Modulhandbuch

Digitalised Energy Systems - Master-Studiengang

im Sommersemester 2024

erstellt am 29.07.2024

1/57

Systems	
inf5120 - Digitalised Energy System Co-Simulation	
inf5122 - Learning-Based Control in Digitalised Energy Systems	6
inf341 - Robust Control and State Estimation in Digitalised Energy Systems	9
inf5112 - Digitalised Energy System Modeling and Control	
inf5114 - Digitalised Energy System Requirements Engineering	
inf5118 - Decentralised Nonlinear Model-Based Control in Digitalised Energy Systems	
inf516 - Distributed Operation in Digitalised Energy Systems	
inf579 - Special Topics in 'Digitalised Energy Systems' I	
inf581 - Special Topics in 'Digitalised Energy Systems' II	
inf584 - Special Topics in 'Energy Informatics' I	
inf585 - Special Topics in 'Energy Informatics' II	
inf5100 - Digital Technology on Energy Markets	
inf5102 - Power System Components, Networks, Operation	9
inf5124 - Research Project Digitalised Energy Systems	1
inf5104 - Fundamentals of Game Theory in Energy Systems	3
inf5106 - Optimal and Model-Predictive Control	5
	7
inf5110 - Practical Course (Energy Informatics)	9
inf514 - Simulation-based Smart Grid Engineering and Assessment	1
inf5126 - Digitalised Energy System Cyber-Resilience	3

inf5128 - Al in Energy Systems	
inf5130 - Socio-technical Energy Systems	45
	47
inf586 - Current Topics in 'Energy Informatics' I	
	49
inf587 - Current Topics in 'Energy Informatics' II	
	51
inf591 - Current Topics in ,Digitalised Energy Systems'	
	53
mam - Masterabschlussmodul	
	55

Modulhandbuch Digitalised Energy Systems - Master-Studiengang

Datum 29.07.2024

Digitalised Energy System Design and Assessment

inf340 - Uncertainty Modeling for Control in Digitalised Energy Systems

Modulbezeichnung	Uncertainty Modeling for Control in Digitalised Energy Systems
Modulkürzel	inf340
Kreditpunkte	6.0 KP
Workload	180 h
Verwendbarkeit des Moduls	 Master Digitalised Energy Systems (Master) > Digitalised Energy System Design and Assessment Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction Master Engineering of Socio-Technical Systems (Master) > Systems Engineering Master Informatik (Master) > Technische Informatik Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodule der Informatik
Zuständige Personen	Rauh, Andreas (Modulverantwortung)Lehrenden, Die im Modul (Prüfungsberechtigt)
Teilnahmevoraussetzungen	
	Grundkenntnisse der Regelung linearer zeitkontinuierlicher und/oder zeitdiskreter Systeme bzw. der robusten Regelung

Kompetenzziele

Die Studierenden identifizieren die grundlegenden Konzepte der Modellierung von Unsicherheiten in Regelungssystemen sowie problemangepasste Methoden für die Berücksichtigung von Unsicherheiten während Simulation und Beobachtersynthese

Fachkompetenzen

Die Studierenden:

- identifizieren die grundlegenden Konzepte der Modellierung von Unsicherheiten in Regelungssystemen
- charakterisieren problemangepasste Lösungsmethoden für Systeme mit stochastischen und mengenbasierten Unsicherheiten
- erkennen Ansätze für eine softwaretechnische Umsetzung in Simulation, Regelung und Zustandsschätzung

Methodenkompetenz

Die Studierenden:

- analysieren Probleme der regelungsorientierten Unsicherheitsmodellierung dynamischer Systeme
- analysieren grundlegende Lösungsansätze auf theoretischer Basis
- transferieren sowie generalisieren diese eigenständig auf neue forschungsnahe Anwendungsszenarien.

Sozialkompetenz

Die Studierenden:

- erarbeiten in einem vorlesungsbegleitenden Projekt Lösungsideen für reale regelungstechnische Aufgaben in kleinen Gruppen
- vermitteln die von ihnen erzielten Ergebnisse in kurzen Präsentationen

Selbstkompetenz

Die Studierenden:

- reflektieren kritisch die von ihnen in Projektform erarbeiteten Ergebnisse
- erkennen Grenzen unterschiedlicher Ansätze der regelungsorientierten Modellierung von Unsicherheiten.

Modulinhalte

- Mathematische Modellierung von Unsicherheiten in linearen und nichtlinearen dynamischen Systemmodellen
- 2. Stochastische Modellierungsansätze
 - Wahrscheinlichkeitsverteilungen
 - Bayes'sche Zustandsschätzung für zeitdiskrete Systeme (linear/nichtlinear) und zeitkontinuierliche Systeme (linear)
 - Lineare Schätzverfahren in erweiterten Zustandsräumen (Carleman-Linearisierung für spezielle Systemklassen)
 - Monte-Carlo-Methoden
- 3. Schätzung von Zuständen, Parametern und Simulation unsicherer Prozesse
 - · Ausblick: Markow-Modelle
 - o Ausblick: Bayes'sche Netze
- 4. Mengenbasierte Ansätze
 - Mengenbasierte Algorithmen: Forward-Backward-Contractor und Bisektionsverfahren
 - Intervallmethoden zur verifizierten Lösung gewöhnlicher Differentialgleichungssysteme sowie zur Stabilitätsanalyse unsicherer Systeme
 - Schätzung von Zuständen und Parametern sowie Simulation unsicherer Prozesse
- 5. Ausblick: Syntheseverfahren für Regelungen und Beobachter unter expliziter Beschreibung von Unsicherheiten

Literaturempfehlungen

- Jaulin, L., Kieffer, M., Didrit, O., Walter, E., Applied Interval Analysis, Springer-Verlag, 2001.
- Papoulis, A.: Probability, Random Variables, and Stochastic Processes, McGraw-Hill, 4th Ed., 2002.
- Rauh, A. Folien/ Skript zur Vorlesung "Uncertainty Modelling for Control in DES".

Links		
Unterrichtssprache		Englisch
Dauer in Semestern		1 Semester Semester
Angebotsrhythmus Modul		jedes Wintersemester
Aufnahmekapazität Modul		unbegrenzt
Lehr-/Lernform		V+Ü+P
Vorkenntnisse		Grundkenntnisse der Regelung linearer zeitkontinuierlicher und/oder zeitdiskreter Systeme bzw. der robusten Regelung
Prüfung	Prüfungszeiten	Prüfungsform

Gesamtmodul

Am Ende der Veranstaltungszeit	Portfolio oder Klausur

Lehrveranstaltungsform Kommentar	SWS	Angebotsrhythmus	Workload Präsenz
Vorlesung	2	WiSe	2
Übung	1	WiSe	1
Projekt	1	WiSe	1
Präsenzzeit Modul insgesamt			4 h

5 / 57

inf5120 - Digitalised Energy System Co-Simulation

Modulbezeichnung	Digitalised Energy System Co-Simulation	
Modulkürzel	inf5120	
Kreditpunkte	6.0 KP	
Workload	180 h	
Verwendbarkeit des Moduls	 Master Digitalised Energy Systems (Master) > Digitalised Energy System Design and Assessment Master Informatik (Master) > Angewandte Informatik 	
Zuständige Personen	Bremer, Jörg (Modulverantwortung)Lehrenden, Die im Modul (Prüfungsberechtigt)	
Teilnahmevoraussetzungen		
	Programmierung mit Python, Simulation-based Smart Grid Engineering and Assessment	

Kompetenzziele

Nach erfolgreichem Abschluss der Lehrveranstaltung sollen die Studierenden einfache, schalt- und modulierbare elektrische Verbraucher und Erzeuger informationstechnisch modellieren sowie diese zusammen mit passenden Steuer- und Regelmechanismen in Smart-Grid- Szenarien simulieren können. Die Studierenden sollen hierzu zunächst die informationstechnischen Modelle aus den physikalischen Modellen herleiten sowie bewerten können. Sodann lernen sie zum Einsatz von Steuer- und Regelmechanismen die Grundlagen der Co-Simulation am Beispiel des Smart Grid Co-Simulations-Frameworks "mosaik".

Die Studierenden werden in die Lage versetzt, die Funktionsweise von verteilten agentenbasierten Steuer- und Regelungskonzepten und -algorithmen für dezentrale Erzeuger und Verbraucher auf den Betrieb elektrischer Energiesysteme zu simulieren und anzuwenden sowie hinsichtlich der Anforderungen an Wirkleistungsbilanzierung, Betriebsmittelauslastung, Robustheit und Flexibilitat zu analysieren.

Die Studierenden vertiefen praktisch die Grundlagen für die Planung, Durchführung und Auswertung simulationsbasierter Experimente. Besonderer Fokus liegt hierbei auf dem Trade-off zwischen Genauigkeit und Zuverlässigkeit erwarteter Ergebnisse und dem dazu notwendigen Aufwand (Design of Experiments, Statistische Versuchsplanung), um mit möglichst wenigen Versuchen (Einzelexperimenten) Wirkzusammenhange zwischen Einflussfaktoren und beobachteten Zielgrößen möglichst genau zu ermitteln.

Fachkompetenzen

Die Studierenden:

- setzen das Smart Grid Co-Simulations- Framework "mosaik" ein
- analysieren verteilte agentenbasierte Steuer- und Regelungskonzepte und - algorithmen für dezentrale Erzeuger und Verbraucher auf den Betrieb elektirscher Energiesysteme hinsichtlich der Anforderungen an Wirkungsbilanzierung, Betreibsmittelauslastung, Robustheit und Flexibilität
- benennen die Grundlagen für die Planung, Durchführung und Auswertung simulationsbasierter Experimente
- erkennen de Bedeutung zwischen Genauigkeit und Zuverlässigkeit erwarteter Ergebnisse und dem dazu notwendigen Aufwand (Design of Experiments, Statistische Versuchsplanung), um mit möglichst wenigen Versuchen (Einzelexperimenten) Wirkzusammenhange zwischen Einflussfaktoren und beobachteten Zielgrößen möglichst genau zu ermitteln

Methodenkompetenzen

Die Studierenden:

- modellieren einfache schalt- und modulierbare elektrische Verbraucher und Erzeuger
- simulieren zu elektrischen Verbrauchern und Erzeugern passende Steuer und Regelungsmechanismen in Smart-Grid-Szenarien
- wenden verteilte agentenbasierte Steuer- und Regelungskonzepte und - algorithmen für dezentrale Erzeuger und Verbraucher in der Co-Simulation an
- werten Simulationsergbnisse aus
- recherchieren Informationen und Methoden zur Umsetzung der Modelle

• stellen eigene Hypothesen auf und überprüfen diese mittel Simulationsexperimenten

Sozialkompetenzen

Die Studierenden:

- wenden die Entwicklungsmethode des Pairprogrammings an
- diskutieren die getroffenen Design Entscheidungen
- identifizieren Arbeitspakete undübernehmen Verantwortung für diese

Selbstkompetenzen

Die Studierenden:

- reflektieren den eigenen Umgang mit der begrenzten Resource Energie
- nehmen Kritik an und verstehen sie als Vorschlag für die Weiterentwicklung des eigenen Handelns

Modulinhalte

In dieser Veranstaltung werden:

- schalt- und modulierbare Energieverbraucher sowie -erzeuger mathematisch modelliert und in ein Simulationsmodell übersetzt
- der praktische Umgang (Installation, Beschreibung/Konfiguration von Szenarien
- · Durchführung von Simulationen) mit mosaik vemittelt
- Grundlagen für die Co-Simulation von Energiesystemen vermittelt
- die Herausforderungen bei der Implementierung von Koordinationsmechanismen praktisch vermittelt (Multikritikalität, Konvergenz, Güte)
- die Grundlagen der statistischen Versuchsplanung praktisch angewandt.

Literaturempfehlungen

Smart Grids

- Konstantin, P.: "Praxisbuch Energiewirtschaft", Springer, 2006
- Schwab, A.: "Elektroenergiesysteme", Springer, 2009

Multi-agent systems

- Sutton, R. S.; Barto, A. G.: "Reinforcement Learning", MIT Press, 1998
- Weiss, G.: "Multiagent Systems", MIT Press, 2013
 Ferber J.; Kirn, S.: "Multiagentensysteme: eine Einführung in die Verteilte Künstliche Intelligenz", Addison-Wesley, 2001

Co-Simulation

- Ptolemaeus, C.: "System Design, Modeling, and Simulation", UC Berkeley, 2013

 Law, A.: "Simulation Modeling and Analysis", McGraw-Hill, 2015

Design of experiments:

- Kleppmann, W.: "Versuchsplanung", Hanser, 2013
 Klein, B.: "Versuchsplanung DoE", Oldenbourg, 2011
- Goos, P.; Jones, B.: "Optimal Design of Experiments", Wiley, 2014
- Box, G. E. P.; Hunter, J. S.; Hunter, W. G.: "Statistics for Experimenters", Wiley, 2005
- Forrester, A.; Sobester, A.; Keane, A.: "Engineering Design via Surrogate Modelling", Wiley, 2008

Links	
Unterrichtssprache	Englisch
Dauer in Semestern	1 Semester
Angebotsrhythmus Modul	jedes Sommersemester
Aufnahmekapazität Modul	unbegrenzt
Lehr-/Lernform	PR
Vorkenntnisse	Programmierung mit Python, Simulation-based Smart Grid Engineering and Assessment

Prüfung	Prüfungszeiten	Prüfungsform
Gesamtmodul		
	Im Anschluss an die Veranstaltungszeit	Praktische Arbeit Eine praktische Arbeit umfasst die theoretische Vorbereitung, den Aufbau und die Durchführung einer Entwurfsaufgabe anhand einer Fallstudie oder die Durchführung eines Experiments sowie die schriftliche Darstellung der Arbeitsschritte, des Ablaufs und der Ergebnisse des Experiments und deren kritische Würdigung.
Lehrveranstaltungsform	Projekt	
sws	2	
Angebotsrhythmus	SoSe	
Workload Präsenzzeit	28 h	

8 / 57

inf5122 - Learning-Based Control in Digitalised Energy Systems

Modulbezeichnung	Learning-Based Control in Digitalised Energy Systems
Modulkürzel	inf5122
Kreditpunkte	6.0 KP
Workload	180 h
Verwendbarkeit des Moduls	 Master Digitalised Energy Systems (Master) > Digitalised Energy System Design and Assessment Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction Master Engineering of Socio-Technical Systems (Master) > Systems Engineering Master Informatik (Master) > Angewandte Informatik
Zuständige Personen	Rauh, Andreas (Modulverantwortung)Lehrenden, Die im Modul (Prüfungsberechtigt)
Teilnahmevoraussetzungen	
	Grundkenntnisse der Regelung linearer zeitkontinuierlicher und/oder zeitdiskreter Systeme bzw. der robusten Regelung

Kompetenzziele

Die Studierenden identifizieren die grundlegenden Konzepte der lernenden Regelung dynamischer Systeme.

Fachkompetenz

Die Studierenden:

- identifizieren die grundlegenden Konzepte der lernenden Regelung dynamischer Systeme
- charakterisieren problemangepasste Lernmethoden
- erkennen softwaretechnische Umsetzungen für ausgewählte Prüfstände.

Methodenkompetenz

Die Studierenden:

- analysieren Probleme der lernenden Regelung
- generalisieren diese eigenständig auf neue forschungsnahe Anwendungsszenarien.

Sozialkompetenz

Die Studierenden:

- erarbeiten in einem vorlesungsbegleitenden Projekt/Praktikum Lösungsideen für reale regelungstechnische Aufgaben in kleinen Gruppen
- vermitteln die von ihnen erzielten Ergebnisse in kurzen Präsentationen

Selbstkompetenz

Die Studierenden:

- reflektieren kritisch die von ihnen in Projektform erarbeiteten Ergebnisse
- erkennen Grenzen unterschiedlicher Ansätze lernender Regelungen.

Modulinhalte

- 1. Iterativ-lernende Regelungen
 - Grundlegende 2D-Systemstrukturen
 - Stabilitätskriterien
 - Ausgewählte Optimierungsansätze
- 2. Datenbasierte Neuronale-Netz- Modellierung vs. physikalischorientierte Modelle
 - Statische Funktionsapproximation
 - NARX-Modelle
- 3. Entwurf von Reglern mittels Neuronaler Netze
- 4. Stabilität von Regelungen mittels Neuronaler Netze

Literaturempfehlungen

- Moore, K.L. Iterative Learning Control for Deterministic Systems.
- Moore, K.L. Iterative Learning Control for Deterministic Systems. London: Springer- Verlag. 1993
 Jian Xin Xu; Ying Tan. Linear and Nonlinear Iterative Learning Control. Springer- Verlag. 2003
 Bristow, D. A.; Tharayil, M.; Alleyne, A. G. "A Survey of Iterative Learning Control A learning-based method for high-performance tracking control". IEEE control systems magazine. Vol. 26. pp. 96–114.
- The Mathworks Inc. Deep Learning Toolbox Documentation, 2021
- Rauh, A. Folien/ Skript zur Vorlesung "Learning-Based Control in DES"

Links				
Unterrichtssprache		Engliso	ch	
Dauer in Semestern		1 Sem	ester	
Angebotsrhythmus Modul		jedes S	Sommersemester	
Aufnahmekapazität Modul		unbegi	renzt	
Lehr-/Lernform		V+Ü		
Vorkenntnisse			kenntnisse der Regelung linearer zeitkontinuie kreter Systeme bzw. der robusten Regelung	erlicher und/oder
Prüfung		Prüfungszeiten	Prüfungsform	
Gesamtmodul				
		Im Anschluss an die Veranstaltun	gszeit Portfolio oder Klausur	
Lehrveranstaltungsform	Kommentar	sws	Angebotsrhythmus	Workload Präsenz
Vorlesung		2	SoSe	28
Übung		2	SoSe	28
Präsenzzeit Modul insgesa	mt			56 h

Digitalised Energy System Automation, Control and Optimisation

inf341 - Robust Control and State Estimation in Digitalised Energy Systems

Modulbezeichnung	Robust Control and State Estimation in Digitalised Energy Systems	
Modulkürzel	inf341	
Kreditpunkte	6.0 KP	
Workload	180 h	
Verwendbarkeit des Moduls	Master Digitalised Energy Systems (Master) > Digitalised Energy System Automation, Control and Optimisation Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction Master Engineering of Socio-Technical Systems (Master) > Systems Engineering Master Informatik (Master) > Technische Informatik Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodule der Informatik	
Zuständige Personen	Rauh, Andreas (Modulverantwortung)Lehrenden, Die im Modul (Prüfungsberechtigt)	
Teilnahmevoraussetzungen		
	Grundkenntnisse der Regelung linearer zeitkontinuierlicher und/oder zeitdiskreter Systeme bzw. der robusten Regelung	
Kompetenzziele		

Kompetenzziele

Die Studierenden identifizieren die grundlegenden Konzepte der robusten Regelung und Zustandsschätzung sowie problemangepasste Lösungsmethoden und deren softwaretechnische Umsetzung.

Fachkompetenz

Die Studierenden:

- identifizieren die grundlegenden Konzepte der robusten Regelung und Zustandsschätzung
- charakterisieren problemangepasste Lösungsmethoden für unterschiedliche Klassen von Unsicherheiten
- erkennen Ansätze für eine verlässliche softwaretechnische Umsetzung.

Methodenkompetenz

Die Studierenden:

- analysieren Probleme der robusten Regelung und Zustandsschätzung dynamischer Systeme
- analysieren grundlegende Lösungsansätze auf theoretischer Basis
- transferieren sowie generalisieren diese eigenständig auf neue Anwendungsszenarien

Sozialkompetenz

Die Studierenden:

- erarbeiten in einem vorlesungsbegleitenden Projekt Lösungsideen für reale regelungstechnische Aufgaben in kleinen Gruppen
- vermitteln die von ihnen erzielten Ergebnisse in kurzen Präsentationen.

Selbstkompetenz

Die Studierenden:

- reflektieren kritisch die von ihnen in Projektform erarbeiteten Ergebnisse
- erkennen Grenzen unterschiedlicher Ansätze der robusten Regelung und Zustandsschätzung.

Modulinhalte

- 1. Robustheit linearer Systeme/ Systemanalyse
 - o Grenzüberschreitungssatz von Frazer und Duncan
 - Mikhailow-Kriterium
 - · Kharitonow-Kriterium
 - · Frequenzkennlinienverfahren

- 2. Ausgewählte Regelungsentwurfsverfahren/ Regelungssynthese
 - · Parameterraumverfahren von Ackermann und Kaesbauer
 - Eigenwert-/ Eigenwertbereichsvorgabe
 - · H-unendlich-Regelung
- Frequenzkennlinienverfahren (Sensitivitätsfunktionen im Frequenzbereich)
 3. Robuste LMI-basierte Regelungsverfahren
- - Ljapunow-Stabilität
 - Polytopbeschreibung von Unsicherheiten
 - o Optimalität von Lösungen
- 4. Dualität von Regler- und Beobachtersynthese
 - Robuste Zustandsschätzung
 - Sliding-Mode Beobachter
- 5. Intervallmethoden: Lösung statischer und dynamischer Probleme (Einschließung von Funktionswerten, Branch-and-Bound-Verfahren, Verifikationsmethoden für Differentialgleichungen)
- 6. Grundlagen: Fehlerdetektion sowie fehlertolerante Regelung

Literaturempfehlungen

- Ackermann, J. Robust Control, Springer-Verlag, 2002.
- Gu, D.-W.; Petkov, P.H.; Konstantinov, M.M., Robust Control Design with MATLAB, Springer-Verlag, 2013
- Ostertag, E. Mono- and Multivariable Control and Estimation, Springer-Verlag, 2011
- Rauh, A. Folien/ Skript zur Vorlesung "Robuste Regelung und Zustandsschätzung".
- Weinmann, A. Uncertain Models and Robust Control, Springer-Verlag,

Links		
Unterrichtssprache		Englisch
Dauer in Semestern		1 Semester Semester
Angebotsrhythmus Modul		jedes Wintersemester
Aufnahmekapazität Modul		unbegrenzt
Lehr-/Lernform		V + Ü
Vorkenntnisse		Grundkenntnisse der Regelung linearer zeitkontinuierlicher und/oder zeitdiskreter Systeme bzw. der robusten Regelung
Prüfung	Prüfungszeiten	Prüfungsform

Gesamtmodul

Klausur: am Ende der Veranstaltungszeit Portfolio: semesterbegleitend

Portfolio oder Klausur

Lehrveranstaltungsform	Kommentar	SWS	Angebotsrhythmus	Workload Präsenz
Vorlesung		2	WiSe	28
Übung		2	WiSe	28
Präsenzzeit Modul insges	amt			56 h

inf5112 - Digitalised Energy System Modeling and Control

Modulbezeichnung	Digitalised Energy System Modeling and Control	
Modulkürzel	inf5112	
Kreditpunkte	6.0 KP	
Workload	180 h	
Verwendbarkeit des Moduls	 Master Digitalised Energy Systems (Master) > Digitalised Energy System Automation, Control and Optimisation Master Informatik (Master) > Angewandte Informatik 	
Zuständige Personen	Lehnhoff, Sebastian (Modulverantwortung)Lehrenden, Die im Modul (Prüfungsberechtigt)	
Teilnahmevoraussetzungen		
	Keine	

Kompetenzziele

Nach erfolgreichem Abschluss der Lehrveranstaltung sollen die Studierenden die bestehenden Strukturen und technischen Grundlagen von Energiesystemen zur Erzeugung, Übertragung und Verteilung elektrischer Energie und deren Zusammenspiel und Abhängigkeiten untereinander verstehen. Sie sollen ein Verständnis für die notwendigen informations- und leittechnischen Komponenten, Verfahren und Prozesse zur Führung und zum Betrieb elektrischer Energiesysteme entwickeln und An- und Herausforderungen -- insbesondere an die Informations- und Kommunikationstechnik (IKT) und für die Informatik -- abschätzen und bewerten können, die sich durch den Ausbau und die Integration unvorhersehbar fluktuierender dezentraler Erzeuger in das bestehende System ergeben.

Die Studierenden sollen in die Lage versetzt werden, den Einfluss von vorteilten Regelkonzepten und Algorithmen für dezentrale Erzeuger und Verbraucher in sogenannten Smart Grids auf den Betrieb elektrischer Energiesysteme einzuschätzen und hinsichtlich der Anforderungen an Betriebssicherheit, Zuverlässigkeit, Echtzeitfähigkeit und Flexibilität zur analysieren.

Fachkompetenzen

Die Studierenden

- benennen und erkennen die bestehenden Strukturen und technischen Grundlagen von Energiesystemen zur Erzeugung, Übertragung und Verteilung elektrischer Energie und deren Zusammenspiel und Abhängigkeiten untereinander
- benennen notwendigen informations- und leittechnischen Komponenten, Verfahren und Prozesse zur Führung und zum Betrieb elektrischer Energiesysteme
- bewerten An- und Herausforderungen die sich durch den Ausbau und dei Integration unvorhersehbar fluktuierender dezentraler Erzeuger in das bestehende System ergeben
- schätzen den Einfluss von verteilten Regelkonzepten und Algorithmen für dezentrale Erzeuger und Verbraucher in sogenannten Smart Grids auf den Betrieb elektrischer Energiesysteme ein

Methodenkompetenz

Die Studierenden

- analysieren Anforderungen an Betriebssicherheit, Zuverlässigkeit, Echtzeitfähigkeit und Flexibilität in sogenannten Smart Grids auf den Betrieb elektrischen Energiesystemen
- verwenden weiterführende mathematische Methoden der Netzberechnung

Sozialkompetenz

Die Studierenden

- erarbeiten in Kleingruppen Lösungen zu gegebenen Problemen
- diskutiert die eigenen Lösungen mit anderen

Selbstkompetenz

Die Studierenden

 reflektieren den eigenen Umgang mit der begrenzten Ressource Energie

Modulinhalte

In dieser Veranstaltung sollen informationstechnische, energiewirtschaftliche sowie technische Grundbegriffe und Verfahren anhand konkreter Smart Grid-Ansätze herausgearbeitet und analysiert werden. Die grundlegenden Berechnungsverfahren für ein intelligentes Netzmanagement werden vorgestellt. Dieses Modul behandelt die technischen und wirtschaftlichen Rahmenbedingungen für einen zulässigen elektrischen Netzbetrieb sowie die mathematischen Modellierungsmethoden und Berechnungsverfahren zur Analyse von Betriebszuständen in elektrischen Energienetzen (im stationären Zustand).

Im Einzelnen sind dies:

- Organisation des europäischen Energiemarktes (Regulatorischer Rahmen, Verantwortlichkeiten im liberalisierten elektrischen Energiesystem)
- Aufbau und Betrieb elektrischer Energieversorgungsnetze (Netztopologien, Versorgungsaufgabe, Netznutzunggsentgelte, Versorgungsqualität/Systemdienstleistungen, Störfälle und Schutzsysteme)
- Netzberechnung (Komplexe Zeigerdarstellung, Wirk-/Blindleistung, mathematische Leistungsmodelle/Netzmodelle, Abbildungen: Knotenleistungen zur Knotensannungen / -strömen, Berechnung von Leitungsströmen, Leistungsflussrechnung, Fixpunktiterationsverfahren, Newton- Raphson-Methode, Spannungsabfall, Trafomodell)
- Intelligentes Netzmanagement (Smart Grids), Aggregationsformen, Ansätze des maschinellen Lernens

Literaturempfehlungen

- Konstantin, P.; Praxisbuch Energiewirtschaft, Springer 2006
- Schwab, A.; Elektroenergiesysteme, Springer 2009
- Kirtley, J.L.; Electric Power Principles, John Wiley & Sons, 2010
- Gremmel, H.; ABB Schaltanlagen-handbuch, Cornelsen 2007
- Lehnhoff, S.: Dezentrales vernetztes Energiemanagement, 2010
- Sutton, R.S.; Barto, A.G.: Reinforcement Learning, MIT Press 1998

Links			
Unterrichtssprache		Englisch	
Dauer in Semestern		1 Semester	
Angebotsrhythmus Modul		jedes Sommersemester	
Aufnahmekapazität Modul		unbegrenzt	
Lehr-/Lernform		V+Ü	
Vorkenntnisse		keine	
Prüfung	Prüfungszeiten	Prüfungsform	

Gesamtmodul

Im Anschluss an die Veranstaltungszeit

Klausur oder mündl. Prüfung

Lehrveranstaltungsform Kommentar	SWS	Angebotsrhythmus	Workload Präsenz
Vorlesung	3	SoSe oder WiSe	42
Übung	1	SoSe und WiSe	14
Präsenzzeit Modul insgesamt			56 h

inf5114 - Digitalised Energy System Requirements Engineering

Modulbezeichnung	Digitalised Energy System Requirements Engineering	
Modulkürzel	inf5114	
Kreditpunkte	6.0 KP	
Workload	180 h	
Verwendbarkeit des Moduls	 Master Digitalised Energy Systems (Master) > Digitalised Energy System Automation, Control and Optimisation Master Informatik (Master) > Angewandte Informatik 	
Zuständige Personen	Lehnhoff, Sebastian (Modulverantwortung)Lehrenden, Die im Modul (Prüfungsberechtigt)	
Teilnahmevoraussetzungen		
	Keine	

Kompetenzziele

Die Studierenden besitzen Kenntnisse über verschiedene Ansätze zur Integration dezentraler Anlagen, den regulatorischen Rahmen, die dazu relevanten Normen und Architekturkonzepte und können dieses Wissen in konkreten Anwendungsfällen zielgerichtet anwenden.

Fachkompetenzen

Die Studierenden:

- entwerfen und bewerten IT- Architekturen für das Energiemanagement
- modellieren die Objekte der Domäne geeignet modellieren Energieinformationssysteme
- erkennen und differenzieren weitergehende Fragestellungen im Rahmen des dezentralen Energiemanagements

Methodenkompetenzen

Die Studierenden:

- benennen Probleme aus dem Bereich des Energiemanagements und analysieren diese methodisch und schlagen Lösungen vor
- wenden verschiedene Ansätze zur Simulation dezentraler Erzeuger und Verbraucher an

Sozialkompetenzen

Die Studierenden

- diskutieren gemeinsam Lösungen aus dem Bereich des Energiemanagements
- erstellen Use-Cases in Kleingruppen
- präsentieren ihre Lösungen

Selbstkompetenzen

Die Studierenden

- reflektieren ihr handeln durch geeignete Strukturieung und Zerlegung von Systemen
- reflektieren den eigenen Umgang mit der begrenzten Resource Energie

Modulinhalte

Dieses Modul behandelt die Informatikgrundlagen zum Energiemanagement: Vermittlung von Kenntnissen zu den Anforderungen an Informationssysteme der Energieversorgung mit besonderer Berücksichtigung der technischen Komponenten und Anforderungen dezentraler und regenerativer Energieerzeugung.

Im Einzelnen sind dies

- Architekturtypen für Energieinformationssysteme, wie bspw. SOA, Seamless Integration Architecture (IEC TC 57), OPC-UA
- Datenmodelle der Energiebranche unter Berücksichtigung vorhandener Standards und Normen (CIM, 61850)
- Systematisierung von domänenspezifischen Anforderungen an

- Energieinformationssysteme durch eine einheitliche "Begriffswelt" (Ontologie)
- Entwicklung, Analyse und Adaption von Referenzmodellen und -prozessen für die Energiewirtschaft
- Verfahren und Techniken zur Unterstützung von Prozessen in der
- Energiewirtschaft
 Verfahren und Algorithmen zur Entscheidungsunterstützung beim Einsatz dezentraler Energieerzeugungsanlagen
- Kommunikation mit Anlagen in Smart Grids, insbesondere bzgl. Lastmanagement
- Methoden zur abstrakten Modellierung und Simulation der Dynamik in Stromversorgungssystemen

Literaturempfehlungen

- Crastan V.: "Elektrische Energieversorgung II", Springer 2004
 Heuck K., Dettman K. D., Schulz D.: "Elektische Energieversorgung I", 7. Aufl., Vieweg 2007

 • Konstantin, P.: "Praxisbuch Energiewirtschaft", Springer 2006

 • Schwab, A.: "Elektroenergiesysteme, Springer 2009

Links			
Unterrichtssprache		Englisch	
Dauer in Semestern		1 Semester	
Angebotsrhythmus Modul		jedes Wintersemester	
Aufnahmekapazität Modul		unbegrenzt	
Lehr-/Lernform		V+Ü	
Vorkenntnisse		keine	
Prüfung	Prüfungszeiten		Prüfungsform

Gesamtmodul

am Ende der Vorlesungszeit

Hausarbeit

Lehrveranstaltungsform	Kommentar	SWS	Angebotsrhythmus	Workload Präsenz
Vorlesung		3	WiSe	42
Übung		1	WiSe	14
Präsenzzeit Modul insgesa	amt			56 h

inf5118 - Decentralised Nonlinear Model-Based Control in Digitalised Energy Systems

Modulbezeichnung	Decentralised Nonlinear Model-Based Control in Digitalised Energy Systems
Modulkürzel	inf5118
Kreditpunkte	6.0 KP
Workload	180 h
Verwendbarkeit des Moduls	 Master Digitalised Energy Systems (Master) > Digitalised Energy System Automation, Control and Optimisation Master Informatik (Master) > Angewandte Informatik
Zuständige Personen	Rauh, Andreas (Modulverantwortung)Lehrenden, Die im Modul (Prüfungsberechtigt)
Teilnahmevoraussetzungen	
	Grundkenntnisse der Regelung linearer zeitkontinuierlicher und/oder zeitdiskreter Systeme bzw. der robusten Regelung

Kompetenzziele

Die Studierenden identifizieren die grundlegenden Konzepte der Regelung und Zustandsschätzung nichtlinearer Systeme.

Fachkompetenzen

Die Studierenden:

- identifizieren die grundlegenden Konzepte der Regelung und Zustandsschätzung nichtlinearer Systeme
- charakterisieren problemangepasste Lösungsmethoden
- erkennen softwaretechnische Umsetzungen fürausgewählte Prüfstände

Methodenkompetenzen

Die Studierenden:

• analysieren Probleme der nichtlinearen Regelung und Zustandsschätzung und generalisieren diese eigenständig auf neue forschungsnahe Anwendungsszenarien.

Sozialkompetenzen

Die Studierenden

- erarbeiten in einem vorlesungsbegleitenden Projekt/Praktikum Lösungsideen für reale regelungstechnische Aufgaben in kleinen
- vermitteln die von ihnen erzielten Ergebnisse in kurzenPräsentationen

Selbstkompetenzen

Die Studierenden

- reflektieren kritisch die von ihnen in Projektform erarbeiteten
- erkennen Grenzen unterschiedlicher Ansätze der nichtlinearen Regelung.

Modulinhalte

- 1. Grundlagen der regelungsorientirten Modellbildung
- 2. Spezielle Eigenschaften nichtlinearer Regelungssysteme
 - · Endliche Endweichzeit
 - o Chaos
 - Grenzzyklen
 - Gleichgewichtszustände
- 3. Stabilitätseigenschaften/ Stabilitätsanalyse

 Lokale vs. globale Stabilität

 - · Ljapunovmethoden
 - Stabilität von Grenzzyklen
 - Krieterien für den Nachweis von Instabilität
- 4. Nichtlinearer Regelungsentwurf
 - Regelungs-Ljapunov-Funktionen
 - Beackstepping
 - Zustandslinearisierung

• Flachheitsbasieerte Regelung 5. Nichtlineare Beobachtersynthese

Literaturempfehlungen

- Föllinger, O.: Nichtlineare Regelungen 1 / 2. Oldenbourg-Verlag, München, 1989. Adamy, J.: Nichtlineare Regelungen; Springer Verlag, 2000.
- World et al. 1969. Adamy, J.: Nichtineare Regelungen, Springer Verlag.
 2009.
 Unbehauen, H.: Regelungstechnik II. 9. Aufl., Vieweg-Verlag, 2007.
 Marquez, H.: Nonlinear Control Systems, Wiley, 2003
- Khalil, H.K.: Nonlinear Systems, Pearson, 2001
- Rauh, A. Folien/ Skript zur Vorlesung "Decentralised Nonlinear Model-Based Control in DES".

Links		
Unterrichtssprache		Englisch
Dauer in Semestern		1 Semester
Angebotsrhythmus Modul		jedes Sommersemester
Aufnahmekapazität Modul		unbegrenzt
Lehr-/Lernform		V + Ü
Vorkenntnisse		Grundkenntnisse der Regelung linearer zeitkontinuierlicher und/oder zeitdiskreter Systeme bzw. der robusten Regelung
Prüfung	Prüfungszeiten	Prüfungsform
Cocomtmodul		

Gesamtmodul

Im Anschluss an die Veranstaltungszeit

Portfolio oder Klausur

Lehrveranstaltungsform Kommen	SWS	Angebotsrhythmus	Workload Präsenz
Vorlesung	2	SoSe	28
Praktikum	1	SoSe	0
Übung	1	SoSe	28
Präsenzzeit Modul insgesamt			56 h

inf516 - Distributed Operation in Digitalised Energy Systems

Modulbezeichnung	Distributed Operation in Digitalised Energy Systems	
Modulkürzel	inf516	
Kreditpunkte	6.0 KP	
Workload	180 h	
Verwendbarkeit des Moduls	 Master Digitalised Energy Systems (Master) > Digitalised Energy System Automation, Control and Optimisation Master Informatik (Master) > Angewandte Informatik 	
Zuständige Personen	Nieße, Astrid (Modulverantwortung)Lehrenden, Die im Modul (Prüfungsberechtigt)	
Teilnahmevoraussetzungen	Grundlagen der Optimierung, Grundlagen Digitalisierter Energiesysteme	

Kompetenzziele

Nach erfolgreichem Abschluss sind die Studierenden in der Lage, ein Anwendungsproblem in cyber-physischen Energiesystemen daraufhin zu untersuchen, ob ein verteilter Optimierungsansatz sinnvoll angewendet werden könnte. Grundlagen der Selbstorganisation werden verstanden und in der Anwendung abgebildet. Weiterhin können die Basiskonzepte verteilter Verfahren sicher angewendet und auf einen Anwendungsfall übertragen werden.

Fachkompetenzen

Die Studierenden

 kennen die oben genannten grundlegenden Konzepte der verteilten Optimierung und Agentensysteme

Methodenkompetenz

Die Studierenden

 können die oben genannten grundlegenden Konzepte der verteilten Optimierung und Agentensysteme sicher darstellen und auf konkrete Problemstellungen in CPES anwenden.

Sozialkompetenz

Die Studierenden

- erarbeiten in Kleingruppen Lösungen zu gegebenen Problemen
- diskutieren die eigenen Lösungen mit anderen
- reflektieren die Lösungen der Mitstudierenden in konstruktiver Weise

Selbstkompetenz

Die Studierenden

hinterfragen kritisch die Anwendung erlernter Methoden auf ein Praxisproblem

Modulinhalte

In dieser Veranstaltung werden Grundlagen der agentenbasierten Kontrolle mit Anwendungen in cyber-physischen Energiesystemen aufbereitet, diskutiert und in Programmierübungen vertieft.

Im einzelnen wird behandelt:

- 1. Multiagentensysteme
 - o Grundlagen und Definitionen
 - MAS-Architekturen
 - Agentenkommunikation
 - · Kooperative und kompetetive Agenten in MAS
 - Lernen in MAS
- 2. Verteilte Optimierung
 - CASIMIR
 - Überblick über verteilte Optimierung
 - · CSP und COP

- Verteilte SCP und COP
- 3. Energiesysteme als selbstorganisierende Systeme
- 4. Anwendungen
 - Virtuelle Kraftwerke
 - · QEMS und Microgrids
 - o DSM und DR
 - Energiemarktanwendungen Speicherschwäme

 - Multi-purpose Beispiele
- 5. ProgrammierübungAgentenframework mango
 - Co-Simulationsframework mosaik
 - · Netzsimulation pandapower

Literaturempfehlungen

- Yoav Shoham und Kevin Leyton-Brown Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations New York: Cambridge University Press, 2008, ISBN: 9780521899437
- Michael Wooldridge An introduction to multiagent systems Wiley, 2009, ISBN: 0470519460 3.
- Russell und Peter Norvig Artificial intelligence: a modern approach Boston Pearson, 2018, ISBN: 0134610997;
 Nancy Ann Lynch Distributed algorithms Kaufmann, 2003, ISBN:
- 1558603484

	Englisch
	1 Semester
	jedes Wintersemester
	50
	V+Ü
	Grundlagen der Optimierung, Grundlagen Digitalisierter Energiesysteme
Prüfungszeiten	Prüfungsform
	Prüfungszeiten

Gesamtmodul

Im laufenden Semester und am Ende der Veranstaltung

Portfolio oder mündliche Prüfung oder Klausur

Lehrveranstaltungsform	Kommentar	SWS	Angebotsrhythmus	Workload Präsenz
Vorlesung		2	WiSe	28
Übung		2	WiSe	28
Präsenzzeit Modul insgesam	nt			56 h

inf579 - Special Topics in 'Digitalised Energy Systems' I

Modulbezeichnung	Special Topics in 'Digitalised Energy Systems' I
Modulkürzel	inf579
Kreditpunkte	6.0 KP
Workload	180 h
Verwendbarkeit des Moduls	 Master Digitalised Energy Systems (Master) > Digitalised Energy System Automation, Control and Optimisation
Zuständige Personen	Nieße, Astrid (Modulverantwortung)Lehrenden, Die im Modul (Prüfungsberechtigt)
Teilnahmevoraussetzungen	Keine Teilnehmervoraussetzungen
Kompetenzziele	Das Modul hat zum Ziel aktuelle Entwicklungen im Bereich der Digitalisierten Energiesysteme in den jeweils angemessenen Lehrveranstaltungsformen in dasStudium zu integrieren Fachkompetenzen

Die Studierenden:

- differenzieren und kontrastieren einen Teilbereich der Informatik, auf den sie sich spezialisiert haben, im Detail genauer oder reflektieren die Informatik im Allgemeinen
- erkennen und beurteilen die in ihrem Spezialgebiet anzuwendenden Techniken und Methoden und deren Grenzen
- identifizieren, strukturieren und lösen Probleme auch in neuen oder erst im Entstehen begriffenen Bereichen ihrer Disziplin
- wenden dem Stand der Wissenschaft entsprechende und innovative Methoden bei der
- Untersuchung und Lösung von Problemen an, gegebenenfalls unter Rückgriff auf andere Disziplinen
- erkennen die Grenzen des heutigen Wissenstands und der heutigen Technik und tragen zur weiteren wissenschaftlichen und technologischen Entwicklung der Informatik bei.
- diskutieren aktuelle Entwicklungen der Informatik und beurteilen deren Bedeutung

Methodenkompetenzen

Die Studierenden:

- evaluieren Werkzeuge, Technologien und Methoden und wenden diese differenziert an
- entwickeln kreativ neue und originäre Vorgehensweisen und Methoden
- reflektieren Probleme auch in neuen oder erst im Entstehen begriffenen Bereichen ihrer Disziplin und wenden Informatik-Methoden zur Untersuchung und Lösung an

Sozialkompetenzen

Die Studierenden:

• integrieren ihre Fähigkeiten in Teamprozesse

Selbstkompetenzen

Die Studierenden:

- verfolgen die weitere Entwicklung in der Informatik allgemein und in ihrem Spezialgebiet kritisch
- führen innovative Tätigkeiten in ihrem Berufsfeld erfolgreich und eigenverantwortlich aus

Modulinhalte	Siehe Beschreibung der zugeordneten Lehrveranstaltung	
Literaturempfehlungen	Wird in der Veranstaltung bekanntgegeben.	
Links		
Unterrichtssprache	Englisch	
Dauer in Semestern	1 Semester	
Angebotsrhythmus Modul	unregelmäßig	
Aufnahmekapazität Modul	unbegrenzt	
Lehr-/Lernform	2 VA aus V, S, Ü, P	

Vorkenntnisse	keine	
Prüfung	Prüfungszeiten	Prüfungsform
Gesamtmodul	Im Anschluss an die Veranstaltungszeit.	Portfolio oder Referat oder mündliche Prüfung
Lehrveranstaltungsform	VA-Auswahl	
sws	4	
Angebotsrhythmus	siehe Angebotsrhythmus Modul	
Workload Präsenzzeit	56 h	

inf581 - Special Topics in 'Digitalised Energy Systems' II

Modulbezeichnung	Special Topics in 'Digitalised Energy Systems' II	
Modulkürzel	inf581	
Kreditpunkte	6.0 KP	
Workload	180 h	
Verwendbarkeit des Moduls	 Master Digitalised Energy Systems (Master) > Digitalised Energy System Automation, Control and Optimisation Master Informatik (Master) > Angewandte Informatik 	
Zuständige Personen	Nieße, Astrid (Modulverantwortung)Lehrenden, Die im Modul (Prüfungsberechtigt)	
Teilnahmevoraussetzungen		
	keine	

Kompetenzziele

Das Modul hat zum Ziel aktuelle Entwicklungen im Bereich Digitalisierte Energiesysteme in den jeweils angemessenen Lehrveranstaltungsformen in das Studium zu integrieren.

Fachkompetenzen

Die Studierenden:

- differenzieren und kontrastieren einen Teilbereich der Informatik, auf den sie sich spezialisiert haben, im Detail genauer oder reflektieren die Informatik im Allgemeinen
- erkennen und beurteilen die in ihrem Spezialgebiet anzuwendenden Techniken und Methoden und deren Grenzen
- identifizieren, strukturieren und lösen Probleme auch in neuen oder erst im Entstehen begriffenen Bereichen ihrer Disziplin
- wenden dem Stand der Wissenschaft entsprechende und innovative Methoden bei der Untersuchung und Lösung von Problemen an, gegebenenfalls unter Rückgriff auf andere Disziplinen
- erkennen die Grenzen des heutigen Wissenstands und der heutigen Technik und tragen zur weiteren wissenschaftlichen und technologischen Entwicklung der Informatik bei
- diskutieren aktuelle Entwicklungen der Informatik und beurteilen deren Bedeutung

Methodenkompetenzen

Die Studierenden:

- evaluieren Werkzeuge, Technologien und Methoden und wenden diese differenziert an
- entwickeln kreativ neue und originäre Vorgehensweisen und Methoden
- reflektieren Probleme auch in neuen oder erst im Entstehen begriffenen Bereichen ihrer Disziplin
- wenden Informatik-Methoden zur Untersuchung und Lösung an

Sozialkompetenzen

Die Studierenden:

• integrieren ihre Fähigkeiten in Teamprozesse

Selbstkompetenzen

Die Studierenden:

- verfolgen die weitere Entwicklung in der Informatik allgemein und in ihrem Spezialgebiet kritisch
- führen innovative Tätigkeiten in ihrem Berufsfeld erfolgreich und eigenverantwortlich aus

Modulinhalte

Siehe Beschreibung der zugeordneten Lehrveranstaltung

Literaturempfehlungen

Wird in der Veranstaltung bekanntgegeben

Links					
Unterrichtssprache		Englisch			
Dauer in Semestern		1 Semester	Г		
Angebotsrhythmus Modul		unregelmäl	ßig		
Aufnahmekapazität Modul		unbegrenzt		unbegrenzt	
Lehr-/Lernform		V + Ü			
Vorkenntnisse		keine			
Prüfung		Prüfungszeiten	Prüfungsform		
Gesamtmodul					
		Am Ende der Vorlesungszeit	Portfolio oder Referat oder	r mündliche Prüfung	
Lehrveranstaltungsform	Kommentar	sws	Angebotsrhythmus	Workload Präsenz	
Vorlesung		2	siehe Angebotsrhythmus Modul	28	
Übung		2	siehe Angebotsrhythmus Modul	28	
Präsenzzeit Modul insgesa	ımt			56 h	

24 / 57

inf584 - Special Topics in 'Energy Informatics' I

Modulbezeichnung	Special Topics in 'Energy Informatics' I	
Modulkürzel	inf584	
Kreditpunkte	6.0 KP	
Workload	180 h	
Verwendbarkeit des Moduls	 Master Digitalised Energy Systems (Master) > Digitalised Energy System Automation, Control and Optimisation Master Informatik (Master) > Angewandte Informatik 	
Zuständige Personen	Lehnhoff, Sebastian (Prüfungsberechtigt)Lehrenden, Die im Modul (Prüfungsberechtigt)	
Teilnahmevoraussetzungen		
	Keine	

Kompetenzziele

Das Modul hat zum Ziel aktuelle Entwicklungen im Vertiefungsgebiet "Energiewirtschaft" in den jeweils angemessenen Lehrveranstaltungsformen in das Studium zu integrieren.

Fachkompetenzen

Die Studierenden:

- differenzieren und kontrastieren einen Teilbereich der Informatik, auf den sie sich spezialisiert haben, im Detail genauer oder reflektieren die Informatik im Allgemeinen
- erkennen und beurteilen die in ihrem Spezialgebiet anzuwendenden Techniken und Methoden und deren Grenzen
- identifizieren, strukturieren und lösen Probleme auch in neuen oder erst im Entstehen begriffenen Bereichen ihrer Disziplin
- wenden dem Stand der Wissenschaft entsprechende und innovative Methoden bei der Untersuchung und Lösung von Problemen an, gegebenenfalls unter Rückgriff auf andere Disziplinen
- erkennen die Grenzen des heutigen Wissenstands und der heutigen Technik und tragen zur weiteren wissenschaftlichen und technologischen Entwicklung der Informatik bei
- diskutieren aktuelle Entwicklungen der Informatik und beurteilen deren Bedeutung

Methodenkompetenzen

Die Studierenden:

- evaluieren Werkzeuge, Technologien und Methoden und wenden diese differenziert an
- entwickeln kreativ neue und originäre Vorgehensweisen und Methoden
- reflektieren Probleme auch in neuen oder erst im Entstehen begriffenen Bereichen ihrer Disziplin
- wenden Informatik-Methoden zur Untersuchung und Lösung an

Sozialkompetenzen

Die Studierenden:

• integrieren ihre Fähigkeiten in Teamprozesse

Selbstkompetenzen

Die Studierenden:

- verfolgen die weitere Entwicklung in der Informatik allgemein und in ihrem Spezialgebiet kritisch
- führen innovative Tätigkeiten in ihrem Berufsfeld erfolgreich und eigenverantwortlich aus

Modulinhalte

Siehe Beschreibung der zugeordneten Lehrveranstaltung

Literaturempfehlungen

Wird in der Lehrveranstaltung bekannt gegeben

Links			
Unterrichtssprache	E	nglisch	
Dauer in Semestern	1	Semester	
Angebotsrhythmus Modul	u	nregelmäßig	
Aufnahmekapazität Modul	u	nbegrenzt	
Lehr-/Lernform	2	VA aus VL, S, Ü, P	
Vorkenntnisse	k	eine	
Prüfung	Prüfungszeiten		Prüfungsform
Gesamtmodul	Im Anschluss an die Verans	taltungszeit	Portfolio oder Referat oder mündliche Prüfung.
Lehrveranstaltungsform	VA-Auswahl		
sws	4		
Angebotsrhythmus	siehe Angebotsrhythmus Modul		
Workload Präsenzzeit	56 h		

inf585 - Special Topics in 'Energy Informatics' II

Modulbezeichnung	Special Topics in 'Energy Informatics' II	
Modulkürzel	inf585	
Kreditpunkte	6.0 KP	
Workload	180 h	
Verwendbarkeit des Moduls	 Master Digitalised Energy Systems (Master) > Digitalised Energy System Automation, Control and Optimisation Master Informatik (Master) > Angewandte Informatik 	
Zuständige Personen	Lehnhoff, Sebastian (Modulverantwortung)Lehrenden, Die im Modul (Prüfungsberechtigt)	
Teilnahmevoraussetzungen		
	keine	

Kompetenzziele

Das Modul hat zum Ziel aktuelle Entwicklungen im Vertiefungsgebiet "Energiewirtschaft" in den jeweils angemessenen Lehrveranstaltungsformen in das Studium zu integrieren.

Fachkompetenzen

Die Studierenden:

- differenzieren und kontrastieren einen Teilbereich der Informatik, auf den sie sich spezialisiert haben, im Detail genauer oder reflektieren die Informatik im Allgemeinen
- erkennen und beurteilen die in ihrem Spezialgebiet anzuwendenden Techniken und Methoden und deren Grenzen
- identifizieren, strukturieren und lösen Probleme auch in neuen oder erst im Entstehen begriffenen Bereichen ihrer Disziplin
- wenden dem Stand der Wissenschaft entsprechende und innovative Methoden bei der Untersuchung und Lösung von Problemen an, gegebenenfalls unter Rückgriff auf andere Disziplinen
- erkennen die Grenzen des heutigen Wissenstands und der heutigen Technik und tragen zur weiteren wissenschaftlichen und technologischen Entwicklung der Informatik bei
- diskutieren aktuelle Entwicklungen der Informatik und beurteilen deren Bedeutung

Methodenkompetenzen

Die Studierenden:

- evaluieren Werkzeuge, Technologien und Methoden und wenden diese differenziert an
- entwickeln kreativ neue und originäre Vorgehensweisen und Methoden
- reflektieren Probleme auch in neuen oder erst im Entstehen begriffenen Bereichen ihrer Disziplin und wenden Informatik-Methoden zur Untersuchung und Lösung an

Sozialkompetenzen

Die Studierenden:

• integrieren ihre Fähigkeiten in Teamprozesse

Selbstkompetenzen

Die Studierenden:

- verfolgen die weitere Entwicklung in der Informatik allgemein und in ihrem Spezialgebiet kritisch
- führen innovative Tätigkeiten in ihrem Berufsfeld erfolgreich und eigenverantwortlich aus

Modulinhalte

Siehe Beschreibung der zugeordneten Lehrveranstaltung

Literaturempfehlungen

Wird in der zugeordneten Lehrveranstaltung bekannt gegeben

Links		
Unterrichtssprache	Deuts	sch
Dauer in Semestern	1 Sen	mester
Angebotsrhythmus Modul	unreg	gelmäßig
Aufnahmekapazität Modul	unbeç	grenzt
Lehr-/Lernform	2 VA	aus V, S, Ü, P
Vorkenntnisse	keine	
Prüfung	Prüfungszeiten	Prüfungsform
Gesamtmodul		
	Am Ende der Vorlesungszeit nac dem Lehrenden	ch Absprache mit Portfolio oder Referat oder mündliche Prüfung
Lehrveranstaltungsform	VA-Auswahl	
sws	4	
Angebotsrhythmus	siehe Angebotsrhythmus Modul	
Workload Präsenzzeit	56 h	

Automation and Electrical Engineering

inf5100 - Digital Technology on Energy Markets

Modulbezeichnung	Digital Technology on Energy Markets
Modulkürzel	inf5100
Kreditpunkte	6.0 KP
Workload	180 h
Verwendbarkeit des Moduls	 Master Digitalised Energy Systems (Master) > Automation and Electrical Engineering Master Informatik (Master) > Angewandte Informatik
Zuständige Personen	Staudt, Philipp (Modulverantwortung)Lehrenden, Die im Modul (Prüfungsberechtigt)
Teilnahmevoraussetzungen	
	keine

Kompetenzziele

Nach erfolgreichem Abschluss der Veranstaltung sollen die Studierenden wesentliche Grundlagenkonzepte von digitalisierten Energiemärkten verstehen, und die Relevanz neuer Technologien für diese Märkte einschätzen können. Fachkompetenzen

Die Studierenden:

• sind in der Lage, Arbeiten im genannten Bereich nachzuvollziehen, und so den aktuellen Stand der Forschung in diesem Bereich reflektieren zu

Methodenkompetenzen

Die Studierenden:

können Energiemärkte klassifizieren und sind in der Lage, innerhalb dieser Klassifikation eine Einordnung neuer technologischer Entwicklungen vorzunehmen

Sozialkompetenzen

Die Studierenden:

- erarbeiten in Kleingruppen Lösungen zu gegebenen Problemen
- diskutieren die eigenen Lösungen mit anderen
- reflektieren die Lösungen der Mitstudierenden in konstruktiver Weise

Selbstkompetenzen

Die Studierenden:

• bewerten neue technologische Entwicklungen auf ihre Relevanz für aktuelle energiewirtschaftliche Themen

Modulinhalte

In diesem Modul werden theoretische Konzepte für das Verständnis von Energiemärkten gelehrt und daraufhin beleuchtet, welchen Einfluss die Digitalisierung cyber-physischer Energiesystemen (CPES) auf die Entwicklung dieser Märkte hat.

Dabei werden durchgängig anhand einfach nachvollziehbarer Beispiele fundamentale Konzepte vermittelt. Im Einzelnen sind dies:

- Übersicht über Eneregiemärkte
- Konsekutive Märkte und unterschiedlichen Zeitspannen
- Smart Grids und Energiemärkte
- Pusch-Effekte digitaler Technologien auf die Entwicklungen von Energiemärkten
- Digitalisierte Prozesse in Energeimärkten
- Marktintegration regenerativer Energiequellen

Literaturempfehlungen

Links	

Unterrichtssprache		Englisch		
Dauer in Semestern		1 Semester		
Angebotsrhythmus Modul		jährlich		
Aufnahmekapazität Modul		unbegrenzt		
Lehr-/Lernform		V+Ü		
Vorkenntnisse		keine		
Prüfung		Prüfungszeiten	Prüfungsform	
Gesamtmodul		Im Anschluss an die Veranstaltungszeit	нтмL Klausur oder n	nündliche Prüfung
Lehrveranstaltungsform	Kommentar	SWS	Angebotsrhythmus	Workload Präsenz
Vorlesung		2	WiSe	28
Übung		2	WiSe	28
Präsenzzeit Modul insgesan	nt			56 h

inf5102 - Power System Components, Networks, Operation

Modulbezeichnung	Power System Components, Networks, Operation	
Modulkürzel	inf5102	
Kreditpunkte	6.0 KP	
Workload	180 h	
Verwendbarkeit des Moduls	 Master Digitalised Energy Systems (Master) > Automation and Electrical Engineering 	
Zuständige Personen	Gawlik, Wolfgang (Modulverantwortung)Lehrenden, Die im Modul (Modulverantwortung)	
Teilnahmevoraussetzungen	Grundlagen der Elektrotechnik, Elektrodynamik	

Kompetenzziele

Die Studierenden kennen die Komponenten von elektrischen Energiesystemen mit ihren individuellen Eigenschaften und können die gegenseitigen Abhängigkeiten und Zusammenhänge im systemischen Kontext beurteilen.

Fachkompetenzen

Die Studierenden:

 können Komponenten von elektrischen Energiesystemen beschreiben und verstehen ihre gegenseitigen Wechselwirkungen und Abhängigkeiten im systemischen Kontext

Methodenkompetenzen

Die Studierenden:

- können Komponenten des Elektrischen Energiesystems modellieren und Berechnungen zur Ermittlung der Modellparameter und unter Verwendung der Modellparameter und Modelleigenschaften durchführen
- können Betriebsvorgänge, Betriebszustände und elektrische Fehler im elektrischen Energiesystem analysieren und gegenseitige Wechselwirkungen identifizieren
- können Betriebsmittel im systemischen Kontext dimensionieren

Sozialkompetenzen

Die Studierenden

- können sich gegenseitig die Komponenten von Elektrischen Energiesystemen erklären und gemeinsam Lösungen für typische Betriebsvorgänge und –probleme im Elektrischen Energiesystem diskutieren
- können fach- und disziplinenübergreifend gemeinsam an Problemen und Herausforderungen an das Elektrische Energiesystem arbeiten

Selbstkompetenzen

Die Studierenden

 sind in der Lage, die Anforderungen an Komponenten von Elektrischen Energiesystemen kritisch zu reflektieren und deren Bedeutung für den Systembetrieb innerhalb des systemischen Kontextes einzuschätzen

Modulinhalte

Komponenten des Elektrischen Energiesystems

- Leitungen, Transformatoren und rotierende elektrische Maschinen
- Leistungselektronik und FACTS
- Schaltanlagen und Umspannwerke
- Netzstrukturen, AC- und DC- Systeme
- Kraftwerke und dezentrale Erzeugung
- Energiespeicherung und Sektorkopplung

Betrieb des Elektrischen Energiesystems

- Lastfluss, Kurzschluss und Schutz
- Verbundsysteme und Microgrids
- Wirkleistungs- und Last-/Frequenzregelung
- Blindleistungs- und Spannungsregelung

• Notbetrieb und Netzwiederaufbau

Literaturempfehlungen

- S Krishna: An Introduction to Modelling of Power System Components, SpringerBriefs in Electrical and Computer Engineering, https://doi.org/10.1007/978-81-322-1847-0
 Richard Marenbach, Johann Jäger, Dieter Nelles: Elektrische Energietechnik, Springer Springer Vieweg Wiesbaden, https://doi.org/10.1007/978-3-658-29492-2

Links		
Unterrichtssprache		Englisch
Dauer in Semestern		1 Semester
Angebotsrhythmus Modul		jedes Wintersemester
Aufnahmekapazität Modul		unbegrenzt
Lehr-/Lernform		1 VL
Vorkenntnisse		Grundlagen der Elektrotechnik, Elektrodynamik
Prüfung	Prüfungszeiten	Prüfungsform
Gesamtmodul		Klausur

Im Anschluss an die Veranstaltungszeit

Lehrveranstaltungsform	Vorlesung	
sws	4	
Angebotsrhythmus	WiSe	

inf5124 - Research Project Digitalised Energy Systems

Modulbezeichnung	Research Project Digitalised Energy Systems	
Modulkürzel	inf5124	
Kreditpunkte	15.0 KP	
Workload	450 h	
Verwendbarkeit des Moduls	 Master Digitalised Energy Systems (Master) > Automation and Electrical Engineering 	
Zuständige Personen	Lehrenden, Die im Modul (Modulverantwortung)Rauh, Andreas (Modulverantwortung)	
Teilnahmevoraussetzungen	Es wird empfohlen, das Research Project erst dann zu belegen, wenn die weiteren Module der beiden Bereiche "Foundations of Digitalised Energy Systems" sowie "Fundamental Competences" bereits absolviert wurden	
Kompetenzziele		

Die Studierenden identifizieren grundlegende Forschungskonzepte der Modellbildung, Regelung, Zustandsschätzung, Simulation und Optimierung digitalisierter Energiesysteme

Fachkompetenzen

Die Studierenden:

- identifizieren grundlegende Konzepte für Auslegung und Betrieb digitalisierter Energiesysteme,
- charakterisieren unterschiedliche Lösungsansätze und
- erkennen Implementierungen für ausgewählte Aspekte wie Simulation und Optimierung

Methodenkompetenzen

Die Studierenden:

• erarbeiten Lösungsideen in einem forschungsnahen Umfeld

Sozialkompetenzen

Die Studierenden

- erarbeiten Lösungsideen in kleinen Projektgruppen von in der Regel 3 Personen,
- dokumentieren ihre Resultate in schriftlicher Form und
- vermitteln die von ihnen erzielten Ergebnisse inkurzen Präsentationen

Selbstkompetenzen

Die Studierenden

 reflektieren kritisch die von ihnen im Projekt erarbeiteten Ergebnisse und erkennen Grenzen dergenutzten Ansätze

Modulinhalte

- Durchführung eines Projekts in Gruppenarbeit auf Basis aktueller Themenvorschläge aller im Studiengang DES Lehrender
- Grundlegende Literaturrecherche
- Eigenständiges Herausarbeiten einer Forschungsfragestellungen
- Implementierung und Validierung von Lösungsansätzen

Literaturempfehlungen	Wird im Laufe des Kurses bekannt gegeben	
Links		
Unterrichtssprache	Englisch	
Dauer in Semestern	1 Semester	
ebotsrhythmus Modul jedes Semester		
Aufnahmekapazität Modul	unbegrenzt	
Lehr-/Lernform 1 PR		
Vorkenntnisse	Es wird empfohlen, das Research Project erst dann zu belegen, wenn die weiteren Module der beiden Bereiche "Foundations of Digitalised Energy Systems" sowie "Fundamental Competences" bereits absolviert wurden	

Prüfung	Prüfungszeiten	Prüfungsform	
Gesamtmodul	Veranstaltungsbegleitend	Projekt	
Lehrveranstaltungsform	Praktikum		
sws	10		
Angebotsrhythmus	SoSe und WiSe		

Computer Science and Energy Informatics

inf5104 - Fundamentals of Game Theory in Energy Systems

Modulbezeichnung	Fundamentals of Game Theory in Energy Systems
Modulkürzel	inf5104
Kreditpunkte	6.0 KP
Workload	180 h
Verwendbarkeit des Moduls	 Master Digitalised Energy Systems (Master) > Computer Science and Energy Informatics Master Informatik (Master) > Angewandte Informatik
Zuständige Personen	Nieße, Astrid (Modulverantwortung)Lehrenden, Die im Modul (Prüfungsberechtigt)
Teilnahmevoraussetzungen	
	Nützlichle Vorkenntnisse: Grundlagen der Optimierung

Kompetenzziele

Nach erfolgreichem Abschluss der Veranstaltung sollen die Studierenden wesentliche Grundlagenkonzepte der Spieltheorie verstehen, und die Relevanz dieser Konzepte für die Anwendung in der energieinformatischen Forschung verstanden haben.

Fachkompetenzen

Die Studierenden:

 sind in der Lage, spieltheoretische Arbeiten im Anwendungsbereich der Energiesysteme nachzuvollziehen, und so den aktuellen Stand der Forschung in diesem Bereich reflektieren zu können.

Methodenkompetenzen

Die Studierenden:

 können Spiele klassifizieren und formalisieren, sowie für die vorgestellten Spielarten Lösungskonzepte anwenden.
 Anwendungsbeispiele können auf Spieltypen hin untersucht werden und die erforderlichen Vereinfachungen bewertet werden.

Sozialkompetenzen

Die Studierenden:

- erarbeiten in Kleingruppen Lösungen zu gegebenen Problemen
- diskutieren die eigenen Lösungen mit anderen
- reflektieren die Lösungen der Mitstudierenden in konstruktiver Weise

Selbstkompetenzen

Die Studierenden:

stellen Bezüge zwischen Alltagssituationen und deren spieltheoretischen Betrachtungen her

Modulinhalte

In diesem Modul werden theoretische Konzepte aus der Spieltheorie aufbereitet und in Ihren Bezügen zur Anwendung in cyber-physischen Energiesystemen (CPES) dargelegt.

Dabei werden durchgängig anhand einfach nachvollziehbarer Beispiele fundamentale Konzepte vermittelt. Im einzelnen sind dies:

- Spieltheorie und Entscheidungstheorie
- Interdependenzen
- Kooperative und nicht-kooperative Systemtheorie
- Utility, diskrete und stetige Strategien, dominante Strategien
- Axiome der Spieltheorie
- Lösungskonzepte, u.a. iterierte Elimination, Rückwärtsinduktion
- Mehrstufige und wiederholte Spiel
- Teilspielperfektheit
- Diskontfaktor
- Mechanism Design, Märkte und Auktionen

In CPES-Anwendungsbeispielen werden Bezüge zum zur verteilten künstlichen Intelligenz und Multi- Agentensystemen, zum Strategielernen und zum Agieren an Märkten in Energieanwendungen hergestellt.

Literaturempfehlungen

- Dario Bauso: Game Theory with Engineering Applications. Society for Indstrial and Applied Mathematics, Philadelphia, 2016
 Shoham, Leyton-Brown: Multiagent systems. Cambridge University
- Press, 2010. http://www.masfoundations.org
- Fudenberg, Tirole: Game Theory. MIT Press, 1991

Links		
Unterrichtssprache		Englisch
Dauer in Semestern		1 Semester
Angebotsrhythmus Modul		jedes Sommersemester
Aufnahmekapazität Modul		unbegrenzt
Lehr-/Lernform		V+Ü
Vorkenntnisse		Nützlichle Vorkenntnisse: Grundlagen der Optimierung
Prüfung	Prüfungszeiten	Prüfungsform

Gesamtmodul

Im Anschluss an die Veranstaltungszeit.

Klausur

ehrveranstaltungsform	Kommentar	SWS	Angebotsrhythmus	Workload Präsenz
Vorlesung		2	SoSe	28
Übung		2	SoSe	28

inf5106 - Optimal and Model-Predictive Control

Modulbezeichnung	Optimal and Model-Predictive Control
Modulkürzel	inf5106
Kreditpunkte	6.0 KP
Workload	180 h
Verwendbarkeit des Moduls	 Master Digitalised Energy Systems (Master) > Computer Science and Energy Informatics Master Informatik (Master) > Angewandte Informatik
Zuständige Personen	Rauh, Andreas (Modulverantwortung)Lehrenden, Die im Modul (Prüfungsberechtigt)
Teilnahmevoraussetzungen	
	Nützliche Vorkenntnisse: Grundkenntnisse der Regelung linearer zeitkontinuierlicher und/oder zeitdiskreter Systeme bzw. der robusten Regelung

Kompetenzziele

Die Studierenden identifizieren die grundlegenden Konzepte der Optimierung von Regelungssystemen.

Fachkompetenzen

Die Studierenden:

- identifizieren die grundlegenden Konzepte der Optimierung von Regelungssystemen
- charakterisieren problemangepasste Optimierungsmethoden
- erkennen softwaretechnische Umsetzungen für ausgewählte Prüfstände

Methodenkompetenzen

Die Studierenden:

- analysieren Probleme der optimalen Regelung
- generalisieren diese eigenständig auf neue forschungsnahe Anwendungsszenarien

Sozialkompetenzen

Die Studierenden

- erarbeiten in einem vorlesungsbegleitenden Projekt/Praktikum Lösungsideen für reale regelungstechnische Aufgaben in kleinen Gruppen
- vermitteln die von ihnen erzielten Ergebnisse in kurzen Präsentationen

Selbstkompetenzen

Die Studierenden

- reflektieren kritisch die von ihnen in Projektform erarbeiteten Ergebnisse
- erkennen Grenzen unterschiedlicher Ansätze der optimalen Regelung

Modulinhalte

Literaturempfehlungen

- Anderson, B. D. O., Moore, J. B.: Linear Optimal Control. Prentice Hall, New Jersey, 1971.
- Föllinger, O.: Optimierung dynamischer Systeme. Eine Einführung für Ingenieure.
- Oldenbourg-Verlag, München, 1985.
- Papageorgiou, M.; Leibold, M.; Buss, M.: Optimierung. Statische, dynamische, stochastische Verfahren für die Anwendung. 3. Aufl., Springer-Verlag, Berlin, 2012.
- Rauh, A. Folien/ Skript zur Vorlesung "Optimal and Model-Predictive Control".

Links					
Unterrichtssprache			Englisch		
Dauer in Semestern			1 Semester		
Angebotsrhythmus Modul	•				
Aufnahmekapazität Modul			unbegrenzt		unbegrenzt
Lehr-/Lernform			V+Ü		
Vorkenntnisse				nntnisse: Grundkenntnisse der Regelu er und/oder zeitdiskreter Systeme bz	
Prüfung		Prüfungszeiten		Prüfungsform	
Gesamtmodul					
		am Ende der Vorlesungsz	reit	Portfolio oder Klausur	
Lehrveranstaltungsform	Kommentar	SV	VS	Angebotsrhythmus	Workload Präsenz
Vorlesung		2	2	SoSe	28
Übung		2	2	SoSe	28
Präsenzzeit Modul insgesar	mt				56 h

inf5110 - Practical Course (Energy Informatics)

Modulbezeichnung	Practical Course (Energy Informatics)	
Modulkürzel	inf5110	
Kreditpunkte	15.0 KP	
Workload	450 h	
Verwendbarkeit des Moduls	 Master Digitalised Energy Systems (Master) > Computer Science and Energy Informatics 	
Zuständige Personen	 Lehnhoff, Sebastian (Modulverantwortung) Rauh, Andreas (Modulverantwortung) Lehrenden, Die im Modul (Prüfungsberechtigt) 	
Teilnahmevoraussetzungen	MATLAB/Simulink, Programmiergrundlagen in Java oder Python, Entwicklung auf eingebetteten Systemen	
Kompetenzziele		

Das Modul hat zum Ziel in der Energieinformatik benötigte praktische Kompetenzen zur Umsetzung von Steuerungs- und Regelungsansätzen im Feld auf Anlagen und im Netz zuvermitteln.

Fachkompetenzen

Die Studierenden:

- kennen grundlegende Modellierungsansätze für Komponenten in Energiesystemen
- kennen Verfahren zur Parameteridentifikation
- kennen lineare und nicht-lineare Verfahren zur Regelung und optimierten Steuerung technischer Systeme
- kennen grundsätzliche Verfahren zum Umgang mit Fehlern und technischen Störungen in der Regelung
- kennen die Herausforderungen bei der Umsetzung von Regelungsansätzen auf ressourcenbeschränkten technischen Systemen im Feld

Methodenkompetenzen

Die Studierenden:

- wählen geeignete Modellierungsansätze
- wenden Methoden der Parameteridentifikation an
- wenden Methoden zur Regelung von technischen Betriebsparametern an
- implementieren diese Ansätze auf einem (virtuellen) eingebetteten System

Sozialkompetenzen

Die Studierenden:

- diskutieren die getroffene Modellauswahl verwendeten Ansätze im Team
- präsentieren und diskutieren Ergebnisse mit anderen Studierenden

Selbstkompetenzen

Die Studierenden:

- reflektieren die abstrakte Modellierung komplexer technische Systeme und Prozesse
- reflektieren Probleme und Unsicherheiten und Fehlern
- erkennen die Grenzen eingebetteter Systeme im Feld
- nehmen Kritik an und verstehen sie als Vorschlag für die Weiterentwicklung des eigenen Handelns

Modulinhalte

Modellierung von Komponentenzen in DES

- Batteriezellen (Ersatzschaltbildmodellierung, thermisches Modell)
- Abwärtswandler-Schaltungen
- Elektrische Antriebssysteme (Modellierung des kompletten Antriebsstrangs, einschließlich Mechanik)

Parameteridentifikation in DES

• Entwurf von Identifikationsversuchen

- Parameteroptimierung (Zeitbereich/Frequenzbereich, Impedanzspektroskopie)
- Entwurf von Zustandsbeobachtern und (erweiterten) Kalman-Filtern

Lineare Regelung

- Regelung des elektrischen Antriebsstrangs mit Ausgangsrückführung (PID, einschließlich Anti-Windup)
- Beobachterbasierte Zustandsregelung
- Störgrößenschätzung und kompensation

Nichtlineare Regelung/ Regelung mit variabler Struktur

- Ljapunow-Methoden für den Regelungsentwurf
- Flachheitsbasierte Regelungstechniken
- Analyse der Robustheit
- Echtzeit-Implementierung von Methoden zur Reduzierung von Chattering

Optimale Steuerung/ MPC

- Ladung unter ZustandsbeschränkungenEnergieoptimale BatterieladungZeitoptimale Lösungen

- Ladezustandsausgleich
- Thermische Zustandsbeschränkungen

Fehlererkennung und -isolierung

- Sensor- vs. Aktor-Fehler
- Beobachterbasierte Ansätze für Umrichterschaltungen
- Beobachterbasierte Ansätze für Antriebsstränge
- Fehlertolerante Regelungsstrukturen, Reglerrekonfiguration

Implementierungsstudien

- Implementierung eines Reglers auf praxisrelevanter Hardware (vRTU/vIED- Programmierung eines Netz- oder Anlagenreglers)
- Hardware-in-the-Loop- Simulation des Reglers (Simulink-Modellierung der RT-Umgebung und Kompilierung auf dem RT-Target)

Literaturempfehlungen		Wird in der Veranstaltung bekannt gegeben
Links		
Unterrichtssprache		Englisch
Dauer in Semestern		1 Semester
Angebotsrhythmus Modul		Jedes Semester
Aufnahmekapazität Modul		unbegrenzt
Lehr-/Lernform		1 PR
Vorkenntnisse		MATLAB/Simulink, Programmiergrundlagen in Java oder Python, Entwicklung auf eingebetteten Systemen
Prüfung	Prüfungszeiten	Prüfungsform
Gesamtmodul	veranstaltungsbegleitend	Portfolio
Lehrveranstaltungsform	Praktikum	
sws	0	
Angebotsrhythmus	SoSe oder WiSe	

inf514 - Simulation-based Smart Grid Engineering and Assessment

Modulbezeichnung	Simulation-based Smart Grid Engineering and Assessment	
Modulkürzel	inf514	
Kreditpunkte	6.0 KP	
Workload	180 h	
Verwendbarkeit des Moduls	 Master Digitalised Energy Systems (Master) > Computer Science and Energy Informatics Master Informatik (Master) > Angewandte Informatik 	
Zuständige Personen	Lehnhoff, Sebastian (Modulverantwortung)Lehrenden, Die im Modul (Prüfungsberechtigt)	
Teilnahmevoraussetzungen		
	Programmiergrundlagen in Java oder Python	

Kompetenzziele

Das Modul hat zum Ziel in der Energieinformatik benötigte mathematische und methodische Grundlagen zur Durchführung großer Simulationsstudien zu vermitteln.

Fachkompetenzen

Die Studierenden

- kennen Methoden zur Analyse von Black Box-Zielfunktionen
- erkennen die Zusammenhanb zwischen Genauigkeit und Zuverlässigkeit erwarteter Ergebnisse und dem dazu notwendigen Aufwand
- kennen Verfahren, um mit möglichst wenigen Versuchen (Einzelexperimenten) Wirkzusammenhänge zwischen Einflussfaktoren und beobachteten Zielgrößen sicher zu bestimmen
- bewerten die Aussagekraft von durch Simulation erzielten Ergebnissen
- charakterisieren (verteilte) Algorithmen anhand ihrer Eigenschaften
- transferieren Beweistechniken auf verteilte Problemstellungen

Methodenkompetenzen

Die Studierenden

- wählen geeignete statistische Methoden zur Auswertung von Simulationsergebnissen
- wenden Methoden der statistischen Versuchsplanung an
- wenden Signifikanztests an zur Bewertung und zum Vergleich von Algorithmen
- erzeugen beliebig verteilte Daten zur Simulation
- stellen Ergebnisse der Algorithmenbewertung statistisch valide dar

Sozialkompetenzen

Die Studierende

- diskutieren die getroffene Algorithmenauswahl
- präsentieren und diskutieren Ergebnisse mit anderen Studierenden

Selbstkompetenz

Die Studierenden

- reflektieren den eigenen Umgang mit der begrenzten Ressource Energie
- reflektieren Probleme und Unsicherheiten statistischer Methoden
- erkennen die Grenzen simulativer Studien und die Verantwortung bei der richtigen Wahl statistischer Methoden
- nehmen Kritik an und verstehen sie als Vorschlag für die Weiterentwicklung des eigenen Handelns

Modulinhalte

Das Modul hat zum Ziel in der Energieinformatik benötigte mathematische und methodische Grundlagen zur Durchführung großer Simulationsstudien zu

vermitteln.

Literaturempfehlungen

Wird in der Veranstaltung bekannt gegeben

Links			
Unterrichtssprache		Englisch	
Dauer in Semestern		1 Semester	
Angebotsrhythmus Modul		jedes Wintersemester	
Aufnahmekapazität Modul		unbegrenzt	
Lehr-/Lernform		V+Ü	
Vorkenntnisse		Programmiergrundlagen in Java oder Python	
Prüfung	Prüfungszeiten	Prüfungsform	
0			

Gesamtmodul

Am Ende der Veranstaltungszeit

Klausur oder mündliche Prüfung

Lehrveranstaltungsform Kommentar	SWS	Angebotsrhythmus	Workload Präsenz
Vorlesung	2	WiSe	28
Übung	2	WiSe	28
Präsenzzeit Modul insgesamt			56 h

Innovation Topics and Smart Grids

inf5126 - Digitalised Energy System Cyber-Resilience

Modulkürzel Kreditpunkte Workload	inf5126 3.0 KP 90 h
·	90 h
Workload	
Verwendbarkeit des Moduls	 Master Digitalised Energy Systems (Master) > Innovation Topics and Smart Grids Master Informatik (Master) > Angewandte Informatik
Zuständige Personen	Lehnhoff, Sebastian (Modulverantwortung)Lehrenden, Die im Modul (Prüfungsberechtigt)
Teilnahmevoraussetzungen	
	Keine
Kompetenzziele	
	Dieses Modul integriert aktuelle Entwicklungen aus dem Gebiet Cyberresilienz und entsprechender Anwendungen im Energienetz Fachkompetenz Die Studierenden:
	 verstehen resultierende Probleme und Herausforderungen neuer Digitalisierungstrends, wie bspw. durch Milliarden von internetfähigen Geräten (Fernsehern, Babyphones, alexa, usw.), smarten Geräten, Cloudservices, Al, Big Data, usw. bewerten Angriffserkennungsmethoden identifizieren Sicherheitslücken und Schwachstellen im Energienetz
	Methodenkompetenz Die Studierenden:
	 bearbeiten Aufgaben mit technischer und wissenschaftlicher Literatur, schreiben akademische Artikel und präsentieren ihre Lösungen wissenschaftlich bewerten Problemstellungen der Cyberresilienz organisieren Prozesse und Ressourcen zeitlich
	Sozialkompetenz Die Studierenden:
	kommunizieren überzeugend mit Kollegen und Experten
	Selbstkompetenz Die Studierenden:
	 reflektieren das Problem der Cyberresilienz kritisch und verfolgen verschiedene mögliche Lösungsstrategien reflektieren unabhängig ihre eigenen Hypothesen und Theorien
Modulinhalte	
	 Das Energiesystem als kritische Infrastruktur Fortplanzung von Phönomenen und ihre Dynamik Allgegenwärtige Zielkonflikte Störanfälligkeit des Energiesystems gegenüber neuen Effekten durch klassische IT-Herausforderungen (Fehler, Updatemanagement, Interaktionen,) und gegenüber modernen Cyberattacken
Literaturempfehlungen	Wird in der Veranstaltung bekannt gegeben
Links	

Unterrichtssprache		E	Englisch		
Dauer in Semestern		•	1 Semester		
Angebotsrhythmus Modul		l	unregelmäßig		
Aufnahmekapazität Modul		ι	unbegrenzt		
Lehr-/Lernform		\	V oder S		
Vorkenntnisse		ŀ	keine		
Prüfung		Prüfungszeiten		Prüfungsform	
Gesamtmodul					
		am Ende der Vorlesungszei	it	Hausarbeit	
Lehrveranstaltungsform	Kommentar	SWS	S	Angebotsrhythmus	Workload Präsenz
Vorlesung		1		SoSe	14
Seminar		1		SoSe	14
Präsenzzeit Modul insgesar	mt				28 h

inf5128 - AI in Energy Systems

Al in Energy Systems	
28	
(P	
 Master Digitalised Energy Systems (Master) > Innovation Topics and Smart Grids Master Informatik (Master) > Angewandte Informatik 	
Bremer, Jörg (Modulverantwortung)Lehrenden, Die im Modul (Prüfungsberechtigt)	
e	

Kompetenzziele

Die Studierenden lernen, das zukünftige Energiesystem als selbstorganisierendes, selbst-optimierendes und selbst-heilendes cyber-physisches System zu begreifen und wie die verteilten Komponenten eines cyberphysischen Energiesystems mit Intelligenz und Autonomie ausgestattet werden können, um dieses Ziel zu erreichen.

Fachkompetenz

Die Studierenden:

- kontrastieren verschiedene Methoden der KI
- definieren moderne Anwendungsfälle für KI im Energiesystem, um Steuerungsziele zu erreichen
- evaluieren Risiken und Nachteile der KI in Energiesysteme
- wenden KI-Methoden auf ausgewählte Problemstellungen an

Methodenkompetenz

Die Studierenden:

- bearbeiten Aufgaben mit technischer und wissenschaftlicher Literatur, schreiben akademische Artikel und präsentieren ihre Lösungen wissenschaftlich
- bewerten Problemstellungen der Künstlichen Intelligenz
- organisieren Prozesse und Ressourcen zeitlich

Sozialkompetenz

Die Studierenden:

• kommunizieren überzeugend mit Kollegen und Experten

Selbstkompetenz

Die Studierenden:

- reflektieren das Problem der KI kritisch und verfolgen verschiedene mögliche Lösungsstrategien
- reflektieren unabhängig ihre eigenen Hypothesen und Theorien

Modulinhalte

Dieses Modul integriert aktuelle Entwicklungen im Bereich der Künstlichen Intelligenz sowie deren Anwendung im Energiesystem

Literaturempfehlungen	
Links	
Unterrichtssprache	Englisch
Dauer in Semestern	1 Semester
Angebotsrhythmus Modul	unregelmäßig
Aufnahmekapazität Modul	unbegrenzt
Lehr-/Lernform	V oder S
Vorkenntnisse	keine

Prüfung	Prüfungszeiten	Prüfungsform	
Gesamtmodul			
	Im Anschluss an die Veranstaltungszeit	Hausarbeit	
Lehrveranstaltungsform	Vorlesung oder Seminar		
sws	2		
Angebotsrhythmus	SoSe		
Workload Präsenzzeit	28 h		

inf5130 - Socio-technical Energy Systems

Modulbezeichnung	Socio-technical Energy Systems	
Modulkürzel	inf5130	
Kreditpunkte	3.0 KP	
Workload	90 h	
Verwendbarkeit des Moduls	 Master Digitalised Energy Systems (Master) > Innovation Topics and Smart Grids Master Informatik (Master) > Angewandte Informatik 	
Zuständige Personen	 Lehnhoff, Sebastian (Modulverantwortung) Bremer, Jörg (Modulverantwortung) Lehrenden, Die im Modul (Prüfungsberechtigt) 	
Teilnahmevoraussetzungen		

Kompetenzziele

Studierende lernen, menschliche Bedürfnisse bereits beim initialen Entwurf cyberphysikalischer Energiesysteme zu berücksichtigen. Im Kern steht ein Design mit dem Menschen im Mittelpunkt, um interaktive Systeme zu entwickeln, die NICHT rational agierende Nutzer bei der Entscheidungsfindung berücksichtigen.

Fachkompetenz

Keine Teilnehmervoraussetzungen

Die Studierenden:

- nehmen das Energiesystem als Human Cyber Physical System mit stetig wachsender Autonomie wahr
- identifizieren das Potenzial für Konflikte, die durch die Interaktion mit Menschen entstehen
- Modellieren Mensch-System- Interaktionen
- verstehen, bewerten und kontrastieren Methoden von sich selbst erklärender Künstlicher Intelligenz

Methodenkompetenz

Die Studierenden:

- bearbeiten Aufgaben mit technischer und wissenschaftlicher Literatur, schreiben akademische Artikel und präsentieren ihre Lösungen wissenschaftlich
- bewerten Problemstellungen soziotechnischer Energiesysteme
- organisieren Prozesse und Ressourcen zeitlich

Sozialkompetenz

Die Studierenden:

• kommunizieren überzeugend mit Kollegen und Experten

Selbstkompetenz

Die Studierenden:

- reflektieren Probleme in soziotechnischen Energiesystemen kritisch und verfolgen verschiedene mögliche Lösungsstrategien
- reflektieren unabhängig ihre eigenen Hypothesen und Theorien

Modulinhalte

- Simulation (und vorhersage) menschlichem Verhaltens und menschlicher Entscheidungen
- Modellierung von Nutzerverhalten in Human Cyber Physical Systems
- selbsterklärende und rechtfertigende Methoden der KI

Literaturempfehlungen

Wird in der Veranstaltung bekanntgegeben

Links			
Unterrichtssprache		Englisch	
Dauer in Semestern		1 Semester	
Angebotsrhythmus Modul		unregelmäßig	
Aufnahmekapazität Modul		unbegrenzt	
Lehr-/Lernform		V oder S	
Vorkenntnisse		keine	
Prüfung	Prüfungszeiten		Prüfungsform
Gesamtmodul			
	am Ende der Vorlesungs:	zeit	Hausarbeit
Lehrveranstaltungsform	Vorlesung oder Seminar		
sws	2		
Angebotsrhythmus	WiSe		

28 h

Workload Präsenzzeit

inf586 - Current Topics in 'Energy Informatics' I

Modulbezeichnung	Current Topics in 'Energy Informatics' I	
Modulkürzel	inf586	
Kreditpunkte	3.0 KP	
Workload	90 h	
Verwendbarkeit des Moduls	 Master Digitalised Energy Systems (Master) > Innovation Topics and Smart Grids Master Informatik (Master) > Angewandte Informatik 	
Zuständige Personen	Lehnhoff, Sebastian (Modulverantwortung)Lehrenden, Die im Modul (Prüfungsberechtigt)	
Teilnahmevoraussetzungen		
	keine Teilnehmervoraussetzungen	

Kompetenzziele

Das Modulhat zum Ziel aktuelle Entwicklungen im Bereich digitalisierte Energiesysteme in den jeweils angemessener Lehrveranstaltungsformin das Studium zu integrieren.

Fachkompetenzen

Die Studierenden:

- differenzieren und kontrastieren einen Teilbereich der digitalisierten Energiesysteme im Detail genauer oder reflektieren die Informatik im Allgemeinen
- trice
 t
- identifizieren, strukturieren und lösen Probleme auch in neuen oder erst im Entstehen begriffenen Bereichen ihrer Disziplin
- wenden dem Stand der Wissenschaft entsprechende und innovative Methoden bei der Untersuchung und Lösung von Problemen an, gegebenenfalls unter Rückgriff auf andere Disziplinen
- erkennen die Grenzen des heutigen Wissenstands und der heutigen Technik und tragen zur weiteren wissenschaftlichen und technologischen Entwicklung auf dem Gebiet digitalisierter Energiesysteme bei
- diskutieren aktuelle Entwicklungen undbeurteilen deren Bedeutung

Methodenkompetenzen

Die Studierenden:

- untersuchen Probleme anhand technischer und wissenschaftlicher Literatur verfassen nach wissenschaftlichen Gesichtspunkten einen Artikel und präsentieren ihre Ergebnisse in einem wissenschaftlichen Vortrag
- reflektieren Probleme auch in neuen oder erst im Entstehen begriffenen Bereichen ihrer Disziplin und wenden Informatik-Methoden zur Untersuchung und Lösung an
- planen zeitliche Abläufe und andere Ressourcen

Sozialkompetenzen

Die Studierenden:

 kommunizieren überzeugend mündlich und schriftlich mit Anwendern und Fachleuten

Selbstkompetenzen

Die Studierenden:

- verfolgen die weitere Entwicklung in der Informatik allgemein und in ihrem Spezialgebiet kritisch
- entwickeln und reflektieren eigene Theorien zu selbständig aufgestellten Hypothesen

Modulinhalte

Siehe Beschreibung der zugeordneten Lehrveranstaltung

Literaturempfehlungen

Je nach zugeordneter Lehrveranstaltung

Links			
Unterrichtssprache		Englisch	
Dauer in Semestern		1 Semester	
Angebotsrhythmus Modul		unregelmäßig	
Aufnahmekapazität Modul		unbegrenzt	
Lehr-/Lernform		V oder S	
Vorkenntnisse		keine	
Prüfung	Prüfungszeiten	Prüfungsform	
Gesamtmodul			
	am Ende der Vorlesungsze	eit Referat oder mündliche Prüfung.	
Lehrveranstaltungsform	Vorlesung oder Seminar		
sws	2		
Angebotsrhythmus	SoSe oder WiSe		
Workload Präsenzzeit	28 h		

inf587 - Current Topics in 'Energy Informatics' II

Modulbezeichnung	Current Topics in 'Energy Informatics' II	
Modulkürzel	inf587	
Kreditpunkte	3.0 KP	
Workload	90 h	
Verwendbarkeit des Moduls	 Master Digitalised Energy Systems (Master) > Innovation Topics and Smart Grids Master Informatik (Master) > Angewandte Informatik 	
Zuständige Personen	Lehnhoff, Sebastian (Modulverantwortung)Lehrenden, Die im Modul (Prüfungsberechtigt)	
Teilnahmevoraussetzungen		
	keine Teilnehmervoraussetzungen	

Kompetenzziele

Das Modul hat zum Ziel aktuelle Entwicklungen im Bereich digitalisierte Energiesysteme in den jeweils angemessener Lehrveranstaltungsformin das Studium zu integrieren.

Fachkompetenzen

Die Studierenden:

- differenzieren und kontrastieren einen Teilbereich der digitalisierten Energiesysteme im Detail genauer oder reflektieren die Informatik im Allgemeinen
- trice
 t
- identifizieren, strukturieren und lösen Probleme auch in neuen oder erst im Entstehen begriffenen Bereichen ihrer Disziplin
- wenden dem Stand der Wissenschaft entsprechende und innovative Methoden bei der Untersuchung und Lösung von Problemen an, gegebenenfalls unter Rückgriff auf andere Disziplinen
- erkennen die Grenzen des heutigen Wissenstands und der heutigen Technik und tragen zur weiteren wissenschaftlichen und technologischen Entwicklung auf dem Gebiet digitalisierter Energiesysteme bei
- diskutieren aktuelle Entwicklungen und beurteilen deren Bedeutung

Methodenkompetenzen

Die Studierenden:

- untersuchen Probleme anhand technischer und wissenschaftlicher Literatur verfassen nach wissenschaftlichen Gesichtspunkten einen Artikel und präsentieren ihre Ergebnisse in einem wissenschaftlichen Vortrag
- reflektieren Probleme auch in neuen oder erst im Entstehen begriffenen Bereichen ihrer Disziplin und wenden Informatik-Methoden zur Untersuchung und Lösung an
- planen zeitliche Abläufe und andere Ressourcen

Sozialkompetenzen

Die Studierenden:

 kommunizieren überzeugend mündlich und schriftlich mit Anwendern und Fachleuten

Selbstkompetenzen

Die Studierenden:

- verfolgen die weitere Entwicklung in der Informatik allgemein und in ihrem Spezialgebiet kritisch
- entwickeln und reflektieren eigene Theorien zu selbständig aufgestellten Hypothesen

Modulinhalte

Siehe Beschreibung der zugeordneten Lehrveranstaltung

Literaturempfehlungen

Wird in der zugeordneten Lehrveranstaltung bekannt gegeben

Links			
Unterrichtssprache		Englisch	
Dauer in Semestern		1 Semester	
Angebotsrhythmus Modul		unregelmäßig	
Aufnahmekapazität Modul		unbegrenzt	
Lehr-/Lernform		V oder S	
Vorkenntnisse		keine	
Prüfung	Prüfungszeiten		Prüfungsform
Gesamtmodul			
	Am Ende der Vorlesung	gszeit	Klausur oder Portfolio oder Referat oder mündliche Prüfung
Lehrveranstaltungsform	Vorlesung oder Seminar		
sws	2		
Angebotsrhythmus	SoSe oder WiSe		
Workload Präsenzzeit	28 h		

inf591 - Current Topics in ,Digitalised Energy Systems'

Modulbezeichnung	Current Topics in ,Digitalised Energy Systems'	
Modulkürzel	inf591	
Kreditpunkte	3.0 KP	
Workload	90 h	
Verwendbarkeit des Moduls	 Master Digitalised Energy Systems (Master) > Innovation Topics and Smart Grids Master Informatik (Master) > Angewandte Informatik 	
Zuständige Personen	Nieße, Astrid (Modulverantwortung)Lehrenden, Die im Modul (Prüfungsberechtigt)	
Teilnahmevoraussetzungen		
	Keine	

Kompetenzziele

Das Modul hat zum Ziel aktuelle Entwicklungen im Bereich digitalisierte Energiesysteme in den jeweils angemessener Lehrveranstaltungsform in das Studium zu integrieren.

Fachkompetenzen

Die Studierenden:

- differenzieren und kontrastieren einen Teilbereich der digitalisierten Energiesysteme im Detail genauer oder reflektieren die Informatik im Allgemeinen
- trice
 t
- identifizieren, strukturieren und lösen Probleme auch in neuen oder erst im Entstehen begriffenen Bereichen ihrer Disziplin
- wenden dem Stand der Wissenschaft entsprechende und innovative Methoden bei der Untersuchung und Lösung von Problemen an, gegebenenfalls unter Rückgriff auf andere Disziplinen
- erkennen die Grenzen des heutigen Wissenstands und der heutigen Technik und tragen zur weiteren wissenschaftlichen und technologischen Entwicklung auf dem Gebiet digitalisierter Energiesysteme bei
- diskutieren aktuelle Entwicklungen und beurteilen deren Bedeutung

Methodenkompetenzen

Die Studierenden:

- untersuchen Probleme anhand technischer und wissenschaftlicher Literatur verfassen nach wissenschaftlichen Gesichtspunkten einen Artikel und präsentieren ihre Ergebnisse in einem wissenschaftlichen Vortrag
- reflektieren Probleme auch in neuen oder erst im Entstehen begriffenen Bereichen ihrer Disziplin und wenden Informatik-Methoden zur Untersuchung und Lösung an
- planen zeitliche Abläufe und andere Ressourcen

Sozialkompetenzen

Die Studierenden:

 kommunizieren überzeugend mündlich und schriftlich mit Anwendern und Fachleuten

Selbstkompetenzen

Die Studierenden:

- verfolgen die weitere Entwicklung in der Informatik allgemein und in ihrem Spezialgebiet kritisch
- entwickeln und reflektieren eigene Theorien zu selbständig aufgestellten Hypothesen

Modulinhalt	е
-------------	---

Siehe Beschreibung der zugeordneten Lehrveranstaltung

Literaturempfehlungen

Je nach zugeordneter Lehrveranstaltung

Links			
Unterrichtssprache		Englisch	
Dauer in Semestern		1 Semester	
Angebotsrhythmus Modul		unregelmäßig	
Aufnahmekapazität Modul		unbegrenzt	
Lehr-/Lernform		V oder S	
Vorkenntnisse		keine	
Prüfung	Prüfungszeiten		Prüfungsform
Gesamtmodul			
	Am Ende der Vorlesu	ngszeit	Klausur oder Portfolio oder Referat oder mündliche Prüfung
Lehrveranstaltungsform	Vorlesung oder Seminar		
sws	2		
Angebotsrhythmus	WiSe		
Workload Präsenzzeit	28 h		

Abschlussmodul

mam - Masterabschlussmodul

Modulbezeichnung	Masterabschlussmodul	
Modulkürzel	mam	
Kreditpunkte	30.0 KP	
Workload	900 h	
Verwendbarkeit des Moduls	Master Digitalised Energy Systems (Master) > Abschlussmodul	
Zuständige Personen	Lehnhoff, Sebastian (Modulverantwortung)Lehrenden, Die im Modul (Prüfungsberechtigt)	
Teilnahmevoraussetzungen	Für die Thematik der Masterarbeit thematisch einschlägige Module des Studiengangs	

Kompetenzziele

Durch die Anfertigung der Masterarbeit erbringt der/die Studierende den Nachweis, dass er/sie in der Lage ist, komplexe und ganzheitliche Aufgaben aus dem Bereich digitalisierte Energiesysteme auf der Grundlage umfassender wissenschaftlicher Erkenntnisse und unter Anwendung des wissenschaftlichen Methodenapparates zu bearbeiten und zu lösen. Die Studierenden haben insbesondere das während des Masterstudiums erworbene Fach- und Methodenwissen sowie ihre Fach- und Sozialkompetenz in die Bearbeitung der Masterarbeit eingebracht und erfolgreich angewandt.

Das Masterseminar dient der inhaltlichen und methodischen Diskussion der Masterarbeit. Es dient gleichzeitig dem wissenschaftlichen und praktischen Erfahrungsaustausch und versetzt die Studierenden in den Stand, unterschiedliche Lösungsansätze auf der Basis theoretischer Kenntnis- und Erfahrungshintergründe argumentativ zu reflektieren. Das Masterseminar endet mit einem Kolloquium zur Masterarbeit.

Fachkompetenzen

Die Studierenden:

- erkennen und beurteilen die in ihrem Spezialgebiet anzuwendenden Techniken und Methoden und deren Grenzen
- entwerfen Lösungen für komplexe, möglicherweise ungenau definierte oder ungewöhnliche Aufgaben aus dem Bereich der Informatik und bewerten derartige Entwürfe nach dem Stand der Technik
- identifizieren, strukturieren und lösen Probleme auch in neuen oder erst im Entstehen begriffenen Bereichen ihrer Disziplin
- wenden dem Stand der Wissenschaft entsprechende und innovative Methoden bei der Untersuchung und Lösung von Problemen an, gegebenenfalls unter Rückgriff auf andere Disziplin
- setzen Wissen verschiedener Disziplinen zueinander in Beziehung und wenden diese Synergien in komplexen Situationen an
- entwickeln komplexe informatische Systeme, Prozesse und Datenmodelle
- erkennen die Grenzen des heutigen Wissenstands und der heutigen Technik und tragen zur weiteren wissenschaftlichen und technologischen Entwicklung der Informatik bei
- diskutieren aktuelle Entwicklungen der Informatik und beurteilen deren Bedeutung

Methodenkompetenzen

Die Studierenden:

- finden und entwerfen einen oder mehrerer Lösungszugänge
- evaluieren Werkzeuge, Technologien und Methoden und wenden diese differenziert an
- untersuchen Probleme anhand technischer und wissenschaftlicher Literatur verfassen nach wissenschaftlichen Gesichtspunkten einen Artikel und präsentieren ihre Ergebnisse in einem wissenschaftlichen Vortrag
- planen zeitliche Abläufe und andere Ressourcen
- wenden Techniken des Projektmanagements an
- entwickeln kreativ neue und originäre Vorgehensweisen und Methoden
- reflektieren Probleme auch in neuen oder erst im Entstehen begriffenen Bereichen ihrer Disziplin und wenden Informatik- Methoden zur

Untersuchung und Lösung an

Sozialkompetenzen

Die Studierenden:

- kommunizieren überzeugend mündlich und schriftlich mit Anwendern und Fachleuten angemessen
- treffen und argumentieren Entscheidungen der Problematik

Selbstkompetenzen

Die Studierenden:

- verfolgen die weitere Entwicklung in der Informatik allgemein und in ihrem Spezialgebiet kritisch
- führen innovative Tätigkeiten in ihrem Berufsfeld erfolgreich und eigenverantwortlich aus
- erkennen die Grenzen ihrer Kompetenz und erweitern diese zielgerichtet
- reflektieren ihr Selbstbild und Handeln unter fachlichen, methodischen und sozialen Gesichtspunkten
- entwickeln und reflektieren eigene Theorien zu selbständig aufgestellten Hypothese
 arbeiten in ihrem Berufsfeld eigenständig

Mod	 lin	ha	Ita

Selbständige Bearbeitung eines Themas aus dem Bereich digitalisierte Energiesysteme Informatik und Verteidigung der Ergebnisse in einem Abschlusskolloquium

Literaturempfehlungen		Wird entsprechend des konkreten Themas spezifiziert
Links		
Unterrichtssprache		Englisch
Dauer in Semestern		1 Semester
Angebotsrhythmus Modul		jedes Semester
Aufnahmekapazität Modul		unbegrenzt
Lehr-/Lernform		1\$
Vorkenntnisse		Für die Thematik der Masterarbeit thematisch einschlägige Module des Studiengangs
Prüfung	Prüfungszeiten	Prüfungsform
Gesamtmodul	kontinuierlich	Anfertigung und Einreichung der Masterarbo entsprechend der Prüfungsordnung. Verteidigung der Masterarbeit in einem Abschlusskolloquium
Lehrveranstaltungsform	Kolloquium	
sws	0	
Angebotsrhythmus	SoSe oder WiSe	