Precalculus Lecture 9 Laws of Sines and Cosines

Todor Miley

https://github.com/tmilev/freecalc

2020

Outline

Law of sines

Outline

Law of sines

2 Law of cosines

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work.

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0: https://creativecommons.org/licenses/by/3.0/us/ and the links therein.

Triangle area = $\frac{1}{2}$ base · height

Proposition (Triangle area)

$$Area(\triangle ABC) = ?$$

Todor Miley

Lecture 9 Laws of Sines and Cosines

Law of sines ______4

Triangle area = $\frac{1}{2}$ base · height

Proposition (Triangle area)

$$Area(\triangle ABC) = \frac{1}{2}height \cdot base$$

Todor Miley

Triangle area = $\frac{1}{2}$ base · height

Let $\triangle ABC$ have side length a and height length h_a indicated - side a is opposite to vertex A and ha starts at A

, as

$$Area(\triangle ABC) = \frac{1}{2}height \cdot base = \frac{1}{2}h_aa$$

Triangle area = $\frac{1}{2}$ base · height

Let $\triangle ABC$ have side length a and height length h_a indicated - side a is opposite to vertex A and h_a starts at A

, as

$$Area(\triangle ABC) = \frac{1}{2} \frac{height}{height} \cdot base = \frac{1}{2} \frac{h_aa}{h_aa}$$

Triangle area = $\frac{1}{2}$ base · height

Let $\triangle ABC$ have side lengths a, b and height lengths h_a, h_b , as indicated - side a is opposite to vertex A and h_a starts at A, and so on.

$$Area(\triangle ABC) = \frac{1}{2}height \cdot base = \frac{1}{2}h_aa = \frac{1}{2}h_bb$$

Triangle area = $\frac{1}{2}$ base · height

Let $\triangle ABC$ have side lengths a, b and height lengths h_a, h_b , as indicated - side a is opposite to vertex A and h_a starts at A, and so on.

$$Area(\triangle ABC) = \frac{1}{2} \frac{height}{height} \cdot base = \frac{1}{2} \frac{h_b}{h_b} b$$

Triangle area = $\frac{1}{2}$ base · height

Let $\triangle ABC$ have side lengths a, b, c and height lengths h_a, h_b, h_c , as indicated - side a is opposite to vertex A and h_a starts at A, and so on.

$$Area(\triangle ABC) = \frac{1}{2}height \cdot \frac{base}{2} = \frac{1}{2}h_aa = \frac{1}{2}h_bb = \frac{1}{2}h_cc.$$

Triangle area = $\frac{1}{2}$ base · height

Let $\triangle ABC$ have side lengths a, b, c and height lengths h_a, h_b, h_c , as indicated - side a is opposite to vertex A and h_a starts at A, and so on.

$$Area(\triangle ABC) = \frac{1}{2} \frac{height}{height} \cdot base = \frac{1}{2} h_a a = \frac{1}{2} h_b b = \frac{1}{2} \frac{h_c}{h_c} c.$$

Triangle area from two sides and angle between them

Let $\triangle ABC$ have sides lengths a, b, c angles α, β, γ , as indicated: α is opposite to a, β is opposite to b, γ is opposite to c.

Proposition (\triangle area from two sides and angle between them)

$$Area(\triangle ABC) = \frac{ab\sin\gamma}{2} = \frac{bc\sin\alpha}{2} = \frac{ca\sin\beta}{2}$$

Triangle area from two sides and angle between them

Let $\triangle ABC$ have sides lengths a, b, c angles α, β, γ , as indicated: α is opposite to a, β is opposite to b, γ is opposite to c.

Proposition (\triangle area from two sides and angle between them)

$$Area(\triangle ABC) = \frac{ab\sin\gamma}{2} = \frac{bc\sin\alpha}{2} = \frac{ca\sin\beta}{2}$$

Triangle area from two sides and angle between them

Let $\triangle ABC$ have sides lengths a, b, c angles α, β, γ , as indicated: α is opposite to a, β is opposite to b, γ is opposite to c.

Proposition (△ area from two sides and angle between them)

$$Area(\triangle ABC) = \frac{ab \sin \gamma}{2} = \frac{bc \sin \alpha}{2} = \frac{ca \sin \beta}{2}$$

Triangle area from two sides and angle between them

Let $\triangle ABC$ have sides lengths a, b, c angles α, β, γ , as indicated: α is opposite to a, β is opposite to b, γ is opposite to c.

Proposition (\triangle area from two sides and angle between them)

$$Area(\triangle ABC) = \frac{ab \sin \gamma}{2} = \frac{bc \sin \alpha}{2} = \frac{ca \sin \beta}{2}$$

Triangle area from two sides and angle between them

Let $\triangle ABC$ have sides lengths a, b, c angles α, β, γ , as indicated: α is opposite to a, β is opposite to b, γ is opposite to c.

Proposition (\triangle area from two sides and angle between them)

$$Area(\triangle ABC) = \frac{ab\sin\gamma}{2} = \frac{bc\sin\alpha}{2} = \frac{ca\sin\beta}{2}$$

Triangle area from two sides and angle between them

Let $\triangle ABC$ have sides lengths a, b, c angles α, β, γ , as indicated: α is opposite to a, β is opposite to b, γ is opposite to c.

Proposition (△ area from two sides and angle between them)

The area of a triangle is half the product of the lengths of two of its sides times the sine of the angle between them. In other words,

$$Area(\triangle ABC) = \frac{ab\sin\gamma}{2} = \frac{bc\sin\alpha}{2} = \frac{ca\sin\beta}{2}$$

$$Area(\triangle ABC) = \frac{base \cdot height}{2}$$

Triangle area from two sides and angle between them

Let $\triangle ABC$ have sides lengths a, b, c angles α, β, γ , as indicated: α is opposite to a, β is opposite to b, γ is opposite to c.

Proposition (△ area from two sides and angle between them)

The area of a triangle is half the product of the lengths of two of its sides times the sine of the angle between them. In other words,

$$Area(\triangle ABC) = \frac{ab\sin\gamma}{2} = \frac{bc\sin\alpha}{2} = \frac{ca\sin\beta}{2}$$

Area(
$$\triangle ABC$$
) = $\frac{\text{base} \cdot \text{height}}{2} = \frac{bh_b}{2}$

Triangle area from two sides and angle between them

Let $\triangle ABC$ have sides lengths a, b, c angles α, β, γ , as indicated: α is opposite to a, β is opposite to b, γ is opposite to c.

Proposition (△ area from two sides and angle between them)

The area of a triangle is half the product of the lengths of two of its sides times the sine of the angle between them. In other words,

$$Area(\triangle ABC) = \frac{ab\sin\gamma}{2} = \frac{bc\sin\alpha}{2} = \frac{ca\sin\beta}{2}$$

Area(
$$\triangle ABC$$
) = $\frac{\text{base} \cdot \text{height}}{2} = \frac{bh_b}{2}$

Triangle area from two sides and angle between them

Let $\triangle ABC$ have sides lengths a, b, c angles α, β, γ , as indicated: α is opposite to a, β is opposite to b, γ is opposite to c.

Proposition (△ area from two sides and angle between them)

The area of a triangle is half the product of the lengths of two of its sides times the sine of the angle between them. In other words,

$$Area(\triangle ABC) = \frac{ab\sin\gamma}{2} = \frac{bc\sin\alpha}{2} = \frac{ca\sin\beta}{2}$$

Area(
$$\triangle ABC$$
) = $\frac{base \cdot height}{2} = \frac{bh_b}{2}$
= $\frac{basin \gamma}{2}$.

Triangle area from two sides and angle between them

Let $\triangle ABC$ have sides lengths a, b, c angles α, β, γ , as indicated: α is opposite to a, β is opposite to b, γ is opposite to c.

Proposition (△ area from two sides and angle between them)

The area of a triangle is half the product of the lengths of two of its sides times the sine of the angle between them. In other words,

$$Area(\triangle ABC) = \frac{ab\sin\gamma}{2} = \frac{bc\sin\alpha}{2} = \frac{ca\sin\beta}{2}$$

Area(
$$\triangle ABC$$
) = $\frac{base \cdot height}{2} = \frac{bh_b}{2}$
= $\frac{basin \gamma}{2}$.

Triangle area from two sides and angle between them

Let $\triangle ABC$ have sides lengths a, b, c angles α, β, γ , as indicated: α is opposite to a, β is opposite to b, γ is opposite to c.

Proposition (△ area from two sides and angle between them)

The area of a triangle is half the product of the lengths of two of its sides times the sine of the angle between them. In other words,

$$Area(\triangle ABC) = \frac{ab\sin\gamma}{2} = \frac{bc\sin\alpha}{2} = \frac{ca\sin\beta}{2}$$

Proof.

Area(
$$\triangle ABC$$
) = $\frac{base \cdot height}{2} = \frac{bh_b}{2}$
= $\frac{ba \sin \gamma}{2}$.

The proof of the other two cases is similar.

Law of sines

Let $\triangle ABC$ have sides lengths a, b, c angles α, β, γ , as indicated: α is opposite to a, β is opposite to b, γ is opposite to c.

Proposition (Law of Sines)

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}.$$

Law of sines

Let $\triangle ABC$ have sides lengths a, b, c angles α, β, γ , as indicated: α is opposite to a, β is opposite to b, γ is opposite to c.

Proposition (Law of Sines)

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}.$$

$$Area(\triangle ABC) = \frac{ab\sin\gamma}{2} = \frac{bc\sin\alpha}{2}$$

Law of sines

Let $\triangle ABC$ have sides lengths a, b, c angles α, β, γ , as indicated: α is opposite to a, β is opposite to b, γ is opposite to c.

Proposition (Law of Sines)

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}.$$

$$Area(\triangle ABC) = \frac{ab\sin\gamma}{2} = \frac{bc\sin\alpha}{2}$$

Law of sines

Let $\triangle ABC$ have sides lengths a, b, c angles α, β, γ , as indicated: α is opposite to a, β is opposite to b, γ is opposite to c.

Proposition (Law of Sines)

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}.$$

$$Area(\triangle ABC) = \frac{ab\sin \gamma}{2} = \frac{bc\sin \alpha}{2}$$

Law of sines

Let $\triangle ABC$ have sides lengths a, b, c angles α, β, γ , as indicated: α is opposite to a, β is opposite to b, γ is opposite to c.

Proposition (Law of Sines)

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}.$$

Area(
$$\triangle ABC$$
) = $\frac{ab \sin \gamma}{2}$ = $\frac{bc \sin \alpha}{2}$ Div. by $\frac{b}{2}$

Law of sines

Let $\triangle ABC$ have sides lengths a, b, c angles α, β, γ , as indicated: α is opposite to a, β is opposite to b, γ is opposite to c.

Proposition (Law of Sines)

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}.$$

Area(
$$\triangle ABC$$
) = $\frac{ab\sin\gamma}{2}$ = $\frac{bc\sin\alpha}{2}$ Div. by $\frac{b}{2}$ $\frac{a\sin\gamma}{\alpha}$ = $\frac{c\sin\alpha}{\sin\alpha}$ = $\frac{c}{\sin\gamma}$.

Law of sines

Let $\triangle ABC$ have sides lengths a, b, c angles α, β, γ , as indicated: α is opposite to a, β is opposite to b, γ is opposite to c.

Proposition (Law of Sines)

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}.$$

Area(
$$\triangle ABC$$
) = $\frac{ab\sin\gamma}{2}$ = $\frac{bc\sin\alpha}{2}$ Div. by $\frac{b}{2}$ $\frac{a\sin\gamma}{\sin\alpha}$ = $\frac{c\sin\alpha}{\sin\gamma}$.

Law of sines

Let $\triangle ABC$ have sides lengths a, b, c angles α, β, γ , as indicated: α is opposite to a, β is opposite to b, γ is opposite to c.

Proposition (Law of Sines)

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}.$$

Proof.

Area(
$$\triangle ABC$$
) = $\frac{ab\sin\gamma}{2}$ = $\frac{bc\sin\alpha}{2}$ Div. by $\frac{b}{2}$ $\frac{a\sin\gamma}{\sin\alpha}$ = $\frac{c\sin\alpha}{\sin\alpha}$.

The remaining cases are similar.

Example

A triangle has a side of length 2cm; the two angles adjacent to it are 30° and 45° .

- Find the other two sides of the triangle.
- Find the area of the triangle.

Example

- Find the other two sides of the triangle.
- Find the area of the triangle.
- Let the known side be c = 2cm.

Example

- Find the other two sides of the triangle.
- Find the area of the triangle.
- Let the known side be c = 2cm.
- Let the known angles 30°, 45° be arranged as in the figure

Example

- Find the other two sides of the triangle.
- Find the area of the triangle.
- Let the known side be c = 2cm.
- Let the known angles 30°, 45° be arranged as in the figure, and let the third angle be γ

Example

- Find the other two sides of the triangle.
- Find the area of the triangle.
- Let the known side be c = 2cm.
- Let the known angles 30°, 45° be arranged as in the figure, and let the third angle be $\gamma = ?$

Example

- Find the other two sides of the triangle.
- Find the area of the triangle.
- Let the known side be c = 2cm.
- Let the known angles 30°, 45° be arranged as in the figure, and let the third angle be $\gamma = 180^{\circ} 30^{\circ} 45^{\circ} = 180^{\circ} 75^{\circ} = 105^{\circ}$.

Example

- Find the other two sides of the triangle.
- Find the area of the triangle.
- Let the known side be c = 2cm.
- Let the known angles 30°, 45° be arranged as in the figure, and let the third angle be $\gamma = 180^{\circ} 30^{\circ} 45^{\circ} = 180^{\circ} 75^{\circ} = 105^{\circ}$.
- Label the unknown sides a, b as indicated.

Example

$$\frac{a}{\sin \alpha} = \frac{c}{\sin \gamma}$$

A triangle has a side of length 2cm; the two angles adjacent to it are 30° and 45° .

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$\frac{a}{\sin \alpha} = \frac{c}{\sin \gamma}$$
$$a = \frac{c \sin \alpha}{\sin \gamma}$$

A triangle has a side of length 2cm; the two angles adjacent to it are 30° and 45° .

- Find the other two sides of the triangle.
- Find the area of the triangle.

Example

A triangle has a side of length 2cm; the two angles adjacent to it are 30° and 45° .

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$\frac{a}{\sin \alpha} = \frac{c}{\sin \gamma}$$

$$a = \frac{c \sin \alpha}{\sin \gamma} = \frac{2 \sin 30^{\circ}}{\sin 105^{\circ}}$$

Example

A triangle has a side of length 2*cm*; the two angles adjacent to it are 30° and 45°.

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$\frac{a}{\sin \alpha} = \frac{c}{\sin \gamma}$$

$$a = \frac{c \sin \alpha}{\sin \gamma} = \frac{2 \sin 30^{\circ}}{\sin 105^{\circ}}$$

Example

A triangle has a side of length 2cm; the two angles adjacent to it are 30° and 45° .

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$\frac{a}{\sin \alpha} = \frac{c}{\sin \gamma}$$

$$a = \frac{c \sin \alpha}{\sin \gamma} = \frac{2 \sin 30^{\circ}}{\sin 105^{\circ}}$$

A triangle has a side of length 2cm; the two angles adjacent to it are 30° and 45° .

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$\frac{a}{\sin \alpha} = \frac{c}{\sin \gamma}$$

$$a = \frac{c \sin \alpha}{\sin \gamma} = \frac{2 \sin 30^{\circ}}{\sin 105^{\circ}}$$

$$\sin 105^{\circ} = \sin(60^{\circ} + 45^{\circ})$$

A triangle has a side of length 2cm; the two angles adjacent to it are 30° and 45° .

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$\frac{a}{\sin \alpha} = \frac{c}{\sin \gamma}$$

$$a = \frac{c \sin \alpha}{\sin \gamma} = \frac{2 \sin 30^{\circ}}{\sin 105^{\circ}}$$

A triangle has a side of length 2*cm*; the two angles adjacent to it are 30° and 45°.

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$\sin 105^{\circ} = \sin(60^{\circ} + 45^{\circ}) = ?$$

$$\frac{\alpha}{\sin \alpha} = \frac{\sigma}{\sin \gamma}$$

$$a = \frac{c \sin \alpha}{\sin \gamma} = \frac{2 \sin 30^{\circ}}{\sin 105^{\circ}}$$

Example

A triangle has a side of length 2cm; the two angles adjacent to it are 30° and 45° .

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$\sin 105^{\circ} = \sin(60^{\circ} + 45^{\circ}) = \sin 60^{\circ} \cos 45^{\circ} + \cos 60^{\circ} \sin 45^{\circ}$$

$$\frac{a}{\sin \alpha} = \frac{c}{\sin \gamma}$$

$$a = \frac{c \sin \alpha}{\sin \gamma} = \frac{2 \sin 30^{\circ}}{\sin 105^{\circ}}$$

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$\sin 105^{\circ} = \sin(60^{\circ} + 45^{\circ}) = \sin 60^{\circ} \cos 45^{\circ} + \cos 60^{\circ} \sin 45^{\circ}$$

$$= ? ? + ??$$

$$\frac{a}{1} = \frac{c}{1}$$
|Law of sines

$$\sin \alpha = \sin \gamma$$

$$a = \frac{c \sin \alpha}{\sin \gamma} = \frac{2 \sin 30^{\circ}}{\sin 105^{\circ}}$$

A triangle has a side of length 2cm; the two angles adjacent to it are 30° and 45° .

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$\sin 105^\circ = \sin(60^\circ + 45^\circ) = \sin 60^\circ \cos 45^\circ + \cos 60^\circ \sin 45^\circ$$

$$= \frac{\sqrt{3}}{2}? + ??$$

$$\frac{a}{\sin \alpha} = \frac{c}{\sin \gamma} \qquad |\text{Law of sines}|$$

$$c \sin \alpha = 2 \sin 30^\circ$$

sin 105°

A triangle has a side of length 2cm; the two angles adjacent to it are 30° and 45°.

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$\sin 105^{\circ} = \sin(60^{\circ} + 45^{\circ}) = \sin 60^{\circ} \cos 45^{\circ} + \cos 60^{\circ} \sin 45^{\circ}$$

$$= \frac{\sqrt{3}}{2}? + ??$$

$$\frac{a}{\sin \alpha} = \frac{c}{\sin \gamma} \qquad |\text{Law of sines}|$$

$$a = \frac{c \sin \alpha}{\sin \gamma} = \frac{2 \sin 30^{\circ}}{\sin 105^{\circ}}$$

Example

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$\sin 105^{\circ} = \sin(60^{\circ} + 45^{\circ}) = \sin 60^{\circ} \cos 45^{\circ} + \cos 60^{\circ} \sin 45^{\circ}$$

$$= \frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2} + ??$$

$$\frac{a}{\sin \alpha} = \frac{c}{\sin \gamma} \qquad |\text{Law of sines}|$$

$$a = \frac{c \sin \alpha}{\sin \gamma} = \frac{2 \sin 30^{\circ}}{\sin 105^{\circ}}$$

Example

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$\sin 105^{\circ} = \sin(60^{\circ} + 45^{\circ}) = \sin 60^{\circ} \cos 45^{\circ} + \cos 60^{\circ} \sin 45^{\circ}$$

$$= \frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2} + ??$$

$$\frac{a}{\sin \alpha} = \frac{c}{\sin \gamma} \qquad |\text{Law of sines}|$$

$$a = \frac{c \sin \alpha}{\sin \gamma} = \frac{2 \sin 30^{\circ}}{\sin 105^{\circ}}$$

Example

A triangle has a side of length 2cm; the two angles adjacent to it are 30° and 45°.

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$\sin 105^\circ = \sin(60^\circ + 45^\circ) = \sin 60^\circ \cos 45^\circ + \cos 60^\circ \sin 45^\circ$$

$$= \frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2} + \frac{1}{2} ?$$

$$\frac{a}{\sin \alpha} = \frac{1}{\sin \alpha} \sin \alpha$$
 | Law of sines

$$a = \frac{c \sin \alpha}{\sin \gamma} = \frac{2 \sin 30^{\circ}}{\sin 105^{\circ}}$$

Example

A triangle has a side of length 2cm; the two angles adjacent to it are 30° and 45°.

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$\sin 105^{\circ} = \sin(60^{\circ} + 45^{\circ}) = \sin 60^{\circ} \cos 45^{\circ} + \cos 60^{\circ} \sin 45^{\circ}$$

$$= \frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2} + \frac{1}{2}?$$

$$\frac{a}{\sin \alpha} = \frac{c}{\sin \gamma}$$
 |Law of sines

$$a = \frac{c \sin \alpha}{\sin \gamma} = \frac{2 \sin 30^{\circ}}{\sin 105^{\circ}}$$

Example

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$\sin 105^{\circ} = \sin(60^{\circ} + 45^{\circ}) = \sin 60^{\circ} \cos 45^{\circ} + \cos 60^{\circ} \sin 45^{\circ}$$

$$= \frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2} + \frac{1}{2} \frac{\sqrt{2}}{2}$$

$$\frac{a}{\sin \alpha} = \frac{c}{\sin \gamma} \qquad |\text{Law of sines}|$$

$$a = \frac{c \sin \alpha}{\sin \gamma} = \frac{2 \sin 30^{\circ}}{\sin 105^{\circ}}$$

Example

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$\sin 105^{\circ} = \sin(60^{\circ} + 45^{\circ}) = \sin 60^{\circ} \cos 45^{\circ} + \cos 60^{\circ} \sin 45^{\circ}$$

$$= \frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2} + \frac{1}{2} \frac{\sqrt{2}}{2} = \frac{\sqrt{6} + \sqrt{2}}{4}$$

$$\frac{a}{\sin \alpha} = \frac{c}{\sin \gamma} \qquad |\text{Law of sines}|$$

$$a = \frac{c \sin \alpha}{\sin \gamma} = \frac{2 \sin 30^{\circ}}{\sin 105^{\circ}}$$

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$\sin 105^{\circ} = \sin(60^{\circ} + 45^{\circ}) = \sin 60^{\circ} \cos 45^{\circ} + \cos 60^{\circ} \sin 45^{\circ}$$

$$= \frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2} + \frac{1}{2} \frac{\sqrt{2}}{2} = \frac{\sqrt{6} + \sqrt{2}}{4}$$

$$\frac{a}{\sin \alpha} = \frac{c}{\sin \gamma} \qquad |\text{Law of sines}|$$

$$a = \frac{c \sin \alpha}{\sin \gamma} = \frac{2 \sin 30^{\circ}}{\sin 105^{\circ}}$$

Example

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$\frac{\sin 105^{\circ}}{\sin 20} = \sin(60^{\circ} + 45^{\circ}) = \sin 60^{\circ} \cos 45^{\circ} + \cos 60^{\circ} \sin 45^{\circ}$$

$$= \frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2} + \frac{1}{2} \frac{\sqrt{2}}{2} = \frac{\sqrt{6} + \sqrt{2}}{4}$$

$$\frac{a}{\sin \alpha} = \frac{c}{\sin \gamma} \qquad |\text{Law of sines}|$$

$$a = \frac{c \sin \alpha}{\sin \gamma} = \frac{2 \sin 30^{\circ}}{\sin 105^{\circ}} = \frac{2 \cdot ?}{\sqrt{6 + \sqrt{2}}}$$

Example

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$\sin 105^{\circ} = \sin(60^{\circ} + 45^{\circ}) = \sin 60^{\circ} \cos 45^{\circ} + \cos 60^{\circ} \sin 45^{\circ}$$

$$= \frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2} + \frac{1}{2} \frac{\sqrt{2}}{2} = \frac{\sqrt{6} + \sqrt{2}}{4}$$

$$\frac{a}{\sin \alpha} = \frac{c}{\sin \gamma} \qquad |\text{Law of sines}|$$

$$a = \frac{c \sin \alpha}{\sin \gamma} = \frac{2 \sin 30^{\circ}}{\sin 105^{\circ}} = \frac{2 \cdot ?}{\frac{\sqrt{6} + \sqrt{2}}{2}}$$

Example

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$\sin 105^{\circ} = \sin(60^{\circ} + 45^{\circ}) = \sin 60^{\circ} \cos 45^{\circ} + \cos 60^{\circ} \sin 45^{\circ}$$

$$= \frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2} + \frac{1}{2} \frac{\sqrt{2}}{2} = \frac{\sqrt{6} + \sqrt{2}}{4}$$

$$\frac{a}{\sin \alpha} = \frac{c}{\sin \gamma} \qquad |\text{Law of sines}|$$

$$a = \frac{c \sin \alpha}{\sin \gamma} = \frac{2 \sin 30^{\circ}}{\sin 105^{\circ}} = \frac{2 \cdot \frac{1}{2}}{\frac{\sqrt{6} + \sqrt{2}}{2}}$$

Example

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$\sin 105^{\circ} = \sin(60^{\circ} + 45^{\circ}) = \sin 60^{\circ} \cos 45^{\circ} + \cos 60^{\circ} \sin 45^{\circ}$$

$$= \frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2} + \frac{1}{2} \frac{\sqrt{2}}{2} = \frac{\sqrt{6} + \sqrt{2}}{4}$$

$$\frac{a}{\sin \alpha} = \frac{c \sin \alpha}{\sin \gamma} = \frac{2 \sin 30^{\circ}}{\sin 105^{\circ}} = \frac{2 \cdot \frac{1}{2}}{\frac{\sqrt{6} + \sqrt{2}}{2}}$$

Example

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$\sin 105^{\circ} = \sin(60^{\circ} + 45^{\circ}) = \sin 60^{\circ} \cos 45^{\circ} + \cos 60^{\circ} \sin 45^{\circ}$$

$$= \frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2} + \frac{1}{2} \frac{\sqrt{2}}{2} = \frac{\sqrt{6} + \sqrt{2}}{4}$$

$$\frac{a}{\sin \alpha} = \frac{c \sin \alpha}{\sin \gamma} = \frac{2 \sin 30^{\circ}}{\sin 105^{\circ}} = \frac{\cancel{2} \cdot \frac{1}{2}}{\sqrt{6} + \sqrt{2}} = \frac{4}{(\sqrt{6} + \sqrt{2})}$$

Example

- Find the other two sides of the triangle.
- Find the area of the triangle.

sin 105° =
$$\sin(60^{\circ} + 45^{\circ}) = \sin 60^{\circ} \cos 45^{\circ} + \cos 60^{\circ} \sin 45^{\circ}$$

= $\frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2} + \frac{1}{2} \frac{\sqrt{2}}{2} = \frac{\sqrt{6} + \sqrt{2}}{4}$
= $\frac{a}{\sin \alpha} = \frac{c \sin \alpha}{\sin \gamma}$ | Law of sines

$$a = \frac{c \sin \alpha}{\sin \gamma} = \frac{2 \sin 30^{\circ}}{\sin 105^{\circ}} = \frac{\cancel{2} \cdot \frac{1}{2}}{\cancel{\sqrt{6} + \sqrt{2}}} = \frac{4(\sqrt{6} - \sqrt{2})}{(\sqrt{6} + \sqrt{2})(\sqrt{6} - \sqrt{2})}$$

Example

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$\sin 105^{\circ} = \sin(60^{\circ} + 45^{\circ}) = \sin 60^{\circ} \cos 45^{\circ} + \cos 60^{\circ} \sin 45^{\circ}$$

$$= \frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2} + \frac{1}{2} \frac{\sqrt{2}}{2} = \frac{\sqrt{6} + \sqrt{2}}{4}$$

$$= \frac{a}{\sin \alpha} = \frac{c}{\sin \gamma} \qquad |\text{Law of sines}|$$

$$a = \frac{c \sin \alpha}{\sin \gamma} = \frac{2 \sin 30^{\circ}}{\sin 105^{\circ}} = \frac{2 \cdot \frac{1}{2}}{\frac{\sqrt{6} + \sqrt{2}}{4}} = \frac{4(\sqrt{6} - \sqrt{2})}{(\sqrt{6} + \sqrt{2})(\sqrt{6} - \sqrt{2})}$$

$$= \frac{4(\sqrt{6} - \sqrt{2})}{6 - 2}$$

Example

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$\sin 105^{\circ} = \sin(60^{\circ} + 45^{\circ}) = \sin 60^{\circ} \cos 45^{\circ} + \cos 60^{\circ} \sin 45^{\circ}
= \frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2} + \frac{1}{2} \frac{\sqrt{2}}{2} = \frac{\sqrt{6} + \sqrt{2}}{4}
\frac{a}{\sin \alpha} = \frac{c}{\sin \gamma} \qquad |\text{Law of sines}$$

$$a = \frac{c \sin \alpha}{\sin \gamma} = \frac{2 \sin 30^{\circ}}{\sin 105^{\circ}} = \frac{2 \cdot \frac{1}{2}}{\frac{\sqrt{6} + \sqrt{2}}{4}} = \frac{4(\sqrt{6} - \sqrt{2})}{(\sqrt{6} + \sqrt{2})(\sqrt{6} - \sqrt{2})}
= \frac{4(\sqrt{6} - \sqrt{2})}{6 - 2} = \sqrt{6} - \sqrt{2}$$

Example

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$\sin 105^{\circ} = \sin(60^{\circ} + 45^{\circ}) = \sin 60^{\circ} \cos 45^{\circ} + \cos 60^{\circ} \sin 45^{\circ}
= \frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2} + \frac{1}{2} \frac{\sqrt{2}}{2} = \frac{\sqrt{6} + \sqrt{2}}{4}
= \frac{c}{\sin \alpha} = \frac{c \sin \alpha}{\sin \gamma} = \frac{2 \sin 30^{\circ}}{\sin 105^{\circ}} = \frac{2 \cdot \frac{1}{2}}{\frac{\sqrt{6} + \sqrt{2}}{4}} = \frac{4(\sqrt{6} - \sqrt{2})}{(\sqrt{6} + \sqrt{2})(\sqrt{6} - \sqrt{2})}
= \frac{4(\sqrt{6} - \sqrt{2})}{6 - 2} = \sqrt{6} - \sqrt{2}$$

$$\frac{b}{\sin\beta} = \frac{c}{\sin\gamma}$$

A triangle has a side of length 2cm; the two angles adjacent to it are 30° and 45° .

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$\frac{b}{\sin\beta} = \frac{c}{\sin\gamma}$$

$$b = \frac{c \sin \beta}{\sin \gamma}$$

A triangle has a side of length 2*cm*; the two angles adjacent to it are 30° and 45°.

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$\sin \beta = \sin \gamma$$

$$b = \frac{c \sin \beta}{\sin \gamma} = \frac{2 \sin 45^{\circ}}{\sin 105^{\circ}}$$

A triangle has a side of length 2*cm*; the two angles adjacent to it are 30° and 45°.

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$\frac{b}{\sin\beta} = \frac{c}{\sin\gamma}$$

$$b = \frac{c \sin \beta}{\sin \gamma} = \frac{2 \sin 45^{\circ}}{\sin 105^{\circ}}$$

A triangle has a side of length 2*cm*; the two angles adjacent to it are 30° and 45°.

- Find the other two sides of the triangle.
- Find the area of the triangle.

 $\sin \beta$

$$b = \frac{c \sin \beta}{\sin \gamma} = \frac{2 \sin 45^{\circ}}{\sin 105^{\circ}}$$

 $\sin \gamma$

A triangle has a side of length 2*cm*; the two angles adjacent to it are 30° and 45°.

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$\frac{b}{\sin\beta} = \frac{c}{\sin\gamma}$$

$$b = \frac{c \sin \beta}{\sin \gamma} = \frac{2 \sin 45^{\circ}}{\sin 105^{\circ}} = \frac{2 \frac{\sqrt{2}}{2}}{\sqrt{6} + \sqrt{2}}$$

A triangle has a side of length 2*cm*; the two angles adjacent to it are 30° and 45°.

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$\frac{b}{\sin\beta} = \frac{c}{\sin\gamma}$$

$$b = \frac{c \sin \beta}{\sin \gamma} = \frac{2 \sin 45^{\circ}}{\sin 105^{\circ}} = \frac{2 \frac{\sqrt{2}}{2}}{\frac{\sqrt{6} + \sqrt{10}}{2}}$$

A triangle has a side of length 2*cm*; the two angles adjacent to it are 30° and 45°.

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$\frac{b}{\sin\beta} = \frac{c}{\sin\gamma}$$

$$b = \frac{c \sin \beta}{\sin \gamma} = \frac{2 \sin 45^{\circ}}{\sin 105^{\circ}} = \frac{\frac{2\sqrt{2}}{2}}{\sqrt{6} + \sqrt{2}}$$

A triangle has a side of length 2*cm*; the two angles adjacent to it are 30° and 45°.

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$\frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$$

$$b = \frac{c \sin \beta}{\sin \gamma} = \frac{2 \sin 45^{\circ}}{\sin 105^{\circ}} =$$

A triangle has a side of length 2*cm*; the two angles adjacent to it are 30° and 45°.

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$\frac{c\sin\beta}{\sin\gamma} = \frac{2\sin 45^{\circ}}{\sin 105^{\circ}} = \frac{2\frac{\sqrt{2}}{2}}{\frac{\sqrt{6}+\sqrt{2}}{4}} = \frac{4\sqrt{2}}{\left(\sqrt{6}+\sqrt{2}\right)}$$

Find the area of the triangle.

$$b = \frac{c \sin \beta}{\sin \gamma} = \frac{2 \sin 45^{\circ}}{\sin 105^{\circ}} = \frac{2 \frac{\sqrt{2}}{2}}{\frac{\sqrt{6} + \sqrt{2}}{4}} = \frac{4\sqrt{2} \left(\sqrt{6} - \sqrt{2}\right)}{\left(\sqrt{6} + \sqrt{2}\right) \left(\sqrt{6} - \sqrt{2}\right)}$$

$$\beta = \sin \gamma$$

$$b = \frac{c \sin \beta}{\sin \beta} = \frac{2s}{\sin \beta}$$

$$= \frac{4\sqrt{2}(\sqrt{6}-\sqrt{2})}{4}$$

A triangle has a side of length 2*cm*; the two angles adjacent to it are 30° and 45°.

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$\frac{c\sin\beta}{\sin\gamma} = \frac{2\sin 45^{\circ}}{\sin 105^{\circ}} = \frac{2\frac{\sqrt{2}}{2}}{\frac{\sqrt{6}+\sqrt{2}}{4}} = \frac{4\sqrt{2}\left(\sqrt{6}-\sqrt{2}\right)}{\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}$$
$$4\sqrt{2}(\sqrt{6}-\sqrt{2})$$

A triangle has a side of length 2*cm*; the two angles adjacent to it are 30° and 45°.

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$b = \frac{c \sin \beta}{\sin \gamma} = \frac{2 \sin 45^{\circ}}{\sin 105^{\circ}} = \frac{2 \frac{\sqrt{2}}{2}}{\frac{\sqrt{6} + \sqrt{2}}{4}} = \frac{4\sqrt{2} \left(\sqrt{6} - \sqrt{2}\right)}{\left(\sqrt{6} + \sqrt{2}\right) \left(\sqrt{6} - \sqrt{2}\right)}$$
$$= \frac{4\sqrt{2}(\sqrt{6} - \sqrt{2})}{4}$$

 $\sin \gamma$

A triangle has a side of length 2*cm*; the two angles adjacent to it are 30° and 45°.

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$b = \frac{c \sin \beta}{\sin \gamma} = \frac{2 \sin 45^{\circ}}{\sin 105^{\circ}} = \frac{2\frac{\sqrt{2}}{2}}{\frac{\sqrt{6} + \sqrt{2}}{4}} = \frac{4\sqrt{2}(\sqrt{6} - \sqrt{2})}{(\sqrt{6} + \sqrt{2})(\sqrt{6} - \sqrt{2})}$$
$$= \frac{4\sqrt{2}(\sqrt{6} - \sqrt{2})}{4} = 2\sqrt{3} - 2$$

 $\sin \gamma$

A triangle has a side of length 2cm; the two angles adjacent to it are 30° and 45° .

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$b = \frac{c \sin \beta}{\sin \gamma} = \frac{2 \sin 45^{\circ}}{\sin 105^{\circ}} = \frac{2\frac{\sqrt{2}}{2}}{\frac{\sqrt{6} + \sqrt{2}}{4}} = \frac{4\sqrt{2}\left(\sqrt{6} - \sqrt{2}\right)}{\left(\sqrt{6} + \sqrt{2}\right)\left(\sqrt{6} - \sqrt{2}\right)}$$
$$= \frac{4\sqrt{2}(\sqrt{6} - \sqrt{2})}{4} = 2\sqrt{3} - 2$$

 $\sin \gamma$

A triangle has a side of length 2cm; the two angles adjacent to it are 30° and 45° .

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$b = \frac{c\sin\beta}{\sin\gamma} = \frac{2\sin45^{\circ}}{\sin105^{\circ}} = \frac{2\frac{\sqrt{2}}{2}}{\frac{\sqrt{6}+\sqrt{2}}{4}} = \frac{4\sqrt{2}\left(\sqrt{6}-\sqrt{2}\right)}{\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}$$

$$= \frac{\cancel{4}\sqrt{2}(\sqrt{6}-\sqrt{2})}{\cancel{4}} = 2\sqrt{3}-2$$

$$\text{Area} = \frac{bc\sin\alpha}{2}$$

$$\frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$$

A triangle has a side of length 2cm; the two angles adjacent to it are 30° and 45° .

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$b = \frac{c \sin \beta}{\sin \gamma} = \frac{2 \sin 45^{\circ}}{\sin 105^{\circ}} = \frac{2 \frac{\sqrt{2}}{2}}{\frac{\sqrt{6} + \sqrt{2}}{4}} = \frac{4\sqrt{2} \left(\sqrt{6} - \sqrt{2}\right)}{\left(\sqrt{6} + \sqrt{2}\right) \left(\sqrt{6} - \sqrt{2}\right)}$$

$$= \frac{\cancel{4}\sqrt{2}(\sqrt{6} - \sqrt{2})}{\cancel{4}} = 2\sqrt{3} - 2$$

$$Area = \frac{bc \sin \alpha}{2} = \frac{(2\sqrt{3} - 2)2\frac{1}{2}}{2}$$

 $\sin \gamma$

A triangle has a side of length 2cm; the two angles adjacent to it are 30° and 45° .

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$b = \frac{c \sin \beta}{\sin \gamma} = \frac{2 \sin 45^{\circ}}{\sin 105^{\circ}} = \frac{2 \frac{\sqrt{2}}{2}}{\frac{\sqrt{6} + \sqrt{2}}{4}} = \frac{4\sqrt{2} \left(\sqrt{6} - \sqrt{2}\right)}{\left(\sqrt{6} + \sqrt{2}\right) \left(\sqrt{6} - \sqrt{2}\right)}$$

$$= \frac{4\sqrt{2} \left(\sqrt{6} - \sqrt{2}\right)}{4} = 2\sqrt{3} - 2$$

$$Area = \frac{bc \sin \alpha}{2} = \frac{(2\sqrt{3} - 2)2\frac{1}{2}}{2}$$

 $\sin \gamma$

A triangle has a side of length 2cm; the two angles adjacent to it are 30° and 45°.

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$b = \frac{c \sin \beta}{\sin \gamma} = \frac{2 \sin 45^{\circ}}{\sin 105^{\circ}} = \frac{2 \frac{\sqrt{2}}{2}}{\frac{\sqrt{6} + \sqrt{2}}{4}} = \frac{4\sqrt{2} \left(\sqrt{6} - \sqrt{2}\right)}{\left(\sqrt{6} + \sqrt{2}\right) \left(\sqrt{6} - \sqrt{2}\right)}$$

$$= \frac{\cancel{4}\sqrt{2}(\sqrt{6} - \sqrt{2})}{\cancel{4}} = 2\sqrt{3} - 2$$

$$\text{Area} = \frac{bc \sin \alpha}{2} = \frac{(2\sqrt{3} - 2)2\frac{1}{2}}{2}$$

 $\sin \gamma$

A triangle has a side of length 2cm; the two angles adjacent to it are 30° and 45° .

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$b = \frac{c \sin \beta}{\sin \gamma} = \frac{2 \sin 45^{\circ}}{\sin 105^{\circ}} = \frac{2 \frac{\sqrt{2}}{2}}{\frac{\sqrt{6} + \sqrt{2}}{4}} = \frac{4\sqrt{2} \left(\sqrt{6} - \sqrt{2}\right)}{\left(\sqrt{6} + \sqrt{2}\right) \left(\sqrt{6} - \sqrt{2}\right)}$$

$$= \frac{\cancel{4}\sqrt{2}(\sqrt{6} - \sqrt{2})}{\cancel{4}} = 2\sqrt{3} - 2$$

$$\text{Area} = \frac{bc \sin \alpha}{2} = \frac{(2\sqrt{3} - 2)\cancel{2}\frac{1}{2}}{2}$$

A triangle has a side of length 2cm; the two angles adjacent to it are 30° and 45° .

- Find the other two sides of the triangle.
- Find the area of the triangle.

$$b = \frac{c \sin \beta}{\sin \gamma} = \frac{2 \sin 45^{\circ}}{\sin 105^{\circ}} = \frac{2\frac{\sqrt{2}}{2}}{\frac{\sqrt{6}+\sqrt{2}}{4}} = \frac{4\sqrt{2}\left(\sqrt{6}-\sqrt{2}\right)}{\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}$$

$$= \frac{4\sqrt{2}(\sqrt{6}-\sqrt{2})}{4} = 2\sqrt{3}-2$$

$$Area = \frac{bc \sin \alpha}{2} = \frac{(2\sqrt{3}-2)2\frac{1}{2}}{2} = \sqrt{3}-1 \text{ cm}^{2}$$

Let $\triangle ABC$ have sides lengths a, b, c angles α, β, γ , as indicated.

$$c^{2} = a^{2} + b^{2} - 2ab\cos \gamma$$

 $a^{2} = b^{2} + c^{2} - 2bc\cos \alpha$
 $b^{2} = c^{2} + a^{2} - 2ca\cos \beta$

Let $\triangle ABC$ have sides lengths a, b, c angles α, β, γ , as indicated.

$$c^2 = a^2 + b^2 - 2ab\cos\gamma$$

 $a^2 = b^2 + c^2 - 2bc\cos\alpha$
 $b^2 = c^2 + a^2 - 2ca\cos\beta$

Let $\triangle ABC$ have sides lengths a, b, c angles α, β, γ , as indicated.

$$c^{2} = a^{2} + b^{2} - 2ab \cos \gamma$$

 $a^{2} = b^{2} + c^{2} - 2bc \cos \alpha$
 $b^{2} = c^{2} + a^{2} - 2ca \cos \beta$

Let $\triangle ABC$ have sides lengths a, b, c angles α, β, γ , as indicated.

$$c^{2} = a^{2} + b^{2} - 2ab\cos\gamma$$

 $a^{2} = b^{2} + c^{2} - 2bc\cos\alpha$
 $b^{2} = c^{2} + a^{2} - 2ca\cos\beta$

Let $\triangle ABC$ have sides lengths a, b, c angles α, β, γ , as indicated.

Proposition (Law of Cosines)

$$c^{2} = a^{2} + b^{2} - 2ab\cos \gamma$$

 $a^{2} = b^{2} + c^{2} - 2bc\cos \alpha$
 $b^{2} = c^{2} + a^{2} - 2ca\cos \beta$

Proof if γ < 90°.

 $|CD| = a \cos \gamma$

Drop a perpendicular *h* from *B* to *AC*.

$$h=a\sin \gamma |AD|=b-|CD| = b-a\cos \gamma c^2=|AD|^2+h^2 =(b-a\cos \gamma)^2+(a\sin \gamma)^2 =b^2-2ab\cos \gamma+a^2\cos^2 \gamma+a^2\sin^2 \gamma =b^2-2ab\cos \gamma+a^2.$$

Pyth. thm. △*BDA*

Example

- Find the length of the third side.
- Find the area of the triangle.

Example

- Find the length of the third side.
- Find the area of the triangle.

Example

- Find the length of the third side.
- Find the area of the triangle.

Example

- Find the length of the third side.
- Find the area of the triangle.

Example

- Find the length of the third side.
- Find the area of the triangle.

Example

The longest side of a triangle has length 3 and the angle opposite to it is 120°. Another side of that triangle has length 2.

- Find the length of the third side.
- Find the area of the triangle.

Example

The longest side of a triangle has length 3 and the angle opposite to it is 120°. Another side of that triangle has length 2.

- Find the length of the third side.
- Find the area of the triangle.

- Find the length of the third side.
- Find the area of the triangle.

$$a^2 + b^2 - 2ab\cos\gamma = c^2$$
 Law of cosines $a^2 + 2^2 - 2a \cdot 2 \cdot \cos 120^\circ = 3^2$

The longest side of a triangle has length 3 and the angle opposite to it is 120°. Another side of that triangle has length 2.

- Find the length of the third side.
- Find the area of the triangle.

$$a^{2} + b^{2} - 2ab\cos\gamma = c^{2}$$

 $a^{2} + 2^{2} - 2a \cdot 2 \cdot \cos 120^{\circ} = 3^{2}$

The longest side of a triangle has length 3 and the angle opposite to it is 120°. Another side of that triangle has length 2.

- Find the length of the third side.
- Find the area of the triangle.

$$a^{2} + b^{2} - 2ab\cos\gamma = c^{2}$$
$$a^{2} + 2^{2} - 2a \cdot 2 \cdot \cos 120^{\circ} = 3^{2}$$

The longest side of a triangle has length 3 and the angle opposite to it is 120°. Another side of that triangle has length 2.

- Find the length of the third side.
- Find the area of the triangle.

$$a^2 + b^2 - 2ab\cos\gamma = c^2$$

 $a^2 + 2^2 - 2a \cdot 2 \cdot \cos 120^\circ = 3^2$

The longest side of a triangle has length 3 and the angle opposite to it is 120°. Another side of that triangle has length 2.

- Find the length of the third side.
- Find the area of the triangle.

$$a^{2} + b^{2} - 2ab\cos\gamma = c^{2}$$
 $a^{2} + 2^{2} - 2a \cdot 2 \cdot \cos 120^{\circ} = 3^{2}$
 $a^{2} - 4a\left(\begin{array}{c} \\ \end{array}\right) - 5 = 0$

The longest side of a triangle has length 3 and the angle opposite to it is 120°. Another side of that triangle has length 2.

- Find the length of the third side.
- Find the area of the triangle.

$$a^{2} + b^{2} - 2ab\cos\gamma = c^{2}$$

 $a^{2} + 2^{2} - 2a \cdot 2 \cdot \cos 120^{\circ} = 3^{2}$
 $a^{2} - 4a\left(\begin{array}{c} \\ \end{array}\right) - 5 = 0$

The longest side of a triangle has length 3 and the angle opposite to it is 120°. Another side of that triangle has length 2.

- Find the length of the third side.
- Find the area of the triangle.

$$a^{2} + b^{2} - 2ab\cos\gamma = c^{2}$$
 $a^{2} + 2^{2} - 2a \cdot 2 \cdot \cos 120^{\circ} = 3^{2}$
 $a^{2} - 4a\left(? \right) - 5 = 0$

The longest side of a triangle has length 3 and the angle opposite to it is 120°. Another side of that triangle has length 2.

- Find the length of the third side.
- Find the area of the triangle.

$$a^{2} + b^{2} - 2ab\cos\gamma = c^{2}$$

$$a^{2} + 2^{2} - 2a \cdot 2 \cdot \cos 120^{\circ} = 3^{2}$$

$$a^{2} - 4a\left(-\frac{1}{2}\right) - 5 = 0$$

The longest side of a triangle has length 3 and the angle opposite to it is 120°. Another side of that triangle has length 2.

- Find the length of the third side.
- Find the area of the triangle.

$$a^{2} + b^{2} - 2ab\cos \gamma = c^{2}$$

$$a^{2} + 2^{2} - 2a \cdot 2 \cdot \cos 120^{\circ} = 3^{2}$$

$$a^{2} - 4a\left(-\frac{1}{2}\right) - 5 = 0$$

$$a^{2} + 2a - 5 = 0$$

The longest side of a triangle has length 3 and the angle opposite to it is 120°. Another side of that triangle has length 2.

- Find the length of the third side.
- Find the area of the triangle.

$$a^{2} + b^{2} - 2ab\cos \gamma = c^{2}$$

$$a^{2} + 2^{2} - 2a \cdot 2 \cdot \cos 120^{\circ} = 3^{2}$$

$$a^{2} - 4a\left(-\frac{1}{2}\right) - 5 = 0$$

$$a^{2} + 2a - 5 = 0$$

The longest side of a triangle has length 3 and the angle opposite to it is 120°. Another side of that triangle has length 2.

- Find the length of the third side.
- Find the area of the triangle.

$$a^{2} + b^{2} - 2ab\cos \gamma = c^{2}$$

$$a^{2} + 2^{2} - 2a \cdot 2 \cdot \cos 120^{\circ} = 3^{2}$$

$$a^{2} - 4a\left(-\frac{1}{2}\right) - 5 = 0$$

$$a^{2} + 2a - 5 = 0$$

$$a = ?$$

The longest side of a triangle has length 3 and the angle opposite to it is 120°. Another side of that triangle has length 2.

- Find the length of the third side.
- Find the area of the triangle.

$$a^{2} + b^{2} - 2ab\cos \gamma = c^{2}$$

$$a^{2} + 2^{2} - 2a \cdot 2 \cdot \cos 120^{\circ} = 3^{2}$$

$$a^{2} - 4a\left(-\frac{1}{2}\right) - 5 = 0$$

$$a^{2} + 2a - 5 = 0$$

$$a = \frac{-2 \pm \sqrt{2^{2} - 4 \cdot (-5) \cdot 1}}{2 \cdot 1}$$

The longest side of a triangle has length 3 and the angle opposite to it is 120°. Another side of that triangle has length 2.

- Find the length of the third side.
- Find the area of the triangle.

$$a^{2} + b^{2} - 2ab\cos \gamma = c^{2}$$

$$a^{2} + 2^{2} - 2a \cdot 2 \cdot \cos 120^{\circ} = 3^{2}$$

$$a^{2} - 4a\left(-\frac{1}{2}\right) - 5 = 0$$

$$a^{2} + 2a - 5 = 0$$

$$a = \frac{-2 \pm \sqrt{2^{2} - 4 \cdot (-5) \cdot 1}}{2 \cdot 1}$$

The longest side of a triangle has length 3 and the angle opposite to it is 120°. Another side of that triangle has length 2.

- Find the length of the third side.
- Find the area of the triangle.

$$a^{2} + b^{2} - 2ab\cos \gamma = c^{2}$$

$$a^{2} + 2^{2} - 2a \cdot 2 \cdot \cos 120^{\circ} = 3^{2}$$

$$a^{2} - 4a\left(-\frac{1}{2}\right) - 5 = 0$$

$$a^{2} + 2a - 5 = 0$$

$$a = \frac{-2 \pm \sqrt{2^{2} - 4 \cdot (-5) \cdot 1}}{2 \cdot 1}$$

The longest side of a triangle has length 3 and the angle opposite to it is 120°. Another side of that triangle has length 2.

- Find the length of the third side.
- Find the area of the triangle.

$$a^{2} + b^{2} - 2ab\cos \gamma = c^{2}$$

$$a^{2} + 2^{2} - 2a \cdot 2 \cdot \cos 120^{\circ} = 3^{2}$$

$$a^{2} - 4a\left(-\frac{1}{2}\right) - 5 = 0$$

$$a^{2} + 2a - 5 = 0$$

$$a = \frac{-2 \pm \sqrt{2^{2} - 4 \cdot (-5) \cdot 1}}{2 \cdot 1}$$

The longest side of a triangle has length 3 and the angle opposite to it is 120°. Another side of that triangle has length 2.

- Find the length of the third side.
- Find the area of the triangle.

$$a^{2} + b^{2} - 2ab\cos \gamma = c^{2}$$

$$a^{2} + 2^{2} - 2a \cdot 2 \cdot \cos 120^{\circ} = 3^{2}$$

$$a^{2} - 4a\left(-\frac{1}{2}\right) - 5 = 0$$

$$a^{2} + 2a - 5 = 0$$

$$a = \frac{-2 \pm \sqrt{2^{2} - 4 \cdot (-5) \cdot 1}}{2 \cdot 1}$$

$$= \frac{-2 \pm \sqrt{24}}{2}$$

The longest side of a triangle has length 3 and the angle opposite to it is 120°. Another side of that triangle has length 2.

- Find the length of the third side.
- Find the area of the triangle.

$$a^{2} + b^{2} - 2ab\cos \gamma = c^{2}$$

$$a^{2} + 2^{2} - 2a \cdot 2 \cdot \cos 120^{\circ} = 3^{2}$$

$$a^{2} - 4a\left(-\frac{1}{2}\right) - 5 = 0$$

$$a^{2} + 2a - 5 = 0$$

$$a = \frac{-2 \pm \sqrt{2^{2} - 4 \cdot (-5) \cdot 1}}{2 \cdot 1}$$

$$= \frac{-2 \pm \sqrt{24}}{2} = \frac{-2 + 2\sqrt{6}}{2}$$

The longest side of a triangle has length 3 and the angle opposite to it is 120°. Another side of that triangle has length 2.

- Find the length of the third side.
- Find the area of the triangle.

$$a^{2} + b^{2} - 2ab\cos \gamma = c^{2}$$

$$a^{2} + 2^{2} - 2a \cdot 2 \cdot \cos 120^{\circ} = 3^{2}$$

$$a^{2} - 4a\left(-\frac{1}{2}\right) - 5 = 0$$

$$a^{2} + 2a - 5 = 0$$

$$a = \frac{-2 \pm \sqrt{2^{2} - 4 \cdot (-5) \cdot 1}}{2 \cdot 1}$$

The longest side of a triangle has length 3 and the angle opposite to it is 120°. Another side of that triangle has length 2.

- Find the length of the third side.
- Find the area of the triangle.

$$a^{2} - 4a\left(-\frac{1}{2}\right) - 5 = 0$$

$$a^{2} + 2a - 5 = 0$$

$$a = \frac{-2 \pm \sqrt{2^{2} - 4 \cdot (-5) \cdot 1}}{2 \cdot 1}$$

$$= \frac{-2 \pm \sqrt{24}}{2} = \frac{-2 + 2\sqrt{6}}{2}$$

Law of cosines Solve for a:

a > 0

Law of cosines 9/9

Example

The longest side of a triangle has length 3 and the angle opposite to it is 120°. Another side of that triangle has length 2.

- Find the length of the third side.
- Find the area of the triangle.

$$a^{2} + b^{2} - 2ab\cos\gamma = c^{2}$$

$$a^{2} + 2^{2} - 2a \cdot 2 \cdot \cos 120^{\circ} = 3^{2}$$

$$a^{2} - 4a\left(-\frac{1}{2}\right) - 5 = 0$$

$$a^{2} + 2a - 5 = 0$$

$$a = \frac{-2 \pm \sqrt{2^{2} - 4 \cdot (-5) \cdot 1}}{2 + \sqrt{24^{2} \cdot 1}}$$

Law of cosines Solve for *a* :

a > 0

The longest side of a triangle has length 3 and the angle opposite to it is 120°. Another side of that triangle has length 2.

- Find the length of the third side.
- Find the area of the triangle.

$$a = \frac{-2 \pm \sqrt{2^2 - 4 \cdot (-5) \cdot 1}}{2 \cdot 1}$$
$$= -1 + \sqrt{6}$$

The longest side of a triangle has length 3 and the angle opposite to it is 120°. Another side of that triangle has length 2.

- Find the length of the third side.
- Find the area of the triangle.

$$a = \frac{-2 \pm \sqrt{2^2 - 4 \cdot (-5) \cdot 1}}{2 \cdot 1}$$
$$= -1 + \sqrt{6}$$

Law of cosines Solve for a:

Area = ?

The longest side of a triangle has length 3 and the angle opposite to it is 120°. Another side of that triangle has length 2.

- Find the length of the third side.
- Find the area of the triangle.

$$a = \frac{-2 \pm \sqrt{2^2 - 4 \cdot (-5) \cdot 1}}{2 \cdot 1}$$
$$= -1 + \sqrt{6}$$

Area =
$$\frac{ab\sin\gamma}{2}$$

The longest side of a triangle has length 3 and the angle opposite to it is 120°. Another side of that triangle has length 2.

- Find the length of the third side.
- Find the area of the triangle.

$$a^{2} + b^{2} - 2ab\cos\gamma = c^{2}$$

$$a^{2} + 2^{2} - 2a \cdot 2 \cdot \cos 120^{\circ} = 3^{2}$$

$$a = \frac{-2 \pm \sqrt{2^{2} - 4 \cdot (-5) \cdot 1}}{2 \cdot 1}$$

$$= -1 + \sqrt{6}$$
Area = $\frac{ab\sin\gamma}{2} = \frac{\left(\sqrt{6} - 1\right)2}{2}$?

The longest side of a triangle has length 3 and the angle opposite to it is 120°. Another side of that triangle has length 2.

- Find the length of the third side.
- Find the area of the triangle.

$$a = \frac{-2 \pm \sqrt{2^2 - 4 \cdot (-5) \cdot 1}}{2 \cdot 1}$$

$$= -1 + \sqrt{6}$$
Area $= \frac{ab \sin \gamma}{2} = \frac{\left(\sqrt{6} - 1\right) 2}{2}$?

The longest side of a triangle has length 3 and the angle opposite to it is 120°. Another side of that triangle has length 2.

- Find the length of the third side.
- Find the area of the triangle.

$$a = \frac{-2 \pm \sqrt{2^2 - 4 \cdot (-5) \cdot 1}}{2 \cdot 1}$$

$$= -1 + \sqrt{6}$$
Area $= \frac{ab \sin \gamma}{2} = \frac{\left(\sqrt{6} - 1\right)2}{2}$?

The longest side of a triangle has length 3 and the angle opposite to it is 120°. Another side of that triangle has length 2.

- Find the length of the third side.
- Find the area of the triangle.

$$a = \frac{-2 \pm \sqrt{2^2 - 4 \cdot (-5) \cdot 1}}{2 \cdot 1}$$

$$= -1 + \sqrt{6}$$

$$\text{Area} = \frac{ab \sin \gamma}{2} = \frac{\left(\sqrt{6} - 1\right) 2}{2} \frac{\sqrt{3}}{2}$$

The longest side of a triangle has length 3 and the angle opposite to it is 120°. Another side of that triangle has length 2.

- Find the length of the third side.
- Find the area of the triangle.

$$a = \frac{-2 \pm \sqrt{2^2 - 4 \cdot (-5) \cdot 1}}{2 \cdot 1}$$

$$= -1 + \sqrt{6}$$
Area = $\frac{ab \sin \gamma}{2} = \frac{\left(\sqrt{6} - 1\right) 2}{2} \frac{\sqrt{3}}{2}$

The longest side of a triangle has length 3 and the angle opposite to it is 120°. Another side of that triangle has length 2.

- Find the length of the third side.
- Find the area of the triangle.

$$a = \frac{-2 \pm \sqrt{2^2 - 4 \cdot (-5) \cdot 1}}{2 \cdot 1}$$

$$= -1 + \sqrt{6}$$

$$Area = \frac{ab \sin \gamma}{2} = \frac{\left(\sqrt{6} - 1\right)2}{2} \frac{\sqrt{3}}{2}$$

$$= \frac{3\sqrt{2} - \sqrt{3}}{2}$$

The longest side of a triangle has length 3 and the angle opposite to it is 120°. Another side of that triangle has length 2.

- Find the length of the third side.
- Find the area of the triangle.

$$a^2 + b^2 - 2ab\cos\gamma = c^2$$

 $a^2 + 2^2 - 2a \cdot 2 \cdot \cos 120^\circ = 3^2$

$$= -1 + \sqrt{6}$$

$$Area = \frac{ab \sin \gamma}{2} = \frac{\left(\sqrt{6} - 1\right)2}{2} \frac{\sqrt{3}}{2}$$

$$= \frac{3\sqrt{2} - \sqrt{3}}{2}$$

The longest side of a triangle has length 3 and the angle opposite to it is 120°. Another side of that triangle has length 2.

- Find the length of the third side.
- Find the area of the triangle.

$$a = \frac{-2 \pm \sqrt{2^2 - 4 \cdot (-5) \cdot 1}}{2 \cdot 1}$$

$$= -1 + \sqrt{6}$$

$$Area = \frac{ab \sin \gamma}{2} = \frac{\left(\sqrt{6} - 1\right)2}{2} \frac{\sqrt{3}}{2}$$

$$= \frac{3\sqrt{2} - \sqrt{3}}{2}$$