

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им. Н.Э. Баумана)

 $\Phi AKYЛЬТЕТ$ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Лабораторная работа N 5

Дисциплина Моделирование.

Тема Исследование математической модели на основе

технологии вычислительного эксперимента.

Студент Степанов А. О.

Группа ИУ7-63Б

Оценка (баллы)

Преподаватель Градов В.М.

Цель работы: Получение навыков проведения исследований компьютерной математической модели, построенной на квазилинейном уравнении параболического типа.

Исследование проводится с помощью программы, созданной в лабораторной работе №4.

ИСХОДНЫЕ ДАННЫЕ

1. Значения параметров (как в лабораторной работе №4)

$$k(T) = a_1(b_1 + c_1 T^{m_1}), \frac{B_T}{c_M K},$$

$$c(T) = a_2 + b_2 T^{m_2} - \frac{c_2}{T^2}, \frac{D_K}{c_M^3 K},$$

$$a_1 = 0.0134, \ b_1 = 1, \ c_1 = 4.35 \cdot 10^{-4}, \ m_1 = 1,$$

$$a_2 = 2.049, \ b_2 = 0.563 \cdot 10^{-3}, \ c_2 = 0.528 \cdot 10^5, \ m_2 = 1$$

$$\alpha(x) = \frac{c}{x - d},$$

$$\alpha_0 = 0.05 \frac{B_T}{c_M^2 K},$$

$$\alpha_N = 0.01 \frac{B_T}{c_M^2 K},$$

$$l = 10 \text{ cm},$$

$$T_0 = 300 \text{ K},$$

$$R = 0.5 \text{ cm}$$

2. Поток тепла

$$F(t) = \frac{F_{\text{max}}}{t_{\text{max}}} \cdot t \cdot e^{-\left(\frac{t}{t_{\text{max}}} - 1\right)}$$

, где $F_{\rm max}$ – амплитуда импульса потока, $t_{\rm max}$ – время достижения амплитуды.

РЕЗУЛЬТАТЫ РАБОТЫ

1. Провести исследование по выбору оптимальных шагов по времени τ и пространству h. Шаги должны быть максимально большими при сохранении устойчивости разностной схемы и заданной точности расчета.

Для выбора оптимальных шагов используется метод, при котором уменьшаются шаги и наблюдается сходимость решений, как это делалось в лабораторной работе №1.

	1	0.1	0.01	0.001
0	300	300	300	300
1	300.434	303.473	305.37	305.378
2	301.285	309.623	313.242	313.247
3	302.538	317.824	322.809	322.807
4	304.174	327.598	333.639	333.629
5	306.175	338.591	345.453	345.434
6	308.524	350.542	358.05	358.019
7	311.202	363.255	371.278	371.234
8	314.191	376.586	385.02	384.96
9	317.472	390.419	399.18	399.104
10	321.03	404.666	413.681	413.587
11	324.847	419.252	428.459	428.346
12	328.908	434.117	443.46	443.326
13	333.197	449.21	458.638	458.482
14	337.7	464.485	473.952	473.773
15	342.404	479.903	489.369	489.165
16	347.296	495.43	504.857	504.629
17	352.363	511.035	520.391	520.138
18	357.595	526.691	535.947	535.668
19	362.98	542.373	551.504	551.198
20	368.51	558.059	567.045	566.711
21	374.174	573.73	582.551	582.189
22	379.963	589.368	598.009	597.619
23	385.87	604.956	613.405	612.986
24	391.886	620.48	628.727	628.279
25	398.004	635.929	643.965	643.488
26	404.217	651.289	659.109	658.603
27	410.519	666.551	674.151	673.614
28	416.903	681.706	689.083	688.516
29	423.363	696.745	703.897	703.299
30	429.893	711.66	718.587	717.96
31	436.488	726.447	733.149	732.491

Рис. 1: Шаг в пространстве

Рассматривая результаты, видимые на рисунке 1, выбран оптимальный шаг h=0.01.

При выборе оптимального шага для времени необходимо рассмотреть результаты для разных $t_{\rm max}$. На рисунке 2 рассмотрен случай при $t_{\rm max}=10$, а на $3-t_{\rm max}=100$.

	1	0.1	0.01	0.001
0	300	490.599	408.606	409.545
1	300	477.232	394.099	394.929
2	300	464.661	381.334	382.062
3	300	452.864	370.129	370.763
4	300	441.81	360.317	360.865
5	300	431.47	351.747	352.217
6	300	421.809	344.279	344.679
7	300	412.793	337.788	338.126
8	300	404.387	332.162	332.443
9	300	396.555	327.296	327.528
10	300	389.264	323.101	323.289
11	300	382.481	319.493	319.644
12	300	376.174	316.4	316.518
13	300	370.312	313.755	313.846
14	300	364.868	311.501	311.568
15	300	359.814	309.586	309.634
16	300	355.124	307.964	307.995
17	300	350.774	306.595	306.613
18	300	346.742	305.443	305.45
19	300	343.006	304.477	304.476
20	300	339.546	303.67	303.663
21	300	336.343	302.998	302.987
22	300	333.38	302.44	302.426
23	300	330.641	301.98	301.963
24	300	328.109	301.6	301.583
25	300	325.771	301.289	301.271
26	300	323.612	301.034	301.017
27	300	321.621	300.827	300.81
28	300	319.784	300.659	300.643
29	300	318.092	300.523	300.509
30	300	316.534	300.414	300.4
31	300	315.099	300.326	300.314

	1	0.1	0.01	0.001
0	300	311.112	312.345	312.47
1	300	309.616	310.7	310.81
2	300	308.303	309.25	309.345
3	300	307.152	307.974	308.057
4	300	306.147	306.855	306.927
5	300	305.27	305.877	305.939
6	300	304.509	305.024	305.076
7	300	303.848	304.282	304.326
8	300	303.277	303.639	303.676
9	300	302.784	303.083	303.114
10	300	302.36	302.604	302.629
11	300	301.996	302.193	302.213
12	300	301.684	301.841	301.856
13	300	301.418	301.54	301.552
14	300	301.192	301.285	301.294
15	300	300.999	301.068	301.074
16	300	300.836	300.885	300.889
17	300	300.698	300.731	300.733
18	300	300.582	300.601	300.603
19	300	300.484	300.493	300.494
20	300	300.401	300.403	300.403
21	300	300.333	300.329	300.328
22	300	300.275	300.267	300.265
23	300	300.227	300.216	300.214
24	300	300.187	300.174	300.172
25	300	300.154	300.14	300.138
26	300	300.126	300.112	300.11
27	300	300.103	300.089	300.087
28	300	300.085	300.071	300.069
29	300	300.069	300.056	300.055
30	300	300.056	300.044	300.043
31	300	300.046	300.035	300.034

Рис. 2: Шаг по времени при $t_{\rm max}=10$ — Рис. 3: Шаг по времени при $t_{\rm max}=100$

При $t_{\max}=10$ оптимальный шаг au=0.01, а при $t_{\max}=100$ — au=0.1. Таким образом, выбран оптимальный шаг $au=\frac{t_{\max}}{1000}$.

На рисунках 4, 5, 6 видно влияние амплитуды импульса и времени достижения амплитуды.

Рис. 4: График $T(x_n,t)$ при $F_{\max}=100,\ t_{\max}=10$

Рис. 5: График $T(x_n, t)$ при $F_{\max} = 100, \ t_{\max} = 100$

Рис. 6: График $T(x_n, t)$ при $F_{\text{max}} = 500, \ t_{\text{max}} = 100$

Таким образом, можно заметить, что при увеличении F_{\max} возрастает максимальная температура стержня, а при изменении t_{\max} меняется время импульса и время достижения точки с максимальной температурой.

2. График зависимости температуры T(0,t) при 3-4 значениях параметров a_2 и/или b_2 теплоемкости.

Параметры a_2 и b_2 принимают заданные значения из массивов, где для a_2 это [2.049, 5, 10, 25], а для b_2 – [0.000564, 0.001, 0.01, 0.1]. На рисунке 7 видны графики для этих значений. Зеленый при $a_2=2.049$ и $b_2=564\cdot 10^{-6}$, синий – $a_2=5$, $b_2=0.001$, оранжевый – $a_2=10$ $b_2=0.01$ и серый – $a_2=25$, $b_2=0.1$.

Рис. 7: График T(0,t) при разных значениях a_2, b_2

По этим графикам можно сделать вывод, что с увеличением теплоемкости темп роста и максимально значение температуры уменьшаются.

3. График зависимости температуры T(0,t) (т.е. при x=0) в частотном режиме теплового нагружения. Импульсы следуют один за другим с заданной частотой ν (частота определяется количеством импульсов в 1 секунду).

Подобраны такие $F_{\rm max}$ и $t_{\rm max}$, чтобы температуры не выходила за пределы 2000 К. На рисунках 8, 9, 10, 11 видно, что при увеличении частоты размах колебаний температуры уменьшается вплоть до нуля, как видно на рисунке 11.

Рис. 8: Частота $\nu = 0.01$

Рис. 9: Частота $\nu = 0.0625$

Рис. 10: Частота $\nu = 0.1$

Рис. 11: Частота $\nu = 100$

Полученное температурное поле совпадает с результатом расчета по программе лабораторной работы №3 при всех одинаковых параметрах модели. На рисунке 12 график, полученный программой из третьей лабораторной работы, а на рисунке 13 – из текущей.

Рис. 12: График из третьей лабораторной работы

Рис. 13: График из текущей лабораторной работы