title	author	theme	date
Exponentialfunktioner och deras derivator	Wanmin Liu	Copenhagen	2025- 10-02

Vad ska vi göra på lektion 1?

Vi fokuserar på att lära oss

- Vad betyder talet *e*, som är ungefär 2,7.
- Derivatan av e^x .
- Derivatan av a^x för ett positivt tal a.

Potenslagar

Basen a ska vara positiv i funktion $y = a^x$.

- $a^{x+y} = a^x \cdot a^y$
- $(a^x)^y = a^{x \cdot y}$
- $\bullet \ a^{-x} = \frac{1}{a^x}$
- $(ab)^x = a^x b^x$
- $a^0 = 1$

Definitionen av derivatan

- y = f(x)
- $\Delta x = h$
- $\Delta y = f(x+h) f(x)$
- $f'(x) = \lim_{h \to 0} \frac{\Delta y}{\Delta x}$.

Derivatan av exponentialfunktion

Låt a vara ett positivt tal och $y = f(x) = a^x$.

• $\Delta x = h$

•
$$\Delta y = f(x+h) - f(x) = a^{x+h} - a^x = a^x \cdot a^h - a^x = a^x (a^h - 1)$$
.

$$f'(x) = \lim_{h \to 0} \frac{\Delta y}{\Delta x} = \lim_{h \to 0} \frac{a^x (a^h - 1)}{h} = a^x \lim_{h \to 0} \frac{a^h - 1}{h}.$$

Om
$$x = 0$$
, så är $f'(0) = a^0 \lim_{h \to 0} \frac{a^{h-1}}{h} = \lim_{h \to 0} \frac{a^{h-1}}{h}$. $(a^0 = 1)$

Definition av talet e.

Vi definierar talet e så att gränsvärdet är $\lim_{h\to 0}\frac{e^h-1}{h}=1$.

Detta är en indirekt definition.

Värdet av talet *e*.

 $\frac{e^h-1}{h}pprox 1$ för små värden på h. Dvs

- $e^h 1 \approx h$
- $e^h \approx 1 + h$
- $e \approx (1+h)^{1/h}$

Om vi tar det små värdet h = 1/n för naturliga tal n, och tar n till oändlighet, så har vi

$$e = \lim_{n \to \infty} (1 + \frac{1}{n})^n \approx 2.7$$

Med definitionen av talet e har vi att om $f(x) = e^x \Rightarrow f'(x) = e^x$, dvs

$$D(e^x) = e^x.$$

Reflection - vad vi har lärt oss

 $Varf\"{o}r D(e^x) = e^x?$

• Det är exakt definitionen av talet *e*.

Vad är värdet av talet *e*?

•
$$e \approx 2.7 > 1$$

Vi ritar graf för en funktion $y = a^x \mod \text{bas } a > 1$.

Exempel

1. Derivera $f(x) = 3e^x$.

- 2. Bestäm ritningskoefficienten för tangenten till $y = x^5 + e^x 12$ där $x = \pi$.
 - Ledtråd Derivera varje term för sig.
 - Sätt in $x = \pi$ i derivatfunktionen.

Uppgifter

S.98 - 99 3202, 3204, 3207, 3209, 3213

Uppgift till elever med hög nivå. 3216

Paus

Vad ska vi göra på lektion 2?

- Derivatan av e^{kx} för en konstant k.
- Naturlig logaritm $y = \ln x$ for x > 0.
- Derivatan av a^x (för ett positivt tal a).
- Derivatan av a^{kx} för en konstant k och a > 0.

$$D(e^{kx}) = ke^{kx}$$

$$f'(x) = \lim_{h \to 0} \frac{\Delta y}{\Delta x}$$
.

Nu är $f(x) = e^{kx}$ för en konstant k.

- $\Delta x = h$.
- $\Delta y = f(x+h) f(x) = e^{k(x+h)} e^{kx} = e^{kx}(e^{kh} 1)$.

$$f'(x) = \lim_{h \to 0} \frac{\Delta y}{\Delta x} = \lim_{h \to 0} \frac{e^{kx}(e^{kh} - 1)}{h} = e^{kx} \lim_{h \to 0} \frac{e^{kh} - 1}{h}.$$

Ledtråd

$$\lim_{h \to 0} \frac{e^{kh} - 1}{h} = \lim_{h \to 0} \frac{e^{kh} - 1}{kh} \cdot k = k \lim_{t \to 0} \frac{e^{t} - 1}{t} = k \text{ där } t = kh.$$

Så får vi slutsatsen $D(e^{kx}) = ke^{kx}$ eller $(e^{kx})' = ke^{kx}$.

Definition av naturlig logaritm

Definition

Om $x = e^y$, så är $y = \ln x$, dvs $\ln x$ är talet så att $e^{\ln x} = x$.

- ln(x) är förkortningen för $log_e(x)$
- Definitionsmängd av funktion $y = \ln x$ är alla positiva tal $\{x | x > 0\}$.

Till exempel:

- $\ln 1 = 0$ eftersom $e^0 = 1$.
- Om a > 0, då är $a = e^{\ln a}$.

Varje exponentialfunktion $y=a^x$ (med a>0) kan skrivas på formen $y=e^{kx}$.

Hur? Vi skriver om a

$$a = e^{\ln(a)}$$
.

Då är
$$y = a^x = (e^{\ln a})^x = e^{\ln(a)x}$$
.

Derivatan av $a^x \mod a > 0$.

Så vi har $y = a^x = e^{kx} \mod k = \ln(a)$.

$$D(a^x) = D(e^{kx}) = ke^{kx} = ka^x = a^x \cdot \ln a.$$

På samma sätt har vi $D(a^{kx}) = a^{kx} \cdot \ln(a) \cdot k$.

En kort sammanfattning

Vad är talet e?

• Det är en konstant, ungefär värdet 2,7, så att $D(e^x) = e^x$.

Varför $D(e^x) = e^x$

• Det är precis definitionen av *e*.

Vad är naturlig logaritm $\ln x$?

• Det är talet (kan vara positiv, noll eller negativ) så att $e^{\ln x} = x$. x måste vara positiv.

Varje exponentialfunktion $y=a^x\pmod{a>0}$ kan skrivas på formen $y=e^{kx}\mod k=\ln a$

.

$$D(a^x) = a^x \cdot \ln a$$

$$D(a^{kx}) = a^{kx} \cdot \ln(a) \cdot k.$$

Exempel.

Derivara $h(x) = x^3 - 11 \cdot 3^{5x}$.

Lösning. $D(x^3) = 3x^2 \cdot D(3^{5x}) = 3^{5x} \cdot \ln 3 \cdot 5$

$$D(h(x)) = D(x^3) - 11 \cdot D(3^{5x}) = 3x^2 - 55 \ln 3 \cdot 3^{5x}$$
.

Uppgifter

S 102 - 103. 3218 a), c). 3221, 3224,

Uppgift till elever med hög nivå.

3227 Bestäm ekvationen i formen y=kx+m för tangenten till kurvan $y=f(x)=e^2-e^{\sqrt{2}\cdot x}$ i punkten där $x=\sqrt{2}$.

Ledtråd

- Vad är k-värdet? $D(f(\sqrt{2}))$
- Vilken punkt går tangenten igenom? Vilka är dess koordinater? $(\sqrt{2}, f(\sqrt{2}))$

Exit-tickets

- 1. $D(e^x) = e^x$ eftersom ______.
- 2. $D(e^{3x}) =$ ______.
- 3. Vi skriver om en positiv tal a som $a=e^{\square}$ genom definition av naturlig logaritm $e^{\ln x}=x$.
- 4. $\ln 1 =$ eftersom $e^{\square} = 1$.
- 5. Låt a>0. Med hjälp av formel $D(a^x)=a^x\cdot \ln a$ och $D(x^a)=a\cdot x^{a-1}$ har vi $D(\pi^x+x^\pi)=$ ______.
- 6. Varje exponentialfunktion $y=a^x\pmod{a>0}$ kan skrivas på formen $y=e^{kx}\mod k=$ _____.

Exit-tickets (med svar)

- 1. $D(e^x) = e^x$ eftersom det är definitionen av talet e.
- 2. $D(e^{3x}) = 3e^{3x}$.
- 3. Vi skriver om en positiv tal a som $a=e^{\ln a}$ genom definition av naturlig logaritm $e^{\ln x}=x$.
- 4. $\ln 1 = 0$ eftersom $e^0 = 1$.
- 5. Låt a>0. Med hjälp av formel $D(a^x)=a^x\cdot \ln a$ och $D(x^a)=a\cdot x^{a-1}$ har vi $D(\pi^x+x^\pi)=\pi^x\ln \pi+\pi x^{\pi-1}$.
- 6. Varje exponentialfunktion $y=a^x\pmod{a>0}$ kan skrivas på formen $y=e^{kx}\mod k=\ln a$.