Analysis of Algorithms

Lecture No. 6

Complexity and asymptotic Notations Average case analysis Dr. Shamila Nasreen

Recap

- What is complexity
- Asymptotic analysis
- Types of Analysis
- Big O Notation (Worst Case Analysis)
- Big Omega (Best Case analysis)
- Examples

Today's Lecture

- Theta Notation (Average Case Analysis)
- Little o
- Little Omega
- Comparison

•

- Theta Notation ∅
- Theta Notation For non-negative functions, f(n) and g(n), f(n) is theta of g(n) if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$. This is denoted as " $f(n) = \Theta(g(n))$ ".

This is basically saying that the function, f(n) is bounded both from the top and bottom by the same function, g(n).

 $\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$.

 $\Theta(g(n))$ is the set of functions with the same order of growth as g(n)

g(n) is an *asymptotically tight bound* for f(n).

~

Relations Between Θ , O, Ω

Relations Between Θ , O, Ω

```
Theorem: For any two functions g(n) and f(n), f(n) = \Theta(g(n)) iff f(n) = O(g(n)) and f(n) = \Omega(g(n)).
```

- I.e., $\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$
- In practice, asymptotically tight bounds are obtained from asymptotic upper and lower bounds.

Example 1: Prove that $3n^2+5n+1\in\Theta(n^2)$

Proof

Step 1: Define f(n) and g(n)

Let:

- $f(n) = 3n^2 + 5n + 1$
- $g(n) = n^2$

We want to prove that:

Step 2: Use O-notation definition

A function $f(n)\in\Theta(n^2)$ if there exist constants $c_1,c_2>0$ and n_0 such that:

For Upper bound

$$c_1 n^2 \leq 3n^2 + 5n + 1 \leq c_2 n^2 \quad ext{for all } n \geq n_0 \ 3n^2 + 5n + 1 \leq c_2 n^2 \Rightarrow rac{3n^2 + 5n + 1}{n^2} \leq c_2 \Rightarrow 3 + rac{5}{n} + rac{1}{n^2} \leq c_2$$

As $n o \infty$, $rac{5}{n} o 0$, $rac{1}{n^2} o 0$

So, pick $n_0 = 1$, and for all $n \ge 1$:

$$3+rac{5}{n}+rac{1}{n^2} \leq 3+5+1=9 \Rightarrow f(n) \leq 9n^2$$

So, we can choose $c_2=9$

Upper Bound Proven:

Example 1: Prove that $3n^2+5n+1\in\Theta(n^2)$

We want:

$$3n^2 + 5n + 1 \geq c_1 n^2 \Rightarrow rac{3n^2 + 5n + 1}{n^2} \geq c_1 \Rightarrow 3 + rac{5}{n} + rac{1}{n^2} \geq c_1$$

As
$$n o \infty$$
, $rac{5}{n} + rac{1}{n^2} o 0$

So for large n, $f(n)/n^2$ approaches 3 from above. Let's pick $n_0=1$, then:

$$3+rac{5}{n}+rac{1}{n^2}\geq 3\Rightarrow f(n)\geq 3n^2$$

So we can take $c_1=3$

✓ Lower Bound Proven:

$$f(n) \geq 3n^2$$

$$c_1 n^2 \le f(n) \le c_2 n^2$$
 for all $n \ge n_0$

♦ Therefore:

$$3n^2+5n+1\in\Theta(n^2)$$

```
Example 2: Prove that f(n) = 2n^2 + 3n + 6 \notin \Theta(n^3)
Proof: Let f(n) = 2 \cdot n^2 + 3 \cdot n + 6, and g(n) = n^3
   we have to show that f(n) \ \boxdot \ \Theta(g(n))
   On contrary assume that f(n) \in \Theta(g(n)) i.e.
   there exist some positive constants c_1, c_2 and n_0 such
                    c_1.g(n) \le f(n) \le c_2.g(n)
    that:
   c_1.g(n) \le f(n) \le c_2.g(n) \ \ c_1.n^3 \le 2.n^2 + 3.n + 6 \le c_2.n^3 \ \ c_3.g(n) \le c_3.g(n) \le c_3.g(n) 
   c_1.n \le 2 + 3/n + 6/n^2 \le c_2.n \implies
   c_1.n \le 2 \le c_2.n, for large n \Rightarrow
   which is not possible
    Hence f(n) \supseteq \Theta(g(n)) \Rightarrow 2 \cdot n^2 + 3 \cdot n + 6 \supseteq \Theta(n^3)
```

Little-O Notation

Definition: Little-o notation describes an *upper bound* that a function **strictly** falls short of — meaning the function grows *slower* than another function as $n \to \infty$.

Formally:

We write

```
\begin{split} &f(n) \in o(g(n))\\ &\text{if for every constant } c>0, \text{ there exists an } n_0 \text{ such that:}\\ &f(n) < c \cdot g(n) \text{ for all } n \geq n_0 \end{split}
```

This means that f(n) grows strictly slower than g(n).

Example 1:

Let f(n) = n, and $g(n) = n^2$

We say $n \in o(n^2)$ because no matter how small the constant c, eventually $n < c \cdot n^2$ for sufficiently large n.

- Little-O Notation
- Example 2: $f(n)=2n^2$, $g(n)=n^2$:
- We say f(n) ∈ o(g(n)) if and only if for every constant c > 0, there exists an n₀ such that:f(n) < c · g(n) for all n ≥ n₀
- $2n^2 < c \cdot n^2$
- Divide both sides by n² (for n > 0):
- 2 < c

This inequality 2 < c must be true for all c > 0, but it's not:

- For c = 1, we get 2 > c, so $2n^2 < c \cdot n^2$ does not hold
- For **c** = **1.5**, same inequality fails.

So $2n^2 < c \cdot n^2$ is not true for all positive c — it's only true when c > 2

But little-o requires it to hold for every c > 0, no matter how small.

Asymptotic notations for little o

```
Example 3: Prove that 2n^2 \in o(n^3)
Proof:
  Assume that f(n) = 2n^2, and g(n) = n^3
       f(n) \in o(g(n))?
  Now we have to find the existence n₀ for any c
  f(n) < c.g(n) this is true
  2n^2 < c.n^3 = 2 < c.n
  This is true for any c, because for any arbitrary c we can
  choose no such that the above inequality holds.
  Hence f(n) \in o(g(n))
```

Asymptotic notations for Little o

Example 4: Prove that $n^2 \notin o(n^2)$

Proof:

Assume that $f(n) = n^2$, and $g(n) = n^2$ Now we have to show that $f(n) \notin o(g(n))$

Since

$$f(n) < c.g(n) ? n^2 < c.n^2 ? 1 \le c,$$

In our definition of small o, it was required to prove for any c but here there is a constraint over c. Hence, $n^2 \notin o(n^2)$, where c = 1 and $n_0 = 1$

- Little Omega Notation
- $f(n) \in \omega(g(n))$ if: $\forall c > 0, \exists n 0$ such that $f(n) > c \cdot g(n)$ for all $n \ge n 0 \forall$

For every constant c>0, there exists a constant n_0 such that for all $n\geq n_0$,

$$f(n) > c \cdot g(n)$$

• So, no matter how large the constant c, f(n) eventually outgrows $c \cdot g(n)$.

Asymptotic notations for Little omega

```
Proof:  \text{Assume that } f(n) = 5.n^2 \text{ , and } g(n) = n   f(n) \in \Omega(g(n)) ?  We have to prove that for any c there exists n_0 s.t.,  c.g(n) < f(n) \quad \text{?} \quad n \geq n_0   c.n < 5.n^2 \, \text{?} \quad c < 5.n  And hence f(n) \in \omega(g(n)),
```

Asymptotic notations Comparison

Notation	Symbol	Meaning	Definition (Inequality Form)	Growth Relation	Bound Type
Big-O	O(g(n))	Upper Bound	$egin{aligned} \existsc>0,\;\existsn_0:\ f(n)\leq c\cdot g(n)\;orall n\geq \ n_0 \end{aligned}$	f(n) grows at most like $g(n)$	Loose or Tight Upper Bound
Little-o	o(g(n))	Strict Upper Bound	$egin{aligned} orall c > 0, \; \exists n_0 : \ f(n) < c \cdot g(n) \; orall n \geq \ n_0 \end{aligned}$	f(n) grows strictly slower than $g(n)$	Strict (Loose) Upper Bound
Big- Omega	$\Omega(g(n))$	Lower Bound	$\existsc>0,\ \existsn_0: \ f(n)\geq c\cdot g(n)\ orall n\geq n_0$	f(n) grows at least like $g(n)$	Loose or Tight Lower Bound
Little- omega	$\omega(g(n))$	Strict Lower Bound	$egin{aligned} orall c > 0, \; \exists n_0 : \ f(n) > c \cdot g(n) \; orall n \geq n_0 \end{aligned}$	f(n) grows strictly faster than $g(n)$	Strict (Loose) Lower Bound

Summery

Asymptotic Notation