FOOT: FragmentatiOn Of Target Experiment

FOOT goals

Hadrontherapy

Radioprotection in space

Target fragmentation

- dσ/dE and dσ/dω with 5% precision of the fragment production X sections in inverse kinematics
- p, C, O beams
- □ Hadrontherapy energies (200-400 *MeV/u*)

Projectile fragmentation

same but in direct kinematics

Radiobiology request: to have a more precise TPS Treatment Planning System

detailed knowledge of the fragmentation processes to optimize the spacecraft shielding (long term mission)

- dσ/dE and dσ/dω with 5% precision of the fragment production X sections in direct and inverse kinematics
- p, He, Li, C, O beams (the most common in space)
- Radioprotection energies (around 700 *MeV/u*)

FOOT Collaboration

FOOT approved by the INFN on September 2017 (CSN3)

92 members (60% staff):

- □ 10 INFN Sections
- □ 5 laboratories: Frascati, CNAO, Trento, GSI,IPHC (Strasbourg)
- □ 12 Italian Universities
- 2 foreign Universities: Aachen, Nagoya
- Centro Fermi

Physics program:

- □ Hadrontherapy:
 - □ Nuclear fragmentation @ 200 MeV/u
- □ Radioprotection in Space:
 - □ Nuclear fragmentation @ 700 MeV/u

Hadrontherapy vs Radiotherapy

Gamma

- □ Photoelectric (~Z⁴/E³)
- □ Compton (~Z/E)
- □ Pair prod (~Z²/lnE)

Pros and cons

- dose release maximum at the end
- Penetration depends on energy
- Hadron > efficient than γ
- □ Hadron < damage outside tumor</p>
- MORE expensive than γ

DEPTH (cm)

Bragg Peak

Proton/charged ion

- Ionization
- Excitation
- □ Bremsstrahlung
- □ | Fragmentation

Radiotherapy, IMRT 7 fields

Hadrontherapy, proton

Damage on DNA

Tumor is a cellular alteration \rightarrow not controlled proliferation \rightarrow stop the proliferation \rightarrow damage on DNA

but, necessary to know the Nuclear fragmentation cross sections

nanometric scale

Double strand break → irreparable damage

Target-Projectile fragmentation

200

Depth [mm]

p + H

p + C,O → target fragments low Energy → low range

No fragmentation

Target fragmentation

Fragment	E (MeV)	LET (keV/μm)	Range (µm)	
¹⁵ O	1.0	983	2.3	
^{15}N	1.0	925	2.5	
^{14}N	2.0	1137	3.6	
13 C	3.0	951	5.4	
12 C	3.8	912	6.2	
11 C	4.6	878	7.0	
$^{10}\mathrm{B}$	5.4	643	9.9	
⁸ Be	6.4	400	15.7	
⁶ Li	6.8	215	26.7	
⁴ He	6.0	77	48.5	
³ He	4.7	89	38.8	
^{2}H	2.5	14	68.9	

 $C + H \rightarrow projectile fragments$ High Energy → Long range

C + C,O → target/projectile fragments Projectile fragmentation

both

Tail present only when using Carbon

FOOT MAIN GOAL: Target fragmentation in proton therapy

 $p + C,O \rightarrow fragments$

Target fragments remain in the target

Impossible to detect fragments

Target (2mm)

$$\frac{d\sigma}{dE_{kin}}(H) = \frac{1}{4} \left(\frac{d\sigma}{dE_{kin}} (C_2 H_4) - 2 \frac{d\sigma}{dE_{kin}} (C) \right)$$

Ganil experimental data

DIRECT KINEMATIC

→ fragments

INVERSE KINEMATIC

C,O 200 MeV/A

→ fragments

Ganil: C @ 95MeV/u su C e C₂H₄

R. Spighi: FOOT experiment

Pre target region

Trigger and ToF start

250 μm–1 mm thick plastic scintillator (depending on E beam)

50 mm radius

~ 400 optical fibers → 4 boundles to 4 PMTs

Test beam in september in Trento

Beam momentum/direction & fragmentation in SC

Drift chamber

Gas: Ar/Co₂ (80/20%)

Test beam in september in Trento

Start Counter

Margarita

Margherita

SiPM

Beam monitor

Direzione beam dopo aver passato lo start counter

$$\begin{pmatrix} ct' \\ x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \gamma & 0 & 0 & -\beta\gamma \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -\beta\gamma & 0 & 0 & \gamma \end{pmatrix} \cdot \begin{pmatrix} ct \\ x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \gamma ct - \beta\gamma z \\ x \\ y \\ -\beta\gamma ct + \gamma z \end{pmatrix}$$

Tracking region

VTX: 4 layers of Si pixel (20 x 20 μm)

ITR: 2 layers of Si pixel (20 x 20 μm)

MSD:

3 layers of Si strips (120 μm x 9 cm)

2 permanent magnets
Hallbach geometry
B field in y direction (max 0.8 T)

Momentum reconstruction

tracker

Trajectory reconstruction

downstream region

BGO – (Bi₄Ge₃O₁₂) Inorganic scintillator

 $Z_{Bi} = 83$ $P_{BGO} = 7.13 \text{ g/cm}^3$ Weight = 1.027 kg Total weight 330 Kg

ΔE-Tof

2 layers of 20 bars

Silicon PhotoMultiplier (SiPM)

Tof Wall

Measure de/dx and tof

Calorimeter

Measure kinetic energy

Performance

Beam definition: SC + BM

$$\frac{d\sigma_f}{dE_{kin}} = \frac{(Y_f - Bkg_f)^U}{\textbf{N}_{\textbf{Prim}} \cdot N_t \cdot \Omega_{Ekin} \epsilon_f}$$

- Count n° of particles
- **Initial Trigger**
- Time start
- **Discard SC fragmentation**
- **Extrapolate vertex direction**
- **Evaluate beam direction**

2.1 mrad p @ 80 MeV/u

- $300 \pm 10 \, \mu m \, p@ \, 80 \, MeV/u$

Tof Wall

CNAO + GSI

Detector is complete

Data taking at CNAO-GSI (marchapril 2019) and CNAO (dec 2019)

Tof

□ Energy: 4-6 %

□ Time SCN: 40-50 ps for ¹²C and 150-190 ps for p

□ Tof (SC+TofW): 50-75 ps for $^{12}C - ^{16}O$

250 ps for p

Position: 7 mm for 12C and 15 mm for p

Paper circulates inside collaboration

Calorimeter, 1

TEST BEAM OVERVIEW:

- 9 crystals
- 15 μm SiPM arrays
- 3 reflective wrappings: White Painting, Mylar and Tyvek
- Proton Energy: 70, 120, 170, 227 MeV
- Carbon Energy: 115, 190, 260, 330, 399 MeV/A
- Temperature part:
 - For each energy 4 different temperature

Performances: charge Z reconstruction

 16 O (200 MeV/u)→ 2 C₂H₄

¹H	⁴He	⁷ Li	9Be	¹¹ B	¹² C	¹⁴ N	¹⁶ O
1	2	3	4	5	6	7	8
1.01±0.09	2.01±0.06	3.03±0.08	4.05±0.09	5.06±0.10	6.09±0.12	7.11±0.14	8.15±0.15

Z Resolution:

9%

3%

2.0%

FOOT Performances: Number of mass reconstruction

Reconstruction

Fit Methods: STANDARD χ² and ALM

 16 O (200 MeV/u)→ 2 H₄

Data simulated by Fluka

Resolution for heavy fragments ~ 3-4%

REDUNDANT Detector → different ways to determine A

A Reconstruction and fit

TOF (
$$\beta$$
) – TRACKER (β) TOF (β) – CALO (E_{kin})

TOF (
$$\beta$$
)— CALO (E_{kin}

TRACKER (p) - CALO (E_{kin})

$$A_1 = \frac{m}{U} = \frac{p}{U \beta \gamma}$$

$$A_2 = \frac{m}{U} = \frac{E_{kin}}{U(\gamma - 1)}$$

$$A_1 = \frac{m}{U} = \frac{p}{U\beta\gamma}$$

$$A_2 = \frac{m}{U} = \frac{E_{kin}}{U(\gamma - 1)}$$

$$A_3 = \frac{m}{U} = \frac{p^2 - E_{kin}^2}{2E_{kin}}$$

Standard χ^2 Fit

Taking into account the correlation between A_1 , A_2 and A_3

$$f = \left(\frac{(tof_{reco} - t)}{\sigma tof_{reco}}\right)^{2} + \left(\frac{(p_{reco} - p)}{\sigma p_{reco}}\right)^{2} + \left(\frac{(E_{kin,reco} - E_{kin})}{\sigma E_{kin,reco}}\right)^{2} + (A_{1} - A \quad A_{2} - A \quad A_{3} - A)\begin{pmatrix} C_{00} & C_{01} & C_{02} \\ C_{10} & C_{11} & C_{12} \\ C_{20} & C_{21} & C_{22} \end{pmatrix}\begin{pmatrix} A_{1} - A \\ A_{2} - A \\ A_{3} - A \end{pmatrix}$$

$$C = (A \cdot A^{T})^{-1} \qquad A = \begin{pmatrix} \frac{\partial A_{1}}{\partial t} dt & \frac{\partial A_{1}}{\partial p} dp & 0 \\ \frac{\partial A_{2}}{\partial t} dt & 0 & \frac{\partial A_{2}}{\partial E_{kin}} dE_{kin} \\ 0 & \frac{\partial A_{3}}{\partial p} dp & \frac{\partial A_{3}}{\partial E_{kin}} dE_{kin} \end{pmatrix}$$

Augmented LagrangianFit (ALM)

$$\tilde{\mathcal{L}}(\vec{x}; \boldsymbol{\lambda}, \, \mu) \equiv f(\vec{x}) - \sum_{a} \lambda_{a} c_{a}(\vec{x}) + \frac{1}{2\mu} \sum_{a} c_{a}^{2}(\vec{x}).$$

FIT Methods:

- Standard χ²
- AugmentedLagrangian (ALM)

Fit cut the wrong reconstructed fragments

R. Spighi: FOOT experiment

FOOT Performances: Number of mass reconstruction

¹⁶O (200 MeV/u) → C_2H_4

Simulation by Fluka

Resolution for heavy fragments ~ 3-4%

Conservative Resolutions

- $\Delta p/p \rightarrow 4\%$
- $\triangle E_{kin}/E_{kin} \rightarrow 1.5\%$
- $\Delta tof \rightarrow 70-140 ps$
- \triangle Δ (dE)/dE \rightarrow 3-10%

Possibility to disentangle isotopes

FOOT Performances: Isotopes separation (example of C)

Data simulated by Fluka

Conservative Resolutions

- \square $\Delta p/p$ $\rightarrow 4\%$
- $\Delta E_{kin}/E_{kin} \rightarrow 1.5\%$
- \triangle tof \rightarrow 70 -140 ps
- \triangle Δ (dE)/dE \rightarrow 3-10%

¹⁶O (200 MeV/u) → C_2H_4

Resolutions from Test Beam

- \Box $\Delta p/p$ \rightarrow 4%
- \Box $\Delta E_{kin}/E_{kin} \rightarrow 1.0\%$
- \triangle Δ tof \rightarrow 50 100 ps
- \triangle Δ (dE)/dE \rightarrow 3-10%

