PATENT ABSTRACTS OF JAPAN

(11)Publication number :

06-045402

(43)Date of publication of application: 18.02.1994

(51)int.Cl.

H01L 21/60 H01L 21/321

H01L 23/50

(21)Application number: 04-195617

(71)Applicant : SONY CORP

(22)Date of filing:

22.07.1992

(72)Inventor: HASEGAWA KIYOSHI NAKAMURA TOSHIFUMI

ISHIKAWA MINORU

(54) WIRING BOARD AND METHOD OF CONNECTION THEREOF

PURPOSE: To ensure satisfactory connection at all times. CONSTITUTION: In a connection method of a wiring board in which an IC chip 1 is connected onto a wiring board 2 through a bump, heights of bumps 5 located at four corners of the IC chip 1 are formed to be higher than those of other bumps 3, and thereafter the IC chip 1 is connected onto the wiring board 2 through the bumps 3, 5.

LEGAL STATUS

[Date of request for examination]

23.06.1999

[Date of sending the examiner's decision of rejection]

25.09.2001

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C): 1998,2000 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平6-45402

(43)公開日 平成6年(1994)2月18日

(51)Int.Cl. ⁵ H 0 1 L	21/60 21/321 23/50		庁内整理番号 6918-4M	技術表示箇所 FI
			9272-4M 9168-4M 9168-4M	H01L 21/92 B C 審査請求 未請求 請求項の数3(全 4 頁)
(21)出顯番号		特顯平4-195617		(71)出願人 000002185 ソニー株式会社 東京都品川区北品川 6 丁目 7 番35号
(22)出願日		平成 4年(1992) 7月22日	(72)発明者 長谷川 潔 東京都品川区北品川 6 丁目 7 番35号 ソニ -株式会社内	
				(72)発明者 中村 利文 東京都品川区北品川 6 丁目 7番35号 ソニ 一株式会社内
				(72)発明者 石川 実 東京都品川区北品川 6 丁目 7番35号 ソニ 一株式会社内
	•			(74)代理人 弁理士 松隈 秀盛

(54)【発明の名称】 配線基板の接続方法及び配線基板

....【要約】

【目的】 常に良好な接続ができるようにすることを目

【構成】 配線基板2上にICチップ1をバンプを介し 的とする。 て接続する配線基板の接続方法において、このICチッ プ1の4隅のバンプ5の高さを他のバンプ3の高さより も高く形成し、その後このバンプ3、5を介して接続す るようにしたものである。

【特許請求の範囲】

【請求項1】 配線基板上にICチップをバンプを介し て接続する配線基板の接続方法において、該ICチップ の4隅のバンプのうち少なくとも3隅のバンプは他のバ ンプの高さよりも高く形成し、その後バンプを介して接 続するようにしたことを特徴とする配線基板の接続方 法。

【請求項2】 請求項1記載の配線基板の接続方法にお いて、高さを高くしたバンプは他の高さの低いバンプよ りも低融点金属であることを特徴とする配線基板の接続 方法。

【請求項3】 配線基板上にICチップをバンプを介し て接続されてなる配線基板において、該ICチップの4 隅のバンプに対応する電極のうち少なくとも3隅のバン プに対応する電極の面積を他の電極の面積よりも大きく 形成したことを特徴とする配線基板。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は配線基板上にIC(半導 体集積回路)チップをバンプを介して直接接続するフリ ップチップ実装に使用して好適な配線基板の接続方法及 び配線基板に関する。

[0002]

【従来の技術】従来、配線基板にICチップを接続する 方法としては、ICチップを樹脂パッケージ内に封止し て構成したICの端子をプリント配線基板に接続すると いう方法が一般的であった。しかし、プリント配線基板 の配線パターンがファインピッチ化してくると、この方 法では、実装密度が上がらないという問題がある。そこ で、現在では、直接、この I Cチップをプリント配線基 板に接続することにより実装密度を向上させるようにし

【0003】このICチップを直接に配線基板に接続す ている。 る方法としては、金線を使用したワイヤボンディング法 や配線基板あるいは I Cチップに、はんだ、インジウム 等のバンプを設け、このバンプを介して配線基板に I C チップを直接接続するフリップチップ実装法がある。前 者のワイヤボンディング法は、後者のフリップチップ実 装法に比べて作業性及び実装密度が劣ることから、今日 ではこのフリップチップ実装法が実装密度を上げる技術 として注目されている。

[0004]

【発明が解決しようとする課題】ところでこのフリップ チップ実装法により、図6に示す如くICチップ1を配 線基板2にバンプを介して直接接続するときに、図7に 示す如く I C チップ 1 側及び配線基板 2 側に夫々所定数 の高さの等しいバンプ3及び4を形成し、このICチッ プ1のバンプ3と配線基板2のバンプ4とを重ね合わせ る如くしてフリップチップ実装を行う如くしていた。

【0005】然しながら、この【Cチップ1側及び配線

基板2側の夫々のバンプ3及び4の夫々の先端部分の形 状は例えばはんだの表面張力により球状になっている。 【0006】このためICチップ1を配線基板2にフリ ップチップ実装するときに斜め方向の力が加わってしま うと図8に示す如くバンプ3及び4同志がずれてしまい 正しい接続ができないことがおこる不都合があった。 【0007】本発明は斯る点に鑑み、常に正しい接続が

できるようにすることを目的とする。

[8000]

【課題を解決するための手段】本発明配線基板の接続方 法は、例えば図1に示す如く配線基板2上に I Cチップ 1をバンプを介して接続する配線基板の接続方法におい て、このICチップ1の4隅のバンプ5のうち少なくと も3隅のバンプは他のバンプ3の高さよりも高く形成 し、その後このバンプ3、5を介して接続するようにし たものである。

【0009】また本発明配線基板の接続方法は上述にお いて、高さを高くしたバンプ5は他の高さの低いバンプ 3よりも低融点金属であるものである。

【0010】また本発明配線基板は、例えば図2に示す 如く配線基板2上に1Cチップ1をバンプを介して接続 されてなる配線基板において、このICチップ1の4隅 のバンプ5に対応する電極6のうち少なくとも3隅のバ ンプに対応する電極の面積 S 。 を他の電極 7 の面積 S 1 よりも大きく形成したものである。

【作用】本発明によれば I Cチップ 1 の 4 隅のバンプ 5 のうち少なくとも3隅のバンプ5の高さを他のバンプ3 の高さより高くして、このバンプ5により位置決めして フリップチップを実装するので、常に良好な接続ができ る。

[0012]

【実施例】以下図面を参照して、本発明配線基板の接続 方法及び配線基板の実施例につき説明しよう。 図 1 は本 例による I Cチップ 1 の端子面を示し、本例において は、この端子部にバンプを形成する。

【0013】この場合、本例においてはこのICチップ 1の4隅の夫々のバンプ5を他のバンプ3より高くする 如くする。この4隅のバンプ5の髙さを例えば50~5 $5 \mu m$ とし、その他のバンプ3の高さを例えば $35 \mu m$

【0014】また本例においては、このバンプ3及び5 を夫々はんだより構成すると共にこの4隅の高さの高い バンプ5をバンプ3より低融点のはんだで構成する。

【0015】この4隅の高さの高いバンプ5のはんだの 組成を例えばSn63%、Pb37%とし、共晶はんだ とする。この場合の融点は190℃である。

【0016】また4隅以外のバンプ3のはんだの組成を 例えばSn90%、Pb10%とする。この場合の融点 は220℃であり高融点はんだである。

【0017】また図2は本例による配線基板2を示し、 この配線基板2のICチップ1の取付位置のICチップ 1のバンプ3及び5に対応する位置に電極6及び7を形 成する。この電極6、7は所定の配線パターンに接続さ れたものである。

【0018】本例においては、このICチップ1の4隅 のバンプ5に対応する電極6の面積50を他の電極7の 面積 S1 より大きく、例えば電極 6 を縦横が夫々 100 μ mの正方形とし、電極7を縦横が夫々70μ mの正方 形とする。

【0019】この配線基板2の電極7上に髙さが例えば 15μm程度のバンプ4を設ける如くする。この場合電 極7より面積の大きい電極6にはバンプを設けない如く

【0020】この配線基板2のバンプ4のはんだとして はICチップ1のバンプ3に使用したはんだの融点例え ば220℃よりも低い融点になる組成のはんだ例えば共 晶はんだを使用する。

【0021】本例においてはフリップチップ実装すると きは、まず図3に示す如く、バンプ3,5が付された I Cチップ1をバンプ4が付された配線基板2にフリップ チップボンダ等により位置合わせを行いマウントする。 このときは I Cチップ 1 の 4 隅に高さの高いバンプ 5 が あるため、横方向にずれることがない。

【0022】その後、加熱、加圧してはんだによる接合 を行うが、まず低融点はんだである I Cチップ 1 の 4 隅 のバンプ5が、図4に示す如く溶融する。この場合、こ のICチップ1の4隅のはんだの表面張力により、IC チップ1の位置が多少ずれたとしても正しい場所に戻る 効果(セルフアライメント)があるため一層位置の正確 さを確保することができる。

【0023】更に温度を上げていくとバンプ3及び4の はんだも溶融し、図5に示す如く全ての接続が完了す る。

【0024】本例は上述の如くであるのでICチップ1 を配線基板2にマウントするときに、ICチップ1の4 隅のバンプ5と接続される配線基板2の電極6の表面に はバンプがないため平坦なので、ICチップ1が配線基 板2に対して横にずれることがない利益がある。

【0025】また本例においては、応力が最も大きくか かるICチップ1の4隅を、高さの高い大きなバンプ5 で接続しているので、この応力に対する信頼性が向上す る。

【0026】また本例によればICチップ1の4隅の高 さの高い大きなバンプ5の大きな表面張力によってセル フアライメントが行われ位置の正確さを確保することが できる。

【0027】また本例によればICチップ1の4隅の大 きなバンプ5を通じた放熱により、このICチップ1の 放熱性が向上すると共にこの大きなバンプ5による接続 により小さなバンプ3、4による接続が重さでつぶれて しまうことがなく、ICチップ1の寿命が長くなる利益 がある。

【0028】尚、上述実施例においてはICチップ1の 4隅のバンプ5を高さの高いバンプとしたが、この4隅 のバンプのうちの3隅のバンプを高さの高いバンプで構 成するようにしても、上述実施例と同様の作用効果が得 られることは勿論である。また配線基板 2 に設ける面積 の大きな電極6もこのICチップ1の高さの高いバンプ に対応して設ければ良いことは勿論である。

【0029】また本発明は上述実施例に限ることなく本 発明の要旨を逸脱することなく、その他種々の構成が採 り得ることは勿論である。

[0030]

【発明の効果】本発明によれば、ICチップ1の4隅の バンプのうち少なくとも3隅のバンプの高さを他のバン プの高さより高くして、この高さの高いバンプにて位置 決めをするようにして、フリップチップ実装をするよう にしているので、常に良好な接続ができる利益がある。

【図面の簡単な説明】

【図1】 本発明による I C チップの例を示す底面斜視図 である。

【図2】 本発明による配線基板の例を示す斜視図であ る。

- 【図3】本発明の説明に供する線図である。
- 【図4】本発明の説明に供する線図である。
- 【図5】本発明の説明に供する線図である。
- 【図6】フリップチップ実装の例を示す斜視図である。
- 【図7】従来の説明に供する線図である。
- 【図8】 従来の説明に供する線図である。

【符号の説明】

- 1 ICチップ
- 2 配線基板
- 3, 4, 5 バンプ
- 6,7 電極

[図8]

ムパンプ

[図1]

[図3]

【図5】

[図7]

[図2]

【図4】

[図6]

