Analyzing Seattle Airbnb Dataset for Price Prediction

KIRTI CHAUDHARI

Goals

Data Acquisition

- Source: http://insideairbnb.com/get-the-data.html
- Listing.csv: Listings, including full descriptions and average review score.
- Reviews.csv: Reviews, including unique id for each reviewer and detailed comments.
- Calendar.csv: Calendar, including listing id and the price and availability for that day.

Seattle, Washington, United States

See Seattle data visually here.

Date Compiled	Country/City	File Name	Description
17 June, 2020	Seattle	listings.csv.gz	Detailed Listings data for Seattle
17 June, 2020	Seattle	calendar.csv.gz	Detailed Calendar Data for listings in Seattle
17 June, 2020	Seattle	reviews.csv.gz	Detailed Review Data for listings in Seattle
17 June, 2020	Seattle	listings.csv	Summary information and metrics for listings in Seattle (good for visualisations).
17 June, 2020	Seattle	reviews.csv	Summary Review data and Listing ID (to facilitate time based analytics and visualisations linked to a listing).
N/A	Seattle	neighbourhoods.csv	Neighbourhood list for geo filter. Sourced from city or open source GIS files.
N/A	Seattle	neighbourhoods.geojson	GeoJSON file of neighbourhoods of the city.

show archived data

Data Preparation and Cleaning

- Check empty/null values
- Price columns
 - > remove chars such as '\$', ','
 - > Replace nan with 0
- Correct Datatypes for columns
 - Price columns string to int
 - Date columns change datatype to datetime

Data Wrangling

- ▶ Replace values in Columns
 - availability replace t and f with 1 and 0.
- Create New columns
 - ► Availability no of days available.
- ▶ Join Datasets listings and calendars

Number of Properties per Neighborhood

Price distribution Per Property Type

Data Visualization

Price Trend per Calendar Date

Data Analysis

- Primary Goal: Determine if there is any strong correlation between pairs of independent variables or between an independent and dependent variables (price)
- Remove outliers from price distribution
 - Calculate First and third quartile ranges of dataset
 - ▶ Find lower and upper bounds of dataset 2 times IQR (Inter Quartile Range)
 - Anything above upper bounds can be removed from dataset

Data Analysis

Price distribution Median Values

Box Plot- Before removing Outliers

Box Plot - After removing Outliers

Data Visualization

ECDF plot for price column

Data Visualization

Data Visualization

- Strong linear correlation between Number of accommodates and Price
- Listing price directly affected by no of accommodates allowed in the property

Data Modelling

- Select Specific columns in dataset to reduce dimensionality
- Drop Nan rows
- Perform one-hot encoding for categorical columns
- Split dataset into 70% training and 30 % testing
- Random Forest Regressor to train and fit the model

```
criterion='mse',
                                    random_state=42,
                                    n jobs=-1, verbose=1)
 6 forest.fit(X_train, y_train.squeeze())
[Parallel(n jobs=-1)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n jobs=-1)]: Done 18 tasks
                                              elapsed:
                                                          0.2s
[Parallel(n jobs=-1)]: Done 100 out of 100 | elapsed:
                                                          0.6s finished
RandomForestRegressor(bootstrap=True, ccp alpha=0.0, criterion='mse',
                      max_depth=None, max_features='auto', max_leaf_nodes=None,
                      max_samples=None, min_impurity_decrease=0.0,
                      min impurity split=None, min samples leaf=1,
                      min samples split=2, min weight fraction leaf=0.0,
                      n_estimators=100, n_jobs=-1, oob_score=False,
                      random state=42, verbose=1, warm start=False)
 1 #calculate scores for the model
 2 y_train_preds = forest.predict(X train)
 3 y test preds = forest.predict(X test)
    print(f'Random Forest MSE train: %.3f, test: %.3f' % (
            mean_squared_error(y_train, y_train_preds),
            mean_squared_error(y_test, y_test_preds)))
    print('Random Forest R^2 train: %.3f, test: %.3f' % (
           r2_score(y_train, y_train_preds),
            r2 score(y test, y test preds)))
[Parallel(n jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n jobs=16)]: Done 18 tasks
                                            elapsed:
[Parallel(n_jobs=16)]: Done 100 out of 100
                                            elapsed:
                                                        0.0s finished
[Parallel(n_jobs=16)]: Using backend ThreadingBackend with 16 concurrent workers.
[Parallel(n jobs=16)]: Done 18 tasks
                                            elapsed:
                                                        0.0s
[Parallel(n_jobs=16)]: Done 100 out of 100 | elapsed:
                                                        0.0s finished
Random Forest MSE train: 265.215, test: 1879.684
Random Forest R^2 train: 0.949, test: 0.632
```

1 #train RF regressor model

2 forest = RandomForestRegressor(n estimators=100,

Feature Importance Matrix

Conclusion

- Data acquired from Airbnb for Seattle listings
- Data cleaning, wrangling steps were performed on the dataset
- Removed outliers in target variable (price) and visualized data in various properties.
- Trained and fit the model using Random Forest regressor.
- From the feature importance matrix-no of bedroom was seen as important feature affecting the prices.
- From the charts, we also saw strong correlation between no of accommodates against the price.

References

Project Github:

https://github.com/kirti-chaudhari/SpringBoard DataScience Career

Jupyter Notebook:

<u>https://github.com/kirti-chaudhari/SpringBoard DataScience Career/blob/master/CapstoneProject/AirbnbProject.ipynb</u>