Contrôle S2 – Corrigé Architecture des ordinateurs

Durée: 1 h 30

Inscrivez vos réponses <u>exclusivement</u> sur le document réponse. Ne pas détailler les calculs sauf si cela est explicitement demandé. Ne pas écrire à l'encre rouge.

Exercice 1 (5 points)

Répondez sur le document réponse. Soit le mot binaire sur 11 bits suivant : 10111101010₂.

- 1. Donnez sa représentation hexadécimale.
- 2. Donnez sa représentation décimale s'il s'agit d'un entier non signé.
- 3. Donnez sa représentation décimale s'il s'agit d'un entier signé.
- 4. Donnez la représentation binaire sur 12 bits signés du nombre –94₁₀.
- 5. Donnez la représentation binaire sur 12 bits signés du nombre -2048₁₀.
- 6. Combien faut-il de bits, au minimum, pour représenter en binaire non signé le nombre 2¹⁷ ?
- 7. Combien faut-il de bits, au minimum, pour représenter en binaire signé le nombre 2¹⁷ ?
- 8. Combien faut-il de bits, au minimum, pour représenter en binaire signé le nombre -2^{17} ?
- 9. Donnez, en puissance de deux, le nombre d'octets contenus dans 2 Kib.
- 10. Donnez, à l'aide des préfixes binaires (Ki, Mi ou Gi), le nombre de bits contenus dans **256 Kio**. Vous choisirez un préfixe qui permet d'obtenir la plus petite valeur numérique entière.

Exercice 2 (7 points)

- 1. Convertissez les nombres présents sur le <u>document réponse</u> dans le format IEEE754 **simple précision**. Vous exprimerez le résultat final sous **forme binaire** en précisant les trois champs.
- 2. Donnez la représentation associée aux mots binaires codés au format IEEE754 **double précision** présents sur le <u>document réponse</u>. Si une représentation est un nombre, vous l'exprimerez sous la forme $k \times 2^n$ où k et n sont des entiers relatifs.

Contrôle S2 – Corrigé

Exercice 3 (4 points)

1. Donnez le type de chaque bascule ci-dessous (répondre sur le <u>document réponse</u>).

2. Complétez les chronogrammes sur le <u>document réponse</u> (jusqu'à la dernière ligne verticale pointillée) selon que la bascule RS est synchronisée sur état haut (Q0), sur front montant (Q1), sur front descendant (Q2) et sur impulsion (Q3).

Exercice 4 (4 points)

Complétez les chronogrammes sur le <u>document réponse</u> (jusqu'à la dernière ligne verticale pointillée) pour les montages ci-dessous.

Figure 1

Figure 2

Nom:	. Prénom :	Classe:

DOCUMENT RÉPONSE À DÉTACHER

Exercice 1

1. 5EA ₁₆	6. 18 bits
2. 1 514 ₁₀	7. 19 bits
3534 ₁₀	8. 18 bits
4. 1111 1010 0010 ₂	9. 256 octets
5. 1000 0000 0000 ₂	10. 2 Mib

Exercice 2

1.

Nombre	S	E	M
43	0	10000100	01011000000000000000000
-203,75	1	10000110	10010111100000000000000
0,171875	0	01111100	01100000000000000000000

2.

Représentation IEEE 754	Représentation associée	
403D 4000 0000 0000 ₁₆	117 × 2 ⁻²	
FFF0 0000 0000 0000 ₁₆	$-\infty$	
FFFF 0000 0000 0000 ₁₆	NaN	
0002 8000 0000 0000 ₁₆	5×2^{-1027}	

Exercice 3

1.

Bascule	Type de bascule
1	Bascule RS synchronisée sur front montant
2	Bascule RS synchronisée sur impulsion (bascule RS maître esclave)
3	Bascule RS synchronisée sur état (verrou RS synchrone)
4	Bascule RS synchronisée sur front descendant

2.

Exercice 4

C Q0 Q1

Figure 2

Si vous manquez de place, vous pouvez utiliser le cadre ci-dessous.

