The Pros and Cons of siRNA Use in HCS

Eugenio Fava (fava@mpi-cbg.de)

DZNE - German Centre for **Neurodegenerative Diseases -** Bonn, Germany

Max Plank Institute of Cell Biology and Genetics

Technology Development Studio Dresden, Germany

Why RNAi in HCS

High Content: the cell as a test tube

Advantages in using cells as "test tube":

- Relevant physiological read-out
- Spatial Information: Proteins sub-cellular localization
- In situ "molecular biology" (Protein-Protein interactions)
- Toxicity data embedded in the system
- Bio-availability of compounds (membrane permeability, metabolic activity etc.)
- Multiparametric
- Multiplexing
 - Several markers simultaneous read-out
 - Several cell type
- Cell population study
 - Quantitative multi-parametric phenotypic changes measurements
- Single-cell and/or sub-cellular level study

The cellular pathways approach to

RNAi in HCS proof of Principle

Pellkmans et al. Nature 2005

Lesson I: We need non supervised Automated Image Analysis

- Describe phenotypes quantitatively
- Deduce endocytic system alterations from distribution
- Analyze dynamic process with end point assay

Lesson II: how to handle RNAi off target

siRNA 1 siRNA 2 siRNA 3

Lesson III: single parameter analysis will not be sufficient to get out from the troubles

Automated image Analysis:

Super Computing and Multi-parameter Analysis

- Total fluorescence intensity → Total signal in the image
- Number of vesicles
- · Weighed mean size of vesicles
- Weighed mean intensity → Mean vesicle brightness
- Total integral vesicles intensity → Total signal associated with vesicles per image
- Mean integral intensity → Average total signal associated with vesicle per vesicle
- Peer to peer distance→ Endosome clustering, size of cluster
- Distance to the nucleus → Average vesicle distance

Prof. Nagel, University of Technology Dresden

Phenotype profile

Phenotype profile Same siRNA repeated 5 times 5 siRNA in or

5 siRNA in one experiment

Pearson Correlation Coefficients for siRNA Kinome library (1206 gens, 3343 non-lethal siRNA)

Correlation of Replicates

Correlation of siRNAs

Ratio of Correlations

Library quality comparison

Endosome Distribution Analysis

Peer- to peer distance Distribution

- 1.: Peak position
- = Mean radius of clusters
- 3.: Integral
- = Proportional to clustered fraction
- 2.: Amplitude
- = Peak Density in cluster (n of endosomes)
- 4.: Mean Distance to Nucleus
- = subcellular position of Clusters

System Survey of Endocytosis by siRNA

- We performed a GWS on EGF and Tfr endocytosis
- We use 161.500 oligos
- We acquired and store
 2.4 Milions images
- We generate 18 TB of Data
- The calculation used
 3 milions of cpu hours

CG	Description	Hits
1	Selective up-regulation of Tfn endocytosis	932
2	Selective down-regulation of Tfn endocytosis	88
3	Specific effect on subcellular localization: endosomes appear clustered in the cell centre	801
4	Specific effect on subcellular localization: endosomes appear dispersed in the cell periphery	260
5	Opposite effects on EGF and Tfn endocytosis: EGF endocytosis is increased and Tfn endocytosis is decreased	224
6	Opposite effects on EGF and Tfn endocytosis: EGF endocytosis is decreased and Tfn endocytosis is increased	143
7	Effects on endocytosis of both markers: increased EGF and Tfn endocytosis	137
8	Effects on endocytosis of both markers: decreased EGF and Tfn endocytosis	799
9	Selective up-regulation of EGF endocytosis	178
10	Selective down-regulation of EGF endocytosis	324
11	Selective up-regulation of EGF endocytosis with accumulation of endosomes in cell centre	271
12	Reduced Tfn endocytosis with endosomes accumulated in the cell centre	204
13	Selective increase in EGF endosomes number and elongation	38
14	Increase in elongation of Tfn endosomes with mild increase of Tfn endocytosis	37

