Math 505, 2/6

For the rest of the course let K be an algebraically closed field. Given varieties V, W, lying in K^n, K^m , respectively, we need to say what mappings are allowed between V and W. A natural choice is the polynomial maps (sending $v \in V$ to $w = (f_1(v), \dots, f_m(v))$ for some $f_i \in K[x_1, \dots, x_n]$; these are called morphisms. Any choice of the f_i will define a morphism from K^n to K^m , but in order to define a map from V to W, it must be the case that if v is a common zero of the (radical) ideal I corresponding to V, then w must be a common zero of the (radical) ideal J corresponding to W. We now observe that the f_i also define a unique homomorphism from the polynomial ring $K[y_1,\ldots,y_m]$ to $K[x_1,\ldots,x_n]$, sending y_i to f_i , and that every such homomorphism takes this form for unique f_1, \ldots, f_m ; it will induce a map from V to W if and only if it takes the ideal J in $K[y_1,\ldots,y_m]$ to I, or equivalently it induces a well-defined map from $K[W] = K[y_1, \ldots, h_m]/J$ to $K[V] = K[x_1, \ldots, x_n]/I$. We deduce that there is a natural 1-1 correspondence between morphisms from V to Wand algebra homomorphisms from K[W] to K[V] (so that the map sending V to its coordinate ring K[V] is a contravariant functor, in the language we used last quarter). In particular, our morphism from V to W is an isomorphism (i.e. has an inverse which is also a morphism) if and only if the homomorphism from K[W] to K[V] is an algebra isomorphism.

The Noether normalization theorem that we used to prove the weak Hilbert Nullstellensatz furnishes some especially interesting examples of morphisms. We have shown that the coordinate ring K[V] of any variety V is a (finitely generated) integral extension of some polynomial ring $K[x_1, \ldots, x_m]$ over K, so that there is a natural inclusion of $K[x_1, \ldots, x_m]$ in K[V]; going backwards to the corresponding morphism, we see that there is a surjective morphism π from V to the affine space K^m , which we will later see has finite fibers (i.e. the inverse image $\pi^{-1}(v)$ of any $v \in K^m$ is finite. (We will also see that the integer m here is uniquely determined by V and is naturally enough called its dimension.) We call π a ramified finite cover; it is analogous to the covering maps one studies in topological manifolds, but is less well behaved and in particular does not define a local homeomorphism between any neighborhoods in V and K^m . For example, look at the variety W in K^2 consisting of the zeros of the single polynomial $x^2 - y^3$. There are two obvious surjective morphisms from W to the line K^1 , given by the projections π_1, π_2 onto the first and second coordinates, respectively. The first map is generically a triple cover; for any $x \neq 0$ there will be three distinct $y \in K$ with $x^2 = y^3$, but for x = 0 there is only one such y. Likewise, for any $y \neq 0$ there are generically two distinct $x \in K$ with $x^2 = y^3$, but for y = 0 there is only one such x. It is because the fibers have different sizes that we call such a cover ramified (=branched, in some sense). There is another very interesting algebra map, this time from K[W] to K[x], which you will define in homework for this week. The corresponding morphism is bijective but not an isomorphism, since its inverse is not a morphism. As another example, look at the variety V, again in K^2 , defined by the equation xy = 1. This variety again admits projections π_1, π_2 to the first and second coordinates, but this time the π_i are not surjective. Accordingly the corresponding algebra maps, sending K[x], K[y] respectively to their canonical images in $K[V] \cong K[x,y]/(xy-1) \cong K[x,x^{-1}]$, a localization of K[x], does not realize K[V] as an integral extension of either image (though K[V] is in fact an integral extension of the polynomial ring K[z] for a different embedding of K[z] in K[V], as you will work out in another homework problem). We use these maps later to give the image K^* of π_1 or π_2 the structure of an affine variety; note that K^* is not V(I) for any ideal I of K[x]. More generally, let V be any affine variety and $f \in K[V], f \neq 0$. The set $V_f = \{v \in V : f(v) \neq 0\}$ is then a Zariski-open (not closed) subset of V and as such not an affine algebraic variety by our definition. Nevertheless we (now) call V_f an affine variety and attach to it the coordinate ring $K[V]_f$ (the localization of K[V] by all powers of f; this is still a finitely generated K-algebra. We regard V_f as isomorphic to the affine algebraic variety with coordinate ring $K[V]_f$; this justifies calling it affine.