Universidad del Valle de Guatemala

Departamento de Matemática Licenciatura en Matemática Aplicada

Estudiante: Rudik Roberto Rompich

Correo: rom19857@uvg.edu.gt

Carné: 19857

Geometría diferencial - Catedrático: Alan Reyes 2 de febrero de 2023

Tarea

Problema 1. 1. a) Sea $\alpha(t)$ una curva parametrizada en \mathbb{R}^n , que no pasa por el origen O. Si $\alpha(t_0)$ es un punto del trazo de α que está más próximo a O, y $\alpha'(t_0) \neq 0$ entonces $\alpha(t_0)$ es ortogonal a $\alpha'(t_0)$

b) Sea $\alpha: I \to \mathbb{R}^3$ una curva parametrizada, con $\alpha'(t) \neq 0, \forall t \in I$. Mostrar que $|\alpha(t)|$ es una constante > 0 si, y sólo si, $\alpha(t)$ es ortogonal a $\alpha'(t)$, para todo $t \in I$.

Problema 2. 2. Considere la parametrización de la cicloide de radio r vista en aula.

- a) Calcular la longitud de arco de la cicloide en el primero de sus arcos, esto es correspondiente a una rotación completa del círculo.
- b) Calcular el área bajo la curva (entre la curva y el eje x) para este arco de cicloide.

Problema 3. 3. Sea $\alpha:(0,\pi)\to\mathbb{R}^2$ la curva dada por

$$\left(\sin t, \cos t + \log \tan \frac{t}{2}\right),\,$$

donde t es el ángulo que el eje Oy hace con el vector $\alpha'(t)$. Esta curva se llama la tractriz (Figura en pág. 8 de Do Carmo). Mostrar que

- α es una curva parametrizada diferenciable, regular excepto en $t = \frac{\pi}{2}$.
- La longitud del segmento de la tangente a la tractriz, entre el punto de tangencia y el eje Oy es constante e igual a 1.

Problema 4. 4. Sea α una curva plana regular en coordenadas polares (r, φ) , dada por $r = r(\varphi)$. Usando la notación $r' = \frac{\partial r}{\partial \varphi}$, verificar que la longitud de arco en el intervalo $[\varphi_1, \varphi_2]$ es

$$s = \int_{\varphi_2}^{\varphi_2} \sqrt{r'^2 + r^2} d\varphi$$

y que la curvatura está dada por

$$\kappa(\varphi) = \frac{2r'^2 - rr'' + r^2}{\left(r'^2 + r^2\right)^{3/2}}$$

Problema 5. 5. Calcular la curvatura de la espiral de Arquímedes, la cual está dada por $r(\varphi) = a\varphi$, a constante (Figura 1(a)).

Problema 6. 6. Para la espiral logarítmica, dada en coordenadas polares por por $r(t) = ae^t$, $\varphi(t) = bt$, a, b constantes (Figura 1(b)), probar lo siguiente:

- a) La longitud de la curva en el intervalo $(-\infty,t]$ es proporcional al radio r(t)
- b) $\alpha(t) \to 0$, cuando $t \to \infty$ y α tiene longitud de arco finita en el intervalo $[t_0, \infty)$.
- c) El vector $\alpha(t)$ tiene ángulo constante con el vector tangente $\alpha'(t)$.

Problema 7. 7. Mostrar que la curva de menor longitud entre dos puntos $\mathbf{p}, \mathbf{q} \in \mathbb{R}^n$ es el segmento de recta que los une. (Sugerencia: ver las ideas en el Ejercicio 10, pág 11 de Do Carmo.)

Figure 1: (a) espiral de Arquímedes, (b) espiral logarítmica.

Problema 8. 8. Probar que la curvatura y la torsión de una curva de Frenet $\alpha(t)$ en \mathbb{R}^3 , parametrizada de forma arbitraria, están dadas por

$$\kappa(t) = \frac{\left|\alpha' \times \alpha''\right|}{\left|\alpha'\right|^{3}}, \quad \tau(t) = \frac{\det\left(\alpha', \alpha'', \alpha'''\right)}{\left|\alpha' \times \alpha''\right|^{2}}.$$

En particular, en el caso de curvas planas,

$$\kappa(t) = \frac{\det\left(\alpha', \alpha''\right)}{\left|\alpha'\right|^3}.$$

(Sugerencia: ver las ideas en el Ejercicio 12, pág 26 de Do Carmo.)

Problema 9. 9. Sea α la hélice en \mathbb{R}^3 , dada por

$$\alpha(t) = (a\cos t, a\sin t, bt), \quad a, b \in \mathbb{R}^+.$$

Muestre que la curvatura y la torsión de α son constantes.

Problema 10. 10. Construir una curva plana, parametrizada por longitud de arco, cuya curvatura esté dada exactamente por $\kappa(s) = s^{-1/2}$.