Kernelization A technique to design FPT algorithms

Filip Rydzi

Seminar on Algorithmics

May 3, 2017

Motivation

Vertex cover

Given a graph G=(V, E), parameter k. We are asked to find a subset $C \subseteq V$, $|C| \le k$, s.t. C touches all edges in E.

Figure: Finding vertex cover

Motivation[PS14]

- Simple algorithm to find Vertex Cover
 - ▶ $O(n^k)$ enumerates all subsets of V (of size at most k) and checks if it's a valid vertex cover
 - ▶ $O(2^k \cdot n)$ FPT algorithm
 - Which one is better? Let's assume n=1000, k=15. The first algorithm needs 10⁴⁵ steps, while the FPT only ca. 3 ⋅ 10⁷

Fixed Parameter Tractable [PS14]

- Set of problems, which can be solved in $O(f(k) \cdot n^{O(1)})$ time
- Complexity class FPT
- $FPT \subseteq NP$
- Techniques to design FPT algorithms
 - Depth-bounded search trees
 - Kernelization
 - Iterative compression
 - Treewidth

Kernelization [LWG14]

preprocessing procedure

Definition

Let π be a parametrized decision problem and (I,k) an instance of π . An algorithm A is called a kernelization algorithm for π iff

- 1 A transforms (I,k) to reduced instance (I',k') in polynomial time
- ② (I,k) is a positive instance of π iff (I',k') is a positive instance of π
- $|I'| \le g(k) \text{ and } k' \le k$

If the conditions above are satisfied, then we call π **kernelizable** and reduced instance (I',k') a **kernel**. If additionally g(k) is a polynomial function on k, then we say π admits a polynomial kernel.

A problem π is FPT $\equiv \pi$ admits a kernel

• π admits a kernel $\implies \pi$ is FPT [LWG14] Assume π admits a kernel, we reduced instance (I,k) to (I',k') in time $|I|^{O(1)}$. Now we can use an algorithm to solve (I',k') in time O(f(k')).

Now we can use an algorithm to solve (I',k') in time O(f(k')). We obtained a solution in time $|I|^{O(1)} + O(f(k')) \le O(f(k) \cdot n^{O(1)})$. Thus π is FPT

A problem π is FPT $\equiv \pi$ admits a kernel

- π is FPT $\implies \pi$ admits a kernel [Kim16] I.e. π can be solved by an FPT-algorithm A in time $O(f(k) \cdot n^c)$. Let's run A on an instance (I,k) for time n^{c+1} .
 - if A terminates and outputs YES/NO answer on (I,k), we produce constant-sized instance of π representing kernel.
 - ▶ if A doesn't terminate in time n^{c+1} , it means that $n < f(k) \implies (I,k)$ is already a kernel.

Input

Given a graph G=(V, E) and parameter k.

Reduction rules by Buss [PS14]:

- 1 If a vertex v has no neighbours, then delete v.
- If a vertex v has exactly one neighbour u, then delete u and set k'=k-1.
- If a vertex v has more than k neighbours, then delete v and set k'=k-1.

We need to show that the rules by Buss describe a valid kernelization preprocessing procedure on Vertex Cover.

- We obtain a reduced instance (G',k') √
- The positives of an instance is preserved (all reduction rules are safe).
 - If a vertex v has no neighbours, then delete v √
 Clearly a safe rule, there is no reason to include v in Vertex Cover.
 - If a vertex v has exactly one neighbour u, then delete u and set k'=k-1 √
 Safe rule, because we must include u in Vertex Cover to touch edge (u,v).

We need to show that the rules by Buss describe a valid kernelization preprocessing procedure on Vertex Cover.

- We obtain a reduced instance (G',k') √
- The positives of an instance is preserved (all reduction rules are safe).
 - ▶ If a vertex v has more than k neighbours, then delete v and set k'=k-1 \checkmark

Safe rule too since we must include v to Vertex Cover, otherwise we would need to take at least k+1 vertices to Vertex Cover.

We need to show that the rules by Buss describe a valid kernelization preprocessing procedure on Vertex Cover.

- lacktriangle We obtain a reduced instance (G',k') \checkmark
- ② The positives of an instance is preserved (all reduction rules are safe)

We need to show that the rules by Buss describe a valid kernelization preprocessing procedure on Vertex Cover.

③ $|G'| \le g(k)$ and $k' \le k$ After some time we reach a point when no reduction rule by Buss can be applied further.

This implies that each vertex has degree at most k. We distinguish the following cases:

- $|E(G)| \le k^2$: (G,k) admits a polynomial kernel
- $|E(G)| > k^2$: (G,k) is a negative instance of Vertex Cover.

We need to show that the rules by Buss describe a valid kernelization preprocessing procedure on Vertex Cover.

- We obtain a reduced instance (G',k') √
- The positives of an instance is preserved (all reduction rules are safe)

The rules by Buss describe a valid preprocessing procedure.

Other Kernelizable Problems

Planar Independent Set

Given a planar graph G=(V, E), parameter k. We are asked to find a subset $I \subseteq V$, $|I| \ge k$, s.t. no two vertices in I are adjacent in the original G.

In planar graphs there exists a vertex v with $d(v) \le 5$.

Planar Independent Set - kernelizable ?

In planar graphs there exists a vertex v with $d(v) \leq 5. \label{eq:constraint}$

For any instance of k-Planar Independent set we can always find that vertex v with $d(v) \leq 5$ and put either v or one of its neighbours in I. Then we decrement k and remove the chosen vertex and all of its neighbours from G and continue the procedure.

Until:

- we have no vertices left and k > 0 no solution
- k=0 positive instance!

Planar Independent Set - kernelizable ✓

We can formulate reduction rules:

- |V| > 6k positive instance
- $|V| \le 6k$ we have a kernel \checkmark

Planar Independent Set is a kernelizable problem. [Soc13]

Independent Set - kernelizable ?

Independent Set

Given a graph G=(V, E), parameter k. We are asked to find a subset $I \subseteq V$, $|I| \ge k$, s.t. no two vertices in I are adjacent in the original G.

Independent Set is not FPT and thus doesn't admit a kernel.

Another Kernelizable Problem

Edge Clique Cover

Given a graph G=(V, E), parameter k. We are asked to find cliques

$$C_1,...,C_k \leq G$$
 such that $\bigcup_{i=1}^k E(C_i) = E(G)$.

- Remove isolated vertices.
- ② If there is an isolated complete graph K_2 , we delete it and decrement k.
- **3** If there are vertices u, v connected by an edge and N(u) = N(v), then delete u or v.

- Remove isolated vertices.
- ② If there is an isolated complete graph K_2 , we delete it and decrement k.
- **3** If there are vertices u, v connected by an edge and N(u) = N(v), then delete u or v.
 - Is this a safe rule?

- Remove isolated vertices.
- ② If there is an isolated complete graph K_2 , we delete it and decrement k.
- 3 If there are vertices u, v connected by an edge and N(u) = N(v), then delete u or v.
 - Is this a safe rule ?
 - ▶ Yes, since any solution can be extended by adding the deleted vertex to the cliques containing its twin.

- Remove isolated vertices.
- ② If there is an isolated complete graph K_2 , we delete it and decrement k.
- 3 If there are vertices u, v connected by an edge and N(u) = N(v), then delete u or v.
- If we cannot apply rule 1) to 3).
 - If $|V| > 2^k$ left negative instance
 - ★ Having more than 2^k vertices would mean that 2 vertices are in the same sets of cliques, i.e. they are true twins.

- Remove isolated vertices.
- ② If there is an isolated complete graph K_2 , we delete it and decrement k.
- 3 If there are vertices u, v connected by an edge and N(u) = N(v), then delete u or v.
- If we cannot apply rule 1) to 3).
 - If $|V| > 2^k$ left negative instance
 - else $|V| \le 2^k$ we have a **kernel**

Conclusion

For any instance of FPT problem we can apply the kernelization pre-processing algorithm to obtain one of the following results [AK10]:

- An early detection of negative instance
- An early detection of positive instance
- An equivalent instance whose size is bounded by a function of the parameter k

References I

- Faisal N. Abu-Khzam, *A kernelization algorithm for d-hitting set*, Journal of Computer and System Sciences **76** (2010), no. 7, 524 531.
- Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier, *Data reduction and exact algorithms for clique cover*, J. Exp. Algorithmics **13** (2009), 2:2.2–2:2.15.
- Eunjung Kim.
- Y. Liu, J. Wang, and J. Guo, *An overview of kernelization algorithms for graph modification problems*, Tsinghua Science and Technology **19** (2014), no. 4, 346–357.
- A. G. A. Prasad and S. Shine, *Techniques for designing fixed* parameter algorithms, 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), July 2014, pp. 327–330.

References II

Arkadiusz Socala, Introduction. sunflower lemma.

References I

• 1 Vertex cover figure