Page 2

Amendments to Claims

1. (currently amended) A method for preparing a fused oxazinone benzo[1,3]oxazinone, comprising:

contacting a <u>pyrrole or pyrazole</u> carboxylic acid with a sulfonyl chloride and an isatoic anhydride in the presence of a tertiary amine to form the <u>fused—exazinone</u> benzo[1,3]oxazinone, the nominal mole ratio of said sulfonyl chloride to said carboxylic acid being from about 1.0 to 1.5 and the nominal mole ratio of said isatoic anhydride to said carboxylic acid is from about 0.8 to 1.2.

2. (currently amended) The method of Claim 1 wherein the fused oxazinone benzo[1,3]oxazinone is a compound of Formula 1

$$K \longrightarrow N \longrightarrow N$$

wherein

J is an optionally substituted earbon-moiety pyrrole or pyrazole; and

K is, together with the two contiguous linking carbon atoms, a fused phenyl ring or a

fused 5- or 6-membered heteroaromatic ring, each ring optionally substituted;
the carboxylic acid is a compound of Formula 2

J-CO₂H

wherein J is defined as in Formula 1; the sulfonyl chloride is a compound of Formula 4

LS(O)2CI

4

wherein L is selected from alkyl, haloalkyl, and phenyl optionally substituted with from one to three substituents independently selected from alkyl or halogen; and the isatoic anhydride is a compound of Formula 5

Page 3

wherein K is defined as in Formula 1.

- 3. (original) The method of Claim 2 wherein the nominal mole ratio of the isatoic anhydride to carboxylic acid is from about 0.9 to 1.1.
- 4. (original) The method of Claim 3 wherein the nominal mole ratio of the tertiary amine to carboxylic acid is from about 2.0 to 4.0.
 - (canceled).
 - 6. (currently amended) The method of Claim 5 2 wherein
 - K is, together with the two contiguous linking carbon atoms, a fused phenyl ring optionally substituted with from one to four substituents independently selected from G, U, W or R¹³; or a fused 5 or 6-membered heteroaromatic ring optionally substituted with from one to three substituents independently selected from G, U, W or R¹³;
 - J is C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₈-cycloalkyl or C₃-C₈
 eycloalkenyl, each optionally substituted with one or more substituents selected
 from the group consisting of R¹², halogen, CN, NO₂, hydroxy, C₁-C₄-alkoxy, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino,
 C₃-C₆-cycloalkylamino, and (C₁-C₄-alkyl)(C₃-C₆-cycloalkyl)amino; or
 - J is a pyrrole or pyrazole phenyl ring, a benzyl group, a benzoyl group, a 5-or
 6-membered heteropromatic ring, an aromatic 8, 9-or 10-membered fused
 carbebieyelic ring system, an aromatic 8, 9-or 10 membered fused heterobicyclic
 ring system or a 5-or 6-membered nongromatic heterocyclic ring optionally
 including one or two ring members selected from the group consisting of C(=0),
 SO or S(O)₂, each optionally substituted with from one to two four substituents
 independently selected from G, U, W or R¹³;
 - each G is a 5- or 6-membered nonaromatic heterocyclic ring optionally including one or two ring members selected from the group consisting of C(=O), SO or S(O)₂, each optionally substituted with from one to four substituents independently selected from W;
 - each U is a phenyl ring, a benzyl group, a benzoyl group, a 5- or 6-membered heteroaromatic ring, an aromatic 8-, 9- or 10-membered fused carbobicyclic ring

Page 4

system, an aromatic 8-, 9- or 10-membered fused heterobicyclic ring system, each optionally substituted with from one to four substituents independently selected from W;

each W is independently C₁–C₄ alkyl, C₂–C₄ alkenyl, C₂–C₄ alkynyl, C₃–C₆ cycloalkyl, C₁–C₄ haloalkyl, C₂–C₄ haloalkenyl, C₂–C₄ haloalkynyl, C₃–C₆ halocycloalkyl, halogen, CN, NO₂, C₁–C₄ alkoxy, C₁–C₄ haloalkoxy, C₁–C₄ alkylthio, C₁–C₄ alkylsulfinyl, C₁–C₄ alkylsulfonyl, C₁–C₄ alkylamino, C₂–C₈ dialkylamino, C₃–C₆ cycloalkylamino, (C₁–C₄ alkyl)(C₃–C₆ cycloalkylamino or C₃–C₆ trialkylsilyl;

each R^{12} is independently $R^{19}C(=E)$; $R^{19}C(=E)L$; $R^{19}LC(=E)$; $(R^{19})LC(=E)L$; $O(Q=)P(OR^{19})_{23}$; O_2LR^{18} ; or $R^{19}SO_2L$;

each R^{13} is $B(OR^{17})_2$; NH_2 ; SH; thiocyanato; C_3 – C_8 trialkylsilyloxy; C_1 – C_4 alkyldisulfide; SF_5 ; $R^{19}C(=E)$ -; $R^{19}C(=E)M$ -; $R^{19}MC(=E)$ -; $R^{19}MC(=E)M$ -; $R^{19}MC(=E)M$ -; $R^{19}MC(=E)M$ -;

each E is independently O, S, NR^{15} , NOR^{15} , $NN(R^{15})_2$, N-S=O, N-CN or N-NO₂; each M is independently O, NR^{18} or S;

Q is O or S;

each R^{15} and each R^{19} is independently H; C_1 – C_6 alkyl optionally substituted with one or more substituents selected from the group consisting of CN, NO₂, hydroxy, C_1 – C_4 alkoxy, C_1 – C_4 haloalkoxy, C_1 – C_4 alkylthio, C_1 – C_4 alkylsulfinyl, C_1 – C_4 alkylsulfonyl, C_1 – C_4 haloalkylthio, C_1 – C_4 haloalkylsulfonyl, C_1 – C_4 haloalkylsulfonyl, C_1 – C_4 alkylamino, C_2 – C_8 dialkylamino, C_2 H, C_2 – C_6 alkoxycarbonyl, C_2 – C_6 alkylcarbonyl, C_3 – C_6 trialkylsilyl, and a phenyl ring optionally substituted with one to three substituents independently selected from W; C_1 – C_6 haloalkyl; C_3 – C_6 cycloalkyl; or a phenyl ring optionally substituted with from one to three substituents independently selected from W;

each R¹⁷ is independently H or C₁-C₄ alkyl; or

 $B(OR^{17})_2$ can form a ring wherein the two oxygen atoms are linked by a chain of two to three carbons optionally substituted with one or two substituents independently selected from methyl or C_2 - C_6 alkoxycarbonyl; and

each R¹⁸ is independently H, C₁-C₆ alkyl or C₁-C₆ haloalkyl.

- 7. (original) The method of Claim 6 wherein K is, together with the two contiguous linking carbon atoms, a fused phenyl ring optionally substituted with from one to four substituents independently selected from W or R¹³.
- 8. (original) The method of Claim 2 wherein the compound of Formula 1 is a compound of Formula 1a

Page 5

wherein

X is N or CR6;

Y is N or CH;

R⁴ is C₁-C₄ alkyl or halogen;

R⁵ is H, C₁-C₄ alkyl, C₁-C₄ haloalkyl, CN or halogen;

R⁶ and R⁷ are independently H, C₁-C₄ alkyl, C₁-C₄ haloalkyl, halogen, CN or C₁-C₄ haloalkoxy;

R⁸ is H, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₆ cycloalkyl, C₁-C₄ haloalkyl, C₂-C₄ haloalkenyl, C₂-C₄ haloalkynyl, C₃-C₆ halocycloalkyl, halogen, CN, NO₂, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₆ cycloalkylamino, (C₁-C₄ alkyl)(C₃-C₆ cycloalkyl)amino, C₂-C₄ alkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ alkylaminocarbonyl, C₃-C₈ dialkylaminocarbonyl or C₃-C₆ trialkylsilyl;

R⁹ is CF₃, OCF₃, OCHF₂, OCH₂CF₃, S(O)_pCF₃, S(O)_pCHF₂ or halogen; and p is 0, 1 or 2;

the compound of Formula 2 is a compound of Formula 2' and the compound of Formula 5 is a compound of Formula 5'

wherein the definitions of X, Y, R⁴, R⁵, R⁷, R⁸ and R⁹ are the same as for Formula 1a.

9. (original) The method of Claim 8 wherein X is N;

11.

Application No.: 10/554090 Docket No.: BA9318USPCT

(canceled).

Page 6

Y is N;

R⁴ is CH₃, F, Cl or Br;

R⁵ is CF₃, CN, F, Cl, Br or I;

R⁷ is Cl or Br;

R⁸ is H; and

R⁹ is CF₃, OCHF₂, OCH₂CF₃, Cl or Br.

10. (canceled).