Problemas de derivabilidad de funciones. Teoremas de derivabilidad

- 1. Consideremos el polinomio de grado 4, $p_4(x) = x^4 a^2x^2 + b$ donde a y b son valores reales. Demostrar que $p_4(x)$ tiene tres extremos relativos, dos mínimos y un máximo.
- 2. Demostrar que para todo valor $x, y \in \mathbb{R}$, $|\cos x \cos y| \le |x y|$.
- 3. Sean a > b > 0 números reales y $n \in \mathbb{N}$ un entero positivo con $n \ge 2$. Demostrar que $a^{\frac{1}{n}} b^{\frac{1}{n}} < (a b)^{\frac{1}{n}}$. Indicación: demostrar que la función $f(x) = x^{\frac{1}{n}} (x 1)^{\frac{1}{n}}$ es decreciente para $x \ge 1$ y evaluarla en x = 1 y $x = \frac{a}{b}$.
- 4. Sea $f: [0,2] \longrightarrow \mathbb{R}$, continua en [0,2] y derivable en (0,2). Supongamos que $f(0)=0, \ f(1)=f(2)=1$.
 - a) Demostrar que existe un valor $c_1 \in (0,1)$ tal que $f'(c_1) = 1$.
 - b) Demostrar que existe un valor $c_2 \in (1,2)$ tal que $f'(c_2) = 0$.
 - c) Demostrar que existe un valor $c_3 \in (0,2)$ tal que $f'(c_3) = \frac{1}{3}$.