COMP353 Databases

Relational Algebra (RA) for Relational Data Model

Relational Algebra (RA)

- Database Query languages are specialized languages to ask for information (queries) in DB.
- Relational Algebra (RA) is a query language associated with the relational data model.
- Queries in RA are expressions using a collection of operators on relations in the DB.
- The input(s) and output of a RA query are relations
- A query is evaluated using the current instance of the input relations to produce the output

Operations in "standard" RA

- The well-known set operations
 - √Union (U)
 - √Intersection (∩)
 - √ Difference (−)
- Special DB operations that select "parts" of a relation instance
 - Selection (σ) selects some rows (tuples) & discards the rest
 - **Projection** (π) selects some columns (attributes) & discards the rest
- Operations that "combine" the tuples from the argument relations
 - **Cartesian product (\times)** pairs the tuples in all possible ways
 - Join (▷<) pairs particular tuples from the two input relations
- \blacksquare A unary operation to **rename** relations, called **Rename** (ρ)

Note: The output of a RA expression is an "unnamed" relation/set, i.e., RA expressions return sets, whereas SQL returns multisets (bags)

Compatibility Requirement

- We can apply the set operators of union, intersection, and difference to instances of relations R and S if R and S are compatible, that is, they have "the same" schemas.
- **Definition**: Relations $S(A_1,...,A_n)$ and $R(B_1,...,B_m)$ are compatible if:
 - (1) **n=m** and
 - (2) type(A_i) = type(B_i) (or compatible types), for all $1 \le i \le n$.

Set Operations on Relations

Let **R** and **S** be relation schemas, and **r** and **s** be any instances of them.

- The union of \mathbf{r} and \mathbf{s} is the set of all tuples that appear in either one or both. Each tuple \mathbf{t} appears only once in the union, even if it appears in both; $\mathbf{r} \cup \mathbf{s} = \{t \mid t \in \mathbf{r} \lor t \in \mathbf{s}\}$
- The intersection of \mathbf{r} and \mathbf{s} , is the set of all tuples that appear in both; $\mathbf{r} \cap \mathbf{s} = \{t \mid t \in \mathbf{r} \land t \in \mathbf{s}\}$
- The difference of \mathbf{r} and \mathbf{s} , is the set of all tuples that appear in \mathbf{r} but not in \mathbf{s} ; $\mathbf{r} \mathbf{s} = \{t \mid t \in \mathbf{r} \land t \notin \mathbf{s}\}$
 - Commutative operations; r Op s = s Op r
 Note: Set difference (–) is not commutative, i.e., (r-s ≠ s − r)

Relation Schema: Star (name, address, gender, birthdate)

Instance r of Star:

Name	Address	Gender	Birthdate
Carrie Fisher	123 Maple	F	9/9/99
Mark Hamill	456 Oak rd.	M	8/8/88

Instance s of Star:

Name	Address	Gender	Birthdate
Carrie Fisher	123 Maple	F	9/9/99
Harrison Ford	789 Palm rd.	M	7/7/77

 $r \cup s$:

Name	Address	Gender	Birthdate
Carrie Fisher	123 Maple	F	9/9/99
Mark Hamill	456 Oak rd.	M	8/8/88
Harrison Ford	789 Palm rd.	M	7/7/77

Relation Schema: Star (name, address, gender, birthdate)

Instance r of Star:

Name	Address	Gender	Birthdate
Carrie Fisher	123 Maple	F	9/9/99
Mark Hamill	456 Oak rd.	M	8/8/88

Instance s of Star:

Name	Address	Gender	Birthdate
Carrie Fisher	123 Maple	F	9/9/99
Harrison Ford	789 Palm rd.	M	7/7/77

Name	Address	Gender	Birthdate
Carrie Fisher	123 Maple	F	9/9/99

Relation Schema: Star (name, address, gender, birthdate)

Instance r of Star:

Name	Address	Gender	Birthdate
Carrie Fisher	123 Maple	F	9/9/99
Mark Hamill	456 Oak rd.	M	8/8/88

Instance S of Star:

Name	Address	Gender	Birthdate
Carrie Fisher	123 Maple	F	9/9/99
Harrison Ford	789 Palm rd.	M	7/7/77

r - s

Name	Address	Gender	Birthdate
Mark Hamill	456 Oak rd.	M	8/8/88

Relation Schema: Star (name, address, gender, birthdate)

Instance r of Star:

Name	Address	Gender	Birthdate
Carrie Fisher	123 Maple	F	9/9/99
Mark Hamill	456 Oak rd.	M	8/8/88

Instance S of Star:

Name	Address	Gender	Birthdate
Carrie Fisher	123 Maple	F	9/9/99
Harrison Ford	789 Palm rd.	M	7/7/77

s – **r**:

Name	Address	Gender	Birthdate
Harrison Ford	789 Palm rd.	M	7/7/77

Projection (π)

- Let R be a relation schema.
- The projection operation (π) is used to produce, from any instance r of R, a new relation that includes listed "columns" of R
- The output of π_{A1, A2,...,Aj} (r) is a relation with columns A₁, A₂,..., A_j, in this order.
- Note: The subscript of π is a *list*, which defines the structure of the output as the ordered tuple $(A_1, A_2, ..., A_i)$.

Relation Schema: Movie(<u>title</u>, <u>year</u>, length, filmType, studioName, producer)

Instance movie
Of Movie:

title	year	length	filmType	studioName	producer
Star wars	1977	124	color	Fox	12345
Mighty Ducks	1991	104	color	Disney	67890
Wayne's World	1992	95	color	Paramount	99999

Query: $\pi_{\text{title, year, length}}$ (movie)

title	year	length
Star wars	1977	124
Mighty Ducks	1991	104
Wayne's World	1992	95

Relation Schema: Movie(title, year, length, filmType, studioName, producer)

Instance movie
Of Movie:

title	year	length	filmType	studioName	producer
Star wars	1977	124	color	Fox	12345
Mighty Ducks	1991	104	color	Disney	67890
Wayne's World	1992	95	color	Paramount	99999

Query: π_{filmType} (movie)

Result:

filmType color

Selection (o)

- The selection operator (σ), applied to an instance r of relation R, returns a subset of r
- We denote this operation/query by $\sigma_c(r)$
- The output includes tuples satisfying condition C
- The schema of the output is the same as R

Relation Schema: Movie(<u>title</u>, <u>year</u>, length, filmType, studioName, producer)

Instance movie of Movie:

title	year	length	filmType	studioName	producer
Star wars	1977	124	color	Fox	12345
Mighty Ducks	1991	104	color	Disney	67890
Wayne's World	1992	95	color	Paramount	99999

Query: $\sigma_{length \geq 100}$ (movie)

Result:

title	year	length	filmType	studioName	producer
Star wars	1977	124	color	Fox	12345
Mighty Ducks	1991	104	color	Disney	67890

Relation: Movie(title, year, length, filmType, studioName, producer)

Instance movie of Movie:

title	year	length	filmType	studioName	producer
Star wars	1977	124	color	Fox	12345
Mighty Ducks	1991	104	color	Disney	67890
Wayne's World	1992	95	color	Paramount	99999

Query: $\sigma_{length \ge 100 \text{ AND studioName}} = Fox'$ (movie)

Result:

title	year	length	filmType	studioName	producer
Star wars	1977	124	color	Fox	12345

Cartesian Product (x)

- Let R and S be relation schemas, and r and s be any instances of R and S, respectively.
- The Cartesian Product of r and s is the set of all tuples obtained by "concatenating" the tuples in r and s. Formally, $\mathbf{r} \times \mathbf{s} = \{ t_1.t_2 \mid t_1 \in r \land t_2 \in s \}$
- The schema of result is the "union" of R and S
 - If R and S have some attributes in common, we need to invent new names for identical names, e.g., use R.B and S.B, if B appears in both R and S

Instance r of R:

Α	В
1	2
3	4

Instance s of S:

В	С	D
2	5	6
4	7	8
9	10	11

r×s:

Α	R.B	S.B	С	D
1	2	2	5	6
1	2	4	7	8
1	2	9	10	11
3	4	2	5	6
3	4	4	7	8
3	4	9	10	11

Theta-join (θ)

- Suppose **R** and **S** are relation schemas, **r** is an instance of **R**, and **s** is an instance of **S**. The **theta-join** of **r** and **s** is the set of all tuples obtained from concatenating all $t_1 \in \mathbf{r}$ and $t_2 \in \mathbf{s}$, such that t_1 and t_2 satisfy some condition **C**
- We denote θ -join by $r \triangleright \triangleleft_{\mathbf{c}} \mathbf{s}$
- The schema of the result is the same as the schema of R × S (i.e., the union of R and S)
- C is a Boolean expression, simple or complex, as in operation σ

Instance r of R:

Α	В	С
1	2	3
6	5	8
9	7	11

Instance s of S:

В	С	D
2	3	4
2	3	5
7	8	10

r ><1 s:

Α	R.B	R.C	S.B	S.C	D
1	2	3	2	3	4
1	2	3	2	3	5
1	2	3	7	8	10
6	5	8	7	8	10
9	7	11	7	8	10

Equi-join

- The equi-join operator, is a special case of θ-join, in which we may only use the equality relation (=) in condition C
- It is denoted as $\mathbf{r} \triangleright \triangleleft_{\mathbf{c}} \mathbf{s}$ (i.e., the same as θ -join)
- The schema of the output is the same as that of θ-join

Instance r of R:

Α	В	С
1	2	3
6	5	8
9	7	11

Instance s of S:

В	C	D
2	3	4
2	3	5
7	8	10

$$r \triangleright \triangleleft_{R.C = S.C} s$$
:

Α	R.B	R.C	S.B	S.C	D
1	2	3	2	3	4
1	2	3	2	3	5
6	5	8	7	8	10

Natural Join (⊳⊲)

- Natural join, is a special case of equi-join, where the equalities are not explicitly specified, rather they are assumed implicitly on the common attributes of R and S
- We denote this natural join operation by r ⊳⊲ s
- The schema of the output is similar to that of equi-join, except that each common attribute appears only once.

Note: If **R** and **S** do not have any common attribute, then the join operation becomes Cartesian product.

Instance r of R:

Α	В	С
1	2	3
6	2	8
9	7	3

Instance s of S:

В	С	D
2	3	4
2	3	5
7	8	10

$r \triangleright \triangleleft s$:

Α	В	С	D
1	2	3	4
1	2	3	5

Expressing Queries in RA

- Every standard RA operation has relation(s) as argument(s) and produces a relation (set) as the output
 (Exception is the sort operator τ)
- This property of RA operations (that inputs and outputs are relations) makes it possible to formulate/express any query by composing/nesting/grouping subqueries.
- We can use parentheses for grouping, in order to improve clarity and readability

Example: RA Query

- Relation schema:
 - Movie (title, year, length, filmType, studioName)
- Query: List the title and year of every movie made by Fox studio whose length is at least 100 minutes?
- One way to express this query in RA is:

```
\pi_{title,year}(\sigma_{studioName = 'Fox' and length >= 100} (movie))
```

- Another way:
 - Select those movie tuples that have length ≥100
 - Select those movie tuples that have studioName = 'Fox'
 - Find the intersection of the above two results
 - Then project on the attributes title and year

Example: RA Query

 $\pi_{title,year}(\sigma_{studioName = 'Fox' and length >= 100} (movie))$

$$\pi_{title,year}(\sigma_{length \ge 100}(movie) \cap \sigma_{studioName = 'Fox'}(movie))$$

Example: RA Query

Relation schema:

```
Movie (<u>title</u>, <u>year</u>, <u>length</u>, filmType, studioName)
StarsIn (<u>title</u>, <u>year</u>, <u>starName</u>)
```

- Query: List the names of the stars of movies of length ≥ 100 minutes long.
- One expression in RA for this query:
 - Select movie tuples of length ≥ 100
 - Join the result with relation StarsIn
 - Project on the attribute starName
- **Exp1:** π starName ($\sigma_{length \geq 100}$ (movie) $\triangleright \triangleleft$ starsIn)
- Another solution: $\pi_{starName}(\sigma_{length \ge 100}(movie \triangleright \triangleleft starsIn))$

Renaming Operator (ρ)

- To control manipulating the names of the attributes in formulating queries in relational algebra, we may need renaming of relations. May do this for convenience too
- The Renaming Operator is denoted by $\rho_{s(A1,A2,...,An)}(r)$
- The result is a copy of the input relation instance r, but renamed to s and its attributes to A1, ..., An, in that order.
- Use $\rho_s(r)$ to give relation r a new name s (with the same attributes in r)

That is, in this case, schema of \mathbf{s} is the same as that of \mathbf{r} .

- Query: π starName ($\sigma_{length \geq 100}$ (movie) $\triangleright \triangleleft$ starsIn)
- This query can be rewritten in 2 steps as follows:
 - 1. $\rho_{\text{M(title, year, length, filmType, studioName)}}(\sigma_{\textit{length} \geq 100} \text{ (movie)})$ or even simpler as: $\rho_{\text{M}}(\sigma_{\textit{length} \geq 100} \text{ (movie)})$ if used in the same formula
 - **2.** Or use M := $\sigma_{length \ge 100}$ (movie) as a separate formula and then formulate the query as: $\pi_{starName}$ (M $\triangleright \triangleleft$ starsIn)
- Consider takes(<u>sid</u>, <u>cid</u>, grade)
- Query: Find ID of every student who has taken at least 2 courses.
- $\pi_{\text{takes.sid}}(\sigma_{\text{(takes.sid}} = T.\text{sid)}) \text{ and (takes.cid} \neq T.\text{cid)} \text{ (takes} \rho_T(\text{takes}))$

Dependent and Independent Operations

Some RA operations can be expressed based on other operations. Examples include:

$$r \cap s = r - (r - s)$$

$$r \triangleright \lhd_{\mathbf{C}} \mathbf{s} = \sigma_{\mathbf{C}} (\mathbf{r} \times \mathbf{s})$$

• r ⊳⊲ s = π_L(σ_{r.A1 = s.A1 AND... AND r.An = s.An} (r × s)),
where L is the list of attributes in R followed by those attributes in S that are not in R, and A1,..., An are the common attributes of R and S

Relational Algebra with Bag Semantics

- Relations stored in DB are called base relations/tables.
- Base relations are normally sets; no duplicates.
- In some situations, e.g., during query processing, it is allowed for relations to have duplicate tuples.
- If duplicates are allowed in a collection, it is called bag/multiset.

Instance r of R:

Α	В	С
1	2	3
6	5	8
6	5	8
1	2	3
9	7	11

Here, r is a bag

Why Bags?

1. Faster projection operations

Bag projection is faster, since otherwise returning distinct values is expensive (as we need sorting for duplicate elimination.

Another example: Computing the bag union (r UBs) is much cheaper than computing the standard set union r Us.

Formally, if \mathbf{r} and \mathbf{s} have n and m tuples, then the bag and set union operations will cost $\mathbf{O}(n+m)$ and $\mathbf{O}(n*m)$, respectively.

- 2. Correct computation with some aggregation
 - For example, to compute the average of values for attribute A in the previous relation, we must consider the bag of those values

Set Operations on Bags

r \cup ^B **s**, the **bag union** of **r** and **s**, is the bag of tuples that are in **r**, in **s**, or in both. If a tuple *t* appears *n* times in **r**, and *m* times in **s**, then *t* appears n+m times in bag $\mathbf{r} \cup$ ^B **s**

$$\mathbf{r} \cup^{\mathbf{B}} \mathbf{s} = \{ t: \mathbf{k} \mid t: n \in \mathbf{r} \land t: m \in \mathbf{s} \land k = n+m \}$$

r \cap ^B **s**, the **bag intersection** of **r** and **s**, is the bag of tuples that appear in both **r** and **s**. If a tuple *t* appears *n* times in **r**, and *m* times in **s**, then the number of occurrences of t in bag **r** \cap ^B **s** is min(n,m)

$$\mathbf{r} \cap^{\mathsf{B}} \mathbf{s} = \{ t: k \mid t: n \in \mathbf{r} \wedge t: m \in \mathbf{s} \wedge k = min(n,m) \}$$

r −^B s, the bag difference of r and s is defined as follows:

$$\mathbf{r} - \mathbf{B} \mathbf{s} = \{ \text{ t:k } | \text{ t:n} \in \mathbf{r} \land \text{ t:m} \in \mathbf{s} \land k = \max(0, n-m) \}$$

 $\mathbf{s} - \mathbf{B} \mathbf{r} = \{ \text{ t:k } | \text{ t:n} \in \mathbf{r} \land \text{ t:m} \in \mathbf{s} \land k = \max(0, m-n) \}$

Bag r:

Α	В
1	2
3	4
1	2
1	2

Bag s:

Α	В
1	2
3	4
3	4
5	6

r ∪^B s:

Α	В
1	2
3	4
1	2
1	2
1	2
3	4
3	4
5	6

Bag r:

Α	В
1	2
3	4
1	2
1	2

Bag s:

Α	В
1	2
3	4
3	4
5	6

r ∩^B S: A B
1 2
3 4

Bag r:

Α	В
1	2
3	4
1	2
1	2

Bag s:

Α	В
1	2
3	4
3	4
5	6

r -B s:

Α	В
1	2
1	2

Bag r:

Α	В
1	2
3	4
1	2
1	2

Bag s:

Α	В
1	2
3	4
3	4
5	6

s -B r:

Α	В
3	4
5	6

Bag Projection π^B

- Let R be a relation scheme, and r be a collection of tuples over R, which could have duplicates.
 - The **bag projection** operator is used to produce, from **r**, a bag of tuples over some of **R**.
- Even when r does not have duplicates, we may get duplicates when projecting on some attributes of R.
 That is, π^B does not eliminate the duplicates and hence corresponds exactly to the SELECT clause in SQL.

Bag r:

Α	В	С
1	2	5
3	4	6
1	2	7
1	2	8

 $\pi^{B}_{A, B}$ (r):

Α	В
1	2
3	4
1	2
1	2

Relation Schema: movie(title, year, length, filmType, studioName, producer)

Instance:

title	year	length	filmType	studioName	producer
Star wars	1977	124	color	Fox	12345
Mighty Ducks	1991	104	color	Disney	67890
Wayne's World	1992	95	color	Paramount	99999

$\pi^{\text{B}}_{\text{filmType}}$ (movie):

filmType
color
color
color

Selection on Bags

- The selection operator σ_c applied to an instance
 r of relation R will return a subset of r
 - The tuples returned are those that satisfy the specified condition C (which involves attributes of R)
 - Duplicates are **not** eliminated from the result of a bag-selection

Note: The selection operation σ in RA is different from the **SELECT** clause in SQL

Bag r:

Α	В	С
1	2	5
3	4	6
1	2	7
1	2	7

 $\sigma_{c \geq 6}(r)$:

Α	В	С
3	4	6
1	2	7
1	2	7

Cartesian Product of Bags

- The Cartesian Product of bags \mathbf{r} and \mathbf{s} is the bag of tuples that can be formed by concatenating pairs of tuples, the first of which comes from \mathbf{r} and the second from \mathbf{s} . In symbols, $\mathbf{r} \times \mathbf{s} = \{t_1, t_2 \mid t_1 \in \mathbf{r} \land t_2 \in \mathbf{s}\}$
 - Each tuple of one relation is paired with each tuple of the other, regardless of whether it is a duplicate or not
 - If a tuple t_1 appears m times in a relation \mathbf{r} , and a tuple t_2 appears \mathbf{n} times in relation \mathbf{s} , then tuple $t_1.t_2$ appears $\mathbf{m}^*\mathbf{n}$ times in their bag-product, $\mathbf{r} \times \mathbf{s}$

Bag r:

Α	В
1	2
1	2

Bag s:

В	С
2	3
4	5
4	5

$r \times s$:

Α	R.B	S.B	С
1	2	2	3
1	2	2	3
1	2	4	5
1	2	4	5
1	2	4	5
1	2	4	5

Join of Bags

- The bag join is computed in the same way as the standard join operation
- Duplicates are not eliminated in a bag join operation

Bag r:

Α	В
1	2
1	2

Bag s:

В	С
2	3
4	5

r ⊳< s:

Α	В	С
1	2	3
1	2	3

Constraints on Relations

- RA offers a convenient way to express a wide variety of constraints, e.g., referential integrity and FD's.
- There are two ways to express constraints in RA
 - **1.** If **r** is an expression in RA, then the constraint $\mathbf{r} = \emptyset$ says: "**r** has no tuples, i.e., or **r** is empty"
 - 2. If \mathbf{r} and \mathbf{s} are RA expressions, then the constraint $\mathbf{r} \subseteq \mathbf{s}$ says: "every tuple in (the result of) \mathbf{r} is in (the result of) \mathbf{s} "

These constraints hold also when **r** and **s** are bags.

Constraints on Relations

- Note that these two types of constraints are not independent. Why?
 - The constraint $\mathbf{r} \subseteq \mathbf{s}$ could also be written as

$$r-s=\emptyset$$

This follows from the definition of "-", because $\mathbf{r} \subseteq \mathbf{s}$ iff $\mathbf{r} - \mathbf{s} = \emptyset$, meaning that there is no tuple in \mathbf{r} which is not in \mathbf{s}

Referential Integrity Constraints

- Referential integrity in relational data model means:
 - if there is a value v in a tuple t in a relation r, then it is expected that v appears in a particular component (attribute) of some tuple s in relation s
 - E.g., if tuple (s,c,g) is in table **takes**(sid,cid,grade), then there must be a **student** with sid = s and a **course** with cid = c such that s has taken c

IOW, the mentions of values S and C in takes "refers" to some values outside this relation, and these values must exist

Relation schemas:

Movie (<u>title</u>, <u>year</u>, length, filmType) StarsIn (<u>title</u>, <u>year</u>, <u>starName</u>)

Constraint:

the **title** and **year** of every movie that appears in relation **starsIn** *must* appear also in **movie**; otherwise there is a violation in referencing in **starsIn**

- Query in RA:
 - $\pi_{\text{title, year}}$ (starsIn) $\subseteq \pi_{\text{title, year}}$ (movie) or equivalently
 - \blacksquare π title, year (starsIn) $-\pi$ title, year (movie) = \varnothing

Functional Dependencies

- Any functional dependency X → Y can be expressed as an expression in RA
- Example:
 Consider the relation schema:
 Star (name, address, gender, birthdate)
- How to express the FD: name → address in RA?

Functional Dependencies

- Relation schema:Star (name, address, birthdate)
- With the FD: name → address
- The **idea** is that if we construct all pairs of **star** tuples, we **must not** find a pair that agree on **name** but disagree on **address**
- To "construct" the pairs in RA, we use **Cartesian product**, and to find pairs that violate this FD, we use **selection**
- We are then ready to express this FD by equating the result to ø, as follows...

Star:

Name	Address	Birthdate
Carrie Fisher	123 Maple	9/9/99
Mark Hamill	456 Oak rd.	8/8/88
Harrison Ford	789 Palm rd.	7/7/77

 $\rho_{\rm S1(name, address, birthdate)}({
m star})$

 $\rho_{S2(name, address, birthdate)}(star)$

Name	Address	Birthdate
Carrie Fisher	123 Maple	9/9/99
Mark Hamill	456 Oak rd.	8/8/88
Harrison Ford	789 Palm rd.	7/7/77

Name	Address	Birthdate	
Carrie Fisher	123 Maple	9/9/99	
Mark Hamill	456 Oak rd.	8/8/88	
Harrison Ford	789 Palm rd.	7/7/77	

$s1 \times s2$:

S1.Name	S1.Address	S1.Birthdate	S2.Name	S2.Address	S2.Birthdat
Carrie Fisher	123 Maple	9/9/99	Carrie Fisher	123 Maple	9/9/99
Carrie Fisher	123 Maple	9/9/99	Mark Hamill	456 Oak rd.	8/8/88
Carrie Fisher	123 Maple	9/9/99	Harrison Ford	789 Palm rd.	7/7/77
Mark Hamill	456 Oak rd.	8/8/88	Carrie Fisher	123 Maple	9/9/99
Mark Hamill	456 Oak rd.	8/8/88	Mark Hamill	456 Oak rd.	8/8/88
Mark Hamill	456 Oak rd.	8/8/88	Harrison Ford	789 Palm rd.	7/7/77
Harrison Ford	789 Palm rd.	7/7/77	Carrie Fisher	123 Maple	9/9/99
Harrison Ford	789 Palm rd.	7/7/77	Mark Hamill	456 Oak rd.	8/8/88
Harrison Ford	789 Palm rd.	7/7/77	Harrison Ford	789 Palm rd.	7/7/77

 $\sigma_{S1.name=S2.name\ AND\ S1.address} \neq S2.address (s1×s2) = \emptyset$

Functional Dependencies

- Relation schema:Star (name, address, birthdate)
- With the FD: name → address
- In RA:

```
\sigma_{\text{S1.name=S2.name AND S1.address}} = \sigma_{\text{S1.name=S2.name AND S1.address}} (\rho_{\text{S1}}(\text{star}) \times \rho_{\text{S2}}(\text{star})) = \emptyset
```

Domain Constraints

- Relation schema:Star (name, address, gender, birthdate)
- How to express the following constraint?

Valid values for gender are 'F' and 'M'

- In RA:
 - $\sigma_{\text{gender} \neq 'F' \text{ AND gender} \neq 'M'} (star) = \emptyset$
 - This is an example of domain constraints

Domain Constraints

- Relation schema:Employee (eid, name, address, salary)
- How to express the constraint:
 Maximum employee salaries is \$150,000
- In RA:
 - \bullet $\sigma_{\text{salary} > 150000}$ (employee) = \emptyset

"For All" Queries (1)

Given the database schema:

```
Student(Sid, Sname, Addr)
Course(Cid, Cname, Credits)
Enrolled (Sid, Cid)
```

Consider the query:

"Find students enrolled in all the courses."

A first attempt (below) fails!

```
\pi_{sid} (Enrolled)
```

- This RA query returns those students enrolled in some courses.
- So, how to correctly express "For All" types of queries?

"For All" Queries (2)

- A solution strategy would be to:
 - First find the list of "all" students (all guys), from which we then subtract those who have not taken at least a course (bad guys)
- Then "good guys", would be "all guys" from which we remove the "bad guys", i.e.,

Answer (Good guys) = All guys – Bad guys

"For All" Queries (3)

Set of all students that we should consider:

```
All Courses := \pi_{Cid} (Course)
All Students := \pi_{Sid} (Student)
```

- Steps to find students not enrolled in all courses
 - 1. Create all possible "student-course" pairs:

```
All: Student-Course Pairs := \pi_{Sid} (Student) × \pi_{Cid} (Course)
```

- 2. Extract the "actual" student-course pairs from Enrolled
- 3. Using 1 & 2, we then find students not enrolled in all courses:

```
Bad: \pi_{Sid}(\pi_{Sid}(Student) \times \pi_{Cid}(Course) - Enrolled)
```

Answer: All - Bad

The Division Operation (÷)

- The previous query can be expressed in RA using the *division* operator ÷
 - Divide Enrolled by π_{Cid} (Course) that is, Enrolled ÷ π_{Cid} (Course)
 - Schema of the result is {Sid, Cid} {Cid}
- R ÷ S requires that the attributes of S to be a subset of the attributes of R.
 - The schema of the output would be R S

Example: Enrolled (student, sport)

Find students enrolled in all sports {Hockey, Football}.

Enrolled (Student, sport)

Jim	Hockey
Joe	Football
Jim	Football
Sue	Hockey

Example: Enrolled(student, sport)

Jim
Joe
Sue

Sue

Sue

Sue

Jim is the only student enrolled in all sports

Another Example

- $r \div s = \pi_{R-S}(r) \pi_{R-S}(\pi_{R-S}(r) \times s r)$
- Consider the following DB schema in a banking application:
 - Customer(cid, name)
 - Branch(bid, district)
 - Account(cid, bid)
- Query: "Find the names of those customers who have an account in every branch in the Westmount area"
- Solution?
 - π_{name} (Customer $\triangleright \triangleleft$ Account $\triangleright \triangleleft$ ($\sigma_{district = "Westmount"}$ (Branch)))?
- No, this query returns those customers who have an account at some branch in Westmount, but not necessarily at all such branches.

Database:

Customer(cid, name), Branch(bid, district), Account(cid, bid)

- We can use the division operator ÷
 - Find all customer-branch pairs (cid, bid) for which customer (cid) has an account at branch (bid): π_{cid,bid} (customer ▷ < account)</p>
 - Divide the above by bid's of all branches in Westmount π_{bid} ($\sigma_{district = "Westmount"}$ (branch))
- That is: π_{name} ((customer $\triangleright \triangleleft$ account)÷ π_{bid} ($\sigma_{district} = "Westmount"$ (branch)))
- The division " $\mathbf{r} \div \mathbf{s}$ " of relation r by s is defined as: $\mathbf{r} \div \mathbf{s} = \pi_{R-S}(\mathbf{r}) - \pi_{R-S}(\pi_{R-S}(\mathbf{r}) \times \mathbf{s} - \mathbf{r})$