Name:	
School:	

Trigonometry Individual 2017 St. Paul's Tournament

- 1. If $\sin x = \frac{4}{7}$, and the angle is located in Quadrant I, find $\sec x$.
- 2. If $\tan x = a$, what does $\tan(-x)$ equal?
- 3. Solve over the interval $[0, 2\pi)$: $\cot \theta \cos \theta = \cos \theta$
- 4. Convert $\frac{7\pi}{18}$ to degrees.
- 5. Find the exact value of $\sin \frac{7\pi}{12}$.
- 6. Simplify $42\sin^2 x + 42\cos^2 x$.
- 7. If $\sec x = \frac{\sqrt{11}}{3}$ (in the Quadrant IV), find $\tan x$.
- 8. Find $\tan(\sin^{-1}\frac{5}{13})$.
- 9. Find the area of a triangle with sides of length 5 and 7 and an included angle measuring 45°.
- 10. Find the exact length of the arc in a circle with radius 15 cm and a central angle measuring 140°.
- 11. How many triangles $\triangle ABC$ exist such that $a=5,\ b=6,\ {\rm and}\ \angle A=95^{\circ}$
- 12. Solve over the interval $[0, 2\pi)$: $2\cos^2 x \cos x 1 = 0$.

- 13. Find the value of the phase shift in $f(x) = -5\sin(3x 7\pi)$.
- 14. Convert 625° to radians.
- 15. Find the exact value of $\sin^{-1}(\sin(\frac{5\pi}{6}))$
- 16. Solve over the interval $[0, 2\pi)$: $\tan^3 x \tan^2 x = 0$.
- 17. Find secant of an angle in standard position with terminal ray passing through point (-3, -6).
- 18. Determine the quadrant in which the terminal side of θ lies if $\sin \theta > 0$ and $\sec \theta < 0$.
- 19. Given $\csc x = \frac{13}{5}$, find $\sec x \cdot \tan x$.
- 20. Find all values for θ in the interval $[0, 2\pi)$ for the equation $4\sin^2\theta = 1$.

Answers

- 1. $\frac{7\sqrt{33}}{33}$
- 2. -a
- 3. $\theta = \frac{\pi}{4}, \frac{\pi}{2}, \frac{5\pi}{4}, \frac{3\pi}{2}$
- 4. 70°
- 5. $\frac{\sqrt{2}}{4}(\sqrt{3}+1)$
- 6. 42
- 7. $-\frac{\sqrt{2}}{3}$
- 8. $\frac{5}{12}$
- 9. $\frac{35\sqrt{2}}{4}$
- 10. $\frac{35\pi}{3}$
- 11. no such triangles exist
- 12. $x = 0, \frac{2\pi}{3}, \frac{4\pi}{3}$
- 13. $\frac{7\pi}{3}$
- 14. $\frac{125\pi}{36}$
- 15. $\frac{\pi}{6}$
- 16. $x = 0, \frac{\pi}{4}, \pi, \frac{5\pi}{4}$
- 17. $-\sqrt{5}$
- 18. Quadrant II
- 19. $\frac{65}{144}$
- 20. $\theta = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}$