13.1 习题

张志聪

2025年2月9日

13.1.1

• $(a) \implies (c)$

因为 $f(x_0) \in V$ 且 V 是开集,那么存在 r > 0 使得 $B(f(x_0), r) \subseteq V$ 。 因为 f 在 x_0 处是连续的,那么存在 $\delta > 0$,使得只要 $d_X(x_0, x) < \delta$,就有 $d_Y(f(x), f(x_0)) < r$,于是令 $U = B(x_0, \delta)$ 即可满足要求,使得 $f(U) \subseteq B(f(x_0), r) \subseteq V$ 。

• $(c) \implies (b)$

对于任意 $\epsilon > 0$,令 $V := B(f(x_0), \epsilon)$,那么 $V \subset Y$ 。由 (c) 可知,存在一个包含 x_0 的开集 $U \subset X$,使得 $f(U) \subseteq V$ 。

因为 U 是开集,所以存在 $B(x_0,r)\subseteq U$,因为序列 $(x^{(n)})_{n=1}^{\infty}$ 是 X 中依度量 d_X 收敛于 x_0 的序列,于是存在 $N\geq 1$ 使得

$$d_X(x_0, x^{(n)}) < r$$

对所有的 $n \ge N$ 均成立。那么,对所有的 $n \ge N$ 都有

$$x^{(n)} \in B(x_0, r) \subseteq U$$

所以 $f(x^{(n)}) \in V$,即

$$d_Y(f(x^{(n)}), f(x_0)) < \epsilon$$

由 ϵ 的任意性可知,序列 $(f(x^{(n)}))_{n=1}^{\infty}$ 是 Y 中依度量 d_Y 收敛于 $f(x_0)$ 的序列。

• $(b) \implies (a)$