Bright star mask for S19A

Satoshi TAKITA

Data

- Input catalog: GAIA DR2 with good photometric data
 - phot_g_mean_flux_over_error > 50 AND phot_bp_mean_flux_over_error > 20 AND phot_rp_mean_flux_over_error > 20 AND phot_bp_rp_excess_factor < 1.3+0.06*power(phot_bp_mean_mag-phot_rp_mean_mag,2) AND phot_bp_rp_excess_factor > 1.0+0.015*power(phot_bp_mean_mag-phot_rp_mean_mag,2)
 - for brighter side (<11 mag): equator regions.
 - for fainter side(>= 11 mag): dud-cosmos, sxds, and deep2 regions.
 - GAIA mags were converted to HSC mags.
- HSC data
 - Catalog-based: to check the distance where false detections arise.
 - Create histograms (dN/dr vs r) of the number of detected sources around the GAIA star.
 - Take mean values for magnitudes between x and x+1.
 - Image-based: to check the "halo" size.
 - Make radial profile (normalized at central value).
 - Take median values for magnitudes between x and x+1.
 - Saturation trail and(or?) muxbleed are not yet considered.

Results

- The histograms settle to ~0.2 at large distance.
 - The settle distance is closer with fainter sources.
 - This distance will be the mask size.
- Bright (<= 7 mag) sources have a feature at 160 arcsec, for both the histogram and radial profile. This distance does not depend on magnitudes; it is thought to be caused by optics.
- Much brighter (<= 6 mag) sources have additional features at 260 and 320 arcsec. They may be the same cause.
 - For bright sources, we should make additional "halo" mask with 350 arcsec radius at maximum.

imag = 3 source

circle radii are 150, 260, and 320 arcsecs.

the 320 arcsec radius is a little bit smaller to mask the "halo".

Close-up of the inner region

