

Reminders & Announcements

- •How I "curve"...
 - Exams only (not course grade)
 - Add enough points to have a median of 80
 - If median is 80 or above, I do nothing
- •Lots of extra credit opportunities!
 - SONA: https://canvas.cornell.edu/courses/74259/pages/sona-study-advertisements
- •Tzu-Yen's guest lecture on spatial cognition will be 3/6

How does perception work?

•How does the brain process visual information?

- The geniculostriate pathway
 - Retina to primary visual cortex
 - Segregation of information
 - Early feature extraction
 - Organization
- The tectopulvinar pathway (later)
 - Retina to pulvinar (in thalamus)
 - Orienting

Axon

Dendrites

Receptive Fields (RF)

- The part of the visual field that is coded by a neuron
- Tuned to specific types of info (e.g., longer wave lengths)

Early Visual Feature Detection

Retinal ganglion cells code contrast

Early visual pathway

Geniculostriate Pathway

- Each eye goes to a different layer
- Magno- and Parvo- are separate
- Each layer is retinotopic map

Early visual pathway

Geniculostriate Pathway

https://www.nature.com/articles/s41598-020-78638-y

a

b

hOc1

hOc2

hOc3v

Striate Cortex

aka:

V1 Primary Visual Cortex BA 17 What does V1 do?

Primary Visual Cortex (V1)

What features does it pull out? How?

•How is it organized?

Simple Cell

Primary Visual Cortex (V1)

- •Edge identified by combining contrast info from LGN
- •Simple cells in V1 sensitive to location and orientation of edge
- Complex cells sensitive to direction of motion

Primary Visual Cortex (V1)

- What features does it pull out? How?
 - Edges, Orientation, Motion

•How is it organized?

Visual Map in V1

- The V1 retinotopic map
 - Medial occipital (calcarine sulcus)
 - Upside down and contralateral
 - Over-representation of fovea
 - Cortical magnification
 - Ocular dominance columns
 - Scotoma

Depth from binocular disparity

- Stereopsis
- Binocular disparity
 - Integration across the eyes

Primary Visual Cortex (V1)

- What features does it pull out? How?
 - Edges, Orientation, Motion
 - Depth
- •How is it organized?
 - Retinotopic Map
 - Ocular Dominance Columns
 - Neurons coding similar orientations are also near each other (columns)

Take-aways (Eye to V1)

- The retina transforms light into visual information
- ·Visual processing pulls out information useful for cognition, behavior
 - Segregation of signals early on
 - Integration to generate more complex, abstract info
- •Cells representing nearby info are physically near each other
 - Maps
 - Location, orientation, motion, depth
- •V1 is important for conscious visual perception

How does perception work?

Challenges: Invariance, ambiguity, importance of context

- Different computations for different purposes (segregation)
 - Starting at the eye
 - Recognition and categorization
 - Action and location
- Vision involves
 - Feedforward processing
 - Feedback processing
 - Hierarchical processing
 - Experience based inference

If visual processing involves segregated functions, what are we likely to find from lesion studies?

Functional connectivity

Reuse

Double Dissociation

Distributed processing

If visual processing involves segregated functions, what are we likely to find from lesion studies?

Functional connectivity	
	0%
Reuse	
Neuse .	0%
Double Dissociation	
	0%
Distributed processing	
	0%

If visual processing involves segregated functions, what are we likely to find from lesion studies?

Functional connectivity	
	0%
Reuse	
Neuse .	0%
Double Dissociation	
	0%
Distributed processing	
	0%

The Case of the Color-Blind Painter

Area V4: achromatopsia, not akinetopsia

Patient L. M.

Area V5: akinetopsia, not achromotopsia

Two Visual Processing Streams

Vision for Recognition

Unable to perceive shape

Unable to name objects

Unable to perceive spatial configurations

Unable to perceive affordances

Which of the following do you think best characterizes the deficit this man is showing?

Unable to perceive shape	
	0%
Unable to name objects	
onable to name objects	0%
Unable to perceive spatial configurations	
onable to perceive spatial configurations	0%
	0 70
Unable to perceive affordances	
	0%

Which of the following do you think best characterizes the deficit this man is showing?

Unable to perceive shape	
	0%
Unable to name objects	
onable to name objects	0%
Unable to perceive spatial configurations	
onable to perceive spatial configurations	0%
	0 70
Unable to perceive affordances	
	0%

Recognition break down patterns

Agnosia: failure to recognize

- Apperceptive Agnosia
- Associative Agnosia
- Prosopagnosia
- Topographical disorganization

•Why does it get more specific with more anterior lesions?

Banich_fig. 6_4

TRENDS in Cognitive Sciences

Ventral Visual Processing Stream

Feedforward "sweep"

Hierarchically organized

- RFs in later areas integrate earlier RFs in maps
- Combinations increase in complexity and abstraction
- Contributes to invariance

