几何长度l 相波长 λ_n 电长度 $\overline{l} = l/\lambda_n$ 长线 \overline{l} 大于或接近1

均匀长线 分布参数 R1、L1、C1、G1 为常量; 均匀无耗长线 $R_1=0$, $G_1=0$ 的均匀长线

Ψ	μ , ε , $\sigma_{\rm d}$	<u>a†</u>	
C ₁ / (F/m)	$\frac{\pi \varepsilon}{\text{arcosh } (D/d)}$	-614C1	$\frac{2\pi\varepsilon}{\ln\ (b/a)}$
L ₁ / (H/m)	$\frac{\mu}{\pi}\operatorname{arcosh}\left(\frac{D}{d}\right)$	Litl2	$\frac{\mu}{2\pi}$ ln $\frac{b}{a}$
$R_1/(\Omega/m)$	$rac{2}{\pi d}\sqrt{rac{\omega \mu}{2\sigma_c}}$	P. TP2	$\sqrt{\frac{f\mu}{4\pi\sigma_c}} \left(\frac{1}{a} + \frac{1}{b} \right)$
, G ₁ / (S/m)	$\frac{\pi\sigma_d}{\mathrm{arcosh}\ (D/d)}$	(1,×(2)	$\frac{2\pi\sigma_d}{\ln\ (b/a)}$

导线电导率 σ_c

介质介电常数 ϵ 磁导 \mathbf{x}_{μ} 电导 \mathbf{x}_{σ}

相移常数 $\beta = \omega \sqrt{L_1 C_1} = \frac{2\pi/\lambda_p}{2\pi}$

特性阻抗
$$Z_0 = \sqrt{\frac{L_1}{C_1}} = \frac{U^+(z)}{I^+(z)} = -\frac{U^-(z)}{I^-(z)}$$

相速度 $v_p = \lambda_p f = 1/\sqrt{L_1 c_1} = 1/\sqrt{\epsilon_\mu} = 1/\sqrt{\epsilon_o \epsilon_r \mu_0 \mu_r} = c/\sqrt{\epsilon_r \mu_r}$ 缩短系数 $\sqrt{\epsilon_r \mu_r}$

输入阻抗 $Z_{in} = U(z)/I(z) = \frac{Z_0(Z_L + jZ_0 tan\beta z)}{(Z_0 + jZ_1 tan\beta z)}$

归一化阻抗 $\overline{Z}_{in}(z) = Z_{in}/Z_0$ $\overline{Z}_L(z) = Z_L/Z_0$ $\overline{Z}_{in}(z) = \frac{(\overline{Z}_L + j \tan \beta z)}{(\overline{Z}_L + j \tan \beta z)}$

周期性 $Z_{in}(z=\lambda/2)=Z_L$

倒置性 $Z_{in}(z=\lambda/4)=Z_0^2/Z_L=1/\overline{Z_L}$

输入导纳 $Y_{in} = 1/Z_{in} = Y_0(Y_L + jY_0tan\beta z)/(Y_0 + jY_Ltan\beta z)$

反射系数 $\Gamma(z) = \frac{U^{-}(z)}{U^{+}(z)} = \frac{Z_{L} - Z_{0}}{Z_{L} + Z_{0}} e^{-j2\beta z} = |\Gamma(z)| e^{j\varphi_{\Gamma}(z)}$

终端反射系数 $\Gamma_L = \Gamma(0) = \frac{Z_L - Z_0}{Z_1 + Z_1} = |\Gamma_L| e^{j\varphi_0}$ 有 $|\Gamma(z)| = |\Gamma_L|$ 其中 $\varphi_{\Gamma}(z) = \varphi_0 - 2\beta z$

驻波比 $\rho = |U|_{max}/|U|_{min}$ 有 $U(z) = U^+(z)[1 + \Gamma(z)]$ $|U|_{max/min} = |U^+|(1 \pm |\Gamma|)$

$$|\Gamma| = \frac{\rho - 1}{\rho + 1} = -\frac{\Gamma(z)}{I^{+}(z)}$$
 行波系数 $K = |U|_{min}/|U|_{max} = 1/\rho$

工作状态	$Z_{\scriptscriptstyle L}$	$ \Gamma_{\scriptscriptstyle L} $	ρ	反射情况
行波状态	$Z_{\scriptscriptstyle L} = Z_{\scriptscriptstyle 0}$	0	1	无反射
驻波状态	$Z_L = 0$ 、 ∞ 或者 jX_L	1	× ×	全反射
行驻波状态	Z_L 为其它值	0 < \Gamma_{\pi} < 1	1<ρ<∞	部分反射

 $Z_0 = \Gamma(z)$ $Z_{in}(z) = Z_0 \frac{1 + \Gamma(z)}{1 - \Gamma(z)}$ Z_0 与 ρ $Z_{in}(z_{max}) = Z_0 \rho$

 Z_0 与 ρ $Z_{in}(z_{min}) = Z_0/\rho$

行波 $P(z) = 1/2Re[U(z)I^*(z)] = 1/2|U_L||I_L|$

电压与电流同向切值不变; Z_0 值不变呈纯阻性; 功率全被负载吸收, 最高效

驻波 $Z_L=0$ 终端短路 $\Gamma(z)=e^{j(\pi-2\beta z)}$ $Z_{in}(z)=jZ_0\tan\beta z$ P(z)=0

UI节点为0,腹点为行波振幅的2倍

电压正弦 电流余弦 $T = \lambda/2$

位 置	$0 < z < \lambda/4$	$z = \lambda/4$	$\lambda/4 < z < \lambda/2$	$z = \lambda/2$
tanβz	>0		<0	0
输入阻抗	呈感性	LC 并联谐振	呈容性	LC 串联谐振

驻波 $Z_L = \infty$ 终端开路 $\Gamma(z) = e^{-j2\beta z}$ $Z_{in} = -jZ_0 \cot \beta z$

驻波 $\mathbf{Z}_L = \mathbf{j} \mathbf{X}_L$ 终端接纯电抗 $\Gamma(z) = e^{\mathbf{j}(\varphi_0 - 2\beta z)}$ $\Gamma_L = e^{\mathbf{j}\varphi_0}$

 $X_L > 0$ 终端接感性 $jX_L = jZ_0 \tan \beta l_L$ 离负载最近的是电压腹点 电流节点

 $X_L < 0$ 终端接容性 $jX_L = -jZ_0 \cot \beta l_C$ 离负载最近的是电流腹点 电压节点

行驻波 U(z) = U _疗 +	· U <u>#</u>	$ U _{max} = Z_0 I _{ma}$	$ U _{min} =$	$= I _{min}$
往波状态	Z _{1.} =0	$Z_{\rm L}=\infty$	$Z_1 = jX_1$ $\exists L X_1 > 0$	$Z_L = jX_L$ $\pm LX_L < 0$
对应的行胜波状态	$Z_{\rm L} = R_{\rm L} < Z_{\rm O}$	$Z_{1.}=R_{1.}>Z_{0}$	$Z_{\rm L} = R_{\rm L} + j X_{\rm L} \underline{\rm H} X_{\rm L} > 0 \label{eq:ZL}$	$Z_{\perp} = R_{\perp} + \mathrm{j} X_{\perp} \; \underline{\mathbb{H}} \; X_{\mathrm{L}} < 0$

 $\frac{Z_{\text{in}}(z) = Z_0 \frac{Z_1 + J Z_0 \tan \beta z}{Z_1 + J Z_1 \tan \beta z} = R_{\text{in}} + j X_{\text{in}}$ $\lambda/2$ 周期性 $\lambda/4$ 倒置性 容性感性互换

传输功率 $P(z) = \frac{1}{2} Re(U(z)I^*(z)) = \frac{|U^+|^2}{2Z_0} Re[1 - |\Gamma|^2] = \frac{|U_{max}||U_{min}|/(2Z_0)}{|U_{max}||U_{min}|/(2Z_0)}$

	条 件	位 置	振 幅
电压腹点 (电流节点)	$\varphi_{\Gamma} = -2n\pi$	$z_{\max} = \frac{\varphi_0 \lambda}{4\pi} + n \frac{\lambda}{2}$	$ U _{\max} = U^+ (1+ \Gamma)$ $ I _{\min} = \frac{ U^+ }{Z_0} (1- \Gamma)$
电压节点 (电流腹点)	$\varphi_{\Gamma} = - (2n+1) \pi$	$z_{\min} = \frac{\varphi_0 \lambda}{4\pi} + (2n+1) \frac{\lambda}{4}$	$ U _{\min} = U^+ (1 - \Gamma)$ $ I _{\max} = \frac{ U^+ }{Z_0} (1 + \Gamma)$

击穿电压 |U|pr

功率容量 $P_{hr} = |U|_{hr}^2/(2Z_0\rho)$

共轭匹配 $Z_g=Z_{in}^*$ $Z_g=R_g+jX_g$ $Z_{in}=R_{in}+jX_{in}$ $P_{max}=E_g^2/8R_g$ g 指信号源

负载匹配 行波 $Z_L = Z_0$

信号源匹配 $Z_a = Z_0$

 $|\Gamma_B| = |\overline{R}_L - 1| / \left| (\overline{R}_L + 1)^2 + 4q\overline{R}_L tan^2 (\frac{\pi f}{2f}) \right|$

 $\lambda/4$ 阻抗变换器 窄带 $Z_B = Z_{01}^2/R_L$ $Z_{01} = \sqrt{Z_0R_L}$

并联单枝节匹配器 窄带 $Y_1 = Y_0 + jB$

 $Y_2 = -iB$

 $Y_{aa'} = Y_1 + Y_2 = Y_0$

并联双支节 窄带 间距有 λ/8 3λ/8 两种

适用同轴线; 一个频点匹配 存在匹配禁区

有耗传输线 $Z_0 = \sqrt{\frac{R_1 + j\omega L_1}{G_1 + j\omega C_1}} = R + jX_0$

短路棒

 $\cosh x = \frac{e^x + e^{-x}}{2}$

传播常数 $\gamma = \sqrt{(R_1 + j\omega L_1)(G_1 + j\omega C_1)} = \alpha + j\beta$ 衰减常数 α 相移常数 β

 $\oint j\beta \to \gamma \quad f(Z_{ln}(z)) = Z_0(Z_L + Z_0 \tanh \gamma z)/(Z_0 + Z_L \tanh \gamma z) \qquad |U(z+l)| = |U(z)|e^{\alpha l}$

衰减量 相距l的两点间单向波振幅相对变化的对数值 $A = ln|U(z+l)/U(z)| = \alpha l$ (NP)

 $\alpha = a/l (dB/m / NP/m)$ 1NP = 8.686dB

A = 10lg|U(z+l)/U(z)| (dB)

传输线损耗 Q 导体损耗 $Q_c = \omega L_1/R_1$ 介质损耗 $Q_d = \omega C_1/G_1 = 1/tan\delta$

介质损耗正切 $tan\delta$ 有 $1/Q = 1/Q_c + 1/Q_d$ 有耗传输线效率 $\eta = P_L/P_{in}$

均匀有耗传输线效率 $\eta = 1/[cosh(2\alpha l) + 1/2(\rho + 1/\rho)sinh(2\alpha l)]$

微带线 小 轻 频带宽 高可靠; 损耗大 Phr低; 中低功率

 $Z_0^\varepsilon = \sqrt{\frac{L_1}{C_1^\varepsilon}} = \sqrt{\frac{L_1^0}{\varepsilon_r C_1^0}} = \frac{Z_0^0}{\sqrt{\varepsilon_r}} \qquad \qquad \varepsilon_e = 1 + q(\varepsilon_r - 1) \qquad \qquad Z_0 = Z_0^0 / \sqrt{\varepsilon_e}$ $q = 1 \text{ 介质填充} \qquad \qquad q = 1 \text{ 介质填充} \qquad \qquad \frac{\delta_t}{\delta_t} \frac{H \cdot dl}{H \cdot dl} = \int_{\mathbb{Z}} J \cdot ds + \int_{\mathbb{Z}} \frac{\partial D}{\partial t} \cdot ds$ $q = 0 \text{ 空气填充} \qquad \qquad \frac{\delta_t}{\delta_t} \mathcal{E} \cdot dl = -\int_{\mathbb{Z}} \frac{\partial B}{\partial t} \cdot ds \quad \nabla \times H = J + \frac{\partial D}{\partial t}$

 $Z_0^0 = 60ln(8h/W + W/(4h))$

 $Z_0^0 = \frac{120\pi}{W/\hbar + 1.393 + 0.667 \ln(W/\hbar + 1.4444)} \quad W/h \geq 1 \quad v_p = \frac{c}{\sqrt{\varepsilon_e}} \quad \ \lambda_p = \frac{\lambda_0}{\sqrt{\varepsilon_e}}$

临界頻率 $f_{\varepsilon} = \frac{0.95}{(\varepsilon_{\varepsilon} - 1)^{V4}} \sqrt{\frac{Z_0}{h}}$ $\lambda_{min} > 2W\sqrt{\varepsilon_r}$ $\lambda_{min} > 2h\sqrt{\varepsilon_r}$ $\lambda_{min} > 4h\sqrt{\varepsilon_r - 1}$

 λ_{min} 微带线最短工作频率 λ_0 中心工作频率 W_a 接地板的宽度

帯状线 对称微带线 $Z_0 = \sqrt{\mu/\epsilon} \pi (1 - t/b)/\{8arcosh[e^{\pi W/(2b)}]\}$

 $\lambda_{min} > 2W\sqrt{\epsilon_r}$ $\lambda_{min} > 2b\sqrt{\epsilon_r}$ $W_g = (3\sim 6)W$ $b \ll \lambda_0/2$

边界条件 切向分量不连续

 $\mathbf{n} \cdot (\mathbf{B}_2 - \mathbf{B}_1) = 0$ $B_{2n} = B_{1n}$

 $\boldsymbol{n} \cdot (\boldsymbol{D}_2 - \boldsymbol{D}_1) = \boldsymbol{\rho}_s$

 $D_{2n} - D_{1n} = \rho_s$

 $\mathbf{n} \times (\mathbf{H}_2 - \mathbf{H}_1) = \mathbf{J}_s \qquad H_{2t} - H_{1t} = \mathbf{J}_s$

 $\mathbf{n} \times (\mathbf{E}_2 - \mathbf{E}_1) = 0$

本构关系 P为极化强度 C/m^2 M为介质的磁化强度A/m

 $\mathbf{D}=\epsilon_0\mathbf{E}+\mathbf{P}$ $\mathbf{D}=\epsilon\mathbf{E}=\epsilon_0\epsilon_T\mathbf{E}$ 一般形式 $\mathbf{B}=\mu_0(\mathbf{H}+\mathbf{M})$ 各项同性线性媒质 $\mathbf{B}=\mu\mathbf{H}=\mu_0\mu_T\mathbf{H}$