Miejsce na naklejkę z kodem

dysleks	je

ARKUSZ I

STYCZEŃ ROK 2005

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

Arkusz I

Czas pracy 120 minut

Instrukcja dla zdającego

- 1. Proszę sprawdzić, czy arkusz egzaminacyjny zawiera 9 stron. Ewentualny brak należy zgłosić przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi należy zapisać czytelnie w miejscu na to przeznaczonym przy każdym zadaniu.
- 3. Proszę pisać tylko w kolorze czarnym; nie pisać ołówkiem.
- 4. W rozwiązaniach zadań trzeba przedstawić tok rozumowania prowadzący do ostatecznego wyniku.
- 5. Nie wolno używać korektora.
- 6. Błędne zapisy trzeba wyraźnie przekreślić.
- 7. Brudnopis nie będzie oceniany.
- 8. Obok każdego zadania podana jest maksymalna liczba punktów, która można uzyskać za jego poprawne rozwiązanie.

 9. Podczas egzaminu można korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora. Nie można korzystać z kalkulatora graficznego. 10. Do arkusza dołączona jest karta odpowiedzi. Życzymy powodzenia! 	Za rozwiązanie wszystkich zadań można otrzymać łącznie 50 punktów.
(Wpisuje zdający przed rozpoczęciem pracy) PESEL ZDAJĄCEGO	

Zadanie 1. (5 pkt.)

Wykonaj odpowiednie obliczenia i oceń, które z podanych zdań jest prawdziwe, a które fałszywe:

$$p: -3^2 = 9, \qquad q: \sqrt{81+64} = 17 \quad \text{oraz} \qquad r: \sqrt[3]{27^4} = \left(\frac{1}{9}\right)^{-2}.$$

Oceń wartość logiczną zdania: $(p \wedge q) \Rightarrow r$. Odpowiedź uzasadnij.

Od	กดง	vie	dź:
$-\mathbf{u}$	$\rho \circ \iota$,,,,	uz.

.....

Zadanie 2. (5 pkt.)

Zbiór A jest zbiorem rozwiązań nierówności: $-x^2 + 2x + 3 \ge 0$, zbiór B jest dziedziną funkcji wymiernej $W(x) = \frac{x^2 - 9}{4x - x^2}$. Wyznacz różnicę zbiorów $A \setminus B$.

Odpowiedź:			

Zadanie 3. (5 pkt.)

Dwie konkurencyjne firmy "Alfa" i "Beta" chcą podjąć się organizacji wycieczki. Opłata za wycieczkę w przypadku każdej z ofert składa się z części stałej, niezależnej od liczebności grupy oraz stawki za każdego uczestnika. Opłata stała i stawka wynoszą odpowiednio 3000 zł i 245 zł w firmie "Alfa" oraz 4400 zł i 206 zł w firmie "Beta". Oblicz:

- a) przy jakiej liczbie uczestników wycieczki korzystniejsza jest oferta firmy "Alfa",
- b) jakie koszty przypadną na każdego z 38 uczestników wycieczki zorganizowanej przez firmę "Beta" (koszty podaj z dokładnością do 1 zł).

Odpowiedź:		
a)	 	
b)		

Zadanie 4. (5 pkt.)

Funkcja kwadratowa $f(x) = -\frac{1}{2}x^2 + bx + c$ przyjmuje jednakowe wartości dla argumentów

- 1 i 5. Do wykresu tej funkcji należy początek układu współrzędnych.
 a) Wyznacz wartości współczynników *b* i *c*.

 - Dla wyznaczonych wartości współczynników b i c naszkicuj wykres funkcji f. b)

ΩA		14.
Ou	powie	UZ.

a) _____

Zadanie 5. (4 pkt.)

Inwestor planuje uzyskać w banku kredyt, który zamierza spłacić po czterech latach. Taki kredyt w banku A jest oprocentowany 12% w skali roku, a odsetki są dopisywane do długu co pół roku. Bank B oferuje oprocentowanie roczne 11% z roczną kapitalizacją odsetek, a przy zwrocie kredytu pobiera prowizję w wysokości 4% kwoty udzielonego kredytu. Oceń, która oferta jest korzystniejsza dla kredytobiorcy.

o 1		1,
()di	owie	dž:
~ ~	, , , , ,	·uL.

.....

Zadanie 6. (6 pkt.)

Prosta l tworzy z osią x kąt o mierze 45° i przechodzi przez punkt M = (-2,2). Prosta k, prostopadła do prostej l, przecina oś x w punkcie o odciętej $x_o = -3$.

- a) Wyznacz równania prostych l i k.
- b) Oblicz długość najdłuższego boku trójkąta, którego boki zawierają się w prostych l i k oraz w osi y.

Od	powiedź:
a)	
b)	

W okrąg o środku O i promieniu R=6 cm wpisano czworokąt ABCD. Kąty środkowe: $\angle AOB$, $\angle BOC$, $\angle COD$ i $\angle DOA$ mają odpowiednio miary : 45°, 150°, 135° i 30°. Oblicz pole czworokąta ABCD.

Odpowiedź:			

Zadanie 8. (4 pkt.)

Dane są wielomiany: $Q(x) = x^4 - 8x^3 + 22x^2 - 24x + 9$, $P(x) = 2x^3 - 9x^2 + 7x + 6$. Oblicz wartości m i n, dla których wielomian $W(x) = x^4 + (m-4)x^3 - (2n+6)x^2 - 38x - 3$ równy jest wielomianowi Q(x) - 2P(x).

Odpo	owi	edź	7.														
O up	O * * 1	Cuz	٠.														

Zadanie 9. (7 pkt.)

Piętrowy tort przygotowany na bal maturalny składał się z pięciu warstw, z których każda miała kształt walca. Długości promieni walców, wyrażone w cm były kolejnymi wyrazami ciągu arytmetycznego o różnicy a=-5. Długość promienia podstawy środkowej warstwy tego tortu była równa 20 cm, a jej objętość 3200π cm^3 . Wszystkie warstwy wykonane były z tego samego rodzaju ciasta i miały jednakową wysokość.

Oblicz, ile mąki należało przygotować do wypieku całego tortu, jeżeli receptura przewiduje wykorzystanie 0,24 kg mąki do wypieku warstwy środkowej.

Odpowiedź:			

Zadanie 10. (4 pkt.)

Właściciel sklepu spożywczego w przypadku każdego nowego produktu przeprowadza test polegający na tym, że 50 losowo wybranych osób ocenia ten produkt w skali od 0 do 5 punktów, w trzech kategoriach: \mathbf{C} – ceny, \mathbf{S} – smaku, i \mathbf{W} – wyglądu opakowania. Następnie właściciel oblicza średnią ważoną z następujących liczb: s_1 średniej liczby punktów w kategorii \mathbf{C} (z wagą 5), s_2 średniej liczby punktów w kategorii \mathbf{S} (z wagą 3) i s_3 średniej liczby punktów w kategorii \mathbf{W} (z wagą 2). W przypadku gdy tak obliczona średnia jest większa od 3 właściciel decyduje, że towar będzie sprzedawany w jego sklepie. Badania dotyczące nowego rodzaju kawy dały następujące rezultaty:

w kategorii W:

W kategorii C obliczona średnia była równa $s_1 = 2,42$, a w kategorii S $s_2 = 4,32$.

Oblicz s_3 , oraz oceń czy w rezultacie przeprowadzonego testu właściciel sklepu zdecyduje się na sprzedaż nowego gatunku kawy.

Odpowiedź:			

BRUDNOPIS

