

Machine Learning Pipelines with Apache Spark and Intel BigDL

Intely

M. Migliorini^{1,2}, V. Khristenko¹ M. Pierini¹, E. Motesnitsalis¹, L. Canali¹, M. Girone¹ 1)CERN, Geneva, Switzerland; 2)University of Padova, Padova, Italy

End-to-End ML Pipeline • The goal of this work is to produce a demonstrator of an end-to-end

Investigate and develop solutions integrating:

Machine Learning pipeline using Apache Spark

- Data Engineering/Big Data tools
 - Machine Learning tools
 - Data analytics platform
- Use Industry standard tools:
 - Well known and widely adopted
 - Open the HEP field to a larger community
- The Pipeline is composed by the following stages:

HEP use case

- The ability to classify events is of fundamental importance and Deep Learning proved to be able to outperform other ML methods
- See paper: "Topology classification with deep learning to improve real time event selection at LHC" (arXiv:1807.00083v2)

Data Ingestion Access physics data stored in Connector **EOS** storage Read ROOT files into a Spark Input:

10 TB of ROOT files

50M events

- EOS using Hadoop-XRootD
- DF using Spark-ROOT reader
- Filter events: require the presence of isolated leptons
- Prepare input for the classifiers
 - Produce multiple datasets
 - Raw data (list of particles)
 - High Level features
- Store results in parquet files
 - Dev. dataset (100k events)
- Full dataset (5M events)

Training

Reproduced the classifiers performance of the source paper

Trained the three models using various hardware and configurations

Throughput 105 training Keras on GPU BDL on yarn 10³ - Particle-Sequence classifier HLF classifier Inclusive classifier

Throughput test measurements on the three different training methods and model types

Parameters

Tuning

 Train multiple models at the same time (one per executor)

Results

- Created an end-to-end ML pipeline using Apache Spark
 - Python & Spark allow to distribute computation in a simple way
 - Intel BigDL scales well and it is easy to use because it has a similar API to Keras
 - Interactive analysis made easier by **Jupiter Notebooks**
- Future work
 - Test pipeline using cloud resources
 - Further performance improvements on data preparation and training
- on streaming data

 Solver Repache Serving. In the constreaming data

 Solver Repache Serving. In the constream of the construction of the con Model Serving: implement inference