III PROCESSUS DE POISSON 1 Introduction, définition

- •Le processus de **Poisson** correspond à **l'arrivée au hasard** d'entités en un endroit donné
- •N(t) le nombre d'événements se produisant dans l'intervalle de temps [0, t] $\{N(t); t \ge 0\}$ est un processus de comptage
- Tn la durée séparant le (n-1)-ième du n-ième événement (n = 2, 3...) durée d'attente dans l'état n-1

Une relation fondamentale

$$S_n = T_1 + T_2 + ... + T_n$$

 S_n temps écoulé jusqu'au n -ième événement

Equivalence des événements

"
$$N(t) \le n$$
" et " $S_{n+1} > t$ "
" $N(t) \ge n$ " et " $S_{n} \le t$ "

$$P(N(t) = n) = P(S_{n+1} > t \text{ et } S_{n} \le t)$$

= $P(S_{n} \le t) - P(S_{n+1} \le t)$

2 Définitions et propriétés principales

 $\{N(t); t \ge 0\}$ est un processus de Poisson ssi

Cl. N(t) est homogène dans le temps

$$P(N(s+t)-N(s) = k) = P(N(t) = k) = p_k(t)$$
;
 $s > 0, t > 0$ et $k = 0, 1, 2, ...$

C2. N(t) est à accroissements indépendants

$$P(N(s+t)-N(s) = k, N(s) = j) =$$

 $P(N(s+t)-N(s) = k) \times P(N(s) = j) = p_k(t)p_j(s)$
 $s > 0, t > 0 \text{ et } k = 0, 1, 2, ...$

C3.
$$p_{k}(\Delta t) = \begin{cases} o(\Delta t)(k \ge 2) \\ \lambda \Delta t + o(\Delta t)(k = 1) \\ 1 - \lambda \Delta t + o(\Delta t)(k = 0) \end{cases}$$

 λ nombre moyen d'événements par unité de temps

Propriétés principales

Théorème : Si un processus de comptage $\{N(t); t \ge 0\}$ satisfait aux conditions **C1**, **C2** et **C3**, alors

$$P(N(t) = k) = p_k(t) = e^{-\lambda t} (\lambda t) k/k!$$
; $t > 0$ et $k = 0, 1...$

$$E[N(t)] = \lambda t$$
, $Var[N(t)] = \lambda t$

Relations du régime transitoire, aucun régime

stationnaire car $\forall k \, p_k(t) \to 0$ quand $t \to \infty$

Un processus de comptage satisfaisant C1, C2 et la conclusion du théorème, est un processus de Poisson. Tn suit une loi exponentielle

Graphe de transition

Pour ne pas surcharger le graphe des transitions on supprime le terme $+ o(\Delta t)$

Pratiquement, on utilise un graphe réduit comprenant que les transitions entre deux états différents et les probabilités de transitions sont remplacées par les taux de transition

3 Processus de Poisson / loi exponentielle

Intervalle entre deux événements

 $\{N(t); t \ge 0\}$ un processus de Poisson de paramètre λ et T_n la durée séparant le (n-1)-ième et le n-ième événement.

Théorème : Les temps d'attente T_n d'un processus de Poisson de paramètre λ sont des variables aléatoires indépendantes et distribuées identiquement selon une loi exponentielle de paramètre λ .