Задача 1. Разность квадратов

Вы участвуете в разработке программного модуля для системы символьных вычислений. Модуль будет использоваться для решения специального вида диофантовых уравнений.

По заданному целому неотрицательному целому числу n разрабатываемый модуль должен найти два натуральных числа x и y, для которых выполнено равенство $x^2-y^2=n$. Найденные числа не должны превышать $2^{62}-1$.

Требуется написать программу, которая по заданному целому неотрицательному числу n находит натуральные числа x и y, не превышающие $2^{62} - 1$, разность квадратов которых равна n.

Формат входных данных

В единственной строке дано одно целое число $n \ (0 \le n \le 2^{60})$.

Обратите внимание, что заданное во вводе число не помещается в 32-битный тип данных, необходимо использовать 64-битный тип данных (например, «long long» в C++, «int64» в паскале, «long» в Java).

Формат выходных данных

Если искомые x и y существуют, то необходимо вывести две строки: в первой строке выведите слово «Yes», а во второй — искомые x и y.

Если подходящих пар x и y несколько, можно вывести любую из них, но должно выполняться условие $1 \le x, y \le 2^{62} - 1$.

Если решения нет, в единственной строке необходимо вывести слово «No».

Система оценивания

Баллы за каждую подзадачу начисляются только в случае, если все тесты для этой подзадачи и необходимых подзадач успешно пройдены.

Подзадача	Баллы	Ограничения	Необходимые подзадачи	Информация о проверке
1	10	$0\leqslant n\leqslant 2^{10}$		полная
2	20	$0\leqslant n\leqslant 2^{20}$	1	полная
3	30	$0\leqslant n\leqslant 2^{30}$	1, 2	полная
4	40	$0 \leqslant n \leqslant 2^{60}$	1, 2, 3	полная

Примеры

стандартный ввод	стандартный вывод	
3	Yes	
	2 1	
2	No	

Задача 2. Превышение скорости

Превышение скорости является опасным нарушением, значительно увеличивающим вероятность трагических последствий транспортных происшествий. К сожалению контроль скорости с использованием радаров и камер не решает проблему полностью. Притормаживая перед камерами, водители едут со значительным превышением на участках дорог, где контроль не ведётся. С целью предотвращения такого поведения используется назначение штрафа за гарантирование превышение скорости, основанное на времени проезда дороги.

Рассмотрим дорогу, состоящую из n участков, пронумерованных от 1 до n. Длина i-го участка составляет l_i метров. На i-м из участков установлено ограничение по скорости в v_i м/с.

За превышение скорости предусмотрены штрафы. В зависимости от превышения, установлены различные штрафы, величина штрафа вычисляется следующим образом.

Пусть e — максимальное превышение разрешённой скорости в процессе пребывания автомобиля на всей дороге, то есть максимальная разница между скоростью автомобиля и максимальной разрешенной скоростью на участке, где он в этот момент находится. Если превышения скорости не было, то штраф не взимается. В противном случае штраф вычисляется так:

- если $0 < e \leqslant a_1$, то штраф составляет f_1 денежных единиц;
- ullet если $a_1 < e \leqslant a_2$, то штраф составляет f_2 денежных единиц;
- . .
- если $a_{m-2} < e \leqslant a_{m-1}$, то штраф составляет f_{m-1} денежных единиц;
- если $a_{m-1} < e$, то штраф составляет f_m денежных единиц.

Таким образом, есть m диапазонов превышения скорости и соответствующие им штрафы.

Автоматическая система назначения штрафов получила данные о q автомобилях. Для удобства пронумеруем их от 1 до q. Известно, что i-й автомобиль заехал на дорогу в момент времени s_i , проехал все n участков, после чего выехал с нее в момент времени t_i . Отсчёт времени будем вести в секундах с открытия дороги.

Для каждого из автомобилей система должна определить, какой максимальный штраф можно гарантированно выписать этому автомобилю, основываясь только на времени заезда на дорогу и выезда с нее.

Требуется написать программу, которая по описанию границ диапазонов превышения скорости, соответствующих штрафов и временам въезда/выезда автомобилей определяет для каждого автомобиля максимальный штраф, который можно выписать этому автомобилю.

Формат входных данных

Первая строка входных данных содержит единственное целое число n — количество участков на дороге $(1 \le n \le 10)$.

Вторая строка содержит n целых чисел v_i — ограничения скорости на участках $(1 \le v_i \le 10^9)$. Третья строка содержит n целых чисел l_i — длины участков $(1 \le l_i \le 10^9)$.

Четвертая строка содержит единственное целое число m — количество границ диапазонов превышения скорости ($1 \le m \le 10^5$).

Пятая строка содержит m-1 целых чисел a_i — границы диапазонов превышения скорости $(1\leqslant a_i\leqslant 10^9)$. Гарантируется, что значения a_i строго возрастают. Обратите внимание, что если m=1, то пятая строка ввода пустая.

Шестая строка содержит m целых чисел f_i — штрафы за диапазоны превышения скоростей $(1 \leq f_i \leq 10^9)$. Гарантируется, что значения f_i возрастают.

Седьмая строка содержит единственное целое число q — количество автомобилей, которые надо обработать $(1 \le q \le 10^5)$.

Каждая из следующих q строк содержит два целых числа s_i и t_i — время заезда на трассу и выезда с неё i-го из рассматриваемых автомобилей ($1 \le s_i < t_i \le 10^9$).

Формат выходных данных

Для каждого из q автомобилей выведите в отдельной строке максимальный штраф, который гарантированно можно выписать этому автомобилю, основываясь только на временах его заезда на дорогу и выезда с нее. Если возможна ситуация, что автомобиль ни разу не превысил разрешённую скорость, следует вывести 0.

Гарантируется, что если время въезда или выезда автомобиля изменить не более чем на 10^{-5} , штраф, который можно ему выписать, не изменится.

Система оценивания

Баллы за каждую подзадачу начисляются только в случае, если все тесты для этой подзадачи и необходимых подзадач успешно пройдены.

Подзадача	Баллы	Дополнительные ограничения	Необходимые подзадачи	Информация о проверке
1	5	n = 1, m = 1		первая ошибка
2	10	m = 1	1	первая ошибка
3	9	$n = 1, m \leq 10$	1	первая ошибка
4	12	n = 1	1, 3	первая ошибка
5	13	$m \leqslant 10, a_i \leqslant 10$		первая ошибка
6	14	$m \leqslant 10$	1, 2, 3, 5	первая ошибка
7	37		1 - 6	первая ошибка

Пример

стандартный ввод	стандартный вывод
3	0
10 20 30	800
400 500 600	600
6	
1 5 10 12 16	
100 300 600 800 1000 1500	
3	
10 100	
20 70	
45 100	

Задача 3. Борьба с рутиной

Важным элементом повышения эффективности работы сотрудников является борьба с рутиной. Построим математическую модель разнообразия типов заданий, выполняемых сотрудником в компании.

Рассмотрим работу сотрудника в течение n последовательных рабочих дней. Будем считать, что каждый день сотрудник выполняет ровно один тип заданий, обозначим тип заданий, выполняемый сотрудником в i-й день, целым числом a_i .

Для оценки рутинности работы сотрудника будем использовать следующую характеристику. Зафиксируем целое число d и рассмотрим все отрезки из d подряд идущих рабочих дней. Для каждого такого отрезка найдём количество различных типов заданий, которые работник выполнял на протяжении этих дней, и просуммируем эти значения. Полученную величину обозначим как S_d и будем называть её d-разнообразием. Чем d-разнообразие выше, тем больше различных типов заданий выполнял сотрудник. Профилем вариативности сотрудника будем называть массив значений $[S_1, S_2, \ldots, S_n]$.

Требуется написать программу, которая по заданной последовательности a_1, a_2, \ldots, a_n типов выполняемых сотрудником заданий вычисляет его профиль вариативности.

Формат входных данных

В первой строке находится единственное целое число n — количество последовательных рабочих дней, которые необходимо проанализировать $(1 \le n \le 2 \cdot 10^5)$.

Во второй строке находится n целых чисел a_1, a_2, \ldots, a_n —типы заданий, которое выполнял сотрудник ($1 \le a_i \le 10^9$).

Формат выходных данных

Выведите n целых чисел: S_1, S_2, \ldots, S_n .

Система оценивания

Баллы за каждую подзадачу начисляются только в случае, если все тесты для этой подзадачи и необходимых подзадач успешно пройдены.

Подзадача	Баллы	Ограничения	Необходимые подзадачи	Информация о проверке
1	12	$1 \leqslant n \leqslant 50, 1 \leqslant a_i \leqslant 50$		первая ошибка
2	10	$1 \leqslant n \leqslant 50, \ 1 \leqslant a_i \leqslant 10^9$	1	первая ошибка
3	10	$1 \leqslant n \leqslant 500, \ 1 \leqslant a_i \leqslant 10^9$	1, 2	первая ошибка
4	12	$1 \leqslant n \leqslant 5000, \ 1 \leqslant a_i \leqslant 5000$	1	первая ошибка
5	10	$1 \leqslant n \leqslant 5000, \ 1 \leqslant a_i \leqslant 10^9$	1-4	первая ошибка
6	16	$1 \leqslant n \leqslant 2 \cdot 10^5, \ 1 \leqslant a_i \leqslant 50$	1	первая ошибка
7	30	$1 \leqslant n \leqslant 2 \cdot 10^5, \ 1 \leqslant a_i \leqslant 10^9$	1 - 6	первая ошибка

Примеры

стандартный ввод	стандартный вывод	
5	5 8 8 6 3	
1 3 2 1 2		
3	3 2 1	
10 10 10		

Замечание

Рассмотрим, как вычисляются значения S_d в первом примере.

1-разнообразие: необходимо просуммировать количество различных типов заданий, выполняемых сотрудником по всем отрезкам, состоящим из одного дня.

Отрезок дней	Типы заданий	Количество различных
1 – 1	1	1
2-2	3	1
3 - 3	2	1
4-4	1	1
5 - 5	2	1

Значение 1-разнообразия равно $S_1 = 1 + 1 + 1 + 1 + 1 = 5$.

2-разнообразие: необходимо просуммировать количество различных типов заданий, выполняемых сотрудником по всем отрезкам, состоящим из двух дней.

Отрезок дней	Типы заданий	Количество различных
1-2	1,3	2
2-3	3, 2	2
3 - 4	2, 1	2
4 - 5	1, 2	2

Значение 2-разнообразия равно $S_2 = 2 + 2 + 2 + 2 = 8$.

3-разнообразие: необходимо просуммировать количество различных типов заданий, выполняемых сотрудником по всем отрезкам, состоящим из трех дней.

Отрезок дней	Типы заданий	Количество различных
1 - 3	1, 3, 2	3
2-4	3, 2, 1	3
3 - 5	2, 1, 2	2

Значение 3-разнообразия равно $S_3 = 3 + 3 + 2 = 8$.

4-разнообразие: необходимо просуммировать количество различных типов заданий, выполняемых сотрудником по всем отрезкам, состоящим из четырех дней.

Отрезок дней	Типы заданий	Количество различных
1-4	1, 3, 2, 1	3
2-5	3, 2, 1, 2	3

Значение 4-разнообразия равно $S_4 = 3 + 3 = 6$.

5-разнообразие: необходимо просуммировать количество различных типов заданий, выполняемых сотрудником по всем отрезкам, состоящим из пяти дней.

Отрезок дней	Типы заданий	Количество различных
1 - 5	1, 3, 2, 1, 2	3

Значение 5-разнообразия равно $S_5 = 3$.

Задача 4. Олимпиада для роботов

Жюри чемпионата по скоростному вычислению булевых функций среди роботов готовит задания для участников.

Задание для роботов представляет собой таблицу из m строк и n столбцов, каждая ячейка которой содержит целое число. Обозначим число в i-й строке, j-м столбце таблицы как $x_{i,j}$. В каждом столбце значения в ячейках таблицы образую перестановку чисел от 0 до m-1. Иначе говоря, числа в каждом столбце различны: если $i \neq k$, то $x_{i,j} \neq x_{k,j}$ для всех j, и выполнено условие $0 \leqslant x_{i,j} < m$.

Для каждого столбца таблицы задаётся значение noposa— целое неотрицательное число z_j от 0 до m. В качестве аргументов булевых функций, которые будут вычислять участники олимпиады, используются значения логических выражений $x_{i,j} < z_j$. Значение такого логического выражения равно 1, если неравенство выполнено, иначе оно равно 0.

В процессе соревнования участники вычисляют значения m булевых функций — по одному для каждой строки. Каждая булева функция задаётся в виде бесповторной монотонной линейной программы (БМЛП).

Рассмотрим БМЛП для i-й строки таблицы. Она представляет собой последовательность из n-1 инструкции, пронумерованных от 1 до n-1, p-я инструкция задаётся тремя числами: $a_p,\,b_p$ и op_p . Число op_p принимает два возможных значения: 1 для операции and — логическое «и», 2 для операции or — логическое «или». Числа a_p и b_p являются номерами аргументов p-й инструкции, выполнены неравенства $1\leqslant a_p,b_p < n+p$.

Рассмотрим массив val[1..2n-1], каждое из значений которого равно 0 или 1. Проинициализируем значения val[1]..val[n] с использованием порогов, val[j]=1, если $x_{i,j} < z_j$, иначе val[j]=0. Значение val[n+p] вычисляется с использованием p-й инструкции.

- Если $op_p = 1$, то $val[n+p] = (val[a_p] \text{ and } val[b_p])$, то есть значение val[n+p] равно 1 если и только если каждое из значений $val[a_p]$ и $val[b_p]$ равно 1.
- Если $op_p = 2$, то $val[n+p] = (val[a_p] \text{ or } val[b_p])$, то есть значение val[n+p] равно 1 если и только если хотя бы одно из значений $val[a_p]$ и $val[b_p]$ равно 1.

При этом программа является бесповторной, а именно все 2n-2 значений a_p и b_p для p от 1 до n-1 различны. Иначе говоря, $a_p \neq b_p$, а если $p \neq q$, то $a_p \neq a_q$, $a_p \neq b_q$, $b_p \neq a_q$ и $b_p \neq b_q$.

Результатом исполнения программы является значение val[2n-1].

Жюри олимпиады подготовило таблицу $x_{i,j}$, выбрало булевы функции для каждой строки и записало их в виде БМЛП. Теперь осталось выбрать значение порога для каждого столбца, чтобы получить задание для олимпиады. Жюри считает задание сбалансированным, если ровно s из m программ для строк таблицы возвращают единицу, а остальные m-s возвращают ноль. Ваша задача — помочь жюри найти подходящие значения порогов.

Требуется написать программу, которая по заданным значениям в ячейках таблицы и БМЛП для строк таблицы определяет такие значения порогов z_j , чтобы значение ровно s из m заданных функций было равно 1. Можно доказать, что при описанных в условии задачи ограничениях требуемые значения порогов всегда можно подобрать.

Формат входных данных

В первой строке входных данных заданы целые числа n, m и s $(1 \le n \le 3 \cdot 10^5, 1 \le m \le 3 \cdot 10^5, n \cdot m \le 3 \cdot 10^5, 0 \le s \le m).$

Далее следует m блоков по n-1 строке в каждом, каждый блок задает бесповторную монотонную линейную программу для одной строки таблицы. В каждом блоке p-я строка содержит 3 целых числа: a_p, b_p и op_p ($1 \le a_p < n+p$, $1 \le b_p < n+p$, гарантируется, что в одном блоке все значения a_p и b_p попарно различны, $op_p = 1$ или $op_p = 2$).

Последние m строк задают таблицу, i-я строка содержит n целых чисел, j-е из которых равно $x_{i,j}$ ($0 \le x_{i,j} \le m-1$, в каждом столбце все числа различны, то есть если $i \ne k$, то $x_{i,j} \ne x_{k,j}$ для всех j).

Формат выходных данных

Выведите n целых чисел — искомые значения порогов $z_1, z_2, \ldots, z_n \ (0 \leqslant z_j \leqslant m)$. Если подходящих вариантов несколько, выведите любой из них.

Система оценивания

Баллы за каждую подзадачу начисляются только в случае, если все тесты для этой подзадачи и необходимых подзадач успешно пройдены.

Подз.	Баллы	Дополнительные ограничения	Необходимые подзадачи	Информация о проверке
1	10	$n \leqslant 2, m \leqslant 10^3$		первая ошибка
2	10	$n \leqslant 2, m \leqslant 10^5$	1	первая ошибка
3	10	$n \leqslant 10, m \leqslant 2$		первая ошибка
4	5	$x_{i,j} = i - 1$		первая ошибка
5	5	$op_p=1$, только операции «и»		первая ошибка
6	20	$n \leqslant 100$	1, 2, 3	первая ошибка
7	10	БМЛП для всех строк одинаковые		первая ошибка
8	30	нет	1-7	первая ошибка

Пример

•	
стандартный ввод	стандартный вывод
4 3 2	0 1 2 3
1 2 1	
3 4 1	
5 6 2	
1 2 2	
3 5 1	
4 6 2	
1 4 1	
2 3 1	
5 6 2	
0 1 2 2	
2 2 1 0	
1 0 0 1	

Замечание

В примере в таблице три строки, каждой соответствует формула. Необходимо найти четыре порога так, чтобы ровно две формулы возвращали 1, а оставшаяся — 0.

Рассмотрим, как будет вычисляться массив val для первой строки.

Первые четыре значения вычисляются на основе чисел в этой строке и порогов:

- $val[1] = (x_{1,1} < z_1) = (0 < 0) = 0;$
- $val[2] = (x_{1,2} < z_2) = (1 < 1) = 0;$
- $val[3] = (x_{1,3} < z_3) = (2 < 2) = 0;$
- $val[4] = (x_{1.4} < z_4) = (2 < 3) = 1.$

Далее выполняем линейную программу для первой строки:

•
$$val[5] = (val[1] \text{ and } val[2]) = (0 \text{ and } 0) = 0;$$

Всероссийская олимпиада школьников по информатике 2019–2020 Региональный этап, 1 тур, 16 января 2020 года

- val[6] = (val[3] and val[4]) = (0 and 1) = 0;
- val[7] = (val[5] or val[6]) = (0 or 0) = 0.

Таким образом значение булевой функции для первой строки равно 0. Кстати, если эту функцию записать формулой, то получится:

$$(((x_{1,1} < z_1) \text{ and } (x_{1,2} < z_2)) \text{ or } ((x_{1,3} < z_3) \text{ and } (x_{1,4} < z_4))).$$

Аналогично, булева функция для второй строки равна:

$$((((x_{2,1} < z_1) \text{ or } (x_{2,2} < z_2)) \text{ and } (x_{2,3} < z_3)) \text{ or } (x_{2,4} < z_4)),$$

а для третьей строки:

$$(((x_{3,1} < z_1) \text{ and } (x_{3,4} < z_4)) \text{ or } ((x_{3,2} < z_2) \text{ and } (x_{3,3} < z_3))).$$

При подстановке порогов $z_1=0,\ z_2=1,\ z_3=2,\ z_4=3$ получим следующие выражения. Вторая строка:

$$((((2<0) \text{ or } (2<1)) \text{ and } (1<2)) \text{ or } (0<3)) = (((0 \text{ or } 0) \text{ and } 1) \text{ or } 1) = (0 \text{ or } 1) = 1,$$

Третья строка:

$$(((1 < 0) \text{ and } (1 < 3)) \text{ or } ((0 < 1) \text{ and } (0 < 2))) = ((0 \text{ and } 1) \text{ or } (1 \text{ and } 1)) = (0 \text{ or } 1) = 1.$$

Заметим, что это не единственный подходящий набор порогов, также подойдут, например, значения $z_1=0,\ z_2=0,\ z_3=3,\ z_4=3.$