Verasco: a Formally Verified C Static Analyzer

Jacques-Henri Jourdan

Joint work with:

Vincent Laporte, Sandrine Blazy, Xavier Leroy, David Pichardie, . . .

June 13, 2017, Montpellier GdR GPL thesis prize

Static analyzers

They automatically prove the absence of certain kinds of bugs

- Examples: "No invalid memory access", "No division by 0", "Small rounding errors", ...
- Undecidable problem:
 - $\ \ \Box$ Success \Rightarrow no bug of some class
 - □ In case of doubt, emit an alarm

Exemples : Astrée, Frama-C EVA, Fluctuat, Sparrow, ...

Abstract interpretation

Abstract interpretation: theory for building static analyzer

- Run the program using an abstract semantics
- Always terminating computation
- Soundly approximating the concrete semantics

Abstract domains used to approximate program states

Ex: variation intervals for integer variables...

Abstract interpretation: example

```
0=x
loop {
  if x > 11
    break
  x+=2
```


Abstract interpretation: example

```
\{\top\}
x=0
{x = 0}
loop {
\{x \in [0, 13] \land x \mod 2 = 0\}
  if x > 11
\{x = 12\}
      break
\{x \in [0, 11] \land x \mod 2 = 0\}
  x+=2
\{x\in[2,13]\wedge x\text{ mod }2=0\}
 x = 12
```


Uses of static analyzers

Two main use cases:

- Bug finders
 - □ Very precise, no direct need for correctness
- Program verification
 - □ Used to prove properties on **critical code**
 - □ Need for trust

Static analyzers are complex

- Advanced algorithms (linear optimization, symbolic manipulations, ...)
- Technical problems (floating-point, C semantics, ...)
- ⇒ probably buggy

Our analyzer: Verasco

A static analyzer is a program, we can prove it!

Verasco:

- Programmed and formally verified using the Coq proof assistant
- Based on abstract interpretation
- Handles most of C99
 - □ industrial, widely used language
 - no dynamic memory allocation, no recursion
- Proves the absence of undefined behaviors
 - dynamic type errors
 - memory errors
 - arithmetic exceptions

Introduction

Overview of Verasco

Technical zoom: numerical abstract domains

Conclusions

Textbook formalized static analyzers

- IMP toy language
- No handling of pointers
- Unbounded integers abstract domain

Reuses the CompCert front-end

- Until C#minor
- Language simpler than C99
- Uses the same formal semantics as CompCert
 - Guarantees provided by the analyzer provably extend to the assembly code.
- A priori unsound if used with another C99 semantics

Abstract interpreter

- Fixpoints using widening for loops and gotos
- Proved correct using a Hoare logic for C#minor
- Parameterized by a state abstract domain

State abstract domain

- Solves pointer references
 - □ Points-to domain
- Checks type and memory safety
 - □ Types domain
 - □ Permissions domain
- Design, implemented and proved correct by V. Laporte
- Parameterized by a numerical abstract domain
 - concretizes to numerical environments

Several numerical domains

- Intervals over Z and floats
- Arithmetical congruences
- Symbolic equalities
- Octagons
- Convex polyhedra
 - Contributed by Fouilhe, Boulmé and Périn (Verimag)
- Modular communication system using channels

Bounded **machine integers** analysis

- Wraparound when overflow
- Checks numerical errors
 - □ Division by 0
 - Undefined overflows
- $\begin{tabular}{ll} \blacksquare & Parameterized by an abstract \\ & domain for \mathbb{Z} \\ \end{tabular}$


```
const double sqrt_tab[128] = { ... };
int main() {
  double x = verasco_any_double();
  verasco_assume(0.3 < x && x < 0.7);
  double y = sqrt_tab[ (int)(x*128.) ];
  verasco_assert(0.54 < y && y < 0.84);
  return 0;
}</pre>
```



```
const double sqrt_tab[128] = { ... };
int main() {
  double x = verasco_any_double();
  verasco_assume(0.3 < x && x < 0.7);
  double y = sqrt_tab[ (int)(x*128.) ];
  verasco_assert(0.54 < y && y < 0.84);
  return 0;
}</pre>
```


State & numerical domains cooperation

```
const double sqrt_tab[128] = { ... };
int main() {
  double x = verasco_any_double();
  verasco_assume(0.3 < x && x < 0.7);
  double y = sqrt_tab[(int)(x*128.)]4;
  verasco_assert(0.54 < y && y < 0.84);
  return 0;
}</pre>
```



```
State & numerical
         domains cooperation
const double sqrt_tab[128] = { ... };
                                            Integer & float
                                            intervals
int main() {
 double x = verasco_any_double();
 verasco_assume(0.3 < x \&\& x < 0.7);
 double y = sqrt_tab[ (int)(x*128.) };
  verasco_assert(0.54 < y && y < 0.84);</pre>
 return 0;
           Precise bounds on result
```



```
int main() {
  int v0 = 0, v1 = 1;
  int* tab[6] = {&v0, &v1, &v0, &v1, &v0, &v1};

for(int i = -5; i < 6; i++) {
   int in_range = (0 <= i && i <= 2);
   int some_other_computation = i*i+32;
   if(in_range)
     verasco_assert(*(tab[ 2*i+1 ]) == 1);
  }
  return 0;
}</pre>
```



```
int main() {
  int v0 = 0, v1 = 1;
  int* tab[6] = {&v0, &v1, &v0, &v1, &v0, &v1};

for(int i = -5; i < 6; i++) {
  int in_range = (0 <= i && i <= 2);
  int some_other_computation = i*i+32;
  if(in_range)
    verasco_assert(*(tab[ 2*i+1 ]) == 1);
}
return 0;
}</pre>
```



```
int main() {
 int v0 = 0, v1 = 1;
 int* tab[6] = \{\&v0, \&v1, \&v0, \&v1, \&v0, \&v1\};
 for(int i = -5; i < 6; i++) {
   int in_range = (0 <= i && i <= 2);
                                             Symbolic propagation
   int some_other_computation = i*i+32;
                                             of conditions
   if(in_range)
     verasco_assert(*(tab[ 2*i+1 ]) == 1);
 return 0;
                                          Use of parity
                                          (congruence domain)
```



```
int main() {
 int v0 = 0, v1 = 1;
 int* tab[6] = \{&v0, &v1, &v0, &v1, &v0, &v1\};
 for(int i = -5; i < 6; i++) {
   int in_range = (0 <= i && i <= 2);
                                            Symbolic propagation
   int some_other_computation = i*i+32;
                                            of conditions
   if (in_range)
     verasco_assert(*(tab[ 2*i+1 ]) == 1);
 return 0;
                                          Use of parity
          Complex memory access
                                          (congruence domain)
```



```
int src[10] = { ... };
int dst[10];

int main() {
   int i_src = 0, i_dst = 9;
   while(i_dst >= 0) {
     dst[i_dst] = src[i_src];
     i_dst--; i_src++;
   }
   verasco_assert(i_src == 10);
   return 0;
}
```



```
int src[10] = { ... };
int dst[10];

int main() {
   int i_src = 0, i_dst = 9;
   while(i_dst >= 0) {
     dst[i_dst] = src[i_src];
     i_dst--; i_src++;
   }
   verasco_assert(i_src == 10);
   return 0;
}
Octagons prove the
relational invariant
   i_src + i_dst = 9 ...
```



```
int src[10] = { ... };
int dst[10];

int main() {
   int i_src = 0, i_dst = 9;
   while(i_dst >= 0) {
     dst[i_dst] = src[i_src];
     i_dst--; i_src++;
   }
   verasco_assert(i_src == 10);
   return 0;
}
Octagons prove the
relational invariant
i_src + i_dst = 9 ...

... and deduce precise
bounds for i_src
```


Modular interfaces between components

Operations:

- Transfer functions

With Coq specifications

Concretization function

```
\gamma: \mathtt{Abs} \to \mathtt{Concr} \to \mathtt{Prop}
```

- Soundness theorems
- Abstraction function α is not needed
 - □ No optimality result

Example of interface

State abstract domain

Concrete states:

Operations

- Standard abstract interpretation operators:
 - \square \sqsubseteq : abstate \rightarrow abstate \rightarrow bool
 - $\ \square\ \sqcup$, $\ \triangledown$: abstate $\ \rightarrow$ abstate $\ \rightarrow$ abstate
- Abstract transfer functions:
 - □ assign, store, assume, push_frame, pop_frame...

Example of specification

State abstract domain

$$\gamma$$
 : abstate o concrete_state o Prop

Specifications:

$$\Box \ \forall \ a \ b, \ \gamma(a) \cup \gamma(b) \subseteq \gamma(a \sqcup b)$$

$$\Box \ \forall \ x \ e \ a, \ \{\rho[x := v] \mid \rho \in \gamma(a) \ \land \ \rho \vdash e \Downarrow v\} \subseteq \gamma(\text{assign } x \ e \ a)$$

Other domains have similar specifications

Methodology

- Programmed and proved correct in Coq.
- Extracted into OCaml, then compiled into an executable.
- No use of a posteriori validation.
 - □ Except for the third-party polyhedra domain (Farkas certificates).
- About 45000 lines of Coq.
 - □ Half proofs, half code & specs

Introduction

Overview of Verasco

Technical zoom: numerical abstract domains

Conclusions

Intervals

Symbolic equalities

$$z \doteq y * y$$
 $c \doteq (x < 1 \&\& 2 \le y)$
 $(y \le 2.5) \doteq \text{true}$

Congruences

Octagons

Polyhedron

Modularity of numerical abstract domains

Modular communication system between domain

- Weakly reduced product
 - □ **Precise** (vs. direct products) and **practical** (vs. reduced products)
 - All abstract domains share a common interface
 - A domain pulls information using query channels
 - A domain pushes information using message channels
 - Inspired from Astrée
- Easy to soundly add or deactivate an abstract domain
 - □ Flexible precision-performance tradeoff
 - □ Some abstract domains are essential (e.g., intervals) for precision

Overview

- Very popular weakly relational domain
 - □ Originally by Miné from Astrée
- Inequalities of the form: $\pm x \pm y \le \mathsf{Cst}$
- Interval constraints expressible:

$$x + x \le 2h \qquad -x - x \le -2I$$

Data structure: difference bound matrix A_{xy} for x, y signed variables:

$$\forall x \ y, \ x + y \leq A_{xy}$$

Sparse algorithms

Usual algorithms for Octagons:

- Maintain a saturated set of constraints $\pm x \pm y \le \mathsf{Cst}$
- Problem:

$$\begin{cases} x + x \le A_{x\bar{x}} \\ y + y \le A_{y\bar{y}} \end{cases} \implies x + y \le A_{x\bar{y}} \le \frac{A_{x\bar{x}} + A_{y\bar{y}}}{2}$$

⇒ **Dense constraints** even for interval bounds

Our algorithms for Octagons:

- Weak form of saturation
- Maintain the sparsity of the constraints

Example

Example

Interval constraints:

$$x \in [0, 1]$$

 $y \in [1, 3]$
 $z \in [0, 2]$

Example

Strong saturation \implies Dense matrix

Example

Weak saturation (nothing to do here)

Example

Adding the constraint:

$$x + y \le 2$$

Example

Weak saturation:

$$y + y \le 4$$
$$y - x \le 2$$
$$-y - x \le -1$$
$$x - y \le 0$$

Example

Weak saturation:

$$y + y \le 4$$
$$y - x \le 2$$
$$-y - x \le -1$$
$$x - y \le 0$$

Still sparse

Abstract domain of symbolic equalities

Motivating example

CompCert front-end transformation:

Need to reason on the **relation** between a and tmp.

Abstract domain of symbolic equalities

- Two kinds of equalities:
 - \square var \doteq expr
 - \square expr \doteq bool
- Example:

Introduction

Overview of Verasco

Technical zoom: numerical abstract domains

Conclusions

Final theorem


```
Definition vanalysis prog = ... iter ...

Theorem vanalysis_correct:

∀ prog res tr,

vanalysis prog = (res, nil) →

program_behaves (semantics prog) (Goes_wrong tr) →

False.

No wrong behavior
```


Conclusion

Proving correct a **realistic static analyzer** based on abstract interpretation is **feasible**

- Realistic, feature-rich language (C99)
- Advanced combination of abstract domains

By expliciting the proofs, we clarified:

- The specification of abstract domains
- The architecture of a static analyzer
- Their implementation

Future work

- New analysis techniques:
 - □ Better handling of control flow (trace partitioning, recursion, ...)
 - Other numerical abstract domains (linear filters, arithmetic-geometric progression, pentagons, ...)
 - □ Support for dynamic memory allocation
- Better performance
 - $\ \square$ Faster abstract domains (arrays summarization, variable packing, ...)
 - Better tools for formally verified software
- Using the results of the analysis (Optimizations, other analyzers)
- Experimenting with industrial code

http://compcert.inria.fr/verasco/

Questions?

Appendices

My contributions in Verasco

- In CompCert:
 - □ Parser (verified in Coq)
 - □ Floats (verified in Coq)
- Abstract interpreter
 - □ Dedicated program logic
- Most of the numerical domains
 - □ Handling of machine arithmetic
 - Symbolic equalities
 - Intervals
 - Linearization
 - Octagons
 - Communication channels

In my thesis...

- Design and proof of abstract iterator
 - □ Handles all C#minor control constructs
 - □ Proved using a dedicated program logic
- Sharing, hash-consing and memoization in Coq
 - Examplified on a BDD library
 - □ Applications in Verasco
- Contributions to CompCert
 - □ Parsing, support for floating-point numbers

Program	Size	Time
integr.c	42 lines	< 0.1s
smult.c	330 lines	19.3s
nbody.c	179 lines	10.7s
almabench.c	352 lines	5.7s

- No alarms on those examples.
 - $\ \square$ Pointers, arrays, floats
- Much room for improvement in performance.

Non-relational numerical abstract domains

Congruences & Intervals

Intervals

- lacksquare On $\mathbb Z$ and floating-point numbers.
- Handles all arithmetic and bit-level operations of C99

Arithmetical congruences

Needed to check alignment of memory accesses

Specific interface for non-relationnal domains

Common relational adaptation layer

Complex control flow

```
x=0
loop {
  if x > 11
    break
 x+=2
```


Complex control flow

```
x=0
\{x=0\}
loop {
\{x \in [0, 13] \land x \mod 2 = 0\}
  if x > 11
\{x = 12\}
      break
\{x \in [0, 11] \land x \mod 2 = 0\}
  x+=2
\{x \in [2, 13] \land x \mod 2 = 0\}
```

- Based on control points
- We want definitions following the AST structure


```
x=0
loop {
  if x > 11
    \{x = 12\}
    break
    \{\bot, x = 12\}
  x+=2
```

Dedicated program logic:

$$\{P\}$$
 s $\{Q, Q_b\}$

- Several postconditions
- Defined structurally


```
x=0
loop {
  \{x \in [0, 13] \land x \mod 2 = 0\}
  if x > 11
     break
  x+=2
  \{x \in [2, 13] \land x \mod 2 = 0, x = 12\}
```

Dedicated program logic:

$$\{P\}$$
 s $\{Q, Q_b\}$

- Several postconditions
- Defined structurally


```
x=0
\{x=0\}
loop {
  if x > 11
    break
  x+=2
\{x = 12, \perp\}
```

Dedicated program logic:

$$\{P\}$$
 s $\{Q, Q_b\}$

- Several postconditions
- Defined structurally

Abstract interpreter

Simplified implementation & proof

■ Proof step 1: interpreter soundness

```
Lemma iter_ok: \forall ab_pre stmt ab_post ab_break, iter ab_pre stmt = (ab_post, ab_break) \rightarrow { \gamma(ab_pre) } stmt { \gamma(ab_post), \gamma(ab_break) }.
```

■ Proof step 2: program logic soundness

 $\{\cdot\}$ \cdot $\{\cdot, \cdot\}$ \Longrightarrow No undefined behavior

Abstract interpreter

Big picture

- Handles all C#minor control constructs
 - □ Infinite loop, break, if/else, switch, goto, call, return
 - 2 pre-conditions, 4 post-conditions
- Parameterized by a state abstract domain
- Works in a monad for alarms
- Structural recursion on syntax tree
 - □ Unfolding functions at call sites
- Fixpoint iteration using widening and narrowing
 - One fixpoint iteration per loop
 - □ Gotos: one fixpoint iteration per function