GEOMETRY OF MANIFOLDS QUALIFYING EXAM Fall 1998 (Auckly & Miller)

Work as many as you can in the 2 hours. Best of luck.

- 1. (A) Define the deRham cohomology groups of a differential manifold.
 - (B) Determine all of the deRham cohomology groups of $S^2 \times S^2$. For those that are nonzero specify representatives for generators.
- 2. Describe in detail the flows of the vector field

$$-y\frac{\partial}{\partial x} + x\frac{\partial}{\partial y} - z\frac{\partial}{\partial z}$$
 on $\mathbb{R}^3 = \{(x, y, z) | x, y, z \in \mathbb{R}\}.$

Describe the behavior of the orbits as $t \to +\infty$.

3. On $\{(x,y)|x,y\in\mathbb{R},0< y<\pi\}\subset\mathbb{R}^2$ let g be the metric $g=dx^2+\cos y(dx\otimes dy+dy\otimes dx)+dy^2$

(A) Compute
$$\left[x^2 \frac{\partial}{\partial x} + y^2 \frac{\partial}{\partial y}, \quad xy \frac{\partial}{\partial x}\right]$$

- (B) Compute $g\left(\nabla_{\sin y \frac{\partial}{\partial y}} \left(\cos y \frac{\partial}{\partial x}\right), \frac{\partial}{\partial y}\right)$
- **4.** Let $D=\{(x,y)\in\mathbb{R}^2|x^2+y^2\leq 4\}/\sim$ where \sim is the equivalence relation generated by $(x,y)\sim(-x,-y)$ if $x^2+y^2=1$ or $x^2+y^2=4$. Determine the fundamental group of D.

- **5.** Suppose that f and $g: M \to N$ are smooth mappings between two n dimensional manifolds and that w is a closed n form on N. If f and g are homotopic show that $\int_M f^*w = \int_M g^*w$.
- **6.** Let B be a smooth vector subbundle of TM, the tangent bundle of the manifold M.
 - (A) Define what we mean when we say that B is integrable.
 - (B) State the Frobenius theorem which gives necessary and sufficient conditions for B to be integrable in terms of the bracket of vector fields.
 - (C) Suppose that α is a smooth 1-form and $\alpha(m) \neq 0$ for all $m \in M$. If $B = \bigcup_{m \in M} \operatorname{kernel}(\alpha(m))$ show that B is integrable if and only if $d\alpha|B = 0$.
- 7. Prove that $O_n = \{A | A \text{ is an } n \times n \text{ real matrix and } A^T A = I\}$ is a manifold. What is the dimension of O_n ?

<u>Hint</u>: Consider the mapping $f: GL(n, \mathbb{R}) \to symmetric matrices$ by $f(A) = A^T A$.

- 8. Prove or disprove the statements
 - (A) There is a Lie group G which is diffeomorphic to S^2 , the 2-sphere.
 - (B) There is a Lie group G which is diffeomorphic to S^3 , the 3-sphere.
- **9.** Prove that a simply connected 2-manifold with nonpositive curvature can have at most one geodesic (parametrized by arc length) from a point A to a second point B.

Hint: Consider the Gauss-Bonnet Theorem.