Web Algorithms

Eng. Fabio Persia, PhD

Polynomial time approximation schemes (PTAS)

Def: An algorithm A for an optimization problem $\pi \in NPO$ is a polynomial time approximation scheme for π if, given an input instance $x \in I_{\pi}$ and a rational number $\varepsilon > 0$, it returns a $(1+\varepsilon)$ -approximate solution (for MIN) or $(1-\varepsilon)$ -approximate solution (for MAX) in time polynomial with respect to the size of the instance x.

Remark. The time complexity can be exponential in $\frac{1}{\epsilon}$

Example:

Complexity
$$O\left(n^{\frac{1}{\varepsilon}}\right)$$

The complexity of a PTAS can grow "drammatically" when ϵ decreases.

Remark: for every fixed value of ε , a PTAS corresponds to a polynomial time $(1+\varepsilon)$ -approximation algorithm.

Min Multiprocessor Scheduling

- INPUT: set of n jobs P, number of processors h, running time t_j for each $p_j \in P$
- SOLUTION: A "schedule" for P, that is a function $f:P \rightarrow \{1,...,h\}$
- MEASURE: makespan or completion time of f, that is

$$\max_{i \in [1...h]} \sum_{p_j \in P \mid f(p_j) = i} t_j$$

Let's recall Graham's greedy alg.

Greedy choice: at every step assign a job to one of the currently least loaded processors

Let us fastly recall the basic steps of the proof of the Graham's approximation ratio.

Recall: $T_i(j)$ completion time processor i at the end of time j, h number of processors.

We made use of the following lower bounds to m^* :

- $m^* \ge T/h$: in any solution at least one processor must have completion time T/h (recall $T = \sum_i t_i$)
- $m^* \ge t_j$ for every job p_j : in any solution one of the processors must run p_j

In order to upper bound the value of the returned solution, if k is one of the most loaded processors and p_i is the last job assigned to k, by the greedy choice

$$T_k(I-1) \le (\Sigma_{j < l} t_j) / h \le (T-t_l) / h.$$

Thus we can derive the following inequality:

rive the following inequality:
$$m = T_k(n) = T_k(l-1) + t_l \le \frac{T - t_l}{h} + t_l = 0$$

$$= \frac{T}{h} + \left(\frac{h-1}{h}\right) \cdot t_l \leq m^* + \frac{h-1}{h} \cdot m^* = \left(2 - \frac{1}{h}\right) \cdot m^*$$
Idea for improvement: decrease t_l as much as possible and find a better ratio exploiting the

inequalities::

$$m \le \frac{T}{h} + \left(\frac{h-1}{h}\right) \cdot t_l \le m * + \left(\frac{h-1}{h}\right) \cdot t_l$$

Modifying the algorithm and/or improving the analysis we saw how to progressively upper bound t_i with $m^*/2$ (3/2-appr.), $m^*/3$ (4/3-appr.).

Let us now show how to let t_i arbitrarily small, that is $\epsilon \cdot m^*$, yielding an $(1+\epsilon)$ -appr., i.e. a *PTAS*

In order to obtain a PTAS ...

Let's try to get t_i as small as possible. We can exploit the following lemma.

Lemma If $t_1, ..., t_n$ are ordered non increasingly, then $\forall i, 1 \le i \le n$,

$$t_i \le \frac{T}{i}$$

Proof: Assume by contradiction that $t_i > \frac{T}{i}$, then

$$t_1 + t_2 + \dots + t_i \ge i \cdot t_i > i \cdot \frac{T}{i} = T$$

A contradiction, as
$$T = \sum_{i=1}^{n} t_i$$
.

PTAS: underlying idea

- Compute the optimal solution for the first q jobs
- Complete by assigning in a greedy way the remaining jobs
- If we can obtain $t_i \le \varepsilon \cdot m^*$, then

$$m \le \frac{T}{h} + \left(\frac{h-1}{h}\right) \cdot t_l < \frac{T}{h} + t_l \le m^* + \varepsilon \cdot m^* = (1+\varepsilon)m^*$$

- Starting from the previous lemma, it is sufficient to set q in such a way that, since l>q,
- This holds for $q = \left\lceil \frac{h}{\varepsilon} \right\rceil$. Indeed, inequalities $t_l \leq \frac{T}{l} \leq \frac{T}{q+1} \leq \varepsilon \cdot \frac{T}{h} \leq \varepsilon \cdot m^*$ are true if we consider $q \geq \frac{h}{\varepsilon} 1$

Algorithm PTAS-Scheduling

Begin

Order the jobs non increasingly with respect to the times t_i and let $p_1, ..., p_n$ the resulting ordered sequence $(t_1 \ge t_2 \ge t_3 \ge ... \ge t_n)$.

Compute an optimal schedule f for the first $q = \left\lceil \frac{h}{\epsilon} \right\rceil$ jobs

For j=q+1 to nAssign p_j to a processor i with minimum $T_i(j-1)$ // i.e. $f(p_j)=i$

Return schedule f.

End

Theorem PTAS-Scheduling always returns a $(1+\varepsilon)$ -approximate solution.

Proof. Let $t \le m^*$ the completion time of the optimal solution for the first q jobs.

If *m≤t*, that is the greedy phase has not increased the completion time, then the algorithm returns an optimal solution.

If m>t, then again denoting by k the most loaded processor at the end of the algorithm and with p_i the last job assigned to k in the greedy phase

$$m = T_k(n) = T_k(l-1) + t_l \le \frac{T - t_l}{h} + t_l = \frac{T}{h} + \left(\frac{h-1}{h}\right) \cdot t_l < \frac{T}{h} + t_l \le m^* + \varepsilon \cdot m^* = \left(1 + \varepsilon\right) \cdot m^*$$

That is

$$\frac{m}{m^*} \le 1 + \varepsilon$$

11

Thus the algorithm satisfies the approximation requirement of PTAS

But is it a PTAS?

Complexity

- The initial ordering requires $O(n \cdot log n)$ time steps;
- The exhaustive search of an optimal solution for the first q jobs requires at most $O\left(h^{\frac{n}{\epsilon}}\right)$, since there are at most $h^q \approx h^{h/\epsilon}$ possible solutions (h possible choices for each of the q jobs)
- The last for executes at most n iterations, each requiring O(h).

Therefore, the overall time complexity is
$$O\left(n \cdot \log n + h^{\frac{h}{\epsilon}} + n \cdot h\right)$$

Such a complexity is exponential in h, and thus it can be exponential in the input size (for example if h=n)

Thus we don't have a PTAS, unless we don't fix h to be given constant value (h=2, or h=3, or h=100, ...)

Fixing *h* constant is equivalent to say that *h* does not depend on the input instance, or analogously that is not part of the input. In other words, it corresponds to consider the following problem:

Min h-Processor Scheduling

- INPUT: Set of *n* jobs *P*, a running time t_i for each $p_i \in P$
- SOLUTION: A schedule $f:P \rightarrow \{1,...,h\}$ for P
- MEASURE: completion time of f

Theorem: PTAS-Scheduling is a PTAS for Min h-Processor Scheduling

Proof: As already seen

Complexity
$$O\left(n \cdot \log n + h^{\frac{h}{\epsilon}} + n \cdot h\right)$$

that is polynomial in the input size (but exponential in $1/\epsilon$)

Approximation 1+
$$\varepsilon$$

Remark: Min *h*-Processor Scheduling with *h*=2 coincides with the famous Min Partition problem, that in turn admits a PTAS:

Min Partition

- INPUT: set of objects X; an integer positive weight a_i for every $o_i \in X$;
- SOLUTION: a partition of X in two subsets X_1 and X_2 such that $X_1 \cap X_2 = \emptyset$ and $X_1 \cup X_2 = X$;
- MEASURE: $MAX \left\{ \sum_{o_i \in X_1} a_i, \sum_{o_i \in X_2} a_i \right\}$

Clearly, the objects correspond to jobs, the weights to the running times and the two subsets to the two processors.

It is possible to extend the previous result to obtain a PTAS for the Min Processor Scheduling problem, i.e. for any (non-constant) number h of processors

Recall that in the previous approximation proof of the PTAS, denoting by t the completion time of the obtained optimal schedule for the first q jobs, we had two cases:

- *m*≤*t*, namely the stage greedy did not increase the completion time, then the algorithm returns the optimal solution because $t \le m^*$
- *m>t*, in which case the usual steps for the part greedy are applied

Idea: The demonstration of approximation continues to be valid if, instead of determining the optimum for the first q jobs, we determine for them an approximate solution, i.e. such that $t \le (1+\epsilon)m^*$ 16

Lemma There is a dynamic programming algorithm that determines in polynomial time a scheduling for the first q jobs having completion time $t \le (1+\varepsilon)m^*$.

Theorem There exists a PTAS for Min Multiprocessor Scheduling.