SEMINAR 8

- 1) Fie V un K-spaţiu vectorial, $S \leq_K V$ şi $x,y \in V$. Notăm $\langle S,x \rangle = \langle S \cup \{x\} \rangle$. Să se arate că dacă $x \in V \setminus S$ şi $x \in \langle S,y \rangle$ atunci $y \in \langle S,x \rangle$.
- 2) Fie V un K-spațiu vectorial, $\alpha,\beta,\gamma\in K,\,x,y,z\in V$ astfel încât $\alpha\gamma\neq 0$ și

$$\alpha x + \beta y + \gamma z = 0.$$

Să se arate că $\langle x, y \rangle = \langle y, z \rangle$.

- 3) Formează polinoamele $f_1=3X+2, f_2=4X^2-X+1, f_3=X^3-X^2+3$ un sistem de generatori pentru \mathbb{R} -spațiul vectorial $P_3(\mathbb{R})=\{f\in\mathbb{R}[X]\mid \operatorname{grad} f\leq 3\}$? Justificați răspunsul.
- 4) Fie V,V' K-spații vectoriale, $f:V\to V'$ o transformare liniară, $A\le_K V$ și $A'\le_K V'$. Să se arate că:
 - a) $f(A) = \{f(a) \in V' \mid a \in A\} \leq_K V';$
 - b) $f^{-1}(A') = \{x \in V \mid f(x) \in A'\} \le_K V.$
- 5) În \mathbb{R} -spațiul vectorial $\mathbb{R}^{\mathbb{R}} = \{ f \mid f : \mathbb{R} \to \mathbb{R} \}$ considerăm

$$\mathbb{R}_i^{\mathbb{R}} = \{f: \mathbb{R} \to \mathbb{R} \mid f \text{ este impară}\}, \ \mathbb{R}_p^{\mathbb{R}} = \{f: \mathbb{R} \to \mathbb{R} \mid f \text{ este pară}\}.$$

Să se arate că $\mathbb{R}_i^{\mathbb{R}}$ și $\mathbb{R}_p^{\mathbb{R}}$ sunt subspații ale lui $\mathbb{R}^{\mathbb{R}}$ și că $\mathbb{R}^{\mathbb{R}} = \mathbb{R}_i^{\mathbb{R}} \oplus \mathbb{R}_p^{\mathbb{R}}$.

6) Să se arate că proprietatea unui subspațiu de a fi sumand direct este tranzitivă.