Criterio della derivata

Def. Sia $f(x) = \alpha_0 + \alpha_1 x + \dots + \alpha_n x^n \in F[x]$, dove F e' un campo, allora si dice sua derivata $f'(x) = \alpha_1 + \dots + h \alpha_n x^{n-1}$.

OSS. Valgono le usuali proprietà di somma e prodotto della derivata.

Lemma $f(x) \in F[x]$ ha radic: multiple se e solo se f(x) e f'(x) hanno in comune un fattore non invert: bile.

Se $f(x) \in F[x]$ ha radic: multiple, $f(x) = (x-\lambda)^2 q(x)$ con $q(x) \in F[x] \implies f'(x) = 2(x-\lambda)q(x) + (x-\lambda)^2 q'(x)$. Quind: $f(x) \in f'(x)$ hanno in comune il fattore $f(x-\lambda)$.

Se invece $f(x) \in F[x]$ ha radici distinte, $f(x) = (x - \lambda_1) \cdot \cdots \cdot (x - \lambda_n)$ (la costante moltiplicativa è omessa WLOG). Allora $f'(x) = \sum_{i=1}^{n} (x - \lambda_i) \cdot \cdots \cdot (x - \lambda_i) \cdot (x - \lambda_i) \cdot \cdots \cdot (x - \lambda_i) \cdot (x - \lambda_i) \cdot (x - \lambda_i) \cdot (x - \lambda$

Es. $\chi^{p^n} - \chi$ in un campo di caratt. p ha tutte radici distinte. Infatti la sua derivata e' $p^n \chi^{p^n-3} - 1 = -1.$