

General information

Designation

Betula alleghaniensis (L)

Typical uses

Furniture; boxes; baskets; crates; woodenware; cooperage; interior finish; doors. As veneer in plywood: flush doors; furniture; paneling; radio & television cabinets; aircraft.

Composition overview

Compositional summary

Cellulose/Hemicellulose/Lignin/12%H2O						
Material family	Natural					
Base material	Wood (ha	Wood (hardwood)				
Renewable content	100			%		
Composition detail (polymers and nature	al materials)					
Wood	100			%		
Price						
Price	* 0.67	-	1.34	USD/kg		
Physical properties						
Density	620	-	760	kg/m^3		
Mechanical properties						
Young's modulus	* 13.7	-	16.8	GPa		
Yield strength (elastic limit)	* 50.7	-	61.9	MPa		
Tensile strength	* 95.8	-	117	MPa		
Elongation	* 1.88	-	2.3	% strain		
Compressive strength	50.7	-	62	MPa		
Flexural modulus	12.5	-	15.2	GPa		
Flexural strength (modulus of rupture)	103	-	126	MPa		
Shear modulus	* 1.01	-	1.24	GPa		
Shear strength	11.7	-	14.3	MPa		
Bulk modulus	* 1.03	-	1.15	GPa		
Poisson's ratio	* 0.35	-	0.4			
Shape factor	5.3					
Hardness - Vickers	* 6.54	-	7.99	HV		
Hardness - Brinell	* 54.6	-	66.7	MPa		
Hardness - Janka	* 6.54	-	7.99	kN		
Fatigue strength at 10^7 cycles	* 30.9	-	37.8	MPa		

Birch (betula alleghaniensis) (I)

Mechanical loss coefficient (tan delta)	* 0.0064	-	0.0078	
Differential shrinkage (radial)	0.18	-	0.24	%
Differential shrinkage (tangential)	0.26	-	0.31	%
Radial shrinkage (green to oven-dry)	6.6	-	8	%
Tangential shrinkage (green to oven-dry)	8.6	-	10.5	%
Volumetric shrinkage (green to oven-dry)	15.1	-	18.5	%
Work to maximum strength	129	-	158	kJ/m^3
Impact & fracture properties				
Fracture toughness	* 5.7	-	6.9	MPa.m^0.5
Thermal properties				
Glass temperature	77	-	102	°C
Maximum service temperature	120	-	140	°C
Minimum service temperature	* -73	-	-23	°C
Thermal conductivity	* 0.3	-	0.37	W/m.°C
Specific heat capacity	1.66e3	-	1.71e3	J/kg.°C
Thermal expansion coefficient	* 2	-	11	µstrain/°C
Electrical properties				
Electrical resistivity	3.05e14	-	3.73e14	µohm.cm
Dielectric constant (relative permittivity)	* 6.85	-	8.37	
Dissipation factor (dielectric loss tangent)	* 0.08	-	0.098	
Dielectric strength (dielectric breakdown)	* 0.4	-	0.6	MV/m
Magnetic properties				
Magnetic type	Non-mag	netic	;	

Opaque

Optical properties

Transparency

Durability	
Water (fresh)	Limited use
Water (salt)	Limited use
Weak acids	Limited use
Strong acids	Unacceptable
Weak alkalis	Acceptable
Strong alkalis	Unacceptable
Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	

Shape

	Highly fla	amma	able	
Primary production energy, CO2 and water				
Embodied energy, primary production	11.6	-	12.8	MJ/kg
Sources 0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Hamm MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2)	nond and Jones, 2008);	11.6 N	IJ/kg (Hubba	ard and Bowe, 2010); 23.7
CO2 footprint, primary production	0.574	-	0.633	kg/kg
Sources 0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/kg	g (Hammond and Jones,	2008)	; 0.909 kg/k	g (Hubbard and Bowe,
Water usage	* 665	-	735	l/kg
Processing energy, CO2 footprint & water				
Coarse machining energy (per unit wt removed)	* 1.25	-	1.38	MJ/kg
Coarse machining CO2 (per unit wt removed)	* 0.0938	-	0.104	kg/kg
Fine machining energy (per unit wt removed)	* 8.23	-	9.1	MJ/kg
	* 0.618	_	0.683	kg/kg
Fine machining CO2 (per unit wt removed)	0.618		0.000	5 5
Fine machining CO2 (per unit wt removed) Grinding energy (per unit wt removed)	* 16	-	17.7	MJ/kg
- "		-		
Grinding energy (per unit wt removed) Grinding CO2 (per unit wt removed) Recycling and end of life	* 16 * 1.2	-	17.7	MJ/kg
Grinding energy (per unit wt removed) Grinding CO2 (per unit wt removed) Recycling and end of life Recycle	* 16 * 1.2	-	17.7 1.33	MJ/kg kg/kg
Grinding energy (per unit wt removed) Grinding CO2 (per unit wt removed) Recycling and end of life Recycle Recycle fraction in current supply	* 16 * 1.2	-	17.7	MJ/kg
Grinding energy (per unit wt removed) Grinding CO2 (per unit wt removed) Recycling and end of life Recycle Recycle fraction in current supply Downcycle	* 16 * 1.2	-	17.7 1.33	MJ/kg kg/kg
Grinding energy (per unit wt removed) Grinding CO2 (per unit wt removed) Recycling and end of life Recycle Recycle fraction in current supply Downcycle Combust for energy recovery	* 16 * 1.2 * 8.55	-	17.7 1.33	MJ/kg kg/kg %
Grinding energy (per unit wt removed) Grinding CO2 (per unit wt removed) Recycling and end of life Recycle Recycle fraction in current supply Downcycle	* 16 * 1.2 * 8.55	-	17.7 1.33	MJ/kg kg/kg
Grinding energy (per unit wt removed) Grinding CO2 (per unit wt removed) Recycling and end of life Recycle Recycle fraction in current supply Downcycle Combust for energy recovery	* 16 * 1.2 * 8.55	-	17.7 1.33 9.45	MJ/kg kg/kg %
Grinding energy (per unit wt removed) Grinding CO2 (per unit wt removed) Recycling and end of life Recycle Recycle fraction in current supply Downcycle Combust for energy recovery Heat of combustion (net)	* 16 * 1.2 * 8.55 * 19.8	-	17.7 1.33 9.45	MJ/kg kg/kg %