Machine Learning

CSE 142

Xin (Eric) Wang

Wednesday, October 13, 2021

- Concept learning, Ch. 4

- 2
- y

Concept learning

- Concept learning means learning (typically binary) concepts from examples
 - The learned concept is the positive class
 - Everything else is the negative class
- We'll now use logical models logical expressions describe concepts and divide the instance space appropriately
 - See "Background 4.1" on p. 105 in the textbook for an overview of the logical concepts and notation
 - Propositional logic
 - Logical manipulation of propositions (symbols that have values)
 - (First-order) predicate logic
 - Add variables, predicates (binary functions), functions, and variable quantification (for all x..., there exists an x such that...)

Propositional (Boolean) logic

- Symbols represent propositions (statements of fact, sentences)
 - P means "San Francisco is the capital of California"
 - Q means "It is raining in Seattle"
 - Length = 3 means "The value of the feature Length is 3"
 - Teeth=many means "The value of the feature Teeth is many
- Expressions are generated by combining proposition symbols with Boolean (logical) connectives
 - *True, false,* propositional symbols
 - feature/value relations e.g., feature = value, feature < value, ...
 - $-\neg (not), \land (and), \lor (or), \Rightarrow (implies), \Leftrightarrow (equivalent)$

Propositional logic

Semantics

- Defined by clearly interpreted symbols and straightforward application of truth tables
- Rules for evaluating truth: Boolean algebra
- Simple method: truth tables

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
False	False	True	False	False	True	True
False	True	True	False	True	True	False
True	False	False	False	True	False	False
True	True	False	True	True	True	True

2^N rows for N propositions

Simple Boolean logic

Commutative, associative, and distributive laws

$$P \wedge Q \Leftrightarrow Q \wedge P$$

$$(P \wedge Q) \wedge R \Leftrightarrow P \wedge (Q \wedge R)$$

$$P \wedge (Q \vee R) \Leftrightarrow (P \wedge Q) \vee (P \wedge R)$$

De Morgan's Laws

$$\neg \neg P \Leftrightarrow P$$

$$\neg (P \land Q) \Leftrightarrow \neg P \lor \neg Q$$

$$\neg (P \lor Q) \Leftrightarrow \neg P \land \neg Q$$

Propositional logic

- Propositional logic has simple syntax and semantics, and limited expressiveness
- However, it only has one representational device, the proposition, and cannot generalize
 - Input: facts; Output: facts
 - Result: Many, many rules are necessary to represent any non-trivial world
 - It is impractical for even very small worlds
- The solution?
 - First-order logic, which can represent propositions, objects, and relations between objects
 - Worlds can be modeled with many fewer rules

First-Order Logic (FOL)

- Also known as First-Order Predicate Calculus
 - Propositional logic is also known as Propositional Calculus
- An extension to propositional logic in which <u>quantifiers</u> can bind variables in sentences
 - Universal quantifier (\forall) "For all..."
 - Existential quantifier (\exists) "There exists..."
 - Variables: x, y, z, a, joe, table...
- Examples
 - $\forall x \text{ Beautiful}(x)$
 - $-\exists x \text{ Beautiful}(x)$

Propositional logic vs. FOL

- Propositional logic:
 - **P** stands for "All men are mortal"
 - Q stands for "Socrates is a man"
 - What can you infer from P and Q?
 - Nothing!
- First-order logic:
 - $\forall x \operatorname{Man}(x) \Rightarrow \operatorname{Mortal}(x)$
 - Man (Socrates)
 - What can you infer from these?
 - Mortal (Socrates)

Concept learning

- In concept learning, we want to learn a Boolean function over a set of attributes+values
 - I.e., derive a Boolean function from training examples
 - Positive and negative examples of the concept
 - Positive: Temperature = high \land Coughing = yes \land Spots = yes
 - Negative: Temperature = medium \land Coughing = no \land Spots = yes
 - This is our hypothesis
- The target concept c is the true concept
 - We want the hypothesis to be a good estimate of the true concept
 - Thus we wish to find h (or \hat{c}) such that $h \approx c$ (or $\hat{c} \approx c$)
- The hypothesis h is a Boolean function over the features
 - E.g., some combinations of {Temperature, Coughing, Spots} are <u>in</u> the concept, and others are <u>not in</u> the concept

The hypothesis space

- Using a set of features, what concepts can possibly be learned?
- The space of all possible concepts is called the hypothesis space
 - What is the hypothesis space for a given problem?
- First, how many possible instances are there for a given set of features?
 - All combinations of feature values
 - In set theory, the Cartesian product of all the features

$$-F_1 \times F_2 \times ... \times F_N$$

- UCSC courses: Quarter (4), Dept (40), courselevel (2), topic (500)
 - $4\times40\times2\times500 = 160,000$ possible instances
 - E.g., (fall, CSE, ugrad, ML), (spring, Music, grad, StringTheory),

The hypothesis space

- The hypothesis space is the number of binary functions on these instances, which is... 2^{160,000}!!
 - I.e., the number of all subsets you can make from 160,000 elements
 - Or if you laid out all possible instances, the number of different contours you could draw separating some instances from the rest
 - Each of these hypotheses... sets... contours... defines a concept
- The challenge in concept learning is deciding which hypothesis is best, given the training data
 - As with all problems in machine learning, generalization is of key importance – we don't only want to memorize the training data (the overfitting problem)
 - We want to learn a concept that will generalize well to new, unseen instances
- But even for a simple problem the hypothesis space is huge!

The conjunctive hypothesis space

- To make the problem tractable, we'll limit our hypothesis space to conjunctive concepts i.e., hypotheses that can be expressed as a conjunction of literals (features)
 - Hypothesis: Quarter=? ∧ Dept=? ∧ courselevel=? ∧ topic=?
- We add "absence" or "don't care" to each feature, so now the total number of combinations is $5 \times 41 \times 3 \times 501 = 308,115$
 - That's a lot, but much better than $2^{160,000}$! (between 2^{18} and 2^{19})
- The most general conjunctive hypothesis is (X, X, X, X), which includes all possible instances
 - (fall, X, X, X) is the concept of all fall quarter courses
 - (fall, CSE, grad, X) is the concept of all CS graduate courses in the fall
- In this conjunctive hypothesis space, we can't represent concepts like "all courses in AI or Graphics"

An example hypothesis space

Target concept:

 $c = Owns \ a \ house$

Instance space:

{Age × Student}

 $2 \times 2 = 4$ instances:

$$(Yes, Yes) - A$$
 $(Yes, No) - B$
 $(No, Yes) - C$ $(No, No) - D$

- (1) How many possible hypotheses are there? $2^4 = 16$ possible hypotheses (concepts)
- (2) The training example (Yes, No) provides evidence for which hypotheses?
- All the ones that contain B
- (3) Now what if we observe a second training example (No, No)?

(A)	(Λ, D)
$\{A\}$	$\{A, D\}$
★ {B}	\star {B, C}
{C}	\star {B, C, D}
$\{\mathbf{D}\}$	$\{A, C, D\}$
$\star \{A, B\}$	\star {A, B, D}
$\{C, D\}$	\star {A, B, C}
$\{A,C\}$	\star {A, B, C, D}
$\bigstar \{B, D\}$	{ } or ø

Our example using conjunctive hypothesis space

Instance space:

 $\{Age \times Student\}$

CHS: Hypotheses that can be represented as

 $Age=\{Yes, No, X\} \land Student=\{Yes, No, X\}$

That's 9 hypotheses:

 (Yes, Yes)
 (Yes, No)
 (No, Yes)

 (No, No)
 (Yes, X)
 (No, X)

 (X, Yes)
 (X, No)
 (X, X)

{A} {A, D}

{B} {B, C}

{C} {B, C, D}

{D} {A, C, D}

{A, B} {A, B, D}

{C, D} {A, B, C}

{A, B, C}

{A, B, C}

{A, B, C, D}

An example of CHS learning

Suppose you come across a number of sea animals that you suspect belong to the same species. You observe their length in meters, whether they have gills, whether they have a prominent beak, and whether they have few or many teeth. The first animal can described by the following conjunction of features:

Length =
$$3 \land Gills = no \land Beak = yes \land Teeth = many$$

The next one has the same characteristics but is a meter longer, so you drop the length condition and generalize the conjunction to

Gills = no
$$\land$$
 Beak = yes \land Teeth = many

The third animal is again 3 meters long, has a beak, no gills and few teeth, so your description becomes

Gills = no
$$\land$$
 Beak = yes

All remaining animals satisfy this conjunction, and so your hypothesis is formed.

Someone tells you what these animals are called: Dolphins

An example of CHS learning

We took a specific-to-general approach in coming up with a hypothesis here.

Instances:

Hypotheses:

- (1) Length = $3 \land Gills = no \land Beak = yes \land Teeth = many$ Length = $3 \land Gills = no \land Beak = yes \land Teeth = many$
- (2) Length = $4 \land Gills = no \land Beak = yes \land Teeth = many$ Length = $X \land Gills = no \land Beak = yes \land Teeth = many$
- (3) Length = 3 \land Gills = no \land Beak = yes \land Teeth = few

 Length = X \land Gills = no \land Beak = yes \land Teeth = X

An example of CHS learning

Features and possible values:

```
Length = { 3, 4, 5 }
Gills = { yes, no }
Beak = { yes, no }
Teeth = { few, many }
```

In this problem, there are $3\times2\times2\times2=24$ possible instances and 2^{24} possible hypotheses over the instances (about 16.8 million)

But with the conjunctive hypothesis space, we have only $4\times3\times3\times3=108$ possible conjunctive hypotheses

- In our earlier example, we went from 16 hypotheses to 9 using CHS
- Here we go from 16.8 million to 108

Let's visualize the conjunctive hypothesis space for this problem:

A node connects upward to every more general hypothesis that includes it. A node connects downward to every more specific hypothesis that includes it.

The Conjunctive Hypothesis Space

Length=3 ∧ Gills=no ∧ Beak=yes ∧ Teeth=many

The Conjunctive Hypothesis Space

