得分

A. O(*n*)

A. $O(log_2n)$

一、单项选择题(X题,每题X分,共X分)

评分标准:每题回答正确得1.5分,错误不得分!

1、建立一个长度为n的有序单链表的时间复杂度为(\mathbb{C})。

2、快速排序在最坏情况下的时间复杂度为(**D**)。

B. O(1)

B. $O(nlog_2n)$

3、	对n个记录的文件进行	丁快速排序,所需要的辅	f助存储空间大致为(·	C)。
	A. O(1)	B. O(n)	C. $O(\log_2 n)$	D. $O(n^2)$
4、	的变化情况如下,则 20,15,21,25, 15,20,21,25,	建字序列(25,84,21, 所采用的排序方法是(47,27,68,35,84 35,27,47,68,84 27,35,47,68,84		20)进行排序时,序列
	A. 选择排序	B. 希尔排序	C. 归并排序	D. 快速排序
5、	设有以下四种排序方法	去,则(B)的空间复	杂度最大。	
	A. 冒泡排序	B. 快速排序	C. 堆排序	D. 希尔排序
6、	设一组初始记录关键等排序的结果为(C)	字序列(5, 2, 6, 3, 8),)。	以第一个记录关键字:	5 为基准进行一趟快速
	A. 2, 3, 5, 8, 6		B. 3, 2, 5, 8, 6	
	C. 3, 2, 5, 6, 8		D. 2, 3, 6, 5, 8	
7、	设有 n 个待排序的记录	录关键字,则在堆排序中	需要(A) 个辅助记	录单元。
	A. 1	B. n	C. nlog ₂ n	D. n ²
8、	设一组初始关键字记录的一趟快速排序结束	录关键字为(20,15,14, 后的结果为(A)。	18, 21, 36, 40, 10)	,则以 20 为基准记录
	A. 10, 15, 14, 18, 2	0, 36, 40, 21	B. 10, 15, 14, 18, 2	20, 40, 36, 21
	C. 10, 15, 14, 20, 1	8, 40, 36, 21	D. 15, 10, 14, 18, 2	20, 36, 40, 21
9、	设有 5000 个待排序的记 则用下列 (B) 方泡	己录关键字,如果需要用: 法可以达到此目的。	最快的方法选出其中最	小的 10 个记录关键字,
	A. 快速排序	B. 堆排序	C. 归并排序	D. 插入排序
10	、下列四种排序中(🛭))的空间复杂度最大。		

C. $O(n^2)$

C. O(n)

D. $O(\log_2 n)$

D. $O(n^2)$

A. 插入排序	B. 冒泡排序	C. 堆排序	D. 归并排序
11、设一组初始记录关键 趟的分配和回收才能	字序列为(345,253,67 使得初始关键字序列变		数排序需要进行(A)
A. 3	B. 4	C. 5	D. 8
12、下列四种排序中(A)的空间复杂度最大。	,	
A. 快速排序	B. 冒泡排序	C. 希尔排序	D. 堆
13、设一组初始记录关键 希尔排序结束后前 4	字序列为(50,40,95, 条记录关键字为(B)	· · · · · · · · · · · · · · · · · · ·	则以增量 d=4 的一趟
A. 40, 50, 20, 95		B. 15, 40, 60, 20	
C. 15, 20, 40, 45		D. 45, 40, 15, 20	
14、设一组初始记录关键 个长度为 2 的有序子 为(A)。		35,80,85,20,40, 法对该记录关键字序列:	
A. 15, 25, 35, 50, 2	0, 40, 80, 85, 36, 7	0	
B. 15, 25, 35, 50, 8	0, 20, 85, 40, 70, 30	6	
C. 15, 25, 35, 50, 8	0, 85, 20, 36, 40, 70	0	
D. 15, 25, 35, 50, 8	0, 20, 36, 40, 70, 8	5	
15、设一组初始记录关键 准而得到一趟快速排		40, 42, 85), 则以第一	一个记录关键字 45 为基
A. 40, 42, 45, 55, 8	0, 83	B. 42, 40, 45, 80, 8	5, 88
C. 42, 40, 45, 55, 8	0, 85	D. 42, 40, 45, 85, 5	55, 80
16、执行一趟快速排序能	够得到的序列是(A))。	
A. [41, 12, 34, 45, 2	27] 55 [72, 63]	B. [45, 34, 12, 41] 5	5 [72, 63, 27]
C. [63, 12, 34, 45, 2	27] 55 [41, 72]	D. [12, 27, 45, 41] 5	5 [34, 63, 72]
17、时间复杂度不受数据	初始状态影响而恒为O	(nlog ₂ n)的是(A)。	
A. 堆排序	B. 冒泡排序	C. 希尔排序	D. 快速排序
18、一趟排序结束后不一	定能够选出一个元素放	在其最终位置上的是(D).
A. 堆排序	B. 冒泡排序	C. 快速排序	D. 希尔排序
19、二路归并排序的时间	复杂度为(C)。		
A. O(n)	B. O(n ²)	C. O(nlog ₂ n)	D. O(1og ₂ n)

A. O(n)	B. $O(nlog_2n)$	C. $O(n^2)$	D. O(1og ₂ n)					
22、下列各种排序算法中平均时间复杂度为 $O(n^2)$ 是(D)。								
A. 快速排序	B. 堆排序	C. 归并排序	D. 冒泡排序					
23、设一组初始记录关键	23、设一组初始记录关键字的长度为 8,则最多经过(B)趟插入排序可以得到有序序列。							
A. 6	B. 7	C. 8	D. 9					
	24、设一组初始记录关键字序列为(Q, H, C, Y, P, A, M, S, R, D, F, X),则按字母升序的第一趟冒泡排序结束后的结果是(\mathbf{D})。							
A. F, H, C, D, P,	A, M, Q, R, S, Y, 2	X						
B. P. A. C. S. Q. D. F. X. R. H. M. Y								
C. A, D, C, R, F, O	Q, M, S, Y, P, H, 2	X						
D. H, C, Q, P, A,	M, S, R, D, F, X,	Y						
得分 二、填空题(<mark>X</mark>	题,每题 <mark>X</mark> 分,共 <mark>X</mark> 分	(1						
<u>评分标准:每空回</u>	答正确得1分,错误不得分	,不完全正确则酌情给分!						
1、当待排序的记录数较之序;当待排序的记录数较之序。		急定性不作要求时,宜采 L要求排序是稳定时,宜是						
2、在堆排序的过程中,为 个堆排序过程的时间	对任一分支结点进行筛选 复杂度为 <u>【4】O(nl</u> e		【3】O(log ₂ n) , 整					
3、在快速排序、堆排序、	归并排序中, <u>【5】</u>	<u>归并</u> 排序是稳定的。						
4、在堆排序的过程中,为 个堆排序过程的时间	对任一分支结点进行筛选 复杂度为		【6】O(log ₂ n) ,整					
5、在单链表上难以实现的 希尔排序 。	的排序方法有 <u>【8】</u>	· 【9】 【9】	维排序 和 【10】					
6、多重表文件和倒排文件	件都归属于 <u>【11】多</u>	关键字 _文件。						
7、快速排序的最坏时间复	夏杂度为 <u>【12】O(n²)</u>	,平均时间复杂度为_	[13] O(nlog ₂ n) .					

20、设一组初始记录关键字序列为(60,80,55,40,42,85),则以第一个关键字60为基准而

C. 42, 40, 55, 60, 80, 85 D. 42, 40, 60, 85, 55, 80

21、利用直接插入排序法的思想建立一个有序线性表的时间复杂度为(\mathbb{C})。

B. 42, 45, 55, 60, 85, 80

得到的一趟快速排序结果是(C)。

A. 40, 42, 60, 55, 80, 85

- 8、设一组初始记录关键字序列为(55, 63, 44, 38, 75, 80, 31, 56),则利用筛选法建立的初始小根堆为 【14】(31, 38, 44, 56, 75, 80, 55, 63)。
- 9、设一组初始记录关键字为(72, 73, 71, 23, 94, 16, 5),则以记录关键字 72 为基准的一趟快速排序结果为 【15】(5, 16, 71, 23, 72, 94, 73) 。
- 11、设初始记录关键字序列为(K1, K2, …, Kn),则用筛选法思想建堆必须从第 【18】n/2个元素开始进行筛选。
- 12、设一组初始记录关键字序列为(20, 18, 22, 16, 30, 19),则以 20 为中轴的一趟快速排序 结果为 【19】(19, 18, 16, 20, 30, 22) 。
- 13、设一组初始记录关键字序列为(20, 18, 22, 16, 30, 19),则根据这些初始关键字序列建成的初始小根堆为____【20】(16, 18, 19, 20, 30, 22)___。
- 14、设一组初始记录关键字序列(k1, k2, ······, kn)是堆,则对 i=1, 2, ···, n/2 而言满足的条件为 【21】**k**_i<=**k**_{2i} **&& k**_i<=**k**_{2i+1} 。
- 15、下面程序段的功能是实现冒泡排序算法,请在下划线处填上正确的语句。

- 16、简单选择排序和直接插入排序算法的平均时间复杂度为____【24】O(n²)___。
- 17、快速排序算法的空间复杂度平均情况下为<u>【25】 $O(log_2n)$ </u>,最坏的情况下为<u>【26】</u> O(n)。
- 18、设关键字序列为(Kl, K2, ···, Kn),则用筛选法建初始堆必须从第______个元素 开始进行筛选。
- 19、设有一组初始关键字序列为(24, 35, 12, 27, 18, 26), 第 1 趟插入执行元素 35 的插入, 则第 3 趟直接插入排序结束后的结果的是 【28】(12, 24, 27, 35, 18, 26) 。
- 20、设有一组初始关键字序列为(24, 35, 12, 27, 18, 26), 则第 3 耥简单选择排序结束后的

21、下面程序段的功能是实现一趟快速排序,请在下划线处填上正确的语句。

```
struct record {
     int key;
     datatype others;
};
void quickpass(struct record r[], int s, int t, int &i) {
     int j=t;
     struct record x=r[s];
     i=s;
     while(i<i) {
          while (i < j \&\& r[j].key > x.key) j = j-1;
          if (i<j) {
               r[i]=r[i];
               i=i+1;
          while ( [30] i<j && r[i].key<x.key ) i=i+1;
          if (i<j) {
               r[j]=r[i];
               j=j-1;
          }
     }
          [31] r[i]=x :
}
```

- 22、设一组初始记录关键字序列为(49, 38, 65, 97, 76, 13, 27, 50),则以 d=4 为增量的一趟希尔排序结束后的结果为____【32】(49, 13, 27, 50, 76, 38, 65, 97)__。
- 23、设一组初始记录关键字序列为(49, 38, 65, 97, 76, 13, 27, 50), 则第 4 趟直接选择排序结束后的结果为 【33】(13, 27, 38, 49, 76, 97, 65, 50)。
- 24、设一组初始关键字序列为(38, 65, 97, 76, 13, 27, 10),则第 3 趟冒泡排序结束后的结果为 【34】(38, 13, 27, 10, 65, 76, 97) 。

- 27、对一组初始关键字序列(40,50,95,20,15,70,60,45,10)进行冒泡排序,则第一趟需要进行相邻记录的比较的次数为 【37】8 ,在整个排序过程中最多需要进行

【38】8 趟排序才可以完成。

- 28、在堆排序和快速排序中,如果从平均情况下排序的速度最快的角度来考虑应最好选择 【39】快速 排序,如果从节省存储空间的角度来考虑则最好选择 【40】堆 排序。

得分

三、判断题 (X 题, 每题 X 分, 共 X 分。正确填 'T', 错误 "F"。)

评分标准: 每题回答正确得2分, 错误不得分!

- 1、冒泡排序在初始关键字序列为逆序的情况下执行的交换次数最多。 (T)
- 2、层次遍历初始堆可以得到一个有序的序列。 (F)
- 3、快速排序是排序算法中平均性能最好的一种排序。 (T)
- 4、设某堆中有 n 个结点,则在该堆中插入一个新结点的时间复杂度为 $O(\log_2 n)$ 。 (T)
- 5、设初始记录关键字基本有序,则快速排序算法的时间复杂度为 $O(nlog_2n)$ 。 (F)
- 6、希尔排序算法的时间复杂度为 $O(n^2)$ 。 (**F**)
- 7、堆是完全二叉树,完全二叉树不一定是堆。 (\mathbf{T})

得分

四、分析题 (X 题, 每题 X 分, 共 X 分)

评分标准: 每题回答完全正确得5 分, 其余按得分点给分!

1、画出向小根堆中加入数据 4, 2, 5, 8, 3 时,每加入一个数据后堆的变化。(<u>评分标准:第1点4</u> <u>分,第2点1分!</u>)

答:

2、已知一组记录的排序码为(46,79,56,38,40,80,95,24),写出对其进行快速排序的每一次划分结果。(评分标准:第1点4分,第2点1分!)

答:

划分次序	划分结果								
第一次	[24	40	38]	46	[56	80	95	79]	
第二次	24	[40	38]	46	[56	80	95	79]	
第三次	24	[38]	40	46	[56	80	95	79]	
第四次	24	38	40	46	56	[80	95	79]	
第五次	24	38	40	46	56	[79]	80	[95]	
第六次	24	38	40	46	56	79	80	95	

注:第六次,相当于【整理】过程,可要可不要。

得分

五、应用题 (X 题, 每题 X 分, 共 X 分)

评分标准: 每题回答完全正确得5分,其余按得分点给分!

1、已知一维数组中的数据为(18,12,25,53,<u>18</u>),试写出插入排序(升序)过程。并指出具有 n 个元素的插入排序的时间复杂度是多少?(评分标准: 共5分。第1点4分,第2点1分!)

答: (1) (4分)

初始关键字: [18] 12 25 53 <u> 18</u> 第一耥: 25 [12 181 53 <u> 18</u> [12 第二趟: 53 25] <u>18</u> 18 第三趟: *18* [12] 18 25 53] 25 53] 第四趟: [12 18 *18*

- (2) $O(n^2)$ (1分);
- 2、设一组初始记录关键字序列为(19, 21, 16, 5, 18, 23), 要求给出以 19 为基准的一趟快速排序结果以及第 2 趟直接选择排序后的结果。(<u>评分标准: 共5 分。第1点4 分,第2点1 分!</u>) 答: (1)(18,5,16,19,21,23)。
 - (2) (5, 16, 21, 19, 18, 23);
- 3、设一组初始记录关键字序列为(45,80,48,40,22,78),则分别给出第4趟简单选择排序和第4趟直接插入排序后的结果。(评分标准:共5分。第1点4分,第2点1分!)

答: (1) (22, 40, 45, 48, 80, 78);

(2) (22, 40, 45, 48, 80, 78);

得分

六、编程题 (X 题, 每题 X 分, 共 X 分)

评分标准:每小题回答正确得10分,不完全正确则按得分点给分。

1、阅读下列函数 arrange()。(1)写出该函数的功能;(2)写一个调用上述函数实现下列功能的算法:对一整型数组 b[n]中的元素进行重新排列,将所有负数均调整到数组的低下标端,

```
int arrange(int a[], int 1, int h, int x) { //1 和 h 分别为数据区的下界和上界
      int i,j,t;
      i=1;
      j=h;
      while(i<j) {
          while(i < j && a[j] >= x)
              j--;
          while(i < j && a[j] >= x)
              i++;
          if(i<j) {
              t = a[j];
              a[j] = a[i];
              a[i] = t;
          }
      }
      if(a[i] < x)
          return i;
      else
          return i-1;
  }
答: (1) 该函数的功能是:调整整数数组 a\Pi中的元素并返回分界值 i,使所有<x 的元素均落
在 a[1..i]上,使所有\geq x 的元素均落在 a[i+1..h]上。
int f(\text{int }b[], \text{ int }n) {
    int p,q;
                                            int f(\text{int }b[], \text{ int }n) {
                                                int p,q;
                                                p=arrange(b,0,n-1,1);
    p=arrange(b,0,n-1,0);
                                                q=arrange(b,0,p,0);
    q=arrange(b,p+1,n-1,1);
                                                return p-q;
    return q-p;
                                            }
}
2、设有一组初始记录关键字序列 (K_1, K_2, \dots, K_n), 要求设计一个算法能够在 O(n)的时间复
    杂度内将线性表划分成两部分,其中左半部分的每个关键字均小于 Ki, 右半部分的每个关
    键字均大于等于 K<sub>i</sub>。实现算法的函数原型为: void quickpass(int r[], int s, int t); (评分标准:
    第1点4分,第2点1分!)
```

答: void *quickpass*(int r[], int s, int t) {

int i=s, j=t, x=r[s];

```
while(i<j) {
         while(i < j && r[j] > x)
              j=j-1;
         if (i<j) {
              r[i]=r[j];
              i=i+1;
          }
         while(i \!\!<\!\! j \&\& r[i] \!\!<\!\! x)
              i=i+1;
         if (i<j) {
              r[j]=r[i];
              j=j-1;
         }
     }
    r[i]=x;
}
3、设计将所有奇数移到所有偶数之前的算法。实现算法的函数原型为: void quickpass(int r[], int
     s, int t); (评分标准: 第1点4分, 第2点1分!)
答: void quickpass(int r[], int s, int t) {
    int i=s, j=t, x=r[s];
     while(i<j) {
         while(i < j & r[j] \% 2 == 0)
              j=j-1;
         if (i<j) {
              r[i]=r[j];
              i=i+1;
          }
         while(i < j & r[i] \% 2 == 1)
              i=i+1;
         if (i<j) {
              r[j]=r[i];
              j=j-1;
          }
     }
     r[i]=x;
}
```

```
4、设计两个有序单链表的合并排序算法。实现算法的函数原型为: void mergelklist(lklist *ha,
    lklist *hb, lklist *hc); (评分标准: 第1点4分, 第2点1分!)
答: void mergelklist(lklist *ha, lklist *hb, lklist *hc) {
    lklist *s=hc=0;
    while(ha!=0 && hb!=0)
        if(ha->data<hb->data) {
            if(s==0)
                hc=s=ha;
            else {
                s->next=ha;
                s=ha;
            }
            ha=ha->next;
        } else {
            if(s==0)
                hc=s=hb;
            else {
                s->next=hb;
                s=hb;
            }
            hb=hb->next;
        }
    if(ha==0)
        s->next=hb;
    else
        s->next=ha;
}
5、在链式存储结构上设计直接插入排序算法。实现算法的函数原型为: void
   straightinsertsort(lklist *&head); (评分标准:第1点4分,第2点1分!)
答: void straightinsertsort(lklist *&head) {
   lklist *s,*p,*q;
   int t;
    if (head==0 \parallel head->next==0)
        return;
    else
        for(q=head,p=head->next; p!=0; p=q->next) {
            for(s=head; s!=q->next; s=s->next)
```

```
if (s->data>p->data)
                     break:
            if(s==q->next)
                q=p;
            else {
                q->next=p->next;
                p->next=s->next;
                s->next=p;
                t=p->data;
                p->data=s->data;
                s->data=t;
             }
        }
}
6、设计在链式结构上实现简单选择排序算法。实现算法的函数原型为: void
   simpleselectsorlklist(lklist *&head); (评分标准:第1点4分,第2点1分!)
答: void simpleselectsorlklist(lklist *&head) {
    lklist *p,*q,*s;
    int min,t;
    if(head==0 ||head->next==0)
        return;
    for(q=head; q!=0; q=q->next) {
        min=q->data;
        s=q;
        for(p=q->next; p!=0; p=p->next)
            if(min>p->data) {
                min=p->data;
                s=p;
             }
        if(s!=q) {
            t=s->data;
            s->data=q->data;
            q->data=t;
        }
    }
}
```

7、设计在链式存储结构上合并排序的算法。实现算法的函数原型为: void mergelklist(lklist *ha,

```
lklist *hb, lklist *&hc); (评分标准:第1点4分,第2点1分!)
答: void mergelklist(lklist *ha, lklist *hb, lklist *&hc) {
    lklist *s=hc=0;
    while(ha!=0 && hb!=0)
         if(ha->data<hb->data) {
             if(s==0)
                  hc=s=ha;
             else {
                  s->next=ha;
                  s=ha;
              }
             ha=ha->next;
         } else {
             if(s==0)
                  hc=s=hb;
             else {
                  s->next=hb;
                  s=hb;
             }
             hb=hb->next;
         }
    if(ha==0)
         s->next=hb;
    else
         s->next=ha;
}
8、设关键字序列(k_1, k_2, \cdots, k_{n-1})是堆,设计算法将关键字序列(k_1, k_2, \cdots, k_{n-1}, x)调整为堆。
    实现算法的函数原型为: void adjustheap(int r[], int n); (<u>评分标准: 第1点4分, 第2点1分</u>!)
答: void adjustheap(int r[], int n) {
    int j=n, i=j/2, temp=r[j-1];
    while (i>=1)
         if (temp > = r[i-1])
             break;
         else {
             r[j-1]=r[i-1];
             j=i;
             i=i/2;
```

```
} r[j-1]=temp; }
```