Algoritmusok és adatszerkezetek II. Geometriai algoritmusok

Szegedi Tudományegyetem

Alapfogalmak

Definíció

A
$$P_3 = \begin{bmatrix} x_3 \\ y_3 \end{bmatrix}$$
 pontot $P_1 = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$ és $P_2 = \begin{bmatrix} x_2 \\ y_2 \end{bmatrix}$ pontok **konvex kombináció**jának nevezzük, amennyiben $x_3 = (1 - \alpha)x_1 + \alpha x_2$, valamint $y_3 = (1 - \alpha)y_1 + \alpha y_2$ teljesül valamely $0 < \alpha < 1$ -ra

Definíció

 $\overline{P_1P_2}$ szakasz a P_1 és P_2 pontokból konvex kombinációinak halmaza

Megjegyzés

Ha a pontok sorrendje is számít, irányított szakaszról beszélünk, és $\overrightarrow{P_1P_2}$ módon jelöljük

 \vec{p} -vel \overrightarrow{OP} -t, vagyis az O origóból a P-be menő irányított szakaszt (vektort) jelöljük

A keresztszorzat

$P_1 \times P_2$ keresztszorzata

$$\det\left(\begin{bmatrix}x_1 & x_2\\ y_1 & y_2\end{bmatrix}\right) = x_1y_2 - x_2y_1 = P_1 \times P_2 = -P_2 \times P_1$$

Megjegyzés

A keresztszorzat valójában háromdimenziós fogalom: egy $\overrightarrow{p_1}$ -re és $\overrightarrow{p_2}$ -re merőleges, velük jobbsodrású rendszert alkotó vektor, melynek hossza $|x_1y_2-x_2y_1|$.

Forgásirány

Keresztszorzat mint előjeles terület

 $P_1 \times P_2$ megadja az O, P_1 , P_2 , $P_1 + P_2$ koordinátákkal rendelkező paralelogramma előjeles területét

- $P_1 \times P_2 < 0 \Rightarrow P_1$ -ből jobbra fordulva érjük el P_2 -t
- $P_1 \times P_2 > 0 \Rightarrow P_1$ -ből balra fordulva érjük el P_2 -t
- $P_1 \times P_2 = 0 \Rightarrow P_1$ és P_2 kollineáris

Merre fordul a következő szakasz?

- $\overline{P_0P_1}$ és $\overline{P_1P_2}$ szakaszokat folyamatosan bejárva merre kell fordulni P_1 pontban?
- Az előzőekben lényegében az origó viselkedett P₀-ként

Merre fordul a következő szakasz?

- $\overline{P_0P_1}$ és $\overline{P_1P_2}$ szakaszokat folyamatosan bejárva merre kell fordulni P_1 pontban?
- ullet Az előzőekben lényegében az origó viselkedett P_0 -ként

Ötlet: tegyünk úgy, mintha P_0 lenne az origó

$$(P_1 - P_0) \times (P_2 - P_0) = \det \left(\begin{bmatrix} x_1 - x_0 & x_2 - x_0 \\ y_1 - y_0 & y_2 - y_0 \end{bmatrix} \right)$$

• Szemléletesen: P_1 -ből és P_2 -ből P_0 -t kivonva P_0 központúvá tesszük a koordinátarendszerünket

Szakasz átfogása

Átfogó szakasz

Egy $\overline{P_1P_2}$ szakasz átfog egy egyenest, ha a P_1 pont az egyenes egyik oldalára, P_2 pont pedig a másik oldalára esik

Szakasz átfogása

Átfogó szakasz

Egy $\overline{P_1P_2}$ szakasz átfog egy egyenest, ha a P_1 pont az egyenes egyik oldalára, P_2 pont pedig a másik oldalára esik

Átfedés meglétének eldöntése

Egy (kevéssé hatékony) lehetőség, ha az egyenes egyenletét kiszámolva döntünk P_1 és P_2 relatív helyzetéről Támaszkodjunk helyette a forgásirányokra!

Egymást metsző szakaszok

Szükségesség

 \overline{CD} úgy metszheti \overline{AB} szakaszt, ha \overline{CD} átfogja az \overline{AB} szakaszra illeszkedő egyenest.

Egymást metsző szakaszok

Szükségesség

 \overline{CD} úgy metszheti \overline{AB} szakaszt, ha \overline{CD} átfogja az \overline{AB} szakaszra illeszkedő egyenest.

Metszés vizsgálata

```
FORGÁSIRÁNY(X, Y, Z) {
 return (Y-X)\times(Z-X)
METSZŐSZAKASZOK(A, B, C, D) {
 d1 = Forgásirány(A, B, C)
 d2 = Forgásirány (A, B, D)
 d3 = Forgásirány(C, D, A)
 d4 = Forgásirány (C, D, B)
  return d1 * d2 < 0 és d3*d4 < 0
```


Metszés vizsgálata

```
FORGÁSIRÁNY(X, Y, Z) {
   return (Y-X)\times(Z-X)
}
METSZŐSZAKASZOK(A, B, C, D) {
   d1 = Forgásirány(A, B, C)
  d2 = Forgásirány (A, B, D)
  d3 = Forgásirány(C, D, A)
  d4 = Forgásirány (C, D, B)
   return d1 * d2 < 0 és d3*d4 < 0
```

Ezzel csak "valódi" metszéseket találunk meg, a szakaszra illeszkedő végpontú szakaszt nem kezeltük így

