Representación de sistemas no lineales

Dr. Ing. Rodrigo Gonzalez

rodralez@fing.uncu.edu.ar

Control y Sistemas, Facultad de Ingeniería, Universidad Nacional de Cuyo

Abril de 2016

Resumen

- Sistemas lineales
 - Representación matemática de sistemas lineales
 - Propiedades de los sistemas lineales
- Sistemas no lineales
 - Definición
 - Representación matemática de sistemas no lineales
 - Clasificación de los modelos
 - Punto de equilibrio
 - Ejemplos de sistemas no lineales
 - Linealización de modelos no lineales

Representación matemática de sistemas lineales

Un sistema lineal LIT se puede representar en espacio de estados como,

$$\dot{\boldsymbol{x}}(t) = A\,\boldsymbol{x}(t) + B\,\boldsymbol{u}(t) \tag{1}$$

$$\mathbf{y}(t) = C \, \mathbf{x}(t) + D \, \mathbf{u}(t) \,, \tag{2}$$

donde:

- $\mathbf{x}(\cdot)$ es el vector de estados $\in \mathbb{R}^n$.
- $u(\cdot)$ es el vector de entrada $\in \mathbb{R}^p$.
- $\mathbf{y}(\cdot)$ es el vector de salida $\in \mathbb{R}^q$.

- A es la matriz de estados, $dim[A] = n \times n$.
- B es la matriz de entrada, dim $[B] = n \times p$.
- C es la matriz de salida, dim $[C] = q \times n$.
- D es la matriz de transmisión directa, $dim[C] = q \times p$.

Propiedades de los sistemas lineales

- La solución general del sistema se puede resolver en forma analítica.
- En presencia de una entrada externa $\mathbf{u}(t)$,
 - Se satisface el principio de superposición.
 - 2 El sistema es asintóticamente estable, si u(t) está limita, la salida estará limitada.
 - \bigcirc Si u(t) es sinusoidal, la salida será sinusoidal con misma frecuencia.

¿Cuáles de las siguientes expresiones matemáticas es lineal?

$$y = a + x \cdot b \tag{3}$$

$$y = e^x (4)$$

$$y = e^{-x} \tag{5}$$

$$y = sinx$$

$$y = x^2 \tag{7}$$

(6)

Definición

Un sistema no lineal es aquél que no verifica el principio de superposición.

El principio de superposición establece las siguientes propiedades:

Aditividad:

Si
$$f(x_1) = y_1$$
 y $f(x_2) = y_2$, entonces $f(x_1 + x_2) = y_1 + y_2$

Proporcionalidad:

Si
$$f(x) = y$$
, entonces $f(\alpha x) = \alpha y$

Sistemas físicos

- Virtualmente todos los sistemas físicos son de naturaleza no lineal.
- En muchos casos es posible describir la operación de un sistema físico por un modelo lineal:
 - oporque las no linealidades se consideran despreciables.
 - 2 porque el rango de operación del sistema es deliberadamente acotado (linealización).
- Cuando aun el modelo linealizado no es adecuado para un desempeño requerido, se deben usar herramientas del control no lineal (por ej. Estabilidad de Lyapunov).

Representación matemática de sistemas no lineales

$$\dot{\boldsymbol{x}}(t) = f[t, \boldsymbol{x}(t), \boldsymbol{u}(t)] \quad \forall t \ge 0
t \in \mathbb{R}^+
\boldsymbol{x}(t) \in \mathbb{R}^n
\boldsymbol{u}(t) \in \mathbb{R}^p
f : \mathbb{R}^+ \times \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^n$$
(8)

 $\dot{\mathbf{x}}(t)$ es una ecuación diferencial vectorial de primer orden.

No se pierde generalidad si se supone que el sistema puede ser descripto por una ecuación diferencial escalar de orden n, tal que,

$$\frac{d^{n}y(t)}{dt^{n}} = h[t, y(t), \dot{y}(t), \dots, \frac{d^{n-1}y(t)}{dt^{n-1}}, u(t)] \quad \forall t \ge 0.$$
 (9)

Representación matemática de sistemas no lineales, II

Se redefine $\frac{d^n y(t)}{dt^n}$ para obtener x(t) (Ec. 8),

$$x_{1}(t) = y(t)$$

$$x_{2}(t) = \dot{y}(t)$$

$$\vdots$$

$$x_{n}(t) = \frac{d^{n-1}y(t)}{dt^{n-1}}.$$
(10)

Que es equivalente a,

$$\dot{x}_1(t) = x_2(t)
\dot{x}_2(t) = x_3(t)
\vdots
\dot{x}_{n-1}(t) = x_n(t)
\dot{x}_n(t) = h[t, x_1(t), x_2(t), \dots, x_n(t), \mathbf{u}(t)]$$
 (equivalente a Ec. 9).

Representación matemática de sistemas no lineales, III

La Ec. 11 toma la forma de la Ec. 8 con,

$$\mathbf{x}(t) = [x_1(t), x_2(t), \dots, x_n(t)]^T$$
 (12)

$$f[t, \mathbf{x}, \mathbf{u}] = [x_2, \dots, x_{n-1}, h(t, x_1, x_2, \dots, x_n, \mathbf{u})]^T,$$
 (13)

donde finalmente.

$$\dot{\boldsymbol{x}}(t) = f[t, \boldsymbol{x}, \boldsymbol{u}] \quad \forall t \ge 0 \tag{14}$$

Clasificación de los modelos

Los sistemas no lineales se pueden clasificar en:

- Forzado: $\dot{\boldsymbol{x}}(t) = f[t, \boldsymbol{x}(t), \boldsymbol{u}(t)] \quad \forall t \geq 0$
- No forzado: $\dot{\boldsymbol{x}}(t) = f[t, \boldsymbol{x}(t)] \quad \forall t \geq 0$
- Sistema autónomo o invariante en el tiempo: f no depende de t (por ej., saturación).
- Sistema no autónomo o variante en el tiempo.

Punto de equilibrio

• $\bar{\mathbf{x}} \in \mathbb{R}^n$ es un *punto de equilibrio* de un sistema forzado si,

$$f(t, \bar{\boldsymbol{x}}, \bar{\boldsymbol{u}}) = 0 \quad \forall t \ge 0.$$
 (15)

- Si \bar{x} es equilibrio del sistema, entonces la ecuación diferencial para la condición inicial $x(t_0) = \bar{x}$ tiene la única solución $x(t) = \bar{x} \quad \forall t \geq 0$.
- $m{v}$ es una entrada al sistema determinada que fija el punto de equilibrio.
- Entonces, si el sistema comienza en el equilibrio, permanece en él.
- El punto de equilibrio de un sistema no forzado se define en forma similar como,

$$f(t,\bar{\mathbf{x}}) = 0 \quad \forall t \ge 0. \tag{16}$$

- Un sistema puede tener más de un punto de equilibrio.
- Un sistema lineal tiene un único punto de equilibrio si A es no singular (det(A) ≠ 0)
- El punto de equilibrio es estable si los autovalores de A tienen parte real negativa, sin importar la condición inicial.

Resuelva en MATLAB el siguiente sistema:

$$\dot{x} = x^2 - x. \tag{17}$$

La siguiente ecuación representa un modelo simplificado del movimiento de un vehículo bajo el agua, donde u(t) es el impulso del vehículo y v es la velocidad.

$$\dot{\mathbf{v}} - |\mathbf{v}| \ \mathbf{v} = \mathbf{u} \,. \tag{18}$$

Resuelva el sistema en MATLAB para u=10 y u=1 para 5 segundos de exitación. Observe ambas salidas y compare.

Oscilador de van der Pol se define como,

$$\ddot{x} - \mu(1 - x^2)\dot{x} + x = 0 \tag{19}$$

$$\Longrightarrow \ddot{x} = \mu(1 - x^2)\dot{x} - x. \tag{20}$$

Se definen dos nuevas variables,

$$X_1 = X \tag{21}$$

$$X_2 = \dot{X} \,. \tag{22}$$

Operando,

$$\dot{X}_1 = X_2 \tag{23}$$

$$\dot{x}_2 = \mu(1 - x_1^2)x_2 - x_1. \tag{24}$$

Oscilador de van der Pol

Linealización de modelos no lineales, motivación

- Todos los sistemas físicos son no lineales.
- Por otro lado, una buena parte de la teoría del control se centra en sistemas lineales LIT.
- Por tanto, se desea encontrar dentro de qué límites un sistema no lineal puede ser considerado lineal.
- El sistema puede ser considerado lineal en la vecindad de un punto de equilibrio.

Curva de salida y característica de transferencia de un MOSFET de canal n.

Linealización de modelos no lineales

Se define un sistema no lineal de dos variables como,

$$\dot{x_1} = f(x_1, x_2) \tag{25}$$

$$\dot{x}_2 = g(x_1, x_2). \tag{26}$$

- El sistema tiene un punto de equilibrio en (\bar{x}_1, \bar{x}_2) .
- Se desea encontrar dentro de qué límites f y g pueden ser considerados lineales.
- Por series de Taylor f y g se representan como,

$$f(x_{1}, x_{2}) = f(\bar{x}_{1}, \bar{x}_{2}) + \frac{\partial f}{\partial x_{1}}(\bar{x}_{1}, \bar{x}_{2})(x_{1} - \bar{x}_{1}) + \frac{\partial f}{\partial x_{2}}(\bar{x}_{1}, \bar{x}_{2})(x_{2} - \bar{x}_{2}) +$$

$$+ f(\bar{x}_{1}, \bar{x}_{2}) + \frac{\partial f}{\partial x_{1}}(\bar{x}_{1}, \bar{x}_{2})\frac{(x_{1} - \bar{x}_{1})^{2}}{2!} + \frac{\partial f}{\partial x_{2}}(\bar{x}_{1}, \bar{x}_{2})\frac{(x_{2} - \bar{x}_{2})^{2}}{2!} \cdots$$

$$g(x_{1}, x_{2}) = g(\bar{x}_{1}, \bar{x}_{2}) + \frac{\partial g}{\partial x_{1}}(\bar{x}_{1}, \bar{x}_{2})(x_{1} - \bar{x}_{1}) + \frac{\partial g}{\partial x_{2}}(\bar{x}_{1}, \bar{x}_{2})(x_{2} - \bar{x}_{2}) +$$

$$+ g(\bar{x}_{1}, \bar{x}_{2}) + \frac{\partial g}{\partial x_{1}}(\bar{x}_{1}, \bar{x}_{2})\frac{(x_{1} - \bar{x}_{1})^{2}}{2!} + \frac{\partial g}{\partial x_{2}}(\bar{x}_{1}, \bar{x}_{2})\frac{(x_{2} - \bar{x}_{2})^{2}}{2!} \cdots$$

$$(28)$$

Linealización de modelos no lineales, II

- Se descartan los términos de segundo orden y sucesivos.
- Debido a que $f(\bar{x}_1, \bar{x}_2) = 0$ y $g(\bar{x}_1, \bar{x}_2) = 0$,

$$\dot{x}_{1} \approx \frac{\partial f}{\partial x_{1}}(\bar{x}_{1}, \bar{x}_{2})(x_{1} - \bar{x}_{1}) + \frac{\partial f}{\partial x_{2}}(\bar{x}_{1}, \bar{x}_{2})(x_{2} - \bar{x}_{2})$$

$$\dot{x}_{2} \approx \frac{\partial g}{\partial x_{1}}(\bar{x}_{1}, \bar{x}_{2})(x_{1} - \bar{x}_{1}) + \frac{\partial g}{\partial x_{2}}(\bar{x}_{1}, \bar{x}_{2})(x_{2} - \bar{x}_{2}).$$
(30)

$$\dot{x_2} \approx \frac{\partial g}{\partial x_1} (\bar{x}_1, \bar{x}_2) (x_1 - \bar{x}_1) + \frac{\partial g}{\partial x_2} (\bar{x}_1, \bar{x}_2) (x_2 - \bar{x}_2). \tag{30}$$

Este es un sistema lineal cuya matriz de coeficientes es.

$$\begin{bmatrix} \frac{\partial f}{\partial x_1}(\bar{x}_1, \bar{x}_2) & \frac{\partial f}{\partial x_2}(\bar{x}_1, \bar{x}_2) \\ \frac{\partial g}{\partial x_1}(\bar{x}_1, \bar{x}_2) & \frac{\partial g}{\partial x_2}(\bar{x}_1, \bar{x}_2) \end{bmatrix} . \tag{31}$$

- La matriz (31) se conoce como Jacobiano.
- Analizando los autovalores del Jacobiano se puede determinar la naturaleza del punto de equilibrio (sumidero, fuente; estable, inestable).

- Las dinámicas de un simple péndulo son bastante ricas para describir la mayoría de los conceptos vistos en sistemas no lineales.
- La ecuación de un péndulo con fricción:

$$\ddot{\theta} + \frac{b}{m l^2} \dot{\theta} + \frac{g}{l} \sin(\theta) = 0, \qquad (32)$$

donde:

- θ es el ángulo (rad).
- m la masa del péndulo (kg).
- I el largo de la soga (m).
- b el coeficiente de fricción viscosa (Nms/rad)
- g la constante de gravedad (m²/s).

Péndulo, resolución I

$$\ddot{\theta} + \frac{b}{m I^2} \dot{\theta} + \frac{g}{I} \sin(\theta) = 0.$$

• El sistema de descompone en derivadas de primer orden,

$$\dot{\theta} = v \tag{33}$$

$$\dot{v} = -\frac{g}{I}\sin(\theta) - \frac{b}{mI^2}v. \tag{34}$$

- Los puntos de equilibrio del sistema se encuentran en $(\theta, v) = (n\pi, 0)$ donde $n = 0, 1, 2, \dots$
- En n pares, $n = 0, 2, 4, \dots$, el péndulo está en un posición más baja.
- En n impares, n = 1, 3, 5, ..., el péndulo está en un posición más alta.

Péndulo, resolución II

$$\begin{split} \dot{\theta} &= v \\ \dot{v} &= -\frac{g}{I}\sin(\theta) - \frac{b}{mI^2}v \,. \end{split}$$

El Jacobiano está dado por,

$$J = \begin{bmatrix} 0 & 1 \\ -\frac{g}{I}\cos(\theta) & -\frac{b}{mI^2} \end{bmatrix} . \tag{35}$$

• Para el punto de equilibrio (0,0), el Jacobiano es,

$$J_{(0,0)} = \begin{bmatrix} 0 & 1 \\ -\frac{g}{l} & -\frac{b}{ml^2} \end{bmatrix}. \tag{36}$$

Péndulo, resolución III

$$J_{(0,0)} = \begin{bmatrix} 0 & 1 \\ -\frac{g}{I} & -\frac{b}{mI^2} \end{bmatrix}.$$

• Si b = 0. Autovalores $\lambda = \pm i \sqrt{\frac{g}{I}}$.

Sistema críticamente amortiguado. El sistema oscila alrededor de $\theta=0$ en forma periódica.

• Si b > 0, m = 1, l = 1. Autovalores $\lambda = \frac{-1 \pm i \sqrt{4g - 1}}{2}$.

Sistema subamortiguado. El sistema oscila alrededor de $\theta=0$ en forma decreciente.

Péndulo, resolución IV

$$J = \begin{bmatrix} 0 & 1 \\ -\frac{g}{l}\cos(\theta) & -\frac{b}{ml^2} \end{bmatrix}.$$

• Para el punto de equilibrio $(\pi, 0)$, el Jacobiano es,

$$J_{(\pi,0)} = \begin{bmatrix} 0 & 1\\ \frac{g}{I} & -\frac{b}{mI^2} \end{bmatrix} . \tag{37}$$

• Autovalores dados por $\lambda = \frac{1}{2} \left(\frac{b}{m \, l^2} \pm \sqrt{\left(\frac{b}{m \, l^2} \right)^2 + 4 \, \frac{g}{l}} \right)$.

El sistema es inestable en este punto de equilibrio.

La siguiente ecuación representa un sistema caótico,

$$\ddot{x} + 0.1\dot{x} + x^5 - = 6\sin(t). \tag{38}$$

Resuelva el sistema en MATLAB. Obtenga el Jacobiano del sistema y analice los puntos de equilibrio del sistema.