closures-2d

Tim Shaffer¹

August 5, 2015

Tim Shaffer closures-2d August 5, 2015

1 / 26

¹Mentor: C. Kristopher Garrett

Goals

We are releasing software that tests angular approximations in kinetic transport simulations

- Based on code used for a previous publication
- Open source so that others can use/collaborate
- Makes it easy to implement new features
- Implements S_N, P_N, M_N, PP_N, D_N (experimental)

Improvements

Algorithmic changes:

- Added experimental Lebedev quadrature
- ullet Removed γ factor for ansatz correction in momopt
- Changed momopt's regularization in case of bad condition number

Software-related improvements:

- Cross-platform build system
- Automated testing
- Better MPI communication
- Improved documentation
- Improved interface
- Bugfixes
- Profiling and optimization

What Are Kinetic Equations?

Macroscopic

- $\rho(\mathbf{x}, t)$ Density
- $\mathbf{u}(\mathbf{x},t)$ Velocity
- $E(\mathbf{x}, t)$ Kinetic Energy

Discretize **x**, *t* into 100 values: 4GB memory requirement

Mesoscopic

 f(x, v, t) - Density with respect to space and velocity

Discretize **x**, **v**, *t* into 100 pieces: 800TB memory requirement

Macroscopic can be derived from mesoscopic

- $\rho(\mathbf{x},t) = \int_{\mathbb{R}^3} f \, d\mathbf{v}$
- $\mathbf{u}(\mathbf{x},t) = \frac{1}{\rho} \int_{\mathbb{R}^3} \mathbf{v} f \, d\mathbf{v}$
- $E(\mathbf{x}, t) = \frac{1}{2} \int_{\mathbb{R}^3} \|\mathbf{v} \mathbf{u}\|^2 d\mathbf{v}$

What Are Kinetic Equations?

Form of Kinetic Equation – Neutral Particles

$$\partial_t f + \mathbf{v} \cdot \nabla_{\mathbf{x}} = C(f)$$

Left side is the transport equation

$$\partial_t f + \mathbf{v} \cdot \nabla_{\mathbf{x}} = C(f)$$

Right side governs collisions

$$\partial_t f + \mathbf{v} \cdot \nabla_{\mathbf{x}} = C(f)$$

Collisions change the direction of particles The collision operator is problem dependent

What Are Kinetic Equations?

First used for rarefied gas dynamics (e.g. high altitude gases where collisions do not dominate the physics)

$$\partial_t f + \mathbf{v} \cdot \nabla_{\mathbf{x}} = C(f)$$

where $\int C(f) d\mathbf{v} = 0$.

Integrate against **v** to get First Euler/Navier-Stokes equation

$$\partial_t \rho + \nabla_{\mathbf{x}} \cdot (\rho \mathbf{u}) = 0$$

Other areas:

- Radiation transport
- Plasma simulations

What Are Spherical Harmonics?

(Real) Spherical Harmonics

$$Y_{\ell m}(\mu, \phi) = \begin{cases} \sqrt{2} N_{\ell}^{|m|} P_{\ell}^{|m|}(\mu) \sin(|m|\phi), & m < 0 \\ N_{\ell}^{0} P_{\ell}(\mu), & m = 0 \\ \sqrt{2} N_{\ell}^{m} P_{\ell}^{m}(\mu) \cos(m\phi), & m > 0 \end{cases}$$

where
$$N_\ell^m = \sqrt{\frac{2\ell+1}{4\pi} \frac{(\ell-m)!}{(\ell+m)!}}$$
.

- Spherical harmonics are an orthonormal basis of $L^2(S^d)$
- They are usually considered for the unit sphere S^2
- For d = 1, you get Fourier series
- ullet For d=2, you get $Y_{\ell m}(\mu,\phi)$ where ℓ is the degree and m is the order

steal pic

Kinetic Problem

Unit Speed, Isotropic Scattering

$$\partial_t f + \Omega \cdot \nabla_{\mathbf{x}} = \frac{\sigma}{4\pi} \langle f \rangle - \sigma f$$

where $x\in\mathbb{R}^3$, $\Omega\in S^2$, σ is the scattering cross section, and $\langle\cdot\rangle=\int_{S^2}\cdot\mathrm{d}\Omega.$

- Let $\mathbf{m}(\Omega) = (Y_{0,0}, Y_{1,-1}, Y_{1,0}, Y_{1,1}, \dots, Y_{N,-N}, \dots, YN, N)^T$ be a vector of spherical harmonics up to and including degree N
- Take moments with respect to m
- $\mathbf{u}(\mathbf{x},t) = \langle \mathbf{m}(\Omega) f(\mathbf{x},\Omega,t) \rangle$

Why? Because $u_{\ell m} = f_{\ell m}$ and the collision operator is diagonalized

Tim Shaffer closures-2d August 5, 2015 8 / 20

Moment Closures

Exact Moment System

$$\partial_t \mathbf{u} + \nabla_{\mathsf{x}} \cdot \langle \Omega \mathbf{m} f \rangle = \mathsf{D} \mathbf{u}$$

System is not closed

Think of 1D case with $\mathbf{m}(\mu) = (1, \mu, \mu^2, \dots, \mu^n)$:

$$\partial_t u_0 + \partial_x u_1 = D_{00} u_0$$

$$\partial_t u_1 + \partial_x u_2 = D_{11} u_1$$

$$\partial_t u_2 + \partial_x u_3 = D_{22} u_2$$

$$\vdots$$

$$\partial_t u_n + \partial_x u_{n+1} = D_{nn} u_n$$

To close the system: Replace f with $\mathcal{E}(\mathbf{u})$ such that $\langle \mathbf{m}\mathcal{E}(\mathbf{u})\rangle = \mathbf{u}$

Moment Closures

P_N Moment Closure

$$\mathcal{E}(\mathbf{u}) = \mathbf{u}^T \mathbf{m}$$

M_N Moment Closure

$$\mathcal{E}(\mathbf{u}) = \exp\left(\alpha^{\mathsf{T}}\mathbf{m}\right)$$

where α solves $\min_{\hat{\alpha}} \left\langle \exp \left(\hat{\alpha}^\mathsf{T} \mathbf{m} \right) \right\rangle - \hat{\alpha}^\mathsf{T} \mathbf{u}$

Two notes

- The moment closure occurs on every spatial cell and every time point
- All the moment closures are independent

Discrete Ordinates (S_N)

- Textbook method used in many applications
- Simple, direct approximation of the kinetic equation using quadrature sets on the unit sphere
- Strong ray effects at low orders

$$\partial_t f_q + \Omega_q \cdot \nabla_x f_q = \frac{\sigma}{4\pi} \sum_{q'=1}^Q w_{q'} f_{q'} - \sigma f_q$$

where $f_q(x,t) \approx f(x,\Omega_q,t)$ for $q=1,\ldots,Q$

Solvers

kinetic

- Implements S_N
- Easy to compute
- Permits negative densities
- Suffers from ray effects at low order

[picture]

moment

- Implements P_N
- Somewhat easy to compute
- Permits negative densities
- Suffers from oscillatory artifacts
- Filters can improve performance

[picture]

Solvers

momopt

- \bullet Implements M_N and PP_N
- Difficult to compute
- Ensures positivity
- Requires additional optimization procedure

[picture] [picture]

Initial Conditions

Gaussian Initial Condition

Two dimensional Gaussian function centered at the origin

$$f(x,y,\Omega,t=0) = \max\left(rac{1}{2\pi\sigma_g^2}e^{-(x^2+y^2)/(2\sigma_g^2)}, exttt{floor}
ight),$$

where σ_g is the configurable Gaussian sigma and floor is the floor value for the grid.

Delta Initial Condition

Limiting case of Gaussian I.C. with $\sigma_g \to 0$.

Simulates an initial pulse of particles distributed isotropically along an infinite line in space.

Centermost cell is given a high initial density.

Initial Conditions

Lattice Initial Condition

Checker board pattern of highly scattering and highly absorbing regions with empty initial grid.

Reminiscent of a small section of a nuclear reactor core.

Smooth Initial Condition

Primarily intended for testing convergence Initialize the grid points with a periodic boundary given by

$$f(x, y, \Omega, t = 0) = 1 + \sin(2\pi x)\cos(2\pi y).$$

Initial Conditions

Implementation Notes

Spherical Harmonics: $Y_{\ell m}(\Omega)$

•
$$\ell = 0, \dots, N$$
 is the degree

•
$$m = -\ell, \ldots, \ell$$
 is the order

• Total number of moments: $M = (N+1)^2$

$$Y_{0,0}$$
 $Y_{1,-1}$ $Y_{1,0}$ $Y_{1,1}$
 $Y_{2,-2}$ $Y_{2,-1}$ $Y_{2,0}$ $Y_{2,1}$ $Y_{2,2}$

Quadrature in angle: Ω_q , w_q

- $\int_{\mathcal{S}^2} F(\Omega) \, \mathrm{d}\Omega pprox \sum_q w_q F(\Omega_q)$
- Product quadrature: $\int_{\mathcal{S}^2} \mathrm{d}\Omega = \int_{-1}^1 \int_0^{2\pi} \mathrm{d}\phi \, \mathrm{d}\mu$
- n_g Gaussian nodes on μ axis
- $2n_g$ equally spaced nodes on latitudinal circles (for ϕ)
- Total number of quadrature points $Q = 2n_g^2$
- ullet Integrates spherical harmonics of degree $2n_g-1$ exactly!

Spatial Discretization

- Use a 2D Cartesian mesh with constant cell size to break problem space into an $m \times n$ grid
- Store density with respect to direction for each cell
- Also need a halo of ghost cells for boundary conditions, MPI communication

Upwinding

Since f depends on position, **direction**, and time, we *must* use information from the correct side

steal pictures?

Time Stepping

CFL Condition

A small enough time step is necessary for convergence. In this case,

$$\frac{\Delta t}{\Delta x} + \frac{\Delta t}{\Delta y} \le 1$$

Heun's Method

To compute a first estimate, carry out two Euler steps. Now use the average of the initial state and the estimate.

- Explicit, two-stage Runge-Kutta method
- Second order accurate
- Strong stability preserving

Release

We are releasing this code as open source software.

Now uses SCons, a Python-based build system, rather than Makefiles

- Cross platform
- Sets up library search paths
- Intelligent compilation

Depends on:

- GSL
- BLAS
- LAPACK

- OpenMP (optional)
- Open MPI (optional)
- PAPI (optional)

Tests

We implemented automated testing for the following aspects. The testing code carries out

- Regression tests compare output to reference data included with the software
- Convergence tests measure the effect of decreasing the cell size on the precision of the output
- Mass Conservation tests check that total density remains the same

The testing code is written in Python and integrated with the build system

Tim Shaffer closures-2d August 5, 2015 21 / 26

Quadratures

Currently uses Chebyshev-Legendre quadrature.

- Constructed from *n* Gauss-Legendre rule
- Optimized for symmetry
- Exactly integrates 2n-1 moments

Added (experimental) Lebedev quadrature

- Constructed based on octahedral symmetry group
- Optimal with respect to number of points
- Structure does not lend itself to symmetry optimizations
- Negative weights

momopt Changes

γ factor

momopt computes ansatz for the optimization, yielding an approximate solution $\mathbf{u} \approx \left\langle \exp(\alpha^{\mathsf{T}}) \right\rangle$.

Needed to estimate error and try to correct via $\boldsymbol{\gamma}$ ratio.

Required fine mesh and low tolerance on optimization to prevent non-realizability.

Instead, compute $\hat{\mathbf{u}}$ such that $\hat{\mathbf{u}} = \left\langle \exp\left(\alpha^{\mathsf{T}}\right) \right\rangle$.

Fixed regularization

In case of bad condition number (i.e. the system is too sensitive to errors) fall back to isotropic α to allow the algorithm to complete successfully

Tim Shaffer closures-2d August 5, 2015 23 / 26

Performance

Added timing and profiling-related measurement capabilities

Tested additional optimizations

- Spatial blocking (reduce scheduling overhead, cache misses)
- CPU pinning (ccNUMA)
- Memory alignment

Source Code

The source code is available on Github https://github.com/ckrisgarrett/closures-2d

Bibliography

cite that presentation, linesource paper