CS 3313 Foundations of Computing:

Pushdown Automata

http://gw-cs3313-2021.github.io

Automaton Models

- Deterministic Finite Automata/ Finite State Machines
 - Finite number of states
 - Each state "summarizes" history of events occurred until current time
 - Reads one input at each step
 - Goes to a next state depending on value of input and current state
 - Simplification rules: transform a grammar such that:
 - Resulting grammar generates the same language
 - and has "more efficient" production rules in a specific format
- DFAs = Regular Languages
- DFAs cannot accept context free languages

Augmenting the Finite State Machine

- DFAs do not have external memory...
- To increase power of DFAs add external storage
 - Machine in current state can read input, can look up value in memory, and depending on (input + current state + value in memory) goes to next state and can store something in memory.

Adding a simple memory model to DFAs

- One simple form of memory/storage = a box
 - Simple because we don't need to keep track of "memory address"
 - Throw/Write things into the box place it on the top of other items in the box
 - Remove/Read the topmost item in the box
- In terms of computational models, box = stack
 - First-in Last-out
- Let's call this machine model M, a "DFA+S" (DFA + Stack)
- Behavior of machine M:
 - 1. Reads input, Reads (or not?) from top of the box, and checks current states
 - 2. Goes to next state, and store (or not?) something into the box
 - And then reads next input

Recall: Machine design/description

- Each state captures some property of the input processed thus far
- Based on the property and current input we define the next "action"
- Example: a(a*)b(b)*
 - Start in q₀: Not read any input
 - Read an a, go to q₁
 - Read b, go to trap/reject state
 - q₁: have read at least one a.
 - Read a, stay in q₁
 - Read b, go to q2
 - q₂: Have read at least one a, followed by at least one b
 - Read b, stay in q₂
 - Read a, go to trap/reject state

Exercises:

For each of the languages, is it possible to design a DFA+S machine (i.e., a DFA with a box/stack as storage) that accepts the language?

```
1. L1 = \{a^nb^n \mid n > 0\}
```

2.
$$L2 = \{ wcw^R \mid w in \{a,b\} + \}$$

3. L3 ={
$$a^nb^nc^n | n>0$$
 }

Some Observations from Examples

- L1 = $\{a^nb^n \mid n > 0\}$: We can keep track of value of one variable in the stack and compare with another.
- L2= { wcw^R | w in {a,b}+ }: If we push a "string" into the stack, when we "pop" the string the reverse of the string is what can be read by machine M
- L3 ={ aⁿbⁿcⁿ | n>0 }: ??? Looks like having a stack storage is not enough to recognize/accept this language
 - From observation in L1, we can have "one counter" but not two.

Formal Definition: Pushdown Automaton (PDA)

- This machine model (DFA with stack storage) is formally known as a Pushdown Automaton (PDA).
- The PDA is an automaton equivalent to the CFG in language-defining power.
- Only the nondeterministic PDA defines all the CFL's.
- But the deterministic version models parsers.
 - Most programming languages have deterministic PDA's.

Intuition: PDA

- Think of an λ-NFA with the additional power that it can manipulate a stack.
- Its moves are determined by:
 - 1. The current state (of its "NFA"),
 - 2. The current input symbol (or ϵ), and
 - 3. The current symbol on top of its stack.

Intuition: PDA – (2)

- Being nondeterministic, the PDA can have a choice of next moves.
- In each choice, the PDA can:
 - 1. Change state, and also
 - 2. Replace the top symbol on the stack by a sequence of zero or more symbols.
 - Zero symbols = "pop."
 - Many symbols = sequence of "pushes."

PDA Formalism

- A PDA M= (Q, Σ, Γ,δ, q_0 , Z_0 , F) is described by:
 - 1. A finite set of *states* Q (same as before).
 - 2. An *input alphabet* Σ (same as before).
 - 3. A *stack alphabet* Γ (typically assume Γ disjoint from Σ).
 - 4. A transition function δ
 - δ: (Q × (Σ∪λ) ×Γ) \rightarrow 2^(Q×Γ*) (subset of Q ×Γ*)
 - 5. A *start state* q_0 , in Q (same as before).
 - 6. A *start symbol* Z_0 , in Γ (to indicate bottom of stack).
 - 7. A set of *final states* $F \subseteq Q$

Pushdown Automata

- A (nondeterministic) pushdown automata (pda) is defined by
 M= (Q, Σ, Γ,δ, q₀, z, F):
 - A finite set of states Q (same as before)
 - An input alphabet Σ (same as before)
 - A stack alphabet Γ
 - A transition function δ: (Q × (Σ∪λ) × (Γ∪λ)) →2^(Q×Γ*) (subset of Q × Γ*)
 - An initial state q₀ (same as before)
 - A stack start symbol z similar to an empty stack marker
 - A set of final states F (same as before)
- Input to the transition function δ consists of a triple consisting of a state, input symbol (or λ), and the symbol at the top of stack
- Output of δ consists of a new state and new top of stack
- Transitions can be used to model common stack operations

Pushdown Automaton: Definitions

- There is a specific stack alphabet Γ
 - You could always make it equal to Σ
 - Better to keep it separate but can have a 1-1 mapping
 - Ex: $\Sigma = \{a,b\} \Gamma = \{X,Y\}$ where X corresponds to a and Y to b.
- PDA by default is non-deterministic
 - δ(q,a,x) has a number of choices of (p,y) where p is a state and y is a stack symbol
 - A deterministic PDA is known as a DPDA (less powerful than PDA)
 - λ-transitions are allowed as the default
- Can also push/pop λ onto stack = push/pop nothing
- Can define a transition graph for a pda
 - each edge is labeled with the input symbol, the stack top, and the string that replaces the top of the stack
 - But cumbersome to model as a graph....so use Parse trees formalism

Some notational conventions

- a, b, ... are input symbols.
 - But sometimes we allow λ as a possible value.
- ..., X, Y, Z are stack symbols.
- ..., w, x, y, z are strings of input symbols.
- α , β ,... are strings of stack symbols.

The Transition Function δ

- Takes three arguments:
 - 1. A state, in Q.
 - 2. An input, which is either a symbol in Σ or λ
 - 3. A stack symbol in Γ .
- $\delta(q, a, Z)$ is a set of zero or more actions of the form (p, α) .
 - p is a state; α is a string of stack symbols.

Actions of the PDA

- If $\delta(q, a, Z)$ contains (p, α) among its actions, then one thing the PDA can do in state q, with a at the front of the input, and Z on top of the stack is:
 - 1. Change the state to p.
 - 2. Remove a from the front of the input (but a may be λ).
 - 3. Replace Z on the top of the stack by α .
 - Pop Z and Push α
 - Note: (3) above implies that you always pop from TOS therefore to push onto TOS, you have to push the original TOS followed by the new stack symbol

Example: PDA for $\{a^nb^n \mid n >= 1\}$

States:

- q_0 : start state. We are in state q_0 if we have only seen a's so far.
- q₁: we've seen at least one b and may now proceed only if the inputs are b's
- q₂: final state accept

Stack symbols:

- Z_0 = start symbol, marks bottom of the stack.
 - If this is top of stack, we know we have counted the same number of a's and b's
- X = marker used to count the number of a's seen in the input

Example: PDA – for $\{a^nb^n \mid n >= 1\}$

The transitions:

- $\delta(q_0, a, Z_0) = \{(q_0, XZ_0)\}.$
- $\delta(q_0, a, X) = \{(q_0, XX)\}$. These two rules cause one X to be pushed onto the stack for each a read from the input.
 - Observe how we push XX after reading/popping X
- $\delta(q_0, b, X) = \{(q_1, \lambda)\}$. When we see a b, go to state q_1 and pop one X.
- $\delta(q_1, b, X) = \{(p, \lambda)\}$. Pop one X per b.
- $\delta(q_1, \lambda, Z_0) = \{(q_2, Z_0)\}$. Accept at bottom.

Deterministic PDA's

- To be deterministic, there must be at most one choice of move for any state q, input symbol a, and stack symbol X.
- In addition, there must not be a choice between using input λ or real input.
 - Formally, $\delta(q, a, X)$ and $\delta(q, \lambda, X)$ cannot both be nonempty.

Instantaneous Descriptions

- To trace the actions of a PDA, we must keep track of the current state of the control unit, the stack contents, and the unread part of the input string
 - Note: This was easy to do in a DFA the extended δ
- We can formalize the concept of a current configuration of the PDA with an *instantaneous description* (ID) that describes state, unread input symbols, and stack contents (with the top as the leftmost symbol)
- An ID is a triple (q, w, α), where:
 - 1. q is the current state.
 - 2. w is the remaining input.
 - 3. α is the stack contents, top at the left.

Moves in a PDA

- In one "move" (step), a PDA goes from one ID to another
- We say that ID I₁ can become ID I₂ in one move of the PDA, we write I₁+I₂
 - A move is denoted by the symbol ⊢ ("yields")
- Formally: (q, aw, Xα)⊦(p, w, βα) for any w and α, if δ(q, a, X) contains (p, β).
- Extend + to +*, meaning "zero or more moves," by:
 - Basis: I+*I.
 - Induction: If I+*J and J+K, then I+*K.

Example: Moves

Using the previous example PDA for {aⁿbⁿ}, we can describe the sequence of moves by:

- 1. $(q_0, aabb, Z_0) \vdash (q_0, abb, XZ_0)$
- 2. $(q_0, abb, XZ_0) \vdash (q_0, bb, XXZ_0)$
- 3. $(q_0, bb, XXZ_0) + (q_1, b, XZ_0)$
- 4. $(q_1, b, XZ_0) \vdash (q_1, \lambda, Z_0)$
- 5. $(q_1, \lambda, Z_0) \vdash (q_2, \lambda, Z_0)$
- Thus, $(q_0, aabb, Z_0) \vdash *(q_2, \lambda, Z_0)$.

Language of a PDA

- The common way to define the language of a PDA is by final state.
 - the set of all strings that cause the PDA to halt in a final state, after starting in q₀ with an empty stack.
 - The final contents of the stack are irrelevant
 - As was the case with nondeterministic automata, the string is accepted if any of the computations cause it to halt in a final state
- If M is a PDA, then L(M) is the set of strings w such that $(q_0, w, Z_0) \vdash^* (f, \lambda, \alpha)$ for final state f and any $\alpha \in \Gamma^*$

Language of a PDA – Alternate Definition

- Another way to define acceptance of a language by a PDA is by empty stack.
- If M is a PDA, then N(M) is the set of strings w such that $(q_0, w, Z_0) \vdash^* (q, \lambda, \lambda)$ for any state q.

Equivalence of PDA Language Definitions

- If L = L(P), then there is another PDA P' such that L = N(P').
- 2. If L = N(P), then there is another PDA P" such that L = L(P").

Either type of PDA acceptance works!

Proof: L(P) -> N(P') Intuition

- P' will simulate P.
- If P accepts, P' will empty its stack.
- P' has to avoid accidentally emptying its stack, so it uses a special bottom-marker to catch the case where P empties its stack without accepting.

Proof: L(P) -> N(P')

- P' has all the states, symbols, and moves of P, plus:
 - 1. Stack symbol $X_{\mathcal{O}}$ (the start symbol of P'), used to guard the stack bottom.
 - 2. New start state s and "erase" state e.
 - 3. $\delta(s, \lambda, X_0) = \{(q_0, Z_0X_0)\}$. Get *P* started.
 - 4. Add $\{(e, \lambda)\}$ to $\delta(f, \lambda, X)$ for any final state f of P and any stack symbol X, including X_0 .
 - 5. $\delta(e, \lambda, X) = \{(e, \lambda)\}\$ for any X.

Proof: N(P) -> L(P") Intuition

- P" simulates P.
- P" has a special bottom-marker to catch the situation where P empties its stack.
- If so, P" accepts.

Proof: N(P) -> L(P'')

- P" has all the states, symbols, and moves of P, plus:
 - 1. Stack symbol X_0 (the start symbol), used to guard the stack bottom.
 - 2. New start state s and final state f.
 - 3. $\delta(s, \lambda, X_0) = \{(q_0, Z_0X_0)\}$. Get P started.
 - 4. $\delta(q, \lambda, X_0) = \{(f, \lambda)\}\$ for any state q of P.

Next: Equivalence of PDAs and CFLs

- Do PDAs accept Context free languages ?
- Prove: Given any CFG, there is a PDA that accepts the language generated by the grammar.
- Prove: Given any PDA, there is a CFG that generates the language accepted by the PDA.