Formelsammlung

Eike Osmers

25. Oktober 2020

Inhaltsverzeichnis

1	Darstellungskonvention	1
2	Vektoranalysis	2
	2.1 Vektoralgebra	2
	2.2 Koordinatensysteme	3
	2.3 Differentialoperatoren	4
	2.4 Integralsätze	4
	2.5 Was noch?	4
3	Komplexe Funktionen	4
4	Lineare Algebra	4
	4.1 Basiswechsel	4
5	Signale und Systeme	5
	5.1 Kontinuierliche Signale	5
	5.1.1 Fourier-Transformation	6
	5.1.2 Laplace-Transformation	7
	5.2 Zeitdiskrete Signale	8
	5.2.1 z-Transformation	8
	5.3 Zeit- & Wertediskrete Signale	8
6	Elektrische Netzwerke	8
7	Klassische Elektrodynamik	9
8	Elektronik	10
	8.1 Operationsverstärker	10
9	Hochfrequenztechnik	10
10	Fehlerrechnung	10

1 Darstellungskonvention

Skalare Variablen in Kursivschrift: $\boldsymbol{x},\boldsymbol{y},\boldsymbol{z}$

Vektorielle Variablen mit einem Pfeil über der Variable: \vec{a}

Variablen für Matrizen in fetter Schrift: A

Komplexe Variablen unterstrichen:

2 Vektoranalysis

2.1 Vektoralgebra

${\bf Skalar produkt}$

arphi ist der kleinere von $ec{A}$ und $ec{B}$ eingeschlossene Winkel.

$$\vec{A} \cdot \vec{B} = ||\vec{A}|| \cdot ||\vec{B}|| \cdot \cos \varphi$$

$$\vec{A} \bot \vec{B} \colon \vec{A} \cdot \vec{B} = 0$$

Kreuzprodukt

arphi ist der kleinere von $ec{A}$ und $ec{B}$ eingeschlossene Winkel.

 $ec{n}$ zeigt in Richtung der

Rechte-Hand-Regel.

 $\vec{A} \times \vec{B} = ||\vec{A}|| \cdot ||\vec{B}|| \cdot \sin \varphi \cdot \vec{n}$ $\vec{A}||\vec{B}: \vec{A} \times \vec{B} = \vec{0}$

${\bf Richtungs vektor}$

Zeigt von \vec{A} auf \vec{B} .

$$\vec{r} = \vec{B} - \vec{A}$$

2.2 Koordinatensysteme

	Kartesische Koordinaten	Zylinderkoordinaten	${\bf Kugelkoordinaten}$
Parametrisierung	$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$	$ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \rho \cos(\varphi) \\ \rho \cos(\varphi) \\ z \end{pmatrix} $ $ \begin{pmatrix} \rho \\ \varphi \\ z \end{pmatrix} = \begin{pmatrix} \sqrt{x^2 + y^2} \\ \operatorname{atan2}(\frac{y}{x}) \\ z \end{pmatrix} $	$ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} r \cos(\varphi) \sin(\theta) \\ r \sin(\varphi) \sin(\theta) \end{pmatrix} $ $ \begin{pmatrix} \theta \\ \theta \end{pmatrix} = \begin{pmatrix} \sqrt{x^2 + y^2 + z^2} \\ \arccos(2 \frac{x^2 + y^2 + z^2}{2}) \\ \arccos(2 \frac{x^2 + y^2 + z^2}{2}) \end{pmatrix} $
Definitionsbereich	$\begin{array}{l} -\infty < x < \infty \\ -\infty < y < \infty \\ -\infty < z < \infty \end{array}$	$\begin{array}{l} 0 \leq \rho < \infty \\ 0 \leq \varphi \leq 2\pi \\ -\infty < z < \infty \end{array}$	$\begin{array}{l} 0 \leq r < \infty \\ 0 \leq \theta \leq \pi \\ 0 \leq \varphi \leq 2\pi \end{array}$
Transformationsmatrix	$\mathbf{S} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$\mathbf{S} = \begin{bmatrix} \cos(\varphi) & -\sin(\varphi) & 0\\ \sin(\varphi) & \cos(\varphi) & 0\\ 0 & 0 & 1 \end{bmatrix}$	$\mathbf{S} = \begin{bmatrix} \cos(\varphi)\sin(\theta) & \cos(\varphi)\cos(\theta) & -\sin(\varphi) \\ \sin(\varphi)\sin(\theta) & \sin(\varphi)\cos(\theta) & \cos(\varphi) \\ \cos(\theta) & -\sin(\theta) & 0 \end{bmatrix}$
inverse Transformationsmatrix	$\mathbf{S^{-1}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$\mathbf{S^{\text{-}1}} = \begin{bmatrix} \cos(\varphi) & \sin(\varphi) & 0 \\ -\sin(\varphi) & \cos(\varphi) & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$\mathbf{S^{\text{-}1}} = \begin{bmatrix} \cos(\varphi)\sin(\theta) & \sin(\varphi)\sin(\theta) & \cos(\theta) \\ \cos(\varphi)\cos(\theta) & \sin(\varphi)\cos(\theta) & -\sin(\theta) \\ -\sin(\varphi) & \cos(\varphi) & 0 \end{bmatrix}$
Transformation von Vektoren	$\begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix}$	$ \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} = \mathbf{S} \cdot \begin{pmatrix} a_p \\ a_{\varphi} \\ a_z \end{pmatrix} $ $ \begin{pmatrix} a_p \\ a_{\varphi} \\ a_z \end{pmatrix} = \mathbf{S}^{-1} \cdot \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} $	$\begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} = \mathbf{S} \cdot \begin{pmatrix} a_r \\ a_\theta \\ a_{\varphi} \end{pmatrix}$ $\begin{pmatrix} a_r \\ a_{\theta} \\ a_{\varphi} \end{pmatrix} = \mathbf{S}^{-1} \cdot \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix}$
Einheitsvektoren in kart. Koordinaten Bogenlängen-Element Linienelement entlang der Koordinatenlinie	$\mathrm{d}s^2 = \mathrm{d}x^2 + \mathrm{d}y^2 + \mathrm{d}z^2$	$\mathrm{d}s^2 = \mathrm{d}\rho^2 + \rho^2\mathrm{d}\varphi^2 + \mathrm{d}z^2$	$\mathrm{d}s^2 = \mathrm{d}r^2 + r^2\mathrm{d}\theta^2 + r^2\sin^2(\theta)\mathrm{d}\varphi^2$
Flächenelement der Koordinatenseitenfläche			
Volumenelement	$\mathrm{d}V = \mathrm{d}x \ \mathrm{d}y \ \mathrm{d}z$	$\mathrm{d}V = \rho\mathrm{d}\rho\mathrm{d}\varphi\mathrm{d}z$	$\mathrm{d}V = r^2 \sin^2(\theta) \mathrm{d}r \mathrm{d}\theta \mathrm{d}\varphi$

2.3 Differentialoperatoren

divgradcurl

	Kartesische Koordinaten	Zylinderkoordinaten	${f Kugelkoordinaten}$
Nabla			
Gradient	$\nabla a = \operatorname{grad} \ a = \begin{pmatrix} \frac{\partial a}{\partial x} \\ \frac{\partial a}{\partial y} \\ \frac{\partial a}{\partial z} \end{pmatrix}$	$\nabla a = \text{grad } a = \begin{pmatrix} \frac{\partial a}{\partial \rho} \\ \frac{1}{\rho} \frac{\partial a}{\partial \theta} \\ \frac{\partial a}{\partial z} \end{pmatrix}$	$\nabla a = \operatorname{grad} \ a = \begin{pmatrix} \frac{\partial a}{1^{D_1}} & \partial a \\ \frac{1}{r\sin(\phi)} & \partial \theta \\ \frac{1}{r\sin(\phi)} & \frac{\partial \theta}{\partial \varphi} \end{pmatrix}$
Divergenz $\mathbb{R}^3 \to \mathbb{R}$	$\begin{array}{l} \nabla \cdot \vec{a} = \mathrm{div} \ \vec{a} = \\ \frac{\partial a_x}{\partial x} + \frac{\partial a_y}{\partial y} + \frac{\partial a_z}{\partial z} \end{array}$	$\begin{split} \nabla \cdot \vec{a} &= \text{div } \vec{a} = \\ \frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho a_{\rho}) + \frac{1}{\rho} \frac{\partial a_{\theta}}{\partial \theta} + \frac{\partial a_{z}}{\partial z} \end{split}$	$\begin{split} \nabla \cdot \vec{a} &= \text{div } \vec{a} = \\ \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 a_r) + \frac{1}{r \sin(\varphi)} \frac{\partial a_\theta}{\partial \theta} + \frac{1}{r \sin(\varphi)} \frac{\partial}{\partial \varphi} \left(\sin(\varphi) a_\varphi \right) \end{split}$
Rotation $\mathbb{R}^3 o \mathbb{R}^3$			$\begin{array}{l} \nabla \times \vec{a} = \mathrm{rot} \ \vec{a} = \\ \left(\frac{1}{r \sin(\varphi)} \frac{\partial}{\partial \varphi} (\sin(\varphi) a_{\theta}) - \frac{1}{r \sin(\varphi)} \frac{\partial a_{\varphi}}{\partial \theta} \right) \\ \frac{1}{r} \frac{\partial}{\partial r} (r a_{\varphi}) - \frac{1}{r} \frac{\partial a_{\theta}}{\partial \varphi} \\ \frac{1}{r \sin(\varphi)} \frac{\partial a_{\theta}}{\partial \theta} - \frac{1}{r} \frac{\partial}{\partial r} (r a_{\theta}) \end{array} \right) \end{array}$

2.4 Integralsätze

$$\begin{array}{ll} \textbf{Stokes} & & \oint_{\partial A} \vec{F} \, \mathrm{d}\vec{x} = \iint_A (\nabla \times \vec{F}) \cdot \mathrm{d}\vec{A} \end{array}$$

(Satz von Green, usw.?)

2.5 Was noch?

(Wie löst man Kurven- und Oberflächenintegrale)

3 Komplexe Funktionen

4 Lineare Algebra

4.1 Basiswechsel

5 Signale und Systeme

5.1 Kontinuierliche Signale

Energie eines Signals

Energiesignal:

endl. Energie, keine Leistung

$$E_x = \int_{\vec{x}_1}^{\vec{x}_2} |x(t)|^2 \,\mathrm{d}t$$

(mittlere) Leistung eines Signals

Leistungssignal:

endl. Leistung, unendl. Energie

$$P_x = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |x(t)|^2 dt$$

5.1.1 Fourier-Transformation

	$f(t) = a_0 + \sum_{k=1}^{\infty} \left(a_k \cos\left(\frac{2\pi kt}{T}\right) + b_k \sin\left(\frac{2\pi kt}{T}\right) \right)$
Relle Fourierreihe	$a_0 = \frac{1}{T} \int_0^T f(t) \mathrm{d}t$
i.d.R.: $T=2\pi$	$a_k = \frac{2}{T} \int_0^T f(t) \cos\left(\frac{2\pi kt}{T}\right) dt$
	$b_k = \frac{2}{T} \int_0^T f(t) \sin\left(\frac{2\pi kt}{T}\right) dt$
Symmetrieeigenschaften	$a_k = 0 \Leftrightarrow f(t)$ ungerade $b_k = 0 \Leftrightarrow f(t)$ gerade
Komplexe Fourierreihe	$f(t) = \sum_{k=1}^{\infty} \left(c_k e^{\frac{\mathrm{j} 2\pi kt}{T}} \right)$
i.d.R.: $T=2\pi$	$c_k = \frac{1}{T} \int_0^T f(t) e^{-\frac{i2\pi kt}{T}} dt$

	I_{0}	
Fourier-Transformation	$F(j\omega) = \mathcal{F}\{f(t)\} = \int_{-\infty}^{\infty} f(t) \cdot e^{-j\omega t} dt$	
inverse Fourier-Transformation	$f(t) = \mathcal{F}^{-1}{F(j\omega)} = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega) \cdot e^{j\omega t} d\omega$	
Eigenschaften	$f(t)$ reell: $\Re\{F(j\omega)\}\$ gerade, $\Im\{F(j\omega)\}\$ ungerade $f(t)$ gerade: $\Im\{F(j\omega)\}=0$ $f(t)$ ungerade: $\Re\{F(j\omega)\}=0$	
Konvergenzbedingung $f(t)$ muss mind. quadratintegrierbar sein.	$\int_{-\infty}^{\infty} f(t) ^2 \mathrm{d}t < \infty$	
Ähnlichkeitssatz	$f(bt) \circ - \bullet \frac{1}{ b } F\left(\frac{\mathrm{j}\omega}{b}\right)$	
Verschiebungssatz Zeitverschiebung im Zeitbereich Phasenverschiebung im Frequenzbereich	$f(t-t_0) \circ - \bullet e^{-j\omega t_0} F(j\omega)$	
Modulationssatz	iont (A)	

 $e^{j\omega_0 t} f(t) \circ - F(j(\omega - \omega_0))$

 $Multiplikation\ mit\ harm.\ Schwingung$

5.1.2 Laplace-Transformation

komplexe Frequenz

 σ : Dämpfung/Verstärkung

 ω : Frequenz

$$s = \sigma + j\omega$$

Einseitige Laplace-Transformation

$$F(s) = \mathcal{L}\{f(t)\} = \int_0^\infty f(t) e^{-st} dt$$

$$f(t) = \mathcal{L}^{-1}{F(s)} = \frac{1}{j2\pi} \int_{c-j\infty}^{c+j\infty} F(s) e^{st} ds$$

inverse Laplace-Transformation

Alternativ: Rücktransformation mittels Korrespondenz-Tabelle

ggf. Polydivision oder Partialbruchzerlegung notwendig

Konvergenzbedingung

$$\int_{-\infty}^{\infty} |f(t) e^{-st}|^2 dt < \infty$$

Verschiebungssatz

$$f(t-t_0) \circ - \bullet e^{-st_0} F(s)$$

Dämpfungssatz

$$e^{bt}f(t) \circ - F(s-b)$$

Integrationssatz

$$\int_0^t f(\tau) \, \mathrm{d}\tau \circ - \bullet \frac{1}{s} F(s)$$

Differentiationssatz

$$\frac{\mathrm{d}^n f(t)}{\mathrm{d}t^n} \circ - \bullet s^n F(s) - \sum_{k=0}^{n-1} s^{n-k-1} \frac{\mathrm{d}^k f(0)}{\mathrm{d}t^k}$$

Multiplikationssatz

$$t^k f(t) \circ - \bullet (-1)^k \frac{\mathrm{d}^k F(s)}{\mathrm{d}s^k}$$

Anfangswertsatz

$$\lim_{t \to 0} f(t) = \lim_{s \to \infty} sF(s)$$

Endwertsatz

$$\lim_{t\to\infty}f(t)=\lim_{s\to 0}sF(s)$$

5.2 Zeitdiskrete Signale

Länge eines Signals
$$N = N_2 - N_1 + 1$$

Faltungssumme
$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[h-k]$$

$$= \sum_{k=-\infty}^{\infty} x[n-k]h[k]$$

entlang eines Kreises mit Umfang $N\,-\,1$

$$y[n] = x [-n \mod N]$$

Zirkulare Verschiebung $y[n] = x[(n - n_0) \operatorname{mod} N]$

5.2.1 z-Transformation

z-Transformation

$$X(z) = \mathcal{Z}\{x[n]\} = \sum_{n=0}^{\infty} x[n] z^{-n}$$
Geometr. Reithe hilft oft

inverse z-Transformation

C muss um den Ursprung und

 $im\ Konvergenzgebiet\ von\ X\left(z\right)\ liegen$

$$x[n] = \mathcal{Z}^{-1}\{X(z)\} = \frac{1}{\mathrm{j}2\pi} \oint_C X(z) \ z^{n-1}$$

Dämpfungssatz
$$a^n x[n] \circ - \bullet X\left(\frac{z}{a}\right)$$

Endwertsatz
$$\lim_{n \to \infty} x[n] \circ \!\!\! - \!\!\!\! - \!\!\!\! - \!\!\!\! \lim_{z \to 1} (z-1) X(z)$$

to-do: Stabilität der z-Transformation

5.3 Zeit- & Wertediskrete Signale

6 Elektrische Netzwerke

7 Klassische Elektrodynamik

Georg.Felder Marinescu

	Skalare Größe	Vektorielle Größe	
		Differentielle Form	Integrale Form
Coulomb's ches Kraftgesetz Kraftvektoren zweier Ladungen zeigen von einander weg. $n>2$: Superposition	$F_C = \frac{1}{4\pi\varepsilon_0} \cdot \frac{q_1 q_2}{r^2}$		$\vec{F}_{C_{12}} = \frac{q_1q_2}{4\pi\varepsilon_0} \cdot \frac{\vec{x}_2 - \vec{x}_1}{ \vec{x}_2 - \vec{x}_1 ^3}$
Elektrische Feldstärke $\left[\vec{E} \right] = \frac{V}{m}$		$\vec{E}(\vec{x}) = -\operatorname{grad}(\varphi_e)$	$\vec{E}(\vec{x}) = \frac{\vec{F}_{C_{12}}}{q_2} = \frac{q_1}{4\pi\varepsilon_0} \cdot \frac{\vec{x} - \vec{x}_1}{ \vec{x} - \vec{x}_1 ^3}$
Elektrische Potential(feld) $[\varphi_e] = V$			
Gleiches Potential auf Äquipotentialflächen	$\varphi_e(\vec{x}) = \frac{q_1}{4\pi\varepsilon_0} \cdot \frac{1}{ \vec{x} - \vec{x}_1 }$		
Elektrische Spannung $[U] = V$	$U_{12} = \varphi_e(\vec{x}_2) - \varphi_e(\vec{x}_1)$ $= -\int_{\vec{x}_1}^{\vec{x}_2} \vec{E} d\vec{s}$		
$ \begin{array}{c} \textbf{Linienladungsdichte} \\ [\lambda] = \frac{C}{m} \end{array} $	$\lambda = \frac{dq_e}{ds}$ $q_e = \int \lambda ds$		
Flächenladungsdichte $[\sigma] = \frac{C}{m^2}$	$\sigma = \frac{dq_e}{dA}$ $q_e = \iint \sigma dA$		
Volumenladungsdichte $[ho]=rac{C}{m^3}$	$\rho = \frac{dq_e}{dV}$ $q_e = \iiint \rho dV$		

- 8 Elektronik
- 8.1 Operationsverstärker
- 9 Hochfrequenztechnik
- 10 Fehlerrechnung