1) 9f A and B be two events, P(AUB) = 1-P(A (B). Proof. By De Morgon's law, $\frac{A \cup B}{A \cup B} = \frac{A \cap B}{A \cap B} \left[\frac{P(A)}{P(A)} \right]$ $= 1 - P(A \cap B).$ Theorem: for events A and B in a sample space, $P(A \cup B) = P(A) + P(B) - P(A \cap B).$ For three events A, B and C in a sample P(AUBUC)= P(A) + P(B) + P(C) -P(ANB) - P(BNC) - P(ANC) Spaa, + P (A O BOC). Generalizing for nevents, say A1, A2, "An, in a sample space, P(A, UAZU - ... UAN) = \frac{2}{1} P(A; OA;) = \frac{1}{1} P(A; OA;) + \(\frac{1}{2} \) P (A; (A; (Ax) - \cdots) itj#n + (-1) P(A1 NA2 N... NAm).

[Proof by Mathematical Induction] [Boole's Inequality] for any n events A, Az, ... An P(A, UA, U. UAm) & P(A,) +P(A,) 1 .. + P(Am) Proof [by Mathematical Induction) [Basis] n=2 P(A, UAz) = P(M) + P(Az) - P(A, NAz) [P(Ai) >-0] $\leq P(A_1) + P(A_2)$ The theorem holds for n=2. [Hypothesis] Assume that the theorem holds for n=k, n>2. :. By assumption, P(A, UA, V -. UAX) < P(A,) + P(A,) + ... HAN) [Induction] R.T.P. theorem holds for NOW, P(AI UAZ U. UAK UAK+I) = P[(AIUAZU ·· UAK) U AKTI] = P(A1UA2U-" UAK) + P(AK+1) - P(AIU AZ U"U AR) () AKTI) < P (AI UAZ U ... UAR) + P (AKHI) < P (A1) + P (A2) + · + P (A4) + P (A4+1) by hypothesis.

Problem: find the probability of occurrence of only one of the events A and B.

AUB= (A-B) U(B-B) U (B-A) and (A-B), (ANB) and (B-A) are private mutually exclusive events.

Required probability = P[(A-B) U (B-A))

NOW, P(AUB) = P(A-B) + P(ANB) LO(B-A)

 $\Rightarrow P(A-B) + P(B-A) = P(AUB) - P(ADB)$

$$= P(A) + P(B) - P(ANB) - P(ANB)$$

$$= P(A) + P(B) - 2P(ANB)$$

```
We hove:
 P(A, UA2 D... UA8-1 UAr)
 = P [ (A, (A2 ( ... ( Ax-1) ) Ax]
 = b (b' Ubs U ... Ubs.) b (b) b' Ubs U... Ubs.)
Substituting r=2,3,..., n in succession, we obtain:
   \frac{P(A_1 \cap A_2)}{P(A_1)} = P(A_2 \mid A_1)
  \frac{P(A_1 \cap A_2 \cap A_3)}{P(A_1 \cap A_2)} = P(A_3 \mid A_1 \cap A_2)
  P(AINA2 n... NAm) = P(Am | AIN A2 n.. NAm-1)
    P (A1 O A2 A. OA2-1)
Multiplying both sides:
  P(A1 () A2 (). () An) = P(A, 1 A1). () (A3 | A1 | A3)
        P (A1) -... P (An | A10A2... 0 Am)
.. P (M CA2 C... CM)
     = P(A) P(A21 A1). P(A3) A1 (1 A2).
P(An) A1 (1 A2 (1... (1 Am)).
```

$$3. \oplus y_3 \oplus y_5 \oplus y_7 = 0$$

$$3. \oplus y_5 \oplus y_7 = 0$$

$$3. \oplus y_7 \oplus y_7 = 0$$

$$3. \oplus y_7 \oplus y_7 = 0$$