Week 3: Laser Tripwire

CSCI 3907: IoT using Raspberry Pi

Components:

- Laser Emitter
- Photoresistor
- PCF8591 Analog-To-Digital Converter (ADC)
- Active Buzzer

- We'll use the laser emitter & photoresistor to make a tripwire
 - Photoresistor used to measure how much light being received
 - More light → Resistance decreases → output voltage changes
- We'll power the laser continuously & check how much light from the laser the photoresistor is receiving
- Photoresistor outputs analog signal
 - Need to convert to digital
 - Use PCF8591 Analog-To-Digital Converter

Laser

• Wire laser emitter & check you can turn it on before moving on to Photoresistor

- Laser emitter uses one GPIO pin
- Wire device to power (VCC to 3.3V) & one GPIO
- Write HIGH to GPIO to turn on laser
- Recall from week 1 slides:

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BOARD)

GPIO.setup(<Pin Number>, GPIO.OUT)

GPIO.output(<Pin Number>, GPIO.HIGH)

Photoresistor

- Wire photoresistor & PCF8591 ADC as shown in image
- We'll take readings from the ADC
 - PCF8591 uses i2c fortunately Sunfounder provides a library for using the device

git clone

https://github.com/sunfounder/SunFounder_SensorKit_for_RPi2
.git

v ./SunFounder_SensorKit_for_RPi2/Python/PCF8591.py ./

pip install smbus2 --user

Setup:

import PCF8591 as ADC

ADC.setup(0x48)

To read ADC:

input_val = ADC.read(0)

Setup:

- Orient laser so it points right at receiver on the Photoresistor
- Get measurements from photoresistor while laser on & off
 - This will give the measurement to check against to see if laser blocked

Assignment 2: Laser Tripwire

- Part A:
 - Continuously read input from Photoresistor
 - Check for drop below threshold indicating laser has been blocked
 - Print to terminal when laser is blocked
- Part B (optional):
 - Wire Active Buzzer
 - VCC to 3.3v, GND to GND, SIG to GPIO
 - Turn buzzer on when laser signal interrupted
 - Output HIGH to turn off
 - Output LOW to turn on

Note: buzzer is supposed to work with HIGH->off, LOW->on, but when we tried this assignment it stayed on either way; If this happens then use GPIO.setmode(OUT) for 'on' & GPIO.setmode(IN) for 'off' - this worked for us

Useful reference code:

Photoresistor:

https://github.com/sunfounder/SunFounder_SensorKit_for_RPi2/blob/master/Python/20_photoresistor.py

Laser:

https://github.com/sunfounder/SunFounder_SensorKit_for_RPi2/blob/master/Python/05_laser.py

Buzzer:

https://github.com/sunfounder/SunFounder_SensorKit_for_RPi2/blob/master/Python/10_active_buzzer.py