Laboratorium 02

SAS OnDemand:

1. CHARAKTERYSTYKA TABELI

Ćwiczenie: znaleźć nazwy pól w tabeli SASHELP.FISH

Panel po lewej → Biblioteki → (rozwijać) Moje biblioteki → (rozwijać) SASHELP → (rozwijać) FISH

użyć polecenia

```
proc sql;
describe table sashelp.fish;
run;

NOTE: SQL table SASHELP.FISH was created like:

create table SASHELP.FISH( label='Measurements of 159 Fish Caught in Lake Laengelmavesi,
(
Species char(9),
Weight num,
Length1 num,
Length2 num,
Length3 num,
Height num,
Width num
);
```

2. OPERACJA ZAWĘŻANIA (SELECT)

```
Ćwiczenie: wyświetlić tabelę FISH z biblioteki SASHELP (10 wierszy) proc sql outobs=10; select * from sashelp.fish; run;
```

Species	Weight	Length1	Length2	Length3	Height	Width
Bream	242	23.2	25.4	30	11.52	4.02
Bream	290	24	26.3	31.2	12.48	4.3056
Bream	340	23.9	26.5	31.1	12.3778	4.6961
Bream	363	26.3	29	33.5	12.73	4.4555
Bream	430	26.5	29	34	12.444	5.134
Bream	450	26.8	29.7	34.7	13.6024	4.9274
Bream	500	26.8	29.7	34.5	14.1795	5.2785
Bream	390	27.6	30	35	12.67	4.69
Bream	450	27.6	30	35.1	14.0049	4.8438
Bream	500	28.5	30.7	36.2	14.2266	4.9594

Ćwiczenie: wyświetlić kolumny Weight i Height (z nazwami waga i wysokość) dla tych ryb z tabeli FISH, dla których width (szerokość) jest większa lub równa 7, posortowane wg wysokości. proc sql;

select Weight "Waga", Height "Wysokość" from sashelp.fish where Width>=7 order by Height;

run;

Waga	Wysokość
1650	10.812
900	11.1366
840	11.4884
900	11.73
850	11.9286
1000	11.9328
1015	12.3808
820	12.4313
1000	12.4888
1100	12.5125
1000	12.604

Ćwiczenie: wyświetlić ryby z tabeli FISH z wagą od 500 do 600, posortowane wg wagi. proc sql;
select * from sashelp.fish
where weight between 500 and 600 order by weight;

run;

Species	Weight	Length1	Length2	Length3	Height	Width
Bream	500	28.7	31	36.2	14.3714	4.8146
Bream	500	28.5	30.7	36.2	14.2266	4.9594
Bream	500	26.8	29.7	34.5	14.1795	5.2785
Pike	500	42	45	48	6.96	4.896
Bream	500	29.1	31.5	36.4	13.7592	4.368
Pike	510	40	42.5	45.5	6.825	4.459
Perch	514	30.5	32.8	34	10.03	6.018
Pike	540	40.1	43	45.8	7.786	5.1296
Whitefish	540	28.5	31	34	10.744	6.562
Perch	556	32	34.5	36.5	10.2565	6.3875
Pike	567	43.2	46	48.7	7.792	4.87
Bream	575	31.3	34	39.5	15.1285	5.5695
Bream	600	29.4	32	37.2	15.438	5.58
Bream	600	29.4	32	37.2	14.9544	5.1708

Ćwiczenie: wyświetlić ryby z tabeli FISH, które są z gatunku Whitefish lub Smelt oraz o wadze powyżej 500.

```
proc sql;
      select * from sashelp.fish
      where (species = 'Whitefish'
      or species = 'Smelt')
      and weight>500;
run;
```

```
albo (tylko SAS)
       proc sql;
               select * from sashelp.fish
               where (species = 'Whitefish'
               species = 'Smelt')
               & weight>500;
       run;
albo
       proc sql;
               select * from sashelp.fish
               where species in ('Whitefish','Smelt')
               and weight>500;
       run;
albo (tylko SAS)
       proc sql;
               select * from sashelp.fish
               where species in ('Whitefish','Smelt')
               & weight>500;
       run;
```

Species	Weight	Length1	Length2	Length3	Height	Width
Whitefish	540	28.5	31	34	10.744	6.562
Whitefish	800	33.7	36.4	39.6	11.7612	6.5736
Whitefish	1000	37.3	40	43.5	12.354	6.525

Ćwiczenie: wyświetlić rekordy z tabeli FISH, dla których waga jest nieokreślona.

proc sql;

select * from sashelp.fish where weight is null;

run;

Species	Weight	Length1	Length2	Length3	Height	Width
Bream		29.5	32	37.3	13.9129	5.0728

Ćwiczenie: poprzednie wyniki zaokrąglić do dwóch miejsc po przecinku.

proc sql;

run;

select species, weight,
round(length1,.01) "lenght1",
round(length2,.01) "length2",
round(length3,.01) "length2",
round(height,.01) "height",
round(width,.01)
from sashelp.fish where weight is null;

Uwaga: zwróćmy uwagę na nazwy kolumn.

Species	Weight	lenght1	length2	length2	height	
Bream		29.5	32	37.3	13.91	5.07

Ćwiczenie: wyświetlić rekordy z tabeli FISH (gatunek, waga, suma długości), dla których suma trzech długości jest mniejsza niż 33.

```
proc sql;
     select species "gatunek", weight "waga", length1+length2+length3 "suma długości"
     from sashelp.fish
     where length1+length2+length3 <33;
run;</pre>
```

gatunek	waga	suma długości
Perch	5.9	24.7
Smelt	6.7	29.9
Smelt	7.5	32.1
Smelt	7	32.3

Ćwiczenie: wyświetlić poprzednie wyniki z zaokrąglonymi liczbami: wagi do pełnych liczb, sumy długości do dziesiątek.

gatunek	waga	suma długości
Perch	6	20
Smelt	7	30
Smelt	8	30
Smelt	7	30

Ćwiczenie: Sprawdzić w jakiej kolejności sortowane są znaki w ciągach znaków. proc sql;

```
create table ciagi
          (ciag char(25));
        insert into ciagi values ('A');
        insert into ciagi values ('Aa');
        insert into ciagi values ('a');
        insert into ciagi values ('aa');
        insert into ciagi values ('abc');
        insert into ciagi values ('AaA');
        insert into ciagi values ('b');
        insert into ciagi values ('Z');
        insert into ciagi values ('B');
        insert into ciagi values ('Bb');
        insert into ciagi values ('bB');
select * from ciagi order by ciag;
run;
select * from ciagi
        where ciag between 'A' and 'B'
        or ciag between 'a' and 'b';
select * from ciagi
        where ciag like'A%'
        or ciag like'a%';
```

quit;

3. TWORZENIE TABELI, DODAWANIE REKORDÓW

Ćwiczenie: stworzyć tabelę studenci z kolumnami nr_albumu (liczba, 6 cyfr), imię (tekst, 20 znaków), nazwisko (tekst, 30 znaków), ocena (liczba, 1 cyfra i ułamek) oraz data (domyślnie systemowa) oraz uzupełnić ją o 3 unikatowe rekordy. proc sql;

```
create table Studenci (
              Nr albumu NUM(6),
              Imie VARCHAR(20),
              Nazwisko VARCHAR(30),
              Ocena NUM(2,1),
              Data DATE
       );
run;
proc sql;
       insert into work.Studenci
              values (123001, 'Adam', 'Sawicki', 3.5, '04May2007'd)
              values (123002, 'Mikołaj', 'Lewandowski', 4, '03Jun2008'd)
              values (123003, 'Aleksandra', 'Kaźmierczak', 4.5, '02May2009'd);
run;
proc sql;
       select * from Studenci;
```

Nr_albumu	Imie	Nazwisko	Ocena	Data
123001	Adam	Sawicki	3.5	04MAY07
123002	Mikołaj	Lewandowski	4	03JUN08
123003	Aleksandra	Kaźmierczak	4.5	02MAY09

run;

Ćwiczenie: wyświetlić te rekordy z tabeli Studenci, dla których dokonano wpisu w maju. proc sql;

select * from Studenci where month(data)=5; run;

Nr_albumu	Imie	Nazwisko	Ocena	Data
123001	Adam	Sawicki	3.5	04MAY07
123003	Aleksandra	Kaźmierczak	4.5	02MAY09

Ćwiczenie: utworzyć tabelę RYBKI, która zawiera te rekordy z tabeli FISH, dla których waga jest nieokreślona. Wyświetlić tabelę.

```
proc sql;
      create table RYBKI as
      select * from sashelp.fish where weight is null;
      select * from RYBKI;
run;
```

Species	Weight	Length1	Length2	Length3	Height	Width
Bream		29.5	32	37.3	13.9129	5.0728

Ćwiczenie: utworzyć pustą tabelę RYBY zawierajacą kolumny z tabeli FISH. Wyświetlić charakterystykę tabeli RYBY.

```
proc sql;
    create table RYBY like sashelp.fish;
    describe table ryby;
run;

create table WORK.RYBY( bufsize=131072 )
    (
        Species char(9),
        Weight num,
        Length1 num,
        Length2 num,
        Length3 num,
        Height num,
        Width num
    );
```

Ćwiczenie: utworzyć pustą tabelę RYBY zawierajacą kolumny z tabeli FISH, ale bez length2, length3. Wyświetlić charakterystykę tabeli RYBY.

Ćwiczenie: utworzyć pustą tabelę RYBY zawierajacą kolumny z tabeli FISH, ale tylko z kolumnami species, weight, length1, height. Wyświetlić charakterystykę tabeli RYBY.

Ćwiczenie*: utworzyć tabelę retail zawierającą dane z tabeli sashelp.retail. Wyświetlić tabelę retail z dodatkowymi kolumnami:

- sprawdzającą czy miesiąc to styczeń, a dzień jest pomiędzy 1 a 31,
- wyświetlającą kwartał.

```
/* test1 - example1 - verify dates in the table "retail" */
proc sql;
create table retail as select * from sashelp.retail;
select r.*,
(case when r.month=1 and r.day between 1 and 31 then 1 else 0 end) as
```

Quarter_todo, qtr(date) as Quarter_check

from retail r;

quit;

Retail sales in millions of \$	DATE	YEAR	MONTH	DAY	Quarter_todo	Quarter_check
\$220	80Q1	1980	1	1	1	1
\$257	80Q2	1980	4	1	0	2
\$258	80Q3	1980	7	1	0	3
\$295	80Q4	1980	10	1	0	4

Zadanie 1: Wyświetl tylko te rekordy z tabeli Shoes, w których wartość w polu region rozpoczyna się literą 'A'.

Zadanie 2: Wyświetl tylko te rekordy z tabeli Shoes, w których wartość w polu Number of Stores (liczba sklepów) jest większa od 25.

Zadanie 3: Wyświetl tylko te rekordy z tabeli Shoes, w których wartość pola Subsidiary znajduje się między 'T' oraz 'X'.

Zadanie 4: Wyświetl tylko te rekordy z tabeli Shoes, w których wartość pola Subsidiary jest równa 'Tel Aviv' lub 'Dubai' lub 'Warsaw' lub 'Addis Ababa' lub 'Calgary'. Wyniki posortuj według pola Subsidiary.

Zadanie 5: Wyświetl kolumny Region, Product, Subsidiary oraz sumę wartości sinusa kolumny Total Sales, kosinusa kolumny Total Inventory i tangensa kolumny Total returns.

Zadanie 6: Korzystając z tabeli Shoes, wyświetl wszystkie nazwy miast znajdujących się w rejonie Pacyfiku.

Zadanie 7: Powtórz poprzednie polecenie wstawiając po klauzuli SELECT słowo DISTINCT. Czym różni się wynik tego zapytania od wyniku poprzedniego?

Zadanie 8: Wyświetl nazwy miast oraz wielkość zwrotów (Total returns) z tabeli Shoes. Wyniki posortuj nierosnąco według wielkości zwrotu.

Zadanie 9: Wyświetl charakterystykę tabeli Heart w biliotece SASHELP.

Zadanie 10: Wyświetl status (Status), płeć (Sex), wartość ciśnienia skurczowego (Systolic) i rozkurczowego (Diastolic) osób, które mają cholesterol (Cholesterol) wyższy lub równy 300. Wyniki posortuj nierosnąco według ciśnienia skurczowego i w przypadku takich samych wartości skurczowego posortuj nierosnąco według ciśnienia rozkurczowego.

Zadanie 11: Wyświetl cholesterol i ilość wypalanych papierosów (Smoking) wszystkich żyjących mężczyzn, u których ciśnienie skurczowe jest wyższe od 135. Wyniki posortuj według wartości cholesterolu. W jaki sposób i gdzie po posortowaniu znajdują się wartości brakujące w kolumnie Cholesterol?

Zadanie 12: Wyświetl płeć, wiek pacjenta gdy zdiagnozowano chorobę serca (Age CHD Diagnosed, gdzie CHD=Coronary Heart Disease) oraz ilość lat życia (Age at Death) pacjentów, którzy już umarli (Dead w kolumnie Status).

Zadanie 13: Wyświetl płeć oraz ilość lat, jaka minęła od momentu zdiagnozowania choroby do momentu śmierci danej osoby, która już nie żyje (Dead w kolumnie Status).

Zadanie 14: Wyświetl wszystkie różne wartości znajdujące się w kolumnie "Cause of Death".

Zadanie 15: Wyświetl wszystkie te wiersze, które w kolumnie "Age CHD Diagnosed" nie mają wartości brakującej.

Zadanie 16: Wyświetl wzrost (Height), wagę (Weight) i płeć pacjentów, którzy umarli na raka (Cause of Death = Cancer). Wyniki posortuj nierosnąco według kolumny "Age at Start".

Zadanie 17: Wyświetl w jednym raporcie rekordy wszystkich tych kobiet, które ważyły (kolumna Weight) więcej niż 180 i wszystkich tych mężczyzn, którzy ważyli więcej niż 200.

Zadanie 18: Wyświetl płeć, wiek początkowy, czyli "Age at Start" oraz stosunek wagi (Weight) do wzrostu (Height). Wyniki posortuj według stosunku wagi do wzrostu.

Zadanie 19: Wyświetl przyczynę śmierci (Cause of Death) wszystkich osób, które już nie żyją mimo że ciśnienie (Blood Pressure Status) było OK (normal lub optimal) i nie palili papierosów.

Zadanie 20: Wyświetl dane osób, które umarły na wylew - udar mózgu (Cerebral Vascular Disease) mimo że cholesterol (Cholesterol Status) był Desirable, a ciśnienie (Blood Pressure Status) było OK (normal lub optimal).

Zadanie 21: Stworzyć tabelę Studenci zawierającą następujące kolumny:

Indeks, Nazwisko, Imie, Ocena, Data zal oraz odpowiednie etykiety (do Indeks, Data zal).

Zadanie 22: Dodać 5 sensownych rekordów do tabeli Studenci.

Zadanie 23: Dodać 2 rekordy zawierające tylko Indeks, Nazwisko i Imię.

Zadanie 24: Spróbować dodać rekord zawierający nieprawidłowe dane.

Zadanie 25: Wyświetlić imiona i nazwiska osób, które uzyskały ocenę co najmniej 4, posortowane alfabetycznie po Nazwisko.

Zadanie 26: Wyświetlić charakterystykę tabeli SHOES w bibliotece sashelp. Sprawdzić, ile ma kolumn, ile wierszy i na jaki temat przechowuje dane.

Zadanie 27: Utworzyć pustą tabelę Buty, która ma taki sam schemat jak tabela Shoes i dodać do niej dwa sensowne rekordy.

Zadanie 28: Przekopiować do tabeli Buty wszystkie rekordy z tabeli Sashelp.Shoes, w których Region to Asia oraz dla których Product ma w swojej nazwie na drugim miejscu literę 'o'.

Zadanie 29: Utworzyć (w bibliotece Work) na podstawie wyniku zapytania nową tabelę Buty1, której schemat ma atrybuty Region, Product i Number of Stores oraz która zawiera wszystkie rekordy z tabeli Sashelp.Shoes, gdzie Number of Stores jest pomiędzy 1 a 10.