

Emerson Rosa, Gustavo Rodrigues, Letícia Fernandes, Hugo Jacob

PROTOCOLOS DE COMUNICAÇÃO IOT E PLATAFORMAS DE GERENCIAMENTO IOT

Trabalho de pesquisa apresentado a matéria de Aplic. De Cloud, IoT, e Indústria 4.0 em Python da Universidade Estácio de Sá de Florianópolis.

Professor: Vagner Cordeiro.

Florianópolis

15/03/2024

Lista de abreviações

IoT – Internet of Things (Internet das coisas)

HTTP – Hypertext Transfer Protocol (Protocolo de Transferência de Hipertexto)

AMQP – Advanced Messaging Queue Protocol (Protocolo Avaçando de enfileiramento de mensagens)

MQTT – Message Queueing Telemetry Transport (Transporte de telemetria de enfileiramento de mensagens)

CoAP – Constrained Application Protocol (Protocolo de aplicação restrita)

DDS – Data Distribuition Service (Serviço de Distribuição de Dados)

XMPP – Extensible Messaging and Presence Protocol (Protocolo de presença de mensagens extensível)

HTML – Hypertext Markup Language (Linguagem de Marcação de Hipertexto)

TCP – Transmission Control Protocol (Protocolo de Controle de Transmissão)

UDP – User Datagram Protocol (Protocolo de Datagrama do Usuário)

IPSEC – Protocolo de segurança de IP

ACK – Aknowledgement (Confirmação)

DTLS – Datagram Transport Layer Security (Segurança da camada de transporte de datagrama)

OMG – Object Managment Group (Grupo de gerenciamento de objetos)

QoS – Quality of Service (Qualidade de serviço)

W3C - World Wide Web Consortium

API – Application Programming Interface (Interface de Programação de Aplicação)

Lista de ilustrações

Imagem 1: Explicação do protocolo referenciando a conexão cliente-servidor	. 6
Imagem 2: Explicação do protocolo mostrando a aplicação do formato das regras	. 7
Imagem 3: Exemplificação utilizando um sistema de controle de temperatura	. 7
Imagem 4: Explicação da arquitetura do protocolo COAP	. 8
Imagem 5: Exemplificação de um domínio DDS e seu funcionamento	. 8
Imagem 6: Explicação de arquitetura do protocolo XMPP	. 9
Imagem 7: Explicação da conexão WebSocket	10
Imagem 8: Demonstração do uso da plataforma AWS IOT	11
Imagem 9: Demonstração do uso da plataforma WEG Sandbox	12
Imagem 10: Demonstração do uso da plataforma Salesforce	13

Sumário

1.	INTRODUÇÃO	5
	1.1 Internet das Coisas (IoT)	5
	1.2 Protocolos IoT	5
	1.3 Plataformas de Gerenciamento IoT	5
2.	PROTOCOLOS	6
	2.1 HTTP	6
	2.2 AMQP	6
	2.3 MQTT	7
	2.4 CoAP	8
	2.5 DDS	8
	2.6 XMPP	9
	2.7 WEBSOCKET	10
3.	PLATAFORMAS IOT	11
	3.1 AWS IoT	11
	3.1.1 Software de Dispositivo	11
	3.1.2 Conectividade e Serviços de Controle	11
	3.1.3 Serviços de Análise	11
	3.2 WEG – SandBox	12
	3.2.1 Processamento de dados	12
	3.2.2 Conectividade e Monitoramento	12
	3.2.3 Análise e Automação	13
	3.3 SALESFORCE	13
	3.3.1 Automação baseada em regras	13
	3.3.2 Comunicação Cliente-Dispositivo	13
	3.3.3 Captura e Processamento de Dados em Tempo Real	14
4.	Considerações finais	15
	REFERÊNCIAS	15

1. INTRODUÇÃO

Este documento visa explorarmos os principais protocolos de comunicação utilizados em ambientes IoT, bem como as características e funcionalidades essenciais de

plataformas de gerenciamento de IoT. Analisaremos como esses elementos se complementam para criar soluções robustas e escaláveis para os desafios enfrentados na implementação e na operação de sistemas IoT. Por fim, discutiremos tendências futuras e desafios em potencial que podem moldar o cenário da IoT e influenciar a evolução dessas tecnologias.

1.1 Internet das Coisas (IoT)

A loT representa uma revolução na forma como interagimos com o mundo ao nosso redor, capacitando objetos do cotidiano a se comunicarem entre si e com sistemas de computação, criando um ambiente conectado e inteligente.

Neste contexto, os protocolos de comunicação desempenham um papel crucial, servindo como as pontes que possibilitam a troca de dados entre dispositivos IoT e plataformas de gerenciamento. Esses protocolos são responsáveis por estabelecer as regras e formatos para a transmissão eficiente e segura de informações, garantindo interoperabilidade entre diferentes dispositivos e sistemas.

Além disso, as plataformas de gerenciamento IoT desempenham um papel fundamental na viabilização e na gestão de sistemas IoT em larga escala. Essas plataformas fornecem recursos essenciais, como monitoramento, análise de dados, segurança e automação, permitindo que organizações e usuários finais extraiam informações valiosas e tomem decisões baseadas nos dados coletados pelos dispositivos IoT.

1.2 Protocolos IoT

A essência da IoT reside na capacidade dos dispositivos de coletar, transmitir e processar dados de forma autônoma, criando assim um ecossistema digital que responde às necessidades e às demandas do mundo real. Por trás dessa façanha tecnológica estão os protocolos de comunicação, que servem como a espinha dorsal da Internet das Coisas (IoT), permitindo que dispositivos conectados troquem dados de forma contínua e sem interrupções. Essa comunicação é facilitada por meio de uma variedade de protocolos, cada um projetado para atender a diferentes necessidades e cenários de aplicação. No contexto deste trabalho, exploraremos uma seleção dos principais protocolos de comunicação IoT: HTTP, AMQP, MQTT, CoAP, DDS, XMPP e WebSocket.

1.3 Plataformas de Gerenciamento IoT

Na era da IoT, a capacidade de gerenciar e coordenar eficientemente um grande número de dispositivos conectados é fundamental para o sucesso e a escalabilidade das implementações IoT. É aqui que entram as plataformas de gerenciamento IoT, desempenhando um papel crucial na orquestração, monitoramento e análise dos dados gerados pelos dispositivos. Ao entender o potencial e as limitações dessas plataformas, os profissionais e pesquisadores estarão melhor equipados para aproveitar ao máximo as oportunidades oferecidas pela IoT e impulsionar a inovação em suas áreas de atuação.

2. PROTOCOLOS

2.1 HTTP

O Hypertext Transfer Protocol (HTTP) é um protocolo que permite a obtenção de recursos, como por exemplo em HTML. Ele é responsável pela troca de dados na Web e um protocolo cliente-servidor, indicando que as requisições partem por meio do destinatário.

As mensagens enviadas pelo cliente são chamadas de solicitações, e as mensagens enviadas pelo servidor em resposta ao cliente são chamadas de respostas. Com o passar do tempo o protocolo foi se aprimorando, hoje atuando na camada de aplicação e é enviado sobre o protocolo TCP.

Por ser um protocolo voltado a web, ele abrange alguns dispositivos IoT. Porém pode não ser a melhor escolha em alguns dispositivos que tenham limitações como, capacidade de processamento e energia. Para isso utiliza-se o protocolo MQTT.

Contudo o HTTP auxilia e facilita a comunicação entre dispositivos e servidores. Geralmente sendo utilizado em projetos simples.

2.2 AMQP

Protocolo de alto nível de segurança. Principais aplicações são focadas em gerenciamento de comunicação. Ele define um formato e regras para a troca de mensagens entre aplicações ou componentes de um sistema.

O AMQP opera na camada de aplicação do modelo OSI, e suas características são definidas pelas orientações de mensagens, roteamento, confiabilidade e segurança.

Embora o AMQP seja construído sobre o protocolo TCP, que opera na camada de transporte, ele adiciona suas próprias funcionalidades na camada de aplicação. Isso permite o envio e recebimento de mensagens de forma assíncrona.

O AMQP é um protocolo que permite a criação de aplicativos híbridos de várias plataformas, usando um protocolo de padrão aberto de fornecedor e implementação neutros.

2.3 MQTT

MQTT (Message Queuing Telemetry Transport) é um protocolo de comunicação amplamente utilizado para a Internet das Coisas (IoT). Ele permite a comunicação entre máquinas (Machine to Machine – M2M) de forma eficiente e confiável.

O MQTT é leve, aberto e fácil de implementar, sendo executado em TCP/IP ou outros protocolos de rede. Ele foi criado no final da década de 90, com o objetivo inicial de interligar sistemas de telemetria de oleodutos por satélite.

Em sistemas MQTT, é usado o paradigma ou conceito Publish/Subscribe, em que o Cliente pode fazer "postagens/publicações" ou captar informações, enquanto o Servidor administra o envio e o recebimento desses dados.

O protocolo foi desenvolvido para minimizar a largura de banda da rede e os requisitos de recursos de dispositivos restritos, tornando-se uma escolha popular em diversas indústrias, como automotiva, manufatura, telecomunicações, petróleo e gás, entre outras.

2.4 CoAP

O Protocolo CoAP (Constrained Application Protocol) é uma solução desenvolvida pela IETF especificamente para dispositivos com recursos limitados, como os encontrados em ambientes de Internet das Coisas (IoT). Ele opera sobre o protocolo UDP, que é conhecido por sua simplicidade e eficiência, tornando-o ideal para comunicações IoT. Além disso, o CoAP utiliza IPSEC para garantir a segurança das comunicações e emprega ACK (Acknowledgment) para assegurar a confiabilidade das mensagens.

As principais vantagens do CoAP incluem sua simplicidade, eficiência energética, baixa latência e capacidade de comunicação assíncrona. No entanto, ele também apresenta algumas desvantagens, como a falta de confiabilidade inerente ao protocolo UDP, que pode levar à perda de mensagens ou à entrega fora de ordem, e a necessidade de processamento adicional para lidar com a confirmação de mensagens. Apesar de oferecer segurança através do protocolo DTLS, a implementação desse mecanismo pode resultar em um aumento da sobrecarga do sistema.

2.5 DDS

O DDS (Data Distribution Service) é um protocolo de comunicação em tempo real desenvolvido pelo OMG (Object Management Group). Ele é totalmente distribuído e ponto a ponto, sem a necessidade de um broker centralizado. O DDS oferece alto desempenho, escalabilidade e disponibilidade, permitindo especificar contratos de Qualidade de Serviço (QoS) entre publicadores e consumidores de dados.

O DDS é usado para troca de mensagens em domínios específicos, proporcionando a associação entre publicadores e assinantes e os domínios aos quais pertencem. Ele oferece recursos avançados de segurança, autenticação, criptografia e controle de acesso.

As vantagens do DDS incluem facilidade de integração, eficiência de desempenho, segurança avançada, padrão aberto e suporte para políticas de QoS flexíveis. No entanto, ele é pesado para sistemas embarcados, não tem interface com serviços da web e consome mais largura de banda em comparação com o MQTT.

2.6 XMPP

Extensible Messaging and Presence Protocol (XMPP) é um protocolo baseado em XML (Extensible Markup Language), com uma arquitetura semelhante a outros protocolos da camada de aplicação, envolve clientes com nomes únicos comunicando-se através de servidores associados. Os servidores podem interagir para roteamento entre domínios, possuem gateways para a tradução de domínios e protocolos de mensagens estrangeiras. Suas identificações são parecidas aos endereços de e-mail, porém, incluem um nó opcional e um domínio, permitindo múltiplos logins e especificando locais de usuário.

O XMPP trabalha sobre conexões TCP de longa duração, utilizando mensagens XML para comunicação assíncrona, incluindo transmissão de mensagens de texto e informações de presenca.

Sendo baseado na arquitetura cliente-servidor e descentralizado, qualquer pessoa pode executar seu próprio servidor XMPP, porém em alguns casos, existem firewalls restritos, onde o XMPP está bloqueado, por isso não pode ser usado para aplicativos da web e usuários atrás de firewalls restritos, para superar isso, é recomendado o uso do protocolo HTPP.

XMPP architecture

2.7 WEBSOCKET

É um protocolo que permite canais de comunicação persistentes bidirecionais em conexões TCP. Ele é usado em aplicativos que se beneficiam de comunicação rápida e em tempo real, como chat, painel e aplicativos de jogos.

É projetado para ser executado em browsers e servidores web que suportem o HTML5, mas pode ser usado por qualquer cliente ou servidor de aplicativos. A API WebSocket, está sendo padronizada pelo W3C; e o protocolo WebSocket está sendo padronizado pelo IETF.

É uma tecnologia avançada que torna possível abrir uma sessão de comunicação interativa entre o navegador do usuário e um servidor. Com esta API, você pode enviar mensagens para um servidor e receber respostas orientadas a eventos sem ter que consultar o servidor para obter uma resposta. Sua única relação com o HTTP é que seu handshake é interpretado por servidores HTTP como uma requisição de upgrade.

3. PLATAFORMAS IOT

3.1 AWS IoT

A AWS IoT, uma divisão da Amazon Web Services, oferece um conjunto abrangente de serviços e soluções de Internet das Coisas (IoT) projetados para conectar e gerenciar bilhões de dispositivos em uma variedade de setores, incluindo industrial, consumo, comercial e automotivo. A plataforma permite coletar, armazenar, analisar dados e conectar dispositivos IoT a outros dispositivos e serviços na nuvem da AWS, fornecendo uma base sólida para implementar cargas de trabalho de IoT escaláveis e eficientes.

3.1.1 Software de Dispositivo

Os serviços de software de dispositivo na AWS IoT se concentram em fornecer ferramentas e recursos para desenvolver e operar dispositivos IoT na borda. Isso inclui sistemas operacionais especializados, como o FreeRTOS, que simplifica o desenvolvimento de dispositivos de borda com baixo consumo de energia, e plataformas como o AWS IoT Greengrass, que estendem a nuvem da AWS para dispositivos na borda, permitindo a execução de aplicativos inteligentes e o processamento de dados localmente.

3.1.2 Conectividade e Serviços de Controle

Essa categoria abrange serviços projetados para facilitar a conectividade dos dispositivos IoT à nuvem da AWS e fornecer recursos para gerenciar e proteger esses dispositivos. O AWS IoT Core é um exemplo fundamental aqui, permitindo que os dispositivos se conectem à nuvem da AWS de forma segura e escalável, sem a necessidade de provisionamento ou gerenciamento de servidores. Além disso, o AWS IoT Device Defender oferece recursos de segurança para proteger a frota de dispositivos IoT, monitorando continuamente e auditando configurações de segurança.

3.1.3 Serviços de Análise

Os serviços de análise da AWS IoT visam extrair insights valiosos dos dados gerados por dispositivos IoT para suportar tomadas de decisão informadas. Isso inclui serviços como o AWS IoT Analytics, que permite executar análises em volumes de dados de IoT sem a necessidade de criar uma plataforma de análise separada, facilitando a extração de insights e a tomada de decisões. Além disso, o AWS IoT Events é outro exemplo importante,

permitindo detectar e responder a eventos de sensores e aplicativos de IoT em tempo real, automatizando processos e melhorando a eficiência operacional.

3.2 WEG - SandBox

A Wegnology é uma plataforma IoT desenvolvida pela Weg, oferecendo uma gama de funcionalidades para conectar e gerenciar dispositivos inteligentes em diversos setores industriais, comerciais e de consumo. Esta solução robusta permite coletar, processar e analisar dados provenientes dos dispositivos IoT, proporcionando uma base sólida para implementações eficientes e escaláveis de IoT.

3.2.1 Processamento de dados

A plataforma simplifica o processamento de dados com sua abordagem visual e programação low-code, permitindo a criação rápida de fluxos personalizados, mesmo sem experiência profunda em programação. Seus dashboards altamente personalizáveis ajudam na monitorização de variáveis-chave para decisões informadas. Além disso, suporta aplicações multi-tenant para compartilhamento de ambiente com acesso controlado aos dados. A integração com Jupyter Notebooks permite tratamento detalhado e transformações de dados para análises e modelagem estatística.

3.2.2 Conectividade e Monitoramento

A plataforma oferece integração direta e simplificada com a nuvem WEG, eliminando a necessidade de provisionamento manual. Além disso, realiza monitoramento contínuo das configurações de segurança para garantir a proteção dos dados e conformidade com políticas de segurança. Com recursos avançados de detecção e correção de falhas em tempo real, o sistema minimiza o impacto operacional ao identificar e permitir ações corretivas imediatas.

3.2.3 Análise e Automação

A plataforma oferece recursos avançados de automação de decisões baseadas em dados, permitindo a implementação de regras de negócios, alertas automáticos e otimização de processos. Utilizando Jupyter Notebooks, é possível aplicar técnicas de machine learning para previsões, classificações e otimizações, proporcionando insights valiosos a partir dos dados coletados. Além disso, a plataforma suporta visão computacional para análise detalhada da disposição das peças e medições em tempo real, o que é especialmente útil em processos de qualidade e manutenção.

3.3 SALESFORCE

O Salesforce loT Cloud é uma plataforma robusta desenvolvida pela Salesforce, projetada para integrar a Internet das Coisas (IoT) nas operações de negócios. Esta plataforma permite que as empresas tenham acesso rápido e claro aos dados gerados por seus dispositivos IoT, diretamente de sua plataforma em nuvem, proporcionando uma série de funcionalidades essenciais para o mercado IoT.

3.3.1 Automação baseada em regras

A plataforma permite que as empresas definam regras e lógica personalizadas para automatizar respostas e fluxos de trabalho com base em condições ou eventos específicos. Com base nos insights gerados pela análise de dados, as empresas podem configurar regras e automações para acionar ações específicas, como alertas, notificações ou até mesmo ações de correção automatizada.

3.3.2 Comunicação Cliente-Dispositivo

O Salesforce IoT Cloud oferece uma comunicação bidirecional eficaz entre clientes e dispositivos IoT. Isso permite que as empresas coletem feedback em tempo real dos clientes por meio de pesquisas personalizadas e integrações com seus dispositivos IoT. Essa comunicação direta possibilita uma compreensão mais profunda das necessidades e expectativas dos clientes, permitindo respostas ágeis e personalizadas às suas demandas.

3.3.3 Captura e Processamento de Dados em Tempo Real

O Salesforce IoT Cloud tem a capacidade de capturar grandes volumes de dados gerados por dispositivos IoT em tempo real e processá-los de forma eficiente para análises instantâneas.

4. Considerações finais

À medida que concluímos esta análise sobre os protocolos de comunicação e plataformas de gerenciamento na Internet das Coisas (IoT), é evidente que estamos testemunhando uma transformação significativa no modo como interagimos com o mundo ao nosso redor. Ao longo deste trabalho, exploramos os fundamentos dos protocolos de comunicação mais utilizados na IoT, bem como as plataformas de gerenciamento, como a WEG SANDBOX, Salesforce IoT e AWS IoT.

Olhando para o futuro, identificamos tendências promissoras, como a integração da inteligência artificial e da aprendizagem de máquina nas soluções IoT, além de desafios contínuos, como a segurança dos dados e a expansão para novos setores, que moldarão o cenário da IoT e influenciarão sua evolução.

REFERÊNCIAS

Amazon Web Services, Inc. ou suas afiliadas, **AWS IoT - Internet of Things - Amazon Web Services**, 20 de novembro de 2020. Disponível em: https://aws.amazon.com/pt/iot/. Acesso em 15 de março de 2024;

Amazon Web Services, Inc. ou suas afiliadas, **Recursos do AWS IoT Core**, 20 de novembro de 2020. Disponível em: https://aws.amazon.com/pt/iot-core/features/. Acesso em 17 de março de 2024;

<u>Cem Dilmegani</u>, **Top 9 loT Communication Protocols & Their Features in 2024**, 12 de janeiro de 2024. Disponível em: https://research.aimultiple.com/iot-communication-protocol/. Acesso em 15 de março 2024;

Gabriel Duarte, **XMPP: O Protocolo que Transforma a Segurança Digital**, 01/01/2024. Disponível em: https://www.dio.me/articles/xmpp-o-protocolo-que-transforma-a-seguranca-digital. Acesso em 15 de março de 2024;

<u>lan Fette</u>, <u>Adam Bart</u>, **The WebSocket protocol draft-abarth-thewebsocketprotocol-01**, 13 de julho de 2011. Disponível em: https://datatracker.ietf.org/doc/pdf/draft-abarth-thewebsocketprotocol-01. Acesso em 31 de março de 2024;

Ignacio de Mendizábal, IoT Communication Protocols—IoT Data Protocols, 16 de junho de 2022. Disponível em: https://www.allaboutcircuits.com/technical-articles/internet-of-things-communication-protocols-iot-data-protocols/. Acesso em 15 de março de 2024;

<u>Latere Representante Newark</u>, **Protocolos de Rede sem fio de IoT**, 06 de maio de 2022. Disponível em: https://embarcados.com.br/protocolos-de-rede-sem-fio-de-iot/. Acesso em 15 de março de 2024;

MDN WEB DOCS CONTRIBUTORS, **Uma visão geral do HTTP**, 3 de agosto de 2023. Disponível em: https://developer.mozilla.org/pt-BR/docs/Web/HTTP/. Acesso em 23 de março de 2024;

MQQT.ORG CONTRIBUTORS, MQTT: The Standard for IoT Messaging, 22 de outubro de 2020. Disponível em: https://mqtt.org/. Acesso em: 20 de março de 2024

<u>Nitin Dangwal</u>, **Salesforce loT Cloud: desafios e benefícios para operações comerciais**, 13 de junho de 2023. Disponível em: https://cynoteck.com/pt/blog-post/salesforce-iot-cloud-challenges-and-benefits/. Acesso em 01 de abril de 2024;

WEG EQUIPAMENTOS ELETRICOS S/A, **Plataforma IoT WEGnology**®, novembro de 2023. Disponível em: https://static.weg.net/medias/downloadcenter/h38/hb9/WEG-PIW-brochures-50136833-pt.pdf. Acesso em 22 de março de 2024;

WEG EQUIPAMENTOS ELETRICOS S/A, **WEG Lança versão gratuita da plataforma IoT**, 02/12/2020. Disponível em: https://www.weg.net/institutional/BR/pt/news/produtos-e-solucoes/weg-lanca-versao-gratuita-da-plataforma-iot-wegnology. Acesso em 15 de março de 2024;

XMPP.ORG CONTRIBUTORS, XMPP | The universal messaging standard, 13 de janeiro de 2014. Disponível em: https://xmpp.org/. Acesso em 01 de abril de 2024

6 Colaboradores usuários Microsoft, **Suporte ao AMQP (Advanced Message Queueing Protocol) 1.0 no Barramento de Serviço**, 24 de outubro de 2023. Disponível em: https://learn.microsoft.com/pt-br/azure/service-bus-messaging/service-bus-amqp-overview. Acesso em: 23 de março de 2024;