Geometría y Álgebra Lineal 2

Mauro Polenta Mora

Ejercicio 1

Consigna

Sea V un \mathbb{R} -espacio vectorial de dimensión finita con producto interno, y $T:V\to V$ el operador dado por:

$$T(v) = \langle v, \ u_0 \rangle \cdot u_1$$

donde u_0 y u_1 son vectores fijos y no nulos de V.

- 1. Hallar T^*
- 2. ¿Qué condiciones deben cumplir u_0 y u_1 para que T sea autoadjunto?

Resolución

Parte 1

Veamos el siguiente razonamiento

$$\begin{split} &\langle T(v),w\rangle\\ =&(\text{definición de }T)\\ &\langle\langle v,u_0\rangle\,u_1,w\rangle\\ =&(\text{propiedades del producto interno})\\ &\langle v,u_0\rangle\,\langle u_1,w\rangle\\ =&(\text{propiedades del producto interno y }V\text{ es real})\\ &\langle v,\langle u_1,w\rangle\,u_0\rangle\\ =&(\text{definición de adjunta})\\ &\langle v,T^*(w)\rangle \end{split}$$

Por lo que tenemos que $T^*(w) = \langle u_1, w \rangle u_0$

Parte 2

Para que T sea autoadjunto, tenemos que tener que:

$$\bullet \ T(v) = \langle v, u_0 \rangle \, u_1 = \langle u_1, w \rangle \, u_0 = T^*(w)$$

Entonces, se tiene que cumplir lo siguiente:

•
$$\langle v, u_0 \rangle u_1 = \langle u_1, w \rangle u_0$$

Lo que implica que u_1 y u_2 tienen que ser colineales. Veamos que pasa si $u_1=ku_0$ con $k\in\mathbb{R}$:

$$T(w)$$

$$= (\text{definición de } T^*)$$

$$\langle u_1, w \rangle u_0$$

$$= (u_1 = ku_0)$$

$$\langle ku_0, w \rangle u_0$$

$$= (\text{propiedades del producto interno})$$

$$\langle u_0, w \rangle ku_0$$

$$= (u_1 = ku_0)$$

$$\langle u_0, w \rangle u_1$$

$$= (\text{como } V \text{ es real})$$

$$\langle w, u_0 \rangle u_1$$

$$= (\text{definición de } T)$$

$$T(w)$$

Por lo que si u_1 y u_2 son colineales, entonces ${\cal T}$ es autoadjunta.