Tabella studio di funzione

Richiesta	Svolgimento teorico	Indicazioni di svolgimento pratico
ricerca dominio ed eventuali simmetrie	Dominio: sottoinsieme di R in cui la funzione esiste, cioè insieme dei possibili valori per la x.	Dominio: a) Funz. polinomiali, radicali a indice dispari e esponenziali: tutto R b) Funz. fratte: denominatore ≠0 c) Funz. radicali a indice pari: argomento ≥0 d) Funz. logaritmiche: argomento >0
	Simmetrie: rispetto all'asse y (funzione pari \ /) o rispetto all'origine (funzione dispari ʃ).	Simmetrie: $f(-x) = f(x) \rightarrow \text{funz. pari}$ $f(-x) = -f(x) \rightarrow \text{funz. dispari}$
studio del segno e ricerca delle intersezion i con gli assi	Intersezioni con gli assi: punti di intersezione tra la funzione e gli assi x e y Studio del segno: trovare gli intervalli del dominio dove la funzione è positiva (sopra l'asse x) e dove invece è negativa (sotto l'asse x).	Intersezioni con gli assi: risolvere i sistemi $\begin{cases} y = f(x) \\ y = 0 \end{cases} \rightarrow f(x) = 0$ $\begin{cases} y = f(x) \\ x = 0 \end{cases} \rightarrow y = f(0)$ Studio del segno: risolvere la disequazione $f(x) > 0$ a) Fratta o con prodotti: studiare ogni fattore >0 e schema dei segni b) Logaritmica: trasformo $0 = ln(1)$ e poi studio gli argomenti togliendo ln c) Esponenziale: trasformo in $e^a > e^b$ e poi studio a $>$ b d) Fratte a indice pari: radice sempre positiva
ricerca degli asintoti (e limiti agli estremi del dominio)	Asintoti verticali: se un limite in un punto tolto dal dominio o inizio/fine di un intervallo di esso risulta ±∞ Asintoti orizzontali: se un limite per x→±∞ risulta finito, un numero Asintoti obliqui: se (non ci sono orizzontali e) la funzione ha un andamento lineare nel crescere a infinito / decrescere a -infinito	Asintoti verticali: a escluso dal D \Rightarrow $\lim_{x \to a} f(x) = \pm \infty \to x = a$ Asintoti orizzontali: $\pm \infty$ compresi nel D \Rightarrow $\lim_{x \to \pm \infty} f(x) = b \to y = b$ Asintoti obliqui: asintoto $y = mx + q$, dove $m = \lim_{x \to \pm \infty} \frac{f(x)}{x}$

	I	1. [6]
		$q = \lim_{x \to \pm \infty} [f(x) - mx]$
studio della crescenza e decrescen za ed eventuali massimi e minimi	Studio della derivata prima: per trovare massimi e minimi, studio i punti in cui si annulla (punti stazionari), mentre gli intervalli dove essa è positiva sono di crescenza per la funzione, dove è negativa sono di decrescenza.	 Calcolo f'(x) → regole per le derivate semplici + prodotto + quoziente + funzione composta Risolvo f'(x)=0 → punti stazionari Risolvo f'(x)>0 → intervalli di crescenza / decrescenza e scopro se i punti stazionari sono massimi, minimi o flessi.
studio della concavità e di eventuali flessi	Studio della derivata seconda: per trovare i flessi, studio dei punti in cui si annulla (punti stazionari), mentre gli intervalli dove essa è positiva sono di concavità verso l'alto per la funzione, dove è negativa sono di concavità verso il basso.	 Calcolo f'(x)=(f'(x))' → regole per le derivate semplici + prodotto + quoziente + funzione composta Risolvo f'(x)=0 → punti stazionari = flessi Risolvo f'(x)>0 → intervalli di concavità verso l'alto o il basso.
grafico probabile		ESEMPI DI FUNZIONI "NOTE"

