

SZM301 圆形电容一体指纹开发模块

规格书 V2.1

深圳市十指科技有限公司

专业高性能指纹技术、指纹模块、指纹应用方案提供商!

http://www.szszkj.cn QQ:2129631347 TEL: 0755-32810060

目 录

第一章 产品简介	3 -
一、产品概述	3 -
1.1 产品特点	4 -
1.2 产品外观	4 -
1.3 产品结构尺寸	5 -
1.4 技术指标	5 -
二、产品介绍	6 -
2.2 指纹算法	6 -
2.3 指纹管理程序	6 -
三、 应用领域	7 -
四、接口定义	8 -
五、休眠控制及触控唤醒功能应用说明	9 -
5.1 休眠控制及唤醒	9 -
5.2 指纹模块触控信号(手指接触感应)原理说明	9 -
六、电气参数	10 -
第二部分 硬件通信协议	11 -
一. 通信方式	11 -
二. 命令类型	12 -
附录 A 通信协议操作流程示例	24 -

第一章 产品简介

一、 产品概述

SZM301 电容指纹开发模块是一种触摸式指纹识别设备,由以下两部分组成:

- ➤ SZM301 指纹识别主板 (默认 500 枚指纹, 可扩展)
- ▶ 电容式触摸式指纹传感器组成。

SZM301 电容指纹开发模块具有耐磨、耐腐蚀、耐静电等优势,模块中集成了十指科技自主研发的指纹识别算法(分类算法 TFS-9A),该算法经历 11 年优化和升级,在行业内处于领先地位,长期应用于银行金融业、公安、智能指纹锁等领域,各项性能指标均位于市场同类产品前列。

SZM301 电容指纹开发模块的处理器包含 FLASH 和 SRAM,指纹的采集、存储和比对全部在芯片内部处理完成,处理速度快,开发接口简单,便于行业用户的二次开发,因此可降低产品开发难度,缩短产品研发周期,同时通过集成化芯片的方式也实现了指纹模块体积的最小化。

1.1 产品特点

1					
1) 模块化设计、结构简单, 集指纹采集、存储和识别为					
体,完全自行处理,速度更快、效果更优;					
2) 集成度高、 体积小、 稳定性强、 功耗低;					
3) 产品稳定性高、便于大规模生产、具备成本优势;					
1) 自主研发指纹核心算法,拥有自主知识产权;					
2) 360 度旋转识别;					
3) 自学习功能:					
1) 采用晶圆塑封技术, 具备防雾、防尘、防破坏能力,					
有					
效解决人体静电影响、采像质量高、产品耐用性强;					
2) 内置人体感应器件,具有触摸唤醒功能和低功耗设计,					
可有效识别塑胶、硅胶、 指模、指套等假手指情况;					
3)指纹模组的晶圆塑封可按用户要求定制颜色;					
1) 公开接口代码和指令集, 指纹识别处理过程对主控单					
元					
MCU 完全透明,可实现组装式二次开发,降低客户开发难度					
且缩短研发周期;					
2) 可为客户提供高效、灵活的二次开发支持,满足客户所					
有需求;					
1) 采用标准 8 字节协议, 开发简单;					
2) 采集指纹图像和特征值,可与公司其它产品兼容。					

1.2 产品外观

(指纹模块-正面)

(指纹模块-背面)

1.3 产品结构尺寸(单位: mm)

1.4 技术指标

指纹图像抓取	1 N (500 (N < 100)
及比对速度	1:N < 500ms (N≤100)
存储容量	标配 500 枚指纹(根据用户需要可扩展)
传感器类型	电容式触摸式传感器
分辨率	508DPI
FRR.	<0.1%
FAR.	<0.001%
指纹传感器整体尺寸	R15. 5mm
指纹模块尺寸	19.3mm
图像像素阵列	192 x 192
图像灰度等级	8 位灰度
使用寿命	一百万次

电压	2.7 ~ 3.3V					
动态电流	<50mA					
静态电流	<16µА					
静电测试	接触放电 8KV/空气放电 15KV					
数据接口	UART (TTL 电平)					
工作环境	温度: -20° C ~ 70° C					
工作 小 児	湿度: 40%RH-85%RH(无凝霜)					
方件环语	温度: -40° C ~ 85° C					
存储环境	湿度: <85%RH(无凝霜)					

二、产品介绍

SZM301 电容指纹开发模块使用电容式指纹传感器,可完成指纹的采集、 比对、储存以及相关的扩展功能。 模块包含硬件和软件(核心算法及管理程序)两部分。

2.1 硬件

SZM301 指纹模块的硬件包含指纹传感器和指纹识别模块。

SZM301 电容一体指纹识别模块的主芯片

采用高性能 Cortex 内核 120M 主频,稳定可靠并能够快速运行指纹识别算法。

2.2 指纹算法

TFS-9A 分类指纹算法是在实践中经历 11 年优化和升级, 进行分类处理和比对,其性能远高于传统的纯特征点算法。

2.3 指纹管理程序

SZM301 电容一体指纹识别模块的管理程序,通过 TTL 电平的 RS232 接口与主控单元 MCU(或上位机) 按照十指科技通用(兼容公司所有产品)自有通信协议进行交互, 模块接收来自主控单元 MCU(或上位机)的指令,并执行

该指令对应的操作,操作完成后再将执行结果通过 RS232 接口返回给主控单元 MCU(或上位机):从而实现指纹处理模块的管理平台。

管理程序的通信接口由若干指令组合而成,模块的每个功能由主控单元 MCU(或上位机) 发送独立的指令来执行,执行状态通过串口反馈给主控单元 MCU 进行逻辑交互。 通过合理的组合使用接口指令,可以适用于指纹识别的各种应用场景,如何实现功能逻辑则完全由主控单元 MCU(或上位机) 决定,方便用户进行二次开发。

三、 应用领域

SZM301 指纹开发模块是目前市面上具备量产能力的,尺寸兼容性最全的,像素最大的指纹模块之一,可以为用户提供一体化指纹解决方案。

应用领域	应用产品/方案类型				
智能锁	智能指纹门锁、 指纹保险箱(柜) 、箱包锁				
网络平台	终端采集,后台/服务器比对				
4夕二十分 治	指纹手机、平板电脑、笔记本电脑、 PDA 手持				
移动终端	终端和智能可穿戴产品 (手表、手环等)				
考勤/门禁管理	指纹考勤机、 指纹门禁控制器				
PC 电脑外设	指纹鼠标、指纹键盘、 windows 指纹仪				
安全存储设备	指纹U盘、指纹硬盘				
	银行指纹柜员管理、银行指纹密码储蓄、指纹				
金融领域	密码登录、各类智能信用卡防伪、 ATM 指纹自动				
	提款、银行指纹保险箱等				
计算机及互联网身份	计算机及网络安全、会员账号与管理、互联网				
认证	购物第三方支付等				
ich ròi	指纹二代身份证、刑侦、户籍管理、社保、公				
政府	安部门武器库指纹管理等				

四、接口定义

4.1 通讯接口

标准 UART TTL 电平

默认波特率 19200 bps, 1 起始位, 1 停止位, 3.3V TTL 电平。

4.2 连接器类型

XH-1.25-6P: 6Pin 条形连接器,间距 1.25mm。

4.3 管脚说明

(管脚从右往左数,分别 PIN1-PIN6)

4.3.1 串口模式

接口	功能	管脚	方向	定义	说明	
J3	UART 接	Pin1	in	电源输入	电源 3.3V	
	П	Pin2	in	GND	地	
	(从右到左)	Pin3	in	RX	串口数据输入,TTL 逻辑电平	
		Pin4	out	TX	串口数据输出,TTL 逻辑电平	
		Pin5	in	PWR_EN	模块休眠控制接口:	
				(休眠控制)	输入高电平: 模块供电-启动	
					输入低电平:模块掉电-休眠	
		Pin6	out	IRQ	模块处于休眠时,手指接触采集器表面	
				(手指检测信号)	会激活模块,此脚输出高脉冲	

IRQ/PWR_EN/UART_TX/UART_RX 均为 0-3.3V

J3 定义 (右为 PIN1):

PIN1: VIN (电源输入)

PIN2: GND 地

PIN3: UART_RX (接主控 MCU-UART_TX)

PIN4: UART_TX (接主控 MCU-UART_RX)

PIN5: PWR_EN (高电平模块激活,低电平模块休眠)

PIN6: IRQ(模块处于休眠时,手指接触采集器表面会激活模块,此脚输出高脉冲

五、休眠控制及触控唤醒功能应用说明

5.1 休眠控制及唤醒

A) 使模块进入休眠模式:

主控 MCU 拉低 J3-PIN5

B) 激活处于休眠模式的模块(以下2种方式单独有效)

方式一: 主控 MCU 拉高 J3-PIN5

方式二: 手指接触采集表面, J3-PIN6 会输出高脉冲以唤醒主控 MCU

5.2 指纹模块触控信号(手指接触感应)原理说明

- ▶ 采用单触摸键检测芯片,功耗低,工作电压范围宽。
- ➤ 无手指触摸状态下, IRQ 信号线为低电平, 当手指触摸指纹传感器时该信号触发成高电平, 直到手指离开时再变为低电平。
- ▶ 应用原理:

SZM216 指纹开发模块处于休眠状态下,作为唤醒信号使用:

- 1) 当手指接触指纹传感器时,触控信号会被激发, IRQ 输出高电平给主控 MCU, 主控 MCU 拉高 PWR EN 脚, 继而唤醒系统(给指纹模块上电)
 - 2) 间隔 50ms 后主控 MCU 即可正常与模块进行通讯;
 - 3)操作完毕后,主控 MCU 拉抵 PWR_EN 脚,模块进行休眠;
 - 4) 需再次触摸指纹模块时,又唤醒模块,可重复使用该信号。

5.3 低功耗设计

降低模块功耗方法通过拉低或拉高模块的 PWR_EN 脚来控制模块的电源是否工作来降低功耗, 主控 MCU 拉低 J3-PIN5 PWR_EN 使整个模块处于休眠状态,整个模块只有(手指接触)触控信号输出电路在工作,且功耗为 $2\,\mu\,A$ 左右。

六、电气参数

项目		最小	典型	最大	单位
供电电	压	2. 7	3. 3	3. 6	V
掉电待	触发电流	_	_	2	μА
工作电	流	_	_	55	mA
工作温	度	-20	-	70	$^{\circ}$
存储温度		-40	_	85	${\mathbb C}$
ESD	非接触放电	_	_	15 K	V
等级	接触放电	-	_	8K	V

第二部分 硬件通信协议

一. 通信方式

模块作为从设备,由主设备发送相关命令对其进行控制。

命令接口: UART (通用异步串口) 19200bps 1 起始位 1 停止位 (无校验位)

主设备发送的命令及 DSP 模块的应答按数据长度可分为两类:

1) = 8 字节,数据格式如下:

字节	1	2	3	4	5	6	7	8
命令	0xF5	CMD	P1	P2	Р3	0	СНК	0xF5
应答	0xF5	CMD	Q1	Q2	Q3	0	СНК	0xF5

说明:

CMD: 命令/应答类型

P1, P2, P3: 命令参数

Q1, Q2, Q3: 应答参数,

Q3 多用于返回操作的有效性信息,此时可有如下取值:

#define ACK SUCCESS 0x00//操作成功

#define ACK_FAIL 0x01//操作失败

#define ACK_FULL 0x04//指纹数据库已满

#define ACK_NOUSER 0x05//无此用户

#define ACK_USER_OCCUPIED 0x06//用户已存在

#define ACK FINGER OCCUPIED 0x07 //指纹已存在

#define ACK_TIMEOUT 0x08//采集超时

CHK: 校验和,为第2字节到第6字节的异或值

2) > 8 字节,数据由两部分组成:数据头+数据包

数据头格式:

	字节	1	2	3	4	5	6	7	8
	命令	0xF5	CMD	Hi(Len)	Low(Len)	0	0	СНК	0xF5
ſ	应答	0xF5	CMD	Hi(Len)	Low(Len)	Q3	0	СНК	0xF5

说明:

CMD, Q3 的定义同上

Len: 数据包内有效数据长度,16位,由两字节组成

Hi(Len): 数据包长度高 8 位 Low(Len): 数据包长度低 8 位

CHK: 校验和,为第2字节到第6字节的异或值

数据包格式:

字节	1	2Len + 1	Len + 2	Len + 3
命令	0xF5	Data	СНК	0xF5
应答	0xF5	Data	СНК	0xF5

说明:

Len 即为 Data 的字节数;

CHK: 校验和,为第 2 字节到第 Len + 1 字节的异或值 发送完数据头后紧接着发送数据包。

二. 命令类型

2. 1 修改模块序列号(命令/应答均为8字节)

命令数据格式:

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x08	新序列 号(位 23-16	新序列 号(位 15-8)	新序列 号(位 7- 0)	0	СНК	0xF5

应答数据格式:

字节	1	2	3	4	5	6	7	8
应答	0xF5	0x08	旧序列 号(位 23-16	旧序列 号(位 15-8)	旧序列 号(位 7- 0)	0	СНК	0xF5

说明:

序列号为 24 位的一个常数,每个 DSP 模块不一样,可用于区别不同的 DSP 模块。

2. 2 取 DSP 模块内部序列号(命令/应答均为 8 字节)

命令数据格式:

1	字节	1	2	3	4	5	6	7	8
1	命令	0xF5	0x2A	0	0	0	0	СНК	0xF5

应答数据格式:

字节	1	2	3	4	5	6	7	8
应答	0xF5	0x2A	序列号(位 12-16)	序列号 (位 15-8)	序列号 (位 7-0)	0	СНК	0xF5

2. 3 使模块进入休眠状态(命令/应答均为8字节)

命令数据格式:

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x2C	0	0	0	0	СНК	0xF5

应答数据格式:

字 1 2 3 4	5	6	7	8
-----------	---	---	---	---

节								
应答	0xF5	0x2C	0	0	0	0	СНК	0xF5

2. 4设置/读取指纹添加模式(命令/应答均为8字节)

指纹添加分两种模式:允许重复模式/禁止重复模式,在"禁止重复模式"下,同一枚手指只能添加一个用户,若强行进行第二轮添加将返回错误信息。上电后系统处于禁止重复模式。

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x2D	0	Byte5=0: 0: 允许重复 1: 禁止重复 Byte5=1: 0	0: 设置新的添加模式1: 读取当前添加模式	0	СНК	0xF5
应答	0xF5	0x2D	0	当前添加模式	ACK_SUCCUSS ACK_FAIL	0	СНК	0xF5

2. 5添加指纹(命令/应答均为8字节)

为确保有效性,用户必须录入 3 次指纹, 主机须向 DSP 模块发送 3 次命令。

i) 第1次

	1/\							
字节	1	2	3	4	5	6	7	8
命令	0xF5	0x01	用户 号 (高 & 位)	用户 号 (低 8 位)	用户权限(1/2/3)	0	СНК	0xF5
应 答	0xF5	0x01	0	0	ACK_SUCCESS ACK_FAIL ACK_FULL ACK_USER_OCCUPIED ACK_FINGER_OCCUPIED ACK_TIMEOUT	0	СНК	0xF5

说明:

用户号的取值范围为 1-0xFFF;

用户权限取值范围为1、2、3,其含义由二次开发者自行定义。

ii) 第 2 次

<u> </u>	-							
字节	1	2	3	4	5	6	7	8
命令	0xF5	0x02	用户 号 (高 8 位)	用户 号 (低 8 位)	用户权限 (1/2/3)	0	СНК	0xF5
应答	0xF5	0x02	0	0	ACK_SUCCESS ACK_FAIL ACK_TIMEOUT	0	СНК	0xF5

iii) 第3次

700								
字节	1	2	3	4	5	6	7	8
命令	0xF5	0x03	用户 号 (高 8 位)	用户 号 (低 8 位)	用户权限 (1/2/3)	0	СНК	0xF5
应答	0xF5	0x03	0	0	ACK_SUCCESS ACK_FAIL ACK_TIMEOUT	0	СНК	0xF5

说明:

3次命令中用户号与用户权限应为相同值。

如果第 3 次发的命令为 0x06,模块会将注册成功的特征值返回给主设备而不写入模块数据库,返回格式类似于命令"2. 15 采集图像并提取特征值上传(命令为8字节/应答>8字节)"的返回,只是第 2 字节变为 0x06。

2. 6添加用户并将特征值上传(命令为8字节/应答>8字节)

此命令的流程与"2.5 添加指纹"命令类似,为确保有效性,用户必须录入3次指纹,主机须向DSP模块发送3次命令。

i) 第1次

与"2.5添加指纹"第1次命令/应答一样。

ii) 第 2 次

与"2.5添加指纹"第2次命令/应答一样。

iii) 第3次

命令数据格式:

字节	1	2	3	4	5	6	7	8

应答数据格式:

1) 数据头:

字节	1	2	3	4	5	6	7	8
应答	0xF5	0x06	Hi(Len)	Low(Len)	ACK_SUCCESS	0	СНК	0xF5
					ACK_FAIL			
					ACK_TIMEOUT			

2) 数据包:

字节	1	2	3	4	5 Len + 1	Len + 2	Len + 3
应答	0xF5	0	0	0	特征值数据	СНК	0xF5

说明:

特征值数据长度 Len - 3 恒为 193 字节。

数据包仅当应答数据第5字节为ACK_SUCCESS时返回。

2. 7 删除指定用户(命令/应答均为8字节)

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x04	用户 号 (高 8 位)	用户 号 (低 8 位)	0	0	СНК	0xF5
应答	0xF5	0x04	0	0	ACK_SUCCESS ACK_FAIL	0	СНК	0xF5

2. 8 删除所有用户(命令/应答均为8字节)

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x05	0	0	0: 删除全部用户 1/2/3: 删除权限为 1/2/3的全部用户	0	СНК	0xF5
应答	0xF5	0x05	0	0	ACK_SUCCESS ACK_FAIL	0	СНК	0xF5

2. 9取用户总数(命令/应答均为8字节)

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x09	0	0	0:取用户总数	0	СНК	0xF5
					OxFF: 取指纹容 量			
应答	0xF5	0x09	用户 数/指 纹容 量 (高8	用户 数/指 纹容 量 (低 8 位)	ACK_SUCCESS ACK_FAIL OxFF(如果命令 为取容量)	0	СНК	0xF5

2. 10 比对 1: 1 (命令/应答均为 8 字节)

			774 - 4					
字节	1	2	3	4	5	6	7	8
命令	0xF5	0x0B	用户 号 (高 8 位)	用户 号 (低 8 位)	0	0	СНК	0xF5
应答	0xF5	0x0B	0	0	ACK_SUCCESS ACK_FAIL ACK_TIMEOUT	0	СНК	0xF5

2. 11 比对 1: N(命令/应答均为 8 字节)

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x0C	0	0	0	0	СНК	0xF5
应答	0xF5	0x0C	用户 号 (高8 位)	用户 号 (低 8 位)	用户权限 (1/2/3) ACK_NOUSER	0	СНК	0xF5
					ACK_TIMEOUT			

2. 12 取用户权限(命令/应答均为8字节)

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x0A	用户 号 (高 8 位)	用户 号 (低 8 位)	0	0	СНК	0xF5

应答	0xF5	0x0A	0	0	用户权限 (1/2/3)	0	СНК	0xF5
					ACK_NOUSER			

2. 13 取 DSP 模块版本号(命令为 8 字节/应答>8 字节)

命令数据格式:

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x26	0	0	0	0	СНК	0xF5

应答数据格式:

1) 数据头:

字节	1	2	3	4	5	6	7	8
应答	0xF5	0x26	Hi(Len)	Low(Len)	ACK_SUCCESS	0	СНК	0xF5
					ACK_FAIL			

2) 数据包:

字节	1	2 Len + 1	Len + 2	Len + 3
应答	0xF5	版本数据	СНК	0xF5

说明:

此协议暂不公开

2. 14 设置/读取比对等级(命令/应答均为8字节)

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x28	0	Byte5=0: 新比对等 级; Byte5=1: 0	0: 设置新的 比对等级 1: 读取当前 比 对 等 级	0	СНК	0xF5
应答	0xF5	0x28	0	当前比对 等级	ACK_SUCCUSS ACK_FAIL	0	СНК	0xF5

说明:

比对等级取值为0-9,取值越大比对越严格,默认值为5

2. 15 采集图像并上传(命令为8字节/应答>8字节)

命令数据格式:

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x24	0	0	0	0	СНК	0xF5

应答数据格式:

1) 数据头:

字节	1	2	3	4	5	6	7	8
应答	0xF5	0x24	Hi(Len)	Low(Len)	ACK_SUCCESS	0	СНК	0xF5
					ACK_FAIL			
					ACK_TIMEOUT			

2) 数据包:

字节	1	2 Len + 1	Len + 2	Len + 3
应答	0xF5	图像数据	СНК	0xF5

说明:

在 DSP 模块中,指纹图像为 280*280 像素,每个像素灰度由 8 位表示。在上传过程中,为了减小数据量,在横/纵方向进行跳像素采样,这样图像变为140*140,并取灰度的高 4 位,每两个像素合成一个字节传输(前一像素在高四位,后一像素在低四位)。

传输从第一行开始逐行进行,每一行从第一个像素开始,总共传输 140*140/2 个字节的数据。

图像数据长度 Len 恒为 9800 字节。

2. 16 采集图像并提取特征值上传(命令为 8 字节/应答>8 字节)

命令数据格式:

٠.	· >>**								
	字节	1	2	3	4	5	6	7	8
	命令	0xF5	0x23	0	0	0	0	СНК	0xF5

应答数据格式:

3) 数据头:

字节	1	2	3	4	5	6	7	8
应答	0xF5	0x23	Hi(Len)	Low(Len)	ACK_SUCCESS	0	СНК	0xF5
					ACK_FAIL			
					ACK_TIMEOUT			

4) 数据包:

字节	1	2	3	4	5 Len + 1	Len + 2	Len + 3	
1 1.	_	_	-	-				

应答 0xF5 0 0 0	特征值数据	СНК	0xF5
---------------	-------	-----	------

说明:

特征值数据长度 Len - 3 恒为 193 字节。

2. 17 上传特征值与采集指纹比对(命令>8 字节/应答为 8 字节)

命令数据格式:

1) 数据头:

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x44	Hi(Len)	Low(Len)	0	0	СНК	0xF5

2) 数据包:

字节	1	2	3	4	5 Len + 1	Len + 2	Len + 3
命令	0xF5	0	0	0	特征值数据	СНК	0xF5

说明:

特征值数据长度 Len - 3 恒为 193 字节。

应答数据格式:

字节	1	2	3	4	5	6	7	8
应答	0xF5	0x44	0	0	ACK_SUCCESS	0	СНК	0xF5
					ACK_FAIL			
					ACK_TIMEOUT			

2. 18 上传指纹特征值与 DSP 模块数据库指纹比对 1: 1(命令>8 字节/应答为 8 字节) 命令数据格式:

1) 数据头:

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x42	Hi(Len)	Low(Len)	0	0	СНК	0xF5

2) 数据包:

字节	1	2	3	4	5 Len + 1	Len + 2	Len + 3
命令	0xF5	用户 号 (高 8 位)	用户号 (低8 位)	0	特征值数据	СНК	0xF5

说明:

特征值数据长度 Len - 3 恒为 193 字节。

应答数据格式:

-	字节	1	2	3	4	5	6	7	8
J	应答	0xF5	0x42	0	0	ACK_SUCCESS	0	СНК	0xF5
						ACK_FAIL			

2. 19 上传指纹特征值与 DSP 模块数据库指纹比对 1: N(命令>8 字节/应答为 8 字节)

命令数据格式:

1) 数据头:

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x43	Hi(Len)	Low(Len)	0	0	СНК	0xF5

2) 数据包:

字节	1	2	3	4	5 Len + 1	Len + 2	Len + 3
命令	0xF5	0	0	0	特征值数据	СНК	0xF5

说明:

特征值数据长度 Len - 3 恒为 193 字节。

应答数据格式:

字节	1	2	3	4	5	6	7	8
应答	0xF5	0x43	用户 号 (高8 位)	用户 号 (低 8 位)	用户权限 (1/2/3) ACK_NOUSER	0	СНК	0xF5

2. 20 下载 DSP 模块数据库内指定用户特征值(命令为 8 字节/应答>8 字节)

命令数据格式:

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x31	用户号 (高 8	用户号 (低 8	0	0	СНК	0xF5
			位)	位)				

应答数据格式:

1) 数据头:

	字节	1	2	3	4	5	6	7	8
--	----	---	---	---	---	---	---	---	---

应答	0xF5	0x31	Hi(Len)	Low(Len)	ACK_SUCCESS	0	СНК	0xF5
					ACK_FAIL			
					ACK_NOUSER			

2) 数据包:

字节	1	2	3	4	5 Len + 1	Len + 2	Len + 3
应答	0xF5	用户 号 (高 8 位)	用户号 (低 8 位)	用户权 限 (1/2/3)	特征值数据	СНК	0xF5

说明:

特征值数据长度 Len - 3 恒为 193 字节。

2. 21 上传特征值并按指定用户号存入 DSP 模块数据库(命令>8 字节/应答为 8 字节) 命令数据格式:

1) 数据头:

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x41	Hi(Len)	Low(Len)	0	0	СНК	0xF5

2) 数据包:

字节	1	2	3	4	5 Len + 1	Len + 2	Len + 3
命令	0xF5	用户 号 (高 8 位)	用户号 (低 8 位)	用户权限 (1/2/3)	特征值数据	СНК	0xF5

说明:

特征值数据长度 Len - 3 恒为 193 字节。

应答数据格式:

字节	1	2	3	4	5	6	7	8
应答	0xF5	0x41	用户 号 (高 8 位)	用号低 8 位	ACK_SUCCESS ACK_FAIL	0	СНК	0xF5

2. 22 取已登录所有用户用户号及权限(命令为 8 字节/应答>8 字节)

命令数据格式:

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x2B	0	0	0	0	СНК	0xF5

应答数据格式:

1)数据头:

字节	1	2	3	4	5	6	7	8
应答	0xF5	0x2B	Hi(Len)	Low(Len)	ACK_SUCCESS	0	СНК	0xF5
					ACK_FAIL			

2) 数据包:

字节	1	2	3	4 Len + 1	Len + 2	Len + 3
应答	0xF5	用户 数 (高 8 位)	用户数 (低 8 位)	用户信息数据(用户 号及权限)	СНК	0xF5

说明:

数据包中数据长度 Len 恒为 "3* 用户数 +2"。

用户信息数据格式如下:

字节	4	5	6	7	8	9	
数据	用户号 1(高 8 位)	用户号 1(低 8 位)	用户 1 权 限 (1/2/3)	用户号 2(高 8 位)	用户号 2(低 8 位)	用户 2 权 限 (1/2/3)	

2. 23 设置/读取指纹采集等待超时时间(命令/应答均为8字节)

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x2E	0	Byte5=0: 新超时 间; Byte5=1:	0: 设置新的 超时时间 1: 读取当前 超 时 时 间	0	СНК	0xF5
应答	0xF5	0x2E	0	当前超时时间	ACK_SUCCUSS ACK_FAIL	0	СНК	0xF5

说明:

指纹等待超时时间(tout)范围为 0-255。若此值为 0,若无指纹按压则指纹采集过程将一直持续;若此值非 0,在 tout*T0 时间内若无指纹按压则系统将超时退出。

注: TO 为采集/处理一幅图像所需的时间,一般为0.2-0.3s。

2. 24 设置/读取添加等级(命令/应答均为8字节)-仅限某些模块有此协议

字节	1	2	3	4	5	6	7	8
命令	0xF5	0x27	0	Byte5=0: 新添加等 级; Byte5=1: 0	0: 设置新的 添加等级 1: 读取当前 添 加 等 级	0	СНК	0xF5
应答	0xF5	0x27	0	当前添加 等级	ACK_SUCCUSS ACK_FAIL	0	СНК	0xF5

说明:

添加等级取值为0-9,取值越大添加越严格,默认值为4

添加指纹特征值到数据库

A. 2 删除指定用户

A. 3 删除全部用户

A. 4 采集图像并提取特征值上传

