Конспект по анализу за 3 семестр

Лектор: А. А. Лодкин Записал :ta_xus

8 января 2017 г.

Оглавление

1	Анализ	$\mathbf{B} \; \mathbb{R}^n$	2
	§ 1	Оценка приращения дифференциального отображения	2
	$\S2$	Частные производные высших порядков	3
	§3	Обобщение бинома	4
	$\S4$	«Многомерный» дифференциал высоких порядков. Формула	
		Тейлора для функций многих переменных	4
	§ 5	Понятие экстремума, необходимое условие	5
	§ 6	Про квадратичные формы	6
	§ 7	Достаточное условие экстремума	7
	§8	Полнота пространства \mathbb{R}^n	8
	§ 9	Теорема о сжимающем отображении	9
	§ 10	Метод Ньютона	9
	§ 11	Теорема об обратном отображении(формулировка)	10
	§ 12	Доказательство теоремы об обратимости	11
	§ 13	Теорема о дифференцируемости обратного отображения	12
	§ 14	Теорема о гладкости обратного отображения	13
	§ 15	Гладкая зависимость корней многочлена от его коэффициентов	13
	§ 16	Теорема о неявном отображении	14
	§ 17	Функциональная зависимость системы функций	16
	§ 18	Геометрический смысл ранга матрицы Якоби	17
	§ 19	Три способа локального задания поверхности	17
	§ 20	Условный экстремум(нестрого)	18
	§ 21	Доказательство теоремы об условном экстремуме	19
2	Кривол	инейные интегралы	20
	§ 1	ХИнтеграл от дифференциальной формы по пути	20
	$\S2$	Точные формы	22
	$\S3$	Замкнутые формы	23
	$\S4$	Первообразная замкнутой формы вдоль пути	24
	§ 5	☆ Гомотопия путей	25
3	Комплексный анализ 26		26
	§ 1	ХИнтеграл от комплексной дифференциальной формы	26
	$\S42$	Классификация изолированных особых точек	27
	$\S46$	Вычисление вычетов в полюсах	27
	$\S47$	Вычисление интегралов с помощью вычетов	27
	$\S55$	Классические односвязные области. Теорема Римана	28
	$\S56$	Лемма Шварца	29
	$\S57$	Лемма о подгруппе группы автоморфизмов	29
	§ 58	Автоморфизмы классических областей	29
	Использо	рванная литература	31

Глава 1: Анализ в \mathbb{R}^n

§ 1 Оценка приращения дифференциального отображения

Утверждение 1. Пусть $f: \mathbb{R}^n \to \mathbb{R}^m$, $m \geqslant 2$. Тогда формула Лагранжа

$$f(b) - f(a) = f'(c)(b - a)$$

не работает.

Е.д. Пусть

$$f(t) := (\cos t, \sin t), \ b - a = 2\pi$$

Теорема 2 (об оценке приращения отображения). Пусть $f: G \subset \mathbb{R}^n \to \mathbb{R}^m$, $G - выпуклое, <math>f - \partial u \phi \phi e p e h u u p y e m a$,

$$\forall x \in G \ \|f'(x)\| \leqslant M$$

Тогда $\forall a, b \in G \ \|f(b) - f(a)\| \leqslant M\|b - a\|$

□ «Окружим» исходную функцию:

$$F = \psi \circ f \circ \varphi$$

гле 2

$$\varphi: \mathbb{R} \to \mathbb{R}^n \qquad \qquad \varphi(t) := t(b-a) + a, \qquad \qquad t \in [0,1]$$

$$\psi: \mathbb{R}^m \to \mathbb{R} \qquad \qquad \psi(y) := \langle y, \ell \rangle, \qquad \qquad \ell = f(b) - f(a)$$

Заметим, что F — обычная вещественнозначная функция. Так что для неё работает формула Лагранжа:

$$\exists c \in [0,1]: F(1) - F(0) = F'(c)(1-0) = F'(c)$$

Тогда из свойств нормы (по ходу дела обозначим $\varphi(c)$ за x):

$$||F'(c)|| = ||\psi'(f(x)) \cdot f'(x) \cdot \varphi'(c)|| \le ||\psi'(f(x))|| \cdot ||f'(x)|| \cdot ||\varphi'(c)||$$

Здесь тонкость в обозначениях. Производные — вроде матрицы, поэтому их нормы — что-то странное на первый взгляд. На самом деле смысл немного иной.

$$dL(x,h) = f'(x) \cdot h$$

Таким образом, дифференциал — неплохое линейное отображение. А под «нормой производной» имеется в виду норма соответствующего линейного отображения.

Теперь давайте что-нибудь скажем про эти нормы.

1.
$$\varphi'(t) = (b - a) \Rightarrow \|\varphi'(c)\| = \|b - a\|$$

2.
$$\psi(y) = \langle y, l \rangle, \|\psi\| = \|\ell\|$$

Так что

$$||F'(c)|| \leqslant M \cdot ||\ell|| \cdot ||b - a||$$

С другой стороны:

$$F(1) - F(0) = \psi(f(b)) - \psi(f(a)) = \langle f(b), \ell \rangle - \langle f(a), \ell \rangle = \langle \ell, \ell \rangle = ||\ell||^2$$

В итоге, совмещая оба выражения, приходим к утверждению теоремы.

 $^{^2}$ Вот тут как раз нужна выпуклость, иначе отрезок [a;b] может и не лежать в G

§ 2 Частные производные высших порядков

Определение 1. Пусть $f: G \subset \mathbb{R}^n \to \mathbb{R}, \ \forall x \in G \ \exists \ \partial_{i_1,\dots,i_k}^k f(x)$. Тогда

$$\partial_{i_1,\dots,i_{k+1}}^{k+1}f(x):=\partial_{i_{k+1}}(\partial_{i_1,\dots,i_k}^kf)(x)$$

3амечание 1. $C^p(G)$ — класс функций, определённых в G с непрерывной производной до p-го порядка включительно. Функции из C^1 ещё называются гладкими.

Теорема 1 (Зависимость производных *p*-го порядка от перестановки переменных). Пусть $f \in C^p(G)$, $x \in G$. При этом

$$i = \{i_1, \dots, i_p \mid i_k \in \{1, \dots, n\}\}\$$

 $j = \{j_1, \dots, j_p \mid j_k \in \{1, \dots, n\}\}\$
 $j = \pi(i)$

Тогда $\partial_i^p f(x) = \partial_i^p f(x)$

 \square Сначала докажем всё для p=2, n=2, т. е.

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$$

Пусть $(x,y) \in G$, $(x_0 + \Delta x, y) \in G$, $(x,y + \Delta y) \in G$, $(x + \Delta x, y + \Delta y) \in G$ Введём ещё 2 функции:

$$\varphi(t) = f(t, y + \Delta y) - f(t, y)$$

$$\psi(t) = f(x + \Delta x, t) - f(x, t)$$

Тогда $\varphi(x+\Delta x)-\varphi(x)=\varphi'(c_1)\Delta x=W,\,c_1\in[x,x+\Delta x].$ При этом

$$W = \varphi'(x)\Delta x \Delta x \left(\frac{\partial f}{\partial x}(c_1, y + \Delta y) - \frac{\partial f}{\partial x}(c_1, y)\right) = \frac{\partial^2 f}{\partial x \partial y}(c_1, c_2) \Delta x \Delta y, \ c_2 \in [y, y + \Delta y]$$

Аналогично

$$W = \frac{\partial^2 f}{\partial y \partial x}(c_3, c_4) \Delta x \Delta y, \ c_4 \in [y, y + \Delta y], c_3 \in [x, x + \Delta x]$$

По непрерывности второй производной f $(f \in C^2)$

$$\frac{\partial^2 f}{\partial x \partial y}(c_1, c_2) \xrightarrow[\Delta y \to 0]{\Delta x \to 0} \frac{\partial^2 f}{\partial x \partial y}(x, y)$$

$$\frac{\partial^2 f}{\partial y \partial x}(c_3, c_4) \xrightarrow[\Delta y \to 0]{\Delta x \to 0} \frac{\partial^2 f}{\partial y \partial x}(x, y)$$

По теореме о предельном переходе в равенствах $\stackrel{\cdot \cdot}{\smile}$ смешанные производные равны.

Теперь поймём, что делать в случае произвольных p, n.

Представим подстановку π как произведение транспозиций соседних элементов. Будем дальше разбираться с такими транспозициями.

Пусть $\tau_k = (j, j+1)$. Сначала посчитаем производные по $x_1, \ldots, x_{j-1} = i'$. А теперь обозначим $\widetilde{f} = \partial_{i'} f$. По доказанному утверждению для двух переменных, $\partial_{j,j+1}\widetilde{f} = \partial_{j+1,j}\widetilde{f}$. А теперь продифференцируем это равенство по оставшимся переменным.

Таким образом, для произвольной транспозиции $\tau_k = (j, j+1)$ верно утверждение теоремы. А значит, и для произвольной подстановки $\pi = \prod_k \tau_k$ теорема верна. \blacksquare

Замечание 1. Тут важно, что $f \in C^p(G)$. Одной точки бы не хватило, мы ведь рассматриваем маленький параллелепипед в U(x) и используем одномерную теорему Лагранжа внутри него. А для неё нужна дифференцируемость на интервале.

§ 3 Обобщение бинома

«Обычный» бином Ньютона:

$$(a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}$$

Его нетрудно обобщить до полинома Ньютона

$$(a_1 + \dots + a_n)^p = \sum_{i_1=1}^n \sum_{i_2=1}^n \dots \sum_{i_p=1}^n a_{i_1} \dots a_{i_p} = \sum_{\substack{\alpha_i \in \{0,\dots,p\} \\ \sum \alpha_i = 1}} a_1^{\alpha_1} \dots a_n^{\alpha_n} \cdot C_{\alpha_1,\dots,\alpha_n}$$

Введём обозначения:

- \bullet $a = (a_1, \ldots, a_n)$
- $\alpha = (\alpha_1, \dots, \alpha_n)$ мультииндекс, по сути вектор индексов, для которого вводится своя куча обозначений, дабы упростить жизнь

1.
$$\alpha + \beta = (\alpha_i + \beta_i)_{i=1}^n$$

2.
$$|\alpha| = \sum_{i=1}^{n} \alpha_i$$

3.
$$\alpha! = \prod_{i=1}^n \alpha_i!$$

•
$$a^{\alpha} = \prod_{i=1}^{n} a_i^{\alpha_i}$$

•
$$\partial_{\alpha} = \partial_{\alpha_1, \dots, \alpha_n}^n = \frac{\partial^n f}{\partial x_{\alpha_1} \dots \partial x_{\alpha_n}}$$

•
$$C_{\alpha} = C_{\alpha_1, \dots, \alpha_n}$$

Утверждение 1. $C_{\alpha} = \frac{p!}{\alpha!}$

▼

Ну, это просто число перестановок с повторениями. Нужно взять по множителю из p скобок, причём перестановки одинаковых множителей входят в одно слагаемое. В итоге нужно делить общее число перестановок на число перестановок одинаковых множителей. А дальше можно сказать, что в каждое слагаемое входит каждый множитель, просто некоторые в нулевой степени.

lack

§ 4 «Многомерный» дифференциал высоких порядков. Формула Тейлора для функций многих переменных

Определение 1. Пусть $f\colon G\subset\mathbb{R}^n\to\mathbb{R},\ f\in C^p(G)$. Тогда

$$d^{p} f(x) := \sum_{1 \leqslant i_{1} \leqslant \dots \leqslant i_{p} \leqslant n} \frac{\partial^{p} f}{\partial x_{i_{1}} \dots \partial x_{i_{p}}} dx_{i_{1}} \dots dx_{i_{p}}$$

Или ещё можно вот так записать

$$\left(\sum_{i} \mathrm{d}x_{i} \,\partial_{i}\right)^{p} f(x)$$

Утверждение 1. Если частные производные можно переставлять, то

$$d^{p} f(x) = \sum_{\substack{0 \le \alpha_{i} \le p \\ |\alpha_{i}| = p}} \frac{p!}{\alpha!} \, \partial_{\alpha} f(x) \, dx^{\alpha}$$

Теорема 2. Пусть $f \in C^{p+1}(G), G \in \mathbb{R}^n, G$ -выпуклая, $a \in G$. Пусть также $h \in \mathbb{R}^n : a + h \in G$. Тогда

$$f(a+h) = \sum_{k=0}^{p} \frac{1}{k!} d^{k} f(a,h) + R_{p}(h)$$

Остаток $R_p(h)$ можно представить несколькими способами:

1. В форме Пеано: $R_p(h) = o(\|h\|^p)$

2. В форме Лагранжа:
$$R_p(h) = \frac{1}{(p+1)!} d^{p+1} f(a+\theta h,h), \ \theta \in (0,1)$$

Рассмотрим $\varphi(t)=a+th,\,t\in[0,1],\,F(t)=f(\varphi(t)),\,F\colon[0,1]\to\mathbb{R}.$ По одномерной теореме Тейлора

$$F(1) = F(0) + 1 \cdot F'(0) + \frac{1}{2!}F''(0)1^{2} + \dots + \frac{1}{p^{2}}F^{(p)}(0) \cdot 1^{p} + R_{p}$$

Докажем, что $F^{(k)}(0) = \mathrm{d}^k f(a,h)$. Проще всего по индукции, давайте ещё такое нестандартное обозначение введём: $(k) = (1,\ldots,k)$, и будем понимать под $i_{(k)}$ вектор индексов, а под $h_{i(k)}$ — произведение соответствующих h.

база: F(0) = f(a)

переход: Пусть $F^{(k-1)}(t) = \sum_{1\leqslant i_1,\dots,i_{k-1}\leqslant n} \partial_{i_{(k-1)}} f(a+th)\,h_{i_{(k-1)}}.$ При дифференцировании по t всякие h_{i_j} в каждом слагаемом вынесутся за знак производной, а частная производная от f даст $\sum_{i_k} \partial_{i_{(k)}} f(a+ht)h_{i_k}.$ Если скомпоновать все суммы и подставить t=0, как раз получается $d^k f(a,h)$

Теперь разберёмся с остатком

$$R_p = \frac{1}{(p+1)!} F^{(p+1)}(\theta) \cdot 1^{p+1} = \frac{1}{(p+1)!} d^{(p+1)} f(a+h\theta, h)$$

Поскольку $\forall i \mid h_i \mid \leqslant ||h||$

$$d^{(p+1)}f(a+\theta\,h,h) = O(\|h\|^{p+1}) = o(\|h\|^p)$$

Следовательно, $R_p = o(\|h\|^p)$

§ 5 Понятие экстремума, необходимое условие

Определение 1. Пусть $f: G \subset \mathbb{R}^n \to \mathbb{R}, a \in G$. Тогда говорят, что f имеет в a максимум (нестрогий), если

$$\exists U(a) \colon \forall x \in U \ f(x) \leqslant f(a)$$

Когда неравенство строгое, а окрестность проколотая, то максимум — строгий Для минимума нужно \geqslant .

Теорема 1 (Необходимое условие экстремума). Пусть а внутренняя точка $G \subset \mathbb{R}^n$, $f \in C^1(a)$. Тогда если f имеет в а экстремум, то

$$df(a) = 0 \Leftrightarrow \forall i \ \partial_i f(a) = 0$$

 \square Рассмотрим $\varphi_i(t) = f(a_1, \dots, a_{i-1}, t, a_{i+1}, \dots, a_n)$. Тогда у такой функции есть экстремум в a_i . А тогда, из одномерной теоремы Ферма $d\varphi_i(t) = 0$. А значит $\partial_i f = 0$

§ 6 Про квадратичные формы

Определение 1. ¹ Функция $A: V \times V \to \mathbb{R}$, где V — векторное пространство, называется билинейной формой, если она линейна по обеим своим аргументам.

Определение 2. Билинейная форма A называется $\mathit{симметрической}$, если $\forall \, x,y \, A(x,y) = A(y,x)$.

Определение 3. Пусть A — билинейная форма, e_1, \ldots, e_n — базис в векторном пространстве. Тогда

$$A(x,y) = \sum_{i,j=1}^{n} A(e_i, e_j) x^i y^j$$

и матрица A, элементы которой $a_{ij} = A(e_i, e_j)$ называется матрицой билинейной формы.

Определение 4. Пусть A — симметрическая билинейная форма. Тогда $A(x) = A(x,x) - \kappa вадратичная форма. При этом <math>A(x,y)$ называется полярной формой по отношению к A(x).

Определение 5. Матрица квадратичной формы — матрица соответствующей полярной формы.

Определение 6 («Определённость» формы). Если что-то верно, то про форму A(x,y) говорят:

- $\forall x, y \neq 0 \ A(x, y) > 0$ положительно определена
- $\forall x,y \neq 0 \ A(x,y) < 0$ отрицательно определена
- $\forall x, y \neq 0 \ A(x, y) \geqslant 0$ полуопределена в положительном смысле
- $\forall x,y \neq 0 \ A(x,y) \leqslant 0$ полуопределена в отрицательном смысле

E.g. Скалярное произведение — положительно определённая билинейная форма.

Теорема 1. Пусть в некотором базисе f_1, \ldots, f_n квадратичная форма A имеет матрицу (a_{ij}) . Пусть к тому же все «северо-западные» миноры Δ_i отличны от нуля. Тогда существует базис e_1, \ldots, e_n , в котором матрица A имеет вид

$$\begin{pmatrix}
\frac{1}{\Delta_1} & & & \\
& \frac{\Delta_1}{\Delta_2} & & \\
& & \ddots & \\
& & & \frac{\Delta_{n-1}}{\Delta_n}
\end{pmatrix}$$

 $^{^{1}}$ тут изложение больше по [4]

□ По сути, нам нужно построить ортогональный базис, только вместо скалярного произведения используется билинейная форма A(причём не обязательно положительно определённая). За подробностями см. [4]. ■

Теорема 2 (Правило Сильвестра). Квадратичная форма положительно определена, если все миноры из теоремы 1.6.1 положительны, и отрицательно определена, если их знаки чередуются, начиная c «-».

□ Следствие предыдущей теоремы. Определённость формы не зависит от выбора базиса.

§ 7 Достаточное условие экстремума

Теорема 1 (Достаточное условие экстремума). Пусть $a \in G \subset \mathbb{R}^n$, a - внут- ренняя точка, $f \in C^2(a)$.

1.
$$df(a) = 0$$
, $d^2f(a,h) > 0 \Rightarrow f$ umeem e a min

2.
$$df(a) = 0$$
, $d^2f(a,h) < 0 \Rightarrow f$ имеет в $a \max$

3.
$$df(a) = 0, d^2f(a,h) \le 0 \Rightarrow$$
 ничего нет

4.
$$df(a) = 0$$
, $d^2f(a,h) \leq 0 \Rightarrow f$ не имеет в a min

5.
$$df(a) = 0$$
, $d^2f(a,h) \geqslant 0 \Rightarrow f$ не имеет в а max

 \square Поскольку $\mathrm{d}f(a)=0, \, \Delta f(a)=\frac{1}{2}(\mathrm{d}^2f(a)+\alpha),$ где $\alpha=o(\|h\|).$ Для упрощения жизни примем $t=\frac{h}{\|h\|}.$ Тогда приращение функции можно переписать в виде

$$\Delta f = ||h||^2 \left(\frac{1}{2} \sum b_{ij} t_i t_j + \frac{\alpha}{||h||^2}\right)$$

Поскольку $\frac{\alpha}{\|h\|^2} \to 0$, существует $\overset{\circ}{U}_{\varepsilon}(a)$ в которой знак приращения определяется лишь первым слагаемым. Нетрудно заметитить, что все значения t лежат на единичной сфере, которая компакт. Причём значения t покрывают всю сферу, ведь направление h можно выбирать в окрестности a произвольно. Так что можно просто сделать второе слагаемое меньшим минимума квадратичной формы на единичной сфере.

Таким способом можно расправиться с пунктами 1–2.

Для пункта 3 отыщем h_1 : $d^2(a,h_1)>0$, h_2 : $d^2(a,h_1)<0$. Заметим, что если A — квадратичная форма, то $A(h)>0 \Rightarrow \forall s \ A(sh)=s^2A(h)>0$. По сути, мы считаем значение формы вдоль прямой, проходящей через a. Если, как и выше, записать приращение в виде

$$\Delta f = s^2 \left(\frac{1}{2} d^2(a, h_{1|2}) + \frac{\alpha}{s^2} \right)$$

то видно, что можно получить в окрестности $\overset{\circ}{U}(a)$ всё, что угодно, просто $s \to 0$. 4–5 легко доказываются от противного. \blacksquare

§ 8 Полнота пространства \mathbb{R}^n

Определение 1. Последовательность (x_n) называется фундаментальной (последовательностью Коши), если

$$\forall \varepsilon > 0 \ \exists N \colon \forall m, n > N \ \rho(x_n - x_m) < \varepsilon$$

Определение 2. Метрическое пространство (X, ρ) — полное, если всякая фундаментальная последовательность в нём сходится

Е.д. $\mathbb{R} \setminus 0$ — не полное метрическое пространство, $x_n = \frac{1}{n}$ тому пример.

3амечание 1. Если (X, ρ) — полно, то X вообще-то замкнуто. Хорошо видно на примере выше.

Замечание 2. Если (X, ρ) — полно, $Y \subset X$ — замкнуто. Тогда и Y — полно.

Утверждение 1. \mathbb{R}^{n} — полное метрическое пространство.

▼

 \triangleleft произвольный $\varepsilon > 0$. Тогда

$$\rho(x_n - x_m) < \varepsilon \Rightarrow \forall i \ \rho(x_m^i e_i - x_n^i e_i) < \varepsilon \Rightarrow \forall i \ |x_m^i - x_n^i| < \varepsilon$$

Таким образом $(x_n^i) \in \mathbb{R}$ — фундаментальная. А в \mathbb{R} по теореме из первого семестра фундаментальные последовательности сходятся. Тогда $\forall x_n^i \to a^i$. Значит и $x_n \to a$.

A

Кусок дальше не шибко нужен

Давайте введём метрику на пространстве непрерывных функций

Определение 3. Пусть $f, g, h \in C([a; b])$. Тогда

$$\rho(f,g) := \sup_{x \in [a;b]} |f(x) - g(x)| = ||f - g||$$

Здесь супремум можно заменить на максимум по теореме Вейерштрасса. Докажем что это правда расстояние:

- $\rho(f,g) = \rho(g,f)$ очевидно
- $\rho(f,g) \geqslant 0$ тоже очевидно
- $\rho(f,g) = \rho(f,h) + \rho(h,g)$ не так очевидно

$$\max_{x \in [a;b]} |f(x) - g(x)| = |f(x_0) - g(x_0)| \le |f(x_0) - h(x_0)| + |h(x_0) - g(x_0)|$$

$$\le \max_{x \in [a;b]} |f(x) - h(x)| + \max_{x \in [a;b]} |h(x) - g(x)| = \rho(f,h) + \rho(h,h)$$

Утверждение 2. Пространство C([a;b]) с указанной выше метрикой полно.

▼

Поточечная сходимость очевидна из полноты \mathbb{R} . А равномерную можно получить, устремив m к ∞ , зафиксировав n. А из равномерной сходимости следует непрерывность предельной функции.

▲

Замечание. Если взять в качестве метрики $\int_a^b |f-g|$, то полнота поломается. Пополнение будет пространством суммируемых функций.

§ 9 Теорема о сжимающем отображении

Определение 1. Пусть (X, ρ) — метрическое пространство. Тогда отображение $T \colon X \to X$ называется сжимающим, если

$$\exists C \in (0,1) \colon \forall x', x'' \rho(T(x'), T(x'')) \leqslant C \cdot \rho(x', x'')$$

Теорема 1 (Банах). Пусть (X, ρ) — полное метрическое пространство, а отображение $T: X \to X$ — сжимающее. Тогда $\exists ! x_* \in X : Tx_* = x_*$ (неподвижная точка).

Ещё часто ссылаются на следующий факт, появляющийся в процессе доказательства:

$$\forall x_0 \in X \exists \lim_{n \to \infty} T^n x_0 = x_*$$

 $\square \lessdot x_n = T^n x_0$, где $x_0 \in X$ — произвольное. Докажем, что

- 1. $x_n \to x_*$
- 2. $Tx_* = x_*$
- 3. других таких x_* нет.

Поехали

1. (x_n) сходится в себе, ведь $C \in (0,1)$.

$$\rho(x_m, x_{m+p}) \leqslant \rho(x_m, x_{m+1}) + \dots + \rho(x_{m+p-1}, x_{m+p}) \leqslant \rho(x_0, x_1) C^m (1 + \dots + C^{p-1}) < \rho(x_0, x_1) \frac{C^m}{1 - \dots + C^{p-1}}$$

раз пространство полное, $\exists \lim_{\infty} x_n$

- 2. отображение T непрерывно $\Rightarrow Tx_n \to Tx_*$. Но по теореме о подпоследовательности и единственности предела $Tx_* = x_*$.
- 3. Пусть x_{**} другая неподвижная точка. Но тогда

$$\rho\left(x_{**}, x_{*}\right) = \rho\left(Tx_{**}, Tx_{*}\right) \leqslant C\rho\left(x_{**}, x_{*}\right) \Rightarrow (C - 1)\rho\left(x_{**}, x_{*}\right) \geqslant 0 \Longrightarrow_{C < 1} \rho\left(x_{**}, x_{*}\right) = 0$$

§ 10 Метод Ньютона

Пусть $f \in C([a;b]), f(a) \cdot f(b), f(x_*) = 0$, $f'(x_*) \neq 0$. Сам метод выглядит как-то так:

Проводится касательная к графику в текущей точке, ищется её пересечение с осью x, оттуда восставляется перпендикуляр, пересечение которого с графиком — новая точка.

$$x - Tx = \frac{f(x)}{f'(x)} \Leftrightarrow Tx = x - \frac{f(x)}{f'(x)}$$

Докажем, что это вообще работает.

Теорема 1. Пусть $f \in C^2([a;b]), x_* \in [a;b]$:

a)
$$f(x_*) = 0$$

b)
$$f'(x_*) \neq 0$$

Тогда $\exists U(x_*): \forall x_0 \in U$, такая что $T^n x_0 \to x_* \ u \ x_{n+1} - x_* = O((x_n - x_*)^2)$

 \square Сначала оценим T'.

$$T'(x) = 1 - \frac{f'(x)^2 - f(x)f''(x)}{f'(x)^2} = \frac{f(x)f''(x)}{f'(x)^2} \xrightarrow[n \to \infty]{(f \in C^2)} \frac{f(x_*)f''(x_*)}{f'(x_*^2)} = 0$$

Так что $\exists U(x_*) : c \in \overline{U} \Rightarrow |T'(c)| \leqslant \frac{1}{2}$.

Теперь покажем, что $T(\overline{U}) \subset \overline{U}$. Из вышесказанного

$$|Tx - Tx_*| \le \frac{1}{2}|x - x_*|$$
 (1.1)

Поскольку $Tx_* = x_* - 0 = x_*$, то (1.1) равносильно

$$|Tx - x_*| \leqslant \frac{1}{2}|x - x_*|$$

А это как раз то, что надо. Значит T как раз сжимающее отображение, и по теореме 1.9.1 такой $x_*\colon f(x_*)=0$ единственный.

Вторая часть тривиально получается из разложения f в ряд Тейлора в окрестности x_n .

§ 11 Теорема об обратном отображении (формулировка)

Пусть $F:G\subset\mathbb{R}^n\to\mathbb{R}^m$ — гладкое. Порассуждаем, когда может существовать F^{-1} .

Рассмотрим, например, линейное отображение.

$$y = F(x) = Ax \Leftrightarrow \begin{cases} y_1 = a_{11}x_1 + \dots + a_{1n}x_n \\ \dots \\ y_m = a_{m1}x_1 + \dots + a_{mn}x_n \end{cases}$$

Понятно, что в таком случае задача поиска обратного отображения сводится к поиску обратной матрицы. Тогда из линала ясно, что для того, чтобы у нас всё вышло, нужно

$$m = n \wedge \det A \neq 0$$

Теперь попытаемся обобщить на остальные функции.

Пусть $a \in G$, b = F(a)

$$(?)\exists U(a), V(b): F: U \leftrightarrow V$$

$$\Delta F = F(x) - F(a) = y - b = \Delta y \tag{1.1}$$

$$\Delta F = F'(a)dx + o(dx) \tag{1.2}$$

$$dF(a) = dy(b) \tag{1.3}$$

Условие разрешимости $(1.3) - \det(F'(a)) \neq 0$. Утверждается, что у (1.1) условие разрешимости такое же.

Соответственно, формулировка

Теорема 1. Пусть $F: G \subset \mathbb{R}^n \to \mathbb{R}^n$, $a \in G$, b = F(a). Пусть ещё F дифференцируема в a, $\det(F'(a)) \neq 0$

Tог ∂a

$$\exists U(a), V(b): F: U \leftrightarrow V$$
$$\exists F^{-1}: V \to U, F^{-1} \in C^{0}$$

§ 12 Доказательство теоремы об обратимости

🗆 (Теорема об обратимости отображения) Введём обозначения:

$$F'(a) = \Gamma$$

$$\Phi(x) = x - \Gamma^{-1}(F(x) - y)$$

Нетрудно заметить, что x — неподвижная точка $\Phi \Leftrightarrow F(x) = y$. Очень хотелось бы подогнать всё под теорему Банаха (1.9.1). Тогда отображение в окрестности a будет взаимно-однозначным.

1. Сначала оценим $\|\Phi'\|$. Попутно примем $\|y-b\|<\delta$, это потом поможет доказать непрерывность.

$$\Phi'(x) = E - \Gamma^{-1}(F'(x)) = \Gamma^{-1}(F'(a) - F'(x))$$
$$\|\Phi'(x)\| \leqslant \|\Gamma^{-1}\| \cdot \|(F'(a) - F'(x))\|$$

Последний множитель явно $\xrightarrow[x \to a]{} 0$ (так как $F \in C^1$) Тогда и $\|\Phi'(x)\| \to 0$.

А значит найдётся $U_{\varepsilon_0}(a) : \|\Phi'(x)\| \leqslant \frac{1}{2}$.

Тогда по теореме 1.1.2

$$x, x' \in U_{\varepsilon_0}(a) \Rightarrow \|\Phi(x) - \Phi(a)\| \leqslant \frac{1}{2} \|x - x'\|$$

Собственно, почти победа. Осталось лишь выбрать внутри U_{ε_0} компакт $\overline{U_{\varepsilon_1}}$ (иначе множество не очень полное).

2. Теперь покажем, что

$$\exists \, \overline{U} \colon \Phi(\overline{U}) \subset \overline{U}$$

$$\|\Phi(x) - a\| = \|x - a - \Gamma^{-1}(F(x) - y)\| \le \|\Gamma^{-1}\| \cdot \|\Gamma(x - a) - F(x) + y + b - b\|$$

$$\le \|\Gamma^{-1}\| \cdot (\| - \underbrace{(F(x) - F'(a)(x - a) - F(a))}_{C} \| + \|y - b\|)$$

Выберем произвольный ε : $0 < \varepsilon < \varepsilon_1$.

Однако мы ещё можем подкрутить ε_1 .

$$\exists U_{\varepsilon_1} : \frac{\|\alpha\|}{\|x - a\|} < \frac{1}{2\|\Gamma^{-1}\|}$$

 $^{^1\}mathrm{Тут}\ y$ фиксируется и от x не зависит. Так что y'=0

Это следует из формулы Тейлора (1.4.2), а применять её можно, так как шар — выпуклое множество. Ещё выберем $\delta = \frac{\varepsilon}{2\|\Gamma^{-1}\|}$. Там правда ε , а не ε_1 .

Тогда цепочка неравенств выше преобразуется к такому виду

$$\dots < \|\Gamma^{-1}\| \cdot \frac{\|x-a\|}{2\|\Gamma^{-1}\|} + \frac{\varepsilon}{2\|\Gamma^{-1}\|} \cdot \|\Gamma^{-1}\|$$

А теперь положим $||x-a|| \le \varepsilon$ (неравенство нужно нестрогое для полноты). Тогда

$$x \in \overline{U_{\varepsilon}}(a) \Rightarrow \Phi(x) \in U_{\varepsilon}(a) \subset \overline{U_{\varepsilon}}(a)$$

А теперь по теореме Банаха

$$\exists ! x_0 \in \overline{U_{\varepsilon}}(a) \colon \Phi(x_0) = x_0 \Leftrightarrow F(x_0) = y_0$$

Видимо, осталось пересечь окрестность a с прообразом V(b) : $U=F^{-1}(V)\cap U_{\varepsilon}(a)$

3. Заодно получилась и непрерывность, за счёт произвольно выбранного ε :

$$\forall U_{\varepsilon} \exists V_{\delta}(b) \colon F^{-1}(V_{\delta}) \subset U_{\varepsilon}$$

§ 13 Теорема о дифференцируемости обратного отображения

Теорема 1 (о дифференцируемости F^{-1}). Пусть $U \subset \mathbb{R}^n$, $V \subset \mathbb{R}^n$, $F: U \leftrightarrow V$. Пусть также F дифференцируема $g \in U$, F(g) = g, $g \in F'(g) \neq g$. Тогда F^{-1} дифференцируемо $g \in F$.

 \square То, что есть обратное отображение, доказали выше. Пусть y=F(x). Обозначим: $h=x-a,\ k=y-b$. Отображение биективно, значит $h\neq 0 \Leftrightarrow k\neq 0$. Из дифференцируемости F

$$k = y - b = F(x) - F(a) = Ah + \alpha, \quad \alpha = o(h) \ (h \to 0)$$

 $A = F'(a) \neq 0$, следовательно $\exists A^{-1}$

$$A^{-1}k = A^{-1}Ah + A^{-1}\alpha \Rightarrow \Delta F^{-1} = h = A^{-1}k - A^{-1}\alpha$$

Докажем, что $-A^{-1}\alpha=:\beta=o(k)\;(k\to 0)$

$$A\beta \leqslant \frac{-\alpha}{\|k\|} = \frac{-\alpha}{\|h\|} \cdot \frac{\|h\|}{\|k\|}$$

Покажем, что последний член — ограничен

$$\frac{\|h\|}{\|k\|} = \frac{\|h\|}{\|Ah + \alpha\|} \leqslant \frac{\|h\|}{\left| \|Ah\| - \|\alpha\| \right|} = \frac{1}{\left| \frac{\|Ah\|}{\|h\|} - \frac{\|\alpha\|}{\|h\|} \right|}$$

А последнее выражение ограничено при $\|h\| < \delta$

Следствие.
$$(F^{-1})'(b) = (F'(a))^{-1}$$

§ 14 Теорема о гладкости обратного отображения

Теорема 1. Пусть $F: U \leftrightarrow V$, биективна, $\in C^p$. Пусть к тому же $\det F'(x) \neq 0$. Тогда $F^{-1} \in C^p$

 \square Введём обозначения (оно всё существует по предыдущим теоремам хоть гдето)

$$F'(x) = \left(\frac{\partial F_i}{\partial x_j}\right)_{i,j=1}^n = (a_{ij}) = A$$
$$(F^{-1})'(y) = \left(\frac{\partial F_i^{-1}}{\partial y_j}\right)_{i,j=1}^n = (b_{ij}) = B$$

Вполне ясно, что $B = A^{-1}$. Из алгебры $b_{ij} = \frac{A_{ji}}{\det A}$ (здесь A — алгебраическое дополнение).

Заметим, что из последнего выражения следует, что b_{ij} — рациональная функция от $\{a_{lk}\}$. Следовательно, $\widetilde{b_{ij}}=b_{ij}(a_{11},\ldots,a_{kl},\ldots,a_{nn})\in C^{\infty}$. С другой стороны

$$b_{ij}(y) = \frac{\partial F_i^{-1}}{\partial y_i}(y) = \frac{\partial F_i^{-1}}{\partial y_i}(F(x)) \Leftrightarrow b_{ij}(y) = \widehat{b_{ij}}(x)$$

Так что $\widehat{b_{ij}} = b_{ij} \circ F$.

Дальше немного магии. Введём ещё одну функцию

$$\overline{b_{ij}}(x) = b_{ij}(a_{11}(x), \dots, a_{kl}(x), \dots, a_{nn}(x))$$

Заметим, что каждая $a_{ij}(x) \in C^{p-1} \Rightarrow \overline{b_{ij}} \in C^{p-1}$. Хорошо, тогда

$$b_{ij}(y) = (\overline{b_{ij}} \circ F^{(-1)})(y)$$

Раньше доказали, что $F^{-1} \in C^0$. Теперь разматываем цепочку дальше:

$$F^{-1} \in C^i \Rightarrow \overline{b_{ij}} \circ F^{-1} \in C^i \Rightarrow b_{ij} \in C^i$$

Значит, частные производные F^{-1} принадлежат C^i . Тогда сама $F^{-1} \in C^{i+1}$. Таким бобром мы доберёмся до C^p . Дальше не выйдет, так как не хватит глад-кости $\overline{b_{ij}}$.

§ 15 Гладкая зависимость корней многочлена от его коэффициентов

Теорема 1. Пусть $P(x) \in \mathbb{R}[x]$ имеет n корней $(x_j^0), x_j^0 \in \mathbb{R},$ таких что $\forall i, j \ x_i^0 \neq x_j^0$. Пусть ещё старший коэффициент = 1. Тогда

$$x_i = x_i(a_0, \dots, a_{n-1}) \in C^{\infty}$$

 \square Пусть $P(x) = (x - x_1) \cdots (x - x_n)$. Вспомним теорему Виета (из алгебры)

$$a_0 = (-1)^n x_1 \cdots x_n$$

 $a_1 = (-1)^{n-1} \sum_i \prod_{j \neq i} x_j$

• • • • • • • •

$$a_{n-1} = (-1)\sum_{i} x_i$$

Рассмотрим P как отображение $(x_1, \ldots, x_n) \mapsto (a_0, \ldots, a_{n-1})$.

$$P'(x) = \begin{pmatrix} \frac{\partial P_1}{\partial x_1} & \cdots & \frac{\partial P_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial P_n}{\partial x_1} & \cdots & \frac{\partial P_n}{\partial x_n} \end{pmatrix} = \begin{pmatrix} (-1)^n \prod_{i \neq 1} x_i & (-1)^n \prod_{i \neq 2} x_i & \cdots & (-1)^n \prod_{i \neq n} x_i \\ \cdots & \cdots & \cdots & \cdots \\ -1 & -1 & \cdots & -1 \end{pmatrix}$$

Посчитаем $\det(F')$. Этот определитель можно рассмотреть как многочлен $\in R[x_1,\ldots,x_n]$ Его степень не превосходит $0+1+\cdots+(n-1)=\frac{n(n-1)}{2}$. Заметим, что если хоть какая-то пара столбиков равны, то определитель равен нулю. Так что $\det(F')$ делится на всевозможные многочлены вида x_i-x_j . А их как раз $\frac{n(n-1)}{2}$ и они неприводимые. Следовательно, 1

$$\det(F')(x_1,\ldots,x_n) = C \prod_{i < j} (x_i - x_j)$$

А значит при условии неравенства корней он ненулевой.

Дальше можно воспользоваться теоремой о гладкости обратного отображения. ■

§ 16 Теорема о неявном отображении

Определение 1. Пусть $F: \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^{m2}$. Рассмотрим уравнение

$$F(x,y) = 0 (1.1)$$

Пусть $x^0 \in \mathbb{R}^n$, $y^0 \in \mathbb{R}^m$ такие, что $F(x^0, y^0) = 0$. Тогда если $\exists P(x^0) \subset \mathbb{R}^n$, $Q(y^0) \subset \mathbb{R}^m$, такие что

$$\forall x \in P \exists ! y \in Q \colon F(x,y) = 0$$

то говорят, что уравнение (1.1) задаёт неявную функцию $f \colon P \to Q$.

Сначала всякие комментарии.

$$(1.1) \Leftrightarrow \begin{cases} F_1(x_1, \dots, x_n, y_1, \dots, y_m) = 0 \\ \dots \\ F_k(x_1, \dots, x_n, y_1, \dots, y_m) = 0 \end{cases}$$

Как обычно, главная идея состоит в том, чтобы всё линеаризовать

$$\begin{cases}
dF_1 = 0 \\
dF_k = 0
\end{cases}
\Leftrightarrow
\begin{cases}
\sum_{j=1}^m \frac{\partial F_1}{\partial y_j} dy_j = -\sum_{j=1}^m \frac{\partial F_1}{\partial x_j} dx_j \\
\dots \\
\sum_{j=1}^m \frac{\partial F_k}{\partial y_j} dy_j = -\sum_{j=1}^m \frac{\partial F_k}{\partial x_j} dx_j.
\end{cases}$$
(1.2)

При этом dy_j мы хотим выразить через dx_j . Какие-то шансы обратить всё это дело есть лишь при условиях:

1.
$$k = m$$

¹Этого, конечно, не было в курсе алгебры, но там не используется ничего страшнее теоремы о делении с остатком. Вообще доказать бы надо, но лень.

 $^{^{2}{}m B}$ доказательстве потом весомо пользуются, что функция действует в пространство той же размерности, что и y

2.
$$\det\left(\frac{\partial(F_1,\ldots,F_k)}{\partial(y_1,\ldots,y_m)}\right)\neq 0$$

Сейчас будем доказывать, что $(1.2) \Rightarrow (1.1)$.

Теорема 1 (Теорема о неявном отображении). Пусть $F: G \subset \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$, $F \in C^p, \ p \geqslant 1$.

$$F(x,y) = 0, (x_0, y_0) \in G$$

- 1. $F(x_0, y_0) = 0$
- 2. $\det F_y'(x_0, y_0) \neq 0$

Тогда $\exists P(x_0), Q(x_0), \ maкие, \ что \ (1.1)$ задаёт неявное отображение $f \colon P \to Q$. При этом $f \in C^p$ и

$$f'(x) = -(F'_y(x,y))^{-1} \cdot F'_x(x,y)$$

 \square Доказательство — «обёртка» над теоремой об обратном отображении. К слову, в [1, c. 673] сразу доказывается утверждение о неявном отображении.

Итак, обозначения:

1. $\Phi: G \subset \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n \times \mathbb{R}^m$. Работает как-то так:

$$(x,y) \mapsto (u,v), \begin{cases} u=x, & u \in \mathbb{R}^n \\ v=F(x,y), & v \in \mathbb{R}^m \end{cases}$$

- 2. $i: \mathbb{R}^n \to \mathbb{R}^n \times \mathbb{R}^m$ такого сорта $x \mapsto (x,0)$
- 3. $\pi: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ такого сорта $(x, y) \mapsto y$

Теперь найдём определитель $\Phi'(x,y)$. Посчитав как-то частные производные, получим

$$\Phi'(x,y) = \left(\begin{array}{c|c} E_n & 0 \\ \hline F'_x & F'_y \end{array}\right) \Rightarrow \det(\Phi'(x_0,y_0)) = \det E_n \cdot \det F'_y(x_0,y_0) \neq 0$$

Чудно, значит по теореме об обратном отображении $(1.11.1) \exists \Phi^{-1}(x_0, y_0)$ и ещё окрестности $U(x_0, y_0), V(x_0, 0)$. Теперь определим окрестности из условия теоремы:

$$P(x_0) = i^{-1}(V) \wedge Q(y_0) = \pi(U)$$

По сути — проекции.

В таких обозначениях $f=\pi\circ\Phi^{-1}\circ i.$ Вполне очевидно, что $f\in C^p.$ Ну $i,\pi\in C^\infty,\ \Phi^{-1}\in C^p.$

К тому же

$$\forall x \in P \ x \stackrel{i}{\mapsto} (x,0) \stackrel{\Phi^{-1}}{\mapsto} (x,y) \stackrel{\pi}{\mapsto} y \in Q$$

При этом такой y — единственный. В итоге получилось задать неявно отображение f.

Из вышесказанного, оно сколько нужно раз дифференцируемо. Так что

$$\frac{\partial}{\partial x}F(x, f(x)) = F'_x \cdot E + F'_y \cdot f'(x) = 0$$

По условию F_y' — обратима. Следовательно,

$$f'(x) = -(F'_y(x,y))^{-1} \cdot F'_x(x,y)$$

Функциональная зависимость системы функций

Определение 1. Пусть $f_1,\ldots,f_m,g\colon G\subset\mathbb{R}^n\to\mathbb{R}$ — гладкие функции, $x_0\in G$. Тогда g называются функционально зависимой от f_1,\ldots,f_m в $V(x_0),$ если

$$\exists \, \varphi \colon U(f(x_0)) \to \mathbb{R}, \varphi \in C^1 : \ g(x) = \varphi(f(x))$$
 в $V(x_0)$

Определение 2. Пусть $f_1, \ldots, f_m, g \colon G \subset \mathbb{R}^n \to \mathbb{R}$ — гладкие функции. Тогда эти функции называются функционально независимыми, если определение выше не выполняется ни для какой $V \subset G$ ни для какой из функций из набора.

Теорема 1. (о функциональной зависимости) Пусть $f_1, \ldots, f_m, g \colon G \subset \mathbb{R}^n \to$

$$\mathbb{R}$$
 — гладкие функции. K тому же $a \in G$, $f = (f_i)_i$, $y = f(x)$, $\operatorname{rk} \begin{pmatrix} f_1' \\ \vdots \\ f_m' \end{pmatrix} = m$ в

точке $x\in U(a)$. Тогда, если $\operatorname{rk}\begin{pmatrix} f_1'\\ \vdots\\ f_m'\\ g' \end{pmatrix}=m$ в точке $a,\ ^1$ то $\exists\, V(a)$ в которой g функционально зависит g

 \square Пусть сразу $n \geqslant m$, иначе условие теоремы не выполняется совсем никогда (ну там т векторов всегда ЛЗ).

Введём обозначения:

$$x = (\underbrace{x, \dots, x_m}_{\bar{x}}, \underbrace{x_{m+1}, \dots, x_n}_{\bar{x}}), \ \bar{y} = (y_1, \dots, y_m, \bar{x})$$

Из алгебры в $f'(x), x \in U(a)$ существует ненулевой минор порядка m. Можно НУО считать, что он соответствует \bar{x} . Тогда это равносильно тому, что $\det\left(\frac{\partial f}{\partial \bar{x}}(a)\right) \neq 0.$

Рассмотрим такую неявную функцию

$$F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m, \ F(\bar{y}, \bar{x}) = y - f(\bar{x}, \bar{x}) = 0$$

Оно всё по условию гладкое. Тогда по теореме о неявном отображении существует пара окрестностей P,Q и

$$\exists \varphi \colon P \subset \mathbb{R}^n \to Q \subset \mathbb{R}^m, \ \bar{x} = \varphi(\bar{y})$$

В этих окрестностях $F \equiv 0 \Leftrightarrow y \equiv f(\varphi(y,\bar{x}),\bar{x})$. Заметим, что здесь y,\bar{x} независимые переменные. Так что если j > m, то

$$\frac{\partial}{\partial x_j} f_i(\varphi(\bar{y}), \bar{\bar{x}}) = \sum_{k=1}^m \partial_k f_i \cdot \frac{\partial \varphi_k}{\partial x_j} + \partial_j f_i \equiv 0$$

Из условия на ранг известно, что

$$g'(x) = \sum_{i=1}^{m} \lambda_i f_i'(x), \ x \in U(a)$$

 $^{^{1}}$ тут тонкость. Если ранг равен m, то определитель не 0 и в некой окрестности a по непрерывности. А вот со вторым так не прокатит, там наоборот нужно равенство 0

Нам для того чтобы показать, что g функционально зависит от f, необходимо приравнять в окрестности точки a g к функции от y. Пусть снова j>m, тогда

$$g(x) = g(\bar{x}, \bar{\bar{x}}) = g(\varphi(\bar{y}), \bar{\bar{x}})$$
$$\frac{\partial g}{\partial x_j} = \sum_{k=1}^{m} \partial_k g \cdot \frac{\partial \varphi_k}{\partial x_j} + \partial_j g$$

А вот теперь нужно воспользоваться условием на ранги. Тут очень важно, что это условие работает в окрестности a — ведь какие-то тождества в точке нам ничего интересного не дадут.

$$\frac{\partial g}{\partial x_j} = \sum_{i=1}^m \lambda_i \left(\partial_k f \cdot \frac{\partial \varphi_k}{\partial x_j} + \partial_j f_i \right) = 0$$

Из того, что g, φ — гладкие получаем, что и функция, нужная в определении 1.17.1 тоже гладкая. Осталось только пересечь много окрестностей (из неявного отображения, условия на ранг etc).

§ 18 Геометрический смысл ранга матрицы Якоби

Определение 1 (Коразмерность). Пусть V — подпространство U. Тогда codim V = $\dim U - \dim V$.

Теорема 1. Пусть $F: G \subset \mathbb{R}^n \to \mathbb{R}^m$, $a \in G$, b = F(a), $\exists V(a): \forall x \in V \text{ rk } F'(x) = r$. Тогда

- 1. $\exists U(a) \colon F(U)$ имеет вид графика $\bar{\bar{y}} = \varphi(\bar{y})$
- 2. $\exists U(a) \subset F^{-1}(b)$ имеет вид графика $\bar{x} = \psi(\bar{x})$

 \Box Аккуратное следствие 1.17.1 и 1.16.1. Единственное нетривиальное место — во второй половине, где нужно показать, почему из m уравнений вида $F_i(x) = b_i$, можно оставить лишь r. Здесь можно сказать, что последние уравнения не накладывают дополнительных ограничений на $\{x_i\}$, ведь там по сути написано, что-то такое: $\varphi(\bar{b}) = \bar{b}$. А эти уравнения точно верны из 1 пункта. \blacksquare

Замечание. Ранг, собственно, показывает сколько есть степеней свободы у значений функции, причём в довольно механическом смысле. Мало ли, вдруг мы отобразили пространство в какую-то кривую в другом.

Есть кстати шансы, что в этой теореме попутно определили размерность образа при отображении, но неточно. Собственно, график $\bar{y} = \varphi(\bar{y})$ можно считать заданным на $y \in \mathbb{R}^m$, которое уже «прямое», а дальше размерностью объявить $\dim\{\bar{y}\}$.

§ 19 Три способа локального задания поверхности

1. Параметрическое

$$f: D \subset \mathbb{R}^k \to \mathbb{R}^n: \operatorname{rk} f' = k \, \forall \, x \in D(\geqslant k)$$

Тогда M = f(D) — поверхность размерности k.

Условие на ранг означает, что нигде нету изломов, параметр же по сути — скорость.

2. Задание графиком

$$D \subset \mathbb{R}^k, \ f \colon D \to \mathbb{R}^{n-k}$$
 — гладкое

Тогда
$$M = \{(t, f(t)) \mid t \in D\} = \Gamma_f$$
.

Определение 1 (Поверхность (нестрого)). Множество $S \subset \mathbb{R}^m$ можно называть k-мерной гладкой поверхностью, если в окрестности любой своей точки оно задаётся графиком гладкого отображения $f: D \subset \mathbb{R}^k \to \mathbb{R}^{n-k}$.

3. Неявное

Пусть
$$F \colon \mathbb{R}^n \to \mathbb{R}^{n-k}$$
, rk $F = n-k$. Тогда

$$M = \{ x \in \mathbb{R}^n \mid F(x) = 0 \}$$

По сути уравнения связи.

Теорема 1. Если в некой окрестности $a \in R^n$ k-мерная поверхность может быть задана один из 3 способов, то она может быть задана и всеми остальными.

 $1 \to 2 \text{ cm } 1.18.1 (1)$

$$2 \to 3 \ F(t,y) = f(t) - y, F' = (f'_t \mid -E) \Rightarrow \operatorname{rk} F' = n - k$$

$$3 \to 2 \text{ cm } 1.18.1 (2)$$

 $2 \to 1 \ (x,y) \mapsto (x(t), f(x(t)),$ где t=x. С рангами очевидно проблем нет, единичная матрица же.

§ 20 Условный экстремум (нестрого)

Определение 1 (Безусловный экстремум). Пусть $f: G \subset \mathbb{R}^n \to \mathbb{R}, \ a \in G$ внутренняя точка. Тогда в точке $a \max / \min$ если

$$\exists U(a) : \forall x \in U \ f(x) \leq / \geq f(a)$$

Определение 2 (Экстремум на подмножестве). Пусть $f: G \subset \mathbb{R}^n \to \mathbb{R}, M \subset \mathbb{R}^n - k$ -мерная поверхность, $a \in G \cap M$ — внутренняя точка. Тогда в точке a max / min относительно M, если

$$\exists U(a) : \forall x \in U \cap M \ f(x) \leq / \geq f(a)$$

Чаще всего M задают неявно — «накладывают условия» на значения f.

Определение 3 (Условный экстремум). Пусть $f: G \subset \mathbb{R}^n \to \mathbb{R}, F_1, \dots, F_m: G \subset \mathbb{R}^n \to \mathbb{R}, a \in G \cap M$ — внутренняя точка, $F_1(a) = \dots = F_m(a) = 0$. Тогда в точке a условный \max / \min если

$$\exists U(a) : \forall x \in U, F_1(x) = \cdots = F_m(x) = 0 \ f(x) \leq / \geq f(a)$$

Теорема 1. Пусть $f, F_1, ..., F_m \in C^1(G), a \in G$.

Тогда если f имеет в а экстремум при условии F(a)=0, то $\nabla f(a), \nabla F_1(a), \ldots, \nabla F_m(a)$ — линейно зависимы.

Е.д. Можно двумерный случай рассмотреть.

$$\nabla f = \lambda \nabla F$$

Следствие 1 (Правило Лагранжа). f имеет в а экстремум при условии $F_1(a) = \cdots = F_m(a) = 0$, то

1. либо
$$\nabla F_1(a), \ldots, \nabla F_m(a)$$
 ЛЗ

2.
$$\lambda u \delta o \; \exists \; \lambda_1, \ldots, \lambda_m \in \mathbb{R} \colon \nabla f(a) = \sum_i \lambda_i \nabla F_i(a)$$

§ 21 Доказательство теоремы об условном экстремуме

1. Пусть m=n-1. Будем доказывать от противного. Пусть в a условный \max , но $\nabla f(a)$, $\nabla F_1(a)$, . . . , $\nabla F_m(a)$ — ЛНЗ.

Рассмотрим $\Phi(x) = (f(x), F_1(x), \dots, F_m(x))$. Тогда такое $\Phi \colon G \to \mathbb{R}^n$. Из линейной независимости градиентов

$$\Phi'(a) = \begin{pmatrix} \nabla f(a) \\ \nabla F_1(a) \\ \vdots \\ \nabla F_m(a) \end{pmatrix}, \det \Phi'(a) \neq 0$$

Пусть $b = \Phi(a) = (f(a), 0, \dots, 0)$. Тогда по теореме об обратном отображении (1.14.1)

$$\exists\, U(a), V(b): \; \Phi \colon U o V -$$
 диффеоморфизмъ

Пусть $V \supset B_{\varepsilon}(b), y = (f(a) + \frac{\varepsilon}{2}, 0, \dots, 0) \in V$, тогда $\exists ! x \in U : \Phi(x) = y$. Получается, что $f(x) > f(a), \forall i \ F_i(x) = 0$, что немного противоречит тому, что в a условный max.

2. Теперь рассмотрим случай m < n-1 (всё остальное неинтересно, точно будет ЛЗ).

Будем доказывать от противного. Пусть в a условный тах, но $\nabla f(a)$, $\nabla F_1(a),\dots,\nabla F_m(a)$ — ЛНЗ. Тогда $\operatorname{rk}\Phi'(a)=m+1< n$. Добавим ещё функций F_{m+1},\dots,F_{n-1} таких, что $F_i(x)=x_{i+1}-ai+1$.

Введём ещё стандартное обозначение

$$x = (\underbrace{x, \dots, x_{m+1}}_{\bar{x}}, \underbrace{x_{m+2}, \dots, x_n}_{\bar{x}})$$

И не совсем стандартное

$$A = \frac{\partial(f_1, F_1, \dots, F_m)}{\partial x_1, \dots, x_{m+1}}(a)$$

Обычно такой «дробью» обозначают якобиан, но, пожалуй, сохраню обозначения с лекции.

Итак

$$\Phi'(a) = \left(\begin{array}{c|c} A & * \\ \hline 0 & E_{n-m-1} \end{array}\right) \Rightarrow \operatorname{rk} \Phi'(a) = n$$

А теперь можно подвести всё к первому пункту. Рассмотрим $\widetilde{M} = \{x \mid F_1(x) = \cdots = F_{n-1}(x) = 0\}$ (а $M = \{x \mid F_1(x) = \cdots = F_m(x) = 0\}$). Поскольку $\widetilde{M} \subset M$, f будет иметь в a максимум и относительно \widetilde{M} .

Аналогично 1 пункту получаем бред какой-то.

Замечание 1. Такая теорема может найти лишь точки, «подозрительные» на экстремум. Надо ещё отдельно думать. Например, вдруг там на компакте всё определено.

Замечание 2. Можно рассматривать функцию Лагранжа:

$$\mathcal{L}(x) = f(x, \lambda) - \sum_{i=1}^{m} \lambda_i F_i(x)$$

Тогда если в a условный экстремум, то в (a, λ) стационарная точка $(\mathcal{L}'(a) = 0)$ функции Лагранжа.

Глава 2: Криволинейные интегралы

Параграфы со значком «❖» лучше не читать, они недопилены.

Дифференциальные формы. Начать лучше с полилинейных форм.

Определение 1. Пусть L — линейное пространство над полем K. Тогда функция $A\colon L^k\to K$, линейная по каждому из своих аргументов, называется k-линейной формой.

23

Нам тут хватит и 1-форм, так что

Определение 2. Дифференциальной 1-формой можно назвать отображение из \mathbb{R}^n в линейную (по h) форму, $P \in C^0$

$$\omega = \langle P(x), \mathrm{d}x(x,h) \rangle$$

Но это как-то не очень (а что такое дифференциал?).

 $^{^2}$ <ну его>

³<потом лучше напишу>

Гладкие пути.

Определение 3. Пусть $\gamma \colon [a;b] \subset \mathbb{R} \to \mathbb{R}^n$. Тогда γ называется путём в пространстве \mathbb{R}^n .

- Путь гладкий, если $\gamma \in C^1$,
- путь регулярный, если $\operatorname{rk} \gamma' \geqslant 1$,
- путь простой, если γ биекция.

Определение 4. Образ $\Gamma = \gamma([a;b]) \subset \mathbb{R}^n$ называется *кривой* в \mathbb{R}^n . Ещё говорят, что Γ — носитель пути γ , а γ — параметризация Γ . ¹

Замечание. Путь простой ⇔ кривая не имеет самопересечений.

Определение 5. Будем говорить, что простые пути имеют одинаковую ориентацию, если

$$\gamma_1(a_1) = \gamma_2(a_2) \ \gamma_1(b_1) = \gamma_2(b_2)$$

и противоположную, если всё наоборот. Тут ещё введу нестандартное обозначение, но так жить проще $\ddot{\mathbf{v}}$.

- ullet одинаковая ориентация
- \$\frac{1}{\psi}\$ противоположная ориентация

Замечание. Для биективных параметризаций видимо просто нет другого выбора. С петлями всё будет интереснее.

Интегралы от форм по пути

Определение 6. Просто возьмём и определим интегралы по простому гладкому пути от 1-форм так:

$$I = \int_{\gamma} \omega := \int_{a}^{b} \langle P, \dot{x}(t) \rangle dt$$

Утверждение 1 (Корректность определения выше). *Интеграл по пути не зависит от параметризации*.

 \square Пусть γ_1, γ_2 — параметризации Γ , одинаково ориентированы. Докажем, что

$$I_1 = \int\limits_{\gamma_1} \omega = \int\limits_{\gamma_2} \omega = I_2$$

Поскольку γ_1,γ_2 — биекции, $\exists \, \varphi\colon t_2=\varphi(t_1)$, тоже биекция, такого сорта: $t_1 \stackrel{\gamma_1}{\longmapsto} x \stackrel{\gamma_2^{-1}}{\longmapsto} t_2$ Тогда

$$I_2 = \int_{a_2}^{b_2} \langle P(\gamma_2(t_2)), \partial_{t_2} \gamma_2(t_2) \rangle dt_2 = \int_{a_1}^{b_1} \langle P(\underbrace{\gamma_2(\varphi(t_1))}_x), \partial_{t_2} \gamma_2(t_2)) \rangle \partial_{t_1} \varphi(t_1) dt_1$$

 $^{^{1}}$ здесь ещё можно как в [5] определять кривую как класс эквивалентности путей, так вроде проще

Покажем, что $\partial_{t_2}\gamma_2(t_2)\partial_{t_1}\varphi=\partial_{t_1}\gamma_1(t_1)$. Это просто следует равенства $\gamma_1(t_1)=\gamma_2(t_2)$, если его продифференцировать по t_1 . Так что

$$\int_{a_1}^{b_1} \langle P(x), \partial_{t_1} \gamma_1(t_1) \rangle \left(\partial_{t_1} \varphi(t_1) \right)^{-1} \partial_{t_1} \varphi(t_1) \, \mathrm{d}t_1 = I_1$$

Замечание 1. Если $\gamma_1 \uparrow \downarrow \gamma_2$, то $I_2 = -I_1$.

Замечание 2. Если рассматривать только одинаково ориентированые пути, то

$$\int_{\gamma} \omega = \int_{\Gamma} \omega$$

Замечание 3. Если Γ разбивается на непересекащиеся Γ_1 , Γ_2 , то

$$\int_{\Gamma} \omega = \int_{\Gamma_1} \omega + \int_{\Gamma_2} \omega$$

Петли и интегралы по ним

Определение 7. Кривая Γ — петля, если для всякой её параметризации $\gamma(a) = \gamma(b)$. Петля называется простой, если $\exists : \gamma|_{[a;b)}$ — биекция.

Замечание. Плохие петли можно разбивать на простые.

Определение 8. Пусть Γ — простая петля. Тогда

$$I = \oint_{\mathcal{L}} \omega := \int_{a}^{b} \langle P, \dot{x}(t) \rangle dt$$

Утверждение 2. Определение выше корректно, и не зависит от выбора «начала» петли.

▼

Можно рассмотреть 2 разные параметризации и разбить на 2 куска. Дальше работает определение интеграла по простому пути.

Замечание. Чтобы посчитать интегралы по всем остальным путям, их нужно разбивать на прострые пути и простые петли

§ 2 Точные формы

Определение 1. 1-форма ω называется точной в G, если $\exists \Phi \colon G \subset \mathbb{R}^n \to \mathbb{R}$, такая что $\omega = \mathrm{d}\Phi$. Φ в таком случае называется потенциалом, а сама форма ещё иногда называется потенциальной.

Е.д. Работа в физике.

Теорема 1. Пусть ω — точная форма в G, $\Gamma \subset G$, $\gamma(a) = A$, $\gamma(b) = B$ Тогда

$$\int_{\gamma} \omega = \Phi(B) - \Phi(A)$$

 $\square \langle P, x \rangle = (\Phi \circ \gamma)'(t)$. Дальше уже тривиально из непрерывности Φ .

Теорема 2. Пусть ω — точная форма в G, $\Gamma_1, \Gamma_2 \subset G$, $\gamma_{1,2}(a) = A$, $\gamma_{1|2}(b) = B$. Тогда

$$\int_{\gamma} \omega = \Phi(B) - \Phi(A)$$

Теорема 3. Пусть ω — точная форма в G, $\Gamma \subset G$ — петля Тогда

$$\oint_{\gamma} \omega = 0$$

Теорема 4. Пусть ω — форма в G, и $\int_{\gamma} \omega$ не зависит от пути при фиксировнных концах. Тогда ω — точна.

 \square Надо показать, что $\partial_i \Phi = P^i$. В этом месте можно забить на общности и объявить n=2. Докажем, что $\partial_x \Phi = P^1$. Поскольку от пути ничего не зависит,

$$\frac{\partial \Phi}{\partial x}(x,y) = \lim_{\Delta x \to 0} \frac{\Phi(x + \Delta x) - \Phi(x,y)}{\Delta x} = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \left(\int_{A}^{(x + \Delta x,y)} \omega - \int_{A}^{(x,y)} \omega \right)$$

А это по сути интеграл по пути, соединяющем $(x + \Delta x, y)$ и (x, y). А здесь уже можно взять приличную кривую (прямую) с правильной параметризацией, и воспользоваться теоремой о среднем.

$$\cdots = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \int_{x}^{x + \Delta x} P(t, y) dt = \lim_{\Delta x \to 0} P(\xi, y) = P(x, y)$$

Последнее равенство верно по непрерывности.

Теорема 5. $\oint \omega = 0 \Rightarrow \omega - moчнa$

Теорема 6. Пусть G, $\oint \omega = 0$ для любой прямоугольной петли. Тогда ω — точна.

□ Аккуратно свести к теореме 2.2.4, там всё будет работать и с путями, параллельными осям координат. ■

§ 3 Замкнутые формы

Здесь уже окончательно забиваем на все $n \geqslant 2$. Там, в целом, понятно как обобщать. Тут всюду $\omega = P(x,y)\mathrm{d}x + Q(x,y)\mathrm{d}y$

Определение 1. Форма ω замкнута в G, если

$$\forall A \in G \ \exists U(A) \colon \exists \Phi_U \colon U \to R \ \omega = \mathrm{d}\Phi_U$$

короче, локально точна.

Теорема 1. Пусть ω — гладкая форма в G. Тогда если ω замкнута, $\partial_y P = \partial_x Q$ в G.

□ Очевидно следует из «локальной точности». ■

Теорема 2. Пусть ω — гладкая форма в G. Тогда если $\partial_y P = \partial_x Q$ в G, то ω замкнута.

 \square Выберем произвольную A, тогда $U_{\varepsilon}(A)\subset G$. Надо попробовать построить потенциал. Например так $\Phi(B)=\int_{\gamma_1+\gamma_2}\omega$. Докажем, что $\partial_x\Phi=P,\ \partial_y\Phi=Q$.

Последний сходится к $P(x, y_0)dx$, а первые два надо немного преобразовать

Подинтегральную функцию можно представить как последовательность $f_n \Rightarrow Q'$.

$$\left| \frac{Q(x + 1/n) - Q(x)}{\frac{1}{n}} - Q'(x) \right| = |Q'(\xi) - Q(x)| < \varepsilon$$

а функция Q' равномерно непрерывна на $[x, x + \Delta x]$, ибо он отрезок. Так что можно поменять местами предел и интеграл.

$$\cdots = \int_{y_0}^{y} \frac{\partial Q}{\partial x}(x, y) dt = \int_{y_0}^{y} \frac{\partial P}{\partial y}(x, y) = \Delta P$$

Если сложить с оставшимся куском, то как раз и выйдет P. $\tilde{\mathbf{C}}$ равенством Q вроде все попроще, там нужно считать приращение всего лишь по одному пути.

Замечание 1. Бывают замкнутые, но не точные формы. Например $\omega = \frac{-y \mathrm{d} x + x \mathrm{d} y}{x^2 + y^2}.$ Она замкнута, а вот $\oint_{\gamma} w$ по окружности вокруг 0 не 0.

§ 4 Первообразная замкнутой формы вдоль пути

Сначала можно отметить, что $\Gamma = \gamma([a;b])$ — компакт. Так что вроде можно пользоваться теоремой о конечном подпокрытии.

Пемма 1. Пусть G — область, ω — гладкая точная форма в G, а Φ , Ψ — две её первообразные в G. Тогда Φ — Ψ \equiv C \in \mathbb{R} .

Теорема 2. Пусть ω замкнута в G, $\Gamma = \gamma([a;b])$. Тогда существует первообразная вдоль пути γ и $\int \omega = f(b) - f(a)$.

 \square Поскольку кривая компактна, в любом её покрытии можно выделить конечное подпокрытие. Собственно, будем рассматривать покрытие открытыми кругами $U(p_i)$. Пусть Φ_i — произвольная первообразная в U_i . Заменим Φ_i $\widetilde{\Phi}_i$, так что $\widetilde{\Phi}_{i+1} = \widetilde{\Phi}_i$ на $U_{i+1} \cap U_i$, $\widetilde{U}_0 = U_0$.

Выберем параметризацию, тогда p_i соответствуют $t_0 = a < t_1 < \dots < t_n = b$ Теперь выберем $f(\gamma(t)) = \widetilde{\Phi}_k(\gamma(t)), \gamma(t) \in U_k$. Здесь вроде можно прожить и без простоты пути.

Теперь ещё выберем $q_i \in U_{i+1} \cap U_i, \ \{\gamma_j\} =$ пути от p_i до $q_i \cap$ пути от q_i до $p_{i+1}.$ Тогда

$$\in_{\gamma} \omega = \sum_{j} \int_{\gamma_{j}} = \widetilde{\Phi}(p_{n}) - \widetilde{\Phi}p_{0} = f(b) - f(a)$$

Определение 1. Непрерывным семейством путей называется непрерывная функция $g \colon [0;1] \times [a;b] \to \mathbb{R}^n$. Часто обозначается так: $\gamma_s(t) = g(s,t)$. ²

Определение 2 ($\stackrel{\sim}{\sim}$). Пусть γ_1, γ_2 : $[a;b] \to G$, $\gamma_1(a) = \gamma_2(a), \gamma_1(b) = \gamma_2(b)$. Тогда утверждается, что пути гомотопны, если существует семейство $\gamma_s(t)$: $\gamma_{s_1} = \gamma_1$, $\gamma_{s_2} = \gamma_2$.

Замечание. Таки отношение эквивалентности.

Теорема 1. Пусть ω — замкнутая форма в области G, $\gamma_1 \sim \gamma_2$. Тогда

$$\int_{\gamma_1} \omega = \int_{\gamma_2} \omega$$

Теорема 2. Пусть ω — замкнутая форма в области G, $\gamma_1 \sim \gamma_2$ — гомотопные петли. Тогда

$$\oint \omega = \oint \omega$$

Замечание. Доказывать я это пока не буду, иначе это будет выглядеть как-то

 $^{^{1}}$ вообще первообразную вдоль пути нигде не определяли, так что можно считать конструкцию, построенную выше, определением

²По-хорошему там должны быть топологические пространства, но не сегодня и не сейчас

Следствие 1. Пусть γ — петля в G и $\gamma \overset{G}{\sim} \bullet$. Тогда $\oint\limits_{\gamma} w = 0$.

Определение 3. Область в G называется односвязной, если в ней всякая петля стягивается в точку.

Теорема 3. В односвязной области все замкнутые формы точны.

 \mathbf{E} .g. Далёкая, далёкая галактика— не односвязная область.

Глава 3: Комплексный анализ

2

Определение 1. Определим «шаровую» окрестность комплексного числа как $\{z \mid |z-a| < \varepsilon\}$, проколотую окрестность как $\{z \mid 0 < |z-a| < \varepsilon\}$. Дальше можно уже рассмотреть базу таких окрестностей и ввести топологию как в \mathbb{R}^2 . Аналогично вводятся пределы и непрерывности.

Определение 2. Пусть $G\subset \mathbb{C}$ — область, $f\colon G\to C$, непрерывна, $f=f_1+if_2$, $\omega(z,\mathrm{d}z)=f(z)\mathrm{d}z$ — комплексная дифференциальная форма. ³ Пусть $\Gamma\subset G$ — кривая, γ — её параметризация, $\gamma=\gamma_1+i\gamma_2$

$$\int\limits_{\gamma}:=\int\limits_a^b f(\gamma(t))\dot{\gamma}(t)\,\mathrm{d}t:=\int\limits_a^b (f_1(\gamma(t))\gamma_1(t)-f_2(\gamma(t))\gamma_2)\mathrm{d}t+\int\limits_a^b (f_1(\gamma(t))\gamma_2(t)+f_2(\gamma(t))\gamma_1)\mathrm{d}t$$

Свойства:

Утверждение 1. *см* § 1

Утверждение 2. Пусть $\{t_i\}$ — разбиение отрезка $[a;b], z_i = \gamma(t_i), \Delta z_i = z_{i+1} - z_i, \tau_i \in [t_i, t_{i+1}], \xi_i = \gamma(\tau_i)$. Пусть ещё

$$\sigma = \sum_{i=0}^{n-1} f(\xi_i) \Delta z_i$$
$$r = \max |\Delta z_i|$$

Tог ∂a

$$\int_{\gamma} f(z) \, \mathrm{d}z = \lim_{r \to 0} \sigma$$

▼

Следует из вещественной теоремы Римана

²здесь надо сильно больше определений

 $^{^{3}}$ Тут определение по сути такое же как и раньше, дифференциал имеет символический смысл.

Следствие 1. Пусть $|f(z)| \leq M \ \forall z \in \Gamma$

$$\left| \int_{\gamma} f(z) \, \mathrm{d}z \right| \leqslant M \cdot \ell(\Gamma)$$

▼

$$|\sigma| \leqslant \sum_{i} |f(\xi_i)| \cdot |\Delta z_i| \leqslant M \cdot \sum_{i} |\Delta z_i|$$

А дальше просто предельный переход в неравенстве.

•

{censored by galactic vimperor}

§ 42 Классификация изолированных особых точек

Определение 1. Особой точкой функции f называется точка, где f не голоморфна или не определена.

Определение 2. Изолированной особой точкой функции f называется особая точка, в некоторой окрестности которой нет других особых точек.

§ 46 Вычисление вычетов в полюсах

Определение 1. Пусть f имеет в a полюс. Порядком полюса называется наименьшая отрицательная степень в разложении f в ряд Лорана в кольце с центром в a.

Теорема 1. Пусть a - nолюс первого порядка функции f. Тогда

$$\operatorname{Res}_a f = \lim_{z \to a} f(z)$$

Теорема 2. Пусть a — ноль первого порядка для ψ , $\varphi(a) \neq 0$, φ , ψ голоморфны $e U(a), f = \frac{\varphi}{\psi}$. Тогда

$$\operatorname{Res}_{a} f = \frac{\varphi(a)}{\psi'(a)}$$

Теорема 3. Пусть a - nолюс p-го nорядка функции f. Тогда

Res_a
$$f = \frac{1}{(p-1)!} \left((z-a)^p f(z) \right)_{z=a}^{(p-1)}$$

§ 47 Вычисление интегралов с помощью вычетов

І> Интеграл по периоду от периодической функции.

Пусть $f: \mathbb{R} \to \mathbb{C}$. Тогда

$$f = 2\pi i \sum_{a_k} \operatorname{Res}_{a_k} g,$$

где a_k — вычеты функции g(z), внутри единичной окружности. В функции $g\sin/\cos$ заменены на $\frac{1}{2}\left(z\pm z^{-1}\right)$

II) Интеграл от рациональной функции на R

Пусть
$$R(x) = \frac{P(x)}{Q(x)}, P, Q \in \mathbb{R}[x], \deg P \leqslant \deg Q - 2$$
. Тогда

$$\int_{-\infty}^{\infty} R(x) dx = 2\pi i \sum_{\text{Im } a_k > 0} \text{Res}_{a_k} R(z)$$

III
$$\int_{-\infty}^{\infty} f(z) e^{i\lambda z} dz = I$$

Пусть $f(z) \xrightarrow[z \to \infty]{} 0$, голоморфна всюду кроме $\{a_k\}$, нету особых точек на \mathbb{R} . Тогда

$$I = 2\pi i \sum_{\operatorname{Im} a_k > 0} \operatorname{Res}_{a_k} f(z) e^{i\lambda z}$$

Лемма 1 (Жордана). Пусть f голоморфна всюду кроме счётного числа особых точек, $f(z) \xrightarrow[z \to \infty]{} 0$. Тогда

$$\int_{\Gamma_R} f(z) e^{i\lambda z} dz \xrightarrow[R \to \infty]{} 0$$

§ 55 Классические односвязные области. Теорема Римана

Определение 1. Комплексным изоморфизмом областей G и H называется однолистное конформное отображение 1 $f: G \to H$. Область G и H тогда называются и конформно эквивалентными (изоморфными).

Замечание. $f: G \to G$ при условиях выше — автоморфизм.

Утверждение 1. Все автоморфизмы области G с операцией композиции образуют группу $\operatorname{Aut} G$.

▼

Пусть $f,g,h\in {\rm Aut}\, G.$ Тогда $f\circ g\colon G\to G,$ композиция биекций — биекция. Так что операция задана корректно.

- $(f \circ (g \circ h))(x) = f(g(h(x))) = ((f \circ g) \circ h)(x)$
- $\forall f \ \exists f^{-1}$, обратное голоморфно и биекция, \Rightarrow конформно и однолистно.
- id: $G \to G$ конформно и однолистно.

•

 $^{^1\}mathrm{Tyr}$ хватит и голоморфности с сюръективностью, ведь из однолистности производная нигде не обращается в 0

Классические области

- 1. $\overline{\mathbb{C}}$
- 2. C
- 3. $\mathbb{D} = \{z \mid |z| < 1\}$

Теорема 2 (Римана). Пусть область $G \subset \overline{\mathbb{C}}$. Тогда $G \cong oдной$ из классических областей

1.
$$G = \overline{\mathbb{C}} \Rightarrow G \cong \overline{\mathbb{C}}$$

2.
$$G = \overline{\mathbb{C}} \{a\} \Rightarrow G \cong \mathbb{C}$$

3.
$$G = \overline{\mathbb{C}} \ U \Rightarrow G \cong \mathbb{D}, \ |U| > 1$$

§ 56 Лемма Шварца

§ 57 Лемма о подгруппе группы автоморфизмов

Определение 1. Пусть $\Gamma < \operatorname{Aut} G$. Тогда говорят, что Γ — транзитивна, если

$$\forall z_1, z_2 \in G \ \exists f \in \Gamma \colon f(z_1) = z_2$$

 $\it Same au a + ue$. Лучше конечно говорить, что действие группы автоморфизмов на $\it G$ транзитивно.

Лемма 1. Пусть область $G \subset \overline{\mathbb{C}}$, Γ — транзитивна. Пусть κ тому жее $\exists z_0 \colon \operatorname{Stab}(z_0) < \Gamma$. Тогда $\Gamma = \operatorname{Aut} G$.

▼

Выберем произвольный $f \in \operatorname{Aut} G$, пусть $z_1 = f(z_0)$. Из транзитивности $G \ni \gamma \in \Gamma \colon \gamma(z_1) = z_0$. Тогда $h = \gamma \circ f \in \operatorname{Stab}(z_0)$. Но из второго условия $\operatorname{Stab}(z_0) < \Gamma \Rightarrow h \in \Gamma$. Но тогда

$$\forall f \in \operatorname{Aut} G \ f = \underbrace{\gamma^{-1}}_{\in \Gamma} \circ \underbrace{h}_{\in \Gamma} \in \Gamma$$

▲

§ 58 Автоморфизмы классических областей

Здесь всё константы по умолчанию $\in \mathbb{C}$.

Теорема 1. Aut
$$\overline{\mathbb{C}} = \{ f \mid f(z) = \frac{az+b}{cz+d}, ad-bc \neq 0 \}$$

□ Пусть

$$\Gamma = f \mid f(z) = \frac{az+b}{cz+d}, \Gamma < \operatorname{Aut} \overline{\mathbb{C}}$$

Композиция дробно-линейных — дробно-линейна, обратное — тоже дробно-линейно. Так что подгруппа.

Она транзитивна, для $\mathbb C$ хватит и линейного (сдвиг), а как отправить что-то в бесконечность, понятно. Давайте посмотрим, чему равен $\operatorname{Stab} \infty$. Нам нужно чтобы $\infty \mapsto \infty$. А значит $\mathbb C \mapsto \mathbb C$. Но из теоремы 3.58.2 это линейные функции. А они явно входят в дробно-линейные. Так что $\operatorname{Stab} \infty < \Gamma$. А тогда по лемме 3.57.1 $\Gamma = \operatorname{Aut} \overline{\mathbb C}$

Теорема 2. Aut $\mathbb{C} = \{f \mid f(z) = az + b, a \neq 0\}$

 \square Пусть $A = U(\infty)$. Бесконечность — явно особая точка, надо подумать только какая.

Пусть ∞ — существенно особая точка. Но тогда по теореме Сохоцкого f(A) всюду плотно в $\mathbb C$. А значит в $U(0) \subset \mathbb C \setminus U(\infty)$ есть точка из f(A) — проблемы с однолистностью (она же инъективность).

Пусть ∞ — устранимая особая точка. Но тогда в кольце $U(\infty)$

$$f(z) = \frac{c_{-k}}{z^k} + \dots + c_0$$

Ho $f \in \operatorname{Aut} G \Rightarrow f$ голоморфна в 0. Беда

Выхода нет — в ∞ — полюс. Но тогда f(z) — какой-то полином, ведь для полюса нужно ограниченное число членов в главной части ряда Лорана. Но любой полином степени n имеет в $\mathbb C$ ровно n корней. А у нас функция однолистная. Так что подходят полиномы лишь первой степени. Константу тоже нельзя, проблемы с однолистностью. 1

Теорема 3. Aut
$$\mathbb{D} = \{ f \mid f(z) = e^{i\theta} \frac{z-a}{1-\bar{a}z}, \theta \in \mathbb{R}, |a| < 1 \}$$

 \square Опять рассмотрим Γ как в условии и покажем, что $\Gamma = \operatorname{Aut} \mathbb{D}$. Надо сначала показать хотя бы, что $\Gamma < \operatorname{Aut} \mathbb{D}$.

$$\left| e^{i\theta} \, \frac{z - a}{1 - \bar{a}z} \right|$$

Проще всего домножить на сопряжённое

$$\left|\frac{z-a}{1-\bar{a}z}\right|^2 = \frac{(z-a)(\bar{z}-\bar{a})}{(1-\bar{a}z)(1-a\bar{z})} = \frac{|z|^2 - a\bar{z} - z\bar{a} + |a|^2}{1-\bar{a}z - a\bar{z} + |a|^2|z|^2} < 1 \Leftrightarrow |z|^2 + |a|^2 < 1 + |a|^2|z|^2 \Leftrightarrow (|a|^2 - 1)(a^2 + |a|^2) + |a|^2 + |$$

Так что при $|z| < 1 \land |a| < 1$ это верно.

Дальше легко найти обратное к $\gamma(z) = w$

$$\gamma^{-1}(w) = \frac{w - e^{i\theta}}{w\bar{a} - e^{i\theta}} = e^{i\theta_1} \frac{a_1 - z}{1 - \bar{a}_1 z} \ (a_1 = e^{i\theta} a \in \mathbb{D})$$

С композицией тоже несложно разобраться

$$f_1(z) = \frac{z - a_1}{1 - \bar{a}_1 z}$$

$$f_2(z) = \frac{z - a_2}{1 - \bar{a}_2 z}$$

$$a = \frac{a_1 e^{-i\theta} + a_2}{1 + a_1 \bar{a}_2 e^{-i\theta}} \qquad |a| = |e^{-i\theta} f_1(-a_2 e^{i\theta})| < 1$$

$$f_2(f_1(z)) = e^{i\theta_2} \frac{e^{i\theta} z - e^{i\theta} a_2 - a_1 + a_1 \bar{a}_2 z}{1 + \bar{a}_1 a_2 e^{i\theta} - \bar{a}_1 e^{i\theta} z - \bar{a}_2 z} = \frac{z - a}{1 - \bar{a}z}$$

Осталось показать оба условия из леммы 3.57.1

1. Пусть $z_1, z_2 \in \mathbb{D}$. Будем строить так: $z_1 \mapsto 0 \mapsto z_2$

$$f_1(z) = \frac{z - z_1}{1 - \bar{z}_1 z} \qquad f_2^{-1}(z) = \frac{z - z_2}{1 - \bar{z}_2 z} \qquad f = f_2 \circ f_1$$

¹Все утверждения про полюс в бесконечности можно получить, рассмотрев f(1/z) в U(0)

2. Посмотрим на $f\in \mathrm{Stab}\,0.$ По лемме Шварца $\forall\,z\in D\;|f(z)|\leqslant |z|.$ Поскольку $\mathrm{Stab}\,0$ — группа, $\exists\,f^{-1}$ и

$$|z| = |f^{-1}(f(z))| \le |f(z)| \Rightarrow |f(z)| = |z|.$$

А тогда по второму пункту леммы Шварца $f(z)=cz, \, |c|=1 \Rightarrow c=e^{i\theta}.$ Следовательно, Stab $0<\Gamma$. Тогда по уже упомянутой лемме $\Gamma=\operatorname{Aut}\mathbb D$

Литература

- [1] **Зорич В. А.**, Математический анализ. Часть I 6 изд., дополн. М.: МЦ- HMO, 2012
- [2] **Зорич В. А.**, Математический анализ. Часть II 6 изд., дополн. М.: МЦ- HMO, 2012
- [3] **Фихтенгольц Г. М.**, Курс дифференциального и интегрального исчисления. В трёх томах. Том II. СПб.: Издательство «Лань», 1997. 800 с.
- [4] **Гельфанд И. М.**, Лекции по линейной алгебре 5 изд., испр. М.: Добросвет, МЦНМО, 1998. 320 с.
- [5] **Шабат Б. В.**, Введение в комплексный анализ, ч. I-2 изд. М.: Наука, 1976. 320 с.