0.5 Bandbreite

Aufgabe Geben Sie die Bandbreite sowie die obere und untere Grenzfrequenz des Signals an.

Protokoll

4.3 Mehrfrequenzwahlverfahren

Abbildung 4.12: DTMF Tasten

4.3.1 DTMF-App

Aufgabe Für diesen Versuchsteil benötigen Sie nun die zuvor auf Ihr Mobiltelefon geladene "DTMF" App. Verbinden Sie den Kopfhörerausgang Ihres Mobiltelefons mit einem 3.5 mm Klinke-Kabel über das Steckbrett mit Kanal 1 des Oszilloskops. Parallel dazu schalten Sie einen Kopfhörer.

Schauen Sie sich die Frequenzen einzelner Töne mit der Fourier-Transformation auf dem Oszilloskop an. Beschreiben Sie Ihren Höreindruck sowie Ihre Beobachtungen auf dem Oszilloskop bei einer waagrechten, senkrechten und diagonalen Tastenfolge.

Protokoll

4.3.2 Matlab

Einführung Im Folgenden sollen die zuvor durch die beiden Funktionsgeneratoren realisierten Oszillatoren in MATLAB umgesetzt werden. Dadurch sollen zunächst einige Töne, wie sie beim Mehrfrequezwahlverfahren verwendet werden synthetisiert und im abschließenden Versuchsteil eine "gewählte" Telefonnummer unter Verwendung der FFT analysiert werden. Oszilloskop, BNC Kabel und Frequenzgenerator werden in diesem Versuchsteil nicht mehr benötigt. Laden Sie sich das Archiv DTMF_Student.zip von der Praktikumsseite herunter und entpacken Sie es. Wechseln Sie anschließend innerhalb von MATLAB in den Ordner mit den entpackten Dateien. Hier finden Sie folgenden MATLAB Files:

• dial_tones.m

Spielt die vom Benutzer gewählte Nummer ab und plottet die DTMF-Töne in Zeit- und Frequenzbereich. Zwischen den einzelnen Ziffern wird dabei eine Pause der Länge pauslen eingefügt.

• dialed_number.mat

MATLAB Stuct, mit der zu analysierenden Nummer. Zur Weiteren Verabeitung muss das Struct zunächst in MATLAB importiert werden. Dies kann über einen Rechtsklick auf das File ausgewählt werden.

• dtmfcut.m

Wird verwendet um die gesendete Nummer in einzelne Zeitabschnitte zu zerlegen und die Fourier Transformierte über diese einzelnen Zeitabschnitte zu berechnen. Der Aufruf erfolgt automatisch innerhalb der Funktion receive_dial.

• fft_dtmf.m

Diese Funktion enthält ein Codefragment das während dieses Praktikumsversuchs vervollständigt werden soll um die gespeicherte Telefonnummer in Zeit- und Fre- quenzbereich zu plotten und anhören zu können.

• generate_tones.m

Erzeugt die entsprechenden DTMF Töne, wenn eine Taste entsprechend der Tastenbelegung aus Abbildung 10 gewählt wird. Die Eingabe muss dabei nach der Eingabeaufforderung als String erfolgen. Diese Funktion enthält einige Lücken und muss während des Versuchs vervollständigt werden.

• receive_dial.m

Gibt die gewählte Telefonnummer zurück, indem das gewählte Signal mittels FFT analysiert wird. Zusätzlich wird jede einzelne erkannte Ziffer in Zeit und Frequenz- bereich geplottet.

4.3.3 Sourcecode

Aufgabe In der Datei generate_tones.m fehlen einige Zeilen. Vervollständigen Sie den Code. Die Korrektheit des Codes kann durch Aufruf der Funktion dial_tones.m überprüft werden. (Eingabe von dial_tones(); im Commandwindow und in der Eingabeaufforderung dann beispielsweise '2', achten sie auf die Hochkommata).

```
%hier die horizontalen Frequenzen in aufsteigender
Reihenfolge einfuengen:
%Frequenz horizontal (Zeilenvektor)
fhorz = [1209, 1336, 1477];
%hier die vertikalen Frequenzen in aufsteigender
Reihenfolge einfuengen:
%Frequenz vertikal (Zeilenvektor)
fvert = [697, 770, 852, 941];
% Notwendig weil Scopes und so...
f1 = 0;
f2 = 0;
```

```
%Hier die Formel aus dem Theorieteil fuer die DTFM Toene einfuegen.
```

```
% tone=
```

[%]Hinweis: die beiden Einzelsignale haben jeweils eine Amplitude 1. Ton1 hat die Frequenz f1 und Ton2 die Frequenz f2.

```
Ton1 = \cos(2*pi*f1*t);

Ton2 = \cos(2*pi*f2*t);

tone=(Ton1+Ton2)/2;
```

4.3.4 FFT Tastentöne

4.3.4.1 Plots des Mehrfrequenzverfahrens

Aufgabe Verwenden Sie die Funktion dial_tones um das Signal für die Taste "1" im Mehrfrequenzwahlverfahren zu erzeugen und hören Sie es sich an. Geben Sie die auftretenden Frequenzen an und fügen Sie die beiden Plots in das Protokoll ein. Skalieren Sie die Diagramme dafür sinnvoll.

Protokoll

Abbildung 4.13: dial_tones mit Eingabe 1

Auftretende Frequenzen:

 $\begin{array}{lcl} f_{1_{fft}} & = & 696.38 \mathrm{Hz} \\ f_{1_{soll}} & = & 697 \mathrm{Hz} \\ f_{2_{fft}} & = & 1209.12 \mathrm{Hz} \\ f_{2_{soll}} & = & 1209 \mathrm{Hz} \end{array}$

Die im Diagramm abgelesenen Frequenzen weichen nur sehr gering von den eingestellten Frequenzen ab. Die Frequenzen lassen sich immer noch eindeutig einer Ziffer zuordnen.

Die geringe Abweichung ist der Umrechnung vom Frequenzbereich zum Bildbereich und wieder zurück geschuldet.

4.3.4.2 Tastentöne

Aufgabe Hören Sie sich 2 weitere beliebige Tastentöne an und analysieren Sie die Signale im Frequenzbereich. Verwenden Sie dazu erneut die Funktion dial_tones und wählen Sie jeweils nur eine Ziffer auf einmal.

Protokoll

Abbildung 4.14: dial_tones mit Eingabe 5

Abbildung 4.15: dial_tones mit Eingabe 5, Zoom bei 770Hz

Abbildung 4.16: dial_tones mit Eingabe 5, Zoom bei 1330Hz

Im Frequenzbereich sind die beiden Peaks vergleichsweise breit. Das heißt die Frequenzbestimmung ist ungenauer. Trotzdem ist die gedrückte Taste immer noch einwandfrei bestimmbar, da der Peak immer noch sehr nah an der gewünschten Frequenz liegt und die verschiedenen Frequenzen sehr große Abstände haben.

Abbildung 4.17: dial_tones mit Eingabe 9

4.3.5 Identifikation einer unbekannten Nummer

Einführung Das in der Datei dialed_number.mat gespeicherte Signal enthält das DTMF-Signal einer 12-stelligen Telefonnummer.

4.3.5.1 Import

Aufgabe Importieren Sie das Signal in MATLAB und hören Sie es sich mit Hilfe der Funktion soundsc an. Zusätzlich zur Variablen "number" muss für soundsc die Abtastrate von 32 768 Hz übergeben werden.

4.3.5.2 Code vervollständigen

Aufgabe Die Funktion fft_dtmf.m enthält einige Fragmente die vervollständigt werden sollen um das gesamte DTMF Signal in Zeit- und Frequenzbereich plotten zu können. Vervollständigen Sie den Code. Hinweis: eine solche Funktion ist bereits in dial_tones implementiert, es müssen lediglich die entsprechenden Zeilen kopiert werden.

```
function tones=fft_dtmf_Student(number)
tones=number;
Fs=32768;
soundsc(tones,Fs);
figure()
subplot(2,1,1)
```

```
%Signal im Zeitbereich
%hier Code einfuegen um das Signal im Zeitbereich zu
        plotten
plot(number);

title('Dial Signal');
xlabel('Time(sec)');
ylabel('Amplitude');
subplot(2,1,2)
n=length(tones);
f=(0:n-1)*Fs/n;
%Transformation in den Frequenzbereich
%hier Code einfuegen um das Signal im Frequenzbereich zu
        plotten
plot(f,abs(fft(tones))/(Fs/2));
grid on;
axis([0 1500 0 1])
```

4.3.5.3 Identifikation der Nummer mittels FFT

Aufgabe Ist es möglich mittels der Fourier Transformation über das gesamte Signal die gewählte Nummer zu identifizieren? Falls nein, wie muss statt dessen vorgegangen werden?

Protokoll Da im Frequenzbereich nicht sichtbar ist welche Frequenzen zu welcher Zeit im Signal vorhanden war lassen sich die Nummern nicht aus dem gesamten Signal rekonstruieren.

Das Signal muss zwischen den Tönen getrennt werden und die Segmente müssen einzeln untersucht werden. Dann sind pro Segment nur zwei Peaks im Frequenzbereich aus denen sich dann die gedrückte Taste rekonstruieren lässt.

4.3.5.4 Plot

Aufgabe Ermitteln Sie nun unter Verwendung von receive_dial die Fourier Transformierte über die einzelnen Zeitabschnitte. Fügen Sie einen Plot von drei der auftretenden Ziffern im Frequenzbereich in das Protokoll ein und geben Sie die Frequenzen sowie die gewählten Ziffern an.

Protokoll

Abbildung 4.18: Erster Ton mit receive_dial

 $f_1 = 941$ Hz $f_2 = 1336$ Hz \Rightarrow Taste: 0

Abbildung 4.19: Zweiter Ton mit receive_dial

 $f_1 = 852$ Hz $f_2 = 1336$ Hz \Rightarrow Taste: 8

Abbildung 4.20: Dritter Ton mit receive_dial

 $f_1 = 852$ Hz $f_2 = 1477$ Hz \Rightarrow Taste: 9

4.3.5.5 Telefonnummer

Aufgabe Wie lautet die gewählte Telefonnummer?

Protokoll Die Frequenzen wurden jeweils dem Diagramm im Frequenzbereich entnommen und daraus die nächste mögliche Frequenz bestimmt. Aus den beiden Frequenzen lässt sich die Taste bestimmen.

f_1	f_2	Taste
941	1336	0
852	1336	8
852	1477	9
770	1209	4
770	1336	5
697	1336	2
697	1477	3
770	1336	5
770	1477	6
852	1209	7
941	1336	0
941	1336	0

Die Nummer lautet:

089452356700

4.3.5.6 Code

Aufgabe In der Funktion receive_dial wird das Ergebnis der Fourier Transformierten der einzelnen Zeitabschnitte berechnet. In welcher Code Zeile geschieht dies?

Protokoll Die Fourier-Transformation wird jeweils in Zeile 16 berechnet:

```
decode_{-}fft = fft (decode) / (Fs/2);
```

4.3.5.7 Code

Aufgabe Wie wird anschließend entschieden um welche Nummer es sich handelt?

Protokoll Zuerst wird im Frequenzbereich versucht die Peaks zu identifizieren, dann wird für jeden Peak versucht der Wert einer Taste zuzuordnen, dafür muss die Abweichung von gemessener Frequenz zu "Tastenfrequenz" kleiner 2% sein. Aus der Frequenz der Spalte und Reihe kann dann die Taste bestimmt werden.

```
%While schleife, welche die empfangene Nummer decodiert  \begin{array}{l} \operatorname{ind=find}\left(2*\operatorname{abs}\left(\operatorname{decode\_fft}\right)>0.35\right)*Fs/\operatorname{length}\left(\operatorname{decode}\right);\\ \operatorname{ind1=find}\left(\operatorname{ind}<\operatorname{Fs}/2\right);\\ \operatorname{index=ind}\left(\operatorname{ind1}\right)-2;\\ \operatorname{for}\ \ \operatorname{jj=1:length}\left(\operatorname{index}\right)\\ \operatorname{if}\ \ \operatorname{abs}\left(\operatorname{index}\left(\operatorname{jj}\right)-697\right)/697<=0.02\\ \operatorname{row}=1; \end{array}
```

```
\begin{array}{c} \text{elseif abs(index(jj)-770)/770} <= 0.02 \\ \text{row} = 2; \\ \text{elseif abs(index(jj)-852)/852} <= 0.02 \\ \text{row} = 3; \\ \text{elseif abs(index(jj)-941)/941} <= 0.02 \\ \text{row} = 4; \\ \text{elseif abs(index(jj)-1209)/1209} <= 0.02 \\ \text{column} = 1; \\ \text{elseif abs(index(jj)-1336)/1336} <= 0.02 \\ \text{column} = 2; \\ \text{elseif abs(index(jj)-1477)/1477} <= 0.02 \\ \text{column} = 3; \\ \text{end} \\ \end{array}
```

%Zuordnung der Nummer zu Keypad Koordinaten

dial(ii)=numpad(row,column);