Sample Questions on Numerical ODEs: Euler's Method

Conceptual Questions

- Q1. The Euler method is:
 - (a) An implicit method.
 - (b) An explicit method.
 - (c) A higher-order method.
 - (d) A method that uses random sampling.
- **Q2.** The formula for Euler's method to approximate the solution of the differential equation $\frac{dy}{dx} = f(x, y)$ is:
 - (a) $y_{n+1} = y_n + h \cdot f(x_n)$
 - (b) $y_{n+1} = y_n + h \cdot f(x_n, y_n)$
 - (c) $y_{n+1} = y_n h \cdot f(x_n, y_n)$
 - (d) $y_{n+1} = y_n \cdot h \cdot f(x_n, y_n)$
- Q3. The local truncation error in Euler's method is proportional to:
 - (a) $O(h^2)$
 - (b) O(h)
 - (c) O(1/h)
 - (d) $O(h^3)$
- ${\bf Q4.}$ Euler's method provides an approximation for:
 - (a) Only linear differential equations.
 - (b) Non-linear differential equations.
 - (c) Both linear and non-linear differential equations.
 - (d) Only higher-order differential equations.

Numerical Questions

- **Q5.** Use Euler's method with step size h = 0.1 to approximate y(0.1) for the differential equation $\frac{dy}{dx} = x + y$, with y(0) = 1:
 - (a) 1.11
 - (b) 1.10
 - (c) 1.12
 - (d) 1.13
- **Q6.** Use Euler's method to approximate y(0.2) for the differential equation $\frac{dy}{dx} = 2x y$, with y(0) = 1 and step size h = 0.1:
 - (a) 0.84
 - (b) 0.85
 - (c) 0.86
 - (d) 0.83
- **Q7.** Given $\frac{dy}{dx} = y x^2 + 1$, y(0) = 0.5, and h = 0.2, use Euler's method to find y(0.2):
 - (a) 0.62
 - (b) 0.64
 - (c) 0.66
 - (d) 0.68
- **Q8.** Solve the equation $\frac{dy}{dx} = -2y$, with y(0) = 1, using Euler's method with step size h = 0.1. Approximate y(0.1):
 - (a) 0.80
 - (b) 0.82
 - (c) 0.83
 - (d) 0.81
- **Q9.** What is the main limitation of the Euler method compared to higher-order methods like Runge-Kutta?
 - (a) Euler's method is computationally expensive.
 - (b) Euler's method is unstable for large step sizes.
 - (c) Euler's method requires higher derivatives.
 - (d) Euler's method is implicit.