2x25W Stereo / 1x50W Mono Digital Audio Amplifier With 30 bands EQ and DRC Functions

Features

- ◆ 16/18/20/24-bits input with I²S, Left-alignment and Right-alignment data format
- PSNR & DR(A-weighting)
 Loudspeaker: 108dB (PSNR), 108dB (DR)@24V
- Multiple sampling frequencies (Fs) 8kHz and 32kHz / 44.1kHz / 48kHz and 64kHz / 88.2kHz / 96kHz and 128kHz / 176.4kHz / 192kHz
- System clock = 64x, 128x, 192x, 256x, 384x, 512x, 576x, 768x, 1024x Fs
 MCLK system:

256x~4096x Fs for 8kHz

64x~1024x Fs for 32kHz / 44.1kHz / 48kHz 64x~512x Fs for 64kHz / 88.2kHz / 96kHz 64x~256x Fs for 128kHz / 176.4kHz / 192kHz

BCLK system:

64xFs for 32kHz / 44.1kHz / 48kHz 64xFs for 64kHz / 88.2kHz / 96kHz 64xFs for 128kHz / 176.4kHz / 192kHz

- Supply voltage3.3V for digital circuit4.5V~26V for loudspeaker driver
- Supports 2.0CH/Mono configuration
- Loudspeaker output power@12V for stereo
 7W x 2CH into 8Ω <1% THD+N
 10W x 2CH into 4Ω <1% THD+N
- Loudspeaker output power@18V for stereo 15W x 2CH into 8Ω <1% THD+N
- Loudspeaker output power@24V for stereo 25W x 2CH into 8Ω <1% THD+N
- Sound processing including:
 30 bands parametric speaker EQ
 Volume control (+24dB~-103dB, 0.125dB/step)
 Dynamic range control
 Three Band plus post Dynamic range control
 Power Clipping
 Programmed 3D surround sound
 Channel mixing
 Noise gate with hysteresis window
 Bass/Treble tone control
 DC-blocking high-pass filter

Pre-scale/post-scale

- Anti-pop design
- Level meter and power meter
- I2S output with selectable Audio DSP point
- Short circuit and over-temperature protection
- Supports I²C control without clock
- I²C control interface with selectable device address
- Support hardware and software reset
- Internal PLL
- LV Under-voltage shutdown and HV Under-voltage detection
- Over voltage protection
- Power saving mode

Applications

- TV audio
- Boom-box, CD and DVD receiver, docking system
- Powered speaker
- Wireless audio

Description

AD82584F is a digital audio amplifier capable of driving 25W (BTL) each to a pair of 8Ω load speaker and 50W (PBTL) to a 4Ω load speaker operating at 24V supply without external heat-sink or fan requirement with play music. AD82584F provides advanced audio processing functions, such as volume control, 30 EQ bands, audio mixing, 3D surround sound and Dynamic Range Control (DRC). These are fully programmable via a simple I²C control interface. Robust protection circuits are provided to protect AD82584F from damage due to accidental erroneous operating condition. The full digital circuit design of AD82584F is more tolerant to noise and PVT (Process, Voltage, and Temperature) variation than the analog class-AB or class-D audio amplifier counterpart implemented by analog circuit design. AD82584F is pop free during instantaneous power on/off or mute/shut down switching because of its robust built-in anti-pop circuit.

Publication Date: Apr. 2018

1/83

Revision: 1.4

Pin Assignment

Pin Description (E-LQFP 48L)

PIN	NAME	TYPE	DESCRIPTION	CHARACTERISTICS
1	LA	0	Left channel output A.	
2	VDDL	Р	Left channel supply.	
3	VDDL	Р	Left channel supply.	
4	BST_LA	Р	Bootstrap supply for left channel output A.	
5	NC		Not connected.	
6	NC		Not connected.	
7	CLK_OUT	I/O	PLL ratio setting pin during power up, this pin is monitored on the rising edge of reset. PMF register will be default set at 1 or 16 times PLL ratio. High: PMF [3:0] = [0000], 1 time of PLL ratio to avoid system BCLK over flow. Low: PMF [3:0] = [0001], 16 times of PLL ratio. This pin could be clock output pin also during normal operating if EN_CLK_OUT register bit is enabled.	

Publication Date: Apr. 2018 Revision: 1.4 2/83

8	PBTL	1	Stereo/Mono configuration pin.	
	. 512		(Low: Stereo ; High: Mono)	
9	NC		Not connected.	
10	NC		Not connected.	
11	NC		Not connected.	
12	NC		Not connected.	
13	NC		Not connected.	
			ERROR pin is a dual function pin. One is I ² C	This pin is monitored on the rising
			address setting during power up. The other	edge of reset. A value of Low (15-k Ω
14	ERROR	I/O	one is error status report (low active), It sets	pull down) sets the I ² C device
			by register of A_SEL_FAULT at address	address to 0x30 and a value of High
			0x1C B[6] to enable it.	(15-kΩ pull up) sets it to 0x31.
				Schmitt trigger TTL input buffer,
15	MCLK	I	Master clock input.	internal pull Low with a 80Kohm
				resistor.
16	NC		Not connected.	
17	NC		Not connected.	
18	NC		Not connected.	
				Schmitt trigger TTL input buffer,
19	PD	- 1	Power down, low active.	internal pull High with a 330Kohm
				resistor.
				Schmitt trigger TTL input buffer,
20	LRCIN	I	Left/Right clock input (Fs).	internal pull Low with an 80Kohm
				resistor.
				Schmitt trigger TTL input buffer,
21	BCLK	I	Bit clock input (64Fs).	internal pull Low with an 80Kohm
				resistor.
22	SDATA	I	Serial audio data input.	Schmitt trigger TTL input buffer
23	SDA	I/O	I ² C bi-directional serial data.	Schmitt trigger TTL input buffer
24	SCL	I	I ² C serial clock input.	Schmitt trigger TTL input buffer
				Schmitt trigger TTL input buffer,
25	RESET	I	Reset, low active.	internal pull High with a 330Kohm
				resistor.
26	TEST	I	This pin must connect to GND.	
27	DVDD	Р	Digital Power.	
28	DGND	Р	Digital Ground.	
29	NC		Not connected.	

Publication Date: Apr. 2018 Revision: 1.4 3/83

30	AGND	Р	Analog Ground.	
31	VREG	0	1.8V Regulator voltage output.	
32	GVDD	0	5V Regulator voltage output. This pin must	
32	GVDD		not be used to drive external devices.	
33	BST_RB	Р	Bootstrap supply for right channel output B.	
34	VDDR	Р	Right channel supply.	
35	VDDR	Р	Right channel supply.	
36	RB	0	Right channel output B.	
37	GNDR	Р	Right channel ground.	
38	GNDR	Р	Right channel ground.	
39	RA	0	Right channel output A.	
40	NC		Not connected.	
41	NC		Not connected.	
42	BST_RA	Р	Bootstrap supply for right channel output A.	
43	BST_LB	Р	Bootstrap supply for left channel output B.	
44	NC		Not connected.	
45	NC		Not connected.	
46	LB	0	Left channel output B.	
47	GNDL	Р	Left channel ground.	
48	GNDL	Р	Left channel ground.	

Publication Date: Apr. 2018 Revision: 1.4 4/83

Pin Description (E-TSSOP 24L)

PIN	NAME	TYPE	DESCRIPTION	CHARACTERISTICS
			ERROR pin is a dual function pin. One is I ² C	This pin is monitored on the rising
			address setting during power up. The other	edge of reset. A value of Low (15-kΩ
1	ERROR	I/O	one is error status report (low active), It sets	pull down) sets the I ² C device
			by register of A_SEL_FAULT at address	address to 0x30 and a value of High
			0x1C B[6] to enable it.	(15-kΩ pull up) sets it to 0x31.
				Schmitt trigger TTL input buffer,
2	PD	I	Power down, low active.	internal pull High with a 330Kohm
				resistor.
				Schmitt trigger TTL input buffer,
3	LRCIN	I	Left/Right clock input (Fs).	internal pull Low with an 80Kohm
				resistor.
				Schmitt trigger TTL input buffer,
4	BCLK	I	Bit clock input (64Fs).	internal pull Low with an 80Kohm
				resistor.
5	SDATA	I	Serial audio data input.	Schmitt trigger TTL input buffer
6	SDA	I/O	I ² C bi-directional serial data.	Schmitt trigger TTL input buffer
7	SCL	I	I ² C serial clock input.	Schmitt trigger TTL input buffer
8	SDATAO	0	Serial audio data output.	Schmitt trigger TTL input buffer
9	DVDD	Р	Digital Power.	
10	DGND	Р	Digital Ground.	
11	VREG	0	1.8V Regulator voltage output.	
40	CVDD	0	5V Regulator voltage output. This pin must	
12	GVDD	0	not be used to drive external devices.	
13	BST_RB	Р	Bootstrap supply for right channel output B.	
14	VDDR	Р	Right channel supply.	
15	RB	0	Right channel output B.	
16	GNDR	Р	Right channel ground.	
17	RA	0	Right channel output A.	
18	BST_RA	Р	Bootstrap supply for right channel output A.	
19	BST_LB	Р	Bootstrap supply for left channel output B.	
20	LB	0	Left channel output B.	
21	GNDL	Р	Left channel ground.	
22	LA	0	Left channel output A.	
23	VDDL	Р	Left channel supply.	
24	BST_LA	Р	Bootstrap supply for left channel output A.	

Publication Date: Apr. 2018 Revision: 1.4 5/83

Functional Block Diagram

Ordering Information

Product ID	Product ID Package Packing / MPQ		Comments
AD82584F-LG48NRY	E-LQFP 48L	250 Units / Tray	Croon
AD02504F-LG40NR I	(7mmx7mm)	2.5K Units / Box (10 Trays)	Green
AD82584F-LG48NRR	E-LQFP 48L	2K Units / Reel	Green
AD02504F-LG40NKK	(7mmx7mm)	(7mmx7mm) 1 Reel / Small box	
AD02504E OC24NDT	E-TSSOP 24L	62 Units / Tube	Green
AD82584F-QG24NRT	E-1330P 24L	100 Tubes / Small box	Green
AD82584F-QG24NRR	E-TSSOP 24L	2.5K Units / Reel	Croon
ADOZOO4F-QGZ4NKK	E-1330P 24L	1 Reel / Small box	Green

Publication Date: Apr. 2018 Revision: 1.4 6/83

Available Package

Package Type	Device No.	θ _{ja} (°C/W)	Ψ _{jt} (°C/W)	θ _{jt} (°C/W)	Exposed Thermal Pad
E-LQFP 48L	AD02504E	22.9	1.64	34.9	Von (Note 1)
E-TSSOP 24L	AD82584F	26.8	1.83	27.1	Yes (Note1)

- Note 1.1: The thermal pad is located at the bottom of the package. To optimize thermal performance, soldering the thermal pad to the PCB's ground plane is suggested.
- Note 1.2: θ_{ia} , the junction-to-ambient thermal resistance is simulated on a room temperature (T_A =25 $^{\circ}$ C), natural convection environment test board, which is constructed with a thermally efficient, 4-layers PCB (2S2P). The simulation is tested using the JESD51-5 thermal measurement standard.
- Note 1.3: Ψ_{it} represents the thermal parameter for the heat flow between the chip junction and the package's top surface center. It's extracted from the simulation data for obtaining θ_{ia} , using a procedure described in JESD51-2.
- Note 1.4: θ_{it} represents the thermal resistance for the heat flow between the chip junction and the package's top surface. It's extracted from the simulation data with obtaining a cold plate on the package top.

Marking Information

AD82584F

Line 1: LOGO

Line 2: Product no.

Line 3: Tracking Code

Line 4: Date Code

E-LQFP 48L E-TSSOP 24L

Absolute Maximum Ratings (AMR)

Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device.

Symbol	Parameter	Min	Max	Units
DVDD	Supply for Digital Circuit	-0.3	3.6	V
VDDL/R	Supply for Driver Stage	-0.3	30	V
	Output Pin (LA, LB, RA and RB) to GND		32	V
Vi	Input Voltage	-0.3	3.6	V
T _{stg}	Storage Temperature	-65	150	°C
T_J	Junction Operating Temperature	0	150	°C
F0D	Human Body Model		±2K	V
ESD	Charged Device Model	-0.3 3.6 V e -0.3 30 V B) to GND 32 V -0.3 3.6 V -0.3 3.6 V -65 150 °C rature 0 150 °C ±2K V	V	

Publication Date: Apr. 2018

Revision: 1.4 7/83

Recommended Operating Conditions

Symbol	Parameter	Тур	Units
DVDD	Supply for Digital Circuit	3.15~3.45	V
VDDL/R	Supply for Driver Stage	4.5~26	V
T_J	Junction Operating Temperature	-40~125	°C
T _A	Ambient Operating Temperature	-40~85	°C

General Electrical Characteristics

Condition: T_A=25 °C (unless otherwise specified).

Symbol	Parameter	Condition	Min	Тур	Max	Units
I _{PD} (HV)	PVDD Supply Current during Power Down	PVDD=24V		20	40	uA
I _Q (HV)	Quiescent current for PVDD (50%/50% PWM duty)	PVDD=24V		15		mA
I _Q (LV)	Quiescent current for DVDD (Un-mute)	DVDD=3.3V, PBTL=Low		31		mA
_	Junction Temperature for Driver Shutdown			165		°C
T _{SENSOR}	Temperature Hysteresis for Recovery from Shutdown			35		°C
UV_DVDDH	DVDD Under Voltage Release			2.99		V
UV_DVDDL	DVDD Under Voltage Active			2.89		V
UV_{PVDDH}	VDDL/R Under Voltage Release			7.7		V
UV _{PVDDL}	VDDL/R Under Voltage Active			7.1		V
OV _H	VDDL/R Over Voltage Active			29.2		V
OV_L	VDDL/R Under Voltage Release			28.5		V
R _{DS(on)}	Static Drain-to-Source On-state Resistor, NMOS	PVDD=24V, Id=500mA		180		mΩ
	L(R) Channel Over-Current Protection (Note 2)	PVDD=24V		9		Α
I _{sc}	L(N) Ghannel Over-Current Frotection (Note 2)	PVDD=12V		8.5		Α
ISC	Mono Over-Current Protection (Note 2)	PVDD=24V		18		Α
	None 2)	PVDD=12V		17		Α
V_{IH}	High-Level Input Voltage	DVDD=3.3V	2.0			V
V_{IL}	Low-Level Input Voltage	DVDD=3.3V			0.8	V
V _{OH}	High-Level Output Voltage	DVDD=3.3V	2.4			V
V _{OL}	Low-Level Output Voltage	DVDD=3.3V			0.4	V
Cı	Input Capacitance		_	6.4	_	pF

Note 2: Loudspeaker over-current protection is only effective when loudspeaker drivers are properly connected with external LC filters. Please refer to the application circuit example for recommended LC filter configuration.

Publication Date: Apr. 2018 Revision: 1.4 8/83

Application Circuit Example for Stereo

Application Circuit Example for Mono

Note 6: When concerning about short-circuit protection or performance, it is suggested using the choke with its l_{bC} larger than l_{SC}.

Note 7: These capacitors should be placed as close to speaker jack as possible, and their

values should be determined according to EMI test results.

Pin Logic	0	1
힘	Power Down	Normal
Reset	Reset	Normal
PBTL	Stereo	Mono

Publication Date: Apr. 2018 Revision: 1.4 10/83

Electrical Characteristics and Specifications for Loudspeaker

BTL (Bridge-Tied-Load) output for Stereo

Condition: $T_A=25^{\circ}C$, DVDD=3.3V, VDDL=VDDR=24V, $F_S=48kHz$, Load=8 Ω with passive LC lowpass filter (L=15 μ H with $R_{DC}=63m\Omega$, C=220nF); Input is 1kHz sinewave. Volume is 0dB unless otherwise specified.

Symbol	Parameter	Condition	Input Level	Min	Тур	Max	Units
Po	RMS Output Power (THD+N=0.15%)				25		W
	RMS Output Power (THD+N=0.10%)				15		W
(Note 9)	RMS Output Power (THD+N=0.08%)				10		W
THD+N	Total Harmonic Distortion + Noise	P _O =7.5W			0.07		%
SNR	Signal to Noise Ratio (Note 8)	Maximum power at THD < 1% @1kHz			106		dB
DR	Dynamic Range (Note 8)		-60dB		108		dB
Vn	Output Noise (Note 8)	20Hz to 20kHz			100		uV
PSRR	Power Supply Rejection Ratio	V _{RIPPLE} =1V _{RMS} at 1kHz			-73		dB
	Channel Separation	1W @1kHz			-72		dB

Note 8: Measured with A-weighting filter.

Note 9: Thermal dissipation is limited by package type and PCB design. The external heat-sink or system cooling method should be adopted for maximum power output.

Publication Date: Apr. 2018 Revision: 1.4 11/83

Total Harmonic Distortion + Noise vs. Output Power (BTL)

Total Harmonic Distortion + Noise vs. Frequency (BTL)

Cross-talk (Stereo, BTL)

•

Output Power vs. Supply Voltage (BTL, 8ohm)

Note: Dashed Line represent thermally limited regions.

Note: Dashed Line represent thermally limited regions.

Note: Dashed Line represent thermally limited regions.

Efficiency (Stereo, BTL) during Power Saving Mode

Efficiency (Stereo, BTL) without Power Saving Mode

Publication Date: Apr. 2018 Revision: 1.4 15/83

Electrical Characteristics and Specifications for Loudspeaker (cont.)

PBTL (Parallel-Bridge-Tied-Load) output for Mono

Condition: $T_A=25^{\circ}C$, DVDD= 3.3V, VDDL=VDDR=24V, $F_S=48kHz$, Load= 4Ω with passive LC lowpass filter (L=10 μ H with $R_{DC}=27m\Omega$, C=470nF); Input is 1kHz sinewave.

Symbol	Parameter	Condition	Input Level	Min	Тур	Max	Units
Б	RMS Output Power (THD+N=0.4%)				50		W
P _O	RMS Output Power (THD+N=0.31%)				30		W
(Note 9)	RMS Output Power (THD+N=0.26%)				20		W
THD+N	Total Harmonic Distortion + Noise	P _o =15W			0.22		%
		Maximum					
SNR	Signal to Noise Ratio (Note 8)	power at THD			102		dB
		< 1% @1kHz					
DR	Dynamic Range (Note 8)		-60dB		106		dB
Vn	Output Noise (Note 8)	20Hz to 20kHz			130		uV
PSRR	Power Supply Rejection Ratio	V _{RIPPLE} =1V _{RMS}			-78		dB
FOILIT	i ower Supply Rejection Ratio	at 1kHz			-70		ub

Note 8: Measured with A-weighting filter.

Note 9: Thermal dissipation is limited by package type and PCB design. The external heat-sink or system cooling method should be adopted for maximum power output.

Publication Date: Apr. 2018 Revision: 1.4 16/83

Total Harmonic Distortion + Noise vs. Output Power (PBTL)

Total Harmonic Distortion + Noise vs. Frequency (PBTL)

Frequency Response (PBTL)

Publication Date: Apr. 2018 Revision: 1.4 17/83

Output Power vs. Supply Voltage (PBTL, 6ohm) 70W 60W 50W Output Power (W) 40W 30W 20W 10W THD+N=10% THD+N=1% 0W 10 12 14 16 18 20 22 24 26 Supply Voltage (V)

Note: Dashed Line represent thermally limited regions.

Output Power vs. Supply Voltage (PBTL, 4ohm)

Note: Dashed Line represent thermally limited regions.

Interface configuration

System Clock Timing

• Timing Relationship (Using I²S format as an example)

SDATA

Publication Date: Apr. 2018 Revision: 1.4 20/83

Symbol	Parameter	Min	Тур	Max	Units
t _{LR}	LRCIN Period (1/F _S)	5.2		31.25	μs
t _{BL}	BCLK Rising Edge to LRCIN Edge	25			ns
t _{LB}	LRCIN Edge to BCLK Rising Edge	25			ns
t _{BCC}	BCLK Period (1/64F _S)	81.38		488.3	ns
t _{BCH}	BCLK Pulse Width High	40.69		244	ns
t _{BCL}	BCLK Pulse Width Low	40.69		244	ns
t _{DS}	SDATA Set-Up Time	25			ns
t _{DH}	SDATA Hold Time	25			ns

I²C Timing

Danamadan	Course le sel	Standard	d Mode	Fast Mo	de	Unit
Parameter	Symbol	MIN.	MAX.	MIN.	MAX.	Unit
SCL clock frequency	f _{SCL}	0	100	0	400	kHz
Hold time for repeated START condition	t _{HD,STA}	4.0		0.6		μs
LOW period of the SCL clock	t _{LOW}	4.7		1.3		μs
HIGH period of the SCL clock	t _{HIGH}	4.0		0.6		μs
Setup time for repeated START condition	t _{SU;STA}	4.7		0.6		μs
Hold time for I ² C bus data	t _{HD;DAT}	0	3.45	0	0.9	μs
Setup time for I ² C bus data	t _{SU;DAT}	250		100		Ns
Rise time of both SDA and SCL signals	t _r		1000		300	Ns
Fall time of both SDA and SCL signals	t _f		300		300	Ns
Setup time for STOP condition	t _{SU;STO}	4.0		0.6		μs
Bus free time between STOP and the next		4.7		1.2		
START condition	t _{BUF}	4.7		1.3		μs
Capacitive load for each bus line	C _b		400		400	pF

Operation Description

The default volume of AD82584F is muted. AD82584F will be activated while the de-mute command via I²C is programmed.

Internal PLL

AD82584F has a built-in PLL internally, the BCLK/FS or MCLK/FS ratio, which is selected by I²C control interface. The clock inputted into the BCLK or MCLK pin becomes the frequency of multiple edge evaluation in chip internally.

Fs	BCLK/FS Setting Ratio for PLL	BCLK Frequency	Multiple edge evaluation for bit clock	PWM Career Frequency
48kHz	64x	3.072MHz	32x	384kHz
44.1kHz	64x	2.8224MHz	32x	352.8kHz
32kHz	64x	2.048MHz	32x	256kHz

Fs	MCLK/FS Setting Ratio for PLL	MCLK Frequency	Multiple edge evaluation for Master clock	PWM Career Frequency
48kHz	256x	12.288MHz	8x	384kHz
44.1kHz	256x	11.2896MHz	8x	352.8kHz
32kHz	256x	8.192MHz	8x	256kHz
8kHz	256x	2.048MHz	32x	256kHz

Reset

When the \overline{RESET} pin is lowered, AD82584F will clear the stored data and reset the register table to default values. AD82584F will exit reset state at the 512th internal clock cycle after the \overline{RESET} pin is raised to high.

Publication Date: Apr. 2018 Revision: 1.4 22/83

Power down control

AD82584F has a built-in volume fade-in/fade-out design for PD/Mute function. The relative PD timing diagrams for loudspeakers are shown below.

$$(10^{\frac{t \arg et (dB)}{20}} - 10^{\frac{original (dB)}{20}})x512 x(1/96 K)$$

The volume level will be decreased to $-\infty dB$ in several LRCIN cycles. Once the fade-out procedure is finished, AD82584F will turn off the power stages, clock signals (for digital circuits) and current (for analog circuits). After PD pin is pulled low, AD82584F requires T_{fade} to finish the forementioned work before entering power down state. User can not program AD82584F during power down state. Also, all settings in the registers will remain intact unless DVDD is removed.

If the PD signal is removed during the fade-out procedure (above, right figure), AD82584F will still execute the fade-in procedure. In addition, AD82584F will establish the analog circuits' bias current and send the clock signals to digital circuits. Afterwards, AD82584F will return to its normal status.

Publication Date: Apr. 2018 Revision: 1.4 23/83 **ESMT**

Self-protection circuits

AD82584F has built-in protection circuits including thermal, short-circuit, under-voltage detection, and over voltage circuits.

- (i) When the internal junction temperature is higher than 165°C, power stages will be turned off and AD82584F will return to normal operation once the temperature drops to 130°C. The temperature values may vary around 10%.
- (ii) The short-circuit protection circuit protects the output stage when the wires connected to loudspeakers are shorted to each other or GND/VDD. For normal 24V operations, the current flowing through the power stage will be less than 9A for stereo configuration. Otherwise, the short-circuit detectors may pull the ERROR pin to DGND, disabling the output stages. When the over-temperature or short-circuit condition occurs, the open-drain ERROR pin will be pulled low and latched into ERROR state.

Once short-circuit condition is removed, AD82584F will exit ERROR state when one of the following conditions is met: (1) \overline{RESET} pin is pulled low, (2) \overline{PD} pin is pulled low, (3) Master mute is enabled through the I^2C interface.

- (iii) Once the DVDD voltage is lower than 2.89V, AD82584F will turn off its loudspeaker power stages. When DVDD becomes higher than 2.99V, AD82584F will return to normal operation.
- (iv) Once the PVDD voltage is higher than 29.2V, AD82584F will turn off its loudspeaker power stages. When PVDD becomes lower than 28.5V, AD82584F will return to normal operation.
- (v) Once the PVDD voltage is lower than 7.1V, AD82584F will turn off its loudspeaker power stages. When PVDD becomes higher than 7.7V, AD82584F will return to normal operation.

Anti-pop design

AD82584F will generate appropriate control signals to suppress pop sounds during initial power on/off, power down/up, mute, and volume level changes.

3D surround sound

AD82584F provides the virtual surround sound technology with greater separation and depth voice quality for stereo signals.

I²C Chip Select

ERROR is an input pin during power. It can be pulled High (15-k Ω pull up) or Low (15-k Ω pull down). Low indicates an I²C address of 0x30, and high an address of 0x31.

Publication Date: Apr. 2018 Revision: 1.4 24/83

Output configuration

The PBTL pin defines the configuration mode. AD82584F can be configured to stereo or mono via PBTL pin.

Table 1.

PBTL	Configuration Mode				
0	Stereo				
1	Mono				
V	Mono via I ² C control				
^	(MONO_EN=1 and MONO_KEY=3006(HEX))				

Configuration figures:

Publication Date: Apr. 2018 Revision: 1.4 25/83

Power on sequence

Hereunder is AD82584F's power on sequence. Give a de-mute command via I²C when the whole system is stable.

Symbol	Condition	Min	Max	Units
t1		0	-	msec
t2		0	-	msec
t3		10	-	msec
t4		0	-	msec
t5		10	-	msec
t6		10	-	msec
t7		0	-	msec
t8		200	-	msec
t9		20	-	msec
t10		-	0.1	msec
t11		25	-	msec

t12	25	-	msec
t13	-	22(FADE_SPEED=0) 176(FADE_SPEED=1)	msec
t14	-	20	msec

• Power off sequence

Hereunder is AD82584F's power off sequence.

Symbol	Condition	Min	Max	Units	
+1		35(FADE_SPEED=0)	_	msoc	
t1		280(FADE_SPEED=1)	-	msec	
t2		0.1	ı	msec	
t3		0	-	msec	
t4		1	-	msec	
t5		1	-	msec	

I²C-Bus Transfer Protocol

Introduction

AD82584F employs I²C-bus transfer protocol. Two wires, serial data and serial clock carry information between the devices connected to the bus. Each device is recognized by a unique 7-bit address and can operate as either a transmitter or a receiver. The master device initiates a data transfer and provides the serial clock on the bus. AD82584F is always an I²C slave device.

Protocol

START and STOP condition

START is identified by a high to low transition of the SDA signal. A START condition must precede any command for data transfer. A STOP is identified by a low to high transition of the SDA signal. A STOP condition terminates communication between AD82584F and the master device on the bus. In both START and STOP, the SCL is stable in the high state.

Data validity

The SDA signal must be stable during the high period of the clock. The high or low change of SDA only occurs when SCL signal is low. AD82584F samples the SDA signal at the rising edge of SCL signal.

Device addressing

The master generates 7-bit address to recognize slave devices. When AD82584F receives 7-bit address matched with 0110000 or 0110001 (ERROR pin state during power up), AD82584F will acknowledge at the 9th bit (the 8th bit is for R/W bit). The bytes following the device identification address are for AD82584F internal sub-addresses.

Data transferring

Each byte of SDA signaling must consist of 8 consecutive bits, and the byte is followed by an acknowledge bit. Data is transferred with MSB first, as shown in the figure below. In both write and read operations, AD82584F supports both single-byte and multi-byte transfers. Refer to the figure below for detailed data-transferring protocol.

Publication Date: Apr. 2018 Revision: 1.4 28/83

Register Table

The AD82584F's audio signal processing data flow is shown below. User can control these functions by programming appropriate settings in the register table. In this section, the register table is summarized first. The definition of each register follows in the next section.

One band DRC

Dual band DRC

Three bands DRC

Address	Name	B[7]	B[6]	B[5]	B[4]	B[3]	B[2]	B[1]	B[0]
0X00	SCTL1	IF[2]	IF[1]	IF[0]	Reserved	PWML_X	PWMR_X	LV_UVSEL	LREXC
0X01	SCTL2	BCLK_SEL	FS[1]	FS[0]	FS8K	PMF[3]	PMF[2]	PMF[1]	PMF[0]
0X02	SCTL3	EN_CLK_OUT	MUTE	CM1	CM2	СМЗ	CM4	CM5	CM6
0X03	MVOL	MV[7]	MV[6]	MV[5]	MV[4]	MV[3]	MV[2]	MV[1]	MV[0]
0X04	C1VOL	C1V[7]	C1V[6]	C1V[5]	C1V[4]	C1V[3]	C1V[2]	C1V[1]	C1V[0]
0X05	C2VOL	C2V[7]	C2V[6]	C2V[5]	C2V[4]	C2V[3]	C2V[2]	C2V[1]	C2V[0]
0X06	C3VOL	C3V[7]	C3V[6]	C3V[5]	C3V[4]	C3V[3]	C3V[2]	C3V[1]	C3V[0]
0X07	C4VOL	C4V[7]	C4V[6]	C4V[5]	C4V[4]	C4V[3]	C4V[2]	C4V[1]	C4V[0]
0X08	C5VOL	C5V[7]	C5V[6]	C5V[5]	C5V[4]	C5V[3]	C5V[2]	C5V[1]	C5V[0]
0X09	C6VOL	C6V[7]	C6V[6]	C6V[5]	C6V[4]	C6V[3]	C6V[2]	C6V[1]	C6V[0]
0X0A	BTONE		Reserved		BTC[4]	BTC[3]	BTC[2]	BTC[1]	BTC[0]
0X0B	TTONE		Reserved		TTC[4]	TTC[3]	TTC[2]	TTC[1]	TTC[0]
0X0C	SCTL4	SRBP	BTE	DEQE	NGE	EQL	PSL	DSPB	HPB
0X0D	C1CFG		Rese	erved		C1PCBP	C1DRCBP	Reserved	C1VBP
0X0E	C2CFG		Rese	erved		C2PCBP	C2DRCBP	Reserved	C2VBP
0X0F	C3CFG		Reserved					Reserved	C3VBP
0X10	C4CFG		Reserved				C4DRCBP	Reserved	C4VBP
0X11	C5CFG			Reserved			C5DRCBP	Reserved	C5VBP

Publication Date: Apr. 2018 Revision: 1.4 30/83

0712	CCCCC		Reserved C6DRCBP Reserved C6VBP						
0X12	C6CFG			Reserved			C7DRCBP	Reserved	
0X13	C7CFG		Reserved					Reserved	Reserved
0X14	C8CFG	Reserved				C8DRCBP	Reserved	Reserved	
0X15	LAR1	LA1[3]	LA1[2]	LA1[1]	LA1[0]	LR1[3]	LR1[2]	LR1[1]	LR1[0]
0X16	LAR2	LA2[3]	LA2[2]	LA2[1]	LA2[0]	LR2[3]	LR2[2]	LR2[1]	LR2[0]
0X17	LAR3	LA3[3]	LA3[2]	LA3[1]	LA3[0]	LR3[3]	LR3[2]	LR3[1]	LR3[0]
0X18	LAR4	LA4[3]	LA4[2]	LA4[1]	LA4[0]	LR4[3]	LR4[2]	LR4[1]	LR4[0]
0X19	ERDLY		T		Prohit	oited	T		T
0X1A	SCTL5	Reserved	MONO_EN	SW_RSTB	LVUV_FADE	Reserved	DIS_MCLK_DET	QT_EN	PWM_SEL
0X1B	SCTL6	DIS_HVUV	DRC_SEL[1]	DRC_SEL[0]	Rese	erved	HV_UVSEL [2]	HV_UVSEL [1]	HV_UVSEL [0]
0X1C	SCTL7	Reserved	A_SEL_FAULT	D_MOD	DIS_NG_FADE	QD_EN	FADE_SPEED	NG_GAIN[1]	NG_GAIN[0]
0X1D	CFADDR	CFA[7]	CFA[6]	CFA[5]	CFA[4]	CFA[3]	CFA[2]	CFA[1]	CFA[0]
0X1E	A1CF1	C1B[23]	C1B[22]	C1B[21]	C1B[20]	C1B[19]	C1B[18]	C1B[17]	C1B[16]
0X1F	A1CF2	C1B[15]	C1B[14]	C1B[13]	C1B[12]	C1B[11]	C1B[10]	C1B[9]	C1B[8]
0X20	A1CF3	C1B[7]	C1B[6]	C1B[5]	C1B[4]	C1B[3]	C1B[2]	C1B[1]	C1B[0]
0X21	A2CF1	C2B[23]	C2B[22]	C2B[21]	C2B[20]	C2B[19]	C2B[18]	C2B[17]	C2B[16]
0X22	A2CF2	C2B[15]	C2B[14]	C2B[13]	C2B[12]	C2B[11]	C2B[10]	C2B[9]	C2B[8]
0X23	A2CF3	C2B[7]	C2B[6]	C2B[5]	C2B[4]	C2B[3]	C2B[2]	C2B[1]	C2B[0]
0X24	B1CF1	C3B[23]	C3B[22]	C3B[21]	C3B[20]	C3B[19]	C3B[18]	C3B[17]	C3B[16]
0X25	B1CF2	C3B[15]	C3B[14]	C3B[13]	C3B[12]	C3B[11]	C3B[10]	C3B[9]	C3B[8]
0X26	B1CF3	C3B[7]	C3B[6]	C3B[5]	C3B[4]	C3B[3]	C3B[2]	C3B[1]	C3B[0]
0X27	B2CF1	C4B[23]	C4B[22]	C4B[21]	C4B[20]	C4B[19]	C4B[18]	C4B[17]	C4B[16]
0X28	B2CF2	C4B[15]	C4B[14]	C4B[13]	C4B[12]	C4B[11]	C4B[10]	C4B[9]	C4B[8]
0X29	B2CF3	C4B[7]	C4B[6]	C4B[5]	C4B[4]	C4B[3]	C4B[2]	C4B[1]	C4B[0]
0X2A	A0CF1	C5B[23]	C5B[22]	C5B[21]	C5B[20]	C5B[19]	C5B[18]	C5B[17]	C5B[16]
0X2B	A0CF2	C5B[15]	C5B[14]	C5B[13]	C5B[12]	C5B[11]	C5B[10]	C5B[9]	C5B[8]
0X2C	A0CF3	C5B[7]	C5B[6]	C5B[5]	C5B[4]	C5B[3]	C5B[2]	C5B[1]	C5B[0]
0X2D	CFRW	Reserved	RBS	R3	W3	RA	R1	WA	W1
0X2E	PRS				Prohib	oited			
0X2F	MBIST				Prohib	pited			
0X30	Reserved				Rese	rved			
0X31	PWM_CTRL				Prohib	pited			
0X32	TM_CTRL				Prohib	oited			
0X33	QT_SW_LEVEL	SW_LEVEL [2]	SW_LEVEL[1]	SW_LEVEL [0]	QT_SW_LEVEL [4]	QT_SW_LEVEL [3]	QT_SW_LEVEL [2]	QT_SW_LEVEL [1]	QT_SW_LEVEL [0]
0X34	VFT1	MV_FT[1]	MV_FT[0]	C1V_FT[1]	C1V_FT[0]	C2V_FT[1]	C2V_FT[0]	C3V_FT[1]	C3V_FT[0]
0X35	VFT2	C4V_FT[1]	C4V_FT[0]	C5V_FT[1]	C5V_FT[0]	C6V_FT[1]	C6V_FT[0]	Rese	rved

Publication Date: Apr. 2018 Revision: 1.4 31/83

0X36	OCB_GVDDS				Prohil	bited				
0X37	ID	DN[3]	DN[2]	DN[1]	DN[0]	VN[3]	VN[2]	VN[1]	VN[0]	
0X38	R1ADDR		Prohibited							
0X39	R1D1				Prohil	bited				
0X3A	R1D2				Prohil	bited				
0X3B	R1D3				Prohil	bited				
0X3C	R1RW				Prohil	bited				
0X3D	R2ADDR				Prohil	bited				
0X3E	R2D1				Prohil	bited				
0X3F	R2D2				Prohil	bited				
0X40	R2D3				Prohil	bited				
0X41	R2RW				Prohil	bited				
0X42	LMC	C1_CLR	C2_CLR	C3_CLR	C4_CLR	C5_CLR	C6_CLR	C7_CLR	C8_CLR	
0X43	PMC	C1_CLR_RMS	C2_CLR_RMS	C3_CLR_RMS	C4_CLR_RMS	C5_CLR_RMS	C6_CLR_RMS	C7_CLR_RMS	C8_CLR_RMS	
0X44	TC1LM	C1_LEVEL[23]	C1_LEVEL[22]	C1_LEVEL[21]	C1_LEVEL[20]	C1_LEVEL[19]	C1_LEVEL[18]	C1_LEVEL[17]	C1_LEVEL[16]	
0X45	MC1LM	C1_LEVEL[15]	C1_LEVEL[14]	C1_LEVEL[13]	C1_LEVEL[12]	C1_LEVEL[11]	C1_LEVEL[10]	C1_LEVEL[9]	C1_LEVEL[8]	
0X46	BC1LM	C1_LEVEL[7]	C1_LEVEL[6]	C1_LEVEL[5]	C1_LEVEL[4]	C1_LEVEL[3]	C1_LEVEL[2]	C1_LEVEL[1]	C1_LEVEL[0]	
0X47	TC2LM	C2_LEVEL[23]	C2_LEVEL[22]	C2_LEVEL[21]	C2_LEVEL[20]	C2_LEVEL[19]	C2_LEVEL[18]	C2_LEVEL[17]	C2_LEVEL[16]	
0X48	MC2LM	C2_LEVEL[15]	C2_LEVEL[14]	C2_LEVEL[13]	C2_LEVEL[12]	C2_LEVEL[11]	C2_LEVEL[10]	C2_LEVEL[9]	C2_LEVEL[8]	
0X49	BC2LM	C2_LEVEL[7]	C2_LEVEL[6]	C2_LEVEL[5]	C2_LEVEL[4]	C2_LEVEL[3]	C2_LEVEL[2]	C2_LEVEL[1]	C2_LEVEL[0]	
0X4A	TC3LM	C3_LEVEL[23]	C3_LEVEL[22]	C3_LEVEL[21]	C3_LEVEL[20]	C3_LEVEL[19]	C3_LEVEL[18]	C3_LEVEL[17]	C3_LEVEL[16]	
0X4B	MC3LM	C3_LEVEL[15]	C3_LEVEL[14]	C3_LEVEL[13]	C3_LEVEL[12]	C3_LEVEL[11]	C3_LEVEL[10]	C3_LEVEL[9]	C3_LEVEL[8]	
0X4C	BC3LM	C3_LEVEL[7]	C3_LEVEL[6]	C3_LEVEL[5]	C3_LEVEL[4]	C3_LEVEL[3]	C3_LEVEL[2]	C3_LEVEL[1]	C3_LEVEL[0]	
0X4D	TC4LM	C4_LEVEL[23]	C4_LEVEL[22]	C4_LEVEL[21]	C4_LEVEL[20]	C4_LEVEL[19]	C4_LEVEL[18]	C4_LEVEL[17]	C4_LEVEL[16]	
0X4E	MC4LM	C4_LEVEL[15]	C4_LEVEL[14]	C4_LEVEL[13]	C4_LEVEL[12]	C4_LEVEL[11]	C4_LEVEL[10]	C4_LEVEL[9]	C4_LEVEL[8]	
0X4F	BC4LM	C4_LEVEL[7]	C4_LEVEL[6]	C4_LEVEL[5]	C4_LEVEL[4]	C4_LEVEL[3]	C4_LEVEL[2]	C4_LEVEL[1]	C4_LEVEL[0]	
0X50	TC5LM	C5_LEVEL[23]	C5_LEVEL[22]	C5_LEVEL[21]	C5_LEVEL[20]	C5_LEVEL[19]	C5_LEVEL[18]	C5_LEVEL[17]	C5_LEVEL[16]	
0X51	MC5LM	C5_LEVEL[15]	C5_LEVEL[14]	C5_LEVEL[13]	C5_LEVEL[12]	C5_LEVEL[11]	C5_LEVEL[10]	C5_LEVEL[9]	C5_LEVEL[8]	
0X52	BC5LM	C5_LEVEL[7]	C5_LEVEL[6]	C5_LEVEL[5]	C5_LEVEL[4]	C5_LEVEL[3]	C5_LEVEL[2]	C5_LEVEL[1]	C5_LEVEL[0]	
0X53	TC6LM	C6_LEVEL[23]	C6_LEVEL[22]	C6_LEVEL[21]	C6_LEVEL[20]	C6_LEVEL[19]	C6_LEVEL[18]	C6_LEVEL[17]	C6_LEVEL[16]	
0X54	MC6LM	C6_LEVEL[15]	C6_LEVEL[14]	C6_LEVEL[13]	C6_LEVEL[12]	C6_LEVEL[11]	C6_LEVEL[10]	C6_LEVEL[9]	C6_LEVEL[8]	
0X55	BC6LM	C6_LEVEL[7]	C6_LEVEL[6]	C6_LEVEL[5]	C6_LEVEL[4]	C6_LEVEL[3]	C6_LEVEL[2]	C6_LEVEL[1]	C6_LEVEL[0]	
0X56	TC7LM	C7_LEVEL[23]	C7_LEVEL[22]	C7_LEVEL[21]	C7_LEVEL[20]	C7_LEVEL[19]	C7_LEVEL[18]	C7_LEVEL[17]	C7_LEVEL[16]	
0X57	MC7LM	C7_LEVEL[15]	C7_LEVEL[14]	C7_LEVEL[13]	C7_LEVEL[12]	C7_LEVEL[11]	C7_LEVEL[10]	C7_LEVEL[9]	C7_LEVEL[8]	
0X58	BC7LM	C7_LEVEL[7]	C7_LEVEL[6]	C7_LEVEL[5]	C7_LEVEL[4]	C7_LEVEL[3]	C7_LEVEL[2]	C7_LEVEL[1]	C7_LEVEL[0]	
0X59	TC8LM	C8_LEVEL[23]	C8_LEVEL[22]	C8_LEVEL[21]	C8_LEVEL[20]	C8_LEVEL[19]	C8_LEVEL[18]	C8_LEVEL[17]	C8_LEVEL[16]	

Publication Date: Apr. 2018 Revision: 1.4 32/83

				•	•	•		•	
0X5A	MC8LM	C8_LEVEL[15]	C8_LEVEL[14]	C8_LEVEL[13]	C8_LEVEL[12]	C8_LEVEL[11]	C8_LEVEL[10]	C8_LEVEL[9]	C8_LEVEL[8]
0X5B	BC8LM	C8_LEVEL[7]	C8_LEVEL[6]	C8_LEVEL[5]	C8_LEVEL[4]	C8_LEVEL[3]	C8_LEVEL[2]	C8_LEVEL[1]	C8_LEVEL[0]
0X5C	I2S_OUT			Reserved			I2S_DO_SEL[2]	I2S_DO_SEL[2]	12S_DO_SEL[2]
0X5D~	December				D	d			
0X73	Reserved				Rese	rvea			
0X74	MKHB	MK_HBYTE[7]	MK_HBYTE[6]	MK_HBYTE[5]	MK_HBYTE[4]	MK_HBYTE[3]	MK_HBYTE[2]	MK_HBYTE[1]	MK_HBYTE[0]
0X75	MKLB	MK_LBYTE[7]	MK_LBYTE[6]	MK_LBYTE[5]	MK_LBYTE[4]	MK_LBYTE[3]	MK_LBYTE[2]	MK_LBYTE[1]	MK_LBYTE[0]
0X76	BS_CTRL				Prohil	bited	•		
0X77	HI_RES				Prohil	bited			
0X78	TMR				Prohil	bited			
0X79	BS_OV_UV_SEL				Prohil	bited			
0X7A	OC_SEL				Prohil	bited			
0X7B	MBIST_UPT_E				Prohil	bited			
0X7C	MBIST_UPM_E				Prohil	bited			
0X7D	MBIST_UPB_E				Prohil	bited			
0X7E	MBIST_UPT_O				Prohil	bited			
0X7F	MBIST_UPM_O				Prohil	bited			
0X80	MBIST_UPB_O				Prohil	bited			
0X81	Reserved				Rese	rved			
0X82	MDT				Prohil	bited			
0X83	PWM SHIFT				Rese	rved			
0X84	ERR_REG	A_OCP_N	A_OTP_N	A_UV_N	A_BSUV	A_BSOV	A_CKERR	A_OVP	Reserved
0X85	ERR_RECORD	A_OCP_N_LATCH	A_OTP_N_LATCH	A_UV_NLATCH	A_BSUV_LATCH	A_BSOVLATCH	A_CKERRLATCH	A_OVP_LATCH	Reserved
0X86	ERR_CLEAR	A_OCP_N_CLEAR	A_OTP_N_CLEAR	A_UV_N_CLEAR	A_BSUV_CLEAR	A_BSOV_CLEAR	A_CKERR_CLEAR	A_OVP_CLEAR	Reserved

Detail Description for Register

Note that the highlighted columns are default values of these tables. If there is no highlighted value, the default setting of this bit is determined by the external pin.

Address 0X00 : State control 1

AD82584F supports multiple serial data input formats including I²S, Left-alignment and Right-alignment. These formats are selected by user via bit7~bit5 of address 0X00. The left/right channels can be exchanged to each other by programming to address 0/bit0, LREXC.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION	
	IF[2:0]		000	I ² S 16-24 bits	
B[7:5]		Input Format	001	Left-alignment 16-24 bits	
			010	Right-alignment 16 bits	
			011	Right-alignment 18 bits	
			100	Right-alignment 20 bits	
			101	Right-alignment 24 bits	
B[4]		Reserved			
B[3]	PWML_X	LA/LB exchange	0	No exchanged	
			1	L/R exchanged	
BIOI	PWMR_X	DA/DD ovebonge	0	L/R exchanged	
B[2]		RA/RB exchange	1	No exchanged	
B[1]	LV_UVSEL	LV under voltage	0	2.9V	
		selection	1	2.7V	
B[0]	LREXC	Left/Right (L/R)		0	No exchanged
		Channel exchanged		L/R exchanged	

Publication Date: Apr. 2018 Revision: 1.4 34/83

Address 0X01 : State control 2

AD82584F has a built-in PLL and supports multiple MCLK/Fs or BCLK/Fs ratios.

If BCLK_SEL is high, the ratio is changed to BCLK/FS ratios.

On the contrary, the ratio is changed to MCLK/FS ratios.

AD82584F has 8K sample rate application via bit 4.

Detail setting is shown in the following table.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
DIZI	BCLK_SEL MCLK-less 0 1	MCLK-less	0	Disable
B[7]		Enable		
	FS[1:0]	Sampling Frequency	00	32/44.1/48kHz
B[6:5]			01	64/88.2/96kHz
			1x	128/176.4/192kHz
B[4]	FS8K	8K sample rate	0	Disable
			1	Enable

Note that: 8K application needs MCLK pin. Therefore, only LQFP package can support this function.

Multiple MCLK/FS or BCLK/FS ratio setting table

BIT	NAME	DESCRIPTION	VALUE	B[6:5]=00	B[6:5]=01	B[6:5]=1x
			0000	1024x	512x	256x
			0001	Reset Default	Reset Default	Reset Default
				(64x)	(64x)	(64x)
			0010	128x	128x	128x
		MCLK/Fs or	0011	192x	192x	192x
B[3:0]	PMF[3:0]	BCLK/Fs	0100	256x	256x	256x
		Setup	0101	384x	384x	
			0110	512x	512x	
			0111	576x		Reserved
			1000	768x	Reserved	i
			1001	1024x		

Publication Date: Apr. 2018 Revision: 1.4 35/83

Multiple MCLK/FS ratio setting table of 8K application

BIT	NAME	DESCRIPTION	VALUE	B[4]=1
B[3:0]	PMF[3:0]	MCLK/Fs Setup	0000	4096x
			0001	Reset Default
				(256x)
			0010	512x
			0011	768x
			0100	1024x
			0101	1536x
			0110	2048x
			0111	2304x
			1000	3072x
			1001	4096x

Address 0X02 : State control 3

AD82584F has mute function including master mute and channel mute.

In one band DRC, master, channel 1, and channel 2 mute will active.

When master mute is enabled, all 2 processing channels are muted. User can mute these 2 channels individually by channel mute. When the mute function is enabled or disabled, the fade-out or fade-in process will be initiated.

In three bands DRC, master, channel 1 to channel 6 mute will active.

When master mute is enabled, all 6 processing channels are muted. User can mute these 6 channels individually by channel mute. When the mute function is enabled or disabled, the fade-out or fade-in process will be initiated.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7]	EN_CLK_	PLL Clock Output	0	Disabled
B[7]	OUT	PLE Clock Output	1	Enabled
B[6]	MMUTE	Master Mute	0	All channel not muted
P[0]	IVIIVIOTE	Master Mute	1	All channel muted
DIE1	CM1	Channel 1 Mute	0	Ch1 not muted
B[5]	CIVIT	Charmer i Mute	1	Only Ch1 muted
DIAI	CM2	Channel 2 Mute	0	Ch2 not muted
B[4]	CIVIZ	Channel 2 Mule	1	Only Ch2 muted
DIOI	СМЗ	Channel 3 Mute	0	Ch3 not muted
B[3]	CIVIS		1	Only Ch3 muted
DIOI	CM4	Channel 4 Mute	0	Ch4 not muted
B[2]	CIVI4	Charmer 4 Mute	1	Only Ch4 muted
D[4]	CME	Channel E Muta	0	Ch5 not muted
B[1]	CM5	Channel 5 Mute	1	Only Ch5 muted
DIO1	CM6	CM6 Channel 6 Mute	0	Ch6 not muted
B[0]	Civio		1	Only Ch6 muted

Publication Date: Apr. 2018 Revision: 1.4 37/83

Address 0X03 : Master volume control

AD82584F supports both master-volume (Address 0X03) and channel-volume control (Address 0X04, 0X05, 0X06, 0X07, 0X08, 0X09) modes. Both volume control settings range from $+12dB \sim -103dB$ and 0.5dB per step. Note that the master volume control is added to the individual channel volume control as the total volume control. For example, if the master volume level is set at, Level A (in dB unit) and the channel volume level is set at Level B (in dB unit), the total volume control setting is equal to Level A plus with Level B.

-103dB \leq Total volume (Level A + Level B) \leq +24dB.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00000000	+12.0dB
			0000001	+11.5dB
			00000010	
			:	;
			00010111	0010111 +0.5dB
BIT[7:0]	MV[7:0]	Master Volume	00011000	0.0dB
БП[7.0]			00011001	-0.5dB
			:	:
			11100110	-103.0dB
			11100111	-∞dB
			:	:
			11111111	-∞dB

Address 0X04 : Channel 1 volume

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00000000	+12.0dB
			0000001	+11.5dB
			:	:
			00010100	:
			: :	
DITIZIO	C1V[7:0]	Channel1 Volume	00011000	0.0dB
BIT[7:0]			00011001	-0.5dB
			:	
			11100110	-103.0dB
			11100111	-∞dB
			:	:
			11111111	-∞dB

Publication Date: Apr. 2018 Revision: 1.4 38/83

• Address 0X05 : Channel 2 volume

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00000000	+12.0dB
			0000001	+11.5dB
		:	:	
			00010100	: +2dB : 0.0dB
	C2V[7:0]	Channel2 Volume	:	:
DIT[7.0]			00011000	0.0dB
BIT[7:0]			00011001	-0.5dB
			:	:
			11100110	-103.0dB
			11100111	-∞dB
			:	:
			11111111	-∞dB

• Address 0X06 : Channel 3 volume

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00000000	+12.0dB
			0000001	+11.5dB
			:	:
			00010100	00010100 +2dB
	C3V[7:0]	Channel3 Volume	:	:
BIT[7:0]			00011000	0.0dB
ы (7.0)			00011001	-0.5dB
			:	:
			11100110	-103.0dB
			11100111	-∞dB
			:	:
			11111111	-∞dB

• Address 0X07 : Channel 4 volume

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00000000	+12.0dB
			0000001	+11.5dB
			:	:
			00010100	+2dB : 0.0dB
	C4V[7:0]	Channel 4 Volume	:	:
DITIZIO			00011000	0.0dB
BIT[7:0]			00011001	-0.5dB
			:	:
			11100110	-103.0dB
			11100111	-∞dB
			:	:
			11111111	-∞dB

• Address 0X08 : Channel 5 volume

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00000000	+12.0dB
			0000001	+11.5dB
			:	:
			00010100 +2dB : :	
BIT[7:0]	C5V[7:0] Cha	Channel 5 Volume	00011000	0.0dB
ы (7.0)			00011001	-0.5dB
			:	:
			11100110	-103.0dB
			11100111	-∞dB
			:	:
			11111111	-∞dB

• Address 0X09 : Channel 6 volume

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00000000	+12.0dB
			0000001	+11.5dB
			:	:
	C6V[7:0] Channel 6 Volume	00010100	+2dB	
			:	:
DITIZIO		Channel 6 Volume	00011000	0.0dB
BIT[7:0]			00011001	-0.5dB
			:	:
			11100110	-103.0dB
			11100111	-∞dB
			:	:
			11111111	-∞dB

Address 0X0A/0X0B: Bass/Treble tone boost and cut

EQ11 and EQ12 can be programmed as bass/treble tone boost and cut. When, register with address-0X0C, bit-6, BTE is set to high, the EQ-11 and EQ-12 will perform as bass and treble respectively. The -3dB corner frequency of bass is 360Hz, and treble is 7kHz. The gain range for both filters is +12db ~ -12 dB with 1dB per step.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:5]		Reserved		
			00000	+12dB
			00100	+12dB
			00101	+11dB
			00110	+10dB
			01110	+2dB
	BTC[4:0]	The gain setting	01111	+1dB
B[4:0]	/	of	10000	0dB
	TTC[4:0]	boost and cut	10001	-1dB
			10010	-2dB
			11010	-10dB
			11011	-11dB
			11100	-12dB
			11111	-12dB

Publication Date: Apr. 2018 Revision: 1.4 42/83

• Address 0X0C : State control 4

The AD82584F provides several DSP setting as following.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
DIZI	B[7] SRBP	Curround by page	0	Surround enable
B[7]	SKDP	SRBP Surround bypass	1	Surround bypass
DIGI	BTE	Bass/Treble Selection	0	Bass/Treble Disable
B[6]	DIE	bypass	1	Bass/Treble Enable
D[E]	DEQE	Dynamia EO anabla	0	DEQ Disable
B[5]	DEQE	Dynamic EQ enable	1	DEQ enable
D[4]	NGE	Noise gete enable	0	Noise gate disable
B[4]	4] NGE Noise	Noise gate enable	1	Noise gate enable
B[3]	EQL	EQ Link	0	Each channel uses individual EQ
D[3]	3	LQ LIIK	1	Channel-2 uses channel-1 EQ
			0	Each channel uses individual
B[2]	PSL	Post-scale link	0	post-scale
			1	Use channel-1 post-scale
B[1]	DSPB	EQ bypass	0	EQ enable
ניוט	1 EQ bypass	EQ bypass		
B[0]	HPB	DC blocking HPF	0	HPF dc enable
סנסו	HED	bypass	1	HPF dc bypass

 Address 0X0D, 0X0E,0X0F,0X10,0X11,0X12, 0X13,0X14: Channel configuration registers

AD82584F can configure each channel to enable or bypass DRC and channel volume and select the limiter set.

Address 0X0D and 0X0E; where x=1 or 2

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:4]		Reserved		
DIOI	CxPCBP	Channel x Power	0	Channel x PC enable
B[3]	СХРСБР	Clipping bypass	1	Channel x PC bypass
DIOI	CyDDCDD	Channel y DDC hyman	0	Channel x DRC enable
B[2]	CXDRCBP	Channel x DRC bypass	1	Channel x DRC bypass
B[1]		Reserved		
DIO]	CxVBP	Channel x Volume	0	Channel x's master volume operation
B[0]	CXVBP	bypass	1	Channel x's master volume bypass

Address 0X0F, 0X10, 0X11, and 0X12; where x=3, 4, 5, 6

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:3]		Reserved		
DIOI	CyDDCDD	Channel v DBC hypage	0	Channel x DRC enable
B[2]	CxDRCBP	Channel x DRC bypass	1	Channel x DRC bypass
B[1]		Reserved		
DIO	CvVDD	Channel x Volume	0	Channel x volume operation
B[0]	CxVBP	bypass	1	Channel x volume bypass

Address 0X13, and 0X14; where x=7 or 8

C7DRCBP/C8DRCBP use to control L/R post DRC.

The gains are internally setting and they can't be changed via I2C control.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:3]		Reserved		
B[2]	DIOI C. DDCDD	Channel x DRC bypass	0	Channel x DRC enable
D[Z]	CxDRCBP		1	Channel x DRC bypass
B[1:0]		Reserved		

Publication Date: Apr. 2018 Revision: 1.4 44/83

Address 0X15, 0X16, 0X17, 0X18 : DRC limiter attack/release rate
 The AD82584F has 4 independent DRC set, each DRC has its own attack/release rate.

Address 0X15, 0X16, 0X17, and 0X18; where x=1, 2, 3, 4

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			0000	3 dB/ms
			0001	2.667 dB/ms
			0010	2.182 dB/ms
			0011	1.846 dB/ms
			0100	1.333 dB/ms
			0101	0.889 dB/ms
			0110	0.4528 dB/ms
B[7:5]	LAx[3:0]	DRC attack rate	0111	0.2264 dB/ms
Б[7.5]	LAX[3.0]	DNC attack rate	1000	0.15 dB/ms
			1001	0.1121 dB/ms
			1010	0.0902 dB/ms
			1011	0.0752 dB/ms
			1100	0.0645 dB/ms
			1101	0.0563 dB/ms
			1110	0.0501 dB/ms
			1111	0.0451 dB/ms
			0000	0.5106 dB/ms
			0001	0.1371 dB/ms
			0010	0.0743 dB/ms
			0011	0.0499 dB/ms
			0100	0.0360 dB/ms
			0101	0.0299 dB/ms
			0110	0.0264 dB/ms
B[3:0]	LRx[3:0]	DRC release rate	0111	0.0208 dB/ms
D[0.0]	LIXX[0.0]	DICO release rate	1000	0.0198 dB/ms
			1001	0.0172 dB/ms
			1010	0.0147 dB/ms
			1011	0.0137 dB/ms
			1100	0.0134 dB/ms
			1101	0.0117 dB/ms
			1110	0.0112 dB/ms
			1111	0.0104 dB/ms

Publication Date: Apr. 2018 Revision: 1.4 45/83

Address 0X1A: State control 5

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7]		Reserved		
			0	Stereo
B[6]	MONO_EN	MONO enable register	4	MONO_EN=1 and MONO_KEY=3006(hex)
			1	Output will become mono
DIEI	CW DCTD	Software reset	0	Reset
B[5]	SW_RSTB	Software reset	1	Normal operation
DIAI	17/17/ EADE	Low Under Voltage	0	No Fade
B[4]	LVUV_FADE	Fade		Fade
B[3]		Reserved		
DIOI	DIS MOLK DET	Disable MCLK detect	0	Enable MCLK detect circuit
B[2]	DIS_MCLK_DET	circuit	1	Disable MCLK detect circuit
D[4]	OT EN	Dower soving mode	0	Disable
B[1]	QT_EN	Power saving mode	1	Enable
BIOI		DWM modulation	0	Qua-ternary
B[0]	PWM_SEL	PWM_SEL PWM modulation	1	Ternary

Address 0X1B : State control 6

AD82584F can disable HV under voltage detection via bit 7.

AD82584F support multi-level HV under voltage detection via bit2~ bit0, using this function, AD82584F will fade out signal to avoid pop sounds if high voltage supply disappear before low voltage supply.

AD82584F can support one band, two band, and three band DRC selection via bit6~bit5.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7]	DIS_HVUV	Disable HV under	0	Enable
B[7]	טוט_חעטע	voltage selection	1	Disable
			00	One band DRC
B[6:5]	DRC_SEL	DRC mode selection	01	Two band DRC
			1X	Three band DRC
B[4:3]		Reserved		
			000	4V
			001	7.2V
			010	9.7 V
B[3:0]	HV_UV SEL	UV detection level	011	13.2V
			100	15.5 V
			101	19.5 V
			Others	7.2V

Publication Date: Apr. 2018 Revision: 1.4 47/83

Address 0X1C: State control 7

The $\overline{\text{ERROR}}$ pin of AD82584F is a dual function pin. It is treated as a I²C device address selection input when B[6] is set as low. It will become as an ERROR output pin when B[6] is set as high.

AD82584F can turn on delta quaternary modulation via bit 5.

AD82584F provide 2 kind of fade in/out speed via bit 2. One is 1.25ms from mute to 0dB. The other one is 10ms from mute to 0dB.

AD82584F provide noise gate function if receiving 2048 signal sample points smaller than noise gate attack level. User can change noise gate gain via bit1~ bit0. When noise gate function occurs, input signal will multiply noise gate gain (x1/8, x1/4 x1/2, x0). User can select fade out or not via bit 4.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7]	Х	Reserved		
B[6]	A_SEL_FAULT	I2C address selection	0	I2C device address selection
		or ERROR output	1	ERROR output
DIE1	D MOD	Delta quaternary	0	Disable
B[5]	D_MOD	modulation	1	enable
DI 41	DIG NIC EADE	IS_NG_FADE Disable noise gate fade	0	Fade
B[4]	DIS_NG_FADE		1	No fade
ומו	QD_EN	Quaternary and delta	0	Disable
B[3]	QD_EN	quaternary switching	1	enable
DIO1	FADE_SPEED	Fade in/out speed	0	1.25ms
B[2]	FADE_SPEED	selection	1	10ms
			00	x1/8
D[1:0]	NC CAINITA:01	Noise gote goin	01	x1/4
B[1:0]	NG_GAIN[1:0]	Noise gate gain	10	x1/2
			11	Mute

Publication Date: Apr. 2018 Revision: 1.4 48/83

Address 0X1D ~0X2D : User-defined coefficients registers

An on-chip RAM in AD82584F stores user-defined EQ, mixing, pre-scale, post-scale coefficients...etc. The content of this coefficient RAM is indirectly accessed via coefficient registers, which consist of one base address register (address 0X1D), five sets of registers (address 0X1E to 0X2C) of three consecutive 8-bit entries for each 24-bit coefficient, and one control register (address 0X2D) to control access of the coefficients in the RAM..

Address 0X1D

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	CFA[7:0]	Coefficient RAM base	00000000	
D[7.0]	O1 A[1.0]	address		

Address 0X1E, A1cf1

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0] C1B[23:16]	Top 8-bits of			
B[7:0]	C1B[23:16]	coefficients A1		

Address 0X1F, A1cf2

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
DIZIOI	D[7:0] 04D[45:0]	Middle 8-bits of		
B[7:0]	C1B[15:8]	coefficients A1		

Address 0X20, A1cf3

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7.0] 04D[7.0]	Bottom 8-bits of			
B[7:0]	C1B[7:0]	coefficients A1		

Address 0X21, A2cf1

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0] C2B[23:16]	C2D[22.46]	Top 8-bits of		
	coefficients A2			

Address 0X22, A2cf2

	BIT	NAME	DESCRIPTION	VALUE	FUNCTION
Ī	D[7:0] COD[45:0]	Middle 8-bits of			
	B[7:0]	C2B[15:8]	coefficients A2		

Publication Date: Apr. 2018 Revision: 1.4 49/83

Address 0X23, A2cf3

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	C2D[7:0]	Bottom 8-bits of		
B[7:0]	C2B[7:0]	coefficients A2		

Address 0X24, B1cf1

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7.0]	B[7:0] C3B[23:16]	Top 8-bits of		
D[7:0]		coefficients B1		

Address 0X25, B1cf2

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	C2D[4E:0]	Middle 8-bits of		
B[7:0]	C3B[15:8]	coefficients B1		

Address 0X26, B1cf3

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7.0]	00017.01	Bottom 8-bits of		
B[7:0]	C3B[7:0]	coefficients B1		

Address 0X27, B2cf1

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	C4D[00:40]	Top 8-bits of		
B[7:0]	C4B[23:16]	coefficients B2		

Address 0X28, B2cf2

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	040[45.0]	Middle 8-bits of		
B[7:0]	C4B[15:8]	coefficients B2		

Address 0X29, B2cf3

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7.0]	0.40(7.0)	Bottom 8-bits of		
B[7:0]	C4B[7:0]	coefficients B2		

Publication Date: Apr. 2018 Revision: 1.4 50/83

Address 0X2A, A0cf1

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7.0]	B[7:0] C5B[23:16]	Top 8-bits of		
Б[7.0]		coefficients A0		

Address 0X2B, A0cf2

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7.0]	OED[45.0]	Middle 8-bits of		
B[7:0]	C5B[15:8]	coefficients A0		

Address 0X2C, A0cf3

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	OED[7:0]	Bottom 8-bits of		
Б[7.0]	C5B[7:0]	coefficients A0		

Address 0X2D, CfRW

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7]		Reserved		
DIG1	RBS	RAM bank selection	0	Select RAM bank 0
B[6]	KDO	RAIVI Darik Selection	1	Select RAM bank 1
D[E]	R3	Enable of reading three	0	Read complete
B[5]	KS	coefficients from RAM	1	Read enable
D[4]	W3	Enable of writing three	0	Write complete
B[4]	VV3	coefficients to RAM	1	Write enable
DIOI	RA	Enable of reading a set of	0	Read complete
B[3]	KA	coefficients from RAM	1	Read enable
וכום	R1	Enable of reading a single	0	Read complete
B[2]	KI	coefficients from RAM	1	Read enable
D[4]	WA	Enable of writing a set of	0	Write complete
B[1]	VVA	coefficients to RAM	1	Write enable
B[O]	W1	Enable of writing a single	0	Write complete
B[0]	VVI	coefficient to RAM	1	Write enable

Publication Date: Apr. 2018 Revision: 1.4 51/83

Address 0X33 : Power saving mode switching level

If the PWM exceeds the programmed switching power level (default 26*40ns), the modulation algorithm will change from default modulation scheme into power saving mode scheme. It results in higher power efficiency during larger power output operations. If the PWM drops below the programmed switching power level - programmed switching window (default (26-5)*40ns), the modulation algorithm will change back to default modulation scheme.

Switching scheme is related to QT_EN (address0X1A, B[1]), D_MOD(address0X1C, B[5]), and QD_EN(address0X1C, B[3]).

AD82584F has three type switching schemes and they share the same switching scheme.

One time will only have one switching scheme.

Case1: QT_EN=1, D_MOD=0, QD_EN=0. The default modulation scheme is quaternary and power saving mode scheme is ternary.

Case2: QT_EN=1, D_MOD=1, QD_EN=0. The default modulation scheme is delta quaternary and power saving mode scheme is ternary.

Case3: QT_EN=0, D_MOD=0, QD_EN=1. The default modulation scheme is quaternary and power saving mode scheme is delta quaternary.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			000	2
			001	3
			010	4
DIZIEI	CW WINDOW	Power saving mode	011	5
B[7:5]	SW_WINDOW	switching window	100	6
			101	7
			110	8
			111	9
			00000	4
			00001	4
			:	:
			01101	26
B[4:0]	QT_SW_LEVEL	Power saving mode	01110	28
Б[4.0]	Q1_SW_LEVEL	switching level	01111	30
			10000	32
			:	:
			11110	60
			11111	62

Publication Date: Apr. 2018 Revision: 1.4 52/83

Address 0X34/0X35: Volume fine tune

AD82584F supports both master-volume fine tune and channel-volume control fine tune modes. Both volume control settings range from $0dB \sim -0.375dB$ and 0.125dB per step. Note that the master volume fine tune is added to the individual channel volume fine tune as the total volume fine tune.

Address 0X34

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00	0dB
D[7:6]	MV/ ET	Master Volume Fine	01	-0.125dB
B[7:6]	MV_FT	Tune	10	-0.25dB
			11	-0.375dB
			00	0dB
DIE: 41	C1V_FT	Channel 1 Volume Fine	01	-0.125dB
B[5:4]	CIV_FI	Tune	10	-0.25dB
			11	-0.375dB
			00	0dB
ונייטו	C2V_FT	Channel 2 Volume Fine	01	-0.125dB
B[3:2]	CZV_F1	Tune	10	-0.25dB
			11	-0.375dB
			00	0dB
B[1:0]	C3V_FT	Channel 3 Volume Fine	01	-0.125dB
Б[1.0]	O3V_F1	Tune	10	-0.25dB
			11	-0.375dB

Publication Date: Apr. 2018 Revision: 1.4 53/83

Address 0X35

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00	0dB
D[7:6]	C4V_FT	Channel 4 Volume Fine	01	-0.125dB
B[7:6]	C4V_F1	Tune	10	-0.25dB
			11	-0.375dB
			00	0dB
D[E: 4]	OFV FT	Channel 5 Volume Fine	01	-0.125dB
B[5:4]	C5V_FT	Tune	10	-0.25dB
			11	-0.375dB
			00	0dB
DIO.01	C6V_FT	Channel 6 Volume Fine	01	-0.125dB
B[3:2]	COV_F1	Tune	10	-0.25dB
			11	-0.375dB
B[1:0]		Reserved		

Address 0X37 : Device number and Version number

Device number and version number are the ID for the device.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:4]	DN	Device number	0101	Identification code
B[3:0]	VN	Version number	0010	Identification code

Address 0X42 : level meter clear

AD82584F has 8 set of level meter which hold the maximum absolute value.

Each level meter has its own level meter clear.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7]	B[7] C1_CLR	Clear CH1 level meter	0	No clear
D[/]		Clear Chi level meter	1	Clear
DIEI	C2 CLB	Clear CH2 level meter	0	No clear
Б[о]	B[6] C2_CLR	Clear CHZ level meter	1	Clear
DIE1	D(5) 00 01 D	3 CLR Clear CH3 level meter	0	No clear
B[5]	C3_CLR	Clear Ch3 level fileter	1	Clear
DIAL CA CLD	C4 CLB	C4_CLR Clear CH4 level meter	0	No clear
B[4]	C4_CLK		1	Clear

Publication Date: Apr. 2018 Revision: 1.4 54/83

ומם	B[3] C5_CLR	LR Clear CH5 level meter	0	No clear
D[3]	C5_CLK	Clear Ch5 level meter	1	Clear
DIOI	Biol Go Ol B	Clear CH6 level meter	0	No clear
B[2]	C6_CLR	Clear Cho lever meter	1	Clear
D[4]	D(4) 07 01 D	00171	0	No clear
B[1]	C7_CLR	Clear CH7 level meter	1	Clear
DIOI CO CLD	CLD Close CHO lovel motor	0	No clear	
Б[0]	B[0] C8_CLR	8_CLR Clear CH8 level meter	1	Clear

Address 0X43 : Power meter clear

AD82584F has 8 set of level meter which continue update RMS value.

Each level meter has its own power meter clear.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7]	DIZI C4 CLD DMC	Clear CH1 nawar mater	0	No clear
B[7]	CI_CLK_KIVIS	Clear CH1 power meter	1	Clear
DIEI	C2 CLD DMC	Clear CH2 nawar matar	0	No clear
B[6]	CZ_CLK_KIVIS	Clear CH2 power meter	1	Clear
DIEI	C2 CLD DMS	Clear CH3 power meter	0	No clear
B[5]	C3_CLK_KIVIS	Clear Ch3 power meter	1	Clear
DIAI	C4 CLD DMC	MS Clear CH4 power meter	0	No clear
B[4]	C4_CLK_KIVIS		1	Clear
DIO	CE CLD DMC	01 01151 1 1	0	No clear
B[3]	C5_CLR_RMS	Clear CH5 level meter	1	Clear
DIOI	C6 CLD DMC	Clear CH6 level meter	0	No clear
B[2]	C6_CLR_RMS	Clear Cho level meter	1	Clear
DIAI	C7 CLD DMC	Clear CH7 lavel mater	0	No clear
B[1]	C7_CLR_RMS	S Clear CH7 level meter	1	Clear
BIOI	C8_CLR_RMS	Olean Oldo level medica	0	No clear
B[0]	CO_CLK_KIVIS	Clear CH8 level meter	1	Clear

Publication Date: Apr. 2018 Revision: 1.4 55/83

Address 0X44 : Top 8 bit of C1 level meter

In one band DRC, channel-1 level meter is used for L channel.

In two/three bands DRC, channel-1 level meter is high frequency path of L channel.

The addresses to show channel-1 level meter are 0X44, 0X45, and 0X46.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0] O4 LEVEL T	Top 8 bits of channel 1	0000000	Reset value	
B[7:0]	C1_LEVEL_T	level meter	Х	Read out

Address 0X45 : Middle 8 bit of C1 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0] 04	C1_LEVEL_M	Middle 8 bits of channel 1	0000000	Reset value
B[7:0]	CI_LEVEL_IVI	level meter	Х	Read out

Address 0X46: Bottom 8 bit of C1 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0] O4 EVEL D	Bottom 8 bits of channel 1	0000000	Reset value	
B[7:0]	C1_LEVEL_B	level meter	Х	Read out

Address 0X47 : Top 8 bit of C2 level meter

In one band DRC, channel-2 level meter is used for R channel.

In two/three bands DRC, channel-2 level meter is high frequency path of R channel.

The addresses to show channel-2 level meter are 0X47, 0X48, and 0X49.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7.0]	CO LEVEL T	Top 8 bits of channel 2	0000000	Reset value
B[7:0]	C2_LEVEL_T	level meter	Х	Read out

Address 0X48 : Middle 8 bit of C2 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
DIZ.OL CO LEVEL M	Middle 8 bits of channel 2	0000000	Reset value	
B[7:0]	C2_LEVEL_M	level meter	Х	Read out

Publication Date: Apr. 2018 Revision: 1.4 56/83

Address 0X49 : Bottom 8 bit of C2 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0] CO EVEL D	Bottom 8 bits of channel 2	0000000	Reset value	
B[7:0]	C2_LEVEL_B	level meter	Х	Read out

Address 0X4A: Top 8 bit of C3 level meter

In one/two bands DRC, channel-3 level meter is no use.

In three bands DRC, channel-3 level meter is low frequency path of L channel.

The addresses to show channel-3 level meter are 0X4A, 0X4B, and 0X4C.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0] C0 I	C3 LEVEL T	Top 8 bits of channel 3	0000000	Reset value
B[7:0]	C3_LEVEL_I	level meter	Х	Read out

Address 0X4B : Middle 8 bit of C3 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	-01	Middle 8 bits of channel 3	0000000	Reset value
B[7:0]	C3_LEVEL_M	level meter	X	Read out

Address 0X4C : Bottom 8 bit of C3 level meter

BI	Τ	NAME	DESCRIPTION	VALUE	FUNCTION
DI7.		Bottom 8 bits of channel 3	0000000	Reset value	
B[7:	.0]	C3_LEVEL_B	level meter	Х	Read out

Address 0X4D : Top 8 bit of C4 level meter

In one/two bands DRC, channel-4 level meter is no use.

In three bands DRC, channel-4 level meter is low frequency path of R channel.

The addresses to show channel-4 level meter are 0X4D, 0X4E, and 0X4F.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
DIZIOI		Top 8 bits of channel 4	0000000	Reset value
B[7:0]	C4_LEVEL_T	level meter	Х	Read out

Publication Date: Apr. 2018 Revision: 1.4 57/83

Address 0X4E : Middle 8 bit of C4 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
DIZ.OI	D[7:0] O4 LEVEL M	Middle 8 bits of channel 4	0000000	Reset value
B[7:0]	C4_LEVEL_M	level meter	Х	Read out

Address 0X4F : Bottom 8 bit of C4 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	B[7:0] C4_LEVEL_B	Bottom 8 bits of channel 4	0000000	Reset value
Б[7.0]		level meter	Х	Read out

Address 0X50 : Top 8 bit of C5 level meter

In one band DRC, channel-5 level meter is no use.

In two/three bands DRC, channel-5 level meter is band pass frequency path of L channel.

The addresses to show channel-5 level meter are 0X50, 0X51, and 0X52.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7.0]	D[7:0] OF LEVEL T	Top 8 bits of channel 5	0000000	Reset value
B[7:0]	C5_LEVEL_T	level meter	Х	Read out

Address 0X51 : Middle 8 bit of C5 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	[7:0] OF LEVEL M	Middle 8 bits of channel 5	0000000	Reset value
B[7:0]	C5_LEVEL_M	level meter	X	Read out

Address 0X52 : Bottom 8 bit of C5 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	7.01 05 15/51 5	Bottom 8 bits of channel 5	0000000	Reset value
B[7:0]	C5_LEVEL_B	level meter	Х	Read out

Publication Date: Apr. 2018 Revision: 1.4 58/83

Address 0X53: Top 8 bit of C6 level meter

In one band DRC, channel-6 level meter is no use.

In two/three bands DRC, channel-6 level meter is band pass frequency path of R channel.

The addresses to show channel-6 level meter are 0X53, 0X54, and 0X55.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7.0]	07.01 OC LEVEL T	Top 8 bits of channel 6	0000000	Reset value
B[7:0]	C6_LEVEL_T	level meter	Х	Read out

Address 0X54 : Middle 8 bit of C6 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	01 00 15/51 M	Middle 8 bits of channel 6	0000000	Reset value
Б[7.0]	C6_LEVEL_M	level meter	Х	Read out

Address 0X55: Bottom 8 bit of C6 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	1 00 15/51 5	Bottom 8 bits of channel 6	0000000	Reset value
B[7:0]	C6_LEVEL_B	level meter	Х	Read out

Address 0X56: Top 8 bit of C7 level meter

In one band DRC, channel-7 level meter is no use.

In two/three bands DRC, channel-7 level meter is summation path of L channel.

The addresses to show channel-7 level meter are 0X56, 0X57, and 0X58.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
DIZIOI	D[7:0] O7 LEVEL T	Top 8 bits of channel 7	0000000	Reset value
B[7:0]	C7_LEVEL_T	level meter	Х	Read out

Address 0X57 : Middle 8 bit of C7 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0] C7_LEVEL	C7 LEVEL M	Middle 8 bits of channel 7	0000000	Reset value
	C7_LEVEL_M	level meter	Х	Read out

Publication Date: Apr. 2018 Revision: 1.4 59/83

Address 0X58: Bottom 8 bit of C7 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	C7_LEVEL_B	Bottom 8 bits of channel 7	0000000	Reset value
		level meter	Х	Read out

Address 0X59: Top 8 bit of C8 level meter

In one band DRC, channel-8 level meter is no use.

In two/three bands DRC, channel-8 level meter is summation path of L channel.

The addresses to show channel-8 level meter are 0X59, 0X5A, and 0X5B.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	C8_LEVEL_T	Top 8 bits of channel 8	0000000	Reset value
B[7:0]		level meter	Х	Read out

• Address 0X5A: Middle 8 bit of C8 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	C8_LEVEL_M	Middle 8 bits of channel 8	0000000	Reset value
		level meter	Х	Read out

Address 0X5B: Bottom 8 bit of C8 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	C8_LEVEL_B	Bottom 8 bits of channel 8	0000000	Reset value
B[7:0]		level meter	Х	Read out

Publication Date: Apr. 2018 Revision: 1.4 60/83

• Address 0X5C : I2S output selection

AD82584F provide I2S output function and the output point can be selected via bit 2~bit 0.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:3]		Reserved		
			000	DSP input (Point1)
			001	Pre-scale output (Point2)
	I2S_DO_SEL		010	Mixer output (Point3)
D[O:O]		I2S DATA OUTPUT selection	011	EQ12 output (Point4)
B[2:0]			100	Volume output (Point5)
			101	Clipping output (Point6)
			110	DC blocking HPF output (Point7)
			111	Reserved

Publication Date: Apr. 2018 Revision: 1.4 61/83

Address 0X74: MONO_KEY high byte
 AD82584F doesn't have PBTL pin in TSSOP 24 package option. It can set MONO_EN=1 & MONO_KEY=3006 (hex) to configure MONO type.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	MK_HBYTE MONO P	MONO KEV bish buts	others	Stereo
		MONO KEY high byte	00110000	Mono

Address 0X75 : MONO_KEY low byte

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	MK_LBYTE MONO I	MONO KEV low by to	others	Stereo
		MONO KEY low byte	00000110	Mono

• Address 0X84 : Protection register

The protection registers will show what kind of protection occurs.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7]	A OCB N	OOD as sisten	0	OC occur
B[7]	[7] A_OCP_N OCP register	1	Normal	
DIGI	A_OTP_N	OTD register	0	OT occur
B[6]	A_OTP_N	OTP register	1	Normal
B[5]	A_UV_N	UV register	0	UV occur
P[3]	A_UV_N UV register	1	Normal	
B[4]	A_BSUV	/ BSUV register	0	BSUV occur
D[4]			1	Normal
B[3]	A BCOV	/ BCOV as sistes	0	BSOV occur
D[3]	A_BSOV	BSOV register	1	Normal
ומום	A_CKERR		0	CKERR occur
B[2]	A_UNERK		1	Normal
D[1]	4 OVB		0	OV occur
B[1]	A_OVP		1	Normal

Publication Date: Apr. 2018 Revision: 1.4 62/83

• Address 0X85 : Protection latch register

The protection registers will show what kind of protection ever occurred.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
וכדו	A OCD N LATCH	OCD loteb register	0	OC ever occur
B[7]	A_OCP_N_LATCH	OCP latch register	1	Normal
DIEI	A OTD N LATCH	OTD loteb register	0	OT ever occur
B[6]	A_OTP_N_LATCH	OTP latch register	1	Normal
DIE1	A 11\/ N 1 ATCH	LIV lotob register	0	UV ever occur
B[5]] A_UV_N_LATCH	UV latch register	1	Normal
DIAI	A_BSUV_LATCH	DOLD/ latel assisted	0	BSUV ever occur
B[4]		BSUV latch register	1	Normal
DIOI	A DCOV LATCH	DCOV/letely manieten	0	BSOV ever occur
B[3]	A_BSOV_LATCH	BSOV latch register	1	Normal
DIOI	A CKEDD LATCH	CVEDD lateb register	0	CKERR ever occur
B[2]	A_CKERR_LATCH	CKERR latch register	1	Normal
D[4]	A OVE LATCH	OVB letch register	0	OV ever occur
B[1]	A_OVP_LATCH	OVP latch register	1	Normal

Publication Date: Apr. 2018 Revision: 1.4 63/83

• Address 0X86 : Protection latch register

The protection latch registers will show what kind of protection ever occurred.

Using the protection clear registers can clear the corresponding protection latch registers.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7]	A_OCP_N_CLEAR	OOD latab alaan saaistas	0	No clear
B[7]	A_OCP_N_CLEAR	OCP latch clear register	1	Clear
B[6]	A_OTP_N_CLEAR	OTP latch clear register	0	No clear
P[0]	A_OTP_N_CLEAR	OTF later clear register	1	Clear
DIE1	A LIV NI CLEAD	LIV latch clear register	0	No clear
B[5]	A_UV_N_CLEAR	UV latch clear register	1	Clear
DIAI	A DOLLY OLEAD	BSUV latch clear register	0	No clear
B[4]	A_BSUV_CLEAR		1	Clear
ומום	A BSOV CLEAD	DOOMING TO THE PROPERTY OF THE	0	No clear
B[3]	A_BSOV_CLEAR	BSOV latch clear register	1	Clear
DIOI	A CKERR CLEAR	CKERR latch clear	0	No clear
B[2]	A_CKERR_CLEAR	register	1	Clear
D[4]	A_OVP_CLEAR	O\/D lotob aloor register	0	No clear
B[1]	A_OVF_CLEAR	OVP latch clear register	1	Clear

Publication Date: Apr. 2018 Revision: 1.4 64/83

RAM access

The procedure to read/write coefficient(s) from/to RAM is as followings:

Read a single coefficient from RAM:

- 1. Write 7-bis of address to I2C address-0X1D
- 2. Write 1 to R1 bit and write 1/0 to RBS in address-0X2D
- 3. Read top 8-bits of coefficient in I2C address-0X1E
- 4. Read middle 8-bits of coefficient in I2C address-0X1F
- 5. Read bottom 8-bits of coefficient in I2C address-0X20

Read a set of coefficients from RAM:

- 1. Write 7-bits of address to I2C address-0X1D
- 2. Write 1 to RA bit and write 1/0 to RBS in address-0X2D
- 3. Read top 8-bits of coefficient A1 in I2C address-0X1E
- 4. Read middle 8-bits of coefficient A1in I2C address-0X1F
- 5. Read bottom 8-bits of coefficient A1 in I2C address-0X20
- 6. Read top 8-bits of coefficient A2 in I2C address-0X21
- 7. Read middle 8-bits of coefficient A2 in I2C address-0X22
- 8. Read bottom 8-bits of coefficient A2 in I2C address-0X23
- 9. Read top 8-bits of coefficient B1 in I2C address-0X24
- 10. Read middle 8-bits of coefficient B1 in I2C address-0X25
- 11. Read bottom 8-bits of coefficient B1 in I2C address-0X26
- 12. Read top 8-bits of coefficient B2 in I2C address-0X27
- 13. Read middle 8-bits of coefficient B2 in I2C address-0X28
- 14. Read bottom 8-bits of coefficient B2 in I2C address-0X29
- 15. Read top 8-bits of coefficient A0 in I2C address-0X2A
- 16. Read middle 8-bits of coefficient A0 in I2C address-0X2B
- 17. Read bottom 8-bits of coefficient A0 in I2C address-0X2C

Write a single coefficient from RAM:

- 1. Write 7-bis of address to I2C address-0X1D
- 2. Write top 8-bits of coefficient in I2C address-0X1E
- 3. Write middle 8-bits of coefficient in I2C address-0X1F
- 4. Write bottom 8-bits of coefficient in I2C address-0X20
- 5. Write 1 to W1 bit and write 1/0 to RBS in address-0X2D

Write a set of coefficients from RAM:

- 1. Write 7-bits of address to I2C address-0X1D
- 2. Write top 8-bits of coefficient A1 in I2C address-0X1E
- 3. Write middle 8-bits of coefficient A1 in I2C address-0X1F
- 4. Write bottom 8-bits of coefficient A1 in I2C address-0X20
- 5. Write top 8-bits of coefficient A2 in I2C address-0X21
- 6. Write middle 8-bits of coefficient A2 in I2C address-0X22
- 7. Write bottom 8-bits of coefficient A2 in I2C address-0X23
- 8. Write top 8-bits of coefficient B1 in I2C address-0X24
- 9. Write middle 8-bits of coefficient B1 in I2C address-0X25
- 10. Write bottom 8-bits of coefficient B1 in I2C address-0X26
- 11. Write top 8-bits of coefficient B2 in I2C address-0X27
- 12. Write middle 8-bits of coefficient B2 in I2C address-0X28
- 13. Write bottom 8-bits of coefficient B2 in I2C address-0X29
- 14. Write top 8-bits of coefficient A0 in I2C address-0X2A
- 15. Write middle 8-bits of coefficient A0 in I2C address-0X2B
- 16. Write bottom 8-bits of coefficient A0 in I2C address-0X2C
- 17. Write 1 to WA bit and write 1/0 to RBS in address-0X2D

Note that: the read and write operation on RAM coefficients works only if LRCIN (pin-15) switching on rising edge. And, before each writing operation, it is necessary to read the address-0X24 to confirm whether RAM is writable current in first. If the logic of W1 or WA is high, the coefficient writing is prohibited.

User-defined equalizer

The AD82584F provides 30 parametric Equalizer (EQ). User can program suitable coefficients via I²C control interface to program the required audio band frequency response for every EQ. The transfer function

$$H(z) = \frac{A_0 + A_1 z^{-1} + A_2 z^{-2}}{1 + B_1 z^{-1} + B_2 z^{-2}}$$

The data format of 2's complement binary code for EQ coefficient is 3.21. i.e., 3-bits for integer (MSB is the sign bit) and 21-bits for mantissa. Each coefficient range is from 0x800000 (-4) to 0x7FFFF (+3.999999523). These coefficients are stored in User Defined RAM and are referenced in following manner:

$$CHxEQyA0 = A0$$

$$CHxEQyA1 = A1$$

$$CHxEQyA2 = A2$$

$$CHxEQyB1 = -B1$$

$$CHxEQyB2 = -B2$$

Where x and y represents the number of channel and the band number of EQ biquard.

All user-defined filters are path-through, where all coefficients are defaulted to 0 after being powered up, except the A0 that is set to 0x200000 which represents 1.

EQ arrangement

AD82584F provide 15 EQ per channel.

When, register with address-0X0C, bit-5, DEQE is set to high, the EQ-7, EQ-8, EQ9, and EQ10 will use another filter coefficient stored in used defined RAM 0X68~0X7B.

When, register with address-0X0C, bit-6, BTE is set to high, the EQ-11 and EQ-12 will perform as bass and treble respectively.

When three bands DRC enable, EQ-13, EQ-14, and EQ-15 will perform as APF, LPF, and HPF respectively.

Publication Date: Apr. 2018 Revision: 1.4 67/83

Mixer

The AD82584F provides mixers to generate the extra audio source from the input left and right channels. The coefficients of mixers are defined in range from 0x800000 (-1) to 0x7FFFFF (0.9999998808). The function block diagram is as following:

Pre-scale

For each audio channel, AD82584F can scale input signal level prior to EQ processing which is realized by a 24-bit signed fractional multiplier. The pre-scale factor, ranging from -1 (0x800000) to 0.9999998808 (0x7FFFFF), for this multiplier, can be loaded into RAM. The default values of the pre-scaling factors are set to 0x7FFFFF. Programming of RAM is described in RAM access.

Post-scale

The AD82584F provides an additional multiplication after equalizing and before interpolation stage, which is realized by a 24-bit signed fractional multiplier. The post-scaling factor, ranging from -1 (0x800000) to 0.9999998808 (0x7FFFFF), for this multiplier, can be loaded into RAM. The default values of the post-scaling factors are set to 0x7FFFFF. All channels can use the channel-1 post-scale factor by setting the post-scale link. Programming of RAM is described in RAM access.

Power Clipping

The AD82584F provides power clipping function to avoid excessive signal that may destroy loud speaker. 3. The power clipping level is defined by 24-bit representation and is stored in RAM address 0X55 of RAM bank 0. The following table shows the power clipping level's numerical representation.

	•		11 5	
Max	dB	Linear	Dooimal	Hex
amplitude	uБ			(3.21 format)
PVDD	0	1	2097152	200000
PVDD*0.707	-3	0.707	1482686	169FBE
PVDD*0.5	-6	0.5	1048576	100000
PVDD*L	Х	L=10 ^(x/20)	D=2097152xL	H=dec2hex(D)

Sample calculation for power clipping

Attack threshold

The AD82584F provides DRC function. When the input RMS exceeds the programmable attack threshold value, the output power will be limited by this threshold power level via gradual gain reduction. Four sets of DRC are provided. DRC1 is used for high frequency path in three bands DRC and used for L/R channel in one band DRC. DRC2 is used for low frequency path in three bands DRC. DRC3 is used for band pass frequency path in three bands DRC. DRC4 is used for the post DRC.

Attack threshold is defined by 24-bit presentation and is stored in RAM address 0X56, 0X58, 0X5A, 0X5C of RAM bank 0.

Publication Date: Apr. 2018 Revision: 1.4 69/83

Release threshold

After AD82584F has reached the attack threshold, its output power will be limited to that level. The output power level will be gradually adjusted to the programmable release threshold level. Release threshold is defined by 24-bit representation and is stored in RAM address 0X57, 0X59, 0X5B, and 0X5D of RAM bank 0. The following table shows the attack and release threshold's numerical representation.

Sample calculation for attack and release threshold

Davisa	٦D	Linnan	Danimal	Hex
Power	dB	Linear	Linear Decimal	
(PVDD^2)/R	0	1	2097152	200000
(PVDD^2)/2R	-3	0.5	1048576	100000
(PVDD^2)/4R	-6	0.25	524288	80000
((PVDD^2)/R)*L	Х	L=10 ^(x/10)	D=2097152xL	H=dec2hex(D)

To best illustrate the power limit function, please refer to the following figure.

Publication Date: Apr. 2018 Revision: 1.4 70/83

Noise Gate Attack Level

When both left and right signals have 2048 consecutive sample points less than the programmable noise gate attack level, the audio signal will multiply noise gate gain, which can be set at x1/8, x1/4, x1/2, or zero if the noise gate function is enabled. Noise gate attack level is defined by 24-bit representation and is stored in RAM address 0X5E of RAM bank 0.

Noise Gate Release Level

After entering the noise gating status, the noise gain will be removed whenever AD82584F receives any input signal that is more than the noise gate release level. Noise gate release level is defined by 24-bit representation and is stored in RAM address 0X5F of RAM bank 0. The following table shows the noise gate attack and release threshold level's numerical representation.

Can	Cample calculation for holde gate attack and release level			
Input amplitude	Linear	Decimal	Hex	
(dB)	Lilleai	Decimal	(1.23 format)	
0	1	8388607	7FFFF	
-100	10 ⁻⁵	83	53	
-110	10 ^{-5.5}	26	1A	
х	L=10 ^(x/20)	D=8388607xL	H=dec2hex(D)	

Sample calculation for noise gate attack and release level

DRC Energy Coefficient

The above figure illustrates the digital processing of calculating RMS signal power. In this processing, a DRC energy coefficient is required, which can be programmed for different frequency range. Four sets of energy coefficients are provided and used for respective DRC. Energy coefficient is defined by 24-bit representation and is stored in RAM address 0X60, 0X61, 0X62, and 0X63 of RAM bank 0. The following table shows the DRC energy coefficient numerical representation.

Publication Date: Apr. 2018 Revision: 1.4 71/83

Sample	calculation	for DRO	enerav	coefficient
Campic	daldalation	IOI DIX		COCITIOICITE

DRC energy	dB	Lincor	Decimal	Hex
coefficient	αь	Linear	Decimal	(1.23 format)
1	0	1	8388607	7FFFF
1/256	-48.2	1/256	32768	8000
1/1024	-60.2	1/1024	8192	2000
L	Х	L=10 ^(x/20)	D=8388607xL	H=dec2hex(D)

The user defined RAM

The contents of user defined RAM is represented in following table.

RAM Bank selection = 0

Address	NAME	Coefficient	Default
0x00		CH1EQ1A1	0x000000
0x01	1 st SET	CH1EQ1A2	0x000000
0x02	Channel-1 EQ1	CH1EQ1B1	0x000000
0x03	Chamler LQ1	CH1EQ1B2	0x000000
0x04		CH1EQ1A0	0x200000
0x05		CH1EQ2A1	0x000000
0x06	1 st SET	CH1EQ2A2	0x000000
0x07	Channel-1 EQ2	CH1EQ2B1	0x000000
0x08	Chamler LQ2	CH1EQ2B2	0x000000
0x09		CH1EQ2A0	0x200000
0x0A		CH1EQ3A1	0x000000
0x0B	1 st SET	CH1EQ3A2	0x000000
0x0C	Channel-1 EQ3	CH1EQ3B1	0x000000
0x0D	Chamer EQ3	CH1EQ3B2	0x000000
0x0E		CH1EQ3A0	0x200000
0x0F		CH1EQ4A1	0x000000
0x10	1 st SET	CH1EQ4A2	0x000000
0x11	Channel-1 EQ4	CH1EQ4B1	0x000000
0x12	Chamler LEQ4	CH1EQ4B2	0x000000
0x13		CH1EQ4A0	0x200000
0x14		CH1EQ5A1	0x000000
0x15	1 st SET	CH1EQ5A2	0x000000
0x16	Channel-1 EQ5	CH1EQ5B1	0x000000
0x17		CH1EQ5B2	0x000000

Publication Date: Apr. 2018 Revision: 1.4 72/83

0x18		CH1EQ5A0	0x200000
0x19		CH1EQ6A1	0x000000
0x1A	st a	CH1EQ6A2	0x000000
0x1B	1 st SET	CH1EQ6B1	0x000000
0x1C	Channel-1 EQ6	CH1EQ6B2	0x000000
0x1D		CH1EQ6A0	0x200000
0x1E		CH1EQ7A1	0x000000
0x1F	1 st SET	CH1EQ7A2	0x000000
0x20		CH1EQ7B1	0x000000
0x21	Channel-1 EQ7	CH1EQ7B2	0x000000
0x22		CH1EQ7A0	0x200000
0x23		CH1EQ8A1	0x000000
0x24	1 st SET	CH1EQ8A2	0x000000
0x25	Channel-1 EQ8	CH1EQ8B1	0x000000
0x26	Chainer LQo	CH1EQ8B2	0x000000
0x27		CH1EQ8A0	0x200000
0x28		CH1EQ9A1	0x000000
0x29	1 st SET	CH1EQ9A2	0x000000
0x2A	Channel-1 EQ9	CH1EQ9B1	0x000000
0x2B		CH1EQ9B2	0x000000
0x2C		CH1EQ9A0	0x200000
0x2D		CH1EQ10A1	0x000000
0x2E	1 st SET	CH1EQ10A2	0x000000
0x2F	Channel-1 EQ10	CH1EQ10B1	0x000000
0x30	Chainer EQ10	CH1EQ10B2	0x000000
0x31		CH1EQ10A0	0x200000
0x32		CH1EQ11A1	0x000000
0x33	1 st SET	CH1EQ11A2	0x000000
0x34	Channel-1 EQ11	CH1EQ11B1	0x000000
0x35	Chailler EQTI	CH1EQ11B2	0x000000
0x36		CH1EQ11A0	0x200000
0x37		CH1EQ12A1	0x000000
0x38	1 st SET	CH1EQ12A2	0x000000
0x39	Channel-1 EQ12	CH1EQ12B1	0x000000
0x3A	Ghaillei-1 EQ12	CH1EQ12B2	0x000000
0x3B		CH1EQ12A0	0x200000
0x3C	1 st SET	CH1EQ13A1	0x000000

Publication Date: Apr. 2018 Revision: 1.4 73/83

0x3D	Channel-1 EQ13	CH1EQ13A2	0x000000
0x3E		CH1EQ13B1	0x000000
0x3F]	CH1EQ13B2	0x000000
0x40		CH1EQ13A0	0x200000
0x41		CH1EQ14A1	0x000000
0x42	4St OFT	CH1EQ14A2	0x000000
0x43	1 st SET	CH1EQ14B1	0x000000
0x44	- Channel-1 EQ14	CH1EQ14B2	0x000000
0x45		CH1EQ14A0	0x200000
0x46		CH1EQ15A1	0x000000
0x47	4 St OFT	CH1EQ15A2	0x000000
0x48	1 st SET	CH1EQ15B1	0x000000
0x49	- Channel-1 EQ15	CH1EQ15B2	0x000000
0x4A		CH1EQ15A0	0x200000
0x4B	Channel-1 Mixer1	M11	0x7FFFFF
0x4C	Channel-1 Mixer2	M12	0x000000
0x4D	Channel-1 Prescale	C1PRS	0x7FFFFF
0x4E	Channel-1 Postscale	C1POS	0x7FFFFF
0X4F	A0 of L channel SRS HPF	LSRSH_A0	C7B691
0X50	A1 of L channel SRS HPF	LSRSH_A1	38496E
0X51	B1 of L channel SRS HPF	LSRSH_B1	C46f8
0X52	A0 of L channel SRS LPF	LSRSL_A0	E81B9
0X53	A1 of L channel SRS LPF	LSRSL_A1	F22C12
0X54	B1 of L channel SRS LPF	LSRSL_B1	FCABB
0x55	CH1.2 Power Clipping	PC1	0x200000
0X56	CH1.2 DRC1 Attack threshold	DRC1_ATH	0x200000
0X57	CH1.2 DRC1 Release threshold	DRC1_RTH	0x80000
0X58	CH3.4 DRC2 Attack threshold	DRC2_ATH	0x200000

Publication Date: Apr. 2018 Revision: 1.4 74/83

0X59	CH3.4 DRC2 Release threshold	DRC2_RTH	0x80000
0x5A	CH5.6 DRC3 Attack threshold	DRC3_ATH	0x200000
0x5B	CH5.6 DRC3 Release threshold	DRC3_RTH	0x80000
0x5C	CH7.8 DRC4 Attack threshold	DRC4_ATH	0x200000
0x5D	CH7.8 DRC4 Release threshold	DRC4_RTH	0x80000
0x5E	Noise Gate Attack Level	NGAL	0x00001A
0x5F	Noise Gate Release Level	NGRL	0x000053
0x60	DRC1 Energy Coefficient	DRC1_EC	0x8000
0X61	DRC2 Energy Coefficient	DRC2_EC	0x2000
0x62	DRC3 Energy Coefficient	DRC3_EC	0x8000
0X63	DRC4 Energy Coefficient	DRC4_EC	0x2000
0X64	DRC1 Power Meter	C1_RMS	
0X65	DRC3 Power Meter	C3_RMS	
0X66	DRC5 Power Meter	C5_RMS	
0X67	DRC7 Power Meter	C7_RMS	
0x68		CH1EQ1A1	0x000000
0x69	2 nd SET	CH1EQ1A2	0x000000
0x6A	Channel-1 EQ1	CH1EQ1B1	0x000000
0x6B	(DEQ1)	CH1EQ1B2	0x000000
0x6C		CH1EQ1A0	0x200000
0x6D		CH1EQ2A1	0x000000
0x6E	2 nd SET	CH1EQ2A2	0x000000
0x6F	Channel-1 EQ2	CH1EQ2B1	0x000000
0x70	(DEQ2)	CH1EQ2B2	0x000000
0x71]	CH1EQ2A0	0x200000
0x72		CH1EQ3A1	0x000000
0x73	2 nd SET	CH1EQ3A2	0x000000
0x74	Channel-1 EQ3	CH1EQ3B1	0x000000
0x75	(DEQ3)	CH1EQ3B2	0x000000
0x76]	CH1EQ3A0	0x200000
0x77	2 nd SET	CH1EQ4A1	0x000000

Publication Date: Apr. 2018 Revision: 1.4 75/83

0x78	Channel-1 EQ4	CH1EQ4A2	0x000000
0x79	(DEQ4)	CH1EQ4B1	0x000000
0x7A		CH1EQ4B2	0x000000
0x7B		CH1EQ4A0	0x200000

RAM Bank selection = 1

Address	NAME	Coefficient	Default
0x00		CH2EQ1A1	0x000000
0x01	1 st SET	CH2EQ1A2	0x000000
0x02	Channel-2 EQ1	CH2EQ1B1	0x000000
0x03	Channel-2 EQ1	CH2EQ1B2	0x000000
0x04		CH2EQ1A0	0x200000
0x05		CH2EQ2A1	0x000000
0x06	1 st SET	CH2EQ2A2	0x000000
0x07	Channel-2 EQ2	CH2EQ2B1	0x000000
0x08	Channel-2 EQ2	CH2EQ2B2	0x000000
0x09		CH2EQ2A0	0x200000
0x0A		CH2EQ3A1	0x000000
0x0B	1 st SET	CH2EQ3A2	0x000000
0x0C		CH2EQ3B1	0x000000
0x0D	Channel-2 EQ3	CH2EQ3B2	0x000000
0x0E		CH2EQ3A0	0x200000
0x0F		CH2EQ4A1	0x000000
0x10	1 st SET	CH2EQ4A2	0x000000
0x11	Channel-2 EQ4	CH2EQ4B1	0x000000
0x12	Chainer-2 EQ4	CH2EQ4B2	0x000000
0x13		CH2EQ4A0	0x200000
0x14		CH2EQ5A1	0x000000
0x15	1 st SET	CH2EQ5A2	0x000000
0x16		CH2EQ5B1	0x000000
0x17	Channel-2 EQ5	CH2EQ5B2	0x000000
0x18		CH2EQ5A0	0x200000
0x19		CH2EQ6A1	0x000000
0x1A	1 st SET	CH2EQ6A2	0x000000
0x1B		CH2EQ6B1	0x000000
0x1C	Channel-2 EQ6	CH2EQ6B2	0x000000
0x1D		CH2EQ6A0	0x200000

Publication Date: Apr. 2018 Revision: 1.4 76/83

0x1F 1st SET CH2EQ7A2 0x000000 0x20 Channel-2 EQ7 CH2EQ7A2 0x000000 0x21 Channel-2 EQ7 CH2EQ7B1 0x000000 0x22 CH2EQ7A0 0x200000 0x200000 0x23 CH2EQ8A1 0x000000 0x200000 0x25 Channel-2 EQ8 CH2EQ8B1 0x000000 0x26 CH2EQ8B1 0x000000 0x200000 0x27 CH2EQ8B2 0x000000 0x200000 0x28 CH2EQ9A1 0x000000 0x200000 0x29 1st SET CH2EQ9A2 0x000000 0x000000 0x2B Channel-2 EQ9 CH2EQ9B1 0x000000 0x000000 0x2D CH2EQ10A1 0x000000 0x000000 0x000000 0x000000 0x30 CH2EQ10A1 0x000000 CH2EQ10A1 0x000000 0x000000 0x02E CH2EQ10A2 0x000000 0x000000 0x02E CH2EQ10A2 0x000000 0x02E CH2EQ10A2 0x000000 0x02E CH2EQ10A2 0x000000	0.45		CUSEO744	0.000000
0x20 1st SET Channel-2 EQ7 CH2EQ7B1 0x000000 0x21 0x22 0x000000 CH2EQ7B2 0x000000 0x23 0x24 0x200000 CH2EQ8A1 0x000000 0x25 0x26 CH2EQ8A2 0x000000 CH2EQ8B1 0x000000 0x26 0x27 CH2EQ8B2 0x000000 CH2EQ8B2 0x000000 0x28 CH2EQ9A1 0x000000 0x200000 0x200000 0x200000 0x2B Channel-2 EQ9 CH2EQ9A2 0x000000 0x00000 0x00000 0x2D Ch2EQ9A0 0x200000 0x200000 0x22E 0x2EQ10A1 0x000000 0x00000 0x30 Ch2EQ10A1 0x000000 0x000000 <td>0x1E</td> <td></td> <td>CH2EQ7A1</td> <td>0x000000</td>	0x1E		CH2EQ7A1	0x000000
0x21 Channel-2 EQ7 CH2EQ7B2 0x000000 0x22 CH2EQ7A0 0x200000 0x23 CH2EQ8A1 0x000000 0x24 1st SET CH2EQ8A2 0x000000 0x25 Channel-2 EQ8 CH2EQ8B1 0x000000 0x26 CH2EQ8B1 0x000000 0x200000 0x27 CH2EQ8A0 0x200000 0x200000 0x28 CH2EQ9A1 0x000000 0x000000 0x2B CH2EQ9A2 0x000000 0x000000 0x2B CH2EQ9B1 0x000000 0x200000 0x2D CH2EQ9A0 0x200000 0x200000 0x2E CH2EQ10A1 0x000000 0x000000 0x30 CH2EQ10A2 0x000000 0x000000 0x31 CH2EQ10A2 0x000000 0x000000 0x32 CH2EQ11A1 0x000000 0x000000 0x33 1st SET CH2EQ11A2 0x000000 0x34 Channel-2 EQ11 CH2EQ11A2 0x000000 0x35 CH2EQ11A2<		1 st SET		
0x22 CH2EQ7A0 0x200000 0x23 CH2EQ8A1 0x000000 0x24 CH2EQ8A2 0x000000 0x25 CH2EQ8B2 0x000000 0x26 CH2EQ8B1 0x000000 0x27 CH2EQ8B2 0x000000 0x28 CH2EQ9A0 0x200000 0x29 CH2EQ9A1 0x000000 0x2B CH2EQ9A2 0x000000 0x2B CH2EQ9B1 0x000000 0x2C CH2EQ9A0 0x200000 0x2D CH2EQ10A1 0x000000 0x2E CH2EQ10A1 0x000000 0x30 CH2EQ10A2 0x000000 0x31 CH2EQ10A2 0x000000 0x32 CH2EQ10B1 0x000000 0x33 1st SET CH2EQ11A1 0x000000 0x33 1st SET CH2EQ11A2 0x000000 0x34 Channel-2 EQ11 CH2EQ11B1 0x000000 0x35 CH2EQ11A0 0x200000 CH2EQ11B2 0x000000 0x38 <		Channel-2 EQ7		
0x23 0x24 1st SET CH2EQ8A2 0x000000 0x25 Channel-2 EQ8 CH2EQ8B1 0x000000 0x26 CH2EQ8B2 0x000000 0x27 CH2EQ8B2 0x000000 0x28 CH2EQ8A0 0x200000 0x29 1st SET CH2EQ9A1 0x000000 0x2B CH2EQ9B1 0x000000 0x000000 0x2D CH2EQ9B2 0x000000 0x200000 0x2E 1st SET CH2EQ10A1 0x000000 0x30 CH2EQ10A2 0x000000 0x000000 0x31 CH2EQ10B1 0x000000 0x000000 0x32 CH2EQ10B2 0x000000 0x200000 0x33 1st SET CH2EQ10B2 0x000000 0x33 1st SET CH2EQ11B1 0x000000 0x34 CH2EQ11A1 0x000000 0x000000 0x35 CH2EQ11B2 0x000000 0x12EQ11B1 0x000000 0x37 0x38 1st SET CH2EQ12A1 0x000000 <t< td=""><td>0x21</td><td></td><td>CH2EQ7B2</td><td>0x000000</td></t<>	0x21		CH2EQ7B2	0x000000
0x24 1st SET CH2EQ882 0x000000 0x25 Channel-2 EQ8 CH2EQ8B1 0x000000 0x27 CH2EQ8B2 0x000000 0x28 CH2EQ9A0 0x200000 0x29 1st SET CH2EQ9A1 0x000000 0x2B CH2EQ9A2 0x000000 0x2B CH2EQ9B2 0x000000 0x2C CH2EQ9B2 0x000000 0x2D CH2EQ9A0 0x200000 0x2E 1st SET CH2EQ10A1 0x000000 0x30 CH2EQ10A2 0x000000 0x000000 0x31 CH2EQ10A2 0x000000 0x000000 0x32 CH2EQ10B2 0x000000 0x200000 0x33 1st SET CH2EQ10B2 0x000000 0x33 1st SET CH2EQ11A1 0x000000 0x33 1st SET CH2EQ11B1 0x000000 0x34 CH2EQ11A2 0x000000 0x02 0x35 CH2EQ11B2 0x000000 0x02 0x38 1st SET	0x22		CH2EQ7A0	0x200000
0x25 0x26 Channel-2 EQ8 CH2EQ8B1 0x000000 0x27 Channel-2 EQ8 CH2EQ8B2 0x000000 0x28 CH2EQ8A0 0x200000 0x29 1st SET CH2EQ9A1 0x000000 0x2A Channel-2 EQ9 CH2EQ9B1 0x000000 0x2B CH2EQ9B2 0x000000 0x200000 0x2C CH2EQ9A0 0x200000 0x200000 0x2F CH2EQ10A1 0x000000 0x000000 0x30 CH2EQ10A2 0x000000 0x000000 0x31 CH2EQ10A2 0x000000 0x000000 0x32 CH2EQ10B2 0x000000 0x000000 0x33 1st SET CH2EQ10B1 0x000000 0x33 1st SET CH2EQ11A1 0x000000 0x34 0x35 CH2EQ11A2 0x000000 0x36 CH2EQ11B1 0x000000 0x020000 0x37 CH2EQ11A0 0x200000 0x020000 0x38 1st SET CH2EQ12A1 0x000000	0x23		CH2EQ8A1	0x000000
0x25 Channel-2 EQ8 CH2EQ8B1 0x000000 0x27 CH2EQ8B2 0x000000 0x27 CH2EQ8A0 0x200000 0x28 CH2EQ9A1 0x000000 0x29 1st SET CH2EQ9A2 0x000000 0x2A CH2EQ9B2 0x000000 0x200000 0x2D CH2EQ9A0 0x200000 0x200000 0x2E 1st SET CH2EQ10A1 0x000000 0x30 CH2EQ10A2 0x000000 0x000000 0x31 CH2EQ10B2 0x000000 0x200000 0x33 CH2EQ10B2 0x000000 0x200000 0x33 CH2EQ10B2 0x000000 0x200000 0x33 CH2EQ10B2 0x000000 0x200000 0x34 Channel-2 EQ11 CH2EQ11B1 0x000000 0x35 CH2EQ11B1 0x000000 0x22EQ11B1 0x000000 0x37 CH2EQ11B1 0x000000 0x2EEQ12B1 0x000000 0x38 1st SET CH2EQ12A2 0x000000 0x2EEQ12B2	0x24	1 st SFT	CH2EQ8A2	0x000000
0x26 CH2EQ8B2 0x000000 0x27 CH2EQ8A0 0x200000 0x28 CH2EQ9A1 0x000000 0x29 CH2EQ9A2 0x000000 0x2B CH2EQ9B2 0x000000 0x2B CH2EQ9B2 0x000000 0x2C CH2EQ9A0 0x200000 0x2D CH2EQ10A1 0x000000 0x2F CH2EQ10A2 0x000000 0x30 CH2EQ10A2 0x000000 0x31 CH2EQ10A2 0x000000 0x33 CH2EQ10A2 0x000000 0x33 CH2EQ10A2 0x000000 0x32 CH2EQ10A0 0x200000 0x33 CH2EQ11A1 0x000000 0x33 1st SET CH2EQ11A1 0x000000 0x34 Ch3eq11A2 0x000000 0x35 CH2EQ11B1 0x000000 0x36 CH2EQ11A0 0x200000 0x37 CH2EQ12A1 0x000000 0x38 1st SET CH2EQ12A2 0x000000 0x3B </td <td>0x25</td> <td></td> <td>CH2EQ8B1</td> <td>0x000000</td>	0x25		CH2EQ8B1	0x000000
0x28 CH2EQ9A1 0x000000 0x29 1st SET CH2EQ9A2 0x000000 0x2B CH2EQ9B1 0x000000 0x000000 0x2C CH2EQ9B2 0x000000 0x200000 0x2D CH2EQ10A1 0x000000 0x200000 0x2F Channel-2 EQ10 CH2EQ10A2 0x000000 0x30 CH2EQ10B1 0x000000 0x200000 0x31 CH2EQ10B2 0x000000 0x200000 0x32 CH2EQ10A0 0x200000 0x200000 0x33 1st SET CH2EQ11A1 0x000000 0x34 Channel-2 EQ11 CH2EQ11B1 0x000000 0x35 CH2EQ11B2 0x000000 0x200000 0x36 CH2EQ11B2 0x000000 0x200000 0x37 CH2EQ12A1 0x000000 0x200000 0x38 1st SET CH2EQ12A2 0x000000 CH2EQ12B2 0x000000 0x22EQ12B2 0x000000 0x3B 1st SET CH2EQ13A1 0x000000 <td< td=""><td>0x26</td><td>onamor 2 2 go</td><td>CH2EQ8B2</td><td>0x000000</td></td<>	0x26	onamor 2 2 go	CH2EQ8B2	0x000000
0x29 1st SET CH2EQ9A2 0x000000 0x2B CH2EQ9B1 0x000000 0x2C CH2EQ9B2 0x000000 0x2D CH2EQ9A0 0x200000 0x2E CH2EQ10A1 0x000000 0x30 CH2EQ10B2 0x000000 0x31 CH2EQ10B2 0x000000 0x32 CH2EQ10B2 0x000000 0x33 CH2EQ10A0 0x200000 0x33 CH2EQ10A0 0x200000 0x33 CH2EQ11B1 0x000000 0x34 CH2EQ11A1 0x000000 CH2EQ11A2 0x000000 CH2EQ11B2 0x000000 CH2EQ11B2 0x000000 CH2EQ11B1 0x000000 CH2EQ12A1 0x000000 CH2EQ12A1 0x000000 CH2EQ12A2 0x000000 CH2EQ12B1 0x000000 CH2EQ12B2 0x000000 CH2EQ12B1 0x000000 CH2EQ13A1 0x000000 CH2EQ13A2 0x000000 CH2EQ13B1<	0x27		CH2EQ8A0	0x200000
0x2A 1st SET Channel-2 EQ9 CH2EQ9B1 0x000000 0x2C CH2EQ9B2 0x000000 0x2D CH2EQ9A0 0x200000 0x2E CH2EQ10A1 0x000000 0x3D CH2EQ10A2 0x000000 0x30 CH2EQ10B1 0x000000 0x31 CH2EQ10B2 0x000000 0x32 CH2EQ10A0 0x200000 0x33 CH2EQ11A1 0x000000 0x33 CH2EQ11A1 0x000000 0x34 CH2EQ11B1 0x000000 0x35 CH2EQ11B2 0x000000 0x36 CH2EQ11B2 0x000000 0x37 CH2EQ12A1 0x000000 0x38 1st SET CH2EQ12A1 0x000000 0x3B CH2EQ12A2 0x000000 0x3B CH2EQ12B1 0x000000 0x3C CH2EQ13A1 0x000000 0x3B CH2EQ13A1 0x000000 0x3B CH2EQ13A2 0x000000 0x3B CH2EQ13A2 0x000000	0x28		CH2EQ9A1	0x000000
0x2A Channel-2 EQ9 CH2EQ9B1 0x000000 0x2B CH2EQ9B2 0x000000 0x2C CH2EQ9A0 0x200000 0x2D CH2EQ10A1 0x000000 0x2E CH2EQ10A2 0x000000 0x30 CH2EQ10B2 0x000000 0x31 CH2EQ10B2 0x000000 0x32 CH2EQ10A0 0x200000 0x33 CH2EQ11A1 0x000000 0x33 CH2EQ11A2 0x000000 0x34 CH2EQ11A2 0x000000 0x36 CH2EQ11B1 0x000000 0x37 CH2EQ11B2 0x000000 0x38 CH2EQ12A1 0x000000 0x3B CH2EQ12A2 0x000000 0x3B CH2EQ12B2 0x000000 0x3C CH2EQ12B2 0x000000 0x3B CH2EQ13A1 0x000000 0x3B CH2EQ13A2 0x000000 0x3B CH2EQ13A2 0x000000 0x3B CH2EQ13B2 0x000000 0x3B <td< td=""><td>0x29</td><td>1 St OET</td><td>CH2EQ9A2</td><td>0x000000</td></td<>	0x29	1 St OET	CH2EQ9A2	0x000000
0x2B CH2EQ9B2 0x000000 0x2C CH2EQ9A0 0x200000 0x2D CH2EQ10A1 0x000000 0x2E CH2EQ10A2 0x000000 0x30 CH2EQ10B2 0x000000 0x31 CH2EQ10B2 0x000000 0x32 CH2EQ10A0 0x200000 0x33 CH2EQ11A1 0x000000 0x34 Channel-2 EQ11 CH2EQ11A2 0x000000 0x36 CH2EQ11B2 0x000000 0x37 CH2EQ11B2 0x000000 0x38 CH2EQ12A1 0x000000 0x38 CH2EQ12A1 0x000000 0x3A CH2EQ12B1 0x000000 0x3B CH2EQ12B2 0x000000 0x3C CH2EQ12B2 0x000000 0x3B CH2EQ13A1 0x000000 0x3B CH2EQ13A1 0x000000 0x3B CH2EQ13A1 0x000000 0x3B CH2EQ13A1 0x000000 0x3B CH2EQ13A2 0x000000 0x3B <	0x2A		CH2EQ9B1	0x000000
0x2D 0x2E 1st SET CH2EQ10A1 0x000000 0x2F 1st SET CH2EQ10A2 0x000000 0x30 CH2EQ10B1 0x000000 0x31 CH2EQ10B2 0x000000 0x32 CH2EQ10A0 0x200000 0x33 CH2EQ11A1 0x000000 0x34 CH2EQ11A2 0x000000 0x35 CH2EQ11B1 0x000000 0x36 CH2EQ11B2 0x000000 0x37 CH2EQ11A0 0x200000 0x38 1st SET CH2EQ12A1 0x000000 0x38 CH2EQ12A1 0x000000 0x3B CH2EQ12B1 0x000000 0x3C CH2EQ12B1 0x000000 0x3B CH2EQ13A1 0x000000 0x3B CH2EQ13A1 0x000000 0x3B CH2EQ13A1 0x000000 0x3B CH2EQ13A1 0x000000 0x3B CH2EQ13A2 0x000000 0x3B CH2EQ13A2 0x000000 0x3B CH2EQ13B2 <	0x2B	Chamer-2 EQ9	CH2EQ9B2	0x000000
0x2E 1st SET Channel-2 EQ10 CH2EQ10A2 0x000000 0x30 CH2EQ10B1 0x000000 0x31 CH2EQ10B2 0x000000 0x32 CH2EQ10A0 0x200000 0x33 CH2EQ11A1 0x000000 0x34 CH2EQ11A2 0x000000 0x35 CH2EQ11B1 0x000000 0x36 CH2EQ11B2 0x000000 0x37 CH2EQ11A0 0x200000 0x38 1st SET Channel-2 EQ12 CH2EQ12A1 0x000000 0x3A CH2EQ12B1 0x000000 0x3B CH2EQ12B2 0x000000 0x3B CH2EQ12A0 0x200000 0x3B CH2EQ13A1 0x000000 0x3B CH2EQ13A1 0x000000 0x3B CH2EQ13A2 0x000000 0x3B CH2EQ13B1 0x000000 0x3B CH2EQ13B1 0x000000 0x3B CH2EQ13A1 0x000000 0x3B CH2EQ13B2 0x000000 0x40 CH2EQ13A0 0x200000	0x2C		CH2EQ9A0	0x200000
0x2F Channel-2 EQ10 CH2EQ10B1 0x000000 0x30 CH2EQ10B2 0x000000 0x31 CH2EQ10A0 0x200000 0x32 CH2EQ11A1 0x000000 0x33 CH2EQ11A1 0x000000 0x34 CH2EQ11B1 0x000000 0x35 CH2EQ11B1 0x000000 0x36 CH2EQ11B2 0x000000 0x37 CH2EQ11A0 0x200000 0x38 CH2EQ12A1 0x000000 0x39 CH2EQ12A2 0x000000 CH2EQ12B1 0x000000 CH2EQ12B2 0x000000 CH2EQ12B2 0x000000 CH2EQ13A1 0x000000 CH2EQ13A2 0x000000 CH2EQ13A2 0x000000 CH2EQ13B1 0x000000 CH2EQ13B2 0x000000 CH2EQ13B2 0x000000 CH2EQ13A0 0x200000 CH2EQ13A0 0x200000 CH2EQ13A0 0x200000	0x2D		CH2EQ10A1	0x000000
0x2F Channel-2 EQ10 CH2EQ10B1 0x000000 0x30 CH2EQ10B2 0x000000 0x31 CH2EQ10A0 0x200000 0x32 CH2EQ11A1 0x000000 0x33 CH2EQ11A1 0x000000 0x34 CH2EQ11B2 0x000000 0x35 CH2EQ11B1 0x000000 0x36 CH2EQ11B2 0x000000 0x37 CH2EQ11A0 0x200000 0x38 CH2EQ12A1 0x000000 0x39 CH2EQ12A2 0x000000 CH2EQ12B1 0x000000 CH2EQ12B2 0x000000 CH2EQ12B2 0x000000 CH2EQ12A0 0x200000 CH2EQ13A1 0x000000 CH2EQ13A2 0x000000 CH2EQ13B1 0x000000 CH2EQ13B1 0x000000 CH2EQ13B2 0x000000 CH2EQ13B2 0x000000 CH2EQ13A0 0x200000 CH2EQ13A0 0x200000 CH2EQ13A0 0x200000	0x2E	4 St OFT	CH2EQ10A2	0x000000
0x30 CH2EQ10B2 0x000000 0x31 CH2EQ10A0 0x200000 0x32 CH2EQ11A1 0x000000 0x33 CH2EQ11A2 0x000000 0x34 CH2EQ11B2 0x000000 0x35 CH2EQ11B1 0x000000 0x36 CH2EQ11B2 0x000000 0x37 CH2EQ11A0 0x200000 0x38 CH2EQ12A1 0x000000 0x39 CH2EQ12A2 0x000000 0x3B CH2EQ12B1 0x000000 0x3C CH2EQ12A0 0x200000 0x3D CH2EQ13A1 0x000000 0x3E CH2EQ13A2 0x000000 CH2EQ13B1 0x000000 CH2EQ13B2 0x000000 CH2EQ13B2 0x000000 CH2EQ13A0 0x200000 CH2EQ13A0 0x200000 CH2EQ13A0 0x200000	0x2F		CH2EQ10B1	0x000000
0x32 CH2EQ11A1 0x000000 0x33 1st SET CH2EQ11A2 0x000000 0x34 Channel-2 EQ11 CH2EQ11B1 0x000000 0x35 CH2EQ11B2 0x000000 0x36 CH2EQ11B2 0x000000 0x37 CH2EQ12A1 0x000000 0x38 CH2EQ12A1 0x000000 0x39 CH2EQ12A2 0x000000 CH2EQ12B1 0x000000 CH2EQ12B2 0x3B CH2EQ12B2 0x000000 0x3C CH2EQ12A0 0x200000 0x3B CH2EQ13A1 0x000000 0x3B CH2EQ13A1 0x000000 0x3B CH2EQ13B1 0x000000 0x3B CH2EQ13B2 0x000000 0x3B CH2EQ13B2 0x000000 0x3B CH2EQ13A0 0x200000 0x3B CH2EQ13A0 0x200000	0x30	Channel-2 EQ10	CH2EQ10B2	0x000000
0x33 1st SET Channel-2 EQ11 CH2EQ11A2 0x000000 0x35 CH2EQ11B1 0x000000 0x36 CH2EQ11B2 0x000000 0x37 CH2EQ11A0 0x200000 0x38 CH2EQ12A1 0x000000 0x39 CH2EQ12A2 0x000000 0x3A CH2EQ12B1 0x000000 0x3B CH2EQ12B2 0x000000 0x3C CH2EQ12A0 0x200000 0x3B CH2EQ13A1 0x000000 0x3C CH2EQ13A2 0x000000 0x3E CH2EQ13A2 0x000000 CH2EQ13B1 0x000000 CH2EQ13B2 0x000000 CH2EQ13B2 0x000000 CH2EQ13A0 0x200000 CH2EQ13A0 0x200000 CH2EQ13A0 0x200000	0x31		CH2EQ10A0	0x200000
0x34 1st SET Channel-2 EQ11 CH2EQ11B1 0x000000 0x35 CH2EQ11B2 0x000000 0x36 CH2EQ11A0 0x200000 0x37 CH2EQ12A1 0x000000 0x38 CH2EQ12A1 0x000000 0x39 CH2EQ12A2 0x000000 0x3B CH2EQ12B1 0x000000 0x3C CH2EQ12A0 0x200000 0x3C CH2EQ13A1 0x000000 0x3E CH2EQ13A2 0x000000 0x40 CH2EQ13B1 0x000000 CH2EQ13A0 0x200000 CH2EQ13A0 0x200000 CH2EQ13A0 0x200000	0x32		CH2EQ11A1	0x000000
0x34 Channel-2 EQ11 CH2EQ11B1 0x000000 0x35 CH2EQ11B2 0x000000 0x36 CH2EQ11A0 0x200000 0x37 CH2EQ12A1 0x000000 0x38 CH2EQ12A1 0x000000 0x39 CH2EQ12A2 0x000000 0x3A CH2EQ12B1 0x000000 0x3B CH2EQ12B2 0x000000 0x3C CH2EQ12A0 0x200000 0x3B CH2EQ13A1 0x000000 0x3B CH2EQ13A2 0x000000 0x3B CH2EQ13B1 0x000000 0x3B CH2EQ13B2 0x000000 0x3B CH2EQ13B2 0x000000 0x40 CH2EQ13A0 0x200000 0x41 1st SET CH2EQ14A1 0x000000	0x33	4 St OF T	CH2EQ11A2	0x000000
0x35 CH2EQ11B2 0x000000 0x36 CH2EQ11A0 0x200000 0x37 CH2EQ12A1 0x000000 0x38 CH2EQ12A1 0x000000 0x39 CH2EQ12A2 0x000000 CH2EQ12B1 0x000000 0x000000 CH2EQ12B2 0x000000 0x200000 CH2EQ12A0 0x200000 0x200000 0x3D CH2EQ13A1 0x000000 0x3E CH2EQ13A2 0x000000 CH2EQ13B1 0x000000 CH2EQ13B2 0x000000 CH2EQ13B2 0x000000 CH2EQ13A0 0x200000 CH2EQ13A0 0x200000	0x34		CH2EQ11B1	0x000000
0x37 CH2EQ12A1 0x000000 0x38 1st SET CH2EQ12A2 0x000000 0x39 CH2EQ12B1 0x000000 0x3A CH2EQ12B1 0x000000 0x3B CH2EQ12B2 0x000000 0x3C CH2EQ12A0 0x200000 0x3D CH2EQ13A1 0x000000 0x3E CH2EQ13A2 0x000000 CH2EQ13B1 0x000000 CH2EQ13B2 0x000000 CH2EQ13A0 0x200000 0x41 1st SET CH2EQ14A1 0x000000	0x35	Channel-2 EQ11	CH2EQ11B2	0x000000
0x38 1st SET CH2EQ12A2 0x000000 0x39 Channel-2 EQ12 CH2EQ12B1 0x000000 0x3A CH2EQ12B2 0x000000 0x3B CH2EQ12A0 0x200000 0x3C CH2EQ13A1 0x000000 0x3D CH2EQ13A2 0x000000 0x3E CH2EQ13A2 0x000000 CH2EQ13B1 0x000000 CH2EQ13B2 0x000000 CH2EQ13A0 0x200000 0x41 1st SET CH2EQ14A1 0x000000	0x36		CH2EQ11A0	0x200000
0x39 1st SET Channel-2 EQ12 CH2EQ12B1 0x000000 0x3A CH2EQ12B2 0x000000 0x3B CH2EQ12A0 0x200000 0x3C CH2EQ13A1 0x000000 0x3D CH2EQ13A1 0x000000 0x3E CH2EQ13A2 0x000000 CH2EQ13B1 0x000000 CH2EQ13B2 0x000000 CH2EQ13A0 0x200000 0x41 1st SET CH2EQ14A1 0x000000	0x37		CH2EQ12A1	0x000000
0x39 Channel-2 EQ12 CH2EQ12B1 0x000000 0x3A CH2EQ12B2 0x000000 0x3B CH2EQ12A0 0x200000 0x3C CH2EQ13A1 0x000000 0x3D CH2EQ13A1 0x000000 0x3E CH2EQ13A2 0x000000 CH2EQ13B1 0x000000 CH2EQ13B2 0x000000 CH2EQ13A0 0x200000 0x41 1st SET CH2EQ14A1 0x000000	0x38	4 St OFF	CH2EQ12A2	0x000000
0x3A CH2EQ12B2 0x000000 0x3B CH2EQ12A0 0x200000 0x3C CH2EQ13A1 0x000000 0x3D CH2EQ13A2 0x000000 0x3E CH2EQ13B1 0x000000 CH2EQ13B2 0x000000 CH2EQ13B2 0x000000 CH2EQ13A0 0x200000 0x41 1st SET CH2EQ14A1 0x000000	0x39		CH2EQ12B1	0x000000
0x3C CH2EQ13A1 0x000000 0x3D 1st SET CH2EQ13A2 0x000000 0x3E Channel-2 EQ13 CH2EQ13B1 0x000000 0x40 CH2EQ13B2 0x000000 0x41 1st SET CH2EQ14A1 0x000000	0x3A	Cnannel-2 EQ12	CH2EQ12B2	0x000000
0x3D 1st SET CH2EQ13A2 0x000000 0x3E Channel-2 EQ13 CH2EQ13B1 0x000000 0x40 CH2EQ13B2 0x000000 0x41 1st SET CH2EQ13A0 0x200000 CH2EQ14A1 0x000000	0x3B		CH2EQ12A0	0x200000
0x3E 1st SET Channel-2 EQ13 CH2EQ13B1 0x000000 0x3F CH2EQ13B2 0x000000 0x40 CH2EQ13A0 0x200000 0x41 1st SET CH2EQ14A1 0x000000	0x3C		CH2EQ13A1	0x000000
0x3E Channel-2 EQ13 CH2EQ13B1 0x000000 0x3F CH2EQ13B2 0x000000 0x40 CH2EQ13A0 0x200000 0x41 1st SET CH2EQ14A1 0x000000	0x3D	. et	CH2EQ13A2	0x000000
0x3F CH2EQ13B2 0x000000 0x40 CH2EQ13A0 0x200000 0x41 1st SET CH2EQ14A1 0x000000	0x3E		CH2EQ13B1	0x000000
0x41 1 st SET CH2EQ14A1 0x000000	0x3F	Channel-2 EQ13	CH2EQ13B2	0x000000
	0x40		CH2EQ13A0	0x200000
0x42	0x41	1 st SET	CH2EQ14A1	0x000000
	0x42	Channel-2 EQ14	CH2EQ14A2	0x000000

Publication Date: Apr. 2018 Revision: 1.4 77/83

0x43		CH2EQ14B1	0x000000
0x44		CH2EQ14B2	0x000000
0x45		CH2EQ14A0	0x200000
0x46		CH2EQ15A1	0x000000
0x47	. st	CH2EQ15A2	0x000000
0x48	1 st SET	CH2EQ15B1	0x000000
0x49	Channel-2 EQ15	CH2EQ15B2	0x000000
0x4A		CH2EQ15A0	0x200000
0x4B	Channel-2 Mixer1	M21	0x000000
0x4C	Channel-2 Mixer2	M22	0x7FFFFF
0x4D	Channel-2 Prescale	C2PRS	0x7FFFFF
0x4E	Channel-2 Postscale	C2POS	0x7FFFF
0X4F	A0 of R channel SRS HPF	RSRSH_A0	C7B691
0X50	A1 of R channel SRS HPF	RSRSH_A1	38496E
0X51	B1 of R channel SRS HPF	RSRSH_B1	C46f8
0X52	A0 of R channel SRS LPF	RSRSL_A0	E81B9
0X53	A1 of R channel SRS LPF	RSRSL_A1	F22C12
0X54	B1 of R channel SRS LPF	RSRSL_B1	FCABB
0x55	Reserved		
0X56	Reserved		
0X57	Reserved		
0X58	Reserved		
0X59	Reserved		
0x5A	Reserved		
0x5B	Reserved		
0x5C	Reserved		
0x5D	Reserved		
0x5E	Reserved		
0x5F	Reserved		
0x60	Reserved		
0X61	Reserved		

Publication Date: Apr. 2018 Revision: 1.4 78/83

0x62	Reserved		
0X63	Reserved		
0X64	DRC2 Power Meter	C2_RMS	
0X65	DRC4 Power Meter	C4_RMS	
0X66	DRC6 Power Meter	C6_RMS	
0X67	DRC8 Power Meter	C8_RMS	
0x68		CH2EQ1A1	0x000000
0x69	2 nd SET	CH2EQ1A2	0x000000
0x6A	Channel-2 EQ1	CH2EQ1B1	0x000000
0x6B	(DEQ1)	CH2EQ1B2	0x000000
0x6C		CH2EQ1A0	0x200000
0x6D		CH2EQ2A1	0x000000
0x6E	2 nd SET	CH2EQ2A2	0x000000
0x6F	Channel-2 EQ2	CH2EQ2B1	0x000000
0x70	(DEQ2)	CH2EQ2B2	0x000000
0x71		CH2EQ2A0	0x200000
0x72		CH2EQ3A1	0x000000
0x73	2 nd SET	CH2EQ3A2	0x000000
0x74	Channel-2 EQ3	CH2EQ3B1	0x000000
0x75	(DEQ3)	CH2EQ3B2	0x000000
0x76		CH2EQ3A0	0x200000
0x77		CH2EQ4A1	0x000000
0x78	2 nd SET	CH2EQ4A2	0x000000
0x79	Channel-2 EQ4	CH2EQ4B1	0x000000
0x7A	(DEQ4)	CH2EQ4B2	0x000000
0x7B		CH2EQ4A0	0x200000

Package Dimensions

E-LQFP-48L (7mm x 7mm)

Symbol	Dimension in mm		
	Min	Max	
А		1.60	
A1	0.05	0.15	
Ъ	0.17	0.27	
С	0.09	0.20	
D	6.90	7.10	
D1	8.90	9.10	
Е	6.90	7.10	
E1	8.90	9.10	
е	0.50	BSC	
L	0.45	0.75	

Exposed pad

	Dimension in mm	
	Min	Max
D2	4.31	5.21
E2	4.31	5.21

Publication Date: Apr. 2018 Revision: 1.4 80/83

Package Dimensions

E-TSSOP 24L

Symbol	Dimension in mm		
39111001	Min	Max	
Α	1.00	1.20	
A1	0.00	0.15	
b	0.19	0.30	
С	0.09	0.20	
D	7.70	7.90	
Е	4.30	4.50	
E1	6.30	6.50	
е	0.65 BSC		
L	0.45	0.75	

Exposed pad

	Dimension in mm	
D2	3.70	4.62
E2	2.20	2.85

Publication Date: Apr. 2018 Revision: 1.4 81/83

Revision History

Revision	Date	Description
0.1	2017.10.12	Original.
1.0	2017.12.08	Remove "Preliminary" & modify 0X5C default define.
1.1	2017.12.22	New add tape reel order information.
1.2	2018.01.16	New add description of ESD in Absolute Maximum Ratings.
1.3	2018.02.13	 Add symbol of R_{DS(ON)} in General Electrical Characteristics. Remove bead in Application Circuit Example for Mono.
1.4	2018.04.	 Add output pin to GND AMR voltage. Update application circuit for Stereo. Add Po vs. Supply voltage curve. Update Power on sequence. Update The user defined RAM.

Important Notice

All rights reserved.

No part of this document may be reproduced or duplicated in any form or by any means without the prior permission of ESMT.

The contents contained in this document are believed to be accurate at the time of publication. ESMT assumes no responsibility for any error in this document, and reserves the right to change the products or specification in this document without notice.

The information contained herein is presented only as a guide or examples for the application of our products. No responsibility is assumed by ESMT for any infringement of patents, copyrights, or other intellectual property rights of third parties which may result from its use. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of ESMT or others.

Any semiconductor devices may have inherently a certain rate of failure. To minimize risks associated with customer's application, adequate design and operating safeguards against injury, damage, or loss from such failure, should be provided by the customer when making application designs.

ESMT's products are not authorized for use in critical applications such as, but not limited to, life support devices or system, where failure or abnormal operation may directly affect human lives or cause physical injury or property damage. If products described here are to be used for such kinds of application, purchaser must do its own quality assurance testing appropriate to such applications.

Publication Date: Apr. 2018 Revision: 1.4 83/83