Slides mainly from Poole & Mackworth, chap 13

Datalog based on the following assumptions

- An agent's knowledge can be usefully described in terms of individuals and relations among individuals.
- An agent's knowledge base consists of definite and positive statements.
- The environment is static.
- There are only a finite number of individuals of interest in the domain.
 - An individual can be named.

Datalog syntax

- A variable starts with upper-case letter.
- A constant starts with lower-case letter or is a sequence of digits (numeral).
- A predicate symbol starts with lower-case letter.
- A term is either a variable or a constant.
- An atomic symbol (atom) is of the form p or $p(t_1, \ldots, t_n)$ where p is a predicate symbol and t_i are terms.

Datalog syntax (ctd)

 A definite clause is either an atomic symbol (a fact) or of the form:

$$\underbrace{a}_{\mathsf{head}} \leftarrow \underbrace{b_1 \wedge \cdots \wedge b_m}_{\mathsf{body}}$$

where a and b_i are atomic symbols.

- query is of the form $?b_1 \wedge \cdots \wedge b_m$.
- knowledge base is a set of definite clauses.

Semantics: General Idea

A semantics specifies the meaning of sentences in the language. An interpretation specifies:

- what objects (individuals) are in the world
- the correspondence between symbols in the computer and objects & relations in world
 - constants denote individuals
 - predicate symbols denote relations

Formal Semantics

An interpretation is a triple $I = \langle D, \phi, \pi \rangle$, where

- D, the domain, is a nonempty set. Elements of D are individuals.
- ϕ is a mapping that assigns to each constant an element of D. Constant c denotes individual $\phi(c)$.
- π is a mapping that assigns to each *n*-ary predicate symbol a relation: a function from D^n into $\{TRUE, FALSE\}$.

Example Interpretation

Constants: phone, pencil, telephone.

Predicate Symbol: noisy (unary), left_of (binary).

- $D = \{ > , ? > \}.$
- $\phi(phone) = \mathbf{\hat{a}}, \ \phi(pencil) = \mathbf{\hat{a}}, \ \phi(telephone) = \mathbf{\hat{a}}.$
- $\pi(noisy)$: $\langle \sim \rangle$ FALSE $| \langle \sim \rangle$ TRUE $| \langle \sim \rangle$ FALSE $| \pi(left_of)$:

Important points to note

- The domain D can contain real objects. (e.g., a person, a room, a course). D can't necessarily be stored in a computer.
- π(p) specifies whether the relation denoted by the n-ary predicate symbol p is true or false for each n-tuple of individuals.
- If predicate symbol p has no arguments, then $\pi(p)$ is either TRUE or FALSE.

Truth in an interpretation

A constant c denotes in I the individual $\phi(c)$. Ground (variable-free) atom $p(t_1, \ldots, t_n)$ is

- true in interpretation I if $\pi(p)(\langle \phi(t_1), \ldots, \phi(t_n) \rangle) = \mathit{TRUE}$ in interpretation I and
- false otherwise.

Ground clause $h \leftarrow b_1 \land \ldots \land b_m$ is false in interpretation I if h is false in I and each b_i is true in I, and is true in interpretation I otherwise.

Example Truths

In the interpretation given before, which of following are true?

```
noisy(phone)
noisy(telephone)
noisy(pencil)
left_of(phone, pencil)
left_of(phone, telephone)
noisy(phone) \leftarrow left_of(phone, telephone)
noisy(pencil) \leftarrow left_of(phone, telephone)
noisy(pencil) \leftarrow left_of(phone, pencil)
noisy(phone) \leftarrow noisy(telephone) \wedge noisy(pencil)
```

Example Truths

In the interpretation given before, which of following are true?

```
noisy(phone)
                                                            true
noisy(telephone)
                                                            true
noisy(pencil)
                                                           false
left_of(phone, pencil)
                                                           true
left_of(phone, telephone)
                                                           false
noisy(phone) \leftarrow left\_of(phone, telephone)
                                                           true
noisy(pencil) \leftarrow left\_of(phone, telephone)
                                                           true
noisy(pencil) \leftarrow left\_of(phone, pencil)
                                                            false
noisy(phone) \leftarrow noisy(telephone) \land noisy(pencil)
                                                           true
```

Models and logical consequences

- A knowledge base, KB, is true in interpretation I if and only if every clause in KB is true in I.
- A model of a set of clauses is an interpretation in which all the clauses are true.
- If KB is a set of clauses and g is a conjunction of atoms, g is a logical consequence of KB, written $KB \models g$, if g is true in every model of KB.
- That is, $KB \models g$ if there is no interpretation in which KB is true and g is false.

User's view of Semantics

- 1. Choose a task domain: intended interpretation.
- 2. Associate constants with individuals you want to name.
- 3. For each relation you want to represent, associate a predicate symbol in the language.
- 4. Tell the system clauses that are true in the intended interpretation: axiomatizing the domain.
- 5. Ask questions about the intended interpretation.
- 6. If $KB \models g$, then g must be true in the intended interpretation.

Computer's view of semantics

- The computer doesn't have access to the intended interpretation.
- All it knows is the knowledge base.
- The computer can determine if a formula is a logical consequence of KB.
- If $KB \models g$ then g must be true in the intended interpretation.
- If $KB \not\models g$ then there is a model of KB in which g is false. This could be the intended interpretation.

Semantics in the mind

Recall that g is a *logical consequence of* KB, $KB \models g$, precisely if g is true in all models of KB.

Let \vdash be a mechanical procedure for deriving a formula g from a knowledge base KB, written $KB \vdash g$.

 \vdash is sound if $KB \models g$ whenever $KB \vdash g$.

Recall that g is a *logical consequence of* KB, $KB \models g$, precisely if g is true in all models of KB.

Let \vdash be a mechanical procedure for deriving a formula g from a knowledge base KB, written $KB \vdash g$.

 \vdash is sound if $KB \models g$ whenever $KB \vdash g$.

 \vdash is complete if $KB \vdash g$ whenever $KB \models g$.

Recall that g is a *logical consequence of* KB, $KB \models g$, precisely if g is true in all models of KB.

Let \vdash be a mechanical procedure for deriving a formula g from a knowledge base KB, written $KB \vdash g$.

- \vdash is sound if $KB \models g$ whenever $KB \vdash g$.
- \vdash is complete if $KB \vdash g$ whenever $KB \models g$.

Two extreme examples:

- (1) $KB \vdash g$ for no g sound
- (2) $KB \vdash g$ for all g complete

Recall that g is a *logical consequence of* KB, $KB \models g$, precisely if g is true in all models of KB.

Let \vdash be a mechanical procedure for deriving a formula g from a knowledge base KB, written $KB \vdash g$.

- \vdash is sound if $KB \models g$ whenever $KB \vdash g$.
- \vdash is complete if $KB \vdash g$ whenever $KB \models g$.

Two extreme examples:

- (1) $KB \vdash g$ for no g 'say nothing' undergenerates sound
- (2) $KB \vdash g$ for all g 'say everything' overgenerates complete

Propositional KBs

Recall

```
i :- p,q.
i :- r.
p.
r.
```

Propositional KBs

Recall

```
i :- p,q.
i :- r.
prove([],KB).
prove(Node,KB) :- arc(Node,Next,KB),
prove(Next,KB).
```

Propositional KBs

Recall

```
i :- p,q.
i :- r.
prove([],KB).
prove(Node,KB) :- arc(Node,Next,KB),
prove(Next,KB).
```

Let

$$KB \vdash G \iff prove([G],KB)$$

Theorem.

- $(1) \vdash \text{is sound} \quad (\text{proved by induction})$
- (2) \vdash is *not* complete (why?)

Logical consequences bottom-up

$$C_0 := \emptyset$$
 $C_{n+1} := \{H \mid (\text{for some } B \subseteq C_n) \text{ member}([H|B], KB)\}$
 $C := \bigcup_{n \ge 0} C_n$
 $= \bigcup_{n \le k} C_n \text{ where } k = \text{number of clauses in } KB$

Logical consequences bottom-up

```
C_0 := \emptyset
C_{n+1} := \{H \mid (\text{for some } B \subseteq C_n) \text{ member}([H|B], KB)\}
C := \bigcup_{n \ge 0} C_n
= \bigcup_{n \le k} C_n \text{ where } k = \text{number of clauses in } KB
```

```
 \begin{array}{lll} {\tt i:-p,q.} & {\tt KB = [[i,p,q],[i,r],[p],[r]]} \\ {\tt i:-r.} & {\tt arc([H|T],N,KB):-member([H|B],KB),} \\ {\tt p.} & {\tt append(B,T,N).} \\ {\tt r.} & {\tt C_1 = \{p,r\}} \\ & {\tt C_2 = \{p,r,i\} = \textit{C}_n \ for \ n \geq 2} \\ \end{array}
```

A 0-ary predicate p is interpreted by $I=\langle D,\phi,\pi\rangle$ as $\pi(p):D^0\to\{\text{true,false}\}.$

Substitutions and instances

A 0-ary predicate p is interpreted by $I = \langle D, \phi, \pi \rangle$ as

$$\pi(p): D^0 \to \{\text{true}, \text{false}\}.$$

Let K be a set of constants.

A K-substitution is a function from a finite set of variables to K — i.e. a set $\{V_1/c_1, \ldots, V_n/c_n\}$ of $c_i \in K$ and distinct variables V_i .

The application $e\theta$ of a K-substitution $\theta = \{V_1/c_1, \ldots, V_n/c_n\}$ to a clause e is e with each V_i replaced by c_i

e.g.
$$p(Z, U, Y, a, X)\{X/b, U/a, Z/b\} = p(b, a, Y, a, b)$$
.

A *K*-instance of *e* is $e\theta$ for some *K*-substitution θ .

Given a set B of clauses and a K-substitution θ , let

$$B\theta := \{e\theta \mid e \in B\}.$$

Bottom-up with substitutions

If KB has constants from some non-empty finite set K, let

$$C_0^{\mathcal{K}} := \emptyset$$
 $C_{n+1}^{\mathcal{K}} := \{H\theta \mid \theta \text{ is a \mathcal{K}-substitution s.t. } B\theta \subseteq C_n^{\mathcal{K}}$
for some B s.t. member($[H|B], KB$)}
 $C^{\mathcal{K}} := \bigcup_{n \ge 0} C_n^{\mathcal{K}}$

Bottom-up with substitutions

If KB has constants from some non-empty finite set K, let

$$C_0^{K} := \emptyset$$

$$C_{n+1}^{K} := \{H\theta \mid \theta \text{ is a K-substitution s.t. } B\theta \subseteq C_n^{K}$$
for some B s.t. member($[H|B], KB$)}
$$C^{K} := \bigcup_{n \ge 0} C_n^{K}$$

$$E.g. \text{ for } KB = [[p(a,b)], [q(X), p(X,Y)]] \text{ and } K = \{a,b\},$$

$$C_1^{K} = \{p(a,b)\}$$

$$C_2^{K} = \{p(a,b), q(a)\} = C^{K}$$

Soundness & completeness via Herbrand

The Herbrand interpretation of a set KB of clauses with constants from a non-empty set K is the triple $I = \langle D, \phi, \pi \rangle$ where

- the domain D is the set K of constants
- ullet ϕ is the identity function on K (each constant in K refers to itself)
- for each n-ary p and n-tuple $c_1 \dots c_n$ from K,

$$\pi(p)(c_1 \dots c_n) = \text{true} \iff p(c_1 \dots c_n) \in C^K$$

Soundness & completeness via Herbrand

The Herbrand interpretation of a set KB of clauses with constants from a non-empty set K is the triple $I = \langle D, \phi, \pi \rangle$ where

- the domain D is the set K of constants
- ullet ϕ is the identity function on K (each constant in K refers to itself)
- for each *n*-ary *p* and *n*-tuple $c_1 \dots c_n$ from K,

$$\pi(p)(c_1 \dots c_n) = \text{true} \iff p(c_1 \dots c_n) \in C^K$$

Fact. I is a model of KB, and every clause true in I is true in every model of KB (interpreting constants in K).

Soundness & completeness via Herbrand

The Herbrand interpretation of a set KB of clauses with constants from a non-empty set K is the triple $I = \langle D, \phi, \pi \rangle$ where

- the domain D is the set K of constants
- ϕ is the identity function on K (each constant in K refers to itself)
- for each n-ary p and n-tuple $c_1 \ldots c_n$ from K,

$$\pi(p)(c_1 \dots c_n) = \text{true} \iff p(c_1 \dots c_n) \in C^K$$

Fact. I is a model of KB, and every clause true in I is true in every model of KB (interpreting constants in K).

Corollary. The bottom-up procedure with substitutions is sound and complete (for Datalog).