"Online Shoppers Purchasing Intention"

Zoran Vujičić

Avgust, 2023

Seminarski rad u okviru kursa Istraživanje podataka 1 na Matematičkom fakultetu

Sadržaj

1 Uvod	2
1.1 Analiza skupa podataka	2
2 Preprocesiranje podataka	5
2.1 Rad sa nedostajućim vrednostima	5
2.2 Odabir atributa	
2.3 Transformisanje kategoričkih atributa	6
2.4 Rad sa elementima izvan granica	7
2.5 Standardizacija	8
3 Klasifikacija	8
3.1 Nasumične šume	8
3.2 Stabla odlučivanja	
3.3 Logistička regresija	12
3.4 Metoda potpornih vektora	13
3.4.1 Linearni SVM	13
3.4.2 SVM sa kernelom	14
3.5 Poređenje modela klasifikacije	15
4 Klasterovanje	16
4.1 Algoritam K-sredina	16
4.2 Sakupljajuće klasterovanje	18
4.3 Poređenje modela klasterovanja	20
5 Pravila pridruživanja	
5.1 Apriori	21
6 Zakliučak	24

1 Uvod

Skup podataka Online Shoppers Purchasing Intention sastavljen je od informacija o aktivnostima korisnika na internetu a podaci su prikupljeni sa sajta za maloprodaju. Konstruisan od strane *Google Analytics*¹ servisa za sakupljanje statističkih podataka o aktivnostima korisnika na internetu, skup se sastoji od 12330 pristupa korisnika. Skup je pažljivo formiran tako da svaki pristup odgovara različitom korisniku u periodu od jedne godine, kako bi se izbegla sklonost ka specifičnom profilu korisnika, danu ili periodu.

1.1 Analiza skupa podataka

Naš skup podataka ima ukupno 18 atributa. U sledećoj tabeli si ukratko opisani svi atributi, prvih 10 su numerički a ostalih 8 su kategorički atributi. Na slici 1 su prikazani histogrami raspodele nekih atributa.

Atributi	Opis
Administrative	Broj posećenih veb strana vezanih za upravljanje profilom
Administrative_Duration	Vreme provedeno na veb stranama o upravljanju profilom u sekundama
Informational	Broj posećenih veb strana vezanih za informacije o sajtu
Informational_Duration	Vreme provedeno na stranama za informacije u sekundama
ProductRelated	Broj posećenih veb strana vezanih za proizvode
ProductRelated_Duration	Vreme provedeno na veb stranama vezanim za proizvode u sekundama
BounceRates	Procenat korisnika koji nakon ulaska na veb sajt izađu bez pokretanja drugih zahteva ka serveru
ExitRates	Koliko je puta u procentima veb strana bila poslednja u jednom pristupu korisnika internetu, u odnosu na ukupan broj pregleda
PageValues	Predstvalja prosečnu vrednost veb stranica koje je korisnik posetio pre nego što je izvršio transakciju
SpecialDay	Pokazuje koliko je vreme posete veb sajtu blizu nekog specijalnog dana u godini (npr. 8. Mart), u kojima je veća verovatnoća da se uspešno izvrši transakcija
Month	Mesec u godini u kome je korisnik pristupio veb sajtu
OperatingSystems	Operativni sistem koji je koristio korisnik
Browser	Internet pregledač koji je koristio korisnik
Region	Geografski region iz kog se prijavio korisnik
TrafficType	Izvor, odakle je korisnik pristupio veb sajtu
VisitorType	Tip korisnika koji može biti <i>Novi Korisnik</i> , <i>Povratnik</i> i <i>Ostali</i>
Weekend	Pokazauje da li je datum posete vikend ili ne
Revenue	Pokazuje da li je korisnik pri poseti veb sajtu ivršio transakciju ili nije

Slika 1: Histogrami raspodele nekih atributa

Ciljna promenljiva u procesu klasifikacije biće **Revenue**, odnosno da li je korisnik kupio neki proizvod ili nije, jer je to informacija koju želimo da dobijemo nakon istraživanja. Atrubut Revenue ima 2 klase a to su True i False. Broj instanci klase True je 1908 a klase False 10422. Dakle klase nisu balansirane što će predstavljati problem u procesu klasifikacije. To je i prikazano na slici 2. Odnos atributa Revenue sa nekim atributima prikazan je na slici 3.1, 3.2, 3.3 i 3.4.

Slika 2: Procentualni prikaz raspodele klasa

Slika 3.1: Odnos atributa Revenue i Month

Slika 3.2: Odnos atributa Revenue i Visitor Type

Slika 3.3: Odnos atributa Revenue i Special Day

Slika 3.4: Odnos atributa Revenue i atributa vezanih za vreme provedeno na stranicama

Vidimo da ćemo imati i elemenata van granica (outlier), što ćemo istražiti u predprocesiranju.

2 Preprocesiranje podataka

2.1 Rad sa nedostajućim vrednostima

Proveravamo da li u našem skupu podataka postoje nedostajuće vrednosti i ako postoje treba ih na adekvatan način eliminisati ili zameniti.

<pre>dataset.isna().sum()</pre>	
Administrative	0
Administrative_Duration	0
Informational	0
Informational_Duration	0
ProductRelated	0
ProductRelated_Duration	0
BounceRates	0
ExitRates	0
PageValues	0
SpecialDay	0
Month	0
OperatingSystems	0
Browser	0
Region	0
TrafficType	0
VisitorType	0
Weekend	0
Revenue	0
dtype: int64	

Dakle, iz rezultata izvršavanja možemo videti da nema nedostajućih vrednosti.

2.2 Odabir atributa

Koristićemo matricu korelacije pri odabiru atributa. Na osnovu matrice korelacije, koja je prikazana na slici 4 saznajemo koliko atributi utiču jedni na druge. Tamno crvenom bojom su označeni atributi sa visokom korelacijom. Na osnovu toga vidimo da su atributi *Product Related* i *Product Related Duration* vioko korelirani, tako da ćemo jedan izbaciti. Isto važi i za atribute *Exit Rates* i *Bounce Rates*.

Slika 5: Odnos atrubuta Exit Rates i Bounce Rates

Slika 4: Matrica korelacije

2.3 Transformisanje kategoričkih atributa

U našem skupu podataka postoje kategorički atributi koje ćemo transformisati zbog algoritama u procesu klasifikacije koja zahtevaju da oni budu numerički. Atributi mogu da uzimaju vrednosti iz diskretnog skupa, a to može da predstavlja problem pri izračunavanju ako je neki atribut označen većim brojem a nema nužno veću vrednost. Na primer atribut *Browser* koji uzima vrednosti iz skupa {1, 2, ..., 13}, dakle ne mora da znači da je neki veb pregledač "veći" od nekog drugog. Zbog toga je potrebno izvršiti proces binarizacije (*binarization*²). Na osnovu kategoričkog atributa koji ima n različitih vrednosti stvoriće se n novih različitih binarnih atributa. Svaki binarni atribut odgovaraće jednoj mogućoj vrednosti kategoričkog atributa. Od n atributa koji se nalaze u jednom redu tačno jedan će imati vrednost 1, a ostali će imati vrednost 0. Binarni podaci su specijalni slučaj i numeričkih i kategoričkih atributa tako da binarni kategorički atributi koji imaju vrednosti *True* i *False* zamenjuju se sa 0 i 1. Ispod je spisak novonastalih atributa nakon transformacije.

Administrative	OperatingSystems 1	Browser 12	TrafficType 9
Administrative Duration	OperatingSystems 2	Browser 13	TrafficType_10
Informational —	OperatingSystems 3	Region $\overline{1}$	TrafficType 11
Informational Duration	OperatingSystems 4	Region 2	TrafficType 12
ProductRelated Duration	OperatingSystems 5	Region 3	TrafficType 13
ExitRates	OperatingSystems 6	Region_4	TrafficType_14
PageValues	OperatingSystems_7	Region_5	TrafficType_15
SpecialDay	OperatingSystems_8	Region_6	TrafficType_16
Revenue	Browser_1	Region_7	TrafficType_17
Month_Aug	Browser_2	Region_8	TrafficType_18
Month_Dec	Browser_3	Region_9	TrafficType_19
Month_Feb	Browser_4	TrafficType_1	TrafficType_20
Month_Jul	Browser_5	TrafficType_2	<pre>VisitorType_New_Visitor</pre>
Month_June	Browser_6	TrafficType_3	VisitorType_Other
Month_Mar	Browser_7	TrafficType_4	<pre>VisitorType_Returning_Visitor</pre>
Month_May	Browser_8	TrafficType_5	Weekend_False
Month_Nov	Browser_9	TrafficType_6	Weekend_True
Month_Oct	Browser_10	TrafficType_7	
Month_Sep	Browser_11	TrafficType_8	

2.4 Rad sa elementima izvan granica

Slika 6: Dijagram elemenata van granica

Na slici 6 vidimo da atributi vezani za vreme provedeno na stranicama imaju izražene elemente izvan granica (outliers³). To su atributi *Administrative Duration*, *Informational Duration* i *Product Related Duration*. Izdvajamo ih na posban boxplot dijagram na slici broj 7 kako bi se jasnije i preciznije videli.

Slika 7: Boxplot dijagram elemenata van granica

Prvo pokušavamo sa metodom interkvantilnog opsega (IQR^4). Međutim, ovom metodom bismo izgubili dosta infromacija što je i prikazano na slici 8.

```
ProductRelated_Duration outliers: 961 in percent: 7.793 Administrative_Duration outliers: 1172 in percent: 9.50 Informational Duration outliers: 2405 in percent: 19.50
```

Slika 8: Procentualni prikaz elemenata van granica koristeći IQR metodu

Tako da će biti uklonjeni samo ekstremni elementi izvan granica. Granice bi bile 20000 za atribut *Product Related Duration*, 2400 za *Administrative Duration* i 1900 za *Informational Duration*. Takođe negativne vredosti su primećene u kolonama veznaim za vreme provedeno na stranicama, pošto ove vrednosti ne mogu biti negativne zamenjene su sa 0.

2.5 Standardizacija

Pre standardizacije, skup se deli na skup atributa i na specijalni atribut koji će biti korišćen kao oznaka klase. Nakon toga se oba skupa dele na trening i test skup koji će biti korišćeni u procesu klasifikacije. Pošto su atributi različito skalirani, to znači da ih ne možemo međusobno upoređivati. Zbog toga se vrši standardizacija (*standardization*⁵) koja funkcioniše tako što se od atributa oduzme njegova srednja vrednost i to se podeli njegovom standardnom devijacijom. Prikaz raspodele atributa pre i posle standardizacije je na slici 9.

Slika 9: Prikaz raspodele atributa pre i posle standardizacije

3 Klasifikacija

3.1 Nasumične šume

Nasumične šume (*Random Forest*⁶) algoritam radi tako što sagrađuje mnoštvo stabala odlučivanja pri treniranju i dodeljuje instanci onu klasu koja se najčešće pojavljivala. Ovo je algoritam koji spada u grupu ansabala koji koriste više algoritama za učenje kako bi postigli što bolje rezultate u predikciji klasa.

Što se tiče odabira parametara, broj stabala u šumi biće jednak 15 a za kriterijume podele biće korišćena Entropija. To su parametri koji su dobijeni pomoći *Grid Search*⁷ algoritma.

Prvo ćemo pokušati bez balansiranja klasa, a posle ćemo pokušati da popravimo performanse korišćenjem SMOTE (*Synthetic Minority Oversampling Technique*⁸) tehnike. Ona radi tako što na slučajan način odabere tačku iz manje klase i računa k najbližih suseda za tu tačku. Tačke koje su sintetisane se dodaju između odabrane tačke i njenih suseda. Rezultati pre i posle balansiranja klasa prikazani su na slici 11, a odgovarajuće matrice konfizije sa rezultatima pre balansiranja (zelena) i posle balansiranja (crvena) na slici 12 i 13. Takođe je prikazano i poređenje ROC krive i AUC rezultata pre i posle balansiranja na slici 14. Na slici 15.1 prikazana je značajnost atribura.

Slika 11: Rezultati pre i posle balansiranja klasa korišćenjem SMOTE tehnike

		997099767 906630581						9.998421636 .8798376184			
	р	recision	recall	f1-score	support			precision	recall	f1-score	support
	0 1	0.91 0.71	0.96 0.50	0.94 0.59	3123 572		0 1	0.93 0.61	0.93 0.62	0.93 0.61	3123 572
accu macro weighted	avg	0.81 0.88	0.73 0.89	0.89 0.76 0.88	3695 3695 3695		uracy o avg d avg	0.77 0.88	0.77 0.88	0.88 0.77 0.88	3695 3695 3695
False -	3005		118	- 3000 - 2500 - 2000		False - Page	2899)	224	- 2500 - 2000	
Tue label	286		286	- 1500 - 1000 - 500		True label	220		352	- 1500 - 1000 - 500	
	False P	redicted label	True				False	Predicted labe	True	_	

Slika 12: Matrica konfuzije pre balansiranja

Slika 13: Matrica konfuzije posle balansiranja

Slika 15: Poređenje ROC krive i AUC rezltata pre i posle balansiranja klasa

Slika 15.1: Značajnost atributa

3.2 Stabla odlučivanja

Naredni algoritam koji ćemo primeniti na naš skup su Stabla odlučivanja (*Decision Trees*⁹). To je algoritam u kome se proces klasifikacije modeluje pomoću skupa hijerarhijskih odluka koje su donete na osnovu atributa trening podataka čija je struktura uređena u obliku drveta.

Što se tiče parametara, maksimala dubina čvorova će biti 5 pre balansiranja i 10 posle balansiranja. Za kriterijume podele biće korišćena Entropija. Kao i kod nasumičnih šuma, ovi parametri su dobijeni pomoću *Grid Search* algoritma. Na slici 16 i 17 su prikazane odgovarajuće matrice konfuzije sa rezultatima pre i posle balansiranja, a na slici 18 poređenje ROC kirive i AUC rezultata pre i posle balansiranja.

	result: result:								0.9380318418 .87090663058			
		preci	sion	recall	f1-score	support			precision	recall	f1-score	support
	0 1		.92 .71	0.96 0.52	0.94 0.60	3123 572		0 1	0.94 0.57	0.90 0.71	0.92 0.63	3123 572
	curacy ro avg ed avg		.81	0.74 0.89	0.89 0.77 0.89	3695 3695 3695		curacy ro avg ed avg	0.76 0.89	0.80 0.87	0.87 0.78 0.88	3695 3695 3695
False -	300:	3	12	0	- 3000 - 2500 - 2000		Tue label easle -	2814	3	09	- 2500 - 2000 - 1500	
True label	277		29	95	- 1500 - 1000 - 500		True -	168	4	04	- 1000 - 500	
	False	e Predicted	Tru d label	Je				False	Predicted label	ue		

Slika 16: Matrica konfuzije pre balansiranja

Slika 17: Matrica konfuzije posle balansiranja

Slika 18: Poređenje ROC krive i AUC rezltata pre i posle balansiranja klasa

3.3 Logistička regresija

Sledeći što ćemo pokušati je Logistička regresija (*Logistic Regression*¹⁰). Ona je jedna od najkorišćenijih metoda te se zato odlučujemo za nju, vrlo je jednostavna i pruža efikasno treniranje. Takođe nam odgovara zato što je upotrebljiva samo na binarnu klasifikaciju, a to jeste naš slučaj.

Što se tiče parametara, kao i u prethodim metodama korišćen je *Grid Search* algoritam. Na slici 19 i 20 su prikazane odgovarajuće matrice konfuzije sa rezultatima pre i posle balansiranja, a na slici 21 poređenja ROC kirive i AUC rezultata pre i posle balansiranja.

			89791183 71041948						0.8456629151 0.85953991886			
		precisi	ion r	ecall	f1-score	support			precision	recall	f1-score	support
	0 1	0.8		9.98 9.34	0.93 0.47	3123 572		0 1	0.95 0.53	0.88 0.74	0.91 0.62	3123 572
	curacy ro avg ed avg	0.8 0.8		9. <mark>66</mark> 9.88	0.88 0.70 0.86	3695 3695 3695		curacy ro avg ed avg	0.74 0.88	0.81 0.86	0.86 0.77 0.87	3695 3695 3695
False -	3052	2	71		- 3000 - 2500 - 2000		False ·	275	2 37	71	- 2500 - 2000 - 1500	
True label	376		196		- 1500 - 1000 - 500		Tue label	- 148	3 42	24	- 1000 - 500	
	False	Predicted la	True abel					Fals	e Tro Predicted label	ue		

Slika 19: Matrica konfuzije pre balansiranja

Slika 20: Matrica konfuzije posle balansiranja

Slika 21: Poređenje ROC krive i AUC rezltata pre i posle balansiranja klasa

3.4 Metoda potpornih vektora

Poslednja metoda koju ćemo koristiti je SVM (*Support Vector Machine*¹¹). To je metoda koja je zasnovana na ideji vektorskih prostora. Prvo ćemo primeniti linearni SVM, a onda i SVM sa kernel funkcijom.

3.4.1 Linearni SVM

Što se tiče parametara biće izabrana vrednost 1.0 koja je dobijena na osnovu *Grid Search* algoritma. Na slici 22 i 23 su prikazane odgovarajuće matrice konfuzije sa rezultatima pre i posle balansiranja, a na slici 24 poređenja ROC kirive i AUC rezultata pre i posle balansiranja.

Train resu Test resu								.8583584957 88146143437			
	pre	cision	recall	f1-score	support			precision	recall	f1-score	support
	0 1	0.89 0.75	0.98 0.36	0.93 0.49	3123 572		0 1	0.95 0.60	0.91 0.73	0.93 0.66	3123 572
accura macro a weighted a	avg	0.82 0.87	0.67 0.88	0.88 0.71 0.86	3695 3695 3695	accu macro weighted	avg	0.77 0.89	0.82 0.88	0.88 0.79 0.89	3695 3695 3695
False -	3053	70)	- 3000 - 2500 - 2000		False -	2839	28	4	- 2500 - 2000 - 1500	
True label	364	208	8	- 1500 - 1000 - 500		True -	154	41	8	- 1000 - 500	
	False Predi	Tru-	e	_			False	Predicted label	e		

Slika 22: Matrica konfuzije pre balansiranja

Slika 23: Matrica konfuzije posle balansiranja

Slika 24: Poređenje ROC krive i AUC rezltata pre i posle balansiranja klasa

3.4.2 SVM sa kernelom

Za parametre biće izbarana vrednost 2.0, a za kernel je izabran rbf kernel. Oni su dobijeni na osnovu *Grid Search* algoritma. Na slici 25 i 26 su prikazane odgovarajuće matrice konfuzije sa rezultatima pre i posle balansiranja, a na slici 27 poređenja ROC kirive i AUC rezultata pre i posle balansiranja.

		. 9155452436 88200270635						.93988471046 361163734776			
	1	precision	recall	f1-score	support		ŗ	recision	recall	f1-score	support
	0 1	0.89 0.75	0.98 0.36	0.93 0.49	3123 572		0 1	0.93 0.55	0.91 0.60	0.92 0.57	3123 572
	curacy ro avg ed avg	0.82 0.87	0.67 0.88	0.88 0.71 0.86	3695 3695 3695	accu macro weighted		0.74 0.87	0.75 0.86	0.86 0.74 0.86	3695 3695 3695
False -	3053	7	0	- 3000 - 2500 - 2000		Tue label	2840	283	3	- 2500 - 2000 - 1500	
True label	366	20	06	- 1500 - 1000 - 500		True -	230	342	2	- 1000 - 500	
	False P	Tredicted label	ue				False P	True redicted label	e		

Slika 25: Matrica konfuzije pre balansiranja

Slika 26: Matrica konfuzije posle balansiranja

Slika 27: Poređenje ROC krive i AUC rezltata pre i posle balansiranja klasa

3.5 Poređenje modela klasifikacije

Svi korišćeni metodi se jako slično ponašaju. Na slici 25 je prikazano poređenje svih metoda. Na svaki metod balansirane je uticalo na isti način a to je da je se smanjila tačnost na test skupu ali se povećao odziv klase 1, što svakako znači da je model dobijen balansiranjem kalsa bolji. Takođe nakon balansiranja dobijamo bolje ROC i AUC rezultate. Na slici 26 prikazano je poređenje ROC krive i AUC rezultata pre balansiranja. Na njoj se vidi da najbolji rezultat daju stabla odlučivanja. Na slici 27 prikazano je poređenje ROC krive i AUC rezultata nakon balansiranja klasa, u tom slučaju iznenađujuće najbolji rezultat daje linearni SVM.

Classifier	Balanced	Train Score	Test Score	Precision 0	Precision 1	Recall 0	Recall 1	F1-scr 0	F1-scr 1
Random Forest	Х	0.99	0.89	0.91	0.71	0.96	0.50	0.94	0.59
Random Forest	✓	0.99	0.88	0.93	0.61	0.93	0.62	0.93	0.61
Decision Trees	X	0.90	0.89	0.92	0.71	0.96	0.52	0.94	0.60
Decision Trees	•	0.94	0.87	0.94	0.57	0.90	0.71	0.92	0.63
Logistic Regression	X	0.89	0.88	0.89	0.73	0.98	0.34	0.93	0.47
Logistic Regression	•	0.85	0.86	0.95	0.53	0.88	0.74	0.91	0.62
SVM linear	X	0.89	0.88	0.89	0.75	0.98	0.36	0.93	0.49
SVM linear	•	0.86	0.88	0.95	0.60	0.91	0.73	0.93	0.66
SVM kernel	X	0.91	0.88	0.89	0.75	0.98	0.36	0.93	0.49
SVM kernel	/	0.94	0.86	0.93	0.55	0.91	0.60	0.92	0.57

Slika 28: Tablica poređenja rezultata svih metoda pre i posle balansiranja

Slika 29: Poređenje ROC krive i AUC rezultata svih metoda pre balansiranja klasa

Slika 30: Poređenje ROC krive i AUC rezultata svih metoda nakon balansiranja klasa

4 Klasterovanje

4.1 Algoritam K-sredina

Algoritam K-sredina (*K-means*¹²) korišćen je za grupisnje podataka u klastere na osnovu njihove sličnosti. Na slici 31 je prikazana varijansa (*Explained Variance Ratio*¹³) koju ćemo koristiti radi odabira broja PCA komponenti. U našem slučaju to će biti 2.

Slika 31: Explained Variance Ratio

Nakon toga na naš model primenjujemo tehniku analize glavnih komponenti (*PCA - Principal Component Analysis*¹⁴). Model pre klasterovanja je prikazan na slici 32.

Slika 32: Model pre klasterovanja

Sada biramo optimalan broj klastera. Mere koje koristimo za to su inercija koja pri minimizaciji koristi "pravilo lakta" (*Elbow method*¹⁵) i silueta (*silhouette*¹⁶), koja je najveća za 2 klastera, što će biti optimalno.

Na slici 34 je prikazan model sa optimalnim brojem klastera tj. 2, centeroidima i siluetom. Za ostali broj klastera, dakle od 3 do 5 klastera prikazani su modeli na slici 35 a od 6 do 9 klastera na slici 36.

Slika 35: Modeli sa 3, 4 i 5 klastera

Slika 36: Modeli sa 6, 7, 8 i 9 klastera

4.2 Sakupljajuće klasterovanje

Sakupljajuće klasterovanje (*Agglomerative Clustering*¹⁷) je algoritam hijerarhijskog klasterovanja koji se koristi za grupisanje sličnih tačaka podataka u klasterima. Ovo je pristup odozdo prema gore (bottom-up), u kome svaka tačka podataka počinje kao sopstveni klaster, a nakon toga se iterativno spajaju klasteri na osnovu njihove sličnosti sve dok se ne dostigne željeni broj klastera.

Počinjemo tako što testiramo ponašanja algoritma za različite vrednosti parametara. Kao i kod K sreditna koristili smo PCA. Definišemo klastere u rasponu od 2 do 8, slično kao za algoritam K sredina. Isprobavamo sve moguće vrednosti za parametar vezivanja (*linkage*) a to su *average*, *ward*, *complete* i *single*. Na slici 37 izdvajamo model sa najboljom ocenom siluete, brojem klastera koji je jednak 2 i najboljim parametrom vezivanja a to je average. Ostali modeli biće prikazani na slici 40. Na slici 38 su prikazani rezultati siluete u odnosu na broj klastera.

Da bismo dobili vizuelnu reprezentaciju hijerarhijskog klasterovanja koristimo biblioteku *scipy*, pomoću koje kreiramo *dendrogram*¹⁸. Na slici 39 biće prikazano poslednjih 30 klastera.

Slika 39: Dendogram poslednjih 30 klastera

Slika 40: Modeli za broj klastera od 2 do 8 i parametrima vezivanja average, ward, complete i single

4.3 Poređenje modela klasterovanja

Na slici 40.1 i 40.2 prikazani su rezltati poređenja silueta za modele K sredina i Sakupljajućeg klasterovanja. Na slici 40.3 i 40.4 prikazano je poređenje najboljih modela za oba algoritma. Oba modela daju najbolje rezultate za 2 klastera. Rezultati siluete su takođe slični, 0.89 za algoritam K sredina i 0.88 za sakupljajuće klasterovanje.

Slika 40.1: Rezultati siluete za K sredina

Slika 40.2: Rezultati siluete Sakupljajućeg klasterovanja

Slika 40.3: Najbolji model K sredina klasterovanja

Slika 40.3: Najbolji model Sakupljajućeg klasterovanja

5 Pravila pridruživanja

5.1 Apriori

*Apriori*¹⁹ algoritam se koristi za pronalaženje zanimljivih obrazaca koji postoje u skupovima podataka. Za primenu ovog algoritma korišćen je *IBM SPSS Modeler*²⁰. Na slici 41 prikazan je dijagram toka.

Slika 41: Dijagram toka

Pošto Apriori algoritam ne radi sa neprekidnim podacima nego samo sa diskretnim, morali smo neprekidne čvorove da diskretizujemo i to radimo pomoću *bining* opcije u SPSS-u. Binovanje (*Bining*²¹) se koristi pri radu sa neprekidnim promenljivim, konvertujući ih u "binove" – intervale. Za metodu biramo fiksnu širinu. Na slici 42 je prikazan prozor.

Slika 42: Prozor bining opcije u SPSS-u

Na slici 43 prikazan je *Type*²² prozor na kome smo podesili uloge naših atributa nakon binovanja.

Slika 43: Type prozor

Na slici 44 prikazan je *Web*²³ prozor. "Deblje" linije predstavljaju jaču korelaciju. Na primer između našeg ključnog atributa Revenue (False) i Month (Nov).

Slika 44: Prozor na kome je prikazana mreža

Na slici 45 prikazan je przor za *Lift* sortiranje. Lift vrednosti su jako visoke što ukazuje da su pravila zastupljenija nego očekivano. Na slici 46 prikazan je prozor za *Confidence (pouzdanost)* sortiranje. Tu nam je atribut PageValues interesantan, kao i činjenica da je VisitorType jedank novom korisniku. *Support (podrška)* sortiranje nije prikazano jer iz njega nije nešto značajno moglo da se zaključi.

	nerate Preview			2 -	
© 1♣ Sort by: Lift	▼ • • • • • • • • • • • • • • • • • • •	Q		82018 of 8	2018
Consequent	Antecedent	Support %	Confidence %	Lift	
Revenue	PageValues_BIN = 2 VisitorType = New_Visitor Informational_BIN = 1 Administrative_Duration_BIN = 1	1.03	92.126	5.953	-
Revenue	PageValues_BIN = 2 VisitorType = New_Visitor Informational_BIN = 1 Administrative_Duration_BIN = 1 ProductRelated_Duration_BIN = 1	Full-screen Snip	92.126	5.953	
Revenue	PageValues_BIN = 2 VisitorType = New_Visitor BounceRates_BIN = 1 Informational_BIN = 1 Administrative_Duration_BIN = 1	1.022	92.063	5.949	
Revenue	PageValues_BIN = 2 VisitorType = New_Visitor ProductRelated_BIN = 1 Informational_BIN = 1 Administrative_Duration_BIN = 1	1.014	92.0	5.945	
Revenue	PageValues_BIN = 2 VisitorType = New_Visitor Informational_BIN = 1 Administrative_Duration_BIN = 1 Informational_Duration_BIN = 1	1.014	92.0	5.945	
Revenue	PageValues_BIN = 2 VisitorType = New_Visitor Administrative Duration BIN = 1	1.062	91.603	5.92	

Slika 45: Lift sortiranje

	enerate Preview			•	
Model Settings Sur	nmary Annotations nfidence % ▼ ▼	Q		82018	of 82018
Consequent	Antecedent	Support %	Confidence %	Lift	
Revenue	PageValues_BIN = 2 VisitorType = New_Visitor Informational_BIN = 1 Administrative_Duration_BIN = 1	1.03	92.126	5.953	-
Revenue	PageValues_BIN = 2 VisitorType = New_Visitor Informational_BIN = 1 Administrative_Duration_BIN = 1 ProductRelated_Duration_BIN = 1	Full-screen Snip	92.126	5.953	
Revenue	PageValues_BIN = 2 VisitorType = New_Visitor BounceRates_BIN = 1 Informational_BIN = 1 Administrative_Duration_BIN = 1	1.022	92.063	5.949	
Revenue	PageValues_BIN = 2 VisitorType = New_Visitor ProductRelated_BIN = 1 Informational_BIN = 1 Administrative_Duration_BIN = 1	1.014	92.0	5.945	
Revenue	PageValues_BIN = 2 VisitorType = New_Visitor Informational_BIN = 1 Administrative_Duration_BIN = 1 Informational_Duration_BIN = 1	1.014	92.0	5.945	
Revenue	PageValues_BIN = 2 VisitorType = New_Visitor Administrative Duration BIN = 1	1.062	91.603	5.92	

Slika 46: Confidence sortiranje

6 Zaključak

Predviđanje da li će neko kupiti nešto preko interneta ne može biti perfektno, ali rekao bih da nije ni teško. Neki atributi koje smo primetili na početku još u eksplorativnoj analizi, koji bi intuitivno mogli da budu značajni, kao na primer *Special Day* atribut, nakon klasifikacije na tabeli značajnosti atributa nije imao neku visoku poziciju. Očekivano je da klasterovanje ne daje neke značajnije rezultate jer je ipak u pitanju skup za klasifikaciju. Model pravila pridruživanja uspeo je da pronađe neka određena pravila.