

Radiant flux

In radiometry, **radiant flux** or **radiant power** is the radiant energy emitted, reflected, transmitted, or received per unit time, and **spectral flux** or **spectral power** is the radiant flux per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. The <u>SI unit</u> of radiant flux is the <u>watt</u> (W), one joule per second (J/s), while that of spectral flux in frequency is the watt per <u>hertz</u> (W/Hz) and that of spectral flux in wavelength is the watt per metre (W/m)—commonly the watt per nanometre (W/nm).

Mathematical definitions

Radiant flux

Radiant flux, denoted Φ_e ('e' for "energetic", to avoid confusion with photometric quantities), is defined as [1]

$$\Phi_{
m e} = rac{dQ_{
m e}}{dt}$$

$$Q_{
m e} = \int_{\Sigma} {f S} \cdot \hat{f n} \, dA$$

where

- *t* is the time:
- Q_e is the <u>radiant energy</u> flux of the <u>field</u> out of a closed surface Σ ;
- **S** is the Poynting vector, representing the current density of radiant energy;
- **n** is the normal vector of a point on Σ ;
- **A** represent the area of Σ .

But the time-average of the norm of the Poynting vector is used instead, because in radiometry it is the only quantity that radiation detectors are able to measure:

$$\Phi_{\mathsf{e}}pprox\int_{\Sigma}\langle|\mathbf{S}|
angle\coslpha\ dA,$$

where $\langle - \rangle$ is the time-average, and α is the angle between **n** and $\langle |\mathbf{S}| \rangle$.

A flow chart describing the relationship of various physical quantities, including radiant flux and exitance.

Spectral flux

Spectral flux in frequency, denoted $\Phi_{e,v}$, is defined as [1]

$$\Phi_{\mathrm{e},
u} = rac{\partial \Phi_{\mathrm{e}}}{\partial
u},$$

where v is the frequency.

Spectral flux in wavelength, denoted $\Phi_{e,\lambda}$, is defined as [1]

$$\Phi_{\mathrm{e},\lambda} = rac{\partial \Phi_{\mathrm{e}}}{\partial \lambda},$$

where λ is the wavelength.

SI radiometry units

Comparison of photometric and radiometric quantities

SI radiometry units

Quantity		Unit		Dimension	
Name	Symbol ^[nb 1]	Name	Symbol	Symbol	Notes
Radiant energy	Q _e [nb 2]	joule	J	M·L ² ·T ⁻²	Energy of electromagnetic radiation.
Radiant energy density	w _e	joule per cubic metre	J/m ³	$\mathbf{M} \cdot \mathbf{L}^{-1} \cdot \mathbf{T}^{-2}$	Radiant energy per unit volume.
Radiant flux	Ф _е ^[nb 2]	<u>watt</u>	<u>W</u> = J/s	M ·L ² · T ⁻³	Radiant energy emitted, reflected, transmitted or received, per unit time. This is sometimes also called "radiant power", and called luminosity in Astronomy.
Spectral flux	Φ _{e,ν} [nb 3]	watt per <u>hertz</u>	W/ <u>Hz</u>	M·L ² ·T ⁻²	Radiant flux per unit frequency or wavelength. The
Spectral flux	Φ _{e,λ} [nb 4]	watt per metre	W/m	M·L·T ⁻³	latter is commonly measured in W·nm ⁻¹ .
Radiant intensity	I _{e,Ω} [nb 5]	watt per steradian	W/ <u>sr</u>	M·L ² ·T ⁻³	Radiant flux emitted, reflected, transmitted or received, per unit solid angle. This is a <i>directional</i> quantity.
Spectral intensity	$I_{e,\Omega,v}$ [nb 3]	watt per steradian per hertz	W·sr ⁻¹ ·Hz ⁻¹	M·L ² ·T ⁻²	Radiant intensity per unit frequency or wavelength. The latter is commonly measured in W·sr ⁻¹ ·nm ⁻¹ . This is a <i>directional</i> quantity.
	$I_{\mathrm{e},\Omega,\lambda}^{\mathrm{[nb 4]}}$	watt per steradian per metre	W·sr ⁻¹ ·m ⁻¹	M·L·T ^{−3}	
<u>Radiance</u>	L _{e,Ω} [nb 5]	watt per steradian per square metre	W·sr ⁻¹ ·m ⁻²	M·T ^{−3}	Radiant flux emitted, reflected, transmitted or received by a surface, per unit solid angle per unit projected area. This is a directional quantity. This is sometimes also confusingly called "intensity".
Spectral radiance Specific intensity	$L_{e,\Omega,\nu}^{[\text{nb 3}]}$	watt per steradian per square metre per hertz	W·sr ⁻¹ ·m ⁻² ·Hz ⁻¹	M·T ⁻²	Radiance of a surface per unit frequency or wavelength. The latter is commonly

					measured in W·sr ⁻¹ ·m ⁻² ·nm ⁻¹ .
	$L_{\mathrm{e},\Omega,\lambda}^{[\mathrm{nb}\;4]}$	watt per steradian per square metre, per metre	W·sr ⁻¹ ·m ⁻³	M·L ⁻¹ ·T ⁻³	This is a directional quantity. This is sometimes also confusingly called "spectral intensity".
Irradiance Flux density	E _e [nb 2]	watt per square metre	W/m ²	M·T ^{−3}	Radiant flux received by a surface per unit area. This is sometimes also confusingly called "intensity".
Spectral irradiance Spectral flux density	E _{e,v} [nb 3]	watt per square metre per hertz	W·m ^{−2} ·Hz ^{−1}	M · T ^{−2}	Irradiance of a surface per unit frequency or wavelength. This is sometimes also confusingly called "spectral intensity". Non-SI units of spectral flux density include jansky (1 Jy = 10^{-26} W·m ⁻² ·Hz ⁻¹) and solar flux unit (1 sfu = 10^{-22} W·m ⁻² ·Hz ⁻¹ = 10^4 Jy).
	E _{e,λ} [nb 4]	watt per square metre, per metre	W/m ³	M·L ^{−1} ·T ^{−3}	
<u>Radiosity</u>	J _e ^[nb 2]	watt per square metre	W/m ²	M · T ^{−3}	Radiant flux leaving (emitted, reflected and transmitted by) a surface per unit area. This is sometimes also confusingly called "intensity".
Spectral radiosity	J _{e,v} [nb 3]	watt per square metre per hertz	W·m ^{−2} ·Hz ^{−1}	M·T ^{−2}	Radiosity of a surface per unit frequency or wavelength. The latter is commonly measured in W·m ⁻² ·nm ⁻¹ . This is sometimes also confusingly called "spectral intensity".
	$J_{\mathrm{e},\lambda}^{\mathrm{[nb \ 4]}}$	watt per square metre, per metre	W/m ³	M·L ⁻¹ ·T ⁻³	
Radiant exitance	M _e [nb 2]	watt per square metre	W/m ²	M·T ⁻³	Radiant flux emitted by a surface per unit area. This is the emitted component of radiosity. "Radiant emittance" is an old term for this

					quantity. This is sometimes also confusingly called "intensity".	
Spectral exitance	M _{e,v} [nb 3]	watt per square metre per hertz	W·m ^{−2} ·Hz ^{−1}	M · T ^{−2}	Radiant exitance of a surface per unit frequency or wavelength. The latter is commonly measured in W·m ⁻² ·nm ⁻¹ . "Spectral emittance" is an old term for this quantity. This is sometimes also confusingly called "spectral intensity".	
	<i>Μ</i> _{e,λ} [nb 4]	watt per square metre, per metre	W/m ³	M·L ⁻¹ ·T ⁻³		
Radiant exposure	H _e	joule per square metre	J/m ²	M·T ^{−2}	Radiant energy received by a surface per unit area, or equivalently irradiance of a surface integrated over time of irradiation. This is sometimes also called "radiant fluence".	
Spectral exposure	H _{e,v} [nb 3]	joule per square metre per hertz	J·m ⁻² ·Hz ⁻¹	M·T ^{−1}	Radiant exposure of a <i>surface</i> per unit frequency or wavelength. The latter is commonly measured in J·m ⁻² ·nm ⁻¹ . This is sometimes also called "spectral fluence".	
	Н _{е,} $\lambda^{[{ m nb } \ 4]}$	joule per square metre, per metre	J/m ³	M·L ^{−1} ·T ^{−2}		
See also: SI · Radiometry · Photometry						

See also: SI · Radiometry · Photometry

- 1. <u>Standards organizations</u> recommend that radiometric <u>quantities</u> should be denoted with suffix "e" (for "energetic") to avoid confusion with photometric or <u>photon</u> quantities.
- 2. Alternative symbols sometimes seen: W or E for radiant energy, P or F for radiant flux, I for irradiance, W for radiant exitance.
- 3. Spectral quantities given per unit <u>frequency</u> are denoted with suffix "<u>v</u>" (Greek letter <u>nu</u>, not to be confused with a letter "v", indicating a photometric quantity.)
- 4. Spectral quantities given per unit wavelength are denoted with suffix " λ ".
- 5. Directional quantities are denoted with suffix " Ω ".

See also

- Luminous flux
- Heat flux
- Power (physics)

Radiosity (heat transfer)

References

1. "Thermal insulation — Heat transfer by radiation — Physical quantities and definitions" (htt p://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=16943). ISO 9288:1989. ISO catalogue. 1989. Retrieved 2015-03-15.

Further reading

■ Boyd, Robert (1983). Radiometry and the Detection of Optical Radiation (Pure & Applied Optics Series). Wiley-Interscience. ISBN 978-0-471-86188-1.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Radiant_flux&oldid=1140884010"