KOSHA GUIDE

M - 98 - 2012

드릴기 방호조치에 관한 기술지침

2012. 6.

한국산업안전보건공단

안전보건기술지침의 개요

ㅇ 작성자 : 한국산업안전보건공단 이 형 섭

ㅇ 개정자 : 안전연구실

○ 제·개정경과

- 1994년 9월 기계안전분야 기준제정위원회 심의
- 1994년 10월 총괄기준제정위원회 심의
- 1995년 9월 기계안전분야 기준제정위원회 심의
- 1996년 4월 총괄기준제정위원회 심의
- 2001년 5월 기계안전분야 기준제정위원회 심의
- 2001년 6월 총괄기준제정위원회 심의
- 2012년 4월 기계안전분야 기준제정위원회 심의(개정)
- ㅇ 관련규격 및 자료
 - 영국 MTTA 코드
- o 관련 법규·규칙·고시 등
- 산업안전보건 기준에 관한 규칙 제2편 제1장 제1절 제95조 (장갑의 사용금지)
- ㅇ 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈 페이지 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2012년 6 월 20 일

제 정 자 : 한국산업안전보건공단 이사장

드릴기 방호조치에 관한 기술지침

1. 목 적

이 지침은 산업안전보건기준에관한규칙(이하 "안전보건규칙"이라 한다) 제2편 제1장 제1절 제95조 장갑의 사용금지)의 규정에 따라 금속가공용 드릴링 머신(이하 "드릴기"라 한다)에 의한 재해를 방지하기 위하여 드릴기의 방호조치에 관한 기술지침을 정하는데 목적이 있다.

2. 적용범위

이 지침은 금속가공용 드릴기에 대하여 적용한다. 다만, 근로자에게 위험을 미칠 우려가 없을 경우 및 드릴기 공급자에 의하여 이 지침에서 제시하는 방호조치와 동등 이상의 성능을 가지는 방호조치가 되어 있을 경우에는 그러하지 아니하다.

3. 용어의 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
 - (가) "공작영역"이라 함은 공구가 절삭작업을 하면서 움직일 수 있는 공간을 말한다. 여기에는 공구가 공작물과 접촉해 있거나 절삭을 하기 위하여 공작물로 접근하는 점을 포함하며 작업이 이루어지지 않는 공구가 있는 부위는 제외된다.
 - (나) "고정가드"라 함은 기계에 견고하게 고정되어 공구를 사용치 않고는 제거 또는 개방할 수 없으며 운동부위가 없는 가드를 말한다.
 - (다) "유지가드"라 함은 미닫이 또는 여닫이 형태로 중력이나 수동조작으로 확실하게 잠겨지며, 기계에 견고하게 고정되어 공구를 사용치 않고는 제거할 수 없는 가드를 말한다.
 - (라) "탈착가드"라 함은 작업장 바닥이나 기계위에 자유롭게 세워둘 수 있는 가드를 말하며, 부주의에 의하여 쉽게 제거될 수 없도록 되어 있어야 한다.

- (마) "방책형가드"라 함은 위험지역에 정상적인 접근을 방지하기 위하여 설치하는 충분한 높이의 담장형 가드를 말한다.
- (바) "트립장치"라 함은 근로자가 작동중인 기계의 위험 한계를 넘어가게 될 때 작동하여 기계를 정지시키는 등, 위험점에서의 상해를 방지하거나 최소화시키는 장치를 말한다.
- (2) 그 밖에 이 지침에서 사용하는 용어의 정의는 이 지침에 특별한 규정이 있는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행 규칙, 안전보건규칙 및 고용노동부 고시에서 정하는 바에 의한다.

4. 직립 드릴기

- 4.1 직립 드릴기의 구동기구 방호
 - (1) 보수의 목적으로만 접근하는 주축, 기어, 스프로킷, 풀리, 체인 등 모든 구동기구는 <그림 1>과 같이 고정가드로 방호하여야 하고, 근로자가 일상적으로 접근하는 구동기구에는 연동된 유지가드를 설치한다.

<그림 1> 고정가드에 의한 기어박스의 방호

(2) 벨트와 풀리 등과 같은 주동력의 가드는 열리거나 제거되면 주전원이 차단되도록 연동시켜야 한다. 다만, 연동을 하지 아니하는 경우에는 경고판을 부착한다.

4.2 드릴의 방호

(1) 드릴 가드는 가공 공정에 방해가 되지 않는 한도내에도 가능한 한 많은 부분의 드릴날을 감쌀 수 있도록 <그림 2> 내지 <그림 9>의 드릴방호의 예에 따라 방호장치를 설치한다.

<그림 2> 투명창을 이용한 망원경식 드릴가드 <그림 3> 투명부위가 있는 유지가드 (가드는 들려진 채 유지될 수 있음) (가드는 가드홀더에 부착하여 드릴 교환시 쉽게 제거됨)

<그림 4> 투명패널이 있는 망원경식 드릴가드 <그림 5> 전면 부위가 힌지된 아크릴제 (드릴가드는 들려진 채 유지될 수 있음) 드릴가드

<그림 6> 측면 힌지된 아크릴제 유지가드 <그림 7> 탁상드릴기에 설치한 경량의 아 크릴 유지가드 (상면 피벗)

<그림 8> 전면 부위가 힌지된 유지가드 <그림 9> 힌지가 있는 봉에 의한 드릴가드

(2) 가드는 가능한 한 퀼에서 드릴 끝까지 전부 방호할 수 있도록 하여야 하며 드릴이 공작물을 관통하는 동안은 접어지고 드릴이 상승하면 원위치로 복귀되는 망원경식 가드가 이상적이다.

- (3) 가드는 길이의 조정이 가능하고, 경첩식으로 앞으로 들려진 채 유지될 수 있게 하는 방법 등으로 가드를 쉽게 제거할 수 있도록 하여 근로자가 두 손을 사용하여 드릴을 교환할 수 있도록 한다.
- (4) 가드의 앞부분에는 근로자가 작업을 볼 수 있도록 투명판 등을 설치한다.
- (5) 대형 드릴기에는 <그림 10>과 같은 연동을 하여 가드가 제거되면 드릴기 가 자동으로 정지하도록 하는 것이 바람직하며, 가드를 재장착 하거나 가드를 닫고 난후에는 반드시 재기동 스위치의 조작에 의하여 작동시 개시되어야 한다.

<그림 10> 안전전압을 이용한 드릴가드의 연동

4.3 공작영역의 방호

대형 드릴기나 특수목적기계 등에서는 기계의 작동 특성, 공작물의 크기, 내포되어 있는 위험성 등을 고려하여 필요한 경우에는 <그림 11>, <그림 12>와같이 공작영역 전체에 가드를 설치한다.

<그림 11> 테이블에 장착된 투명한 유지가드에 의한 공작영역 방호

<그림 12> 출입문이 있는 투명한 유지가드에 의한 공작영역 방호

4.4 고정구 등의 방호

지그 및 고정구는 새로운 끼임점이나 절단점을 발생시키지 않도록 설치되어야 하며, 매거진 등과 같은 부속장치 등은 <그림 13>과 같이 위험부위가 효과적으로 방호될 수 있도록 설계되어야 한다.

<그림 13> 매거진을 사용한 드릴작업의 예
(드릴과 척이 방호되어 있고, 공작물은 매거진에서 공압바이스에 공급됨)

4.5 순간 척 교환 장치를 가진 드릴기의 방호

- (1) 순간 척 교환장치를 사용할 때 등과 같이 가드를 설치하는 것이 곤란한 경우에는 6.5 항의 트립장치를 사용한다.
- (2) 가능하다면 순간 척 교환장치를 가진 기계는 따로 분류하여 보통의 드릴 가드가 설치된 기계와 서로 섞이지 않게 하는 등, 비슷한 종류끼리 분류하 여 작업하는 것이 좋다.

5. 다축 드릴기

5.1 다두드릴기의 방호

다두드릴기는 <그림 14>와 같이 각각의 드릴 헤드에 대하여 직립 드릴에서와 같은 방법으로 방호한다.

<그림 14> 각각의 드릴이 방호된 3두 드릴기

5.2 다축드릴기의 방호

(1) 다축드릴기는 <그림 15>내지 <그림 18>과 같이 고정가드나 연동된 유지 가드로 공작영역 전체를 방호하는 것이 바람직하다.

<그림 15> 고정가드와 연동된 유지가드를 이용한 다축드릴기의 방호

<그림 16> 다축드릴기 공작영역 전체의 방호(미닫이 및 여닫이 가드는 연동됨)

<그림 17> 다축드릴기 공작영역 전체의 방호 (미닫이 및 여닫이 가드는 연동됨)

<그림 18> 다축드릴기의 방호 (공작물을 공급하기 위하여 상하운동을 하는 연동가드와 공작영역에 접근하기 위하여 연동된 여닫이 가드)

(2) 공작영역 전체를 방호할 수 없을 경우에는 <그림 19>와 같이 다축드릴 부위에 투명판 등의 재질로 가드를 만들어 설치하도록 하며 필요한 경우 망원경식의 가드를 추가로 설치하여 드릴이 노출되지 않도록 한다.

<그림 19> 다축드릴기의 방호

6. 레이디얼 드릴기

6.1 암고정 테이블 승강형 드릴기

암고정 테이블 승강형 레이디얼 드릴기는 테이블 아래와 칼럼 위 사이의 거리가 120mm이상이 되도록 하여 발이 끼이지 않도록 하여야 하며 <그림 20>, 암이 고정되어 있고 칼럼이 승강하는 드릴기에는 암의 바닥과 칼럼의 고정기구 사이가 25mm이상이 되도록 하여 손가락이 끼이지 않도록 하여야 한다. <그림 21>

<그림 20> 테이블 승강형 드릴기

<그림 21> 암고정 칼럼 승강형 드릴기

6.2 암 승강형 드릴기

(1) 암 승강형 드릴기에서는 암의 바닥과 칼럼의 고정기구 사이가 25mm 이상 이 되도록 하여 손가락이 끼이지 않도록 하여야 한다.<그림 22>

<그림 22> 암 승강 테이블 선회형 레이디얼 드릴기

(2) 이송 나사를 이용하여 암을 승강시키는 경우에는 <그림 23>과 같이 망원 경식 가드를 사용하여 암이 가장높은 위치에 왔을 때에도 승강 나사축의 아랫부분을 방호할 수 있도록 하며, 이송나사로 수평이동을 하는 경우에도 <그림 24>와 같이 이송 나사축을 망원경식 가드로 방호한다.

<그림 23> 레이디얼 드릴기의 승강용 나사방호

<그림 24> 망원경식 가드에 의한 레이디얼 드릴기의 노출된 수평이송축의 방호

(3) 승강나사부의 주너트가 파손이나 망실되는 경우에도 암이 불시에 떨어지지 않도록 안전너트와 같은 안전장치를 구비한다.

6.3 이동식 드릴기

- (1) 이동식 드릴기는 드릴작업을 시작하기 전에 바닥에 견고하게 고정시켜야 한다.
- (2) 공작영역에 운전자 이외의 근로자가 접근할 가능성이 있는 경우에는 방책형 가드를 설치하며, 운전자 보호를 위하여는 6.5항의 트립장치를 사용한다.

6.4 레이디얼 드릴기의 드릴 방호

드릴은 <그림 25>내지 <그림 29>와 같이 직립드릴기에서와 같은 방법으로 방호하는 것이 바람직하나 이것이 불가능한 경우에는 6.5항의 트립장치를 사용한다.

<그림 25> 레이디얼 드릴기에 적합한 드릴 방호의 예 (1)

<그림 26> 레이디얼 드릴기에 적합한 드릴 방호의 예(2)

<그림 27> 레이디얼 드릴기에 적합한 드릴 방호의 예 (3)

<그림 28> 레이디얼 드릴기에 적합한 드릴 방호의 예 (4)

<그림 29> 레이디얼 드릴기에 적합한 드릴 방호의 예 (5)

6.5 트립장치

(1) 가드의 설치가 불가능한 경우에 근로자를 방호하기 위한 것으로 <그림 30>과 같은 수직 트립 탐침을 사용할 수 있다. 이 수직 트립 탐침은 망원 경식으로 수직으로 설치하여 탐침이 기울어지면 스위치가 작동하여 주축을 정지시키게 된다. 이때 주축으로부터 수직 트립 탐침까지의 거리는 약 75~150mm로 한다.

<그림 30> 드릴헤드에 부착된 수직 트립 탐침

(2) 비상시 근로자에게 더 편리한 경우에는 수직트립 탐침 대신 <그림 31>, <그림 32>와 같은 수평 트립 와이어나 봉 등의 수평트립장치를 이용할 수 있다. 이 때 수평 트립장치의 높이는 부속장치에 따라 쉽게 조정하여 설치할 수 있도록 하는 것이 바람직하다.

<그림 31> 레이디얼 드릴기에 장착된 수평 트립 와이어

<그림 32> 레이디얼 드릴기에 장착된 수평트립봉

6.6 공작영역의 방호

레이디얼 드릴기는 공작영역 전체의 방호가 어려운 경우가 많으나 반복작업이 이루어지는 등의 경우에는<그림 11> 및 <그림 12>와 같이 공작영역 전체를 방호하는 것이 바람직하다.

7. 탁상용 드릴기

7.1 구동부 및 동력전달부의 방호

- (1) 구동부 및 동력전달부의 풀리, 벨트, 체인 등에는 고정 방호덮개를 설치하고, 방호덮개를 개방하면, 주전원이 차단될 수 있도록 연동장치를 설치한다.
- (2) 연동장치를 설치하지 아니할 경우에는 경고표지를 부착한다.

7.2 드릴날에 대한 방호

- (1) 드릴날로부터 근로자를 보호하기 위해서는 가공작업 및 칩 배출에 방해가 되지 않는 범위내에서 가능한 한 많은 부분을 방호할 수 있도록 <그림 33>과 같은 방호덮개를 설치한다
- (2) 방호덮개의 앞부분은 근로자가 작업사항을 잘 볼 수 있도록 투명판(아크릴 제) 등을 설치한다.
- (3) 가공시 발생하는 칩이 쉽게 배출되도록 후면이 개방된 반원통형 방호 덮개를 설치하고, 드릴날 교체시의 편리성을 위해 180°윗열림이 가능하 도록 스프링식으로 설치한다.

<그림 33> 탁상용 드릴기에 장착되는 방호덮개

7.3 바이스 고정대 설치

작업자가 가공 대상물을 손으로 잡고 가공하는 것을 최소화할 수 있도록 <그림 34>와 같은 바이스 고정대를 설치한다.

<그림 34> 바이스 고정대

7.5 작업대 설치

드릴기 베이스 하부에 견고한 받침대를 설치하여 작업자의 팔꿈치의 높이가 이송레버보다 100mm정도 낮은 자세로 작업할 수 있도록 한다.

8. 기타 드릴기

- 8.1 암승강형 수치제어 드릴기의 방호
 - (1) 수치제어 드릴기에는 기계와 격리된 자동제어 패널과 기계 자체에 붙어 있는 수동제어장치에 각각 비상정지스위치를 갖고 있어야 한다.
 - (2) 암 승강형 수치제어 드릴기도 6.2 암 승강형 드릴기와 동일한 방호장치를 설치한다.
 - (3) <그림 35>와 같이 드릴 헤드에 망원경식 수직 트립탐침을 부착하여 방호하는 경우에는 이 수직 트립 탐침이 자동제어된 드릴작업과 간섭을 일으킬 수 있으므로 가공 사이클을 시작하기 전에 탐침의 위치를 수동으로 조정할 수 있도록 한다.

<그림 35> 암 승강형 수치제어 드릴기

8.2 수평드릴기의 방호

(1) 수평드릴기에서 기계 전체방호가 되어 있지 않은 경우에는 <그림 36>, <그림 37>, <그림 38>과 같이 벨트나 드릴부위 등 작동 부위에 연동된 유지가드를 설치하여 공작물의 탈착을 가능하게 한다.

<그림 36> 단 방향 기계의 공구 및 벨트 방호의 예

<그림 37> 양 방향 기계의 방호 예 (고정구에는 유지가드, 벨트에는 고정가드)

<그림 38> 4방향 기계의 방호
(퀼 부위 사이의 연동된 유지가드, 공작물 탈착을 위한 연동된 여닫이 가드)

(2) 유지가드 대용으로 연동된 탈착가드를 사용할 수 있다.

8.3 터릿 드릴기

(1) 터릿의 전면이나 공작 중인 공구를 제외한 대기 중인 공구가 근로자와 쉽게 접촉할 수 있는 위치에 있는 경우에는 <그림 39>와 같이 고정가드나 연동된 유지가드를 이용하여 방호한다.

<그림 39> 터릿 드릴기의 공구방호

(2) 기계의 모양에 따라서는 터릿의 방호와 더불어 공작영역의 방호가 필요할 수 있으며 이때는 테이블이나 베드에 장착된 고정 또는 유지가드를 이용하거나 기계 주위전체를 방호하는 방법이 있다.

8.4 심공 드릴기의 방호

심공드릴기의 방호방법은 노출된 회전부위가 길다는 사실에 주의하여 <그림 40>과 같은 연동된 미닫이 또는 여닫이식 유지가드를 이용하며 특히 기계의 길이가 길 때에는 방책형가드나 탈착가드를 사용한다.

<그림 40> 유지가드에 의한 심공드릴기의 척 방호