PENNSYLVANIA STATE UNIV UNIVERSITY PARK APPLIED RESE--ETC F/G 20/4
TABULATION AND SUMMARY OF THERMODYNAMIC EFFECTS DATA FOR DEVELO--ETC(U)
JAN 78 J W HOLL, M L BILLET, D S WEIR N00017-73-C-1418
TM-78-18 NL AD-A052 839 UNCLASSIFIED 1 OF 2 AD A052839 C

TABULATION AND SUMMARY OF THERMODYNAMIC EFFECTS DATA FOR DEVELOPED CAVITATION ON OGIVE-NOSED BODIES

J. W. Holl, M. L. Billet, D. S. Weir

ODC FILE COPY

Technical Memorandum
File No. TM 78-18
30 January 1978
Contract No. N00017-73-C-1418

Copy No. 9

The Pennsylvania State University APPLIED RESEARCH LABORATORY Post Office Box 30 State College, PA 16801

Approved for Public Release Distribution Unlimited

This document has been approved for public release and sale; its distribution is u-1 ited.

NAVY DEPARTMENT

NAVAL SEA SYSTEMS COMMAND

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

TM-78-18	AGE GOVT ACCESSION NO.	READ INSTRUCTIONS BEFORE COMPLETING FORM
TM=78-18	GOVT ACCESSION NO.	
Management of the second contract of the seco		3. RECIPIENT'S CATALOG NUMBER
Management of the second of th		
. TITLE (and Subtitle)	Control of the State of the Sta	5. TYPE OF REPORT & PERIOD COVERED
TARILLAMION AND CIRCARDY OF MUEDICODY	MANTO DEPROMO	Technical Memoration
TABULATION AND SUMMARY OF THERMODY		
DATA FOR DEVELOPED CAVITATION ON C	GIVE-NOSED /	6. PERFORMING ORG, REPORT NUMBER
BODIES		
AUTHOR(a)		CONTRACT CH GRAN NUMBER(S)
	- (13)	NOQQL7-73-C-1418,
J. W./Holl, M. L./Billet D. S./We	ir	NGL-39-009-001
	The state of the s	
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Applied Research Laboratory		
Post Office Box 30		
	/	
State College, PA 16801 II. CONTROLLING OFFICE NAME AND ADDRESS		JA: REPORT DATE
		11 100
National Aeronautics and Space Adm		14 30 January 1978
Mail Stop 5-9, 21000 Brookpark Roa	ıd	13. NUMBER OF PAGE
Cleveland, Ohio 44135		127 (12) 1300
14. MONITORING AGENCY NAME & ADDRESS(Il different I	rom Controlling Office)	15. SECURITY CLASS. (of this report)
		IINCLASSIFIFD
		UNCLASSIFIED
		UNCLASSIFIED 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public release. Dist Per NAVSEA - April 3, 1978	ribution unlimi	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public release. Dist	ribution unlimi	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public release. Dist Per NAVSEA - April 3, 1978	/	15. DECLASSIFICATION DOWNGRADING SCHEDULE
Approved for public release. Dist	/	15. DECLASSIFICATION DOWNGRADING SCHEDULE
Approved for public release. Dist Per NAVSEA - April 3, 1978	/	15. DECLASSIFICATION DOWNGRADING SCHEDULE
Approved for public release. Dist Per NAVSEA - April 3, 1978	/	15. DECLASSIFICATION DOWNGRADING SCHEDULE
Approved for public release. Dist Per NAVSEA - April 3, 1978	/	15. DECLASSIFICATION DOWNGRADING SCHEDULE
Approved for public release. Dist Per NAVSEA - April 3, 1978	/	15. DECLASSIFICATION DOWNGRADING SCHEDULE
Approved for public release. Dist Per NAVSEA - April 3, 1978 17. DISTRIBUTION STATEMENT (of the abetract entered in	/	15. DECLASSIFICATION DOWNGRADING SCHEDULE
Approved for public release. Dist Per NAVSEA - April 3, 1978 17. DISTRIBUTION STATEMENT (of the abetract entered in	/	15. DECLASSIFICATION DOWNGRADING SCHEDULE
Approved for public release. Dist Per NAVSEA - April 3, 1978 17. DISTRIBUTION STATEMENT (of the abetract entered in	/	15. DECLASSIFICATION DOWNGRADING SCHEDULE
Approved for public release. Dist Per NAVSEA - April 3, 1978 17. DISTRIBUTION STATEMENT (of the abetract entered in	/	15. DECLASSIFICATION DOWNGRADING SCHEDULE
Approved for public release. Dist Per NAVSEA - April 3, 1978 17. DISTRIBUTION STATEMENT (of the abetract entered in	/	15. DECLASSIFICATION DOWNGRADING SCHEDULE
Approved for public release. Dist Per NAVSEA - April 3, 1978 17. DISTRIBUTION STATEMENT (of the abstract entered in 18. SUPPLEMENTARY NOTES	Block 20, if different from	15. DECLASSIFICATION DOWNGRADING SCHEDULE
Approved for public release. Dist Per NAVSEA - April 3, 1978 17. DISTRIBUTION STATEMENT (of the abstract entered in 18. SUPPLEMENTARY NOTES	Block 20, if different from	15. DECLASSIFICATION DOWNGRADING SCHEDULE
Approved for public release. Dist Per NAVSEA - April 3, 1978 17. DISTRIBUTION STATEMENT (of the abstract entered in 18. SUPPLEMENTARY NOTES	Block 20, if different from	15. DECLASSIFICATION DOWNGRADING SCHEDULE
Approved for public release. Dist Per NAVSEA - April 3, 1978 17. DISTRIBUTION STATEMENT (of the ebstract entered in 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and cavitation	Block 20, if different from	15. DECLASSIFICATION DOWNGRADING SCHEDULE
Per NAVSEA - April 3, 1978 17. DISTRIBUTION STATEMENT (of the abstract entered in 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and cavitation hydrodynamics	Block 20, if different from	15. DECLASSIFICATION DOWNGRADING SCHEDULE
Approved for public release. Dist Per NAVSEA - April 3, 1978 17. DISTRIBUTION STATEMENT (of the ebetract entered in 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and cavitation	Block 20, if different from	15. DECLASSIFICATION DOWNGRADING SCHEDULE

DD 1 FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

involve different combinations of the Nusselt, Reynolds, Froude, Weber and Péclet numbers and dimensionless cavity length (L/D).

Subject: Tabulation and Summary of Thermodynamic Effects Data for

Developed Cavitation on Ogive-Nosed Bodies

References: See page 32.

Abstract: Thermodynamic effects data for developed cavitation on zero

and quarter caliber ogives in Freon 113 and water are tabulated and summarized. These data include temperature depression (ΔT), flow coefficient (C_0) and various geometrical characteristics of the cavity. For the ΔT tests, the freestream temperature (T_∞) varied from 35°C to 95°C in Freon 113 and from 60°C to 125°C in water for a velocity range of 19.5 m/sec to 36.6 m/sec. Two correlations of the ΔT data by the entrainment method are presented. These correlations involve different combinations of the Nusselt, Reynolds, Froude, Weber and Péclet numbers and

dimensionless cavity length (L/D).

Acknowledgments: The major portion of the technical work on the research

program was sponsored by the National Aeronautics and Space Administration under Grant NGL 39-009-001.

Mr. Werner R. Britsch of NASA is the technical monitor of this grant. All reports as a result of this grant

do not require security clearance from NASA.

Table of Contents

		Page
	Abstract	1
	Acknowledgments	1
	Table of Contents	2
	List of Tables	3
	List of Figures	4
	List of Symbols	9
I.	INTRODUCTION	11
	1.1 The Thermodynamic Effect	11 12
II.	SOURCES OF DATA PLOTS AND TABULATIONS	14
III.	GENERAL DESCRIPTION OF THE EXPERIMENTS	16
IV.	ENTRAINMENT METHOD FOR CORRELATING TEMPERATURE DATA	18
	4.1 Derivation of Basic Equation	18 20
v.	DETERMINATION OF THE FLOW COEFFICIENT AND CAVITY GEOMETRY (PHASE I)	22
	5.1 Description of the Tests	22 22 24
VI.	DETERMINATION OF THE TEMPERATURE DEPRESSION (PHASE III) .	26
	6.1 Description of the Tests	26 27
	6.3 Axial Variation of Temperature Depression	30
VII.	CONCLUSIONS	31
III.	REFERENCES	32
	Tables	35
	Figures	59

List of Tables

Number	<u>Title</u>	Page
1	Sources of Data Plots and Tabulations	35
2	Tabulation of $C_{\mathbb{Q}}$ Data	36
3	Empirical Equations for Cavity Geometry	42
4	Constants and Exponents for Entrainment Theory - First Correlation	43
5	Constants and Exponents for Entrainment Theory - Second Correlation	44
6	Tabulation of ΔT_{max} Data	45
7	Fluid Property Equations for Freon 113	51
8	Fluid Property Equations for Water	53
9	Tabulation of the Fluid Properties of Freon 113	55
10	Tabulation of the Fluid Properties of Water	56
11	ΔT_{max} Correlations for Constant Fluid Properties .	58

List of Figures

Number	<u>Title</u>	Page
1	Description of the Nose Contour of Ogive Test Models	59
2	Photograph of 3.8 cm Ultra-High-Speed Cavitation Tunnel	60
3A	Photograph of Natural Cavities on a Zero-Caliber Ogive in Freon 113 (D=0.635 cm, V_{∞} =19.5 m/sec, L/D=5.0, T_{∞} =26°C)	61
3В	Photograph of Natural Cavities on a Zero-Caliber Ogive in Water (D=0.635 cm, V_{∞} =19.5 m/sec, L/D=5.0, T_{∞} =26°C)	62
4	Photograph of Test Models for Cavity Temperature Measurements	63
5	Maximum Temperature Depression versus Free-Stream Temperature for the 0.318 cm Diameter Zero-Caliber Ogive in Freon 113	64
6	Maximum Temperature Depression versus Free-Stream Temperature for the 0.635 cm Diameter Zero-Caliber Ogive in Freon 113	65
7	Maximum Temperature Depression versus Free-Stream Temperature for the 0.635 cm Diameter Zero-Caliber Ogive in Water	66
8	Maximum Temperature Depression versus Free-Stream Temperature for the 0.318 cm Diameter Quarter-Caliber Ogive in Freon 113	67
9	Maximum Temperature Depression versus Free-Stream Temperature for the 0.635 cm Diameter Quarter-Caliber Ogive in Freon 113	68
10	Maximum Temperature Depression versus Free-Stream Temperature for the 0.635 cm Diameter Quarter-Caliber Ogive in Water	69
11	ΔT vs X/L for $T_{\infty} = 39.8$, 39.9, and 40.3°C: QCO^{*} , D=0.635 cm, V=19.5 m/sec, Freon 113	. 70
12	ΔT vs X/L for T_{∞} = 49.2, 50.2, and 50.2°C: QCO, D=0.635 cm, V=19.5 m/sec, Freon 113	71

^{*}QCO = Quarter-Caliber Ogive

Number	<u>Title</u>	Page
13	ΔT vs X/L for $T_{\infty} = 60.1$, 61.1, and 61.1°C: QCO, D=0.635 cm, V=19.5 m/sec, Freon 113	72
14	ΔT vs X/L for $T_{\infty} = 70.3$, 71.4, and 72.1°C: QCO, D=0.635 cm, V=19.5 m/sec, Freon 113	73
15	ΔT vs X/L for T_{∞} = 81.9, 83.1, and 82.7°C: QCO, D=0.635 cm, V=19.5 m/sec, Freon 113	74
16	ΔT vs X/L for $T_{\infty} = 93.3$ °C: QCO, D=0.635 cm, V=19.5 m/sec, Freon 113	75
17	ΔT vs X/L for T_{∞} = 49.2, 53.3, 46.4, 51.4, 43.4 and 50.1°C: QCO, D=0.635 cm, V=36.6 m/sec, Freon 113 .	76
18	ΔT vs X/L for T_{∞} = 64.0, 62.4, and 60.7°C: QCO, D=0.635 cm, V=36.6 m/sec, Freon 113	77
19	ΔT vs X/L for T_{∞} = 74.0, 72.5, and 71.3°C: QCO, D=0.635 cm, V=36.6 m/sec, Freon 113	78
20	ΔT vs X/L for T_{∞} = 83.7, 82.8, and 81.9°C: QCO, D=0.635 cm, V=36.6 m/sec, Freon 113	79
21	ΔT vs X/L for T_{∞} = 94.7, 94.4, and 93.9°C: QCO, D=0.635 cm, V=36.6 m/sec, Freon 113	80
22	ΔT vs X/L for T_{∞} = 48.2, 49.9, and 52.1°C: QCO, D=0.318 cm, V=19.5 m/sec, Freon 113	81
23	ΔT vs X/L for T_{∞} = 57.3, 59.7, and 62.3°C: QCO, D=0.318 cm, V=19.5 m/sec, Freon 113	82
24	ΔT vs X/L for T_{∞} = 67.9, 73.3, and 72.6°C: QCO, D=0.318 cm, V=19.5 m/sec, Freon 113	83
25	ΔT vs X/L for T_{∞} = 82.3, 79.2, and 82.2°C: QCO, D=0.318 cm, V=19.5 m/sec, Freon 113	84
26	ΔT vs X/L for $T_{\infty} = 92.4$ °C: QCO, D=0.318 cm, V=19.5 m/sec, Freon 113	85
27	ΔT vs X/L for T_{∞} = 47.8, 47.3, and 46.6°C: QCO, D=0.318 cm, V=27.4 m/sec, Freon 113	86
28	ΔT vs X/L for T_{∞} = 54.9, 54.6, and 54.8°C: QCO, D=0.318 cm, V=27.4 m/sec, Freon 113	87
29	ΔT vs X/L for T_{∞} = 67.6, 68.6, and 70.4°C: QCO, D=0.318 cm, V=27.4 m/sec, Freon 113	88

Number	<u>Title</u>	Page
30	ΔT vs X/L for T_{∞} = 82.3°C: QCO, D=0.318, V=27.4 m/sec, Freon 113	89
31	ΔT vs X/L for T_{∞} = 55.2, 53.6, and 51.9°C: QCO, D=0.318 cm, V=36.6 m/sec, Freon 113	90
32	ΔT vs X/L for T_{∞} = 62.2, 60.9, and 58.7°C: QCO, D=0.318 cm, V=36.6 m/sec, Freon 113	91
33	ΔT vs X/L for T_{∞} = 72.6, 72.6, and 71.9°C: QCO, D=0.318 cm, V=36.6 m/sec, Freon 113	92
34	ΔT vs X/L for T_{∞} = 84.0, 82.9, and 81.3°C: QCO, D=0.318 cm, V=36.6 m/sec, Freon 113	93
35	ΔT vs X/L for T_{∞} = 86.7 and 86.2°C: QCO, D=0.318 cm, V=36.6 m/sec, Freon 113	94
36	ΔT vs X/L for T_{∞} = 90.8, 93.8, and 94.4°C: QCO, D=0.318 cm, V=36.6 m/sec, Freon 113	95
37	ΔT vs X/L for T = 65.1, 65.8, and 66.6°C: QCO, D=0.635 cm, V=19.5 m/sec, Water	96
38	ΔT vs X/L for T = 93.6, 94.8, and 95.8°C: QCO, D=0.635 cm, V=19.5 m/sec, Water	97
39	ΔT vs X/L for T_{∞} = 118.3, 119.9, and 121.3°C: QCO, D=0.635 cm, V=19.5 m/sec, Water	98
40	ΔT vs X/L for T_{∞} = 64.8, 64.7, and 64.6°C: QCO, D=0.635 cm, V=36.6 m/sec, Water	99
41	ΔT vs X/L for T_{∞} = 91.6, 91.3, and 90.4°C: QCO, D=0.635 cm, V=36.6 m/sec, Water	100
42	ΔT vs X/L for T_{∞} = 122.1, 120.8, and 119.4°C: QCO, D=0.635 cm, V=36.6 m/sec, Water	101
43	ΔT vs X/L for T = 49.8, 50.3, and 50.7°C: ZCO*, D=0.635 cm, V=19.5 m/sec, Freon 113	102
44	ΔT vs X/L for T_{∞} = 61.1, 61.7, and 61.4°C: ZCO, D=0.635 cm, V=19.5 m/sec, Freon 113	103
45	ΔT vs X/L for T_{∞} = 70.0, 71.1, and 71.6°C: ZCO, D=0.635 cm, V=19.5 m/sec, Freon 113	104

^{*}ZCO = Zero-Caliber Ogive

Number	<u>Title</u>	Page
46	ΔT vs X/L for T_{∞} = 80.9, 81.9, and 82.4°C: ZCO, D=0.635 cm, V=19.5 m/sec, Freon 113	105
47	ΔT vs X/L for T_{∞} = 90.7, 92.8, and 94.4°C: ZCO, D=0.635 cm, V=19.5 m/sec, Freon 113	106
48	ΔT vs X/L for T_{∞} = 52.0, 50.8, and 49.8°C: ZCO, D=0.635 cm, V=36.6 m/sec, Freon 113	107
49	ΔT vs X/L for T_{∞} = 62.4, 61.4, and 60.8°C: ZCO, D=0.635 cm, V=36.6 m/sec, Freon 113	108
50	ΔT vs X/L for T_{∞} = 70.6, 70.1, and 69.5°C: ZCO, D=0.635 cm, V=36.6 m/sec, Freon 113	109
51	ΔT vs X/L for T_{∞} = 84.4, 80.7, and 80.2°C: ZCO, D=0.635 cm, V=36.6 m/sec, Freon 113	110
52	ΔT vs X/L for T_{∞} = 92.5, 92.1, and 91.8°C: ZCO, D=0.635 cm, V=36.6 m/sec, Freon 113	111
53	ΔT vs X/L for T_{∞} = 38.9, 41.1, and 43.3°C: ZCO, D=0.318 cm, V=19.5 m/sec, Freon 113	112
54	ΔT vs X/L for T_{∞} = 48.1, 48.7, and 49.2°C: ZCO, D=0.318 cm, V=19.5 m/sec, Freon 113	113
55	ΔT vs X/L for T_{∞} = 58.6, 60.2, and 60.4°C: ZCO, D=0.318 cm, V=19.5 m/sec, Freon 113	114
56	ΔT vs X/L for T_{∞} = 70.2, 70.7, and 72.2°C: ZCO, D=0.318 cm, V=19.5 m/sec, Freon 113	115
57	ΔT vs X/L for T_{∞} = 78.8, 81.3, and 81.0°C: ZCO, D=0.318 cm, V=19.5 m/sec, Freon 113	116
58	ΔT vs X/L for T_{∞} = 88.6, 93.3, and 93.5°C: ZCO, D=0.318 cm, V=19.5 m/sec, Freon 113	117
59	ΔT vs X/L for T_{∞} = 53.1, 51.6, and 48.7°C: ZCO, D=0.318 cm, V=36.6 m/sec, Freon 113	118
60	ΔT vs X/L for T_{∞} = 64.6, 63.2, and 62.7°C: ZCO, D=0.318 cm, V=36.6 m/sec, Freon 113	119
61	ΔT vs X/L for T_{∞} = 73.8, 74.3, and 72.1°C: ZCO, D=0.318 cm, V=36.6 m/sec, Freon 113	120
62	ΔT vs X/L for T_{∞} = 84.1, 84.6, and 84.0°C: ZCO, D=0.318 cm, V=36.6 m/sec, Freon 113	121

and the second s

Number	<u>Title</u>	Page
63	ΔT vs X/L for $T_{\infty} = 93.2$, 94.3, and 93.6°C: ZCO, D=0.318 cm, V=36.6 m/sec, Freon 113	122
64	ΔT vs X/L for $T_{\infty} = 63.4$, 64.1, and 64.9°C: ZCO, D=0.635 cm, V=19.5 m/sec, Water	123
65	ΔT vs X/L for $T_{\infty} = 91.7$, 92.7, and 93.2°C: ZCO, D=0.635 cm, V=19.5 m/sec, Water	124
66	ΔT vs X/L for T_{∞} = 118.7, 120.1, and 121.5°C: ZCO, D=0.635 cm, V=19.5 m/sec, Water	125
67	ΔT vs X/L for T_{∞} = 89.0 and 89.3°C: ZCO, D=0.635 cm, V=36.6 m/sec, Water	126
68	ΔT vs X/L for $T_{\infty} = 115.2$, 115.9, and 116.6°C: ZCO, D=0.635 cm, V=36.6 m/sec, Water	127

List of Symbols

A - axial distance from the leading edge of the cavity to location of maximum cavity diameter

A - cross-sectional area of cavity

A - surface area of cavity

 C_A - area coefficient $\equiv A_{tr}/D^2$

CP_{1.} - specific heat of the liquid

 c_{Q} - flow coefficient $=\dot{Q}_{V}/v_{\infty}$ D^{2}

D - model diameter

D_m - maximum cavity diameter

 $\boldsymbol{D}_{\boldsymbol{T}}$ — diameter of the tunnel test section

Fr - Froude number $\equiv V_{\infty}/\sqrt{g}$ D

g - gravitational acceleration

h - film coefficient $\equiv \dot{q}/A_{w}\Delta T$

J - Jakob number $\equiv \Delta T / \frac{\rho_V}{\rho_L} \frac{\lambda}{C_{P_L}}$

K_{I.} - thermal conductivity of the liquid

L - cavity length

m - mass flow rate of vapor in the cavity

Nu - Nusselt number \equiv hD/K_L

P_c - cavity pressure

Pe – Péclet number $\equiv V_{\infty}D/\alpha_{L}$

P_{G-S} - gas pressure at saturation

Pr - Prandtl number $\equiv v_L/\alpha_L$

P - vapor pressure

P_∞ - free-stream pressure

q - heat transfer rate

 $\dot{Q}_{_{\mathbf{v}}}$ - volume flow rate of vapor in the cavity

Re - Reynolds number $\equiv V_{\infty}D/v_{L}$

S - surface tension

T - temperature

T - cavity temperature

 $T_{C_{min}}$ - minimum cavity temperature

 T_{∞} - free-stream temperature

 ΔT - temperature depression = $T_{\infty}-T_{C}$

 ΔT_{max} - maximum temperature depression $\equiv T_{\infty}^{-}T_{c_{min}}$

V - velocity of vapor in the cavity

 ${\rm V}_{\infty}$ or ${\rm V}~-$ free-stream velocity

We - Weber number $\equiv V_{\infty} \sqrt{D}/\sqrt{S/\rho_{L}}$

X - axial distance from leading edge of the body

 α_L - thermal diffusivity of the liquid = $\frac{K_L}{C_{P_T} \rho_L}$

β - Henry's law constant

γ - dissolved gas content

λ - latent heat of vaporization

 μ_L - dynamic viscosity of the liquid

 $v_{\scriptscriptstyle T}$ - kinematic viscosity of the liquid

ρ, - mass density of the liquid

ρ - mass density of the vapor

σ - cavitation number

I. INTRODUCTION

1.1 The Thermodynamic Effect

A continuous vaporization process is required to sustain a cavity in a cavitating flow. Since this vaporization process is dependent upon heat transfer at the cavity wall, the temperature in the cavity is always less than that of the bulk temperature of the fluid. This localized cooling process is called the thermodynamic effect which is measured by the temperature depression (AT) given by

$$\Delta T = T_{\infty} - T_{C} \tag{1}$$

where \mathbf{T}_{∞} and $\mathbf{T}_{\mathbf{c}}$ are the bulk liquid temperature and cavity temperature, respectively.

The determination of the cavity pressure is of primary importance in cavitating flows. Thus the thermodynamic effect is important because it influences the cavity pressure. In many cases the cavity pressure is assumed to be equal to the vapor pressure at the bulk temperature of the liquid. This estimate is quite good in the absence of noncondensable gases and at states significantly below the critical temperature where P_{v} and $\frac{dP_{v}}{dT}$ are both small. For example, this is a very good estimate for room temperature water with a low gas content. However, for many fluids such as the cryogens liquid oxygen and liquid hydrogen as employed in rockets engines the operating temperatures can be such that P_{v} and $\frac{dP_{v}}{dT}$ are both large. In these cases, the assumption that the cavity pressure is equal to the vapor pressure corresponding to the bulk temperature of the liquid can lead to very large errors. Thus the thermodynamic effect must be considered when determining the net-positive suction head for rocket pumps.

In this investigation the temperature depression has been correlated by the entrainment equation given by

$$\Delta T = \frac{C_Q}{C_A} \frac{Pe}{Nu} \frac{\rho_v}{\rho_L} \frac{\lambda}{C_{P_L}}$$
 (2)

where C_Q , C_A , Pe, Nu, ρ_v , ρ_L , λ , C_{P_L} are the flow coefficient, area coefficient, Péclét number, Nusselt number, vapor mass density, liquid mass density, latent heat of vaporization, and specific heat of the liquid, respectively. This equation is discussed in detail in subsequent sections.

The flow state of particular concern in this report is that of developed cavitation or so-called cavity flows. The extent of cavitation depends primarily upon the cavitation number (σ) given by

$$\sigma = \frac{P_{\infty} - P_{c}}{\frac{1}{2} \rho_{L} V_{\infty}^{2}}$$
 (3)

where P_{∞} , P_{c} , ρ_{L} , and V_{∞} are the pressure at infinity, cavity pressure, liquid mass density and velocity at infinity, respectively.

1.2 Objective of the Report

The major intent of this report is to organize the data which have been obtained during the investigations of thermodynamic effects in developed cavitation on zero and quarter caliber ogive nosed bodies.

These model shapes are shown in Figure 1. The tests were conducted with Freon 113 and water as the working fluids.

The data fall into the following categories (see list of symbols for definition of terms):

1. Cavity geometry

CA versus L/D

σ versus L/D

D_M/D versus o

A/D versus o

 σ versus L/D for various values of D/D_{T}

2. Cavitation number

σ versus T_∞

σ versus X/L

3. Flow coefficient

 $\mathbf{C}_{\mathbf{O}}$ (with diffusion) versus σ

 $\mathbf{C}_{\mathbf{O}}$ (without diffusion) versus σ

4. Temperature depression

 ΔT_{max} versus T_{∞}

ΔT versus X/L

Most of these data have been reported in graphical form elsewhere. However, none of the data have been tabulated. Furthermore, except for examples in Weir [1]*, plots of temperature depression (ΔT) as a function of fractional cavity length (X/L) have not been reported. Thus this report completes the documentation of the experimental data by providing the necessary data tabulations and plots. In addition, a summary of the necessary background information such as description of experiments is provided in order that the report is reasonably self sufficient.

^{*}Numbers in brackets refer to documents in list of references.

II. SOURCES OF DATA PLOTS AND TABULATIONS

As indicated previously plots of most of the data are given elsewhere.

The six basic references in which these data are plotted together with

an abbreviation of each reference are:

- (1) M. L. Billet and D. S. Weir, "The Effect of Gas Diffusion and Vaporization on the Entrainment Coefficient for a Ventilated Cavity," TM 74-15, Applied Research Laboratory, The Pennsylvania State University, January 24, 1974.
 Abbreviation BW74
- (2) M. L. Billet, J. W. Holl and D. S. Weir, "Geometric Description of Developed Cavities on Zero- and Quarter-Caliber Ogive Bodies," TM 74-136, Applied Research Laboratory, The Pennsylvania State University, May 6, 1974.
 Abbreviation BHW74
- (3) D. S. Weir, "An Experimental and Theoretical Investigation of Thermodynamic Effects on Developed Cavitation," TM 75-34, Applied Research Laboratory, The Pennsylvania State University, Feb. 21, 1975 (or M. S. Thesis, Dept. of Aerospace Engineering, The Pennsylvania State University, May 1975).
 Abbreviation W75 (ARL)
- (4) D. S. Weir, "The Effect of Velcoity, Temperature, and Blockage on the Cavitation Number for a Developed Cavity," 1975 ASME Cavitation Number for a Developed Cavity," 1975 ASME Cavitation and Polyphase Flow Forum, May 1975, pp. 7-9.
 Abbreviation W75 (ASME)

- (5) M. L. Billet and D. S. Weir, "The Effect of Gas Diffusion on the Flow Coefficient for a Ventilated Cavity," Journal of Fluids Engineering, Trans. ASME, Vol. 97, Series 1, No. 4, December 1975, pp. 501-506.
 Abbreviation BW75
- (6) J. W. Holl, M. L. Billet, and D. S. Weir, "Thermodynamic Effects on Developed Cavitation," Journal of Fluids Engineering, Trans. ASME, Vol. 97, Series 1, No. 4, December 1975, pp. 507-513.

The sources of data plots are listed in Table 1. First, second and third sources are given using the aforementioned abbreviations for the basic references, i.e., HBW75, etc. The first source is the most comprehensive of the indicated sources in regard to the completeness of the plotted data and associated discussion. Data tabulations are presented at the end of this report.

III. GENERAL DESCRIPTION OF THE EXPERIMENTS

The primary purpose of the experimental investigation was to determine the magnitude of the thermodynamic effect on developed cavitation for various flow conditions. The experiments were divided into the following three phases:

- Phase I Measurement of the flow coefficient (C_Q) , area coefficient (C_A) and other geometrical aspects of the cavities.
- Phase II Determination of the cavitation number (σ) based on measured cavity pressure for natural cavities.
- Phase III Measurement of cavity temperature depressions (ΔT) for natural cavities.

The principal facility used in this investigation was the NASA-sponsored 3.8 cm ultra-high speed cavitation tunnel shown in Figure 2. This tunnel has the capability of operating at high velocities over a wide pressure and temperature range with various fluids as described in Reference [2]. A second facility, a 30.5 cm water tunnel with a more limited operating range, was used for the ventilated cavity tests in Phase I. This facility is described in Reference [3]. Both of these facilities are part of the Fluids Engineering Department of the Applied Research Laboratory of The Pennsylvania State University and are housed in the Garfield Thomas Water Tunnel Building.

A total of fourteen sting-mounted ogive test models were employed having two basic nose contours as described in Figure 1. The zero-caliber ogive has a blunt nose whereas the quarter-caliber ogive has a rounded nose. Photographs of natural cavitation on a zero-caliber ogive in Freon 113 and water are shown in Figures 3A and 3B. Six models were

employed in Phase I, four in Phase II and four in Phase III. The Phase I tests are described in Section V of this report whereas

Phase III results are presented in Section VI. The Phase II tests are discussed by Weir [1].

IV. ENTRAINMENT METHOD FOR CORRELATING TEMPERATURE DEPRESSION DATA

4.1 Derivation of Basic Equation

A developed vaporous cavity is continuously supplied with vapor from the cavity walls. This vaporization process requires energy in the form of heat which is transferred at the rate

$$\dot{\mathbf{q}} = \lambda \, \dot{\mathbf{m}}_{\mathbf{U}} \quad . \tag{4}$$

The mass flow rate of vapor in the cavity is

$$\dot{\mathbf{m}}_{\mathbf{v}} = \rho_{\mathbf{v}} \, \mathbf{v}_{\mathbf{v}} \, \mathbf{A}_{\mathbf{v}} \tag{5}$$

which can also be expressed as

$$\dot{\mathbf{m}}_{\mathbf{v}} = \rho_{\mathbf{v}} \, \mathbf{D}^2 \, \mathbf{V}_{\infty} \, \mathbf{C}_{\mathbf{Q}} \tag{6}$$

where $\mathbf{C}_{\mathbf{Q}}$ is the flow coefficient defined as

$$c_{Q} = \frac{\dot{Q}_{v}}{D^{2} v_{m}} . \qquad (7)$$

Employing Equation (6) in Equation (4) for \dot{m}_{v} results in

$$\dot{\mathbf{q}} = \rho_{\mathbf{v}} \lambda c_0 D^2 V_{\infty} . \tag{8}$$

Following the method employed in convective heat transfer theory the rate of heat transfer can also be expressed as

$$\dot{\mathbf{q}} = \mathbf{h} \ \mathbf{A}_{\mathbf{w}} (\mathbf{T}_{\infty} - \mathbf{T}_{\mathbf{C}}) \tag{9}$$

where h is the film coefficient or heat transfer coefficient.

Equating Equations (8) and (9) and solving for the temperature depression (ΔT) yields

$$\Delta T = \frac{C_Q}{h} \frac{D^2}{A_w} V_{\infty} \lambda \rho_{V} . \qquad (10)$$

Equation (10) can be expressed in terms of dimensionless coefficients namely

$$\Delta T = \frac{c_Q}{c_A} \frac{Pe}{Nu} \frac{\rho_v}{\rho_L} \frac{\lambda}{c_{P_L}}$$
(11)

where

$$C_A = \frac{A}{D^2}$$
 is the area coefficient
$$Pe = \frac{V_{\infty} D}{\alpha_L}$$
 is the Péclet number
$$Nu = \frac{hD}{K_*}$$
 is the Nusselt number .

(Note that dividing Equation (11) by the fluid properties $\frac{\rho_{v}}{\rho_{L}} \frac{\lambda}{c_{P_{L}}}$ yields the Jakob number (J) on the left hand side of the equation.) Equation (11) is similar to the relationship derived by Holl and Wislicenus [4] but more closely corresponds to the relation proposed by Acosta and Parkin [5] in the discussion of that paper.

All temperature depression data obtained during this investigation were correlated by means of Equation (11) which was first applied to

this problem by Billet [6]. In order to obtain a correlation, it is necessary to determine the form of the dimensionless coefficients $\mathbf{C}_{\mathbf{Q}}$, $\mathbf{C}_{\mathbf{A}}$ and $\mathbf{N}\mathbf{u}$.

4.2 Correlation Equations for $\boldsymbol{C}_{\boldsymbol{A}},~\boldsymbol{C}_{\boldsymbol{Q}},~\boldsymbol{N}\boldsymbol{u}$ and ΔT

In order to determine an equation which correlates ΔT data by means of the entrainment equation, i.e., Equation (11), it is necessary to determine empirical equations for C_A , C_Q and Nu in terms of pertinent physical parameters. An examination of the problem led to the following general forms for C_A , C_Q and Nu:

$$C_A = C_1 \left\{ L/D \right\}^a \tag{12}$$

$$C_0 = C_2 \operatorname{Re}^b \operatorname{Fr}^c \operatorname{We}^d \{L/D\}^e$$
 (13)

$$Nu = C_3 Re^f Fr^g We^h Pr^i \{L/D\}^j . (14)$$

As will be seen in subsequent sections, two combinations of terms were tried for C_Q and Nu. The <u>first correlation</u> refers to that correlation in which Weber number was not considered, i.e., d=h=0. Whereas, the <u>second correlation</u> refers to that correlation in which Froude number was eliminated, i.e., c=g=0.

Employing Equations (12) - (14) in Equation (11) yields the general empirical form for the temperature depression

$$\Delta T = C_4 (L/D)^k \operatorname{Re}^{\ell} \operatorname{Fr}^m \operatorname{We}^n \operatorname{Pr}^p \operatorname{Pe} \frac{\rho_v}{\rho_L} \frac{\lambda}{C_{P_L}} . \tag{15}$$

The unknown constants for all of the correlations were determined by a modified least-squares approximation technique. Taking the logarithm

reduces the equation to linear form. Then, as outlined by Becket and Hunt [7], minimizing the sum of the squares of the difference between the logarithm of the measured data and the correlative expression yields a set of simultaneous equations which can be solved for the unknown constants. Details concerning the application of this modified least-square approximation technique to the entrainment theory are given by Weir [1].

V. DETERMINATION OF THE FLOW COEFFICIENT AND CAVITY GEOMETRY (PHASE I)

5.1 Description of the Tests

For Phase I, six test models were used namely 0.318, 0.635, and 1.27 cm diameter models with both zero and quarter-caliber ogive noses. These models have a hollow center from which air is injected through holes near the leading edge to form the ventilated cavities and a tube along the surface of the model with a pressure port close to the leading edge to measure the cavity pressure. By measuring the gas volume flow rate (\dot{Q}) and cavity pressure (P_{c}) the flow coefficient (C_{Q}) was determined as a function of σ for a velocity range of 9.1 - 18.3 m/sec and various cavity lengths in water. Photographs of the cavities were also taken so that the cavity profile shape could be measured and the cavity surface area (A_{w}) determined. The area coefficient (C_{A}) was then found by nondimensionalizing A_{w} by the square of the model diameter. Detailed descriptions of the experimental method and resulting data for C_{Q} are presented by Billet and Weir [8], [9] and details concerning C_{A} and other geometrical data are presented by Billet, Holl, and Weir [10].

5.2 Flow Coefficient

It is well known that there are many similarities between the characteristics of natural and ventilated cavities for the same value of dimensionless cavity length. (This applies only when the ventilated cavity operates in the reentrant jet regime [8], [9].) The German hydrodynamicist H. Reichardt [11] was apparently the first to demonstrate this characteristic by showing that the drag coefficient for an axially symmetric body was the same for both natural and ventilated cavities provided the cavitation number based on cavity pressure was the same for both flow states. Billet [6] has shown that the geometric

characteristics of natural and ventilated cavities on ogives are the same when the cavitation number is the same.

Early in the development of the entrainment theory for correlating temperature depression data it was felt that the aforementioned similarity principle would be applicable to the volume flow rate of gas in the cavity. Thus it was assumed that the characteristics of the flow coefficient for the vapor flow in the cavity would be approximated by the flow coefficient for a ventilated cavity having the same geometrical characteristics. Furthermore, it was decided to minimize the diffusion of gas at the cavity wall and thereby produce a value of C_Q which was based on the entire volume flow rate required to sustain a cavity of a given size. Billet [6] was the first to apply the similarity concept to the entrainment theory. Subsequently this work was improved and is reported in References [1], [8], [9] and [12].

The diffusion of air across the cavity wall was minimized by maintaining the air pressure in the cavity at the saturation pressure (P_{G-S}) of the dissolved gas in the free stream. This pressure is given by Henry's law namely

$$P_{G-S} = \gamma \beta \tag{16}$$

where γ is the dissolved air content and β is the Henry's law constant. The dissolved air content was measured by a Van Slyke apparatus. Since we have $P_c = P_{G-S}$ to assure no diffusion, this implies that the reference pressure (P_{∞}) from Equation (3) is given by

$$P_{\infty} = 1/2 \rho_L v_{\infty}^2 \sigma + P_{G-S}$$
 (17)

It is apparent that diffusion cannot be entirely eliminated by this procedure since the cavity pressure is not precisely constant throughout the cavity. However, it does appear to yield satisfactory and consistent results [8], [9].

Application of the modified least-square approximation technique referred to in Section 4.2 to the ${\rm C_Q}$ data produced the following correlations:

First Correlation

$$C_Q = 0.424 \times 10^{-2} \left(\frac{L}{D}\right)^{0.69} \text{ Re}^{0.16} \text{ Fr}^{0.13}$$
 (zero-caliber ogive) (18)

$$C_0 = 0.320 \times 10^{-4} \left(\frac{L}{p}\right)^{0.74} \text{ Re}^{0.46} \text{ Fr}^{0.26}$$
 (quarter-caliber ogive) (19)

Second Correlation

$$C_Q = 0.225 \times 10^{-1} \left(\frac{L}{D}\right)^{0.69} \text{ Re}^{-0.10} \text{ We}^{0.40}$$
 (zero-caliber ogive) (20)

$$C_0 = 0.836 \times 10^{-3} \left(\frac{L}{D}\right)^{0.74} \text{ Re}^{-0.06} \text{ We}^{0.79}$$
 (quarter-caliber ogive) (21)

The first correlations are compared with plots of experimental data in References [8] and [9]. Experimental values of C_Q are tabulated in Table 2 and compared with values calculated from the correlations.

5.3 Cavity Geometry

The empirical equations for cavity geometry are tabulated in Table 3. These equations are for L/D, D_{M}/D , and A/D as a function of σ and C_{A} as a function of L/D. The area coefficient (C_{A}) empirical equations are of major interest in the temperature depression correlations and are given by

$$C_A = 4.59 \left(\frac{L}{D}\right)^{1.19}$$
 (zero-caliber ogives) (22)

and

$$C_A = 2.06 \left(\frac{L}{D}\right)^{1.18}$$
 (quarter-caliber ogives) . (23)

VI. DETERMINATION OF THE TEMPERATURE DEPRESSION (PHASE III)

6.1 Description of the Tests

For Phase III, four test models were used namely 0.318 and 0.635 cm diameter models with both zero- and quarter-caliber ogive noses. A photograph of these models is shown in Figure 4. These models have three ports in which thermocouple beads are mounted in epoxy cement on the model surface and the thermocouple leads exit the tunnel through the hollow center of the model and sting mount. The thermocouples are mounted at three different axial positions on the model so that the axial distribution of temperature within the cavity could be determined. In addition, the two larger models have one tube along the surface of the model to monitor the cavity pressure.

The thermocouple wires were made of copper-constantan and were 0.010 cm in diameter. The cavity thermocouples were each connected in series with a downstream thermocouple so that the temperature depression (ΔT) could be measured directly. The free stream temperature was measured independently with a thermocouple references to a 0°C ice bath. In general, the accuracy of temperature measurements was ± 0.3 °C. Additional details concerning the thermocouple system are given in Reference [1].

All temperature readings were taken with an integrating digital voltmeter to time average any temperature fluctuations. This differs from the procedure of Billet [6] who used a galvanometer to take instantaneous readings and then only considered the minimum measured cavity temperatures. The averaging technique therefore produces smaller temperature depressions than those measured by Billet, but is more consistent with the steady-state entrainment analysis.

Temperature depressions were determined as a function of T_{∞} for a velocity range of 19.5 to 36.6 m/sec at various cavity lengths for the flow test models. Free stream temperatures varied from 35°C to 95°C in Freon 113 and from 60°C to 125°C in water.

In order to minimize the effects of variations in the amount of noncondensable gas dissolved in the liquid, all temperature depression tests were run with the liquid near saturation. The saturated air content at 22°C and one atmosphere is about 14 ppm for water and 1200 ppm for Freon 113 where ppm is moles of air per million moles of the liquid solvent. It has been shown [13] however that variations in air content have little effect on the temperature depression for the fluids, models and flow conditions examined in this study.

6.2 Maximum Temperature Depression and Discussion of Correlations

The maximum temperature depression (ΔT_{max}) defined as

$$\Delta T_{max} = T_{\infty} - T_{C_{min}}$$
 (24)

was determined by the method described in Section 6.3 and is shown in Figures 5 - 10 as a function of T_{∞} for various velocities for the four models in Freon 113 and water. Each symbol is the average of at least ten data points. The solid lines are the values of ΔT_{\max} calculated from the first correlation by the entrainment theory given in Table 4. Since both the first and second correlations were determined by the modified least-squares method referred to in Section 4.2 both correlations will give approximately the same result. This is shown in Table 6 where the experimental values of ΔT_{\max} are compared with values calculated by both correlations.

The correlations of ΔT_{max} with the various flow parameters was obtained by the entrainment method presented in Section 4.2. The resulting correlations are presented in Tables 4 and 5 together with the correlations for C_0 and Nu. These correlations are compared with corresponding correlations for venturis in Reference [14]. The first correlation, which is presented in Table 4, did not include Weber number as a scaling parameter. The second correlation, which did not include Froude number as a scaling parameter, is given in Table 5. As indicated previously, values of ΔT_{max} calculated from the correlations are compared with the experimental values of ΔT_{max} in Table 6. The first correlation is the same as that given in References [1] and [12] except that small adjustments in the constants were made to account for the use of more recent thermodynamic properties of Freon 113. The empirical equations for the properties of Freon 113 and water are given in Tables 7 and 8, respectively. These equations were used in the process of finding correlation #1 and #2 for ΔT_{max} . Freon 113 and water fluid properties are tabulated in Tables 9 and 10. These data were obtained from References [17] - [22].

Referring to the data for C_Q , Nu, and ΔT for the first correlation (Table 4), it is seen that the correlations are consistent, i.e., the exponents of like terms have the same sign in corresponding correlations for the two ogives. Furthermore, the correlations for the ΔT_{max} data are nearly independent of Froude number. This is perhaps not surprising since the Froude number was rather high in these tests. This result suggested the possibility that Froude number could be eliminated in the expressions for C_Q , Nu and ΔT_{max} and that other parameters could be considered. Since the entrainment mechanism may

depend upon surface tension effects, it seemed reasonable to consider Weber number as a scaling parameter. Thus Froude number was replaced by Weber number and a second set of correlations for c_Q , Nu and ΔT_{max} were obtained as shown in Table 5.

Referring to the ogive data for C_Q , Nu, and ΔT_{max} in Table 5, it is seen that the exponents of like terms have the same sign and thus corresponding correlations for the two ogives are consistent. Furthermore, the exponents on the Weber number terms in Table 5 are consistently higher than the corresponding exponents on the Froude number terms in Table 4. Perhaps this indicates that in this instance the Weber number is better than Froude number as a scaling parameter.

As indicated in the foregoing discussion, the data for the two ogive families are consistent within the context of the entrainment theory for both correlations, i.e., exponents of like terms in the equations have the same sign. It is also interesting to compare the correlations for ΔT_{max} for the case of constant fluid properties where ΔT_{max} has the form

$$\Delta T_{\text{max}} = C(\frac{L}{D})^{M_1} V_{\infty}^{M_2} D^{M_3}$$
 (25)

in which the constants C, M_1 , M_2 , and M_3 are in general different for each configuration. These correlations are shown in Table 11 for the two ogives and two correlations. For a given model shape it is seen that the two correlations give nearly the same exponents for like terms. For the quarter-caliber ogives, ΔT_{max} increases with velocity (V_{∞}) and size (D) whereas the opposite trend is displayed by the zero-caliber ogives. As shown in Reference [14] in which data for

venturi, hydrofoils and ogives are compared, ΔT_{max} for venturis and hydrofoils also tend to increase with V_{∞} and D. Thus the zerocaliber ogive tends to be the exception when examined for the case of constant fluid properties.

6.3 Axial Variation of Temperature Depression

The axial variation of the temperature depression along the cavity was found to be roughly linear with the maximum temperature depression occurring near the leading edge of the cavity. This is in agreement with other investigators [15], [16]. Therefore, to consistently determine the maximum temperature depression (ΔT_{max}) the axial distribution was extrapolated to the leading edge to determine ΔT_{max} . These extrapolations for all of the ΔT_{max} values plotted in Figures 5 - 10 are given in Figures 11 - 68. The indicated ΔT_{max} is shown in each figure and tabulated in Table 6.

VII. CONCLUSIONS

The major conclusions regarding ΔT_{max} from this investigation as documented in this report and References [1], [12] and [14] are:

- (1) The temperature depression for the quarter-caliber ogives increases with T_{∞} , L/D, V_{∞} , and D. This result is in general agreement with other investigations of quarter-caliber ogives, hydrofoils, and venturis.
- (2) The temperature depression for the zero-caliber ogives increases with T_∞ and L/D but tends to decrease with V_∞ and D.
- (3) Both the first and second correlations show consistent results for the ogives within the context of the entrainment theory in that the exponents of like terms have the same sign in the expressions for C_0 , Nu and ΔT_{max} .
- (4) The ΔT_{max} expressions for the ogives from the first correlation show that the Froude number term is very small and can be neglected. This result was the basis for obtaining the second correlation in which the Froude number was replaced by Weber number.
- (5) For additional related conclusions the reader is referred to References [1], [12] and [14].

VIII. REFERENCES

- Weir, D. S., "An Experimental and Theoretical Investigation of Thermodynamic Effects on Developed Cavitation," M.S. Thesis, The Pennsylvania State University, May 1975 (or ARL Technical Memorandum 75-34).
- Weir, D. S., Billet, M. L. and Holl, J. W., "The 1.5-Inch Ultra-High-Speed Cavitation Tunnel at the Applied Research Laboratory of The Pennsylvania State University," ARL Technical Memorandum 75-188, July 10, 1975.
- 3. Holl, J. W., "Cavitation Research Facilities of the Ordnance Research Laboratory of The Pennsylvania State University," Proceedings of the Symposium on Cavitation Research Facilities and Techniques, ASME, May 18-20, 1964, pp. 11-18.
- Holl, J. W. and Wislicenus, G. F., "Scale Effects on Cavitation," Journal of Basic Engineering, Trans. ASME, Vol. 83, Sept. 1961, pp. 385-398.
- Acosta, A. J and Parkin, B. R., Discussion of Reference 4, Journal of Basic Engineering, Trans. ASME, Vol. 83, Sept. 1961, pp. 395-396.
- Billet, M. L., "Thermodynamic Effects on Developed Cavitation in Water and Freon 113," M.S. Thesis, The Pennsylvania State University, March 1970.
- Becket, R. and Hunt, J., "Numerical Calculations and Algarithms," McGraw-Hill, 1967.
- Billet, M. L. and Weir, D. S., "The Effect of Gas Diffusion and Vaporization on the Entrainment Coefficient for a Ventilated Cavity,"
 ARL Technical Memorandum 74-15, January 24, 1974.

- Billet, M. L. and Weir, D. S., "The Effect of Gas Diffusion on the Flow Coefficient for a Ventilated Cavity," Journal of Fluids Engineering, Trans. ASME, Vol. 97, December 1975, pp. 501-506.
- 10. Billet, M. L., Holl, J. W., and Weir, D. S., "Geometric Description of Developed Cavities on Zero- and Quarter-Caliber Ogive Bodies,"
 ARL Technical Memorandum 74-136, May 6, 1974.
- 11. Reichardt, H., "The Laws of Cavitation Bubbles at Axially Symmetrical Bodies in a Flow," Reports and Translations No. 766, Office of Naval Research, October 1947.
- 12. Holl, J. W., Billet, M. L., and Weir, D. S., "Thermodynamic Effects on Developed Cavitation," Journal of Fluids Engineering, Trans. ASME, Vol. 97, December 1975, pp. 507-514.
- 13. Fricks, E. E., "The Influence of Temperature, Velocity, Size, and Boundary Form on the Thermodynamic Effect in Developed Cavitation in Freon 113," M.S. Thesis, The Pennsylvania State University, March 1974.
- 14. Billet, M. L., Holl, J. W., and Weir, D. S., "Correlations by the Entrainment Theory of Thermodynamic Effects for Developed Cavitation in Venturis and Comparisons with Ogive Data," ARL Technical Memorandum 75-291, December 11, 1975 (or NASA CR-135018).
- 15. Gelder, T. F., Ruggeri, R. S., and Moore, R. D., "Cavitation Similarity Considerations Based on Measured Pressure and Temperature Depressions in Cavitated Regions of Freon 114," NASA TN D-3509, April 17, 1966.
- Hord, J., Anderson, L. M., and Hall, W. J., "Cavitation in Liquid Cryogens I-Venturi," NASA CR-2054, May 1972.

- 17. Bennington, A. F. and McHarness, R. C. "The Thermodynamic Properties of Freon 113," Report T113A, E. I. duPont de Nemours and Company, Wilmington, Delaware, 1938.
- 18. "Transport Properties of Freon Fluorocarbons," Report C-30,E. I. duPont de Nemours and Company, Wilmington, Delaware, 1973.
- 19. "Surface Tension of the Freon Compounds," Report D-27, E. I. duPont de Nemours and Company, Wilmington, Delaware, 1967.
- Keenan, J. H and Keyes, F. G., "Thermodynamic Properties of Steam," John Wiley, 1936.
- 21. Gebhart, B., "Heat Transfer," McGraw-Hill, 1961.
- 22. Vargaftik, N. B., "Tables on the Thermophysical Properties of Liquids and Gases," John Wiley, 2nd Edition, 1975.

Table 1 - Sources of Data Plots and Tabulations

	First	— SOURCES FOR DATA PLOTS — Isst Second	Third	Table Number
Area coefficient (C_{A}) versus dimensionless cavity length (L/D)	BHW74	W75 (ARL)		+ _e
<pre>Cavitation number (G) versus dimensionless cavity length (L/D)</pre>	BHW74	W75 (ARL)		+ _m
Dimensionless maximum cavity diameter $(D_{\underline{M}}/D)$ versus σ^{**}	BHW74			+ _m
Dimensionless location of maximum cavity diameter (A/D) versus $\sigma^{**}_{}$	BHW74			+ _e
** or versus L/D for various ratios of model to tunnel diameter $(D/D_{\rm T})$	W75 (ARL)	W75 (ASME)		1
** σ versus temperature at infinity (T_{∞})	W75 (ARL)	HBW75	W75 (ASME)	ı
*** orsus X/L	W75 (ARL)			1
c_{Q} (with diffusion) versus σ	BW74	BW75		1
c_{Q} (without diffusion) versus σ	BW74	BW75	W75 (ARL)	7
Maximum temperature depression (Δ_{max}^{T}) versus T_{∞}	This report	W75 (ARL)	HBW75	9
Temperature depression (AT) versus X/L	This report	W75 (ARL)		1

* This is the table number for data tabulations in this report.

** of based on cavity pressure at first tap.

O based on local cavity pressure corresponding to X/L.

Table 2 - Tabulation of $C_{\mbox{\scriptsize Q}}$ Data

MODEL: Quarter-Caliber Ogive
DIAMETER: 0.318 cm (0.125 inch)
FLUID: Water at 21.1°C (70°F)

Vel	ocity		c_{Q}	C _Q Corr	elations
fps	mps	L/D	Experimental*	First	Second
30	9.15	3.5	0.030	0.026	0.029
		3.5	0.028	11	11
		5.0	0.034	0.033	0.038
		5.0	0.033		11
		7.0	0.038	0.043	0.049
		7.0	0.037	11	"
		10.0	0.040	0.056	0.063
		10.0	0.040	"	11
45	13.725	3.5	0.050	0.034	0.039
		3.5	0.044	"	"
		5.0	0.052	0.045	0.051
		5.0	0.054	"	
		7.0	0.060	0.058	0.065
		7.0	0.057	"	"
		10.0	0.057	0.075	0.085
		10.0	0.061	"	"
	10 200		0.000	0.0/0	0.010
60	18.300	3.5	0.069	0.042	0.048
		3.5	0.071		
		5.0	0.075	0.055	0.063
		5.0	0.078		
		7.0	0.088	0.071	0.081
		7.0	0.087		
		10.0	0.096	0.092	0.105
		10.0	0.095		

^{*}Experiments conducted in 30.5 cm (12 inch) water tunnel.

Table 2 - Tabulation of ${\bf C}_{\bf Q}$ Data (Cont.)

MODEL: Quarter-Caliber Ogive
DIAMETER: 0.635 cm (0.25 inch)
FLUID: Water at 21.1°C (70°F)

Velo	ocity		c_Q	$^{\rm C}_{ m Q}$ Correlations		
fps	mps	L/D	Experimental*	First	Second	
30	9.15	2.0	0.022	0.021	0.024	
		3.5 3.5	0.042 0.046	0.032	0.037	
		5.0	0.055 0.058	0.042	0.048	
		8.0	0.060 0.064	0.060	0.068	
		10.0 10.0	0.068 0.070	0.070	0.080	
45	13.725	2.0	0.034 0.035	0.029	0.033	
		3.5 3.5	0.055 0.058	0.043	0.049	
		5.0	0.071 0.075	0.056	0.064	
		8.0 8.0	0.085 0.090	0.080	0.091	
		10.0 10.0	0.100 0.108	0.094	0.107	
60	18.300	2.0	0.037 0.040	0.035	0.040	
		3.5	0.065 0.069	0.053	0.061	
		5.0	0.085 0.087	0.069	0.079	
		8.0 10.0	0.110 0.134	0.098 0.116	0.112 0.132	

^{*}Experiments conducted in 30.5 cm (12 inch) water tunnel.

Table 2 - Tabulation of $C_{\mathbb{Q}}$ Data (Cont.)

MODEL: Quarter-Caliber Ogive DIAMETER: 1.27 cm (0.50 inch) FLUID: Water at 21.1°C (70°F)

Velo	city		c _Q	CQ Corr	elations
fps	mps	L/D	Experimental*	First	Second
30	9.15	1.0	0.017	0.016	0.018
		1.0	9.017 9.029	0.024	0.028
		1.75	0.030	0.032	0.036
		2.5 3.5 3.5	0.039 0.054 0.057	0.041	0.046
		5.0	0.070 0.070	0.053	0.060
45	13.725	1.0	0.019	0.022	0.025
		1.0 1.75	0.018 0.035	0.032	0.037
		1.75 2.5	0.036 0.050	0.042	0.049
		2.5 3.5 3.5	0.053 0.070	0.054	0.062
		5.0	0.073 0.090 0.098	0.071	0.082
60	18.300	1.0	0.017	0.026	0.030
		1.0 1.75	0.017 0.036	0.040	0.046
		1.75 2.5	0.037 0.054	0.052	0.060
		2.5 3.5 3.5	0.055 0.075 0.078	0.067	0.077

^{*}Experiments conducted in 30.5 cm (12 inch) water tunnel.

Table 2 - Tabulation of C_Q Data (Cont.)

MODEL: Zero-Caliber Ogive
DIAMETER: 0.318 cm (0.125 inch)
FLUID: Water at 21.1°C (70°F)

Velo	ocity		CQ	C _Q Correlations			
fps	mps	L/D	Experimental*	First	Second		
30	9.15	3.5 3.5	0.092 0.095	0.087	0.098		
		5.0 5.0	0.126 0.128	0.112	0.126		
		7.0 7.0	0.135 0.138	0.141	0.159		
		7.0	0.143	"	"		
45	13.725	3.5 3.5	0.112 0.113	0.098	0.111		
		5.0 5.0	0.151 0.155	0.126	0.142		
		7.0 7.0	0.167 0.170	0.158	0.179		
60	18.300	3.5 3.5	0.120 0.123	0.107	0.121		
		5.0	0.150 0.158	0.137	0.155		
		7.0 7.0	0.182 0.187	0.172	0.196		

^{*}Experiments conducted in 30.5 cm (12 inch) water tunnel.

Table 2 - Tabulation of $C_{\mathbb{Q}}$ Data (Cont.)

MODEL: Zero-Caliber Ogive
DIAMETER: 0.635 cm (0.25 inch)
FLUID: Water at 21.1°C (70°F)

Velo	city		c_{Q}	CQ Corr	C _Q Correlations		
fps	mps	L/D	Experimental*	First	Second		
30	9.15	2.0	0.061	0.063	0.072		
		2.0	0.062	"	"		
		3.5	0.100	0.093	0.106		
		3.5	0.103	"	"		
		5.0	0.131	0.119	0.135		
		5.0	0.135	"	11		
		8.0	0.170	0.165	0.187		
		8.0	0.175	"	"		
		10.0	0.200	0.192	0.218		
		10.0	0.203	"	"		
45	13.725	2.0	0.048	0.071	0.081		
		2.0	0.053	"	"		
		3.5	0.105	0.105	0.119		
		3.5	0.110		"		
		5.0	0.158	0.134	0.152		
		5.0	0.160	"	"		
		8.0	0.203	0.186	0.211		
		8.0	0.214	"	"		
		10.0	0.228	0.216	0.246		
		10.0	0.236	"	"		
60	18.300	2.0	0.040	0.077	0.088		
		2.0	0.040	"	"		
		3.5	0.113	0.114	0.130		
		3.5	0.115	"	"		
		5.0	0.160	0.146	0.166		
		5.0	0.163	"	"		

^{*}Experiments conducted in 30.5 cm (12 inch) water tunnel.

Table 2 - Tabulation of ${\bf C}_{\bf Q}$ Data (Cont.)

MODEL: Zero-Caliber Ogive
DIAMETER: 1.27 cm (0.5 inch)
FLUID: Water at 21.1°C (70°F)

Velo	city		c _Q	CQ Corr	${\bf C_Q}$ Correlations			
fps	mps	L/D	Experimental*	First	Second			
30	9.15	1.25 1.25	0.080 0.085	0.049	0.056			
		1.25	0.085 0.085	" "	"			
		1.80	0.107	0.063	0.071			
		1.80	0.110 0.113	" "	" "			
		1.80 1.80	0.115 0.119	11	"			
		2.5 2.5	0.148 0.155	0.079	0.090			
		2.5	0.165	"	"			

^{*}Experiments conducted in 30.5 cm (12 inch) water tunnel.

Table 3 - Empirical Equations for Cavity Geometry

Zero-Caliber Ogive	Quarter-Caliber Ogive
$\sigma = 0.751 \left(\frac{L}{D}\right)^{-0.75}$	$\sigma = 0.460 \left(\frac{L}{D}\right)^{-0.66}$
$\frac{D_{M}}{D} = 1.43 \sigma^{-0.34}$	$\frac{D_{M}}{D} = 1.02 \sigma^{-0.36}$
$\frac{A}{D} = 0.557 \sigma^{-1.22}$	$\frac{A}{D} = 0.196 \sigma^{-1.47}$
$c_{A} = 4.59 \left(\frac{L}{D}\right)^{1.19}$	$c_A = 2.06 \left(\frac{L}{D}\right)^{1.18}$

where

 σ = cavitation number based on cavity pressure

L = length of cavity

D = maximum body diameter

 $\mathbf{D}_{\mathbf{M}}$ = maximum diameter of the cavity

A = axial distance from the leading edge of the cavity to the location of maximum cavity diameter

$$C_A = \frac{A_w}{D^2} = \text{area coefficient}$$

A = surface area of cavity.

Table 4

Constants and Exponents for Entrainment Theory - First Correlation

Model	Quantity		Constant C ₂ , C ₃ or C ₄				We Exp.	Pr Exp.	Pe Exp.
Zero-Caliber	c _Q	13	0.424×10^{-2}	0.69	0.16	0.13	0		
Ogive	Nu*	14	0.148×10^{-3}	-1.33	1.39	0.15	0	0.85	
	Δτ* max	15	6.221	0.83	-1.23	-0.02	0	-0.85	1.0
0.1/1	c _Q	13	0.320×10^{-4}	0.74	0.46	0.26	0		
Quarter-Caliber	Nu*	14	0.464×10^{-2}	-0.70	1.03	0.30	0	0.41	
Ogive	ΔT* max	15	0.335×10^{-2}	0.26	-0.57	-0.04	0	-0.41	1.0

Zero-Caliber Ogives: $C_A = 4.59 (L/D)^{1.19}$

Quarter-Caliber Ogives: $C_A = 2.06 (L/D)^{1.18}$

^{*}These correlations are the same as those given in References [1] and [12] except for small adjustments in the constants due to the use of new fluid property data for Freon 113.

Table 5

Constants and Exponents for Entrainment Theory - Second Correlation

Model	Quantity	Eq. No.	Constant C_2 , C_3 or C_4	L/D Exp.	Re Exp.	Fr Exp.	We Exp.	Pr Exp.	Pe Exp.
Zero-Caliber	c _Q	13	0.225 x 10 ⁻¹	0.69	-0.10	0	0.40		
	Nu	14	0.415×10^{-2}	-1.37	0.90	0	0.68	0.64	
Ogive	ΔT_{max}	15	1.183	0.87	-1.00	0	-0.28	-0.64	1.0
Owenton Calibon	c _Q	13	0.836×10^{-3}	0.74	-0.06	0	0.79		
Quarter-Caliber	Nu	14	0.271	-0.70	0.41	0	0.93	0.31	
Ogive	ΔT_{max}	15	1.498×10^{-3}	0.26	-0.47	0	-0.14	-0.31	1.0

Zero-Caliber Ogives: $C_A = 4.59 (L/D)^{1.19}$

Quarter-Caliber Ogives: $C_A = 2.06 (L/D)^{1.18}$

Table 6 - Tabulation of $\Delta T_{\mbox{\scriptsize max}}$ Data

MODEL: Quarter-Caliber Ogive DIAMETER: 0.635 cm (0.25 inch)

FLUID: Freon 113

					ΔT _m				ΔT_{m}	ax	
Velo	city	Temper	ature		Experi	ax mental	*	1st Co	**	2nd Co	***
fps	mps	°F	°C	L/D	°F	°C	Figure Number	°F	°C	°F	°C
64	19.5	103.6 103.8	39.8	2.0	3.1	1.72	11 11	2.57	1.43	2.59	1.44
		104.5 120.6 122.5 122.4	40.3 49.2 50.2 50.2	5.0 2.0 3.5 5.0	3.7 3.8 4.1 4.2	2.06 2.11 2.27 2.33	11 12 12 12	3.34 3.43 4.12 4.51	1.86 1.91 2.29 2.51	3.36 3.44 4.12 4.53	1.87 1.91 2.29 2.52
		140.2 141.9 142.0	60.1 61.1 61.1	2.0 3.5 5.0	5.6 5.9 6.2	3.11 3.28 3.44	13 13 13	4.66 5.55 6.02	2.59 3.08 3.34	4.66 5.55 6.03	2.59 3.08 3.35
		158.6 160.5 161.7	70.3 71.4 72.1	2.0 3.5 5.0	7.2 7.7 8.1	4.00 4.27 4.50	14 14 14	6.08 7.25 8.10	3.38 4.03 4.50	6.07 7.24 8.09	3.37 4.02 4.49
		179.4 181.6 180.8	81.9 83.1 82.7	2.0 3.5 5.0	9.4 10.0 10.0	5.22 5.56 5.56	15 15 15	8.00 9.60 10.45	4.44 5.33 5.81	8.04 9.55 10.41	4.47 5.31 5.78
120	36.6	199.9 120.5	93.3 49.2	2.0	11.6 3.6	6.44	16 17	10.35	5.75 2.42	10.24	5.69 2.43
120	30.0	127.9 115.5 124.6 110.2	53.3 46.4 51.4 43.4	2.0 3.5 3.5 5.0	4.3 4.0 4.9 4.9	2.39 2.22 2.72 2.72	17 17 17 17	4.90 4.65 5.39 4.68	2.72 2.58 2.99 2.60	4.92 4.68 5.43 4.72	2.43 2.73 2.60 3.02 2.62
		122.2	50.1	5.0	5.9	3.28	17	5.71	3.17	5.75	3.19
		147.2 144.3 141.2	64.0 62.4 60.7	2.0 3.5 5.0	5.9 7.0 7.4	3.28 3.88 4.11	18 18 18	6.56 7.30 7.67	3.64 4.06 4.26	6.57 7.32 7.70	3.65 4.07 4.28
		165.2 162.5 160.4	74.0 72.5 71.3	2.0 3.5 5.0	7.9 8.4 9.3	4.39 4.67 5.17	19 19 19	8.46 7.67 10.11	4.70 4.27 5.62	8.45 7.68 10.21	4.69 4.27 5.67
		182.6 181.0 179.4	83.7 82.8 81.9	2.0 3.5 5.0	11.2 11.6 12.3	6.22 6.44 6.83	20 20 20	10.63 12.09 13.03	6.72	10.60 12.07 13.01	5.89 6.71 7.23
		202.4 201.9 201.0	94.7 94.4 93.9	2.0 3.5 5.0	12.8 13.4 15.9	7.11 7.44 8.83	21 21 21	13.53 15.61 16.99	8.67	13.41 15.50 16.88	7.45 8.61 9.38

^{*}Figure number for ΔT versus X/L plot.

^{**} The first correlation involves the dimensionless parameters Fr, Re, Pr, Pe, L/D.

^{***} The second correlation involves the dimensionless parameters We, Re, Pr, Pe, L/D.

Table 6 - Tabulation of $\Delta T_{\mbox{\scriptsize max}}$ Data (Cont.)

MODEL: Quarter-Caliber Ogive DIAMETER: 0.318 cm (0.125 inch) FLUID: Freon 113

				ΔT				ΔT _{max}				
Velo	ocity	Temper	ature		Experi	mental	Figure*	1st C	orr.	2nd C	orr.	
fps	mps	°F	°C	L/D	°F	°C	Number	°F	°C	°F	°C	
64	19.5	118.8	48.2	4.0	2.6	1.44	22	2.93	1.63	2.93	1.63	
		121.9	49.9	5.2	2.9	1.61	22	3.30	1.83	3.31	1.84	
		125.7	52.1	7.0	3.0	1.67	22	3.80	2.11	3.81	2.12	
		135.2	57.3	4.0	3.1	1.72	23	3.80	2.11	3.79	2.11	
		139.5	59.7	5.2	3.6	2.00	23	4.35	2.42	4.34	2.41	
		144.1	62.3	7.0	3.9	2.17	23	3.82	2.12	3.82	2.12	
		154.2	67.9	4.0	4.6	2.55	24	5.01	2.78	5.01	2.78	
		163.9	73.3	5.2	5.2	2.89	24	7.11	3.95	7.07	3.93	
		162.7	72.6	7.0	5.8	3.22	24	6.57	3.65	6.54	3.63	
		180.2	82.3	4.0	7.0	3.89	25	7.14	3.97	7.09	3.94	
		174.5	79.2	5.2	8.3	4.61	25	7.11	3.95	7.07	3.93	
		180.0	82.2	7.0	8.6	4.78	25	8.27	4.59	8.22	4.57	
		198.4	92.4	4.0	8.2	4.56	26	8.94	4.97	8.84	4.91	
90	27.4	118.0	47.8	4.0	3.1	1.72	27	3.30	1.83	3.30	1.83	
		117.1	47.3	5.2	3.2	1.78	27	3.48	1.93	3.46	1.92	
		115.9	46.6	7.0	3.8	2.11	27	3.69	2.05	3.70	2.06	
		130.8	54.9	4.0	4.0	2.22	28	4.04	2.24	4.04	2.24	
		130.3	54.6	5.2	4.4	2.44	28	4.30	2.39	4.30	2.39	
		130.6	54.8	7.0	4.4	2.44	28	4.67	2.59	4.68	2.60	
		153.7	67.6	4.0	6.2	3.44	29	5.67	3.15	5.67	3.15	
		155.5	68.6	5.2	6.8	3.78	29	6.25	3.47	6.24	3.47	
		158.8	70.4	7.0	8.2	4.56	29	7.08	3.93	7.07	3.93	
		180.1	82.3	4.0	10.6	5.89	30	8.12	4.51	8.07	4.48	
120	36.6	131.4	55.2	4.0	4.6	2.56	31	4.55	2.53	4.56	2.54	
		128.4	53.6	5.2	4.8	2.67	31	4.65	2.58	4.66	2.59	
		125.5	51.9	7.0	5.1	2.83	31	4.81	2.67	4.83	2.68	
		144.0	62.2	4.0	5.6	3.11	32	5.50	3.06	5.51	3.06	
		141.7	60.9	5.2	6.2	3.44	32	5.70	3.17	5.71	3.17	
		137.6	58.7	7.0	6.6	3.67	32	5.80	3.22	5.82	3.23	
		162.6	72.6	4.0	7.6	4.22	33	7.17	3.98	7.16	3.98	
		162.6	72.6	5.2	8.4	4.67	33	7.69	4.27	7.68	4.27	
		161.4	71.9	7.0	8.8	4.89	33	8.19	4.55	8.18	4.54	
		183.2	84.0	4.0	8.8	4.89	34	9.42	5.23	9.37	5.21	
		181.2	82.9	5.2	9.8	5.44	34	9.85	5.47	9.80	5.44	
		178.3	81.3	7.0	11.1	6.17	34	10.27	5.71	10.23	5.68	

^{*}Figure number for ΔT versus X/L plot.

6.04

6.89

7.56

10.88

12.41

13.60

Table 6 - Tabulation of ΔT_{max} Data (Cont.)

MODEL: Quarter-Caliber Ogive
DIAMETER: 0.318 cm (0.125 inch)
FLUID: Freon 113

ΔT_{max} ΔT_{max} Velocity Temperature Experimental 1st Corr. 2nd Corr. Figure °C °F °C °F °C °F °C °F L/D Number fps mps 35 120 36.6 188.0 86.7 4.0 10.2 5.67 10.00 5.56 9.94 5.52 187.1 10.61 10.55 86.2 5.2 11.4 6.33 35 5.89 5.86

MODEL: Quarter-Caliber Ogive
DIAMETER: 0.635 cm (0.25 inch)
FLUID: Water

6.22

7.39

7.78

36

36

36

10.96

12.52

13.72

6.09

6.96

7.62

ΔT_{max} ΔT_{max} 2nd Corr. Velocity Temperature Experimental 1st Corr. Figure °F °C °F °C °F °C °F °C fps L/D Number mps 64 19.5 149.1 65.1 2.0 0.2 0.11 37 0.21 0.12 0.21 0.12 150.4 65.8 3.5 0.3 0.17 37 0.25 0.14 0.25 0.14 151.9 66.6 5.0 0.3 0.17 37 0.28 0.16 0.28 0.16 0.56 200.4 2.0 0.5 0.28 38 0.56 0.31 0.31 93.6 0.33 0.68 3.5 0.6 38 0.68 0.38 0.38 202.6 94.8 5.0 0.7 0.39 0.77 204.5 95.8 38 0.77 0.43 0.43 2.0 1.2 0.67 39 1.17 0.65 1.16 0.64 245.0 118.3 1.42 0.78 247.8 119.9 3.5 1.4 39 0.79 1.41 0.78 5.0 0.83 39 1.85 1.85 1.5 1.03 1.03 250.3 121.3 120 2.0 0.16 0.09 40 0.21 0.12 0.20 0.11 36.6 148.6 64.8 148.5 64.7 3.5 0.2 0.11 40 0.25 0.14 0.24 0.13 148.2 5.0 0.4 0.22 40 0.43 0.24 0.43 0.24 64.6 0.33 91.6 2.0 0.6 41 0.67 0.37 0.67 0.37 196.9 91.3 3.5 0.56 1.0 41 0.77 0.43 0.78 0.43 196.3 194.8 90.4 5.0 1.3 0.72 41 0.85 0.47 0.85 0.47 251.8 122.1 2.0 1.6 0.89 42 1.65 0.92 1.64 0.91 249.5 120.8 3.5 1.9 1.06 42 1.84 1.84 1.02 1.02 5.0 1.96 1.96 247.0 119.4 2.0 1.11 42 1.09 1.09

195.5

200.8

201.9

90.8

93.8

94.4

4.0

5.2

7.0

11.2

13.3

14.0

^{*}Figure number for ΔT versus X/L plot.

Table 6 - Tabulation of ΔT_{max} Data (Cont.)

MODEL: Zero-Caliber Ogive DIAMETER: 0.635 cm (0.25 inch)

FLUID: Freon 113

					ΔΤ	nax			ΔTm	ax	
Velo	ocity	Temper	ature		Exper	imental	Figure*	1st C		2nd C	orr.
fps	mps	°F	°C	L/D	°F	°C	Number	°F	°C	°F	°C
64	19.5	121.6 122.6 123.2	49.8 50.3 50.7	3.5 5.0	1.0 1.7 2.3	0.56 0.94 1.28	43 43 43	0.92 1.50 2.04	0.51 0.83 1.13	0.94 1.55 2.14	0.52 0.86 1.19
		142.0 143.0 142.5	61.1 61.7 61.4	2.0 3.5 5.0	1.2 1.9 2.9	0.67 1.06 1.61	44 44 44	1.23 1.99 2.66	0.68 1.11 1.48	1.24 2.05 2.78	0.69 1.14 1.54
		158.0 159.9 160.9	70.0 71.1 71.6	2.0 3.5 5.0	1.5 2.5 3.8	0.83 1.39 2.11	45 45 45	1.51 2.45 3.34	0.84 1.36 1.86	1.52 2.53 3.47	0.85 1.41 1.93
		177.7 179.5 180.4	80.9 81.9 82.4	2.0 3.5 5.0	1.5 2.8 4.6	0.83 1.56 2.56	46 46 46	1.90 3.11 4.26	1.06 1.73 2.37	1.91 3.19 4.41	1.07 1.77 2.45
		195.3 199.1 201.9	90.7 92.8 94.4	2.0 3.5 5.0	2.0 3.5 5.2	1.11 1.94 2.89	47 47 47	2.31 3.81 5.32	1.28 2.12 2.96	2.31 3.90 5.47	1.28 2.17 3.04
120	36.6	125.6 123.5 121.6	52.0 50.8 49.8	2.0 3.5 5.0	0.9 1.2 1.7	0.50 0.67 0.94	48 48 48	0.83 1.29 1.69	0.46 0.72 0.94	0.82 1.31 1.74	0.45 0.73 0.97
		144.3 142.6 141.4	62.4 61.4 60.8	2.0 3.5 5.0	1.0 1.4 2.7	0.56 0.78 1.50	49 49 49	1.02 1.68 2.22	0.57 0.93 1.23	1.01 1.69 2.28	0.56 0.94 1.27
		159.1 158.1 157.1	70.6 70.1 69.5	2.0 3.5 5.0	1.3 2.3 3.6	0.72 1.28 2.00	50 50 50	1.29 2.05 2.73	0.72 1.14 1.52	1.28 2.06 2.78	0.71 1.15 1.54
		184.0 177.2 176.3	84.4 80.7 80.2	2.0 3.5 5.0	1.3 2.4 4.7	0.72 1.33 2.61	51 51 51	1.74 2.57 3.34	0.97 1.43 1.91	1.71 2.58 3.49	0.95 1.44 1.94
		198.5 197.8 197.2	92.5 92.1 91.8	2.0 3.5 5.0	1.8 3.0 4.8	1.00 1.67 2.67	52 52 52	2.03 3.22 4.31	1.13 1.79 2.39	1.98 3.21 4.35	1.10 1.78 2.42

^{*}Figure number for ΔT versus X/L plot.

Table 6 - Tabulation of $\Delta T_{\mbox{max}}$ Data (Cont.)

MODEL: Zero-Caliber Ogive
DIAMETER: 0.318 cm (0.125 inch)
FLUID: Freon 113

					ΔΤ	nax			ΔΤπ	ax	
Velo	ocity	Temper	ature		Exper	imental	Figure*	1st C	orr.	2nd C	orr.
fps	mps	°F	°C	L/D	°F	°c	Number	°F	°c	°F	°C
64	19.5	102.0 106.0 110.0	38.9 41.1 43.3	4.0 5.2 7.0	2.1 2.2 2.3	1.17 1.22 1.28	53 53 53	1.43 1.90 2.59	0.79 1.06 1.44	1.81 1.90 2.62	1.01 1.06 1.46
		118.5 119.6 120.6	48.1 48.7 49.2	4.0 5.2 7.0	2.0 2.2 2.5	1.11 1.22 1.39	54 54 54	1.91 2.00 2.41	1.06 1.11 1.34	1.93 2.00 2.42	1.07 1.11 1.34
		137.5 140.3 140.8	58.6 60.2 60.4	4.0 5.2 7.0	2.4 2.8 3.1	1.33 1.56 1.72	55 55 55	2.40 3.11 2.89	1.33 1.73 1.61	2.38 3.10 2.78	1.32 1.72 1.54
		158.3 159.2 161.9	70.2 70.7 72.2	4.0 5.2 7.0	3.1 3.7 4.0	1.72 2.06 2.22	56 56 56	3.14 3.96 4.62	1.74 2.20 2.57	3.10 3.94 4.54	1.72 2.19 2.52
		173.9 178.3 177.8	78.8 81.3 81.0	4.0 5.2 7.0	3.6 4.6 5.2	2.00 2.56 2.89	57 57 57	3.79 4.94 6.33	2.11 2.74 3.52	3.73 4.94 6.33	2.07 2.74 3.52
		191.5 200.0 200.3	88.6 93.3 93.5	4.0 5.2 7.0	4.0 5.4 6.8	2.22 3.00 3.78	58 58 58	4.62 6.28 8.09	2.57 3.49 4.49	4.52 6.18 8.03	2.51 3.43 4.46
120	36.6	127.5 124.8 119.6	53.1 51.6 48.7	4.0 5.2 7.0	1.8 2.1 2.8	1.00 1.17 1.56	59 59 59	1.75 2.06 2.79	0.97 1.14 1.55	1.74 2.05 2.80	0.96 1.13 1.56
		148.2 145.7 144.9	64.6 63.2 62.7	4.0 5.2 7.0	2.5 3.1 3.3	1.39 1.72 1.83	60 60 60	2.32 3.15 3.21	1.29 1.75 1.78	2.32 3.17 3.35	1.29 1.77 1.86
		164.8 165.7 161.8	73.8 74.3 72.1	4.0 5.2 7.0	3.1 3.5 4.2	1.72 1.94 2.33	61 61 61	2.95 4.21 4.23	1.64 2.34 2.33	2.96 4.19 4.32	1.65 2.32 2.40
		183.4 184.2 183.3	84.1 84.6 84.0	4.0 5.2 7.0	3.4 4.6 5.2	1.89 2.56 2.89	62 62 62	3.41 4.52 5.14	1.89 2.51 2.86	3.41 4.52 5.14	1.89 2.51 2.86
		199.8 201.7 200.4	93.2 94.3 93.6	4.0 5.2 7.0	4.5 6.2 7.5	2.50 3.44 4.17	63 63 63	4.00 6.10 7.32	2.22 3.39 4.07	4.01 6.09 7.31	2.23 3.38 4.06

^{*}Figure number for ΔT versus X/L plot.

Table 6 - Tabulation of $\Delta T_{\mbox{\scriptsize max}}$ Data (Cont.)

MODEL: Zero-Caliber Ogive DIAMETER: 0.635 cm (0.25 inch)

FLUID: Water

					ΔTm	ıax			ΔΤπ	nax	
Velo	ocity	Temper	rature		Experi	mental	Figure*	1st C	orr.	2nd C	orr.
fps	mps	°F	°C	L/D	°F	°C	Number	°F	°c	°F	°C
64	19.5	146.1 147.3 148.9	63.4 64.1 64.9	2.0 3.5 5.0	0.15 0.20 0.50	0.08 0.11 0.28	64 64 64	0.09 0.15 0.45	0.05 0.08 0.25	0.09 0.16 0.45	0.05 0.09 0.25
		197.0 198.9 199.7	91.7 92.7 93.2	2.0 3.5 5.0	0.30 0.40 0.60	0.17 0.22 0.33	65 65 65	0.24 0.40 0.52	0.13 0.22 0.29	0.24 0.39 0.51	0.13 0.22 0.28
		245.6 248.2 250.7	120.1	2.0 3.5 5.0	0.60 0.70 1.20	0.33 0.39 0.67	66 66	0.52 0.65 1.10	0.29 0.36 0.61	0.53 0.64 1.11	0.29 0.36 0.62
120	36.6	192.2 192.7	89.0 89.3	3.5 5.0	0.09 0.40	0.05 0.22	67 67	0.09	0.05 0.23	0.09 0.42	0.05 0.23
		239.3 240.6 241.9		2.0 3.5 5.0	0.40 0.50 1.04	0.22 0.28 0.58	68 68 68	0.40 0.60 0.91	0.22 0.33 0.51	0.39 0.65 0.91	0.22 0.36 0.51

^{*}Figure number for ΔT versus X/L plot.

Table 7 - Fluid Property Equations for Freon 113

- [1] General form of equations for ρ_L , μ_L , ρ_v , λ , C_{P_L} , K_L , and S $f(T) = a_0 + a_1 T + a_2 T^2 + \ldots + a_n T^n$ where T is the temperature in degrees Fahrenheit
- [2] Coefficients for liquid mass density (ρ_L); units of $\rho_L = \frac{LB_f sec^2}{inch^4}$ $a_0 = 0.0599$ $a_2 = -0.3681 \times 10^{-7}$ $a_1 = -0.4124 \times 10^{-4}$
- [3] Coefficients for liquid dynamic viscosity (μ_L); units of $\mu_L = \frac{LB_f\text{-sec}}{\text{inch}^2}$ $a_0 = 0.8132 \times 10^{-4} \qquad a_4 = -0.2809 \times 10^{-12}$ $a_1 = -0.1029 \times 10^{-5} \qquad a_5 = 0.1830 \times 10^{-14}$ $a_2 = 0.7669 \times 10^{-8} \qquad a_6 = -0.3452 \times 10^{-17}$ $a_3 = -0.9971 \times 10^{-11}$
- [4] Coefficients for vapor mass density (ρ_{v}) ; units of $\rho_{v} = \frac{LB_{f}-sec^{2}}{inch^{4}}$ $a_{0} = -0.2824 \times 10^{-4} \qquad a_{4} = -0.1027 \times 10^{-10}$ $a_{1} = 0.3725 \times 10^{-5} \qquad a_{5} = 0.4868 \times 10^{-13}$ $a_{2} = -0.8074 \times 10^{-7} \qquad a_{6} = -0.1208 \times 10^{-15}$ $a_{3} = 0.1306 \times 10^{-8} \qquad a_{7} = 0.1231 \times 10^{-18}$
- [5] Coefficients for latent heat of vaporization (λ); units of $\lambda = \frac{\text{BTU-inch}}{\text{LB}_{\text{f}} \text{sec}^2}$ $a_0 = 72.5755 \qquad a_4 = 0.1521 \times 10^{-6}$ $a_1 = -0.1524 \qquad a_5 = -0.4919 \times 10^{-9}$ $a_2 = 0.2079 \times 10^{-2} \qquad a_6 = 0.6440 \times 10^{-12}$ $a_3 = -0.2460 \times 10^{-4}$

Table 7 - Fluid Property Equations for Freon 113 (Cont.)

[6] Coefficients for liquid specific heat
$$(CP_L)$$
; units of $CP_L = \frac{BTU-inch}{LB_f-sec^2-{}^\circ F}$

$$a_0 = 0.22714 \qquad a_4 = -0.9724 \times 10^{-10}$$

$$a_1 = -0.4513 \times 10^{-3} \qquad a_5 = 0.2412 \times 10^{-11}$$

$$a_2 = 0.1147 \times 10^{-4} \qquad a_6 = -0.5995 \times 10^{-14}$$

$$a_3 = -0.7254 \times 10^{-7}$$

- [7] Coefficients for liquid thermal conductivity (K_L); units of $K_L = \frac{BTU}{inch-sec^{\circ}F}$ $a_0 = 0.11199 \times 10^{-5}$ $a_1 = -0.15277 \times 10^{-8}$
- [8] Coefficients for surface tension (S); units of S = $\frac{LB_f}{inch}$ $a_0 = 0.1359 \times 10^{-3}$ $a_3 = 0.9873 \times 10^{-12}$ $a_1 = -0.3804 \times 10^{-6}$ $a_4 = -0.4178 \times 10^{-14}$ $a_2 = -0.1700 \times 10^{-10}$
- [9] Equation for vapor pressure (P_v) ; units of $P_v = \frac{LB_f}{inch^2}$ absolute $P_v = 10^{g(T)}$ where $g(T) = 33.0655 \frac{4330.98}{T} 9.2635 \log_{10}T + 0.0020539 T$ and where T is the temperature in degrees Rankine.

Table 8 - Fluid Property Equations for Water

- [1] General form of equations for ρ_L , ν_L , ρ_v , λ , α_L , K_L , S, and P_v $f(T) = a_0 + a_1 T + a_2 T^2 + \ldots + a_n T^n$ where T is the temperature in degrees Fahrenheit
- [2] Coefficients for liquid mass density (ρ_L); units of $\rho_L = \frac{LB_f sec^2}{inch^4}$ $a_0 = 0.9345 \times 10^{-4} \qquad a_3 = 0.4036 \times 10^{-12}$ $a_1 = 0.1294 \times 10^{-7} \qquad a_4 = -0.4056 \times 10^{-15}$ $a_2 = -0.2104 \times 10^{-9}$
- [3] Coefficients for liquid kinematic viscosity (ν_L); units of $\nu_L = \frac{\text{inch}^2}{\text{sec}}$ $a_0 = 0.4504 \times 10^{-2} \qquad a_4 = -0.5370 \times 10^{-11}$ $a_1 = -0.7123 \times 10^{-4} \qquad a_5 = 0.4123 \times 10^{-13}$ $a_2 = 0.5078 \times 10^{-6} \qquad a_6 = -0.9724 \times 10^{-16}$ $a_3 = -0.1188 \times 10^{-8} \qquad a_7 = 0.8112 \times 10^{-19}$
- [4] Coefficients for vapor mass density (ρ_{v}) ; units of $\rho_{v} = \frac{LB_{f}-\sec^{2}}{inch^{4}}$ $a_{0} = 0.2548 \times 10^{-10} \qquad a_{3} = -0.1730 \times 10^{-16}$ $a_{1} = 0.5652 \times 10^{-11} \qquad a_{4} = 0.1514 \times 10^{-16}$ $a_{2} = 0.1819 \times 10^{-12} \qquad a_{5} = 0.3768 \times 10^{-19}$
- [5] Coefficients for latent heat of vaporization (λ); units of $\lambda = \frac{BTU-inch}{LB_f-sec^2}$ $a_0 = 0.4201 \times 10^6 \qquad a_3 = -0.1991 \times 10^{-3}$ $a_1 = -0.2187 \times 10^3 \qquad a_4 = -0.2981 \times 10^{-6}$ $a_2 = 0.3115 \times 10^{-1}$

Table 8 - Fluid Property Equations for Water (Cont.)

[6] Coefficients for liquid thermal diffusivity (
$$\alpha_L$$
); units of $\alpha_L = \frac{inch^2}{sec}$

$$a_0 = 0.1795 \times 10^{-3} \qquad a_3 = 0.2448 \times 10^{-10}$$

$$a_1 = 0.8871 \times 10^{-6} \qquad a_4 = 0.6256 \times 10^{-13}$$

$$a_2 = -0.5335 \times 10^{-8} \qquad a_5 = 0.6104 \times 10^{-16}$$

[7] Coefficients for liquid thermal conductivity (
$$K_L$$
); units of $K_L = \frac{BTU}{inch-sec^\circ F}$

$$a_0 = 0.6579 \times 10^{-5} \qquad a_3 = 0.7771 \times 10^{-12}$$

$$a_1 = 0.3003 \times 10^{-7} \qquad a_4 = -0.1922 \times 10^{-14}$$

$$a_2 = -0.1818 \times 10^{-9} \qquad a_5 = 0.1854 \times 10^{-17}$$

[8] Coefficients for surface tension (S); units of
$$S = \frac{LB_f}{inch}$$

$$a_0 = 4.4269 \times 10^{-4} \qquad a_4 = -1.7329 \times 10^{-13}$$

$$a_1 = -2.2418 \times 10^{-7} \qquad a_5 = 3.4789 \times 10^{-16}$$

$$a_2 = -4.8683 \times 10^{-9} \qquad a_6 = -2.6182 \times 10^{-19}$$

$$a_3 = 4.0331 \times 10^{-11}$$

[9] Coefficients for vapor pressure
$$(P_v)$$
; units of $P_v = \frac{LB_f}{inch^2}$ absolute $a_0 = -0.7533 \times 10^{-1}$ $a_4 = -0.7887 \times 10^{-8}$ $a_1 = 0.6523 \times 10^{-2}$ $a_5 = 0.4794 \times 10^{-10}$ $a_2 = -0.1024 \times 10^{-3}$ $a_6 = -0.3561 \times 10^{-13}$ $a_7 = 0.5746 \times 10^{-17}$

Table 9 - Tabulation of the Fluid Properties of Freon 113

		The state of the s									
Ħ	TEMP.	P v	b _v	P _L	$\tau_{d_{2}}$	^K L	, T _p	γ	T _n	T _n	w
	ů	$\frac{\mathrm{LB}_{\mathrm{f}}}{\mathrm{fnch}^2}$ abs.	LBf-sec 1	LBf-sec 1	BTU-inch LB _f -sec ² -°F inch-sec-°F	BTU Inch-sec-°F	inch ² sec	BTU-inch LB _f -sec	LB _f -sec	inch ² sec	LB f
09	15.6	60 15.6 4.374	0.2233x10 ⁻⁶ 148.5x10 ⁻⁶	148.5×10-6	87.26	1.03×10-6	0.795×10-4	2.595xi0 ⁴	0.795x10 ⁻⁴ 2.595x10 ⁴ 1.102x10 ⁻⁷ 0.742x10 ⁻³ 1.130x10 ⁻⁴	0.742×10 ⁻³	1.130×10-4
8	26.7	80 26.7 6.902	0.3413x10 ⁻⁶ 146.1x10 ⁻⁶	146.1×10-6	88.80	0.995x10 ⁻⁶	0.995x10 ⁻⁶ 0.767x10 ⁻⁴ 2.544x10 ⁴ 0.949x10 ⁻⁷	2.544×10 ⁴		0.650x10 ⁻³ 1.057x10 ⁻⁴	1.057×10-4
100	37.8	100 37.8 10.480	0.5036x10 ⁻⁶ 143.6x10 ⁻⁶	143.6×10-6	89.65	0.972×10 ⁻⁶	0.755×10-4	2.489x10 ⁴	0.755x10 ⁻⁴ 2.489x10 ⁴ 0.819x10 ⁻⁷	0.570×10 ⁻³	0.983x10-4
120	48.9	120 48.9 15.400	0.7214×10-6 141.0×10-6	141.0x10 ⁻⁶	90.54	0.937x10 ⁻⁶	0.937x10 ⁻⁶ 0.734x10 ⁻⁴ 2.430x10 ⁴ 0.725x10 ⁻⁷	2.430×10 ⁴	0.725×10-7	0.514×10 ⁻³	0.908×10-4
140	60.0	140 60.0 21.93	1.005×10 ⁻⁶	138.4×10-6	91.50	0.905x10 ⁻⁶	0.715×10-4	2.367×10 ⁴	0.905×10 ⁻⁶ 0.715×10 ⁻⁴ 2.367×10 ⁴ 0.640×10 ⁻⁷ 0.462×10 ⁻³ 0.834×10 ⁻⁴	0.462×10 ⁻³	0.834×10-4
160	71.1	160 71.1 30.44	1.370x10-6	135.7×10-6	92.66	0.880×10-6	0.880×10 ⁻⁶ 0.699×10 ⁻⁴ 2.299×10 ⁴ 0.579×10 ⁻⁷	2.299×10 ⁴	0.579×10-7	0.427×10 ⁻³	0.765x10-4
180	82.2	180 82.2 41.22	1.830x10-6	132.9x10-6	94.21	0.847×10-6	0.676×10-4	2.226×10 ⁴	2.226×10 ⁴ 0.515×10 ⁻⁷	0.388×10 ⁻³	0.692×10-4
200	93.3	200 93.3 54.66	2.401×10 ⁻⁶	130.0x10 ⁻⁶	95.75	0.812x10-6	0.812x10 ⁻⁶ 0.653x10 ⁻⁴	2.147×10 ⁴	2.147x10 ⁴ 0.454x10 ⁻⁷	0.357×10 ⁻³	0.622x10-4
220	104.4	220 104.4 71.07	3.106x10-6	127.1x10 ⁻⁶		0.787x10 ⁻⁶		2.063×10 ⁴			0.554x10-4

P_v, λ, ρ_L, ρ_v and μ_L at 220°F were obtained from Dupont Report T-113A, 1938 (Reference [17]) K_L , C_{P_L} and μ_L were obtained from Dupont Report C-30, 1973 (Reference [18]) S was obtained from Dupont Report D-27, 1967 (Reference [19]) NOTE:

Table 10 - Tabulation of the Fluid Properties of Water

12	TEMP.	a,>	A _d	2	CPL	ñ	ρ ¹	~	ין ד	211	s
	٥	LBf abs.	LB _f -sec ² inch ⁴	LBf-sec 1	BTU-inch LB _f -sec ² -°F	BTU inch-sec-°F	fnch ² sec	BTU-inch LB _f -sec	LB _f -sec	inch sec	LB _f
09	60 15.6	0.256	0.1242×10 ⁻⁸	93.447×10 ⁻⁶	385.9	0.789×10 ⁻⁵	2.188×10 ⁻⁴	4.092×10 ⁵	16.31×10-8	1.745×10 ⁻³	0.420x10-3
. 80	26.7	0.507	0.2368x10-8	93.215x10 ⁻⁶	385.4	0.817×10 ⁻⁵	2.274×10-4	4.049×10 ⁵	12.47×10 ⁻⁸	1.338×10-3	0.410x10 ⁻³
100	100 37.8	0.949	0.4278x10-8	92.926x10 ⁻⁶	385.3	0.840×10-5	2.346×10-4	4.005×10 ⁵	9.89×10 ⁻⁸	1.064×10 ⁻³	0.399×10-3
120	48.9	1.692	0.7374×10 ⁻⁸	92.524×10-6	385.5	0.859×10-5	2.408×10 ⁻⁴	3.960×10 ⁵		0.874×10-3	0.388×10-3
140	140 60.0	2.889	1.216×10-8	92.013×10-6	385.9	0.875×10 ⁻⁵	2.464×10-4	3.915×10 ⁵	6.78×10 ⁻⁸	0.737×10 ⁻³	0.377×10-3
160	1.17 091	4.741	1.939×10-8	91.452×10-6	386.4	0.889×10 ⁻⁵	2.516×10 ⁻⁴	3.870×10 ⁵		0.634×10-3	0.367×10-3
180	82.2	7.510	2.984×10-8	90.787×10 ⁻⁶	387:1	0.898x10 ⁻⁵	2.555×10 ⁻⁴	3.823×10 ⁵		0.554×10-3	0.356×10-3
200	93.3	11.526	4.456×10 ⁻⁸	90.132x10 ⁻⁶	388.1	0.907×10-5	2.593x10-4	3.776×10 ⁵			0.344×10-3
220	220 104.4	17.186	5.475×10-8	89.379×10 ⁻⁶	389.3	0.912×10 ⁻⁵	2.621x10-4	3.727×10 ⁵			0.332×10 ⁻³
240	240 115.6	24.969	9.183×10-8	88.588x10 ⁻⁶	390.9	0.917×10-5	2.648×10-4	3.676:1105			0.319×10-3
260	260 126.7	35.429	12.74×10-8	87.707×10 ⁻⁶	392.8	0.919×10 ⁻⁵	2.668x10-4	3.624×105			0.306×10 ⁻³
280	280 137.8	49.203	17.34×10-8	86.842×10 ⁻⁶	395.0	0.919×10-5	2.679×10-4	3.570×10 ⁵		0.336x10 ⁻³	0.293×10-3
300	300 148.9	67.013	23.18×10-8	85.900×10 ⁻⁶	397.6	0.917×10-5	2.685×10-4	3.514×10 ⁵			0.279×10-3
320	320 160.0	89.660	30.50×10-8	84.923×10 ⁻⁶	400.3	0.914×10-5	2.689×10-4	3.455×10 ⁵			0.266×10-3
340	171.1	340 171.1 118.010	39.57×10 ⁻⁸	83.878×10 ⁻⁶	403.5	0.910×10-5	2.689×10-4	3.394×10 ⁵			0.252×10-3

Table 10 - Tabulation of the Fluid Properties of Water (Cont.)

 $\mathbf{P_v}$, λ , ρ_{L} and ρ_{v} were obtained from Keenan and Keyes, 1936 (Reference [20]) NOTE:

 K_L , C_{PL} , and μ_L were obtained from Table A-5 page 431 of Gebhart, 1961 (Reference [21])

S was obtained from page 53 of Vargaftik, 1975 (Reference [22])

Table 11 - ΔT_{max} Correlations for Constant Fluid Properties

SHAPE	FLUIDS	CORRELATION METHOD	EQUATIONS FOR ΔT _{max}
Zero-Caliber Ogive		Entrainment Method First Correlation	$\Delta T_{\text{max}} = C(L/D)^{0.83} \text{ v}^{-0.25} \text{ p}^{-0.22}$
Zero-Caliber Ogive	Water	Entrainment Method Second Correlation	$\Delta T_{\text{max}} = C(L/D)^{0.87} \text{ v}^{-0.28} \text{ p}^{-0.14}$
Quarter-Caliber Ogive	Freon 113	Entrainment Method First Correlation	$\Delta T_{\text{max}} = C(L/D)^{0.26} v^{0.39} D^{0.45}$
Quarter-Caliber Ogive		Entrainment Method Second Correlation	$\Delta T_{\text{max}} = C(L/D)^{0.26} \text{ v}^{0.39} \text{ D}^{0.46}$

Figure 1 - Description of the Nose Contour of Ogive Test Models

Figure 2 - Photograph of 3.8 cm Ultra-Righ-Speed Cavitation Tunnel

Figure 3A - Photograph of Natural Cavities on a Zero-Caliber Ogive in Freon 113 (D=0.635 cm, V_{∞} =19.5 m/sec, L/D=5.0, T_{∞} =26°C)

Figure 3B - Photograph of Natural Cavities on a Zero-Caliber Ogive in Water (D=0.635 cm, V_∞ =19.5 m/sec, L/D=5.0, T $_\infty$ =26°C)

Figure 4 - Photograph of Test Models for Cavity Temperature Measurements

Figure 5 - Maximum Temperature Depression Versus Free Stream Temperature for the 0.318 cm Diameter Zero-Caliber Ogive in Freon 113

Figure 6 - Maximum Temperature Depression Versus Free Stream Temperature for the 0.635 cm Diameter Zero-Caliber Ogive in Freon 113

Figure 7 - Maximum Temperature Depression Versus Free Stream Temperature for the 0.635 cm Diameter Zero-Caliber Ogive in Water

Figure 8 - Maximum Temperature Depression Versus Free Stream
Temperature for the 0.318 cm Diameter Quarter-Caliber
Ogive in Freon 113

Figure 9 - Maximum Temperature Depression Versus Free Stream
Temperature for the 0.635 cm Diameter Quarter-Caliber
Ogive in Freon 113

Figure 10 - Maximum Temperature Depression Versus Free Stream
Temperature for the 0.635 cm Diameter Quarter-Caliber
Ogive in Water

Figure 11 - AT vs X/L for T_{co} = 39.8, 39.9, and 40.3°C: QCO, D=0.635 cm, V=19.5 m/sec, Freon 113

Figure 16 - AT vs X/L for T_∞ = 93.3°C: QCO, D=0.635 cm, V=19.5 m/sec, Freon 113

Figure 17 - AT vs X/L for T_∞ = 49.2, 53.3, 46.4, 51.4, 43.4 and 50.1°C: QCO, D=0.635 cm, V=36.6 m/sec, Freon 113

Figure 19 - AT vs X/L for T_o = 74.0, 72.5, and 71.3°C: QCO, D=0.635 cm, V=36.6 m/sec, Freon 113

Figure 24 - ΔT vs X/L for T_{∞} = 67.9, 73.3, and 72.6°C: QCO, D=0.318 cm, V=19.5 m/sec, Freon 113

Figure 25 - AT vs X/L for T_{co} = 82.3, 79.2, and 82.2°C: QCO, D=0.318 cm, V=19.5 m/sec, Freon 113

Figure 26 - ΔT vs X/L for $T_{\infty} = 92.4$ °C: QCO, D=0.318 cm, V=19.5 m/sec, Freon 113

Figure 27 - AT vs X/L for T_∞ = 47.8, 47.3, and 46.6°C: QCO, D=0.318 cm, V=27.4 m/sec, Freon 113

Figure 28 - AT vs X/L for T_∞ = 54.9, 54.6, and 54.8°C: QCO, D=0.318 cm, V=27.4 m/sec, Freon 113

Figure 35 - AT vs X/L for T_o = 86.7 and 86.2°C: QCO, D=0.318 cm, V=36.6 m/sec, Freon 113

Figure 37 - AT vs X/L for T_∞ = 65.1, 65.8, and 66.6°C: QCO, D=0.635 cm, V=19.5 m/sec, Water

Figure 40 - AT vs X/L for T_{\infty} = 64.8, 64.7, and 64.6°C: QCO, D=0.635 cm, V=36.6 m/sec, Water

Figure 42 - AT vs X/L for T_o = 122.1, 120.8, and 119,4°C: QCO, D=0.635 cm, V=36.6 m/sec, Water

Figure 43 - ΔT vs X/L for T_{∞} = 49.8, 50.3, and 50.7°C: ZCO, D=0.635 cm, V=19.5 m/sec, Freon 113

Figure 45 - ΔT vs X/L for $T_{\infty} = 70.0$, 71.1, and 71.6°C: 2CO, D=0.635 cm, V=19.5 m/sec, Freon 113

Figure 46 - AT vs X/L for T_∞ = 80.9, 81.9, and 82.4°C: ZCO, D=0.635 cm, V=19.5 m/sec, Freon 113

Figure 52 - △T vs X/L for T_∞ = 92.5, 92.1, and 91.8°C: ZCO, D=0.635 cm, V=36.6 m/sec, Freon 113

Figure 55 - AT vs X/L for T_{\infty} = 58.6, 60.2, and 60.4°C: ZCO, D=0.318 cm, V=19.5 m/sec, Freon 113

Figure 61 - △T vs X/L for T_∞ = 73.8, 74.3, and 72.1°C: ZCO, D=0.318 cm, V=36.6 m/sec, Freon 113

Figure 62 - AT vs X/L for T_o = 84.1, 84.6, and 84.0°C: ZCO, D=0.318 cm, V=36.6 m/sec, Freon 113

Figure 64 - ΔT vs X/L for T_{∞} = 63.4, 64.1, and 64.9°C: 2CO, D=0.635, V=19.5 m/sec, Water

Figure 66 - ΔT vs X/L for T_{∞} = 118.7, 120.1, and 121.5°C: ZCO, D=0.635 cm, V=19.5 m/sec, Water

Figure 67 - AT vs X/L for T_m = 89.0 and 89.3°C: ZCO, D=0.635 cm, V=36.6 m/sec, Water

Figure 68 - AT vs X/L for T_o = 115.2, 115.9, and 116.6°C: ZCO, D=0.635 cm, V=36.6 m/sec, Water

DISTRIBUTION LIST FOR UNCLASSIFIED TM 78-18, by J. W. Holl, M. L. Billet, and D. S. Weir, dated 30 January 1978

Commander
Naval Sea Systems Command
Department of the Navy
Washington, DC 20362
Attn: Library
Code NSEA-09G32
(Copy No. 1 and 2)

Naval Sea Systems Command Attn: T. E. Peirce Code NSEA-0351 (Copy No. 3)

Commanding Officer Naval Underwater Systems Center Newport, RI 02840 Attn: Library (Copy No. 4)

Commanding Officer Naval Ocean Systems Center San Diego, CA 92152 Attn: Library (Copy No. 5)

Commander
Naval Surface Weapon Center
Silver Spring, MD 20910
Attn: Library
(Copy No. 6)

Commander
David W. Taylor Naval Ship R&D Center
Department of the Navy
Bethesda, MD 20084
Attn: Library
(Copy No. 7)

Defense Documentation Center 5010 Duke Street Cameron Station Alexandria, VA 22314 (Copy No. 8 ~ 19)

Dr. Allan J. Acosta
Prof. of Mechanical Engineering
Division of Engineering and
Applied Science
California Institute of Technology
Pasadena, CA 91109
(Copy No. 20)

National Aeronautics and Space Administration Lewis Research Center Mail Stop 5-9 21000 Brookpark Road Cleveland, Ohio 44135 Attn: Mr. Werner R. Britsch (Copy No. 21 - 23)

National Aeronautics and Space Administration Attn: Mr. M. J. Hartman (Copy No. 24)

National Aeronautics and Space Administration Attn: Mr. T. Gelder (Copy No. 25)

National Aeronautics and Space Administration Attn: Mr. R. Ruggeri (Copy No. 26)

Mr. L. Gross R-P and VE Marshall Space Flight Center Huntsville, Alabama 35912 (Copy No. 27)

NASA Scientific and Technical Information Facility Post Office Box 8757 Baltimore/Washington International Airport Baltimore, MD 21240 (Copy No. 28 - 32)

Dr. F. G. Hammitt Professor of Mechanical Engineering The University of Michigan Ann Arbor, Michigan 48105 (Copy No. 33)

Institute of High Speed Mechanics Tohoku University Sendai, JAPAN Attn: Library (Copy No. 34) DISTRIBUTION LIST FOR UNCLASSIFIED TM 78-18, by J. W. Holl, M. L. Billet and D. S. Weir, dated 30 January 1978 (continued)

Mr. Jesse Hord Cryogenic Engineering Laboratory U. S. Department of Commerce National Bureau of Standards Boulder Laboratories Boulder, Colorado 80302 (Copy No. 35)

Dr. E. Reshotko
Case Western Reserve University
10900 Euclid Avenue
Cleveland, Ohio 44106
(Copy No. 36)

Rocketdyne Division North American Aviation 6633 Canoga Avenue Canoga Park, CA 91303 Attn: Library (Copy No. 37)

Aerojet General Post Office Box 15847 Sacramento, CA 15813 Attn: Library (Copy No. 38)

Dr. Paul Cooper Ingersoll Rand Research Incorporated Box 301 Princeton, NJ 08540 (Copy No. 39)

2LT. Donald S. Weir 5418 D Gilkey Street Fort Knox, Kentucky 40121 (Copy No. 40)

Mr. Michael L. Billet
The Pennsylvania State University
APPLIED RESEARCH LABORATORY
Post Office Box 30
State College, PA 16801
(Copy No. 41)

Dr. J. W. Holl The Pennsylvania State University APPLIED RESEARCH LABORATORY Post Office Box 30 State College, PA 16801 (Copy No. 42 - 44)

GTWT Library
The Pennsylvania State University
APPLIED RESEARCH LABORATORY
Post Office Box 30
State College, PA 16801
(Copy No. 45)