CS2400 – Assignment1

Generate two sinusoidal signals $x_1(t) = A_1 \sin \omega_0 t$ and $x_2(t) = A_2 \sin \omega_1 t$. Sample them to get $x_1[n]$ and $x_2[n]$, each of length 1024, for different values of A_1, A_2 and different values of ω_0 and ω_1 .

- 1. (a) Plot the sampled signal for different values of A_1 and A_2 and sampling rate R. Determine the frequency of the sinusoids from the zero-crossing rate for every different value of R. Compare with your true data and document your observations. Plot the error in the estimation of frequency as a function of R.
 - (b) Plot the Fourier transform of each of the signals generated in 1(a) for different values of R and different values of N = FFTSize. Find the location of the peaks in the FFT magnitude spectrum, determine the frequency using the information about the sampling rate. Record your observations and comment on the different results.
- 2. (a) Add $x_1[n]$ and $x_2[n]$ and determine the Fourier transform of the superposed signal.
 - (b) Convolve $x_1[n]$ and $x_2[n]$ and determine the new signal's Fourier transform. Remember that the length of the convolved signal is M + N, if M and N are the lengths of signals $x_1[n]$ and $x_2[n]$, respectively.
 - (c) Compute the Fourier transform in each of the above cases and comment on the results. Explain how and why you chose value of the FFTSize in each case.
 - (d) Try any two properites of DFT.

Notes:

- 1. The enclosed programs take as argument an inputFile, FFTOrder and FFTSize, OutputFile and generates the spectrum. For details see ReadMe.txt in the doc directory.
- 2. Use gnuplot to plot the various outputs.
- 3. Submit the programs and report on turnitin.