ME 57200 Aerodynamic Design

Lecture #21: Shock Waves and Speed of Sound

Dr. Yang Liu

Steinman 253

Tel: 212-650-7346

Email: yliu7@ccny.cuny.edu

Mach number

The ratio of local flow velocity V to the local speed of sound a:

$$M \equiv \frac{V}{a}$$

• When M > 0.3, the gas flow should be considered compressible.

Mach Number Flow Regimes

Total (Stagnation) Conditions

If the flow is steady,

$$\rho \frac{D(h+V^2/2)}{Dt} = \frac{\partial p}{\partial t} \qquad \Longrightarrow \qquad \rho \frac{D(h+V^2/2)}{Dt} = 0$$

$$h + \frac{V^2}{2} = \text{const} \qquad \Longrightarrow \qquad h + \frac{V^2}{2} = h_0$$

- At any point in a flow, the total enthalpy is given by the sum of the static enthalpy plus the kinetic energy.
- For a steady, adiabatic, inviscid flow, the total enthalpy is constant along a streamline.
- Total temperature $h_0 = c_p T_0$ $T_0 = \text{const}$
- The total temperature is constant throughout the steady, adiabatic, inviscid flow of a calorically perfect gas.

Shock Waves

- A shock wave is an extremely thin region, typically on the order of 10⁻⁵ cm, across which the flow properties can change drastically.
 - Normal shock

Oblique shock

 Physically, the flow across a shock wave is adiabatic – the total enthalpy is constant across the wave

Shock Waves

- Air is transparent, we cannot usually see shock waves with the naked eye.
- But, due to the density changes across the shock wave, light rays propagating through the flow can be refracted across the shock
 - Schlieren and Shadowgraphs (ME 59911 Experimental Method in Fluid Mechanics)

Normal Shock Waves

Normal Shock Waves

 Given the flow properties upstream of the wave, how to calculate the flow properties downstream of the wave?

- The flow is steady
- The flow is adiabatic
- There are no viscous effects on the sides of the control volume
- There are no body forces

Normal Shock Waves

Continuity equation

$$\iint\limits_{S} \rho \mathbf{V} \cdot \mathbf{dS} = 0$$

$$-\rho_1 u_1 A + \rho_2 u_2 A = 0$$

$$\rho_1 u_1 = \rho_2 u_2$$

Momentum equation

$$\iint_{S} (\rho \mathbf{V} \cdot \mathbf{dS}) \mathbf{V} = - \iint_{S} p \mathbf{dS}$$

$$\rho_1(-u_1A)u_1 + \rho_2(u_2A)u_2 = -(-p_1A + p_2A)$$

$$p_1 + \rho_1 u_1^2 = p_2 + \rho_2 u_2^2$$

Normal Shock Waves

Energy equation

$$\iint_{S} \rho \left(e + \frac{V^{2}}{2} \right) \mathbf{V} \cdot \mathbf{dS} = - \iint_{S} p \mathbf{V} \cdot \mathbf{dS}$$

$$-\rho_1 \left(e_1 + \frac{u_1^2}{2} \right) u_1 A + \rho_2 \left(e_2 + \frac{u_2^2}{2} \right) u_2 A = -(-p_1 u_1 A + p_2 u_2 A)$$

$$p_1 u_1 + \rho_1 \left(e_1 + \frac{u_1^2}{2} \right) u_1 = p_2 u_2 + \rho_2 \left(e_2 + \frac{u_2^2}{2} \right) u_2$$

$$\frac{p_1}{\rho_1} + e_1 + \frac{u_1^2}{2} = \frac{p_2}{\rho_2} + e_2 + \frac{u_2^2}{2}$$

$$h_1 + \frac{u_1^2}{2} = h_2 + \frac{u_2^2}{2}$$

Normal Shock Waves

Continuity equation

$$\rho_1 u_1 = \rho_2 u_2$$

Momentum equation

$$p_1 + \rho_1 u_1^2 = p_2 + \rho_2 u_2^2$$

Energy equation

$$h_1 + \frac{u_1^2}{2} = h_2 + \frac{u_2^2}{2}$$

Given that all conditions upstream of the wave, ρ_1 , u_1 , ρ_1 , etc., are known.

Three equations, four unknowns!

Normal Shock Waves

- Continuity equation
- Momentum equation
- Energy equation

- Enthalpy
- Equation of State

$$\rho_1 u_1 = \rho_2 u_2$$

$$p_1 + \rho_1 u_1^2 = p_2 + \rho_2 u_2^2$$

$$h_1 + \frac{u_1^2}{2} = h_2 + \frac{u_2^2}{2}$$

$$h_2 = c_p T_2$$

$$p_2 = \rho_2 RT_2$$

- Sound: the propagation of the energy wave through the gas
- The physical mechanism of sound propagation in a gas is based on molecular motion.
- Energized molecules collide with some of their neighboring molecules and transfer their high energy to the neighbors.
- "Domino" effect
- T, p, p are macroscopic averages of the detailed microscopic molecular motion, the regions of energized molecules are regions of slight variations in the local temperature, pressure, and density.

Consider a sound wave propagating through a gas with velocity a. (from right to left)

Consider a sound wave propagating through a gas with velocity a. (from right to left)

Continuity Equation

$$\rho a = (\rho + d\rho)(a + da)$$

$$\rho a = \rho a + ad\rho + \rho da + d\rho da$$

$$a = -\rho \frac{da}{d\rho}$$

Momentum Equation

$$p + \rho a^2 = (p + dp) + (\rho + d\rho)(a + da)^2$$
$$dp = -2a\rho da - a^2 d\rho$$
$$da = \frac{dp + a^2 d\rho}{-2a\rho}$$

$$a = -\rho \; \frac{dp/d\rho \; + \; a^2}{-2a\rho}$$

$$a^2 = \frac{dp}{d\rho}$$

$$a = \sqrt{\left(\frac{\partial p}{\partial \rho}\right)_s}$$

Speed of sound in a gas

Assume the gas is calorically perfect, isentropic relation can be applied

$$\frac{p_1}{p_2} = \left(\frac{\rho_1}{\rho_2}\right)^{\gamma} \Longrightarrow p = c\rho^{\gamma}$$

$$\left(\frac{\partial p}{\partial \rho}\right)_s = c\gamma\rho^{\gamma - 1}$$

$$\left(\frac{\partial p}{\partial \rho}\right)_s = \left(\frac{p}{\rho^{\gamma}}\right)\gamma\rho^{\gamma - 1} = \frac{\gamma p}{\rho}$$

$$a = \sqrt{\frac{\gamma p}{\rho}}$$

$$a = \sqrt{\gamma RT}$$

The speed of sound in a calorically perfect gas is a function of temperature only

Compressibility

$$\tau_s = -\frac{1}{v} \left(\frac{\partial v}{\partial p} \right)_s$$

$$\tau_s = -\rho \left[-\frac{1}{\rho^2} \left(\frac{\partial \rho}{\partial p} \right)_s \right] = \frac{1}{\rho (\partial p/\partial \rho)_s}$$

$$\tau_s = \frac{1}{\rho a^2}$$

$$a = \sqrt{\frac{1}{\rho \tau_s}}$$

Relation between the speed of sound and the compressibility of a gas

Relation between the speed of sound and the compressibility of a gas

$$a = \sqrt{\frac{1}{\rho \tau_s}}$$

- The lower the compressibility, the higher the speed of sound.
 - The speed of sound in a theoretically incompressible fluid is infinite
 - In turn, for an incompressible flow with finite velocity, V, the Mach number, M = V/a, is zero.

Mach Number: consider a fluid element moving along a streamline, the ratio between the kinetic and internal energies is

$$\frac{V^2/2}{e} = \frac{V^2/2}{c_v T} = \frac{V^2/2}{RT/(\gamma - 1)} = \frac{(\gamma/2)V^2}{a^2/(\gamma - 1)} = \frac{\gamma(\gamma - 1)}{2} M^2$$

- The square of Mach number is proportional to the ratio of kinetic energy to internal energy of a gas flow.
- The Mach number is a measure of the directed motion of the gas compared with the random thermal motion of the molecules.

Example Practice:

Consider an airplane flying at a velocity of 250 m/s. Calculate its Mach number if it is flying at a standard altitude of (a) sea level, (b) 5 km, and (c) 10 km

Example Practice:

Consider an airplane flying at a velocity of 250 m/s. Calculate its Mach number if it is flying at a standard altitude of (a) sea level and (b) 5 km

Solution

at sea level, T_{∞} = 288 K.

$$a_{\infty} = \sqrt{\gamma RT} = \sqrt{(1.4)(287)(288)} = 340.2 \text{m/s}$$

$$M_{\infty} = \frac{V_{\infty}}{a_{\infty}} = \frac{250}{340.2} = \boxed{0.735}$$

At 5 km,
$$T_{\infty} = 255.7$$
.

$$a_{\infty} = \sqrt{(1.4)(287)(255.7)} = 320.5$$
m/s

$$M_{\infty} = \frac{V_{\infty}}{a_{\infty}} = \frac{250}{320.2} = \boxed{0.78}$$

Example Practice:

Calculate the ratio of kinetic energy to internal energy at a point in a point in an airflow where the Mach number is: (a) M = 2, and (b) M = 20

Example Practice:

Calculate the ratio of kinetic energy to internal energy at a point in a point in an airflow where the Mach number is: (a) M = 2, and (b) M = 20

Solution

(a)
$$\frac{V^2/2}{e} = \frac{\gamma(\gamma - 1)}{2}M^2 = \frac{(1.4)(0.4)}{2}(2)^2 = \boxed{1.12}$$

(b)
$$\frac{V^2/2}{e} = \frac{\gamma(\gamma - 1)}{2}M^2 = \frac{(1.4)(0.4)}{2}(20)^2 = \boxed{112}$$

Energy equation for adiabatic flow

$$h_1 + \frac{u_1^2}{2} = h_2 + \frac{u_2^2}{2}$$

For calorically perfect gas

$$c_p T_1 + \frac{u_1^2}{2} = c_p T_2 + \frac{u_2^2}{2}$$

$$\frac{\gamma R T_1}{\gamma - 1} + \frac{u_1^2}{2} = \frac{\gamma R T_2}{\gamma - 1} + \frac{u_2^2}{2}$$

$$\frac{\gamma R T_1}{\gamma - 1} + \frac{u_1^2}{2} = \frac{\gamma R T_2}{\gamma - 1} + \frac{u_2^2}{2}$$

$$a = \sqrt{\gamma RT},$$

$$\boxed{\frac{a_1^2}{\gamma - 1} + \frac{u_1^2}{2} = \frac{a_2^2}{\gamma - 1} + \frac{u_2^2}{2}}$$

At the stagnation point, the stagnation speed of sound is a_0

$$\frac{a^2}{\gamma - 1} + \frac{u^2}{2} = \frac{a_0^2}{\gamma - 1}$$

$$\frac{a_1^2}{\gamma - 1} + \frac{u_1^2}{2} = \frac{a_2^2}{\gamma - 1} + \frac{u_2^2}{2}$$

In a sonic flow, where, $u = a^*$

$$\frac{a^2}{\gamma - 1} + \frac{u^2}{2} = \frac{a^{*2}}{\gamma - 1} + \frac{a^{*2}}{2}$$

$$\frac{a^2}{\gamma - 1} + \frac{u^2}{2} = \frac{\gamma + 1}{2(\gamma - 1)}a^{*2}$$

$$\frac{\gamma + 1}{2(\gamma - 1)}a^{*2} = \frac{a_0^2}{\gamma - 1} = \text{const}$$

$$\begin{array}{ccc}
\hline
c_p T + \frac{u^2}{2} &= c_p T_0
\end{array}$$

$$\begin{array}{ccc}
\frac{T_0}{T} &= 1 + \frac{u^2}{2c_p T}
\end{array}$$

$$\begin{array}{ccc}
\frac{T_0}{T} &= 1 + \frac{u^2}{2\gamma RT/(\gamma - 1)} &= 1 + \frac{u^2}{2a^2/(\gamma - 1)}
\end{array}$$

$$\begin{array}{cccc}
\hline
\frac{T_0}{T} &= 1 + \frac{\gamma - 1}{2} M^2
\end{array}$$

Only the Mach number dictates the ratio of total temperature to static temperature.

For isentropic compression of the flow to zero velocity

$$\frac{p_0}{p} = \left(\frac{\rho_0}{\rho}\right)^{\gamma} = \left(\frac{T_0}{T}\right)^{\gamma/(\gamma-1)}$$

$$\boxed{\frac{p_0}{p} = \left(1 + \frac{\gamma - 1}{2}M^2\right)^{\gamma/(\gamma - 1)}}$$

$$\frac{\rho_0}{\rho} = \left(1 + \frac{\gamma - 1}{2}M^2\right)^{1/(\gamma - 1)}$$

Hence, for a given gas (i.e., given γ), the ratios T_0/T , p_0/p , and ρ_0/ρ depend only on Mach number.

For a sonic flow, M = 1

$$\frac{T^*}{T_0} = \frac{2}{\gamma + 1}$$

$$\frac{p^*}{p_0} = \left(\frac{2}{\gamma + 1}\right)^{\gamma/(\gamma - 1)}$$

$$\frac{\rho^*}{\rho_0} = \left(\frac{2}{\gamma + 1}\right)^{1/(\gamma - 1)}$$

For
$$\gamma = 1.4$$
, these ratios are $\frac{T^*}{T_0} = 0.833$ $\frac{p^*}{p_0} = 0.528$ $\frac{\rho^*}{\rho_0} = 0.634$