Algorithm PA1 Report

B07901103 電機三 陳孟宏

Algorithm

Insertion sort	InsertionSort(A) 1. for $j = 2$ to $A.length$ 2. $key = A[j]$ 3. // Insert $A[j]$ into the sorted sequence $A[1j-1]$ 4. $i = j - 1$ 5. while $i > 0$ and $A[i] > key$ 6. $A[i+1] = A[i]$ 7. $i = i - 1$ 8. $A[i+1] = key$
Quicksort	QUICKSORT(A , p , r) // Call QUICKSORT(A , 1, A .length) to sort an entire array 1. if $p < r$ 2. $q = PARTITION(A, p, r)$ 3. QUICKSORT(A , p , q) 4. QUICKSORT(A , p , r) 1. $x = A[p]$ // break up A wrt x 2. $i = p - 1$ 3. $j = r + 1$ 4. while TRUE 5. repeat $j = j - 1$ 6. until $A[j] \le x$ 7. repeat $i = i + 1$ 8. until $A[i] \ge x$ 9. if $i < j$ 10. exchange $A[i]$ with $A[j]$ 11. else return j

```
Merge sort
                 MergeSort(A, p, r)
                  1. if p < r
                 2. q = \lfloor (p+r)/2 \rfloor
                 3. MergeSort (A, p, q)

 MergeSort (A, q +1, r)

 Merge(A, p, q, r)

                 Merge (A, p, q, r)
                 1. n_1 = q - p + 1
                 2. n_2 = r - q

 let L[1..n<sub>1</sub>+1] and R[1..n<sub>2</sub>+1]

                 4. for i = 1 to n_1
                        L[i] = A[p+i-1]
                 5.
                 6. for j = 1 to n_2
                 7.
                    R[j] = A[q + j]
                 8. L[n_1+1] = \infty
                 9. R[n_2+1] = \infty
                 10. i = 1
                 11. j = 1
                 12. for k = p to r
                 13. if L[i] \leq R[j]
                              A[k] = L[i]
                 14.
                 15.
                               i = i + 1
                 16. else A[k] = R[j]
                 17.
                               j = j + 1
                 BUILD-MAX-HEAP(A)
Heap sort
                 1. A.heap-size = A.length
                 2. for i = \lfloor A.length/2 \rfloor downto 1
                 3.
                       MAX-HEAPIFY(A,i)
```

MAX-HEAPIFY(A, i)

1. I = LEFT(i)2. r = RIGHT(i)3. if $I \le A$.heap-size and A[I] > A[i]4. largest = I5. else largest = i6. if $r \le A$.heap-size and A[r] > A[largest]7. largest = r8. if $largest \ne i$ 9. exchange A[i] with A[largest]10. MAX-HEAPIFY(A, largest)

Time Complexity Analysis

演算法	時間複雜度			ᅓᄼ
	Best	Average	Worst	穩定性
Insertion	O(n)	O(n^2)	O(n^2)	stable
Quick	O(nlogn)	O(nlogn)	O(n^2)	unstable
Merge	O(nlogn)	O(nlogn)	O(nlogn)	stable
Heap	O(nlogn)	O(nlogn)	O(nlogn)	unstable

<Case 1> Random Order (Average Case)

Case_1				
Input Size	IS time(ms)	QS time(ms)	MS time(ms)	HS time(ms)
4000	6.999	1	1	1
16000	68.989	3	4	1.999
32000	230.965	3	4.999	4.999
1000000	201976	99.985	146.978	185.971

- 1. Average case : Insertion > Heap ~ Merge ~ Quick
- 2. Insertion sort : O(n^2)
- 3. Quicksort = Merge sort = Heap sort = O(nlogn)

<Case 2> Sorted (Best Case, non-decreasing)

Case_2				
Input Size	IS time(ms)	QS time(ms)	MS time(ms)	HS time(ms)
4000	1	20.996	1	5
16000	1	190.971	1.999	3
32000	1	626.905	2	4
1000000	5	605011	52.991	145.978

- 1. Best Case : Quick > Heap ~ Merge > Insertion
- 2. Insertion sort : O(n), the blue line (lowest)
- 3. Heap sort : O(nlogn)
- 4. Merge sort : O(nlogn)
- 5. Quick sort : O(nlogn), at this sorted case, the quick sort is the slowest sort way, because I use the last element

(data[-1]) to be my pivot, which is the largest number at this case.

<Case 3> Sorted (Worst Case, non-increasing)

Case_3				
Input Size	IS time(ms)	QS time(ms)	MS time(ms)	HS time(ms)
4000	12.998	15.997	1	0.999
16000	130.98	155.977	1	1.999
32000	432.934	557.915	2	4.999
1000000	404658	350380	57.99	114.983

1. Worst case: Insertion ~ Quick > Heap ~ Merge

2. Insertion sort : O(n^2)

3. Quick sort : O(n^2)

4. Heap sort : O(nlogn)

5. Merge sort : O(nlogn)