

Artificial Intelligence & Machine Learning

AI / ML - Powered EV Battery Fire Prevention System

Sudarshana Karkala

EV. Engineer, AI-Driven Battery Safety

Electric Vehicle Engineering & Development, CODE, IIT Madras

Introduction to AI & ML

What is Al?

Artificial Intelligence (AI) enables machines to mimic human intelligence.

Al includes -

- Machine Learning (ML)
- Deep Learning (DL) and
- Neural Networks

Al is transforming electric vehicles, battery technology, and fire prevention systems.

What is Machine Learning (ML)?

ML is a subset of AI where computers learn patterns from data.

Types of ML:

- Supervised Learning (Uses labeled data, e.g., temperature prediction)
- Unsupervised Learning (Finds patterns in un-labeled data, e.g., anomaly detection) 0
- Reinforcement Learning (Al learns by trial & error, e.g., optimising battery charging) 0

ML is widely used in EV Battery Management Systems (BMS).

Role of Al & ML in EV Industry

Al is used for:

- Battery Safety Monitoring (Predicting overheating, voltage spikes) 0
- **Energy Management (Optimising battery usage, charging)** 0
- Predictive Maintenance (Detecting faults before failures) 0

Al ensures safer, longer-lasting EV batteries.

Al & ML in Battery Fire Prevention

Al analyses real-time battery data to prevent fire hazards.

Al helps in:

- Thermal Runaway Prevention (Detects rising temperatures early) 0
- Anomaly Detection (Finds unusual voltage/current spikes) 0
- Predictive Failure Alerts (Al warns users before a critical fault occurs) 0

Al-powered safety improves EV reliability & consumer trust.

Supervised Learning

Uses labeled datasets to train models.

Algorithms used

- **Linear Regression**
- **Decision Trees**
- **Neural Networks.**

Steps involved:

- Collect and preprocess data.
- Split into training and testing sets.
- Train the model and evaluate accuracy.
- Deploy model for real-time monitoring.

Example:

Predicting battery temperature based on historical data.

Applications in battery management and fire prevention.

Unsupervised Learning

Finds hidden patterns in un-labeled data.

Algorithms used:

- K-Means Clustering
- **DBSCAN**
- PCA
- Steps involved:
 - Gather battery performance data.
 - Apply clustering algorithms to find anomalies.
 - Identify unusual behaviour without predefined labels.

Example:

Clustering battery behaviour into normal and faulty patterns.

Helps in early detection of potential battery failures.

Reinforcement Learning for Battery Optimisation

Al learns by interacting with the environment.

Used in Battery Management Systems (BMS) and Smart Charging Stations.

Steps involved:

- Define the reward function for efficient energy use.
- Train reinforcement learning models using simulations.
- Optimise battery performance dynamically.

Example:

Adjusting EV battery charging strategies dynamically.

Reduces risk of overcharging and extends battery lifespan

Anomaly Detection Using Al

Al can detect irregular voltage, temperature, and current fluctuations.

Techniques:

- **Auto-encoders**
- **Isolation Forest**
- **One-Class SVM**
- Steps involved:
 - Collect real-time battery sensor data.
 - Train AI to detect deviations from normal behavior.
 - Implement alerts for abnormal conditions.

Example: Identifying faulty battery cells before failure.

Al Models for Predictive Maintenance

Predict battery failure before it happens.

Uses historical battery health data to train models.

Techniques:

- Random Forest,
- Long Short-Term Memory (LSTM) Networks.

Steps involved:

- Process past battery usage and failure logs.
- Train Al to predict failure probability.
- Use predictive insights for timely maintenance.

Prevents unexpected battery fires and costly breakdowns.

Battery Thermal Runaway & Fire Causes

Understanding Battery Thermal Runaway

Thermal runaway is an uncontrolled increase in battery temperature.

Causes:

- Overcharging or Overheating (Excessive voltage or temperature rise)
- Short Circuits (Internal damage, manufacturing defects)
- Physical Damage (Accidents, punctures in battery cells)

Once started, thermal runaway leads to fire or explosion.

Real-World Battery Fire Incidents

- Tesla Model S Fire (2013): Battery caught fire after road debris damage.
- Chevrolet Bolt Recall (2020): Faulty battery packs led to multiple fire cases.
- Samsung Galaxy Note 7 (2016): Lithium-ion battery defects caused explosions.

Lessons:

Al can prevent such incidents by early fault detection.

Factors Causing Battery Fires

- High Temperature: Leads to chemical breakdown inside cells.
- Overcharging: Causes excessive heat & electrolyte breakdown.
- Manufacturing Defects: Poor design can lead to internal short circuits.
- External Damage: Punctured or crushed batteries become unstable.

Al can monitor & predict these risks, preventing failures.

How Al Prevents Battery Fires?

Al models analyse temperature, voltage, and current trends in real-time.

Al can:

- Detect voltage spikes before a short circuit occurs.
- Predict high-temperature zones and send early warnings.
- Optimise charging cycles to prevent overcharging.

Al enhances battery safety with predictive intelligence.

Industry Case Studies on Al in Battery Safety

- Tesla: Uses AI to optimise battery performance & safety.
- NIO: Al-based battery swapping & monitoring system.
- BMW: Predictive maintenance for EV battery packs.

Al is shaping the future of safe and efficient EV batteries.

Practical Al Applications in Battery Fire Prevention

Al-Powered Thermal Management

- Al models predict heat buildup in battery cells before critical failure.
- Uses real-time data from thermal sensors embedded in battery packs.
- Detects abnormal temperature increases and activates cooling systems proactively.
- Implements adaptive cooling strategies based on Al-predicted heat patterns.
- Reduces fire risk by adjusting cooling intensity dynamically.
- Example: Tesla's Al-driven thermal regulation system optimises cooling efficiency.

Al in Battery Charging Optimisation

- Al helps prevent overcharging and optimises battery lifespan.
- Uses Reinforcement Learning to adjust charging cycles based on past data.
- Al-based algorithms monitor voltage, current, and temperature during charging.
- Prevents excessive fast charging, reducing heat buildup.
- Smart Al-driven charging stations adapt based on real-time battery conditions.
- Example: NIO's Al-driven charging infrastructure optimises energy flow.

Al for Battery Fault Prediction

- Al-powered models detect early signs of battery degradation before failure.
- Uses Classification Algorithms to identify weak or faulty battery cells.
- Analyses patterns in voltage fluctuations, charge retention, and discharge cycles.
- Implements Predictive Analytics to forecast potential breakdowns.
- Helps EV manufacturers conduct preventive maintenance, reducing costs.
- Example: BMW uses Al-based battery diagnostics for early fault detection.

Al for Real-Time Anomaly Detection

- Al monitors battery health through continuous data collection.
- Detects anomalies in voltage, temperature, and current variations.
- Uses Deep Learning (Autoencoders, LSTMs) to recognise normal vs. abnormal patterns.
- Generates alerts when critical thresholds are breached.
- Al-powered dashboards provide real-time insights to operators.
- Example: Google Al's DeepMind research in anomaly detection for energy systems.

Al-Powered Predictive Maintenance for EV Batteries

- Uses Al models trained on historical battery performance data.
- Predicts remaining battery life and optimal replacement schedules.
- Implements Random Forest and LSTM-based AI models for accurate forecasting.
- Al enhances Battery Management System (BMS) reliability.
- Ensures longer battery life and reduced unexpected breakdowns.
- Example: Tesla's Al-driven predictive maintenance system.

Join Us in Creating a Fire-Free EV Future!

Looking for Strategic Partners, Pilot Customers & Investors.

Thank you

Sudarshana Karkala

EV. Engineer, AI-Driven Battery Safety

Electric Vehicle Engineering & Development, CODE, IIT Madras