TD 1

Gyrolock ★ – Corrigé

Centrale Supelec PSI 2022. Corrigé proposé par l'UPSTI.

Effet gyroscopique et modélisation du stabilisateur

Objectif

Étudier les actions mécaniques créées par le système GyroLock, définir et régler la chaine d'asservissement de l'étrier puis modéliser le comportement du stabilisateur grâce à une étude dynamique.

C1-05

C2-09

Étude de l'effet gyroscopique généré par le système GyroLock

Question 1 Exprimer, dans la base \mathcal{B}_2 , le moment cinétique au point G_3 du solide (3) en mouvement dans le référentiel \mathcal{B}_0 , noté $\vec{\sigma}$ (G_3 , 3/0).

Correction

Au centre d'inertie on a : $\overrightarrow{\sigma}(G_3,3/0) = \mathcal{F}(G_3,3)\overrightarrow{\Omega}(3/0)$ avec par composition des vitesses $\overrightarrow{\Omega}(3/0) = \underbrace{\overrightarrow{\Omega}(3/2) + \overrightarrow{\Omega}(2/1) + \overrightarrow{\Omega}(1/0)}_{\dot{\theta}_3 \overrightarrow{y}_2} + \underbrace{\overrightarrow{\Omega}(2/1) + \overrightarrow{\Omega}(1/0)}_{\dot{\theta}_2 \overrightarrow{z}_2}$ la vitesse de rotation du solide (3) par rapport à (0) exprimée dans la base \mathfrak{B}_2 . Alors : $\overrightarrow{\sigma}(G_3,3/0) = B_3\dot{\theta}_3\overrightarrow{y}_2 + A_3\dot{\theta}_2\overrightarrow{z}_2$.

Question 2 En déduire, dans la base \mathcal{B}_2 , le moment dynamique au point G_3 du solide (3) en mouvement dans le référentiel \mathcal{B}_0 , noté $\vec{\delta}$ (G_3 , 3/0).

Correction

Toujours au centre d'inertie on a

$$\overrightarrow{\delta}(G_3, 3/0) = \left. \frac{\overrightarrow{d\sigma}(G_3, 3/0)}{\overrightarrow{dt}} \right|_0 = -B_3 \dot{\theta}_2 \dot{\theta}_3 \overrightarrow{x}_2 + B_3 \ddot{\theta}_3 \overrightarrow{y}_2 + A_3 \ddot{\theta}_2 \overrightarrow{z}_2 \right|_0$$

Question 3 Après avoir clairement précisé le système isolé et le théorème utilisé, exprimer L_{01} , M_{01} et N_{01} en fonction de θ_2 , θ_3 (et leurs dérivées temporelles), A_3 et B_3 .

Correction

Pour la clarté on propose le graphe des liaisons ci-desus avec les différentes actions mécaniques qui s'exercent sur le système.

On isole le système $\Sigma = \{1 + 2 + 3\}$ soumis à :

- l'action de (0) sur (1) en $G_3 : \{\mathcal{T}_{0\to 1}\};$
- l'action du poids en $G_3 : -m_3 g \overrightarrow{y}_0$.

On applique le théorème du moment dynamique au système Σ au point G_3 :

$$\overrightarrow{\delta}(G_3,\Sigma/0) = L_{01}\overrightarrow{x}_1 + M_{01}\overrightarrow{y}_1 + N_{01}\overrightarrow{z}_1$$

Or $\overrightarrow{\delta}(G_3, \Sigma/0) = \overrightarrow{\delta}(G_3, 3/0)$ car **on néglige les effets dynamiques de (1) et (2)**. Par conséquent : $-B_3\dot{\theta}_2\dot{\theta}_3\overrightarrow{x}_2 + B_3\ddot{\theta}_3\overrightarrow{y}_2 + A_3\ddot{\theta}_2\overrightarrow{z}_2 = L_{01}\overrightarrow{x}_1 + M_{01}\overrightarrow{y}_1 + N_{01}\overrightarrow{z}_1$. Dans la base \mathfrak{B}_1 on obtient le système d'équations :

$$\begin{cases} L_{01}(t) = -B_3 \dot{\theta}_3 \dot{\theta}_2 \cos(\theta_2(t)) - B_3 \ddot{\theta}_3 \sin(\theta_2) \\ M_{01}(t) = -B_3 \dot{\theta}_3 \dot{\theta}_2 \sin(\theta_2(t)) + B_3 \ddot{\theta}_3 \cos(\theta_2) \\ N_{01}(t) = A_3 \ddot{\theta}_2(t) \end{cases}$$

Question 4 En supposant que la toupie (3) tourne à vitesse constante par rapport à l'étrier (2), exprimer $\dot{\theta}_2$ en fonction de K_3 , θ_2 , f_c et $L-L_{G_3}$ permettant de garantir $L_{01}=0$ et de compenser l'effet de l'effort cardiaque f_c .

Correction

Le nouveau graphe de liaison est donné ci-dessus.

On reprend la stratégie précédente mais on ajoute le moment en G_3 provoqué par la résultante $\overrightarrow{R}_{c \to 1}$ en $P: \overrightarrow{M}\left(G_3, \overrightarrow{R}_{c \to 1}\right) = \overrightarrow{G_3P} \wedge f_c \overrightarrow{y}_1 = (L-L_{G_3})f_c \overrightarrow{x}_1$. L'équation du mouvement précédente écrite dans la base \mathscr{B}_1 donne alors le système d'équations :

$$\begin{cases} L_{01}(t) + (L - L_{G_3})f_c = -K_3\dot{\theta}_2\cos(\theta_2(t)) \\ M_{01}(t) = -K_3\dot{\theta}_2\sin(\theta_2(t)) \\ N_{01}(t) = A_3\ddot{\theta}_2(t) \end{cases}$$

En particulier si on veut $L_{01}=0$ alors $\boxed{\dot{\theta}_2=-\frac{(L-L_{G_3})f_c}{K_3\cos(\theta_2(t))}}$ en faisant attention à avoir $|\theta_2|<\frac{\pi}{2}$.

Question 5 Donner une condition sur l'angle θ_2 et sur l'accélération angulaire $\ddot{\theta}_2$ afin que les moments M_{01} et N_{01} soient faibles.

Correction

D'après le système d'équations de la question précédente :

- ▶ si on veut $N_{01} \rightarrow 0$ alors il faut $\ddot{\theta}_2 \rightarrow 0$ (accélération angulaire très faible);
- ▶ si on veut $M_{01} \rightarrow 0$ alors en prenant $\theta_2 \ll 1$ rad on a une chance d'y arriver.

Remarque : d'après la question 8, si on prend ω_3 très grand alors $\dot{\theta}_2$ est potentiellement très petit ce qui aide à « écraser » M_{01} .

Question 6 Vérifier que la condition de réactivité énoncée ci-dessus est respectée. Justifier que la fonction de transfert de l'étrier (2) $H_2(p) = \frac{\Omega_2(p)}{\Omega_{c2}(p)}$ peut alors être approchée par un gain statique K_2 de valeur à préciser. Il faut s'assurer que la position θ_2 de l'étrier (2) ne s'éloigne pas trop de sa position de référence $\theta_2^* = 0$. Le nonrespect de cette condition, appelé dérive de l'étrier, génère un moment parasite M_{01} responsable d'un déplacement du point P selon \vec{x}_1 .

Correction

La période du signal perturbateur est $T_c = \frac{1}{f_c}$, donc la demi période est $\frac{T_c}{2} = \frac{1}{2f_c} = 0,33$ s.

Si on veut respecter la condition de réactivité il faut donc que le temps de réponse à 5% soit inférieur à 0,033s.

On lit sur le graphe de droite en figure 7 que la valeur finale est atteinte avant 0,03s donc le temps de réponse à 5% est d'autant plus petit et **la condition de réactivité est respectée**.

Si on considère le système très réactif, comme celui-ci est précis on peut supposer que

$$H_2(p) = \frac{\Omega_2(p)}{\Omega_{c2}(p)} = K_2 = 1$$
.