(担当:佐藤)

問題 **6.5.** $f(x) = x^3 - 6x^2 + 9x - 3$.

(1)
$$f'(x) = 3x^2 - 12x + 9$$

(2) 求めるものは
$$3a^2 - 12a + 9 = 0$$
 の解。
$$3a^2 - 12a + 9 = 3(a^2 - 4a + 3) = 3(a - 1)(a - 3)$$
 より、 $a = 1, 3$.

$$(3) 3(a-1)(a-3) > 0 となるのは, a < 1, 3 < a.$$

(4)
$$3(a-1)(a-3) < 0$$
 となるのは、 $1 < a < 3$.

(5)

x		1		3	
f'(x)	+	0	_	0	+
f(x)	増加	1	減少	-3	増加

(6) グラフは省略(増減表を参照. y 切片は -3).

問題 **6.6.** $f(x) = -x^3 + x^2 + x - 1$.

(1) $f'(x) = -3x^2 + 2x + 1 = -(3x+1)(x-1)$ より、f'(x) = 0 となるのは $x = -\frac{1}{3}, 1$. 増減表は以下のようになる;

x		$-\frac{1}{3}$		1	
f'(x)	_	0	+	0	_
f(x)	減少	$-\frac{32}{27}$	増加	0	減少

- (2) 上の増減表より、極大値は 0 (x=1 のとき)、極小値は $-\frac{32}{27}$ $(x=-\frac{1}{3}$ のとき)
- (3) グラフは省略 (上の増減表を参照. y 切片は -1).
- (4) -1 < x < 2 の範囲での増減表は次のようになる;

x	-1		$-\frac{1}{3}$		1		2
f'(x)		_	0	+	0	_	
f(x)	0	減少	$-\frac{32}{27}$	増加	0	減少	-3

したがって、最大値は0 (x = -1 および1 のとき)、最小値は-3 (x = 2 のとき).