

디지털놀리회로 [Digital Logic Circuits]

4강.

부울함수의 간소화 및 구현(1)

컴퓨터과학과 강지훈교수

개요

카르노 도표 방법(1)

- 카르노 도표 방법 개요
- 2변수 카르노 도표
- 3변수 카르노 도표

제4장. 부울함수의 간소화 및 구현

개요

• 부울함수의 간소화 방법

대수적인 방법	도표 방법	테이블 방법
• 부울대수의 정리를	• 카르노 도표(Karnaug	• 퀸-맥클러스키(Quine -
대수적으로 적용하여	map) 사용	Mcluskey) 방법
간소화	• 각 항을 곱이나 합 형태로 간소화	• 테이블을 사용하여 간소화 알고리즘을 구현
• 도표 및 테이블 방법의	• 여섯 개 이하의 변수를	• 많은 변수를 가진
이론적 바탕	가진 부울함수에 사용	부울함수에 적합

제4장. 부울함수의 간소화 및 구현

4.2 카르노 도표 방법(1)

- 카르노 도표(Karnaugh Map, K-map)는 부울 대수를 간소화하는 방법 중 하나
- 데이터를 격자 형태로 표현하여 시각적으로 그룹화
- 각각의 사각형은 하나의 최소항 또는 최대항을 의미

- 카르노 도표는 부울함수의 입력변수 개수에 따라 기본 도표의 형태가 결정됨
- 입력변수가 n개라면, 변수 카르노 도표라고 하며, 2^n 개의 사각형으로 구성됨

2변수 카르노 도표

3변수 카르노 도표

- 카르노 도표를 사용한 부울함수의 간소화
 - 도표를 사용해 부울 함수를 표준형 부울함수로 표현할 수 있음

- 최소항의 합형을 곱의 합형으로 간소화(1)
 - 1. 입력된 변수의 개수에 따라 n 변수 카르노 도표 작성

- 2. 최소항의 인덱스에 대응되는 사각형을 1로 표시
- ➡ 출력 값 *F*가 1에 대응되는 곳에 1 표시

	X	Y	F
	0	0	1
L	0	1	1
	1	0	0
	1	1	1

- 최소항의 합형을 곱의 합형으로 간소화(2)
 - 3. 1로 표시된 사각형들 중 서로 인접한 사각형 끼리 묶음

4. 각 묶음이 도표상 어떤 위치에 있는지 파악

X	Y	F	최소항	X^{Y}	Ω	1	y 0 1	
0	0	1	$\bar{X}\bar{Y}$	Λ ,	4	<u> </u>	$\bar{v}\bar{v}$	7
0	1	1	$\bar{X}Y$		1	1	\circ $\bar{X}\bar{Y}$ $\bar{X}Y$	
1	0	0	$X\overline{Y}$	1		1	$\begin{vmatrix} & & & & & & & & & & & & & & & & & & &$,
1	1	1	XY					

• 최소항의 합형을 곱의 합형으로 간소화(3)

5. 각 묶음의 변수를 비교하여 공통 변수만 남기기

각 묶음에는 입력변수 X, Y가 있음

묶음의 각 최소항의 입력변수 A가 둘 다 0이라면 \overline{A} 유지 묶음의 각 최소항의 입력변수 A가 둘 다 1이라면 A 유지 묶음의 각 최소항의 입력변수 A가 0과 1이라면 제거

→ 각 묶음의 입력 변수가 동일하면 그대로 유지 아니라면 삭제

- 최소항의 합형을 곱의 합형으로 간소화(4)
 - 6. 각 묶음의 곱항을 논리합(OR)으로 연결

- 최대항의 곱형을 합의 곱형으로 간소화(1)
 - 1. 입력된 변수의 개수에 따라 n 변수 카르노 도표 작성

- 2. 최대항의 인덱스에 대응되는 사각형을 0로 표시
- ➡ 출력 값 F가 0에 대응되는 곳에 0 표시

	X	Y	F	
	0	0	0	
	0	1	0	
	1	0	0	
Ī	1	1	1	

- 최대항의 곱형을 합의 곱형으로 간소화(2)
 - 3. 0으로 표시된 사각형들 중 서로 인접한 사각형 끼리 묶음

4. 각 묶음이 도표상 어떤 위치에 있는지 파악

X	Y	F	최대항
0	0	0	X + Y
0	1	0	$X + \overline{Y}$
1	0	0	$\bar{X} + Y$
1	1	1	$\bar{X} + \bar{Y}$

• 최대항의 곱형을 합의 곱형으로 간소화(3)

5. 각 묶음의 변수를 비교하여 공통 변수만 남기기

각 묶음에는 입력변수 X, Y가 있음

묶음의 각 최소항의 입력변수 A가 둘 다 0이라면 A 유지 묶음의 각 최소항의 입력변수 A가 둘 다 1이라면 \overline{A} 유지 묶음의 각 최소항의 입력변수 A가 0과 1이라면 제거

→ 각 묶음의 입력 변수가 동일하면 그대로 유지 아니라면 삭제

- 최대항의 곱형을 합의 곱형으로 간소화(4)
 - 6. 각 묶음의 합항을 논리곱(AND)으로 연결

- 인접 사각형의 정의
 - 카르노 도표의 각 칸은 하나의 최소항 또는 최대항을 의미함
 - 도표의 순서는 그레이 코드 형태로 나열되어 있음
 - 다음 칸으로 넘어갈 때 1개의 비트 값만 변경되도록 나열
 - 즉, 인접 칸에 배치된 값들은 서로 구성 변수 중 단 하나의 변수만 서로 보수 관계이고 다른 변수들은 모두 동일함
 - 이를 서로 인접한다라고 정의

$$m_4 = X\bar{Y}\bar{Z}$$
 $m_4 + m_6 = X\bar{Y}\bar{Z} + XY\bar{Z}$
 $m_6 = XY\bar{Z}$ $= X\bar{Z}(\bar{Y} + Y)$
 $= X\bar{Z}(1)$
 $= X\bar{Z}$

- 인접 사각형끼리 묶는 방법
 - 한 묶음은 크게, 묶음의 전체 개수는 최소화 해야 함
 - 하나의 묶음을 최대한 크게 만들어야 많은 변수를 제거할 수 있음
 - 하나의 묶음을 만들 때는 가능한 가장 큰 2의 거듭제곱 크기로 묶어야 함
 - $2^{n}(2, 4, 8, 16...)$
 - 묶음이 많을 수록 논리식의 항이 증가하여 복잡해짐

- 카르노 도표의 원리
 - 공통된 변수만 유지하고 변하는 변수는 제거
 - 부울 대수의 기본 공식을 활용하는 것과 동일하며, 이를 시각적으로 표현한 도구임

$$F = XY + X\overline{Y}$$
 $= X(Y + \overline{Y})$ 분배 법칙
 $= X(1)$ 보수 법칙
 $= X$

$$XY + X\overline{Y} = X$$

4.2.2 2변수 카르노 도표

- 두 개의 입력변수를 가지는 부울함수
 - 4개의 최소항이 존재하여 4개의 사각형으로 구성됨
 - 각 사각형은 하나의 최소항에 대응함

4.2.2 2변수 카르노 도표

• 2변수 카르노 도표 간소화

X	Y	F
0	0	0
0	1	0
1	0	0
1	1	1

X	Y	F
0	0	0
0	1	1
1	0	1
1	1	1

$$F = XY$$

Y	0	1
0		1
1	1	1

$$F = X + Y$$

- 3개의 변수를 가지는 부울함수
 - 8개의 최소항을 가짐
 - · 즉, 3변수 카르노 도표는 8개의 사각형으로 구성
 - 각 사각형은 하나의 최소항에 대응함

$\setminus YZ$				
$X \setminus$	00	01	11	10
0	m_o	m_1	m_3	m_2
1	m_4	m_5	m_7	m_6

\setminus_{YZ}				
$X \setminus$	00	01	11	10
0	$\bar{X}\bar{Y}\bar{Z}$	$\bar{X}\bar{Y}Z$	$\bar{X}YZ$	$\bar{X}Y\bar{Z}$
1	$Xar{Y}ar{Z}$	$X\overline{Y}Z$	XYZ	$XYar{Z}$

• 3변수 카르노 도표 간소화

$$F(X,Y,Z) = \Sigma m(0,1,2,6)$$

묶음 1: $\bar{X}\bar{Y}_{i}^{T}$, $\bar{X}\bar{Y}_{i}^{T}$

묶음 2: [YĒ, [YĒ

$$F(X,Y,Z) = \bar{X}\bar{Y} + Y\bar{Z}$$

• 3변수 진리표를 만족하는 간소화된 논리회로도

	X	0	0	0	0	1	1	1	1
입력	Y	0	0	1	1	0	0	1	1
	Z	0	1	0	1	0	1	0	1
출력	F	1	0	1	0	1	0	1	1

$$F(X,Y,Z)$$

= $\Sigma m(0, 2, 4, 6, 7)$

YZ	00	01	11	10	_
0	1			1	
1	1		1	1	

\YZ				
$X \setminus$	00	01	11	10
0	$\bar{X}\bar{Y}\bar{Z}$	$\bar{X}\bar{Y}Z$	$\bar{X}YZ$	$\bar{X}Y\bar{Z}$
1	$X \overline{Y} \overline{Z}$	$X\overline{Y}Z$	XYZ	$XYar{Z}$

묶음 1: $\bar{X}\bar{Y}\bar{Z}$, $X\bar{Y}\bar{Z}$, $\bar{X}Y\bar{Z}$, $XY\bar{Z}$

묶음 2: XYZ, XYĪ

$$\implies F(X,Y,Z) = XY + \bar{Z}$$

• $F(X,Y,Z) = XY + \overline{Z}$ 의 논리 회로도

Summary

4강 | 부울함수의 간소화 및 구현(1)

- 카르노 도표를 이용한 부울함수의 간소화
- 02 인접 사각형의 개념
- 03 2, 3변수의 카르노 도표

디지털놀리회로 [Digital Logic Circuits]

5 강.

부울함수의 간소화 및 구현(2)