EXHIBIT B

A Library of Parameterized Hardware Modules for Floating Point Arithmetic and Its Use

Prof. Miriam Leeser
Pavle Belanovic
Department of Electrical and Computer Engineering
Northeastern University
Boston MA

Outline

- Introduction and motivation
- Library of hardware modules for variable precision floating point
- Application: K-means algorithm using variable precision floating point library
- Conclusions

Accelerating Algorithms

- Reconfigurable hardware used to accelerate image and signal processing algorithms
- Exploit parallelism for speedup
- Customize design to fit the particular task
 - signals in fixed or floating-point format
 - area, power vs. range, precision trade-offs

Format Design Trade-offs

Area Gains Using Reduced Precision

General Floating-Point Format

Field	Symbol	Bitwidth
sign	S	1
exponent	е	exp_bits
fraction/mantissa	f	man_bits

	sign	exponent	fraction / mantissa	
I	MSB		LS	SB

IEEE Floating Point Format

- BIAS depends on number of exponent bits
 - » 127 in IEEE single precision format
- Implied 1 in mantissa not stored

Library of Parameterized Modules

 Total of seven parameterized hardware modules for arbitrary precision floating-point arithmetic

	Module	Latency
format control	/denorm	0
format control(2
operators	/fp_add	4
operators	fp_sub	4
	\fp_mul	3
conversion	/fix2float	4/5
conversion	\float2fix	4/5

Highlights

- Completely general floating-point format
- All IEEE formats are a subset
- All previously published non-IEEE formats are a subset
- Abstract normalization from other operations
- Rounding to zero or nearest
- Pipelining signals
- Some error handling

Assembly of Modules

2 × denorm

 $+ 1 \times fp_add$

+ 1 × rnd_norm

= 1 × IEEE single precision adder

Denormalization

- "Unpack" input number: insert implied digit
- If input is value zero, insert '0'
 Otherwise, insert '1'
- Output 1 bit wider than input
- Latency = 0

Rounding and Normalizing

- Returns input to normalized format
- Designed to follow arithmetic operation(s)

Addition and Subtraction

Fixed to Floating-Point

Floating to Fixed-Point

Implementation Experiments

- Designs specified in VHDL
- Mapped to Xilinx Virtex FPGA
- Wildstar reconfigurable computing engine by Annapolis Micro Systems Inc.
 - PCI Interface to host processor
 - 3 Xilinx XCV1000 FPGAs
 - total of 3 million system gates
 - 40 Mbytes of SRAM
 - 1.6 Gbytes/sec I/O bandwidth
 - 6.4 Gbytes/sec memory bandwidth
 - clock rates to 100MHz

Synthesis Results

Synthesis Results

K-means Algorithm

Image spectral data

- ·Each cluster has a center:
 - mean value of pixels in that cluster
- ·Each pixel is in the cluster whose center it is closest to
 - requires a distance metric
- Algorithm is iterative

K-means Clustering Algorithm

Structure of the K-means Circuit

Results of Processing

Purely fixed-point

Hybrid fixed and floating-point

Synthesis Results

Property	Fixed-point	Hybrid
Area	9420 slices	10883 slices
Percent of FPGA	76%	88%
Minimum period	16ns	20ns
Maximum frequency	64MHz	50MHz
Throughput	1 cycle	8 cycles

Conclusions

- Library of fully parameterized hardware modules for floating-point arithmetic available
- Ability to form arithmetic pipelines in custom floating-point formats demonstrated
- Future work
 - More floating point modules (ACC, MAC, DIV ...)
 - More applications
 - Automation of design process using the library
 - Automatically choose best format for each variable and operation