

DIPLOMATERVEZÉSI FELADAT

Szilágyi Gábor

villamosmérnök hallgató részére

Modellredukció alkalmazása elektromágneses szimulációk számításigényének csökkentésére

Az elektromágneses elven működő eszközök tervezése során gyakran alkalmaznak elektromágneses szimulációt, ami a jelenséget leíró parciális differenciálegyenletek numerikus megoldását jelenti. A modell részletgazdagságától függően a szimuláció számításigénye igen magas lehet, ami különösen akkor jelent komoly nehézségéget, ha a szimulációt sokszor el kell végezni, pl. egy optimalizálandó paraméter számos különböző értéke mellett. A diplomatervezési feladat lényege a számításigény csökkentésére szolgáló számos lehetőség egyikének részletes vizsgálata az alábbiak szerint.

A hallgató feladatának a következőkre kell kiterjednie:

- Ismerje meg a *Proper Orthogonal Decomposition* (POD) módszert [1], és írjon programot, amely e módszert alkalmazza tranziens végeselem számítások szükséges időlépés-számának csökkentésére.
- Vizsgálja meg, miként lehet frekvenciatartománybeli eredményeket előállítani tranziens szimuláció segítségével [2], különös tekintettel arra, hogy hogyan befolyásolja a frekvenciatartománybeli eredmények pontosságát a tranziens szimulációra alkalmazott POD módszer.
- A fenti pontokban használjon egyszerű (lehetőleg analitikusan is megoldható) tesztpéldákat a módszerek illusztrálására és a hatákonyság elemzésére, továbbá mutasson be példákat a nagyfrekvenciás technikában alkalmazott eszközök szimulációjára is (pl. csőtápvonal-elágazás szórási paramétereinek meghatározása egy frekvenciasávban).

Irodalom:

[1] R. Pinnau, "Model Reduction via Proper Orthogonal Decomposition," Model Order Reduction: Theory, Research Aspects and Applications. Mathematics in Industry, vol 13. Springer, Berlin, Heidelberg (2008) [2] C. M. Furse and O. P. Gandhi, "Why the DFT is faster than the FFT for FDTD time-to-frequency domain conversions," IEEE Microwave and Guided Wave Letters, vol. 5, no. 10, pp. 326-328 (1995)

Tanszéki konzulens: Dr. Bilicz Sándor, docens

Budapest, 2023. március 3.

Dr. Gyimóthy Szabolcs egyetemi tanár tanszékvezető

Budapesti Műszaki és Gazdaságtudományi Egyetem

Villamosmérnöki és Informatikai Kar Szélessávú Hírközlés és Villamosságtan Tanszék

Modellredukció alkalmazása elektromágneses szimulációk számításigényének csökkentésére

DIPLOMATERY

Készítette Szilágyi Gábor Konzulens Dr. Bilicz Sándor

Tartalomjegyzék

Kivonat	i
Abstract	ii
1. Bevezetés	1
2. Értelmezés	2
3. Előzmények	3
4. Tervezés	4
5. Értékelés	6

HALLGATÓI NYILATKOZAT

Alulírott *Szilágyi Gábor*, szigorló hallgató kijelentem, hogy ezt a diplomatervet meg nem engedett segítség nélkül, saját magam készítettem, csak a megadott forrásokat (szakirodalom, eszközök stb.) használtam fel. Minden olyan részt, melyet szó szerint, vagy azonos értelemben, de átfogalmazva más forrásból átvettem, egyértelműen, a forrás megadásával megjelöltem.

Hozzájárulok, hogy a jelen munkám alapadatait (szerző(k), cím, angol és magyar nyelvű tartalmi kivonat, készítés éve, konzulens(ek) neve) a BME VIK nyilvánosan hozzáférhető elektronikus formában, a munka teljes szövegét pedig az egyetem belső hálózatán keresztül (vagy autentikált felhasználók számára) közzétegye. Kijelentem, hogy a benyújtott munka és annak elektronikus verziója megegyezik. Dékáni engedéllyel titkosított diplomatervek esetén a dolgozat szövege csak 3 év eltelte után válik hozzáférhetővé.

Budapest, 2023. május 6.	
	Szilágyi Gábor hallgató

Kivonat

Jelen dokumentum egy diplomaterv sablon, amely formai keretet ad a BME Villamosmérnöki és Informatikai Karán végző hallgatók által elkészítendő szakdolgozatnak és diplomatervnek. A sablon használata opcionális. Ez a sablon LATEX alapú, a TeXLive TeX-implementációval és a PDF-LATEX fordítóval működőképes.

Abstract

This document is a LaTeX-based skeleton for BSc/MSc theses of students at the Electrical Engineering and Informatics Faculty, Budapest University of Technology and Economics. The usage of this skeleton is optional. It has been tested with the *TeXLive TeX* implementation, and it requires the PDF-LaTeX compiler.

Bevezetés

asd

Értelmezés

bsd

Előzmények

Tervezés

Először bevezetek néhány jelölést a különböző vektortekere és a közöttük kapcsolatot teremtő operátorokra, amelyek a vizsgált szimulációk közben használatosak. Ehhez az Önálló laboratórium 2 tárgyban vizsgált problémát használom példaként. Itt egy tranziens szimuláción dolgoztam, amivel egy végtelen hosszú, hengeres vezetőben adott időfüggvény szerint változó I(t) össz-árammal adott a gerjesztés és a sugár szerint különböző helyeken felvett φ irányú mágneses térerősség, H(r,t) a rendszer válasza. Ez a H eloszlás egyértelműen meghatározza a vezető belsejében az áramsűrűség-eloszlást. A Maxwell-egyenletek átrendezésével adódnak a következő összefüggések az aktuális H térerősség és annak idő szerinti parciális deriváltja között:

$$\frac{\partial H}{\partial t} = -\frac{1}{\mu \sigma} \operatorname{rot} \operatorname{rot} H \tag{4.1}$$

$$H(r=0,t) \equiv 0 \tag{4.2}$$

$$H(r=R,t) = 2R\pi I(t) \tag{4.3}$$

ahol μ és σ rendre a vezető mágneses permeabilitása és fajlagos vezetőképessége, R pedig a vezető sugara. A feladatban az r sugár szerinti (0,R) intervallum az Ω vizsgált tartomány, ennek a két végpontja, $\{0,R\}$ a Γ perem, a 4.2 és a 4.3 a két peremfeltétel. A 4.1. egyenletben szereplő $-1/(\mu\sigma)\cdot {\rm rot\,rot}(.)$ operátor, amit most L-lel jelölök, két függvénytér közötti lineáris leképezés, vagyis $L:F\to G$. Az értelmezési tartománya a feladat keretein belül egy olyan $F:[0,R]\to \mathbb{R}$ függvénytér, ami a lehetséges $H(r,t=\tau)$ függvények halmaza. Itt τ helyére mindig valamilyen konkrét időpillanatot kell behelyettesíteni, így kapunk egy csak r-től függő függvényt. L értékkészlete pedig egy $G:(0,R)\to \mathbb{R}$ függvénytér, ami pedig a lehetséges $\partial H/\partial t$ függvények halmaza. Azért csak $(0,R)=[0,R]\setminus\{0,R\}=\Omega$ G értelmezési tartománya, mert a peremeken már a peremfeltételek miatt explicite adott H értéke, így azt ott nem kell meghatározni. Ez a különbség akkor válik fontossá, amikor véges dimenziós, vagyis véges szabadsági fokú terekkel közelítjük F-et és G-t, például az időtartománybeli véges differenciák módszerével (FDTD-vel) vagy végeselem-módszerrel (FEM-mel). Ilyen számítógépes módszereknél egy "szabadsági fok" egy számértéket jelent, ami lehet páldául egy pontban felvett térerősségérték vagy egy adott szakaszon annak a vonalmenti integrálja.

Eljutottam tehát a jelölések bevezetéséhez. Azt, hogy egy operátor, mint a fenti L operátor értelmezési tartománya és értékkészlete milyen fizikai jelentéssel bír és ezek hol értelmezettek, a következőképpen jelölöm. $L: H_{\Omega,\Gamma} \to H_{\Omega}$ azt jelenti, hogy ezt az operátort arra használatos, hogy az Ω tartomány belsejében és a Γ peremen felvett H mágneses térerősségértékek alapján kiszámoljuk Ω belsejében felvett térerősségeket, vagy azok időbeli parciális deriváltjait tehát

a Γ peremen nem kapunk ezekre eredményt. Erre azt lehet mondani, hogy L egy "téglalap alakú" operátor, mivel a bemenete és kimenete különböző számú szabadsági fokkal rendelkezik, kicsit gyakorlatiasabban különböző hosszúságú vektorok. Ellenkező esetben az operátor "négyzet alakú".

Ez így nem igaz, a rotrot operátor pont, hogy négyzet alakú. Csak érvényesíteni kell a peremfeltételeket is, de valójában a bemenete csak a H_{Ω} .

Az Önálló laboratórium 2 tárgyban vizsgált egydimenziós feladatnál meglehetősen egyszerű volt az időléptetéshez felírni a POD-val redukált rendű alakot. Itt ugyanis a H tér változását $(\partial H/\partial t)$ csak az adott időlépésben érvényes Dirichlet-peremfeltétel és maga a H határozta meg. A $\partial H/\partial t$ kiszámítása a fenti bemeneti adatok alapján egy mátrix-szorzásként adódik. Így elég csak a peremfeltételeket nem tartalmazó H vektorok alapján számolni egy POD redukált bázist H-ra, majd a mátrix alakban adott $H \to H$

Értékelés

Irodalomjegyzék