DSA - 1 to 6

Session 1:

1. Which of the following is the first step in problem solving?

- A. Finding a solution
- B. Implementing a solution
- C. Identifying the problem
- D. Evaluating the outcome

Ans: C

2. What is a well-defined problem?

- A. A problem with no solution
- B. A problem with unclear goals
- C. A problem with clear goals and solution path
- D. A problem that involves innovation

Ans: C

3. Which term refers to the ability to understand a problem and come up with effective solutions?

- A. Coding
- B. Problem Solving
- C. Debugging
- D. Trial and Error

Ans: B

4. What is the key difference between creativity and innovation?

- A. Creativity is about implementation; innovation is about ideas
- B. Creativity is imagining; innovation is applying ideas in a useful way
- C. Innovation doesn't require creativity
- D. They are the same

Ans: B

5. Which of the following is NOT a characteristic of effective problem solving?

- A. Emotional reasoning
- B. Logical thinking
- C. Analytical ability
- D. Decision making

Ans: A

6. Which tool involves visual representation of ideas branching from a central concept?

- A. Six Thinking Hats
- B. Mind Mapping
- C. Brainstorming

D. Flowchart

Ans: B

7. Which of these is NOT a typical rule in a Brainstorming session?

- A. Criticize unusual ideas
- B. Encourage wild ideas
- C. Go for quantity over quality
- D. Build on others' ideas

Ans: A

8. Reverse Brainstorming is primarily used to:

- A. Block creativity
- B. Find the root cause of a problem
- C. Think about how to cause the problem
- D. Map the process

Ans: C

9. What is "Imagineering" a combination of?

- A. Imagination and Brainstorming
- B. Imagination and Engineering
- C. Imagination and Managing
- D. Engineering and Mapping

Ans: B

10. What is the purpose of using charts and diagrams in problem-solving?

- A. To replace decision making
- B. To confuse the user
- C. To present information clearly and analyze patterns
- D. To skip brainstorming

Ans: C

11. Which 'Thinking Hat' focuses on emotions and intuition?

- A. Red Hat
- B. Black Hat
- C. Blue Hat
- D. White Hat

Ans: A

12. Which hat in the Six Thinking Hats approach is associated with managing the thinking process?

- A. Yellow
- B. Blue
- C. Green

D. Red

Ans: B

13. What does the White Hat represent?

- A. Emotions
- B. Information and facts
- C. Creativity
- D. Negativity

Ans: B

14. What does critical thinking involve?

- A. Blindly following instructions
- B. Evaluating information to make reasoned judgments
- C. Copying others' ideas
- D. Avoiding decision making

Ans: B

15. Which skill is NOT part of critical thinking?

- A. Analysis
- B. Evaluation
- C. Guesswork
- D. Inference

Ans: C

16. Which is NOT a common decision-making method?

- A. Consensus
- B. Voting
- C. Random guessing
- D. Decision matrix

Ans: C

17. What is the purpose of defining solution criteria in problem solving?

- A. To increase complexity
- B. To make biased decisions
- C. To ensure that solutions meet the desired outcome
- D. To guess solutions

Ans: C

18. Outcome-based thinking focuses on:

- A. Past performance
- B. Intuition
- C. Predicting and optimizing for best results
- D. Avoiding analysis

19. Which diagram is used to identify the root causes of a problem?

- A. Gantt Chart
- B. Mind Map
- C. Fishbone Diagram
- D. Pie Chart

Ans: C

20. Analyzing the situation in problem solving includes:

- A. Avoiding facts
- B. Collecting irrelevant data
- C. Understanding context, constraints, and factors
- D. Guessing causes

Ans: C

21. Information analysis helps in:

- A. Making uneducated guesses
- B. Clarifying the problem and evaluating alternatives
- C. Confusing the problem solver
- D. Ignoring the data

Ans: B

22. Effective problem-solving approaches include all EXCEPT:

- A. Trial and error
- B. Breaking down into subproblems
- C. Ignoring constraints
- D. Pattern recognition

Ans: C

23. Which of the following best supports collaboration and critical thinking?

- A. Six Thinking Hats
- B. Guessing
- C. Avoidance
- D. Disorganized debate

Ans: A

24. The Yellow Hat in Six Thinking Hats focuses on:

- A. Negatives
- B. Emotions
- C. Benefits and values
- D. Creative alternatives

Ans: C

25. Which creative thinking method focuses on visualizing connections and associations?

A. Flowchart

B. SWOT analysis C. Mind Mapping D. Data Mining Ans: C 26. Which data structure is best suited for implementing Undo functionality in editors? A. Queue B. Stack C. Array D. Graph Ans: B 27. If you are trying to find the shortest path in a map, which algorithm will help most? A. Binary Search B. Merge Sort C. Dijkstra's Algorithm D. Depth First Search Ans: C 28. Which of the following problems is solved using dynamic programming? A. Shortest Path in Weighted Graph B. Fibonacci Series C. Knapsack Problem D. All of the above Ans: D 29. When the problem is to repeatedly access the minimum element, which data structure is ideal? A. Queue B. Binary Search Tree C. Min Heap D. Linked List

Ans: C

30. Which DSA concept helps you *divide the problem* into smaller subproblems and solve them recursively?

- A. Backtracking
- **B.** Dynamic Programming
- C. Divide and Conquer
- D. Greedy Algorithm

Ans: C

31. How can a creative solution to the "Least Recently Used" (LRU) cache be implemented?

A. Using Array and Stack B. Using HashMap and Doubly Linked List C. Using Queue D. Using Tree Ans: B 32. Which data structure would you use to simulate a 'Time Travel' feature in an app (going back/forward)? A. Two Stacks B. Queue C. Set D. Tree Ans: A 33. Which of the following is an innovative way to reduce space in a recursive algorithm? A. Increase recursion depth B. Use iterative approach with Stack C. Use linked list D. Avoid base cases Ans: B 34. Using DSA creatively, which structure helps in modeling relationships like in Facebook friends? A. Stack B. Queue C. Graph D. Tree Ans: C 35. Which creative algorithmic technique is best for solving puzzles like Sudoku? A. Greedy B. BFS C. Backtracking D. DFS Ans: C 36. Which sorting algorithm is most efficient when data is nearly sorted? A. Selection Sort **B.** Insertion Sort C. Merge Sort D. Bubble Sort Ans: B

) (37. If a problem involves visiting all nodes and avoiding cycles, what should be used? A. DFS with visited array B. BFS only C. Stack without check D. Binary Tree Ans: A
5 // [] ()	38. Critical thinking helps choose between which two approaches for overlapping subproblems? A. DFS vs BFS B. Recursion vs Iteration C. Memoization vs Tabulation D. Sorting vs Searching Ans: C
) (39. For a problem requiring max profit with limited weight, which approach works best? A. Greedy B. Brute Force C. Backtracking D. Dynamic Programming Ans: D
) (40. Which method is used to think critically in optimizing search within sorted data? A. Linear Search B. Binary Search C. Bubble Sort D. DFS Ans: B
) (41. Which DSA helps in efficient decision-making in CPU task scheduling? A. Graph B. Queue (Priority Queue) C. Stack D. Tree Ans: B
ı	42. In a decision tree problem, which DSA is best to represent logical branching? A. Graph B. Tree C. Linked List

D. Stack
Ans: B

43. To apply "Outcome-Based Thinking", which sorting algorithm gives best average performance? A. Merge Sort B. Insertion Sort C. Quick Sort D. Bubble Sort Ans: C

44. Decision Tree algorithm in ML uses which data structure internally?

- A. Graph
- B. Tree
- C. HashMap
- D. Stack

Ans: B

45. Which algorithm helps in deciding whether a graph has a cycle or not?

- A. DFS with visited and recursion stack
- B. BFS with Queue
- C. Binary Search
- D. Quick Sort

Ans: A

46. Which DSA is visually like a "mind map" showing hierarchical relations?

- A. Stack
- B. Tree
- C. Array
- D. Queue

Ans: B

47. Which algorithm helps in visualizing "connections" in a network?

- A. Quick Sort
- B. Graph traversal
- C. Binary Search
- D. Insertion Sort

Ans: B

48. Which data structure is ideal for drawing a flowchart-like structure?

- A. Tree
- B. Queue
- C. Hash Table
- D. Linked List

Ans: A

49. Charts like Gantt charts in scheduling relate most closely with: A. Queue B. Heap C. Linked List D. Stack Ans: A
50. Which algorithm best supports "cause-effect" mapping like fishbone diagrams? A. DFS B. Tree Traversal C. Graph Cycle Detection D. None of the above Ans: B
51. Which algorithm would you use to schedule jobs with deadlines and profits? A. Kruskal's Algorithm B. Prim's Algorithm C. Greedy Algorithm D. Binary Tree Ans: C
 52. If two people want to find a meeting point in a city map, which algorithm applies? A. DFS B. Dijkstra from both ends (Bidirectional Search) C. Sorting D. Binary Search Ans: B
53. Which data structure is best suited for autocomplete suggestions? A. Trie B. Array C. Stack D. Queue Ans: A
54. Which data structure helps reduce time complexity when checking for duplicates in large input? A. List B. Tree C. HashSet D. Stack Ans: C

55. Which approach helps to solve problems optimally step-by-step with minimal decisions?

- A. Backtracking
- B. Brute Force
- C. Greedy
- D. Memoization

Ans: C

56. Which tool involves identifying supporting and resisting forces related to a decision?

- A. SWOT Analysis
- B. Force Field Analysis
- C. PESTLE Analysis
- D. Gantt Chart

Ans: B

57. Feasibility analysis is used to:

- A. Find employee salaries
- B. Determine if a solution can be implemented practically
- C. Hire the right people
- D. Count resources

Ans: B

58. Capability analysis evaluates:

- A. Financial loss
- B. Technical or team ability to implement a solution
- C. Time needed for lunch
- D. Social media posts

Ans: B

59. One major drawback of "Pros and Cons" lists is:

- A. They are difficult to make
- B. They do not allow group input
- C. They lack depth in measuring impact
- D. They are statistical models

Ans: C

60. In Force Field Analysis, what is the purpose of strengthening driving forces?

- A. Make the decision less effective
- B. Encourage resistance
- C. Support successful implementation
- D. Hide alternatives

61. Which decision-making model compares options based on weighted criteria?

- A. Pros and Cons
- B. Cost-Benefit Analysis
- C. Decision Matrix
- D. Flow Chart

Ans: C

62. What is the key purpose of evaluating multiple alternatives?

- A. Waste time
- B. Ensure only cheapest option is chosen
- C. Maximize effectiveness and minimize risks
- D. Avoid group work

Ans: C

63. When selecting among alternatives, the most important factor is usually:

- A. The most popular option
- B. The one with fewer steps
- C. The best alignment with objectives
- D. The one requiring less documentation

Ans: C

64. Qualitative analysis focuses on:

- A. Measurable values only
- B. Non-numerical factors like opinions, experiences
- C. Hardware costs
- D. Input/output speed

Ans: B

65. Which of the following is NOT a qualitative analysis technique?

- A. Expert interview
- B. SWOT analysis
- C. Sentiment analysis
- D. Bubble Sort

Ans: D

66. Why do we assign weights to objectives?

- A. To increase the confusion
- B. To rank objectives by importance
- C. To make fewer decisions
- D. To decrease accountability

Ans: B

67. Which of the following is a valid step before assigning weights to objectives?

A. Decide outcomes

- B. Finalize solution
- C. Identify and define each objective clearly
- D. Cancel the project

Ans: C

68. Creating a satisfaction scale helps to:

- A. Compare alternatives consistently
- B. Ignore lower-ranked options
- C. Show dislike for solutions
- D. Avoid critical thinking

Ans: A

69. What is typically the highest value on a satisfaction scale?

- A. 0
- B. 5
- C. 10
- D. 100

Ans: D (Can vary, but 100 is common in weighted decision-making models)

70. If two solutions score similarly, the deciding factor should be:

- A. Random chance
- B. Personal bias
- C. Critical evaluation of long-term impacts
- D. Stakeholder avoidance

Ans: C

71. Which of the following is the FIRST step in implementing a decision?

- A. Review emails
- B. Create an action plan
- C. Delegate blame
- D. Wait for approvals

Ans: B

72. Breaking the solution into smaller action steps helps with:

- A. Confusing the team
- B. Avoiding commitment
- C. Managing implementation better
- D. Wasting time

Ans: C

73. Assigning roles and responsibilities ensures:

- A. No work is done
- B. Everyone is confused
- C. Accountability and task clarity

D. Redundancy in work

Ans: C

74. What is meant by setting priorities in an action plan?

- A. Ignoring deadlines
- B. Doing easiest work first
- C. Scheduling tasks based on importance and impact
- D. Asking everyone to start at the same time

Ans: C

75. Which tool helps visualize task sequencing in implementation?

- A. Pie chart
- B. Bar graph
- C. Gantt chart
- D. Histogram

Ans: C

76. Why are milestones important in implementation?

- A. Add to documentation only
- B. Waste time
- C. Track progress and review success/failure
- D. Avoid reporting

Ans: C

77. What is the best time to conduct a follow-up check?

- A. Before action starts
- B. After each milestone
- C. After all work is done
- D. Weekly, even if nothing is happening

Ans: B

78. If a milestone is missed, what should be done first?

- A. Ignore it
- B. Blame the team
- C. Reassess causes and update the plan
- D. Close the project

Ans: C

79. Which of the following is NOT part of effective implementation?

- A. Planning ahead
- B. Role assignment
- C. Waiting for problems to resolve themselves
- D. Monitoring progress

80. What is a contingency plan?

- A. Primary action plan
- B. Backup plan if things go wrong
- C. Holiday schedule
- D. Rework of the same task

Ans: B

81. You have 3 project alternatives. You rank them using a decision matrix. One scores highest in cost-efficiency, the other in reliability. What should you do?

- A. Choose the cheapest
- B. Choose highest total score based on weighted criteria
- C. Choose the fastest one
- D. Flip a coin

Ans: B

82. Your team faces resistance in implementing a new tool. According to force field analysis, what should be done?

- A. Fire them
- B. Increase driving forces or reduce resisting ones
- C. Delay the project
- D. Remove the tool

Ans: B

83. In a problem-solving meeting, someone suggests a creative but risky solution. What should you evaluate first?

- A. Their rank
- B. Personal opinion
- C. Feasibility and risk impact
- D. Cost of lunch

Ans: C

84. While assigning weights to objectives, what does a weight of 10 represent?

- A. Low importance
- B. Neutral
- C. Highest priority
- D. Random value

Ans: C

85. You planned 5 steps for a solution. Step 3 failed. What is the best next action?

- A. Restart
- B. Move to Step 4
- C. Analyze the failure and adjust before proceeding

D. Quit the project

Ans: C

Session 2:

- 1. Which of the following is NOT a primary goal of algorithm design?
- A. Efficiency
- B. Complexity
- C. Correctness
- D. Optimization

Ans: B

- 2. An algorithm is considered efficient if:
- A. It produces the correct output
- B. It uses minimal resources (time/space)
- C. It contains more loops
- D. It is written in Java

Ans: B

- 3. Which term describes the step-by-step instructions to solve a problem?
- A. Flowchart
- B. Pseudocode
- C. Algorithm
- D. Blueprint

Ans: C

- 4. What is the first step in designing an algorithm?
- A. Implementation
- B. Testing
- C. Understanding the problem
- D. Optimization

Ans: C

- 5. Which of the following is NOT a feature of a good algorithm?
- A. Clear input/output
- B. Infinite loop
- C. Finite steps
- D. Language-independent logic

Ans: B

- 6. Which algorithmic technique divides the problem into sub-problems, solves them independently, and combines the result?
- A. Greedy
- B. Divide and Conquer

- C. Dynamic Programming D. Brute Force Ans: B 7. Which algorithm design technique is most suitable when problems have overlapping subproblems and optimal substructure? A. Recursion B. Divide and Conquer C. Dynamic Programming D. Greedy Ans: C 8. The Greedy method makes decisions based on: A. Past choices B. All possible outcomes C. Immediate benefit D. Memory Ans: C 9. Which technique is most appropriate for exploring all possibilities in problems like Sudoku or N-Queens? A. Recursion B. Brute Force C. Backtracking D. Greedy Ans: C 10. Which approach is used in Kruskal's algorithm for Minimum Spanning Tree? A. Divide and Conquer **B.** Dynamic Programming C. Greedy D. Backtracking Ans: C 11. Which of these is an example of a problem solved by Divide and Conquer? A. Quick Sort B. Dijkstra's Algorithm C. Prim's Algorithm D. BFS Ans: A
- 12. Which of these problems is solved using Dynamic Programming?
- A. Merge Sort
- B. Fractional Knapsack

C. Longest Common Subsequence D. Bubble Sort Ans: C 13. In Greedy algorithms, global optimum is achieved by: A. Trying all combinations B. Choosing local optimum at each step C. Backtracking D. Repeating steps Ans: B 14. Which technique stores intermediate results to avoid recalculating them? A. Brute Force B. Divide and Conquer C. Memoization D. Greedy Ans: C 15. Which technique stores intermediate results to avoid recalculating them? A. Brute Force B. Divide and Conquer C. Memoization D. Greedy Ans: C 16. What kind of algorithm is used in Binary Search? A. Greedy B. Divide and Conquer C. Brute Force D. Dynamic Programming Ans: B 17. Which of the following expresses the upper bound of an algorithm's runtime? A. Ω (Omega) B. Θ (Theta) C. O (Big O) D. π (Pi) Ans: C 18. Which notation represents the best-case complexity? Α. Θ B. O C. Ω

D. α Ans: C
19. Which notation represents the best-case complexity? A. Θ B. O C. Ω D. α Ans: C
20. If an algorithm runs in linear time, its complexity is: A. O(n²) B. O(log n) C. O(n) D. O(1) Ans: C
21. An algorithm with time complexity O(n²) is considered: A. Constant time B. Linear time C. Quadratic time D. Logarithmic time Ans: C
22. Which of the following determines the efficiency of an algorithm?A. Number of instructionsB. Time and Space ComplexityC. Language of implementationD. Use of commentsAns: B
23. In asymptotic analysis, we assume input size: A. To be very small B. Does not matter C. Approaches infinity D. Fixed at 1 Ans: C 24. Space complexity includes:
A. Time to execute instructions B. Memory needed for input only

Ans: C

D. Size of database

C. Memory for input, auxiliary, and function calls

25. Which algorithm has O(n log n) time complexity in average case? A. Bubble Sort B. Insertion Sort C. Merge Sort D. Linear Search Ans: C
26. Time complexity of Binary Search is: A. O(n) B. O(n²) C. O(log n) D. O(1) Ans: C
27. You are designing a search algorithm for millions of sorted records. Which method is best? A. Linear Search B. Bubble Sort C. Binary Search D. Insertion Sort Ans: C
28. You are designing a search algorithm for millions of sorted records. Which method is
best? A. Linear Search B. Bubble Sort C. Binary Search D. Insertion Sort Ans: C
best? A. Linear Search B. Bubble Sort C. Binary Search D. Insertion Sort

31. A recursive solution without memoization may cause:

- A. Stack overflow
- B. Memory leak
- C. Speed increase
- D. Constant time execution

Ans: A

32. Why is algorithm analysis important?

- A. Helps write longer code
- B. Makes code complex
- C. Determines performance on large inputs
- D. Is optional for programmers

Ans: C

Session 3:

1. Which of the following algorithms uses Divide and Conquer?

- A. Bubble Sort
- B. Quick Sort
- C. Dijkstra's Algorithm
- D. Linear Search

Ans: B

2. In Merge Sort, the time complexity is:

- A. O(n)
- B. O(n log n)
- C. $O(n^2)$
- D. O(log n)

Ans: B

3. Divide and Conquer approach divides a problem into:

- A. Independent subproblems
- B. Dependent subproblems
- C. Random problems
- D. Unsolvable parts

Ans: A

4. Which of the following does NOT follow Divide and Conquer?

- A. Merge Sort
- B. Binary Search
- C. Linear Search
- D. Quick Sort

5. Greedy algorithms make decisions based on:

- A. Future consequences
- B. Immediate benefit
- C. Dynamic memory
- D. Recursion depth

Ans: B

6. Greedy algorithms are guaranteed to give optimal results only when the problem has:

- A. Overlapping subproblems
- B. Greedy-choice property & optimal substructure
- C. Cycles
- D. Recursive calls

Ans: B

7. Which algorithm uses a greedy approach?

- A. Floyd-Warshall
- B. Huffman Encoding
- C. Bellman-Ford
- D. Knapsack (0/1)

Ans: B

8. In Fractional Knapsack, Greedy algorithm works because:

- A. Items are indivisible
- B. The items are picked randomly
- C. Items can be divided, and optimal choice works at each step
- D. It uses backtracking

Ans: C

9. Which problem is NOT best solved using greedy technique?

- A. Minimum Spanning Tree
- B. 0/1 Knapsack
- C. Activity Selection
- D. Dijkstra's Algorithm

Ans: B

10. Dynamic Programming works best for problems with:

- A. Independent subproblems
- B. Greedy properties
- C. Overlapping subproblems and optimal substructure
- D. Random input

Ans: C

11. Which of the following is solved using dynamic programming?

A. Insertion Sort

- B. Longest Common Subsequence
- C. Binary Search
- D. Prim's Algorithm

Ans: B

12. Fibonacci number calculation using Dynamic Programming avoids:

- A. Recursion
- B. Repeated calculations
- C. Greedy choices
- D. Stack Overflow

Ans: B

13. Memoization stores results in:

- A. CPU cache
- B. A table or array
- C. Compiler
- D. Disk

Ans: B

14. Which type of recursion does bottom-up dynamic programming avoid?

- A. Tail recursion
- B. Multiple recursion
- C. Forward recursion
- D. Backward recursion

Ans: B

15. Brute force algorithms solve problems by:

- A. Trying optimal combinations only
- B. Exploring all possible solutions
- C. Avoiding iteration
- D. Using memory efficiently

Ans: B

16. Which of the following is an example of brute force approach?

- A. Merge Sort
- B. Traveling Salesman Problem (using all permutations)
- C. Huffman Coding
- D. Prim's Algorithm

Ans: B

17. Disadvantage of brute force algorithms:

- A. Always incorrect
- B. Very complex logic
- C. High time complexity

D. Uses greedy logic Ans: C 18. Brute force search in string matching has time complexity: A. O(1) B. O(n) C. O(n*m) D. O(log n) Ans: C 19. Backtracking is a form of: A. Brute force optimization B. Divide and conquer C. Memoization D. Random search Ans: A 20. N-Queens problem can be solved using: A. Greedy B. Brute Force C. Backtracking D. Dynamic Programming Ans: C 21. Which condition is checked in backtracking to reduce unnecessary calls? A. Safety/feasibility condition B. Sorting condition C. Recursion level D. Random pruning Ans: A 22. Backtracking avoids exploring: A. Safe paths B. Correct branches C. Unpromising paths D. Optimized solutions Ans: C 23. Branch and Bound is commonly used to solve: A. Fibonacci B. TSP

C. SortingD. Searching

Ans: B

24. Which of the following problems can use Branch and Bound?

- A. Graph coloring
- B. 0/1 Knapsack
- C. Merge Sort
- D. Linear Search

Ans: B

25. How does branch and bound differ from backtracking?

- A. Uses no bounding
- B. Uses a bounding function to prune branches
- C. Always explores all paths
- D. Less efficient

Ans: B

26. Which is a common strategy used in Branch and Bound to explore nodes?

- A. BFS
- B. DFS
- C. A* heuristic
- D. Both A and C

Ans: D

27. Stochastic algorithms involve:

- A. Exact results
- B. Deterministic steps
- C. Randomness and probability
- D. Sorting only

Ans: C

28. Example of stochastic algorithm:

- A. Merge Sort
- B. Genetic Algorithm
- C. Prim's Algorithm
- D. DFS

Ans: B

29. Simulated Annealing is a type of:

- A. Dynamic Programming
- B. Greedy Algorithm
- C. Stochastic Algorithm
- D. Backtracking Algorithm

Ans: C

30. Monte Carlo methods are used when:

A. Deterministic solutions are fast

- B. Problem has small input size
- C. There is a need for randomness to approximate solutions
- D. We want exact answers

Ans: C

31. Stochastic algorithms are most useful in:

- A. Real-time sorting
- B. Data transfer
- C. Optimization where exact methods fail
- D. Simple arithmetic

Ans: C

32. Which technique is generally best for optimization problems with overlapping subproblems?

- A. Greedy
- B. Brute Force
- C. Dynamic Programming
- D. Randomized

Ans: C

33. Which technique is preferred for shortest path in unweighted graphs?

- A. DFS
- B. BFS
- C. Greedy
- D. Brute force

Ans: B

34. For solving optimization problems where the solution space is large and exact solution is hard, you should consider:

- A. Backtracking
- B. Stochastic Algorithms
- C. Greedy only
- D. Brute force

Ans: B

35. Which technique is ideal for problems where finding *any* solution is enough, not necessarily optimal?

- A. Backtracking
- B. Brute Force
- C. Greedy
- D. Dynamic Programming

Ans: C

Session 4:

 What does time complexity of an algorithm represent? The amount of memory used Number of inputs The number of basic operations as a function of input size Length of the code Ans: C
2.What is the time complexity of a linear search in the worst case? A. O(1) B. O(n) C. O(log n) D. O(n log n) Ans: B
3. What is the best-case time complexity of Binary Search? A. O(n) B. O(log n) C. O(1) D. O(n²) Ans: C
4. Which notation represents an upper bound on the time complexity? A. O (Big O) B. O (Thota)
B. Θ (Theta) C. Ω (Omega) D. π (Pi) Ans: A
C. Ω (Omega) D. π (Pi)

7. What is the space complexity of an algorithm that uses only a fixed number of variables? A. O(n) B. O(1) C. O(log n) D. O(n²) Ans: B
8. In recursive algorithms, space complexity increases due to: A. Loops B. Stack frames C. Sorting D. Arrays Ans: B
 9. Which of the following has a better space complexity? A. Iterative solution B. Recursive solution C. Greedy solution D. Brute force Ans: A
10. What is the space complexity of Merge Sort? A. O(1) B. O(log n) C. O(n) D. O(n²) Ans: C
11. Time complexity of Insertion Sort in best case: A. O(n²) B. O(n) C. O(log n) D. O(n log n) Ans: B
12. Time complexity of Quick Sort in worst case: A. O(n²) B. O(n log n) C. O(log n) D. O(n)

Ans: A

13. Which sorting algorithm always has O(n log n) time complexity? A. Bubble Sort B. Merge Sort C. Insertion Sort D. Quick Sort Ans: B 14. Which has better average-case time complexity? A. Bubble Sort B. Selection Sort C. Merge Sort D. Linear Search Ans: C

15. What is the time complexity of traversing a linked list of n elements?

- A. O(log n)
- B. O(1)
- C. O(n)
- D. $O(n^2)$

Ans: C

16. Which design strategy is used in Merge Sort?

- A. Greedy
- B. Brute Force
- C. Divide and Conquer
- D. Dynamic Programming

Ans: C

17. The 0/1 Knapsack problem is optimally solved using:

- A. Greedy
- B. Divide and Conquer
- C. Brute Force
- D. Dynamic Programming

Ans: D

18. In Prim's algorithm for MST, the design approach is:

- A. Greedy
- **B.** Dynamic Programming
- C. Divide and Conquer
- D. Brute Force

Ans: A

19. Which design technique is used in solving Fibonacci using bottom-up DP?

A. Divide and Conquer

B. Greedy C. Dynamic Programming D. Recursion Ans: C	
 20. Which algorithm uses backtracking for solution generation? A. Dijkstra B. N-Queens Problem C. Merge Sort D. Kruskal's Algorithm Ans: B 	
21. Which data structure is used for function call management in recursing A. Queue B. Stack C. Tree D. Array Ans: B	ion?
22. Which data structure is best for implementing BFS? A. Stack B. Queue C. Array D. Graph Ans: B	
23. Which data structure supports Last-In-First-Out (LIFO)? A. Queue B. Tree C. Stack D. Heap Ans: C	
24. Which data structure is best suited for implementing priority queues A. Stack B. Array C. Hash Map D. Heap Ans: D	s?
25. Which data structure provides average-case O(1) time for insert, dele A. Hash Table B. Array C. Linked List	ete and search?

Ans: A
26. Which data structure is used in backtracking? A. Queue B. Stack C. Tree D. Heap Ans: B
27. Which data structure is used for undo operations? A. Tree B. Stack C. Queue D. Graph Ans: B
28. Graphs are used to represent: A. Networks B. Trees C. Arrays D. All of the above Ans: A
29. Which data structure is used to implement DFS? A. Queue B. Stack C. Tree D. Hash Table Ans: B
30. Which structure is used to find the shortest path in weighted graphs? A. Stack B. Dijkstra's algorithm with Priority Queue C. BFS only D. Brute force traversal Ans: B
Session 5 & 6:1. An algorithm must have the following properties except:A. Finiteness

B. Ambiguity

C. Input

D. Definiteness

Ans: B

2. Which of the following is an algorithm construct?

- A. Sequence
- B. Selection
- C. Iteration
- D. All of the above

Ans: D

3. What is an Abstract Data Type (ADT)?

- A. A concrete implementation
- B. An interface for data structures
- C. A type of compiler
- D. An algorithm

Ans: B

4. An ADT defines:

- A. How data is stored
- B. What operations are supported
- C. Implementation logic
- D. Compiler rules

Ans: B

5. Which of the following is NOT a feature of object-oriented design?

- A. Encapsulation
- B. Inheritance
- C. Polymorphism
- D. Compilation

Ans: D

6. Which of the following best represents an ADT?

- A. Stack
- B. Algorithm
- C. Recursion
- D. Header file

Ans: A

7. Which of the following is true for arrays in C/C++?

- A. Index starts at 1
- B. Memory allocation is dynamic by default
- C. Index starts at 0
- D. It is a linked list

8. Time complexity for accessing an array element is: A. O(n) B. O(1) C. O(log n) D. O(n²) Ans: B
9. What is the drawback of arrays?A. Fixed size
B. Easy to access
C. Uses pointers D. Slow access time
Ans: A
10. Which operation is expensive in an array?A. AccessB. UpdateC. Insertion at the beginningD. TraversalAns: C
11. Stacks follow which order?
A. FIFO
B. LIFO C. Random
D. FILO
Ans: B
12. Which operation is used to insert in a stack?
A. Enqueue
B. Push C. Add
D. Append
Ans: B
13. Which operation removes the top element in a stack? A. Pop B. Delete C. Remove D. Top Ans: A
14. What is the time complexity of push and pop? A. O(n)

B. O(n log n) C. O(1) D. O(log n) Ans: C A. LIFO B. FILO C. FIFO D. Random

15. Queues follow which order?

Ans: C

16. Which operation is used to insert in a queue?

- A. Pop
- B. Enqueue
- C. Push
- D. Add

Ans: B

17. What does Dequeue mean in queue context?

- A. Insert at end
- B. Remove from front
- C. Peek
- D. Reset the queue

Ans: B

18. Queues are used in:

- A. Recursion
- B. CPU scheduling
- C. Expression evaluation
- D. Backtracking

Ans: B

19. Circular Queue overcomes the drawback of:

- A. Stack overflow
- B. Queue overflow due to unused space
- C. Recursion
- D. Memory leak

Ans: B

20. In a circular queue, rear == front condition means:

- A. Queue is empty
- B. Queue is full
- C. Queue has one element

D. Invalid state Ans: B 21. What is the initial value of front and rear in a circular queue? A. -1 B. 0 C. 1 D. NULL Ans: A 22. In a priority queue: A. Elements are processed in FIFO B. Elements are processed based on priority C. Elements are sorted D. All elements are treated equally Ans: B 23. Which data structure is most suitable for priority queues? A. Stack B. Linked List C. Heap D. Array

24. Which application uses priority queues?

A. Recursion

Ans: C

- B. BFS traversal
- C. Dijkstra's algorithm
- D. Tree Traversal

Ans: C

25. Deque stands for:

- A. Data Queue
- B. Double Queue
- C. Double Ended Queue
- D. Directed Queue

Ans: C

26. In a deque, insertion and deletion are allowed at:

- A. Front only
- B. Rear only
- C. Both ends
- D. Middle

27. Deque can be used to implement:
A. Stack
B. Queue
C. Both stack and queue
D. None
Ans: C
28. Which of the following deque types allows insertion at one end and deletion at both?
A. Input-restricted deque
B. Output-restricted deque
C. Linear queue
D. Priority queue
Ans: A
29. Which data structure is best for undo operations?
29. Which data structure is best for undo operations? A. Queue
·
A. Queue
A. Queue B. Stack
A. Queue B. Stack C. Array
A. Queue B. Stack C. Array D. Tree
A. Queue B. Stack C. Array D. Tree Ans: B
A. Queue B. Stack C. Array D. Tree Ans: B 30. Which structure is commonly used in breadth-first search?
A. Queue B. Stack C. Array D. Tree Ans: B 30. Which structure is commonly used in breadth-first search? A. Stack
A. Queue B. Stack C. Array D. Tree Ans: B 30. Which structure is commonly used in breadth-first search? A. Stack B. Queue