◊◊◊ Lycée Math math math ↔◊◊			A.S.: 2022/2023
Matière: Mathématiques	Niveau: 4 ^e Maths	Date: 16/3/2023	Durée : 4 heures

Devoir de contrôle n° 2

NB: ce document contient 4 exercices

Exercice 1:5 points

Soit f la fonction définie sur $]0, +\infty$ [par $f(x) = \frac{\ln(x)}{\ln(x+1)}$.

Soit C la courbe de f dans un repère orthonormée (O, \vec{i}, \vec{j}) .

- 1 a Calculer $\lim_{x\to 0^+} f(x)$. Interpréter graphiquement le résultat.
 - **b** Vérifier que $\forall x > 0, \ln(x+1) = \ln(x) + \ln\left(1 + \frac{1}{x}\right)$.
 - c Déduire que $\lim_{x\to +\infty} f(x) = 1$. Interpréter le résultat.
- 2 a Montrer que $\forall x > 0, f'(x) = \frac{x(\ln(x+1) \ln(x)) + \ln(x+1)}{x(x+1)\ln^2(x+1)}.$
 - **b** En déduire que f est strictement croissante sur $]0, +\infty[$.
 - c Dresser le tableau de variation de la fonction f.
 - d Tracer la courbe C en précisant son intersection avec l'axe des abscisses.
- **3** Montrer que f admet une réciproque f^{-1} définie sur $]-\infty,1[$.
- 4 Pour tout entier naturel $n \ge 2$, on pose $a_n = f^{-1}\left(\frac{1}{n}\right)$.
 - a Calculer $\lim n \to +\infty an$.
 - **b** Montrer que a_n est une solution de l'équation $x^n = x + 1$.
 - c Calculer $\lim n \to +\infty (an)^n$.

Exercice 2:5pts

Soit f la fonction définie sur $]0, +\infty$ [par $f(x) = \frac{\ln(x)}{\ln(x+1)}$.

Soit C la courbe de f dans un repère orthonormée (O, \vec{i}, \vec{j}) .

- 1 a Calculer $\lim_{x\to 0^+} f(x)$. Interpréter graphiquement le résultat.
 - **b** Vérifier que $\forall x > 0, \ln(x+1) = \ln(x) + \ln\left(1 + \frac{1}{x}\right)$.
 - c Déduire que $\lim_{x \to +\infty} f(x) = 1$. Interpréter le résultat.
- 2 a Montrer que $\forall x > 0, f'(x) = \frac{x(\ln(x+1) \ln(x)) + \ln(x+1)}{x(x+1)\ln^2(x+1)}.$

- **b** En déduire que f est strictement croissante sur $]0, +\infty[$.
- c Dresser le tableau de variation de la fonction f.
- d Tracer la courbe C en précisant son intersection avec l'axe des abscisses.
- 3 Montrer que f admet une réciproque f^{-1} définie sur $]-\infty,1[$.
- 4 Pour tout entier naturel $n \ge 2$, on pose $a_n = f^{-1}\left(\frac{1}{n}\right)$.
 - a Calculer $\lim n \to +\infty an$.
 - **b** Montrer que a_n est une solution de l'équation $x^n = x + 1$.
 - c Calculer $\lim n \to +\infty (an)^n$.