

Sorting circuit for Quantum Computing

Presentation

Introductio

WorkDone

Circuit

Choice of Sorting Algorithm

Milestone

Literature Review

Sorting circuit for Quantum Computing

Supervisor: Dr. Omer Usman Khan Yousaf Khan 16P-6059 Muhammad Hamza 16P-6068 Izhar Ali 16P-6125

Presentation

National University Of Computer And Emerging Sciences

29th October 2020

Table of Contents

Sorting circuit for Quantum Computing

Presentation

Introduction

Gate

WorkDone

Circuit

Choice of Sorting Algorithm

Milestone

Literature Review • Introduction

Gates

WorkDone

4 Circuit

6 Choice of Sorting Algorithm

6 Milestone

Quantum Bit

Sorting circuit for Quantum Computing

Presentation

Introduction

Gates

WorkDone

Choice of Sorting Algorithm

Milestone

- What is Quantum bit?
- What is Qbit made off?
- Temperature
- Super Conductor

Quantum Phenomenon

Sorting circuit for Quantum Computing

Presentation

Introduction

_

WorkDone

VVOIKDOIK

Choice of Sorting Algorithm

Milestone

- Super Position
- Entanglement

Quantum Gates

Sorting circuit for Quantum Computing

Presentation

Introduction

Jales

WorkDone

Choice of Sorting

Algorithm Milestone

VIIICSTOIIC

Literature Review Hadamard Gate

Н

ID Gate

ID

Swap Gate

X Gate

• CX Gate

Quantum Operations

Sorting circuit for Quantum Computing

Presentation

Introduction

Gates

WorkDone

c: ::

Choice of Sorting Algorithm

Milestone

Literature Review Barrier Operation

IF Operation

 $\bullet \ \left| 0 \right\rangle _{\text{Opertaion}}$

• Z measurement

Hadamard Gate

Sorting circuit for Quantum Computing

Presentation

Introduction

Gates

WorkDone

Circuit

Choice of Sorting Algorithm

Milestone

Literature Review The hadamard gate acts on a single qubit. It maps the basis state

$$|0\rangle \ to \ \frac{|0\rangle + |1\rangle}{\sqrt{2}} \ \ and \ \ |1\rangle \ to \ \frac{|0\rangle - |1\rangle}{\sqrt{2}},$$

which means that a measurement will have equal probilities to become 1 or O(creats a superposition).

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$H|0\rangle = |+\rangle$$

$$H|1\rangle = |-\rangle$$

Sorting circuit for Quantum Computing

Presentation

Introduction

Gates

WorkDone

Circuit

Choice of Sorting Algorithm

Milestone

$$|a\rangle = v_0|0\rangle + v_1|1\rangle \to \begin{bmatrix} v_0 \\ v_1 \end{bmatrix}$$
$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, |1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = |0\rangle\langle 1| + |1\rangle\langle 0|$$
$$X|0\rangle = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = |1\rangle$$

Sorting circuit for Quantum Computing

Presentation

Introduction Gates

WorkDone

Circuit

Choice of Sorting Algorithm

Milestone

Review

The swap gate swaps two qubits with respect to the basis

$$|00\rangle, |01\rangle, |10\rangle, |11\rangle.$$

It is represented by the matrix

$$SWAP = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Workdone

Sorting circuit for Quantum Computing

Presentation

Introduction

WorkDone

Choice of

Sorting Algorithm

Milestone

- Random Bit Generator
- Number Guess
- Two Qubits Swapping

Sorting Quantum Circuit

Sorting circuit for Quantum Computing

Presentation

Introduction

Gates

WorkDone

Circuit

Choice of Sorting Algorithm

Milestone

Literature Review • Two Qubits Circuit

Sorting Quantum Output

Sorting circuit for Quantum Computing

Presentation

Introduction

WorkDone

Circuit

Choice of Algorithm

Milestone

Output

Choice of Sorting Algorithm

Sorting circuit for Quantum Computing

Presentation

Introduction

Gates

WorkDone

Circuit

Choice of Sorting Algorithm

Milestone

- Bubble Sort
- Merge Sort

Milestone

Sorting circuit for Quantum Computing

Presentation

Introduction

Catas

WorkDone

C:.....

Choice o Sorting

Milestone

Milestone	Status
Expenssion of Sorting Circuit	In progress
Study Quantum literature	In progress

Literature Review

Sorting circuit for Quantum Computing

Presentation

Introduction

WorkDone

Choice of Sorting Algorithm

Milestone

Literature Review

Sorting N Elements Using Quantum Entanglement sets

D. S. Oliveira and R. V. Ramos, "Quantum bit string comparator: circuits and applications," Quantum Computers and Computing, vol. 7, pp. 17-26, 2007

J. Maziero, H. Guzman, L. Céleri, M. Sarandy, and R. Serra, "Quantum and classical thermal correlations in the XY spin-1/2 chain," Physical Review A, vol. 82, p. 012106, 2010.

Literature Review

Sorting circuit for Quantum Computing

Presentation

Laboratoration

Gates

WorkDone

Circuit

Choice of Sorting Algorithm

Milestone

Literature Review

Quantum Sort Algorithm bassed On Entanglement Qubits

A. Odeh, K. Elleithy, M. Almasri, and A. Alajlan, "Sorting N Element Using Quantum Entanglement Sets" in innovative Computing Technology (INTECH), 2013 Third International Conference on 2013, pp.213-216

R. P. Feynammn, A. R. Hibbs, and D. Styer, Quantum mechanics and path integrals, Aaver Publications. 2010

Books

Sorting circuit for Quantum Computing

Presentation

Introduction

Gates

WorkDone

Circuit

Choice of Sorting Algorithm

Milestone

Literature Review

Introduction to Quantum Computing

Phillip Kaye, Raymond Laflamme and Michele Mosca Quantum Computer Science

N. David Mermin

Quantum Computing for Computer Science

Noson S. Yanofsky and Micro A. Mannucci

Sorting circuit for Quantum Computing

Presentation

Introduction

Gates

WorkDone

-- -

Choice of Sorting Algorithm

Milestone

Literature Review

The End