1.1—A inequação $x^4 + 5x^3 + 6x^2 \le 0$ é equivalente a

$$x^{2}(x^{2} + 5x + 6) \le 0 \equiv x = 0 \lor -3 \le x \le -2.$$

1.2—

$$Maj(A) = [0, +\infty[; Min(A) =] - \infty, -3];$$

$$\sup(A) = \max(A) = 0;$$

$$\inf(A) = \min(A) = -3.$$

2.—Atenção: devido a um erro no enunciado desta questão, foi atribuída a cotação máxima (1 val.) a todos os alunos (mesmo aqueles que responderam ao enunciado A). A resolução que se apresenta aqui é relativa ao enunciado correcto, i.e., "estabeleça por indução que para todo o $n \ge 1$ se tem $\sum_{k=1}^{n} k/2^k = 2 - (n+2)/2^n$."

A verificação para n=1 é simples. Admitamos que $\sum_{k=1}^n k/2^k=2-(n+2)/2^n$ para demonstrar que $\sum_{k=1}^{n+1} k/2^k=2-(n+3)/2^{n+1}$. Tem-se que,

$$\sum_{k=1}^{n+1} \frac{k}{2^k} = \sum_{k=1}^{n} \frac{k}{2^k} + \frac{n+1}{2^{n+1}} =_{\text{H.I.}} 2 - \frac{n+2}{2^n} + \frac{n+1}{2^{n+1}} = 2 - \frac{2n+4}{2^{n+1}} + \frac{n+1}{2^{n+1}} = 2 - \frac{n+3}{2^{n+1}},$$

como se pretendia.

- 3.1—Falsa
- 3.2—Verdadeira.

4.1—Mostramos por indução que $(\forall n \geq 1)a_{n+1} \geq a_n$. A verificação para n=1 é simples, admitindo que $a_{n+1} \geq a_n$ para demonstrar que $a_{n+2} \geq a_{n+1}$, obtemos:

$$a_{n+1} \ge a_n \Rightarrow 2a_n \ge 2a_{n+1} \Rightarrow 2a_{n+1} + 3 \ge 2a_n + 3 \Rightarrow \frac{2a_{n+1} + 3}{4} \ge \frac{2a_n + 3}{4} \Rightarrow a_{n+2} \ge a_{n+1},$$

como se pretendia demonstrar.

4.2—Nas condições indicadas (a_n) é monótona e limitada, logo é necessariamente convergente. Suponhamos então que α é o limite de (a_n) . Usando o facto de (a_{n+1}) também convergir para α e passando a relação de recorrência ao limite, obtemos a sequinte equação que α deve satisfazer:

$$\alpha = \frac{2\alpha + 3}{4} \equiv 2\alpha = 3 \equiv \alpha = \frac{3}{2}.$$

5.—(a); (b); (c);

$$6.$$
—(a); (b); (c);

7.1—No conjunto dado a função obtém-se de funções contínuas usando operações algébricas e composição de funções, logo é contínua.

7.2.—Se f é contínua em x=1 então tem-se $f(1)=\lim_{x\to 1}f(x)$. Calculando,

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{\sin(x^2 - 1)}{x - 1} = \lim_{x \to 1} \frac{\sin(x^2 - 1)}{x^2 - 1} (x + 1) = 1 \times 2 = 2,$$

Assim, f(1) = 2.

8.—A função é contínua em a=1 pois como se tem $\lim_{x_1} x=1$ e $\lim_{x\to 1} x^2=1$. dado $\epsilon>0$ podemos fixar $\delta>0$ tal que $x\in]1-\delta,1]$ implica $|x-1|,|x^2-1|<\epsilon$, ou seja, implica que $|f(x)-1|<\epsilon$. Isto mostra que $\lim_{x\to 1} f(x)=1=f(1)$. A função não é contínua em b=1/2, por exemplo pois, considerando uma sucessão (α_n) de irracionais, tal que $(\alpha_n)\to 1/2$ tem-se $(f(\alpha_n))\to 1/4$, já se considerarmos uma sucessão (β_n) de racionais a tender para 1/2 tem-se $(f(\beta_n))\to 1/2$, pelo que nem sequer existe $\lim_{x\to 1/2} f(x)$.