SparseAttn for Video Generation

2025. 04. 11 Yulin Sun

1. Background

Review the diffusion process and 3D attn in t2v/i2v models

Diffusion Process & DiT

2D & 3D Attn in video generation

- 2D attn:
 - After encoder: hidden_states shapes (B, T, H, W, C)
 - Spatial Attn:
 - Reshape to (B*T, H*W, C)
 - Seq len = H*W, only tokens with the same T do attn
 - Temporal Attn:
 - Reshape to (B*H*W, T, C)
 - Seq_len = T, only tokens with the same H*W do attn

STDiT (Sequential)

2D & 3D Attn in video generation

- 3D full attn:
 - After encoder: hidden_states shapes (B, T, H, W, C)
 - Reshape to (B, T*H*W, C)
 - $Seq_1en = T*H*W$
- Capture all the influence between tokens
- i.e. 2D doesn't have attn between (frame 0, token 2) and (frame 1, token 0)

2D attn compare with 3D attn

Bottleneck in 3D Attention

- Long seqlen (e.g. 119054 for a 5s video in hunyuan) with $\mathcal{O}(n^2)$ complexity
- High computation rate in total inference time
- Solution:
 - Reduce redundant computation in 3D attention
 - Leverage spatial and temporal similarity

2. Sparse VideoGen (aka SVG)

Distinguish spatial or temporal pattern in attn map

Overview

- Contrib. 1: Identify two types of attention heads (spatial & temporal)
- Contrib. 2: Online profiling strategy for sparsity identification (0.02% overhead cmp attn)
- Contrib. 3: Hardware-efficient layout transformation

AttnMap Pattern —— Spatial & Temporal Heads

Sampling Method for Online Profiling Patterns

- Sparse patterns in the same attn head are variant in different prompts or layers —— need online profiling
- Metric: MSE
- Set width of diagonal manually
- Uniformly sample few rows (querys) (32 / 119054) for profiling

Use MSE to decide spatial/temporal pattern

Online Layout Transformation for Hardware Efficiency

- In temporal heads
 - Stride: #tokens in a frame
 - Non-contiguous
- Reshape Q & K before attn
 - spatial first -> temporal first
 - Little overhead

Order: spatial first -> temporal first

3. Adaptive Sparse Attention (aka Ada Spa)

Blockified attn mask and LSE-cached method for profiling

Overview

- Contrib. 1: Identify blockified pattern exhibits stronger expressive capability
- Contrib. 2: Cache LSE for sparsity index online searching
- Contrib. 3: Use different sparsity for different heads (adaptive during timesteps)

Blockified sparse pattern exceeds its contiguous counterpart

Blockified sparse pattern exceeds its contiguous counterpart

- Recall: sum(selected attn scores) / sum(attn scores in the attn map)
- Blockified pattern can achieve better recall & cover more global pattern

Slow change of sparse patterns & LSE across timesteps

Recall in a single inference, using topK blocks

LSE distribution across timesteps

Adaptive sparsity between heads & timesteps

- Different heads hold different sparsity characteristics
- A single uniform sparsity —— suboptimal Recall
- Distinct sparsity level for each head —— kernel load imbalance
- Adaptive sparsity: increase (decrease) the sparsity with the high (low) Recall

Low Sparsity

High Sparsity

Comparison with other methods

Thanks!