

Geometric primitives and transformations

Objectives

- Study the basic geometric primitive: points, lines, and planes
- 2D, 3D geometric
- The geometric transformations
- Lens distortions

What is a geometric primitive?

- Geometric primitives are the basic shapes we all know and recognize
 - Cubes, spheres, cylinders, and cones,
 - They work just like the blocks in a typical preschool building set

- Homogeneous coordinates→ way to approach the projective plane analytically
 - Represent coordinates in 2 dimensions with 3 vector
 - Add a 3rd coordinate to every 2D point
 - $(x, y, w) \rightarrow (x/w, y/w)$
 - $w = 0 \rightarrow point at infinity$
 - (0,0,0) is undefined

- 2D Point: two-dimensional primitive we can implement. It is infinitely small; it has x and y coordinates: $x = (x, y) \in \mathbb{R}^2$
 - Homogeneous coordinates: $\tilde{x} = (\tilde{x}, \tilde{y}, \tilde{w}) \in \mathcal{P}^2$
 - The 2D projective space: $\mathcal{P}^2 = \mathcal{R}^3 (0,0,0)$

 2D Lines: A line is a straight one-dimensional figure having no thickness and extending infinitely in both directions

– Equation:
$$ax + by + c = 0$$

- 3D point: basis consisting of three mutually perpendicular vectors. These vectors define the three coordinate axes: the x-, y-, and z-axis
 - Denoted: A(x, y, z)
 - Distance between two points A(x1,y1,z1) and B(x2,y2,z2):

$$- d = |AB| = \sqrt{[(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2]}$$

3D planes:

- A plane is a flat, two-dimensional surface that extends infinitely far
- A plane in 3D coordinate space is determined by a point and a vector that is perpendicular to the plane
- Equation: ax + by + cz + d = 0

 Graph transformation is the process by which an existing graph, or graphed equation, is modified to produce a variation of the proceeding graph.

Image transformation is a function or operator that

takes an image as its in

as its output.

• Geometric transformati geometry of an intransformations where changed without altering Dilation commonly referred to as "Commonly referred to as

"Geometric"

- Basic set of 2D planar transformations.
 - Translation
 - Euclidean
 - Similarity
 - Affine
 - Projective

Translation:

- A translation moves an object to a different position on the screen.
- You can translate a point in 2D by adding translation coordinate (tx, ty) to the original coordinate (X, Y) to get the new coordinate (X', Y').
- Genaral equation p' = p + t

$$\Rightarrow X' = X + tx$$

$$\Rightarrow Y' = Y + ty$$

⇒ (tx, ty): translation vector or shift vector

Rotation:

- We rotate the object at particular angle θ (theta) from its origin..
- You can translate a point in 2D by adding translation coordinate (tx, ty) to the original coordinate (X, Y) to get the new coordinate (X', Y').
- Genaral equation: $p' = \theta p + t$

Scaling:

- To change the size of an object.
- You either expand or compress the dimensions of the object.
- Scaling can be achieved by multiplying the original coordinates of the object with the scaling factor to get the desired result.
- The scaling factor SX, SY scales the object in X and Y direction respectively
- Genaral equation p' = p. S

$$\Rightarrow X' = X.SX$$

$$\Rightarrow Y' = Y.SY$$

Affine

transformation

Affine:

- Affine transformations are used for scaling, skewing and rotation.
- Lines map to line.
- Parallel line remain parallel under affine transformations

– Genaral equation $x' = A\bar{x}$ where A is an arbitrary 2 x 3 matrix

$$\mathbf{x}' = \begin{bmatrix} \mathbf{a}_{00} \ \mathbf{a}_{01} \ \mathbf{a}_{02} \\ \mathbf{a}_{10} \ \mathbf{a}_{11} \ \mathbf{a}_{12} \end{bmatrix} \overline{\mathbf{x}}$$

Projective:

- A projective transformation shows how the perceived objects change as the observer's viewpoint changes.
- These transformations allow the creating of perspective distortion.
- Perspective transformations preserve straight lines (i.e., they remain straight after the trans- formation).
- Genaral equation $\tilde{x}' = \tilde{H}\tilde{x}$ where H is an arbitrary 3 x 3

$$m x' = \frac{h_{00}x + h_{01}y + h_{02}}{h_{20}x + h_{21}y + h_{22}}$$
$$y' = \frac{h_{10}x + h_{11}y + h_{12}}{h_{20}x + h_{21}y + h_{22}}$$

Transformation	Matrix	# DoF	Preserves	Icon
translation	$\left[egin{array}{c c} oldsymbol{I} & oldsymbol{t} \end{array} ight]_{2 imes 3}$	2	orientation	
rigid (Euclidean)	$\left[\begin{array}{c c} oldsymbol{R} & oldsymbol{t} \end{array}\right]_{2 imes 3}$	3	lengths	\Diamond
similarity	$\left[\begin{array}{c c} s \boldsymbol{R} & \boldsymbol{t} \end{array}\right]_{2 \times 3}$	4	angles	\Diamond
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

What are different to 2D transformations?→ write your answer!

Transformation	Matrix	# DoF	Preserves	Icon
translation	$\left[egin{array}{c c} oldsymbol{I} & oldsymbol{t} \end{array} ight]_{3 imes4}$	3	orientation	
rigid (Euclidean)	$\left[egin{array}{c c} oldsymbol{R} & oldsymbol{t} \end{array} ight]_{3 imes4}$	6	lengths	\Diamond
similarity	$\left[\begin{array}{c c} s \boldsymbol{R} & \boldsymbol{t} \end{array}\right]_{3 \times 4}$	7	angles	\Diamond
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{3 imes4}$	12	parallelism	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{4 imes4}$	15	straight lines	

3D to 2D projections

- What is projections?
- How 3D primitives are projected onto the image 3D plane?
 - Linear 3D to 2D projection matrix.
 - Orthography, which requires no division to get the final (inhomogeneous) result.
 - Perspective since this more accurately models the behavior of real cameras
- Commonly used projection models
 - Orthography
 - Scaled orthography
 - Para-perspective
 - Perspective / Object-centered

3D to 2D projections

Orthography

- Drops the z component of the three-dimensional coordinate p to obtain the 2D point x
- Equation : $x = [I_{2x2}|0]p$ where p denote 3D point and x denote 2D point
- In homogeneous coordinates

3D to 2D projections

Perspective

- When we view scenes in everyday life far away items appear small relative to nearer items.
- A side effect of perspective projection is that parallel lines appear to converge on a vanishing point.

Inhomogeneous coordinates

$$ar{m{x}} = \mathcal{P}_{m{z}}(m{p}) = \left[egin{array}{c} x/z \ y/z \ 1 \end{array}
ight]$$

Homogeneous coordinates

$$oldsymbol{ ilde{x}} = \left[egin{array}{cccc} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \end{array}
ight] oldsymbol{ ilde{p}}_{:}$$

Lens distortions

- Cameras obey a *linear* projection model where straight lines in the world result in straight lines in the image. Is it true in all cases? → No
- Many wide-angle lenses have distortion --> visible curvature in the projection of straight lines.

 Distortion occurs when the linear magnification is a function of the off-axis distance.

Summary

- Study the basic geometric primitive: points, lines, and planes
- 2D, 3D geometric
- The geometric transformations
- Lens distortions.