Techniques fondamentales de calcul différentiel et intégral

Fonctions d'une variable réelle et à valeurs réelles ou complexes

Dérivation, étude d'une fonction

17 septembre 2022

Table des matières

1	Domaine de définition, domaine d'étude		
	1.1	Domaine de définition	2
	1.2	Domaine d'étude	2
2	Domaine de continuité		
	2.1	Limite d'une fonction en un point	2
		Continuité en un point, continuité sur un intervalle	
3	Domaine de dérivabilité et tableau de variations		
	3.1	Dérivée d'une fonction en un point	3
	3.2	Domaine de dérivabilité	4

1 Domaine de définition, domaine d'étude

1.1 Domaine de définition

Afin de déterminer un domaine de définition \mathcal{D}_f d'une fonction f, nous écrivons :

 $x \in \mathcal{D}_f \iff \left\{ \begin{array}{cc} \dots \\ \dots \end{array} \right. \iff \dots$

1.2 Domaine d'étude

Remarque:

Avec des considérations de périodicité, parité / imparité

2 Domaine de continuité

2.1 Limite d'une fonction en un point

2.2 Continuité en un point, continuité sur un intervalle

DÉFINITION:

Soit $f: \mathbb{I} \to \mathbb{R}$, a un point de \mathbb{I}

On dit que f est **continue en** a si et seulement si :

$$f(x) \xrightarrow[x \to a]{} f(a)$$

DÉFINITION:

Soit $f: \mathbb{I} \to \mathbb{R}$.

On dit que f est <u>continue sur \mathbb{I} si et seulement si</u> pour tout $a \in \mathbb{I}$, f est continue en a.

L'ensemble des fonctions continues sur \mathbb{I} à valeurs dans \mathbb{R} se note $\mathcal{C}(\mathbb{I}, \mathbb{R})$

EXEMPLES USUELS:

- (i) Les fonctions polynômiales sont continues sur $\mathbb R$
- (ii) La fonction \sqrt{x} est continue sur \mathbb{R}_+
- (iii) La fonction \exp est continue sur $\mathbb R$
- (iv) La fonction ln est continue sur \mathbb{R}_+^*
- (v) Les fonctions sin et cos sont continues sur \mathbb{R}

Propriété:

Soit $f, g : \mathbb{I} \to \mathbb{R}$ continues sur \mathbb{I} , $\lambda \in \mathbb{R}$, alors :

- $f+g, \lambda \cdot f, f \times g$ sont continues sur \mathbb{I} en supposant que g ne s'annule pas sur $\mathbb{I}, \frac{f}{g}$ est continue sur \mathbb{I}

Propriété:

Soit $f: \mathbb{I} \to \mathbb{R}$ continue sur \mathbb{I} , $g: \mathbb{J} \to \mathbb{R}$ continue sur \mathbb{J} tel que $f(\mathbb{I}) = \mathbb{J}$ Alors $g \circ f$ est continue sur \mathbb{I}

Domaine de dérivabilité et tableau de variations

Dérivée d'une fonction en un point

Soit $f: \mathbb{I} \to \mathbb{R}$, a un point de \mathbb{I}

Le taux d'accroissement est donné par :

$$\frac{f(x) - f(a)}{x - a}$$

DÉFINITION:

Soit $f: \mathbb{I} \to \mathbb{R}$, a un point de \mathbb{I} , on dit que f est <u>dérivable en a</u> \underline{si} et seulement \underline{si} l'application à une limite :

$$\tau_q: \mathbb{I} - \{a\} \to \mathbb{R}, \ x \mapsto \frac{f(x) - f(a)}{x - a}$$

Cette limite est appelée <u>nombre dérivé</u> de f en a et se note f'(a)

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

DÉFINITION:

Soit $f: \mathbb{I} \to \mathbb{R}$, a un point de \mathbb{I} en lequel f est dérivable.

Alors la droite d'équation y = f'(a)(x-a) + f(a) est appelée la **tangante** à \mathcal{C}_f au point d'abscisse a

DÉFINITION:

Soit $f: \mathbb{I} \to \mathbb{R}$, on dit que f est <u>dérivable sur \mathbb{I} si et seulement si</u> fest dérivable en tout point de \mathbb{I} . L'ensemble des fonctions dérivables sur \mathbb{I} à valeurs dans \mathbb{R} se note $\mathcal{D}(\mathbb{I}, \mathbb{R})$

EXEMPLES USUELS:

- (i) Les fonctions polynômiales sont dérivables sur $\mathbb R$

- (ii) La fonction \sqrt{x} est dérivable sur \mathbb{R}_{+}^{*} (iii) La fonction exp est dérivable sur \mathbb{R} (iv) La fonction ln est dérivable sur \mathbb{R}_{+}^{*} (v) Les fonctions sin et cos sont dérivables sur \mathbb{R}

Propriété:

- Soft $f, g : \mathbb{I} \to \mathbb{I}^{\mathbb{N}}, \lambda \in \mathbb{I}^{\mathbb{N}}$ (i) f + g est dérivable sur \mathbb{I} et (f + g)' = f' + g'(ii) $\lambda \cdot f$ est dérivable sur \mathbb{I} et $(\lambda \cdot f)' = \lambda \cdot f'$ (iii) $f \times g$ est dérivable sur \mathbb{I} et $(f \times g)' = f'g + g'f$ (iv) en supposant que g ne s'annule pas sur \mathbb{I} , $\frac{f}{g}$ est dérivable sur \mathbb{I} et

Propriété:

Soit $f: \mathbb{I} \to \mathbb{R}$ dérivable sur \mathbb{I} , $g: \mathbb{J} \to \mathbb{R}$ dérivable sur \mathbb{J} tel que $f(\mathbb{I}) \subset \mathbb{J}$ Alors $g \circ f$ est dérivable sur \mathbb{I} et $(g \circ f)' = (g' \circ f) \times f'$

3.2 Domaine de dérivabilité

Nous avons une fonction f d'une variable réelle et nous avons déterminé son domaine de définition \mathcal{D}_f . Nous voulons maintenant étudier sa dérivabilité.

Remarque:

Etant donnée une fonction f:

(i) Lors de la recherche du domaine de définition :

"
$$x \in \mathcal{D}_f \iff \dots \text{ donc } \mathcal{D}_f = \dots$$
"

 $\mbox{"}\ x\in\mathcal{D}_f\iff\dots\mbox{donc}\ \mathcal{D}_f=\dots\mbox{"}$ (ii) Lors de la recherche du domaine de continuité ou de dérivabilité : ...

" f est dérivable sur x tel que ... donc f est dérivable sur ...

Retenons que les propriétés générales donnent des conditions suffisantes de continuité ou de dérivation et non pas des conditions nécéssaires