ECONOMETRÍA BÁSICA

Capítulo 02: Modelo de Regresión Lineal Simple

José Valderrama & Freddy Rojas jtvalderrama@gmail.com & frojasca@gmail.com ☑ Universidad Católica Santo Toribio de Mogrovejo

Septiembre de 2021

- 1 Definición del modelo de regresión simple
 - Terminología
- DERIVACIÓN DE ESTIMACIONES DE MÍNIMOS CUADRA-DOS ORDINARIOS
 - Estimación: Mínimos cuadrados ordinarios (MCO)
- 3 Derivación de estimaciones de mínimos cuadra-DOS ORDINARIOS
 - Valores ajustados y residuales
 - Propiedades algebraicas de las estadísticas MCO
- UNIDADES DE MEDIDA Y FORMA FUNCIONAL VALORES ESPERADOS Y VARIANZAS DE LOS ESTIMADO-RES DE MCO
 - Insesgadez del MCO
 - Varianza de lo estimadores MCO
 - Estimador del error de la varianza
- REGRESIÓN POR EL ORIGEN Y REGRESIÓN SOBRE UNA CONSTANTE
- Referencias

- 1 DEFINICIÓN DEL MODELO DE REGRESIÓN SIMPLE
 - Terminología
- 2 DERIVACIÓN DE ESTIMACIONES DE MÍNIMOS CUADRA-DOS ORDINARIOS
 - Estimación: Mínimos cuadrados ordinarios (MCO)
- 3 DERIVACIÓN DE ESTIMACIONES DE MÍNIMOS CUADRA-DOS ORDINARIOS
 - Valores ajustados y residuales
 - Propiedades algebraicas de las estadísticas MCO
- UNIDADES DE MEDIDA Y FORMA FUNCIONAL
 VALORES ESPERADOS Y VARIANZAS DE LOS ESTIMADO-

RES DE MCO

- Insesgadez del MCO
- Varianza de lo estimadores MCO
- Estimador del error de la varianza
- BEGRESIÓN POR EL ORIGEN Y REGRESIÓN SOBRE UNA
- BEFERENCIAS

- Definición del modelo de regresión simple
 Terminología
- 2 DERIVACIÓN DE ESTIMACIONES DE MÍNIMOS CUADRA-
 - Estimación: Mínimos cuadrados ordinarios (MCO)
- 3 DERIVACIÓN DE ESTIMACIONES DE MÍNIMOS CUADRA-DOS ORDINARIOS
 - Valores ajustados y residuales
 - Propiedades algebraicas de las estadísticas MCO
- UNIDADES DE MEDIDA Y FORMA FUNCIONAL
 VALORES ESPERADOS Y VARIANZAS DE LOS ESTIMADO-

RES DE MCO

- Insesgadez del MCO
- Varianza de lo estimadores MCO
- Estimador del error de la varianza
- BEGRESIÓN POR EL ORIGEN Y REGRESIÓN SOBRE UNA
- REFERENCIAS

El modelo $y = \beta_0 + \beta_1 x + u$

El modelo $y = \beta_0 + \beta_1 x + u$

- y Variable dependiente, variable explicada.

El modelo
$$y = \beta_0 + \beta_1 x + u$$

- y Variable dependiente, variable explicada.
- x Variable independiente, regresor, variable explicativa, variable de control o covariado.

El modelo
$$y = \beta_0 + \beta_1 x + u$$

- y Variable dependiente, variable explicada.
- x Variable independiente, regresor, variable explicativa, variable de control o covariado.
- u Término de error poblacional.

El modelo
$$y = \beta_0 + \beta_1 x + u$$

- y Variable dependiente, variable explicada.
- x Variable independiente, regresor, variable explicativa, variable de control o covariado.
- u Término de error poblacional.
- β_0 Intercepto, constante o coeficiente no asociado con variables.

El modelo $y = \beta_0 + \beta_1 x + u$

- y Variable dependiente, variable explicada.
- x Variable independiente, regresor, variable explicativa, variable de control o covariado.
- u Término de error poblacional.
- β_0 Intercepto, constante o coeficiente no asociado con variables.
- β_1 Pendiente o coeficiente relacionado a x.

El MRLS es

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

El subíndice i va desde i = 1 a i = n (última observación). Y es la variable dependiente; X es la variable dependiente; β_0 es el intercepto, constante o coeficiente no asociado con variables; β_1 es la pendiente o el coeficiente relacionado a X_i y u_i es el témino error. Y y X son datos. También, podemos denotar \bar{Y} y \bar{X} como el promedio muestral de las variables Y y X respectivamente. En término matriciales, tenemos

$$\underline{Y} = \begin{bmatrix} 50 \\ 30 \\ 20 \\ \vdots \\ 100 \end{bmatrix} \quad y \quad \underline{X} = \begin{bmatrix} 2 \\ 4 \\ 1 \\ \vdots \\ 6 \end{bmatrix}$$

- - Terminología
- DERIVACIÓN DE ESTIMACIONES DE MÍNIMOS CUADRA-DOS ORDINARIOS
 - Estimación: Mínimos cuadrados ordinarios (MCO)
- - Valores ajustados y residuales
- Propiedades algebraicas de las estadísticas MCO
- Unidades de medida y forma funcional Valores esperados y varianzas de los estimado-
 - Insesgadez del MCO
 - Varianza de lo estimadores MCO
 - Estimador del error de la varianza

- - Terminología
- DERIVACIÓN DE ESTIMACIONES DE MÍNIMOS CUADRA-DOS ORDINARIOS
 - Estimación: Mínimos cuadrados ordinarios (MCO)
- - Valores ajustados y residuales
 - Propiedades algebraicas de las estadísticas MCO
- Unidades de medida y forma funcional Valores esperados y varianzas de los estimado-

 - Insesgadez del MCO
 - Varianza de lo estimadores MCO
 - Estimador del error de la varianza

ESTIMACIÓN: MÍNIMOS CUADRADOS ORDINARIOS

Dado que se quiere ajustar un grupo de puntos (muestra) a una línea, lo lógico sería entonces minimizar los errores cometidos por tratar de aproximar los puntos por una recta.

$$\hat{\mathbf{Y}} = \alpha + \widehat{\boldsymbol{\beta}} \mathbf{X}$$

Error:

$$\varepsilon_i = Y_i - \hat{Y}_i = Y_i - (\alpha + \widehat{\beta}X)$$

Objetivo es minimizar

$$\sum_{i=1}^{n} \varepsilon_{i}^{2} = \operatorname{Min} \sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})^{2} = \operatorname{Min} \sum_{i=1}^{n} (Y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1} X_{i})^{2}$$

¿por qué no minimizar los errores sin ninguna potencia? ¿y con otra potencia? ¿y si se minimizan los valores absolutos?

MCO SIMPLE

Modelo Poblacional

$$y = \beta_0 + \beta_1 x + \mu$$

Modelo muestral

$$\widehat{y} = \widehat{\beta}_0 + \widehat{\beta}_1 1 x + \epsilon$$

- Ecuaciones normales: $\sum \epsilon_i = 0$; $\sum \epsilon_i x_i = 0$
- Pendiente

$$\widehat{\beta}_1 = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2} = \frac{\sum (x_i - \overline{x})y_i}{\sum (x_i - \overline{x})^2}$$

Intercepto

$$\widehat{\beta}_0 = \overline{y} - \widehat{\beta}_1 \overline{x}$$

Valores predictory residuales

Una vez tengamos las estimaciones (basados en la data, porsupuesto) podemos calcular los valores predichos (\hat{y}) y los residuos (\hat{u})

$$\widehat{y}_{=}\widehat{\beta}_{0} + \widehat{\beta}_{1}x$$

$$\widehat{u} = y - \widehat{y}$$

El término de error y los residuales no son lo mismo. El primero está asociado al PGD; este último asociado al estimador (hecho por mortales)

¿CÓMO OBTENEMOS LAS ESTIMACIONES DE MCO

Consideremos la siguiente data de corte transversal (notas sobre el cuestionario 1). Descargar la data ${\tt qu\'i}$

i	Уi	x_i	$(x_i - \overline{x})$	$(x_i - \overline{x})^2$	$(y_i - \overline{y})$
1	4.4	3			
2	4.1	3			
3	5.2	5			
4	2.7	3			
:	:	:	:	:	:
80	3.1	4			

¿Cómo obtenemos las estimaciones de MCO?

Una vez que tengamos las estimaciones para β_0 y β_2 podemos completar la siguiente tabla.

i	Уi	x_i	β_0	$\beta_1 x_i$	\widehat{y}_i
1	4.4	3			
2	4.1	3			
3	5.2	5			
4	2.7	3			
:	:	:	:	:	:
80	3.1	4	•	•	•

Pero, ¿serán insesgado y eficientes?

LA RELACIÓN ENTRE Y Y X

Comencemos con el modelo que explica (en términos estadísticos) los determinantes de las calificaciones en nuestra clase de econometría.

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

Observe a β_1 , acompaña a la variable de interés y nos dice qué tanto cambia Y ante cambios en X; es decir

$$\Delta Y = \beta_1 \cdot \Delta X$$

Por lo tanto

$$\beta_1 \rightarrow \text{ es el objetivo}$$

Pero no conocemos al verdadero valor de β_1 (solo Dios lo sabe); sin embargo, podemos encontrar un estimador $\hat{\beta}_1$ (los economistas lo saben) que nos acerque al verdadero valor de β_1

- Definición del modelo de regresión simple
 Terminología
- 2 DERIVACIÓN DE ESTIMACIONES DE MÍNIMOS CUADRA-DOS ORDINARIOS
 - Estimación: Mínimos cuadrados ordinarios (MCO)
- 3 Derivación de estimaciones de mínimos cuadrados ordinarios
 - Valores ajustados y residuales
 - Propiedades algebraicas de las estadísticas MCO
- UNIDADES DE MEDIDA Y FORMA FUNCIONAL
 VALORES ESPERADOS Y VARIANZAS DE LOS ESTIMADO-
 - RES DE MCO
 - Insesgadez del MCO
 - Varianza de lo estimadores MCO
 - Estimador del error de la varianza
- 6 Regresión por el origen y Regresión sobre una
- BEFERENCIAS

- Definición del modelo de regresión simple
 Terminología
- 2 DERIVACIÓN DE ESTIMACIONES DE MÍNIMOS CUADRA-
 - Estimación: Mínimos cuadrados ordinarios (MCO)
- 3 DERIVACIÓN DE ESTIMACIONES DE MÍNIMOS CUADRA-DOS ORDINARIOS
 - Valores ajustados y residuales
 - Propiedades algebraicas de las estadísticas MCO
- UNIDADES DE MEDIDA Y FORMA FUNCIONAL
 VALORES ESPERADOS Y VARIANZAS DE LOS ESTIMADO-
 - RES DE MCO
 - Insesgadez del MCO
 - Varianza de lo estimadores MCO
 - Estimador del error de la varianza
- 6 Regresión por el origen y Regresión sobre una
- BEFERENCIAS

Beta vs Beta sombrero

- β_0 y β_1 son los parámetros poblacionales (los verdadero parámetros del Proceso Generador de Datos o PGD)
- $\hat{\beta}_0$ y $\hat{\beta}_1$ son los estimadores de esos parámetros poblacionales ("Los betas hechos por los mortales")
- Nos gustaría conocer los verdaderos parámetros (¡realmente lo haríamos!) Pero solo nosotros podemos hablar de estimaciones
- Recuerde que nos gustaría tener un estimador insesgado y eficiente.

- - Terminología
- - Estimación: Mínimos cuadrados ordinarios (MCO)
- 3 DERIVACIÓN DE ESTIMACIONES DE MÍNIMOS CUADRA-DOS ORDINARIOS
 - Valores ajustados y residuales
- Propiedades algebraicas de las estadísticas MCO
- Unidades de medida y forma funcional Valores esperados y varianzas de los estimado-

 - Insesgadez del MCO
 - Varianza de lo estimadores MCO
 - Estimador del error de la varianza

PROPIEDADES ALGEBRAICAS

$$\bullet \sum_{i=1}^n x_i \hat{u}_i = 0$$

$$\bullet \ \overline{y} = \hat{\beta_o} + \hat{\beta_1} \overline{x}$$

Suma Cuadrada

Cada observación se puede descomponer de una parte explicada y otra no explicada: $yi = \hat{y}_i + \hat{u}_i$. A partir de esto definimos:

STC Suma total de cuadrados $\sum_{i=1}^{n} (y_i - \overline{y})^2$

SEC Suma explicada al cuadrado $\sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2$

SRC Suma de residuos al cuadrado $\sum_{i=1}^{n} (\hat{u}_i)^2$

FINALMENTE STC=SEC+SRC Probar!

R² Es el indicador de ajuste más popular empleado para medir que tan bien el modelo se ajusta a los datos: $R^2 = \frac{SEC}{STC} = 1 - \frac{SRC}{STC}$

- Definición del modelo de regresión simple
 Terminología
- 2 DERIVACIÓN DE ESTIMACIONES DE MÍNIMOS CUADRA-DOS ORDINARIOS
 - Estimación: Mínimos cuadrados ordinarios (MCO)
- 3 DERIVACIÓN DE ESTIMACIONES DE MÍNIMOS CUADRA-DOS ORDINARIOS
 - Valores ajustados y residuales
 - Propiedades algebraicas de las estadísticas MCO
- 4 Unidades de medida y forma funcional
- (5) VALORES ESPERADOS Y VARIANZAS DE LOS ESTIMADO
 - Insesgadez del MCO
 - Varianza de lo estimadores MCO
 - Estimador del error de la varianza
 - 8 REGRESIÓN POR EL ORIGEN Y REGRESIÓN SOBRE UNA
- BEFERENCIAS

FORMAS FUNCIONALES

Modelo	Regresión	Variable Dep. (Y)	Variable Indep. (X)	Interpretación del regresor (β_1)
Nivel - Nivel	$Y_i = \beta_0 + \beta_1 X_i + u_i$	Y	Х	$\Delta Y = \beta_1 \Delta X$
Nivel – Log	$Y_i = \beta_0 + \beta_1 \log (X_i) + u_i$	Y	log(X)	$\Delta Y = \left(\frac{\beta_1}{100}\right) \% \Delta X$
Log - Nivel	$\log\left(Y_{i}\right) = \beta_{0} + \beta_{1}X_{i} + u_{i}$	log(Y)	Х	$\%\Delta Y = (100\beta_1)\Delta X$
Log-Log	$\log(Y_i) = \beta_0 + \beta_1 \log(X_i) + u_i$	log(Y)	Log(X)	$\%\Delta Y = \beta_1\%\Delta X$

- El modelo Nivel-Nivel representa las variables en su forma original (regresión en forma lineal). Es decir, un cambio de una unidad en X, afecta en β_1 unidades a Y.
- El modelo Nivel-Log se interpreta como un incremento del 1 % de cambio en X es asociado a un cambio en Y de $0.01 \cdot \beta_1$.
- El modelo Log-Nivel es el menor frecuentemente utilizado y se conoce como la semielasticidad de Y respecto a X. Se interpreta como un incremento de 1 unidad en X es asociado a un cambio en Y de $(100 \cdot \beta_1)$ %.
- El modelo Log-Log es atribuye a β_1 la elasticidad de Y, respecto a X. Se interpreta como un incremento del 1% en X es asociado a USAT un cambio en Y de β_1 %.

- Definición del modelo de regresión simple
 Terminología
- 2 DERIVACIÓN DE ESTIMACIONES DE MÍNIMOS CUADRA-
 - Estimación: Mínimos cuadrados ordinarios (MCO)
- 3 DERIVACIÓN DE ESTIMACIONES DE MÍNIMOS CUADRA-DOS ORDINARIOS
 - Valores ajustados y residuales
 - Propiedades algebraicas de las estadísticas MCO
- 4 Unidades de medida y forma funcional
- **5** Valores esperados y varianzas de los estimadores de MCO
 - Insesgadez del MCO
 - Varianza de lo estimadores MCO
 - Estimador del error de la varianza
- 8 Regresión por el origen y Regresión sobre una
- REFERENCIAS

- 1 DEFINICIÓN DEL MODELO DE REGRESIÓN SIMPLE
 - Terminología
- 2 DERIVACIÓN DE ESTIMACIONES DE MÍNIMOS CUADRA-DOS ORDINARIOS
 - Estimación: Mínimos cuadrados ordinarios (MCO)
- 3 DERIVACIÓN DE ESTIMACIONES DE MÍNIMOS CUADRA-DOS ORDINARIOS
 - Valores ajustados y residuales
 - Propiedades algebraicas de las estadísticas MCO
- 4 Unidades de medida y forma funcional
- **5** Valores esperados y varianzas de los estimadores de MCO
 - Insesgadez del MCO
 - Varianza de lo estimadores MCO
 - Estimador del error de la varianza
- REGRESIÓN POR EL ORIGEN Y REGRESIÓN SOBRE UNA
- REFERENCIAS

Supuestos 1-4

Linealidad de los parámetros

$$y = \beta_0 + \beta_1 x + \mu$$

- Muestreo aleatorio
- 3 Variación muestral de la variable explicativa
- 4 Media condicional cero del error:

$$E(\mu/x) = E(\mu) = 0$$

Supuestos 1-4

Con los supuestos 1 a 4 se prueba que los estimadores son insesgados:

$$E(\hat{\beta}_1) = \beta_1$$
$$E(\hat{\beta}_0) = \beta_0$$

$$\widehat{\beta}_{1} = \frac{\sum (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum (x_{i} - \overline{x})^{2}}$$

$$= \frac{\sum (x_{i} - \overline{x})\{\beta_{1}(x_{i} - \overline{x}) + u_{i}\}}{\sum (x_{i} - \overline{x})^{2}}$$

$$= \beta_{1} \frac{\sum (x_{i} - \overline{x})^{2}}{\sum (x_{i} - \overline{x})^{2}} + \frac{\sum (x_{i} - \overline{x})u_{i}}{\sum (x_{i} - \overline{x})^{2}}$$

$$= \beta_{1} + \frac{\sum (x_{i} - \overline{x})u_{i}}{\sum (x_{i} - \overline{x})^{2}}$$
(2)

Tomando el esperado y asumiendo que X no es estocástico (¡por cierto, una suposición fuerte!)

$$E[\widehat{\beta}_1] = \beta_1 + E\left[\frac{\sum (x_i - \overline{x})u_i}{\sum (x_i - \overline{x})^2}\right]$$

ESTIMADORES INSESGADOS

Finalmente

$$E[\widehat{\beta}_1] = \beta_1 + E\left[\frac{\sum (x_i - \overline{x})u_i}{\sum (x_i - \overline{x})^2}\right]$$
$$= \beta_1 + \frac{\sum (x_i - \overline{x})E[u_i]}{\sum (x_i - \overline{x})^2}$$
$$= \beta_1$$

Hemos demostrado que el estimador MCO es un estimador insesgado. Pero, todavía necesitamos la variación.

- 1 Definición del modelo de regresión simple
- Terminología
- 2 Derivación de estimaciones de mínimos cuadrados ordinarios
 - Estimación: Mínimos cuadrados ordinarios (MCO)
- 3 DERIVACIÓN DE ESTIMACIONES DE MÍNIMOS CUADRA-DOS ORDINARIOS
 - Valores ajustados y residuales
 - Propiedades algebraicas de las estadísticas MCO
- 4 Unidades de medida y forma funcional
- TALORES ESPERADOS Y VARIANZAS DE LOS ESTIMADORES DE MCO
 - Insesgadez del MCO
 - Varianza de lo estimadores MCO
 - Estimador del error de la varianza
- 8 REGRESIÓN POR EL ORIGEN Y REGRESIÓN SOBRE UNA
- REFERENCIAS

Supuestos 5: Homocedasticidad

Supuesto 5:

$$Var(\mu/x) = \sigma^2$$

Sabiendo que:

$$\hat{\beta}_1 = \beta_1 + \frac{\sum (x_i - \overline{x})\mu_i}{\sum (x_i - \overline{x})^2}$$

Se demuestra que:

$$Var(\hat{eta}_1) = rac{\sigma^2}{\sum (x_i - \overline{x})^2}$$

 σ^2 no es conocido, pero puede ser estimado a partir de los residuales $\epsilon.$

ESTIMADORES EFICIENTES

Veamos detenidamente la expresión (2)

$$\widehat{\beta}_1 = \beta_1 + \frac{\sum (x_i - \overline{x})u_i}{\sum (x_i - \overline{x})^2} \quad \to \quad \widehat{\beta}_1 - \beta_1 = \frac{\sum (x_i - \overline{x})u_i}{\sum (x_i - \overline{x})^2}$$

llevando cuadrados a ambas expresiones

$$\left[\widehat{\beta}_1 - \beta_1\right]^2 = \left[\frac{\sum (x_i - \overline{x})u_i}{\sum (x_i - \overline{x})^2}\right]^2$$

tomando el valor esperado

$$E\left[\widehat{\beta}_1 - \beta_1\right]^2 = E\left[\frac{\sum (x_i - \overline{x})u_i}{\sum (x_i - \overline{x})^2}\right]^2 = \frac{\sum (x_i - \overline{x})^2 E(u_i^2)}{\left[\sum (x_i - \overline{x})^2\right]^2}$$

Nota:
$$E\left[\widehat{\beta}_1 - \beta_1\right]^2 \equiv \widehat{\sigma}_{\widehat{\beta}_1}^2$$

reescribiendo la expresión anterior y teniendo en cuenta la característica i.i.d de u

$$E\left[\hat{\beta}_{1} - \beta_{1}\right]^{2} = \frac{\sum(x_{i} - \overline{x})^{2} E(u_{i}^{2})}{\left[\sum(x_{i} - \overline{x})^{2}\right]^{2}}$$

$$= \frac{\sum(x_{i} - \overline{x})^{2} E[u_{i}^{2}]}{\left[\sum(x_{i} - \overline{x})^{2}\right]^{2}}$$

$$= E[u_{i}^{2}] \frac{\sum(x_{i} - \overline{x})^{2}}{\left[\sum(x_{i} - \overline{x})^{2}\right]^{2}}$$
(3)

finalmente

$$E\left[\widehat{\beta}_1 - \beta_1\right]^2 = \sigma^2 \frac{1}{\sum (x_i - \overline{x})^2}$$

donde $E[u^2] = \sigma^2 \equiv s_u^2$. Estamos asumiendo homocedasticidad.

ESTIMADORES EFICIENTES

¡Casi ahí!. Solo lo que necesitamos saber es el error estándar del error (u). Sabemos que la desviación estándar de la estimación MCO -en el caso de un regresor- es

$$Var(\widehat{\beta}_1) = \sigma^2 \frac{1}{\sum (x_i - \overline{x})^2}$$
 (4)

¿Qué es σ^2 ?. Necesitamos un estimador (insesgado) para σ^2 . Entonces, tenemos la siguiente propuesta:

$$\widehat{\sigma}^2 = \frac{\sum u^2}{(n-2)}$$

Entonces:

$$Var(\widehat{eta}_1) = \widehat{\sigma}^2 rac{1}{\sum (x_i - \overline{x})^2}$$

Contenido

- 1 DEFINICIÓN DEL MODELO DE REGRESIÓN SIMPLE
 - Terminología
- 2 DERIVACIÓN DE ESTIMACIONES DE MÍNIMOS CUADRA-DOS ORDINARIOS
 - Estimación: Mínimos cuadrados ordinarios (MCO)
- 3 DERIVACIÓN DE ESTIMACIONES DE MÍNIMOS CUADRA-DOS ORDINARIOS
 - Valores ajustados y residuales
 - Propiedades algebraicas de las estadísticas MCO
- 4 Unidades de medida y forma funcional
- TALORES ESPERADOS Y VARIANZAS DE LOS ESTIMADORES DE MCO
 - Insesgadez del MCO
 - Varianza de lo estimadores MCO
 - Estimador del error de la varianza
- 6 Regresión por el origen y Regresión sobre una constante
- REFERENCIAS

ESTIMADOR DE σ^2

$$\epsilon = y - \hat{y}$$

$$= (\beta_o + \beta_1 x + \mu) - (\hat{\beta}_0 + \hat{\beta}_1 x)$$

$$\epsilon = (\beta_0 - \hat{\beta}_0) - (\hat{\beta}_1 - \beta_1) + \mu$$

$$\bar{\epsilon} = (\beta_0 - \hat{\beta}_0) - (\hat{\beta}_1 - \beta_1) + \bar{\mu}, \text{ promedio (3)}$$

$$\epsilon - \bar{\epsilon} = (\mu - \bar{\mu}) - (\hat{\beta}_1 - \beta_1)(x - \bar{x}), (3 - 4)$$

$$\epsilon = (\mu - \bar{\mu}) - (\hat{\beta}_1 - \beta_1)(x - \bar{x}), \text{ Ec. Normal}$$
(6)

(6)

ESTIMADOR DE σ^2

Finalmente:

$$\epsilon^2 = (\mu - \overline{\mu})^2 + (\hat{\beta}_1 - \beta_1)^2 (x - \overline{x})^2 - 2(\mu - \overline{\mu})(\hat{\beta}_1 - \beta_1)(x - \overline{x})$$

Aplicando sumatoria:

$$\sum \epsilon^{2} = \sum (\mu - \bar{\mu})^{2} + (\hat{\beta}_{1} - \beta_{1})^{2} \sum (x - \bar{x})^{2} - 2(\mu - \bar{\mu})(\hat{\beta}_{1} - \beta_{1}) \sum (x - \bar{x})$$

Esperanza matemática:

$$E\left[\sum \epsilon^{2}\right] = \sum E(\mu - \bar{\mu})^{2}$$

$$+ E(\hat{\beta}_{1} - \beta_{1})^{2} \sum (x - \bar{x})^{2}$$

$$- 2E(\mu - \bar{\mu})(\hat{\beta}_{1} - \beta_{1}) \sum (x - \bar{x})$$

ESTIMADOR DE σ^2

Se puede probar que:

$$\sum_{k} E(\mu - \bar{\mu})^2 = (n-1)\sigma^2$$

$$E(\hat{\beta}_1 - \beta_1)^2 \sum_{k} (x - \bar{x})^2 = \sigma^2$$

$$2E(\mu - \bar{\mu})(\hat{\beta}_1 - \beta_1) \sum_{k} (x - \bar{x}) = 2\sigma^2$$

Finalmente:

$$E\left[\sum \epsilon^{2}\right] = (n-1)\sigma^{2} + \sigma^{2} - 2\sigma^{2}$$

$$E\left[\sum \epsilon^{2}/(n-2)\right] = \sigma^{2}$$

 $\hat{\sigma}^2 = \sum \epsilon^2/(n-2)$ es un estimador insesgado de σ^2 .

Contenido

- Terminología
- - Estimación: Mínimos cuadrados ordinarios (MCO)
- - Valores ajustados y residuales
 - Propiedades algebraicas de las estadísticas MCO
- Unidades de medida y forma funcional Valores esperados y varianzas de los estimado-

 - Insesgadez del MCO
 - Varianza de lo estimadores MCO
 - Estimador del error de la varianza.
- REGRESIÓN POR EL ORIGEN Y REGRESIÓN SOBRE UNA CONSTANTE

Caso particular: Modelo ingenuo

Función a minimizar

$$g(\alpha) = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (Y_i - \alpha)^2$$

CPO:

$$\frac{\partial g(\alpha)}{\partial \alpha} = \sum_{i=1}^{n} \frac{\partial \varepsilon_{i}^{2}}{\partial \alpha} = \sum_{i=1}^{n} \frac{\partial \varepsilon_{i}^{2}}{\partial \varepsilon_{i}} \frac{\partial \varepsilon_{i}}{\partial \alpha} = 0$$

C2O:

$$\frac{\partial^2 g(\alpha)}{\partial^2 \alpha} > 0$$

Contenido

- Definición del modelo de regresión simple
 Terminología
- 2 DERIVACIÓN DE ESTIMACIONES DE MÍNIMOS CUADRA-DOS ORDINARIOS
 - Estimación: Mínimos cuadrados ordinarios (MCO)
- 3 DERIVACIÓN DE ESTIMACIONES DE MÍNIMOS CUADRA-DOS ORDINARIOS
 - Valores ajustados y residuales
 - Propiedades algebraicas de las estadísticas MCO
- Unidades de medida y forma funcional Valores esperados y varianzas de los estimado-

RES DE MCO

- Insesgadez del MCO
- Varianza de lo estimadores MCO
- Estimador del error de la varianza
- 6 REGRESIÓN POR EL ORIGEN Y REGRESIÓN SOBRE UNA
- REFERENCIAS

REFERENCIAS

- P-values. Click aquí
- Tablas estadísticas. Click aquí
- Grados de Libertad. Click aquí
- Tests de significancia Click aquí
- Cameron, C. and P. Trivedi (2011). Microeconometrics Using STA-TA. STATA press.

• Agregar alguna nota

Referencias

- Stock and Watson (2011). Introduction to Econometrics. Third Edition; The Addison-Wesley Series in Economics.
 P-values. Click apuf
- Tablas estadísticas. Click aquí
- \blacksquare Grados de Libertad. Click aquí
- $\ensuremath{ \begin{tabular}{ll} \ensuremath{ \begin{tabular}{ll$
- Cameron, C. and P. Trivedi (2011). Microeconometrics Using STA-TA. STATA press.

ECONOMETRÍA BÁSICA

Capítulo 02: Modelo de Regresión Lineal Simple

José Valderrama & Freddy Rojas jtvalderrama@gmail.com & frojasca@gmail.com ☑ Universidad Católica Santo Toribio de Mogrovejo

Septiembre de 2021

