

Angewandter Elektromagnetismus 5. Semester – Dr. Jasmin Smajic Autoren: Luca Loop

https://github.com/Luca-ET/ElMag

T 1	14	
Inha	ltsverz	eichnis

Elektrostatische Analyse	2	1.1 Integralgleichungen
--------------------------	---	-------------------------

1 Elektrostatische Analyse

1.1 Integralgleichungen

1.1.1 Gausssches Gesetz

Der Fluss des Vektors $\vec{D} = \varepsilon \cdot \vec{E}$ durch eine geschlossene orientierte Fläche (A) ist gleich der elektischen Ladung Q, die von der Fläche (A) umgeben ist:

1.1.2 Wirbelfreiheit des elektrostatsichen Feldes

Das Kurvenintegral des elektrostatischen Feldes \vec{E} über jede geschlossene orientierte Kurve (C) ist gleich null.

(das elektrostatische Feld ist konservativ)

$$\oint_{(C)} \vec{E} \cdot \vec{dl} = 0$$

Das Kurvenintegral des elektrostatischen Feldes hängt nur von der Position des Anfangs- und Schlusspunktes ab. Es ist unabhängig von der Kurvenform.

$$\oint \vec{E} \cdot \vec{dl} = \int_{P_1}^{P_2} \vec{E} \cdot \vec{dl} - \int_{P_1}^{P_2} \vec{E} \cdot \vec{dl} = 0$$

$$(C) \qquad (C_1) \qquad (C_2)$$

$$\int_{P_1}^{P_2} \vec{E} \cdot \vec{dl} = \int_{P_1}^{P_2} \vec{E} \cdot \vec{dl}$$

$$(C_1) \qquad (C_2)$$