

Programa del curso EE-0403

Análisis de circuitos II

Escuela de Ingeniería Electromecánica Carrera de Ingeniería Electromecánica (tronco común)

I parte: Aspectos relativos al plan de estudios

1. Datos generales

Nombre del curso: Análisis de circuitos II

Código: EE-0403

Tipo de curso: Teórico

Obligatorio o electivo: Obligatorio

Nº de créditos: 3

Nº horas de clase por semana: 4

Nº horas extraclase por semana: 5

Ubicación en el plan de estudios: Curso de 4^{to} semestre en Ingeniería Electromecánica (tronco co-

nún)

Requisitos: EE-0304 Laboratorio de circuitos I; EE-0303 Análisis de circuitos

I

Correquisitos: Ninguno

El curso es requisito de: EE-0702 Máquinas eléctricas I; EE-0404 Laboratorio de circuitos

Ш

Asistencia: Libre

Suficiencia: Sí

Posibilidad de reconocimiento: Sí

Aprobación y actualización del pro-

grama:

01/01/2026 en sesión de Consejo de Escuela 01-2026

2. Descripción general

El curso de *Análisis de circuitos II* aporta en el desarrollo del siguiente rasgo del plan de estudios: conocer y aplicar los principios de los circuitos eléctricos y la electrónica, y analizar su funcionamiento en las diversas aplicaciónes en ingeniería electromecánica.

Los aprendizajes que los estudiantes desarrollarán en el curso son: identificar los fundamentos de los circuitos eléctricos en corriente alterna, incluyendo sus leyes y componentes principales; aplicar métodos de análisis y simulación para la solución de circuitos eléctricos en corriente alterna; evaluar circuitos en corriente alterna para su uso en diversas aplicaciones de sistemas electromecánicos; y determinar el funcionamiento de circuitos en equipos y sistemas eléctricos en diversas aplicaciones para la identificación de su eficiencia y desempeño.

Para desempeñarse adecuadamente en este curso, los estudiantes deben poner en práctica lo aprendido en los cursos de: Análisis de circuitos I, Cálculo diferencial e integral, y Física general II.

Una vez aprobado este curso, los estudiantes podrán emplear algunos de los aprendizajes adquiridos en los cursos de: Modelado y simulación de sistemas, y Máquinas eléctricas I.

3. Objetivos

Al final del curso la persona estudiante será capaz de:

Objetivo general

 Analizar los principios de los circuitos eléctricos en corriente alterna, permitiendo su implementación en diversas aplicaciones de la ingeniería electromecánica.

Objetivos específicos

- Identificar los fundamentos de los circuitos eléctricos en corriente alterna, incluyendo sus leyes y componentes principales.
- Aplicar métodos de análisis y simulación para la solución de circuitos eléctricos en corriente alterna.
- Evaluar circuitos en corriente alterna para su uso en diversas aplicaciones de sistemas electromecánicos.
- Determinar el funcionamiento de circuitos en equipos y sistemas eléctricos en diversas aplicaciones para la identificación de su eficiencia y desempeño.

4. Contenidos

En el curso se desarrollaran los siguientes temas:

- 1. Conceptos y Definiciones
 - 1.1. Representación fasorial y vectorial de tensiones, corrientes, impedancias y admitancias
- 2. Análisis de circuitos básicos
 - 2.1. Leyes de Kirchhoff en estado estable
 - 2.2. Elementos y circuitos en serie

- 2.3. Divisor de voltaje
- 2.4. Elementos y circuitos en paralelo
- 2.5. Divisor de corriente
- 2.6. Transformación de fuentes tensión y corriente
- 2.7. Linealidad y superposición de tensiones y corrientes, cálculo de potencia
- 3. Técnicas para el análisis de circuitos complejos
 - 3.1. Análisis de mallas y supermallas
 - 3.2. Análisis de nodos y supernodos
 - 3.3. Superposición
 - 3.4. Conversión de fuentes
 - 3.5. Teoremas de Thévenin y Norton
 - 3.6. Teorema de máxima transferencia de potencia
- 4. Potencia Eléctrica
 - 4.1. Cálculo del valor efectivo
 - 4.2. Potencia instantánea y promedio
 - 4.3. Definición de potencias reactiva, aparente y real
 - 4.4. Concepto del Factor de potencia y su relación con cargas lineales
 - 4.5. Corrección del Factor de potencia
 - 4.6. Cálculo de potencia promedio en señales senoidales compuestas
- 5. Circuito monofásico trifilar
 - 5.1. Concepto de circuitos polifásicos y su extensión a redes monofásicas
 - 5.2. Definición de redes simétricas (fuentes balanceadas)
 - 5.3. Esquemas de corrección del FP en circuitos monofásicas
- 6. Respuesta en frecuencia
 - 6.1. Teorema de Euler y el concepto de frecuencia compleja
 - 6.2. Operador s en circuitos RLC y su relación con la transformada de Laplace
 - 6.3. Función de transferencia, relaciones de impedancia, admitancia y ganancias de tensión o corriente
 - 6.4. Diagramas de Bode y representación en el plano complejo
 - 6.5. Análisis de función de transferencia, ganancia, ceros y polos Atenuación y decibelios
 - 6.6. Filtros pasivos, ancho de banda, banda rechazada, frecuencia de corte, frecuencia central, factor de calidad
 - 6.7. Resonancia serie, paralelo, resonancia compuesta en circuitos RLC

7. Series de Fourier

- 7.1. Definición Relación con el valor efectivo y potencia promedio
- 7.2. Concepto de contenido armónico, efecto de filtros en el contenido armónico
- 7.3. Distorsión armónica total (THD)
- 7.4. Relación del THD con el valor efectivo y el factor de potencia desplazado (FPD) en redes a 60Hz
- 8. Redes bipuertos
 - 8.1. Concepto de redes de dos puertos
 - 8.2. Parámetros de Impedancia, Admitancia, Híbridas y Transmisión
 - 8.3. Modelado y aplicación

Il parte: Aspectos operativos

5. Metodología

En este curso, se utilizará el enfoque sistémico-complejo para la ejecución de las sesiones magistrales y se integrará la investigación práctica aplicada para las asignaciones extraclase. Esta última se implementará mediante técnicas como el estudio de casos, el aprendizaje basado en proyectos, el modelado y la simulación.

Las personas estudiantes podrán desarrollar actividades en las que:

- Recibirán clases magistrales con material audiovisual y discusión en grupo sobre conceptos fundamentales de circuitos eléctricos monofásicos en corriente alterna.
- Resolverán problemas; y validarán sus resultados utilizando simulaciones.

Este enfoque metodológico permitirá a la persona estudiante analizar los principios de los circuitos eléctricos en corriente alterna, permitiendo su implementación en diversas aplicaciones de la ingeniería electromecánica

Si un estudiante requiere apoyos educativos, podrá solicitarlos a través del Departamento de Orientación y Psicología.

6. Evaluación

La evaluación se distribuye en los siguientes rubros:

- Pruebas parciales: evaluaciones formales que miden el nivel de comprensión y aplicación de los conceptos clave del curso. Generalmente cubren una parte significativa del contenido visto hasta la fecha y pueden incluir problemas teóricos y prácticos.
- Pruebas cortas: evaluaciones breves y frecuentes que sirven para comprobar el dominio de temas específicos. Suelen ser de menor peso en la calificación final y permiten reforzar el aprendizaje continuo.
- Act. aprendizaje activo: actividad diseñada para que los estudiantes se involucren de manera directa y práctica en la construcción de su conocimiento, a través de la resolución de problemas, la discusión y la aplicación de conceptos teóricos en contextos reales o simulados.

Pruebas parciales (2)	60 %
Pruebas cortas (5)	25 %
Act. aprendizaje activo (4)	15 %
Total	100 %

De conformidad con el artículo 78 del Reglamento del Régimen Enseñanza-Aprendizaje del Instituto Tecnológico de Costa Rica y sus Reformas, en este curso la persona estudiante tiene derecho a presentar un examen de reposición si su nota luego de redondeo es 60 o 65.

7. Bibliografía

- [1] W. H. Hayt, J. E. Kemmerly, J. Phillips y S. M. Durbin, *Engineering Circuit Analysis*, 10th. McGraw Hill, 2023, ISBN: 9781264149919.
- [2] R. L. Boylestad y B. A. Olivari, *Introductory Circuit Analysis*, 14th. Pearson, 2022, ISBN: 9780137594177.
- [3] C. K. Alexander y M. N. O. Sadiku, *Fundamentals of Electric Circuits*, 7th. McGraw-Hill, 2023, ISBN: 9781260226409.
- [4] R. C. Dorf y J. A. Svoboda, Electric Circuits, 8th. Alfaomega, 2011, ISBN: 9786077072324.

8. Persona docente

8. Persona do- El curso será impartido por:

Mag. Osvaldo Guerrero Castro

Máster en Administración de la Ingeniería Electromecánica. Licenciado en Ingenieria en Mantenimiento Industrial. Instituto Tecnológico de Costa Rica. Costa Rica

Correo: oguerrero@tec.ac.cr Teléfono: 0

Oficina: 6 Escuela: Ingeniería Electromecánica Sede: Cartago

Mag. Greivin Barahona Guzmán

Maestría en Administración de la Ingeniería Electromecánica con énfasis en Administración de la Energía. Licenciado en Ingeniería en Mantenimiento Industrial. Instituto Tecnológico de Costa Rica. Costa Rica.

Correo: gbarahona@itcr.ac.cr Teléfono: 0

Oficina: 1 Escuela: Ingeniería Electromecánica Sede: Cartago

Mag. Lisandro Araya Rodriguez

Maestría en Ingeniería en Computación con énfasis en Telemática. Bachillerato en Ingeniería Electrónica Instituto Tecnológico de Costa Rica. Costa Rica

Correo: laraya@itcr.ac.cr Teléfono: 25509333

Oficina: 19 Escuela: Ingeniería Electromecánica Sede: Cartago

M.Sc. Nicolás Vaquerano Pineda

Maestría en Electrónica con énfasis en Sistemas Embebidos. Instituto Tecnológico de Costa Rica. Costa Rica

Correo: nvaquerano@itcr.ac.cr Teléfono: 25509350

Oficina: O Escuela: Ingeniería Electromecánica Sede: Cartago