Backtracking Search Optimization Algorithm for numerical optimization problems

ABSTRACT

Bu makalede, gerçek değerli sayısal optimizasyon problemlerini çözmek için yeni bir evrimsel algoritma (EA) olan Backtracking Search Optimization Algorithm (BSA) tanıtılmaktadır. EA'lar, doğrusal olmayan, ayırt edilemeyen ve karmaşık sayısal optimizasyon problemlerini çözmek için yaygın olarak kullanılan popüler stokastik arama algoritmalarıdır. Mevcut araştırma, kontrol parametrelerinde aşırı duyarlılık, erken yakınsama ve yavaş hesaplama gibi EAA'larda sık karşılaşılan sorunların etkilerini azaltmayı amaçlamaktadır. Bu bağlamda, daha basit ve daha etkili arama algoritmaları geliştirmeye çalışan çalışmalar BSA'nın gelişimini motive etmiştir. Birçok arama algoritmasından farklı olarak BSA'nın tek bir kontrol parametresi vardır. Dahası, BSA'nın problem çözme performansı bu parametrenin başlangıç değerine fazla duyarlı değildir. BSA, etkili, hızlı ve çok modlu problemleri cözebilen ve farklı sayısal optimizasyon problemlerine kolayca adapte olmasını sağlayan basit bir yapıya sahiptir. BSA'nın bir deneme popülasyonu oluşturma stratejisi iki yeni geçit ve mutasyon operatörü içerir. BSA'nın deneme popülasyonları oluşturma ve arama yönü matrisinin ve arama alanı sınırlarının genliğini kontrol etme stratejileri, ona çok güçlü keşif ve arama yetenekleri sağlar. Özellikle, BSA, arama yönü matrisinin üretilmesinde kullanılmak üzere, rastgele seçilen bir önceki nesilden bir popülasyonu depoladığı bir belleğe sahiptir. Böylece BSA'nın hafızası, bir deneme hazırlığı oluştururken önceki nesillerden elde edilen deneyimlerden faydalanmasına izin verir. Bu makale, BSA'nın sayısal optimizasyon problemlerini çözmedeki etkinliğini, yaygın olarak kullanılan altı EA algoritmasının performansıyla istatistiksel olarak karsılastırmak için Wilcoxon İmzalı Sıra Testi'ni kullanmaktadır: PSO, CMAES, ABC, JDE, CLPSO ve SADE. 75 sınırlamalı kıyaslama problemi ve üç kısıtlı gerçek dünya kıyaslama problemi kullanan karşılaştırma, genel olarak BSA'nın karşılaştırma problemlerini karşılaştırma algoritmalarından daha başarılı bir şekilde çözebileceğini göstermektedir.

1. Giriş

Optimizasyon uygulamalı matematikte çok önemli bir araştırma alanıdır [1-5]. Optimizasyon algoritmaları, çeşitli koşullar altında bir sistemin parametreleri için en iyi değerleri bulmayı amaçlar. Bir optimizasyon problemini çözmenin ilk adımı, sistem parametreleri ve sistem kısıtlamaları arasındaki ilişkileri belirten objektif işlevi belirlemektir. Cesitli nedenlerden ötürü, amac islevi doğrusal olmayan, karmasık veya ayırt edilemeyen bir biçime sahip olabilir. Optimizasyon sorunları genellikle objektif bir fonksiyonun küresel optimumunu küresel minimum olarak tanımlayacak şekilde tasarlanır. Bir optimizasyon problemi için küresel optimum arayışına küresel optimizasyon denir. Optimizasyon algoritmaları için arzu edilen özellikler arasında, az sayıda kontrol parametresi ve düşük hesaplama maliyeti ile bir sorunun küresel minimum değerine hızlı bir şekilde ulaşmanın yanı sıra farklı sorun modellerine sağlamlık ve uygulama kolaylığı da dahildir [6-8]. Arama alanının büyüklüğü optimizasyon probleminin boyutuyla birlikte arttığından, klasik tekniklerle bu tür problemler için küresel optimum bulmak zordur [9]. Bir optimizasyon problemi için objektif fonksiyon doğrusal olmayan ve ayırt edilemediğinde, evrimsel algoritma (EA) teknikleri tipik olarak küresel optimumluğu bulmak için kullanılır [10-13]. EA'lar mekanik tasarım problemleri [14], iletişim uygulamaları [15], görüntü işleme uygulamaları [16], konuşma tanıma problemleri [17], sensör dağıtım problemleri [18], veri madenciliği uygulamaları [19], IIR filtre tasarımı [20], güneş radyasyonu modellemesi [21], lens tasarımı [22], kimyasal proseslerin dinamik analizi [23], reaktif sistemler için faz kararlılığı ve denge hesapları [24], polipropilen prosesleri için parti çizelgelemesi [25], biyokimyasalın dinamik optimizasyonu süreçler [26] ve diğer birçok mühendislik problemi.

En yaygın kullanılan EA optimizasyon teknikleri sürü zekası [12,14,20,27–33] ve genetik evrime [1–7,34,35] dayanmaktadır. Sürü zekası optimizasyon algoritmaları genellikle canlıların karmaşık sosyal davranışlarının basitleştirilmiş matematiksel modellerini kullanır. Bununla birlikte, son zamanlarda sürünen istihbarat temelli optimizasyon algoritmaları da yerçekimi fiziği [31], kuşların davranışları [29] ve müzik gibi çeşitli sanat dallarını [36] içeren doğal olaylardan ilham almıştır.

Klasik optimizasyon tekniklerinden farklı olarak EA'lar bir sorun için optimum parametre değerlerini bulmayı garanti etmez. Bununla birlikte, klasik optimizasyon algoritmalarının aksine, EA'lar farklı tipteki problemleri çözmek için yeterince esnektir. EA'lar küresel arama ve yerel sömürü yeteneklerine sahip olmalıdır [12,31]. Global bir keşif yeteneği, optimizasyon algoritmasının tüm arama alanını etkin bir şekilde kullandığı

anlamına gelirken, yerel bir keşif yeteneği, optimizasyon algoritmasının zaten keşfettiği yeni bir çözümün yakınında en iyi çözümü aradığı anlamına gelir. EA'lar, keşif kabiliyetlerini genellikle ilk iterasyonlarında yerel minimumları önlemek için gereken yeni çözümleri elde etmek için kullanırlar. Yinelemeler ilerledikçe, bir EA'nın sömürü yeteneği üretilen çözümler üzerinde daha güçlü bir etkiye sahiptir. Bir optimizasyon algoritmasının başarısı, arama ve kullanma yeteneklerine ve bunlar arasındaki doğal dengeye önemli ölçüde bağlıdır. Bilimsel araştırmalarda geleneksel yöntemlerle çözülmesi zor yeni ve karmaşık sayısal optimizasyon problemlerine sık karşılaşıldığından, farklı tekniklere dayalı yeni optimizasyon algoritmaları geliştirmeye devam etmek gerekmektedir [12,36-40].

Doğadan ilham alan analog modeller birçok EA'yi tasarlamak için kullanılmıştır. Karınca kolonisi optimizasyon algoritması, karıncaların gıda kaynaklarına erişim stratejisine dayanmaktadır [27]. Biyocoğrafyaya dayalı optimizasyon algoritması, bir habitatta yaşayan canlılar arasındaki biyo-etkileşimleri modellemektedir [28]. Guguklu araştırma algoritması, canlılarda parazitik biyo-etkileşimleri modeller [29,30]. Yerçekimi arama algoritması, evrensel yerçekimi yasalarından kaynaklanan nesnelerin etkileşimlerini modellemektedir [31]. Parçacık sürü optimizasyonu algoritması (PSO), kuş sürüleri ve konserde hareket eden balık okulları gibi süperomanizmlerin koreografik hareketlerini simüle eder [24,25,38-42]. Yapay arı kolonisi algoritması (ABC) bal arılarının yiyecek arama davranışından esinlenmiştir [12,13,30]. Bu analog modeller, yaygın olarak bilinen kavramlara aşina olan araştırmacılara EA'ları tanımlamak için de yararlıdır.

Bir EA'da, bir popülasyonun genetik çeşitliliğinin korunması, popülasyonun gelişimini tekrar tekrar sürdürme yeteneği için çok önemlidir. Genel olarak, bir popülasyonun genetik çeşitliliğinin rekombinasyon, çaprazlama, mutasyon, seçim ve adaptasyon gibi temel genetik süreçlerden kaynaklandığına inanılmaktadır [1,11,12]. Birçok EA, ABC, guguk kuşu araması, kovaryans matris adaptasyon evrim stratejisi (CMAES) [37], genetik algoritmalar [1,2] ve diferansiyel evrim algoritması (DE) [30,34, 35].

Genetik bir algoritma olan DE, farklı problem türlerine kolayca uyum sağlayabilen çok basit bir algoritmik yapıya sahiptir ve birçok mühendislik problemini çözmek için kullanılmıştır. Standart DE'nin beş mutasyon stratejisi ve iki çaprazlama stratejisi vardır [7,10,11,30,34,35]. DE'nin küresel minimum arayışı, kullandığı mutasyon ve çaprazlama stratejisine, mutasyonun başlangıç değerlerine ve çaprazlama faktörlerine, popülasyonunun büyüklüğüne ve yineleme sayısına duyarlıdır. Uyarlamalı diferansiyel evrim algoritması (JDE) [6], parametre uyarlamalı diferansiyel evrim algoritması (JADE) [10] ve kendinden uyarlamalı diferansiyel evrim algoritması (SADE) [35] gibi DE'nin gelişmiş versiyonları geliştirilmiştir. DE'nin problem çözme başarı oranı. Aksine, ABC genetik kurallar kullanması nedeniyle DE'den farklı olan ancak geçiş stratejisi olmayan bir EA'dır [12,13]. Dahası, küresel küçültücü ararken, ABC arama alanında daha iyi kondisyon değerleri sağlayan çözümleri daha fazla kullanma eğilimindedir. Kapsamlı öğrenme parçacık sürüsü iyileştiricisi (CLPSO) [8] ve PSO2011 [42], standart PSO'nun [40,41] gelişmiş versiyonlarıdır. PSO2011, PSO'nun yıllar süren çalışmalarla tespit edilen birçok iyileştirmesini içermektedir. Bilimsel uygulamalarda yaygın olarak kullanılan CMAES, kovaryans matrisinin evrimsel bir gelişimine dayanmaktadır [27].

EA'lar, bir soruna en uygun çözümleri arayan nüfus temelli stokastik arama mekanizmalarıdır. EA, bir kişiyi 'deneme amaçlı birey' aracılığıyla daha iyi kondisyon değerine sahip bir kişiye dönüştürmeye çalışır. Deneme amaçlı bir birey oluşturmak için EA mevcut bireyleri ham genetik materyal olarak seçer ve bunları çeşitli genetik operatörler kullanarak birleştirir. Deneme bireyi orijinal kişiden daha iyi bir kondisyon değerine sahipse, deneme bireyi yeni nesil popülasyonda yerini alır. EA'lar, deneme bireyleri oluşturma stratejilerine dayanarak birbirinden kökten farklıdır. Bu stratejilerin problem çözme başarıları ve hızları üzerinde önemli bir etkisi olduğundan, devam eden çabalar daha hızlı ve daha başarılı problem çözme süreçleri ile EA'lar geliştirmeyi amaçlamaktadır.

Bu makalede önerilen algoritma BSA yeni bir EA'dır. BSA'nın deneme amaçlı bir birey oluşturmaya yönelik benzersiz mekanizması, sayısal optimizasyon sorunlarını başarılı ve hızlı bir şekilde çözmesini sağlar. BSA, deneme bireyleri oluşturmak için üç temel genetik operatör seçimi, mutasyon ve çaprazlama kullanır. BSA, DE ve JDE, JADE ve SADE türevleri gibi birçok genetik algoritmanın aksine, her hedef birey için sadece bir yön bireysel kullanan rastgele bir mutasyon stratejisine sahiptir. BSA rastgele seçilen önceki neslin bireylerinden yönü seçer. BSA, birçok genetik algoritmada kullanılan çaprazlama stratejilerinden daha karmaşık olan tek tip olmayan bir çapraz strateji kullanır.

PSO, CMAES, ABC, JDE, CLPSO ve SADE algoritmaları bilimsel uygulamalarda yaygın olarak kullanıldığından, bu algoritmalar BSA'nın sayısal optimizasyon problemlerini çözmedeki başarısını değerlendirmek için karşılaştırma algoritmaları olarak seçilmiştir.

Bu makale, BSA'nın başarısını ve sayısal optimizasyon problemlerini çözmede karşılaştırma algoritmalarını incelemek için üç test seti kullanmaktadır. İlk test seti yaygın olarak kullanılan 50 standart kıyaslama problemini içerir [12,13], ikinci test seti CEC2005'te kullanılan 25 kıyaslama problemini içerir [43] ve üçüncü test seti CEC2011 [44] 'de kullanılan üç gerçek dünya problemini içerir: Dairesel Anten Dizi Tasarımı problemi (Anten), Spread Spectrum Radar Polly Faz Kodu Tasarımı problemi (Radar) ve Frekans Modülasyonlu Ses Dalgaları problemi (FM) için Parametre Tahmini.

Bu makalenin geri kalanı aşağıdaki gibi düzenlenmiştir. Bölüm 2 Geri İzleme Arama Optimizasyonu Algoritmasını tanıtır, Bölüm 3 deneyleri açıklar ve Bölüm 4 sonuçları sunar.

2. Backtracking Search Optimization Algorithm (BSA)

BSA, küresel bir küçültücü olarak tasarlanmış, nüfusa dayalı yinelemeli bir EA'dır. BSA, işlevlerini diğer EA'larda olduğu gibi beş sürece bölerek açıklanabilir: başlatma, seçim-I, mutasyon, çapraz geçiş ve seçim-II

1. algoritma BSA'nın genel yapısını sunar.

Algorithm 1. General Structure of BSA

```
1. Initialization

repeat

2. Selection-I

Generation of Trial-Population

3. Mutation

4. Crossover

end

5. Selection-II

until stopping conditions are met;
```

2.1. Initialization

BSA, P popülasyonunu Denklem (1) ile başlatır:

$$P_{i,j} \sim U(low_j, up_j)$$

i=1,2,3 için. . N ve j=1,2,3;..., D, burada N ve D sırasıyla popülasyon büyüklüğü ve problem boyutu, U eşit dağılım ve her Pi, P popülasyonunda hedef bireydir.

2.2. Selection-I

BSA'nın Selection-1 aşaması, arama yönünün hesaplanmasında kullanılacak geçmiş "oldP" popülasyonunu belirler. İlk tarihsel popülasyon Denk. (2):

$$oldP_{i,j} \sim U(low_i, up_i).$$

BSA, her yinelemenin başında Denk. (3)'te verilen 'if-then' kuralı aracılığıyla oldP'yi yeniden tanımlama seçeneğine sahiptir:

if
$$a < b$$
 then old $P := P | a, b \sim U(0, 1)$,

Burade "=:" güncelleme işlemidir. Denk. (3) BSA'nın rasgele seçilen bir önceki nesle ait bir popülasyonu tarihsel popülasyon olarak atamasını sağlar ve değiştirilene kadar bu tarihsel popülasyonu hatırlar. Böylece BSA'nın bir hafızası vardır. OldP belirlendikten sonra, Denk. (4) eski P'deki bireylerin sırasını rastgele değiştirmek için kullanılır:

$$oldP := permuting(oldP)$$
.

Denklemde kullanılan "permuting" işlevi. (4) rastgele bir karıştırma işlevidir.

2.3. Mutation

BSA'nın mutasyon süreci, Denk. (5) kullanarak mutant deneme popülasyonunun başlangıç formunu oluşturur.

$$Mutant = P + F \cdot (oldP - P).$$

Denk. (5), F, arama yönü matrisinin genliğini kontrol eder (oldP-P). Çünkü tarihsel popülasyon arama-yön matrisinin hesaplanmasında kullanıldığından BSA, önceki nesillere ait deneyimlerinden kısmen yararlanan bir deneme popülasyonu üretir. Bu makale F = 3.rdnd değerini kullanmaktadır; burada rndn~N (0,1). (N standart normal dağılımdır).

2.4. Crossover

BSA'nın çaprazlama süreci, deneme popülasyonu T'nin nihai formunu oluşturur. Deneme popülasyonunun başlangıç değeri, mutasyon işleminde ayarlandığı gibi Mutant'tır. Optimizasyon problemi için daha iyi kondisyon değerleri olan deneme bireyleri, hedef popülasyon bireylerini geliştirmek için kullanılır. BSA'nın çaprazlama sürecinin iki adımı var. İlk adım, T'nin bireylerini P'nin ilgili bireyleri kullanılarak manipüle edilecek olan N * D boyutundaki bir ikili tamsayı değerli matrisi(map) hesaplar.

```
If map_{n,m} = 1, where n \in \{1, 2, 3, ..., N\} and m \in \{1, 2, 3, ..., D\}, T is updated with T_{n,m} := P_{n,m}.
```

Algoritma 2, BSA'nın benzersiz çaprazlama stratejisini göstermektedir.

Algorithm 2. Crossover Strategy of BSA

```
Input: Mutant, mixrate, N and D.

Output: T:Trial-Population.

0 map_{(1:N,1:D)}=1 // Initial-map is an N-by-D matrix of ones.

1 if a < b \mid a, b \sim U(0,1) then

2 | for i from 1 to N do

3 | map_{i,u_{(1:\lceil mixrate \cdot rnd \cdot D \rceil)}} = 0 \mid u = permuting(\langle 1,2,3,...,D \rangle)

4 | end

5 else

6 | for i from 1 to N do, map_{i,randi(D)} = 0, end

7 end

8 T := Mutant // Initial T

9 for i from i to i do

10 | for i from i to i do

11 | if i from i to i do

12 | end

13 end
```

Algoritma-2'de (satır 3'te) rnd ~ U (0,1) olarak tanımlanan ceiling işlevini gösterir. BSA'nın geçiş stratejisi, DE ve varyantlarında kullanılan geçiş stratejilerinden oldukça farklıdır. BSA'nın çaprazlama işlemindeki karışım oranı parametresi (mixrate), [mixrate.rnd.D](Algoritma 2, satır 3) kullanarak bir denemede mutasyona geçecek bireylerin element sayısını kontrol eder. Karışım hızının işlevi DE'de kullanılan geçiş hızından oldukça farklıdır.

BSA'nın haritasını tanımlamak için önceden tanımlanmış iki strateji rastgele kullanılır. İlk strateji mixrate kullanır (Algoritma 2, satır 2-4).İkinci strateji, rastgele seçilen bir kişinin her bir denemede mutasyon geçirmesine izin verir (Algoritma 2, satır 6). BSA'nın geçiş süreci DE'de kullanılan süreçlerden daha karmaşıktır. BSA'nın çaprazlama sürecinin sonunda elde edilen deneme popülasyonunun bazı bireyleri, BSA'nın mutasyon stratejisinin bir sonucu olarak izin verilen arama alanı sınırlarını aşabilir. Arama alanı sınırlarının ötesindeki kişiler Algoritma 3 kullanılarak yeniden oluşturulur.

Algorithm 3. Boundary Control Mechanism of BSA

```
Input: T, Search space limits (i.e., low_j, up_j)
Output: T
for i from 1 to N do

| for j from 1 to D do
| if (T_{i,j} < low_j) or (T_{i,j} > up_j) then
| T_{i,j} = rnd \cdot (up_j - low_j) + low_j
| end
| end
| end
```

2.5. Selection-II

BSA'nın Seçim-II aşamasında, uygun "Pis" değerinden daha iyi kondisyon değerlerine sahip "Tis", açgözlü bir seçime dayanarak "Pis" i güncellemek için kullanılır. En iyi P (Pbest) bireyinin BSA tarafından şimdiye kadar elde edilen küresel minimum değerden daha iyi bir uygunluk değeri varsa, küresel minimizer Pbest olarak güncellenir ve küresel minimum değer Pbest'in uygunluk değeri olarak güncellenir. BSA'nın yapısı oldukça basittir; böylece farklı sayısal optimizasyon problemlerine kolayca adapte olur.

2.6. Comparison of BSA with the comparison algorithms

- BSA, PSO, CMAES, ABC, JDE, CLPSO ve SADE karşılaştırma algoritmalarına benzer bir EA'dır.
- BSA'nın mutasyon ve çaprazlama mekanizmaları DE ve onun gelişmiş versiyonları JDE, JADE ve SADE'den farklıdır.
- BSA'nın mutasyon mekanizması önceki popülasyondan yalnızca bir kişi kullanır ve BSA'nın geçiş mekanizması DE ve onun gelişmiş sürümlerinin geçiş mekanizmalarından daha karmaşıktır.
- ABC, JDE ve SADE'den farklı olarak BSA'nın popülasyondaki bireyleri diğerlerinden daha iyi kondisyon değerleri ile kullanma eğilimi yoktur.
- Bu BSA'yı çok modlu problemlerin çözümünde daha başarılı kılar.
- BSA, karşılaştırma algoritmalarından çok daha basit bir yapıya sahiptir.
- BSA'nın mutasyon ve çaprazlama stratejileri DE ve onun gelişmiş versiyonlarından kökten farklıdır.
- BSA'nın sınır kontrol mekanizması ABC ve DE ve onun gelişmiş versiyonlarından farklıdır.
- BSA, arama yönü matrisinin hesaplanmasında kullanılmak üzere rastgele seçilen bir neslin popülasyonunu hatırlar. PSO, CMAES, ABC, JDE, CLPSO ve SADE, önceki nesil popülasyonları kullanmaz.
- BSA, karşılaştırma algoritmalarının aksine, hem mevcut hem de geçmiş nüfusu kullanan çift nüfuslu bir algoritmadır.

```
Input: ObjFun, N, D, maxcycle, mixrate, low_{1:D}, up_{1:D}
    Output: globalminimum, globalminimizer
   // rnd \sim U(0,1), rndn \sim N(0,1), w = rndint(\cdot), rndint(\cdot) \sim U(1,\cdot) \mid w \in \{1,2,3,...,\cdot\}
 1 function bsa(ObjFun, N, D, maxcycle, low, up)
   // INITIALIZATION
 2 globalminimum = inf
 3 for i from 1 to N do
        for j from 1 to D do
 4
             P_{i,j} = rnd \cdot (up_j - low_j) + low_j // Initialization of population, P.
 5
 6
             oldP_{i,j} = rnd \cdot (up_j - low_j) + low_j // Initialization of oldP.
        end
 7
 8
        fitnessP_i = ObjFun(P_i) // Initial-fitness values of P
 9 end
10 for iteration from 1 to maxcycle do
        // SELECTION-I
        if (a < b|a, b \sim U(0, 1)) then oldP := P end
11
        oldP := permuting(oldP) // 'permuting' arbitrary changes in positions of two
12
        individuals in oldP.
        Generation of Trial-Population
             // MUTATION
             mutant = P + 3 \cdot rndn \cdot (oldP - P)
14
             // CROSSOVER
             map_{1:N,1:D} = 1 // Initial-map is an N-by-D matrix of ones.
15
             if (c < d|c, d \sim U(0, 1)) then
16
17
                 for i from 1 to N do
                      map_{i,u_{\left(1:\lceil mixrate \cdot rnd \cdot D \rceil\right)}} = 0 \ \mid \ u = permuting(\langle 1,2,3,...,D \rangle)
18
                 end
19
20
             else
                 for i from 1 to N do, map_{i,randi(D)} = 0, end
21
22
             end
             // Generation of Trial Population, T
             T := mutant
23
             for i from 1 to N do
24
                  for j from 1 to D do
25
                      if map_{i,j} = 1 then T_{i,j} := P_{i,j}
26
                 end
27
             end
28
             // Boundary Control Mechanism
             for i from 1 to N do
29
                 for j from 1 to D do
30
                      if (T_{i,j} < low_j)or(T_{i,j} > up_j) then
31
                           T_{i,j} = rnd \cdot (up_j - low_j) + low_j
32
33
                      end
                 end
34
             end
35
        end
36
        // SELECTION-II
        fitnessT = ObjFnc(T)
37
        for i from 1 to N do
38
             if fitnessT_i < fitnessP_i then
                  fitnessP_i := fitnessT_i
40
                  P_i := T_i
41
             end
        end
42
43
        fitnessP_{best} = min(fitnessP) \mid best \in \{1, 2, 3, ..., N\}
44
        if fitnessP_{best} < globalminimum then
             globalminimum:=fitnessP_{best}
45
             globalminimizer := P_{best}
             // Export globalminimum and globalminimizer
        end
46
```

3. Deneyler

Bu bölümde, istatistiksel sonuçların yanı sıra testler ve kıyaslama sorunları, istatistiksel analiz, aritmetik kesinlik ve kontrol parametreleri ve testlerde optimizasyon algoritmaları için kullanılan durma koşulları ayrıntılı olarak sunulmaktadır.

3.1. Testler ve kıyaslama sorunları

Sayısal optimizasyon problemlerinin çözümünde BSA'nın nispi başarısını ve karşılaştırma algoritmalarını incelemek için üç test yapılmıştır.

Test 1 yaygın olarak kullanılan 50 kıyaslama sorununu içermiştir. Bu sorunlar hakkında ayrıntılı bilgi [12,13] 'te verilmiştir. Tablo 1, Test 1'de kullanılan kıyaslama sorunlarının çeşitli özelliklerini özetlemektedir.

Test 2, CEC2005'te kullanılan 25 kıyaslama sorununu içermiştir. Bu sorunlar hakkında ayrıntılı bilgi [43] 'te verilmiştir. Tablo 2, Test 2'de kullanılan kıyaslama sorunlarının çeşitli özelliklerini özetlemektedir.

Test 3, CEC2011'de kullanılan gerçek dünya sorunlarından üçünü içeriyordu: Dairesel Anten Dizisi Tasarım Sorunu (Anten), Yayılı Spektrum Radar Polly Faz Kodu Tasarımı (Radar) ve Frekans Modülasyonlu Ses Dalgaları (FM) için Parametre Tahmini. Bu sorunların ayrıntılı tanımları [44] 'te verilmiştir. Tablo 3, Test 3'te kullanılan gerçek dünya problemlerinin tanımlarını özetlemektedir.

3.2. Testlerde kullanılan optimizasyon algoritmaları için kontrol parametreleri

Tablo 4, bu dokümanda test edilen EA'lar için ilgili kontrol parametrelerinin başlangıç değerlerini vermektedir.

- Evrimsel araştırmalar için ilgili ortak kontrol parametreleri aşağıdaki gibidir:
- Hedef fonksiyonun maksimum değerlendirme sayısı 2.000.000'dir.
- Nüfus büyüklüğü 30'dur.

CMAES, sorun boyutuna göre değişen bir nüfus boyutu kullanılmasını gerektirir. Bu nedenle, CMAES için popülasyon büyüklüğü (NCMAES) Denklem kullanılarak hesaplandı. (6):

$$N_{CMAES} = 4 + |3 \cdot \log(Dimension \ of \ Problem)|.$$
 (6)

3.3. Testlerde kullanılan optimizasyon algoritmaları için durma koşulları

Algoritmaların aramalarını durdurmak için kullanılan önceden belirlenmiş ölçütler aşağıdaki gibidir.

- Eğer objektif fonksiyonun mutlak değeri 10 üzeri -16'dan küçükse durun.
- Son 200.000 işlev değerlendirmesi sırasında algoritma mevcut çözümden daha iyi bir çözüm bulamadıysa, durdurun.
- İşlev değerlendirme sayısı 2.000.000'e ulaşırsa, durdurun.
- Maksimum nesil sayısına ulaşılmışsa, durdurun.

Testlerde, kıyaslama sorunları her seferinde farklı bir başlangıç popülasyonu kullanılarak 30 kez çözülmüştür. Her testte, evrimsel hesaplama algoritmaları aynı başlangıç popülasyonunu kullanmıştır. Her bir test için küresel minimum ve çalışma süresi değerleri ayrıntılı istatistiksel analiz için kaydedildi. Tüm testler ve istatistiksel analizler Matlab kullanılarak yapıldı. Testler sırasında elde edilen basit istatistiksel değerler, test edilen algoritmaların problem çözme yetenekleri hakkında bilgi sağlar.

3.4. BSA'nın işlevlerini gösteren basit sayısal örnek

Bu bölümde, kıyaslama sorunu F43, küçük bir sayısal örnek için BSA'nın ayrıntılı işlevini göstermek için kullanılır. F43'ün iki değişkeni vardır ve bu örnekteki popülasyon büyüklüğü 3 olarak önceden tanımlanmıştır. Bu nedenle, P'nin boyutu 3x2'dir. (7) F43 için nesnel işlevi tanımlar:

$$\textit{ObjFun}(x) = 4 \cdot x_1^2 + 2.1 \cdot x_1^4 + \frac{1}{3} \cdot x_1^6 + x_1 \cdot x_2 - 4 \cdot x_2^2 + 4 \cdot x_2^4. \tag{7}$$

Arama alanı sınırları $-5 = \langle x1, x2 = \langle 5 \text{ olarak tanımlanmıştır. Tablo 5, F43 çözülürken ilk beş yinelemesi sırasında çeşitli değişkenler için elde edilen BSA değerlerini göstermektedir.$

Table 1
The benchmark problems used in Test 1 (Dim: Dimension, Low, Up: Limits of search space, M: Multimodal, N: Non-Separable, U: Unimodal, S: Separable).

Problem	Name	Type	Low	Up	Dim
PI	Foxholes	MS	-65,536	65,536	2
F2	GoldsteinPrice	MN	-2	2	2
B	Penalized	MN	-50	50	30
F4	Penalized2	MN	-50	50	30
P5	Ackley	MN	-32	32	30
R6	Beale	UN	-4.5	4.5	5
F7	Bohachecsky1	MS	-100	100	2
PB	Bohachecsky2	MN	-100	100	2
19	Bohachecsky3	MN	-100	100	2
F10	Booth	MS	-10	10	2
F1 1	Branin	MS	-5	10	2
F12	Colville	UN	-10	10	4
P13	DixonPrice	UN	-10	10	30
F14	Easom	UN	-100	100	2
P15	Fletcher	MN	-3.1416	3,1416	2
F16	Fletcher	MN	-3.1416	3,1416	5
F17	Fletcher	MN	-3.1416	3,1416	10
F18	Griewank	MN	-600	600	30
F19	Hartman3	MN	0	1	3
F20	Hartman6	MN	0	1	6
F21	Kowalik	MN	-5	5	4
F22	Langermann	MN	0	10	2
F23	Langermann	MN	0	10	5
F24	Langermann	MN	0	10	10
P25	Matyas	UN	-10	10	2
F26	Michalewics	MS	0	3,1416	2
F27	Michalewics	MS	0	3.1416	5
F28	Michalewics	MS	0	3,1416	10
P29	Perm	MN	-4	4	4
30	Powell	UN	-4	5	24
B1	Powersum	MN	0	4	4
B2	Quartic	US	-1,28	1,28	30
P3	Rastrigin	MS	-5.12	5.12	30
B4	Rosenbrock	UN	-30	30	30
B5	Schaffer	MN	-100	100	2
B6	Schwefel	MS	-500	500	30
B7	Schwefel_1_2	UN	-100	100	30
B8	Schwefel_2_22	UN	-10	10	30
39	Shekel10	MN	0	10	4
840	Shekel5	MN	0	10	4
R41	Shekel7	MN	0	10	4
R42	Shubert	MN	-10	10	2
R43	Sixhumpcamelback	MN	-5	5	2
F44	Sphere2	US	-100	100	30
R45	Step2	US	-100	100	30
P46	Stepint	US	-5.12	5.12	5
R47	Sumsquares	US	-10	10	30
F48	Trid	UN	-36	36	6
R49	Trid	UN	-100	100	10
P50	Zakharov	UN	-5	10	10

3.5. istatistiksel analiz

Stokastik nitelikleri nedeniyle EA'lar, bir soruna yeni çözümler ararken daha önce şans eseri ulaştıkları çözümlerden daha iyi veya daha kötü çözümlere ulaşabilir. Bu gibi durumlar nedeniyle, bir EA'nın problem çözme başarısını bir diğerininkiyle karşılaştırmak için istatistiksel araçlar kullanmak yararlıdır.

Farklı başlangıç koşulları altında belirli bir sayısal problemi K kez çözen bir algoritmanın sonuçlarından türetilebilen basit istatistiksel parametreler - yani ortalama çözelti (ortalama), ortalama çözeltinin standart sapması (std) ve en iyi çözüm (en iyi)) - algoritmanın yalnızca bu sorunu çözmedeki davranışı hakkında bilgi verin.

3.5.1. İstatistiksel çift test aracı: Wilcoxon İmzalı-Sıra Testi

EA'ların problem çözme başarısının ikili karşılaştırması için probleme veya çok probleme dayalı istatistiksel karşılaştırma yöntemi kullanılabilir [46]. Probleme dayalı bir karşılaştırma, birkaç çalışma sonucunda sorun için

elde edilen global minimum değerleri kullanabilir. Probleme dayalı ikili karşılaştırmalar, iki algoritmadan hangisinin belirli bir sayısal optimizasyon problemini daha büyük istatistiksel başarı ile çözdüğünü belirlemek için yaygın olarak kullanılmaktadır. Bu makale, algoritmaların probleme dayalı ikili karşılaştırması için 30 çalışma sonucunda elde edilen global minimum değerleri kullanmaktadır. Çok probleme dayalı ikili karşılaştırma, birkaç çalışma sonucunda elde edilen global minimum değerlerin ortalamasını kullanabilir. Çok probleme dayalı ikili karşılaştırmalar, çeşitli kıyaslama problemlerini içeren bir testte hangi algoritmanın istatistiksel olarak daha başarılı olduğunu belirler [46]. Bu makale, algoritmaların çok yönlü tabanlı karşılaştırması için 30 çalışma sonucunda elde edilen küresel minimum değerlerin ortalamasını kullanmaktadır.

Table 2
The benchmark problems used in Test 2 (Dim: Dimension, Low, Up: Limits of search space, M: Multimodal, E: Expanded, H: Hybrid, C: Composition, U: Unimodal).

Problem	Name	Type	Dim	Low	Up
F51	Shifted sphere	U	10	-100	100
F52	Shifted Schwefel	U	10	-100	100
F53	Shifted rotated high conditioned elliptic function	U	10	-100	100
F54	Shifted Schwefels problem 1,2 With noise	U	10	-100	100
F55	Schwefels problem 2,6	U	10	-100	100
F56	Shifted Rosenbrock's	M	10	-100	100
F57	Shifted rotated Griewank's	M	10	0	600
F58	Shifted rotated Ackley's	M	10	-32	32
F59	Shifted Rastrigin's	M	10	-5	5
F60	Shifted rotated Rastrigin's	M	10	-5	5
F61	Shifted rotated Weierstrass	M	10	-0.5	0,5
F62	Schwefels problem 2.13	M	10	-100	100
F63	Expanded extended Griewank's + Rosenbrock's	E	10	-3	1
F64	Expanded rotated extended Scaffes	E	10	-100	100
F65	Hybrid composition function	HC	10	-5	5
F66	Rotated hybrid comp. Fn 1	HC	10	-5	5
F67	Rotated hybrid comp. Fn 1 with noise	HC	10	-5	5
F68	Rotated hybrid comp. Fn 2	HC	10	-5	5
F69	Rotated hybrid comp. Fn 2 with narrow global optimal	HC	10	-5	5
F70	Rotated hybrid comp. Fn 2 with the global optimum	HC	10	-5	5
F71	Rotated hybrid comp. Fn 3	HC	10	-5	5
F72	Rotated hybrid comp. Fn 3 with high condition number matrix	HC	10	-5	5
F73	Non-continuous rotated hybrid comp. Fn 3	HC	10	-5	5
F74	Rotated hybrid comp. Fn 4	HC	10	-5	5
F75	Rotated hybrid comp. Fn 4	HC	10	-2	5

Table 3
The benchmark problems used in Test 3 (Dim: Dimension, Low, Up: Limits of search space, BC: Bound constrained).

_					
Problem	Name	Type	Low	Up	Dim
F76	Antenna	BC	0,2, 0,2,	1, 1,	12
			0.2, 0.2,	1, 1,	
			0.2, 0.2,	1, 1,	
			-180, -180,	180, 180,	
			-180, -180,	180, 180,	
			-180, -180,	180, 180	
F77	Radar	BC	0	$2 \cdot \pi$	20
F78	FM	BC	-6.4	6,35	6

Table 4
Control parameters of the related algorithms used in the tests.

Algorithm	Control parameters			
PSO 2011 CMAES	$C_1 = 1.80$ $\sigma = 0.25$	$C_2 = 1.80$ $\mu = \left \frac{4 + \left 2 \cdot \log(N) \right }{2} \right $	$\omega = 0.5 + (1 - rand)$	
ABC JDE	$ \begin{aligned} & \text{limit} = N \cdot D \\ & F_{inital} = 0.5 \end{aligned} $	Size of employed-bee = (size of $CR_{initial} = 0.90$	colony)/2 $\tau_1 = 0.1 \label{eq:tau1}$	$\tau_2 = 0.1$
CLPSO	c = 1.49445	$m = 0$ $p_c = 0.5 \cdot \frac{e^c}{e^{c(p_c)}}$	$e^{e(1)}_{-e^{e(1)}}$ where, $t = 0.5 \cdot \left(0 : \frac{1}{p_x - 1} : 1\right)$	
SADE BSA	$F \sim N(0.5, 0.3)$ mixrate = 1.00	$CR \sim N(CR_m, 0.1)$	c = 0,1	p = 0.05

Wilcoxon İmzalı-Sıra Testi, istatistiksel anlamlılık değeri a = 0.05 olan ikili karşılaştırmalar için kullanıldı. Bu test için sıfır hipotezi H0: 'A algoritması ile elde edilen çözeltilerin medyanı ile aynı kıyaslama problemi için B algoritması ile elde edilen çözeltilerin medyanı arasında bir fark yoktur', yani medyan (A) = medyan (B) . A algoritmasının, B algoritmasından istatistiksel olarak daha iyi bir çözüme ulaşıp ulaşmadığını veya değilse, alternatif hipotezin geçerli olup olmadığını belirlemek için, Wilcoxon İmzalı Sıralama Testi tarafından sağlanan sıraların boyutları (örneğin [46'da tanımlandığı gibi T + ve T)]) incelendi.

Table 5A simple numerical example describing the functioning of BSA by using F43.

Generation	P (see Eq.	.(1))	fitnessP	Eq. (3)	oldP (see	Eq.s. 2,4)	$F \sim N(0,3)$	Mutant (se	e Eq. (5))	ma	p	T (see Algor	rithms 2 and 3)	fitnessT	Globalminimun
Initial	2.713	-4.793	2054,702	0	-3020	2.605	-	-	-	-	_	-	-	-	Inf
	1.336	2.488	134,179	0	-3309	-4.117	_	_	-	-	_	_	_	_	
	-0.015	-2.753	199.491	0	1,853	4,533	-	-	-	-	-	-	-	-	
1	2.713	-4.793	2054,702	1	1,336	2.488	-2.473	6.118	-22.799	1	0	2.713	1.741	77.938	77.938
	1.336	2.488	134,179	1	-0.015	-2.753	-2.473	4.677	15.448	0	1	4.677	2.488	2,711.678	
	-0.015	-2.753	199.491	1	2,713	-4.793	-2.473	-6.762	2.291	0	1	-0.582	-2.753	202.178	
2	2.713	1.741	77,938	1	2,713	1.741	0.686	2,713	1.741	1	0	2.713	1.741	77.938	2.500
	1.336	2.488	134,179	1	-0.015	-2.753	0.686	0.409	-1.108	0	1	0.409	2.488	130,140	
	-0.015	-2.753	199.491	1	1,336	2.488	0.686	0.911	0.842	0	0	0.911	0.842	2.005	
3	2.713	1.741	77,938	1	0.911	0.842	7.428	-10.673	-4.937	0	1	-3.489	1.741	357,346	2,500
	0.409	2.488	130.139	1	2,713	1.741	7.428	17.523	-3.061	0	1	-1.159	2.488	128.019	
	0.911	0.842	2,005	1	0.409	2.488	7.428	-2.818	13,068	1	0	0.911	4.442	1,484.491	
4	2.713	1.741	77,938	0	2,713	1.741	4,330	2,713	1.741	0	1	2.713	1.741	77.938	2.005
	-1.159	2.488	128.019	0	0.409	2.488	4.330	5,630	2.488	0	0	1.364	2.488	134,224	
	0.911	0.842	2.005	0	0.911	0.842	4,330	0.911	0.842	0	1	0.911	0.842	2.005	
5	2.713	1.741	77.938	0	0.409	2.488	-0.955	4913	1.027	1	0	2.713	1.027	51.607	0.307
_	-1.159	2.488	128.019	0	0.911	0.842	-0.955	-3.136	4.059	o	1	-3.136	2.488	273.995	
	0.911	0.842	2.005	0	2.713	1.741	-0.955	-0.810	-0.017	0	1	-0.810	0.842	0.307	

Table 6
Rasic statistics of the 30-solutions obtained by PSO, CMAES, ABC, JDE, CLPSO, SADE and BSA in Test 1 (Mean: mean-solution, Std: standard-deviation of mean-solution, Best: the best-solution, and Runtime: mean-runtime in seconds.)

	Statistics		CMAES	ABC	JDE	CLPSO	SADE	RSA
F1	Mean Std Best Runtime	1.3316029264876300 0.9455237994690700 0.9980038377944500 72.527	10.0748846367972000 8.0277365400340800 0.9980038377944500 44,788	0.9980038377944500 0.00000000000000001 0.9980038377944500 64,976	1.0641405484285200 0.3622456829347420 0.9980038377944500 51.101	1.8209961275956800 1.6979175079427900 0.9980038377944500 61.650	0.998 0038 377 944 500 0.0000 0000 0000 0000 0.998 0038 377 944 500 66,63 3	0.9980038377944500 0.00000000000000000 0.9980038377944500 38.125
F2	Mean Std Best Runtime	2.999999999999200 0.00000000000000013 2.9999999999999200 17.892	21,899999999995000 32,6088098948516000 2,9999999999999200 24,361	3,0000000465423000 0,0000002350442161 2,999999999999200 16,624	2,999999999999200 0,00000000000000013 2,999999999999200 7,224	3,0000,0000,0000,0700 0,0000,0000,0000,7941 2,999,999,999,999,9200 24,78,4	2,999 999 999 9200 0,0000 0000 0000 0020 2,999 999 999 999 9200 28,69 9	2,999,999,999,9200 0,0000,0000,0000,0011 2,999,999,999,9200 7,692
F3	Mean Std Best Runtime	0.1278728062391630 0.2772792346028400 0.000000000000000000 139.555	0.0241892995662904 0.0802240262581864 0.000000000000000000 5.851	0.00000000000000004 0.00000000000000000	0.0034556340083499 0.0189272869685522 0.0000000000000000 9.492	0.0000 0000 0000 0000 0.0000 0000 0000	0.0034556340083499 0.0189272869685522 0.00000000000000000 15.992	0.0000000000000000 0.00000000000000000
F4	Mean Std Best Runtime	0.0043949463343535 0.0054747064090174 0.000000000000000000 126.507	0.0003662455278628 0.0020060093719584 0.000000000000000000 6.158	0.000000000000000004 0.0000000000000000	0.0007324910557256 0.0027875840585535 0.00000000000000000 14.367	0.0000 0000 0000 0000 0.0000 0000 0000	0.0440448539086004 0.2227372747439610 0.000000000000000000 33.019	0.000000000000000 0.0000000000000000 0.000000
P5	Mean Std Best Runtime	1,5214322973725000 0,6617570384662600 0,0000000000000000000000000000000	11.7040011684582000 9.7201961540865200 0.0000000000000000000000 3.144	0.0000000000000340 0.00000000000000035 0.000000000000000293 23,293	0.0811017056422860 0.3176012689149320 0.00000000000000044 11.016	0.1863456353861950 0.4389839299322230 0.000000000000000000000000 45.734	0.7915368220335460 0.7561593402959740 0.0000000000000044 40.914	0.00000000000000105 0.00000000000000034 0.00000000000000000
F6	Mean Std Best Runtime	0.0000000041922968 0.00000000139615552 0.000000000000000000 32,409	0.2540232169641050 0.3653844307786430 0.000000000000000000 4.455	0.00000000000000028 0.0000000000000000030 0.00000000000000	0.0000 0000 00000 000 0.0000 0000 00000 000 0.0000 0000 00000 000 1.279	0.0000 444 354 4999 43 0.0001 015 919 5077 24 0.0000 0000 0000 0000 125 8 39	0.0000000000000000 0.00000000000000000	0.0000000000000000 0.00000000000000000
F7	Mean Std Best Runtime	0.0000000000000000 0.0000000000000000 0.000000	0.0622354533647150 0.1345061339146580 0.000000000000000000 6.845	0.00000000000000000 0.0000000000000000	0.00000000000000000 0.0000000000000000	0.0000 0000 0000 0000 0.0000 0000 0000	0.0000 0000 0000 0000 0.0000 0000 0000	0.0000000000000000 0.00000000000000000
F8	Mean Std Best Runtime	0.00000000000000000 0.0000000000000000	0.0072771062590204 0.0398583525142753 0.000000000000000000000000 2.174	0.00000000000000000 0.0000000000000000	0.0000 0000 00000 000 0.0000 0000 00000 000 0.0000 0000 00000 000 1.139	0.0000000000000000 0.00000000000000000	0.0000000000000000 0.00000000000000000	0.0000000000000000 0.00000000000000000
F9	Mean Std Best Runtime	0.00000000000000000 0.0000000000000000	0.0001048363065820 0.0005742120996051 0.0000000000000000000 2.127	0.00000000000000000 0.0000000000000000	0.00000000000000000 0.0000000000000000	0.0000 193 464 3263 98 0.0000 846 531 6306 76 0.0000 0000 0000 0000 33.30 7	0.0000000000000000 0.00000000000000000	0.0000000000000000 0.00000000000000000
F10	Mean Std Best Runtime	0.00000000000000000 0.0000000000000000	0.00000000000000000 0.0000000000000000	0.0000000000000000 0.00000000000000000	0.00000000000000000 0.0000000000000000	0.0006005122443674 0.0029861918862801 0.000000000000000000 28.508	0.00000000000000000 0.0000000000000000	0.000000000000000 0.00000000000000000 0.000000
F11	Mean Std Best Runtime	0.3978873577297380 0.00000000000000000 0.3978873577297380 17.049	0.6372170283279430 0.7302632173480510 0.3978873577297380 24.643	0.3978873577297380 0.00000000000000000 0.3978873577297380 10.941	0.3978873577297380 0.00000000000000000 0.3978873577297380 6.814	0.3978873577297390 0.00000000000000049 0.3978873577297380 17.283	0.3978873577297380 0.000000000000000000 0.3978873577297380 27.981	0.3978873577297380 0.00000000000000000 0.3978873577297380 5.450
F12	Mean Std Best	0,000,0000,0000,00000 0,000,0000,0000,	0.000 0000 00000 0000 0.000 0000 00000 0000	0.0715675060725970 0.0579425013417103 0.0013425253994745	0.0000 0000 00000 000 0.0000 0000 00000 000 0.0000 0000 00000 000	0.1593872502094070 0.6678482786713720 0.0000094069599934	0.0000 0000 0000 0000 0.0000 0000 0000	0,0000 0000 0000 0000 0,0000 0000 0000

		med)

ble 6 (co	ntinued)							
Problem	Statistics	PS02011	CMAES	ABC	JDE	CLPSO	SADE	BSA
	Runtime	44,065	1,548	21,487	1,251	166,965	4,405	2,460
F13	Mean Std Best Runtime	0.666666666666750 0.000000000000000022 0.6666666666666720 167.094	0.66666666666670 0.00000000000000000 0.6666666666	0,0000000000000038 0,00000000000000012 0,00000000000000021 37,604	0.66666666666670 0.000000000000000002 0.6666666666666670 18.689	0.0023282133668190 0.0051792840882291 0.0000120708732167 216.261	0.6666666666670 0.0000000000000000 0.6666666666	0.64444444444444 0.1217161238900370 0.0000000000000000000 21.192
F14	Mean Std Best Runtime	-1.00000000000000000 0.00000000000000000	-0.1000000000000000 0.3051285766293650 -1.000000000000000000 3.606	-1.000000000000000 0,0000000000000000 -1.00000000000000000000	-1,00000000000000000 0,00000000000000000	-1,0000000000000000 0,00000000000000000 -1,0000000000	-1,0000000000000000 0,0000000000000000 -1,0000000000	-1,000000000000000000000000000000000000
P15	Mean Std Best Runtime	0.00000000000000000 0.0000000000000000	1028.3930784026900000 1298.1521820113500000 0.000000000000000000 15.541	0,0000000000000000 0,0000000000000000 0,000000	0.0000000000000000 0.00000000000000000	0.0000000000000000 0.0000000000000000 0.000000	0,0000000000000000 0,0000000000000000 0,000000	0.0000000000000000 0.0000000000000000 0.000000
F16	Mean Std Best Runtime	48.7465164446927000 88.8658510972991000 0.000000000000000000000 95.352	1680.3460230073400000 2447.7484859066000000 0.00000000000000000 11.947	0.0218688498331872 0.0418409568792831 0.00000000000000016 44.572	0.9443728655432830 2.8815514827061600 0.000000000000000000 4.719	81.7751618148164000 379.9241117377270000 0.00000000000000000 162.941	0,000000000000000 0,0000000000000000 0,000000	0.0000000000000000 0.00000000000000000
P17	Mean Std Best Runtime	918,9518492782850000 1652,4810858411400000 0.0000000000000000000000 271,222	12340.2283326398000000 22367.1698875802000000 0.00000000000000000 7.631		713,7226974626920000 1710,0713074301200000 0,000000000000000000 16,105	0.8530843976878610 2.9208253191698800 0.0016957837829822 268,894	0,000000000000000 0,000000000000000 0,000000	0.0000000000000000 0.00000000000000000
F18	Mean Std Best Runtime	0.0068943694819713 0.0080565201649587 0.00000000000000000 73.895	0.0011498935321349 0.0036449413521107 0.000000000000000000 2.647	0,000000000000000 0,0000000000000000 0,000000	0.0048193578543185 0.0133238235582874 0.00000000000000000 6.914	0.0000000000000000 0.00000000000000000	0.0226359326967139 0.0283874287215679 0.00000000000000000 25.858	0.0004930693556077 0.0018764355751644 0.000000000000000000 5.753
F19	Mean Std Best Runtime	-3.8627821478207500 0.00000000000000027 -3.8627821478207600 19.280	-3.7243887744664700 0.5407823545193820 -3.8627821478207600 21.881	-3.8627821478207500 0.00000000000000024 -3.8627821478207600 12.613	-3.8627821478207500 0.00000000000000027 -3.8627821478207600 7.509	-3.8627821478207500 0.000000000000000027 -3.8627821478207600 17.504	-3.8627821478207500 0.00000000000000027 -3.8627821478207600 24.804	-3.8627821478207500 0.00000000000000027 -3.8627821478207600 6.009
F20	Mean Std Best Runtime	-3.3180320675402500 0.0217068148263721 -3.3219951715842400 26.209	-3.2942534432762600 0.0511458075926848 -3.3219951715842400 7.333	-3.3219951715842400 0,00000000000000014 -3.3219951715842400 13.562	-3.2982165473202600 0.0483702518391572 -3.3219951715842400 8.008	-3,3219951715842400 0,00000000000000013 -3,3219951715842400 20,099	-3.3140689634962500 0.0301641516823498 -3.3219951715842400 33.719	-3.3219951715842400 0.0000000000000013 -3.3219951715842400 6.822
F21	Mean Std Best Runtime	0.0003074859878056 0.00000000000000000 0.0003074859878056 84.471	0.0064830287538208 0.0148565973286009 0.0003074859878056 13.864	0.0004414866359626 0.0000568392289725 0.0003230956007045 20.255	0.0003685318137604 0.0002323173367683 0.0003074859878056 7.806	0.0003100479704151 0.0000059843325073 0.0003074859941292 156.095	0.0003074859878056 0.0000000000000000 0.0003074859878056 45.443	0.0003074859878056 0.00000000000000000 0.0003074859878056 11.722
F22	Mean Std Best Runtime	-1.0809384421344400 0.00000000000000006 -1.0809384421344400 27.372	-0.7323679641701760 0.4136688304155380 -1.0809384421344400 32.311	-1.0809384421344400 0.000000000000000008 -1.0809384421344400 27.546	-1.0764280762657400 0.0247042912888477 -1.0809384421344400 19.673	-1.0202940450426400 0.1190811583120530 -1.0809384421344400 52.853	-1.0809384421344400 0,00000000000000005 -1.0809384421344400 36,659	-1.0809384421344400 0.00000000000000005 -1.0809384421344400 21.421
F23	Mean Std Best Runtime	-1,3891992200744600 0,2257194403158630 -1,4999992233524900 33,809	-0.5235864386288060 0.2585330714077300 -0.7977041047646610 17.940	-1,4999990070800800 0,0000008440502079 -1,4999992233524900 37,986	-1.3431399432579700 0.2680292304904580 -1.4999992233524900 20.333	-1.4765972735526500 0.1281777579497830 -1.4999992233524900 42.488	-1.4999992233525000 0,00000000000000009 -1.4999992233524900 36,037	-1.4821658762555300 0.0976772648082733 -1.4999992233524900 18.930
F24	Mean Std Best	-0.9166206788680230 0.3917752367440500 -1.5000000000003800	-0.3105071678265780 0.2080317241440800 -0.7976938356122860	-0.8406348096500680 0.2000966365984320 -1,4999926800631400	-0.8827152798835760 0.3882445165494030 -1,500000000003800	-0.9431432797743700 0.3184175870987750 -1.5000000000003800	-1,2765515661973800 0,3599594108130040 -1,5000000000003800	-1,3127183561646500 0,3158807699946290 -1,5000000000003800

(continued on next page)

Table 6 (continued)

roblem	Statistics	PS02011	CMAES	ABC	JDE	CLPSO	SADE	BSA
	Runtime	110.798	8,835	38,470	21,599	124,609	47.171	35,358
25	Mean Std Best Runtime	0.00000000000000 0.000000000000000 0.000000	0,000000000000000 0,0000000000000000 0,000000	0.0000000000000004 0.00000000000000003 0.0000000000	0,00000000000000 0,000000000000000 0,000000	0.0000041787372626 0.0000161643637543 0.000000000000000000 31.632	0.00000000000000 0.000000000000000 0.000000	Q000000000000000 Q000000000000000 Q000000
16	Mean Std Best Runtime	-1.8210436836776800 0.0000000000000009 -1.8210436836776800 19.154	-1.7829268228561700 0.1450583631808370 -1.8210436836776800 26249	-1.8210436836776800 0.0000000000000009 -1.8210436836776800 17,228	-1,8210436836776800 0,000000000000000 -1,8210436836776800 9,663	-1.8210436836776800 0.0000000000000000 -1.8210436836776800 18.091	-1.8210436836776800 0.0000000000000009 -1.8210436836776800 28.453	-1.8210436836776800 0.00000000000000009 -1.8210436836776800 7.472
7	Mean Std Best Runtime	-46565646397053900 0.0557021530063238 -46934684519571100 38.651	-4.1008953007033700 0.4951250481844850 -4.6934684519571100 10.956	-4.6934684519571100 0.00000000000000009 -4.6934684519571100 17.663	-4.6893456932617100 0.0125797140251589 -4.6934684519571100 14.915	-4.6920941990586400 0,0075270931220834 -4.6934684519571100 25,843	-4.6844965299983800 0.0272323381095561 -4.6984684619571100 38.446	-4,6934684519571100 0,00000000000000008 -4,6934684519571100 11,971
8	Mean Std Best Runtime	-8.9717330307549800 0.4927013165009220 -9.5777818097208200 144.093	-7.6193507368464700 0.7904830398850970 -9.1383975057875100 6.959	-9,6601517156413500 0,00000000000000000 -9,6601517156413500 27,051	-9.6397230986132500 0.0393668145094111 -9.6601517156413500 20.803	-9.6400278592589600 0.0437985551332868 -9.6601517156413500 32.801	-9.6572038232921700 0.0105890022905617 -9.6601517156413500 46.395	-9.6601517156413500 0.00000000000000007 -9.6601517156413500 22,250
19	Mean Std Best Runtime	Q0119687224560441 Q0385628598040034 Q0000044608370213 359,089	0.0788734736114700 0.1426911799629180 0.00000000000000000000 17,056	Q0838440014038032 Q0778327303965192 Q0129834451730589 60,216	0.0154105130055856 0.0308963906374663 0.00000000000000000 35.044	0.0198686590210374 0.0613698943155661 0.0000175219764526 316,817	0.0140272066@0658 0.0328868042987376 0.0000000000000000 92.412	Q0007283694780796 Q0014793717464195 Q0000000000000000000 191,881
0	Mean Std Best Runtime	Q0000130718912008 Q0000014288348929 Q0000095067504097 967.704	0,0000000000000000 0,00000000000000000	Q0002604330013462 Q0000394921919294 Q0001682411286088 215,722	0,000000000000000000000000000000000000	0.0458769685199585 0.0620254411839524 0.0005277712020642 252,779	0.0000002733806735 0.0000001788830279 0.0000000944121661 360.380	Q0000000028443186 Q0000000033308990 Q0000000004769768 144.784
81	Mean Std Best Runtime	Q0001254882834238 Q0001508556280087 Q0000000156460198 250,248	0,0000000000000000 0,00000000000000000	Q0077905311094958 Q0062425841086448 Q0003958766023752 34,665	0.0020185116261400 0.0077448684015362 0.000000000000000000 48.692	0.0002674563703837 0.0003044909265796 0.0000023064754605 227.817	0.00000000000000 0.00000000000000 0.000000	Q0000000111676630 Q0000000184322163 Q000000000000000000 149.882
2	Mean Std Best Runtime	Q0003548345513179 Q0001410817500914 Q0001014332605364 290,669	0,0701619169853449 0,0288760292572957 0,0299180701536354 2,154	Q0250163252527030 Q0077209814806873 Q0094647580732654 34,982	0.0013010316180579 0.0009952078711752 0.0001787238105452 82.124	0.0019635752485802 0.0043423828633839 0.0004206447422138 103.283	0.0016730768406953 0.0007330246909835 0.0005630852254632 171,637	Q0019955316015528 Q0009698942217908 Q0006084880639553 48,237
3	Mean Std Best Runtime	25.6367602258676000 8.2948512684216700 12.9344677422129000 76.083	95,9799861204982000 56,6919245985100000 29,8487965993415000 2,740	0.000000000000000 0.000000000000000 0.000000	1.1276202647057400 1.0688393637536800 0.00000000000000000000 7.635	0.6301407361590880 0.8046401822326410 0.00000000000000000 18.429	0.8622978494808570 0.9823785263847000 0.000000000000000000 23.994	0.000000000000000 0.0000000000000000 0.000000
4	Mean Std Best Runtime	2,6757043114269700 12,3490058210004000 0,0042535368984501 559,966	0.3986623855085210 1.2164328621946200 0.00000000000000000 9.462	0.2856833465904130 0.6247370987465170 0.0004266049929880 35,865	1,0630996944802500 1,7930895051734300 0,00000000000000000 23,278	5,7631786582751800 13,9484817304201000 0,0268003205820685 187,894	1.2137377447007000 1.8518519388285700 0.0001448955835246 268.449	0.3986623854300980 1.2164328622195200 0.000000000000000000 34.681
5	Mean Std Best Runtime	0.00000000000000 0.000000000000000 0.000000	0.46512@457398910 0.0933685176073728 0.0097159098775144 24,021	Q.000000000000000 Q.0000000000000000 Q.00000000	0,0038863639514140 0,0048411743884718 0,000000000000000000 4216	0.0019431819755029 0.0039528023354449 0.00000000000000000 8.304	0.0006477273251676 0.0024650053428137 0.0000000000000000 5.902	0.000000000000000 0.0000000000000000 0.000000
16	Mean Std Best	-7684.6104757783800000 745.3954005014180000 -8912.8855854978200000	750,7338055436110000	-12569,4866181730000000 Q.0000000000022659 -12569,4866181730000000	221,4322514436480000	205.9313376284770000	-12549.7468957373000000 44,8939348779747000 -12569.4866181730000000	-12569.486618173000 Q0000000000024122 -12569.486618173000

Table 6 (continued)

Problem	Statistics	PSO2011	CMAES	ABC	JDE	CLPSO	SADE	BSA
	Runtime	24,627	8,337	22,480	8.623	142,106	36,804	7.747
F49	Mean Std Best Runtime	-210.0000000000010000 0.00000000000009434 -210.0000000000030000 48.580	-210,000000000030000 0.0000000000003702 -210,0000000000030000 5.988	-209,999999999470000 0.00000000000138503 -209,9999999999690000 36,639	-210.0000000000030000 0.00000000000008251 -210.00000000000040000 11.319	-199.5925885475030000 9.6415263953591700 -209.9858674090290000 187.787	-210.0000000000030000 0.00000000000004625 -210.0000000000040000 54.421	-210.000000000030000 0.00000000000003950 -210.0000000000040000 11.158
F50	Mean Std Best Runtime	0.0000000000000000 0.00000000000000000	0.0000000000000000 0.00000000000000000	0.0000000402380424 0.0000002203520334 0.000000000000000210 86.449	0.00000000000000000 0.0000000000000000	0.0000000001597805 0.00000000006266641 0.00000000000000000 157.838	0.000000000000000 0.0000000000000000 0.000000	0.0000000000000000 0.0000000000000000 0.000000

Table 7
Determining the algorithm that statistically provides the best solution for each benchmark problem used in Test 1 by utilizing two-sided Wilcoxon Signed-Rank Test (\$\alpha\$ = 0.05).

Problem	PSO vs. BS	Α			CMAES vs.	. BSA			ABC vs. BS	iΑ			JDE vs. BS	A			CLPSO vs.	BSA			SADE vs. B	SA		
	p-value	T+	T-	winner	p-value	T+	T-	winner	p-value	T+	T-	winner	p-value	T+	T-	winner	p-value	T+	T-	winner	p-value	T+	T-	winn
F1	1.56E-02	0	28	+	8.24E-06	0		+	1.56E-02	0	28	4	1.00E+00		1	-	1.95E-03		55	+	1.00E+00	0	0	-
F2	5.73E-07		325	+	1.28E-06			+	4.19E-06		366		8.77E-05				1.71E-04				2.39E-04			+
F3	2.44E-04		91	+	1.25E-01		10	-	8.87E-07		465		1.00E+00		1	-	1.00E+00		0	-	1.00E+00		1	-
F4	4.88E-04		78	+	1.00E+00		1	-	9.92E-07		465		5,00E-01		3	-	1.00E+00		0	-	1.56E-02		28	+
F5	2.97E-06		433.5	+	2,25E-04		279	+	1.23E-06		465		2,44E-04			+	9.15E-01		70	-	3.51E-03		374	+
F6	3.79E-06		406	+	1.95E-03		55	+	1.71E-06		465		1.00E+00		0	-	2.70E-05		276	+	1.00E+00	0	0	-
F7	1.00E+00		0	-	1.56E-02		28	+	1.00E+00		0		1.00E+00		0	-	1.00E+00		0	-	1.00E+00		0	
F8	1.00E+00		0	-	1.00E+00		1	-	1.00E+00				1.00E+00		0	-	1.00E+00		0	-		0	0	
F9		0	0	-	1.00E+00		1	-	2.43E-06		435		1.00E+00		0	-	2.70E-05		276	+		0	0	-
F10		0	0	-	1.00E+00		0	-	1.00E+00		0	-	1.00E+00	0	0	-	5.61E-06		378	+	1.00E+00	0	0	
F11	1.00E+00		0	-	2.50E-01		6	-	1.00E+00		0	-	1.00E+00		0	-	1.00E+00		1	-	1.00E+00		0	-
F12	1.00E+00		0	-	1.00E+00		0	-	1.73E-06		465	+	1.00E+00		0	-	1.73E-06		465	+		0	0	-
F13	1.34E-06		465	+	1.00E+00		1	-	7.84E-07			-	7.81E-03		36	+	1.92E-06		1	-	1.00E+00	0	1	-
F14	1.00E+00		0	-	2.03E-07			+	1.00E+00			-	1.00E+00		0	-		0	0	-	1.00E+00	0	0	-
F15	1.00E+00		0		6.10E-05			+	1.00E+00		0	-	1.00E+00		0		1.00E+00		0	-	1.00E+00	0	0	
F16	4.88E-04		78	+	8,20E-06			+	1.73E-06		465		2,50E-01		6	-	4.88E-04		78	+	1.00E+00		0	-
F17	5,96E-05		231	+	3.79E-06			+	1.73E-06		465		6.10E-05		120	+	1.73E-06		465	+	1.00E+00		0	-
F18	3.24E-05		339	+	2,50E-01		8	-	2.44E-04		78		9.77E-04			+	5.00E-01		0	-	1.40E-04		207	+
F19	1.00E+00		0	-	7.81E-03		36	+	1.62E-06		276		1.00E+00		0	-	1.00E+00		0	-	1.00E+00		0	-
F20	1.00E+00		1	-	1.56E-02		28	+	1.00E+00		0		3.13E-02		21	+	1.00E+00		0	-	5.00E-01		3	-
F21	1.00E+00		0	-	3,58E-05			+	1.73E-06		465		5,00E-01		3	-	1.73E-06		465	+	1.00E+00		0	-
F22	1.00E+00		0	-	4.32E-04			+	9.77E-04			+	1.00E+00	0	1	-	3.78E-06		406	+	1.00E+00	0	0	-
F23	6.25E-02		15		1.73E-06			+	3,61E-05		406		7.81E-03		42.5	+	1.00E+00		2	-		1	0	
F24	2.91E-04		238	+	1.92E-06			+	2.16E-05		439		1.61E-04			+	2.69E-04		386	+	1.22E-04		62	+
F25	1.00E+00		0		1.00E+00		0	-	3,56E-06		406		1.00E+00		0	-	1.23E-05		325	+	1.00E+00		0	
F26	1.00E+00		0	-	1.25E-01		10	-	1.00E+00		0		1.00E+00		0	-	1.00E+00		0	-	1.00E+00		0	-
F27	7.06E-05		190	+	2.49E-06			+	1.00E+00		0	-	2,50E-01		6	-	1.00E+00		1	-	1.00E+00		1	-
F28	1.73E-06		465	+	1.73E-06			+	1.00E+00			-	2.44E-04		91	+	9.77E-04		66	+	2.50E-01		6	
F29	6.42E - 03		365	+	1.87E-04			+	1.73E-06		465		1.57E-04		369	+	4.53E-04		403	+	3.76E-04		337	+
F30	1.73E-06		465	+	1.73E-06		0	-	1.73E-06		465		1.73E-06		0	-	1.73E-06		465	+	1.73E-06		465	+
F31	1.73E-06		465	+	2,56E-06		0	-	1.73E-06		465		5,19E-04		57	-	1.73E-06		465	+	2,56E-06		0	-
F32	1.73E-06		0	-	1.73E-06			+	1.73E-06		465		1.48E-02		114	-	9.27E-03		106	-	2.29E-01		174	-
F33	1.73E-06		465	+	1.73E-06			+	1.00E+00		0		3,56E-05			+	1.22E-04		105	+	2.00E-04		153	+
F34	2.22E-04		412	+	6.25E-02		12	-	2.77E - 03		378		3.91E-03		47	+	1.13E-05		446	+	3.88E-04		405	+
F35	1.00E+00		0	-	1.73E-06			+	1.00E+00		0		4.88E-04		78	+	3.13E-02		21	+	5.00E-01		3	-
F36	1.73E-06		465	+	1.73E-06			+	1.00E+00			-	1.08E-05		325	+	4.75E-06		378	+	6.25E-02		15	-
F37	1.00E+00		0	-	1.00E+00		0	-	1.73E-06		465		1.00E+00		0	-	1.73E-06		465	+	1.00E+00		0	-
F38	1.00E+00		0	-	1.00E+00		0	-	8.31E-07		465		1.00E+00		0	-	1.00E+00		0	-	1.00E+00	0	0	-
F39	5.00E-01		3	-	5.45E-05			+	1.56E-02			+	1.00E+00		1	-	2.50E-01		6	-		0	0	-
F40	2.50E-01		6	-	1.02E-04			+	1.00E+00			-	2.50E-01		6	-	5.00E-01		3	-	1.00E+00		1	-
F41	1.00E+00		0	-	6.10E-05			+	5.00E-01		3	-	6.25E-02		15	-	5.00E-01		3	-	1.00E+00		0	-
F42	2.41E-06		435	+	1.71E-06			+	1.95E-03			+	2.44E-04		91	+	1.31E-05		190	+	4.65E-04			+
F43	1.00E+00		0	-	1.00E+00		1	-	1.00E+00			-	1.00E+00		0	-	1.00E+00		0	-	1.00E+00	0	0	-
F44	1.00E+00		0	-	1.00E+00		0	-	1.23E-06		465		1.00E+00		0	-	1.00E+00		0	-	1.00E+00		0	-
F45	2.93E-06		406	+	5.00E-01		3	-	1.00E+00			-	1.56E-02		28	+	1.00E+00		0	-		0	0	-
F46	1.25E-01		10	-	1.25E-01		10	-	1.00E+00			-	1.00E+00	0	0	-	3.13E-02		21	+	1.00E+00	0	0	-
F47	1.00E+00	0	0		1.00E+00	0	0		8.12E-07	0	465	+	1.00E+00	0	0	-	1.00E+00	0	0	-	1.00E+00	0	0	

(continued on next page)

Table 7 (continued)

Problem	PSO vs. BS/	A			CMAES vs.	BSA			ABC vs. BS	Α			JDE vs. BS/	٨			CIPSO vs.	BSA			SADE vs. B	SA		
	p-value	T+	T-	winner	p-value	T+	T-	winner	p-value	T+	T-	winner	p-value	T+	T-	winner	p-value	T+	T-	winner	p-value	T+	T-	winner
F48	1.00E+00	0	0	-	7.81E-03	0	36	+	1.65E-06	0	465	+	5.00E-01	3	0	-	1.73E-06	0	465	+	2.73E-06	253	0	_
F49	4.38E-05	14	311	+	3,91E-03	22	33	+	1.73E-06	0	465	+	6.07E-01	96.5	74.5	-	1.73E-06	0	465	+	2.88E-04	163	8	_
F50	1,00E+00	0	0	-	1,00E+00	0	0	-	1,73E-06	0	465	+	1,00E+00	0	0	-	4,38E-04	0	136	+	1,00E+00	0	0	-
+/-/-	22/27/1				28/20/2				31/18/1				16/31/3				26/22/2				10/37/3			

Table 8
Basic statistics of the 30-solutions obtained by PSO, CMAES, ABC, JDE, CLPSO, SADE and BSA in Test 2 (Mean: mean-solution, Std: standard-deviation of mean-solution, Best: the best-solution, and Runtime: mean-runtime in seconds.)

Problem	Statistics	PS02011	CMAES	ABC	JDE	CLPSO	SADE	RSA
P51	Mean Std Best Runtime	-450,00000000000000000000000000000000000	-450,0000000000000000 0,00000000000000000	-450,000000000000000000 0,000000000000000	-450.00000000000000000000000000000000000	-450.00000000000000000000000000000000000	-450,00000000000000000000000000000000000	-450,0000000000000000 0.00000000000000000 -450,0000000000000000 140,736
P52	Mean Std Best Runtime	-450,00000000000000000 0,00000000000000350 -450,00000000000000000 230,003	-450,0000000000000000 0,00000000000000000	-449.999999999920000 0.00000000002052730 -449.999999999970000 648.784	-450.00000000000000000 0.00000000000000615 -450.0000000000000000 139.144	-418.8551838547760000 51.0880511039985000 -449.4789299923810000 1462.706	-450.00000000000000000 0.0000000000000000	-450,0000000000000000 0.000000000000000259 -450,00000000000000000 243,657
P53	Mean Std Best Runtime	-44.5873911956554000 458.5794120016290000 -443.9511286079800000 2658.937	-450,0000000000000000 0,00000000000000000	387131.2441213970000000 166951.7336592640000000 165173.1853095600000000 240.094	-197.999999999850000 391.5169437474990000 -449.999999999990000 1017.557	621 42.8213760465000000 34796.1785167236000000 17306.9066792474000000 1789.643		-449.9999567867430000 0.0001175386756044 -450.00000000000000000 1883.713
P54	Mean Std Best Runtime	-450.00000000000000000 0.00000000000000460 -450.000000000000000000 247.256	77982,4567046980000000 131376,7365456010000000 -450,0000000000000000 32,726	140.4509447125110000 217.2646715063190000 -324.3395691109350000 209.188	$\begin{array}{l} -414.000000000000000000\\ 55.9309919639279000\\ -450.000000000000000000\\ 143.767\end{array}$	-178.8320689185280000 394.8667499339530000 -447.9901256558030000 1248.616	-450,00000000000000000000000000000000000	-450,0000000000000000 0.00000000000000259 -450,00000000000000000 347,167
P55	Mean Std Best Runtime	-310,00000000000000000000000000000000000	-310,0000000000000000000000 0,00000000000	-291.5327549384120000 17.6942171217937000 -307.7611364354020000 205.568	-271,00000000000000000 60,5919079609218000 -310,00000000000000000 134,078	333,4108259915760000 512,6920837704510000 -309,9740055344430000 1481,686	-309,9999999999960000 0.00000000000133965 -310,000000000000000000 210,684	_309,999999999980000 0.00000000000023443 _310,00000000000000000 386,633
P56	Mean Std Best Runtime	393,4959999056240000 16,0224965900462000 390,00000000000150000 1178,079	390.5315438816460000 1.3783433976378300 390.000000000000000000 27.894	391,2531452421960000 3,7254660805238600 390,0101471658490000 159,762	231,3986579112350000 247,2968415284400000 -140,000000000000000000 153,715	405,5233436479650000 10,7480096852869000 390,5776683413440000 1441,859	390.2657719408230000 1.0114275384776600 390.000000000000000000 1214.303	390.1328859704120000 0.7278464357038200 390.00000000000000000 290.236
P57	Mean Std Best Runtime Mean Std Best Runtime	1091.0644335162500000 3.4976948942723300 1087.0696772583000000 33.4.064 -119.819023299920000 0.0720107560874199 -119.9302772694110000 602.507	1087.2645466786700000 0.5365230018001780 1087.0459486286000000 37.047 -119.9261073508850000 0.1554021446157740 -120.00000000000000000000000000000000000	1087,0459486286000000 0,0000000000000585 1087,0459486286000000 180,472 -119,7446063439080000 0,0623866434489108 -119,8779554779730000 265,319	1141.045948628600000 83.8864879458918000 1087.045948628600000 159.922 -119.4450938018030000 0.092741822306544 -119.6575717927190000 160.806	1087.0459486286000000 0.00000000000000264 1087.045948628600000 267342 -119.9300269839980000 0.0417913553101429 -119.976745390830000 1586.286	1087.045948628600000 0.00000000004814 1087.0459486286000000 259.760 -119.7727713703720000 0.1248514853682450 -119.99999999980000 648.489	1087.0459486286000000 0.00000000000000040428 1087.0459486286000000 332.132 -119.8356122057440000 0.0704515460477787 -119.8902847896350000 717.375
P59	Mean Std Best Runtime	-324.6046006320200000 2.5082306041521000 -329.0050409429070000 982.449	-306.5782069681560000 21.9475396048756000 -327.0151228287200000 22.237	-330.0000000000000000000000000000000000	-329.8673387923880000 0.3440030182812760 -330.000000000000000000 128.494	-329.4361898676470000 0.6229063711904190 -330.000000000000000000 162.873	-329.9668346980970000 0.1816538397880230 -330.000000000000000000 155.645	-330,0000000000000000000000000000000000
F60	Mean Std Best Runtime	-324,3311322538170000 3.0072222933667300 -327,1650513120000000 1146,013	-314.7871102989330000 8.3115989308305500 -327.0151228287200000 29.860	-306.7949047862760000 5.1787864195870400 -318.9403196374510000 259.258	-319.6763749798700000 4.9173541245304800 -326.0201637716270000 179.039	-321.7278926895280000 1.8971778613701300 -326.1788303102740000 1594.096	-322.9689591871600000 2.8254645254663600 -328.0100818858130000 210.534	-3192544515903510000 3.3091959975390800 -325.0252097523530000 420.851
P61	Mean Std Best Runtime	92.5640111212146000 1.5827416781636900 90.1142082473923000 1310.457	90.7642785704506000 26.4613831425879000 -45.0054133586912000 44.217	94,8428485804138000 0.6869412813090850 93,1500794016147000 308,501	93.2972315784963000 1.8766951726453600 91.0295373630387000 282.150	94.6109567642977000 0.6689129174038950 92.9690673344598000 1421.545	91.6859083842723000 0.9033073777915270 90.1363685040678000 506,829	92.3519494286347000 1.0901581870340800 90.2628852415150000 1771.860
P62	Mean Std Best Runtime	18611.3142254809000000 12508.7866126316000000 4568.3350537809200000 2381.974	-70.0486708747625000 637.4585182420270000 -460.0000000000000000 34.857	-337.3273080760500000 56.5730759032367000 -449.1707421778360000 232.916	400.3240208136310000 688.3344299264300000 -434.8788220982740000 202.941	-447.8870804905020000 11.8934815947019000 -459.6890294276810000 1636.440	-394.5206365378250000 128.6353424718180000 -460.00000000000000000000000000000000000	-437.1125728026770000 20.3541618366546000 -459.1772521346520000 1466.985

(continued on next page)

Table 8 (continued)

able 8 (co	ntinuea)							
Problem	Statistics	P502011	CMAES	ABC	JDE.	CIPSO	SADE	BSA
F63	Mean	-1292373581503910000	-128.7850616923410000	-129.8348428775830000	-129.6294851450880000	-129.8382867796110000	-129.7129164862680000	-129,8981409848090000
	Std	0,5986210944493790	0.6157633658946230	0,0408016481905456	0.1054759371085400	0.0372256921835666	0.0875456568200232	Q0682328484314248
	Best	-129,6861385930680000	-129.5105509483130000	-129.9098920058450000	-129.8125711770830000	-129.9098505660780000	-129.87175\$2632560000	-129,9901230990300000
	Runtime	2183,218	25.496	205.194	186347	1526365	660.986	1064,114
F64	Mean	-298.2835926212850000	-295.1290938304830000	-296.9323391084610000	-296.8839733969750000	-297.5119726691150000	-297.8403738182600000	-297.5359077431460000
	Std	Q5587676271753680	0.1634039984609270	0.2251930667702880	0.4330673614598290	0.3440115280624180	0.4536801689800720	Q4085859316264990
	Best	-299.6022022972560000	-295.7382222729600000	-297.4699619544820000	-297.8411886637500000	-298.3030560759620000	-299.2417795907860000	-298,3869295150680000
	Runtime	2517.138	32.084	262.533	334,888	1615.452	1289.814	1953,289
F65	Mean Std Best Runtime	417.4613663019860000 153.9215808771580000 120.000000000000000000 3156.336	492.5045364088000000 181.5709657779580000 262.7619554120320000 239.823	120,0000000000000000 0,0000000000000188 120,00000000000000000 2285,787	326,6601114362900000 174,6877238188330000 120,00000000000000000 1834,967	131,3550392249760000 26,1407360548431000 120,000000000000000000000 3210,655	2342689845349590000 150,7595974059750000 120,00000000000000000000000 1932,016	12000000000000000000000000000000000000
F66	Mean	221.4232628350220000	455.1151684594550000	258.8582688922670000	231.1806131539990000	231,5547154800990000	222,0256674919140000	234.4843380488580000
	Std	12.2450207482898000	254.3583511786970000	11.8823213189685000	13.5473380962764000	11,5441451076421000	6.1841489800660300	8.9091119100451100
	Best	181.5746616282570000	120.00000000000000000000	235.6600739998890000	210.3582705649860000	214,7661703584830000	206,4520786020840000	219.6244910167680000
	Runtime	4342.280	202.808	2237.308	1824388	8649,998	2970,950	8270.920
F67	Mean	217.3338617866620000	681,0349114021570000	265,0370119084380000	228.7309024901770000	2403635189964930000	221.1801916743850000	228,3769828342800000
	Std	20,6685850658838000	488,0618274343640000	12,4033917090208000	12.3682716268631000	14,8435137485293000	5.7037006844690500	8,7086794471239900
	Best	120,000000000000000000	223,0782617790520000	241,9810089596350000	181.6799927773160000	221,3817133141830000	2092509748304710000	204,6479138174220000
	Runtime	8208,697	197,497	2159,392	5873.112	4599,027	5938,879	8189,243
F68	Mean	6@.9850326105730000	926.9488078829420000	513.8925774904480000	743.9859973770210000	892.4391527217660000	845.4504613493740000	587.5732354221340000
	Std	275.8071370273340000	174.1027182659660000	31.0124861524005000	175.6497294240330000	79.1422224454971000	120.8505129523180000	250.0556329707140000
	Best	310.000000000000000000	310.00000000000000000	444.4692044973030000	310.00000000000000000	738.3764781625320000	310.000000000000000000	310.00000000000000000
	Runtime	3@7.235	251.155	2445.259	1777.638	8398.690	3073.274	4554.102
F68	Mean	708.2979222913040000	8312324139697050000	500.5478931040730000	776.5150806087790000	863.8926908090610000	809.7183195902260000	587.6511686191670000
	Std	256.2419561521300000	250.1848775931620000	31.2240894705539000	160.7307526692470000	96.5618989087194000	147.3158109824600000	236.1141037692630000
	Best	310.00000000000000000	310.00000000000000000000000	407.3155842366960000	363.8314566805740000	493.0042540796450000	310.000000000000000000000	310.00000000000000000
	Runtime	5258.509	222.015	2341.791	1849.670	9909.479	3213.601	4764.968
F70	Mean Std Best Runtime	711.2970397614200000 258.9317052508320000 310.00000000000000000 4346.055	876.9306188768990000 289.7296413284470000 310.0000000000000000000000000000000	483.2984167460740000 99.3976740616107000 155.5049931377980000 2250.917	7612954767038960000 163.4084080635650000 363.8314568648180000 1900.279	844,6391674419360000 113,6848457105400000 489,0742585970560000 9988,261	810.5227124472170000 104.7139423525340000 310.00000000000000000000 2818.575	612.0906184834040000 249.5599278421970000 310.00000000000000000 4945.132
F71	Mean Std Best Runtime	1117.8857079625100000 311.0011859260640000 560.00000000000000000 3012.883	1258.1065536572400000 359.7382897536570000 660.000000000000000000000000000000	659,5351969346130000 98,5410511961986000 560,0001912324020000 2728,060	959,3735119754180000 240,5568407069990000 660,000000000000000000 1573,484	911.4640642691360000 238.3180009803040000 560,0000121795840000 10891.124	990,8546718748010000 235,1014092849970000 660,000000000000000000 1769,459	836,1411004458200000 128,9346234954740000 560,0000000000000000000 2972,618
F72	Mean	1094,8305116977000000	-7,199E + 49	915.4958100611630000	1133.7536009808600000	1075.5292326436900000	1094,6823697304900000	984.5106541514410000
	Std	121,3539576317800000	4387E + 50	242.1993331983530000	42.1171260000361000	166.9355145236330000	87,9884000140656000	199.1563947691970000
	Best	660,00000000000000000	-133,9585340104890000	660.0006867770510000	1088.9543269392600000	660.00000000000020000	660,000000000000000000	660.00000000000000000
	Runtime	6363,267	290,334	2326.112	1730.723	9601.880	3854,148	19458.467
F73	Mean	1304.3661550124000000	11599280867973000000	830,2290165794410000	1167.9040488743800000	1070.4327462836400000	11052511774948600000	976,2273885425320000
	Std	262.1065863453340000	742.1215416320490000	60,2286903507069000	236.7325108248320000	208.0676662707430000	190,6172874229610000	160,1543461970300000
	Best	919.4683107913200000	-460.7504508023100000	785,1725102979490000	785.1725102979490000	785.1725102979480000	919,4683107913240000	785,1725102979480000
	Runtime	2165.640	238.261	2045,582	1580.067	7459.005	1901,540	4209,110
F74	Mean Std Best Runtime	500.000000000000000 10B.7237710925280000 46D.000000000000000000 1811.980	653.3355378428050000 302.5312999719650000 460.000000000000000000000 165.962	460,0000000000020000 0,0000000000016493 460,00000000000000000 1698,121	510,0000000000000000 113,7147065368360000 460,00000000000000000 1366,710	493,333333333340000 137,2973951415090000 46Q0000000000000000000 3016,959	490,0000000000000000 91,5385729888094000 460,0000000000000000000 1410,399	460,00000000000000000000000000000000000
F75	Mean	1107.9038127876700000	1401.6553278264300000	930.4565414149210000	1072.9924659809200000	1258,5157766524700000	1074,3695435628600000	1063,7363787709700000
	Std	127.9566489362040000	253.2428066220210000	87.9959072391079000	2.2606058314671500	241,4024507676890000	2,831418238917800	55,8479313799755000
	Best	1069.5511765775700000	1072.4973401423200000	862.4476004191700000	1068.5560012648600000	871,8607884176050000	1069,87238907090000000	856,8214538442850000
	Runtime	4060.091	214.580	2113.339	2951.018	5262,210	3410,902	4280,901

Table 9

Netermining the algorithm that statistically provides the best solution for each benchmark problem used in Test 2 by utilizing two-sided Wilcoxon Signed -Rank Test (x = 0.05)

Problem	PSO vs. BS	A			CMAES vs.	. BSA			ABC vs. BS	Α			JDE vs. BS	A			CLPSO vs.	BSA			SADE vs. E	BSA		
	p-value	T+	T-	winner	p-value	T+	T-	winner	p-value	T+	T-	winner	p-value	T+	T-	winner	p-value	T+	T-	winner	p-value	T+	T-	winner
F51	1.00E+00	0	0	-	1.00E+00	0	0	-	1.00E+00	0	0	-	1.00E+00	0	0	-	1.00E+00	0	0	-	1.00E+00	0	0	-
F52	1.00E+00	0	0	-	1.00E+00	0	0	-	1.72E-06	0	465	+	1.00E+00	0	1	-	1.73E-06	0	465	+	1.00E+00	0	0	-
F53	1.73E-06	0	465	+	2,56E-06	435	0	_	1.73E-06	0	465	+	9.10E-01	227	238	_	1.73E-06	0	465	+	1.73E-06	0	465	+
F54	1.00E+00	0	1	-	4.01E-05	0	253	+	1.73E-06	0	465	+	3.91E-03	0	45	+	1.73E-06	0	465	+	1.00E+00	0	0	-
F55	6.10E-05	120	0	_	6.10E-05	120	0	_	1.73E-06	0	465	+	5,21E-02	36	117	-	1.73E-06	0	465	+	4.99E-01	100,5	70.5	-
F56	1.96E-05	25	440	+	1,25E-01	3	12	-	2.60E-05	28	437	+	4.88E-04	81	10	_	1.73E-06	0	465	+	5.00E-01	2	4	-
F57	1.73E-06	0	465	+	9.77E-04	0	66	+	1.00E+00	0	0	-	3.91E-03	0	45	+	1.00E+00	0	0	-	1.00E+00	1	0	-
F58	3.82E-01	190	275	-	8.73E-03	360	105	-	2.22E-04	53	412	+	1.73E-06	0	465	+	3.11E-05	435	30	-	1.40E-02	113	352	+
F59	1.73E-06	0	465	+	1.73E-06	0	465	+	1.00E+00	0	0	-	1,25E-01	0	10	-	6.10E-05	0	120	+	1.00E+00	0	1	-
F60	3.72E-05	433	32	_	1.84E-02	108.5	326,5	+	2.60E-06	4	461	+	6.36E-01	255.5	209.5	-	3.38E-03	375	90	_	1.78E-04	367.5	38.5	_
F61	8.29E-01	222	243	-	5.29E-04	64	401	+	1.73E-06	0	465	+	4.28E-02	134	331	+	2.88E-06	5	460	+	2.07E-02	345	120	_
F62	1.73E-06	0	465	+	5,30E-01	202	263	-	1.73E-06	0	465	+	1.92E-06	1	464	+	3.85E-03	373	92	-	7.04E-01	214	251	-
F63	1.73E-06	0	465	+	1.73E-06	0	465	+	6.64E-04	67	398	+	1.73E-06	0	465	+	1.20E-03	75	390	+	2.60E-06	4	461	+
F64	6.89E - 05	426	39	_	1.73E-06	0	465	+	5.75E-06	12	453	+	2.37E-05	27	438	+	8.77E-01	225	240	-	1,25E-02	354	111	_
F65	2.50E-06	0	435	+	1.69E-06	0	465	+	4.88E-04	0	78	+	2.28E-06	0	435	+	6.25E-02	0	15	_	8.73E-05	0	210	+
F66	4.53E-04	403	62	_	1,25E-04	46	419	+	3.18E-06	6	459	+	1.78E-01	298	167	-	1.36E-01	305	160	_	1.13E-05	446	19	_
F67	5.71E-04	400	65	_	2,88E-06	5	460	+	1.73E-06	0	465	+	5.17E-01	201	264	-	1.04E-03	73	392	+	7.71E-04	396	69	_
F68	9.11E-02	109	242	-	7.25E-05	34	401	+	2.07E-02	345	120	_	7.62E-03	78	300	+	3.88E-06	8	457	+	2.04E-04	16	260	+
F69	2.13E-02	111	324	+	6.59E-04	60	375	+	3.16E-02	337	128	_	1.28E-03	55	323	+	1.97E-05	25	440	+	1.20E-03	37	263	+
F70	6.45E - 02	132	303	-	1.00E-03	58,5	347.5	+	6.83E-03	364	101	-	3,30E-03	74	332	+	2.60E-05	28	437	+	3.57E-03	23	167	+
F71	2.93E-04	44	362	+	1.43E-05	12,5	393.5	+	5.31E-05	429	36	-	1.50E-02	65	235	+	9.37E-02	140	295	-	3,93E-03	49.5	250.5	+
F72	3.62E-03	83	352	+	1.75E-02	117	348	+	6.00E-01	207	258	-	5.75E-06	12	453	+	1.11E-03	74	391	+	7.86E-02	147	318	-
F73	3.10E-05	30	435	+	3.00E-02	127	338	+	1.54E-05	442	23	_	5.29E-04	64	401	+	2.41E-02	104	302	+	2.39E-03	85	380	+
F74	1.25E-01	0	10	-	4.88E-04	0	78	+	6.33E-05	0	136	+	6.25E-02	0	15	-	2.50E-01	0	6	-	2.50E-01	0	6	-
F75	2.18E-02	344	121	-	2,05E-04	52	413	+	3.32E-04	407	58	-	5,29E-04	401	64	_	8.19E-05	41	424	+	3,38E-03	375	90	-
+/=/-	11/8/6				18/4/3				15/4/6				14/9/2				15/7/3				9/10/6			

Table 10

Basic statistics of the 30-solutions obtained by PSO, CMAES, ABC, JDE, CLPSO, SADE and BSA in Test 3 (Mean: mean-solution, Std: standard-deviation of mean-solution, Best: the best-solution, and Runtime: mean runtime in seconds.)

runcinic in .	cconas.,							
Problem	Statistics	PSO2011	CMAES	ABC	JDE	CLPSO	SADE	BSA
F76	Best	-13.2203755617559000 0,5798709816552560 -14.4896840113398000 4129.778	1.5463989317857500	1.0248612171337800	-21.5430772832813000 0.4455309716616480 -21.8423582185690000 2790.687	1.6154416249189800	0.2422824984227170	-21.6111376389414000 0.1762084436112900 -21.8421583397469000 9171.871
F77	Best	1.2784214305863400 0.2102758274100530 0.8957307058619430 601.297	0.7679943173132820 0.1467390614120050 0.5022449332178230 419.529	1.2084563403548400 0.1392680583116830 0.8706253318213730 120.789	0.7759733575203070 0.1663392331433730 0.5508361284548580 399.582	1.0109674682943700 0.1034903310851030 0.7849828809480960 493,750	0.6769744602128100 0.1590872901679670 0.50000000000000000 590.092	0,7475683099370200 0,1423974717303640 0,50000000000000000 520,584
F78	Mean Std Best Runtime	11.7951855564855000 4.7316108830775200 0.00000000000000000000 146.615	22.6218132365045000 5.4861306841905700 8.4160874519043000 17.797	2.9898268828962900 4.5109093696318400 0.0059934075469223 40.992	7.0123888014188600 6.4577455248267800 0.0000000000000000000 9.098	2.6037989610653200 4.8708666906638500 0.0000000000000000000 197.590	1.4852730354889200 3.8776382320194000 0.000000000000000000000 15.556	0.2805362483968100 1.5365603144480500 0.000000000000000000000 23.169

Table 11
Determining the algorithm that statistically provides the best solution for each benchmark problem used in Test 3 by utilizing two-sided Wilcoxon Signed- Rank Test (α = 0.05)

Problem	PSO vs. BS/	A			CMAES vs.	BSA			ABC vs. BS	Α			JDE vs. BS	Α			CLPSO vs.	BSA			SADE vs. E	BSA		
	p-value	T+	T-	winner	p-value	T+	T-	winner	p-value	T+	T-	winner	p-value	T+	T-	winner	p-value	T+	T-	winner	p-value	T+	T-	winner
F76	1.73E-06	0	465	+	0.490798	199	266	-	1.73E-06	0	465	+	0.797098	220	245	-	1.73E-06	0	465	+	0,093676	151	314	-
F77	1.73E-06	0	465	+	0.893644	239	226	-	1.73E-06	0	465	+	0.614315	208	257	-	5.75E-06	12	453	+	0.115608	309	156	-
F78	2.56E-06	0	435	+	1.73E-06	0	465	+	1.64E-05	23	442	+	0.000292	0	153	+	0.002282	9	127	+	0.125	1	14	-
+/=/-	3/0/0				1/2/0				3/0/0				1/2/0				3/0/0				0/3/0			

 Table 12

 Multi-problem based statistical pairwise comparison of comparison algorithms and BSA. (α = 0.05).

Algorithm vs. BSA	p-Value	T+	T-	Winner
PSO vs. BSA	4.406E-07	145	1286	BSA
CMAES vs. BSA	4.081E-10	150	2196	BSA
ABC vs. BSA	2.007E-02	415	911	BSA
JDE vs. BSA	5,526E-08	121.5	1418,5	BSA
CLPSO vs. BSA	1,320E-07	186	1584	BSA
SADE vs. BSA	2.607E-04	194	841	BSA

3.6. Aritmetik hassasiyet

Çok sayıda modern yazılım geliştirme aracının aritmetik hassasiyet seviyesi çift hassasiyet modunda 10 üzeri -16'dır. Gerektiğinden daha büyük olan aritmetik kesinlik değeri, algoritmaların yerel arama yeteneklerini karşılaştırmayı zorlaştırır. Bu nedenle, bu makaledeki istatistiksel testler için kullanılan aritmetik kesinlik değeri, birçok pratik uygulamada ihtiyaç duyulan kesinlik seviyesini karşılamak için 10 üzeri -16 idi.

3.7. Testlerin istatistiksel sonuçları

Tablo 6, Test 1'de elde edilen sonuçlar için ortalama çalışma zamanlarını ve basit istatistiksel değerleri göstermektedir. Tablo 7, Wilcoxon İmzalı Sıralama Testi'ne dayanarak Test 1'deki diğer algoritmalara kıyasla istatistiksel olarak daha iyi çözümler elde eden algoritmaları listelemektedir.

Tablo 8, Test 2'de elde edilen sonuçlar için ortalama çalışma zamanlarını ve basit istatistiksel değerleri göstermektedir. Tablo 9, Wilcoxon İmzalı Sıralama Testi'ne dayanarak Test 2'deki diğer algoritmalara kıyasla istatistiksel olarak daha iyi çözümler sağlayan algoritmaları listelemektedir.

Tablo 10, Test 3'te elde edilen sonuçlar için ortalama çalışma sürelerini ve basit istatistiksel değerleri göstermektedir. Tablo 11, Wilcoxon İmzalı Sıralama Testi'ne dayanarak Test 3'teki diğer algoritmalara kıyasla istatistiksel olarak daha iyi çözümler sağlayan algoritmaları listelemektedir.

Tablo 12, 30 BSA çalışmasıyla elde edilen küresel minimum değerlerin ortalamalarını ve Test 1 ve 2'deki kıyaslama sorunlarını çözmek için karşılaştırma algoritmalarını kullanarak çok probleme dayalı çiftli istatistiksel karşılaştırma sonuçlarını göstermektedir. Bu sonuçlar BSA'nın istatistiksel olarak daha fazla olduğunu göstermektedir istatistiksel anlamlılık değeri a = 0.05 olan tüm karşılaştırma algoritmalarından daha başarılıdır.

Yapılan testlerden elde edilen sonuçların incelenmesi, BSA'nın sayısal optimizasyon problemlerini çözmedeki başarısının genellikle problem boyutuna veya problem tipine aşırı duyarlı olmadığını ortaya koymaktadır.

Tablo 7,9 ve 11'de, '+', sıfır hipotezinin reddedildiği ve BSA'nın% 95 anlamlılık düzeyinde probleme dayalı istatistiksel karşılaştırma testlerinde istatistiksel olarak üstün bir performans sergilediği durumları göstermektedir (a = 0.05); "-", sıfır hipotezinin reddedildiği ve BSA'nın daha düşük bir performans sergilediği durumları belirtir; ve '=', iki algoritmanın sorunları çözmedeki başarısı arasında istatistiksel bir fark bulunmayan durumları belirtir. Tablo 7,9 ve 11'in son satırları, ikili karşılaştırmada (signific + ', ' = 'veya' - 'ile işaretlenmiş) üç istatistiksel anlamlı durum için (+ / = / -) biçimindeki toplam sayıları gösterir.

(+ / = / -) değerleri incelendiğinde, BSA'nın Test 1 ve 2'de kullanılan problemleri çözmede diğer tüm karşılaştırma algoritmalarından istatistiksel olarak daha başarılı olduğu söylenebilir. (+ / = / -) Test 3 değerleri incelenmiştir, ancak BSA ve SADE'nin başarıları istatistiksel olarak aynı olsa da, BSA diğer karşılaştırma algoritmalarından istatistiksel olarak daha iyi çözümler sağlamıştır.

4. Sonuçlar

Bu makale, yeni bir evrimsel hesaplama tabanlı küresel arama algoritması olan BSA'yı tanıttı. BSA'nın algoritmik yapısı, daha iyi kondisyon değerlerine sahip çözümler ararken geçmişte belirli bir sorun için bulduğu çözümleri kullanarak önceki nesil popülasyonlardan faydalanmasını sağlar. BSA'nın biyo-ilham alan felsefesi, daha önce beslenme elde etmek için verimli bulunan avlanma alanlarına rastgele bir aralıkta sosyal bir canlı grubunun dönüşüyle benzerdir.

Bu makale, 78 tamamen farklı kıyaslama problemi kullanarak BSA'nın sayısal optimizasyon problemlerini çözmedeki başarısını incelemek için üç test sundu. BSA'nın sayısal optimizasyon problemlerini çözmedeki başarısı, Wilcoxon İmzalı Sıralama Testi kullanılarak literatürde yaygın olarak kullanılan birkaç EA ile karşılaştırıldı.

BSA'nın gerçek dünya sorunlarını çözmedeki başarısı, BSA ve karşılaştırma algoritmaları tarafından çözülen üç kısıtlı kıyaslama sorunu (Anten, Radar ve FM) ile ayrıntılı olarak incelenmiştir. Sonuçlar BSA'nın problem çözmede genellikle karşılaştırma algoritmalarından daha başarılı olduğunu göstermektedir. Anten, Radar ve FM sorunları için BSA, ABC, JDE, CMAES, CLPSO ve PSO2011'den istatistiksel olarak daha iyi çözümler elde etti. Benzer şekilde BSA, Test 1'deki klasik problemlerin çözümünde tüm karşılaştırma algoritmalarından istatistiksel olarak daha başarılıydı. Test 1'deki Test 1'de kullanılan kıyaslama problemlerinden nispeten daha karmaşık olan CEC2005 karşılaştırma problemlerini çözerken BSA çok daha fazlasını elde etti. karşılaştırma algoritmalarından daha başarılı sonuçlar. Ayrıca, testlerden elde edilen verilerin incelenmesi BSA'nın genellikle karşılaştırma algoritmalarının çoğundan daha hızlı olduğunu göstermektedir. Bu makalede ele alınan ayrıntılı testler, BSA'nın gerçek değerli sayısal optimizasyon problemlerini çözmede istatistiksel olarak başarılı olduğunu göstermektedir.

BSA'nın karşılaştırma algoritmalarına göre daha büyük başarısından sorumlu faktörler şunlardır:

- BSA'nın mutasyon ve çaprazlama operatörleri her nesilde çok verimli deneme popülasyonları üretir.
- BSA'nın arama yönünün genliğini kontrol eden F parametresi için üretim stratejisi, hem küresel bir arama için gerekli sayısal olarak büyük genlik değerlerini hem de yerel bir arama için gerekli olan küçük genlik değerlerini çok dengeli ve verimli bir şekilde üretebilir. Bu BSA'nın problem çözme yeteneğini açıkça arttırmaktadır.

- BSA'nın arama yönü matrisinin hesaplanması için kullandığı geçmiş nüfus (oldP), rastgele seçilen bir önceki nesle aittir. Bu nedenle, daha gelişmiş nesillerdeki kullanılan tarihsel popülasyonlar, yaşlı nesillerdeki kullanılan tarihsel popülasyonlara göre daha verimli bireyleri içerir. Bu BSA'nın daha verimli deneme bireyleri oluşturmasını kolaylaştırır.
- BSA'nın geçiş stratejisi, her nesilde yeni deneme bireylerinin oluşturulmasını sağlayan tek tip ve karmaşık bir yapıya sahiptir. Bu çaprazlama stratejisi BSA'nın problem çözme yeteneğini geliştirir.
- BSA'nın sınır kontrol mekanizması, gelişmiş nesillerde bile verimli aramalar sağlayan nüfus çeşitliliğini sağlamada çok etkilidir.

Test 1'de elde edilen çözeltiler (bakınız Tablo 7) için probleme dayalı ikili istatistiksel karşılaştırmalar, BSA'nın karşılaştırma algoritmalarından daha fazla sayıda karşılaştırma problemini çözebileceğini ve istatistiksel olarak daha iyi sonuçlar elde edebileceğini göstermektedir. Test 1'de BSA, PSO ile karşılaştırıldığında 22 problem, CMAES ile karşılaştırıldığında 28 problem, ABC ile karşılaştırıldığında 31 problem, JDE ile karşılaştırıldığında 16 problem, CLPSO ile karşılaştırıldığında 26 problem ve SADE ile karşılaştırıldığında 10 problem çözmede daha başarılı olmuştur. Genel olarak, BSA'nın problem çözme başarısı, Test 1'de kullanılan kıyaslama problemlerinin boyutlarına veya tiplerine (multimodal, ayrılamaz / ayrılabilir veya unimodal) duyarlılık göstermedi. Test 1'de, sonraki en başarılı algoritma BSA SADE'di.

Test 2'de elde edilen çözeltiler için probleme dayalı ikili istatistiksel karşılaştırımalar (bkz. Tablo 9), problem çözme başarısı açısından BSA'ya en yakın algoritmaların JDE, CLPSO, CMAES, SADE, ABC ve PSO sırasıyla olduğunu göstermektedir. BSA, JDE ile karşılaştırıldığında 23 sorunun, CLPSO ve CMAES ile karşılaştırıldığında 22 sorunun ve SADE, ABC ve PSO ile karşılaştırıldığında 19 sorunun çözülmesinde istatistiksel olarak daha iyi veya istatistiksel olarak aynı sonuçları elde etmiştir. Öte yandan, SADE, ABC ve PSO, altı kıyaslama probleminin çözümünde BSA'dan sadece istatistiksel olarak daha iyi sonuçlar, üç problemin çözümünde CLPSO ve CMAES ve iki problemin çözümünde JDE'den daha iyi sonuçlar elde etti. Tablo 9'daki istatistiksel analiz sonuçları, BSA'nın problem çözme başarısının Test 2'de kullanılan kıyaslama probleminin türüne önemli ölçüde duyarlı olmadığını göstermektedir. Ayrıca BSA, Test 2'de daha fazla kıyaslama problemini diğerine göre istatistiksel olarak daha iyi sonuçlarla çözmeyi başardı. algoritmaları.

BSA ve diğer algoritmaların çok probleme dayalı ikili istatistiksel karşılaştırması için, Test 1 ve 2'de elde edilen çözeltilerin ortalama değerleri kullanıldı. Tablo 12, bu karşılaştırmada elde edilen p-değerini ve T + ve T-değerlerini göstermektedir. A = 0.05 olduğunda bu değerlerin analizi, BSA'nın tüm karşılaştırma algoritmalarından istatistiksel olarak daha başarılı olduğunu gösterir.