Reinforcement Learning: Problems & Detailed Solutions

2025-09-20

Contents

T	Bandits — ε -Greedy with Sample-Average Updates [20 pts]	2
2	Bandits — UCB1 (Upper Confidence Bound) [15 pts]	3
3	MDP (Inventory) — Laddu Shop [25 pts]	4
4	DP — Value Iteration (Mini-MDP) [20 pts]	6
5	DP — Policy Iteration (Mini-MDP) [20 pts]	7
6	Monte Carlo — First-Visit Prediction [20 pts]	8
7	${\rm Monte~Carlo~On\text{-}Policy~MC~Control~(\varepsilon\text{-}soft)} [20~{\rm pts}]$	8
8	TD — SARSA (On-Policy Control) [20 pts]	9
9	TD — Q-Learning (Off-Policy Control) [20 pts]	9
10	TD — n -Step TD Prediction (Forward View, n =3) [20 pts]	10
11	TD — n -Step SARSA (On-Policy, n =2) [20 pts]	10
12	Bayesian Bandit — Beta-Bernoulli & Thompson Sampling [20 pts]	10

Notation

States $s \in \mathcal{S}$, actions $a \in \mathcal{A}(s)$, rewards $r \in \mathbb{R}$, discount $\gamma \in [0,1)$. State-value V(s), action-value Q(s,a). For episodic tasks we take V(terminal) = 0 and $Q(\text{terminal}, \cdot) = 0$.

1 Bandits — ε -Greedy with Sample-Average Updates [20 pts]

Problem

You are A/B testing two ad creatives. Each impression yields reward 1 (click) or 0 (no click).

- Arm A: Bernoulli($p_A = 0.7$), Arm B: Bernoulli($p_B = 0.5$).
- Use ε -greedy with $\varepsilon = 0.1$ and sample-average action-value estimates. Initialize $Q_1(A) = Q_1(B) = 0$ (break ties uniformly).
- (a) Write pseudocode for ε -greedy (sample-average updates).
- (b) Given the action–reward sequence over 6 steps: (A, 1), (B, 1), (A, 0), (A, 1), (B, 0), (A, 1), update Q(A), Q(B) after each step and report N and Q.
- (c) Using estimates after step 6, compute Pr(choose A at step 7) under ε -greedy.
- (d) Compute the cumulative reward over the 6 steps and the (expected) regret relative to always pulling the optimal arm for 6 steps (use $\mu^* = \max\{p_A, p_B\}$).

Detailed Solution

Algorithm 1 ε -greedy k-armed bandit (sample-average updates)

Require: $\varepsilon \in [0,1]$

- 1: Initialize $Q(a) \leftarrow 0$, $N(a) \leftarrow 0$ for all $a \in \{1, \dots, k\}$
- 2: **for** $t = 1, 2, \dots$ **do**
- 3: With probability ε : choose A uniformly from arms
- 4: Else: $A \leftarrow \arg \max_{a} Q(a)$

▷ break ties uniformly

- 5: Pull A, observe reward R_t
- 6: $N(A) \leftarrow N(A) + 1$
- 7: $Q(A) \leftarrow Q(A) + \frac{1}{N(A)} (R_t Q(A))$
- (a) Pseudocode (incremental mean).
- (b) Step-by-step updates. The incremental mean after the *n*-th observation of arm *a* is $Q_n \leftarrow Q_{n-1} + \frac{1}{n}(R_n Q_{n-1})$.

\overline{t}	(Action, Reward)	N(A)	N(B)	Q(A)	Q(B)
1	(A,1)	1	0	$0 + \frac{1}{1}(1 - 0) = 1.0$	0.0
2	(B,1)	1	1	1.0	$0 + \frac{1}{1}(1 - 0) = 1.0$
3	(A,0)	2	1	$1 + \frac{1}{2}(0 - 1) = 0.5$	1.0
4	(A,1)	3	1	$0.5 + \frac{1}{3}(1 - 0.5) = 0.6667$	1.0
5	(B,0)	3	2	0.6667	$1 + \frac{1}{2}(0 - 1) = 0.5$
6	(A,1)	4	2	$0.6667 + \frac{1}{4}(1 - 0.6667) = 0.75$	0.5

(c) Step 7 selection probability. Greedy action is A (since 0.75 > 0.5). With two arms,

$$Pr(A) = (1 - \varepsilon) + \varepsilon/2 = 0.9 + 0.05 = \boxed{0.95}$$

(d) Reward and regret. Observed reward = 1+1+0+1+0+1=4. Optimal mean $\mu^* = 0.7$; always-optimal expected reward in 6 steps = $6 \times 0.7 = 4.2$. Regret = $4.2 - 4 = \boxed{0.2}$.

Reference: Sutton & Barto (2018), Ch. 2.

2 Bandits — UCB1 (Upper Confidence Bound) [15 pts]

Problem

Three-armed Bernoulli bandit with unknown means $\mu_A = 0.50$, $\mu_B = 0.60$, $\mu_C = 0.40$. Use UCB1 UCB_t(a) = $\hat{Q}_t(a) + \sqrt{\frac{2 \ln t}{N_t(a)}}$, initializing by pulling each arm once (order A, B, C) and observing $R_1(A)=1$, $R_2(B)=0$, $R_3(C)=1$.

- (a) Write pseudocode for UCB1.
- (b) Compute choices at t = 4, 5, 6, 7 given realized rewards: $R_4=1$, $R_5=0$, $R_6=0$, $R_7=1$ (use $\ln 4=1.3863$, $\ln 5=1.6094$, $\ln 6=1.7918$, $\ln 7=1.9459$).
- (c) Give cumulative reward by t = 7 and expected regret vs. always pulling B.

Detailed Solution

Algorithm 2 UCB1

- 1: Pull each arm once; set N(a) = 1, Q(a) = observed mean
- 2: **for** $t = k + 1, k + 2, \dots$ **do**
- 3: **for** each arm a **do**
- 4: $UCB(a) \leftarrow Q(a) + \sqrt{\frac{2 \ln t}{N(a)}}$
- 5: Play $A_t = \arg \max_a \text{UCB}(a)$; observe R_t
- 6: $N(A_t) \leftarrow N(A_t) + 1; \ Q(A_t) \leftarrow Q(A_t) + \frac{1}{N(A_t)} (R_t Q(A_t))$
- (a) Pseudocode.
- (b) Numeric UCBs and updates. After inits: N = (1, 1, 1), Q = (1.0, 0.0, 1.0).

• t = 4: $\sqrt{2 \ln 4} \approx 1.665$.

$$UCB(A) = 1 + 1.665 = 2.665, \quad UCB(B) = 0 + 1.665 = 1.665, \quad UCB(C) = 1 + 1.665 = 2.665.$$

Tie \Rightarrow choose A. Reward 1. Update N(A) = 2, $Q(A) = \frac{1+1}{2} = 1.0$.

• t = 5: $\sqrt{2 \ln 5} \approx 1.793$, $\sqrt{(2 \ln 5)/2} \approx 1.269$.

$$UCB(A) = 1 + 1.269 = 2.269$$
, $UCB(B) = 0 + 1.793 = 1.793$, $UCB(C) = 1 + 1.793 = 2.793$.

Choose C. Reward 0. Update $N(C)=2, Q(C)=\frac{1+0}{2}=0.5.$

• t = 6: $\sqrt{2 \ln 6} \approx 1.893$, $\sqrt{(2 \ln 6)/2} \approx 1.338$.

$$UCB(A) = 1 + 1.338 = 2.338$$
, $UCB(B) = 0 + 1.893 = 1.893$, $UCB(C) = 0.5 + 1.338 = 1.838$.

Choose A. Reward 0. Update N(A) = 3, $Q(A) = \frac{1+1+0}{3} = 0.667$.

• t = 7: $\sqrt{2 \ln 7} \approx 1.973$, $\sqrt{(2 \ln 7)/3} \approx 1.139$, $\sqrt{(2 \ln 7)/2} \approx 1.395$.

$$UCB(A) = 0.667 + 1.139 = 1.806$$
, $UCB(B) = 0 + 1.973 = 1.973$, $UCB(C) = 0.5 + 1.395 = 1.895$.

Choose B. Reward 1.

(c) Totals. Chosen arms: A, C, A, B with rewards 1, 0, 0, 1. Including the first three pulls (rewards 1, 0, 1), total reward = 4. Regret vs. always $B: 7 \cdot 0.6 - 4 = \boxed{0.2}$.

Reference: Sutton & Barto (2018), §2.7; Auer et al. (2002).

3 MDP (Inventory) — Laddu Shop [25 pts]

Problem (clarified statement)

Demand $D \in \{1, 2, 3\}$ with P(1) = 0.2, P(2) = 0.5, P(3) = 0.3). The morning state $s \in \{0, 1, 2\}$ is the number of leftover batches from the previous day. Upon choosing action $a \in \{1, 2\}$ (batches prepared now), the available inventory for the day is

$$I = s + a$$
.

During the day, stochastic demand D realizes. Sales equal $\min(D, I)$; unused inventory $L = \max(0, I - D)$ is carried to the next morning but capped at 2 to keep the state space closed:

$$s' = \min\{2, L\}.$$

Per-day profit is

$$r = 2500 \cdot \min(D, I) - 500 \cdot a - 100 \cdot L.$$

- (a) Write down the transition probabilities P(s'|s,a) for all $s \in \{0,1,2\}$ and $a \in \{1,2\}$.
- (b) Compute the expected one-step reward $R(s, a) = \mathbb{E}[r \mid s, a]$ for all (s, a).

Detailed Solution

- (a) Transitions. For each (s, a), set I = s + a and enumerate demand outcomes:
 - a = 1: I = 1, 2, 3 for s = 0, 1, 2 respectively, giving

$$P^{(a=1)} = \begin{bmatrix} 1 & 0 & 0 \\ 0.8 & 0.2 & 0 \\ 0.3 & 0.5 & 0.2 \end{bmatrix}$$
 (rows s, columns s').

• a = 2: I = 2, 3, 4 for s = 0, 1, 2:

$$P^{(a=2)} = \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0.3 & 0.5 & 0.2 \\ 0 & 0.3 & 0.7 \end{bmatrix}.$$

The entries follow from $L = \max(0, I - D)$ mapped to $s' = \min\{2, L\}$ (e.g., s=2, a=2, I=4: if D = 1, 2, 3 we get L = 3, 2, 1 hence $s' = \{2, 2, 1\}$ with probabilities 0.2, 0.5, 0.3).

(b) Expected rewards. For each (s, a):

$$R(s,a) = \sum_{d \in \{1,2,3\}} p(d) (2500 \min(d,I) - 500a - 100 \max(0,I-d)).$$

Examples (all amounts in INR):

$$R(0,2): I = 2 \Rightarrow \begin{cases} d = 1: & 2500(1) - 500(2) - 100(1) = 1400, \\ d = 2: & 2500(2) - 1000 - 0 = 4000, \\ d = 3: & 2500(2) - 1000 - 0 = 4000, \end{cases}$$

$$\Rightarrow R = 0.2 \cdot 1400 + 0.5 \cdot 4000 + 0.3 \cdot 4000 = \boxed{3480}.$$

$$R(1,1): I = 2 \Rightarrow \begin{cases} d = 1: & 2500(1) - 500(1) - 100(1) = 1900, \\ d = 2: & 5000 - 500 - 0 = 4500, \\ d = 3: & 5000 - 500 - 0 = 4500, \end{cases}$$

$$R(2,1): I = 3 \Rightarrow \begin{cases} d = 1: & 2500 - 500 - 200 = 1800, \\ d = 2: & 5000 - 500 - 100 = 4400, \Rightarrow R = 0.2 \cdot 1800 + 0.5 \cdot 4400 + 0.3 \cdot 7000 = \boxed{4660}. \end{cases}$$

$$d = 3: & 7500 - 500 - 0 = 7000,$$

The full table:

s	a	Ι	R(s,a)
0	1	1	2000
0	2	2	3480
1	1	2	3980
1	2	3	4160
2	1	3	4660
2	2	4	4060

4 DP — Value Iteration (Mini-MDP) [20 pts]

Problem (clarified statement)

Discount $\gamma = 0.9$. States $\{s_1, s_2, s_3\}$ where s_3 is *terminal* (no actions, zero future value). Actions and deterministic dynamics (explicit):

- At *s*₁:
 - $-a_1$: Immediate reward +2, then transition deterministically to s_2 .
 - $-a_2$: Immediate reward +1, then transition deterministically to s_1 (self-loop).
- At s_2 :
 - $-b_1$: Immediate reward +5, then transition deterministically to s_3 (terminal).
 - b_2 : Immediate reward 0; with probability 0.5 go to s_1 , with probability 0.5 stay in s_2 .

Task. Run three full sweeps of value iteration starting from $V_0 \equiv 0$. After each sweep k, report all state action-values $Q_k(s,a) = r(s,a) + \gamma \sum_{s'} p(s'|s,a) V_{k-1}(s')$ and then $V_k(s) = \max_a Q_k(s,a)$. Finally determine the optimal policy π^* and optimal values V^* .

Detailed Solution

The Bellman optimality update is $V_k(s) = \max_a \left[r(s, a) + \gamma \sum_{s'} p(s'|s, a) V_{k-1}(s') \right]$.

Sweep 1 (using $V_0 \equiv 0$).

$$Q_1(s_1, a_1) = 2 + 0.9 V_0(s_2) = 2,$$
 $Q_1(s_1, a_2) = 1 + 0.9 V_0(s_1) = 1,$ $Q_1(s_2, b_1) = 5 + 0.9 V_0(s_3) = 5,$ $Q_1(s_2, b_2) = 0 + 0.9 [0.5 V_0(s_1) + 0.5 V_0(s_2)] = 0.$

Thus $V_1(s_1) = \max\{2, 1\} = 2$, $V_1(s_2) = \max\{5, 0\} = 5$, $V_1(s_3) = 0$.

Sweep 2 (use V_1).

$$\begin{split} Q_2(s_1,a_1) &= 2 + 0.9 \, V_1(s_2) = 2 + 0.9 \cdot 5 = 6.5, \\ Q_2(s_1,a_2) &= 1 + 0.9 \, V_1(s_1) = 1 + 0.9 \cdot 2 = 2.8, \\ Q_2(s_2,b_1) &= 5 + 0.9 \, V_1(s_3) = 5, \\ Q_2(s_2,b_2) &= 0 + 0.9 \, [0.5 \cdot V_1(s_1) + 0.5 \cdot V_1(s_2)] = 0.9 \cdot 0.5(2+5) = 3.15. \end{split}$$

Therefore $V_2(s_1) = \max\{6.5, 2.8\} = \mathbf{6.5}, V_2(s_2) = \max\{5, 3.15\} = \mathbf{5}, V_2(s_3) = 0.$

Sweep 3 (use V_2).

$$\begin{split} Q_3(s_1,a_1) &= 2 + 0.9\,V_2(s_2) = 6.5, \\ Q_3(s_1,a_2) &= 1 + 0.9\,V_2(s_1) = 1 + 0.9 \cdot 6.5 = 6.85, \\ Q_3(s_2,b_1) &= 5 + 0.9\,V_2(s_3) = 5, \\ Q_3(s_2,b_2) &= 0 + 0.9\,[0.5 \cdot V_2(s_1) + 0.5 \cdot V_2(s_2)] = 0.9 \cdot 0.5(6.5 + 5) = 5.175. \end{split}$$

Hence $V_3(s_1) = \max\{6.85, 6.5\} = \mathbf{6.85}, V_3(s_2) = \max\{5, 5.175\} = \mathbf{5.175}, V_3(s_3) = 0.$

Optimal policy and values. Notice b_1 at s_2 yields 5 while b_2 yields at most 5.175 at this sweep; but the true optimal $V^*(s_2)$ is obtained by comparing fixed points. For s_2 the action b_1 terminates with +5, so $V^*(s_2) \geq 5$. For s_1 , the self-loop a_2 has fixed point

$$V(s_1) = 1 + 0.9 V(s_1) \implies V^*(s_1) = \frac{1}{1 - 0.9} = \boxed{10}$$

Thus $Q^*(s_1, a_1) = 2 + 0.9 \cdot V^*(s_2) = 2 + 0.9 \cdot 5 = 6.5 < 10$, so $\pi^*(s_1) = a_2$. At s_2 , b_1 is optimal because b_2 's value cannot exceed $0.9 \max\{V(s_1), V(s_2)\} < 0.9 \cdot 10 = 9$ without extra rewards; with zero immediate reward and mixing back to s_1/s_2 , its best achievable fixed point under $\gamma = 0.9$ is still dominated by b_1 's sure +5 followed by termination in this construction. Hence

$$\pi^*(s_1) = a_2, \quad \pi^*(s_2) = b_1, \quad V^*(s_1) = 10, \ V^*(s_2) = 5, \ V^*(s_3) = 0.$$

Reference: Sutton & Barto (2018), Ch. 4; Puterman (1994), Ch. 2.

5 DP — Policy Iteration (Mini-MDP) [20 pts]

Problem

Same state/action setup as above but with stochastic self-loop at s_1 and recycling at s_2 :

- s_1 : a (to s_2 with +2), b (reward 0; stay s_1 w.p. 0.8, go s_3 w.p. 0.2).
- s_2 : c (to s_3 with +4), d (reward +1; to s_1 w.p. 0.5, stay s_2 w.p. 0.5).

Discount $\gamma = 0.9$. Start with policy $\pi_0(s_1) = a$, $\pi_0(s_2) = c$. Perform exact policy evaluation and policy improvement until convergence. Report π^* and V^* .

Detailed Solution

Evaluate π_0 .

$$V_0(s_2) = 4 + 0.9 \cdot V_0(s_3) = 4,$$

 $V_0(s_1) = 2 + 0.9 V_0(s_2) = 2 + 0.9 \cdot 4 = \boxed{5.6}.$

Improve $\pi_0 \to \pi_1$.

$$Q(s_1, a) = 2 + 0.9 V_0(s_2) = 5.6,$$

$$Q(s_1, b) = 0 + 0.9 [0.8V_0(s_1) + 0.2V_0(s_3)] = 0.72 \cdot 5.6 = 4.032 \Rightarrow \text{keep } a.$$

$$Q(s_2, c) = 4,$$

$$Q(s_2, d) = 1 + 0.9 [0.5V_0(s_1) + 0.5V_0(s_2)]$$

$$= 1 + 0.9 \cdot 0.5(5.6 + 4) = \boxed{5.32} \Rightarrow \text{switch to } d.$$

Thus $\pi_1(s_1) = a$, $\pi_1(s_2) = d$.

Evaluate π_1 . Solve

$$V_1(s_1) = 2 + 0.9 V_1(s_2),$$

 $V_1(s_2) = 1 + 0.9 [0.5V_1(s_1) + 0.5V_1(s_2)].$

From the second: $0.55V_1(s_2) = 1 + 0.45V_1(s_1) \Rightarrow V_1(s_2) = \frac{1 + 0.45V_1(s_1)}{0.55}$. Plug into the first:

$$V_1(s_1) = 2 + 0.9 \cdot \frac{1 + 0.45V_1(s_1)}{0.55} = 2 + 1.63636(1 + 0.45V_1(s_1))$$

$$= 3.63636 + 0.73636V_1(s_1) \implies (1 - 0.73636)V_1(s_1) = 3.63636$$

$$\implies V_1(s_1) = \boxed{13.793}, \quad V_1(s_2) = \frac{1 + 0.45 \cdot 13.793}{0.55} = \boxed{13.103}.$$

Improve π_1 .

$$\begin{split} Q(s_1,a) &= 2 + 0.9 \cdot 13.103 = 13.793, \\ Q(s_1,b) &= 0.9 \cdot (0.8 \cdot 13.793) = 9.933 \Rightarrow \text{keep } a. \\ Q(s_2,c) &= 4, \\ Q(s_2,d) &= 1 + 0.9 \cdot 0.5(13.793 + 13.103) = 13.103 \Rightarrow \text{keep } d. \end{split}$$

Policy stable $\Rightarrow \pi^*(s_1) = a, \ \pi^*(s_2) = d$ with values above.

6 Monte Carlo — First-Visit Prediction [20 pts]

Problem

States $\{A, B, C\}$ and terminal T, discount $\gamma = 0.9$. Three episodes observed:

E1:
$$A \xrightarrow{+2} B \xrightarrow{-1} C \xrightarrow{+3} T$$
,
E2: $B \xrightarrow{+0} A \xrightarrow{+2} B \xrightarrow{+2} T$,
E3: $C \xrightarrow{+1} C \xrightarrow{-2} A \xrightarrow{+4} T$.

Use first-visit MC to estimate V(A), V(B), V(C) (explicitly show each return).

Detailed Solution

For a first visit at time t, $G_t = \sum_{k \ge 1} \gamma^{k-1} R_{t+k}$.

- E1: $G(A) = 2 + 0.9(-1) + 0.9^2 \cdot 3 = \boxed{3.53}$; $G(B) = -1 + 0.9 \cdot 3 = \boxed{1.7}$; $G(C) = \boxed{3.0}$
- E2: $G(B) = 0 + 0.9 \cdot 2 + 0.9^2 \cdot 2 = \boxed{3.42}$; $G(A) = 2 + 0.9 \cdot 2 = \boxed{3.8}$; (the later first-visit for B) $G(B) = \boxed{2.0}$.
- E3: $G(C) = 1 + 0.9(-2) + 0.9^2 \cdot 4 = \boxed{2.44}$; $G(A) = \boxed{4.0}$. Averages: $V(A) = \frac{3.53 + 3.8 + 4}{3} = \boxed{3.777}$, $V(B) = \frac{1.7 + 3.42}{2} = \boxed{2.56}$, $V(C) = \frac{3 + 2.44}{2} = \boxed{2.72}$.

7 Monte Carlo — On-Policy MC Control (ε -soft) [20 pts]

Problem

States $\{A,B,C\}$, actions $\{L,R\}$, terminal $T,\,\gamma=0.9.$ Three episodes:

E1:
$$(A, L) \xrightarrow{+2} B$$
, $(B, R) \xrightarrow{+1} C$, $(C, L) \xrightarrow{+3} T$,
E2: $(B, L) \xrightarrow{0} A$, $(A, R) \xrightarrow{+2} B$, $(B, R) \xrightarrow{+2} T$,
E3: $(C, R) \xrightarrow{+1} C$, $(C, L) \xrightarrow{-2} A$, $(A, L) \xrightarrow{+4} T$.

(1) Compute first-visit Q(s, a) sample averages. (2) With $\varepsilon = 0.1$ and $|\mathcal{A}| = 2$, perform ε -greedy improvement.

Detailed Solution

First-visit returns (explicit):

$$\begin{array}{c} (A,L):2+0.9\cdot 1+0.9^2\cdot 3=\boxed{5.33}, \quad (A,R):2+0.9\cdot 2=\boxed{3.80},\\ (B,L):0+0.9\cdot 2+0.9^2\cdot 2=\boxed{3.42}, \quad (B,R):1+0.9\cdot 3=\boxed{3.70}, \quad \boxed{2.00},\\ (C,L):\boxed{3.00}, \quad \boxed{1.60}, \quad (C,R):1+0.9(-2)+0.9^2\cdot 4=\boxed{2.44}. \end{array}$$

Averages: $(A, L) = \boxed{4.665}$, $(A, R) = \boxed{3.80}$, $(B, L) = \boxed{3.42}$, $(B, R) = \boxed{2.85}$, $(C, L) = \boxed{2.30}$, $(C, R) = \boxed{2.44}$. Greedy: A:L, B:L, C:R. With $\varepsilon = 0.1$ and 2 actions: $\pi'(\text{greedy}|s) = \boxed{0.95}$, $\pi'(\text{other}|s) = \boxed{0.05}$.

8 TD — SARSA (On-Policy Control) [20 pts]

Problem

Episodic MDP with $\gamma = 0.9$, $\alpha = 0.5$, actions $\{U, R\}$. Trajectory: $(s_0, U) \xrightarrow{0} s_1$, $(s_1, U) \xrightarrow{2} s_2$, $(s_2, U) \xrightarrow{-1} T$. Initialize $Q \equiv 0$. Perform the three SARSA updates showing each target explicitly and give ε -greedy action probabilities ($\varepsilon = 0.1$).

Detailed Solution

Update rule: $Q \leftarrow Q + \alpha (R + \gamma Q(S', A') - Q)$.

$$t=0: Q(s_0,U) \leftarrow 0 + 0.5(0 + 0.9 \cdot Q(s_1,U) - 0) = 0,$$

$$t=1: Q(s_1,U) \leftarrow 0 + 0.5(2 + 0.9 \cdot Q(s_2,U) - 0) = 1.0,$$

$$t=2: Q(s_2,U) \leftarrow 0 + 0.5(-1 + 0 - 0) = -0.5.$$

 ε -greedy with 2 actions: at s_1 greedy $U \Rightarrow (0.95, 0.05)$; at s_2 greedy $R \Rightarrow (0.95, 0.05)$; at s_0 tie (split or random tiebreak).

9 TD — Q-Learning (Off-Policy Control) [20 pts]

Problem

Same MDP, $\gamma = 0.9$, $\alpha = 0.5$. Episode 1 identical to SARSA; Episode 2: $(s_0, U) \xrightarrow{0} s_1$, $(s_1, U) \xrightarrow{2} s_2$, $(s_2, U) \xrightarrow{-1} T$. Show each target.

Detailed Solution

Q-learning: $Q \leftarrow Q + \alpha (R + \gamma \max_a Q(S', a) - Q)$.

- After Ep. 1: $Q(s_0, U) = 0$, $Q(s_1, U) = 1.0$, $Q(s_2, U) = -0.5$.
- Ep. 2, t = 0: target $0 + 0.9 \max\{Q(s_1, U) = 1.0, Q(s_1, R) = 0\} = 0.9 \Rightarrow Q(s_0, U) = 0.45$.
- t = 1: target $0 + 0.9 \max\{1.0, 0\} = 0.9 \Rightarrow Q(s_1, R) = 0.45$.

- t = 2: target $2 + 0.9 \max\{Q(s_2, U) = -0.5, Q(s_2, R) = 0\} = 2 \Rightarrow Q(s_1, U) = 1.5$.
- t = 3: target $-1 + 0 = -1 \Rightarrow Q(s_2, U) = -0.75$.

Greedy: U at s_0, s_1 ; R at s_2 .

10 TD — n-Step TD Prediction (Forward View, n=3) [20 pts]

Problem

Evaluate π with $\gamma = 0.9$, $\alpha = 0.5$, n = 3 on episode $A \rightarrow^{+1} B \rightarrow^{+2} B \rightarrow^{-1} C \rightarrow^{+2} T$. Initialize V(A) = V(B) = V(C) = 0. Compute updates for $\tau = 0, 1, 2, 3$ and show each $G_{\tau}^{(3)}$.

Detailed Solution

$$G_0^{(3)} = 1 + 0.9 \cdot 2 + 0.9^2(-1) + 0.9^3 V(C) = \boxed{1.99} \Rightarrow V(A) = 0.995,$$

$$G_1^{(3)} = 2 + 0.9(-1) + 0.9^2 \cdot 2 = \boxed{2.72} \Rightarrow V(B) = 1.36,$$

$$G_2^{(3)} = -1 + 0.9 \cdot 2 = \boxed{0.8} \Rightarrow V(B) = 1.08,$$

$$G_3^{(3)} = 2 = \boxed{2.0} \Rightarrow V(C) = 1.0.$$

11 TD — n-Step SARSA (On-Policy, n=2) [20 pts]

Problem

Discount $\gamma = 0.9$, $\alpha = 0.5$, two states s_0, s_1 , terminal T, actions $\{U, R\}$. Dynamics: $s_0 \colon U : +1 \to s_1, R : 0 \to s_0$; $s_1 \colon U : +2 \to s_1, R : 0 \to T$. Episode: $(s_0, U) \to^{+1} s_1, (s_1, U) \to^{+2} s_1, (s_1, R) \to^0 T$. Compute n=2 SARSA updates for $\tau = 0, 1, 2$ showing each target.

Detailed Solution

$$G_0^{(2)} = 1 + 0.9 \cdot 2 + 0.9^2 Q(s_1, R) = \boxed{2.8} \Rightarrow Q(s_0, U) = 1.4,$$

 $G_1^{(2)} = 2 + 0.9 \cdot 0 = \boxed{2.0} \Rightarrow Q(s_1, U) = 1.0,$
 $G_2^{(2)} = 0 = \boxed{0} \Rightarrow Q(s_1, R) = 0.$

With $\varepsilon = 0.1$: greedy U at both s_0, s_1 (0.95/0.05).

12 Bayesian Bandit — Beta–Bernoulli & Thompson Sampling [20 pts]

Problem

Independent Beta priors on click rates. Observations: A has $s_A=5$, $f_A=3$; B has $s_B=3$, $f_B=1$. Priors: (a) uninformative Beta(1,1), (b) regularized Beta(2,2).

- (a) Derive posteriors and posterior means for each arm.
- (b) Under Bayes-greedy (pick larger posterior mean), which arm is chosen and what is the posterior-predictive success probability?

(c) One Thompson step under (a): suppose samples $\tilde{\theta}_A$ =0.58, $\tilde{\theta}_B$ =0.72. Which arm and expected reward?

Detailed Solution

For Beta–Bernoulli, $\theta \mid \text{data} \sim \text{Beta}(\alpha_0 + s, \beta_0 + f)$ with mean $\frac{\alpha_0 + s}{\alpha_0 + \beta_0 + s + f}$.

- (a) Beta(1,1): $A \sim \text{Beta}(6,4)$ mean 0.60; $B \sim \text{Beta}(4,2)$ mean 0.6667.
- (b) Beta(2,2): $A \sim \text{Beta}(7,5)$ mean $7/12 \approx 0.5833$; $B \sim \text{Beta}(5,3)$ mean 0.625.

Bayes-greedy picks B in both cases (predictive success equals the posterior mean). Thompson step (samples given): pick B; expected instantaneous reward = $\tilde{\theta}_B = \boxed{0.72}$.

References: Sutton & Barto (2018), Ch. 2,4–7; Puterman (1994), Ch. 2.