STP - Projekt 2

Mariusz Słapek

Styczeń 2019

1 Zadanie 1 - modele drugiego rzędu

W tym zadaniu należało wyznaczyć modele drugiego rzędu dla różnych wartości parametru τ . W tym celu przetestowałem dziesięć modeli (dla $\tau \in <1,10>$). Dla każdego modelu wyznaczyłem współczynniki a następnie błąd modelu. Dane te zamieściłem w sprawozdaniu w tabelach poniżej.

Rysunek 1: $\tau {=} \; 1 \; {\rm oraz} \; \tau = 2$

Rysunek 2: $\tau=3$ oraz $\tau=4$

Rysunek 3: $\tau=5$ oraz $\tau=6$

Rysunek 4: $\tau=7$ oraz $\tau=8$

Rysunek 5: $\tau=9$ oraz $\tau=10$

b_1	b_2	a_1	a_2
-0.0169597739839256	-0.0677198645274061	1.42006582483071	-0.436327994050443
0.00993749536793905	-0.116225754835199	1.31723222907899	-0.339541121485823
-0.0261974184726626	-0.107188215347143	1.19092316960234	-0.219907807603644
-0.0501829274256712	-0.115605151814332	1.04283069586735	-0.0813174055149701
-0.0918271323394238	-0.103690864032896	0.916320051619290	0.0350777723421691
-0.125353533942336	-0.0827876308487149	0.880005021738363	0.0640181369415418
-0.137485502632036	-0.0541750570767473	0.982852292998547	-0.0389964987036716
-0.107708596298760	-0.0554515356734327	1.14758131623784	-0.200142953187540
-0.131333349514231	0.00310801229251859	1.30428403148652	-0.348519985412198
-0.0661520128264835	-0.0308418354894822	1.45878539401859	-0.496011081206014

au	błąd
1	156.329241870903
2	101.119702571644
3	76.6549427729373
4	49.6059096293665
5	31.1459940576212
6	22.0683187662911
7	27.0333296847707
8	48.8775271949442
9	84.7067181444720
10	162.482057635173

Najlepszy model otrzymałem dla τ równego 6. Nie obliczałem modeli większych niż 10, gdyż jak widzimy z tabeli wartości rosły od wartości wybranej.

Transmitancja układu jest następująca:

$$G(z) = \frac{-0.1254 * z - 0.08279}{z^7 - 0.88 * z^6 - 0.06402 * z^5}$$
 (1)

Skrypt wykorzystany w celu wykonania zadania stworzony w programie MATLAB: model.m.

2 Zadanie 2 - odpowiedź skokowa

Dla wybranego modelu (najlepszego) wyznaczyłem trajektorie, która jest odpowiedzią na skok wartości sterowania z 0 na 1.

Rysunek 6: Odpowiedź skokowa układu

Wzmocnienie statyczne jest to wartość na której ustaliła się odpowiedź skokowa. W naszym przypadku $K_{stat}=-3.7190$. Wzmocnienie to można równiez wyznaczyć licząc granice:

$$\lim_{z \to 1} G(z) \tag{2}$$

Skrypt wykorzystany w celu wykonania zadania stworzony w programie MATLAB: stepResponse.m.

3 Zadanie 3 - cyfrowy algorytm PID

Kolejnym zadaniem było dobranie parametrów metodą Zieglera-Nicholsa. Metoda ta polega na ustawieniu czasu zdwojenia (T_i) na możliwie dużą wartość (w teorii inf) $orazczasuwyprzedzenia(T_d)$ na wartość zero. Następnie wyznaczać tak K by wystąpiły oscylacje. Co widzimy na poniższych wykresach w moim modelu wartość wzmocnienia krytycznego wyniosła 1.525, natomiast okres oscylacji wynosi 19.

Rysunek 7: $K_{kr} = 1.45$

Rysunek 8: $K_{kr} = 1.6$

Rysunek 9: $K_{kr} = 1.55$

Następnie obliczyłem nastawy regulatora. Poniższe zdjęcie przedstawia wyniki regulacji metodą Zieglera-Nicholsa.

Rysunek 10: $K_{kr} = 1.525$

Rysunek 11: Wejście i wyjście obiektu na tle sygnału wartości zadanej dla metody Zieglera-Nicholsa

Niestety metoda ta nie daje satyfakcjonujących wyników. W tym celu próbowałem metodą inżynierską poprawiać regulacje. Oto efekty:

Rysunek 12: K = 5, T_i = 2.28, T_d = 9.5 (wykres po lewej) K = 5.5, T_i = 1.8, T_d = 9.5 (wykres po prawej)

Rysunek 13: K = 6, T_i = 1.5, T_d = 12 (wykres po lewej) K = 6, T_i = 2.28, T_d = 9.5 (wykres po prawej)

Rysunek 14: K = 5, $T_i = 1.6$, $T_d = 11$ (wykres po lewej) K = 5, $T_i = 1.67$, $T_d = 19$ (wykres po prawej)

Ostatnia wykres daje satyfakcjonujące wyniki - przeregulowanie w nim właściwie nie występuje (inna sprawa: trochę jest większa wartość sterowania).

Skrypt wykorzystany w celu wykonania zadania stworzony w programie MATLAB: pidSimulation.m.

4 Zadanie 4 - algorytm DMC bez ograniczeń

Przyjąłem następujące wartości w
g skryptu: D = 200 N = 100 N_u = 20 λ = 10 Skrypt wykorzystany w celu wykonania zadania stworzony w programie MATLAB: **dmcSimulation.m**.

4.1 Dobór horyzontu dynamiki D

Przy wyborze horyzontu dynami przeprowadziłem symulację dla wartości od 20 do 200 z krokiem 20. Wszystkie wykresy przedstawione są poniżej:

Rysunek 15: Przebiegi błędów regulacji oraz wydatku energetycznego w zależności od parametru ${\cal D}$

Na podstawie powyższego wykresu wybrałem D równe 60, gdyż jest to najmmniejsza wartość dająca zadowalające wyniki (dla wartości większych niż 60 były również zadowalające wyniki, nastomaist różnica pomiędzy tymi wartościami nie była duża).

Rysunek 16: Wejście i wyjście obiektu na tle sygnału wartości zadanej dla D=20

Rysunek 17: Wejście i wyjście obiektu na tle sygnału wartości zadanej dla $D=40\,$

Rysunek 18: Wejście i wyjście obiektu na tle sygnału wartości zadanej dla $D\,=\,60$

Rysunek 19: Wejście i wyjście obiektu na tle sygnału wartości zadanej dla $D=80\,$

Rysunek 20: Wejście i wyjście obiektu na tle sygnału wartości zadanej dla $D=100\,$

Rysunek 21: Wejście i wyjście obiektu na tle sygnału wartości zadanej dla $D\,=\,120$

Rysunek 22: Wejście i wyjście obiektu na tle sygnału wartości zadanej dla $D=140\,$

Rysunek 23: Wejście i wyjście obiektu na tle sygnału wartości zadanej dla $D\,=\,160$

Rysunek 24: Wejście i wyjście obiektu na tle sygnału wartości zadanej dla $D=180\,$

Rysunek 25: Wejście i wyjście obiektu na tle sygnału wartości zadanej dla D=200

4.2 Dobór horyzontu predykcji N

Analogicznie jak poprzednio wybierałem horyzont predykcji. Horyzont predykcji natomiast symulowałem dla wartości od 5 do 50 z krokiem 5 (nie wszystkie wykresy zostały zamieszczone, gdyż uznałem, iż nie jest to konieczne).

Rysunek 26: Przebiegi błędów regulacji oraz wydatku energetycznego w zależności od parametru ${\cal N}$

Na podstawie wykresów przebiegów błędów regulacji oraz wydatku energetycznego wybrałem wartość horyzontu predykcji równą 10.

Rysunek 27: Wejście i wyjście obiektu na tle sygnału wartości zadanej dla N=10

Rysunek 28: Wejście i wyjście obiektu na tle sygnału wartości zadanej dla $N=20\,$

Rysunek 29: Wejście i wyjście obiektu na tle sygnału wartości zadanej dla N=30

Rysunek 30: Wejście i wyjście obiektu na tle sygnału wartości zadanej dla N=40

Rysunek 31: Wejście i wyjście obiektu na tle sygnału wartości zadanej dla N=50

4.3 Dobrór horyzontu sterowania N_u

Analogicznie jak poprzednio wybierałem horyzont predykcji. Horyzont predykcji natomiast symulowałem dla wartości od 2 do 20 z krokiem 2 (nie wszystkie wykresy zostały zamieszczone, gdyż uznałem, iż nie jest to

konieczne).

Rysunek 32: Przebiegi błędów regulacji oraz wydatku energetycznego w zależności od parametru N_u Na podstawie wykresów wyvrałem horyzont sterowania równy 4.

Rysunek 33: Wejście i wyjście obiektu na tle sygnału wartości zadanej dla $N_u\,=\,2$

Rysunek 34: Wejście i wyjście obiektu na tle sygnału wartości zadanej dla $N_u\,=\,6$

Rysunek 35: Wejście i wyjście obiektu na tle sygnału wartości zadanej dla $N_u\,=\,10$

Rysunek 36: Wejście i wyjście obiektu na tle sygnału wartości zadanej dla $N_u\,=\,14$

Rysunek 37: Wejście i wyjście obiektu na tle sygnału wartości zadanej dla $N_u\,=\,18$

4.4 Wpływ współczynnika λ

Ostatnim etapem wyznaczania współczynników było wyznaczenie parametru λ . λ symulowałem dla wartości od 200 do 2000 z krokiem 200 (nie wszystkie wykresy zostały zamieszczone, gdyż uznałem, iż nie jest to konieczne).

Rysunek 38: Przebiegi błędów regulacji oraz wydatku energetycznego w zależności od parametru λ

Rysunek 39: Wejście i wyjście obiektu na tle sygnału wartości zadanej dla $\lambda=200$

Rysunek 40: Wejście i wyjście obiektu na tle sygnału wartości zadanej dla $\lambda=400$

Rysunek 41: Wejście i wyjście obiektu na tle sygnału wartości zadanej dla $\lambda=600$

Rysunek 42: Wejście i wyjście obiektu na tle sygnału wartości zadanej dla $\lambda=800$

Współczynnik lambda jak widzimy na szybkość regulacji. Na podstawie wykresów wybrałem wartość 400.

5 Zadanie 5 - niezmierzalne zakłócenie wyjściowe

```
Zakłócenia wprowadziłem w sposób następujący:
```

```
disturption = zeros(finish, 1);

% write value of disturption

disturption(finish/2:finish) = -1.5;

% W PETLI FOR

% y(k) model equation
  yModel(k) = coefficient(1) * u(k - tau) + coefficient(2) * u(k - tau - 1) - a(1) * yModel(k - 1)

yModel(k) = yModel(k) + disturption(k);
```

Zastosowalem różne wartości zakłóceń. Ich wartości i wejścia i wyjścia obiektu zostały przedstawione poniżej:

Rysunek 43: Wejście i wyjście obiektu na tle sygnału wartości zadanej dla zakłócenia - disturption = 0.1

Rysunek 44: Wejście i wyjście obiektu na tle sygnału wartości zadanej dla zakłócenia - disturption = 1.5

Rysunek 45: Wejście i wyjście obiektu na tle sygnału wartości zadanej zakłócenia - $disturption\,=\,5$

Rysunek 46: Wejście i wyjście obiektu na tle sygnału wartości zadanej dla zakłócenia - disturption=5

Analizując poniższe wykresy możemy zauważyć, iż algorytm reaguje na zakłócenia i próbuje ustabilizowaćm wartości. Możemy stwierdzić, iż jest on odporny na zakłócenia o podobnych wartościach.

6 Zadanie 6 - uwzględnienie ograniczeń

6.1 Ograniczenia wartości sygału sterującego

Ograniczenia wartości sygnały sterującego zostały zaimplementowane w następujący sposób:

```
limit = value; % value - wartość przeze mnie wybrana

uMax = limit;
uMin = -limit;

% W PETLI FOR

if u(k) > uMax
         u(k) = uMax;
end
if u(k) < uMin
         u(k) = uMin;
end</pre>
```


Rysunek 47: Wejście i wyjście obiektu na tle sygnału wartości zadanej dla ograniczej wartości sygnału sterującego (value=1.0)

Rysunek 48: Wejście i wyjście obiektu na tle sygnału wartości zadanej dla ograniczej wartości sygnału sterującego (value=0.5)

Rysunek 49: Wejście i wyjście obiektu na tle sygnału wartości zadanej dla ograniczej wartości sygnału sterującego (value=0.25)

Rysunek 50: Wejście i wyjście obiektu na tle sygnału wartości zadanej dla ograniczej wartości sygnału sterującego (value = 0.125)

6.2 Ograniczenia szybkości zmian sygnału sterującego

Ograniczenia wartości szybkości zmian sygnały sterującego zostały zaimplementowane w następujący sposób:

```
limit = value; % value - wartość przeze mnie wybrana
dUMax = limit;
dUMin = -limit;

% W PETLI FOR

if u(k) > dUMax
         u(k) = dUMax;
end
if u(k) < dUMin
         u(k) = dUMin;
end</pre>
```


Rysunek 51: Wejście i wyjście obiektu na tle sygnału wartości zadanej dla ograniczej szybkości zmian sygnału sterującego (0.01)

Rysunek 52: Wejście i wyjście obiektu na tle sygnału wartości zadanej dla ograniczej szybkości zmian sygnału sterującego (0.002)

Rysunek 53: Wejście i wyjście obiektu na tle sygnału wartości zadanej dla ograniczej szybkości zmian sygnału sterującego (0.0004)

6.3 Propozycja zapewniająca kompromis między szybkością regulacji a bezpiecznym przebiegiem sygnału sterującego

Na podstawie poprzednich eksperymentów mogłem dobrać tak ograniczenia, aby zarówno szybkość jak i bezpieczeństwo regulacji było należyte. Oto efekt doboru ograniczeń.

Rysunek 54: Wejście i wyjście obiektu na tle sygnału wartości zadanej dla ograniczej wartości sygnału sterującego (1.0) oraz szybkości zmian sygnału sterującego (0.008) - propozycja

7 Zadanie dodatkowe - odporność algorytmu DMC

Aby wykonać to zadanie zastosowałem ten sam model odpowiedzi skokowej, natomiast symulowany proces ma zmienione wzmocnienie (przemnożone przez parametr $\alpha = 0.2$).

Rysunek 55: Wejście i wyjście obiektu na tle sygnału wartości zadanej dla wartości parametru $~\alpha=0.2$

Rysunek 56: Wejście i wyjście obiektu na tle sygnału wartości zadanej dla wartości parametru $\alpha=0.6$

Rysunek 57: Wejście i wyjście obiektu na tle sygnału wartości zadanej dla wartości parametru $\alpha=1.4$

Rysunek 58: Wejście i wyjście obiektu na tle sygnału wartości zadanej dla wartości parametru $\alpha=1.8$

Jak widzimy regulator DMC bez ograniczeń jest odporny także na wzmocnienie nieznane dla współczynnika α z zakresu 0.2 do 1.8 (oczywiście jakość regulacji jest gorsza).