Santa Clara University

Department of Electrical and Computer Engineering

Hardware-Software Co-Design – ELEN 503

Spring Quarter 2023, Thursday 5:10 – 7:00pm

Instructor:

Hoeseok Yang (SCDI 4025P) email: hoeseok.yang@scu.edu

Office Hours: Tuesday 2:30-4:00pm, Thursday 2:30-4:00pm

(or by appointments. Online meeting is available on request)

References:

- System Design, Modeling, and Simulation using Ptolemy II, available here.
- Introduction to Embedded Systems, Second Edition: A Cyber-Physical Systems Approach, 2nd Edition, ISBN-13: 978-0262533812, available here.
- IEEE Standard for Standard SystemC^(R) Analog/Mixed-Signal Extensions Language Reference Manual, available here.
- Gurobi Optimizer Reference Manual, available here.
- Opt4J: a modular framework for meta-heuristic optimization, available here.

Prerequisites:

- Basic knowledge of logic design (ELEN 21) and computer architecture (ELEN 122)
- Basic knowledge of C/C++ and Java (for Ptolemy II, Opt4J, and Gurobi)

Grading Policy:

Midterm (written): 30%, homework: 30% and final exam (written): 40%

Course Objectives

- Understand the basic HW/SW co-design or Electronic System Level (ESL) design flow: specification, HW/SW partitioning, HW/SW co-simulation/co-verification, and HW/SW co-synthesis.
- Understand the basic concept of model-based system design and various models of computation.
- Understand the state-of-the-art HW/SW co-design methodologies and their applications (case studies).
- Have experiences using the following tools in HW/SW co-design
 - o Ptolemy-II (for modeling/specification and simulation)
 - o SystemC for Transaction Level Modeling (TLM)
 - Gurobi (Integer Linear Programming) or OPT4J (Evolutionary Algorithm)
 (for combinational optimizations)

Exams:

Two written exams: midterm (35%) and final (35%)

Homework:

There will be three homework assignments (10% each): modeling/specification (Ptolemy II or Simulink), TLM (SystemC), mapping/scheduling optimization (Gurobi or Opt4J) or PYNQ

[tentative schedule]

	[tentative schedule]
	Topics
Week 1 (Introduction)	April 6th - Introduction to HW/SW co-design - Cyber-Physical Systems
Week 2	April 13th
(Model of Computation,	- Model-of-Computations Overview
State Machines)	- State Machines
	April 20th
Week 3	- Problems with Threads
(Process Networks and	- Kahn Process Network (KPN) and Dataflow
Dataflow)	- System modeling in Ptolemy II (or Simulink)
	- Homework #1
Week 4	April 27th
(Process Networks and	- Kahn Process Network (KPN) and Dataflow
Dataflow, Cont'd)	- Synchronous Dataflow
Week 5	May 4th
(Transaction Level	- Transaction Level Modeling
Modeling)	- System C
Week 6	May 11th
(HW/SW Co-Synthesis	- HW/SW Co-Design Practice with Xilinx Pynq
with Xilinx Pynq)	- Homework #2
Week 7	May 18th
(Midterm)	
Week 8	May 25th
(HW/SW Co-Synthesis	- HW/SW Co-Design Practice with Xilinx Pynq
with Xilinx Pynq)	
Week 9 (Optimizations)	June 1st - Combinational optimization tools - Integer Linear Programming, Evolutionary Algorithm - Homework #3
Week 10	June 8th
(HW/SW Co-Design	- HW/SW Co-Design examples
Examples)	- Embedded machine learning