Weighted graph - weights assigned to edges

Minimum spanning tree - one that minimizes Sum of edge weights

Weighted graph - weights assigned to edges

Minimum spanning tree - one that minimizes
Sum of edge weights

Kruskal's MST Algorithm

 $H \leftarrow (V, \phi)$

while |E(H) | < n-1 do

et min weight edge of G 5.t. Hte 13 acyclic add e to H

Kruskal's MST Algorithm

 $H \leftarrow (V, \phi)$

while |E(H) | < n-1 do

et min weight edge of G 5.t. Hte 13 acyclic add e to H

Proof of Kruskal Let T be the tree produced by Kruskal.

Label the edges of T: e, e2, e3, ... in order added by Kruskal

Let T* be a MST.

Proof of Kruskal Let T be the tree produced by Kruskal.

Label the edges of T: e, e2, e3, ... <u>In order added by</u>
Kruskal

Let T* be a MST. First show that if all edge weights are distinct, then T=T*

Proof of Kruskal Let T be the tree produced by Kruskal.

Label the edges of T: e, e2, e3, ... in order added by

Kruskal

Let T* be a MST. First show that if

all edge weights are distinct, then T=T* If not,

let ej be the first edge of T not in T* (then j=n+)

Proof of Kruskal Let T be the tree produced by Kruskal. Label the edges of T: e, e2, e3, ... in order added by Kruskal Let T* be a MST. First show that if all edge weights are distinct, then T=T* If not, let ej be the first edge of T not in T* (then j=n-1) By Prop. 2.1.7, there is an edge e' in E(T*) - E(T)

s.t. T*+ej-e' is a spanning tree of G.

Proof of Kruskal Let T be the tree produced by Kruskal. Label the edges of T: e, e2, e3, ... in order added by Kruskal Let T* be a MST. First show that if all edge weights are distinct, then T=T* If not, let ej be the first edge of T not in T* (then j=n-1) By Prop. 2.1.7, there is an edge e' in E(T*) - E(T) s.t. T*+e,-e' is a spanning tree of G.

But since TX 15 a MST, W(es) > W(e').

On the other hand, note Kruskal chose e, over e! But all of the edges e, ez, .., e, , e' are in T* So e' does not create a cycle with $e_1, e_2, ..., e_{j-1}$. 1.e, e' was eligible to be chosen by Kruskal at the same time as ej. But it did not get chosen, so $\omega(e_s) \leq \omega(e')$. Thus $\omega(e_s) = \omega(e')$, contradicting that all weights are distinct.

On the other hand, note Kruskal chose e, over e! But all of the edges e, ez, ..., e, ..., e' are in T* So e' does not create a cycle with $e_1, e_2, ..., e_{j-1}$. 1.e, e' was eligible to be chosen by Kruskal at the same time as ej. But it did not get chosen, so $\omega(e_s) \leq \omega(e')$. Thus $\omega(e_s) = \omega(e')$, contradicting that all weights are distinct.

If edge weights not district, note replace T* by T*+e,-e' and repeat

AAR for advanced students only AAA instead of:

If edge weights not district, note replace T* by T*+e,-e' and repeat

Do THIS:

proof by extremality: Let T^* be a MST which contains $e_{1},e_{2},...,e_{J-1}$ for largest possible j. Then show that if $T^* \neq T$ then you can construct $T^* + e_{J} - e'$ to reach a contradiction.

distance from u to v in G, $d_G(u,v)$: least length of a u,v path in G, if one exists.

diameter of G:

$$\max_{u,v \in V(G)} d(u,v)$$

eccentricity of vertex u of G:

$$\epsilon(u) = \max_{v \in V(G)} d(u, v)$$

radius of G:

$$\min_{u \in V(G)} \epsilon(u)$$

Shortest Path Problems

Each edge e has a real weight w(e). Find **minimum weight path** joining pairs of vertices.

All Pairs [Floyd 1962]

Single Source [Dijkstra 1959]

Single Pair

Problems with edges of negative weight:

[**Dijkstra**] may fail in the presence of <u>negative</u> weight edges.

[Floyd] will work for negative weight edges, but not for negative weight cycles.

Dijkstra's Algorithm

G - weighted graph or digraph; (NO NEGATIVE WEIGHT:

Let
$$w(x,y)=$$
 weight of xy if $xy\in E(G)$; ∞ , otherwise.

Source $u \in V(G)$

Maintain set S of vertices to which minimum-weight path from u is known.

Maintain, for each $z \in V(G) - S$, a tentative weight t(z) from u initialized to w(u,z).

As long as $S \neq V$ do the following:

Find vertex $v \not\in S$ for which t(v) is minimum.

Add v to S.

For each $z \not\in S$ which is adjacent to v, update tentative weight:

$$t(z) \leftarrow \min\{t(z), t(v) + w(v, z)\}$$

Example: Find minimum weight paths from vertex 1 using Dijkstra's algorithm.

Proof of Correctness

CLAIM: At beginning of each iteration,

$$t(v) =$$

- (a) weight of cheapest path from u to v, if $v \in S$;
- (b) otherwise, weight of cheapest path from \boldsymbol{u} to \boldsymbol{v} using only vertices from \boldsymbol{S} as intermediate vertices.

PROOF OUTLINE: (Induction on iteration)

Basis: Claim is true at beginning of iteration 1.

<u>Ind.</u> Assume claim is true at beginning of iteration i. Show it is still true at end. Let v be vertex chosen during iteration i.

- (a) If a cheaper u, v path contained a vertex not in S, let x be the first such vertex on this path. Then t(x) < t(v), a contradiction.
- (b) Check that t-values for $z \not\in S$ are correctly updated.