

Data Mining - Link Prediction

Andreas Karwath Jörg Wicker

Johannes Gutenberg University Mainz

March 21, 2017

Outline

Link-Based Object Classification

Introduction Approaches

Link Prediction

Introduction

Tasks

Summary

Summary Graph Mining

Acknowledgments

- Slides partially from
 - Lise Getoor
 - Ted Senator
 - Scott Macskassy
 - Foster Provost
 - Ramya Ramakrishnan
 - Jaideep Srivastava
 - Jean-Philippe Vert
 - George Karypis
 - Stefan Kramer

Section 1

Link-Based Object Classification

Andreas Karwath

Link-Based Object Classification

- Predicting the category of an object based on its attributes and its links and attributes of linked objects
 - web: predict the category of a web page, based on words that occur on the page, links between pages, anchor text, html tags, etc.
 - **citation**: predict the topic of a paper, based on word occurrence, citations, co-citations
 - **epidemic**: predict disease type based on characteristics of the people

Link-Based Object Classification

Predicting the category of an object based on its attributes and its links and attributes of linked objects.

Link-Based Object Classification

- Variety of ways of describing link neighborhoods
 - mode, binary, count, in-links, out-links, ...
- Unlabeled data provide useful information
 - helps us infer object attribute distribution
 - links between unlabeled data allow us to make use of attributes of linked objects
 - links between labeled data and unlabeled data (training data and test data) help us make more accurate inferences
- Link-based classification challenges
 - feature construction
 - collective classification
 - use of labeled and unlabeled data

Major Distinctions

- Within-network classification
 - training entities are connected directly to entities whose classifications (labels) are to be estimated
- Across-network classification
 - learning from one network and applying the learned models to a separate, presumably similar network
- Iterative classification
 - feature set enhanced by features derived from the node's neighborhood
- Collective classification
 - treats the problem as a global optimization problem

Definition Within-Network Collective Inference

- Given: graph G = (V, E, X, Y), where x_i is an attribute vector and y_i is a label variable for vertex v_i in V, and known values of y_i for a (training) subset of vertices V_1
- **Find**: (simultaneously) the values of y_i for the remaining (test) vertices, $V_2 = V \setminus V_1$, or a probability distribution over those values.

Iterative Classification

- Features describing vertex plus features derived from the neighborhood of the vertex (e.g., existence of neighbor of particular class)
- Only the labeled data is employed in learning, but the structure of the network is employed
- Use any propositional learning algorithm, apply classifier iteratively to the unlabeled vertices
- First approach due to (Chakrabarti *et al.*, 1998):
 - local relaxation labeling algorithm applied to subgraph around the vertex to be classified
 - combine local features and the labels of neighbors using a Naïve Bayes model (local features of neighbors harm performance)

11

Methods: Relaxation Labeling

- Technique from computer vision, also used for solving non-linear equations
- Given: set of $O = o_1, ..., o_n$ object features belonging to an object and a set of labels $L = l_1, ..., l_m$
- Iterative adjustment of probabilities
 - labeling process starts with an initial, and perhaps arbitrary, assignment of probabilities for each label for each feature
 - probabilities are transformed step by step according to some relaxation schedule: update of the probabilities taking into account the probabilities of labels for neighbouring features
 - repeated until method converges or stabilises (little or no change between successive steps): convergence not generally guaranteed

Relational Neighbor (RN)¹

- Completes partially labeled graph by simply computing the weighted counts of each class among the neighbors
 - node priors set to relative class frequency in the training data
 - relational classification by a weighted average of the class probability estimates of the nodes neighbor
 - weights on edges set in a domain-dependent fashion
 - select class with maximum weighted count
- Relaxation labeling method similar to Chakrabarti et al.
- Simple model performing surprisingly well in practice

¹Macskassy and Provost. 2007

Transductive Inference

- Introduced by Vapnik in the 1990s
- Reasoning from observed, specific (training) cases to *specific* (test) cases
 - in contrast, induction is reasoning from observed training cases to general rules, i.e., a more general problem than transduction
 - interesting in cases where the predictions of the transductive model are not achievable by any inductive model, due to transductive inference on different test sets producing mutually inconsistent predictions
- Hints about the distribution of instances
 - consider the case of two large clusters corresponding to two classes that cannot be clearly detected in a training set
 - closely related: semi-supervised learning, but different motivation

Section 2

Link Prediction

Link Prediction

- Predict whether a link exists between two entities, based on attributes and other observed links
- Application
 - web: predict if there will be a link between two page
 - citation: predicting if a paper will cite another paper
 - epidemics: predicting who a patients contacts are
- Methods
 - often viewed as a binary classification problem
 - local conditional probability model, based on structural and attribute features
 - difficulty: sparseness of existing links
 - collective prediction, e.g., Markov random field model
- There exist different versions of link prediction: ...

Different Versions of Link Prediction

- 1. Given a social network at time t_i predict the social link between actors at time $t_i + 1$
- 2. Given a social network with an incomplete set of social links between a complete set of actors, predict the unobserved social links
- 3. Given information about actors, predict the social link between them
- Main approaches: fit the social network on a model and then use the model for prediction
- Other approaches specifically target the link prediction problem

Within-Network vs. Across-Network

■ Within-network link prediction

the links to be predicted are from the same graph (network) as the training data (edges among vertices)

Across-network link prediction

 as before, learning from one network and applying the learned models to a separate, presumably similar network

Predicting Link Existence

- Predicting whether a link exists between two objects
 - web: predict whether there will be a link between two pages
 - **citation**: predicting whether a paper will cite another paper
 - **epidemics**: predicting who a patients contacts are

Link Cardinality Estimation

- Predicting the number of links to an object
 - web: predict the authoritativeness of a page based on the number of in-links; identifying hubs based on the number of out-links
 - **citation**: predicting the impact of a paper based on the number of citations
 - epidemics: predicting the infectiousness of a disease based on the number of people diagnosed

Link Type

- Predicting type or purpose of link
 - web: predict advertising link or navigational link
 - **citation**: predicting whether co-author is also an advisor; predict an advisor-advisee relationship
 - epidemics: predicting whether contact is familial, co-worker or acquaintance

21

Link Prediction: Pairwise SVM ²

- Classifying pairs of genes as "interacting" or "not interacting", using the training graph as a set of training edges with known labels
- Here: labeling of edges, not of nodes
- Definition of a kernel between edges using the kernel between individual genes as plug-in
- Training of all pairs of distinct vertices in the training set, thus n(n-1)/2 training points (local approach: n)
 - due to (roughly quadratic) SVM complexity and memory requirements, scales at least in $O(n^4)$
 - practically: random subsampling of n negative pairs to obtain a balanced training set of size 2n

²Ben-Hur and Noble. 2005

(Within Network) Link Prediction as Local Classification

Within-network link prediction task from the left-hand side is transformed into a "local" classification task on the right-hand side.

Local Classification for Link Prediction

- Problem considered: predict edges between a vertex in training set V_1 and a vertex in test set $V_2 = V \setminus V_1$
- Addresses tasks like finding new genes regulated by a transcription factor or finding missing enzymes in a metabolic pathway
- Solution: train one local classifier for each vertex v in the training set V_1
 - \blacksquare assumption: all edges between two vertices in V_1 are observed
 - take every other vertex u in V_1 and assign label +1 if there is an edge from v to u and -1 otherwise
 - **a** apply any machine learning algorithm for classification to learn a function assigning +1 or -1 to any new vertex (in test set V_2)

Section 3

Summary

Summary Graph Mining

- Analysis of networks and sets of graphs
- Clustering commonly used to detect sub-groups (sub-networks)
- Pattern mining for sets of graphs
- Object classification and link prediction

Outlook: Relational Learning

- Can everything be encoded in a graph?
- What about the following artificial problem?

Andreas Karwath

March 21, 2017

DM - Link Prediction