Geometría Diferencial Tarea 6

Antonio Barragán Romero

Del libro Differential Geometry of Curves and Surfaces.

0.1. Problema 1

Muestra que la ecuación del plano tangente a una superficie que es la gráfica de una función diferenciable z = f(x, y), en el punto $p_0 = (x_0, y_0)$ esta dada por

$$z = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$$

Recuerda la definición de la diferencial df de una función $f: \mathbb{R}^2 \to \mathbb{R}$ y muestra que el plano tangente es la gráfica de la diferencial df_p .

Solución: Recordemos que la ecuación general de un plano esta dada por

$$a(x-x_0) + b(y-y_0) + c(z-z_0) = 0,$$

donde (a, b, c) es un vector ortogonal al plano. Sea $\sigma(x, y) = (x, y, f(x, y))$ una parametrización de S Sabemos que el plano tangente esta dado por una base de vectores:

$$\sigma_u(p_0) = (1,0,f_u(x_0,y_0)) \quad \sigma_v(p_0) = (0,1,f_v(x_0,y_0)),$$

y queremos encontrar un vector ortogonal al plano generado por ellos, el cual sabemos esta dado por

$$\sigma_u(p_0)\times\sigma_v(p_0)=(-f_u(x_0,y_0),-f_v(x_0,y_0),1),$$

entonces la ecuación del plano esta dada por

$$-f_u(x_0,y_0)(x-x_0)-f_v(x_0,y_0)(y-y_0)+(z-z_0)=0,\\$$

recordando que $z_0=f(x_0,y_0)$ y desarrollando obtenemos que

$$\begin{split} 0 &= -f_u(x_0,y_0)(x-x_0) - f_v(x_0,y_0)(y-y_0) + (z-f(x_0,y_0)) \\ \Rightarrow z &= f(x_0,y_0) + f_u(x_0,y_0)(x-x_0) + f_v(x_0,y_0)(y-y_0), \end{split}$$

como queremos.

0.2. Problema 2

Un punto critico de una función diferenciable $f: S \to \mathbb{R}$ definida en una superficie regular S es un punto $p \in S$ tal que $df_p = 0$.

- 1. Sea $f: S \to \mathbb{R}$ dado por $f(p) = |p p_0|, p \in S, p_0 \notin S$. Muestra que $p \in S$ es un punto critico de f si y solo si la linea que une p con p_0 es normal a S en p.
- 2. Sea $h: S \to \mathbb{R}$ dada por $h(p) = p \cdot v$, donde $v \in \mathbb{R}^3$ es un vector unitario. Muestra que $p \in S$ es un punto critico de h si y solo si v es un vector normal a S en p.

Solución:

1. Supongamos que $p \in S$ es un punto critico de f, entonces $df_{p(w)} = 0$ para todo $w \in T_pS$. Sea $w \in T_pS$ y $\alpha: (-\varepsilon, \varepsilon) \to S$ una curva diferenciable con $\alpha(0) = p$, $\alpha'(0) = w$, notemos que $f(\alpha(t)) = |\alpha(t) - p_0|$, dado que $p_0 \notin S$ tenemos que $\alpha(t) \neq p_0$ para todo t y por tanto f es diferenciable, luego

$$\begin{split} df_{p(w)} &= \frac{d}{dt} f(\alpha(t))|_{t=0} = \frac{d}{dt} |\alpha(t) - p_0||_{t=0} \\ &= \frac{2\langle \alpha'(t), \alpha(t) - p_0 \rangle}{2|\alpha(t) - p_0|}|_{t=0} \\ &= \frac{\langle w, p - p_0 \rangle}{|p - p_0|}. \end{split}$$

Dado que p es punto critico tenemos que $df_{p(w)}=0$, lo cual implica que $\langle w, p-p_0 \rangle = 0$, como lo anterior es valido para todo $w \in T_pS$ tenemos que $p-p_0$ es normal a T_pS .

Ahora si, $p-p_0$ es normal a S en p, se cumple que $\langle w,p-p_0\rangle=0$ para todo $w\in T_pS$ y por lo notado anteriormente tenemos que

$$df_{p(w)} = \frac{\langle w, p - p_0 \rangle}{|p - p_0|} = 0,$$

para todo $w \in T_p S$, como queremos.

2. Supongamos que $p \in S$ es un punto critico de h, entonces $dh_{p(w)} = 0$, para todo $w \in T_pS$. Sea $w \in T_pS$ notemos que dada $\alpha : (-\varepsilon, \varepsilon) \to S$ con $\alpha(0) = p$, $\alpha'(0) = w$, como $h(\alpha(t)) = \alpha(t) \cdot v$ y por tanto

$$dh_p(w) = \frac{d}{dt}h(\alpha(t))|_{t=0} = \alpha'(0) \cdot v = w \cdot v,$$

como lo anterior es valido para todo $w \in T_pS$ tenemos que v es normal a T_pS , como queremos.

Supongamos ahora que v es un vector normal a S en p, entonces tenemos que $w \cdot v = 0$ para todo $w \in T_p S$, de manera similar tenemos que $dh_p(w) = w \cdot v = 0$ para todo $w \in T_p S$ y por tanto p es punto critico de h.

0.3. Problema 3

Muestra que si todas las normales a una superficie conexa pasan por un punto, la superficie esta contenida en una esfera.

Solución:

Primero probaremos el siguiente resultado más general,

Proposition 0.3.1 Sea $f: S \to \mathbb{R}$ una función diferenciable en una superficie regular conexa S. Si $D_p f = 0$ para todo $p \in S$ entonces f es constante

Proof Dado $p \in S$, sea $\mathbf{x} : U \subset \mathbb{R}^2 \to \mathbf{x}(U) \subset S$ con $p \in \mathbf{x}(U)$ un difeomorfismo tal que $\mathbf{x}(U)$ es conexo por caminos, como f es diferenciable tenemos que $f \circ \mathbf{x} : U \to R$ es diferenciable,

Primero veamos que f en $\mathbf{x}(U)$ es constante Definamos $a := \mathbf{x}^{-1}(p) \in U$ y sea b un punto en una bola contenida en U, entonces podemos unir a y b por una linea recta $\beta : [0,1] \to U$ dad por $\beta(t) = ta + (1-t)b$. Como U es abierto podemos extender β a $(-\varepsilon, 1+\varepsilon)$, entonces $f \circ \mathbf{x} \circ \beta : (-\varepsilon, 1+\varepsilon) \to \mathbb{R}$, esta definida en un intervalo abierto y se cumple que

$$d(f \mathrel{\circ} \mathbf{x} \mathrel{\circ} \beta) = \left(d_p f \mathrel{\circ} d\mathbf{x} \mathrel{\circ} d\beta\right)_t = 0,$$

para todo $t \in (-\varepsilon, 1+\varepsilon)$ pues $d_p f$ es identicamente cero. Se sigue que $f \circ \mathbf{x} \circ \beta$ es constante y por tanto $f(\mathbf{x}(\beta(0))) = f(\mathbf{x}(b)) = f(\mathbf{x}(a)) = f(\mathbf{x}(\beta(1)))$. Como b fue arbitrario tenemos que f es constante en una bola contenida en U.

Como $\mathbf{x}(U)$ es conexo por caminos entonces $U = \mathbf{x}^{-1}(\mathbf{x}(U))$ es conexo por caminos , pues \mathbf{x}^{-1} es un homeomorfismo. Luego si r es otro punto en U, existe una curva continua $\alpha:[0,1]\to U$ tal que $\alpha(0)=p$ y $\alpha(1)=r$, la función $f\circ\mathbf{x}\circ\alpha:[0,1]\to\mathbb{R}$ es continua en [0,1].

Notemos que para todo $t \in [0,1]$ tenemos un punto $\alpha(t)$ en U, y por lo notado al principio existe un entorno contenido en U donde $f \circ \mathbf{x}$ es constante, luego existe un intervalo I_t abierto en [0,1] donde $f \circ \mathbf{x} \circ \alpha$ es constante. De lo anterior $[0,1] = \bigcup_t I_t$ es una cubierta abierta, por lo cual existe una subcubierta finita $I_1, ..., I_k$ tal que $[0,1] = \bigcup_i I_i$ para i=1,...,k. Como I_i son intervalos abiertos tenemos que se intersectan, sin perdida de generalidad podemos suponer que los intervalos consecutivos se intersectan, entonces $f \circ \mathbf{x} \circ \alpha$ es constante en la union de intervalos consecutivos, se sigue que $f \circ \mathbf{x} \circ \alpha$ es constante en [a,b], en especial $f(\mathbf{x}(\alpha(0))) = f(\mathbf{x}(a)) = f(\mathbf{x}(r)) = f(\mathbf{x}(\alpha(1)))$.

Lo anterior nos dice que $f \circ \mathbf{x}$ es constante en todo U, como \mathbf{x} es un difeomorfismo tenemos que f es constante en $\mathbf{x}(U)$.

Veamos ahora que f es constante en todo S. Sean $p,q \in S$, como S es conexa por caminos existe una curva continua $\gamma:[0,1] \to S$ tal que $\gamma(0)=p$ y $\gamma(1)=q$ y simplemente notemos que para todo $t \in [0,1]$ por lo notado anteriormente existe un entorno de $\gamma(t) \in S$ donde f es constante y por tanto obtenemos un intervalo abierto I_t donde $f \circ \gamma$ es constante, el resultado se concluye de manera similar a lo hecho anteriormente.

Ahora, siguiendo con la demostración, dada S una superficie regular sea p_0 el punto de intersección de las normales y consideremos $f:S\to\mathbb{R}$ dado por $f(p)=|p-p_0|$, donde $p_0\notin S$. Por hipótesis tenemos que para todo $p\in S$ la linea que une a p con p_0 es normal, por el ejercicio anterior tenemos que p es un punto critico de S, por lo cual $D_pf=0$. La proposición anterior nos dice que f es constante, es decir $|p-p_0|=r$ para todo $p\in S$ y algún $r\in \mathbb{R}$. Lo anterior nos dice que S esta contenida en la circunferencia centrada en p_0 de radio r, como queremos.