Worksheet -	10-	CS2400
-------------	-----	--------

Chris Welch

1. In a Direct Map cache for the Block addresses: 000112 and 101012. Cache index in a 8

(8 Line Cache)

2. Given initial state of cache as the table on right, write if each address gets a Hit or Miss.

Index = Index Tag = Tag

Index = Index Tag = Tag

Address	Hit or Miss
10110	M
11010	M
10110	Н
11010	Н
10000	М
00011	М
10000	Н
10010	M
10000	Н

Index	V	Yng	Data
000	MY	10	10000
001	N		
010	MY	40	10010
011	XX	00	00011
100	N		
101	N		10110
110	MA	19	10110
111	N		

No values Stored^

Stored values are a miss, if not contained.

if (Index == this.Index && Tag == this.Tag) HIT++;

else{ MISS++;}

3. If the miss rate of an instruction cache is 2% and the miss rate of the data cache is 4%. If a processor has a CPI of 2 without any memory stalls, and the miss penalty is 100 cycles for all misses, determine how much faster a processor would run with a perfect cache that never missed. Assume the frequency of all loads and stores is 36%.

I Mas Rate = 220
Data Miss Rate = 420
CPI = 2
Miss Penalty = 100 cycles
LDR/STR = 3620 Frequency

Instruction Miss Codes

Ix 2% 4100 2.00 I)

Dota Miss Codes

Ix86% x4% x100 I.44I)

Memory Stall Total

2.00 I+ 1.44I = 3.44I

CPI W/ Stalls 2 + 3.44 = 5.44 Perfect Cache = 2

Performance = OPI stall = 5.44 = 2.72

5. Assume there are three small caches, each consisting of four one-word blocks. One cache is direct-mapped, a second is two-way set-associative, and the third is fully associative. Find the number of misses for each cache organization given the following sequence of block

n 2e 4 = # Address addresses: 0, 8, 0, 6, and 8.

-
_/

M=4=0	M155
8224= 0	M155
0204=0	Miss
6204=2	Miss
8904=0	Miss
	1

Direct

0902=0	Miss
82-2=0	Miss
09.2:0	Hit
6722=0	MISS
8220	MISS
02	1

9.1. add

9.2. of t

Cache configuration:	30 2 Associa
1 21	=======================================
Z. Cache configuration: Two way set associative	
3. Cache configuration: Fully associative	350
Assume a direct-mapped cache with 8-one word blocks. Given the fresses, indicate if each request results in a cache hit or miss: 1,5	the following sequence of block 9, 6, 5, 1, 6.
he block mapping: Block address 1 maps to cache block Block address 6 maps to cache block Block address 6 maps to cache block Block address 9 maps to cache block Memory block 1 - (Hit or Miss) ? Memory block 6 - (Hit or Miss) ? Memory block 5 - (Hit or Miss) ? Memory block 1 - (Hit or Miss) ? Memory block 1 - (Hit or Miss) ? Memory block 6 - (Hit or Miss)	The state of the s
Assume a two-way set-associative cache with 8-one word block block addresses, indicate if each request results in a cache hit or pping: Block address 1 maps to cache set 1 · Block address 5 ms cache set 1 · Block address 6 maps to cache set 2 · Block address 9 maps to cache set 4 · Block address 9 maps to cache set 4 · Memory block 1 - (Hit or Miss) ? Memory block 9 - (Hit or Miss) ? Memory block 6 - (Hit or Miss) ? Memory block 5 - (Hit or Miss) ? Memory block 1 - (Hit or Miss) ? Memory block 6 - (Hit or Miss) ? Memory b	r miss: 1, 9, 6, 5, 1, 6. Gadne set

6. Assume a cache with 8 one-word blocks. (Submit the work in Moodle)

2 was

9.3 Assume a fully associative cache with 8-one-word blocks. Given the following sequence of block addresses, indicate if each request results in a cache hit or miss: 1, 9, 6, 5, 1, 6.

Memory block 1 – (Hit or Miss)?

Memory block 9 – (Hit or Miss)?

Memory block 6 – (Hit or Miss)?

Memory block 5 – (Hit or Miss)?

Memory block 1 – (Hit or Miss)?

Memory block 6 – (Hit or Miss)?

