COSC265 — Relational Database Systems

Neville Churcher

Department of Computer Science & Software Engineering University of Canterbury

2021

- ☆ FDs represent facts about a relation scheme and constraints on extensions
- ★ Keys are (sets of) attributes which functionally determine scheme R
- If K is a key, and a subset of K is also a key, then K is a *superkey*
- 🖈 If a relation has more than one key, then each is a *candidate key*
- One candidate key is chosen to be the *primary key* (PK) and the others become secondary keys
- A prime attribute is a member of some candidate key

Normalisation Overview

- If we just have one enormous relation (the *universal relation*) then our database will suffer from update anomalies
- Normalisation is the process of obtaining relations whose schemas contain attributes which "belong" together
- ☼ Data dependencies (such as FDs) allow us to formalise the process and determine whether desirable properties hold
- Normal forms are statements about relation properties and provide tests we can apply

Decomposition v Synthesis

- ☆ Decompose (by projection) universal relation to produce database schema
- ☆ In practice, begin with set of relations resulting from analysis and decompose 'non-normal' relations
- Alternative is *synthesis*—start with FDs and construct normalised relations
- Normalisation (normally) leads to more relations in database
- Normalisation can involve *trade-offs*. Having many smaller relations may remove the risk of update anomalies but require more (expensive) join operations in queries
- Denormalisation involves deliberately storing data in lower normal forms generally for performance reasons

The Golden Rule

```
The Golden Rule

"The key,

the whole key,

and nothing but the key"
```

The Key

1NF: Remove repeating groups

- Attribute values are single atomic values
- 🖈 "Flat" tuples no array, list, ... fields or nested relations
- ★ Essentially the definition of a relation
- ☆ All attributes depend on the key

COSC265 © Neville Churcher 2021 Normalisation 77

1NF Example

See text ...

Dname	<u>Dnumber</u>	Dmgr_ssn	Dlocations
A		†	A

DEDARTMENT

Extension

Schema

DEPARTMENT					
Dname	<u>Dnumber</u>	Dmgr_ssn	Diocations		
Research	5	333445555	{Bellaire, Sugarland, Houston}		
Administration	4	987654321	{Stafford}		
Headquarters	1	888665555	{Houston}		

1NF

DEPARTMENT			
Dname	<u>Dnumber</u>	Dmgr_ssn	Dlocation
Research	5	333445555	Bellaire
Research	5	333445555	Sugarland
Research	5	333445555	Houston
Administration	4	987654321	Stafford
Headquarters	1	888665555	Houston

The Whole Key

2NF: Remove non-full dependence

Every non-prime attribute is *fully functionally dependent* on the PK (and other candidate keys)

2NF Example

The whole key

Consider scheme SNAME (N), SADDRESS (A), ITEM (I), PRICE (P) $R = \{NAIP\}$ $\mathcal{F} = \{N \rightarrow A, NI \rightarrow P\}$ PK (K) is NI

$$\star K \rightarrow P \equiv NI \rightarrow P$$
 is full since $N \not\rightarrow P$ and $I \not\rightarrow P$

$$A \mapsto A \equiv NI \rightarrow P$$
 is partial since $N \rightarrow A$

1NF but not 2NF

Remove non-full dependence to get

N

3NF: Remove transitive dependence

- ☆ In 2NF and no non-prime attribute is transitively dependent on the PK
- \Rightarrow Whenever FD $X \rightarrow A$ folds in R, then either:
 - $\star X$ is a superkey of R or
 - \star A is a prime attribute of R

Definition (3NF)

- ☆ In 2NF and no non-prime attribute is transitively dependent on the PK
- \Rightarrow Whenever FD $X \rightarrow A$ folds in R, then either:
 - \star X is a superkey of R or
 - \star A is a prime attribute of R

Example

$$R = ABCDEFGHIJ \quad \mathcal{F} = \{AB \to C, A \to DE, B \to F, F \to GH, D \to IJ\}$$

Key		3NF	
What is the	e key of <i>R</i> ?	A DE	$\{A \rightarrow DE\}$
2NF A DEIJ	$\{A \to DE, D \to IJ\}$	D IJ	$\{D \rightarrow IJ\}$
B FGH		BF	$\{B \rightarrow F\}$
AB C	$AB \rightarrow C$	F GH	$\{F \rightarrow GH\}$
AD C	{AD → C}	AB C	$\{AB \rightarrow C\}$

Decomposition Example

Can anything go wrong?

Remember SNAME (N), SADDRESS (A), ITEM (I), PRICE (P)

$$R = \{NAIP\} \quad \mathcal{F} = \{N \rightarrow A, NI \rightarrow P\}$$

1NF but not 2NF

Remove non-full dependence to get

☼ Do these relations contain the same information as the original one?

Non-Loss Decomposition

$$ABC$$
, $F = \{A \rightarrow B, C \rightarrow B\}$

$$egin{aligned} r_2(R_2) & \mathsf{where} \ R_1 = AB, \mathcal{F}_1 = \{A \,{ o}\, B\} \end{aligned}$$
 and

Arr Decompose into $r_1(R_1)$ and

$$R_1 = AB$$
, $\mathcal{F}_1 = \{A \rightarrow B\}$ and $R_2 = BC$, $\mathcal{F}_2 = \{C \rightarrow B\}$

Re-join using
$$r' = r_1 \bowtie r_2$$
 —

recover original relation?

<i>'</i>	٦.	[)		-	
а	1	b	1	c.	1	
a	3	b	1	c:	2	
a	2	b	2	c:	3	
a	4	b	2	C.	4	
		r	1			
	,	Ą		В		
	а	1	b	1		
	а	3	b	1		
	а	2	b	2		
	а	4	b	2		
		r				
	Е	3	(2		
	h	1		1		

Α	В	С	
a1	b1	с1	
a1	b1	c2	₹\$
a3	b1	с1	₹\$
a3	b1	c2	
a2	b2	с3	
a2	b2	с4	公
a4	b2	с3	公
a4	b2	с4	

Some descriptions & definitions

$$R$$
 is a relation scheme, with FDs \mathcal{F} , decomposed into $\{R_1, R_2, \dots, R_k\}$
This is a *lossless-join decomposition with respect to* \mathcal{F} if $\forall r(R, \mathcal{F})$

$$r = \pi_{R_1}(r) \bowtie \pi_{R_2}(r) \bowtie \dots \pi_{R_{k-1}}(r) \bowtie \pi_{R_k}(r)$$

$$Arr$$
 In other words, r is the natural join of its projections r_i onto the R_i Arr If $ho = \{R_1, R_2, \dots, R_k\}$ then can define the project-join mapping

$$m_{\rho}(r) = \bigotimes_{i=1}^{k} \pi_{R_i}(r)$$

If
$$\rho$$
 non-loss then $r=m_{\rho}(r)$. Otherwise, ρ is lossy i.e. $r\subseteq m_{\rho}(r)$

$$\pi_{R_i}m_{\rho}(r)=r_i$$

 $\Rightarrow m_o(r)$ is idempotent

The chase test

- Construct a tableau with a column for each attribute A; and a row for each relation scheme R_i in the decomposition
- \Rightarrow Symbols in column based on attribute name (i.e. \times in the X column)
- \Rightarrow Symbol in row i, column j is:
 - unsubscripted if A_i is in R_i subscripted otherwise
- 🖈 If a row contains all unsubscripted symbols then the decomposition is lossless

Example

$$R = ABCD \quad \rho = \{AD, BCD, AC\} \begin{array}{c|ccc} A & B & C & D \\ \hline a & b_1 & c_1 & d \\ (BCD) & a_2 & b & c & d \\ (AC) & a & b_3 & c & d_3 \end{array}$$

Testing for Lossy Joins

The *chase* continues . . .

- ☆ If a row contains all unsubscripted symbols then the decomposition is lossless
 - ☆ If not, then consider the (equality-generating) FDs
 - To consider $X \to Y$: for all rows that agree on the value of X, equate symbols corresponding to Y

Example

 \blacksquare Equating a, a_2 makes tuple 2 all unscripted symbols $\therefore \rho$ is lossless

Decomposition Example: NAIP

Recall previous example: $R = \{SNAME, SADDRESS, ITEM, PRICE\} \equiv \{NAIP\}$ $R_1 = NA, R_2 = NIP \quad \mathcal{F} = \{N \rightarrow A, NI \rightarrow P\}$

Consider $N \rightarrow A$: replace a_2 by a

Arr Last row all unsubscripted so decomposition $ho(\textit{NAIP}) = \{\textit{NA}, \textit{NIP}\}$ is lossless

☆ Thus 2NF better than 1NF for this example

Recall previous example
$$R = ABC$$
, $R1 = AB$, $R2 = BC$, $\rho(R) = \{R1, R2\}$, $\mathcal{F} = \{A \rightarrow B, C \rightarrow B\}$

$$\begin{array}{c|cccc}
(R_1) & A & B & C \\
\hline
(R_2) & a_2 & b & c
\end{array}$$

- ① Consider $A \rightarrow B$: no matching LHS values
- 2 Consider $C \rightarrow B$: no matching LHS values
- $\rho(R) = \{R1 = AB, R2 = BC\}$ is lossy consistent with previous observation
- Many other properties of tableaux have been studied
- e.g. above procedure can be proved correct
- Can be applied to other kinds of dependencies

Larger Decomposition/Chase Example

$$R = ABCDE$$
, $\rho(R) = \{AD, AB, BE, CDE, AE\}$
 $\mathcal{F} = \{A \rightarrow C, B \rightarrow C, C \rightarrow D, DE \rightarrow C, CE \rightarrow A\}$

Could have equated to
$$c_3$$
 or c_5

A B C D E

a b_1 c_1 d e_1

a b c_2 d_2 e_2

a_3 b c_3 d_3 e

a_4 b_4 c d e

*C*5

 $A \rightarrow C$ then $B \rightarrow C$

$$C o D$$
 then $DE o C$
then $CE o A$
 $A B C D E$
 $a b_1 c_1 d e_1$
 $a b c_1 d_2 e_2$
 $a_3 b c_1 d_3 e$
 $a_4 b_4 c d e$
 $a b_5 c_1 d_5 e$

3rd (BE) row all asymbols $\Longrightarrow \rho$ non-loss

A B C D E a b_1 c d e_1 a b c d e_2 A b_4 c d e a b_5 c d e

Normalisation 91

COSC265

☆ Simpler test for lossless-join available for common case of decomposition into two schemas

$$\rho(R) = \{R_1, R_2\}$$
 lossless w.r.t. \mathcal{F} iff:

$$R_1 \cap R_2 \rightarrow R_1 - R_2$$
 or $R_1 \cap R_2 \rightarrow R_2 - R_1$

One More Time . . .

$$R = \{NAIP\}$$
 $\mathcal{F} = \{N \rightarrow A, NI \rightarrow P\}$
1NF but not 2NF

P

- ☆ Do these relations contain the same information as the original one?
- \Rightarrow $NIP \cap NA \rightarrow NIP \setminus NA? N \rightarrow IP$, but
- $A \cap NIP \cap NA \rightarrow NA \setminus NIP? N \rightarrow A \checkmark$
- Δ Lossless 2NF (still) better that 1NF for this case

Normalisation 93

2-Schema Lossless-Join Decomposition Test

Is every 2-schema decomposition lossless?

Example (2-Schema Lossless-Join Decomposition Test)

$$R = ABC, \mathcal{F} = \{A \rightarrow B\}$$

$$R_1$$
 R_2 R_1 R_2 AB BC
 $AB \cap AC = A$ $R_1 \cap R_2$ $AB \cap BC = B$
 $AB - AC - B$ $R_1 - R_2$ $AB - BC = A$

AC - AB = C $R_2 - R_1$ BC - AB = C

 $A \rightarrow B \in \mathcal{F} :: \rho_1 \text{ lossless}$

$$B \to A \not\in \mathcal{F}^+, B \to C \not\in \mathcal{F}^+ :: \rho_2 \text{ lossy}$$

Dependency-Preserving Decompositions

Do the constraints described by FDs still apply after normalisation?

- Lossless-join decompositions are desirable because a relation can always be recovered from its projections (e.g. in queries involving ⋈)
- Another important property of decompositions $\rho(R) = \{R_1, R_2, \dots, R_i, \dots, R_k\}$ is that the dependencies \mathcal{F} for R are implied by their projections onto the R_i

Definition (Dependency Projection)

The projection of $\mathcal F$ onto attributes Z is

$$\pi_{Z}(\mathcal{F}) = \{X \to Y | X \to Y \in \mathcal{F}^{+} \land XY \subseteq Z\}$$

$$\rho$$
 preserves \mathcal{F} if, $\forall f \in \mathcal{F}$, $\cup_i \pi_{R_i}(\mathcal{F}) \models f$,

- \Rightarrow FDs represent integrity constraints for R. Update anomalies can occur if ρ does not preserve \mathcal{F} even if ρ is lossless.

Example (City, Street, Zip code)

$$R = CSZ$$
, $\mathcal{F} = \{CS \rightarrow Z, Z \rightarrow C\}$, $\rho = \{SZ, CZ\}$

$$ho$$
 is lossless as $(SZ \cap CZ) \rightarrow (CZ - SZ)$ $(\equiv Z \rightarrow C)$
 ho $\pi_{SZ}(\mathcal{F})$ gives only trivial FDs by reflexivity

$$\pi_{SZ}(\mathcal{F})$$
 gives only trivial FDs by reflexivity

$$\mathcal{L}_{CZ}(\mathcal{F}) = \{Z \to C, + \text{ trivial FDs}\}$$

$$\Rightarrow \pi_{SZ}(\mathcal{F}) \cup \pi_{CZ}(\mathcal{F}) \not\models \mathit{CS} \rightarrow \mathit{Z}$$

$$\therefore \rho$$
 does not preserve \mathcal{F}

$$ho$$
 does not preserve ${\cal F}$

(prove it!)

CSZ Example — Consequences

r_1	
S	Z
19739 River Road	97027
19739 River Road	98119
• • •	

c I	S
	$r_1 \bowtie r_2$
Portland, MN	55555
Portland, OR	98119
Portland, OR	97027

$r_1 \bowtie r_2$					
C	S	Z			
Portland, OR	19739 River Road	97027			
Portland, OR	19739 River Road	98119			
• • •					

2nd tuple could be added in error. Satisfies $\pi_{SZ}(\mathcal{F})$

 \Rightarrow Violates $CS \rightarrow Z$ Dependencies not preserved

Satisfies $\pi_{CZ}(\mathcal{F})$

☆ But decomposition is lossless

Normalisation 97

and *vice versa* . . .

- ightharpoonup Have seem that ho may be lossless-join but not preserve ${\cal F}$
- ightharpoonup Could we have ho that preserves ${\cal F}$ but is lossy?

Example (Dependency-Preserving Lossy Join)

Consider R = ABCD, $\rho = \{AB, CD\}$, $\mathcal{F} = \{A \rightarrow B, C \rightarrow D\}$

$$\pi_{AB}(\mathcal{F}) = A \rightarrow B \quad \pi_{CD}(\mathcal{F}) = C \rightarrow D$$

 $\pi_{AB}(\mathcal{F}) \cup \pi_{CD}(\mathcal{F}) = \mathcal{F}$

 $\therefore
ho$ is dependency-preserving

Apply two schema lossless-join decomposition test:

$$\Rightarrow$$
 $AB \cap CD \rightarrow AB - CD$ or $AB \cap CD \rightarrow CD - AB$

$$\Rightarrow AB \cap CD = \emptyset$$
, $AB - CD = AB$, $CD - AB = CD$

$$\Rightarrow \emptyset \not\to AB, \emptyset \not\to CD$$

$$Arr$$
 :. ho is lossy, yet preserves $\mathcal F$

Definition (Non-Prime Attribute)

If K_i are the candidate keys for schema R and $A \subseteq R$ then attribute A is non-prime if

$$\nexists K_i : A \subseteq K_i$$

$$Arr$$
 If P is prime in R then $\|\{K_i|P\subseteq K_i\}\|>0$

Example (Keys and Primes)

Given the previous definitions, show that:

- \Rightarrow *CS* and *SZ* are both keys
- \Rightarrow All attributes of R are prime

Several equivalent definitions in common use. Important concepts are:

- ☆ Independence of non-prime attributes
- Non-prime attributes are fully-dependent on key

Definition (3NF — which do you prefer?)

- ☆ 3NF = 2NF + every non-prime attribute is non-transitively dependent on PK
- No non-prime attribute is functionally dependent on another non-prime attribute
- If $X \to A$ holds in R then either X is a superkey of R or A is prime in R. (Note: this can be applied directly, without constructing 2NF first)
- ★ Every non-prime attribute of R is:
 - ★ Fully functionally dependent on every key
 - ★ Non-transitively dependent on every key

Implications

2NF allows dependencies where a non-prime attribute determines a prime attribute

If $\mathcal{F} \supseteq \{S\# \to City, City \to Population\}$ then an update anomaly could occur when adding new tuples because of transitive dependency $S\# \to Population$.

S#	City	Population	
42	Christchurch	400,000	
42	Christchurch	400,366	

3NF avoids such anomalies.

Boyce-Codd Normal Form

As far as we go with FDs

- ☆ A relation scheme is in BCNF if every determinant (LHS of FD) is a superkey.
- ★ All BCNF relations are also 3NF
- ☆ A 3NF relation may not be BCNF

Example (Zip Codes)

$$R = CSZ, \mathcal{F} = \{Z \rightarrow C, CS \rightarrow Z\}$$

R is 3NF — all attributes are prime

R is not BCNF — $Z \rightarrow C$ but Z not a superkey (only CS, SZ, CSZ are)

- Any relation scheme has a lossless-join decomposition into BCNF. However, this decomposition may not preserve dependencies.
- ☆ Any relation scheme has a decomposition into 3NF that is both lossless and dependency-preserving.