Automatising Proofs for Multiparty Session Types

Kirstin Peters

TU Darmstadt - Theory of Parallel Systems

2020, June 05

Toy Example – Processes

$$P ::= s[r_1, r_2]! \langle y \rangle . P \mid s[r_2, r_1]?(x) . P \mid P \mid_{\mathfrak{V}} P \mid \mathbf{0}$$

I did not use any binders.

$$\mathsf{Com} \ \frac{}{s[r_1,r_2]!\langle y\rangle.P_1\mid_{\mathfrak{P}} s[r_2,r_1]?(x).P_2\longmapsto P_1\mid_{\mathfrak{P}} P_2\{\mid x\triangleright y\mid\}} \\ \mathsf{Par} \ \frac{P_1\longmapsto P_1'}{P_1\mid_{\mathfrak{P}} P_2\longmapsto P_1'\mid_{\mathfrak{P}} P_2}$$

Toy Example – Types

$$G ::= r_1 \rightarrow r_2 : S.G \mid end_{\mathfrak{G}}$$

$$L ::= [r]! \langle S \rangle . L \mid [r]? \langle S \rangle . L \mid end_{\mathfrak{L}}$$

- ▶ rolesGT(·)
- ightharpoonup projection: G
 ightharpoonup r

Toy Example – Typing Rules

$$\Gamma ::= n:_{\mathfrak{E}}S$$
 $\Delta ::= s[r]:L$

- free in GE n Γ, linearGE Γ
- \blacktriangleright free in SE s r \triangle , linearSE \triangle

$$\begin{split} \mathsf{Send} & \frac{y :_{\mathfrak{C}} S \in \Gamma \quad \Gamma \vdash P \rhd \Delta \cup \{s[r_1] : L\} \quad \dots}{\Gamma \vdash s[r_1, r_2] ! \langle y \rangle . P \rhd \Delta \cup \{s[r_1] : [r_2] ! \langle S \rangle . L\}} \\ \mathsf{Get} & \frac{\Gamma \cup \{x :_{\mathfrak{C}} S\} \vdash P \rhd \Delta \cup \{s[r_1] : L\} \quad \dots}{\Gamma \vdash s[r_1, r_2] ? \langle y \rangle . P \rhd \Delta \cup \{s[r_1] : [r_2] ? \langle S \rangle . L\}} \\ \mathsf{Par} & \frac{\Delta = \Delta_1 \cup \Delta_2 \quad \Gamma \vdash P_1 \rhd \Delta_1 \quad \Gamma \vdash P_2 \rhd \Delta_2 \quad \dots}{\Gamma \vdash P_1 |_{\mathfrak{P}} P_2 \rhd \Delta} \\ & \frac{\Gamma \vdash P_1 |_{\mathfrak{P}} P_2 \rhd \Delta}{\Gamma \vdash P_1 \rhd \Gamma} \end{split}$$

Theorem (Inversion Lemma)

If $\Gamma \vdash s[r_1, r_2]! \langle y \rangle . P \rhd \Delta$, then there are some S, L such that $s[r_1]:[r_2]! \langle S \rangle . L \in \Delta$, $y:_{\mathfrak{C}}S \in \Gamma$, $\Gamma \vdash P \rhd (\Delta - \{s[r_1]:[r_2]! \langle S \rangle . L\}) \cup \{s[r_1]:L\}$, and ...

Theorem (Substitution Lemma)

If
$$\Gamma \cup \{x :_{\mathfrak{C}} S\} \vdash P \triangleright \Delta$$
, ..., and $y :_{\mathfrak{C}} S \in \Gamma$, then $\Gamma \vdash P\{|x \triangleright y|\} \triangleright \Delta$.

weakly_coherent Δ

$$\equiv \exists G \ s. \ \Delta \subseteq \{X \mid \exists r. \ r \in \mathsf{rolesGT}(G) \land X = s[r]: (G \upharpoonright r)\}$$

Theorem (Subject Reduction)

If $\Gamma \vdash P \triangleright \Delta$, Δ is weakly coherent, and $P \longmapsto P'$, then there is some Δ' such that $\Gamma \vdash P \triangleright \Delta'$.

Theorem (Subject Reduction)

If $\Gamma \vdash P \triangleright \Delta$, Δ is weakly coherent, and $P \longmapsto P'$, then there is some Δ' such that $\Gamma \vdash P \triangleright \Delta'$.

Proof Strategy:

- \blacktriangleright the proof is by induction on the \longmapsto -rules
- - use the *inversion* lemma to obtain type information from $\Gamma \vdash P \triangleright \Delta$ in the concrete \longrightarrow -case
 - if necessary, use coherence to combine information on parallel parts
 - if necessary, use the substitution lemma to get rid of additional names
 - use the typing rules to construct the proof tree for the derivative
 - if necessary, exploit linearity (deconstruction using inversion) and re-establish linearity (construction using the typing rules)
- ► for non-axioms:
 - similar to before (though usually easier), but additionally you have the induction hypothesis

Small Case Study

in total: > 40 kB and > 850 lines of code

	lines of code	%
model	pprox 115	$\approx 13\%$
subject reduction	≈ 70	$\approx 8\%$
inversion lemma	≈ 170	$\approx 19\%$
substitution lemma	≈ 85	$\approx 10\%$
linear environments	≈ 445	$\approx 50\%$

paper proof

without binders!

Larger Case Study

larger (and more useful) model with binders (nominal sets) but no proofs (except for the inversion lemmata), no subject reduction

in total: > 1,3 MB and > 19.500 lines of code

lines of code	%
≈ 4764	≈ 24%
≈ 2042	$\approx 10\%$
≈ 7642	$\approx 39\%$
≈ 5320	$\approx 27\%$
	≈ 4764 ≈ 2042 ≈ 7642

Challenges:

- implementation of binders
- ► linearity of type environments

Ideas:

- binders using nominal sets
 - works fine (at least for me)
 - but requires a lot of boring auxiliary results
 - needs more automation
- ► linearity of type environments
 - lists or sets are not a good idea
 - maybe use a structure that ensures linearity by design
 - still you might need algorithmic support
- ▶ algorithmic support for different parts of the proofs
 - deconstructing typing proofs and constructing typing proofs from partial proof trees
 - structural congruence