DRAM CONTROLLER

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Overview

- Announcement
 - Homework 5 submission deadline: Apr. 10th

- □ This lecture
 - DRAM control
 - DRAM timing
 - DRAM hierarchy
 - Channel, bank

Recall: DRAM System

□ DRAM chips can perform basic operations

Recall: DRAM Operations

- Main DRAM operations are
 - Precharge bitlines to prepare subarray for activating a wordline
 - Activate a row by connecting DRAM cells to the bitlines and start sensing
 - Read the contents of a data block from the row buffer
 - Write new contents for data block into the row buffer
 - Refresh DRAM cells
 - can be done through a precharge followed by an activate

DRAM Row Buffer

□ All reads and writes are performed through RB

DRAM Row Buffer

- □ Row buffer holds a single row of the array
 - A typical DRAM row (page) size is 8KB
- The entire row is moved to row buffer; but only a block is accessed each time
- □ Row buffer access possibilities
 - Row buffer hit: no need for a precharge or activate
 - \sim 20ns only for moving data between pins and RB
 - Row buffer miss: activate (and precharge) are needed
 - \sim 40ns for an empty row
 - ~60ns for on a row conflict

DRAM Control

- □ DRAM chips have no intelligence
 - An external controller dictates operations
 - Modern controllers are integrated on CPU
- □ Basic DRAM timings are
 - \blacksquare t_{CAS}: column access strobe (RD \rightarrow DATA)
 - \blacksquare t_{RAS}: row active strobe (ACT \rightarrow PRE)
 - \blacksquare t_{RP}: row precharge (PRE \rightarrow ACT)
 - \blacksquare t_{RC}: row cycle (ACT \rightarrow PRE \rightarrow ACT)
 - \blacksquare t_{RCD}: row to column delay (ACT \rightarrow RD/WT)

DRAM Timing Example

Memory Channels

- Memory channels provide fully parallel accesses
 - Separate data, control, and address buses

Memory Banks

- Memory banks provide parallel operations
 - Shared data, control, and address buses
- The goal is to keep the data bus fully utilized

DRAM Organization

- DRAM channels are independently accessed through dedicated data, address, and command buses
 - Physically broken down into DIMMs (dual in-line memory modules)
 - Logically divided into ranks, which are a collection of DRAM chips responding to the same memory request

