FÖRELÄSNING NR 18 : AREA AV BUKTIGA

YTOR (kursboken avsnitt 8.2)

– Exempel

- Parameterytor

– Normalvektor

- Utåtriktad normal

-Areaintegraler

_Area av ytor

Areaelement

_Sammanfattning

-Paramettrisering

-Sfäriska koordinater

-Exempel1

-Cylinder koordinater

-Exempel2

-Area av en funktionsyta

Exempel3

-Ovning1

Övning 2

Lösningsförslag till övningarna

8.15, 8.16, 8.18, 8.20

Exempel på areaintegraler

Arean av ett parameterytstycke 5: r=r(s,t) ges av areaintegralen

$$A = \iint_{S} dS$$
.

Ett cylindriskt skal S med laddningstätheten q(x,y,z) har den totala laddningen

$$Q = \iint_{S} q(x,y,z) dS.$$

Totalkraften på en platta S som utsätts för en utbredd last F(x,y) ges av

$$F = \iint_{S} F(x,y) \, dS,$$

Massan av ett skal S som har ytdensiteten g(x,y,z) ges av

$$M = \iint_{S} \rho(x,y,z) dS,$$

Parameterytor (Forel nr 5)

En yta i rummet där x-, y- och z-koordinaterna styrs av två parametrar s och t,

$$\vec{r}: \begin{cases}
x = x(s,t) \\
y = y(s,t) & \text{alternativ} \quad \vec{r}(s,t) = (x(s,t), y(s,t), z(s,t)), \\
z = z(s,t)
\end{cases}$$

kallas för en parameteryta.

Parameterparet (s,t) = (1,1) ger punkten $\overline{r}(1,1)$ = (x(1,1), y(1,1), z(1,1)) pà parameterytan.

Når parametern s=1 flyttas till s=2 rör sig punkten på ytan i en riktning till punkten (x(2,1), y(2,1), z(2,1)).

Om istället parametern t=1
flyttas till t=2 rör sig
punkten i en annan riktning till (x11,2), y11,2), z11,2)).

Låter vi (s,t) variera över parameterområdet kommer 7(s,t) = (x(s,t), y(s,t), z(s,t)) genomlöpa ytan.

Normalvektor (Förel nr 5)

Tangent planet till en parameteryta

$$F(s,t) = (\alpha(s,t), y|s,t), z(s,t))$$

i punkten F(50,t0) har en normalvektor som år

parallell med

$$\overline{n} = \frac{\partial \overline{r}}{\partial s} (s_o, t_o) \times \frac{\partial \overline{r}}{\partial t} (s_o, t_o).$$

Fixera t=to och låt s variera. Då fås en parameterkurva i ytan, med parameters, och som har riktningsvektorn

i punkten F(so,to).

Fixera s=so och låt t variera. Då fås en parameterkurva i ytan, med parametert, och som har riktningsvektorn

i punkten říso,to).

. Vektor<u>ern</u>a

$$\frac{\partial \vec{r}}{\partial s}(s_{\sigma_1}k_{\sigma})$$
 och $\frac{\partial \vec{r}}{\partial t}(s_{\sigma_1}k_{\sigma})$

är <u>paralle</u>lla med <u>ytan</u> i <u>punkten</u> Fls., to) och <u>därför</u> <u>är deras kryssprodukt</u>

$$\vec{n} = \frac{\partial \vec{r}}{\partial s} (s_0, t_0) \times \frac{\partial \vec{r}}{\partial t} (s_0, t_0)$$

vinkelirät mot ytan.

Utåtriktad normal (Förelnr5)

Orienteringen av en yta brukar indikeras genom att ange den utåtriktade normalen.

1) Vi har ett orienterat ytstycke S.

2) Orienteringen indikeras med den utåtpekande normalen.

(3) Om ytan skrivs i
ekvationsform g(x,y,z)=0,
då år n=Vg en utåtriktad normal om g
växer i riktning mot
utsidan.

(4) Dm ytan skrivs i parameterform $\bar{r} = \bar{r}(s,t)$, då år $\bar{n} = \frac{\partial \bar{r}}{\partial s} \times \frac{\partial \bar{r}}{\partial t}$

en utatriktad normal genom ett låmpligt val av parametrisering.

Areaintegraler

Area av ytor

En kontinuerligt deriverbar parameteryta S

 $\bar{r}(s,t) = (x(s,t), y(s,t), z(s,t)), dar(s,t) \in D,$

har arean

$$\iint_{S} dS = A = \iint_{D} \left| \frac{\partial \bar{r}}{\partial s} \times \frac{\partial \bar{r}}{\partial t} \right| ds dt.$$

1) Vi ska beståmma arean av ytan $r = \overline{r}(s,t), (s,t) \in D,$ där D: a $\leq s \leq b, c \leq t \leq d$.

2) Dela in parameterområdet D

i delrektanglar $a = s_0 < s_1 < s_2 < \cdots < s_m = b,$ $c = t_0 < t_1 < t_2 < \cdots < t_n = d,$

O Detta ger en indelning av ytan i råta planstycken med hörnpunkter i r_{id} = (x(si,ti), y(si,ti), z(si,ti)).

4 Arean av ett planstycke år $\Delta A_{ij} = |\Delta \overline{r}_{ij}^{(5)} \times \Delta \overline{r}_{ij}^{(t)}|.$

(5) Ytans totala area ar approximative $A \approx \sum_{\substack{0 \le i \le m \\ 0 \le j \le n}} \left| \Delta \vec{r}_{ij}^{(s)} \times \Delta \vec{r}_{ij}^{(t)} \right|.$

$$A = \lim_{\substack{m,n \to \infty \\ \text{finhet} \to 0}} \sum_{\substack{0 \le i < m \\ \text{of } j < n}} \left| \Delta \Gamma_{ij}^{(s)} \times \Delta \Gamma_{ij}^{(t)} \right|$$

$$= \lim_{\substack{m,n \to \infty \\ \text{finhet} \to 0}} \sum_{\substack{0 \le i < m \\ \text{of } j < n}} \left| \frac{\Delta \Gamma_{ij}^{(s)}}{\Delta s_i} \times \frac{\Delta \Gamma_{ij}^{(t)}}{\Delta t_j} \right| \Delta s_i \Delta t_j$$

$$= \iint_{D} \left| \frac{\partial \Gamma}{\partial s} \times \frac{\partial \Gamma}{\partial t} \right| ds dt,$$

6 Summaformeln för arean är en Riemannsumma som korvergerar mot en integral.

Areaelementet

Uttrycket

$$dS = \left| \frac{\partial \bar{r}}{\partial s} \times \frac{\partial \bar{r}}{\partial t} \right| ds dt = |\bar{n}| ds dt$$

kallas för areaelementet.

Sammanfattning: Arean aven buktig

yta S som ges au $\vec{r} = \vec{r}(S,t) = (x(S,t), y(S,t), z(S,t))$ $\vec{cat}(S,t) \in D$ Arean = $\int dS = \int |\frac{\partial \vec{r}}{\partial S} \times \frac{\partial \vec{r}}{\partial t}| dS dt$ $\vec{dar} dS = |\frac{\partial \vec{r}}{\partial S} \times \frac{\partial \vec{r}}{\partial t}| dS dt$ $\vec{obs!!} \vec{n} = \frac{\partial \vec{r}}{\partial S} \times \frac{\partial \vec{r}}{\partial t}| dS dt$

parametrisering med stariska
koordinatet
Om Särensfäreller endel
ar en star sa and
X = Rsing. Cos.4
F: Jy = R Sine Sin 4
2 = R 9080
där radien B är fixt.
F(x,y,z) = F(6,4) = (Rsine cose, Rsinesine Rose
D: {(0, 4):060 < 0 < 0 < 0 < 0 < 0 < 0 < 21
2E R (cose sesse, cosesin4, sine)
2F = R (-sin & sin & sin & cose, -0.)
ex execution
20050 COSE COSESINE SIND COSY O
30 30 -> 100 ->
02 / 12 20 casta sin2 osiusa cos ani ca 24
= K - (SIN-0 COST, 301 B3N + , COS & SINB(OS'Q +
$= R^{2} \left(\sin^{2}\theta \cos \varphi, \sin^{2}\theta \sin \varphi, \cos\theta \sin\theta \cos^{7}\varphi + \cos\theta \sin\theta \sin^{2}\varphi \right)$
35 74 - R2 (sin40 cos24+ sin40 sin26 + (co20 2140 cos26+ (co20)402)1426
26 Je
$= R^{2}\sqrt{\left(\sin^{4}\theta + \cos^{2}\theta\sin^{2}\theta\right)} = \left\{\text{trig. ellan igen}\right\}$
$= R^2 \sqrt{\sin^2 \theta} = R^2 \sin \theta > 0$
EK-Vsing = Ksing > 0
Arean au S: SSIDE XDE dody = SR2 sine dody
$\mathcal{D}(\theta, \theta)$ $\mathcal{D}(\theta, \theta)$

Exempelt Ett elektriskt laddet skal Shar Carmen au halvsfären x²+y²+z²=1, y > o och har læddningstätheten
q(x,y,z) = y (laddningsenhet/areaenhet) Vx2+y2 (c/m2) Berähna Skalets totala laddning
Losningsfürslag: (gors på tavlan)
Vi skall beräkna 9 = Sqcry, Dels

a

porametrisering med cylinder koordinater X = R cos 0 T: { y = R sino _ R fixt}
$F = (x, y, z) = F(\theta, z) = (R\cos\theta, R\sin\theta, Z)$
D={(0,2):04940402621T, Z,6263,}
DF XDF (: RSIND, RCOSO, 6) X
$(0,0,1) = (R\cos\theta, R\sin\theta, 0)$
$ \overline{\Pi} = \overline{\partial F} \times \overline{\partial F} = \sqrt{R^2(\cos^2\theta + \sin^2\theta)} = R > 0$
Arean = $\iint ds = \iint R de dz$. $D(6,2)$
Exempels. Beräkna arean av konen
$z = a \sqrt{2^2 + y^2}, 0 \in z \in b$
Losnings Forslag: Gars på Tavlan
$\frac{\text{svar}_{1} \text{carean} - 11}{5^{2} + 5^{2}}$
obs: om a=b=d arean = TI Ven
. J. Later to Later 4- 1- 11 - 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-

·-	Arean av en funktions graf
	Funktions yta Z = f(x,y), (x,y) eD
	Kan parametriseras via
	$F \cdot \begin{cases} x = x \\ y = y \end{cases} (x, y) \in D$ $Z = f(x, y)$
	$E = \{x, y\} = \{x\} = \{x\} = \{x, y\} = \{x\} = $
<u> </u>	$\frac{\partial E}{\partial x} = \left(1, 0, \frac{\partial E}{\partial x}\right), \frac{\partial F}{\partial y} = \left(0, 1, \frac{\partial F}{\partial y}\right)$
h=	2x 2y (3x, 2y, 1)
	$dvs = grad (z - f(x,y) - (-\partial f, -\partial f, 1)$
	$ \overline{h} - \overline{\partial F} \times \overline{\partial F} = \sqrt{(\overline{\partial F})^2 + (\overline{\partial F})^2 + 1}$
**************************************	$\int \int \int ds = \int \int \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} +$
E	Xempel3: Berähma arean au hyperboliska paraboloiden Z= xy da D={(xy): x²+y² < 1}
	svar: arean $=$ $\frac{21}{3}\left(2\sqrt{27}-1\right)$

	övning1: Beräkna arean av den buktiga ytan Z = x²+y² som ligger innauför Cylindern x²+y²=1
	utan z - x2+42 som ligger innanför
	Cylindern x2+y2=1
	Svar: Arean - 1 (5 V57-1) are
	övnings: Beräkna arean av den del au planet.
	2x + 2y + Z = 0
	2x+2y+2=0 Som ligger innanför paraboloiden Z = x2+y2
	2 2 7 4 9 2
	Svar: Arean - 127 a.e
	SVOV.
<u>-</u>	
	Michigan Committee Committ

Lösnings Forslag W Buningarna 8.15, 8.16, 8.18, 8.20

- 8.15 Cylindern $\alpha^2 + y^2 = 4$, $0 \le z \le 3$, kan parametriseras som $\overline{r} = (2\cos s, 2\sin s, t), \quad 0 \le s \le 2\pi, \quad 0 \le t \le 3.$
 - a) Rita en figur och markera betydelsen av s och t.
 - b) Beräkna med hjälp av parametriseringen en normalvektor till cylinderytan i punkten (1, v3, 2). Rita in normalvektorn i figuren och kontrollera svarets rimlighet.
 - c) Beräkna arean av cylindern med hjälp av parameterframställningen.
 - d) Använd a och z som parametrar för att beskriva den halva av cylindern där y>0. Beräkna en normalvektor i punkten (1, 13,2) med hjälp av denna parametrisering.
 - a) Från ekvationen $x^2 + y^2 = 4$ ser vi att cylindern har z-axeln som symmetriaxel och radie $\sqrt{4} = 2$. I z-led är cylindern begränsad av z = 0 och z = 3.

8,15 forts. I parametriseringen anger t punkters z-koordinat och parametern s är vinkeln som används i framställningen av x- och y-koordinaterna i polära koordinater, dvs s är den moturs vinkel som linjestycket från origo till (x,y) bildar med den positiva x-axeln.

b) Om vi betraktar punkten (1,√3,2) så svarar den punkten mot följande parametervärden

$$\begin{cases} 2\cos s = 1, \\ 2\sin s = \sqrt{3}, \\ t = 2, \end{cases} \Leftrightarrow \begin{cases} s = \pi/3, \\ t = 2. \end{cases}$$

Låter vi t=2 vara fix och s variera i parameterområdet så får vi en kurva $\overline{r}=\overline{r}(s,2)$ på cylinderytan och den kurvan har i $s=\pi/3$ en riktningsvektor som ges av

$$\frac{\partial \overline{\Gamma}}{\partial s}(\pi/3,2) = \frac{\partial}{\partial s} \overline{\Gamma}(s,2) \Big|_{s=\pi/3}$$

$$= (-2\sin s, 2\cos s, 0) \Big|_{s=\pi/3}$$

$$= (-\sqrt{3},1,0).$$

8.15 forts.2

På samma sått, låter vi $s=\pi/3$ vara fix och t variera så ger det en kurva $\bar{r}=\bar{r}(\pi/3,t)$ på ytan som i t=2 har riktningsvektorn

$$\frac{\partial \overline{r}}{\partial t} (r/3,2) = \frac{\partial}{\partial t} \overline{r} (r/3,t) \Big|_{t=2}$$
$$= (0,0,1).$$

Vi har alltså två kurvor på cylinderytan som går genom punkten $(1,\sqrt{3},2)$ och har där riktningsvektorer 37/35 ($\pi/3,2$) resp. 37/35 ($\pi/3,2$) som båda således ligger i tangentplanet till ytan. Tar vi

därför kryssprodukten av riktningsvektorerna får vi en normalvektor till ytan i punkten,

$$\vec{n} = \frac{\partial \vec{r}}{\partial s} (\pi/3, 2) \times \frac{\partial \vec{r}}{\partial t} (\pi/3, 2)$$

$$= (-\sqrt{3}, 1, 0) \times (0, 0, 1)$$

$$= (1, \sqrt{3}, 0).$$

C) För att bestämma cylinderns area kan vi dela upp parameterområdet i små rektanglar med kanter As och At i s- resp. t-riktningen och betrakta hur varje sådan liten rektangel avbildas med parametriseringen.

8,15 forts. 4 Eftersom rektanglarna är små så kommer en sådar rektangel med hörnpunkt p med god approximation avbildas på ett parallellogram med kanter (∂̄̄/∂̄s)(ρ)Δs och (∂̄̄/∂̄t)(ρ)Δt.

Arean av parallellogrammet år

$$\left| \frac{\partial \bar{r}}{\partial s} \Delta_5 \times \frac{\partial \bar{r}}{\partial t} \Delta t \right| = \left| \frac{\partial \bar{r}}{\partial s} \times \frac{\partial \bar{r}}{\partial t} \right| \Delta_5 \Delta_t$$

och cylinderns area får vi genom att summera över alla rektanglar och gå i gränsen där rektangelindelningens finhet går mot 0,

$$\sum_{\substack{\text{rektanglar}\\\text{osts3}}} \left| \frac{\partial \bar{r}}{\partial s} \times \frac{\partial \bar{r}}{\partial t} \right| \Delta s \Delta t \rightarrow \iint_{\substack{0 \le s \le 2\pi\\0 \le t \le 3}} \left| \frac{\partial \bar{r}}{\partial s} \times \frac{\partial \bar{r}}{\partial t} \right| ds dt.$$

Eftersom

$$\frac{\partial \bar{r}}{\partial s} = \{-2\sin s, 2\cos s, 0\}, \\
\frac{\partial \bar{r}}{\partial t} = \{0, 0, 1\}, \\
\frac{\partial \bar{r}}{\partial s} \times \frac{\partial \bar{r}}{\partial t} = \{-2\sin s, 2\cos s, 0\} \times (0, 0, 1) = \{2\cos s, 2\sin s, 0\}, \\
\left|\frac{\partial \bar{r}}{\partial s} \times \frac{\partial \bar{r}}{\partial t}\right| = \sqrt{2^2\cos^2 s + 2^2\sin^2 s + 0^2} = \sqrt{4} = 2,$$

Area =
$$\iint_{\substack{0 \le s < 2\pi \\ 0 \le t \le 3}} 2 \, ds \, dt$$

$$= 2 \int_{0}^{2\pi} ds \int_{0}^{3} dt$$

$$= 2 \cdot 2\pi \cdot 3$$

$$= 12\pi.$$

d) Från cylinderns ekvation har vi att

$$x^2 + y^2 = 4$$
 \Leftrightarrow $y = \pm \sqrt{4 - x^2}$

och det betyder att den halva av cylindern som har y>0 ges av $y = \sqrt{4-x^2}$ och att den därför kan parametriseras รอกา

$$\tilde{r}(x,z) = (x,\sqrt{4-x^2},z)$$

dår -2≤x≤2 och 0≤z≤3.

Ytan har i punkten (1, v3, 2) normalvektorn

$$\vec{n} = \frac{3\vec{r}}{3x}(1,2) \times \frac{3\vec{r}}{3z}(1,2)$$

och eftersom

$$\frac{\partial \overline{r}}{\partial x}(1,2) = \left(1, \frac{-2x}{2\sqrt{4-x^2}}, 0\right)\Big|_{\substack{x=1\\2=2}} = \left(1, -\frac{1}{\sqrt{3}}, 0\right),$$

$$\frac{\partial r}{\partial z}(1,2) = (0,0,1)$$

8.15 forts, 6 så år

$$\bar{n} = (1, -\frac{1}{\sqrt{3}}, 0) \times (0, 0, 1) = (-\frac{1}{\sqrt{3}}, -1, 0)$$

som är parallell med normalvektorn som togs fram i deluppgift b.

8.16

Låt Y vara den sfäriska kalotten

$$x^2 + y^2 + z^2 = 4$$
, $z \ge 1$.

- a) Ge en parameterframställning av Y.
- b) Bestäm en normalvektor till Y.
- c) Beräkna arean av Y.
- d) Beråkna arean av $x^2 + y^2 + z^2 = R^2$, z > h där $0 \le h \le R$.
- a) Eftersom kalollen är en del av en sfär lämpar det sig all använda rymdpolära koordinater

$$x = r \sin \theta \cos \varphi$$

 $y = r \sin \theta \sin \varphi$
 $z = r \cos \theta$

Då beskrivs sfären av

$$r = \sqrt{4} = 2$$
, $0 \le \theta \le \pi$, $0 \le \Psi \le 2\pi$

och villkoret z > 1 avgränsar parameterområdet till

En parameterframställning av kalotten är alltså

$$\vec{r}(\theta, \Psi) = (2 \sin \theta \cos \Psi, 2 \sin \theta \sin \Psi, 2 \cos \theta)$$

dår 0 € 0 € 11/3 och 0 € 4 < 210.

b) På en origocentrerad sfär är ortsvektorn till en punkt på ytan också normalvektor till ytan i punkten, dvs för en punkt (x,y,z) på kalotten är $\bar{n} = (x,y,z)$ en normalvektor.

8,16 forts. Det går också att komma fram till en normalvektor genom att använda följande formel

$$\overline{n} = \frac{\partial \overline{r}}{\partial \theta} \times \frac{\partial \overline{r}}{\partial \phi}$$

= $(2\cos\theta\cos\varphi, 2\cos\theta\sin\varphi, -2\sin\theta) \times (-2\sin\theta\sin\varphi, 2\sin\theta\cos\varphi, 0)$

$$= \begin{vmatrix} \bar{e}_x & \bar{e}_y & \bar{e}_z \\ 2\cos\theta\cos\Psi & 2\cos\theta\sin\Psi & -2\sin\theta \\ -2\sin\theta\sin\Psi & 2\sin\theta\cos\Psi & 0 \end{vmatrix}$$

- = $(0-(-2)\sin\theta \cdot 2\sin\theta\cos\varphi, -(0-(-2)\sin\theta \cdot (-2)\sin\theta\sin\varphi),$ $2\cos\theta\cos\varphi \cdot 2\sin\theta\cos\varphi - 2\cos\theta\sin\varphi \cdot (-2)\sin\theta\sin\varphi)$
- = (4 sin 20 cos 4, 4 sin 20 sin 4, 4 cos 0 sin 0 (cos 4+ sin 4))
- = $4 \sin \theta$ ($\sin \theta \cos \Psi$, $\sin \theta \sin \Psi$, $\cos \theta$).
- c) Om vi använder parametriseringen från a- och buppgiften så ges ytans areaelement av

$$dS = \left| \frac{\partial \tilde{r}}{\partial \theta} \times \frac{\partial \tilde{r}}{\partial \tilde{r}} \right| d\theta d\Phi$$

$$= 4 \left| \sin \theta \right| \sqrt{\sin^2 \theta \cos^2 \varphi + \sin^2 \theta \sin^2 \varphi + \cos^2 \theta} d\theta d\Phi$$

$$= 4 \left| \sin \theta \right| \sqrt{\sin^2 \theta \left(\cos^2 \varphi + \sin^2 \varphi \right) + \cos^2 \theta} d\theta d\Phi$$

$$= 4 \left| \sin \theta \right| \sqrt{\sin^2 \theta + \cos^2 \theta} d\theta d\Phi$$

$$= 4 \left| \sin \theta \right| d\theta d\Phi$$

och kalottens area får vi genom att integrera areaelementet över ytan,

Area =
$$\iint_{\gamma} dS$$

= $\iint_{0 \le \theta \le \pi/3} 4 |\sin \theta| d\theta d\varphi$
= $\int_{0 \le \theta \le \pi/3} 4 |\sin \theta| d\theta d\varphi$

$$= \{|\sin\theta| = \sin\theta \text{ for } 0 \le \theta \le \pi \}$$

$$= 4 \int_0^{2\pi} d\phi \int_0^{\pi/3} \sin\theta d\theta$$

$$= 4 \left[\phi\right]_{\phi=0}^{\phi=2\pi} \left[-\cos\theta\right]_{\theta=0}^{\theta=\pi/3}$$

$$= 4 \cdot (2\pi - 0) \cdot \left(-\frac{1}{2} - (-1)\right)$$

$$= 4\pi.$$

d) I denna mer allmånna situation kan kalotten parametriseras som

$$\bar{r}(\theta, \Psi) = (R\sin\theta\cos\Psi, R\sin\theta\sin\Psi, R\cos\theta)$$

dår villkoret z>h inskrånker 0 till

$$z = R\cos\theta \gg h \iff \cos\theta \gg \frac{h}{R}$$
 $\Leftrightarrow 0 \leqslant \theta \leqslant \arccos\frac{h}{R}$,

dvs parameterområdet år

$$0 \le \theta \le \arccos \frac{h}{R}$$
, $0 \le \Psi \le 2\pi$.

Samma uträkning som i b-uppgiften ger att

$$\frac{\partial \bar{r}}{\partial \theta} \times \frac{\partial \bar{r}}{\partial \psi} = R^2 \sin \theta \left(\sin \theta \cos \psi, \sin \theta \sin \psi, \cos \theta \right)$$

och areaelementet blir

$$dS = \left| \frac{\partial \bar{r}}{\partial \theta} \times \frac{\partial \bar{r}}{\partial \Psi} \right| d\theta d\Psi = R^2 |\sin \theta| d\theta d\Psi.$$

Arean av området blir

Area =
$$\iint_{0 \le \theta \le \arccos(h/R)} R^{2} |\sin \theta| d\theta d\Psi$$

$$0 \le \theta \le \arccos(h/R)$$

$$0 \le \Psi < 2\pi$$

$$= \{ |\sin \theta| = \sin \theta | n \text{ in } 0 \le \theta \le \pi \}$$

$$= R^{2} \int_{0}^{2\pi} d\Psi \int_{0}^{\arccos(h/R)} \sin \theta d\theta$$

8,16 forts.3

$$= R^{2} \left[\Psi \right]_{\Psi=0}^{\Psi=2\pi} \left[-\cos \theta \right]_{\theta=0}^{\theta=\arccos \frac{h}{R}}$$

$$= R^{2} \cdot 2\pi \cdot \left(1 - \cos \arccos \frac{h}{R} \right)$$

$$= 2\pi R^{2} \left(1 - \frac{h}{R} \right)$$

$$= 2\pi R \left(R - h \right).$$

l ett cylindriskt plåtrör med radien 4 cm 'stansas' ett 'cirkulärt' hål, enligt figur. Hålet har också radien 4 cm.

Beräkna arean av den bortstansade plåtbiten.

Vi inför ett kartesiskt koordinatsystem med y-axeln längs med rörets symmetriaxel och z-axeln uppät.

I detta koordinatsystem har röret ekvationen

$$\chi^2 + \chi^2 = 4^2$$
 \Leftrightarrow $\chi = \pm \sqrt{16 - \chi^2}$

och därför kan övre halvan av röret (där $z \gg 0$) skrivas som en funktionsyta $z = \sqrt{16-x^2}$.

8.18 forts. Når vi stansar ur ett cirkulärt hål med radie 4 så innebår det att vi tar bort den del av funktionsytan som ryms inuti cirkelskivan $x^2 + y^2 \le 4^2$ (vi har då valt z-axeln som hålets mittaxel).

Areaelementet av en funktionsyta z=flx,y) ges av

$$dS = \sqrt{1 + (f_{x}')^{2} + (f_{y}')^{2}} dx dy$$

och i detta fall är

$$f_{\alpha}' = \frac{\theta}{\theta x} \sqrt{16 - x^2} = \frac{-2x}{2\sqrt{16 - x^2}} = \frac{-\alpha}{\sqrt{16 - x^2}}$$

$$f_{\beta}' = \frac{\theta}{\theta y} \sqrt{16 - x^2} = 0$$

varför areaelementet är

$$dS = \sqrt{1 + \frac{x^2}{16 - x^2} + 0^2} dxdy = \frac{4}{\sqrt{16 - x^2}} dxdy.$$

Integrerar vi areaelementet över cirkelskivan $x^2 + y^2 \le 4^2$ får vi arean av den bortstansade biten

Area =
$$\iint_{x^2+y^2 \le 4^2} \frac{4}{\sqrt{16-x^2}} dx dy.$$
= $4 \int_{-4}^{4} \frac{dx}{\sqrt{16-x^2}} \int_{-\sqrt{16-x^2}}^{\sqrt{16-x^2}} dy$
= $4 \int_{-4}^{4} \frac{dx}{\sqrt{16-x^2}} \cdot 2\sqrt{16-x^2}$
= $8 \int_{-4}^{4} dx$
= 64 .

Ytan

$$Z = \sqrt{1 - x^2 - y^2}$$
, $x \ge 0$, $y \ge 0$, $x^2 + y^2 \le 1$

har en massbeläggning (massa per areaenhet) som är proportionell mot höjden över xy-planet och mot avståndet till z-axeln. Beräkna ytans massa.

Vi kan beskriva ytan som en funktionsyta $z = z(x,y) = \sqrt{1-x^2-y^2}$ över den del av enhetscirkelskivan som finns i första kvadranten.

Meningen "massbeläggningen (massa per areaenhet) som är proportionell mot höjden över xy-planet och mot avståndet till z-axeln" översätter vi till

$$\frac{dm}{ds} = kz\sqrt{x^2+y^2}$$

dår

- · dm/ds är massbeläggningen,
- · k är proportionalitetskonstanten,
- · z är höjden över xy-planet,
- · Vx2+y2 är avståndet till z-axeln.

8,20 forts. Eftersom ytan är en funktionsyta har den areaelementet

$$dS = \sqrt{1 + (z_x')^2 + (z_y')^2} dx dy$$

$$= \sqrt{1 + (\frac{-x}{\sqrt{1 - x^2 - y^2}})^2 + (\frac{-y}{\sqrt{1 - x^2 - y^2}})^2} dx dy$$

$$= \sqrt{1 - \frac{x^2}{1 - x^2 - y^2} - \frac{y^2}{1 - x^2 - y^2}} dx dy$$

$$= \frac{dx dy}{\sqrt{1 - x^2 - y^2}},$$

Därmed ges masselementet av

$$dm = kz \sqrt{x^2 + y^2} dS$$

$$= k \sqrt{1 - x^2 - y^2} \sqrt{x^2 + y^2} \frac{dx dy}{\sqrt{1 - x^2 - y^2}}$$

$$= k \sqrt{x^2 + y^2} dx dy$$

och ytans hela massa får vi genom att integrera upp masselementet över ytan,

Massa =
$$\iint_{\text{Ytan}} dm = \iint_{\substack{\alpha^2 + y^2 \le 1 \\ x, y \geqslant 0}} k \sqrt{\alpha^2 + y^2} dx dy,$$

Denna dubbelintegral beråknar vi enklast genom att gå över till polära koordinater. Då beskrivs integrationsområdet av

$$0 \leqslant r \leqslant 1$$
, $0 \leqslant \theta \leqslant \pi/2$

och vi får att

Massa =
$$k \int_{0}^{\pi/2} d\theta \int_{0}^{1} r \cdot r dr = k \left[\theta\right]_{\theta=0}^{\theta=\pi/2} \left[\frac{1}{3}r^{3}\right]_{r=0}^{r=1} = k \cdot \frac{\pi}{2} \cdot \frac{1}{3} = k \cdot \frac{\pi}{6}$$
.