Problems 1

- 1. Vector Space Identification: For each of the following, determine whether the given set V forms a vector space over the specified field F with the defined operations.
 - (a) $V = \{A \in M_{2 \times 2}(\mathbb{R}) \mid \det(A) \neq 0\}$ (all 2×2 invertible matrices with real entries)
 - (b) $V = P_n(\mathbb{R})$ (all polynomials with real coefficients of degree exactly n, where $n \geq 1$)
 - (c) $V = \{(x, y, z) \in \mathbb{R}^3 \mid y = 2x \text{ and } z = 3x\}$ (the set of vectors in \mathbb{R}^3 that lie on the line passing through the origin defined by y = 2x and z = 3x)
- 2. Statement P: $\forall v \in V, \exists v' \in V \text{ such that } v + v' = \theta.$
 - Statement Q: $\exists v' \in V \text{ such that } \forall v \in V, v + v' = \theta.$

Is statement \mathbf{P} and \mathbf{Q} are equivalent?

- 3. Prove the following
 - (a) Additive inverse is unique.
 - (b) Scalar zero times any vector is zero vector. $(0 * v = \theta)$
 - (c) Zero vector is unique.
 - (d) Scalar times the zero vector is Zero vector. ($\alpha*\theta=\theta)$
 - (e) (-1) * v = v'
 - (f) V + V = 2V.
 - (g) $\alpha v = \theta$ if and only if $\alpha = 0$ or $v = \theta$.

Problems 2

- 1. $\alpha v = 0$ where v is non zero vector then prove $\alpha = 0$.
- 2. If W is closed under scalar multiplication and it's non empty, then prove $0 \in W$.
- 3. If W is a non empty set and for any arbitrary $w_1, w_2 \in W$ then $w_1 + \alpha w_2 \in W$, is W is a subspace?
- 4. $W = \{(x,y) \in \mathbb{R}^2 \mid ax + by = 0\}$, is W is a subspace of \mathbb{R}^2 ?
- 5. Let $V = \mathbb{R}^n$. Is $W_{(a_1, a_2, \dots, a_n)} = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid a_1 x_1 + \dots + a_n x_n = 0\}$ a subspace of V, where $a_i \in \mathbb{R}$ for $i = 1, \dots, n$?
- 6. Let $\{V_{\alpha}\}_{{\alpha}\in I}$ be an arbitrary collection of subspaces of a vector space V. Is their intersection, $\bigcap_{{\alpha}\in I}V_{\alpha}$, also a subspace of V?
- 7. $X \neq \phi$, V = F(X, R) for $x \in X$, $W_x = \{f \in V/f(x) = 0\}$ is a subspace of V? If $A \subset X$, then $W_A = \bigcap_{a \in A} W_a$. Is W_A a subspace of V? What is W_A ?
- 8. (a) W_1, W_2 two subspace of V, is $W_1 \cup W_2$ a subspace of V?
 - (b) Prove that if $W_1 \cup W_2$ is subspace, then $W_1 \in W_2$ or $W_2 \in W_1$.
- 9. Let $V = \mathbb{R}[x]$ be the vector space of all polynomials with coefficients in \mathbb{R} . Let $W = \{f \in V/f(0) = 0\}$. Is W a subspace of V?
- 10. Is following are subspace of $M_n(\mathbb{R})$
 - (a) $W_1 = \{ A \in M_n(\mathbb{R}) \mid A = A^T \}$
 - (b) $W_2 = \{ A \in M_n(\mathbb{R}) \mid A = -A^T \}$
- 11. What is $W_1 + W_2$?

Problems 3

- 1. Let $W \subset V$ and $\{v_1,..,v_n\} \subset V$. Then the following are equivalent
 - (a) $W = LS(v_1, ..., v_n)$
 - (b) $v_1,...,v_n \in W$ and if $v_1,...,v_n \in V_1 < V$, then $W \subset V_1$. (The smallest subspace containing $v_1,...,v_n$)
 - (c) $W = \cap \{X \mid X < V, v_1, ..., v_n \in X\}$
- 2. Find the dimention of following vector spaces
 - (a) $\{a_0 + a_1 x^2 + \dots + a_n x^n = 0 \mid a_i \in \mathbb{R}\}$
 - (b) $\{(a_{ij})_{m*n} \mid a_{k1} + ... + a_{kn} = 0, k = 1, 2, ..., m\}$
 - (c) $\{(a_{ij})_{m*n} \mid a_{ij} \in \mathbb{R}, \forall i \neq j, a_{ij} = 0\}$
 - (d) $\{(a_i j)_{m*n} \mid tr(a_{ij}) = 0\}$