

+5V Precision Voltage Reference (Guaranteed Long-Term Stability)

REF-05

FEATURES

- 5 Volt Output
- Guaranteed Long-Term Stability

• Excellent Temperature Stability 8.5ppm/°C Max

- Low Supply Current 1.4mA Max
- Short-Circuit Proof
- Processed Per MIL-STD-883

PIN CONNECTIONS & ORDERING INFORMATION

GENERAL DESCRIPTION

The REF-05 precision voltage reference provides a stable +5V output which can be adjusted over a $\pm6\%$ range with minimal effect on temperature stability. Long-term drift is guaranteed

at 100ppm/1000 hrs. maximum. Single-supply operation over an input voltage range of 7V to 40V, low current drain of 1mA, and excellent temperature stability are achieved with an improved bandgap design. Low cost, low noise, and low power make the REF-05 an excellent choice whenever a stable voltage reference is required. Applications include D/A and A/D converters, portable instrumentation, and digital voltmeters. The versatility of the REF-05 is enhanced by its use as a monolithic temperature transducer. For +10V Precision Voltage References see the REF-10 data sheet.

LONG-TERM DRIFT PLOT (Average of 20 Devices)

SIMPLIFIED SCHEMATIC

REV. B

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 617/329-4700 Fax: 617/326-8703 Twx: 710/394-6577

Telex: 924491 Cable: ANALOG NORWOODMASS

REF-05

ABSOLUTE MAXIMUM RATINGS (Note 1)

Input Voltage	
REF-05A, B	40V
Output Short-Circuit Duration	
(to Ground or V _{IN})	Indefinite
Storage Temperature Range	
Lead Temperature (Soldering, 60 sec)	

Operating Temperature Range

REF-05A, REF-05	iB	–55°C to +125°C			
PACKAGE TYPE	Θ _{jA} (NOTE 2)	Θ _{jc}	UNITS		
TO-99 (J)	170	24	°C/W		

NOTES:

- 1. Derate at 7.1 mW/°C above 80°C ambient temperature for TO-99 (J) package.
- O_{jA} is specified for worst case mounting conditions, i.e., O_{jA} is specified for device in socket for TO package.

ELECTRICAL CHARACTERISTICS at $V_{\text{IN}} = +15 \text{V}$, $T_{\text{A}} = 25 ^{\circ} \text{C}$, unless otherwise noted.

PARAMETER	SYMBOL	MBOL CONDITIONS	REF-05A MIN TYP MAX		REF-05B MIN TYP MAX			UNITS	
Output Voltage	V _O	I _L = 0	4.985	5.0	5.015	4.975	5.0	5.025	٧
Output Adjustment Range	ΔV _{trim}	$R_P = 10k\Omega$	±3	±6		±3	±6	_	%
Output Voltage Noise	e _{np-p}	0.1Hz to 10Hz (Note 1)	_	10	15	_	10	15	μV _{p-p}
Long-Term Stability		(Note 1)		65	100	_	65	100	ppm/1kHrs
Line Regulation (Note 2)		V _{IN} = 8V to 33V		0.006	0.010	_	0.006	0.010	%/V
Load Regulation (Note 2)		I _L = 0 to 10mA		0.005	0.010	_	0.006	0.010	% /m A
Turn-On Settling Time	t _{on}	To ±0.1% of final value	_	5			5	_	μs
Quiescent Supply Current	I _{SY}	No Load		1	1.4		1_	1.4	mA
Load Current	ار		10	21		10	21		mA
Sink Current	Is	(Note 7)	-0.3	-0.5		-0.3	-0.5		mA
Short-Circuit Current	I _{sc}	V _O = 0	15	30	60	15	30	60	mA
Temperature Voltage Output	V _T	(Note 3)		630			630	-	mV

ELECTRICAL CHARACTERISTICS at $V_{\text{IN}} = +15V$, -55° C $\leq T_{\text{A}} \leq +125^{\circ}$ C and $I_{\text{L}} = 0$ mA, unless otherwise noted.

PARAMETER	SYMBOL CONDITIONS		REF-05A MIN TYP MAX			REF-05B			UNITS
Output Voltage Change with Temperature (Notes 4 & 5)	ΔV _{OT}	-55° C ≤ T _A ≤ +125° C	_	0.06	0.15		0.18	0.45	%
Output Voltage Temperature Coefficient	TCVO	(Note 6)		3	8.5	_	10	25	ppm/°C
Change in V _O Temperature Coefficient with Output Adjustment		$R_P = 10k\Omega$	_	0.7	_	_	0.7	_	ppm/%
Line Regulation (V _{IN} = 8V to 33V) (Note 2)		-55° C ≤ T _A ≤ +125° C		0.009	0.015	_	0.009	0.015	%/V
Load Regulation (I _L = 0 to 8mA) (Note 2)		-55° C ≤ T _A ≤ +125° C	_	0.007	0.012		0.009	0.015	%/mA
Temperature Voltage Output Temperature Coefficient	TCVT	(Note 3)		2.1	_	_	2.1		mV/°C
Quiescent Supply Current	Isy	No Load .	_	1.6	2.0	_	1.6	2.0	mA

NOTES:

- Sample tested. Long-term stability is tested with power applied continuously.
- 2. Line and Load Regulation specifications include the effect of self heating.
- 3. Limit current in or out of pin 3 to 50nA and capacitance on pin 3 to 30pF.
- 4. \(\Delta V_{\text{OT}} \) is defined as the absolute difference between the maximum output voltage and the minimum output voltage over the specified temperature range expressed as a percentage of 5V.

$$\Delta V_{OT} = \left| \frac{V_{MAX} - V_{MIN}}{5V} \right| \times 100$$

- 5. ΔV_{OT} specification applied trimmed to $\pm 5V$ or untrimmed.
- 6. TCV_0 is defined as ΔV_{OT} divided by the temperature range, i.e.,

$$TCV_O = \frac{\Delta V_{OT}}{180^{\circ}C}$$

7. During sink current test the device meets the output voltage specified.

OUTPUT ADJUSTMENT

The REF-05 trim terminal can be used to adjust the output voltage over a 5V ± 300 mV range. This feature allows the system designer to trim system errors by setting the reference to a voltage other than 5V. Of course, the output can also be set to exactly 5V or to 5.12V for binary applications.

Adjustment of the output does not significantly affect the temperature performance of the device. Typically the temperature coefficient change is 0.7ppm/°C for 100mV of output adjustment.

OUTPUT ADJUSTMENT CIRCUIT

BURN-IN CIRCUIT

TYPICAL PERFORMANCE CHARACTERISTICS

OUTPUT WIDEBAND NOISE
vs BANDWIDTH (0.1Hz
TO FREQUENCY INDICATED)

LINE REGULATION vs FREQUENCY

OUTPUT CHANGE DUE TO THERMAL SHOCK

PRECISION TEMPERATURE TRANSDUCER WITH REMOTE SENSOR

TCV _{OUT} SLOPE (S)	10mV/°C	100mV/° C	10mV/°F	
TEMPERATURE RANGE	-55°C to +125°C	−55° C to + 125° C	-67°F to +257°F	
OUTPUT VOLTAGE* RANGE	-0.55V to +1.25V	-5.5V to + 12.5V	−0.67V to +2.57V	
ZERO-SCALE	0V@0°C	0V @ 0°C	0V @ 0° F	
R _a (±1% resistor)	9.09kΩ	15kΩ	7.5kΩ	
R _{b1} (±1% resistor)	1.5kΩ	1.82kΩ	1.21kΩ	
R _{bp} (Potentiometer)	200Ω	500Ω	200Ω	
R _c (±1% resistor)	5.11kΩ	84.5kΩ	8.25kΩ	

^{*}For 125°C operation, the op amp output must be able to swing to +12.5V; increase V_{IN} to +18V from +15V if necessary.

TYPICAL TEMPERATURE VOLTAGE **OUTPUT vs TEMPERATURE (REF-05A)**

REFERENCE STACK WITH EXCELLENT LINE REGULATION

Two REF-10's and one REF-05 can be stacked to yield 5V, 15V and 25V outputs. An additional advantage is near-perfect line regulation of the 5V and 15V outputs. A 27V to 55V input change produces an output change which is less than the noise voltage of the devices. A load bypass resistor (Rq) provides a path for the supply current (ISY) of the 15V regulator.

In general, any number of REF-10's and REF-05's can be stacked this way. For example, ten devices will yield ten outputs in 5V or 10V steps. The line voltage can range from 100V to 130V, however, care must be taken to ensure that the total load currents do not exceed the maximum usable current (typically 21mA).

TEMPERATURE CONTROLLER

TYPICAL PERFORMANCE CHARACTERISTICS

MAXIMUM LOAD CURRENT vs INPUT VOLTAGE

NORMALIZED LOAD REGULATION ($\Delta I_L = 10$ mA) vs TEMPERATURE

NORMALIZED LINE REGULATION Ve TEMPERATURE

LINE REGULATION vs SUPPLY VOLTAGE

MAXIMUM LOAD CURRENT vs TEMPERATURE

QUIESCENT CURRENT

TYPICAL APPLICATIONS

±5V REFERENCE

±2.5V REFERENCE

PRECISION CURRENT SOURCE

A current source with 35V output compliance and excellent output impedance can be obtained using this circuit. REF-05 (2) keeps the line voltage and power dissipation constant in device (1); the only important error consideration at room temperature is the negative supply rejection of the op amp. The typical $3\mu V/V$ PSRR of the OP-02E will create a 20ppm change $(3\mu\text{V/V}\times35\text{V/5V})$ in output current over a 35V range. For example, a 5mA current source can be built $(R = 1k\Omega)$ with 350M Ω output impedance.

$$R_O = \frac{35V}{20 \times 10^{-6} \times 5mA}$$

CURRENT SOURCE

SUPPLY BYPASSING

For best results, it is recommended that the power supply pin is bypassed with a 0.1 µF disc ceramic capacitor.

CURRENT SINK

BATTERY-OPERATED D/A CONVERTER REFERENCE

D/A CONVERTER REFERENCE

