Risk Exposure (RE) calculations with practical exercises.

 $(RE = Risk\ Probability\ (R) \times Impact\ (I)\ or\ Cost\ (C))$

Key Concepts

- 1. **Risk Probability (R)**: Likelihood of a risk occurring (e.g., 0.1 = 10%).
- 2. Impact (I): Severity (e.g., on a scale of 1–5) or Cost (C) in money/time.
- 3. **Risk Exposure (RE)**: Quantifies the potential loss (RE = $R \times I$ or $R \times C$).

Exercises

Exercise 1: Software Project Risks

A team identifies the following risks:

Risk	Probability (R)	Impact (I)	Cost (C)
Server outage	0.3	4	\$50,000
Data breach	0.1	5	\$200,000
Delay in dependencies	0.7	3	\$30,000

Calculate RE using both Impact (I) and Cost (C):

Which risk has the highest exposure?

Risk Mitigation Analysis

For **delay risk** (RE = \$21,000):

• If hiring an extra developer costs \$10,000 and reduces probability to 0.2, is it worth it?

Solution

1. RE (Impact) = $R \times I$

o Server outage: $0.3 \times 4 = 1.2$

Data breach: 0.1 × 5 = 0.5

o Delay: $0.7 \times 3 = 2.1$

2. RE (Cost) = $R \times C$

Server outage: 0.3 × \$50,000 = \$15,000

Data breach: 0.1 × \$200,000 = \$20,000

 \circ Delay: $0.7 \times \$30,000 = \$21,000$

Which risk has the highest exposure?

• **By Impact**: Delay (RE = 2.1).

• **By Cost**: Delay (RE = \$21,000).

Risk Mitigation Analysis

For **delay risk** (RE = \$21,000):

• If hiring an extra developer costs \$10,000 and reduces probability to 0.2, is it worth it?

 \circ New RE = 0.2 × \$30,000 = \$6,000

○ **Savings**: $$21,000 - $6,000 = $15,000 \text{ vs. } $10,000 \text{ cost} \rightarrow \text{Yes!}$

Exercise 2: IT Security Risks

A company assesses cybersecurity threats:

Risk	Probability (R)	Downtime (Hours)	Hourly Cost
Ransomware attack	0.05	48	\$10,000
Phishing leak	0.2	8	\$5,000

Calculate RE in monetary terms. Which risk should they prioritize?

solution

1. Total Cost (C) = Downtime × Hourly Cost

o Ransomware: 48 × \$10,000 = \$480,000

o Phishing: 8 × \$5,000 = \$40,000

2. $RE = R \times C$

o Ransomware: 0.05 × \$480,000 = \$24,000

o Phishing: 0.2 × \$40,000 = \$8,000

Which risk should they prioritize?

• Ransomware (higher RE despite lower probability).

Exercise 3: Construction Project

A builder evaluates risks:

Risk	Probability (R)	Delay (Days)	Daily Penalty
Bad weather	0.4	10	\$2,000
Supplier strike	0.2	30	\$5,000

Calculate RE in time and cost. Which risk is worse?

1. RE (Time) = R × Delay

○ Weather: 0.4 × 10 = 4 days

 \circ Strike: $0.2 \times 30 = 6$ days

2. RE (Cost) = $R \times (Delay \times Penalty)$

o Weather: 0.4 × (10 × \$2,000) = \$8,000

 \circ Strike: $0.2 \times (30 \times \$5,000) = \$30,000$

Which risk is worse?

• **Time**: Supplier strike (6 days).

• **Cost**: Supplier strike (\$30,000).

Exercise 4: Tech Startup Product Launch

Scenario: A SaaS startup plans to launch a new AI tool. Risks include:

Risk	Probability (R)	Financial Impact (C)	Reputation Impact (I) 1–5
Critical bug in release	0.25	\$500,000	4
Cloud provider outage	0.1	\$1,000,000	5
Competitor launches early	0.4	\$300,000	3

Tasks:

- 1. Calculate **RE (Cost)** and **RE (Impact)** for each.
- 2. The team can either:
 - o A) Invest \$100K in extra testing (reduces bug probability to 0.1).
 - B) Use multi-cloud (reduces outage impact to \$200K, but costs \$50K).
 Which mitigation is better financially?

Solution:

1. Baseline RE Calculations:

o **Bug**: RE(C) = $0.25 \times $500K = $125K$; RE(I) = $0.25 \times 4 = 1.0$

Outage: RE(C) = $0.1 \times $1M = $100K$; RE(I) = $0.1 \times 5 = 0.5$

o **Competitor**: RE(C) = $0.4 \times $300K = $120K$; RE(I) = $0.4 \times 3 = 1.2$

2. Mitigation Analysis:

- Option A: New RE(C) for bugs = $0.1 \times $500K = $50K$. Savings = \$125K \$50K = \$75K. Net benefit = \$75K \$100K = -\$25K (Not worth it).
- Option B: New RE(C) for outage = 0.1 × \$200K = \$20K. Savings = \$100K \$20K = \$80K.
 Net benefit = \$80K \$50K = +\$30K (Worth it!).

Exercise 5: Pharmaceutical Clinical Trial

Scenario: A pharma company runs a trial with:

Risk	Probability (R)	Delay (Months)	Cost per Month	Regulatory Penalty
Patient recruitment failure	0.3	6	\$2M	\$0
Regulatory audit findings	0.2	12	\$1M	\$5M

Tasks:

- 1. Calculate total RE (Cost) including delays + penalties.
- 2. If hiring a recruitment firm costs \$1M but reduces recruitment failure probability to 0.1, is it justified?

Solution:

1. Baseline RE:

• **Recruitment**: RE = $0.3 \times (6 \times \$2M) = \$3.6M$.

o Audit: RE = $0.2 \times [(12 \times $1M) + $5M] = $3.4M$.

2. Mitigation:

- \circ New RE for recruitment = 0.1 × \$12M = \$1.2M. Savings = \$3.6M \$1.2M = \$2.4M.
- Net benefit = \$2.4M \$1M = +\$1.4M (Justified!).