幾何学 [演習 5 群作用と商多様体(続き)

- 1. 整数全体のなす群 ${f Z}$ が,平行移動によって実数全体 ${f R}$ に作用しているとき,商空間 ${f R}/{f Z}$ は, S^1 と可微分同相であることを示せ.
- $2. S^1 = \mathbf{R}/\mathbf{Z}$ とみなし,無理数 α に対して $f_{\alpha}: \mathbf{R} \to S^1 \times S^1$ を

$$f_{\alpha}(t) = (2\pi t, 2\pi \alpha t)$$

で定める . f_{α} の像に相対位相を入れるとき , $f_{\alpha}:\mathbf{R}\to f_{\alpha}(\mathbf{R})$ は同相写像ではないことを示せ .

- 3. 有限群 G が可微分多様体 M に,微分同相として自由に作用しているとき,商空間 M/G は可微分多様体の構造をもつことを示せ.
- $4.\,\,p,q$ を互いに素な自然数とし, $\xi=e^{2\pi i/p}$ とおく.3 次元球面 S^3 を

$$S^3 = \{(z_1, z_2) \in \mathbf{C}^2 \mid |z_1|^2 + |z_2|^2 = 1\}$$

で与え, S^3 への p 次の巡回群 $G={f Z}/p{f Z}$ への作用を ${f Z}/p{f Z}$ の生成元に対して

$$(z_1, z_2) \mapsto (\xi z_1, \xi^q z_2)$$

を対応させることにより定める.問3を用いて,商空間 S^3/G はコンパクト3次元可微分多様体の構造をもつことを示せ.また,p=2,q=1 のとき,得られた多様体は $\mathbf{R}P^3$ と可微分同相であることを示せ.