Engineering Statics - 04 Centroids - Instructor Copy

Exercise 1: Determine the coordinates of the centroid of the triangle shown.

$$\overline{x} = (2.0) - \frac{2.0 - (-1.5)}{3} = 0.83333$$

$$\overline{y} = (0.75) - \frac{0.75 - (-0.75)}{3} = 0.25000$$

$$(\overline{x}, \overline{y}) = (0.83, 0.25)$$

Exercise 2: Determine the coordinates of the centroid of the semi-circle shown.

$$r = 2.0$$

$$\overline{x} = \frac{(-1.5) + (2.5)}{2} = 0.50$$

$$\overline{y} = -0.75 + \frac{4 \times 2.0}{3\pi} = 0.098826$$

$$(\overline{x}, \overline{y}) = (0.50, 0.99)$$

Exercise 3: Determine the location of the centroid of the quarter-circle shown.

$$r = 3.00$$

$$\overline{x} = 1.75 - \frac{4 \times 3.00}{3\pi} = 0.47676$$

$$\overline{y} = 1.25 - \frac{4 \times 3.00}{3\pi} = -0.023240$$

$$(\bar{x}, \bar{y}) = (0.477, -0.0232)$$

Exercise 4
Find the location of the centroid, *C*,

relative to the point *O*.

Shape	Area (m^2)	$x_i(m)$	$y_i(m)$	$A_i x_i \left(m^3 \right)$	$A_i y_i (m^3)$
$\overline{A_1}$	0.4×0.4	0.2	0	0.032000	0
$\overline{A_2}$	0.15×0.2	-0.075	-0.1	-0.0022500	-0.0030000
$\overline{A_3}$	$-(0.2 \times 0.1)/2$	0.33333	-0.16667	-0.0033333	0.0016667
Σ	0.18			0.026417	-0.0013333

$$\overline{x} = \frac{\sum A_i x_1}{\sum A_1} = \frac{0.026417}{0.18} = 0.14676 \,\mathrm{m}$$

$$\overline{y} = \frac{\sum A_i y_1}{\sum A_1} = \frac{-0.0013333}{0.18} = -0.0074072 \, \mathrm{m}$$

$$(\overline{x},\overline{y})=(147\,\mathrm{mm},-7.41\,\mathrm{mm})$$

Exercise 5

Find the location of the centroid, *C*, relative to the coordinate origin.

Shape	Area	y_i	A_iy_i
$\overline{A_1}$	1×2	1	2
$\overline{A_2}$	$(2\times2)/2$	0.66667	1.3333
A_3	$\pi/4$	$2+\frac{4}{3\pi}$	1.9041
$-A_4$	$-\frac{\pi(1.5)^2}{4}$	$\frac{4\times1.5}{3\pi}$	-1.125
\sum	3.0183		4.1124

$$\overline{y} = \frac{\sum A_i y_1}{\sum A_1} = \frac{4.1124}{3.0183} = 1.3625$$

$$(\overline{x}, \overline{y}) = (0, 1.36)$$

Exercise 6

Three C130X13 channels and a steel plate $(15mm \times 174mm)$ are welded together.

Determine the location of the centroid, relative to the bottom left hand corner of the composite area.

Properties for C130X13:

 $Area = 1700 \, mm^2$

 $Depth = 127 \, mm$

 $\overline{x} = 12 \, \mathrm{mm}$

Shape	$Area(mm^2)$	$x_i (mm)$	$y_i (mm)$	$A_i x_i (\mathrm{mm}^3)$	$A_i y_i (\mathrm{mm}^3)$
A_1	1700	$15 + \frac{127}{2}$	127 + 12	133450	219300
A_2	1700	15 + 12	127 2	45900	107950
A_3	1700	15 + 127 - 12	127 2	221000	107950
$\overline{A_4}$	2610	7.5	87	19575	227070
\sum_{i}	7710			419925	662270

$$\overline{x} = \frac{\sum A_i x_1}{\sum A_1} = \frac{419925}{7710} = 54.465$$

$$\overline{y} = \frac{\sum A_i y_1}{\sum A_1} = \frac{662270}{7710} = 85.898$$

$$(\overline{x},\overline{y})=(54.5\,\mathrm{mm},85.9\,\mathrm{mm})$$