The single most comprehensive and unified source of information about mathematical functions.

Sign

View the online version at

Download the

functions.wolfram.com

PDF File

Notations

Traditional name

Sign function

Traditional notation

sgn(z)

Mathematica StandardForm notation

Sign[z]

Primary definition

12.06.02.0001.01

$$sgn(x) = 1 /; x \in \mathbb{R} \land x > 0$$

12.06.02.0002.01

$$\operatorname{sgn}(x) = -1/; x \in \mathbb{R} \land x < 0$$

12.06.02.0003.01

$$sgn(0) == 0$$

12.06.02.0004.01

$$\operatorname{sgn}(z) = \frac{z}{|z|} /; z \neq 0$$

Specific values

Specialized values

$$\operatorname{sgn}(x) = \frac{x}{|x|} /; x \in \mathbb{R} \land x \neq 0$$

12.06.03.0002.01

$$\operatorname{sgn}(x+i\,y) = \frac{x+i\,y}{\sqrt{x^2+y^2}}\,/;\, x \in \mathbb{R} \, \bigwedge y \in \mathbb{R}$$

Values at fixed points

12.06.03.0003.01

$$sgn(0) = 0$$

12.06.03.0004.01

$$sgn(1) == 1$$

12.06.03.0005.01

$$sgn(-1) = -1$$

12.06.03.0006.01

$$sgn(i) == i$$

12.06.03.0007.01

$$sgn(-i) = -i$$

12.06.03.0019.01

$$\operatorname{sgn}(1+i) = \frac{1+i}{\sqrt{2}}$$

12.06.03.0020.0

$$\operatorname{sgn}(-1+i) = \frac{-1+i}{\sqrt{2}}$$

12.06.03.0021.01

$$\operatorname{sgn}(-1-i) = -\frac{1+i}{\sqrt{2}}$$

12.06.03.0022.01

$$\operatorname{sgn}(1-i) = \frac{1-i}{\sqrt{2}}$$

12.06.03.0023.01

$$\operatorname{sgn}(\sqrt{3} + i) = \frac{\sqrt{3} + i}{2}$$

12.06.03.0024.01

$$\operatorname{sgn}(1+i\sqrt{3}) = \frac{1+i\sqrt{3}}{2}$$

12.06.03.0025.01

$$\operatorname{sgn}(-1+i\sqrt{3}) = \frac{-1+i\sqrt{3}}{2}$$

12.06.03.0026.01

$$\operatorname{sgn}(-\sqrt{3} + i) = \frac{-\sqrt{3} + i}{2}$$

12.06.03.0027.01

$$\operatorname{sgn}\left(-\sqrt{3}-i\right) = -\frac{\sqrt{3}+i}{2}$$

12.06.03.0028.01

$$\operatorname{sgn}(-1-i\sqrt{3}) = -\frac{1+i\sqrt{3}}{2}$$

12.06.03.0029.01

$$\operatorname{sgn}(1-i\sqrt{3}) = \frac{1-i\sqrt{3}}{2}$$

$$\operatorname{sgn}(\sqrt{3}-i) = \frac{\sqrt{3}-i}{2}$$

12.06.03.0008.01

$$sgn(2) == 1$$

12.06.03.0009.01

$$sgn(-2) = -1$$

12.06.03.0010.01

$$sgn(\pi) = 1$$

12.06.03.0011.01

$$sgn(3 i) = i$$

12.06.03.0012.01

$$\operatorname{sgn}(-2i) = -i$$

12.06.03.0013.01

$$\operatorname{sgn}(2+i) = \frac{2+i}{\sqrt{5}}$$

Values at infinities

12.06.03.0014.01

$$sgn(\infty) = 1$$

12.06.03.0015.01

$$sgn(-\infty) == -1$$

12.06.03.0016.01

$$\operatorname{sgn}(i \infty) == i$$

12.06.03.0017.01

$$\operatorname{sgn}(-i\infty) = -i$$

12.06.03.0018.01

$$\operatorname{sgn}(\tilde{\infty}) = \mathcal{L}$$

General characteristics

Domain and analyticity

sgn(z) is a nonanalytical function. The real and the imaginary parts of sign(z) are real-analytic functions of the variable z.

12.06.04.0001.01 $z \longrightarrow \operatorname{sgn}(z) :: \mathbb{C} \longrightarrow \mathbb{C}$

Symmetries and periodicities

Parity

sgn(z) is an odd function.

12.06.04.0002.01

$$sgn(-z) = -sgn(z)$$

Mirror symmetry

$$\operatorname{sgn}(\bar{z}) = \overline{\operatorname{sgn}(z)}$$

Periodicity

No periodicity

Homogeneity

12.06.04.0005.01

$$sgn(a z) = sgn(a) sgn(z)$$

Scale symmetry

12.06.04.0006.01

$$\operatorname{sgn}(z^a) = \operatorname{sgn}(z)^a /; a \in \mathbb{R}$$

Sets of discontinuity

The function sgn(z) has discontinuity at point z = 0.

12.06.04.0004.01

$$\mathcal{DS}_z(\operatorname{sgn}(z)) = \{0\}$$

Series representations

Residue representations

12.06.06.0002.02

$$sgn(x) = 2 res_s \left((x+1)^{-s} - \frac{1}{s} \right) (0) - 1 /; x \in \mathbb{R} \land x > 0$$

Other series representations

12.06.06.0003.01

$$\operatorname{sgn}(x) = \frac{1}{\sqrt{\pi}} \sum_{k=0}^{\infty} \frac{(-1)^k}{2^{2k} (2k+1) k!} H_{2k+1}(x) /; x \in \mathbb{R} \land -1 < x < 1$$

12.06.06.0004.01

$$\operatorname{sgn}(x) = \frac{4}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{2k-1} T_{2k-1}(x) /; x \in \mathbb{R} \land -1 < x < 1$$

12.06.06.0005.01

$$\operatorname{sgn}(x) = \sum_{k=0}^{\infty} \frac{(-1)^k (4k+3) (2k)!}{2^{2k+1} (k+1)! \, k!} \, P_{2k+1}(x) \, /; \, x \in \mathbb{R} \, \land -1 < x < 1$$

Limit representations

12.06.09.0001.01

$$\mathrm{sgn}(x) = \lim_{m+n \to \infty} \frac{4 \, n! \, \Gamma \Big(m + \frac{3}{2} \Big) \, \Gamma (m+n+2)}{\sqrt{\pi} \, m! \, \Gamma \Big(n + \frac{1}{2} \Big) \, \Gamma \Big(m+n + \frac{3}{2} \Big)} \, x \, \frac{{}_{3} F_{2} \Big(-m, \, \frac{1}{2} - n, \, m+n+2; \, \frac{3}{2}, \, \frac{3}{2}; \, x^{2} \Big)}{{}_{3} F_{2} \Big(-n, \, -m - \frac{1}{2}, \, m+n + \frac{3}{2}; \, \frac{1}{2}, \, 1; \, x^{2} \Big)} \, /; \, -1 < x < 1 \, \land \, n \in \mathbb{N} \, \land \, m \in \mathbb{N}$$

(generalized Padé approximation)

12.06.09.0002.01

$$\mathrm{sgn}(x) = \lim_{m + n \to \infty} \frac{4\left(m + 1\right)\left(2\,n + 1\right)}{\pi} \, x \, \frac{{}_{4}F_{3}\!\left(-m, \, m + 2, \, \frac{1}{2} - n, \, n + \frac{3}{2}; \, \frac{3}{2}, \, \frac{3}{2}; \, \frac{3}{2}; \, \frac{3}{2}; \, \frac{3}{2}; \, \frac{3}{2}\right)}{{}_{4}F_{3}\!\left(-n, \, n + 1, \, -m - \frac{1}{2}, \, m + \frac{3}{2}; \, \frac{1}{2}, \, 1, \, 1; \, x^{2}\right)} \, /; \, -1 < x < 1 \land n \in \mathbb{N} \land m \in \mathbb{N}$$

(generalized Padé approximation)

Integral representations

Contour integral representations

$$sgn(x) = \frac{1}{\pi i} \int_{\gamma - i\infty}^{\gamma + i\infty} \frac{\Gamma(-s) (x+1)^{-s}}{\Gamma(1-s)} ds /; 0 < \gamma \wedge x > -2$$

Transformations

Transformations and argument simplifications

Argument involving basic arithmetic operations

12.06.16.0001.01

$$sgn(-z) = -sgn(z)$$
12.06.16.0002.01

$$sgn(x) = \frac{x}{|x|} /; x \in \mathbb{R} \land x \neq 0$$
12.06.16.0003.01

$$sgn(x + i y) = \frac{x + i y}{\sqrt{x^2 + y^2}} /; x \in \mathbb{R} \land y \in \mathbb{R} \land \{x, y\} \neq \{0, 0\}$$
12.06.16.0004.01

$$sgn(a z) = sgn(z) /; a \in \mathbb{R} \land a > 0$$
12.06.16.0005.01

$$sgn(a z) = -sgn(z) /; a \in \mathbb{R} \land a < 0$$
12.06.16.0006.01

$$sgn(i z) = i sgn(z)$$
12.06.16.0007.01

$$sgn(-i z) = -i sgn(z)$$

$$\operatorname{sgn}\left(\frac{1}{z}\right) = \frac{|z|}{z}$$

Addition formulas

12.06.16.0009.01

$$\operatorname{sgn}(x+iy) = \frac{x+iy}{\sqrt{x^2+y^2}} /; x \in \mathbb{R} \wedge y \in \mathbb{R}$$

Multiple arguments

$$\operatorname{sgn}(a z) = \operatorname{sgn}(z) /; a \in \mathbb{R} \land a > 0$$

12.06.16.0011.01

$$\operatorname{sgn}(az) = -\operatorname{sgn}(z) /; a \in \mathbb{R} \land a < 0$$

12.06.16.0012.01

$$sgn(iz) = i sgn(z)$$

12.06.16.0013.01

$$\operatorname{sgn}(-i\,z) = -i\,\operatorname{sgn}(z)$$

12.06.16.0014.01

$$\operatorname{sgn}\left(\prod_{k=1}^{n} z_{k}\right) = \prod_{k=1}^{n} \operatorname{sgn}(z_{k})$$

$$\operatorname{sgn}(z_1 z_2) = \operatorname{sgn}(z_1) \operatorname{sgn}(z_2)$$

Ratio of arguments

12.06.16.0025.01

$$\operatorname{sgn}\left(\frac{z_1}{z_2}\right) = \frac{\operatorname{sgn}(z_1)}{\operatorname{sgn}(z_2)}$$

Power of arguments

12.06.16.0016.01

$$\operatorname{sgn}(x^a) = x^{i\operatorname{Im}(a)} /; x \in \mathbb{R} \land x > 0$$

$$\operatorname{sgn}(z^a) = \operatorname{sgn}(z)^a /; a \in \mathbb{R}$$

$$\operatorname{sgn}(z^a) = \exp(a \operatorname{Re}(\log(z))) /; i a \in \mathbb{R}$$

12.06.16.0019.01

$$\operatorname{sgn}(z^a) = |z|^a /; i a \in \mathbb{R}$$

$$\operatorname{sgn}(z^a) = z^a \exp(-\operatorname{Re}(a \log(z)))$$

12.06.16.0021.01

$$\operatorname{sgn}(z^a) = |z|^{i\operatorname{Im}(a)} \exp(i\operatorname{Re}(a)\operatorname{arg}(z))$$

$$12.06.16.0022.01$$

$$sgn(z^{a}) = |z|^{i \operatorname{Im}(a)} \exp(i \operatorname{Re}(a) \tan^{-1}(\operatorname{Re}(z), \operatorname{Im}(z)))$$

$$12.06.16.0023.01$$

$$sgn(z^{a}) = \exp(i (\operatorname{Im}(a) \log(|z|) + \operatorname{arg}(z) \operatorname{Re}(a)))$$

Exponent of arguments

$$12.06.16.0026.01$$

$$sgn(e^{x+iy}) = e^{iy}$$

$$12.06.16.0027.01$$

$$sgn(e^{z}) = e^{i \operatorname{Im}(z)}$$

$$12.06.16.0028.01$$

$$sgn(e^{iz}) = e^{i \operatorname{Re}(z)}$$

Complex characteristics

Real part

$$12.06.19.0001.01$$

$$Re(sgn(x + i y)) = \frac{x}{\sqrt{x^2 + y^2}}$$

$$12.06.19.0008.01$$

$$Re(sgn(z)) = \frac{Re(z)}{1 + i}$$

Imaginary part

$$Im(sgn(x+iy)) == \frac{y}{\sqrt{x^2 + y^2}}$$

$$12.06.19.0009.01$$

$$Im(sgn(z)) == \frac{Im(z)}{1}$$

Absolute value

$$|sgn(x+iy)| = 1 /; x+iy \neq 0$$

$$|sgn(x+iy)| = 1 /; z+iy \neq 0$$

$$|sgn(z)| = 1 /; z \neq 0$$

Argument

12.06.19.0005.01

$$arg(sgn(x+iy)) = tan^{-1}(x, y)$$
12.06.19.0006.01

$$arg(sgn(z)) = arg(z)$$

Conjugate value

$$\overline{\operatorname{sgn}(x+iy)} = \frac{x-iy}{\sqrt{x^2+y^2}}$$

12.06.19.0010.01

$$\overline{\operatorname{sgn}(z)} == \frac{\bar{z}}{|z|}$$

Signum value

$$\operatorname{sign}(\operatorname{sgn}(x+iy)) = \frac{x+iy}{\sqrt{x^2+y^2}}$$

12.06.19.0012.01

$$\operatorname{sgn}(\operatorname{sgn}(z)) = \operatorname{sgn}(z)$$

Differentiation

Low-order differentiation

In a distributional sense for $x \in \mathbb{R}$.

$$\frac{\partial \operatorname{sgn}(x)}{\partial x} = 2 \, \delta(x)$$

Integration

Indefinite integration

Involving only one direct function

In a distributional sense for $x \in \mathbb{R}$.

$$\int \operatorname{sgn}(x) \, dx = |x|$$

Definite integration

For the direct function itself

$$\int_{-a}^{a} \operatorname{sgn}(t) \, dt = 0$$

12 06 21 0003 01

$$\int_{-a}^{a} t^{k} \operatorname{sgn}(t) dt = \frac{\left(1 - (-1)^{k}\right) a^{k+1}}{k+1} /; a > 0 \wedge \operatorname{Re}(k) > -1$$

Integral transforms

Fourier exp transforms

12.06.22.0004.01

$$\mathcal{F}_t[\operatorname{sgn}(t)](x) = \sqrt{\frac{2}{\pi}} \frac{i}{x}$$

12.06.22.0005.01

$$\mathcal{F}_{t}[t^{n}\left(\operatorname{sgn}(t)+1\right)](x) = (-i)^{n}\sqrt{2\pi} \frac{\partial^{n}\delta(x)}{\partial x^{n}} - i^{n-1}n!\sqrt{\frac{2}{\pi}} x^{-n-1}/; n \in \mathbb{N}$$

12.06.22.0006.01

$$\mathcal{F}_{t}[|t|^{\alpha}\operatorname{sgn}(t)](x) = i\sqrt{\frac{2}{\pi}}|x|^{-\alpha-1}\cos\left(\frac{\pi\alpha}{2}\right)\Gamma(\alpha+1)\operatorname{sgn}(x)/;\operatorname{Re}(\alpha) > -1$$

Fourier cos transforms

12.06.22.0001.01

$$\mathcal{F}c_t[\operatorname{sgn}(t)](z) = \sqrt{\frac{\pi}{2}} \delta(z)$$

Fourier sin transforms

12.06.22.0002.01

$$\mathcal{F}s_t[\operatorname{sgn}(t)](z) = \sqrt{\frac{2}{\pi}} \frac{1}{z}$$

Laplace transforms

12.06.22.0003.01

$$\mathcal{L}_t[\operatorname{sgn}(t)](z) = \frac{1}{z}$$

Representations through more general functions

Through Meijer G

Classical cases involving the direct function

12.06.26.0001.01

$$((1-z)\operatorname{sgn}(1-|z|))^{\nu} = \frac{\pi}{\Gamma(-\nu)}\operatorname{sec}\left(\frac{\pi\nu}{2}\right)G_{2,2}^{1,1}\left(z \middle| \begin{array}{c} \nu+1, \frac{\nu+1}{2} \\ 0, \frac{\nu+1}{2} \end{array}\right)$$

12.06.26.0002.01

$$\operatorname{sgn}(1 - |z|) ((1 - z) \operatorname{sgn}(1 - |z|))^{\gamma} = -\frac{\pi}{\Gamma(-\nu)} \operatorname{csc}\left(\frac{\nu \pi}{2}\right) G_{2,2}^{1,1} \left(z \mid \frac{\nu + 1, \frac{\nu}{2} + 1}{0, \frac{\nu}{2} + 1}\right)$$

Classical cases involving cosh

12.06.26.0003.01

$$((1-z)\operatorname{sgn}(1-|z|))^{\nu}\operatorname{cosh}\left(\nu\tanh^{-1}\left(\frac{2\sqrt{z}}{z+1}\right)\right) = \frac{\sqrt{\pi}}{\Gamma(-\nu)}\Gamma\left(\frac{1}{2}+\nu\right)G_{2,2}^{1,1}\left(z \middle| \begin{array}{c} 1+\nu, \frac{1}{2}+\nu\\ 0, \frac{1}{2} \end{array}\right)$$

12.06.26.0004.01

$$((1-z)\operatorname{sgn}(1-|z|))^{\nu}\operatorname{cosh}\left(\nu\operatorname{coth}^{-1}\left(\frac{1+z}{2\sqrt{z}}\right)\right) = \frac{\sqrt{\pi}}{\Gamma(-\nu)}\Gamma\left(\nu+\frac{1}{2}\right)G_{2,2}^{1,1}\left(z \middle| \begin{array}{c} \nu+1, \ \nu+\frac{1}{2} \\ 0, \frac{1}{2} \end{array}\right)$$

Classical cases involving sinh

12.06.26.0005.01

$$((1-z)\operatorname{sgn}(1-|z|))^{\nu}\operatorname{sinh}\left(\nu\tanh^{-1}\left(\frac{2\sqrt{z}}{z+1}\right)\right) = -\frac{\sqrt{\pi}}{\Gamma(-\nu)}\Gamma\left(\nu+\frac{1}{2}\right)G_{2,2}^{1,1}\left(z\left|\begin{array}{c}\nu+\frac{1}{2},\nu+1\\\frac{1}{2},0\end{array}\right)/;\ z\notin(-1,0)$$

12.06.26.0006.01

$$((1-z)\operatorname{sgn}(1-|z|))^{\nu}\operatorname{sinh}\left(\nu\operatorname{coth}^{-1}\left(\frac{1+z}{2\sqrt{z}}\right)\right) = -\frac{\sqrt{\pi}}{\Gamma(-\nu)}\Gamma\left(\nu+\frac{1}{2}\right)G_{2,2}^{1,1}\left(z\left|\begin{array}{c}\nu+\frac{1}{2},\nu+1\\\frac{1}{2},0\end{array}\right)/;\ z\notin(-1,0)$$

Representations through equivalent functions

With related functions

With Re

$$sgn(z) = \frac{z}{\sqrt{2 z \operatorname{Re}(z) - z^2}}$$

With Im

$$\operatorname{sgn}(z) = \frac{z}{\sqrt{z^2 - 2 i z \operatorname{Im}(z)}}$$

12.06.27.0009.01

$$\operatorname{sgn}(z) = \frac{i \operatorname{Im}(z) + \operatorname{Re}(z)}{\sqrt{\operatorname{Im}(z)^2 + \operatorname{Re}(z)^2}}$$

12.06.27.0004.01

$$\operatorname{sgn}(z) = \frac{z}{\sqrt{\operatorname{Im}(z)^2 + \operatorname{Re}(z)^2}} /; z \neq 0$$

With Abs

$$sgn(z) = \frac{z}{|z|} /; z \neq 0$$

With Arg

$$\mathrm{sgn}(z) = e^{i \arg(z)}$$

With Conjugate

$$\operatorname{sgn}(z) = \frac{z}{\sqrt{z\bar{z}}} /; z \neq 0$$

With UnitStep

$$\operatorname{sgn}(x) = \theta(x) - \theta(-x) /; x \in \mathbb{R}$$

$$\operatorname{sgn}(x) = 2 \theta(x) - 1 /; x \in \mathbb{R} \land x \neq 0$$

Inequalities

12.06.29.0001.01

 $|\operatorname{sgn}(z)| \le 1$

12.06.29.0002.01

 $\operatorname{Re}(\operatorname{sgn}(z)) \le 1$

12.06.29.0003.01

 $\operatorname{Im}(\operatorname{sgn}(z)) \le 1$

Zeros

12.06.30.0001.01

$$sgn(z) = 0 /; z = 0$$

Theorems

Rademacher functions

The functions $r_n(x) = \operatorname{sgn}(\sin(2^n \pi x))$ form an orthogonal sequence over (0,1).

History

The function sgn is encountered often in mathematics and the natural sciences.

Copyright

This document was downloaded from functions.wolfram.com, a comprehensive online compendium of formulas involving the special functions of mathematics. For a key to the notations used here, see http://functions.wolfram.com/Notations/.

Please cite this document by referring to the functions.wolfram.com page from which it was downloaded, for example:

http://functions.wolfram.com/Constants/E/

To refer to a particular formula, cite functions.wolfram.com followed by the citation number.

e.g.: http://functions.wolfram.com/01.03.03.0001.01

This document is currently in a preliminary form. If you have comments or suggestions, please email comments@functions.wolfram.com.

© 2001-2008, Wolfram Research, Inc.