1. Moment Generating Function

 $M_X(t) = E(e^{tx})$

Properties:

(a)
$$M_x^{(n)}(0) = E(X^n)$$

(b)
$$M_x(t) = M_v(t) \Rightarrow XY$$
 has same distribution

(c)
$$M_x(0) = 1$$

(d)
$$M_{ax+b}(t) = M_x(at)e^{bt}$$

(e)
$$M_{X+Y}(t) = M_X(t)M_Y(t)$$
 (X, Y independent)

2. Gama Function
$$\Gamma(n) = \int_0^\infty u^{n-1} e^{-u} du = (n-1)!$$

$$\Gamma(n) = (n-1)\Gamma(n-1)$$

$$\int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$$

3. Basic probability property

(a) Conditional Probability and Bayles Theorem

1.
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

2. $P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A')P(A')}$

(b) Expectation

1.
$$E(X) = \sum x P_X(x)$$
 or $\int_{-\infty}^{\infty} x f_X(x)$

2.
$$E(c) = c$$

3.
$$E(aX) = aE(X)$$

4.
$$E(X + Y) = E(X) + E(Y)$$

5.
$$E(X) = M'_X(0)$$

(c) Variance and Standard Deviation

1.
$$VAR(X) = E(X^2) - E^2(X) = \sum [(x - E(X)]P_X(x) = E[(x - \mu)^2] = \sigma^2$$

2. $VAR(c) = 0$

3.
$$VAR(aX) = a^2 VAR(x)$$

4.
$$VAR(X \pm Y) = VAR(X) + VAR(Y) \pm 2COV(x,y)$$
, $COV(x,y) = E(XY) - E(X)E(Y)$

(d) z-score

 $Z = \frac{x-\mu}{\sigma}$, measures the distance of x from expected

4. Discrete Distributions

(a) Binomial Distribution

Note as
$$X \sim B(n, p)$$

 $P_X(x) = \binom{n}{x} p^x (1-p)^{n-x}$

$$M_X(t) = (1 - p + pe^t)^n, E(X) = np, VAR(X) = np(1 - p)$$

(b) Hyper Geometric Distribution

Note as $X \sim H(N, n, r)$, N:total size, n:total pick, r:size of special subgroup

$$P_X(x) = \frac{\binom{r}{x}\binom{N-r}{n-x}}{\binom{N}{n}}$$

$$E(X) = n \frac{r}{N}, VAR(X) = n \frac{r}{N} (1 - \frac{r}{N})(\frac{N-n}{N-1})$$

(c) Poisson Process

$$P_X(x) = \frac{e^{-\lambda} \lambda^x}{x!}, E(X) = \lambda, VAR(X) = \lambda$$

 λ : average arrival in given time or space

When $\lambda = np < 10$, poisson approximates Binomial.

(d) Geometric Distribution

i. X is the r.v of number of total trials (x includes the first success)

$$P_X(x) = (1-p)^{x-1}p, x = 1, 2, 3...$$

 $E(X) = 1/p, VAR(X) = \frac{1-p}{p^2}$

ii. X is the r.v of number of failed trials (x excludes the first success)

$$P_X(x) = (1-p)^x p, x = 0, 1, 2, ...$$

 $M_X(t) = \frac{p}{1-e^t(1-p)}, E(X) = \frac{1-p}{p}, VAR(X) = \frac{1-p}{p^2}$

(e) Negative Binomial Distribution

X is the r.v of number of trials need to observe the r^{th} success in a sequence of Bernoulli trails where p is the success probability.

$$P_X(x) = {x-1 \choose r-1} p^r (1-p)^{x-r}, x = r, r+1, r+2...$$

$$M_X(t) = (\frac{p}{1 - e^t(1 - p)})^r, E(X) = \frac{r}{p}, VAR(X) = \frac{r(1 - p)}{p^2}$$

Alternatively, X is the r.v of failures before the r^{th}

Success.

$$P_X(x) = {x+r-1 \choose r-1} p^r (1-p)^x, x = 0, 1, 2...$$

 $M_X(t) = (\frac{1-p}{1-pe^t})^r, E(X) = \frac{r(1-p)}{p}, VAR(X) = \frac{r(1-p)}{p^2}$

5. Chebychev's Theorem

$$P(\mu - k\sigma \le x \le \mu + k\sigma) \ge 1 - \frac{1}{k^2}$$

6. Continuous Distributions

(a) Uniform(rectangle) Distribution

$$f_X(x) = \frac{1}{b-a}, \ (a \le x \le b); F_X(x) = \frac{x-a}{b-a}, \ a \le x \le b$$

$$E(X) = \frac{a+b}{2}, VAR(X) = \frac{(b-a)^2}{12}$$

(b) Exponential Distribution

$$f_X(x) = \frac{1}{\theta}e^{-\frac{x}{\theta}}, (x \ge 0); F_X(x) = 1 - e^{-\frac{x}{\theta}}, x \ge 0$$

 $M_X(t) = \frac{1}{1-\theta t}, E(X) = \theta, VAR(X) = \theta^2$
Note as $X \sim exp(\theta)$, In terms of λ : $\lambda = \frac{1}{\theta}$

(c) Gamma Distribution

$$f_X(x) = \frac{1}{\Gamma(n)\theta^n} x^{n-1} e^{-\frac{x}{\theta}}, x \ge 0$$

$$M_X(t) = \frac{1}{(1-\theta t)^n}, E(X) = n\theta, VAR(X) = n\theta^2$$
In terms of $\alpha, \beta : \alpha = n, \beta = \frac{1}{\theta}$

(d) Normal Distribution

$$\begin{split} f_X(x) &= \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, E(X) = \mu, VAR(X) = \sigma^2 \\ M_X(t) &= e^{\mu t + \frac{1}{2}\sigma^2 t^2} \end{split}$$

(e) Log-normal Distribution:

$$Y = e^{X}, X \sim N(\mu, \sigma^{2}), f_{Y}(y) = \frac{1}{\sigma y \sqrt{2\pi}} e^{-\frac{1}{2} (\frac{\ln y - \mu}{\sigma})^{2}}, y \ge 0$$

$$E(Y) = e^{\mu + \frac{\sigma^{2}}{2}}, VAR(Y) = e^{2\mu + \sigma^{2}} (e^{\sigma^{2}} - 1)$$

(f) Pareto Distribution:

$$\begin{split} f_X(x) &= \frac{k}{\beta} (\frac{\beta}{x})^{k+1}, F_X(x) = 1 - (\frac{\beta}{x})^k, k > 2, x \ge \beta > 0 \\ E(X) &= \frac{k\beta^2}{k-1}, VAR(X) = \frac{k\beta^2}{k-2} - (\frac{k\beta}{k-1})^2 \\ \text{In terms of } \alpha, \beta \colon \alpha = k, \beta = \beta \end{split}$$

(g) Weibull Distribution:

$$\begin{split} f_X(x) &= k\lambda x^{k-1}e^{-\lambda kx^k}, F_X(x) = 1 - e^{-\lambda kx^k} \\ E(X) &= \frac{\Gamma(1+\frac{1}{k})}{\lambda^{\frac{1}{k}}}, VAR(X) = \frac{1}{\lambda^{\frac{2}{k}}}[\Gamma(1+\frac{2}{k}) - \Gamma^2(1+\frac{1}{k})] \\ \text{in terms of } \alpha, \beta : k = \alpha, \lambda = \beta \\ \text{Note: } \Gamma(\frac{1}{2}) &= \sqrt{\pi} \end{split}$$

(h) Beta Distribution

$$f_X(x) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1}, x \in (0,1), a > 0, b > 0$$

$$E(X) = \frac{a}{a+b}, VAR(X) = \frac{ab}{(a+b)^2(a+b+1)}$$

(i) Chi-Square Distribution

Chi-Square Distribution
$$f_X(x) = \frac{1}{2^{\frac{k}{2}}\Gamma(\frac{k}{2})} x^{\frac{k}{2}-1} e^{-\frac{x}{2}}, x > 0$$

$$E(X) = k, VAR(X) = 2k, M_X(t) = \frac{1}{(1-2t)^{\frac{k}{2}}}$$

Special case of Gamma Dist. of $\alpha = \frac{k}{2}$, $\beta = 2$ $\chi^2 = \sum_{i=1}^k Z_i^2$ (sum of k squared standard normal)

If $X_1, X_2, ..., X_k$ is a random **sample** from $N(\mu, \sigma^2)$

1.
$$Z = \sum_{i=1}^{k} (\frac{x_i - \mu}{\sigma})^2 \sim \chi^2(k)$$
 (mean)

1.
$$Z = \sum_{i=1}^{k} (\frac{x_i - \mu}{\sigma})^2 \sim \chi^2(k)$$
 (mean)
2. $Z = \sum_{i=1}^{k} (\frac{x_i - \bar{x}}{\sigma})^2 \sim \chi^2(k-1)$ (sample mean)

7. Central Limit Theorem

Let $\{X_1, X_2, ..., X_n\}$ be the indep. r.v. with same distribution and mean μ and std. deviation σ . If n is large $n \ge 30$, $S = X_1 + X_2 + \dots + X_n \Rightarrow S \sim N(n\mu, n\sigma^2)$ $\mathbf{OR} \ S' = \frac{X_1 + X_2 + \dots + X_n}{n} \Rightarrow S \sim N(\mu, \frac{\sigma^2}{n})$

OR
$$S' = \frac{X_1 + X_2 + \dots + X_n}{n} \Rightarrow S \sim N(\mu, \frac{\sigma^2}{n})$$

8. Finding PDF for Y = g(X)

If g(X) is strictly increasing or decreasing $f_Y(y) = f_X(h(y)) \cdot |h'(y)|, h(y) = g^{-1}(x)$

(a) Marginal Distribution

$$p_X(x) = \sum_y p(x,y), \ p_Y(y) = \sum_x p(x,y)$$

$$f_X(x) = \int_{-\infty}^{\infty} p(x,y)dy, \ f_Y(y) = \int_{-\infty}^{\infty} p(x,y)dx$$

(b) Conditional Distribution

$$\begin{split} P(X = x | Y = y) &= \frac{p(x,y)}{p_Y(y)}, \ P(Y = y | X = x) = \frac{p(x,y)}{p_X(x)} \\ f(x | Y = y) &= f(x | y) = \frac{f(x,y)}{f_Y(y)} \\ f(y | X = x) &= f(y | x) = \frac{f(x,y)}{f_X(x)} \end{split}$$

(c) Conditional Expected Value

$$E(y|X = x) = \sum_{y} y \cdot p(y|x), \ E(x|Y = y) = \sum_{x} x \cdot p(x|y)$$

$$E(y|X = x) = \int_{-\infty}^{\infty} y \cdot f(y|x) dy$$

$$E(x|Y = y) = \int_{-\infty}^{\infty} x \cdot f(x|y) dx$$

(d) Independence

$$p(x,y) = p_X(x) \cdot p_Y(y)$$

$$f(x|y) = f_X(x), \ f(y|x) = f_Y(y)$$

(e) Covariance

$$COV(x,y) = E[(X - \mu_X)(Y - \mu_Y)] = E(XY) - E(X)E(Y)$$

Properties:

i.
$$COV(X, Y) = COV(Y, X)$$

ii.
$$COV(X, X) = VAR(X)$$

iii.
$$COV(X, K) = 0, K$$
 is constant

iv.
$$COV(aX, bY) = ab \cdot COV(X, Y)$$

v.
$$COV(X, Y + Z) = COV(X, Y) + COV(X, Z)$$

vi. If X, Y are independent, COV(X, Y) = 0

(f) Correlation Coefficient ρ

$$\rho = \rho_{X,Y} = \frac{COV(X,Y)}{\sigma_X \cdot \sigma_Y}, \in [-1,1]$$

 $|\rho_{X,Y}|$ close to 1 : more related $\rho > 0$ positively related, $\rho < 0$ negatively related (g) Moment Generating Function of Joint Distribution $M_{X,Y}(t_1,t_2) = E(e^{t_1X + t_2Y})$ $E(X) = \frac{d}{dt_1} M_{X,Y}(t_1, t_2)|_{t_1 = t_2 = 0}, E(Y) = \frac{d}{dt_2} M_{X,Y}(t_1, t_2)|_{t_1 = t_2 = 0}$ $E(X^m Y^n) = \frac{\partial^{m+n}}{\partial^m t_1 \partial^n t_2} M_{X,Y}(t_1, t_2)|_{t_1 = t_2 = 0}$

(h) Multinomial Distribution

Counting Partitions:

$$\binom{n}{n_1, n_2, \dots, n_k} = \frac{n!}{n_1! n_2! \dots n_k}$$

 $\binom{n}{n_1, n_2, \dots, n_k} = \frac{n!}{n_1! n_2! \dots n_k!}$ Suppose that a random experiment has K mutually exclusive outcomes $E_1, E_2, \dots E_k$, with $P(E_i) = p_i, i \in$ [1,k]. Suppose you repeat this experiment in n independent trails. Then:

$$P(X_1 = E_1, ..., X_k = E_k) = \binom{n}{n_1, n_2, ..., n_k} p_1^{n_1} p_2^{n_2} ... p_k^{n_k}$$