Primer Parcial Data Science . 24 Marzo 2021

data.mode(numeric only=False)

```
Cyndy Elizabeth Pantoja Tamayo
                                                                                                                                                 In [79]:
import pandas as pd
import numpy as np
 import seaborn as sns
import matplotlib.pyplot as plt
 1. Preprocesamiento de Datos .
1.1 Carqar Dataset en Phyton o Rstudio
                                                                                                                                                 In [80]:
data = pd.read csv ('credit-german.csv', sep=";")
1.2 Número de instancias
                                                                                                                                                 In [81]:
data.shape[0]
                                                                                                                                               Out[81]:
1000
1.3 Número de atributos
                                                                                                                                                 In [82]:
data.shape[1]
                                                                                                                                               Out[82]:
1.4 ¿El conjunto de datos está etiquetado? ¿Cuántas clases tiene el conjunto de datos?
                                                                                                                                                 In [46]:
data.columns
                                                                                                                                               Out[46]:
Index(['checking_status', 'disc_duration', 'credit_history', 'purpose',
         'credit_amount', 'savings_status', 'employment', 'personal_status',
'other_parties', 'property_magnitude', 'age', 'other_payment_plans',
'housing', 'existing_credits', 'job', 'num_dependents', 'own_telephone',
          'foreign worker', 'class'],
         dtype='object')
1.5 ¿Cuántos atributos son numéricos y cuántos categóricos?
                                                                                                                                                 In [47]:
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 19 columns):
                      Non-Null Count Dtype
 # Column
____
0 checking_status 1000 non-null object 1 disc_duration 1000 non-null int64 2 credit_history 1000 non-null object 3 purpose 1000 non-null object
                                   -----
 3 purpose 1000 non-null object
4 credit_amount 1000 non-null int64
5 savings_status 1000 non-null object
6 employment 1000 non-null object
7 personal_status 1000 non-null object
8 other_parties 1000 non-null object
 9 property_magnitude 1000 non-null object
 10 age
                            1000 non-null int64
 11 other_payment_plans 1000 non-null object
                    1000 non-null object credits 1000 non-null object 1000 non-null object
 12 housing
 13 existing credits
 14 job
 14 Job 1000 non-null object
15 num_dependents 1000 non-null object
16 own_telephone 1000 non-null object
17 foreign_worker 1000 non-null object
                                     1000 non-null object
 18 class
dtypes: int64(3), object(16)
memory usage: 148.6+ KB
1.6 Reporte la moda para cada atributo categórico
```

In [48]:

Out[48]:

	checking_status	${\sf disc_duration}$	credit_history	purpose	${\sf credit_amount}$	savings_status	employment	personal_status	other_parties	property_r
0	no checking	24.0	existing paid	radio/tv	1258	<100	1<=X<4	male single	none	
1	NaN	NaN	NaN	NaN	1262	NaN	NaN	NaN	NaN	
2	NaN	NaN	NaN	NaN	1275	NaN	NaN	NaN	NaN	
3	NaN	NaN	NaN	NaN	1393	NaN	NaN	NaN	NaN	
4	NaN	NaN	NaN	NaN	1478	NaN	NaN	NaN	NaN	
4	170 + 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1									

1.7 Reporte la media, rango y desviación estándar para cada atributo numérico

data.describe()

In [49]:

Out[49]:

	$disc_duration$	credit_amount	age
count	1000.000000	1000.000000	1000.000000
mean	20.903000	3271.258000	35.546000
std	12.058814	2822.736876	11.375469
min	4.000000	250.000000	19.000000
25%	12.000000	1365.500000	27.000000
50%	18.000000	2319.500000	33.000000
75%	24.000000	3972.250000	42.000000
max	72.000000	18424.000000	75.000000

1.8 Determine la distribución de las clases (Diagrama de Densidad)

pd.plotting.scatter_matrix(data, alpha=0.2, figsize=(10, 10), diagonal='density')
plt.show()

70 50 disc_duration 40 30 20 10 17500 15000 12500 credit amount 10000 7500 5000 2500 0 70 60 용 disc_duration යි age 20 9 20 8 2 credit_amount

1.9 Escoja una técnica para la detección de datos atípicos y aplíquela sobre el conjunto de datos

In [83]:

```
In [85]:
IQR Age = data['age'].quantile(0.75) - data['age'].quantile(0.25)
upper_Age = data['age'].quantile(0.75) + 1.5*IQR_Age
lower Age = data['age'].quantile(0.25) -1.5*IQR Age
atipicos_Age = data['age'][(data['age']>upper_Age)|(data['age']>lower_Age)]
atipicos_Age
                                                                                                         Out[85]:
0
       67
1
       22
2
       49
3
       45
4
       53
995
       31
996
       40
997
       38
       23
998
999
       27
Name: age, Length: 1000, dtype: int64
                                                                                                           In [86]:
IQR_credit_amount = data['credit_amount'].quantile(0.75) - data['credit_amount'].quantile(0.25)
upper credit amount = data['credit amount'].quantile(0.75) + 1.5*IQR credit amount
lower credit amount = data['credit amount'].quantile(0.25) -1.5*IQR credit amount
atipicos_credit_amount = data['credit_amount'][(data['credit_amount']>upper_credit_amount)](data['credit_amount']
atipicos_credit amount
                                                                                                         Out[86]:
0
       1169
1
       5951
2
       2096
3
       7882
4
       4870
995
       1736
996
       3857
997
       804
998
       1845
999
       4576
Name: credit_amount, Length: 1000, dtype: int64
                                                                                                          In [87]:
IQR disc duration = data['disc duration'].quantile(0.75) - data['disc duration'].quantile(0.25)
upper_disc_duration = data['disc_duration'].quantile(0.75) + 1.5*IQR_disc_duration
lower_disc_duration = data['disc_duration'].quantile(0.25) -1.5*IQR_disc_duration
atipicos_disc_duration = data['disc_duration'][(data['disc_duration']>upper_disc_duration)|(data['disc_duration']
atipicos_disc_duration
                                                                                                         Out[87]:
0
        6
       48
2
       12
3
       42
4
       24
995
       12
996
       30
997
       12
998
       45
999
       45
Name: disc_duration, Length: 1000, dtype: int64
1.10 Aplique al menos dos estrategias diferentes para manejar los datos faltantes
                                                                                                          In [50]:
```

data.isnull().sum()

Out[50]:

```
checking_status
disc duration
credit history
purpose
credit_amount
savings status
                     0
employment
personal status
other_parties
property_magnitude
                     0
age
other_payment_plans
housing
existing_credits
job
num dependents
own telephone
                     0
                     0
foreign_worker
class
dtype: int64
```

1.11 Convierta todas los atributos numéricos a categóricos

In [51]:

Out[51]:

	checking_status	disc_duration	credit_history	purpose	credit_amount	savings_status	employment	personal_status	other_parties
0	<0	Corto	critical/other existing	radio/tv	1169	no known savings	>=7	male single	none
1	0<=X<200	Largo	existing paid	radio/tv	5951	<100	1<=X<4	female div/dep/mar	none
2	no checking	Corto	critical/other existing	education	2096	<100	4<=X<7	male single	none
3	<0	Largo	existing paid	furniture/equipment	7882	<100	4<=X<7	male single	guaranto
4	<0	Mediano	delayed previously	new car	4870	<100	1<=X<4	male single	none
995	no checking	Corto	existing paid	furniture/equipment	1736	<100	4<=X<7	female div/dep/mar	none
996	<0	Mediano	existing paid	used car	3857	<100	1<=X<4	male div/sep	none
997	no checking	Corto	existing paid	radio/tv	804	<100	>=7	male single	none
998	<0	Largo	existing paid	radio/tv	1845	<100	1<=X<4	male single	none
999	0<=X<200	Largo	critical/other existing	used car	4576	100<=X<500	unemployed	male single	none

1000 rows × 19 columns

<u>▶</u>
In [55]:

plt.hist(data['disc_duration'])

(array([359., 0., 0., 0., 0., 87., 0., 0., 0., 554.]), array([0., 0.2, 0.4, 0.6, 0.8, 1., 1.2, 1.4, 1.6, 1.8, 2.]), <BarContainer object of 10 artists>)

In [52]-

conditionlist = [(data['credit_amount']<=5000), (data['credit_amount']>5000)&(data['credit_amount']<=12000
catlist = ['Bajo', 'Media', 'Alto']
data['credit_amount'] = np.select (conditionlist, catlist, default = 'NA')
data</pre>

Out[52]:

	checking_status	disc_duration	credit_history	purpose	credit_amount	savings_status	employment	personal_status	other_parties
0	<0	Corto	critical/other existing	radio/tv	Bajo	no known savings	>=7	male single	none
1	0<=X<200	Largo	existing paid	radio/tv	Media	<100	1<=X<4	female div/dep/mar	none
2	no checking	Corto	critical/other existing	education	Bajo	<100	4<=X<7	male single	none
3	<0	Largo	existing paid	furniture/equipment	Media	<100	4<=X<7	male single	guaranto
4	<0	Mediano	delayed previously	new car	Bajo	<100	1<=X<4	male single	none
995	no checking	Corto	existing paid	furniture/equipment	Bajo	<100	4<=X<7	female div/dep/mar	none
996	<0	Mediano	existing paid	used car	Bajo	<100	1<=X<4	male div/sep	none
997	no checking	Corto	existing paid	radio/tv	Bajo	<100	>=7	male single	none
998	<0	Largo	existing paid	radio/tv	Bajo	<100	1<=X<4	male single	none
999	0<=X<200	Largo	critical/other existing	used car	Bajo	100<=X<500	unemployed	male single	none

1000 rows × 19 columns

▼In [56]:

plt.hist(data['credit_amount'])

(array([812., 0., 0., 0., 0., 167., 0., 0., 0., 21.]), array([0., 0.2, 0.4, 0.6, 0.8, 1., 1.2, 1.4, 1.6, 1.8, 2.]), <BarContainer object of 10 artists>)

Out[53]:

	checking_status	disc_duration	credit_history	purpose	credit_amount	savings_status	employment	personal_status	other_parties
0	<0	Corto	critical/other existing	radio/tv	Bajo	no known savings	>=7	male single	none
1	0<=X<200	Largo	existing paid	radio/tv	Media	<100	1<=X<4	female div/dep/mar	none
2	no checking	Corto	critical/other existing	education	Bajo	<100	4<=X<7	male single	none
3	<0	Largo	existing paid	furniture/equipment	Media	<100	4<=X<7	male single	guaranto
4	<0	Mediano	delayed previously	new car	Bajo	<100	1<=X<4	male single	none
995	no checking	Corto	existing paid	furniture/equipment	Вајо	<100	4<=X<7	female div/dep/mar	none
996	<0	Mediano	existing paid	used car	Bajo	<100	1<=X<4	male div/sep	none
997	no checking	Corto	existing paid	radio/tv	Bajo	<100	>=7	male single	none
998	<0	Largo	existing paid	radio/tv	Bajo	<100	1<=X<4	male single	none
999	0<=X<200	Largo	critical/other existing	used car	Bajo	100<=X<500	unemployed	male single	none

1000 rows × 19 columns

<u>▶</u>
In [57]:

plt.hist(data['age'])

```
(array([ 45., 0., 0., 0., 0., 149., 0., 0., 0., 806.]), array([0., 0.2, 0.4, 0.6, 0.8, 1., 1.2, 1.4, 1.6, 1.8, 2.]), <BarContainer object of 10 artists>)
```


1.12 Transforme el conjunto de datos de manera que todos los atributos sean numéricos

```
data2 = pd.read_csv ('credit-german.csv', sep=";")
```

In [65]:

In [54]:

v = pd.get_dummies(data2,columns=['own_telephone'])
v

Out[65]:

									Out[65]:
	checking_status	disc_duration	credit_history	purpose	credit_amount	savings_status	employment	personal_status	other_parties
0	<0	6	critical/other existing	radio/tv	1169	no known savings	>=7	male single	none
1	0<=X<200	48	existing paid	radio/tv	5951	<100	1<=X<4	female div/dep/mar	none
2	no checking	12	critical/other existing	education	2096	<100	4<=X<7	male single	none
3	<0	42	existing paid	furniture/equipment	7882	<100	4<=X<7	male single	guaranto
4	<0	24	delayed previously	new car	4870	<100	1<=X<4	male single	none
995	no checking	12	existing paid	furniture/equipment	1736	<100	4<=X<7	female div/dep/mar	none
996	<0	30	existing paid	used car	3857	<100	1<=X<4	male div/sep	none
997	no checking	12	existing paid	radio/tv	804	<100	>=7	male single	none
998	<0	45	existing paid	radio/tv	1845	<100	1<=X<4	male single	none
999	0<=X<200	45	critical/other existing	used car	4576	100<=X<500	unemployed	male single	none

1000 rows × 20 columns

1.13 Pruebe diferentes combinaciones entre los atributos y establezca las relaciones entre ellos, reporte la herramienta de visualización que utilizó para tal fin. (Matriz de Corelacion)

In [88]:

Þ

```
data3 = pd.read_csv ('credit-german.csv', sep=";")
correlacion = data3.corr()
sns.heatmap(correlacion, annot=True)
```


In []:

In [69]:

1.15 ¿Qué tipo de estatus tienen las personas que más hacen préstamos? ¿Y el perfil de la de menos préstamos? ¿Cuál es el perfil de las personas que hacen los prestamos más costoso? ¿Y el de los menos costosos?

print (data.groupby('personal_status').size())

personal status female div/dep/mar 310 male div/sep 50 male mar/wid 92 548 male single

dtype: int64

In []:

1.16 ¿Puede establecer alguna relación entre edad, estatus personal y la clase?

- In []:
- 1.17 ¿Puede establecer alguna relación entre clase de trabajo, el número de créditos, estatus personal y la clase?

In []:

1.18 ¿Existe alguna relación entre la cantidad solicitada y el número de meses del préstamo?

In []:

1.19 ¿Existe alguna relación entre la edad, el estatus, la clase y la cantidad del préstamo?

- In []:
- 1.20 Proponga Dos preguntas y resuélvalas a partir de técnicas de análisis de la varianza permite contraste de hipótesis y coeficiente de correlación de Pearson
- In []: