For Multiplication $A = \begin{pmatrix} 3 & -1 \end{pmatrix}$, prove $A^n = \begin{pmatrix} 2n+1 & -n \end{pmatrix}$ where $n \in \mathbb{N}$ (Multiplication)

$$P_{\mu n} = (2ci) - (1) = (3 - 1)$$

$$P_{\mu n} = (2ci) - (1) = (3 - 1)$$

as Erue when n=1

Assume true when
$$n=k=3$$
 $A^{k}=(2k+1-k)$ $4k$ $1-2k$

for all numbers $n \in \mathbb{N}$ let f or n = h + 1, f rue f or n = 2, 3, 4, ...