Лабораторная работа 7

Вариант 14

Доверительное оценивание и проверка гипотез.

Борис Шапошников М3239

Обратная связь: bshaposhnikov01@gmail.com

Формулировка задачи

N вар	Распределение	Уровень до-	Гипотеза и аль-	вероятность
	данных, объ-	верия γ	тернатива	ошибок І
	ём выборки и			рода α
	выборочные			
	характеристики			
14	$X \sim B(p); n =$	0.95	$ H_0: p = p_0 =$	0.05
	100; $k_n = 37$		0.45; $H_1: p \neq p_0$	

Величины
$$t_{\gamma}$$
: $\Phi_1(t_{\gamma}) = P(|\xi| < t_{\gamma}) = \gamma$

$ \gamma $	0.9	0.95	0.99
t_{γ}	1.65	1.96	2.58

На основании данных построить доверительный интервал для α и проверить гипотезу на основании наиболее мощного критерия γ .

Решение

Информация Фишера

$$X \sim B(p)$$

Информация Фишера для распределения Бернулли:
$$I(p)=\frac{1}{p(1-p)}$$
 ОМП: $\hat{\theta}_n=\hat{p}_n=\frac{k_n}{n}$ $\hat{\theta}_n=\frac{37}{100}=0.37$ $I(\hat{\theta}_n)=\frac{1}{0.37*0.63}\approx 4.29$

Доверительный интервал

$$I_n = [\hat{\theta}_n - \delta_n; \hat{\theta} + \delta_n]$$

$$\delta_n = \frac{t_{1-\alpha}}{\sqrt{nI(\hat{\theta}_n)}}$$

$$t_{1-\alpha} = t_{0.95} = 1.96$$

$$\delta_n = \frac{1.96}{\sqrt{100*4.29}} \approx 0.09463$$

$$I_n = [0.27537; 0.46463]$$

$$p_0 = 0.45 \in I_n$$

Значение вероятности p из распределения Бернулли лежит в доверительном интервале I_n заданного уровня доверия. Значит следует принять гипотезу H_0 .

Проверка гипотезы

Двусторонняя альтернатива:
$$\Psi_{n,\alpha}^* = \begin{cases} 1, \sqrt{nI(\theta_0)} |\hat{\theta}_n - \theta_0| \geq t_\gamma, \\ 0, \sqrt{nI(\theta_0)} |\hat{\theta}_n - \theta_0| < t_\gamma \end{cases}.$$

$$\sqrt{nI(\theta_0)} |\hat{\theta}_n - \theta_0| = \sqrt{\frac{n}{p_0*(1-p_0)}} |\frac{k_n}{n} - p_0| = \sqrt{\frac{100}{0.45*0.55}} |0.37 - 0.45| \approx 1.608$$

$$1.608 < 1.96 \Rightarrow \Psi_{n,\alpha}^* = 0$$

Вывод

 $H_0: p_0 = 0.45$ принимается в соответствии с вычисленными данными.