Plan

- Review of Last Lecture
- Section 21. The Field of Quotients of an Integral Domain
- Section 26. Homomorphisms and Factor Rings

Yongchang Zhu Short title 2 / 22

Review of Last Lecture

In the ring

$$\mathbb{Z}_n = \{0, 1, 2, \ldots, n-1\}.$$

The 0-divisors are $k \neq 0$ that are **not** relatively prime to n.

$$G_n = \{k \in \mathbb{Z}_n \mid k \neq 0, k \text{ is relatively primes to } n\}$$

Theorem 20.6. The set G_n forms a group under the multiplication modulo n.

Yongchang Zhu Short title 3/22

Example. In $\mathbb{Z}_{14} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13\}$, the 0-divisors are 2, 4, 6, 7, 8, 10, 12.

$$G_{14} = \{1, 3, 5, 9, 11, 13\}$$

Yongchang Zhu Short title 4/22

The order of G_n is equal to the Euler's phi function $\phi(n)$: $|G_n| = \phi(n)$.

 $\phi(n)$ is the number positive integers k with $1 \le k < n$ that are relatively prime to n.

- (1) $\phi(mn) = \phi(m)\phi(n)$ for m, n relatively primes.
- (2) $\phi(p^k) = p^k p^{k-1}$.

Yongchang Zhu Short title 5/22

Theorem 20.8. (Euler's Theorem) If a is an integer relatively prime to n, then $a^{\phi(n)} - 1$ is divisible by n.

In the special case that n = p is a prime, a is not a multiple of p, then Euler's theorem is Fermat's theorem:

Theorem 20.1. If p is a prime, a is not a multiple of p, then $a^{p-1}-1$ is a multiple of p.

Yongchang Zhu Short title 6/22

Example. $\phi(15) = \phi(3)\phi(5) = (3-1)(5-1) = 8$. 49 is relatively prime to 15, by Euler's theorem

 $49^8 - 1$ is a multiple of 15.

Yongchang Zhu Short title 7/2

Section 21. The Field of Quotients of an Integral Domain.

Recall the definition of an integral domain:

Definition 19.6. A ring D is called an **integral domain** if it satisfies the following three conditions

- (1) D is a commutative ring.
- (2) D has a unity 1, $1 \neq 0$.
- (3) D has no 0-divisors.

Every field is an integral domain (Theorem 19.9). The converse is not correct: \mathbb{Z} is an integral domain but not a field.

The main result of this section is that every integral domain is contained in a field as a subring. The smallest field that contains a given integral domain D is called the **field of quotients of** D.

For the integral domain \mathbb{Z} , its field of quotients is \mathbb{Q} , each element in \mathbb{Q} can be written as $\frac{n}{m}$ for some $m, n \in \mathbb{Z}$ and $m \neq 0$.

This motivates the following construction:

Let *D* be an integral domain. Let

$$S = \{(a, b) | a, b \in D, b \neq 0\}$$

(a,b) and (c,d) are equivalent if ad=bc. We write $(a,b)\sim (c,d)$ if they are equivalent.

Here the idea is that we think a pair (a, b) as $\frac{a}{b}$.

Yongchang Zhu Short title 11/22

Let F denote the set of equivalence classes of S. We define addition + and multiplication \cdot on F by:

$$(a,b)+(c,d)=(ad+bc,db), (a,b)\cdot(c,d)=(ac,bd)$$

We can prove that + and \cdot are well-defined and $(F, +, \cdot)$ is a field.

F is called the field of quotients of D. D can be embedded into F as a subring by $a \in D \mapsto (a,1)$.

Yongchang Zhu Short title 12 / 22

Section 26. Homomorphisms and Factor Rings.

We recall the definition of homomorphism between rings.

Definition 26.1 A map ϕ from ring R to ring R' is a (ring) homomorphism if

$$\phi(a+b) = \phi(a) + \phi(b), \quad \phi(ab) = \phi(a)\phi(b)$$

for all $a, b \in R$.

Yongchang Zhu Short title 13/22

Example. Let R_1, \ldots, R_n be rings, $R_1 \times \cdots \times R_n$ be the direct product ring. For each i, the map $\pi_i : R_1 \times \cdots \times R_n \to R_i$ defined by

$$\pi_i(a_1,\ldots,a_n)=a_i$$

is a homomorphism.

Example. The map $\phi: C[0,7] \to \mathbb{R}$, $\phi(f) = f(3)$, is a homomorphism. ϕ is called the evaluation homomorphism at 3.

Yongchang Zhu Short title 14/22

If R is a ring, a subset $S \subseteq R$ is a **subring** of R if S is closed under + and $(S, +, \cdot)$ is a ring.

To check a subset S is a subring, we only need to check the following:

- (1) S is closed under +.
- (2) S is closed under \cdot .
- (3) $0 \in S$ and $a \in S$ implies $-a \in S$.

Yongchang Zhu Short title 15 / 22

Theorem 26.3. Let $\phi:R\to R'$ be a ring homomorphism. Then

- (1) $\phi(0) = 0'$.
- (2) $\phi(-a) = -\phi(a)$ for all $a \in R$.
- (3) If $S \subseteq R$ is subring, then $\phi(S)$ is a subring of R'.
- (4) If $S' \subseteq R'$ is subring, then $\phi^{-1}(S')$ is a subring of R.

Yongchang Zhu Short title 16 / 22

Definition. Let $\phi: R \to R'$ be a ring homomorphism, the subring

$$\phi^{-1}(0') = \{ a \in R \, | \, \phi(a) = 0 \}$$

is called the **kernel** of ϕ , and is denoted by $Ker(\phi)$.

Yongchang Zhu Short title 17 / 22

Example. For the homomorphism $\phi : \mathbb{Z} \to \mathbb{Z}_n$, $\phi(a) = a \mod n$, $Ker(\phi) = n\mathbb{Z}$.

Example. For the ring homomorphism $\phi : C[0,7] \to \mathbb{R}$, $\phi(f) = f(3)$, $Ker(\phi) = \{f(x) \in C[0,7] \mid f(3) = 0\}$.

Yongchang Zhu Short title 18 / 22

About Quiz.

The symbols $\mathbb{Z},\mathbb{Q},\mathbb{R},\mathbb{C},\mathbb{Q}^*,\mathbb{R}^*,\mathbb{C}^*$ will be denoted by

$$\boldsymbol{Z},\boldsymbol{Q},\boldsymbol{R},\boldsymbol{C},\boldsymbol{Q}^*,\boldsymbol{R}^*,\boldsymbol{C}^*$$

Yongchang Zhu Short title 19/22

Sample problem. Let C^* be the multiplicative group of non-zero complex numbers. Let A , B , C be subgroups of C^* given as follows:

A = the set of numbers of form 2^n , n is an integer

B =the set of all 100th roots of unity

C =the set of all positive real numbers

Determine if A, B, C are cyclic groups

- (1) A , B , C are all cyclic groups.
- (2) A, B are cyclic groups, but C is not
- (3) A, C are cyclic groups, but B is not
- (4) B, C are cyclic groups, but A is not

Yongchang Zhu Short title 21/22

The end

Yongchang Zhu Short title 22 / 22