Введение в анализ данных

Лекция 14

Градиентный бустинг

Евгений Соколов

esokolov@hse.ru

НИУ ВШЭ, 2021

Градиентный бустинг в общем виде

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

• Как посчитать, куда и как сильно сдвигать $a_{N-1}(x_i)$, чтобы уменьшить ошибку?

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

- Как посчитать, куда и как сильно сдвигать $a_{N-1}(x_i)$, чтобы уменьшить ошибку?
- Посчитать производную

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

• Посчитаем производную:

$$s_i^{(N)} = -\frac{\partial}{\partial z} L(y_i, z) \bigg|_{z=a_{N-1}(x_i)}$$

• Посчитаем производную:

$$s_i^{(N)} = -\frac{\partial}{\partial z} L(y_i, z) \bigg|_{z=a_{N-1}(x_i)}$$

- Знак показывает, в какую сторону сдвигать прогноз на x_i , чтобы уменьшить ошибку композиции на нём
- Величина показывает, как сильно можно уменьшить ошибку, если сдвинуть прогноз
- Если ошибка почти не сдвинется, то нет смысла что-то менять

Градиентный бустинг

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - s_i^{(N)} \right)^2 \to \min_{b_N(x)}$$

$$\left. s_i^{(N)} = -rac{\partial}{\partial z} L(y_i,z)
ight|_{z=a_{N-1}(x_i)}$$
— сдвиги

Градиентный бустинг

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - s_i^{(N)} \right)^2 \to \min_{b_N(x)}$$

$$s_i^{(N)} = -rac{\partial}{\partial z} L(y_i, z) \Big|_{z=a_{N-1}(x_i)}$$
— сдвиги

- Как бы градиентный спуск в пространстве ответов на обучающей выборке
- Базовая модель будет делать корректировки на объектах так, чтобы как можно сильнее уменьшить ошибку композиции
- Сдвиги учитывают особенности функции потерь

Градиентный бустинг для MSE

$$s_i^{(N)} = -\frac{\partial}{\partial z} L(y_i, z) \bigg|_{z=a_{N-1}(x_i)} = -\frac{\partial}{\partial z} \frac{1}{2} (z - y_i)^2 \bigg|_{z=a_{N-1}(x_i)} =$$
$$= -(a_{N-1}(x_i) - y_i) = y_i - a_{N-1}(x_i)$$

Градиентный бустинг для MSE

$$s_i^{(N)} = -\frac{\partial}{\partial z} L(y_i, z) \bigg|_{z=a_{N-1}(x_i)} = -\frac{\partial}{\partial z} \frac{1}{2} (z - y_i)^2 \bigg|_{z=a_{N-1}(x_i)} =$$
$$= -(a_{N-1}(x_i) - y_i) = y_i - a_{N-1}(x_i)$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - \left(y_i - a_{N-1}(x_i) \right) \right)^2 \to \min_{b_N(x)}$$

Градиентный бустинг для MSE

$$s_i^{(N)} = y_i - a_{N-1}(x_i)$$

•
$$y_i = 10$$
, $a_{N-1}(x_i) = 5$: $s_i = 5$

•
$$y_i = 10$$
, $a_{N-1}(x_i) = 15$: $s_i = -5$

Градиентный бустинг для асимметричной функции

$$L(y,z) = \frac{1}{2}([z < y](z - y)^2 + 5[z \ge y](z - y)^2)$$

$$s_i^{(N)} = -\frac{\partial}{\partial z} L(y_i, z) \bigg|_{z=a_{N-1}(x_i)} =$$

$$= [z < y](y - z) + 5[z \ge y](y - z)$$

Градиентный бустинг для асимметричной функции

$$s_i^{(N)} = [z < y](y - z) + 5[z \ge y](y - z)$$

•
$$y_i = 10$$
, $a_{N-1}(x_i) = 5$: $s_i = 5$

•
$$y_i = 10$$
, $a_{N-1}(x_i) = 15$: $s_i = -25$

$$s_i^{(N)} = -\frac{\partial}{\partial z} L(y_i, z) \Big|_{z=a_{N-1}(x_i)} =$$

$$= -\frac{\partial}{\partial z} \log(1 + \exp(-y_i z)) \Big|_{z=a_{N-1}(x_i)} =$$

$$= \frac{y_i}{1 + \exp(y_i a_{N-1}(x_i))}$$

$$s_i^{(N)} = -\frac{\partial}{\partial z} L(y_i, z) \Big|_{z=a_{N-1}(x_i)} =$$

$$= -\frac{\partial}{\partial z} \log(1 + \exp(-y_i z)) \Big|_{z=a_{N-1}(x_i)} =$$

$$= \frac{y_i}{1 + \exp(y_i a_{N-1}(x_i))}$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - \frac{y_i}{1 + \exp(y_i a_{N-1}(x_i))} \right)^2 \to \min_{b_N(x)}$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - \frac{y_i}{1 + \exp(y_i a_{N-1}(x_i))} \right)^2 \to \min_{b_N(x)}$$

- Отступ большой положительный: $\frac{y_i}{1 + \exp(y_i a_{N-1}(x_i))} \approx 0$
- Отступ большой отрицательный: $\frac{y_i}{1 + \exp(y_i a_{N-1}(x_i))} \approx \pm 1$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - \frac{y_i}{1 + \exp(y_i a_{N-1}(x_i))} \right)^2 \to \min_{b_N(x)}$$

•
$$y_i = +1$$
, $a_{N-1}(x_i) = -0.7$: $s_i = 0.67$

•
$$y_i = +1$$
, $a_{N-1}(x_i) = 2$: $s_i = 0.12$

Резюме

- Чтобы учесть особенности функции потерь, можно посчитать её производные в точке текущего прогноза композиции
- Базовую модель будем обучать на эти производные (со знаком минус)

Гиперпараметры и регуляризация в бустинге

Градиентный бустинг

$$a_N(x) = a_{N-1}(x_i) + b_N(x_i)$$

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - s_i^{(N)} \right)^2 \to \min_{b_N(x)}$$

•
$$s_i^{(N)} = -rac{\partial}{\partial z}L(y_i,z)\Big|_{z=a_{N-1}(x_i)}$$
— сдвиги

Глубина деревьев

- Градиентный бустинг уменьшает смещение базовых моделей
- Разброс может увеличиться
- Поэтому в качестве базовых моделей стоит брать неглубокие деревья

Гиперпараметры

- Глубина базовых деревьев
- Число деревьев N

Проблемы бустинга

- Сдвиги показывают направление, в котором надо сдвинуть композицию на всех объектах обучающей выборки
- Базовые модели, как правило, очень простые
- Могут не справиться с приближением этого направления

Проблемы бустинга

- Сдвиги показывают направление, в котором надо сдвинуть композицию на всех объектах обучающей выборки
- Базовые модели, как правило, очень простые
- Могут не справиться с приближением этого направления
- Выход: добавлять деревья в композицию с небольшим весом

Длина шага

$$a_N(x) = a_{N-1}(x_i) + \eta b_N(x_i)$$

- η ∈ (0, 1] длина шага
- Можно сказать, что это регуляризация композиции
- Снижает вклад каждой модели в композицию
- Чем меньше η , тем больше надо деревьев

Длина шага

Рандомизация

- Можно обучать деревья на случайных подмножествах признаков
- Бустинг уменьшает смещение, поэтому итоговая композиция всё равно получится качественной
- Может снизить переобучение

 Можно обучать деревья на подмножествах объектов — способ борьбы с шумом в данных

Рандомизация

Гиперпараметры

- Глубина базовых деревьев
- Число деревьев N
- Длина шага
- Размер подвыборки для обучения
- и т.д.

Резюме

- Чтобы снизить переобучение, можно добавлять модели в композицию с небольшими весами
- Также может помочь обучение моделей на подвыборках

Вариации бустинга

ODT

- Oblivious decision trees
- Ограничение: на одном уровне дерева используется один и тот же предикат

https://catboost.ai/

Способ построения дерева

 Level-wise: дерево строится рекурсивно до тех пор, пока не достигнута максимальная глубина

https://lightgbm.readthedocs.io/

Способ построения дерева

- Level-wise: дерево строится рекурсивно до тех пор, пока не достигнута максимальная глубина
- Leaf-wise: среди текущих листьев выбирается тот, чьё разбиение сильнее всего уменьшает ошибку

Выбор лучшего порога для предиката

- $[x_j < t]$ как выбрать t?
- Вариант 1: перебрать все известные значения признака
- Вариант 2: построить гистограмму для признака и искать пороги среди границ на гистограмме
- Вариант 3: просемплировать объекты с близкими к нулю значениями производной

Регуляризация деревьев

- Базовая регуляризация: введение длины шага и семплирования признаков
- Штрафы за число листьев в дереве
- Штрафы за величину прогнозов в листьях дерева

Улучшенное обучение

- Мы обучаем деревья на сдвиги, ошибка измеряется с помощью MSE
- Когда дерево построено, можно подобрать оптимальные значения в листьях с точки зрения исходной функции потерь

Имплементации

XGBoost

• LightGBM: leaf-wise growth, поиск порогов на основе производных

CatBoost: ODT

Отбор признаков

На прошлых лекциях

- Методы машинного обучения: линейные модели, решающие деревья, случайные леса, ...
- Дано: матрица «объекты-признаки» X и ответы y
- Найти: модель a(x)

Биоинформатика

- Задачи анализа генома человека
- Признаки: характеристики генов (более 20.000)
- Маленькие выборки (расшифровка генома сложная и дорогостоящая процедура)
- Признаков существенно больше, чем объектов!

Категориальные признаки

- Пример: предсказать, понравится ли пользователю фильм
- Объект: пара «пользователь-фильм»
- Признаки: ID пользователя, ID фильма, ID жанра, ID режиссёра, ID главных актёров, ID композитора, ...
- Как много фильмов снято за всю историю?

Категориальные признаки

- Пример: предсказать, понравится ли пользователю фильм
- Объект: пара «пользователь-фильм»
- Признаки: ID пользователя, ID фильма, ID жанра, ID режиссёра, ID главных актёров, ID композитора, ...
- IMDB: >330 тысяч
- После бинарного кодирования получим миллионы признаков

Анализ текстов

- Пример: предсказание популярности фильма по тексту его сценария
- Признаки: количество вхождений каждого слова из словаря
- Сколько слов в словаре?

Анализ текстов

- Пример: предсказание популярности фильма по тексту его сценария
- Признаки: количество вхождений каждого слова из словаря
- Сотни тысяч признаков
- Если учитывать n-граммы, то десятки миллионов признаков

Анализ данных ЭЭГ

- Энцефалограф: 64 датчика, частота сигнала 256 Гц
- Объект: результаты измерений для одного пациента
- За 5 секунд измерений: 64 * 256 * 5 = 81 920 признаков

UCI Machine Learning Repository

Задача понижения размерности

- Дано: матрица «объекты-признаки» $m{X}$ размера $\ell imes m{D}$
- Найти: новую матрицу «объекты-признаки» $m{Z}$ размера $\ell imes m{d}$
- d < D

Но зачем?

- Проклятие размерности
- Шумовые признаки
- Переобучение
- Интерпретируемость модели
- Скорость работы модели
- Визуализация данных

Проклятие размерности

- Задача: классификация пончиков на вкусные и невкусные
- 100 объектов
- Цвет: 10 вариантов
- Цвет + размер: 10 * 4 = 40 вариантов
- Цвет + размер + форма: 10*4*4=160 вариантов

Проклятие размерности

- Задача: классификация пончиков на вкусные и невкусные
- 100 объектов
- Цвет + размер + форма + начинка: 10*4*4*20 = 3200 вариантов
- Цвет + размер + форма + начинка + топпинг: 10*4*4*20*10 = 32000 вариантов
- Чем больше признаков, тем меньше пончики похожи

Проклятие размерности

Плохие признаки

Информативный признак

Плохие признаки

Коррелирующие признаки

f2 — избыточный признак

Плохие признаки

f3 — шумовой признак

Шумовые признаки

- Признаки, которые никак не связаны с целевой переменной
- Но по обучающей выборке это не всегда можно понять

Шумовые признаки

Шумовые признаки

- Генерируем случайные признаки
- Если их много, то некоторые будут хорошо коррелировать с ответами

У	x_1	x_2	x_3	x_4	
-1	1.11	-0.5	0.42	0.33	
-1	1.22	-0.46	-1.98	-0.55	
1	-1.56	0.04	0.39	-1.67	
1	-0.48	1.32	0.88	-0.27	

Ускорение моделей

- Чем больше признаков, тем дольше обучаются модели
- Чем дольше обучаются модели, тем меньше экспериментов удаётся провести

Ускорение моделей

- Чем больше признаков, тем сложнее модели
- Чем сложнее модели, тем дольше они вычисляют прогнозы
- Могут быть жёсткие ограничения на скорость
- Пример: рекомендательные системы

Визуализация

-99.99	-99.99	315.7	317.45	317.5	317.26	315.86	314.93	313.2	312.44	313.33	314.67	-99.99
315.62	316.38	316.71	317.72	318.29	318.16	316.54	314.8	313.84	313.26	314.8	315.58	315.98
316.43	316.97	317.58	319.02	320.03	319.59	318.18	315.91	314.16	313.84	315	316.19	316.91
316.93	317.7	318.54	319.48	320.58	319.77	318.57	316.79	314.8	315.38	316.1	317.01	317.64
317.94	318.56	319.68	320.63	321.01	320.55	319.58	317.4	316.25	315.42	316.69	317.7	318.45
318.74	319.08	319.86	321.39	322.24	321.47	319.74	317.77	316.21	315.99	317.12	318.31	318.99
319.57	-99.99	-99.99	-99.99	322.24	321.89	320.44	318.7	316.7	316.79	317.79	318.71	-99.99
319.44	320.44	320.89	322.13	322.16	321.87	321.39	318.8	317.81	317.3	318.87	319.42	320.04
320.62	321.59	322.39	323.87	324.01	323.75	322.39	320.37	318.64	318.1	319.79	321.08	321.38
322.06	322.5	323.04	324.42	325	324.09	322.55	320.92	319.31	319.31	320.72	321.96	322.16
322.57	323.15	323.89	325.02	325.57	325.36	324.14	322.03	320.41	320.25	321.31	322.84	323.05
324	324.42	325.64	326.66	327.34	326.76	325.88	323.67	322.38	321.78	322.85	324.12	324.63
325.03	325.99	326.87	328.14	328.07	327.66	326.35	324.69	323.1	323.16	323.98	325.13	325.68
326.17	326.68	327.18	327.78	328.92	328.57	327.34	325.46	323.36	323.57	324.8	326.01	326.32
326.77	327.63	327.75	329.72	330.07	329.09	328.05	326.32	324.93	325.06	326.5	327.55	327.45
328.55	329.56	330.3	331.5	332.48	332.07	330.87	329.31	327.51	327.18	328.16	328.64	329.68
329.35	330.71	331.48	332.65	333.09	332.25	331.18	329.4	327.43	327.37	328.46	329.57	330.25
330.4	331.41	332.04	333.31	333.96	333.6	331.91	330.06	328.56	328.34	329.49	330.76	331.15
331.75	332.56	333.5	334.58	334.87	334.34	333.05	330.94	329.3	328.94	330.31	331.68	332.15
332.93	333.42	334.7	336.07	336.74	336.27	334.93	332.75	331.59	331.16	332.4	333.85	333.9
334.97	335.39	336.64	337.76	338.01	337.89	336.54	334.68	332.76	332.55	333.92	334.95	335.51
336.23	336.76	337.96	338.89	339.47	339.29	337.73	336.09	333.91	333.86	335.29	336.73	336.85
338.01	338.36	340.08	340.77	341.46	341.17	339.56	337.6	335.88	336.02	337.1	338.21	338.69
339.23	340.47	341.38	342.51	342.91	342.25	340.49	338.43	336.69	336.86	338.36	339.61	339.93
340.75	341.61	342.7	343.57	344.13	343.35	342.06	339.81	337.98	337.86	339.26	340.49	341.13
341.37	342.52	343.1	344.94	345.75	345.32	343.99	342.39	339.86	339.99	341.15	342.99	342.78
343.7	344.5	345.28	347.08	347.43	346.79	345.4	343.28	341.07	341.35	342.98	344.22	344.42
344.97	346	347.43	348.35	348.93	348.25	346.56	344.68	343.09	342.8	344.24	345.55	345.9
346.3	346.96	347.86	349.55	350.21	349.54	347.94	345.9	344.85	344.17	345.66	346.9	347.15
348.02	348.47	349.42	350.99	351.84	351.25	349.52	348.1	346.45	346.36	347.81	348.96	348.93
350.43	351.73	352.22	353.59	354.22	353.79	352.38	350.43	348.72	348.88	350.07	351.34	351.48
352.76	353.07	353.68	355.42	355.67	355.13	353.9	351.67	349.8	349.99	351.29	352.52	352.91
353.66	354.7	355.39	356.2	357.16	356.23	354.82	352.91	350.96	351.18	352.83	354.21	354.19
354.72	355.75	357.16	358.6	359.33	358.24	356.17	354.02	352.15	352.21	353.75	354.99	355.59
355.98	356.72	357.81	359.15	359.66	359.25	357.02	355	353.01	353.31	354.16	355.4	356.37
356.7	357.16	358.38	359.46	360.28	359.6	357.57	355.52	353.69	353.99	355.34	356.8	357.04
358.37	358.91	359.97	361.26	361.68	360.95	359.55	357.48	355.84	355.99	357.58	359.04	358.89
359.97	361	361.64	363.45	363.79	363.26	361.9	359.46	358.05	357.76	359.56	360.7	360.88
362.05	363.25	364.02	364.72	365.41	364.97	363.65	361.48	359.45	359.6	360.76	362.33	362.64
363.18	364	364.56	366.35	366.79	365.62	364.47	362.51	360.19	360.77	362.43	364.28	363.76
365.33	366.15	367.31	368.61	369.3	368.87	367.64	365.77	363.9	364.23	365.46	366.97	366.63
368.15	368.87	369.59	371.14	371	370.35	369.27	366.93	364.63	365.13	366.67	368.01	368.31
369.14	369.46	370.52	371.66	371.82	371.7	370.12	368.12	366.62	366.73	368.29	369.53	369.48
370.28	371.5	372.12	372.87	374.02	373.3	371.62	369.55	367.96	368.09	369.68	371.24	371.02
372.43	373.09	373.52	374.86	375.55	375.41	374.02	371.49	370.7	370.25	372.08	373.78	373.1
374.68	375.63	376.11	377.65	378.35	378.13	376.62	374.5	372.99	373.01	374.35	375.7	375.64
376.79	377.37	378.41	380.52	380.63	379.57	377.79	375.86	374.07	374.24	375.86	377.47	377.38
378.37	379.69	380.41	382.1	382.28	382.13	380.66	378.71	376.42	376.88	378.32	380.04	379.67
381.38	382.03	382.64	384.62	384.95	384.06	382.29	380.47	378.67	379.06	380.14	381.74	381.84
382.45	383.68	384.23	386.26	386.39	385.87	384.39	381.78	380.73	380.81	382.33	383.69	383.55
385.07	385.72	385.85	386.71	388.45	387.64	386.1	383.95	382.91	382.73	383.96	385.02	385.34

Визуализация

