CS557: Cryptography

Block Cipher (Cryptanalysis)

S. Tripathy IIT Patna

Previous Classes

- Modern Cipher
 - Block cipher
 - DES

Avalanche Effect

- DES exhibits strong avalanche
 - let us encrypt two plaintext blocks (with the same key) that differ only in one bit and observe the differences in the number of bits in output

•Encrypt a plaintext block with two different keys that differ only in one bit and observe the differences in the number of bits in output

EX2.: The plain text message M= ABCDEFABCDEFABCD Key K1 = "01234567891ABCDEF", k2 = "81234567891ABCDEF" $d_H(k_1, k_2) = 1$ $C_1 = "CDE872D4A471346F" C_2 = "1B73FE8BC0B88606" \\ d_H(C_1, C_2) = 35$

Weak Keys

DES has:

- Four weak keys k for which $E_k(E_k(m)) = m$.
- Ex.: 01010101 01010101 dropping parity bits bcecome all 0s
- Twelve semi-weak keys which come in pairs k_1 and k_2 and are such that $E_{k1}(E_{k2}(m)) = m$.
- Ex.: 011F011F010E010E and 1F011F010E010E01
- Weak keys are due to "key schedule" algorithm

DES Attacks: Exhaustive Search

Suppose we know plain/cipher text pair (p,c)

```
for (k=0; k<2<sup>56</sup>; k++) {
  if (DES(k,p)==c) {
  printf("Key is %x\n", k);
  break;
  }
}
```

- Complementary property DES(k', x')=DES(k, x)'
- Expected number of trials (if k was chosen at random) before success: 2⁵⁵

Cryptanalysis

- Modern Ciphers
 - Cryptanalysis
 - Linear Cryptanalysis
 - Differential Cryptanalysis
- · Linear cryptanalysis first defined on Feal by Matsui and Yamagishi, 1992.
 - Matsui later published a linear attack on DES.
- Differential cryptanalysis originally defined on DES
 - Eli Biham and Adi Shamir, Differential Cryptanalysis of the Data Encryption Standard, Springer Verlag, 1993.

Ref: LDC Tutorial (will upload in course link)

A Tutorial on Linear and Differential Cryptanalysis By H.M. Hey

https://www.engr.mun.ca/~howard/PAPERS/Idc_tutorial.pdf

Linear Cryptanalysis

Notation

- P = plaintext
- $p_i = i^{th} bit of P$
- C = Ciphertext
- $c_i = i^{th} bit of C$
- K = Key (initial or expanded)
- $k_i = i^{th}$ bit of K
- $\bigoplus_{i=1,n} p_i = p_1 \oplus p_2 \oplus \dots \oplus p_n$
- X,Y,Z are subsets of bits (notation on next slide only)

Linear Cryptanalysis

Attack Overview

 Obtain linear approximation(s) of the cipher relating P,K,C

 $\bigoplus_{i \in X,} p_i \bigoplus_{j \in Y} c_j = \bigoplus_{g \in Z} k_g$ which occur with probability pr = $\frac{1}{2}$ + e for max bias - $\frac{1}{2} \le e_i \le \frac{1}{2}$.

- Encrypt random P's to obtain C's and compute k_g 's.
 - Known plaintext attack
- · Guess remaining key bits via exhaustive search.

Example S-Box

input	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
output	Е	4	D	1	2	F	В	8	3	A	6	C	5	9	0	7

 $Y2 \oplus Y3 = Z1 \oplus Z3 \oplus Z4$ in 12 of the 16 input, output pairs $12/16 = \frac{1}{2} + \frac{1}{4}$ and the bias is $\frac{1}{4}$

 $Y1 \oplus Y4 = Z2$ in $\frac{1}{2}$ of the pairs, so there is no bias

 $y_3 \oplus y_4 = Z_1 \oplus Z_4$ in 2 of the 16 pairs, so the bias is -3/8 $2/16 = \frac{1}{2} - 3/8$

Finding Linear Relationships

General form of linear relationship:

```
a1Y1 \oplus a2Y2 \oplus a3Y3 \oplus a4Y4
= b1Z1 \oplus b2Z2 \oplus b3Z3 \oplus b4 Z4
ai, bi \in \{0,1\}
```

Summarize all equations in a table Only need to do once

a1a2a3a4

Finding Linear Relationships

b1b2b3b4

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	-2	-2	0	0	-2	6	2	2	0	0	2	2	0	0
2	0	0	-2	-2	0	0	-2	-2	0	0	2	2	0	0	-6	2
3	0	0	0	0	0	0	0	0	2	-6	-2	-2	2	2	-2	-2
4	0	2	0	-2	-2	-4	-2	0	0	-2	0	2	2	-4	2	0
5	0	-2	-2	0	-2	0	4	2	-2	0	4	-2	0	-2	-2	0
6	0	2	-2	4	2	0	0	2	0	-2	2	4	-2	0	0	-2
7	0	-2	0	2	2	-4	2	0	-2	0	2	0	4	2	0	2
8	0	0	0	0	0	0	0	0	-2	2	2	-2	2	-2	-2	6
9	0	0	-2	-2	0	0	-2	-2	-4	0	-2	2	0	4	2	-2
Α	0	4	-2	2	-4	0	2	-2	2	2	0	0	2	2	0	0
В	0	4	0	-4	4	0	4	0	0	0	0	0	0	0	0	0
C	0	-2	4	-2	-2	0	2	0	2	0	2	4	0	2	0	2
D	0	2	2	0	-2	4	0	2	-4	-2	2	0	2	0	0	2
Ε	0	2	2	0	-2	-4	0	2	-2	0	0	-2	-4	2	-2	0
F	0	-2	4	-2	-2	0	2	0	0	-2	4	-2	-2	0	2	0

of times equation holds: a1Y1 \oplus a2Y2 \oplus a3Y3 \oplus a4Y4 = b1Z1 \oplus b2Z2 \oplus b3Z3 \oplus b4 Z4

Piling-Up Lemma

Matsui

- If $Pr(V_i = 0) = \frac{1}{2} + e_i$ • $Pr(V_1 \oplus V_2 \oplus ... \oplus V_n = 0) = \frac{1}{2} + 2^{n-1} \prod e_i$
- Vi's are independent random variables
- e_i is the bias $-\frac{1}{2} \le e_i \le \frac{1}{2}$

Use to combine linear equations if view each as independent random variable

Linear Bounds

- Bound a linear equation holds across q rounds: 0
- Cipher has nq rounds
- Estimate upper bound $\leq p^n$
- 2^b possible plaintexts
- Round key bits, output of a round/input to next round not independent
- If $p^n \le 2^{-b}$, no attack

