VI.- PROBLEMAS PROPUESTOS

6.1

Hacer una Distribución de frecuencias bidimensional, de la siguiente tabla que de acuerdo a su Idioma, se indica los diversos niveles socioeconómicos entre: Baja (B), Media (M), Alta (T) de un grupo de personas.

D ~ ~ 1	D	P	R	R	R	M	M	M	M	M	IVI	A	A	Α	7	11
Espanol	D	М	M	M	M	M	М	А	Α	Α	A	Α	A	A		
F	D	R	R	М	М	М	M	М	Α	Α	A					
Alamán	R	B	M	M	M	M	M	A	A	A	A	A	A	Α		
Aleman		00		0.1												

6.2

Los 14 alumnos de un curso, obtienen las siguientes calificaciones (sobre 100) de tres materias. Elaborar una Distribución de frecuencias bidimensional, clasificando a las calificaciones en 5 clases.

Álgebra	0	0	10	15	20	25	25	30	35	45	50	55	60	65
Rotánica	15	20	25	30	30	40	45	50	50	55	60	70	70	85
Contabilidad	30	40	50	50	60	65	65	70	80	80	85	85	85	90

6.3

A partir de la tabla que muestra la edad (E) en años cumplidos de un grupo de mujeres y la cantidad de hijos (N^o) que tienen! Establecer una tabla de distribución bidimensional, clasificando a la Variable Y que será la edad (E)

Edad Nº hijos			16 1		17 1	18	18	18		20 2		21	22	22	22 2	22	22 4	22 4	23 1	23
Edad	23	23	23	24	24	24	25	25	25	25	25	26	26	26	26	26	26	27	27	27
	3	3	4	0					4	4			1	2	3	3	4.	2	2	3
Edad	20	20	26	28	28	28	28	29	29	30	30	30	30	30	30	30	30	31	31	32
No hijos		20 1	3	3	3	4	4	2	4	1	3	3	4	4	4	4	1 ,5	2	13	1
Edad						2.2	11	2.2	27	22	33	33	33	33	33	33	34	34	34	34
Edad No hijos		32	32	32	32				5	2	3	3	4	4	4	4	2	3	4	5

6.4

Trazar los Diagramas de barra agrupados de las siguientes Distribuciones bidimensionales:

a)

Meses	Enero	Febrero	Marzo	Abril	Total
Sucursal Agencia I	30	27	23	8.9 28 dds s	108
Agencia II	20	17 93 24	mobile trails	21	73
Agencia III	10	11	12	10	43
Total	60	55	50	59	224

Fábrica Trimestre	A	В	C	D	Е	Total.
Trimestre 1	60	50	40	35	30	215
Trimestre 2	40	30	35	25	20	150
Trimestre 3	20	20	30	15	10	95
BILA (M) SibTotal	120	100	105	75	60	460

Caja Mes	AA A	ABA	MCM	M DM	E	Total
Mes 1	200	180	160	160	130	830
Mes 2	180	180	150	140	120	770
Mes 3	120	120	130	110	100	580
Total	500	480	440	410	350	2180

6.5 Luego de medir la estatura de un grupo de niños se obtiene la tabla de Distribución de frecuencias bidimensional adjunta.

> Indicar las tablas de Frecuencias marginales para cada variable

30 40	Edad	[5,7[[7,9[[9,11[8
Estatura	OF COLD	$O(Y_1)$	Y ₂	Y_3	Total
[0.9, 1.1[X_1	3	2	1	6
[1.1, 1.3[X_2	5	5	2	12
[1.3, 1.5]	X_3	eour 4 out	sld31 sl	ob 14164	11
[1.5, 1.7[X_4	0 0	0 0	i) squid	1
ja de relació	Total	12	10	8	30

De la tabla de Distribución bidimensional adjunta, hallar su Distribución relativa y porcent

La tabla representa al número de aparatos de TV (Y) que posee una familia de acuerdo al número de miembros de cada familia (X)

	TV	0	1	2	3	
al No	fam.	Y_1	Y_2	Y_3	Y_4	Total
1	X,	2	3	1	0	6
2	X_2	1	4	1	0	6
3	X_3	185	5	2 2	1	9
4	X_4	1	4	0 3 20	2	10
5 .	X_5	0	3	4	2	9
18.8	Total	5	19	11	5	40

- A partir de la tabla del P.6.5 (Edad -Estatura), indicar las Distribuciones condicionadas $f_{\text{Y/X} = \text{X2}}$; $f_{XY=Y3}$ Indicar además la Distribución relativa.
- A partir de la tabla del P.6.6 (Fam-No TV), indicar las Distribuciones condicionadas $f_{Y/X=XS}$; $f_{XN=Y2}$ Indicar además la Distribución relativa.
- A partir de la tabla del P.6.5 (Edad -Estatura), calcular las Medias marginales, Varianzas marginales tanto para X como para Y, calcular ademas su Covarianza.
- 6.10 A partir de la tabla del P.6.6 (Fam-N° TV), calcular las Medias marginales, Varianzas marginales tanto para X como para Y, calcular ademas su Covarianza.

6.11 Calcular las Medias, Covarianzas poblacionales, Desviaciones estándar poblaciones y los Coeficientes de correlación, de los siguientes conjuntos de datos:

		X	0	1	3	5	6	7
		Y	12	4	1	7	12	18
X	2	7	11	13	14	15	16	17
Y	92	75	50	36	42	48	50	54
								
X	1	2	3	4	5	6	7	8
V	19	22	26	25	24	22	10	15

RESPUESTAS VI

<u>6.1</u>

1866	Nivel	В	M	A) O LL CT
Idioma	1	Y_1	Y_2	Y_3	Total
Español	X_1	5	6	5	16
Inglés	X_2	1	6	7	14
Francés	X_3	3	5	3	10
Alemán	X_4	2	5	7	14
That A	Total	13	20	21	54

6.2

	Mat	eria	Alg	Bot	Con	lendine.
Notas	Marca	nua esta	Y_1	Y ₂	<i>Y</i> ₃	Total
[0,20[10	X_1	4	1	0	5
[20,40[30	X_2	5	4	1	10
[40,60[50	X_3	3	5	3	11
[60,80[70	X_4	2	3	4	9
[80,100[90	X_5	0	1_	6	7
1 + 1	X 5	Total	14	14	14	42

6.3

	Edad	[15,19[[19,23[[23,27[[27,31[[31,35[
No		Y_1	Y ₂	Y ₃	Y_4	Y_5	Total
0	X_1	3	1	2		0	7
1	X_2	4	2	2	2	l l	11
2	X_3	1	3	4	3	5	16
3	X_4	0	2	60	6	7	21
4	X_5	0	2	5	7	8	22
5	X_6	0	0 0	0	43 × 10 ()	1 2 2 8	3 85
The but	Total	8	10	19	20	23	80