

VND830LSP-E

Double channel high-side driver

Features

Туре	R _{DS(on)}	l _{out}	V _{CC}
VND830LSP-E	$60~\text{m}\Omega$	18 A ⁽¹⁾	36 V ⁽¹⁾

- 1. Per channel
- ECOPACK[®]: lead free and RoHS compliant
- Automotive Grade: compliance with AEC guidelines
- Very low standby current
- CMOS compatible input
- On-state open-load detection
- Off-state open-load detection
- Thermal shutdown protection and diagnosis
- Undervoltage shutdown
- Overvoltage clamp
- Output stuck to V_{CC} detection
- Load current limitation
- Reverse battery protection
- Electrostatic discharge protection

Description

The VND830LSP-E is a monolithic device made using STMicroelectronicsTM VIPowerTM M0-3 technology. It is intended for driving any kind of load with one side connected to ground. Active V_{CC} pin voltage clamp protects the device against low energy spikes (see ISO7637 transient compatibility table).

Active current limitation combined with thermal shutdown and automatic restart protects the device against overload.

The device detects open-load condition both in on-state and off-state. The open-load threshold is aimed at detecting the 5 W/12 V standard bulb as an open-load fault in the on-state.

Device automatically turns off in case of ground pin disconnection.

Table 1. Device summary

Package	Order codes		
	Tube	Tape and reel	
Power-SO-10™	VND830LSP-E	VND830LSPTR-E	

Contents VND830LSP-E

Contents

1	Bloc	ck diagram and pin description
2	Elec	trical specifications 6
	2.1	Absolute maximum ratings 6
	2.2	Thermal data 7
	2.3	Electrical characteristics
	2.4	Electrical characteristics curves
3	Арр	lication information16
	3.1	GND protection network against reverse battery
		3.1.1 Solution 1: resistor in the ground line (RGND only)
		3.1.2 Solution 2: diode (DGND) in the ground line
	3.2	Load dump protection
	3.3	MCU I/Os protection
	3.4	Open-load detection in off-state
	3.5	PowerSO-10 maximum demagnetization energy $(V_{CC} = 13.5 \text{ V})$ 19
4	Pacl	kage and PCB thermal data
	4.1	PowerSO-10 thermal data
5	Pacl	kage and packing information
	5.1	ECOPACK® packages
	5.2	PowerSO-10 mechanical data
	5.3	PowerSO-10 packing information
6	Revi	ision history

VND830LSP-E List of tables

List of tables

Table 1.	Device summary	1
Table 2.	Suggested connections for unused and not connected pins	
Table 3.	Absolute maximum ratings	
Table 4.	Thermal data	7
Table 5.	Power output	8
Table 6.	Protection	8
Table 7.	V _{CC} - output diode	8
Table 8.	Status pin	9
Table 9.	Switching (V _{CC} = 13 V)	9
Table 10.	Open-load detection	
Table 11.	Logic input	9
Table 12.	Truth table	. 10
Table 13.	Electrical transient requirements on V _{CC} pin (part 1)	. 11
Table 14.	Electrical transient requirements on V _{CC} pin (part 2)	. 11
Table 15.	Electrical transient requirements on V _{CC} pin (part 3)	. 11
Table 16.	Thermal parameter	
Table 17.	PowerSO-10 mechanical data	. 24
Table 18.	Document revision history	. 26

List of figures VND830LSP-E

List of figures

4/27

Figure 1.	Block diagram5
Figure 2.	Configuration diagram (top view)
Figure 3.	Current and voltage conventions
Figure 4.	Status timings
Figure 5.	Switching time waveforms
Figure 6.	Waveforms
Figure 7.	Off-state output current
Figure 8.	High level input current
Figure 9.	Input clamp voltage13
Figure 10.	Status leakage current
Figure 11.	Status low output current
Figure 12.	Satus clamp voltage
Figure 13.	On-state resistance vs T _{case} 14
Figure 14.	On-state resistance vs V _{CC}
Figure 15.	Open-load on-state detection threshold
Figure 16.	Open-load off-state detection threshold
Figure 17.	Input high level
Figure 18.	Input low level
Figure 19.	Input hysteresis voltage
Figure 20.	Overvoltage shutdown
Figure 21.	Turn-on voltage slope
Figure 22.	Turn-off voltage slope
Figure 23.	I _{LIM} vs T _{case}
Figure 24.	Application schematic
Figure 25.	Open-load detection in off-state
Figure 26.	Maximum turn- off current versus load inductance ⁽¹⁾ 19
Figure 27.	PowerSO-10 PC board ⁽¹⁾
Figure 28.	Rthj-amb vs PCB copper area in open box free air condition
Figure 29.	PowerSO-10 thermal impedance junction ambient single pulse
Figure 30.	Thermal fitting model of a double channel HSD in PowerSO-10
Figure 31.	PowerSO-10 package dimensions
Figure 32.	PowerSO-10 suggested pad layout and tube shipment (no suffix)25
Figure 33.	Tape and reel shipment (suffix "TR")

1 Block diagram and pin description

Figure 1. Block diagram

Figure 2. Configuration diagram (top view)

Table 2. Suggested connections for unused and not connected pins

Connection / pin	Status	N.C.	Output	Input
Floating	Х	Х	Х	X
To ground		Х		Through 10KΩ resistor

2 Electrical specifications

Figure 3. Current and voltage conventions

1. $V_{Fn} = V_{CCn} - V_{OUTn}$ during reverse battery condition.

2.1 Absolute maximum ratings

Stressing the device above the rating listed in *Table 3* may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics sure program and other relevant quality document.

Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	DC supply voltage	41	V
-V _{CC}	Reverse DC supply voltage	-0.3	V
- I _{GND}	DC reverse ground pin current	-200	mA
I _{OUT}	DC output current	Internally limited	Α
-l _{out}	Reverse DC output current	-6	Α
I _{IN}	DC input current	+/- 10	mA
I _{STAT}	CD status current	+/- 10	mA
V _{ESD}	Electrostatic discharge (Human Body Model: $R = 1.5 \text{ K}\Omega; C = 100 \text{ pF})$ - INPUT - STATUS - OUTPUT - V_{CC}	4000 4000 5000 5000	> > > >
P _{tot}	Power dissipation at T _c = 25 °C	74	W

6/27 Doc ID 10882 Rev 3

Table 3. Absolute maximum ratings (continued)

Symbol	Parameter	Value	Unit
E _{MAX}	Maximum switching energy (L = 0.14 mH; $R_L = 0 \Omega$; $V_{bat} = 13.5 V$; $T_{jstart} = 150 ^{\circ}\text{C}$; $I_L = 14 \text{A}$)	52	mJ
T _j	Junction operating temperature	Internally limited	°C
T _c	Case operating temperature	-40 to 150	°C
T _{STG}	Storage temperature	-55 to 150	°C

2.2 Thermal data

Table 4. Thermal data

Symbol	Parameter	Value		Unit
R _{thj-case}	Thermal resistance junction-case	2		°C/W
R _{thj-amb}	Thermal resistance junction-ambient	52 ⁽¹⁾	37 ⁽²⁾	°C/W

When mounted on a standard single sided FR-4 board with 0.5 cm² of Cu (at least 35 μm thick). Horizontal mounting and no artificial air flow.

When mounted on a standard single sided FR-4 board with 6 cm² of Cu (at least 35 μm thick). Horizontal mounting and no artificial air flow.

2.3 Electrical characteristics

Values specified in this section are for 8 V < V_{CC} < 36 V; -40 °C < T_j < 150 °C, unless otherwise specified. (Per each channel).

Table 5. Power output

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CC} ⁽¹⁾	Operating supply voltage		5.5	13	36	V
V _{USD} ⁽¹⁾	Undervoltage shutdown		3	4	5.5	V
V _{OV} ⁽¹⁾	Overvoltage shutdown		36			V
D.	On-state resistance	I _{OUT} = 2 A; T _j = 25 °C			60	mΩ
R _{ON}	On-state resistance	I _{OUT} = 2 A; V _{CC >} 8 V			120	mΩ
		Off-state; V _{CC} = 13 V; V _{IN} = V _{OUT} = 0 V		12	40	μΑ
I _S ⁽¹⁾	Supply current	Off-state; V_{CC} =13V; $V_{IN} = V_{OUT} = 0$ V; $T_j = 25$ °C		12	25	μΑ
		On-state; V _{CC} = 13 V		5	7	mA
I _{L(off1)}	Off-state output current	$V_{IN} = V_{OUT} = 0 \text{ V}; V_{CC} = 36 \text{ V};$ $T_j = 125 \text{ °C}$	0		50	μΑ
I _{L(off2)}	Off-state output current	V _{IN} = 0 V; V _{OUT} = 3.5 V	-75		0	μΑ
I _{L(off3)}	Off-state output current	$V_{IN} = V_{OUT} = 0 \text{ V; } V_{CC} = 13 \text{ V;}$ $T_j = 125 \text{ °C}$			5	μΑ
I _{L(off4)}	Off-state output current	$V_{IN} = V_{OUT} = 0 \text{ V}; V_{CC} = 13 \text{ V};$ $T_j = 25 \text{ °C}$			3	μΑ

^{1.} Per device.

Table 6. Protection⁽¹⁾

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
T _{TSD}	Shutdown temperature		150	175	200	°C
T _R	Reset temperature		135			°C
T _{hyst}	Thermal hysteresis		7	15		°C
	Current limitation	V _{CC} = 13 V	18	23	29	Α
'lim	I _{lim} Current limitation	5.5 V < V _{CC} <36 V			29	Α
V _{demag}	Turn-off output clamp voltage	I _{OUT} = 2 A; L = 6 mH	V _{CC} -41	V _{CC} -48	V _{CC} -55	٧

To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration and number of activation cycles.

Table 7. V_{CC} - output diode

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _F	Forward on voltage	-I _{OUT} = 1.3 A; T _i = 150 °C	_	_	0.6	V

Table 8. Status pin

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{STAT}	Status low output voltage	I _{STAT} = 1.6 mA			0.5	V
I _{LSTAT}	Status leakage current	Normal operation; V _{STAT} = 5 V			10	mA
C _{STAT}	Status pin input capacitance	Normal operation; V _{STAT} = 5 V			100	pF
V	Status clamp voltage	I _{STAT} = 1 mA	6	6.8	8	٧
V _{SCL}	Status Gamp Voltage	I _{STAT} = -1 mA		-0.7		٧

Table 9. Switching (V_{CC} = 13 V)

	2 (00)					
Symbol	Parameter Test conditions		Min	Тур	Max	Unit
t _{d(on)}	Turn-on delay time	R_L = 13 Ω from V_{IN} rising edge to V_{OUT} = 1.3 V	_	30		μs
t _{d(off)}	Turn-on delay time	$R_L = 13~\Omega$ from V_{IN} falling edge to $V_{OUT} = 11.7~V$	_	30		μs
(dV _{OUT} /dt) _{on}	Turn-on voltage slope	$R_L = 13 \Omega$ from $V_{OUT} = 1.3 V$ to $V_{OUT} = 10.4 V$	_	See Figure 21		V/µs
(dV _{OUT} /dt) _{off}	Turn-off voltage slope	R_L = 13 Ω from V_{OUT} = 11.7 V to V_{OUT} = 1.3 V		See Figure 22		V/µs

Table 10. Open-load detection

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
I _{OL}	Open-load on-state detection threshold	V _{IN} = 5 V	0.6	0.9	1.2	Α
t _{DOL(on)}	Open-load on-state detection delay	I _{OUT} = 0 A			200	μs
V _{OL}	Openload off-state voltage detection threshold	V _{IN} = 0 V	1.5	2.5	3.5	V
T _{DOL(off)}	Open-load detection delay at turn-off				1000	μs

Table 11. Logic input

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{IL}	Input low level				1.25	V
I _{IL}	Low level input current	V _{IN} = 1.25 V	1			μΑ
V _{IH}	Input high level		3.25			V
I _{IH}	High level input current	V _{IN} = 3.25 V			10	μΑ
V _{I(hyst)}	Input hysteresis voltage		0.5			V
V	Input clamp voltage	I _{IN} = 1 mA	6	6.8	8	V
V _{ICL}	input ciamp voltage	I _{IN} = -1 mA		-0.7		V

577

Figure 4. Status timings

Table 12. Truth table

Conditions	Input	Output	Sense
Normal operation	L	L	Н
Normal operation	Н	Н	Н
	L	L	Н
Current limitation	Н	X	$(T_j < T_{TSD}) H$ $(T_j > T_{TSD}) L$
	Н	X	$(T_j > T_{TSD}) L$
Overtemperature	L	L	Н
	Н	L	L
Undervoltage	L	L	Х
Officervoltage	Н	L	X
Overvoltage	L	L	Н
Overvoitage	Н	L	Н
Output voltage > V _{OL}	L	Н	L
	Н	Н	Н
Output ourrent al	L	L	Н
Output current < I _{OL}	Н	Н	L

Figure 5. Switching time waveforms

11/27

Table 13. Electrical transient requirements on V_{CC} pin (part 1)

ISO T/R 7637/1			Test levels		
test pulse	1	II	III	IV	Delays and impedance
1	-25 V	-50 V	-75 V	-100 V	2 ms, 10 Ω
2	+25 V	+50 V	+75 V	+100 V	0.2 ms, 10 Ω
3a	-25 V	-50 V	-100 V	-150 V	0.1 μs, 50 Ω
3b	+25 V	+50 V	+75 V	+100 V	0.1 μs, 50 Ω
4	-4 V	-5 V	-6 V	-7 V	100 ms, 0.01 Ω
5	+26.5 V	+46.5 V	+66.5 V	+86.5 V	400 ms, 2 Ω

Table 14. Electrical transient requirements on V_{CC} pin (part 2)

ISO T/R 7637/1		Test leve	ls results		
Test pulse	I	II	III	IV	
1	С	С	С	С	
2	С	С	С	С	
3a	С	С	С	С	
3b	С	С	С	С	
4	С	С	С	С	
5	С	E	E	E	

Table 15. Electrical transient requirements on V_{CC} pin (part 3)

Class	Contents
С	All functions of the device are performed as designed after exposure to disturbance.
E	One or more functions of the device is not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device.

Figure 6. Waveforms

12/27 Doc ID 10882 Rev 3

2.4 Electrical characteristics curves

Figure 7. Off-state output current

Figure 8. High level input current

Figure 9. Input clamp voltage

Figure 10. Status leakage current

Figure 11. Status low output current

Figure 12. Satus clamp voltage

577

Figure 13. On-state resistance vs T_{case}

Figure 14. On-state resistance vs V_{CC}

Figure 15. Open-load on-state detection threshold

Figure 16. Open-load off-state detection threshold

Figure 17. Input high level

Figure 18. Input low level

14/27 Doc ID 10882 Rev 3

Figure 19. Input hysteresis voltage

Tc (°C)

Figure 20. Overvoltage shutdown

Figure 21. Turn-on voltage slope

Figure 22. Turn-off voltage slope

Figure 23. I_{LIM} vs T_{case}

577

Application information 3

+5V +5V +5V V_{CC} R_{prot} STATUS1 R_{prot} μС INPUT1 OUTPUT1 STATUS2 INPUT2 OUTPUT2 GND $\mathsf{D}_{\mathsf{GND}}$ V_{GND}

Figure 24. Application schematic

3.1 GND protection network against reverse battery

3.1.1 Solution 1: resistor in the ground line (R_{GND} only)

This can be used with any type of load.

The following is an indication on how to dimension the R_{GND} resistor.

- $R_{GND} \le 600 \text{ mV} / I_{S(on)max}$
- $R_{GND} \ge (-V_{CC}) / (-I_{GND})$

where $-I_{\mbox{\footnotesize GND}}$ is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device's datasheet.

Power dissipation in R_{GND} (when V_{CC} < 0: during reverse battery situations) is:

$$P_D = (-V_{CC})^2 / R_{GND}$$

This resistor can be shared amongst several different HSDs. Please note that the value of this resistor should be calculated with formula (1) where $I_{S(on)max}$ becomes the sum of the maximum on-state currents of the different devices.

Please note that if the microprocessor ground is not shared by the device ground then the R_{GND} produces a shift ($I_{S(on)max} * R_{GND}$) in the input thresholds and the status output

57 16/27 Doc ID 10882 Rev 3

values. This shift varies depending on how many devices are ON in the case of several high-side drivers sharing the same R_{GND} .

If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then ST suggests to utilize solution 2 (see *Section 3.1.2*).

3.1.2 Solution 2: diode (D_{GND}) in the ground line

A resistor (R_{GND} = 1 $k\Omega$) should be inserted in parallel to D_{GND} if the device drives an inductive load.

This small signal diode can be safely shared amongst several different HSDs. Also in this case, the presence of the ground network produces a shift (~600 mV) in the input threshold and in the status output values if the microprocessor ground is not common to the device ground. This shift does not vary if more than one HSD shares the same diode/resistor network.

Series resistor in INPUT and STATUS lines are also required to prevent that, during battery voltage transient, the current exceeds the absolute maximum rating.

Safest configuration for unused INPUT and STATUS pin is to leave them unconnected.

3.2 Load dump protection

 D_{ld} is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds the V_{CC} max DC rating. The same applies if the device is subject to transients on the V_{CC} line that are greater than the ones shown in *Table 13*.

3.3 MCU I/Os protection

If a ground protection network is used and negative transient are present on the V_{CC} line, the control pins are pulled negative. ST suggests to insert a resistor (R_{prot}) in line to prevent the microcontroller I/Os pins to latch-up.

The value of these resistors is a compromise between the leakage current of microcontroller and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of microcontroller I/Os.

 $-V_{CCpeak}/I_{latchup} \le R_{prot} \le (V_{OH\mu C}-V_{IH}-V_{GND})/I_{IHmax}$

Calculation example:

For $V_{CCpeak} = -100 \text{ V}$ and $I_{latchup} \ge 20 \text{ mA}$; $V_{OH\mu C} \ge 4.5 \text{ V}$

 $5 kΩ \le R_{prot} \le 65 kΩ$.

Recommended values:

 $R_{prot} = 10 \text{ k}\Omega$.

3.4 Open-load detection in off-state

Off-state open-load detection requires an external pull-up resistor (R_{PU}) connected between OUTPUT pin and a positive supply voltage (V_{PU}) like the +5 V line used to supply the microprocessor.

The external resistor has to be selected according to the following requirements:

- 1. No false open-load indication when load is connected: in this case we have to avoid V_{OUT} to be higher than V_{Olmin} ; this results in the following condition $V_{OUT} = (V_{PU}/(R_L + R_{PU}))R_L < V_{Olmin}$.
- 2. No misdetection when load is disconnected: in this case the V_{OUT} has to be higher than V_{OLmax} ; this results in the following condition $R_{PU} < (V_{PU} V_{OLmax})/I_{L(off2)}$.

Because $I_{s(OFF)}$ may significantly increase if V_{OUT} is pulled high (up to several mA), the pull-up resistor R_{PU} should be connected to a supply that is switched OFF when the module is in standby. The values of V_{OLmin} , V_{OLmax} and $I_{L(off2)}$ are available in *Section 2.3: Electrical characteristics*.

V batt.
Vcc
Vcc
R_{PU}
R_{PU}
NPUT
R_{PU}
R_{PU}
R_{RU}
R_{RL}

GROUND

7//

Figure 25. Open-load detection in off-state

3.5 PowerSO-10 maximum demagnetization energy (V_{CC} = 13.5 V)

Figure 26. Maximum turn- off current versus load inductance⁽¹⁾

1. Values are generated with $R_L = 0~\Omega$ In case of repetitive pulses, T_{jstart} (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C.

4 Package and PCB thermal data

4.1 PowerSO-10 thermal data

Figure 27. PowerSO-10 PC board⁽¹⁾

^{1.} Layout condition of R_{th} and Z_{th} measurements (PCB FR4 area = 58 mm x 58 mm, PCB thickness = 2 mm, Cu thickness = 35 µm, Copper areas: from minimum pad lay-out to 8 cm²).

20/27 Doc ID 10882 Rev 3

Figure 29. PowerSO-10 thermal impedance junction ambient single pulse

Equation 1: pulse calculation formula

$$\begin{split} Z_{TH\delta} &= R_{TH} \cdot \delta + Z_{THtp} (1 - \delta) \\ \text{where} \quad \delta &= t_p / T \end{split}$$

Table 16. Thermal parameter

Area/island (cm ²)	Footprint	6
R1 (°C/W)	0.15	
R2 (°C/W)	0.8	
R3 (°C/W)	0.7	
R4 (°C/ W)	0.8	
R5 (°C/W)	12	
R6 (°C/W)	37	22
C1 (W.s/ °C)	0.0006	
C2 (W.s /°C)	2.1E-03	
C3 (W.s/ °C)	0.013	
C4 (W.s/ °C)	0.3	
C5 (W.s/ °C)	0.75	
C6 (W.s/ °C)	3	5

5 Package and packing information

5.1 ECOPACK® packages

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

5.2 PowerSO-10 mechanical data

Figure 31. PowerSO-10 package dimensions

Table 17. PowerSO-10 mechanical data

Direc		Millimeters	
Dim.	Min.	Тур.	Max.
A	3.35		3.65
A ⁽¹⁾	3.4		3.6
A1	0		0.10
В	0.40		0.60
B ⁽¹⁾	0.37		0.53
С	0.35		0.55
C ⁽¹⁾	0.23		0.32
D	9.40		9.60
D1	7.40		7.60
E	9.30		9.50
E2	7.20		7.60
E2 ⁽¹⁾	7.30		7.50
E4	5.90		6.10
E4 ⁽¹⁾	5.90		6.30
е		1.27	
F	1.25		1.35
F ⁽¹⁾	1.20		1.40
Н	13.80		14.40
H ⁽¹⁾	13.85		14.35
h		0.50	
L	1.20		1.80
լ(1)	0.80		1.10
α	0°		8°
α ⁽¹⁾	2°		8°

^{1.} Muar only POA P013P.

PowerSO-10 packing information 5.3

Figure 32. PowerSO-10 suggested pad layout and tube shipment (no suffix)

Figure 33. Tape and reel shipment (suffix "TR")

Revision history VND830LSP-E

6 Revision history

Table 18. Document revision history

Date	Revision	Changes
1-Oct-2004	1	Initial release.
19-Jul-2010	2	Changed <i>Features</i> list. Reformatted entire document. No content change.
25-Feb-2011	3	Updated I _{OUT} value in <i>Features</i> list. Updated <i>Table 16: Thermal parameter</i> .

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 10882 Rev 3