Geometric Invariant Theory

Guanyu Li

这份材料是我在读 Mumford 的著作 Geometric Invariant Theory 时做的笔记,它不是自洽的,也忽略了很多该去讨论的东西,当然也避免不了错误.这份笔记只是基于我自己理解对 GIT 理论做的一份综述.有一些名词我也不知道该怎么翻译,就将就着来算了.

1 几种不同的商

接下来我们会一直有如下假定: 给定一个概型 S, 我们考虑范畴 \mathbf{Sch}_S 中的群对象 G/S, 如果作为概型 G 是光滑的,则称 G 是一个 S 上的代数群 (algebraic group).

例 1. 假设 k 是域, $S := \operatorname{Spec} k$, 那么以下是代数群:

- 1. $\mathbb{G}_m := \text{Spec } k[t, t^{-1}].$
- 2. $\mathbb{G}_a := \operatorname{Spec} k[x]$.
- 3. $GL_n := \operatorname{Spec} k[x_{i,j}, \det^{-1}]_{1 < i,j < n}$.

设 G 作用在概型 X 上,T 是另一个概型, $f:T\to X$ 是一个 T 值点,那么我们有映射 $G\times_S T$ $\xrightarrow{\mathrm{id}_G\times f}$ $G\times_S X$ $\xrightarrow{\sigma} X$,进而可以定义

$$\psi_f^G:G\times_S T\to G\times_S T$$

为 $(\sigma \circ (\mathrm{id}_G \times f), p_2)$,简记为 ψ_f . 我们称 ψ_f 的像为 f 的轨道 (orbit) ,记为 o(f). 另一方面, $X \times_S T$ 是 T 上的概型,于是我们自然地有截面

$$(f, \mathrm{id}_T): X \times_S T \to T.$$

我们定义 S(f) 为纤维积

$$S(f) \xrightarrow{\qquad} T$$

$$\downarrow \qquad \qquad \downarrow^{(f, \mathrm{id}_T)}$$

$$G \times_S T \xrightarrow{\psi_f} X \times_S T,$$

这是 G 的子群.

定义. 给定 **Sch**_S 中的群作用 $\sigma: G \times_S X \to X$,若存在 S 上的态射 $\varphi: X \to Y$ 满足

1. 有交换图:

1 几种不同的商 2

$$G \times_S X \xrightarrow{\sigma} X \qquad \qquad \downarrow^{\varphi} \\ X \xrightarrow{\varphi} Y,$$

2. Y 在上图意义下具有泛性质, 即若有 S 上的概型 Z 和态射 $\phi: X \to Z$ 满足图

$$G \times_S X \xrightarrow{\sigma} X$$

$$\downarrow^{p_2} \qquad \qquad \downarrow^{\phi}$$

$$X \xrightarrow{\phi} Z,$$

交换,则存在唯一的态射 $\chi: Y \to Z$ 使得 $\phi = \chi \circ \varphi$,

那么称 Y 是 G 作用在 X 上的一个范畴商 (categorical quotient).

定义. 给定 **Sch**_S 中的群作用 $\sigma: G \times_S X \to X$,若存在 S 上的态射 $\varphi: X \to Y$ 满足

1. 有交换图:

$$G \times_S X \xrightarrow{\sigma} X \qquad \qquad \downarrow^{\varphi} \\ X \xrightarrow{p_2 \downarrow} \qquad \qquad \downarrow^{\varphi} Y,$$

2. φ 是满态射, 且

$$\Psi = (\sigma, p_2) : G \times_S X \to X \times_S X$$

的像是 $X \times_Y X$,

- 3. φ 是拓扑商, 也就是说, $U \subseteq Y$ 是开集当且仅当 $\varphi^{-1}(U) \subseteq X$ 是开集,
- 4. Y 的结构层 \mathcal{O}_Y 是 $\varphi_*\mathcal{O}_X$ 的包含不变函数的子层,即对于 $f\in\Gamma(U,\varphi_*\mathcal{O}_X)=\Gamma(\varphi^{-1}(U),\mathcal{O}_X)$ 是 $\Gamma(U,\mathcal{O}_Y)$ 的元素当且仅当下图交换

$$G \times_S \varphi^{-1}(U) \xrightarrow{\sigma} \varphi^{-1}(U)$$

$$\downarrow^{p_2} \qquad \qquad \downarrow^F$$

$$\varphi^{-1}(U) \xrightarrow{F} \mathbb{A}^1,$$

其中 F 是 f 对应的态射,

那么称 $Y \in G$ 作用在 X 上的一个几何商 (geometric quotient).

定义. 给定 \mathbf{Sch}_S 中的群作用 $\sigma: G \times_S X \to X$ 和作用的范畴/几何商 $\varphi: X \to Y$,若对任意 $f: Y' \to Y$,下面的纤维积

$$\begin{array}{ccc} X \times_Y Y' & \longrightarrow Y' \\ \downarrow^{f} & & \downarrow^{f} \\ X & \stackrel{\varphi}{\longrightarrow} Y \end{array}$$

都使 f' 是一个范畴/几何商,则称 Y 是万有范畴/几何商 (universal - quotient). 若以上只对平坦 (flat) 的成立,则称 Y 是一致范畴/几何商 (uniform - quotient)

2 附录: 点函子 3

2 附录:点函子

这种观点来自于 Grothendieck