

Équations différentielles

I Connaissances suffisantes pour résoudre

1. Je sais reconnaître une EDL_1 à coefficients constants.	- 0 +
2. Je connais la formule qui donne les solutions	- 0 +
3. Je sais reconnaître une EDL_2 à coefficients constants homogène	- 0 +
4. Je connais la méthode de l'équation caractéristique et les formules qui donne dans les trois cas	ent les solutions
5. Si pour une EDL₂ j'ai un second membre non nula) Je sais me servir du principe de superposition	- 0 +
b) Je sais qu'il s'applique pour des seconds membres complexes	- 0 +

Interrogateurs : vous devez donner une forme *a priori* d'une solution particulière si vous demandez à l'examiné d'en trouver une.

Il Connaissances plus conceptuelles et générales

- 1. Je sais que le principe de superposition est valable pour toute équation différentielle linéaire (quelque soit son ordre en particulier))
- **2.** Je sais pour une équation différentielle linéaire, il y a toujours une infinité de solutions qui s'obtiennent en ajoutant à une solution particulière de l'équation n'importe quelle solution de l'équation homogène associée.
- 3. J'ai remarqué que ce dernier énoncé ressemble fort au théorème de structure de l'ensemble des primitives d'une fonction donnée.
- **4.** J'ai remarqué que dans le cas particulier de l'équation différentielle linéaire du premier ordre à coefficients constants, la solution stationnaire est une solution particulière et que les solutions transitoires sont les solutions de l'équation homogène associée.
- **5.** J'ai compris la notion de champ de vecteurs associé à une équation différentielle et le principe que la donnée initiale détermine le tracé de la courbe en suivant les tangentes (il y a donc unicité).

En prévision : systèmes linéaires