Exercise 3

for the lecture

Computational Geometry

Dominik Bendle, Stefan Fritsch, Marcel Rogge and Matthias Tschöpe

December 12, 2018

Exercise 1 (Doubly-Connected Edge List) (2 + 1 + 1 points)

a) Which of the following equations are always true?.

$$Twin(Twin(\vec{e})) = \vec{e} \tag{1}$$

$$Next(Prev(\vec{e})) = \vec{e} \tag{2}$$

$$Twin(Prev(Twin(\vec{e}))) = Next(\vec{e})$$
(3)

$$IncidentFace(\vec{e}) = IncidentFace(Next(\vec{e}))$$
(4)

- (1) True. See definition of Twin.
- (2) True. See definitions of Prev and Next.
- (3) False. Consider figure 1 as counterexample, with $\vec{e} := \vec{e}_{2,2}$.

$$\begin{aligned} & \operatorname{Twin}(\operatorname{Prev}(\operatorname{Twin}(\vec{e}))) \\ & = \operatorname{Twin}(\operatorname{Prev}(\operatorname{Twin}(\vec{e}_{2,2}))) \\ & = \operatorname{Twin}(\operatorname{Prev}(\vec{e}_{2,1})) \\ & = \operatorname{Twin}(\vec{e}_{4,2}) \\ & = \vec{e}_{4,1} \\ & \neq \vec{e}_{3,1} \\ & = \operatorname{Next}(\vec{e}_{2,2}) \end{aligned}$$

(4) True. See defintion of IncidentFace.

Vertex	Coordinates	IncidentEdge	
v_1	(0,4)	$\vec{e}_{1,1}$	
v_2	(2,4)	$\vec{e}_{4,2}$	
v_3	(2,2)	$\vec{e}_{2,1}$	
v_4	(1,1)	$ec{e}_{2,2}$	

Face	OuterComponent	InnerComponents
f_1	nil	$\vec{e}_{1,1}$
f_2	$ec{e}_{4,1}$	nil

Half-edge	Origin	Twin	IncidentFace	Next	Prev
$\vec{e}_{1,1}$	v_1	$\vec{e}_{1,2}$	f_1	$\vec{e}_{4,2}$	$\vec{e}_{3,1}$
$\vec{e}_{1,2}$	v_2	$ec{e}_{1,1}$	f_2	$\vec{e}_{3,2}$	$ec{e}_{4,1}$
$ec{e}_{2,1}$	v_3	$\vec{e}_{2,2}$	f_1	$\vec{e}_{2,2}$	$ec{e}_{4,2}$
$ec{e}_{2,2}$	v_4	$\vec{e}_{2,1}$	f_1	$\vec{e}_{3,1}$	$\vec{e}_{2,1}$
$\vec{e}_{3,1}$	<i>V</i> 3	$\vec{e}_{3,2}$	f_1	$\vec{e}_{1,1}$	$\vec{e}_{2,2}$
$ec{e}_{3,2}$	v_1	$\vec{e}_{3,1}$	f_2	$ec{e}_{4,1}$	$\vec{e}_{1,2}$
$ec{e}_{4,1}$	v_3	$\vec{e}_{4,2}$	f_2	$\vec{e}_{1,2}$	$\vec{e}_{3,2}$
$\vec{e}_{4,2}$	v_2	$\vec{e}_{4,1}$	f_1	$\vec{e}_{2,1}$	$\vec{e}_{1,1}$

Figure 1: An example of a doubly-connected edge list for a simple subdivision. Figure is taken from [Ber+08].

b) Give an example of a doubly-connected edge list where for an edge \vec{e} the faces IncidentFace(\vec{e}) and IncidentFace(Twin(\vec{e})) are the same.

Consider this example:

f_1	nil	nil
Face	OuterCompone	ent InnerComponents
v_2	(2,4)	$\vec{e}_{1,2}$
v_1	(0,4)	$\vec{e}_{1,1}$
Vertex	Coordinates	IncidentEdge

Half-edge	Origin	Twin	IncidentFace	Next	Prev
$\vec{e}_{1,1}$	v_1	$\vec{e}_{1,2}$	f_1	$\vec{e}_{1,2}$	$\vec{e}_{1,2}$
$\vec{e}_{1,2}$	v_2	$\vec{e}_{1,1}$	f_2	$\vec{e}_{1,1}$	$\vec{e}_{1,1}$

Figure 2: A very simple example of a doubly-connected edge list.

This is a doubly-connected edge list where $f_1 = \text{IncidentFace}(\vec{e}_{1,1}) = \text{IncidentFace}(\text{Twin}(\vec{e}_{1,1})) = \text{IncidentFace}(\text{Twin}(\vec{e}_{1,2})) = \text{IncidentFace}(\vec{e}_{1,2}) = f_1 \text{ holds.}$

c) Given a doubly-connected edge list representation for a subdivision where

$$\operatorname{Twin}(\vec{e}) = \operatorname{Next}(\vec{e})$$

holds for every half-edge \vec{e} . How many faces can the subdivision have at most?

In this case we have exactly 1 unbounded face. There are only doubly-connected edges like in figure 2 because this is the only case where $Twin(\vec{e}) = Next(\vec{e})$ holds. (Of course we might have many of these edges and some of them might be sharing some nodes). By definition each half-edge bounds only one face. We can easily apply the prove from **b**) here and use it to show that this is always the same face. This shows that there can only be exactly 1 unbounded face.

Exercise 2 (Planar Subdivision and Point Set)

(4 points)

Let S. vertices be a list of vertices, which has the always the edge in counter-clockwise direction as incident face. The edges in counter-clockwise direction are the inner edges.

```
V = sort(S.vertices)
F = []
for p \in P
     face = null
     vertices = V
     while size(vertices) > 0
           current face = null
           v = vertices.pop()
           i = v.incident\_edge
           n = i.next\_edge
           if is_left(point, i)
                 current_face = i.incident_face
           while i != n
                 vertices.remove(n.origin)
                 if current_face != null
                      if is right(point, n)
                            current face = null
                 n = n.next\_edge
           if current face != null
                 face = current_face
      F.append(face)
```

F lists the face in which each point lies. If a face is null, that means the point lies outside of all polygons.

The complexity of this algorithm is n*m, as for each of the m points, each of the n edges has to be checked.

Exercise 3 (Art Gallery Problem, Special Case) (1 points)

One can show that $\lfloor \frac{n}{4} \rfloor$ cameras suffice to surveil an art gallery with rectangular rooms with n corners. For this one partitions the art gallery into convex quadrilaterals and invokes the 4-color theorem.

But this amount might also be necessary. Consider the polygon depicted in Figure 3 which consists of n "rooms" connected by a single "hallway" at the bottom. Clearly, this polygon has exactly 4n vertices and it is impossible to place a camera to cover two rooms completely. Hence we must place at least one camera for each room, so in total at least n cameras. Since we need no more than $\lfloor \frac{4n}{4} \rfloor = n$, we must place exactly n cameras. Hence the bound is sharp in the worst case.

Figure 3: The camera bound in Exercise 3 is sharp.

Exercise 4 (Monotone Polygons)

(1 points)

The claim is false. Consider the triangulation of the monotone polygon in Figure 4. The dual graph has nodes of degree 3 and is thus not a "chain". (Also see Exercise 5 for a similar monotone polygon whose triangulation has a non-chain dual graph.)

Figure 4: Counterexample to Exercise 4

For saving space, we only hand in our function for computing the 3-coloring, and skip all helper functions like reading the ply files or drawing the results. We encode all three colors by the numbers 0, 1 and 2. After that, we encode those numbers by real colors. But this is not part of this function.

```
# tri is the abbreviation of triangle.
def coloring(tri, colors, next_triangle, used triangle):
    if tri != []:
        p1 = tri[next_triangle][0]
        p2 = tri[next triangle][1]
        p3 = tri[next triangle][2]
        used triangle[next triangle] = 1
        # This can only be true in the first call of coloring(), because initial are all colors -1
        if max(colors) == -1:
            colors[p1] = 0
            colors[p2] = 1
        if colors[p1] == -1 and colors[p2] != -1 and colors[p3] != -1:
            all possible colors = [0,1,2]
            all_possible_colors.remove(colors[p2])
            all possible colors.remove(colors[p3])
            colors[p1] = all_possible_colors[0]
        if colors[p2] == -1 and colors[p1] != -1 and colors[p3] != -1:
            all possible colors = [0,1,2]
            all_possible_colors.remove(colors[p1])
            all possible colors.remove(colors[p3])
            colors[p2] = all_possible_colors[0]
        if colors[p3] == -1 and colors[p1] != -1 and colors[p2] != -1:
            all possible colors = [0,1,2]
            all possible colors.remove(colors[p1])
            all_possible_colors.remove(colors[p2])
            colors[p3] = all_possible_colors[0]
```

```
p1_p2_triangles = [i for i in range(len(tri)) if p1 in tri[i] and p2 in tri[i] and not p3 in tri[i]]
p1_p3_triangles = [i for i in range(len(tri)) if p1 in tri[i] and p3 in tri[i] and not p2 in tri[i]]
p2_p3_triangles = [i for i in range(len(tri)) if p2 in tri[i] and p3 in tri[i] and not p1 in tri[i]]

children = p1_p2_triangles + p1_p3_triangles + p2_p3_triangles

for face in children:
    if used_triangle[face] != -1:
        children.remove(face)

for child in children:
    coloring(tri, colors, child, used_triangle)

else:
    if min(colors) == -1:
        coloring(tri, colors, 0, used_triangle)

return colors
```


Figure 5: 3-coloring of the dataset: simplePolygonTriangulated_1.ply.

Figure 6: 3-coloring of the dataset: simplePolygonTriangulated_2.ply.

References

 $[\mathrm{Ber}+08]$ Mark de Berg et al. Computational geometry: algorithms and applications. Springer-Verlag TELOS, 2008.