| MI11                                                                                                                                                                                                                                                                                                                  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Systèmes temps réel                                                                                                                                                                                                                                                                                                   |  |
| Eléments de conception<br>pour un nœud                                                                                                                                                                                                                                                                                |  |
| Ml11  ute  1                                                                                                                                                                                                                                                                                                          |  |
| Traitement séquentiel  Processeur Mémoire E/S Périphériques                                                                                                                                                                                                                                                           |  |
| BUS  Acquisition                                                                                                                                                                                                                                                                                                      |  |
| <ul><li>Traitement</li></ul>                                                                                                                                                                                                                                                                                          |  |
| <ul> <li>Restitution des résultats</li> </ul>                                                                                                                                                                                                                                                                         |  |
| Prise en compte et traitement d'événement dans<br>un délai donné                                                                                                                                                                                                                                                      |  |
| MII1  ulc Printemps 2017                                                                                                                                                                                                                                                                                              |  |
| Traitement d'événements en un temps borné<br>et reproductible                                                                                                                                                                                                                                                         |  |
| <ul> <li>Nécessité de mise en œuvre de mécanismes particuliers</li> <li>Parallélisme</li> <li>Communication</li> <li>Synchronisation</li> <li>Contraintes temporelles</li> </ul>                                                                                                                                      |  |
| <ul> <li>Différentes approches :</li> <li>Synchrone : capter périodiquement la dynamique du procédé</li> <li>Réactif : répondre instantanément aux « stimulations » en provenance du procédé</li> <li>Asynchrone : exécutif multitâches temps réel; prise en compte des tâches périodiques et apériodiques</li> </ul> |  |
| Mili                                                                                                                                                                                                                                                                                                                  |  |

#### Approches synchrones - systèmes réactifs

- □ Hypothèse de synchronisme réponse à tout événement extérieur synchrone à son occurrence
- □ Automate à états finis, GRAFCET, ...
- □ Parallélisme mis en évidence hors ligne lors de l'analyse du problème
- Décomposition fonctionnelle + composition parallèle d'automate



#### Automate à états finis

$$M = \langle Q, \Sigma, \delta : Q \times \Sigma \to Q, q^0 \in Q \rangle$$

- □ Deux processus accèdent à une ressource en exclusion mutuelle
  - ⇒ Deux modèles indépendants
  - ⇒ Composition parallèle





#### Outils de spécification ⇒ programmation

- □ Réseaux de Pétri ordinaires, temporisés, synchronisés, ...
- Ordonnancement de 8 tâches non-interruptibles, A, B, C, D, E, F, G, H
- A l'initialisation, la tâche A est exécutable.
- Les tâches B et C ne peuvent être exécutées qu'après la fin A, ce qui n'implique pas que ces 2 tâches soient nécessairement lancées en même temps.
   La tâche D n'est exécutable qu'après la fin de B;
- E n'est exécutable qu'après la fin de C ; F n'est exécutable qu'après la fin des tâches C et D ;
- □ G n'est exécutable qu'après la fin des tâches D et E ;
  □ Enfin, H n'est exécutable qu'après la fin des tâches F et G.

  La tâche A peut être à nouveau exécutée après la fin
- □ la tâche B peut être à nouveau exécutée après la fin de
- A et de H, et le cycle peut recommencer indéfiniment.



#### Interaction avec le « monde physique »

| Interaction | par | scrutation |
|-------------|-----|------------|
|-------------|-----|------------|

Faire |faire vérifier capteurs verifier capteurs
tant que données non disponibles
Lire capteurs
Traiter les données
Démarrer las actions | faire | vérifier les actionneur | tant que actions effectuées | Jusqu'à arrêt du système

- □ **Avantages** : temps de réaction = temps d'une boucle, très simple
- Inconvénients: rigide, peu performant, gestion de plusieurs périphériques avec des fréquences de traitements différents



#### Interaction par interruptions

□ Interruption : arrivé d'un événement qui interrompt l'exécution normale d'un programme



#### Limites de ces approches

- □ Grande partie du temps processeur consacrée à autre chose que l'application :
  - attente de ressources, de donnée,
  - □ terminaisons d'opérations en cours, ...
- ⇒ Définition de mécanismes qui libèrent le processeur
- ⇒ Traitements immédiats et /ou différées de tâches
- ⇒ Systèmes multitâches



## Multitâches Temps Réel

Structure d'un moniteur

Notion de processus et tâches

Ressources



## Organisation séquentielle



#### Division en processus



| Processus                                                                                                                                                                                                                                                                                                                                                     |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Définition: Un processus est un ensemble d'actions<br>qui se suivent naturellement les unes après les autres<br>et qui sont indépendantes des autres actions<br>n'appartenant pas au processus.                                                                                                                                                               |  |
| <ul> <li>Conceptuellement chaque tâche possède un processeur<br/>virtuel comprenant sont pointeur d'instruction, sa zone de<br/>données, son pointeur de pile (le vecteur d'état).</li> </ul>                                                                                                                                                                 |  |
| <ul> <li>En réalité, le processeur physique commute de tâches en<br/>tâches sous le contrôle de l'ordonnanceur.</li> </ul>                                                                                                                                                                                                                                    |  |
| Processus = vecteur d'état + tâche                                                                                                                                                                                                                                                                                                                            |  |
| ulc Printemps 2017                                                                                                                                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                               |  |
| Tâche                                                                                                                                                                                                                                                                                                                                                         |  |
| <ul> <li>Deux parties : programme (code) et données</li> <li>Le programme contient les instructions et éventuellement certaines constantes (coefficients, texte,) – accessible uniquement en lecture.</li> <li>La zone de données contient les données variables et les données constantes ou initialisées – accessible en lecture et en écriture.</li> </ul> |  |
| <ul> <li>□ Vecteur d'état d'un processus</li> <li>□ le contenu du compteur programme</li> <li>□ le contenu des registres du microprocesseur</li> <li>□ l'espace d'adressage du microprocesseur associé au processus</li> <li>□ l'état des périphériques rattachés au microprocesseur</li> </ul>                                                               |  |
| MI11  ulc Printemps 2017                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                               |  |
| Exécutif temps réel                                                                                                                                                                                                                                                                                                                                           |  |
| <ul> <li>gère les tâches d'une application de façon<br/>optimale</li> </ul>                                                                                                                                                                                                                                                                                   |  |
| <ul> <li>offre des services de communication et de<br/>synchronisation des tâches.</li> </ul>                                                                                                                                                                                                                                                                 |  |
| Agence Agence entrées CPU Noyau sorties temps réel Agence gestion tâches mémoire d'exploitation temps réel                                                                                                                                                                                                                                                    |  |
| Villa Printemps 2017  Système  d'exploitation temps réel 15                                                                                                                                                                                                                                                                                                   |  |

#### Noyau Temps Réel et Primitives

- NTR : gestion des différentes ressources du systèmes
  - simplifier la tâche du programmeur : fonctions entrées-sorties, gestion de la mémoire ...
     services sous la forme de primitives
- <u>Primitives</u>: des séquences programmées grâce auxquelles l'utilisateur peut demander au moniteur l'exécution de fonctions déterminées

  - gestion des tâches
     soulage le programmeur de certaines contraintes, telles que la gestion des ressources et des entrées/sorties.



16

#### Noyau temps réel

- Evolution des processus sur un processeur physique.
   Ensemble de services situés au-dessus du jeu d'instructions du processeur central (physique) : un jeu de macro-instruction qui est le jeu d'instruction de la machine virtuelle.



- □ partage du temps d'occupation du processeur
- protection des ressources communes
- gestion des interruptions gestion de la communication interprocessus
- primitives de gestion des processus





#### Sélection de processus





#### Les accès au noyau Temps Réel

- tâches matérielles
- tâches logiciel
- □ Un accès au noyau temps réel provoque :
  - $\ \square$  la sauvegarde du contexte de la tâche interrompue
  - l'exécution du programme d'interruption ou du service demandé
  - □ la détermination de la tâche prête la plus prioritaire
  - □ la restitution du contexte de cette tâche



#### Noyaux



| _ |  |
|---|--|
| 7 |  |
| , |  |

#### Commutation de contexte (1)



#### Commutation de contexte (2)



#### Commutation de contexte (3)



| Etats des tâches                                                                                                                                                        |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Créer                                                                                                                                                                   |  |
| Non crée Crée                                                                                                                                                           |  |
| Supprimer  NON_CREE:                                                                                                                                                    |  |
| <ul> <li>la tâche est inconnu de l'exécutif</li> <li>le code de la tâche est en mémoire</li> </ul>                                                                      |  |
| - Les zones de données dynamiques et la pile ne sont pas attribués.                                                                                                     |  |
| CREE: - l'exécutif reconnaît la tâche.                                                                                                                                  |  |
| - La tâche devient processus (vecteur d'état, identificateur)                                                                                                           |  |
| - Les transitions : états NON_CREE ou PRET                                                                                                                              |  |
| MI11  utc Printemps 2017  25                                                                                                                                            |  |
| (macaya sa ti                                                                                                                                                           |  |
|                                                                                                                                                                         |  |
|                                                                                                                                                                         |  |
|                                                                                                                                                                         |  |
| Etats d'un processus actif                                                                                                                                              |  |
| Activer                                                                                                                                                                 |  |
| Créé Stopper Eveiller Requête                                                                                                                                           |  |
| Allocation processeur processeur autre                                                                                                                                  |  |
| Bloqué Exécuté processus                                                                                                                                                |  |
| Bloquer                                                                                                                                                                 |  |
| <ul> <li>Les franchissements des transitions entre les états sont la<br/>conséquence d'appels aux primitives du noyau.</li> </ul>                                       |  |
| <ul> <li>exclusivement appelées par le noyau (proposition du<br/>processeur à une tâche, attribution du processeur à une<br/>tâche, préemption d'une tâche),</li> </ul> |  |
| <ul> <li>des services offerts à l'utilisateur (suspension, reprise,<br/>création et destruction d'une tâche).</li> </ul>                                                |  |
| MI11  utc Printemps 2017  26                                                                                                                                            |  |
|                                                                                                                                                                         |  |
|                                                                                                                                                                         |  |
|                                                                                                                                                                         |  |
|                                                                                                                                                                         |  |
| Types de tâches                                                                                                                                                         |  |
| .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                 |  |
| □ Périodiques : elles ont des échéances strictes                                                                                                                        |  |
| <ul> <li>Apériodiques (sporadiques) : le début de<br/>l'exécution de la tâche est irrégulier (asynchrone)</li> </ul>                                                    |  |
|                                                                                                                                                                         |  |
| <ul> <li>Souple : échéance relative (mieux tard que jamais)</li> </ul>                                                                                                  |  |
| □ Non temps réel : aucune contrainte de temps                                                                                                                           |  |

#### Ressources du processus

- Ressources : procédures, données, mémoire, processeur, fichiers, périphériques
- □ Ressources communes (partagées entre les différents processus)
   ⇒ L'évolution des processus sera donc dépendant de la disponibilité de la ressource:
   □ bloqué

  - □ actif
- Types de ressources :

  - □ ressource locale à un processus : il lui appartient □ ressource commune : partageable à n points d'accès, critique
- ☐ En fonction des ressources, les processus sont :



#### Commutation sur ressources



#### Contraintes temporelles

- □ Aucune contrainte temporelle
- □ Contraintes de temps essentiellement de trois types:
  - □ instant au plus tôt pour commencer une tâche
  - □ instant au plus tard pour la terminer
  - durée maximale d'exécution de la tâche
- Activation des tâches:
  - périodiquement (périodique)
  - □ à des instants fixes
  - □ de manière aléatoire (apériodique)



| ı | nto | rru | ntior  | adh r | tâck | 100 |
|---|-----|-----|--------|-------|------|-----|
| 1 | nte | rru | lotior | ı aes | tacı | าes |

- □ Plus de liberté à l'ordonnanceur
- Charge d'exécution induite par les changements de contextes
- Ressources en exclusion mutuelle, la préemption peut conduire à des situations d'interblocage.



#### Relations entre tâches

- □ les tâches sont indépendantes : sans relation
- □ les tâches s'exécutent selon un ordre fixé
   ⇒ des contraintes de précédence
- les tâches partagent une (ou plusieurs) ressource(s)contraintes de ressources
- □ Des algorithmes d'ordonnancement qui tiennent compte de :
  - Relations de précédence
  - □ Contraintes de ressources



33

#### Priorités des tâches

- □ Critères pour l'allocation du processeur
- □ Priorités affectées aux tâches :
  - □ à la conception (priorités externes)
  - à partir d'un calcul fait par l'algorithme d'ordonnancement(priorités internes)
- □ Priorités statiques
- Priorités dynamiques



34

#### Inversion de priorité



#### Héritage de priorité



#### Non réentrance : ressource



## Quelques fonctionnalités

à travers l'exemple du µC-OSII



## Structure du noyau

Portabilité Ordonnancement Tâches



#### Dépendances processeur



| Démarrage Noyau                                                                                                                                                                                                                                   |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <ul> <li>L'initialisation du noyau doit se faire avant tout appel à<br/>des éléments du noyau</li> </ul>                                                                                                                                          |  |
| OSInit();                                                                                                                                                                                                                                         |  |
| <ul> <li>Une fois l'initialisation effectuée, des éléments peuvent<br/>être initialisés mais ne s'exécutent pas</li> </ul>                                                                                                                        |  |
| <ul> <li>La prise en main du programme par le noyau se fait par<br/>l'appel d'une fonction spécifique :</li> <li>OSStart();</li> </ul>                                                                                                            |  |
| MI11                                                                                                                                                                                                                                              |  |
| ulc Printemps 2017                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                   |  |
|                                                                                                                                                                                                                                                   |  |
|                                                                                                                                                                                                                                                   |  |
|                                                                                                                                                                                                                                                   |  |
| Inhibition des interruptions                                                                                                                                                                                                                      |  |
| <ul> <li>Dans certain cas, il peut être important de<br/>désactiver les interruptions du système.</li> </ul>                                                                                                                                      |  |
| Des primitives sont prévues à cet effet :                                                                                                                                                                                                         |  |
| <pre>OS_ENTER_CRITICAL();</pre>                                                                                                                                                                                                                   |  |
|                                                                                                                                                                                                                                                   |  |
| <pre>OS_EXIT_CRITICAL();</pre>                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                                                                                   |  |
| MI11 42                                                                                                                                                                                                                                           |  |
| utc Printemps 2017                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                   |  |
|                                                                                                                                                                                                                                                   |  |
|                                                                                                                                                                                                                                                   |  |
| Bloc de contrôle de tâches                                                                                                                                                                                                                        |  |
| Pour maintenir les informations concernant les tâches                                                                                                                                                                                             |  |
| présentes dans le système, le noyau utilise des<br><i>Task Control Blocks</i>                                                                                                                                                                     |  |
| typedef struct os_tcb {     INT16U OSTCBStkPtr; /* Pointer to current top of stack */                                                                                                                                                             |  |
| #if OS_TABK_CREATE EXT_EN > 0 void *OSTCBExtPtr; /* Pointer to user definable data for TCB extension*/                                                                                                                                            |  |
| <pre>INT16U OSTCBOpt; /*Task options as passed by OSTaskCreateExt()*/ INT16U OSTCBId; /* Task ID (0.65535) */ #endif</pre>                                                                                                                        |  |
| INT16U OSTCBStkBottom; /* Pointer to bottom of stack */ INT32U OSTCBStkBize; /* Size of task stack */ struct os_tcb *OSTCBNext; /* Pointer to next TCB in the TCB list */ struct os_tcb *OSTCBPrev; /* Pointer to previous TCB in the TCB list */ |  |

43

} OS\_TCB;

#### Ordonnancement par priorité

# □ La tâche la plus prioritaire pouvant être exécutée est toujours mise en exécution nodebug void OS\_Sched(void) { INTBU y; // don't use critical section macros since context switching inside // of a critical section can cause the counter to be incorrect OS\_ENTER\_CRITICAL();



#### Table de résolution de priorité

Index : modèle binaire pour résoudre la plus haute priorité La valeur indexée correspond à la position du bit de plus haute priorité (0..7)

#### Liste des tâches prêtes



#### Rendre une tâche prête

#### OSMapTbl[]

| Index | Bit Mask (Binary) |
|-------|-------------------|
| 0     | 00000001          |
| 1     | 00000010          |
| 2     | 00000100          |
| 3     | 00001000          |
| 4     | 00010000          |
| 5     | 00100000          |
| 6     | 01000000          |
| 7     | 10000000          |

#### OSRdyGrp

|= OSMapTbl[ prio >> 3 ]

OSRdyTbl[prio >> 3 ] |= OSMapTbl[ prio & 0x07 ]



#### Les Tâches





#### Piles de tâches

- □ Chaque tâche se voit allouer une pile
- Des valeurs de piles sont définies par défaut ; cela peut être modifié dans le code

```
#define STACK_CNT_256 3 // number of 256 byte stacks #define STACK_CNT_512 1 // number of 512 byte stacks #define STACK_CNT_1K 2 // number of 1K stacks #define STACK_CNT_2K 1 // number of 2K stacks #define STACK_CNT_4K 0 // number of 4K stacks
```



 Des tâches cachées peuvent avoir besoin de piles (IDLE, application, Statistic)



50

#### Création de Tâches



#### Format des Tâches

#### Une tâche est :

- une boucle infinie, qui doit contenir des primitive permettant de la mettre en pose
- □ Une série d'instructions finissant par une primitive de fin de tâche

```
void Tachel(void *pdata)
{
    short int n, flag;
    for (;;)
    {
        OSSemPend(read_sem, 0, NULL);
        printf("Tache 1 \n");
        ...
        OSSemPost(FinRead_sem);
}

Miii
}
```

17

|                   | Les interruptions                             |  |
|-------------------|-----------------------------------------------|--|
| MI11<br>utc       | 53                                            |  |
|                   | Interruptions : scénario de type 1            |  |
|                   |                                               |  |
|                   | Tâche 1 Interruption X                        |  |
|                   | ISR                                           |  |
|                   |                                               |  |
|                   | Tâche 1                                       |  |
| _                 |                                               |  |
| MI11              | 54                                            |  |
| utc Printemps 201 | ,                                             |  |
|                   |                                               |  |
|                   |                                               |  |
|                   | Interruptions : scénario de type 2            |  |
|                   | interrupcions : seemano de type 2             |  |
| Tâch              | 22                                            |  |
|                   | Interruption X                                |  |
|                   | Nesting = 1 Tâche est rendu prête Nesting = 0 |  |
| Tâch              |                                               |  |
| racin             |                                               |  |
| 11111             |                                               |  |
| MI11              | 55                                            |  |

#### Interruptions : scénario de type 3



#### Interruptions : schéma global



Synchronisations Sections critiques Exclusions mutuelles



#### Sémaphore : définition

- □ Solution générale aux problèmes :
  - d'accès à des ressources partagées
  - □ de synchronisation inter-tâches



#### Sémaphore

□ Relations entre tâches, ISR, sémaphore





#### Structure d'un Sémaphore

- Un sémaphore se présente sous la forme d'une structure de données initialisée par le noyau
- On accède au sémaphore par un pointeur sur la structure

| //  | Les se | éma | aphores |     |
|-----|--------|-----|---------|-----|
| os_ | EVENT  | *   | user_se | m ; |
| os_ | EVENT  | *   | read_se | m;  |



61

#### Création d'un sémaphore



#### Attente de jeton



#### Envoi de jetons



## Mutex □ Version simplifiée du sémaphore OSMutexCreate() OSMutexDel() OSMutexPend() OSMutexAccept() OSMutexPost() OSMutexQuery() Tâche Tâche 65 Gestion d'événements ☐ Attente simultanée sur une conjonction ou une disjonction d'événement OSFlagCreate() OSFlagPend() OSFlagDel() XOSFlagAccept() Tâche Tâche OSFlagPost() OSFlagQuery() Event Flag Group ISR ISR OSFlagPost() OSFlagAccept( OSFlagQuery() Gestion mémoire

## Partition mémoire (1)



#### Partition mémoire (2)

- □ Gestion par une liste chainée
- □ Mémoire allouée à l'initialisation
- Gestion de l'occupation des blocs par le noyau : allocation pseudo-dynamique
- ☐ Fourniture d'un pointeur vers le début du bloc

OSMemCreate()
OSMemGet()
OSMemPut()
OSMemQuery()

69

## Messagerie Asynchrone



#### Mailbox

□ Peut-être publique ou privée en fonction des noyaux



#### Queue de messages

□ Relations entre tâches, ISR, et queue de messages



#### Queue: structure



### Partition mémoire pour la messagerie

