Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

SCC, Chiusura transitiva Ordinamento topologico

Grafi diretti

- Digrafo (digraph)
 - → grafo diretto
- Applicazioni
 - Reti viarie
 - Trasporti
 - Attività di pianificazione

Proprietà

- Grafo G=(V,E) tale che
 - Ogni arco ha una direzione:
 - L'arco (a,b) va da a verso b, ma non cerversa Se G è semplice, $m \le n(n-1)$
- Può essere utile mantenere liste di adiacenza separate per archi entranti e uscenti

Esempio di applicazione

 Scheduling di lavori: l'arco (a,b) significa che il a va completato prima dell'inizio di

DFS diretta

- La DFS in generale funziona anche per grafi diretti
- Gli archi sono attraversati soltanto nella loro direzioni
- 4 tipi di archi nella DFS diretta
 - Archi discovery
 - Archi back
 - Archi forward
 - Archi cross
- Una DFS a partire da un vertice s calcola il sottoinsieme dei vertici raggiungibili da s

DFS diretta

4 tipi di archi nella DFS diretta

- Archi discovery: archi presenti nell'albero costruito da DFS (archi verdi)
- Archi back: (u,v) t.c. v è antenato di u ma non fa parte dell'albero DFS; es. arco da 6 a 2 [presenza di archi back segnala che ci sono cicli nel grafo]
- Archi forward: (u,v) t.c. v è discendente ma non fa parte dell'albero DFS; es. arco da1 a 8
- Archi cross: arco che connette due nodi che non hanno relazioni di antenato o discendente fra loro; es. arco da 5 a 4

Ordine visita dei nodi iniziando DFS da nodo 1: 1,2,4,6,3,5,7,8

Caratterizzazione degli archi

```
Algorithm sweep aux(Graph.Node node, int time) {
     if(node.state != Graph.Node.Status.UNEXPLORED)
       return;
    node.state = Graph.Node.Status.EXPLORING;
    node.timestamp = time;
    for(Graph.Node cur : node.outEdges) {
       print("\t" + node.value + "(" + node.timestamp + ")->" + cur.value + "(" + cur.timestamp +
")");
       if (cur.state == Graph.Node.Status.EXPLORED) {
         if (node.timestamp) < cur.timestamp)
            System.out.println("FORWARD");
         else
            System.out.println("CROSS");
       else if (cur.state == Graph.Node.Status.EXPLORING)
         System.out.println("BACK");
       else {
         System.out.println("TREE");
         sweep aux(cur, time + 1);
     node.state = Graph.Node.Status.EXPLORED;
     return;
}
```

DDFS - pseudocodice

```
DDFS(Graph.Node nd, List forward) {
     if(nd.state == Graph.Node.Status.EXPLORING)
       return;
    if(nd.state == Graph.Node.Status.EXPLORED)
       return;
    nd.state = Graph.Node.Status.EXPLORING;
    for(Graph.Node cur : nd.outEdges)
       DDFS(cur, forward);
    nd.state = Graph.Node.Status.EXPLORED;
    forward.addFirst(nd);
    return forward;
```

Raggiungibilità

Albero DFS con radice in v: vertici raggiungibili da v usando cammini

diretti

Connettività forte

 Da ogni vertice è possibile raggiungere ogni altro vertice

Connettività forte: algoritmo

- Scegli un vertice v di G
- DFS(v, G)
 - Se esiste w non visitato --> return "no"
- Sia G' uguale a G ma con gli archi invertiti
- DFS(v, G') from v in G'
 - Se esiste w non visitato --> return "no"
 - Else, return "yes"
- Complessità: O(n+m)

Connettività forte - pseudocodice/1

```
transposedDFS(Graph.Node nd, List reverse) {
    if(nd.state == Graph.Node.Status.EXPLORING)
       return;
    if(nd.state == Graph.Node.Status.EXPLORED)
       return;
    nd.state = Graph.Node.Status.EXPLORING;
    for(Graph.Node cur : nd.inEdges)
       transposedDFS(cur, reverse);
    reverse.addLast(nd);
    nd.state = Graph.Node.Status.EXPLORED;
```

Connettività forte - pseudocodice/2

```
stronglyConnectedComponent(Graph g, Node v, List ret) {
    // First DFS
     List forward = new List();
     DDFS(v, forward); // forward contiene i nodi raggiungibili da v
    for(Graph.Node n: forward)
           n.state = Graph.Node.Status.UNEXPLORED;
    // Second DFS on the transposed graph
     List reverse = new List();
     transposedDFS(v, reverse); // reverse → nodi da cui è possibile raggiungere v
    for(Graph.Node cur : reverse)
           if forward.contains(cur) // I nodi presenti in entrambe le liste appartengono alla CC di v
                 ret.add(cur);
           else
                 cur.state = Graph.Node.Status.UNEXPLORED; // non fa parte della CC di cur
     return ret; // Nodi facenti parte della componente fortemente connessa di v
```

Sottografi massimali che sono fortemente connessi

Sottografi massimali che sono fortemente connessi

- Applica DFS da nodo v su G e su G' (grafo con archi invertiti): intersezione dei due insiemi di nodi trovati determina la componente connessa a cui appartine v : se questa include tutti i nodi il grafo è fortemente connesso → fine
- Altrimenti: trova un nodo w che non appartiene alla componente fortemente connessa di v e ripeti DFS a partire da w
- Ripeti fino a quando tutti i nodi sono in qualche componente
- Costo è O(n(n+m)): nel caso peggiore devo eseguire O(n) DFS e ciascuna costa O(m+n) (NOTA: questa stima è approssimata: non tiene conto che ogni DFS successiva all tha è fatta su un sottografo sempre più piccolo)

- Applica DFS da nodo v su G e su G' (grafo con archi invertiti): se grafo è fortemente connesso fine
- Altrimenti: trova un nodo w che non appartiene alla componente fortemente connessa di v e ripeti DFS a partire da w
- Ripeti fino a quando tutti i nodi sono in qualche componente
- Costo è O(n(n+m)): nel caso peggiore devo eseguire O(n) DFS e ciascuna costa O(m+n)
- Algoritmo di Kosaraju (vedi libro ed esercitazione su grafi diretti): O(n+m)

Componenti fortemente connesse - pseudocodice

```
Algorithm SCC(Graph g) {
    g.resetStatus();
    for(Graph.Node n : g.getNodes())
        if(n.state == Graph.Node.Status.UNEXPLORED) {
            List ret = new List();
            stronglyConnectedComponent(Graph g, Node v, List ret);
            print("Componente connessa: ", ret);
        }
}
```

Chiusura transitiva

- Dato un digrafo G, la chiusure transitiva di G è il digrafo G* tale che
 - G* ha gli stessi vertici di G
 - Se G ha un cammino diretto da u a v (u —> v), G* ha un arco diretto da u a v
- □ Chiusura transitiva → informazione di raggiungibilità

Calcolo della chiusura transitiva

DFS da ognuno dei vertici O(n(n+m))

Sfruttare la matrice di adiacenza

O(n^{c+1})

c è almeno 2.37 Se è possibile andare da A a B e da B a C, allora è possibile andare da A a C.

WWW.GENIUS. COM

Floyd-Warshall chiusura transitiva

- WWW. GENIUS L
- Idea #1: numera i vertici 1, 2, ..., n.
- Idea #2: considera i cammini che usano 1, 2, ..., k, come vertici intermedi:

Algoritmo Floyd-Warshall

Arco diretto da i a j in G_k se

- Arco diretto (i, j) in G_{k-1} oppure:
- Archi diretti (i, k) e (k, j) in G_{k-1}

Programmazione dinamica

```
Algorithm FloydWarshall(G): G_k = grafo usato ad iterazione k G_0 = G for k = 1 to n { G_k = G_{k-1} for (i, j \text{ con } i \neq k \text{ e } j \neq k \text{ }) if ((i, j) \text{ non appartiene a } G_{k-1}) if ((i, k) \in G_{k-1} \text{ and } (k, j) \in G_{k-1}) <Aggiungi (i, j) a G_k>
```

Determinare il costo computazionale

Per k=1 cerchiamo cammini che passano per il nodo 1 Dato che (2,1) e (1,2) non sono archi non aggiungiamo nulla che connette 2 Possiamo raggiungere 4 da 3 passando per 1; ma esiste già un cammino diretto

Per k=1 cerchiamo cammini che passano per il nodo 1 Dato che (5,1) e (1,4) sono archi e non esiste cammino da 5 a 4 allora Abbiamo trovato un cammino da 5 a 4!

Floyd-Warshall, Iteration

Floyd-Warshall, Iteration 4 BOS ORD JFK \mathcal{V}_6 DFW MIA

Ordinamento topologic

Numera i vertici, in modo tale che (u,v) in E implichi u < v</p>

DAG e Ordinamento Topologico

- **Grafo diretto aciclico** (DAG): digrafo privo di cicli diretti
- Ordinamento topologico: numerazione $v_1, ..., v_n$ dei vertici tale che per ogni arco (v_i, v_j) , abbiamo i < j
- Esempio: se il grafo rappresenta le precedenze tra task, un ordinamento topologico è un sequenziamento dei task che soddisfa i vincoli di precedenza

Teorema

Un digrafo ammette un ordinamento topologico se e solo se è un DAG

Algoritmo per l'ordinamento topologico

 Algoritmo diverso da quello suggerito dalla dimostrazione del teorema precedente e presente nel libro

```
Algorithm TopologicalSort(G)

H = G // Copia temporanea di G

n = G.numVertices()

while H is not empty do

Sia v un vertice senza archi uscenti

<etichetta di > v = n

n = n - 1

Rimuovi v da H
```

Complessità: O(n + m)

Esempio 9 vertici

Esempio

Nota:
Avrei potuto
scegliere anche
un altro vertice
ottenendo un
diverso ordine
topologico
L'ordine
topologico non è
unico

Implementazione con DFS

- Si simula l'algoritmo usando depth-first search
- Costo: O(n+m).

```
Algorithm topologicalDFS(G)
Input dag G
Output topological ordering of

G
n = G.numVertices()
for all u \in G.vertices()
setLabel(u, UNEXPLORED)
for all v \in G.vertices()
if getLabel(v) = UNEXPLORED
topologicalDFS(G, v)
```

```
Algorithm topologicalDFS(G, v)
    Input graph G and a start vertex v of G
    Output labeling of the vertices of G in
the connected component of v
setLabel(v, EXPLORED)
for all e \in G.outEdges(v)
       { outgoing edges }
       w = opposite(v,e)
       if getLabel(w) = UNEXPLORED
            { e is a discovery edge }
            topologicalDFS(G, w)
       else
            { e è o forward o cross
  arco }
  Label v with topological number n
   n = n - 1 // Variabile globale
```


Esercizio: trovare l'ordinamento topologico se si inizia la DFS da questo nodo

