Mathematisches Seminar Prof. Dr. Jan Kallsen Mark Feodoria

Sheet 04

Computational Finance

Exercises for mathematical programmes

T-Exercise 12

In the Black-Scholes model, consider the self-financing trading strategy φ with initial value $V_{\varphi}(0)=1$ that always invests half of the wealth in the stock, i.e., $\varphi_1(t)=\frac{\frac{1}{2}V_{\varphi}(t)}{S(t)}$. Determine the Itō process representation of V_{φ} . In addition, compute the expectation and variance of $V_{\varphi}(t)$.

T-Exercise 13

Let W_1 , W_2 be independent standard Brownian motions. Consider a market with three assets S_0 , S_1 , S_2 , which follow the equations

$$S_0(t) = 1,$$

 $dS_1(t) = S_1(t) (3dt + dW_1(t) - dW_2(t)),$
 $dS_2(t) = S_2(t) (1dt - dW_1(t) + dW_2(t)).$

Construct an arbitrage in this market.

T-Exercise 14

A *forward start option* is an option that transforms at time T_0 to a European call option with strike $S(T_0)$, i.e., it pays off at maturity $T > T_0$ the amount

$$V(T) = (S(T) - S(T_0))^{+}$$
.

Determine the fair price and the perfect hedging strategy of the forward start option.

T-Exercise 15

Let W be a standard Brownian motion and T>0. Assume that the underlying filtration $(\mathscr{F}_t)_{t\geq 0}$ is generated by W. Let μ be an adapted process and Y an \mathscr{F}_T -measurable random variable. Show that there exist $x\in\mathbb{R}$ and a process H such that the process

$$X = x + \int_0^{\cdot} \mu(s)ds + \int_0^{\cdot} H(s)dW(s)$$

fulfills

$$X(T) = Y$$
.

Determine x and H explicitly for $\mu = 0$ and

(a)
$$Y = (W(T))^2$$
,

(b)
$$Y = \int_0^T W(s) ds$$
 and

(c)
$$Y = (W(T))^3$$
,

respectively.

Hint: Martingale representation theorem

Submit until: Thursday, 19.05.2016, 08:30 **Discussion:** in tutorials on Mon, 23.05.2016