Classificação de Veículos

Luan Roger Santos Santana

```
## Loading required package: ggplot2
## Loading required package: lattice
```

Preparing data

Loading Data

```
data_raw <- read.csv("../data_sets/Material 02 - 5 - C - Veiculos - Dados.csv")
data_raw_new_cases <- read.csv("../data_sets/Material 03 - 5 - C - Veiculos - Dados - Novos Casos.csv")
```

Cleaning data

```
data <- data_raw[,!(names(data_raw) %in% c('a'))]
data_new_cases <- data_raw_new_cases[,!(names(data_raw_new_cases) %in% c('a'))]
print(head(data))</pre>
```

##		Comp	Circ	DCirc	RadRa	PrAxisRa	MaxLRa	ScatRa	Elong	PrAxisRec	t MaxLRe	ect
##	1	95	48	83	178	72	10	162	42	2	0 1	159
##	2	91	41	84	141	57	9	149	45	1	9 :	143
##	3	104	50	106	209	66	10	207	32	2	3 :	158
##	4	93	41	82	159	63	9	144	46	1	9 :	143
##	5	85	44	70	205	103	52	149	45	1	9 :	144
##	6	107	57	106	172	50	6	255	26	2	8 :	169
##		ScVai	rMaxis	ScVai	rmaxis	RaGyr Sk	ewMaxis	Skewmax	kis Kum	rtmaxis Ku	rtMaxis	HollRa
## ##	1	ScVai	Maxis 176		rmaxis 379	RaGyr Sko	ewMaxis 70	Skewmax	kis Kun 6	rtmaxis Ku 16	rtMaxis 187	HollRa 197
	_	ScVai		3		•		Skewmax				
##	2	ScVai	176	;)	379	184	70	Skewmax	6	16	187	197
## ##	2	ScVai	176 170	S) 3	379 330	184 158	70 72	Skewmax	6 9	16 14	187 189	197 199
## ## ##	2 3 4	ScVa	176 170 223	3) 3	379 330 635	184 158 220	70 72 73	Skewmax	6 9 14	16 14 9	187 189 188	197 199 196
## ## ## ##	2 3 4 5	ScVa	176 170 223 160	S) 3)	379 330 635 309	184 158 220 127	70 72 73 63	Skewmax	6 9 14 6	16 14 9 10	187 189 188 199	197 199 196 207

tipo

1 van

2 van

3 saab

4 van

5 bus

6 bus

print(head(data_new_cases))

##		Comp	Circ	\mathtt{DCirc}	RadRa	PrAxisRa	MaxLRa	ScatRa	Elong	PrAxisRect	${ t MaxLRect}$
##	1	100	48	83	178	72	10	162	42	20	159
##	2	91	40	84	141	57	9	149	45	18	143
##	3	92	50	106	209	66	10	207	32	23	160

```
ScVarMaxis ScVarmaxis RaGyr SkewMaxis Skewmaxis Kurtmaxis KurtMaxis HollRa
## 1
            176
                       400
                             184
                                        70
                                                   6
                                                            16
                                                                      187
                                                                             197
## 2
                       330
                                                                      189
                                                                             199
            170
                             70
                                        72
                                                   9
                                                             14
## 3
            223
                       635
                             220
                                        73
                                                  14
                                                             9
                                                                      188
                                                                             230
##
    tipo
## 1
## 2
## 3
```

Creating data partitioning

```
set.seed(1988)
ran <- sample(1:nrow(data), 0.8 * nrow(data))
training_data <- data[ran,]
test_data <- data[-ran,]</pre>
```

Training

Using KNN

Creating the model

```
tuneGrid \leftarrow expand.grid(k = c(1,3,5,7,9))
set.seed(1988)
knn <- train(tipo ~ ., data = training_data, method = "knn", tuneGrid=tuneGrid)</pre>
print(knn)
## k-Nearest Neighbors
## 676 samples
## 18 predictor
    4 classes: 'bus', 'opel', 'saab', 'van'
##
## No pre-processing
## Resampling: Bootstrapped (25 reps)
## Summary of sample sizes: 676, 676, 676, 676, 676, 676, ...
## Resampling results across tuning parameters:
##
##
    k Accuracy
                   Kappa
    1 0.6225458 0.4965691
##
     3 0.5963528 0.4616769
##
##
     5 0.6039509 0.4721682
##
    7 0.5955723 0.4615824
##
    9 0.5882459 0.4519974
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was k = 1.
prediction.knn <- predict(knn, test_data)</pre>
cf_matrix <- confusionMatrix(prediction.knn, as.factor(test_data$tipo))</pre>
print(cf_matrix)
```

Checking the model with training data

```
## Confusion Matrix and Statistics
##
             Reference
##
## Prediction bus opel saab van
##
         bus
               39
                      2
##
                0
                     15
                          21
                               1
         opel
##
                6
                     13
         saab
                          17
##
                           2 43
         van
                 3
                      1
##
## Overall Statistics
##
##
                   Accuracy: 0.6706
##
                     95% CI: (0.5945, 0.7406)
##
       No Information Rate: 0.2824
##
       P-Value [Acc > NIR] : <2e-16
##
##
                      Kappa: 0.5586
##
##
  Mcnemar's Test P-Value: 0.5677
##
## Statistics by Class:
##
##
                         Class: bus Class: opel Class: saab Class: van
## Sensitivity
                             0.8125
                                         0.48387
                                                       0.3864
                                                                  0.9149
## Specificity
                             0.9344
                                         0.84173
                                                       0.8413
                                                                  0.9512
## Pos Pred Value
                             0.8298
                                         0.40541
                                                       0.4595
                                                                  0.8776
## Neg Pred Value
                             0.9268
                                         0.87970
                                                       0.7970
                                                                  0.9669
## Prevalence
                             0.2824
                                         0.18235
                                                       0.2588
                                                                  0.2765
## Detection Rate
                                         0.08824
                             0.2294
                                                       0.1000
                                                                  0.2529
## Detection Prevalence
                             0.2765
                                         0.21765
                                                                  0.2882
                                                       0.2176
## Balanced Accuracy
                             0.8735
                                         0.66280
                                                       0.6138
                                                                  0.9331
Checking for new cases
prediction.knn_new_data <- predict(knn, data_new_cases)</pre>
data_new_cases$tipo <- NULL</pre>
result <- cbind(data_new_cases, tipo=prediction.knn_new_data)</pre>
print(result)
##
     Comp Circ DCirc RadRa PrAxisRa MaxLRa ScatRa Elong PrAxisRect MaxLRect
## 1
     100
            48
                   83
                        178
                                  72
                                          10
                                                162
                                                        42
                                                                   20
                                                                            159
## 2
            40
                   84
                        141
                                   57
                                           9
                                                149
                                                        45
                                                                   18
                                                                            143
       91
## 3
       92
            50
                  106
                        209
                                   66
                                          10
                                                207
                                                        32
                                                                   23
                                                                            160
##
     ScVarMaxis ScVarmaxis RaGyr SkewMaxis Skewmaxis Kurtmaxis KurtMaxis HollRa
## 1
            176
                        400
                              184
                                          70
                                                      6
                                                               16
                                                                                197
## 2
            170
                        330
                               70
                                          72
                                                      9
                                                                                199
                                                               14
                                                                         189
## 3
            223
                        635
                              220
                                          73
                                                    14
                                                                9
                                                                         188
                                                                                230
##
     tipo
## 1 opel
## 2 saab
## 3 saab
```