

Linear Algebra

Samira Hossein Ghorban s.hosseinghorban@ipm.ir

Fall, 2021

(Department of CE

Decrure #3

1/15

Review: A useful lemma for self-adjoint matrices

Lemma

Let $\Lambda \in M_n(\mathbb{F})$ be a self-adjoint matrix. Then there is an invertible matrix $P \in M_n(\mathbb{F})$ such that $P^*P = I$ and

$$A = rac{P}{P} egin{bmatrix} \lambda_1 & & & \ & \ddots & & \ & & \lambda_n \end{bmatrix} rac{P^*}{},$$

where $\lambda_1, \ldots, \lambda_n$ are eigenvalues of A.

- Singular value decomposition (SVD) is a generalization of this where $A \in M_{mn}(\mathbb{F})$ does not have to be self-adjoint or even square. No restriction at all!

(Department of CE

A = Mm (F)

Matrices AA^* and A^*A share the same non-zero eigenvalues with the same algebraic multiplicities. $V \neq 0$ $AA^* = \lambda V$ $\Rightarrow A^*A (A^*V) = \lambda A^*V$

Af (a) = 2 f (a)

A) B'E M (IF) J' (A)

(AI Am)

(AI Am)

= [R Amin]

B= [F O]

D= [F NE]

det CD = det DC

MXN

Δ

Sigular Values

Lemma

• Suppose that $\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_r > 0$ where $r = \operatorname{rank} A = \operatorname{rank} A A^*$.

Non-zero eigenvalues for AA^* and A^*A

AFMmn (IF)

• Let $\sigma_i = \sqrt{\lambda_i}$ for each $1 \le i \le r$, and consider m by n matrix

$$\Sigma = \begin{bmatrix} \sigma_1 & & & & \\ & \sigma_2 & & & \\ & & \ddots & & \\ & & & \sigma_r & & \end{bmatrix}$$

We have

• We have

$$D_1 = \sum_{\bullet} \Sigma_{\bullet}^{**},$$

$$D_2 = \Sigma^* \Sigma.$$

A candidate for a decomposition of A

•
$$AA^* = UD_1U^*$$

$$A^*A = VD_2V^*$$
. کا تا

•
$$D_1 = \Sigma \Sigma^*$$

$$D_2 = \Sigma^* \Sigma$$

So, we obtain
$$AA^* = UD_1U^* = U\Sigma\Sigma^*U^* = U\Sigma\overline{V^*V}\Sigma^*U^* = U\Sigma\overline{V^*}U^*$$

$$\Lambda^*\Lambda = VI$$

$$VD_2V^* = V\Sigma^*\Sigma V^* = V\Sigma^*U^*U\Sigma V^* = (U\Sigma V^*)^*(U\Sigma V^*).$$

It suggests that

SVD

- $\lambda_{j} = 6j$... For each $1 \le j \le r$, • Write V as v

· So.

$$AA^*(\underbrace{Av_j}_{\mathbf{F}}) = \sigma_j^2 \underbrace{Av_j}_{\mathbf{F}}$$

- $AA^*(\underline{Av_j}) = \sigma_j^2 \underline{Av_j} \underbrace{ \not = \sigma_j^2}_{} \bullet \underbrace{ \not = \sigma_j^2}_{} \underbrace{ \not = \sigma_j^2}_$ eigenvector for eigenvalue σ_j^2 is $\frac{1}{\|Av_i\|}Av_j$.
- Write U as $\begin{bmatrix} u_1 & \cdots & u_m \end{bmatrix}$. So, $\frac{u_j}{u_j} = \frac{1}{Av_j} \begin{bmatrix} Av_j \end{bmatrix}$
- Also, $||Av_j||^2 = \frac{v_j^* A^* A v_j}{v_j^* + v_j^*} = \sigma_j^2 ||v_j||^2 = \sigma_j^2$, so $||Av_j|| = \sigma_j$.

The **pseudo-inverse** of A is defined as

$$A^{\dagger} = V \Sigma^{\dagger} U^*.$$

 A^{\dagger} fulfills the role of A^{-1} , "as far as possible."

(Department of CE)

Lecture #30

10 / 17

For singular matrix A^*A

- Let $x^{\dagger} := V^* \Sigma^+ Ub = A^{\dagger}b$:
- This x^{\dagger} is a solution for $A^*Ax = A^*b$

$$A^*Ax^{\dagger} = \underbrace{A^*A}A^{\dagger}b$$

$$= \underbrace{V\Sigma^*}U^*U\Sigma V^*V\Sigma^{\dagger}U^*b$$

$$= V\Sigma^*\Sigma\Sigma^{\dagger}U^*b$$

$$= V\Sigma^*U^*b$$

$$= A^*b.$$

• Also, we show that $\underline{x^\dagger} = V^* \Sigma^\top U b = A^\dagger b \in \arg\min_x \|b - Ax\|$.

(Department of CE

Lecture #3

-11/13

$A^{\dagger}b$ is the optimal solution of Ax = b.

- The column space of $A^{\dagger} = V \Sigma^{\dagger} U^*$ is a sub-space of a spanning space generated by the first r columns of V.
- The null space of $A^*A = V\Sigma^*\Sigma V^*$ is equal to sub-space generating by the last n-r columns of V.
- Since V is unitary,

- Assume that z is a solution of the equation system $A^*Az = A^*b$.
- We know that $\underline{A^*AA^{\dagger}b} = \underline{A^*b}$. So

$$A^*A(z - A^{\dagger}b) = 0 \Rightarrow \underline{z - A^{\dagger}b} \in \underline{N}(A^*A).$$

- Let $v = z A^{\dagger}b$. Thus $z = v + A^{\dagger}b$ where $v \in N(A^*A)$ and $A^{\dagger}b \in C(A^{\dagger})$.
- So, $||z||^2 = |v|^2 + |Ab|^2 \ge ||Ab|^2 = ||x|^{\frac{1}{2}}|$

partment of CE) Lecture #30

-12 / 15

$$A^{\dagger} = \sum_{i=1}^{4} U^{*}$$

$$C(A^{\dagger}) \leq \sum_{i=1}^{4} \sum$$

