Associativity of matrix multiplication:

Consider Apxay, Baxn, Conxt

Apxay Baxn, Conxt = Dpxt) A (BC) = D'

$$d: = \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} a_{ik} b_{kk} \times (kj)$$
 $= \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} a_{ik} \left(\sum_{k=1}^{\infty} b_{kk} \cdot C_{kj} \right)$
 $= \sum_{k=1}^{\infty} a_{ik} \left(\sum_{k=1}^{\infty} b_{kk} \cdot C_{kj} \right)$
 $\Rightarrow dij = dij$
 $\Rightarrow D = D'$

.. Materix multiplication is associative

Not Commutative, Consider
$$A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$

$$B A = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}, A B \neq BA$$

So matrix multiplication is not commutative.

Apxy
$$B_{qxn}$$
 C_{nxt} D_{pxt}

A B C = D

If we do (AB) C, Numberg scalar multiplications

= $pqn + pnt$

For
$$A(B()) \rightarrow pqt + qnt$$

$$\Rightarrow pn(q+t) < qt(p+n)$$

$$\Rightarrow \boxed{\frac{1}{q} + \frac{1}{t}} < \frac{1}{p} + \frac{1}{n}$$