中图分类号:R817.33

文献标识码:A

用 Excel 软件制作 ROC 曲线评价系统

吕邦泰¹,杨昌国²(1.宁波市保黎医院,浙江宁波 315031;2.宁波市临床检验中心)

美国国家临床实验室标准化委员会(NCCLS)于 1995 年批准" Receiver Operating Characteristic (ROC) 曲线用作实验室试验的临床准确性评价 '的准则^[1]。

ROC 的原意是"接收器工作特性",首先由通讯领域开始使用,故名。ROC 曲线用作检验项目的临床准确性评价其优点有:(1)确定某检验项目正常和异常的最佳分界值(Cutoffvalue);(2)评价该检验项目的临床诊断准确性(灵敏度和特异性);(3)对多项检验项目的临床准确性进行比较。

这里介绍用 Excel 软件制作 ROC 曲线评价系统的方法。举例数据来自血清脂肪酶测定的临床准确性评价^[2]。

1 ROC 曲线

1.1 打开 Excel 软件,建立一个新文件。

在 A1 栏输入;表名称。

在 A2、A3 栏合并单元格后输入:Lipase(U/L)。

在 B2、C2 栏合并单元格后输入:急性胰腺炎。

在B3 栏输入:人数。

在 C3 栏输入:累计人数。

在 D2、E2 合并单元格后输入:非急性胰腺炎。

在 D3 栏输入:人数。

在 E3 栏输入:累计人数。

在 F2、F3 栏合并单元格后输入:灵敏度(TPR)。

在 C2、C3 栏合并单元格后输入:特异性(TNR)。

在 H2、H3 栏合并单元格输入:1-特异性(FPR)。

在 A4 - A13 栏分别输入:11、21、一直到 > 401。

在 B4 - B13 栏输入:胰腺炎组各等级的频数。

在 D4 - D13 栏输入:非胰腺炎组各等级的频数。

在 C4 栏至 C12 栏分别输入:=B4+C5,依次类推,一直至=B12+C13。

在 C13 栏输入:=B13。

在 E4 栏输入:=D4。

在 E5 栏至 E13 栏分别输入:= D5 + E4,依次类推,一直至=D13+E12。

在 F4 栏到 F13 栏分别输入:= C4/B14 *100,依次类推,一直至=C13/B14 *100。

在 C4 栏到 G13 栏分别输入: = E4/D14 * 100,

依次类推,一直至 = E13/D14 *100。

在 H4 栏输入:=100 - G4 并用复制键一直复制 到 H13 栏。

1.2 输入所有的数据后,即可建立 ROC 曲线评价系统。系统会自动制表,自动计算灵敏度(真阳性率)、特异性(真阴性率)和1-特异性(假阳性率)。结果见表1。图的类型选定折线图,纵座标用灵敏度(%),横座标用1-特异性(%)。结果见图1。

表 1 249 例急腹症病人血清脂肪酶测定的频数分布表

Lipase	急性胰腺炎		非急性胰腺炎		灵敏度	特异性	1-特异性
(U/L)	人数	累计人数	人数	累计人数	(TPR)	(TNR)	(FPR)
10 ~	0	69	29	29	100.0	16.1	83.9
21 ~	3	69	109	138	100.0	76.7	23.3
41 ~	1	66	24	162	95.7	90.0	10.0
61 ~	3	65	6	168	94.2	93.3	6.7
81 ~	5	62	2	170	89.9	94.4	5.6
101 ~	11	57	6	176	82.6	97.8	2.2
151 ~	8	46	1	177	66.7	98.3	1.7
201 ~	8	38	1	178	55.1	98.9	1.1
301 ~	3	30	2	180	43.5	100.0	0.0
>401	27	27	0	180	39.1	100.0	0.0
合计	69		180				

图 1 249例急腹症病人血清脂肪酶测定的 ROC 曲线

2 ROC 曲线下面积(AUC)的计算及评价

2.1 AUC 的计算,可以估价某检验项目的诊断准确性的高低,判断标准为^[3]:AUC < 0.5,认为试验无诊断价值;在 0.5 ~ 0.7 之间,试验有较低的准确性;在

0.7~0.9 之间,试验有一定的准确性;>0.9 时,试 验则有较高的准确性。亦可判别多项检验项目诊断 准确性的优劣。

计算 AUC 公式如下:

以 x 表示测定值的特级分类, Ax 表示急性胰腺 炎组各等级的频数, Nx 表示非急性胰腺炎组各等级 的频数。A、表示急性胰腺炎组各等级高于当前等 级的频数, N < x 表示非急性腺炎组低于当前等级的 频数。如表2所例。

$$Wx = NxA_{>x} + 1/2NxAx$$

$$AUC = \frac{Wx}{NA}$$

AUC 标准误的计算用以下公式:

$$Q_{1x} = Nx[(A_{>x})^2 + AxA_{>x} + (Ax)^2/3]$$

$$Q_{2x} = Ax[(N_{>x})^2 + NxN_{>x} + (Nx)^2/3]$$

$$Q_1 = \frac{Q_{1x}}{NA^2}$$

$$Q_2 = \frac{Q_{2x}}{N^2 A}$$

SE(AUC) =

$$AUC(1 - AUC) + (A - 1)(O_1 - AUC^2) + (N - 1)(O^2 - AUC^2)$$
 NA

AUC 的(1 -) 双侧可信区间计算用公式: AUC $\pm SE(AUC)$.

2.2 打开 Excel 软件,建立一个新文件。

在 A1 栏输入: AMY 对诊断急性胰腺炎的 ROC 曲线下面积计算的有关各量。

在 A2、A3 栏合并单元格后输入:AMY(U/L)。

在 B2、C2 栏和 D2、E2 栏分别合并单元格后输 入:急性胰腺炎和非急性胰腺炎。

在 B3、C3 栏分别输入: Nx 和 N < x 。

在 D3、E3 栏分别输入:Ax 和 A>x。

在F2、F3 栏和 G2、G3 栏以及H2、H3 栏分别合 并单元格后依次输入: $Wx \, Q_{1x} \, Q_{2x}$ 。

在 A4 - A13 栏分别输入:11、21、一直至 > 401。

在 B4 - B13 栏输入:胰腺炎组各等级频数。

在 D4 - D13 栏输入:非胰腺炎组各等级频数。

在 C5 栏输入:=B4。

在 C6 栏至 C13 栏分别输入:= B5 + C5 依次类 推,一直至=B12+C12。

在 E4 栏输入:=D5 + E5,并复制到 E12 栏。 在 E13 栏输入:0。

在 F4 栏输入: = (B4 * E4) + (0.5 * (B4 *

D4)).并复制到 F13 栏。

在 G4 栏输入:=B4 *(((E4 * E4) + (D4 * E4) + ((D4 *D4)/3))).并复制到 F13 栏。

在 H4 栏输入:= D4 *(((C4 *C4) + (B4 *C4)

+((B4 *B4)/3))),并复制到 H13 栏。

在 A14、15 和 B14、15 以及 D14、15 分别合并单 元格后输入:合计、= SUM(B4:B13)和 = SUM(D4: D13) 。

在 F14、G14、H14 栏分别输入:= SUM(F4:F13)、 $= SUM(G4:G13) \pi = SUM(H4:H13)$

在 F15、G15、H15 栏分别输入: (Wx) (O_{1x}) , (O_{2x})

在 A17、18、19 栏依次输入:=F14/(B14 *D14)、 = G14/((B14 * (D14 * D14))) = H14/((B14 * B14))* (D14))

在 A21 和 B21 栏分别输入: SE(AUC) = SQRT (((B17 * (1 - B17)) + ((D14 - 1) * (B18 - (B17 *(B17)) + ((B14 - 1) * (B19 - (B17 *B17))) / (B14)

表 2 脂肪酶对诊断急性胰腺炎的 ROC 曲线下 面积计算的有关参数

x	非急性胰腺炎者		急性胰腺炎者		- 117	01				
	Nx	N < x	Ax	A > x	Wx	Q1 x	Q2 x			
10	29	29	0	69	2001	138069	0			
21	109	138	3	66	7358	496713	114139			
41	24	162	1	65	1572	102968	30324			
61	6	168	3	62	381	24198	87732			
81	2	170	5	57	119	7085	146207			
101	6	176	11	46	309	15974	352484			
151	1	177	8	38	42	1769	252051			
201	1	178	8	30	34	1161	254899			
301	2	180	3	27	57	1626	98284			
> 401	0	180	27	0	0	0	874800			
合计	180		69		11873	789563	2210919			
ΠИ	180				(w_x)	(Q1x)	(Q2x)			
AUC = 0.9559										
Q1 = 0.9213										
Q2 = 0.9890										
SE(AUC) = 0.0336										

本例 AUC 的 95 %可信区间为:0.9559 ±1.96 × 0.036,说明有较高的诊断准确性。

3 多项检验项目间的临床准确性比较

3.1 判断两种不同诊断试验的 RUC 曲线差异是否 有显著性必须进行统计学检验[4]。现举上例血清脂 (下转第44页)

理、留存、标本的唯一性、安全防范处理等需进一步

- 2.2.2.7 记录方面占5.1%。如原始记录、数据归 档保存、检测结果保密等尚须加强和完善。
- 2.2.2.8 检测报告方面占5.1%。如检测结果报告 内容:序号、方法、检测标准、特性、标本状态、检测结 果的单位核对、签名、检验报告单的唯一性等需完善。 2.2.2.9 质量控制方面占5.1%。主要是标准化操 作程序文件需补充。
- 2.2.2.10 抱怨方面占3.1%。如对抱怨的标准化 操作程序不完善,对抱怨的处理、记录归档保存、质 疑审核等问题缺乏可操作性。

3 情况分析

- 3.1 PCR 基因检测技术是当前先进的科技结晶,它 具有特异性强,敏感性高的特点。由于灵敏度极高, 其特异性常受多种因素制约,诸如不合理的实验室 设置、灭菌防污的处理和不规范的实验操作都是造 成检测结果不正确的原因。因此,对每个初建的实 验室的硬、软件都有必要严格按要求进行评审和验 收,否则它必将影响检测结果的准确性,造成临床误 诊、误治和疗效评估,甚至引起医疗纠纷。
- 3.2 做好 PCR 基因检测,不是单纯的技术问题。 要抓好对 PCR 基因检测实验室的管理,特别是抓规

章制度和标准操作程序的落实是该项检测走上正规 的关键。从我省首批 22 所 PCR 实验室技术验收的 资料提示: 当前 PCR 实验室存在的既有硬件的问题 (占 66.6%),也有软件建设的问题(占 33.4%),表 面上似乎硬件建设问题多于软件,但其真实情况并 非如此,这正是 PCR 实验室创建开始所暴露的假 象,只不过很多软件问题还没有暴露而已。随着时 间推移,待 PCR 检测工作大量开展,软件建设的缺 陷必将逐渐暴露。因此,笔者认为实验室初建时必 需从严抓硬件建设、辅抓软件,待实验室验收通过, 检测工作开始后,应着重抓好软件建设,特别是规章 制度和标准操作程序文件的落实,以及人员的继续 教育和质量控制等常规性管理工作。

3.3 我省 PCR 基因检测虽已经拉开序幕,今后仍 有大量工作有待完善。省临检中心已开始对申报而 尚未验收的实验室组织专家择时按要求坚持硬件建 设,软件要求亦不放松的原则严格评审。对业已验 收完竣,开展正常工作的 PCR 实验室也已及时开展 抓质量控制。对此类实验室有必要每二年复查一 次,保证基因检测工作的规范化、标准化,提高检测 质量。

> (收稿日期:2003-05-27,修回日期:2003-06-25) (本文编辑:赵允文)

(上接第42页)

肪酶为实验 1.血清淀粉酶为实验 2(血清淀粉酶的 AUC 计算方法同血清脂肪酶) 得到血清脂肪酶 AUC 和 SE(AUC) 分别为 0.9559 和 0.0336、血清淀粉酶 AUC 和 SE(AUC) 分别为 0.9494 和 0.0153。计算公式如下:

$$Z = \frac{AUC_1 - AUC_2}{SE_{(AUC_1 - AUC_2)}}$$

配对试验

 $SE_{(AUC_1 - AUC_2)}$

= $\sqrt{[SE(AUC_1)]^2 + [SE(AUC_2)]^2 - 2R[[SE(AUC_1)][SE(AUC_2)]}$ 式中 R 为表示两种诊断试验相关性的一个量值,需根 据两种试验方法分别检测两组所得的相关系数(用线 性回归计算)的平均值 $(r_{\text{Ergl}} + r_{\text{Frgl}})/2$ 以及两种诊 断试验的 AUC 的平均值查"配对设计两种诊断试验 AUC 差别假设检验用 R 值表 "。本例 R 值为 0.58。

非配对试验

 $SE_{(AUC_1 - AUC_2)} = \sqrt{[SE(AUC_1)]^2 + [SE(AUC_2)]^2}$

3.2 Z值计算

打开 Excel 软件,建立一个新文件。

在 A1 至 A6 栏分别输入:AUC1、AUC2、SE(AUC.)、 $SE_{(AUC_2)}$, R, Z

在 B1 至 B5 栏分别输入: 各对应数据。

在 B6 栏输入:=(B1 - B2)/SQRT((B3 *B3) + (B4 *B4) - (2 *B4 *B3 *B4))

本例的 Z 值等于 0.2456, 查正态分布表, 其 P 值 >0.05。说明两者诊断准确性间无显著性差异。上 述评价系统建立后,以后其它项目的评价只需要更改 项目名称和测定数据,所有评价数据均会自动计算。

参考文献:

- [1] NCCLs Document. GP10-A: Assessment of the clinical accuracy of laboratory tests using receiver operating charateristic (ROC) plots [S]. Approved Guideline, 1995.
- [2]胡荣盛,俞春晓,杨昌国.血清脂肪酶测定色团底物法的方法学和 临床评价. 待发表.
- [3]武建国,顾可梁,童明庆,等. 医学实验诊断学进展[M]. 南京:东 南大学出版社,1999,95-99.
- [4]张克坚,杨振华. 应用 ROC 曲线图评价检验项目的临床准确性 [J]. 临床检验信息,1998,5:105.

(收稿日期:2002-02-21) (本文编辑:赵允文)