МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Организация ЭВМ и систем»

Тема: Представление и обработка целых чисел. Организация ветвящихся процессов

Студент гр. 9383	 Камзолов Н.А.
Преподаватель	 Ефремов М.А.

Санкт-Петербург 2020

Цель работы.

Научиться представлять и обрабатывать целые числа. Познакомиться с ветвящимися процессами.

Текст задания(Вариант 4).

Разработать на языке Ассемблера программу, которая по заданным целочисленным значениям параметров a, b, i, k вычисляет: a) значения функций i1 = f1(a,b,i) и i2 = f2(a,b,i); b) значения результирующей функции res = f3(i1,i2,k), где вид функций f1 и f2 определяется из табл. 2, а функции f3 - из табл. 3 по цифрам шифра индивидуального задания (f1,f2,f3), приведенным в табл. 4. Значения a, b, i, k являются исходными данными, которые должны выбираться студентом самостоятельно и задаваться в процессе исполнения программы в режиме отладки. При этом следует рассмотреть всевозможные комбинации параметров a, b и k, позволяющие проверить различные маршруты выполнения программы, а также различные знаки параметров a и b.

$$f1 = <$$
 / 15-2*i , при a>b $f5 = <$ /20 - 4*i , при a>b $< < 6*I - 6$), при a<=b $< f4 = <$ / $min (|i1 - i2|, 2), при k<0 $< max(-6, -i2), при k>=0$$

Ход работы.

Были использованы следующие команды для выполнения данного задания:

- 1. shl логический сдвиг влево, равнозначный умножению на 2.
- 2. cmp сравнение чисел, которое меняет флаги в программе.
- 3. јтр безусловный переход по заданной метке.
- 4. jle условный переход по заданной метке, в том случае если первый аргумент <= второму аргументу.
- 5. jge условный переход по заданной метке, в том случае если первый аргумент >= второму аргументу.

- 6. jl условный переход по заданной метке, в том случае если первый аргумент < второго аргумента.
- 7. jg условный переход по заданной метке, в том случае если первый аргумент > второго аргумента.

Тестирование.

Входные данные	Ожидаемый результат	Результат работы программы
a = 1, b = 2, i = 4, k = 1	i1 = 16, i2= -18, res = 18	i1 = 16, i2= -18, res = 18
a = 2, b = 1, i = 3, k = 1	i1 = 9, i2= 8, res = -6	i1 = 9, i2= 8, res = -6
a = 2, b = 1, i = 3, k = -1	i1 = 9, i2= 8, res = 1	i1 = 9, $i2 = 8$, $res = 1$
a = 1, b = 2, i = 4, k = -1	i1 = 16, $i2 = -18$, $res = 2$	i1 = 16, i2= -18, res = 2

Выводы.

Приобретены знания о представлении и обработке целых чисел. Произошло знакомство с ветвящимися процессами.

ПРИЛОЖЕНИЕ А КОД ПРОГРАММЫ

Название файла: lab3.asm

```
DATA SEGMENT
RES
     DW
     DW
            1
Α
   DW 2
В
I DW 4
к DW -1
Ι1
      DW
             ?
Ι2
             ?
      DW
DATA ENDS
ASTACK SEGMENT STACK
      DW 16 DUP(?)
ASTACK ENDS
CODE SEGMENT
      ASSUME CS:CODE, SS:ASTACK, DS:DATA
Main PROC FAR
      MOV AX, DATA
      MOV DS, AX
F1:
      MOV AX, A
      СМР АХ, В ; СРАВНЕНИЕ А И Б
      JLE f1 SECOND ; A <= B
      MOV AX, I;
      SHL AX, 1;
      NEG AX ;
      ADD AX, 15; Помещаем в AX 15-2I
      моу 11, ах; Помещаем в 11 значение из ах
      JMP F2
F1 SECOND: ; JUMP СЮДА ЕСЛИ А <= В
```

```
MOV AX, I;
       SHL AX, 1;
       ADD AX, I;
       ADD AX, 4 ; \PiOMEЩAEM B AX 3I+4
       моч 11, ах ; Помещаем в 11 значение из ах
F2 SECOND:; ЕСЛИ A <= в
       MOV AX, I;
       SHL AX, 1;
       ADD AX, I;
       SHL AX, 1;
       NEG AX;
       ADD AX, 6; \PiOMEЩAEM B AX -61+6
       моч 12, ах ; Помещаем в 12 значение из ах
       JMP FK 4
F2:; ЈИМР СЮДА ЕСЛИ А > В
       MOV AX, I;
       SHL AX, 1;
       SHL AX, 1;
       NEG AX;
       ADD AX, 20; ПОМЕЩАЕМ В AX 20-41
       моу 12, ах ; Помещаем в 12 значение из ах
FK 4:
       MOV AX, K
       CMP AX, 0
       JGE FK4 SECOND ; K >= 0
       MOV AX, I1;
       SUB AX, 12;\PiOMEЩАЕМ B AX 11-12
       CMP AX, 0; CPABHUBAEM I1-I2 и 0
       JL F NEG ; 11-12 < 0
       JMP FK 4 FIRST FINAL
F NEG:; EСЛИ I1-I2 < 0 И НУЖЕН МОДУЛЬ
```

NEG АХ; ПЕРЕВОДИМ В ОТРИЦАТЕЛЬНОЕ (НУЖЕН МОДУЛЬ)

FK4 SECOND:; ЕСЛИ K>=0MOV AX, 12; NEG AX; Помещаем в AX -12 CMP AX, -6; CPABHUBAEM AX И -6JL FMAX ; -12 < -6MOV RES, АХ ; ПОМЕЩАЕМ АХ В РЕЗУЛЬТАТ JMP F END гмах**:;**Если −12 < −6 моv res , -6; Помещаем -6 в результат JMP F END FK 4 FIRST FINAL: смр ах, 2;Сравниваем ах и 2 JG FMIN ; |I1-I2| > 2MOV RES, AX; ПОМЕЩАЕМ В RES AX JMP F END FMIN:; ЕСЛИ | I1-I2| > 2моv res, 2; Помещаем 2 в результат JMP F_END F END: MOV AH, 4CH INT 21H Main ENDP

JMP FK 4 FIRST FINAL

LAB3.LST:

CODE ENDS

END Main

MICROSOFT (R) MACRO ASSEMBLER VERSION 5.10
21:16:2

PAGE 1-1

10/26/20

0000		DATA S	EGMENT	
0000	0000	RES	DW	?
0002	0001	A	DW	1
0004	0002	В	DW	2
0006	0004	I	DW	4
0008	FFFF	K	DW	-1
000A	0000	1 1	DW	?
000C	0000	12	DW	?
000E		DATA E	NDS	
0000		ASTACK	SEGMENI	STACK
0000	0010[DW 16 D	OUP(?)
	????			
]			
0020		ASTACK	ENDS	
0000		CODE S	EGMENT	
		ASSUI	ME CS:C	ODE, SS:ASTACK, DS:DATA
0000		Main PR	ROC FAR	
0000	B8 R		MOV AX,	DATA
0003	8E D8		MOV DS,	AX
0005		F1:		
0005	A1 0002 R		MOV AX,	A
8000	3B 06 0004 R		CMP AX,	в ; Сравнение а и б
000C	7E 10		JLE F1_	SECOND ; A <= B
000E	A1 0006 R		MOV AX,	I;
0011	D1 E0		SHL AX,	1;
0013	F7 D8		NEG AX ;	
0015	05 000F		ADD AX,	15 ; Помещаем в ах 15-
	21			
0018	A3 000A R		MOV 11,	ах ; Помещаем в і1 з�
	♦ AYE	ние из ах	X	
001B	EB 26 90		JMP F2	

001E		f1_second:	: ; јимр сюда если а <= в
001E	A1 0006 R	MOY	V AX, I;
0021	D1 E0	SH	L AX, 1 ;
0023	03 06 0006 R	ADI	DD AX, I ;
0027	05 0004	ADI	од ах, 4 ;Помещаем в ах 31+4
002A	A3 000A R	MO	v i1, ах ;Помещаем в i1 зн
		XA EN BNHBPA	
002D		F2_second:	:; ЕСЛИ А <= В
002D	A1 0006 R	MO	V AX, I;
0030	D1 E0	SH	L AX, 1;
0032	03 06 0006 R	ADI	DD AX, I;
0036	D1 E0	SH	L AX, 1;
0038	F7 D8	NE	G AX;
003A	05 0006	ADI	од ах, 6; Помещаем в ах -61+6
003D	A3 000C R	MO	v 12, ах ;Помещаем в 12 зн
		XA EN BNHBPA	
0040	EB 10 90	JM:	IP FK_4

0043		F2:; ЈИМР СЮДА ЕСЛИ А > В
0043	A1 0006 R	MOV AX, I;
0046	D1 E0	SHL AX, 1;
0048	D1 E0	SHL AX, 1;
004A	F7 D8	NEG AX;
004C	05 0014	add ax, 20;Помещаем в ax 20-4;
004F	A3 000C R	моv i2, ах ;Помещаем в i2 зн
		AMEHNE N3 AX
0052		FK_4:
0052	A1 0008 R	MOV AX, K
0055	3D 0000	CMP AX, 0
0058	7D 14	$_{\rm JGE}$ fk4_second ; k >= 0
005A	A1 000A R	MOV AX, I1;
005D	2B 06 000C R	SUB AX, $12;\Pi$ OMEЩAEM B AX $11-12$
0061	3D 0000	смр ax , 0 ; Сравниваем $i1-i2$ и
		0
0064	7C 03	JL F_NEG ; I1-I2 < 0
0066	EB 1F 90	JMP FK_4_FIRST_FINAL
0069		F_NEG:;ЕСЛИ 11-12 < 0 и нужен мод�
		Ф ль
0069	F7 D8	neg ах; Переводим в отриц
		ательное (нужен модуль)
006B	EB 1A 90	JMP FK_4_FIRST_FINAL
006E		FK4_second:; если к>=0
006E	A1 000C R	MOV AX, 12;
0071	F7 D8	neg ах; Помещаем в ах -12
0073	3D FFFA	смр ах, -6;Сравниваем ах и -
		6
0076	7C 06	JL FMAX ; −12 < −6

```
0078 A3 0000 R
                             mov res, ах;Помещаем ах в р�
                  ЗУЛЬТАТ
007B EB 1E 90
                             JMP F END
007E
                 ғмах:;Если −12 < −6
007E C7 06 0000 R FFFA моv res, -6 ;Помещаем -6 в Р�
                  ЗУЛЬТАТ
0084 EB 15 90
                              JMP F END
0087
                      FK 4 FIRST FINAL:
0087 3D 0002
                             смр ах, 2;Сравниваем ах и 2
008A 7F 06
                             JG FMIN ; |I1-I2| > 2
008C A3 0000 R
                             моv res, ах; Помещаем в res ах
008F EB 0A 90
                             JMP F END
0092
                      FMIN:; ЕСЛИ | I1-I2| > 2
0092 C7 06 0000 R 0002
                            моv res, 2;Помещаем 2 в рез
                 УЛЬТАТ
0098 EB 01 90
                             JMP F END
009B
                      F END:
009B B4 4C
                             MOV AH, 4CH
009D CD 21
                             INT 21H
009F
                      Main ENDP
                       CODE ENDS
009F
```

END Main

SEGMENTS AND GROUPS:

N A M E LEI	NGTH ALIC	GN COMBINE CLAS	S
ASTACK		A NONE	
SYMBOLS:			
N A M E Ty	PE VALUE	ATTR	
A	L WORD	0002 DATA	
В	L WORD	0004 DATA	
F1			
F1_SECOND	L NEAR	001E CODE	
F2	L NEAR	0043 CODE	
F2_SECOND	L NEAR	002D CODE	
FK4_SECOND	L NEAR	006E CODE	
FK_4	L NEAR	0052 CODE	
FK_4_FIRST_FINAL	L NEAR	0087 CODE	
FMAX	L NEAR	007E CODE	
FMIN	L NEAR	0092 CODE	
F_END	L NEAR	009B CODE	
F_NEG	L NEAR	0069 CODE	
I	L WORD	0006 DATA	
I1	L WORD	000A DATA	

12 L WORD000C DATA

	К.	•		•	•	•	•	•	•	•	•			L WOR	D	8000	DATA		
009F	MAIN	•		•	•	•		•	•		•	•	•	F PRO	С	0000	CODE :	LENGTH	=
	RES							•		•	•	•	•	L WOR	D	0000	DATA		
	@CPU			•	•							•	•	TEXT	0101	. Н			
	@FILE	ΞNZ	AME					•						TEXT	LAB3				

- 93 Source Lines
- 93 TOTAL LINES
- 27 SYMBOLS

47974 + 457236 Bytes symbol space free

@VERSION TEXT 510

- O Warning Errors
- O SEVERE ERRORS