Parametric problems

MS2SC PROVIR http://savoir.ensam.eu/moodle/course/view.php?id=1874 http://savoir.ensam.eu/moodle/course/view.php?id=490

Geometry parametrization / morphing

Shape optimization / morphing

$$P(x) = \sum_{i} \{p_i(x)\}q_{imaster}$$

fe_shapeoptim BuildFromSel

- 1) fix bottom face, 2) prescribe edge motion
- 3) deform edges (straight)
- 4) deform faces (flat)
- 5) deform interior (good elements?)

Process simulation + field projection

fe_shapeoptim Interp

- [1] de Paula, Rejdych, Chancelier, Vermot, Balmes, « On the influence of geometry updating on modal correlation of brake components. », in Vibrations, Chocs & Bruit, 2012.
- [2] G. Vermot Des Roches, E. Balmes, et S. Nacivet, « Error localization and updating of junction properties for an engine cradle model », in ISMA, Leuven, Belgium, 2016, p. ID 372.
- [3] E. Blain, « Etudes expérimentales et numériques de la dispersion vibratoire d'assemblages soudés par points », Ph.D. thesis, Ecole Centrale de Paris, 2000.

Direct problems: material parameters

- · Uniform
- · Field
- Equivalent (at certain scales)

- · Geometry
- Material parameters
- Junction representation
- Equivalent parameters

 \cdot Basic parametrization tool : dependence on constitutive parameters \mathcal{C}_{ij}

$$K = \int_{\Omega} \{\epsilon\}^T [C_{ij}] \{\epsilon\} = \sum_{g} B^T [C_{ij}] B w_g = \sum_{ij} C_{ij} \left[\sum_{g} B^T [C_{ij}^u] B w_g \right] = \sum_{ij} C_{ij} [K_{ij}]$$

Constitutive law parameterization

- Example: bar stiffness $K = \frac{EA}{L}\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ proportional to E
- · Classical problem shell thickness parameterized with

$$\beta_1 = t, \beta_2 = t^3, \beta_3 = t^2$$

Current practice: weighted element sum

$$[M(p)] = \sum_{j=1}^{NE} \alpha_k(p) [M_k^e]$$
 $[K(p)] = \sum_{j=1}^{NE} \beta_k(p) [K_k^e]$

Element/model weights

$$K(p) = \sum_{e} \alpha_{e}(p)[K^{e}]$$

Weighted element matrices = standard

- Element-wise (topology optimization)
- Field/groupwise
 - parameter groups ...
 - solution of eigenvalue problem (polynomial chaos, Ghanem, Soize, ...)
 - clustering

SDT implementations: upcom / zCoef / stressCut

Element wise $K(p) = \sum_{e} \alpha_{k}^{e} [K^{e}]$

www.sdtools.com/help/upcom.html

$$\label{eq:mind} \mathbf{mind} = \begin{bmatrix} M_S & M_e & K_S & K_e & \alpha_m & \alpha_k \\ \vdots & & & & \\ elt & & & & \end{bmatrix}$$

Group wise $K(p) = \sum_{g} \alpha_{g} [K^{g}]$

www.sdtools.com/help/zCoef.html

```
zCoef={'Klab', 'mCoef', 'zCoef0', 'zCoefFcn';
         'M' 1 0 '-w.^2';
'Ke' 0 1 1+i*fe_def('DefEta',[]);
'Kv' 0 1 'par(1)'};
```

Disassembly

$$K(p) = [b][C_{constit}][c] = \begin{bmatrix} \ddots & & \\ & w_g J_g N_i^g & \\ & & \ddots \end{bmatrix}^T \begin{bmatrix} \ddots & & \\ & C_{ij}^g & \\ & & \ddots \end{bmatrix} \begin{bmatrix} \ddots & & \\ & N_i^g & \\ & & \ddots \end{bmatrix}_{(N_i)}$$

www.sdtools.com/help/corstress.html

$$\begin{bmatrix} \ddots & & & \\ & N_i^g & & \\ & & \ddots \end{bmatrix}_{(Ng \times Nstrain) \times N}$$

Parametrization of contact/sliding

Variable contact surface, contact, sliding

Chassis Brakes International Eurobrake 2014

Goth, ISMA 2016

Balmes, ISMA 2016

Sensitivity

- Static direct and adjunct (poly section 10.2)
- Frequency and shape sensitivity (poly section 10.3)
- Exact and Fox/Kapoor

Tricks with energy display

Views by

- Element energy
- Energy density
- Energy in group

Give different perspectives

Abaqus output variables : ELSE, ESEDEN

Mode crossing

• High sensitivity for close modes associated with mode crossing

Clustering examples

Helicopter frame

Bridge deck

Clustering of Parameter Sensitivities: Examples from a Helicopter Airframe Model Updating Exercise. Shahverdi, Mottershead & All

Etatistical Model Regard Removed and Experience Combined Exhances Regard and Exhances and Exhances and Exhances and Exhances and Exhances and Exhances are also as a second and Exhances are a second and Exhances and Exhances are a second and Exhances ar

Statistical Model-Based Damage Localization: a Combined Subspace-Based and Substructuring Approach Balmes, Basseville & All

Sensitivity / clustering

- Clustering techniques can be used to group elements with similar effects
- Key mathematical notion : cosine distance (subspace in MATLAB)

Link no.	linked objects		distance
	2	5	0.2
9	6	8	0.32
10	3	4	0.5
11	1	7	0.7
12	10	11	1.28
	9	12	1.5

Clustering of Parameter Sensitivities: Examples from a Helicopter Airframe Model Updating Exercise. Shahverdi, Mottershead & All