A221 Microbiology Problem 9 Let's talk 6th Presentation

Activity Owner: Ho Phui San (Dr)

Approved By: Serene Choo (Dr)

Module Chair: Foo Toon Tien

Copyright © 2022 by Republic Polytechnic, Singapore

IN TODAY'S PROBLEM

- Aliivibrio fischeri are marine bacteria that produce bioluminescence.
- A. fischeri was cultured in the laboratory to study its ability to make light.
- Photos of *A. fischeri* cultures taken at various time points at different bacterial concentration were shown.
- Your task today is to account for the observations noted at various time points when A. fischeri was cultured.

WHAT DO YOU RECOGNIZE?

- Aliivibrio fischeri are marine bacteria that produce bioluminescence.
- A. fischeri can be cultured in the laboratory.
- The concentration of A. fischeri increases with time.
- Bioluminescence of *A. fischeri* is only observed at high concentration of *A. fischeri*.

AÑ APPROACH TO THE PROBLEM...

- What are the characteristics of A. fischeri?
- What is the relationship between A. fischeri concentration and bioluminescence?
- What determines the ability of A. fischeri to produce bioluminescence?
- What is this phenomenon of bacterial communication called?
- Is there any difference between quorum sensing in Gramnegative and Gram-positive bacteria?
- How does *A. fischeri* produce bioluminescence?
- Answering to the Problem
- Another example of bacterial communication? Biofilm

What are the characteristics of A. fischeri?

- Gram-negative rod shaped bacterium
- Found in marine environments
- Exist in both free-living and symbiotic state with macroorganisms
- Major source of bioluminescence

OFFICIAL (CLOSED) \ NON-SENSITIVE Relationship between the concentration of A. fischeri and bioluminescence Conclusion: Bioluminescence only occurs when bacterial concentration is high Time (Hour) Photos of A. fischeri cultures taken at various time points High **Bacterial** Intermediate Low Concentration **Bioluminescence** No Yes No Copyright © 2022 by Republic Polytechnic, Singapore

What determines the ability of A. fischeri to produce bioluminescence?

 There is intercellular communication among A. fischeri using signal of molecules called autoinducers.

The <u>level of autoinducers</u> is <u>proportional</u> to <u>the number of bacteria</u>

in the environment.

- At low bacterial concentration, there is a basal production of autoinducers
- High level of autoinducers will trigger a group response/behaviour (e.g. bioluminescence) involving gene activation or gene deactivation.

no bioluminescence ... etc.

What is this phenomenon of bacterial communication called?

Quorum Sensing

The phenomenon whereby the accumulation of autoinducers enable a single cell to sense the number of bacteria (cell density).

Cell behavior changes only when a certain population density, or a threshold concentration of autoinducers is reached.

Overview of the mechanism of Quorum Sensing

MECHANISM OF QUORUM SENSING

OVERVIEW

Synthesis of autoinducers (Al's) Recognition of auto-inducers Response (protein expression)

Is there any difference between quorum sensing in Gram-negative and Gram-positive bacteria?

Gram-negative bacteria

- Use Acyl homoserine lactone (AHL) to communicate between Gram-negative bacteria.
- When AHL reaches <u>threshold</u> <u>concentration</u>, it will bind to and activate the <u>regulatory protein</u> in the cytoplasm.
- Activated regulatory protein may <u>activate</u> or <u>deactivate</u> gene expression.
- Activation of gene expression may result in the production of <u>quorum-dependent</u> <u>proteins</u> and <u>more enzyme to produce AHL</u>

Is there any difference between quorum sensing in Gram-negative and Gram-positive bacteria?

Gram-positive bacteria

- Use processed oligopeptide/ Autoinducing peptide (AIP) to communicate between Grampositive bacteria.
- First, precursor oligopeptide is cleaved to form AIP, which is transported out of the cell.
- When AIP reaches <u>threshold concentration</u>, it will bind to and activate the membrane bound <u>sensor</u> <u>protein</u>.
- Activated sensor protein will activate <u>regulatory</u> <u>protein</u>, which may <u>activate</u> or <u>deactivate</u> gene expression.
- Activation of gene expression may result in the production of <u>quorum-dependent proteins</u> and <u>AIP</u>.

How does A. fischeri produce bioluminescence?

	Gram-negative bacteria	Gram-positive bacteria	Interspecies
Autoinducer	Acyl homoserine lactone (AHL)	Processed oligopeptide/ Autoinducing peptide (AIP)	

A. fischeri

Quorum Sensing

- High concentration of A.
 fischeri produces high amount
 of AHL.
- When AHL reaches <u>threshold</u> <u>concentration</u>, it will bind to and activate the <u>regulatory protein</u>, <u>Lux R</u>.
- Activated Lux R will initiate
 gene expression to produce
 more <u>quorum-dependent</u>
 <u>protein</u> (i.e. <u>luciferase</u>) and
 more enzyme to produce AHL
 (i.e. <u>Lux I</u>)

Other examples of group response to quorum sensing

Biofilm formation

- Biofilm is an aggregate of microorganisms where bacteria adhere to each other on a surface.
- May consist of more than one type of microorganisms.
- Different species might be able to communicate to one another through communication signals that are very similar.

Benefits of the biofilm to microorganisms

- Extracellular polymeric substances (EPS) provide mechanical support and anchorage, as well as protection from external environment (e.g. desiccation or antibiotics).
- Allow synergistic growth.
- Genetic material exchange may enhance survivability (e.g. transfer of genes responsible for antibiotic resistance).

WHAT HAVE YOU LEARNT? (PART I)

- Explain how microbes communicate within their community
 - Know that bacteria can communicate with each other
 - Discuss the significance of quorum sensing bacterial communication
 - Explain the mechanism of quorum sensing
 - Describe how quorum sensing can result in gene activation or deactivation
- Explain the role of signal molecules in quorum sensing
 - Know that autoinducers are signal molecules.
 - List the communication signals used by Gram-negative and Gram-positive bacteria
 - Explain that similar signal molecules can be used for communication between different microorganisms
 - Associate the level autoinducers to the concentration of bacteria in the environment
 - Explain how high level of autoinducers will result in behavioral change of the bacteria in the community

WHAT HAVE YOU LEARNT? (PART II)

- Discuss how quorum sensing control the production of bioluminescence in *A. fischeri*
 - Describe the relation between A. fischeri concentration and the level of AHL
 - Explain how the level of AHL affects the production of bioluminescence in A. fischeri
- Describe how microbes benefit by forming community
 - Describe the role of microbial communication in the formation of bacterial communities
 - List the benefits of communal organization among bacteria