Mathematics

Robin Adams

August 5, 2023

Chapter 1

Sets and Classes

1.1 Classes

Our language is the language of first-order logic with equality over one primitive binary predicate \in . We call all the objects we reason about *sets*. When $a \in b$, we say a is a *member* or *element* of b, or b contains a. We write $b \ni a$ for $a \in b$, and $a \notin b$ for $\neg(a \in b)$. We write $\forall x \in a.\phi$ as an abbreviation for $\forall x(x \in a \to \phi)$, and $\exists x \in a.\phi$ as an abbreviation for $\exists x(x \in a \land \phi)$.

We shall speak informally of *classes* as an abbreviation for talking about predicates. A *class* is determined by a unary predicate $\phi[x]$ (possibly with parameters). We write $\{x \mid \phi[x]\}$ or $\{x : \phi[x]\}$ for the class determined by $\phi[x]$. We write 'a is an element of $\{x \mid \phi[x]\}$ ' or ' $a \in \{x \mid \phi[x]\}$ ' for $\phi[a]$.

We write $\{t[x_1, ..., x_n] \mid P[x_1, ..., x_n]\}$ for

$$\{y \mid \exists x_1, \dots, x_n (y = t[x_1, \dots, x_n] \land P[x_1, \dots, x_n])\}$$
.

We say two classes **A** and **B** are *equal*, and write $\mathbf{A} = \mathbf{B}$, iff $\forall x (x \in \mathbf{A} \leftrightarrow x \in \mathbf{B})$.

Proposition Schema 1.1.1. For any class **A**, the following is a theorem.

$$\mathbf{A} = \mathbf{A}$$

PROOF: We have $\forall x (x \in \mathbf{A} \Leftrightarrow x \in \mathbf{A})$. \square

Proposition Schema 1.1.2. For any classes **A** and **B**, the following is a theorem.

If
$$\mathbf{A} = \mathbf{B}$$
 then $\mathbf{B} = \mathbf{A}$.

PROOF: If $\forall x (x \in \mathbf{A} \Leftrightarrow x \in \mathbf{B})$ then $\forall x (x \in \mathbf{B} \Leftrightarrow x \in \mathbf{A})$.

Proposition Schema 1.1.3. For any classes A, B and C, the following is a theorem.

If
$$A = B$$
 and $B = C$ then $A = C$.

PROOF: If $\forall x (x \in \mathbf{A} \Leftrightarrow x \in \mathbf{B})$ and $\forall x (x \in \mathbf{B} \Leftrightarrow x \in \mathbf{C})$ then $\forall x (x \in \mathbf{A} \Leftrightarrow x \in \mathbf{C})$. \Box

1.1.1 Subclasses

Definition 1.1.4 (Subclass). We say a class **A** is a *subclass* of **B**, or **B** is a *superclass* of **A**, or **B** *includes* **A**, and write $\mathbf{A} \subseteq \mathbf{B}$ or $\mathbf{B} \supseteq \mathbf{A}$, iff every element of **A** is an element of **B**. Otherwise we write $\mathbf{A} \not\subseteq \mathbf{B}$ or $\mathbf{B} \not\supseteq \mathbf{A}$.

We say **A** is a *proper* subclass of **B**, **B** is a *proper* superclass of **A**, or **B** properly includes **A**, and write $\mathbf{A} \subsetneq \mathbf{B}$ or $\mathbf{B} \supsetneq \mathbf{A}$, iff $\mathbf{A} \subseteq \mathbf{B}$ and $\mathbf{A} \neq \mathbf{B}$.

Proposition Schema 1.1.5. For any class **A**, the following is a theorem.

$$\mathbf{A} \subseteq \mathbf{A}$$

PROOF: Every element of **A** is an element of **A**. \square

Proposition Schema 1.1.6. For any classes **A** and **B**, the following is a theorem.

If
$$A \subseteq B$$
 and $B \subseteq A$ then $A = B$.

PROOF: If every element of A is an element of B, and every element of B is an element of A, then A and B have exactly the same elements. \Box

Proposition Schema 1.1.7. For any classes A, B and C, the following is a theorem.

If
$$A \subseteq B$$
 and $B \subseteq C$ then $A \subseteq C$.

PROOF: If every element of A is an element of B and every element of B is an element of C then every element of A is an element of C.

1.1.2 Constructions of Classes

Definition 1.1.8 (Empty Class). The *empty class* \emptyset is $\{x \mid \bot\}$. Every other class is *nonempty*.

Definition 1.1.9 (Universal Class). The universal class V is $\{x \mid \top\}$.

Definition 1.1.10 (Enumeration). Given objects a_1, \ldots, a_n , we define the class $\{a_1, \ldots, a_n\}$ to be the class $\{x \mid x = a_1 \lor \cdots \lor x = a_n\}$.

Definition 1.1.11 (Intersection). For any classes **A** and **B**, the *intersection* $\mathbf{A} \cap \mathbf{B}$ is $\{x \mid x \in \mathbf{A} \land x \in \mathbf{B}\}.$

Definition 1.1.12 (Union). For any classes **A** and **B**, the *union* $\mathbf{A} \cup \mathbf{B}$ is $\{x \mid x \in \mathbf{A} \lor x \in \mathbf{B}\}.$

Definition 1.1.13 (Relative Complement). Let **A** and **B** be classes. The *relative complement* of **B** in **A** is the class $\mathbf{A} - \mathbf{B} := \{x \in \mathbf{A} \mid x \notin \mathbf{B}\}.$

Definition 1.1.14 (Symmetric Difference). For any classes **A** and **B**, the *symmetric difference* is the class $\mathbf{A} + \mathbf{B} := (\mathbf{A} - \mathbf{B}) \cup (\mathbf{B} - \mathbf{A})$.

Definition 1.1.15 (Pairwise disjoint). Let **A** be a class. We say the elements of **A** are *pairwise disjoint* iff, for all $x, y \in \mathbf{A}$, if $x \cap y \neq \emptyset$ then x = y.

1.2 Sets and the Axiom of Extensionality

Definition 1.2.1 (Axiom of Extensionality). The *Axiom of Extensionality* is the statement: if two sets have exactly the same members, then they are equal.

$$\forall x, y (\forall z (z \in x \Leftrightarrow z \in y) \Rightarrow x = y)$$
.

When working in a theory with the Axiom of Extensionality, we may identify a set a with the class $\{x \mid x \in a\}$. Our use of the symbols \in and = is consistent. We say a class \mathbf{A} is a set iff there exists a set a such that $a = \mathbf{A}$; that is, $\{x \mid \phi[x]\}$ is a set iff $\exists a \forall x (x \in a \leftrightarrow \phi[x])$. Otherwise, \mathbf{A} is a proper class.

Definition 1.2.2 (Subset). If A is a set and $A \subseteq \mathbf{B}$, we say A is a *subset* of **B**.

Definition 1.2.3 (Union). The *union* of a class **A** is $\{x \mid \exists X \in \mathbf{A}.x \in X\}$. We write $\bigcup_{P(x)} t(x)$ for $\bigcup \{t(x) \mid P(x)\}$.

Definition 1.2.4 (Intersection). The *intersection* of a class **A** is $\{x \mid \forall X \in \mathbf{A}.x \in X\}$. We write $\bigcap_{P(x)} t(x)$ for $\bigcap \{t(x) \mid P(x)\}$.

Definition 1.2.5 (Power Class). For any class **A**, the *power class* \mathcal{P} **A** is $\{X \mid X \subseteq \mathbf{A}\}$.

1.3 The Other Axioms

Definition 1.3.1 (Pairing Axiom). The *Pairing Axiom* is the statement: for any sets a and b, the class $\{a, b\}$ is a set.

$$\forall a \forall b \exists c \forall x (x \in c \Leftrightarrow x = a \lor x = b)$$

Definition 1.3.2 (Union Axiom). The *Union Axiom* is the statement: for any set A, the class $\bigcup A$ is a set.

$$\forall A \exists B \forall x (x \in B \Leftrightarrow \exists y (y \in A \land x \in y))$$

Definition 1.3.3 (Comprehension Axiom Scheme). The *Comprehension Axiom Scheme* is the set of sentences of the form, for any class A: If A is a subclass of a set then A is a set.

That is, for any property $P[x, y_1, \ldots, y_n]$:

For any sets a_1, \ldots, a_n and B, the class $\{x \in B \mid P[x, a_1, \ldots, a_n]\}$ is a set.

$$\forall a_1, \dots, a_n, B. \exists C. \forall x (x \in C \Leftrightarrow x \in B \land P[x, a_1, \dots, a_n])$$

Definition 1.3.4 (Replacement Axiom Scheme). The Replacement Axiom Scheme is the set of sentences of the form, for some property $P[x, y, z_1, \ldots, z_n]$:

For any sets a_1, \ldots, a_n, B , assume for all $x \in B$ there exists at most one y such that $P[x, y, a_1, \ldots, a_n]$. Then $\{y \mid \exists x \in B.P[x, y, a_1, \ldots, a_n] \text{ is a set. }$

$$\forall a_1, \dots, a_n, B(\forall x \in B. \forall y, y'(P[x, y, a_1, \dots, a_n] \land P[x, y', a_1, \dots, a_n] \Rightarrow y = y') \Rightarrow \exists C \forall y (y \in C \Leftrightarrow \exists x \in B. P[x, y, a_1, \dots, a_n]))$$

Definition 1.3.5 (Power Set Axiom). The *Power Set Axiom* is the statement: the power class of a set is a set.

$$\forall A \exists B \forall x (x \in B \Leftrightarrow \forall y (y \in x \Rightarrow y \in A))$$

Definition 1.3.6 (Axiom of Infinity). The *Axiom of Infinity* is the statement: there exists a set I such that $\emptyset \in I$ and $\forall x \in I.x \cup \{x\} \in I$.

$$\exists I (\exists e \in I. \forall x. x \notin e \land \forall x \in I. \exists y \in I. \forall z (z \in y \Leftrightarrow z \in x \lor z = x))$$

Definition 1.3.7 (Axiom of Choice). The *Axiom of Choice* is the statement: For any set A of pairwise disjoint, nonempty sets, there exists a set C such that, for all $x \in A$, we have $x \cap C$ has exactly one element.

$$\forall A(\forall x \in A. \exists yy \in x \land \forall x, y \in A. \forall z(z \in x \land z \in y \Rightarrow x = y) \Rightarrow \exists C. \forall x \in A. \exists y \forall z(z \in x \land z \in C \Leftrightarrow z = y))$$

Definition 1.3.8 (Axiom of Regularity). The *Axiom of Regularity* is the statement: for any A, if A has a member, then there exists $m \in A$ such that $m \cap A = \emptyset$.

$$\forall A(\exists x. x \in A \Rightarrow \exists m \in A. \neg \exists x (x \in m \land x \in A))$$

Definition 1.3.9 (Zermelo Set Theory). *Zermelo set theory* is the theory whose axioms are:

- Extensionality
- Pairing
- Union
- Comprehension
- Power Set
- Infinity
- Choice
- Regularity

We label theorems with Z when they are provable in Zermelo set theory.

Definition 1.3.10 (Zermelo-Fraenkel Set Theory). Zermelo-Fraenkel set theory is the theory whose axioms are:

- Extensionality
- Union

- Replacement
- Power Set
- Infinity
- Choice
- Regularity

We label theorems with ZFC when they are provable in Zermelo-Fraenkel set theory.

We label a theorem with FOL if it can be proved in first-order logic, i.e. from no axioms.

1.4 ZFC Extends Z

Proposition 1.4.1 (Z,ZFC). The empty class \emptyset is a set.

PROOF: Immediate from the Axiom of Infinity.

Proposition 1.4.2 (ZFC). The Axiom of Pairing is a theorem of ZFC.

```
Proof:
```

```
\begin{array}{l} \langle 1 \rangle 1. \text{ Let: } a,b \text{ be sets.} \\ \langle 1 \rangle 2. \text{ Let: } P(x,y) \text{ be the predicate } (x=\emptyset \wedge y=a) \vee (x=\mathcal{P}\emptyset \wedge y=b). \\ \langle 1 \rangle 3. \text{ For all } x \in \mathcal{PP}\emptyset, \text{ there exists at most one } y \text{ such that } P(x,y). \\ \langle 2 \rangle 1. \text{ Let: } x \in \mathcal{PP}\emptyset \\ \langle 2 \rangle 2. \text{ Let: } y \text{ and } y' \text{ be sets.} \\ \langle 2 \rangle 3. \text{ Assume: } P(x,y) \text{ and } P(x,y') \\ \langle 2 \rangle 4. \ (x=\emptyset \wedge y=a) \vee (x=\mathcal{P}\emptyset \wedge y=b) \\ \text{PROOF: From } \langle 2 \rangle 3. \\ \langle 2 \rangle 5. \ (x=\emptyset \wedge y'=a) \vee (x=\mathcal{P}\emptyset \wedge y'=b) \\ \text{PROOF: From } \langle 2 \rangle 3. \\ \langle 2 \rangle 6. \ \emptyset \neq \mathcal{P}\emptyset \\ \text{PROOF: Since } \emptyset \in \mathcal{P}\emptyset \text{ and } \emptyset \notin \emptyset. \\ \langle 2 \rangle 7. \ y=y' \\ \langle 1 \rangle 4. \text{ Let: } A \text{ be the set } \{y \mid \exists x \in \mathcal{PP}\emptyset.P(x,y)\}. \\ \langle 1 \rangle 5. \ A=\{a,b\} \\ \sqcap \end{array}
```

Proposition Schema 1.4.3 (ZFC). Every instance of the Comprehension Axiom Scheme is a theorem of ZFC.

Proof:

- $\langle 1 \rangle 1$. Let: P(x) be a predicate.
- $\langle 1 \rangle 2$. Let: A be a set.
- $\langle 1 \rangle 3$. Let: Q(x,y) be the predicate $P(x) \wedge y = x$.

```
\langle 1 \rangle 4. For all x \in A, there exists at most one y such that Q(x,y).
    \langle 2 \rangle 1. Let: x \in A
    \langle 2 \rangle 2. Let: y and y' be sets.
    \langle 2 \rangle 3. Assume: Q(x,y) and Q(x,y')
    \langle 2 \rangle 4. \ x \in A \land P(x) \land y = x \land y' = x
       PROOF: From \langle 2 \rangle 3.
    \langle 2 \rangle 5. \ y = y'
       PROOF: From \langle 2 \rangle 4.
\langle 1 \rangle 5. Let: B be the set \{ y \mid \exists x \in A.Q(x,y) \}
   PROOF: This is a set by an Axiom of Replacement and \langle 1 \rangle 4.
\langle 1 \rangle 6. \ B = \{ y \in A \mid P(y) \}
   Proof:
                         y \in B \Leftrightarrow \exists x \in A.Q(x,y)
                                                                                                  (\langle 1 \rangle 5)
                                    \Leftrightarrow \exists x \in A(P(x) \land y = x)
                                                                                                  (\langle 1 \rangle 3)
                                    \Leftrightarrow P(y)
```

Corollary Schema 1.4.3.1 (ZFC). Every axiom of Z is a theorem of ZFC.

It follows that every theorem of Z is a theorem of ZFC.

1.5 Consequences of the Axioms

Proposition 1.5.1 (Z). The union of two sets is a set.

PROOF: Because $A \cup B = \bigcup \{A, B\}$. \square

Proposition Schema 1.5.2 (Z). For any number n, the following is a theorem: For any sets a_1, \ldots, a_n , the class $\{a_1, \ldots, a_n\} = \{x \mid x = a_1 \lor \cdots \lor x = a_n\}$ is a set.

PROOF: The case n=1 follows from Pairing since $\{a\}=\{a,a\}$. If we have proved the theorem for n we have $\{a_1,\ldots,a_n,a_{n+1}\}=\{a_1,\ldots,a_n\}\cup\{a_{n+1}\}$. \square

Proposition 1.5.3 (Z). No set is a member of itself.

Corollary 1.5.3.1 (Z). The universal class V is a proper class.

9

PROOF: If V is a set then $V \in V$, contradicting the Proposition.

Proposition 1.5.4 (Z). There are no sets a and b such that $a \in b$ and $b \in a$.

Proof:

- $\langle 1 \rangle 1$. Let: a and b be any sets.
- $\langle 1 \rangle 2$. Pick $m \in \{a, b\}$ such that $m \cap \{a, b\} = \emptyset$
- $\langle 1 \rangle 3$. Case: m = a

PROOF: Then $b \notin a$.

 $\langle 1 \rangle 4$. Case: m = b

PROOF: Then $a \notin b$.

Proposition 1.5.5 (Z). The intersection of a set and a class is a set.

PROOF: Immediate from Comprehension.

Proposition 1.5.6 (Z). The relative complement of a class in a set is a set.

[Z]

PROOF: Immediate from Comprehension.

Corollary 1.5.6.1 (Z). The symmetric difference of two sets is a set.

Proposition 1.5.7 (Z). The intersection of a nonempty class is a set.

Proof:

- $\langle 1 \rangle 1$. Let: **A** be a nonempty class.
- $\langle 1 \rangle 2$. Pick $B \in \mathbf{A}$
- $\langle 1 \rangle 3. \cap \mathbf{A} \subseteq B$
- $\langle 1 \rangle 4$. $\bigcap \mathbf{A}$ is a set.

Proof: By Comprehension.

Proposition Schema 1.5.8 (FOL). For any classes ${\bf A}$ and ${\bf B}$, the following is a theorem:

If
$$A \subseteq B$$
 then $\mathcal{P}A \subseteq \mathcal{P}B$.

PROOF: Every subset of **A** is a subset of **B**. \square

Proposition Schema 1.5.9 (FOL). For any classes **A** and **B**, the following is a theorem:

If
$$A \subseteq B$$
 then $\bigcup A \subseteq \bigcup B$.

PROOF: If $x \in X \in \mathbf{A}$ then $x \in X \in \mathbf{B}$. \square

Proposition Schema 1.5.10 (Z). For any class **A**, the following is a theorem:

$$\mathbf{A} = \bigcup \mathcal{P} \mathbf{A}$$

Proof:

```
\begin{array}{l} \langle 1 \rangle 1. \ \mathbf{A} \subseteq \bigcup \mathcal{P} \mathbf{A} \\ \text{Proof: For all } x \in \mathbf{A} \text{ we have } x \in \{x\} \in \mathcal{P} \mathbf{A}. \\ \langle 1 \rangle 2. \ \bigcup \mathcal{P} \mathbf{A} \subseteq \mathbf{A} \\ \langle 2 \rangle 1. \ \text{Let: } x \in \bigcup \mathcal{P} \mathbf{A} \\ \langle 2 \rangle 2. \ \text{Pick } X \in \mathcal{P} \mathbf{A} \text{ such that } x \in X \\ \langle 2 \rangle 3. \ X \subseteq \mathbf{A} \\ \langle 2 \rangle 4. \ x \in \mathbf{A} \\ \end{array}
```

1.6 Transitive Classes

Definition 1.6.1 (Transitive Class). A class **A** is a *transitive class* iff whenever $x \in y \in \mathbf{A}$ then $x \in \mathbf{A}$.

Proposition Schema 1.6.2 (FOL). For any class **A**, the following is a theorem:

The following are equivalent.

- 1. A is a transitive class.
- 2. $\bigcup \mathbf{A} \subseteq \mathbf{A}$
- 3. Every element of A is a subset of A.
- 4. $\mathbf{A} \subseteq \mathcal{P}\mathbf{A}$

PROOF: Immediate from definitions.

Proposition Schema 1.6.3 (FOL). For any class **A**, the following is a theorem:

If **A** is a transitive class then $\bigcup \mathbf{A}$ is a transitive class.

Proof:

- $\langle 1 \rangle 1$. Assume: **A** is a transitive class.
- $\langle 1 \rangle 2$. Let: $x \in y \in \bigcup \mathbf{A}$
- $\langle 1 \rangle 3. \ y \in \mathbf{A}$

PROOF: Since $\bigcup \mathbf{A} \subseteq \mathbf{A}$ by Proposition 1.6.2.

 $\langle 1 \rangle 4. \ x \in \bigcup \mathbf{A}$

Proposition Schema 1.6.4 (Z). For any class A, the following is a theorem: We have A is a transitive class if and only if $\mathcal{P}A$ is a transitive class.

Proof

- $\langle 1 \rangle 1$. If **A** is a transitive class then $\mathcal{P}\mathbf{A}$ is a transitive class.
 - $\langle 2 \rangle 1$. Assume: **A** is a transitive class.
 - $\langle 2 \rangle 2$. $\mathbf{A} \subseteq \mathcal{P} \mathbf{A}$

Proof: Proposition 1.6.2.

 $\langle 2 \rangle 3$. $\mathcal{P} \mathbf{A} \subseteq \mathcal{P} \mathcal{P} \mathbf{A}$

Proof: Proposition 1.5.8. $\langle 2 \rangle 4$. $\mathcal{P}\mathbf{A}$ is a transitive class. Proof: Proposition 1.6.2. $\langle 1 \rangle 2$. If $\mathcal{P}\mathbf{A}$ is a transitive class then \mathbf{A} is a transitive class. $\langle 2 \rangle 1$. Assume: $\mathcal{P}\mathbf{A}$ is a transitive class. $\langle 2 \rangle 2$. $\bigcup \mathcal{P} \mathbf{A} \subseteq \mathcal{P} \mathbf{A}$ Proof: Proposition 1.6.2. $\langle 2 \rangle 3$. $\mathbf{A} \subseteq \mathcal{P} \mathbf{A}$ Proof: Proposition 1.5.10. $\langle 2 \rangle 4$. **A** is a transitive class. Proof: Proposition 1.6.2. Proposition Schema 1.6.5 (FOL). For any class A, the following is a theo-If every member of A is a transitive set then $\bigcup A$ is a transitive class. Proof: $\langle 1 \rangle 1$. Assume: Every member of **A** is a transitive set. $\langle 1 \rangle 2$. Let: $x \in y \in \bigcup \mathbf{A}$ $\langle 1 \rangle 3$. PICK $A \in \mathbf{A}$ such that $y \in A$. $\langle 1 \rangle 4. \ x \in A$ PROOF: Since A is a transitive set. $\langle 1 \rangle 5. \ x \in \bigcup \mathbf{A}$ **Proposition Schema 1.6.6** (FOL). For any class **A**, the following is a theo-If every member of **A** is a transitive set then $\bigcap \mathbf{A}$ is a transitive class. Proof: $\langle 1 \rangle 1$. Assume: Every member of **A** is a transitive set. $\langle 1 \rangle 2$. Let: $x \in y \in \bigcap \mathbf{A}$ Prove: $x \in \bigcap \mathbf{A}$ $\langle 1 \rangle 3$. Let: $A \in \mathbf{A}$ $\langle 1 \rangle 4. \ y \in A$ $\langle 1 \rangle 5. \ x \in A$ PROOF: Since A is a transitive set.

Chapter 2

Relations

2.1 Ordered Pairs

Definition 2.1.1 (Ordered Pair). For any sets a and b, the *ordered pair* (a, b) is defined to be $\{\{a\}, \{a, b\}\}.$

Theorem 2.1.2 (Z). For any sets a, b, c, d, we have (a,b) = (c,d) if and only if a = c and b = d.

```
Proof:
```

```
\langle 1 \rangle 1. If (a, b) = (c, d) then a = c and b = d.
    \langle 2 \rangle 1. Assume: \{\{a\}, \{a, b\}\} = \{\{c\}, \{c, d\}\}
    \langle 2 \rangle 2. \cap \{\{a\}, \{a, b\}\} = \bigcap \{\{c\}, \{c, d\}\}\
    \langle 2 \rangle 3. \{a\} = \{c\}
    \langle 2 \rangle 4. a = c
    \langle 2 \rangle 5. \bigcup \{\{a\}, \{a, b\}\} = \bigcup \{\{c\}, \{c, d\}\}\
    \langle 2 \rangle 6. \ \{a,b\} = \{c,d\}
    \langle 2 \rangle 7. b = c or b = d
    \langle 2 \rangle 8. a = d or b = d
    \langle 2 \rangle 9. If b = c and a = d then b = d
        Proof: By \langle 2 \rangle 4.
    \langle 2 \rangle 10. b=d
        PROOF: From \langle 2 \rangle 7, \langle 2 \rangle 8, \langle 2 \rangle 9.
\langle 1 \rangle 2. If a = c and b = d then (a, b) = (c, d).
    PROOF: First-order logic.
```

Definition 2.1.3 (Cartesian Product). The *Cartesian product* of classes **A** and **B** is the class $\mathbf{A} \times \mathbf{B} := \{(x,y) \mid x \in \mathbf{A}, y \in \mathbf{B}\}.$

Proposition 2.1.4 (Z). For any sets A and B, the class $A \times B$ is a set.

PROOF: It is a subset of $\mathcal{PP}(A \cup B)$. \square

Proposition Schema 2.1.5 (Z). For any classes A, B and C, the following is a theorem:

$$\mathbf{A} \times (\mathbf{B} \cup \mathbf{C}) = (\mathbf{A} \times \mathbf{B}) \cup (\mathbf{A} \times \mathbf{C})$$

Proof:

$$(x,y) \in \mathbf{A} \times (\mathbf{B} \cup \mathbf{C}) \Leftrightarrow x \in \mathbf{A} \wedge (y \in \mathbf{B} \vee y \in \mathbf{C})$$
$$\Leftrightarrow (x \in \mathbf{A} \wedge y \in \mathbf{B}) \vee (x \in \mathbf{A} \wedge y \in \mathbf{C})$$
$$\Leftrightarrow (x,y) \in (\mathbf{A} \times \mathbf{B}) \cup (\mathbf{A} \times \mathbf{C})$$

Proposition Schema 2.1.6 (Z). For any classes ${\bf A}$ and ${\bf B}$, the following is a theorem:

If
$$\mathbf{A} \times \mathbf{B} = \mathbf{A} \times \mathbf{C}$$
 and \mathbf{A} is nonempty then $\mathbf{B} = \mathbf{C}$.

Proof:

- $\langle 1 \rangle 1$. Pick $a \in \mathbf{A}$
- $\langle 1 \rangle 2$. For all x we have $x \in \mathbf{B}$ iff $x \in \mathbf{C}$.

Proof:

$$x \in \mathbf{B} \Leftrightarrow (a, x) \in \mathbf{A} \times \mathbf{B}$$

 $\Leftrightarrow (a, x) \in \mathbf{A} \times \mathbf{C}$
 $\Leftrightarrow x \in \mathbf{C}$

Proposition Schema 2.1.7 (Z). For any classes **A** and **B**, the following is a theorem:

$$\mathbf{A} \times \bigcup \mathbf{B} = \{(a,b) \mid \exists Y \in \mathbf{B}. (a \in \mathbf{A} \land b \in Y)\}\$$

Proof:

$$(x,y) \in A \times \bigcup \mathbf{B} \Leftrightarrow x \in A \land \exists Y \in \mathbf{B}. y \in Y$$
$$\Leftrightarrow \exists Y \in \mathbf{B}(x \in A \land y \in Y)$$

2.2 Relations

Definition 2.2.1 (Relation). A relation \mathbf{R} between classes \mathbf{A} and \mathbf{B} is a subclass of $\mathbf{A} \times \mathbf{B}$.

A (binary) relation on **A** is a relation between **A** and **A**. We write $x\mathbf{R}y$ for $(x,y) \in \mathbf{R}$.

2.2.1 Identity Functions

Definition 2.2.2 (Identity Function). For any class A, the *identity function* or *diagonal relation* id_A on A is

$$id_{\mathbf{A}} := \{(x, x) \mid x \in \mathbf{A}\} .$$

2.2. RELATIONS 15

2.2.2 Inverses

Definition 2.2.3 (Inverse). The *inverse* of a relation \mathbf{R} between \mathbf{A} and \mathbf{B} is the relation \mathbf{R}^{-1} between \mathbf{B} and \mathbf{A} defined by

$$b\mathbf{R}^{-1}a \Leftrightarrow a\mathbf{R}b$$
.

Proposition Schema 2.2.4 (Z). For any classes A, B and R, the following is a theorem:

If **R** is a relation between **A** and **B**, we have $(\mathbf{R}^{-1})^{-1} = \mathbf{R}$.

Proof:

$$x(\mathbf{R}^{-1})^{-1}y \Leftrightarrow y\mathbf{R}^{-1}x$$

 $\Leftrightarrow x\mathbf{R}y$

2.2.3 Composition

Definition 2.2.5 (Composition). Let \mathbf{R} be a relation between \mathbf{A} and \mathbf{B} , and \mathbf{S} be a relation between \mathbf{B} and \mathbf{C} . The *composition* $\mathbf{S} \circ \mathbf{R}$ is the relation between \mathbf{A} and \mathbf{C} defined by

$$a(\mathbf{S} \circ \mathbf{R})c \Leftrightarrow \exists b(a\mathbf{R}b \wedge b\mathbf{S}c)$$
.

Proposition Schema 2.2.6 (Z). For any classes A, B, C, R and S, the following is a theorem:

If ${\bf R}$ is a relation between ${\bf A}$ and ${\bf B}$, and ${\bf S}$ is a relation between ${\bf B}$ and ${\bf C}$, then

$$(\mathbf{S} \circ \mathbf{R})^{-1} = \mathbf{R}^{-1} \circ \mathbf{S}^{-1} .$$

Proof:

$$z(\mathbf{S} \circ \mathbf{R})^{-1}x \Leftrightarrow x(\mathbf{S} \circ \mathbf{R})z$$

$$\Leftrightarrow \exists y.(x\mathbf{R}y \wedge y\mathbf{S}z)$$

$$\Leftrightarrow \exists y.(y\mathbf{R}^{-1}x \wedge z\mathbf{S}^{-1}y)$$

$$\Leftrightarrow z(\mathbf{R}^{-1} \circ \mathbf{S}^{-1})x$$

2.2.4 Properties of Relaitons

Definition 2.2.7 (Reflexive). Let **R** be a binary relation on **A**. Then **R** is reflexive on **A** iff $\forall x \in \mathbf{A}.(x,x) \in \mathbf{R}$.

Proposition Schema 2.2.8 (Z). For any classes A and R, the following is a theorem:

If **R** is a reflexive relation on **A** then so is \mathbf{R}^{-1} .

Proof:

 $\langle 1 \rangle 1$. Let: $x \in \mathbf{A}$

 $\langle 1 \rangle 2$. $x \mathbf{R} x$

PROOF: Since \mathbf{R} is reflexive.

$$\langle 1 \rangle 3. \ x \mathbf{R}^{-1} x$$

Definition 2.2.9 (Irreflexive). A relation **R** is *irreflexive* iff there is no x such that $(x, x) \in \mathbf{R}$.

Definition 2.2.10 (Symmetric). A relation **R** is *symmetric* iff, whenever $x\mathbf{R}y$, then $y\mathbf{R}x$.

Definition 2.2.11 (Antisymmetric). A relation **R** is *antisymmetric* iff, whenever $x\mathbf{R}y$ and $y\mathbf{R}x$, then x=y.

Proposition Schema 2.2.12 (Z). For any classes A and R, the following is a theorem:

If \mathbf{R} is an antisymmetric relation on \mathbf{A} then so is \mathbf{R}^{-1} .

Proof:

- $\langle 1 \rangle 1$. Assume: $x \mathbf{R}^{-1} y$ and $y \mathbf{R}^{-1} x$
- $\langle 1 \rangle 2$. $y \mathbf{R} x$ and $x \mathbf{R} y$
- $\langle 1 \rangle 3. \ x = y$

Proof: Since \mathbf{R} is antisymmetric.

Definition 2.2.13 (Transitive). A relation **R** is *transitive* iff, whenever $x\mathbf{R}y$ and $y\mathbf{R}z$, then $x\mathbf{R}z$.

Proposition Schema 2.2.14 (Z). For any classes A, B and R, the following is a theorem:

If **R** is a transitive relation between **A** and **B** then \mathbf{R}^{-1} is transitive.

PROOF

- $\langle 1 \rangle 1$. Assume: $(x,y), (y,z) \in \mathbf{R}^{-1}$
- $\langle 1 \rangle 2. \ (y, x), (z, y) \in \mathbf{R}$
- $\langle 1 \rangle 3. \ (z, x) \in \mathbf{R}$
- $\langle 1 \rangle 4. \ (x,z) \in \mathbf{R}^{-1}$

Proposition 2.2.15 (Z). For any relation R on a set A, there exists a smallest transitive relation on A that includes R.

PROOF: The relation is $\bigcap \{S \in \mathcal{P}A^2 \mid R \subseteq S, S \text{ is transitive}\}$. \square

Definition 2.2.16 (Transitive Closure). For any relation R on a set A, the transitive closure of R is the smallest transitive relation that includes R.

Definition 2.2.17 (Minimal). Let **R** be a relation on **A**. An element $m \in \mathbf{A}$ is *minimal* iff there is no $x \in \mathbf{A}$ such that $x\mathbf{R}m$.

Definition 2.2.18 (Maximal). Let **R** be a relation on **A**. An element $m \in \mathbf{A}$ is *maximal* iff there is no $x \in \mathbf{A}$ such that $m\mathbf{R}x$.

2.3 n-ary Relations

Definition Schema 2.3.1. For any sets a_1, \ldots, a_n , define the *ordered n-tuple* (a_1, \ldots, a_n) by

$$(a_1) := a_1$$

 $(a_1, \dots, a_n, a_{n+1}) = ((a_1, \dots, a_n), a_{n+1})$

Definition Schema 2.3.2. An n-ary relation on A is a class of ordered n-tuples all of whose components are in A.

2.4 Well Founded Relations

Definition 2.4.1 (Well Founded). A relation ${\bf R}$ on a class ${\bf A}$ is well founded iff:

- for all $a \in A$, the class $\{x \in \mathbf{A} \mid x\mathbf{R}a\}$ is a set;
- every nonempty subset of A has an R-minimal element.

Proposition 2.4.2 (Z). For any class **A**, the relation $\{(x,y) \in \mathbf{A}^2 \mid x \in y\}$ is well founded.

Proof:

 $\langle 1 \rangle 1$. For all $a \in \mathbf{A}$, the class $\{x \in \mathbf{A} \mid x \in a\}$ is a set.

PROOF: It is a subclass of a.

 $\langle 1 \rangle 2$. Every nonempty subset of **A** has an \in -minimal element.

 $\langle 2 \rangle 1$. Let: C be a nonempty subset of **A**

 $\langle 2 \rangle 2$. Pick $m \in C$ such that $m \cap C = \emptyset$

PROOF: Axiom of Regularity.

 $\langle 2 \rangle 3$. m is \in -minimal in C.

Proposition Schema 2.4.3 (Z). For any classes A, B and R, the following is a theorem:

Assume **R** is a well founded relation on **A** and **B** \subseteq **A** is nonempty. Then **B** has an **R**-minimal element.

Proof:

 $\langle 1 \rangle 1$. Pick $b \in \mathbf{B}$

 $\langle 1 \rangle 2$. Let: $S = \{x \in \mathbf{B} \mid x\mathbf{R}b\}$

PROOF: S is a set because it is a subclass of $\{x \in \mathbf{A} \mid x\mathbf{R}b\}$.

 $\langle 1 \rangle 3$. Case: $S = \emptyset$

PROOF: In this case b is an **R**-minimal element of **B**.

 $\langle 1 \rangle 4$. Case: $S \neq \emptyset$

PROOF: In this cases S has an \mathbf{R} -minimal element, which is an \mathbf{R} -minimal element of \mathbf{B} .

Ш

Proposition Schema 2.4.4 (Z). For any classes **A**, **B** and **R**, the following is a theorem:

Assume **R** is a well founded relation on **B** and $\mathbf{A} \subseteq \mathbf{B}$. Then $\mathbf{R} \cap \mathbf{A}^2$ is a well founded relation on **A**.

Proof:

- $\langle 1 \rangle 1$. Let: $\mathbf{R}' = \mathbf{R} \cap \mathbf{A}^2$
- $\langle 1 \rangle 2$. For all $a \in \mathbf{A}$, the class $\{x \in \mathbf{A} \mid x\mathbf{R}'a\}$ is a set.

PROOF: By Comprehension since it is a subclass of $\{x \in \mathbf{B} \mid x\mathbf{R}a\}$.

 $\langle 1 \rangle$ 3. Every nonempty subset of **A** has an **R**'-minimal element.

PROOF: It is a nonempty subset of $\bf B$ and so has an $\bf R$ -minimal element, which is also an $\bf R'$ -minimal element.

Theorem Schema 2.4.5 (Transfinite Induction Principle (Z)). For any classes **A**, **B** and **R**, the following is a theorem:

Assume **R** is a well founded relation on **A** and **B** \subseteq **A**. Assume that, for all $t \in$ **A**,

$$\{x \in \mathbf{A} \mid x\mathbf{R}t\} \subseteq \mathbf{B} \Rightarrow t \in \mathbf{B}$$
.

Then $\mathbf{B} = \mathbf{A}$.

Proof:

- $\langle 1 \rangle 1$. Assume: for a contradiction $\mathbf{B} \neq \mathbf{A}$
- $\langle 1 \rangle 2$. Pick an **R**-minimal element m of $\mathbf{A} \mathbf{B}$.

Proof: Proposition 2.4.3.

 $\langle 1 \rangle 3. \{ x \in \mathbf{A} \mid x\mathbf{R}m \} \subseteq \mathbf{B}$

PROOF: By minimality of m.

- $\langle 1 \rangle 4. \ m \in \mathbf{B}$
- $\langle 1 \rangle 5$. Q.E.D.

PROOF: This is a contradiction.

П

Theorem 2.4.6 (Z). The transitive closure of a well founded relation on a set is well founded.

Proof:

- $\langle 1 \rangle 1$. Let: R be a well founded relation on the set A.
- $\langle 1 \rangle 2$. Let: R^t be the transitive closure of R.
- $\langle 1 \rangle 3$. For any $x,y \in A$, if xR^ty then there exists $z \in A$ such that zRy. PROOF: $\{(x,y) \in A^2 \mid \exists z \in A.zRy\}$ is a transitive relation on A that includes R
- $\langle 1 \rangle 4$. Let: B be a nonempty subset of A.
- $\langle 1 \rangle$ 5. PICK an R-minimal element b of B.
- $\langle 1 \rangle 6$. b is R^t -minimal in B.

PROOF: If there exists x such that xR^tb then there exists z such that zRb by $\langle 1 \rangle 3$.

Definition 2.4.7 (Initial Segment). Let **R** be a relation on **A** and $a \in \mathbf{A}$. The *initial segment* up to a is

$$\operatorname{seg} a := \{ x \in \mathbf{A} \mid x\mathbf{R}a \}$$
.

Theorem Schema 2.4.8 (Transfinite Recursion Theorem Schema (ZFC)). For any classes A, R and any property G[x, y, z], there exists a class F such that, for any class F' the following is a theorem:

Assume that **R** is a well-founded relation on **A**. Assume that, for any f and t, there exists a unique z such that G[f,t,z]. Then $\mathbf{F}: \mathbf{A} \to \mathbf{V}$ such that, for all $t \in \mathbf{A}$, we have $\mathbf{F} \upharpoonright \operatorname{seg} t$ is a set and

$$G[\mathbf{F} \upharpoonright \operatorname{seg} t, t, \mathbf{F}(t)]$$
.

If $\mathbf{F}' : \mathbf{A} \to \mathbf{V}$ satisfies that, for all $t \in \mathbf{A}$, we have $\mathbf{F}' \upharpoonright \operatorname{seg} t$ is a set and $G[\mathbf{F}' \upharpoonright \operatorname{seg} t, t, \mathbf{F}'(t)]$, then $\mathbf{F}' = \mathbf{F}$.

Proof:

- $\langle 1 \rangle 1$. For B a subset of A, let us say a function $v : B \to V$ is acceptable iff, for all $x \in B$, we have $\operatorname{seg} x \subseteq B$ and $G[v \upharpoonright \operatorname{seg} x, x, v(x)]$
- $\langle 1 \rangle 2$. Let: **K** be the class of all acceptable functions.
- $\langle 1 \rangle 3$. Let: $\mathbf{F} = \bigcup \mathbf{K}$
- $\langle 1 \rangle 4$. For all $B, C \subseteq \mathbf{A}$, given $v_1 : B \to \mathbf{V}$ and $v_2 : C \to \mathbf{V}$ acceptable and $x \in B \cap C$, we have $v_1(x) = v_2(x)$
 - $\langle 2 \rangle 1$. Assume: as transfinite induction hypothesis $\forall y \mathbf{R} x. y \in B \cap C \Rightarrow v_1(y) = v_2(y)$
 - $\langle 2 \rangle 2$. $v_1 \upharpoonright \operatorname{seg} x = v_2 \upharpoonright \operatorname{seg} x$
 - $\langle 2 \rangle 3$. $G[v_1 \upharpoonright \operatorname{seg} x, x, v_1(x)]$
 - $\langle 2 \rangle 4$. $G[v_2 \upharpoonright \operatorname{seg} x, x, v_2(x)]$
 - $\langle 2 \rangle 5. \ v_1(x) = v_2(x)$
- $\langle 1 \rangle 5$. **F** is a function.
 - $\langle 2 \rangle 1$. Assume: $(x,y), (x,z) \in \mathbf{F}$
 - $\langle 2 \rangle 2$. PICK acceptable $v_1 : B \to \mathbf{V}$ and $v_2 : C \to \mathbf{V}$ such that $v_1(x) = y$ and $v_2(x) = z$
 - $\langle 2 \rangle 3. \ y=z$

Proof: By $\langle 1 \rangle 4$.

- $\langle 1 \rangle 6$. For all $t \in \text{dom } \mathbf{F}$, we have $\mathbf{F} \upharpoonright \text{seg } t$ is a set and $G[\mathbf{F} \upharpoonright \text{seg } t, t, \mathbf{F}(t)]$
 - $\langle 2 \rangle 1$. Let: $t \in \text{dom } \mathbf{F}$
 - $\langle 2 \rangle 2$. PICK an acceptable $v: A \to \mathbf{V}$ such that $t \in A$
 - $\langle 2 \rangle 3$. For all $y \mathbf{R} x$ we have $v(y) = \mathbf{F}(y)$
 - $\langle 2 \rangle 4$. **F** $\upharpoonright \operatorname{seg} x = v \upharpoonright \operatorname{seg} x$
 - $\langle 2 \rangle 5$. $G[v \upharpoonright \operatorname{seg} x, x, v(x)]$
 - $\langle 2 \rangle 6. \ G[\mathbf{F} \upharpoonright \operatorname{seg} x, x, \mathbf{F}(x)]$
- $\langle 1 \rangle 7$. dom $\mathbf{F} = \mathbf{A}$
 - $\langle 2 \rangle 1$. Let: $x \in \mathbf{A}$
 - $\langle 2 \rangle 2$. Assume: as transfinite induction hypothesis $\forall y \mathbf{R} x. y \in \mathbf{A}$
 - $\langle 2 \rangle 3$. Assume: for a contradiction $x \notin \text{dom } \mathbf{F}$

```
\langle 2 \rangle 4. F \upharpoonright \operatorname{seg} x is a set
         PROOF: Axiom of Replacement.
     \langle 2 \rangle 5. F \upharpoonright \operatorname{seg} x is acceptable
     \langle 2 \rangle 6. Let: y be the unique object such that G[\mathbf{F} \upharpoonright \operatorname{seg} x, x, y]
     \langle 2 \rangle 7. F \upharpoonright \operatorname{seg} x \cup \{(x,y)\} is acceptable
     \langle 2 \rangle 8. \ x \in \text{dom } \mathbf{F}
     \langle 2 \rangle 9. Q.E.D.
         PROOF: This is a contradiction.
\langle 1 \rangle 8. If \mathbf{F}' : \mathbf{A} \to \mathbf{V} satisfies the theorem, then \mathbf{F}' = \mathbf{F}.
     \langle 2 \rangle 1. Let: x \in \mathbf{A}
                 Prove: \mathbf{F}'(x) = \mathbf{F}(x)
     \langle 2 \rangle 2. Assume: as transfinite induction hypothesis \forall y \mathbf{R} x. \mathbf{F}'(y) = \mathbf{F}(y)
     \langle 2 \rangle 3. \mathbf{F} \upharpoonright x = \mathbf{F}' \upharpoonright x
     \langle 2 \rangle 4. G[\mathbf{F} \upharpoonright x, x, \mathbf{F}(x)]
    \langle 2 \rangle 5. G[\mathbf{F}' \upharpoonright x, x, \mathbf{F}'(x)]
    \langle 2 \rangle 6. \ \mathbf{F}(x) = \mathbf{F}'(x)
```

Chapter 3

Functions

3.1 Functions

Definition 3.1.1 (Function). A function from **A** to **B** is a relation **F** between **A** and **B** such that, for all $x \in \mathbf{A}$, there is only one y such that $x\mathbf{F}y$. We denote this y by $\mathbf{F}(x)$.

A binary operation on a class **A** is a function $\mathbf{A}^2 \to \mathbf{A}$.

Definition 3.1.2 (Closed). Let $\mathbf{F} : \mathbf{A} \to \mathbf{A}$ be a function and $\mathbf{B} \subseteq \mathbf{A}$. Then \mathbf{B} is *closed* under \mathbf{F} iff $\forall x \in \mathbf{B}.\mathbf{F}(x) \in \mathbf{B}$.

Proposition 3.1.3 (Z). For any class **A**, the following is a theorem:

$$\mathrm{id}_A:A\to A$$

PROOF: For all $x \in \mathbf{A}$, the only y such that $(x, y) \in \mathrm{id}_{\mathbf{A}}$ is y = x. \square

Proposition Schema 3.1.4 (Z). For any classes A, B, C, F and G, the following is a theorem:

Assume $\mathbf{F}: \mathbf{A} \to \mathbf{B}$ and $\mathbf{G}: \mathbf{B} \to \mathbf{C}$. Then $\mathbf{G} \circ \mathbf{F}: \mathbf{A} \to \mathbf{C}$ and, for all $x \in \mathbf{A}$, we have

$$(\mathbf{G} \circ \mathbf{F})(x) = \mathbf{G}(\mathbf{F}(x))$$
.

Proof:

```
 \begin{array}{l} \langle 1 \rangle 1. \  \, \forall x \in \mathbf{A}.(x,\mathbf{G}(\mathbf{F}(x))) \in \mathbf{G} \circ \mathbf{F}) \\ \text{Proof: Because } (x,\mathbf{F}(x)) \in \mathbf{F} \text{ and } (\mathbf{F}(x),\mathbf{G}(\mathbf{F}(x))) \in \mathbf{G}. \\ \langle 1 \rangle 2. \  \, \text{If } (x,z) \in \mathbf{F} \circ \mathbf{G} \text{ then } z = \mathbf{G}(\mathbf{F}(x)) \\ \langle 2 \rangle 1. \  \, \text{Pick } y \in \mathbf{B} \text{ such that } x\mathbf{F}y \text{ and } y\mathbf{G}z \\ \langle 2 \rangle 2. \  \, y = \mathbf{F}(x) \\ \langle 2 \rangle 3. \  \, z = \mathbf{G}(y) \\ \langle 2 \rangle 4. \  \, z = \mathbf{G}(\mathbf{F}(x)) \\ \end{array}
```

Proposition 3.1.5 (Z). For any set A there exists a function $F : \mathcal{P}A - \{\emptyset\} \to A$ (a choice function for A) such that, for every nonempty $B \subseteq A$, we have $F(B) \in B$.

```
Proof:
 \langle 1 \rangle 1. Let: A be a set.
 \langle 1 \rangle 2. Let: \mathcal{A} = \{ \{B\} \times B \mid B \in \mathcal{P}A - \{\emptyset\} \}
 \langle 1 \rangle 3. Every member of \mathcal{A} is nonempty.
 \langle 1 \rangle 4. Any two distinct members of \mathcal{A} are disjoint.
 \langle 1 \rangle5. PICK a set C such that, for all X \in \mathcal{A}, we have C \cap X is a singleton.
    Proof: Axiom of Choice.
 \langle 1 \rangle 6. Let: F = C \cap \bigcup \mathcal{A}
 \langle 1 \rangle 7. \ F : \mathcal{P}A - \{\emptyset\} \to A
     \langle 2 \rangle 1. F is a function.
         (3)1. Let: (B, b), (B, b') \in F
         \langle 3 \rangle 2. \ (B,b), (B,b') \in \{B\} \times B
             PROOF: Since (B, b), (B, b') \in \bigcup A.
         (3)3. (B,b), (B,b') \in C \cap (\{B\} \times B)
         \langle 3 \rangle 4. \ (B,b) = (B,b')
             PROOF: From \langle 1 \rangle 5.
         \langle 3 \rangle 5. \ b = b'
     \langle 2 \rangle 2. dom F = \mathcal{P}A - \{\emptyset\}
        Proof:
                     B \in \operatorname{dom} F
                 \Leftrightarrow \exists b.(B,b) \in F
                 \Leftrightarrow \exists b. ((B,b) \in \bigcup \mathcal{A} \land (B,b) \in C)
                 \Leftrightarrow \exists b. \exists B' \in \mathcal{P}A - \{\emptyset\}. ((B,b) \in \{B'\} \times B' \land (B,b) \in C)
                 \Leftrightarrow B \in \mathcal{P}A - \{\emptyset\} \land \exists b \in B.(B,b) \in C
                 \Leftrightarrow B \in \mathcal{P}A - \{\emptyset\}
                                                                                                                            (\langle 1 \rangle 5)
     \langle 2 \rangle 3. ran F \subseteq A
\langle 1 \rangle 8. For every nonempty B \subseteq A we have F(B) \in B
```

Proposition 3.1.6 (Z). For any relation R between A and B, there exists a function $H: A \to B$ such that $H \subseteq R$ (i.e. $\forall x \in A.xRH(x)$).

```
PROOF: \langle 1 \rangle 1. Let: R be a relation between A and B. \langle 1 \rangle 2. Pick a choice function G for B. \langle 1 \rangle 3. Define H: A \to B by H(x) = G(\{y \mid xRy\}) \langle 1 \rangle 4. H \subseteq R
```

3.1. FUNCTIONS 23

3.1.1 Injective Functions

Definition 3.1.7 (Injective). A function $\mathbf{F} : \mathbf{A} \to \mathbf{B}$ is one-to-one, injective or an injection, $\mathbf{F} : \mathbf{A} \rightarrowtail \mathbf{B}$, iff, for all $x, y \in \mathbf{A}$, if $\mathbf{F}(x) = \mathbf{F}(y)$, then x = y.

Proposition 3.1.8 (Z). For any class A, the following is a theorem: $id_A : A \to A$ is injective.

PROOF: If $id_{\mathbf{A}}(x) = id_{\mathbf{A}}(y)$ then immediately x = y. \square

Proposition Schema 3.1.9 (Z). For any classes **A**, **B**, **C**, **F**, **G**, the following is a theorem:

Assume $\mathbf{F}: \mathbf{A} \rightarrowtail \mathbf{B}$ and $\mathbf{G}: \mathbf{B} \rightarrowtail \mathbf{C}$. Then $\mathbf{G} \circ \mathbf{F}: \mathbf{A} \rightarrowtail \mathbf{C}$.

Proof:

- $\langle 1 \rangle 1$. Let: $x, y \in \mathbf{A}$
- $\langle 1 \rangle 2$. Assume: $(\mathbf{G} \circ \mathbf{F})(x) = (\mathbf{G} \circ \mathbf{F})(y)$
- $\langle 1 \rangle 3. \ \mathbf{G}(\mathbf{F}(x)) = \mathbf{G}(\mathbf{F}(y))$
- $\langle 1 \rangle 4$. $\mathbf{F}(x) = \mathbf{F}(y)$

PROOF: Since G is injective.

 $\langle 1 \rangle 5. \ x = y$

PROOF: Since \mathbf{F} is injective.

П

Proposition 3.1.10 (Z). Let $F: A \to B$ where A is nonempty. There exists $G: B \to A$ (a left inverse) such that $G \circ F = \mathrm{id}_A$ if and only if F is one-to-one.

Proof:

- $\langle 1 \rangle 1$. If there exists $G: B \to A$ such that $G \circ F = \mathrm{id}_A$ then F is one-to-one.
 - $\langle 2 \rangle 1$. Assume: $G: B \to A$ and $G \circ F = I_A$
 - $\langle 2 \rangle 2$. Let: $x, y \in A$
 - $\langle 2 \rangle 3$. Assume: F(x) = F(y)
 - $\langle 2 \rangle 4. \ x = y$

PROOF: x = G(F(x)) = G(F(y)) = y

- $\langle 1 \rangle 2$. If F is one-to-one then there exists $G: B \to A$ such that $G \circ F = I_A$.
 - $\langle 2 \rangle 1$. Assume: F is one-to-one.
 - $\langle 2 \rangle 2$. Pick $a \in A$
 - $\langle 2 \rangle 3$. Let: $G: B \to A$ be the function defined by: G(b) is the (unique) $x \in A$ such that F(x) = b if there exists such an x, G(b) = a otherwise.
 - $\langle 2 \rangle 4$. For all $x \in A$ we have G(F(x)) = x.

3.1.2 Surjective Functions

Definition 3.1.11 (Surjective). Let $F: A \to B$. We say that F is *surjective*, or maps A onto B, and write $F: A \twoheadrightarrow B$, iff for all $y \in B$ there exists $x \in A$ such that F(x) = y.

Proposition Schema 3.1.12 (Z). For any class **A**, the following is a theorem: $id_{\mathbf{A}} : \mathbf{A} \to \mathbf{A}$ is surjective.

PROOF: For any $y \in \mathbf{A}$ we have $\mathrm{id}_{\mathbf{A}}(y) = y$. \square

Proposition Schema 3.1.13 (Z). For any classes A, B, C, F and G, the following is a theorem:

If $\mathbf{F} : \mathbf{A} \twoheadrightarrow \mathbf{B}$ and $\mathbf{G} : \mathbf{B} \twoheadrightarrow \mathbf{C}$, then $\mathbf{G} \circ \mathbf{F} : \mathbf{A} \twoheadrightarrow \mathbf{C}$.

Proof:

- $\langle 1 \rangle 1$. Let: $c \in \mathbf{C}$
- $\langle 1 \rangle 2$. Pick $b \in \mathbf{B}$ such that $\mathbf{G}(b) = c$.
- $\langle 1 \rangle 3$. Pick $a \in \mathbf{A}$ such that $\mathbf{F}(a) = b$.
- $\langle 1 \rangle 4. \ (\mathbf{G} \circ \mathbf{F})(a) = c$

Proposition 3.1.14 (Z). Let $F: A \to B$. There exists $H: B \to A$ (a right inverse) such that $F \circ H = \operatorname{id}_B$ if and only if F maps A onto B.

Proof:

- $\langle 1 \rangle 1$. If F has a right inverse then F is surjective.
 - $\langle 2 \rangle 1$. Assume: F has a right inverse $H: B \to A$.
 - $\langle 2 \rangle 2$. Let: $y \in B$
 - $\langle 2 \rangle 3. \ F(H(y)) = y$
 - $\langle 2 \rangle 4$. There exists $x \in A$ such that F(x) = y
- $\langle 1 \rangle 2$. If F is surjective then F has a right inverse.
 - $\langle 2 \rangle 1$. Assume: F is surjective.
 - $\langle 2 \rangle 2$. PICK a function $H: B \to A$ such that $H \subseteq F^{-1}$ PROOF: Proposition 3.1.6.
 - $\langle 2 \rangle 3. \ F \circ H = \mathrm{id}_B$
 - $\langle 3 \rangle 1$. Let: $y \in B$
 - $\langle 3 \rangle 2. \ (y, H(y)) \in F^{-1}$
 - $\langle 3 \rangle 3. \ F(H(y)) = y$

3.1.3 Bijections

Definition 3.1.15 (Bijection). Let $\mathbf{F} : \mathbf{A} \to \mathbf{B}$. Then \mathbf{F} is *bijective* or a *bijection*, $\mathbf{F} : \mathbf{A} \approx \mathbf{B}$, iff it is injective and surjective.

Proposition Schema 3.1.16 (Z). For any class A, the following is a theorem: The identity function $\mathrm{id}_A: A \approx A$ is a bijection.

Proof: Proposition 3.1.8 and 3.1.12. \square

Proposition Schema 3.1.17 (Z). For any classes A, B and F, the following is a theorem:

If $\mathbf{F} : \mathbf{A} \approx \mathbf{B}$ then $\mathbf{F}^{-1} : \mathbf{B} \approx \mathbf{A}$.

Proof:

- $\langle 1 \rangle 1. \ \mathbf{F}^{-1} : \mathbf{B} \to \mathbf{A}$
 - $\langle 2 \rangle 1$. Let: $b \in \mathbf{B}$

3.1. FUNCTIONS

25

 $\langle 2 \rangle 2$. PICK $a \in \mathbf{A}$ such that $\mathbf{F}(a) = b$.

Proof: Since \mathbf{F} is surjective.

 $\langle 2 \rangle 3. \ (b,a) \in \mathbf{F}^{-1}$

 $\langle 2 \rangle 4$. If $(b, a') \in \mathbf{F}^{-1}$ then a' = a.

 $\langle 3 \rangle 1$. Let: $a' \in \mathbf{A}$ such that $(b, a') \in \mathbf{F}^{-1}$

 $\langle 3 \rangle 2$. $\mathbf{F}(a') = \mathbf{F}(a)$

 $\langle 3 \rangle 3. \ a' = a$

PROOF: Since **F** is injective.

 $\langle 1 \rangle 2$. \mathbf{F}^{-1} is injective.

 $\langle 2 \rangle 1$. Let: $x, y \in \mathbf{B}$

 $\langle 2 \rangle 2$. Assume: $\mathbf{F}^{-1}(x) = \mathbf{F}^{-1}(y)$

 $\langle 2 \rangle 3. \ x = y$

PROOF: $x = \mathbf{F}(\mathbf{F}^{-1}(x)) = \mathbf{F}(\mathbf{F}^{-1}(y)) = y$.

 $\langle 1 \rangle 3$. \mathbf{F}^{-1} is surjective.

PROOF: For all $a \in \mathbf{A}$ we have $\mathbf{F}^{-1}(\mathbf{F}(a)) = a$.

П

Proposition Schema 3.1.18 (Z). For any classes A, B, C, F and G, the following is a theorem:

If $\mathbf{F} : \mathbf{A} \approx \mathbf{B}$ and $\mathbf{G} : \mathbf{B} \approx \mathbf{C}$ then $\mathbf{G} \circ \mathbf{F} : \mathbf{A} \approx \mathbf{C}$.

Proof: Propositions 3.1.9 and 3.1.13. \square

3.1.4 Restrictions

Definition 3.1.19 (Restriction). Let $\mathbf{F} : \mathbf{A} \to \mathbf{B}$. Let $\mathbf{C} \subseteq \mathbf{A}$. The *restriction* of \mathbf{F} to \mathbf{C} , denoted $\mathbf{F} \upharpoonright \mathbf{C}$, is the function

$$\mathbf{F} \upharpoonright \mathbf{C} : \mathbf{C} \to \mathbf{B}$$

$$(\mathbf{F} \upharpoonright \mathbf{C})(x) = \mathbf{F}(x) \qquad (x \in \mathbf{C})$$

3.1.5 Images

Definition 3.1.20 (Image). Let $F:A\to B$ and $C\subseteq A$. The *image* of C under F is the class

$$\mathbf{F}(\mathbf{C}) := \{ \mathbf{F}(x) \mid x \in \mathbf{C} \} .$$

Proposition Schema 3.1.21 (Z). For any classes **F**, **A** and **B**, the following is a theorem.

If $\mathbf{F}: \mathbf{A} \to \mathbf{B}$, then for any subset $S \subseteq \mathbf{A}$, the class $\mathbf{F}(S)$ is a set.

PROOF: By an Axiom of Replacement.

Proposition Schema 3.1.22 (Z). For any classes A, B, C and F, the following is a theorem:

Assume $\mathbf{F}: \mathbf{A} \to \mathbf{B}$ and $\mathbf{C} \subseteq \mathcal{P}\mathbf{A}$. Then

$$\mathbf{F}\left(\bigcup\mathbf{C}\right) = \{y \mid \exists X \in \mathbf{C}.y \in \mathbf{F}(X)\}$$

Proof:

$$y \in \mathbf{F}\left(\bigcup \mathbf{C}\right) \Leftrightarrow \exists x \in \bigcup \mathbf{C}. y = \mathbf{F}(x)$$

 $\Leftrightarrow \exists x. \exists X. X \in \mathbf{C} \land x \in X \land y = \mathbf{F}(x)$
 $\Leftrightarrow \exists X \in \mathbf{C}. y \in \mathbf{F}(X)$

Proposition Schema 3.1.23 (Z). For any classes A, B, C, D and F, the following is a theorem:

Assume $\mathbf{F}: \mathbf{A} \to \mathbf{B}$ and $\mathbf{C}, \mathbf{D} \subseteq \mathbf{A}$. Then

$$\mathbf{F}(\mathbf{C} \cup \mathbf{D}) = \mathbf{F}(\mathbf{C}) \cup \mathbf{F}(\mathbf{D})$$
.

Proof:

$$y \in \mathbf{F}(\mathbf{C} \cup \mathbf{D}) \Leftrightarrow \exists x \in \mathbf{C} \cup \mathbf{D}. y = \mathbf{F}(x)$$

 $\Leftrightarrow \exists x \in \mathbf{C}. y = \mathbf{F}(x) \lor \exists x \in \mathbf{D}. y = \mathbf{F}(x)$
 $\Leftrightarrow y \in \mathbf{F}(\mathbf{C}) \cup \mathbf{F}(\mathbf{D})$

Proposition 3.1.24 (Z). For any classes F, A, B, C and D, the following is a theorem:

Assume $\mathbf{F}: \mathbf{A} \to \mathbf{B}$ and $\mathbf{C}, \mathbf{D} \subseteq \mathbf{A}$. Then

$$F(A \cap B) \subseteq F(A) \cap F(B)$$
.

Equality holds if \mathbf{F} is injective.

Proof:

```
\langle 1 \rangle 1. \mathbf{F}(\mathbf{A} \cap \mathbf{B}) \subseteq \mathbf{F}(\mathbf{A}) \cap \mathbf{F}(\mathbf{B})
     \langle 2 \rangle 1. Let: y \in \mathbf{F}(\mathbf{A} \cap \mathbf{B})
     \langle 2 \rangle 2. Pick x \in \mathbf{A} \cap \mathbf{B} such that y = \mathbf{F}(x)
     \langle 2 \rangle 3. \ y \in \mathbf{F}(\mathbf{A})
          PROOF: Since x \in \mathbf{A}.
     \langle 2 \rangle 4. \ y \in \mathbf{F}(\mathbf{B})
          PROOF: Since x \in \mathbf{B}.
\langle 1 \rangle 2. If F is injective then \mathbf{F}(\mathbf{A} \cap \mathbf{B}) = \mathbf{F}(\mathbf{A}) \cap \mathbf{F}(\mathbf{B}).
     \langle 2 \rangle 1. Assume: F is injective.
     \langle 2 \rangle 2. Let: y \in \mathbf{F}(\mathbf{A}) \cap \mathbf{F}(\mathbf{B})
     \langle 2 \rangle 3. Pick x \in \mathbf{A} such that y = \mathbf{F}(x)
     \langle 2 \rangle 4. Pick x' \in \mathbf{B} such that y = \mathbf{F}(x')
     \langle 2 \rangle 5. \ x = x'
          Proof: \langle 2 \rangle 1
     \langle 2 \rangle 6. \ x \in \mathbf{A} \cap \mathbf{B}
     \langle 2 \rangle 7. \ y \in \mathbf{F}(\mathbf{A} \cap \mathbf{B})
```

Proposition Schema 3.1.25 (Z). For any classes **F**, **A**, **B**, and **C**, the following is a theorem:

Let $\mathbf{F}: \mathbf{A} \to \mathbf{B}$ and $\mathbf{C} \subseteq \mathcal{P}\mathbf{A}$. Then

3.1. FUNCTIONS 27

$$\mathbf{F}\left(\bigcap \mathbf{C}\right) \subseteq \bigcap \{\mathbf{F}(X) \mid X \in \mathbf{A}\}$$
.

Equality holds if **F** is injective and **A** is nonempty.

```
Proof:
```

```
\langle 1 \rangle 1. \ \mathbf{F} (\bigcap \mathbf{A}) \subseteq \bigcap \{ \mathbf{F}(X) \mid X \in \mathbf{A} \}
     \langle 2 \rangle 1. Let: y \in \mathbf{F}(\bigcap \mathbf{A})
     \langle 2 \rangle 2. PICK x \in \bigcap \mathbf{A} such that y = \mathbf{F}(x)
     \langle 2 \rangle 3. Let: X \in \mathbf{A}
     \langle 2 \rangle 4. \ x \in X
     \langle 2 \rangle 5. \ y \in \mathbf{F}(X)
\langle 1 \rangle 2. If F is injective then \mathbf{F}(\bigcap \mathbf{A}) = \bigcap \{ \mathbf{F}(X) \mid X \in \mathbf{A} \}
     \langle 2 \rangle 1. Assume: F is injective.
     \langle 2 \rangle 2. Assume: A is nonempty.
     \langle 2 \rangle 3. Let: y \in \bigcap \{ \mathbf{F}(X) \mid X \in \mathbf{A} \}
     \langle 2 \rangle 4. Pick X_0 \in \mathbf{A}
     \langle 2 \rangle 5. Pick x \in X_0 such that (x,y) \in \mathbf{F}
     \langle 2 \rangle 6. \ x \in \bigcap \mathbf{A}
          \langle 3 \rangle 1. Let: X \in \mathbf{A}
          \langle 3 \rangle 2. PICK x' \in X such that (x', y) \in \mathbf{F}.
          \langle 3 \rangle 3. \ x = x'
               Proof: \langle 2 \rangle 1
           \langle 3 \rangle 4. \ x \in X
     \langle 2 \rangle 7. \ y \in \mathbf{F}(\bigcap \mathbf{A})
```

Proposition 3.1.26 (Z). For any classes A, B, C, D and F, the following is a theorem:

Assume $\mathbf{F}: \mathbf{A} \to \mathbf{B}$ and $\mathbf{C}, \mathbf{D} \subseteq \mathbf{A}$. Then

$$\mathbf{F}(\mathbf{C}) - \mathbf{F}(\mathbf{D}) \subseteq \mathbf{F}(\mathbf{C} - \mathbf{D}) \ .$$

Equality holds if \mathbf{F} is injective.

Proof:

$$\begin{array}{l} \langle 1 \rangle 1. \ \mathbf{F(C)} - \mathbf{F(D)} \subseteq \mathbf{F(A-B)} \\ \langle 2 \rangle 1. \ \mathrm{LET:} \ y \in \mathbf{F(A)} - \mathbf{F(B)} \\ \langle 2 \rangle 2. \ \mathrm{PICK} \ x \in \mathbf{A} \ \mathrm{such \ that} \ y = \mathbf{F}(x) \\ \langle 2 \rangle 3. \ x \notin \mathbf{B} \\ \langle 2 \rangle 4. \ x \in \mathbf{A} - \mathbf{B} \\ \langle 2 \rangle 5. \ y \in \mathbf{F(A-B)} \\ \langle 1 \rangle 2. \ \mathrm{If} \ \mathbf{F} \ \mathrm{is} \ \mathrm{injective} \ \mathrm{then} \ \mathbf{F(A)} - \mathbf{F(B)} = \mathbf{F(A-B)} \\ \langle 2 \rangle 1. \ \mathrm{Assume:} \ \mathbf{F} \ \mathrm{is} \ \mathrm{injective}. \\ \langle 2 \rangle 2. \ \mathrm{Let:} \ y \in \mathbf{F(A-B)} \\ \langle 2 \rangle 3. \ \mathrm{PICK} \ x \in \mathbf{A} - \mathbf{B} \ \mathrm{such \ that} \ y = \mathbf{F}(x) \\ \langle 2 \rangle 4. \ y \in \mathbf{F(A)} \\ \langle 2 \rangle 5. \ y \notin \mathbf{F(B)} \end{array}$$

- $\langle 3 \rangle 1$. Assume: for a contradiction $y \in \mathbf{F}(\mathbf{B})$
- $\langle 3 \rangle 2$. Pick $x' \in \mathbf{B}$ such that $y = \mathbf{F}(x')$
- $\langle 3 \rangle 3. \ x = x'$

Proof: $\langle 2 \rangle 1$

- $\langle 3 \rangle 4. \ x \in \mathbf{B}$
- $\langle 3 \rangle 5$. Q.E.D.

PROOF: This contradicts $\langle 2 \rangle 3$.

3.1.6 Inverse Images

Definition 3.1.27 (Inverse Image). Let $F:A\to B$ and $C\subseteq B$. Then the *inverse image* of C under F is

$$\mathbf{F}^{-1}(\mathbf{C}) = \{ x \in \mathbf{A} \mid \mathbf{F}(x) \in \mathbf{C} \}$$
.

Proposition Schema 3.1.28 (Z). For any classes A, B, C and F, the following is a theorem:

Assume $\mathbf{F}: \mathbf{A} \to \mathbf{B}$ and $\mathbf{C} \subseteq \mathcal{P}\mathbf{B}$. Then

$$\mathbf{F}^{-1}\left(\bigcap \mathbf{C}\right) = \bigcap \{\mathbf{F}^{-1}(X) \mid X \in \mathbf{C}\}\ .$$

Proof:

$$x \in \mathbf{F}^{-1}\left(\bigcap \mathbf{C}\right) \Leftrightarrow \mathbf{F}(x) \in \bigcap \mathbf{C}$$
$$\Leftrightarrow \forall X \in \mathbf{C}.\mathbf{F}(x) \in X$$
$$\Leftrightarrow \forall X \in \mathbf{C}.x \in \mathbf{F}^{-1}(X)$$

Proposition Schema 3.1.29 (Z). For any classes A, B, C, D and F, the following is a theorem:

Assume $\mathbf{F}: \mathbf{A} \to \mathbf{B}$ and $\mathbf{C}, \mathbf{D} \subseteq \mathbf{B}$. Then

$$F^{-1}(C - D) = F^{-1}(C) - F^{-1}(D)$$
.

Proof:

$$x \in \mathbf{F}^{-1}(\mathbf{C} - \mathbf{D}) \Leftrightarrow \mathbf{F}(x) \in \mathbf{C} - \mathbf{D}$$

 $\Leftrightarrow \mathbf{F}(x) \in \mathbf{C} \wedge \mathbf{F}(x) \notin \mathbf{D}$
 $\Leftrightarrow x \in \mathbf{F}^{-1}(\mathbf{C}) \wedge x \in \mathbf{F}^{-1}(\mathbf{D})$
 $\Leftrightarrow x \in \mathbf{F}^{-1}(\mathbf{C}) - \mathbf{F}^{-1}(\mathbf{D})$

3.1.7 Function Sets

Proposition 3.1.30 (ZFC). For any classes ${\bf B}$ and ${\bf F}$, the following is a theorem:

Let A be a set. If $\mathbf{F}: A \to \mathbf{B}$ then \mathbf{F} is a set.

PROOF: By an Axiom of Replacement, we have $R = \{ \mathbf{F}(x) \mid x \in A \}$ is a set. Hence \mathbf{F} is a set since $\mathbf{F} \subseteq A \times R$. \square

Definition 3.1.31 (Dependent Product Class). Let I be a set and let $\mathbf{H}(i)$ be a class for all $i \in I$. We write $\prod_{i \in I} \mathbf{H}(i)$ for the class of all functions $f: I \to \bigcup_{i \in I} \mathbf{H}(i)$ such that $\forall i \in I. f(i) \in \mathbf{H}(i)$. We write \mathbf{B}^I for $\prod_{i \in I} \mathbf{B}$ where \mathbf{B} does not depend on I.

Proposition Schema 3.1.32 (ZFC). Let I be a set. Let H(i) be a set for every $i \in I$. Then $\prod_{i \in I} \mathbf{H}(i)$ is a set.

```
Proof:
```

```
\langle 1 \rangle 1. \{ \mathbf{H}(i) \mid i \in I \} is a set.
PROOF: By an Axiom of Replacement.
\langle 1 \rangle 2. \bigcup_{i \in I} \mathbf{H}(i) is a set.
\langle 1 \rangle 3. \prod_{i \in I} \mathbf{H}(i) is a set.
```

PROOF: It is a subset of $\mathcal{P}\left(I \times \bigcup_{i \in I} \mathbf{H}(i)\right)$.

Proposition 3.1.33 (Z). Let I be a set. Let H(i) be a set for all $i \in I$. If $\forall i \in I. H(i) \neq \emptyset$ then $\prod_{i \in I} H(i) \neq \emptyset$.

Proof:

```
\begin{array}{l} \langle 1 \rangle 1. \  \, \text{Assume:} \  \, \forall i \in I.H(i) \neq \emptyset \\ \langle 1 \rangle 2. \  \, \text{Let:} \  \, R = \{(i,x) \mid i \in I, x \in H(i)\} \\ \langle 1 \rangle 3. \  \, \text{Pick a function} \  \, f:I \rightarrow \bigcup_{i \in I} H(i) \  \, \text{such that} \  \, f \subseteq R \\ \text{Proof: Proposition 3.1.6.} \\ \langle 1 \rangle 4. \  \, f \in \prod_{i \in I} H(i) \\ \sqcap \end{array}
```

3.2 Equinumerosity

Definition 3.2.1 (Equinumerous). Sets A and B are equinumerous, $A \approx B$, iff there exists a bijection between A and B.

3.3 Domination

Definition 3.3.1 (Dominate). A set A is dominated by a set B, $A \leq B$, iff there exists an injection $A \rightarrow B$.

Proposition 3.3.2 (Z). Given sets A and B, if $A \neq \emptyset$ or $B = \emptyset$, then we have $A \preceq B$ iff there exists a surjective function $B \to A$.

Proof:

- $\langle 1 \rangle 1$. If $A \leq B$ and $A \neq \emptyset$ then there exists a surjective function $B \to A$.
 - $\langle 2 \rangle 1$. Assume: $f: A \to B$ be injective.
 - $\langle 2 \rangle 2$. Pick $a \in A$
 - $\langle 2 \rangle 3$. Let: $g: B \to A$ be the function defined by $g(b) = f^{-1}(b)$ if $b \in \operatorname{ran} f$, and g(b) = a otherwise.

```
\langle 2 \rangle 4. g is surjective.
```

- $\langle 1 \rangle 2$. If there exists a surjective function $B \to A$ then $A \leq B$.
 - $\langle 2 \rangle 1$. Assume: there exists a surjective function $g: B \to A$

 - $\langle 2 \rangle 2$. $\forall a \in A. \exists b \in B. g(b) = a$ $\langle 2 \rangle 3$. Choose a function $f: A \to B$ such that $\forall a \in A. g(f(a)) = a$
 - $\langle 2 \rangle 4$. f is injective.

Chapter 4

Equivalence Relations

Definition 4.0.1 (Equivalence Relation). An *equivalence relation* on a class **A** is a binary relation on **A** that is reflexive, symmetric and transitive.

Proposition 4.0.2 (Z). Equinumerosity is an equivalence relation on the class of all sets.

PROOF: Propositions 3.1.16, 3.1.17, 3.1.18.

Definition 4.0.3 (Respects). Let **R** be an equivalence relation on **A** and **F**: $\mathbf{A} \to \mathbf{B}$. Then **F** respects **A** iff, whenever $(x,y) \in \mathbf{R}$, then $\mathbf{F}(x) = \mathbf{F}(y)$.

Definition 4.0.4 (Equivalence Class). Let \mathbf{R} be an equivalence relation on \mathbf{A} and $a \in \mathbf{A}$. The *equivalence class* of a modulo \mathbf{R} is

$$[a]_{\mathbf{R}} := \{x \mid a\mathbf{R}x\} .$$

Proposition Schema 4.0.5 (Z). For any classes ${\bf A}$ and ${\bf R}$, the following is a theorem.

Assume **R** be an equivalence relation on **A**. Let $a, b \in \mathbf{A}$. Then $[a]_{\mathbf{R}} = [b]_{\mathbf{R}}$ if and only if $a\mathbf{R}b$.

Proof:

- $\langle 1 \rangle 1$. If $[a]_{\mathbf{R}} = [b]_{\mathbf{R}}$ then $a\mathbf{R}b$.
 - $\langle 2 \rangle 1$. Assume: $[a]_{\mathbf{R}} = [b]_{\mathbf{R}}$
 - $\langle 2 \rangle 2$. $b\mathbf{R}b$

PROOF: Reflexivity

- $\langle 2 \rangle 3. \ b \in [b]_{\mathbf{R}}$
- $\langle 2 \rangle 4. \ b \in [a]_{\mathbf{R}}$
- $\langle 2 \rangle 5$. $a\mathbf{R}b$
- $\langle 1 \rangle 2$. If $a\mathbf{R}b$ then $[a]_{\mathbf{R}} = [b]_{\mathbf{R}}$.
 - $\langle 2 \rangle 1$. For all $x, y \in \mathbf{A}$, if $x \mathbf{R} y$ then $[y]_{\mathbf{R}} \subseteq [x]_{\mathbf{R}}$
 - $\langle 3 \rangle 1$. Let: $x, y \in \mathbf{A}$
 - $\langle 3 \rangle 2$. Assume: $x \mathbf{R} y$

```
\langle 3 \rangle 3. \text{ Let: } t \in [y]_{\mathbf{R}}
\langle 3 \rangle 4. y\mathbf{R}t
\langle 3 \rangle 5. x\mathbf{R}t
\text{Proof: Transitivity, } \langle 3 \rangle 2, \langle 3 \rangle 4.
\langle 3 \rangle 6. t \in [x]_{\mathbf{R}}
\langle 2 \rangle 2. \text{ Assume: } a\mathbf{R}b
\langle 2 \rangle 3. [b]_{\mathbf{R}} \subseteq [a]_{\mathbf{R}}
\text{Proof: } \langle 2 \rangle 1, \langle 2 \rangle 2.
\langle 2 \rangle 4. b\mathbf{R}a
\text{Proof: Symmetry, } \langle 2 \rangle 2.
\langle 2 \rangle 5. [a]_{\mathbf{R}} \subseteq [b]_{\mathbf{R}}
\text{Proof: } \langle 2 \rangle 1, \langle 2 \rangle 4.
\langle 2 \rangle 6. [a]_{\mathbf{R}} = [b]_{\mathbf{R}}
\text{Proof: } \langle 2 \rangle 3, \langle 2 \rangle 5.
```

Definition 4.0.6 (Partition). A partition Π of a set A is a set of nonempty subsets of A that is disjoint and exhaustive, i.e.

- 1. no two different sets in Π have any common elements, and
- 2. each element of A is in some set in Π .

Definition 4.0.7. Let R be an equivalence relation on a set A. The *quotient* set A/R is the set of all equivalence classes.

Theorem 4.0.8 (Z). Let A be a set and \mathbf{B} a class. Let R be an equivalence relation on A and $F:A\to \mathbf{B}$. Then F respects R if and only if there exists $\hat{F}:A/R\to \mathbf{B}$ such that

$$\forall a \in A. \hat{F}([a]_R) = F(a) .$$

In this case, \hat{F} is unique.

Proof:

- $\langle 1 \rangle 1$. If F respects R then there exists $\hat{F}: A/R \to \mathbf{B}$ such that $\forall a \in A.\hat{F}([a]_R) = F(a)$.
 - $\langle 2 \rangle 1$. Assume: F respects R.
 - $\langle 2 \rangle 2$. Let: $\hat{F} = \{ ([a]_R, F(a)) \mid a \in A \}$
 - $\langle 2 \rangle 3$. \hat{F} is a function.
 - $\langle 3 \rangle 1$. Assume: $a, a' \in A$ and $[a]_R = [a']_R$ Prove: F(a) = F(a')
 - $\langle 3 \rangle 2. \ (a, a') \in R$

Proof: Proposition 4.0.5.

 $\langle 3 \rangle 3$. F(a) = F(a')

Proof: $\langle 2 \rangle 1$

- $\langle 2 \rangle 4$. dom $\hat{F} = A/R$
- $\langle 2 \rangle 5$. ran $\hat{F} \subseteq \mathbf{B}$

```
\langle 2 \rangle 6. \ \forall a \in A. \hat{F}([a]_R) = F(a)
\langle 1 \rangle 2. If there exists \hat{F}: A/R \to \mathbf{B} such that \forall a \in A.\hat{F}([a]_R) = F(a) then F
        respects R.
   \langle 2 \rangle 1. Assume: \hat{F}: A/R \to \mathbf{B} and \forall a \in A.\hat{F}([a]_R) = F(a)
   \langle 2 \rangle 2. Let: a, a' \in A
   \langle 2 \rangle 3. Assume: (a, a') \in R
   \langle 2 \rangle 4. [a]_R = [a']_R
      Proof: Proposition 4.0.5.
   \langle 2 \rangle 5. F(a) = F(a')
      Proof: \langle 2 \rangle 1
\langle 1 \rangle 3. If G, H : A/R \to \mathbf{B} and \forall a \in A.G([a]_R) = H([a]_R) then G = H.
Proposition 4.0.9 (Z). Let R be an equivalence relation on a set A. Then
A/R is a partition of A.
Proof:
\langle 1 \rangle 1. Every member of A/R is nonempty.
   PROOF: Since a \in [a]_R by reflexivity.
\langle 1 \rangle 2. No two different sets in A/R have any common elements.
   \langle 2 \rangle 1. Let: [a]_R, [b]_R \in A/R
   \langle 2 \rangle 2. Let: c \in [a]_R \cap [b]_R
            PROVE: [a]_R = [b]_R
   \langle 2 \rangle 3. aRc
      Proof: \langle 2 \rangle 2
   \langle 2 \rangle 4. \ bRc
      Proof: \langle 2 \rangle 2
   \langle 2 \rangle 5. cRb
      Proof: Symmetry, \langle 2 \rangle 4
   \langle 2 \rangle 6. aRb
      Proof: Transitivity, \langle 2 \rangle 3, \langle 2 \rangle 5
   \langle 2 \rangle 7. [a]_R = [b]_R
      Proof: Proposition 4.0.5, \langle 2 \rangle 6
\langle 1 \rangle 3. Each element of A is in some set in A/R.
   PROOF: Since a \in [a]_R by reflexivity.
```

Proposition 4.0.10 (Z). For any partition P of a set A, there exists a unique equivalence relation R on A such that A/R = P, namely xRy iff $\exists X \in P(x \in X \land y \in X)$.

Proof: Easy.

Definition 4.0.11 (Natural Map). Let A be a set and R an equivalence relation on A. The natural map $A \to A/R$ is the function that maps $a \in A$ to $[a]_R$.

Chapter 5

Ordering Relations

5.1 Partial Orders

Definition 5.1.1 (Partial Ordering). Let **A** be a class. A *partial ordering* on **A** is a relation **R** on **A** that is reflexive, antisymmetric and transitive.

We often write \leq for a partial ordering, and then write x < y for $x \leq y \land x \neq y$.

Proposition Schema 5.1.2 (Z). For any classes A and R, the following is a theorem:

If **R** is a partial order on **A** then so is \mathbf{R}^{-1} .

```
Proof:
```

```
\begin{array}{c} \langle 1 \rangle 1. \ \mathbf{R}^{-1} \ \text{is reflexive.} \\ \text{Proof: Proposition 2.2.8.} \\ \langle 1 \rangle 2. \ \mathbf{R}^{-1} \ \text{is antisymmetric.} \\ \text{Proof: Proposition 2.2.12.} \\ \langle 1 \rangle 3. \ \mathbf{R}^{-1} \ \text{is transitive.} \\ \langle 2 \rangle 1. \ \text{Assume: } x\mathbf{R}^{-1}y \ \text{and } y\mathbf{R}^{-1}z \\ \langle 2 \rangle 2. \ y\mathbf{R}x \ \text{and } z\mathbf{R}y \\ \langle 2 \rangle 3. \ z\mathbf{R}x \\ \text{Proof: Since } \mathbf{R} \ \text{is transitive.} \\ \langle 2 \rangle 4. \ x\mathbf{R}^{-1}z \\ \square \end{array}
```

Proposition Schema 5.1.3 (Z). For any classes A, B, F and R, the following is a theorem:

Assume **R** is a partial order on **B** and **F**: $\mathbf{A} \to \mathbf{B}$ is injective. Define **S** on **A** by $x\mathbf{S}y$ iff $\mathbf{F}(x)\mathbf{RF}(y)$. Then **S** is a partial order on **A**.

Proof:

 $\langle 1 \rangle 1$. **S** is reflexive.

PROOF: For any $x \in \mathbf{A}$ we have $\mathbf{F}(x)\mathbf{RF}(x)$.

```
\langle 1 \rangle2. S is antisymmetric.

\langle 2 \rangle1. Let: x, y \in \mathbf{A}

\langle 2 \rangle2. Assume: x\mathbf{S}y and y\mathbf{S}x

\langle 2 \rangle3. \mathbf{F}(x)\mathbf{R}\mathbf{F}(y) and \mathbf{F}(y)\mathbf{R}\mathbf{F}(x)

\langle 2 \rangle4. \mathbf{F}(x) = \mathbf{F}(y)

PROOF: R is antisymmetric.

\langle 2 \rangle5. x = y

\langle 1 \rangle3. S is transitive.
```

Corollary Schema 5.1.3.1 (Z). For any classes **A**, **B** and **R**, the following is a theorem:

Assume **R** be a partial order on **A** and **B** \subseteq **A**. Then **R** \cap **B**² is a partial order on **B**.

Definition 5.1.4 (Partially Ordered Set). A partially ordered set or poset is a pair (A, \leq) where A is a set and \leq is a partial ordering on A. We often write just A for (A, \leq) .

If (A, \leq) is a poset and $B \subseteq A$ we write just B for the poset $(B, \leq \cap B^2)$.

Definition 5.1.5 (Strictly Monotone). Let $(A, <_A)$ and $(B, <_B)$ be posets. A function $f: A \to B$ is *strictly monotone* iff, whenever $x <_A y$, then $f(x) <_B f(y)$.

Definition 5.1.6 (Least). Let \leq be a partial order on \mathbf{A} . An element $m \in \mathbf{A}$ is *least* iff for all $x \in \mathbf{A}$ we have $m \leq x$.

Proposition 5.1.7 (Z). A partial order has at most one least element.

PROOF: If m and m' are least then $m \leq m'$ and $m' \leq m$, so m = m'. \square

Definition 5.1.8 (Greatst). Let \leq be a partial order on **A**. An element $m \in \mathbf{A}$ is *greatest* iff for all $x \in A$ we have $x \leq m$.

Proposition 5.1.9 (Z). A poset has at most one greatest element.

PROOF: If m and m' are greatest then $m \leq m'$ and $m' \leq m$, so m = m'. \square

Definition 5.1.10 (Upper Bound). Let \leq be a partial ordering on **A** and $\mathbf{B} \subseteq \mathbf{A}$. Let $u \in \mathbf{A}$. Then u is an *upper bound* for **B** iff $\forall x \in \mathbf{B}.x \leq u$.

Definition 5.1.11 (Lower Bound). Let \leq be a partial ordering on **A** and $\mathbf{B} \subseteq \mathbf{A}$. Let $l \in \mathbf{A}$. Then l is a *lower bound* for **B** iff $\forall x \in \mathbf{B}.l \leq x$.

Definition 5.1.12 (Bounded Above). Let \leq be a partial ordering on **A** and $\mathbf{B} \subseteq \mathbf{A}$. Then **B** is *bounded above* iff it has an upper bound.

Definition 5.1.13 (Bounded Below). Let \leq be a partial ordering on **A** and $\mathbf{B} \subseteq \mathbf{A}$. Then **B** is *bounded below* iff it has a lower bound.

Definition 5.1.14 (Least Upper Bound). Let \leq be a partial ordering on \mathbf{A} and $\mathbf{B} \subseteq \mathbf{A}$. Let $s \in \mathbf{A}$. Then s is the *least upper bound* or *supremum* of \mathbf{B} iff s is an upper bound for \mathbf{B} and, for every upper bound u for \mathbf{B} , we have $s \leq u$.

Definition 5.1.15 (Greatest Lower Bound). Let \leq be a partial ordering on \mathbf{A} and $\mathbf{B} \subseteq \mathbf{A}$. Let $i \in \mathbf{A}$. Then i is the *greatest lower bound* or *infimum* of \mathbf{B} iff i is a lower bound for \mathbf{B} and, for every lower bound l for \mathbf{B} , we have $i \leq l$.

Definition 5.1.16 (Complete). A partial order is *complete* iff every nonempty subset bounded above has a supremum, and every nonempty subset bounded below has an infimum.

Definition 5.1.17 (Order Isomorphism). Let A and B be posets. An *order isomorphism* between A and B, $f:A\cong B$, is a bijection $f:A\approx B$ such that f and f^{-1} are monotone.

Theorem 5.1.18 (Knaster Fixed-Point Theorem (Z)). Let A be a complete poset with a greatest and least element. Let $\phi: A \to A$ be monotone. Then there exists $a \in A$ such that $\phi(a) = a$.

Proof:

```
\langle 1 \rangle 1. Let: B = \{ x \in A \mid x \le \phi(x) \}
\langle 1 \rangle 2. Let: a = \sup B
```

PROOF: B is nonempty because the least element of A is in B, and it is bounded above by the greatest element of A.

```
\langle 1 \rangle3. For all b \in B we have b \le \phi(a)
\langle 2 \rangle1. Let: b \in B
```

$$\langle 2 \rangle 2. \ b \leq \phi(b)$$

$$\langle 2 \rangle 3. \ b \leq a$$

$$\langle 2 \rangle 4. \ \phi(b) \leq \phi(a)$$

$$\langle 2 \rangle 5. \ b \leq \phi(a)$$

$$\langle 1 \rangle 4. \ a \leq \phi(a)$$

$$\langle 1 \rangle 5. \ \phi(a) \le \phi(\phi(a))$$

$$\langle 1 \rangle 6. \ \phi(a) \in B$$

$$\langle 1 \rangle 7. \ \phi(a) \le a$$

$$\langle 1 \rangle 8. \ \phi(a) = a$$

Definition 5.1.19 (Dense). Let \leq be a partial order on **A** and **B** \subseteq **A**. Then **B** is *dense* iff, for all $x, y \in$ **A**, if x < y then there exists $z \in$ **B** such that x < z < y.

Proposition 5.1.20 (Z). Let A be a complete poset with no least element. Let $B \subseteq A$ be dense. Let $\theta : A \to A$ be a monotone map that is the identity on B. Then $\theta = id_A$.

```
\langle 1 \rangle 1. Let: a \in A
Prove: \theta(a) = a
```

```
\langle 1 \rangle 2. Let: S(a) = \{ b \in B \mid b < a \}
\langle 1 \rangle 3. S(a) is nonempty and bounded above.
   \langle 2 \rangle 1. S(a) is nonempty.
      \langle 3 \rangle 1. Pick a_1 < a
          Proof: Since a is not least.
       \langle 3 \rangle 2. There exists b \in B such that a_1 < b < a.
   \langle 2 \rangle 2. S(a) is bounded above by a.
\langle 1 \rangle 4. sup S(a) \leq a
\langle 1 \rangle 5. sup S(a) = a
   \langle 2 \rangle 1. Assume: for a contradiction sup S(a) < a
   \langle 2 \rangle 2. Pick b \in B such that \sup S(a) < b < a
   \langle 2 \rangle 3. \ b \in S(a)
   \langle 2 \rangle 4. Q.E.D.
      PROOF: This contradicts the fact that \sup S(a) < b.
\langle 1 \rangle 6. For all b \in S(a) we have b \leq \theta(a)
   \langle 2 \rangle 1. Let: b \in S(a)
   \langle 2 \rangle 2. b < a
   \langle 2 \rangle 3. \ \theta(b) \leq \theta(a)
   \langle 2 \rangle 4. \ b \leq \theta(a)
      Proof: \theta(b) = b
\langle 1 \rangle 7. \ a \leq \theta(a)
  PROOF: Since a = \sup S(a) and \theta(a) is an upper bound for S(a).
\langle 1 \rangle 8. \ a \not< \theta(a)
   \langle 2 \rangle 1. Assume: for a contradiction a < \theta(a).
   \langle 2 \rangle 2. Pick b \in B such that a < b < \theta(a)
   \langle 2 \rangle 3. \theta(a) \leq \theta(b) = b
   \langle 2 \rangle 4. Q.E.D.
      PROOF: This contradicts the fact that b < \theta(a).
\langle 1 \rangle 9. \ \theta(a) = a
```

Theorem 5.1.21 (Z). Let A and P be complete posets with no least or greatest element. Let B be dense in A and Q be dense in P. Every order isomorphism $\phi: B \cong Q$ extends uniquely to an order isomorphism $A \cong P$.

Proof:

```
A ROOF: \langle 1 \rangle1. For a \in A, let S(a) = \{b \in B \mid b < a\}. \langle 1 \rangle2. Define \overline{\phi}: A \to P by \overline{\phi}(a) = \sup \phi(S(a)). \langle 2 \rangle1. \phi(S(a)) is nonempty. \langle 3 \rangle1. PICK a_1 < a
PROOF: Since a is not least. \langle 3 \rangle2. PICK b \in B such that a_1 < b < a. \langle 3 \rangle3. \phi(b) \in \phi(S(a)) \langle 2 \rangle2. \phi(S(a)) is bounded above. \langle 3 \rangle1. PICK a_2 > a
PROOF: Since a is not greatest.
```

 $\langle 3 \rangle 2$. Pick $b \in B$ such that $a < b < a_2$

```
\langle 3 \rangle 3. \phi(b) is an upper bound for \phi(S(a)).
\langle 1 \rangle 3. \overline{\phi} is monotone.
   PROOF: If a \leq a' then S(a) \subseteq S(a') and so \overline{\phi}(a) \leq \overline{\phi}(a').
\langle 1 \rangle 4. \phi extends \phi.
   \langle 2 \rangle 1. Let: b \in B
             PROVE: \phi(b) = \sup \phi(S(b))
    \langle 2 \rangle 2. \phi(b) is an upper bound for \phi(S(b))
   \langle 2 \rangle 3. Let: u be any upper bound for \phi(S(b))
             Prove: \phi(b) < u
   \langle 2 \rangle 4. Assume: for a contradiction u < \phi(b)
   \langle 2 \rangle5. Pick q \in Q such that u < q < \phi(b)
   \langle 2 \rangle 6. Pick b' \in B such that \phi(b') = q
    \langle 2 \rangle 7. \ b' < b
    \langle 2 \rangle 8. \ b' \in S(b)
    \langle 2 \rangle 9. \ \ q = \phi(b') \leq u
   \langle 2 \rangle 10. Q.E.D.
       Proof: This is a contradiction.
\langle 1 \rangle 5. Let: \psi = \phi^{-1}
(1)6. Let: \overline{\psi}: P \to A be the function \overline{\psi}(p) = \sup\{\psi(q) \mid q \in Q, q < p\}
\langle 1 \rangle 7. \overline{\psi} is monotone and extends \psi
   PROOF: Similar.
\langle 1 \rangle 8. \overline{\psi} \circ \overline{\phi} : A \to A is monotone and the identity on B.
\langle 1 \rangle 9. \ \overline{\psi} \circ \overline{\phi} = \mathrm{id}_A
   Proof: Proposition 5.1.20.
\langle 1 \rangle 10. \ \overline{\phi} \circ \overline{\psi} = \mathrm{id}_B
   Proof: Proposition 5.1.20.
\langle 1 \rangle 11. If \phi^* : A \cong P is any order isomorphism that extends \phi then \phi^* = \overline{\phi}.
    \langle 2 \rangle 1. Let: a \in A
             PROVE: \phi^*(a) = \sup \phi(S(a))
    \langle 2 \rangle 2. \phi^*(a) is an upper bound for \phi(S(a))
   \langle 2 \rangle 3. Let: u be any upper bound for \phi(S(a))
             PROVE: \phi^*(a) \le u
    \langle 2 \rangle 4. Assume: for a contradiction u < \phi^*(a)
    \langle 2 \rangle5. Pick q \in Q such that u < q < \phi^*(a)
    \langle 2 \rangle 6. Pick b \in B such that q = \phi(b)
    \langle 2 \rangle 7. \ b < a
    \langle 2 \rangle 8. \ b \in S(a)
   \langle 2 \rangle 9. \ \ q = \phi(b) \le u
   \langle 2 \rangle 10. Q.E.D.
       PROOF: This is a contradiction.
```

Definition 5.1.22 (Initial Segment). Let \leq be a partial order on **A** and $t \in A$. The *initial segment* up to t is the class

$$\operatorname{seg} t := \{ x \in \mathbf{A} \mid x < t \} .$$

Definition 5.1.23 (Lexicographic Ordering). Let **R** be a partial order on **A** and **S** a partial order on **B**. The *lexicographic ordering* \leq on **A** \times **B** is defined by:

$$(a,b) \le (a',b') \Leftrightarrow (a\mathbf{R}a' \wedge a \ne a') \vee (a = a' \wedge b\mathbf{S}b')$$
.

Proposition Schema 5.1.24 (Z). For any classes A, B, R and S, the following is a theorem:

If **R** is a partial order on **A** and **S** is a partial order on **B** then the lexicographic ordering on $\mathbf{A} \times \mathbf{B}$ is a partial order.

Proof:

- $\langle 1 \rangle 1$. Let: \leq be the lexicographic ordering on $\mathbf{A} \times \mathbf{B}$
- $\langle 1 \rangle 2. \leq \text{is reflexive.}$

PROOF: For any $a \in \mathbf{A}$ and $b \in \mathbf{B}$ we have a = a and $b\mathbf{S}b$, so $(a, b) \leq (a, b)$.

- $\langle 1 \rangle 3. \leq \text{is antisymmetric.}$
 - (2)1. Assume: $(a,b) \le (a',b')$ and $(a',b') \le (a,b)$
 - $\langle 2 \rangle 2$. $(a\mathbf{R}a' \wedge a \neq a') \vee (a = a' \wedge b\mathbf{S}b')$
 - $\langle 2 \rangle 3$. $(a' \mathbf{R} a \wedge a' \neq a) \vee (a' = a \wedge b \mathbf{S} b')$
 - $\langle 2 \rangle 4$. Case: a = a'

PROOF: Then $b\mathbf{S}b'$ and $b'\mathbf{S}b$ hence b=b' and (a,b)=(a',b').

 $\langle 2 \rangle$ 5. Case: $a \neq a'$

PROOF: Then $a\mathbf{R}a'$ and $a'\mathbf{R}a$ hence a=a' which is a contradiction.

- $\langle 1 \rangle 4$. \leq is transitive.
 - $\langle 2 \rangle 1$. Assume: $(a_1, b_1) \leq (a_2, b_2) \leq (a_3, b_3)$
 - $\langle 2 \rangle 2$. $(a_1 \mathbf{R} a_2 \wedge a_1 \neq a_2) \vee (a_1 = a_2 \wedge b_1 \mathbf{S} b_2)$
 - $\langle 2 \rangle 3. \ (a_2 \mathbf{R} a_3 \wedge a_2 \neq a_3) \vee (a_2 = a_3 \wedge b_2 \mathbf{S} b_3)$
 - $\langle 2 \rangle 4$. Case: $a_1 \mathbf{R} a_2, a_1 \neq a_2, a_2 \mathbf{R} a_3, a_2 \neq a_3$
 - $\langle 3 \rangle 1. \ a_1 \mathbf{R} a_3$

PROOF: Since \mathbf{R} is transitive.

 $\langle 3 \rangle 2$. $a_1 \neq a_3$

PROOF: If $a_1 = a_3$ then $a_1 \mathbf{R} a_2$ and $a_2 \mathbf{R} a_1$ so $a_1 = a_2$ which is a contradiction.

 $\langle 2 \rangle 5$. Case: $a_1 \mathbf{R} a_2, a_1 \neq a_2, a_2 = a_3, b_2 \mathbf{S} b_3$

PROOF: Then $a_1 \mathbf{R} a_3$ and $a_1 \neq a_3$.

 $\langle 2 \rangle 6$. Case: $a_1 = a_2, b_1 \mathbf{S} b_2, a_2 \mathbf{R} a_3, a_2 \neq a_3$

PROOF: Then $a_1 \mathbf{R} a_3$ and $a_1 \neq a_3$.

 $\langle 2 \rangle 7$. Case: $a_1 = a_2, b_1 \mathbf{S} b_2, a_2 = a_3, b_2 \mathbf{S} b_3$

PROOF: Then $a_1 = a_3$ and $b_1 \mathbf{S} b_3$.

5.2 Linear Orders

Definition 5.2.1 (Linear Ordering). Let **A** be a class. A *linear ordering* or *total ordering* on **A** is a partial ordering \leq on **A** that is *total*, i.e.

$$\forall x,y \in \mathbf{A}.x \leq y \vee y \leq x$$

We often use the symbol < for a linear ordering, and then write x < y for $(x,y) \in <$.

Proposition Schema 5.2.2 (Trichotomy (Z)). For any classes **A** and \leq , the following is a theorem:

Assume \leq be a linear ordering on **A**. For any $x, y \in \mathbf{A}$, exactly one of x < y, x = y, y < x holds.

Proof: Immediate from definitions. \Box

Proposition Schema 5.2.3 (Z). For any classes A and <, the following is a theorem:

Let < be a transitive relation on \mathbf{A} that satisfies trichotomy. Define \leq on \mathbf{A} by $x \leq y$ iff x < y or x = y. Then \leq is a linear ordering on \mathbf{A} and x < y iff $x \leq y$ and $x \neq y$.

Proof:

 $\langle 1 \rangle 1$. < is reflexive.

PROOF: By definition we have $\forall x \in \mathbf{A}.x \leq x$.

- $\langle 1 \rangle 2$. \leq is antisymmetric.
 - $\langle 2 \rangle 1$. Assume: $x \leq y$ and $y \leq x$
 - $\langle 2 \rangle 2$. x < y or x = y
 - $\langle 2 \rangle 3$. y < x or y = x
 - $\langle 2 \rangle 4$. We cannot have x < y and y < x

PROOF: Trichotomy.

- $\langle 2 \rangle 5. \ x = y$
- $\langle 1 \rangle 3. \leq \text{is transitive.}$
 - $\langle 2 \rangle 1$. Assume: $x \leq y$ and $y \leq z$
 - $\langle 2 \rangle 2$. x < y or x = y
 - $\langle 2 \rangle 3$. y < z or y = z
 - $\langle 2 \rangle 4$. Case: x < y and y < z

PROOF: Then x < z by transitivity, so $x \le z$.

 $\langle 2 \rangle 5$. Case: x = y

PROOF: Then we have $y \leq z$ and so $x \leq z$.

 $\langle 2 \rangle 6$. Case: y = z

PROOF: Then we have $x \leq y$ and so $x \leq z$.

 $\langle 1 \rangle 4. \leq \text{is total.}$

PROOF: Immediate from trichotomy.

Proposition Schema 5.2.4 (Z). For any classes **A** and **R**, the following is a theorem:

If \mathbf{R} is a linear ordering on \mathbf{A} then \mathbf{R}^{-1} is also a linear ordering on \mathbf{A} .

PROOF

 $\langle 1 \rangle 1$. \mathbf{R}^{-1} is a partial order on \mathbf{A} .

Proof: Proposition 5.1.2.

 $\langle 1 \rangle 2$. \mathbf{R}^{-1} is total.

```
\langle 2 \rangle 1. Let: x, y \in \mathbf{A}

\langle 2 \rangle 2. x \mathbf{R} y or y \mathbf{R} x.

\langle 2 \rangle 3. y \mathbf{R}^{-1} x or x \mathbf{R}^{-1} y.
```

Proposition Schema 5.2.5 (Z). For any classes **A**, **B**, **F**, **R**, **S**, the following is a theorem:

Assume **R** is a linear order on **A**, **S** is a partial order on **B**, and **F** : $\mathbf{A} \to \mathbf{B}$. If **F** is strictly monotone then it is injective.

Proof:

- $\langle 1 \rangle 1$. Let: $x, y \in \mathbf{A}$
- $\langle 1 \rangle 2$. Assume: $x \neq y$

PROVE: $\mathbf{F}(x) \neq \mathbf{F}(y)$

 $\langle 1 \rangle 3$. Assume: w.l.o.g. $x \mathbf{R} y$

PROOF: \mathbf{R} is total.

 $\langle 1 \rangle 4$. $\mathbf{F}(x)\mathbf{SF}(y)$ and $\mathbf{F}(x) \neq \mathbf{F}(y)$

PROOF: **F** is strictly monotone.

Proposition Schema 5.2.6 (Z). For any classes A, B, \leq , \preccurlyeq and F, the following is a theorem:

Assume \leq is a linear order on \mathbf{A} and \preccurlyeq is a linear order on \mathbf{B} . Assume $\mathbf{F}: \mathbf{A} \to \mathbf{B}$ and \mathbf{F} is strictly monotone. For all $x, y \in \mathbf{A}$, if $\mathbf{F}(x) \prec \mathbf{F}(y)$ then x < y.

Proof:

 $\langle 1 \rangle 1$. $\mathbf{F}(x) \neq \mathbf{F}(y)$ and $\mathbf{F}(y) \not\prec \mathbf{F}(x)$

PROOF: Trichotomy.

 $\langle 1 \rangle 2$. $x \neq y$ and $y \not< x$

Proof: \mathbf{F} is strictly monotone.

 $\langle 1 \rangle 3. \ x < y$

Proof: Trichotomy.

Corollary Schema 5.2.6.1 (Z). For any classes A, B, \leq , \preccurlyeq and F, the following is a theorem:

Assume \leq is a linear order on \mathbf{A} and \preccurlyeq is a linear order on \mathbf{B} . Assume $\mathbf{F}: \mathbf{A} \to \mathbf{B}$ and \mathbf{F} is strictly monotone. Then \mathbf{F} is an order isomorphism.

Proposition Schema 5.2.7 (Z). For any classes **A**, **B**, **F** and **S**, the following is a theorem:

Assume **S** is a linear order on **B** and **F**: $\mathbf{A} \rightarrow \mathbf{B}$. Define **R** on **A** by $x\mathbf{R}y$ if and only if $\mathbf{F}(x)\mathbf{SF}(y)$. Then **R** is a linear order on **A**.

Proof:

 $\langle 1 \rangle 1$. **R** is a partial order on **A**.

Proof: Proposition 5.1.3.

```
\langle 1 \rangle 2. R is total.
    PROOF: For all x, y \in \mathbf{A} we have \mathbf{F}(x)\mathbf{SF}(y) or \mathbf{F}(y)\mathbf{SF}(x).
```

Corollary Schema 5.2.7.1 (Z). For any classes A, B and R, the following is a theorem:

Assume **R** be a linear order on **A** and **B** \subseteq **A**. Then **R** \cap **B**² is a linear order on **B**.

Proposition Schema 5.2.8 (Z). For any classes A, B, R and S, the following is a theorem:

Assume \mathbf{R} is a linear order on \mathbf{A} and \mathbf{S} is a linear order on \mathbf{B} . Then the lexicographic ordering is a linear order on $\mathbf{A} \times \mathbf{B}$.

```
Proof:
```

```
\langle 1 \rangle 1. Let: \leq be the lexicographic order on \mathbf{A} \times \mathbf{B}
\langle 1 \rangle 2. \leq is a partial order.
   Proof: Proposition 5.1.24.
\langle 1 \rangle 3. \leq \text{is total.}
   \langle 2 \rangle 1. Let: a, a' \in \mathbf{A} and b, b' \in \mathbf{B}
   \langle 2 \rangle 2. Case: a\mathbf{R}a' and a \neq a'
       PROOF: Then (a, b) \leq (a', b').
    \langle 2 \rangle 3. Case: a = a'
       PROOF: We have b\mathbf{S}b' or b'\mathbf{S}b, so (a,b) \leq (a',b') or (a',b') \leq (a,b).
   \langle 2 \rangle 4. Case: a' \mathbf{R} a and a \neq a'
       PROOF: Then (a', b') \leq (a, b).
```

5.3 Well Orderings

Definition 5.3.1 (Well Ordering). A well ordering on a class **A** is a wellfounded linear ordering on **A**.

Proposition 5.3.2 (Z). Let S be a well ordering of the set B and $f: A \to B$ a function. Define R on A by xRy if and only if F(x)SF(y). Then R well orders A.

```
\langle 1 \rangle 1. R linearly orders A.
   Proof: Proposition 5.2.7.
\langle 1 \rangle 2. Every nonempty subset of A has a least element.
   \langle 2 \rangle 1. Let: C be a nonempty subset of A.
   \langle 2 \rangle 2. Let: y be the least element of f(C).
   \langle 2 \rangle 3. PICK x \in C such that f(x) = y.
   \langle 2 \rangle 4. x is least in C.
```

Proposition Schema 5.3.3 (Z). For any classes **A**, **B** and **R**, the following is a theorem:

Assume **R** well orders **B** and $\mathbf{A} \subseteq \mathbf{B}$. Then $\mathbf{R} \cap \mathbf{A}^2$ well orders **A**.

Proof:

- $\langle 1 \rangle 1$. Let: $\mathbf{R}' = \mathbf{R} \cap \mathbf{A}^2$
- $\langle 1 \rangle 2$. **R'** linearly orders **A**.

Proof: Corollary 5.2.7.1.

 $\langle 1 \rangle 3$. **R**' is well founded.

Proof: Proposition 2.4.4.

Proposition Schema 5.3.4 (ZFC). For any classes **A**, **B**, **F** and **S**, the following is a theorem:

Assume **S** well orders **B** and **F** : $\mathbf{A} \rightarrow \mathbf{B}$. Define **R** on **A** by $x\mathbf{R}y$ if and only if $\mathbf{F}(x)\mathbf{SF}(y)$. Then **R** well orders **A**.

Proof:

 $\langle 1 \rangle 1$. **R** linearly orders **A**.

Proof: Proposition 5.2.7.

- $\langle 1 \rangle 2$. For all $t \in \mathbf{A}$ we have $\{x \in \mathbf{A} \mid x\mathbf{R}t \land x \neq t\}$ is a set.
 - $\langle 2 \rangle 1$. Let: $t \in \mathbf{A}$
 - $\langle 2 \rangle 2$. Let: $S = \{ y \in \mathbf{B} \mid y\mathbf{SF}(t) \land y \neq \mathbf{F}(t) \}$
 - $\langle 2 \rangle 3$. Let: P(x,y) be the property $\mathbf{F}(y) = x$
 - $\langle 2 \rangle 4$. For all $x \in S$ there exists at most one y such that P(x, y) PROOF: **F** is injective.
 - $\langle 2 \rangle$ 5. Let: $T = \{ y \mid \exists x \in S.P(x,y) \}$

Proof: Axiom of Replacement.

- $\langle 2 \rangle 6. \ T = \{ x \in \mathbf{A} \mid x\mathbf{R}t \land x \neq t \}$
- $\langle 1 \rangle 3$. Every nonempty subset of **A** has a least element.
 - $\langle 2 \rangle 1$. Let: S be a nonempty subset of **A**.
 - $\langle 2 \rangle 2$. **F**(S) is a nonempty subset of **B**

PROOF: Axiom of Replacement.

- $\langle 2 \rangle 3$. Let: y be the least element of $\mathbf{F}(S)$.
- $\langle 2 \rangle 4$. PICK $x \in S$ such that $\mathbf{F}(x) = y$.
- $\langle 2 \rangle 5$. x is least in S.

Proposition 5.3.5 (Z). For any well ordered sets A and B, the lexicographic order well orders $A \times B$.

Proof:

 $\langle 1 \rangle 1$. $A \times B$ is linearly ordered.

Proof: Proposition 5.2.8.

- $\langle 1 \rangle 2$. Every nonempty subset of $A \times B$ has a least element.
 - $\langle 2 \rangle 1$. Let: S be a nonempty subset of $A \times B$.
 - $\langle 2 \rangle 2$. Let: a be the least element of $\{x \in A \mid \exists y \in B.(x,y) \in S\}$.
 - $\langle 2 \rangle 3$. Let: b be the least element of $\{ y \in B \mid (a, y) \in S \}$.

(2)4. (a,b) is least in S.

Definition 5.3.6 (End Extension). Let A and B be well ordered sets. Then B is an *end extension* of A iff $A \subseteq B$ and:

- Whenever $x, y \in A$ then $x \leq_A y$ iff $x \leq_B y$.
- Whenever $x \in A$ and $y \in B A$ then x < y.

Theorem 5.3.7 (Z). Let \leq be a linear ordering on A. Assume that, for any $B \subseteq A$ such that $\forall t \in A$. seg $t \subseteq B \Rightarrow t \in B$, we have B = A. Then \leq is a well ordering on A.

Proof:

- $\langle 1 \rangle 1$. Let: $C \subseteq A$ be nonempty.
- $\langle 1 \rangle 2$. Let: $B = \{ t \in A \mid \forall x \in C.t < x \}$
- $\langle 1 \rangle 3. \ B \cap C = \emptyset$
- $\langle 1 \rangle 4$. $B \neq A$
- $\langle 1 \rangle$ 5. PICK $t \in A$ such that $seg t \subseteq B$ and $t \notin B$
- $\langle 1 \rangle 6$. t is least in C.

Proposition Schema 5.3.8 (Z). For any classes A, B, F, G, \leq and \preccurlyeq , the following is a theorem:

Assume \leq well orders \mathbf{A} and \leq well orders \mathbf{B} . Assume \mathbf{F} and \mathbf{G} are order isomorphisms between \mathbf{A} and \mathbf{B} . Then $\mathbf{F} = \mathbf{G}$.

Proof:

- $\langle 1 \rangle 1$. For all $x \in \mathbf{A}$, if $\forall t < x.\mathbf{F}(t) = \mathbf{G}(t)$, then $\mathbf{F}(x) = \mathbf{G}(x)$
 - $\langle 2 \rangle 1$. Let: $x \in \mathbf{A}$
 - $\langle 2 \rangle 2$. Assume: $\forall t < x. \mathbf{F}(t) = \mathbf{G}(t)$
 - $\langle 2 \rangle 3$. $\mathbf{F}(\operatorname{seg} x) = \mathbf{G}(\operatorname{seg} x)$
 - $\langle 2 \rangle 4$. $\mathbf{F}(x)$ is the least element of $\mathbf{B} \mathbf{F}(\operatorname{seg} x)$
 - $\langle 2 \rangle 5$. $\mathbf{G}(x)$ is the least element of $\mathbf{B} \mathbf{G}(\operatorname{seg} x)$
 - $\langle 2 \rangle 6. \ \mathbf{F}(x) = \mathbf{G}(x)$
- $\langle 1 \rangle 2. \ \forall x \in \mathbf{A}.\mathbf{F}(x) = \mathbf{G}(x)$

PROOF: Transfinite induction.

Theorem 5.3.9 (ZFC). Let A and B be well ordered sets. Then one of the following holds: $A \cong B$; there exists $b \in B$ such that $A \cong \operatorname{seg} b$; there exists $a \in A$ such that $\operatorname{seg} a \cong B$.

- $\langle 1 \rangle 1$. PICK e that is not in A or B.
- $\langle 1 \rangle$ 2. Let: $F: A \to B \cup \{e\}$ be the function defined by transfinite recursion thus:

$$F(t) = \begin{cases} \text{the least element of } B - F(\sec t) & \text{if } B - F(\sec t) \neq \emptyset \\ e & \text{if } B - F(\sec t) = \emptyset \end{cases}$$

```
\begin{split} &\langle 1 \rangle 3. \text{ Case: } e \in \operatorname{ran} F \\ &\langle 2 \rangle 1. \text{ Let: } t \text{ be least such that } F(t) = e \\ &\langle 2 \rangle 2. F \upharpoonright \operatorname{seg} t : \operatorname{seg} t \cong B \\ &\langle 1 \rangle 4. \text{ Case: } \operatorname{ran} F = B \\ &\operatorname{PROOF: We have } F : A \cong B \\ &\langle 1 \rangle 5. \text{ Case: } \operatorname{ran} F \subsetneq B \\ &\langle 2 \rangle 1. \text{ Let: } b \text{ be the least element of } B - \operatorname{ran} F \\ &\langle 2 \rangle 2. F : A \cong \operatorname{seg} b \end{split}
```

Chapter 6

Ordinal Numbers

6.1 Ordinals

Definition 6.1.1 (Ordinal Number). An *ordinal (number)* is a transitive set α that is *well-ordered by* \in ; that is, such that $\{(x,y) \in \alpha^2 \mid x \in y \lor x = y\}$ well orders α .

Given $x, y \in \alpha$, we write x < y iff $x \in y$, and $x \le y$ iff $x \in y$ or x = y.

Let **On** be the class of ordinal numbers. For $\alpha, \beta \in$ **On**, we write $\alpha < \beta$ iff $\alpha \in \beta$, and $\alpha \leq \beta$ iff $\alpha < \beta$ or $\alpha = \beta$.

Proposition 6.1.2 (Z). For any ordinal numbers α and β , if $\alpha \cong \beta$ then $\alpha = \beta$.

```
Proof:
\langle 1 \rangle 1. Let: f : \alpha \cong \beta
\langle 1 \rangle 2. For all x \in \alpha, if \forall t < x. f(t) = t then f(x) = x
    \langle 2 \rangle 1. \ f(x) \subseteq x
        \langle 3 \rangle 1. Let: y \in f(x)
        \langle 3 \rangle 2. \ y \in \beta
        \langle 3 \rangle 3. Pick t \in \alpha such that f(t) = y
            PROOF: f is surjective.
        \langle 3 \rangle 4. \ f(t) \in f(x)
        \langle 3 \rangle 5. \ t \in x
            PROOF: Since f is an order isomorphism.
        \langle 3 \rangle 6. f(t) = t
            Proof: Induction hypothesis.
        \langle 3 \rangle 7. \ y = t
        \langle 3 \rangle 8. \ y \in x
    \langle 2 \rangle 2. x \subseteq f(x)
        \langle 3 \rangle 1. Let: t \in x
        \langle 3 \rangle 2. \ f(t) \in f(x)
        \langle 3 \rangle 3. \ f(t) = t
        \langle 3 \rangle 4. \ t \in f(x)
```

```
\langle 1 \rangle 3. \ \forall x \in \alpha. f(x) = x
```

PROOF: Transfinite induction.

 $\langle 1 \rangle 4. \ \alpha = \beta$

PROOF: Since $\beta = \{f(t) \mid t \in \alpha\} = \{t \mid t \in \alpha\} = \alpha$.

Theorem 6.1.3 (ZFC). Every well-ordered set is isomorphic to a unique ordinal.

Proof:

- $\langle 1 \rangle 1$. For any well-ordered set A, there exists an ordinal α such that $A \cong \alpha$.
 - $\langle 2 \rangle 1$. Let: A be a well-ordered set.
 - $\langle 2 \rangle 2$. Define the function E on A by transfinite recursion thus:

$$E(t) = \{ E(x) \mid x < t \}$$
 $(t \in A)$.

- $\langle 2 \rangle 3$. Let: $\alpha = \{ E(x) \mid x \in A \}$
- $\langle 2 \rangle 4$. α is an ordinal.
 - $\langle 3 \rangle 1$. α is a transitive set.
 - $\langle 4 \rangle 1$. Let: $x \in y \in \alpha$
 - $\langle 4 \rangle 2$. Pick $t \in A$ such that y = E(t)
 - $\langle 4 \rangle 3. \ x \in E(t) = \{ E(s) \mid s < t \}$
 - $\langle 4 \rangle 4$. Pick s < t such that x = E(s)
 - $\langle 4 \rangle 5. \ x \in \alpha$
 - $\langle 3 \rangle 2$. α is well-ordered by \in .
 - $\langle 4 \rangle 1$. Let: $\langle = \{(x,y) \in \alpha \mid x \in y\}$
 - $\langle 4 \rangle 2$. < is transitive.
 - $\langle 5 \rangle 1$. Let: $x, y, z \in \alpha$ with $x \in y \in z$
 - $\langle 5 \rangle 2$. Pick $t \in A$ such that z = E(t)
 - $\langle 5 \rangle 3$. PICK $s \in A$ such that s < t and y = E(s)
 - $\langle 5 \rangle 4$. PICK $r \in A$ such that r < s and x = E(r)
 - $\langle 5 \rangle 5$. r < t
 - $\langle 5 \rangle 6. \ x \in z$
 - $\langle 4 \rangle 3$. < satisfies trichotomy.
 - $\langle 5 \rangle 1$. Let: $x, y \in \alpha$
 - $\langle 5 \rangle 2$. Pick $s, t \in A$ such that E(s) = x and E(t) = y
 - $\langle 5 \rangle 3$. Exactly one of s < t, s = t, t < s holds.
 - $\langle 5 \rangle 4$. Case: s < t
 - $\langle 6 \rangle 1. \ x \in y$
 - $\langle 6 \rangle 2$. $x \neq y$ and $y \notin x$

PROOF: Axiom of Regularity.

- $\langle 5 \rangle 5$. Case: s = t
 - $\langle 6 \rangle 1. \ x = y$
 - $\langle 6 \rangle 2$. $x \notin y$ and $y \notin x$

PROOF: Axiom of Regularity.

 $\langle 5 \rangle 6$. Case: t < s

Proof: Similar to $\langle 5 \rangle 4$.

 $\langle 4 \rangle 4$. < is a linear order on α .

Proof: Proposition 5.2.3.

6.1. ORDINALS 49

```
\langle 4 \rangle5. Every nonempty subset of \alpha has a least element.
              \langle 5 \rangle 1. Let: S be a nonempty subset of \alpha
              \langle 5 \rangle 2. Let: T = \{x \in A \mid E(x) \in S\}
              \langle 5 \rangle 3. Let: t be the least element of T.
                      Prove: E(t) is least in S
              \langle 5 \rangle 4. Let: y \in S
              \langle 5 \rangle 5. Pick s \in T such that E(s) = y
              \langle 5 \rangle 6. \ t \leq s
              \langle 5 \rangle 7. x < y
   \langle 2 \rangle5. E is surjective.
      PROOF: By definition of \alpha.
   \langle 2 \rangle 6. E is strictly monotone.
      PROOF: If s < t then E(s) \in E(t) by definition of E(t).
   \langle 2 \rangle7. Q.E.D.
      Proof: Corollary 5.2.6.1.
\langle 1 \rangle 2. For any ordinals \alpha and \beta, if \alpha \cong \beta then \alpha = \beta.
   Proof: Proposition 6.1.2.
Proposition 6.1.4 (Z). The class On is a transitive class. That is, every
element of an ordinal is an ordinal.
Proof:
\langle 1 \rangle 1. Let: \alpha be an ordinal.
\langle 1 \rangle 2. Let: \beta \in \alpha
\langle 1 \rangle 3. \beta is a transitive set.
   \langle 2 \rangle 1. Let: x \in y \in \beta
   \langle 2 \rangle 2. \ y \in \alpha
      Proof: \alpha is transitive.
   \langle 2 \rangle 3. \ x \in \alpha
      Proof: \alpha is transitive.
   \langle 2 \rangle 4. \ x \in \beta
      PROOF: Since \{(x,y) \in \alpha^2 \mid x \in y\} is transitive.
\langle 1 \rangle 4. \beta is well ordered by \in.
   Proof: By Proposition 5.3.3.
Proposition 6.1.5 (ZFC). Given two ordinal numbers \alpha, \beta, exactly one of
\alpha \in \beta, \alpha = \beta, \beta \in \alpha holds.
Proof:
\langle 1 \rangle 1. At most one holds.
   PROOF: Since every ordinal is a transitive set and we never have \alpha \in \alpha.
\langle 1 \rangle 2. At least one holds.
   \langle 2 \rangle 1. Either \alpha \cong \beta or \exists t \in \beta . \alpha \cong \text{seg } t or \exists t \in \alpha . \text{seg } t \cong \beta .
   \langle 2 \rangle 2. Case: \alpha \cong \beta
      PROOF: Then \alpha = \beta by Proposition 6.1.2.
```

```
\langle 2 \rangle 3. Case: There exists t \in \beta such that \alpha \cong \operatorname{seg} t
        \langle 3 \rangle 1. t is an ordinal number.
            Proof: Proposition 6.1.4.
        \langle 3 \rangle 2. t = \sec t
            \langle 4 \rangle 1. t \subseteq \operatorname{seg} t
                 \langle 5 \rangle 1. Let: s \in t
                 \langle 5 \rangle 2. \ s \in \beta
                    PROOF: \beta is a transitive set.
                 \langle 5 \rangle 3. \ s \in \operatorname{seg} t
            \langle 4 \rangle 2. seg t \subseteq t
                PROOF: Immediate from definitions.
        \langle 3 \rangle 3. \ \alpha = t
            Proof: Proposition 6.1.2.
        \langle 3 \rangle 4. \ \alpha \in \beta
    \langle 2 \rangle 4. Case: There exists t \in \alpha such that seg t \cong \beta
        PROOF: \beta \in \alpha similarly.
```

Proposition 6.1.6 (Z). Any nonempty set S of ordinal numbers has a least element.

```
PROOF:  \begin{array}{l} \langle 1 \rangle 1. \  \, \text{Pick} \,\, \beta \in S \\ \langle 1 \rangle 2. \  \, \text{Case:} \,\, \beta \cap S = \emptyset \\ \text{PROOF: Then} \,\, \beta \,\, \text{is least in} \,\, S. \\ \langle 1 \rangle 3. \  \, \text{Case:} \,\, \beta \cap S \neq \emptyset \\ \text{PROOF: The least element of} \,\, \beta \cap S \,\, \text{is least in} \,\, S. \end{array}
```

Theorem 6.1.7 (ZFC). The class **On** is well ordered by \in .

```
Proof:
```

```
\langle 1 \rangle 1. Let: \mathbf{E} = \{(x,y) \in \mathbf{On}^2 \mid x \in y\}
\langle 1 \rangle 2. \mathbf{E} is transitive.
PROOF: If \alpha \in \beta \in \gamma then \alpha \in \gamma because every ordinal is a transitive set.
\langle 1 \rangle 3. \mathbf{E} satisfies trichotomy.
PROOF: Proposition 6.1.5.
\langle 1 \rangle 4. \mathbf{E} linearly orders \mathbf{On}.
PROOF: Proposition 5.2.3.
\langle 1 \rangle 5. \mathbf{E} is well founded.
PROOF: Proposition 2.4.2.
```

Corollary 6.1.7.1 (Burali-Forti Paradox (ZFC)). The class On is a proper class.

PROOF: If it were a set, it would be a transitive set well-ordered by \in , and hence a member of itself, contradicting Proposition 1.5.3.

6.1. ORDINALS 51

Proposition 6.1.8 (ZFC). Any transitive set of ordinal numbers is an ordinal number.

PROOF: It is well-ordered by \in by Proposition 5.3.3 and Theorem 6.1.7. \square

Proposition 6.1.9 (Z). \emptyset is an ordinal number.

PROOF: Vacuously, it is a transitive set well-ordered by \in .

Definition 6.1.10. We define $0 = \emptyset$.

Proposition 6.1.11 (ZFC). If A is a set of ordinal numbers then $\bigcup A$ is an ordinal number.

Proof:

 $\langle 1 \rangle 1$. $\bigcup A$ is a transitive set.

Proof: Proposition 1.6.3.

 $\langle 1 \rangle 2$. $\bigcup A$ is a set of ordinals.

PROOF: Proposition 6.1.4.

 $\langle 1 \rangle 3$. Q.E.D.

Proof: Proposition 6.1.8.

Corollary 6.1.11.1 (ZFC). The poset On is complete.

PROOF: For any nonempty set A of ordinals, $\bigcup A$ is its supremum. \square

Proposition 6.1.12 (ZFC). Let α be an ordinal and $S \subseteq \alpha$. Then S is well-ordered by \in and the ordinal of (S, \in) is $\leq \alpha$.

Proof:

- $\langle 1 \rangle 1$. S is well ordered by \in .
- $\langle 1 \rangle 2$. Let: β be the ordinal of (S, \in)
- $\langle 1 \rangle 3$. Let: $E: S \approx \beta$ be the unique isomorphism.
- $\langle 1 \rangle 4. \ \forall \gamma \in S.E(\gamma) \leq \gamma$
 - $\langle 2 \rangle 1$. Let: $\gamma \in S$
 - $\langle 2 \rangle 2$. Assume: as transfinite induction hypothesis $\forall \delta < \gamma. E(\delta) \leq \delta$
 - $\langle 2 \rangle 3$. $E(\gamma)$ is the least element of β that is greater than $E(\delta)$ for all $\delta < \gamma$
 - $\langle 2 \rangle 4$. γ is greater than $E(\delta)$ for all $\delta < \gamma$
 - $\langle 2 \rangle 5$. $E(\gamma) \leq \gamma$
- $\langle 1 \rangle 5. \ \beta \leq \alpha$
 - $\langle 2 \rangle 1. \ \forall \gamma < \beta. \gamma < \alpha$
 - $\langle 3 \rangle 1$. Let: $\gamma < \beta$
 - $\langle 3 \rangle 2$. Pick $\delta \in S$ such that $E(\delta) = \gamma$
- $(3)3. \ \gamma = E(\delta) \le \delta < \alpha$

Proposition 6.1.13 (ZFC). Let α be a set. Then the following are equivalent.

1. α is an ordinal.

- 2. α is a transitive set and, for all $x, y \in \alpha$, either x = y or $x \in y$ or $y \in x$.
- 3. α is a transitive set of transitive sets.

Proof:

 $\langle 1 \rangle 1. \ 1 \Rightarrow 2$

Proof: Immediate from definitions.

- $\langle 1 \rangle 2. \ 2 \Rightarrow 3$
 - $\langle 2 \rangle 1$. Assume: α is a transitive set and, for all $x,y \in \alpha$, either x=y or $x \in y$ or $y \in x$
 - $\langle 2 \rangle 2$. Let: $z \in \alpha$

Prove: z is transitive.

- $\langle 2 \rangle 3$. Let: $x \in y \in z$
- $\langle 2 \rangle 4. \ y \in \alpha$
- $\langle 2 \rangle 5. \ x \in \alpha$
- $\langle 2 \rangle 6$. Either x = z or $x \in z$ or $z \in x$
- $\langle 2 \rangle 7. \ x \neq z$

PROOF: We cannot have $x \in y \in x$ by the Axiom of Regularity.

 $\langle 2 \rangle 8. \ z \notin x$

PROOF: We cannot have $x \in y \in z \in x$ by the Axiom of Regularity.

- $\langle 1 \rangle 3. \ 3 \Rightarrow 1$
 - $\langle 2 \rangle 1$. Let: x be a transitive set of transitive sets.
 - $\langle 2 \rangle 2$. Assume: as \in -induction hypothesis that, for all $y \in x$, if y is a transitive set of transitive sets then y is a transitive set of ordinals.
 - $\langle 2 \rangle 3$. Every element of x is an ordinal.
 - $\langle 3 \rangle 1$. Let: $y \in x$
 - $\langle 3 \rangle 2$. y is transitive.
 - $\langle 3 \rangle 3$. Every element of y is transitive.

PROOF: Since every element of y is an element of x, because x is transitive.

 $\langle 3 \rangle 4$. y is an ordinal.

Proof: $\langle 2 \rangle 2$

 $\langle 2 \rangle 4$. Q.E.D.

Proof: Proposition 6.1.8.

Lemma 6.1.14 (Z). Let A and B be well-ordered sets. If B is an end extension of A then the ordinal of A is \leq the ordinal of B.

- $\langle 1 \rangle 1$. Let: α be the ordinal of A and β the ordinal of B.
- $\langle 1 \rangle 2$. Let: $E_A : A \cong \alpha$ and $E_B : B \cong \beta$ be the canonical isomorphisms.
- $\langle 1 \rangle 3. \ \forall a \in A.E_A(a) = E_B(a)$
 - $\langle 2 \rangle 1$. Let: $a \in A$
 - $\langle 2 \rangle 2$. Assume: as transfinite induction hypothesis $\forall x < a.E_A(x) = E_B(x)$
 - $\langle 2 \rangle 3$. $E_A(a)$ is the least ordinal that is greater than $E_A(x)$ for all x < a
 - $\langle 2 \rangle 4$. $E_B(a)$ is the least ordinal that is greater than $E_B(x)$ for all x < b

6.1. ORDINALS 53

```
\langle 2 \rangle 5. \quad \{x \in A \mid x <_A a\} = \{x \in B \mid x <_B a\}
\langle 2 \rangle 6. \quad E_A(a) = E_B(a)
\langle 1 \rangle 4. \quad \alpha \subseteq \beta
\langle 1 \rangle 5. \quad \alpha \le \beta
\square
```

Lemma 6.1.15. Let C be a set of well ordered sets such that, for any $A, B \in C$, we have that one of A and B is an end extension of the other. Let $W = \bigcup C$ under $x \leq y$ iff there exists $A \in W$ such that $x, y \in A$ and $x \leq y$. Then W is a well ordered set whose ordinal is the supremum of the ordinals of the members of C.

Proof:

- $\langle 1 \rangle 1$. \leq is reflexive on W.
 - $\langle 2 \rangle 1$. Let: $x \in W$
 - $\langle 2 \rangle 2$. PICK $A \in W$ such that $x \in A$.
 - $\langle 2 \rangle 3. \ x \leq x$
- $\langle 1 \rangle 2. \leq \text{is antisymmetric on } W.$
 - $\langle 2 \rangle 1$. Let: $x, y \in W$
 - $\langle 2 \rangle 2$. Assume: $x \leq y$ and $y \leq x$
 - $\langle 2 \rangle 3$. PICK $A \in W$ such that $x,y \in A$ and $x \leq_A y$, and $B \in W$ such that $x,y \in B$ and $y \leq_B x$
 - $\langle 2 \rangle 4$. Assume: w.l.o.g. B is an end extension of A
 - $\langle 2 \rangle 5$. $x \leq_B y$ and $y \leq_B x$
 - $\langle 2 \rangle 6. \ x = y$
- $\langle 1 \rangle 3. \leq \text{is transitive on } W.$
 - $\langle 2 \rangle 1$. Assume: $x \leq y \leq z$
 - $\langle 2 \rangle 2$. PICK $A, B \in W$ such that $x \leq_A y$ and $y \leq_B z$
 - $\langle 2 \rangle 3$. Case: A is an end extension of B.
 - $\langle 3 \rangle 1$. $x \leq_A y$ and $y \leq_A z$
 - $\langle 3 \rangle 2. \ x \leq_A z$
 - $\langle 3 \rangle 3. \ x \leq z$
 - $\langle 2 \rangle 4$. Case: B is an end extension of A.

PROOF: Similar.

- $\langle 1 \rangle 4. \leq \text{is total on } W.$
 - $\langle 2 \rangle 1$. Let: $x, y \in W$
 - $\langle 2 \rangle 2$. PICK $A, B \in \mathcal{C}$ such that $x \in A$ and $y \in B$
 - $\langle 2 \rangle 3$. Assume: w.l.o.g. B is an end extension of A
 - $\langle 2 \rangle 4$. $x \leq_B y$ or $y \leq_B x$
 - $\langle 2 \rangle 5$. $x \leq_W y$ or $y \leq_W x$
- $\langle 1 \rangle$ 5. Every nonempty subset of W has a least element.
 - $\langle 2 \rangle 1$. Let: S be a nonempty subset of W
 - $\langle 2 \rangle 2$. Pick $s \in S$
 - $\langle 2 \rangle 3$. Pick $A \in \mathcal{C}$ such that $s \in A$
 - $\langle 2 \rangle 4$. Let: a be the \leq_A -least element of $S \cap A$ Prove: a is least in S
 - $\langle 2 \rangle$ 5. Let: $x \in S$

```
Prove: a \le x
```

- $\langle 2 \rangle 6$. Pick $B \in \mathcal{C}$ such that $x \in B$
- $\langle 2 \rangle$ 7. Case: A is an end extension of B
 - $\langle 3 \rangle 1. \ a \leq_A x$
 - $\langle 3 \rangle 2$. $a \leq x$
- $\langle 2 \rangle 8$. Case: B is an end extension of A
 - $\langle 3 \rangle 1$. Case: $x \in A$
 - $\langle 4 \rangle 1. \ a \leq_A x$
 - $\langle 4 \rangle 2. \ a \leq x$
 - $\langle 3 \rangle 2$. Case: $x \in B A$
 - $\langle 4 \rangle 1. \ a \leq_B x$
 - $\langle 4 \rangle 2. \ a \leq x$
- $\langle 1 \rangle 6$. For all $A \in \mathcal{C}$, W is an end extension of A.
 - $\langle 2 \rangle 1$. For all $x, y \in A$, we have $x \leq_A y$ if and only if $x \leq_W y$
 - $\langle 3 \rangle 1$. Let: $x, y \in A$
 - $\langle 3 \rangle 2$. If $x \leq_A y$ then $x \leq_W y$

Proof: Immediate from definitions.

- $\langle 3 \rangle 3$. If $x \leq_W y$ then $x \leq_A y$
 - $\langle 4 \rangle 1$. Assume: $x \leq_W y$
 - $\langle 4 \rangle 2$. PICK $B \in \mathcal{C}$ such that $x \leq_B y$
 - $\langle 4 \rangle 3$. Case: A is an end extension of B

PROOF: Then $x \leq_A y$.

 $\langle 4 \rangle 4$. Case: B is an end extension of A

PROOF: Then $x \leq_A y$.

- $\langle 2 \rangle 2$. For all $x \in A$ and $y \in W A$ we have x < y
 - $\langle 3 \rangle 1$. Let: $x \in A$ and $y \in W A$
 - $\langle 3 \rangle 2$. Pick $B \in \mathcal{C}$ such that $y \in B$
 - $\langle 3 \rangle 3$. B is an end extension of A
 - $\langle 3 \rangle 4$. $x <_B y$
 - $\langle 3 \rangle 5. \ x <_W y$
- $\langle 1 \rangle 7$. For all $A \in \mathcal{C}$, the ordinal of A is \leq the ordinal of W.

Proof: Lemma 6.1.14.

- $\langle 1 \rangle 8$. For any ordinal α , if for all $A \in \mathcal{C}$ the ordinal of A is $\leq \alpha$, then the ordinal of W is $\leq \alpha$.
 - $\langle 2 \rangle$ 1. Let: α be an ordinal.
 - $\langle 2 \rangle 2$. Assume: for all $A \in \mathcal{C}$, the ordinal of A is $\leq \alpha$
 - $\langle 2 \rangle 3$. Let: β be the ordinal of W
 - $\langle 2 \rangle 4$. Let: $E: W \approx \beta$ be the canonical isomorphism.
 - $\langle 2 \rangle$ 5. Assume: for a contradiction $\alpha < \beta$
 - $\langle 2 \rangle 6$. Let: $a \in W$ be the element with $E(a) = \alpha$
 - $\langle 2 \rangle$ 7. PICK $A \in \mathcal{C}$ such that $a \in A$
 - $\langle 2 \rangle 8$. Let: γ be the ordinal of A and $E_A: A \cong \gamma$ be the canonical isomorphism.
 - $\langle 2 \rangle 9$. For all $x \in A$ we have $E_A(x) = E(x)$

PROOF: Transfinite induction on x.

 $\langle 2 \rangle 10. \ E_A(a) = \alpha$

6.2. SUCCESSORS

55

 $\langle 2 \rangle 11. \ \alpha < \gamma$

 $\langle 2 \rangle 12$. Q.E.D.

PROOF: This contradicts $\langle 2 \rangle 2$.

6.2 Successors

Definition 6.2.1 (Successor). The *successor* of a set a is the set $a^+ := a \cup \{a\}$.

Proposition 6.2.2 (Z). A set a is a transitive set if and only if

$$\bigcup (a^+) = a .$$

Proof:

 $\langle 1 \rangle 1$. If a is a transitive set then $\bigcup (a^+) = a$.

 $\langle 2 \rangle 1$. Assume: a is a transitive set.

 $\langle 2 \rangle 2. \ \bigcup (a^+) \subseteq a$

 $\langle 3 \rangle 1$. Let: $x \in \bigcup (a^+)$

Prove: $x \in a$

 $\langle 3 \rangle 2$. PICK $y \in a^+$ such that $x \in y$.

 $\langle 3 \rangle 3. \ y \in a \text{ or } y = a.$

 $\langle 3 \rangle 4$. Case: $y \in a$

PROOF: Then $x \in a$ because a is a transitive set.

 $\langle 3 \rangle 5$. Case: y = a

PROOF: Then $x \in a$ immediately.

 $\langle 2 \rangle 3. \ a \subseteq \bigcup (a^+)$

PROOF: Since $a \in a^+$.

 $\langle 1 \rangle 2$. If $\bigcup (a^+) = a$ then a is a transitive set.

 $\langle 2 \rangle 1$. Assume: $\bigcup (a^+) = a$

 $\langle 2 \rangle 2$. $\bigcup a \subseteq a$

Proof:

$$\bigcup a \subseteq \bigcup (a^+)$$
 (Proposition 1.5.9)
= a ($\langle 2 \rangle 1$)

 $\langle 2 \rangle 3$. a is a transitive set.

Proof: Proposition 1.6.2.

Proposition 6.2.3. For any set a, we have a is a transitive set if and only if a^+ is a transitive set.

Proof:

 $\langle 1 \rangle 1$. If a is a transitive set then a^+ is a transitive set.

PROOF: If a is a transitive set then $\bigcup (a^+) = a \subseteq a^+$ by Proposition 6.2.2 and so a^+ is a transitive set.

- $\langle 1 \rangle 2$. If a^+ is a transitive set then a is a transitive set.
 - $\langle 2 \rangle 1$. Assume: a^+ is a transitive set.

```
\langle 2 \rangle 2. Let: x \in y \in a
    \langle 2 \rangle 3. \ x \in y \in a^+
    \langle 2 \rangle 4. \ x \in a^+
       Proof: \langle 2 \rangle 1
    \langle 2 \rangle 5. \ x \neq a
       PROOF: From \langle 2 \rangle 2 and the Axiom of Regularity.
    \langle 2 \rangle 6. \ x \in a
Definition 6.2.4. We write 0 for \emptyset, 1 for \emptyset^+, 2 for \emptyset^{++}, etc.
Proposition 6.2.5. For any set A we have \mathcal{P}A \approx 2^A.
PROOF: The function H: \mathcal{P}A \to 2^A defined by H(S)(a) = \{\emptyset\} if a \in S and \emptyset if
a \notin S is a bijection. \square
Proposition 6.2.6. For any ordinal number \alpha we have \alpha^+ is an ordinal num-
ber.
Proof:
\langle 1 \rangle 1. \alpha^+ is a transitive set.
   Proof: Proposition 6.2.3.
\langle 1 \rangle 2. \alpha^+ is well-ordered by \in.
    \langle 2 \rangle 1. For all x, y, z \in \alpha^+, if x \in y \in z then x \in z
       \langle 3 \rangle 1. Case: z = \alpha
          PROOF: Then x \in \alpha since \alpha is a transitive set.
       \langle 3 \rangle 2. Case: z \in \alpha
          PROOF: Then x \in z since \alpha is well-ordered by \in.
    \langle 2 \rangle 2. For all x, y \in \alpha^+ we have x \in y or x = y or y \in x
       \langle 3 \rangle 1. Case: x, y \in \alpha
          PROOF: The result follows because \alpha is well-ordered by \in.
       \langle 3 \rangle 2. Case: x \in \alpha, y = \alpha
          PROOF: Then x \in y.
       \langle 3 \rangle 3. Case: x = \alpha, y \in \alpha
          PROOF: Then y \in x.
       \langle 3 \rangle 4. Case: x = \alpha, y = \alpha
          PROOF: Then x = y.
    \langle 2 \rangle 3. Every nonempty subset of \alpha^+ has an \in-least element.
       \langle 3 \rangle 1. Let: S \subseteq \alpha^+ be nonempty
       \langle 3 \rangle 2. Case: S = \{\alpha\}
          PROOF: \alpha is least in S.
       \langle 3 \rangle 3. Case: S \neq \{\alpha\}
          \langle 4 \rangle 1. S - \{\alpha\} is a nonempty subset of \alpha
          \langle 4 \rangle 2. Let: \beta be least in S - \{\alpha\}
          \langle 4 \rangle 3. \beta is least in S.
```

Proposition 6.2.7. For ordinals α and β , if $\alpha^+ = \beta^+$ then $\alpha = \beta$.

PROOF: If
$$\alpha^+ = \beta^+$$
 then
$$\alpha = \bigcup (\alpha^+)$$
 (Proposition 6.2.2)
$$= \bigcup (\beta^+)$$
$$= \beta$$
 (Proposition 6.2.2)

Proposition 6.2.8. For ordinals α and β , we have $\alpha < \beta$ if and only if $\alpha^+ < \beta^+$.

Proof:

$$\alpha < \beta \Leftrightarrow \alpha^+ \le \beta$$
$$\Leftrightarrow \alpha^+ < \beta^+$$

Definition 6.2.9 (Successor Ordinal). An ordinal α is a *successor ordinal* iff $\alpha = \beta^+$ for some β .

Definition 6.2.10 (Limit Ordinal). A *limit ordinal* is an ordinal that is neither 0 nor a successor ordinal.

Proposition 6.2.11. *If* λ *is a limit ordinal and* $\beta < \lambda$ *then* $\beta^+ < \lambda$.

PROOF: Since $\beta^+ \leq \lambda$ and $\beta^+ \neq \lambda$. \square

6.3 The Well-Ordering Theorem and Zorn's Lemma

Theorem 6.3.1 (Hartogs). For any set A, there exists an ordinal not dominated by A.

- $\langle 1 \rangle 1$. Let: α be the class of all ordinals β such that $\beta \preccurlyeq A$ Prove: α is a set.
- $\langle 1 \rangle 2$. Let: $W = \{(B, R) \mid B \subseteq A, R \text{ is a well ordering on } B\}$
- $\langle 1 \rangle 3$. α is the class of the ordinals of the elements of W.
 - $\langle 2 \rangle 1$. For all $(B, R) \in W$, the ordinal of (B, R) is in α .
 - $\langle 3 \rangle 1$. Let: $(B, R) \in W$
 - $\langle 3 \rangle 2$. Let: β be the ordinal of (B, R)
 - $\langle 3 \rangle 3$. Let: $E : B \cong \beta$ be the canonical isomorphism.
 - $\langle 3 \rangle 4$. Let: $i: B \hookrightarrow A$ be the inclusion
 - $\langle 3 \rangle 5.$ $i \circ E^{-1}$ is an injection $\beta \to A$
 - $\langle 3 \rangle 6. \ \beta \in \alpha$
 - $\langle 2 \rangle 2$. For all $\beta \in \alpha$, there exists $(B,R) \in W$ such that β is the ordinal number of (B,R).
 - $\langle 3 \rangle 1$. Let: $\beta \in \alpha$
 - $\langle 3 \rangle 2$. Pick an injection $f: \beta \to A$
 - $\langle 3 \rangle 3$. Define \leq on ran f by $f(x) \leq f(y)$ iff $x \leq y$
 - $\langle 3 \rangle 4$. $(\operatorname{ran} f, \leq) \in W$
 - $\langle 3 \rangle 5$. β is the ordinal number of $(\operatorname{ran} f, \leq)$

 $\langle 1 \rangle 4$. α is a set.

PROOF: By an Axiom of Replacement.

 $\langle 1 \rangle 5$. α is an ordinal.

PROOF: It is a transitive set of ordinals.

 $\langle 1 \rangle 6. \ \alpha \not\preccurlyeq A$

PROOF: Since $\alpha \notin \alpha$.

П

Theorem 6.3.2 (Numeration Theorem). Every set is equinumerous with some ordinal.

Proof:

- $\langle 1 \rangle 1$. Let: A be any set.
- $\langle 1 \rangle 2$. PICK an ordinal α not dominated by A.
- $\langle 1 \rangle 3$. Pick a choice function G for A.
- $\langle 1 \rangle 4$. Pick $e \notin A$
- $\langle 1 \rangle 5$. Let: $F : \alpha \to A \cup \{e\}$ by transfinite recursion:

$$F(\gamma) = \begin{cases} G(A - F(\{\delta \mid \delta < \gamma\}) & \text{if } A - F(\{\delta \mid \delta < \gamma\}) \neq \emptyset \\ e & \text{if } A - F(\{\delta \mid \delta < \gamma\}) = \emptyset \end{cases}$$

- $\langle 1 \rangle 6. \ e \in \operatorname{ran} F$
 - $\langle 2 \rangle 1$. Assume: for a contradiction $e \notin \operatorname{ran} F$
 - $\langle 2 \rangle 2$. F is an injection $\alpha \to A$.
 - $\langle 3 \rangle$ 1. Let: $\beta, \gamma \in \alpha$ with $\beta \neq \gamma$ Prove: $F(\beta) \neq F(\gamma)$
 - $\langle 3 \rangle 2$. Assume: w.l.o.g. $\beta < \gamma$
 - $\langle 3 \rangle 3. \ F(\gamma) \in A F(\{\delta \mid \delta < \gamma\})$
 - $\langle 3 \rangle 4$. $F(\gamma) \notin F(\{\delta \mid \delta < \gamma\})$
 - $\langle 3 \rangle 5. \ F(\gamma) \neq F(\beta)$
 - $\langle 2 \rangle 3$. Q.E.D.

PROOF: This contradicts $\langle 1 \rangle 2$.

- $\langle 1 \rangle 7$. Let: δ be least such that $F(\delta) = e$
- $\langle 1 \rangle 8. \ F \upharpoonright \delta : \delta \approx A$

Theorem 6.3.3 (Well-Ordering Theorem). Any set can be well ordered.

Proof:

- $\langle 1 \rangle 1$. Pick an ordinal δ and a bijection $F: A \approx \delta$
- $\langle 1 \rangle 2$. Define \leq on A by $F(x) \leq F(y)$ iff $x \leq y$ for $x, y \in \delta$
- $\langle 1 \rangle 3. \leq \text{is a well ordering on } A.$

Theorem 6.3.4 (Zorn's Lemma). Let \mathcal{A} be a set such that, for every chain $\mathcal{B} \subseteq \mathcal{A}$, we have $\bigcup \mathcal{B} \in \mathcal{A}$. Then \mathcal{A} has a maximal element.

Proof:

 $\langle 1 \rangle 1$. PICK a well ordering $\langle 0 \rangle$ on \mathcal{A} .

 $\langle 1 \rangle 2$. Let: $F: A \to 2$ be the function defined by transfinite recursion by:

$$F(A) = \begin{cases} 1 & \text{if } A \text{ includes every set } B < A \text{ for which } F(B) = 1 \\ 0 & \text{otherwise} \end{cases}$$

 $\langle 1 \rangle 3$. Let: $\mathcal{C} = \{ A \in \mathcal{A} \mid F(A) = 1 \}$

PROVE: $\bigcup \mathcal{C}$ is a maximal element of \mathcal{A}

- $\langle 1 \rangle 4$. For all $A \in \mathcal{A}$, we have $A \in \mathcal{C}$ iff $\forall B < A.B \in \mathcal{C} \Rightarrow B \subseteq A$
- $\langle 1 \rangle 5$. C is a chain.
 - $\langle 2 \rangle 1$. Let: $A, A' \in \mathcal{C}$
 - $\langle 2 \rangle 2$. Assume: w.l.o.g. $A \leq A'$
 - $\langle 2 \rangle 3$. $A \subseteq A'$

Proof: By $\langle 1 \rangle 4$

- $\langle 1 \rangle 6. \bigcup \mathcal{C} \in \mathcal{A}$
- $\langle 1 \rangle 7$. $\bigcup C$ is maximal in A.
 - $\langle 2 \rangle 1$. Let: $A \in \mathcal{A}$ and $\bigcup \mathcal{C} \subseteq A$
 - $\langle 2 \rangle 2$. $A \in \mathcal{C}$

PROOF: By $\langle 1 \rangle 4$ since $\forall B \in \mathcal{C}.B \subseteq A$.

- $\langle 2 \rangle 3. \ A \subseteq \bigcup \mathcal{C}$
- $\langle 2 \rangle 4. \ A = \bigcup \mathcal{C}$

Proposition 6.3.5 (Teichmüller-Tukey Lemma). Let A be a nonempty set such that, for every B, we have $B \in A$ if and only if every finite subset of B is a member of A. Then A has a maximal element.

PROOF:

- $\langle 1 \rangle 1$. For every chain $\mathcal{B} \subseteq \mathcal{A}$, we have $\bigcup \mathcal{B} \in \mathcal{A}$
 - $\langle 2 \rangle 1$. Let: $\mathcal{B} \subseteq \mathcal{A}$ be a chain.
 - $\langle 2 \rangle 2$. Every finite subset of $\bigcup \mathcal{B}$ is a member of \mathcal{A} .
 - $\langle 3 \rangle 1$. Let: C be a finite subset of $\bigcup \mathcal{B}$.
 - $\langle 3 \rangle 2$. Pick $B \in \mathcal{B}$ such that $C \subseteq B$.
 - $\langle 3 \rangle 3. \ B \in \mathcal{A}$
 - $\langle 3 \rangle 4$. Every finite subset of B is in \mathcal{A} .
 - $\langle 3 \rangle 5. \ C \in \mathcal{A}$
 - $\langle 2 \rangle 3$. $\bigcup \mathcal{B} \in \mathcal{A}$.
- $\langle 1 \rangle 2$. Q.E.D.

Proof: Zorn's lemma.

PROO

Theorem Schema 6.3.6. For any class A, there exists a class F such that the following is a theorem:

If **A** is a proper class of ordinals, then $\mathbf{F}: \mathbf{On} \to \mathbf{A}$ is an order isomorphism.

- $\langle 1 \rangle 1$. Define $\mathbf{F} : \mathbf{On} \to \mathbf{A}$ by transfinite recursion as follows: $\mathbf{F}(\alpha)$ is the least element of \mathbf{A} that is different from $\mathbf{F}(\beta)$ for all $\beta < \alpha$.
- $\langle 1 \rangle 2$. For all $\alpha, \beta \in \mathbf{On}$, if $\alpha < \beta$ then $\mathbf{F}(\alpha) < \mathbf{F}(\beta)$

```
PROOF: We have \mathbf{F}(\alpha) \neq \mathbf{F}(\beta) by the definition of \mathbf{F}(\beta), and \mathbf{F}(\beta) \not< \mathbf{F}(\alpha) by the leastness of \mathbf{F}(\alpha). \langle 1 \rangle 3. \mathbf{F} is surjective. \langle 2 \rangle 1. Let: \alpha \in \mathbf{A}
```

 $\langle 2 \rangle 2$. Assume: as transfinite induction hypothesis $\forall \beta \in \mathbf{A}$, if $\beta < \alpha$ then

- there exists γ such that $\beta = \mathbf{F}(\gamma)$.
- $\langle 2 \rangle 3$. Let: $\gamma = \{ \delta \in \mathbf{On} \mid \mathbf{F}(\delta) < \alpha \}$

 $\langle 2 \rangle 4$. γ is a set.

PROOF: Axiom of Replacement applied to α .

 $\langle 2 \rangle 5$. γ is a transitive set.

PROOF: If $\mathbf{F}(\delta) < \alpha$ and $\epsilon < \delta$ then $\mathbf{F}(\epsilon) < \alpha$ by $\langle 1 \rangle 2$.

 $\langle 2 \rangle 6$. γ is an ordinal.

Proof: Proposition 6.1.8.

- $\langle 2 \rangle 7$. $\mathbf{F}(\gamma) = \alpha$
 - $\langle 3 \rangle 1$. $\mathbf{F}(\gamma)$ is the least element of \mathbf{A} different from $\mathbf{F}(\delta)$ for all $\delta < \gamma$
 - $\langle 3 \rangle 2$. $\mathbf{F}(\gamma)$ is the least element of \mathbf{A} different from x for all $x \in \mathbf{A}$ with $x < \alpha$
- $\langle 3 \rangle 3. \ \mathbf{F}(\gamma) = \alpha$

6.4 Ordinal Operations

Definition 6.4.1 (Ordinal Operation). An *ordinal operation* is a function $\mathbf{On} \to \mathbf{On}$.

Definition 6.4.2 (Continuous). An ordinal operation $\mathbf{T}: \mathbf{On} \to \mathbf{On}$ is *continuous* iff, for every limit ordinal λ , we have $\mathbf{T}(\lambda) = \bigcup_{\alpha < \lambda} \mathbf{T}(\alpha)$.

Definition 6.4.3 (Normal). An ordinal operation is *normal* iff it is continuous and strictly monotone.

 $\textbf{Proposition Schema 6.4.4.} \ \textit{For any class \mathbf{T}, the following is a theorem. }$

If **T** is a continuous ordinal operation and $\forall \gamma. \mathbf{T}(\gamma) < \mathbf{T}(\gamma^+)$, then **T** is normal.

```
Proof:
```

- $\langle 1 \rangle 1$. Let: $P[\beta]$ be the property $\forall \gamma < \beta. \mathbf{T}(\gamma) < \mathbf{T}(\beta)$
- $\langle 1 \rangle 2$. P[0]

Proof: Vacuous.

- $\langle 1 \rangle 3$. For any ordinal γ , if $P[\gamma]$ then $P[\gamma^+]$
 - $\langle 2 \rangle 1$. Assume: $P[\gamma]$
 - $\langle 2 \rangle 2$. Let: $\delta < \gamma^+$
 - $\langle 2 \rangle 3$. Case: $\delta < \gamma$

PROOF: Then $\mathbf{T}(\delta) < \mathbf{T}(\gamma) < \mathbf{T}(\gamma^+)$.

 $\langle 2 \rangle 4$. Case: $\delta = \gamma$

PROOF: Then $\mathbf{T}(\delta) = \mathbf{T}(\gamma) < \mathbf{T}(\gamma^+)$.

 $\langle 1 \rangle 4$. For any limit ordinal λ , if $\forall \gamma < \lambda . P[\gamma]$ then $P[\lambda]$.

```
 \begin{split} \langle 2 \rangle 1. & \text{Assume: } \forall \gamma < \lambda. P[\gamma] \\ \langle 2 \rangle 2. & \text{Let: } \delta < \lambda \\ \langle 2 \rangle 3. & \mathbf{T}(\delta) < \mathbf{T}(\lambda) \\ & \text{Proof:} \end{split}   \mathbf{T}(\delta) < \mathbf{T}(\delta^+) \\ & \leq \bigcup_{\epsilon < \lambda} \mathbf{T}(\epsilon) \\ & = \mathbf{T}(\lambda)
```

Proposition Schema 6.4.5. For any class T, the following is a theorem: Assume T is a normal ordinal operation. For every ordinal α , we have

 $\alpha \leq \mathbf{T}(\alpha)$.

Proof:

 $\langle 1 \rangle 1$. Let: γ be an ordinal.

 $\langle 1 \rangle 2$. Assume: as induction hypothesis $\forall \delta < \gamma. \mathbf{T}(\delta) \geq \delta$

 $\langle 1 \rangle 3$. For all $\delta < \gamma$ we have $\delta < \mathbf{T}(\gamma)$

PROOF: **T** is strictly monotone.

 $\langle 1 \rangle 4. \ \gamma \leq \mathbf{T}(\gamma)$

Proposition Schema 6.4.6. For any class T, the following is a theorem:

Assume **T** is a normal ordinal operation. For any ordinal $\beta \geq \mathbf{T}(0)$, there exists a greatest ordinal γ such that $\mathbf{T}(\gamma) \leq \beta$.

Proof:

 $\langle 1 \rangle 1$. There exists γ such that $\mathbf{T}(\gamma) > \beta$

 $\langle 2 \rangle 1$. For all γ we have $\mathbf{T}(\gamma) \geq \gamma$

Proof: Proposition 6.4.5.

 $\langle 2 \rangle 2$. $\mathbf{T}(\beta^+) > \beta$

 $\langle 1 \rangle 2$. Let: δ be least such that $\mathbf{T}(\delta) > \beta$

 $\langle 1 \rangle 3$. δ is a successor ordinal.

 $\langle 2 \rangle 1. \ \delta \neq 0$

PROOF: Since $\mathbf{T}(0) < \beta$.

 $\langle 2 \rangle 2$. δ is not a limit ordinal.

 $\langle 3 \rangle 1$. Assume: for a contradiction δ is a limit ordinal.

 $\langle 3 \rangle 2. \ \beta < \bigcup_{\epsilon < \delta} \mathbf{T}(\epsilon)$

PROOF: T is continuous.

 $\langle 3 \rangle 3$. There exists $\epsilon < \delta$ such that $\beta < \mathbf{T}(\epsilon)$

 $\langle 3 \rangle 4$. Q.E.D.

PROOF: This contradicts the minimality of δ .

 $\langle 1 \rangle 4$. Let: $\delta = \gamma^+$

 $\langle 1 \rangle 5$. γ is greatest such that $\mathbf{T}(\gamma) \leq \beta$

Theorem Schema 6.4.7. For any class **T**, the following is a theorem:

Assume that T is a normal ordinal operation. For any nonempty set of ordinals S, we have

$$\mathbf{T}(\sup S) = \sup_{\alpha \in S} \mathbf{T}(\alpha) .$$

Proof:

 $\langle 1 \rangle 1. \ \forall \alpha \in S. \mathbf{T}(\alpha) \leq \mathbf{T}(\sup S)$

PROOF: Since T is monotone.

- $\langle 1 \rangle 2$. For any ordinal β , if $\forall \alpha \in S.\mathbf{T}(\alpha) \leq \beta$, then $\mathbf{T}(\sup S) \leq \beta$
 - $\langle 2 \rangle 1$. Let: β be an ordinal.
 - $\langle 2 \rangle 2$. Let: $\gamma = \sup S$
 - $\langle 2 \rangle 3$. Assume: $\forall \alpha \in S.\mathbf{T}(\alpha) \leq \beta$
 - $\langle 2 \rangle 4$. Case: γ is 0 or a successor ordinal

PROOF: Then we must have $\gamma \in S$ so $\mathbf{T}(\gamma) \leq \beta$ from $\langle 2 \rangle 3$.

- $\langle 2 \rangle$ 5. Case: γ is a limit ordinal
 - $\langle 3 \rangle 1$. $\mathbf{T}(\gamma) = \sup_{\alpha < \gamma} \mathbf{T}(\alpha)$

PROOF: **T** is continuous.

- $\langle 3 \rangle 2$. Assume: for a contradiction $\beta < \mathbf{T}(\gamma)$
- $\langle 3 \rangle 3$. PICK $\alpha < \gamma$ such that $\beta < \mathbf{T}(\alpha)$

Proof: $\langle 3 \rangle 1$, $\langle 3 \rangle 2$

 $\langle 3 \rangle 4$. PICK $\alpha' \in S$ such that $\alpha < \alpha'$

Proof: $\langle 2 \rangle 2$, $\langle 3 \rangle 3$

 $\langle 3 \rangle 5. \ \beta < \mathbf{T}(\alpha') \leq \beta$

PROOF: **T** is strictly monotone, $\langle 3 \rangle 3$, $\langle 3 \rangle 4$, $\langle 2 \rangle 3$.

 $\langle 3 \rangle 6$. Q.E.D.

PROOF: This is a contradiction.

П

Proposition 6.4.8. For any classes **A** and **T**, the following is a theorem:

Assume **A** is a proper class of ordinals such that, for every set $S \subseteq \mathbf{A}$, we have $\bigcup S \in \mathbf{A}$. Assume **T** is the unique order isomorphism $\mathbf{On} \cong \mathbf{A}$. Then **T** is normal.

Proof:

 $\langle 1 \rangle 1$. **T** is strictly monotone.

PROOF: Since it is an order isomorphism.

- $\langle 1 \rangle 2$. **T** is continuous.
 - $\langle 2 \rangle$ 1. Let: λ be a limit ordinal.
 - $\langle 2 \rangle 2$. $\mathbf{T}'(\lambda)$ is the least member of **A** that is greater than $\mathbf{T}'(\alpha)$ for all $\alpha < \lambda$
 - $\langle 2 \rangle 3. \ \mathbf{T}'(\lambda) = \sup_{\alpha < \lambda} \mathbf{T}'(\alpha)$

П

Proposition Schema 6.4.9. For any class **T**, the following is a theorem:

If **T** is a normal ordinal operation, then for any limit ordinal λ , we have $\mathbf{T}(\lambda)$ is a limit ordinal.

Proof:

 $\langle 1 \rangle 1$. $\mathbf{T}(\lambda) \neq 0$

```
PROOF: Since 0 \leq \mathbf{T}(0) < \mathbf{T}(\lambda). \langle 1 \rangle 2. \mathbf{T}(\lambda) is not a successor ordinal. \langle 2 \rangle 1. Assume: for a contradiction \mathbf{T}(\lambda) = \alpha^+ \langle 2 \rangle 2. \alpha < \mathbf{T}(\lambda) = \sup_{\beta < \lambda} \mathbf{T}(\beta) \langle 2 \rangle 3. PICK \beta < \lambda such that \alpha < \mathbf{T}(\beta) \langle 2 \rangle 4. \alpha^+ \leq \mathbf{T}(\beta) < \mathbf{T}(\lambda) \langle 2 \rangle 5. Q.E.D.

PROOF: This is a contradiction.
```

6.5 Ordinal Arithmetic

6.5.1 Addition

Definition 6.5.1. Let A and B be disjoint well-ordered sets. The *concatenation* of A and B is the set $A \cup B$ under the relation:

- if $a, a' \in A$ then $a \leq a'$ iff $a \leq a'$ in A
- if $b, b' \in B$ then $b \le b'$ iff $b \le b'$ in B
- if $a \in A$ and $b \in B$ then $a \le b$ and $b \not\le a$.

Proposition 6.5.2. If A and B are disjoint well-ordered sets, then their concatenation is well-ordered.

```
Proof:
```

```
\langle 1 \rangle 1. \leq \text{is reflexive.}
```

PROOF: For all $a \in A$ we have $a \le a$, and for all $b \in B$ we have $b \le b$.

- $\langle 1 \rangle 2$. \leq is antisymmetric.
 - $\langle 2 \rangle 1$. Assume: $x \leq y \leq x$
 - $\langle 2 \rangle 2$. Case: $x, y \in A$

PROOF: Then x = y since the order on A is antisymmetric.

 $\langle 2 \rangle 3$. Case: $x \in A$ and $y \in B$

PROOF: This is impossible as it would imply $y \not \leq x$.

 $\langle 2 \rangle 4$. Case: $x \in B$ and $y \in A$

PROOF: This is impossible as it would imply $x \not\leq y$.

 $\langle 2 \rangle$ 5. Case: $x, y \in B$

PROOF: Then x = y since the order on B is antisymmetric.

- $\langle 1 \rangle 3. \leq \text{is transitive.}$
 - $\langle 2 \rangle 1$. Assume: $x \leq y \leq z$
 - $\langle 2 \rangle 2$. Case: $x, z \in A$

PROOF: In this case $y \in A$ since $y \le z$, and so $x \le z$ since the order on A is transitive.

 $\langle 2 \rangle 3$. Case: $x \in A$ and $z \in B$

PROOF: Then $x \leq z$ immediately.

 $\langle 2 \rangle 4$. Case: $x \in B$ and $z \in A$

PROOF: This is impossible because we have $y \notin A$ since $x \leq y$ and $y \notin B$ since $y \leq z$.

 $\langle 2 \rangle$ 5. Case: $x, z \in B$

PROOF: In this case $y \in B$ since $x \le y$, and so $x \le z$ since the order on B is transitive.

- $\langle 1 \rangle 4. \leq \text{is total.}$
 - $\langle 2 \rangle 1$. Let: $x, y \in A \cup B$
 - $\langle 2 \rangle 2$. Case: $x, y \in A$

PROOF: Then $x \leq y$ or $y \leq x$ because the order on A is total.

 $\langle 2 \rangle 3$. Case: $x \in A$ and $y \in B$

PROOF: Then x < y.

 $\langle 2 \rangle 4$. Case: $x \in B$ and $y \in A$

PROOF: Then $y \leq x$.

 $\langle 2 \rangle$ 5. Case: $x, y \in B$

PROOF: Then $x \leq y$ or $y \leq x$ because the order on B is total.

- $\langle 1 \rangle 5$. Every nonempty subset of $A \cup B$ has a least element.
 - $\langle 2 \rangle 1$. Let: S be a nonempty subset of $A \cup B$
 - $\langle 2 \rangle 2$. Case: $S \cap A = \emptyset$

PROOF: Then $S \subseteq B$ and so S has a least element.

 $\langle 2 \rangle 3$. Case: $S \cap A \neq \emptyset$

PROOF: The least element of $S \cap A$ is the least element of S.

Definition 6.5.3 (Ordinal Addition). Let α and β be ordinal numbers. Then $\alpha + \beta$ is the ordinal number of the concatenation of A and B, where A is any well ordered set with ordinal α and B is any well ordered set with ordinal β .

Theorem 6.5.4 (Associative Law for Addition). For any ordinals ρ , σ and τ , we have

$$\rho + (\sigma + \tau) = (\rho + \sigma) + \tau .$$

PROOF: Given disjoint well ordered sets A, B and C, the concatenation of A with (the concatenation of B and C) is the same as the concatenation of (the concatenation of A and B) and C. \square

Theorem 6.5.5. For any ordinal ρ we have

$$\rho + 0 = 0 + \rho = \rho .$$

PROOF: For any well ordered set A, the concatenation of A with \emptyset is A, and the concatenation of \emptyset with A is A. \square

Theorem 6.5.6. For any ordinal α we have $\alpha + 1 = \alpha^+$.

PROOF: Since α^+ is the concatenation of α and $\{\alpha\}$. \square

Theorem 6.5.7. For any ordinal α , the operation that maps β to $\alpha + \beta$ is normal.

- $\langle 1 \rangle 1$. For any limit ordinal λ , we have $\alpha + \lambda = \sup_{\beta < \lambda} (\alpha + \beta)$.
 - $\langle 2 \rangle 1$. Let: λ be a limit ordinal.
 - $\langle 2 \rangle 2$. $(\{0\} \times \alpha) \cup (\{1\} \times \lambda) = \bigcup_{\beta \in \lambda} ((\{0\} \times \alpha) \cup (\{1\} \times \beta))$, where the order on the right hand side is as in Lemma 6.1.15.

Proof:

$$(\{0\} \times \alpha) \cup (\{1\} \times \lambda) = (\{0\} \times \alpha) \cup (\{1\} \times \bigcup_{\beta < \lambda} \beta)$$
$$= (\{0\} \times \alpha) \cup \bigcup_{\beta < \lambda} (\{1\} \times \beta)$$
$$= \bigcup_{\beta < \lambda} ((\{0\} \times \alpha) \cup (\{1\} \times \beta))$$

 $\langle 1 \rangle 2$. For any ordinal β we have $\alpha + \beta < \alpha + \beta^+$ PROOF: Since $\alpha + \beta^+ = \alpha + \beta + 1 = (\alpha + \beta)^+$.

Corollary 6.5.7.1. For any ordinals α , β , γ , we have $\beta < \gamma$ if and only if $\alpha + \beta < \alpha + \gamma$.

Corollary 6.5.7.2 (Left Cancellation for Addition). For any ordinals α , β and γ , if $\alpha + \beta = \alpha + \gamma$ then $\beta = \gamma$.

Theorem 6.5.8. For any ordinals α , β , γ , if $\beta \leq \gamma$ then $\beta + \alpha \leq \gamma + \alpha$.

PROOF: Transfinite induction on α .

Theorem 6.5.9 (Subtraction Theorem). Let α and β be ordinals with $\alpha \leq \beta$. Then there exists a unique ordinal δ such that $\alpha + \delta = \beta$.

Proof:

- $\langle 1 \rangle 1$. For all ordinals α and β with $\alpha \leq \beta$, there exists δ such that $\alpha + \delta = \beta$
 - $\langle 2 \rangle 1$. Let: α and β be ordinals with $\alpha \leq \beta$
 - $\langle 2 \rangle 2$. Let: δ be the greatest ordinal such that $\alpha + \delta \leq \beta$

Proof: Proposition 6.4.6.

 $\langle 2 \rangle 3. \ \alpha + \delta = \beta$

PROOF: If $\alpha + \delta < \beta$ then $\alpha + \delta + 1 \le \beta$ contradicting the greatestness of δ . $\langle 1 \rangle 2$. Q.E.D.

PROOF: Uniqueness follows from the Left Cancellation Law.

6.5.2 Multiplication

Definition 6.5.10 (Ordinal Multiplication). Let α and β be ordinal numbers. Then $\alpha\beta$ is the ordinal number of $A \times B$ under the lexicographic order, where A is any well ordered set with ordinal α and B is any well ordered set with ordinal β .

This is well defined by Proposition 5.3.5.

Theorem 6.5.11 (Associative Law). For any ordinals ρ , σ and τ , we have

$$\rho(\sigma\tau) = (\rho\sigma)\tau .$$

PROOF: Let A, B and C be well ordered sets with ordinals ρ , σ and τ . Then both $\rho(\sigma\tau)$ and $(\rho\sigma)\tau$ are the ordinal of $A\times B\times C$ under $(a,b,c)\leq (a',b',c')\Leftrightarrow a\leq a'\vee(a=a'\wedge b\leq b')\vee(a=a'\wedge b=b'\wedge c\leq c')$.

Theorem 6.5.12 (Left Distributive Law). For any ordinals ρ , σ and τ , we have

$$\rho(\sigma + \tau) = \rho\sigma + \rho\tau$$

PROOF: Let A, B and C be well ordered sets with ordinals ρ , σ and τ and with $B \cap C = \emptyset$. Then both $\rho(\sigma + \tau)$ and $\rho\sigma + \rho\tau$ are the ordinal of $A \times (B \cup C)$ under the lexicographic ordering. \square

Theorem 6.5.13. For any ordinal ρ we have $\rho 0 = 0 \rho = 0$.

PROOF: For any well ordered set A we have $A \times \emptyset = \emptyset \times A = \emptyset$. \square

Theorem 6.5.14. For any ordinal ρ we have $\rho 1 = 1\rho = \rho$.

Proof: Easy. \square

Theorem 6.5.15. For any ordinals ρ and σ , if $\rho\sigma = 0$ then $\rho = 0$ or $\sigma = 0$.

PROOF: If $A \times B = \emptyset$ then $A = \emptyset$ or $B = \emptyset$. \square

Theorem 6.5.16. For any non-zero ordinal α , the operation that maps β to $\alpha\beta$ is normal.

Proof:

- $\langle 1 \rangle 1$. For any limit ordinal λ , we have $\alpha \lambda = \bigcup_{\beta < \lambda} \alpha \beta$
 - $\langle 2 \rangle 1$. Let: λ be a limit ordinal
 - $\langle 2 \rangle 2$. $\alpha \times \lambda = \bigcup_{\beta < \lambda} (\alpha \times \beta)$ as well-ordered sets
- $\langle 1 \rangle 2$. For any ordinal β we have $\alpha \beta < \alpha \beta^+$

PROOF: $\alpha \beta^+ = \alpha \beta + \alpha > \alpha \beta$

Corollary 6.5.16.1. For any ordinals α , β , γ , if $\alpha \neq 0$ then $\beta < \gamma$ if and only if $\alpha\beta < \alpha\gamma$.

Corollary 6.5.16.2 (Left Cancellation for Multiplication). For any ordinals α , β , γ , if $\alpha \neq 0$ and $\alpha\beta = \alpha\gamma$ then $\beta = \gamma$.

Theorem 6.5.17. For any ordinals α , β and γ , if $\beta \leq \gamma$ then $\beta \alpha \leq \gamma \alpha$.

PROOF: Transfinite induction on α .

Theorem 6.5.18 (Division Theorem). Let α and δ be ordinal numbers with $\delta \neq 0$. Then there exist unique ordinals β and γ with $\gamma < \delta$ and

$$\alpha = \delta \beta + \gamma$$
.

Proof:

- $\langle 1 \rangle 1$. For any ordinal numbers α and δ with $\delta \neq 0$, there exist ordinals β and γ such that $\gamma < \delta$ and $\alpha = \delta \beta + \gamma$
 - $\langle 2 \rangle 1$. Let: α and δ be ordinals with $\delta \neq 0$
 - $\langle 2 \rangle 2$. Let: β be the greatest ordinal such that $\delta \beta \leq \alpha$

Proof: Proposition 6.4.6.

 $\langle 2 \rangle 3$. There exists an ordinal γ such that $\alpha = \delta \beta + \gamma$

PROOF: Subtraction Theorem

- $\langle 1 \rangle 2$. For any ordinals δ , β , β' , γ , γ' , if $\delta \beta + \gamma = \delta \beta' + \gamma'$ and $\delta \neq 0$ and $\gamma, \gamma' < \delta$ then $\beta = \beta'$ and $\gamma = \gamma'$
 - $\langle 2 \rangle 1$. Let: δ , β , β' , γ , γ' be ordinals.
 - $\langle 2 \rangle 2$. Assume: $\delta \neq 0$ and $\delta \beta + \gamma = \delta \beta' + \gamma'$
 - $\langle 2 \rangle 3. \ \beta = \beta'$
 - $\langle 3 \rangle 1. \ \beta \not< \beta'$

PROOF: If $\beta < \beta'$ then

$$\begin{split} \delta\beta' + \gamma' &\geq \delta\beta' \\ &\geq \delta(\beta+1) \\ &= \delta\beta + \delta \\ &> \delta\beta + \gamma \end{split}$$

 $\langle 3 \rangle 2. \ \beta' \not < \beta$

PROOF: Similar.

 $\langle 2 \rangle 4. \ \gamma = \gamma'$

PROOF: By Cancellation.

6.5.3 Exponentiation

Definition 6.5.19. Given ordinals α and β , define the ordinal α^{β} as follows:

$$\begin{array}{l} 0^{\alpha} := 0 & (\alpha > 0) \\ \alpha^{0} := 1 \\ \\ \alpha^{\beta^{+}} := \alpha^{\beta} \alpha & (\alpha > 0) \\ \\ \alpha^{\lambda} := \sup_{\beta < \lambda} \alpha^{\beta} & (\alpha > 0, \lambda \text{ a limit ordinal)} \end{array}$$

Theorem 6.5.20. Let α be an ordinal ≥ 2 . The operation that maps β to α^{β} is normal.

Proof:

- $\langle 1 \rangle 1$. For λ a limit ordinal we have $\alpha^{\lambda} = \sup_{\beta < \lambda} \alpha^{\beta}$ PROOF: By definition.
- $\langle 1 \rangle 2$. For any ordinal β we have $\alpha^{\beta} < \alpha^{\beta^+}$

PROOF: We have $\alpha^{\beta^+} = \alpha^{\beta} \alpha > \alpha^{\beta}$ by Theorem 6.5.16 since $\alpha > 1$ and $\alpha^{\beta} \neq 0$.

Corollary 6.5.20.1. For any ordinals α , β , γ , if $\alpha \geq 2$ then $\beta < \gamma$ if and only

Corollary 6.5.20.2 (Cancellation for Exponentiation). For any ordinals α , β , γ , if $\alpha \geq 2$ and $\alpha^{\beta} = \alpha^{\gamma}$ then $\beta = \gamma$.

Theorem 6.5.21. For any ordinals α , β and γ , if $\beta \leq \gamma$ then $\beta^{\alpha} \leq \gamma^{\alpha}$.

PROOF: Transfinite induction on α .

Theorem 6.5.22 (Logarithm Theorem). Let α and β be ordinal numbers with $\alpha \neq 0$ and $\beta > 1$. Then there exist unique ordinals γ , δ and ρ such that

$$\alpha = \beta^{\gamma} \delta + \rho, \qquad 0 \neq \delta < \beta, \qquad \rho < \beta^{\gamma}.$$

Proof:

 $\langle 1 \rangle 1$. For any ordinals α and β with $\alpha \neq 0$ and $\beta > 1$, there exist ordinals γ , δ , ρ such that

$$\alpha = \beta^{\gamma} \delta + \rho, \qquad 0 \neq \delta < \beta, \qquad \rho < \beta^{\gamma}.$$

- $\langle 2 \rangle 1$. Let: α and β be ordinals with $\alpha \neq 0$ and $\beta > 1$.
- $\langle 2 \rangle 2$. Let: γ be the greatest ordinal such that $\beta^{\gamma} \leq \alpha$. Proof: Proposition 6.4.6.
- $\langle 2 \rangle 3$. Let: δ and ρ be the unique ordinals with $\rho < \beta^{\gamma}$ such that $\alpha = \beta^{\gamma} \delta + \rho$. PROOF: By the Division Theorem.
- $\langle 2 \rangle 4. \ \delta \neq 0$

PROOF: If $\delta = 0$ then $\alpha = \beta^{\gamma}0 + \rho = \rho < \beta^{\gamma} \le \alpha$ which is a contradiction.

 $\langle 2 \rangle 5. \ \delta < \beta$

PROOF: If $\beta \leq \delta$ then $\alpha \geq \beta^{\gamma} \delta \geq \beta^{\gamma} \beta = \beta^{\gamma+1}$, contradicting the greatestness of γ .

- $\langle 1 \rangle 2$. If $\beta^{\gamma} \delta + \rho = \beta^{\gamma'} \delta' + \rho'$ with $\beta > 1$, $0 \neq \delta < \beta$, $0 \neq \delta' < \beta$, $\rho < \beta^{\gamma}$ and $\rho' < \beta^{\gamma'}$, then $\gamma = \gamma'$, $\delta = \delta'$ and $\rho = \rho'$.
 - $\langle 2 \rangle 1$. Let: $\alpha = \beta^{\gamma} \delta + \rho = \beta^{\gamma'} \delta' + \rho'$
 - $\langle 2 \rangle 2$. $\beta^{\gamma} \leq \alpha < \beta^{\gamma+1}$

 - $\begin{array}{l} \langle 2 \rangle 3. \ \beta^{\gamma'} \leq \alpha < \beta^{\gamma'+1} \\ \langle 2 \rangle 4. \ \beta^{\gamma} < \beta^{\gamma'+1} \ \text{and} \ \beta^{\gamma'} < \beta^{\gamma+1} \end{array}$
 - $\langle 2 \rangle 5$. $\gamma < \gamma' + 1$ and $\gamma' < \gamma + 1$
 - $\langle 2 \rangle 6. \ \gamma = \gamma'$
 - $\langle 2 \rangle 7$. $\delta = \delta'$ and $\rho = \rho'$

PROOF: By the Division Theorem.

Theorem 6.5.23. For any ordinal numbers α , β , γ , we have

$$\alpha^{\beta+\gamma} = \alpha^{\beta}\alpha^{\gamma}$$
.

Proof:

(1)1. Let: $P[\gamma]$ be the property: for any ordinals α and β we have $\alpha^{\beta+\gamma} = \alpha^{\beta}\alpha^{\gamma}$ $\langle 1 \rangle 2$. P[0]

6.5. ORDINAL ARITHMETIC

69

Proof:

$$\alpha^{\beta+0} = \alpha^{\beta}$$
$$= \alpha^{\beta}1$$
$$= \alpha^{\beta}\alpha^{0}$$

 $\langle 1 \rangle 3$. For all γ , if $P[\gamma]$ then $P[\gamma + 1]$

Proof:

$$\alpha^{\beta+\gamma+1} = \alpha^{\beta+\gamma}\alpha$$

$$= \alpha^{\beta}\alpha^{\gamma}\alpha \qquad \text{(induction hypothesis)}$$

$$= \alpha^{\beta}\alpha^{\gamma+1}$$

 $\langle 1 \rangle 4$. For any limit ordinal λ , if $\forall \gamma < \lambda . P[\gamma]$ then $P[\lambda]$.

- $\langle 2 \rangle$ 1. Let: λ be a limit ordinal
- $\langle 2 \rangle 2$. Assume: $\forall \gamma < \lambda . P[\gamma]$
- $\langle 2 \rangle 3$. Let: α and β be any ordinals.
- $\langle 2 \rangle 4$. Case: $\alpha = 0$

Proof: We have $\alpha^{\beta+\lambda} = \alpha^{\beta}\alpha^{\lambda} = 0$.

 $\langle 2 \rangle 5$. Case: $\alpha = 1$

PROOF: We have $\alpha^{\beta+\lambda} = \alpha^{\beta}\alpha^{\lambda} = 1$.

 $\langle 2 \rangle 6$. Case: $\alpha > 1$

Proof:

$$\begin{split} \alpha^{\beta+\lambda} &= \alpha^{\sup_{\gamma < \lambda} (\beta+\gamma)} \\ &= \sup_{\gamma < \lambda} \alpha^{\beta+\gamma} & \text{(Theorem 6.4.7)} \\ &= \sup_{\gamma < \lambda} \alpha^{\beta} \alpha^{\gamma} & \text{($\langle 2 \rangle 2$)} \\ &= \alpha^{\beta} \sup_{\gamma < \lambda} \alpha^{\gamma} & \text{(Theorem 6.4.7)} \\ &= \alpha^{\beta} \alpha^{\lambda} \end{split}$$

Theorem 6.5.24. For any ordinal numbers α , β and γ , we have

$$(\alpha^{\beta})^{\gamma} = \alpha^{\beta\gamma} .$$

Proof:

(1)1. Let: $P[\gamma]$ be the property: For any ordinals α and β , we have $(\alpha^{\beta})^{\gamma}=\alpha^{\beta\gamma}$

 $\langle 1 \rangle 2$. P[0]

$$(\alpha^{\beta})^0 = 1$$
$$= \alpha^{\beta 0}$$

$$\langle 1 \rangle 3. \ \forall \gamma \in \mathbf{On}.P[\gamma] \Rightarrow P[\gamma + 1]$$

Proof:

$$(\alpha^{\beta})^{\gamma+1} = (\alpha^{\beta})^{\gamma} \alpha^{\beta}$$
$$= \alpha^{\beta\gamma} \alpha^{\beta}$$
$$= \alpha^{\beta\gamma+\beta}$$
$$= \alpha^{\beta(\gamma+1)}$$

- $\langle 1 \rangle 4$. For any limit ordinal λ , if $\forall \gamma < \lambda . P[\gamma]$ then $P[\lambda]$.
 - $\langle 2 \rangle 1$. Let: λ be a limit ordinal.
 - $\langle 2 \rangle 2$. Assume: $\forall \gamma < \lambda . P[\gamma]$
 - $\langle 2 \rangle 3$. Let: α and β be any ordinals.
 - $\langle 2 \rangle 4$. Case: $\alpha = 0$ and $\beta = 0$

Proof:

$$(0^{\beta})^{\lambda} = 1^{\lambda}$$

$$= 1$$

$$= 0^{0}$$

$$= 0^{0\lambda}$$

$$\langle 2 \rangle$$
5. Case: $\alpha = 0$ and $\beta \neq 0$
Proof: $(0^{\beta})^{\lambda} = 0^{\beta \lambda} = 0$.

 $\langle 2 \rangle 6$. Case: $\alpha = 1$

Proof:
$$(1^{\beta})^{\lambda} = 1^{\beta\lambda} = 1$$

 $\langle 2 \rangle 7$. Case: $\alpha > 1$

Proof:

$$(\alpha^{\beta})^{\lambda} = \sup_{\gamma < \lambda} (\alpha^{\beta})^{\gamma}$$
$$= \sup_{\gamma < \lambda} \alpha^{\beta\gamma}$$
$$= \alpha^{\sup_{\gamma < \lambda} \beta\gamma}$$
$$= \alpha^{\beta\lambda}$$

6.6 Sequences

i

Definition 6.6.1 (Sequence). Given an ordinal α and class **A**, an α -sequence in **A** is a function $a: \alpha \to \mathbf{A}$. We write a_{β} for $a(\beta)$, and $(a_{\beta})_{\beta < \alpha}$ for a.

Definition 6.6.2 (Strictly Increasing). A sequence (a_{β}) of ordinals is *strictly increasing* iff, whenever $\beta < \gamma$, then $a_{\beta} < a_{\gamma}$.

Definition 6.6.3 (Subsequence). Let $(a_{\beta})_{\beta<\gamma}$ be a sequence in **A**. A subsequence of (a_{β}) is a sequence of the form $(a_{\beta_{\xi}})_{\xi<\delta}$ where $(\beta_{\xi})_{\xi<\delta}$ is a strictly increasing sequence in γ .

Definition 6.6.4 (Convergence). Let $(a_{\beta})_{\beta < \gamma}$ be a sequence of ordinals and λ an ordinal. Then (a_{β}) converges to the *limit* λ iff $\lambda = \sup_{\beta < \gamma} a_{\beta}$.

Lemma 6.6.5. Let $(a_{\beta})_{\beta<\gamma}$ be a sequence of ordinals. Then there is a strictly increasing subsequence $(a_{\beta_{\xi}})_{\xi<\delta}$ such that $\sup_{\xi<\delta}a_{\beta_{\xi}}=\sup_{\beta<\gamma}a_{\beta}$.

PROOF: Define β_{ξ} by transfinite recursion as follows. β_{ξ} is the least β such that $a_{\beta} > a_{\beta_{\zeta}}$ for all $\zeta < \xi$ if there is such an a_{β} ; if not, the sequence ends. \square

6.7 Strict Supremum

Definition 6.7.1 (Strict Supremum). For any set S of ordinals, define the *strict* supremum of S, ssup S, to be the least ordinal greater than every member of S.

Chapter 7

Cardinal Numbers

7.1 Cardinal Numbers

Definition 7.1.1 (Cardinality). For any set A, the *cardinality* or *cardinal number* |A| of A is the least ordinal equinumerous with A.

Let **Card** be the class of all cardinal numbers.

Proposition 7.1.2. For any sets A and B, we have $A \approx B$ iff |A| = |B|.

Proof: Easy. \square

Definition 7.1.3 (Addition). Given cardinal numbers κ and λ , we define $\kappa + \lambda$ to be $|A \cup B|$ where A and B are disjoint sets of cardinality κ and λ respectively. We prove this is well-defined.

Proof:

- $\langle 1 \rangle 1$. Assume: $A \approx A'$, $B \approx B'$, and $A \cap B = A' \cap B' = \emptyset$
- $\langle 1 \rangle 2$. Pick bijections $f: A \approx A'$ and $g: B \approx B'$
- $\langle 1 \rangle 3$. The function $A \cup B \to A' \cup B'$ that maps $a \in A$ to f(a) and $b \in B$ to g(b) is a bijection.

Proposition 7.1.4. For any cardinal number κ , we have $\kappa + 0 = \kappa$.

PROOF: Let A and B be disjoint sets of cardinality κ and A. Then $A = \emptyset$ so $A \cup B = A$ and so $A \cup B = \kappa$. $A \cap B = \emptyset$

Theorem 7.1.5 (Associative Law for Addition). For any cardinal numbers κ , λ , μ we have $\kappa + (\lambda + \mu) = (\kappa + \lambda) + \mu$.

PROOF: Since $A \cup (B \cup C) = (A \cup B) \cup C$. \square

Proposition 7.1.6. For any cardinal numbers κ and λ we have $\kappa + \lambda = \lambda + \kappa$.

PROOF: Since $A \cup B = B \cup A$. \square

Definition 7.1.7 (Multiplication). For κ and λ cardinal numbers, we define $\kappa\lambda$ to be the cardinal number of $A\times B$, where $|A|=\kappa$ and $|B|=\lambda$.

We prove this is well-defined.

PROOF: If $f: A \approx A'$ and $g: B \approx B'$ then the function that maps (a,b) to (f(a),g(b)) is a bijection $A \times B \approx A' \times B'$. \square

Proposition 7.1.8. For any cardinal number κ we have $\kappa \cdot 0 = 0$.

PROOF: Since $A \times \emptyset = \emptyset$. \square

Proposition 7.1.9. For any cardinal number κ we have $\kappa \cdot 1 = \kappa$.

PROOF: The function that maps (a, e) to a is a bijection $A \times \{e\} \approx A$. \square

Theorem 7.1.10 (Distributive Law). For any cardinal numbers κ , λ and μ , we have $\kappa(\lambda + \mu) = \kappa\lambda + \kappa\mu$.

PROOF: Since $A \times (B \cup C) = (A \times B) \cup (A \times C)$. \square

Theorem 7.1.11 (Associative Law for Multiplication). For any cardinal numbers κ , λ and μ , we have $\kappa(\lambda\mu) = (\kappa\lambda)\mu$.

PROOF: Since $A \times (B \times C) \approx (A \times B) \times C$. \square

Theorem 7.1.12 (Commutative Law for Multiplication). For any cardinal numbers κ and λ , we have $\kappa\lambda = \lambda\kappa$.

PROOF: Since $A \times B \approx B \times A$. \square

Theorem 7.1.13. For any cardinal numbers κ and λ , if $\kappa\lambda = 0$ then $\kappa = 0$ or $\lambda = 0$.

PROOF: if $A \times B = \emptyset$ then $A = \emptyset$ or $B = \emptyset$. \square

Definition 7.1.14 (Exponentiation). Given cardinal numbers κ and λ , we define κ^{λ} to be $|A^{B}|$, where $|A| = \kappa$ and $|B| = \lambda$.

We prove this is well-defined.

PROOF:If $f: A \approx A'$ and $g: B \approx B'$, then the function that maps $h: B \to A$ to $f \circ h \circ g^{-1}$ is a bijection $A^B \approx A'^{B'}$. \square

Proposition 7.1.15. For any cardinal numbers κ , λ and μ ,

$$\kappa^{\lambda+\mu} = (\kappa^{\lambda})^{\mu}$$

PROOF: The function that maps $f: A \times B \to C$ to $\lambda a \in A.\lambda b \in B.f(a,b)$ is a bijection $A^{B \times C} \approx (A^B)^C$. \square

Proposition 7.1.16. For any cardinal numbers κ , λ and μ ,

$$(\kappa\lambda)^{\mu} = \kappa^{\mu}\lambda^{\mu}$$
.

75

PROOF: The function $f: A^C \times B^C \to (A \times B)^C$ with f(g,h)(c) = (g(c),h(c)) is a bijection. \square

Proposition 7.1.17. For any cardinal numbers κ , λ and μ , we have

$$\kappa^{\lambda+\mu} = \kappa^{\lambda} \kappa^{\mu}$$
.

PROOF: If $B \cap C = \emptyset$, then $f: A^B \times A^C \to A^{B \cup C}$ given by f(g,h)(b) = g(b)and f(g,h)(c) = h(c) is a bijection. \square

Proposition 7.1.18. For any cardinal number κ , we have $\kappa^0 = 1$.

PROOF: For any set A, we have $A^{\emptyset} = \{\emptyset\}$. \square

Proposition 7.1.19. For any cardinal number κ , we have $\kappa^1 = \kappa$.

PROOF: For any sets A and B, if $B = \{b\}$ then the function $f: A \to A^B$ with f(a)(b) = a is a bijection. \square

Proposition 7.1.20. For any non-zero cardinal number κ we have $0^{\kappa} = 0$.

PROOF: If A is nonempty then there is no function $A \to \emptyset$. \square

Proposition 7.1.21. For any set A we have $|\mathcal{P}A| = 2^{|A|}$.

PROOF: The function $f: \mathcal{P}A \to 2^A$ where f(X)(a) = 0 if $a \notin X$ and f(X)(a) = 01 if $a \in X$. \square

Theorem 7.1.22 (König). Let I be a set. Let $\{A_i\}_{i\in I}$ and $\{B_i\}_{i\in I}$ be families of sets. Assume that $\forall i \in I. |A_i| < |B_i|$. Then $\bigcup_{i \in I} A_i| < |\prod_{i \in I} B_i|$.

Proof:

$$\begin{array}{l} \langle 1 \rangle 1. \text{ For all } i \in I, \text{ choose an injection } f_i : A_i \rightarrowtail B_i \\ \langle 1 \rangle 2. \text{ For all } i \in I, \text{ choose } b_i \in B_i - f_i(A_i) \\ \langle 1 \rangle 3. \left| \bigcup_{i \in I} A_i \right| \leq \left| \prod_{i \in I} B_i \right| \\ \langle 2 \rangle 1. \text{ Define } g : \bigcup_{i \in I} A_i \to \prod_{i \in I} B_i \text{ by} \\ g(i,a)(j) = \begin{cases} f_i(a) & \text{if } i = j \\ b_j & \text{otherwise} \end{cases} \\ \langle 2 \rangle 2. g \text{ is injective.} \\ \langle 1 \rangle 4. \left| \bigcup_{i \in I} A_i \right| \neq \left| \prod_{i \in I} B_i \right| \\ \end{array}$$

- $\langle 1 \rangle 4$. $\left| \bigcup_{i \in I} A_i \right| \neq \left| \prod_{i \in I} B_i \right|$ $\langle 2 \rangle 1$. Let: $h : \bigcup_{i \in I} A_i \to \prod_{i \in I} B_i$ Prove: h is not surjective.
 - $\langle 2 \rangle 2$. For $i \in I$, Pick $c_i \in B_i \{h(i, a)(i) \mid i \in I\}$
 - $\langle 2 \rangle 3. \ c \in \prod_{i \in I} B_i$
 - $\langle 2 \rangle 4$. $c \notin \operatorname{ran} h$

Corollary 7.1.22.1. For any cardinal number κ we have $\kappa < 2^{\kappa}$.

7.2 Ordering on Cardinal Numbers

Definition 7.2.1. Given cardinal numbers κ and λ , we have $\kappa \leq \lambda$ iff $A \leq B$, where $|A| = \kappa$ and $|B| = \lambda$.

```
Proof:
\langle 1 \rangle 1. Let: |A| = \kappa and |B| = \lambda
(1)2. Pick bijections f: A \approx \kappa and g: B \approx \lambda
\langle 1 \rangle 3. If \kappa \leq \lambda then A \preccurlyeq B
    PROOF: Let i: \kappa \hookrightarrow \lambda be the inclusion. Then g^{-1} \circ i \circ f is an injection A \to B.
\langle 1 \rangle 4. If A \leq B then \kappa \leq \lambda
    \langle 2 \rangle 1. Assume: A \leq B
    \langle 2 \rangle 2. Pick an injection h: A \rightarrow B
    \langle 2 \rangle 3. g(h(A)) \subseteq B is well-ordered by \in
    \langle 2 \rangle 4. Let: \gamma be the ordinal number of (g(h(A)), \in)
    \langle 2 \rangle 5. \ \gamma \leq \lambda
       Proof: Proposition 6.1.12.
    \langle 2 \rangle 6. \ \kappa \leq \gamma
       PROOF: By the leastness of \kappa, since A is equinumerous with \gamma.
    \langle 2 \rangle 7. \ \kappa \leq \lambda
П
```

Corollary 7.2.1.1. There is no largest cardinal number.

Proposition 7.2.2. For any cardinal numbers κ , λ , μ , if $\kappa \leq \lambda$ then $\kappa + \mu \leq \lambda + \mu$.

PROOF: If $f: A \to B$ is injective, and $A \cap C = B \cap C = \emptyset$, then the function $A \cup C \to B \cup C$ that maps a to f(a) and maps c to c is an injection. \square

Proposition 7.2.3. For any cardinal numbers κ , λ , μ , if $\kappa \leq \lambda$ then $\kappa \mu \leq \lambda \mu$.

PROOF: If $f: A \to B$ is injective, then the function $A \times C \to B \times C$ that maps (a,c) to (f(a),c) is injective. \square

Proposition 7.2.4. For any cardinal numbers κ , λ , μ , if $\kappa \leq \lambda$ then $\kappa^{\mu} \leq \lambda^{\mu}$.

PROOF: Given an injection $f:A\to B$, the function that maps $A^C\to B^C$ that maps g to $f\circ g$ is an injection. \square

Proposition 7.2.5. For any cardinal numbers κ , λ , μ , if $\kappa \leq \lambda$ and μ and κ are not both 0, then $\mu^{\kappa} \leq \mu^{\lambda}$.

Proof:

- $\langle 1 \rangle 1$. Let: A, B and C be sets with A and C not both empty.
- $\langle 1 \rangle 2$. Let: $f: A \to B$ be an injection.

Prove: $C^A \preccurlyeq C^B$

 $\langle 1 \rangle 3$. Case: $C = \emptyset$

PROOF: Then $A \neq \emptyset$ so $C^A = \emptyset \preccurlyeq C^B$.

 $\langle 1 \rangle 4$. Case: $C \neq \emptyset$

- $\langle 2 \rangle 1$. Pick $c \in C$
- $\langle 2 \rangle 2$. Let: $g: C^A \to C^B$ be the function g(h)(f(a)) = h(a), g(h)(b) = c if
- $\langle 2 \rangle 3$. g is an injection.

Proposition 7.2.6. Let A be a set such that $\forall X \in A | X | \leq \kappa$. Then

$$\left|\bigcup \mathcal{A}\right| \leq |\mathcal{A}|\kappa \ .$$

Proof:

- $\langle 1 \rangle 1$. For $X \in \mathcal{A}$, choose a surjection $f_X : \kappa \to X$.
- $\langle 1 \rangle 2$. Define $g: \mathcal{A} \times \kappa \to \bigcup \mathcal{A}$ by $g(X, \alpha) = f_X(\alpha)$
- $\langle 1 \rangle 3$. g is surjective.

Lemma 7.2.7. The union of a set of cardinal numbers is a cardinal number.

 $\langle 1 \rangle 1$. Let: A be a set of cardinal numbers.

PROVE: $\bigcup A$ is the smallest ordinal equinumerous with $\bigcup A$

 $\langle 1 \rangle 2$. Let: $\alpha < \bigcup A$

Prove: $\alpha \not\approx \bigcup A$

- $\langle 1 \rangle 3$. Pick $\kappa \in A$ such that $\alpha < \kappa$
- $\langle 1 \rangle 4$. $\alpha \prec \kappa$
- $\langle 1 \rangle 5. \ \stackrel{\backsim}{\alpha} \stackrel{\backsim}{\prec} \stackrel{\kappa}{\bigcup} A$

Chapter 8

Natural Numbers

8.1 Inductive Sets

Definition 8.1.1 (Inductive). A set I is *inductive* iff $0 \in I$ and $\forall x \in I.x^+ \in I$.

Definition 8.1.2 (Natural Number). A *natural number* is a set that belongs to every inductive set.

Theorem 8.1.3. The class \mathbb{N} of natural numbers is a set.

```
Proof: \langle 1 \rangle 1. Pick an inductive set I. Proof: Axiom of Infinity. \langle 1 \rangle 2. \mathbb{N} \subseteq I
```

Theorem 8.1.4. \mathbb{N} is inductive, and is a subset of every other inductive set.

```
PROOF:  \langle 1 \rangle 1. \ \mathbb{N} \text{ is inductive.}   \langle 2 \rangle 1. \ \mathbb{N} \text{ is inductive.}   \langle 2 \rangle 1. \ 0 \in \mathbb{N}  PROOF: Since 0 is a member of every inductive set.  \langle 2 \rangle 2. \ \forall n \in \mathbb{N}.n^+ \in \mathbb{N}   \langle 3 \rangle 1. \ \text{Let:} \ n \in \mathbb{N}   \langle 3 \rangle 2. \ \text{Let:} \ I \text{ be any inductive set.}  PROVE:  n^+ \in I   \langle 3 \rangle 3. \ n \in I  PROOF:  \langle 3 \rangle 1, \ \langle 3 \rangle 2   \langle 3 \rangle 4. \ n^+ \in I  PROOF:  \langle 3 \rangle 2, \ \langle 3 \rangle 3   \langle 1 \rangle 2. \ \mathbb{N} \text{ is a subset of every inductive set.}  PROOF: Immediate from definitions.
```

Corollary 8.1.4.1 (Induction Principle for \mathbb{N}). Any inductive subset of \mathbb{N} coincides with \mathbb{N} .

Theorem 8.1.5. Every natural number except 0 is the successor of some natural number.

Proof: Trivially by induction.

Proposition 8.1.6. Every natural number is an ordinal.

Proof: By induction. \square

Proposition 8.1.7. \mathbb{N} is a transitive set.

Proof:

- $\langle 1 \rangle 1. \ 0 \subseteq \mathbb{N}$
- $\langle 1 \rangle 2. \ \forall n \in \mathbb{N}. n \subseteq \mathbb{N} \Rightarrow n^+ \subseteq \mathbb{N}$
- $\langle 1 \rangle 3. \ \forall n \in \mathbb{N}. n \subseteq \mathbb{N}$

PROOF: From $\langle 1 \rangle 1$ and $\langle 1 \rangle 2$ by induction.

Corollary 8.1.7.1. \mathbb{N} is an ordinal.

Definition 8.1.8. We define $\omega = \mathbb{N}$.

Proposition 8.1.9 (Dependent Choice). Let A be a nonempty set and R a relation on A such that $\forall x \in A.\exists y \in A.(y,x) \in R$. Then there exists a function $f: \mathbb{N} \to A$ such that $\forall n \in \mathbb{N}.(f(n+1),f(n)) \in R$.

Proof:

- $\langle 1 \rangle 1$. PICK a choice function F for A.
- $\langle 1 \rangle 2$. Pick $a \in A$
- $\begin{array}{l} \langle 1 \rangle 3. \text{ Define } f: \mathbb{N} \to A \text{ by } f(0) = a \text{ and } f(n+1) = F(\{y \in A \mid (y,f(n)) \in R\}). \end{array}$

Theorem Schema 8.1.10. For any classes A and R, the following is a theorem:

Assume **R** is a relation on **A** and, for all $a \in \mathbf{A}$, the class $\{x \in \mathbf{A} \mid x\mathbf{R}a\}$ is a set. Then **R** is well founded if and only if there does not exist a function $f: \mathbb{N} \to \mathbf{A}$ such that $\forall n \in \mathbb{N}. f(n+1)\mathbf{R}f(n)$.

Proof:

 $\langle 1 \rangle 1$. If there exists a function $f : \mathbb{N} \to \mathbf{A}$ such that $\forall n \in \mathbb{N}. f(n+1)\mathbf{R}f(n)$ then \mathbf{R} is not well founded.

PROOF: $f(\mathbb{N})$ is a nonempty subset of **A** with no **R**-minimal element.

- $\langle 1 \rangle$ 2. If **R** is not well founded then there exists a function $f : \mathbb{N} \to \mathbf{A}$ such that $\forall n \in \mathbb{N}. f(n+1)\mathbf{R}f(n)$.
 - $\langle 2 \rangle 1$. Assume: **R** is not well founded.
 - $\langle 2 \rangle 2$. Pick a nonempty subset $B \subseteq \mathbf{A}$ that has no **R**-minimal element.
 - $\langle 2 \rangle 3. \ \forall x \in B. \exists y \in B. y \mathbf{R} x$

```
\langle 2 \rangle 4. Choose a function g: B \to B such that \forall x \in B.g(x)\mathbf{R}x \langle 2 \rangle 5. PICK b \in B \langle 2 \rangle 6. Define f: \mathbb{N} \to \mathbf{A} recursively by f(0) = b and \forall n \in \mathbb{N}.f(n+1) = g(f(n)) \langle 2 \rangle 7. \forall n \in \mathbb{N}.f(n+1)\mathbf{R}f(n)
```

8.2 Cardinality

Definition 8.2.1 (Finite). A set is *finite* iff it is equinumerous to some natural number; otherwise it is *infinite*.

Theorem 8.2.2 (Pigeonhole Principle). No natural number is equinumerous to a proper subset of itself.

```
Proof: \langle 1 \rangle 1. Le
```

```
\langle 1 \rangle 1. Let: P(n) be the property: any one-to-one function n \to n is surjective. \langle 1 \rangle 2. P(0)
```

PROOF: The only function $0 \to 0$ is injective.

```
\langle 1 \rangle 3. For every natural number n, if P(n) then P(n+1).
```

 $\langle 2 \rangle 1$. Assume: P(n)

 $\langle 2 \rangle 2$. Let: f be a one-to-one function $n+1 \to n+1$

 $\langle 2 \rangle 3$. $f \upharpoonright n$ is a one-to-one function $n \to n+1$

```
\langle 2 \rangle 4. Case: n \notin ranf
```

$$\langle 3 \rangle 1. \ f \upharpoonright n : n \to n$$

$$\langle 3 \rangle 2$$
. ran $(f \upharpoonright n) = n$

$$\langle 3 \rangle 3. \ f(n) = n$$

Proof: $\langle 2 \rangle 1$.

$$\langle 3 \rangle 4$$
. ran $f = n + 1$

 $\langle 2 \rangle 5$. Case: $n \in \operatorname{ran} f$

 $\langle 3 \rangle 1$. Pick $p \in n$ such that f(p) = n

 $\langle 3 \rangle 2$. Let: $\hat{f}: n \to n$ be the function

$$\hat{f}(p) = f(n)$$

$$\hat{f}(x) = f(x) \qquad (x \neq p)$$

 $\langle 3 \rangle 3$. \hat{f} is one-to-one

$$\langle 3 \rangle 4$$
. ran $\hat{f} = n$

Proof: $\langle 2 \rangle 1$

 $\langle 3 \rangle 5$. ran f = n + 1

 $\langle 1 \rangle 4$. For every natural number n, P(n).

Corollary 8.2.2.1. No finite set is equinumerous to a proper subset of itself.

Corollary 8.2.2.2. Every natural number is a cardinal number.

PROOF: For any natural number n, we have that n is the least ordinal such that $n \approx n$. \square

Corollary 8.2.2.3. \mathbb{N} is a cardinal number.

Corollary 8.2.2.4. \mathbb{N} is infinite.

PROOF: The function that maps n to n+1 is a bijection between $\mathbb N$ and $\mathbb N-\{0\}$. \square

Corollary 8.2.2.5. If C is a proper subset of a natural number n, then there exists m < n such that $C \approx m$.

Proof: By Proposition 6.1.12. \square

Corollary 8.2.2.6. Any subset of a finite set is finite.

Proposition 8.2.3. For any natural numbers m and n we have m+n (cardinal addition) is a natural number.

PROOF: Induction on n. \square

Corollary 8.2.3.1. The union of two finite sets is finite.

Corollary 8.2.3.2. The union of a finite set of finite sets is finite.

Proof: By induction on the number of elements. \Box

Proposition 8.2.4. For natural numbers m and n, the cardinal sum m + n is equal to the ordinal sum m + n.

Proof: Induction on n.

Proposition 8.2.5. For any natural numbers m and n, we have mn (cardinal multiplication) is a natural number.

Corollary 8.2.5.1. If A and B are finite sets then $A \times B$ is finite.

Proposition 8.2.6. For natural numbers m and n, the cardinal product mn is equal to the ordinal product mn.

Proof: Induction on n.

Proposition 8.2.7. For any natural numbers m and n we have m^n (cardinal exponentiation) is a natural number.

PROOF: Induction on n.

Corollary 8.2.7.1. If A and B are finite sets then A^B are finite.

Proposition 8.2.8. For natural numbers m and n, the cardinal exponentiation m^n and the ordinal exponentiation m^n agree.

PROOF: Induction on n. \square

Proposition 8.2.9. $\mathbb{N}^2 \approx \mathbb{N}$

PROOF: The function $J: \mathbb{N}^2 \to \mathbb{N}$ defined by $J(m,n) = ((m+n)^2 + 3m + n)/2$ is a bijection. \square

Proposition 8.2.10. For any infinite cardinal κ we have $\aleph_0 \leq \kappa$.

Proof:

 $\langle 1 \rangle 1$. Let: A be an infinite set.

Prove: $\mathbb{N} \preceq A$

 $\langle 1 \rangle 2$. PICK a choice function F for A.

 $\langle 1 \rangle 3$. Define $h: \mathbb{N} \to \{X \in \mathcal{P}A \mid X \text{ is finite}\}$ by

$$h(0) = \emptyset$$

$$h(n+1) = h(n) \cup \{F(A - \{h(m) \mid m < n\})\}\$$

 $\langle 1 \rangle 4$. Define $g : \mathbb{N} \to A$ by $g(n) = F(A - \{h(m) \mid m < n\})$

 $\langle 1 \rangle$ 5. g is injective.

PROOF: If m < n then $g(m) \neq g(n)$.

Theorem Schema 8.2.11 (König's Lemma). For any classes ${\bf A}$ and ${\bf R}$, the following is a theorem:

Assume **R** is a well founded relation on **A** such that, for all $y \in \mathbf{A}$, the class $\{x \in \mathbf{A} \mid x\mathbf{R}y\}$ is a finite set. Let \mathbf{R}^t be the transitive closure of **R**. Then, for all $y \in \mathbf{A}$, the class $\{x \in \mathbf{A} \mid x\mathbf{R}^ty\}$ is a finite set.

Proof:

 $\langle 1 \rangle 1$. Let: $y \in \mathbf{A}$

 $\langle 1 \rangle 2$. Assume: as transfinite induction hypothesis $\forall x \mathbf{R} y . \{z \in \mathbf{A} \mid z \mathbf{R}^t x\}$ is a finite set.

 $\langle 1 \rangle 3. \ \{x \mid x\mathbf{R}^ty\} = \bigcup_{x\mathbf{R}y} (\{x\} \cup \{z \mid z\mathbf{R}^tx\}$

 $\langle 1 \rangle 4$. $\{x \mid x \mathbf{R}^t y\}$ is finite.

Proof: Corollary 8.2.3.2.

8.3 Countable Sets

Definition 8.3.1 (Countable). A set A is countable iff $|A| \leq \aleph_0$.

Theorem 8.3.2. The union of a countable set of countable sets is countable.

Proof: Proposition 7.2.6. \square

8.4 Arithmetic

Definition 8.4.1 (Even). A natural number n is *even* iff there exists $m \in \mathbb{N}$ such that n = 2m.

Definition 8.4.2 (Odd). A natural number n is odd iff there exists $p \in \mathbb{N}$ such that n = 2p + 1.

Proposition 8.4.3. Every natural number is either even or odd.

```
PROOF: \langle 1 \rangle 1. 0 is even.

PROOF: 0 = 2 \times 0.

\langle 1 \rangle 2. For any natural number n, if n is either even or odd then n^+ is either even or odd.

PROOF: \langle 2 \rangle 1. Let: n \in \mathbb{N}

\langle 2 \rangle 2. If n is even then n^+ is odd.

PROOF: If n = 2p then n^+ = 2p + 1.

\langle 2 \rangle 3. If n is odd then n^+ is even.

PROOF: If n = 2p + 1 then n^+ = 2(p + 1).
```

Proposition 8.4.4. No natural number is both even and odd.

Proof:

 $\langle 1 \rangle 1$. 0 is not odd.

PROOF: For any p we have $2p + 1 = (2p)^+ \neq 0$.

- $\langle 1 \rangle 2$. For any natural number n, if n is not both even and odd, then n^+ is not both even and odd.
 - $\langle 2 \rangle 1$. Let: n be a natural number.
 - $\langle 2 \rangle 2$. If n^+ is even then n is odd.
 - $\langle 3 \rangle 1$. Assume: n^+ is even.
 - $\langle 3 \rangle 2$. PICK p such that $n^+ = 2p$
 - $\langle 3 \rangle 3. \ p \neq 0$

PROOF: Since $n^+ \neq 0$.

 $\langle 3 \rangle 4$. PICK q such that $p = q^+$ PROOF: Theorem 8.1.5.

 $\langle 3 \rangle 5. \ n^+ = 2q + 2$

Proof: $\langle 3 \rangle 2$, $\langle 3 \rangle 4$.

 $\langle 3 \rangle 6. \ n = 2q + 1$

Proof: Proposition 6.2.7, $\langle 3 \rangle 5$

- $\langle 3 \rangle 7$. *n* is odd.
- $\langle 2 \rangle 3$. If n^+ is odd then n is even.
 - $\langle 3 \rangle 1$. Assume: n^+ is odd.
 - $\langle 3 \rangle 2$. PICK p such that $n^+ = 2p + 1$
 - $\langle 3 \rangle 3$. n = 2p

Proof: Proposition 6.2.7, $\langle 3 \rangle 2$

 $\langle 3 \rangle 4$. *n* is even.

Proposition 8.4.5. Let m, n, p, q be natural numbers. Assume m+n=p+q. Then m < p if and only if q < n.

Proof:

 $\langle 1 \rangle 1$. If m < p then q < n.

PROOF: If m < p and $n \le q$ then $m + n . <math>\langle 1 \rangle 2$. If q < n then m < p. PROOF: Similar.

Proposition 8.4.6. Let m, n, p and q be natural numbers. Assume n < m and q < p. Then

$$mq + np < mp + nq$$
.

Proof:

 $\langle 1 \rangle 1$. Pick positive natural numbers a and b such that m=n+a and p=q+b.

 $\langle 1 \rangle 2$. mp + nq > mq + np

Proof:

$$mp + nq = (n+a)(q+b) + nq$$

$$= 2nq + nb + aq + ab$$

$$mq + np = (n+a)q + n(q+b)$$

$$= 2nq + aq + nb$$

$$\therefore mp + nq = mq + np + ab$$

$$> mq + np$$

8.5 Sequences

Definition 8.5.1 (Sequence). Let A be a set. A *finite sequence* in A is a function $a:n\to A$ for some natural number n; we write it as $(a(0),a(1),\ldots,a(n-1))$. An *(infinite) sequence* in A is a function $\mathbb{N}\to A$.

We write A^* for the set of all finite sequences in A.

Proposition 8.5.2. If A is countable then A^* is countable.

PROOF: For any n, the set A^n is countable, and A^* is equinumerous with $\bigcup_n A^n$.

8.6 Transitive Closure of a Set

Proposition 8.6.1. For any set A, there exists a unique transitive set C such that:

- $A \subseteq C$
- For any transitive set X, if $A \subseteq X$ then $C \subseteq X$

Proof:

 $\langle 1\rangle 1.$ Define a function $F:\mathbb{N}\to \mathbf{V}$ by F(0)=A $F(n+1)=A\cup \bigcup (F(0)\cup\cdots\cup F(n))$

```
\langle 1 \rangle 2. For all n \in \mathbb{N} and a \in F(n) we have a \subseteq F(n+1)
    PROOF: a \in F(0) \cup \cdots \cup F(n) so a \subseteq \bigcup (F(0) \cup \cdots \cup F(n)) \subseteq F(n+1).
\langle 1 \rangle 3. Let: C = \bigcup_{n \in \mathbb{N}} F(n)
\langle 1 \rangle 4. C is transitive.
    \langle 2 \rangle 1. Let: x \in y \in C
    \langle 2 \rangle 2. Pick n \in \mathbb{N} such that y \in F(n)
    \langle 2 \rangle 3. \ y \subseteq F(n+1)
       Proof: \langle 1 \rangle 2
    \langle 2 \rangle 4. \ x \in F(n+1)
    \langle 2 \rangle 5. \ x \in C
\langle 1 \rangle 5. A \subseteq C
    PROOF: Since F(0) = A.
\langle 1 \rangle 6. For any transitive set X, if A \subseteq X then C \subseteq X
    \langle 2 \rangle 1. Let: X be a transitive set
    \langle 2 \rangle 2. Assume: A \subseteq X
    \langle 2 \rangle 3. For all n \in \mathbb{N} we have F(n) \subseteq X.
        \langle 3 \rangle 1. \ F(0) \subseteq X
            Proof: \langle 2 \rangle 2
        \langle 3 \rangle 2. For all n \in \mathbb{N}, if F(n) \subseteq X, then F(n+1) \subseteq X.
            \langle 4 \rangle 1. Let: n \in \mathbb{N}
            \langle 4 \rangle 2. Assume: \forall m < n.F(m) \subseteq X
            \langle 4 \rangle 3. \ F(0) \cup \cdots \cup F(n) \subseteq X
            \langle 4 \rangle 4. \bigcup (F(0) \cup \cdots \cup F(n)) \subseteq X
               Proof: Since X is transitive.
            \langle 4 \rangle 5. F(n+1) \subseteq X
    \langle 2 \rangle 4. C \subseteq X
\langle 1 \rangle 7. Let D be a transitive set such that A \subseteq D and, for any transitive set X,
          if A \subseteq X then D \subseteq X. Then D = C.
    PROOF: We have C \subseteq D and D \subseteq C.
```

8.7 The Veblen Fixed Point Theorem

Theorem Schema 8.7.1 (Veblen Fixed Point Theorem). For any class **T**, the following is a theorem:

Assume **T** is a normal ordinal operation. For every ordinal β , there exists $\gamma \geq \beta$ such that $\mathbf{T}(\gamma) = \gamma$.

Proof:

- $\langle 1 \rangle 1$. Let: β be an ordinal.
- $\langle 1 \rangle$ 2. Assume: w.l.o.g. $\beta < \mathbf{T}(\beta)$

PROOF: We have $\beta \leq \mathbf{T}(\beta)$ by Proposition 6.4.5, and if $\beta = \mathbf{T}(\beta)$ we take $\gamma := \beta$.

 $\langle 1 \rangle 3$. Define $f : \mathbb{N} \to \mathbf{On}$ by recursion thus:

$$f(0) = \beta$$

$$f(n^{+}) = \mathbf{T}(f(n))$$

$$\langle 1 \rangle 4. \text{ Let: } \gamma = \sup_{n \in \mathbb{N}} f(n)$$

$$\langle 1 \rangle 5. \beta \leq \gamma$$

$$\text{Proof: Since } \beta = f(0).$$

$$\langle 1 \rangle 6. \mathbf{T}(\gamma) = \gamma$$

$$\langle 2 \rangle 1. \mathbf{T}(\gamma) \leq \gamma$$

$$\text{Proof:}$$

$$\mathbf{T}(\gamma) = \sup_{n \in \mathbb{N}} \mathbf{T}(f(n)) \qquad \text{(Theorem 6.4.7)}$$

$$= \sup_{n \in \mathbb{N}} f(n^{+}) \qquad \text{($\langle 1 \rangle 3$)}$$

$$\leq \sup_{n \in \mathbb{N}} f(n)$$

$$= \gamma$$

$$\langle 2 \rangle 2. \gamma \leq \mathbf{T}(\gamma)$$

$$\text{Proof:Proposition 6.4.5.}$$

Definition 8.7.2 (Derived Operation). Let T be a normal ordinal operation. The *derived* operation $T': On \to V$ is the unique order isomorphism between On and the fixed points of T.

Proposition Schema 8.7.3. For any class \mathbf{T} , the following is a theorem: If \mathbf{T} is a normal ordinal operation, then the derived operation is normal.

Proof:

- $\langle 1 \rangle 1$. For any set S of fixed points of **T**, we have $\bigcup S$ is a fixed point of **T** $\langle 2 \rangle 1$. LET: S be a set of fixed points of **T**.
 - $\langle 2 \rangle 2$. $\mathbf{T}(\sup S) = \sup S$

Proof:

$$\mathbf{T}(\sup S) = \sup_{\alpha \in S} \mathbf{T}(\alpha)$$
 (Theorem 6.4.7)
=
$$\sup_{\alpha \in S} \alpha$$
 ($\langle 2 \rangle 1$)
=
$$\sup S$$

 $\langle 1 \rangle 2$. Q.E.D.

Proof: Proposition 6.4.8.

8.8 Cantor Normal Form

Theorem 8.8.1. For any ordinal α , there exist a unique sequence of nonzero natural numbers (n_1, \ldots, n_k) and sequence of ordinals $(\gamma_1, \ldots, \gamma_k)$ such that

$$\gamma_k < \gamma_{k-1} < \dots < \gamma_1$$

and

$$\alpha = \omega^{\gamma_1} n_1 + \omega^{\gamma_2} n_2 + \dots + \omega^{\gamma_k} n_k .$$

Proof:

 $\langle 1 \rangle 1$. For any ordinal α , there exist a sequence of nonzero natural numbers (n_1, \ldots, n_k) and sequence of ordinals $(\gamma_1, \ldots, \gamma_k)$ such that

$$\gamma_k < \gamma_{k-1} < \dots < \gamma_1$$

and

$$\alpha = \omega^{\gamma_1} n_1 + \omega^{\gamma_2} n_2 + \dots + \omega^{\gamma_k} n_k .$$

- $\langle 2 \rangle 1$. Let: α be an ordinal
- $\langle 2 \rangle 2$. Assume: as an induction hypothesis that, for all $\beta < \alpha$, the theorem holds.
- $\langle 2 \rangle 3$. Assume: w.l.o.g. $\alpha \neq 0$
- $\langle 2 \rangle 4$. Let: γ_1 , n_1 , ρ_1 be the unique ordinals such that $0 \neq n_1 < \omega$, $\rho_1 < \omega^{\gamma_1}$, and $\alpha = \omega^{\gamma_1} n_1 + \rho_1$
- $\langle 2 \rangle$ 5. Let: $(\gamma_2, \dots, \gamma_k)$ and (n_2, \dots, n_k) be sequences such that $\gamma_k < \gamma_{k-1} < \dots < \gamma_2$ and $\rho_1 = \omega^{\gamma_2} n_2 + \dots + \omega^{\gamma_k} n_k$
- $\langle 2 \rangle 6. \ \gamma_2 < \gamma_1$

PROOF: Since $\omega^{\gamma_2} \leq \rho_1 < \omega^{\gamma_1}$

 $\langle 1 \rangle 2$. If

$$\gamma_k < \gamma_{k-1} < \dots < \gamma_1 \gamma'_k < \gamma'_{k-1} < \dots < \gamma'_1$$

and

$$\omega^{\gamma_1} n_1 + \omega^{\gamma_2} n_2 + \dots + \omega^{\gamma_k} n_k = \omega^{\gamma'_1} n'_1 + \omega^{\gamma'_2} n'_2 + \dots + \omega^{\gamma'_k} n'_k$$
then $\gamma_i = \gamma'_i$ for all i and $n_i = n'_i$ for all i

PROOF: Prove by induction on i using the Logarithm Theorem.

Definition 8.8.2 (Cantor Normal Form). For any ordinal α , the *Cantor normal* form of α is the expression $\alpha = \omega^{\gamma_1} n_1 + \cdots + \omega^{\gamma_k} n_k$ such that n_1, \ldots, n_k are nonzero natural numbers and $\gamma_k < \gamma_{k-1} < \cdots < \gamma_1$.

Chapter 9

The Cumulative Hierarchy

Definition 9.0.1 (Cumulative Hierarchy). Define the function $V: \mathbf{On} \to \mathbf{V}$ by transfinite recursion thus:

$$V_{\alpha} = \bigcup_{\beta < \alpha} \mathcal{P}V_{\beta}$$

Proposition 9.0.2. For all $\alpha \in \mathbf{On}$, V_{α} is a transitive set.

Proof:

 $\langle 1 \rangle 1$. Let: $\alpha \in \mathbf{On}$

 $\langle 1 \rangle 2$. Assume: as transfinite induction hypothesis $\forall \beta < \alpha. V_{\beta}$ is a transitive set.

 $\langle 1 \rangle 3$. For all $\beta < \alpha$, $\mathcal{P}V_{\beta}$ is a transitive set.

PROOF: Proposition 1.6.4. $\langle 1 \rangle 4$. V_{α} is a transitive set. PROOF: Proposition 1.6.3.

Proposition 9.0.3. For any ordinals α and β , if $\beta < \alpha$ then $V_{\beta} \subseteq V_{\alpha}$.

PROOF: Since $V_{\beta} \in \mathcal{P}V_{\beta} \subseteq V_{\alpha}$ and V_{α} is a transitive set. \square

Theorem 9.0.4.

1.
$$V_0 = \emptyset$$

2.
$$\forall \alpha \in \mathbf{On}.V_{\alpha^+} = \mathcal{P}V_{\alpha}$$

3. For any limit ordinal λ , $V_{\lambda} = \bigcup_{\alpha \leq \lambda} V_{\alpha}$.

Proof:

 $\langle 1 \rangle 1. \ V_0 = \emptyset$

Proof: Immediate from definition.

 $\langle 1 \rangle 2. \ \forall \alpha \in \mathbf{On}.V_{\alpha^+} = \mathcal{P}V_{\alpha}$

Proof:

- $\langle 2 \rangle 1$. Let: $\alpha \in \mathbf{On}$
- $\langle 2 \rangle 2$. For all $\beta < \alpha$ we have $\mathcal{P}V_{\beta} \subseteq \mathcal{P}V_{\alpha}$ PROOF: Propositions 1.5.8 and 9.0.3.
- $\langle 2 \rangle 3. \ V_{\alpha^+} = \mathcal{P} V_{\alpha}$

$$V_{\alpha^{+}} = \bigcup_{\beta < \alpha^{+}} \mathcal{P}V_{\beta}$$

$$= \bigcup_{\beta < \alpha} \mathcal{P}V_{\beta} \cup \mathcal{P}V_{\alpha}$$

$$\mathcal{P}V_{\alpha}$$

 $\langle 1 \rangle 3$. For any limit ordinal λ , $V_{\lambda} = \bigcup_{\alpha < \lambda} V_{\alpha}$

Proof:

 $\langle 2 \rangle 1. \ V_{\lambda} \subseteq \bigcup_{\alpha < \lambda} V_{\alpha}$

Proof:

$$V_{\lambda} = \bigcup_{\alpha < \lambda} \mathcal{P}V_{\alpha}$$

$$= \bigcup_{\alpha < \lambda} V_{\alpha^{+}} \qquad (\langle 1 \rangle 2)$$

$$\subseteq \bigcup_{\alpha < \lambda} V_{\alpha}$$

 $\langle 2 \rangle 2. \bigcup_{\alpha < \lambda} V_{\alpha} \subseteq V_{\lambda}$ PROOF: Proposition 9.0.3.

Proposition 9.0.5. For every set A, there exists an ordinal α such that $A \in V_{\alpha}$.

Proof:

- $\langle 1 \rangle 1$. Let us say a set A is grounded iff there exists an ordinal α such that $A \in V_{\alpha}$.
- $\langle 1 \rangle 2$. For any set A, if every element of A is grounded, then A is grounded.
 - $\langle 2 \rangle 1$. Let: A be a set.
 - $\langle 2 \rangle 2$. $S = \{ \alpha \mid \exists a \in A.\alpha \text{ is the least ordinal such that } a \in V_{\alpha} \}$ PROOF: S is a set by an Axiom of Replacement.
 - $\langle 2 \rangle 3$. Let: $\beta = \sup S$
 - $\langle 2 \rangle 4$. $A \subseteq V_{\beta}$
 - $\langle 3 \rangle 1$. Let: $a \in A$
 - $\langle 3 \rangle 2$. Let: α be the least ordinal such that $a \in V_{\beta}$
 - $\langle 3 \rangle 3. \ \alpha \in S$
 - $\langle 3 \rangle 4. \ \alpha \leq \beta$
 - $\langle 3 \rangle 5. \ a \in V_{\beta}$
 - $\langle 2 \rangle 5. \ A \in V_{\beta^+}$
- $\langle 1 \rangle 3$. Assume: for a contradiction there exists an ungrounded set.
- $\langle 1 \rangle 4$. PICK a transitive set B that has an ungrounded member.

PROOF: Pick a transitive set c, and take B to be the transitive closure of $\{c\}$.

 $\langle 1 \rangle 5$. Let: $A = \{x \in B \mid x \text{ is ungrounded}\}$

```
⟨1⟩6. Pick m \in A such that m \cap A = \emptyset
Proof: Axiom of Regularity.
⟨1⟩7. Every member of m is grounded.
⟨2⟩1. Assume: for a contradiction x \in m is ungrounded.
⟨2⟩2. x \in B
Proof: Since B is transitive (⟨1⟩4).
⟨2⟩3. x \in A
Proof: ⟨1⟩5
⟨2⟩4. Q.E.D.
Proof: This contradicts ⟨1⟩6.
⟨1⟩8. m is grounded.
Proof: ⟨1⟩2
⟨1⟩9. Q.E.D.
Proof: This contradicts ⟨1⟩6.
```

Definition 9.0.6 (Rank). The rank of a set A is the least ordinal α such that $A \in V_{\alpha^+}$.

Proposition 9.0.7. For any set A we have

$$\operatorname{rank} A = \bigcup_{a \in A} (\operatorname{rank} a)^+$$

```
PROOF:  \langle 1 \rangle 1. \text{ Let: } \alpha = \bigcup_{a \in A} (\operatorname{rank} a)^+ \\ \langle 1 \rangle 2. \ A \subseteq V_{\alpha} \\ \langle 2 \rangle 1. \ \text{Let: } a \in A \\ \langle 2 \rangle 2. \ a \in V_{(\operatorname{rank} a)^+} \\ \langle 2 \rangle 3. \ a \in V_{\alpha} \\ \langle 1 \rangle 3. \ A \in V_{\alpha^+} \\ \langle 1 \rangle 4. \ \text{If } A \subseteq V_{\beta} \text{ then } \alpha \leq \beta \\ \langle 2 \rangle 1. \ \text{Assume: } A \subseteq V_{\beta} \\ \langle 2 \rangle 2. \ \text{For all } a \in A \text{ we have } (\operatorname{rank} a)^+ \leq \beta \\ \text{PROOF: Since } a \in V_{\beta}. \\ \langle 2 \rangle 3. \ \alpha \leq \beta
```

Corollary 9.0.7.1. For any sets a and b, if $a \in b$ then rank $a < \operatorname{rank} b$.

Proposition 9.0.8. For any ordinal number α we have rank $\alpha = \alpha$.

Proof:

- $\langle 1 \rangle 1$. Let: α be an ordinal.
- $\langle 1 \rangle 2$. Assume: as transfinite induction hypothesis $\forall \beta < \alpha$. rank $\beta = \beta$
- $\langle 1 \rangle 3$. rank $\alpha = \bigcup_{\beta < \alpha} \beta^+$

$$\operatorname{rank} \alpha = \bigcup_{\beta < \alpha} (\operatorname{rank} \beta)^+$$
$$= \bigcup_{\beta < \alpha} \beta^+$$

 $\langle 1 \rangle 4$. $\bigcup_{\beta < \alpha} \beta^+ \le \alpha$ PROOF: Since for all $\beta < \alpha$ we have $\beta^+ \le \alpha$.

$$\langle 1 \rangle 5$$
. $\alpha \leq \bigcup_{\beta < \alpha} \beta^+$

(1)5. $\alpha \leq \bigcup_{\beta < \alpha} \beta^+$ (2)1. Let: $\gamma = \bigcup_{\beta < \alpha} \beta^+$ (2)2. Assume: for a contradiction $\gamma < \alpha$ (2)3. $\gamma^+ \leq \bigcup_{\beta < \alpha} \beta^+ = \gamma$ (2)4. Q.E.D.

$$\langle 2 \rangle 3. \ \gamma^+ \leq \bigcup_{\beta < \alpha} \beta^+ = \gamma$$

PROOF: This is a contradiction.

Definition 9.0.9 (Hereditarily Finite). A set is hereditarily finite iff it is in V_{ω} .

Chapter 10

Models of Set Theory

Definition 10.0.1 (Relativization). Let σ be a sentence in the language of set theory and \mathbf{M} a class. The *relativization* of σ to \mathbf{M} is the sentence $\sigma^{\mathbf{M}}$ formed by replacing every quantifier $\forall x$ with $\forall x \in \mathbf{M}$, and $\exists x$ with $\exists x \in \mathbf{M}$.

We write 'M is a model of σ ' for the sentence $\sigma^{\mathbf{M}}$.

Theorem Schema 10.0.2. For any class M, the following is a theorem: If M is a transitive class, then M is a model of the Axiom of Extensionality.

Proof:

```
\begin{array}{ll} \langle 1 \rangle 1. \text{ Assume: } \mathbf{M} \text{ is a transitive class.} \\ \text{Prove: } \forall x,y \in \mathbf{M} (\forall z \in \mathbf{M} (z \in x \Leftrightarrow z \in y) \Rightarrow x = y) \\ \langle 1 \rangle 2. \text{ Let: } x,y \in \mathbf{M} \\ \langle 1 \rangle 3. \text{ Assume: } \forall z \in \mathbf{M} (z \in x \Leftrightarrow z \in y) \\ \langle 1 \rangle 4. \ \forall z (z \in x \Leftrightarrow z \in y) \\ \text{Proof: Since } z \in x \Rightarrow z \in \mathbf{M} \text{ and } z \in y \Rightarrow z \in \mathbf{M} \text{ by } \langle 1 \rangle 1. \\ \langle 1 \rangle 5. \ x = y \\ \square \end{array}
```

Theorem 10.0.3. If α is a non-zero ordinal then V_{α} is a model of the statement: The empty class is a set.

Proof:

```
\begin{array}{ll} \langle 1 \rangle 1. & \text{Let: } \alpha \neq 0 \\ & \text{Prove: } \exists x \in V_{\alpha}. \forall y \in V_{\alpha}. y \notin x \\ \langle 1 \rangle 2. & \emptyset \in V_{\alpha} \\ \langle 1 \rangle 3. & \forall y \in V_{\alpha}. y \notin \emptyset \\ & \Box \end{array}
```

Theorem 10.0.4. For any limit ordinal λ , we have V_{λ} is a model of the statement: for any sets a and b, the class $\{a,b\}$ is a set.

Proof:

 $\langle 1 \rangle 1$. Let: λ be a limit ordinal.

```
PROVE: \forall a,b \in V_{\lambda}. \exists c \in V_{\lambda}. \forall x \in V_{\lambda} (x \in c \Leftrightarrow x = a \lor x = b) \langle 1 \rangle 2. Let: a,b \in V_{\lambda} \langle 1 \rangle 3. Pick \alpha,\beta < \lambda such that a \in V_{\alpha} and b \in V_{\beta} \langle 1 \rangle 4. Assume: w.l.o.g. \alpha \leq \beta \langle 1 \rangle 5. a,b \in V_{\beta} \langle 1 \rangle 6. \{a,b\} \in V_{\beta+1} \langle 1 \rangle 7. \{a,b\} \in V_{\lambda} \langle 1 \rangle 8. \forall x \in V_{\lambda} (x \in \{a,b\} \Leftrightarrow x = a \lor x = b)
```

Theorem 10.0.5. For any ordinal α , we have V_{α} is a model of the Union Axiom.

Proof:

```
\begin{array}{l} \text{TROOF:} \\ \langle 1 \rangle 1. \quad \text{LET:} \ \alpha \ \text{be an ordinal.} \\ \text{PROVE:} \quad \forall a \in V_{\alpha}. \exists b \in V_{\alpha}. \forall x \in V_{\alpha} (x \in b \Leftrightarrow \exists y \in V_{\alpha} (x \in y \land y \in a)) \\ \langle 1 \rangle 2. \quad \text{LET:} \ a \in V_{\alpha} \\ \langle 1 \rangle 3. \quad \text{PICK} \ \beta < \alpha \ \text{such that} \ a \subseteq V_{\beta} \\ \langle 1 \rangle 4. \quad \bigcup a \subseteq V_{\beta} \\ \text{PROOF:} \ V_{\beta} \ \text{is a transitive set.} \\ \langle 1 \rangle 5. \quad \bigcup a \in V_{\alpha} \\ \langle 1 \rangle 6. \quad \forall x \in V_{\alpha} (x \in \bigcup a \Leftrightarrow \exists y \in V_{\alpha} (x \in y \land y \in a)) \\ \text{PROOF:} \ V_{\alpha} \ \text{is a transitive set.} \\ \Box \end{array}
```

Theorem 10.0.6. For any limit ordinal λ , we have V_{λ} is a model of the Power Set Axiom.

Proof:

```
\begin{array}{l} \text{TROOT.} \\ \langle 1 \rangle \text{1. Let: } \lambda \text{ be a limit ordinal.} \\ \text{PROVE: } \forall a \in V_{\lambda}. \exists b \in V_{\lambda}. \forall x \in V_{\lambda} (x \in b \Leftrightarrow \forall y \in V_{\lambda} (y \in x \Rightarrow y \in a)) \\ \langle 1 \rangle \text{2. Let: } a \in V_{\lambda} \\ \langle 1 \rangle \text{3. PICK } \alpha < \lambda \text{ such that } a \in V_{\alpha} \\ \langle 1 \rangle \text{4. } \mathcal{P}a \in V_{\alpha+1} \\ \langle 1 \rangle \text{5. } \mathcal{P}a \in V_{\lambda} \\ \langle 1 \rangle \text{6. } \forall x \in V_{\lambda} (x \in \mathcal{P}a \Leftrightarrow \forall y \in V_{\lambda} (y \in x \Rightarrow y \in a)) \\ & \square \end{array}
```

Theorem Schema 10.0.7. For any property $P[x, y_1, ..., y_n]$, the following is a theorem:

For any ordinal α , the set V_{α} is a model of the statement: for any sets a_1 , ..., a_n , B, the class $\{x \in B \mid P[x, a_1, ..., a_n]\}$ is a set.

Proof:

- $\langle 1 \rangle 1$. Let: α be an ordinal. $\langle 1 \rangle 2$. Let: $a_1, \ldots, a_n, B \in V_{\alpha}$
- $\langle 1 \rangle 3$. Let: $C = \{ x \in B \mid P[x, a_1, \dots, a_n]^{V_\alpha} \}$
- $\langle 1 \rangle 4. \ C \in V_{\alpha}$

```
\langle 1 \rangle 5. \ \forall x \in V_{\alpha}(x \in C \Leftrightarrow x \in B \land P[x, a_1, \dots, a_n]^{V_{\alpha}})
```

Theorem 10.0.8. For any ordinal $\alpha > \omega$, we have: V_{α} is a model of the Axiom of Infinity.

Proof:

- $\langle 1 \rangle 1$. Let: $\alpha > \omega$
- $\langle 1 \rangle 2. \ \mathbb{N} \in V_{\alpha}$
- $\langle 1 \rangle 3. \ \exists e \in V_{\alpha} (e \in \mathbb{N} \land \forall x \in V_{\alpha}.x \notin e)$
- $\langle 1 \rangle 4. \ \forall x \in V_{\alpha}(x \in \mathbb{N} \Rightarrow \exists y \in V_{\alpha} \forall z \in V_{\alpha}(z \in y \Leftrightarrow z \in x \lor z = x))$

Theorem 10.0.9. For any ordinal α , we have V_{α} is a model of the Axiom of Choice.

Proof:

- $\langle 1 \rangle 1$. Let: α be an ordinal.
- $\langle 1 \rangle 2$. Let: $A \in V_{\alpha}$
- $\langle 1 \rangle 3$. Assume: $\forall x \in V_{\alpha} (x \in A \Rightarrow \exists y \in V_{\alpha}. y \in A)$
- $\langle 1 \rangle 4$. Assume: $\forall x, y, z \in V_{\alpha} (x \in A \land y \in A \land z \in x \land z \in y \Rightarrow x = y)$
- $\langle 1 \rangle 5$. A is a set of pairwise disjoint nonempty sets.
- $\langle 1 \rangle 6$. Pick c such that, for all $x \in A$, $x \cap c = \emptyset$
- $\langle 1 \rangle 7. \ c \cap \bigcup A \in V_{\alpha}$
- $(1) 8. \ \forall x \in V_{\alpha}(x \in A \Rightarrow \exists y \in V_{\alpha} \forall z \in V_{\alpha}(z \in x \land z \in c \cap \bigcup A \Leftrightarrow z = y))$

Theorem 10.0.10. For any ordinal α , we have V_{α} is a model of the Axiom of Regularity.

Proof:

- $\langle 1 \rangle 1$. Let: α be an ordinal.
- $\langle 1 \rangle 2$. Let: $A \in V_{\alpha}$
- $\langle 1 \rangle 3$. Assume: $\exists x \in V_{\alpha}.x \in A$
- $\langle 1 \rangle 4$. Pick $m \in A$ of least rank.
- $\langle 1 \rangle 5. \ m \in V_{\alpha}$
- $\langle 1 \rangle 6. \ \neg \exists x \in V_{\alpha} (x \in m \land x \in A)$

Theorem Schema 10.0.11. For any axiom α of Zermelo set theory, the following is a theorem:

For any limit ordinal $\lambda > \omega$, we have V_{λ} is a model of α .

PROOF: Theorems 10.0.2, 10.0.3, 10.0.4, 10.0.5, 10.0.6, 10.0.7, 10.0.8, 10.0.9, 10.0.10. \Box

Corollary Schema 10.0.11.1. for any axiom α of Zermelo set theory, the following is a theorem:

 $V_{\omega 2}$ is a model of α .

Lemma 10.0.12. There exists a well-ordered structure in $V_{\omega 2}$ whose ordinal is not in $V_{\omega 2}$.

PROOF: Take the well-ordered set $\mathbb{N} \times \{0,1\}$ whose ordinal is $\omega 2$. \square

Corollary Schema 10.0.12.1. There exists an instance α of the Axiom Schema of Replacement such that the following is a theorem:

 $V_{\omega 2}$ is not a model of α .

Chapter 11

Infinite Cardinals

11.1 Arithmetic of Infinite Cardinals

Proposition 11.1.1. For any infinite cardinal κ we have $\kappa \kappa = \kappa$.

```
Proof:
\langle 1 \rangle 1. PICK a set B with |B| = \kappa
\langle 1 \rangle 2. Let: \mathcal{H} = \{ f \mid f = \emptyset \lor \exists A \subseteq B. (A \text{ is infinite} \land f : A \times A \approx A \}
\langle 1 \rangle 3. For any chain \mathcal{C} \subseteq \mathcal{H} we have \bigcup \mathcal{C} \in \mathcal{H}
    \langle 2 \rangle 1. Let: \mathcal{C} \subseteq \mathcal{H} be a chain.
    \langle 2 \rangle 2. Assume: w.l.o.g. \mathcal C has a nonempty element.
    \langle 2 \rangle 3. \bigcup \mathcal{C} is a function.
         \langle 3 \rangle 1. Assume: (x,y),(x,z) \in \bigcup \mathcal{C}
         \langle 3 \rangle 2. PICK f, g \in \mathcal{C} such that f(x) = y and g(x) = z
         \langle 3 \rangle 3. Assume: w.l.o.g. f \subseteq g
         \langle 3 \rangle 4. \ y=z
    \langle 2 \rangle 4. \bigcup \mathcal{C} is injective.
         PROOF: Similar.
     \langle 2 \rangle5. Let: A = \operatorname{ran} \bigcup \mathcal{C}
    \langle 2 \rangle 6. A is infinite.
         \langle 3 \rangle 1. PICK a nonzero f \in \mathcal{C}
         \langle 3 \rangle 2. Let: A' be the infinite subset of B such that f: A'^2 \approx A'
         \langle 3 \rangle 3. \ A' \subseteq A
    \langle 2 \rangle 7. dom \bigcup \mathcal{C} = A^2
         \langle 3 \rangle 1. Let: x, y \in A
         \langle 3 \rangle 2. PICK f, g \in \mathcal{C} such that x \in \operatorname{ran} f and y \in \operatorname{ran} g
         \langle 3 \rangle 3. Assume: w.l.o.g. f \subseteq g
         \langle 3 \rangle 4. Let: A' be the infinite subset of B such that g:A'^2 \approx A'
         \langle 3 \rangle 5. \ x, y \in A'
         \langle 3 \rangle 6. \ (x,y) \in \text{dom } g
         \langle 3 \rangle 7. \ (x,y) \in \operatorname{dom} \bigcup \mathcal{C}
    \langle 2 \rangle 8. \bigcup \mathcal{C} \in \mathcal{H}
```

- $\langle 1 \rangle 4$. Pick a maximal $f_0 \in \mathcal{H}$
- $\langle 1 \rangle 5. \ f_0 \neq \emptyset$
 - $\langle 2 \rangle 1$. PICK a countably infinite subset A of B.

Proof: Proposition 8.2.10.

 $\langle 2 \rangle 2$. Pick a bijection $f: A^2 \approx A$

Proof: Proposition 8.2.9.

- $\langle 2 \rangle 3. \ \emptyset \subseteq f \in \mathcal{H}$
- $\langle 2 \rangle 4$. \emptyset is not maximal in \mathcal{H}
- $\langle 1 \rangle 6$. Let: A_0 be the infinite subset of B such that $f_0: A_0^2 \approx A_0$
- $\langle 1 \rangle 7$. Let: $\lambda = |A_0|$
- $\langle 1 \rangle 8$. λ is infinite.
- $\langle 1 \rangle 9. \ \lambda^2 = \lambda$
- $\langle 1 \rangle 10. \ \lambda = \kappa$
 - $\langle 2 \rangle 1$. Assume: for a contradiction $\lambda < \kappa$
 - $\langle 2 \rangle 2$. $\lambda \leq |B A_0|$
 - $\langle 2 \rangle 3$. Pick a subset $D \subseteq B A_0$ with $|D| = \lambda$
 - $\langle 2 \rangle 4$. $(A_0 \cup D)^2 = A_0^2 \cup (A_0 \times D) \cup (D \times A_0) \cup D^2$ $\langle 2 \rangle 5$. Let: $C = (A_0 \times D) \cup (D \times A_0) \cup D^2$

 - $\langle 2 \rangle 6. \ |C| = \lambda$

Proof:

$$|(A_0 \times D) \cup (D \times A_0) \cup D^2| = \lambda^2 + \lambda^2 + \lambda^2$$

$$= \lambda + \lambda + \lambda \qquad (\langle 1 \rangle 9)$$

$$= 3\lambda$$

$$\leq \lambda \cdot \lambda$$

$$= \lambda \qquad (\langle 1 \rangle 9)$$

- $\langle 2 \rangle$ 7. Pick a bijection $g: C \approx D$
- $\langle 2 \rangle 8.$ $f_0 \cup g : (A_0 \cup D)^2 \approx A_0 \cup D$
- $\langle 2 \rangle 9$. Q.E.D.

PROOF: This contradicts the maximality of f_0 .

Theorem 11.1.2 (Absorpution Law of Cardinal Arithmetic). Let κ and λ be nonzero cardinal numbers such that at least one is infinite. Then

$$\kappa + \lambda = \kappa \lambda = \max(\kappa, \lambda)$$

Proof:

- $\langle 1 \rangle 1$. Assume: w.l.o.g. $\lambda \leq \kappa$
- $\langle 1 \rangle 2$. $\kappa + \lambda = \kappa \lambda = \kappa$

11.2. ALEPHS 99

Proof:

$$\kappa \leq \kappa + \lambda$$

$$\leq \kappa + \kappa$$

$$= 2\kappa$$

$$\leq \kappa \lambda$$

$$\leq \kappa \kappa$$

$$= \kappa$$
 (Proposition 11.1.1)

11.2 Alephs

Definition 11.2.1 (Aleph). Let \aleph be the unique order isomorphism between **On** and the class of infinite cardinals.

Proposition 11.2.2. The operation \aleph is normal.

Proof: Proposition 6.4.8 and Lemma 7.2.7. \square

Definition 11.2.3 (Continuum Hypothesis). The *continuum hypothesis* is the statement that $\aleph_1 = 2^{\aleph_0}$.

Definition 11.2.4 (Generalised Continuum Hypothesis). The generalised continuum hypothesis is the statement that, for all α , $\aleph_{\alpha^+} = 2^{\aleph_{\alpha}}$.

11.3 Beths

Definition 11.3.1 (Beth). Define the operation $\beth: \mathbf{On} \to \mathbf{Card}$ by transfinite recursion as follows:

$$\begin{split} & \beth_0 := \aleph_0 \\ & \beth_{\alpha^+} := 2^{\beth_\alpha} \\ & \beth_\lambda := \bigcup_{\alpha < \lambda} \beth_\alpha \end{split} \qquad (\lambda \text{ a limit ordinal})$$

Proposition 11.3.2. \supset *is a normal operation.*

PROOF: It is continuous by definition, and $\beth_{\alpha} < \beth_{\alpha^+}$ by Cantor's Theorem. \square

Proposition 11.3.3. The continuum hypothesis is equivalent to the statement $\beth_1 = \aleph_1$.

The generalised continuum hypothesis is equivalent to the statement $\beth = \alpha$.

Proof: Immediate from definitions. \square

Lemma 11.3.4. For any ordinal number α , we have $|V_{\omega+\alpha}| = \beth_{\alpha}$.

Proof:

 $\langle 1 \rangle 1. |V_{\omega}| = \beth_0$

PROOF: Since V_{ω} is the union of \aleph_0 finite sets of increasing size.

 $\langle 1 \rangle 2$. For any ordinal α , if $|V_{\omega+\alpha}| = \beth_{\alpha}$ then $|V_{\omega+\alpha+1}| = \beth_{\alpha+1}$ PROOF: Since $V_{\omega+\alpha+1} = \mathcal{P}V_{\omega+\alpha}$.

 $\langle 1 \rangle 3$. For any limit ordinal λ , if $\forall \alpha < \lambda . |V_{\omega+\alpha}| = \beth_{\alpha}$ then $|V_{\omega+\lambda}| = \beth_{\lambda}$. Proof:

$$|V_{\omega+\lambda}| = \left| \bigcup_{\alpha < \lambda} V_{\omega+\alpha} \right|$$

$$= \sup_{\alpha < \lambda} |V_{\omega+\alpha}|$$

$$= \sup_{\alpha < \lambda} \beth_{\alpha}$$

$$= \beth_{\lambda}$$

11.4 Cofinality

Definition 11.4.1 (Cofinal). Let λ be a limit ordinal and S a set of ordinals smaller than λ . Then S is *cofinal* in λ if and only if $\lambda = \sup S$.

Definition 11.4.2 (Cofinality). For any ordinal α , define the *cofinality* of α , of α , as follows:

- cf 0 = 0
- For any ordinal α , cf $\alpha^+ = 1$
- For any limit ordinal λ , cf λ is the smallest cardinal such that there exists a set S of ordinals cofinal in λ with $|S| = \operatorname{cf} \lambda$.

Definition 11.4.3 (Regular). A cardinal κ is regular iff cf $\kappa = \kappa$; otherwise it is singular.

Proposition 11.4.4. \aleph_0 is regular.

PROOF: \aleph_0 is not the supremum of $< \aleph_0$ smaller ordinals, because a finite union of finite ordinals is finite. \square

Proposition 11.4.5. For every ordinal α , $\aleph_{\alpha+1}$ is regular.

PROOF: If S is a set of ordinals with $|S| < \aleph_{\alpha+1}$ and $\forall \beta \in S.\beta < \aleph_{\alpha+1}$, then we have $|S| \leq \aleph_{\alpha}$ and $\forall \beta \in S.\beta \leq \aleph_{\alpha}$, hence

$$\left|\bigcup S\right| \leq \aleph_{\alpha}^{2} \qquad \qquad \text{(Proposition 7.2.6)}$$

$$= \aleph_{\alpha} \qquad \qquad \text{(Proposition 11.1.1)} \square$$
Schema 11.4.6. For any class **T**, the following is

Proposition Schema 11.4.6. For any class \mathbf{T} , the following is a theorem. Assume $\mathbf{T}: \mathbf{On} \to \mathbf{On}$ is a normal operation. For any limit ordinal λ we have $\operatorname{cf} \mathbf{T}(\lambda) = \operatorname{cf} \lambda$.

```
Proof:
\langle 1 \rangle 1. cf \mathbf{T}(\lambda) \leq \operatorname{cf} \lambda
     \langle 2 \rangle 1. Pick a set S of ordinals \langle \lambda \rangle with |S| = \operatorname{cf} \lambda and \sup S = \lambda
     \langle 2 \rangle 2. \mathbf{T}(\lambda) = \sup_{\alpha \in S} \mathbf{T}(\alpha)
          PROOF: Theorem 6.4.7.
\langle 1 \rangle 2. cf \lambda < cf \mathbf{T}(\lambda)
     \langle 2 \rangle 1. Pick a set A of ordinals \langle \mathbf{T}(\lambda) \rangle such that |A| = \operatorname{cf} \mathbf{T}(\lambda) and \sup A = \operatorname{cf} \mathbf{T}(\lambda)
                   \mathbf{T}(\lambda)
     \langle 2 \rangle 2. Let: B = \{ \gamma < \lambda \mid \exists \alpha \in A. |\alpha| = \mathbf{T}(\gamma) \}
     \langle 2 \rangle 3. |B| \leq |A| = \operatorname{cf} \mathbf{T}(\lambda)
                  Prove: \sup B = \lambda
     \langle 2 \rangle 4. \ \forall \alpha \in A. |\alpha| \leq \mathbf{T}(\sup B)
     \langle 2 \rangle 5. \ \forall \alpha \in A.\alpha < \mathbf{T}(\sup B + 1)
     \langle 2 \rangle 6. \aleph_{\lambda} = \sup A \leq \mathbf{T}(\sup B + 1)
     \langle 2 \rangle 7. \lambda \leq \sup B + 1
     \langle 2 \rangle 8. \ \lambda \leq \sup B
          PROOF: \lambda is a limit ordinal.
      \langle 2 \rangle 9. sup B = \lambda
П
```

Corollary 11.4.6.1. \aleph_{ω} is singular.

PROOF: $\operatorname{cf} \aleph_{\omega} = \operatorname{cf} \aleph_0 = \aleph_0$. \square

Corollary 11.4.6.2. The operation of is not strictly monotone or continuous.

PROOF: cf \aleph_{ω} < cf \aleph_1

Definition 11.4.7 (Weakly Inaccessible). A cardinal is *weakly inaccessible* iff it is \aleph_{λ} for some limit ordinal λ and regular.

Lemma 11.4.8. Let λ be a limit ordinal. Then there exists a strictly increasing of λ -sequence that converges to λ .

Proof:

```
\langle 1 \rangle 1. Pick a set S of ordinals \langle \lambda \rangle with |S| = \operatorname{cf} \lambda and \sup S = \lambda
```

- $\langle 1 \rangle 2$. Pick a bijection $a : \text{cf } \lambda \approx S$
- $\langle 1 \rangle$ 3. PICK a strictly increasing subsequence $(b_{\delta})_{\delta < \beta}$ of a that converges to λ . PROOF: Lemma 6.6.5.

 $\langle 1 \rangle 4$. $\beta = \operatorname{cf} \lambda$

PROOF: By minimiality of cf λ .

Corollary 11.4.8.1. Let λ be a limit ordinal. Then cf λ is the least ordinal such that there exists a strictly increasing cf λ -sequence that converges to λ .

Proposition 11.4.9. For any ordinal λ , cf λ is a regular cardinal.

Proof:

```
\langle 1 \rangle 1. Let: \lambda be an ordinal.
```

- $\langle 1 \rangle 2$. Assume: w.l.o.g. λ is a limit ordinal.
- $\langle 1 \rangle 3$. Pick a strictly increasing sequence $(a_{\alpha})_{\alpha < \text{cf } \lambda}$ that converges to λ .
- (1)4. Let: S be a set of ordinals $\langle \operatorname{cf} \lambda \operatorname{such that} | S | = \operatorname{cf} \operatorname{cf} \lambda \operatorname{and sup} S = \operatorname{cf} \lambda$.
- $\langle 1 \rangle 5$. Let: $a(S) = \{ a_{\alpha} \mid \alpha \in S \}$
- $\langle 1 \rangle 6$. a(S) is cofinal in λ .
 - $\langle 2 \rangle 1$. Let: $\beta < \lambda$
 - $\langle 2 \rangle 2$. Pick $\gamma < \text{cf } \lambda \text{ such that } \beta < a_{\gamma}$
 - $\langle 2 \rangle 3$. Pick $\delta \in S$ such that $\gamma < \delta$
 - $\langle 2 \rangle 4$. $a_{\delta} \in a(S)$ and $\beta < a_{\gamma} < a_{\delta}$
- $\langle 1 \rangle 7$. cf $\lambda \leq$ cf cf λ

PROOF: Since a(S) is a set of ordinals $<\lambda$ with |a(S)|= cf cf λ and sup $a(S)=\lambda$.

 $\langle 1 \rangle 8$. cf cf $\lambda = \text{cf } \lambda$

Theorem 11.4.10. Let λ be an infinite cardinal. Then cf λ is the least cardinal such that λ can be partitioned into cf λ sets, each of cardinality $< \lambda$.

PROOF

- $\langle 1 \rangle 1$. λ can be partitioned into cf λ sets, each of cardinality $\langle \lambda \rangle$
 - $\langle 2 \rangle$ 1. PICK a strictly increasing sequence of ordinlas $(a_{\alpha})_{\alpha < \operatorname{cf} \lambda}$ that converges to λ
 - $\langle 2 \rangle 2$. $\{ \{ \beta \mid a_{\alpha} \leq \beta < a_{\alpha+1} \} \mid \alpha < \text{cf } \lambda \} \text{ is a partition of } \lambda \text{ into cf } \lambda \text{ sets, each of cardinality } < \lambda$
- $\langle 1 \rangle 2$. If λ can be partitioned into κ sets, each of cardinality $\langle \lambda$, then cf $\lambda \leq \kappa$.
 - $\langle 2 \rangle 1$. Let: \mathcal{A} be a partition of λ into sets of cardinality $\langle \lambda \rangle$
 - $\langle 2 \rangle 2$. Let: $\kappa = |P|$
 - $\langle 2 \rangle 3$. Pick a bijection $A : \kappa \approx P$
 - $\langle 2 \rangle 4. \ \lambda = \bigcup_{\xi < \kappa} A(\xi)$
 - $\langle 2 \rangle 5$. For all $\xi < \kappa$ we have $|A(\xi)| < \lambda$
 - $\langle 2 \rangle 6$. Let: $\mu = \sup_{\xi < \kappa} |A(\xi)|$
 - $\langle 2 \rangle 7. \ \mu \leq \lambda$
 - $\langle 2 \rangle 8$. For all $\xi < \kappa$ we have $|A(\xi)| \leq \mu$
 - $\langle 2 \rangle 9. \ \lambda < \mu \kappa$

Proof: Proposition 7.2.6.

 $\langle 2 \rangle 10$. Assume: w.l.o.g. $\kappa < \lambda$

PROOF: If $\lambda \leq \kappa$ then cf $\lambda \leq \kappa$ since cf $\lambda \leq \lambda$.

 $\langle 2 \rangle 11. \ \lambda = \mu$

Proof:

$$\lambda \leq \mu \kappa \qquad (\langle 2 \rangle 9)$$

$$\leq \lambda \lambda \qquad (\langle 2 \rangle 7, \langle 2 \rangle 10)$$

$$= \lambda \qquad (Proposition 11.1.1)$$

 $\langle 2 \rangle 12$. $\{|A(\xi)| \mid \xi < \kappa\}$ is a set of $\leq \kappa$ ordinals all $< \lambda$ whose supremum is $\lambda \langle 2 \rangle 13$. cf $\lambda \leq \kappa$

Theorem 11.4.11 (König). For any infinite cardinal κ we have $\kappa < \operatorname{cf} 2^{\kappa}$.

```
Proof:
```

- $\langle 1 \rangle 1$. Assume: for a contradiction of $2^{\kappa} \leq \kappa$
- $\langle 1 \rangle 2$. Let: $S = 2^{\kappa}$
- $\langle 1 \rangle 3$. Pick a partition $\{ A_{\xi} \mid \xi < \kappa \}$ of S^{κ} with $\forall \xi < \kappa . |A_{\xi}| < 2^{\kappa}$.

PROOF: Theorem 11.4.10.

 $\langle 1 \rangle 4. \ \forall \xi < \kappa. \{ g(\xi) \mid g \in A_{\xi} \} \subsetneq S$

PROOF: We do not have equality because $|\{g(\xi) \mid g \in A_{\xi}\}| \leq |A_{\xi}| < 2^{\kappa}$.

 $\langle 1 \rangle 5$. For all $\xi < \kappa$, choose $s_{\xi} \in S - \{g(\xi) \mid g \in A_{\xi}\}$

 $\langle 1 \rangle 6. \ s \in S^{\kappa}$

 $\langle 1 \rangle 7$. For all $\xi < \kappa$ we have $s \notin A_{\xi}$

PROOF: Since for all $\xi < \kappa$ and $g \in A_{\xi}$ we have $s_{\xi}(\xi) \neq g(\xi)$.

 $\langle 1 \rangle 8$. Q.E.D.

PROOF: This contradicts $\langle 1 \rangle 3$.

Corollary 11.4.11.1.

$$2^{\aleph_0} \neq \aleph_\omega$$

Proposition 11.4.12. For any ordinal α , we have cf α is the least cardinal such that α is the strict supremum of cf α smaller ordinals.

Proof:

```
\langle 1 \rangle 1. Case: \alpha = 0
```

PROOF: Since $0 = \sup \emptyset$.

 $\langle 1 \rangle 2$. Case: $\alpha = \beta^+$

PROOF: Since $\beta^+ = \sup\{\beta\}$.

- $\langle 1 \rangle 3$. Case: α is a limit ordinal.
 - $\langle 2 \rangle 1$. There exists a set S of ordinals $\langle \alpha \rangle$ such that $|S| = \operatorname{cf} \alpha$ and $\alpha = \operatorname{ssup} S$.
 - $\langle 3 \rangle$ 1. PICK a set S of ordinals $< \alpha$ such that $|S| = \text{cf } \alpha$ and $\sup S = \alpha$ PROVE: $\alpha = \text{ssup } S$
 - $\langle 3 \rangle 2. \ \forall \beta \in S.\beta < \alpha$
 - $\langle 3 \rangle 3$. For any ordinal γ , if $\forall \beta \in S.\beta < \gamma$ then $\alpha \leq \gamma$
 - $\langle 2 \rangle 2$. If T is a set of ordinals $\langle \alpha \rangle$ such that $\alpha = \operatorname{ssup} T$, then cf $\alpha \leq |T|$.
 - $\langle 3 \rangle 1$. Let: T be a set of ordinals $\langle \alpha \rangle$ such that $\alpha = \operatorname{ssup} T$
 - $\langle 3 \rangle 2$. $\alpha = \sup T$
 - $\langle 4 \rangle 1$. For all $\beta \in T$ we have $\beta \leq \alpha$
 - $\langle 4 \rangle 2$. Let: μ be any upper bound for T Prove: $\alpha \leq \mu$
 - $\langle 4 \rangle 3. \ \alpha \leq \mu + 1$

PROOF: Since $\forall \beta \in T.\beta < \mu + 1$.

 $\langle 4 \rangle 4$. $\alpha \neq \mu + 1$

PROOF: Since α is a limit ordinal.

- $\langle 4 \rangle 5$. $\alpha < \mu + 1$
- $\langle 4 \rangle 6. \ \alpha \leq \mu$
- $\langle 3 \rangle 3$. cf $\alpha \leq |T|$

П

11.5 Inaccessible Cardinals

Definition 11.5.1 (Inaccessible Cardinal). A cardinal number κ is *inaccessible* iff

- $\kappa > \aleph_0$
- $\forall \lambda < \kappa.2^{\lambda} < \kappa$ (cardinal exponentiation)
- κ is regular.

Any inaccessible cardinal is weakly inaccessible.

Proof:

- $\langle 1 \rangle 1$. Let: $\kappa = \aleph_{\lambda}$ be weakly inaccessible. Prove: λ is a limit ordinal.
- $\langle 1 \rangle 2. \ \lambda \neq 0$
- $\langle 1 \rangle 3$. Assume: for a contradiction $\lambda = \beta + 1$
- $\langle 1 \rangle 4$. $\aleph_{\beta} < \kappa$
- $\langle 1 \rangle 5. \ 2^{\aleph_{\beta}} < \kappa$
- $\langle 1 \rangle 6. \ \aleph_{\beta+1} < \kappa$

PROOF: Since $\aleph_{\beta+1} \leq 2^{\aleph_{\beta}}$.

 $\langle 1 \rangle 7$. Q.E.D.

PROOF: This contradicts $\langle 1 \rangle 3$.

Proposition 11.5.2. If the Generalized Continuum Hypothesis is true, then every weakly inaccessible cardinal is inaccessible.

Proof:

 $\langle 1 \rangle 1$. Assume: The Generalized Continuum Hypothesis.

 $= \kappa$

- $\langle 1 \rangle 2$. Let: $\kappa = \aleph_{\lambda}$ be weakly inaccessible.
- $\langle 1 \rangle 3. \ \kappa > \aleph_0$

PROOF: $\lambda > 0$ because λ is a limit ordinal.

- $\langle 1 \rangle 4$. For all $\mu < \kappa$ we have $2^{\mu} < \kappa$
 - $\langle 2 \rangle 1$. Let: $\mu < \kappa$
 - $\langle 2 \rangle 2$. Let: $\mu = \aleph_{\alpha}$
 - $\langle 2 \rangle 3. \ \alpha < \lambda$
 - $\langle 2 \rangle 4$. $\alpha + 1 < \lambda$

PROOF: λ is a limit ordinal.

 $\langle 2 \rangle 5$. $2^{\mu} < \kappa$

Proof:

$$2^{\mu} = 2^{\aleph_{\alpha}} \qquad (\langle 2 \rangle 2)$$

$$= 2^{\beth_{\alpha}} \qquad (\langle 1 \rangle 1)$$

$$= \beth_{\alpha+1}$$

$$= \aleph_{\alpha+1} \qquad (\langle 1 \rangle 1)$$

$$< \aleph_{\lambda} \qquad (\langle 2 \rangle 4)$$

 $(\langle 1 \rangle 2)$

 $\langle 1 \rangle$ 5. κ is regular. PROOF: $\langle 1 \rangle$ 2

Lemma 11.5.3. Let κ be an inaccessible cardinal. For every ordinal $\alpha < \kappa$ we have $\beth_{\alpha} < \kappa$.

Proof:

 $\langle 1 \rangle 1. \ \ \beth_0 < \kappa$

PROOF: Since $\kappa > \aleph_0$.

 $\langle 1 \rangle 2$. For any ordinal α , if $\beth_{\alpha} < \kappa$ then $\beth_{\alpha+1} < \kappa$.

PROOF: Since $\beth_{\alpha+1} = 2^{\beth_{\alpha}} < \kappa$.

 $\langle 1 \rangle 3$. For any limit ordinal λ , if $\forall \alpha < \lambda. \beth_{\alpha} < \kappa$ and $\lambda < \kappa$ then $\beth_{\lambda} < \kappa$.

PROOF: By regularity of κ , since \beth_{λ} is the union of $|\lambda|$ cardinals all $< \kappa$.

Lemma 11.5.4. Let κ be an inaccessible cardinal. For all $A \in V_{\kappa}$ we have $|A| < \kappa$.

Proof:

 $\langle 1 \rangle 1$. Let: $A \in V_{\kappa}$

 $\langle 1 \rangle 2$. PICK $\alpha < \kappa$ such that $A \in V_{\alpha}$

 $\langle 1 \rangle 3. \ A \subseteq V_{\alpha}$

 $\langle 1 \rangle 4. \ |A| \leq |V_{\alpha}| \leq \beth_{\alpha} < \kappa$

Theorem Schema 11.5.5. For every axiom α of ZFC, the following is a theorem:

For any inaccessible cardinal κ , we have V_{κ} is a model of α .

PROOF: For every axiom except the Replacement Axioms, we have Corollary 10.0.11.1.

For an Axiom of Replacement using the property $P[x, y, z_1, \dots, z_n]$, we reason as follows:

 $\langle 1 \rangle 1$. Let: κ be an inaccessible cardinal

PROVE:

$$\forall a_1, \dots, a_n, B \in V_{\kappa} (\forall x \in B. \forall y, y' \in V_{\kappa} \\ (P[x, y, a_1, \dots, a_n]^{V_{\kappa}} \land P[x, y', a_1, \dots, a_n]^{V_{\kappa}} \Rightarrow y = y') \Rightarrow \\ \exists C \in V_{\kappa} \forall y \in V_{\kappa} (y \in C \Leftrightarrow \exists x \in B. P[x, y, a_1, \dots, a_n]^{V_{\kappa}}))$$

 $\langle 1 \rangle 2$. Let: $a_1, \ldots, a_n, B \in V_{\kappa}$

 $\langle 1 \rangle 3$. Assume: for all $x \in B$, there exists at most one $y \in V_{\kappa}$ such that $P[x,y,a_1,\ldots,a_n]^{V_{\kappa}}$.

 $\langle 1 \rangle 4$. Let: $F = \{(x, y) \in B \times V_{\kappa} \mid P[x, y, a_1, \dots, a_n]^{V_{\kappa}} \}$

 $\langle 1 \rangle 5$. Let: $C = \operatorname{ran} F$

Prove: $C \in V_{\kappa}$

 $\langle 1 \rangle 6$. Let: $S = \{ \operatorname{rank} F(x) \mid x \in \operatorname{dom} F \}$

 $\langle 1 \rangle 7$. $|S| < \kappa$

PROOF: Since $|S| \leq |\operatorname{dom} F| \leq |B| < \kappa$.

```
\begin{split} &\langle 1 \rangle 8. \  \, \forall \alpha \in S.\alpha < \kappa \\ & \text{Proof: Since } F(x) \in V_\kappa \text{ for all } x \in \operatorname{dom} F. \\ &\langle 1 \rangle 9. \ \sup S < \kappa \\ & \text{Proof: Since } \kappa \text{ is regular.} \\ &\langle 1 \rangle 10. \ \operatorname{rank} C \leq \sup S + 1 \\ &\langle 1 \rangle 11. \ \operatorname{rank} C < \kappa \\ &\langle 1 \rangle 12. \  \, C \in V_\kappa \\ & \Box \end{split}
```

Chapter 12

Group Theory

12.1 Groups

Definition 12.1.1 (Group). A group G consists of a set G and a function $\cdot: G^2 \to G$ such that:

- $1. \cdot is associative$
- 2. There exists $e \in G$ such that $\forall x \in G.xe = x$ and $\forall x \in G.\exists y \in G.xy = e$.

Proposition 12.1.2. The inverse of an element in a group is unique.

Proof:

 $\langle 1 \rangle 1$. Assume: b and b' are inverses of a.

 $\langle 1 \rangle 2. \ b = b'$

Proof:

$$b = be$$

$$= bab'$$

$$= eb'$$

$$= b'$$

Definition 12.1.3. We write x^{-1} for the inverse of x.

Proposition 12.1.4. In any group, if ab = ac then b = c.

Proof:

$$b = eb$$

$$= a^{-1}ab$$

$$= a^{-1}ac$$

$$= ec$$

$$= c$$

12.2 Abelian Groups

Definition 12.2.1 (Abelian group). An $Abelian\ group$ is a group whose multiplication is commutative.

We may say we are writing an Abelian group *additively*, meaning we write a + b for ab, 0 for e and -a for a^{-1} . In this case we write a - b for ab^{-1} .

Chapter 13

Ring Theory

13.1 Rings

Definition 13.1.1 (Commutative Ring). A *commutative ring* consists of a set R and two binary operations +, \cdot on R such that:

- D is an Abelian group under +. Let us write 0 for its identity element.
- \bullet · is commutative and associative, and distributes over +.
- \bullet · has an identity element 1 that is different from 0.

Proposition 13.1.2. In any commutative ring, 0x = 0.

Proof:

$$(0+0)x = 0x$$

$$\therefore 0x + 0x = 0x + 0$$

$$\therefore 0x = 0 \qquad \text{(Proposition 12.1.4)} \square$$

Proposition 13.1.3. In any commutative ring, (-a)b = -(ab).

Proof:

$$ab + (-a)b = (a + (-a))b$$

= $0b$
= 0 (Proposition 13.1.2) \square

13.2 Ordered Rings

Definition 13.2.1 (Ordered Commutative Ring). An ordered commutative ring consists of a commutative ring R with a linear order < on R such that:

• for all $x, y, z \in R$, we have x < y if and only if x + z < y + z.

• for all $x, y, z \in R$, if 0 < z then we have x < y if and only if xz < yz.

Proposition 13.2.2. In any ordered commutative ring, 0 < 1.

PROOF: If 1 < 0 then we have 0 < -1 and so 0 < (-1)(-1) = 1, which is a contradiction. \square

Proposition 13.2.3. The ordering on an ordered commutative ring is dense; that is, if x < y then there exists z such that x < z < y.

PROOF: Take z = (x + y)/2. \square

13.3 Integral Domains

Definition 13.3.1 (Integral Domain). An *integral domain* is a commutative ring such that, for all $a, b \in D$, if ab = 0 then a = 0 or b = 0.

Proposition 13.3.2. In any integral domain, if ab = ac and $a \neq 0$ then b = c.

PROOF: We have a(b-c)=0 and $a\neq 0$ so b-c=0 hence b=c. \square

Definition 13.3.3 (Ordered Integral Domain). An *ordered integral domain* is an ordered commutative ring that is an integral domain.

Chapter 14

Field Theory

14.1 Fields

Definition 14.1.1 (Field). A *field* F is a commutative ring such that $0 \neq 1$ and, for all $x \in F$, if $x \neq 0$ then there exists $y \in F$ such that xy = 1.

Proposition 14.1.2. Every field is an integral domain.

PROOF: If ab = 0 and $a \neq 0$ then $b = a^{-1}ab = 0$. \square

Proposition 14.1.3. In any field F, we have $F - \{0\}$ is an Abelian group under multiplication.

PROOF: Immediate from the definition. \Box

Definition 14.1.4 (Field of Fractions). Let D be an integral domain. The *field* of fractions of D is the quotient set $F = (D \times (D - \{0\})) / \sim$ where

$$(a,b) \sim (c,d) \Leftrightarrow ad = bc$$

under

$$[(a,b)] + [(c,d)] = [(ad+bc,bd)]$$
$$[(a,b)][(c,d)] = [(ac,bd)]$$

We prove this is a field.

Proof:

 $\langle 1 \rangle 1$. \sim is an equivalence relation on $D \times (D - \{0\})$. PROOF:

 $\langle 2 \rangle 1. \sim \text{ is reflexive.}$

PROOF: We always have ab = ba.

 $\langle 2 \rangle 2$. \sim is symmetric.

PROOF: If ad = bc then cb = da.

```
\langle 2 \rangle 3. \sim is transitive.
     \langle 3 \rangle 1. Assume: (a,b) \sim (c,d) \sim (e,f)
     \langle 3 \rangle 2. ad = bc and cf = de
     \langle 3 \rangle 3. adf = bde
        PROOF: adf = bcf = bde
     \langle 3 \rangle 4. af = be
        Proof: Proposition 13.3.2.
\langle 1 \rangle 2. Addition is well-defined.
  Proof:
  \langle 2 \rangle 1. If b \neq 0 and d \neq 0 then bd \neq 0.
     PROOF: Since D is an integral domain.
  \langle 2 \rangle 2. If ab' = a'b and cd' = c'd then (ad + bc)b'd' = (a'd' + b'c')bd.
     Proof:
                                 (ad + bc)b'd' = ab'dd' + bb'cd'
                                                 = a'bdd' + bb'c'd
                                                 = (a'd' + b'c')bd
\langle 1 \rangle 3. Multiplication is well-defined.
  Proof:
  \langle 2 \rangle 1. If b \neq 0 and d \neq 0 then bd \neq 0.
     PROOF: Since D is an integral domain.
  (2)2. If [(a,b)] = [(a',b')] and [(c,d)] = [(c',d')] then [(ac,bd)] = [(a'c',b'd')].
     PROOF: If ab' = a'b and cd' = c'd then acb'd' = a'c'bd.
\langle 1 \rangle 4. Addition is commutative.
  PROOF: [(a,b)] + [(c,d)] = [(ad+bc,bd)] = [(cb+da,db)] = [(c,d)] + [(a,b)] \sqcup
\langle 1 \rangle5. Addition is associative.
  Proof:
          [(a,b)] + ([(c,d)] + [(e,f)]) = [(a,b)] + [(cf + de, df)]
                                            = [(adf + bcf + bde, bdf)]
                                            = [(ad + bc, bd)] + [(e, f)]
                                            = ([(a,b)] + [(c,d)]) + [(e,f)]
                                                                                       \langle 1 \rangle 6. For any x \in F we have x + [(0,1)] = x
  PROOF: [(a,b)] + [(0,1)] = [(a \cdot 1 + b \cdot 0, b \cdot 1)] = [(a,b)] \sqcup
\langle 1 \rangle 7. For any x \in F, there exists y \in F such that x + y = [(0,1)].
  PROOF: [(a,b)] + [(-a,b)] = [(ab-ab,b^2)] = [(0,b^2)] = [(0,1)]
\langle 1 \rangle 8. Multiplication is commutative.
  PROOF: [(a,b)][(c,d)] = [(c,d)][(a,b)] = [(ac,bd)].
\langle 1 \rangle 9. Multiplication is assocative.
  PROOF: [(a,b)]([(c,d)][(e,f)]) = ([(a,b)][(c,d)])[(e,f)] = [(ace,bdf)].
\langle 1 \rangle 10. For any x \in F we have x[(1,1)] = x
  PROOF: [(a,b)][(1,1)] = [(a,b)]
\langle 1 \rangle 11. For any non-zero x \in F, there exists y \in F such that xy = [(1,1)].
```

14.1. FIELDS 113

```
Proof:
```

```
 \begin{array}{l} \langle 2 \rangle 1. \ \ \mathrm{Let:} \ \left[ (a,b) \right] \in \mathbb{Q} \\ \langle 2 \rangle 2. \ \ \mathrm{Assume:} \ \left[ (a,b) \right] \neq \left[ (0,1) \right] \\ \langle 2 \rangle 3. \ \ a \neq 0 \\ \langle 2 \rangle 4. \ \ \left[ (a,b) \right] \left[ (b,a) \right] = \left[ (1,1) \right] \\ \square \\ \end{array}
```

Definition 14.1.5. For any field F, let N(F) be the intersection of all the subsets $S \subseteq F$ such that $1 \in S$ and $\forall x \in S.x + 1 \in S$.

Definition 14.1.6 (Characteristic Zero). A field F has *characteristic* 0 iff $0 \notin N(F)$.

Proposition 14.1.7. In a field F with characteristic 0, the function $n : \mathbb{N} \to N(F)$ defined by

$$n(0) = 1$$
$$n(x+1) = n(x) + 1$$

is a bijection.

Proof:

 $\langle 1 \rangle 1$. *n* is injective.

 $\langle 2 \rangle 1$. Assume: for a contradiction n(i) = n(j) with $i \neq j$

 $\langle 2 \rangle 2$. Assume: w.l.o.g. i < j

 $\langle 2 \rangle 3$. n(j-i)=0

 $\langle 2 \rangle 4$. Q.E.D.

PROOF: This contradicts the fact that F has characteristic 0.

 $\langle 1 \rangle 2$. n is surjective.

PROOF: Since ran n is a subset of F that includes 1 and is closed under +1.

Definition 14.1.8. In any field F, let

$$I(F) = N(F) \cup \{0\} \cup \{-x \mid x \in N(F)\}\$$

Definition 14.1.9. In any field F, let

$$Q(F) = \{x/y \mid x, y \in I(F), y \neq 0\}$$

Proposition 14.1.10. Q(F) is the smallest subfield of F.

PROOF: Q(F) is closed under + and \cdot , and any subset of F closed under + and \cdot that contains 0 and 1 must include Q(F). \square

Theorem 14.1.11. Let F and G be fields of characteristic 0. Then there exists a unique field isomorphism between Q(F) and Q(G).

- $\langle 1 \rangle 1$. Let: $\phi: N(F) \to N(G)$ be the unique function such that $\phi(1) = 1$ and $\forall x \in N(F). \phi(x+1) = \phi(x) + 1$.
- $\langle 1 \rangle 2$. ϕ is a bijection.

Proof: Similar to Proposition 14.1.7.

 $\langle 1 \rangle 3. \ \forall x, y \in N(F). \phi(x+y) = \phi(x) + \phi(y)$

Proof: Induction on y.

 $\langle 1 \rangle 4. \ \forall x, y \in N(F). \phi(xy) = \phi(x)\phi(y)$

PROOF: Induction on y.

- (1)5. Extend ϕ to a bijection $I(F) \cong I(G)$ such that $\forall x, y \in I(F).\phi(x+y) = \phi(x) + \phi(y)$ and $\forall x, y \in I(F).\phi(xy) = \phi(x)\phi(y)$
 - $\langle 2 \rangle 1$. Define $\phi(0) = 0$ and $\phi(-x) = -\phi(x)$ for $x \in N(F)$
 - $\langle 3 \rangle 1. \ 0 \notin N(F)$
 - $\langle 3 \rangle 2$. For all $x \in N(F)$ we have $-x \notin N(F)$

PROOF: Then we would have $x + -x = 0 \in N(F)$.

- $\langle 3 \rangle 3$. For all $x \in N(F)$ we have $-x \neq 0$
- $\langle 2 \rangle 2$. For all $x, y \in I(F)$ we have $\phi(x+y) = \phi(x) + \phi(y)$

PROOF: Case analysis on x and y.

 $\langle 2 \rangle 3$. For all $x, y \in I(F)$ we have $\phi(xy) = \phi(x)\phi(y)$

PROOF: Case analysis on x and y.

- $\langle 1 \rangle$ 6. Extend ϕ to a bijection $Q(F) \cong Q(G)$ such that $\forall x, y \in Q(F).\phi(x+y) = \phi(x) + \phi(y)$ and $\forall x, y \in Q(F).\phi(xy) = \phi(x)\phi(y)$
 - $\langle 2 \rangle 1$. Define $\phi(x/y) = \phi(x)/\phi(y)$
- $\langle 1 \rangle 7$. ϕ is unique.
 - $\langle 2 \rangle 1$. Let: θ satisfy the theorem.
 - $\langle 2 \rangle 2$. For all $x \in N(F)$ we have $\theta(x) = \phi(x)$
 - $\langle 2 \rangle 3$. For all $x \in I(F)$ we have $\theta(x) = \phi(x)$
 - $\langle 2 \rangle 4$. For all $x \in Q(F)$ we have $\theta(x) = \phi(x)$

14.2 Ordered Fields

Definition 14.2.1 (Ordered Field). An *ordered field* is an ordered commutative ring that is a field.

Proposition 14.2.2. Every ordered field F has characteristic θ .

PROOF: We have 0 < n for all $n \in N(F)$. \square

Proposition 14.2.3. Let F be a field of characteristic 0. Then there exists a unique relation < on Q(F) that makes Q(F) into an ordered field.

Proof: Easy. \square

Corollary 14.2.3.1. Let F and G be ordered fields. Let ϕ be the unique field isomorphism between Q(F) and Q(G). Then ϕ is an ordered field isomorphism.

Definition 14.2.4 (Archimedean). An ordered field F is Archimedean iff

$$\forall x \in F. \exists n \in N(F). n > x .$$

Proposition 14.2.5. Let F be an Archimedean ordered field. Let $x, y \in F$ with x > 0. Then there exists $n \in N(F)$ such that nx > y.

PROOF: Pick n > y/x. \square

Proposition 14.2.6. Let F be an Archimedean ordered field. For all $x, y \in F$, if x < y, then there exists $r \in Q(F)$ such that x < r < y.

Proof:

- $\langle 1 \rangle 1$. Case: x > 0
 - $\langle 2 \rangle 1$. PICK $n \in N(F)$ such that n(y-x) > 1

Proof: Proposition 14.2.5.

- $\langle 2 \rangle 2$. ny > 1 + nx
- $\langle 2 \rangle$ 3. Let: m be the least element of N(F) such that m > nx.
- $\langle 2 \rangle 4$. $m-1 \leq nx$
- $\langle 2 \rangle 5$. nx < m < ny
- $\langle 2 \rangle 6$. x < m/n < y
- $\langle 1 \rangle 2$. Case: $x \leq 0$
 - $\langle 2 \rangle 1$. Pick $k \in N(F)$ such that k > -x
 - $\langle 2 \rangle 2$. 0 < x + k < y + k
 - $\langle 2 \rangle$ 3. Pick $r \in Q(F)$ such that x + k < r < y + k

Proof: $\langle 1 \rangle 1$

 $\langle 2 \rangle 4$. x < r - k < y

Definition 14.2.7 (Complete). An ordered field F is *complete* iff every nonempty subset of F bounded above has a least upper bound.

Proposition 14.2.8. Every complete ordered field is Archimedean.

Proof:

- $\langle 1 \rangle 1$. Let: F be a complete ordered field.
- $\langle 1 \rangle 2$. Let: $x \in F$
- $\langle 1 \rangle$ 3. Assume: for a contradiction there is no member of N(F) greater than x.
- $\langle 1 \rangle 4$. x is an upper bound for N(F).
- $\langle 1 \rangle 5$. Let: $y = \sup N(F)$
- $\langle 1 \rangle 6$. Pick $n \in N(F)$ such that y 1 < n
- $\langle 1 \rangle 7$. y < n+1
- $\langle 1 \rangle 8$. Q.E.D.

Proof: This is a contradiction.

Proposition 14.2.9. Let F be a complete ordered field and $a \in F$ be nonnegative. Then there exists $b \in F$ such that $b^2 = a$.

- $\langle 1 \rangle 1$. Let: $B = \{ x \in F \mid 0 \le x \le 1 + a \}$
- $\langle 1 \rangle 2$. Let: $\phi : B \to B$ be the function

$$\phi(x) = x + \frac{1}{2(1+a)}(a-x^2) .$$

- $\langle 1 \rangle 3$. ϕ is strictly monotone.
 - $\langle 2 \rangle$ 1. Let: $0 \le x < y \le 1 + a$ $\langle 2 \rangle$ 2. $1 \frac{x+y}{2(1+a)} > 0$

 - $\langle 2 \rangle 3. \ \phi(y) \phi(x) = (y x)(1 \frac{x+y}{2(1+a)}) > 0$
 - $\langle 2 \rangle 4. \ \phi(x) < \phi(y)$
- $\langle 1 \rangle 4$. Pick $b \in B$ such that $\phi(b) = b$.

PROOF: Knaster Fixed-Point Theorem.

$$\langle 1 \rangle 5. \ b^2 = a$$

Theorem 14.2.10 (Uniqueness of the Complete Ordered Field). If F and G are complete ordered fields, then there exists a unique bijection $\phi: F \cong G$ such that, for all $x, y \in F$,

$$\phi(x+y) = \phi(x) + \phi(y)$$
$$\phi(xy) = \phi(x)\phi(y)$$

This bijection also satisfies: for all $x, y \in F$,

$$x < y \Leftrightarrow \phi(x) < \phi(y)$$
.

Proof:

 $\langle 1 \rangle 1$. Pick a bijection $\phi: Q(F) \cong Q(G)$ such that, for all $x, y \in Q(F)$,

$$\phi(x+y) = \phi(x) + \phi(y)$$
$$\phi(xy) = \phi(x)\phi(y)$$

$$x < y \Leftrightarrow \phi(x) < \phi(y)$$

Proof: Corollary 14.2.3.1.

 $\langle 1 \rangle 2$. Q(F) intersects every interval in F.

Proof: Proposition 14.2.6.

 $\langle 1 \rangle 3$. Q(G) intersects every interval in G.

Proof: Proposition 14.2.6.

 $\langle 1 \rangle 4$. PICK an order isomorphism $\psi : F \cong G$ that extends ϕ .

PROOF: Theorem 5.1.21.

- $\langle 1 \rangle 5. \ \forall x, y \in F. \psi(x+y) = \psi(x) + \psi(y)$
 - $\langle 2 \rangle 1$. Let: $x, y \in F$
 - $\langle 2 \rangle 2$. $\psi(x) + \psi(y) \not< \psi(x+y)$
 - $\langle 3 \rangle 1$. Assume: for a contradiction $\psi(x) + \psi(y) < \psi(x+y)$
 - $\langle 3 \rangle 2$. Pick $r' \in Q(G)$ such that $\psi(x) < r' < \psi(x+y) \psi(y)$
 - $\langle 3 \rangle 3$. Pick $s' \in Q(G)$ such that $\psi(y) < s' < \psi(x+y) r'$
 - $\langle 3 \rangle 4. \ r' + s' < \psi(x+y)$
 - $\langle 3 \rangle 5$. Pick $r, s \in Q(F)$ such that $\phi(r) = r'$ and $\phi(s) = s'$
 - $\langle 3 \rangle 6. \ \phi(r+s) = r' + s'$
 - $\langle 3 \rangle 7. \ \psi(x) < \psi(r)$
 - $\langle 3 \rangle 8. \ \psi(y) < \psi(s)$
 - $\langle 3 \rangle 9. \ \psi(x+y) > \psi(r+s)$
 - $\langle 3 \rangle 10. \ x < r$

```
\langle 3 \rangle 11. \ y < s
       \langle 3 \rangle 12. x + y > r + s
       \langle 3 \rangle 13. Q.E.D.
           PROOF: This is a contradiction.
   \langle 2 \rangle 3. \ \psi(x+y) \not< \psi(x) + \psi(y)
       Proof: Similar.
\langle 1 \rangle 6. \ \forall x, y \in F. \psi(xy) = \psi(x) \psi(y)
    \langle 2 \rangle 1. Let: x, y \in F
   \langle 2 \rangle 2. Case: x and y are positive.
       \langle 3 \rangle 1. \ \psi(x)\psi(y) \not< \psi(xy)
           \langle 4 \rangle1. Assume: for a contradiction \psi(x)\psi(y) < \psi(xy)
           \langle 4 \rangle 2. PICK r' \in Q(G) such that \psi(x) < r' < \psi(xy)/\psi(y)
           \langle 4 \rangle 3. Pick s' \in Q(G) such that \psi(y) < s' < \psi(xy)/r'
           \langle 4 \rangle 4. r's' < \psi(xy)
           \langle 4 \rangle5. PICK r, s \in Q(F) such that \phi(r) = r' and \phi(s) = s'
           \langle 4 \rangle 6. \ \phi(rs) = r's'
           \langle 4 \rangle 7. x < r, y < s \text{ and } rs < xy
           \langle 4 \rangle 8. Q.E.D.
              PROOF: This is a contradiction.
       \langle 3 \rangle 2. \ \psi(xy) \not< \psi(x)\psi(y)
           PROOF: Similar.
   \langle 2 \rangle 3. Case: x and y are not both positive.
       PROOF: Follows from \langle 2 \rangle 2 since \psi(-x) = -\psi(x) by \langle 1 \rangle 5.
\langle 1 \rangle 7. For any field isomorphism \theta : F \cong G, we have \theta = \psi.
   \langle 2 \rangle 1. \ \theta \upharpoonright Q(F) = \phi
       PROOF: Theorem 14.1.11.
   \langle 2 \rangle 2. \theta is strictly monotone.
       \langle 3 \rangle 1. Let: x, y \in F with x < y
       \langle 3 \rangle 2. y - x > 0
       \langle 3 \rangle 3. Pick z \in F such that z^2 = y - x
       \langle 3 \rangle 4. \theta(z)^2 = \theta(y) - \theta(x)
       \langle 3 \rangle 5. \theta(y) - \theta(x) > 0
       \langle 3 \rangle 6. \ \theta(x) < \theta(y)
   \langle 2 \rangle 3. \ \theta = \psi
       PROOF: By the uniqueness of \psi.
```

Chapter 15

Number Systems

15.1 The Integers

Definition 15.1.1. The set of integers \mathbb{Z} is the quotient set \mathbb{N}^2/\sim , where $(m,n)\sim(p,q)$ iff m+q=n+p.

We prove \sim is an equivalence relation on \mathbb{N}^2 .

Proof:

 $\langle 1 \rangle 1$. \sim is reflexive.

PROOF: For all $m, n \in \mathbb{N}$ we have m + n = n + m.

 $\langle 1 \rangle 2$. \sim is symmetric.

PROOF: If m + q = n + p then p + n = q + m.

 $\langle 1 \rangle 3$. \sim is transitive.

- $\langle 2 \rangle 1$. Assume: $(m,n) \sim (p,q) \sim (r,s)$
- $\langle 2 \rangle 2$. m+q=n+p and p+s=q+r
- $\langle 2 \rangle 3$. m+q+s=n+q+r
- $\langle 2 \rangle 4$. m+s=n+r

PROOF: By cancellation.

Definition 15.1.2 (Addition). Define $addition + \text{ on } \mathbb{Z}$ by [(m,n)] + [(p,q)] = [(m+p,n+q)].

We prove this is well-defined.

PROOF: If m+n'=n+m' and p+q'=q+p' then m+p+n'+q'=n+q+m'+p'.

Proposition 15.1.3. Addition on \mathbb{Z} is commutative.

PROOF:
$$[(m,n)] + [(p,q)] = [(m+p,n+q)] = [(p+m,q+n)] = [(p,q)] + [(m,n)].$$

Proposition 15.1.4. Addition on \mathbb{Z} is associative.

PROOF: [(m,n)] + ([(p,q)] + [(r,s)]) = [(m+p+r,n+q+s)] = ([(m,n)] + [(p,q)]) + [(r,s)].

Proposition 15.1.5. Given natural numbers m and n, we have [(m,0)] = [(n,0)] iff m = n.

PROOF: Immediate from definitions.

Definition 15.1.6. We identify any natural number n with the integer [(n,0)].

Proposition 15.1.7. Addition on integers agrees with addition on natural numbers.

PROOF: Since [(m,0)] + [(n,0)] = [(m+n,0)].

Proposition 15.1.8. For all $a \in \mathbb{Z}$ we have a + 0 = a.

PROOF: [(m, n)] + [(0, 0)] = [(m + 0, n + 0)] = [(m, n)].

Proposition 15.1.9. For all $a \in \mathbb{Z}$, there exists $b \in \mathbb{Z}$ such that a + b = 0.

PROOF: [(m,n)] + [(n,m)] = [(m+n,m+n)] = [(0,0)]

Proposition 15.1.10. The integers form an Abelian group under addition.

PROOF: Proposition 15.1.3, 15.1.4, 15.1.8, 15.1.9.

Definition 15.1.11. Define multiplication \cdot on \mathbb{Z} by: [(m,n)][(p,q)] = [(mp + nq, mq + np)].

We prove this is well defined.

Proof:

- $\langle 1 \rangle 1$. Assume: m+n'=n+m' and p+q'=q+p' Prove: mp+nq+m'q'+n'p'=mq+np+m'p'+n'q'
- $\langle 1 \rangle 2$. mp + n'p = np + m'p
- $\langle 1 \rangle 3$. nq + m'q = mq + n'q
- $\langle 1 \rangle 4. \ m'p + m'q' = m'q + m'p'$
- $\langle 1 \rangle 5. \ n'q + n'p' = n'p + n'q'$
- $\langle 1 \rangle 6. \ mp + n'p + nq + m'q + m'p + m'q' + n'q + n'p' = np + m'p + mq + n'q + m'q + m'p' + n'p' + n'q'$
- $\langle 1 \rangle 7$. mp + nq + m'q' + n'p' = mq + np + m'p' + n'q'

Proof: By cancellation.

Proposition 15.1.12. Multiplication on integers agrees with multiplication on natural numbers.

PROOF: Since [(m,0)][(n,0)] = [(mn+0,m0+n0)] = [(mn,0)].

Proposition 15.1.13. *Multiplication on* \mathbb{Z} *is commutative.*

PROOF: [(m,n)][(p,q)] = [(mp+nq,mq+np)] = [(pm+qn,pn+qm)] = [(p,q)][(m,n)].

Proposition 15.1.14. *Multiplication on* \mathbb{Z} *is associative.*

Proof:

$$\begin{split} [(m,n)]([(p,q)][(r,s)]) &= [(m,n)][(pr+qs,ps+qr)] \\ &= [(mpr+mqs+nps+nqr,mps+mqr+npr+nqs)] \\ &= [(mp+nq,mq+np)][(r,s)] \\ &= ([(m,n)][(p,q)])[(r,s)] \end{split}$$

Proposition 15.1.15. Multiplication distributes over addition.

Proof:

$$\begin{split} [(m,n)]([(p,q)]+[(r,s)]) &= [(m,n)][(p+r,q+s)] \\ &= [(mp+mr+nq+ns,np+nr+mq+ms)] \\ [(m,n)][(p,q)]+[(m,n)][(r,s)] &= [(mp+nq,mq+np)]+[(mr+ns,ms+nr)] \\ &= [(mp+nq+mr+ns,mq+np+ms+nr)] \end{split}$$

Proposition 15.1.16. For any integer a we have a1 = a.

PROOF: Since
$$[(m,n)][(1,0)] = [(m1+n0,m0+n1)] = [(m,n)]$$
.

Proposition 15.1.17. For any integers a and b, if ab = 0 then a = 0 or b = 0.

Proof:

```
\langle 1 \rangle 1. Assume: [(m,n)][(p,q)] = [(0,0)]
\langle 1 \rangle 2. mp + nq = mq + np
\langle 1 \rangle 3. Assume: [(m,n)] \neq [(0,0)]
\langle 1 \rangle 4. \ m \neq n
       Prove: p = q
\langle 1 \rangle 5. Case: m < n
   \langle 2 \rangle 1. \ p \not < q
      PROOF: If p < q then mq + np < mp + nq by Proposition 8.4.6.
      PROOF: If q < p then mp + nq < mq + np by Proposition 8.4.6.
   \langle 2 \rangle 3. \ p = q
```

PROOF: By trichotomy.

 $\langle 1 \rangle 6$. Case: n < m

PROOF: Similar.

Proposition 15.1.18. The integers \mathbb{Z} form an integral domain.

PROOF: Propositions 15.1.13, 15.1.14, 15.1.15, 15.1.16, 15.1.17, 15.1.10.

Definition 15.1.19. Define < on \mathbb{Z} by [(m,n)] < [(p,q)] if and only if m+q <n+p.

We prove this is well-defined.

$$\begin{array}{ll} \langle 1 \rangle 1. & \text{Assume: } m+n'=n+m' \text{ and } p+q'=q+p'. \\ & \text{Prove: } m+q< n+p \text{ if and only if } m'+q'< n'+p' \\ \langle 1 \rangle 2. & m+q< n+p \text{ if and only if } m'+q'< n'+p' \\ & \text{Proof: } \\ & m+q< n+p \Leftrightarrow m+n'+q< n+n'+p \\ & \Leftrightarrow m'+n+q< n+n'+p \\ & \Leftrightarrow m'+q< n'+p \\ & \Leftrightarrow m'+q+p'< n'+p+p' \end{array} \qquad \begin{array}{l} \text{(Corollary 6.5.7.1)} \\ \text{(Corollary 6.5.7.1)} \\ & \Leftrightarrow m'+q'+p+p' \end{array}$$

Proposition 15.1.20. The ordering on the integers agrees with the ordering on the natural numbers.

PROOF: We have [(m,0)] < [(n,0)] iff m < n. \square

Proposition 15.1.21. < is a linear order on \mathbb{Z} .

Proof:

 $\langle 1 \rangle 1$. < is irreflexive.

PROOF: We never have m + n < m + n.

- $\langle 1 \rangle 2$. < is transitive.
 - $\langle 2 \rangle 1$. Assume: [(m,n)] < [(p,q)] < [(r,s)]
 - $\langle 2 \rangle 2$. m+q < n+p and p+s < q+r
 - $\langle 2 \rangle 3. \ m + q + s < n + q + r$

PROOF: m + q + s < n + p + s < n + q + r

 $\langle 2 \rangle 4$. m+s < n+r

PROOF: Corollary 6.5.7.1.

 $\langle 1 \rangle 3.$ < is total.

PROOF: Given natural numbers m, n, p and q, either m+q < n+p, or m+q=n+p, or n+p < m+q.

Definition 15.1.22 (Positive). An integer a is positive iff a > 0.

Theorem 15.1.23. For any integers a, b and c, we have a < b if and only if a + c < b + c.

- $\langle 1 \rangle 1$. If a < b then a + c < b + c.
 - $\langle 2 \rangle 1$. Let: a = [(m, n)], b = [(p, q)] and c = [(r, s)].
 - $\langle 2 \rangle 2$. Assume: a < b
 - $\langle 2 \rangle 3. \ m+q < n+p$
 - $\langle 2 \rangle 4$. m + r + q + s < n + r + p + s
 - $\langle 2 \rangle 5. [(m+r, n+s)] < [(p+r, q+s)]$
 - $\langle 2 \rangle 6$. a+c < b+c

```
\langle 1 \rangle2. If a+c < b+c then a < b.
PROOF: From \langle 1 \rangle1 and Proposition 5.2.6.
```

Proposition 15.1.24. Let a, b and c be integers. If 0 < c, then a < b if and only if ac < bc.

```
PROOF:  \langle 1 \rangle 1. \text{ Let: } c = [(r,s)] \\ \langle 1 \rangle 2. \text{ Assume: } 0 < c \\ \langle 1 \rangle 3. s < r \\ \langle 1 \rangle 4. \text{ For all integers } a \text{ and } b, \text{ if } a < b \text{ then } ac < bc \\ \langle 2 \rangle 1. \text{ Let: } a = [(m,n)], b = [(p,q)]. \\ \langle 2 \rangle 2. \text{ Assume: } a < b \\ \langle 2 \rangle 3. m + q < n + p \\ \langle 2 \rangle 4. (m+q)r + (p+n)s < (m+q)s + (p+n)r \\ \text{PROOF: Proposition } 8.4.6, \langle 1 \rangle 3, \langle 2 \rangle 3. \\ \langle 2 \rangle 5. mr + ns + ps + qr < ms + nr + pr + qs \\ \langle 2 \rangle 6. [(mr + ns, ms + nr)] < [(pr + qs, ps + qr)] \\ \langle 2 \rangle 7. ac < bc \\ \langle 1 \rangle 5. \text{ For all integers } a \text{ and } b, \text{ if } ac < bc \text{ then } a < b \\ \text{PROOF: From } \langle 1 \rangle 4 \text{ and Proposition } 5.2.6. \\ \square
```

Proposition 15.1.25. *Let* a *be* a *positive integer. For any integer* b, *there* exists $k \in \mathbb{N}$ *such that* b < ak.

```
PROOF: \langle 1 \rangle 1. Case: b \leq 0
PROOF: Take k = 1. \langle 1 \rangle 2. Case: b > 0
PROOF: Take k = b + 1.
```

15.2 The Rationals

Definition 15.2.1 (Rational Numbers). The set \mathbb{Q} of rational numbers is the field of fractions over the integers.

Proposition 15.2.2. For any integers a and b, we have [(a,1)] = [(b,1)] iff a = b.

Proof: Immediate from definitions.

Henceforth we identify any integer a with the rational number [(a, 1)].

Proposition 15.2.3. Addition on the rationals agrees with addition on the integers.

PROOF:
$$[(a, 1)] + [(b, 1)] = [(a \cdot 1 + b \cdot 1, 1 \cdot 1)] = [(a + b, 1)].$$

Proposition 15.2.4. Multiplication on the rationals agrees with multiplication on the integers.

PROOF:
$$[(a, 1)][(b, 1)] = [(ab, 1)]$$

Definition 15.2.5. Define the ordering < on the rationals by: if b and d are positive, then [(a,b)] < [(c,d)] iff ad < bc.

We prove this is well-defined.

Proof:

 $\langle 1 \rangle 1$. For any rational q, there exist integers a, b with b positive such that q = [(a, b)].

PROOF: Since [(a,b)] = [(-a,-b)], and if $b \neq 0$ then one of b and -b is positive.

 $\langle 1 \rangle 2$. If b, b', d and d' are positive, [(a,b)] = [(a',b')], and [(c,d)] = [(c',d')], then ad < bc iff a'd' < b'c'.

Proof:

- $\langle 2 \rangle 1$. If ad < bc then a'd' < b'c'.
 - $\langle 3 \rangle 1$. Assume: ad < bc
 - $\langle 3 \rangle 2$. ab'd < bb'c
 - $\langle 3 \rangle 3$. a'bd < bb'c
 - $\langle 3 \rangle 4$. a'd < b'c
 - $\langle 3 \rangle 5$. a'dd' < b'cd'
 - $\langle 3 \rangle 6$. a'dd' < b'c'd
 - $\langle 3 \rangle 7$. a'd' < b'c'
- $\langle 2 \rangle 2$. If a'd' < b'c' then ad < bc.

PROOF: Similar.

П

Proposition 15.2.6. The ordering on the rationals agrees with the ordering on the integers.

PROOF: We have [(a,1)] < [(b,1)] if and only if a < b. \square

Proposition 15.2.7. The relation < is a linear ordering on \mathbb{Q} .

Proof:

 $\langle 1 \rangle 1$. < is irreflexive.

PROOF: We never have ab < ab.

- $\langle 1 \rangle 2$. < is transitive.
 - $\langle 2 \rangle 1$. Assume: [(a,b)] < [(c,d)] < [(e,f)] where b, d and f are positive.
 - $\langle 2 \rangle 2$. ad < bc and cf < de
 - $\langle 2 \rangle 3$. adf < bde

Proof: adf < bcf < bde

- $\langle 2 \rangle 4$. af < be
- $\langle 1 \rangle 3. < \text{is total.}$

PROOF: For any integers a, b, c, d, we have ad < bc or ad = bc or bc < ad.

П

Proposition 15.2.8. For any rationals r, s and t, we have r < s if and only if r + t < s + t.

Proof:

 $\langle 1 \rangle 1$. Let: a, b, c, d, e, f be integers with b, d and f positive.

 $\langle 1 \rangle 2$. [(a,b)] + [(e,f)] < [(c,d)] + [(e,f)] if and only if [(a,b)] < [(c,d)]. PROOF:

$$\begin{split} [(a,b)] + [(e,f)] < [(c,d)] + [(e,f)] &\Leftrightarrow [(af+be,bf)] < [(cf+de,df)] \\ &\Leftrightarrow (af+be)df < (cf+de)bf \\ &\Leftrightarrow afdf + bedf < cfbf + debf \\ &\Leftrightarrow afdf < cfbf \\ &\Leftrightarrow ad < bc \\ &\Leftrightarrow [(a,b)] < [(c,d)] \end{split}$$

Corollary 15.2.8.1. For any rational r, we have r < 0 if and only if 0 < -r.

Definition 15.2.9 (Absolute Value). For any rational r, the absolute value of r is defined by

$$|r| := \begin{cases} -r & \text{if } 0 < -r \\ r & \text{otherwise} \end{cases}$$

Proposition 15.2.10. For any rationals r, s and t, if t is positive then r < s iff rt < st.

Proof:

 $\langle 1 \rangle 1$. Let: r = [(a,b)], s = [(c,d)] and t = [(e,f)] where b, d and f are positive.

 $\langle 1 \rangle 2$. Assume: 0 < t

 $\langle 1 \rangle 3. \ e > 0$

 $\langle 1 \rangle 4$. rt < st iff r < s

Proof:

$$rt < st \Leftrightarrow [(ae, bf)] < [(ce, df)]$$

 $\Leftrightarrow aedf < cebf$
 $\Leftrightarrow ad < bc$
 $\Leftrightarrow r < s$

Corollary 15.2.10.1. The rationals form an ordered field.

Proposition 15.2.11. *Let* p *be a positive rational. For any rational number* r, *there exists* $k \in \mathbb{N}$ *such that* r < pk.

Proof:

 $\langle 1 \rangle 1$. Let: p = a/b and r = c/d where a, b and d are positive.

```
\langle 1 \rangle2. PICK k \in \mathbb{N} such that bc < adk PROOF: Proposition 15.1.25. \langle 1 \rangle3. r < pk
```

Proposition 15.2.12. $\mathbb{Q} \approx \mathbb{N}$

PROOF: Arrange the rationals in order 0/1, 1/1, 1/2, 0/2, -1/2, -1/1, -2/1, -2/2, -2/3, -1/3, 0/3, 1/3, 2/3, etc. then remove all duplicates. \Box

15.3 The Real Numbers

Definition 15.3.1 (Cauchy Sequence). A Cauchy sequence is a sequence (q_n) of rationals such that, for every positive rational ϵ , there exists $k \in \mathbb{N}$ such that $\forall m, n > k. |q_m - q_n| < \epsilon$.

Definition 15.3.2 (Dedekind Cut). A *Dedekind cut* is a set $x \subseteq \mathbb{Q}$ such that:

- 1. $\emptyset \neq x \neq \mathbb{Q}$
- 2. x is closed downwards.
- 3. x has no greatest member.

The set \mathbb{R} of *real numbers* is the set of Dedekind cuts.

Proposition 15.3.3. For any rational q, we have $\{r \in \mathbb{Q} \mid r < q\} \in \mathbb{R}$.

Proof:

- $\langle 1 \rangle 1$. Let: $q \in \mathbb{Q}$
- $\langle 1 \rangle 2$. Let: $q \downarrow = \{r \mid r < q\}$
- $\langle 1 \rangle 3. \ q \downarrow \neq \emptyset$

PROOF: We have $q - 1 \in q \downarrow$.

 $\langle 1 \rangle 4. \ \ q \downarrow \neq \mathbb{Q}$

PROOF: Since $q \notin q \downarrow$.

 $\langle 1 \rangle 5$. $q \downarrow$ is closed downwards.

PROOF: Trivial.

 $\langle 1 \rangle 6$. $q \downarrow$ has no greatest element.

PROOF: For all $r \in q \downarrow$ we have $r < (q+r)/2 \in q \downarrow$.

Proposition 15.3.4. For rationals q and r, we have q = r if and only if $\{s \in \mathbb{Q} \mid s < q\} = \{s \in \mathbb{Q} \mid s < r\}.$

Proof:

- $\langle 1 \rangle 1$. Let: $q \downarrow = \{ s \in \mathbb{Q} \mid s < q \}$
- $\langle 1 \rangle 2$. Let: $r \downarrow = \{ s \in \mathbb{Q} \mid s < r \}$
- $\langle 1 \rangle 3$. If q = r then $q \downarrow = r \downarrow$

PROOF: Trivial.

```
\langle 1 \rangle 4. If q < r then q \downarrow \neq r \downarrow PROOF: We have q \in r \downarrow and q \notin q \downarrow. \langle 1 \rangle 5. If r < q then q \downarrow \neq r \downarrow PROOF: We have r \in q \downarrow and q \notin q \downarrow.

Henceforth we identify a rational q with the real number \{r \in \mathbb{Q} \mid r < q\}.

Definition 15.3.5. Define the ordering < on \mathbb{R} by: x < y iff x \subsetneq y.

Proposition 15.3.6. The ordering on the reals agrees with the ordering on the rationals.
```

Proof:

```
TROOF.  \langle 1 \rangle 1. \text{ Let: } q,r \in \mathbb{Q}   \langle 1 \rangle 2. \text{ Let: } q \downarrow = \{s \in \mathbb{Q} \mid s < q\}.   \langle 1 \rangle 3. \text{ Let: } r \downarrow = \{s \in \mathbb{Q} \mid s < r\}.   \text{PROVE: } q < r \text{ iff } q \downarrow \subsetneq r \downarrow   \langle 1 \rangle 4. \text{ If } q < r \text{ then } q \downarrow \subsetneq r \downarrow   \langle 2 \rangle 1. \text{ Assume: } q < r   \langle 2 \rangle 2. q \downarrow \subseteq r \downarrow   \text{PROOF: If } s < q \text{ then } s < r.   \langle 2 \rangle 3. q \downarrow \neq r \downarrow   \text{PROOF: Proposition } 15.3.4.   \langle 1 \rangle 5. \text{ If } q \downarrow \subsetneq r \downarrow \text{ then } q < r   \langle 2 \rangle 1. \text{ Assume: } q \downarrow \subsetneq r \downarrow   \langle 2 \rangle 2. \text{ PICK } s \in r \downarrow \text{ such that } s \notin q \downarrow   \langle 2 \rangle 3. q \leq s < r   \Box
```

Proposition 15.3.7. The ordering < is a linear ordering on \mathbb{R} .

```
Proof:
```

```
\langle 1 \rangle 1. < is irreflexive.
```

PROOF: No set is a proper subset of itself.

 $\langle 1 \rangle 2$. < is transitive.

PROOF: Since the relationship \subseteq is transitive on the class of all sets.

- $\langle 1 \rangle 3$. < is total.
 - $\langle 2 \rangle 1$. Let: x, y be Dedekind cuts.
 - $\langle 2 \rangle 2$. Assume: $x \nsubseteq y$ Prove: $y \subsetneq x$
 - $\langle 2 \rangle 3$. PICK $q \in x$ such that $q \notin y$
 - $\langle 2 \rangle 4$. Let: $r \in y$ Prove: $r \in x$
 - $\langle 2 \rangle 5. \ q \not\leq r$

PROOF: Since y is closed downwards.

- $\langle 2 \rangle 6$. r < q
- $\langle 2 \rangle 7. \ r \in x$

PROOF: Since x is closed downwards.

Proposition 15.3.8. Any bounded nonempty subset of \mathbb{R} has a least upper bound.

Proof:

- $\langle 1 \rangle 1$. Let: A be a bounded nonempty subset of \mathbb{R} .
- $\langle 1 \rangle 2$. $\bigcup A$ is a Dedekind cut.
 - $\langle 2 \rangle 1. \bigcup A \neq \emptyset$
 - $\langle 3 \rangle 1$. Pick $x \in A$
 - $\langle 3 \rangle 2$. Pick $q \in x$
 - $\langle 3 \rangle 3. \ q \in \bigcup A$
 - $\langle 2 \rangle 2$. $\bigcup A \neq \mathbb{Q}$
 - $\langle 3 \rangle 1$. PICK an upper bound u for A
 - $\langle 3 \rangle 2$. Pick $q \notin u$ Prove: $q \notin \bigcup A$
 - $\langle 3 \rangle 3$. Assume: for a contradiction $q \in \bigcup A$
 - $\langle 3 \rangle 4$. PICK $x \in A$ such that $q \in x$
 - $\langle 3 \rangle 5. \ x \leq u$
 - $\langle 3 \rangle 6. \ q \in u$
 - $\langle 3 \rangle 7$. Q.E.D.

PROOF: This is a contradiction.

- $\langle 2 \rangle 3$. $\bigcup A$ is closed downwards.
 - $\langle 3 \rangle 1$. Let: $q \in \bigcup A$ and r < q
 - $\langle 3 \rangle 2$. PICK $x \in A$ such that $q \in x$
 - $\langle 3 \rangle 3. \ r \in x$
 - $\langle 3 \rangle 4. \ r \in \bigcup A$
- $\langle 2 \rangle 4$. $\bigcup A$ has no greatest element.
 - $\langle 3 \rangle 1$. Let: $q \in \bigcup A$
 - $\langle 3 \rangle 2$. PICK $x \in A$ such that $q \in x$
 - $\langle 3 \rangle 3$. Pick $r \in x$ such that q < r
 - $\langle 3 \rangle 4. \ r \in \bigcup A$
- $\langle 1 \rangle 3$. $\bigcup A$ is an upper bound for A.

PROOF: For all $x \in A$ we have $x \subseteq \bigcup A$.

 $\langle 1 \rangle 4$. For any upper bound u for $\bigcup A$ we have $\bigcup A \leq u$.

PROOF: If $\forall x \in A.x \subseteq u$ we have $\bigcup A \subseteq u$.

Definition 15.3.9 (Addition). Define addition + on the reals by

$$x + y := \{q + r \mid q \in x, r \in y\}$$
.

We prove this is well-defined.

Proof:

 $\langle 1 \rangle 1$. Let: $x, y \in \mathbb{R}$

PROVE: X + y is a Dedekind cut.

```
\langle 1 \rangle 2. \ x + y \neq \emptyset
   PROOF: Pick q \in x and r \in y; then q + r \in x + y.
\langle 1 \rangle 3. \ x + y \neq \mathbb{Q}
   \langle 2 \rangle 1. PICK q \notin x and r \notin y
           PROVE: q + r \notin x + y
   \langle 2 \rangle 2. Assume: for a contradiction q + r \in x + y
   \langle 2 \rangle 3. Pick q' \in x and r' \in y such that q + r = q' + r'
   \langle 2 \rangle 4. q' < q and r' < r
   \langle 2 \rangle 5. q' + r' < q + r
   \langle 2 \rangle 6. Q.E.D.
      PROOF: This is a contradiction.
\langle 1 \rangle 4. x + y is closed downwards.
   \langle 2 \rangle 1. Let: q \in x and r \in y
   \langle 2 \rangle 2. Let: s < q + r
            PROVE: s \in x + y
   \langle 2 \rangle 3. \ s - r < q
   \langle 2 \rangle 4. \ s - r \in x
   \langle 2 \rangle 5. s = (s - r) + r \in x + y
\langle 1 \rangle 5. x + y has no greatest element.
   \langle 2 \rangle 1. Let: q \in x and r \in y
            PROVE: There exists s \in x + y such that q + r < s
   \langle 2 \rangle 2. Pick q' \in x and r' \in y such that q < q' and r < r'
   \langle 2 \rangle 3. \ \ q + r < q' + r' \in x + y
```

Proposition 15.3.10. Addition on the reals agrees with addition on the rationals.

```
PROOF: \begin{split} &\langle 1 \rangle 1. \text{ Let: } q,r \in \mathbb{Q} \\ &\langle 1 \rangle 2. \ q \downarrow + r \downarrow \subseteq (q+r) \downarrow \\ &\text{PROOF: If } s_1 < q \text{ and } s_2 < r \text{ then } s_1 + s_2 < q + r. \\ &\langle 1 \rangle 3. \ (q+r) \downarrow \subseteq q \downarrow + r \downarrow \\ &\langle 2 \rangle 1. \text{ Let: } s < q + r \\ &\langle 2 \rangle 2. \ s - r < q \\ &\langle 2 \rangle 3. \text{ PICK } t \text{ such that } s - r < t < q \\ &\langle 2 \rangle 4. \ s - t < r \\ &\langle 2 \rangle 5. \ s = t + (s-t) \in q \downarrow + r \downarrow \end{split}
```

Proposition 15.3.11. Addition is associative.

Proof:

$$x + (y + z) = \{q + r \mid q \in x, r \in y + z\}$$

$$= \{q + s_1 + s_2 \mid q \in x, s_1 \in y, s_2 \in z\}$$

$$= \{r + s_2 \mid r \in x + y, s_2 \in z\}$$

$$= (x + y) + z$$

П

Proposition 15.3.12. Addition is commutative.

Proof:

$$x + y = \{q + r \mid q \in x, r \in y\}$$

$$= \{r + q \mid r \in y, q \in x\}$$

$$= y + x$$

Proposition 15.3.13. For any $x \in \mathbb{R}$ we have x + 0 = x.

Proof:

 $\langle 1 \rangle 1$. $x + 0 \subseteq x$

PROOF: If $q \in x$ and r < 0 then q + r < q so $q + r \in x$.

- $\langle 1 \rangle 2. \ x \subseteq x + 0$
 - $\langle 2 \rangle 1$. Let: $q \in x$
 - $\langle 2 \rangle 2$. Pick $r \in x$ such that q < r.

PROOF: x has no greatest element.

- $\langle 2 \rangle 3. \ q-r < 0$
- $\langle 2 \rangle 4. \ \ q = r + (q r) \in x + 0$

Definition 15.3.14. For $x \in \mathbb{R}$, define $-x := \{q \in \mathbb{Q} \mid \exists r > q. -r \notin x\}$.

Proposition 15.3.15. For all $x \in \mathbb{R}$ we have $-x \in \mathbb{R}$.

Proof:

- $\langle 1 \rangle 1$. Let: $x \in \mathbb{R}$
- $\langle 1 \rangle 2. -x \neq \emptyset$
 - $\langle 2 \rangle 1$. Pick $s \notin x$
 - $\langle 2 \rangle 2$. $-s-1 \in -x$
- $\langle 1 \rangle 3. -x \neq \mathbb{Q}$
 - $\langle 2 \rangle 1$. Pick $s \in x$

Prove: $-s \notin -x$

- $\langle 2 \rangle 2$. Assume: for a contradiction $-s \in -x$
- $\langle 2 \rangle 3$. PICK r > -s such that $-r \notin x$
- $\langle 2 \rangle 4$. -r < s
- $\langle 2 \rangle 5$. Q.E.D.

PROOF: This contradicts the fact that x is closed downwards.

 $\langle 1 \rangle 4$. -x is closed downwards.

PROOF: Immediate from definition.

- $\langle 1 \rangle 5$. -x has no greatest element.
 - $\langle 2 \rangle 1$. Let: $q \in -x$
 - $\langle 2 \rangle 2$. Pick r > q such that $-r \notin x$
 - $\langle 2 \rangle 3$. Pick s such that q < s < r
- $\langle 2 \rangle 4. \ s \in -x$

Lemma 15.3.16. Let p be a positive rational number. For any real number x, there exists a rational $q \in x$ such that $p + q \notin x$.

```
Proof:
\langle 1 \rangle 1. Pick q_0 \in x
\langle 1 \rangle 2. There exists k \in \mathbb{N} such that q_0 + kp \notin x
    \langle 2 \rangle 1. Pick q_1 \notin x
    \langle 2 \rangle 2. PICK k \in \mathbb{N} such that q_1 - q_0 < pk
       Proof: Proposition 15.2.11.
    \langle 2 \rangle 3. \ q_1 < q_0 + kp
    \langle 2 \rangle 4. \ q_0 + kp \notin x
\langle 1 \rangle 3. Let: k be the least natural number such that q_0 + kp \notin x
\langle 1 \rangle 4. \ k \neq 0
   Proof: \langle 1 \rangle 1
\langle 1 \rangle 5. Let: q = q_0 + (k-1)p
\langle 1 \rangle 6. \ q \in x \text{ and } q + p \notin x.
Proposition 15.3.17. For every real x we have x + (-x) = 0.
Proof:
\langle 1 \rangle 1. Let: x be a real number.
\langle 1 \rangle 2. x + (-x) \subseteq 0
    \langle 2 \rangle 1. Let: q_1 \in x and q_2 \in -x
    \langle 2 \rangle 2. PICK r > q_2 such that -r \notin x
    \langle 2 \rangle 3. \ q_1 < -r
    \langle 2 \rangle 4. r < -q_1
    \langle 2 \rangle 5. q_2 < -q_1
    \langle 2 \rangle 6. \ q_1 + q_2 < 0
\langle 1 \rangle 3. \ 0 \subseteq x + (-x)
    \langle 2 \rangle 1. Let: p < 0
    \langle 2 \rangle 2. 0 < -p
    \langle 2 \rangle 3. Pick q \in x such that q - p/2 \notin x
       Proof: Lemma 15.3.16.
    \langle 2 \rangle 4. Let: s = p/2 - q
    \langle 2 \rangle 5. -s \notin x
    \langle 2 \rangle 6. \ p - q < s
    \langle 2 \rangle 7. \ p-q \in -x
    \langle 2 \rangle 8. \ p \in x + (-x)
```

Corollary 15.3.17.1. The reals form an Abelian group under addition.

Proposition 15.3.18. For any reals x, y and z, we have x < y if and only if x + z < y + z.

```
\begin{split} &\langle 1 \rangle 1. \  \, \forall x,y,z \in \mathbb{R}. x \leq y \Rightarrow x+z \leq y+z \\ &\langle 2 \rangle 1. \  \, \text{Let:} \  \, x,y,z \in \mathbb{R} \\ &\langle 2 \rangle 2. \  \, \text{Assume:} \  \, x \leq y \\ &\langle 2 \rangle 3. \  \, \text{For all} \, \, q \in x \, \, \text{and} \, \, r \in z \, \, \text{we have} \, \, q+r \in y+z \end{split}
```

 $\langle 1 \rangle 2. \ \forall x, y, z \in \mathbb{R}. x + z = y + z \Leftrightarrow x = y$

PROOF: Proposition 12.1.4. $\langle 1 \rangle 3$. $\forall x, y, z \in \mathbb{R}. x < y \Rightarrow x + z < y + z$

 $\langle 1 \rangle 4$. Q.E.D.

Proof: Proposition 5.2.6.

П

Definition 15.3.19 (Absolute Value). The *absolute value* of a real number x is defined to be

$$|x| = \begin{cases} x & \text{if } 0 \le x \\ -x & \text{if } x < 0 \end{cases}$$

Definition 15.3.20 (Multiplication). Define *multiplication* \cdot on \mathbb{R} as follows:

• If x and y are non-negative then

$$xy = 0 \cup \{rs \mid 0 \le r \in x \land 0 \le s \in y\} .$$

• If x and y are both negative then

$$xy = (-x)(-y) .$$

• If one of x and y is negative and one is non-negative then

$$xy = -(|x||y|) .$$

We prove this is well-defined.

Proof:

 $\langle 1 \rangle 1$. Let: x and y be non-negative reals.

PROVE: xy is real.

 $\langle 1 \rangle 2. \ xy \neq \emptyset$

PROOF: Since $-1 \in xy$.

 $\langle 1 \rangle 3. \ xy \neq \mathbb{Q}$

 $\langle 2 \rangle 1$. Pick $r \notin x$ and $s \notin y$

Prove: $rs \notin xy$

 $\langle 2 \rangle 2$. $0 \le r$ and $0 \le s$

PROOF: Since $0 \subseteq x$ and $0 \subseteq y$.

- $\langle 2 \rangle 3$. Assume: for a contradiction $rs \in xy$
- $\langle 2 \rangle 4$. Pick r' and s' such that $0 \leq r' \in x$, $0 \leq s' \in y$ and rs = r's'
- $\langle 2 \rangle 5. \ r' < r$
- $\langle 2 \rangle 6. \ s' < s$
- $\langle 2 \rangle 7$. r's' < rs
- $\langle 2 \rangle 8$. Q.E.D.

PROOF: This is a contradiction.

- $\langle 1 \rangle 4$. xy is closed downwards.
 - $\langle 2 \rangle 1$. Let: $q \in xy$ and r < q

```
\langle 2 \rangle 2. Case: q \in 0
      PROOF: Then r < q < 0 so r \in xy
   \langle 2 \rangle 3. Case: q = s_1 s_2 where 0 \le s_1 \in x and 0 \le s_2 \in y
      \langle 3 \rangle 1. Assume: w.l.o.g. 0 \le r
      \langle 3 \rangle 2. 0 < s_1 and 0 < s_2
      \langle 3 \rangle 3. \ r/s_2 < s_1
      \langle 3 \rangle 4. \ r/s_2 \in x
      \langle 3 \rangle 5. r = (r/s_2)s_2 \in xy
\langle 1 \rangle 5. xy has no greatest element.
   \langle 2 \rangle 1. Let: q \in xy
   \langle 2 \rangle 2. Case: q \in 0
      Proof: q < q/2 \in 0
   \langle 2 \rangle 3. Case: q = rs where 0 \le r \in x and 0 \le s \in y
      \langle 3 \rangle 1. Pick r' and s' with r < r' \in x and s < s' \in y
      \langle 3 \rangle 2. q < r's' \in xy
П
Proposition 15.3.21. Multiplication is commutative.
Proof: Immediate from definition.
Proposition 15.3.22. Multiplication is associative.
Proof:
\langle 1 \rangle 1. For non-negative reals x, y and z, we have x(yz) = (xy)z
   PROOF: It computes to 0 \cup \{qrs \mid 0 \le q \in x, 0 \le r \in y, 0 \le s \in z\}.
\langle 1 \rangle 2. For all reals x, y and z, we have x(yz) = (xy)z
   PROOF: It is equal to |x||y||z| if an even number of them are negative, and
   -(|x||y||z|) otherwise.
Proposition 15.3.23. Multiplication distributes over addition.
\langle 1 \rangle 1. For all non-negative reals x, y and z, we have x(y+z) = xy + xz
   \langle 2 \rangle 1. Let: x, y and z be non-negative reals.
   \langle 2 \rangle 2. x(y+z) \subseteq xy+xz
      \langle 3 \rangle 1. Let: q \in x(y+z)
      \langle 3 \rangle 2. Case: q < 0
         PROOF: Then we have q/2 \in xy and q/2 \in xz so q \in xy + xz.
      \langle 3 \rangle 3. Case: q = rs where 0 \le r \in x and 0 \le s \in y + z
         \langle 4 \rangle 1. PICK s_1 \in y and s_2 \in z such that s = s_1 + s_2
         \langle 4 \rangle 2. \ rs_1 \in xy
            PROOF: If s_1 < 0 then rs_1 < 0 so rs_1 \in xy. If 0 \le s_1 then we also
            have rs_1 \in xy.
         \langle 4 \rangle 3. \ rs_2 \in xz
            PROOF: Similar.
         \langle 4 \rangle 4. \ \ q \in xy + xz
```

PROOF: Since $q = rs_1 + rs_2$.

- $\langle 2 \rangle 3. \ xy + xz \subseteq x(y+z)$
 - $\langle 3 \rangle 1$. Let: $q \in xy$ and $r \in xz$.

PROVE: $q + r \in x(y + z)$

 $\langle 3 \rangle 2$. Case: q < 0 and r < 0

PROOF: Then q + r < 0 so $q + r \in x(y + z)$.

- $\langle 3 \rangle 3$. Case: q < 0 and $r = r_1 r_2$ where $0 \le r_1 \in x$ and $0 \le r_2 \in z$
 - $\langle 4 \rangle 1. \ q + r < r$
 - $\langle 4 \rangle 2. \ q + r \in xz$
 - $\langle 4 \rangle 3$. Assume: w.l.o.g. $0 \le q + r$

PROOF: Otherwise $q + r \in x(y + z)$ immediately.

- $\langle 4 \rangle 4$. PICK s_1, s_2 with $0 \leq s_1 \in x$, $0 \leq s_2 \in y$ and $q + r = s_1 s_2$
- $\langle 4 \rangle 5. \ s_2 \in y + z$

PROOF: Since $0 \in z$ so $s_2 = s_2 + 0 \in y + z$.

- $\langle 4 \rangle 6. \ q+r \in x(y+z)$
- $\langle 3 \rangle 4$. Case: $q = q_1 q_2$ where $0 \le q_1 \in x$ and $0 \le q_2 \in y$ and r < 0 Proof: Similar.
- $\langle 3 \rangle$ 5. CASE: $q=q_1q_2$ where $0 \leq q_1 \in x$ and $0 \leq q_2 \in y$ and $r=r_1r_2$ where $0 \leq r_1 \in x$ and $0 \leq r_2 \in z$
 - $\langle 4 \rangle 1$. Assume: w.l.o.g. $q_1 \leq r_1$
 - $\langle 4 \rangle 2. \ \ q + r \le r_1(q_2 + r_2) \in x(y + z)$
- $\langle 1 \rangle$ 2. For any negative real x and non-negative reals y and z, we have x(y+z)=xy+xz

Proof:

$$x(y+z) = -(-x)(y+z) = -((-x)y + (-x)z)$$

$$= -((-x)y) - ((-x)z)$$

$$= xy + xz$$
(\langle 1\rangle 1)

- $\langle 1 \rangle$ 3. For any non-negative real x and reals y and z with one negative and one non-negative, we have x(y+z)=xy+xz
 - $\langle 2 \rangle 1$. Assume: w.l.o.g. y is negative and z is non-negative.
 - $\langle 2 \rangle 2$. Case: $0 \le y + z$

$$xy + xz = xy + x(-y + y + z)$$

$$= -(x(-y)) + x(-y + y + z)$$

$$= -(x(-y)) + x(-y) + x(y + z)$$

$$= x(y + z)$$
(\langle 1\rangle 1)

- $\langle 2 \rangle 3$. Case: y + z < 0
 - $\langle 3 \rangle 1. -y z > 0$
 - $\langle 3 \rangle 2$. -y = z y z
 - $\langle 3 \rangle 3$. xy + xz = x(y+z)

Proof:

$$xy + xz = -(x(-y)) + xz$$

$$= -(x(z - y - z)) + xz$$

$$= -(xz + x(-y - z)) + xz \qquad (\langle 1 \rangle 1)$$

$$= -xy - x(-y - z) + xz$$

$$= -x(-y - z)$$

$$= x(y + z)$$

 $\langle 1 \rangle 4$. For any non-negative real x and negative reals y and z, we have x(y+z)=xy+xz

Proof:

$$x(y+z) = -x(-y-z)$$

$$= -(x(-y) + x(-z))$$

$$= -x(-y) - x(-z)$$

$$= xy + xz$$

$$(\langle 1 \rangle 1)$$

- $\langle 1 \rangle$ 5. For any negative real x and reals y and z with one negative and one non-negative, we have x(y+z)=xy+xz
 - $\langle 2 \rangle 1$. Assume: w.l.o.g. y is negative and z is non-negative.
 - $\langle 2 \rangle 2$. Case: $0 \le y + z$

Proof:

$$x(y+z) = -((-x)(y+z))$$

$$= -((-x)y + (-x)z)$$

$$= -((-x)y) - ((-x)z)$$

$$= (-x)(-y) - ((-x)z)$$

$$= xy + xz$$
(\langle 1\rangle 3)

 $\langle 2 \rangle 3$. Case: y + z < 0

PROOF:

$$x(y+z) = (-x)(-y-z)$$

$$= (-x)(-y) + (-x)(-z)$$

$$= xy + xz$$

$$(\langle 1 \rangle 3)$$

 $\langle 1 \rangle$ 6. For any negative reals x, y and z, we have x(y+z) = xy + xz Proof:

$$x(y+z) = (-x)(-y-z) = (-x)(-y) + (-x)(-z) = xy + xz$$
 (\langle 1\rangle 1)

Proposition 15.3.24. For any real x we have x1 = x.

- $\langle 1 \rangle 1$. Case: $0 \le x$
 - $\langle 2 \rangle 1. \ x1 \subseteq x$
 - $\langle 3 \rangle 1$. Let: $q \in x1$

$$\langle 3 \rangle 2. \text{ CASE: } q < 0$$

$$\text{PROOF: Then } q \in x \text{ because } 0 \leq x.$$

$$\langle 3 \rangle 3. \ q = rs \text{ where } 0 \leq r \in x \text{ and } 0 \leq s < 1$$

$$\text{PROOF: Then } q < r \text{ so } q \in x.$$

$$\langle 2 \rangle 2. \ x \subseteq x1$$

$$\langle 3 \rangle 1. \ \text{Let: } q \in x$$

$$\langle 3 \rangle 2. \ \text{Assume: w.l.o.g. } 0 \leq q$$

$$\langle 3 \rangle 3. \ \text{PICK } r \text{ such that } q < r \in x$$

$$\langle 3 \rangle 4. \ 0 \leq q/r < 1$$

$$\langle 3 \rangle 5. \ q = r(q/r) \in x1$$

$$\langle 1 \rangle 2. \ \text{Case: } x < 0$$

$$\text{PROOF: } x1 = -((-x)1)$$

$$= -(-x)$$

$$= x$$

$$\langle (1) \rangle 1$$

Lemma 15.3.25. Let $x \in \mathbb{R}$ and c be a positive rational. Then there exists $a \in x$ and a non-least rational upper bound b for x such that b - a = c.

PROOF:

- (1)1. PICK $a_1 \in x$ such that if x has a rational supremum s then $a_1 > s c$
- $\langle 1 \rangle 2$. There exists a natural number n such that $a_1 + nc$ is an upper bound for x.
 - $\langle 2 \rangle 1$. PICK a non-least upper bound b_1 for x.
 - $\langle 2 \rangle 2$. PICK a natural number n such that $nc > b_1 a_1$

Proof: Proposition 15.2.11.

- $\langle 2 \rangle 3$. $a_1 + nc > b_1$
- $\langle 2 \rangle 4$. $a_1 + nc$ is an upper bound for x.
- $\langle 1 \rangle 3$. Let: k be the least natural number such that $a_1 + kc$ is an upper bound for x.
- $\langle 1 \rangle 4. \ a_1 + (k-1)c \in x$
- $\langle 1 \rangle 5$. $a_1 + kc$ is not the supremum of x.
 - $\langle 2 \rangle 1$. Assume: for a contradiction $a_1 + kc$ is the supremum of x.
 - $\langle 2 \rangle 2$. $a_1 > a_1 + (k-1)c$

Proof: $\langle 1 \rangle 1$

 $\langle 2 \rangle 3$. Q.E.D.

PROOF: This is a contradiction.

- $\langle 1 \rangle 6$. Let: $a = a_1 + (k-1)c$
- $\langle 1 \rangle 7$. Let: $b = a_1 + kc$
- $\langle 1 \rangle 8. \ b-a=c$

Ù,

Proposition 15.3.26. For any non-zero real x, there exists a real y such that xy = 1.

```
\langle 1 \rangle 1. Case: 0 < x
    \langle 2 \rangle 1. Let: y = \{q \in \mathbb{Q} \mid q \leq 0\} \cup \{u^{-1} \mid u \text{ is an upper bound for } x \text{ but not the supremum of } x\}
   \langle 2 \rangle 2. y is a real number.
       \langle 3 \rangle 1. \ y \neq \emptyset
           PROOF: Since 0 \in y.
       \langle 3 \rangle 2. \ y \neq \mathbb{Q}
           \langle 4 \rangle 1. PICK q \in x such that 0 < q
           \langle 4 \rangle 2. \ q^{-1} \notin y
       \langle 3 \rangle 3. y is closed downwards.
           \langle 4 \rangle 1. Let: q \in y and r < q
                    Prove: r \in y
           \langle 4 \rangle 2. Assume: w.l.o.g. 0 < r
           \langle 4 \rangle 3. q^{-1} is a non-least upper bound for x. \langle 4 \rangle 4. q^{-1} < r^{-1}
           \langle 4 \rangle 5. r^{-1} is a non-least upper bound for x.
           \langle 4 \rangle 6. \ r \in y
       \langle 3 \rangle 4. y has no greatest element.
           \langle 4 \rangle 1. Let: q \in y
                    PROVE: There exists r \in y such that q < r
           \langle 4 \rangle 2. Case: q \leq 0
               \langle 5 \rangle 1. PICK a non-least upper bound u for x.
               \langle 5 \rangle 2. \ q < u^{-1} \in x
           \langle 4 \rangle 3. Case: q = u^{-1} where u is a non-least upper bound for x.
               \langle 5 \rangle1. PICK a non-least upper bound v with v < u
               \langle 5 \rangle 2. \ u^{-1} < v^{-1} \in y
    \langle 2 \rangle 3. \ 0 < y
    \langle 2 \rangle 4. xy \subseteq 1
       \langle 3 \rangle 1. Let: q \in xy
       \langle 3 \rangle 2. Assume: w.l.o.g. 0 < q
       \langle 3 \rangle 3. Pick 0 < r \in x and 0 < s \in y such that q = rs
       \langle 3 \rangle 4. \ s^{-1} is a non-least upper bound for x
       \langle 3 \rangle 5. \ r < s^{-1}
       \langle 3 \rangle 6. \ rs < 1
    \langle 2 \rangle 5. 1 \subseteq xy
       \langle 3 \rangle 1. Let: q < 1
                Prove: q \in xy
       \langle 3 \rangle 2. Assume: w.l.o.g. 0 < q
       \langle 3 \rangle 3. PICK a_1 with 0 < a_1 \in x
       \langle 3 \rangle 4. \ (1-q)a_1 > 0
       \langle 3 \rangle 5. Pick a \in x and a non-least upper bound w of x such that w - a =
                (1-q)a_1
           PROOF: Lemma 15.3.25.
       \langle 3 \rangle 6. \ \ w - a < (1 - q)w
       \langle 3 \rangle 7. qw < a
       \langle 3 \rangle 8. \ w < a/q
       \langle 3 \rangle 9. a/q is a non-least upper bound for x
```

 $\langle 3 \rangle 10. \ q/a \in y$ $\langle 3 \rangle 11. \ q \in xy$ $\langle 1 \rangle 2. \ \text{Case:} \ x < 0$ $\langle 2 \rangle 1. \ \text{Pick} \ y \ \text{such that} \ (-x)y = 1$ $\text{Proof:} \ \langle 1 \rangle 1$ $\langle 2 \rangle 2. \ x(-y) = 1$

Proposition 15.3.27. For real numbers x, y and z, if 0 < z then x < y if and only if xz < yz.

Proof:

- $\langle 1 \rangle 1$. For any real numbers x, y and z, if 0 < z and x < y then xz < yz
 - $\langle 2 \rangle 1$. Let: x, y and z be real numbers.
 - $\langle 2 \rangle 2$. Assume: 0 < z and x < y.
 - $\langle 2 \rangle 3. \ y = x + (y x)$
 - $\langle 2 \rangle 4. \quad y x > 0$
 - $\langle 2 \rangle 5$. (y-x)z > 0
 - $\langle 2 \rangle 6. \ yz > xz$

Proof:

$$yz = (x + (y - x))z$$
$$= xz + (y - x)z$$
$$> xz$$

 $\langle 1 \rangle 2$. For any real numbers x, y and z, if 0 < z and xz < yz then x < y PROOF: Proposition 5.2.6.

Corollary 15.3.27.1. The real numbers form a complete ordered field.

Proposition 15.3.28.

$$(0,1) \approx \mathbb{R}$$

PROOF: The function $f(x) = (2x-1)/(x-x^2)$ is a bijection between (0,1) and \mathbb{R} . \square

Proposition 15.3.29.

$$|\mathbb{R}| = 2^{\aleph_0}$$

Proof:

 $\langle 1 \rangle 1. \ (0,1) \leqslant 2^{\mathbb{N}}$

PROOF: The function H where H(x)(n) is the nth binary digit of the binary expansion of x is an injection.

 $\langle 1 \rangle 2. \ 2^{\mathbb{N}} \preccurlyeq \mathbb{R}$

PROOF: Map f to the real number in [0,1/9] whose n+1st decimal digit is f(n).

Proposition 15.3.30. The set of algebraic numbers is countable.

Proof:	There	are o	countably	many	integer	polynor	nials,	each	with	finitely	many
roots.											

Corollary 15.3.30.1. There are uncountably many transcendental numbers.

Proposition 15.3.31. Let A be a set of disks in the plane, no two of which intersect. Then A is countable.

PROOF: Every circle includes a point with rational coordinates. Define $f:\{q\in\mathbb{Q}^2\mid\exists C\in A.q\in C\}\rightarrow A$ by f(q)=C iff $q\in C$. Then f is surjective. \square

Proposition 15.3.32. There exists an uncountable set of circles in the plane that do not intersect.

Proof: The set of all circles with origin O is uncountable. \square

Chapter 16

Real Analysis

Theorem 16.0.1 (Weierstrass). Let $a, b \in \mathbb{R}$ with a < b. Let $f : [a, b] \to \mathbb{R}$ be continuous. For every $\epsilon > 0$, there exists a polynomial p such that $\forall x \in [a, b].|f(x) - p(x)| < \epsilon$.

Theorem 16.0.2 (Bolzano-Weierstrass). Every bounded sequence in \mathbb{R}^n has a convergent subsequence.

Chapter 17

Complex Analysis

Theorem 17.0.1 (Hölder's Inequality). Let p and q be real numbers with p > 1, q > 1 and 1/p + 1/q = 1. If $(x_n) \in l^p$ and $(y_n) \in l^q$ then

$$\sum_{n=0}^{\infty} |x_n y_n| \le \left(\sum_{n=0}^{\infty} |x_n|^p\right)^{1/p} \left(\sum_{n=0}^{\infty} |y_n|^q\right)^{1/q}$$

Proof:

 $\langle 1 \rangle 1$. Let: p and q be real numbers with p > 1 and q > 1

 $\langle 1 \rangle 2$. Assume: 1/p + 1/q = 1

 $\langle 1 \rangle 3$. Let: $(x_n) \in l^p$

 $\langle 1 \rangle 4$. Let: $(y_n) \in l^q$

 $\langle 1 \rangle$ 5. Assume: w.l.o.g. $x_0 \neq 0$ and $y_0 \neq 0$

 $\langle 1 \rangle 6$. For all $x \in [0,1]$, we have

$$x^{1/p} \le \frac{1}{p}x + \frac{1}{q} .$$

Proof:

 $\langle 2 \rangle 1$. Let: $f:[0,1] \to \mathbb{R}$ be the function

$$f(x) = \frac{1}{p}x + \frac{1}{q} - x^{1/p}$$
.

 $\langle 2 \rangle 2.$ $f'(x) = \frac{1}{p} - \frac{1}{p} x^{-1/q}$ for $x \in (0, 1]$ $\langle 2 \rangle 3.$ f'(x) < 0 for $x \in (0, 1]$

 $\langle 2 \rangle 4$. f(1) = 1/p + 1/q - 1 = 0

 $\langle 2 \rangle 5$. $f(x) \geq 0$ for all $x \in [0,1]$

 $\langle 1 \rangle$ 7. For all non-negative reals a and b, we have

$$ab \le \frac{a^p}{p} + \frac{b^q}{q} .$$

 $\langle 2 \rangle 1$. Let: a and b be non-negative reals.

 $\langle 2 \rangle 2$. Case: $a^p \leq b^q$

 $\langle 3 \rangle 1. \ 0 \leq a^p/b^q \leq 1$

 $\langle 3 \rangle 2$.

$$ab^{-q/p} \le \frac{1}{p} \frac{a^p}{b^q} + \frac{1}{q}$$

PROOF: Taking $x = a^p/b^q$ in $\langle 1 \rangle 6$.

 $\langle 3 \rangle 3$.

$$ab^{1-q} \le \frac{1}{p} \frac{a^p}{b^q} + \frac{1}{q}$$

PROOF: -q/p = 1 - q from $\langle 1 \rangle 2$.

 $\langle 3 \rangle 4$.

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}$$

 $\langle 2 \rangle 3$. Case: $b^q \leq a^p$

PROOF: Similar.

$$\langle 1 \rangle 8. \text{ For } j = 1, \dots, n, \text{ we have}$$

$$\frac{|x_j|}{\left(\sum_{k=0}^n |x_k|^p\right)^{1/p}} \frac{|y_j|}{\left(\sum_{k=0}^n |y_k|^q\right)^{1/q}} \le \frac{1}{p} \frac{|x_j|^p}{\sum_{k=0}^n |x_k|^p} + \frac{1}{q} \frac{|y_j|^q}{\sum_{k=0}^n |y_k|^q}$$

$$a = \frac{|x_j|}{\left(\sum_{k=0}^n |x_k|^p\right)^{1/p}}$$
 and $b = \frac{|y_j|}{\left(\sum_{k=0}^n |y_k|^q\right)^{1/q}}$.

 $\langle 1 \rangle 9$.

$$\frac{\sum_{j=0}^{n} |x_j| |y_j|}{\left(\sum_{k=0}^{n} |x_k|^p\right)^{1/p} \left(\sum_{k=0}^{n} |y_k|^q\right)^{1/q}} \le 1$$

Proof:

FROOF:
$$\frac{\sum_{j=0}^{n} |x_j| |y_j|}{\left(\sum_{k=0}^{n} |x_k|^p\right)^{1/p} \left(\sum_{k=0}^{n} |y_k|^q\right)^{1/q}} \le \frac{1}{p} + \frac{1}{q} \quad \text{(Taking the sum } j = 0 \text{ to } n \text{ in } \langle 1 \rangle 8)$$

$$= 1 \qquad \qquad (\langle 1 \rangle 2)$$

 $\langle 1 \rangle 10$. Q.E.D.

PROOF: Taking the limit $n \to \infty$ in $\langle 1 \rangle 9$.

Theorem 17.0.2 (Minkowski's Inequality). Let p be a real number, $p \ge 1$. Let $(x_n),(y_n) \in l^p$. Then

$$\left(\sum_{n=1}^{\infty} |x_n + y_n|^p\right)^{1/p} \le \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p} + \left(\sum_{n=1}^{\infty} |y_n|^p\right)^{1/p}$$

Proof:

- $\langle 1 \rangle 1$. Let: p be a real number with $p \geq 1$
- $\langle 1 \rangle 2$. Assume: w.l.o.g. p > 1

PROOF: The case p = 1 is just the Triangle Inequality.

- $\langle 1 \rangle 3$. Let: q be the real such that 1/p + 1/q = 1
- $\langle 1 \rangle 4$.

$$\sum_{n=0}^{\infty} |x_n + y_n|^p \le \left(\sum_{n=0}^{\infty} |x_n|^p\right)^{1/p} \left(\sum_{n=0}^{\infty} |x_n + y_n|^{q(p-1)}\right)^{1/q} + \left(\sum_{n=0}^{\infty} |y_n|^p\right)^{1/p} \left(\sum_{n=0}^{\infty} |x_n + y_n|^{q(p-1)}\right)^{1/q}$$

$$\underset{\infty}{\text{PROOF}}$$
:

PROOF:
$$\sum_{n=0}^{\infty} |x_n + y_n|^p = \sum_{n=0}^{\infty} |x_n + y_n| |x_n + y_n|^{p-1}$$

$$\leq \sum_{n=0}^{\infty} |x_n| |x_n + y_n|^{p-1} + \sum_{n=0}^{\infty} |y_n| |x_n + y_n|^{p-1} \quad \text{(Triangle Inequality)}$$

$$\leq \left(\sum_{n=0}^{\infty} |x_n|^p \right)^{1/p} \left(\sum_{n=0}^{\infty} |x_n + y_n|^{q(p-1)} \right)^{1/q}$$

$$+ \left(\sum_{n=0}^{\infty} |y_n|^p \right)^{1/p} \left(\sum_{n=0}^{\infty} |x_n + y_n|^{q(p-1)} \right)^{1/q} \quad \text{(H\"older's Inequality)}$$
1)5.
$$\sum_{n=0}^{\infty} |x_n + y_n|^p \leq \left\{ \left(\sum_{n=0}^{\infty} |x_n|^p \right)^{1/p} + \left(\sum_{n=0}^{\infty} |y_n|^p \right)^{1/p} \right\} \left(\sum_{n=0}^{\infty} |x_n + y_n|^p \right)^{1/q}$$

 $\langle 1 \rangle 5$.

$$\sum_{n=0}^{\infty} |x_n + y_n|^p \le \left\{ \left(\sum_{n=0}^{\infty} |x_n|^p \right)^{1/p} + \left(\sum_{n=0}^{\infty} |y_n|^p \right)^{1/p} \right\} \left(\sum_{n=0}^{\infty} |x_n + y_n|^p \right)^{1/q}$$

 $\langle 1 \rangle$ 6. Q.E.D.

Chapter 18

Linear Algebra

18.1 Vector Spaces

Definition 18.1.1 (Vector Space). Let K be either \mathbb{R} or \mathbb{C} . A vector space over K consists of:

- a set V, whose elements are called *vectors*;
- an operation $+: V^2 \to V$, addition;
- an operation $\cdot: K \times V \to V$, scalar multiplication

such that:

- V is an Abelian group under +
- $\forall \alpha, \beta \in K. \forall x \in V. \alpha(\beta x) = (\alpha \beta) x$
- $\forall \alpha, \beta \in K. \forall x \in V. (\alpha + \beta)x = \alpha x + \beta x$
- $\forall \alpha \in K. \forall x, y \in V. \alpha(x+y) = \alpha x + \alpha y$
- $\forall x \in V.1x = x$

We call the elements of K scalars. A real vector space is a vector space over \mathbb{R} , and a complex vector space is a vector space over \mathbb{C} .

Proposition 18.1.2. Let K be either \mathbb{R} or \mathbb{C} . Let V be a vector space over K. For any $\lambda \in K$ we have $\lambda 0 = 0$.

$$\lambda 0 = \lambda(0+0)$$

$$= \lambda 0 + \lambda 0$$

$$\therefore 0 = \lambda 0$$

Proposition 18.1.3. Let K be either \mathbb{R} or \mathbb{C} . Let V be a vector space over K. Let $\lambda \in K$ and $x \in V$. If $\lambda x = 0$ then either $\lambda = 0$ or x = 0.

PROOF: If $\lambda \neq 0$ then $x = 1x = \lambda^{-1}\lambda x = \lambda^{-1}0 = 0$.

Proposition 18.1.4. Let K be either \mathbb{R} or \mathbb{C} . Let V be a vector space over K. For any $x \in V$ we have 0x = 0.

Proof:

$$0x = (0+0)x$$
$$= 0x + 0x$$
$$\therefore 0 = 0x$$

Proposition 18.1.5. Let K be either \mathbb{R} or \mathbb{C} . Let V be a vector space over K. For any $x \in V$, we have (-1)x = -x.

Proof:

$$x + (-1)x = 1x + (-1)x$$

$$= (1 + (-1))x$$

$$= 0x$$

$$= 0$$

$$\therefore (-1)x = -x$$

Proposition 18.1.6. Let K be either \mathbb{R} or \mathbb{C} . Then K is a vector space over K under addition and multiplication in K.

Proof: Easy. \square

Proposition 18.1.7. \mathbb{C} *is a vector space over* \mathbb{R} .

Proof: Easy.

Proposition 18.1.8. Let K be either \mathbb{R} or \mathbb{C} . Let $\{V_i\}_{i\in I}$ be a family of vector spaces over K. Then $\prod_{i\in I}V_i$ is a vector space under

$$(f+g)(i) = f(i) + g(i) \qquad (f,g \in \prod_{i \in I} V_i, x \in X)$$
$$(\lambda f)(x) = \lambda f(x) \qquad (\lambda \in K, f \in \prod_{i \in I} V_i, x \in X)$$

Proof: Easy. \square

18.2 Subspaces

Definition 18.2.1 (Vector Subspace). Let K be either \mathbb{R} or \mathbb{C} . Let V be a vector space over K. A vector subspace of V is a subset $U \subseteq V$ such that, for all $\alpha, \beta \in K$ and $x, y \in U$, we have $\alpha x + \beta y \in U$.

It is a proper subspace iff $U \neq V$.

Proposition 18.2.2. If U is a subspace of V then U is a vector space under the restrictions of + and \cdot to U.

Proof: Easy.

Proposition 18.2.3. V is a subspace of V.

Proof: Easy.

Proposition 18.2.4. If U is a subspace of V and V is a subspace of W then U is a subspace of W.

Proof: Easy.

Definition 18.2.5. Let Ω be a topological space. Then $\mathcal{C}(\Omega)$ is the complex vector space of all continuous functions from Ω to \mathbb{C} . This is a subspace of \mathbb{C}^{Ω} .

Definition 18.2.6. Let $n, k \in \mathbb{N}$. Let Ω be an open subset of \mathbb{R}^n . Then $\mathcal{C}^k(\Omega)$ is the complex vector space of all functions $\Omega \to \mathbb{C}$ that have all continuous partial derivatives of order k. This is a subspace of $\mathcal{C}(\Omega)$. If l > k then $\mathcal{C}^l(\Omega)$ is a subpase of $\mathcal{C}^k(\Omega)$.

Definition 18.2.7. Let $n \in \mathbb{N}$. Let Ω be an open subset of \mathbb{R}^n . Then $\mathcal{C}^{\infty}(\Omega)$ is the complex vector space of all infinitely differentiable functions $\Omega \to \mathbb{C}$. This is a subspace of $\mathcal{C}^k(\Omega)$ for all k.

Definition 18.2.8. Let $n \in \mathbb{N}$. Let Ω be an open subset of \mathbb{R}^n . Then $\mathcal{P}(\Omega)$ is the complex vector space of all complex polynomials of n variables, considered as functions $\Omega \to \mathbb{C}$. This is a subspace of $\mathcal{C}^{\infty}(\Omega)$.

Proposition 18.2.9. The space of all convergent sequences in \mathbb{C} is a subspace of the space of all bounded sequences in \mathbb{C} , which is a subspace of $\mathbb{C}^{\mathbb{N}}$.

Proof: Easy.

Definition 18.2.10. Let p be a real number, $p \ge 1$. Let l^p be the set of all complex sequences (z_n) such that $\sum_{n=1}^{\infty} |z_n|^p < \infty$.

Proposition 18.2.11. For p a real number ≥ 1 , we have that l^p is a subspace of $\mathbb{C}^{\mathbb{N}}$.

Proof:

 $\langle 1 \rangle 1$. For all $(x_n), (y_n) \in l^p$, we have $(x_n + y_n) \in l^p$.

PROOF: From Minkowski's Inequality.

 $\langle 1 \rangle 2$. For all $\lambda \in \mathbb{C}$ and $(x_n) \in l^p$ we have $(\lambda x_n) \in l^p$ PROOF:

$$\sum_{n=1}^{\infty} |\lambda x_n|^p = |\lambda|^p \sum_{n=1}^{\infty} |x_n|^p < \infty$$

Definition 18.2.12 (Linear Combination). Let K be either \mathbb{R} or \mathbb{C} . Let V be a vector space over K. Let $x, x_1, \ldots, x_n \in V$. Then x is a *linear combination* of x_1, \ldots, x_n iff there exist $\alpha_1, \ldots, \alpha_n \in K$ such that

$$x = \alpha_1 x_1 + \dots + \alpha_n x_n .$$

Definition 18.2.13 (Linearly Independent). A finite set of vectors $\{x_1, \ldots, x_n\}$ is *linearly independent* iff, whenever $\alpha_1 x_1 + \cdots + \alpha_n x_n = 0$, then $\alpha_1 = \cdots = \alpha_n = 0$.

A set of vectors is *linearly independent* iff every finite subset is linearly independent; otherwise, it is *linearly dependent*.

Definition 18.2.14 (Span). Let \mathcal{A} be a set of vectors. The *span* of \mathcal{A} , span \mathcal{A} , is the set of all linear combinations of elements of \mathcal{A} .

Proposition 18.2.15. span A is the smallest subspace of V that includes A.

Proof: Easy.

Definition 18.2.16 (Basis). A basis for V is a linearly independent set of vectors \mathcal{B} such that span $\mathcal{B} = V$.

Definition 18.2.17 (Finite Dimensional). A vector space is *finite dimensional* iff it has a finite basis; otherwise it is *infinite dimensional*.

Proposition 18.2.18. In a finite dimensional vector space, any two bases have the same number of elements.

Definition 18.2.19 (Dimension). The *dimension* of a finite dimensional vector space V, dim V, is the number of elements in any basis.

Proposition 18.2.20.

$$\dim K^n = n$$

PROOF: The standard basis is the set of vectors with one coordinate 1 and all others 0. \Box

Proposition 18.2.21. The dimension of \mathbb{C}^n as a real vector space is 2n.

18.3 Normed Spaces

Definition 18.3.1 (Norm). Let K be either \mathbb{R} or \mathbb{C} . A *norm* on a vector space V over K is a function $\| \| : V \to \mathbb{R}$ such that:

- 1. $\forall x \in V . ||x|| = 0 \Rightarrow x = 0$
- 2. $\forall \lambda \in K. \forall x \in V. ||\lambda x|| = |\lambda| ||x||$
- 3. Triangle Inequality $\forall x, y \in V ||x + y|| \le ||x|| + ||y||$

Proposition 18.3.2. Let K be either \mathbb{R} or \mathbb{C} . Let V be a normed space over K. Define $d: V^2 \to \mathbb{R}$ by d(x, y) = ||x - y||. Then d is a metric on V.

Proof: Easy.

We identify any normed space V with this metric space.

Proposition 18.3.3. Let K be either \mathbb{R} or \mathbb{C} . Let V be a vector space over K. Let $\| \ \|$ be a norm on V. Then

$$||0|| = 0$$
.

Proof:

$$||0|| = ||0 \cdot 0||$$
 (Proposition 18.1.4)
= $|0|||0||$ (Axiom 2 for a norm)
= 0

Proposition 18.3.4. Let K be either \mathbb{R} or \mathbb{C} . Let V be a vector space over K. Let $\| \ \|$ be a norm on V. Let $x \in V$. Then

$$||x|| \ge 0 .$$

Proof:

$$0 = \|0\|$$
 (Proposition 18.3.3)

$$= \|x - x\|$$
 (Triangle Inequality)

$$= \|x\| + \|x\|$$
 (Axiom 2 for a norm)

$$= 2\|x\|$$

Proposition 18.3.5. Let K be either \mathbb{R} or \mathbb{C} . Let V be a vector space over K. Let $\| \cdot \|$ be a norm on V. Let $x, y \in V$. Then

$$|||x|| - ||y||| \le ||x - y||$$
.

Proof:

$$\langle 1 \rangle 1. \ \|x\| - \|y\| \le \|x - y\|$$

PROOF: $||x|| \le ||x - y|| + ||y||$ by the Triangle Inequality.

$$\langle 1 \rangle 2. \ \|y\| - \|x\| \le \|x - y\|$$

Proof:

$$||x|| + ||x - y|| = ||x|| + ||y - x||$$
 (Axiom 2 for a norm)
 $\leq ||y||$ (Triangle Inequality)

Definition 18.3.6 (Euclidean Norm). The *Euclidean norm* on \mathbb{C}^n is defined by

$$||(z_1,\ldots,z_n)|| = \sqrt{|z_1|^2 + \cdots + |z_n|^2}$$

Proposition 18.3.7. Define $\| \| : \mathbb{C}^n \to \mathbb{R}$ by

$$||(z_1,\ldots,z_n)|| = |z_1| + \cdots + |z_n|$$

Then this defines a norm on \mathbb{C}^n .

Proof: Easy. \square

Proposition 18.3.8. Define $\| \| : \mathbb{C}^n \to \mathbb{R}$ by

$$||(z_1,\ldots,z_n)|| = \max(|z_1|,\ldots,|z_n|)$$

Then this defines a norm on \mathbb{C}^n .

Proof: Easy.

Proposition 18.3.9. Let Ω be a closed bounded subset of \mathbb{R}^n . Define $\| \ \| : \mathcal{C}(\Omega) \to \mathbb{R}$ by $\|f\| = \max_{x \in \Omega} |f(x)|$. Then $\| \ \|$ defines a norm on $\mathcal{C}(\Omega)$.

Proof: Easy. \square

Proposition 18.3.10. Let p be a real number, $p \ge 1$. Define $\| \| : l^p \to \mathbb{R}$ by

$$||(z_n)|| = \left(\sum_{n=0}^{\infty} |z_n|^p\right)^{1/p}$$
.

Then this defines a norm on l^p .

Proof: Easy. The triangle inequality is Minkowski's Inequality.

Definition 18.3.11 (Normed Space). Let K be either \mathbb{R} or \mathbb{C} . A normed space over K consists of a vector space V over K and a norm on V.

We shall write simply:

- K^n for the normed space K^n under the Euclidean norm
- $\mathcal{C}(\Omega)$ for the normed space $\mathcal{C}(\Omega)$ under the norm $||f|| = \max_{x \in \Omega} |f(x)|$, called the *uniform convergence norm*
- l^p for the normed space l^p under the norm $||(z_n)|| = (\sum_{n=0}^{\infty} |z_n|^p)^{1/p}$.

Proposition 18.3.12. Let K be either \mathbb{R} or \mathbb{C} . Let V be a normed space over K. If $x_n \to l$ as $n \to \infty$ in V and $\lambda_n \to \lambda$ as $n \to \infty$ in K, then $\lambda_n x_n \to \lambda l$ as $n \to \infty$.

- $\langle 1 \rangle 1$. Let: $\epsilon > 0$
- $\langle 1 \rangle 2$. Let: $K = |\lambda| + \epsilon/2||l||$
- (1)3. PICK N such that, for all $n \ge N$, we have $|\lambda_n \lambda| < \epsilon/2||l||$ and $||x_n l|| < \epsilon/(2K)$

 $\langle 1 \rangle 4$. For all $n \geq N$ we have $|\lambda_n| < K$

$$\langle 1 \rangle 5. \|\lambda_n x_n - \lambda l\| < \epsilon$$

Proof:

$$\begin{aligned} \|\lambda_n x_n - \lambda l\| &\leq \|\lambda_n x_n - \lambda_n l\| + \|\lambda_n l - \lambda l\| \\ &= |\lambda_n| \|x_n - l\| + |\lambda_n - \lambda| \|l\| \\ &< K \frac{\epsilon}{2K} + \frac{\epsilon}{2\|l\|} \|l\| \\ &= \epsilon \end{aligned}$$

Proposition 18.3.13. In a normed space, if $x_n \to l$ and $y_n \to m$ then $x_n + l$ $y_n \to l + m$

Proof:

$$||(x_n + y_n) - (l + m)|| \le ||x_n - l|| + ||y_n - m||$$

 $\to 0$

Definition 18.3.14 (Uniform Convergence). Let Ω be a closed bounded set in \mathbb{R}^n . Let (f_n) be a sequence in $\mathcal{C}(\Omega)$ and $f \in \mathcal{C}(\Omega)$. Then (f_n) converges uniformly to f if and only if, for every $\epsilon > 0$, there exists N such that $\forall x \in$ $\Omega.\forall n \geq N.|f_n(x) - f(x)| < \epsilon.$

Proposition 18.3.15. (f_n) converges uniformly to f iff (f_n) converges to funder the uniform convergence norm.

Proof: Easy.

Proposition 18.3.16. There is no norm on C([0,1]) that induces pointwise convergence.

Proof:

 $\langle 1 \rangle 1$. Let: $\| \|$ be any norm on $\mathcal{C}([0,1])$

 $\langle 1 \rangle 2$. For $n \in \mathbb{N}$, define $g_n \in \mathcal{C}([0,1])$ by

$$g_n(t) = \begin{cases} 2^n t & \text{if } 0 \le t \le 2^{-n} \\ 2 - 2^n t & \text{if } 2^{-n} \le t \le 2^{1-n} \\ 0 & \text{otherwise} \end{cases}$$

 $\langle 1 \rangle 3$. For all $n \in \mathbb{N}$ we have $||g_n|| \neq 0$

 $\langle 1 \rangle 4$. For $n \in \mathbb{N}$,

Let:
$$f_n = g_n/\|g_n\|$$

- $\langle 1 \rangle 5$. For all $n \in \mathbb{N}$, $||f_n|| = 1$
- $\langle 1 \rangle 6$. f_n does not converge to 0
- $\langle 1 \rangle 7$. $f_n \to 0$ as $n \to \infty$ pointwise.

Definition 18.3.17 (Equivalent Norms). Let K be either \mathbb{R} or \mathbb{C} . Let V be a vector spaces over K. Then two norms $\| \|_1$ and $\| \|_2$ are equivalent if and only if, for any sequence (x_n) in V and $l \in V$, we have $x_n \to l$ under $\| \cdot \|_1$ if and only if $x_n \to l$ under $\| \cdot \|_2$.

Proposition 18.3.18. Let K be either \mathbb{R} or \mathbb{C} . Let V be a vector spaces over K. Let $\| \|_1$ and $\| \|_2$ be norms on V. Then $\| \|_1$ and $\| \|_2$ are equivalent if and only if there exist positive reals α and β such that, for all $x \in V$,

$$\alpha \|x\|_1 \le \|x\|_2 \le \beta \|x\|_1 \tag{18.1}$$

Proof:

- $\langle 1 \rangle 1$. If $\| \|_1$ and $\| \|_2$ are equivalent then (18.1) holds.
 - $\langle 2 \rangle 1$. Assume: $\| \|_1$ and $\| \|_2$ are equivalent.
 - $\langle 2 \rangle 2$. There exists $\alpha > 0$ such that, for all $x \in V$, we have $\alpha ||x||_1 \leq ||x||_2$
 - $\langle 3 \rangle 1$. Assume: for a contradiction $\forall \alpha > 0. \exists x \in V. \alpha ||x||_1 > ||x||_2$
 - $\langle 3 \rangle 2$. For $n \in \mathbb{Z}^+$, choose $x_n \in V$ such that $1/n \|x_n\|_1 > \|x_n\|_2$
 - $\langle 3 \rangle 3$. For $n \in \mathbb{Z}^+$, LET:

$$y_n = \frac{1}{\sqrt{n}} \frac{x_n}{\|x_n\|_2}$$

- $\langle 3 \rangle 4$. $||y_n||_2 \to 0$ as $n \to \infty$
- $\langle 3 \rangle 5$. For all $n \in \mathbb{Z}^+$, $||y_n||_1 > \sqrt{n}$
- $\langle 3 \rangle 6$. $||y_n|| \not\to 0$ as $n \to \infty$
- $\langle 2 \rangle 3$. There exists $\beta > 0$ such that, for all $x \in V$, we have $||x||_2 \leq \beta ||x||_1$ PROOF: Similar.
- $\langle 1 \rangle 2$. If (18.1) holds then $|| ||_1$ and $|| ||_2$ are equivalent.
 - $\langle 2 \rangle 1$. Assume: (18.1) holds.
 - $\langle 2 \rangle 2$. Let: (x_n) be a sequence in V and $l \in V$
 - $\langle 2 \rangle 3$. If $x_n \to l$ under $\| \|_1$ then $x_n \to l$ under $\| \|_2$.
 - $\langle 3 \rangle 1$. Assume: $x_n \to l$ und $\| \|_1$.
 - $\langle 3 \rangle 2$. Let: $\epsilon > 0$
 - $\langle 3 \rangle 3$. PICK N such that $\forall n \geq N . ||x_n l|| < \epsilon/\beta$
 - $\langle 3 \rangle 4$. Let: $n \geq N$
 - $\langle 3 \rangle 5$. $||x_n l||_2 < \epsilon$

Proof:

$$||x_n - l||_2 \le \beta ||x_n - l||_1$$

 $< \epsilon$

 $\langle 2 \rangle 4$. If $x_n \to l$ under $\| \|_2$ then $x_n \to l$ under $\| \|_1$. PROOF: Similar.

Proposition 18.3.19. Let K be either \mathbb{R} or \mathbb{C} . Let V be a normed space over K. If $x_1, \ldots, x_n \in V$ are linearly independent, then there exists c > 0 such that, for all $\alpha_1, \ldots, \alpha_n \in K$,

$$\|\alpha_1 x_1 + \dots + \alpha_n x_n\| \ge c(|\alpha_1| + \dots + |\alpha_n|).$$

- $\langle 1 \rangle 1$. Let: $B = \{ (\beta_1, \dots, \beta_n) \in K^n \mid |\beta_1| + \dots + |\beta_n| = 1 \}$
- $\langle 1 \rangle 2$. Let: $f: B \to \mathbb{R}$ be the function

$$f(\beta_1,\ldots,\beta_n) = \|\beta_1 x_1 + \cdots + \beta_n x_n\|.$$

 $\langle 1 \rangle 3$. Let: c be the minimum value in f(B)

PROOF: f is continuous and B is compact.

 $\langle 1 \rangle 4. \ c > 0$

PROOF: We never have $f(\beta_1, \ldots, \beta_n) = 0$ by linear independence.

- $\langle 1 \rangle 5$. Let: $\alpha_1, \ldots, \alpha_n \in K$
- $\langle 1 \rangle 6$. Assume: w.l.o.g. $\alpha_1, \ldots, \alpha_n$ are not all zero.
- $\langle 1 \rangle 7$. For $i = 1, \ldots, n$,

Let:
$$\beta_i = \alpha_i/(|\alpha_1| + \cdots + |\alpha_n|)$$

- $\langle 1 \rangle 8. \ (\beta_1, \dots, \beta_n) \in B$
- $\langle 1 \rangle 9. \ f(\beta_1, \dots, \beta_n) \geq c$
- $\langle 1 \rangle 10. \|\alpha_1 x_1 + \dots + \alpha_n x_n\| \ge c(|\alpha_1| + \dots + |\alpha_n|)$

Theorem 18.3.20. Let K be either \mathbb{R} or \mathbb{C} . Let V be a finite dimensional vector space over K. Then any two norms on V are equivalent.

Proof:

- $\langle 1 \rangle 1$. PICK a basis $\{e_1, \ldots, e_n\}$ for V
- $\langle 1 \rangle 2$. Let: $\| \|_0 : V \to \mathbb{R}$ be the function

$$\|\alpha_1 e_1 + \dots + \alpha_n e_n\|_0 = |\alpha_1| + \dots + |\alpha_n|$$
.

- $\langle 1 \rangle 3$. $\| \|_0$ is a norm.
 - $\langle 2 \rangle 1. \ \forall x \in V. ||x||_0 = 0 \Rightarrow x = 0$

PROOF: If $|\alpha_1| + \cdots + |\alpha_n| = 0$ then $\alpha_1 = \cdots = \alpha_n = 0$.

 $\langle 2 \rangle 2. \ \forall \lambda \in K. \forall x \in V. ||\lambda x|| = |\lambda| ||x||$

Proof:

$$\|\lambda(\alpha_1 e_1 + \dots + \alpha_n e_n)\|_0 = \|\lambda \alpha_1 e_1 + \dots + \lambda \alpha_n e_n\|_0$$
$$= |\lambda \alpha_1| + \dots + |\lambda \alpha_n|$$
$$= |\lambda|(|\alpha_1| + \dots + |\alpha_n|)$$
$$= |\lambda|\|\alpha_1 e_1 + \dots + \alpha_n e_n\|$$

 $\langle 2 \rangle 3$. The triangle inequality holds.

Proof:

$$\begin{aligned} \|(\alpha_1 e_1 + \dots + \alpha_n e_n) + (\beta_1 e_1 + \dots + \beta_n e_n)\| &= \|(\alpha_1 + \beta_1) e_1 + \dots + (\alpha_n + \beta_n) e_n\| \\ &= |\alpha_1 + \beta_1| + \dots + |\alpha_n + \beta_n| \\ &\leq (|\alpha_1| + \dots + |\alpha_n|) + (|\beta_1| + \dots + |\beta_n|) \\ &= \|\alpha_1 e_1 + \dots + \alpha_n e_n\|_0 + \|\beta_1 e_1 + \dots + \beta_n e_n\|_0 \end{aligned}$$

 $\langle 1 \rangle 4$. Let: $\| \|$ be any norm on V.

PROVE: $\| \|$ is equivalent to $\| \|_0$.

 $\langle 1 \rangle 5$. For all $\alpha_1, \ldots, \alpha_n \in K$,

$$\|\alpha_1 e_1 + \dots + \alpha_n e_n\| \le \max(\|e_1\|, \dots, \|e_n\|)(|\alpha_1| + \dots + |\alpha_n|)$$

- $\langle 2 \rangle 1$. Let: $\alpha_1, \ldots, \alpha_n \in K$
- $\langle 2 \rangle 2$. $\|\alpha_1 e_1 + \dots + \alpha_n e_n\| \le \max(\|e_1\|, \dots, \|e_n\|)(|\alpha_1| + \dots + |\alpha_n|)$

PROOF:

$$\|\alpha_1 e_1 + \dots + \alpha_n e_n\| \le |\alpha_1| \|e_1\| + \dots + |\alpha_n| \|e_n\|$$

 $\le (|\alpha_1| + \dots + |\alpha_n|) \max(\|e_1\|, \dots, \|e_n\|)$

 $\langle 1 \rangle 6$. Let: $\beta = \max(\|e_1\|, \dots, \|e_n\|)$

 $\langle 1 \rangle 7$. For all $x \in V$,

$$||x|| \le \beta ||x||_0 .$$

 $\langle 1 \rangle 8$. There exists $\alpha > 0$ such that, for all $x \in V$,

$$\alpha \|x\|_0 \le \|x\| .$$

Proof: Proposition 18.3.19.

Definition 18.3.21 (Open Ball). Let K be either \mathbb{R} or \mathbb{C} . Let V be a vector space over K. Let $x \in V$ and let r be a positive real number. The *open ball* with *centre* x and *radius* r is

$$B(x,r) := \{ y \in V \mid ||x - y|| < r \} .$$

Definition 18.3.22 (Closed Ball). Let K be either \mathbb{R} or \mathbb{C} . Let V be a vector space over K. Let $x \in V$ and let r be a positive real number. The *closed ball* with *centre* x and *radius* r is

$$\overline{B(x,r)} := \{ y \in V \mid ||x - y|| \le r \} .$$

Definition 18.3.23 (Sphere). Let K be either \mathbb{R} or \mathbb{C} . Let V be a vector space over K. Let $x \in V$ and let r be a positive real number. The *sphere* with *centre* x and *radius* r is

$$S(x,r) := \{ y \in V \mid ||x - y|| = r \} .$$

Definition 18.3.24 (Open). Let K be either \mathbb{R} or \mathbb{C} . Let V be a vector space over K. Let $U \subseteq V$. Then U is *open* iff, for all $x \in U$, there exists $\epsilon > 0$ such that $B(x,\epsilon) \subseteq U$.

Proposition 18.3.25. Every open ball is open.

Theorem 18.3.26. The union of a set of open sets is open.

Proof:

- $\langle 1 \rangle 1$. Let: \mathcal{U} be a set of open sets.
- $\langle 1 \rangle 2$. Let: $x \in \bigcup \mathcal{U}$
- $\langle 1 \rangle 3$. Pick $U \in \mathcal{U}$ such that $x \in U$.
- $\langle 1 \rangle 4$. PICK $\epsilon > 0$ such that $B(x, \epsilon) \subseteq U$
- $\langle 1 \rangle 5. \ B(x, \epsilon) \subseteq \bigcup \mathcal{U}$

 \Box

Theorem 18.3.27. The intersection of two open sets is open.

- $\langle 1 \rangle 1$. Let: U and V be open.
- $\langle 1 \rangle 2$. Let: $x \in U \cap V$
- $\langle 1 \rangle 3$. PICK $\delta > 0$ such that $B(x, \delta) \subseteq U$ and $\epsilon > 0$ such that $B(x, \epsilon) \subseteq V$.
- $\langle 1 \rangle 4$. Assume: w.l.o.g. $\delta < \epsilon$
- $\langle 1 \rangle 5. \ B(x, \delta) \subseteq U \cap V$

Proposition 18.3.28. In a normed space V, both \emptyset and V are open.

Definition 18.3.29 (Closed). Let K be either \mathbb{R} or \mathbb{C} . Let V be a vector space over K. Let $C \subseteq V$. Then C is closed iff V - C is open.

Proposition 18.3.30. Every closed ball is closed.

Proposition 18.3.31. Every sphere is closed.

Proposition 18.3.32. The union of two closed sets is closed.

Proposition 18.3.33. The intersection of a nonempty set of closed sets is closed.

Proposition 18.3.34. In a normed space V, both \emptyset and V are closed.

Proposition 18.3.35. Let V be a normed space and $C \subseteq V$. Then C is closed iff, for every sequence (x_n) in C and $l \in V$, if $x_n \to l$ then $l \in C$.

Proof:

- $\langle 1 \rangle 1$. If C is closed then, for every sequence (x_n) in C and $l \in V$, if $x_n \to l$ then $l \in C$.
 - $\langle 2 \rangle 1$. Assume: C is closed.
 - $\langle 2 \rangle 2$. Let: (x_n) be a sequence in C.
 - $\langle 2 \rangle 3$. Let: $l \in V$
 - $\langle 2 \rangle 4$. Assume: $x_n \to l$ as $n \to \infty$
 - $\langle 2 \rangle$ 5. Assume: for a contradiction $l \notin C$
 - $\langle 2 \rangle 6$. PICK $\epsilon > 0$ such that $B(l, \epsilon) \subseteq V C$
 - $\langle 2 \rangle 7$. PICK N such that $\forall n \geq N . ||x_n l|| < \epsilon$
 - $\langle 2 \rangle 8. \ x_N \in C$
 - $\langle 2 \rangle 9. \|x_N l\| < \epsilon$
 - $\langle 2 \rangle 10$. Q.E.D.

PROOF: This is a contradiction.

- $\langle 1 \rangle 2$. If, for every sequence (x_n) in C and $l \in V$, if $x_n \to l$ then $l \in C$, then C is closed.
 - $\langle 2 \rangle 1$. Assume: for every sequence (x_n) in C and $l \in V$, if $x_n \to l$ then $l \in C$.
 - $\langle 2 \rangle 2$. Let: $x \in V C$
 - $\langle 2 \rangle 3$. Assume: for a contradiction there is no $\epsilon > 0$ such that $B(x, \epsilon) \subseteq V C$
 - $\langle 2 \rangle 4$. For $n \in \mathbb{Z}^+$, PICK $x_n \in B(x, \epsilon) \cap C$
 - $\langle 2 \rangle 5$. $x_n \to x$ as $n \to \infty$
 - $\langle 2 \rangle 6$. Q.E.D.

PROOF: This is a contradiction.

Definition 18.3.36 (Closure). Let V be a normed space and $A \subseteq V$. The *closure* of A, cl A, is the intersection of all the closed sets that include A.

Theorem 18.3.37. Let V be a normed space and $S \subseteq V$. Then the closure of S is the set of all limits of convergent sequences in S.

Proof:

- $\langle 1 \rangle 1$. For all $l \in \operatorname{cl} S$, there exists a sequence (x_n) that converges to l.
 - $\langle 2 \rangle 1$. Let: $l \in \operatorname{cl} S$
 - $\langle 2 \rangle 2$. For $n \in \mathbb{N}$, Pick $x_n \in B(l, 1/(n+1)) \cap S$
 - $\langle 3 \rangle 1$. Assume: for a contradiction B(l, 1/(n+1)) does not intersect S.
 - $\langle 3 \rangle 2$. V B(l, 1/(n+1)) is a closed set that includes S.
 - $\langle 3 \rangle 3$. cl $S \subseteq V B(l, 1/(n+1))$
 - $\langle 3 \rangle 4. \ l \notin B(l, 1/(n+1))$
 - $\langle 3 \rangle 5$. Q.E.D.

Proof: This is a contradiction.

- $\langle 2 \rangle 3. \ x_n \to l$
- $\langle 1 \rangle 2$. For every sequence (x_n) in S, if $x_n \to l$ then $l \in \operatorname{cl} S$.

Proof: Proposition 18.3.35.

Definition 18.3.38 (Dense). Let V be a normed space and $S \subseteq V$. Then S is dense iff $\operatorname{cl} S = V$.

Proposition 18.3.39. *In* C([a,b]), the set of polynomials is dense.

PROOF: By the Weierstrass Theorem.

Proposition 18.3.40. For any real $p \geq 1$, the set of all sequences with only finitely many non-zero terms is dense in l^p .

Proof:

- $\langle 1 \rangle 1$. Let: $p \geq 1$
- $\langle 1 \rangle 2$. Let: $(z_n) \in l^p$
- $\langle 1 \rangle 3$. Let: $\epsilon > 0$
- $\langle 1 \rangle 4$. PICK N such that $\forall n \geq N . |z_n| < \epsilon/2$
- $\langle 1 \rangle$ 5. Let: (y_n) be the sequence with $y_n = z_n$ for n < N, and $y_n = 0$ for $n \ge N$
- $\langle 1 \rangle 6. \ \|(z_n) (y_n)\| \le \epsilon/2$
- $\langle 1 \rangle 7. \ \|(z_n) (y_n)\| < \epsilon$

Theorem 18.3.41. Let V be a normed space. Let $S \subseteq V$. Then the following $are\ equivalent:$

- 1. S is dense.
- 2. For all $x \in V$, there exists a sequence (x_n) in S such that $x_n \to x$.
- 3. Every nonempty open subset of V intersects S.

Proof:

 $\langle 1 \rangle 1$. $1 \Leftrightarrow 2$

PROOF: Theorem 18.3.37.

 $\langle 1 \rangle 2$. $1 \Leftrightarrow 3$

Proof:

S is dense \Leftrightarrow the only closed set that includes S is V

 \Leftrightarrow the only open set that does not intersect S is empty

Definition 18.3.42 (Compact). Let V be a normed space and $S \subseteq V$. Then S is *compact* if and only if every sequence in S has a subsequence that converges to a limit in S.

Proposition 18.3.43. Every compact set is closed.

```
Proof:
```

- $\langle 1 \rangle 1$. Let: V be a normed space.
- $\langle 1 \rangle 2$. Let: $C \subseteq V$ be compact.
- $\langle 1 \rangle 3$. Let: (x_n) be a sequence in C that converges to $l \in V$.
- $\langle 1 \rangle 4$. PICK a subsequence (y_n) of (x_n) that converges to $m \in C$.
- $\langle 1 \rangle 5.$ l=m
- $\langle 1 \rangle 6. \ l \in C$
- $\langle 1 \rangle$ 7. Q.E.D.

Proof: Proposition 18.3.35.

Definition 18.3.44 (Bounded). Let V be a normed space and $S \subseteq V$. Then S is bounded iff there exists r > 0 such that $S \subseteq B(0, r)$.

Proposition 18.3.45. In \mathbb{R}^n and \mathbb{C}^n , the compact sets are the closed bounded sets.

Proof:

- $\langle 1 \rangle 1$. Let: $C \subseteq K^n$
- $\langle 1 \rangle 2$. If C is compact then C is closed.

Proof: Proposition 18.3.43.

- $\langle 1 \rangle 3$. If C is compact then C is bounded.
 - $\langle 2 \rangle 1$. Assume: C is compact.
 - $\langle 2 \rangle 2$. Assume: for a contradiction C is not bounded.
 - $\langle 2 \rangle 3$. For $n \in \mathbb{N}$, PICK $x_n \in C$ with $||x_n|| > n+1$.
 - $\langle 2 \rangle 4$. Pick a convergent subsequence (x_{n_r}) that converges to $l \in C$
 - $\langle 2 \rangle 5. \|x_{n_r}\| \to \|l\|$
 - $\langle 2 \rangle 6. \|x_{n_r}\| \to +\infty$
 - $\langle 2 \rangle$ 7. Q.E.D.

PROOF: This is a contradiction.

 $\langle 1 \rangle 4$. If C is closed and bounded then C is compact.

Proof: By the Bolzano-Weierstrass Theorem.

Proposition 18.3.46. Let V be a normed space and $S \subseteq V$. Then S is bounded if and only if, for every sequence (x_n) in S and every sequence (λ_n) in K, if $\lambda_n \to 0$ then $\|\lambda_n x_n\| \to 0$.

Proof:

- $\langle 1 \rangle 1$. If S is bounded then, for every sequence (x_n) in S and every sequence (λ_n) in K, if $\lambda_n \to 0$ then $\|\lambda_n x_n\| \to 0$.
 - $\langle 2 \rangle 1$. Assume: S is bounded.
 - $\langle 2 \rangle 2$. PICK r > 0 such that $S \subseteq B(0, r)$.
 - $\langle 2 \rangle 3$. Let: (x_n) be a sequence in S.
 - $\langle 2 \rangle 4$. Let: (λ_n) be a sequence in K.
 - $\langle 2 \rangle 5$. Assume: $\lambda_n \to 0$
 - $\langle 2 \rangle 6$. Let: $\epsilon > 0$
 - $\langle 2 \rangle$ 7. PICK N such that $\forall n \geq N. |\lambda_n| < \epsilon/r$
 - $\langle 2 \rangle 8. \ \forall n \ge N. \|\lambda_n x_n\| < \epsilon$
- $\langle 1 \rangle 2$. If S is unbounded then there exists a sequence (x_n) in S and (λ_n) in K such that $\lambda_n \to 0$ and $||\lambda_n x_n|| \not\to 0$.
 - $\langle 2 \rangle 1$. S is unbounded.
 - $\langle 2 \rangle 2$. For $n \in \mathbb{N}$, PICK $x_n \in S$ such that $||x_n|| > n$.
 - $\begin{array}{ll} \langle 2 \rangle 3. \ \, \text{For} \,\, n \in \mathbb{N}, \\ \text{ Let: } \,\, \lambda_n = 1/n \,\, \text{if} \,\, n > 0, \, 1 \,\, \text{if} \,\, n = 0 \end{array}$
 - $\langle 2 \rangle 4. \ \lambda_n \to 0$
- $\langle 2 \rangle 5$. $||\lambda_n x_n|| > 1$ for all n > 1

П