Model Selection

Petchara Pattarakijwanich

Introduction to Data Science, 21 October 2022

$$\mathcal{L} = \alpha_{11} \omega_{12} - \omega_{13} \omega_{13} + \alpha_{14} \omega_{14} \omega_{14} + \alpha_{14} \omega_{14}$$

4□ > 4□ > 4 = > 4 = > = 90

$$\mathcal{L} = \prod_{\text{men}} p(x_{mi}) \prod_{\text{wown}} (1 - p(x_{mi})) = \text{underflow}$$

$$\text{Sinft} = \sum_{\text{men}} \ln p(x_{mi}) + \sum_{\text{wown}} \ln (1 - p(x_{mi})) = \sum_{\text{end} | \mathcal{I}_{M}} \text{underflow}$$

$$\text{underflow}$$

-
$$\ln \mathcal{L} = -\sum_{m \in N} \ln \rho(x_{mi}) - \sum_{m \in N} \ln (1-\rho(x_{mi}))$$

- $\ln \mathcal{L} = -\sum_{m \in N} \ln \rho(x_{mi}) - \sum_{m \in N} \ln (1-\rho(x_{mi}))$

nruin Men an x > X threshold
nruin women an x < X threshold

Th = grava ado rezorgo X[†]

Lh = grava ado rezorgo X[‡]

Lh = grava ano sorgo X[†]

Lh = grava ano sorgo X[†]

Goal of this week

- Standard Linear Regression and Its Limits
- Model Selection Methods
 - Mallow's C_p
 - Akaike Information Criteria (AIC)
 - Bayesian Information Criteria (BIC)
 - (Reduced χ^2)
- Subset Selection
 - Best Subset Selection
 - Forward/Backward Step-wise Subset Selection

Linear Regression :

Y model =
$$\beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_{\phi} x_{\phi}$$

(+ interaction terms + non-limar terms)

= un statistical significance vos p. Ta

Son and Linear Regression

- 1 annus Linear Regression
 - Subset Selection
 - Dimensionality Reduction
 - Regularization (Ridge/Lasso)
- (non-linear)
 - Tree based
 - Support vector Machine
 - Neural Network

Model Selection

Model Selection

Mallow's C_p

Mallow's C_p

Mallow's C_p

$$38n4νν νος Cp = C'p = \frac{R55}{σ2} + &d - N$$

Akaike Information Criteria (AIC)

AIC =
$$\frac{1}{n\sigma^2} \left(R55 + 2d\sigma^2 \right)$$

= $\frac{1}{\sigma^2} \left[\frac{R55}{n} + \frac{2d\sigma^2}{n} \right]$

AIC = $\frac{1}{\sigma^2} C_p$

3101 vos free parametr

n >> p 71 straing

AIC 25 dow => [2102 25 "illna" n & p & fraing

Bayesian Information Criteria (BIC)

BIC =
$$\frac{1}{n\sigma^2} \left(RSS + d\sigma^2 \ln n \right)$$

BIC = $\frac{1}{\sigma^2} \left(\frac{RSS}{n} + d\sigma^2 \frac{1}{n} \frac{n}{n} \right)$
= $\frac{1}{\sigma^2} \left(\frac{RSS}{n} + d\sigma^2 \frac{1}{n} \frac{n}{n} \right)$
[AIC = $\frac{1}{\sigma^2} \left(\frac{MSE}{n} + \frac{2d\sigma^2}{n} \right)$]

- => BIC 201102 1102 VOJ VIC
- =) あっりず BIC かるいかりはりてばしいののがでいるからいかと

Reduced χ^2

$$\chi^{\circ} = \sum \left(\frac{y - y_{\text{model}}}{4y} \right)^{\circ} \approx RSS$$

Reduced
$$x^2 = \frac{x}{\text{dof}} = \frac{x^2}{\text{n-d}}$$