Assignment 4

Algorithms & Complexity (CIS 522-01)

 $Javier\ Are chalde$

Part A: Read the solved exercises and Practice

Solved excercise #1 in Chapter 6

In this problem, we want to place billboards in a highway to get maximum revenue. The highway will be M miles long, and will have n locations on which we can locate the different billboards, each one of this locations will give us $r_i > 0$ revenue. There is also a regulation that doesn't allow two billboards to be placed closer than 5 miles away from each other.

The goal of this problem is to find the billboard placements that will give us the maximum revenue, while following all the given regulations.

Algorithm Pseudocode

Algorithm 1 Implementation

```
1: Initiallize M[0] = 0 and M[1] = r_1
 2: for j = 2, 3, ..., n do
       if x_j - x_{j-1} \ge 5 then
3:
 4:
          M[j] = M[j-1] + r_j
       else Find the closest possible value (x_j - x_i \ge 5)
 5:
          if M[i] + r_j > M[j-1] then
6:
              M[j] = M[i] + r_j
7:
8:
              M[j] = M[j-1]
9:
          end if
10:
       end if
11:
12: end for
13:
14: return M[n]
```

Solution for problem instance of size 10

The code for a problem instance of size 10 is as follows.

```
 \begin{array}{l} \mathbf{x} \; = \; \left[ \; 1 \; , 10 \; , 13 \; , 14 \; , 20 \; , 23 \; , 28 \; , 30 \; , 36 \; , 40 \right] \\ \mathbf{r} \; = \; \left[ \; 10 \; , 3 \; , 4 \; , 20 \; , 10 \; , 7 \; , 6 \; , 3 \; , 10 \; , 20 \right] \\ \\ \mathbf{n} \; = \; \mathbf{len} \left( \mathbf{x} \right) \\ \# Initialize \; M \end{array}
```

```
M = [0] * (n+1)
\#Initializing M/0 and M/1
M[0] = 0
M[1] = r[0]
for j in range (2,n+1):
 \begin{array}{l} \mathbf{print}\,(\ 'j = \ \%i\ '\ \%j\ ) \\ \mathbf{print}\,(\ 'Distance\_to\_the\_previous\_point: \ \%i\ '\ \%(x[j-1]-x[j-2])) \end{array}
 if x[j-1]-x[j-2]>=5:
  M[j] = M[j-1] + r[j-1]
   print ( 'M[% i ] == \%i ' %(j ,M[j]))
   \mathbf{print}(\ '\ '\ ')
  else:
   #Look for the eastmost valid
   print('Looking_for_the_eastmost_valid_value')
   for i in range (j-1,-1,-1):
    print ( '%i-%i>=5?' (x[j-1],x[i-1]))
    if x[j-1]-x[i-1]>=5:
     print('YES')
     print ( 'M[% i]+% i>M[% i]? ' %(i,r[j-1],j-1))
     if M[i]+r[j-1]>M[j-1]:
      print('YES')
      print('M[%i] = M[%i] + %i' %(j,i,r[j-1]))
      M[j] = M[i] + r[j-1]
      print ( 'M[% i ] == _%i ' %(j ,M[j]))
      \mathbf{print}(\ '\ ')
     else:
      print('NO')
      print ( 'M[% i ] = M[% i ] ' %(j, j-1))
      M[j] = M[j-1]
      print ( 'M[% i ] == .%i ' %(j ,M[j]))
      \mathbf{print}(\ '\ ')
     break
    else:
     print('NO')
print('MAXIMUM_REVENUE: _\%i' '\%M[n])
```

Time Complexity

Part B: Problem Solving

Consulting	Jobs

Problem Model

Pseudocode

Algorithm 2 Implementation

${\bf Implementation}$

Here is the code for the implementation of the *pseudocode* shown below.

Running time

Carrier Selection

Problem Model

Pseudocode

Algorithm 3 Implementation

Running time