Chapitre 10 : Suites et séries de fonctions

Cadre:

On va parler de suites et séries de termes généraux $u_n : A \to E$ où A est une partie d'un evn, et E est un evn.

I Convergence simple

A) Définition

Suite de fonctions :

On dit que la suite de fonctions $(f_n)_{n\in\mathbb{N}}$, $f_n:A\to E$ converge simplement sur A lorsque pour tout $x\in A$, la suite de terme général $(f_n(x))_{n\in\mathbb{N}}$ converge.

La fonction g définie sur A par $\forall x \in A, g(x) = \lim_{n \to +\infty} f_n(x)$ s'appelle limite simple de $(f_n)_{n \in \mathbb{N}}$.

• Séries de fonctions :

On dit que la série de terme général $u_n:A\to E$ converge simplement sur A lorsque pour tout $x\in A$, la série de terme général $u_n(x)$ converge, c'est-à-dire si la suite des sommes partielles $S_n=\sum_{k=0}^n u_k$ converge simplement sur A.

• Domaine de convergence simple :

Il peut arriver qu'il n'y ait pas convergence simple sur tout le domaine de définition des fonctions (ici A)

Dans ce cas, l'ensemble des x en lesquels la série converge s'appelle le domaine de convergence simple.

Dans le cadre des séries, le domaine de convergence simple est le domaine de définition de la fonction somme totale.

B) En pratique

L'étude de la convergence simple correspond à celle d'une suite ou d'une série avec un paramètre.

Exemples sur les séries :

• Série géométrique :

Le domaine de convergence simple complexe de $\sum_{n=0}^{+\infty} x^n$ est le disque unité (ouvert)

• Exponentielle:

Le domaine de convergence simple complexe de $\sum_{n=0}^{+\infty} \frac{x^n}{n!}$ est \mathbb{C} .

(D'après le critère de d'Alembert pour $x \neq 0$: $\frac{|u_{n+1}|}{|u_n|} \rightarrow 0$)

• $\sum_{n=0}^{+\infty} \frac{x^n}{n}$: domaine de définition complexe?

D'après le critère de D'Alembert (pour $z \neq 0$), la série converge si |z| < 1, diverge si |z| > 1.

Pour |z|=1:

- Cas réel :

Pour z = 1, la série diverge, pour z = -1, elle converge (critère de Leibniz)

- Cas complexe: $(z \neq 1, |z| = 1)$

On a, pour tout $n \in \mathbb{N}^*$, $\frac{1}{n} = \int_0^1 t^{n-1} dt$. Donc:

$$\sum_{k=1}^{n} \frac{z^{k}}{k} = \sum_{k=1}^{n} \left(\int_{0}^{1} t^{k-1} dt \right) z^{k} = \int_{0}^{1} \sum_{k=1}^{n} t^{k-1} z^{k} dt$$

$$= z \cdot \int_{0}^{1} \frac{1 - (tz)^{n}}{1 - tz} dt = \underbrace{z \int_{0}^{1} \frac{dt}{1 - tz}}_{A} - \underbrace{z \int_{0}^{1} \frac{(tz)^{n}}{1 - tz} dt}_{\varepsilon_{n}}$$

A est l'intégrale d'une fonction continue, donc définie $(1-tz \neq 0)$

Et
$$|\mathcal{E}_n| \le |z| \int_0^1 \frac{|tz|^n}{|1-tz|} dt = \int_0^1 \frac{t^n}{|1-tz|} dt \le M \int_0^1 t^n dt = \frac{M}{n+1}$$

Où
$$M = \|\varphi\|_{\infty}$$
, $\varphi: t \mapsto \frac{1}{1-tz}$ bornée.

Ainsi, $\varepsilon_n \to 0$, donc la série converge et $\sum_{n=1}^{+\infty} \frac{z^k}{k} = z \int_0^1 \frac{dt}{1-tz}$.

Calcul:

Comme |z|=1, on a $z=e^{i\theta}$ où $\theta \in]0,2\pi[\setminus \{\pi\}]$. Ainsi :

$$e^{i\theta} \int_0^1 \frac{dt}{1 - te^{i\theta}} = -\int_0^1 \frac{dt}{t - e^{-i\theta}} = -\left[\ln|t - e^{i\theta}| + i\operatorname{Arctan}\left(\frac{t - \cos\theta}{-\sin\theta}\right) \right]_0^1$$

$$= -\left[\ln|t - e^{i\theta}| \right]_0^1 - i\left[\operatorname{Arctan}\left(\frac{t - \cos\theta}{-\sin\theta}\right) \right]_0^1$$

$$= -\ln|1 - e^{i\theta}| + i\operatorname{Arctan}\left(\frac{1 - \cos\theta}{\sin\theta}\right) + i\operatorname{Arctan}\left(\frac{1}{\tan\theta}\right)$$

$$= -\ln|2\sin\frac{\theta}{2}| + i\operatorname{Arctan}\left(\frac{2\sin^2\frac{\theta}{2}}{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}\right) + i\operatorname{Arctan}\left(\tan(\frac{\pi}{2} - \theta)\right)$$

Pour $\theta \in \left]0, \pi\left[, e^{i\theta} \int_{0}^{1} \frac{dt}{1 - te^{i\theta}} = -\ln\left|2\sin\frac{\theta}{2}\right| + i\left(\frac{\theta}{2} + \frac{\pi}{2} - \theta\right) = -\ln\left|2\sin\frac{\theta}{2}\right| + \frac{i}{2}(\pi - \theta)\right]$

• Etude de
$$\xi(s) = \sum_{n=1}^{+\infty} n^{-s}$$
 pour $s \in \mathbb{C}$

Si $s \in \mathbb{R}$, la série converge si et seulement si s > 1.

Pour $s \in \mathbb{C}$:

On pose
$$u_n(s) = \frac{1}{n^s}$$
; ainsi, $|u_n(s)| = \frac{1}{n^{\text{Re}(s)}}$

Si Re(s) > 1, il y a convergence absolue.

Si $Re(s) \le 0$, il y a divergence grossière (la suite ne tend pas vers 0).

Si $Re(s) \in [0,1]$:

On pose
$$v_n(s) = \int_n^{n+1} \frac{dt}{t^s}$$

Etude de v_n :

On pose
$$V_n(s) = \sum_{k=1}^n \int_k^{k+1} \frac{dt}{t^s} = \int_1^n \frac{dt}{t^s} = \frac{1}{1-s} (n^{1-s} - 1)$$

Ainsi, la série de terme général $v_n(s)$ converge si et seulement si la suite de terme général $V_n(s)$ converge.

Si
$$Re(s) \in]0;1[, |n^{1-s}| = n^{1-Re(s)} \to +\infty$$
, et la série diverge.

Si Re(s) = 1 (s \neq 1),
$$s = 1 + ib$$
 où $b \in \mathbb{R}^*$ et $n^{1-s} = n^{ib} = e^{ib \ln n}$.

Supposons que $\alpha_n = e^{ib \ln n}$ converge vers $l \in \mathbb{C}$.

Alors
$$\alpha_{n^2} = (\alpha_n)^2 \to l$$
. Donc $l = l^2$, soit $l = 1$ (car $|l| = 1$)

Soit k > 0 réel.

On pose
$$\varphi(n) = E(kn) = kn + O(1)$$

Alors
$$\alpha_{\varphi(n)} = e^{2ib\ln(kn + O(1))} = e^{2ib\ln(kn) + O(1/n)} \sim e^{2ib\ln(k)} \alpha_n \to l.e^{2ib\ln(k)} = 1$$

Donc $\forall k > 0, e^{2ib \ln(k)} = 1$, ce qui est impossible.

Donc la suite $(\alpha_n)_{n\geq 1}$ diverge, et donc $(V_n(s))_{n\in\mathbb{N}^*}$ aussi.

Ainsi,
$$\sum_{n\geq 1} v_n(s)$$
 a pour domaine de définition $\{z \in \mathbb{C}, \text{Re}(z) > 1\}$

Etude de la série de terme général $w_n = \frac{1}{n^s} - \int_n^{n+1} \frac{dt}{t^s}$ pour $0 < \text{Re}(s) \le 1$ et $s \ne 1$.

On a
$$w_n = \frac{1}{n^s} - \int_n^{n+1} \frac{dt}{t^s} = \int_n^{n+1} \left(\frac{1}{n^s} - \frac{1}{t^s} \right) dt$$

D'après le théorème des accroissements finis appliqué à $f: u \mapsto \frac{1}{u^s}$ sur

$$[n,t] \subset [n,n+1]$$
, on a $|f(n)-f(0)| \le \frac{|t-n||s|}{n^{\text{Re}(s)+1}}$

$$(\operatorname{Car} |f(n) - f(t)| \le \frac{|t - n||s|}{n^{\operatorname{Re}(s) + 1}})$$

Donc $|w_n| \le \int_n^{n+1} \frac{|t-n||s|}{n^{\text{Re}(s)+1}} dt \le \frac{|s|}{n^{\text{Re}(s)+1}} \int_n^{n+1} |t-n| dt \le \frac{|s|}{n^{\text{Re}(s)+1}}$, terme général d'une série convergente. Donc la série de terme général w_n converge absolument, donc converge.

Ainsi, le domaine de définition de
$$\xi$$
 est $\{z \in \mathbb{C}, \text{Re}(z) > 1\}$ $(\xi = \sum_{n=1}^{+\infty} w_n + \sum_{n=1}^{+\infty} v_n)$

C) Inconvénients de la convergence simple

En général, par passage à la limite simple, on perd les propriétés analytiques des fonctions.

Exemple:

La série de terme général $u_n: x \mapsto n^{\alpha} x e^{-nx}$.

Pour x = 0 la série converge.

Si
$$x \neq 0$$
, $\frac{u_{n+1}(x)}{u_n(x)} = \frac{(n+1)^{\alpha}}{n^{\alpha}} e^{-x} \to e^{-x}$

Donc le domaine de convergence est $[0,+\infty]$

Dans le cas particulier où
$$\alpha = 0$$
, on a $s(x) = \begin{cases} 0 \text{ si } x = 0 \\ \frac{x}{1 - e^{-x}} \text{ si } x > 0 \end{cases}$

Et donc $\lim_{x\to 0^+} s(x) = 1 \neq s(0)$, donc la continuité est perdue.

Pour $f_n(x) = \sqrt{x^2 + \frac{1}{n^2}}$, la suite de terme général f_n converge simplement vers

 $x \mapsto |x|$ qui n'est pas dérivable en 0 alors que les f_n sont de classe C^{∞} .

Donc le caractère dérivable peut se perdre par passage à la limite simple.

Lien avec les intégrales :

Problème:

A t'on
$$\lim_{n\to+\infty} \int_a^b f_n(t)dt = \int_a^b \lim_{n\to+\infty} f_n(t)dt$$
, ou $\sum_{n=0}^{+\infty} \int_a^b u_n = \int_a^b \sum_{n=0}^{+\infty} u_n$?

Réponse : non en général. Il faut des hypothèses supplémentaires, la convergence simple ne suffit pas.

Exemple:

On pose
$$f_n(x) = n^{\alpha} x e^{-nx}$$
. Pour quels α a-t-on $\lim_{n \to +\infty} \int_0^1 f_n = \int_0^1 \lim_{n \to +\infty} f_n$?

Pour
$$x \in [0;1]$$
, on a $\lim_{n \to +\infty} f_n = 0$

Donc pour tout
$$\alpha$$
, $\int_0^1 \lim_{n \to +\infty} f_n = 0$

Mais pour
$$n \ge 1$$
, $\int_0^1 f_n = n^{\alpha} \int_0^1 t e^{-nt} dt = n^{\alpha} \left[\frac{-1}{n} e^{-nt} t \right]_0^1 + n^{\alpha - 1} \int_0^1 e^{-nt} dt$

Soit
$$\int_0^1 f_n = -n^{\alpha - 1} e^{-n} + n^{\alpha - 2} (1 - e^{-n}) \underset{n \to +\infty}{\sim} n^{\alpha - 2}$$

Conclusion:

Si $\alpha < 2$, on a bien l'égalité.

Si
$$\alpha = 2$$
, $\lim_{n \to +\infty} \int_0^1 f_n = 1$ et $\int_0^1 \lim_{n \to +\infty} f_n = 0$.

Si
$$\alpha > 0$$
, $\lim_{n \to +\infty} \int_0^1 f_n = +\infty$

En général, on ne peut donc pas intervertir l'intégrale et la limite.

Explication:

Graphe de f_n pour $\alpha = 2$:

$$f'_n(t) = n^2 e^{-nt} (1 - nt)$$

On a un phénomène de bosse glissante :

- Justification de la convergence simple :

En x = 0, ok

Pour x > 0: au bout d'un certain temps, la bosse est à gauche de x et à partir d'un certain rang, $f_n(x)$ décroît vers 0.

- Minoration de $\int_0^1 f_n$: la bosse a une largeur en $\frac{1}{n}$, une hauteur en n, donc $\int_0^1 f_n$ est minorée par une constante.

II Convergence uniforme des suites et séries de fonctions, convergence normale des séries

A) Définition

• Suites de fonctions :

On dit que la suite de terme général $(f_n)_{n\in\mathbb{N}}$ où $f_n:A\to E$ converge uniformément sur A vers g si elle vérifie :

- (1) $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \ge N, \forall x \in A, \|f_n(x) g(x)\|_{E} \le \varepsilon$
- (2) C'est-à-dire si (f_n-g) est bornée à partir d'un certain rang n_0 et si $\lim_{\substack{n\to +\infty\\ n\geq n_0}} \|f_n-g\|_{\infty}=0$

Montrons l'équivalence :

Supposons (1): pour tout $\varepsilon > 0$, on peut trouver $N(\varepsilon)$ tel que

$$\forall n \ge N(\varepsilon), \forall x \in A, ||f_n(x) - g(x)||_{\varepsilon} \le \varepsilon$$

- Pour $\varepsilon = 1$: cela montre qu'à partir du rang N(1), $f_n g$ est bornée par 1.
- De plus, pour tout $\varepsilon > 0$ et $n \ge N(\varepsilon)$, $f_n g$ est bornée par ε .

Donc $\forall n \ge N(\varepsilon), ||f_n - g||_{\infty} \le \varepsilon$, c'est-à-dire (2).

Supposons (2)

Soit $\varepsilon > 0$. Il existe alors $N \ge n_0$ tel que $\forall n \ge N, ||f_n - g||_{\infty} \le \varepsilon$.

Alors, pour tout $n \ge N$ et tout $x \in A$, $||f_n(x) - g(x)||_E \le ||f_n - g||_{\infty} \le \varepsilon$

• Convergence uniforme des séries :

Définition:

On dit que la série de terme général $(u_n)_{n\in\mathbb{N}}$ converge uniformément sur A si la suite des somme partielles $S_n = \sum_{k=0}^n u_k$ converge uniformément sur A.

• Convergence normale des séries :

Définition:

On dit que la série de terme général $(u_n)_{n\in\mathbb{N}}$ est normalement convergente si pour tout n, u_n est bornée et si la série de réels positifs $||u_n||_{\infty}$ converge.

- Illustrations:
- (1) Soit $f: \mathbb{R} \to \mathbb{R}$ continue. On pose $f_n(x) = f(x + \frac{1}{n})$.

 f_n converge uniformément sur $\mathbb R$ si et seulement si f est uniformément continue.

(2) $\sum_{n=0}^{+\infty} u_n$ où $u_n : x \mapsto n^{\alpha} x e^{-nx}$ (le domaine de convergence de la série est $[0,+\infty[$)

Etude de la convergence normale :

$$||u_n||_{\infty} = u_n(\frac{1}{n}) = n^{\alpha - 1}e^{-1}$$

On a donc convergence normale si et seulement si $1-\alpha > 1$ c'est-à-dire $\alpha < 0$.

A-t-on convergence uniforme?

Pour $\alpha < 0$, il y a convergence normale donc uniforme (car $\mathbb R$ est complet, vu après)

Si $\alpha \ge 0$:

Posons
$$S(x) = \sum_{n=0}^{+\infty} n^{\alpha} x e^{-nx}$$

On veut savoir si $||S - S_n||_{\infty} \to 0$

Pour
$$x \ge 0$$
, $S(x) - S_n(x) = \sum_{k=n+1}^{+\infty} k^{\alpha} x e^{-kx} \ge \sum_{k=n+1}^{+\infty} x e^{-kx}$

Si
$$x > 0$$
, $S(x) - S_n(x) \ge \frac{xe^{-(n+1)x}}{1 - e^{-x}}$

Donc
$$||S - S_n||_{\infty} \ge (S - S_n)(\frac{1}{n+1}) \ge e^{-1} \underbrace{\left(\frac{1/(n+1)}{1 - e^{-1/(n+1)}}\right)}_{\to 1}$$

Donc il n'y a pas convergence uniforme.

Ainsi, dans ce cas, il y a convergence uniforme si et seulement si il y a convergence normale c'est-à-dire si et seulement si $\alpha < 0$.

B) Cas des fonctions bornées : interprétation topologique

On note B(A,E) l'ensemble des fonctions bornées de A dans E, muni de $\| \ \|_{\infty}$ avec $\| f \|_{\infty} = \sup_{a \in A} \| f(a) \|_{E}$.

Pour une suite de fonctions bornées $(f_n)_{n\in\mathbb{N}}$: $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers g signifie que $(f_n)_{n\in\mathbb{N}}$ converge vers g dans $(B(A,E),\|\cdot\|_{\infty})$

Pour une série de terme général $u_n \in B(A, E)$, la convergence uniforme de la série, c'est la convergence de la série d'éléments de l'evn $(B(A, E), \| \cdot \|_{\infty})$

La convergence normale des séries, c'est la convergence absolue dans l'evn $(B(A,E),\|\ \|_{\infty})$.

Morale:

On a deux langages qui se correspondent :

Celui des fonctions : les u_n, f_n vus en tant que fonction de A dans E.

Celui de vecteurs : les u_n, f_n sont des éléments de l'evn $(B(A, E), \| \cdot \|_{\infty})$

Lexique:

Une suite bornée de $(B(A, E), \| \cdot \|_{\infty})$ est une suite de fonctions uniformément bornées ; ce sont les suites $(f_n)_{n \in \mathbb{N}}$ telles que :

$$\exists M \geq 0, \forall n \in \mathbb{N}, ||f_n||_{\infty} \leq M$$

C'est-à-dire :
$$\exists M \ge 0, \forall n \in \mathbb{N}, \forall x \in A, ||f_n(x)||_E \le M$$

Suite convergente de $(B(A, E), \| \cdot \|_{\infty})$: suite uniformément convergente de fonctions.

Série convergente de $(B(A, E), \| \cdot \|_{\infty})$: série uniformément convergente de fonctions.

Série absolument convergente de $(B(A, E), \| \cdot \|_{\infty})$: série normalement convergente de fonctions.

C) Comparaison des différentes notions de convergence

• Suites de fonctions :

Théorème:

Si la suite de fonctions $(f_n)_{n\in\mathbb{N}}$, où $f_n:A\to E$, converge uniformément sur A vers $g:A\to E$, alors $(f_n)_{n\in\mathbb{N}}$ converge simplement vers g sur A.

Application:

Soit
$$(f_n)_{n\in\mathbb{N}}$$
, où $f_n:A\to E$.

On veut étudier la convergence uniforme de $(f_n)_{n\in\mathbb{N}}$.

- S'il n'y a pas convergence simple sur A, il n'y a pas convergence uniforme.
- Si $(f_n)_{n\in\mathbb{N}}$ converge simplement vers g sur A, $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur A si et seulement si $f_n g$ est bornée et $\|f_n g\|_{\infty} \to 0$

Démonstration du théorème :

Pour
$$x \in A$$
, on a $\forall n \in \mathbb{N}$, $||f_n(x) - g(x)||_E \le ||f_n - g||_{\infty}$
Donc si $||f_n - g||_{\infty} \to 0$, alors $||f_n(x) - g(x)||_E \to 0$.

• Cas des séries :

Théorème:

- (1) Pour les séries de fonction, la convergence uniforme entraîne la convergence simple.
- (2) Si le but E est complet pour $\| \cdot \|_{E}$, la convergence normale entraı̂ne la convergence uniforme.

Démonstration :

- (1) C'est le théorème précédent appliqué à la suite des sommes partielles.
- (2) Rappel : si $(E, \| \cdot \|_E)$ est complet, alors $(B(A, E), \| \cdot \|_{\infty})$ l'est aussi.

Soit u_n le terme général d'une série normalement convergente.

Alors les u_n sont des éléments de B(A,E) (car par hypothèse, $\|u_n\|_{\infty}$ existe et $\sum_{n=0}^{+\infty} \|u_n\|_{\infty}$ converge)

Comme $(B(A,E),\| \|_{\infty})$ est complet et $\sum_{n=0}^{+\infty} \|u_n\|_{\infty}$ converge, $\sum_{n=0}^{+\infty} u_n$ converge pour la norme $\| \|_{\infty}$, c'est-à-dire converge uniformément.

Application:

Etude de la convergence uniforme d'une série de fonctions $u_n:A\to E$, $(E,\|\ \|_E)$ étant complet.

On commence par étudier la convergence normale, c'est-à-dire $\|u_n\|_{\infty}$.

Si $||u_n||_{\infty}$ ne tend pas vers 0, il n'y a pas convergence uniforme

(Car si la suite $(S_n)_{n\in\mathbb{N}}$ converge uniformément vers g, alors $(S_{n+1})_{n\in\mathbb{N}}$ converge aussi uniformément vers g, donc $u_n = S_{n+1} - S_n \to 0$)

Si la série de terme général $||u_n||_{\infty}$ converge, on a convergence normale, donc uniforme (car E est complet).

Si maintenant $\sum_{n=0}^{+\infty} \|u_n\|_{\infty}$ diverge mais $\|u_n\|_{\infty} \to 0$, on a le

Théorème:

La série de terme général $(u_n)_{n\in\mathbb{N}}$ est uniformément convergente si et seulement si elle converge simplement et la suite des restes tend uniformément vers 0.

Démonstration :

Si il y a convergence uniforme, alors il y a convergence simple.

De plus,
$$R_n = S - S_n$$
, donc $||R_n||_{\infty} = ||S - S_n||_{\infty} \to 0$.

Si la série converge simplement vers $S(x) = \sum_{n=0}^{+\infty} u_n(x)$, alors pour tout $n \in \mathbb{N}$ et

tout
$$x \in A$$
, $||S(x) - S_n(x)||_E = ||R_n(x)||_E$ donc $||S - S_n||_{\infty} = ||R_n||_{\infty} \to 0$

Donc $(S_n)_{n\in\mathbb{N}}$ converge uniformément sur A vers S.

Application:

Lorsqu'on est dans ce cas (s'il n'y a pas convergence normale), on étudie la convergence simple :

S'il n'y a pas convergence simple, il n'y a pas non plus convergence uniforme.

Si il y a convergence simple, on étudie $||R_n||_{\infty}$.

Remarque:

La suite $(f_n)_{n\in\mathbb{N}}$ où $f_n:A\to E$ ne converge pas uniformément vers 0 si et seulement si il existe une suite $(a_n)_{n\in\mathbb{N}}$ de A telle que $f_n(a_n)$ ne tend pas vers 0.

En effet, si $||f_n||_{\infty} \to 0$, alors pour tout $n \in \mathbb{N}$, il existe $a_n \in A$ tel que $||f_n(a_n)||_{E} \ge \frac{1}{2} ||f_n||_{\infty}$, et donc $f_n(a_n) \to 0$.

S'il existe une suite $(a_n)_{n\in\mathbb{N}}$ de A telle que $f_n(a_n) \to 0$, alors $\forall n \in \mathbb{N}, \|f_n\|_{\infty} \ge \|f_n(a_n)\|_{F}$, et donc $\|f_n\|_{\infty} \to 0$

D) Critère de Cauchy uniforme d'une application

On suppose $(E, \| \cdot \|_{E})$ complet.

On dit que la suite de fonctions $(f_n)_{n\in\mathbb{N}}$, où $f_n:A\to E$, vérifie le critère de Cauchy uniforme lorsque :

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall m \ge n \ge N, ||f_n - f_m||_{\infty} \le \varepsilon$$

Remarque:

Pour des fonctions bornées, c'est le critère de Cauchy dans $(B(A, E), \| \cdot \|_{\infty})$.

Théorème:

Si $(E, \| \cdot \|_{E})$ est complet, le critère de Cauchy équivaut à la convergence uniforme.

(Déjà vu pour les suites, d'après la remarque...)

Exemples:

Montrer que la série de terme général $\frac{(-1)^n x^{n+1}}{n+1}$ converge uniformément sur [0;1].

Déjà, il n'y a pas convergence normale.

Méthode 1:

Etude de la convergence simple :

Pour $x \in [0;1]$, la suite de terme général $\frac{x^{n+1}}{n+1}$ décroît vers 0, donc la série de terme

général
$$\frac{(-1)^n x^{n+1}}{n+1}$$
 converge.

Etude de la suite des restes $R_n(x) = \sum_{k=n+1}^{+\infty} \frac{(-1)^k x^{k+1}}{k+1}$:

Pour
$$x \in [0;1]$$
, on a $|R_n(x)| \le \left| \frac{(-1)^n x^{n+1}}{n+1} \right|$

Donc
$$||R_n||_{\infty} \le \frac{1}{n+1} \to 0$$

Donc la suite de terme général R_n tend uniformément vers 0 sur [0;1], donc la série converge uniformément sur [0;1].

Méthode 2 : on peut vérifier le critère de Cauchy...

Soit $(b_n)_{n\in\mathbb{N}}$ une suite de réels qui décroît vers 0.

On pose $u_n(t) = b_n \sin(nt)$.

Alors la série de terme général u_n converge uniformément sur tout intervalle $[a, 2\pi - a]$ où $a \in]0, \pi[$.

On va montrer le critère de Cauchy uniforme pour $\sum_{k=1}^{n} u_k(t)$

Etude de $\sum_{k=n}^{n+p} b_k \sin kt$ avec une transformation d'Abel :

Posons, pour
$$t \in [a, 2\pi - a]$$
, $S_n(t) = \sum_{k=0}^n \sin kt = \text{Im} \left(\sum_{k=0}^n e^{ikt} \right) = \text{Im} \left(\frac{1 - e^{i(n+1)t}}{1 - e^{it}} \right)$

Alors
$$|S_n(t)| \le \left| \frac{1 - e^{i(n+1)t}}{1 - e^{it}} \right| \le \frac{2}{\left| 1 - e^{it} \right|} = \frac{1}{\left| \sin \frac{t}{2} \right|} \le \frac{1}{\sin \frac{a}{2}}$$

Donc S_n est uniformément bornée sur $[a, 2\pi - a]$. Ainsi,

$$\sum_{k=n}^{n+p} b_k \sin kt = \sum_{k=n}^{n+p} b_k (S_k(t) - S_{k-1}(t)) = \sum_{k=n}^{n+p} b_k S_k(t) - \sum_{k=n-1}^{n+p-1} b_{k+1} S_k(t)$$
$$= \sum_{k=n}^{n+p} (b_k - b_{k+1}) S_k(t) - b_n S_{n-1}(t) + b_{n+p+1} S_{n+p}(t)$$

Vérifions le critère de Cauchy :

Pour tout $n \ge 1$ et $p \ge 2$ et $t \in [a, 2\pi - a]$:

$$\left| \sum_{k=n}^{n+p} b_k \sin kt \right| \leq \sum_{j=n}^{n+p} \left| b_j - b_{j+1} \right| \left| S_j(t) \right| + \left| b_n \right| \left| S_{n-1}(t) \right| + \left| b_{n+p+1} \right| \left| S_{n+p}(t) \right|$$

$$\leq \sum_{j=n}^{n+p} (b_j - b_{j+1}) \frac{1}{\sin \frac{a}{2}} + (b_n + b_{n+p+1}) \frac{1}{\sin \frac{a}{2}} = \frac{2b_n}{\sin \frac{a}{2}}$$

Soit $\varepsilon > 0$; comme $b_n \to 0$, il existe un rang N pour lequel $\forall n \ge N, \frac{2b_n}{\sin \frac{a}{2}} \le \varepsilon$

Alors pour tout
$$n \ge N$$
, $p \ge 0$ et tout $t \in [a, 2\pi - a]$, on a $\left| \sum_{k=n}^{n+p} u_k(t) \right| \le \varepsilon$

Donc le critère de Cauchy-uniforme est vérifié, et la série est uniformément convergente sur $[a,2\pi-a]$.

E) Dernière remarque

En pratique, on n'étudie la convergence uniforme que sur des fermés, d'après le théorème :

Soit
$$f: \mathbb{R} \to \mathbb{C}$$
 continue et A une partie de \mathbb{R} . Alors $\sup_{x \in A} |f(x)| = \sup_{x \in \overline{A}} |f(x)|$

Conséquence:

Si une suite de fonctions réelles à valeurs dans \mathbb{C} , continues, converge uniformément sur A, alors elle converge uniformément sur \overline{A} .

En effet:

Pour tout
$$n, m \in \mathbb{N}$$
, on a $\sup_{x \in A} |f_n(t) - f_m(t)| = \sup_{x \in \overline{A}} |f_n(t) - f_m(t)|$

Donc le critère de Cauchy–uniforme sur A équivaut au critère de Cauchy–uniforme sur \overline{A} .

III Propriétés éventuelles des limites et des sommes de séries

A) Interversion des limites

Théorème (1):

Soient E et F deux evn, où F est complet ; soit A une partie de E, et $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de A dans F, et x_0 un élément de A.

On suppose:

- Que f_n converge uniformément sur A vers $g: A \to F$
- Que pour tout $n \in \mathbb{N}$, $f_n(x)$ a une limite finie $l_n \in F$ lorsque $x \to x_0$

Alors les quantités suivantes existent et sont égales :

$$\lim_{x\to x_0} g(x) = \lim_{n\to +\infty} l_n, \text{ c'est-\`a-dire}: \lim_{x\to x_0} \lim_{n\to +\infty} f_n(x) = \lim_{n\to +\infty} \lim_{x\to x_0} f_n(x).$$

Démonstration :

- Convergence de l_n :

Comme F est complet, il suffit de montrer que $(l_n)_{n \in \mathbb{N}}$ est de Cauchy.

Or, en passant à la limite quand $x \to x_0$ dans $\forall x \in A, \|f_n(x) - f_m(x)\|_E \le \|f_n - f_m\|_{\infty}$, on a $\forall n, m \in \mathbb{N}, \|l_n - l_m\|_E \le \|f_n - f_m\|_{\infty}$

Comme la suite $(f_n)_{n\in\mathbb{N}}$ est uniformément convergente, elle vérifie le critère de Cauchy–uniforme et donc $(l_n)_{n\in\mathbb{N}}$ vérifie le critère de Cauchy dans E.

- Posons $\mu = \lim_{n \to +\infty} l_n$, montrons que $\lim_{n \to +\infty} g(x) = \mu$,

C'est-à-dire que $\forall \varepsilon > 0, \exists V \in V(x_0), \forall x \in V \cap A, ||g(x) - \mu|| \le \varepsilon$.

Soit $\varepsilon > 0$. Comme $(f_n)_{n \in \mathbb{N}}$ converge uniformément vers g, il existe N tel que $\forall n \geq N, \|f_n - g\|_{\infty} \leq \frac{\varepsilon}{3}$.

Comme $l_n \to \mu$, il existe N' tel que $\forall n \ge N', ||l_n - \mu|| \le \frac{\varepsilon}{3}$

On prend $n_0 \ge \max(N, N')$.

Ainsi, $\lim_{x \to x_0} f_{n_0}(x) = l_{n_0}$

Donc il existe $V \in V(x_0)$ tel que $\forall x \in V \cap A$, $||f_{n_0}(x) - l_{n_0}|| \le \frac{\varepsilon}{3}$

Pour $x \in V \cap A$, on a ainsi

$$\|g(x) - \mu\| \le \|g(x) - f_{n_0}(x)\| + \|f_{n_0}(x) - l_{n_0}\| + \|l_{n_0} - \mu\| \le 3 \times \frac{\varepsilon}{3} \le \varepsilon$$

Limite diagonale:

Soient $(f_n)_{n \in \mathbb{N}}$, g avec $f_n, g : A \to E$.

On suppose que les f_n sont continus en $x_0 \in A$, que $(f_n)_{n \in \mathbb{N}}$ converge uniformément vers g sur A; soit de plus $(t_n)_{n \in \mathbb{N}}$ une suite de A tendant vers x_0 .

Alors $f_n(t_n)$ tend vers $g(x_0)$.

Illustration pour le nom de « diagonale » :

$$f_{1}(t_{0}) \cdots f_{1}(t_{k}) \rightarrow f_{1}(x_{0})$$

$$\vdots \quad \ddots \quad \vdots$$

$$f_{k}(t_{0}) \cdots f_{k}(t_{k}) \rightarrow f_{k}(x_{0})$$

$$\downarrow \qquad \qquad \downarrow \quad \ddots \quad \vdots$$

$$g(t_{0}) \qquad g(t_{k}) \cdots g(x_{0})$$

Démonstration:

g est continue en x_0 car limite uniforme de fonctions continues en x_0 .

Alors

$$||f_n(t_n) - g(x_0)||_E = ||f_n(t_n) - g(t_n) + g(t_n) - g(x_0)||_E$$

$$\leq ||f_n(t_n) - g(t_n)||_E + ||g(t_n) - g(x_0)||_E \to 0$$

B) Continuité des limites uniformes

Théorème (2):

Soit $(f_n)_{n\in\mathbb{N}}$ où $f_n:A\to F$, A étant une partie d'un evn E,F un evn.

On suppose que $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur A vers $g:A\to F$, et que pour tout $n\in\mathbb{N}$, f_n est continue en x_0 .

Alors g est continue en x_0 .

Corollaire:

Si $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers g sur A et si pour tout $n\in\mathbb{N}$, f_n est continue sur A, alors g est continue sur A.

Démonstration:

C'est la démonstration du théorème précédent sans l'existence de l_n puisqu'on a supposé qu'elle existe, et donc la complétude de F n'est pas nécessaire.

C) Cas de la variable réelle, limite en $\pm \infty$.

Théorème (3):

Soit A une partie de \mathbb{R} non majorée, on pose $x_0 = +\infty$.

Soit F un evn complet, $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions $f_n:A\to F$ convergeant uniformément vers $g:A\to F$ sur A, et on suppose que pour tout $n\in\mathbb{N}$, f_n a une limite finie l_n en x_0 .

Alors les deux quantités suivantes existent et sont égales :

$$\lim_{n\to+\infty}l_n=\lim_{x\to x_0}g(x)$$

Démonstration:

Voir théorème (1), analogue...

D) Exemples

• Pour montrer que la somme d'une série de fonctions est continue, on peut appliquer le théorème (2).

Exemple:

$$x \mapsto \sum_{n=0}^{+\infty} \frac{x^n}{n^2}$$
 est définie et continue sur $\overline{D}(0,1) \subset \mathbb{C}$

En effet, pour tout $n \in \mathbb{N}$, $u_n : x \mapsto \frac{x^n}{n^2}$ est continue sur $\overline{D}(0,1)$.

De plus, la série est normalement convergente sur $\overline{D}(0,1)$, donc uniformément convergente car $\mathbb C$ est complet.

• On peut utiliser le théorème pour montrer qu'il n'y a pas convergence uniforme.

Exemple:

La série de terme général xe^{-nx} converge simplement sur [0;1] mais pas uniformément.

En effet, il y a déjà convergence simple (déjà vu)

Si il y avait convergence uniforme, la fonction somme $s(x) = \begin{cases} 0 \text{ si } x = 0\\ \frac{x}{1 - e^{-x}} \text{ si } x \in [0;1] \end{cases}$ serait continue en 0 ce qui est faux.

• Lemme de Dini (hors programme)

Soit A une partie compacte d'un evn E, $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de A dans F où F est un evn.

On suppose que:

- (1) $(f_n)_{n \in \mathbb{N}}$ converge simplement vers $g: A \to F$ sur A
- (2) g est continue sur A
- (3) Pour tout $x \in A$, $||f_n(x) g(x)||_F$ décroît vers 0.

Alors la convergence est uniforme.

Remarque:

(1) et (2) ne suffisent pas :

Par exemple, $f_n(x) = n^{\alpha} x e^{-nx}$ converge simplement vers 0 sur \mathbb{R}_+ lorsque $\alpha > 1$,

$$\operatorname{mais} \|f_n\|_{\infty} = \frac{n^{\alpha - 1}}{e} \to 0$$

Démonstration du théorème :

Soit
$$\varepsilon > 0$$
, considérons $O_n = \{x \in A, ||f_n(x) - g(x)||_F < \varepsilon\}$

Alors O_n est un ouvert de A car $f_n, g, \| \cdot \|_F$ sont continus.

Les O_n recouvrent A: pour $x \in A$, comme $(f_n(x))_{n \in \mathbb{N}}$ converge vers g(x), il existe N tel que $\forall n \geq N, x \in O_n$

Comme de plus A est compact, il existe $n_0,...n_p$ tels que $A = \bigcup_{j=0}^p O_{n_j}$

De plus, comme $\|f_n(x) - g(x)\|_F$ décroît, la suite O_n est croissante pour l'inclusion Si on prend $N = \max\{n_0, ..., n_n\}$,

On a $A = O_N$, c'est-à-dire $\forall x \in A, ||f_N(x) - g(x)||_F < \varepsilon$

On a alors $\forall n \geq N, \forall x \in A, \|f_N(x) - g(x)\|_F < \varepsilon$, ce qui correspond à la convergence uniforme.

E) Suites et séries d'intégrales

Théorème:

Soit [a,b] un segment de \mathbb{R} , F un evn complet.

Soit $(f_n)_{n\in\mathbb{N}}$, où les $f_n:[a,b]\to F$ sont continues, convergeant uniformément vers g sur [a,b].

Alors g est continue, et $\int_a^b g(t)dt = \lim_{n \to +\infty} \int_a^b f_n(t)dt$.

Corollaire:

C'est la même chose pour les séries.

Démonstration:

$$\left\| \int_{a}^{b} g(t)dt - \int_{a}^{b} f_{n}(t)dt \right\| = \left\| \int_{a}^{b} (g(t) - f_{n}(t))dt \right\|$$

$$\leq \int_{a}^{b} \left\| g(t) - f_{n}(t) \right\| dt \leq \left\| g - f_{n} \right\|_{\infty} (b - a) \to 0$$

(La complétude est ici nécessaire pour définir l'intégrale d'une fonction continue)

F) Caractère C¹

On se limite ici à des fonctions d'une variable réelle.

Théorème:

Soit I un intervalle de \mathbb{R} , $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions $f_n:I\to F$ de classe C^1 où F est un espace de Banach.

On suppose que :

- (1) $(f'_n)_{n \in \mathbb{N}}$ converge uniformément vers $h: I \to F$ sur I.
- (2) Il existe $a \in I$ tel que $(f_n(a))_{n \in \mathbb{N}}$ converge vers $l \in F$.

Alors la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement sur I vers la fonction $g: x\mapsto l+\int_a^x h(t)dt$.

De plus, la convergence est uniforme sur tout segment inclus dans *I*.

NB:

La condition (1) est la convergence uniforme de la suite des dérivées

La condition (2) est la convergence simple en au moins un point.

Corollaire:

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de classe C^1 , $f_n:I\to F$ (F étant un espace de Banach). Pour que $(f_n)_{n\in\mathbb{N}}$ converge simplement sur I vers une fonction $g:I\to F$ de

classe C^1 , il suffit que la suite $(f'_n)_{n\in\mathbb{N}}$ converge uniformément et qu'il y ait convergence simple de $(f_n(x))_{n\in\mathbb{N}}$ en au moins un point x.

(Et dans ce cas, $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers g sur tout segment de I)

Démonstration:

Pour tout $x \in I$,

$$||g(x) - f_n(x)|| = ||l + \int_a^x h(t)dt - f_n(a) - \int_a^x f'_n(t)dt|$$

$$\leq ||l - f_n(a)|| + ||\int_a^x (h(t) - f'_n(t))dt||$$

$$\leq ||l - f_n(a)|| + ||x - a|||h - f'_n||_{\infty}$$

(pour la dernière inégalité, distinguer $a \le x/a \ge x$, mais on obtient la même chose) D'où la convergence simple.

Soit K = [u, v] un segment inclus dans I, on note $M = \max(|u - a|, |v - a|)$

Pour tout
$$x \in K$$
, on a alors $||g(x) - f_n(x)|| \le \underbrace{||l - f_n(a)|| + M ||h - f'_n||_{\infty}}_{\text{majorant uniforme tendant vers 0}}$

Donc $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers g sur K.

G) Caractère C^k.

Théorème :

Soit I un intervalle de \mathbb{R} , $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions $f_n:I\to F$ où F est un espace de Banach, et $k\in\mathbb{N}\cup\{+\infty\}$

On suppose que $(f_n)_{n \in \mathbb{N}}$ converge simplement vers g sur I.

On suppose de plus que :

- (1) Pour tout $n \in \mathbb{N}$, f_n est de classe C^k .
- (2) Pour tout $j \le k$, la suite $(f_n^{(j)})_{n \in \mathbb{N}}$ converge uniformément sur tout segment [a,b] inclus dans I vers une fonction $h_j: I \to F$.

Alors g est de classe C^k , et pour tout $j \le k$, tout $x \in I$:

$$g^{(j)}(x) = h_j(x),$$

C'est-à-dire
$$g^{(j)}(x) = \lim_{n \to +\infty} f_n^{(j)}(x)$$
.

Corollaire:

On a le même énoncé avec les séries (on dit aussi dans ce cas que la fonction somme est dérivable terme à terme)

Remarque:

La condition (2) n'est pas optimale :

Si $k \in \mathbb{N}$, on peut la remplacer par $f^{(k)}$ converge uniformément sur tout segment inclus dans I vers h_k et pour tout j < k, $f^{(j)}$ converge simplement en au moins un point

Démonstration : Pour k fini, on fait par récurrence sur k.

Sinon, on utilise le fait que $C^{\infty}(I,F) = \bigcap_{k \in \mathbb{N}} C^k(I,F)$.