(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関 国際事務局

. | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1

(43) 国際公開日 2003 年4 月24 日 (24.04.2003)

PCT

(10) 国際公開番号 WO 03/033693 A1

(51) 国際特許分類7: C12N 15/09, C07K 14/435, 19/00, C12N 1/15, 1/19, 1/21, 5/00, C12Q 1/02

(21) 国際出願番号:

PCT/JP02/10529

(22) 国際出願日:

- 2002年10月10日(10.10.2002)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願2001-313780

2001年10月11日(11.10.2001) JP

(71) 出願人 (米国を除く全ての指定国について): 理化学研究所 (RIKEN) [JP/JP]; 〒351-0198 埼玉県 和光市 広沢 2番1号 Saitama (JP). 株式会社医学生物学研究所

(MEDICAL & BIOLOGICAL LABORATORIES CO., LTD.) [JP/JP]; 〒460-0002 愛知県 名古屋市中区 丸の 内3丁目5番10号住友商事丸の内ピル5F Aichi (JP).

- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 宮脇 敦史 (MIYAWAKI,Atsushi) [JP/JP]; 〒351-0198 埼玉県 和光 市 広沢 2番1号 理化学研究所内 Saitama (JP). 唐澤 智司 (KARASAWA,Satoshi) [JP/JP]; 〒396-0002 長野 県 伊那市 大字手良沢岡字大原1063-103 株 式会社医学生物学研究所 伊那研究所内 Nagano (JP). 荒木 俊雄 (ARAKI,Toshio) [JP/JP]; 〒396-0002 長野県 伊那市大字手良沢岡字大原1063-103 株式会 社医学生物学研究所 伊那研究所内 Nagano (JP).
- (74) 代理人: 特許業務法人特許事務所サイクス (SIKS & CO.); 〒104-0031 東京都 中央区 京橋一丁目 8番7号 京橋日殖ビル8階 Tokyo (JP).

/綾葉有/

(54) Title: FLUORESCENT PROTEIN

(54) 発明の名称: 蛍光蛋白質

(57) Abstract: It is intended to provide a novel fluorescent protein originating in an organism other than Aequorea coerulescens. Thus, a fluorescent protein originating in Galaxea fascicularis which has the following characteristics is provided: (1) having an average molecular weight of about 27000; (2) forming a tetramer in the equilibrated state; (3) showing the maximum excitation wavelength of 492 nm and the maximum fluorescent wavelength of 505 nm; (4) showing a molar absorbance index of 74100; (5) showing a quantum yield of 0.625; and (6) having a low pH-sensitivity of the fluorescent properties within a pH range of 5 to 12.

(57) 要約:

本発明の目的は、オワンクラゲ以外の生物に由来する新規な蛍光蛋白質を提供することである。本発明によれば、アザミサンゴ (Galaxea fascicularis) 由来の下記の特性を有する蛍光蛋白質が提供される。

- (1) 分子量は約27000;
- (2) 平衡化状態で4量体を形成する;
- (3) 励起極大波長が492nmであり、蛍光極大波長は505nmである;
- (4) モル吸光係数は74100である;
- (5) 量子収率は0.625である;及び
- (6) pH5~12の範囲において蛍光特性のpH感受性が低い:

'O 03/033693 A1

BEST AVAILABLE COPY

- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ

特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類: — 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

PCT/JP02/10529

明細書 蛍光蛋白質

技術分野

本発明は、改善された特性を有する新規な蛍光蛋白質に関する。より詳細には、本発明は、アザミサンゴ (Galaxea fascicularis) 由来の新規な蛍光蛋白質及びその利用に関する。

背景技術

クラゲのエクオレア・ビクトリア(Aequorea victoria)に由来する緑色蛍光蛋白質(GFP)は、生物系において多くの用途を有する。最近、ランダム突然変異誘発法および半合理的(semi-rational)突然変異誘発法に基づいて、色を変化させたり、折りたたみ特性を改善したり、輝度を高めたり、あるいはpH感受性を改変したといった様々なGFP変異体が作製されている。遺伝子組み換え技術により他の蛋白質をGFP等の蛍光蛋白質に融合させて、それらの発現および輸送のモニタリングを行うことが行われている。

最もよく使用されるGFP変異体の一つとして黄色蛍光蛋白質(YFP)が挙げられる。YFPは、クラゲ(Aequorea)GFP変異体の中でも最長波長の蛍光を示す。大部分のYFPの ε および Φ は、それぞれ 60,000~100,000 M^{-1} cm $^{-1}$ および0.6~0.8 であり(Tsien, R. Y. (1998). Ann. Rev. Biochem. 67,509-544)、これらの値は、一般的な蛍光団(フルオレセインおよびローダミンなど)の値に匹敵する。従ってYFPの絶対的輝度の改善は、ほぼ限界に達しつつある。

発明の開示

本発明は、オワンクラゲ以外の生物に由来する新規な蛍光蛋白質を提供することを解決すべき課題とした。さらに本発明は、オワンクラゲ由来の蛍光蛋白質と 比較して改善された蛍光特性を有する新規な蛍光蛋白質を提供することを解決す

PCT/JP02/10529

べき課題とした。

上記課題を解決するために本発明者らは鋭意検討し、既知の蛍光蛋白のアミノ酸配列に基づいて好適なプライマーを設計し、蛍光を示すアザミサンゴ (Galaxea fascicularis) の c DNAライブラリーから上記プライマーを用いて蛍光蛋白質を増幅してクローニングすることに成功した。さらに本発明者らは、得られたアザミサンゴ (Galaxea fascicularis) 由来の蛍光蛋白質の蛍光特性を調べた結果、当該蛍光蛋白質が所望の蛍光特性を有することを見出した。本発明はこれらの知見に基づいて完成したものである。

即ち、本発明によれば、アザミサンゴ (Galaxea fascicularis) 由来の下記の 特性を有する蛍光蛋白質が提供される。

- (1) 分子量は約27000:
- (2) 平衡化状態で4量体を形成する:
- (3) 励起極大波長が492nmであり、蛍光極大波長は505nmである;
- (4) モル吸光係数は74100である:
- (5) 量子収率は0.625である;及び
- (6) pH5~12の範囲において蛍光特性のpH感受性が低い:

本発明の別の態様によれば、以下の何れかのアミノ酸配列を有する蛍光蛋白質が提供される。

- (a) 配列番号1に記載のアミノ酸配列;又は、
- (b) 配列番号1に記載のアミノ酸配列において1から数個のアミノ酸の欠失、 置換及び/又は付加を有するアミノ酸配列を有し、蛍光特性を有するアミノ酸配列:

本発明のさらに別の態様によれば、配列番号1に記載のアミノ酸配列において7.6番目のGln をArg に、1.0.6番目のAsn をAsp に、1.1.8番目のBle をBle Ble をBle をBle Ble Bl

本発明のさらに別の熊様によれば、配列番号1に記載のアミノ酸配列において

PCT/JP02/10529

123番目の Val を Thr に、188番目の Tyr を Ala に、190番目の Phe を Lys に置換したアミノ酸配列を有する、蛍光蛋白質が提供される。

本発明のさらに別の態様によれば、上記した本発明の蛍光蛋白質をコードする DNAが提供される。

本発明のさらに別の態様によれば、以下の何れかのDNAが提供される。

- (a) 配列番号1に記載のアミノ酸配列をコードするDNA;又は、
- (b) 配列番号1に記載のアミノ酸配列において1から数個のアミノ酸の欠失、 置換及び/又は付加を有するアミノ酸配列を有し、蛍光特性を有するアミノ酸配 列をコードするDNA:

本発明のさらに別の態様によれば、以下の何れかの塩基配列を有するDNAが 提供される。

- (a) 配列番号2に記載の塩基配列;又は、
- (b) 配列番号 2 に記載の塩基配列において 1 から数個の塩基の欠失、置換及び /又は付加を有する塩基配列を有し、蛍光特性を有する蛋白質をコードする塩基 配列:

本発明のさらに別の態様によれば、上記した本発明のDNAを有する組み換え ベクターが提供される。

本発明のさらに別の態様によれば、上記した本発明のDNA又は組み換えベクターを有する形質転換体が提供される。

本発明のさらに別の態様によれば、上記した本発明の蛍光蛋白質と他の蛋白質とから成る融合蛍光蛋白質が提供される。好ましくは、他の蛋白質が細胞内に局在する蛋白質であり、さらに好ましくは他の蛋白質は細胞内小器官に特異的な蛋白質である。。

本発明のさらに別の態様によれば、上記した本発明の融合蛋白質を細胞内で発現させることを特徴とする、細胞内における蛋白質の局在または動態を分析する 方法が提供される。

本発明のさらに別の態様によれば、上記した本発明の蛍光蛋白質、DNA、組

PCT/JP02/10529

み換えベクター、形質転換体、又は融合蛋白質を含む、蛍光試薬キットが提供される。

図面の簡単な説明

図1は、本発明のサンゴ由来の蛍光蛋白質 (Azami-Green) とEGFPの蛍光特性を解析した結果を示す。

図2は、本発明のサンゴ由来の蛍光蛋白質 (Azami-Green) とEGFPの蛍光強度のpH感受性を示す。

図3は、本発明のサンゴ由来の蛍光蛋白質を用いて光散乱による多量体形成を 測定した結果を示す。

図 4 は、pH 感受性変異体 AG-pH の蛍光及び励起スペクトル (pH 8.0)を示す。 図 5 は、pH 6 から pH 9 における励起スペクトルを示す。

図6は、380 nm で励起、480 nm で励起したときの蛍光値 (520 nm)のpH による変動を示す。

図7は、480 nm で励起、380 nm で励起したときの蛍光値 (520 nm)の比を示す。

図 8 は、HeLa 細胞で AG-pH を発現し、380 nm と 480 nm で交互に励起したときの細胞内蛍光値の pH による変動を示す。

HeLa S3 トランスフェクション後 50 時間;減光 90%;露光各 100ms ; 15 秒間隔測定;

Ex 380HT15, 480DF10 Em 510ALP DM 505DRLP

レンズ 40 倍 Uapo/340 NA1.35

図 9 は、HeLa 細胞で AG-p H を発現し、380 nm と 480 nm で交互に励起したときの細胞内蛍光値の比を示す。

図10は、mAG の蛍光スペクトル及び励起スペクトルを示す。

図11は、光散乱測定結果を示す。

発明を実施するための最良の形態

PCT/JP02/10529

以下、本発明の実施の形態について詳細に説明する。

(1) 本発明の蛍光蛋白質

本発明の蛍光蛋白質は、アザミサンゴ (Galaxea fascicularis) 由来のものであり、下記の特性を有することを特徴とする。

- (1) 分子量は約27000;
- (2) 平衡化状態で4量体を形成する;
- (3) 励起極大波長が492nmであり、蛍光極大波長は505nmである;
- (4) モル吸光係数は74100である;
- (5) 量子収率は0.625である;及び
- (6) p H 5~12の範囲において蛍光特性の p H 感受性が低い:

アザミサンゴ (Galaxea fascicularis) はサンゴの1種で、群体の外形は半球形で、板状あるいは円柱状になることがある。サンゴ個体は角張った長楕円形で、鋭く尖った多くの隔板が飛び出している。

なお、本書中以下の実施例では、アザミサンゴ (Galaxea fascicularis) を出発材料として上記特性を有する本発明の蛍光蛋白質を単離したが、アザミサンゴ以外の蛍光を発するサンゴから本発明の蛍光蛋白質を取得することができる場合もあり、そのような蛍光蛋白質も本発明の範囲内である。

本発明の蛍光蛋白質の分子量は約27000であり、平衡化状態で4量体を形成し、また少量ながら8量体を形成する。4量体の分子量は約116kDaであり8量体の分子量は約204kDaである。平衡化状態とは、例えば、本発明の蛍光蛋白質を50mM HEPES pH7.5、150mM KClで平衡化した状態を言う。また、多量体形成の測定は光散乱を測定することにより行う事ができる。微粒子に光を当てると、大部分は同じ光の波長で散乱する。これをレイリー散乱と言い、この散乱光の強度は、微粒子の数及びその大きさの関数になる。この原理を利用して光散乱検出器によって得た値から分子量を導き出す。具体的には、本発明の蛍光蛋白質を50mM HEPES pH7.5、150mM KClで平衡化し、まず、ゲルろ過により本発明の蛍光蛋白質平衡化溶液を分子量で分ける。続いて多角度光散乱検出器、RI 検出

PCT/JP02/10529

器でそれぞれ散乱光、試料濃度を測定して分子量を値として出す。

本発明の蛍光蛋白質は、以下の実施例で示す通り、励起極大波長が492nmであり、蛍光極大波長は505nmである。モル吸光係数は74100であり、量子収率は0.625である。これに対して EGFP (クロンテック) のモル吸光係数は 44800であり、量子収率は0.600である。モル吸光係数は蛍光分子1モルあたりの光子の吸収量を表し、量子収率は吸収した光子のどれだけを蛍光として発する事が出来るかを表した数値であるため、モル吸光係数、量子収率の値が大きいことは蛍光が強い事を示す。よって EGFP よりもモル吸光係数、量子収率の値が大きい本発明の蛍光蛋白質は、EGFP よりもより強い蛍光を発する。励起および蛍光の極大波長に関しては EGFP と本発明の蛍光蛋白質との間に大きな差はないが、本発明の蛍光蛋白質の励起、蛍光スペクトルは EGFP のそれに比べてシャープであるため、他の蛍光分子との組み合わせて行うマルチカラーイメージング等に際して有利と言える。

本発明の蛍光蛋白質は、pH5~12の範囲において蛍光特性のpH感受性が低いことを特徴とする。即ち、pH5~12の範囲において蛍光強度のピーク値の変動が少なく、このpH範囲において高い蛍光強度を維持することができる。従来から使用されているEGFPの場合には、pH7以下では蛍光強度が低下するため生体内での使用に際して制約があったが、本発明の蛍光蛋白質にはそのような制約がない。

本発明の蛍光蛋白質の具体例としては、以下の何れかのアミノ酸配列を有する 蛍光蛋白質が挙げられる。

- (a) 配列番号1に記載のアミノ酸配列;又は、
- (b) 配列番号1に記載のアミノ酸配列において1から数個のアミノ酸の欠失、 置換及び/又は付加を有するアミノ酸配列を有し、蛍光特性を有するアミノ酸配列:

本明細書で言う「1から数個のアミノ酸の欠失、置換及び/又は付加を有する アミノ酸配列」における「1から数個」の範囲は特には限定されないが、例えば、

PCT/JP02/10529

1から20個、好ましくは1から10個、より好ましくは1から7個、さらに好ましくは1から5個、特に好ましくは1から3個程度を意味する。

上記(b)で言う「蛍光特性」とは任意の蛍光特性を意味し、配列番号1に記載のアミノ酸配列を有する蛍光蛋白質の蛍光強度、励起波長、蛍光波長又はpH 感受性などの蛍光特性と同等の蛍光特性でもよいし、又は異なる蛍光特性であってもよい。

上記変異を有する蛍光蛋白質の一例としては、配列番号1に記載のアミノ酸配列において76番目のGlnをArgに、106番目のAsnをAspに、118番目のIleをThrに、150番目のAspをGlyに、そして157番目のValをAspに置換したアミノ酸配列を有する、蛍光蛋白質が挙げられる。この蛍光蛋白質は、380 nmと484 nmに励起のピークを持ち、いずれの励起によっても蛍光スペクトルは501 nmにピークを示す。メジャーな励起のピークが380 nmであり、ストークスシフトは120 nmと非常に大きな値となっている。マイナーな484 nmの励起のピークはpH6からpH10に向かって値が増加するが、380 nmの励起のピーク値は変化しない。そのため、380 nmと484 nmの励起光による蛍光値の比を測ることにより、pHを測定することがinvitro又は細胞内において可能である。従来のオワンクラゲ由来のGFPの改変体にも2つの励起ピークの増減でpH測定ができるものが存在するが(pHluorin)、AG-pHと違って片方のピークが一定値を取るものではない。従って、この蛍光蛋白質は、380 nmのピークを励起することによりpHに左右されることなく蛍光測定を行うことができる。

上記変異を有する蛍光蛋白質の別の一例としては、配列番号1に記載のアミノ酸配列において123番目の Valを Thrに、188番目の Tyrを Alaに、190番目の Pheを Lys に置換したアミノ酸配列を有する、蛍光蛋白質が挙げられる。この蛋白質は単量体で存在する。光散乱測定により分子量を確認した結果、34kDaであった。この単量体蛍光蛋白質は配列番号1に記載のアミノ酸配列を有する蛍光蛋白質と同じ蛍光極大505 nm、励起極大492 nmを示す。

本発明の蛍光蛋白質の取得方法については特に制限はなく、化学合成により合

PCT/JP02/10529

成した蛋白質でもよいし、遺伝子組み換え技術による作製した組み換え蛋白質でもよい。

組み換え蛋白質を作製する場合には、先ず当該蛋白質をコードするDNAを入手することが必要である。本明細書の配列表の配列番号1に記載したアミノ酸配列並びに配列番号2に記載した塩基配列の情報を利用することにより適当なプライマーを設計し、それらを用いて上記したような各種の公知の蛍光蛋白質のcDNAクローンを鋳型にしてPCRを行うことにより、本発明の蛍光蛋白質をコードするDNAを取得することができる。本発明の蛍光蛋白質をコードするDNAの一部の断片を上記したPCRにより得た場合には、作製したDNA断片を順番に遺伝子組み換え技術により連結することにより、所望の蛍光蛋白質をコードするDNAを得ることができる。このDNAを適当な発現系に導入することにより、本発明の蛍光蛋白質を産生することができる。発現系での発現については本明細書中後記する。

(2) 本発明のDNA

本発明によれば、本発明の蛍光蛋白質をコードする遺伝子が提供される。 本発明の蛍光蛋白質をコードするDNAの具体例としては、以下の何れかのDNAが挙げられる。

- (a) 配列番号1に記載のアミノ酸配列をコードするDNA;又は、
- (b) 配列番号1に記載のアミノ酸配列において1から数個のアミノ酸の欠失、 置換及び/又は付加を有するアミノ酸配列を有し、蛍光特性を有するアミノ酸配 列をコードするDNA:

本発明の蛍光蛋白質をコードするDNAの更なる具体例としては、以下の何れかの塩基配列を有するDNAが挙げられる。

- (a) 配列番号2に記載の塩基配列:又は、
- (b) 配列番号2に記載の塩基配列において1から数個の塩基の欠失、置換及び /又は付加を有する塩基配列を有し、蛍光特性を有する蛋白質をコードする塩基

PCT/JP02/10529

配列:

本発明のDNAは、例えばホスホアミダイト法などにより合成することができるし、特異的プライマーを用いたポリメラーゼ連鎖反応 (PCR) によって製造することもできる。本発明のDNA又はその断片の作製方法については、本明細書中上述した通りである。

また、所定の核酸配列に所望の変異を導入する方法は当業者に公知である。例えば、部位特異的変異誘発法、縮重オリゴヌクレオチドを用いるPCR、核酸を含む細胞の変異誘発剤又は放射線への露出等の公知の技術を適宜使用することによって、変異を有するDNAを構築することができる。このような公知の技術は、例えば、Molecular Cloning: A laboratory Mannual, 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY., 1989、並びに Current Protocols in Molecular Biology, Supplement 1~38, John Wiley & Sons (1987-1997)に記載されている。

(3) 本発明の組み換えベクター

本発明のDNAは適当なベクター中に挿入して使用することができる。本発明で用いるベクターの種類は特に限定されず、例えば、自立的に複製するベクター (例えばプラスミド等) でもよいし、あるいは、宿主細胞に導入された際に宿主 細胞のゲノムに組み込まれ、組み込まれた染色体と共に複製されるものであってもよい。

好ましくは、本発明で用いるベクターは発現ベクターである。発現ベクターに おいて本発明のDNAは、転写に必要な要素(例えば、プロモーター等)が機能 的に連結されている。プロモータは宿主細胞において転写活性を示すDNA配列 であり、宿主の種類に応じて適宜することができる。

細菌細胞で作動可能なプロモータとしては、バチルス・ステアロテルモフィルス・マルトジェニック・アミラーゼ遺伝子 (Bacillusstearothermophilus maltogenic amylase gene)、バチルス・リケニホルミス α アミラーゼ遺伝子

PCT/JP02/10529

(Bacillus licheniformis alpha-amylase gene)、バチルス・アミロリケファチエンス・BAN アミラーゼ遺伝子(Bacillus amyloliquefaciens BAN amylase gene)、バチルス・サブチリス・アルカリプロテアーゼ遺伝子(Bacillus Subtilis alkaline protease gene) もしくはバチルス・プミルス・キシロシダーゼ遺伝子(Bacillus pumilus xylosldase gene)のプロモータ、またはファージ・ラムダの P_R 若しくは P_L プロモータ、大腸菌の lac、trp 若しくは tac プロモータなどが挙げられる。

哺乳動物細胞で作動可能なプロモータの例としては、SV40プロモータ、MT-1 (メタロチオネイン遺伝子) プロモータ、またはアデノウイルス2主後期プロモータなどがある。昆虫細胞で作動可能なプロモータの例としては、ポリヘドリンプロモータ、P10プロモータ、オートグラファ・カリホルニカ・ポリヘドロシス塩基性タンパクプロモータ、バキュウロウイルス即時型初期遺伝子1プロモータ、またはバキュウロウイルス39K遅延型初期遺伝子プロモータ等がある。酵母宿主細胞で作動可能なプロモータの例としては、酵母解糖系遺伝子由来のプロモータ、アルコールデヒドロゲナーゼ遺伝子プロモータ、TPI1プロモータ、ADH2-4cプロモータなどが挙げられる。

糸状菌細胞で作動可能なプロモータの例としては、ADH3プロモータまたは tpiAプロモータなどがある。

また、本発明のDNAは必要に応じて、例えばヒト成長ホルモンターミネータまたは真菌宿主についてはTPI1ターミネータ若しくはADH3ターミネータのような適切なターミネータに機能的に結合されてもよい。本発明の組み換えベクターは更に、ポリアデニレーションシグナル(例えばSV40またはアデノウイルス5E1b領域由来のもの)、転写エンハンサ配列(例えばSV40エンハンサ)および翻訳エンハンサ配列(例えばアデノウイルス VA RNA をコードするもの)のような要素を有していてもよい。

本発明の組み換えベクターは更に、該ベクターが宿主細胞内で複製することを 可能にするDNA配列を具備してもよく、その一例としてはSV40複製起点(宿

PCT/JP02/10529

主細胞が哺乳類細胞のとき)が挙げられる。

本発明の組み換えベクターはさらに選択マーカーを含有してもよい。選択マーカーとしては、例えば、ジヒドロ葉酸レダクターゼ(DHFR)またはシゾサッカロマイセス・ポンベTPI遺伝子等のようなその補体が宿主細胞に欠けている遺伝子、または例えばアンピシリン、カナマイシン、テトラサイクリン、クロラムフェニコール、ネオマイシン若しくはヒグロマイシンのような薬剤耐性遺伝子を挙げることができる。

本発明のDNA、プロモータ、および所望によりターミネータおよび/または 分泌シグナル配列をそれぞれ連結し、これらを適切なベクターに挿入する方法は 当業者に周知である。

(4) 本発明の形質転換体

本発明のDNA又は組み換えベクターを適当な宿主に導入することによって形質転換体を作製することができる。

本発明のDNAまたは組み換えベクターを導入される宿主細胞は、本発明のDNA構築物を発現できれば任意の細胞でよく、細菌、酵母、真菌および高等真核細胞等が挙げられる。

細菌細胞の例としては、バチルスまたはストレプトマイセス等のグラム陽性菌 又は大腸菌等のグラム陰性菌が挙げられる。これら細菌の形質転換は、プロトプ ラスト法、または公知の方法でコンピテント細胞を用いることにより行なえばよ い。

哺乳類細胞の例としては、HEK293細胞、HeLa細胞、COS細胞、BHK細胞、CHL細胞またはCHO細胞等が挙げられる。哺乳類細胞を形質転換し、該細胞に導入されたDNA配列を発現させる方法も公知であり、例えば、エレクトロポーレーション法、リン酸カルシウム法、リポフェクション法等を用いることができる。

酵母細胞の例としては、サッカロマイセスまたはシゾサッカロマイセスに属す

PCT/JP02/10529

る細胞が挙げられ、例えば、サッカロマイセス・セレビシエ(Saccharomyces cerevislae)またはサッカロマイセス・クルイベリ(Saccharomyces kluyveri)等が挙げられる。酵母宿主への組み換えベクターの導入方法としては、例えば、エレクトロポレーション法、スフェロブラスト法、酢酸リチウム法等を挙げることができる。

他の真菌細胞の例は、糸状菌、例えばアスペルギルス、ニューロスポラ、フザリウム、またはトリコデルマに属する細胞である。宿主細胞として糸状菌を用いる場合、DNA構築物を宿主染色体に組み込んで組換え宿主細胞を得ることにより形質転換を行うことができる。DNA構築物の宿主染色体への組み込みは、公知の方法に従い、例えば相同組換えまたは異種組換えにより行うことができる。

昆虫細胞を宿主として用いる場合には、組換え遺伝子導入ベクターおよびバキュロウイルスを昆虫細胞に共導入して昆虫細胞培養上清中に組換えウイルスを得た後、さらに組換えウイルスを昆虫細胞に感染させ、蛋白質を発現させることができる(例えば、Baculovirus Expression Vectors, A Laboratory Manual;及びカレント・プロトコールズ・イン・モレキュラー・バイオロジー、Bio/Technology, 6, 47(1988)等に記載)。

バキュロウイルスとしては、例えば、ヨトウガ科昆虫に感染するウイルスであるアウトグラファ・カリフォルニカ・ヌクレアー・ポリヘドロシス・ウイルス (Autographa californica nuclear polyhedrosis virus)等を用いることができる。

昆虫細胞としては、Spodoptera frugiperda の卵巣細胞であるSf9、Sf2 1 (バキュロウイルス・エクスプレッション・ベクターズ、ア・ラボラトリー・マニュアル、ダブリュー・エイチ・フリーマン・アンド・カンパニー(W. H. Freeman and Company)、ニューヨーク (New York)、(1992)]、Trichoplusia ni の卵巣細胞であるHiFive (インビトロジェン社製)等を用いることができる。

組換えウイルスを調製するための、昆虫細胞への組換え遺伝子導入ベクターと 上記バキュロウイルスの共導入方法としては、例えば、リン酸カルシウム法又は リポフェクション法等を挙げることができる。

PCT/JP02/10529

上記の形質転換体は、導入されたDNA構築物の発現を可能にする条件下で適切な栄養培地中で培養する。形質転換体の培養物から、本発明の蛍光融合蛋白質を単離精製するには、通常の蛋白質の単離、精製法を用いればよい。

例えば、本発明の蛋白質が、細胞内に溶解状態で発現した場合には、培養終了後、細胞を遠心分離により回収し水系緩衝液に懸濁後、超音波破砕機等により細胞を破砕し、無細胞抽出液を得る。該無細胞抽出液を遠心分離することにより得られた上清から、通常の蛋白質の単離精製法、即ち、溶媒抽出法、硫安等による塩析法、脱塩法、有機溶媒による沈殿法、ジエチルアミノエチル(DEAE)セファロース等のレジンを用いた陰イオン交換クロマトグラフィー法、S-Sepharose FF(ファルマシア社製)等のレジンを用いた陽イオン交換クロマトグラフィー法、ブチルセファロース、フェニルセファロース等のレジンを用いた疎水性クロマトグラフィー法、分子篩を用いたゲルろ過法、アフィニティークロマトグラフィー法、クロマトフォーカシング法、等電点電気泳動等の電気泳動法等の手法を単独あるいは組み合わせて用い、精製標品を得ることができる。

(5) 本発明の蛍光蛋白質及びそれを含む融合蛍光蛋白質の利用

本発明は蛍光蛋白質を他の蛋白質と融合させることにより、融合蛍光蛋白質を構築することができる。

本発明の融合蛍光蛋白質の取得方法については特に制限はなく、化学合成により合成した蛋白質でもよいし、遺伝子組み換え技術による作製した組み換え蛋白質でもよい。

組み換え蛋白質を作製する場合には、先ず当該蛋白質をコードするDNAを入手することが必要である。本明細書の配列表の配列番号1に記載したアミノ酸配列及び配列番号2に記載した塩基配列の情報を利用することにより適当なプライマーを設計し、本発明の蛍光蛋白質の遺伝子を含むDNA断片を鋳型にしてPCRを行うことにより、本発明の蛍光蛋白質をコードするDNAを構築するのに必要なDNA断片を作製することができる。また同様に、融合すべき蛋白質をコー

PCT/JP02/10529

ドするDNA断片も入手する。

次いで、これらのDNA断片を順番に遺伝子組み換え技術により連結することにより、所望の融合蛍光蛋白質をコードするDNAを得ることができる。このDNAを適当な発現系に導入することにより、本発明の融合蛍光蛋白質を産生することができる。

本発明の蛍光蛋白質は、特に、標識としての利用価値が高い。即ち、本発明の蛍光蛋白質を被検アミノ酸配列との融合蛋白質として精製し、マイクロインジェクション法などの手法により細胞内に導入し、該融合蛋白質の分布を経時的に観察すれば、被検アミノ酸配列の細胞内におけるターゲッティング活性を検出することが可能である。

本発明の蛍光蛋白質を融合させる他の蛋白質(被検アミノ酸配列)の種類は特に限定されるものではないが、例えば、細胞内に局在する蛋白質、細胞内小器官に特異的な蛋白質、ターゲティングシグナル(例えば、核移行シグナル、ミトコンドリアプレ配列)等が好適である。なお、本発明の蛍光蛋白質は、マイクロインジェクション法などにより細胞内に導入する以外に、細胞内で発現させて用いることも可能である。この場合には、本発明の蛍光蛋白質をコードするDNAが発現可能に挿入されたベクターが宿主細胞に導入される。

また、本発明の蛍光蛋白質は、レポーター蛋白質としてプロモーター活性の測定に用いることも可能である。即ち、被検プロモーターの下流に、本発明の蛍光蛋白質をコードするDNAが配置されたベクターを構築し、これを宿主細胞に導入し、該細胞から発せられる本発明の蛍光蛋白質の蛍光を検出することにより、被検プロモーターの活性を測定することが可能である。被検プロモーターとしては、宿主細胞内で機能するものであれば、特に制限はない。

上記被検アミノ酸配列のターゲティング活性の検出やプロモーター活性の測定において用いられるベクターとしては、特に制限はないが、例えば、動物細胞用ベクターでは、「pNEO」(P. Southern, and P. Berg (1982) J. MOl. Appl. Genet. 1:327) 、「 pCAGGS 」 (H. Niwa, K. Yamamura, and J. Miyazaki. Gene

PCT/JP02/10529

108,193-200(1991))、「pRc/CMV」(インビトロゲン社製)、「pCDM8」(インビトロゲン社製)などが、酵母用ベクターでは、「pRS303」,「pRS304」,「pRS305」,「pRS306」,「pRS313」,「pRS314」,「pRS315」,[pRS316](R.S.Sikorski and P. Hieter (1989)Genetics 122: 19-27)、「pRS423」,「pRS424」,「pRS425」,「pRS426」(T.W.Christianson, R.S.Sikorski, M.Dante, J.H.Shero, and P. Hieter (1992)Gene 110: 119-122)などが好適に用いられる。

また、使用可能な細胞の種類も特に限定されず、各種の動物細胞、例えば、L 細胞、BalbC-3T3 細胞、NIH3T3 細胞、CHO(Chinese hamster ovary)細胞、HeLa 細胞、NRK(normal rat kidney)細胞、「Saccharomyces cerevisiae」などの酵母細胞や大腸菌(E. coli) 細胞などを使用することができる。ベクターの宿主細胞への導入は、例えば、リン酸カルシウム法やエレクトロポレーション法などの常法により行うことができる。

上記のようにして得た、本発明の蛍光蛋白質と他の蛋白質(蛋白質Xとする)とを融合させた融合蛍光蛋白質を細胞内で発現させ、発する蛍光をモニターすることにより、細胞内における蛋白質Xの局在や動態を分析することが可能になる。即ち、本発明の融合蛍光蛋白質をコードするDNAで形質転換またはトランスフェクトした細胞を蛍光顕微鏡で観察することにより細胞内における蛋白質Xの局在や動態を可視化して分析することができる。

例えば、蛋白質Xとして細胞内オルガネラに特異的な蛋白質を利用することにより、核、ミトコンドリア、小胞体、ゴルジ体、分泌小胞、ペルオキソームなどの分布や動きを観察できる。

また、例えば、神経細胞の軸索、樹状突起などは発生途中の個体の中で著しく 複雑な走向の変化を示すので、こういった部位を蛍光ラベルすることにより動的 解析が可能になる。

本発明の蛍光蛋白質の蛍光は、生細胞のまま検出することが可能である。この 検出は、例えば、蛍光顕微鏡(カールツァイス社 アキシオフォト フィルターセ ット 09) や画像解析装置 (ATTO デジタルイメージアナライザー) などを用いて

PCT/JP02/10529

行うことが可能である。

顕微鏡の種類は目的に応じて適宜選択できる。経時変化を追跡するなど頻回の 観察を必要とする場合には、通常の落射型蛍光顕微鏡が好ましい。細胞内の詳細 な局在を追及したい場合など、解像度を重視する場合は、共焦点レーザー顕微鏡 の方が好ましい。顕微鏡システムとしては、細胞の生理状態を保ち、コンタミネ ーションを防止する観点から、倒立型顕微鏡が好ましい。正立顕微鏡を使用する 場合、高倍率レンズを用いる際には水浸レンズを用いることができる。

フィルターセットは蛍光蛋白質の蛍光波長に応じて適切なものを選択できる。 本発明の蛍光蛋白質の場合は、励起光470~490nm、蛍光500~560nm 程度のフィルターを使用することが好ましい。

また、蛍光顕微鏡を用いた生細胞での経時観察を行う場合には、短時間で撮影を行うべきなので、高感度冷却CCDカメラを使用する。冷却CCDカメラは、CCDを冷却することにより熱雑音を下げ、微弱な蛍光像を短時間露光で鮮明に撮影することができる。

(6) 本発明のキット

本発明によれば、本明細書に記載した蛍光蛋白質、融合蛍光蛋白質、DNA、 組み換えベクター又は形質転換体から選択される少なくとも1種以上を含むこと を特徴とする、細胞内成分の局在の分析及び/又は生理活性物質の分析のための キットが提供される。本発明のキットは、それ自体既知の通常用いられる材料及 び手法で調製することができる。

蛍光蛋白質又はDNAなどの試薬は、適当な溶媒に溶解することにより保存に 適した形態に調製することができる。溶媒としては、水、エタノール、各種緩衝 液などを用いることができる。

以下の実施例により本発明を具体的に説明するが、本発明は実施例によって限 定されるものではない。

PCT/JP02/10529

実施例

実施例1:珊瑚からの新規蛍光蛋白遺伝子(Azami-Green)の単離

(1) total RNA の抽出

蛍光を放つ珊瑚より蛍光蛋白遺伝子の単離を行った。材料にはアザミサンゴ ($Galaxea\ fascicularis$) を用いた。アザミサンゴをハンマーで砕き、砕いたサンゴ8gに"TRIzol" ($GIBCO\ BRL$) を15m1加えて攪拌し、 $1500\times g$ で1 0分間遠心した。上清にクロロホルム3m1を加え、15秒間攪拌した後、3分間静置した。 $7500\times g$ で15分間遠心した。上清にイソプロパノール7.5m1を加え、15秒間攪拌した後、10分間 遠心した。上清を捨て70%エタノールを6m1加えて $17000\times g$ で10分間 遠心した。上清を捨て70%エタノールを6m1加えて $17000\times g$ で10分間 遠心した。上清を捨て100% DEPC 水 100% の 100% の

(2) First strand cDNA の合成

total RNA 3 μg を使用し、First strand cDNA の合成キット"Ready To Go" (Amersham Pharmacia)により cDNA(33μ1)を合成した。

(3) Degenerated PCR

合成した First strand cDNA(33μ1)のうち 3μ1を鋳型として PCR を行った。 プライマーのデザインは既知の蛍光蛋白のアミノ酸配列を見比べて、似ている 部分を抜き出し、塩基配列に変換し直し作製した。使用プライマーの配列を以下 に記載する。

- 5' GAAGGRTGYGTCAAYGGRCAY-3' (primer1) (配列番号3)
- 5' ACVGGDCCATYDGVAAGAAARTT-3' (primer2) (配列番号4)

(ここで、R は A 又は G を示し、Y は C 又は T を示し、V は A、C 又は G を示し、 D は A、G 又は T を示す。)

以下の PCR 反応液組成を使用した。

テンプレート (first strand cDNA) $3\mu 1$

PCT/JP02/10529

X10 taq バッファー	5μ1
2.5mM dNTPs	4μ1
100 μ M primer1	1μ1
$100\mu\mathrm{M}$ primer2	1μ1
₹ y Q	35 μ 1
taq polymerase(5U/ μ 1)	1μ1
ツェッ DCD ニナタルナ (大田) ナ	

以下の PCR 反応条件を使用した。

- 94℃で1分(PAD)
- 94℃で30秒 (変性)
- 52℃で30秒 (アニーリング)
- 72℃で1分(プライマー伸長)

上記3ステップを30サイクル行い、アニーリング温度を1サイクルごとに0. 3℃下げた。即ち、30サイクル時の温度は43℃となる。

72℃で7分(最後の伸長)

4℃(保持)

一回目の PCR 反応で得られた増幅産物 $1 \mu 1$ をテンプレートとして、もう一度同じ条件で PCR を行った。アガロースゲル電気泳動で予想された大きさの 350bp のバンドを切り出し、精製した。

(4) サブクローニング及び塩基配列の決定

精製した DNA 断片を pT7-blue vector (Novagen) にライゲーションした。大腸菌株 (TG1) にトランスフォーメーションしてブルーホワイトセレクションを行い、白いコロニーの大腸菌より plasmid DNA を精製して、挿入された DNA 断片の塩基配列を DNA シークエンサーにより決定した。得られた塩基配列を他の蛍光蛋白遺伝子の塩基配列と比較してその DNA 塩基配列が蛍光蛋白由来のものであるかを判断した。蛍光蛋白遺伝子の一部であると判断したものに関して、5'-RACE 法および3'-RACE 法による遺伝子全長のクローニングを行った。

(5) 5'-RACE 法

PCT/JP02/10529

Degenerated PCR で得られた DNA 断片の 5'側の塩基配列を決定するために 5'-RACE System for Rapid Amplification of cDNA Ends, Version 2.0 (GIBCO BRL) を用いて、5'-RACE 法を行った。鋳型として(1)で調製した total RNA を $3~\mu$ g 使用した。

dC-tailed cDNA の一回目の増幅には、

- 5'-GGCCACGCGTCGACTAGTACGGGIIGGGIIG-3'(配列番号5)
- 5'- AAAAGTCTGCTTGAAATAGT-3'(配列番号6)
- のプライマーを用いた(ここで、1はイノシンを示す)。
 - 二回目の増幅には、
- 5'-GGCCACGCGTCGACTAGTAC-3'(配列番号7)
- 5'- TGTCAAGATATCGTAAGCG-3'(配列番号8)

のプライマーを用いた。PCR 反応条件等はキットのプロトコールに準じた。 アガロースゲル電気泳動で、増幅された 300bp のバンドを切り出し、精製した。 精製した DNA 断片を pT7-blue vector (Novagen) にライゲーションした。大腸菌株 (TG1) にトランスフォーメーションしてブルーホワイトセレクションを行い、白 いコロニーの大腸菌より plasmid DNA を精製して、挿入された DNA 断片の塩基配 列を DNA シークエンサーにより決定した。

(6) 3'-RACE 法

Degenerated PCR で得られた DNA 断片の 3'側部分は、(4) の塩基配列決定で得られた情報を基に作製したプライマーとオリゴ dT プライマーの PCR で得た。鋳型として(2)で調製した first strand cDNA を 3μ 1 使用した。作成したプライマーは、5'-ACTATTTCAAGCAGACTTTT-3'(primer3)(配列番号9)である。

以下の PCR 反応液組成を使用した。

テンプレート (first strand cDNA)	$3 \mu 1$
X10 taq バッファー	5 μ 1
2.5mM dNTPs	4μ1
$20\mu\mathrm{M}$ primer3	1μ1

PCT/JP02/10529

 $10\,\mu\,\mathrm{M}$ oligo dT primer

 $1 \mu 1$

ミリQ

 $35 \mu 1$

taq polymerase $(5U/\mu 1)$

 $1 \mu 1$

以下の PCR 反応条件を使用した。

94℃で1分(PAD)

94℃で30秒 (変性)

55℃で30秒 (アニーリング)

72℃で1分(プライマー伸長)

上記3ステップを30サイクル行った。

72℃で7分(最後の伸長)

4℃(保持)

アガロースゲル電気泳動で、増幅された 850bp のバンドを切り出し、精製した。 精製した DNA 断片を pT7-blue vector (Novagen) にライゲーションした。大腸菌株 (TG1) にトランスフォーメーションしてブルーホワイトセレクションを行い、白 いコロニーの大腸菌より plasmid DNA を精製して、挿入された DNA 断片の塩基配 列を DNA シークエンサーにより決定した。

(7) 大腸菌での蛋白発現

得られた全長の塩基配列より、蛋白のN末端、C末端に相当する部分でプライマーを作製し、(2) で調製した First strand cDNA を鋳型として PCR を行った。全塩基配列および全アミノ酸配列を配列表の配列番号1及び配列番号2に記載する。使用したプライマーを以下に示す。

- 5'-CGGGATCCACCATGGTGAGTGTGATTAAACCAGAGATGAAAA-3' (primer4) (配列番号 1 0)
- 5'-TCCGCTCGAGCTTGGCCTGACTCGGCAGCATAGAA-3' (primer5) (配列番号11) 以下の PCR 反応液組成を使用した。

テンプレート (first strand cDNA) 3μ1

X10 pyrobest Ny77 5 μ 1

PCT/JP02/10529

2.5mM dNTPs	$4 \mu 1$
$20\mu\mathrm{M}$ primer4	$1 \mu 1$
$20\mu\mathrm{M}$ primer5	1μ1
₹ y Q	$35 \mu 1$
pyrobest polymerase(5U/ μ l)	1 μ 1

- 94℃で1分(PAD)
- 94℃で30秒(変性)
- 55℃で30秒 (アニーリング)

以下の PCR 反応条件を使用した。

7.2℃で1分(プライマー伸長)

上記3ステップを30サイクル行った。

72℃で7分(最後の伸長)

4℃(保持)

アガロースゲルの電気泳動で、増幅された 700bp のバンドを切り出し、精製して pET28 vector (Novagen) の NcoI、XhoI 部位にサブクローニングして、大腸菌株 (JM109-DE3) で発現させた。C 末端に His-tag が付くようにコンストラクトしたので発現蛋白は Ni-Agarose gel (QIAGEN) で精製した。精製の方法は付属のプロトコールに準じた。次に精製した蛋白の性質を解析した。

(8) 蛍光特性の解析

蛍光蛋白 20μ M (分子量 27026.52)、50 nM HEPES (pH7.5) 溶液を用いて、吸収スペクトルを測定した。このスペクトルのピーク (492 nm) の値よりモル吸光係数を計算した。450 nm の吸収が 0.003 となるように蛍光蛋白を上記の緩衝液で希釈し、450 nm で励起した時の蛍光スペクトルと 540 nm の蛍光による励起スペクトルを測定した。EGFP (CLONTECH) を同様に 450 nm の吸収が 0.003 となるようにして蛍光スペクトルを測定し、EGFP の量子収率を 0.6 として今回クローニングされた蛍光蛋白の量子収率を求めた。

結果を表1及び図1に示す。

PCT/JP02/10529

表1:本発明のサンゴ由来の蛍光蛋白質 (Azami-Green) とEGFPとの比較

•	Azami-Green	EGFP
励起極大	4 9 2 n m	4 9 0 n m
蛍光極大	505nm	509nm
モル吸光係数	7 4 1 0 0	48850
量子収率	0.625	0.600
多量体形成	4 量体	単量体
p H感受性	なし	p K a = 6. 0
アミノ酸数	2 2 5 アミノ酸	238アミノ酸
動物細胞での発現	可能	可能

(9) p H感受性の測定

450nm の吸収が 0.003 となるように蛍光蛋白を 50mM HEPES pH7.5 で希釈し、 450nm で励起した時の蛍光スペクトルと 540nm の蛍光による励起スペクトルを測定した。 EGFP (CLONTECH) も同様に pH7.5 における 450nm の吸収が 0.003 となるようにして蛍光スペクトルを測定し対照とした。各 pH の緩衝液は次の通り、

pH4、4.5、5 : 酢酸バッファー

pH5.5、6.5、11 : リン酸バッファー

pH6 : MES バッファー

pH7 : MOPS バッファー

pH8 : HEPES バッファー

pH9、10 : グリシンバッファー

pH12.5 : 水酸化塩化物バッファー

測定結果は図2に示す。

(10) 多量体形成の測定

蛍光蛋白を 50mM HEPES pH7.5、150mM KCl で平衡化して、光散乱による多量体

PCT/JP02/10529

形成の測定を昭光通商株式会社に依頼した。測定の結果、この蛍光蛋白は四量体 (116K) および、わずかながら八量体(204K)を形成することが確認された。 光散乱の測定結果は、図3に示す。

実施例2:pH 感受性変異体(AG-pH)の作成

Azami-Green は pH 感受性を持たず、pH 5.5 から pH 12.5 で安定なグリーンの蛍光を放つ。しかし、Azami-Green の 76 番目のグルタミンをアルギニンに、106 番目のアスパラギンをアスパラギン酸に、118 番目のイソロイシンをトレオニンに、150 番目のアスパラギン酸をグリシンに、157 番目のバリンをアスパラギン酸に置き換えることで pH 感受性を獲得した。この改変蛍光蛋白質を AG-pH とした。

AG-pH は、380 nm と 484 nm に励起のピークを持つ。いずれの励起によっても蛍光スペクトルは501 nmにピークを示す。メジャーな励起のピークが380 nm であり、ストークスシフトは120 nm と非常に大きな値となっている。マイナーな484 nm の励起のピークは pH 6 から pH 10 に向かって値が増加するが、380 nm の励起のピークは pH 6 から pH 10 に向かって値が増加するが、380 nm の励起のピーク値は変化しない。そのため、380 nm と 484 nm の励起光による蛍光値の比を測ることにより、pH を測定することが in vitro 又は細胞内において可能である。従来のオワンクラが由来のGFP の改変体にも 2 つの励起ピークの増減で pH 測定ができるものが存在するが(pHluorin)、AG-pH と違って片方のピークが一定値を取るものではない。したがって、この改変蛍光蛋白質は380 nm のピークを励起することにより pH に左右される事なく蛍光測定を行う事も出来る(図 4、5、6、7、8 及び 9)。

実施例3:単量体化変異体(mAG)の作成

Azami-Green はホモの四量体を形成するが、123番目のバリンをトレオニンに、188番目のチロシンをアラニンに、190番目のフェニルアラニンをリジンに置き換えることによって、単量体に留まる変異体を取得した。光散乱測定により分子量の確認をした(34kDa)。この改変単量体蛍光蛋白質を mAG とした。mAG は野生型

PCT/JP02/10529

Azami-Green と同じ蛍光極大 505 nm、励起極大 492 nm を示す (図10及び11)。

産業上の利用の可能性

本発明により、クラゲ以外の生物に由来する新規な蛍光蛋白質が提供されることになった。本発明の蛍光蛋白質は、所望の蛍光特性を有し、またpH感受性が低いことから、分子生物学的分析において有用である。

PCT/JP02/10529

請求の範囲

- 1. アザミサンゴ (Galaxea fascicularis) 由来の下記の特性を有する蛍光蛋白質。
- (1)分子量は約27000;
- (2) 平衡化状態で4量体を形成する;
- (3) 励起極大波長が492nmであり、蛍光極大波長は505nmである;
- (4) モル吸光係数は74100である;
- (5) 量子収率は0.625である;及び
- (6) pH5~12の範囲において蛍光特性のpH感受性が低い:
- 2. 以下の何れかのアミノ酸配列を有する蛍光蛋白質。
- (a) 配列番号1に記載のアミノ酸配列;又は、
- (b) 配列番号1に記載のアミノ酸配列において1から数個のアミノ酸の欠失、 置換及び/又は付加を有するアミノ酸配列を有し、蛍光特性を有するアミノ酸配列:
- 3. 配列番号1に記載のアミノ酸配列において76番目のGlnをArgに、106番目のAsnをAspに、118番目のIleをThrに、150番目のAspをGlyに、そして157番目のValをAspに置換したアミノ酸配列を有する、蛍光蛋白質。
- 4. 配列番号1に記載のアミノ酸配列において123番目の Val を Thr に、188番目の Tyr を Ala に、190番目の Phe を Lys に置換したアミノ酸配列を有する、蛍光蛋白質。
 - 5. 請求項1から4の何れかに記載の蛍光蛋白質をコードするDNA。
 - 6. 以下の何れかのDNA。
- (a) 配列番号1に記載のアミノ酸配列をコードするDNA;又は、
- (b) 配列番号1に記載のアミノ酸配列において1から数個のアミノ酸の欠失、 置換及び/又は付加を有するアミノ酸配列を有し、蛍光特性を有するアミノ酸配 列をコードするDNA:

PCT/JP02/10529

- 7. 以下の何れかの塩基配列を有するDNA。
- (a) 配列番号2に記載の塩基配列;又は、
- (b) 配列番号2に記載の塩基配列において1から数個の塩基の欠失、置換及び /又は付加を有する塩基配列を有し、蛍光特性を有する蛋白質をコードする塩基 配列:
 - 8. 請求項5から7の何れかに記載のDNAを有する組み換えベクター。
- 9. 請求項5から7の何れかに記載のDNA又は請求項8に記載の組み換え ベクターを有する形質転換体。
- 10. 請求項1から4の何れかに記載の蛍光蛋白質と他の蛋白質とから成る融合蛍光蛋白質。
- 11. 他の蛋白質が細胞内に局在する蛋白質である、請求項10に記載の融合蛋白質。
- 12. 他の蛋白質が細胞内小器官に特異的な蛋白質である、請求項10又は 11に記載の融合蛋白質。
- 13. 請求項10から12の何れかに記載の融合蛋白質を細胞内で発現させることを特徴とする、細胞内における蛋白質の局在または動態を分析する方法。
- 14. 請求項1から4の何れかに記載の蛍光蛋白質、請求項5から7の何れかに記載のDNA、請求項8に記載の組み換えベクター、請求項9に記載の形質転換体、又は請求項10から12の何れかに記載の融合蛋白質を含む、蛍光試薬キット。

PCT/JP02/10529

PCT/JP02/10529

PCT/JP02/10529

(lom/g) 量**資**1(子

光散乱測定結果

3/11

差替え用紙 (規則26)

PCT/JP02/10529

PCT/JP02/10529

PCT/JP02/10529

PCT/JP02/10529

PCT/JP02/10529

PCT/JP02/10529

図 9

PCT/JP02/10529

図 10

PCT/JP02/10529

図 11

11/11 差替え用紙 (規則26)

SEQUENCE LISTING

<110> RIKEN

<120> Fluorescent proteins

<130> A21606A

<160> 11

⟨210⟩ 1 .

<211> 225

<212> PRT

<213> Galaxea fascicularis

⟨400⟩ 1

Met Ser Val Ile Lys Pro Glu Met Lys Ile Lys Leu Cys Met Arg Gly

1 5 10 15

Thr Val Asn Gly His Asn Phe Val Ile Glu Gly Glu Gly Lys Gly Asn

20 25 30

Pro Tyr Glu Gly Thr Gln Ile Leu Asp Leu Asn Val Thr Glu Gly Ala

35 40 45

 $\hbox{Pro Leu Pro Phe Ala Tyr Asp Ile Leu Thr Thr Val Phe Gln Tyr Gly } \\$

50 55 60

Asn Arg Ala Phe Thr Lys Tyr Pro Ala Asp Ile Gln Asp Tyr Phe Lys

65 70 75 80

Gln Thr Phe Pro Glu Gly Tyr His Trp Glu Arg Ser Met Thr Tyr Glu

85 90 95

Asp Gln Gly Ile Cys Thr Ala Thr Ser Asn Ile Ser Met Arg Gly Asp

100 105 110

Cys Phe Phe Tyr Asp Ile Arg Phe Asp Gly Val Asn Phe Pro Pro Asn

115 120 125

Gly Pro Val Met Gln Lys Lys Thr Leu Lys Trp Glu Pro Ser Thr Glu

130 135 140

Lys Met Tyr Val Arg Asp Gly Val Leu Lys Gly Asp Val Asn Met Ala

145 150 155 160

Leu Leu Glu Gly Gly Gly His Tyr Arg Cys Asp Phe Lys Thr Thr

165 170 175

Tyr_Lys Ala Lys Lys Asp Val Arg Leu Pro Asp Tyr His Phe Val Asp

180 185 190

His Arg Ile Glu Ile Leu Lys His Asp Lys Asp Tyr Asn Lys Val Lys

195 200 205

Leu Tyr Glu Asn Ala Val Ala Arg Tyr Ser Met Leu Pro Ser Gln Ala

210 215 220

Lys

225

⟨210⟩ 2

<211> 678

<212> DNA

<213> Galaxea fascicularis

<400> 2

atg agt gtg att aaa cca gag atg aaa atc aag ctg tgt atg aga ggc 48

Met Ser Val Ile Lys Pro Glu Met Lys Ile Lys Leu Cys Met Arg Gly

1 5 10 15

act gta aac ggg cat aat ttc gtg att gaa gga gaa gga aaa gga aat 96

Thr Val Asn Gly His Asn Phe Val Ile Glu Gly Glu Gly Lys Gly Asn

20 25 30

cct tac gag gga acg cag att tta gac ctg aac gtc act gaa ggc gca 144

Pro	Tyr	Glu	Gly	Thr	Gln	Ile	Leu	Asp	Leu	Asn	Val	Thr	Glu	Gly	Ala	
		35					40					45			•	
cct	ctg	cct	ttc	gct	tac	gat	atc	ttg	aca	aca	gtg	ttc	cag	tac	ggc	192
Pro	Leu	Pro	Phe	Ala	Tyr	Asp	Ile	Leu	Thr	Thr	Val	Phe	Gln	Tyr	Gly	٠.
	50	•.				55					· 60					
aac	agg	gca	ttc	acc	aag	tac	cca	gca	gat	att	cag	gac	tat	ttc	aag	240
Asn	Arg	Ala	Phe	Thr	Lys	Tyr	Pro	Ala	Asp	Ile	Gln	Asp	Tyr	Phe	Lys	
65	-				70					75					80	
cag	act	ttt	cct	gag	ggg	tat	cac	tgg	gaa	aga	agc	atg	act	tat	gaa	288
Gln	Thr	Phe	Pro	Glu	Gly	Tyr	His	Trp	Glu	Arg	Ser	Met	Thr	Tyr	Glu	
				85					90					95		
gac	cag	ggc	att	tgc	acc	gcc	aca	agc	aac	ata	agc	atg	cgt	ggc	gac	336
Asp	Gln	Gly	Ile	Cys	Thr	Ala	Thr	Ser	Asn	Ile	Ser	Met	Arg	Gly	Asp	
			100					105					110		•	•
tgt	ttt	ttc	tat	gac	att	cgt	ttt	gat	ggt	gtg	aac	ttt	cct	ccc	aat	384
Cys	Phe	Phe	Tyr	Asp	Ile	Arg	Phe	Asp	Gly	Val	Asn	Phe	Pro	Pro	Asn	
		115					120					125				
ggt	ccg	gtt	atg	cag	aag	aag	act	ctt	aaa	tgg	gag	cca	tcc	act	gag	432
Gly	Pro	Val	Met	Gln	Lys	Lys	Thr	Leu	Lys	Trp	Glu	Pro	Ser	Thr	Glu	•
	130					135					140			•		
aaa	atg	tac	gta	cgt	gat	gga	gtg	ctg	aag	ggt	gat	gtt	aac	atg	gct	480
Lys	Met	Tyr	Val	Arg	Asp	Gly	Val	Leu	Lys	Gly	Asp	Val	Asn	Met	Ala	
145					150			•		155					160	٠.
ctg	ttg	ctt	gaa	gga	ggt	ggc	cat	tat	cga	tgt	gat	ttc	aaa	act	act	528
Leu	Leu	Leu	Glu	Gly	Gly	Gly	His	Tyr	Arg	Cys	Asp	Phe	Lys	Thr	Thr	
				165		ć			170					175		
tac	aaa	gca	aag	aag	gat	gtc	cgt	ttg	cca	gac	tat	cac	ttt	gtg	gac	576

Tyr Lys Ala Lys Lys Asp Val Arg Leu Pro Asp Tyr His Phe Val Asp

180

185

190

678

cac cgc att gag att ttg aag cat gac aaa gat tac aac aag gtc aag $\,$ 624

His Arg Ile Glu Ile Leu Lys His Asp Lys Asp Tyr Asn Lys Val Lys

195

200

205

ctc tat gag aat gcc gtt gct cgc tat tct atg ctg ccg agt cag gcc 672

Leu Tyr Glu Asn Ala Val Ala Arg Tyr Ser Met Leu Pro Ser Gln Ala

210

215

aag taa

220

Lys

225

<210> 3

⟨211⟩ 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic DNA

<400> 3

gaaggrtgyg tcaayggrca y

21

<210> 4

⟨211⟩ 23.

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic DNA

```
WO 03/033693
```

PCT/JP02/10529

<400> 4

acvggdccat ydgvaagaaa rtt

23

⟨210⟩ 5

<211> 36

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic DNA

⟨400⟩ 5

ggccacgcgt cgactagtac gggiigggii gggiig

36

⟨210⟩ 6

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic DNA

⟨400⟩ 6

aaaagtctgc ttgaaatagt

20

⟨210⟩ 7

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic DNA

PCT/JP02/10529

<400> 7

ggccacgcgt cgactagtac

20

⟨210⟩ 8

<211> 19

<212> DNA

<213> Artificial Sequence

⟨220⟩

<223> Description of Artificial Sequence: Synthetic DNA

⟨400⟩ 8

tgtcaagata tcgtaagcg

19

<210> 9

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic DNA

<400> 9

actatttcaa gcagactttt

20

<210> 10

<211> 42

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic DNA

<400> 11

tccgctcgag cttggcctga ctcggcagca tagaa

WO 03/033693

<400> 10
cgggatccac catggtgagt gtgattaaac cagagatgaa aa 42

<210> 11
<211> 35
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA

35

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP02/10529

_									
	IFICATION OF SUBJECT MATTER C1 ⁷ C12N15/09, C07K14/435, C07 C12N1/21, C12N5/00, C12Q1/		C12N1/19,						
According to International Patent Classification (IPC) or to both national classification and IPC									
B. FIELDS SEARCHED									
		hy classification symbols)							
Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ Cl2N15/00-Cl2N15/32, C07K14/415-C07K14/455									
Documentat	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched								
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) SwissProt/PIR/GeneSeq, BIOSIS (DIALOG)									
C. DOCUI	MENTS CONSIDERED TO BE RELEVANT	***							
Category*	Citation of document, with indication, where ap	propriate, of the relevant passag	Relevant to claim No.						
А	WO 00/34526 A1 (Clontech Lab 15 June, 2000 (15.06.00), & WO 01/27150 A2 & EP	oratories, Inc.),	1-14						
A	WO 00/28025 A1 (UNIV WALES OF 18 May, 2000 (18.05.00), & JP 2002-529085 A	OLLEGE OF MEDICIN	E), 1-14						
A	JP 10-234382 A (Kabushiki Ka	•	nkyu 1-14						
	08 September, 1998 (08.09.98) (Family: none)	,							
		•							
Furthe	er documents are listed in the continuation of Box C.	See patent family annex							
"A" docume	categories of cited documents; ent defining the general state of the art which is not	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to							
	red to be of particular relevance document but published on or after the international filing	"X" document of particular relevance; the claimed invention cannot be							
"L" docume	ent which may throw doubts on priority claim(s) or which is a stablish the publication date of another citation or other	considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be							
special	reason (as specified) ent referring to an oral disclosure, use, exhibition or other	considered to involve an inventive step when the document is combined with one or more other such documents, such							
	ent published prior to the international filing date but later e priority date claimed	combination being obvious to a person skilled in the art document member of the same patent family							
	actual completion of the international search ecember, 2002 (13.12.02)	Date of mailing of the international search report 21 January, 2003 (21.01.03)							
	nailing address of the ISA/ nese Patent Office	Authorized officer							
Facsimile No	0.	Telephone No.							

国際調査報告 国際出願番号 PCT/JP02/10529. A. 発明の属する分野の分類 (国際特許分類 (IPC)) Int.Cl' C12N15/09, C07K14/435, C07K19/00, C12N1/15, C12N1/19, C12N1/21, C12N5/00, C12Q1/02 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int.Cl' C12N15/00~C12N15/32, C07K14/415~C07K14/455 最小限資料以外の資料で調査を行った分野に含まれるもの 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) SwissProt/PIR/GeneSeq, BIOSIS (DIALOG) 関連すると認められる文献 引用文献の 関連する カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 WO 00/34526 A1 (CLONTECH LABORATORIES, INC.) 2000. 06. 15 1 - 14& WO 01/27150 A2 & EP 1135532 A WO 00/28025 A1 (UNIV WALES COLLEGE OF MEDICINE) 2000.05.18 Α 1 - 14& JP 2002-529085 A JP 10-234382 A (株式会社ディナペック研究所) 1998.09.08 Α 1 - 14ファミリーなし │ │ C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。 * 引用文献のカテゴリー の日の後に公表された文献 「A」特に関連のある文献ではなく、一般的技術水準を示す 「丁」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 もの 「E」国際出願日前の出願または特許であるが、国際出願日 の理解のために引用するもの 以後に公表されたもの 「X」特に関連のある文献であって、当該文献のみで発明 「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに 文献(理由を付す) 「O」口頭による開示、使用、展示等に言及する文献 よって進歩性がないと考えられるもの 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献 国際調査を完了した日 国際調査報告の発送日 21/11.03 13.12.02 جني 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 4N 8114 日本国特許庁 (ISA/JP) 恵理子 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 電話番号 03-3581-1101 内線 3448

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.