Einführung in die Algebra

BLATT 5

Jendrik Stelzner

15. November 2013

Aufgabe 5.1.

Aufgabe 5.2.

Aufgabe 5.3.

Bemerkung 1. Sei R ein Ring mit mindestens zwei Elementen. Dann ist $0 \neq 1$ in R.

 $\textit{Beweis}. \ \ \text{Da} \ R$ mindestens zwei Elemente hat, gibt es ein $a \in R$ mit $a \neq 0.$ Für $1 \in R$ ist

$$1 \cdot a = a \neq 0 = 0 \cdot a,$$

also $0 \neq 1$.

Aufgabe 5.4.

(ii)

Für alle $a \in R$ ist

$$a^{2} + 1 = a + 1 = (a + 1)^{2} = a^{2} + 2a + 1,$$

also 2a = 0. Insbesondere ist a = -a.

(i)

Für alle $a,b \in R$ ist

$$ab - ba = ab + ba = (a + b)^{2} - a^{2} - b^{2} = a + b - a - b = 0,$$

also ab=ba, und daher R kommutativ.

(iii)

Seien $a, b \in R$ mit $a \neq b$. Es ist

$$(a-b)ab = a^2b - ab^2 = ab - ab = 0.$$

Da $a \neq b$ ist $a - b \neq 0$, wegen der Nullteilerfreiheit von R also ab = 0. Wegen der Nullteilerfreiheit ist also a=0 oder b=0. Aus der Beliebigkeit von a und b folgt, dass es neben 0 nur ein weiters Element in R gibt. Also ist $R = \{0, 1\}$. Betrachtet man die Verknüpfungstabellen von R,

+	0	1	und		0	1
0	0	1		0	0	0
1	1	0		1	0	1

so ist R offenbar isomorph zu \mathbb{F}_2 .

Aufgabe 5.5.

(i)

Da \mathfrak{a} ein Ideal in R ist, ist $ar \in \mathfrak{a}$ für alle $a \in \mathfrak{a}$ und $r \in R$. Es ist nun

$$\mathfrak{b} = (\mathfrak{a}) = \sum_{a \in \mathfrak{a}} aR[X] = \sum_{a \in \mathfrak{a}} \left\{ a \sum_{i=0}^{n} a_i X^i : n \ge 0, a_i \in R \right\}$$

$$= \sum_{a \in \mathfrak{a}} \left\{ \sum_{i=0}^{n} a a_i X^i : n \ge 0, a_i \in R \right\} = \left\{ \sum_{i=0}^{n} a_i X^i : n \ge 0, a_i \in \mathfrak{a} \right\}. \tag{1}$$

Dabei ergibt sich die Gleichheit bei (1) wie folgt: Für alle $f=\sum_{i=0}^n aa_iX^i\in aR[X]$ ist $aa_i\in\mathfrak{a}$, da $a\in\mathfrak{a}$ und \mathfrak{a} ein Ideal in R ist, also f ein Polynom mit Koeffizienten in \mathfrak{a} .

Andererseits ist jedes Polynom $f=\sum_{i=0}^n a_i X^i$ mit Koeffizienten $a_0,\dots,a_n\in\mathfrak{a}$ die Summe der Monome $f_i:=a_i X^i\in a_i R[X]$. Also ist $f\in\sum_{i=1}^n a_i R[X]$.