

	September 2023			
	1.1	Algebra	5	
	1.2	Linear Algebra	5	
	1.3	Real Analysis	8	
		Complex Analysis		
		Santambar 2022		

4 CONTENTS

1. September 2023

1.1 Algebra

- **Problem 1.1** (a) Prove that any module over $\mathbb{Z}[i]$ is a direct sum of a free module and a torsion module. Is the same true for modules over $\mathbb{Z}[\sqrt{-5}]$?
- (b) Let I=3+2i be the ideal in $\mathbb{Z}[i]$ generated by the element 3+2i. Describe the quotient $\mathbb{Z}[i]/I$.

1.2 Linear Algebra

Problem 1.2 (a) Find a lower triangular matrix L such that $LL^T = A$, where

$$A = \begin{pmatrix} 1 & 1 & 0 & 2 \\ 1 & 5 & 2 & 2 \\ 0 & 2 & 2 & 1 \\ 2 & 2 & 1 & 6 \end{pmatrix}$$

- (b) Compute det(A).
- (c) Find the volume in \mathbb{R}^4 of the set $S_A = \{x \in \mathbb{R}^4 : x^T A x \leq 1\}.$

Solution (a) Let L be

$$L = \begin{pmatrix} l_{11} & 0 & 0 & 0 \\ l_{21} & l_{22} & 0 & 0 \\ l_{31} & l_{32} & l_{33} & 0 \\ l_{41} & l_{42} & l_{43} & l_{44} \end{pmatrix}$$

So $A = LL^T$ we will have

$$A = \begin{pmatrix} l_{11}^2 & l_{11}l_{21} & l_{11}l_{31} & l_{11}l_{41} \\ l_{11}l_{21} & l_{21}^2 + l_{22}^2 & l_{21}l_{31} + l_{22}l_{32} & l_{21}l_{41} + l_{22}l_{42} \\ l_{11}l_{31} & l_{31}l_{21} + l_{32}l_{22} & l_{21}^2 + l_{32}^2 + l_{33}^2 & l_{31}l_{41} + l_{32}l_{42} + l_{33}l_{43} \\ l_{41}l_{11} & l_{41}l_{21} + l_{42}l_{22} & l_{41}l_{31} + l_{42}l_{32} + l_{43}l_{33} & l_{41}^2 + l_{42}^2 + l_{43}^2 + l_{43}^2 \end{pmatrix}$$

By solving the equations formed by the first row we have

$$l_{11} = 1$$
, $l_{21} = 1$, $l_{31} = 0$, $l_{41} = 2$.

Furthermore

$$l_{22} = 2$$
, $l_{32} = 1$, $l_{33} = 1$,

and lastly

$$l_{42} = 0, l_{43} = 1, l_{44} = 1.$$

So the matrix L will be

$$L = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 2 & 0 & 1 & 1 \end{pmatrix}$$

(b) We will expand relative to the last column as it has more zeros.

$$\det(L) = \det\begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 1 & 1 \end{pmatrix}.$$

Again, expanding relative to the last column we will have

$$\det(L) = \det\begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} = 2.$$

(c) First, we find a suitable linear transformation that can map the volume to another volume for which we know how to calculate its volume. Consider the linear transformation $x = L^{-T}y$. Since $x^TAx = (y^TL^{-1})LL^T(L^{-T}x) = y^Ty$, thus the set $x^TAx \le 1$ will be mapped to the 4-ball (4 dimensional ball). So its volume will be

$$|x^T A x \le 1| = \det(L)|y^T y \le 1| = 2|S^4|.$$

(Note: The volume of the 4-ball is $\pi^2/2$.)

■ Problem 1.3 Let P_n be the n+1-dimensional space of polynomials of degree n with real coefficients, and let $<\cdot,\cdot>$ be the inner product defined as

$$< p, q > = \int_{-1}^{1} p(x)q(x) \ dx.$$

- (a) Find an orthogonal basis $\{u_0, u_1, u_2\}$ for P_2 such that $u_j \in P_j$, and $u_j(1) > 0$.
- (b) Using the basis in part (a), express the operator $F[p] := \int_{-1}^{1} p(x) dx$ acting on P_2 as a 1×3 matrix.
- (c) Using the basis in part (a), express the derivative operator $D[p] := \frac{d}{dx}p(x)$ as a 3×3 matrix.
- **Solution** (a) We start with the Gram-Schmidt orthogonalization. Let $\{c, x, x^2\}$ be the basis vectors that we want to orthogonalize. Let $u_0 = c$. Then the first vector will be $\hat{u}_0 = u_0/\|u_0\| = 1/\sqrt{2}$. To find the second vector we have

$$u_1 = x - \langle x, \hat{u}_0 \rangle \hat{u}_0 = x - \frac{1}{2} \int_{-1}^1 x \ dx = x.$$

So the second normal vector will be $\hat{u}_1 = u_1/\|u_1\| = \sqrt{\frac{3}{2}}x$. To find the third vector we have

$$\begin{split} u_2 &= x^2 - (< x^2, \hat{u}_0 > \hat{u}_0 + < x^2, \hat{u}_1 > \hat{u}_1) \\ &= x^2 - (\frac{1}{2} \int_{-1}^1 x^2 dx + \frac{3}{2} \int_{-1}^1 x^3 dx) \\ &= x^2 - (1/3 + 0) = x^2 - 1/3. \end{split}$$

So the third normal vector will be $\hat{u}_2 = u_2/\|u_2\| = 3/2\sqrt{\frac{5}{2}}(x^2 - 1/3)$. However, since the question has not asked for normal basis vectors, for the following sections of the question we will use the following orthogonal (not orthonormal) basis vectors

$$u_1 = 1$$
, $u_1 = x$, $u_2 = x^2 - \frac{1}{3}$.

(b) It is enough to see what is the effect of this operator on the basis vectors

$$F[u_0] = \int_{-1}^{1} 1 dx = 2$$
, $F[u_1] = \int_{-1}^{1} x dx = 0$, $F[u_2] = \int_{-1}^{1} (x^2 - 1/3) dx = 2/3 - 2/3 = 0$.

So the matrix representation of this operator will be

$$F = \begin{pmatrix} 2 & 0 & 0 \end{pmatrix}.$$

(c) Similarly to the solution above,

$$D[u_0] = 0$$
, $D[u_1] = 1$, $D[u_2] = 2x$,

so the matrix representation will be

$$D = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

Problem 1.4 Recall that an orthogonal projection matrix is a matrix P that satisfies

$$P^2 = P$$
, $P = P^T$.

Suppose P is an $n \times n$ projection matrix with rank(P) = k. In the following, I_m denotes the $m \times m$ identity matrix.

- (a) List all the eigenvalues of P, including multiplicity. Be sure to justify your reasoning.
- (b) Show that $P = AA^T$ for some $n \times k$ matrix A such that $A^TA = I_k$.
- (c) Suppose P_1, P_2 are two $n \times n$ projection matrices with rank k. Show that there exists an $n \times n$ orthonormal matrix U (i.e. such that $U^T U = I_n, UU^T = I_n$) such that $P_2 = U P_1 U^T$.

Solution (a) The projection matrix P has only two eigenvalues $\lambda_1 = 1$ and $\lambda_2 = 0$. The eigenvectors corresponding to λ_2 eigenvalue are the basis vectors of the null-space of P (that has dimension n - k), and the eigenvectors corresponding to λ_1 are the basis vectors of the orthogonal sub-space to the null space of P. Thus λ_2 has multiplicity n - k and λ_1 has multiplicity k.

(b) Since P is symmetric, then we can choose the eigenvectors to form an orthogonal basis. Let $U = [U_1 \ U_2]$ be the matrix that its columns are the eigenvectors and U_1 are the one with eigenvalue 1 while U_2 are the one with eigenvalue 0. Note that since the columns in U are orthogonal, then $U^{-1} = U^T$. Let D be the diagonal matrix of P, then we can write

$$P = UDU^T = \begin{bmatrix} U_1 \ U_2 \end{bmatrix} \begin{pmatrix} I_k & 0 \\ 0 & 0 \end{pmatrix} \begin{bmatrix} U_1^T \\ U_2^T \end{bmatrix} = U_1 U_1^T.$$

Note that $U_1^T U_1 = I_k$ since U is orthogonal matrix.

(c) From part (b) we know that there are matrices A_1, A_2 such that

$$P_1 = A_1 A_1^T, \qquad P_2 = A_2 A_2^T.$$

Define $U = A_1 A_2^T$. Then

$$P_1 = A_1 A_1^T = A_1 (A_2^T A_2 A_2^T A_2) A_1^T = (A_1 A_2^T) A_2 A_2^T (A_2 A_1^T) = U P_2 U^T.$$

1.3 Real Analysis

Problem 1.5 Let S be the part of the paraboloid $z = 2 - x^2 - y^2$ above the cone $z = \sqrt{x^2 + y^2}$, with upward orientation. Let

$$F = (\tan \sqrt{z}) + \sin(y^3)\hat{i} + e^{-x^2}\hat{j} + z\hat{k}.$$

Evaluate the flux integral $\iint_S F \cdot dS$.

Solution TODO: Final answer to be added.

- Problem 1.6 Let $f(x) = \sum_{n=1}^{\infty} \sin(nx)x^n$ for those x for which the series converges. Note that this is NOT a power series.
 - (a) Show that f is defined and continuous on (-1,1).
- (b) Shoat the f is differentiable and that f' is continuous on (-1,1).
- **Solution** (a) We use the Weierstrass M-test to show that the series converges uniformally on (-1,1). To see this let $r \in (0,1)$. Then on [-r,r] we have $|\sin(nx)x^n| \le r^n$. Since $\sum r^n < \infty$ (by the geometric series) then by Weierstrass M-test the series $\sum_n \sin(nx)x^n$ converges on [-r,r] uniformly and absolutely for all $r \in (0,1)$. This implies uniform and absolute converges on (-1,1). To show the continuity of the series, observe that $\sin(nx)x^n$ is continuous for all n. Thus this continuity carries over through the uniform converges.
- (b) First, observe that each term in the sum is continuously differentiable. Denote the *n*-th term by $f_n(x)$, then we will have

$$f_n(x) = n\cos(nx)x^n + nx^{n-1}\sin(nx) = nx^{n-1}(x\cos(nx) + \sin(nx)).$$

For $x \in (-1,1)$, the term inside the parenthesis will be

$$|x\cos nx + \sin nx| \le |x||\cos nx| + |\sin nx| \le 2.$$

Let $r \in (0,1)$ and $x \in [-r,r]$, then we will have

$$nx^{n-1} \le nr^{n-1} \quad \forall x \in [-r, r].$$

9

Observe that the series $\sum_{n} nr^{n-1}$ converges for $r \in (-1,1)$ (you can see this easily by the ratio test). So for $r \in (0,1)$

$$f_k(x) \le M_k \quad \forall x \in (-r, r).$$

for some $M_k > 0$ (to be precise $M_k = 2kr^{k-1}$) where $\sum_k M_k < \infty$. So by the Weierstrass M-test $\sum_k f_k'(x)$ converges uniformly on any compact subset [-r,r] for $r \in (0,1)$, and because each term is continuous, the f' is also continuous on (-1,1). So far have observed that $\sum_k f_k(x)$ converges on compact subsets of (-1,1), $\sum_k f_k'(x)$ converges on compact subsets of (-1,1), and f_k is continuously differentiable. So we can do a term by term differentiation.

Problem 1.7 Let $\{x_n\}$ be a sequence of positive real numbers, and define

$$\alpha = \liminf_{n \to \infty} \frac{x_{n+1}}{x_n}, \qquad \beta = \limsup_{n \to \infty} \frac{x_{n+1}}{x_n}.$$

Note that $\alpha = \infty$ and $\beta = \infty$ may occur.

- (a) Prove that if $\beta < 1$, the sequence $\{x_n\}$ converges.
- (b) Prove that if $\alpha > 1$, the sequence $\{x_n\}$ diverges.
- (c) Give an example of a convergent sequence $\{x_n\}$ for which $\alpha = 1/2$.
- (d) Give an example of a divergent sequence $\{x_n\}$ for which $\beta = 1$.
- **Solution** (a) We choose $\epsilon > 0$ small enough such that $r = \beta + \epsilon < 1$. Since β is the limsup of the sequence x_{n+1}/x_n , then we know that $\exists N \in \mathbb{N}$ such that $\forall n > N$ we have $x_{n+1}/x_n < r$. Calling $x_n = C$ we see that the each term in sequence x_N, x_{N+1}, \ldots will be dominated by C, rC, r^2C, \ldots . Since the latter sequence is summable (since r < 1), the former is summable as well. This implies that $\sum_n x_n$ converges.
- (b) We choose $\epsilon > 0$ small enough such that $r = \alpha \epsilon > 1$. So there exists $N \in \mathbb{N}$ such that $\forall n > N$ we have $x_{n+1}/x_n > r$. Calling $x_n = C$ we see that each term in the sequence C, rC, r^2C, \ldots is dominated by $x_n, x_{n+1}, x_{n+2}, \ldots$. Since the former diverges, the latter diverges as well. This implies that $\sum_n x_n$ diverges.
- (c) Let $\{x_n\}$ be the geometric series $1, r, r^2, \cdots$ with r = 1/2. Then $\alpha = r$ and we know that the series $\sum_n r^n$ converges to 2.
- (d) One classic example is $x_n = 1/n$, the harmonic series.

1.4 Complex Analysis

■ Problem 1.8 (a) Find

$$\int_C \left(\frac{z}{(z-1)(z^2+1)} + \frac{e^z}{z-3i}\right) dz,$$

where C is the counterclockwise oriented circle centered at (0,0) of radius 2.

(b) Find all values of $z \in \mathbb{C}$ such that $f(z) = 2(x^3 - 3xy^2 + y) + i(3yx^2 - y^3)$ is analytic at z.

Solution (a) We use the generalized Cauchy theorem. To state the theorem, let Ω be an open set containing a closed curve and its interior and f be a holomorphic function on Ω except at poles z_1, \dots, z_n inside the closed curve, then

$$\int_{\gamma} f(z)dz = 2\pi i \left(\sum_{i=1}^{n} \operatorname{res}_{z_{i}} f\right).$$

Observe that the integrand has 4 residues, three of which lies inside the closed curve C, i.e. $z_1 = 1, z_2 = i, z_3 = -i$. We now need to calculate the residue of the integrand at these points. For $z_1 = 1$ we have

$$\operatorname{res}_{z_1} f = \lim_{z \to 1} (z - 1) f(z) = \frac{1}{2}.$$

Similarly for $z_2 = i$

$$\operatorname{res}_{z_2} f = \lim_{z \to i} (z - i) f(z) = \frac{1}{2(i - 1)}.$$

And finally for $z_3 = -i$

$$\operatorname{res}_{z_2} f = \lim_{z \to i} (z - i) f(z) = \frac{-1}{2(i+1)}.$$

So the sum of residues at the poles inside C is zero. This implies that the integral evaluates to zero.

(b) We will use the converse of the Cauchy-Riemann equations, i.e. we demand the partial derivatives to exist and be continuous, and the Cauchy-Riemann equations to hold. The partial derivatives of u, v are continuous. So we only demand the C-R equations to hold.

$$u_x = v_y, \qquad u_y = -v_x.$$

Observe that $u_x = 2(3x^2 - 3y^2)$, $u_y = 2(-6xy + 1)$, $v_x = 6xy$, $v_y = 3x^2 - 3y^2$. Thus we need to have

$$2(3x^2 - 3y^2) = 3x^2 - 3y^2, \qquad -12xy + 2 = -6xy.$$

The first equation results in $x^2=y^2$ and the second equation results in xy=1/3. So f is holomorphic at only the points where $x=y=\pm\frac{1}{\sqrt{3}}$. I.e. $z=\pm\frac{1}{\sqrt{3}}(1+i)$.

■ Problem 1.9 Find the domain of analyticity of $f(z) = \sqrt{\log(z+1) - \frac{\pi}{2}i}$, where the square root is given by the principal branch and $\log(z)$ is the principal branch of log function.

Solution We need to consider the branch cuts of the log function and the square root function. For the latter, if $w = \log(z+1) - \frac{\pi}{2}i$ the branch cut is where $w \leq 0$. Using the fact that $\log(z+1) = \ln|z+1| + i\arg(z)$, we need to have

$$\ln|z+1| < 0$$
 $\arg(z) = \pi/2$.

The first equation above implies that $|z+1| \le 1$ and the second equation implies that z = -1 + it for $t \ge 0$. So the branch cut for square root will be the set $\{-1 + it : t \in [0,1]\}$. Furthermore the branch cut of the function $\log(z+1)$ is the set $\{t : t \le -1\}$. So the domain of analyticity of the function f will be

$$\{-1+it:\ t\in[0,1]\}\cup\{t:\ t\leq-1\}.$$

■ Problem 1.10 Suppose that f is an analytic function on $H = \{z \in \mathbb{C} : \Re(z) \leq 0\}$ with

$$f(-1) = f'(-1) = 0$$
 and $f''(-1) = \frac{i}{2}$.

1.5. SEPTEMBER 2022 11

(a) Show that $g(z) = f(z)/(z+1)^2$ is analytic on H. Find the residue of g at -1 and the residue of $f(z)/(z+1)^3$ at -1.

- (b) Suppose $|f(z)| \le \frac{1}{2}|z+1|^2$. Show that $|f(-3/2)| \le 9/80$.
- **Solution** (a) Since f is holomorphic on H, then at every point of H it has a power series. In particular

$$f(z) = (z-1) + (z-1)f'(z) + (z-1)^2 f''(z)/2 + (z-1)^3 f'''(z)/6 + \cdots$$

Since f(-1) = f'(-1) = 0, we have

$$f(z) = (z-1)^2 h(z)$$

for some holomorphic function h that is non-vanishing close to z = -1. So

$$g(z) = f(z)/(z+1)^2 = h(z).$$

The residue of g(z) at z = -1 is zero. However, for $f(z)/(z+1)^3$ we can write

$$f(z)/(z+1)^3 = h(z)/(z+1).$$

The residue of this function at z = -1 is calculated by

$$\lim_{z \to -1} (z+1)h(z)/(z+1) = h(-1).$$

To calculate h(-1) observe that

$$f''(z) = 2h(z) + \text{other terms with factor } (z-1).$$

So we will have f''(-1) = 2h(-1) = i/2. So h(-1) = i/4. So the residue of the function above at z = -1 is i/4.

- (b) See the remark below. TODO: Final answer to be added.
- **Remark** I was not able to solve the problem. But I have a feeling that I need to use the Cauchy's estimate for the n-th derivative for some appropriate chosen radius R

$$|f^{(n)}(z)| \leq \frac{n!}{R^n} M, \qquad M = \sup_{z \in C} |f(z)|,$$

where C is a disk centered at z with radius R.

1.5 September 2022

Problem 1.11 Find the shortest distance from x to $U = \operatorname{span}\{u_1, u_2\} \subseteq \mathbb{R}^4$ where

$$u_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \qquad u_2 = \begin{bmatrix} 2 \\ 0 \\ 2 \\ 0 \end{bmatrix}, \qquad x = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}.$$

Solution First, we form a matrix that its column spaces is the same as U. I.e.

$$A = \begin{bmatrix} 1 & 2 \\ 1 & 0 \\ 1 & 2 \\ 1 & 0 \end{bmatrix}.$$

We can write $x=x_U+x_\perp$. Since x_U is in the column space, then $\exists c\in U$ such that $Ac=x_U$. However, by definition we know that x_\perp is in U_\perp . Thus it belongs to the null space of A^T . I.e. $A^Tx_\perp=0$. We can write $A^T(x-x_U)=A^T(x-Ac)=0$.

$$A^T A c = A^T x.$$

This is the systems of equations

$$\begin{bmatrix} 4 & 4 \\ 4 & 8 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

By manipulating the augmented matrix we find that

$$c_1 = 1/2, \qquad c_2 = 1/4.$$

So

$$x_U = Ac = \frac{1}{2} \begin{bmatrix} 2\\1\\2\\1 \end{bmatrix},$$

and

$$x_{\perp} = \frac{1}{2} \begin{bmatrix} 0\\1\\0\\-1 \end{bmatrix}.$$

So the shortest distance from x to U is

$$||x_{\perp}|| = \frac{\sqrt{2}}{2}.$$

■ Problem 1.12 Let A be a real 3×3 matrix and suppose that the vectors

$$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \qquad \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \qquad \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \qquad \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix},$$

are the eigenvectors of A. Show that A is symmetric.