ASIGNATURA: TECNICAS DE OPTIMIZACIÓN PRÁCTICA: MODELIZACIÓN 2

SESIONES: 1

SOFTWARE: LINGO

Una compañía petrolífera produce tres tipos de gasolina: Super, Normal y Euro. Se obtienen por mezcla de tres calidades de crudo (A, B, C) que compra a otra compañía y que contienen tres componentes (1,2,3). La participación de estos componentes en la composición de cada crudo es:

		COMPONENTES (%)			
		1	2	3	
CRUDOS	Α	80	10	5	
	В	45	30	20	
	С	30	40	25	

Las especificaciones de los tres tipos de gasolina son:

		COMPONENTES (%)		
		1	2	3
GASOLINA	SUPER	≥ 60	≤ 25	≥ 10
	NORMAL	≥ 50	≤ 30	≤ 15
	EURO	≤ 40	≥ 35	≥ 20

- Los costes por barril de crudo A, B y C son: 650, 500 y 450 €, respectivamente.
- El presupuesto diario de compra es de 50 Millones de €.
- La disponibilidad diaria de crudos B y C se limita, respectivamente a 3.000 y 7.000 barriles.
- Ciertos acuerdos obligan a la compra de al menos 2.500 barriles del crudo A.
- Las demandas de gasolina Super y Normal son de 2.000 y 2.500 barriles diarios, que deben satisfacerse.
- Formular un modelo matemático que permita a la compañía maximizar la producción de gasolina Euro.
- Resuelve el modelo planteado utilizando el software de optimización LINGO.