CHEM202 Organic Chemistry

Nick Green

nick.green@otago.ac.nz, 3n11

Module 1: Spectroscopy and Characterisation

Lecture 5: 1H NMR Coupling

Why do chemists make use of deuterated solvents (e.g. CDCl₃, CD₃OD) for proton NMR?

Principles of ¹H NMR Spectroscopy cont.

- Coupling; geminal, vicinal, long range.
- First order data
- Spin systems
- Magnitude of coupling constants

Coupling

- used to establish connectivity and determine molecular geometry
 - •The (2/n + 1) rule: If a hydrogen has a set of n non-equivalent hydrogens on the same or adjacent atoms then the signal is split into (n + 1) peaks.

Coupling cont.

- Hence by observing the multiplicity n can be determined. Remember coupling is reciprocal: if A splits B by x Hz, then B also splits A by x Hz.
- The relative intensities of the multiplets, which are symmetrical about their midpoints, are given by Pascal's triangle.

Features of the ¹H NMR Spectrum

 \Rightarrow a typical 1-D ¹H-nmr spectrum is a plot of intensity vs chemical shift (δ)

For clearly resolved split signals, chemical shift is measured at the midpoint of the split structure (gray arrows)

Coupling in a nutshell

Coupling arises because neighbouring nuclides are in varying spin states

Remember the 2I+1 rule stating the number of spin states a nucleus has

Nuclei 'see' neighbouring nuclei in these varying spin states

Remember the populations of these spin states, even in the presence of a strong magnetic field, is roughly equal (ppm differences)

'Seeing' these nuclei in one or the other spin state results in slightly different resonant frequencies. The difference in frequency is the **coupling constant** (*J*).

Coupling is not observed between magnetically equivalent nuclei.

This 'seeing' or communication is a **through-bond-interaction** and typically only observed to nuclei 3 or fewer bonds away.

Splitting thus provides information on the connectivity of the nuclei causing the signals in the NMR

Simple examples

- If a there is one neighbour, with two possible spin states, two signals (a 1:1 doublet) will be observed. (shown)
- If there is one neighbour with 3 possible spin states, a 1:1:1 triplet will be observed. (not shown!)
- If there are **three** neighbours, each with two possible spin states, **four** different configurations of the neighbours are possible, and four signals will be observed in a 1:3:3:1 ratio (shown)

Coupling cont.

- Hence by observing the multiplicity n can be determined. Remember coupling is reciprocal: if A splits B by x Hz, then B also splits A by x Hz.
- The relative intensities of the multiplets, which are symmetrical about their midpoints, are given by Pascal's triangle.

Coupling cont.

For very simple compounds we do see these "text book" multiplets.

However, for most compounds this is an over simplification as the magnitude of coupling is influenced by **geometry** and the **range** of the interaction. This leads to more complex splitting patterns.

Coupling range

- geminal through two bonds (H's attached to same atom)
- vicinal through three bonds (H's attached to adjacent atoms)
- long-range through greater than three bonds

Geminal Hydrogens

Vicinal Hydrogens

Spin Systems

The analysis of connectivity in complex molecules can be simplified by identifying spin systems, that is substructures within a molecule through which coupling extends.

Nomenclature of spin systems

A different letter is used to describe each different proton environments (ie different chemical shift) within a spin system. Each letter represents a set.

- i) Protons separated by a **small chemical shift** difference (of the same order as the coupling between the relevant nuclei ie J in Hz $\sim \Delta v$ in Hz) are designated by the letters A, B. C
- ii) Protons separated by a **large chemical shift** difference ($\Delta v / J > 7$) are designated by the letters A..., X... Eg for three well-separated chemical shifts the letters A... M..., X... are used
- iii) The number of protons in each set is designated by a subscript number

Features of the ¹H NMR Spectrum

 \Rightarrow a typical 1-D ¹H-nmr spectrum is a plot of intensity vs chemical shift (δ)

1st Order Analysis

If Δv / J > 7 then δ and J can values can be directly read from the spectrum

- $\Delta v > J$ nuclei are said to be weakly coupled eg AX
- $\Delta v \sim J$ nuclei are said to be strongly coupled eg AB
- all first order spectra, nuclei are weakly coupled

Spin-spin coupling between two protons with very different chemical shifts.

Strongly coupled systems

In this case the mid-points of multiplets no longer reflect the true δ and the line intensities may be distorted

Analysis is usually more complicated, but some systems are easily recognised eg the AB system

- Two strongly coupled nuclei, AB system $(v_A v_B = J_{AB})$
- Observe a 4-line pattern
- symmetrical about the midpoint
- No longer 1:1 doublets!

"Center of gravity," instead of linear midpoints, for shift position location (due to "low" $\Delta v/J$ ratio).

Non 1st Order Analysis cont.

Change in an AX system spin coupling with a decreasing difference in chemical shifts and a large J value (10 Hz); the AX notation is explained in the text.

•Chemical shifts, δ_A and δ_B , are 'the centre of gravity' of each doublet. To calculate the true δ of each we need to know the absorption frequencies (v, in Hz)

$$J_{AB} = v_2 - v_1 = v_4 - v_3$$

midpoint =
$$(v_A + v_B) / 2$$

$$[= (v_2 + v_3) / 2 \text{ or } (v_1 + v_4) / 2]$$

$$v_B - v_A = [(v_4 - v_1)(v_3 - v_2)]^{1/2}$$

Intensity ratio

$$I_2/I_1 = I_3/I_4 = (v_4 - v_1)/(v_3 - v_2)$$

Magnitude of Coupling Constants

Coupling notation

Magnitude of Coupling Constants

Examples of some typical ¹H-¹H coupling constants (Hz).

What determines the magnitude of J?

a) Geminal

- hybridisation (see table of J values)
- the presence of EWGs
- addition of EWGs to the carbon causes a decrease in the observed J

b) Vicinal Coupling

Three major influences in saturated systems

- substituent effects
 - electronegative groups ⇒ J ↓
- bond lengths
 - an increase in C-C bond length ⇒ J ↓
- dihedral angle (\$\phi\$)
 - huge impact on J, yields useful conformational information

Karplus Relationship (vicinal, ³*J*)

The vicinal Karplus correlation. Relationship between dihedral angle and coupling constant for vicinal protons.

Magnitude of Coupling Constants

Examples of some typical ¹H-¹H coupling constants (Hz).

c) Long range spin-spin coupling

- commonly observed over 4 or 5 bonds eg aromatic systems, see Table of J values
- J values are typically small (0-3 Hz). Small J-values may be manifested as line broadening.

Examples of some typical ¹H-¹H coupling constants (Hz).