

Small Launch Vehicle (SLV) Concept Development for Affordable Multi-Stage Inline Configurations

May 22, 2014

Ben Beers – Vehicle sizing & mass properties

Geocent, LLC. – Jacobs ESSSA Group, Huntsville, AL, 35806, United States

Eric Waters – Trajectory analysis

Jacobs ESSSA Group, Huntsville, AL, 35806, United States

Alan Philips – Vehicle structural analysis

NASA, George C. Marshall Space Flight Center, AL, 35812, United States

Ed Threet – Team lead

NASA, George C. Marshall Space Flight Center, AL, 35812, United States

Earth-To-Orbit Team Process

The current process is in revision to incorporate surrogate modeling via Design of Experiments (DoE) in addition to enhanced analysis visualization techniques.

Generic Trade Space Sizing Tool

NESC-1 Ground Rules & Assumptions

Item	Stage 1	Stage 2	Stage 3
Propulsion			
Propellants	LOX / RP-1	LOX / RP-1	LOX / RP-1
Mixture ratio, MR	2.77	2.77	2.77
Vacuum Thrust (lb _f)	55,000	18,000	1,000
Vacuum Specific impulse, I _{sp} (sec)	300	300	300
Propellant feed system type	Pressure-fed	Pressure-fed	Pressure-fed
Propellant tank pressures (psia)	550	550	250
Structures			
Stage diameter (ft)	4.17	4.17	2.17
Safety factor	1.4	1.4	1.4
Mass growth allowance, MGA (%)	batt, avionics = 25 all other = 18	batt, avionics = 25 all other = 18	batt, avionics = 25 all other = 18
All vehicle structural material	IM7/877	IM7/877	IM7/877
Trajectory			
Orbit type / delivery altitude (nmi)	Circular / 200		
Inclination (deg)	28.5°		
Propellant Mass Fraction (PMF)	0.84	0.83	0.71

NESC-4 Ground Rules & Assumptions

Item	Stage 1	Stage 2	Stage 3
Propulsion			
Propellants	LOX / RP-1	LOX / RP-1	LOX / LCH ₄
Mixture ratio, MR	2.77	2.77	3.45
Vacuum Thrust (lb _f)	55,000	18,000	1,000
Vacuum Specific impulse, I _{sp} (sec)	300	300	360
Propellant feed system type	Pressure-fed	Pressure-fed	Pressure-fed
Propellant tank pressures (psia)	550	550	250
Structures			
Stage diameter (ft)	4.17	4.17	2.17
Safety factor	1.4	1.4	1.4
Mass growth allowance, MGA (%)	batt, avionics = 25 all other = 18	batt, avionics = 25 all other = 18	batt, avionics = 25 all other = 18
All vehicle structural material	IM7/877	IM7/877	IM7/877
Trajectory			
Orbit type / delivery altitude (nmi)	Circular / 200		
Inclination (deg)	28.5°		
Propellant Mass Fraction (PMF)	0.84	0.83	0.67

Preliminary Sensitivity Study Results

Specific Impulse (I_{sp}) Sensitivity

Propellant Mass Fraction (PMF) Sensitivity

Preliminary Sensitivity Study Results

Specific Impulse (I_{sp}) Sensitivity

Stage Burnout Mass Sensitivity

Delivery Altitude Sensitivity Study

Key information:

- All vehicles configurations were identical but were flown to different altitudes

1st / 2nd Stage Propulsion System Trade Study

NESC-4C

Pressure-fed system:

- 550 psia tank pressures
- Thick-walled propellant feed system line
- Larger Helium pressurant volume accommodations in forward skirt

Pump-fed system:

- 50 psia tank pressures
- Thin-walled propellant feed system line
- Smaller Helium pressurant volume accommodations in forward skirt

NESC-4D

Vehicle Safety Factor Sensitivity Study

Key Information:

- IM7/877 graphite epoxy composite ($\rho = 0.065 \text{ lb}_m/\text{in}^3$)
- 0.036 in. minimum gauge wall thickness
- 0.65 structural buckling knockdown factor
- 3 σ dispersion placed on angle of attack (α) calculated by POST
- Combined worst case loading
- 1% risk of exceeding peak prelaunch wind loads at KSC

Vehicle MGA Sensitivity Study

1st / 2nd Stage Mixture Ratio Sensitivity Study

Key information:

- GLOM was held constant so payload capability was minimally affected.
- MR was adjustable since only conceptual engines were used.

$$MR = \frac{\dot{m}_{oxidizer}}{\dot{m}_{fuel}}$$

Maximum Q Event Sensitivity Study

NESC-4i

Key information:

- Propellant was removed only from the 1st stage to relocate max Q event in the trajectory.

1st / 2nd Stage Thrust Sensitivity Study

NESC-4J

Key information:

- 55,000 lb_f (stage 1) and 18,000 lb_f (stage 2) thrust levels were maintained as result of this sensitivity study.

2nd / 3rd Stage Propellant Load Sensitivity Study

NESC-4K:

- 2nd stage designed such that RP-1 tank was dome-to-dome.
- Equivalent propellant load was placed in 3rd stage.

NESC-4J:

- 3rd stage propellant load optimized.

Vehicle Diameter Sensitivity Study

$$\frac{L}{D} = \frac{\text{Total vehicle length}}{\text{Maximum vehicle diameter}}$$

NESC-4N NESC-4N.2 NESC-4N.3 NESC-4N.4

Key information:

- Vehicle GLOM was maintained such that only stage component geometries were affected.
- Intertank and forward/aft skirts were shortened to accommodate same coverage of propellant tanks as overall dome size shrunk.

SRB & Launch Rail Trade Study

NESC-4Q

NESC-4R

Key information:

- SRBs (Mk 70 Mod ER) in quantities of 2 and 4 were added to sufficiently increase rail exit velocity.
- 1st and 2nd stage TVC systems were replaced with groups of 4 fins sized to maintain sufficient stability margin.
- Launch configurations were changed from a 90° tower launch to rail launches, each at their own optimized angles.

Passive vs. Active Guidance System

NESC-4Q – 1st stage fin design

Item	Stage 1	Stage 2
NESC-4Q		
Graphite epoxy composite fins	4	4
Surface area per fin (ft ²)	17.9	10.1
Volume per fin (ft ³)	0.7	0.4
Mass per fin (lb _m)	80.7	45.4
Vehicle stability margin	1.72 (SRBs) 2.13 (no SRBs)	1.21

NESC-4Q – 2nd stage fin design

Item	Stage 1	Stage 2
NESC-4R		
Graphite epoxy composite fins	4	4
Surface area per fin (ft ²)	27.9	10.1
Volume per fin (ft ³)	1.1	0.4
Mass per fin (lb _m)	126.0	45.4
Vehicle stability margin	1.64 (SRBs) 3.09 (no SRBs)	1.25

Note: Stability margin rule of thumb is for CG to be forward of CP at ignition by:

- 1st stage ~ 1.5 – 2.0 vehicle diameters
- Subsequent stages ~ 1.0 vehicle diameters (if low enough in the atmosphere)

100 lb_m Payload Target

NESC-4Q

NESC-4T

Key Information:

- Removed propellant from both 1st and 2nd stages to achieve 100 lb_m payload target.

Results Summary

LOX / RP-1	120 nmi circ	SF = 1.2	25% of Standard MGA	1 st stage max Q + 10	2 nd stage propellant optimization	MER scrub & rebaseline	1 st /2 nd stage diameter optimization (3.85 ft)	3 rd stage thrust optimization	(2x) SRBs with 1 st /2 nd stage TVC, tower launc	(4x) SRBs with 1 st /2 nd stage TVC, tower launc	100 lb _m payload target
3 rd stage LOX / LCH ₄	1 st /2 nd stage pump-fed	50% of Standard MGA	1 st /2 nd stage MR = 2.50	140 lb _m payload target	3 rd stage propellant optimization	1 st /2 nd stage diameter optimization (4.0 ft)	1 st /2 nd stage diameter optimization (3.3 ft)	(2x) SRBs with 1 st /2 nd stage fins, rail launc	(4x) SRBs with 1 st /2 nd stage fins, rail launc	Original scarring of NES-4Q.2	

Bookend Configuration Comparison

Configuration	NESC-1	NESC-4A	NESC-4T
GLOM (lb _m)	37,133	37,187	22,378
LEO Payload (lb _m)	75	142	98
Delivery Orbit (nmi)	200 circ	200 circ	120 circ

Loads & Ideal Velocity (ΔV) Split Results

BACK-UP

NESC 1 Sensitivity Study Summary

■ = parent vehicle

↓ / ↑ = with reference to parent vehicle

Group	Sensitivity Study
NESC-1	Baseline ground rules and assumptions
NESC-1	1 st stage I_{sp} = +10 sec (310 sec)
NESC-1	1 st stage I_{sp} = -10 sec (290 sec)
NESC-1	2 nd stage I_{sp} = +10 sec (310 sec)
NESC-1	2 nd stage I_{sp} = -10 sec (290 sec)
NESC-1	3 rd stage I_{sp} = +10 sec (310 sec)
NESC-1	3 rd stage I_{sp} = -10 sec (290 sec)
NESC-1	1 st stage PMF = +0.02 (0.8573)
NESC-1	1 st stage PMF = -0.02 (0.8171)
NESC-1	2 nd stage PMF = +0.02 (0.8480)
NESC-1	2 nd stage PMF = -0.02 (0.8078)
NESC-1	3 rd stage PMF = +0.02 (0.7308)
NESC-1	3 rd stage PMF = -0.02 (0.6908)

GLOM (lb _m)	Veh. Length (ft)	Payload (lb _m)
37,133 –	68.1 –	75 –
37,149 ↑	68.1 –	91 ↑
37,118 ↓	68.1 –	60 ↓
37,160 ↑	68.1 –	102 ↑
37,108 ↓	68.1 –	50 ↓
37,157 ↑	68.1 –	99 ↑
37,109 ↓	68.1 –	51 ↓
36,586 ↓	68.1 –	91 ↑
37,707 ↑	68.1 –	59 ↓
36,909 ↓	68.1 –	123 ↑
37,375 ↑	68.1 –	32 ↓
37,134 ↑	68.1 –	114 ↑
37,133 –	68.1 –	34 ↓

NESC-4A	Baseline ground rules and assumptions
NESC-4A	1 st stage I_{sp} = +10 sec (310 sec)
NESC-4A	1 st stage I_{sp} = -10 sec (290 sec)
NESC-4A	2 nd stage I_{sp} = +10 sec (310 sec)
NESC-4A	2 nd stage I_{sp} = -10 sec (290 sec)
NESC-4A	3 rd stage I_{sp} = +10 sec (370 sec)
NESC-4A	3 rd stage I_{sp} = -10 sec (350 sec)

37,187 –	68.9 –	142 –
37,205 ↑	68.9 –	162 ↑
37,170 ↓	68.9 –	125 ↓
37,217 ↑	68.9 –	172 ↑
37,159 ↓	68.9 –	114 ↓
37,209 ↑	68.9 –	163 ↑
37,166 ↓	68.9 –	121 ↓

NESC 4 Sensitivity Study Summary (cont.)

■ = parent vehicle

Group	Sensitivity Study
NESC-4A	1 st stage PMF = +0.02 (0.8573)
NESC-4A	1 st stage PMF = -0.02 (0.8171)
NESC-4A	2 nd stage PMF = +0.02 (0.8494)
NESC-4A	2 nd stage PMF = -0.02 (0.8093)
NESC-4A	3 rd stage PMF = +0.02 (0.6897)
NESC-4A	3 rd stage PMF = -0.02 (0.6497)
NESC-4B	160 nmi circular orbit altitude
NESC-4C	120 nmi circular orbit altitude
NESC-4D	1 st and 2 nd stage pump-fed propulsion systems
NESC-4E	Vehicle structural safety factor = 1.2
NESC-4F	50% MGA allowable (12.5% batt, avionics; 9% all other)
NESC-4G	25% MGA allowable (6.25% batt, avionics; 4.5% all other)
NESC-4H	1 st and 2 nd stage LOX / RP-1 MR = 2.50
NESC-4i	1 st stage propellant reduction for burnout at max Q +10 sec
NESC-4J	2 nd stage propellant reduction targeting 140 lb _m payload
NESC-4J	2 nd stage thrust = +4,000 lb _f (22 klb _f)
NESC-4J	2 nd stage thrust = +8,000 lb _f (26 klb _f)
NESC-4J	2 nd stage thrust = +12,000 lb _f (30 klb _f)
NESC-4J	1 st stage thrust = +5,000 lb _f (60 klb _f)
NESC-4J	1 st stage thrust = +10,000 lb _f (65 klb _f)
NESC-4J	1 st stage thrust = +15,000 lb _f (70 klb _f)

↓ / ↑ = with reference to parent vehicle

GLOM (lb _m)	Veh. Length (ft)	Payload (lb _m)
36,644 ↓	68.9	161 ↑
37,758 ↑	68.9	124 ↓
36,971 ↓	68.9	195 ↑
37,421 ↑	68.9	94 ↓
37,188 ↑	68.9	184 ↑
37,187 —	68.9	99 ↓
37,223 ↑	68.9	177 ↑
37,252 ↑	68.9	206 ↑
36,196 ↓	66.4 ↓	333 ↑
36,189 ↓	66.4 —	336 ↑
35,907 ↓	66.4 —	404 ↑
35,764 ↓	66.4 —	441 ↑
35,918 ↑	67.1 ↑	402 ↓
25,966 ↓	56.0 ↓	182 ↓
22,436 ↓	53.3 ↓	142 ↓
23,516 ↑	53.3 —	137 ↓
23,585 ↑	53.3 —	129 ↓
23,651 ↑	53.3 —	119 ↓
23,470 ↑	53.3 —	142 —
23,504 ↑	53.3 —	140 ↓
23,538 ↑	53.3 —	136 ↓

NESC 4 Sensitivity Study Summary (cont.)

■ = parent vehicle

Group	Sensitivity Study
NESC-4K	2 nd stage RP-1 tank dome-to-dome, propellant moved to 3 rd stage
NESC-4L	3 rd stage propellant load (and payload) optimization
NESC-4N	MERs scrubbed and model rebaslined
NESC-4N	1 st and 2 nd stage vehicle diameter = -0.17 ft (4.0 ft)
NESC-4N	1 st and 2 nd stage vehicle diameter = -0.32 ft (3.85 ft)
NESC-4N	1 st and 2 nd stage vehicle diameter = -0.87 ft (3.30 ft)
NESC-4o	2 nd stage thrust = -2,000 lb _f (16 klb _f)
NESC-4o	2 nd stage thrust = -4,000 lb _f (14 klb _f)
NESC-4o	2 nd stage thrust = +2,000 lb _f (20 klb _f)
NESC-4P	3 rd stage thrust = +200 lb _f (1.2 klb _f)
NESC-4Q	+2 SRBs, 1 st /2 nd stage passive guidance systems, rail launch
NESC-4Q.2	+2 SRBs, 1 st /2 nd stage active guidance systems, tower launch
NESC-4R	+4 SRBs, 1 st /2 nd stage passive guidance systems, rail launch
NESC-4R.2	+4 SRBs, 1 st /2 nd stage active guidance systems, tower launch
NESC-4S	Original scarring of NESC-4Q.2
NESC-4T	100 lb _m payload target

↓ / ↑ = with reference to parent vehicle

GLOM (lb _m)	Veh. Length (ft)	Payload (lb _m)
23,352 ↑	57.2 ↑	81 ↓
22,675 ↓	53.6 ↓	134 ↑
22,672 ↓	52.3 ↓	116 ↓
22,647 ↓	54.4 ↑	125 ↑
22,634 ↓	56.1 ↑	134 ↑
22,656 ↓	65.6 ↑	156 ↑
22,614 ↓	65.6 –	154 ↓
22,562 ↓	65.6 –	148 ↓
22,703 ↑	65.6 –	154 ↓
22,674 ↑	65.6 –	159 ↑
27,417 ↑	67.8 ↑	190 ↑
26,718 ↑	64.1 ↓	63 ↓
32,169 ↑	68.3 ↑	235 ↑
31,275 ↑	64.9 ↓	72 ↓
22,675 ↓	67.8 ↑	140 ↑
22,378 ↓	58.0 ↓	98 ↓

NESC-4Q

NESC-1 (baseline)

<u>Interstage</u>	
Second/Third	
Dry Mass	33 lbm
<u>Third Stage</u>	
Propellants	LOX / Jet-A
Nominal Ascent Propellant	1,012 lbm
Stage pmf	0.7108
Dry Mass	360 lbm
Burnout Mass	412 lbm
# Engines	1
Engine Thrust (100.0%)	1,000 lbf @ Vac
Engine Isp (100.0%)	300.0 sec @ Vac
Stage Burn Time	303.9 sec
<u>Delivery Orbit</u>	
LEO Delivery	200.0 x 200.0 nmi @ 28.5°
LEO Gross Payload	75 lbm (34.0 kg)
Insertion Altitude	200.0 nmi
T/W @ Liftoff	1.37
Max Dynamic Pressure	714 psf
Max g's Ascent Burn	5.14
T/W @ 2nd Stage Ignition	1.34
T/W @ 3rd Stage Ignition	0.67

GLOM 37,133 lbm
Shroud Jettison Mass 47 lbm

<u>First Stage</u>	
Propellants	LOX / Jet-A
Total Stage Ascent Propellant	20,133 lbm
Stage pmf	0.8372
Dry Mass	3,448 lbm
Burnout Mass	3,915 lbm
# Engines	1
Engine Thrust (100.0%)	55,000 lbf @ Vac
Engine Isp (100.0%)	300.0 sec @ Vac
Mission Power Level	100.0%
Stage Burn Time	109.8 sec
<u>Interstage</u>	
Dry Mass	52 lbm

<u>Second Stage</u>	
Propellants	LOX / Jet-A
Nominal Ascent Propellant	9,482 lbm
Stage pmf	0.8279
Dry Mass	1,720 lbm
Burnout Mass	1,971 lbm
# Engines	1
Engine Thrust (100.0%)	18,000 lbf @ Vac
Engine Isp (100.0%)	300.0 sec @ Vac
Stage Burn Time	158.0 sec

NESC-4A (baseline)

<u>Interstage</u>	
Second/Third	
Dry Mass	35 lbm
<u>Third Stage</u>	
Propellants	LOX / LCH4
Nominal Ascent Propellant	957 lbm
Stage pmf	0.6697
Dry Mass	420 lbm
Burnout Mass	472 lbm
# Engines	1
Engine Thrust (100.0%)	1,000 lbf @ Vac
Engine Isp (100.0%)	360.0 sec @ Vac
Stage Burn Time	344.5 sec
<u>Delivery Orbit</u>	
LEO Delivery	200.0 x 200.0 nmi @ 28.5°
LEO Gross Payload	142 lbm (64.5 kg)
Insertion Altitude	200.0 nmi
T/W @ Liftoff	1.36
Max Dynamic Pressure	717 psf
Max g's Ascent Burn	5.06
T/W @ 2nd Stage Ignition	1.33
T/W @ 3rd Stage Ignition	0.64

GLOM **37,187 lbm**
Shroud Jettison Mass 48 lbm

First Stage
Propellants LOX / Jet-A
Nominal Ascent Propellant 20,133 lbm
Stage pmf 0.8372
Dry Mass 3,448 lbm
Burnout Mass 3,916 lbm
Engines 1
Engine Thrust (100.0%) 55,000 lbf @ Vac
Engine Isp (100.0%) 300.0 sec @ Vac
Mission Power Level 100.0%
Stage Burn Time 109.8 sec

Interstage First/Second
Dry Mass 52 lbm

Second Stage
Propellants LOX / Jet-A
Nominal Ascent Propellant 9,482 lbm
Stage pmf 0.8293
Dry Mass 1,700 lbm
Burnout Mass 1,952 lbm
Engines 1
Engine Thrust (100.0%) 18,000 lbf @ Vac
Engine Isp (100.0%) 300.0 sec @ Vac
Stage Burn Time 158.0 sec

NESC-4T (100 lb_m target)

<u>Third Stage</u>		<u>GLOM</u>	22,378 lbm
Propellants	LOX / LCH ₄	Shroud Jettison Mass	88 lbm
Nominal Ascent Propellant	1,227 lbm		
Stage pmf	0.6986	<u>First Stage</u>	
Dry Mass	447 lbm	Propellants	LOX / Jet-A
Burnout Mass	529 lbm	Nominal Ascent Propellant	8,060 lbm
# Engines	1	Stage pmf	0.7953
Engine Thrust (100.0%)	1,200 lbf @ Vac	Dry Mass	1,935 lbm
Engine Isp (100.0%)	360.0 sec @ Vac	Burnout Mass	2,075 lbm
Stage Burn Time	368.0 sec	# Engines	1
Solid Booster (each)		Engine Thrust (100.0%)	45,700 lbf @ Vac
Casing Type	Mk 70 Mod 1 ER	Engine Isp (100.0%)	300.0 sec @ Vac
Propellants	Expendable	Mission Power Level	100.0%
Overboard Propellant	HTPB	Stage Burn Time	52.9 sec
Stage pmf	2,986 lbm	<u>Interstage</u>	First/Second
Burnout mass	0.7042	Dry Mass	43 lbm
# Boosters	1,274 lbm		
Average Thrust @ 70 °F	2	<u>Second Stage</u>	
Stage Burn Time	62,800 lbf	Propellants	LOX / Jet-A
	6.05 sec	Nominal Ascent Propellant	4,916 lbm
Delivery Orbit		Stage pmf	0.8238
LEO Delivery	120.0 x 120.0 nmi @ 28.5°	Dry Mass	959 lbm
LEO Gross Payload	98 lbm (44.5 kg)	Burnout Mass	1,051 lbm
Insertion Altitude	120.0 nmi	# Engines	1
T/W @ Liftoff	1.85	Engine Thrust (100.0%)	14,350 lbf @ Vac
Max Dynamic Pressure	2,120 psf	Engine Isp (100.0%)	300.0 sec @ Vac
Max g's Ascent Burn	8.68	Stage Burn Time	102.8 sec
T/W after SRB separation	1.91	<u>Interstage</u>	Second/Third
T/W @ 2nd Stage Ignition	1.67	Dry Mass	29 lbm
T/W @ 3rd Stage Ignition	0.62		

