Gráficas y Juegos: Tarea 02

Martínez Méndez Ángel Antonio Pinzón Chan José Carlos Rendón Ávila Jesús Mateo

February 27, 2025

Universidad Nacional Autónoma de México Facultad de Ciencias Profesor: César Hernández Cruz 1. Sea G una gáfica, y recuerde que c_G denota al número de componentes conexas de G. Demuestre que si $e \in E$, entonces $c_G \le c_{G-e} \le c_G + 1$.

Hipotesis

Definiciones

Def.

2. Una gráfica es escindible completa si su conjunto de vértices admite una partición (S, K) de tal forma que S es un conjunto independiente, K es un clan, y cada vértice en S es adyacente a cada vértice en K. Demuestre que una gráfica es escindible completa si y sólo si no contiene a C_4 ni a $\overline{P_3}$ como subgráfica inducida. (Sugerencia: Un ejercicio de la tarea anterior puede resultar de utilidad.)

3.

a) Demuestre que si $\mid E \mid > n-1$, entonces G es conexa.

Hipotesis

Definiciones

b) Para cada n > 3 encuentre una gráfica inconexa de orden n con |E| = n - 1.

Hipotesis

Definiciones

4.

a) Demuestre que si $\delta > \left(\left\lfloor \frac{|V|}{2} \right\rfloor - 1 \right)$, entonces G es conexa.

Hipotesis

El grado minimo δ de G es mayor a $\left(\left\lfloor \frac{|V|}{2}\right\rfloor - 1\right)$.

Sea G una gráfica cuyo grado minimo es $\delta > \left(\left\lfloor \frac{|V|}{2} \right\rfloor - 1 \right)$, entonces podemos decir quev $\delta \geq \left\lfloor \frac{|V|}{2} \right\rfloor - 1 + 1$, es decir:

$$\delta \ge \left| \frac{|V|}{2} \right|$$

Si S es un subconjunto de V(G) que satisface |S| = |V| - 2 y u, v dos vértices que pertenecen a V(G) y no pertenecen a S.

Como sabemos que $u, v \notin S$. Si es que u es adyacente a $\frac{|S|}{2}$ elementos $s \in S$ y v es adyacente a $\frac{|S|}{2}$ elementos $s' \in S$. Como sabemos que |S| = |V| - 2, así u es adyacente a $\frac{|V|-2}{2}$ elementos $s \in S$ y v es adyacente a $\frac{|V|-2}{2}$ elementos $s' \in S$.

Como por hipotesis sabemos que $d(u), d(v) \ge \left\lfloor \frac{|V|}{2} \right\rfloor$, entonces cuando |V| es impar debe haber un s_i en S tal que u es adyacente a s_i y también v es adyacente a s_i , mientras que cuando |V| es par existen al menos un s_i y un s_j a los cuales u y v son adyacentes. Por lo que podemos grantizar una uv- trayectoria P:

$$P = (u, s_k = s_i = s_k', v)$$
 cuando $|V|$ es par e impar y $P' = (u, s_k = s_j = s_k', v)$, cuando $|V|$ es par

para cada $u, v \in V(G)$. Por lo tanto G es conexa.

Figure 1: Representación de G cuando |V| es par, suponiendo que en la columna central (negra) son adaycentes cualesqueira 2 vértices.

Figure 2: Representación de G cuando |V| es impar, suponiendo que en la columna central (negra) son adyacentes cualesquiera 2 vertices.

b) Para |V| par encuentre una gráfica $\left(\left\lfloor\frac{|V|}{2}\right\rfloor-1\right)$ -regular e inconexa.

Como podemos ver de dibujar las gráficas para |V|=2, |V|=4, |V|=6 y |V|=8

Podemos decir que las gráficas que representan la condición son las $2k_n$ con $n \ge 1$ y $n \in \mathbb{N}$.

Figure 3: Representación de una gráfica 0-regular de 2 vértices

Figure 4: Representación de una gráfica 1-regular de 4 vértices

Figure 5: Representación de una gráfica 2-regular de 6

Figure 6: Representación de una gráfica 3-regular de 6 vértices

5. Demuestre que si D no tiene lazos y $\delta^+ \geq 1$, entonces D contiene un ciclo dirigido de longitud al menos $\delta^+ + 1$.

Definiciones

Def.