Required Problems

1. (Strang 6.1.3) Compute the eigenvalues and eigenvectors of A and A^{-1} .

$$A = \begin{bmatrix} 0 & 2 \\ 1 & 1 \end{bmatrix} \text{ and } A^{-1} = \begin{bmatrix} -1/2 & 1 \\ 1/2 & 0 \end{bmatrix}.$$

 A^{-1} has the eigenvectors as A. When A has eigenvalues λ_1 and λ_2 , its inverse has eigenvalues .

Solution: eigenvalues of A consists of solving the characteristic polynomial $\det(A - \lambda I)$

$$\det(A - \lambda I) = (-\lambda)(1 - \lambda) - 2 = \lambda^2 - \lambda - 2$$

We now have

$$\lambda_1 = 2, \lambda_2 = -1$$

To solve for eigenvectors, we need to find solutions to:

$$N(A - \lambda I)$$

Calculations then yield,

$$\mathbf{v_1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \mathbf{v_1} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

eigenvalues of A^{-1} consists of solving the characteristic polynomial

$$\det(A^{-1} - \lambda I)$$

$$\det(A^{-1} - \lambda I) = (-\frac{1}{2} - \lambda)(-\lambda) - \frac{1}{2} = \lambda^2 + \frac{1}{2}\lambda - \frac{1}{2}$$

We now have

$$\lambda_1 = \frac{1}{2}, \lambda_2 = -1$$

To solve for eigenvectors, we need to find solutions to:

$$N(A^{-1} - \lambda I)$$

Calculations then yield,

$$\mathbf{v_1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \mathbf{v_1} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

We can now complete the statement above:

 A^{-1} has the SAME eigenvectors as A A^{-1} has eigenvalues $\frac{1}{\lambda}$

2. (Strang 6.1.12) Find three eigenvectors for this matrix P (Projection matrices have $\lambda=1$ and 0.):

Projection matrix
$$P = \begin{bmatrix} .2 & .4 & 0 \\ .4 & .8 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

If two eigenvectors share the same λ , so do all of their linear combinations. Find an eigenvector of P with no zero components.

Solution:

Assuming the only two eigenvalues are 0 and 1:

Solve for $N(A - \lambda I)$:

.

$$\begin{bmatrix} .2 - \lambda & .4 & 0 \\ .4 & .8 - \lambda & 0 \\ 0 & 0 & 1 - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} .2 & .4 & 0 \\ .4 & .8 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \implies \mathbf{v_1} = \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -.8 & .4 & 0 \\ .4 & -.2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \implies \mathbf{v_2} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \mathbf{v_3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\mathbf{v_2} + \mathbf{v_3} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$

Since all linear combinations of eigenvectors with the same eigenvalue are also eigenvectors of P, then adding the two above yields an eigenvector of P with no 0 compnents.

3. (Strang 6.1.16) The determinant of A equals the product $\lambda_1 \lambda_2 \cdots \lambda_n$. Start with the polynomial $\det(A - \lambda I)$ separated into its n factors (always possible). Then set $\lambda = 0$:

$$\det(A - \lambda I) = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \cdots (\lambda_n - \lambda)$$
 so $\det A =$

Check this rule in Example 1 where the Markov matrix has $\lambda = 1$ and 1/2. Solution:

$$\det(A - \lambda I) = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \cdots (\lambda_n - \lambda)$$

$$(\lambda_1 - 0)(\lambda_2 - 0) \cdots (\lambda_n - 0)$$

$$(\lambda_1)(\lambda_2)(\lambda_3)(\lambda_4)\cdots(\lambda_n)$$

$$\prod_{i=0}^{n} \lambda_i$$

$$A = \begin{bmatrix} .8 & .3 \\ .2 & .7 \end{bmatrix}$$

$$\det A = ad - bc = .56 - 0.06 = 0.5 = \frac{1}{2}$$

$$(\lambda_1)(\lambda_2) = (1)(\frac{1}{2}) = \frac{1}{2}$$

4. (Strang 6.1.25) Suppose A and B have the same eigenvalues $\lambda_1, \ldots, \lambda_n$ with the same independent eigenvectors $\mathbf{x}_1, \ldots, \mathbf{x}_n$. Then A = B. Reason: Any vector \mathbf{x} is a linear combination $c_1\mathbf{x}_1 + \cdots + c_n\mathbf{x}_n$. What is $A\mathbf{x}$? What is $B\mathbf{x}$? Solution:

Assume A and B have identical eigenvalues and eigenvalues Since x can be written as a linear combination of eigenvectors, we can express it as

$$\mathbf{x} = c_1 \mathbf{x}_1 + \dots + c_n \mathbf{x}_n$$

$$A\mathbf{x} = A(c_1\mathbf{x}_1 + \dots + c_n\mathbf{x}_n)$$

$$= Ac_1\mathbf{x}_1 + Ac_2\mathbf{x}_2 + \dots + Ac_n\mathbf{x}_n(linearity)$$

$$= c_1(A\mathbf{x}_1) + c_2(A\mathbf{x}_2) + \dots + c_n(A\mathbf{x}_n)(associativity))$$

$$= c_1(\lambda_1\mathbf{x}_1) + c_2(\lambda_2\mathbf{x}_2) + \dots + c_n(\lambda_n\mathbf{x}_n)(property\ of\ eigenvalues)$$

$$= c_1(B\mathbf{x}_1) + c_2(B\mathbf{x}_2) + \dots + c_n(B\mathbf{x}_n)(Assumption)$$

$$= Bc_1\mathbf{x}_1 + Bc_2\mathbf{x}_2 + \dots + Bc_n\mathbf{x}_n(associativity)$$

$$= B(c_1\mathbf{x}_1 + \dots + c_n\mathbf{x}_n)$$

$$A\mathbf{x} = B\mathbf{x}$$
$$A = B$$

 $= B\mathbf{x}$

5. (Strang 6.2.16) Find Λ and X to diagonalize $A = \begin{bmatrix} .6 & .9 \\ .4 & .1 \end{bmatrix}$ (in Strang 6.2.15). What is the limit of Λ^k as $k \to \infty$? What is the limit of $X\Lambda^kX^{-1}$? In the columns of this limiting matrix you see the Solution:

To find Λ , we must first find the eigenvalues of A and solve det $A - \lambda I$

$$\det A - \lambda I = (.6 - \lambda)(.1 - \lambda) - (.9)(.4) = \lambda^2 - .7\lambda - .3$$
$$\lambda_1 = 1, \lambda_2 = -\frac{3}{10}$$

Plugging this back to find our eigenvectors to solve $N(A - \lambda I)$

$$\begin{bmatrix} .6 - \lambda & .9 \\ .4 & .1 - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\mathbf{v_1} = \begin{bmatrix} 9 \\ 4 \end{bmatrix}, \mathbf{v_2} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

We now know that:

$$\Lambda = \begin{bmatrix} 1 & 0 \\ 0 & -.3 \end{bmatrix}$$

With this we can say that

$$\lim_{k \to \infty} \Lambda^k = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

We can apply this information to find $\lim_{k\to\infty} X\Lambda^k X^{-1}$

$$\lim_{k \to \infty} X \Lambda^k X^{-1} = \begin{bmatrix} 9 & -1 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{13} & \frac{1}{13} \\ -\frac{4}{13} & \frac{9}{13} \end{bmatrix} = \begin{bmatrix} 9 & -1 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{13} & \frac{1}{13} \\ 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} \frac{9}{13} & \frac{9}{13} \\ \frac{4}{13} & \frac{4}{13} \end{bmatrix} = \frac{1}{13} \begin{bmatrix} 9 & 9 \\ 4 & 4 \end{bmatrix}$$

In the columns of the limiting matrix, we see the eigenvector corresponding to eigenvalue 1.

6. (Strang 6.2.29) Suppose the same X diagonalizes both A and B. They have the same eigenvectors in $A = X\Lambda_1X^{-1}$ and $B = X\Lambda_2X^{-1}$. Prove that AB = BA.

Solution:

Begin with:

$$AB = (X\Lambda_{1}X^{-1})(X\Lambda_{2}X^{-1})$$

$$= X\Lambda_{1}(X^{-1}X)\Lambda_{2}X^{-1}$$

$$= X\Lambda_{1}I\Lambda_{2}X^{-1}$$

$$= X\Lambda_{1}\Lambda_{2}X^{-1}$$

And Since A and B have the same X, $\Lambda_1 = \Lambda_2$

$$=X\Lambda^2X^{-1}$$

Similarly:

$$\begin{split} BA &= (X\Lambda_1 X^{-1})(X\Lambda_2 X^{-1}) \\ &= X\Lambda_1 (X^{-1}X)\Lambda_2 X^{-1} \\ &= X\Lambda_1 I\Lambda_2 X^{-1} \\ &= X\Lambda_1 \Lambda_2 X^{-1} \\ &= X\Lambda^2 X^{-1} \end{split}$$

Finally, we have that

$$X\Lambda^{2}X^{-1} = X\Lambda^{2}X^{-1}$$

$$AB = BA$$

- 7. Let A be a matrix, and \mathbf{x} and \mathbf{y} be eigenvectors for A. Prove or disprove each of the following statements.
 - (a) For all scalars $c \neq 0$, the vector $c\mathbf{x}$ is an eigenvector for A.
 - (b) For all integers $k \geq 1$, x is an eigenvector for A^k .
 - (c) The vector $\mathbf{x} + \mathbf{y}$ is always an eigenvector for A.

Solution:

(a) True An eigenvector must satisfy $A\mathbf{x} = \lambda \mathbf{x}$ Checking $c\mathbf{x}$, We then have $Ac\mathbf{x}$ and $\lambda c\mathbf{x}$

By associativity we have: $c(A\mathbf{x})$ and $c(\lambda \mathbf{x})$

And since $A\mathbf{x} = \lambda \mathbf{x}$ We have that $Ac\mathbf{x} = \lambda c\mathbf{x}$

(b) True Proof by induction:

Base case n = 1:

True, because it was given that x was an eigenvalue of A

Induction Step:

 $A^n \mathbf{x} = \lambda^n \mathbf{x}$ (Induction hypothesis)

 $= A(A^n)\mathbf{x} = A\lambda^n\mathbf{x}$ (Induction Hypothesis)

$$A^{n+1}\mathbf{x} = \lambda^n(A\mathbf{x})$$

$$A^{n+1}\mathbf{x} = \lambda^n(\lambda \mathbf{x})$$
$$A^{n+1}\mathbf{x} = \lambda^{n+1}\mathbf{x}$$

Since there exists a lambda, s.t. $A^{n+1}\mathbf{x} = \lambda \mathbf{x}$, by the induction hypothesis, our proof is complete.

(c) False

Consider

$$\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$

This matrix has eigenvalues 2,3 and eigenvectors $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ The sum of these 2, $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is not an eigenvector, as $A\mathbf{x} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, and there is no such scalar λ that exists which when multipiled by 1 gives 2 and 3.

Optional Problems

- 8. Prove that if A_1 is similar to A_2 and A_2 is similar to A_3 , then A_1 is similar to A_3 .
- 9. Prove or disprove:
 - (a) If \mathbf{x} is an eigenvector for A and B, then \mathbf{x} is an eigenvector for AB and BA.
 - (b) If λ is an eigenvalue for A and B, then λ^2 is an eigenvalue for AB and BA.
- 10. List all matrices that are similar to the identity matrix.
- 11. Prove that the eigenvalues of a triangular matrix are the entries on the diagonal.
- 12. The trace of a matrix is the sum of the diagonal entries. Prove that the sum of the eigenvalues is equal to the trace.
- 13. Suppose \mathbf{x}_1 and \mathbf{x}_2 are eigenvectors for A with eigenvalues λ_1 and λ_2 . Under what conditions on λ_1 and λ_2 is $\mathbf{x}_1 + \mathbf{x}_2$ an eigenvector for A?
- 14. We have seen how it is possible to find eigenvalues and eigenvectors of a matrix by finding roots of its characteristic polynomial. In this problem you will show how to do the reverse: You can find the roots of a polynomial by finding the eigenvectors of its "companion matrix." Let p be the degree n polynomial $p(z) = c_0 + c_1 z + c_2 z^2 + \cdots + z^n$.

Note that the coefficient of z^n is 1.

Define the companion matrix for p to be the $n \times n$ matrix

$$C = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & 0 & 1 \\ -c_0 & -c_1 & \dots & -c_{n-2} & -c_{n-1} \end{bmatrix}.$$

- (a) Show that $\det(C \lambda I) = p(\lambda)$.
- (b) Prove that z is a root of p if and only if it is an eigenvalue of C with eigenvector $(1, z, z^2, \ldots, z^{n-1})$.
- (c) Explain how to determine the roots of any degree n polynomial (even if its leading coefficient is not 1) if you know how to find eigenvectors for a matrix. [This is actually how some polynomial solvers proceed: Rather than solving the polynomial they instead find the eigenvectors of its companion matrix.]
- 15. Write Julia code to recursively calculate the determinant of any $n \times n$ matrix using cofactors.