Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного автономного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ <u>ИУК «Информатика</u>	и управление)	<u>)</u>						
КАФЕДРА <u>ИУК4 «Программное</u> <u>технологии»</u>	обеспечение З	<u>9BM,</u>	информационные					
ЛАБОРАТОРЬ	ІАЯ РАБО	TA 4	1					
			•					
ДИСЦИПЛИНА: «Цифровая обрабо	ИПЛИНА: «Цифровая обработка сигналов»							
Drive way of a 147/1/4 72F		(
Выполнил: студент гр. ИУК4-72Б _	(Подпись)	_ (_	Губин Е.В) (Ф.И.О.)					
Проверил:	(Подпись)	_ (_	Чурилин О.И) (Ф.И.О.)					
Дата сдачи (защиты):								
Результаты сдачи (защиты):								

- Балльная оценка:

- Оценка:

Цель: формирование практических навыков выполнения фильтрации синусоидальных сигналов с различными значениями параметров.

Задачи:

- 1. задать параметры синусоидальных сигнала;
- 2. выполнить фильтрацию трех синусоидальных сигналов с разными частотами, используя четыре вида фильтров (Баттерворта, Чебышева 1 рода, Чебышева 2 рода, эллиптического).

Формулировка задания (3 вариант):

Для параметров фильтров следует принимать приблизительно следующие значения:

- п (порядок фильтра) >= 4;
- 2. Rp (уровень пульсаций в полосе пропускания) <= 0,1;
- 3. Rs (уровень пульсаций в полосе задерживания) >= 40.

Nº		начені частот		Вид фильтра и составляющие сигнала, подлежащие фильтрации для двух видов сигналов (верхняя строка для сигнала S_1+S_2 , нижняя строка для $S_1+S_2+S_3$)				
	S_1	S_2	S_3	Баттерворт	Чебышева	Чебышева	Эллипти	
	_	_	_	a	1 рода	2 рода	ческий	
3	50	70	90	$\Pi\Phi$, S_2	РФ, <i>S</i> ₁	ФНЧ, S_1	ФВЧ, S ₂	
				ФНЧ,	ФВЧ, <i>S</i> ₃	ПФ,	РФ, <i>S</i> ₁	
				$S_1 + S_2$		$S_2 + S_3$		

Результаты выполнения:

< > | 中 Q 至 | B

Листинг программы:

```
import numpy as np
import matplotlib.pyplot as plt
from scipy import signal
fs = 2000
T = 1.0
t = np.linspace(0, T, int(fs*T), endpoint=False)
f1, f2, f3 = 50.0, 70.0, 90.0
s1 = np.sin(2*np.pi*f1*t)
s2 = np.sin(2*np.pi*f2*t)
s3 = n\underline{p}.\sin(2*\underline{n}\underline{p}.pi*f3*t)
sig s12 = s1 + s2
sig s123 = s1 + s2 + s3
n = 4
rp = 0.1
rs = 40.0
nyq = fs / 2.0
def design_filter(filt, fcut, btype):
    if isinstance(fcut, (list, tuple, np.ndarray)):
        Wn = [f/nyq \text{ for } f \text{ in } fcut]
    else:
        Wn = fcut/nyq
    if filt == 'butter':
        sos = signal.butter(n, Wn, btype=btype, output='sos')
    elif filt == 'cheby1':
        sos = signal.cheby1(n, rp, Wn, btype=btype, output='sos')
    elif filt == 'cheby2':
        sos = signal.cheby2(n, rs, Wn, btype=btype, output='sos')
    elif filt == 'ellip':
        sos = signal.ellip(n, rp, rs, Wn, btype=btype, output='sos')
    else:
        raise ValueError('Unknown filter type')
    return sos
def plot_response(sos, ax):
    w, h = signal.sosfreqz(sos, worN=2000, fs=fs)
    ax.plot(w, 20*np.log10(np.maximum(np.abs(h), 1e-12)))
    ax.set title('AYX фильтра')
```

```
ax.set xlabel('Частота, Гц')
     ax.set ylabel('Амплитуда, дБ')
     ax.grid(True)
def apply and plot(filt, input signal, input label, fcut, btype,
title label):
     sos = design filter(filt, fcut, btype)
     y = signal.sosfiltfilt(sos, input signal)
     fig, axs = plt.subplots(4, 1, figsize=(10, 10), constrained layout=True)
     axs[0].plot(t, s1, label='S1 (50 Hz)')
     axs[0].plot(t, s2, label='S2 (70 Hz)')
     axs[0].plot(t, s3, label='S3 (90 Hz)')
     axs[0].set xlim(0, 0.1)
     axs[0].set title('Составляющие сигнала')
    axs[0].legend()
    axs[0].grid(True)
    axs[1].plot(t, input signal)
    axs[1].set xlim(0, 0.1)
    axs[1].set title(f'Полный сигнал: {input label}')
    axs[1].grid(True)
    plot response(sos, axs[2])
    axs[3].plot(t, y)
    axs[3].set xlim(0, 0.1)
     axs[3].set title('Отфильтрованный сигнал')
     axs[3].grid(True)
     fig.suptitle(f'{filt.upper()} ({btype}) - {title label}', fontsize=14)
    plt.show()
bw = 6.0
bp s2 = (f2 - bw/2, f2 + bw/2)
bp s3 = (f3 - bw/2, f3 + bw/2)
bp s2s3 = (f2 - 10.0, f3 + 10.0)
lp s12 cut = (f2 + f3) / 2.0
lp_s1_cut = (f1 + f2) / 2.0
hp_cut_60 = (f1 + f2) / 2.0
hp cut 80 = (f2 + f3) / 2.0
tasks = [
     ('butter', sig s123, 'S1+S2+S3', bp s2, 'band', 'S2 (bandpass)'),
                                             lp_s12_cut, 'low', 'S1+S2 (lowpass)'),
     ('butter', sig_s12, 'S1+S2', lp_s12_cut, 'low', 'S1+S2 (lowpass)'), ('cheby1', sig_s123, 'S1+S2+S3', (f1-2, f1+2), 'bandstop', 'Reject S1'),
    ('cheby1', sig_s123, 's1+s2+s3', bp_s3[0], 'high', 's3 (highpass)'),

('cheby1', sig_s123, 's1+s2+s3', bp_s3[0], 'high', 's3 (highpass)'),

('cheby2', sig_s12, 's1+s2', lp_s1_cut, 'low', 's1 (lowpass)'),

('cheby2', sig_s123, 's1+s2+s3', bp_s2s3, 'band', 's2+s3 (bandpass)'),

('ellip', sig_s123, 's1+s2+s3', hp_cut_60, 'high', 's2 (highpass)'),
     ('ellip', sig s123, 'S1+S2+S3', (f1-2, f1+2), 'bandstop', 'Reject S1'),
1
for filt, sig in, sig label, fcut, btype, title in tasks:
     apply and plot(filt, sig in, sig label, fcut, btype, title)
print ("Готово. Все фильтры построены.")
```

Вывод: в ходе выполнения лабораторной работы были получены навыки по фильтрации синусоидальных сигналов.