CS-417 COMPUTER SYSTEMS MODELING

Spring Semester 2020

Batch: 2016-17

(LECTURE # 29)

FAKHRA AFTAB LECTURER

DEPARTMENT OF COMPUTER & INFORMATION SYSTEMS ENGINEERING NED UNIVERSITY OF ENGINEERING & TECHNOLOGY

Recap of Lecture # 28

Inverse of Petri-Net

Petri-Net as Multi-Graph

State of Petri-Net

Classical Petri-Net

Modeling of CS via Petri-Nets (Concurrency, Synchronization, Limited Resources)

Chapter # 8 (Cont'd)

PETRI NET-BASED PERFORMANCE MODELING

Mutual Exclusion (Conflict)

Fig 16: The Mutual Exclusion Problem

Logical Conditions

- It is often desirable to model logical conditions.
- e.g., to only fire a transition when there are more than *n* tokens in a place.

Fig 17: Petri net component to test condition greater than M

Inhibitor Arcs

- The inhibition function usually represented by *circle-headed arcs*.
- Modifies the enabling rules so that the transition fires only if p_j does not contain tokens.

Fig 18: Inhibitor Arc

to some value but not greater than the value, we can use an inhibitor of arity n + 1 to block a transition if there are more than *n* tokens in place 0.

Fig 19: Petri net component to test condition equal but not greater than M

• To test for the condition of equal • If we wish to test for *less than n* items and remove the items, we could use the Petri net shown in Fig 21.

Modeling conflict and concurrency

- \triangleright An initial marking, $\mu = (1,1,0,0,0)$, results in transitions t_1 and t_2 being enabled, the condition of concurrent transitions.
- ➤ If t_1 fires first, then we have two transitions enabled, t_2 and t_3 . This then depicts a *conflict*.

Fig 21: Petri net modeling *conflict* and *concurrency*

Reachability in Petri-Nets

- A Petri net state, μ , reachable from another state, μ' , if there is an integer number of intermediate steps from μ' to μ .
- e.g., μ_0 = (3, 0, 0, 0), and a target state μ' = (1,0,0,1).
- We can reach this target state in three firings of our net.

Fig 22: Petri net indicating reachability

Reversibility in Petri-Nets

- It is the property where, given some initial state, we can return back to this state, μ , in finite time.
- In Fig 23, μ_0 , is not reversible, since we cannot get back to this state in a finite number of steps.

K-bounded Petri-Net:

- A Petri net defined to be k-place bounded if for all places, there are k or less tokens in each place for all possible states of the network.
- For example, Fig 23 is a three-bounded net.

Fig 23: Petri net

Example Problem

Consider the Petri-Net in Fig 23 with the initial state as $\mu' = (0,1,0,2)$. Is it possible to return to this state after every *few* transitions? If is that so, provide the number of transitions. Is the state reversible?

Fig 23: Petri net

Deadlocked Petri-net

- A Petri net is deadlocked if there are no transitions in the net that are enabled.
- Initial marking, $\mu_0 = (0,0,2,0)$.
- This marking results in no transitions being enabled.
- Conversely, a Petri net is considered *live* if there are any transitions enabled.

Fig 24: Deadlocked Petri-Net

Properties of Petri Nets

LIVENESS

- A transition is *live* if it is potentially firable in any marking of R(M1).
- A transition is *dead* in *M* if it is not potentially firable; if the PN enters marking *M* the dead transition cannot fire any more.

SAFENESS

- A place is *safe* if the token count does not exceed 1 in any marking of R(M1).
- A PN is safe if each place is safe.

Properties of Petri Nets (Cont'd)

BOUNDEDNESS

- A simple generalization of safeness.
- A PN is *k*-bounded if each place is *k*-bounded.

CONSERVATION

• A PN is strictly conservative if the total number of tokens is constant in each marking of R(M1).

