Examenul de bacalaureat 2012 Proba E. d) Proba scrisă la FIZICĂ

Filiera teoretică – profilul real, Filiera tehnologică – profilul tehnic și profilul resurse naturale și protecția mediului, Filiera vocațională – profilul militar

- Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,
 B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
 Se acordă 10 puncte din oficiu.
- Timpul efectiv de lucru este de 3 ore.

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

MODEL

- I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- **1.** Simbolurile unităților de măsură fiind cele utilizate în manualele de fizică, unitatea de măsură în S.I. a sarcinii electrice poate fi scrisă sub forma:
- **a.** A ⋅ s⁻¹
- b. A · s
- **c.** A⁻¹·s⁻¹
- **d.** A⁻¹·s
- 2. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, puterea totală dezvoltată de o sursă ale cărei borne sunt legate printr-un fir conductor de rezistență neglijabilă, se exprimă prin relația:
- **a.** $P_{SC} = \frac{E^2}{4r}$
- **b.** $P_{SC} = \frac{E^2}{3r}$
- $\mathbf{c.} \ P_{SC} = \frac{E^2}{2r}$
- **d.** $P_{SC} = \frac{E^2}{r}$ (3p)
- **3.** Intensitatea curentului electric ce străbate un rezistor cu rezistența R conectat la bornele unei baterii formată din n surse identice, cu tensiunea electromotoare E și rezistența internă r, grupate în paralel, este dată de relația:
- **a.** $I = n \cdot E \cdot (R + n \cdot r)^{-1}$ **b.** $I = E \cdot (R + n \cdot r)^{-1}$ **c.** $I = n \cdot E \cdot \left(R + \frac{r}{n}\right)^{-1}$ **d.** $I = E \cdot \left(R + \frac{r}{n}\right)^{-1}$ (3p)
- **4.** Graficul din figura alăturată reprezintă dependența puterii dezvoltate pe un rezistor având rezistența electrică constantă de pătratul intensității curentului electric ce îl străbate. Valoarea rezistenței electrice a rezistorului este:

- a. 25Ω
- **b.** 50 Ω
- c. 100Ω
- d. 200Ω
- **5.** Rezistoarele din figura alăturată au fiecare rezistența electrică $R=20~\Omega$. În aceste condiții, rezistența echivalentă între bornele A și B este:

- a. 13Ω
- **b**. 26 Ω
- c. 37Ω
- **d.** 52Ω

(3p)

II. Rezolvați următoarea problemă:

(15 puncte)

Pentru a determina experimental rezistenţa internă a unei surse de curent continuu cu tensiunea electromotoare $E=4,5\,\mathrm{V}$, la bornele acesteia se conectează un rezistor cu rezistenţa electrică $R=4,0\,\Omega$. Un voltmetru considerat ideal $(R_{\mathrm{V}}\to\infty)$, conectat la bornele sursei, indică $U_1=4,0\,\mathrm{V}$. Apoi, în circuit, se conectează un ampermetru având rezistenţa internă R_{A} pentru măsurarea intensităţii curentului prin sursă. Ştiind că în acest caz ampermetrul indică $I_2=0,8\,\mathrm{A}$, determinaţi:

- a. rezistența internă a sursei de curent continuu;
- **b.** rezistența internă a ampermetrului;
- c. puterea disipată pe rezistor în cazul în care ampermetrul este conectat în circuit;
- **d.** lungimea firului din care este construit rezistorul, dacă diametrul lui este d=0.5 mm, iar rezistivitatea materialului din care este confecționat este $\rho=5.0\cdot10^{-7}\,\Omega\cdot\text{m}$.

III. Rezolvați următoarea problemă:

(15 puncte)

- O sursă cu tensiunea electromotoare $E=30\,\mathrm{V}$ şi rezistență internă $r=1\Omega$ alimentează un rezistor având rezistența electrică R . Randamentul circuitului este $\eta=90\%$.
- a. Determinați tensiunea la bornele sursei.
- **b.** Determinați rezistența electrică *R* .
- **c.** Determinați energia disipată pe rezistorul de rezistență electrică R în timpul $\Delta t = 1$ min .
- **d.** Rezistorul având rezistența electrică R se înlocuieşte cu o grupare paralel formată din n rezistoare, fiecare având aceeaşi rezistență electrică R. Determinați valoarea lui n astfel încât sursa să furnizeze puterea maximă circuitului exterior.