

DDC

DELAWARE RIVER BASIN
APPENZELL CREEK, LUZERNE COUNTY

WA070837

PENNSYLVANIA

TROUT LAKE DAM

NDI-PA 00769 PA DER 45-43 LEVE

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

Distribution Unlimited
Approved for Public Release
Contract No. DACW31-79-C-0010

FILE COPY

Prepared By

O'BRIEN & GERE

Justin & Courtney Division
PHILADELPHIA, PENNSYLVANIA
19103

FOR

DEPARTMENT OF THE ARMY
BALTIMORE DISTRICT CORPS OF ENGINEERS
BALTIMORE, MARYLAND

21203

REPRODUCTIONS WILL BE IN BLACK AND WHITE.
MARCH. 1979.

DDC JUL 6 1979

DELAWARE RIVER BASIN

Name of Dam: Trout Lake Dam
County and State: Monroe County, Pennsylvania
Inventory Number: PA 00769

11) Man 79/

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM

National Dam Inspection Program. Trout Lake Dam (NDI ID Number PA-99769, DER ID Number 45-43), Delaware River Basin, Appenzell Creek, Monroe County, Pennsylvania, Phase I Inspection Report.

Prepared by:

O'BRIEN & GERE ENGINEERS, INC.
JUSTIN & COURTNEY DIVISION

15) DACW 34-79-6-0040

Acces	sion For	
DDC T	GRA&I AB ounced	X
	rication_	
Ву		
Distr	Lbution/	
Avai	lability	Codes
Dist.	Avail and special	

For: DEPARTMENT OF THE ARMY Baltimore District, Corps of Engineers Baltimore, MD 21203

ORIGINAL CONTAINS COLOR PLATES: ALL DDC REPRODUCTIONS WILL BE IN BLACK AND WHITE.

410 760

set

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigations, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected, and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the spillway design flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. The spillway design flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

PHASE I REPORT

NATIONAL DAM INSPECTION PROGRAM

Name of Dam: Trout Lake Dam ID # PA 00769

State Located: Pennsylvania
County Located: Monroe
Stream: Appensell Creek

Stream: Appenzell Creek Coordinates: Latitude 40° 00.1' Longiture 75° 20.8'

Date of Inspection: December 14, 1978

ASSESSMENT

Trout Lake Dam is an earth embankment dam with a concrete overflow spillway. The dam is approximately 390 feet long and has a maximum height of about 24 feet. The dam is located along Pennsylvania Route 715, about 1 mile south of Reeders, Pennsylvania.

The spillway is capable of discharging 25 percent of the Probable Maximum Flood (PMF) without overtopping of the earth embankment. Failure of the dam would significantly increase the hazard to loss of life downstream of the dam. Therefore, the spillway is classified as "seriously inadequate", and the dam is classified as "unsafe (non-emergency)". The spillway capacity should be increased. Further detailed hydrologic and hydraulic studies should be performed prior to the design of additional spillway capacity.

Based on visual observations and review of the information obtained from the Pennsylvania Department of Environmental Resources, Dam Safety Section, Trout Lake Dam is considered to be in poor condition. Several conditions require further investigation, maintenance or monitoring:

- Longitudinal depressions extend across the upstream face of the dam.
 These depressions should be monitored to determine if any differential movement occurs.
- Immediately downstream of the embankment is an area of seepage, saturated silty deposits, and standing water. This area should be monitored regularly for signs of increased seepage and/or turbid water.
- The depressions along the upstream face, the seepage and discolcred water at the toe of the earth embankment, and undulations of all of the embankment surfaces may be indicative of the migration of fine material through the embankment or foundation. A subsurface investigation should be initiated at several sections of the dam to include, but not be limited to, soil borings for determination of the composition and in situ properties of the embankment and foundation materials. The investigation should be supervised by a licensed professional engineer with experience in the design and construction of dams. Results of the investigation should be used to establish if the materials are satisfactory for the embankment as designed and constructed; and to detect possible fines migration.

- 4. Piezometers should be installed in the boreholes to evaluate pore pressure development throughout the embankment.
- 5. The downstream slope is overgrown with a heavy cover of trees. The roots of the large trees may increase the seepage potential through the embankment. Uprooting of the trees could cause substantial volumes of embankment material to be displaced. Therefore, the trees should be cut to root level and removed from the surface of the embankment.
- The upstream face is not provided with slope protection. Slope 6. protection should be provided to prevent damage from wave action.
- 7. Portions of the top of the embankment were found to be below design elevation. Areas below design elevation should have additional fill placed and compacted to regrade the embankment to design elevation.
- 8. The low level outlet conduit and gate valve are silted-in at the downstream end, and no means of upstream control was evident at the time of inspection. The valve and outlet should be cleared of silt, and the adequacy of the outlet system should be assessed. A means of positive upstream control should be provided for the low level outlet.
- The conditions of the site show evidence of lack of maintenance. A 9. program of periodic maintenance should be established to include, but not be limited to, keeping the slopes cleared of deleterious vegetation, exercising the gate valve and inspecting the dam for structural deficiencies.
- There was no evidence of a flood warning system at this site. The 10. dam should be monitored during periods of heavy rainfall, and downstream residents alerted in the event of an impending failure.

O'BRIEN & GERE ENGINEERS, INC. JUSTIN & COURTNEY DIVISION

Will M. Heiser, P.E.

Vice President

Pennsylvania Registration

APPROVED BY

Colonel, Corps of Engineers

District Engineer

Date: 14 May 1979

Date: 16 Apr. 1979

OVERVIEW OF THE DAM FROM THE DOWNSTREAM RIGHT ABUTMENT

THE DOWNSTREAM SLOPE OF THE DAM

TABLE OF CONTENTS

		PAGE
SECTIO	ON 1 - PROJECT INFORMATION	
1.1 1.2 1.3	General Description Pertinent Data	1 1 2
SECTIO	DN 2 - ENGINEERING DATA	
2.1 2.2 2.3 2.4	Design Construction Operation Evaluation	4 4 4
SECTIO	ON 3 - VISUAL INSPECTION	
3.1	Findings	5
SECTIO	ON 4 - OPERATIONAL FEATURES	
4.1 4.2 4.3 4.4 4.5	Procedures Maintenance of Dam Maintenance of Operating Facilities Warning System in Effect Evaluation of Operational Adequacy	7 7 7 7
SECTIO	ON 5 - HYDRAULICS AND HYDROLOGY	
5.1	Evaluation of Features .	8
SECTIO	ON 6 - STRUCTURAL STABILITY	
6.1	Evaluation of Structural Stability	9
SECTIO	ON 7 - ASSESSMENT, RECOMMENDATIONS, PROPOSED REMEDIAL MEASURES	
7.1 7.2	Dam Assessment Recommendations, Remedial Measures	10

TABLE OF CONTENTS (Continued)

APPENDIX A - CHECKLIST, ENGINEERING DATA, DESIGN,
CONSTRUCTION, OPERATION, PHASE I
APPENDIX B - CHECKLIST, VISUAL INSPECTION, PHASE I
APPENDIX C - HYDROLOGIC & HYDRAULIC DATA
APPENDIX D - PHOTOGRAPHS
APPENDIX E DRAWNING

APPENDIX E - DRAWINGS

APPENDIX F - SITE GEOLOGY

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM TROUT LAKE DAM INVENTORY NUMBER - PA 00769

SECTION 1 PROJECT INFORMATION

1.1 General

- a. <u>Authority</u>. The Dam Inspection Act, Public Law 92-367, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a program of inspection of dams throughout the United States.
- b. <u>Purpose of Inspection</u>. The purpose of this inspection is to evaluate the structural and hydraulic conditions at Trout Lake Dam and to determine if the dam constitutes a hazard to human life or property.
- 1.2 <u>Project Description</u> (From information obtained from the Pennsylvania Department of Environmental Resources (DER), Dam Safety Section.)
- a. <u>Description of Dam and Appurtenances.</u> Trout Lake Dam is an earth embankment structure approximately 390 feet long. The embankment has a maximum height of about 24 feet.

A 35-foot long overflow spillway is located along the left abutment of the dam. A clear-span bridge is constructed over the spillway, with the steel beam supports approximately 4 feet above the spillway crest. The spillway discharge channel is provided with a masonry training wall along the right bank for approximately 50 feet downstream of the bridge.

According to the drawings made available, the dam is provided with a low level outlet conduit of unknown size and material. The outlet conduit is provided with a control at the downstream toe of the embankment (see Section 3.1.c).

- b. <u>Location</u>. Trout Lake Dam is located along Pennsylvania Route 715 about 1 mile south of Reeders, Pennsylvania, on Appenzell Creek. The dam site is shown on the USGS Quadrangle entitled "Mount Pocono, Pennsylvania" at coordinates N 41° 00.1', W 75° 20.8'. A regional location plan of Trout Lake Dam is enclosed as Plate 1, Appendix E.
- c. <u>Size Classification</u>. Trout Lake Dam has a maximum height of approximately 24 feet and a maximum storage volume of about 1,117 acre-feet. The dam is in the intermediate size category.
- d. <u>Hazard Classification</u>. Several homes and a church are located along Appenzell Creek at the town of Appenzell, 1 mile downstream of the dam. Failure of Trout Lake Dam would probably cause Gruber Lake Dam ($\frac{1}{2}$ mile downstream) to fail and would cause property damage and the probable loss of human lives. Therefore, the dam is in the high hazard category.

- e. Ownership. The dam is owned by Mr. M. David Karpe, 103 East 125th Street, New York, NY 10035.
- f. <u>Purpose of Dam</u>. The dam was originally constructed for ice pondage. The reservoir is now used for recreation.
- g. Design and Construction History. (From information obtained from DER.) The dam was constructed in 1900. No information made available is dated before 1926. The spillway and bridge of the original structure have been replaced, but no details of the work were made available.
- h. <u>Normal Operating Procedure</u>. The reservoir is normally maintained at the spillway crest elevation. Inflow occurring when the reservoir is at or above the spillway crest elevation is discharged over the spillway.

1.3 Pertinent Data

- a. <u>Drainage Area</u>. The drainage area to the Trout Lake Dam is 3.7 square miles. The sub-basin drainage area to Mountain Spring Lake Dam is 2.5 square miles.
- b. <u>Discharge at Dam Site</u>. No high pool or discharge records were made available. The spillway capacity to the design top of the dam is approximately 790 cubic feet per second (cfs).

c. Elevation (feet above MSL - estimated)

Spillway Crest	943.0
Design Top of Dam	947.0
Low Spot (top of dam)	946.8
Drainage Pipe Invert (outlet)	923.0

d. Reservoir (miles)

Length of Normal Pool	.95
Length of Pool (top of dam)	.98

e. Storage (acre-feet)

Normal Pool (Elev. 943.0)	700
1101111d1 1 001 (E101. 545.0)	
Design Top of Dam (Elev. 947.0)	1117

f. Reservoir Surface Area (acres)

Normal Pool	96
Design Top of Dam	113

g. <u>Dam Data</u> (From information provided by DER)

Type -
Length -
Height -
Top Width -
Side Slopes -

Earth Embankment
390 feet [±]
24 feet (maximum)
approximately 20 feet
both slopes variable from
1 H:IV to 2.5 H:IV

Zoning -Impervious Core -Cutoff -Grout Curtain - unknown unknown unknown unknown

h. Diversion and Regulating Tunnel

None

i. Spillway

Type -Length of Weir -Crest Elevation -Gates -Upstream Channel -Downstream Channel - concrete weir 35 feet 943.0 feet MSL

none

none
25-foot wide riprapped channel

j. Regulating Outlets. A low level outlet conduit of undetermined diameter is constructed through the embankment. A gate valve is located at the downstream toe.

SECTION 2 ENGINEERING DATA

2.1 Design

- a. <u>Data Available</u>. The engineering data made available by DER includes the following:
 - 1. Plans and Sections for rebuilding of the dam, dated 1927 (never implemented see Plates 2 and 3 of Appendix E).
 - 2. Photographs
 - Application for Permit to Draw Dam or Other Body of Water in Accordance with the Act of December 15, 1959.
 - 4. Miscellaneous correspondence, inspection reports, etc.
- b. <u>Design Features</u>. A description of the design features is discussed in Section 1.2.a.

2.2 Construction

The only information made available concerning the construction of Trout Lake Dam is a comment in a letter dated July 28, 1926, stating that the dam was built 26 years previous, under the direction of Frank G. Wolfe.

2.3 Operation

No formal operating procedures were included in the information obtained from DER.

2.4 Evaluation

- a. Availability. All information made available was obtained from DER.
- b. Adequacy. Although design and construction information is minimal, a Phase I evaluation is considered reasonable based on the revealing conditions observed during the field inspection.
- c. Validity. There is no reason to question the validity of the data obtained from DER.

SECTION 3 VISUAL INSPECTION

3.1 Findings

- a. General. The field inspection of Trout Lake Dam took place on December 14, 1978. At the time of inspection, the water surface was approximately one inch above the spillway crest. No underwater areas were inspected.
- b. <u>Dam.</u> The upstream face of the dam is heavily covered with bushes and small trees. The slope of the upstream face varies from about 2.5 H:1V to 1 H:1V. Undulating longitudinal depressions were observed all along the upstream face and top of the dam. A sparse covering of cobbles was noted on the upstream slope.

The top of the dam supports a paved macadam road with a pronounced centerline crown. The top of the dam appears to be rounded rather than flat. Wooden post and cable barriers are located along both edges of the top of the dam. The barriers appear to have settled toward the adjoining slopes. At several locations along the upstream face, the barrier posts have fallen into the reservoir.

The downstream face of the embankment is heavily overgrown with trees up to 50 feet high and 18 inches in diameter. The embankment is covered with bushes, leaves and dead timber. The downstream slope varies from 1 H:IV near the top of the embankment to approximately 2.5 H:IV near the toe of the slope.

c. Appurtenant Structures. A small wood frame gatehouse is located at the toe of the downstream slope. The building is surrounded by saturated silty deposits and discolored water. A gate valve is located inside the gatehouse. The valve is partially buried in silt, as shown on Page 2 of Appendix D. The crown of a cast iron pipe buried in silt is located approximately 10 feet downstream of the gatehouse. The pipe appeared to be about 18 inches in diameter. Seepage was observed along the toe of the embankment to the right side of the gatehouse. The seepage area extends 5 to 10 feet from the toe of the embankment and is characterized by a band of saturated, discolored soil parallel to the toe. The flow along the toe was estimated to be 2 to 4 gallons per minute. Downstream of the toe is an area of standing water covering about 800 square feet. Approximately 50 feet downstream of the embankment is the confluence of a tributary stream with the outlet channel.

The spillway adjoins the left abutment of the dam. The spillway is a 35-foot wide bridged opening with concrete abutments. The bridge is a clear-span structure supported by steel I-beams. The opening from the spillway crest to the low chord of the bridge was measured as 4 feet. Based on a review of old photographs and the visual inspection, it appears that the present spillway surface is a concrete cap placed over an existing masonry, broad-crested weir with a concrete lip at the downstream edge of the weir. Concrete training walls are constructed along the sloping downstream face of the spillway. The walls constrict the width from 35 feet to approximately 25 feet. The weir is shown on Page 1 of Appendix D.

The field survey of the top of the dam (Plate 5, Appendix E) revealed that the underside of the bridge is above the low spot on the top of the dam. A masonry wall is constructed along the right bank of the spillway discharge channel. The wall extends about 50 feet downstream of the spillway and directs flow in the discharge channel away from the downstream slope.

- d. Reservoir Area. The drainage area is predominantly meadow and woodland with a small number of residences. Approximately two-thirds of the drainage basin drains through Mountain Spring Lake Dam. This structure is an earth embankment about 600 feet long and 10 feet high. The dam is provided with a masonry, broad-crested weir 28 feet wide and 3 feet below the top of the embankment.
- e. <u>Downstream Channel</u>. The spillway discharge channel appears to be an excavated earth channel with a cobblestone bed. The channel overbanks are heavily overgrown with trees and brush. The channel is obstructed by several fallen trees. These trees would not affect the spillway capacity.

Gruber Lake, located about 400 feet downstream of Trout Lake Dam, is about $\frac{1}{2}$ mile long. Gruber Lake Dam is an earth embankment about 15 feet high and 300 feet long. The dam is provided with a 45-foot masonry, broad-crested weir constructed approximately 3 feet below the top of the embankment. The town of Appenzell is located about 3000 feet downstream of Gruber Lake. Several homes and a church are located along the banks of Appenzell Creek. Failure of Trout Lake Dam would cause significant property damage and probable loss of life.

SECTION 4 OPERATIONAL FEATURES

4.1 Procedures

Based on the review of information provided by DER, no formal operating procedures are established for Trout Lake Dam.

4.2 Maintenance of Dam

Attempts to contact the owner of the dam were unsuccessful. There is no evidence that maintenance procedures have been established for this dam.

4.3 Maintenance of Operating Facilities

The only operating facility associated with the dam is the gate valve for the low level outlet. The operating handle was not in place at the time of inspection. The owner was not available at the time of inspection; therefore, the operating condition of the outlet could not be assessed.

4.4 Description of any Warning System in Effect

There is no evidence that any warning system is in effect at this site.

4.5 Evaluation of Operational Adequacy

The operating condition of the gate valve should be assessed immediately. The dam should be monitored during periods of heavy rainfall, and downstream residents alerted in the event of an impending failure.

SECTION 5

HYDRAULICS AND HYDROLOGY

5.1 Evaluation of Features

- a. <u>Design Data</u>. Trout Lake Dam has a drainage area of 3.7 square miles and impounds a reservoir of 700 acre-feet. The spillway is a 35-foot wide concrete overflow structure.
- b. Experience Data. No information is available pertaining to maximum discharges at this site.
- c. <u>Visual Observations</u>. The Spillway Design Flood (SDF) for this site is given as a range from one-half of the PMF to the full PMF. Based on the height and storage of Trout Lake Dam, the high potential for failure of Gruber Lake Dam following a failure of Trout Lake Dam, and the potential for damage and loss of life at the hazard center, the SDF was determined to be the full PMF.
- d. Overtopping Potential. The peak inflow and outflow rates for the SDF were determined to be 7950 cfs and 7740 cfs respectively. Based on the hydrologic analyses, the spillway is capable of discharging approximately 25 percent of the PMF without overtopping of the embankment (see Appendix C for computations).
- e. Spillway Adequacy. A dam break analysis was computed to evaluate the increased "hazard to loss of life downstream from the dam from that which would exist just before overtopping failure" (ETL 1110-2-234, 10 May 1978). According to the analysis, failure of the Trout Lake Dam would increase the depth of flow at the hazard area from 7.9 feet to 12.7 feet for 50 percent of the PMF. The peak discharge at the hazard area would increase from approximately 3400 cfs to approximately 14,600 cfs. Failure of the dam is considered to significantly increase the hazard to loss of life. Therefore, the spillway of Trout Lake Dam is classified as "seriously inadequate."

SECTION 6 STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability

a. <u>Visual Observations</u>. The undulating surfaces of the top of the dam and both slopes, the longitudinal depressions along the upstream face of the embankment, the displaced barrier posts, and the measured variations in slope could be the result of poor compaction during construction. Based on the presence of seepage along the downstream toe, and an area of saturated silty deposits and discolored water, the above noted items could also be due to the migration of fine material through the embankment or foundation.

The heavy cover of large trees on the downstream slope may increase the seepage potential through the embankment. Uprooting of the trees by high winds could cause substantial volumes of embankment material to be displaced.

The upstream slope of the dam is not protected against erosion from wave action. The lack of slope protection could be partially responsible for the depressions along the upstream face.

The spillway appeared to be in good condition and showed no signs of instability.

- b. <u>Design and Construction Data</u>. There are no construction and design data available.
- c. Operating Records. There is no evidence that operating records are maintained for this structure.
- d. <u>Post Construction Changes</u>. The spillway has been reconstructed, but no records were made available describing the extent of this or any other changes to the dam or appurtenances.
- e. <u>Seismic Stability</u>. The dam is located in Seismic Risk Zone 1 of the Seismic Zone Map of Contiguous States. A dam located in Seismic Zone 1 is generally considered to be safe under any expected earthquake loading, if it is safe under static loading conditions.

SECTION 7 ASSESSMENT, RECOMMENDATIONS AND PROPOSED REMEDIAL MEASURES

7.1 Dam Assessment

a. <u>Safety</u>. The visual observations and review of available information indicate that the Trout Lake Dam is in poor condition. The many deficiencies and problem areas noted in Section 6.1.a evidence a lack of maintenance and potentially hazardous structural conditions.

The spillway is capable of discharging 25 percent of the PMF without overtopping of the earth embankment. Failure of the structure by overtopping would significantly increase the hazard to loss of life downstream of the dam. Therefore, the spillway is classified as "seriously inadequate;, and the dam is classified as "unsafe(non-emergency)".

- b. <u>Adequacy of Information</u>. The information received from DER is inadequate for relating possible design and construction deficiencies to the problem areas observed during the visual inspection.
- c. <u>Urgency</u>. Further investigations and recommended remedial measures should be implemented immediately.
- d. Necessity for Further Investigation. Further investigations are necessary at this site. Results of the investigation should be used to establish if the materials are satisfactory for the embankment as constructed; and to detect possible fines migration.

7.2 Recommendations and Remedial Measures

a. Facilities

- 1. A subsurface investigation should be initiated at several selected sections of the dam to include, but not be limited to, soil borings for determination of the composition and in situ properties of the embankment and foundation materials. The investigation should be supervised by a licensed professional engineer experienced in the design and construction of dams.
- 2. Piezometers should be installed in the boreholes to evaluate pore pressure development throughout the embankment.
- 3. The depressions along the upstream face should be monitored to determine if any differential movement occurs.
- 4. The areas of seepage and standing water should be monitored regularly for any signs of increased seepage and/or turbid water.
- 5. The trees and brush growing on the embankment slopes should be cut to root level and removed from the surface of the structure. A further investigation should be made to determine the extent of the root systems before remedial measures can be recommended. The downstream slope should then be seeded with suitable vegetation.

- 6. The upstream face of the embankment should be provided with slope protection to inhibit erosion due to wave action.
- 7. Areas below design elevation should have additional fill placed and compacted to regrade the embankment to design elevation.
- 8. The mud and silt should be cleared from the gate valve and the low level outlet conduit, and the operational adequacy of the outlet system should be assessed. A means of positive closure should be provided at the upstream end of the low level conduit.
- 9. The spillway capacity should be increased. Further detailed hydrologic and hydraulic studies should be performed prior to the design of additional spillway facilities.

b. Operation and Maintenance Procedures.

- 1. The outlet gate should be operated periodically to insure proper maintenance.
- 2. A downstream warning system should be developed, and during periods of heavy rainfall, the dam should be monitored and downstream residents alerted in the event of an impending failure.

APPENDIX

Α

Check List Engineering Data

Design, Construction, Operation

Phase I

n

CHECK LIST ENGINEERING DATA DESIGH, CONSTRUCTION, OPERATION PHASE I

NAME OF DAM Trout Lake Dam

10 # PA 00769

Sheet 1 of 4

ITEM

AS-BUILT DRAWINGS

REMARKS

"Rebuilding Trout Lake Dam." These drawings are included in Appendix E as plates 2 \$ 3. Not available. The only drawings in the DER tiles are two from 1927 for

REGIONAL VICINITY MAP

Refer to Appendix E. Plate 1

CONSTRUCTION HISTORY

The carly information known is that the dam was built in 1900.

TYPICAL SECTIONS OF DAM

Refer to Auxordix E, Plate 2

OUTLETS - PLAN
DETAILS
CONSTRAINTS

No information available for existing structure

DISCHARGE RATINGS

RAINFALL/RESERVOIR RECORDS

s None Available

None Available

Sheet 2 of 4 No design data available REMARKS DESIGN REPORTS ITEM

None provided in DER files. Refer to Augusta F

GEOLOGY REPORTS

DESIGN COMPUTATIONS

HYDROLOGY & HYDRAULICS

NO
DAM STABILITY

SEEPAGE STUDIES

No data avoilable No data avoilable No data avoilable No data avoilable

MATERIALS INVESTIGATIONS
BORING RECORDS
LABORATORY
FIELD

No information available

POST-CONSTRUCTION SURVEYS OF DAM

Hone

BORROW SOURCES

There is no record of whome borrow material came from.

Sheet 3 of 4 REMARKS None available None None None POST CONSTRUCTION ENGINEERING STUDIES AND REPORTS MONITORING SYSTEMS HIGH POOL RECORDS MODIFICATIONS ITEM

PRIOR ACCIDENTS OR FAILURE OF DAM None REPORTS

MAINTENANCE OPERATION RECORDS

Correspondence through the years (from DER files) and impormation about appradic maintenance work that was done on the structure. There are no operating records available.

Sheet 4 of 4 there is no information on the existing spulway. REMARKS SECTIONS DETAILS SPILLWAY PLAN ITEM

OPERATING EQUIPMENT PLANS & DETAILS

No information available

MISCELLANEOUS

Material in DER files:

1. Dan inspection reports through the years

2. Photographs related to the structure from 1927 through 1964 3. "Application for Perint to Draw Dam or Other Body of Water "(1968)

4. Miscellan cour correspondence 5. Two drawnys for "Rebuilding Tract Lake Dam" (1927)

APPENDIX

В

Check List

Visual Inspection

Phase I

CHECK LIST VISUAL INSPECTION PHASE I

Sheet I of 11

Name Dam Front Lake Dam	County Monroe	State Ponnsylvania	National ID # PA 0076
Type of Dam Earth	Hazard Category	His	
Date(s) Inspection /2/14/78	Weather and daidy	12 Temperature 20-25 %	*

Tailwater at Time of Inspection 921.0± M.S.L. Pool Elevation at Time of Inspection 943.0 ± M.S.L.

Lemard P. Beck

George C. Elias David B. Campbell

Inspection Personnel:

Recorder

David B. Composell

Remarks:

We were not successful in contacting anyone associated with the dam.

CONCRETE/MASONRY DAMS

VISUAL EXAMINATION OF	OBSERVATIONS	Sheet 2 of 11 REMARKS OR RECOMMENDATIONS
ANY NOTICEABLE SEEPAGE	N/A	
STRUCTURE TO ABUTMENT/EMBANKMENT JUNCTIONS	N/A	
DRAIMS	WA	
WATER PASSAGES	N/A/W	
FOURTDATION	N/A	

CONCRETE/MASONRY DAMS

VISUAL EXAMINATION OF	OBSERVATIONS	Sheet 3 of 11 REMARKS OR RECOMMENDATIONS
SURFACE CRACKS CONCRETE SURFACES	NA	
STRUCTURAL CRACKING	\$\times_{\textsuremath{A}}	
VERTICAL AND HORIZONTAL ALIGNMENT	N/4	
MONOLITH JOINTS	NA	
COMSTRUCTION JOINTS	41.6	

EMBANKMENT

VISUAL EXAMINATION OF	OBSERVATIONS	Sheet 4 of 11 REMARKS OR RECOMMENDATIONS
SURFACE CRACKS	Could not tell because there is so much brush and litter on the So much brush and litter on the Surfaced road along the tap of the dam. Many large trees on drowstr dam skips.	63 1/2
UNUSUAL MOVEMENT OR CRACKING AT OR BEYOND THE TOE	Mone observed	None
SLOUGHING OR EROSION OF EMBANKHENT AND ABUTMENT SLOPES	None observed	None
VERTICAL AND HORIZONTAL ALIGNMENT OF THE CREST	The top of the dam varies by a movement of 2.2 feet.	The low portion of the dam should be built up.

dlear the brush and litter from the westream. Repair the ropes as acceled to provide protestion four ware action.

RIPRAP FAILURES

EMBANKMENT

Sheet 5 of 11	REMARKS OR RECOMMENDATIONS	dear the brush mud liter from the slopes so the situation can be apprecised.	A bornig pregrant should be unhated to deforming the composition and in and straight of the compositions of the condensations of the condensations should be institled in the bore holes to evaluate the pore pore processing the contractions of the	line
	OBSERVATIONS	It is difficult to assess the situation at the junction of the exclassions and abutionent, spilling and dam because ut the heavy brush and litter on the slapes.	There is seepage along the downstrant.	None
	VISUAL EXAMINATION OF	JUNCTION OF EMBANKMENT AND ABUTMENT, SPILLWAY AND DAM	ANY NOTICEABLE SEEPAGE	STAFF GAGE AND RECORDER

None

None observed

DRAINS

OUTLET WORKS

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CRACKING AND SPALLING OF CONCRETE SURFACES IN OUTLET CONDUIT	WA outlet conduit is either steel or castion.	Drowdown impoundment so that entire receivoir drain system can be examined
INTAKE STRUCTURE	Intake structure cocid not be observed because it was uncler water.	
OUTLET STRUCTURE	Drain pips at the downstream and of the reserver chair system conduct is half buried in sealment.	Sediment should be removed from pool immedially decreption of the dam.
OUTLET CHAMNEL	Flows through woods for about 100 yds. Where it jains the channel for the spilling discharge. The headwaters of discharge are within 100 feet of this sunction.	"
EMERGENCY GATE	the skince valve is half burned in sedimont. It is located about 15' upstream of the outlet of the reservar drain pipe.	The stuice value should be examined and repaired as receded. The sediment should be removed from around the suice value.

UNGATED SPILLWAY

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONCRETE WEIR	the aniarete anveated to be in. good andition.	Може
JACH CHANNEL	APPROACH CHANNEL THE approach is only about 30 feet long. The any possible obstruction would be the bridge built over the spillway.	None
ARGE CHAINEL	DISCHARGE CHAINEL The channel flows through a heavily socked area for a distorce of about socker to the headwaters of anisel anchor lake. The average channel and entire about 5 persont.	Mone
E AND PIERS	BRIDGE AND PIERS The bridge built over the spilling	st hydegard formude 34%

GATED SPILLWAY

		Sheet 8 of 11
VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONCRETE SILL	AW	
APPROACH CHANNEL	N/A	
DISCHARGE CHANNEL	4/4	
BRIDGE AND PIERS	4/4	
GATES AND OPERATION EQUIPMENT	NA	

INSTRUMENTATION

VISUAL EXAMINATION	OBSERVĀTIONS	Sheet 9 of 11 REMARKS OR RECOMMENDATIONS
MONUMENTATION/SURVEYS	N/A	
OBSERVATION WELLS	AN	
WEIRS	AM	
PIEZOMETERS	Aln	
ОТНЕК	NA	

RESERVOIR

Sheet 10 of 11	REMARKS OR RECOMMENDATIONS	None
	OBSERVATIONS	dopes vary from a maximum of 15 percent to a minimum of 2 percent around the perimeter 12 percent around the perimeter 12 per
	L EXAMINATION OF	s the sabout about the the
	VISUA	SLOPE

The state of the s		
SEDIMENTATION	The perimeter of the 1sko goverists of	W
	Amhered regions and postures with	×
	several summer contages located along	
	the south shore. The smount of additional	
	sedimont in the important mouth will be	9
	dependent on the extenst of future 185 Wentel	
	develooment draind the 18th .	

Schwent dontral be measures should be implemented for fature benshinstron slong the take shore

DOWNSTREAM CHANNEL

•		ber	x y
Sheet 11 of 11	REMARKS OR RECOMMENDATIONS	An estimated "n" value for the downstream for Gruber reaches except for Gruber (ate is 0.05	None Wermey = 24 mis
	OBSERVATIONS	the discharge from the spulmay flows An estimated "n" value through a heavily wooded region for about 500 feet to the head wisters of Gruber lake. Aniber lake is about one half mire long. The channel downstream if Gruber lake is in meadows for about soo feet before following a reade	The channel gradient is about 4 percent between the Tract Lake Dan spillung and Gruber Lake to toponzell the channel gradient is about 0.8 percent
	VISUAL EXAMINATION OF	CONDITION CONSTRUCTIONS, through a heaved being showing the second should be second showing the second should be second should show the second should be second should show the second should show the second second should show the second seco	SLOPES The channe between the Gruber La.

APPROXIMATE NO. OF HOMES AND POPULATION

there are about a dozon hones and approximately to people in the 3 miles downstram of Trout lake.

A formal warming system. Should be developed and incoloures for evacuating people within the petential flood area should be implemented.

APPENDIX

С

Hydrologic & Hydraulic Data

Tract lake Dam SHEET BY DATE 3/2/19 JOB NO

Table of Contents APPENDIX C

PIMP Colos & Suyder Coeffes. (Trustlake) Sh 1

Hydro. Characteristics Mt. Ser lake Dam & Res. Sh 2

Hydro. Characteristics Guber Cake Dam & Res. Sh 2 & 3

HEC-I Dam Safety Version

Computer Output Without Breach of Dam Sh 2-10

HEC-I Dam Safety Version Computer Sh 11-24

Output With Breach of Dam for D. SOPMF

Cross Section Downstream of Mountain Sh 25

Cross Section Downstream of Troot Lake Sh 25

Cross Section Downstream of Troot Lake Sh 25

Cross Section Downstream of Grubers

Lake (@ Damage Center) Sh 26

TROUT LAKE DAM	SHEET 1	DBC	419/79	JOB NO.
HYDROLOGY CALCULATIONS				
Drainage Area to Tro		Lake?	Dam-3	.7 sq.mi.
(upstream structure) B) Local drainage				
PMP DATA (Zone 1)		- 00 -	2011	
6hr 200 sq.mi index 6hr % of index for 12hr % :				90000
SNYDER COEFFICIENTS				
(From information provide ZONE 1) Cp=0.45	0 K	by the	Corps	f Engineer
Subbasin A		1 1 1	ubbasin	
L= 2.8mi Lca=1.5mi		L=2.1	mi. I	-ca=0.7m
tp=1.23(2.8×1.5)3=1.89 hr	۵.	tp=1.2	3(2.1×0.	1).3=138h

SUBJECT	SHEET BY	DATE	JOB NO.
TROUT LAKE DAM	ZA D	BC 4/9/79	
TOOT CIRC DIAT			-

HYDROLOGIC CHARACTERISTICS OF MOUNTAIN SPRING LAKE DAM & RESERVOIR.

From visual inspection & quad sheet:

length of embankment = 600 (C=3.1)

freeboard = 3

spillway length = 28'

spillway type - broad-crested weir (C=3.1)

normal pool elevation - 1046' MSL (from qual sheet)

height of embankment = 11' (maximum)

Reservoir surface area assumed to be zero at base of embankment, area-elevation information from quad sheet.

Elev (MSL) Area (acres)
1038 0
1046 78
1060 190

HYDROLOGIC CHARACTERISTICS OF GRUBER LAKE DAM & RESERVOIR.

From visual inspection and qual sheet:

length of embankment = 300'
freeboard = 3'
spillway length = 45'
spillway type - broad-crested weir (C=3.1)
normal pool elevation - 921' MSL(from quadsheet)
height of embankment = 10' (maximum)

ROUT LAKE	DAM		SHEET BY	BC	4/19/1	9 JOB NO.	
Hydrdogie Cha	vacteristic	s of anib	er lake D	an #k	Peserva	ar (a	D14.)
- Box				1			
pero G	t base	of ex	nbank	so.	sum	2 - 0	enati
informa	tion fro	m qua	2 shee	t.	?		
TILLE	lev	Area	(ocres)				
	14	0					
	21	15					
94	40	28					
					+ + +		
				+			
	+	-					
	1						
							-4-
			1-1-1-			+-+	

25 SEP 78								
A2	>	VATIONAL DAM INSPECTION PROGRAM TROUT LAKE DAM	DAM INSPECTION TROUT- LAKE DAM	DAM PRO	GRAM		•	
B 150 0	30	0	PMF HYDROGRAPH 0	RAPH	•	•	1	
1 05 10 05 010	115	.20	.25	• 30	.50	.75	1.0	
		RUNDEF TO MOUNTAIN SPRING LAKE	MOUNTAIN	SPRING	LAKE			
. 0 22	2.5	124	133				-	
					1.0	0.05		
1 MT SP-0	- 5		-		-		•	
77	ROUT	ROUTING THROUGH YOUNTAIN SPRING LAKE	GH MOUNT	AIN SPRI	NG LAKE			
1	-		7		-1046			
1000	190							
	3.1	1.5						1
1049 3.1	1.5	900						
1 4001 03	40	ROUTING DOWNSTREAM TO TROUT LAKE	NSTREAM	TO TROUT	LAKE			
		-	-		-			
980	100	960	960	5800	.018 678	943	693	943
0 TROU	100	006	-	001				
K	1.2	RUNOFF	,	3.7				
62 0	113	123	132		1.0	0.05		
1,38 -0.45 -1.5 -,05	· N	!					1	
	- CO46	COMBINING RUNDFF AND STREAM INFLOWS	OFF-AND	STREAM	NFLOWS	-		-
K1 1 18001-0		ROUTING THROUGH TROUT LAKE	THROUGH	TROUT LA	IKE I			
- •	176			•	-943			
\$5 943 35 \$0 947 3.1	3.3	1.5				1	2.1	
66								

٥ ر

0

See 18	NATIONAL DAW INSPECTION PROGRAM TROUT LAKE DAW PHF HYDROGRAPH	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MULTI-PLAN ANALYSES TO BE PERFORMED NPLAN: 1 NRTIO= 9 LRTIO= 1 NPLAN: 1 NRTIO= 9 LRTIO= 1	SUB-AREA RUNOFF. COMPUTATION	RUNGEF TO MOUNTAIN SPRING LAKE	T SP-I O 0 1 TAPE JPLT JPRT INAME ISTAGE IAUTO	IHYDG IUMG TAREA SNAP TRSDA TRSPC RATIO ISNOW ISAME LOCAL	SPFE PMS R6 R12 R24 R48 R72 R96 0.00 22.00 111.00 124.00 133.00 0.00 0.00 0.00 0.00	STRKR DLTKR RITOL ERAIN STRKS RITOK STRTL CNSTL ALSHX RITMP 0.00 0.00 1.00 0.00 0.00 0.00 1.00 1.00	UNIT HYDROGRAPH DATA TPE-1.89 — CPE-45 — NTAE 0 RECESSION DATA STRIOE — 1.50 — ORCSUE — -05	105. 105. 105. 105. 105. 105. 105. 105.
FLOOD HYDROGRAPH PACKAGE DAM SAFETY VERSION 26		0 N 1 1 2 0 1 2 0 0 1 1 2 0 0 1 1 2 0 0 1 1 2 0 0 1 1 1 1					R	TRSPC COMPUTED BY THE	LROPT		132.

#*************************************	The same of the sa
SPOUTING THROUGH HOUNTAIN SPRING LAKE STAGE TAUTO SP-0	***************************************
SPAO 1CDMP	HYDROGRAPH ROUTING
15740 1C04P 1ECON 174PE - JPLT JPRT INAME 15746E SP-0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ROUTING THROUGH MOUNTAIN SPRING LAKE
NSTPS NSTPL LAG AMSKK TSK STORA ISPRA 190. 2027. 1060. 22.00 HOURS 21.50 HOURS 19.50 HOURS	15740 1C34P — IECON — ITAPE — - JPLT JPRT INAME ISTAGE — 1 SP=0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
190.00 HOURS 190.0. 19.00 HOURS 19.00 HOURS	NSTPS HSTDL LAG AMSKK X TSK STORA ISPRA
19.50 HOURS 1050. 105	78.
1060. L. SPWID. COOM - EXPW ELEVL COOL CAREA O 28.0 3.1 1.5 0.0 0.0 22.00 HOURS 21.00 HOURS 20.50 HOURS 19.50 HOURS	208.
L SPWID COOM - EXPW ELEVL COOL CAREA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1046.
22.00 HOURS 21.50 HOURS 21.50 HOURS 21.50 HOURS 21.00 HOURS 19.50 HOURS	28.0 3.1 1.5 0.0 0.0 0.0 0.0
	COOD EXPD
	. AT T3HE
1 1 1	. AT TIME
	. AT TIME
: 1	1. AT TIME
1	69. AT TIME 19.50 HOURS
	1
24490 AT TIME 18.50 HOURS	
3721. AT TIME 18.00 HOURS	

;

:

;

STORING DOWSTREM TO TROUT LAKE 1970 18		•		•	:	:	•		•	:	:	********		
STAD ICOMP IECON ITAPE JPT INAME ISTAGE IAUTO DOT ON INAME ISTAGE IAUTO DOT ON INAME ISTAGE IAUTO IA						HYDROGR	APH ROUT	ING					-	
STAGE ICOUP ICOUP ITOON ITOP DPT DPT INAME ISTAGE IAUTO					ROUTING		AM TO TR	OUT LAKE						
055 CLOSS AVG 1RES 15AHE 10PT 1PHP LSTR 1				ISTAO JUT OS	ICO4P	IECON	ITAPE	JPLT		1	ISTAGE	IAUTO		
3) ELNYT ELHAK RLNTH SEL 00 943.0 940.00 675.00 940.00 670.00 943.00 693.00 943.00 61.00 960.00 1111.00 960.00 670.00 943.00 943.00 943.00 61.00 960.00 1111.00 960.00 670.00 943.00 693.00 943.00 943.00 61.00 960.00 1111.00 960.00 670.00 943.00 693.00 943.00 943.00 61.00 960.00 1111.00 960.00 943.			0.0	CLOSS 0.000	00.0	=	ISAME 1 SAME	IOPI	TPMP		LSTR		Sh	
33 ELNYT ELMAK RLNYH SEL 30 943.0 960.0 560001800 500.00 960.00 675.00 960.00 673.00 943.00 500.00 960.00 1111.00 960.00 51.00 960.00 1111.00 960.00 52.00 960.00 1111.00 960.00 533.17 418.48 489.22 560.00 648.71 54.42 157.23 311.33 537.26 917.20 1530.91 2447.49 3727.58 52.64 953.74 954.63 955.53 956.42 957.32 958.21 959.11 52.64 953.74 954.63 955.57 27135.86 33084.07 39806.60 47341.67				NSTPS 1	NSTDL		AMSK4 0.000	×000.0	15K 0.000		SPRAT			
31 ELNYT ELMAX RLNTH SEL 30 943.0 960.0 560.0 .01800 31 52 53.7 6 50.0 640.0	NORMAL DEPTH	CHANNEL RO	UTING											
CETION COORDINATES.—STA-ELEV-STA-ELEV-ETC 0.500														
ECTION COORDINATES.—STA.ELEV.STA.ELEV.—ETC. 0 946.00 100.00 966.00 675.00 946.00 673.00 643.00 0 946.00 100.00 960.00 1111.00 980.00 0 946.00 100.00 96.00 1111.00 980.00 10.00 10.00 66.20 10.00 946.00 1111.00 980.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10	90°		1	!	ELMAX 960.0		SEL 01800							•
0.00 1.89 4.00 6.32 9.99 18.95 53.78 79.65 4.8.29 191.06 239.46 293.50 353.17 418.46 489.42 566.00 648.21 90.00 49.46 157.23 311.33 537.26 917.20 1530.91 2447.49 3727.58 95.08 10264.92 13539.54 17404.51 21922.77 27135.86 33084.07 3986.60 47341.67 96.08 49.46 157.23 311.33 537.26 917.20 1530.91 2447.49 956.16 96.08 10264.92 13539.54 17404.51 21922.77 27135.86 33084.07 39806.60 47341.67 944.3 945.6 945.6 955.27 27135.86 33084.07 39806.60 47341.67 946.7 946.7 946.7 946.7 946.7 946.7 946.7	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.00 980. 96.00 946.	COORDINATES 00 100.00 00 861.00		LEV.STA 675.0	.ELEVET				943.00				,
0.00 49.46 157.23 311.33 537.26 917.20 1530.91 2447.49 372.58 99.08 10264.92 13539.54 17404.51 21922.77 27135.86 33084.07 3986.60 47341.67 43.00 943.89 944.79 945.68 946.58 947.47 948.37 949.26 950.16 51.95 952.84 953.74 954.63 955.53 956.42 957.32 958.21 959.11 96.00 49.46 157.23 311.33 537.26 917.20 1530.91 2447.49 3727.58 946.3 946.5 946.7 946.7 97.32 9806.60 47341.67 946.7 946.7	STORAGE	148.29	191.06	2	9.46	293.50		9.99	18.95	M SQ	3.55	53.78	79.65	1111.
43.00 943.89 944.79 945.68 946.58 947.47 948.37 949.26 950.16 51.95 952.84 953.74 954.63 955.53 956.42 957.32 958.21 959.11 96.00 49.46 157.23 311.33 537.26 917.20 1530.91 2447.49 3727.58 944.3 945.9 946.7 946.7	NUTFLOW	7596.08	10284.92		17.23	311.33		1	917.20	3308	0.91	2447.49	3727.58	5426.
96.06 10284.92 13539.54 17404.51 21922.77 27135.86 33084.07 39806.60 47341.67 944.3 944.3 945.9 946.7 946.7	STAGE	943.00	943.89		4.79	945.68		6.58 5.53	947.47	9 6 6	9.37	949.26	950.16	951.
945.	FLOW	7596.08	10284.92		7.23	311.33	1	1	917.20	3308	0.91	2447.49	3727.58	5426.
945.	MAKIMUM STAG	1	4.3								!	-		
946.	-NAXIMUM-STAG	1	5.2	-										
946.	MAAIHUM STAG		6.9											
948.	MAXIMUM STAG		6.7							1				
948.	-MAXIMUM-STAG		7.5	1							1		-	-
	MAXIMUM STAG		8.0											

WALTHIN STARF TS

		Sh G					1	57. 6.	0 дмо 0	24.29 22.44 1.84 36288. -(-617.)(570.){47.+(-1027.56)			
		GE TAUTO	LOCAL		RTIMP 0.00			VOL = 1.00	EXCS LOSS	22.44 1.8			IGE IAUTO
:		INAME ISTAGE	W ISAME	0.00 0.00	CNSTL ALSMX		00	CP= .45	PERIOD RAIN	SUM 24.29			INAME ISTAGE
•	ION	LT JPRT	RATIO ISNOW	0.00 0.00	STRTL 1.00	ATA - 0	RT10R= 2.00	1,39 HOURS. 113.	A. N.			FLOWS	LT JPRT
	SUB-AREA -RUNOFF- COMPUTATION	IECON ITAPE JPLT	DATA FRSPC	132.00	LOSS DATA STRKS RTIOK 0.00 1.00	0	RECESSION DATA	RDINATES. LAG=-179. 142.	END-OF-PERIOD FLOW COMP Q MO.DA			COMBINING RUNDFF AND STREAM INFLOWS	ITAPE JPLT
:	SUB-AREA RUN	TECON O	SNAP TRSDA 0.00 3.70	PRECI 113.00 123.00	ERAIN S	UNIT HYDROGRAPH	-1.50 AECES	241. 226. 179. 28. 28. 28. 2. 2. 2.	LOSS COMP		•	ING RUNDFF A	4P IECON
		ISTAO ICO4P	TAREA 1.20	23.00 11	0.00 1.00		STRTO		EXCS			COMBIN	ISTAG ICOMP
:		"	IHYDG JUHG	SPFE 0.00 THE PROGRAM IS	STRKR DL			T HYDROGRAPH 163. 36.	PERIOD RAIN		•		
			1	ITED BY THE	LROPT			45.	H. M.		•		
				TASPC COMPUTED BY					MO.DM				

HYDROGRAPH ROUTING

19°

		FEAR TEOM AND STURGE	STORAGE (END OF FLOWS IN (CUBIC FEET	UMMARY-FOR PER SECON RE MILES (O COBIC SOUARE KIL	E (END OF PERIOD)-SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND) AREA IN SQUARE MILES (SQUARE KILOMETERS)	SECOND)	COMPUTATI	SNOI	•	1
-OPERATION	STATION	-AREA	PLAN	PLAN -RATIO-1RATIO	100	RATIOS APPI	APPLIED TO FLOWS	OWS RATIO 5	RATIO 6	PATIO7	RATIO A	RATTO 9
HYDROGRAPH AT	1 SP-1	2.50	1	7.17)(506.	759.	1012.	1265.	1519.	2531.	3796.	5062.
ROUTED TO	T SP-0	6.47)		2.651	220.	358.	588.	969.	1302.	2449.	3721.	141.41)
ROUTED TO	001.05	2.50		93.	220.	357.	578.	951.	1282.	2415.	3715.	140.881
HYDROGRAPH AT	ROUT-1	3.11)		153.	306.	13.01)(613.	766.	919.	1532.	2297.	3063.
2 COMBINED	OMBINE	3.70	1-	182.	395.	625.	859.	1356.	1870.	3689.	5690.	7662.
ROUTED TO	R0UT-0	3.70		86.	219.	371.	550.	22.791	33.191(3094.	5257.	7232.
				1	-							+
							!					
												4
			1				:					
						-						;

.

OF RESERVOIR OFFHUM HAXIMUM HAXIMUM BURATION TIME OF TIME OF TIME OF TIME OFFHUNS HOURS HO	REFERVOIR MAXIMUM MAXIMUM DURATION REFERVOIR DEFTH ACTINUM HAXIMUM DURATION W.S.ELEV OVER TOP MAXIMUM DURATION W.S.ELEV OVER TOP MAXIMUM HOURS 1049-15 0.00 324. 220. 0.00 21.00 1049-15 0.00 324. 220. 0.00 21.00 1049-15 0.00 324. 220. 0.00 21.00 1049-15 0.15 599. 599. 5.00 1049-15 0.15 599. 599. 11.50 18.00 1050-35 11.35 599. 599. 13.00 18.00 1050-35 11.35 599. 599. 13.00 1050-35 11.35 599. 599. 13.00 1050-35 11.35 599. 599. 13.00 1050-35 11.35 599. 599. 13.00 1050-35 11.35 599. 599. 13.00 1050-35 11.35 599. 599. 13.00 1050-37 11.35 599. 599. 13.00 1050-37 11.35 599. 599. 13.00 1050-37 11.35 599. 599. 13.00 1050-37 11.35 599. 599. 13.50 1050-37 11.50 11.50 1050-37 11.50 11.50 1050-38 11.50 599. 11.50 1050-39 11.5
1047.05 0.00 294. 94. 0.00 22.00 1047.05 0.00 20.00 21.00 1049.35 0.00 21.00 21.00 1049.35 0.00 21.00 21.00 1049.38 0.00 21.00 20.00 21.00 1049.37 0.00 20.00 21.00 1049.37 0.00 20.00 1049.3 0.00 20.00 1049.3 0.00 1049.4 0.00 20.00 1049.4 0.00 20.00 1049.4 0.00 20.00 1049.4 0.00 20.00 1049.4 0.00 20.00 1049.4 0.00 20.00 1049.4 0.00 20.	11947.05 0.00 224. 94. 0.00 22.00 1947.05 0.00 22.00 1947.06 0.00 334. 220. 0.00 21.00 21.00 1949.35 .15 99. 969. 969. 969. 969. 969. 969. 969.
1049.57 0.00 430, 588, 3.00 20.50 1049.53 5.50 5.00 1049.53 5.50 5.00 1049.53 5.50 5.00 1049.53 5.50 5.00 1049.53 5.50 5.00 1049.53 5.50 5.00 1049.53 5.50 5.00 1049.53 5.50 5.00 1049.53 5.50 5.00 1049.53 5.50 5.00 1049.53 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5	1049.15 .15 .430 .000 21.00 21.00 1049.15 .15 .580 .580 .500 19.50 1049.15 .15 .580 .520 .000 19.50 1049.15 .15 .580 .520 .000 19.50 1049.27 .97 .560 .2439 .950 .18.50 18.50 18.50 1050.70 .10 .250 .4994 .13.00 18.00 18.00 .10 .220 .93 .944.3 22.00 .220 .72 .73 .74 .73 .74 .73 .74 .73 .74 .73 .74 .73 .74 .73 .74 .73 .74 .73 .74 .73 .74 .73 .74 .73 .74 .73 .74 .74 .74 .74 .74 .74 .74 .74 .74 .74
1049.15 .15 466, 588, 3.00 20.50 1049.38 .33 .524, 1302, 6.00 1049.38 .33 .524, 1302, 6.00 1050.70 .37 560, 244, 950 1050.70 .1.70 648, 4994, 13.00 18.00 1050.70 .1.70 FLOW CFS STAGE,FT HOURS 105 .250 .93, 945.2 21.50 105 .250 .945.9 21.50 106 .25 .951, 945.5 21.50 107 .25 .951, 945.5 21.50 108 .25 .951, 945.5 21.50 108 .25 .951, 945.5 21.50 109 .25 .951, 945.5 18.50 100 .25 .951, 945.5 18.50 100 .25 .951, 945.5 18.50 100 .25 .951, 945.5 18.50 100 .25 .951, 945.5 18.50 100 .25 .951, 945.5 18.50	1049.15 .15 466, 588, 3.00 20.50 1049.36 .33 .59, 549, 550, 19.50 1049.37 .31 .549, 6.00 19.50 1050.35 .33 .54, 9.50 18.50 1050.70 .1.70 648, 4994, 13.00 18.00 1050.70 .1.70 FLOW.CFS STAGE.FT HOURS 0.05 .93 .945.2 21.50 2.0 .75 .944.3 22.00 2.0 .75 .945.2 21.50 2.0 .75 .945.2 18.50 2.0 .75 .945.3 18.50 2.0 .75 .945.5 18.50 2.0 .75 .945.5 18.50 2.0 .75 .945.5 18.50 2.0 .75 .945.5 18.50 2.0 .75 .945.5 18.50 2.0 .75 .945.5 18.50 2.0 .75 .945.5 18.50 2.0 .75 .945.5 18.50 2.0 .75 .945.5 18.50 2.0 .75 .945.5 18.50
1059,53 554, 1302, 600, 19,00 1059,53 554, 1302, 640, 1302, 18,00 1050,35 1,70 640, 4994, 13.00 18,00 1050,70 1,70 640, 4994, 13.00 18,00 1050,70 1,70 640, 4994, 13.00 18,00 1050,70 1,70 640, 4994, 13.00 18,00 1050,70 1,70 640, 4994, 13.00 18,00 1050,70 1,70 640, 4994, 13.00 18,00 1050,70 1,70 640, 4994, 13.00 18,00 1050,70 1,70 640, 4994, 13.00 18,00 1050,70 1,70 640, 4994, 13.00 18,00 1050,70 1,70 640, 4994, 13.00 18,00 1050,70 1,70 640, 4994, 13.00 18,00 1050,70 1,70 640, 4994, 13.00 18,00 1050,70 1,70 1,70 1,70 1,70 1,70 1,70 1,70	1049.53 53 524 6.00 19.00 1049.97 97 599 5249 9.50 18.50 1050.35 1.70 648 994 13.00 18.00 1050.70 1.70 648 994 13.00 18.00 1050.70 1.70 648 994 13.00 18.00 10 20 93 944.3 22.00 10 20 93 945.9 21.50 10 20 93 945.9 21.50 10 20 93 945.9 21.50 10 20 93 945.9 21.50 10 20 93 945.9 21.50 10 20 948.0 19.50 10 4975 948.0 19.50 10 4975 948.0 18.50 10 4975 948.0 18.50
1050.35 1.35 610. 3721. 11.50 18.50 1050.35 1.35 610. 3721. 13.50 18.00 1050.70 1.70 648. 4994. 13.00 18.00 1050.70 1.70 ERATIO FLOW-CFS STAGE,FT HOURS 1.0 220. 993. 944.3 22.00 1.0 220. 945.2 21.50 1.0 220. 945.9 21.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50	1050-35 1.35 610. 3721. 11.50 18.00 1050.35 1.35 610. 3721. 13.50 18.00 1050.35 1.35 610. 3721. 13.50 18.00 1050.70 1.70 648. 4994. 13.00 18.00 18.00 1050.70 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.5
1050.70 1.35 610. 3721. 11.50 18.00 1050.70 1.70 648. 4994. 13.00 18.00 18.00 1050.70 1.70 648. 4994. 13.00 18.00 18.00 1.70 648. 4994. 13.00 18.00 18.00 1.70 648. 4994. 13.00 1.20 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.5	1050.35 1.35 610, 3721, 11.50 18.00 1050.70 1.70 648, 4994, 13.00 18.00 1050.70 1.70 HAXIMUM HAXIMUM TIME RATIO FLOW-CFS STAGE-FT HOURS .05 93, 944.3 22.00 .10 220, 945.2 21.50 .20 951, 947.5 20.00 .20 951, 947.5 20.00 .20 2415, 949.2 18.50 .30 1282, 949.2 18.50 .50 3715, 950.8 18.50 1.00 4975, 950.8 18.50
PLAN 1 STATION OUT DS MAXIMUM MAXIMUM TIME ,05 93, 944,3 22.00 ,10 220, 945,2 21.50 ,15 357, 946,7 21.00 ,20 578, 946,7 21.00 ,20 578, 946,7 21.00 ,20 578, 946,7 21.00 ,20 2415, 946,7 21.00 ,20 2415, 946,2 18.50 ,100 4975, 950,8 18.50	PLAN 1 STATION OUT DS MAXIMUM MAXIMUM TIME **O5 93, 944,2 21,50 **15 357, 945,9 21,50 **15 357, 945,9 21,50 **20 951, 945,9 21,50 **20 951, 945,9 21,00 *
93, 944,3 220, 945,9 357, 945,9 951, 941,5 1282, 948,0 2415, 949,2 3715, 950,1	93, 220. 220. 946.3 578. 946.7 946.7 941.5 1282. 941.5 949.2 3715. 949.2 949.2 949.2
25 93 944.3 10 220 945.2 21 25 946.7 22 946.7 22 946.7 23 1282 948.2 20 2415 949.2 24 3715 949.2 25 3715 949.2 26 949.2	220. 94.3 10 220. 945.2 20 357. 946.7 22 959. 946.7 23 128.9 24 5. 946.2 31 128.9 30 2415. 950.1 31 128.9 31 128.9 3
110 220. 945.2 15 357. 946.7 25 951. 946.7 26 949.2 26 2415. 949.2 27 30 2415. 949.2 27 4975. 950.8	10 220. 945.2 15 357. 946.7 25 951. 946.7 26 951. 946.2 27 951. 946.2 28 12 2415. 946.2 29 949.2 20 2415. 949.2 20 249.2 20 249
25 578, 940.5 26 951, 941.5 30 1282, 948.5 50 6415, 950.1 3115, 950.1	25 578, 941.5 25 1282, 941.5 30 1282, 948.0 50 2415, 948.0 75 3715, 950.1
.30 1282. 947.5 .30 1282. 948.0 .55 2415. 948.0 .75 3715. 950.1	.30 1282. .30 1282. .50 2415. .50 2415. .00 4975. .00 4975.
.50 1282. 948.0 .50 2415. 949.2 .75 4975. 950.8	.30 1282. 948.0 .50 2415. 949.2 .00 4975. 950.8
.50 2415. 949.2 .75 3715. 950.1	.50 2415. 949.2 .75 3715. 950.1
.00 4975. 950.8	.00 4975. 950.8
8.066	8.006

1000
00 1 927 1 943 947.8

O.S PMF WITH DAM BREAK 328 921 Sh 12				
PMF WIT	***************************************			
921 328	***************************************			
303 303 15 LAKE	AGE CENTER			
921 940 400 409 940 940 940 940 960 960 960 960 960 960 960 960 960 96	8 904 925 2400 005			
921 940 946 90UTING THR	3.05 300 11NG DOWNST 100 904 920			
.08 110 431	244			
1 .05 00 30 960 1 GRUB0	114 921 24 921 24 3.1 1 DMGCENT		,	
25.5 4.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	000000000000000000000000000000000000000	110	- plantie,	

;

:

24	.5								1								
WITH JAM DREAK	1.56 1.85 71676. 548.)(47.)(2029.64)			IAUTO				!							1	TAUTO	
NIA8	(595.) (548.) (•	INAME ISTAGE	LSTR	STORA ISPRAT			EXPL 0.0							INAME ISTAGE	LSTR
HR.MN PERIOD	SUM			JPRT IN	M d I	TSK STORA 0.000 -1046.			CAREA	DAMWID					1	JPRT IN	IPMP
FLOW HO.DA HE		SWITTING	SPRING LAN	JPLT	SAME TA IOPT	× 00000			ELEVL COOL	EXPD				UTING	TROUT LAKE	JPLT	SAME TA 10PT
END-OF-PERIOD FLOW		SWITHOU HORDORAN	ROUTING THROUGH MOUNTAIN SPRING LAKE	CON ITAPE	-ALL-PLANS-MAVE SAME ROUTING DATA IRES ISAME IC	LAG AMSKK			EXP# E	8				HYDROGRAPH ROUTING	w	TECON TTAPE	ALL PLANS HAVE SAME ROUTING DATA
5507		•	TING THROUGH	ICOMP IECON-	AVG II	NSTOL .	190.	1050-	0 COOM	1049.0		icuas	•	Ť	NOUTING DOW	1034P 1E	AVG I
RAIN EXCS			ROU	T SP-0	CL055	NSTPS		208. 20	CREL SPWID 1046.0 - 28.0		TIME 18.50 HOURS	TIME 18.50- HGU-3	•			151A0 00T 05	CLOSS
PER100 R					0.00	!		10381	-10		2449. AT TI	2449 AT TI					GLOSS
IN. HA							AREA=	i									
AO.DM							SURFACE AREA=	CAPACITY=			PEAK OUTFLOW	PEAK-OUTFLO4-15					

STAGE IS 949.2 ### PRECION PROOF TO STAGE IS 949.2 #### PROOF TO STAGE IS 949.2 #### PROOF TO STAGE IS 949.2
--

DEFECTION DATA

16			
Sh			
O.S PMF WITH DAM BREAK Sh. 16	! ! .!	COMP 0	SUM 24.29 22.44 1.84 36288.
)AM B	57.	LOSS	1.84
NITH (01= 1.00	EXCS	22.44
14	× 5.00	RAIN	24.29
9	80	ERIOD	SUM
0.9	39 HOURS 113.	TR. WN	
	AG= 1.3 142. 14.	FLOW MO.DA	
	HYDROGRAPH 25 END-OF-PERIOD ORDINATES, LAG= 1.39 HOURS, CP= .45 VOL= 1.00 57. 163. 241. 226. 179. 142. 113. 90. 71. 57. 36. 78. 22. 18. 14. 11. 9. 7. 6.	RAIN EXCS LOSS COMP 0 MO.DA HR.MN PERIOD RAIN EXCS LOSS COMP 0	
	0F-PER100 226. 22.	LOSS	
	25 END-	EXCS	
	GRAPH	RAIN	
	UNIT HYDRO	PEPIOD	
	. 68 . 48	10.DA HR.MN PERIOD	
		10.DA	

	i	
	IAUTO-	
İ	ISTAGE	
	INAME	
	JPRT	
COMBINE HYDROGRAPHS	IECON TAPE JPLT	HYDROGRAPH ROUTING
SAL TANGE	ISTAG ICOMP.	
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		INFLOWS JPLT JPRT INAME IS

024-004	ADUTING THROUGH TROUT LAKE	ISTAD ICOMP IECON ITAPE JPLT JPRT INAME ISTAGE IAUTO	ALL PLANS MAVE SAME ROUTING DATA	9LOSS CLOSS AVG IRES 1SAME 10PT 1PMP LSTR 0.0 0.000 0.00 1 1 0 0 0	NSTPS NSTDL LAG AMSK4 X TSK STORA ISPRAT	1. 96. 176.	6.	
						SURFACE AREA=	CAPACITY=	

	EXPL 0.0		
	CAREA E		WSEL FAILEL 943.00 1000.00
	0.00	D DAMWID	L - WSEL
	FLEVL	TOPEL COGO EXPO	DAW BREACH DATA
	1.5	8	DAY B
	3.3	TOPE1	
.096	SPWID 35.0		. BO.
943.	CREL 943.0		
924.			
ELEVATION=			
3 1		TI	

DEAN MITELOW TS 2006. AT TIME 10, EN MILIDE

3 7	O.5 PMF WITH DAM BREAK				
I					
DAW BREACH DATA Z ELBM TFAIL 1.00. 927.00 1.00					,
###ID 80.					
AT 18.50 HOURS 18080. AT TIME					

* * * * * *

•		1	1	1 1 1 1		1 1 1 1 1 1 1 1 1		1	The state of the s	•	
The same of the sa			• 000	eeeeeeeeeeeee	97		:	•		Sh 19	19
		ROUTING	8	M TO SRUI	GRUBERS LAKE	w					
	ISTAG RUBI	100MP	1ECON 0	ITAPE	JPLT	JPRT	INAME	ISTAGE	IAUTO		
9F038	SS CLOSS	0.00 0.00	ALL	L PLANS HAVE SI ROUTING DATA IRES ISAME-	SAME A IOPT	4 0 0 d d		LSTR			1
	NSTPS	S NSTOL	LAG	0.000 0.000	× 000°0	0.000	STORA -1.	ISPRAT			
NOWHAL DEPTH CHANNEL ROUTING	5 ELNVT	ELHAK 940.0	RLNTH	SEL . 04000			•				
CROSS SECTION COOKDI 	DINATESST	STA.ELEV.STA.E 940.00 300.00 940.00 740.00	00KDINATESSTA.ELEV.STA.ELEVETC 0-110.00 940.00 300.00 924.00 0 431.00 940.00 740.00 960.00	7C 303.00	921.00	328.00	921.00				
STORAGE	8.37	10.01	11.94		1.14	1.67		2.37	21.07	23.77	5.48
		18017.13	21975.05	26453.23		2456.80		3597.45	5042.65	50090.42	57556.14
	922.00	923.00	924.00		925.00	926.00	93	927.00	928.00	929.00	940.00
51.93 14	1	18017.13	21975.05	26453.23	1	2456.80		3597.45	5042.65	50090.42	8987.36 57556.14
MAXIMUM STAGE 15 933.0											

THINE TETARE TAILTA

101

Trans Terna TTABL

16740

ROUTING THROUGH GRUSERS LAKE

PEAK OUTFLOW IS 3073. AT TIME 19.50 HOURS PFAK OUTFLOW IS 17391. AT TIME 19.50 HOURS HYDROGRAPH ROUTING ROUTING DOWNSTREAM TO DANAGE CENTER ISTAO ICOMP IECON ITAPE JPIT IN HGCENT I DOWN TREAM TO DANAGE CENTER ROUTING DATA ALL PLANS HAVE SAME ROUTING DATA ALL PLANS HAVE SAME ROUTING DATA ALL PLANS HAVE SAME ROUTING DATA ALL PLANS HAVE SAME ROUTING DATA ALL PLANS HAVE SAME
--

×	1
-	4
	í
Tr.	*
CV	ì
	1
a	å
PMF WITH DAM BREAK	1
-	â
A	1
-	1
_	1
	١
	1
	1
I	ı
-	1
-	ı
>	1
>	ı
	ì
	ž
11	
-	1
~	
<	
0	
4	٠,
	•
0.5	١
	•
0	1

. ;

TOP OF DAM 1049.00 471.	ON TIME OF TIME OF OP MAX OUTFLOW FAILURE HOURS	18.50 0.00	TOP OF DAM 1049.00 471. 451.	ON TIME OF TIME OF HAX OUTFLOW FAILURE HOURS	18.50 0.00		S S	95		ME	20		
	OURATION OVER TOP HOURS	9.50		DURATION OVER TOP HOURS	9.50	r 08	TIME	2 18.50	1 0S	HOURS	18.50		
SPILLWAY CREST 1046.00 208.	MAXIMUM OUTFLOW CFS	2449.	SPILLWAY CREST	MAXIMUM OUTFLOW CFS	2449.	STATION OUT	MAXIMUM STAGE.FT	949.2	STATION OUT	STAGE .FT	2.646	ž.	
	MAXIMUM STORAGE AC-FT	569.		MAXIMUM STOWAGE AC-FT	.695	PLAN 1	MAKIMUM FLOW.CFS	2415.	PLAN 2	FLOW.CFS			
INITIAL-VALUE 1046.00 209.	MAXIMUM DEPTH OVER DAM	76.	INITIAL VALUE 1046.00 208.	MAXIMUM DEPTH OVER DAM	16.	ā	RATIO	.50		RATIO	- 050-		1
ELEVATION STORAGE OUTFLOW	MAXIMUM RESERVOIR W.S.ELEV	1049.97	ELEVATION STORAGE OUTFLOW	MAXIMUM RESERVOIR W.S.ELEV	1049.97					!	-		
	RATIO OF PMF	05.	5	RATIO OF PMF.	05.								
4			PLAN							1			

3.00 947.00 690. 1107. 690. 924. 924. 924. 924.	STORAGE OUTFLOW AC-FT CFS	1293. 3094. 7.50 19.50 0.00	INITIAL VALUE SPILLMAY CREST TOP OF DAM 943.00 943.00 1107.	HAXIMUM MAXIMUM DURATION TIME OF TIME OF STORAGE OUTFLOW OVER TOP MAX DUFFLOW FAILURE ACFT. CFS HOURS HOURS HOURS	1240. 18080. 1.54 19.50 18.50	PLAN 1 STATION RUBI	MAXIMUM MAXIMUM TIME O FLOW-CFS STAGE-FT MOURS	10 3091. 926.6 19.50	PLAN 2 STATION RUBI	O FLOW-CFS STAGE-FT HOURS	.018071 933.0 19.50		
2	W.S.ELEV OVER DAM	948.60 1.60	ELEVATION 99-510RAGE	MAXIMUM MAXIMUM RESERVOIR DEPTH W.S.ELEVOVER-DAM	948.16 1.16		RATIO	05.		RATIO	05.		
	PARF	05.	PLAN 2	RATIO RE OF RE	05.			To the property of the last transfer of the last tr					

Sh 25	TIME OF TIME OF MAX OUTFLOW FAILURE HOURS	19.50 0.00	30	TIME OF TIME OF MAX OUTFLOW FAILURE - HOURS	19.50 0.00								
7 TOP OF DAM 924.00 83.	OVER TOP MAX HOURS	10.50	T TOP OF DAM 924.00 83.	OVER TOP MAX HOURS	7.50	-	TIME	20.00	TN	TIME	19,50		
SPILLWAY CREST 921.00	MAXIMUM OUTFLOW CFS	3073.	SPILLWAY CREST 921.00	MAXIMUM OUTFLOW CFS	17391.	STATION MGCENT	MAXIMUM STAGE.FT	911.7	STATION MGCENT	STAGE . FT	916.7		
	HAXIMUM STORAGE	109.	. VALUE 1.00 35.	MAXIMUM STORAGE AC-FT	195.	PLAN 1	MAKIMUM FLOW.CFS	3079.	PLAN 2	FLOW.CFS	14832.		
INITIAL VALU 921.00 35.	DEPTH OVER DAM	1.52	INITIAL 921.	MAXIMUM DEPTH OVER-DAM	66.5	ā	RATIO	.50	1	RATIO			
ELEVATION STORAGE OUTFLOW	MAXIMUM RESERVOIR W.S.ELEV	925.52	ELEVATION STORAGE OUTFLOW	MAXIMUM RESERVOIR W.S.ELEV	929.99								
	OF PHF	05.		RATIO OF PMF	05.								
. I- W1			AN 2										

JOB NO. Trout Lake Dam 25 DOWNSTREAM OF MOUNTAIN SPRING LAKE CROSS - SECTION AT TROUT LAKE 1111 EL. 980 EL. 980 100' EL 960, EL. 960 675 696 EL. 946 678' 693 EL. 943 CROSS-SECTION DOWNSTREAM OF TROUT LAKE (AT GRUBERS LAKE) 740 EL.960 EL 960 110' EL. 940 431 EL. 940 300' 331' EL 924 EL-921

DATE JOB NO. Trout Lake Dam 24 CROSS-SECTION DOWNSTREAM OF GRUBERS LAKE (ATT DAMAGE CENTER) Ec. 940 1200 EL. 940 250' EL. 920 1100 EC. 920 675 701' EL.907 EL.907 E1.904

APPENDIX

D

Photographs

DOWNSTREAM VIEW OF THE SPILLWAY NEAR THE RIGHT ABUTMENT OF THE DAM

APPROACH CHANNEL TO THE SPILLWAY

SEEPAGE IMMEDIATELY DOWNSTREAM OF THE RIGHT ABUTMENT OF THE DAM

SLUICE VALVE ON THE DOWNSTREAM END OF THE RESERVOIR DRAIN SYSTEM CONDUIT

FLOW DOWNSTREAM OF THE DAM FROM THE RESERVOIR DRAIN SYSTEM, A TRIBUTARY IMMEDIATELY DOWNSTREAM AND TO THE RIGHT OF THE DAM, AND FROM SEEPAGE

DAM AND SPILLWAY OF GRUBERS LAKE ABOUT ONE HALF MILE DOWNSTREAM OF TROUT LAKE DAM

APPENDIX

E

Drawings

Trout Lake Dani SHEET BY DATE 3/22/79 JOB NO

Table of Content APPENDIX E

ENGN. DEPT. OF THE SCRANTON OF July 19-1927 PLATE 3 Ch. Engr. Acused 7.28.37, MOUNTAIN TCE CO MANS FOR REQUISED PAM IN JACKSON scale 1"=10" L'EER Same as Propert Darri BOWNSTREAM ELEVATION The Printed Road's SECTION THE SPILLWAY & BRIDGE THE CONTRACT OF CONTRACTOR CONTRACTOR TYPICAL CROSS SECTION Natural Service . . . THROUGH EMBANHMENT. A 4060 -4

O'BRIEN & GERE ENGINEERS, INC. SUBJECT
Trout Lake Dam JOB NO 思 3/20/79 PLATE 4 MOZZ dunshaam slope slow o s.o.H = sov for about s then ~ 2.5H = s.ov to t 220' Wide, Porly Deburg MOH

O'BRIEN & GERE ENGINEERS, INC. 3/21/79 # Trout Lake Dam .940 PLATE 5 0.848. VABO Elev. 948.5 ,001 PROFILE ALONG TOP OF DAW Sev. 946.8 ,001 6976 NOB 100, 15 Elev. 947.2 5/64. 948.2

Elev. 948.2

APPENDIX

F

Site Geology

SITE GEOLOGY

Trout Lake

Trout Lake is located within the Pocono Plateau Section of the Appalachian Plateaus physiographic province. The geologic structure at the site is relatively simple with thick Pleistocene deposits, consisting of till, outwash and other rock debris units of Wisconsin glaciation, overlying nearly horizontal beds of non-marine red and gray sediments of the Devonian Catskill continental groups. No faults or major structural defects are known to exist in the buried bedrock in the vicinity of the dam and lake.

(