EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

: 08176252

PUBLICATION DATE

09-07-96

APPLICATION DATE

26-12-94

APPLICATION NUMBER

06322802

APPLICANT: MITSUI TOATSU CHEM INC;

INVENTOR: TAKAYANAGI HIROSHI;

INT.CL.

: C08G 18/10 C08G 18/82

TITLE

: IMPROVED PREPOLYMER COMPOSITION

ABSTRACT:

PURPOSE: To obtain a stable, transparent prepolymer compsn. which gives a molded item excellent in mechanical properties by reacting a specific 4,4'- diphenylmethane diisocyanate with a specific linear compd. and subjecting the resulting prepolymer to vacuum distillation to impart thereto specified properties.

CONSTITUTION: A prepolymer is obtd. by reacting 4,4'-diphenylmethane diisocyanate contg. 0.3wt.% or higher 2,4'-isomer (including 2,2'-isomer) with a linear compd. having a ratio of Mw/Mn of 3.0 or lower, two active hydrogen atoms, and a mol.wt. of 250-4,000 (e.g. polytetramethylene glycol) in an equivalent ratio of NCO groups to OH groups of 2.5-10.0. Free diphenylmethane diisocyanate is removed from the prepolymer by vacuum distillation to a content of 1wt.% or lower, and the ratio of Mw/Mn is adjusted to 5.0 or lower.

COPYRIGHT: (C)1996,JPO

(19)日本国特許庁(JP) (12) 公開特許公報(A)

庁内整理番号

(11)特許出願公開番号

特開平8-176252

(43)公開日 平成8年(1996)7月9日

(51) Int.Cl.⁶

(22)出願日

識別記号

FΙ

技術表示箇所

C 0 8 G 18/10

NFT

18/82 NGU

審査請求 未請求 請求項の数1 〇L (全 5 頁)

特願平6-322802 (21)出願番号

平成6年(1994)12月26日

(71)出願人 000003126

三井東圧化学株式会社

東京都千代田区霞が関三丁目2番5号

(72)発明者 松坂 康弘

神奈川県横浜市栄区笠間町1190番地 三井

東圧化学株式会社内

(72)発明者 村田 尚洋

神奈川県横浜市栄区笠間町1190番地 三井

東圧化学株式会社内

(72)発明者 石川 恵子

神奈川県横浜市栄区笠間町1190番地 三井

東圧化学株式会社内

最終頁に続く

(54) 【発明の名称】 改良されたプレポリマー組成物

(57)【要約】

比較的高分子のジオールと、過剰量のMDI 【構成】 とを反応させて部分プレポリマーを製造したのち、遊離 のMDIを減圧留去することにより得られる改善された プレポリマー組成物。

【効果】 物性の良いポリウレタン成形物を与える原料 として優れたものである。

1

【特許請求の範囲】

【請求項1】 2,4'-体(2,2'-体を含む)を 0.3重量%以上含有する、4,4'-ジフェニルメタ ンジイソシアナートと、Mw/Mnが3.0以下である 活性水素を2個有する分子量250~4000の直鎖状 分子とを、イソシアナート基と活性水素基の当量比2. 5以上10.0以下で反応させて製造したプレポリマー を減圧蒸留法にて、遊離のジフェニルメタンジイソシア ナートを留去し、その含有量を1重量%以下とし、か つ、Mw/Mnが5.0以下とすることを特徴とする改 10 良されたプレポリマー組成物。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、ポリウレタン、あるい はポリウレタンウレア成形物(以下、単にポリウレタン 成形物と称する) 用の改良されたプレポリマー組成物に 関する。

[0002]

【従来の技術】従来、実質的に橋かけ構造を有しないポ リウレタン溶液から弾性繊維、弾性フィルム、エラスト *20* マー状の各種成形品、人工皮革の表面膜や各種塗料など の表面被覆物、含浸剤などに優れたゴム状弾性を有する 種々の物品が製造されている。また、天然ゴムと比べて 機械強度が大きく、更に耐久性にも優れているという特 徴をもっている。このポリウレタン成形物は、有機ジイ ソシアナートと活性水素を2個有する分子量250~4 000の比較的高分子のジオール(以下ジオールと称す る)によるプレポリマー化反応を行い、その後、溶媒を 添加後ジアミン等を用いて鎖延長反応を行う2つの工程 より製造されている。この溶液を用いる方法は固体状の *30* ポリウレタンをそのまま加熱溶融することにより成形す る方法に比べて室温で流動性に富む系を扱えるため一般 に取り扱いが容易であり、装置的、工程的にも、より簡 単に製造できる特徴がある。

【0003】しかしながら、プレポリマー製造工程にお いては、2,4'-体、2,2'-体を含む4,4'-ジフェニルメタンジイソシアナートとジオールを当量比 2. 0 で合成したプレポリマーではMD I によりジオー ルが2~3分子結合し、オリゴマーを生成すると共に未 反応の遊離MDIが生成してしまう。オリゴマーの生成 40 はハードセグメント間の距離を著しく増大させ、成形物 の機械物性を著しく低下させる原因となり、また、遊離 MDIの存在は、鎖延長時におけるハードセグメントの 局在化の原因となり、粘度の急激な上昇(以下ゲル化と 称する)、白濁化等ポリウレタン成形物製造上どちらも 好ましくない。

【0004】この様な問題を解決するため、未反応MD Iの含量を低減することが考えられ、一般的に知られて いることであるが、例えば、特公昭47-35317 号、特開平4-100919号、特開平5-27143 *50* 【0009】

2号、特開平5-272011号、特開平4-1268 2 1 号明細中にジオールとMDIの当量比を 1. 4~ 1.6にて反応させる方法が開示されているが、未反応 MDIの量は低減するものの、不十分であり、また、オ リゴマーが大量に生成する。

【0005】さらに、一定の長さに伸長した後荷重を取 り除いたとき、ポリウレタン成形物の弾性回復性は天然 ゴムの回復性に比べ、劣るという欠点がある。このた め、種々の弾性機能についてより一層の改良が求められ ている。すなわち、弾性機能として、高い破断伸度、変 形歪みに対する応力変動が小さいこと、伸縮時のヒステ リシス損失が小さいことが望まれている。

【0006】これらの弾性機能の改良を目的として種々 の低融点ジオールを用いる試みがなされているが、上記 の弾性機能を満足する水準には至っていない。例えば、 特開昭59-179513号には低融点ジオールとして エーテルエステルジオールを用いているが、ジオール成 分にエステル結合基が存在するために耐加水分解性、耐 カビ性等の耐久性に劣り、新たな問題を生じている。ま た、ジオール成分としてポリテトラメチレングリコール にエチレンオキサイド、プロピレンイキサイド、ポリブ チレンオキサイドなどを付加したジオール、または、テ トラヒドロフランと前記アルキレンオキサイドとの共重 合アルキレンエーテルグリコールを用いたポリウレタン 重合体は耐水性や耐光性等の耐久性がポリテトラメチレ ングリコールのみを使用したポリウレタンに比較して大 幅に低下する欠点がある。

【0007】また、プレポリマーを合成後、遊離のモノ マーを減圧留去する方法は以前から知られており、例え ば、特開昭54-149785号、特開昭61-221 2 1 5 号、特開昭 6 3 - 2 7 8 9 2 3 号、特開平 4 - 8 719号、特開平4-202417号、特開平4-25 2220号明細等にジイソシアナートトルエンの遊離モ ノマーを低減したプレポリマーからエラストマーを製造 する方法が記載されているが、遊離MDIを低減した例 は見あたらず、また、ウレタン弾性体組成物を製造する 上でのポリウレタン溶液の製法について、溶媒中での不 均一反応を低減し、凝集性の制御をおこなう事について は記載がない。

[0008]

【発明が解決しようとする課題】本発明が解決しようと する課題は、従来の方法では解決不可能であった遊離M DIの低減とオリゴマー生成の低減という2つの課題を 同時に解決し、紡糸用原液、フィルムあるいは成形用の 溶液、表面被覆用の塗料溶液、若しくは含浸剤、接着剤 溶液として、透明で安定性が良く、作業性の良い、ポリ ウレタン溶液を得、また、溶媒を除去して成形物を製造 する際の物性向上を目的として、プレポリマーを改善す ることである。

【課題を解決するための手段】本発明者らは、上記の問 題を解決するために鋭意検討した結果、オリゴマ-生成 を低減するため、ジオールを過剰量のMDIと反応さ せ、また、得られた反応生成物(以後パーシャルプレポ リマーと称する)を減圧蒸留法にて留去し、その含有量 を低減することにより上記問題点を解決し、溶液の安定 性、成形物の物性が向上することを見い出し本発明に到 達した。

【0010】すなわち、本発明は、次の通りである。 上含有する、4,4'-ジフェニルメタンジイソシアナ ートと、MW/Mnが3.0以下である活性水素を2個 有する分子量250~4000の直鎖状分子とを、イソ シアナート基と活性水素基の当量比2.5以上10.0 以下で反応させて製造したプレポリマーを減圧蒸留法に て、遊離のジフェニルメタンジイソシアナートを留去 し、その含有量を1重量%以下とし、かつ、Mw/Mn が5. 0以下とすることを特徴とする改良されたプレポ リマー組成物。

【0011】改善されたプレポリマーとは、オリゴマー 20 生成が少なく、しかも、未反応で遊離のMDIが1.0 %以下のプレポリマーであり、このような特徴が、プレ ポリマーと鎖延長剤との反応において、反応性の高い遊 離のMDIと鎖延長剤との反応を抑制することより、局 部的な反応を抑制する事が可能になり、しかも、凝集性 の高い結合を非局在化出来ることから、ポリウレタン溶 液の安定性が増す。また、溶媒除去時にもミクロな凝集 性部分と非凝集性部分との相分離をバランス良くおこな わせることから成形物の物性が向上すると考えられる。

【0012】本発明におけるMw/Mnの値は、ゲルパ *30* ーミエーションクロマトグラフィー(GPC)により測 定した。GPCの測定条件は次の通りである。溶出液: テトラヒドロフラン、流速:1.0ml/分、カラムオ ーブン温度:40℃、カラム:TSKGEL GMHX L, G2000HXL, G1000HXL (以上、東ソ 一社製)、検出器:示差屈折計、Mw/Mnの値は、メ インピークについて計算を行った。

【0013】本発明における改良されたプレポリマーは 次の2工程より製造される。すなわち、活性水素を2個 有する分子量250~4000の直鎖状分子と当量比で 40 2. 0以上10. 0以下の過剰量MDIとの反応により パーシャルプレポリマーを製造する第一工程、得られた パーシャルプレポリマー中の遊離MDIを減圧下にて留 去する第二工程より成立している。

【0014】第一工程において使用する有機ジイソシア ナートは、2,4'-体(2,2'-体を含む)を0. 3重量%以上含有し、残りが4,4'体であるジフェニ ルメタンジイソシアナート(以下MDIと称する)であ って、一部、カルボジイミド変性等の行われたMDIを 態で入手して使用しても良いが溶融状態のMDIの方が 溶解作業を省けるので好ましい。

【0015】活性水素を有する分子量250~4000 の直鎖状分子としては、ポリエーテルグリコール、ポリ エステルグリコール、又はこれらの共重合体、混合物等 が挙げられる。分子量が250未満では弾性性能が悪 く、4000超ではポリエーテルグリコール、ポリエス テルグリコール製造上困難となる。適当なポリエーテル グリコールの主なものはポリアルキレンエーテル、たと 2, 4' -体(2, 2' -体を含む)を0. 3重量%以 10 えばポリテトラメチレングリコール、ポリエチレングリ コール、ポリプロピレングリコール、ポリブチレングリ コール、ポリヘキサメチレングリコール等である。ま た、これらを製造する際に用いる単量体の混合物より製 造されたランダム共重合体、製造方法を変えたブロック 共重合体も用いる事ができる。成形物の物性より好適に 用いられるのはポリテトラメチレングリコールである。 【0016】ポリエステルグリコールは公知のように、 2塩基酸と低分子グリコールとの重縮合より得られる。 2塩基酸としてはコハク酸、アジピン酸、スペリン酸、 セバシン酸、テレフタル酸、ヘキサヒドロテレフタル 酸、アゼライン酸等が用いられ、また、低分子グリコー ルとしてはエチレングリコール、ジエチレングリコー ル、プロピレングリコール、1,4-ブタンジオール、 ネオペンチルグリコール、1,6-ヘキサメチレングリ

> 【0017】MDIとジオールとの当量比(以後NCO /OH当量比と称する)は2.0~10.0が好まし く、さらに好ましくは2.5~7.0である。NCO/ OH当量比が2.0未満では、オリゴマ-生成の割合が 大きくなり、未反応MDIを減圧留去してもオリゴマー 生成を抑制出来ず、所望のプレポリマーは得られないの で成形物の物性向上には寄与しない。また、NCO/O H当量比が10.0を超えると、目的とする組成のプレ ポリマー以外の未反応で遊離のMDIの含有量が多いた め、後段における減圧蒸留に多くの時間を要し、プレポ リマーの粘度等が変化するなど物性が変化する事が考え られ、好ましくない。

コール、シクロヘキサン-1,4-ジオール等が使用で

【0018】第1工程の装入順序は有機ジイソシアナー トと活性水素を2個有する分子量250~4000の直 鎖状分子を一括あるいは反応が進行する時間よりも十分 に短い時間であればどちらにどちらを装入して反応させ てもかまわないが、有機ジイソシアナートを活性水素を 2個有する分子量250~4000の直鎖状分子に少量 ずつ滴下、あるいは定量ポンプ等で連続装入する場合、 あまり長い時間をかけて装入するとやはり分子量が実質 上無限大になるため注意を要する。

【0019】第1工程の反応温度は好ましくは30~1 20 ℃、さらに好ましくは50 ~80 ℃であり、30 ℃ 含む。なお、MDIは固形で入手しても良いし、溶融状 50 より反応温度が低いと反応時間が延びてしまい、工業的

きる。

5

に好ましくなく、また、120℃より反応温度が高いと アロハネート結合等が生成する等副反応が大量に起こ り、粘度の上昇、ゲル化などを起こす原因となるため好 ましくない。

【0020】第二工程における減圧蒸留は温度80~2 00℃、圧力2mmHg以下で行い、製造にあたって は、薄膜蒸留法により出来得る限りプレポリマーの熱履 歴を少なくするのが望ましい。この目的としては、スミ スの薄膜蒸発機が適している。

【0021】得られた改良されたプレポリマーを用いて *10* 【0023】 ポリウレタン成形物を製造する際にはプレポリマーを溶 媒に溶解後、鎖延長剤を用いて鎖延長を行い、得られた*

*ポリウレタンウレア溶液(以下、ポリウレタン溶液と称 する) の溶媒を除去して製造する。成形物の形状は成形 法により、フィルム、シート、糸状体にすることができ る。

[0022]

【実施例】つぎに、本発明を実施例により更に詳細に説 明するが、これらの実施例は本発明を限定するものでは ない。実施例及び比較例の結果を表1に示す。例中特に 断らない限りすべての部および比率は重量基準による。

【表1】

MDIO 374-N- 301日		•		プレポコマ	_ <u>_</u>			:
1 2.2*MDI < 0.1% (1938) 10 x10°* mining 3.01 138000 0.1 4.4*MDI 99.4% Mv/Mn=1.9 10 x10°* mining 3.01 138000 0.1 1 2.4*MDI 0.6% (1938) 2.2*MDI < 0.1% (1938) 2.2*MDI < 0.1% (1938) 2.2*MDI < 0.1% (1938) 2.2*MDI < 0.1% (1938) 3.28 107000 10.2 2 2.4*MDI 0.6% (1938) 4.4*MDI 99.4% Mv/Mn=1.9 4.4*MDI 99.4% Mv/Mn=1.9 4.4*MDI 99.4% Mv/Mn=1.9 4.4*MDI 99.4% Mv/Mn=1.9 14.0°C 3.05 129000 0.1 2 2.7*MDI 0.3% (1938) Mv/Mn=1.9 40°C 3.35 102000 0.1 4.4*MDI 59.5% Mv/Mn=1.9 40°C 3.35 102000 0.1 4.4*MDI 99.1% Mv/Mn=2.1 4.4*MDI 99.1% Mv/Mn=2.1		MDIの異性体比	ジオール ()内分子量 Mw / Mn	漢 正蒸留 漆作	NCO%		遊離MD I の量 重量%	Mw/Mn值
1 2,2*MDI < 0.1%	実施例 1	🗸 '	PTMEG (1958) Mw/Mn=1.	¥0 x	. :	38	-	2 . 2
2,2*MDI < 0.1%	比較例 1	~ "*	P T M E G (1958) Mw/Mn=1.	蒸留操作なし	21	0 2 0 0	0	æ
2,2'MDI 0.3% PTMEG 140°C 3.05 129000 0.1 4,4'MDI 59.5% Nw/Mn=1.9 mull		~ ~	P TMEG (1958) Mw/Mn=1.	蒸留操作なし		 	7	17.2
3 2,4 MDI 40.2% (1958)			PTMEG (1958) Nw/Mn=1.	140°C 10 x10°3	0.	2900		. e
2,2'MDI < 0.1% EGテン゙ペート 130°C 3.25 98000 0.2 4,4'MDI 99.1% Mw/Mn=2.1 本留操作 3.49 87500 12.9 4,4'MDI 99.1% Mw/Mn=2.1 本日 まない My/Mn=2.1 なし			PTMEG (1958) Nw/Mn=1.	蒸留操作なし	ю	0200	.	8.6
2,2'MDI < 0.1% EGアジペート 4 2,4'MDI 0.9% (1829) 素留操作 3.49 87500 12. 4,4'MDI 99.1% Mw/Mn=2.1 なし		× 1997 1997 1997	E G75° 1°- (1829) Mw/Mn=2.	130°C 10 x10 3	ΩI	800	Ø	23.23
			EG75'4"- (1829) Mw/Mn=2.	蒸留操作なし	4	750	. 2	7.9

【0024】実施例1

内容積1リットルのガラス製反応器に2,4'ージフェ ニルメタンジイソシアナート(以下、2,4'MDIと 称する) を 0.6% 含有する 4,4' ジフェニルメタン 50 グリコール (以下、PTMEGと称する) 490 g

ジイソシアナート(以下、4,4'MDIと称する)か らなるMDI250g(2.00当量)、分子量が19 58で、Mw/Mnが1.9であるポリテトラメチレン 7

(0.50当量)を装入した。窒素気流下に85℃で3時間反応させ、NCO基含有量(以下、NCO%と称する)3.01%、粘度3400cps/25℃のパーシャルプレポリマーを得た。このパーシャルプレポリマー500gを、薄膜蒸発機を用いて140℃、0.01mmHgの条件で遊離MDIを留出させた。留出MDIは83.8gであり、得られたプレポリマーのNCO%は3.01%、粘度は138000cps/25℃、遊離MDIは0.15%であった。また、Mw/Mnの値は2.2でありオリゴマーも少なく遊離のMDIの含量も10充分に減少した。

【0025】比較例1

実施例1と同一の反応器にて、MDIの量を125gにする他は同様に、プレポリマーを合成した。遊離MDIの留去は行なわなかった。得られたプレポリマーのNCO%は3.28%、粘度は107000cps/25℃、遊離MDIの量は10.2重量%であった。また、Mw/Mnの値は8.5であり、オリゴマーが大量に生成し、遊離MDIの含量も充分には減少していない。

【0026】比較例2

実施例1と同一の反応器、MDI、PTMEGにて、MDIの量を94gにする他は同様にプレポリマーを合成した。遊離MDIの留去は行なわなかった。得られたプレポリマーのNCO%は1.73%、粘度は310000cps/25℃、遊離MDIの量は3.74重量%であった。また、Mw/Mnの値は17.2でありオリゴマーが大量に生成し、遊離MDIの含量も充分には減少していない。

【0027】実施例2

実施例1と同一の反応器にて、使用するMDIの核体比 30 が、2,4'MDI40.5%(2,2'MDIを含む 以下同じ)4,4'MDI59.5%のものを使用する 他はまったく同様にして、部分プレポリマーを合成し、 薄膜蒸発器を用いて遊離のMDIを除去した。得られた プレポリマーのNCO%は3.05%、粘度は1290

【0028】比較例3

実施例 2 と同一の反応器、MDI、PTMEGにて、MDIの量を125 gにする他は同様にプレポリマーを合成した。遊離MDIの留去は行なわなかった。得られたプレポリマーのNCO%は3.32%、粘度は1020000cps/25%、遊離MDIの量は11.4重量%であった。また、Mw/Mnの値は9.2であり、オリゴマーが生成し、遊離MDIの含量も減少していない。

【0029】実施例3

実施例1と同一の反応器、MDIで、使用するジオールをエチレングリコールとアジピン酸との縮合により得られる分子量が1829、Mw/Mnが2.1であるエチレングリコールアジペートを使用する他はまったく同様にして、部分プレポリマーを合成し、薄膜蒸発器を用いて遊離のMDIを除去した。得られたプレポリマーのNCO%は3.25%、粘度は98000cps/25

20 ℃、遊離MDIの量は0.23重量%であった。また、Mw/Mnの値は2.2であり、オリゴマーも少なく遊離のMDIの含量も充分に減少した。

【0030】比較例4

実施例3と同一の反応器、MDI、エチレングリコール アジペートにて、MDIの量を125gにする他は同様 にプレポリマーを合成した。遊離MDIの留去は行なわ なかった。得られたプレポリマーのNCO%は3.49 %、粘度は87500cps/25℃、遊離MDIの量 は12.9重量%であった。また、Mw/Mnの値は 7.9であり、オリゴマーが生成し、遊離MDIの含量 も減少していない。

[0031]

【発明の効果】本発明により、遊離MDIの量が少ない、また、オリゴマーの生成も少ないプレポリマーが得られた。

フロントページの続き

(72)発明者 高柳 弘

神奈川県横浜市栄区笠間町1190番地 三井 東圧化学株式会社内