In the Claims

Please amend the claims as follows.

- 1 Claims 1-4 (canceled).
- 1 5. (Previously added) A method for forming a pathway from a sub-intimal space
- 2 of a blood vessel into a true lumen of the blood vessel, comprising:
- 3 positioning a catheter system within the sub-intimal space at a position proximate
- 4 to a target entry site into the vessel true lumen, the catheter system including at least one
- 5 lumen in communication with at least one port in a distal region of the catheter system,
- 6 the catheter system further including an internal incising element that is translatable
- 7 across a portion of the port;
- 8 determining a radial position of the true lumen with respect to the port at the
- 9 target entry site from a position in the sub-intimal plane using an imaging device of the
- 10 catheter system; and
- forming an incision in tissue separating the sub-intimal space from the true lumen
- using the incising element, the incision having separate and distinct end points and
- 13 forming a pathway between the sub-intimal space and the true lumen, wherein the tissue
- 14 remains external to the port subsequent to forming the incision.
- 1 6. (Previously added) The method of claim 5, wherein the imaging device is a
- 2 rotational imaging device.
- 1 7. (Withdrawn) The method of claim 5, wherein the imaging device is an ultrasonic
- 2 device.
- 1 8. (Withdrawn) The method of claim 5, wherein the imaging device is an optical
- 2 coherence tomography (OCT) device.

- 1 9. (Withdrawn) The method of claim 5, wherein the incising element is integral to
- 2 the imaging device.
- 1 10. (Withdrawn) The method of claim 5, wherein the incising element is separate
- 2 from and arranged concentrically outside the imaging device.
- 1 11. (Previously added) The method of claim 5, wherein determining the radial
- 2 position includes use of an imaging device that is a fixed integral part of a body of the
- 3 catheter system.
- 1 12. (Withdrawn) The method of claim 5, wherein determining the radial position
- 2 includes use of a fluoroscopic marker on the catheter system.
- 1 13. (Withdrawn) The method of claim 12, wherein the fluoroscopic marker is
- 2 located on a body of the catheter system.
- 1 14. (Withdrawn) The method of claim 12, wherein the fluoroscopic marker is
- 2 located on one or more working elements of the catheter system.
- 1 15. (Previously added) The method of claim 5, further comprising evacuating fluid
- 2 from the sub-intimal space and securing the tissue separating the sub-intimal space from
- 3 the true lumen at the port by applying vacuum to the catheter lumen.
- 1 16. (Previously added) The method of claim 15, further comprising invaginating
- 2 the tissue separating the sub-intimal space from the true lumen into the port and into a
- 3 distal interior region of the catheter system upon application of the vacuum.
- 1 17. (Previously added) The method of claim 5, further comprising advancing a
- working element into the true lumen through the incision.

- 1 18. (Previously added) The method of claim 17, wherein the working element
- 2 includes at least one of a guide wire and a cannula.
- 1 19. (Previously added) A method for forming a pathway from a sub-intimal space
- 2 of a blood vessel into a true lumen of the blood vessel, comprising:
- 3 positioning a catheter system within the sub-intimal space at a position proximate
- 4 to a target entry site into the vessel true lumen, the catheter system including at least one
- 5 lumen in communication with at least one port in a distal region of the catheter system,
- 6 the catheter system further including an internal incising element that is translatable
- 7 across a portion of the port; and
- forming an incision in tissue separating the sub-intimal space from the true lumen
- 9 using the incising element, the incision having separate and distinct end points and
- 10 forming a pathway between the sub-intimal space and the true lumen, wherein the tissue
- 11 remains external to the port subsequent to forming the incision.
- 1 20. (Previously added) A method for forming a pathway from a sub-intimal space
- 2 of a blood vessel into a true lumen of the blood vessel, comprising:
- 3 positioning a catheter system within the sub-intimal space at a position proximate
- 4 to a target entry site into the vessel true lumen, the catheter system including at least one
- 5 lumen in communication with at least one port in a distal region of the catheter system,
- 6 the catheter system further including an internal excising element that is translatable
- 7 across a portion of the port;
- 8 determining a radial position of the true lumen with respect to the port at the
- 9 target entry site from a position in the sub-intimal plane using an imaging device of the
- 10 catheter system;
- advancing the internal excising element along a portion of the port; and
- excising an area of tissue separating the sub-intimal space from the true lumen
- using the excising element, the excised area of tissue generating a pathway from the sub-
- 14 intimal space to the true lumen.

1	21. (Previously added) A method for forming a pathway from a sub-intimal space
2	of a blood vessel into a true lumen of the blood vessel, comprising:
3	positioning a catheter system within the sub-intimal space at a position proximate
4	to a target entry site into the vessel true lumen, the catheter system including at least one
5	lumen in communication with at least one port in a distal region of the catheter system,
6	the catheter system further including an internal excising element that is translatable
7	across a portion of the port;
8	advancing the internal excising element along a portion of the port; and
9	excising an area of tissue separating the sub-intimal space from the true lumen
10	using the excising element, the excised area of tissue generating a pathway from the sub-
11	intimal space to the true lumen.
1	22. (Previously added) A method for establishing a pathway through a chronic
. 2	total occlusion of a blood vessel, the pathway connecting a first region of a true lumen of
3	the blood vessel which is proximal to the occlusion to a second region of the true lumen
4	of the blood vessel distal to the occlusion via an extra-luminal pathway within the vessel
5	comprising:
6	forming a track longitudinally from the first region of the true lumen through the
7	occlusion and into a sub-intimal space distal to the occlusion;
8	positioning a catheter system within the sub-intimal space using the track, the
9	catheter system including at least one lumen in communication with at least one port in a
10	distal region of the catheter system, the catheter system further including an internal
11	incising element that is translatable across a portion of the port;
12	determining a radial position of the true lumen with respect to the port using an
13	imaging device of the catheter system; and
14	forming an incision in tissue separating the sub-intimal space from the true lumen
15	using the incising element, the incision having separate and distinct end points and
16	forming a pathway between the sub-intimal space and the true lumen, wherein the tissue
17	remains external to the port subsequent to forming the incision.

LMND.P116 5 ·

1 ·	23. (Previously added) A method for establishing a pathway through a chronic
2	total occlusion of a blood vessel, the pathway connecting a first region of a true lumen of
3	the blood vessel which is proximal to the occlusion to a second region of the true lumen
4	distal to the occlusion via an extra-luminal pathway within the vessel, comprising:
5	forming a track longitudinally from the first region of the true lumen through the
6	occlusion and into a sub-intimal space distal to the occlusion;
7.	positioning a catheter system within the sub-intimal space using the track, the
8	catheter system including at least one lumen in communication with at least one port in a
9	distal region of the catheter system;
10	determining a radial position of the true lumen with respect to the port using an
11	imaging device of the catheter system;
12	applying a vacuum through the catheter lumen and the port, evacuating fluid from
13	the sub-intimal space and bringing the sub-intimal tissue into intimate contact with the
14	port; and
15	advancing a working element through the port and through the tissue separating
16	the sub-intimal space and the second region of the true lumen and generating a pathway
17	from the sub-intimal space to the second region of the true lumen.

LMND.P116

Claims 24-42 (canceled).

1