CS229 Fall 2017

Problem Set #1: Supervised Learning

Author: LFhase rimemosa@163.com

Logistic regression

(a) Given that

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} log(1 + e^{-y^{(i)}\theta^{T}x^{(i)}})$$

we can get

$$\frac{\partial J(\theta)}{\partial \theta_i} = \frac{1}{m} \sum_{k=1}^{m} \frac{-y^{(k)} x_i^{(k)}}{1 + e^{y^{(k)} \theta^T x^{(k)}}}$$

then

$$\frac{\partial J(\theta)}{\partial \theta_i \partial \theta_j} = \frac{1}{m} \sum_{k=1}^m \frac{x_i^{(k)} x_j^{(k)} e^{y^{(k)} \theta^T x^{(k)}}}{(1 + e^{y^{(k)} \theta^T x^{(k)}})^2}$$

which is H_{ij} so

$$Z^{T}HZ = \sum_{i=1}^{n} \sum_{j=1}^{n} z_{i}H_{ij}z_{j}$$

$$= \frac{1}{m} \sum_{k=1}^{m} \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} z_{i}x_{i}^{(k)}x_{j}^{(k)}z_{j}e^{y^{(k)}\theta^{T}x^{(k)}}}{(1 + e^{y^{(k)}\theta^{T}x^{(k)}})^{2}}$$

known that

$$\sum_{i=1}^{n} \sum_{j=1}^{n} z_i x_i^{(k)} x_j^{(k)} z_j = (X^T Z)^2 \ge 0$$

$$\frac{e^{y^{(k)}\theta^T x^{(k)}}}{(1+e^{y^{(k)}\theta^T x^{(k)}})^2} > 0$$

we can easily get

$$Z^T H Z > 0$$

(b) Firstly, we plot the original data

Firstly, we plot the original data