

Compilers

Lexical Specification

- At least one: $A^+ \equiv AA^*$
- Union: $A \mid B$ $\equiv A + B$
- Option: \underline{A} ? $\equiv \underline{A} + \underline{\varepsilon}$
- Range: $(a' + b' + ... + z') \equiv [a-z]$
- Excluded range:

complement of
$$[a-z] \equiv [^a-z]$$

• Last lecture: a specification for the predicate

$$S \in L(R)$$
Sets of strings

Not enough!

1. Write a rexp for the lexemes of each token class

- Number = digit⁺
 Keyword = 'if' + 'else' + ...
- Identifier = letter (letter + digit)*
- OpenPar = '('

2. Construct R, matching all lexemes for all tokens

$$R \neq \text{Keyword} + \text{Identifier} + \text{Number} + \dots$$

= $R_1 + R_2 + \dots$

3. Let input be $x_1...x_n$ For $1 \le i \le n$ check

$$x_1...x_i \in L(R)$$

4. If success, then we know that

$$x_1...x_i \in L(R_i)$$
 for some j

Remove $x_1...x_i$ from input and go to (3)

How much input is used?

$$x_{i} \cdot x_{i} \in \mathcal{L}(R)$$

$$x_{i} \cdot x_{j} \in \mathcal{L}(R)$$

Chase the one listed

Which token is used?

$$X_1...X_i \in L(R)$$
 $R = R_1 + ... + R_N$
 $X_1...X_i \in L(R_i)$
 $X_1...X_i \in L(R_k)$
 $L(Keywords)$ Keywords = 'if
 $L(Leywords)$ Labortifiers = left.

What if no rule matches?

Regular expressions are a concise notation for string patterns

- Use in lexical analysis requires small extensions

 - To handle errors

```
- To resolve ambiguities - matches as long as possible highest priority metch
```

- Good algorithms known
 - Require only single pass over the input
 - Few operations per character (table lookup)