Lycée Berthollet MPSI² 2023-24

DM3 de mathématiques en autocorrection (entraînement au calcul)

Les documents, téléphones portables, ordinateurs et calculatrices sont interdits.

Sauf mention explicite, toute réponse à une question devra être argumentée.

Exercice 1 Formules de cours

- 1. Compléter sans justification la formule $\cos p \cos q = \dots$
- 2. Donner sans justification la valeur de $\sum_{k=1}^{n} k^2$, pour $n \in \mathbb{N}$.
- 3. Donner sans justification une expression de $\sum_{n=42}^{2022} \sum_{m=42}^{n-1} a_{m,n}$ obtenue par interversion des sommes.
- 4. Déterminer l'expression développée de $(a+b)^6$, pour $a,b\in\mathbb{C}$, en justifiant les coefficients.
- 5. Déterminer, en calculant efficacement **un seul** coefficient binomial, le coefficient de x^5 dans le développement de l'expression polynomiale $\left(x + \frac{1}{\sqrt{\sqrt{3}}}\right)^9$.
- 6. Est-ce que $2022^{2004} 1966^{2004}$ est un multiple de 56?
- 7. On rappelle que la fonction valeur absolue est continue sur \mathbb{R} . En déduire, par une construction soigneuse, que $x \mapsto \min(\sin(x), \cos(x))$ est continue sur \mathbb{R} .
- 8. (a) Donner sans justification la traduction formelle du fait qu'il existe une partie de ℝ minorée n'admettant pas de plus petit élément.
 - (b) Donner explicitement une telle partie en justifiant soigneusement qu'elle convient.

Exercice 2 Calculs complexes

- 1. Donner les formes algébrique et trigonométrique de $z_0 = \pi \frac{(1-i)^2}{(1+i)^5}$, puis faire de même avec e^{z_0} .
- 2. Linéariser l'expression $\cos^6(x)$ et en déduire une primitive de la fonction $x \longmapsto \cos^6(x)$.
- 3. (a) Pour $x \in \mathbb{R} \setminus (\pi + 2\pi\mathbb{Z})$, déterminer la forme trigonométrique de $1 + e^{ix}$.
 - (b) Déterminer, pour x réel fixé, l'ensemble S_x des $z \in \mathbb{C}$ tels que $e^z = 1 + e^{ix}$.
 - (c) Déduire de 3a, pour $(n,x) \in \mathbb{N} \times \mathbb{R}$, la valeur de $\sum_{k=0}^{n} \binom{n}{k} \sin(kx)$.

Exercice 3 Calculs de similitudes

On se place dans le plan usuel $\mathcal P$ muni d'un repère orthonormé direct, qui le met en correspondance avec $\mathbb C$ de la manière habituelle.

On note O l'origine du repère, U le point d'affixe 1 et M, N deux points de \mathcal{P} , d'affixes $m \neq n$.

On rappelle qu'il existe une unique similitude directe F telle que F(M) = O et F(N) = U.

Décrire le type de cette similitude directe et ses éléments caractéristiques dans les cas suivants :

- 1. m = -3 + i et n = -2 + i;
- 2. m = 6 et n = 3;
- 3. m = 2 i et n = 2.

Exercice 4 Calculs de sommes

On rappelle que, pour un nombre réel x, sa partie entière $\lfloor x \rfloor$ est l'unique entier tel que $\lfloor x \rfloor \le x < \lfloor x \rfloor + 1$. Calculer les sommes suivantes, pour $n \in \mathbb{N}$:

1.
$$\sum_{k=1}^{n} \sum_{i=1}^{n} \ln(i^k)$$
,

en utilisant les propriétés algébriques du logarithme;

2.
$$\sum_{k=0}^{n} \frac{1}{(k+1)(k+3)},$$

en trouvant $a,b \in \mathbb{R}$ tels que $\frac{1}{(k+1)(k+3)} = \frac{a}{k+1} + \frac{b}{k+3}$, puis effectuant un changement d'indice;

$$3. \sum_{k=0}^{n} k \binom{n}{k},$$

en absorbant k dans le binomial;

$$4. \sum_{k=1}^{n^2-1} \left\lfloor \sqrt{k} \right\rfloor,$$

en utilisant la sommation par paquets.

Exercice 5 Calcul piégé

On définit les deux nombres complexes $a = 2 - \sqrt{3} + i$ et $b = \frac{\sqrt{3} - i}{2}$ et on considère la suite (u_n) définie par $u_0 = -38$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = a + bu_n$.

- 1. Calculer le terme général de cette suite.
- 2. Calculer "efficacement" b^{12} et en déduire que la suite (u_n) est périodique.
- 3. Résoudre l'équation d'inconnue $n \in \mathbb{N}$: $u_n = n$.

Exercice 6 Calcul par radicaux

- 1. Pour $x \in \mathbb{R}$, exprimer $\sin(5x)$ en fonction de $\sin(x)$.
- 2. En déduire que $\sin\left(\frac{\pi}{5}\right)$ vérifie une équation polynômiale de degré 5 et la résoudre.
- 3. Exprimer toutes les solutions de cette équation sous la forme $\sin(\alpha)$, $\alpha \in \mathbb{R}$ et en déduire la valeur exacte de $\sin\left(\frac{\pi}{5}\right)$, exprimée à l'aide de racines carrées.

2