## §1 Оценка приращения дифференциального отображения

**Утверждение 1.** Пусть  $f: \mathbb{R}^n \to \mathbb{R}^m$ ,  $m \geqslant 2$ . Тогда формула Лагранжа

$$f(b) - f(a) = f'(c)(b - a)$$

не работает.

Е.д. Пусть

$$f(t) := (\cos t, \sin t), b - a = 2\pi$$

**Теорема 2** (об оценке приращения отображения). Пусть  $f: G \subset \mathbb{R}^n \to \mathbb{R}^m$ , G - выпуклое, f - дифференцируема,

$$\forall x \in G \ \|f'(x)\| \leqslant M$$

Тогда  $\forall a, b \in G \|f(b) - f(a)\| \leq M\|b - a\|$ 

□ «Окружим» исходную функцию:

$$F = \psi \circ f \circ \varphi$$

где

$$\varphi: \mathbb{R}^n \to \mathbb{R}^m \qquad \qquad \varphi(t) := t(b-a) + a, \qquad \qquad t \in [0,1]$$
  
$$\psi: \mathbb{R}^m \to \mathbb{R} \qquad \qquad \psi(y) := \langle y, \ell \rangle, \qquad \qquad \ell = f(b) - f(a)$$

Заметим, что F — обычная вещественнозначная функция. Так что для неё работает формула Лагранжа:

$$\exists c \in [0,1]: F(1) - F(0) = F'(c)(1-0) = F'(c)$$

Тогда из свойств нормы (по ходу дела обозначим  $\varphi(c)$  за x):

$$||F'(c)|| = ||\psi'(f(x)) \cdot f'(x) \cdot \varphi'(c)|| \le ||\psi'(f(x))|| \cdot ||f'(x)|| \cdot ||\varphi'(c)||$$

Здесь тонкость в обозначениях. Производные — вроде матрицы, поэтому их нормы — что-то странное на первый взгляд. На самом деле смысл немного иной.

$$dL(x,h) = f'(x) \cdot h$$

Таким образом, дифференциал — неплохое линейное отображение. А под «нормой производной» имеется в виду норма соответствующего линейного отображения.

Теперь давайте что-нибудь скажем про эти нормы.

1. 
$$\varphi'(t) = (b - a) \Rightarrow \|\varphi'(c)\| = \|b - a\|$$

2. 
$$\psi(y) = \langle y, l \rangle, \|\psi\| = \|\ell\|$$

Так что

$$||F'(c)|| \leqslant M \cdot ||\ell|| \cdot ||b - a||$$

С другой стороны:

$$F(1) - F(0) = \psi(f(b)) - \psi(f(a)) = \langle f(b), \ell \rangle - \langle f(a), \ell \rangle = \langle \ell, \ell \rangle = ||\ell||^2$$

В итоге, совмещая оба выражения, приходим к утверждению теоремы.

## § 2 Частные производные высших порядков

**Определение 1.** Пусть  $f\colon G\subset\mathbb{R}^n\to\mathbb{R}$ , существуют производные k-го порядка. Тогда

$$\partial_{i_1,\dots,i_{k+1}}^{k+1} f(x) := \partial_{i_{k+1}} (\partial_{i_1,\dots,i_{k+1}}^k f)(x)$$

3амечание 1.  $C^p(G)$  — класс функций, определённых в G с непрерывной производной до p-го порядка включительно. Функции из  $C^1$  ещё называются гладкими.

**Теорема 1** (Зависимость производных *p*-го порядка от перестановки переменных). Пусть  $f \in C^p(G), x \in G$ . При этом

$$i = \{i_1, \dots, i_p \mid i_k \in \{1, \dots, n\}\}$$

$$j = \{j_1, \dots, j_p \mid j_k \in \{1, \dots, n\}\}$$

$$j = \pi(i)$$

 $Tor \partial a \ \partial_i^p f(x) = \partial_i^p f(x)$ 

Замечание 1. Тут важно, что есть целая окрестность. Одной точки не хватит.

## § 3 «Многомерный» дифференциал высоких порядков

Определение 1. Пусть  $f : G \subset \mathbb{R}^n \to \mathbb{R}, f \in C^p(G)$ 

$$d^{p} f(x) := \sum_{1 \leqslant i_{1} \leqslant \dots \leqslant i_{p} \leqslant n} \frac{\partial^{p} f}{\partial x_{i_{p}} \dots \partial x_{i_{p}}} dx_{i_{1}} \dots dx_{i_{p}}$$

Утверждение 1. Если частные производные можно переставлять, то

$$d^{p} f(x) = \sum_{\substack{\alpha_{i} \geqslant 0 \\ \sum \alpha_{i} = p}} \frac{p!}{\alpha_{1}! \cdots \alpha_{n}!} \frac{\partial^{p} f}{\partial x_{1}^{\alpha_{1}} \dots \partial x_{n}} dx_{i_{1}} \cdots dx_{i_{p}}$$

#### § 4 Формула Тейлора для функций многих переменных

**Теорема 1.** Пусть  $f \in C^p(G), G \in \mathbb{R}^n$ ,  $a \in G$ . Пусть также  $h \in \mathbb{R}^n$ :  $a + h \in G$ . Тогда

$$f(a+h) = \sum_{k=0}^{p} \frac{1}{k!} d^{k} f(a,h) + R_{p}(h)$$

Остаток  $R_p(h)$  можно представить несколькими способами:

- 1. В форме Пеано:  $R_p(h) = o(\|h\|^p)$
- 2. В форме Лагранжа:  $R_p(h) = \frac{1}{(p+1)!} d^{p+1} f(a+\theta h,h), \ \theta \in (0,1)$

## §5 Экстремумы

**Определение 1.** Пусть  $f\colon G\subset\mathbb{R}^n\to\mathbb{R},\ a\in G.$  Тогда говорят, что f имеет в a максимум (нестрогий), если

$$\exists U(a) : \forall x \in U \ f(x) \leq f(a)$$

Когда неравенство строгое, а окрестность проколотая, то максимум — строгий Для минимума + нужно  $\geq$ .

**Теорема 1** (Необходимое условие экстремума). Пусть а внутренняя точка  $G \subset \mathbb{R}^n$ ,  $f \in C^1(a)$ . Тогда если f имеет g а экстремум, то

$$df(a) = 0 \Leftrightarrow \forall i \ \partial_i f(a) = 0$$

**Теорема 2** (Необходимое условие экстремума). Пусть  $a \in G \subset \mathbb{R}^n$ ,  $a - внутренняя точка, <math>f \in C^2(a)$ .

- 1. df(a) = 0,  $d^2f(a) > 0 \Rightarrow f$  имеет в a min
- 2. df(a) = 0,  $d^2f(a) < 0 \Rightarrow f$  имеет в  $a \max$
- 3. df(a) = 0,  $d^2f(a) \leq 0 \Rightarrow \text{ничего нет}$
- 4. df(a) = 0,  $d^2f(a) \leq 0 \Rightarrow f$  не имеет в a min
- 5. df(a) = 0,  $d^2f(a) \geqslant 0 \Rightarrow f$  не имеет в  $a \max$

# § 6 Понятие о неявной функции

Определение 1. Пусть  $F: G \subset \mathbb{R}^2 \to \mathbb{R}$ . Рассмотрим уравнение

$$F(x,y) = 0 (1)$$

Пусть  $a=(x_0,y_0)$  удовлетворяет (1), а U — окрестность  $a\colon U=U_x\times U_y$ . Тогда будем говорить, что уравнение (1) определяет неявную функцию f в U, если

$$\forall x \in P \exists! y \in Q \colon F(x,y) = 0 \qquad (y = f(x))$$

**Теорема 1** (О неявной функции). Пусть  $F: G \subset \mathbb{R}^2 \to \mathbb{R}, F \in C^1(x_0, y_0), a \ a = (x_0, y_0)$ :

- 1.  $F(x_0, y_0) = 0$
- 2.  $F'_{u}(x_0, y_0) \neq 0$

Тогда  $\exists P(x_0), Q(y_0)$ : в  $U = P \times Q$  уравнение (1) задаёт неявную функцию  $f \colon P \to Q$ . При этом

 $f \in C^1 \wedge f'(x) = -\frac{F'_x(x,y)}{F'_y(x,y)}$ 

1. (Доказательство существования)

Рассмотрим  $\varphi(y) = F(x_0, y)$ . Пусть НУО  $F_y'(x_0, y_0) > 0$ . Тогда

$$\exists U_{\varepsilon}(x_0, y_0) \colon \forall x, y \in U \ F'_{\eta}(x, y) > 0$$

Обозначим соответствующие проекции U (шар) на координатные оси за  $U_x, U_y$  Получается, что  $\varphi \uparrow U_y = (y_0 - \varepsilon; y_0 + \varepsilon)$ . Тогда

$$\exists V_1(x_0) \colon \forall x \in V_1 F(x, y + \varepsilon) > 0$$
$$\exists V_2(x_0) \colon \forall x \in V_2 F(x, y - \varepsilon) < 0$$
$$P = V_1 \cap V_2$$

Тогда из теоремы Больцано-Коши и монотонности  $\varphi$ 

$$\forall x \in P \exists ! y \in Q = U_y \colon F(x, y) = 0$$

В итоге получилось определение неявной функции.

- 2. Непрерывность в  $(x_0, y_0)$  вроде очевидна, мы же каждому x из P сопоставили 1 y из Q. Принадлежность классу C можно установить проведя аналогичные рассуждения для  $x \in P(x_0)$
- 3. С гладкостью что-то странное. Можно наверное сделать как в Зориче.
- 4.  $F(x, f(x)) \equiv 0 \Rightarrow F'_x \cdot 1 + F'_2 f'(x) = 0$

#### § 7 Полнота пространства $\mathbb{R}^n$

#### §8 Теорема о сжимающем отображении

**Определение 1.** Пусть  $(X, \rho)$  — метрическое пространство. Тогда отображение  $T \colon X \to X$  называется сжимающим, если

$$\exists C \in (0,1) \colon \forall x', x'' \rho(T(x'), T(x'')) \leqslant C \cdot \rho(x', x'')$$

**Теорема 1** (Банах). Пусть  $(X, \rho)$  — полное метрическое пространство, а отображение  $T: X \to X$  — сжимающее. Тогда  $\exists ! x_* \in X : Tx_* = x_*$  (неподвижная точка).

Ещё часто ссылаются на следующий факт, появляющийся в процессе доказательства:

$$\forall x_0 \in X \exists \lim_{n \to \infty} T^n x_0 = x_*$$

## § 9 Метод Ньютона

потом

# § 10 Теорема об обратном отображении (формулировка)

Пусть  $F:G\subset\mathbb{R}^n\to\mathbb{R}^m$  — гладкое. Порассуждаем, когда может существовать  $F^{-1}$ .

Рассмотрим, например, линейное отображение.

$$y = F(x) = Ax \Leftrightarrow \begin{cases} y_1 = a_{11}x_1 + \dots + a_{1n}x_n \\ \dots \\ y_m = a_{m1}x_1 + \dots + a_{mn}x_n \end{cases}$$

Понятно, что в таком случае задача поиска обратного отображения сводится к поиску обратной матрицы. Тогда из линала ясно, что для того, чтобы у нас всё вышло, нужно

$$m = n \wedge \det A \neq 0$$

Теперь попытаемся обобщить на остальные функции.

Пусть  $a \in G$ , b = F(a)

$$(?)\exists U(a), V(b): F: U \leftrightarrow V$$



$$\Delta F = F(x) - F(a) = y - b = \Delta y \tag{1}$$

$$\Delta F = F'(a)dx + o(dx) \tag{2}$$

$$dF(a) = dy(b) \tag{3}$$

Условие разрешимости (3) —  $\det(F'(a)) \neq 0$ . Утверждается, что (3)  $\Rightarrow$  (1) Соответственно, формулировка

**Теорема 1.** Пусть  $F: G \subset \mathbb{R}^n \to \mathbb{R}^n$ ,  $a \in G$ , b = F(a). Пусть ещё  $F \in C^1$ ,  $\det(F'(a)) \neq 0$  Тогда

$$\exists U(a), V(b) : F: U \leftrightarrow V$$
$$\exists F^{-1}V \to U, F^{-1} \in C^{1}$$

#### § 11 Доказательство теоремы об обратимости

□ (Теорема об обратимости отображения) Введём обозначения:

$$F'(a) = \Gamma$$
  

$$\Phi(x) = x - \Gamma^{-1}(F(x) - y)$$

Нетрудно заметить, что x — неподвижная точка  $\Phi$  (что  $\Leftrightarrow$  F(x)=y ). Очень хотелось бы подогнать всё под теорему Банаха (0.8.1). Тогда отображение в окрестности a будет взаимнооднозначным.

1. Сначала оценим  $\|\Phi'\|$ .

$$\Phi'(x) = E - \Gamma^{-1}(F'(x)) = \Gamma^{-1}(F'(a) - F'(x))$$

Можно норму оценить

$$\|\Phi'(x)\| = \|\Gamma^{-1}\| \cdot \|(F'(a) - F'(x))\|$$

Последний множитель явно  $\xrightarrow[x \to a]{} 0$  (так как  $F \in C^1$ ) Тогда и  $\|\Phi'(x)\| \to 0$ . А значит найдётся  $U_{\varepsilon}(a)\colon \|\Phi'(x)\| \leqslant \frac{1}{2}$ .

Тогда по теореме 0.1.2

$$x, x' \in U_{\varepsilon}(a) \Rightarrow \|\Phi(x) - \Phi(a)\| \leqslant \frac{1}{2} \|x - x'\|$$

Собственно, почти победа. Осталось лишь выбрать внутри  $U_{\varepsilon}$  компакт  $\overline{U_{\varepsilon_1}}$  (иначе множество не очень полное).

2. Теперь покажем, что

$$\exists \, \overline{U} \colon \Phi(U) \subset U$$

Попутно примем  $||y - b|| < \delta$ , это потом поможет доказать непрерывность.

$$\|\Phi(x) - a\| = \|x - a - \Gamma^{-1}(F(x) - y)\| \le \|\Gamma^{-1}\| \cdot \|\Gamma(x - a) - F(x) + y + b - b\|$$

$$\le \|\Gamma^{-1}\| \cdot (\| - \underbrace{(F(x) - F'(a)(x - a) - F(a))}_{x} \| + \|y - b\|)$$

Выберем произвольный  $\varepsilon$ :  $0 < \varepsilon < \varepsilon_1$ .

Однако мы ещё можем подкрутить  $\varepsilon_1$ .

$$\exists U_{\varepsilon_1} \colon \frac{\|\alpha\|}{\|x - a\|} < \frac{1}{2\|\Gamma^{-1}\|}$$

Это следует из формулы Тейлора (0.4.1), а применять её можно, так как шар — выпуклое множество. Ещё выберем  $\delta = \frac{\varepsilon}{2||\Gamma^{-1}||}$ . Там правда  $\varepsilon$ , а не  $\varepsilon_1$ .

Тогда цепочка неравенств выше преобразуется к такому виду

$$\dots < \|\Gamma^{-1}\| \cdot \frac{\|x-a\|}{2\|\Gamma^{-1}\|} + \frac{\varepsilon}{2\|\Gamma^{-1}\|} \cdot \|\Gamma^{-1}\|$$

А теперь положим  $||x-a|| \leqslant \varepsilon$  (неравенство нужно нестрогое для полноты). Тогда

$$x \in \overline{U_{\varepsilon}}(a) \Rightarrow \Phi(x) \in U_{\varepsilon}(a) \subset \overline{U_{\varepsilon}}(a)$$

А теперь по теореме Банаха

$$\exists ! x_0 \in \overline{U_{\varepsilon}}(a) \colon \Phi(x_0) = x_0 \Leftrightarrow F(x_0) = y_0$$

Видимо, осталось пересечь окрестность a с прообразом  $V(b): U = F^{-1}(V) \cap U_{\varepsilon}(a)$ 

3. Заодно получилась и непрерывность:

$$\forall U \exists V_{\delta}(b) \colon F^{-1}(V_{\delta}) \subset U_{\varepsilon}$$

# § 12 Теорема о дифференцируемости обратного отображения

**Теорема 1** (о дифференцируемости  $F^{-1}$ ). Пусть  $U \subset \mathbb{R}^n$ ,  $V \subset \mathbb{R}^n$ ,  $F : U \leftrightarrow V$ . Пусть также  $F - \partial u \phi \phi$  ренцируемо в  $a \in U$ , F(a) = b,  $\det F'(a) \neq 0$ . Тогда  $F^{-1}$  дифференцируемо в b.

 $\square$  То, что есть обратное отображение, доказали выше. Пусть y=F(x). Обозначим: h=x-a, k=y-b. Отображение биективно, значит  $h\neq 0 \Leftrightarrow k\neq 0$ . Из дифференцирумости F

$$k = y - b = F(x) - F(a) = Ah + \alpha\alpha = o(h) \ (h \to 0)$$

 $A=F'(a) \neq 0$ , следовательно  $\exists\,A^{-1}$ 

$$A^{-1}k = A^{-1}Ah + A^{-1}\alpha \Rightarrow \Delta F^{-1} = h = A^{-1}k - A^{-1}\alpha$$

Докажем, что  $-A^{-1}\alpha =: \beta = o(k) \; (k \to 0)$ 

$$\beta \leqslant \frac{-\alpha}{\|k\|} = \frac{-\alpha}{\|h\|} \cdot \frac{\|h\|}{\|k\|}$$

Покажем, что последни член — ограничен

$$\frac{\|h\|}{\|k\|} = \frac{\|h\|}{\|Ah + \alpha\|} \leqslant \frac{\|h\|}{\|\|Ah\| - \|\alpha\|\|} = \frac{1}{\|\frac{\|Ah\|}{\|h\|} - \frac{\|\alpha\|}{\|h\|}}$$

А последнее выражение ограничено при  $\|h\| < \delta$ 

Следствие.  $(F^{-1})'(b) = (F'(a))^{-1}$ 

#### § 13 Теорема о гладкости обратного отображения

**Теорема 1.** Пусть  $F\colon U \leftrightarrow V$ , биективна,  $\in C^p$ . Пусть  $\kappa$  тому эке  $\det F'(x) \neq 0$ . Тогда  $F^{-1} \in C^p$ 

□ Введём обозначения (оно всё существует по предыдущим теоремам хоть где-то)

$$F'(x) = \left(\frac{\partial F_i}{\partial x_j}\right)_{i,j=1}^n = (a_{ij}) = A$$
$$(F^{-1})'(y) = \left(\frac{\partial F_i^{-1}}{\partial y_j}\right)_{i,j=1}^n = (b_{ij}) = B$$

Вполне ясно, что  $B = A^{-1}$ . Из алгебры  $b_{ij} = \frac{A_{ji}}{\det A}$  (здесь A — алгебраическое дополнение).

Заметим, что из последнего выражения следует, что  $b_{ij}$  — рациональная функция от  $\{a_{lk}\}$ . Следовательно,  $\widetilde{b_{ij}} = b_{ij}(a_{11}, \dots, a_{kl}, \dots, a_{nn}) \in C^{\infty}$ . С другой стороны

$$b_{ij}(y) = \frac{\partial F^{-1}}{\partial y_i}(y) = \frac{\partial F^{-1}}{\partial y_i}(F(x)) \Leftrightarrow b_{ij}(y) = \widehat{b_{ij}}(x)$$

Так что  $\widehat{b_{ij}} = b_{ij} \circ F$ .

Дальше немного магии. Введём ещё одну функцию

$$\overline{b_{ij}}(x) = b_{ij}(a_{11}(x), \dots, akl(x), \dots, a_{nn}(x))$$

Заметим, что каждая  $a_{ij}(x) \in C^{p-1} \Rightarrow \overline{b_{ij}} \in C^{p-1}$ . Хорошо, тогда

$$b_{ij}(y) = (\overline{b_{ij}} \circ F^{(-1)})(y)$$

Раньше доказали, что  $F^{-1} \in C^0$ . Теперь разматываем цепочку дальше:

$$F^{-1} \in C^i \Rightarrow \overline{b_{ij}} \circ F^{-1} \in C^i \Rightarrow b_{ij} \in C^i$$

Значит, частные производные  $F^{-1}$  принадлежат  $C^i$ . Тогда сама  $F^{-1} \in C^{i+1}$ . Таким бобром мы доберёмся до  $C^p$ . Дальше не выйдет, так как не хватит гладкости  $\overline{b_{ij}}$ .

#### § 14 Гладкая зависимость корней многочлена от его коэффициентов

**Теорема 1.** Пусть  $P(x) \in \mathbb{R}[x]$  имеет п корней  $(x_j^0)$ ,  $x_j^0 \in \mathbb{R}$ , таких что  $\forall i, j \ x_i^0 \neq x_j^0$ . Тогда

$$x_i = x_i(a_0, \dots, a_{n-1}) \in C^{\infty}$$

 $\square$  Пусть  $P(x) = (x - x_1) \cdots (x - x_n)$ . Вспомним теорему Виета (из алгебры)

$$a_0 = (-1)^n x_1 \cdots x_n$$
  
 $a_1 = (-1)^{n-1} \sum_i \prod_{j \neq i} x_j$ 

. . . . . . . . .

$$a_{n-1} = (-1)\sum_{i} x_i$$

Рассмотрим P как отображение  $(x_1, ..., x_n) \mapsto (a_0, ..., a_{n-1}).$ 

$$P'(x) = \begin{pmatrix} \frac{\partial P_1}{\partial x_1} & \cdots & \frac{\partial P_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial P_n}{\partial x_1} & \cdots & \frac{\partial P_n}{\partial x_n} \end{pmatrix} = \begin{pmatrix} (-1)^n \prod_{i \neq 1} x_i & (-1)^n \prod_{i \neq 2} x_i & \cdots & (-1)^n \prod_{i \neq n} x_i \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ -1 & -1 & \cdots & -1 \end{pmatrix}$$

Посчитаем  $\det(F')$ . Этот определитель можно рассмотреть как многочлен  $\in R[x_1,\ldots,x_n]$  Его степень не превосходит  $0+1+\cdots+(n-1)=\frac{n(n-1)}{2}$ . Заметим, что если хоть какая-то пара столбиков равны, то определитель равен нулю. Так что  $\det(F')$  делится на всевозможные многочлены вида  $x_i-x_j$ . А их как раз  $\frac{n(n-1)}{2}$  и они неприводимые. Следовательно,

$$\det(F')(x_1,\ldots,x_n) = C \prod_{i < j} (x_i - x_j)$$

 ${\bf A}$  значит при условии неравенства корней он ненулевой.  $^1$ 

Дальше можно воспользоваться теоремой о гладкости обратного отображения.

#### § 15 Теорема о неявном отображении

20:07 2016-10-15

Определение 1. Пусть  $F: \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^m$ . Рассмотрим уравнение

$$F(x,y) = 0 (1)$$

Пусть  $x^0 \in \mathbb{R}^n, y^0 \in \mathbb{R}^k$  такие, что  $F(x^0, y^0) = 0$ .

Тогда если  $\exists P(x^0) \subset \mathbb{R}^n, \, Q(y^0) \subset \mathbb{R}^m, \,$ такие что

$$\forall x \in P \exists ! y \in Q \colon F(x,y) = 0$$

то говорят, что уравнение (1) задаёт неявную функцию  $f: P \to Q$ .

Сначала всякие комментарии.

$$(1) \Leftrightarrow \begin{cases} F_1(x_1, \dots, x_n, y_1, \dots, y_m) = 0 \\ \dots \\ F_k(x_1, \dots, x_n, y_1, \dots, y_m) = 0 \end{cases}$$

Как обычно, главная идея состоит в том, чтобы всё линеаризовать

$$\begin{cases}
dF_1 = 0 \\
...
dF_k = 0
\end{cases}
\Leftrightarrow
\begin{cases}
\sum_{j=1}^m \frac{\partial F_1}{\partial y_j} dy_j = \sum_{j=1}^m \frac{\partial F_1}{\partial x_j} dx_j \\
...
\sum_{j=1}^m \frac{\partial F_k}{\partial y_j} dy_j = \sum_{j=1}^m \frac{\partial F_k}{\partial x_j} dx_j.
\end{cases}$$
(2)

При этом  $dy_j$  мы хотим выразить через  $dx_j$ . Какие-то шансы обратить всё это дело есть лишь при условиях:

1. k = m

2. 
$$\det\left(\frac{\partial(F_1,\ldots,F_k)}{\partial(y_1,\ldots,y_m)}\right)\neq 0$$

Сейчас будем доказывать, что  $(2) \Rightarrow (1)$ .

**Теорема 1** (Теорема о неявном отображении). Пусть  $F: G \subset \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ ,  $F \in C^p$ ,  $p \geqslant 1$ .

$$F(x,y) = 0, (x_0, y_0) \in G$$

- 1.  $F(x_0, y_0) = 0$
- 2.  $\det F'_{\nu}(x_0, y_0) \neq 0$

<sup>&</sup>lt;sup>1</sup>Этого, конечно, не было в курсе алгебры, но там не используется ничего страшнее теоремы о делении с остатком. Вообще доказать бы надо, но лень.

Тогда  $\exists P(x_0), Q(x_0), \ maкие, \ что \ (1)$  задаёт неявное отображение  $f \colon P \to Q$ . При этом  $f \in C^p$  и

$$f'(x) = -(F'_y(x,y))^{-1} \cdot F'_x(x,y)$$

 $\square$  Доказательство — «обёртка» над теоремой об обратном отображении. К слову, в [?, с. 673] сразу доказывается утверждение о неявном отображении.

Итак, обозначения:

1.  $\Phi: G \subset \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n \times \mathbb{R}^m$ . Работает как-то так:

$$(x,y) \mapsto (u,v), \begin{cases} u=x, & u \in \mathbb{R}^n \\ v=F(x,y), & v \in \mathbb{R}^m \end{cases}$$

- 2.  $i \colon \mathbb{R}^n \to \mathbb{R}^n \times \mathbb{R}^m$  такого сорта  $x \mapsto (x,0)$
- 3.  $\pi \colon \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$  такого сорта  $(x,y) \mapsto y$

Теперь найдём определитель  $\Phi'(x,y)$ . Посчитав как-то частные производные, получим

$$\Phi'(x,y) = \left(\begin{array}{c|c} E_n & 0 \\ \hline F'_x & F'_y \end{array}\right) \Rightarrow \det(\Phi'(x_0,y_0)) = \det E_n \cdot \det F'_y(x_0,y_0) \neq 0$$

Чудно, значит по теореме об обратном отображении (0.10.1)  $\exists \Phi^{-1}(x_0, y_0)$  и ещё окрестности  $U(x_0, y_0), V(x_0, 0)$ . Теперь определим окрестности из условия теоремы:

$$P(x_0) = i^{-1}(V) \wedge Q(y_0) = \pi(U)$$

По сути — проекции.

В таких обозначениях  $f=\pi\circ\Phi^{-1}\circ i$ . Вполне очевидно, что  $f\in C^p$ . Ну  $i,\pi\in C^\infty,\ \Phi^{-1}\in C^p$ . К тому же

$$\forall x \in P \ x \stackrel{i}{\mapsto} (x,0) \stackrel{\Phi^{-1}}{\mapsto} (x,y) \stackrel{\pi}{\mapsto} y \in Q$$

При этом такой y — единственный. В итоге получилось задать неявно отображение f.

Из вышесказанного, оно сколько нужно раз дифференцируемо. Так что

$$\frac{\partial}{\partial x}F(x,f(x)) = F'_x \cdot E + F'_y \cdot f'(x) = 0$$

По условию  $F_y^\prime$  — обратима. Следовательно,

$$f'(x) = -(F'_y(x,y))^{-1} \cdot F'_x(x,y)$$

## § 16 Функциональная зависимость системы функций

**Определение 1.** Пусть  $f_1, \ldots, f_m, g \colon G \subset \mathbb{R}^n \to \mathbb{R}$  — гладкие функции,  $x_0 \in G$ . Тогда эти функции называются функционально зависимыми в  $V(x_0)$ , если

$$\exists \varphi \colon U(f(x_0)) \to \mathbb{R}, \varphi \in C^1 : g(x) = \varphi(f(x)) \text{ b } V(x_0)$$

**Определение 2.** Пусть  $f_1, \ldots, f_m, g \colon G \subset \mathbb{R}^n \to \mathbb{R}$  — гладкие функции. Тогда эти функции называются функционально *не*зависимыми, если определение выше не выполняется ни для какой  $V \subset G$ 

Замечание. Тут лажа какая-то с определениями, не отрицание же нифига.

2016-10-16 13:21

**Теорема 1.** (о функциональной зависимости) Пусть  $f_1, \ldots, f_m, g \colon G \subset \mathbb{R}^n \to \mathbb{R}$  — гладкие функции. К тому же  $a \in G$ ,  $f = (f_i)_i$ , y = f(x),  $\operatorname{rk} \begin{pmatrix} f_1' \\ \vdots \\ f_m' \end{pmatrix} = m$  в точке  $x \in U(a)$ . Тогда, если

$$\operatorname{rk} \begin{pmatrix} f_1' \\ \vdots \\ f_m' \\ g' \end{pmatrix} = m$$
 в точке  $x \in U(a)$ , то  $\exists V(a)$  в которой  $g$  функционально зависит от  $f_1, \dots, f_m$ .

 $\square$  Пусть сразу  $n \geqslant m$ , иначе условие теоремы не выполняется совсем никогда (ну там m векторов всегда  $\square 3$ ).

Введём обозначения:

$$x = (\underbrace{x, \dots, x_m}_{\bar{x}}, \underbrace{x_{m+1}, \dots, x_n}_{\bar{x}}), \ \bar{y} = (y_1, \dots, y_m, \bar{x})$$

Из алгебры в  $f'(x), x \in U(a)$  существует ненулевой минор порядка m. Можно НУО считать, что он соответствует  $\bar{x}$ . Тогда это равносильно тому, что  $\det\left(\frac{\partial f}{\partial \bar{x}}(a)\right) \neq 0$ .

Рассмотрим такую неявную функцию

$$F \colon \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m, \ F(\bar{y}, \bar{x}) = y - f(\bar{x}, \bar{\bar{x}}) = 0$$

Оно всё по условию гладкое. Тогда по теореме о неявном отображении существует пара окрестностей P,Q и

$$\exists \varphi \colon P \subset \mathbb{R}^n \to Q \subset \mathbb{R}^m, \ \bar{x} = \varphi(\bar{y})$$

В этих окрестностях  $F\equiv 0 \Leftrightarrow y\equiv f(\varphi(y,\bar{x}),\bar{x})$ . Заметим, что здесь  $y,\bar{x}$  — независисые переменные. Так что если j>m, то

$$\frac{\partial}{\partial x_j} f_i(\varphi(\bar{y}), \bar{\bar{x}}) = \sum_{k=1}^m \partial_k f_i \cdot \frac{\partial \varphi_k}{\partial x_j} + \partial_j f_i \equiv 0$$

Из условия на ранг известно, что

$$g'(x) = \sum_{i=1}^{m} \lambda_i f_i'(x), \ x \in U(a)$$

Нам для того чтобы показать, что g функционально зависит от f, необходимо приравнять в окрестности точки a g к функции от y. Пусть снова j > m, тогда

$$g(x) = g(\bar{x}, \bar{x}) = g(\varphi(\bar{y}), \bar{x})$$
$$\frac{\partial g}{\partial x_j} = \sum_{k=1}^m \partial_k g \cdot \frac{\partial \varphi_k}{\partial x_j} + \partial_j g$$

А вот теперь нужно воспользоваться условием на ранги. Тут очень важно, что это условие работает в окрестности a — ведь какие-то тождества в точке нам ничего интересного не дадут.

$$\frac{\partial g}{\partial x_j} = \sum_{i=1}^m \lambda_i \left( \partial_k f \cdot \frac{\partial \varphi_k}{\partial x_j} + \partial_j f_i \right) = 0$$

Из того, что  $g, \varphi$  — гладкие получаем, что и функция, нужная в определении 0.16.1 тоже гладкая. Вроде всё.  $\blacksquare$