LH	0000	0001	0010	0011	0100	0101	0110	0111
0000	NUL	DLE	SP	0	@	P	6	р
0001	SOH	DC1	!	1	A	Q	a	q
0010	STX	DC2	44	2	В	R	b	r
0011	ETX	DC3	#	3	С	S	e	S
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	v
0111	BEL	ETB	,	7	G	W	g	W
1000	BS	CAN)	8	Н	X	h	X
1001	HT	EM	(9	I	Y	i	y
1010	LF	SUB	*	:	J	Z	j	Z
1011	VT	ESC	+	5	K	[k	{
1100	FF	FS	,	<	L	\	1	
1101	CR	GS	_	=	M]	m	}
1110	SO	RS		>	N	^	n	~
1111	SI	US	1	?	0	_	0	DEL

比特与进制

0

十进制数

- 使用十个不同的数字符号(0,1,2,3,4,5,6,7,8,9),基数是10,
 逢10进1
- 这些数字符号处于十进制数中不同位置时,其权值各不相同, 十进制数各位的权值是10的整数次幂
- 十进制数的标志: 尾部加 "D" 或缺省

 $2004.96D = 2 \times 10^{3} + 0 \times 10^{2} + 0 \times 10^{1} + 4 \times 10^{0} + 9 \times 10^{-1} + 6 \times 10^{-2}$

八进制数

- 使用0、1、2、3、4、5、6、7八个数字符号表示,基数为8, 逢8进1
- 八进制数各位的权值是8的整数次幂
- 八进制数的标志: 尾部加Q

$$365.2Q = 3 \times 8^2 + 6 \times 8^1 + 5 \times 8^0 + 2 \times 8^{-1} = 245.25$$

十六进制数

- 使用0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F 十六个符号表示,其中A、B、C、D、E、F分别代表十进制的 10、11、12、13、14、15,基数为16,逢16进1
- 十六进制数各位的权值是16的整数次幂
- 十六进制数的标志: 尾部加H

$$F5.4H = 15 \times 16^{1} + 5 \times 16^{0} + 4 \times 16^{-1} = 245.25$$

● 任意 (R) 进制数

- 每种进位制都有固定的数码——基数
- 按基数进位或借位——逢R进一
- 位权与基数的关系: 位权的值等于基数的若干次幂。

$$(K_{n}K_{n-1} ... K_{1}K_{0} . K_{-1}K_{-2} ...K_{-m})_{R}$$

$$= K_{n} \times R^{n} + K_{n-1} \times R^{n-1} + ... + K_{1} \times R^{1} + K_{0} \times R^{0}$$

$$+ K_{-1} \times R^{-1} + K_{-2} \times R^{-2} + ... + K_{-m} \times R^{-m}$$

不同进制数的相互转换

- 熟练掌握不同进制数相互之间的转换, 在编写程序和设计数字逻辑电路时很 有用
- 只要学会二进制数与八进制、十六进制数、十进制数之间的转换,其他进制的转换一样引刃而解

十进制数与二进制数的相互转换

二进制数→十进制数 按位权展开

• 十进制数→二进制数

整数部分:除2取余,结果倒写

小数部分:乘2取整,结果顺写

注意转换可能存在的误差问题

7

二进制数与十六进制数的相互转换

-5

- : 16=24
- · 采用1-4组合法

5A2.FC H → 0101 1010 0010.1111 1100 B 0011 0100 1110.1100 1100 B → 34E.CC H

 十六进制
 0
 1
 2
 3
 4
 5
 6
 7

 二进制
 0000
 0001
 0010
 0011
 0100
 0101
 0110
 0111

 十六进制
 8
 9
 A
 B
 C
 D
 E
 F

 二进制
 1000
 1001
 1010
 1011
 1100
 1101
 1110
 1111

• 整数的编码表示

• 整数的特点

不使用小数点,或者认为小数点固定隐含在个位数的右面,因此整数也叫做"定点数"。

- 整数的分类
 - 无符号的整数 (unsigned integer)

正整数。可用于表示字符编码、地址码、索引码等

- 带符号的整数(signed integer)

正整数或负整数。可用于表示某个物理量的值

• 用一个机器数表示一个不带符号的整数。

其取值范围由机器数的位数决定

最小值: 00000000······B, 最大值: 111111111······B

8位: 可表示0~255(28-1)范围内的所有正整数

16位: 可表示0~65535(216-1)范围内的所有正整数

n位: 可表示0~2°-1范围内的所有正整数

注意由于超出机器数范围而导致的溢出(overflow)问题)

• "原码"编码方法: 机器数的最高位表示整数的符号 (0代表正数,1代表负数),机器数的剩余位以二进制形式表示数据的绝对值。

• 表示范围:

8位: -2⁷+1~2⁷-1(-127~127)范围内所有整数

16位: -215+1~215-1(-32767~32767)范围内所有整数

n位: -2ⁿ⁻¹+1~2ⁿ⁻¹-1范围内所有整数

• 原码举例(8位原码): [+43]_{原码} = 00101011

 $[-34]_{\text{原} \Theta} = 10100010$

• 原码表示的优点:

与日常使用的表示方法比较一致,简单、直观

- 原码表示的缺点:
 - -加法运算与减法运算的规则不统一,减法运算烦琐,实 现电路复杂,增加了成本
 - 整数0有 "00000000" 和 "10000000" 两种表示形式

付算机内部通常不采用"原码" 而采用"补码"表示带符号整数

- "补码"编码方法:正整数的补码与其原码形式相同;负整数的补码等于其原码除最高符号位保持不变外,其它每一位取反,再在末位加"1"后所得到的运算结果。
- 补码举例 (8位原码):

$$[+43]_{\text{AG}} = [+43]_{\text{BG}} = 00101011$$

$$[-34]_{\text{原}_{\Theta}} = 10100010$$

$$[-34]_{\overline{\Sigma}^{4}} = 11011101$$

$$[-34]_{\text{ANG}} = 11011110$$

• 补码运算规则:

$$[X \pm Y]_{\text{\tiny R}} = [[X]_{\text{\tiny N}} + [\pm Y]_{\text{\tiny N}}]_{\text{\tiny N}}$$

• 补码表示范围:

最小值: 10000000······B, 最大值: 01111111······B

8位: -27~27-1 (-128~127)范围内的所有整数

n位: - 2ⁿ⁻¹ ~ 2ⁿ⁻¹ - 1 范围内的所有整数

- 补码的优点:
 - 能将减法运算转换为加法运算,便于CPU作运算处理
 - n位原码表示整数 "0" 时,有 "1000…00" 与 "0000…00" 两种形式,而在补码表示中,整数 "0" 只有 "0 000…00" 一种表示形式, "1000…00" 则 用来表示整数值-2ⁿ⁻¹,因而,若原码和补码的表示位数相同,补码可表示整数的个数比原码多一个。(例,8位补码能表示-128,8位原码则不能)
- 补码的缺点:不直观

• 实数的特征

实数也叫做"浮点数",包含小数点,既有整数部分又有小数部分。整数和纯小数是实数的特例。

• 实数的编码表示 (浮点表示法)

任何一个实数总可以表达成一个乘幂和一个纯小数之积。 乘幂中的指数部分用来指出实数中小数点的位置, 纯小数部分决定了有效数字。

例如: 56.72=0.5672×10²; -0.00347=-0.347×10⁻²

• 二进制实数:

 $1001.011B = 0.1001011B \times 2^{100}B$

 $-0.0010101B = -0.10101B \times 2^{-10}B$

• 任一个二进制实数 N 均可表示为:

N=±S×2^{±P} (0 < S < 1时为规范化表示)

S: 称为 N 的**尾数** (纯小数)

±P: 称为 N 的**阶码**(有符号整数)

- 二进制实数的编码
 - 将"阶码"和"尾数"进行编码,合在一起即为实数编码。这种表示法称为"浮点表示法"。
 - 阶码是有符号整数,可采用原码或补码表示
 - 尾数的数值范围和小数点的位置可以有不同的约定
 例如, 1001.011B = 0.1001011B×2+100B

浮点数的长度 = 阶码的编码位数 + 尾数的位数

浮点数的长度:一个或多个机器数(例如:32位、64位等)

一般来说,

阶码位数越多,可表示的实数的范围越大

尾数位数越多,可表示的实数的精度越高

举例: 16位机器数能够表示的实数的范围:

011111 1111111111 (原码)

最小值

最大值

 $-(1-2^{-9}) \times 2^{2^5-1} - (1-2^{-9}) \times 2^{2^5-1}$

Pentium处理器32位浮点数的表示格式(工业标准 IEEE 754) 包括三个组成部分:

- 符号s: 1位, s=0表示此数为正数, s=1表示为负数
- 偏移阶码(e): **8位**, e = 指数 + 127 带有偏移量127的无符号整数
- 尾数(f): **23位**,原码表示,绝对值在1与2之间,其中1和小数点都是隐含的,不直接表示出来

1位 8位 23位

符号 位s

偏移阶码e

尾数 f (b₁b₂b₃...b₂₃)