TITAN

Le drone Sous Marin qui ne prendra pas l'eau.

INTRODUCTION

INTRODUCTION

ÉTAT DE L'ART

ÉTAT DE L'ART

1ère cloche à plonger : tonneau d'Alexandre

1887: Le gymnote, premier vrai sous-marin propulsé par un moteur électrique de 50 chevaux, atteint 8 noeuds en surface, 4 en plongée

1904: Le Narval, équipé d'un périscope et de ballasts externes, équipé d'une propulsion mixte: machine à vapeur en surface, moteur électrique en plongée.

1914: Les submersibles fonctionnant grâce à une propulsion Diesel-électrique Une batterie d'accumulateurs alimente un moteur électrique de propulsion.

1950: La propulsion nucléaire apparaît à bord des sous-marins,

ÉTAT DE L'ART

AUV: autonomous underwater vehicle

ROV: remotely operated underwater vehicle

CAHIER DES CHARGES

CAHIER DES CHARGES

Fonctionnalités	Contraintes
F1 Être un système embarqué	Énergie limitée
F1.1 Être capable d'avancer dans l'eau	Milieu aquatique
F1.2 Gérer la profondeur du drone	C1 Présence de rocher au fond et d'algues C2 Poids du sous marin C3 Pression
F1.3 Être commandable depuis la terre ferme	C1 Faible propagation dans l'eau des OEM C2 Allure et orientation du drone variable
F2 Récupérer les lunettes de Monsieur Fiack au fond des étangs	
F2.1 Visualiser le fond des étangs	C1 Capture vidéo C2 Faible luminosité au fond de l'étang
F2.2 Transmettre des informations du drone vers la terre ferme	C1 Transmission vidéo en direct (ou faible latence) C2 Transmission de multiple type de donnée (profondeur, vitesse)

OBJECTIES ENVISAGÉS

OBJECTIFS ENVISAGÉS

Contraintes	Objectifs
Énergie limitée	Choisir une source d'énergie adéquat
	Limiter l'utilisation de matériel énergivore
Milieu aquatique	Rendre le drone étanche
C1 Présence de rocher au fond et d'algues	Connaître la profondeur de navigation
C2 Poids du sous marin	Maîtriser le point de flottaison
C3 Pression	Utiliser des matériaux capable de supporter une légère pression
C1 Faible propagation dans l'eau des OEM	Communiquer au drone des instructions intelligibles
C2 Allure et orientation du drone variable	Connaître la vitesse et la position angulaire du drone
C1 Capture vidéo	Capturer le fonds des étangs
C2 Faible luminosité au fond de l'étang	Éclairer le fond des étangs
C1 Transmission vidéo en direct (ou faible latence)	Communiquer à l'utilisateur des données en direct
C2 Transmission de multiple type de donnée (profondeur, vitesse)	

OBJECTIFS CONCERNÉS:

Choisir une source d'énergie adéquat

Batterie NiMH

Batterie Li-Ion

OBJECTIFS CONCERNÉS:

Rendre le drone étanche & Utiliser des matériaux capable de supporter une légère pression

Bocal couvercle mécanique

PVC

OBJECTIFS CONCERNÉS:

Connaître la profondeur de navigation

OBJECTIFS CONCERNÉS:

Faire avancer le drone sous-marin

Propulseur sous marin

Pompe aquarium

OBJECTIFS CONCERNÉS:

Maîtriser le point de flottaison

Seringue

Ballon gonflable

OBJECTIFS CONCERNÉS : Connaître la vitesse et la position angulaire du drone

Accéléromètre MEMS

Centrale inertielle

OBJECTIFS CONCERNÉS:

Capturer le fond des étangs

STM32 Caméra

Raspberry Pi Camera Mobile

OBJECTIFS CONCERNÉS:

Éclairer le fond des étangs

Bandeau LEDs

OBJECTIFS CONCERNÉS:

Communiquer à l'utilisateur des données en direct & Communiquer au drone des instructions intelligibles

Utilisation d'une bouée relais lié par OEM à l'utilisateur

Utilisation d'une bouée relais lié par OEM à l'utilisateur communiquant par ondes acoustiques au drone

RÉPARTITION

RÉPARTITION

CONCLUSION