Exploring Text Classification Techniques:

Disaster Tweet Classification

Jong-Cheol Lee

Department of Statistics Pusan National University

September 23, 2024

Contents

1. Introduction

- Project Background and Objective
- Data Summary

2. Data Preprocessing

- Text Preprocessing Steps
- Lemmatization and Tokenization

3. EDA

- Missing Values and Target Distribution
- Word Count and Text Length

4. Text Vectorization

- Text Vectorization
- Count-based Methods
- Embedding Method

5. Analysis Results

- Final Dataset & Classification Models
- Results

Project Background and Objective

Background

- Real-time emergency reporting via smartphones.
- But it's unclear if words indicate an actual disaster.

Objective

Goal

Build a machine learning model to classify "real disaster tweets".

Data

Dataset Variables Information

Column	Description
id	A unique identifier for each tweet
text	The text of the tweet
location	The location the tweet was sent from (may be blank)
keyword	A particular keyword from the tweet (may be blank)
target	Whether a tweet is about a real disaster (1) or not (0)

Data Overview

	shape	id	keyword	location	text	target
Train set	(7613,5)	1,4,5,	wildfire	UK	Wow! Cooool :)	0 or 1
Test set	(3263,4)	0,2,3,	crash	Italy	#Flood in US	

Text Preprocessing Steps

Original Text

http://t.co/GKYe6gjTk5 Had a #personalinjury accident this summer? Read our advice & Damp; see how a #solicitor can help. #OtleyHour

Step 1: URL Removal

"http://t.co/GKYe6gjTk5"

Step 3: Punctuation Removal

"?", "."

Step 2: HTML Form Removal

"&"

Step 4: Stopword Removal

"Had", "a", "this", "our", "and", "see", "how", "can"

Final Processed Text(lowered)

#personalinjury accident summer read advice #solicitor help #otleyhour

Lemmatization and Tokenization

1. Morphological Analysis Result:

```
('#personalinjury', 'n'), ('accident', 'n'), ('summer', 'n'), ..., ('help', 'v'), ('#otleyhour', 'v')
```

2. Lemmatization Examples:

- Original: "better" \rightarrow Lemmatized: "good" (Adjective)
- Original: "running" → Lemmatized: "run" (Verb)
- Original: "geese" \rightarrow Lemmatized: "goose" (Noun)

3. TweetTokenizer Characteristics and Result:

TweetTokenizer preserves hashtags and mention.(ex. #, @)

```
'#personalinjury', 'accident', 'summer', ..., '#solicitor', 'help', '#otleyhour'
```

EDA - Missing values & Target distribution

Missing Rate

Target Proportion

Top&Bottom 15 Keywords by Target Mean

EDA - Word Count & Text Length

Most Common Unigrams

Most Common Bigrams

Text Vectorization

Why Vectorize Text?

- ML models require numerical data.
- Transforms unstructured data into a structured format.
- Better understanding by vectorization.

Flowchart

Count-based methods

Bag of Words(BoW)

Image of BoW

Sentence	he	she	is	very	good
He is very good	1	0	1	1	1
She is good	0	1	1	0	1

Term Frequency-Inverse Document Frequency (TF-IDF)

Term Frequency(TF):

$$TF(t, d) = \frac{\text{Term frequency of } t \text{ in document } d}{\text{Total terms in } d}$$

Inverse Document Frequency (IDF):

$$IDF(t) = \log \left(\frac{\text{Total } \# \text{ of documents}}{\# \text{ of documents containing } t} \right)$$

$$\mathsf{TF\text{-}IDF(t, d)} = \mathit{TF}(t, d) \times \mathit{IDF}(t)$$

Sentence	he	she	is	very	good
He is very good	0.6	0.0	0.4	0.6	0.4
She is good	0.0	0.7	0.5	0.0	0.5

Embedding methods

Word2Vec

Frequency based:

- BoW: Only count.
- TF-IDF: Only count and importance.

Why Word Embedding?

- Contextual Meaning
- Dimensionality
- Semantic Relations

Word Representation on Vector Space

Final Dataset & Classification Models

Final Dataset:

	id	combined_str	target
0	1	deed reason #earthquake may allah forgive	1
1	4	forest fire near ronge sask canada	1
2	5	resident ask shelter place notify officer evac	1
3	6	13000 people receive #wildfires evacuation ord	1
4	7	get sent photo ruby #alaska smoke #wildfires p	1
7608	10869	two giant crane hold bridge collapse nearby home	1
7609	10870	@ariaahrary @thetawniest control wild fire cal	1
7610	10871	m194 0104 utc 5km volcano hawaii	1
7611	10872	police investigate ebike collide car little po	1
7612	10873	late home raze northern california wildfire ab	1

Training Set

- Adding keyword
- Excluding the location

Classification Models:

1. Random Forest

2. Logistic Regression

3. Emsemble of 2 Models (Soft Voting)

Results

Vectorization Method	Model	Accuracy	
BoW TF-IDF	Logistic Logistic	0.76003 0.79129	
Word2Vec	Logistic	0.77198	
BoW	RF	0.79681	
TF-IDF	RF	0.78516	
Word2Vec	RF	0.76064	
BoW	Logistic + RF	0.80294	
TF-IDF	Logistic + RF	0.80049	
Word2Vec	Logistic + RF	0.77811	

Table: Performance Comparison of Text Classification Models

Discussion

Limitations

- Location Variable
- Diverse Preprocessing
- Advanced Methods: like BERT with LSTM (0.80508) or 1D-CNN (0.80661)

The End!