## Systematic pseudopotentials from reference eigenvalue sets for DFT calculations Additional information

Pablo Rivero<sup>a</sup>, Víctor Manuel García-Suárez<sup>b</sup>, David Pereñiguez<sup>a</sup>, Kainen Utt<sup>a</sup>, Yurong Yang<sup>a</sup>, Laurent Bellaiche<sup>a</sup>, Kyungwha Park<sup>c</sup>, Jaime Ferrer<sup>b</sup>, Salvador Barraza-Lopez<sup>a</sup>

<sup>a</sup>Department of Physics. University of Arkansas. Fayetteville AR, 72701. USA
<sup>b</sup>Departmento de Física, Universidad de Oviedo and Centro de Investigación en Nanotecnología. Oviedo, SPAIN
<sup>c</sup>Physics Department. Virginia Polytechnic Institute and State University. Blacksburg VA, 24061. USA

Keywords: A. Pseudopotentials, B. Numerical atomic orbitals, C. Density-functional theory.

We display in the following pages those elements for which we are unable to improve the electronic dispersion in a significant manner: C, Al, Si, V, Cr, Cu, Se, Nb, and Te. Please refer to Table 2 in the main text to assess the overall improvement by means of the ratio  $Y_o/Y_i$ .



Figure 1: C(Z = 6)

URL: sbarraza@uark.edu (Salvador Barraza-Lopez)







