Practice with Spinors

I Algebra with Dirac γ matrices

Notation:

- 1. $S = \overline{u}u$
- 2. $P = \overline{u}\gamma^5 u$
- 3. $V^{\mu} = \overline{u}\gamma^{\mu}u$
- 4. $A^{\mu} = \overline{u}\gamma^{\mu}\gamma^5 u$
- 5. $T^{\mu\nu} = \overline{u}\sigma^{\mu\nu}u$
- 1. $(\overline{u}_1 \gamma^{\mu} u_2)^* = ?$

Note: $(\gamma^0)^{\dagger} = \gamma^0$ and $(\gamma^{\mu})^{\dagger} = \gamma^0 \gamma^{\mu} \gamma^0$

 $(\overline{u}_1\gamma^{\mu}u_2)$ is a 1×1 matrix. Therefore, its complex conjugate is the same as its Hermitian conjugate, i.e. if we call $L^{\mu} = (\overline{u}_1\gamma^{\mu}u_2)$, then $(L^{\mu})^* = (L^{\mu})^{\dagger}$. We can then express this quantity as follows:

$$L^{\mu} = \overline{u}_{1}\gamma^{\mu}u_{2},$$

$$\Rightarrow (L^{\mu})^{*} = (L^{\mu})^{\dagger},$$

$$= (\overline{u}_{1}\gamma^{\mu}u_{2})^{\dagger},$$

$$= ((u_{1})^{\dagger}\gamma^{0}\gamma^{\mu}u_{2})^{\dagger} \text{ using } (A \dots Z)^{\dagger} = Z^{\dagger} \dots A^{\dagger},$$

$$= (u_{2}^{\dagger})(\gamma^{\mu})^{\dagger}(\gamma^{0})^{\dagger}(u_{1})$$

$$= (u_{2}^{\dagger})\gamma^{0}\gamma^{\mu}\gamma^{0}\gamma^{0}(u_{1})$$

$$= (u_{2}^{\dagger})\gamma^{0}\gamma^{\mu}(u_{1})$$

$$= \overline{u}_{2}\gamma^{\mu}(u_{1})$$
(1)

Therefore $(\overline{u}_1\gamma^{\mu}u_2)^* = \overline{u}_2\gamma^{\mu}u_1$. To solve for $|L^{\mu}|^2$ we simply use $(L^{\mu\nu})^2 = \text{Tr}[\overline{u}_1\gamma^{\mu}u_2\overline{u}_2\gamma^{\nu}u_1]$ (Why does L^{μ} have only one index but $L^{\mu\nu} = |L^{\mu}|^2$?)

Note: $\text{Tr}[\gamma^{\mu}\gamma^{\nu}] = 4g^{\mu\nu}$, $\text{Tr}[\gamma^{\mu}\gamma^{\nu}\gamma^{\lambda}\gamma^{\sigma}] = 4(g^{\mu\nu}g^{\lambda\sigma} - g^{\mu\lambda}g^{\nu\sigma} + g^{\mu\sigma}g^{\nu\lambda})$, The trace of an odd number gamma matrix product is 0

$$(L^{\mu\nu})^{2} = \operatorname{Tr}[\overline{u}_{1}\gamma^{\mu}u_{2}\overline{u}_{2}\gamma^{\nu}u_{1}]$$

$$= \operatorname{Tr}[\overline{u}_{1}\gamma^{\mu}(p_{2}+m)\gamma^{\nu}u_{1}]$$

$$= \operatorname{Tr}[u_{1}\overline{u}_{1}\gamma^{\mu}(p_{2}+m)\gamma^{\nu}]$$

$$= \operatorname{Tr}[(p_{1}+m)\gamma^{\mu}(p_{2}+m)\gamma^{\nu}]$$

$$= \operatorname{Tr}[p_{1}\gamma^{\mu}p_{2}\gamma^{\nu}] + m[\operatorname{Tr}(\gamma^{\mu}p_{1}\gamma^{\nu}) + \operatorname{Tr}(\gamma^{\mu}\gamma^{\nu}p_{2})] + m^{2}\operatorname{Tr}[\gamma^{\mu}\gamma^{\nu}]$$

$$= \operatorname{Tr}[p_{1}\gamma^{\mu}p_{2}\gamma^{\nu}] + m^{2}\operatorname{Tr}[\gamma^{\mu}\gamma^{\nu}]$$

$$= \operatorname{Tr}[(p_{1})_{\lambda}\gamma^{\lambda}\gamma^{\mu}(p_{2})_{\sigma}\gamma^{\sigma}\gamma^{\nu}] + 4m^{2}g^{\mu\nu}$$

$$(2)$$

$$= (p_{1})_{\lambda}(p_{2})_{\sigma} \operatorname{Tr}[\gamma^{\lambda}\gamma^{\mu}\gamma^{\sigma}\gamma^{\nu}] + 4m^{2}g^{\mu\nu}$$

$$= (p_{1})_{\lambda}(p_{2})_{\sigma}4(g^{\mu\nu}g^{\lambda\sigma} - g^{\mu\lambda}g^{\nu\sigma} + g^{\mu\sigma}g^{\nu\lambda}) + 4m^{2}g^{\mu\nu}$$

$$= 4[p_{1}^{\mu}p_{2}^{\nu} - g^{\mu\nu}(p_{1} \cdot p_{2}) + p_{2}^{\mu}p_{1}^{\nu}] + 4m^{2}g^{\mu\nu}$$

$$= 4[p_{1}^{\mu}p_{2}^{\nu} - 4g^{\mu\nu}(p_{1} \cdot p_{2} + m^{2}) + p_{2}^{\mu}p_{1}^{\nu}]$$
(3)

2. $(\overline{u}_1 \gamma^{\mu} \gamma^5 u_2)^*$ is also a 1 × 1 Matrix so the same reasoning applies as above in 1. Note: $(\gamma^5)^{\dagger} = \gamma^5$

We define: R^{μ} as $\overline{u}_1 \gamma^{\mu} \gamma^5 u_2$ thus:

$$\Rightarrow (R^{\mu})^{*} = (R^{\mu})^{\dagger}$$

$$= (\overline{u}_{1}\gamma^{\mu}\gamma^{5}u_{2})^{\dagger}$$

$$= ((u_{1})^{\dagger}\gamma^{0}\gamma^{\mu}\gamma^{5}u_{2})^{\dagger}$$

$$= (u_{2}^{\dagger})(\gamma^{5})^{\dagger}(\gamma^{\mu})^{\dagger}(\gamma^{0})^{\dagger}(u_{1})$$

$$= (u_{2}^{\dagger})\gamma^{5}\gamma^{0}\gamma^{\mu}\gamma^{0}\gamma^{0}u_{1}$$

$$= (u_{2}^{\dagger})\gamma^{5}\gamma^{0}\gamma^{\mu}(1)u_{1}$$

$$= -(u_{2}^{\dagger})\gamma^{0}\gamma^{5}\gamma^{\mu}u_{1}$$

$$= -\overline{u}_{2}\gamma^{5}\gamma^{\mu}u_{1}$$

$$= \overline{u}_{2}\gamma^{\mu}\gamma^{5}u_{1}$$
(-2)

Therefore $(\overline{u}_1 \gamma^{\mu} \gamma^5 u_2)^* = \overline{u}_2 \gamma^{\mu} \gamma^5 u_1$

We also are able to calculate $(R^{\mu})^2$

$$(R^{\mu\nu})^{2} = \operatorname{Tr}[\overline{u}_{1}\gamma^{\mu}\gamma^{5}u_{2}\overline{u}_{2}\gamma^{\nu}\gamma^{5}u_{1}]$$

$$= \operatorname{Tr}[\overline{u}_{1}\gamma^{\mu}\gamma^{5}(\not{p}_{2}+m)\gamma^{\nu}\gamma^{5}]$$

$$= \operatorname{Tr}[u_{1}\overline{u}_{1}\gamma^{\mu}\gamma^{5}(\not{p}_{2}+m)\gamma^{\nu}\gamma^{5}]$$

$$= \operatorname{Tr}[\not{p}_{1}+m)\gamma^{\mu}\gamma^{5}(\not{p}_{2}+m)\gamma^{\nu}\gamma^{5}]$$

$$= \operatorname{Tr}[\not{p}_{1}\gamma^{\mu}\gamma^{5}\not{p}_{2}\gamma^{\nu}\gamma^{5}+m(\not{p}_{1}\gamma^{\mu}\gamma^{5}\gamma^{\nu}\gamma^{5}+\gamma^{\mu}\gamma^{5}\not{p}_{2}\gamma^{\nu}\gamma^{5})+m^{2}(\gamma^{\mu}\gamma^{5}\gamma^{\nu}\gamma^{5})]$$

$$= \operatorname{Tr}[\not{p}_{1}\gamma^{\mu}\gamma^{5}\not{p}_{2}\gamma^{\nu}\gamma^{5}+m^{2}(\gamma^{\mu}\gamma^{5}\gamma^{\nu}\gamma^{5})]$$

$$= \operatorname{Tr}[\not{p}_{1}\gamma^{\mu}\gamma^{5}\not{p}_{2}\gamma^{\nu}\gamma^{5}+m^{2}(\gamma^{\mu}\gamma^{5}\gamma^{\nu}\gamma^{5})]$$

$$= \operatorname{Tr}[(p_{1})_{\lambda}\gamma^{\lambda}\gamma^{\mu}\gamma^{5}(p_{2})_{\sigma}\gamma^{\sigma}\gamma^{\nu}\gamma^{5}]+m^{2}\operatorname{Tr}[\gamma^{\mu}\gamma^{5}\gamma^{\nu}\gamma^{5}]$$

$$= (p_{1})_{\lambda}(p_{2})_{\sigma}\operatorname{Tr}[\gamma^{\lambda}\gamma^{\mu}\gamma^{5}\gamma^{\sigma}\gamma^{\nu}\gamma^{5}]-m^{2}\operatorname{Tr}[\gamma^{\mu}\gamma^{5}\gamma^{5}\gamma^{\nu}]$$

$$= (p_{1})_{\lambda}(p_{2})_{\sigma}\operatorname{Tr}[\gamma^{\lambda}\gamma^{\mu}\gamma^{5}\gamma^{5}\gamma^{\sigma}\gamma^{\nu}]-m^{2}\operatorname{Tr}[\gamma^{\mu}\gamma^{\nu}]$$

$$= (p_{1})_{\lambda}(p_{2})_{\sigma}\operatorname{Tr}[\gamma^{\lambda}\gamma^{\mu}\gamma^{\sigma}\gamma^{\nu}]-m^{2}(g^{\mu\nu})$$

$$= (p_{1})_{\lambda}(p_{2})_{\sigma}\operatorname{Tr}[\gamma^{\lambda}\gamma^{\mu}\gamma^{\sigma}\gamma^{\nu}]-m^{2}(g^{\mu\nu})$$

$$= (p_{1})_{\lambda}(p_{2})_{\sigma}\operatorname{Tr}[\gamma^{\lambda}\gamma^{\mu}\gamma^{\sigma}\gamma^{\nu}]-m^{2}(g^{\mu\nu})$$

$$= (p_{1})_{\lambda}(p_{2})_{\sigma}\operatorname{Tr}[\gamma^{\lambda}\gamma^{\mu}\gamma^{\sigma}\gamma^{\nu}]-m^{2}(g^{\mu\nu})$$

$$= (p_{1})_{\mu}(p_{2})_{\sigma}\operatorname{Tr}[\gamma^{\lambda}\gamma^{\mu}\gamma^{\sigma}\gamma^{\nu}]-m^{2}(g^{\mu\nu})$$

$$= (p_{1})_{\mu}(p_{2})_{\sigma}\operatorname{Tr}[\gamma^{\mu}\gamma^{\mu}\gamma^{\sigma}\gamma^{\nu}]-m^{2}(g^{\mu\nu})$$

$$= (p_{1})_{\mu}(p_{2})_{\sigma}\operatorname{Tr}[\gamma^{\mu}\gamma^{\mu}\gamma^{\sigma}\gamma^{\nu}]-m^{2}(g^{\mu\nu}\gamma^{\nu})$$

$$= (p_{1})_$$

3. $(\overline{u}_1 u_2)^* = ?$ We let: $P = \overline{u}_1 u_2$

$$\Rightarrow (P)^* = (P)^{\dagger} , \qquad (-11)$$

$$= (\overline{u}_1 u_2)^{\dagger},$$

$$= ((u_1)^{\dagger} \gamma^0 u_2)^{\dagger}$$

$$= (u_2)^{\dagger} (\gamma^0)^{\dagger} (u_1)$$

$$= (u_2)^{\dagger} \gamma^0 (u_1)$$

$$= \overline{u}_2(u_1)$$
(-14)

Therefore $(\overline{u}_1 u_2)^* = \overline{u}_2 u_1$

In order to find $(P)^2$ we simply do the following:

$$(P)^{2} = \operatorname{Tr}[\overline{u}_{1}u_{2}\overline{u}_{2}u_{1}]$$

$$= \operatorname{Tr}[(p_{1} + m)(p_{2} + m)]$$

$$= \operatorname{Tr}[p_{1}p_{2} + m(p_{1} + p_{2}) + m^{2}]$$

$$= \operatorname{Tr}[p_{1}p_{2}] + \operatorname{Tr}[m(p_{1} + p_{2})] + \operatorname{Tr}[m^{2}]$$

$$= \operatorname{Tr}[p_{1}p_{2}] + m(\operatorname{Tr}[p_{1}] + \operatorname{Tr}[p_{2}]) + m^{2}\operatorname{Tr}[1]$$

$$= \operatorname{Tr}[p_{1}p_{2}] + 4m^{2}$$

$$= 4(p_{1} \cdot p_{2}) + 4m^{2}$$

$$(-18)$$

4. By the same reasoning as shown above it can be shown that $(\overline{u}_1\gamma^5u_2)^* = \overline{u}_2\gamma^5u_1$ If we let $T = \overline{u}_1 \gamma^5 u_2$ then:

$$\Rightarrow (T)^{*} = (T)^{\dagger}, \qquad (-18)$$

$$= (\overline{u}_{1}\gamma^{5}u_{2})^{\dagger}, \qquad (-18)$$

$$= ((u_{1})^{\dagger}\gamma^{0}\gamma^{5}u_{2})^{\dagger}$$

$$= (u_{2})^{\dagger}(\gamma^{5})^{\dagger}(\gamma^{0})^{\dagger}(u_{1})$$

$$= (u_{2})^{\dagger}(-\gamma^{5})\gamma^{0}(u_{1})$$

$$= (u_{2})^{\dagger}\gamma^{0}\gamma^{5}(u_{1})$$

$$= \overline{u}_{2}\gamma^{5}(u_{1}) \qquad (-22)$$

Therefore $(\overline{u}_1 \gamma^5 u_2)^* = \overline{u}_2 \gamma^5 u_1$

In order to square T we do the following:

$$T^{2} = \operatorname{Tr}[\overline{u}_{1}\gamma^{5}u_{2}\overline{u}_{2}\gamma^{5}u_{1}]$$

$$= \operatorname{Tr}[u_{1}\overline{u}_{1}\gamma^{5}p_{2}\gamma^{5}]$$

$$= \operatorname{Tr}[p_{1}\gamma^{5}p_{2}\gamma^{5}]$$

$$= \operatorname{Tr}[(p_{1})_{\mu}\gamma^{\mu}\gamma^{5}(p_{2})_{\nu}\gamma^{\nu}\gamma^{5}]$$

$$= (p_{1})_{\mu}(p_{2})_{\nu}\operatorname{Tr}[\gamma^{\mu}\gamma^{5}\gamma^{\nu}\gamma^{5}]$$

$$= -(p_{1})_{\mu}(p_{2})_{\nu}\operatorname{Tr}[\gamma^{\mu}\gamma^{5}\gamma^{5}\gamma^{\nu}]$$

$$= -(p_{1})_{\mu}(p_{2})_{\nu}\operatorname{Tr}[\gamma^{\mu}\gamma^{5}\gamma^{5}\gamma^{\nu}]$$

$$= -(p_{1})_{\mu}(p_{2})_{\nu}\operatorname{Tr}[\gamma^{\mu}\gamma^{\nu}]$$

$$= -(p_{1})_{\mu}(p_{2})_{\nu}(4g^{\mu\nu})$$

$$= -4(p_{1})(p_{2})$$

$$(-28)$$

5. While the above identities could be shown to be trivial, the identity: $(\overline{u}_1 \sigma^{\mu\nu} u_2)^* = \overline{u}_2 \sigma^{\mu\nu} u_1$ is more difficult to solve

The identity: $(\sigma^{\mu\nu})^{\dagger} = \sigma^{\mu\nu}$ is needed

$$(\sigma^{\mu\nu})^{\dagger} = \left(\frac{i}{2}[\gamma^{\mu}, \gamma^{\nu}]\right)^{\dagger}$$

$$= (u_{2})^{\dagger}(\sigma^{\mu\nu})^{\dagger}(\gamma^{0})^{\dagger}u_{1}$$

$$= \frac{i}{2}([\gamma^{\mu}, \gamma^{\nu}])^{\dagger}$$

$$= \frac{i}{2}(\gamma^{\mu}\gamma^{\nu} - \gamma^{\nu}\gamma^{\mu})^{\dagger}$$

$$= \frac{i}{2}((\gamma^{\mu})^{\dagger}(\gamma^{\nu})^{\dagger} - (\gamma^{\nu})^{\dagger}(\gamma^{\mu})^{\dagger})$$

$$= \frac{i}{2}(\gamma^{0}\gamma^{\mu}\gamma^{0}\gamma^{0}\gamma^{\nu}\gamma^{0} - \gamma^{0}\gamma^{\nu}\gamma^{0}\gamma^{0}\gamma^{\mu}\gamma^{0})$$

$$= \frac{i}{2}(\gamma^{0}\gamma^{\mu}\gamma^{\nu}\gamma^{0} - \gamma^{0}\gamma^{\nu}\gamma^{\mu}\gamma^{0})$$

$$= \frac{i}{2}((-1)^{2}\gamma^{\mu}\gamma^{\nu} - (-1)^{2}\gamma^{\nu}\gamma^{\mu})$$

$$= \frac{i}{2}(\gamma^{\mu}\gamma^{\nu} - \gamma^{\nu}\gamma^{\mu})$$

$$= \sigma^{\mu\nu}$$

$$(-35)$$

After showing $(\sigma^{\mu\nu})^{\dagger} = \sigma^{\mu\nu}$ is true it is trivial to show $(\overline{u}_1 \sigma^{\mu\nu} u_2)^* = \overline{u}_2 \sigma^{\mu\nu} u_1$ We let $B^{\mu\nu} = \overline{u}_1 \sigma^{\mu\nu} u_2$

$$\Rightarrow (B^{\mu\nu})^* = (B^{\mu\nu})^{\dagger}, \qquad (-35)$$

$$= (\overline{u}_1 \sigma^{\mu\nu} u_2)^{\dagger}, \qquad (-35)$$

$$= ((u_1)^{\dagger} \gamma^0 \sigma^{\mu\nu} u_2)^{\dagger}$$

$$= (u_2^{\dagger}) (\sigma^{\mu\nu})^{\dagger} (\gamma^0)^{\dagger} (u_1)$$

$$= (u_2^{\dagger}) \sigma^{\mu\nu} \gamma^0 (u_1)$$

$$= (u_2^{\dagger}) (\gamma^0) \sigma^{\mu\nu} (u_1)$$

$$= \overline{u}_2 \sigma^{\mu\nu} (u_1) \qquad (-39)$$

An interesting thing to note is that the expression $\overline{u}\sigma^{\mu\nu}\gamma^5u$ is not an independent quantity. Since $\gamma^5=i\gamma^0\gamma^1\gamma^2\gamma^3$ it follows that the product of $\sigma^{\mu\nu}$ and γ^5 can be simplified to an expression with only 2 γ matrices which has been defined as a pusedoscalar. For example, let $\mu=0$ and $\nu=1$:

$$\overline{u}\sigma^{01}\gamma^{5}u = \overline{u}\sigma^{01}(i\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3})u \qquad (-39)$$

$$= \overline{u}((\frac{i}{2})(\gamma^{0}\gamma^{1} - \gamma^{1}\gamma^{0}))(i\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3})u$$

$$= \overline{u}(\frac{i}{2})[\gamma^{0}\gamma^{1}(i\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3}) - \gamma^{1}\gamma^{0}(i\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3})]u$$

$$= \overline{u}(\frac{-1}{2})[\gamma^{0}\gamma^{1}\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3} - \gamma^{1}\gamma^{0}\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3})]u$$

$$= \overline{u}(\frac{-1}{2})[-\gamma^2\gamma^3 - \gamma^2\gamma^3]u$$

$$= \overline{u}(\frac{-1}{2})[-2\gamma^2\gamma^3]u$$

$$= 2\overline{u}\gamma^2\gamma^3u$$
 (-43)

This expression (because it contains two gamma matrices) is a puesdoscalar. Any values of μ and ν can be shown to be similar to this because of the communal and indentity properties of the gamma matrices.

In order to find the value of $(B^{\mu\nu})^2$ one needs to do the following:

$$(B^{\mu\nu\sigma\lambda})^{2} = \operatorname{Tr}[\overline{u}_{1}\sigma^{\mu\nu}u_{2}\overline{u}_{2}\sigma^{\sigma\lambda}u_{1}]$$

$$= \operatorname{Tr}[\overline{u}_{1}\sigma^{\mu\nu}p_{2}\sigma^{\sigma\lambda}u_{1}]$$

$$= \operatorname{Tr}[p_{1}\sigma^{\mu\nu}p_{2}\sigma^{\sigma\lambda}]$$

$$= \operatorname{Tr}[p_{\kappa}\gamma^{\kappa}\sigma^{\mu\nu}p_{\gamma}\gamma^{\gamma}\sigma^{\sigma\lambda}]$$

$$= p_{\kappa}p_{\gamma}\operatorname{Tr}[\gamma^{\kappa}\sigma^{\mu\nu}\gamma^{\gamma}\sigma^{\sigma\lambda}]$$

$$= -\frac{1}{2}p_{\kappa}p_{\gamma}\operatorname{Tr}[\gamma^{\kappa}(\gamma^{\mu}\gamma^{\nu} - \gamma^{\nu}\gamma^{\mu})\gamma^{\gamma}(\gamma^{\sigma}\gamma^{\lambda} - \gamma^{\lambda}\gamma^{\sigma})]$$

$$= -\frac{1}{2}p_{\kappa}p_{\gamma}\operatorname{Tr}[2\gamma^{\kappa}\gamma^{\mu}\gamma^{\nu}\gamma^{\gamma}\gamma^{\sigma}\gamma^{\lambda} - 2\gamma^{\kappa}\gamma^{\nu}\gamma^{\mu}\gamma^{\gamma}\gamma^{\sigma}\gamma^{\lambda}]$$

$$= -\frac{1}{2}p_{\kappa}p_{\gamma}\operatorname{Tr}[4\gamma^{\kappa}\gamma^{\mu}\gamma^{\nu}\gamma^{\gamma}\gamma^{\sigma}\gamma^{\lambda}]$$

$$= -2p_{\kappa}p_{\gamma}\operatorname{Tr}[\gamma^{\kappa}\gamma^{\gamma}] \text{ Using a similar identity as shown in eq. 23}$$

$$= -8p_{\kappa}p_{\gamma}g^{\kappa\gamma} \tag{-51}$$