Natural Language Processing

Lecture 07

Dirk Hovy

dirk.hovy@unibocconi.it

Today's Goals

- Understand the difference between sparse and dense representations
- Learn about word2vec and doc2vec
- Understand the underlying algorithms

Dense Distributed Representations

Distributional Hypothesis

"You shall know the meaning of a word by the company it keeps"

Firth (1957)

Similar words have similar contexts

Represent words as vectors/points in space

Similar words have similar vectors

An Example

About 547,000 results (0.63 seconds)

Copenhage Flats Find Unique Rentals in Copenhagen - Airbnb.com.au

Ad www.airbnb.com.au/Copenhagen ▼

Book Flat Rentals From \$49/Night!

Over 1,000,000 listings · Travel like a local · \$1,000,000 Host Guarantee · 24/7 customer service 2015 Innovative Brand of the Year – Marketing Magazine

Apartments Treehouses Castles from \$59.00/day from \$39.00/day from \$129.00/day Entire Home; Private Room ZZZs in the Trees Live Out Your Fairytale

Copenhage (Apartments) Fully Furnished - redappleapartments.com

Ad www.redappleapartments.com/Copenhagen ▼

Huge Selection of Quality Furnished **Apartments in Copenhagen**. Book Safely Now! Monthly Apartments · Nightly Apartments

Latent Semantic Analysis

	rent	location	fairy	rainbow	prince	sleep
flat	87	73	14	11	7	
apartment	H	AVE	720	DEF	F/NE	32
		EXT		'		
N6	MB	ERS	G01	V51C	ER	4 <i>B</i> L)
bed	34		21	15	62	97

Semantic Similarity

Similarity Measures

Dot Product

• "combine" vectors to a scalar

-SUM

$$x \cdot y = \sum_{i=1}^{D} x_i y_i$$
 $i=1$
 $MULTIPLY$

 0.5
 2
 1

 0.5
 6
 3

Vector Norm

• add up square of each element, take $\sqrt{}$

2

6

$$=\sqrt{2^2+6^2}=6.324$$

Nearest neighbors

Word2Vec – Intuitively

```
place all words randomly on fridge for each pair of words:

if in same sentence:
```

move closer together

else:

move further apart

X-POS Y-POS

two one billions never very always wash buy house door dog weekend monday tuesday

VECTORS

Bocconi

Word2Vec – Skipgram Model

rent Renting barglarge apartment in greatgleattionlocation

Nuts and Bolts and Engineering Tricks

Problem?

 We are trying to learn a conditional probability distribution over the vocabulary for each word in the vocabulary:

$$P(w_{out} | w_{in})$$

With a large vocabulary comes large trouble...

Trick 1: Negative Sampling

Sample small set of words, labeled as 0 (not a context word) or 1 (is a context word)

50000

Trick 2: Sub-Sampling

40000

30000

20000

10000

```
Sample a word:
           the
           the
               SOLUTION:
            a
           the
               REMOVE WORDS IN THE
           the
           in
               INPUT SENTENCE
           the
               PROPORTION AL TO THEIR
           the FREQUENCY
        platypus
```

Trick 3: Hierarchical Softmax

Update to regular softmax: O(|V|)

Hierarchical softmax: O(log|V|)

 $P(\text{time} | C) = P_{N0}(right | C) \cdot P_{N1}(left | C) \cdot P_{N2}(right | C) = 0.25$

Vector Space Semantics

king – man + woman ≈ queen

Caveat: Antonyms

His kitchen was always very _____

Caveat: Bias

director – man + woman ≈ secretary police – caucasian + black ≈ criminal

Debiasing Vectors

Part 2 Representing Documents as Vectors

Example 1: Songs

Example 2: Cities

Doc2Vec - Intuitively

```
place words & cities randomly on fridge
for each pair of (word, city):
   if word seen in city:
      move closer together
   else:
```

move further apart

Adding Labels

Le & Mikolov (2014)

Doc2Vec - Model

heute

echt

mal

beschweren

INPUT

Hamburg

Bocconi

Words and Documents

Preview: Better, Contextualized Document Embeddings

Contextual Representations

Encoding Words

Wrapping up...

Representation Comparison

	Discrete	Distributed	
#Dimensions	Data-dependent	Pre-defined	
Content	Count-based	Coefficients	
Density	Sparse	Dense	
Strength	Interpretability	Similarity	
Application	Understanding	Performance	
School of thought	Rationalism	Empiricism	

Take home points

- Text can be represented as dense, continuous embedding vectors
- Embedding models learn similarity via co-occurrence
- Word and document embeddings reflect semantic similarity in high-dimensional space
- Good for similarity, visualization, and classification, bad for analysis