Q1 Kruskals

4 Points

Perform Kruskal's algorithm on this graph and select the edge from the list below that is chosen last.

- **O** 6
- **O** 7
- **O** 8
- **O** 9
- **O** 10
- 11
- **O** 12
- **O** 13
- **O** 14
- **O** 15
- **O** 16

Q2 4 Points

This AVL tree T is balanced. Suppose we insert into T a key chosen uniformly at random from the set

{1, 3, 5, 7, 9, 11, 13, 14, 15, 16}

What is the exact numeric value of the expected height. Express your answer as a fraction in reduced terms. le, if your answer is 3, you would write

Numerator: 3, Denominator 1

If your answer is 2.5, you would write

Numerator 5, Denominator 2

Your answer:

Numerator

Denominator

O 1

① 12

O 13

O 14

- **O** 2
- **O** 3
- **O** 4
- **o** 5
- **O** 6

Q3

8 Points

In the next two questions we consider hashing with chaining in a hash table T[0...99] with 100 slots. A slot T[i] is even if i is even and odd if i is odd. The hash function for this table does not have simple uniform hashing. Starting from an empty hash table T, we enter 6000 keys such that:

- a key is 3 times as likely to hash to an even slot than to an odd slot.
- keys that hash to an even slot are equally likely to hash to any even slot
- keys that hash to an odd slot are equally likely to hash to any odd slot

Q3.1

4 Points

What is the expected length of the chain for T[33]?

- **O** 20
- **③** 30
- **O** 40
- **O** 50
- **O** 60
- **O** 70
- **O** 80
- **O** 90
- O None of the above

Q3.2

4 Points

After inserting the 6000 keys into our table, what is the expected number of key comparisons when searching for a key that is not in the table.

- **O** 30
- **O** 35
- **O** 40
- **O** 45
- **O** 50
- **O** 55
- **o** 60
- **O** 65
- **O** 70
- **O** 75
- **O** 80
- **O** 85
- **O** 90
- O None of the above

Q4

4 Points

State the interval that search(root, hi, lo) would return for search(root, 25,22) using the interval tree search algorithm from class.

- O[15, 23]
- \odot [25, 30]
- O[26, 26]
- O None of the above

Q5 DFS Cycles

4 Points

Pick the best answer. DFS can be used to detect a cycle in a graph in

- $\mathbf{O}\;\Theta(m)$ time
- $\mathbf{O}\;\Theta(n)$ time
- $oldsymbol{\Theta}(n+m)$ time
- $\mathbf{O}\ \Theta(\log n)$ time
- $\mathbf{O}\;\Theta(\log m)$ time
- $\mathbf{O}\;\Theta(\log(n+m))$ time
- $\mathbf{O}\;\Theta(m\log n)$ time
- O None of the above

Q6 MST, Dijkstra's

4 Points

Select all that are true for a weighted graph G=(V,E). Let T be a minimum spanning tree of G.

Dividing each edge weight in two will not change the set of edges included in the distance tree constructed by Dijkstra's algorithm.
ightharpoonup Adding a constant to every edge's weight may mean T is no longer a minimum spanning tree.
lacksquare T is still an MST after squaring the edge weights of G .
Dijkstra's algorithm works when the edge weights are negative.
If the edge weights are not unique then there must be more than one minimum spanning tree.
None of them are true.

Q7

12 Points

Consider the Randomized Quicksort sorting algorithm that we described in class for the next three questions. For these questions,

- Make sure your answers are **exact numbers**, do not use asymptotic notation.
 - You do not need to justify your answers.

Q7.1

4 Points

What is the worst-case total number of comparisons (between the elements of the sequence) when we execute Randomized Quicksort on a sequence with 7 distinct integers? Do not write any spaces with your answer.

														ħ
	_													
	27	7												

Q7.2

4 Points

What is the best-case total number of comparisons (between the elements of the sequence) when we execute Randomized Quicksort on a sequence of 7 distinct integers. Do not write any spaces with your answer.

```
19
```

Q7.3

4 Points

Let E_n be the expected total number of comparisons between the elements of the sequence when we execute Randomized Quicksort on a sequence of n distinct integers.

What is E_4 ? Select the best answer.

- **O** 3
- **O** 3.5
- **O** 4
- **O** 4.25
- **O** 4.5
- **O** 4.75
- **O** 5
- **O** 5.25
- **O** 5.5
- **O** 5.75
- **O** 6
- None of the above.

Q8 Build Heap

4 Points

Select the best answer. An array of $\log n$ nodes can be converted into a min heap:

- $oldsymbol{\Theta}$ in $\Theta((\log n)\log(\log n))$ time and $\log n$ space.
- \mathbf{O} in $\Theta((\log n)\log(\log n))$ time and $2\log n$ space.
- \mathbf{O} in $\Theta(n \log n)$ time and $\log n$ space.
- \mathbf{O} in $\Theta(n\log n)$ time and $2\log n$ space.
- \mathbf{O} in $\Theta(\log n)$ time and $\log n$ space.
- **O** in $\Theta(\log n)$ time and $2\log n$ space.
- \mathbf{O} in $\Theta(n)$ time and $\log n$ space.
- \mathbf{O} in $\Theta(n)$ time and $2\log n$ space.
- O None of the above.

Q9 Complexity

4 Points

If
$$f()\in \mathcal{O}(g())$$
 then ...

Select all that are true:

- ullet there is a positive real number c such that for a natural number $n_0, n \geq n_0 o f(n) \leq cg(n)$ for all $n \in \mathbb{N}.$
- ullet there is a positive real number c such that for a natural number $n_0, n \geq n_0 o g(n) \geq cf(n)$ for all $n \in \mathbb{N}.$
- $\square \lim_{n \to \infty} \frac{g(n)}{f(n)} = \infty.$
- $= \lim_{n o \infty} rac{g(n)}{f(n)}$ exists and is finite.
- $igcup \lim_{n o\infty}rac{f(n)}{g(n)}=\infty.$
- $lacksquare \lim_{n o \infty} rac{f(n)}{g(n)}$ exists and is finite.
- $leftef{g} g() \in \Omega(f()).$
- None of them are true.

Final Part A_13678

UNGRADED

STUDENT

Stephen Guo