- 1. (a) Assume f is continuous, and by contradiction, there exist an $x \in f^{-1}(\operatorname{Int}(A))$, where $x \notin \operatorname{Int}(f^{-1}(A))$. Thus, there exists an $(a_n) \notin f^{-1}(A)$, where $a_n \in (x \frac{1}{n}, x + \frac{1}{n})$. This implies $(a_n) \to x$, but for each a_n , $f(a_n) \notin A$ and $f(a_n) \to f(x)$ due to the continuity of f. Meanwhile, $\operatorname{Int}(A)$ is open, so there exists $\epsilon > 0$ where $(f(x) \epsilon, f(x) + \epsilon) \subseteq \operatorname{Int}(A)$. This is a contradiction because there exists an $N \in \mathbb{N}$ where $|f(a_n) f(x)| < \epsilon$ for $n \ge N$ while $f(a_n) \notin A \supseteq \operatorname{Int}(A)$. Thus, $(f(x) \epsilon, f(x) + \epsilon) \not\subseteq \operatorname{Int}(A)$.
 - For the converse, assume for all $A \subseteq \mathbb{R}$ that $f^{-1}(\operatorname{Int}(A)) \subseteq \operatorname{Int}(f^{-1}(A))$. This also implies that for all open sets $U \subseteq \mathbb{R}$ that $f^{-1}(U) \subseteq \operatorname{Int}(f^{-1}(U))$, as $\operatorname{Int}(U) = U$. We prove $f^{-1}(U)$ is relatively open in \mathbb{R} . By contradiction, it is not relatively open, so there exists an $x \in f^{-1}(U)$ s.t. for all $n \in \mathbb{N}$, there exists an $a_n \in \mathbb{R}$ with $|a_n x| < \frac{1}{n}$ and $a_n \notin f^{-1}(U)$. We then note that since $x \in \operatorname{Int}(f^{-1}(U))$, so there exists a $\delta > 0$ where $(x \delta, x + \delta) \subseteq f^{-1}(U)$. However, there exists an $N \in \mathbb{N}$, for $n \geq N$ where $|a_n x| < \delta$, so there exists an $a_n \in (x \delta, x + \delta)$, which implies $(x \delta, x + \delta) \not\subseteq f^{-1}(U)$. This is a contradiction. Thus, $f^{-1}(U)$ is relatively open in \mathbb{R} . Since all open sets $U \subseteq \mathbb{R}$ have their pre-image being relatively open in \mathbb{R} , it implies f must be continuous from a proposition proven in class.
 - (b) Let $f(x)=x^2$, and A=[0,1]. We then denote x=0, so f(x)=0. We note that $x\in \mathrm{Int}(f^{-1}(A))$ since $(-\frac{1}{2},\frac{1}{2})\subseteq f^{-1}(A)$. However, $x\notin f^{-1}(\mathrm{Int}(A))$ because $\mathrm{Int}(A)=(0,1)$ and $0\notin (0,1)$. Hence, we proved that $f^{-1}(\mathrm{Int}(A))\neq \mathrm{Int}(f^{-1}(A))$.

- 2. (a) Note that f(x) = f(x+d) = f(x+d+d) and f(x-d-d) = f(x-d) = f(x). We can repeat either of them indefinitely to get that f(x) = f(x+kd) for $k \in \mathbb{Z}$. For any $x \in \mathbb{R}$, we note that $x = \lfloor x/d \rfloor d + r$ where $0 \le r < d$, so f(x) = f(r). Thus, we get that $f(\mathbb{R}) = f([0,d])$. Let R := f([0,d]), we note that [0,d] is a closed and bounded, hence compact. By EVT, we get that there exist $x_{\min}, x_{\max} \in [0,d]$ s.t. $f(x_{\min}) = \min(R)$ and $f(x_{\max}) = \max(R)$. Thus, f attains its maximum and minimum values.
 - (b) Let $a, b \in [0, 1]$ where a < b and $a, b \neq 0, 1$.

Case 1: If f(0) = f(1), we note this is impossible because f is one-to-one.

Case 2: If f(0) < f(1), we get that by IVT that $f([0, a]) = A = [a_1, a_2]$ and $f([b, 1]) = B = [b_1, b_2]$. Since f is one-to-one and $[0, a] \cap [b, 1] = \emptyset$, $A \cap B = \emptyset$. Thus, either $a_2 < b_1$ or $b_2 < a_1$. Since $f(0) \in A$ and $f(1) \in B$, we get that:

$$a_1 \le f(0) \le a_2 < b_1 \le f(1) \le b_2$$

Thus, since $f(a) \in A$ and $f(b) \in B$, f(a) < f(b).

Case 3: If f(0) > f(1), denote the same A and B and we get that:

$$b_1 \le f(1) \le b_2 < a_1 \le f(0) \le a_2$$

Thus, since $f(a) \in A$ and $f(b) \in B$ and $b_2 < a_1, f(a) > f(b)$

Since 0 < 1, we can extend this to all $a, b \in [0, 1]$ where a < b. Thus, f is strictly monotone on [0, 1].