Analysis of Algorithms, I CSOR S4231

$\begin{array}{c} {\bf Eleni~Drinea} \\ {\it Computer~Science~Department} \end{array}$

Columbia University

Thursday, February 4, 2016

Outline

- 1 Recap
- 2 Data compression
- 3 Symbol codes and optimal lossless compression
- 4 Prefix codes
- 5 Prefix codes and trees
- 6 The Huffman algorithm

Today

- 1 Recap
- 2 Data compression
- 3 Symbol codes and optimal lossless compression
- 4 Prefix codes
- 5 Prefix codes and trees
- 6 The Huffman algorithm

Review of the last lecture

- ► Expected running time of Randomized-Quicksort
- ▶ Balls-in-bins problems
 - ► Birthday paradox
 - Expected load of a bin
 - Expected number of empty bins
 - Expected number of balls thrown before every bin has at least one ball

Today

- 1 Recap
- 2 Data compression
- 3 Symbol codes and optimal lossless compression
- 4 Prefix codes
- 5 Prefix codes and trees
- 6 The Huffman algorithm

Motivation

Data compression: find compact representations of data

Data compression standards

- jpeg for image transmission
- ▶ mp3 for audio content, mpeg2 for video transmission
- ▶ utilities: gzip, bzip2

All of the above use the Huffman algorithm as a basic building block.

Data representation

- ▶ Chromosome maps: sequences of hundreds of millions of bases (symbols from $\{A, C, G, T\}$).
- ▶ Goal: store a chromosome map with 200 million bases.

How do we represent a chromosome map?

Data representation

- ▶ Chromosome maps: sequences of hundreds of millions of bases (symbols from $\{A, C, G, T\}$).
- ▶ Goal: store a chromosome map with 200 million bases.

How do we represent a chromosome map?

- ► Encode every symbol that appears in the sequence separately by a fixed length binary string.
- $ightharpoonup \operatorname{Codeword} c(x)$ for symbol x: a binary string encoding x

Example code

- ▶ Alphabet $\mathcal{A} = \{A, C, G, T\}$ with 4 symbols
- ▶ Encode each symbol with 2 bits

alphabet symbol x	codeword $c(x)$
A	00
C	01
G	10
T	11

Example code

- ▶ Alphabet $\mathcal{A} = \{A, C, G, T\}$ with 4 symbols
- ▶ Encode each symbol with 2 bits

alphabet symbol x	codeword $c(x)$
A	00
C	01
G	10
T	11

Output of encoding: the concatenation of the codewords for every symbol in the input sequence

Example $cod\epsilon$

- ▶ Alphabet $\mathcal{A} = \{A, C, G, T\}$ with 4 symbols
- ► Encode each symbol with 2 bits

alphabet symbol x	codeword $c(x)$
A	00
C	01
G	10
T	11

Output of encoding: the concatenation of the codewords for every symbol in the input sequence

Example

ightharpoonup Input sequence: ACGTAA

Example $cod\epsilon$

- ▶ Alphabet $\mathcal{A} = \{A, C, G, T\}$ with 4 symbols
- ► Encode each symbol with 2 bits

alphabet symbol x	codeword $c(x)$
A	00
C	01
G	10
T	11

Output of encoding: the concatenation of the codewords for every symbol in the input sequence

Example

- ► Input sequence: ACGTAA
- Output: c(A)c(C)c(G)c(T)c(A)c(A) = 000110110000
- ▶ Total length of encoding = $6 \cdot 2 = 12$ bits.

Today

- 1 Recap
- 2 Data compression
- 3 Symbol codes and optimal lossless compression
- 4 Prefix codes
- 5 Prefix codes and trees
- 6 The Huffman algorithm

Symbol codes

Symbol code: a set of codewords where every input symbol is encoded **separately**.

Symbol codes

Symbol code: a set of codewords where every input symbol is encoded **separately**.

Examples of symbol codes

- ▶ $C_0 = \{00, 01, 10, 11\}$ is a symbol code for $\{A, C, G, T\}$.
- ► ASCII encoding system: every character and special symbol on the computer keyboard is encoded by a different 7-bit binary string.

Symbol codes

Symbol code: a set of codewords where every input symbol is encoded **separately**.

Examples of symbol codes

- ▶ $C_0 = \{00, 01, 10, 11\}$ is a symbol code for $\{A, C, G, T\}$.
- ► ASCII encoding system: every character and special symbol on the computer keyboard is encoded by a different 7-bit binary string.

Remark 1.

 C_0 and ASCII are fixed-length symbol codes: each codeword has the same length.

Decoding C_0 ?

Decoding C_0

- ► read 2 bits of the output;
- print the symbol corresponding to this codeword;
- ▶ continue with the next 2 bits.

Decoding C_0

- ► read 2 bits of the output;
- print the symbol corresponding to this codeword;
- ▶ continue with the next 2 bits.

Remark 2.

- ► This decoding algorithm works for ASCII (replace 2 by 7)
- $ightharpoonup C_0$, ASCII: distinct input sequences have distinct encodings

Decoding C_0

- ► read 2 bits of the output;
- print the symbol corresponding to this codeword;
- ▶ continue with the next 2 bits.

Remark 2.

- ► This decoding algorithm works for ASCII (replace 2 by 7)
- $ightharpoonup C_0$, ASCII: distinct input sequences have distinct encodings

Definition 1.

A symbol code is uniquely decodable if, for any two distinct input sequences, their encodings are distinct.

Lossless compression

- ► Lossless compression: compress and decompress without errors.
- ▶ Uniquely decodable codes allow for lossless compression.
- ▶ A symbol code achieves optimal lossless compression when it produces an encoding of minimum length for its input (among all uniquely decodable symbol codes).
- ► Huffman algorithm: provides a symbol code that achieves optimal lossless compression.

Fixed-length vs variable-length codes

Chromosome map consists of 200 million bases as follows:

alphabet symbol x	frequency $freq(x)$
A	110 million
C	5 million
G	25 million
T	60 million

Fixed-length vs variable-length codes

Chromosome map consists of 200 million bases as follows:

alphabet symbol x	frequency $freq(x)$
A	110 million
C	5 million
G	25 million
T	60 million

- \triangleright A appears much more often than the other symbols.
- \Rightarrow It might be best to encode A with fewer bits.
 - ▶ Unlikely that the fixed-length encoding C_0 is optimal

Today

- 1 Recap
- 2 Data compression
- 3 Symbol codes and optimal lossless compression
- 4 Prefix codes
- 5 Prefix codes and trees
- 6 The Huffman algorithm

Variable-length encodings

Code C_1

alphabet symbol x	codeword $c(x)$
A	0
C	00
G	10
T	1

Variable-length encodings

Code C_1

alphabet symbol x	codeword $c(x)$
A	0
C	00
G	10
T	1

▶ C_1 is not unique decodable! E.g., 101110: how to decode it?

Variable-length encodings

Code C_2

alphabet symbol x	codeword $c(x)$
A	0
C	110
G	111
T	10

Variable-length encodings

Code C_2

alphabet symbol x	codeword $c(x)$
A	0
C	110
G	111
T	10

- $ightharpoonup C_2$ is uniquely decodable.
- $ightharpoonup C_2$ is such that no codeword is a prefix of another.

Variable-length encodings

Code C_2

alphabet symbol x	codeword $c(x)$
A	0
C	110
G	111
T	10

- $ightharpoonup C_2$ is uniquely decodable.
- $ightharpoonup C_2$ is such that no codeword is a prefix of another.

Definition 2 (prefix codes).

A symbol code is a prefix code if no codeword is a prefix of another.

Decoding prefix codes

- 1. Scan the binary string from left to right until you've seen enough bits to match a codeword;
- 2. Output the symbol corresponding to this codeword.
 - Since no other codeword is a prefix of this codeword or contains it as a prefix, this sequence of bits cannot be used to encode any other symbol.
- 3. Continue starting from the next bit of the bit string.

Decoding prefix codes

- 1. Scan the binary string from left to right until you've seen enough bits to match a codeword;
- 2. Output the symbol corresponding to this codeword.
 - Since no other codeword is a prefix of this codeword or contains it as a prefix, this sequence of bits cannot be used to encode any other symbol.
- 3. Continue starting from the next bit of the bit string.

Thus prefix codes allow for

- unique decoding;
- ► fast decoding (the end of a codeword is instantly recognizable).

Decoding prefix codes

- 1. Scan the binary string from left to right until you've seen enough bits to match a codeword;
- 2. Output the symbol corresponding to this codeword.
 - Since no other codeword is a prefix of this codeword or contains it as a prefix, this sequence of bits cannot be used to encode any other symbol.
- 3. Continue starting from the next bit of the bit string.

Thus prefix codes allow for

- unique decoding;
- ► fast decoding (the end of a codeword is instantly recognizable).

Examples of prefix codes: C_0 , C_2

Prefix codes and optimal lossless compression

- ▶ Decoding a prefix code is very fast.
- ⇒ Would like to focus on prefix codes (rather than all uniquely decodable symbol codes) for achieving optimal lossless compression.
 - ▶ Information theory guarantees that.
 - ▶ So we can solely focus on prefix codes for optimal compression.

Compression gains from variable-length prefix codes

Chromosome map: do we gain anything by using C_2 instead of C_0 when compressing the map of 200 million bases?

Input	
symbol x	freq(x)
A	110 million
C	5 million
G	25 million
T	60 million

Code C_0		
x	c(x)	
A	00	
C	01	
G	10	
T	11	

Code C_2		
x	c(x)	
A	0	
C	110	
G	111	
T	10	

Compression gains from variable-length prefix codes

Chromosome map: do we gain anything by using C_2 instead of C_0 when compressing the map of 200 million bases?

Input		
symbol x	freq(x)	
A	110 million	
C	5 million	
G	25 million	
T	60 million	

Co	$de C_0$
x	c(x)
A	00
C	01
G	10
T	11

Code C_2		
\boldsymbol{x}	c(x)	
\overline{A}	0	
C	110	
G	111	
T	10	

- ▶ C_0 : 2 bits ×200 million symbols = 400 million bits
- $ightharpoonup C_2$: $1 \cdot 110 + 3 \cdot 5 + 3 \cdot 25 + 2 \cdot 60 = 320$ million bits
- ▶ Improvement of 20% in this example

The optimal prefix code problem

Input:

- $Alphabet \mathcal{A} = \{a_1, \dots, a_n\}$
- ▶ Set $P = \{p_1, ..., p_n\}$ of probabilities over \mathcal{A} such that $p_i = \Pr[a_i]$

Output: a binary prefix code $C^* = \{c(a_1), c(a_2), \ldots, c(a_n)\}$ for (\mathcal{A}, P) , where codeword $c(a_i)$ has length ℓ_i and the expected length of the code

$$L(C^*) = \sum_{a_i \in \mathcal{A}} p_i \cdot \ell_i$$

is **minimum** among all prefix codes.

Example

Chromosome example

input		
symbol x	Pr(x)	
A	110/200	
C	5/200	
G	25/200	
T	60/200	

Code C_0		
x	c(x)	
A	00	
C	01	
G	10	
T	11	

Code C_2	
x	c(x)
A	0
C	110
G	111
T	10

- ▶ $L(C_0) = 2$
- $L(C_2) = 1.6$
- ▶ Coming up: C_2 is the output of the Huffman algorithm, hence an optimal encoding for (A, P).

Today

- 1 Recap
- 2 Data compression
- 3 Symbol codes and optimal lossless compression
- 4 Prefix codes
- 5 Prefix codes and trees
- 6 The Huffman algorithm

Prefix codes and trees

- ▶ A binary tree T is a rooted tree such that each node that is not a leaf has at most two children.
- ▶ Binary tree for a prefix code: a branch to the left represents a 0 in the encoding and a branch to the right a 1.

Code C_0	
x	c(x)
A	00
C	01
G	10
T	11

Prefix codes and trees

- ▶ A binary tree T is a rooted tree such that each node that is not a leaf has at most two children.
- ▶ Binary tree for a prefix code: a branch to the left represents a 0 in the encoding and a branch to the right a 1.

Code C_2	
x	c(x)
A	0
C	110
G	111
T	10

Properties of binary trees representing prefix codes

- 1. Where do alphabet symbols appear in the tree?
- 2. What do codewords correspond to in the tree?
- 3. Consider the tree corresponding to the optimal prefix code. Can it have internal nodes with one child?

Properties of binary trees representing prefix codes

- 1. Symbols must appear at the leaves of the tree T (why?) $\Rightarrow T$ has n leaves.
- 2. Codewords $c(a_i)$ are given by root-to-leaf paths.

Recall that ℓ_i is the length of the codeword $c(a_i)$ for input symbol a_i . Therefore, on the tree T, ℓ_i corresponds to the depth of a_i (we assume that the root is at depth 0).

⇒ Can rewrite the **expected length** of the prefix code as:

$$L(C) = \sum_{a_i \in \mathcal{A}} p_i \cdot \ell_i = \sum_{1 \le i \le n} p_i \cdot \operatorname{depth}_T(a_i) = L(T).$$

3. Optimal tree must be full: all internal nodes must have exactly two children (why?).

More on optimal tree

Claim 1.

There is an optimal prefix code, with corresponding tree T^* , in which the two lowest frequency characters are assigned to leaves that are siblings in T^* at maximum depth.

More on optimal tree

Claim 1.

There is an optimal prefix code, with corresponding tree T^* , in which the two lowest frequency characters are assigned to leaves that are siblings in T^* at maximum depth.

Proof.

By an exchange argument: start with a tree for an optimal prefix code and transform it into T^* .

Proof of Claim 1

- ightharpoonup Let T be the tree for the optimal prefix code.
- ▶ Let α , β be the two symbols with the smallest probabilities, that is, $\Pr[\alpha] \leq \Pr[\beta] \leq \Pr[s]$ for all $s \in \mathcal{A} \{\alpha, \beta\}$.
- \blacktriangleright Let x and y be the two siblings at maximum depth in T.

Proof of Claim 1

- \blacktriangleright Let T be the tree for the optimal prefix code.
- ▶ Let α , β be the two symbols with the smallest probabilities, that is, $\Pr[\alpha] \leq \Pr[\beta] \leq \Pr[s]$ for all $s \in \mathcal{A} \{\alpha, \beta\}$.
- \blacktriangleright Let x and y be the two siblings at maximum depth in T.

How do the expected lengths of the two trees compare?

$$\begin{split} L(T) - L(T') &= \sum_{a_i \in \mathcal{A}} \Pr[a_i] \cdot \operatorname{depth}_T(a_i) - \sum_{a_i \in \mathcal{A}} \Pr[a_i] \cdot \operatorname{depth}_{T'}(a_i) \\ &= \Pr[\alpha] \cdot \operatorname{depth}_T(\alpha) + \Pr[x] \cdot \operatorname{depth}_T(x) \\ &- \Pr[\alpha] \cdot \operatorname{depth}_{T'}(\alpha) - \Pr[x] \cdot \operatorname{depth}_{T'}(x) \\ &= \Pr[\alpha] \cdot \operatorname{depth}_T(\alpha) + \Pr[x] \cdot \operatorname{depth}_T(x) \\ &- \Pr[\alpha] \cdot \operatorname{depth}_T(x) - \Pr[x] \cdot \operatorname{depth}_T(\alpha) \\ &= (\Pr[\alpha] - \Pr[x]) \cdot (\operatorname{depth}_T(\alpha) - \operatorname{depth}_T(x)) \geq 0 \end{split}$$

- ► The third equality follows from the exchange.
- ▶ Similarly, exchanging β and y in T' yields $L(T') L(T'') \ge 0$.
- ▶ Hence $L(T) L(T'') \ge 0$.
- ▶ Since T is optimal, it must be L(T) = L(T'').
- ightharpoonup So T'' is also optimal.

The claim follows by setting T^* to be T''.

Building the optimal tree

Claim 1 tells us how to build the optimal tree greedily!

- 1. Find the two symbols with the lowest probabilities.
- 2. Remove them from the alphabet and replace them with a new meta-character with probability equal to the sum of their probabilities.
 - ▶ **Idea:** this meta-character will be the parent of the two deleted symbols in the tree.
- 3. Recursively construct the optimal tree using this process.

Greedy algorithms: make a local (myopic) decision at every step that optimizes some criterion and eventually show that this is the optimal way for building the entire solution.

Today

- 1 Recap
- 2 Data compression
- 3 Symbol codes and optimal lossless compression
- 4 Prefix codes
- 5 Prefix codes and trees
- 6 The Huffman algorithm

Huffman algorithm

Huffman(
$$\mathcal{A}, P$$
)

if $|\mathcal{A}| = 2$ then

Encode one symbol using 0 and the other using 1

end if

Let α and β be the two symbols with the lowest probabilities

Let ν be a new meta-character with probability $\Pr[\alpha] + \Pr[\beta]$

Let $\mathcal{A}_1 = \mathcal{A} - \{\alpha, \beta\} + \{\nu\}$

Let P_1 be the new set of probabilities over \mathcal{A}_1
 $T_1 = \operatorname{Huffman}(\mathcal{A}_1, P_1)$

return T as follows: replace leaf node ν in T_1 by an internal node, and add two children labelled α and β below ν .

Remark 3.

Output of Huffman procedure is a binary tree T; the code for (A, P) is its corresponding prefix code.

Example: recursive Huffman for chromosome map

Recursive call 1: $\operatorname{Huffman}(\{A,C,G,T\},\{\frac{110}{200},\frac{5}{200},\frac{25}{200},\frac{60}{200}\})$

Recursive call 2: $\operatorname{Huffman}(\{A, \nu_{CG}, T\}, \{\frac{110}{200}, \frac{30}{200}, \frac{60}{200}\})$

Recursive call 3: $\operatorname{Huffman}(\{A, \nu_{CGT}\}, \{\frac{110}{200}, \frac{90}{200}\})$

End of rec. call 1

Correctness

Proof: by induction on the size of the alphabet $n \geq 2$.

- ▶ Base case. For n = 2, Huffman is optimal.
- **Hypothesis.** Assume that Huffman returns the optimal prefix code for alphabets of n symbols.
- ▶ Induction Step. Let \mathcal{A} be an alphabet of size n+1, P the corresponding set of probabilities.

Let T_1 be the optimal (by the hypothesis) tree returned by our algorithm for (A_1, P_1) , where A_1, P_1, T_1 as in the pseudocode. Let T be the final tree returned for (A, P) by our algorithm. We claim that T is optimal.

We will prove the claim by contradiction; to this end, assume that T^* is the optimal tree for (A, P) such that

$$L(T^*) < L(T). (1)$$

A useful fact

Fact 3.

Let T be a binary tree representing a prefix code. If we replace siblings α, β in T by a meta-character ν where $\Pr[\nu] = \Pr[\alpha] + \Pr[\beta]$, we obtain a tree T_1 such that

$$L(T) = L(T_1) + (\Pr[\alpha] + \Pr[\beta]).$$

Proof.

Notation: $d_T(a_i) = \operatorname{depth}_T(a_i)$

- α, β are siblings in T, hence $d_T(\alpha) = d_T(\beta)$.
- T differs from T_1 only in that α, β are replaced by ν . Since $d_{T_1}(\nu) = d_T(\alpha) 1$, we obtain

$$L(T) - L(T_1) = \Pr[\alpha] d_T(\alpha) + \Pr[\beta] d_T(\beta) - (\Pr[\alpha] + \Pr[\beta]) d_{T_1}(\nu)$$

= $\Pr[\alpha] + \Pr[\beta].$ (2)

Correctness (cont'd)

- ▶ Claim 1 guarantees there is such an optimal tree for (A, P) where α , β appear as siblings at maximum depth.
- ▶ W.l.o.g. assume that T^* is such an optimal tree. By Fact 3, if we replace siblings α, β in T^* by ν' where $\Pr[\nu'] = \Pr[\alpha] + \Pr[\beta]$, the resulting tree T_1^* satisfies $L(T^*) = L(T_1^*) + (\Pr[\alpha] + \Pr[\beta])$.
- ▶ Similarly, the tree T returned by the Huffman algorithm satisfies $L(T) = L(T_1) + (\Pr[\alpha] + \Pr[\beta]).$
- ▶ By the induction hypothesis, we have $L(T_1^*) \ge L(T_1)$ since T_1 is optimal for alphabets of size n. Hence

$$L(T^*) = L(T_1^*) + \Pr[\alpha] + \Pr[\beta] \ge L(T_1) + \Pr[\alpha] + \Pr[\beta] = L(T),$$
 (3)

where the inequality follows from the induction hypothesis.

 \triangleright Equation (3) contradicts assumption 1. Thus T must be optimal.

Implementation and running time

- 1. Straightforward implementation: $O(n^2)$ time
- 2. Store the alphabet symbols in a priority queue implemented as a binary min-heap with keys their probabilities
 - ▶ Operations: Initialize (O(n)), Extract-min $(O(\log n))$, Insert $(O(\log n))$

Total time: $O(n \log n)$ time

For an iterative implementation of Huffman, see your textbook.

Example: iterative Huffman for chromosome map

 $\begin{array}{|c|c|c|c|} \hline \text{Input } (\mathcal{A}, P) \\ \hline \text{symbol } x & \text{Pr}(x) \\ \hline A & 110/200 \\ \hline C & 5/200 \\ \hline G & 25/200 \\ \hline T & 60/200 \\ \hline \end{array}$

Output code	
symbol x	c(x)
A	0
C	110
G	111
T	10

Output anda

Beyond Huffman coding

- ► Huffman algorithm provides an optimal symbol code.
- ► Codes that encode larger blocks of input symbols might achieve better compression.
- ▶ Storage on noisy media: what if a bit of the output of the compressor is flipped?
 - ▶ Decompression cannot carry through.
 - ▶ Need error correction on top of compression.