

Exercice 1. Un modèle démographique linéaire pour la Roumanie.

Le tableau suivant donne l'évolution de la population de la Roumanie en millions d'habitants entre 2010 et 2018.

Année	2010	2011	2012	2013	2014	2015	2016	2017	2018
Rang	0	1	2	3	4	5	6	7	8
Population	20, 25	20, 15	20,06	19,98	19,91	19,82	19, 7	19, 59	19,47

- 1. Représenter le nuage de points associé à ce tableau, le range de l'année étant placé sen abscisses. On prendra 1 cm pour une unité sur l'axe des abscisses et 10 cm en ordonnées, les graduations commençant à 18,5 en ordonnées.
- 2. Justifier que la décroissance de la population de la Roumanie relève d'un modèle *linéaire*.
- 3. On note u(n) le nombre d'habitants de ce pays en millions d'habitants en l'année de rang n, selon le modèle linéaire.
 - (a) Donner u(0) puis exprimer u(n) en fonction de n.
 - (b) Estimer avec ce modèle, la population de la Roumanie en 2025.

Exercice 2. Un modèle démographique exponentiel pour l'Azerbaïdjan.

Le tableau suivant donne l'évolution de la population de l'Azerbaïdjan en millions d'habitants entre 2008 et 2014.

Année	2008	2009	2010	2011	2012	2013	2014
Rang	0	1	2	3	4	5	6
Population	8,78	8,89	8,99	9, 11	9,23	9,35	9,47

- 1. Représenter le nuage de points associé à ce tableau, le range de l'année étant placé sen abscisses. On prendra 1 cm pour une unité sur l'axe des abscisses et 5 cm en ordonnées, les graduations commençant à 8,5 en ordonnées.
- 2. En calculant des taux de variation, justifier que la croissance de la population de l'Azerbaïdjan relève d'un modèle *exponentiel*.
- 3. On note u(n) le nombre d'habitants de ce pays en millions d'habitants en l'année de rang n, selon le modèle exponentiel.
 - (a) Donner u(0) puis exprimer u(n) en fonction de n.
 - (b) Estimer avec ce modèle, la population de l'Azerbaïdjan en 2025.

Exercice 3. Population de lapins et modèle de Verhulst.

Le modèle exponentiel de Malthus ne s'adapte pas à la plupart des situations. Le modèle de Verhulst (1838) introduit la capacité d'accueil K du milieu, c'est-à-dire, le nombre d'individus maximal que le milieu peut accueillir en tenant compte de l'espace, des ressources, etc. On prend pour exemple une population de 10 lapins qui augmente de 5% par mois.

- 1. On note u(n) la population de lapins au bout de n mois, selon le modèle de Malthus.
 - (a) Justifier que u(n + 1) = u(n) + 0.05u(n).
 - (b) Dans une feuille de calcul, saisir les valeurs de n dans la colonne A et calculer les valeurs de u(n) dans la colonne B pour n compris entre 0 et 200.
- 2. On note v(n) la population des lapins au bout de n mois, selon le modèle de Verhulst. Celui-ci prend en compte que ces lapins vivent sur une petite île et que la capacité d'accueil de l'île peut être estimée à 500 lapins. Il introduit alors dans la formule du modèle de Malthus un correctif :

$$v(n+1) = v(n) + 0.05v(n) \left(1 - \frac{v(n)}{500}\right).$$

- (a) Expliquer pourquoi le modèle de Verhulst donne des résultats proches de celui de Malthus, tant que le nombre de lapins est faible.
- (b) Calculer les valeurs de v(n) dans la colonne C de la feuille de calcul.
- (c) Comparer u(200) et v(200). Quel constat peut-on faire pour les valeurs de v?
- (d) Représenter les nuages de points associés à ces deux modèles.