Nombre Flottants & Pipelines & Opérations Multicycles

1 Nombre Flottants - Représentation "virgule flottante" (standard IEEE 754)

- -- S est le bit de signe
- PE est la partie exposant
- F représente la partie fractionnaire (mantisse) après le 1 implicite

Pour les flottants simples précision (32 bits), on a le codage suivant :

S	PE:Par	rtie Exposant	F: Par	rtie Fractionnaire	
31	30	23	22	0	(numéro bit)

Avec les valeurs suivantes :

0 ou 1 0	0	représente 0
0 ou 1 0	$\neq 0$] représente $S \times 0, F \times 2^{-126}$ (nombre dénormalisé)
0 ou 1 $0 < PE < 255$	quelconque] représente $S\times 1, F\times 2^{PE-127}$ (nombre $normalis\acute{e})$
0 ou 1 255	0] représente $\pm \infty$
0 ou 1 255	$\neq 0$] représente NaN (Not a Number)

1.1 Quels nombres simple précision correspondent aux mots 32 bits suivants?

0x41300000		
0x41E00000		
0x00000000		
0xFFC00000		

1.2 Écrire 1 et -1000 de façon normalisée.

1.3	Donner le plus grand positif et son prédécesseur. Indiquer leur écart.

1.4 Donner le plus petit positif normalisé et dénormalisé (non nul).

1.5 Donner le plus grand et le plus petit négatif (non nul).

2 Nombre Flottants - Conversions

2.1 Indiquer si les assertions suivantes sont vraies ou fausses en justifiant.

```
x == (int)(float)x

x == (int)(double)x

f == (float)(double)f

d == (float)d

2 / 3 == 2 / 3.0

d < 0.0 \rightarrow 2 * d < 0.0

d > f \rightarrow -f < -d

d * d >= 0.0

(d + f) - d == f
```

3 Pipelines

Un processeur P1 dispose du pipeline à 5 étages pour les opérations entières et les chargements / rangements flottants et des pipelines suivants pour les instructions flottantes :

```
EX2
Multiplication: fmul
                        LI
                            DI
                                 LR
                                       EX1
                                                     EX3
                                                            EX4
                                                                  ER
                                 LR
                                       EX1
                                              EX2
     Addition: fadd
                       LI
                            DI
                                                     \operatorname{ER}
```

Les instructions flottantes 1f (Load Float) et sf (Store Float) ont les mêmes pipelines que les instructions entières LW (Load Word) et SW (Store Word).

Une instruction i a une latence de n si l'instruction suivante (qui utilise le résultat de la première) peut commencer au cycle i + n. Une latence de 1 signifie que l'instruction suivante peut commencer au cycle suivant.

3.1 Donner les latences des instructions flottantes fmul et fadd.

3.2 Donner les latences des instructions flottantes fmul et fadd pour le processeur P2 suivant.

Multiplication: fmul LI $\overline{\mathrm{DI}}$ LR EX1 EX2 EX3 EX4 EX5 EX6 ER LR Addition: fadd LI DI EX1 EX2 EX3 EX4 ER

L	

4 Latences

Soit le jeu d'instructions suivant : (on dispose de 32 registres entiers R0 à R31 et de 32 registres flottants F0 à F31)

Instructions qui travaillent sur des flottants :			
Charge un flottant depuis l'adresse			
(l'adresse peut être de la forme N(R) avec N un immédiat et R un registre entier)			
Stocke un flottant dans l'adresse			
$Fdest \leftarrow Fsrc1 + Fsrc2$ (addition flottante simple précision)			
$Fdest \leftarrow Fsrc1 - Fsrc2$ (soustraction flottante simple précision)			
$Fdest \leftarrow Fsrc1 \times Fsrc2$ (multiplication flottante simple précision)			
c2 Fdest ← Fsrc1 / Fsrc2 (division flottante simple précision)			
r des entiers :			
Charge un entier depuis l'adresse			
(l'adresse peut être de la forme N(R) avec N un immédiat et R un registre entier)			
Stocke un entier dans l'adresse			
$Rdest \leftarrow Rsrc1 + Rsrc2$ (addition sur des entiers)			
Rdest, Rsrc, Imm Rdest \leftarrow Rsrc + Imm (addition d'un entiers avec un immédiat)			
Branchements:			
$\mathrm{Si}\;\mathrm{Ra} eq \mathrm{Rb}: \mathtt{goto}\;\mathrm{Label}$			
$\mathrm{Si}\;\mathtt{R} eq 0: \mathtt{goto}\;\mathtt{Label}$			

Les additions, soustractions et multiplications flottantes sont pipelinées. Une nouvelle instruction peut démarrer à chaque cycle. Les latences sont de 2 cycles pour 1f et fournies par les résultats de l'exercice 1 pour les multiplications et additions flottantes.

La division a une latence de 15 cycles. Elle n'est pas pipelinée : une nouvelle division ne peut commencer que lorsque la division précédente est terminée.

```
float x[100]; float y[100]; float z[100];
for (size_t i = 0; i < 100; ++i)
{
    z[i] = x[i] * y[i];
}</pre>
```

4.1 Traduire ce code C en assembleur en énumerant les numéros de cycles à côté des instructions pour les deux processeurs de l'exercice 1. Les tableaux x, y et z sont rangés à la suite en mémoire. R1 contient déjà l'adresse de x[0] et R3 l'adresse de x[100] (l'adresse de fin de x).

4.2	Donner le code C de la boucle après déroulage d'ordre 2.
4.3	Donner le code C de la boucle après déroulage d'ordre 4.
4.4	Traduire le code C déroulé avec un facteur de 2 en assembleur en énumerant le numéros de cycles à côté des instructions pour les deux processeurs.

4.5	Traduire le code C déroulé avec un facteur de 4 en assembleur en énumerant le numéros de cycles à côté des instructions pour les deux processeurs.
4.6	Pour chaque code et chaque processeur : quel est le nombre de cycles par itération
4.7	Quel est le facteur de déroulage maximal qui permettrait d'améliorer le nombre
	de cycle par itération? Quel serait le nombre des différentes instructions (charge ments, multiplications,)? le nombre de cycles? Le nombre de cycles par itération?

4.8 Donner le code C de la boucle après déroulage d'ordre 2 dans le cas général, c'est-à-dire en remplaçant 100 par N.

5 Somme Des Carrés (Bonus)

```
Soit le code C suivant :
float x[100];    float s = 0.f;
for (size_t i = 0; i < 100; ++i)
{
    s += x[i] * x[i];
}</pre>
```

5.1 Mêmes questions que pour l'exercice 2.

6 Multiplication Vs Division

Soit les code C suivants équivalents mathématiquement :

```
float x[100];
float x[100];
float y[100];
                                                float y[100];
float z[100];
                                                float z[100];
float a;
                                                float a;
// Calcul de a
                                                // Calcul de a
                                                float a_inv = 1.f / a;
for (size_t i = 0; i < 100; ++i)
                                                for (size_t i = 0; i < 100; ++i)
    z[i] = x[i] / a + y[i];
                                                    z[i] = x[i] * a_inv + y[i];
}
```

Dans cet exercice, on utilise les latences suivantes :

Instructions	Latence	Pipelinée?
lf	2	oui
fadd, fsub	3	oui
fmul	5	oui
fdiv	15	non

Les tableaux x, y et z sont rangés à la suite en mémoire. R1 contient déjà l'adresse de x[0] et R3 l'adresse de x[100] (l'adresse de fin de x).

a est déjà calculé dans F31 pour le premier code et a_inv est déjà calculé dans F31 pour le deuxième.

	Pour assen	ıbleu	r co	rres	pond	lant	en	énur	nera	nt le	es n	umé	ros	de o	ycle	e. -	- ,	, IC	
_																			